Санкт-Петербургский государственный политехнический университет

Физико-Механический институт

Высшая школа прикладной математики и вычислительной физики

Лабораторная работа 1

по дисциплине математическая статистика

Задание 1

Выполнил студент гр. 5030102/20101

Дубровин Т. Г.

Преподаватель

Баженов Александр Николаевич

Санкт-Петербург

Содержание

1	Постановка задачи	3					
2	Теоретическая информация						
	2.1 Распределения						
	2.1.1 Определение						
	2.2 Характеристики положения	4					
	2.2.1 Характеристики рассеяния	4					
3	Гистограммы и графики плотности распределения	5					
4	Характеристики положения и рассеяния						

1 Постановка задачи

Даны 4 распределения:

• Нормальное распределение:

• Распрделение Коши:

• Распределение Пуассона:

• Нормальное распрделение:

$$U(x, -\sqrt{3}, \sqrt{3})$$

- 1. Необходимо сгенерировать выборки размером 10,50 и 1000 элементов. Построить на одном рисунке гистограмму и график плостности распределения.
- 2. Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой вычислить следующие характеристики положения данных:

$$\bar{x}$$
, $medx$, $z_{\rm R}$, $z_{\rm Q}$, $z_{\rm tr}$.

Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \bar{z}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \bar{z^2} - \bar{z}^2$$

Представить полученные данные в виде таблицы

2 Теоретическая информация

2.1 Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1}$$

• Распределение Пуассона

$$P(k, 10) = \frac{10^k}{k!}e^{-10}$$

• Нормальное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, |x| \le \sqrt{3} \\ 0, |x| > \sqrt{3} \end{cases}$$

2.1.1 Определение

Гистограмма в математической статистике — это один из графических методов исследования рядов распределения значений случайной величины.

2.2 Характеристики положения

• Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)}, n = 2l + 1\\ \frac{x_{(l)} + x_{(l+1)}}{2}, n = 2l \end{cases}$$

• Полусумма экстремальных выборочных элементов

$$z_{\rm R} = \frac{x_{(1)} + x_{(n)}}{2}$$

 \bullet Полусумма квартилей Выборочная квартиль $\mathbf{z}_{\mathbf{p}}$ порядка p определяется формулой

$$z_{\mathbf{p}} = \begin{cases} x_{([np]+1)}, np \\ x_{(np)}, np \end{cases}$$

полусумма квартилей

$$z_{\mathbf{Q}} = \frac{z_{\frac{1}{4}} + z_{\frac{3}{4}}}{2}$$

• Усеченное среднее

$$z_{\rm tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_i(i), r \approx \frac{n}{4}$$

2.2.1 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

4

Рис. 1: Нормальное распределение с мощностью выборки 10

3 Гистограммы и графики плотности распределения

Рис. 2: Нормальное распределение с мощностью выборки 50

Рис. 3: Нормальное распределение с мощностью выборки 1000

Рис. 4: Распределение Коши с мощностью выборки 10

Рис. 5: Распределение Коши с мощностью выборки 50

Рис. 6: Распределение Коши с мощностью выборки 1000

Рис. 7: Распределение Пуассона с мощностью выборки 10

Рис. 8: Распределение Пуассона с мощностью выборки 50

Рис. 9: Распределение Пуассона с мощностью выборки 1000

Рис. 10: Равномерное распределение с мощностью выборки 10

Рис. 11: Равномерное распределение с мощностью выборки 50

Рис. 12: Равномерное распределение с мощностью выборки 1000

4	Характеристики положения и рассеяния

	X	medx	z_{R}	z_{Q}	Z _{tr}
n = 10					
E(z)	-0.780689	-0.024406	-3.879954	-0.021107	-0.005873
D(z)	747.207187	0.297844	18394.981850	1.122271	2.303943
n = 100					
E(z)	-0.955615	0.007507	-47.015406	0.002675	0.000694
D(z)	745.971203	0.025819	1858081.477170	0.054518	0.053106
n = 1000					
E(z)	-1.691947	0.001073	-876.914548	0.001449	0.002367
D(z)	900.674100	0.002473	223093799.228985	0.004902	0.004797

Таблица 1: Таблица характеристик для Коши распределения

	X	medx	z_{R}	z_{Q}	$ m z_{tr}$
n = 10					
E(z)	0.000944	0.006503	-0.005700	0.004379	0.002605
D(z)	0.103647	0.147646	0.177637	0.121911	0.111269
n = 100					
E(z)	-0.008923	-0.005137	0.004714	-0.008974	-0.008337
D(z)	0.009746	0.015794	0.095379	0.011906	0.010346
n = 1000					
E(z)	-0.000244	0.000168	0.007478	0.000171	-0.000245
D(z)	0.000973	0.001585	0.061432	0.001219	0.001027

Таблица 2: Таблица характеристик для Нормальное распределения

	X	medx	z_{R}	z_{Q}	$z_{ m tr}$
n = 10					
E(z)	10.016800	9.839000	10.323000	9.932625	9.940250
D(z)	1.045078	1.439079	1.856171	1.205101	1.115555
n = 100					
E(z)	10.004920	9.872500	10.940500	9.926125	9.917775
D(z)	0.104910	0.207994	1.009210	0.160246	0.113192
n = 1000					
E(z)	10.001290	9.997000	11.634500	9.997625	9.906304
D(z)	0.010211	0.002991	0.687660	0.002541	0.010637

Таблица 3: Таблица характеристик для Пуассона распределения

	X	medx	z_{R}	z_{Q}	$z_{ m tr}$
n = 10					
E(z)	-0.004173	-0.007633	-0.002463	-0.003977	-0.004600
D(z)	0.096969	0.223742	0.047601	0.136042	0.126485
n = 100					
E(z)	0.002433	0.009361	0.000363	0.000229	0.002702
D(z)	0.010203	0.030676	0.000575	0.014828	0.014245
n = 1000					
E(z)	-0.000376	-0.000809	-0.000005	-0.000045	-0.000308
D(z)	0.000960	0.002866	0.000005	0.001409	0.001339

Таблица 4: Таблица характеристик для Равномерное распределения