Assignment 2 - Mythili K

1. Download the dataset from the source here (https://drive.google.com/file/d/1_HcM0K8wt4b7FNusp=sharing).

About the dataset:

This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

RowNumber - Serial number of the rows

CustomerId - Unique identification of customer

Surname - Name of the customer

CreditScore - Cipil score of the customer

Geography - Location of the bank

Gender - Sex of the customer

Age - Age of the customer

Tenure - Repayment period for the credit amount

Balance - Current balance in thier creidt card

NumOfProducts - Products owned by the customer from the company

HasCrCard - Has credit card or not (0 - no , 1 - yes)

IsactiveMember - Is a active member or not

EstimatedSalary - Salary of the customer

Exited - Churn of the customer

```
In [1]: import warnings
warnings.filterwarnings("ignore")

In [2]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

2. Load the dataset

```
In [3]: df = pd.read_csv("Churn_Modelling.csv")
    df.head()
```

Out[3]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance
•	0	1	15634602	Hargrave	619	France	Female	42	2	0.00
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86
	2	3	15619304	Onio	502	France	Female	42	8	159660.80
	3	4	15701354	Boni	699	France	Female	39	1	0.00
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82

```
In [4]: df.tail()
Out[4]:
                                            Surname CreditScore
                 RowNumber CustomerId
                                                                    Geography
                                                                                Gender Age
                                                                                              Tenure
                                                                                                         Baland
           9995
                         9996
                                 15606229
                                              Obijiaku
                                                              771
                                                                        France
                                                                                   Male
                                                                                          39
                                                                                                    5
                                                                                                            0.0
                                 15569892
                                                                                                        57369.6
           9996
                         9997
                                           Johnstone
                                                              516
                                                                        France
                                                                                   Male
                                                                                          35
                                                                                                   10
           9997
                         9998
                                 15584532
                                                  Liu
                                                              709
                                                                        France
                                                                                Female
                                                                                          36
                                                                                                            0.0
           9998
                         9999
                                 15682355
                                             Sabbatini
                                                              772
                                                                      Germany
                                                                                   Male
                                                                                          42
                                                                                                    3
                                                                                                        75075.3
                        10000
           9999
                                 15628319
                                               Walker
                                                              792
                                                                        France
                                                                                Female
                                                                                          28
                                                                                                       130142.7
```

3 a). Univariate analysis

Out[8]: <AxesSubplot:ylabel='Frequency'>


```
In [9]: geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))
```

Out[9]: <AxesSubplot:ylabel='Geography'>

Out[10]: <AxesSubplot:xlabel='Gender', ylabel='count'>

In [11]: sns.distplot(df['Age'],hist=False)

Out[11]: <AxesSubplot:xlabel='Age', ylabel='Density'>


```
In [12]: plt.figure(figsize=(10,8))
sns.countplot(df['Tenure'])
```

Out[12]: <AxesSubplot:xlabel='Tenure', ylabel='count'>


```
In [13]: product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))
```

Out[13]: <AxesSubplot:ylabel='NumOfProducts'>


```
In [14]: cr = df['HasCrCard'].value_counts()
    cr.plot(kind="pie",figsize=(10,8))
```

Out[14]: <AxesSubplot:ylabel='HasCrCard'>


```
In [15]: plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])
```

Out[15]: <AxesSubplot:xlabel='IsActiveMember', ylabel='count'>

In [16]: sns.distplot(df['EstimatedSalary'],hist=False)

Out[16]: <AxesSubplot:xlabel='EstimatedSalary', ylabel='Density'>


```
In [17]: plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])
```

Out[17]: <AxesSubplot:xlabel='Exited', ylabel='count'>

Inference:

- 1. The data has 11 numerical variables and 3 categorical variables.
- 2. It has 10000 rows and 14 columns
- 3. The normalized credit score is around 700, More than 500 people have credit score greater than 800.
- 4. France occupies 50% of customers, where as Germany and Spain shared equal.
- 5. Dataset is dominated by Male Customers.
- 6. Median age is around 40 to 45.
- 7. Highest number of customer has thier tenure period for 2 years.
- 8. Credit company has maximum customers, who uses single product.
- 9. Most of the customer has credit card.
- 10. More than 40% of the population is not an active member.
- 11. The Churn is less compared to the satisfaction. **Dataset is imbalanced.**

3 b). Bivariate analysis

```
In [18]: sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)
```

Out[18]: <AxesSubplot:xlabel='Gender', ylabel='CreditScore'>


```
In [19]: sns.violinplot(x='Geography',y='Balance',data=df)
```

Out[19]: <AxesSubplot:xlabel='Geography', ylabel='Balance'>

In [20]: sns.violinplot(x='Geography',y='EstimatedSalary',data=df)

Out[20]: <AxesSubplot:xlabel='Geography', ylabel='EstimatedSalary'>

In [21]: sns.violinplot(x='Gender',y='Balance',data=df)

Out[21]: <AxesSubplot:xlabel='Gender', ylabel='Balance'>


```
In [22]: sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)
```

Out[22]: <AxesSubplot:xlabel='Exited', ylabel='CreditScore'>

Out[23]: <AxesSubplot:xlabel='Exited', ylabel='CreditScore'>

In [24]: sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df)

Out[24]: <AxesSubplot:xlabel='IsActiveMember', ylabel='EstimatedSalary'>

Out[25]: <AxesSubplot:xlabel='Exited', ylabel='Tenure'>

Inference:

- 1. Credit score for Male is higher in Spain.
- 2. Average bank salary lies in the range of 100k to 150k.
- 3. Estimated salary is normalized and same for all country.
- 4. Credit score for churn is low.
- 5. Churn in Germany is higher compared to other countries.
- 6. Exited people tenure period is around 6 years.

3 c). Multivariate analysis

Geography	
France	2261
Germany	1193
Spain	1089
France	2753
Spain	1388
Germany	1316
	France Germany Spain France Spain

Name: Geography, dtype: int64


```
In [27]: |gp2 = df.groupby('Gender')['Age'].mean()
         print(gp2)
         Gender
         Female
                    39.238389
         Male
                    38.658237
         Name: Age, dtype: float64
In [28]: gp3 = df.groupby(['Gender', 'Geography'])['Tenure'].mean()
         print(gp3)
         Gender
                 Geography
         Female
                  France
                               4.950022
                  Germany
                               4.965633
                  Spain
                               5.000000
         Male
                               5.049401
                  France
                  Germany
                               5.050152
                  Spain
                               5.057637
```

Name: Tenure, dtype: float64

Geography	HasCrCard	IsActiveMember	
France	1	1	1826
		0	1717
	0	1	765
		0	706
Germany	1	0	918
		1	873
	0	1	375
		0	343
Spain	1	1	908
		0	813
	0	1	404
		0	352

dtype: int64

Gender	HasCrCard	IsActiveMember	
Female	0	0	102006.080352
		1	102648.996944
	1	0	101208.014567
		1	98510.152300
Male	0	0	99756.431151
		1	99873.931251
	1	0	100353.378996
		1	98914.378703

Name: EstimatedSalary, dtype: float64

Gender	IsActiveMember	Exited	
Female	0	0	1534
		1	725
	1	0	1870
		1	414
Male	0	0	2013
		1	577
	1	0	2546
		1	321

Name: Exited, dtype: int64


```
In [32]: gp7 = df.groupby('Exited')['Balance','EstimatedSalary'].mean()
print(gp7)
```

	Balance	EstimatedSalary
Exited		
0	72745.296779	99738.391772
1	91108.539337	101465.677531

Gender	Geography	Exited	
Female	France	0	1801
	Spain	0	858
	Germany	0	745
	France	1	460
	Germany	1	448
	Spain	1	231
Male	France	0	2403
	Spain	0	1206
	Germany	0	950
		1	366
	France	1	350
	Spain	1	182

dtype: int64

Inference:

- 1. Germany has more female customers compared to male customers.
- 2. Average age of Male is 38, whereas average age of Female is 39.
- 3. Tenure period for both male and female is high in Spain.
- 4. It is observed that, those who have credit card are very active member in the company.
- 5. The estimated salary for a person who is not having credit card is high when compared to those having them.
- 6. Churn for inactive member is high compared to active member.
- 7. Those who churn has thier estimated salary very low.
- 8. France has the more churn rate.

4. Descriptive statistics

In [34]: df.describe().T

Out[34]:

	count	mean	std	min	25%	50%	
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500e+03	7.5
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074e+07	1.5
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000e+02	7.1
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000e+01	4.4
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000e+00	7.0
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854e+04	1.2
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000e+00	2.0
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000e+00	1.0
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000e+00	1.0
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939e+05	1.4
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000e+00	0.0

5. Handling the missing values

In [35]: df.isnull().sum() Out[35]: RowNumber 0 CustomerId 0 Surname 0 0 CreditScore 0 Geography Gender 0 Age 0 Tenure Balance NumOfProducts HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited dtype: int64

There is no missing value in the dataset

6. Finding outliers

```
In [36]: def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)</pre>
```

Before removing outliers

After removing outliers


```
In [38]: plt.title("Before removing outliers")
    sns.boxplot(df['Age'])
    plt.show()
    plt.title("After removing outliers")
    replace_outliers(df, 'Age')
    sns.boxplot(df['Age'])
    plt.show()
```


20

30

40

50

Age

60

70

80

90

```
In [39]: sns.boxplot(df['Balance'])
```

Out[39]: <AxesSubplot:xlabel='Balance'>


```
In [40]: sns.boxplot(df['EstimatedSalary'])
```

Out[40]: <AxesSubplot:xlabel='EstimatedSalary'>

Outliers from Age and Credit Score columns are removed

7. Check for categorical column and perform encoding.

```
In [41]: from sklearn.preprocessing import LabelEncoder
           le = LabelEncoder()
          df['Gender'] = le.fit_transform(df['Gender'])
           df['Geography'] = le.fit transform(df['Geography'])
In [43]: df.head()
Out[43]:
              RowNumber
                           CustomerId
                                       Surname
                                                CreditScore
                                                            Geography
                                                                        Gender Age
                                                                                      Tenure
                                                                                               Balance
           0
                        1
                             15634602
                                       Hargrave
                                                      619.0
                                                                                42.0
                                                                                           2
                                                                                                   0.00
                        2
                                                                     2
                                                                                41.0
           1
                             15647311
                                            Hill
                                                      608.0
                                                                              0
                                                                                           1
                                                                                               83807.86
                        3
                             15619304
                                                                     0
                                                                                42.0
                                                                                              159660.80
                                           Onio
                                                      502.0
            3
                        4
                             15701354
                                           Boni
                                                      699.0
                                                                     0
                                                                              0
                                                                                 39.0
                                                                                                   0.00
                        5
                             15737888
                                         Mitchell
                                                      850.0
                                                                     2
                                                                                43.0
                                                                                              125510.82
```

Only two columns(Gender and Geography) is label encoded

Removing unwanted columns and checking for feature importance


```
In [46]: plt.figure(figsize=(20,10))
    df_lt = df.corr(method = "pearson")
    df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
    sns.heatmap(df_lt1,annot=True,cmap="coolwarm")
```

Out[46]: <AxesSubplot:>

- 1. The Removed columns are nothing to do with model building.
- 2. Feature importance also checked using pearson correlation.

8. Data Splitting

9. Scaling the independent values

```
In [49]: from sklearn.preprocessing import StandardScaler
          se = StandardScaler()
          data['CreditScore'] = se.fit_transform(pd.DataFrame(data['CreditScore']))
In [50]:
          data['Age'] = se.fit transform(pd.DataFrame(data['Age']))
          data['Balance'] = se.fit transform(pd.DataFrame(data['Balance']))
          data['EstimatedSalary'] = se.fit_transform(pd.DataFrame(data['EstimatedSalary']))
In [51]: data.head()
Out[51]:
              CreditScore
                         Geography
                                    Gender
                                               Age Tenure
                                                             Balance
                                                                     NumOfProducts HasCrCard
           0
               -0.326878
                                 0
                                         0 0.342615
                                                         2 -1.225848
                                                                                            1
           1
               -0.440804
                                 2
                                         0 0.240011
                                                            0.117350
                                                                                 1
                                                                                            0
           2
               -1.538636
                                 0
                                         0 0.342615
                                                            1.333053
                                                                                 3
                                                                                            1
                                                                                            0
           3
                0.501675
                                 0
                                         0 0.034803
                                                           -1.225848
                2.065569
                                 2
                                         0 0.445219
                                                            0.785728
                                                                                            1
```

10. Train test split

```
In [52]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(data,target,test_size=0.25,rando

In [53]: print(X_train.shape)
    print(X_test.shape)
    print(y_train.shape)
    print(y_test.shape)

    (7500, 10)
    (2500, 10)
    (7500,)
    (2500,)
```

Conclusion:

- 1. The model is scaled using StandarScaler method.
- 2. The train and test split ratio is 15:5.
- 3. As it is a classification problem, basic algorithms can be used to build ML models.