

Escuela Politécnica Superior
Universidad de Alcalá

Fundamentos de Ciencia de Datos

Juan J. Cuadrado Gallego

Martes 10:00 - 12:00

Grado en Ingeniería Informática – Curso 2019/2020

Marcos Barranquero Fernández - 51129104N

TEMA 1 – PROBABILIDAD Y ESTADÍSTICA

FRECUENCIA

F. Absoluta (f_i)	F. Relativa (f_{ri})	F. Abs/Rel Acum.
№ Apariciones elemento	Nº apariciones elemento Elementos totales	indice elem. $\sum_{i=0}^{indice\ elem.} f_i/f_{ri}(elemento_i$

MEDIA

Aritmética $(\overline{x_a})$	Geométrica $(\overline{x_g})$	Armónica $((\overline{x_a})^{-1})$:
$\frac{\sum_{i=0}^{n} x_i}{n}$	$\overline{x_g} = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$	$\frac{\sum_{i=0}^{n} \frac{1}{x_i}}{n}$

CLASES DE EQUIVALENCIA

Rango	Límite	Amplitud	Marca
$v_{sup} - v_{inf}$	• Superior: l_{sup} • Inferior: l_{inf}	$l_{sup} - l_{inf}$	$(l_{sup} + l_{inf})/2$

MODA

La **moda** es el **dato que aparece más veces** en un conjunto.

MEDIDAS DE DISPERSIÓN

Desviación típica o estándar (σ)	Desviación media (s)	Varianza (σ^2)	CV. de Pearson
$\sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n}}$	$\frac{\sum_{i=1}^{n} (x_i - \bar{x}) }{n}$	$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$	$cv_{ar{x}} = rac{\sigma}{ar{x}}$

TEOREMA DE TCHEBYCHEV

Pertenencia	Amplitud	Intervalo
$pertenencia = 1 - \frac{1}{k^2}$	$amplitud = k \cdot \sigma$	$[\bar{x} - amplitud, \bar{x} + amplitud]$

El porcentaje de datos pertenencia se encontrará representado en el intervalo.

MEDIDAS DE ORDENACIÓN

Cuartil	Decil	Percentil	Centil
$n_c = \frac{1}{4}n_t$	$n_c = \frac{1}{10}n_t$	$n_c = \frac{1}{100} n_t$	$n_c = \frac{1}{n}n_t$

- Si n_c es un número natural:
 - \circ Si n_{t} es un número impar: $Q_i = x_{nc}$
 - o Si n_{t} es un número par: $Q_i = \frac{x_{nc\downarrow} + x_{nc\uparrow}}{2}$
- Si n_{c} es un número real: $Q_i = \frac{x_{nc1} + x_{nc1}}{2}$

REGLAS DE PROBABILIDAD

- $0 \le P(A) \le 1$
- $\bullet \quad P(\bar{A}) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $Si A \subset B \rightarrow P(A) \geq P(B)$
- $\bullet \quad P(E) = 1$
- $P(\emptyset) = 0$

REGLAS DE CONJUNTOS

- $B \cup C = \{elementos(B) + elementos(C)\}$
- $B \cap C = \{elementos compartidos(B, C)\}$
- $B C = \{elementos(B) elementos compartidos(B, C)\}$
- $B \Delta C = \{ elementos(B) + elementos(C) elementos compartidos(B,C) \}$

TEMA 2 – ASOCIACIÓN

SOPORTE Y CONFIANZA

Soporte	Confianza
numero de apariciones (C)	numero de apariciones $(C_1 \cup C_2)$
$S(C) = \frac{1}{tamaño del espacio muestral}$	$C(C_1 \to C_2) = \frac{r}{numero \ de \ apariciones(C_1)}$

APRIORI

- 1. Se calcula soporte de los sucesos elementales de ese espacio muestral, y se descartan sucesos elementales que no superen el umbral de soporte.
- Se generan sucesos candidatos empleando Apiori-Gen. Partiendo de los sucesos elementales, para generar casos de tamaño k+1, se toman sucesos de tamaño k que compartan k-1 elementos.
- 3. Se calcula soporte para los sucesos candidatos generados, y se descartan aquellos que no superen el umbral de soporte.
- 4. Se generan todas las asociaciones (permutaciones) posibles partiendo de los sucesos candidatos. Para cada asociación, se calcula la confianza y se descartan las asociaciones que no superen el umbral de confianza.
- 5. Nos quedamos con los casos no descartados.

PROPIEDADES

 $soporte(caso) \geq soporte(subcaso \ que \ compone \ el \ caso)$ $Si\ C(A \rightarrow (B-A)) \leq umbral \ de \ confianza, entonces$ $C(A' \rightarrow (B-A')) \leq umbral \ de \ confianza$ $donde\ A' \subseteq A$

TEMA 3 – CLASIFICACIÓN SUPERVISADA

ÁRBOLES DE DECISIÓN - ALGORITMO DE HUNT

- 1. Obtener suceso elemental en nodo inicial (no puede ser el clasificador).
- 2. Clasificar sucesos en base a nodo elegido.
 - a. Si podemos clasificar todos, hemos finalizado.
 - b. Si no, obtener suceso elemental en nodo intermedio y ejecutar paso 2.

GANANCIA DE INFORMACIÓN

Cálculo de la impureza		
$\Delta Impureza = I_{padre} \cdot freq_{padre} - I_{hijos} \cdot freq_{hijos}$		
$I_{hijos} = \sum_{i=1}^{k} \frac{N_{sucesos}(Nodo_{i})}{N_{total \ sucesos}} I(Nodo_{i})$		
Entropía	Error	Gini
$-\sum (freq_i(nodo_i) \cdot log_2(freq_i(nodo_i)))$	$1 - max(freq_i(nodo_i))$	$1 - \sum (freq_i(nodo_i))^2$

REGRESIÓN - COVARIANZA Y CORRELACIÓN

Covarianza	Correlación [0,1]
$S_{xy} = \frac{(\sum_{i=0}^{n} x_i \cdot y_i)}{n} - (\bar{x} \cdot \bar{y})$	$r_{xy} = \frac{S_{xy}}{S_x \cdot S_y}$
 S_{xy} > 0 →Dependencia directa positiva. S_{xy} = 0 →No existe relación lineal. S_{xy} > 0 →Dependencia inversa negativa. 	 (0,1] → relación ascendente. 0 → no hay correlación. [-1,0) → relación descendente. Se consideran fuertemente correlacionadas a partir de 0'8.

REGRESIÓN POR MÍNIMOS CUADRADOS

y = a + bx	• $a = \overline{y} - b \cdot x$ • $b = \frac{Sxy}{(s_x)^2}$
------------	---

ANÁLISIS REGRESIÓN

$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})$	 ŷ_i = valor calculado con la recta de regresión, tomando su x_i asociado. ȳ = media de y.
$SSy = \sum_{i=1}^{n} (y_i - \bar{y})$	 y_i = valor original del dato. y = media de y.
$r^2 = \frac{SSR}{SSy}$	• $0 \le r \le 1$; Conforme más se aproxime a 1, más correcta es la recta de regresión.

ANÁLISIS DEL ERROR

$$Sr = \sqrt{\frac{\sum_{i=1}^{n}((y_i - \hat{y}_i)^2)}{n}}$$
• \hat{y}_i = valor calculado con la recta de regresión, tomando su x_i asociado.
• y_i = valor original del dato.

Cuanto más cercano a 0, mejor.