高等线性代数 Advanced Linear Algebra

Advanced Linear Algebra PHYS6653P 2021 学年第一学期 电灯 陈稼霖 github.com/Chen-Jialin 2021 年 9 月 –

目录

0	代数学基础	2
	0.1 常用符号	2
	0.2 集合	2
	0.3 映射	4
	0.4 等价关系和等价类	8
	0.5 群	9
	0.6 环	14
	0.7 域	17
1	向量空间	19
2	线性变换	26
	2.1 线性变换	26
	2.2 表示	29
3	同构定理	34
4	模 I: 基本性质	42
5	模 II: 自由与诺特模	46
6	主理想整环上的模	49
7	线性算子的结构	5 6
8	特征值和特征向量	61
	8.1 投影算子	66
9	实数和复数内积空间	68
	9.1 范数和距离	69
	9.2 等距算子	70
	9.3 正交性	70
	9.4 Riesz 表示定理	74

Chapter 0

代数学基础

0.1 常用符号

- ∀: 对所有 (for all).
- ∃: 存在 (there exists).
- ∃!: 存在且唯一 (there exists exactly one).
- s.t.: 使得 (such that).
- №: 自然数.
- ℤ: 整数.
- ℚ: 有理数.
- ℝ: 实数.
- ℂ: 复数.

0.2 集合

定义 0.1 集合(Set): 略.

元素与集合之间的关系: 对元素 a 和集合 S,

- $a \in S$ 或
- $a \notin S$.

集合中元素之间的关系: $\forall a, b \in S$,

- a = b 或
- $a \neq b$.

集合与集合之间的关系: 对集合 A, B 和全集 I,

0. 代数学基础 0.2. 集合

- (1) **交集**: $A \cap B = \{a \mid a \in A \perp a \in B\}$.
- (2) **并集**: $A \cup B = \{a \mid a \in A \ 或 \ a \in B\}$.
- (3) **差**: $B A = \{a \mid a \in B \perp a \notin A\}.$
- (4) 补集: $A' = I A = \{a \mid a \in I \perp \exists a \notin A\}.$
- (5) **包含**: $A \subseteq B$, 称 A 包含于 B, 或称 B 包含 A, 或称 B 是 A 的子集 $\iff A \cup B = A \iff A \cup B = B$.

 $\mathbf{i}\overline{\mathbf{i}}\mathbf{i}\mathbf{:}\ \underline{A}\subseteq \underline{B}\Longrightarrow A\cap \underline{B}=\underline{A}\mathbf{:}\ \mathbf{:}\ \underline{A}\subseteq B,\ \mathbf{:}\ \forall a\in A,\ a\in \underline{B}\Longrightarrow \underline{A}\subseteq \underline{A}\cap \underline{B}.$

 $\forall a \in A \cup B$, 由交集定义, $a \in A \Longrightarrow A \cap B \subseteq A$.

故 $A \cap B = A$.

 $A \subseteq B \iff A \cap B = A$: $A \cap B = A$, $A \cap B =$

 $A \subseteq B \Longrightarrow A \cup B = B$: $A \subseteq B$, $\forall a \in A$, $a \in B$, $d \in A \cup B$, $d \in B \Longrightarrow A \cup B \subseteq B$.

 $:: A \subseteq B, \forall a \in A,$ 由并集定义, $a \in A \cup B \Longrightarrow B \subseteq A \cup B.$

故 $A \cup B = B$.

 $A \subseteq B \iff A \cup B = B$: $\forall a \in A$, 由并集定义, $a \in A \cup B$, 又 $\therefore A \cup B = B$, $\therefore a \in B \implies A \subseteq B$.

综上, 得证.

常用公式:

 $(1) A \cap (\cup_i B_i) = \cup_i (A \cap B_i).$

证: $\forall a \in A(\cup_i B_i) \iff a \in A \perp a \in \cup_i B_i$

- $\iff a \in A \perp \exists k, \text{ s.t. } a \in B_k$
- $\iff \exists k, \text{ s.t. } a \in A \cap B_k \subseteq \cup_i (A \cap B_i)$
- $\iff a \in \cup_i (A \cap B_i), \text{ if } A \cap (\cup_i B_i) \subseteq \cup_i (A \cap B_i).$

 $\forall a \in \bigcup_i (A \cap B_i) \iff \exists k, \text{ s.t. } a \in A \cap B_k$

- $\iff \exists k, \text{ s.t. } a \in A \perp \exists a \in B_k$
- $\iff a \in A \perp \exists k, \text{ s.t. } a \in B_k$
- $\iff a \in A \perp A \subseteq a \in \cup_i B_i$

综上, 得证.

 $(2) A \cup (\cap_i B_i) = \cap_i (A \cup B_i).$

证: $\forall a \in A \cup (\cap_i B_i) \iff a \in A \ g \ a \in \cap_i B_i$

- $\iff a \in A \ \ \ \ \ \forall i, \ \text{s.t.} \ \ a \in B_i$
- $\iff \forall i, a \in A \ \vec{\boxtimes} \ a \in B_k$
- $\iff \forall i, \ a \in A \cup B_k$
- $\iff \cap_i (A \cup B_i), \text{ if } A \cup (\cap_i B_i) \subseteq \cap_i (A \cup B_i).$

 $\forall a \in \cap_i (A \cup B_i) \iff \forall i, \ a \in A \cup B_i$

- $\iff \forall i, a \in A \ \vec{\boxtimes} \ a \in B_i$
- $\iff a \in A \ \ \text{ii} \ \forall i, \ a \in B_i$

 $\iff a \in A \implies a \in \cup_i B_i$ $\iff a \in A \cap (\cup_i B_i), \implies \cap_i (A \cup B_i) \subseteq A \cap (\cup_i B_i).$

综上, 得证.

 $(3) (\cup_i A_i)' = \cap_i A_i'.$

iE: $\forall a \in (\cup_i A_i)' \iff a \in I \perp a \notin \cup_i A_i$

 $\iff a \in I \perp \forall i, a \notin A_i$

 $\iff \forall i, a \in I \perp a \notin A_i$

 $\iff \forall i, a \in A'_i$

 $\iff a \in \cap_i A_i', \text{ id } (\cup_i A_i)' \subseteq \cap_i A_i'.$

 $\forall a \in \cap_i A_i' \iff \forall i, \ a \in I \perp a \notin A_i$

 $\iff a \in I \perp \exists \forall i, a \notin A_i$

 $\iff a \in I \perp a \notin \cup_i A_i'$

综上, 得证.

 $(4) (\cap_i A_i)' = \cup_i A_i'.$

iE $: ∀a ∈ (∩_iA_i)' ⇔ a ∈ I <math>\perp$ a ∉ ∩_iA_i

 $\iff a \in I \perp \exists k, \text{ s.t. } a \notin A_k$

 $\iff \exists k, \text{ s.t. } a \in I \perp a \notin A_k$

 $\iff \exists k, \text{ s.t. } a \in A'_k$

 $\iff a \in \cup_i A_i', \text{ id } (\cap_i A_i)' \subseteq \cup_i A_i'.$

 $\forall a \in \bigcup_i A_i' \iff \exists k, \text{ s.t. } a \in A_k'$

 $\iff \exists k, \text{ s.t. } a \in I \perp a \notin A_k$

 $\iff a \in I \perp \exists k, \text{ s.t. } a \notin A_k$

 $\iff a \in I \perp a \notin \cap_i A_i$

 $\iff a \in (\cap_i A_i)', \ \text{tx} \cup_i A_i' \subseteq (\cap_i A_i)'.$

综上, 得证.

0.3 映射

定义 0.2 <u>映射</u>: $\forall a \in S_1$, $\exists ! b \in S_2$, s.t. b = f(a), 记作 $f: S_1 \to S_2$, $a \mapsto b$, 其中称 S_1 为定义域, S_2 为值域, b 为 a 的像, a 为 b 的原像.

例 0.1 恒等映射: $1_S: S \to S, a \mapsto 1_S(a) = a$.

定义 0.3 映射相等: 映射 $f: S_1 \to S_2, g: S_1 \to S_3, \forall a \in S_1, f(a) = g(a), 则称 f 与 g 相等, 记作 <math>f = g$.

 $\forall a \in S_1, \{f(a)\} \subseteq S_2 \ \mathbb{H} \ |\{f(a)\}| = 1.$

定义 **0.4** 原像集: $f^{-1}(b) \equiv \{a \in S_1 \mid f(a) = b\}.$

 $f^{-1}(b) \subseteq S_1, f^{-1}(b)$ 可能 = \emptyset .

定义 0.5 像集: $\text{Im } f = f(S_1) \equiv \{b \in S_2 \mid b = f(a) \forall a \in S_1\}.$

 $\operatorname{Im} f \subseteq S_2$.

基本性质:

(1) $A \subseteq S_1 \Longrightarrow A \subseteq f^{-1}(f(A))$.

 $\mathbf{i}\mathbf{E} : \forall a \in A, :: A \subseteq S_1, :: a \in S_1.$

$$X : f(a) \in f(A), : a \in f^{-1}(f(A)), \text{ if } A \subseteq f^{-1}(f(A)).$$

若 $\exists a \in S_1 - A$, s.t. $f(a) \in f(A)$, 则 $A \subsetneq f^{-1}(f(A))$.

(2) $B \subseteq S_2 \Longrightarrow B \supseteq f(f^{-1}(B))$.

证:
$$f^{-1}(B) = \{a \in S_1 \mid f(a) \in B\}, \therefore \forall a \in f^{-1}(B), f(a) \in B \Longrightarrow f(f^{-1}(B)) \subseteq B.$$

若 $\exists b \in B$, s.t. $\forall a \in S_1$, $f(a) \neq b$ (即 B 中有元素在 S_1 中无原像), 则 $B \supseteq f(f^{-1}(B))$.

若 $\forall b \in B, \exists a \in A, \text{ s.t. } f(a) = b, \text{ 则 } B = f(f^{-1}(B)).$

(3) $f^{-1}(\cup_i B_i) = \cup_i f^{-1}(B_i)$.

i.E. $\forall a \in f^{-1}(\cup_i B_i), \exists k, \text{ s.t. } f(a) \in B_k$

$$\iff \exists k, \text{ s.t. } a \in f^{-1}(B_k)$$

$$\iff a \in \cup_i f^{-1}(B_i), \text{ th } f^{-1}(\cup_i B_i) \subseteq \cup_i f^{-1}(B_i).$$

$$\forall a \in \bigcup_i f^{-1}(B_i), \exists k, \text{ s.t. } a \in f^{-1}(B_k)$$

$$\iff \exists k, \text{ s.t. } f(a) \in B_k$$

$$\iff f(a) \in \cup_i B_i$$

综上, 得证.

(4) $f^{-1}(\cap_i B_i) = \cap_i f^{-1}(B_i)$.

iE: $\forall a \in f^{-1}(\cap_i B_i), \exists k, \text{ s.t. } f(a) \in B_k$

$$\iff \exists k, \text{ s.t. } a \in f^{-1}(B_k)$$

$$\iff a \in \cup_i f^{-1}(B_k), \ \ \ \ \ f^{-1}(\cap_i B_i) \subseteq \cap_i f^{-1}(B_i).$$

$$\forall a \in \cap_i f^{-1}(B_i), \forall i, \text{ s.t. } a \in f^{-1}(B_i)$$

$$\iff \forall i, \text{ s.t. } f(a) \in B_i$$

$$\iff f(a) \in \cap_i B_i$$

综上, 得证.

定义 0.6 <u>映射的复合</u>: 映射 $f: S_1 \to S_2, g: S_2 \to S_3$, 则称映射 $g \circ f: S_1 \to S_2, a \mapsto g \circ f(a) \equiv g(f(a))$ 为 f 和 g 的复合.

定理 0.1 映射复合的结合律: $h \circ (g \circ f) = (h \circ g) \circ f$.

故连续复合 $f_1 \circ f_2 \circ \cdots \circ f_n$ 无需括号.

定义 0.7 交换图: $f: S_1 \to S_1$, $h: S_2 \to S_3$, $g: S_1 \to S_3$, 若 $g = f \circ h$, 则称该图交换.

 $f: S_1 \to S_2, g: S_2 \to S_4, h: S_1 \to S_3, l: S_3 \to S_4, 若 g \circ f = l \circ h$, 则称该图**交换**.

定义 0.8 <u>单射(Injective 或One-to-one)</u>: 映射 $f: S_1 \to S_2$, $\forall a, b \in S_1$, 若 $f(a) = f(b) \Longrightarrow a = b$, 则称 f 单射.

单射的性质:

- (2) f 单射 \iff $A = f^{-1}(f(A))$.

定义 0.9 满射(Surjective): 映射 $f: S_1 \to S_2$, 若 $\forall b \in S_2$, $\exists a \in S_1$, s.t. f(a) = b (即 Im $f = S_2$), 则称 f 满射.

满射的性质:

- (1) f 满射 $\iff \forall B \subseteq S_2, f^{-1}(B) \neq \emptyset.$
- (2) f 满射 $\iff \forall B \subseteq S_2, B = f(f^{-1}(B)).$

定义 0.10 双射: 映射 f 单射且满射 \iff f 双射.

例 0.2: 恒等映射是双射的.

常用结论:

(1) f, g 单射 $\Longrightarrow g \circ f$ 单射.

(2) $g \circ f$ 单射 $\Longrightarrow f$ 单射.

证:
$$\forall a, b \in S_1$$
, 若 $f(a) = f(b)$, 则 $g \circ f(a) = g \circ f(b)$, 又 $g \circ f$ 单射, $a = b$, 故 f 单射.

例 0.3 $g \circ f$ 单射, 而g 非单射的例子: 集合 $S_1 = \{0\}$, $S_2 = \{0,1\}$, $S_3 = \{0\}$,

映射 $f: S_1 \to S_2$, $f(a) = 0 \forall a \in S_1$, 单射,

$$g: S_2 \to S_3, \ g(b) = 0 \forall S_2, \ 非 単射, \ g \circ f: S_1 \to S_3, \ g(a) = 0, \ 単射.$$

(3) f, g 满射 $\Longrightarrow g \circ f$ 满射.

(4) $g \circ f$ 满射 $\Longrightarrow g$ 满射.

证:
$$g \circ f$$
 满射, $d \circ g \in S_3$, $\exists a \in S_1$, s.t. $g \circ f(a) = c$ $\Rightarrow \exists b = f(a) \in S_2$, s.t. $g(b) = c$, 故 g 满射.

例 0.4 $g \circ f$ 满射, 而 f 非满射的例子: 集合 $S_1 = \{0\}$, $S_2 = \{0,1\}$, $S_3 = \{0\}$,

映射 $f: S_1 \to S_2$, $f(a) = 0 \forall a \in S_1$, 非满射,

$$g: S_2 \to S_3, g(b) = 0 \forall S_2, 满射, g \circ f: S_1 \to S_3, g(a) = 0, 满射.$$

定理 0.2: 映射 $f: S_1 \to S_2$ 单射 $\iff \exists$ 映射 $g: S_2 \to S_1$, s.t. $g \circ f = 1_{S_1}$, 这样的 g 称为 f 的左逆.

证: "⇒": 构造
$$g(b) = \begin{cases} a, & a \in f^{-1}(b), \\ \text{任意取一个 } a_0 \in S_1, & f^{-1}(b) = \emptyset, \end{cases}$$

 $\forall a \in S_1, \ \exists b = f(a), \ f \ \text{单射且 } a \in f^{-1}(b) \neq \emptyset, \ \therefore |f^{-1}(b)| = 1,$
 $\Rightarrow g \circ f(a) = a \Rightarrow g \circ f = 1_{S_1}.$
"⇒": $\forall a, b \in S_1, \ \exists f(a) = f(b), \ \emptyset, \ a = 1_{S_1} = g \circ f(a) = g \circ f(b) = 1_{S_1}(b) = b, \ \text{the } f \ \text{$

由于当 $f^{-1}(b) = \emptyset$ 时, g(b) 的取值具有任意性, 故若左逆存在, 则不唯一.

定理 0.3: 映射 $f: S_1 \to S_2$ 满射 $\iff \exists$ 映射 $h: S_2 \to S_1$, s.t. $f \circ h = 1_{S_2}$, 这样的 h 称为 f 的右逆.

" \Leftrightarrow ": $\forall b \in S_2, \exists a = h(b) \in S_1, \text{ s.t. } f \circ h(b) = 1_{S_2}(b) = b, \text{ 故 } f \text{ 满射.}$

由于 $|f^{-1}(b)| \ge 1$, h(b) 的取值可能具有任意性, 故若右逆存在, 则不唯一.

定理 0.4: 若映射 f 同时存在左逆和右逆,则其左逆 = 右逆,此时称 f 可逆,且此时 f 双射.

证: 因为 f 同时存在左逆和右逆, 由定理 0.2 和 0.3 得 f 双射.

设左逆 $g: S_2 \to S_1$, s.t. $g \circ f = 1_{S_1}$, 右逆 $h: S_2 \to S_1$, s.t. $f \circ h = 1_{S_2}$.

假设 $g \neq h$, 则 $\exists b \in S_2$, s.t. $g(b) \neq h(b)$,

又 :: f 单射, :: $b = 1_{S_2}(b) = f \circ g(b) \neq f \circ h(b)$.

 $\therefore f$ 满射, $\therefore \exists a \in S_1$, s.t. $b = f(a) \Longrightarrow f(a) = b \neq f \circ g \circ f(a) = 1_{S_2}(f(a)) = f(a)$, 这显然是荒谬的, 故假设错误, g = h.

0.4 等价关系和等价类

定义 0.11 <u>卡氏积</u>: 集合 S_1 和 S_2 的卡氏积 $S_1 \times S_2 \equiv \{(a,b) \mid a \in S_1, b \in S_2\}$. 集合 S 的卡氏积 $S \times S \equiv \{(a,b) \mid a,b \in S\}$.

注意, 一般 $(a,b) \neq (b,a)$.

定义 0.12 关系: 卡氏积的子集. $\mathcal{R} \in S \times S$, 称为 S 上的关系.

例 0.5: 自然数集 \mathbb{N} 的卡氏积 $\mathbb{N} \times \mathbb{N} = \{(n, m) \mid n, m \in \mathbb{N}\}.$

小于关系: $\mathcal{R}_1 = \{(n,m) \mid n-m < 0\}.$ $(1,2) \in \mathcal{R}_1$, 记作 $1\mathcal{R}_12$.

等于关系: $\mathcal{R}_2 = \{(n,m) \mid n-m=0\}.$ $(1,1) \in \mathcal{R}_2$, 记作 $1\mathcal{R}_21$.

定义 0.13 图: 对映射 $f: S_1 \to S_2$, 有关系 $G_f = \{(a, f(a)) \mid a \in S_1\} \subseteq S_1 \times S_2$, 称 G_f 为 f 的图.

(第一个坐标在此关系中仅出现一次, 不会重复.)

映射与图一一对应.

定义 0.14 等价关系: 关系 $\mathcal{R} \in S \times S$, 若满足

反身性: $\forall a \in S, (a, a) \in \mathcal{R}$ (即 $a \sim a \forall a \in S$)

- (2) 对称性: 若 $(a,b) \in \mathcal{R}$, 则 $(b,a) \in \mathcal{R}$ (即 $a \sim b \iff b \sim a$)
- (3) 传递性: 若 $(a,b) \in \mathcal{R}$, $(b,c) \in \mathcal{R}$, 则 $(a,c) \in \mathcal{R}$ (即 $a \sim b, b \sim c \iff a \sim c$)

则称 \mathcal{R} 为 S 上的等价关系. 若元素 a,b 具有等价关系, 记作 $a \sim b$.

定义 0.15 等价类: 由具有等价关系的元素组成的集合. $\forall a \in S, [a] \equiv \{b \in S \mid b \sim a\} \subseteq$ 称为 a 的等价类, a 称为该等价类的代表元.

 $\therefore a \in [a], \therefore [a]$ 非空.

 $c \in S$, 则有且仅有以下两种情况:

- (1) $c \in [a] \iff c \sim a \iff a \sim c \iff a \in [c] \iff [a] = [c].$
- $(2) \ c \notin [a] \iff [a] \cap [c] = \emptyset.$

证: 假设 $[a] \cap [b] \neq \emptyset$, 则 $\exists c \in [a] \cap [b]$

 $\implies a \sim b \Longrightarrow [a] = [b],$ 得证.

等价类的性质

- (1) $a \in [b] \iff b \in [a] \iff [a] = [b]$.
- (2) $a \notin [b] \iff [a] \cap [b] = \emptyset$.
- (3) $\forall a, b \in S$, 要么 [a] = [b], 要么 $[a] \cap [b] = \emptyset$. (以上三条证明见前文.)
- $(4) S = \bigcup_{i \in K, a_i \in S} [a_i], \text{ <math>\sharp p } [a_i] \cap [a_j] = \emptyset \forall i \neq j.$

证: $S = \bigcup_a \{a\}$, 合并各等价类, 即得证.

等价类这一概念可用于将大问题分解为小问题加以解决.

定义 0.16 <u>剖分</u>: 集合 $S \neq \emptyset$, 若 $S = \bigcup_{i \in K, S_i \subseteq S} S_i$ 且 $S_i \cap S_j = \emptyset \forall i \neq j$, 则称 $\{S_i \subseteq S \mid i \in K\}$ 为 S 的剖分.

可由集合的等价类得到它的一个剖分.

定义 0.17 商类: 所有等价类的集合. $\frac{S}{\alpha} \equiv \{[a] \mid a \in S\}$. $\pi: S \to \frac{S}{\alpha}$, $a \mapsto [a]$ 称为自然映射.

自然映射满射, 但未必单射.

定义 0.18 运算: 映射 $*: S \times S \rightarrow S$ 称为 S 上的运算, 记作 (S,*).

 $\forall a, b \in S, \ a * b \in S.$

0.5 群

定义 0.19 群: 若 (G,*) 满足

结合律: (a*b)*c = a*(b*c)(故 $a_1*a_2*\cdots*a_n$ 无需括号, 可写为 $\prod_{i=1}^n a_i$.)

- (2) 有单位元 e: s.t. e * a = a * e = a
- (3) 有逆元: $\forall a \in G, \exists b, \text{ s.t. } a*b=b*a=e, 则称 b 为 a 的逆, 记作 <math>b=a^{-1}$

则称 (G,*) 为**群**.

定理 0.5: 单位元是唯一的.

证: 假设 e_1, e_2 均为单位元,则 $e_1 * e_2 = e_1 * e_2$,得证.

定理 0.6: 每个元素的逆元是唯一的.

证: 假设 b_1 和 b_2 均为 a 的逆元, 则 $b_1a = b_2a = e \Longrightarrow b_1 = b_2$, 得证.

例 0.6: (Z,×) 非群, 因 0 无逆元.

特殊的群:

(1)

例 0.7 循环群:
$$G = \{a^i \mid i \in \mathbb{Z}\}.$$

(2)

例 0.8 交换群(Abel 群):
$$\forall a, b \in G, \ a * b = b * a.$$

群的性质:

- (1) $c * c = c \iff c = e$.
- (2) $(a^{-1})^{-1} = a$.
- (3) $(a*b)^{-1} = b^{-1} * a^{-1}$.
- (4) 左消去律: $a * b = a * c \iff b = c$, 右消去律: $b * a = c * a \iff b = c$.

定义 0.20 群的阶: $|G| \equiv$ 群中元素的个数.

定义 0.21 有限群: 若 $|G| < \infty$, 则称 G 为有限群.

定义 0.22 <u>群元素的阶</u>: $g \in G$, $0 \neq n \in \mathbb{N}$, 若 $g^n = e$, 则称最小的这样的 n 为 g 的阶, 记作 |g|, 若 n 不存在, 则称 g 无穷阶.

若 $|G| < \infty$, 则 $\forall g \in G$, $|g| < \infty$.

 $\mathbf{i}\mathbf{E}: g \in G, g^2 \in G, \dots, g^n \in G \Longrightarrow \{g, g^2, \dots, g^n\} \in G$

 $|G| < \infty, |g| < \infty, |g| < \infty$

当 n > |G|, $\{g, g^2, \dots, g^n\}$ 中必有元素重复, 故 $\exists n_1 < n_2$, s.t. $g^{n_1} = g^{n_2} \Longrightarrow e = g^{n_1} g^{-n_1} = g^{n_2} g^{-n_1} = g^{n_2-n_1}$. 最小的这样的 $n_2 - n_1$ 即为 |g|, 故 $|g| < \infty$.

定义 0.23 <u>子群</u>: 对群 (G,*), H 为 G 的非空子集, 若 (H,*) 亦为群, 则称 (H,*) 为 (G,*) 的子群, 记作 (H,*) < (G,*).

例 0.9: (\mathbb{Q} , +) 为群, ($\mathbb{Q}^* \equiv \mathbb{Q} - \{0\}$, ×) 亦为群, 虽然 $\mathbb{Q}^* \subseteq \mathbb{Q}$, 但由于两者运算不同, 故 (\mathbb{Q}^* , ×) 并非 (\mathbb{Q} , +) 的子群.

定理 0.7: $(H,*)<(G,*)\Longleftrightarrow H\subseteq G,\ \forall a,b\in H,\ a*b\in H\ \perp a^{-1}\in H\Longleftrightarrow H\subseteq G,\ \forall a,b\in H,\ a*b^{-1}=H.$

证: $(H,*) < (G,*) \Longleftrightarrow H \subseteq G, \forall a,b \in H, a*b \in H 且 a^{-1} \in H$: 由子群和群的定义即得证.

 $(H,*) < (G,*) \Longleftrightarrow H \subseteq G, \forall a,b \in H, a*b^{-1} \in H$: 由子群和群的定义即得证.

 $(H,*) < (G,*) \Longleftrightarrow H \subseteq G, \forall a,b \in H, a*b^{-1} \in H$: 取 b=a, 得 $a*a^{-1}=e \in H \Longrightarrow H$ 有单位元.

取 a = e, 得 $\forall b \in H$, $\exists e * b^{-1} = b^{-1} \in H \Longrightarrow H$ 有逆元.

H 中的运算 * 的结合律继承自 G 中的 * 的结合律.

综上, H 为群. 又 $: H \subseteq G, : H < G$.

定义 0.24 平凡子群: (G,*) 和 $(\{e\},*)$ 为 (G,*) 的平凡子群.

定义 0.25 真子群(非平凡子群): 除平凡子群以外的子群.

定义 0.26 单群: 无真子群的群.

定理 **0.8** 任意多个子群的交为子群: (G,*) 为群, $(H_i,*) < (G,*) \forall i, 则 (\cap_{i \in K} H_i,*) < (G,*)$.

iE: $\forall a, b \in \cap_{i \in K} H_i \Longrightarrow \forall i \in K, a, b \in H_i,$

$$\therefore (H_i, *) < (G, *), \therefore a * b^{-1} \in H_i \subseteq \cap_{i \in K} H_i \Longrightarrow a * b^{-1} \in \cap_{i \in K} H_i.$$

定理 0.9: (H,*) < (G,*),则 H 的单位元即为 G 的单位元.

证: 设 G 的单位元为 e.

又::(H,*)的单位元是唯一的,故得证.

例 0.10:
$$(\mathbb{Z}, +)$$
 为群, $(\mathbb{E} = \langle 2 \rangle = \equiv \{vp\}, +), (\langle 3 \rangle \equiv \{3n \mid n \in \mathbb{Z}\}, +) < (\mathbb{Z}, +).$

定义 0.27 陪集(Coset): 真子群 H < G, $\forall g \in G$, 左陪集 $gH \equiv \{g*h \mid \forall h \in H\}$, 右陪集 $Hg \equiv \{h*g \mid \forall h \in H\}$.

简便起见, 以下讨论针对左陪集, 右陪集同理.

例 0.11: \mathbb{E} 在 \mathbb{Z} 中的陪集: $\forall g, n\mathbb{E} = \{n + m \mid m \in \mathbb{E}\} = \{ \mathbb{E}, n \text{ 为偶数}, 1\mathbb{E} = \mathbb{O} \equiv \{\widehat{\sigma}\}, n \text{ 为奇数},$ 故 \mathbb{E} 在 \mathbb{Z} 中仅有两个 陪集: \mathbb{E} 和 \mathbb{O} , \mathbb{E} \mathbb{Z} = $\mathbb{E} \cup \mathbb{O}$, $\mathbb{E} \cap \mathbb{O} = \emptyset$.

陪集的性质: 真子群 $H < G, \forall g_1, g_2 \in G$,

(1) $g_1H \cap g_2H = \emptyset$ 或 $g_1H = g_2H$.

证: 假设 $g_1H \cap g_2H \neq \emptyset$, 则 $\exists c \in g_1H \cap g_2H$

 $\iff c \in g_1H \perp L c \in g_2H$

 $\iff \exists h_1, h_2, \text{ s.t. } c = g_1 * h_1 = g_2 * h_2$

 $\implies g_2^{-1}g_1 = h_2 * h_1^{-1}$

 $X : h_2 * h_1^{-1} \in H, : g_2^{-1} * g_1 \in H$

 $\implies (g_2^{-1} * g_1) * H = H$

$$\implies g_1H = g_2H.$$

(2) |gH| = |H|.

证: 要证 |gH| = |H|, 只需证 $H \rightarrow gH$ 双射.

若 ga = gb, 则 a = b, 故 $g \rightarrow gH$ 单射.

 $\forall c \in gH, \exists a = g^{-1}c \in H \perp ga = b, \text{ in } H \to gH \text{ in } H.$

综上, $H \to gH$ 双射, 故得证.

(3) $G = H \cup g_1 H \cup g_2 H \cup \cdots \cup g_\alpha H$, 其中 $g_i H \cap g_j H = \emptyset \forall i, j, \alpha$ 仅为一指标.

证: $G = \bigcup_{g \in G} gH$, 去除这些并集中的重复集合, 即得证.

(4) $g_1 H = g_2 H \iff g_1^{-1} * g_2 \in H$.

 $\implies g_1H = g_2H.$

证: "⇒":
$$g_1H = g_2H \Longrightarrow \forall g_1*h_1 \in g_1H, g_1*h_1 \in g_2H$$

 $\Longrightarrow \exists h_2 \in H, \text{ s.t. } g_1*h_1 = g_2*h_2$
 $\Longleftrightarrow g_1^{-1}g_2 = h_1*h_2^{-1}$
又 $\therefore h_1*h_2^{-1} \in H, \therefore g_1^{-1}*g_2 \in H.$
"⇐": $g_1^{-1}*g_2 \in H \Longrightarrow g_1^{-1}*g_2H = H$

(5)

定理 0.10 拉格朗日(Lagrange) 定理: $|G| < \infty$, 真子集 H < G, $|H| \mid |G|$ a .

^aa | b 表示 b 可被 a 整除.

故若 |G| 为质数, 其子群仅有 $\{e\}$ 和 G 两个, 此时 $\forall g \in G, G = \{g, g^2, \dots, g^{|G|}\}$, 即 G 为有限阶循环交换群. 最小的有限非交换群为 6 阶.

根据 (3), 由陪集可得剖分, 由剖分可得等价关系, 由此我们引入:

(6) $g_1 \sim g_2 \iff g_1^{-1} * g_2 \in H$.

例 0.12: 群 (\mathbb{Z} , -), 可分为两个子群: (\mathbb{E} , -) 和 (\mathbb{O} , -), 其中 $\mathbb{E} \cap \mathbb{O} = \emptyset$, 故由这两个子群可得 \mathbb{Z} 的一个剖分, 这两个子群中的元素各存在等价关系: $n \sim m \iff n - m \in \mathbb{E}$.

定义 0.28 商群: H 为 G 的正规子群, $\frac{G}{H} = \{[g] \equiv gH \mid g \in G\}$.

问题 $0.1: \frac{G}{H}$ 与 G 和 H 是否或在何种条件下具有相同的代数结构?

答: $\frac{G}{H}$ 与 G 和 H 具有相同的代数结构, 即 $\forall [g_1], [g_2] \in \frac{G}{H}, [g_1] * [g_2] = [g_1 * g_2] \in \frac{G}{H},$

即存在映射 $\frac{G}{H} * \frac{G}{H} \to \frac{G}{H}, ([g_1], [g_2]) \mapsto [g_1, g_2]),$

即若 $g_1 \sim g_1', g_2 \sim g_2', 则 g_1 * g_2 \sim g_1' * g_2',$

即若 $g_1H = g_1'H$, $g_2H = g_2'H$, 则 $(g_1 * g_2)H = (g_1' * g_2')H$.

 $g_1H = g_1'H, \quad \exists h_1, h_1' \in H, \text{ s.t. } g_1h_1 = g_1'h_1' \iff g_1 = g_1' * h_1' * h_1^{-1},$

 $g_2H = g_2'H$, $\exists h_2, h_2' \in H$, s.t. $g_2h_2 = g_2'h_2' \iff g_2 = g_2' * h_1' * h_2^{-1}$,

从而 $g_1 * g_2 = g_1' * h_1' * h_1^{-1} * g_2' * h_2' * h_2^{-1}$,

若 $\exists h' \in H$, s.t. $(h'_1 * h_1^{-1}) * g'_2 = g'_2 * h'$, 则 $g_1 * g_2 = g'_1 * g'_2 * h' * h'_2 * h_2^{-1} \equiv g'_1 * g'_2 * h$,

 $\implies (g_1 * g_2)H = (g'_1 * g'_2 * h)H = (g'_1 * g'_2)H.$

故当 gH = Hg 时, $\frac{G}{H}$ 与 G 和 H 具有相同的代数结构.

定理 0.11 正规子群: 若 gH = Hg, 则 $\frac{G}{H}$ 与 G 和 H 具有相同的代数结构, 此时称 H 为 G 的正规子群.

定理 0.12: 交换群的任意一个子群为正规子群.

例 0.13: $(\mathbb{Z}, +)$ 的子群均为循环群, $\langle m \rangle \equiv \{mn \mid n \in \mathbb{Z}\}, \mathbb{Z}_n \equiv \frac{\mathbb{Z}}{\langle n \rangle}, \mathbb{Z}_m$ 有 m 个等价类: $\mathbb{Z}_m = \bigcap_{i=0}^{m-1} [i]$.

定义 0.29 <u>群同态</u>: 对群 $(G_1,*)$ 和 (G_2,\circ) , 若映射 $f:G_1\to G_2$ 满足 $f(a*b)=f(a)\circ f(b)$ (即映射后保持代数结构), 则称 f 为 G_1 到 G_2 的**群同态**.

(类似于集合间的映射)

定义 0.30 单同态: 单射的群同态.

定义 0.31 满同态: 满射的群同态.

定义 0.32 同构: 双射的群同态.

定理 **0.13**: f 为 G_1 到 G_2 的群同态, e_1 和 e_2 分别是 G_1 和 G_2 的单位元, 则 $f(e_1) = e_2$.

定理 0.14: f 为 G_1 到 G_2 的群同态, $f(a^{-1}) = [f(a)]^{-1}$.

$$i \mathbb{E} : e_2 = f(e_1) = f(a * a^{-1}) = f(a) \circ f(a^{-1}) \Longrightarrow f(a^{-1}) = [f(a)]^{-1}.$$

定义 0.33 群同态的核(Kernel): 单位元的原像. f 为 G_1 到 G_2 的群同态, e_1 和 e_2 分别是 G_1 和 G_2 的单位元, 则称 $\ker f \equiv f^{-1}(e_2) = \{a \in G_1 \mid f(a) = e_2\}$ 为 f 的核.

 $:: e_1 \in \ker f, :: \ker f \neq \emptyset.$

 $\ker f \subseteq G_1$.

证: $\forall a, b \in \ker f, \ f(a * b^{-1}) = f(a) \circ f(b) = f(a) \circ [f(b)]^{-1} = e_2 * e_2^{-1} = e_2 \Longrightarrow a * b^{-1} \in \ker f, \ \text{故 } \ker f \subseteq G_1.$

定义 0.34 群同态的像: f 为 G_1 到 G_2 的群同态, 则称 $\text{Im } f \equiv f(G_1) = \{f(a) \mid a \in G_1\}$ 为 f 的像.

 $\operatorname{Im} f \in G_2$.

定理 **0.15:** f 单同态 \iff ker $f = \{e_1\}$.

iE: " \Longrightarrow ": $\forall a, b \in \ker f, f(a) = f(b) = e_2,$

又 :: f 单同态, :: a = b = e.

"⇒": 若
$$f(a) = f(b)$$
, 则 $f(a) \circ [f(b)]^{-1} = e_2$

- $\implies f(a) \circ f(b^{-1}) = e_2$
- $\implies f(a * b^{-1}) = e_2$
- $\implies a * b^{-1} \in \ker f = \{e_1\}$
- $\implies a = b = e_1$, 故 f 单同态.

0.6. 环

0.6 环

定义 0.35 环: 若 $(R, +, \cdot)$ 满足

(R,+) 为交换群 (单位元记作 0)

- (2) 结合律: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (3) 左分配律: $a \cdot (b+c) = a \cdot b + a \cdot c$, 右分配律: $(a+b) \cdot c = a \cdot c + b \cdot c$

则称 $(R,+,\cdot)$ 为环.

例 0.14: $(\mathbb{Z}, +, \times)$ 为环.

0.11. (23, 1, 1, 1, 1)

(1) $0 \cdot a = a \cdot 0 = 0$.

常用结论:

$$i \exists : a \cdot 0 = 0 \cdot a = (0+0) \cdot a = 0 * a + 0 * a = 0 * a + a * 0 \Longrightarrow 0 \times a = a \cdot 0 = 0.$$

(2) $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$.

$$\mathbf{iE:} (-a) \cdot b + a \cdot b = [a + (-a)] \cdot b = 0 \cdot b = 0 \Longrightarrow (-a) \cdot b = -(a \cdot b).$$

$$a \cdot (-b) + a \cdot b = a \cdot [b + (-b)] = a \cdot 0 = 0 \Longrightarrow a \cdot (-b) = -(a \cdot b).$$

(3) $\left(\sum_{i} a_{i}\right) \cdot \left(\sum_{j} b_{j}\right) = \sum_{i,j} a_{i} \cdot b_{j}.$

证:由左右分配律即得证.

特殊的环:

(1)

定义 0.36 交换环: 若 $\forall a, b \in R, a \cdot b = b \cdot a$, 则称 R 为交换环.

(2)

定义 0.37 <u>有单位元的环</u>: 若 $\exists 1 \in R$, s.t. $\forall a \in R$, $1 \cdot a = a \cdot 1 = a$, 则称 R 为有单位元的环, 称 1 为 R 的单位元.

例 0.15: $(\mathbb{Z}, +, \cdot)$ 交换且有单位元.

例 0.16: $(M_{n\times n}, +, \times)^{-1}$ 非交换, 有单位元 $I_{n\times n}$.

例 0.17: (E, +, ×) 交换, 无单位元.

定义 0.38 零因子: $0 \neq a \in R$, 若 $\exists 0 \neq b \in R$, s.t. $a \cdot b = 0$ 或 $b \cdot a = 0$, 则称 a 为 R 的零因子.

 $^{{}^{1}}M_{n\times m} \equiv \{(a_{i,j})_{m\times n} \mid a_{i,j} \in \mathbb{R}\}.$

0. 代数学基础 0.6. 环

定义 0.39 整环: 有单位元, 交换, 无零因子的环.

定义 0.40 子环: 非空真子集 $\emptyset \neq R_1 \subseteq R$, 若 $(R_1, +, \cdot)$ 亦为环, 则称 R_1 为 R 的子环.

 $:: (R_1, +)$ 为交换群, $:: (R_1, +) < (R, +)$.

定理 0.16 子环的判定: R_1 为 R 的子环 $\iff \forall a,b \in R_1, a-b \in R_1, a \cdot b \in R_1$.

定理 0.17: R 为有单位元的交换环, 则 R 为整环 $\iff \forall 0 \neq r \in R, a,b \in R$, 若 $r \cdot a = r \cdot b$, 则必有 a = b.

 $\mathbf{i}\mathbf{E}$: " \Longrightarrow ": $r \cdot a = r \cdot b \iff r \cdot (a - b) = r \cdot a - r \cdot b = r \cdot b - r \cdot b = 0$,

 $: r \neq 0$ 且 R 为整环 (无零因子), $: a - b = 0 \Longrightarrow a = b$.

"←": 假设 R 有零因子, $r_0 \cdot a_0 = 0$, 则令 $r = r_0$, $\forall a, b \in R$, 若 $r \cdot a = r \cdot b = 0$, 则 a - b = 0 或 $a - b = a_0 + a_0, \dots$, 矛盾, 故假设错误, R 无零因子.

又 : R 为有单位元的交换环, : R 为整环.

定义 0.41 理想: 非空子集 $I \subseteq R$, 若 $\forall a, b \in I$, $r \in R$, $a - b \in I$, $r \cdot a \in I$, $a \cdot r \in I$, 则称 I 为 R 的理想.

定义 0.42 平凡理想: $(\{0\}, +, \cdot)$ 和 $(R, +, \cdot)$ 为 $(R, +, \cdot)$ 的平凡理想.

定义 0.43 单环: 只有平凡理想的环.

定理 0.18: 任意多个理想的交为理想.

证: $: 0 \in \cap_{i \in K} I_i, \cap_{i \in K} I_i = \emptyset.$

 $\forall a, b \in \cap_{i \in K} I_i, \therefore \forall a, b, \forall k \in K, a, b \in I_k,$

 $X : \forall k \in K, (I_k, +) < (R, +), : \forall k \in K, a - b \in I_k \Longrightarrow a - b \in \cap_{i \in K} I_i.$

综上, $\bigcap_{i \in K} I_k$ 为 R 的理想.

定理 0.19: 若 $I_1 \subseteq I_2 \subseteq \cdots$ 是 R 中理想的升链, 则 $\cup_i I_i$ 是 R 的理想.

定义 0.44 生成理想: R 为交换环, 非空子集 $\emptyset \neq S \in R$, 由 S 生成的理想是 R 中包含 S 的最小理想, 即 R 中包含 S 的所有理想的交, 记作 $\langle S \rangle$.

证: 假设 I_0 是 R 中包含 S 的最小理想, $J = \{I_k \mid k \in K\}$ 是 R 中包含 S 的所有理想的集合.

显然 $I_0 \in J$, 故 $\cap_k I_k \subseteq I_0$.

 $:: \cap_{i \in K} I_k$ 为理想, 又 $:: I_0$ 为最小的理想, $:: |I_0| \leq |\cap_k I_k|$.

综上, 必有 $I_0 = \cap_k I_k$.

0. 代数学基础 0.6. 环

- 由某个元素 a 生成的理想: $\langle a \rangle = \{r \cdot a \mid r \in R\}$.
- 由多个元素 $\{a_1, \dots, a_n\}$ 生成的理想: $\langle a_1, \dots, a_n \rangle = \{\sum_{i=1}^n r_i a_i \mid r_i \in R\}$.
- 由集合 S 生成的理想: $\langle S \rangle = \{ \sum_{i=1}^{m} \mid r_i \in R, a_i \in S, m \in \mathbb{Z}^+ \}.$

可用理想得等价关系: $I \in R$ 的理想, 则 $r_1 \sim r_2 \iff r_1 - r_2 \in \mathbb{I}$, 从而得到等价关系: $[a] = a + I = \{a + r \mid r \in I\}$.

定义 **0.45** 商环: $\frac{R}{2} \equiv \{[a] \mid a \in R\}.$

 $([a],[b]) \mapsto [a+b]$ 和 $([a],[b]) \mapsto [a \cdot b]$ 都是运算.

证: 要证 $([a],[b]) \mapsto [a+b]$ 和 $([a],[b]) \mapsto [a \cdot b]$ 都是运算,即证这些映射与代表元无关,

即证 $a \sim a', b \sim b', [a'] + [b'] = [a+b], [a'] \cdot [b'] = [a \cdot b].$

 $\therefore a \sim a', \ b \sim b', \ \therefore a - a' \in I, \ b - b' \in I \Longrightarrow a + b - (a' + b') = (a - a') + (b - b') \in I$

 $\implies a+b \sim a'+b'$, 故 ([a,b]) \mapsto [a+b] 与代表无关, 是运算.

 $\therefore a \sim a', b \sim b', \therefore a - a' \in I, b - b' \in I,$

设 $a - a' \equiv h_1 \in I$, $b - b' \equiv h_2 \in I$, 则 $a' \cdot b' = (a + h_1) \cdot (b + h_2) = a' \cdot b' + a' \cdot h_2 + h_1 \cdot b' + h_1 \cdot h_2$,

其中 $: h_1, h_2 \in I \Longrightarrow h_1 \cdot h_2 \in I$, 而由理想的定义, $a' \cdot h \in I$, $h_1 \cdot b' \in I$,

定义 0.46 <u>环同态</u>: $(R_1, +, *)$ 和 $(R_2, +, \cdot)$ 为环, 映射 $f: R_1 \to R_2$ 满足

- (1) f(a+b) = f(a) + f(b)
- (2) $f(a \cdot b) = f(a) \cdot f(b)$

则称 f 为 R_1 到 R_2 的环同态.

由环同态的定义, f 必为 $(R_1, +)$ 到 $(R_2, +)$ 的群同态, 故 f(0) = 0, $f(a^{-1}) = [f(a)]^{-1}$.

定义 **0.47** 核: $\ker f \equiv \{a \in R_1 \mid f(a) = 0\}.$

定义 0.48 像: Im $f \equiv \{f(a) \mid a \in R_1\}$.

 $\operatorname{Im} f \subseteq R_2$.

定理 0.20: ker f 为理想.

 $\text{iII: } \forall a,b \in \ker f, \ r \in R_1, \ f(a-b) = f(a+(-b)) = f(a) + f(-b) = f(a) - f(b) = 0 - 0 = 0 \Longrightarrow a-b \in \ker f.$ $f(r \cdot a) = f(r) \cdot f(a) = f(r) \cdot 0 = 0 \Longrightarrow r \cdot a \in I,$

同理 $a \cdot r \in I$.

综上, $\ker f$ 为 R_1 的理想.

0. 代数学基础 0.7. 域

定义 0.49 单同态: 单射的环同态.

单同态 \iff ker $f = \{0\}$.

定义 0.50 满同态:满射的环同态.

满同态 \iff Im $f = R_2$.

定义 0.51 同构: 双射的环同态.

定义 0.52 典范同态: I 为 R 的理想, $\pi: R \to \frac{R}{I}$, $a \mapsto [a]$ 称为典范同态.

典范同态是满同态.

例 0.18: $(\mathbb{Z}, +, \cdot)$ 为环.

- $\langle 2 \rangle = \mathbb{O} \equiv \{2n \mid n \in \mathbb{Z}\}.$
- $\langle 3 \rangle \equiv \{3n \mid n \in \mathbb{Z}\}.$
- $\langle 2, 3 \rangle \equiv \{2n + 3m \mid n, m \in Z\} = \mathbb{Z}. \ \langle 1 \rangle \equiv \mathbb{Z}.$
- \mathbb{Z} 的任何理想均由一个数生成. 更准确地说, 若 I 为 \mathbb{Z} 的理想, 则 $I = \langle n \rangle$, 其中 n 为 I 中最小的正整数.

(此处其实用到了这样一个定理:任何一个由自然数组成的集合均存在最小正整数.)

证: 若 $p \in \mathbb{Z}$, $p \in \langle n \rangle$, 我们无妨假设 p > n, 设 p = kn + r, 其中 $0 \le r < n$. 若 $r \ne 0$, 则 $r = p - kn \in I$, 但 $0 \le r < n$ 而 n 为 $\langle n \rangle$ 中最小的正整数矛盾, 故 r = 0, p = kn.

定义 0.53 <u>剩余类环</u>: $\mathbb{Z}_n \equiv \frac{\mathbb{Z}}{\langle n \rangle} = \{[0], [1], \cdots, [n-1]\}.$

例 0.19: $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}, [2] \cdot [3] = [6] = [0], 故 \mathbb{Z}_6$ 有零因子.

0.7 域

定义 0.54 域: 若 $(F, +, \cdot)$ 满足

(F,+) 为交换群 (单位元记作 0)

- (2) (F^*, \cdot) 为交换群 (单位元记作 1), 其中 $F^* = F \{0\}$
- (3) 左分配律: $a \cdot (b+c) = a \cdot b + a \cdot c$, 右分配律: $(a+b) \cdot c = a \cdot c + b \cdot c$

则称 $(F, +, \cdot)$ 为域.

由于有 0 和 1 这两个元素, $|F| \ge 2$. 当 |F| = 2 时, $F = \{0,1\} \cong \mathbb{Z}_2 = \frac{\mathbb{Z}}{(2)}$.

例 0.20: \mathbb{Z}_2 是最小的有限域. \mathbb{Q} 为最小的无限域.

0. 代数学基础 0.7. 域

定义 0.55 <u>有理数:</u> $\mathbb{Q} = \left\{ \frac{m}{n} \mid n \neq 0, n, m \in \mathbb{Z} \right\}, \ \mathbb{P} \ \forall q \in \mathbb{Q}, \ \exists m, n \in \mathbb{Z}, \ n \neq 0, \ q = \frac{m}{n}.$

定义 0.56 域的特征: $\operatorname{char} F \equiv$ 使得 $n \cdot 1 = \underbrace{1 + 1 + \dots + 1}_{n \cdot n \cdot n \cdot n} = 0$ 的最小正整数.

例 0.21:
$$\operatorname{char} \mathbb{Z}_2 = 2$$
, $\operatorname{char} \mathbb{Q} = 0$.

 $p = \operatorname{char} F$ 必为质数, 否则 $\exists m, n < p$, s.t. $0 = p \cdot 1 = (n \cdot m) \cdot 1 = (m \cdot 1) \cdot (n \cdot 1) \Longrightarrow n \cdot 1 = 0$ 或 $m \cdot 1 = 0$ 与 域的特征的定义矛盾.

当 p 为质数且 $\operatorname{char} \mathbb{Z}_p = p$ 时, \mathbb{Z}_p 为域.

定义 0.57 域同态: $(F_1, +, \cdot)$ 和 $(F_2, +, \cdot)$ 为域, 映射 $f: F_1 \to F_2$ 满足

- (1) f(a+b) = f(a) + f(b)
- (2) $f(a \cdot b) = f(a) \cdot f(b)$

则称 f 为 F_1 到 F_2 的域同态.

域同态的性质:

- (1) f(0) = 0.
- (2) $f(1) = 1 \ \vec{x} \ 0$.

证:
$$f(1) = f(1 \cdot 1) = f(1) \cdot f(1) \Longrightarrow f(1) - f(1) \cdot f(1) = 0 \Longrightarrow f(1) = 0$$
 或 1.

- (3) <math><math>f(1) = 0, <math><math><math>f(r) = f(r \cdot 1) = f(r) \cdot f(1) = f(r) \cdot 0 = 0.
- (4) 若 f(1) = 1, 则 ker $f = \{0\}$, 此时 f 单射.

证:
$$\forall r \in F^*, r^{-1} \in F^*, 1 = f(1) = f(r \cdot r^{-1}) = f(r) \cdot f(r^{-1}) \Longrightarrow f(r) \neq 0, f(r^{-1}) \neq 0, \text{ tx } \forall r \neq 0, f(r) \neq 0, \text{ ker } f = \{0\}.$$

Chapter 1

向量空间

定义 1.1 <u>向量空间</u>: 交换群 (V,+) 和域 F, 数乘映射 $\alpha: F \times V \to V$, 若满足 $\alpha(r,u+v) = \alpha(r,u) + \alpha(r,v)$ (可简写为 r(u+v) = ru + rv)

- (2) $\alpha(r+t,u) = \alpha(r,u) + \alpha(t,u)$ (可简写为 (r+t)u = ru + tu)
- (3) $\alpha(r \cdot t, u) = \alpha(r, \alpha(t, u))$ (可简写为 (rt)u = r(tu))
- (4) **有单位元**: $\exists 1 \in F$, s.t. $\alpha(1, u) = u$ (可简写为 1u = u)

则称 $V \neq F$ 上的向量空间.

例 1.1 <u>直角坐标系</u>: $(\mathbb{R},+,\cdot)$ 为域, $(\mathbb{R}^2 \equiv \{(x,y) \mid x,y \in \mathbb{R}\},+)$ 为交换群, 满足

- $(1) \ r((x_1, y_1) + (x_2, y_2)) = r(x_1 + x_2, y_1 + y_2) = (rx_1 + rx_2, ry_1 + ry_2) = (rx_1, ry_1) + (rx_2, ry_2) = r(x_1, y_1) + r(x_2, y_2)$
- (2) (r+t)(x,y) = ((r+t)x,(r+t)y) = (rx+tx,ry+ty) = (rx,ry)+(tx,ty) = r(x,y)+t(x,y)
- (3) $(r \cdot t)(x, y) = (rtx, rty) = r(tx, ty) = r(t(x, y))$
- (4) 1(x,y) = (x,y)

故 \mathbb{R}^2 为 \mathbb{R} 上的向量空间.

0v = 0. (注意两个 0 的区别, 等号左边的 0 为域 F 中的零元, 等号右边的 0 为 V 中的零向量.)

 $i\mathbf{E}: 0v = (0+0)v = 0v + 0v \Longrightarrow 0v = 0.$

 $r \in F, \ 0 \in V, \ \text{M} \ r0 = 0.$

 $\mathbf{i}\mathbf{E} : r0 = r(0+0) = r0 + r0 \Longrightarrow r0 = 0.$

-1v = -v.

 $\mathbf{\overline{u}} : -1v = -(1v) = -v.$

例 1.2: \mathbb{R}^2 为 \mathbb{R} 上的向量空间.

 \mathbb{R}^2 为 \mathbb{O} 上的向量空间.

: 对 $c \in \mathbb{C}$, $v \in \mathbb{R}^2$, $cv \notin \mathbb{R}^2$, $: \mathbb{R}^2$ 不是 \mathbb{C} 上的向量空间.

例 1.3: $F^n \equiv \{(r_1, \dots, r_n) \mid r_i \in F\}$, 满足 $(r_1, \dots, r_n) + (l_1, \dots, l_n) = (r_1 + l_1, \dots, r_n + l_n)$, $r(r_1, \dots, r_n) = (rr_1, \dots, rr_n)$. F^n 为 F 上的向量空间. \Box 证: \cdots $r((r_1, \dots, r_n) + (l_1, \dots, l_n)) = r(r_1 + l_1, \dots, r_n + l_n) = (rr_1 + rl_1, \dots, rr_n + rl_n) = (rr_1, \dots, rr_n) + rl_n$

 $(rl_1,\cdots,rl_n)=r(r_1,\cdots,r_n)+r(l_1,\cdots,l_n),$

 $\exists (r+t)(r_1, \dots, r_n) = ((r+t)r_1, \dots, (r+t)r_n) = (rr_1 + tr_1, \dots, rr_n + tr_n) = (rr_1, \dots, rr_n) + (tr_1, \dots, tr_n) = r(r_1, \dots, r_n) + t(r_1, \dots, r_n),$

 $\exists \ (r \cdot t)(r_1, \cdots, r_n) = (rtr_1, \cdots, rtr_n) = r(tr_1, \cdots, tr_n) = r(t(r_1, \cdots, r_n)),$

 $\therefore F^n$ 为 F 上的向量空间.

定义 1.2 <u>子空间</u>: $\emptyset \neq S \subseteq V$, 若 S 为 V 的子群, 且在相同的数乘下构成 F 上的向量空间, 则称 S 是 V 的子空间.

定理 1.1 <u>子空间的判定(课本定理1.1)</u>: S 为 V 的子空间 $\iff \forall a,b \in S, r,t \in F, ra+tb \in S$ (即线性运算封闭).

证: " \Longrightarrow ": $ra \in S$, $-tb \in S$, 又 :: S 为 V 的子群, $ra - (-tb) \in S$.

"⇒": \diamondsuit r = 1, t = -1, f $a - b \in S$ \Longrightarrow S < V.

令 t = 0, 有 $ra \in S$, 故 S 为 V 的子空间.

综上, 得证.

子空间的交是子空间.

证: 设 S_1, \dots, S_n 为 V 的子空间, 则 S_1, \dots, S_n 为 V 的子群 $\Longrightarrow \bigcap_{i=1}^n S_i$ 为 V 的子群.

 $\forall u, v \in \bigcap_{i=1}^{n} S_i, \forall k, u, v \in S_k \Longrightarrow u, v$ 满足与 F 中向量相同的数乘映射.

综上, 得证.

S,T 是 V 的子空间, $S+V \equiv \{u+v \mid u \in S, v \in T\}$ 为 V 的子空间.

 $i \mathbb{E}: \forall w_1, w_2 \in S + T, r, t \in F,$

 $w_1 \in S + T \Longrightarrow w_1 = u_1 + v_1, u_1 \in S, v_1 \in T,$

 $w_2 \in S + T \Longrightarrow w_2 = u_2 + v_2, u_2 \in S, v_2 \in T.$

 $rw_1 + tw_2 = r(u_1 + v_1) + t(u_2 + v_2) = (ru_1 + tu_2) + (rv_1 + tv_2),$ 其中 $ru_1 + tu_2 \in S, rv_1 + tv_2 \in T \Longrightarrow rw_1 + tw_2 \in S + T,$ 故 S + T 为 V 的子空间.

定义 1.3 生成子空间和生成集: $\emptyset \neq S \subseteq V$, S 的生成子空间为 $\langle S \rangle \equiv$ 包含 S 的最小子空间 = $\{\sum_{i=1}^n r_i u_i \mid r_i \in F, u_i \in S, r_i \in S\}$ 其中称 S 为生成集.

例 1.4: 向量空间 \mathbb{R}^2 ,

 $S_x = \langle \{(1,0)\} \rangle = \{(x,0) \mid x \in \mathbb{R}\} = x \ \text{in},$

 $S_y = \langle \{(0,1)\} \rangle = \{(0,y) \mid y \in \mathbb{R}\} = y \text{ in},$

 $\langle \{(1,0),(0,1)\} \rangle = \langle \{(1,1),(1,-1)\} \rangle = \mathbb{R}^2$, 故对同一生成子空间, 生成集不唯一.

定义 1.4 <u>线性无关</u>: 非零元 u_1, \dots, u_m , 若 $r_1u_1 + \dots + r_mu_m = 0 \Longrightarrow r_1 = \dots = r_m = 0$, 则称 u_1, \dots, u_m 线性无关.

若 S 中任意有限个元素线性无关,则称 S 线性无关.

例 1.5: (1,0) 与 (0,1) 线性无关.

i.e.:
$$r_1(1,0) + r_2(0,1) = (r_1, r_2) = 0 = (0,0) \Longrightarrow r_1 = 0, r_2 = 0.$$

例 1.6: \mathbb{R}^2 上线性无关, 即两非零元夹角非零.

单个非零元 v 线性无关.

证: rv = 0 且 $v \neq 0 \Longrightarrow r = 0$, 故 v 线性无关.

定义 1.5 <u>线性相关</u>: u_1, \dots, u_m , 若 \exists 不全为零的 r_1, \dots, r_m , s.t. $r_1u_1 + \dots + r_mu_m = 0$, 则称 u_1, \dots, u_m 线性相关.

若 u,v 线性相关,则两者共线.

证: $\exists r, t$ 不全为零, s.t. ru + tv = 0, 无妨设 $0 \neq r \in F$, 则 $ru = -tv \Longrightarrow r^{-1}ru = -r^{-1}tv \Longrightarrow u = -\frac{u}{r}v$

定义 1.6 线性表示: v 可由 u_1, \dots, u_n 线性表示 $\iff \exists r_1, \dots, r_n \in F$, s.t. $v = \sum_{i=1}^n r_i u_i$.

定理 1.2 (课本定理1.6): S 线性无关 \iff $\langle S \rangle$ 中的每个向量可由 S 中元素唯一地线性表示 \iff S 中任一向量不能由 S 中其余向量线性表示.

证: 设 $S = \{u_1, \dots, u_m\}.$

第一个 "⇒": $v \in \langle S \rangle$,则 v 可由 S 中的元素线性表示,即 $\exists r_1, \cdots, r_m$,s.t. $v = r_1 u_1 + \cdots + r_m u_m$. 要证这种线性表示是唯一的,假设 v 的另一种线性表示为 $v = r'_1 u_1 + \cdots + r'_m u_m$. $v - v = (r_1 - r'_1)u_1 + \cdots + (r_m - r'_m)u_m = 0$,又 :: S 线性无关,即 u_1, \cdots, u_m 线性无关, $:: r'_1 = r_1, r'_m = r_m$,故两种线性表示相同.

第一个 " \longleftarrow ": $0 \in \langle S \rangle$, 由于 $0u_1 + \cdots + 0u_m =$ 是且是 0 唯一的线性表示, 故 S 线性无关.

第二个 " \Longrightarrow ": 不妨假设 u_1 可由 u_2, \dots, u_m 线性表示, 即 $u_1 = t_2 u_2 + \dots + t_m u_m$.

若 $r_1u_1 + \cdots + r_mu_m = 0$, 则 $r_1 = \cdots = r_m = 0$ 或 $r_1 \neq 0$, $r_2 = -r_1t_2$, \cdots , $r_m = -r_mt_m$, 从而 S 线性相关, 故假设错误, u_1 不可由 u_2, \cdots, u_m 线性表示.

第二个 "←": 假设 S 线性相关, 则 \exists 非零 r_1, \dots, r_m , s.t. $r_1u_1 + \dots + r_mu_m = 0$, 不妨设 r_1 非零, 则 $u_1 = -\frac{r_2}{r_1}u_2 - \dots - \frac{r_m}{r_1}u_m$, 即 u_1 可由 S 中其余向量线性表示, 矛盾, 故假设错误, S 线性无关.

定理 1.3 (课本定理1.7): $\emptyset \neq S \subseteq V$, 下列等价:

- (1) S 线性无关, 且 $V = \langle S \rangle$.
- (2) ∀ $v \in V$, 可用 S 中元素唯一地线性表示.
- (3) $S \in V$ 的极小生成集 (即 S 去除任意元素都无法生成 V, 或 S 的任意真子集都无法生成 V).

(4) $S \neq V$ 的极大线性无关集 (即 S 增加任意元素都线性相关, $\forall u \in V \perp L$ $u \notin S$, $S \cup \{u\}$ 线性相关).

证: 由定理 1.2 证得 (1)(2) 等价.

设 $S = \{u_1, \cdots, u_m\}.$

- (1) ⇒ (3): 假设 $\exists S' \subsetneq S$, s.t. $V = \langle S' \rangle$, 则 $\forall v \in S S' \subseteq V$, $v = \sum_{i=1}^{m} r_i u_i$, 其中 $r_i \in F$, $u_i \in S'$, $m \in \mathbb{N}$, 即 v 可由 S 中的部分向量线性表示, 与 S 线性无关矛盾, 故假设错误, S 是 V 的极小生成集.
 - $(3)\Longrightarrow(1)$: S 为 V 的生成集, 即 $V=\langle S\rangle$.

假设 S 线性相关, 即 $\exists r_1, \dots, r_m$ 不全为零, s.t. $\sum_{i=1}^m r_i u_i = 0$, 不妨设 $r_1 \neq 0$, 则 $u_1 = -\frac{r_2}{r_1} u_2 + \dots + \frac{r_m}{r_1} u_m$, 则 $S - \{u_1\}$ 仍可以生成 V, 矛盾, 故假设错误, S 线性无关.

- (1)⇒(4): 假设 S 不是极大线性无关集, 则 $\exists v \in V S$, s.t. $S \cup \{v\}$ 线性无关.
- 又 :: $V = \langle S \rangle$, :: $v = \sum_{i=1}^{m} r_i u_i$, 其中 $r_i \in F$, $u_i \in S$, $m \in \mathbb{N}$, 即线性无关集 $S \cup \{v\}$ 中的向量 v 可由其中的部分向量线性表示, 与 $S \supset$ 线性无关矛盾, 故假设错误, S 是极大线性无关集.
 - $(4)\Longrightarrow(1)$: $:S \in V$ 的极大线性无关集, :S 线性无关.

假设 $V \neq \langle S \rangle$, $\exists v \in V - S$, s.t. v 无法由 S 中的元素线性表示 $\Longrightarrow S \cup \{v\}$ 为线性无关集, 与 S 为最大线性无关集矛盾, 故假设错误, $V = \langle S \rangle$.

综上, 得证.

定义 1.7 基: 任何生成向量空间 V 的线性无关集. 基的阶数称为 V 的维数, 记作 $\dim V$.

定理 1.4 (课本定理1.12): 向量空间的任何基都有相同的阶, 即 $\dim V$ 不依赖于基的选取.

例 1.7:
$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$
 为 F^n 的一组基.

证: $r_1e_1 + \cdots + r_ne_n = (r_1, \cdots, r_n) = 0 \Longrightarrow r_1 = \cdots = r_n = 0$, 故 e_1, \cdots, e_n 线性无关.

又
$$\langle \{e_1, \dots, e_n\} \rangle = \{r_1e_1 + \dots + r_ne_n = (r_1, \dots, r_n) \mid r_i \in F, \ \forall i = 1, \dots, n\} = F,$$
故得证.

找基的方法:

- (1) 若 $0 \neq u_1 \in V$, 则 $\{u_1\}$ 线性无关.
- (2) 若 $u_2 \in V \langle u_1 \rangle$ 且 u_2 与 u_1 线性无关,则 $\{u_1, u_2\}$ 线性无关.
- (3) 重复以上操作, 直至无法找到新的线性无关元素, 即得到极大线性无关集, 此即向量空间的基.

定理 1.5 (课本定理1.9): 线性无关集 $I \subseteq V$, $S \subseteq V$ 是 V 的生成集, 且 $I \subseteq S$, 则 $\exists V$ 的基 \mathcal{B} , s.t. $I \subseteq \mathcal{B} \subseteq S$.

定义 1.8 直和: (1) **外直和**: 若 V_1, \dots, V_n 是 F 上的向量空间, $V_1 \oplus \dots \oplus V_n \equiv \{(v_1, \dots, v_n) \mid v_i \in V_i\}$, 满足

$$-(v_1, \dots, v_n) + (u_1, \dots, u_n) = (v_1 + u_1, \dots, v_n + u_n)$$

$$-r(v_1,\cdots,v_n)=(rv_1,\cdots,rv_n)$$

则 $V_1 \oplus \cdots \oplus V_n$ 为 F 的向量空间, $V_1 \oplus \cdots \oplus V_n$ 为 V_1, \cdots, V_n 的外直和.

(2) **内直和**: $V \in F$ 上的向量空间, $V_1, \dots, V_n \in V$ 的子空间, 若 $V = \sum_{i=1}^n V_i$, 其中 $v_i \in V_i$ 且 $V_i \cap (\bigcup_{j \neq i} V_j) =$

 $\{0\}$, 则称 V 为 V_1, \dots, V_m 的内直和, 记作 $V = \bigoplus_{i=1}^n V_i$, 称 V_i 为直和项.

内/外直和的关系: $V=V_1\oplus\cdots\oplus V_n,\ V_1'=\{(v_1,0,\cdots,0)\mid v_i\in V_i\},\ \cdots,\ V_m'=\{(0,0,\cdots,v_m)\mid v_m\in V_m\}$ 是 V 的子空间, 则 $V = \bigoplus_{i=1}^n V_i$ 且 $V_i' \cap (\cup_{j \neq i} V_j) = \{0\} \Longrightarrow V_i = \bigoplus_{i=1}^m V_i'$, 故内/外直和是等价的, 以下我们不明确区 分内/外直和, 均用内直和.

例 1.8: $\mathbb{R}^2 = S_x \oplus S_y$.

定理 1.6 (课本定理1.5): $\{V_i \mid i \in J\}$ 是 V 的子空间集合, $V = \sum_{i \in J} V_i$, 则下列等价:

- (1) $V = \bigoplus_{i \in J} V_i$.
- (2) $V_i \cap (\sum_{j \neq i} V_j) \neq \{0\}.$
- (3) $0 = 0 + \cdots + 0$ 是 0 的唯一分解式.
- (4) V 中任一向量 v 具有唯一分解式 $v = v_1 + \cdots + v_n$, 分解式中的有限个非零元 $v_i \in V_i$ 组成的集合成为支 集.

 $\overline{\mathbf{u}}$: (1) \Longleftrightarrow (2): 由直积的定义即得证.

(2) ⇒ (3): 假设 $0 = s_{i1} + \cdots + s_{in}$ 且 s_{ij} 不全为零, 不妨设 $s_{i1} \neq 0$, 则 $V_{i1} \ni s_{i1} = -s_{i2} - \cdots - s_{ij} \in \sum_{i=2}^{n} V_{ij}$ $\implies s_{i_1} \in V_{i_1} \cap (\bigcup_{i=2}^n V_{i_i}), s_{i_1} \neq 0 = 0 = 0$ 与 $V_{i_1} \cap (\bigcup_{i=2}^n V_{i_i}) = \{0\}$ 矛盾, 故假设错误, $0 = 0 + \dots + 0$ 是 0 的唯一分解式. $(3)\Longrightarrow (4): \forall v \in V, v = u_1 + \cdots + u_n, \not \sqsubseteq v \in V_i.$

假设 $v = w_1 + \cdots + w_m$, 其中 $w_i \in V_i$.

 $0 = v - v = u_1 + \dots + u_n - w_1 - \dots - w_n$,将属于相同子空间的元素合并到一起,得 $0 = (u_{t_1} - w_{t_1}) + \dots + (u_{t_k} - w_{t_k})$ $(w_{t_k}) + u_{t_{k+1}} + \dots + u_{t_n} - w_{t_{k+1}} - w_{t_m}$, 由 (2) 知 k = n = m 且 $v_{t_i} = u_{t_i}$, 故 v 具有唯一分解式 $v = v_1 + \dots + v_n$. (4) \Longrightarrow (2): 假设 $V_i \cap (\sum_{j \neq i} V_j) \neq \{0\}$, 则 $V_i \cap (\sum_{j \neq i} V_j) \supseteq \{0\}$, 即 $\exists 0 \neq u \in V_i \cap (\cup_{j \neq i} V_j)$,

不妨设 $u \in V_1$ 且 $u \in V_2$, 则 $v = v_1 + \dots + v_n = (v_1 + u) + (v_2 - u) + \dots + v_n$, 其中 $v_i \in V_i$ 且 $v_1 + u \in V_1, v_2 - u \in V_2$, v 的分解式不唯一, 矛盾, 故假设错误, $V_i \cap (\sum_{i \neq i} V_i) = \{0\}$.

综上, 得证.

定理 1.7 (课本定理1.8): $\mathcal{B} = \{v_1, \dots, v_n\}$ 是向量空间 V 的基 $\iff V = \langle v_1 \rangle \oplus \dots \oplus \langle v_n \rangle$.

证: "⇒": $::\mathcal{B}$ 为 V 的基, $::V=\langle\mathcal{B}\rangle=\langle v_1,\cdots,v_n\rangle=\{\sum_{i=1}^n r_iv_i\mid r_i\in F\}=\langle v_1\rangle+\cdots+\langle v_n\rangle.$

 $:: \mathcal{B}$ 为 V 的基, $:: v_1, \cdots, v_n$ 线性无关 $\Longrightarrow \forall 0 \neq u \in \langle v_i \rangle, \ u = r_i v_i$ 且无法由 $\{v_j \mid j \neq i\}$ 线性表示 $\Longrightarrow u \notin v_i$ $V_i \cap (\cup_{i \neq i} V_i),$

 $0 = 0v_i \in \langle v_i \rangle \perp 0 = \sum_{j \neq i} 0v_j \Longrightarrow 0 \in V_i \cap (\cup_{j \neq i} V_j)$

 $\Longrightarrow V_i \cap (\cup_{j \neq i} V_j) = \{0\}.$

故 $V = \langle v_1 \rangle \oplus \cdots \oplus \langle v_n \rangle$.

" \leftarrow ": 一方面, $V = \langle v_1 \rangle + \cdots + \langle v_n \rangle = \langle \mathcal{B} \rangle$;

另一方面, 假设 $\{v_1,\cdots,v_n\}$ 线性相关, 则 \exists 不全为零的 r_1,\cdots,r_n , s.t. $\sum_i r_i v_i = 0$,

不妨设 $r_i \neq 0$, 则 $r_i v_i = -\sum_{j \neq i} r_j v_j \Longrightarrow 0 \neq r_i v_i \in V_i$ 且 $r_i v_i = -\sum_{j \neq i} r_j v_j \in \cup_{j \neq i} V_j \Longrightarrow r_i v_i \in V_0 \cap (\cup_{j \neq i} V_j) \Longrightarrow$ $V_0 \cap (\bigcup_{j \neq i} V_j) \neq \{0\}$,与直和的定义矛盾,故假设错误, v_1, \dots, v_n 线性无关.

故 $\mathcal{B} = \{v_1, \cdots, v_n\}$ 是 V 的基. 定理 1.8 (课本定理1.4): S 为 V 的子空间, 则 $\exists V$ 的子空间 S^c , s.t. $V = S \oplus S^c$, 称 S^c 为 S 的补空间.

 \overline{U} : \mathcal{B}_1 为 S 的基, 则 \mathcal{B}_1 为 V 中的线性无关集,

 \mathcal{B}_1 总可以扩张为 (即添加一些元素) 成 V 的基, 即 $\exists \mathcal{B}_2$, s.t. $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性无关且 $V = \langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle \Longrightarrow V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$, 故 $S^c = \langle \mathcal{B} \rangle$.

例 1.9: $\mathbb{R}^2 = S_x \oplus S_y = S_l \oplus S_{l'}$, 其中 S_l 和 $S_{l'}$ 分别为过原点直线 l 和 l' 对应的子空间, l 与 l' 不共线. 补空间总存在, 但不唯一.

定理 1.9 (课本定理1.13): (1) $\mathcal{B} \in V$ 的基, 若 $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \perp \mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, 则 $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.

- (2) $V = S \oplus T$, 若 \mathcal{B}_1 是 S 的基, \mathcal{B}_2 是 T 的基, 则 $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, $\mathcal{B}_1 \cup \mathcal{B}_2$ 是 V 的基.
- 证: (1) :: \mathcal{B} 是 V 的基, :: $\forall u \in V$, $u = \sum_{i=1}^{k} r_i v_i$, 其中 $r_i \in F$, $v_i \in \mathcal{B}$, $k \in \mathbb{N}$. $\langle \mathcal{B}_1 \rangle = \{ \sum_{i=1}^{n} r_i v_i \mid r_i \in F, v_i \in \mathcal{B}_1, n \in \mathbb{N} \}, \langle \mathcal{B}_2 \rangle = \{ \sum_{i=1}^{n} r_i v_i \mid r_i \in F, v_i \in \mathcal{B}_2, n \in \mathbb{N} \}.$ $u = \sum_{i=1}^{t} r_i v_i + \sum_{i=t+1}^{k} r_i v_i, \text{ 其中 } v_1, \dots, v_t \in \mathcal{B}_1, v_{t+1}, \dots, v_k \in \mathcal{B}_2 \Longrightarrow V = \langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle.$

 $\forall u \in \langle \mathcal{B}_1 \rangle \cap \langle \mathcal{B}_2 \rangle, u \in \langle \mathcal{B}_1 \rangle \Longrightarrow u = \sum_{i=1}^n r_i v_i, \ \mbox{\sharp $\stackrel{}{=}$ } r_i \in F, \ v_i \in \mathcal{B}_1,$

且 $u \in \langle \mathcal{B}_2 \rangle \Longrightarrow u = \sum_{i=1}^n l_i w_i$, 其中 $l_i \in F$, $w_i \in \mathcal{B}_2$

 $\implies 0 = u - u = \sum r_i v_i - \sum l_i w_i,$

又 :: \mathcal{B} 为基, $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ 且 $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, :: r_i, w_i 线性无关 $\Longrightarrow r_i = l_i = 0$, $\forall i \Longrightarrow u = 0$.

综上, $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.

(2) $V = S \oplus T \iff V = S + T \perp S \cap T = \{0\}.$

假设 $v \in \mathcal{B}_1 \cap \mathcal{B}_2$, 则 $v \neq 0$, $\langle v \rangle = S \cap T$, 与 $S \cap T = \{0\}$ 矛盾, 故假设错误, $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$.

 $\therefore V = S + T, \therefore \forall u \in V, u = u_1 + u_2, \not \exists r u_1 \in S, u_2 \in T,$

 $\therefore \mathcal{B}_1$ 是 S 的基, \mathcal{B}_2 是 T 的基, $\therefore u_1 = \sum_{i=1}^k r_i v_i$, $u_2 = \sum_{i=k+1}^n$, 其中 $r_i \in F$, 对 $i = 1, \dots, k$, $v_i \in \mathcal{B}_1$, 对 $i = k+1, \dots, n$, $v_i \in \mathcal{B}_2$

 $\Longrightarrow u = \sum_{i=1}^m r_i v_i, \ \mbox{\sharp} \ \mbox{\downarrow} = r_i \in F, \ v_i \in \mathcal{B}_1 \cap \mathcal{B}_2, \ \mbox{\sharp} \ \ V = \langle \mathcal{B}_1 \cup \mathcal{B}_2 \rangle.$

假设 $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性相关,则 $\exists r_i \in F$ 不全为零, $\sum_{i=1}^n r_i v_i = \sum_{i=1}^k r_i v_i + \sum_{i=k+1}^n r_i v_i = 0$,其中 $r_i \in F$,对 $i = 1, \dots, k, v_i \in \mathcal{B}_1$,对 $i = k+1, \dots, n, v_i \in \mathcal{B}_2$,

 $:: \mathcal{B}_1 \to \mathcal{B}_2 \to \mathcal{B}_1 \to \mathcal{B}_2$ 线性无关 $\Longrightarrow \sum_{i=1}^k r_i v_i \neq 0, \sum_{i=k+1}^n r_i v_i \neq 0, \subseteq 0 + \cdots + 0 \neq 0$ 的唯一分解式矛盾, 故假设错误, $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性无关 $\Longrightarrow \mathcal{B}_1 \cup \mathcal{B}_2 \neq V$ 的基.

定理 1.10 (课本定理1.14): S,T 是 V 的子空间, $\dim S + \dim T = \dim(S \cap T) + \dim(S + T)$. 特别地, 若 T 是 S 的补空间, 则 $\dim S + \dim T = \dim(S \oplus T)$.

证: 设 $S \cap T$ 的基为 A,

- $:: S \cap T$ 为 S 的子空间, :: 可将 A 扩张成 S 的基 $A \cup B$,
- $:: S \cap T$ 为 T 的子空间, :: 可将 A 扩张成 T 的基 $A \cup C$.

接下来需要用到这样一个事实: $A \cup B \cup C$ 是 S + T 的基. 所以先来证明它:

24 / 75

1. 向量空间

证: $\forall w \in S + T, \ w = u + v, \ \mbox{其中} \ u \in S, \ v \in T \Longrightarrow u \in \langle \mathcal{A} \cup \mathcal{B} \rangle, \ v \in \langle \mathcal{A} + \mathcal{C} \rangle, \ \mbox{故} \ \langle \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \rangle = S + T.$ 不妨设 $\sum_{i=1}^n r_i v_i = 0, \ \mbox{其中} \ v_i \in \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}.$

设 $v_1, \dots, v_k \in A$, 则 $\sum_{i=1}^k r_i v_i + \sum_{i=k+1}^n r_i v_i = 0$,

又 : \mathcal{A} 和 $\mathcal{B} \cup \mathcal{C}$ 线性独立, 故 $\forall i, r_i = 0 \Longrightarrow \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ 线性无关.

综上,
$$A \cup B \cup C$$
 是 $S + T$ 的基.

故

$$\dim S + \dim T = |\mathcal{A} \cup \mathcal{B}| + |\mathcal{B} \cup \mathcal{C}| = |\mathcal{A}| + |\mathcal{B}| + |\mathcal{B}| + |\mathcal{C}| = |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + \dim(S \cap T) = \dim(S + T) + \dim(S \cap T).$$

25 / 75

Chapter 2

线性变换

2.1 线性变换

定义 2.1 <u>线性变换</u>: 向量空间之间的映射. F 为域, V, W 为 F 上的向量空间, 映射 $\tau : V \to W$, 若 $\tau(ru+tv) = r\tau(u) + t\tau(v)$, $r, t \in F$, $u, v \in V$, 则称 τ 为 V 到 W 的线性变换.

(类似于同态)

取 r = 1, t = 1, 则 $\tau(u + v) = \tau(u) + \tau(v)$, 故 $\tau \in V$ 到 W 的群同态, 从而 $\tau(0) = 0$, $\tau(-v) = -\tau(v)$. $\mathcal{L}(V, W) \equiv \{V \in V\}$ 到 W 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$ 的线性变换 $\{V, \mathcal{L}(V) = \mathcal{L}(V, V) = \{V \in V\}\}$

定义 2.2 单线性变换: 单射的线性变换.

定义 2.3 满线性变换: 满射的线性变换.

定义 2.4 同构: 双射的线性变换. 若两个向量空间 V, W 之间存在同构, 也称这两个向量空间同构, 记作 $V \approx W$.

取 $\tau, \sigma \in \mathcal{L}(V, W), v \stackrel{\tau}{\mapsto} \tau(v), v \stackrel{\sigma}{\mapsto} \sigma(v) \Longrightarrow v \stackrel{\tau+\sigma}{\mapsto} \tau(v) + \sigma(v)$ 也是线性变换, 且 $\tau + \sigma \in \mathcal{L}(V, W)$.

证: 由映射的像的唯一性, 若 v = u, 则 $\tau(v) = \tau(u)$, $\sigma(v) = \sigma(u) \Longrightarrow (\tau + \sigma)(v) = \tau(v) + \sigma(v) = \tau(u) + \sigma(u) + (\tau + \sigma)(u)$, 故 $\tau + \sigma$ 是映射.

 $(\tau + \sigma)(ru + tv) = \tau(ru + tv) + \sigma(ru + tv) = r\tau(u) + t\tau(v) + r\sigma(u) + t\sigma(v) = r[\tau(u) + \sigma(u)] + t[\tau(v) + \sigma(v)] = r[(\tau + \sigma)(u)] + t[(\tau + \sigma)(v)],$ 故 $\tau + \sigma$ 为 V 到 W 的线性变换.

由此定义了线性变换之间的加法.

 $(\mathcal{L}(V,W),+)$ 为交换群.

证: (*L*(*V*, *W*), +) 满足

- (1) 结合律: $\forall v \in V$, $[(\tau + \sigma) + \delta](v) = (\tau + \sigma)(v) + \delta(v) = \tau(v) + \sigma(v) + \delta(v) = \tau(v) + (\sigma(v) + \delta(v)) = \tau(v) + (\sigma + \delta)(v) = [\tau + (\sigma + \delta)](v) \Longrightarrow [(\tau + \sigma) + \delta] = [\tau + (\sigma + \delta)].$
- (2) 有单位元 0: 零映射 0(v) = 0, $\forall \tau \in \mathcal{L}(V, W)$, $(0 + \tau)(v) = 0(v) + \tau(v) = 0 + \tau(v) = \tau(v) + 0 = \tau(v) + 0(v) = (\tau + 0)(v)$.

2. 线性变换 2.1. 线性变换

(3) 有逆元: $\forall \tau \in \mathcal{L}(V, W), \exists -\tau, \text{ s.t. } (-\tau)(v) = -\tau(v) \Longrightarrow [\tau + (-\tau)](v) = \tau(v) - \tau(v) = 0 = 0(v).$

(4) 交換律: $\forall v \in V$, $(\tau + \sigma)(v) = \tau(v) + \sigma(v) = \sigma(v) + \tau(v) = [\sigma + \tau](v)$.

故 $\mathcal{L}(V,W)$ 为交换群.

 $\forall r \in F, v \in \mathcal{L}(V, W), v \stackrel{\tau}{\mapsto} \tau(v) \Longrightarrow v \stackrel{r\tau}{\mapsto} r\tau(v)$ 是线性变换, 且 $r\tau \in \mathcal{L}(V, W)$.

证: 由映射的像的唯一性, $\because v \stackrel{\tau}{\mapsto} \tau(v)$ 是唯一的, $\therefore v \stackrel{\tau\tau}{\mapsto} r\tau(v)$ 是唯一的, 故 $r\tau$ 是映射.

$$(r\tau)(v) = r\tau(v) = r[\tau(v)]$$
, 故 $r\tau$ 为 V 到 W 的线性变换.

 $\mathcal{L}(V,W)$ 是 F 上的向量空间.

证: 前面已证, $(\mathcal{L}(V,W),+)$ 为交换群, 且其满足

- (1) $\forall v \in V$, $[(r+t)\tau](v) = (r+t)\tau(v) = r\tau(v) + t\tau(v) = (r\tau + t\tau)(v) \Longrightarrow (r+t)\tau = r\tau + t\tau$
- (2) $\forall v \in V$, $[(rt)\tau](v) = (rt)\tau(v) = r[t\tau(v)] = [r(t\tau)](v) \Longrightarrow (rt)\tau = r(t\tau)$
- $(3) \ \forall v \in V, \ [r(\tau + \sigma)](v) = r(\tau + \sigma)(v) = r[\tau(v) + \sigma(v)] = r\tau(v) + r\sigma(v) = (r\tau + r\sigma)(v) \Longrightarrow r(\tau + \sigma) = r\tau + r\sigma(v) = r\tau(v) + r\sigma(v) = r\tau(v)$
- (4) 恒等映射 $1: \mathcal{L}(V, W) \to \mathcal{L}(V, W), \tau \stackrel{1}{\mapsto}, \forall v \in V, (1\tau)(v) = 1[\tau(v)] = \tau(v) \Longrightarrow 1\tau = \tau$

故得证.

定理 2.1 (课本定理2.1): (1) $\mathcal{L}(V,W)$ 是 F 上的向量空间.

- $(2) \ \tau \in \mathcal{L}(V, W), \ \sigma \in \mathcal{L}(W, U), \ \bigcup \ \sigma \circ \tau \in \mathcal{L}(V, U).$
- (3) τ 是 V 到 W 的同构, 则 $\tau^{-1} \in \mathcal{L}(W, V)$.
- (4) $\mathcal{L}(V)$ 既是向量空间, 也是环, 且两者的加法运算是相同的, 故 $\mathcal{L}(V)$ 是**代数**.

 $\mathcal{L}(V)$ 是环.

证: 前面已证, $(\mathcal{L}(V), +)$ 为交换群, 且满足

- (1) **结合律**: \cdot 映射的复合有结合律, \cdot $\mathcal{L}(V)$ 中元素的复合有结合律
- (2) 左右分配律: $\forall v \in V$, $[(\sigma + \tau)\delta](v) = (\sigma + \tau)[\delta(v)] = \sigma[\delta(v)] + \tau[\delta(v)] = (\sigma\delta)(v) + (\tau\delta)(v) \Longrightarrow (\sigma + \tau)\delta = \sigma\delta + \tau\delta$ $[\sigma(\tau + \delta)](v) = \sigma[(\tau + \delta)(v)] = \sigma[\tau(v) + \delta(v)] = \sigma[\tau(v)] + \sigma[\delta(v)] = \sigma\tau(v) + \sigma\delta(v) \Longrightarrow \sigma(\tau + \delta) = \sigma\tau + \sigma\delta$

故得证. □

定义 2.5 核空间: $\ker \tau \equiv \{v \mid \tau(v) = 0\} \subseteq V$.

定义 2.6 像空间: $\operatorname{Im} \tau \equiv \{ \tau(v) \mid v \in V \}.$

2. 线性变换 2.1. 线性变换

定理 2.2 (课本定理2.3): (1) τ 满线性变换 \iff Im $\tau = W$.

(2) τ 单线性变换 \iff ker $\tau = \{0\}$.

定理 2.3 (课本定理2.2): \mathcal{B} 是 V 的基, $\tau \in \mathcal{L}(V, W)$, 则 τ 可由 τ 在 \mathcal{B} 上的像唯一确定.

证: 若已知 $\tau(b_i) \forall b_i \in \mathcal{B}$, 则 $\forall v \in V$, $v = \sum_{i=1}^n r_i b_i$, $r_i \in F$, $b_i \in \mathcal{B}$, $n \in \mathbb{Z}^+$ $\Rightarrow \tau(v) = \tau(\sum_{i=1}^n r_i b_i) = \sum_{i=1}^n r_i \tau(b_i)$.

同构的向量空间有很多性质可以相互传递,下面我们就来讨论这件事.

定理 2.4 (课本定理2.4): $\tau \in \mathcal{L}(V, W)$ 同构, $S \in V$ 真子集, 则

- (1) $V = \langle S \rangle \iff W = \langle \tau(S) \rangle$.
- (2) S 线性无关 $\iff \tau(S)$ 线性无关.
- (3) $S \in V$ 的基 $\iff \tau(S) \in V$ 的基.
- **iII:** (1) " \Longrightarrow ": $V = \langle S \rangle$, $\forall v \in V$, $v = \sum_i r_i s_i$,

又 :: τ 同构, :: $\forall w \in W$, $\exists v \in V$, s.t. $w = \tau(v) \Longrightarrow \tau(v) = \tau(\sum_i r_i s_i) = \sum_i r_i \tau(s_i)$.

" \Leftarrow ": $W = \langle \tau(S) \rangle$, $w \in W$, $w = \sum_{i} r_i \tau(s_i)$,

又 :: τ 同构, :: $\forall v \in W$, $\exists w \in W$, s.t. $v = \tau^{-1}(w) = \tau^{-1}(\sum_i r_i \tau(s_i)) = \sum_i r_i \tau^{-1}(\tau(s_i)) = \sum_i r_i \tau(s_i)$.

综上, (1) 得证.

(2) " \Longrightarrow ": 假设 $\sum_{i} r_i \tau(s_i) = 0$, 则 $\tau(\sum_{i} r_i s_i) = 0$,

又 $:: \tau$ 同构 $: : \ker \tau = \{0\} \Longrightarrow \sum_i r_i s_i = 0,$

又: S 线性无关, $: r_i = 0 \forall i \Longrightarrow \tau(S)$ 线性无关.

"一":假设 $\sum_i r_i s_i = 0$,则 $\tau(\sum_i r_i s_i) = \sum_i r_i \tau(s_i) = 0$,

 \mathbb{Z} : $\tau(S)$ 线性无关, : $r_i = 0 \forall i \Longrightarrow S$ 线性无关.

综上, (2) 得证.

 $(3) (1), (2) \Longrightarrow (3).$

定理 2.5 (课本定理2.6): $V \approx W \iff \dim V = \dim W$.

定理 2.6 (课本定理2.7): 若 dim V = n, 则 $V \approx F^n$.

定理 2.7 (课本定理2.8): $\tau \in (L)(V, W)$,

(1) $(\ker \tau)^c \approx \operatorname{Im} \tau$.

(2) $\dim V = \dim \ker \tau + \dim \operatorname{Im} \tau \equiv \operatorname{null} \tau + \operatorname{rk} \tau$, 其中称 $\operatorname{null} \tau \equiv \dim \ker \tau$ 为 τ 的**零度**, $\operatorname{rk} \tau \equiv \dim \operatorname{Im} \tau$ 为 τ 的**秩**.

证: (1) 设映射 $\tau^c : \ker(\tau)^c \to \operatorname{Im} \tau, u \mapsto \tau(u)$.

先证 τ^c 是单射: $\ker(\tau^c) = \ker(\tau) \cap \ker(\tau)^c$ (即 $\ker(\tau^c)$ 中的元素同时满足 $\ker(\tau)$ 的条件, 且在定义域 $\ker(\tau)^c$ 中),

又 :: $V = \ker(\tau) \oplus \ker(\tau)^c$, :: $\ker(\tau) \cap \ker(\tau)^c = \{0\} \Longrightarrow \ker(\tau^c) = \{0\}$, 故 τ^c 单射.

再证 τ^c 是满射: 一方面, $\operatorname{Im}(\tau^c) \subseteq \operatorname{Im}(\tau)$;

另一方面, $\forall \tau(v), v = u + w$, 其中 $u \in \ker(\tau), w \in \ker(\tau)^c \Longrightarrow \tau(v) = \tau(u + w) = \tau(u) + \tau(w) = 0 + \tau(w) = \tau(w) \in \operatorname{Im}(\tau^c) \Longrightarrow \operatorname{Im}(\tau) \subseteq \operatorname{Im}(\tau^c).$

故 $\operatorname{Im}(\tau^c) = \operatorname{Im}(\tau)$, 即 τ^c 满射.

综上, (1) 得证.

(2) $\dim V = \dim \ker(\tau) + \dim \ker(\tau)^c = \dim \ker(\tau) + \dim \operatorname{Im}(\tau)$.

x 为 n 维向量, dim $\{x \mid Ax = 0\} = n - \operatorname{rk} A$, 故 dim $\{x \mid Ax = 0\} = \operatorname{null} A$.

2.2 表示

"表示"其实就是用已知的东西展现未知的东西,在这里,我们用已知的矩阵乘法展现未知的线性变换,这就是线性变换的表示.

F 为域, $F^n = \{(r_1, \dots, r_n) \mid r_i \in F\}$, 满足 $(r_1, \dots, r_n) + (l_1, \dots, l_n) = (r_1 + l_1, \dots, r_n + l_n)$ 及 $r(r_1, \dots, r_n) = (rr_1, \dots, rr_n)$, dim $F^n = n$, F^n 的标准基为 $\{e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)\}$; $F^m = \{(r_1, \dots, r_m) \mid r_i \in F\}$, dim F = m, 标准基为 $\{f_1 = (1, 0, \dots, 0), f_2 = (0, 1, \dots, 0), \dots, f_m = (0, 0, \dots, 1)\}$. 如何确定/展现 F^n 到 F^m 的线性变换?

根据定理 2.3, 我们只需确定一组基在线性变换下的表现, 就可以确定这一线性变换. 因此, $\forall \tau \in \mathcal{L}(F^n, F^m)$, 若 $\tau(e_i) = (a_{1i}, \cdots, a_{mi}) = \sum_{j=1}^m a_{ji} f_j$. $\forall (r_1, \cdots, r_n) \in F^n$,

$$\tau((r_{1}, \cdots, r_{n})) = \tau\left(\sum_{i=1}^{n} r_{i}e_{i}\right) = \sum_{i=1}^{n} r_{i}\tau(e_{i}) = \sum_{i=1}^{n} r_{i}\left(\sum_{j=1}^{m} a_{ji}f_{j}\right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} r_{i}a_{ji}\right)f_{j} = \left(\sum_{i=1}^{n} r_{i}a_{1i}, \cdots, \sum_{i=1}^{n} r_{i}a_{mi}\right)$$

$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix} = \left(\tau(e_{1}) & \tau(e_{2}) & \cdots & \tau(e_{n})\right) \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix} = M_{\tau} \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix},$$

其中 $M_{\tau} = (\tau(e_1) \quad \tau(e_2) \quad \cdots \quad \tau(e_n)).$ 故 $\forall \vec{r} \in F^n, \ \tau(\vec{r}) = M_{\tau}\vec{r}.$

综上:

$$\mathcal{L}(F^n, F^m) \approx M_{m \times n}(F), \quad \tau \mapsto M_{\tau} = \begin{pmatrix} \tau(e_1) & \cdots & \tau(e_2) \end{pmatrix}$$

 $f: \mathcal{L}(F^n, F^m) \to M_{m \times n}(F), \tau \mapsto M_{\tau}$ 是线性变换.

证: 由上述的 M_{τ} 构造过程知, $f(\tau) = M_{\tau}$ 是唯一的, 故 f 是映射.

$$f(r\tau + t\sigma) = M_{r\tau + t\sigma} = \left((r\tau + t\sigma)(e_1) \cdots (r\tau + t\sigma)(e_n) \right) = \left(r\tau(e_1) + t\sigma(e_1) \cdots r\tau(e_n) + t\sigma(e_n) \right)$$
$$= r\left(\tau(e_1) \cdots \tau(e_n) \right) + t\left(\sigma(e_1) \cdots \sigma(e_n) \right) = rM_{\tau} + tM_{\sigma} = rf(\tau) + tf(\sigma).$$

故 f 是线性的.

$$综上, f: \mathcal{L}(F^n) \to M_{m \times n}(F), \tau \mapsto M_{\tau}$$
 是线性变换.

f 单射.

i.E. $\ker f \equiv \{ \tau \mid f(\tau) = 0 \} = \{ \tau \mid M_{\tau} = 0 \}.$

 $\forall \tau \in \ker f, \ \forall \vec{r} \in F^n, \ \tau(\vec{r}) = M_{\tau}\vec{r} = \vec{0} \Longrightarrow M_{\tau} = 0_{m \times n} \Longrightarrow \tau = 0.$

故
$$\ker f = \{0\}$$
 (这里的"0"代表的是零变换) $\iff f$ 单射.

f 满射.

证:
$$\forall A \in M_{m \times n}(F)$$
, 可由 $\left(\tau(e_1) \cdots \tau(e_n)\right) = M_{\tau} = A$ 构造 τ , 从而 f 满射.

综上, f 同构.

取 V 的基 $\mathcal{B} = \{b_1, \dots, b_n\}, \forall v \in V, v = \sum_i r_i b_i.$

当
$$\mathcal{B}$$
 定序, $\phi_{\mathcal{B}}: V \to F^n, v \mapsto \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \equiv [v]_{\mathcal{B}}$ 是一个映射.

证: 由于 \mathcal{B} 是 V 的基, 展开式 $v = \sum_i r_i b_i$ 唯一确定, 又 \mathcal{B} 定序, 从而映射 $v \mapsto \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}$ 唯一确定, 故 $\phi_{\mathcal{B}}$ 为映射.

 $\forall u, v \in V, \ u = \sum_{i=1}^{n} w_i b_i, \ v = \sum_{i=1}^{n} r_i b_i,$

$$\begin{split} \phi_{\mathcal{B}}(r\vec{u}+t\vec{v}) = & \phi_{\mathcal{B}}\left(r\left(\sum_{i=1}^n w_i b_i\right) + t\left(\sum_{i=1}^n r_i b_i\right)\right) = \phi_{\mathcal{B}}\left(\sum_{i=1}^n (rw_i + tr_i)b_i\right) = \begin{pmatrix} rw_1 + tr_1 \\ \vdots \\ rw_n + tr_n \end{pmatrix} \\ = & r\begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} + t\begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = r\phi_{\mathcal{B}}(u) + t\phi_{\mathcal{B}}(v), \end{split}$$

故 ϕ_B 为 V 到 F^n 的线性变换.

 $\phi_{\mathcal{B}}$ 单射.

$$\mathbf{\tilde{u}}: \ker \phi_{\mathcal{B}} = \{v \mid \phi_{\mathcal{B}}(v) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \}.$$

$$\phi_{\mathcal{B}}(v) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Longrightarrow v = \sum_{i=1}^{n} 0b_i = 0.$$

故 $\ker \phi_{\mathcal{B}} = \{0\} \iff \phi_{\mathcal{B}} \ \text{单射}.$

 $\phi_{\mathcal{B}}$ 满射.

证:
$$\forall \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \in F^n, \exists v \in V, \text{ s.t. } \sum_{i=1}^n r_i b_i \in V, \text{ 故 } \phi_{\mathcal{B}} \text{ 满射.}$$

综上, $\phi_{\mathcal{B}}$ 同构.

取 V 的一组定序基 $\mathcal{B} = \{b_1, \dots, b_n\}$,另一组定序基 $\mathcal{C} = \{c_1, \dots, c_n\}$,v 在 \mathcal{B} 下的表象为 $[v]_{\mathcal{B}}$,在 \mathcal{C} 下的表象为 $[v]_{\mathcal{C}}$,映射关系见如下的交换图. 如何联系 v 在不同基下的表象, $[v]_{\mathcal{B}}$ 和 $[v]_{\mathcal{C}}$,从而得到 τ ?

$$[v]_{\mathcal{C}} = \tau([v]_{\mathcal{B}}) = M_{\tau}[v]_{\mathcal{B}}, \ \, \sharp \, \mapsto M_{\tau} = \Big(\tau(e_1) \quad \cdots \quad \tau(e_n)\Big).$$

$$\tau : F^n \to F^n, \quad e_i \mapsto \tau(e_i) = \phi_{\mathcal{C}}(\phi_{\mathcal{B}}^{-1}(e_i)) = \phi_{\mathcal{C}}(b_i),$$

$$M_{\tau} = \Big([b_1]_{\mathcal{C}} \quad \cdots \quad [b_n]_{\mathcal{C}}\Big) \equiv M_{\mathcal{BC}}.$$

定理 2.8 (课本定理2.12):

$$v_{\mathcal{C}} = M_{\mathcal{B}\mathcal{C}}[v]_{\mathcal{B}}$$

其中 $[v]_{\mathcal{B}}$ 和 $[v]_{\mathcal{C}}$ 分别是向量 v 在基 \mathcal{B} 和 \mathcal{C} 表象下的坐标表示, $M_{\mathcal{BC}}$ 是在两种坐标表示之间线性变换对应的矩阵.

$$M_{\tau_A} = \left(\tau_A(e_1) \quad \cdots \quad \tau(e_n)\right) = \left(\phi_{\mathcal{C}} \circ \tau \circ \phi_{\mathcal{B}}^{-1}(e_1) \quad \cdots \quad \phi_{\mathcal{C}} \circ \tau \circ \phi_{\mathcal{B}}^{-1}(e_n)\right) = \left(\phi_{\mathcal{C}} \circ \tau(b_1) \quad \cdots \quad \phi_{\mathcal{C}} \circ \tau(b_n)\right)$$
$$= \left([\tau(b_1)]_{\mathcal{C}} \quad \cdots \quad [\tau(b_n)]_{\mathcal{C}}\right) \equiv [\tau]_{\mathcal{BC}}.$$

定理 2.9 (课本定理2.14):

$$[\tau(v)]_{\mathcal{C}} = [\tau]_{\mathcal{B}\mathcal{C}}[v]_{\mathcal{B}}$$

其中 $[\tau(v)]_{\mathcal{C}}$ 是 $\tau(v)$ 在基 \mathcal{C} 的表象下的坐标表示, $[\tau]_{\mathcal{B}\mathcal{C}}$ 是从基 \mathcal{B} 的表象到基 \mathcal{C} 的表象的线性变换的矩阵表示, $[v]_{\mathcal{B}}$ 是 v 在基 \mathcal{B} 的表象下的坐标表示.

定理 2.10 (课本定理2.15): $\mathcal{L}(V,W) \to \mathcal{L}(F^n,F^m) \approx M_{m \times n}(F), \ \tau \mapsto \tau_A \mapsto [\tau]_{\mathcal{BC}}.$

若我们改变 V 和 W 的基,那么映射所联系的向量的坐标会如何?

 $\tau_A' = \phi_{\mathcal{C}}' \phi_{\mathcal{C}}^{-1} \tau_A \phi_{\mathcal{B}} \phi_{\mathcal{B}}'^{-1}.$

定理 2.11 (课本定理2.16):

$$[\tau]_{\mathcal{B}'\mathcal{C}'} = M_{CC'}[\tau]_{\mathcal{B}\mathcal{C}} M_{\mathcal{B}'\mathcal{B}}$$

其中 $[\tau]_{\mathcal{B}\mathcal{C}}$ 和 $[\tau]_{\mathcal{B}'\mathcal{C}'}$ 分别是线性变换 τ 在基 $(\mathcal{B},\mathcal{C})$ 和 $(\mathcal{B}',\mathcal{C}')$ 下的表示, 矩阵 $M_{\mathcal{B}'\mathcal{B}}$ 和 $M_{\mathcal{C}\mathcal{C}'}$ 分别对应了从基 \mathcal{B} 到基 \mathcal{B}' 和从基 \mathcal{C} 到基 \mathcal{C}' 的变换矩阵.

 $M_{\mathcal{B}\mathcal{B}'}$ 可逆.

证: 设
$$\phi_{\mathcal{B}}: V \to F^n, \ v = \sum_{i=1}^n r_i b_i \mapsto [v]_{\mathcal{B}} = \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}, \ \phi_{\mathcal{B}'}: V \to F^n, \ v = \sum_{i=1}^n r_i' b_i' \mapsto [v]_{\mathcal{B}'} \begin{pmatrix} r_1' \\ \vdots \\ r_n' \end{pmatrix}, \ \mathbb{P}$$

 $M_{\mathcal{B}\mathcal{B}'} = M_{\tau} = ([b_1]_{\mathcal{B}'} \cdots [b_n]_{\mathcal{B}'}), \text{ s.t. } [v]_{\mathcal{B}'} = M_{\mathcal{B}\mathcal{B}'}[v]_{\mathcal{B}}.$

同理可以构造 $M_{\mathcal{B}\mathcal{B}'} = ([b'_1]_{\mathcal{B}} \cdots [b'_n]_{\mathcal{B}})$, s.t. $[v]_{\mathcal{B}} = M_{\mathcal{B}'\mathcal{B}}[v]_{\mathcal{B}'}$.

 $\forall [v]_{\mathcal{B}} \in F^n, M_{\mathcal{B}\mathcal{B}'}M_{\mathcal{B}'\mathcal{B}}[v]_{\mathcal{B}} = M_{\mathcal{B}\mathcal{B}'}[v]_{\mathcal{B}'} = [v]_{\mathcal{B}} \Longrightarrow M_{\mathcal{B}\mathcal{B}'}M_{\mathcal{B}'\mathcal{B}} = n \times n$ 维的单位矩阵, 即 $M_{\mathcal{B}'\mathcal{B}}$ 是 $M_{\mathcal{B}\mathcal{B}'}$ 的逆, 故 $M_{\mathcal{B}\mathcal{B}'}$ 可逆.

定理 2.12 (课本定理2.18): B = PAQ, 其中 P 和 Q 可逆, 则 B 与 A 等价.

(因为 B 和 A 是同一线性变换在两组不同的基下的表示.)

定理 2.13 (课本定理2.19): $B = PAP^{-1}$, 其中 P 可逆, 则 B 与 A 相似.

(因为 B 和 A 是同一线性算子在两组不同的基下的表示.)

Chapter 3

同构定理

定义 3.1 <u>商空间</u>: F 为域, V 是 F 上的向量空间, S 是 V 的子空间, 则称 $\frac{V}{S} \equiv \{[v] \mid v \in V\}$ 是 F 的**商空间**, 其中 $[v] \equiv \{u \in V \mid u - v \in S\} = S + v$.

 $\frac{V}{S}$ 是 F 上的向量空间.

 $\mbox{iI: } [u] + [v] = \{a \in V \mid a - u \in S\} + \{b \in V \mid b - v \in S\} = \{(a + b) \in V \mid a - u \in S, b - v \in S\}.$

 $[u+v] = \{ w \in V \mid w - (u+v) \in S \}.$

 $\forall a+b \in [u]+[v], \ (a-u)+(b-v)=(a+b)-(u+v) \in S \Longrightarrow (a+b) \in [u+v] \Longrightarrow [u]+[v] \in [u+v].$

 $\forall w \in [u+v], \exists c, d \in S, \text{ s.t. } c+d=w-(u+v) \Longrightarrow w=(c+d)+(u+v)=(c+u)+(d+v), \not\exists \text{ \mathbb{P}} (c+u) \in [u], \\ (d+v) \in [v] \Longrightarrow w \in [u]+[v].$

故 [u] + [v] = [u + v].

假设 $u \sim u', v \sim v',$ 即 [u] = [u'], [v] = [v'].

- \therefore $[u] = [u'], \therefore uS = u'S \Longrightarrow \exists s_1, s'_1 \in S, \text{ s.t. } u + s_1 = u' + s'_1 \Longleftrightarrow v' = u + s_1 s'_1,$
- \therefore $[v] = [v'], \therefore vS = v'S \Longrightarrow \exists s_2, s'_2 \in S$, s.t. $v + s_2 = v' + s'_2 \Longleftrightarrow v' = v + s_2 s'_2$,

从而 $u' + v' = u + s_1 - s_1' + v + s_1 - s_1'$, 其中 $:: s_1, s_1', s_1, s_1' \in S, s_1 - s_1' \in S, s_2 - s_2' \in S,$

- $\because V$ 是交换群, \therefore , s.t. $s_1 s_1' + v = v + s_1 s_1' \Longrightarrow u' + v' = u + v + (s_1 s_1' + s_2 s_2')$
- $\implies (u' + v')S = (u + v + (s_1 s'_1 + s_2 s'_2))S \implies [u' + v'] = [u' + v'] = [u + v],$

即 [u] + [v] = [u + v] 与代表元选取无关, 故 [u] + [v] = [u + v] 是运算.

 $r[u] = r\{v \in V \mid v - u \in S\} = \{rv \mid v \in V, v - u \in S\} = \{rv \in V \mid rv - ru \in S\} = [ru].$

假设 $u \sim u'$, 即 [u] = [u'].

- $\therefore [u] = [u'], \therefore uS = u'S \Longrightarrow \exists s, s' \in S, \text{ s.t. } u + s = u' + s' \Longleftrightarrow u' = u + s s',$
- 从而 ru' = r(u+s-s') = ru+r(s-s'),其中 $s-s' \in S \Longrightarrow (ru')S = (ru+r(s-s'))S = (ru)S \Longrightarrow r[u'] = [ru]$,即 r[u] = [ru] 与代表元选取无关,故 r[u] = [ru] 是运算.

 $(\frac{V}{S},+)$ 满足

- $(1) \ \textbf{ 结合律: } ([v]+[u])+[w]=[u+v]+[w]=[u+v+w]=[u+(v+w)]=[u]+[v+w]=[u]+([v]+[w])$
- (2) 有单位元 [0]: [0] + [u] = [0 + u] = [u] = [u + 0] = [u] + [0]
- (3) 有逆元: $\forall v \in V, \exists -v, \text{ s.t. } [a] + [-a] = [a + (-a)] = [0] = [(-a) + a] = [-a] + [a]$

且 [u] + [v] = [u + v] = [v + u] = [v] + [u],即 $(\frac{V}{S}, +)$ 交换,故 $(\frac{V}{S}, +)$ 是交换群. (总之就是因为 $\frac{V}{S}$ 中的元素 [v] 保持了 V 中的元素 v 的各种运算性质,所以 (V, +) 是交换群就可以推出 $\frac{V}{S}$ 也是交换群.)

 $\frac{V}{S}$ 满足

3. 同构定理

- (1) r([u+v]) = r([u] + [v]) = r[u] + r[v]
- (2) (r+t)[u] = [(r+t)u] = [ru+tu] = [ru] + [tu] = r[u] + t[u]
- (3) $(r \cdot t)[u] = [(r \cdot t)u] = [r(tu)] = r[tu] = r(t[u])$
- (4) 有单位元 1: [1][u] = [1u] = [u]

故 $\frac{V}{S}$ 是 F 上的向量空间.

定理 3.1 (课本定理3.2): (1) $\Pi_S:V \to \frac{V}{S}, v \mapsto [v]$ 是线性变换.

- (2) Π_S 是满线性变换, 即 $\operatorname{Im} \Pi_S = \frac{V}{S}$.
- (3) $\ker \Pi_S = S$.
- 证: (1) 显然 Π_S 是唯一的, 故 Π_S 是映射.

如前所证, V 和 $\frac{V}{S}$ 均为 F 上的向量空间.

$$[u+v] = \{w \in V \mid w - (u+v) \in S\}, r[u] = [ru], r[u] + t[v] = [ru] + [tv] = [ru+tv],$$
故 Π_S 为线性变换.

- (2) $\forall [v] \in \frac{V}{S}$, $\exists v \in V$, s.t. $\Pi_S(v) = [v]$, 即 $\operatorname{Im} \Pi_S = \frac{V}{S}$, 故 Π_S 是满线性变换.
- (3) $\ker \Pi_S = \{ v \in S \mid \Pi_S(v) = [0] \}.$ $\Pi_S(v) = [v] = S + v = [0] = S \Longrightarrow v \in S \Longrightarrow \ker \Pi_S = S.$

定理 3.2 (课本定理3.3): (1) S,T 是子空间,且 $S\subseteq T$,则 $\frac{T}{S}$ 是 $\frac{V}{S}$ 的子空间.

- (2) 取 X 为 $\frac{V}{S}$ 的子空间, 则 $\exists V$ 的子空间 T, s.t. $\emptyset \neq S \subseteq T$, $\frac{T}{S} = X$.
- $\mathbf{i}\mathbf{E} \text{:} \quad (1) \ \ \tfrac{T}{S} = \{[u] \mid u \in T\}, \ \tfrac{V}{S} = \{[v] \mid v \in V\}.$

 $\forall [u] \in \frac{T}{S}, u \in T, : T \not\equiv V \text{ big}$ $\exists u \in V \Longrightarrow [u] \in \frac{V}{S}, \text{ id } \frac{T}{S} \subseteq \frac{V}{S}.$

 $\forall [u_1], [u_2] \in \frac{T}{S}, r, t \in F, r[u_1] + t[u_2] = [ru_1 + tu_2], \because u_1, u_2 \in T, \therefore ru_1 + tu_2 \in T \Longrightarrow [ru_1 + tu_2] \in \frac{T}{S},$ 故 $\frac{T}{S}$ 是线性空间.

综上, 得证.

显然 $T \subseteq V$.

 $\forall u, v \in T$, 根据 T 的定义, $[u], [v] \in X$,

 $\therefore X$ 为子空间, $\therefore r[u] + t[v] = [ru + tv] \in X \Longrightarrow ru + tv \in [ru + tv] \subseteq T = \bigcup_{v \in X} [v] \Longrightarrow ru + tv \in T$. 故 T 为 V 的子空间.

$$\therefore [0] = S, \therefore S \subseteq T.$$

$$\frac{T}{S} = \{ [v] = S + v \mid v \in T \}.$$

$$\forall [v] \in \frac{T}{S}, v \in T \Longrightarrow [v] \in X.$$

$$\forall [v] \in X, v \in T \Longrightarrow [v] \in \frac{T}{S}.$$

故
$$\frac{T}{S} = X$$
.

综上, 得证.

定理 3.3 第一同态基本定理(课本定理3.4): ${}^aS \in V$ 的子空间, $\tau \in \mathcal{L}(V,W)$,

若 $S \subseteq \ker \tau$, 即 $\ker \Pi_S \subseteq \ker \tau$, 则 $\exists ! \tau'$, s.t. $\tau = \tau' \circ \Pi_S$, 即 $\forall v \in V$, $\tau(v) = \tau'([v])$, 此时上图可交换.

"该定理回答了 τ' 的存在性 (即 τ' 在什么条件下存在) 的问题. 之所以称"基本", 是因为若将该定理中的向量空间换成其他代数结构, 定理仍然成立.

证: τ' 的唯一性要求, 若 [u] = [v], 则 $\tau'([u]) = \tau'([v])$,

即若 $u \sim v$, 则 $\tau(u) = \tau(v)$,

即若 $u-v \in S$, 则 $\tau(u-v)=0$,

即 $S \subseteq \ker \tau$.

此时, $\ker \tau' = \{[v] \in \frac{V}{S} \mid \tau'([v]) = 0\} = \{[v] \in \frac{V}{S} \mid \tau(v) = 0\} = \{[v] \in \frac{V}{S} \mid v \in \ker \tau\} = \{[v] \mid v \in \ker \tau\} = \frac{\ker \tau}{S},$ $\operatorname{Im} \tau' = \{\tau'([v]) \mid [v] \in \frac{V}{S}\} = \{\tau'([v]) \mid v \in V\} = \{\tau(v) \mid v \in V\} = \operatorname{Im} \tau \ (:\Pi_S \ \text{满射}, :: \forall [v] \in \frac{V}{S}, \exists v \in V).$ 那么,如果 τ 双射,即 $\exists \tau^{-1} \in \mathcal{L}(W, V)$,再加上条件 $\ker \tau \subseteq S$,即 $\ker \tau = S$,如何?

此时, $\ker \tau' = \frac{\ker \tau}{S} = \{[v] \mid v \in \ker \tau\} = \{[v] \mid v \in S\} = \{[0]\} \Longrightarrow \tau'$ 单射. 由上面关于第一同态定理的延伸讨论我们得到:

定理 3.4 第一同构定理(课本定理3.5): 若 $\ker \tau = S$, 则 τ' 单射, $\frac{V}{\ker \tau} = \frac{V}{S} \approx \operatorname{Im} \tau$.

3. 同构定理

证: $V = \ker \tau \oplus (\ker \tau)^c$, 其中 $(\ker \tau)^c \approx \operatorname{Im} \tau \Longrightarrow \frac{V}{\ker \tau} = (\ker \tau)^c$.

更一般地, 若 $V = S \oplus T$, 则 $\frac{V}{S} = T$, $\frac{V}{T} \approx S$.

证: $\forall v \in V, \ v = u_S + u_T, \ \mbox{其中} \ u_S \in S, \ u_T \in T.$ 令投影映射 $P_T : V \to T, \ v = u_S + u_T \mapsto u_T.$ $\ker P_T = \{v \in V \mid P_T(v) = 0\} = S = [0] = \ker \Pi_S.$ $\exists ! \tau' \ \mbox{\'e} \ \mbox{h}, \ \mbox{s.t.} \ P_T = \tau' \circ \Pi_S.$

又 $\operatorname{Im} P_T = T$, 即 P_T 满射, $\therefore \tau'$ 满射 $\Longrightarrow \tau'$ 同构 $\Longrightarrow \frac{V}{S} \approx T$.

同理可证 $\frac{V}{T} \approx S$.

定义 3.2 <u>对偶(空间)和线性泛函</u>: $V^* = \mathcal{L}(V,F)$ 是 F 上的向量空间, 称 V^* 为 V 的对偶(空间). 若 $f \in V^*$, 称 f 为线性泛函.

- (1) $\ker V^*$ 为 F 上的向量空间.
- (2) $\dim F = 1$, $\operatorname{Im} f \subseteq F$, $\therefore \dim \operatorname{Im} f \leq 1$, $\dim \ker f \geq \dim V 1$.
- (3) V^* 非空, :: 必有零映射 $0 \in V^*$, $0: V \to F$, $v \mapsto 0$.
- (4) 若 dim Im f = 0, 则 Im $f = \{0\}$, f 为零映射.
- (5) 若 dim Im f = 1, 则 Im $f = \langle r \rangle$, 其中 $0 \neq r \in F \Longrightarrow$ Im f = F, 由反证法易证, 若 $v \in f^{-1}(r) = \{v \in V \mid f(v) = r\}$, 其中 $r \neq 0$, 则 $v \neq 0$, 且必有 $f(\langle v \rangle^c) = \{0\}$.

证明一下 (5) 的末句:

证: 假设 $\exists u \in \langle v \rangle^c$, s.t. $f(u) \neq 0$,

则有 $f\left(\frac{ru}{f(u)}\right) = r \Longrightarrow \frac{ru}{f(u)} \in f^{-1}(r) \Longrightarrow f^{-1} = \langle v \rangle \oplus \langle u \rangle$,

又 :: $u \in \langle v \rangle^c$, :: $\dim f^{-1} \geq 2$, 这与 $f^{-1} \subseteq (\ker f)^c$, $\dim(\ker f)^c = \dim \operatorname{Im} f \leq 1$ 矛盾,

故假设错误, $\forall u \in \langle v \rangle^c$, $f(u) = 0 \Longrightarrow f(\langle v \rangle^c) = \{0\}$.

定理 3.5 (课本定理3.11): (1) 若 $0 \neq v \in V$, $\exists 0 \neq f \in V^*$, s.t. $f(v) \neq 0$.

- (2) $v = 0 \iff \forall f \in V^*, f(v) = 0.$
- (3) $f \in V^*$, 若 $f(x) \neq 0$, 则 $V = \ker f \oplus \langle x \rangle$, 即 $\operatorname{Im} f \approx \langle x \rangle$.
- (4) $0 \neq f, g \in V^*$, $\ker f = \ker g \iff \exists 0 \neq \lambda \in F$, s.t. $f = \lambda g$.
- 证: (1) $v \neq 0$, 则 $V = \langle v \rangle \oplus \langle v \rangle^c$, 其中 $\langle v \rangle = \{rv \mid r \in F\}$.

 $\Leftrightarrow f: V \to F, rv + w \mapsto r, \not\equiv rv \in \langle v \rangle, w \in \langle v \rangle^c, \not\equiv f(v) = 1, f \in V^*.$

我们来验证一下: $\forall u_1, u_2 \in V, r, t \in F, u_1$ 和 u_2 可写成 $u_1 = r_1 v + w_2, u_2 = r_2 v + w_2$

 $\implies f(ru_1 + tu_2) = f(r(r_1v + w_1) + t(r_2v + w_2)) = f((rr_1v + rw_1) + (tr_2v + tw_2)) = rr_1 + tr_2 = rf(r_1v + w_1) + tf(r_2v + w_2) = rf(u_1) + tf(u_2).$

故得证.

并且需要注意这里的 f 的构造不是唯一的: 我们可以构造 $f:V\to F,\,rv+u\mapsto rt,$ 其中 $u\in\langle v\rangle^c,$ 如此一来, f(v)=t.

- (2) "⇒": 若 v = 0, 则 $\forall u \in V$, $f(v) + f(u) = f(v + u) = f(u) \Longrightarrow f(v) = 0$. "⇐": 若 $\forall f \in V^*$, f(v) = 0, 则假设 $v \neq 0$, 则由 (1), $\exists v \in V^*$, s.t. $f(v) \neq 0$, 矛盾, 故假设错误, v = 0.
- (3) $f(x) \neq 0 \implies \operatorname{Im} f \neq \{0\} \implies \dim \operatorname{Im} f \neq 0 \implies \dim \operatorname{Im} f \dim (\ker f)^c = 1 \implies \dim \ker f = \dim V \dim (\ker f)^c = \dim V 1$ $\implies \exists v \in V, \text{ s.t. } V = \ker f \oplus (\ker f)^c = \langle v \rangle,$

又 $:: f(x) \neq 0, :: x \in \langle v \rangle \Longrightarrow \langle x \rangle = \langle w \rangle \Longrightarrow V = \ker f \oplus \langle x \rangle$, 故得证.

(4) " \Longrightarrow ": $\diamondsuit K = \ker f = \ker g$.

∴ $\ker f = \ker g, \forall x \notin K, \text{ in } (3) \text{ ff}, V = \langle x \rangle \oplus K.$

取 $\lambda = \frac{f(x)}{g(x)}$ 即得.

" \Longrightarrow ": 若 $\exists \lambda \neq 0, f = \lambda g$, 则显然 $\ker f = \ker g$.

定义 3.3 <u>对偶基:</u> $\mathcal{B} = \{b_1, \dots, b_n\}$ 为 V 的基,则 $\forall i, \exists b_i^* \in V, \text{ s.t. } b_i^*(b_i) = 1, \text{ 对 } j \neq i, b_i^*(b_j) = 0,$ 即 $b_i^*(b_i) = \delta_{ij}$,从而可以构造出 $\mathcal{B}^* = \{b_1^*, \dots, b_n^*\} \subseteq V^*$,称为 \mathcal{B} 的对偶基.

定理 3.6 (课本定理3.12): (1) $\mathcal{B}^* = \{b_1^*, \cdots, b_n^*\}$ 线性无关.

- (2) dim $V < \infty$, 则 \mathcal{B}^* 是 V^* 的基.
- $$\label{eq:continuous_equation} \begin{split} \mathbf{\tilde{u}E:} \quad & (1) \ \sum_{i=1}^m r_i b_i^* = 0 \Longrightarrow \forall v \in V, \ \left(\sum_{i=1}^m r_i b_i^*\right)(v) = 0(v) = 0 \\ & \Longrightarrow \sum_{i=1}^m r_i b_i^*(v) = 0 \end{split}$$

取 $v = b_j$, 则 $\sum_{i=1}^m r_i b_i^*(b_j) = \sum_{i=1}^m r_i \delta_{ij} = r_j = 0$, 对各个 b_i 如法炮制, 从而得到 $r_i = 0 \forall i$, 故得证.

(2) $\forall f \in V^*, \forall v \in V, :: \mathcal{B} \in V$ 的基, $:: v = \sum_{i=1}^n r_i b_i$ $\implies b_j^*(v) = b_j^* \left(\sum_{i=1}^n r_i b_i \right) = \sum_{i=1}^n r_i b_j^* (b_i) = \sum_{i=1}^n r_i \delta_{ij} = r_j$ 回代得 $v = \sum_{i=1}^n b_i^* (v) b_i$ $\implies f(v) = f \left(\sum_{i=1}^n b_i^* (v) b_i \right) = \sum_{i=1}^n b_i^* (v) f(b_i) = \sum_{i=1}^n f(b_i) b_i^* (v) = \left(\sum_{i=1}^n f(b_i) b_i^* \right) (v), \text{ 这里 } b_i^* (v), f(b_i) \in F,$ 因此可以交换位置,我们可视 $\{b_i^* (v)\}$ 为基, $f(b_i)$ 为 f(v) 在这组基上的展开系数 $\implies f = \sum_{i=1}^n f(b_i) b_i^*, \text{ 即 } f \text{ 可展开为 } \{\mathcal{B}^*\} \text{ 的线性表示,结合 (1) 得证.}$

按照类似上面的方法, $\forall v \in V$,我们都可构造 $v^* \in V^*$,s.t. $\forall u_1 \in \langle v \rangle$, $v^*(u) = 1$, $\forall u_2 \in \langle v \rangle^c$, $v^*(u_2) = 0$,从而有映射 $V \to V^*$, $v \mapsto v^*$, $v \mapsto v$ (零映射).

 V^* 本身也是向量空间.

定义 3.4 二重对偶(空间): $V^{**} = \mathcal{L}(V^*, F)$ 称为二重对偶(空间), 其中的元素为 $v^{**}: V^* \to F, f \to f(v)$.

 $V \to V^* \to V^{**}, v \mapsto v^* \mapsto v^{**}, b_i \mapsto b_i^* \mapsto b_i^{**},$ 满足 $b_i^*(b_j) = \delta_{ij}, b_i^{**}(b_j^*) = b_j^*(b_i),$ 两个映射复合得 $\tau: V \to V^{**}, v \mapsto v^{**}.$

- (1) τ 是映射.
- (2) τ 是线性变换.
- (3) $\ker \tau = \{v \in V \mid \tau(v) = 0\} = \{0\} \iff \tau$ 单射.

证: (1) 若 u = v, 则 $\forall f \in V^*$, $u^{**}(f) = f(u) = f(v) = v^{**}(v)$, 即得证.

- (2) $\tau(ru+tv) = (ru+tv)^{**}$, $\forall f \in V^*$, $(ru+tv)^{**}(f) = f(ru+tv) = rf(u) + tf(v) = ru^{**}(f) + tv^{**}(f) = r\tau(u)(f) + t\tau(v)(f) \Longrightarrow \tau(ru+tv) = r\tau(u) + t\tau(v)$, 结合 (1) 即得证.
- (3) $\tau(v) = 0 \Longrightarrow \forall f \in V^*, v^{**}(f) = 0 \Longrightarrow f(v) = 0 \Longrightarrow (定理 3.5 (1)) v = 0$, 即得证.

引理 3.1 (课本引理3.13): 若 $\dim V = n < \infty$, 则 $\dim V^* = \dim V^{**} = n$, V^{**} 与 V 同构, 一个线性空间的二 重对偶就回到自身, 所以实际上套娃式的 V^{***} 是没有意义的, 这里我们就写成 $V^{**} = V$.

定义 3.5 算子伴随: 由线性变换 τ 可引出算子伴随 $\tau^{\times}: W^* \to V^*, g \mapsto g \circ \tau$.

39 / 75

3. 同构定理

- (1) τ^{\times} 是映射.
- (2) τ× 是线性的.

证: (1) 若 $f = g \in W^*$, $v^* * \in \tau^{\times}$, 则 $\tau^{\times}(f) = f \circ \tau = g \circ \tau = \tau^{\times}(g)$, 故得证.

(2) $\tau^{\times}(rg_1 + tg_2) = (rg_1 + tg_2) \circ \tau = rg_1 \circ \tau + tg_2 \circ \tau = r\tau^{\times}(g_1) + t\tau^{\times}(g_2)$, 故得证.

定理 3.7 (课本定理3.18): (1) $\tau.\sigma \in \mathcal{L}(V,W)$, $a,b \in F$, 则 $(a\tau + b\sigma)^* = a\tau^* + b\sigma^*$, 即求和与算子伴随可交换.

- (3) $\tau \in \mathcal{L}(V)$ 可逆 $\Longrightarrow (\tau^{-1})^* = (\tau^{\times})^{-1}$.

证: $(1) \ \forall f \in W^*, \ (a\tau + b\sigma)^*(f) = f \circ (a\tau + b\sigma) = af \circ \tau + bf \circ \sigma = a\tau^{\times}(f) + b\tau^{\times}(f), \$ 即得证.

 $(2) \ \forall f \in V^*, \ (\tau \circ \sigma)^*(f) = f \circ (t \circ \sigma) = f \circ (\tau \circ \sigma) = (f \circ \tau) \circ \sigma = \sigma^*(f \circ \tau) = \sigma^*(\tau^{\times}(f)) = (\sigma^* \circ \tau^{\times}(f)) = (\sigma^* \circ \tau^{\times})(f) \Longrightarrow (\tau \circ \sigma)^* = \sigma^* \circ \tau^{\times}.$

(3) $1^* = (\tau \circ \tau^{-1})^* = (\tau^{-1})^* \circ \tau^{\times} \Longrightarrow (\tau^{-1})^* = (\tau^{\times})^{-1}$.

定理 3.8 (课本定理3.18): $\dim V < \infty$, $\dim W < \infty$, $\tau \in \mathcal{L}(V,W)$, $\tau^* \in \mathcal{L}(V,W)$, $\tau^{**} \in \mathcal{L}(V^{**},W^{**}) = \mathcal{L}(V,W)$, 则 $\tau^{**} = \tau$.

定理 3.9 (课本定理3.22): $\tau \in \mathcal{L}(V, W)$, 其中 dim $V < \infty$, dim $W < \infty$, \mathcal{B} 和 \mathcal{C} 分别是 V 和 W 的定序基, \mathcal{B}^* 和 \mathcal{C}^* 分别是 \mathcal{B} 和 \mathcal{C} 的对偶基, 则 $[\tau^{\times}]_{\mathcal{C}^*\mathcal{B}^{\times}} = ([\tau]_{\mathcal{B}\mathcal{C}})^T$.

证: 设 dim V=n, dim W=m, V 的定序基 $\mathcal{B}=\{b_1,\cdots,b_n\}$, W 的定序基 $\mathcal{C}=\{c_1,\cdots,c_m\}$, $\tau\in\mathcal{L}(V,W)$ 的矩阵 表示为 $[\tau]_{\mathcal{BC}} = [\alpha_{ij}]_{m \times n}, \, \tau^{\times} \in \mathcal{L}(W^*, V^*)$ 的矩阵表示为 $[\tau^{\times}]_{\mathcal{C}^*\mathcal{B}^*} = [\beta_{ij}]_{n \times m},$

$$\mathbb{P}[\tau]_{\mathcal{BC}} = \left([\tau(b_1)]_{\mathcal{C}} \cdots [\tau(b_n)]_{\mathcal{C}} \right), \ \Leftrightarrow \ [\tau(b_i)]_{\mathcal{C}} = \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{mi} \end{pmatrix}, \ \tau(b_i) = \sum_{k=1}^m \alpha_{ki} c_k.$$

又 :: $\tau^*(c_i^*) = c_i^* \circ \tau$, 我们将这一复合函数作用在 b_j 上有 $(c_i^* \circ \tau)(b_j) = (\sum_{l=1}^n \beta_{li} b_l^*)(b_j) = \sum_{l=1}^n \beta_{li} b_l^*(b_j) = \beta_{ji}$ $\Longrightarrow \beta_{ji} = c_i^*(\tau(b_j)),$ 代入上面的 $\tau(b_j)$ 的展开式得 $\beta_{ji} = c_i^* \left(\sum_{k=1}^m \alpha_{kj} c_k\right) = \sum_{k=1}^m \alpha_{kj} c_i^*(c_k) = \sum_{k=1}^m \alpha_{kj} \delta_{ik} = \alpha_{ij},$ 故得证.

Chapter 4

模 I: 基本性质

定义 4.1 模: R 为有单位元交换环, (M,+) 为交换群, 数乘: $R \times M \to M$, $(r,m) \mapsto m$ 满足

- (1) (r+t)m = rm + tm
- (2) (rt)m = r(tm)
- (3) $r(m_1 + m_2) = rm_1 + rm_2$
- (4) 1m = m

则称 M 为 R 上的模, 记作 $R - \text{mod} \equiv \{R \text{ 上的模}\}.$

:· 域是一种特殊的环, :: 向量空间是一种特殊的模. 0m = 0.

iE:
$$0m + 0m = (0 + 0)m = 0m \Longrightarrow 0m = 0.$$

r0 = 0.

$$\operatorname{i} : r0 + r0 = r(0+0) = r0 \Longrightarrow r0 = 0.$$

$$(-r)m = r(-m) = -(rm).$$

i.:
$$(-r)m + rm = (-r + r)m = 0m = 0 \Longrightarrow (-r)m = -rm$$
.

$$r(-m) + rm = r(m + (-m)) = r0 = 0 \Longrightarrow r(-m) = -rm.$$

 $\forall r \in R$, 可构造映射 $\bar{r}: M \to M$, $m \mapsto rm$. \bar{r} 是 M 上的群同态, 又称**自同态**, 记作 $\bar{r} \in \operatorname{End}(M) \equiv \{M \text{ 上的自同态}\}$, $\operatorname{End}(M)$ 关于同态的加法、复合成环, 其单位元为 M 上的恒等映射, 记作 1_M , 故还可构造映射 $\phi: R \to \operatorname{End}(M), r \mapsto \bar{r}$.

证:
$$\bar{r}(m+n) = r(m+n) = rm + rn = \bar{r}(m) + \bar{r}(n)$$
, 即映射 \bar{r} 下保持运算结构, 故得证.

例 4.1: 在交换群
$$(G, +)$$
 上定义 $1a = a, \ 2a = a + a, \ \cdots, \ na = \overbrace{a + \cdots + a}^{n + \alpha, -1}, \ -a = -1a, \ -2a = (-a) + (-a),$ 一 $n + (-a)$ 数乘 $\alpha : \mathbb{Z} \times G \to G, \ (n, a) \mapsto na, \$ 满足

(1) α 是映射

4. 模 I: 基本性质

- (2) (n+m)a = na + ma
- (3) (nm)a = n(ma)
- $(4) \ n(a+b) = na + nb$

证: (1) na 的定义依赖于 G 中的运算, 而运算的本质是卡氏积至原集合的映射, 有唯一的结果, 故得证.

(2)
$$(n+m)a = \underbrace{a+\cdots+a}^{(n+m) \uparrow a \text{ HJm}} = \underbrace{a+\cdots+a}^{n \uparrow a \text{ HJm}} + \underbrace{a+\cdots+a}^{m \uparrow a \text{ HJm}} = na + ma.$$

$$(3) (nm)a = \overbrace{a + \cdots + a}^{nm \ \uparrow \ a \ \text{dlm}} \underbrace{a + \cdots + a}_{m \ \uparrow \ a \ \text{dlm}} \underbrace{a + \cdots + a}_{m \ \uparrow \ a \ \text{dlm}} \underbrace{a + \cdots + a}_{m \ a \ + \cdots + ma} = n(ma).$$

$$(4) \ \ n(a+b) = \overbrace{(a+b) + \cdots + (a+b)}^{n \ \uparrow \ (a+b)} = \underbrace{a + \cdots + a}_{n \ \uparrow \ a} + \underbrace{b + \cdots + b}_{n \ h} = na + nb.$$

(5) 由定义显然.

故
$$M \in \mathbb{Z} - \text{mod}$$
.

例 4.2:
$$\forall$$
 交换群 $(G,+)$, $G \in \mathbb{Z} - \text{mod}$.

例 4.3:
$$R \in R - \text{mod}$$
, 其中的数乘即 R 中的乘法.

例 4.4:
$$\mathbb{Z}_p = \frac{\mathbb{Z}}{p} = \{[0], \cdots, [p-1]\}, (\mathbb{Z}_p, +)$$
 是交换群, 故 $\mathbb{Z}_p \in \mathbb{Z} - \text{mod.}$

$$\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}, \ n[k] = \overbrace{[k] + \cdots + [k]}^{n \, \uparrow \, [k]} \ \text{相加}$$

$$\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}, n[k] = [k] + \cdots + [k] = [nk],$$

注意到 $[2] \neq [0]$, $3 \neq 0$, 但 3[2] = [6] = [0], 即非零元素的卡氏积在数乘映射下得到零元素, 这意味着非零的单个元 素不再线性无关.

实际上,
$$\mathbb{Z}_p$$
 中无线性无关元素.

例 4.5:
$$R^n = \{(r_1, \dots, r_n) \mid r_i \in R\} \in R - \text{mod}, 其中 (r_1, \dots, r_n) + (l_1, \dots, l_n) = (r_1 + l_1, \dots, r_n + l_n),$$
 $r(r_1, \dots, r_n) = (rr_1, \dots, rr_n).$

定义 4.2 子模: $\emptyset \neq S \subseteq M$, 若在 M 的运算下, $S \in R$ 上的模, 则称 S 为 M 的子模.

定理 4.1 判定子模的方法(课本定理4.1): $\emptyset \neq S \subseteq M$ 是 M 的子模 $\iff \forall u, v \in S, \forall r, t \in R, ru + tv \in S$ (即 线性运算封闭).

定理 **4.2** (课本定理**4.2**): $S,T\subseteq M$ 是 M 的子模, 则 $S\cap T$ 为 M 的子模, $S+T\equiv \{u+v\mid u\in S,v\in T\}$ 为 M 的子模.

定理 4.3: $R \in R - \text{mod}$, R 的子模即 R 上的理想.

证: 设S为R的子模,则

- (1) $\emptyset \neq S \subseteq R$
- (2) $\forall u, v \in S, \forall r, t \in R, ru + tv \in S$. 特别地, 令 $r = 1, t = -1, 得 u v \in S$, 令 t = 0, 得 $ru \in S$ 故 S 为 R 的理想.

定义 4.3 <u>生成子模和生成集</u>: $\emptyset \neq S \subseteq M \in R - \text{mod}$, S 的生成子模为 $\langle \langle S \rangle \rangle \equiv$ 包含 S 的最小子模 \equiv 包含 S 的所有子模的交 $= \{ \sum_{i=1}^n r_i u_i \mid r_i \in R, u_i \in S, n \in \mathbb{Z}^+ \}$, 其中称 S 为生成集.

 $\forall M \in R - \text{mod}$, 都有生成集, :: $M = \langle \langle M \rangle \rangle$.

定义 4.4 有限生成模: 生成集由有限个元素构成的生成模.

定义 4.5 循环模: 由一个元素生成的模.

例 4.6: $R \in R - \text{mod}$ 是一个循环模, $\therefore R = \langle \langle 1 \rangle \rangle = \{r1 \mid r \in R\}$.

有限生成模的子模未必是有限生成的,即有限生成的性质未必会由模遗传至其子模.

例 4.7: 多项式环 $R = F[x_1, \cdots, x_n, \cdots] \equiv \left\{ \sum_{k_i=0}^{N} a_{i_1, \cdots, i_n} x_{i_1}^{k_1} \cdots x_{i_n}^{k_n} \mid a_{i_1 \cdots i_n} \in F, N_i \in \mathbb{Z}^+ \right\}, R \in R - \text{mod } \mathbb{R}$ $R = \langle \langle 1 \rangle \rangle.$

假设 S 是有限生成的, $S = \langle \langle f_1, \cdots, f_m \rangle \rangle$, $f_i = \sum_{j_1, \cdots, j_m = 0}^{N_i} a_{i_1, \cdots, i_n}^{j_1, \cdots, j_n} x_{i_1}^{j_1} \cdots x_{i_n}^{j_n}$ 是有限个变元的有限次多项式, 故 S 无法生成无限个变元的无限次多项式, 即 S 并非是有限生成的.

定义 4.6 <u>线性无关</u>: $\emptyset \neq S \subseteq M$, 若 $\sum_{i=1}^{n} r_i u_i = 0$ 其中 $u_i \in S$, $r_i \in R \forall i \Longrightarrow r_1 = \cdots = r_n = 0$, 则称 S 线性 无关.

在模中,线性无关元素未必存在,如例 4.4 中 Zp 无线性无关元素.

在向量空间中,我们有: u,v 线性相关 \iff \exists 不全为零的 $r,t\in R$, s.t. ru+tv=0, 无妨设 $r\neq 0$, 则 $ru=-tv\Longrightarrow u=-\frac{t}{r}v$.

在模中, 上述说法未必成立: u,v 线性相关 \iff 3 不全为零的 r,t, s.t. ru+tv=0, (无妨设 $r\neq 0$,) 则 ru=-tv, 但由于未必能找到 r 的逆元, 所以未必有 $u=-\frac{t}{r}v$. 故在模中, 线性相关元素未必能相互表示, 即一个线性相关元素未必能由与其线性相关的元素线性表示.

定义 4.7 自由模: $M \in R - \text{mod}$, $M = \langle \langle \mathcal{B} \rangle \rangle$ 且 \mathcal{B} 线性无关, 则称 M 为自由模, \mathcal{B} 为 M 的基.

定理 4.4 (课本定理4.3): $\emptyset \neq \mathcal{B} \subseteq M$ 是 M 的基, 则 $\forall v \in M, v$ 可由 \mathcal{B} 中的元素唯一地线性表示.

定理 4.5 (课本定理4.4): \mathcal{B} 是 M 的基 \iff \mathcal{B} 为 M 的极小生成集且为 M 的极大线性无关集.

例 4.8: $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}, \mathbb{Z}_6 = \langle\langle[1]\rangle\rangle = \langle\langle[5]\rangle\rangle,$ $\because 0[1] = [0], 1[1] = [1], 2[1] = [2], 3[1] = [3], 4[1] = [4], 5[1] = [5],$ 0[5] = [0], 1[5] = [5], 2[5] = [10] = [4], 3[5] = [15] = [3], 4[5] = [20] = [2], 5[5] = [25] = [1].故 \mathbb{Z}_6 的表示不唯一.

 $M \in R - \text{mod}$, 但 M 的子模未必自由.

例 4.9: $R = \mathbb{Z} \times \mathbb{Z} = \{(n,m) \mid n,m \in \mathbb{Z}\}$, 其中 (n,m)(k,l) = (nk,ml), (n,m) + (k,l) = (n+k,m+l) 是仅为交换环 (而非域), $R \in R - \text{mod}$, $R = \langle \langle (1,1) \rangle \rangle = \{r(1,1) \mid r \in R = \mathbb{Z} \times \mathbb{Z}\}$, $\therefore R$ 自由.

但子模 $S = \mathbb{Z} \times \{0\} = \{(n,0) \mid n \in \mathbb{Z}\}, \because \forall n \neq 0, (n,0)(0,1) = (0,0), \therefore$ 无线性无关元, 从而非自由.

定义 4.8 <u>模同态</u>: $M, N \in R - \text{mod}$, 映射 $\tau : M \to N$, 若 $\forall u, v \in M$, $r, t \in R$, $\tau(ru + tv) = r\tau(u) + t\tau(v)$, 则 τ 为 M 到 N 的模同态, 记作 $\tau \in \text{hom}(M, N) = \{M \text{ 到 } N \text{ 的模同态}\}.$

取 r = t = 1, 则 $\forall u, v \in M$, $\tau(u + v) = \tau(u) + \tau(v)$, 故 τ 为群同态.

定理 **4.6** (课本定理**4.6**): (1) $\ker \tau \equiv \{v \in M \mid \tau(v) = 0\}$ 是 M 的子模. τ 单射 $\iff \ker \tau = \{0\}$.

(2) $\operatorname{Im} \tau \equiv \{\tau(v) \mid v \in M\}$ 是 N 的子模. τ 满射 $\iff \operatorname{Im} \tau = N$.

定义 4.9 <u>商模:</u> $S \in M$ 的子模, **商**群 $\frac{M}{S} \equiv \{[v] \mid v \in M\}$.

[u] + [v] = [u + v], r[u] = [ru] 是合法运算, : 结果与代表元选取无关.

 $\Pi_S: M \to \frac{M}{S}, v \mapsto [v],$ 且满足

- (1) Π_S 满射.
- (2) $\ker \Pi_S = S$.

定理 4.7 同态第一基本定理: 若 $S \subseteq \ker \tau$, 则 $\exists ! \tau'$, s.t. $\tau = \tau' \circ \Pi_S$.

 $\ker \tau' = \frac{\ker \tau}{S}$.

定理 4.8 <u>同构第一基本定理:</u> 若 $S = \ker \tau$, 则 $\tau' = \frac{\ker \tau}{S} = \{[0]\}$, 即 τ' 单射.

 $:: \operatorname{Im} \tau' = \operatorname{Im} \tau, :: 若进一步有 \tau, 则 \tau' 同构.$

Chapter 5

模 II: 自由与诺特模

定义 5.1 <u>诺特(Notherian)</u> 模: $M \in R - \text{mod}$, S_1, \dots, S_n, \dots 是 M 的子模且 $S_1 \subseteq \dots \subseteq S_n \subseteq \dots$, 若 $\exists K \in \mathbb{Z}^+$, s.t. $S_K = S_{K+1} = \dots$, 则称 M 满足升链条件 (A.C.C.), 称满足 ACC 的模为诺特模.

定理 5.1 (课本定理5.7): (1) $M \in R - \text{mod}$ 为诺特模 $\iff M$ 的子模是有限生成的.

(2) R 是诺特环 \iff R 的理想都是有限生成的.

```
证: (1) "\Longrightarrow": 设 S \in M 的子模. 若 S = \{0\}, 则 S = \langle \langle 0 \rangle \rangle 显然有限生成,
```

若 $S \neq \{0\}$, 则 $\exists 0 \neq v_1 \in S$, 令 $S_1 = \langle \langle v_1 \rangle \rangle \subseteq S$,

若 $S_1 = S$, 则 S 有限生成,

若 $S_1 \neq S$, 则 $\exists v_2 \in S - S_1$, 令 $S_2 = \langle \langle v_1, v_2 \rangle \rangle \subseteq S$, 则 $S_1 \subseteq S_2 \subseteq S$,

若 $S_2 = S$, 则 S 有限生成,

若 $S_2 \neq S$, 则 $\exists 0 \neq v_3 \in S - S_2$, 令 $S_3 = \langle \langle v_1, v_2, v_3 \rangle \rangle \subseteq S$, 则 $S_1 \subseteq S_2 \subseteq S_3 \subseteq S$,

若 $S_3 = S$, 则 S 有限生成,

若 $S_3 \neq S$, 则 $\exists 0 \neq v_4 \in S - S_3$, 令 $S_4 = \langle \langle v_1, v_2, v_3, v_4 \rangle \rangle \in S$, 则 $S_1 \subseteq S_2 \subseteq S_3 \subseteq S_3 \subseteq S_4 \subseteq S$,

. . .

以此类推, 得 $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq \cdots$,

:: S 满足 ACC, $:: \exists K \in \mathbb{Z}^+$, s.t. $S_K = S_{K+1} = \cdots = S = \langle \langle v_1, \cdots, v_n \rangle \rangle$, 故 S 有限生成.

"=": 取 M 的任一子模升链 $S_1 \subset \cdots \subset S_n \subset \cdots$, 则 $S = \cap_{i \in J} S_i$ 是 M 的子模,

: M 的子模是有限生成的, : S 必然是有限生成, 故设 $S = \langle \langle v_m, \cdots, v_m \rangle \rangle$,

 $\forall K = 1, \dots, m, u_k \in S = \bigcup_{i \in J} S_i \Longrightarrow \exists i_k \in J, \text{ s.t. } u_k \in S_{i_k},$

令 $K = \max\{i_1, \dots, i_m\}$, 则由升链的性质, $u_1, \dots, u_m \in S_K$

 $\Longrightarrow S_K = S$, 故升链必终止于 S_K .

综上, 得证.

例 5.1: $:: \mathbb{Z}$ 的任意理想均有单个元素生成, 具体地说, $I \in \mathbb{Z}$ 的理想, 则 $I = \langle n \rangle$, 其中 n 为 I 中的最小整数, $:: \mathbb{Z}$ 是诺特环.

例 5.2: $F[x] = \{\sum_{i=0}^{n} a_i x^i \mid a_i \in F, n \in \mathbb{Z}\}, I \in F[x]$ 的理想, 则 $I = \langle f(x) \rangle$, 其中 $\deg f(x)$ 是 I 中最小的¹, 故

 $^{^{1}}$ 多项式间的除法: 若 $\deg g(x) \geq \deg f(x)$, 则 $\exists q(x), r(x) \in F[x]$, s.t. g(x) = q(x)f(x) + r(x) 且 (r(x) = 0 或 $0 < \deg r(x) < \deg f(x)$)

 $(F[x], +, \cdot)$ 是诺特环.

定义 5.2 主理想:由一个元素生成的诺特环.

定理 5.2 (课本定理5.8): R 为有单位元的交换环,

R 是诺特环 \iff R 上的有限生成模都是诺特模.

上述定理意味着有限生成的性质对诺特环是遗传的.

证: " \leftarrow ": $R \in R - \text{mod } \perp R = \langle \langle 1 \rangle \rangle$, 故 R 为诺特环.

"⇒": 取 R 上的有限生成模 $M = \langle \langle v_1, \cdots, v_n \rangle \rangle \in R - \text{mod}, M = \{ \sum_{i=1}^n r_i v_i \mid r_i \in R \}.$

定义映射 $\tau: \mathbb{R}^n \to M, (r_1, \cdots, r_n) \mapsto \sum_{i=1}^n r_i u_i.$

- (1) $:: \tau(r(r_1, \dots, r_n) + t(l_1, \dots, l_n)) = \tau(r_1 + tl_1, \dots, r_n + tl_n) = \sum_{i=1}^n (r_i + tl_i) u_i = r \sum_{i=1}^n r_i u_i + t \sum_{i=1}^n l_i u_i = r \tau(r_1, \dots, r_n) + t\tau(l_1, \dots, l_n), \therefore \tau$ 是 R^n 到 M 上的模同态.
- (2) ∵ $\forall (r_1, \dots, r_n), \exists \sum_{i=1}^n r_i u_i, \therefore \tau$ 满射.

$\Longrightarrow \tau$ 满同态.

设 $S \in M$ 的任一子模, 则 $\tau^{-1}(S) \in R^n$ 的子模, 且 $:: \tau$ 满同态, $:: \tau(\tau^{-1}(S)) = S$.

【思路】根据定理 5.2, 要证 M 诺特, 即证 M 的子模 S 有限生成, 于是先证 R^n 的子模有限生成, 从而 R^n 诺特, 进而利用引理 5.1 得 S 有限生成.

数学归纳法: 当 n=1 时, R 诺特 $\Longrightarrow R^n$ 诺特.

假设当 n = k 时, R^k 诺特, 则当 n = k + 1 时, 要证 R^{k+1} 诺特, 即证 R^{k+1} 的子模有限生成.

取 I 为 R^{n+1} 子模, 取 $I_1 = \{(0, \dots, 0, a_{k+1}) \mid \exists a_1, \dots, a_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}) \in I\}, I_2 = \{(a_1, \dots, a_k, 0) \mid \exists a_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}) \in I\}.$

 $\forall (0, \dots, 0, a_{k+1}), (0, \dots, 0, b_{k+1}) \in I_1, \exists a_1, \dots, a_k, b_1, \dots, b_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}), (b_1, \dots, b_k, b_{k+1}) \in I_1, \exists a_1, \dots, a_k, b_1, \dots, b_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}), (b_1, \dots, b_k, b_{k+1}) \in I_1, \exists a_1, \dots, a_k, b_1, \dots, b_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}), (b_1, \dots, b_k, b_{k+1}) \in I_1, \exists a_1, \dots, a_k, b_1, \dots, b_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}), (b_1, \dots, b_k, b_{k+1}) \in I_1, \exists a_1, \dots, a_k, b_1, \dots, b_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}), (b_1, \dots, b_k, b_{k+1}) \in I_1, \exists a_1, \dots, a_k, b_1, \dots, b_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}), (b_1, \dots, b_k, b_{k+1}) \in I_1, \exists a_1, \dots, a_k, a_{k+1}, \dots, a_k, a_k, \dots, a$

:: I 是子模, $:: \forall r, t \in R, r(a_1, \dots, a_k, a_{k+1}) + t(b_1, \dots, b_k, b_{k+1}) = (ra_1 + tb_1, \dots, ra_k + ta_k) \in I \Longrightarrow r(0, \dots, 0, a_{k+1}) + t(0, \dots, 0, b_{k+1}) = (0, \dots, 0, ra_{k+1} + tb_{k+1}) \in I_2$, 故 I_1 为 R^{k+1} 的子模.

 $\forall (a_1, \dots, a_k, 0), (b_1, \dots, b_k, 0) \in I_2, \exists a_{k+1}, b_{k+1}, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}), (b_1, \dots, b_k, b_{k+1}) \in I$

 $\therefore I$ 是子模, $\therefore \forall r, t \in R, r(a_1, \dots, a_k, a_{k+1}) + t(b_1, \dots, b_k, b_{k+1}) = (ra_1 + tb_1, \dots, ra_k + ta_k) \in I \Longrightarrow r(a_1, \dots, a_k, 0) + t(b_1, \dots, b_k, 0) = (ra_1 + tb_1, \dots, ra_k + tb_k, 0) \in I_2$, 故 I_2 为 R^{k+1} 的子模.

令 $J_1 = \{a_{k+1} \mid (0, \dots, 0, a_{k+1}) \in I_1\}$, $J_2 = \{(a_1, \dots, a_k) \mid (a_1, \dots, a_k) \in I_2\}$, 易证 J_1 是 R 的子模, J_2 是 R^k 的子模.

 $\therefore R, R^k$ 诺特, $\therefore J_1, J_2$ 有限生成, 设 $J_1 = \langle \langle g_1, \cdots, g_m \rangle \rangle$, $J_2 = \langle \langle f_1, \cdots, f_n \rangle \rangle$, 其中 $g_1 \in R$, $f_i \in R^k$.

于是 $\forall i = 1, \dots, m, (0, \dots, 0, g_i) \in I_1$, 由 I_1 的定义, $\exists g_{i_1}, \dots, g_{i_k} \in R$, s.t. $\bar{g}_i \equiv (g_{i_1}, \dots, g_{i_n}, g_i) \in I$,

又有 $\bar{f}_i = (f_i, 0),$

 $\forall r = (r_1, \dots, r_k, r_{k+1}) \in I, \ \emptyset \ (0, \dots, 0, r_{k+1}) \in I_1, \ \emptyset \ r_{k+1} \in J_1 = \langle \langle g_1, \dots, g_m \rangle \rangle,$

于是 $r_{k+1} = \sum_{i=1}^{m} \alpha_i g_i$, $(h,0) \equiv r - \sum_{i=1}^{m} \alpha_i \bar{g}_i = (*, \cdots, *, 0) \in I$, 从而 $(h,0) \in I_2$, $h \in J_2$, 设 $h = \sum_{i=1}^{n} \beta_i f_i$

 $\Longrightarrow r = \sum_{i=1}^{m} \alpha_i \bar{g}_i + \sum_{i=1}^{n} \beta_i \bar{f}_i$, 故 I 由 $\bar{g}_1, \dots, \bar{g}_m, \bar{f}_1, \dots, \bar{f}_n$ 生成 $\Longrightarrow R^{k+1}$ 诺特 $\Longrightarrow R^n$ 诺特 $\forall n \Longrightarrow S = \tau(\tau^{-1}(S))$ 有限生成.

引理 5.1: $\tau: M \to N$ 满同态, 则 M 有限生成 $\Longrightarrow N$ 有限生成, 即有限生成模的满同态像有限生成.

定理 5.3 <u>Hilbert 基本定理(课本定理5.9)</u>: R 是诺特环 $\Longrightarrow R[x] \equiv \{\sum_{i=0}^{n} a_i x^i \mid a_i \in R, n \in \mathbb{Z}^+\}$ 诺特, 其中 $\sum_{i=0}^{n} a_i x^i + \sum_{j=0}^{m} b_j x^j = \sum_{k=0}^{\max\{n,m\}} (a_k + b_k) x^k, \left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{j=0}^{m} b_j x^j\right) = \sum_{k=0}^{nm} \left(\sum_{i+j=k} a_i b_j\right) x^k.$

证: 设 $I \in R[x]$ 的理想, $I_k = \{r_k \in R \mid \exists a_0 + a_1 x + \dots + a_{k-1} x^{k-1} + r_k x^k \in I\}$ 是 R 的理想,

 $\exists : \exists f(x) \in I, xf(x) \in I, : I_0 \subseteq I_1 \subseteq \cdots \subseteq I_K \subseteq \cdots$

又 :: R 诺特, :: $\exists K \in \mathbb{Z}^+$, s.t. $I_K = I_{K+1} = \cdots$, 且 R 的理想均有限生成,

故设 $I_0 = \langle r_{01}, r_{02}, \cdots, r_{0t_0} \rangle$, $I_1 = \langle r_{11}, r_{12}, \cdots, r_{1t_1} \rangle$, \cdots , $I_K = \langle r_{K1}, r_{K2}, \cdots, r_{Kt_K} \rangle$,

 $g_{01} = r_{01} \in I, g_{02} = r_{02} \in I, \dots, g_{0t_0} = r_{0t_0} \in I,$

 $g_{11} = r_{11}x + O(1) \in I, g_{12} = r_{12}x + O(1) \in I, \cdot, g_{1t_1} = r_{1t_1}x + O(1) \in I,$

• • • .

 $g_{K1} = r_{K1}x^k + O(x^{k-1}) \in I, r_{K2}x^K + O(x^{K-1}) \in I, \dots, g_{Kt_K} = r_{Kt_K}x^K + O(x^{K-1}) \in I,$

则 I 由 $\{g_{ij} \mid i=1,\cdots,K; j=1,\cdots t_i\}$ 生成,

 $\forall f(x) \in I, \ \ \ \ \ \ \ \ f(x) = \sum_{i=0}^{n} a_i x^i,$

取 $a_n \in I_n$, 若 n > K, 则 $I_n = I_K = \langle r_{K1}, \cdots, r_{Kt_K} \rangle$, 从而 $a_n = \sum_{i=r}^{t_K} \alpha_i r_i$, $\Longrightarrow f(x) = a_n x^n + O(x^{n-1}) = x^{n-1} \left(\sum_{i=1}^{t_K} \alpha_i g_{Ki} \right) + O(x^{n-K}) = x^{n-K} \left(\sum_{i=1}^{t_K} \alpha_i g_{Ki} \right) + O(x^{K-1}) = \sum_{i=1}^{t_K} \alpha_i r_{Ki} x^n + O(x^{n-1})$

 $f(x) \to f(x) - x^{n-K} \left(\sum_{i=1}^{t_K} \alpha_i g_{Ki} \right) = \beta_{n-1} x^{n-1} + O(x^{n-2}),$

重复以上操作直至多项式的最高次数 n < K, 此时, $a^n \in I_n = \langle r_{n1}, \cdots, r_{nt_n} \rangle$, $a_n = \sum_{j=1}^{t_n} \beta_j r_{nj}$, $f(x) - \sum_{j=1}^{t_n} \beta_j g_{nj} =$, 即执行以上操作有限次后, f(x) 完全由 g_{ij} 表示 $\Longrightarrow I$ 有限生成, 故由定理 5.1 得, R[x] 诺特.

例 5.3: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ 诺特 $\Longrightarrow \mathbb{Z}[x], \mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$ 诺特.

 $\mathbb{R}[z] = \{ \sum_{i=0}^{n} a_i x^i \mid a_i \in \mathbb{R}, n \in \mathbb{Z}^+ \},$ $f_1(x) = a_{1n} x^n + a_{1,n-1} x^{n-1} + \dots + a_{11} x + a_{10} = 0,$ $f_2(x) = a_{mn} x^n + a_{m,n-1} x^{n-1} + \dots + a_{m1} x + a_{m0} = 0,$ $\Leftrightarrow h(x) = \sum_{i=1}^{m} \alpha_i f_i(x), \ \ \, \exists \ \, f_i(x) = 0 \ \forall i, \ \ \, \bigcup \ \, h(x) = 0.$

方程组与解集合之间存在的一一对应的关系, 正如 $\mathbb{R}[x]$ 与 \mathbb{R} 之间的对应关系.

Chapter 6

主理想整环上的模

定义 6.1 主理想整环(PID): 每个理想均由一个元素生成的整环.

例 6.1: \mathbb{Z} , $\mathbb{C}[x]$ 为 PID.

PID 必诺特.

 \mathbb{R} 为整环, $a, b, r, s \in R$,

(1)

定义 6.2 整除: r 整除 $s \iff s = xr, x \in R$, 记作 $r \mid s$.

(2)

定义 6.3 单位: R 中的可逆元.

例 6.2: \mathbb{Z} 中的 1 和 -1 互逆, 故 1 和 -1 均为单位. 实际上, 若 F 为域, 则 $F^* \equiv \mathbb{Z} - \{0\}$ 中的元素均为单位.

(3)

定义 6.4 素元: $0 \neq q \in R$, 若 $p \mid ab \Longrightarrow p \mid a$ 或 $p \mid b$, 则称 p 为素元.

(4)

定义 6.5 不可约元: $0 \neq r \in R$, 若 $r = ab \Longrightarrow a$ 或 b 为单位, 则称 r 为不可约元.

(5)

定义 6.6 互素: r 与 b 互素 $\Longrightarrow a 与 b$ 无非单位公因子.

注意:

• 单元必素, 必不可约.

证: 设 $0 \neq r \in R$ 为单位, 则必 $\exists a$ 的逆 a^{-1} .

若 $r \mid ab$, 则 $(ar^{-1})r = a$, $(br^{-1})r = b \Longrightarrow r$ 为素元.

若 r = ab, 则 $r^{-1}r = r^{-1}(ab) = (r^{-1}a)b = 1$, $r^{-1}a$ 为 b 的逆元, 即 b 可逆 $\Longrightarrow r$ 为不可约元.

• 对于整环来说, 素元不可约, 反之未必.

证: 设 p 为素元, 若 p = ab, 则 $1p = p = ab \Longrightarrow p \mid ab$.

 $\therefore p$ 为素元, $\therefore p \mid a$ 或 p = b.

无妨 $p \mid a$, 则 a = px, 其中 $x \in R$

 $\implies p = ab = pxb \Longrightarrow p(1 - xb) = 0,$

 $\therefore p \neq 0$ 且 R 为整环 (R 无零因子), $\therefore 1 - xb = 0 \Longrightarrow xb = 1 \Longrightarrow b$ 为单位, 故 p 为不可约元.

例 6.3: (不可约元非素的例子) $R = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ 为整环.

 $9 = 3^2 = (2 + \sqrt{-5})(2 - \sqrt{-5}),$

3 不可约 (证略), $3 \mid (2+\sqrt{-5})(2-\sqrt{-5})$, 但 $3 \nmid (2+\sqrt{-5})$, $3 \nmid (2-\sqrt{-5}) \Longrightarrow 3$ 非素.

• 对于非整环来说, 素元未必不可约.

例 6.4: $(\mathbb{Z}_6, +, \cdot)$ 非整环, [2] 为素元, 但 [2] = [2][4], [2] 和 [4] 均非单位 \Longrightarrow [2] 可约.

定理 6.1 (课本定理0.29): R 为 PID, $a, b \in R$,

a 与 b 互素 $\iff \exists r, t \in R$, s.t. ra + tb = 1.

证: " \Longrightarrow ": R 为 PID, 令 $I = \langle a, b \rangle$,

: R 是主理想, : I 可由一个元素生成, 设 $I = \langle c \rangle$, 其中 $c \in R$,

又 $: a \in I, b \in I, : c \mid a, c \mid b \Longrightarrow c$ 为 a和 b的公因子,

 $:: a, b \text{ 互素}, :: c \text{ 为单位}, 即 ∃c^{-1} \in R, \text{ s.t. } 1 = c^{-1}c \in I,$

 $\therefore 1 \in I, \therefore 1 = ra + tb.$

" \rightleftharpoons ": 取 c 为 a 和 b 的公因子,

 $\therefore 1 = ra + tb, \therefore c \mid 1 \Longrightarrow c$ 可逆, 即 c 为单位.

有算法可以在给定 a,b 下找到 s,t, 此处不赘述.

定理 **6.2** (课本定理**0.29**): R 是 PID, $\forall 0 \neq r \in R$, $r = up_1 \cdots p_n$ 且该分解式唯一, 其中 u 为单位, p_i 是 R 中的不可约元, $n \in \mathbb{Z}^+$.

证: 若r不可约,则直接得证.

若 r 可约, 则设 $r = r_1 r_2$, r_1 和 r_2 至少有一个非单位,

无妨 r_1 不是单位, 则 r_1 不可约.

若 r_2 不可约, 则得证,

若 r_2 可约, 则 $\langle r \rangle \subseteq \langle r_2 \rangle$,

对 r_2 继续如上分解, 可得 $\langle r \rangle \subseteq \langle r_2 \rangle \subseteq \cdots$,

又 :: R 为 PID, :: R 诺特, 即 $\exists K \in \mathbb{Z}^+$, s.t. $\langle r_K \rangle = \langle r_{K+1} \rangle = \cdots$,

故重复如上分解操作, 最终可将 r 表为有限个不可约元的乘积.

定义 6.7 挠元(Torsion): $M \in R - \text{mod}, v \in M,$ 若 $\exists 0 \neq r \in R, \text{ s.t. } rv = 0,$ 则称 v 为 M 的挠元.

定义 6.8 挠模: 所有元素均为挠元的模.

定义 6.9 无挠: 若一模无非零挠元,则称该模无挠.

与线性无关类似, 若 $0 \neq v \in M$, $r \in R$, rv = 0, 且 M 无挠, 则 r = 0.

定义 6.10 挠子模: $M_{\text{tor}} = \{v \in M \mid v \text{ 为挠元}\}.$

 $\therefore 0$ 为 M 的挠元, $0 \in M_{\text{tor}}, \therefore M_{\text{tor}} \neq \emptyset$. M_{tor} 为 M 的子模.

iII: $\forall u, v \in M_{\text{tor}}, \exists 0 \neq r_1, r_2 \in R, \text{ s.t. } r_1 u = 0, r_2 v = 0,$

 $\forall s, t \in R, (r_1r_2)(su + tv) = r_2s(r_1u) + r_1t(r_2v) = r_2s \cdot 0 + r_1t \cdot 0 = 0 + 0 = 0$ 且 $r_1r_2 \neq 0 \Longrightarrow (su + tv) \in M_{tor}$, 故得证.

 $\frac{M}{M_{\mathrm{tor}}}$ 无挠.

证: 假设 $[0] \neq [v] \in \frac{M}{M_{\text{tor}}}$ 为挠元, 则 $\exists 0 \neq r \in R$, $r[v] = [rv] = [0] = M_{\text{tor}} \Longrightarrow rv \in M_{\text{tor}} \Longrightarrow v = r^{-1}(rv) \in M_{\text{tor}} \Longrightarrow [v] = M_{\text{tor}} = [0]$, 与假设矛盾, 故假设错误, 得证.

定义 6.11 零化子: $v \in M \in R - \text{mod}$, v 的零化子 $\text{ann}(v) \equiv \{r \in R \mid rv = 0\} \subseteq R$.

 $N \in M$ 的子模, 则 $\operatorname{ann}(N) = \{r \in R \mid rN \equiv \{rv \mid v \in N\} = \{0\}\} \subseteq R$.

ann(v) 是 R 的理想.

证: $\forall s, t \in \text{ann}(v), \ sv = tv = 0 \Longrightarrow sv - tv = (s - t)v = 0 \Longrightarrow s - t \in \text{ann}(v),$ $\forall r \in R, \ (rs)v = r(sv) = r \cdot 0 = 0 \Longrightarrow rs \in \text{ann}(v).$ 综上, 得证.

同理, ann(N) 也是 R 的理想

定义 6.12 阶: 若 R 为 PID, 则 ann(v), ann(N) 均为主理想, 其生成元分别称为 v 和 N 的阶.

定理 6.3 (课本定理6.5): R 为 PID, $M \in R - \text{mod}$ 自由, 则 M 的子模均自由.

证: (不严谨的证明, 仅针对) M 有限生成 (的特殊情况) 且自由. 设 $M = \langle \langle v_1, \cdots, v_n \rangle \rangle = \{ \sum_{i=0}^n r_i v_i \mid r_i \in R \}$, 其中 $\{v_1, \cdots, v_n\}$ 线性无关.

 $\forall v \in M, v = \sum_{i=1}^{n} r_i v_i$ 展开唯一, 定序后, $M \longleftrightarrow R^n, v \longleftrightarrow \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}$ 模同构.

设 $S \in \mathbb{R}^n$ 的子模, 取 R 的理想 $I_k = \{r_k \in R \mid \exists a_1, \dots, a_{k-1} \in R, \text{ s.t. } (a_1, \dots, a_{k-1}, r_k, 0, \dots, 0) \in S\}.$

定理 6.4 (课本定理6.6): R 为 PID, $M \in R - \text{mod}$ 有限生成,

M 自由 \iff M 无挠.

证: " \Longrightarrow ": 设 $M = \langle \langle v_1, \cdots, v_n \rangle \rangle$ 且 $\{v_1, \cdots, v_n\}$ 线性无关.

 $\forall v \in V, \ v = \sum_{i=1}^{n} r_i v_i,$

若 rv = 0, 则 $r(\sum_{i=1}^{n} r_i v_i) = \sum_{i=1}^{n} (rr_i) v_i = 0$,

 $:: \{v_1, \cdots, v_n\}$ 线性无关, $:: rr_1 = \cdots = rr_n = 0$,

 $\therefore R$ 为整环 (无零因子), \therefore 若 $r \neq 0$, 则 $r_1 = \cdots = r_n = 0 \Longrightarrow v = 0$, 故 M 无挠. "←": 取 $M = \langle \langle u_1, \cdots, u_m \rangle \rangle$,

无妨设 u_1, \dots, u_k 是其中最大的线性无关组, 即 $\forall i = k+1, \dots, m, \{u_1, \dots, u_k, u_i\}$ 线性相关

 \Longrightarrow ∃ 不全为零的 $a_{i1}, \dots, a_{ik}, a_i$, s.t. $a_{i1}u_1 + \dots + a_{ik}u_k + a_iu_i = 0$,

显然 $a_i \neq 0$ (否则 $a_{i1}u_1 + \cdots + a_{ik}u_k = 0 \Longrightarrow a_{i1} = \cdots = a_{ik} = 0$, 矛盾) $\Longrightarrow a_iu_i = -(a_{i1}u_1 + \cdots + a_{ik}u_k)$.

 $a = a_{k+1} \cdot \cdots \cdot a_m,$ 则 $a \neq 0,$

 $aM = \langle \langle au_1, \cdots, au_k, au_{k+1}, \cdots, au_m \rangle \rangle \subseteq \langle \langle u_1, \cdots, u_k \rangle \rangle,$

- $:: \{u_1, \dots, u_k\}$ 线性无关, $:: \langle\langle u_1, \dots, u_k \rangle\rangle$ 是自由模,
- : R 为 PID, 自由具有遗传性, : aM 自由. 构造映射 $\tau : M \to aM$, $v \mapsto av$.
 - (1) τ线性.
 - (2) ∵ M 无挠且 $a \neq 0$, ∴ $\ker \tau = \{v \in M \mid av = 0\} = \{0\}$.
 - (3) τ 满射.

故 τ 同构 \Longrightarrow M 也自由.

综上, 得证.

 $M \triangleq \bigoplus, M = \langle \langle v_1, \cdots, v_n \rangle \rangle,$

又: $\{v_1, \dots, v_n\}$ 线性无关, :. 对 $i \neq j$, $\langle\langle v_i \rangle\rangle \cap \langle\langle v_j \rangle\rangle = \{0\} \Longrightarrow M = \langle\langle v_1 \rangle\rangle \oplus \dots \oplus \langle\langle v_n \rangle\rangle$.

定理 6.5 (课本定理6.8): R 是 PID, $M \in R - \text{mod}$ 有限生成, 则 $M = M_{\text{free}} \oplus M_{\text{tor}}$, 其中 $M_{\text{free}} = \frac{M}{M_{\text{tor}}}$.

证: M_{tor} 为挠子模且 $\frac{M}{M_{\text{tor}}}$ 无挠.

 $\Pi: M \to \frac{M}{M_{tor}}, u \to [u]$ 满同态且 M 有限生成, 由引理 6.1 得 $\frac{M}{M_{tor}}$ 有限生成.

又 $:\frac{M}{M_{\mathrm{tor}}}$ 无挠 $:\frac{M}{M_{\mathrm{tor}}}$ 自由.

取 $\frac{M}{M_{\mathrm{tor}}} = \langle \langle [u_1], \cdots, [u_t] \rangle \rangle$, 其中 $\{u_1, \cdots, u_t\}$, 线性无关 (下证),

证: 若 $\sum_{i=1}^{t} r_i u_i = 0$, 则 $\Pi\left(\sum_{i=1}^{t} r_i u_i\right) = \sum_{i=1}^{t} r_i \Pi(u_i) = \sum_{i=1}^{t} r_i [u_i] = 0$, 又 $:: \{[u_1], \dots, [u_t]\}$ 线性无关, $:: r_1 = \dots = r_t = 0 \Longrightarrow \{u_1, \dots, u_t\}$ 线性无关.

故 $\langle\langle u_1,\cdots,u_t\rangle\rangle$ 为自由模, 记作 M_{free} .

确定了 M_{free} 和 M_{tor} 后, 下面来证 $M = M_{\text{free}} \oplus M_{\text{tor}}$:

$$\forall v \in M, \ \Pi(v) = [v] \in \frac{M}{M_{tor}} = \langle \langle [u_1], \cdots, [u_t] \rangle \rangle \Longrightarrow \Pi(v) = [v] = \sum_{i=1}^t l_i[u_i].$$

$$\Pi(v-u) = \Pi(v) - \Pi(u) = 0 \Longrightarrow v - u \in \ker \Pi = M_{\text{tor}},$$

于是
$$v = u + (v - u)$$
, 其中 $u \in M_{\text{free}}$, $v - u \in M_{\text{tor}} \Longrightarrow M = M_{\text{free}} + M_{\text{tor}}$.

$$\mathbb{R} \ w \in M_{\text{free}} \cap M_{\text{tor}}, \ \mathbb{M} \ w \in M_{\text{free}} \iff w = \sum_{i=1}^t \alpha_i u_i,$$

 $\mathbb{H}\ w \in M_{\mathrm{tor}} \Longleftrightarrow \Pi(w) = 0$

$$\Longrightarrow 0 = \Pi(w) = \Pi\left(\sum_{i=1}^t \alpha_i u_i\right) = \sum_{i=1}^t \alpha_t \Pi(u_i) \Longrightarrow \alpha_1 = \dots = \alpha_t = 0 \Longrightarrow w = 0 \Longrightarrow M_{\text{free}} \cap M_{\text{tor}} = \{0\}.$$
 综上,得证.

引理 6.1: $\tau: M \to N$ 满同态, 若 M 有限生成, 则 N 有限生成.

 $\mathbf{\overline{u}}$: $: \tau : M \to N$ 满同态, $: \forall w \in N, \exists u \in M, \text{ s.t. } w = \tau(u),$

又 ::
$$M$$
 有限生成,设 $M = \langle \langle v_1, \cdots, v_k \rangle \rangle$, :: $u = \sum_{i=1}^k r_i u_i \Longrightarrow \tau(u) = \tau\left(\sum_{i=1}^k r_i u_i\right) = \sum_{i=1}^k r_i \tau(u_i)$, 故 $N = \langle \langle \tau(u_1), \cdots, \tau(u_k) \rangle \rangle$, 即 N 有限生成.

至此, $M_{\text{free}} = \langle \langle u_1, \cdots, u_t \rangle \rangle = \langle \langle u_1 \rangle \rangle \oplus \cdots \oplus \langle \langle u_t \rangle \rangle$ 已拆解到位. 那么能否以及如何继续拆解 M_{tor} 呢?

定理 **6.6** (课本定理**6.10)**: R 为 PID, $M \in R - \text{mod}$ 为挠模且 $\text{ann}(M) = \langle \langle \mu \rangle \rangle$, 其中 $\mu = up_1^{e_1} \cdots p_m^{e_m}$, u 为单位, p_i 均不可约且互不相等, $e_i \in \mathbb{Z}^+$,

则 $M=M_{p_1}\oplus\cdots\oplus M_{p_m}$, 其中 $M_{p_i}=\{v\in M\mid p_i^{e_i}v=0\}$ 是阶为 $p_i^{e_i}$ (即 $\mathrm{ann}(M_{p_i})=\langle p_i^{e_i}\rangle$) 的准素子模.

证: 不失一般性, 设 $\mu = pq$, p = q 互素, 要证 $M = M_p \oplus M_q$, 其中 $M_p = \{v \mid pv = 0\}$, $M_q = \{v \mid qv = 0\}$.

 $\therefore p \ni q \subseteq \mathbb{R}, \therefore \exists r, t \in R, \text{ s.t. } rp + tq = 1.$

 $\forall v \in M, v = 1v = (rp + tq)v = (rp)v + (tq)v,$

 $q(rp)v = (qrp)v = (rpq)v = r(pq)v = r\mu v,$

 \mathbb{Z} : $\langle \langle \mu \rangle \rangle$ 为零化子, :: $q(rpv) = r\mu v = 0 \Longrightarrow rpv \in M_q$,

同理, $tqv \in M_p$, 故 $M = M_p + M_q$.

若 $v \in M_p \cap M_q$, 则 $v \in M_p \iff pv = 0$,

 $\perp u \in M_q \iff qv = 0$

 $\implies v = 1v = (rp + tq)v = rpv + tqv = r0 + t0 = 0 + 0 = 0 \Longrightarrow M_p = M_q = \{0\}.$

$$\therefore M_p = \{v \mid pv = 0\}, \therefore \operatorname{ann}(M_p) = \langle p \rangle, \, \text{易推广得} \, M_{p_i} = \langle p_i^{e_i} \rangle.$$

然后准素子模能否进一步分解呢?

定理 6.7 (课本定理6.11): R 为 PID, $M \in R - \text{mod}$ 有限生成且为挠模, $\text{ann}(M) = \langle p^e \rangle$, 其中 p 不可约, $e \in \mathbb{Z}^+$,

则 $M = \langle \langle v_1 \rangle \rangle \oplus \cdots \oplus \langle \langle v_n \rangle \rangle$, 其中 $\operatorname{ann}(v_i) = \langle p^{e_i} \rangle$, 且 $e = e_1 \geq \cdots \geq e_n$.

证: (存在性证明) 不失一般性, 只需证 M 由两个生成元时, 定理成立, 即可由数学归纳法推广到一般情况.

设
$$M = \langle \langle u_1, u_2 \rangle \rangle$$
 且 $u_1, u_2 \neq 0$, $ann(M) = \{r \in R \mid rM = \{0\}\} = \langle p^e \rangle$.

$$\therefore u_1 \in M, \therefore p^e u_1 = 0 \Longrightarrow p^e \in \operatorname{ann}(u_1),$$

同理, $p^e \in \operatorname{ann}(u_2)$.

若 $\operatorname{ann}(u_1) = \langle b_1 \rangle$, 则 : p 不可约, $: b_1 \mid p^e \Longrightarrow b_1 = p^{l_1}, l_1 \leq e$,

同理, 若 ann $(u_2) = \langle b_2 \rangle$, 则 $b_2 = p^{l_2}$, $l_2 \leq e$.

假设 $l_1 < e, l_2 < e, \ \diamondsuit \ l = \max\{l_1, l_2\}, \ 则 \ p^e \nmid p^l \ 且 \ p^l \in \operatorname{ann}(M), \ 与 \ \operatorname{ann}(M) = \langle p^e \rangle \ 矛盾, 故假设错误, \ l_1, l_2 \ 中至 少有一个 = e.$

无妨设 $l_1 = e$ 即 ann $(u_1) = \langle p^e \rangle$.

 $M = \langle \langle u_1, u_2 \rangle \rangle \Longrightarrow M = \langle \langle u_1 \rangle \rangle + \langle \langle u_2 \rangle \rangle,$

若 $\langle \langle u_1 \rangle \rangle \cap \langle \langle u_2 \rangle \rangle = \{0\}$, 则 $M = \langle \langle u_1 \rangle \rangle \oplus \langle \langle u_2 \rangle \rangle$, 得证.

若 $\langle \langle u_1 \rangle \rangle \cap \langle \langle u_2 \rangle \rangle \neq \{0\}$, 则 $\exists 0 \neq r \in R$, s.t. $ru_2 \in \langle \langle u_1 \rangle \rangle$.

取 R 的理想 $J = \{r \in R \mid ru_2 \in \langle\langle u_1 \rangle\rangle\}.$

: R为 PID, : J由一个元素生成, 设 $J = \langle \langle t \rangle \rangle$.

 $p^e u_2 = 0 \Longrightarrow p^e \in J, \therefore p^e \in J \Longrightarrow t \mid p^e,$

又:p不可约: $t = p^{e_2}$ 且 $e_2 \le e$,

又 :: $J = \{r \in R \mid ru_2 \in \langle\langle u_1 \rangle\rangle\} = \langle t \rangle$, :: $p^{e_2}u_2 \in \langle\langle u_1 \rangle\rangle$, 即 $\exists \alpha \in R$, s.t. $p^{e_2}u_2 - \alpha u_1 = 0$

 $\implies p^{e-e_2}(p^{e_2}u_2 - \alpha u_1) = 0 \implies p^e u_2 - p^{e-e_2}\alpha u_1 = 0,$

 $X : p^e u_2 = 0, : p^{e-e_2} \alpha u_1 = 0 \Longrightarrow p^{e-e_2} \alpha \in \operatorname{ann}(u_1),$

 $X :: \operatorname{ann}(u_1) = \langle p^e \rangle, :: p^e \mid p^{e-e_2} \alpha \Longrightarrow p^{e_2} \mid \alpha \Longrightarrow \exists \beta \in R, \text{ s.t. } \alpha = \beta p^{e_2},$

回代到 $p^{e_2}u_2 - \alpha u_1 = 0$ 得 $p^{e_2}u_2 - p^{e_2}\beta u_1 = 0 \Longrightarrow p^{e_2}(u_2 - \beta u_1) = 0$.

令 $w = u_2 - \beta u_1$,则 $M = \langle \langle u_1, w \rangle \rangle$,且 $\langle \langle u_1 \rangle \rangle \cap \langle \langle w \rangle \rangle = \{0\}$ (下证),

证: 设 $v \in \langle \langle u_1 \rangle \rangle \cap \langle \langle w \rangle \rangle$, 则 $v \in \langle \langle u_1 \rangle \rangle$,

 $\exists v \in \langle \langle w \rangle \rangle \Longrightarrow \exists r \in R, v = rw$

 $\Longrightarrow v = rw = ru_2 - r\beta u_1 \in \langle \langle u_1 \rangle \rangle,$

 $rrac{1}{r}r\beta u_1 \in \langle\langle u_1 \rangle\rangle, ru_2 \in \langle\langle u_1 \rangle\rangle, (由 J 的定义) 即 r = p^{e_2}r_1,$

回代得 $v = rw = p^{e_2}r_1u_2 - p^{e_2}r\beta u_1 = p^{e_2}r_1u_2 - p^{e_2}r_1\beta u_1 = p^{e_2}r_1u_2 - r_1(\beta p^{e_2})u_1 = r_2(p^{e_2}u_2 - \alpha u_1) = r_20 = 0 \Longrightarrow \langle \langle u_1 \rangle \rangle \cap \langle \langle w \rangle \rangle = \{0\}.$

故 $M = \langle \langle u_1 \rangle \rangle \oplus \langle \langle w \rangle \rangle$, 其中 u_1 的阶为 p^{e_1} , w 的阶为 p^{e_2} , $e_2 \leq e_1 = e$.

总结定理 6.5, 6.6 和 6.7, 可得:

定理 6.8 (课本定理6.12): R 为 PID, $M \in R - \text{mod}$ 有限生成,

则 $M = M_{\text{free}} \oplus M_{\text{tor}}$, 其中 $M_{\text{free}} = \frac{M}{M_{\text{tor}}}$.

若 ann $(M_{tor}) = \langle \mu \rangle$, 其中 $\mu = up_1^{e_1} \cdots p_n^{e_n}$, u 为单位, p_i 不可约且互不相等, $e_i \in \mathbb{Z}^+$,

则 $M_{\text{tor}} = M_{p_1} \oplus \cdots \oplus M_{p_n}$, 其中 $M_{p_i} = \{v \in M_{\text{tor}} \mid p_i(v) = 0\}$ 即 $\operatorname{ann}(M_{p_i}) = \langle p_i^{e_i} \rangle$,

 $M_{p_i} = \langle \langle v_i \rangle \rangle \oplus \cdots \langle \langle v_{it_i} \rangle \rangle$, $\not = \min(v_{ij}) = \langle p_i^{e_{ij}} \rangle$, $e_i = e_{i1} \ge \cdots \ge e_{it_i}$.

故
$$M = \overbrace{\left(\bigoplus_{i=1}^{m} \langle \langle u_i \rangle \rangle\right)}^{M_{\text{free}}} \oplus \overbrace{\left(\bigoplus_{i=1}^{n} \left(\bigoplus_{j=1}^{t_i} \langle \langle v_{ij} \rangle \rangle\right)\right)}^{M_{\text{pre}}}$$

由定理 6.7, $M_{\text{tor}} = \bigoplus_{ij} \langle \langle v_{ij} \rangle \rangle$, 其中 $\text{ann}(v_{ij}) = \langle p_i^{e_{ij}} \rangle$, $e_{i1} \ge \cdots \ge e_{it_i}$. 这里,

$$\begin{cases}
v_{11} & v_{12} & \cdots & v_{1t_1} \\
v_{21} & v_{22} & \cdots & v_{2t_2} \\
\vdots & \vdots & \ddots & \vdots \\
v_{n1} & v_{n2} & \cdots & v_{nt_n}
\end{cases}$$

生成了 M_{tor} , 其阶为

定义 6.13 初等因子: M 的初等因子:

$$\begin{cases} p_1^{e_{11}} & p_1^{e_{12}} & \cdots & p_1^{e_{1t_1}} \\ p_2^{e_{21}} & p_2^{e_{22}} & \cdots & p_2^{e_{2t_2}} \\ \vdots & \vdots & \ddots & \vdots \\ p_n^{e_{n1}} & p_n^{e_{n2}} & \cdots & p_n^{e_{nt_n}} \end{cases}.$$

此外, 还定义了

定义 6.14 不变因子: *M* 的不变因子:

$$q_1 = \prod_i p_i^{e_{1i}},$$

$$q_2 = \prod_i p_i^{e_{2i}},$$

$$\vdots,$$

$$q_t = \prod_i p_i^{e_{ti}}.$$

Chapter 7

线性算子的结构

先来回顾一下**线性算子**: V 为域 F 上的向量空间, $\dim V = n$, $\mathcal{L}(V) = M_{n \times n}(F)$, $\dim \mathcal{L}(V) = n^2$, 取 $\forall \tau, \sigma \in \mathcal{L}(V)$, 有

- (1) $(\tau + \sigma)(v) = \tau(v) + \sigma(v)$
- (2) $(\tau \circ \sigma)(v) = \tau(\sigma(v))$
- (3) $(r\tau)(v) = r \cdot \tau(v)$

其中 $\mathcal{L}(V)$ 关于 (1) 中的加法和 (2) 中的复合成环, 关于 (1) 中的加法和 (3) 中的点乘成向量空间, 故 \mathcal{L} 为代数. 设 $\mathcal{B} = \{b_1, \dots, b_n\}, \mathcal{B}' = \{b_1', \dots, b_n'\}$ 分别是 V 的两组定序基,

定理 7.1 (课本定理7.1): 线性算子 τ 在定序基 \mathcal{B} 下的表示为 $[\tau]_{\mathcal{B}} = \Big([\tau(b_1)]_{\mathcal{B}} \cdots [\tau(b_n)]_{\mathcal{B}'} \Big)$. 当 τ 作用于 $v \in V$,可表为矩阵与向量相乘, $[\tau(v)]_{\mathcal{B}} = [\tau]_{\mathcal{B}}[v]_{\mathcal{B}}$.

定理 7.2 (课本定理7.2): τ 在两组定序基 \mathcal{B} 和 \mathcal{B}' 下的表示之间的关系是 $[\tau]_{\mathcal{B}'} = M_{\mathcal{B}\mathcal{B}'}[\tau]_{\mathcal{B}}M_{\mathcal{B}\mathcal{B}'}^{-1}$, 其中 $M_{\mathcal{B}\mathcal{B}'} = \left([b_1]_{\mathcal{B}'} \cdots [b_n]_{\mathcal{B}'}\right)$.

定义 7.1 <u>相似</u>: 类似上面的 $[\tau]_{\mathcal{B}'}$,若两个矩阵 A, B 满足 $B = PAP^{-1}$,则称 A 与 B 相似,由两两相似的矩阵组成的集合称为相似类.

取线性算子 $1, \tau, \tau^2, \cdots, \tau^{n^2} \in \mathcal{L}(V)$,

 \therefore 这些线性算子的数量 $n^2 + 1 > \dim \mathcal{L}(V) = n^2, :$ 这些线性算子线性相关,

即 \exists 不全为 0 的 $r_0, \dots, r_{n^2} \in F$, s.t. $r_0 + r_1\tau + \dots + r_{n^2}\tau^{n^2} = 0$

 $\Longrightarrow \forall v \in V, \left(\sum_{i=0}^{n^2} r_i \tau^i\right)(v) = 0 \Longrightarrow \sum_{i=0}^{n^2} r_i \tau^i(v) = 0.$

 $\diamondsuit f(x) = \sum_{i=0}^{n^2} r_i x^i \in \mathcal{L}(V), \ \mathbb{M} \ f(\tau)(v) = 0.$

定理 7.3 (课本定理7.5): V 为域 F 上的向量空间, 则 V 为 F[x] 上的模.

证: $\forall g(x) \in F[x], g(x)$ 可表为 $g(x) = \sum_i a_i x^i$, 其中 $a_i \in F$, 则 $g(\tau) = \sum_i a_i \tau^i \in \mathcal{L}(V)$, $\forall h(x) \in F[x], h(x)$ 可表为 $h(x) = \sum_j b_j x^j$, 其中 $b_j \in F$, 则 $h(\tau) = \sum_j b_j \tau^j \in \mathcal{L}(V)$, 对于给定的 τ , 有类似数乘的运算 $F[x] \times V \to V$, $(g(x), v) = g(x) \cdot v \mapsto g(\tau)(v)$, 满足

- $(1) \ [g(x) + h(x)]v = \left(\sum_{i} a_{i}x^{i} + \sum_{j} b_{j}x^{j}\right)v = \left(\sum_{i} a_{i}\tau^{i} + \sum_{j} b_{j}\tau^{j}\right)(v) = \left(\sum_{i} a_{i}\tau^{i}\right)(v) + \left(\sum_{j} b_{j}\tau^{j}\right)(v) = \left(\sum_{i} a_{i}x^{i}\right)v + \left(\sum_{j} b_{j}x^{j}\right)v = g(x)v + h(x)v$
- $(2) \ [g(x)h(x)]v = \left[\sum_i a_i x^i \sum_j b_j x^j\right]v = \left[\sum_i a_i \tau^i \circ \sum_j b_j \tau^j\right]v = \left(\sum_i a_i \tau^i\right)\left(\left(\sum_j b_j \tau^j\right)(v)\right) = \left(\sum_i a_i x^i\right)\left(\left(\sum_j b_j x^j\right)v\right) = \left(\sum_i a_i x^i\right)\left(\sum_j a_i x^i\right)\left(\sum_j a_j x^j\right) = \left(\sum_i a_i x^i\right)\left(\sum_j a_i x^i\right) = \left(\sum_i a_i x^i\right$
- (3) $g(x)(u+v) = (\sum_i a_i x^i)(u+v) = (\sum_i a_i \tau^i)(u+v) = (\sum_i a_i \tau^i)(u) + (\sum_i a_i \tau^i)(v) = (\sum_i a_i x^i)u + (\sum_i a_i x^i)v = g(x)v + g(x)u$
- (4) 1v = 1(v) = v

故 V 为 F[x] 上的模.

F[x] 为 PID, $V \in F[x] - \text{mod}$,

- $:: \dim V = n, :: V$ 有限生成,
- $f(x)v = f(\tau)(v) = 0$, V 为挠模,

利用定理 6.7, 可将 V 分解为 $V = V_{p_1} \oplus \cdots \oplus V_{p_m} = \bigoplus_{i=1}^m \bigoplus_{j=1}^{t_i} \langle \langle v_{ij} \rangle \rangle$, 其中 $\operatorname{ann}(v_{ij}) = \langle p^{e_{ij}}(x) \rangle$.

上面说明了分解 V 的可行性和 V 分解出的大致结构, 现在的问题是: 具体如何分解? 我们只要找到 V 的 阶 μ , s.t. $\operatorname{ann}(V) = \langle \mu \rangle$, $\mu = up_1^{e_1} \cdots p_m^{e_m}$, 就可得到挠子模 V_{p_i} , s.t. $\operatorname{ann}(V_{p_i}) = \langle p_i^{e_i} \rangle$ 及循环子模 $\langle \langle v_{ij} \rangle \rangle$, s.t. $\operatorname{ann}(v_{ij}) = \langle p_i^{e_{ij}} \rangle$, $e_i \geq e_{i1} \geq \cdots \geq e_{it_i}$.

定义 7.2 极小多项式: $\operatorname{ann}(V) = \{g(x) \in F[x] \mid g(\tau)(V) = \{0\}\} = \langle m_{\tau}(x) \rangle$, 其中 $m_{\tau}(x)$ 称 τ 在 V 上的极小多项式, 首系数 = 1.

极小多项式就是 V 的阶, 对其进行分解: $m_{\tau}(x) = up_1^{e_1}(x) \cdots p_n^{e_n}(x)$, 其中 u 为单位, $p_i(x) \in F[x]$ 不可约且互不相等, $e_i \in \mathbb{Z}^+$,

 $\Longrightarrow V = V_{p_1} \oplus \cdots \oplus V_{p_m}, \not \sqsubseteq \forall \operatorname{ann}(V_{p_i}) = \langle p_1^{e_1}(x) \rangle,$

 $V_{p_i} = \langle \langle v_{i1} \rangle \rangle \oplus \cdots \oplus \langle \langle v_{it_i} \rangle \rangle$, $\not\equiv \psi$ ann $(v_{ij}) = \langle p_i^{e_{ij}}(x) \rangle$, $e_i \geq e_{i1} \geq \cdots \geq e_{it_i}$,

从而实现分解 $V = \bigoplus_{i=1}^m \bigoplus_{j=1}^{t_i} \langle \langle v_{ij} \rangle \rangle$.

接下来我们利用上述对 V 的分解找一组合适的定序基, 以简化 V 上的线性算子 τ 的表示.

定义 7.3 不变子空间: 子空间 $S \subseteq V$, $\tau \in \mathcal{L}(V)$, 若 $\tau(S) \subseteq S$, 则称 $S \to V$ 的 τ 不变子空间.

定理 7.4 (课本定理7.5): 子模 $S \subset V \iff S \notin V$ 的不变子空间.

证: "⇒": $\forall v \in S \subseteq V, \forall h(x) \in F[x], h(x) = \sum_i a_i x^i, h(x)v = h(\tau)(v) = \sum_i a_i \tau^i(v) \in S,$ 特别地, 取 $h(x) = x \in F[x]$, 则 $xv = \tau(v) \in S \Longrightarrow \tau(S) \subseteq S$, 即 S 为 V 的线性子空间.

" \Leftrightarrow ": $:: S \in V$ 的不变子空间, $:: \forall v, \tau(v) \in S \Longrightarrow \forall i = 0, \cdots, \dim V, \tau^i(v) \in S,$ $g(x)v + h(x)v = g(\tau)(v) + h(\tau)(v) = (\sum_i a_i \tau^i)(v) + \left(\sum_j b_j \tau^j\right)(v) = \sum_i (a_i + b_i) \tau^i(v) \in S,$ 故 $S \to V$ 的子模. \square

 $:: \langle \langle v_{ij} \rangle \rangle$ 为 V 的 F[x] 子模, $:: \langle \langle v_{ij} \rangle \rangle$ 为不变子空间, 即 $\tau(\langle \langle v_{ij} \rangle \rangle) \subseteq \langle \langle v_{ij} \rangle \rangle$, 故之前分解操作实际上是将 V 分解成了一系列由单个向量生成的不变子空间.

让我们用简单的例子来展示一下, 若以不变子空间的基为整个向量空间的基 (的一部分), 线性算子的表示会如何.

例 7.1: 若
$$\langle\langle b_1 \rangle\rangle$$
 是 τ 不变的,则 $[\tau(b_1)]_{\mathcal{B}} = \begin{pmatrix} * \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, $[\tau]_{\mathcal{B}} = \left([\tau(b_1)]_{\mathcal{B}} \cdots [\tau(b_n)]_{\mathcal{B}}\right) = \begin{pmatrix} * & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & & \\ 0 & & & \end{pmatrix}^1$

若 $\langle\langle b_1, b_2 \rangle\rangle$ 是 τ 不变的, 即 $\tau(b_1) \in \langle\langle b_1, b_2 \rangle\rangle$, $\tau(b_2) \in \langle\langle b_1, b_2 \rangle\rangle$, 则 $\left([\tau(b_1)]_{\mathcal{B}} \ [\tau(b_1)]_{\mathcal{B}}\right) = \begin{pmatrix} * & * \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$, $[\tau]_{\mathcal{B}} = \begin{pmatrix} * & * \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$

$$\begin{pmatrix} * & * & 0 & \cdots & 0 \\ * & * & 0 & \cdots & 0 \\ 0 & 0 & & & \\ \vdots & \vdots & & & \\ 0 & 0 & & & \end{pmatrix},$$

$$\left(\begin{array}{c} \cdot \cdot \cdot \\ 0 \quad 0 \end{array}\right)$$
 若 $\left\langle\left\langle v_1, \cdots, v_k \right\rangle\right\rangle$ 是 τ 不变的,则 $[\tau]_{\mathcal{B}} = \begin{pmatrix} *_{k \times k} & 0 \\ 0 & \tau' \end{pmatrix}$.

在之前我们已将 V 分解成了多个不变子空间, 故若用各 $\langle v_{ij} \rangle$ 的基组成 V 的基, 则可以将 τ 表示为一个仅在对角线上有非零矩阵块而其余部分均为零的矩阵. 但我们仍未满足: 对于给定的不变子空间 $\langle \langle v_{ij} \rangle \rangle$, 能否适当地选取该不变子空间中的基, 从而简化该不变子空间对应的非零矩阵块?

取 $\langle\langle v\rangle\rangle$ 的极小多项式为 p(x) 即 $\operatorname{ann}(v) = \langle p(x)\rangle$, 设 $p(x) = x^m + r_{m-1}x^{m-1} + \cdots + r_1x + r_0, r_i \in F$, 则 $p(x)v = p(\tau)(v) = (\tau^m + r_{m-1}\tau^{m-1} + \cdots + r_1\tau + r_0)(v) = \tau^m(v) + r_{m-1}\tau^{m-1}(v) + \cdots + r_1\tau(v) + r_0v = 0$, 即 $\tau^m(v)$ 可由 $\{v, \tau(v), \cdots, \tau^{m-1}(v)\}$ 线性表示: $\tau^m(v) = -[r_{m-1}\tau^{m-1}(v) + \cdots + r_1\tau(v) + r_0v]$, $\Rightarrow \tau^{m+1}(v) = \tau(\tau^m(v)) = \tau(-[r_{m-1}\tau^{m-1}(v) + \cdots + r_1\tau(v) + r_0v])$ $= -[r_{m-1}\tau^m(v) + r_{m-2}\tau^{m-1}(v) + \cdots + r_1\tau^2(v) + r_0\tau(v)]$ $= -\{r_{m-1}[-r_{m-1}\tau^m(v) + \cdots + r_1\tau^2(v) + r_0\tau(v)] + r_{m-2}\tau^{m-1}(v) + \cdots + r_1\tau^2(v) + r_0\tau(v)\}$ 易证, 任意高阶的 τ 作用于 v 均可由 $\{v, \tau(v), \cdots, \tau^{m-1}(v)\}$ 线性表示.

由此, 我们引出:

^{1*} 代表非零矩阵元.

定理 7.5: $\langle\langle v\rangle\rangle$ 为循环子模, 则 $\{v,\tau(v),\cdots,\tau^{m-1}(v)\}$ 是 $\langle\langle v\rangle\rangle$ 的基.

证: 先证 $\{v, \tau(v), \dots, \tau^{m-1}(v)\}$ 线性无关: 设 $l_0v + l_1\tau(v) + \dots + l_{m-1}\tau^{m-1}(v) = 0$,

然而 : $\deg p(x) = m \ge \deg h(x) = m - 1$, : 只能有 $l_0 = l_1 = \dots = l_{m-1} = 0$, 故 $\{v, \tau(v), \dots, \tau^{m-1}(v)\}$ 线性无关.

再证 $\{v, \tau(v), \cdots, \tau^{m-1}(v)\}$ 生成 $\langle\langle v \rangle\rangle$: $\langle\langle v \rangle\rangle = \{h(x)v \mid h(x) \in F[x]\} = \{h(\tau)(v) \mid h(x) \in F[x]\},$

 $\forall h(\tau)v \in \langle \langle v \rangle \rangle$, 若 $\deg h(x) \leq m-1$, 则 h(x)v 显然可由 $\{v, \tau(v), \cdots, \tau^{m-1}\}$ 表示,

若 $\deg h(x) > m-1$, 则 h(x) = q(x)p(x) + r(x), 其中 q(x) 为商多项式, 余多项式 r(x) = 0 或 $\deg r(x) < \deg p(x) = m-1$

 $\Longrightarrow h(x)v = (q(\tau)p(\tau) + r(\tau))(v) = q(\tau)p(\tau)(v) + r(\tau)(v), \\ 其中 ∵ p(x) \in \operatorname{ann}(v), ∴ p(\tau)v = 0 \Longrightarrow h(x)v = r(\tau)v$ 可由 $\{v, \tau(v), \cdots, \tau^{m-1}\}$ 表示.

综上, 得证.

定义 7.4 循环不变子空间: S 是向量空间 V 的 τ 不变子空间, 若 S 有一组基 $\mathcal{B} = \{v, \tau(v), \cdots, \tau^{m-1}(v)\}$, 其 中 $v \in V$, $m \geq 1$, 则称 S 是 V 的循环不变子空间.

 $\langle\langle v_{ij}\rangle\rangle$ 就是循环不变子空间. 那么, 以 $\mathcal{B}_{ij}=\{v_{ij},\tau(v_{ij}),\cdots,\tau^{m-1}(v_{ij})\}$ 为基, 线性算子 τ 在该循环不变子空间中的表示 (即 τ 的表示中该循环不变子空间对应的非零矩阵块) 如何?

定义 7.5 <u>伴阵</u>: 在定序基 $\mathcal{B} = \{v, \tau(v), \cdots, \tau^{m-1}(v)\}$ 下, 线性算子 τ 可表为 $[\tau]_{\mathcal{B}} = ([\tau(b_1)]_{\mathcal{B}} \cdots [\tau(b_m)]_{\mathcal{B}})$,

其中
$$[\tau(b_1)]_{\mathcal{B}} = [\tau(v)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \ [\tau(b_2)]_{\mathcal{B}} = [\tau(\tau(v))]_{\mathcal{B}} = [\tau^2(v)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \ \cdots, \ [\tau(b_m)]_{\mathcal{B}} = [\tau^m(v)]_{\mathcal{B}} = \begin{bmatrix} \tau^m(v)]_{\mathcal{B}} = [\tau^m(v)]_{\mathcal{B}} = \begin{bmatrix} \tau^m(v)]_{\mathcal{B}} = \begin{bmatrix} \tau^m(v)]_{\mathcal{B$$

$$\begin{pmatrix} -r_0 \\ -r_1 \\ \vdots \\ -r_{m-1} \end{pmatrix},$$

伴阵.

从而
$$[\tau]_{\mathcal{B}} = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 & -r_0 \\ 1 & 0 & \cdots & \cdots & 0 & -r_1 \\ 0 & 1 & \cdots & \cdots & 0 & -r_2 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & -r_{m-2} \\ 0 & 0 & \cdots & \cdots & 1 & -r_{m-1} \end{pmatrix} \equiv C[p(x)],$$
 称为多项式 $p(x) = x^m + r_{m-1}x^{m-1} + \cdots + r_1x + r_0$ 的

设 $d_{ij} = \deg p_i^{e_{ij}}(x)$, 则 $\mathcal{B}_{ij} = \{v_{ij}, \tau(v_{ij}), \cdots, \tau^{d_{ij}-1}(v_{ij})\}$ 为 $\langle v_{ij} \rangle$ 的基,

以 \mathcal{B}_{ij} 为基, τ 在循环不变子空间 $\langle\langle v_{ij}\rangle\rangle$ 中的表示就是 $p_i^{e_{ij}}(x)$ 的伴阵: $[\tau]_{\mathcal{B}_{ij}} = C[p_i^{e_{ij}}(x)] = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 & -l_1^{(ij)} \\ 1 & 0 & \cdots & \cdots & 0 & -l_2^{(ij)} \\ 0 & 1 & \cdots & \cdots & 0 & -l_3^{(ij)} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & -l_{d_{ij}-2}^{(ij)} \\ 0 & 0 & \cdots & \cdots & 1 & -l_{d_{ij}-1}^{(ij)} \end{pmatrix}$

上面我们简化了 τ 在循环不变子空间 $\langle\langle v_{ij}\rangle\rangle\rangle$ 中的表示. 又 $: V = \bigoplus_{ij} \langle\langle v_{ij}\rangle\rangle\rangle$, $:: \mathcal{B} = \bigcup_{ij} \mathcal{B}_{ij}$ 为 V 的基, 利用 \mathcal{B} 我们可简化 τ 在整个向量空间 V 中的表示:

定理 7.6 (课本定理7.10): $\dim V < \infty$, $\tau \in \mathcal{L}(V)$, V 的极小多项式为 $m_{\tau}(x) = p_1^{e_1}(x) \cdots p_n^{e_n}(x)$, 其中 $p_i(x)$ 不可约且互不相等,

 $\Longrightarrow V = V_{p_1} \oplus \cdots \oplus V_{p_m}$, 其中 $\operatorname{ann}(V_{p_i}) = \langle p_1^{e_1}(x) \rangle$, $V_{p_i} = \langle \langle v_{i1} \rangle \rangle \oplus \cdots \oplus \langle \langle v_{it_i} \rangle \rangle$, 其中 $\operatorname{ann}(v_{ij}) = \langle p_i^{e_{ij}}(x) \rangle$, $e_i \geq e_{i1} \geq \cdots \geq e_{it_i}$, 以 $\bigcup_{ij} \{v_{ij}, \tau(v_{ij}), \cdots, \tau^{d_{ij}-1}(v)\}$ 为基, 其中 $d_{ij} = \dim(\langle v_{ij} \rangle)$, τ 的表示可简化为

$$[\tau]_{\mathcal{B}} = \bigoplus_{ij} C[p_i^{e_{ij}}(x)] = \begin{pmatrix} C[p_1^{e_{11}}(x)] & & & & \\ & \ddots & & & \\ & & C[p_1^{e_{1t_1}}(x)] & & & \\ & & \ddots & & \\ & & & C[p_m^{e_{m1}}(x)] & & \\ & & & \ddots & \\ & & & & C[p_m^{e_{mt_m}}(x)] \end{pmatrix}.$$

定义 7.6 有理标准型:上述线性变换的矩阵表示称为有理标准型.

$$n = \dim V = \sum_{ij} d_{ij} = \sum_{ij} \deg p_i^{e_{ij}}(x) = \deg \left[\prod_{ij} p_i^{e_{ij}}(x) \right].$$

Chapter 8

特征值和特征向量

在上一章中, 我们介绍了多项式对应的伴阵, 那么, 如何由伴阵恢复多项式呢?

假设多项式
$$p(x) = x^2 + ax + b$$
, 则其伴阵为 $C[p(x)] = \begin{pmatrix} 0 & -b \\ 1 & -a \end{pmatrix}$,

$$\det(xI - C[p(x)]) = \begin{vmatrix} x & b \\ -1 & x+a \end{vmatrix} = x^2 + ax + b$$
即恢复多项式,

同理, 对循环不变子空间 $\langle\langle v_{ij}\rangle\rangle$, 设其极小多项式为 $p_i^{e_{ij}}(x)$, 伴阵为 $C[p_i^{e_{ij}}(x)]$, 有 $\det(xI-C[p_i^{e_{ij}}])=p_i^{e_{ij}}(x)$, 由定理 7.6, 线性算子 τ 的表示即为这些伴阵的直和, 故有

定义 8.1 特征多项式: $\det(xI - [\tau]_{\mathcal{B}}) = \prod_{i,j} p_i^{e_{ij}}(x) \equiv C_{\tau}(x)$, 称为 τ 的特征多项式.

定理 8.1 (课本第3 版引理7.17, 定理7.18): 特征多项式在相似操作下不变, 或线性算子的特征多项式唯一, 与线性算子的表示无关.

证: 设线性算子 τ 在定序基 \mathcal{B} 和 \mathcal{B}' 下的表示分别为 $[\tau]_{\mathcal{B}}$ 和 $[\tau]_{\mathcal{B}'}$,

在 F[x] 中, 任一一次多项式 x-r 都是不可约的.

在 $\mathbb{R}[x]$ 中, 有实根 \iff 可约.

:: 实系数多项式的复根的共轭亦为该多项式的根, :: 实系数多项式的复根总是成对出现 1 , 故 $\mathbb{R}[x]$ 中的不可约多项式阶数 ≤ 2 .

证: 当多项式阶数 > 2, 若阶数为奇数, 则多项式的根两两配对后必留下一个根, 该根必不为复数而为实数 \Longrightarrow 可约; 若阶数为偶数, 以 4 阶为例, 假设多项式不可约, 设复根分别为 $z_1, \bar{z}_1, z_2, \bar{z}_2$, 则多项式可写为 $(x-z_1)(x-\bar{z}_1)(x-z_2)(x-\bar{z}_2) = (x-(z_1+\bar{z}_1)x+z_1\bar{z}_1)(x-(z_2+\bar{z}_2)x+z_2\bar{z}_2)$,

证:
$$0 \neq f(x) \in \mathbb{R}[x]$$
, 若 $z \in \mathbb{C}$, s.t. $f(z) = 0$, 即 $z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0 = 0$ $\Longrightarrow f(\bar{z}) = \bar{z}^n + a_{n-1}\bar{z}^{n-1} + \dots + a_1\bar{z} + a_0 = f(\bar{z}) = 0$, 故得证.

61 / 75

 $(z_1 + \bar{z}_1), z_1\bar{z}_1, (z_2 + \bar{z}_2), z_2\bar{z}_2 \in \mathbb{R}, \therefore (x - (z_1 + \bar{z}_1)x + z_1\bar{z}_1), (x - (z_2 + \bar{z}_2)x + z_2\bar{z}_2) \in \mathbb{R}[x] \Longrightarrow$ 多项式可约, 故假设错误, 阶数 > 2 的偶数阶实系数多项式必可约.

例 8.1:
$$x^2 + 1 = (x + i)(x - i)$$
 无实根不可约.

 $\mathbb{Q}[x]$ 中的不可约多项式可以是任意次.

可用 **Eisenstein 方法** 判别 $\mathbb{Q}[x]$ 中的多项式的可约性: $\forall f(x) = a_0 + a_1 x + \cdots + a_n x^n$, 其中 $a_i \in \mathbb{Z}$, 若 \exists 素数 p, s.t. $p \nmid a_n, p \mid a_i \mid_{i=0,\dots,i=n-1}, p^2 \nmid a_0, \text{则 } f(x)$ 在 $\mathbb{Q}[x]$ 中不可约.

定义 8.2 <u>特征值和特征向量</u>: 线性算子 $\tau \in \mathcal{L}(V)$, $\lambda \in F$, 若 $\exists 0 \neq v \in V$, s.t. $\tau(v) = \lambda v$, 则称 λ 为 τ 的特征值, v 为 τ 的特征向量.

定义 8.3: $\mathcal{E}_{\lambda} \equiv \{ 特征值 \ \lambda \ 对应的特征向量 \} = \{ v \in V \mid \tau(v) = \lambda v \}.$

 \mathcal{E}_{λ} 是 V 的子空间.

证: $\forall u, v \in \mathcal{E}_{\lambda}$, $\forall r, t \in F$, $\tau(ru + tv) = r\tau(u) + t\tau(v) = r(\lambda v) + t(\lambda v) = \lambda(ru) + \lambda(tv) = \lambda(ru + tv) \Longrightarrow ra + tv \in \mathcal{E}_{\lambda}$, 故得证.

定义 8.4 特征谱: $\operatorname{spec}(\tau) \equiv \{\tau \text{ 的特征值}\}.$

(1) $\tau(v) = \lambda v \iff \tau(v) - \lambda v = 0$

 $\iff (\tau - \lambda)(v) = 0$

 $\iff v \in \ker(\tau - \lambda)$

 $(\because v \neq 0)$

 $\iff \ker(\tau - \lambda) \neq 0$

 $\iff (\tau - \lambda) \text{ #}$

 $\iff (\tau - \lambda)$ 是退化的.

(也有教材将 $\tau - \lambda$ 退化作为特征值的定义.)

(2) $v \neq 0$ 是 λ 对应的特征向量, $\tau(v) = \lambda \iff (\tau - \lambda)(v) = 0$,

若 $f(x) = x - \lambda$, 则 f(x) 零化 v, 即 $f(\tau)(v) = 0 \Longrightarrow f(x) \in \operatorname{ann}(v)$,

 \mathbb{Z} $:: x - \lambda$ 不可约, $:: \operatorname{ann}(v) = \langle x - \lambda \rangle$,

 $\therefore \operatorname{ann}(V) = \langle m_{\tau}(x) \rangle, \ \therefore \ \forall u \in V, \ m_{\tau}(x)(u) = 0 \Longrightarrow m_{\tau}(v) = 0 \Longrightarrow m_{\tau}(x) \in \operatorname{ann}(v) = \langle x - \lambda \rangle \Longrightarrow (x - \lambda) \mid m_{\tau}(x)$

设 $m_{\tau}(x) = (x - \lambda)q(x)$, 其中 $q(x) \in F[x]$, 故特征值为极小多项式的根.

定理 8.2 (课本定理8.3): (1) $\operatorname{spec}(\tau)$ 是 $m_{\tau}(x)$ 或 $C_{\tau}(x)$ 的根的集合.

- (2) 矩阵的特征值在相似操作下不变, 即相似矩阵具有相同的特征值.
- (3) \mathcal{E}_{λ} 是 $(\lambda I A)x = 0$ 的解空间.

定理 8.3 (课本定理8.4): $\tau \in \mathcal{L}(V)$, $\lambda_1, \dots, \lambda_k$ 是 τ 的特征值且互不相等, 则

- (1) 取 $0 \neq v_i \in \mathcal{E}_{\lambda_i}$, 则 $\{\lambda_1, \dots, \lambda_k\}$ 线性无关;
- (2) 若 $i \neq j$, $\mathcal{E}_i \neq \mathcal{E}_j = \{0\}$.
- 证: (1) 若 $\sum_{i=1}^k r_i v_i = 0$, 则 $0 = \tau(0) = \tau\left(\sum_{i=1}^k r_i v_i\right) = \sum_{i=1}^k r_i \tau(v_i) = \sum_{i=1}^k r_i \lambda_i v_i$, 即 $r_1 \lambda_1 v_1 + \dots + r_k \lambda_k v_k = 0$, 又有 $\lambda_k \left(\sum_{i=1}^k r_i v_i \right) = 0$, 即 $r_1 \lambda_k v_1 + r_2 \lambda_k v_2 + \dots + r_k \lambda_k v_k = 0$, 以上两式相减消去 v_k 项得, $r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1} = 0$, 将 τ 作用于上式得, $\tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1}] = r_1(\lambda_1 - \lambda_k)\lambda_1v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1}] = r_1(\lambda_1 - \lambda_k)\lambda_1v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1}$ $(\lambda_k)\lambda_2 v_2 + \dots + r_{k-1}(\lambda_{k-1} - \lambda_k)\lambda_{k-1} v_{k-1} = \tau(0) = 0,$ 消去 v_{k-1} 项得, $\lambda_{k-1} [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1}] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1}] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1}] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1}] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1}] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_k] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_k] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_{k-1} - \lambda_k)v_k] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_k - \lambda_k)v_k] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_k - \lambda_k)v_k] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_k - \lambda_k)v_k] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_k - \lambda_k)v_k] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2 + \cdots + r_{k-1}(\lambda_k - \lambda_k)v_k] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k)v_1 + r_2(\lambda_2 - \lambda_k)v_2] - \tau [r(\lambda_1 - \lambda_k$ $r_1(\lambda_k - \lambda_1)(\lambda_{k-1} - \lambda_1)v_1 + r_2(\lambda_k - \lambda_2)(\lambda_{k-1} - \lambda_2)v_2 + \dots + r_{k-1}(\lambda_k - \lambda_{k-2})(\lambda_{k-1} - \lambda_{k-2})v_{k-2} = 0,$ 重复以上操作 k-1 次得, $r_1(\lambda_2-\lambda_1)\cdots(\lambda_k-\lambda_1)v_1=0$, $:: \lambda_1, \cdots, \lambda_k$ 互不相等且 $v_1 \neq 0, :: r_1 = 0,$
 - $\mathbb{H} \ u \in \mathcal{E}_{\lambda_i} \Longrightarrow \tau(u) = \lambda_i u$ 以上两式相减得, $0 = \tau(u) - \tau(u) = \lambda_i u - \lambda_j u = (\lambda_i - \lambda_j)u$, $X :: \lambda_i \neq \lambda_i, :: u = 0 \Longrightarrow \mathcal{E}_{\lambda_i} \cap \mathcal{E}_{\lambda_i} = \{0\}.$

同理可得 $r_1 = \cdots = r_k = 0$, 故 $\{v_1, \cdots, v_k\}$ 线性无关.

若 $\tau \in \mathcal{L}(V)$, $p(x) \in F[x]$, 则 $p(\tau) \in \mathcal{L}(V)$, 那么 $p(\tau)$ 与 τ 的特征值有何关系?

定理 8.4 特征谱映射定理(课本第3 版定理8.3): F 为代数闭域 a , $p(x) \in F[x]$, 则 $\operatorname{spec}(p(\tau)) = p(\operatorname{spec}(\tau)) \equiv p(\operatorname{spec}(\tau))$ $\{p(\lambda) \mid \lambda \in \operatorname{spec}(\tau)\}.$

^a即 F[x] 中不可约多项式阶数 = 1.

证: 首先证 $p(\operatorname{spec}(\tau)) \subseteq \operatorname{spec}(p(\tau))$: $\forall v \in \operatorname{spec}(\tau), \tau(v) = \lambda v \Longrightarrow \tau^k(v) = \lambda^k v$, 设 $p(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$, 则 $p(\tau) = \tau^d + a_{d-1}\tau^{d-1} + \cdots + a_1\tau + a_0$, $p(\tau)(v) = \tau^{d}(v) + a_{d-1}\tau^{d-1}(v) + \dots + a_{1}\tau(v) + a_{0} = \lambda^{d}v + a_{d-1}\lambda^{d-1}v + \dots + a_{1}\lambda v + a_{0} = (\lambda^{d} + a_{d-1}\lambda_{d-1} + \dots + a_{d-1}\lambda^{d-1}v + \dots + a_{d-1}$ $a_1\lambda + a_0)v = p(\lambda)v$, $\implies p(\lambda) \not\in p(\tau)$ 的特征值, 即 $p(\lambda) \in \operatorname{spec}(p(\tau))$, 故 $p(\operatorname{spec}(\tau)) \subseteq \operatorname{spec}(p(\tau))$.

再证 $\operatorname{spec}(p(\tau)) \subseteq p(\operatorname{spec}(\tau))$: $\forall \lambda \in \operatorname{spec}(p(t)), 0 \neq v \in \mathcal{E}_{\lambda}$, 即 $p(\tau)(v) = \lambda v \Longrightarrow (p(\tau) - \lambda)v = 0$,

 $\Leftrightarrow f(x) = p(x) - \lambda, \ \bigcup f(\tau)(v) = 0,$

 $\therefore \lambda \in F, \therefore f(x) \in F[x],$

:: F[x] 是代数封闭的, :: f(x) 可写为 $f(x) = (x - r_1) \cdots (x - r_m)$, 其中 $r_i \in F$, 或有重复

 $\implies (\tau - r_1) \cdots (\tau - r_m)(v) = 0, \ \sharp \ r_i \in \operatorname{spec}(\tau)$

其中必 $\exists r_i$, s.t. $(\tau - r_i) \cdots (t - r_m)(v) = 0 \Longrightarrow p(r_i) - \lambda = 0 \Longrightarrow p(r_i) = \lambda$,

 $\Longrightarrow \lambda \in p(\operatorname{spec}(\tau)), \text{ it } \operatorname{spec}(p(\tau)) \subseteq p(\operatorname{spec}(\tau)).$ 综上, 得证.

定义 8.5 约当标准型: F 为代数闭域, V 为 F 上的向量空间, $\dim V < \infty, \tau \in \mathcal{L}(V)$, 则 V 的最小多项式 $m_{\tau}(x) = (x - \lambda_1)^{e_1} \cdots (x - \lambda_m)^{e_m},$

此时 $V = \bigoplus_{i=1}^{m} V_i$, 其中 $\operatorname{ann}(V_i) = \langle (x - \lambda_i)^{e_i} \rangle$,

 $V_i = \bigoplus_{j=1}^{t_i} \langle \langle v_{ij} \rangle \rangle$, $\sharp \vdash \operatorname{ann}(v_{ij}) = \langle (x - \lambda_i)^{e_{ij}} \rangle$, $e_i = e_{i1} \ge \cdots \ge e_{it_i}$, $\dim \langle \langle v_{ij} \rangle \rangle = \deg(x - \lambda_i)^{e_{ij}} = e_{ij}$, 则定序基 $\mathcal{B}'_{ij} = \{v_{ij}, (\tau - \lambda_i)(v_{ij}), \cdots, (\tau - \lambda_i)^{e_{ij} - 1}(v_{ij})\}$ 为 $\langle\langle v_{ij} \rangle\rangle$ 下, 线性算子 τ 在 $\langle\langle v_{ij} \rangle\rangle$ 中可表为 $[\tau]_{\mathcal{B}'_{ij}} = \{v_{ij}, (\tau - \lambda_i)(v_{ij}), \cdots, (\tau - \lambda_i)^{e_{ij} - 1}(v_{ij})\}$ $([\tau(b_1)]_{\mathcal{B}'_{i_i}} \cdots [\tau(b_m)]_{\mathcal{B}'_{i_i}}),$

其中
$$[\tau(b_1)]_{\mathcal{B}'_{ij}} = [\tau(v_{ij})]_{\mathcal{B}'_{ij}} = [(\tau - \lambda_i + \lambda_i)(v_{ij})]_{\mathcal{B}'_{ij}} = [(\tau - \lambda_i)(v_{ij}) + \lambda_i(v_{ij})]_{\mathcal{B}'_{ij}} = \begin{bmatrix} \lambda_i \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, [\tau(b_2)]_{\mathcal{B}'_{ij}} = [\tau(\tau - \lambda_i)(v_{ij}) + \lambda_i(v_{ij})]_{\mathcal{B}'_{ij}} = [\tau(\tau - \lambda_i)(v_{ij})]_{\mathcal{B}'_{ij}} = [\tau(\tau - \lambda_i)(v_{ij}) + \lambda_i(v_{ij})]_{\mathcal{B}'_{ij}} = [\tau(\tau - \lambda_i)(v_{ij})]_{\mathcal{B}'_{ij}} = [\tau(\tau$$

其中
$$[\tau(b_1)]_{\mathcal{B}'_{ij}} = [\tau(v_{ij})]_{\mathcal{B}'_{ij}} = [(\tau - \lambda_i + \lambda_i)(v_{ij})]_{\mathcal{B}'_{ij}} = [(\tau - \lambda_i)(v_{ij}) + \lambda_i(v_{ij})]_{\mathcal{B}'_{ij}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}, [\tau(b_2)]_{\mathcal{B}'_{ij}} = [\tau(\tau - \lambda_i)(v_{ij})]_{\mathcal{B}'_{ij}} = [\tau(\tau - \lambda_i)(v_{ij})]_{\mathcal{B}'_{ij}} = \begin{bmatrix} 0 \\ \lambda_i \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, [\tau((\tau - \lambda_i)^{e_{ij} - 1}(v_{ij}))] = \begin{bmatrix} 0 \\ \lambda_i \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$[(\tau - \lambda_i + \lambda_i)((\tau - \lambda_{ij})^{e_{ij} - 1}(v_{ij}))]_{\mathcal{B}'_{ij}} = [(\tau - \lambda_i)^{e_{ij}}(v_{ij}) + \lambda_i(\tau - \lambda_i)^{e_{ij} - 1}(v_{ij})]_{\mathcal{B}'_{ij}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \lambda_i \end{bmatrix},$$

$$[\tau]_{\mathcal{B}} = \begin{pmatrix} g(\lambda_1, e_{11}) & & & & & & \\ & \ddots & & & & & \\ & & g(\lambda_1, e_{1t_1}) & & & & & \\ & & & \ddots & & & \\ & & & g(\lambda_m, e_{m1}) & & & \\ & & & & \ddots & & \\ & & & & g(\lambda_m, e_{mt_m}) \end{pmatrix}$$

称为约当标准型.

 $^{{}^}a\mathcal{B}_{ij} = \{v_{ij}, \tau(v_{ij}), \cdots, \tau^{e_{ij}-1}(v_{ij})\}$ 亦为 $\langle\langle v_{ij} \rangle\rangle$ 的一组基, $[\tau]_{\mathcal{B}=\cup_{ij}\mathcal{B}_{ij}}$ 为有理标准型.

$$\mathcal{B}'_{ij} = \{v_{ij}, (\tau - \lambda_i)(v_{ij}), \cdots, (\tau - \lambda_i)^{e_{ij}-1}(v_{ij})\}$$
 为 $\langle\langle v_{ij}\rangle\rangle$ 的一组基.

证: 先证 \mathcal{B}'_{ij} 线性无关: 设 $l_0v + l_1(\tau - \lambda_i)(v) + \cdots + l_{m-1}(\tau - \lambda_i)^{m-1}(v) = 0$,

 $\Leftrightarrow h(x) = l_0 + l_1 x + \dots + l_{m-1} x^{m-1}, \ \mathbb{M} \ h(x) v = 0 \Longrightarrow h(x) \in \operatorname{ann}(v_{ij}) = \langle (x - \lambda_i)^{e_{ij}} \rangle,$

然而 :: $\deg(x - \lambda_i)^{e_{ij}} = e_{ij} \ge \deg h(x) = e_{ij} - 1$, :: $l_0 = l_1 = \dots = k_{e_{ij}-1}$, 故 \mathcal{B}'_{ij} 线性无关.

再证 \mathcal{B}'_{ij} 生成 $\langle\langle v_{ij}\rangle\rangle$: $\langle\langle v_{ij}\rangle\rangle=\{h(x)v\mid h(x)\in F[x]\}=\{h(\tau)(v)\mid h(x)\in F[x]\},$

 $\forall h(\tau)v \in \langle \langle v_{ij} \rangle \rangle, \ \, \text{ } \, \text{deg } h(x) \leq e_{ij} - 1, \ \, \text{则} \, \, h(x)v = \text{, } \, \text{即} \, \, h(\tau)v = (l_0 + l_0\tau + \dots + l_{e_{ij}-1}\tau^{e_{ij}-1})(v) = (l_0 + l_0((\tau - \lambda_i) + \lambda_i) + \dots + l_{e_{ij}-1}((\tau - \lambda_i) + \lambda_i)^{e_{ij}-1})(v) \, \, \text{可由 } \, \mathcal{B}'_{ij} \, \, \, \, \text{表示},$

若 $\deg h(x) > e_{ij} - 1$, $h(x) = h((x - \lambda_i) + \lambda_i) = h'(x - \lambda_i) = q(x - \lambda_i)(x - \lambda_i)^{e_{ij} - 1} + r(x - \lambda_i)$, 其中 $q(x - \lambda_i)$ 为 商多项式, 余多项式 $r(x - \lambda_i) = 0$ 或 $\deg r(x) < \deg(x - \lambda_{ij})^{e_{ij} - 1} = e_{ij} - 1$,

 $\Longrightarrow h(x)v_{ij} = h'(x-\lambda_i)v_{ij} = (q(\tau-\lambda_i)(\tau-\lambda_i)^{e_{ij}} + r(\tau-\lambda_i))(v_{ij}) = q(\tau-\lambda_i)p(\tau-\lambda_i)(v_{ij}) + r(\tau-\lambda_i)(v_{ij}), \\ \div (x-\lambda_i)^{e_{ij}-1} \in \operatorname{ann}(v_{ij}), \\ \div (\tau-\lambda_i)^{e_{ij}}(v_{ij}) = 0 \Longrightarrow h(x)v_{ij} = r(\tau)(v_{ij}) \ \exists \ \exists \vec{x}.$

综上, 得证.

有理标准型的存在无需附加条件, 而约当标准型的存在是需要附加条件的: 仅当极小多项式能分解成一次多项式的乘积, 即 $m_{\tau}(x) = (x - \lambda_1)^{e_1} \cdots (x - \lambda_m)^{e_m}$ 时, 约当标准型才存在.

上面我们看到, $\tau((\tau - \lambda_i)^{e_{ij}-1}(v_{ij})) = \lambda(\tau - \lambda_i)^{e_{ij}}(v_{ij})$, 即 $(\tau - \lambda_i)^{e_{ij}-1}(v_{ij}) \in \mathcal{E}_{\lambda_i}$, 那么, 是否还有其他向量 $\in \mathcal{E}_{\lambda_i}$?

$$\{(\tau - \lambda_i)^{e_{ij}-1}(v_{ij}) \mid j = 1, \cdots, t_i\} \subseteq \mathcal{E}_{\lambda_i}, :: V_{p_i} = \bigoplus_{j=1}^{t_i} \langle \langle v_{ij} \rangle \rangle, :: \{(\tau - \lambda_i)^{e_{ij}-1}(v_{ij}) \mid j\}$$
 线性无关.

定义 8.6 代数重数: 在 $\mathcal{C}_{\tau}(x)$ 中 λ_i 作为根的重数, 即 $\dim V_{p_i} = \sum_{j=1}^{t_i} e_{ij}$.

定义 8.7 几何重数: $\dim \mathcal{E}_{\lambda_i} = t_i$.

定理 8.5 (课本定理8.5): 几何重数 $\dim V_{p_i} = \sum_{j=1}^{t_i} e_{ij} \ge$ 代数重数 $\dim \mathcal{E}_{\lambda_i} = t_i$

 $\overline{\mathbf{u}}$: $e_i \geq e_{i1} \geq \cdots \geq e_{it_i} \geq 0$, 故得证.

几何重数 = 代数重数的特殊情况下, [7] 的约当标准型何如?

若几何重数 = 代数重数, 即 dim $V_{p_i} = \dim \mathcal{E}_{\lambda_i}$, 则 $e_{ij} = 1 \forall j \Longrightarrow e_i = e_{i1} = 1$

 $\implies m_{\tau}(\lambda) = (x - \lambda_1) \cdots (x - \lambda_m),$

此时 $[\tau]_{\mathcal{B}'_{ij}} = (\lambda_i), [\tau]_{\mathcal{B}'} = \operatorname{diag}(\lambda_1, \dots, \lambda_m).$

定理 8.6 (课本定理8.10, 8.11, 8.18): 下列叙述等价:

 τ 可对角化, 即 \exists 一组基 \mathcal{B} , s.t. $[\tau]_{\mathcal{B}}$ 为对角阵.

- (2) 几何重数 = 代数重数.
- (3) $m_{\tau}(x) = (x \lambda_1) \cdots (x \lambda_m), \lambda_i$ 互不相等.
- (4) $V_{p_i} = \mathcal{E}_i, V = \mathcal{E}_{\lambda_1} \oplus \cdots \oplus \mathcal{E}_{\lambda_m}.$
- (5) 特征向量构成 V 的基.

8. 特征值和特征向量 8.1. 投影算子

(6) $\tau = \lambda_1 \rho_1 + \dots + \lambda_k \rho_k$, 其中 $\rho_1 + \dots + \rho_k = 1$ 为单位分解, $\operatorname{spec}(\tau) = \{\lambda_1, \dots, \lambda_k\}$, $\operatorname{Im} \rho_i = \mathcal{E}_{\lambda_i}$, $\operatorname{ker} \rho_i = \bigoplus_{j \neq i} \mathcal{E}_{\lambda_j}$.

8.1 投影算子

定义 8.8 投影(算子): 向量空间 $V = S \oplus T$, 映射 $\rho_{ST} : V \to V$, $u_S + u_T \mapsto u_S$, 其中 $u_S \in S$, $u_T \in T$, 则 ρ_{ST} 称为在 S 上沿 T 的投影(算子).

 $\ker \rho_{ST} = T$, $\operatorname{Im} \rho_{ST} = S$, $V = \ker \rho_{ST} + \operatorname{Im} \rho_{ST}$.

定理 8.7 (课本第3 版定理2.21): (1) $V = S \oplus T$, 则 $\rho_{ST} + \rho_{TS} = 1_V$ (V 上的恒等变换) 且 $\rho_{ST} \circ \rho_{TS} = \rho_{TS} \circ \rho_{ST} = 0_V$ (V 上的恒等变换).

- (2) $\sigma \in \mathcal{L}(V)$, 若 $V = \ker \sigma \oplus \operatorname{Im} \sigma$ 且 $\sigma \mid_{\operatorname{Im} \sigma} = 1 \mid_{\operatorname{Im} \sigma}$, 其中 $\mid_{\operatorname{Im} \sigma}$ 代表算子定义域为 $\operatorname{Im} \sigma$, 则 σ 是在 $\operatorname{Im} \sigma$ 上 沿 $\ker \sigma$ 的投影.
- - (2) $\forall v \in V$, $\because V = \ker \sigma \oplus \operatorname{Im} \sigma$, $\therefore v = v_{\ker} + v_{\operatorname{Im}}$, 其中 $v_{\ker} \in \ker \sigma$, $v_{\operatorname{Im}} \in \operatorname{Im} \sigma$ $\Longrightarrow \sigma(v) = \sigma(v_{\ker} + v_{\operatorname{Im}}) = \sigma(v_{\ker}) + \sigma(v_{\operatorname{Im}}) = \sigma(v_{\ker}) + 1(v_{\operatorname{Im}}) = 0 + v_{\operatorname{Im}}$, 故 σ 为 $\operatorname{Im} \sigma$ 上沿 $\operatorname{ker} \sigma$ 的投影.

定理 8.8 (课本定理第3 版2.22): $\rho \in \mathcal{L}(V)$ 为投影 $\iff \rho^2 = \rho$.

证: " \Longrightarrow ": $\forall v \in V, v = u_S + u_T$, 其中 $u_S \in S, u_T \in T$,

 $\rho(v) = u_S, \ \rho(\rho(v)) = \rho(u_S) = u_S \Longrightarrow \rho^2 = \rho.$

" \Longrightarrow ": 首先将 V 分解成 $V = \ker \rho \oplus \operatorname{Im} \rho$:

一方面, $\forall v \in \ker \rho \cap \operatorname{Im} \rho \Longrightarrow v \in \ker \rho \Longleftrightarrow \rho(v) = 0$

 $\exists u \in \operatorname{Im} \rho \iff \exists u \in V, \text{ s.t. } v = \rho(u)$

 $\Longleftrightarrow 0 = \rho(v) = \rho(\rho(u)) = \rho^2(u) = \rho(u) = v \Longrightarrow \ker \rho \cap \operatorname{Im} \rho = \{0\}.$

另一方面, $\forall v \in V$, $\rho(v) \in \text{Im } \rho$,

 $\therefore \rho(v - \rho(v)) = \rho(v) - \rho(\rho(v)) = \rho(v) - \rho^2(v) = 0, \ \therefore v = (v - \rho(v)) + \rho(v), \ \not\exists \vdash v - \rho(v) \in \ker \rho, \ \rho(v) \in \operatorname{Im} \rho \Longrightarrow V = \ker \rho \oplus \operatorname{Im} \rho.$

故 $V = \ker \rho + \operatorname{Im} \rho$.

又有 $\forall \rho(u) \in \operatorname{Im} \rho, \ \rho(\rho(u)) = \rho^2(u) = \rho(u) \Longrightarrow \rho|_{\operatorname{Im} \rho} = 1|_{\operatorname{Im} \rho},$

由定理 8.7 得, ρ 为在 $\operatorname{Im} \rho$ 上沿 $\ker \rho$ 的投影.

综上, 得证.

定义 8.9 正交: $\rho, \sigma \in \mathcal{L}(V)$ 为投影, 若 $\rho \sigma = \sigma \rho = 0$, 则称 ρ 与 σ 正交, 记作 $\rho \perp \sigma$.

 $\rho \perp \sigma \iff \forall v \in V, \ \rho \sigma(v) = \rho(\sigma(v)) = 0 \ \ \exists \ \sigma \rho(v) = \sigma(\rho(v)) = 0 \iff \operatorname{Im} \sigma \subseteq \ker \rho \ \ \exists \ \operatorname{Im} \rho \subseteq \ker \sigma.$

8. 特征值和特征向量 8.1. 投影算子

定义 8.10 单位分解: $\rho_1 + \cdots + \rho_k = 1$, 其中 ρ_i 为投影且互相 \bot , 则称该式为单位分解.

定理 8.9 (课本第3 版定理2.25): (1) $\rho_1 + \cdots + \rho_k = 1$ 为单位分解, 则 $\operatorname{Im} \rho_1 \oplus \cdots \oplus \operatorname{Im} \rho_k = V$.

- (2) 若 $V = S_1 \oplus \cdots \oplus S_k$, 令 ρ_i 是在 S_i 上沿 $\sum_{i \neq i} S_j$ 的投影, 则 $\rho_1 + \cdots + \rho_k = 1$ 为单位分解.
- 证: (1) 先证 V 由 $\{\operatorname{Im} \rho_1, \dots, \operatorname{Im} \rho_k\}$ 生成: $\forall v \in V, v = 1(v) = (\rho_1 + \dots + \rho_k)(v) = \rho_1(v) + \dots + \rho_k(v),$ 其中 $\rho_i(v) \in \operatorname{Im} \rho_i$.

再证 $\operatorname{Im} \rho_i \cap (\bigcup_{j \neq i} \operatorname{Im} \rho_j) = \{0\}: \forall v \in \operatorname{Im} \rho_i \cap (\bigcup_{j \neq i} \operatorname{Im} \rho_j) \iff v \in \operatorname{Im} \rho_i \iff \rho_i(v) = v$ 且 $\exists j \neq i, \text{ s.t. } v \in \operatorname{Im} \rho_j \iff \exists u \in V, \text{ s.t. } \rho_j(u) = v$ $\implies v = \rho_i(v) = \rho_i(\rho_j(u)) = \rho_i\rho_j(u) = 0 \implies \operatorname{Im} \rho_i \cap \left(\sum_{j \neq i} \operatorname{Im} \rho_j\right) = \{0\}.$ 综上,得证.

(2) $\forall v \in V, \because V = S_1 \oplus \cdots \oplus S_k, \therefore v = v_1 + \cdots + v_k,$ 其中 $v_i = \rho_i(v) \in S_i$ $\implies v = \rho_1(v) + \cdots + \rho_k(v) = (\rho_1 + \cdots + \rho_k)(v) \Longrightarrow \rho_1 + \cdots + \rho_k = 1.$ $\forall v \in V, \ \rho_j(v) \in \text{Im } \rho_j = S_j \subseteq \sum_{j \neq i} S_i \Longrightarrow \rho_j \rho_i(v) = \rho_j(\rho_i(v)) = 0,$ 其中 $i \neq j \Longrightarrow \rho_j \rho_i = 0,$ 同理, $\rho_j \rho_i = 0,$ 即 $\rho_i \vdash \rho_j$ 正交, 故 $\rho_1 + \cdots + \rho_k = 1$ 为单位分解.

若 $V = \mathcal{E}_{\lambda_1} \oplus \cdots \oplus \mathcal{E}_{\lambda_k}$, 令 ρ_i 为在 \mathcal{E}_{λ_i} 上沿 $\sum_{j \neq i} \mathcal{E}_{\lambda_i}$ 的投影, 则 $\rho_1 + \cdots + \rho_k = 1$ 是单位分解, $\rho_i|_{\mathcal{E}_{\lambda_i}} = 1|_{\mathcal{E}_{\lambda_i}} \Longrightarrow \forall v \in \mathcal{E}_{\lambda_i}$, $\tau(v) = \lambda_i v = \lambda \rho_i(v)$, 即在 \mathcal{E}_{λ_i} 上, $\tau|_{\mathcal{E}_{\lambda_i}} = \lambda \rho_i$, 从而引出定理 8.6 (6).

Chapter 9

实数和复数内积空间

定义 9.1 内积和内积空间: $F = \mathbb{R}$ (或 \mathbb{C}), 映射 $\langle , \rangle : V \times V \to F$, $\langle u, v \rangle \mapsto \langle u, v \rangle$ 满足

- (1) 正定性: $\langle u, u \rangle \geq 0$, 且 $\langle u, u \rangle = 0 \Longleftrightarrow u = 0$
- (2) 对称 (或共轭对称): 对 $F = \mathbb{R}$, $\langle u, v \rangle = \langle v, u \rangle$; 对 $F = \mathbb{C}$, $\langle u, v \rangle = \overline{\langle v, u \rangle}$
- (3) 关于第一坐标线性,关于第二坐标线性(或共轭线性): 对 $F=\mathbb{R}$, $\langle ru_1+tu_2,v\rangle=r\langle u_1,v\rangle+t\langle u_2,v\rangle$, $\langle u,rv_1+tv_2\rangle=r\langle u,v_1\rangle+t\langle u,v_2\rangle$; 对 $F=\mathbb{C}$, $\langle ru_1+tu_2,v\rangle=r\langle u_1,v\rangle+t\langle u_2,v\rangle$, $\langle u,rv_1+tv_2\rangle=\bar{r}\langle u,v_1\rangle+\bar{t}\langle u,v_2\rangle$

则称 \langle , \rangle 是 V 上的内积, 称 V 为内积向量空间.

对给定的向量空间, 内积不唯一.

例 9.1: 在
$$\mathbb{R}^n$$
 上, $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$, 内积又称点积, $\langle x, y \rangle = x \cdots y = \sum_{i=1}^n x_i y_i$.

例 9.2: 在
$$\mathbb{C}^n$$
 上, $\alpha = (\alpha_1, \dots, \alpha_n)$, $\beta = (\beta_1, \dots, \beta_n)$, $\langle \alpha, \beta \rangle = \sum_{i=1}^n \alpha_i \bar{\beta}_i$.

引理 9.1 (课本引理9.1): V 为内积向量空间, $u, v \in V$, $\forall x \in V$, $\langle u, x \rangle = \langle v, x \rangle \Longleftrightarrow u = v$.

证: "⇒":
$$\langle u, x \rangle = \langle v, x \rangle \Longleftrightarrow \langle u, x \rangle - \langle v, x \rangle = 0 \Longleftrightarrow \langle u - v, x \rangle = 0$$
,
不妨取 $x = u - v$, 则 $\langle u - v, u - v \rangle = 0 \Longleftrightarrow u - v = 0 \Longleftrightarrow u = v$.
"⇐": 显然.

综上, 得证.

定理 9.1 (课本第3 版定理9.2): V 为内积向量空间, $\tau \in \mathcal{L}(V)$,

- (1) $\forall v, w \in V, \langle \tau(v), w \rangle = 0 \Longrightarrow \tau = 0.$
- (2) $\forall F = \mathbb{C}, \forall v \in V, \langle \tau(v), v \rangle = 0 \Longrightarrow \tau = 0.$

证: (1) 不妨取 $w = \tau(v)$, 则 $\langle \tau(v), w \rangle = \langle \tau(v), \tau(v) \rangle = 0 \Longrightarrow \forall v \tau(v) = 0$, 故 $\tau = 0$.

9. 实数和复数内积空间 9.1. 范数和距离

(2) $\forall v, w \in V, v + w \in V, v + iw \in V$,

$$\langle \tau(v+w), v+w \rangle = 0 = \langle \tau(v), v \rangle 0 + \langle \tau(v), w \rangle + \langle \tau(w), v \rangle + \langle \tau(w), w \rangle 0, \ \langle \tau(v+iw), v+iw \rangle = \langle \tau(v), v \rangle 0 + \langle \tau(v), iw \rangle + \langle \tau(iw), v \rangle + \langle \tau(iw), iw \rangle 0$$

$$\Longrightarrow \langle \tau(v),w\rangle + \langle \tau(w),v\rangle = 0, \ -i\langle \tau(v),w\rangle + i\langle \tau(w),v\rangle = 0$$

 $\Longrightarrow \langle \tau(v), w \rangle = 0,$

利用 (1) 中的结论, $\tau(v) = 0$.

内积向量空间的子空间和商空间与普通的向量空间同.

S 是内积向量空间 V 的子空间,则对应的商空间 $\frac{V}{S}$ 为 F 上的向量空间.

但在何种条件下, $\frac{V}{S}$ 是 F 上的内积向量空间 (内积定义同 V 上的内积定义)?

9.1 范数和距离

定义 9.2 (内积诱导出的)范数和赋范向量空间: $||v|| \equiv \sqrt{\langle u, u \rangle}$, 此时称 V 为赋范向量空间

定义 9.3 单位向量: 若 ||u|| = 1, 则称 u 为单位向量.

例 9.3: 在
$$\mathbb{R}^n$$
 上, $x = (x_1, \dots, x_n) \|x\| = \sqrt{\sum_{i=1}^n x_i^2}$.

定理 9.2 <u>范数的性质(课本定理9.2)</u>: (1) $||v|| \ge 0$, 且 $||v|| = 0 \iff v = 0$.

- (2) $\forall r \in F, ||rv|| = |r| \cdot ||v||.$
- (3) Cauchy-Schwarz 不等式: $|\langle u, v \rangle| \le ||u|| \cdot ||v||$, 且 $|\langle u, v \rangle| = ||u|| \cdot ||v|| \iff u 与 v$ 线性相关.
- (4) 三角不等式: $||u+v|| \le ||u|| + ||v||$.
- (5) $\forall x \in V, ||u v|| \le ||u x|| + ||v x||.$
- (6) $|||u|| ||v||| \le ||u v||$.
- (7) 平行四边形法则: $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$

 $\text{iII:} \quad (7) \ \left\| u + v \right\|^2 = \left\langle u + v, u + v \right\rangle = \left\langle u, u \right\rangle + \left\langle u, v \right\rangle + \left\langle v, u \right\rangle + \left\langle v, v \right\rangle, \\ \left\| u - v \right\|^2 = \left\langle u - v, u - v \right\rangle = \left\langle u, u \right\rangle - \left\langle u, v \right\rangle - \left\langle v, u \right\rangle + \left\langle v, v \right\rangle, \\ \left\langle v, u \right\rangle + \left\langle v, v \right\rangle,$

以上两式相加得, $\|u+v\|^2 + \|u-v\|^2 = 2\langle u,u \rangle + 2\langle v,v \rangle = 2\|u\|^2 + 2\|v\|^2$.

定义 9.4 范数和赋范向量空间: 映射 $|||: V \to F, v \mapsto ||v||$, 满足

 $||v|| \ge 0$, $||L|| = 0 \iff v = 0$

(2) ||rv|| = |r| ||v||

69 / 75

9. 实数和复数内积空间 9.2. 等距算子

(3) $||u+v|| \le ||u|| + ||v||$

则称 $\parallel \parallel$ 为 V 上的一个范数, 称 V 为赋范向量空间.

给定向量空间, 范数不唯一, 其中内积诱导的范数是一类特殊的范数, 故内积向量空间必为赋范向量空间. 内积诱导的范数可反向构建内积, 但利用一般的范数未必能构建内积 (因为或无法满足内积的线性性质).

定理 9.3 极化恒等式(课本定理9.3): 对内积诱导出的范数,

对
$$F = \mathbb{R}, \langle u, v \rangle = \frac{1}{4}(\|u + v\|^2 - \|u - v\|^2).$$

(2)
$$\forall F = \mathbb{C}, \langle u, v \rangle = \frac{1}{4}(\|u + v\|^2 - \|u - v\|^2) + \frac{i}{4}(\|u + iv\|^2 - \|u - iv\|^2).$$

定义 9.5 度量/距离: $d(u,v) \equiv ||u-v||$, 此时称 V 为度量向量空间.

定理 9.4 度量的性质(课本定理9.4): (1) $d(u,v) \ge 0$, 且 $d(u,v) = 0 \iff u = v$.

- (2) 对称性: d(u, v) = d(v, u).
- (3) 三角不等式: $d(u, v) \le d(u, x) + d(x, v)$.

内积向量空间必为赋范向量空间, 赋范向量空间必为度量向量空间.

9.2 等距算子

定义 9.6 <u>等距</u>: V, W 是 F 上的内积向量空间, $\tau \in \mathcal{L}(V, W)$, 若 τ 保持内积不变, 即 $\langle \tau(u), \tau(v) \rangle = \langle u, v \rangle$, 则称 τ 等距.

定义 9.7 等距同构: 若 τ 等距且双射,则称 τ 等距同构.

定理 9.5 (课本定理9.5): τ 等距 $\iff ||\tau(u)|| = ||u||$.

证: "⇒": 由定义即得.

"一":由极化恒等式 $\langle u,v\rangle = \frac{1}{4}(\|u+v\|^2 + \|u-v\|^2)$,有 $\langle \tau(u),\tau(v)\rangle = \frac{1}{4}(\|\tau(u)+\tau(v)\|^2 + \|\tau(u)-\tau(v)\|^2) = \frac{1}{4}(\|\tau(u+v)\|^2 + \|\tau(u-v)\|^2) = \frac{1}{4}(\|u+v\|^2 + \|u-v\|^2) = \langle u,v\rangle$,即 τ 等距.

综上, 得证.

若 τ 等距, 则 $\tau(u) = 0 \iff u = 0$, 此时 $\ker \tau = \{0\}, \tau$ 单射.

9.3 正交性

9. 实数和复数内积空间 9.3. 正交性

定义 9.8 正交: (1) V 为内积向量空间, $u, v \in V$, 若 $\langle u, v \rangle = 0$, 则称 u 与 v 正交, 记作 $u \perp v$.

- (2) X, Y 为 V 的子集, 若 $\forall x \in X, y \in Y,$ 有 $x \perp y$, 则称 X 与 Y 正交, 记作 $X \perp Y$.
- (3) $X^{\perp} = \{ v \in X \mid v \perp X \}.$

 $\langle 0, v \rangle = \langle 0 + 0, v \rangle = \langle 0, v \rangle + \langle 0, v \rangle \Longrightarrow \langle 0, v \rangle = 0.$

 $:: 0 \in X^{\perp}, :: X^{\perp}$ 必非空.

定理 9.6 (课本定理9.7): (1) X^{\perp} 为 V 的子空间.

(2) 子空间 $S \subseteq V$, $S \cap S^{\perp} = \{0\}$.

证: (1) $\forall u, v \in X^{\perp}, \forall x \in X, \langle u, x \rangle = 0, \langle v, x \rangle = 0$ $\Longrightarrow \langle ru + tv, x \rangle = r \langle u, x \rangle + t \langle v, x \rangle = r0 + t0 = 0$ $\Longrightarrow ru + tv \in X^{\perp}, \text{ 故 } X^{\perp} \notin V \text{ 的子空间}.$

(2) 设 $x \in S \cap S^{\perp}$, 则 $x \in S$ 且 $x \in S^{\perp} \iff x \perp S \Longrightarrow x \perp x$ $\Longrightarrow \langle x, x \rangle = 0 \Longrightarrow x = 0$, 故得证.

定义 9.9 正交直和: $V = S \oplus T \perp S \perp T$, 则称 $V \rightarrow S \rightarrow T$ 的正交直和, 记作 $V = S \odot T$.

S 为 V 的子空间, S^c 为 S 的补空间, 则 $V = S \oplus S^c$.

给定子空间, 其补空间不唯一, 但正交补空间唯一.

例 9.4: 在 \mathbb{R}^2 上, 子空间 S 为过原点的一条直线, 任一过原点而不与 S 平行的直线均为 S 的补空间, 而仅过原点 且与 S 正交的直线为 S 的正交补空间.

定理 9.7 (课本第3 版定理9.8): $V = S \odot T \iff V = S \oplus T \perp T = S^{\perp}$.

给定子空间, 其正交补空间一定存在? 关于正交补空间的存在性问题, 我们稍后讨论. 给定 $S\subseteq V$ 和 S^\perp , 是否必有 $V=S\odot S^\perp$.

定义 9.10 <u>正交(归一)集</u>: $\mathcal{O} = \{u_1, \dots, u_k \mid k \in K\}$, 若 \mathcal{O} 中向量两两正交, 则称 \mathcal{O} 为正交集, 特别地, $\langle u_i, u_j \rangle = \delta_{ij}$, 则称 \mathcal{O} 为正交归一集.

不含零的正交集均可归一化为正交归一集.

定理 9.8 (课本定理9.8): 不含零的正交集线性无关.

证: 设 $\{u_k \mid k \in K\}$ 是正交集且 $u_i \neq 0 \forall i \in K$.

设 $\sum_{i=1}^{m} r_i u_i = 0,$

 $\forall k \in K, \ 0 = \langle 0, u_k \rangle = \langle \sum_{i=1}^m r_i u_i, u_k \rangle = \sum_{i=1}^m r_i \langle u_i, u_k \rangle = r_k \langle u_k, u_k \rangle,$

 $X : u_k \neq 0, : \langle u_k, u_k \rangle \neq 0 \Longrightarrow r_k = 0$

线性无关集未必正交, 但可通过 Gram-Schmidt 正交化过程将线性无关集正交化.

71 / 75

9. 实数和复数内积空间 9.3. 正交性

定理 9.9 <u>Gram-Schmidt 正交化过程(课本定理9.10)</u>: $\mathcal{B} = \{b_1, \cdots, b_n, \cdots\}$ 是向量空间 V 中线性独立集且 $v_i \neq 0 \forall i$, 则可通过

$$o_1 = v_1$$

再对 o_1, \dots, o_n, \dots 归一化,得到正交归一集 $\mathcal{O} = \langle o_1, \dots, o_n, \dots \rangle$, s.t. $\langle \mathcal{B} \rangle = \langle \mathcal{O} \rangle$.

定义 9.11 Hamel 基: 极大线性无关集.

定义 9.12 Hilbert 基: 极大正交归一基.

定理 9.10 (课本第3 版定理9.13): $\exists \dim V < \infty$ 时, Hilbert $\overline{\mathbb{A}} \Longrightarrow \operatorname{Hamel} \overline{\mathbb{A}}$.

例 9.5 <u>Hilbert 基并非Hamel 基的例子(课本第3 版例9.5)</u>: $V = l^2$ 空间 (所有平方收敛级数列构成的空间), $M = \{e_1 = (1, 0, \cdots), e_2 = (0, 1, 0, \cdots), \cdots\}$ 显然正交归一. 若 $v = (x_n) \in l^2$ 且 $v \perp M$, 则 $\forall i, x_i = \langle v, e_i \rangle = 0 \Longrightarrow v = 0$, 故 $M \to V$ 的 Hilbert 基,

然而, M 张成的 l^2 的子空间中的平方收敛级数列必仅有有限个非零项 \Longrightarrow span $S \neq l^2$, 故 M 非 Hamel 基. \square

定理 9.11 (课本定理9.11): \mathcal{O} 为正交归一集, $S = \langle \mathcal{O} \rangle$, $\forall v \in V$, 令 v 的傅里叶展开 $\hat{v} = \langle v, u_1 \rangle u_1 + \cdots + \langle v, u_k \rangle u_k$, 则 $\hat{v} \in S$ 且

- (1) \hat{v} 是 S 中唯一满足 $v \hat{v} \perp S$ 的向量.
- (2) $\hat{v} \in S$ 中与 v 最近的向量 (即 $\forall w \in S, d(v, \hat{v}) \leq d(d, w)$), 称 \hat{v} 为 v 在 S 中的**最佳近似**.
- (3) Bessel 不等式: $\|\hat{v}\| \le \|v\|$.
- i: (1) $\forall w \in S, w = \sum_{i=1}^k r_i u_i,$

先证正文: $\langle v - \hat{v}, w \rangle = \langle v, w \rangle - \langle \hat{v}, w \rangle = \langle v, \sum_{i=1}^{k} r_i u_i \rangle - \langle \sum_{i=1}^{k} \langle v, u_i \rangle u_i, \sum_{j=1}^{k} r_j u_j \rangle$ $= \sum_{i=1}^{k} \bar{r}_i \langle v, u_i \rangle - \sum_{i=1}^{k} \langle v, u_i \rangle \sum_{i=1}^{k} \bar{r}_j \langle u_i, u_j \rangle = \sum_{i=1}^{k} \bar{r}_i \langle v, u_i \rangle - \sum_{i=1}^{k} \langle v, u_i \rangle \sum_{j=1}^{k} \bar{r}_j \delta_{ij} = \sum_{i=1}^{k} \bar{r}_i \langle v, u_i \rangle - \sum_{i=1}^{k} \bar{r}_i \langle v, u_i \rangle = 0 \Longrightarrow v - \hat{v} \perp S.$

再证唯一: 若取 $u \in S$, s.t. $v - u \perp S$, 设 $u = \sum_{i=1}^{k} l_i u_i$, $v - u \perp S \Longrightarrow \forall u_j \in S, \ j = 1, \cdots, k, \ \langle v - u, u_j \rangle = 0 \Longrightarrow \langle v, u_j \rangle - \langle u, u_j \rangle = 0 \Longrightarrow \langle v, u_j \rangle = \langle u, u_j \rangle = l_j \Longrightarrow u = \sum_{i=1}^{k} l_i u_i = \sum_{i=1}^{k} \langle v, u_i \rangle u_i = v$. 综上,得证.

(2) $\forall w \in S, d^{2}(u, w) = \|v - w\|^{2} = \|v - \hat{v} + \hat{v} - w\|^{2},$ $\therefore \hat{v} \in S, w \in S, \therefore \hat{v} - w \in S,$ $X \because v - \hat{v} \perp S, \therefore v - \hat{v} \perp \hat{v} - w$ $\implies d^{2}(u, w) = \|v - \hat{v}\|^{2} + \|\hat{v} - w\|^{2},$ $\therefore \|\hat{v} - w\|^{2} \ge 0, \therefore d^{2}(u, w) \ge \|v - \hat{v}\|^{2} = d^{2}(v, \hat{v}).$ 9. 实数和复数内积空间 9.3. 正交性

(3) $||v||^2 = ||v - \hat{v} + \hat{v}||^2$, $v \cdot v - \hat{v} \perp S, \ \hat{v} \in S, \ v \cdot v - \hat{v} \perp \hat{v},$ 由勾股定理, $||v - \hat{v}||^2 + ||\hat{v}||^2 \ge ||\hat{v}||^2 \Longrightarrow ||v|| \ge ||\hat{v}||$.

定理 9.12 投影定理(课本定理9.12): $S \in V$ 的有限维子空间, 则 $V = S \odot S^{\perp}$, 且 $\forall v \in V$, $v = \hat{v} + (v - \hat{v})$, 其 中 $\hat{v} \in S$ 为 v 在 S 中的最佳近似, $v - \hat{v} \in S^{\perp}$,

 $\dim V = \dim S + \dim S^{\perp}.$

定理 9.13 (课本定理9.12): S 为有限维子空间, 则

- (1) $S^{\perp \perp} = S$.
- (2) 子集 $X \subseteq V$ 且 $\dim\langle X \rangle < \infty$, 则 $X^{\perp \perp} = \langle X \rangle$.
- $\mathbf{iI}: (1) \ S^{\perp} = \{ v \in V \mid v \perp S \}, \ S^{\perp \perp} = \{ u \in V \mid u \perp S^{\perp} \},$ 显然, $S \subseteq S^{\perp \perp}$.

 $\forall w \in S^{\perp \perp} \subseteq V, :: S \neq \mathbb{R}$ $f(x) \in S = \mathbb{$ $0 = \langle w_S^{\perp}, w_S \rangle = \langle w_{S^{\perp}}, w - w_{S^{\perp}} \rangle = \langle w_{S^{\perp}}, w \rangle - \langle w_{S^{\perp}}, w_{S^{\perp}} \rangle,$ $\because w \in S^{\perp \perp}, \ \ (w_{S^{\perp}}, w) = 0 \Longrightarrow \langle w_{S^{\perp}}, w_{S^{\perp}} \rangle = 0 \Longrightarrow w_{S^{\perp}} = 0 \Longrightarrow w = w_S \in S, \ \ \ \ \ S^{\perp \perp} \subseteq S.$ 综上, 得证.

 $\forall w_1 \in \langle X \rangle, w_1 = \sum_{i=1}^k r_i u_i,$ $\forall w_2 \in X^{\perp}, \ \langle w_1, w_2 \rangle = \langle \sum_{i=1}^k r_i u_i, w_2 \rangle = \sum_{i=1}^k r_i \langle u_i, w_2 \rangle = 0 \Longrightarrow \langle X \rangle \subseteq X^{\perp \perp}.$ $\forall w \in X^{\perp \perp}$, 令 w 在 $\langle X \rangle$ 上的最佳近似 $\hat{w} = \sum_{i=1}^{k} l_i u_i \in \langle X \rangle$,

 $\langle w - \hat{w}, w - \hat{w} \rangle = \langle w, w - \hat{w} \rangle - \langle \hat{w}, w - \hat{w} \rangle,$

 $w - \hat{w} \in \langle X \rangle^{\perp}, \ \hat{w} \in \langle X \rangle, \ \therefore \langle \hat{w}, w - \hat{w} \rangle = 0,$

 $\Longrightarrow \langle w - \hat{w}, w - \hat{w} \rangle = 0 \Longrightarrow w - \hat{w} = 0 \Longrightarrow w = \hat{w} \in \langle X \rangle \Longrightarrow X^{\perp \perp} \in \langle X \rangle.$

综上, 得证.

定理 9.14 (课本第3 版定理9.17): $\mathcal{O} = \{u_1, \dots, u_k\}$ 为正交归一集, $S = \langle \mathcal{O} \rangle$, 则下列叙述等价:

- (1) O 为 V 的正交归一基.
- (2) $\mathcal{O}^{\perp} = \{0\}.$
- (3) $\forall v \in V, v = \hat{v} = \sum_{i=1}^{k} \langle v, u_i \rangle u_i$.
- (4) Bessel 不等式: $||v|| = ||\hat{v}||$.

73 / 75

9. 实数和复数内积空间 9.4. Riesz 表示定理

(5) Parserval 不等式:
$$\langle v, w \rangle = \sum_{i=1}^{k} \langle v, u_i \rangle \overline{\langle w, u_i \rangle}$$
, 即在定序基 \mathcal{O} 下, $V \to F^k$, $v \mapsto [v]_{\mathcal{O}} = \begin{pmatrix} \langle v, u_1 \rangle \\ \vdots \\ \langle v, u_k \rangle \end{pmatrix}$, $w \mapsto [w]_{\mathcal{O}} = \begin{pmatrix} \langle w, u_1 \rangle \\ \vdots \\ \langle w, u_k \rangle \end{pmatrix}$, $\langle u, w \rangle = [v]_{\mathcal{O}} \cdot [w]_{\mathcal{O}}$.

$$\begin{split} \mathbf{\widetilde{u}} \mathbf{\widetilde{E}} : \text{``}(1) &\Longrightarrow (2) \text{``} : V = \langle \mathcal{O} \rangle, \, \forall u \in \mathcal{O}^{\perp} \subseteq V, \, v = \sum_{i=1}^{k} l_{i} u_{i} \\ &\because u \in \mathcal{O}^{\perp}, \, \therefore \, \forall i = 1, \cdots, k, \, \langle u, u_{i} \rangle = 0, \\ 0 &= \langle u, u_{j} \rangle = \sum_{i=1}^{k} l_{i} \langle u_{i}, u_{j} \rangle = \sum_{i=1}^{k} l_{i} \delta_{ij} = l_{j} \Longrightarrow u = \sum_{i=1}^{k} l_{i} u_{i} = 0. \\ \text{``}(2) &\Longrightarrow (3) \text{``} : v = v - \hat{v} + \hat{v}, \, \because \mathcal{O}^{\perp} = \{0\}, \, S^{\perp} \subseteq \mathcal{O}^{\perp}, \, \therefore S^{\perp} = \{0\} \Longrightarrow V = S \odot S^{\perp}. \end{split}$$

9.4 Riesz 表示定理

 $F=\mathbb{R}$ (或 \mathbb{C}), V 为 F 上的有限维内积向量空间, $\dim V=n$, 内积 $\langle , \rangle : V\times V \to F$, $(u,v)\mapsto \langle u,v \rangle$, 固定第二 坐标 v=x, 定义线性泛函 $\langle ,x \rangle \in V^*: V \to F$, $v\mapsto \langle v,x \rangle$.

定理 9.15 Riesz 表示定理(课本定理9.15): $\dim V = n, \forall f \in V^*, \exists ! x \in V, \text{ s.t. } f(v) = \langle v, x \rangle$.

即对偶空间中的任一函数均可用与一向量的内积代替,或对偶空间中的任一函数均可用一向量表示.

证: dim Im $f \le 1$. 若 dim Im f = 0, 则 $f = 0 \Longrightarrow x = 0$;

若 dim Im $f \neq 0$, 则 dim Im f = 1, $\exists 0 \neq u \in V$, s.t. $f(u) \neq 0$.

 $V = \ker f \oplus \operatorname{Im} f \perp \ker f^c \approx \operatorname{Im} f, \perp \dim \ker f^c = \dim \operatorname{Im} f = 1,$

$$\Longrightarrow \ker f^c = \langle u \rangle \Longrightarrow V = \langle u \rangle \odot \ker f$$
,

$$\implies \langle u \rangle^{\perp} = \{0\} \implies f(\langle u \rangle^{\perp}) = 0, \text{ if } V = \langle u \rangle \odot \langle u \rangle^{\perp}.$$

由对偶空间中函数与向量空间中向量的一一对应的关系, 可引出

定义 9.13 Riesz 映射: $\mathcal{R}: V^* \to V$, $f \mapsto x$, s.t. $f(v) = \langle v, x \rangle$.

- (1) R 是映射.
- (2) R 满射.
- (3) R 单射.
- (4) R 共轭线性.

证:

- (1) 由定理 9.15 即得.
- (2) 显然.
- (3) $\ker \mathcal{R} = \{ f \in V^* \mid \mathcal{R}(f) = 0 \} = \{ f \in V^* \mid f(v) = \langle v, 0 \rangle = 0 \} = \{ 0 \}$, 故得证.

9. 实数和复数内积空间 9.4. Riesz 表示定理

(4) 令
$$\mathcal{R}(f) = x_f$$
, $\mathcal{R}(g) = x_g$, $\mathcal{R}(rf + tg) = x_{rf+tg}$.
一方面, $(rf + tg)(v) = \langle v, x_{rf+tg} \rangle$;
另一方面, $(rf + tg)(v) = rf(v) + tg(v) = r\langle v, x_f \rangle + t\langle v, x_g \rangle = \langle v, \bar{r}x_f + \bar{t}x_g \rangle$
 $\implies x_{rf+tg} = \bar{r}x_f + \bar{t}x_g$, 即 $\mathcal{R}(rf + tg) = r\mathcal{R}(f) + t\mathcal{R}(g)$.

综上, R 共轭同构.