Ingeniería de los Computadores

Sesión 11. Redes de interconexión. Encaminamiento

- Encaminamiento. Los algoritmos de encaminamiento establecen el camino que sigue cada mensaje o paquete
- Propiedades derivadas
 - Conectividad: capacidad de encaminar desde cualquier nodo origen a cualquier nodo destino
 - Adaptabilidad: capacidad de encaminar a través de caminos alternativos
 - Evitación de bloqueos: capacidad de garantizar que los mensajes no se bloquearán en la red
 - ➤ Tolerancia a fallos: capacidad de encaminar en presencia de componentes defectuosos

- Algoritmos de encaminamiento. Criterios de clasificación
 - El número de destinos
 - Quién toma la decisión del encaminamiento
 - > Cómo se realiza la implementación
 - La adaptabilidad
 - > La progresividad
 - > La minimalidad del encaminamiento
 - > El número de caminos proporcionados

- Algoritmos de encaminamiento. Clasificación
 - Según número de destinos:
 - Monodestino (unicast)
 - Multidestino (multicast)
 - Según decisión de encaminamiento:
 - Centralizados
 - ➤ En origen (El nodo fuente especifica el camino y la ruta se almacena en la cabecera del paquete) ② encaminamiento street-sign
 - ➤ Distribuidos (Los nodos intermedios deciden hacia dónde encaminar) → Idóneo para topologías irregulares
 - Multifase

- Algoritmos de encaminamiento. Clasificación
 - > Según la implementación:
 - Tablas (encaminamiento por intervalos)
 - Máquinas de estados finitos (FSM) 1 topologías ortogonales (encaminamiento por orden de dimensión)
 - Según adaptabilidad
 - Deterministas:
 - Siempre suministran el mismo camino
 - > Rendimiento pobre si trafico no uniforme
 - > Adaptativos:
 - Consideran el estado de la red
 - > Totalmente adaptativos: pueden usar todos los canales
 - Parcialmente adaptativos: usan un subconjunto

- Algoritmos de encaminamiento. Clasificación
 - Según progresividad
 - Progresivos
 - Backtracking: EPB (Exhaustive Profitable Backtracking)
 - Según minimalidad
 - Mínimos
 - > ¿Algoritmos deterministas progresivos y mínimos?
 - > No mínimos
 - Mayor flexibilidad
 - Encaminamiento tolerante a fallos

- Algoritmo determinista: encaminamiento por orden de dimensión
 - Topologías ortogonales
 - > Selección de canales sucesivos con orden específico
 - > Tipo determinístico
 - La diferencia en una dimensión se anula antes de pasar a la siguiente
 - > Ejemplos:
 - Street-sign (fuente y sin tabla)
 - encaminamiento XY (distribuido y sin tabla)
 - > encaminamiento e-cube
 - Intervalo (distribuido y con tabla de consulta)
 - ➤ Libre de interbloqueos en mallas e hipercubos (en toros es necesario usar canales virtuales y establecer un orden en su utilización)

Conceptos Clasificación Topologías Conmutación **Encaminamiento**

Encaminamiento XY (ordenado por dimensión)

Conceptos Clasificación Topologías Conmutación **Encaminamiento**

Encaminamiento ordenado por dimensión en tablas

- Modelo de giros (turn-model)
 - > Redes estáticas (topologías ortogonales) y redes dinámicas
 - > Ejemplo:
 - ➤ West-First en mallas 2D (distribuido, sin tablas, parcialmente adaptativo y puede ser mínimo o no mínimo)
 - > Interbloqueos
 - ➤ Ciclos que engloban varias direcciones → Se evitan prohibiendo al menos un cambio de dirección para cada ciclo
 - ➤ Ciclos sin cambio de dirección → Se evitan añadiendo canales virtuales y estableciendo un orden de uso

Conceptos Clasificación Topologías Conmutación **Encaminamiento**

Algoritmo West-First

Conceptos Clasificación Topologías Conmutación **Encaminamiento**

Algoritmo West-First – implementación no mínima

Conceptos Clasificación Topologías Conmutación **Encaminamiento**

Algoritmo West-First para mallas 2D

```
Entrada: Actual A = (a, a)
          Destino D = (d, do)
Salida: Canal cs
Procedimiento:
dist0 = d_0 - a_0; dist1 = d_4 - a_4;
if ( dist0<0 ) cs = D0-;
if ( dist0>0 & dist1>0 ) cs = Sel(D0+,D1+);
if ( dist0>0 & dist1<0 ) cs = Sel(D0+,D1-);</pre>
if ( dist0>0 & dist1=0 ) cs = D0+;
if ( dist0=0 & dist1>0 ) cs = D1+;
if ( dist0=0 & dist1<0 ) cs = D1-;</pre>
if ( dist0=0 & dist1=0 ) cs = I;
```

Conceptos Clasificación Topologías Conmutación **Encaminamiento**

Algoritmo totalmente adaptativo: redes virtuales

- Encaminamiento en redes tipo mariposa
 - Tipo determinístico
 - Se usa la dirección del destino D en base b. Cada dígito controla una etapa de conmutadores
 - No hay interbloqueo porque la topología no presenta ciclos
 - Ejemplos:
 - > Red Omega y red Cubo: d_i controla la etapa n-i-1
 - Red mariposa: d₁ controla la etapa i-1 y d₀ la etapa n-1

Conceptos Clasificación Topologías Conmutación **Encaminamiento**

Encaminamiento en redes tipo mariposa

Conceptos Clasificación Topologías Conmutación **Encaminamiento**

• Encaminamiento en redes tipo mariposa

