

Project Overview

- Problem
 - ReRAM is an emerging memory technology
 - Not commercially available
 - Has the potential to be used in more efficient in-memory computation

Goals

- Create a research vehicle for silicon proving in memory computation utilizing ReRAM
- Create documentation on our process and on solutions to common issues

Broad context

- Machine learning...
 - Bottlenecked by data transfer from memory to CPU
- In memory computation using matrix multiplication can solve the bottleneck

ReRAM

How ReRAM works

ReRAM MAC

ReRAM pros and cons

Pros	Cons
High memory density	Variation due to random noise
Non-volatile memory	Different manufacturing process
Low power consumption	Not an established technology
Ability to scale to smaller processes	

Still an active research area, hope to further enable solutions with this test chip

Users

- Graduate Students
 - Documentation on Efabless process and tool flow for use in research settings
- Undergrad Students
 - Easy to follow lab documentation
 - Gain the ability to bring up a chip in parallel with their regular coursework
- Professor Duwe and Professor Wang
 - Practical example of a crossbar for research and testing
 - Provide valuable resources for the co-curricular chip program

Requirements

- Functional Requirements
 - Design an 8x8 ReRAM crossbar that can perform matrix vector multiplication
 - Create an ADC with a sufficiently high resolution to distinguish between all possible MAC output values
 - 40 MHz clock speed
 - Fit within 1/8th the provided area
 - Characterization of peripheral circuits
- Non-functional Requirements
 - Project Documentation
 - Bring-up plan for testing the fabricated chip

Efabless Fabrication

Efabless runs a shuttle program every few months

- Low-cost development
- Projects are required to be opensource
- Uses open Skywater 130nm process

Design Process

- Create a design
- Integrate it into the caravel harness
- Submit for fabrication

Source 1

Design Tools

- Xschem Schematic capture
- Netgen Used for LVS
- Ngspice Spice simulator
- Magic Layout creation
- Klayout GDSII viewer
- GTKwave Verilog waveforms

Efabless Design Flow

Top level design

- Control circuits Logic analyzer, row, power, and column select, decides what operation is performed
- DAC used during standalone operation
- Power select selects the voltage values being used
- ADC and TIA network Convert ReRAM analog output to a logic analyzer compatible digital output

Crossbar

8x8 used for our design

The ReRAM cell

ReRAM operations

Write - set

- Positive voltage across the cell
- Wordline selects row

ReRAM set

ReRAM operations

Write - reset

- Negative voltage across the cell
- Wordline selects row

ReRAM reset

ReRAM Operations

MAC/read

- Currents add
- Resistor multiplies
 - I = VG
 - G = 1/R

Trans-Impedance Amplifier (TIA)

- Converts input current to output voltage
- Desired TIA characteristics
 - Linear output
 - High trans-impedance gain
 - Low input impedance

Trans-Impedance Amplifier (TIA)

- Op-Amp Architecure Considerations
 - 2 stage
 - Increased Gain
 - BW dependant on first

Trans-Impedance Amplifier (TIA)

- Folded Cascode Architecure
 - Gain of 96.4dB
 - Phase margin of 58 degrees
 - Input Range 0 to 1.35V
 - Output range 0.2mV to 1.72V
 - Gain bandwidth product of 89MHz

Design doc: Section 5.7.3 (Pg 26-27)

Sec 4.3.2 (Pg 18)

Analog to Digital Converter

- Converts analog voltage to digital code
- Desired ADC characteristics
 - Linear output
 - 4 effective number of bits (ENOB)
 - Sampling frequency of 40MS/s
 - No missing codes

Analog Digital Converter

- Flash ADC
 - Simple
 - Fast
- 4-bit resoultion
- Integral non-linearity (INL) 0.62 LSBs
- Effective number of bits (ENOB) based INL 3.69
- Measured at 40MS/s sampling
 Rate

Design doc: Section 5.7.5 (Pg 28-30)

Sec 4.3.2 (Pg 16-17)

Comparator

- Desired Comparator characteristics
 - Fast slew rate
 - Rail to rail outputs
 - High input impedance
 - Low offset voltage

Design doc:
Section 5.7.2 Sec 4.3.2
(Pg 25) (Pg 17)

Comparator

- StrongARM Comparator
 - Zero static power consumption
 - Rail to rail outputs
 - Reduction in input referred offset voltage
- Results
 - Slew rate 1493.42V/us
 - Output range 0 to 1.8V

Comparator Layout

- Implemented using a common centroid approach
 - Approach aimed to decrease effects of mismatch
 - Requires parallel device interconnections and dummy devices
- Created a TCL script to assist device generation and placement in Magic VLSI
 - Not an ideal solution

Priority Encoder

- Converts to binary encoding
- Fully digital component
 - Verilog to combinational circuit conversion achieved with an .awk script
 - Synthesized and hardened through Openlane

```
3 module Priority_Encoder_16t4 (
4
5     ifdef USE_POWER_PINS
6     input VPWR,
7     input VGND,
8     endif
9     input in0,
10     input in1,
11     input in2,
12     input in3
```


ADC Layout

System on Chip

- The SoC includes multiple useful components for our application:
 - Riscv instruction set
 - Built in C compiler
 - Logic Analyzer
 - On chip memory
 - GPIO from the user space to off chip
 - Built counter/timer

Noise breakdown

- There are 4 sources of noise present in our device:
 - Thermal noise, shot noise, and flicker noise are not significant enough to effect our design
 - Skywater has clear temperature ranges for device operations
 - Random Telegraph Noise (aka burst noise)
 - The sky130nm technology uses halfnium-oxide memristors
 - Memristors like hafnium-oxide are more susceptible to RTN
 - Best way to effectively characterize noise in our device is to test the physical devices acquiring characterizations for it in the process.

[7] M. Maestro et. al

Risk Mitigation

- Memristor and CMOS Modeling Issues
 - Risk: Inaccurate device models caused by the use of binning models and BSIM4
 - Mitigation: Explore open-source SPICE models, document current issues, propose future solutions.
- Fabrication Errors
 - Risk: Fabrication defects that aren't attributed to our design
 - Mitigation: Detailed bring-up plan with testing methods, acknowledge limitations in preventing fabrication errors.

Conclusion

- 8x8 crossbar was designed and tested as well as being verified to pass precheck
- Created appropriate periphery devices to interface with the crossbar
- Created documentation on our design as well as solutions to any common issues to help reduce future teams struggles

Supplementary Slides

8x8 Layout

ReRAM Simulation Issues

- ReRAM is unable to be simulated correctly
- Due to transistor models inherently being hard coded as one directional
- See section 5.7.1 in the design document

ADC layout

Definitions

- DRC : Design Rule Check
- LVS: Layout vs Schematic
- MPW: Multi-Project Wafer
- Efabless: Chip design company
- ReRAM: Resistive Random Access Memory
- ASIC: Application Specific Integrated Circuit
- ADC: Analogue to Digital Converter
- DAC: Digital to Analogue Converter
- TIA: Transimpedance Amplifier

Timeline

Tasks		Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
Tusks													
Phase 1: Tool setup / ReRAM research	STATUS												
Learn about open source tools	Done												
Learn how ReRAM works and its benefits	Done												
Phase 2: Project and component research													
Research architectures for ADC and TIA	Done												
Determine the best way to interface with our design	Done												
Research ReRAM crossbar architectures	Done												
Phase 3: Component design and verification													
Create schematics	In Progress												
Create layouts													
Each circuit must pass both DRC and LVS													
Phase 4: Integration of all components													
Create a top-level schematic													
Create a top-level layout													
Top-level design passes LVS													
Testing to verify design fuctionality and find mistakes													
Circuit passes MPW precheck													
Phase 5: Finalize													
Create design documentation	In Progress												
Create a bring-up plan													
Submit our design to Efabless MPW													

Contributions - Gage Moorman

- ADC design and test
- TIA design and test

Contributions - Konnor Kivimagi

- Fixed ReRAM precheck issues
- Analog tool setup
- Designed and simulation of the ReRAM crossbar

Contributions - Nathan Cook

- Noise analysis
- SoC integration
- Embedded Code development

Contributions - Jason Xie

- Analog layout
- Digital tool setup

ReRAM IV Curve

Sources

- 1) https://efabless.com/chipignite
- 2) https://web.eecs.umich.edu/~zhengya/papers/chou_micro19.pdf
- 3) <u>http://opencircuitdesign.com/magic/</u>
- 4) <u>https://semiwiki.com/semiconductor-manufacturers/tsmc/287672-in-memory-computing-for-low-power-neural-network-inference/</u>
- 5) Tony Chan Carusone, D. Johns, and K. W. Martin, *Analog integrated circuit design*. Hoboken, Nj Wiley, 2012.
- 6) B. Razavi, "The StrongARM Latch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 12-17, Spring 2015, doi: 10.1109/MSSC.2015.2418155.
- 7) https://www.sciencedirect.com/science/article/pii/S0038110115002385