Machine Learning Convolutional Layer

Mostafa S. Ibrahim Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

A classification task

- Let's pretend our input is a gray image of 224x224
- We don't want to extract the features by ourselves!

Predefined Filters

- There already several predefined filters that extract specific features!
- But this can't help in finding relevant and complex features to our goal!


```
# Laplacian kernel
laplacian kernel =
    [0, 1, 0],
    [1, -4, 1],
    [0, 1, 0]
], dtype=np.float3
apply custom filte
sharpening kernel
    [-1, -1, -1],
    [-1, 9, -1],
    [-1, -1, -1]
], dtype=np.float3
apply custom filte
```

Sequence of Predefined Filters

- What if we defined series of filters and aggregated all results?
 - o Blur ⇒ Blur ⇒ Blur
 - Blur \Rightarrow Blur \Rightarrow Laplace
 - Blur ⇒ Laplace
 - Laplace ⇒ Blur ⇒ Blur
- Cool idea to generate more features! But then what?
 - Still limited
 - Doesn't align with our goal (loss)

Deep Learning Key

- What if instead of defining a fixed 3x3 filter, if we train the network to learn a filter that is suitable for our loss!
 - Assume the input image X (6x6) is convolved using valid padding and stride = 2

1	2	3	4	5	6		W
7	8	9	10	11	12		W
13	14	15	16	17	18		w [.]
19	20	21	22	23	24		01
25	26	27	28	29	30		
31	32	33	34	35	36		Ev
	7 13 19 25	7 8 13 14 19 20 25 26	7 8 9 13 14 15 19 20 21 25 26 27	7 8 9 10 13 14 15 16 19 20 21 22 25 26 27 28	7 8 9 10 11 13 14 15 16 17 19 20 21 22 23 25 26 27 28 29	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Eventually just a computational graph!

However, each weight will appear in different output nodes

Shared Weights

- If you tried to sketch the network like in NN, you will notice we need draw the same weight multiple times
- This is because the weight is shared in every single convolution evaluation
- From NN to DNN
 - DNN like NN can just be represented as computational graph
 - However, it is not regular/dense as DNN
 - A single weight is not attached to every input
 - A single weight can be shared with many inputs
 - The network is so deep
 - This depth and complexity are what differentiate DNNs from NNs

Parameters in One Filter

- To complement the picture, remember our normal NN has activation(WX+b)
 - So our o1 node is actually
 - \circ o1_net = x1*w1+ x2*w2+x3*w3+x7*w4+x5*w2+x6*w3+x13*w7+x14*w8+x15*w9 + bias
 - o o1_out = activation(o1_out)
 - The activation for intermediate layers is typically RELU-based
- How many parameters do we have?
 - For a 2D input (WxH), we have KxK + 1

Multi-dimensional input

- For a single 2D input, we have a single filter KxK
 - What if we have multiple input layers, such as 3 in RGB images?
 - o In theory, we can use the same filter for each 2D input
 - However, in practice it is common to have one filter for every 2D input
 - But keep in mind, after we aggregate all, we add a single bias
- Parameters for multi-dimensional input
 - Let input be C1 x W x H
 - Apply kernel of K x K
 - Then we need C1 x K x K +1 parameters
 - NOT: C1 x (K x K +1): one shared bias only
 - Observe: both filter inference and parameters count doesn't depend on the resolution (WxH)
- In DNN, we express all of the kernels as a single 3D filter of size: C1 x k x K

1x3+2x1+	
7x2+8x5+	
5x1+1x4+	
2x3+6x5+	
10	
	Under stride = 2

Multiple Filters

- Back then, we can extract multiple fixed filters (blue, gaussian, laplacian, etc)
- What if we want to learn multiple filters for a multidimensional input?
- Then for each filter to learn, repeat the process independently
- Parameters for multiple filters for multi-dimensional input
 - Let input be C1 x W x H
 - Apply kernel of K x K
 - Assume we want to learn C2 filters (independent)
 - Then generated output is: C2 x W x H
 - Then we need C2 x (C1 x K x K +1) parameters
- Feature map
 - We call the input and output as feature **maps**
 - A 3D tensor: C x W x H
 - The RGB image is the first input feature map (3 x W x H)

Input C1=3 feature maps and output C2=2 feature maps with stride jump - 2 3D filters each C1 x K x K (where K=3)

Img <u>src</u>

Number of Operations

- How many operations to a apply kernel KxK for once?
 - We multiply K*K numbers from the kernel with the input
 - Then we add them together (observe first value is not added) for a total of K*K 1
 - Adding 1+2+3+4+5+6 requires 5 additions not 6
 - So in total 2*K*K-1 (2 * multiplications 1)
- Applying K*K kernel over C1 input maps
 - 2 * multiplications 1 ⇒ 2*K*K*C1 1
- Generating C2 independent feature maps
 - C2 x [2*K*K*C1 1]
- Applying that for every pixel location on WxH (same padding)
 - W x H x C2 x [2*K*K*C1 1]

Convolutional Layer

- A normal NN layer just receives input of D1 features and map to D2 features
 - So we learn one matrix of weights D1 x D2
- A convolutional layer transforms an input feature map C1xWxH to output feature map C2xWxH through convolution operation
 - So C1 2D inputs into C2 2D outputs
 - All operations are just addition and multiplication
- We can treat its [C2 x (C1 x K x K +1)] parameters as weights and use it as a building block inside our neural network
- As a result, the network will learn C2 filters
 - Each DNN filter is a set of kernels (3D: C1xKxK) to process the C1xWxH input

Convolutional Layer

- Now, start to abstract this operation and its input and output
 - Input feature map: 3x256x256 (e.g. image input)
 - Convolution layer: 50 filters each filter is 3x3x3
 - Output feature map: 50x256x256
- In Pytorch: nn.Conv2d(3, 50, kernel_size=3, padding='same')
 - It means we convert 3 channel inputs to 50 channel inputs using kernel=3
 - Default padding: valid (0)
 - Notice width/height play no role for configuring the kernel

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."

