Springer Undergraduate Mathematics Series

Advisory Board

M.A.J. Chaplain *University of Dundee*K. Erdmann *University of Oxford*A. MacIntyre *Queen Mary, University of London*L.C.G. Rogers *University of Cambridge*E. Süli *University of Oxford*J.F. Toland *University of Bath*

Codes: An Introduction to Information Communication and Cryptography

Norman L. Biggs Department of Mathematics London School of Economics Houghton Street London WC2A 2AE, UK

Maple is a trademark of Waterloo Maple Inc.

Springer Undergraduate Mathematics Series ISSN 1615-2085

ISBN: 978-1-84800-272-2 e-ISBN: 978-1-84800-273-9

DOI: 10.1007/978-1-84800-273-9

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008930146

Mathematics Subject Classification (2000): 94A, 94B, 11T71

© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

Springer Science+Business Media springer.com

Preface

Many people do not realise that mathematics provides the foundation for the devices we use to handle information in the modern world. Most of those who do know probably think that the parts of mathematics involved are quite 'classical', such as Fourier analysis and differential equations. In fact, a great deal of the mathematical background is part of what used to be called 'pure' mathematics, indicating that it was created in order to deal with problems that originated within mathematics itself. It has taken many years for mathematicians to come to terms with this situation, and some of them are still not entirely happy about it.

This book is an integrated introduction to Coding. By this I mean replacing symbolic information, such as a sequence of bits or a message written in a natural language, by another message using (possibly) different symbols. There are three main reasons for doing this: Economy (data compression), Reliability (correction of errors), and Security (cryptography).

I have tried to cover each of these three areas in sufficient depth so that the reader can grasp the basic problems and go on to more advanced study. The mathematical theory is introduced in a way that enables the basic problems to be stated carefully, but without unnecessary abstraction. The prerequisites (sets and functions, matrices, finite probability) should be familiar to anyone who has taken a standard course in mathematical methods or discrete mathematics. A course in elementary abstract algebra and/or number theory would be helpful, but the book contains the essential facts, and readers without this background should be able to understand what is going on.

There are a few places where reference is made to computer algebra systems. I have tried to avoid making this a prerequisite, but students who have access to such a system will find it helpful. In particular, there are occasional specific references to MAPLETM (release 10), by Maplesoft, a division of Waterloo Maple Inc., Waterloo, Canada.

The book has been developed from a course of twenty lectures on Information, Communication, and Cryptography given for the MSc in Applicable Mathematics at the London School of Economics. I should like to thank all those students who have contributed to the development of the course materials, in particular those who have written dissertations in this area: Rajni Kanda, Ovijit Paul, Arunduti Dutta-Roy, Ana de Corbavia-Perisic, Raminder Ruprai, James Rees, Elisabeth Biell, Anisa Bhatt, Timothy Morill, Shivam Kumar, and Carey Chua. I owe a special debt to Raminder Ruprai, who worked through all the exercises and helped to sort out many mistakes and obscurities.

Finally, I am grateful to Aaron Wilson, who helped to produce the diagrams, and especially to Karen Borthwick, who has been very helpful and supportive on behalf of the publishers.

Norman Biggs January 2008

Contents

eface		V
Coding and its uses		1
1.1	Messages	1
1.2		
1.3	Basic definitions	4
1.4	Coding for economy	7
1.5	Coding for reliability	8
1.6	Coding for security	9
Prefix-free codes		13
2.1	The decoding problem	13
2.2	Representing codes by trees	16
2.3	The Kraft-McMillan number	18
2.4	Unique decodability implies $K \leq 1$	21
2.5	Proof of the Counting Principle	24
Economical coding		
3.1	The concept of a source	27
3.2	The optimization problem	30
3.3	Entropy	32
3.4	Entropy, uncertainty, and information	34
3.5	Optimal codes – the fundamental theorems	38
3.6	Huffman's rule	
3.7	Optimality of Huffman codes	44
	Coo 1.1 1.2 1.3 1.4 1.5 1.6 Pre 2.1 2.2 2.3 2.4 2.5 Eco 3.1 3.2 3.3 3.4 3.5 3.6	1.1 Messages 1.2 Coding 1.3 Basic definitions 1.4 Coding for economy 1.5 Coding for reliability 1.6 Coding for security Prefix-free codes 2.1 The decoding problem 2.2 Representing codes by trees 2.3 The Kraft-McMillan number 2.4 Unique decodability implies $K \le 1$ 2.5 Proof of the Counting Principle Economical coding 3.1 The concept of a source 3.2 The optimization problem 3.3 Entropy 3.4 Entropy, uncertainty, and information 3.5 Optimal codes – the fundamental theorems 3.6 Huffman's rule

4.	Data compression		47		
	4.1	Coding in blocks	47		
	4.2	Distributions on product sets	49		
	4.3	Stationary sources	52		
	4.4	Coding a stationary source	55		
	4.5	Algorithms for data compression	58		
	4.6	Using numbers as codewords	59		
	4.7	Arithmetic coding	62		
	4.8	The properties of arithmetic coding	65		
	4.9	Coding with a dynamic dictionary	67		
5.	Noisy channels 75				
	5.1	The definition of a channel	73		
	5.2	Transmitting a source through a channel	76		
	5.3	Conditional entropy	78		
	5.4	The capacity of a channel	81		
	5.5	Calculating the capacity of a channel	83		
6.	The problem of reliable communication 8				
	6.1	Communication using a noisy channel	89		
	6.2	The extended BSC	94		
	6.3	Decision rules	96		
	6.4	Error correction	100		
	6.5	The packing bound	102		
7.	The noisy coding theorems				
	7.1	The probability of a mistake	107		
	7.2	Coding at a given rate	111		
	7.3	Transmission using the extended BSC	113		
	7.4	The rate should not exceed the capacity	117		
	7.5	Shannon's theorem	119		
	7.6	Proof of Fano's inequality	120		
8.	Linear codes				
	8.1	Introduction to linear codes	123		
	8.2	Construction of linear codes using matrices	126		
	8.3	The check matrix of a linear code			
	8.4	Constructing 1-error-correcting codes	131		
	8.5	The decoding problem	135		

Contents ix

9.	Algebraic coding theory
	9.1 Hamming codes
	9.2 Cyclic codes
	9.3 Classification and properties of cyclic codes
	9.4 Codes that can correct more than one error
	9.5 Definition of a family of BCH codes
	9.6 Properties of the BCH codes
10.	Coding natural languages
	10.1 Natural languages as sources
	10.2 The uncertainty of english
	10.3 Redundancy and meaning
	10.4 Introduction to cryptography
	10.5 Frequency analysis
11	The development of cryptography
11.	11.1 Symmetric key cryptosystems
	11.2 Poly-alphabetic encryption
	11.3 The Playfair system
	11.4 Mathematical algorithms in cryptography
	11.5 Methods of attack
	110 110010 00 01 000001
12.	Cryptography in theory and practice
	12.1 Encryption in terms of a channel
	12.2 Perfect secrecy
	12.3 The one-time pad
	12.4 Iterative methods
	12.5 Encryption standards
	12.6 The key distribution problem
13.	The RSA cryptosystem
	13.1 A new approach to cryptography
	13.2 Outline of the RSA system
	13.3 Feasibility of RSA
	13.4 Correctness of RSA
	13.5 Confidentiality of RSA
14.	Cryptography and calculation
	14.1 The scope of cryptography
	14.2 Hashing
	14.3 Calculations in the field \mathbb{F}_p
	14.4 The discrete logarithm

	14.5 T	he ElGamal cryptosystem	228
	14.6 T	he Diffie-Hellman key distribution system	230
	14.7 Si	ignature schemes	232
15.	Ellipti	ic curve cryptography2	237
	15.1 C	alculations in finite groups	237
	15.2 T	he general ElGamal cryptosystem	239
		lliptic curves	
		he group of an elliptic curve	
	15.5 In	mproving the efficiency of exponentiation	248
		final word	
Ans	swers t	o odd-numbered exercises2	255
Ind	ex	2	271