CM2606 Data Engineering

Data Warehousing 01

Week 05 | Piumi Nanayakkara

Learning Outcomes

- Covers LO1 and LO2 for Module
- On completion of this lecture, students are expected to be able to:
 - Explain the concept of a data warehouse and a data mart
 - Identify and describe dimensional modelling and different schemas available

CONTENT

- Importance of a Datawarehouse
- Data Mart
- Dimensional Modelling
 - Terminology
 - Schemas
 - Dimension and Fact Tables
 - Characteristics & Types

Data Pipeline: Common Usage

Data Warehouse

- A data warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of data in support of management's decisionmaking process. – Bill Inmon, Father of Data Warehousing
- **Subject-Oriented**: used to analyze a particular subject area. E.g., Sales
- **Integrated:** Integrates data from multiple data sources.
- **Time-Variant:** Historical data is kept
- **Non-volatile:** Once data is in the data warehouse, it will not change.

Why is it needed?

- Need of an analytical database for analysis and reporting OLAP (Online Analytical Processing)
 - Production databases are optimized for writes OLTP (Online Transactional Processing)
- Avoid disrupting the production databases
- Consolidate data from multiple sources
- Need for single source of truth
- To break the data silos

Data Silos

- Named after the structures farmers use to store different types of grain
- A collection of data held by one department
 - Not fully or easily accessible for other departments
- Disadvantages:
 - Create a data barrier
 - Inconsistencies in data
 - Hard for leaders to get a holistic 360° view

Additional Benefits

- Make information accessible easily
 - Centralized Storage
 - Supports analytical reporting (OLAP), querying and decision making
- Present information timely and consistently
 - Daily/hourly or near real time
 - Credible, quality assured data
- **Provides Security**
 - Access controls
 - Data Masking and encryption
 - Separate from operational database

Data Mart

- Small scale implementation when your organization does not need a fully fledged Enterprise Data Warehouse
- Contains a subset of data that is stored in a data warehouse focusing on a particular subject area
- Draw on fewer, more specialized data sources.
- Easy to implement and cost-effective
- Single subject matter expert can define its structure and configuration.

Data Mart Creation

- Bottom-Up Approach
 - ETL loads the data into the Data Marts
 - Data warehouse could be built as the aggregate of all data marts.
- Top-Down Approach
 - ETL loads information to the Data Warehouse directly.
 - Data Marts are created based on the data loaded to warehouse
 - Provides a consistent view of information flow

Top-Down Approach

1/15/2022

Types of Data Mart

- Dependent Data Mart
 - Top-Down Approach
 - Data Marts are always created based on central data warehouse
- Independent Data Mart
 - Data Mart Directly source data from row data sources
 - May extend to create a central data warehouse (bottom-up approach)
- Hybrid Data Mart
 - Data is fed from both row data sources as well as central data warehouse
 - Useful when a user wants an ad hoc integration

Dimensional Modelling

- Used to represent 3NF data in a relational database differently in a data warehouse
- Main goal is to improve data retrieval whereas in Normal Form modelling focus is to remove redundancies.
- Dimensional Modelling happens in logical layer which can be mapped to any database in physical layer
 - Relational or Multi-Dimensional databases
- A dimensional model includes fact tables and lookup tables.
 - Fact tables connect to one or more lookup tables
 - Dimensions and hierarchies are represented by lookup tables.
 - Attributes are the non-key columns in the lookup tables.

Dimensional Modelling: Terminology

- Fact Table: Table that contains the measures of interest with the appropriate granularity.
 - E.g., Sales amount by store by day, Sales amount by product per month
- Dimensions: Different aspects of the fact in consideration
 - E.g., Time Dimension, Store Dimension, Product Dimension
- Hierarchy: Relationship between different attributes within a dimension
 - E.g., Possible hierarchy for time dimension: Year \rightarrow Quarter \rightarrow Month \rightarrow Day
- Dimension / Lookup Table: Table that contains attributes of a dimension
 - E.g., Store Dimension table containing Store ID, Store Name, Store Size

Dimensional Modeling: Schemas

- A database schema defines how the data is organized and how the relations among them are associated.
- When performing dimension modelling the atomic data is loaded into dimensional structures. Then the dimensional models / schemas are generated or build around the business processes.
- Dimensional modeling schemas provide techniques to join facts and dimension
- Dimensional models are scalable and can easily accommodate unexpected new data

Star Schema

- Bunch of relational database tables whose relationships form a star
- A fact table in the middle connected to a set of dimension tables
- The fact tables are in 3NF form, and the dimension tables are in denormalized form.

Snowflake Schema

- An extension of star schema where some dimensional hierarchies are normalized into a set of smaller dimension tables.
- This forms a shape of a snowflake
- No redundancy, thus less storage.
 The tables are easy to manage and maintain
- However, due to this, more joins would be required when querying.

Galaxy / Fact Constellation Schema

 A group of different fact tables that have few similar dimensional tables

Image Source

Fact Tables: Characteristics

- Each row represents direct facts and connected to associated dimension tables via foreign keys
- Primary key is a composite key made up of all or a subset of foreign keys
 - A surrogate key can also be created to work as a primary key.
- Usually, the fact table is in third-normal form (3NF), while dimensional tables are denormalized.
- Grain of a fact table indicates level at which information is measured.
 - E.g., One row for per store / per product / per Day

Types of Facts

- Additive: Can be summed up through all the dimensions in the fact table.
 - E.g., Table containing sales transactions per product in each store :

Date, Store Id, Product Id, Sales Amount

- **Semi-Additive:** Can be summed up for some of the dimensions in the fact table, but not the others.
 - E.g., Table recording the current balance for each account at the end of each day: Date, Account no, Current Balance
- **Non-Additive:** Cannot be summed up for any of the dimensions present in the fact table.
 - E.g., Table containing sales transactions per product in each store :
 - Date, Store Id, Product Id, **Unit Price**, Sales Quantity

Types of Fact Tables

Transaction Fact Table:

- Represent an event that occurs at any instantaneous point in time.
- Capture lowest grain data / most detailed level
- Data is generally in additive nature
- E.g., Record Transaction in a PoS (Point of Sales) System:

Timestamp, Customer Id, Product Id, Qty, Store Id, Price

Snapshot (Periodic) Fact Table:

- Describes the state of things in a particular instance of time
- The 'grain' or 'level of resolution' is the period, not the individual transaction
- E.g., Fact table recording the current balance for each account at the end of each day:

Date, Account no, Current Balance

- Provide an overview of the trend lines in the key performance indicators
- A transaction fact table could be used as a source for this

Types of Fact Tables

Accumulated / Cumulative Fact Table:

- Describes what has happened over a period, in a given process with definite start and end
- Will be filled when an order goes through the cycle
- Grain: One row per entire lifetime of an event
- E.g., Fact Table containing all the facts related to order processing

Order Date, Invoice Date, Shipment Date, Return Date, Delivery Date, Store Id, Invoiced Qty, Ordered Qty, Shipped Qty, Returned Qty

Fact less Fact Table:

- Transaction fact tables which contain no measures.
- E.g., Student taking a class of a certain lecturer:

Student Id, Lecturer Id, Module Code, Semester ID

Types of Dimensions

Conformed Dimension:

- Dimension that is shared across multiple data marts or subject areas.
- Possible to use the same dimension table across different projects without making any changes (Conforms to all Fact tables)
 - E.g., Time Dimension Table, definition of a year should be same for both HR and Finance
- Guarantees consistent reporting across organization

Junk Dimension:

- Grouping of typically low cardinality attributes,
- It contains different or various attributes which are unrelated to any other attribute.
 - E.g., Payment Modes (Cash or Credit Card) and Store Types (Super Market or Hyper Market) in a Sales Transaction
 - Create a JUNK dimension tables containing rows for possible combinations of above two fields. Add a surrogate key and use it in FACT table

Types of Dimensions

Degenerated Dimension:

- A dimension that is derived from fact table and does not have its own dimension table
 - E.g., Order No. in a Sales fact table

Role Playing Dimension:

- Dimensions which are often used for multiple purposes within the same database
 - E.g., Using date dimension for "order date", "invoice date", and "shipment date". Using Customer Address as "Billing Address" and "Shipping Address"
- If we use single dimension table called "Date", all above dates would have the same value
- Solution: Create multiple views from the dimension table and link them to the fact table

Frequency of change in Dimensions

- Unchanging / Static Dimensions (UCD)
 - Dimensions values are static and will not change.
 - E.g., Birthdate of a customer
- Slowly Changing Dimension (SCD)
 - Attribute values changes slowly over time
 - E.g., Address and phone number of a customer.
- Rapidly Changing Dimension (RCD)
 - Attribute values changes rapidly leading to performance implications
 - E.g., Weight and BMI of a patient

- Organizations need to keep track of changes in these dimension values
- There are few approaches to handle this known as SCD types:
- Type 0: Always retains original
- Type 1: Keeps latest data, old data is overwritten
 - There's no historical data, easy maintenance, reduce size

- Type 2: Keeps the history of old data by adding new row
 - Not recommended where a new attribute could be added in future

Customer ID	Name	Mobile No	Effective From	Effective Till	Flag
123	A. Perera	+94123456	2022-01-01	2022-01-31	0
123	A. Perera	+94987654	2022-01-31	Null	1

- Type 3: Adds new attribute to store changed value
 - Keeps limited history about changed data

Customer ID	Name	Previous Mobile No	Current Mobile No
123	A. Perera	+94123456	+94987654

• Type 4: Uses separate history table

Original Table:

Customer ID	Name	Mobile No
123	A. Perera	+94987654

History Table:

Customer ID	Name	Mobile No	Created Date
123	A. Perera	+94123456	2022-01-01
123	A. Perera	+94987654	2022-01-31

• Type 6 : Combination of type 1, 2 and 3

Customer ID	Name	Current Mobile No	Previous Mobile No	Effective From	Effective To	Flag
123	A. Perera	+94123456	+94000111	2022-01-01	2022-01-31	0
123	A. Perera	+94987654	+94123456	2022-01-31	Null	1

Handling Rapidly Changing Dimensions

 Separate RCDs into separate dimension table and connect to main dimension via a mini dimension

Image Source

Surrogate Key for Dimension tables

- Anonymous integer primary key
- Generated as a sequence and not driven by application data
- When data is accumulated from multiple sources values of the same column (primary Key) may be of different formats
- When adding duplicate rows (e.g., SCD 2), primary key would be repeated
- Due to small size very effective when joining with fact table

Further Reading

The Data Warehouse Toolkit,: The Definitive Guide to Dimensional Modeling, 3rd Edition by Ralph Kimball (Author), Margy Ross (Author)