diffsph

Release 1.0.0.

Martin Vollmann, Finn Welzmueller, Lovorka Gajovic

CONTENTS:

1	diffsph	3
	1.1 diffsph package	3
	1.1.1 Subpackages	
	1.1.2 Submodules	
	1.1.3 diffsph.limits module	27
	1.1.4 diffsph.pyflux module	33
	1.1.5 Module contents	48
2	Architecture	49
3	Examples	51
	3.1 pyflux module	51
	3.2 limits module	
4 Indices and tables		55
Ру	ython Module Index	57

 $\label{limits} \mbox{diffsph is a Python package that computes diffuse signals (e.g. brightness) emitted by Milky-Way satellite dwarf spheroidal galaxies. The underlining physics is mostly based on 1.}$

CONTENTS: 1

 $^{^{1} \}text{ M. Vollmann, "Universal profiles for radio searches of dark matter in dwarf galaxies", } doi:10.1088/1475-7516/2021/04/068 [arXiv:2011.11947 [astro-ph.HE]].$

2 CONTENTS:

CHAPTER

ONE

DIFFSPH

1.1 diffsph package

1.1.1 Subpackages

diffsph.profiles package

Submodules

diffsph.profiles.analytics module

```
diffsph.profiles.analytics.cobrA(t, rs, rh)
```

Brightness H-function for the 'constant' top-hat source in the regime-A approximation

Parameters

- $\mathbf{t} D\sin(\theta)/r_h$, where θ (theta), r_h (rh) and D (dist) are defined below
- theta angular radius in rad
- rs scale radius
- **rh** diffusion radius parameter
- **dist** distance to the source

diffsph.profiles.analytics.cobrC(t, rs, rh)

Brightness H-function for the 'constant' source in the regime-C approximation

Parameters

- $\mathbf{t} D\sin(\theta)/r_h$, where θ (theta), r_h (rh) and D (dist) are defined below
- theta angular radius in rad
- rs scale radius
- **rh** diffusion radius parameter

diffsph.profiles.analytics.cofdA(theta, rs, rh, dist)

Flux-density H-function for the 'constant' top-hat source in the regime-A approximation

- theta angular radius in rad
- rs scale radius

- **rh** diffusion radius parameter
- **dist** distance to the source

diffsph.profiles.analytics.cofdAmax(rs, rh, dist)

Maximum value for the flux-density H-function for the 'constant' top-hat source in the regime-A approximation

Parameters

- rs scale radius
- **rh** diffusion radius parameter
- **dist** distance to the source

diffsph.profiles.analytics.cofdC(theta, rs, rh, dist)

Flux-density H-function for the 'constant' top-hat source in the regime-C approximation

Parameters

- theta angular radius in rad
- rs scale radius
- **rh** diffusion radius parameter
- **dist** distance to the source

diffsph.profiles.analytics.cofdCmax(rs, rh, dist)

Maximum value for the flux-density H-function for the 'constant' top-hat source in the regime-C approximation

Parameters

- rs scale radius
- **rh** diffusion radius parameter
- dist distance to the source

diffsph.profiles.analytics.psbrA(theta, rs, rh, dist)

Brigthness H-function for point sources in the regime-A approximation

Parameters

- theta angular radius in rad
- rs scale radius
- **rh** diffusion radius parameter
- **dist** distance to the source

diffsph.profiles.analytics.psbrC(t, rh)

Brigthness H-function for point sources in the regime-C approximation Variable t is defined as

Parameters

- $\mathbf{t} D\sin(\theta)/r_h$, where θ (theta), r_h (rh) and D (dist) are defined below
- theta angular radius in rad
- **rh** diffusion radius parameter
- **dist** distance to the source

diffsph.profiles.analytics.psfdC(theta, rh, dist)

Flux-density H-function for point sources in the regime-C approximation

Parameters

- theta angular radius in rad
- **rh** diffusion radius parameter
- **dist** distance to the source

diffsph.profiles.analytics.psfdCmax(rh, dist)

Maximum value for the flux-density H-function for point sources in the regime-C approximation

Parameters

- **rh** diffusion radius parameter
- **dist** distance to the source

diffsph.profiles.analytics.sisbrA(t, sigmav, rh)

Brightness H-function for the singular isothermal source in the regime-A approximation

Parameters

- $t D\sin(\theta)/r_h$, where θ (theta), r_h (rh) and D (dist) are defined below
- theta angular radius in rad
- sigmav velocity dispersion parameter
- **rh** diffusion radius parameter
- **dist** distance to the source

diffsph.profiles.analytics.sisbrC(t, sigmav, rh)

Brightness H-function for the singular isothermal source in the regime-C approximation

Parameters

- $\mathbf{t} D\sin(\theta)/r_h$, where θ (theta), r_h (rh) and D (dist) are defined below
- theta angular radius in rad
- sigmav velocity dispersion parameter
- **rh** diffusion radius parameter
- dist distance to the source

diffsph.profiles.hfactors module

```
diffsph.profiles.hfactors.D_factor(theta, dist, rad_temp, **kwargs)
```

Generic "D" factor

Parameters

- theta angular distance in rad units
- dist distance to earth
- rad_temp radial template

Keyword arguments

- **rs** scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

D factor

diffsph.profiles.hfactors.**H_brightness**(*theta*, *dist*, *rh*, *hyp*, *rad_temp*, *regime*, **kwargs)

Generic emissivity halo/bulge function in the Regime "A", "B" or "C" approximations

Parameters

- theta angular distance in rad units
- dist distance to earth
- **rh** diffusion halo/bulge radius
- **hyp** (*str*) hypothesis: 'wimp' (**default**), 'decay' or 'generic')
- halo_model DM halo model
- **rad_temp** radial template
- **regime** regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.

Keyword arguments

Parameters

- rs scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- ${\bf beta}$ exponent β in the diffsph.profiles.templates.hdz() profile
- ${\bf gamma}$ ${\bf exponent}~\gamma$ in the ${\it diffsph.profiles.templates.hdz()}$ profile
- ${\bf alphaE}-{\bf parameter}~\alpha_E$ in the ${\it diffsph.profiles.templates.enst}()$ profile
- ${\bf rc}$ core radius parameter r_c in the ${\it diffsph.profiles.templates.cnfw()}$ profile
- ${\bf sigmav}$ velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

brightness halo/bulge function

 ${\tt diffsph.profiles.hfactors.} \textbf{\textit{H_emissivity}}(\textit{r}, \textit{rh}, \textit{hyp}, \textit{rad_temp}, \textit{regime}, **kwargs)$

Generic emissivity halo/bulge function in the Regime "A", "B" or "C" approximations

Parameters

• **r** – galactocentric distance

- **rh** diffusion halo/bulge radius
- **hyp** (*str*) hypothesis: 'wimp' (**default**), 'decay' or 'generic')
- rad_temp radial template
- **regime** regime of the approximation (upper/lower case a, b, c or I/II/III).

Keyword arguments

Parameters

- rs scale radius
- rhos characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

emissivity halo/bulge function

diffsph.profiles.hfactors.**H_fluxdens**(*theta*, *dist*, *rh*, *hyp*, *rad_temp*, *regime*, **kwargs)

Generic flux-density halo/bulge function in the Regime "A", "B" or "C" approximations

Parameters

- theta angular distance in rad units
- dist distance to earth
- **rh** diffusion halo/bulge radius
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic')
- halo_model DM halo model
- rad_temp radial template
- regime regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.

Keyword arguments

- rs scale radius
- rhos characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile

• sigmav – velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

flux density halo/bulge function

diffsph.profiles.hfactors.H_fluxdens_approx(theta, dist, rh, hyp, rad_temp, regime, **kwargs)

Generic flux-density halo/bulge function in the Regime "A", "B" or "C" approximations (alternative formula)

Parameters

- theta angular distance in rad units
- dist distance to earth
- rh diffusion halo/bulge radius
- **hyp** (*str*) hypothesis: 'wimp' (**default**), 'decay' or 'generic')
- halo_model DM halo model
- rad_temp radial template
- regime regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.

Keyword arguments

Parameters

- rs scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE $\operatorname{parameter}\ \alpha_E$ in the $\operatorname{diffsph.profiles.templates.enst}()$ profile
- rc core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

flux density halo/bulge function

diffsph.profiles.hfactors.**Hem_A**(*r*, *rh*, *hyp*, *rad temp*, **kwargs)

Generic emissivity halo/bulge function for Regime A

Parameters

- **r** galactocentric distance
- **rh** diffusion halo/bulge radius
- hyp (str) hypothesis: 'wimp' (default), 'decay' or 'generic')
- rad_temp radial template

Keyword arguments

8

- rs scale radius
- **rhos** characteristic density

- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- rc core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

emissivity halo/bulge function using the Regime-A approximation

diffsph.profiles.hfactors.Hem_B(r, rh, hyp, rad_temp, **kwargs)

Generic emissivity halo/bulge function for Regime B

Parameters

- **r** galactocentric distance
- **rh** diffusion halo/bulge radius
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic')
- rad_temp radial template

Keyword arguments

Parameters

- rs scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

emissivity halo/bulge function using the Regime-B approximation

diffsph.profiles.hfactors.Hem_C(r, rh, hyp, rad_temp, **kwargs)

Generic emissivity halo/bulge function for Regime C

Parameters

- **r** galactocentric distance
- **rh** diffusion halo/bulge radius
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic')
- rad_temp radial template

Keyword arguments

- **rs** scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

emissivity halo/bulge function using the Regime-C approximation

diffsph.profiles.hfactors.J_factor(theta, dist, rad_temp, **kwargs)

Generic "J" factor

Parameters

- theta angular distance in rad units
- dist distance to earth
- rad_temp radial template

Keyword arguments

Parameters

- rs scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

J factor

diffsph.profiles.hfactors.halo_factor(n, rh, hyp, rad_temp, **kwargs)

n-th order halo/bulge factor h_n for a given model (e.g. NFW, Einasto, Plummer, ...) Arguments 'n', 'rh', 'hyp' and 'rad_temp' are necessary. Remaining arguments depend on the adopted halo model.

Parameters

- **n** order of the halo/bulge factor
- rh diffusion halo/bulge radius
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic')
- rad_temp radial template

Keyword arguments

Parameters

- rs scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- **sigmav** velocity dispersion parameter σ_v in the *diffsph.profiles.templates.sis()* profile

Returns

halo/bulge factor

diffsph.profiles.massmodels module

diffsph.profiles.massmodels.D(tharcmin, galaxy, rad_temp, manual=False, **kwargs)

Model-specific D factor in GeV/cm²

Parameters

- tharcmin angular radius in arcmin
- **galaxy** (*str*) name of the galaxy
- rad_temp(str) radial template('NFW', 'Einasto', etc.)
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• manual = 'False'

Parameters

```
{f ref} - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002', etc.)
```

• manual = 'True'

- rs scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile

• sigmav – velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

D factor

Model-specific brightness halo/bulge function in the Regime "A", "B" or "C" approximations

Parameters

- tharcmin angular radius in arcmin
- galaxy(str) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and the half-light radius (default value = 1)
- **regime** regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- rs scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

brightness halo/bulge function

diffsph.profiles.massmodels.Hem(r, galaxy, rad_temp, hyp, ratio, regime='B', manual=False, **kwargs)

Model-specific emissivity halo/bulge function in the Regime "A", "B" or "C" approximations

Parameters

• **r** – galactocentric distance in kpc

- **galaxy** (str) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and the half-light radius (default value = 1)
- regime regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.
- manual (bool) manual input of parameter values in rad temp (default value = 'False')

Keyword arguments

• manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- rs scale radius
- **rhos** characteristic density
- **alpha** exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \bullet ${\bf rc}$ core radius parameter r_c in the <code>diffsph.profiles.templates.cnfw()</code> profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

emissivity halo/bulge function

Model-specific flux-density halo/bulge function in the Regime "A", "B" or "C" approximations

Parameters

- tharcmin angular radius in arcmin
- **galaxy** (str) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and the half-light radius (default value = 1)
- regime regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- **rs** scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

brightness halo/bulge function

diffsph.profiles.massmodels.J(tharcmin, galaxy, rad_temp, manual=False, **kwargs) Model-specific J factor in Gev 2 /cm 5

Parameters

- tharcmin angular radius in arcmin
- galaxy (str) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- rs scale radius
- **rhos** characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile

- rc core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

J factor

 ${\tt diffsph.profiles.massmodels.h} (\textit{n, galaxy, rad_temp, hyp, ratio, manual=False, **kwargs})$

Model-specific n-th halo factor

Parameters

- **n** order of the halo/bulge factor
- rh diffusion halo/bulge radius
- rad_temp radial template
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and the half-light radius
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- rs scale radius
- rhos characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- ${\bf gamma}$ exponent γ in the ${\it diffsph.profiles.templates.hdz()}$ profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- ${\bf sigmav}$ velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

halo factor

diffsph.profiles.massmodels.rho(r, rad_temp, manual=False, **kwargs)

Dark matter density

- **r** galactocentric distance
- rad_temp template ('NFW', 'Einasto', etc.)

• manual (bool) - manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• manual = 'False'

Parameters

ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)

• manual = 'True'

Parameters

- rs scale radius
- rhos characteristic density
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

dark matter density

diffsph.profiles.templates module

diffsph.profiles.templates.bkrt(r, rs, rhos)

Burkert dark-matter halo profile.

$$\rho(r) = \frac{\rho_s}{(1 + r/r_s)(1 + r^2/r_s^2)}$$

Parameters

- **r** main variable (galactocentric distance)
- rs scale radius
- **rhos** charactieristic density

Returns

density at galactocentric distance r

diffsph.profiles.templates.cnfw(r, rs, rhos, rc)

Cored Navarro/Frenk/White dark-matter halo template.

$$\rho(r) = \frac{\rho_s}{(r/r_s + r_c/r_s)(1 + r/r_s)^2}$$

Parameters

• **r** – main variable (galactocentric distance)

- rs scale radius
- **rhos** chraracteristic density
- rc core radius

density at galactocentric distance r

diffsph.profiles.templates.const(r, rs)

Constant (top-hat) template

$$\rho(r) = \frac{3}{4\pi r_s^3} \Theta(r_s - r)$$

Parameters

rs – characteristic radius

Returns

constant density

diffsph.profiles.templates.enst(r, rs, rhos, alphaE=0.17)

Einasto dark-matter halo profile.

$$\rho(r) = \rho_s \exp\left[-\frac{2}{\alpha_E} \left(\frac{r^{\alpha_E}}{r_s^{\alpha_E}} - 1\right)\right]$$

Parameters

- **r** main variable (galactocentric distance)
- rs scale radius
- rhos charactieristic density
- **alphaE** power-law slope of the Einasto profile, (default value = 0.17)

Returns

density at galactocentric distance r

diffsph.profiles.templates.hdz(r, rs, rhos, alpha, beta, gamma)

Hernquist/Diemand/Zhao dark-matter halo template.

$$\rho(r) = \frac{\rho_s}{(r/r_s)^{\gamma} (1 + (r/r_s)^{\alpha})^{\frac{\beta - \gamma}{\alpha}}}$$

Using default values alpha = 1, beta = 3 and gamma = 1 results in the default NFW halo profile.

Parameters

- **r** main variable (galactocentric distance)
- rs scale radius
- **rhos** chraracteristic density
- alpha inner exponent
- beta large-r exponent
- gamma small-r exponent

Returns

density at galactocentric distance r

diffsph.profiles.templates.nfw(r, rs, rhos)

Navarro/Frenk/White dark-matter halo template.

$$\rho(r) = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2}$$

Parameters

- **r** main variable (galactocentric distance)
- rs scale radius
- **rhos** chraracteristic density

Returns

density at galactocentric distance r

diffsph.profiles.templates.plmm(r, rs)

Plummer template

$$\rho(r) = \frac{3}{4\pi r_s^3} \frac{1}{(1 + r^2/r_s^2)^{5/2}}$$

Parameters

- **r** main variable (distance to the center)
- **rs** Plummer radius
- **rhoa** central density

Returns

density of the Plummer sphere at distance r

diffsph.profiles.templates.ps(r, rs)

Point source template

$$\rho(r) = \frac{1}{4\pi r^2} \delta(r)$$

Parameters

- **r** main variable (galactocentric distance)
- **rs** characteristic radius

Returns

density at galactocentric distance \boldsymbol{r}

diffsph.profiles.templates.ps_iso(r, rs, rhos)

Pseudo-isothermal sphere dark-matter halo profile.

$$\rho(r) = \frac{\rho_s}{1 + r^2/r_s^2}$$

Parameters

- **r** main variable (galactocentric distance)
- rs scale radius
- **rhos** characteristic density

Returns

density at galactocentric distance r

18

diffsph.profiles.templates.sis(r, sigmav)

Singular isothermal sphere

$$\rho(r) = \frac{\sigma_v^2}{2\pi G r^2}$$

Parameters

- **r** main variable (galactocentric distance)
- **sigmav** velocity dispersion

Returns

density at galactocentric distance r

Module contents

diffsph.spectra package

Submodules

diffsph.spectra.analytics module

diffsph.spectra.analytics.Fav(x)

Synchrotron-power function for randomly-oriented magnetic fields¹.

$$F(x) = x^{2} \left(K_{4/3}(x) K_{1/3}(x) - \frac{3}{5} x [K_{4/3}^{2}(x) - K_{1/3}^{2}(x)] \right)$$

Returns

Pitch-angle averaged synchrotron function as a function of x

diffsph.spectra.analytics.M_C(xi, eta, delta)

Master function in the Regime-C limit

$$\mathcal{M}_C(\xi, \eta, \delta) = \frac{\xi^{\delta}}{(1 - \delta)\eta} F(\xi^2)$$

diffsph.spectra.analytics.M_i(xi, eta, delta)

Master function in the large η limit

$$\mathcal{M}_i(\xi, \eta, \delta) = \frac{\Gamma^2(1/3)\eta^{-\frac{5}{3(1-\delta)}}}{5\sqrt[3]{2}(1-\delta)} \Gamma\left(\frac{5}{3(1-\delta)}, \eta \, \xi^{1-\delta}\right) \exp\left(\eta \, \xi^{1-\delta}\right)$$

diffsph.spectra.analytics.M_raw(xi, eta, delta)

"Raw" master function

$$\mathcal{M}(\xi, \eta, \delta) = \int_{\xi}^{\infty} dx F(x^2) \exp\left(-\eta \left[x^{1-\delta} - \xi^{1-\delta}\right]\right)$$

Returns

above integral

¹ Formula extracted from Ghisellini et al. 1988

diffsph.spectra.analytics.anltc_Mst(xi, eta, delta)

Master function

$$\mathcal{M}(\xi, \eta, \delta) = \int_{\xi}^{\infty} dx F(x^2) \exp\left(-\eta \left[x^{1-\delta} - \xi^{1-\delta}\right]\right)$$

Note: Function evaluates the above integral only for those values where no numerical errors are present. Otherwise, it uses the approximate formulas $diffsph.spectra.analytics.M_C()$ or $diffsph.spectra.analytics.M_i()$

diffsph.spectra.analytics.btot(E, B)

Total energy loss function in GeV/s

Parameters

- **E** cosmic-ray energy in GeV
- **B** magnitude of the magnetic field's smooth component in μ G

Returns

energy-loss rate in GeV/s

Syrovatskii variable in kpc²

Parameters

- **E** cosmic-ray energy in GeV
- **B** magnitude of the magnetic field's smooth component in μG
- D0 magnitude of the diffusion coefficient for a 1 GeV CRE in cm²/s
- **delta** power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3)

Returns

Syrovatskii variable in kpc²

diffsph.spectra.synchrotron module

diffsph.spectra.synchrotron.Enu(B, nu)

Typical particle energy in GeV for synchrotron radiation at the frequency nu in GHz and for a magnetic field B in μG

Parameters

- **B** magnitude of the magnetic field's smooth component in μ G
- **nu** frequency in GHz

Returns

Particle energy in GeV.

diffsph.spectra.synchrotron.Mst(xi, eta, delta)

Interpolation function for the kernel function $\mathcal{M}(\xi, \eta, \delta)$

Parameters

• $xi - \xi$

- eta η
- delta δ

Spectral-function kernel (as an interpolation function)

diffsph.spectra.synchrotron.Mst_DM(xi, eta, m, delta, channel)

Master function for dark-matter hypotheses

Parameters

- $xi \xi$
- eta η
- delta δ
- m WIMP mass in GeV
- channel annihilation/decay channel

Returns

Master function (as an interpolation function) for DM hypotheses

diffsph.spectra.synchrotron.Mst_pw(eta, Gamma, delta)

Master function for the generic power-law hypothesis

Parameters

- eta η
- Gamma $-\Gamma$
- $delta \delta$

Returns

Master function (as an interpolation function) for the generic power-law hypothesis

diffsph.spectra.synchrotron.X(nu, tau, delta, B, hyp, **kwargs)

Spectral function in erg/GHz for all hypotheses built in diffsph

Parameters

- **nu** frequency in GHz
- tau diffusion time-scale parameter for a 1 GeV CRE in s
- delta power-law exponent of the diffusion coefficient as a function of the CRE's energy
- **B** magnitude of the magnetic field's smooth component in μ G
- **hyp** (str) hypothesis: 'wimp', 'decay' or 'generic'

Keyword arguments:

• If hyp = 'wimp' or 'decay'

Parameters

- **mchi** mass of the DM particle in GeV/c^2
- channel (str) annihilation/decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- If hyp = 'generic'

Parameters

Gamma – power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$

Returns

spectral function in erg/GHz

diffsph.spectra.synchrotron.**X_DM**(*k*, *mchi*, *channel*, *nu*, *tau*, *delta*, *B*)

Spectral function in erg/GHz for all DM hypotheses built in diffsph

Parameters

- \mathbf{k} hypothesis index (k=1 for decay and k=2 for annihilation)
- mchi mass of the DM particle in GeV/c^2
- **channel** annihilation/decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- **nu** frequency in GHz
- tau diffusion time-scale parameter for a 1 GeV CRE in s
- delta power-law exponent of the diffusion coefficient as a function of the CRE's energy
- **B** magnitude of the magnetic field's smooth component in μ G

Returns

spectral function in erg/GHz

diffsph.spectra.synchrotron.**X_gen**(Emin, Emax, S_func, nu, tau, delta, B)

Spectral function in erg/GHz for generic CRE sources

$$X_{\rm gen}(\nu) = \int_{E_m}^{E_M} dE' \hat{X}(\nu, E') S(E')$$

Parameters

- Emin low-E cutoff energy in GeV of the CRE source 'S_func'
- Emax high-E cutoff energy in GeV of the CRE source 'S_func'
- **S_func** CRE source function
- **nu** frequency in GHz
- tau diffusion time-scale parameter for a 1 GeV CRE in s
- delta power-law exponent of the diffusion coefficient as a function of the CRE's energy
- **B** magnitude of the magnetic field's smooth component in μG

spectral function in erg/GHz

diffsph.spectra.synchrotron.X_pw(Gamma, nu, tau, delta, B)

Spectral function in erg/GHz for the generic power-law hypothesis

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- **nu** frequency in GHz
- tau diffusion time-scale parameter for a 1 GeV CRE in s
- delta power-law exponent of the diffusion coefficient as a function of the CRE's energy
- **B** magnitude of the magnetic field's smooth component in μG

Returns

spectral function in erg/GHz

diffsph.spectra.synchrotron.eta(E, B, tau, delta)

 η variable as a function of the CRE's energy, magnetic field, tau and delta parameters

Parameters

- **E** CRE energy in GeV
- **B** magnetic field strength in μG
- tau diffusion time-scale parameter for a 1 GeV CRE in s
- delta power-law exponent of the diffusion coefficient as a function of the CRE's energy

Returns

 η variable

diffsph.spectra.synchrotron.htX(*E*, *nu*, *tau*, *delta*, *B*, *fast_comp=True*)

Spectral function kernel in erg/GHz \hat{X}

Parameters

- **E** CRE energy in GeV
- **nu** frequency in GHz
- tau diffusion time-scale parameter for a 1 GeV CRE in s
- delta power-law exponent of the diffusion coefficient as a function of the CRE's energy
- **B** magnitude of the magnetic field's smooth component in μG
- **fast_comp** (*bool*) if 'True', employs the interpolating method (default value = 'True')

Returns

spectral kernel in erg/GHz

diffsph.spectra.synchrotron.lMst(Lxi, Leta, delta)

Interpolation function for (kernel) $\log(\hat{\mathcal{M}})$

- Lxi $-\log(\xi)$
- Leta $\log(\eta)$
- delta $-\delta$

 $\log(\hat{\mathcal{M}})$ as a function of $\log(\xi)$, $\log(\eta)$ and δ

diffsph.spectra.synchrotron.lMst_DM(Lxi, Leta, Lm, delta, channel)

Interpolation function $\log(\mathcal{M})$ for DM hypotheses

Parameters

- Lxi $-\log(\xi)$
- Leta $\log(\eta)$
- $\operatorname{Lm} \log(m/\operatorname{GeV})$ (m is the WIMP mass)
- delta $-\delta$
- channel annihilation/decay channel

Returns

 $\log(\mathcal{M})$ as a function of $\log(\xi)$, $\log(\eta)$, $\log(m)$ and δ

diffsph.spectra.synchrotron.lMst_pw(Leta, Gamma, delta)

Interpolation function $\log(\mathcal{M})$ for the gereric power-law hypothesis

Parameters

- Leta $\log(\eta)$
- Gamma $-\Gamma$
- delta δ

Returns

 $\log(\mathcal{M}_{\text{gen}})$ as a function of $\log(\eta), \Gamma$ and δ

Module contents

diffsph.utils package

Submodules

diffsph.utils.consts module

diffsph.utils.dictionaries module

diffsph.utils.tools module

diffsph.utils.tools.TB(brightness, theta, nu, *args, **kwargs)

Brightness temperature conversion

$$T_B = \frac{c^2}{2 k \nu^2} I_{\nu}$$

Parameters

- brightness generic brightness function in Jy/sr
- **theta** angular radius (as the first argument of the generic brighness function)
- **nu** frequency (as the second argument of the generic brighness function)

brightness temperature in mK

diffsph.utils.tools.approxhalo_fd(n, theta, dist, rh)

Partial (θ -dependent) flux-density halo/bulge factor (approximate formula):

$$\mathcal{H}_n(\theta) = \mathcal{H}_n(r_h, R) - 2 \int_{R\sin(\theta)}^{r_h} dr \, r \, \kappa_1(r, R, \theta) \frac{\sin\left(\frac{n\pi r}{r_h}\right)}{r}$$

where R, rh and n are, respectively the distance, halo radius and Fourier index

diffsph.utils.tools.approxhalo_fd_tot(n, dist, rh)

Total flux-density halo/bulge factor (approximate formula):

$$\mathcal{H}_n(r_h, R) \simeq 4\pi \int_0^{r_h} dr \, r^2 \frac{\sin\left(\frac{n\pi r}{r_h}\right)}{r} \,,$$

where R, rh and n are, respectively the distance, halo radius and Fourier index

diffsph.utils.tools.delta_float(inp)

Float number for variable 'delta'

Parameters

Returns

float number associated with 'inp'

Return type

float

diffsph.utils.tools.df(func, **kwargs)

diffsph.utils.tools.evaluate(f, x, **kwargs)

Function converts string into a python function's name and evaluates it

Parameters

- **f** function to be evaluated
- \mathbf{x} first argument of f

Returns

f(x)

diffsph.utils.tools. $\mathbf{f}(n, x)$

Basis function in Fourier-expanded brightness formula

$$f_n(x) = 2\int_x^1 \frac{\sin(n\pi y)dy}{\sqrt{y^2 - x^2}}$$

Returns

 f_n as a function of x

diffsph.utils.tools.fwhm(brightness, thmax, *args, **kwargs)

Full width at half maximum

Parameters

• **brightness** – generic brightness function

• thmax - signal's angular radius

Returns

Full width at half maximum in arcmin

diffsph.utils.tools.g(n, x)

Basis function in Fourier-expanded flux density formula

$$g_n(x) = 2\int_x^1 \sqrt{y^2 - x^2} \sin(n\pi y) dy$$

Returns

 g_n as a function of x

diffsph.utils.tools.halo_fd(n, theta, dist, rh)

Partial (θ -dependent) flux-density halo/bulge factor:

$$\mathcal{H}_n(\theta) = \mathcal{H}_n(r_h, R) - 2 \int_{R \sin(\theta)}^{r_h} dr \, r \, \kappa_1(r, R, \theta) \frac{\sin\left(\frac{n\pi r}{r_h}\right)}{r} ,$$

where R, rh and n are, respectively the distance, halo radius and Fourier index

diffsph.utils.tools.halo_fd_tot(n, dist, rh)

Total flux-density halo/bulge factor:

$$\mathcal{H}_n(r_h, R) = 2 \int_0^{r_h} dr \, r \, \kappa_0(r, R) \frac{\sin\left(\frac{n\pi r}{r_h}\right)}{r} ,$$

where R, rh and n are, respectively the distance, halo radius and Fourier index

Returns

Halo flux-density factor

diffsph.utils.tools.hfd(fluxdens, thmax, *args, **kwargs)

Half-flux diameter

Parameters

- **brightness** generic brightness function
- thmax signal's angular radius

Returns

Half-flux diameter in arcmin

diffsph.utils.tools.hypothesis_index(hyp)

Index of the hypothesis (1 for decaying DM or generic scenario, 2 for WIMP self-annihilation).

Parameters

Returns

hypothesis index

Return type

int

diffsph.utils.tools.ker_0(r, dist)

$$\kappa_0(r, R) = \frac{1}{R} \log \sqrt{\frac{R+r}{R-r}}$$

diffsph.utils.tools.ker_1(r, theta, dist)

$$\kappa_1(\theta, r, R) = \frac{1}{R} \log \frac{R \cos \theta + \sqrt{r^2 - R^2 \sin^2 \theta}}{\sqrt{R^2 - r^2}}$$

diffsph.utils.tools.load_data(folder)

Function loads data from folder

diffsph.utils.tools.sort_kwargs(**kwargs)

Function sorts keyword arguments alphabetically

diffsph.utils.tools.var_to_str(inp)

Dictionary for variables 'delta', 'hyp', 'galaxy', 'ref' and 'rad_temp'

Parameters

inp – input string or number

Returns

default variable name

Return type

str

Module contents

1.1.2 Submodules

1.1.3 diffsph.limits module

diffsph.limits.decay_rate_gausslim(nu, a_fit, sigma_fit, beam_size, galaxy, rad_temp, D0=3e+28, delta='kol', B=2, mchi=50, channel='mumu', manual=False, **kwarqs\)

Maximum dark matter decay rate allowed by the exclusion of a Gaussian-shaped signal

$$a_{
m fit} \exp\left(-rac{ heta^2}{2\sigma_{
m fit}^2}
ight)$$

- **nu** frequency in GHz
- **a_fit** fitted gaussian amplitude in μ Jy / beam
- sigma_fit width parameter of the Gaussian template in arcmin
- galaxy(str) name of the galaxy
- rad_temp (str) dark matter halo model ('NFW', 'Einasto', etc.)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- mchi mass of the DM particle in GeV/c ²

- channel (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Beam size

beam size in arcseconds

Keyword arguments

• manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- **rs** scale radius in kpc
- **rhos** characteristic density in GeV/cm ³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- **sigmav** velocity dispersion in km/s for the isothermal sphere *diffsph.profiles.templates.sis()*

Returns

upper limit on the DM decay rate in 1/s

Return type

float

```
diffsph.limits.decay_rate_limest(nu, rms_noise, beam_size, galaxy, rad_temp, ratio=1, D0=3e+28, delta='kol', B=2, mchi=50, channel='mumu', manual=False, high_res=False, accuracy=1, **kwargs)
```

(Estimated) maximum dark matter decay rate given the rms noise level of an observation

Parameters

- **nu** frequency in GHz
- **rms_noise** RMS noise level of the observation in μ Jy / beam
- **galaxy** (str) name of the galaxy
- rad_temp (str) dark matter halo model ('NFW', 'Einasto', etc.)
- ratio ratio between the diffusion halo and half-light radii
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)

- mchi mass of the DM particle in GeV/c²
- channel (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')
- high_res (bool) spatial resolution. If 'True', synch_emissivity() computes as many terms as needed in order to converge at r = 0. (default value = 'False')
- accuracy theoretical accuracy in % (default value = 1%)

Beam_size

beam size in arcseconds

Keyword arguments

• manual = 'False'

Parameters

ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)

• manual = 'True'

Parameters

- rs scale radius in kpc
- **rhos** characteristic density in GeV/cm³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- **sigmav** velocity dispersion in km/s for the isothermal sphere *diffsph.profiles. templates.sis()*

Returns

Estimated upper limit on the DM decay rate in 1/s

Return type

float

diffsph.limits.generic_rate_gausslim(nu, a_fit, sigma_fit, beam_size, galaxy, rad_temp, D0=3e+28, delta='kol', B=2, Gamma=2, **kwargs')

Maximum CRE production rate (generic power-law hypothesis) allowed by the exclusion of a Gaussian-shaped signal

$$a_{\rm fit} \exp\left(-rac{ heta^2}{2\sigma_{
m fit}^2}
ight)$$

- **nu** frequency in GHz
- **a_fit** fitted gaussian amplitude in μ Jy / beam
- sigma_fit width parameter of the Gaussian template in arcmin
- galaxy (str) name of the galaxy

- rad_temp (str) dark matter halo model ('NFW', 'Einasto', etc.)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3, \text{ default value} = 2)$
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Beam_size

beam size in arcseconds

Keyword arguments

• manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- **rs** scale radius in kpc
- **sigmav** velocity dispersion in km/s for the isothermal sphere *diffsph.profiles. templates.sis()*

Returns

upper limit on the generic CRE production rate in 1/s

Return type

float

```
diffsph.limits.generic_rate_limest(nu, rms_noise, beam_size, galaxy, rad_temp, ratio=1, D0=3e+28, delta='kol', B=2, Gamma=2, high_res=False, accuracy=1, **kwargs)
```

(Estimated) maximum CRE production rate (generic power-law hypothesis) given the rms noise level of an observation

Parameters

- **nu** frequency in GHz
- rms_noise RMS noise level of the observation in μ Jy / beam
- **galaxy** (str) name of the galaxy
- rad_temp (str) dark matter halo model ('NFW', 'Einasto', etc.)
- ratio ratio between the diffusion halo and half-light radii
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3, \text{ default value} = 2)$
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')
- high_res (bool) spatial resolution. If 'True', synch_emissivity() computes as many terms as needed in order to converge at r = 0. (default value = 'False')
- accuracy theoretical accuracy in % (default value = 1%)

Beam size

beam size in arcseconds

Keyword arguments

• manual = 'False'

Parameters

ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)

• manual = 'True'

Parameters

- rs scale radius in kpc
- **sigmav** velocity dispersion in km/s for the isothermal sphere *diffsph.profiles. templates.sis()*

Returns

Estimated upper limit on the generic CRE production rate in 1/s

Return type

float

diffsph.limits.sigmav_gausslim(nu, a_fit, sigma_fit, beam_size, galaxy, rad_temp, D0=3e+28, delta='kol', B=2, mchi=50, channel='mumu', self_conjugate=True, manual=False, **kwargs)

Maximum WIMP self-annihilation cross-section allowed by the exclusion of a Gaussian-shaped signal

$$a_{\rm fit} \exp\left(-rac{ heta^2}{2\sigma_{
m fit}^2}
ight)$$

- nu frequency in GHz
- **a_fit** fitted gaussian amplitude in μ Jy / beam
- **sigma_fit** width parameter of the Gaussian template in arcmin
- **galaxy** (str) name of the galaxy
- rad_temp (str) dark matter halo model ('NFW', 'Einasto', etc.)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- mchi mass of the DM particle in GeV/c ²

- **channel** (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- self_conjugate if set 'True' (default value) the DM particle is its own antiparticle
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Beam size

beam size in arcseconds

Keyword arguments

• manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- **rs** scale radius in kpc
- **rhos** characteristic density in GeV/cm ³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile

Returns

upper limit for the WIMP self-annihilation cross-section in cm ³/s

Return type

float

```
diffsph.limits.sigmav_limest(nu, rms_noise, beam_size, galaxy, rad_temp, ratio=1, D0=3e+28, delta='kol', B=2, mchi=50, channel='mumu', self_conjugate=True, manual=False, high_res=False, accuracy=1, **kwargs)
```

(Estimated) maximum WIMP self-annihilation cross-section given the rms noise level of an observation

Parameters

- **nu** frequency in GHz
- rms_noise RMS noise level of the observation in μ Jy / beam
- galaxy (str) name of the galaxy
- rad_temp (str) dark matter halo model ('NFW', 'Einasto', etc.)
- ratio ratio between the diffusion halo and half-light radii
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- B magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- mchi mass of the DM particle in GeV/c ²

- **channel** (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- self_conjugate if set 'True' (default value) the DM particle is its own antiparticle
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')
- **high_res** (*bool*) spatial resolution. If 'True', synch_emissivity() computes as many terms as needed in order to converge at r = 0. (default value = 'False')
- accuracy theoretical accuracy in % (default value = 1%)

Beam size

beam size in arcseconds

Keyword arguments

• manual = 'False'

Parameters

ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)

• manual = 'True'

Parameters

- rs scale radius in kpc
- **rhos** characteristic density in GeV/cm³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile

Returns

Estimated upper limit on WIMP self-annihilation cross-section in cm ³ /s

Return type

float

1.1.4 diffsph.pyflux module

diffsph.pyflux.coeff(n, nu, galaxy, rad_temp, hyp, ratio, D0, delta, B, manual=False, **kwargs)

n-th coefficient participating in the Fourier-expanded Green's function solution of the CRE transport equation

$$s_n = h_n \times X_n$$

- **n** order of the halo/bulge factor
- theta angular radius in arcmin
- **nu** frequency in GHz
- galaxy (str) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)

- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• hyp = 'wimp' (default)

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- **self_conjugate** if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c ²
- **channel** (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

Parameters

- width decay width of the DM particle in 1/s
- mchi mass of the DM particle in GeV/c 2
- channel (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'generic'

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s
- manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- rs scale radius in kpc
- **rhos** characteristic density in GeV/cm ³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- ${\bf beta}$ exponent β in the ${\it diffsph.profiles.templates.hdz()}$ profile

- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- ullet rc core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

n-th coefficient in the *which N* function

diffsph.pyflux.**synch_TB**(theta, nu, galaxy, rad_temp, hyp='wimp', ratio=1, D0=3e+28, delta='kol', B=2, manual=False, high_res=False, accuracy=1, **kwargs)

Model-specific brightness temperature from synchrotron radiation

Parameters

- theta angular radius in arcmin
- **nu** frequency in GHz
- galaxy (str) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')
- **high_res** (*bool*) spatial resolution. If 'True', *synch_emissivity()* computes as many terms as needed in order to converge at r = 0. (default value = 'False')
- accuracy theoretical accuracy in % (default value = 1%)

Keyword arguments

• hyp = 'wimp' (default)

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- **self_conjugate** if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c ²
- **channel** (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

Parameters

• width – decay width of the DM particle in 1/s

- mchi mass of the DM particle in GeV/c ²
- **channel** (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'generic'

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s
- manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- **rs** scale radius in kpc
- **rhos** characteristic density in GeV/cm³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

Brightness temperature in mK

```
diffsph.pyflux.synch_TB_approx(theta, nu, galaxy, rad_temp, hyp='wimp', ratio=1, D0=3e+28, delta='kol', B=2, regime='B', manual=False, **kwargs)
```

Model-specific brightness temperature in the Regime "A", "B" or "C" approximations

Parameters

- theta angular radius in arcmin
- **nu** frequency in GHz
- **galaxy** (*str*) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)

- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- B magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- regime regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• hyp = 'wimp' (default)

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- self_conjugate if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c ²
- **channel** (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

Parameters

- width decay width of the DM particle in 1/s
- mchi mass of the DM particle in GeV/c ²
- channel (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'generic'

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s
- manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

- **rs** scale radius in kpc
- **rhos** characteristic density in GeV/cm³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile

- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

Brightness temperature in mK

diffsph.pyflux.synch_brightness(theta, nu, galaxy, rad_temp, hyp='wimp', ratio=1, D0=3e+28, delta='kol', B=2, manual=False, high res=False, accuracy=1, **kwargs)

Model-specific brightness from synchrotron radiation

Parameters

- theta angular radius in arcmin
- **nu** frequency in GHz
- galaxy(str) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- B magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- manual (bool) manual input of parameter values in rad temp (default value = 'False')
- high_res (bool) spatial resolution. If 'True', $synch_emissivity()$ computes as many terms as needed in order to converge at r=0. (default value = 'False')
- accuracy theoretical accuracy in % (default value = 1%)

Keyword arguments

• hyp = 'wimp' (default)

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- self_conjugate if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c ²
- **channel** (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

Parameters

- width decay width of the DM particle in 1/s
- mchi mass of the DM particle in GeV/c ²
- channel (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.

```
• hyp = 'generic'
```

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s
- manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- **rs** scale radius in kpc
- **rhos** characteristic density in GeV/cm ³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

Brightness in Jy/sr

Return type

float

diffsph.pyflux.synch_brightness_approx(theta, nu, galaxy, rad_temp, hyp='wimp', ratio=1, D0=3e+28, delta='kol', B=2, regime='B', manual=False, **kwargs)

Model-specific brightness from synchrotron radiation in the Regime "A", "B" or "C" approximations

- theta angular radius in arcmin
- **nu** frequency in GHz
- **galaxy** (str) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')

- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- regime regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• hyp = 'wimp' (default)

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- self_conjugate if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c ²
- channel (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

Parameters

- width decay width of the DM particle in 1/s
- mchi mass of the DM particle in GeV/c 2
- channel (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'generic'

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s
- manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- **rs** scale radius in kpc
- **rhos** characteristic density in GeV/cm ³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile

• **sigmav** – velocity dispersion parameter σ_v in the *diffsph.profiles.templates.sis()* profile

Returns

Brightness in Jy/sr

diffsph.pyflux.synch_emissivity(r, nu, galaxy, rad_temp , hyp='wimp', ratio=1, D0=3e+28, delta='kol', B=2, manual=False, $high_res=False$, accuracy=1, **kwargs)

Model-specific emissivity from synchrotron radiation

Parameters

- **r** galactocentric distance in kpc
- **nu** frequency in GHz
- galaxy(str) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- B magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')
- **high_res** (*bool*) spatial resolution. If 'True', *synch_emissivity()* computes as many terms as needed in order to converge at r = 0 (default value = 'False')
- accuracy theoretical accuracy in % (default value = 1%)

Keyword arguments

• hyp = 'wimp' (default)

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- self_conjugate if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c ²
- channel (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

- width decay width of the DM particle in 1/s
- mchi mass of the DM particle in GeV/c ²
- **channel** (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'generic'

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s
- manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- rs scale radius in kpc
- **rhos** characteristic density in GeV/cm ³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

Emissivity in erg/cm³ /Hz/s/sr

Return type

float

```
diffsph.pyflux.synch_emissivity_approx(r, nu, galaxy, rad\_temp, hyp='wimp', ratio=1, D0=3e+28, delta='kol', B=2, regime='B', manual=False, **kwargs)
```

Model-specific emissivity from synchrotron radiation in the Regime "A", "B" or "C" approximations

Parameters

- **r** galactocentric distance in kpc
- **nu** frequency in GHz
- **galaxy** (str) name of the galaxy
- rad_temp(str) radial template('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- B magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)

- **regime** regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

```
• hyp = 'wimp' (default)
```

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- **self_conjugate** if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c ²
- channel (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

Parameters

- width decay width of the DM particle in 1/s
- mchi mass of the DM particle in GeV/c ²
- channel (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'generic'

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s
- manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

- **rs** scale radius in kpc
- **rhos** characteristic density in GeV/cm³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

Emissivity in erg/cm 3 /Hz/s/sr

Model-specific flux density from synchrotron radiation

Parameters

- theta angular radius in arcmin
- **nu** frequency in GHz
- galaxy(str) name of the galaxy
- rad_temp(str) radial template('NFW', 'Einasto', etc.)
- **hyp** (str) hypothesis: 'wimp' (**default**), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')
- **high_res** (*bool*) spatial resolution. If 'True', *synch_emissivity()* computes as many terms as needed in order to converge at r = 0. (default value = 'False')
- accuracy theoretical accuracy in % (default value = 1%)

Keyword arguments

• hyp = 'wimp' (default)

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- self_conjugate if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c²
- **channel** (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

Parameters

- width decay width of the DM particle in 1/s
- mchi mass of the DM particle in GeV/c²
- channel (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'generic'

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s
- manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- rs scale radius in kpc
- **rhos** characteristic density in GeV/cm ³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- \mathbf{alphaE} $\mathbf{parameter}$ α_E in the diffsph.profiles.templates.enst() profile
- \mathbf{rc} core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

Flux density in µJy

diffsph.pyflux.synch_flux_density_approx(theta, nu, galaxy, rad_temp, hyp='wimp', ratio=1, D0=3e+28, delta='kol', B=2, regime='B', manual=False, **kwargs)

Model-specific flux density from synchrotron radiation in the Regime "A", "B" or "C" approximations

Parameters

- theta angular radius in arcmin
- **nu** frequency in GHz
- galaxy(str) name of the galaxy
- rad_temp(str) radial template('NFW', 'Einasto', etc.)
- hyp(str) hypothesis: 'wimp' (default), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- regime regime of the approximation. Must be either upper or lower case a, b, c or I/II/III.
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')

Keyword arguments

• hyp = 'wimp' (default)

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- **self_conjugate** if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c²
- channel (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

Parameters

- width decay width of the DM particle in 1/s
- mchi mass of the DM particle in GeV/c ²
- **channel** (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'generic'

Parameters

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s
- manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- **rs** scale radius in kpc
- **rhos** characteristic density in GeV/cm ³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the diffsph.profiles.templates.hdz() profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- rc core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- sigmav velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

Flux density in µJy

diffsph.pyflux.which_N(nu, galaxy, rad_temp, hyp, ratio, D0, delta, B, manual=False, high_res=False, accuracy=1, **kwargs)

Determines at which order should the Fourier-expanded Green's function solution be truncated and stores the associated $s_n = h_n \times X_n$ coefficients as an array in the /cache folder

Parameters

- **nu** frequency in GHz
- **galaxy** (*str*) name of the galaxy
- rad_temp(str) radial template ('NFW', 'Einasto', etc.)
- hyp (str) hypothesis: 'wimp' (default), 'decay' or 'generic'
- ratio ratio between the diffusion halo/bulge and half-light radii (default value = 1)
- **D0** magnitude of the diffusion coefficient for a 1 GeV CRE in cm 2 /s (default value = 3×10^{28} cm 2 /s)
- **delta** (*float*, *str*) power-law exponent of the diffusion coefficient as a function of the CRE's energy (default value = 1/3 or 'kol')
- **B** magnitude of the magnetic field's smooth component in μ G (default value = 2μ G)
- manual (bool) manual input of parameter values in rad_temp (default value = 'False')
- **high_res** (*bool*) spatial resolution. If 'True', *synch_emissivity()* computes as many terms as needed in order to converge at r = 0. (default value = 'False')
- accuracy theoretical accuracy in % (default value = 1%)

Keyword arguments

• hyp = 'wimp' (default)

Parameters

- sv annihilation rate (annihilation cross section times relative velocity) σv in cm 3 /s (default value = 3×10^{-26} cm 3 /s)
- self_conjugate if set 'True' (default value) the DM particle is its own antiparticle
- mchi mass of the DM particle in GeV/c 2
- **channel** (str) annihilation channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'decay'

Parameters

- width decay width of the DM particle in 1/s
- mchi mass of the DM particle in GeV/c ²
- **channel** (str) decay channel: $b\bar{b}$ ('bb'), $\mu^+\mu^-$ ('mumu'), W^+W^- ('WW'), etc.
- hyp = 'generic'

- Gamma power-law exponent of the generic CRE source $(1.1 < \Gamma < 3)$
- rate CRE production rate in 1/s

• manual = 'False'

Parameters

```
ref - reference used ('Martinez' or '1309.2641', 'Geringer-Sameth' or '1408.0002',
etc.)
```

• manual = 'True'

Parameters

- **rs** scale radius in kpc
- **rhos** characteristic density in GeV/cm ³
- alpha exponent α in the diffsph.profiles.templates.hdz() profile
- **beta** exponent β in the *diffsph.profiles.templates.hdz()* profile
- gamma exponent γ in the diffsph.profiles.templates.hdz() profile
- alphaE parameter α_E in the diffsph.profiles.templates.enst() profile
- ${\bf rc}$ core radius parameter r_c in the diffsph.profiles.templates.cnfw() profile
- ${\bf sigmav}$ velocity dispersion parameter σ_v in the diffsph.profiles.templates.sis() profile

Returns

series truncation order N

1.1.5 Module contents

ARCHITECTURE

The code's structure can be summarized as follows:

Besides being able to compute fluxes with the pyflux (diffsph.pyflux) module, the limits (diffsph.limits) module enables users to produce 2σ limits on e.~g. annihilation cross sections or decay rates of dark matter particles.

CHAPTER

THREE

EXAMPLES

3.1 pyflux module

In order to get familiar with the code, the user can use the following set of commands in order to generate the figure below:

```
from diffsph import pyflux as pf
import matplotlib.pyplot as plt
%matplotlib inline
# Angle grid in arcmin
theta_grid = [15 * i / 1000 for i in range(0,1000)]
# List of satellite galaxies
dsph_list = ['Ursa Major II', 'Fornax', 'Ursa Minor', 'Sextans']
# diffsph's computations at nu = 150 MHz and for the given model
Inu = [[pf.synch_brightness(th, nu = .150, galaxy = gal, rad_temp = 'HDZ',
                                 hyp = 'wimp', ref = '1408.0002', sv = 3e-26,
                                 mchi = 10, channel = 'mumu', high_res = True,
                                 accuracy = .1
             for th in theta_grid]
            for gal in dsph_list]
# Plots
plt.plot(theta_grid, Inu[0], "k", label = dsph_list[0])
plt.plot(theta_grid, Inu[1], "--k", label = dsph_list[1])
plt.plot(theta_grid, Inu[2], ":k", label = dsph_list[2])
plt.plot(theta_grid, Inu[3], "-.k", label = dsph_list[3])
plt.legend()
plt.xlabel('$\\theta$ (arcmin)', size = 'large');
plt.ylabel('$I_\\nu$ (Jy/sr)', size = 'large');
plt.title('Brightness profiles with diffsph');
plt.text(7.5, 630, '\\chi\chi\, \\to\, \mu^+\mu^-$',
         horizontalalignment = 'center', size = 'large');
```


In this example, the ordering of the elements in the list dshp_list is not arbitrary. It was deliberately chosen in such a way that the total flux density of the first element is the largest while the rest are sorted in decreasing order. The following command line allows one to assess this quantitatively:

3.2 limits module

The following example shows how to obtain limits on e.~g. the decay rate of dark matter particles using the given noise level of a non-detection image of Draco. It takes (without parallelization) about one hour to compute all:

```
from diffsph import limits as lims
# DM mass grid in GeV
mass_grid = [100 * 10 ** (3 * i / 1000) for i in range(0,1000)]
# List of decay channels
ch_list = ['WW', 'ZZ', 'hh', 'nunu', 'mumu', 'tautau', 'qq', 'cc', 'bb', 'tt']
# diffsph's computations at nu = 150 MHz and for the given image
rates = [[lims.decay_rate_limest(nu = .15, rms_noise = 100, beam_size = 20,
                                 galaxy = 'Draco', rad_temp = 'HDZ', mchi = mch,
                                 channel = ch, high_res = True, accuracy = .1,
                                 ref = '1408.0002')
          for mch in mass_grid]
         for ch in ch_list]
# Plots
[plt.loglog(mass_grid, rates_Draco[i], label = ch_list[i], ls = '--') for i in range(0,__
→3)]
[plt.loglog(mass_grid, rates_Draco[i], label = ch_list[i], ls = ':') for i in range(3,...
[plt.loglog(mass_grid, rates_Draco[i], label = ch_list[i]) for i in range(6, len(ch_
→list))]
plt.ylim([2e-24,8e-21]);
plt.xlim([200,1e5]);
plt.legend(loc = 'upper right', ncols = 5)
plt.xlabel('$m_\chi$ (GeV)', size = 'large');
plt.ylabel('$\Gamma_{dec}$ (s${}^{-1}$)', size = 'large');
plt.title('diffsph 2$\sigma$ limit estimates on DM decay rates');
plt.text(8e4, 4e-24, 'Draco', horizontalalignment = 'right', size = 'large');
```

3.2. limits module 53

54

CHAPTER

FOUR

INDICES AND TABLES

- genindex
- modindex
- search

References

PYTHON MODULE INDEX

d

```
diffsph, 48
diffsph.limits, 27
diffsph.profiles, 19
diffsph.profiles.analytics, 3
diffsph.profiles.hfactors, 5
diffsph.profiles.massmodels, 11
diffsph.profiles.templates, 16
diffsph.pyflux, 33
diffsph.spectra, 24
diffsph.spectra.analytics, 19
diffsph.spectra.synchrotron, 20
diffsph.utils, 27
diffsph.utils.consts, 24
diffsph.utils.dictionaries, 24
diffsph.utils.tools, 24
```