VERSUCH 203

Verdampfungswärme und Dampfdruck-Kurve

Tabea Hacheney tabea.hacheny@tu-dortmund.de

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 23.11.2021 Abgabe: 30.11.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Durchführung3.1 Messung bis 1 bar3.2 Messung von 1 bis 15 bar	5 5
4	Auswertung4.1 Messung bis 1 bar4.2 Messung von 1 bis 15 bar	7 7 10
5	Diskussion	14
6	Messdaten	14
Lit	teratur	14

1 Zielsetzung

In diesem Versuch soll der Phasenübergang von Wasser von flüssig zu gasförmig untersucht werden. Dafür soll die Verdampfungswärme des Wassers in Abhängigkeit der Temperatur ermittelt und insbesondere eine Dampfdruckkurve erstellt werden.

2 Theorie

Allgemein kann Wasser die Phasen fest, flüssig und gasförmig annehmen. Diese Phasen lassen sich in einem Zustandsdiagramm (s. Abbildung 1) darstellen. In dem Zustandsdiagramm ist der Druck p gegen die Temperatur T aufgetragen und mit Hilfe dreier Kurven lassen sich Bereiche abgrenzen, die die Phasen definieren. In den durch die Kurven abgegrenzten Arealen hat das System die zwei Freiheitsgrade p und T.

Sobald sich der Punkt (T,p) einer der Kurven nähert erreicht man Zustände in denen zwei Phasen koexistieren. Dies ist für die Punkte TP. und K.P. der Fall, die auch den Anfangs- und Endpunkt der Dampfdruckkurve charakterisieren.

Abbildung 1: qualitatives Zustandsdiagramm des Wassers [[1], S. 176]

Auf der Dampfdruckkurve hat das System nur noch einen Freiheitsgrad, da p und T nicht mehr beliebig wählbar sind. Diese Kurve wird durch die Verdampfungswärme L charakterisiert. Dabei ist L eine stoffabhängige, temperaturabhängige Größe und verschwindet im kritischen Punkt (K.P.) fast gänzlich. Dennoch ist L in einem Temperaturbereich in dem die Messung stattfinden soll fast konstant.

Die molare Verdampfungswärme L gibt an wie viel Energie in Joule benötigt werden, um ein Mol eines Stoffs verdampfen zu lassen. Um die mathematische Herleitung zu verstehen, stelle man sich ein evakuiertes Gefäß vor, das zum Teil mit Wassermolekülen gefüllt ist. Da die Wassermoleküle der Maxwellschen Geschwindigkeitsverteilung gehorchen, gibt es Moleküle mit maximaler kinetischer Energie, die die Flüssigkeitsoberfläche verlassen. Dabei leisten sie Arbeit gegen die molekularen Kräfte. Dieser Prozess heißt Verdampfung

und die dafür benötigte Energie wird entweder von außen hinzugefügt oder dem Wasser in Form von Wärme entnommen. Bei dem umgekehrten Prozess der Kondensation wird diese Energie wieder frei.

Die Gasmoleküle erzeugen nun einen Druck, da sie gegen die Wände des Gefäßes stoßen. Außerdem können die Gasmoleküle, die auch sich nach der Maxwellschen Geschwindigkeitsverteilung verhalten, wenn sie auf das Wasser treffen wieder eingefangen werden, so dass sich auf Dauer ein Gleichgewichtszustand einstellt. Wenn das Gleichgewicht erreicht ist, gilt der Verdammpfungsvorgang als abgeschlossen. Dann stellt sich ein Druck ein, der als Sättigungsdruck bezeichnet wird. Da bei höherer Temperatur die Geschwindigkeitsverteilung zu höheren Geschwindigkeiten verschoben wird, steigt bei der Sättigungsdruck an. Dabei ist zu beachten, dass der Druck nicht vom Volumen abhängt, so dass die ideale Gasgleichung

$$pV = RT \tag{1}$$

nicht verwendet werden kann.

Um eine DGL für die Dampfdruckkurve zu erhalten, wird ein Kreisprozess in einem pV-Diagramm aufgetragen. In Abbildung 2 wird einem Mol die Wärmeenergie Q_{AB} hinzugefügt. Dadurch steigt der Druck auf T+dT und das Volumen auf V_F . Danach verdampft die Flüssigkeit isotherm und isobar zu einem Gas und die Wärmeenergie wird wieder abgegeben. In der darauffolgenden Kondensation, die isotherm und isobar abläuft,

Abbildung 2: Kreisprozess mit Verdampfung und Kondensation [[1], S. 178]

hat die Flüssigkeit wieder den Anfangsdruck p. Durch Addieren der Wärmeenergien und anschließendem Gleichsetzen der verrichteten Arbeit erhält man

$$(C_F - C_D)dT + dL = (V_D - V_F)dp. \tag{2} \label{eq:2}$$

Dabei sind C_F die Molwärme der Flüssigkeit, C_D die Molwärme des Gases und dL der Unterschied der Verdampfungswärmen. Mit Hilfe des zweiten Hauptsatzes der Thermodynamik

$$\sum_{i} \frac{Q_i}{T_i} = 0 \tag{3}$$

und Vernachlässigung der Therme zweiter Ordnung, bestimmt sich die Clausius-Clapeyronsche Gleichung zu

$$(V_D - V_F)dp = \frac{L}{T}dT. (4)$$

Unter den Annahmen, dass V_F gegenüber V_D vernachlässigt werden kann, V_D sich dann durch die ideale Gasgleichung (??) beschreiben lässt und dass L nicht von der Temperatur und dem Druck abhängt, ergibt sich die Formel

$$p = exp(ln(p_0)) \cdot exp(-\frac{L}{RT}) \tag{5}$$

$$ln(p) = -\frac{L}{RT} + ln(p_0). \tag{6}$$

3 Durchführung

3.1 Messung bis 1 bar

Die in Abbildung 3 dargestellte Apparatur wird aufgebaut. Zu Anfang wird sie mittels einer Wasserstrahlpumpe evakuiert. Dafür wird das Drosselventil und der Absperrhahn geöffnet und das Belüftungsventil geschlossen. Nachdem sich ein für das Experiment akzeptabler Druck eingestellt hat, wird das Drosselventil und der Absperrhahn geschlossen und die Wasserstrahlpumpe ausgestellt. Anschließend wird die Heizhaube eingeschaltet, so dass sich die Flüssigkeit erhitzt. Um aufsteigenden Dampf zu kondensieren wird zusätzlich die Kühlung angestellt. Die Temperatur wird durch ein Thermometer bestimmt, das sich im Mehrhalskolben befindet und der Druck wird am Manometer abgelesen. Der Druck und die Temperatur werden paarweise gemessen bis 1 bar erreicht wird.

3.2 Messung von 1 bis 15 bar

Die verwendete Apparatur ist in Abbildung 4 dargestellt. Vor Beginn des Versuchs ist schon Wasser in der Schale, so dass nur noch die Heizung eingeschaltet werden muss. Dann werden in 1 bar Schritten die Messwerte aufgenommen.

Abbildung 3: Aufbau 1 $[[1],\,\mathrm{S.}\ 181]$

Abbildung 4: Aufbau 2 $[[1],\,\mathrm{S.}\ 183]$

4 Auswertung

4.1 Messung bis 1 bar

Um die gemittelte Verdampfungswärme L zu bestimmen, wird zunächst der Logartithmus des Dampfdrucks gegen die reziproke absolute Temperatur dargestellt und dann die gesuchte Größe mittels einer Ausgleichsrechnung bestimmt.

Diese Relation ergibt sich aus Formel 6. Diese wird weiter umgestellt zu:

$$\ln\left(\frac{p}{p_0}\right) = -\frac{L}{R}\frac{1}{T} \tag{7}$$

Wobei p_0 der zu Beginn gemessene Umgebungsdruck $p_0 = 994 \cdot 10^2 \text{Pa}$ ist. Die verwendeten Messwerte für Abbildung 5 lassen sich in Tabelle 1 finden.

Abbildung 5: Ausgleichsgerade für <1 bar

Die Ausgleichsgerade hat die Form $\ln(\frac{p}{p_0}) = m\frac{1}{T} + b$, wobei

$$m = (-3, 96 \pm 0, 05) \cdot 10^3 \cdot \text{K} \text{ und}$$

$$b = (10, 73 \pm 0, 16) \text{ ist.}$$

Die Messunsicherheit wurde mit Python berechnet.

Es wird nun die Formel der Ausgleichgerade mit Formel 7 verglichen und festgestellt,

dass $m = -\frac{L}{R}$ gilt. Durch Umformen erhät man folgende Formel:

$$L = -m \cdot R \tag{8}$$

Einsetzen ergibt dann: $L=32,92\pm0,43\cdot10^3\,\frac{\rm J}{\rm mol}$. R ist hier die Gaskonstante mit $R=8,314\,J\cdot mol^{-1}\cdot K^{-1}$

Als nächstes wird nun die äußere Verdampfungswärme L_a mithilfe der Allgemeinen Gasgleichung (1) für T= 373K geschätzt. Die äußere Verdampfungswärme ist diejenige Energie, die benötigt wird, um ein Volumen V_F an Wasser auf V_D auszudehnen und ergibt sich mit (1) folgendermaßen:

$$L_a = p \cdot V = R \cdot T \tag{9}$$

$$= 3,101 \cdot 10^3 \frac{J}{\text{mol}} \tag{10}$$

Mit $L_i=L-L_a$ ergibt sich dann die innere Verdampfungswärme zu $L_i=29,82\pm0,43\cdot10^3\frac{\rm J}{\rm mol}$. L_i ist diejenige innere Energie, die das System benötigt um die molekularen Bindungskräfte zu überwinden.

Um nun die innere Energie pro Molekül zu erhalten, wird das Ergebnis für die innere Energie L_i durch die Avogadrokonstante N_A geteilt:

$$L_{i,m} = 0,309 \pm 0,005 \,\text{eV}$$
 (11)

Tabelle 1: Messwerte bis 1 bar bar

$T_{Dampf}/\mathrm{C^\circ}$	T_{Dampf}/K	p / mbar	$p / 10^2 \mathrm{Pa}$
17	$290,\!15$	35	35
19	$292,\!15$	45	45
20	$293,\!15$	55	55
21	294,15	61	61
22	$295,\!15$	65	65
23	$296,\!15$	68	68
24	297,15	74	74
25	$298,\!15$	78	78
26	$299,\!15$	81	81
27	300,15	85	85
28	301,15	90	90
29	$302,\!15$	95	95
30	303,15	99	99
31	304,15	104	104
32	305,15	107	107
33	306,15	111	111

Tabelle 1 – weitergeführt von vorheriger Seite

Tabelle 1 –	weitergefüh	rt von vo	rheriger Seite
$T_{Dampf}/\mathrm{C^\circ}$	T_{Dampf}/K	p / mbar	$p/10^2 \mathrm{Pa}$
34	307,15	118	118
35	$308,\!15$	122	122
36	$309,\!15$	127	127
37	$310,\!15$	133	133
38	$311,\!15$	137	137
39	$312,\!15$	144	144
40	$313,\!15$	150	150
41	$314,\!15$	153	153
42	$315,\!15$	160	160
43	$316,\!15$	166	166
44	$317,\!15$	175	175
45	$318,\!15$	184	184
46	$319,\!15$	190	190
47	$320,\!15$	194	194
48	$321,\!15$	199	199
49	$322,\!15$	208	208
50	$323,\!15$	217	217
51	$324,\!15$	226	226
52	$325,\!15$	232	232
53	$326,\!15$	240	240
54	$327,\!15$	252	252
55	$328,\!15$	260	260
56	$329,\!15$	269	269
57	$330,\!15$	278	278
58	331,15	290	290
59	$332,\!15$	305	305
60	$333,\!15$	324	324
61	$334,\!15$	339	339
62	$335,\!15$	360	360
63	$336,\!15$	378	378
64	$337,\!15$	399	399
65	338,15	437	437
66	339,15	450	450
67	$340,\!15$	463	463
68	$341,\!15$	481	481
69	$342,\!15$	485	485
70	343,15	496	496
71	344,15	521	521
72	$345,\!15$	528	528
73	346,15	542	542
74	$347,\!15$	551	551
	•		

Tabelle 1 – weitergeführt von vorheriger Seite

$T_{D_{\bullet,\bullet,\bullet,\bullet}}/C^{\circ}$	T_{Damnf} / K	, -	$\frac{p/10^2 \mathrm{Pa}}{}$
$T_{Dampf}/\mathrm{C}^{\circ}$	T_{Dampf}/K	p / mbar	$p/10^2 \mathrm{Pa}$
75	$348,\!15$	569	569
76	$349,\!15$	582	582
77	$350,\!15$	603	603
78	$351,\!15$	617	617
79	$352,\!15$	640	640
80	$353,\!15$	647	647
81	$354,\!15$	663	663
82	$355,\!15$	678	678
83	$356,\!15$	688	688
84	$357,\!15$	711	711
85	$358,\!15$	722	722
86	$359,\!15$	730	730
87	$360,\!15$	736	736
88	$361,\!15$	753	753
89	$362,\!15$	765	765
90	$363,\!15$	770	770
91	364,15	778	778
92	$365,\!15$	790	790
93	$366,\!15$	793	793
94	367,15	811	811
95	368,15	816	816
96	369,15	825	825
97	370,15	830	830
98	371,15	836	836
99	$372,\!15$	837	837

4.2 Messung von 1 bis 15 bar

Mit den Messungen von 1 bis 15 bar wird nun die Abhängigkeit der Verdampfungswärme zu der Temperatur untersucht. Dafür wird zunächst die Clausius-Clapeyronsche Gleichung 4 nach L aufgelöst:

$$(V_D - V_F)dp = \frac{L}{T}dT \tag{12}$$

$$(V_D - V_F)dp = \frac{L}{T}dT \tag{12}$$

$$\Leftrightarrow L = T(V_D - V_F)\frac{dp}{dT} \tag{13}$$

Um $\frac{dp}{dT}$ zu bestimmen, wird nun aus den Wertepaaren in Tabelle 2 ein Ausgleichspolynom vom 3ten Grad bestimmt und nach T abgeleitet. V_D kann bei diesem Druck nicht mehr

aus der Allgemeinen Gasgleichung bestimmt werden, stattdessen wird

$$\left(p + \frac{a}{V^2}\right)V = RT \text{ mit } a = 0, 9\frac{J \cdot m^3}{\text{Mol}^2}$$

$$\Leftrightarrow V_D = \frac{RT}{2p} \pm \sqrt{\frac{R^2T^2}{4p^2} - \frac{a}{p}}$$
(14)

$$\Leftrightarrow V_D = \frac{RT}{2p} \pm \sqrt{\frac{R^2T^2}{4p^2} - \frac{a}{p}} \tag{15}$$

verwendet.

Damit ergibt sich:

$$L = \frac{T}{p} \left(\frac{RT}{2} \pm \sqrt{\frac{R^2 T^2}{4} - ap} \right) \frac{dp}{dT}$$
 (16)

Nun wird ein Ausgleichspolynom 3ten Grades bestimmt:

Abbildung 6: Ausgleichspolynom 3ten Grades

das Polynom 3
ten Grades besitzt die Form $p(T) = A \cdot T^3 + b \cdot T^2 + c \cdot T + d$ mit

$$A = (1, 166 \pm 0, 22) \frac{\text{Pa}}{\text{K}^3}$$

$$b = (-13, 29 \pm 2, 85) \cdot 10^2 \frac{\text{Pa}}{\text{K}^2}$$

$$c = (5, 12 \pm 1, 23) \cdot 10^5 \frac{\text{Pa}}{\text{K}}$$

$$d = (-6, 64 \pm 1, 76) \cdot 10^7 \text{ Pa}$$

$$\frac{dp}{dT} = 3A \cdot T^2 + 2b \cdot T + c$$

p(T) und $\frac{dp}{dT}$ werden nun in Formel 16 eingesetzt:

$$L = \frac{3A \cdot T^3 + 2b \cdot T^2 + cT}{A \cdot T^3 + b \cdot T^2 + c \cdot T + d} \left(\frac{RT}{2} \pm \sqrt{\frac{R^2T^2}{4} - a \cdot (A \cdot T^3 + b \cdot T^2 + c \cdot T + d)} \right)$$

Abbildung 7: Genäherte Funktion für L für das addieren der Wurzel

 ${\bf Abbildung}$ 8: Genäherte Funktion für L
 für das subtrahieren der Wurzel

Tabelle 2: Messwerte 1 bis 15 bar

$T/\mathrm{C^\circ}$	p / bar
117	1
132	2
141	3
150	4
158	5
163	6
169	7
174	8
178	9
182	10
186	11
189	12
193	13
196	14
198	15

5 Diskussion

Für die Verdampfungswärme wurde ein Wert von $L=32,92\pm0,43\cdot10^3\,\frac{\rm J}{\rm mol}$ ermittelt. Der Literaturwert liegt bei $L_{Literatur}=40,7\cdot10^3\,\frac{\rm J}{\rm mol}[2]$. Der Literaturwert ist also um größer als der bestimmte.

6 Messdaten

Literatur

- [1] TU Dortmund. Verdampfungswärme und Dampfdruckkurve. 2014.
- [2] Dr. Rüdiger Paschotta. Verdampfungswärme und Kondensationswärme. Online; zuletzt besucht am 29.11.2021. 2021. URL: https://www.energie-lexikon.info/verdampfungswaerme_und_kondensationswaerme.html.