Et lokalsøgningssystem til at løse diskrete optimeringsproblemer

Bo Stentebjerg-Hansen

Vejleder: Marco Chiarandini

Syddansk Universitet

Institut for Matematik og Datalogi

3. marts 2016

Overblik

- 1 Introduktion
- 2 Lokalsøgnings elementer
- 3 Opbygning af systemet
- 4 Lokalsøgningsalgoritmer
- 5 Eksperimentel evaluering
- 6 Sidste kommentarer

En diskret optimeringsproblem *p* består af:

■ n variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$

- *n* variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**

- n variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

- n variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(p) \}$$

En diskret optimeringsproblem *p* består af:

- n variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(p) \}$$

Kan være NP-hårde problemer

En diskret optimeringsproblem *p* består af:

- n variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(p) \}$$

Kan være NP-hårde problemer

Eksempel: Skemalægningsinstans

 Variable: Klasser der skal skemalægges

En diskret optimeringsproblem *p* består af:

- n variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- m betingelser C
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(p) \}$$

Kan være NP-hårde problemer

- Variable: Klasser der skal skemalægges
- Betingelser: Ingen overlap, krav til lokaler, tidspunkter, osv

En diskret optimeringsproblem *p* består af:

- \blacksquare *n* variable $\mathbf{x}, \mathbf{x} \in \mathbb{Z}^n$
- m betingelser C
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(p) \}$$

Kan være NP-hårde problemer

- Variable: Klasser der skal skemalægges
- Betingelser: Ingen overlap, krav til lokaler, tidspunkter, osv
- Evaluering: Totale antal af mellemtimer

En diskret optimeringsproblem *p* består af:

- \blacksquare *n* variable $\mathbf{x}, \mathbf{x} \in \mathbb{Z}^n$
- m betingelser C
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(p) \}$$

Kan være NP-hårde problemer

- Variable: Klasser der skal skemalægges
- Betingelser: Ingen overlap, krav til lokaler, tidspunkter, osv
- Evaluering: Totale antal af mellemtimer
- Bedste løsning: Den løsning som overholder alle betingelser og giver færrest mellemtimer

- Algoritmer til specifikke problemer

- Algoritmer til specifikke problemer
 - Approximations algoritmer

- Algoritmer til specifikke problemer
 - Approximations algoritmer
 - Dynamisk programmering

- Algoritmer til specifikke problemer
 - Approximations algoritmer
 - Dynamisk programmering

- . . .

- Satisfiability encoding

- Algoritmer til specifikke problemer
 - Approximations algoritmer
 - Dynamisk programmering
- . . .
- Satisfiability encoding
- Lineær heltalsprogramming

- Algoritmer til specifikke problemer
 - Approximations algoritmer
 - Dynamisk programmering
- . . .
- Satisfiability encoding
- Lineær heltalsprogramming
- Constraint Programming

- Algoritmer til specifikke problemer
 - Approximations algoritmer
 - Dynamisk programmering

- . . .

- Satisfiability encoding
- Lineær heltalsprogramming
- Constraint Programming
- Lokalsøgning

- . . .

■ Model baseret på uligheder

■ Model baseret på uligheder

■ Gurobi, CPLEX, SCIP, GLPK

■ Model baseret på uligheder

- Gurobi, CPLEX, SCIP, GLPK
- Kan ikke altid finde en (optimal) løsning inden for rimelig tid

■ Model baseret på uligheder

- Gurobi, CPLEX, SCIP, GLPK
- Kan ikke altid finde en (optimal) løsning inden for rimelig tid
- Kan garantere at en løsning er optimal

■ Bruger søgetræer + propagation til at finde en løsning

- Bruger søgetræer + propagation til at finde en løsning
- Mere naturlig formulering af problemer

- Bruger søgetræer + propagation til at finde en løsning
- Mere naturlig formulering af problemer
- Flere muligheder for at modeller et problem

- Bruger søgetræer + propagation til at finde en løsning
- Mere naturlig formulering af problemer
- Flere muligheder for at modeller et problem
- Men mindre egnet til optimeringsproblemer

- Bruger søgetræer + propagation til at finde en løsning
- Mere naturlig formulering af problemer
- Flere muligheder for at modeller et problem
- Men mindre egnet til optimeringsproblemer
- Fx Gecode, CHIP, Prolog, ...

■ "Trial and error" teknik

- "Trial and error" teknik
- Alle variable skal have en værdi først

2	6	3	7	8	9	4	1	5				6	8	4	7	3	5	1	2	9
5	8	9	4	1	3	7	6	2				5	1	2	4	6	9	3	7	8
1	4	7	2	5	6	8	9	3				7	9	3	2	1	8	4	5	6
7	9	8	6	2	1	5	3	4	1			4	2	5	9	7	6	8	1	3
4	5	1	8	3	7	9	2	6				8	3	1	5	2	4	9	6	7
6	3	2	5	9	4	1	8	7				9	7	6	1	8	3	2	4	5
3	1	5	9	4	2	6	7	8	2	3	4	1	5	9	3	4	7	6	8	2
9	7	4	3	6	8	2	5	1	6	7	9	3	4	8	6	5	2	7	9	1
8	2	6	1	7	5	3	4	9	5	8	1	2	6	7	8	9	1	5	3	4
						7	6	2	4	9	3	5	8	1				_		
						1	8	3	7	6	5	9	2	4						
						5	9	4	1	2	8	6	7	3						
1	2	5	7	8	9	4	3	6	9	5	7	8	1	2	5	3	4	6	7	9
6	7	9	3	2	4	8	1	5	3	4	2	7	9	6	1	2	8	3	4	5
3	4	8	1	5	6	9	2	7	8	1	6	4	3	5	6	7	9	1	2	8
4	6	2	5	3	7	1	9	8				6	4	1	8	5	7	2	9	3
7	5	3	9	1	8	6	4	2				5	2	8	3	9	1	4	6	7
8	9	1	4	6	2	5	7	3	1			3	7	9	2	4	6	5	8	1
2	1	4	6	7	5	3	8	9	1			1	5	7	9	6	2	8	3	4
5	3	7	8	9	1	2	6	4				2	8	4	7	1	3	9	5	6
Э																				

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser
- Ændre få variable ad gangen og beregner effekten

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser
- Ændre få variable ad gangen og beregner effekten
- Kan ikke garantere optimalitet

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser
- Ændre få variable ad gangen og beregner effekten
- Kan ikke garantere optimalitet
- Ofte implementeret forfra til specifikke problemer

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser
- Ændre få variable ad gangen og beregner effekten
- Kan ikke garantere optimalitet
- Ofte implementeret forfra til specifikke problemer
- Genenral Purpose lokalsøgningssystemer

General purpose lokalsøgningssystemer

■ EasyLocal++ [L. Gaspero & A. Schaerf]

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt

3 LocalSolver [Innovation 24]

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt

- 3 LocalSolver [Innovation 24]
 - Matematisk modellering

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt

- 3 LocalSolver [Innovation 24]
 - Matematisk modellering
 - Lineær- og heltalsprogrammering

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt

- 3 LocalSolver [Innovation 24]
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt

- 3 LocalSolver [Innovation 24]
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- 4 OscaR [R. Landtsheer]

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt

- 3 LocalSolver [Innovation 24]
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- 4 OscaR [R. Landtsheer]
 - Inspireret af Comet

- EasyLocal++ [L. Gaspero & A. Schaerf]
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges
 - Hotspots skal implementeres af bruger
- 2 Comet [Van Hentenryck & Michel]
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt

- 3 LocalSolver [Innovation 24]
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- 4 OscaR [R. Landtsheer]
 - Inspireret af Comet
 - Forholdsvis nyt

■ Kombinerer CP og lokalsøgning på en ny måde:

¹Using constraint programming and local search methods to solve vehicle routing problems

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke som "large scale neighborhood search" [P. Shaw] 1

¹Using constraint programming and local search methods to solve vehicle routing problems

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke som "large scale neighborhood search" [P. Shaw] ¹
- Undersøger effekten af (offline) CP domæne reducering og variable fiksering

¹Using constraint programming and local search methods to solve vehicle routing problems

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke som "large scale neighborhood search" [P. Shaw] 1
- Undersøger effekten af (offline) CP domæne reducering og variable fiksering
- Bruger CP som konstruktions heuristik

¹Using constraint programming and local search methods to solve vehicle routing problems

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke som "large scale neighborhood search" [P. Shaw] 1
- Undersøger effekten af (offline) CP domæne reducering og variable fiksering
- Bruger CP som konstruktions heuristik
- Tester effekten af envejsbetingelser

¹Using constraint programming and local search methods to solve vehicle routing problems

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke som "large scale neighborhood search" [P. Shaw] 1
- Undersøger effekten af (offline) CP domæne reducering og variable fiksering
- Bruger CP som konstruktions heuristik
- Tester effekten af envejsbetingelser
- Undersøger en ny evalueringsmetode i lokalsøgning

¹Using constraint programming and local search methods to solve vehicle routing problems

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke som "large scale neighborhood search" [P. Shaw] ¹
- Undersøger effekten af (offline) CP domæne reducering og variable fiksering
- Bruger CP som konstruktions heuristik
- Tester effekten af envejsbetingelser
- Undersøger en ny evalueringsmetode i lokalsøgning
 - Leksikografisk vægtning

¹Using constraint programming and local search methods to solve vehicle routing problems

Modellering:

■ Variable: search space S(p), løsningsrepræsentation

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser
- Evaluerings funktion: kvaliteten af en løsning

Modellering:

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser
- Evaluerings funktion: kvaliteten af en løsning

Modellering:

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser
- Evaluerings funktion: kvaliteten af en løsning

- (Konstruktions heuristik)
- Neighborhood

Modellering:

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser
- Evaluerings funktion: kvaliteten af en løsning

- (Konstruktions heuristik)
- Neighborhood

Modellering:

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser
- Evaluerings funktion: kvaliteten af en løsning

- (Konstruktions heuristik)
- Neighborhood
- Lokalsøgning

Modellering:

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser
- Evaluerings funktion: kvaliteten af en løsning

- (Konstruktions heuristik)
- Neighborhood
- Lokalsøgning
- Metaheuristikker

Modellering:

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser
- Evaluerings funktion: kvaliteten af en løsning

- (Konstruktions heuristik)
- Neighborhood
- Lokalsøgning
- Metaheuristikker
 - Tabu søgning

Modellering:

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser
- Evaluerings funktion: kvaliteten af en løsning

- (Konstruktions heuristik)
- Neighborhood
- Lokalsøgning
- Metaheuristikker
 - Tabu søgning
 - Iterativ lokalsøgning

Modellering:

- Variable: search space S(p), løsningsrepræsentation
- Betingelser:
 - Implicitte betingelser
 - Envejsbetingelser
 - Bløde betingelser
- Evaluerings funktion: kvaliteten af en løsning

- (Konstruktions heuristik)
- Neighborhood
- Lokalsøgning
- Metaheuristikker
 - Tabu søgning
 - Iterativ lokalsøgning
 - ..

$$min\left\{\sum\limits_{j=1}^n c_j x_j \;\Big|\; \sum\limits_{j=1}^n a_{ij} x_j \leq b_j\;,\;\; orall i \in \{1..m\}
ight\}$$

$$\min \left\{ \sum_{j=1}^{n} c_{j} x_{j} \; \middle| \; \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{j} \; , \; \forall i \in \{1..m\} \right\}$$
 Minimize $z = 2x_{1} + x_{2} + x_{3}$ subject to $-x_{1} + 2x_{2} \leq 1$ $x_{1} + x_{2} + x_{3} = 2$ $x_{1}, x_{2}, x_{3} \in \{0, 1\}$

$$\min \left\{ \sum_{j=1}^{n} c_j x_j \; \middle| \; \sum_{j=1}^{n} a_{ij} x_j \leq b_j \; , \; \forall i \in \{1..m\} \right\}$$
 Minimize $z = 2x_1 + x_2 + x_3$ subject to $-x_1 + 2x_2 \leq 1$ $x_1 + x_2 + x_3 = 2$ $x_1, x_2, x_3 \in \{0, 1\}$

 Mange problemer kan modelleres som binære optimeringsproblemer

$$\min \left\{ \sum_{j=1}^{n} c_{j} x_{j} \; \middle| \; \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{j} \; , \; \forall i \in \{1..m\} \right\}$$
 Minimize $z = 2x_{1} + x_{2} + x_{3}$ subject to $-x_{1} + 2x_{2} \leq 1$ $x_{1} + x_{2} + x_{3} = 2$ $x_{1}, x_{2}, x_{3} \in \{0, 1\}$

 Mange problemer kan modelleres som binære optimeringsproblemer Fx: traveling salesman problem, knapsack, vertex cover, ...

$$\min \left\{ \sum_{j=1}^{n} c_{j} x_{j} \; \middle| \; \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{j} \; , \; \forall i \in \{1..m\} \right\}$$
 Minimize $z = 2x_{1} + x_{2} + x_{3}$ subject to $-x_{1} + 2x_{2} \leq 1$ $x_{1} + x_{2} + x_{3} = 2$ $x_{1}, x_{2}, x_{3} \in \{0, 1\}$

 Mange problemer kan modelleres som binære optimeringsproblemer Fx: traveling salesman problem, knapsack, vertex cover, ...

Bliver oprettet i dette system med linear:

linear(int[] coefficients, Variable[] variables, int relation, int bound, int priority)

Find en startløsning:

■ Opret variable og begrænsninger

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi til Gecode

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi til Gecode
- Find en gyldig løsning

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi til Gecode
- Find en gyldig løsning
 - til 100 % af betingelserne
 - til 50 % af betingelserne
 - til 25 % af betingelserne
 - Tilfældig tildeling af værdi til variable inden for deres domæne

Opbygning af systemet

1 Invarianter: Variable defineret af betingelser

- 1 Invarianter: Variable defineret af betingelser
- 2 Graf over afhængighed mellem variable og invarianter

- 1 Invarianter: Variable defineret af betingelser
- 2 Graf over afhængighed mellem variable og invarianter
- 3 Auxiliary invarianter: Betingelser behandlet som invarianter

- 1 Invarianter: Variable defineret af betingelser
- 2 Graf over afhængighed mellem variable og invarianter
- 3 Auxiliary invarianter: Betingelser behandlet som invarianter
- 4 Topologisk sortering af invarianter.

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

 $x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

 $x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$

■ Betingelses bestemt om envejsbetingelse kan laves

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

$$x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$$

 X_1

*x*₂

*X*₃

*X*₄

*X*5

C

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

 $x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

 $x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$

■ Betingelses bestemt om envejsbetingelse kan laves

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

 $x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$

■ x_3 er gjort afhængig af x_1 og x_2

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

 $x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$

- x_3 er gjort afhængig af x_1 og x_2
- x_4 indirekte afhængig af x_1 og x_2

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

 $x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$

- x_3 er gjort afhængig af x_1 og x_2
- x_4 indirekte afhængig af x_1 og x_2
- Variable valgt efter antal udgående kanter og antallet af betingelser den optræder i

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

 $x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$

- x_3 er gjort afhængig af x_1 og x_2
- x_4 indirekte afhængig af x_1 og x_2
- Variable valgt efter antal udgående kanter og antallet af betingelser den optræder i
- Færre mulige løsninger der skal undersøges

$$x_1 + x_2 - x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 - 1$$

 $x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$

- x_3 er gjort afhængig af x_1 og x_2
- x_4 indirekte afhængig af x_1 og x_2
- Variable valgt efter antal udgående kanter og antallet af betingelser den optræder i
- Færre mulige løsninger der skal undersøges
- Bruger lidt mere tid på at evaluere en løsning

$$y_1 = x_1 - y_3$$

$$y_2 = y_1$$

$$y_3 = x_2 + y_2 - 1$$

$$x_1, x_2 \in \{0, 1\}$$

$$y_1, y_2, y_3 \in \{0, 1\}$$

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$1 \qquad 0 \qquad 0$$

$$\begin{array}{c} y_1 = x_1 - y_3 \\ y_2 = y_1 \\ y_3 = x_2 + y_2 - 1 \\ x_1, x_2 \in \{0, 1\} \\ y_1, y_2, y_3 \in \{0, 1\} \\ x_1 & y_1 \\ \hline 1 & 0 \\ x_2 & y_3 \\ \hline 1 & 0 \\ \hline \end{array}$$

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$1 \rightarrow 0 \rightarrow 0$$

$$\begin{array}{c} y_1 = x_1 - y_3 \\ y_2 = y_1 \\ y_3 = x_2 + y_2 - 1 \\ x_1, x_2 \in \{0, 1\} \\ y_1, y_2, y_3 \in \{0, 1\} \\ x_1 & y_1 \\ \hline 1 & 1 \\ x_2 & y_3 \\ \hline 1 & 0 & 1 \\ \end{array}$$

$$\begin{array}{c} y_1 = x_1 - y_3 \\ y_2 = y_1 \\ y_3 = x_2 + y_2 - 1 \\ x_1, x_2 \in \{0, 1\} \\ y_1, y_2, y_3 \in \{0, 1\} \\ x_1 & y_1 \\ \hline 1 & 1 \\ x_2 & y_3 \\ \hline 1 & 1 \\ \end{array}$$

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{2} \qquad y_{3} \qquad y_{2}$$

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{2} \qquad y_{3} \qquad y_{2}$$

Identificering af kredse:

■ Dybde først lignende algoritme, af Tarjan O(V + E)

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{2} \qquad y_{3} \qquad y_{2}$$

Identificering af kredse:

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{1} \qquad x_{2}$$

Identificering af kredse:

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{1} \qquad x_{2}$$

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC
 - Vælger invariant efter antal indgående kanter

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{2} \qquad y_{3} \qquad y_{2}$$

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC
 - Vælger invariant efter antal indgående kanter
- Gentages indtil ingen stærke sammenhængskomponenter er fundet

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{1} \qquad x_{2}$$

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC
 - Vælger invariant efter antal indgående kanter
- Gentages indtil ingen stærke sammenhængskomponenter er fundet
- Balance mellem tid og effekt

$$y_1 = x_1 - y_3$$

 $y_2 = y_1$
 $y_3 = x_2 + y_2 - 1$
 $x_1, x_2 \in \{0, 1\}$
 $y_1, y_2, y_3 \in \{0, 1\}$
 x_1 y_1
 x_1 y_1
 x_2 y_3 y_2
 x_1 y_2

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC
 - Vælger invariant efter antal indgående kanter
- Gentages indtil ingen stærke sammenhængskomponenter er fundet
- Balance mellem tid og effekt

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC
 - Vælger invariant efter antal indgående kanter
- Gentages indtil ingen stærke sammenhængskomponenter er fundet
- Balance mellem tid og effekt

For en linear betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{w_1} \le 2$$

For en linear betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{w_1} \le 2$$

■ Overtrædelse af betingelsen:

$$\underbrace{w_1 \leq 2}_{w_2}$$

$$w_2 = \begin{cases} w_1 - 2, & \text{if } w_1 > 2. \\ 0, & \text{otherwise.} \end{cases}$$

For en linear betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{w_1} \le 2$$

■ Overtrædelse af betingelsen:

$$\underbrace{w_1 \leq 2}_{w_2}$$

$$w_2 = \begin{cases} w_1 - 2, & \text{if } w_1 > 2. \\ 0, & \text{otherwise.} \end{cases}$$

For en linear betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{w_1} \le 2$$

■ Overtrædelse af betingelsen:

$$\underbrace{w_1 \leq 2}_{w_2}$$

$$w_2 = \begin{cases} w_1 - 2, & \text{if } w_1 > 2. \\ 0, & \text{otherwise.} \end{cases}$$

■ Betingelser som ikke er brugt til at definere variable

For en linear betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{w_1} \le 2$$

Overtrædelse af betingelsen:

$$\underbrace{w_1 \leq x_2}_{w_2}$$

$$w_2 = \begin{cases} w_1 - 2, & \text{if } w_1 > 2. \\ 0, & \text{otherwise.} \end{cases}$$

- Betingelser som ikke er brugt til at definere variable
- Betingelses specifik oprettelse af invarianter

For en linear betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{w_1} \le 2$$

Overtrædelse af betingelsen:

$$\underbrace{w_1 \leq x_2}_{w_2}$$

$$w_2 = \begin{cases} w_1 - 2, & \text{if } w_1 > 2. \\ 0, & \text{otherwise.} \end{cases}$$

- Betingelser som ikke er brugt til at definere variable
- Betingelses specifik oprettelse af invarianter
- Tilføj invarianter til grafen

For en linear betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{w_1} \le 2$$

Overtrædelse af betingelsen:

$$\underbrace{w_1 \leq x_2}_{w_2}$$

$$w_2 = \begin{cases} w_1 - 2, & \text{if } w_1 > 2. \\ 0, & \text{otherwise.} \end{cases}$$

- Betingelser som ikke er brugt til at definere variable
- Betingelses specifik oprettelse af invarianter
- Tilføj invarianter til grafen
- Invarianter til summering af overtrædelse betingelser

Variable

 Lav ordning af invarianter til når de skal opdateres

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

Ordning af invarianter

- Lav ordning af invarianter til når de skal opdateres
- Forhindre flere opdateringer af samme invariant
- Ordningen kan laves med dybde først søgning i grafen
- Opret en liste for hver uafhængig variable

Fra universitet til stadion

■ Find den optimale løsning: Kan være alt fra trivielt til meget svært

Fra universitet til stadion

- First improvement:
 Første der forbedre nuværende situation

Fra universitet til stadion

- Find den optimale l

 øsning:
 Kan være alt fra trivielt til
 meget svært
- First improvement:
 Første der forbedre nuværende situation
- Best improvement: Bedste forbedring af nuværende situation

Fra universitet til stadion

- Find den optimale l

 øsning:
 Kan være alt fra trivielt til
 meget svært
- First improvement:
 Første der forbedre nuværende situation
- Best improvement:
 Bedste forbedring af nuværende situation
- Random walk: En række tilfældige valg

Bruger kun 1-flip lokalsøgning

Bruger kun 1-flip lokalsøgning

- FI: First improvement
- TS: Tabu search
- CN: Conflict only neighborhood
- TL: Time limit
- RW: Random walk
- MC: Minimum conflict heuristic

Bruger kun 1-flip lokalsøgning

- FI: First improvement
- TS: Tabu search
- CN: Conflict only neighborhood
- TL: Time limit
- RW: Random walk
- MC: Minimum conflict heuristic

Bruger kun 1-flip lokalsøgning

- FI: First improvement
- TS: Tabu search
- CN: Conflict only neighborhood
- TL: Time limit
- RW: Random walk
- MC: Minimum conflict heuristic

Bruger kun 1-flip lokalsøgning

- FI: First improvement
- TS: Tabu search
- CN: Conflict only neighborhood
- TL: Time limit
- RW: Random walk
- MC: Minimum conflict heuristic

Effekten af envejsbetingelser (oneway constraints)

Gecode som konstruktions heuristik

Gecode som konstruktions heuristik

Gecode som konstruktions heuristik

Algoritmerne mod hinanden

Algoritmerne mod hinanden

Eksempel

Eksempel

Eksempel - alle gyldige

Forbedringer:

■ En bedre konstruktionsheuristik hvis Gecode ikke kan bruges

- En bedre konstruktionsheuristik hvis Gecode ikke kan bruges
- Implementering swap som neighborhood operation

- En bedre konstruktionsheuristik hvis Gecode ikke kan bruges
- Implementering swap som neighborhood operation
- Implementering af simuleret udglødning

- En bedre konstruktionsheuristik hvis Gecode ikke kan bruges
- Implementering swap som neighborhood operation
- Implementering af simuleret udglødning
- Test af flere parametre bl.a. for tabu søgning

- En bedre konstruktionsheuristik hvis Gecode ikke kan bruges
- Implementering swap som neighborhood operation
- Implementering af simuleret udglødning
- Test af flere parametre bl.a. for tabu søgning
- Undersøg effekt af opdeling af variable, envejsbetingelser

Forbedringer:

- En bedre konstruktionsheuristik hvis Gecode ikke kan bruges
- Implementering swap som neighborhood operation
- Implementering af simuleret udglødning
- Test af flere parametre bl.a. for tabu søgning
- Undersøg effekt af opdeling af variable, envejsbetingelser

Forbedringer:

- En bedre konstruktionsheuristik hvis Gecode ikke kan bruges
- Implementering swap som neighborhood operation
- Implementering af simuleret udglødning
- Test af flere parametre bl.a. for tabu søgning
- Undersøg effekt af opdeling af variable, envejsbetingelser

Udvidelser:

■ Tillad ikke heltalskoefficienter

Forbedringer:

- En bedre konstruktionsheuristik hvis Gecode ikke kan bruges
- Implementering swap som neighborhood operation
- Implementering af simuleret udglødning
- Test af flere parametre bl.a. for tabu søgning
- Undersøg effekt af opdeling af variable, envejsbetingelser

- Tillad ikke heltalskoefficienter
- Behandling af heltalsvariable

Forbedringer:

- En bedre konstruktionsheuristik hvis Gecode ikke kan bruges
- Implementering swap som neighborhood operation
- Implementering af simuleret udglødning
- Test af flere parametre bl.a. for tabu søgning
- Undersøg effekt af opdeling af variable, envejsbetingelser

- Tillad ikke heltalskoefficienter
- Behandling af heltalsvariable
- Flere typer af betingelser

Forbedringer:

- En bedre konstruktionsheuristik hvis Gecode ikke kan bruges
- Implementering swap som neighborhood operation
- Implementering af simuleret udglødning
- Test af flere parametre bl.a. for tabu søgning
- Undersøg effekt af opdeling af variable, envejsbetingelser

- Tillad ikke heltalskoefficienter
- Behandling af heltalsvariable
- Flere typer af betingelser
- Flere skift mellem CP og LS

■ Et CBLS system der danner grundlag for udvidelser

- Et CBLS system der danner grundlag for udvidelser
- Gecode begrænset effekt på Binær programmering

- Et CBLS system der danner grundlag for udvidelser
- Gecode begrænset effekt på Binær programmering
- Alle variable behandlet med samme neighborhood operation, giver ingen effekt af envejsbetingelser

- Et CBLS system der danner grundlag for udvidelser
- Gecode begrænset effekt på Binær programmering
- Alle variable behandlet med samme neighborhood operation, giver ingen effekt af envejsbetingelser

- Et CBLS system der danner grundlag for udvidelser
- Gecode begrænset effekt på Binær programmering
- Alle variable behandlet med samme neighborhood operation, giver ingen effekt af envejsbetingelser