segments.

PR $F_R(X) = P(R \le X) = P(Y \le (1-Y)X) = P(Y \le (1-Y$

ont que tenemos $F_{R}(\xi)$ i $\begin{cases} 0 \text{ si of } \xi \leq 0 \\ \frac{2\xi}{1+\xi} \text{ si of } \xi \leq 1 \\ 1 \text{ si } = 1 \leq \xi \end{cases}$

Pono gp (t) deribomes y res gredo

$$S_{R}(t) = \frac{2(1+t)-2t}{(n+t)^{2}} = \frac{2}{(n-t)^{2}}$$
 si $t \in [0,1]$

$$0 \quad \text{si} \quad t \notin [0,1]$$

Venos que $g_{\rm p}$ es densidod de probobilidos pues $\int_{-\infty}^{\infty} g_{\rm p}(x) dx = 1$, $g_{\rm p}(x) \ge 0$ $\forall x$