TUGAS INDIVIDU 2 LOGIKA FUZZY

DISUSUN OLEH:

Nama : Riolan Pratama

NPM : G1A022047

DOSEN PENGAMPU:

Dr. Endina Putri Purwandari, S.T, M.Kom.

PROGRAM STUDI INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS BENGKULU 2024

SOAL DAN PEMBAHASAN

Suatu penelitian dilakukan untuk mencari jumlah produksi berdasarkan pengaruh factor suhu, kebisingan, dan pencahayaan. Dalam penelitian ini ada 30 pekerja, yang masing-masing melakukan 27 kali percobaan dengan kombinasi suhu (°C), kebisingan (dB), dan pencahayaan (lux) yang berbeda untuk menghasilkan sejumlah produk. Banyaknya data diperoleh sejumlah 810 data. Dari ketiga puluh data untuk setiap kombinasi diambil nilai rata-ratanya, sehingga data yang akan diolah tinggal 27 data sebagai berikut:

No	Suhu (°C)	Kebisingan (dB)	Pencahayaan (lux)	Rata-rata jumlah	Standar deviasi
	` ' '	(45)	(1477)	produk	401,431
1	22	55	150	148,00	4,71
2	22	55	300	150,90	4,78
3	22	55	500	146,50	4,90
4	22	75	150	143,10	4,90
5	22	75	300	146,53	4,58
6	22	75	500	142,73	5,42
7	22	90	150	136,73	4,49
8	22	90	300	140,77	4,49
9	22	90	500	135,97	4,75
10	26	55	150	149,73	4,43
11	26	55	300	153,27	5,59
12	26	55	500	152,13	5,04
13	26	75	150	148,00	5,15
14	26	75	300	150,63	5,06
15	26	75	500	147,63	4,84
16	26	90	150	141,47	5,69
17	26	90	300	145,67	4,81
18	26	90	500	140,20	4,76
19	32	55	150	142,10	4,28
20	32	55	300	146,53	5,38
21	32	55	500	142,17	4,53
22	32	75	150	138,70	4,84
23	32	75	300	141,40	4,95
24	32	75	500	138,30	5,12
25	32	90	150	133,33	4,71
26	32	90	300	138,53	4,51
27	32	90	500	137,77	4,83

Tentukan:

- a. Fungsi keanggotaan beserta gambarnya
- b. 27 aturan fuzzy
- c. Derajat keanggotaan nilai tiap variabel dalam setiap himpunan
- d. a-predikat untuk setiap aturan
- e. rata-rata jumlah produk (gunakan metode defuzzy weighted average)

```
Pembahasan:
       Untuk menyelesaikan permasalahan pada soal tersebut, saya terlebih dahulu membuat
kode pemrograman menggunakan python, berikut kode program nya:
Source Code:
import numpy as np
import skfuzzy as fuzz
import matplotlib.pyplot as plt
import pandas as pd
data = pd.read_csv('data1.csv')
# Definisikan rentang variabel input dan output
x suhu = np.arange(20, 41, 1) # Suhu
x_kebisingan = np.arange(40, 81, 1) # Kebisingan
x_pencahayaan = np.arange(100, 1001, 1) # Pencahayaan
x_produksi = np.arange(0, 101, 1) # Output produksi
# Definisikan fungsi keanggotaan untuk suhu (Low, Medium, High)
suhu_low = fuzz.trimf(x_suhu, [20, 20, 30])
suhu med = fuzz.trimf(x suhu, [20, 30, 40])
suhu_high = fuzz.trimf(x_suhu, [30, 40, 40])
# Definisikan fungsi keanggotaan untuk kebisingan (Low, Medium, High)
kebisingan_low = fuzz.trimf(x_kebisingan, [40, 40, 60])
kebisingan_med = fuzz.trimf(x_kebisingan, [40, 60, 80])
kebisingan_high = fuzz.trimf(x_kebisingan, [60, 80, 80])
# Definisikan fungsi keanggotaan untuk pencahayaan (Low, Medium, High)
pencahayaan_low = fuzz.trimf(x_pencahayaan, [100, 100, 500])
pencahayaan_med = fuzz.trimf(x_pencahayaan, [100, 500, 900])
pencahayaan_high = fuzz.trimf(x_pencahayaan, [500, 1000, 1000])
# Definisikan fungsi keanggotaan untuk output produksi (Low, Medium, High)
produksi_low = fuzz.trimf(x_produksi, [0, 0, 50])
produksi\_med = fuzz.trimf(x\_produksi, [0, 50, 100])
```

```
produksi_high = fuzz.trimf(x_produksi, [50, 100, 100])
# Visualisasikan Fungsi Keanggotaan
plt.figure(figsize=(10, 8))
# Fungsi keanggotaan Suhu
plt.subplot(3, 1, 1)
plt.plot(x_suhu, suhu_low, 'b', linewidth=1.5, label='Low')
plt.plot(x_suhu, suhu_med, 'g', linewidth=1.5, label='Medium')
plt.plot(x_suhu, suhu_high, 'r', linewidth=1.5, label='High')
plt.title('Fungsi Keanggotaan Suhu')
plt.legend()
# Fungsi keanggotaan Kebisingan
plt.subplot(3, 1, 2)
plt.plot(x_kebisingan, kebisingan_low, 'b', linewidth=1.5, label='Low')
plt.plot(x_kebisingan, kebisingan_med, 'g', linewidth=1.5, label='Medium')
plt.plot(x_kebisingan, kebisingan_high, 'r', linewidth=1.5, label='High')
plt.title('Fungsi Keanggotaan Kebisingan')
plt.legend()
# Fungsi keanggotaan Pencahayaan
plt.subplot(3, 1, 3)
plt.plot(x_pencahayaan, pencahayaan_low, 'b', linewidth=1.5, label='Low')
plt.plot(x_pencahayaan, pencahayaan_med, 'g', linewidth=1.5, label='Medium')
plt.plot(x_pencahayaan, pencahayaan_high, 'r', linewidth=1.5, label='High')
plt.title('Fungsi Keanggotaan Pencahayaan')
plt.legend()
plt.tight_layout()
plt.show()
# Definisikan aturan fuzzy (27 aturan)
rules = [
  ('Low', 'Low', 'Low', 'Low'),
```

```
('Low', 'Low', 'Medium', 'Low'),
  ('Low', 'Low', 'High', 'Medium'),
  ('Low', 'Medium', 'Low', 'Low'),
  ('Low', 'Medium', 'Medium'),
  ('Low', 'Medium', 'High', 'Medium'),
  ('Low', 'High', 'Low', 'Medium'),
  ('Low', 'High', 'Medium', 'Medium'),
  ('Low', 'High', 'High'),
  ('Medium', 'Low', 'Low', 'Low'),
  ('Medium', 'Low', 'Medium', 'Medium'),
  ('Medium', 'Low', 'High', 'Medium'),
  ('Medium', 'Medium', 'Low', 'Medium'),
  ('Medium', 'Medium', 'Medium'),
  ('Medium', 'Medium', 'High', 'High'),
  ('Medium', 'High', 'Low', 'Medium'),
  ('Medium', 'High', 'Medium', 'High'),
  ('Medium', 'High', 'High', 'High'),
  ('High', 'Low', 'Low', 'Medium'),
  ('High', 'Low', 'Medium', 'Medium'),
  ('High', 'Low', 'High', 'High'),
  ('High', 'Medium', 'Low', 'Medium'),
  ('High', 'Medium', 'Medium', 'High'),
  ('High', 'Medium', 'High', 'High'),
  ('High', 'High', 'Low', 'High'),
  ('High', 'High', 'Medium', 'High'),
  ('High', 'High', 'High')
# Derajat keanggotaan dari contoh input
input_suhu = 32 # Contoh input suhu
input kebisingan = 55 # Contoh input kebisingan
input_pencahayaan = 600 # Contoh input pencahayaan
degree_suhu_low = fuzz.interp_membership(x_suhu, suhu_low, input_suhu)
degree_suhu_med = fuzz.interp_membership(x_suhu, suhu_med, input_suhu)
```

```
degree_suhu_high = fuzz.interp_membership(x_suhu, suhu_high, input_suhu)
degree_kebisingan_low
                               fuzz.interp_membership(x_kebisingan,
                                                                       kebisingan_low.
input_kebisingan)
degree_kebisingan_med
                               fuzz.interp_membership(x_kebisingan,
                                                                      kebisingan_med,
input_kebisingan)
                               fuzz.interp_membership(x_kebisingan,
                                                                      kebisingan_high,
degree_kebisingan_high
input_kebisingan)
degree_pencahayaan_low = fuzz.interp_membership(x_pencahayaan,
                                                                     pencahayaan low.
input_pencahayaan)
degree_pencahayaan_med = fuzz.interp_membership(x_pencahayaan, pencahayaan_med,
input pencahayaan)
degree_pencahayaan_high = fuzz.interp_membership(x_pencahayaan, pencahayaan_high,
input_pencahayaan)
# Tampilkan derajat keanggotaan
print(f"Derajat keanggotaan suhu: Low={degree_suhu_low}, Medium={degree_suhu_med},
High={degree_suhu_high}")
print(f"Derajat
                    keanggotaan
                                      kebisingan:
                                                        Low={degree kebisingan low},
Medium={degree_kebisingan_med}, High={degree_kebisingan_high}")
print(f"Derajat
                   keanggotaan
                                    pencahayaan:
                                                      Low={degree_pencahayaan_low}
Medium={degree_pencahayaan_med}, High={degree_pencahayaan_high}")
# Hitung a-predikat untuk setiap aturan
a_predikats = []
for rule in rules:
  suhu_deg = {
    'Low': degree_suhu_low, 'Medium': degree_suhu_med, 'High': degree_suhu_high
  }[rule[0]]
  kebisingan deg = {
              degree_kebisingan_low,
                                                     degree_kebisingan_med,
    'Low':
                                        'Medium':
                                                                                'High'
degree_kebisingan_high
  }[rule[1]]
  pencahayaan_deg = {
```

```
'Low':
              degree_pencahayaan_low,
                                           'Medium':
                                                        degree_pencahayaan_med,
                                                                                     'High'
degree_pencahayaan_high
  }[rule[2]]
  # Hitung a-predikat (minimum dari semua variabel pada aturan)
  a_predikat = np.fmin(np.fmin(suhu_deg, kebisingan_deg), pencahayaan_deg)
  a_predikats.append(a_predikat)
# Plot a-predikat untuk setiap aturan
plt.figure(figsize=(10, 5))
plt.bar(range(len(a_predikats)), a_predikats, color='skyblue')
plt.title('Nilai a-predikat untuk Setiap Aturan')
plt.xlabel('Aturan ke-')
plt.ylabel('a-predikat')
plt.show()
# Hitung keluaran fuzzy berdasarkan a-predikat dan aturan
output_memberships = []
for i, rule in enumerate(rules):
  output\_level = \{
    'Low': produksi_low,
    'Medium': produksi_med,
    'High': produksi_high
  }[rule[3]]
  # Terapkan a-predikat pada keluaran
  output_membership = np.fmin(a_predikats[i], output_level)
  output_memberships.append(output_membership)
# Gabungkan semua keluaran menggunakan max untuk setiap titik di rentang produksi
aggregated_output = np.fmax(output_memberships[0], output_memberships[1])
for output in output_memberships[2:]:
  aggregated_output = np.fmax(aggregated_output, output)
# Defuzzifikasi menggunakan metode 'centroid' (weighted average)
```

```
defuzzified_output = fuzz.defuzz(x_produksi, aggregated_output, 'centroid')
print(f"Output produksi setelah defuzzifikasi: {defuzzified output}")
# Plot hasil defuzzifikasi dan agregasi
plt.figure(figsize=(10, 5))
plt.plot(x_produksi, produksi_low, 'b', linewidth=0.5, linestyle='--', label='Low')
plt.plot(x_produksi, produksi_med, 'g', linewidth=0.5, linestyle='--', label='Medium')
plt.plot(x_produksi, produksi_high, 'r', linewidth=0.5, linestyle='--', label='High')
plt.fill_between(x_produksi,
                                       np.zeros_like(x_produksi),
                                                                             aggregated_output,
facecolor='Orange', alpha=0.7)
plt.plot([defuzzified_output, defuzzified_output], [0, 1], 'k', linewidth=1.5, alpha=0.9)
plt.title('Agregasi Output Fuzzy dan Hasil Defuzzifikasi')
plt.xlabel('Produksi')
plt.ylabel('Derajat Keanggotaan')
plt.legend()
plt.show()
```

Penjelasan:

Kode diatas merupakan kode pemrograman dengan menggunakan python untuk menjawab seluruh perintah yang ada pada soal tersebut.

- a. fungsi keanggotaan
 - 1. fungsi keanggotaan suhu
 - low(rendah): Fungsi keanggotaan segitiga untuk suhu rendah didefinisikan dengan tiga titik, yaitu:
 - o a=20 (titik awal, derajat keanggotaan 0)
 - o b=20 (titik puncak, derajat keanggotaan 1)
 - o c=30 (titik akhir, derajat keanggotaan 0)

bentuk fungsinya:

$$\mu suhu_low(x) = \begin{cases} 0 & x \le 20\\ \frac{x - 20}{30 - 20} = \frac{x - 20}{10} & 20 < x \le 30\\ 0 & x > 30 \end{cases}$$

- medium(seding): Fungsi keanggotaan segitiga untuk suhu sedang didefinisikan dengan tiga titik, yaitu:
 - o a=20 (titik awal, derajat keanggotaan 0)
 - o b=30 (titik puncak, derajat keanggotaan 1)

o c=40 (titik akhir, derajat keanggotaan 0) bentuk fungsinya:

$$\mu suhu_med(x) = \begin{cases} 0 & x \le 20\\ \frac{x - 20}{30 - 20} = \frac{x - 20}{10} & 20 < x \le 30\\ \frac{40 - x}{40 - 30} = \frac{40 - x}{10} & 30 < x \le 40\\ 0 & x > 40 \end{cases}$$

- High (tinggi): Fungsi keanggotaan segitiga untuk suhu tinggi memiliki tiga titik:
 - o a=30 (titik awal, derajat keanggotaan 0)
 - o b=40 (titik puncak, derajat keanggotaan 1)
 - o c=40 (titik akhir, derajat keanggotaan 0)

Bentuk fungsinya:

$$\mu suhu_high(x) = \begin{cases} \frac{0}{x - 30} & x \le 30\\ \frac{x - 30}{40 - 30} = \frac{x - 30}{10} & 30 < x \le 40\\ 0 & x > 40 \end{cases}$$

- 2. fungsi keanggotaan kebisingan
 - Low (rendah): Rentang 40 hingga 60, dengan titik puncak pada 40.

$$\mu kebising an_low(x) = \begin{cases} 0 & x \le 40\\ \frac{x - 40}{60 - 40} = \frac{x - 40}{20} & 40 < x \le 60\\ 0 & x > 60 \end{cases}$$

• Medium (sedang): Rentang 40 hingga 80, dengan titik puncak pada 60.

$$\mu suhu_med(x) = \begin{cases} 0 & x \le 40\\ \frac{x - 40}{60 - 40} = \frac{x - 40}{20} & 40 < x \le 60\\ \frac{80 - x}{80 - 60} = \frac{80 - x}{20} & 60 < x \le 80\\ 0 & x > 80 \end{cases}$$

• High (tinggi): Rentang 60 hingga 80, dengan titik puncak di 80

$$\mu kebising an_high(x) = \begin{cases} \frac{0}{x - 60} & x \le 60\\ \frac{x - 60}{80 - 60} = \frac{x - 60}{20} & 60 < x \le 80\\ 0 & x > 80 \end{cases}$$

- 3. fungsi keanggotaan pencahayaan
 - Low (rendah): Rentang 100 hingga 500, dengan titik puncak pada 100.

8

$$\mu pencahayaan_low(x) = \begin{cases} 0 & x \le 100\\ \frac{x - 100}{500 - 100} = \frac{x - 100}{400} & 100 < x \le 500\\ 0 & x > 500 \end{cases}$$

• Medium (sedang): Rentang 100 hingga 900, dengan titik puncak pada 500.

$$\mu pencahayaan_med(x) = \begin{cases} \frac{x - 100}{500 - 100} = \frac{x - 100}{400} & 100 < x \le 500\\ \frac{900 - x}{900 - 500} = \frac{900 - x}{400} & 500 < x \le 900\\ 0 & x > 900 \end{cases}$$

• High (tinggi): Rentang 500 hingga 1000, dengan titik puncak di 1000

$$\mu pencahayaan_high(x) = \begin{cases} \frac{0}{x - 500} & x \le 500\\ \frac{x - 500}{1000 - 500} = \frac{x - 500}{500} & 500 < x \le 1000\\ 0 & x > 1000 \end{cases}$$

Gambar fungsi keanggotaan:

Gambar 1 Fungsi Keanggotaan

- b. 27 Aturan Fuzzy
 - Aturan 1: IF Suhu = Low AND Kebisingan = Low AND Pencahayaan = Low THEN
 Produksi = Low
 - Aturan 2: IF Suhu = Low AND Kebisingan = Low AND Pencahayaan = Medium THEN Produksi = Low
 - Aturan 3: IF Suhu = Low AND Kebisingan = Low AND Pencahayaan = High THEN
 Produksi = Medium
 - Aturan 4: IF Suhu = Low AND Kebisingan = Medium AND Pencahayaan = Low THEN
 Produksi = Low
 - Aturan 5: IF Suhu = Low AND Kebisingan = Medium AND Pencahayaan = Medium
 THEN Produksi = Medium
 - Aturan 6: IF Suhu = Low AND Kebisingan = Medium AND Pencahayaan = High THEN Produksi = Medium
 - Aturan 7: IF Suhu = Low AND Kebisingan = High AND Pencahayaan = Low THEN
 Produksi = Medium
 - Aturan 8: IF Suhu = Low AND Kebisingan = High AND Pencahayaan = Medium
 THEN Produksi = Medium
 - Aturan 9: IF Suhu = Low AND Kebisingan = High AND Pencahayaan = High THEN
 Produksi = High
 - Aturan 10: IF Suhu = Medium AND Kebisingan = Low AND Pencahayaan = Low
 THEN Produksi = Low
 - Aturan 11: IF Suhu = Medium AND Kebisingan = Low AND Pencahayaan = Medium THEN Produksi = Medium
 - Aturan 12: IF Suhu = Medium AND Kebisingan = Low AND Pencahayaan = High THEN Produksi = Medium
 - Aturan 13: IF Suhu = Medium AND Kebisingan = Medium AND Pencahayaan = Low THEN Produksi = Medium
 - Aturan 14: IF Suhu = Medium AND Kebisingan = Medium AND Pencahayaan = Medium THEN Produksi = Medium
 - Aturan 15: IF Suhu = Medium AND Kebisingan = Medium AND Pencahayaan = High
 THEN Produksi = High
 - Aturan 16: IF Suhu = Medium AND Kebisingan = High AND Pencahayaan = Low THEN Produksi = Medium

- Aturan 17: IF Suhu = Medium AND Kebisingan = High AND Pencahayaan = Medium THEN Produksi = High
- Aturan 18: IF Suhu = Medium AND Kebisingan = High AND Pencahayaan = High
 THEN Produksi = High
- Aturan 19: IF Suhu = High AND Kebisingan = Low AND Pencahayaan = Low THEN
 Produksi = Medium
- Aturan 20: IF Suhu = High AND Kebisingan = Low AND Pencahayaan = Medium THEN Produksi = Medium
- Aturan 21: IF Suhu = High AND Kebisingan = Low AND Pencahayaan = High THEN
 Produksi = High
- Aturan 22: IF Suhu = High AND Kebisingan = Medium AND Pencahayaan = Low THEN Produksi = Medium
- Aturan 23: IF Suhu = High AND Kebisingan = Medium AND Pencahayaan = Medium THEN Produksi = High
- Aturan 24: IF Suhu = High AND Kebisingan = Medium AND Pencahayaan = High
 THEN Produksi = High
- Aturan 25: IF Suhu = High AND Kebisingan = High AND Pencahayaan = Low THEN
 Produksi = High
- Aturan 26: IF Suhu = High AND Kebisingan = High AND Pencahayaan = Medium THEN Produksi = High
- Aturan 27: IF Suhu = High AND Kebisingan = High AND Pencahayaan = High THEN
 Produksi = High
- c. Derajat Keanggotaan
 - Suhu Low:

$$\mu suhu_low(x) = \begin{cases} 0 & x \le 20\\ \frac{x - 20}{10} & 20 < x \le 30\\ 1 & x = 30\\ \frac{40 - x}{10} & 30 < x < 40\\ 0 & x \ge 40 \end{cases}$$

Medium:

$$\mu suhu_med(x) = \begin{cases} 0 & x \le 20\\ \frac{x - 20}{10} & 20 < x \le 30\\ 1 & x = 30\\ \frac{40 - x}{10} & 30 < x < 40\\ 0 & x \ge 40 \end{cases}$$

High:

$$\mu suhu_high(x) = \begin{cases} 0 & x \le 30\\ \frac{x - 30}{10} & 30 < x \le 40\\ 1 & x = 40\\ 0 & x > 40 \end{cases}$$

• Kebisingan

Low:

$$\mu kebising an_low(y) = \begin{cases} 0 & y \le 40 \\ \frac{y - 40}{20} & 40 < y \le 60 \\ 1 & y = 60 \end{cases}$$
$$\frac{80 - y}{20} & 60 < y < 80$$
$$0 & y \ge 80$$

Medium:

$$\mu kebising an_med(y) = \begin{cases} 0 & y \le 40 \\ \frac{y - 40}{20} & 40 < y \le 60 \\ 1 & y = 60 \end{cases}$$
$$\frac{80 - y}{20} & 60 < y < 80$$
$$0 & y \ge 80$$

High:

$$\mu kebising an_high(y) = \begin{cases} 0 & y \le 60\\ \frac{y - 60}{20} & 60 < y \le 80\\ 1 & y = 80\\ 0 & y \ge 80 \end{cases}$$

Pencahayaan

Low:

$$\mu pencahayaan_low(z) = \begin{cases} 0 & z \le 100 \\ \frac{z - 100}{400} & 100 < z \le 1000 \\ 1 & z = 500 \\ \frac{1000 - z}{500} & 500 < z < 1000 \\ 0 & z \ge 1000 \end{cases}$$

Medium:

$$\mu pencahayaan_med(z) = \begin{cases} 0 & z \le 100 \\ \frac{z - 100}{400} & 100 < z \le 500 \\ 1 & z = 500 \\ \frac{1000 - z}{500} & 500 < z < 1000 \\ 0 & z \ge 1000 \end{cases}$$

High:

$$\mu pencahayaan_high(z) = \begin{cases} 0 & z \le 500 \\ \frac{z - 500}{500} & 500 < z \le 1000 \\ 1 & z = 1000 \\ 0 & z \ge 1000 \end{cases}$$

Input yang digunakan:

Suhu: 32

Kebisingan: 55

Pengcahayaan: 600

Derajat keanggotaan suhu: Low=0.0, Medium=0.8, High=0.2

Derajat keanggotaan kebisingan: Low=0.25, Medium=0.75, High=0.0

Derajat keanggotaan pencahayaan: Low=0.0, Medium=0.75, High=0.2

Gambar 2 Derajat Keanggotaan

d. a-predikat dari tiap aturan:

Input yang digunakan:

Suhu: 32

Kebisingan: 55

Pengcahayaan: 600

Gambar 3 a-predikat Setiap Aturan

e. Rata-rata jumlah produk(gunakan metode defuzzy weighted average)

Gambar 4 Hasil Defuzzy