

PROGNOSIS SYSTEM Martlet - Optimus

Resources

Fleet:

- 100 heavy trucks (50% are 20 to 10 years old)
- 200 four wheeles (3-3.5 ton) including 10 mobile repair units (60% are 20 to 10 years old)
- 100 light SUV (service and emergency) (Less than 5 years old)

Operators:

- 1200 600 drivers (with level 1 repair capability)
- 50 Repairers level (2-3)
- 100 security operators.
- The rest is stoking area and logistic activity.

Common Process

- 1. Monitor and track relief operation lifecycle (Convoy preparation, tracking, delivery, return)
- 2. Monitor and track mission operation
- 3. Monitor Hostile and critical conditions and provide warning and alternatives
- 4. Manage criticality and accidents involving the mission
- 5. Generate activity reports
- 6. Define operators schedules and turnover
- 7. Monitor and reporting on stocking areas
- 8. Prognostic based logistic ?????

What we need

8. Prognostic based logistic ?????

plan-check-act-monitor-check-assess -prognostic data input -prognostic data output

- -Plan and define mission parameters
 - -Check current vehicles conditions, identify how to reduce variations for current missions vehicles
 - -Act sending resources for the mission
 - -Monitor current condition
 - -Check current vehicles conditions
 - -Asses results and resources by the end of the mission, identify critical damage vehicles

PROGNOSIS

PROGNOSIS

Data-driven applications span a large number of techniques, from probabilistic ones to neural networks.

Model-based approaches are useful to obtain more precise results, but of course their design requires a deep knowledge of the system.

Uncertainty is fundamental in Remaining Useful Life (RUL) estimation

Based on Diagnosis and Prognosis of Automotive Systems: motivations, history and some results by Giorgio Rizzoni , Simona Onori , Matteo Rubagotti

PROGNOSIS

Data-driven applications

Span a large number of techniques, from probabilistic ones to neural networks.

Model-based approaches

Useful to obtain more precise results, but their design requires a deep knowledge of the system.

Based on *Diagnosis and Prognosis of Automotive Systems: motivations, history and some results* by Giorgio Rizzoni , Simona Onori , Matteo Rubagotti

Data-driven Prognosis for fleet-military maintenance

The main aim is to reduce costs and the impact on the environment as well as improving resource productivity, efficiency and asset management.

backup slides()

AIC	Akaike information criterion	KF	Kalman filter
BM	Brownian motion	ME	Measurement error
CBM	Condition-based maintenance	MLE	Maximum likelihood estimation
CDF	Cumulative distribution function	MSE	Mean squared error
CM	Condition monitoring	MTTF	Mean time to failure
CTMC	Continuous-time Markov chain	PDF	Probability density function
EKF	Extended Kalman filter	PHM	Prognostics and health management
EKS	Extended Kalman smoother	PMS	Phased-mission system
FHT	First hitting time	RE	Relative error
FPK	Fokker–Planck–Kolmogorov	RSL	Residual storage life
FPT	First passage time	RTS	Rauch-Tung-Striebel
HMM	Hidden Markov model	RUL	Remaining useful life
HSMM	Hidden semi-Markov model	STF	Strong tracking filter
INS	Inertial navigation system	TMSE	Total MSE