Analyze the provided dataset using Spark.

Dataset - dataset/london_house_price_data.csv

Data Columns Overview:

Property details: bathrooms, bedrooms, livingRooms, floorAreaSqM, tenure, propertyType

Location details: fullAddress, postcode, country, outcode, latitude, longitude **Energy and pricing:** currentEnergyRating, saleEstimate_, rentEstimate_, saleEstimate_valueChange.*

Historical pricing: history_*

Answer the following:

- 1. Find the postcode with the highest average property sale price (saleEstimate_currentPrice).
- 2. Find the property type (propertyType) with the highest average number of bathrooms.
- 3. Calculate the total number of properties available in each country.
- 4. Find the average percentage change in sale price (saleEstimate_valueChange.percentageChange) for each tenure type.
- 5. Identify the country with the highest average rent price (rentEstimate_currentPrice).
- 6. Find the property type (propertyType) with the highest average number of bedrooms.
- 7. Calculate the median sale price (saleEstimate_currentPrice) for each tenure type.
- 8. Any other problem you thaught off.

Process

- 1. Develop the application in Jupyter Notebook. Test it
- 2. Once it is working correctly migrate it as a Spark application
- 3. Make sure that following things are impemented in your code
 - error handling.
 - Use of Logger wherever applicable.
 - Documentation comments and comments.
 - Modularity.

- 4. Run the Spark application from a shell script
- 5. Do error handling and documentation comments in Shell Script.
- 6. Make the shell script parameterized so that user should be in a position to run the spark application in local mode or yarn cluster or client mode.
- 7. Note down the time required to implement this problem statement.

In []: