Реляционная модель данных

Дж. Ульман, Основы систем баз данных, 1983. Глава 3

История

Эдгар Франк Кодд Edgar Frank Codd

1923 - 2003

- Родился в Портланде (Дорсет) в Англии.
- Обучался математике и химии в Оксфордском университете.
- Работал в Альмаденском Исследовательском Центре IBM, Сан-Хосе (Калифорния),

A Relational Model of Data for Large Shared Data Banks, 1970, Communications of the ACM 13 (6): 377–387

- В **1976** Кодд получил почетное звание **IBM Fellow**.
- В 1981 он получил престижную премию Тьюринга.
- В **2002** журнал **Forbes** поместил реляционную модель данных в список важнейших инноваций последних 85 лет.

Аспекты модели

- Структура данных
- Манипулирование данными
 - Реляционная алгебра
 - Реляционное исчисление
 - на кортежах
 - на доменах
- Целостность данных

r,

Структура данных (1)

Основой структур данных в модели является теоретикомножественное понятие **ОТНОШЕНИЯ**

Определение 1

- Пусть даны D₁, D₂, ... D_n множества (домены).
- Декартово произведение (D₁ x D₂ x ... x D_n) множество кортежей (v₁,v₂, ..., v_n), длины n, таких что
 v₁ ∈ D₁, v₂ ∈ D₂, ... v_n ∈ D_n
- Отношением называется КОНЕЧНОЕ подмножество декартового произведения доменов $D_1 \times D_2 \times ... \times D_n$
- Отношение R (A₁:D₁, A₂:D₂, ...,A_n:D_n) или R (A₁, A₂, ...,A_n)
 - □ R имя отношения
 - $A_1, A_2, ..., A_n$ имена атрибутов отношения
 - \Box Элемент отношения $r_1 r_2 ... r_n$ кортеж отношения

M

Структура данных (2)

Определение 2

```
Пусть A_1, A_2, \dots A_k – множество имен атрибутов, D_1, D_2, \dots D_n – множества значений атрибутов Множество пар A_i, D_j называется схемой отношения, если A_i \neq A_s, при t \neq s.
```

Множество пар < A_i , d_j > называется **кортежем отношения.** где A_i — имя атрибута из $\{A_1, A_2, \dots A_k\}$, a d_j — значение из D_j

Множество кортежей, соответствующих **одной схеме отношения** называется **отношением**

Неформальные определения

- Неформально, отношение это таблица данных, состоящая из строк, столбцов.
- Каждая строка содержит набор элементов данных, который представляет конкретные факты соответствующие сущностям или отношениям
 - В формальной модели *строки* называются кортежами
- Каждый столбец имеет заголовок, что позволяет судить о значении элементов данных в этом столбце
 - В формальной модели заголовок столбца, называется именем атрибута (или просто атрибут)
- Схема отношения имя отношения с набором атрибутов

Пример отношения

Схема - Студенты (имя, № студ, тел, адрес, возраст, балл)

Основные понятия в РМД

- Основные понятия в РМД:
 - отношение,
 - ⋄ кортеж,
 - атрибут,
 - **⋄** домен,
 - тип данных,
 - ⋄ ключ
- Тип данных БД полностью адекватен типу данных в языках программирования Обычно допускается хранение
 - символьных данных (строки),
 - числовых данных (целые и вещественные),
 - битовых строк,
 - даты, времени
 - специальные числовые данные (деньги)

Домен

- Домен понятие специфичное для баз данных
- Домен задается базовым типом и логическим выражением, определяющим элементы домена

<u>Пример</u>.

 Домен ИМЕНА может базироваться на строковом типе, но содержать только те строки, которые НЕ начинаются на Ъ или Ь знак

Ключ

- Атрибут или множество атрибутов, однозначно определяющих кортеж в отношении,
 называется ключом отношения.
 - □ В таблице Студент ключ № студ. Билета
- Иногда идентификатор строки или порядковое число используются как ключи для идентификации строки в таблице
 - Такой ключ называют искусственным или суррогатным ключ

Фундаментальные свойства отношений

• Отсутствие кортежей дубликатов

• Отсутствие упорядоченности кортежей

• Отсутствие упорядоченности атрибутов

Атомарность значений атрибутов

Атомарность атрибутов

Номер отдела	Отдел		
	Сотр_номер	Сотр_имя	Сотр_зарп
	2934	Иванов	112,00
310	2935	Петров	112,50
313	2937	Федоров	110
315	2938	Голубев	112

Сотр_номер	Сотр_имя	Сотр_зарп	Сотр_отд_номер
2934	Иванов	112,00	310
2935	Петров	112,50	310
2937	Федоров	110	313
2938	Голубев	112	315

Реляционная алгебра

- Теоретико-множественные операции Условия выполнения операций
 - Объединение, пересечение, разность схемы отношений – одинаковы (кол. атрибутов, домены соответствующих атрибутов)
 - 1. **R**₁(А:цел, В:строк(10), С:вещ) **S**₁(А:цел, В:строк(10)) **6**, **Петров**, **12.83 7**, **Голубев**
 - 2. $\mathbf{R_2}(\mathbf{A}:\mathbf{B}\mathbf{e}\mathbf{H},\mathbf{C}:\mathbf{B}\mathbf{e}\mathbf{H})$ $\mathbf{S_2}(\mathbf{A}:\mathbf{H}\mathbf{e}\mathbf{\Pi},\mathbf{C}:\mathbf{c}\mathbf{T}\mathbf{p}\mathbf{o}\mathbf{K}(10))$ **2.87**, **3.12 10**, **Сидоров**
 - 3. $\mathbf{R_3}(A:$ цел, C:строк(10)) $\mathbf{S_3}(B:$ цел, E:строк(10)) $\mathbf{2011}$, инженер
 - Декартово произведение нет ограничений
 - $R(A,B,C) \times S(E,D) = T(A,B,C,E,D)$
 - **R** (A,B,C) \times **S**(A,D) = **T**(A₁,B,C,A₂,D)

Реляционная алгебра (продолжение)

Примеры

```
R (A:цел, B:строк(10) \cup S (A:цел, B:строк(10)) =
         , Петров
                            , Голубев
                        9 , Соколов
          , Голубев
        Т (А:цел, В:строк(10))
             , Петров
              7 , Голубев
              , Соколов
R (A,B,C) \times S(A,D) = T(A_1,B,C,A_2,D)
   1 3 5 2 4
                       1 3 5 2 4
                    1 3 5 6 8
                   3 5 3 7
```

Реляционная алгебра (продолжение)

- Специальные операции
 - Селекция
 - Проекция
 - Соединения (JOIN)
 - Эквисоединение
 - Натуральное соединение (Natural JOIN)
 - Left Inner JOIN
 - Right Inner JOIN
 - OUTER JOIN
 - 🗆 Деление

Селекция

```
Операция \mathbf{G}_f(\mathbf{R}(\mathbf{A}_1, \mathbf{A}_2, \dots \mathbf{A}_k)) порождает отношение \mathbf{R}_1(\mathbf{A}_1, \mathbf{A}_2, \dots \mathbf{A}_k) кортежи которого
```

- 1) принадлежат исходному отношению $\mathbf{R}(\mathbf{A_1, A_2, ... A_k})$
- 2) удовлетворяют логической функции f, которая строится из
 - а) операндов
 - атрибутов отношения R
 - констант
 - б) операторов сравнения: $>, <, =, \neq, \leq, \geq,$
 - в) логических операторов: and, or, not
 - г) скобок: (,)

$$\mathbf{6}_{\text{A}<3 \text{ and C}=5} \left(\mathbf{R}\right)$$

м

Проекция

Пусть $R(A_1, A_2, ..., A_k)$ – отношение.

Операция $\pi_{\text{Ai1, Ai2, ... Ais}}(R)$ порождает отношение R_1 с

атрибутами A_{i1} , A_{i2} ... A_{is} из отношения R, где $i_s \le k$, следующим образом:

- 1. Каждый кортеж в R_1 формируется из кортежа отношения R путем удаления не отмеченных в операции $\pi_{\text{Ai1, Ai2, ... Ais}}(R)$ значений атрибутов
- 2. В получившемся отношении одинаковые кортежи удаляются.

Соединения (JOIN)

• Эквисоединение.

$$R \bowtie_f S = G_f(R \times S)$$

- Натуральное соединение (Natural JOIN, Inner JOIN). Для R и S имеющих одинаковые атрибуты
- $R \bowtie_{f} S = \pi_{arp\ R\ U\ arp\ S} (\delta_{f}(R\ x\ S)),$ где f функция вида $\Lambda \Lambda R_{r}\Lambda \Lambda R_{r}\Lambda \Lambda$
 - $A_{rl} = A_{sl} & A_{r2} = A_{s2} & \dots & A_{rl} = A_{sl},$
 - а $A_{ri} = A_{si} одинаковые атрибуты из R и S$
 - Left OUTER JOIN
 - Right OUTER JOIN
 - Full OUTER JOIN

Примеры соединений

```
R(A, B, C) S(B, D) 1) R_{R.A=S.B} S = T(A, B, C, B_1, D)
     1 3 4 3 1
                             1 3 4 3 1
    2 3 5 4 7
              2) R > 2 = 3 (5, 4, 4, 7, D)
3) R LOJ S = T (A, B, C, B_1, D)
         1 3 4 3 1
2 3 5 3 1
4 2 2 Null Null
```


Деление

Пусть
$$R(A: цел, B: цел, C: цел), S(A: цел, B: цел)$$

 $R(A,B,C) \div S(A,B) = T(C)$

Отношение T есть множество кортежей t длины |R|-|S|, таких что

для всех кортежей **u** длины |S|, принадлежащих S кортеж **tu** принадлежит R.

R(A, B, C)	S(A, B)	T(C)
1 2 3	1 2	3
2 4 3	2 4	
1 2 1		
2 4 3		

Целостность

- Целостность сущностей
 - ♦ Ключи
- Ссылочная целостность
 - Только сообщение о нарушении целостности
 - ♦ Метод значений NULL
 - Каскадный метод
 - Метод значений по умолчанию

Пример (возможно ли такое состояние таблиц в БД?)

Сотрудник (ТН, ФИО, НомПасп, НомОтдела)

Отдел (НомОтдела, НазОтдела)

Сотрудник.НомОтдела ___ Отдел.НомОтдела

Сотрудник

Отдел

TH	ФИО	НомПасп	НомОтдела	НомОтдела	НазвОтдела
1002	Иванов	5001593549	18	01	Отдел 1

Целостность

Пример

Сотрудник(ТН, ФИО, НомПасп, НомОтдела)

Отдел(НомОтдела, НазОтдела)

Сотрудник

ТАбНомер	ФИО	НомПасп	НомОтдела
1002	Иванов	5001593549	01
1020	Голубев	5007123321	03

Отдел

НомОтдела	НазвОтдела	
01	Отдел 1	
03	Отдел ИС	

Что будет?

- 1. Вставить в Сотрудник строку (<u>1005</u>, 'Петров', 5003374727, 03)
- 2. Вставить в Сотрудник строку (<u>1010</u>, 'Сидоров', 5005374727, <u>05</u>)
- 3. Изменить в Сотрудник строку где ТН=1005 НомОтдела на 01
- 4. Вставить в Отдел строку (02, 'Второй отдел')
- 5. **и...**

Достоинства модели

- Небольшой набор абстракций (отношение, кортеж, атрибут, домен, тип данных, ключ)
- Наличие простого и мощного математического аппарата (теория множеств, математическая логика)
- Возможность ненавигационного манипулирования данными (редяционное исчисление) Недостатки модели
 - Небольшой набор типов данных
 - Небольшой набор средств манипулирования
 - Отсутствие возможности отразить семантику объектов