Машинное обучение Лекция 2. Метрические методы классификации

Катя Тузова

Разбор ДЗ. Общий алгоритм.

```
standard_deviation = sys.maxsize
for i in range(len(learnX)):
    polynom = OLS.polyfit(learnX, learnY)
    dev = calc_dev(polynom, learnX, learnY)
    if dev < standard_deviation:
        standard_deviation = sd
    else:
        break</pre>
```

Разбор ДЗ. Вопросы.

- Максимальная степень полинома?
- Как использовать test.txt?

Разбор ДЗ. Число обусловленности.

$$\mu(A) = \|A^{-1}\| \|A\|$$

Число обусловленности матрицы показывает насколько матрица близка к вырожденной (для квадратных матриц).

$$Ax = b det(A) = 0$$

Если матрица A вырожденная, то для некоторых b решение x не существует, а для других b оно будет неединственным.

Если A почти вырожденная, то малые изменения в A и b вызовают очень большие изменения в x.

Cross-fold validation

Разобьем исходное множество X на два L и T случайным образом.

Будем обучаться на ${\cal L}$ а проверять результат обучения на ${\cal T}.$

- + Простой и надежный
- + Позволяет оценить распределение на множестве решений
- Последовательные эксперименты зависимы
- Используем мало данных для обучения
- Непонятно как подбирать соотношения $\frac{|L|}{|T|}$

k-fold validation

X разбивается на k частей. Затем на k-1 частях данных производится обучение модели, а оставшаяся часть данных используется для тестирования.

Переобучение на полиномах

картинка с machinelearning.ru

Недообучение на полиномах

картинка с machinelearning.ru

Fit на полиномах

Как понять какая ситуация. Underfitting

Как понять какая ситуация. Overfitting

Что в какой ситуации делать

Переобучение:

- Увеличение числа объектов для обучения
- Введение штрафа для определенных степеней полинома
- Уменьшение количества параметров

Недообучение:

- Добавление степеней полиному
- Увеличение количества параметров

Пример. Ирисы Фишера

Признаки:

- длина/ширина чашелистника
- длина/ширина лепестка

Задача – разделить на 3 класса

Гипотеза компактности

Задача классификации:

$$X$$
 - объекты, Y - ответы (классы) $X^l = (x_i, y_i)_{i=1}^l$

Гипотеза компактности:

Схожие объекты, как правило, лежат в одном классе.

"Схожесть":

Функция расстояния = $\rho: X \times X \to [0, \infty)$

Примеры функции расстояния

Евклидово расстояние:

$$X \in \mathbb{R}^n$$

$$\rho(u, x_i) = \left(\sum_{j=1}^n |u^j - x_i^j|^2\right)^{1/2}$$

Признаковые описания объектов:

$$u = \{u^1, u^2, ..., u^n\}$$

$$x_i = \{x_i^1, x_i^2, ..., x_i^n\}$$

Обобщенный метрический классификатор

 $u \in X$ - произвольный объект, который собираемся классифицировать.

Отсортируем объекты $x_1,x_2,...,x_l$ относительно u: $\rho(u,x_u^1) \leq \rho(u,x_u^2) \leq \cdots \leq \rho(u,x_u^l)$

 x_u^i — i-й сосед объекта u y_u^i — ответ на i-м соседе объекта u

Метрический алгоритм классификации

$$a(u, X^l) = \arg\max_{y \in Y} \underbrace{\sum_{i=1}^{l} [y_u^i = y] w(i, u)}_{\Gamma_y(u)}$$

w(i,u) - вес i-го соседа u, неотрицателен $\Gamma_y(u)$ - оценка близости объекта u к классу y

Метод ближайшего соседа

Объект относится к тому классу, к которому относится ближайший в выборке.

$$w(i, u) = [i = 1]$$

- + Простота
- + Интерпретируемость решения

- Неустойчивость к шуму
- Отсутствие настраиваемых параметров
- Низкое качество классификации
- Надо хранить всю выборку целиком

Пример.

Пример неустойчивости к шуму

Метод k ближайших соседей

$$w(i,u) = [i \le k]$$

- + Менее чувствителен к шуму
- + Появляется настраиваемый параметр k
- Неоднозначность классификации при $\Gamma_y(u) = \Gamma_s(u), y \neq s$

$\mathsf{K}\mathsf{a}\mathsf{k}$ выбрать k

Функционал скользящего контроля (leave-one-out):

$$LOO(k, X^l) = \sum_{i=1}^{l} [a(x_i; X^l \setminus \{x_i\}, k) \neq y] \rightarrow \min_k$$

Вопрос

Правда ли надо выбрасывать один объект?

Метод k взвешенных соседей

 $w(i,u) = [i \leq k] * w_i$, где w_i это вес, зависящий только от номера соседа

Возможные эвристики:

- $-w_i=rac{k+1-i}{k}$ линейное убывающие веса
- $w_i=q^i$ экспоненциально убывающие веса

Проблема:

как более обоснованно задать веса?

Ядерная оценка плотности

Метод окна Парзена

$$w_i = K(rac{
ho(u,x_u^i)}{h})$$
 $K(r)$ — ядро, невозрастающее, положительное на [0, 1]

Фиксированной ширины:

$$a(u,X^l,h,K)=rg\max_{y\in Y}\sum_{i=1}^l[y_u^i=y]K(rac{
ho(u,x_u^i)}{h})$$
 h — ширина окна

Переменной ширины:

$$a(u,X^l,k,K) = \arg\max_{y \in Y} \sum_{i=1}^l [y_u^i = y] K(\frac{\rho(u,x_u^i)}{\rho(u,x_u^{k+1})})$$

Метод окна Парзена

Выбор метрики

Какие метрики вам известны? Как выбрать подходящую?

Выбор метрики. ММС

Максимизировать сумму расстояний между объектами разных классов при этом сохраняя сумму расстояний между объектами одного класса небольшой.

$$\max \sum_{x_i, x_j \in D} \rho(x_i, x_j)$$

$$\sum_{x_i, x_j \in S} \rho^2(x_i, x_j) \le 1$$

Проклятие размерности

Если используемая метрика $ho(u,x_u^i)$ основана на суммировании различий по всем признакам, а число признаков очень велико, то все точки выборки могут оказаться практически одинаково далеки друг от друга.

Пример:

Набор признаков объекта генерируется подбрасыванием честной монетки n раз. Соответственно каждый объект описывается вектором $[0,1]^n$. При таких условиях все объекты будут равноудалены.

Предобработка данных

Что делать если разные шкалы признаков?

Предобработка данных

Все признаки должны быть представлены "в одном масштабе".

В противном случае признак с наибольшими числовыми значениями будет доминировать в метрике

Жадное добавление признаков

- $ho_j(u,x_i)=|u^j-x_i^j|$ расстояние по ј-му признаку $LOO(j)
 ightarrow \min$
- Добавляем признак и строим ho' $ho'(u,x_i)=
 ho(u,x_i)+w_j
 ho_j(u,x_i)$ $LOO(j,w_j)\to \min$
- Добавляем признаки, пока LOO не увеличивается

Сверхбольшие выборки

- Проблема хранения
- Проблема быстрого поиска ближайших соседей

Отступ

Отступ показывает степень "типичности объекта".

Отступом объекта $x_i \in X^l$ относительно классификатора a называется величина

$$M(x_i) = \Gamma_{y_i}(x_i) - \max_{y \in Y \setminus y_i} \Gamma_y(x_i)$$

Типы объектов

- Эталонные
- Неинформативные
- Пограничные
- Ошибочные
- Шумовые

Типы объектов

картинка с machinelearning.ru

Отбор эталонных объектов

Задача:

выбрать оптимальное подмножество эталонов $\Omega \subseteq X^l$

Классификатор будет иметь вид:

$$a(u,\Omega) = \arg\max_{y \in Y} \sum_{x_i \in \Omega} [y_u^i = y] w(i,u)$$

Алгоритм STOLP

- Исключить выбросы и пограничные объекты
- Найти по одному эталону в каждом классе
- Добавлять эталоны, пока есть отрицательные отступы

Алгоритм STOLP

- + Сокращается число хранимых объектов
- + Сокращается время классификации
- + Объекты разделяются по величине отступа

- Выбор параметра для определения выбросов
- Не высокая эффективность

Как быстро искать ближайших соседей

- граф ближайших соседей
- k-d дерево
- хеширование (LSH)

Доп. ресурсы

http://www.machinelearning.ru

Пособие

Вопросы по курсовым проектам

На следующей лекции

- Кластеризация. K-means.
- Цели кластеризации.
- Типы кластерных структур.
- Функционал качества кластеризации
- К-средних
- Иерархическая кластеризация.