Nr ćwicz.:			Wydział		Grupa 2,
202	26.10.2023	Jakub Bilski	Informatyki	Semestr III	L8
202			i Telekomunikacji		(Informatyka)
Prowadzący: mg	r inż. Taras Zhez	hera			

Podstawy teoretyczne

Prąd przemienny to typ prądu elektrycznego, który zmienia kierunek i wartość natężenia w sposób okresowy w czasie. W przeciwności do prądu stałego, gdzie kierunek i wartość natężenia prądu pozostaje stały, prąd przemienny oscyluje między wartościami dodatnimi i ujemnymi. Prąd przemienny jest szeroko używany w systemach dystrybucji energii elektrycznej ze względu na łatwość transformacji napięcia przy użyciu transformatorów.

Charakterystyka prądu przemiennego opisana jest przez kilka parametrów:

Amplituda (I_{max} lub U_{max}) - maksymalna wartość natężenia prądu lub napięcia w cyklu.

Częstotliwość (f) - liczba cykli na sekundę, wyrażona w hercach (Hz).

Okres (T) - czas trwania jednego cyklu, wyrażony w sekundach (s), gdzie $T = \frac{1}{f}$.

Faza (ϕ) - przesunięcie fazowe prądu lub napięcia względem punktu odniesienia, wyrażone w radianach lub stopniach.

Wartość skuteczna (I_{RMS} lub U_{RMS}) - wartość średnia prądu lub napięcia w cyklu, wyznaczona jako $I_{RMS}=\frac{I_{max}}{\sqrt{2}}$

Chwilowe natężenie i napięcie prądu przemiennego zależne od czasu t możemy wyznaczyć przy pomocy funkcji cosinus:

$$u = U_0 \cos(\omega t)$$

$$i = I_0 \cos(\omega t + \varphi)$$

Gdzie:

 U_{θ} - napięcie szczytowe

u – chwilowa wartość napięcia

 I_0 – natężenie szczytowe

i – chwilowa wartość natężenia

 ω – częstotliwość kołowa

Transformator to urządzenie szeroko stosowane w różnych dziedzinach, takich jak energetyka, elektrotechnika, elektronika czy spawalnictwo, pełniące kluczową rolę w przekształcaniu napięcia i natężenia prądu przemiennego na inne wartości, bez zmiany częstotliwości prądu. Na przykład, transformatory pozwalają na konwersję wysokiego napięcia używanego w liniach przesyłowych (na przykład 400000 V) na niższe napięcie, które można bezpiecznie wykorzystać w urządzeniach domowych.

Transformator składa się z ferromagnetycznego rdzenia oraz co najmniej dwóch uzwojeń (cewek) nawiniętych na rdzeń. Uzwojenie pierwotne (zasilające) i wtórne (odbiorcze) są elementami elektrycznymi transformatora, natomiast rdzeń pełni rolę obwodu magnetycznego. Działanie transformatora bazuje na zjawisku indukcji elektromagnetycznej.

Wyróżniamy trzy główne stany pracy transformatora: stan jałowy, stan zwarcia oraz stan obciążenia. Każdy z tych stanów ma swoje specyficzne charakterystyki i zrozumienie ich jest kluczowe dla zrozumienia podstaw działania transformatora.

A. Badania transformatora w stanie jałowym - wyznaczenie przekładni transformatora

Oznaczenia:

 U_I – napięcie pierwotne

 U_2 – napięcie wtórne

 n_I – liczba zwojów w uzwojeniu pierwotnym

*n*₂ – liczba zwojów w uzwojeniu wtórnym

 e_{I} – wartość chwilowa siły elektromotorycznej na uzwojeniu pierwotnym,

 e_2 – wartość chwilowa siły elektromotorycznej na uzwojeniu wtórnym

 $\frac{d\phi}{dt}$ - pochodna strumienia magnetycznego Φ po czasie t (szybkość z jaką strumień przenikający przez jeden zwój zmienia się w czasie)

K – przekładnia transformatora

Stan jałowy:

- uzwojenie pierwotne jest podłączone do źródła prądu przemiennego, a uzwojenie wtórne jest rozwarte (w konsekwencji rezystancja odbiornika $R=\infty$)
- prąd przemienny przepływający w uzwojeniu pierwotnym indukuje w rdzeniu przemienny strumień magnetyczny \varPhi
- zgodnie z prawem indukcji Faradaya, przez uzwojenia pierwotne i wtórne indukują się chwilowe siły elektromotoryczne pod wpływem zmiennego pola magnetycznego
- wartości chwilowych sił elektromotorycznych:

$$e_1 = -n_1 \frac{d\phi}{dt}, \qquad e_2 = -n_2 \frac{d\phi}{dt},$$

W typowych warunkach rezystancje uzwojeń transformatora są niewielkie, dlatego w stanie jałowym transformatora można stwierdzić, że chwilowe spadki napięć na uzwojeniu pierwotnym i wtórnym równają się wartościowo indukowanym w nich siłom elektromotorycznym:

$$u_1 = e_1$$
, $u_2 = e_2$

Na podstawie podanych zależności możemy stwierdzić, że prawdziwe jest równanie:

$$\frac{u_1}{u_2} = \frac{n_1}{n_2}$$

I dalej:

$$\frac{U_1}{U_2} = \frac{n_1}{n_2} = K$$

Dzięki powyższemu równaniu możemy stwierdzić, że w celu uzyskania żądanego spadku lub wzrostu napięcia na wyjściu transformatora w stosunku do napięcia zasilającego, musimy dobrać odpowiednią do sytuacji liczbę zwojów w uzwojeniu pierwotnym i wtórnym.

Zależność napięcia wtórnego od napięcia pierwotnego $U_2 = f(U_1)$

Wartości pomiarów:

	$n_1 = 400,$	n ₂ = 600	<i>n</i> ₁ = 400, <i>n</i> ₂ = 400		<i>n</i> ₁ = 400, n ₂ = 200	
Napięcie źródła [V]	$U_{I}\left[V ight]$	$U_2\left[V ight]$	$U_{I}\left[V ight]$	$U_2\left[V ight]$	$U_{I}\left[V ight]$	$U_2\left[V ight]$
1	1.112	1.521	1.112	1.012	1.112	0.513
2	2.218	3.080	2.214	2.048	2.217	1.032
3	3.325	4.630	3.32	3.094	3.32	1.555
4	4.410	6.210	4.41	4.13	4.41	2.081
5	5.520	7.790	5.52	5.19	5.53	2.61
6	6.620	9.370	6.63	6.25	6.62	3.14
7	7.740	10.970	7.74	7.32	7.73	3.67
8	8.820	12.560	8.85	8.39	8.82	4.18
9	9.930	14.170	9.95	9.45	9.93	4.71
10	11.040	15.780	11.06	10.53	11.03	5.24

Napięcie wtórne rosną proporcjonalnie do napięcia pierwotnego przy jednoczesnym zachowaniu wartości przekładni transformatora $\frac{U_1}{U_2}=K.$

Wyznaczenie przekładni transformatora:

$$\frac{U_1}{U_2} = \frac{n_1}{n_2} = K$$

Wartość teoretyczna przekładni transformatora (liczba uzwojeń jest ustalona, nie mierzymy jej): $\frac{n_1}{n_2} = K$

Wartość doświadczalna przekładni transformatora (wartości napięć należy odczytać z multimetrów): $\frac{U_1}{U_2} = K$

n_1 = 400, n_2 = 600					
$U_{I}\left[V ight]$	$U_2\left[V ight]$	$K_{dośw}$			
1.112	1.521	0.731098			
2.218	3.080	0.72013			
3.325	4.630	0.718143			
4.410	6.210	0.710145			
5.520	7.790	0.708601			
6.620	9.370	0.70651			
7.740	10.970	0.705561			
8.820	12.560	0.702229			
9.930	14.170	0.700776			
11.040	15.780	0.69962			

<i>n</i> ₁ = 400, <i>n</i> ₂ = 400						
$U_1[V]$	$U_2\left[V ight]$	$K_{dośw}$				
1.112	1.012	1.098814				
2.214	2.048	1.081055				
3.32	3.094	1.073045				
4.41	4.13	1.067797				
5.52	5.19	1.063584				
6.63	6.25	1.0608				
7.74	7.32	1.057377				
8.85	8.39	1.054827				
9.95	9.45	1.05291				
11.06	10.53	1.050332				

n_1	n_1 = 400, n_2 = 200					
$U_{1}\left[V ight]$	$U_2\left[V ight]$	$K_{dośw}$				
1.112	0.513	2.167641				
2.217	1.032	2.148256				
3.32	1.555	2.135048				
4.41	2.081	2.119173				
5.53	2.61	2.118774				
6.62	3.14	2.10828				
7.73	3.67	2.106267				
8.82	4.18	2.110048				
9.93	4.71	2.10828				
11.03	5.24	2.104962				

Obliczenia przekładni teoretycznej:

$$K_1 = \frac{n_1}{n_2} = \frac{400}{600} = \frac{2}{3} \approx 0.66667$$

$$K_2 = \frac{n_1}{n_2} = \frac{400}{400} = 1$$

$$K_3 = \frac{n_1}{n_2} = \frac{400}{200} = 2$$

Przykładowe obliczenia przekładni doświadczalnej:

$$K = \frac{U_1}{U_2} = \frac{1.112}{1.521} \cong 0.7311$$

$$K = \frac{U_1}{U_2} = \frac{1.112}{1.012} \cong 1.0988$$

$$K = \frac{U_1}{U_2} = \frac{1.112}{0.513} \cong 2.1676$$

Wyznaczenie średnich wartości przekładni transformatora:

$$\overline{K} = \frac{1}{m} \sum_{i=1}^{m} K_i$$

gdzie:

m – liczba pomiarów (wyznaczonych przekładni dla danej liczby uzwojeń)

Dla n_1 = 400 i n_2 = 600:

$$\overline{K} = \frac{0.7311 + 0.7201 + 0.7181 + 0.7101 + 0.7086 + 0.7065 + 0.7056 + 0.7022 + 0.7008 + 0.6996}{0.7103} \cong 0.7103$$

Dla n_1 = 400 i n_2 = 400:

 $\overline{K} \cong 1.0661$

Dla n_1 = 400 i n_2 = 200:

 $\overline{K} \cong 2.1227$

Niepewności pomiarowe:

Ocena niepewności typu A:

Jako najlepsze oszacowanie wartości mierzonej przyjmujemy średnią arytmetyczną z pomiarów:

$$K = \overline{K} = \frac{1}{m} \sum_{i=1}^{m} K_i$$

Jako miarę rozrzutu pojedynczego pomiaru używamy estymator odchylenia standardowego:

$$S_K = \sqrt{\sum \frac{(K_i - \overline{K})^2}{m - 1}}$$

Za niepewność pomiaru uznajemy estymator odchylenia standardowego średniej:

$$u(K) = S_{\overline{K}} = \sqrt{\sum \frac{(K_i - \overline{K})^2}{m(m-1)}}$$

m – liczba pomiarów

Dla n_1 = 400 i n_2 = 600:

 $\overline{K} \cong 0.7103$

$$u(K) = \sqrt{\frac{(0.7311 - 0.7103)^2 + (0.7201 - 0.7103)^2 + (0.7181 - 0.7103)^2 + (0.7101 - 0.7103)^2 + (0.7086 - 0.7103)^2 + \cdots + (0.7086 - 0.7103)^2 +$$

$$u(K) \approx 0.0220$$

Dla n_1 = 400 i n_2 = 400:

 $\overline{K} \cong 1.0661$

 $u(K) \approx 0.0048$

Dla n_1 = 400 i n_2 = 200:

 $\overline{K} \cong 2.1227$

 $u(K) \approx 0.0067$

B. Badania transformatora w stanie zwarcia

Oznaczenia:

 I_I – natężenie prądu pierwotnego

 I_2 – natężenie prądu wtórnego

 U_I – napięcie pierwotne

 U_2 – napięcie wtórne

R – rezystancja

 n_1 – liczba zwojów w uzwojeniu pierwotnym

n₂ – liczba zwojów w uzwojeniu wtórnym

Stan zwarcia:

- uzwojenie pierwotne jest połączone ze źródłem prądu przemiennego, a uzwojenie wtórne jest zwarte
- w uzwojeniu pierwotnym płynie prąd o chwilowym natężeniu i_I , który indukuje zmienny strumień pola magnetycznego w rdzeniu.
- w wyniku tego, w uzwojeniu wtórnym pojawia się prąd przemienny o chwilowym natężeniu i_2
- rezystancja odbiornika R = 0
- zakładając, że pomijamy straty w transformatorze, możemy, korzystając z zasady zachowania energii, stwierdzić, że moc przekazywana przez źródło do uzwojenia pierwotnego (U_II_I) jest równa mocy przekazywanej do obwodu wtórnego (U_2I_2):

$$U_1I_1 = U_2I_2$$

Na podstawie tego możemy wywnioskować:

$$\frac{I_1}{I_2} = \frac{n_1}{n_2} = \frac{1}{K}$$

Zależność natężenia prądu wtórnego od natężenia prądu pierwotnego $I_2=f(I_1)$

Wyniki pomiarów:

	n_1 = 400, n_2 = 600		<i>n</i> _1 = <i>400</i> , n_2 = 200			
Napięcie na zasilaczu [V]	<i>I</i> _1 [mA]	<i>I</i> _2 [mA]	<i>I</i> _1 [mA]	<i>I</i> _2 [mA]	<i>I</i> _1 [mA]	<i>I</i> _2 [mA]
1	0.47	0.28	0.46	0.42	0.41	0.76
2	0.95	0.58	0.95	0.87	0.83	1.53
3	1.43	0.87	1.42	1.32	1.08	1.9
4	1.91	1.17	1.89	1.77	1.5	2.71
5	2.39	1.48	2.38	2.21	2.15	3.89
6	2.87	1.77	2.86	2.67	2.64	4.94
7	3.34	2.07	3.32	3.11	3.05	5.62
8	3.81	2.37	3.75	3.5	3.48	6.53
9	4.3	2.67	4.22	3.95	3.93	7.37
10	4.76	2.98	4.68	4.38	4.35	8.19

Jeśli natężenie prądu jest mniejsze na uzwojeniu wtórnym, to transformator zwiększył napięcie, a jeśli większe, to transformator zmniejszył napięcie.

C. Badania transformatora w stanie obciążonym

Oznaczenia:

 U_I – napięcie pierwotne

 U_2 – napięcie wtórne

 I_I – natężenie prądu pierwotnego

 I_2 – natężenie prądu wtórnego

R – rezystancja

 n_I – liczba zwojów w uzwojeniu pierwotnym

n₂ – liczba zwojów w uzwojeniu wtórnym

η - sprawność transformatora

Stan obciążenia

- występuje, gdy uzwojenie pierwotne jest połączone z źródłem prądu przemiennego, a uzwojenie wtórne jest połączone z odbiornikiem o określonej, skończonej rezystancji ${\it R}$
- stosunek napięć na uzwojeniu pierwotnym i wtórnym nie jest identyczny z przekładnią transformatora, ponieważ w obwodzie uzwojenia wtórnego występuje spadek napięcia związanego z przepływem prądu przez rezystancję uzwojenia wtórnego
- wartość napięcia na uzwojeniu wtórnym zmniejsza się wraz ze wzrostem natężenia prądu płynącego przez to uzwojenie

Zależność napięcia od natężenia prądu w obwodzie wtórnym $U_2 = f(I_2)$

Wyniki pomiarów:

n ₁ = 400	<i>n</i> ₂ = 200		U = 4 V (napięcie źró	dła)
$R\left[\Omega\right]$	$U_{I}\left[V ight]$	$I_I[mA]$	I_2 [mA]	$U_2[V]$
0	4.35	1.78	3.31	0.127
1	4.37	1.71	3.17	0.303
2	4.35	1.55	2.82	0.62
3	4.35	1.39	2.56	0.872
4	4.35	1.3	2.37	1.013
6	4.36	1.11	2.01	1.251
8	4.37	0.93	1.66	1.448
10	4.38	0.82	1.45	1.551
12	4.37	0.73	1.27	1.629
14	4.38	0.68	1.16	1.681
18	4.4	0.56	0.93	1.774
22	4.4	0.5	0.79	1.831
26	4.39	0.45	0.68	1.871
30	4.41	0.41	0.6	1.899
34	4.41	0.38	0.52	1.92

Im wyższe natężenie, tym mniejsze napięcie – podobna sytuacja jak w przypadku transformatora w stanie zwarcia.

Zależność sprawności transformatora od natężenia prądu w uzwojeniu wtórnym $\eta = f(I_2)$

Obliczanie sprawności transformatora:

$$\eta = \frac{U_2 I_2}{U_1 I_1} 100\% = \frac{P_2}{P_1} 100\%$$

n_1 :	n_1 = 400, n_2 = 200, U = 4 V							
R [Ω]	I_2 [mA]	Sprawność η						
0	3.31	0.05429						
1	3.17	0.128536						
2	2.82	0.25931						
3	2.56	0.369192						
4	2.37	0.424546						
6	2.01	0.51957						
8	1.66	0.591442						
10	1.45	0.626169						
12	1.27	0.648516						
14	1.16	0.654701						
18	0.93	0.66957						
22	0.79	0.657495						
26	0.68	0.644029						
30	0.6	0.630164						
34	0.52	0.595775						

Największa sprawność (66,96%) transformatora została osiągnięta dla I_2 = 0.93 mA i R = 18 Ω .

Wnioski

- Wyniki podkreślają znaczenie transformatora w przekształcaniu napięć w systemach przesyłowych energii elektrycznej oraz w dostosowywaniu napięć do bezpiecznego poziomu dla urządzeń domowych.
- Analiza różnych stanów pracy transformatora (jałowy, zwarcia, obciążenia) pozwala na lepsze zrozumienie jego działania i efektywności w różnych warunkach, co ma bezpośrednie przełożenie na projektowanie i eksploatację systemów energetycznych.
- Pomiary napięć i obliczenia przekładni transformatora dostarczają danych, które mogą być wykorzystane do kalibracji i projektowania transformatorów o określonych parametrach.
- Wyniki wskazują na to, jak stosunek liczby zwojów wpływa na wydajność transformatora. Te
 informacje mogą być wykorzystane do optymalizacji konstrukcji transformatorów, aby uzyskać
 pożądane napięcia przy jak najmniejszych stratach energii.
- Różnice między teoretyczną a doświadczalną wartością przekładni transformatora mogą wynikać
 z idealizacji teoretycznych modeli, które nie uwzględniają: błędów i zużycia urządzeń
 pomiarowych, sprawności urządzenia badanego, błędów zaokrąglenia przez osobę wykonującą
 pomiary.
- W stanie jałowym transformator pozwala na zbadanie napięcia na uzwojeniach pierwotnym i wtórnym, ale nie na pomiar natężenia prądu z powodu braku odbiornika i rozwarcia zacisków uzwojenia wtórnego.
- W stanie zwarcia możliwy jest pomiar prądu, przy zerowym napięciu na zaciskach uzwojenia zwartego, energia nie jest oddawana do odbiornika, a pobierana moc pokrywa straty i generuje ciepło.
- Stan obciążony umożliwia pomiar napięcia i natężenia na obu uzwojeniach, co w pozwala na wyznaczanie sprawności badanego transformatora dla danych parametrów.

1. 0	2= f(U1)	X Ed	ZH ZorA	STAN JAŁ	OWY	
	n= 400	n2=600 U2[V]	n ₁ =400		n=500	
		1,521	Uncv	U2 7 V 3	U ₁ [V]	4 C 12
		3,080	1,112	1,012	1,112	1,032
	2,218	1 4,63	2,214	2,048	2,219	1,555
	3,325		3,32	3,094	3,32	
4	4,41	6,21	4,41	4,13	4,41	2,081
5	5, 52	7,79	5,52	5,19	5,53	2,61
6	6,62	9,37	6,63	6,25	6,62	3,14
7	7,74	10,97	7,74	4,32	7,73	3,67
8	8,82	12,56	8,85	8,39	8,82	4,18
9	9,93	14,17	9,95	9,45	9,93	4,71
10	11,04	15,78	11,06	10,53	11,03	5,24
2.	T = 10	T1), R=OS2	STAN	ZWARCIA		
3/	n ₄ =400		n_=400	n2 = 400	12-400 12-6A)	n2=200
1	154 J 0,47	I_2 [mA] 0,28	1 ,46	T2 6A2 0,42	0,41	T2 [A]
7	0,95	0,38	0,95	0,87	0,83	1,53
3	1,43	0,87	1,42	1,32	1,08	JAN 1,90
		1,17	1,83	1,77	1,50	2,71
4	1,91	1,48	2,38	2,21	2,15	3,89
5	2,39	1,77	2,86	2,67	2,64	4,94
6	2,87	2,07	3,32	3,11	3,05	5,62
7	3,34	225	3,75	3,5	3,48	6,53
8	3,81	OM	4,22	3,95	3,93	4,37
9	4,30	0.00	1,68	4,38	4,35	8,19
10	4,76	2,98	1,00			
	DR = 0,5)-0,005V			
		DC	7 = 0,05 m			
	CAL	1 26.10.	23			

	2, [52]	n = 200	U = 4V Iq [mA] 1,78	U2 [V]	I, [mA] 3, 31	0,05429	n=j
1	0			0,127			71
2	1	4,34	1,71	0,303	62,82	0,1285	
3	2	4,35	1,55	0,620		0,2593	
4	3	4,35	1,39	0,872	2,56		
5	4	4,35	1,30	1,013	2,37		
6	6	4,36	1,11	1,251	2,01		
7	8	4,37	0,93	1,448	1,66		
8	10	4,38	0,82	1,551	1,45		
9	12	4,37	0,73	1,629	1,27		
10	14	4,38	0,68	1,681	1,16		
11	18	4,40	0,56	1,774	0,93		
12	22	4,40	0,50	1,831	0,79		
13	26	4,39	0,45	1,841	0,68		
14	30	4,41	0,41	1,899	0,60		
15	34	4,41	0,38	1,920	0,52		
	WYFA		DBIORNIK:				
				V I =	OA 1/2 =	-2,093 N	
9	1- V/211			2			
				524			
-							
							-