Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

H

1.

2.

3.

A

5.

6.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HARHIU
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น AHHIRU
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น AIHURU

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	IHH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	H H I
หวก travers tree ดังกล่าว แบบ Post-order จะได้ outnut เป็น	IHH

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree2;
0.
      tree2.insert('G');
1.
      tree2.insert('0');
2.
      tree2.insert('I');
3.
4.
      tree2.insert('N');
      tree2.insert('G');
5.
      tree2.insert('M');
      tree2.insert('E');
7.
      tree2.insert('R');
8.
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น <u>EGGIMNORTY</u>
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น <u>EGGIMNORTY</u>
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น <u>EGMNIY</u>

1.

4

7.

9

10.

 4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

13.

14.

 5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
      tree3.insert('B');
3.
      tree3.insert('C');
4.
      tree3.insert('D');
5.
      tree3.insert('E');
6.
      tree3.insert('F');
7.
      tree3.insert('G');
8.
      tree3.insert('H');
9.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น ABCDEFGH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น ABCDEFGH
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HGFEDCBA

1. A

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```


13.

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน เนื่องจากอะไร (ขอสั้นๆ) BST ที่ ไม่ balance มีลำดับชั้นมากกร่า เพราะ แบบ balance จะมีลำดับชั้น 2 ฝั่งเท่ากัน แต่ แบบไม่ balance จะมี ลำดับชั้นมากกร่า เพราะ แบบ balance มีลำดับชั้นมากกร่า แต่ แบบไม่ balance จะมี ลำดับชั้นมากกร่า
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากัน อย่างไร (ขอสั้นๆ)
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
10.	ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ unbalance เนื่องจากอะไร (ขอยาวๆ)