By: Yasushi KANEKO et al.

Serial No. 08/981,654

REMARKS

Claims 1 and 3 remain for consideration in this application. Claims 1 and 3 have <u>not</u> been amended in this paper. Reconsideration of the rejection of claims 1 and 3 is respectfully requested.

Claims 1 and 3 are rejected under 35 U.S.C. 103(a) as being unpatentable over Amstutz (USP 4,634,229) in view of Natsunaga (USP 5,548,423).

It is respectfully requested that the above rejection be withdrawn in view of the remarks and information provided below. The Office Action sets forth Responses to the applicants' arguments in the previous response dated November 12, 2003. The Office Action's Responses are described, in essence, in bold letters below:

Amstutz discloses "the polarizers having absorption axes which are orthogonal to each other" in column 5, lines 4-8, and with reference to claim 1 of the present invention, Fig. 1 in Amstutz shows a liquid crystal display device including, for example, a twisted angle of $\Phi = 190^{\circ}$, a crossed absorption axes angle of a pair of polarizing plates being $\Psi = 90^{\circ}$, an angle of P1 = 45° formed of an absorption axis of an upper polarizing plate and a direction of intermediate liquid crystal molecules, and an angle of P2 = 90° formed of an absorption axis of a lower polarizing plate and a direction of intermediate liquid crystal molecules.

By: Yasushi KANEKO et al.

Serial No. 08/981,654

A) As to the comment above, the features set forth in the Office Action are not, in fact,

disclosed in Amstutz, column 5, lines 4-8. Exhibit 1 is enclosed for easier understanding. Exhibit

1 (1/2) is an enlarged copy of column 4, line 62 to column 5, line 8 of Amstutz. To show the

relationship with Fig. 4 in Exhibit 1 (2/2), the features from column 5, lines 4-8 are clearly labeled

by adding the reference letters A - E for "axis" and each "direction". Exhibit 1 (2/2) shows Fig. 4

of Amstutz in which an explanation for each part and direction is added, as well as reference letters

A - E.

As seen from the above, the part the Office Action referred to is an explanation of structure

in Fig. 4, and as recited in last four lines, "The direction [B,C] of vibration of the polarizers 10 and

11 are indicated by arrows which lie in the corresponding planes perpendicular to the axis [A] of the

<u>cell</u>."

Accordingly, there is no recitation of absorption axes of polarizing plates 10, 11 being

orthogonal to each other. This is not shown in the above description from the Amstutz specification.

Further, Figs. 4 and 5 do not disclose the absorption axes of polarizing plates 10 and 11 as being

orthogonal. Accordingly, since there is no disclosure in Amstutz that the absorption axes of the

polarizing plates are orthogonal, claim 1 cannot be obvious over Amstutz and Natsunaga.

By: Yasushi KANEKO et al.

Serial No. 08/981,654

B) Furthermore, it is clear from the above that there is no recitation in Amstutz to suggest

each value of the angles can be as stated in the Office Action, i.e. $\Phi = 190^{\circ}$, $\Psi = 90^{\circ}$, $P1 = 45^{\circ}$, P2

= 90°. There is simply no basis in Amstutz to arrive at these values. In fact, Table 1 of Exhibit 2

(described in detail below) sets forth the correct values arrived at for Amstutz if $\Phi = 190^{\circ}$.

C) Only the present invention, as set forth in claim 1, discloses that when a twisted angle Φ

is greater than 180° and less than or equal to 260°, a crossed absorption axes angle of pair of

polarizing plates Y is 90° and angles of intermediate liquid crystal molecules and upper and lower

polarizing plates P1, P2 are within a range of ±40° to ±50°. This is also clearly set forth in Table 1

of Exhibit 2 (described below).

D) Furthermore, the Office Action notes that "Amstutz et al. does not disclose the LCD can

be driven by applying a voltage of 10 to 20V. However, Natsunaga (US 5,548,423) does disclose

that a drive region can be in the range of VL (3 to 5V) to VM (30 to 40V) (figure 9). Therefore, such

disclosed range in Natsunaga makes possible the claimed range of 10V to 20V overlapping ranges

are at least obvious".

By: Yasushi KANEKO et al.

Serial No. 08/981,654

However, in a liquid crystal display being driven at 10 to 20V, contrast improves only in a

mode with a crossed absorption axes angle Y being orthogonal and above-mentioned P1, P2 being

within a range of ±40° to ±50°.

Furthermore, in the state where no voltage is applied, white display is performed by

the birefringence of the liquid crystal, a voltage of 10 to 20 volts is applied to nullify the

birefringence, and liquid crystal molecules are raised substantially perpendicular to the

substrate in order to perform black display. Accordingly, in an opened state (white display)

of the liquid crystal shutter according to claim 1, high transmittance by the birefringence

peculiar to an STN liquid crystal device can be realized. On the other hand, in a closed state

(black display), liquid crystal molecules are raised substantially perpendicular to the

substrate and the birefringence is almost nullified, so that it becomes possible to provide a

liquid crystal shutter with a high contrast, response time of several ms, and a high speed

response time which is ten times faster than a conventional STN liquid crystal shutter.

The Office Action's second Response to applicants' previous response is, in essence, as

follows:

2. A twisted angle in Amstutz is not limited to only 240° but in the range of 180° to 360°.

Therefore, the twisted angle of 190° disclosed in Fig. 1 is also within the range claimed in the

present application.

7

By: Yasushi KANEKO et al.

Serial No. 08/981,654

The Office Action suggests that while Amstutz does not work for a twist angle of 240°, it may work for an angle of 190°. Attached as part of Exhibit 2 is Table 1 showing more examples than the Exhibit 2 of applicants' November 12, 2003 response. Current Exhibit 2 makes it clear that Amstutz does not meet the limitations of claim 1 throughout the claimed range. It is suggested in the Office Action that although the twist angle of 240° for Amstutz does not meet the limitations of claim 1, as clearly set forth in applicants' response of November 13, 2003, other ranges might fit. Table 1 of Exhibit 2 attached hereto, in fact, clearly shows that Amstutz does not disclose, nor suggest the features of claim 1 for the whole range. There are simply no ranges in which the LCD of Amstutz falls within the limitations of claim 1.

Table 1 compares the present invention to Amstutz. The present invention and it's calculated values are set forth in rows 1 and 2. The Example of Amstutz and modified examples of Amstutz 1-5 are set forth in the following rows. The Amstutz example and the modified examples of Amstutz 1-5 consider twisted angles from 190° to 270° (180° is close to 190° and would have substantially the same result). As clearly illustrated in Table 1 of Exhibit 2, neither the disclosed example of Amstutz (270°), nor any example in the other ranges (modified examples of Amstutz 1-5), discloses values that meet the limitations of claim 1. If the twisted angle (Φ) is within the range of claim 1 (180° < Φ ≤ 260°) then the crossed absorption axes angle of the pair of polarizing plates (Ψ) or the angles between the intermediate liquid crystal molecules and the absorption axes of the upper polarizing plate (P1) or the lower polarizing plate (P2) are <u>outside</u> of the range of claim

By: Yasushi KANEKO et al.

Serial No. 08/981,654

1. In no case does the disclosed example of Amstutz (270°), nor any of the other calculated values (modified Amstutz), fall within the limitations of claim 1. Accordingly, claim 1 cannot be obvious over Amstutz, in view of Natsunaga, since even a combination of those two references does not disclose, or suggest, structure that falls within the range set forth in claim 1.

More specifically, in Exhibit 2, Table 1 includes data in a case in which Φ is 190°, which is close to 180° as a modified example of the present invention in addition to a case in which Φ is 240° in an example of the present invention (Table 1, 1st and 2nd rows). Exhibit 2 also contains a discussion on how to calculate angles β and γ in a case of $\Phi = 190$ °. Even when Φ is another value, β and γ can still be calculated in the same manner.

As to data regarding Amstutz, the case of $\Phi = 270^{\circ}$ and $\Psi = 90^{\circ}$ is <u>not</u> disclosed as an example in Amstutz, but Table 1 provides this example as a modified example. Therefore, additionally included in Table 1, modified Amstutz 1 is for a case of $\Phi = 270^{\circ}$ and $\Psi = 90^{\circ}$, and also modified Amstutz 2-5 are for cases of $\Phi = 240^{\circ}$ and $\Phi = 190^{\circ}$, (Table 1, 3rd to 8th rows). Exhibit 2 also contains a discussion of how to calculate angles P1, P2, and Ψ in a case of $\Phi = 190^{\circ}$.

It is clear that in view of the data shown in Table 1 proves that a twisted angle (Φ) in the range of $180^{\circ} < \Phi \le 260^{\circ}$ and angles P1, P2 in the range of $\pm 40^{\circ}$ to $\pm 50^{\circ}$, as required by claim 1 of the present application, neither the disclosed Amstutz, nor any modified example of Amstutz can form a crossed absorption axes angle of two polarizing plates at 90°.

Attached hereto is a declaration under 37 C.F.R 1.132 prepared by one of the inventors

RESPONSE UNDER 37 C.F.R. §1.116 - EXPEDITED RESPONSE By: Yasushi KANEKO et al. Serial No. 08/981,654

(Yasushi Kaneko) in the above-identified application. This declaration repeats some of and supports the conclusions set forth above, in addition to providing further details in some respects.

By: Yasushi KANEKO et al.

Serial No. 08/981,654

CONCLUSION

In view of the above remarks and the attached information, including the declaration under

37 C.F.R. § 1.132, it is clear that Amstutz does not disclose orthogonal crossed absorption axes as

suggested in the Office Action. Furthermore, it is clear that Amstutz does not disclose, nor suggest,

the features set forth in claim 1. The above remarks, information and the declaration under 37 C.F.R.

§1.132, do not raise a new issue. This response simply elaborates on the issues already discussed in

Applicants' response dated November 12, 2003. Because Amstutz fails to disclose (or suggest) the

requirements of claim 1 (with or without Natsunaga), claim 1 must be allowable over the cited

references.

Accordingly, it is respectfully requested that the rejection of claim 1 (and claim 3, dependent

therefrom) be withdrawn, and this case be passed to issue.

If the Examiner believes that this application is not now in condition for allowance, the

Examiner is requested to contact Applicants' undersigned agent at the telephone number indicated

below to arrange for an interview to expedite the disposition of this case.

11

By: Yasushi KANEKO et al.

Serial No. 08/981,654

In the event that this paper is not timely filed, Applicants respectfully petition for an appropriate extension of time. Please charge any fees for such an extension of time and any other fees which may be due with respect to this paper, to Deposit Account No. 50-2866.

Respectfully submitted,

WESTERMAN, HANTORI, DANIELS & ABRIAN, LLP

Attorney for Applicants Registration No. 29,988

WFW/meu Docket No. 971480 1250 Connecticut Avenue; Suite 700 Washington, D.C. 20036

Tel: (202) 822-1100

1/2

EXHIBIT 1

(column 4, line 62 - column 5 , line 8 in Amstutz et al.)

FIGS. 4 and 5 show exploded, perspective representations of the arrangement of the polarizers 10 and 11, the orientation layers 8 and 9 as well as the liquid crystal layer 5 located between these layers. The total twist of of the liquid crystal in the layer is made clear by a chain of liquid crystal molecules which are schematically represented by small rectangular platelets. Support plates, border and possible reflectors have been left out for sake of clarity. The elements of the cell are arranged along an axis pointing along the propagation direction of the incident light. The direction of vibration of the polarizers 10 and 11 as well as the orientation direction of the orientation layers 8 and 9 are also indicated by arrows which lie in the corresponding planes perpendicular to the above-mentioned axis of the cell.

 $\frac{2}{2}$

FIG. 4 of Amstutz et al.

RESPONSE UNDER 37 C.F.R. §1.116 - EXPEDITED RESPONSE By: Yasushi KANEKO et al.

Serial No. 08/981,654

EXHIBIT 2

TABLE 1
Comparison between Present Invention and Amstutz

	Φ	Ψ	P1	P2	γ	β	γ + β	Meets Claim 1 Limitations
Example of present invention	240	90	-4 5	+45	105	75	180	Yes
Modified Example of present invention	190	90	-45	+45	130	50	180	Yes
Example of Amstutz	270	60	75	15	60	30	90	No
Modified Example of Amstutz 1	270	90	0	90	45	45	90	No
Modified Example of Amstutz 2	240	60	15	75	45	45	90	No
Modified Example of Amstutz 3	190	10	-50	140	45	45	90	No
Modified Example of Amstutz 4	190	90	-90	0	85	5	90	No
Modified Example of Amstutz 5	190	90	0	90	5	95	90	No

Φ: twisted angle

Ψ: crossed absorption axes angle of a pair of polarizing plates

P1: angle of intermediate liquid crystal molecules and an absorption axis of upper polarizing plate

P2: angle of intermediate liquid crystal molecules and an absorption axis of lower polarizing plate

β: angle of upper liquid crystal molecules and absorption axis of upper polarizing plate

γ: angle of lower liquid crystal molecules and absorption axis of lower polarizing plate

RESPONSE UNDER 37 C.F.R. §1.116 - EXPEDITED RESPONSE By: Yasushi KANEKO et al. Serial No. 08/981.654

HOW TO CALCULATE DEGREE OF ANGLES

Present Invention (in a case of $\Phi = 190^{\circ}$): See FIG. A

- 1. Draw a horizontal axis (X axis) and a vertical axis (Y axis) on a paper. Draw axes of the upper orientation direction (upper LC) and lower orientation direction (lower LC) for a twisted angle ($\Phi = 190^{\circ}$) so as to have the vertical axis being in the direction of the intermediate liquid crystal molecules.
- 2. Draw an absorption axis of a polarizing plate. Here, the absorption axes of an upper polarizing plate (upper PL) and a lower polarizing plate (lower PL) are positioned to have 45° difference respectively relative to the direction of the intermediate liquid crystal molecules (P1 = -45°, P2 = 45°) and to be orthogonal to each other ($\Psi = 90^{\circ}$).
- 3. Measure angles (β) formed of the axis of the upper orientation direction (upper LC) and the absorption axes of the upper polarizing plates when it is viewed from the axis of the upper orientation direction. Here, the absorption axis of the upper polarizing plate (upper PL) viewed from the axis of the upper orientation direction (upper LC) forms an angle of 50° (β = 50°) counterclockwise.
- 4. Measure angles (γ) formed of the axis of the lower orientation direction (lower LC) and the absorption axes of the lower polarizing plates when it is viewed from the axis of the upper orientation direction. Here, the absorption axis of the lower polarizing plate (lower PL) viewed from the axis of the upper orientation direction forms an angle of 130° ($\gamma = 130^\circ$) counterclockwise.

In other cases that angles satisfy $180^{\circ} < \Phi \le 260^{\circ}$, e.g. a case of $\Phi = 240^{\circ}$ in Table 1, γ and β can be calculated in the same manner as above.

Amstutz (in a case of $\Phi = 190^{\circ}$): See FIG. B

- 1. Draw a horizontal axis (X axis) and a vertical axis (Y axis) on a paper. Draw axes of the upper orientation direction (upper LC) and lower orientation direction (lower LC) for a twisted angle $(\Phi=190^{\circ})$ so as to have the vertical axis being in the direction of an intermediate liquid crystal molecules.
- 2. In Amstutz, an angle (β) formed of the axis of the upper orientation direction (upper LC) and an absorption axis of an upper polarizing plate (upper PL) when viewed from the axis of the upper orientation direction, and an angle (γ) formed of the axis of the lower

RESPONSE UNDER 37 C.F.R. §1.116 - EXPEDITED RESPONSE By: Yasushi KANEKO et al. Serial No. 08/981,654

orientation direction (lower LC) and an absorption axis of a lower polarizing plate (lower PL) when viewed from the axis of the upper orientation direction, are defined as $\gamma + \beta = 90^{\circ}$ or 0° . Therefore, the absorption axis of the upper polarizing plate (upper PL) and the absorption axis of the lower polarizing plate (lower PL) are drawn with $\gamma = 45^{\circ}$ and $\beta = 45^{\circ}$ being adopted, for example.

- 3. Measure an angle (P1) formed when the absorption axis of the upper polarizing plate (upper PL) is viewed from the direction of intermediate liquid crystal molecules. In this case, $P1 = -50^{\circ}$. Similarly, read an angle (P2) formed when the absorption axis of the lower polarizing plate (lower PL) is viewed from the direction of the intermediate liquid crystal molecules. In this case, $P2 = 140^{\circ}$.
- 4. Measure an angle (Ψ) formed of the absorption axis of the upper polarizing plate (upper PL) and the absorption axis of the lower polarizing plate (lower PL). In this case, $\Psi = 10^{\circ}$. $\Psi = |P1 P2| = |-50 140| = 190^{\circ} = 180^{\circ} + 10^{\circ} = 10^{\circ}$.

In case of $\gamma = 85^{\circ}$, $\beta = 5^{\circ}$ or $\gamma = -5^{\circ}$, $\beta = 95^{\circ}$, Ψ will be 90°, and P1 and P2 are 0° or $\pm 90^{\circ}$. It means it is difficult to make the present invention condition ($\Psi = 90^{\circ}$, P1 = $\pm 40^{\circ} \sim \pm 50^{\circ}$, P2 = $\pm 40^{\circ} \sim \pm 50^{\circ}$) from Amstutz condition ($\Upsilon + \beta = 90^{\circ}$).

In other cases that angles satisfy $180^{\circ} < \Phi \le 360^{\circ}$, e.g. cases of $\Phi = 240^{\circ}$ and $\Phi = 270^{\circ}$ in Table 1, P1, P2, and Ψ can be calculated in the same manner as above.

4/4

FIG. A

A direction in which intermediate liquid crystal molecules are oriented.

FIG. B

A direction in which intermediate liquid crystal molecules are oriented