CRITERIA: (Imperial Units)

LOCATION:

Philadelphia International Ap. PA. USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5

TMY3 724080 WMO Station Number, Elevation 6 ft Data Source:

TEMPERATURE RANGE California Energy Code LOCATION:

Data Source:

Philadelphia International Ap, PA, USA Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5

TMY3 724080 WMO Station Number, Elevation 6 ft

SKY COVER RANGE

LOCATION:

Data Source:

Philadelphia International Ap, PA, USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5 TMY3 724080 WMO Station Number, Elevation 6 ft

Philadelphia International Ap, PA, USA LOCATION: Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5 WIND VELOCITY RANGE Data Source: TMY3 724080 WMO Station Number, Elevation 6 ft LEGEND 60 55 RECORDED HIGH -50 **AVERAGE HIGH -**MEAN -45 AVERAGE LOW -RECORDED LOW -40 (mph) 35 0 30 0 25 0 0 0 0 20 0 15 10 PLOT:

Jun

Jul

Aug

Sep

Oct

Nov

mph O fpm WIND VELOCITY: 0 to 60 mph Fit to Data

Jan

Feb

Mar

Арг

May

TIMETABLE PLOT

LOCATION:

Data Source:

Philadelphia International Ap, PA, USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5 TMY3 724080 WMO Station Number, Elevation 6 ft

Sunrise

SUN SHADING CHART

LOCATION: Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5

Data Source:

Philadelphia International Ap, PA, USA

TMY3 724080 WMO Station Number, Elevation 6 ft

LEGEND

WARM/HOT > 75°F

(SHADE NEEDED) 357 Hours Exposed **0 Hours Shaded**

COMFORT > 70°F

(SHADE HELPS) 150 Hours Exposed **0 Hours Shaded**

COOL/COLD < 70°F

(SUN NEEDED) 2003 Hours Exposed **O Hours Shaded**

PLOT MONTHS:

WINTER SPRING

December 21 to June 21

SUMMER FALL

June 21 to December 21

Display Grid

Display Shading Calculator

Display Obstruction Elevation

Input Obstructions

SUN CHART

LOCATION:

Data Source:

Philadelphia International Ap, PA, USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5 TMY3 724080 WMO Station Number, Elevation 6 ft

LEGEND

- WARM/HOT > 75°F (SHADE NEEDED)
- COMFORT > 70°F (SHADE HELPS)
- COOL/COLD < 70°F (SUN NEEDED)
- **▼GNOMON POSITION**

PLOT MONTHS: WINTER SPRING December 21 to June 21 SUMMER FALL

June 21 to December 21

RADIATION RANGE

LOCATION:

Data Source:

Philadelphia International Ap, PA, USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5 TMY3 724080 WMO Station Number, Elevation 6 ft

HOURLY AVERAGES DAYLIT HOURS ONLY

AVERAGE HIGH -MEAN. AVERAGE LOW -RECORDED LOW - 0

RECORDED HIGH - 0

RECORDED:

DIRECT NORMAL

GLOBAL HORIZONTAL TOTAL SURFACE

(Btu/sq.ft per hour)

THEORETICAL:

Tilted Surface Radiation Input:

0.0 Tilt degrees from H...

(Vertical = 90°)

0.0 Bearing degrees fro...

(South = 0°, West ...

20.0 % Ground Reflecta...

(20% = grass)

PLOT:

Hourly Avg (Daily Total

Dec

PSYCHROMETRIC CHART California Energy Code

LOCATION:

Data Source:

Philadelphia International Ap. PA. USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5 TMY3 724080 WMO Station Number, Elevation 6 ft

MONTHLY DIURNAL AVERAGES California Energy Code

LOCATION:

Data Source:

Philadelphia International Ap, PA, USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5 TMY3 724080 WMO Station Number, Elevation 6 ft

ILLUMINATION RANGE

LOCATION:

Philadelphia International Ap, PA, USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5

Data Source: TMY3 724080 WMO Station Number, Elevation 6 ft

GLOBAL HORIZONTAL

(footcandles)

GROUND TEMPERATURE (MONTHLY AVERAGE)

LOCATION:

Data Source:

Philadelphia International Ap, PA, USA Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5

TMY3 724080 WMO Station Number, Elevation 6 ft

WIND WHEEL

LOCATION:

Philadelphia International Ap, PA, USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5

Data Source:

TMY3 724080 WMO Station Number, Elevation 6 ft

DRY BULB X DEW POINT LOCATION: Philadelphia International Ap, PA, USA Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5 California Energy Code Data Source: TMY3 724080 WMO Station Number, Elevation 6 ft LEGEND 1000) 50 000000 Dry Bulb Dew Point • **Comfort Zone** JAN **FEB** APR MAR 10 0 MAY JUL **AUG** JUN TEMPERATURE RANGE: 10 to 110 °F Fit to Data SEP OCT NOV DEC

DESIGN GUIDELINES (for the Full Year)
California Energy Code
User Modified Design Strategies, User Modified Criteria

LOCATION:

Data Source:

Philadelphia International Ap, PA, USA

Latitude/Longitude: 39.87° North, 75.23° West, Time Zone from Greenwich -5

TMY3 724080 WMO Station Number, Elevation 6 ft

Assuming only the Design Strategies that were selected on the Psychrometric Chart, 88.7% of the hours will be Comfortable.

This list of Residential Design guidelines applies specifically to this particular climate, starting with the most important first. Click on a Guideline to see a sketch of how this Design Guideline shapes building design (see Help).

19	For passive solar heating face most of the glass area south to maximize winter sun exposure, but design overhangs to fully shade in summer
20	Provide double pane high performance glazing (Low-E) on west, north, and east, but clear on south for maximum passive solar gain
3	Lower the indoor comfort temperature at night to reduce heating energy consumption (lower thermostat heating setback) (see comfort low criteria)
18	Keep the building small (right-sized) because excessive floor area wastes heating and cooling energy
15	High Efficiency furnace (at least Energy Star) should prove cost effective
4	Extra insulation (super insulation) might prove cost effective, and will increase occupant comfort by keeping indoor temperatures more uniform
13	Steep pitched roof, with a vented attic over a well insulated ceiling, works well in cold climates (sheds rain and snow, and helps prevent ice dams)
2	If a basement is used it must be at least 18 inches below frost line and insulated on the exterior (foam) or on the interior (fiberglass in furred wall)
16	Trees (neither conifer or deciduous) should not be planted in front of passive solar windows, but are OK beyond 45 degrees from each corner
14	Locate garages or storage areas on the side of the building facing the coldest wind to help insulate
67	Traditional passive homes in cold clear climates had snug floorplan with central heat source, south facing windows, and roof pitched for wind protection
5	Carefully seal building to minimize infiltration and eliminate drafts, especially in windy sites (house wrap, weather stripping, tight windows)
31	Organize floorplan so winter sun penetrates into daytime use spaces with specific functions that coincide with solar orientation
22	Super tight buildings need a fan powered HRV or ERV (Heat or Energy Recovery Ventilator) to ensure indoor air quality while conserving energy
11	Heat gain from lights, people, and equipment greatly reduces heating needs so keep home tight, well insulated (to lower Balance Point temperature)
1	Tiles or slate (even on wood floors) or a stone-faced fireplace provides enough surface mass to store winter daytime solar gain and summer nighttime 'coolth'
6	Exterior wind shields or dense planting can protect entries from cold winter winds (wing walls, wind breaks, fences, exterior structures, or land forms)
8	Sunny wind-protected outdoor spaces can extend living areas in cool weather (seasonal sun rooms, enclosed patios, courtyards, or verandahs)
7	Use vestibule entries (air locks) to minimize infiltration and eliminate drafts, in cold windy sites
12	Insulating blinds, heavy draperies, or operable window shutters will help reduce winter night time heat losses