Mapping for Hurricane

Hao Shen

2020/10/27

Summary

In this assignment, we mainly plot 2 maps for hurricanes Floyd-1999 and Allison-2000 using ggplot2 and tmap packages respectively.

Obtain map data

In this step, we obtain county map data from map package and for each county, we merge its FIPS information within map data.

```
data(county.fips)
M=st_as_sf(map('county',plot=F,fill=T))
colnames(county.fips)[2]=colnames(M)[1]
M=left_join(M,county.fips,'ID')
```

Obtain hurricane data

In this step, we obtain hurricanes' track and rainfall data of Floyd - 1999 and Allison - 2000 from hurricaneexposuredata package.

```
Floyd_track=force(hurr_tracks)%>%
  filter(storm_id=='Floyd-1999')
Floyd_rain=force(rain)%>%
  filter(storm_id=='Floyd-1999')%>%
  group_by(fips)%>%
  summarise(storm_id=storm_id[1],precip=sum(precip))%>%
  mutate(fips=as.numeric(fips))
Floyd_rain=right_join(M,Floyd_rain,'fips')
Allison track=force(hurr tracks)%>%
  filter(storm_id=='Allison-2001')
Allison_rain=force(rain)%>%
  filter(storm_id=='Allison-2001')%>%
  group_by(fips)%>%
  summarise(storm_id=storm_id[1],precip=sum(precip))%>%
  mutate(fips=as.numeric(fips))
Allison_rain=right_join(M,Allison_rain,'fips')
```

Select Allison-2000 data

Since the Allison - 2000 only requires data with storm distance less than 500 and cumulative rainfall larger than 175mm, we need to select these data and create $Allison_rain_limit$ for futher mapping.

```
Allison_dist=force(closest_dist)%>%
filter(storm_id=='Allison-2001',storm_dist<500)

Allison_rain_limit=Allison_rain%>%
filter(precip>175,fips%in%Allison_dist$fips)
```

Prepare data for tmap

Since the tmap requires track data with sp format, here we transform original track data.

```
t_Floyd_track=cbind(Floyd_track$longitude,Floyd_track$latitude)%>%
Line()%>%Lines(ID='Floyd-1999')%>%
list()%>%SpatialLines()

t_Allison_track=cbind(Allison_track$longitude,Allison_track$latitude)%>%
Line()%>%Lines(ID='Allison-2001')%>%
list()%>%SpatialLines()
```

Mapping with ggplot2

Now we use ggplot2 for mapping, with $geom_sf$ function for rainfall mapping and $geom_path$ function for track mapping.

```
Floyd_g=ggplot()+
  geom_sf(data=Floyd_rain,mapping=aes(fill=precip))+
  scale_fill_steps(low='white',high='red',name='Rainfall (mm)')+
  geom path(data=Floyd track,mapping=aes(x=longitude,y=latitude))+
  ggtitle('Floyd-1999')+
  theme(plot.title=element_text(hjust=0.5),
        panel.background=element_blank(),
        panel.border=element_blank(),
        axis.title=element_blank(),
        axis.text=element_blank(),
        axis.ticks=element_blank())
Allison_g=ggplot()+
  geom_sf(data=Allison_rain)+
  geom_sf(data=Allison_rain_limit, mapping=aes(fill=precip))+
  scale_fill_steps(low='white',high='red', name='Rainfall (mm)')+
  geom_path(data=Allison_track,mapping=aes(x=longitude,y=latitude))+
  ggtitle("Allison-2001")+
  theme(plot.title=element text(hjust=0.5),
        panel.background=element_blank(),
        panel.border=element_blank(),
        axis.title=element blank(),
        axis.text=element blank(),
        axis.ticks=element_blank())
```


Mapping with tmap

Now we use tmap for mapping, with $tm_polygons$ function for rainfall mapping and tm_lines function for track mapping.

Floyd-1999

Allison-2001

