Problem 4

Let $S = \{1, 2, 3, ..., n\}$ be a set of n elements. S is closed under the binary operation \diamond .

Definition 1. \diamond is a **binary operation** on a set S if \diamond : $S \times S \rightarrow S$.

Definition 2. S is **closed** under a binary operation \diamond if $x \diamond y \in S \quad \forall x, y \in S$.

Definition 3. The operation \diamond is **unital** if

$$1 \diamond x = x \diamond 1 = x, \quad \forall \ x \in S. \tag{0.1}$$

Definition 4. The operation ⋄ is **sandwiching** if

$$(x \diamond y) \diamond (z \diamond w) = (x \diamond z) \diamond (y \diamond w), \quad \forall \ x, y, z, w \in S. \tag{0.2}$$

Definition 5. The operation ⋄ is **commutative** if

$$x \diamond y = y \diamond x, \quad \forall \ x, y \in S.$$
 (0.3)

Proposition 1 (Question a). *If the binary operation* \diamond *on* S *is both unital and sandwiching, it must be commutative.*

Proof. Let $x, y \in S$.

According to the unital axiom,

$$x \diamond 1 = x \diamond 1 = x$$
$$y \diamond 1 = y \diamond 1 = y$$

Use the sandwiching axiom,

$$(1 \diamond x) \diamond (y \diamond 1) = (x \diamond 1) \diamond (y \diamond 1)$$
$$(1 \diamond y) \diamond (x \diamond 1) = (x \diamond y) \diamond (1 \diamond 1)$$
$$y \diamond x = x \diamond y$$

which means that \diamond is commutative over S.

Definition 6. The operation ⋄ is **associative** if

$$x \diamond (y \diamond z) = (x \diamond y) \diamond z, \quad \forall \ x, y, z \in S. \tag{0.4}$$

Proposition 2 (Question b). *If the binary operation* \diamond *on* S *is both unital and sandwiching, it is also associative.*

Proof. Let $x, y, z \in S$. According to the sandwiching axiom,

$$(y \diamond x) \diamond (z \diamond 1) = (y \diamond z) \diamond (x \diamond 1)$$

On the other hand, because of the unital axiom,

$$(y \diamond x) \diamond (z \diamond 1) = (y \diamond x) \diamond z,$$

$$(y \diamond z) \diamond (x \diamond 1) = (y \diamond z) \diamond x$$

Therefore,

$$(y \diamond x) \diamond z = (y \diamond z) \diamond x$$

According to Proposition 1, \diamond is commutative, so

$$x \diamond (y \diamond z) = (x \diamond y) \diamond z$$

which is the required property of associativity.

Definition 7. The operation ⋄ is **self-distributive** if

$$x \diamond (y \diamond z) = (x \diamond y) \diamond (x \diamond z), \quad \forall \ x, y, z \in S. \tag{0.5}$$

Proposition 3 (Question c). Define \bullet to be a new operation on S. If \bullet is both unital and self-distributive, then it must be associative.

Proof.

$$x \bullet y = x \bullet (y \bullet 1)$$
$$= (x \bullet y) \bullet (x \bullet 1)$$
$$= (x \bullet y) \bullet x$$

On the other hand,

$$x \bullet y = x \bullet (1 \bullet y)$$
$$= (x \bullet 1) \bullet (x \bullet y)$$
$$= x \bullet (x \bullet y)$$

Therefore, we obtain

$$x \bullet y = (x \bullet y) \bullet x = x \bullet (x \bullet y),$$

Now, since \bullet is also self-distributive, consider for $x, y, z \in S$,

$$x \bullet (y \bullet z) = (x \bullet y) \bullet (x \bullet z)$$

$$= [(x \bullet y) \bullet x] \bullet [(x \bullet y) \bullet z]$$

$$= (x \bullet y) \bullet [(x \bullet y) \bullet z]$$

$$= (x \bullet y) \bullet z$$

which is the property of associativity that we desire.

Proposition 4. If a binary operation \diamond closed on S is associative and commutative, it is also sandwiching.

Proof. By associative and commutative we have

$$(x \diamond y) \diamond (z \diamond w) = x \diamond y \diamond z \diamond w = x \diamond z \diamond y \diamond w = (x \diamond z) \diamond (y \diamond w), \quad \forall \ x, y, z, w \in S$$

Hence it is sandwiching.

Proposition 5. Let \diamond be a binary operation closed on the set S. Among the five properties: unital, sandwiching, commutative, associative, self-distributive,

except self-distributive \Rightarrow sandwiching, any other pairs of properties cannot be deduced from one another. For example, if \diamond is unital, it may not be sandwiching, commutative, associative, or self-distributive.

Proof. Let \diamond be a binary operation on the set S. We look at several counterexamples.

1. Consider the case the binary operation $\diamond : (x,y) \mapsto x$. \diamond is sandwiching because $\forall x, y, z, w \in S$,

$$(x \diamond y) \diamond (z \diamond w) = x \diamond z = x,$$

$$(x \diamond z) \diamond (y \diamond w) = x \diamond y = x,$$
 Thus,
$$(x \diamond y) \diamond (z \diamond w) = (x \diamond z) \diamond (y \diamond w).$$

 \diamond is associative because $\forall x, y, z \in S$,

$$x \diamond (y \diamond z) = x \diamond y = x$$

$$(x \diamond y) \diamond z = x \diamond z = x,$$
 Thus,
$$x \diamond (y \diamond z) = (x \diamond y) \diamond z$$

 \diamond is self-distributive because $\forall x, y, z \in S$,

$$x \diamond (y \diamond z) = x \diamond y = x$$

$$(x \diamond y) \diamond (x \diamond z) = x \diamond x = x,$$
 Thus,
$$x \diamond (y \diamond z) = (x \diamond y) \diamond (x \diamond z)$$

However, \diamond is not unital because $\forall x \in S$,

$$x \diamond 1 = x \neq 1 = 1 \diamond x$$
.

Nor is \diamond commutative, because $\forall x, y \in S$,

$$x \diamond y = x \neq y = y \diamond x$$
.

Therefore, from this counterexample, we can conclude that

sandwiching \Rightarrow unital; sandwiching \Rightarrow commutative; associative \Rightarrow unital; associative \Rightarrow commutative; self-distributive \Rightarrow unital; self-distributive \Rightarrow commutative;

2. Consider the case $\diamond: (x,y) \mapsto \begin{cases} x+y \mod n, & \text{if } n \not\mid (x+y) \\ 1, & \text{if } n \mid (x+y) \end{cases}$.

Since modular addition is inherently associative and commutative, by Proposition 4, \$\display\$ is also sandwiching.

However, \diamond not unital, as $x + 1 = 1 + x \neq x \mod n \quad \forall x \in S$ Nor is \diamond self-distributive, because $x + (y + z) \neq 2x + y + z = (x + y) + (x + z)$. Therefore, we conclude that

> sandwiching ⇒ unital; sandwiching ⇒ self-distributive; associative ⇒ unital; associative ⇒ self-distributive; commutative \Rightarrow unital; commutative \Rightarrow self-distributive;

3. Consider when $\diamond: (x,y) \mapsto \begin{cases} |x-y|, & \text{if } x \neq y \\ 1, & \text{if } x = y \end{cases}$.

In this case, only the commutative axiom is satisfied.

Therefore, we conclude that commutativity alone cannot deduce any other properties for a binary operation.

4. Consider when $\diamond: (x,y) \mapsto \begin{cases} \left|\frac{x}{y}\right|, & \text{if } x \neq 1 \\ y, & \text{if } x = 1 \end{cases}$.

In this case, \diamond is unital because $1 \diamond x = x \diamond 1 = 1$. However, it does not satisfy any other axioms.

We hence conclude that unital axiom alone cannot deduce any other properties for a binary operation.

5. Consider when $\diamond: (x,y) \mapsto xy \mod n$.

In this case, \diamond is unital because $1 \diamond x = x \diamond 1 = x$;

Since multiplication is associative and commutative, by Proposition 4, it is sandwiching. However, it is not self-distributive.

We hence conclude that none of the axioms alone can deduce self-distributivity.

6. Consider when
$$\diamond: (x,y) \mapsto \begin{cases} \frac{x+y}{2}, & \text{if } x+y \equiv 0 \mod 2 \\ x, & \text{if } x+y \equiv 1 \mod 2 \end{cases}$$

If $x + y \equiv 1 \mod 2$, we have shown that the operation maps(x, y) to x is sandwiching and self-distributive in Counterexample 1.

If $x + y \equiv 0 \mod 2$, \diamond is sandwiching because

$$(x \diamond y) \diamond (z \diamond w) = (\frac{x+y}{2}) \diamond (\frac{z+w}{2}) = \frac{x+y+z+w}{4}, \text{ and}$$
$$(x \diamond z) \diamond (y \diamond w) = (\frac{x+z}{2}) \diamond (\frac{y+w}{2}) = \frac{x+y+z+w}{4}$$
$$\Rightarrow (x \diamond y) \diamond (z \diamond w) = (x \diamond z) \diamond (y \diamond w)$$

It is also self-distributive because

$$x \diamond (y \diamond z) = x \diamond (\frac{y+z}{2}) = \frac{x + \frac{y+z}{2}}{2}, \text{ and}$$

$$(x \diamond y) \diamond (x \diamond z) = (\frac{x+y}{2}) \diamond (\frac{x+z}{2}) = \frac{x + \frac{y+z}{2}}{2}$$

$$\Rightarrow x \diamond (y \diamond z) = (x \diamond y) \diamond (x \diamond z)$$

However, it does not satisfy associativity, because

$$x \diamond (y \diamond z) = \frac{x + \frac{y + z}{2}}{2},$$
$$(x \diamond y) \diamond z = \frac{\frac{x + y}{2} + z}{2}$$
$$\Rightarrow x \diamond (y \diamond z) \neq (x \diamond y) \diamond z$$

We hence conclude that

sandwiching \Rightarrow associative; self-distributive \Rightarrow associative.

7. Lastly we are left to show that associative \Rightarrow sandwiching. Since

$$(x \diamond y) \diamond (z \diamond w) = [(x \diamond y) \diamond z] \diamond w = [x \diamond (y \diamond z)] \diamond w$$
$$(x \diamond z) \diamond (y \diamond w) = [(x \diamond z) \diamond y] \diamond w = [x \diamond (z \diamond y)] \diamond w$$

If we find a non-commutative associative binary operation, it is not sandwiching. One of them is matrix multiplication.

Consider when
$$\diamond: (x,y) \mapsto \text{sum of entries of} \begin{pmatrix} x & x+1 \\ x+2 & x+3 \end{pmatrix} \begin{pmatrix} y & y+1 \\ y+2 & y+3 \end{pmatrix} \mod n.$$

Since these matrices are associative but not commutative, we know that the sum of the entries resulting matrix for xy must be different from that of yx. Since it is not commutative, \diamond is not sandwiching, i.e. associative \Rightarrow sandwiching.

Therefore, drawing conclusion from the seven examples above, we have shown that any pairs of properties cannot be deduced from one another, except for self-distributive \Rightarrow sandwiching. \Box

Conjecture 1. I conjecture that self-distributive \Rightarrow sandwiching for a binary operation \diamond closed on S, i.e. $\forall x, y, z, w \in S$,

$$\begin{cases} x \diamond (y \diamond z) = (x \diamond y) \diamond (x \diamond z) \\ (x \diamond y) \diamond (z \diamond w) \neq (x \diamond z) \diamond (y \diamond w) \end{cases}.$$

This conjecture holds for all the examples we discussed above. Therefore, I am still working on finding a proof or a counterexample for this conjecture.

Definition 8. The operation ⋄ is **identical** if

$$x \diamond x = x.$$
 (0.6)

Proposition 6. If a binary operation \diamond is both identical and sandwiching, it is also self-distributive.

Proof. By identical and sandwiching we have:

$$x \diamond (y \diamond z) = (x \diamond x)(y \diamond z) = (x \diamond y)(x \diamond z)$$

Therefore, \diamond is self-distributive.

Proposition 7. If a binary operation \diamond is both unital and self-distributive, it is also identical.

Proof. By unital and self-distributive we have:

$$x = x \diamond 1 = x \diamond (1 \diamond 1) = (x \diamond 1)(x \diamond 1) = x \diamond x$$

Therefore, \diamond is identical.

Definition 9. The operation ⋄ is **absorptive** if

$$x \diamond (x \diamond y) = x \diamond y. \tag{0.7}$$

Proposition 8. If a binary operation \diamond is both unital and self-distributive, it is also absorptive.

Proof. By unital and self-distributive we have:

$$x \diamond y = x \diamond (1 \diamond y) = (x \diamond 1) \diamond (x \diamond y) = x \diamond (x \diamond y)$$

Therefore, \diamond is absorptive.

Proposition 9. If a binary operation \diamond is both commutative and identical, it is also absorptive.

Proof. By commutative and identical we have:

$$x \diamond (x \diamond y) = (x \diamond x) \diamond y = x \diamond y$$

Therefore, ⋄ is absorptive.

As a summary of the properties we have explored, I have the following proposition:

Proposition 10. If a binary operation \diamond is also, sandwiching, and self-distributive, \diamond is commutative, associative, absorptive, and identical.