Assignment 8

Topology (KSM1C03)

Submission Deadline: 4th November, 2025

1) A metric space (X,d) is said to have the *Lebesgue number property* if given any open cover $\mathcal{U}=\{U_{\alpha}\}$ of X, there exists a number $\delta=\delta(\mathcal{U})>0$, which is a Lebesgue number for the covering (i.e, given any subset $A\subset X$, with $\mathrm{Diam}A<\delta$, there is some $U_{\alpha}\in\mathcal{U}$ such that $A\subset U_{\alpha}$). Suppose (X,d) has the Lebesgue number property. Show that every continuous map $f:X\to Y$, where Y is a metric space, is uniformly continuous. We shall see later that the converse is also true!

10

- 2) Given a space X, show that the following are equivalent.
 - a) X is completely T_2 .
 - b) The map

$$\iota: X \longrightarrow [0,1]^{C(X,[0,1])} := \prod_{f \in C(X,[0,1])} [0,1]$$

$$x \longmapsto (f(x))_{f \in C(X,[0,1])}$$

is injective, where $C(X,[0,1])=\{f:X\to [0,1]\mid f \text{ is continuous}\}.$

$$5 + 5 = 10$$

- 3) An open set $O \subset X$ is called a *regular open set* if it satisfies int(O) = O. A space X is called *semiregular* if it admits a basis \mathcal{B} of regular open sets. Prove the following.
 - a) A regular space is always semiregular.
 - b) A semiregular space may not be regular. (Hint: Arens square)
 - c) A semiregular, T_2 space may not be $T_{2\frac{1}{2}}$ (and hence, not functionally T_2 either). (Hint: the double-origin plane)

$$4 + 4 + 2 = 10$$

- 4) Let us verify the usual operations on regular spaces.
 - a) Show that a subspace of a regular space is regular (that is, regularity is a hereditary property).
 - b) Let $\{X_{\alpha}\}$ be a collection of (nonempty) spaces, and $X=\prod X_{\alpha}$ be the product space. Show that X is regular if and only if each X_{α} is regular.

We shall see later that continuous image of a regular space need not be regular.

$$4 + 6 = 10$$

5) Given $K = \left\{\frac{1}{n} \mid n \geq 1\right\}$, recall the topology \mathbb{R}_K on the reals : every usual open set of \mathbb{R} is open in \mathbb{R}_K , and moreover, for any usual open set $U \subset \mathbb{R}$, sets of the form $U \setminus K$ is also open. Show that \mathbb{R}_K is functionally T_2 (hence $T_{2\frac{1}{3}}$), but not T_3 .

Hint: Show that \mathbb{R}_K is submetrizable (since the identity map $\mathbb{R}_K \to \mathbb{R}$ is continuous). Also, note that K is closed in \mathbb{R}_K .

$$4 + 6 = 10$$

6) On the set [0,1) consider the following topology

$$\mathcal{T} \coloneqq \{\emptyset\} \cup \{[0,1) \setminus F \mid F \subset (0,1) \text{ is finite}\} \cup \{S \mid S \subset (0,1)\}.$$

Let $X = ([0,1), \mathcal{T})$ be the space.

- a) Show that X is the one-point compactification of \mathbb{R} equipped with discrete topology.
- b) Suppose $f: X \to \mathbb{R}$ is a continuous map (where \mathbb{R} has the usual topology). Show that f is constant outside a countable subset of (0,1).

Hint: Note that

$${f(0)} = \bigcap_{n\geq 1} \left(f(0) - \frac{1}{n}, f(0) + \frac{1}{n} \right),$$

and look at $f^{-1}(f(0))$.

$$4 + 6 = 10$$

- 7) A space X is called *zero-dimensional* if it admits a basis of clopen sets (i.e, both open and closed sets).
 - a) Show that a zero-dimensional space is completely regular.
 - b) Show that $[0,\Omega] = \overline{S_{\Omega}}$ is zero-dimensional. (Hint : if $\alpha = \beta + 1$ for some β , then $(\beta, \beta + 2) = \{\alpha\}$ is clopen. What if there is no such β ?).
 - c) Show that arbitrary product of zero-dimensional spaces is again zero-dimensional.
 - d) Conclude that the Tychonoff plank is a Tychonoff space.

$$3+4+4+4=15$$

8) The *Thomas plank* is defined as the product $[0,1) \times \left(\{0\} \cup \left\{\frac{1}{n} \mid n \geq 1\right\}\right)$, where [0,1) is the fort space on the reals, and $K = \{0\} \cup \left\{\frac{1}{n} \mid n \geq 1\right\}$ has the subspace topology from \mathbb{R} (equivalently, K is the Fort space of \mathbb{N}). The *deleted Thomas plank* is defined by deleting the point $\{(0,0)\}$ from the Thomas plank.

Construct the *Thomas corkscrew*: take four copies of the deleted Thomas plank to make a coordinate plane (by reflecting them as necessary), add two special points $\{\alpha_{\pm}\}$, and finally, perform the corkscrew construction.

Show that the Thomas corkscrew is T_3 , but not $T_{3\frac{1}{6}}$.

$$10 + (5+5) = 20$$