# Econometria | 2023/2024

### Lezione 8: Inferenza nel modello multivariato

### Giuseppe Ragusa

https://gragusa.org

Roma, marzo 2024



### Sommario

- Verifica di ipotesi e intervalli di confidenza per un singolo coefficiente
- Verifica di ipotesi congiunte su più coefficienti
- Altri tipi di ipotesi che implicano più coefficienti

# Verifica di ipotesi e CI per un singolo eta

- Per verifica di ipotesi e intervalli di confidenza nella regressione multipla si segue la stessa logica utilizzata per la pendenza in un modello a singolo regressore.
- La distribuzione di

$$rac{\hat{eta}_1 - E(\hat{eta}_1)}{\sqrt{\hat{\sigma}_{\hat{eta}_1}^2}}$$
 è approssimata da una $N(0,1)$ 

• Perciò le ipotesi su  $\beta_1$  possono essere verificate mediante la consueta statistica-t e gli intervalli di confidenza costruiti come

$$\{\hat{eta}_1 \pm 1.96 imes SE(\hat{eta}_1)\}$$

• Stesso discorso vale per  $\hat{eta}_2,\ldots,\hat{eta}_K$ .

### Esempio: dati California

### Esempio: dati California

$$testscr = 698.933 - 2.280 \times str \ {}_{(10.461)} \ {}_{(0.524)} \ {}_{(0.524)}$$

$$testscr = 686.032 - 1.101 imes str - 0.650 imes elpct \ ext{(8.812)} \ ext{(0.437)} \ ext{(0.031)}$$

- Il coefficiente di str\$ in (2) è l'effetto su testscr dell'aumento di una unità in str, mantenendo costante la percentuale di studenti non di madrelingua nel distretto
- Il coefficiente di str si dimezza
- L'intervallo di confidenza al 95% per il coefficiente di str in (2) è

$$\{-1.101 \pm 1.96 \times 0.437\} = (-1.958, -0.244)$$

• Il test della statistica-t per  $eta_1=0$  è t=-1.101/0.437=-2.52, perciò rifiutiamo l'ipotesi al livello di significatività del 5%

# Verifica di ipotesi congiunte(Paragrafo 7.2)

Consideriamo il modello di regressione:

$$testscr_i = \beta_0 + \beta_1 str_i + \beta_2 expnstu_i + \beta_3 elpct_i + u_i$$

L'ipotesi nulla — le risorse scolastiche non contano — e l'alternativa sono:

$$H_0: \beta_1 = 0$$
 e  $\beta_2 = 0$  vs  $H_1:$  almeno uno dei due coefficienti è diverso da zero

- ipotesi congiunta: specifica un valore per due o più coefficienti, ossia impone una restrizione su due o più coefficienti.
- Un'ipotesi congiunta impone q restrizioni sui parametri. Nell'esempio precedente, q=2 e le due restrizioni sono  $\beta_1=0$  e  $\beta_2=0$ .
- Un'idea di "buon senso" è quella di rifiutare se l'una o l'altra delle statistiche-t supera 1.96 in valore assoluto.
- Ma questa verifica "coefficiente per coefficiente" non è valida: il test ha un tasso di rifiuto troppo elevato sotto l'ipotesi nulla (più di  $\alpha$ )!

# Perché non possiamo verificare coefficiente per coefficiente?

- Proviamo a calcolare la probabilità di rifiutare in modo non corretto l'ipotesi nulla le due statistiche-t singole (lpha=0.05)
- Per semplificare, supponiamo che siano distribuite in modo indipendente (non è vero in generale). Siano  $t_1$  e  $t_2$  le statistiche-t:

$$t_1 = rac{\hateta_1 - 0}{SE(\hateta_1)} ext{ e } t_2 = rac{\hateta_2 - 0}{SE(\hateta_2)}$$

• La verifica "coeff. per coeff." è:

rifiuta 
$$H_0 = \beta_1 = \beta_2 = 0$$
 se  $|t_1| > 1.96$  e/o  $|t_2| > 1.96$ 

• Qual è la probabilità che questa verifica "coeff. per coeff." rifiuti  $H_0$ , quando  $H_0$  è effettivamente vera (errore di I tipo)? Dovrebbe essere 5%.

# Supponiamo che $t_1$ e $t_2$ siano indipendenti (per questo esempio).

• La probabilità di rifiutare in modo non corretto l'ipotesi nulla mediante la verifica "coeff. per coeff." è:

$$= Pr_{H_0}(|t_1| > 1.96 \text{ e/o } |t_2| > 1.96)$$
 $= 1 - Pr_{H_0}(|t_1| \le 1.96 \text{ e } |t_2| \le 1.96)$ 
 $= 1 - Pr_{H_0}(|t_1| \le 1.96) \times Pr_{H_0}(|t_2| \le 1.96)$ 
 $= 1 - (0.95)^2$ 
 $= 0.0975 = 9.75\%$ 

• Quindi la probabilità di commettere l'errore di tipo I sarebbe 9.75% che non è il 5% desiderato!

# La dimensione di una verifica è l'effettivo tasso di rifiuto sotto l'ipotesi nulla.

- La dimensione della verifica del "buon senso" non è 5% (in generale diverso da  $\alpha$ )!
- In effetti, la sua dimensione dipende dalla correlazione tra  $t_1$  e  $t_2$  (e quindi dalla correlazione tra  $\hat{\beta}_1$  e  $\hat{\beta}_2$ ).

#### Due soluzioni:

- Utilizzare un valore critico diverso in questa procedura non 1.96 (questo è il "metodo Bonferroni") (in ogni caso, questo metodo è utilizzato raramente nella pratica)
- Utilizzare una statistica di test diversa studiata per verificare subito sia  $\hat{\beta}_1$  che  $\hat{\beta}_2$ : la statistica F (questa è pratica comune)

### Statistica di Wald

$$H_0: \underbrace{eta_1=eta_{1,0},\,eta_2=eta_{2,0},\dots}_{q ext{ ipotesi}}$$

 $H_1$ : almeno una delle ipotesi è falsa

Nel caso di q=2

$$W = egin{pmatrix} \hat{eta}_1 - eta_{1,0} \ \hat{eta}_2 - eta_{2,0} \end{pmatrix}' egin{pmatrix} \hat{\sigma}_{\hat{eta}_1}^2 & \hat{\sigma}_{\hat{eta}_1,\hat{eta}_2} \ \hat{\sigma}_{\hat{eta}_2,\hat{eta}_1} & \hat{\sigma}_{\hat{eta}_2}^2 \end{pmatrix}^{-1} egin{pmatrix} \hat{eta}_1 - eta_{1,0} \ \hat{eta}_2 - eta_{2,0} \end{pmatrix}$$

Sotto l'ipotesi nulla, la statistica di Wald ha una distribuzione  $\chi^2_q$ , (q=2 nel caso di due coefficienti)

Quindi rigettiamo con un livello di significatività lpha se W è maggiore del valore critico  $w_{1-lpha}$  che soddisfa

$$\Pr(\chi^2_{\text{Ragusa}}, w_{\text{1-one}}) = 1_{20\overline{24}} \alpha.$$

# $\chi^2_2$ valori critici

$$\Pr(\chi_2^2 > w_{1-lpha}) = 1-lpha.$$

| q | $w_{.95}$ |
|---|-----------|
| 1 | 3.84      |
| 2 | 6.00      |
| 3 | 7.80      |
| 4 | 9.48      |
| 5 | 11.10     |

### La statistica di Wald in R

#### La statistica F

Formula per il caso speciale dell'ipotesi congiunta  $\hat{\beta}_1=\beta_{10}$  e  $\hat{\beta}_2=\beta_{20}$  in una regressione con due regressori:

$$F = rac{1}{2} \Biggl( rac{t_1^2 + t_2^2 - 2 \hat{
ho}_{t_1,t_2} t_1 t_2}{1 - \hat{
ho}_{t_1,t_2}} \Biggr) = W/q$$

- La statistica F è grande quando  $t_1$  e/o  $t_2$  è grande.
- Difficile dare la formula per più di due  $\beta$ , a meno che non si utilizzi l'algebra matriciale.
- In grandi campioni, F è distribuita come  $\chi_q^2/q$ .

Valori critici di 
$$\chi_q^2/q$$
  $q$   $q$   $w.95$   $1$   $3.84$   $1$   $3.84$   $2$   $3.00$   $3$   $2.60$ 

# Esempio: dati sulle dimensioni delle classi in California

```
1 library(car)
2 lm2 <- feols(testscr~str+expnstu+elpct, data = Caschool, vcov = "hetero")
3 linearHypothesis(lm2, c("str=0", "expnstu=0"), test="F")
Linear hypothesis test

Hypothesis:
str = 0
expnstu = 0

Model 1: restricted model
Model 2: testscr ~ str + expnstu + elpct

Df Chisq Pr(>Chisq)
1
2 2 10.9  0.0044 **
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- ullet F=5.37 Il 5% del valore critico per q=2 è 3.00
- Pr(>F)=0.005 (R calcola il p-value)

### F classica

Esiste una formula semplice per la statistica F, valida solo in condizini di omoschedasticità (perciò non molto utile), che tuttavia può aiutare a comprendere che cosa fa la statistica F.

La statistica F in condizioni di omoschedasticità pura

- In presenza di "omoschedasticità pura":
  - Eseguire due regressioni, una sotto l'ipotesi nulla (regressione "vincolata") e una sotto l'ipotesi alternativa (regressione senza vincolo).
  - Confrontare gli adattamenti delle regressioni gli  $\mathbb{R}^2$  se il modello "non vincolato" si adatta sufficientemente meglio, rifiutare l'ipotesi nulla

## Regressione "vincolata" e "non vincolata"

Esempio:  $H_0: eta_1=eta_2=0 ext{ vs } H_1: ext{almeno uno } \grave{ ext{e}} 
eq 0$ 

• Regressione "senza vincolo" (sotto  $H_1$ )

$$testscr_i = \beta_0 + \beta_1 str_i + \beta_2 expnstu_i + \beta_3 elpct_i + u_i$$

• Regressione "vincolata" (sotto  $H_0$ )

$$testscr_i = \beta_0 + \beta_3 elpct_i + u_i$$

- lacksquare Il numero di vincoli sotto  $H_0$  è q=2 (perché?).
- ullet L'adattamento risulterà migliore ( $R^2$  sarà maggiore) nella regressione non vincolata (perché?)

## Formula semplice per la statistica F classica

$$F = rac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k_{ur} - 1)}$$

dove:

- ullet  $R^2_r:R^2$  della regressione vincolata
- $R_{ur}^2$  =  $R^2$  della regressione non vincolata
- q= numero di restrizioni sotto l'ipotesi nulla
- $k_{ur} =$  numero di regressori nella regressione non vincolata.

```
1 lm_ur <- lm(testscr~str+expnstu+elpct, data = Caschool)
2 cat("R.square unrestricted: ", summary(lm_ur)$r.square)

R.square unrestricted: 0.437

1 lm_r <- lm(testscr~elpct, data = Caschool)
2 cat("R.square restricted: ", summary(lm_r)$r.square)

R.square restricted: 0.415</pre>
```

# Confronto con linear Hypothesis

$$F = \frac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k_{ur} - 1)} = \frac{(0.4366 - 0.4149)/2}{(1 - 0.4366)/(420 - 3 - 1)} = 8.01$$

# La statistica F classica – riepilogo

Se le quattro assunzioni dei minimi quadrati per la regressione multipla valgono e, in aggiunta:

- 1.  $u_i$  è omoschedastico, ossia  $var(u|X_1,\ldots,X_k)$  è costante;
- 2.  $u_1, \ldots, u_n$  sono normalmente distribuiti

#### allora:

- la statistica F classica ha la distribuzione  $F_{q,n-k-1}$ , dove: q = numero delle restrizioni e k = numero dei regressori sotto l'alternativa (modello non vincolato).
- Se gli errori sono omoschedastici, la statistica W ha una distribuzione in grandi campioni che è  $\chi^2_q$ .
- Se gli errori sono omoschedastici, la statistica F classica ha una distribuzione in grandi campioni che è  $\chi_q^2/q$ .
- Se gli errori sono eteroschedastici, la statistica F classica non ha una distribuzione  $\chi_a^2/q$  e non è valida

# Riepilogo: la statistica F classica e la distribuzione F

- ullet La statistica F classica è giustificata solo sotto condizioni molto forti troppo forti per essere realistiche.
- ullet Dovreste utilizzare la statistica F robusta all'eteroschedasticità robusta ossia  $F_{q,\infty}$ .
- ullet Per  $n\geq 100$ , la distribuzione F è essenzialmente la distribuzione  $\chi_q^2/q$ .
- ullet Per n piccolo, a volte i ricercatori utilizzano la distribuzione F perché ha valori critici più grandi e in tal senso è più prudente.

## Riepilogo: verifica di ipotesi congiunte

- L'approccio "coefficiente per coefficient" che prevede il rifiuto se l'una o l'altra statistica t supera 1.96 rifiuta più del 5% delle volte sotto l'ipotesi nulla (la dimensione supera il livello di significatività desiderato)
- La statistica F robusta all'eteroschedasticità (=Wald stat/q) è integrata in R (comando " linearHypothesis"); questa verifica tutte le restrizioni q allo stesso tempo.
- ullet Per n grande, la statistica F ha distribuzione  $\chi_q^2/q$  (= $F_{q,\infty}$ ).
- ullet La statistica F classica è storicamente importante (e così anche nella pratica) e può aiutare l'intuizione, ma non è valida in presenza di eteroschedasticità.

# Verifica di restrizioni singole su coefficienti multipli (Paragrafo 7.3)

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, \ i = 1, \dots, n$$

Considerate di voler testare:

$$H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$$

Questa ipotesi nulla impone una singola restrizione (q=1) su coefficienti multipli – non si tratta di ipotesi congiunte con restrizioni multiple (confrontate con  $H_0: \beta_1=\beta_2=0$ ).

Due metodi per la verifica di restrizioni singole su coefficienti multipli

#### 1. Trasformare la regressione

Trasformare i regressori in modo che la restrizione diventi una restrizione su un singolo coefficiente

#### 2. Eseguire la verifica direttamente

Alcuni software, tra cui R, consentono di verificare le restrizioni utilizzando direttamente coefficienti multipli

# Metodo 1: Riorganizzare ("trasformare") la regressione

$$Y_i = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} + u_i, \ i = 1, \ldots, n \ H_0: eta_1 = eta_2 ext{ vs } H_1: eta_1 
eq eta_2$$

Sottrarre e sommare  $\beta_2 X_{1i}$ :

$$Y_i = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} + u_i \ Y_i = eta_0 + eta_1 X_{1i} - eta_2 X_{1i} + eta_2 X_{1i} + eta_2 X_{2i} + u_i \ Y_i = eta_0 + (eta_1 - eta_2) X_{1i} + eta_2 (X_{1i} + X_{2i}) + u_i$$

Alternativamente definiamo:

$$Y_i = \beta_0 + \gamma_1 X_{1i} + \beta_2 W_i + u_i$$

dove:

$$\gamma_1 = (eta_1 - eta_2) \operatorname{e} W_i = (X_{1i} + X_{2i}).$$

# Riorganizzare la regressione (continua)

a. Equazione originale

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

$$H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$$

b. Equazione riorganizzata ("trasformata"):

$$Y_i=eta_0+\gamma_1X_{1i}+eta_2W_i+u_i,\quad \gamma_1=(eta_1-eta_2), W_i=(X_{1i}+X_{2i})$$
  $H_0:\gamma_1=0 ext{ vs } H_1:\gamma_1
eq 0$ 

- Queste due regressioni (a. e b.) hanno lo stesso  $\mathbb{R}^2$ , gli stessi valori previsti e gli stessi residui.
- Il problema di verifica è ora semplice: verificare se  $\gamma_1=0$  nella regressione b.

## Riorganizzare la regressione (continua)

```
Y_i=eta_0+\gamma_1X_{1i}+eta_2W_i+u_i,\quad \gamma_1=(eta_1-eta_2), W_i=(X_{1i}+X_{2i}) H_0:\gamma_1=0	ext{ vs }H_1:\gamma_1
eq 0
```

```
1 Caschool <- Caschool |> mutate(W=str+expnstu)
 2 lm2 <- feols(testscr~str+W+elpct, data = Caschool, vcov = "hetero")</pre>
 3 lm2
OLS estimation, Dep. Var.: testscr
Observations: 420
Standard-errors: Heteroskedasticity-robust
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 649.57795 15.45834 42.021 < 2.2e-16 ***
            -0.29027 0.48124 -0.603 0.546731
str
          0.00387
                       0.00158 2.447 0.014821 *
elpct -0.65602
                       0.03178 - 20.640 < 2.2e - 16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
RMSE: 14.3 Adj. R2: 0.432529
```

### Metodo 2: Eseguire la verifica direttamente

```
testscr_i = eta_0 + eta_1 str_i + eta_2 expnstu_i + eta_3 elpct_i + u_i \ H_0: eta_1 = eta_2 	ext{ vs } H_1: eta_1 
eq eta_2
```

```
1 lm2 <- feols(testscr~str+expnstu+elpct, data = Caschool, vcov = "hetero")
2 linearHypothesis(lm2, "str=expnstu")
Linear hypothesis test

Hypothesis:
str - expnstu = 0

Model 1: restricted model
Model 2: testscr ~ str + expnstu + elpct

Df Chisq Pr(>Chisq)
1
2 1 0.36 0.55
```