Exercice 1 LUNETTE ASTRONOMIQUE ET OBSERVATIONS DE MARS (10 points)

Partie A – Distance maximale Terre-Mars permettant d'observer la calotte polaire Nord

1. La lentille L₁ est tournée vers l'objet observé : il s'agit de l'**objectif**.

La lentille L₂ est du côté de l'œil de l'observateur : il s'agit de l'**oculaire**.

2. Justification non demandée : Les rayons incidents issus de A_{∞} sont parallèles à l'axe optique, ils convergent donc au foyer image F'_1 de l'objectif.

Les rayons passent par le foyer objet F₂ de l'oculaire, alors ils émergent de la lunette parallèlement à l'axe optique.

3. Justification non demandée : Le rayon 3 passe par le centre optique O₁ sans être dévié.

Le point image intermédiaire B₁ est situé à l'intersection de ce rayon 3 et du plan focal image de L₁.

Le rayon 4 émerge de L₁ en passant par B₁.

Pour tracer les rayons émergeants de L₂, on crée un rayon issu de B₁ passant par O₂ sans être dévié. Comme B₁ est dans le plan focal objet de L₂ alors tous les rayons issus de B₁ émergent parallèlement entre eux, donc parallèlement au rayon créé. Le point image définitive B' est alors rejeté à l'infini.

4. Angle α

5. D'après les données, une lunette astronomique est afocale si elle forme l'image à l'infini d'un objet situé à l'infini. C'est bien le cas ici, l'objet $A_{\infty}B_{\infty}$ est à l'infini ainsi que son image définitive A'B'.

Visibilité de la calotte polaire

6. Grossissement : $G = \frac{\alpha'}{\alpha}$.

7. Dans le triangle $O_1A_1B_1$: $\tan\alpha = \frac{A_1B_1}{O_1A_1} = \frac{A_1B_1}{f'_1} \approx \alpha$ (approximation des petits angles).

Dans le triangle $O_2A_1B_1$: $\tan\alpha' = \frac{A_1B_1}{O_2A_1} = \frac{A_1B_1}{f_2'} \approx \alpha'$ (approximation des petits angles).

Ainsi,
$$G = \frac{\alpha'}{\alpha} = \frac{A_1B_1}{f'_2} \times \frac{f'_1}{A_1B_1} = \frac{f'_1}{f'_2}$$
.

8. Pour que l'objet soit observable dans la lunette, il faut que $\alpha' > \theta_0$.

Comme
$$G = \frac{\alpha'}{\alpha}$$
 alors $\alpha' = G \cdot \alpha$ et comme $G = \frac{f'_1}{f'_2}$ alors $\frac{f'_1}{f'_2} \cdot \alpha > \theta_0$

$$\alpha_{\min} = \frac{f_2'}{f_1'} \cdot \theta_0$$

$$\alpha_{\min} = \frac{20 \text{ mm}}{910 \text{ mm}} \times 2,7 \times 10^{-4} \text{ rad} = 5,9 \times 10^{-6} \text{ rad}$$

9.
$$\tan \alpha = \frac{d}{D}$$
 $\operatorname{donc} D = \frac{d}{\tan \alpha} \approx \frac{d}{\alpha}$.

$$D_{\text{max}} = \frac{10^3 \text{ km}}{5.9 \times 10^{-6} \text{ rad}} = 10^8 \text{ km}$$

10. La distance maximale entre Mars et la Terre est de 2,5 U.A., soit $2.5 \times 1.50 \times 10^{11}$ m = 3.75×10^{11

Admettons que d=1000 km alors $D_{\text{max}}=1,685\times10^8$ km < D alors la calotte ne sera pas observable.

Lorsque Mars est au plus près de la Terre, alors D = 0.5 U.A. = $0.5 \times 1.50 \times 10^{11}$ m = 7.5×10^{10} m, en conservant qu'un seul chiffre significatif $D = 8 \times 10^{10}$ m = 8×10^{7} km < D_{max} alors la calotte polaire est visible.

. Ainsi la calotte est visible seulement à certains moments où Mars n'est pas trop éloignée de la Terre.

Partie B - Mise en température avant observation

- **11.** Le transfert thermique a toujours lieu du corps chaud vers le corps froid. Donc ici, de la lunette à $\theta_0 = 19.5^{\circ}$ C vers l'air extérieur à $\theta_e = 9.0^{\circ}$ C.
- **12.** Pour un système au repos, la variation d'énergie interne ΔU d'un système est égale à la somme des travaux et des transferts thermiques $Q: \Delta U = W + Q$.
- **13.** Ici le système n'échange pas de travail avec le milieu extérieur alors W=0 alors $\Delta U=Q$. D'autre part $\Delta U=C.\Delta\theta$, alors $Q=C.\Delta\theta$

On a aussi
$$\Phi = \frac{Q}{\Delta t}$$
, soit $Q = \Phi \cdot \Delta t$.

D'après la loi de Newton $\Phi = h.S.(\theta_e - \theta)$, donc $Q = h.S.(\theta_e - \theta).\Delta t$

En égalant les deux expressions de la chaleur on vérifie $C.\Delta\theta = h.S.(\theta_e - \theta).\Delta t$

14.
$$C.\Delta\theta = h.S.(\theta_e - \theta).\Delta t$$

$$C.\frac{\Delta\theta}{\Delta t} = h.S.(\theta_e - \theta)$$

En faisant tendre Δt vers zéro, alors $\frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$.

$$C.\frac{d\theta}{dt} = h.S.(\theta_e - \theta)$$

$$\frac{d\theta}{dt} = \frac{h.S}{C}.(\theta_e - \theta)$$

$$\frac{d\theta}{dt} = \frac{h.S}{C}.\theta_{e} - \frac{h.S}{C}.\theta$$

$$\frac{d\theta}{dt} + \frac{h.S}{C}.\theta = \frac{h.S}{C}.\theta_{e}$$

En posant $\tau = \frac{C}{h.S}$, on retrouve l'équation différentielle proposée $\frac{d\theta}{dt} + \frac{\theta}{\tau} = \frac{\theta_e}{\tau}$.

15. Pour éviter totalement les turbulences expérimentales, la température de la lunette doit être égale à celle de l'air extérieur $\theta_e = 9^{\circ}$ C.

La solution proposée est $\theta = A.e^{-\frac{t}{\tau}} + B$

Si l'on attend très très longtemps $t \to \infty$, alors $\theta \to A.e^{-\infty} + B$ or $e^{-\infty} = 0$ ainsi $\theta \to B$ Donc $B = \theta_e = 9^{\circ}C$.

16. La solution est $\theta = A.e^{-\frac{t}{\tau}} + \theta_e$.

À la date t = 0 s, $\theta(t = 0) = \theta_0 = A.e^{-0} + \theta_e$

$$\theta_0 = A + \theta_e$$

$$A = \theta_0 - \theta_e$$

La solution est finalement $\theta = (\theta_0 - \theta_e).e^{-\frac{t}{\tau}} + \theta_e$.

17. Qualitativement, donc sans calculs, on constate que la courbe de la modélisation est très proche des points expérimentaux.

On en déduit que le modèle théorique convient bien.

18.
$$\theta(t = 2.0 \text{ h}) = 10.5 \times e^{-\frac{2.0 \times 3600}{1414}} + 9.0 = 9.1 \text{ °C}$$

L'écart entre la température de la lunette et l'air extérieur est largement inférieur à 1°C, ainsi la lunette est bien « à température ».