Iris Dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Inspection on dataset

```
iris_df = pd.read_csv('iris.csv') iris_df.head()
```

```
In [33]: iris_df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149 \,
         Data columns (total 5 columns):
         # Column
                             Non-Null Count Dtype
         0 sepal_length 150 non-null
                                               float64
         1 sepal_width 150 non-null
2 petal_length 150 non-null
                                               float64
                                               float64
         3 petal_width 150 non-null
4 species 150 non-null
                                               float64
                                               object
         dtypes: float64(4), object(1)
        memory usage: 6.0+ KB
```

In [34]: iris_df.describe()

[34]:		sepal_length	sepal_width	petal_length	petal_width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.054000	3.758667	1.198667
	std	0.828066	0.433594	1.764420	0.763161
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

```
In [35]: iris_df.head()
```

Out[35]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1 4	0.2	setosa

Data preprocessing

```
3
          unique
             top
                   setosa
                      50
            freq
In [39]: iris_df = iris_df.drop_duplicates()
          iris\_df.shape
Out[39]: (147, 5)
In [40]: iris_df.isnull().sum()
Out[40]: sepal_length
          sepal width
          petal_length
                           0
          petal width
                           0
          species
                           0
          dtype: int64
In [41]: iris_df.isnull().sum()
Out[41]: sepal_length
          sepal_width
petal_length
                           0
                           0
          petal_width
                           0
          species
                           0
          dtype: int64
```

Data visualization

```
In [42]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [43]: width_counts = iris_df['sepal_width'].value_counts()
```

Bar plot

Out[38]:

species 150

count

```
In [44]: # Plotting Brand Frequency
plt.figure(figsize=(15,9))
sns.barplot(x=width_counts.index, y=width_counts.values)
plt.title('sepal_widthFrequency in Dataset')
plt.xlabel('sepal_width')
plt.ylabel('Number of species')
plt.xticks(rotation=360)
plt.show()
```


Count plot

```
In [45]: plt.figure(figsize=(13,5))
sns.countplot(x='sepal_length', data=iris_df)
plt.xticks(rotation=90)
```

```
Out[45]: ([0,
                        1,
                        2,
                        6,
                        8,
                        9,
                        10,
                        11,
                        12,
                        13,
                        14,
                        15,
                        16,
                        17,
                        18,
                        19,
                        20,
                        21,
                        22,
                        23,
                        24,
                        25,
                        26,
                        27,
                        28,
                        29,
                        30,
                        31,
                        32,
                        33,
                        34],
                     34],
[Text(0, 0, '4.3'),
Text(1, 0, '4.4'),
Text(2, 0, '4.5'),
Text(3, 0, '4.6'),
Text(4, 0, '4.7'),
Text(5, 0, '4.8'),
Text(6, 0, '4.9'),
Text(7, 0, '5.0'),
Text(8, 0, '5.1')
                       Text(8, 0, '5.1'),
Text(9, 0, '5.2'),
                        Text(10, 0, '5.3'),
                        Text(11, 0, '5.4'),
                       Text(12, 0, '5.5'),
Text(13, 0, '5.6'),
Text(14, 0, '5.7'),
                        Text(15, 0, '5.8'),
                       Text(16, 0, '5.9'),
Text(17, 0, '6.0'),
Text(18, 0, '6.1'),
                        Text(19, 0, '6.2'),
                       Text(20, 0, '6.3'),
Text(21, 0, '6.4'),
Text(22, 0, '6.5'),
                        Text(23, 0, '6.6'),
                       Text(24, 0, '6.7'),
Text(25, 0, '6.8'),
                       Text(26, 0, '6.9'),
Text(27, 0, '7.0'),
                       Text(28, 0, '7.1'),
Text(29, 0, '7.2'),
Text(30, 0, '7.3'),
                        Text(31, 0, '7.4'),
                       Text(32, 0, '7.6'),
Text(33, 0, '7.7'),
Text(34, 0, '7.9')])
```



```
In [53]: sns.histplot(x='sepal_length', data = iris_df)
```

Out[53]: <Axes: xlabel='sepal_length', ylabel='Count'>

Count plot

```
In [54]: sns.countplot(x='sepal_length', data = iris_df)
```

Out[54]: <Axes: xlabel='sepal_length', ylabel='count'>

Scatter plot

```
In [67]: plt.figure(figsize=(5,4))
sns.scatterplot(x='sepal_length',y='species',data = iris_df)
plt.show()
```


Histplot for sepal width & Species data

```
In [68]: plt.figure(figsize=(5,4))
sns.histplot(x='sepal_width',y='species',data = iris_df)
plt.show()
```



```
In [69]: iris_df = iris_df.nlargest(10, 'sepal_length')
iris_df
```

Out[69]:		sepal_length	sepal_width	petal_length	petal_width	species
	131	7.9	3.8	6.4	2.0	virginica
	117	7.7	3.8	6.7	2.2	virginica
	118	7.7	2.6	6.9	2.3	virginica
	122	7.7	2.8	6.7	2.0	virginica
	135	7.7	3.0	6.1	2.3	virginica
	105	7.6	3.0	6.6	2.1	virginica
	130	7.4	2.8	6.1	1.9	virginica
	107	7.3	2.9	6.3	1.8	virginica
	109	7.2	3.6	6.1	2.5	virginica
	125	7.2	3.2	6.0	1.8	virginica

Histogram

```
In [70]: import matplotlib.pyplot as plt
import numpy as np
```

```
iris_df.hist(bins=80,figsize=(16,8))
plt.show()
```


Data visualization

In [74]: plt.figure(figsize=(10,5)) sns.countplot(x='sepal_width', data = iris_df) plt.show()

In [75]: iris_df.head()

Out[75]:

	sepal_length	sepal_width	petal_length	petal_width	species
131	7.9	3.8	6.4	2.0	virginica
117	7.7	3.8	6.7	2.2	virginica
118	7.7	2.6	6.9	2.3	virginica
122	7.7	2.8	6.7	2.0	virginica
135	7.7	3.0	6.1	2.3	virginica

```
In [76]: iris_df.columns
```

Out[76]: Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'], dtype='object')

```
In [77]: iris_df['sepal_length'].unique()
```

```
Out[77]: array([7.9, 7.7, 7.6, 7.4, 7.3, 7.2])
In [78]: iris_df['sepal_width'].unique()
Out[78]: array([3.8, 2.6, 2.8, 3. , 2.9, 3.6, 3.2])
In [79]: iris_df['species'].unique()
Out[79]: array(['virginica'], dtype=object)
In [80]: plt.figure(figsize=(3,3))
# declaring data
data = iris_df["sepal_length"].value_counts()
keys = [7.9, 7.7, 7.6, 7.4, 7.3, 7.2]
# define Seaborn color palette to use
palette_color = sns.color_palette('pastel')
# plotting data on chart
plt.pie(data, labels=keys, colors=palette_color, autopct='%.0f%*')
# displaying chart
plt.show()
```


In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js