http://www.makaut.com

http://www.makaut.com

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013 2013

NUMERICAL METHODS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) The number of significant figures in 0 03409 is
 - i) five

b) six

c) seven

- d) four.
- ii) The kind of error occurs when π approximated by
 - 3-14 is
 - a) truncation error
- b) round-off error
- c) inherent error
- i) relative error.

4002 ×

| Turn over

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013

iii) If f(0) 12, f(3)=6 and f(4)=8, then the interpolation function f(x) is

- $x^2 = 3x + 12$
- $x^3 + x^2 5x$
- Newton-Raphson method for solution of the equation f(x) 0 fails when
 - f''(x) = 1a)

f'(x)=0

c) f'(x) = -1

- none of these.
- In Gaussian elimination method, the given system of equation represented by Ax = B is converted to another system Ux = Y where U is
 - diagonal matrix a)
 - b) nuli matrix
 - c) identity matrix
 - upper triangular matrix. d)
- Error in Weddle method of integration is

- b) $-\frac{h^4}{180}(b-a)M_4$
- c) $\frac{h^2}{12}(b \cdot a)M_2$ d) $-\frac{h^6}{840}(b-a)M_6$

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013

- In Trapezoidal rule, the portion of curve is replaced by
 - straight line
- circular path
- parabolic path C)
- none of these.
- Which of the following is an iterative method?
 - Gauss Elimination Method a)
 - b) Gauss Jordan Method
 - LU decomposition Method cì
 - Gauss-Seidel Method. d)
- The number 9.6506531 when rounded-off to 4 places of decimal will give
 - 9.6506 a)

9.6507

9.6505 c)

- none of these.
- $\Delta^3 y_0$ may be expressed as

a)
$$y_3 - 3y_2 + 3y_1 - y_0$$

b)
$$y_2 = 2y_1 + y_1$$

c)
$$y_3 - 3y_2 + 3y_1 + y_0$$

d) none of these.

4002

http://www.makaut.com

2

2

http://www.makaut.com

Turn over

3

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013

- Which of the following statements applies to the bisection method used for finding roots of functions?
 - Convergence within a few iteration a)
 - bi Guaranteed to work for all continuous functions
 - c) Is faster than the Newton-Raphson method
 - Requires that there be no error in determining the d) sign of the function.
- Runge-Kutta formula has a truncation error, which is of the order
 - a)

C)

- none of these.
- xiii) In finite difference method, $\frac{d^2y}{dx^2}$ is replaced by
 - - $\frac{y_{n+1}-2y_{n-1}+y_n}{2h^2}$ b) $\frac{y_{n+1}-2y_n+y_{n-1}}{h^2}$
 - - $\frac{y_{n+1}-2y_{n-1}+y_n}{2!}$ d) $\frac{y_{n+1}-2y_{n-1}+y_n}{2!}$

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- Show that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)}\right]$.
 - Define forward difference operator Λ and shift operator E. Prove that $E \cdot \Delta = \Delta \cdot E$.

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013

Find the missing terms in the following table:

-x	0	5	10	15	20	25	
y	6	10	?	17	?	31	

Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Simpson's $\frac{1}{3}$ rd rule taking n = 6.

Hence find the value of π .

Using Runge-Kutta method of 4th order solve $\frac{dy}{dx} = \frac{y^2 - x^2}{u^2 + x^2}$ with y(0)=1 at $x=0\cdot 2$.

Solve the following system of linear equations by Gaussian Elimination method:

$$3x + 4y + 5z = 18$$
, $2x - y + 8z = 13$, $5x - 2y + 7z = 20$.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- What do you mean by interpolation? Derive Newton's backward interpolation formula. Can you apply this 7 formula for unequispaced interpolating points?
- Using Trapezoidal and Simpson's $\frac{1}{3}$ rd rule compute $\int \log_e x dx$ by taking seven ordinates correct up to four 8 decimal places.
- Find the value of $\sqrt{2}$ from the following table:

×	1.9	2·1	2.3	2.5	2.7
$f(x) = \sqrt{x}$	1.3784	1.4491	1.5166	1.5811	1.6432

4002

http://www.makaut.com

02

5

l Turn over

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013

> Solve the following system equations by 8 LU-factorization method:

$$3x + 4y + 2z = 15$$

$$5x + 2y + z = 18$$

$$2x + 3y + 2z = 10$$

- Find a root of the equation $x \log_{10} x = 1.2$ by the method of false position correct to three decimal places.
 - Find the inverse of the matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$ by using Gaussian elimination method. 8
- 10. a) Apply Milne's method to find y(0.8) for the equation $\frac{dy}{dx} = x + y^2, \quad \text{given} \quad \text{that} \quad y(0) = 0, \quad y(0 \cdot 2) = 0 \cdot 02,$ y(0.4) = 0.0805, y(0.6) = 0.1839.
 - b) Evaluate $\int_{1}^{0.6} \frac{dx}{\sqrt{1-x^2}}$, using Weddle's rule taking 7 12 equal subintervals.

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013

Using Gauss-Seidel method find the solution of the 1. a) following system of linear equations correct up to two decimal places:

$$3x + y + 5z = 13$$

$$5x - 2y + z = 4$$

$$x + 6u - 2z = -1$$

http://www.makaut.com

Using finite difference method solve the boundary value problem:

$$\frac{d^2y}{dx^2} + y + 1 = 0 \text{ with } y(0) = 0 , y(1) = 0.$$

http://www.makaut.com

7