Lecture 2: Canonical Genetic Algorithms

Suggested reading: D. E. Goldberg, *Genetic Algorithm in Search, Optimization, and Machine Learning*, Addison Wesley Publishing Company, January 1989

What Are Genetic Algorithms?

- Genetic algorithms are optimization algorithm inspired from natural selection and genetics
- A candidate solution is referred to as an *individual*
- Process
 - □ Parent individuals generate offspring individuals
 - ☐ The resultant offspring are evaluated for their **fitness**
 - ☐ The fittest offspring individuals survive and become parents
 - ☐ The process is repeated

History of Genetic Algorithms

- In 1960's
 - □ Rechenberg: "evolution strategies"
 - Optimization method for real-valued parameters
 - □ Fogel, Owens, and Walsh: "evolutionary programming"
 - Real-valued parameters evolve using random mutation
- In 1970's
 - □ John Holland and his colleagues at University of Michigan developed "*genetic algorithms* (GA)"
 - ☐ Holland's 1975 book "Adaptation in Natural and Artificial Systems" is the beginning of the GA
 - □ Holland introduced "schemas," the framework of most theoretical analysis of GAs.

■ In 1990's

- ☐ John Koza: "*genetic programming*" used genetic algorithms to evolve programs for solving certain tasks
- It is generally accepted to call these techniques as *evolutionary* computation
- Strong interaction among the different evolutionary computation methods makes it hard to make strict distinction among GAs, evolution strategies, evolutionary programming and other evolutionary techniques

Differences Between GAs and Traditional Methods

- GAs operate on encodings of the parameters values, not necessarily the actual parameter values
- GAs operate on a population of solutions, not a single solution
- GAs only use the fitness values based on the objective functions
- GAs use probabilistic computations, not deterministic computations
- GAs are efficient in handling problems with a discrete or mixed search spaces

The Canonical GA

Canonical GA

■ The canonical genetic algorithm refers to the GA proposed by John Holland in 1965

Gene Representation

- Parameter values are encoded into binary strings of fixed and finite length
 - ☐ Gene: each bit of the binary string (
 - ☐ Chromosome: a binary string
 - ☐ Individual: a set of one or multiple chromosomes, a prospective solution to the given problem
 - □ Population: a group of individuals
- Longer string lengths
 - ☐ Improve resolution
 - □ Requires more computation time

Binary Representation

- Suppose we wish to maximize f(x)
- Where $x \in \Omega$; $\Omega = [x_{min}, x_{max}]$
- Binary representation $x_{binary} \in [b_l \ b_{l-1} \cdots b_2 \ b_1]$
- We map $\begin{bmatrix} x_{min}, x_{max} \end{bmatrix}$ to $\begin{bmatrix} 0, 2^l 1 \end{bmatrix}$
- Thus $x = x_{min} + \frac{x_{max} x_{min}}{2^l 1} \sum_{i=1}^l b_i 2^{i-1}$

Example

- Let l = 5, $\Omega = [-5, 20]$
- Then

$$x_{\text{binary}} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix} \implies x = -5$$

 $x_{\text{binary}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \implies x = 20$
 $x_{\text{binary}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \end{bmatrix} \implies x = -5 + (2^4 + 2^1 + 2^0) \frac{20 - (-5)}{2^5 - 1} = 10.3226$

Fitness Evaluation

- Each individual x is assigned with a fitness value f(x) as the measure of performance
- It is assumed that the fitness value is positive and the better the individual as a solution, the fitness value is more positive
- The objective function can be the fitness function itself if it is properly defined

Example 1

Consider the problem

$$\max g(x) = -x^2 + 4x, \quad x \in [1, 5]$$

A fitness function

$$f(x) = -g(x) + 100 = -x^2 + 4x + 100$$

Example 2

Consider the problem

$$\min g(x) = x^2, \quad x \in [-10, 10]$$

A fitness function

$$f(x) = 1/(g(x) + 0.1) = 1/(x^2 + 0.1)$$

Selection

- Chooses individuals from the current population to constitute a mating pool for reproduction
- Fitness proportional selection methods
 - \square Each individual x is selected and copied in the mating pool with the probability proportional to fitness $(f(x) / \Sigma f(x))$

Roulette Wheel Selection

Crossover

- Single-point crossover is assumed
- Two parent individuals are selected from mating pool
- \blacksquare Crossover operation is executed with the probability p_c
- Crossover point is randomly chosen and the strings are swapped with respect the crossover point between the two parents

Single Point Crossover

Mutation

- Mutation operator is applied **gene-wise**, that is, each gene undergoes mutation with the probability p_m
- When the mutation operation occurs to a gene, its gene value is flipped

Overview of Canonical GA

Summary of Canonical GA

- Binary representation
- Fixed string length
- Fitness proportional selection operator
- Single-point crossover operator
- Gene-wise mutation operator

A Manual Example Using Canonical GAs

Ŋė.

Problem Description

Consider the following maximization problem

$$\max f(x) = x^2$$

where x is an integer between 0 and 31

 $f(x) = x^2$ has its maximum value 961 at $x = 31^{-2}$

Gene Representation

- Before applying GA, a representation method must be defined
- Use unsigned binary integer of length 5

10110
$$1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 22$$

■ A five-bit unsigned binary integer can have values between 0(0000) and 31(11111)

Canonical GA Execution Flow

Initialization

- Initial populations are randomly generated
- Suppose that the population size is 4
- An example initial population

Individual No.	Initial population	x value
1	01101	13
2	11000	24
3	01000	8
4	10011	19

Fitness Evaluation

- Evaluate the fitness of initial population
- The objective function f(x) is used as the fitness function
- Each individual is decoded to integer and the fitness function value is calculated

Fitness Evaluation

Decoding

Results

Individual No.	Initial population	x value	f(x)	f_i / Σf	Expected number
1	01101	13	169	0.14 _	$\rightarrow 0.56$
2	11000	24	576	0.49	1.96
3	01000	8	64	0.06	0.24
4	10011	19	361	0.31	1.24

Selection

- Select individuals to the mating pool
- Selection probability is proportional to the fitness value of the individual
- Roulette wheel selection method is used

Individual No.	Initial population	x value	f(x)	$f_i/\Sigma f$	Expected number
1	01101	13	169	0.14	0.56
2	11000	24	576	0.49	1.96
3	01000	8	64	0.06	0.24
4	10011	19	361	0.31	1.24

Selection

■ Roulette wheel

- Outcome of Roulette wheel is 1, 2, 2, and 4
- Resulting mating pool

No.	Mating pool
1	01101
2	11000
3	11000
4	10011

Crossover

- Two individuals are randomly chosen from mating pool
- Crossover occurs with the probability of $p_c = 1$
- Crossover point is chosen randomly

Mating pool	Crossover point	New population	x	f(x)
01101	1	01100	12	144
11000	4	11001	25	625
11000	2	11011	27	729
10011		10000	16	256

Mutation

- Applied on a bit-by-bit basis
- Each gene mutated with probability of $p_m = 0.001$

Before Mutation	After Mutation	X	f(x)
01100	01100	12	144
11001	11001	25	625
11011	11011	27	729
10000	10010	18	324

Fitness Evaluation

■ Fitness values of the new population are calculated

Old population	X	f(x)	New population	X	f(x)
01101	13	169	01100	12	144
11000	24	576	11001	25	625
01000	8	64	11011	27	729
10011	19	361	10010	18	324
	sum	1170		sum	1756
	avg	293		avg	439
	max	576		max	729