Основания алгебры и геометрии, осенний семестр 2019 г.

Задачи для семинара 1

факультет математики, НИУ ВШЭ

Определение 1. Пусть a и b — целые числа, и $b \neq 0$. Поделить c остатком a на b означает найти такие целые числа q и r, что

- (1) $0 \le r < |b|$;
- $(2) \ a = bq + r.$

Задача 1. Поделите с остатком

(a) 1024 на 27; (б) -25 на 4.

Задача 2. Запишите в троичной системе счисления числа (а) 999; (б) 998.

Задача 3. Составьте таблицы сложения и умножения для системы счисления с основанием 5.

Определение 2. Полем из двух элементов называется множество из двух элементов (обозначаемых 0 и 1) с операциями сложения и умножения, заданными следующими таблицами:

Задача 4. Проверьте ассоциативность и дистрибутивность сложения и умножения в поле из двух элементов. Проверьте, что из каждого элемента можно вычесть любой другой элемент, и каждый элемент можно поделить на любой другой ненулевой элемент.

Определение 3. Обозначим через $\overline{a_1a_2\dots a_n}$ число записанное цифрами $a_1,\,a_2,\dots,$ a_n в десятичной системе счисления, то есть

$$\overline{a_1 a_2 \dots a_n} = a_1 10^{n-1} + a_2 10^{n-2} + \dots + a_n.$$

Задача 5. Докажите следующие признаки делимости на 3, 9 и 11.

- (а) Число $\overline{a_1a_2\dots a_n}$ делится на 3 тогда и только тогда, когда его сумма цифр $a_1+\dots+a_n$ делится на 3.
- (б) Число $\overline{a_1a_2\dots a_n}$ делится на 9 тогда и только тогда, когда его сумма цифр $a_1+\dots+a_n$ делится на 9.
- (в) Число $\overline{a_1 a_2 \dots a_n}$ делится на 11 тогда и только тогда, когда его знакопеременная сумма цифр $a_1 a_2 + a_3 \dots + (-1)^{n-1} a_n$ делится на 11.
 - (г) Придумайте и докажите признак делимости на 3 в двоичной системе счисления.

Задача 6. Докажите, что число $\underbrace{11...1}_{2016}$ делится на 37.

Задача 7. На одной из прямых в конечной проективной плоскости лежит ровно p точек. Сколько всего точек и прямых в этой плоскости?