CMOS二级运放电路补充

- ◆ 相位裕量
- ◆ 极点分离技术 (电容Cc密勒补偿作用)
- ◆ 设计方程

负反馈放大器的稳定性

放大器传递函数, 或开环增益

$$\frac{V_o(s)}{V_d(s)} = a(s)$$

反馈网络传递函数

$$\frac{V_f(s)}{V_o(s)} = \beta(s)$$

反馈放大器传递函数,

或闭环增益

$$A_f(s) = \frac{V_o(s)}{V_i(s)} = \frac{a(s)}{1 + a(s)\beta(s)} = \frac{a(s)}{1 + T(s)}$$

$$T(s) = a(s)\beta(s)$$
 称为环路增益

 $\diamondsuit s = j \omega$,就得到相应量的频率特性

$$A_f(j\omega) = A_f(s)\Big|_{s=j\omega} = \frac{a(j\omega)}{1 + T(j\omega)}$$

$$T(j\omega) = T(s)|_{s=j\omega} = |T(j\omega)| \angle \varphi(j\omega)$$
 $\Rightarrow \varphi(j\omega) = \arg(T(j\omega))$

负反馈放大器的稳定性

$$A_f(j\omega) = \frac{a(j\omega)}{1 + T(j\omega)}$$

 $V_i(s)$ V_i

如果
$$T(j\omega) = 1e^{\pm j\pi}$$

闭环增益 $A_f(j\omega)
ightarrow \infty$,系统将不稳定。

以下两种情况闭环增益为有限值,系统是稳定的。

(1)当
$$|T(j\omega)| = 1$$
 , 或 $|T(j\omega)| = 0dB$ 时, $\arg T(j\omega) < \pi$

(2)或当
$$\arg T(j\omega) = \pm \pi$$
 时,而 $|T(j\omega)| < 1$,或 $|T(j\omega)| < 0dB$

相位裕量与增益裕量

系统稳定的两种情况

(1) 当
$$|T(j\omega)| = 1$$
 , 或 $|T(j\omega)| = 0dB$
 $\arg T(j\omega) < \pi$
当 $|T(j\omega)| = 1$ 时,相位裕量
 $\varphi_m = 180^\circ - |\arg(T(j\omega))| > 45^\circ$

(2) 或当 $\arg T(j\omega) = \pm \pi$ 时,而 $\left| T(j\omega) \right| < 1 \quad , \quad \text{或} \quad \left| T(j\omega) \right| < 0 dB$

当 $\arg \left(T(j\omega)\right) = \pm \pi$ 时,增益裕量 $G_m = -20\lg \left|T(j\omega)\right| > 0dB$ 浙江大学信电学院毫米波与智能系统研究中心

一阶系统绝对稳定

一阶系统
$$H(s)|_{s=j\omega} = \frac{A_0}{1+j\omega/\omega_0}$$

相位裕度至少90°,系统稳定

$$\omega = 0 \rightarrow |H(j\omega)| = A_0, \quad \varphi(j\omega) = 0$$

$$\omega = \omega_0 \rightarrow |H(j\omega)| = A_0 / \sqrt{2}, \quad \varphi(j\omega) = -45^\circ$$

$$\omega \rightarrow \infty \rightarrow |H(j\omega)| = 0, \quad \varphi(j\omega) = -90^\circ$$

二阶系统稳定性

二阶系统

$$H(s)|_{s=j\omega} = \frac{A_0}{(1+j\omega/\omega_{01})(1+j\omega/\omega_{02})}$$

当 $\omega|_{H=0}$ 落在两极点频率 ω_{01} 、 ω_{02}

之间,系统相位裕度大于45°,系统才是稳定的。

虚线所示系统,极点频率为 $|p_1'| \setminus |p_2'|$ 表示, $\omega|_{|H|=0}$ 的点落在两极点频率外,没有相位裕量,系统不稳定

实线所示系统,极点频率为 $|p_1|$ 、 $|p_2|$ 表示, $\omega|_{|H|=0}$ 的点刚好落在两极点频率 之间,相位裕度等于**45**°,系统稳定

极点分离补偿技术

实线所示的是未经补偿的系统波特图。

从相频特性可知这是有3个极点的系统,第3个极点频率较高,幅频特性没有反映出来。增益交点频率 ω_c 不在两极点频率 ω_{p1} 与 ω_{p2} 之间,比 ω_{p2} 还大,即 ω_c > ω_{p2} ,因而图中指示的相位裕度 ϕ_m <45°。

极点分离补偿技术的基本思想是,采取某种措施使第1极点(主极点 ω_{pl})向左移到 ω_{pl}' ,此时系统的

波特图如图中的虚线所示。采取补偿 技术后,增益交点频率 ω_c'

移到 ω'_{p1} 与 ω_{p2} 之间,相位裕度 $\varphi'_{m} > 45^{\circ}$,系统稳定。

因为这种补偿技术使两极点之间的间距更大,故称之为极点分离补偿。

共源放大电路高频响应

交流小信号等效电路

PMOS二极管负载

应用密勒定理化简

浙江大学信电学院毫米波与智能系统研究中心

高频响应

围绕结点 G_1 、输出节点 V_0 列写KCL方程

$$\frac{V_{1}-V_{i}}{R_{s}}+sC_{i}V_{1}=0$$

$$g_{ds1}V_{o}+g_{ds2}V_{o}+sC_{o}V_{o}+g_{m1}V_{1}+g_{m2}V_{o}=0$$

$$G(s) = \frac{V_{o}(s)}{V_{i}(s)} = -\frac{g_{m1}}{g_{m2}+g_{ds1}+g_{ds2}} \frac{1}{(1+sC_{i}R_{s})} \frac{1}{(1+sC_{o}\frac{1}{g_{m2}+g_{ds1}+g_{ds2}})}$$

高频响应

$$G(s) = \frac{V_o(s)}{V_i(s)} = -\frac{g_{m1}}{g_{m2} + g_{ds1} + g_{ds2}} \frac{1}{(1 + sC_iR_s)} \frac{1}{(1 + sC_o\frac{1}{g_{m2} + g_{ds1} + g_{ds2}})}$$

$$\tau_{i} = R_{s}C_{i} \qquad \tau_{o} = \frac{1}{g_{m1} + g_{ds1} + g_{ds2}}C_{o}$$

$$\omega_{i} = \frac{1}{\tau_{i}}, \omega_{o} = \frac{1}{\tau_{o}}$$

$$G(j\omega) = G(s)\Big|_{s=j\omega}$$

$$= -\frac{g_{m1}}{\sqrt{1-g_{m2}}} \frac{1}{\sqrt{1-g_{m2}}}$$

$$= -\frac{g_{m1}}{g_{m2} + g_{ds1} + g_{ds2}} \frac{1}{\left(1 + \frac{j\omega}{\omega_i}\right)} \frac{1}{\left(1 + \frac{j\omega}{\omega_o}\right)}$$

$$\omega_i = 1/\tau_i = 800 \times 10^6 \text{ rad/s}$$

$$\omega_o = 1/\tau_o = 1350 \times 10^6 \text{ rad/s}$$

由于存在 C_{ad} ,极点减小,但是输入极点减小更加明显 \rightarrow 极点分离

二级运放原理框图

- 1. 差分输入单端输出级
- 2. 有源负载共源放大级
- 3. 输出缓冲器

- ◆ 电容 C_c , 密勒补偿电容
 - 与共源放大管自身的C_{gd}并联
 - 极点分离
 - 电容越大 C_c ,第二级增益越大,极点分离作用越明显

二级运放电路

二级运放设计方程

确保相位裕度大于60°要求:

$$C_c \ge 0.22C_L(a)$$
 $\frac{g_{m6}}{g_{m2}} > 10(b)$

单位增益带宽
$$GBW = \frac{g_{m1}}{C_c}(c)$$

摆率方程
$$SR \approx \frac{I_5}{C_c}(d)$$

差分放大级增益
$$A_{v1} = -\frac{g_{m1}}{g_{ds2} + g_{ds4}}(e)$$

共源放大级增益
$$A_{v2} = -g_{m6} \frac{1}{g_{ds6} + g_{ds7}} (f)$$

$$A_{v1} = A_{v1}A_{v2} = \frac{g_{m1}}{g_{ds2} + g_{ds4}} \frac{g_{m6}}{g_{ds6} + g_{ds7}}(g)$$

浙江大学信电学院毫米波与智能系统研究中心

共模输入范围

$$V_{cm, \text{max}} = V_{DD} - \sqrt{\frac{I_5}{\beta_3}} - |V_{T03}| (\text{max}) + V_{T1}(\text{min})(h)$$

其中
$$\beta_3 = \mu_{o.p} C_{ox} \left(\frac{W}{L} \right)_3$$

$$V_{cm, \min} = V_{SS} + V_{DS5, sat} + V_{GS1}$$

$$CMRR = \frac{A_{vd}}{A_{vc}} = \frac{2g_{m1}g_{m3}}{(g_{ds2} + g_{ds4})g_{ds5}}(j)$$

二级运放设计方程

零点与极点:

零点
$$z = \frac{g_{m6}}{C_c}(k)$$
 第一极点
$$p_1 \approx \frac{1}{g_{m6}R_1R_2C_c}(l)$$

第二极点
$$p_2 \approx \frac{g_{m6}}{C_1 + C_2}(m)$$

静态功耗
$$P = (V_{DD} - V_{SS})(I_5 + I_6)(n)$$

此组设计方程中,电路各性能参数均表示为跨导 g_m 、漏源输出电导 g_{ds} ,以及电流I的函数,或直接 表示成栅极宽度W、长度L的函数。因为 g_m 、 g_{ds} , I与(W、L)的函数关系是确定的,所以此组设计 方程都可用关于W、L的函数 表示

此组设计方程就是确定二级运放器件参数的 约束条件当然,上述约束条件并非完全,还 可以列出其它的约束条件,如建立时间、电 源电压抑制比,噪声、占用芯片面积等

问题是提供约束条件的方程数大于待求的未知量(C_c与(W/L)i, i=1, 2,..., 8)。 业已提出了多种确定待求变量的方法,差别是选取哪几个方程确定待求变量。 下面推荐艾仑(P.E.Allen CMOS Analog Circuit Design)提出的方法