Visualizing RNA velocity

Genomic Data Visualization

Lyla Atta 03/07/2022

Visualizing RNA Velocity

RNA velocity recap
Visualizing RNA velocity - previous approaches
VeloViz: RNA velocity-informed low dimensional embeddings
Try it out!

Visualizing RNA Velocity

RNA velocity recap
Visualizing RNA velocity - previous approaches
VeloViz: RNA velocity-informed low dimensional embeddings
Try it out!

RNA velocity recap

Assign directionality to transcriptomic states

Relative quantities of spliced and unspliced

Rate at which genes are being expressed

 $\mathbf{v}_{\mathbf{X},\mathbf{i}} = \mathbf{velocity}$ for gene X in cell i

 $\mathbf{v}_{\mathbf{X},\mathbf{i}} = \mathbf{velocity}$ for gene X in cell i

 $\mathbf{v}_{\mathbf{X},\mathbf{i}} = \mathbf{velocity}$ for gene X in cell i

Visualizing RNA Velocity

RNA velocity recap
Visualizing RNA velocity: previous approaches
VeloViz: RNA velocity-informed low dimensional embeddings
Try it out!

Visualizing RNA velocity trends

Goals:

- Encode direction, predicted states
- Differentiation, general cell state transitions, origin of rare cell types

Visualizing RNA velocity trends - PCA

PC1 = 3X - 7YPC2 = 0.5X + 5Y

Visualizing RNA velocity trends - PCA

PC1 = 3X - 7YPC2 = 0.5X + 5Y

$$V_{PC1} = 3V_X - 7V_Y$$

$$V_{PC2} = 0.5V_{X} - 5V_{Y}$$

Transition probability:

$$P_{ix} \sim corr(v_{ix}, d_{ix})$$

Transition probability:

$$P_{ix} \sim corr(v_{ix}, d_{ix})$$

Given an embedding **X** of n cells:

$$X = [x_1, x_2, ..., x_{n-1}, x_n]$$

Velocity displacement of a cell in embedding:

$$\mathbf{v}_{tSNE} \sim \mathbf{\Sigma}_{j} \mathbf{P}_{ij} \frac{(\mathbf{x}_{j} - \mathbf{x}_{i})}{\|\mathbf{x}_{j} - \mathbf{x}_{i}\|}$$

Transition probability:

$$P_{ix} \sim corr(v_{ix}, d_{ix})$$

Given an embedding **X** of n cells:

$$X = [x_1, x_2, \dots, x_{n-1}, x_n]$$

Velocity displacement of a cell in embedding:

$$V_{tSNE} \sim \Sigma_j P_{ij} \frac{(x_j - x_i)}{\|x_j - x_i\|}$$

Visualizing RNA Velocity

RNA velocity recap
Visualizing RNA velocity - previous approaches
VeloViz: RNA velocity-informed low dimensional embeddings
Try it out!

X_c = observed current transcriptional state

 X_p^c = predicted future transcriptional state v_x = RNA velocity for cell X

VeloViz embeddings: simulated cycling and branching trajectories

2D embeddings of simulated single cell gene expression

TC: Trajectory Consistency
TC = 1: perfect representation of ground truth trajectory
error over random seeds

VeloViz embeddings: simulated cycling and branching trajectories

2D embeddings of simulated single cell gene expression

TC: Trajectory Consistency TC = 1: perfect representation of ground truth trajectory error over random seeds

VeloViz embeddings: simulated trajectories with missing intermediates

2D embeddings of simulated single cell gene expression

TC: Trajectory Consistency

TC = 1: perfect representation of ground truth trajectory

Gap Distance: distance in embedding between cells before and after trajectory gap

error over random seeds

Bioinformatics, 2021: tinyurl.com/veloviz Software + tutorials: jef.works/veloviz

VeloViz embeddings: simulated trajectories with missing intermediates

2D embeddings of simulated single cell gene expression

TC: Trajectory Consistency

TC = 1: perfect representation of ground truth trajectory

Gap Distance: distance in embedding between cells before and after trajectory gap

error over random seeds

Bioinformatics, 2021: tinyurl.com/veloviz Software + tutorials: jef.works/veloviz

VeloViz embeddings: spatial single-cell transcriptomics cycling cultured cells

Questions?

Visualizing RNA Velocity

RNA velocity recap
Visualizing RNA velocity - previous approaches
VeloViz: RNA velocity-informed low dimensional embeddings
Try it out!

Try it out!

Try it out!

VeloViz: RNA velocity-informed low dimensional embeddings

