Week 2

Week 2 Chunk 1

Measurement

Definition of Epidemiology

"The study of the distribution and determinants of disease frequency in man"

MacMahon B, Pugh TF. Epidemiology: principles and methods. Little Brown. 1970

Implication: Measurement

- "study of the distribution ... of disease frequency in human populations"
 - Measure Outcomes (Disease)
 - Example: Mean blood pressure, prevalence of hypertension, incidence of CHD, risk, odds, rates
- "study of the ... determinants of disease frequency in human populations"
 - Measure Associations between Risk Factors and Outcomes
 - Example: Risk Ratios, Odds Ratios, Rate Ratios, Regression Coefficients

Prevalence

Agenda

- Review role of outcome measurement in Epidemiology
- Binary Outcomes: Proportion and Odds
- Prevalence
- Determinants of Prevalence
- Problem Set

Measurement Scales

Scale	Values	Example	Measure
Nominal			
(categories, no order)			
Ordinal (categories, with order)			
Discrete/			
Continuous			
(order and distance)			

Measurement Scales

Scale	Values	Example	Measure
Nominal (categories, no order)	Labels	Diagnosis, Cause of Death	Proportion Odds
Ordinal (categories, with order)			
Discrete/ Continuous			
(order and distance)			

Example: Nominal Outcome International Classification of Disease (ICD9 Code)

Cause of Death	ICD-9
Breast Cancer	174
Acute Myocardial Infarction	410
Complication of Pregnancy	646

Measurement Scales

Scale	Values	Example	Measure
Nominal (categories, no order)	Labels	Diagnosis, Marital Status	Proportion Odds
Ordinal (categories, with order)	Reflect Order	Severity of Disease, QOL	Above Median
Discrete/ Continuous (order and distance)			

Example: Ordinal Outcome *SF36*

In general, would you say your health is

- 5. Excellent
- 4. Very Good
- 3. Good
- 2. Fair
- 1. Poor

Measurement Scales

Scale	Values	Example	Measure
Nominal (categories, no order)	Labels	Diagnosis, Marital Status	Proportion Odds
Ordinal (categories, with order)	Reflect Order	Severity of Disease, QOL	Above Median
Discrete/ Continuous (order and distance)	Reflect Order and Distance	# MD Visits, Age, SBP	Above Average (Mean)

Example: Ordinal Outcome SF36

In general, would you say your health is

- 5. Excellent
- 4. Very Good
- 3. Good
- 2. Fair
- 1. Poor

Questions

- Can this be treated as a continuous measurement?
- Do integer values reflect order and distance.
 - Are health states equally distanced apart?
 - Is "Good Health" halfway between "Fair Health" and "Very Good Health"?
 - If yes, the average scores across subjects make sense.

Exercise

Place an X at locations of "Fair", "Good" and "Very Good" health states, and measure distances between locations on line

1 5
Poor Excellent

Week 2 Chunk 2

Exercise

Exercise

Place an X at locations of "Fair", "Good" and "Very Good" health states, and measure distances between locations on line

1 5 Poor Excellent

Transforming Ordinal Outcome into a Continuous Outcome

Median location of health states by HSPH students on 5-point scale

- 5. Excellent → 54. Very Good → 4.4
- 3. Good \rightarrow 3.3
- 2. Fair \rightarrow 2
- 1. Poor \rightarrow 1

Averages (Means)

- Measures of central tendency
- Mean = $(\sum \text{values})/ (\# \text{values})$
- May not reflect typical value
- "Say you were standing with one foot in the oven and one foot in an ice bucket. According to the percentage people, you should be perfectly comfortable." (Bobby Bragen)

http://sportsillustrated.cnn.com/vault/article/magazine/MAG1074702/index.htm

Week 2 Chunk 3

Binary Outcomes

Binary Outcomes

Binary Outcome Measurements

- Example: success versus failure, disease versus no disease, dead versus alive, ...
 - Some are binary by definition (dead/alive)
 - Some are created as binary (hypertension)
 - · Potential loss of information
- Options for measurement:
 - Proportion and Odds

Example: Sex Distribution in Framingham Heart Study Data

Males: 1944 Females: 2490 Total 4434

How would you summarize the frequency of Males?

Example: Distribution of Sex in Framingham Heart Study Data

Males: 1944 Females: 2490 Total 4434

Option # 1: Part/Whole

1944/4434 = 43.84% = Proportion of Males

Example: Distribution of Sex in Framingham Heart Study Data

Males: 1944 Females: 2490 Total 4434

Option # 2: Part/(Non-Part)

1944/2490 = 0.78 = Odds of being Male

Proportions and Odds

- Proportion
 - Part / Whole
 - Range: 0 1
- Odds
 - Part/ (Non-Part)
 - Range: 0 infinity

Proportion and Odds

• Odds = Proportion/(1-Proportion)

Example: Proportion = .20

Odds = .20/.80 = .25

• Proportion = Odds/(1+Odds)

Example: Odds = .25

Proportion = .25/1.25 = .20

Relationship between Proportion and Odds

Proportion	Odds	Proportion	Odds
0.01	0.01	0.60	1.50
0.02	0.02	0.70	2.33
0.03	0.03	0.80	4.00
0.04	0.04	0.90	9.00
0.05	0.05	0.95	19.00
0.10	0.11	0.96	24.00
0.20	0.25	0.97	32.33
0.30	0.40	0.98	49.00
0.40	0.67	0.99	99.00
0.50	1.00		

Implications: Small versus Large Proportions

- Example: Small Proportions
 - Proportions = .02 and .01
 - Ratio = .02/.01 = 2.0
 - Odds = .02/.98 = .0204 and .01/.99 = .0101
 - Ratio = .0204/.0101 = 2.02
- Example: Large Proportions
 - Proportions = .99 and .98
 - Ratio = .99/.98 = 1.01
 - Odds = .99/.01 = 99 and .98/.02 = 49
 - Ratio = 99/49 = 2.02

Table 1. Rate of Referral for Cardiac Catheterization, Odds of Referral, Odds Ratio, and Risk Ratio According to Sex and Race.*

PATIENTS	MEAN REFERRAL RATE	Odds of Referral	Odds Ratio (95% CI)	RISK RATIO (95% CI)
	%			
Four strata				
White men†	90.6	9.6 to 1	1.0	
Black men	90.6	9.6 to 1	1.0(0.5-2.1)	
White women	90.6	9.6 to 1	1.0(0.5-2.1)	
Black women	78.8	3.7 to 1	0.4(0.2-0.7)	0.87(0.80-0.95)
Aggregate data				
White†	90.6	9.6 to 1	1.0	
Black	84.7	5.5 to 1	0.6(0.4-0.9)	0.93(0.89 - 0.99)
Men†	90.6	9.6 to 1	1.0	
Women	84.7	5.5 to 1	0.6 (0.4-0.9)	0.93 (0.89-0.99)
Overall	877	7.1 to 1		$\overline{}$

^{*}Referral rates for the four strata were inferred from aggregate rates and odds ratios reported by Schulman et al.¹ The odds of referral were calculated according to the following formula: referral rate÷(100%-referral rate). The risk ratio was calculated as the referral rate for the group in question divided by the referral rate for the referral confidence interval

N ENGL J MED 1999; 340:618-626; N Eng J Med1999;341:279-83

[†]This was the reference group.

- Would you present?
 - Ratio of Proportions (84.7/90.6 = .93)
 - Risk of referral for a women is .93 times that of a man
 - Ratio of Odds (5.5/9.6 = .60)
 - Odds of referral for a women is .93 times that of a man
- Both are correct !
- · Important to label your results

Week 2 Chunk 4

Prevalence

Prevalence

Measures Amount of Disease Existing in a Population at a Point in Time

Prevalence = (# cases of disease)/(# examined)

Prevalence Odds = Prevalence/(1-Prevalence)

Prevalence of CHD in Framingham Heart Study Data

Sex	Age Group	Number at Exam	Number with CHD	Prevalence
	Стоир	at Exam	With Olib	
Female	30-40	415	0	0/415= .00
	41-50	908	6	6/908= .01
	51-60	795	38	38/795=.05
	> 60	372	26	26/372=.07
Male	30-40	339	6	6/339=.02
	41-50	731	24	24/731=.03
	51-60	584	37	37/584=.06
	> 60	290	57	57/290=.20

What are some possible reasons for the general tendency for men to have higher prevalence of CHD at baseline than women?

Week 2 Chunk 5

Reasons

What are some possible reasons for the general tendency for men to have higher prevalence of CHD at baseline than women?

Possible Answers

 Men are at high risk for developing CHD (Higher Incidence)

Possible Answers

 Men with CHD live longer after diagnosis than women with CHD (Longer Duration)

Possible Answers

- Men with CHD are more likely to have it diagnosed and recorded than women with CHD (Measurement Bias)
- Men have more other risk factors for CHD than women (Confounding)
- The association is due to sampling variability (Chance)

Example: CNN.com

"1 million living with HIV in U.S."

"Statistics provide good and bad news"

CNN.Com Monday, June 13, 2005 Posted: 1:42 PM EDT (1742 GMT)

Question

Why does this statistic provide both good news and bad news?

ATLANTA, Georgia (AP) – "For the first time since the height of the AIDS epidemic in the 1980s, more than a million Americans are believed to be living with the virus that causes AIDS, the government said Monday."

"The latest estimate is both **good and bad news** -- reflecting the success of drugs that keep more people alive and the failure of the government to "break the back" of the AIDS epidemic by its stated goal of 2005."

CNN.Com Monday, June 13, 2005 Posted: 1:42 PM EDT (1742 GMT)

Week 2 Chunk 6

Problems

Problem Set

Prevalence of CHD at 1956 Exam by Hypertension Medication Use

Hypertension	Pre-Exis	Total	
Medication	Yes	No	
Yes	20	124	144
No	166	4063	4229
Total	186	4187	4373

- a) What is the Prevalence of CHD among participants who are on treatment for hypertension?
- b) What is the Prevalence of CHD among participants who are not on treatment for hypertension?

Question 2

- a)Hypertension Treatment increases the risk of developing CHD
- b)Hypertension Treatment decreases the risk of developing CHD

Other reasons being equal, which of the following is the most likely explanation for the higher prevalence of CHD among participants on treatment for hypertension?

- 1. Hypertension Treatment increases the survival time with CHD
- 2. Hypertension Treatment decreases the survival time with CHD

Question 4

- Participants on Hypertension Treatment have more other risk factors for developing CHD
- 2. Participants on Hypertension Treatment have less other risk factors for developing CHD

Other reasons being equal, which of the following is the most likely explanation for the higher prevalence of CHD among participants on treatment for hypertension?

- 1. Participants on Hypertension Treatment are more likely to be tested for CHD
- 2. Participants on Hypertension Treatment are less to be tested for CHD

Question 6

- Hypertension Treatment increases the risk for developing CHD
- CHD increases the risk of being treated for hypertension

Prevalence of CHD at 1956 Exam by Hypertension Medication Use

Hypertension	Pre-Exis	Total	
Medication	Yes	No No	
Yes	20	124	144
No	166	4063	4229
Total	186	4187	4373

Question 1

- a) What is the Prevalence of CHD among participants who are on treatment for hypertension?
- b) What is the Prevalence of CHD among participants who are not on treatment for hypertension?

a) What is the Prevalence of CHD among participants who are on treatment for hypertension?

20/144 = 0.14

b) What is the Prevalence of CHD among participants who are not on treatment for hypertension?

Question 1

a) What is the Prevalence of CHD among participants who are on treatment for hypertension?

20/144 = 0.14

b) What is the Prevalence of CHD among participants who are not on treatment for hypertension?

166/4229 = 0.04

Other reasons being equal, which of the following is the most likely explanation for the higher prevalence of CHD among participants on treatment for hypertension?

- a)Hypertension Treatment increases the risk of developing CHD
- b)Hypertension Treatment decreases the risk of developing CHD

Question 2

- a)Hypertension Treatment increases the risk of developing CHD
- b)Hypertension Treatment decreases the risk of developing CHD

Other reasons being equal, which of the following is the most likely explanation for the higher prevalence of CHD among participants on treatment for hypertension?

- 1. Hypertension Treatment increases the survival time with CHD
- 2. Hypertension Treatment decreases the survival time with CHD

Question 3

- 1. Hypertension Treatment increases the survival time with CHD
- 2. Hypertension Treatment decreases the survival time with CHD

Other reasons being equal, which of the following is the most likely explanation for the higher prevalence of CHD among participants on treatment for hypertension?

- 1. Participants on Hypertension Treatment have more other risk factors for developing CHD
- 2. Participants on Hypertension Treatment have less other risk factors for developing CHD

Question 4

- 1.Participants on Hypertension Treatment have more other risk factors for developing CHD
- 2. Participants on Hypertension Treatment have less other risk factors for developing CHD

Other reasons being equal, which of the following is the most likely explanation for the higher prevalence of CHD among participants on treatment for hypertension?

- 1. Participants on Hypertension Treatment are more likely to be tested for CHD
- 2. Participants on Hypertension Treatment are less to be tested for CHD

Question 5

- 1.Participants on Hypertension Treatment are more likely to be tested for CHD
- 2. Participants on Hypertension Treatment are less to be tested for CHD

Other reasons being equal, which of the following is the most likely explanation for the higher prevalence of CHD among participants on treatment for hypertension?

- Hypertension Treatment increases the risk for developing CHD
- CHD increases the risk of being treated for hypertension

Question 6

- Hypertension Treatment increases the risk for developing CHD
- 2.CHD increases the risk of being treated for hypertension