Objective: \$965, 783, 540, 256; without intervention: \$1,007, 325,056, 152 (Desired optimality gap: 80%; actual: 77%. Lower Bound: \$222,316,000,000. Time to solve: 40s) $C^{l} = \$10,000,C^{D} = \$10,000,000$ One Period=7 days (costs scaled by 1,000,000 during optimization) $Solved\ using\ solve_and_process_vaccination_T_vax_20_S0_antivax_factor_0.2_KV_0.05$

	0 -3	4 -4 -	5 6 5 -20	-	21 23 22 -23	24 3 -24	25 1 -25 -99
<pre>0. Movement A: \$[5000 ,10000] \cdot 10^2 B: \$[10000,20000] \cdot 10^2 C: \$[10</pre>		2		2	2 2		
1. Education (University level) A: \$[0 ,0]·10² B: \$[0 ,0]·10² C: \$[10 ,14]·10² P: [.99 ,.95]			2				
2. Social Gatherings (in a house) A: \$[0 ,0 ,0 ,0]·10 ² B: \$[0 ,0 ,0 ,0]·10 ² C: \$[8 ,10 ,12 ,14]·10 ² P: [.99 ,.99 ,.97 ,.93]		4	4	2	4	4	
3. Non-Food Service (bank,retail, etc) A: \$[2500 ,5000 ,10000] \cdot 10^2 B: \$[5000 ,10000,20000] \cdot 10^2 C: \$[8 ,10 ,14] \cdot 10^2 P: [.99 ,.95 ,.93]		3	3	3	3		
<pre>4. Restaurants A: \$[5000 ,10000]·10² B: \$[10000,20000]·10² C: \$[10</pre>		2	2	2	2		
5. Masking A: \$[0 ,0 ,0]·10 ² B: \$[0 ,0 ,0]·10 ² C: \$[8 ,10 ,14]·10 ² P: [.99 ,.95 ,.93]		3	3	3	3		
6. Mega Events A: \$[2500 ,5000 ,10000]·10 ² B: \$[5000 ,10000,20000]·10 ² C: \$[8 ,10 ,14]·10 ² P: [.99 ,.95 ,.93]		3	3	3	3		
7. Border Control A: \$[5000 ,10000]·10 ² B: \$[10000,20000]·10 ² C: \$[10		2	2	2	2		
8. Physical Distancing A: \$[0]·10 ² B: \$[0]·10 ² C: \$[10]·10 ² P: [.93]		1 1	1	1	1	1	
Cost Per Period: TOTAL Cost Per Period: POLICY Cost Per Period: DISEASE Probability Factor	\$2e+09 \$0.0 \$2e+09 1.000	\$9.6e+ \$2 \$3e+08 \$3 \$9.3e+ \$1 0.925 0.	1e+ \$5.4e+10 3e+ \$3.7e+09 8e+ \$5.1e+10 336 0.509	\$. \$. \$. 0	2.2e+ \$1.56 3.2e+ \$2.4 1.9e+ \$1.36 536 0.620	\$1.1e- \$7.2e- \$1e+ \$1e+10 \$0.856	\$4.5e+08 \$5.00 \$1.0 \$8.2e+ \$4.5e+08 \$0.925 \$1.000