

Chapter 1.3

Basics of Algorithm Analysis

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

S1.3: Basics of Algorithm Analysis

Análisis y Diseño de Algoritmos (Algorítmica III)

Prof. Herminio Paucar

1.3.1 Time Complexity of an Algorithm

Purpose

- To estimate how long a program will run
- To estimate the largest input that can reasonably be given to the program
- To compare the efficiency of different algorithms
- To choose an algorithm for an application

Time complexity is a function

Time for a sorting algorithm is different for sorting 10 numbers and sorting 1,000 numbers

Time complexity is a function: Specifies how the running time depends on the size of the input.

Function mapping

Definition of time?

Definition of time?

- A. # of seconds
- B. # lines of code executed
- C. # of simple operations performed
- A. Problem: machine dependent
- B. Problem: lines of diff. complexity
- C. This is what we will use

Formally: Size n is number of bits to represent instance

But we can work with anything reasonable

reasonable = within a constant factor of number of bits

Ex 1:

83920

- # of bits $\rightarrow n = 17 bits$
- # of digits $\rightarrow n = 5$ digits
- Value: 83920 $\rightarrow n = 83920$

Which are reasonable?

Ex 1:

```
83920
```

- # of bits: 17 bits Formal
- # of digits: 5 digits Reasonable

```
#bits and #digits are always within constant factor \approx log_2 10 \approx 3.32 ),
```

of bits = 3.32*# of digits

Ex 1:

```
83920
```

```
# of bits: 17 bits - Formal
```

of digits: 5 digits - Reasonable

Value: 83920 – Not reasonable

```
# of bits = log_2(value) Value= 2^{\#bits} , much bigger
```

Ex 2:

• # of elements $\rightarrow n = 10$

Is this reasonable?

Ex 2:

```
14,23,25,30,31,52,62,79,88,98

• # of elements \rightarrow n = 10 Reasonable if each element has c bits, total number of bits is: #bits = c * #elements
```

Time complexity is a function

Specifies how the running time depends on the size of the input

Function mapping

of bits n to represent input

of basic operations T(n) executed by the algorithm

Which input of size n?

Q: There are 2ⁿ inputs of size n. Which do we consider for the time complexity T(n)?

Worst instance

Worst-case running time. Consider the instance where the algorithm uses largest number of basic operations

- Generally captures efficiency in practice
- · Pessimistic view, but hard to find better measure

Time complexity

We reach our final definition of time complexity:

T(n) = number of basic operations the algorithm takes over the worst instance of bit-size n

Example

```
Func Find10(A) #A is array of 32-bit numbers

For i=1 to length(A)

If A[i]==10

Return i
```

Q: What is the time complexity T(n) of this algorithm?

A: $T(n) \approx (n/32) + 1$

- Worst instance: the only "10" is in the last position
- A of bit-size *n* has *n/32* numbers
- $\cdot \approx 1$ simple operations per step (if), +1 for Return

Motivation: Determining the exact time complexity T(n) of an algorithm is very hard and often does not make much sense.

Algorithm 1:

```
x\leftarrow 100
For i=1...N
j\leftarrow j+1
If x>50 then
x\leftarrow x+3
End If
End For
```

Time complexity:

- . 2N +1 assignments
- . N comparisons
- . 2N additions

Total: 5N+1 basic operations

T(N) = 5N+1

Algorithm 2:

Time complexity

For i=1...N

$$x \leftarrow 3x$$

End For

Time complexity

N + 1 assignments
N multiplications
Total: 2N+1 basic operations

Total: 2N+1 basic operations

Can we say Algorithm 2 is going to run faster than Algorithm 1?

Not clear, depends on the time it takes for addition, assignment, multiplication

- No vale mucho la pena complicar la metodología estimando las constantes.
- En lugar de calcular T(n) exactamente, queremos sólo cotas superiores (e inferiores) para T(n) ignorando factores constantes.

Upper bounds O

Informal: T(n) is O(f(n)) if T(n) grows with at most the same order of magnitude as f(n) grows

T(n) is **O(f(n))**

T(n) is O(f(n))

both grow at same order of magnitude

Upper bounds - Cota Superior **O**

Formal: T(n) is O(g(n)) if there exist constants $c \ge 0$ such that for all $n \ge n_0$ we have.

$$T(n) \le c \cdot g(n)$$
.

Equivalent: T(n) is O(g(n)) if there exists $k \ge 0$ such that

$$\lim_{n o \infty} rac{T(n)}{g(n)} \le k$$

Upper bounds - Cota Superior O

Definición Formal: Sea $g: \mathbb{N} \rightarrow [0, \infty)$. Se define el conjunto de funciones de orden O(g(n)) como:

$$T(n) = \{O(g(n)) : \exists c, n_0 > 0 \setminus T(n) \le c * g(n), \forall n \ge n_0\}$$

Diremos que una función $t: \mathbb{N} \to [0, \infty)$ es de orden O de g si $t \in O(g)$. Intuitivamente, $t \in O(g)$ indica que t está acotada superiormente por algún múltiplo de g. Normalmente estaremos interesados en la menor función g tal que t pertenezca a O(g)

Upper bounds - Cota Superior O

Propiedades de O

Veamos las propiedades de la cota superior. La demostración de todas ellas se obtiene aplicando la definición formal.

- 1. Para cualquier función T se tiene que $T \in O(T)$.
- 2. $T \in O(g) \Rightarrow O(T) \subset O(g)$.
- 3. $O(T) = O(g) \Leftrightarrow T \in O(g) \text{ y } g \in O(T)$.
- 4. Si $T \in O(g)$ y $g \in O(h) \Rightarrow T \in O(h)$.
- 5. Si $T \in O(g)$ y $T \in O(h) \Rightarrow T \in O(min(g,h))$.
- 6. Regla de la suma: Si T1 \in O(g) y T2 \in O(h) \Rightarrow T1 + T2 \in O(max(g,h)).
- 7. Regla del producto: Si T1 \in O(g) y T2 \in O(h) \Rightarrow T1·T2 \in O(g·h).

Upper bounds - Cota Superior O

- 8. Si existe $\lim_{n \to \infty} \frac{T(n)}{g(n)} = k$ dependiendo de los valores que tome k obtenemos:
 - A. Si $k \neq 0$ y $k < \infty$ entonces O(T) = O(g).
 - B. Si k = 0 entonces T \in O(g), es decir, O(T) \subset O(g), pero sin embargo se verifica que g \notin O(T).

Obsérvese la importancia que tiene el que exista tal límite, pues si no existiese (o fuera infinito) no podría realizarse tal afirmación.

Exercise 1: $T(n) = 32n^2 + 17n + 32$.

Say if T(n) is:

- . $O(n^2)$?
- $O(n^3)$?
- . O(n)?

Exercise 1: $T(n) = 32n^2 + 17n + 32$

Say if T(n) is:

- $O(n^2)$? Yes
- \cdot O(n³)? Yes
- . O(n)? No

Solution: To show that T(n) is O(n²) we can:

- Use the first definition with c = 1000
- Use limits:

$$\lim_{n\to\infty} \frac{T(n)}{n^2} = 32$$
, which is a constant

Exercise 2:

- T(n) = 2^{n+1} , is it O(2^n)?
- T(n) = 2^{2n} , is it O(2^n)?

Exercise 2:

- . $T(n) = 2^{n+1}$, is it $O(2^n)$? Yes
- . $T(n) = 2^{2n}$, is it $O(2^n)$? No

Solution (second item):
$$\lim_{n\to\infty}\frac{T(n)}{2^n}=\lim_{n\to\infty}2^n=\infty$$
 is not constant

Solution 2 (second item): To have 2²ⁿ < c.2ⁿ we need c>2ⁿ. So c is not.

Logarithms. $log_a n$ is $O(log_b n)$ for any constants a, b>0 can avoid specifying the base

Logarithms. For every x>0, $\log n$ is $O(n^x)$ $\log g$ rows slower than every polynomial

Exponentials. For every r>1 and every d>0, n^d is $O(r^n)$ every exponential grows faster than every polynomial

classe	nome
O(1)	constante
$O(\lg n)$	logarítmica
O(n)	linear
$O(n \lg n)$	$n \log n$
$O(n^2)$	quadrática
$O(n^3)$	cúbica
$O(n^k) \text{ com } k >= 1$	polinomial
$O(a^n) \text{ com } a > 1$	exponencial

```
Exercise: is T(n) = 21 \cdot n \cdot \log n

O(n^2)?

O(n^{1.1})?

O(n)?
```

```
Exercise: is T(n) = 21 \cdot n \cdot \log n

O(n^2)? Yes

O(n^{1.1})? Yes

O(n)? No
```

Solution (first item): Comparing $21 \cdot n \cdot \log n \ vs \ n^2$ is the same as comparing $21 \cdot \log n \ vs \ n$, and we know log n grows slower than n.

Solution 2 (first item): $\lim_{n \to \infty} \frac{T(n)}{n^2} = \lim_{n \to \infty} \frac{21 \log(n)}{n}$, which is at most a constant since $\log n \stackrel{n \to \infty}{\text{grows}} \operatorname{slower}$ than n

Lower Bounds – Cota Inferior Ω

Informal: T(n) is $\Omega(g(n))$ if T(n) grows with at least the same order of magnitude as g(n) grows.

Formal: T(n) is $\Omega(g(n))$ if there exist constants c>0 such that for all n we have $T(n) \ge c \cdot g(n)$.

Equivalent: T(n) is $\Omega(q(n))$ if there exist constant k>0

$$\lim_{n o\infty}\,rac{T(n)}{g(n)}\,\geq\, k$$

Lower Bounds – Cota Inferior Ω

Definición Formal: Sea $g: N \rightarrow [O, \infty)$. Se define el conjunto de funciones de orden Ω (Omega) de g como:

$$T(n) = \{\Omega(g(n)) : \exists c, n_0 > 0 \setminus T(n) \ge c * g(n), \forall n \ge n_0\}$$

Diremos que una función $t: N \to [O, \infty)$ es de orden Ω de g si $t \in \Omega(g)$.

Lower Bounds - Cota Inferior Ω

Propiedades de Ω : Veamos las propiedades de la cota inferior Ω . La demostración de todas ellas se obtiene de forma simple aplicando la definición formal.

- 1. Para cualquier función T se tiene que T $\in \Omega(T)$.
- 2. $T \in \Omega(g) \Rightarrow \Omega(T) \subset \Omega(g)$.
- 3. $\Omega(T) = \Omega(g) \Leftrightarrow T \in \Omega(g) \text{ y } g \in \Omega(T)$.
- 4. Si $T \in \Omega(g)$ y $g \in \Omega(h) \Rightarrow T \in \Omega(h)$.
- 5. Si $T \in \Omega(g)$ y $T \in \Omega(h) \Rightarrow T \in \Omega(\max(g,h))$.
- 6. Regla de la suma: Si T1 $\in \Omega(g)$ y T2 $\in \Omega(h) \Rightarrow$ T1+T2 $\in \Omega(g+h)$.
- 7. Regla del producto: Si T1 $\in \Omega(g)$ y T2 $\in \Omega(h) \Rightarrow$ T1·T2 $\in \Omega(g \cdot h)$.

Lower Bounds - Cota Inferior Ω

8. Si existe $\lim_{n \to \infty} \frac{T(n)}{g(n)} = k$, dependiendo de los valores que tome k obtenemos:

- a) Si k \neq 0 y k < ∞ entonces $\Omega(T) = \Omega(g)$.
- b) Si k = 0 se verifica que T $\notin \Omega(g)$, pero sin embargo se verifica que $g \in \Omega(T)$, es decir, $\Omega(g) \subset \Omega(T)$.

Lower Bounds – Cota Inferior Ω

Exercise: $T(n) = 32n^2 + 17n + 32$. Is T(n):

- $\bullet \quad A) \Omega(n) ?$
- $\blacksquare \qquad \text{B) } \Omega(\mathsf{n}^2) ?$
- $\square C) \Omega(n^3) ?$

Lower Bounds – Cota Inferior Ω

Exercise:
$$T(n) = 32n^2 + 17n + 32 \text{ Is } T(n)$$
:

- $\Omega(n)$? Yes
- $\Omega(n^2)$? Yes
- $\Omega(n^3)$? No

Tight bounds. T(n) is $\Theta(g(n))$ if T(n) is both O(g(n)) and $\Omega(g(n))$.

Formal: T(n) is $\Theta(g(n))$ if there exist constants c>0 and d>0 such that for all n we have

$$c \cdot g(n) \le T(n) \le d \cdot g(n)$$

Definición Formal. Sea T: N→[0, ∞). Se define el conjunto de funciones de orden Θ (Theta) de g como:

$$\Theta(T) = O(T) \cap \Omega(T)$$

o, lo que es igual:

$$T(n) = \{\theta(g(n)): \exists \ c,d,n_0 > 0 \setminus c * g(n) \leq T(n) \leq d * g(n), \forall n \geq n_0\}$$

Diremos que una función $t : \mathbb{N} \to [0, \infty)$ es de orden Θ de g si $t \in \Theta(g)$. Intuitivamente, $t \in \Theta(g)$ indica que t está acotada tanto superior como

inferiormente por múltiplos de g, es decir, que t y g crecen de la misma forma.

Propiedades Θ : Veamos las propiedades de la cota exacta. La demostración de todas ellas se obtiene también de forma simple aplicando la definición formal y las propiedades de O y Ω .

- 1. Para cualquier función T se tiene que $T \in \Theta(T)$.
- 2. $T \in \Theta(g) \Rightarrow \Theta(T) = \Theta(g)$.
- 3. $\Theta(T) = \Theta(g) \Leftrightarrow T \in \Theta(g) \text{ y } g \in \Theta(T)$.
- 4. Si $T \in \Theta(g)$ y $g \in \Theta(h) \Rightarrow T \in \Theta(h)$.
- 5. Regla de la suma: Si T1 $\in \Theta(g)$ y T2 $\in \Theta(h) \Rightarrow$ T1+T2 $\in \Theta(max(g,h))$.
- 6. Regla del producto: Si T1 ∈ $\Theta(g)$ y T2 ∈ $\Theta(h)$ ⇒ T1·T2 ∈ $\Theta(g \cdot h)$.

7. Si existe $\lim_{n\to\infty} \frac{T(n)}{g(n)} = k$, dependiendo de los valores que tome k obtenemos:

- a) Si k \neq 0 y k < ∞ entonces $\Theta(T) = \Theta(g)$.
- b) Si k = 0 se verifica que $\Theta(T) \neq \Theta(g)$, es decir, los órdenes exactos de T y g son distintos.

Exercise: $T(n) = 32n^2 + 17n + 32$.

Is T(n):

- $\bullet \quad A) \Theta(n^2) ?$
- B) Θ(n)?
- $\bullet \quad \bigcirc \Theta(n^3) ?$

Exercise: $T(n) = 32n^2 + 17n + 32$

Is T(n):

- $\Theta(n^2)$? Yes
- Θ(n)? No
- $\Theta(n^3)$? No

Exercise: Show that $\log(n!)$ is $\Theta(n \log n)$

Answer:

- First we show that log (n!) = O(n log n) log (n!) = log n + log (n-1) + ... log 1 < n. log n, since the log function is increasing
- Now we show that $\log (n!) = \Omega(n \log n)$ $\log (n!) = \log n + \log (n-1) + ... \log 1 > n/2. \log (n/2) = n/2 (\log n - 1)$

Upper and Lower bounds

inputs of size n for algorithm A (cartoon)

Can we say that the time complexity of A is?

- O(n^2)? Yes, because largest complexity of algorithm is at most n^2
- $\Omega(n^2)$? No, there are inputs where complexity has larger order
- $\Omega(n)$? Yes
- O(n)? No, there is no input where the complexity of the algorithm has order n^2
- $\Omega(n^{3/2})$? No

Implication of Asymptotic Analysis

Hypothesis

 Basic operations (addition, comparison, shifts, etc) takes at least 10ms and at most 50ms seconds (This is time unity = u)

Algorithms

- . Algorithm A executes 20n operations for the worst instance (O(n))
- . Algorithm B executes n^2 operations for the worst instance $(\Omega(n^2))$ Conclusion
- . For a instance of size n, A spends at most 1000n ms
- . For the worst instance of size n, B spends at least 10 n² ms
- . For n>100, A is faster than B in the worst case, regargless of which operations they execute.

Allows us to tell which algorithm is faster (for large instances)

Notation

Slight abuse of notation. T(n) = O(f(n))

- **.** Be careful: Asymmetric:
 - $-f(n) = 5n^3$; $g(n) = 3n^2$
 - $f(n) = O(n^3) = g(n)$
 - but $f(n) \neq g(n)$
- . Better notation: $T(n) \in O(f(n))$.

Exercícios

Exercícios Kleinberg & Tardos, cap 2 da lista de exercícios

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of the input.

Computing the maximum. Compute maximum of n numbers a₁, ..., a_n.

```
max \leftarrow a_1
for i = 2 to n \{
if (a_i > max)
max \leftarrow a_i
}
```

Remark. For all instances the algorithm executes a linear number of operations

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of the input.

Finding an item x in a list. Test if x is in the list a_1 , ..., a_n

```
Exist ← false
for i = 1 to n {
   if (a<sub>i</sub>== x)
       Exist ← true
       break
}
```

Remark. For some instances the algorithm is sublinear (e.g. x in the first position)

Linear Time: O(n)

Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_n$ into sorted whole.

```
Append the smaller of a_i and b_j to the output.

Merged result

//// b_j

B
```

Claim. Merging two lists of size k takes O(n) time (n=total size=2k). Pf. After each comparison, the length of output list increases by 1.

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list increases by 1.

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x_1 , ..., x_n on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n²)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x_1, y_1) ,

..., (x_n, y_n) , find the distance of the closest pair.

O(n²) solution. Try all pairs of points.

```
\begin{array}{lll} \min & \leftarrow & (\mathbf{x}_1 - \mathbf{x}_2)^2 + (\mathbf{y}_1 - \mathbf{y}_2)^2 \\ & \text{for } i = 1 \text{ to } n \text{ } & \qquad & \text{don't need to} \\ & \text{for } j = i+1 \text{ to } n \text{ } & \qquad & \leftarrow & \text{take square roots} \\ & d \leftarrow & (\mathbf{x}_i - \mathbf{x}_j)^2 + (\mathbf{y}_i - \mathbf{y}_j)^2 \\ & \text{if } (d < \min) & \qquad & \leftarrow & \text{see chapter 5} \\ & & \min \leftarrow & d \\ & \} \\ & \} \end{array}
```

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion.

Cubic Time: O(n³)

Cubic time. Enumerate all triples of elements.

Set disjointness. Let S_1 , ..., S_n be subsets of $\{1, 2, ..., n\}$. Is there a disjoint pair of sets?

Set Representation. Assume that each set is represented as an incidence vector.

n=8 and S={2,3,6}, S is represented by

_	U	l	 	L	U	I	U	U
	^	1	1	^		1	^	
	1	2	3	4	5	6	7	8

n=8 and S={1,4}, S is represented by

	0			5			
I	U	U	ı	U	U	U	U

Algorithm:

```
For i=1...n-1
For j=i+1...n
For k=1...n

If (S<sub>i</sub>(k)=S<sub>j</sub>(k)=1)
Return 'There are not disjoint sets'
End If
End For
End For
End For
Return 'There are disjoint sets'
```

Cubic Time: O(n³)

- 1. A complexidade de tempo do algoritmo é O(n³)?
- 2. A complexidade de tempo do algoritmo é $\Omega(n^3)$?

Cubic Time: O(n³)

- 1. A complexidade de tempo do algoritmo é O(n³)? SIM
- 2. A complexidade de tempo do algoritmo é $\Omega(n^3)$? SIM

"Bad" instance: all sets are equal to $\{n\}$ => algorithm makes $\Omega(n^3)$ basic operations

Exponential Time

- 1. Independent set. Given a graph, find the largest independent set?
 - a. O(n² 2n) solution. Enumerate all subsets.

```
S* \( \phi \phi
foreach subset S \) of nodes {
    check whether S in an independent set
    if (S is largest independent set seen so far) update
        S* \( \lefta \) S
}
```

2. Decrypt a numeric (0...9) password of *n* elements

The complexity of Algorithm is O(10ⁿ)

n: elements

Polynomial Time

Polynomial time. Running time is O(n^d) for some constant d independent of the input size n.

Ex: $T(n) = 32n^2$ and $T(n) = n \log(n)$ are polynomial time We consider an algorithm efficient if time complexity is polynomial

Justification: It really works in practice!

- . Although 6.02 \times 10 23 \times N^{20} is technically poly-time, it would be useless in practice.
- . In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- . Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Polynomial Time

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Complexity of Algorithm vs Complexity of Problem

There are many different algorithms for solving the same problem

Showing that an algorithm is $\Omega(n^3)$ does not mean that we cannot find another algorithm that solves this problem faster, say in $O(n^2)$

Exercício

Exercício 1. Considere um algoritmo que recebe um número real x e o vetor $(a_0,a_1,...,a_{n-1})$ como entrada e devolve

$$a_0 + a_1 x + ... + a_{n-1} x^{n-1}$$

A.Desenvolva um algoritmo para resolver este problema que execute em tempo quadrático. Faça a análise do algoritmo.

A.Desenvolva um algoritmo para resolver este problema que execute em tempo linear. Faça a análise do algoritmo

Exercício - Solução

$$a_0 + a_1 x + ... + a_{n-1} x^{n-1}$$

```
    sum = 0
    Para i= 0 até n-1 faça
    t ← 1
    Para j:=1 até i
    t ← t . x
    Fim Para
    sum ← sum + t*a_i
    Fim Para
    Devolva sum
```

$$a_0 + a_1x + ... + a_{n-1}x^{n-1}$$

Donde: A [], x

Análise: Número de operações elementares é igual a:

$$T(n) = 1+2+3+ ... + n-1 = n(n-1)/2 = O(n^2)$$

Exercício - Solução

```
sum = a<sub>0</sub>

pot = 1

Para i= 1 até n-1 faça

pot ← x*pot

sum ← sum + a<sub>i</sub>*pot

Fim Para

Devolva sum
```

Análise: A cada loop são realizadas O(1) operações elementares. Logo, o tempo é linear

Recap

```
T(n) is O(f(n)): T(n) grows "slower" than f(n)
```

T(n) is $\Omega(f(n))$: T(n) grows at least as fast as f(n)

T(n) is $\Theta(f(n))$: T(n) is both O(f(n)) and $\Omega(f(n))$

Exercised design and analysis of simple algorithms, giving upper bound O(f(n))

right order of growth

Observations on $\Omega(f(n))$

```
Func Find10(A)

For i=1 to length(A)

If (A[i]==10)

Return i

#A is array of 32-bit numbers
```

Q: What is the time complexity T(n) of this algorithm? Give upper bound O(.) and lower bound O(.)

A: $\Theta(n)$: In worst-case, does n iterations of the for => O(n) and $\Omega(n)$.

Point: We always consider worst instance, Omega(n) does not mean that all instances take time $\geq \sim n$

Observations on $\Omega(f(n))$

Find closest pair of points, given input pairs $(x_1, y_2),...,(x_n, y_n)$

Q: Is this algo $\Omega(n^2)$?

A: Yes. Does exactly "combinação de n itens 2 a 2" iterations of for => n*(n-1)/2 iterations = $n^2/2 - n/2$ => quadratic growth

Observations on $\Omega(f(n))$

Method 2: Write #iterations as big summation, lower bound n + (n-1) + (n-2) + ... + 2 + 1 >= ??

```
min \leftarrow (x_1 - x_2)^2 + (y_1 - y_2)^2

for i = 1 to n-1 {

    for j = i+1 to n {

        d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2

        if (d < min)

            min \leftarrow d

    }

}
```

Ex: Show that $1^2+2^2+...+n^2 = \Omega(n^3)$

Trick: Just keep the highest n/2 terms

Complexity in Code Scripts

Get the complexity "O(n)" of next pseudocode-1

```
Pseudocodigo-1
soma \leftarrow 0
for i \leftarrow 1 to n do
     for j \leftarrow 1 to n^2 do
           soma + +
           aux \leftarrow soma
           while aux > 1 do
                aux \leftarrow aux/2
           end while
     end for
end for
```

Get the complexity "O(n)" of next pseudocode-1

Get the complexity of (P, Q, R, M and N)

```
Pseudocodigo-1
soma \leftarrow 0 \quad P = O(1)
for i \leftarrow 1 to n do
     for j \leftarrow 1 to n^2 do
           \begin{bmatrix} soma + + \\ aux \leftarrow soma \end{bmatrix}-N = O(1)
                while aux > 1 do
                                                         R= O(?)
           end while
     end for
end for
```

Get the complexity of (P, Q, R, M and N)

```
Pseudocodigo-1
soma \leftarrow 0 \quad P = O(1) \Rightarrow 1
for i \leftarrow 1 to n do
        for j \leftarrow 1 to n^2 do
                soma + + 
 aux \leftarrow soma \left[ -N = O(1) \Rightarrow c \right]
                while aux > 1 do aux \leftarrow aux/2 end while aux > 1 do aux \leftarrow aux/2 => log(aux)
                                                                                     R= O(?)
        end for
end for
```

Get the complexity of (P, Q, R, M and N)

Tenemos: T(n) = P + Q

$$Q = \sum_{i=1}^{n} R$$
$$R = \sum_{i=1}^{n^2} (N + M)$$

$$T(n) = 1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} (c + \log aux)$$

$$aux = soma = f(i, j) = (i - 1)n^2 + j$$

Resolving

$$T(n) = 1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} (c + \log aux)$$

$$T(n) = 1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} (c + \log soma) = 1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} [c + \log((i-1)n^2 + j)];$$

Hacemos $m = (i-1)n^2$; Reemplazando:

$$T(n) = 1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} \left[c + \log(m+j) \right] = 1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} c + \sum_{i=1}^{n} \sum_{j=1}^{n^2} \log(m+j)$$

$$T(n) = 1 + cn^3 + \sum_{i=1}^n \left[\log(m+1) + \log(m+2) + \log(m+3) + \dots + \log(m+n^2) \right] \le cn^3 + \sum_{i=1}^n \left[\log((m+n^2)!) \right];$$

De la propiedad: $O(\log(n!)) = O(n \log n)$ Aplicando, tenemos:

$$T(n) \le cn^3 + \sum_{i=1}^n c_1(m+n^2)\log(m+n^2)$$
, Reemplazando: $m = (i-1)n^2$; Tenemos:

$$T(n) \le cn^3 + \sum_{i=1}^n c_1(in^2)\log(in^2) = cn^3 + c_1n^2\sum_{i=1}^n i(\log n^2 + \log i) = cn^3 + c_1n^2[\log n^2\sum_{i=1}^n i + \sum_{i=1}^n i\log i]$$

$$= cn^3 + c_1 n^2 [2 \log n(\frac{n(n+1)}{2}) + \sum_{i=1}^n i \log i], \text{ Hacemos: } S = \sum_{i=1}^n i \log i$$

Resolving

$$=cn^3+c_1n^2[2\log n(\frac{n(n+1)}{2})+\sum_{i=1}^n i\log i], \text{ Hacemos: } S=\sum_{i=1}^n i\log i$$

$$S = \sum_{i=1}^{n} i \log i = 1 \log 1 + 2 \log 2 + 3 \log 3 + \dots + n \log n \le c_2 n^2 \log n$$
 Reemplazando: S, tenemos:

$$T(n) \le cn^3 + c_1 n^2 [n^2 \log n + n \log n + c_2 n^2 \log n] = cn^3 + c_1 n^4 \log n + c_1 n^3 \log n + c_1 c_2 n^4 \log n$$

$$T(n) \in O(n^4 \log n)$$

Get the complexity of the pseudocode:

```
Pseudocódigo
cont \leftarrow 2^n
for i \leftarrow 1 to n do
   for j \leftarrow 1 to n do
       cont \leftarrow cont/2
       s \leftarrow cont
       while s \ge 1 do
          i \leftarrow i + 1
          s \leftarrow s/2
       end while
   end for
end for
```

Get the complexity "O(n)" of pseudocode

Step 01

Get the complexity "O(n)" of pseudocode

Step 01

Reemplazando:

$$T(n) = P + Q$$

Donde:

$$Q = \sum_{i=1}^{n} R$$

$$R = \sum_{i=1}^{n} (N+M)$$

Tenemos:

$$T(n) \le 1 + \sum_{i=1}^{n} \sum_{j=1}^{n} (1 + \log(s))$$

Ahora debemos buscar s en función de i y j

Calculamos el valor de s = cont en función de i y j

$$Co = 2$$

$$\frac{i=1}{\hat{j}=1}$$

$$Cont_1 \leftarrow Col2 = \frac{2}{2}$$

$$\hat{j}=2 Cont_1 = Co/2 = \frac{2}{2}$$

$$\hat{j}=3 Cont_3 \leftarrow Co/2^3 = \frac{2}{2}/2^3 = \frac{2}{2}/2^3 = \frac{2}{2}$$

$$\vdots : \frac{3}{2} = \frac{2}{2} = \frac{2}{2}$$

$$\frac{1}{j=1}$$
 Cont $4 - \frac{C_1}{2n}/2 = \frac{C_0/2^{n}}{2}$ Cont $4 - \frac{C_{1n}}{2^n}/2^n = \frac{C_0/2^n}{2^n}$

$$\frac{\lambda=3}{j=1}$$
 cont $\in \frac{c_{2n}}{2} = \frac{c_0}{2^{2n}}$ cont $= \frac{c_0/2^n}{2^n}$

$$\frac{\forall ij}{ij} = \frac{(c_0)}{2^{(i-i)n}} / 2^{j} \quad g \quad c_0 = 2^n$$

$$= \frac{2^{(2-i)n}}{2^{j}} = \frac{(2-i)n-j}{2}$$

Reemplazando $s = cont_{i,j}$

$$\frac{\sum_{i=2}^{n} \frac{c_{i}/2^{n}}{2^{i}} \frac{c_{i}/2^{n}}{2^{i}} \frac{c_{i}/2^{n}}{2^{i}} \frac{c_{i}/2^{n}}{2^{i}} \frac{c_{i}/2^{n}}{2^{n}} \frac{c_{i}/2^{n}}{2^{n}}}{\sum_{i=1}^{n} \frac{c_{i}/2^{n}}{2^{n}}} T(n) \leq 1 + \sum_{i=1}^{n} \sum_{j=1}^{n} (1 + \log(s))$$

$$(2-i)n-j$$

Reemplazando s = $cont_{i,j} = 2$

Tenemos:
$$T(n) \le 1 + \sum_{i=1}^{n} \sum_{j=1}^{n} (1 + \log(s))$$

$$T(n) \leq 1 + \sum_{i=1}^{N} \sum_{j=1}^{N} \left(1 + \log \left[2^{(2-i)n-j}\right]\right)$$

$$T(n) \le 1 + \sum_{i=1}^{n} (n + \sum_{j=1}^{n} (2-i)n-j) \log^2$$

$$T(n) \leq 1 + n^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} ((2-i)n-j) \cdots (I)$$

$$B = \sum_{j=1}^{N} ((2-i)n-j) = n^{2}(2-i) - \sum_{j=1}^{N} j = n^{2}(2-i) - (n)(n+1)$$

$$B = n \frac{(3n-1)}{2} - n^2 i \dots (II)$$

(II) on (I)

$$T(n) \leq 1 + n^2 + \sum_{i=1}^{N} \left(\frac{n(3n-1)}{2} - n^2 \right) \leq 1 + n^2 \frac{(3n-1)}{2} - n^2 \sum_{i=1}^{N} i$$

 $T(n) \leq 1 + n^2 \frac{(3n-1)}{2} - n^2 \frac{n^2}{2}$

$$T(n) \leq 1 + \frac{n^2(3n-1)}{2} - \frac{n^2(n)(n+1)}{2} \leq -\frac{11}{2} + \frac{13}{2} + \frac{1}{2}$$

$$T(n) \le (-n^4+2n^3-n^2+2)/2$$

para un **n**→∞

T(n) < 0

Volvamos a revisar el pseudocódigo, pero ahora!

Get the complexity "O(n)" of pseudocode

Step 01

Pseudocódigo $cont \leftarrow 2^n$ = O(1)for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $\begin{array}{c} cont \leftarrow cont/2 \\ s \leftarrow cont \end{array} = \mathbf{O(1)}$ while $s \ge 1$ do $i \leftarrow i+1 \\ s \leftarrow s/2$ end while end for

Antes de realizar cualquier operación matemática, debemos primero hacer el **análisis visual**, i.e. "Traza del Algoritmo". Se observa que el algoritmo sólo funciona para un **i=1**, puesto que el segundo valor de **i** será un valor muy grande igual a **n**, debido a que se incrementa dentro del while **M**. Se observa que **R** se realiza sólo una vez para un **i=1**, entonces sólo queda evaluar el número de operaciones elementales dentro de **N** y **M**.

$$T(n) = 1 + R = 1 + N$$

$$N = \sum_{j=1}^{n} (1+M)$$

Get the complexity "O(n)" of pseudocode

$$T(n) = 1 + N; N = \sum_{j=1}^{n} (1 + M) = \sum_{j=1}^{n} (1 + \log(s))$$

$$N = \int_{J=1}^{N} (1+M) \cdot M = di \cdot \log(s) \cdot d = 1$$

$$8 \leftarrow \text{cont}, \quad \text{cont} \leftarrow Co/2i = 2^{n/2}i = 2^{n-j}$$

$$e_{N} \cdot N'$$

$$N = \int_{J=1}^{N} (1+\log(2^{n-j})) = n + \int_{J=1}^{N} (n-j) \log^{2} 2$$

$$N = 3n + n^2 - \sum_{d=1}^{n} j = 3n + n^2 - (n)(n+1)$$

Binary Search

Problem: Given a sorted list of numbers (increasing order) a_1 , a_2 , a_3 ,..., a_n , decide if number x is in the list

```
Function bin_search(i,j, x)
     if i = j
          if a_i = x return TRUE
          else return FALSF
     end if
     mid = floor((i+j)/2)
     if x = a_{mid}
          return x
     else if x < a_{mid}
          return bin_search(i, mid-1, x)
     else if x > a_{mid}
          return bin_search(mid+1, j, x)
     end if
Function bin_search_main(x)
```

 $bin_search(1, n, x)$

 1
 2
 3
 5
 7
 10
 14
 17

 7
 10
 14
 17

 14
 17

Binary Search Analysis

Binary search recurrence:

we will always ignore floor/ceiling

(the "sorting" slides has one slide that keeps the ceiling, so you can see that it works)

Binary Search Analysis

Binary search recurrence: $T(n) \leq c + T\left(\left[\frac{n}{2}\right]\right)$

Claim: The time complexity T(n) of binary search is at most c*log n

Binary Search Analysis

Binary search recurrence:

Claim: The time complexity T(n) of binary search is at most c*log n

$$T(n) \le c + T(\left[\frac{n}{2}\right])$$

Proof 2: (induction) Base case: n=1

Now suppose that for n' \leq n - 1, T(n') $\leq c * \log(n')$

Then $T(n) \le c + T(n/2) \le c + c*log(n/2) = c + c*(log n - 1) = c*log n$

Recursive Algorithms

Exercício 2. Projete um algoritmo (recursivo) que recebe como entrada um número real x e um inteiro positivo n e devolva x^n . O algoritmo deve executar $O(\log n)$ somas e multiplicações

Recursive Algorithms

```
Proc Pot(x,n)
     if n=0 return 1
     if n=1 return x
     if né par
        tmp \leftarrow Pot(x,n/2)
       return tmp*tmp
     else né impar
        tmp \leftarrow Pot(x,(n-1)/2)
        return x*tmp*tmp
     Fim_if
Fim_proc
```

Análise:

```
T(n) = c + T(n/2) \Rightarrow T(n) \notin O(\log n)
```