The Role of Representation Learning in Continual Learning

1 Preliminary

Let $d, k, r, t \in N, \epsilon \in (0, 1/2)$. The continual learning problem is defined over k environments $D_1, ..., D_k$. After learning data D_t from task t, the learner f(x) consists of two parts:

- 1. representation function $R_{w_t}(x) \in \mathbb{R}^r$
- 2. task-dependent linear classifiers $v_t \in \mathbb{R}^r$

Define the matrix $V_t = [v_1, v_2, ..., v_t]$ where each column is a classifier. The prediction of the t-th environment is made by $f(x) = \langle v_t, R_{w_t}(x) \rangle$.

Assumption 1 (Global Representation). There exists a function R^* and a sequence of linear classifiers $v_1^*, ..., v_k^* \in \mathbb{R}^r$ such that for any $(x, y) \sim D_i(i \in [k])$, the label y satisfies:

$$y = \langle v_i^*, R^*(x) \rangle + z, \ z \sim \mathcal{N}(0, \sigma^2)$$
 (1)

2 Proof for Upper bound of All Tasks

Suppose we can find R_{w_k} such that for all k:

$$|R_{w_k}(x)v_k - y_k|^2 < \delta \tag{2}$$

$$R_{w_k} V_{k-1} = R_{w_{k-1}} V_{k-1} \tag{3}$$

Then first, for V_{k-2} :

$$|R_{w_k}(x)V_{k-2} - R_{w_{k-1}}(x)V_{k-2}|^2 \le |R_{w_k}(x)V_{k-1} - R_{w_{k-1}}(x)V_{k-1}|^2 = 0$$
 (4)

Due to triangle inequality, we can see

$$|R_{w_k}(x)V_{k-2} - R_{w_{k-2}}(x)V_{k-2}|^2 \le |R_{w_k}(x)V_{k-2} - R_{w_{k-1}}(x)V_{k-2}|^2$$
 (5)

$$+|R_{w_{k-1}}(x)V_{k-2} - R_{w_{k-2}}(x)V_{k-2}|^2 = 0 + 0 = 0$$
 (6)

And again:

$$|R_{w_k}(x)V_{k-3} - R_{w_{k-2}}(x)V_{k-3}|^2 \le |R_{w_k}(x)V_{k-2} - R_{w_{k-2}}(x)V_{k-2}|^2 = 0$$
 (7)

Due to triangle inequality, we can see

$$|R_{w_k}(x)V_{k-3} - R_{w_{k-3}}(x)V_{k-3}|^2 \le |R_{w_k}(x)V_{k-3} - R_{w_{k-2}}(x)V_{k-3}|^2$$
 (8)

$$+|R_{w_{k-2}}(x)V_{k-3} - R_{w_{k-3}}(x)V_{k-3}|^2 = 0 (9)$$

Therefore, we can prove that

$$|R_{w_k}(x)V_{k-t} - R_{w_{k-t}}(x)V_{k-t}|^2 = 0, \quad \forall t \in [0, 1, 2, ..., k-1]$$
(10)

From Eq. 10 we can see that:

$$|R_{w_k}(x)v_{k-t} - R_{w_{k-t}}(x)v_{k-t}|^2 = 0 (11)$$

Combine Eq. 11 and 2, we come up our goal:

$$|R_{w_k}(x)v_{k-t} - y_{k-t}|^2 \le |R_{w_k}(x)v_{k-t} - R_{w_{k-t}}(x)v_{k-t}|^2 + |R_{w_{k-t}}(x)v_{k-t} - y_{k-t}|^2 < \delta$$
(12)

Hence, we prove that for all previous task k-t, the error is bounded.

3 Idea for Nonlinear Representation

Assumption 2 (Distribution assumption). For any $i \in [k]$, the distribution of x, p(x), is the same. However, p(y|x) is different.

Goal: Find R_{w_t} , V'_{t-1} and v_t such that for all t > 1, $|R_{w_t}(X_t)v_t - \mathbf{y}_t|^2 < \epsilon$ and $R_{w_t}(x)V'_{t-1} = R_{w_{t-1}}(x)V_{t-1}$, where $\epsilon \in (0, \frac{1}{2})$, V'_{t-1} is learned in task t, $X_t \in \mathbb{R}^{n_1 \times d}$ and $\mathbf{y}_t \in \mathbb{R}^{n_1}$ means the n_1 collected samples of input matrix and output vector.

Algorithm: The optimization goal is as follows:

$$\min_{w_t, v_t} |R_{w_t}(X_t)v_t - \mathbf{y}_t|^2$$
subject to $R_{w_t}(X_t)V'_{t-1} = R_{w_{t-1}}(X_t)V_{t-1}$
(13)

Follow section 5 in [1], we use Guassian width to characterize the complexity of representation function class Φ where $\forall R_w \in \Phi$.

Definition 3.1 (Gaussian width). Given a set $K \subset \mathbb{R}^M$, the Gaussian width of K is defined as

$$\mathcal{G}(\mathcal{K}) = \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})} \sup_{\mathbf{v} \in \mathcal{K}} \langle \mathbf{v}, \mathbf{z} \rangle$$
 (14)

and we use Gaussian width to measure the complexity of Φ that depends on the input data \mathcal{X} :

$$\mathcal{F}_{\mathcal{X}}(\Phi) = \{ \mathbf{a} \in \mathbb{R}^{n_1} : |\mathbf{a}|_F = 1, \exists R_w, R'_w \in \Phi s.t. \mathbf{a} \in span([R_w, R'_w]) \}$$
 (15)

Theorem 3.1. Similar to Claim 5.3 in [1], Let \hat{R}_{w_t} and $\hat{v}_1, ..., \hat{v}_t$ be the optimal solution to 13, Then with probability at least $1 - \delta$ we have

$$|R_{w_t}^*(X_t)v_t^* - \hat{R}_{w_t}(X_t)\hat{v}_t|^2 \le \sigma^2(\mathcal{G}(\mathcal{F}_{\mathcal{X}}(\Phi)) + \sqrt{\log\frac{1}{\delta}})^2$$
 (16)

Proof. By the optimality of \hat{R}_{w_t} and $\hat{v}_1,...,\hat{v}_t$ for 13, we know

$$|\hat{R}_{w_t}(X_t)\hat{v}_t - \mathbf{y}_t|^2 \le |R_{w_t}^*(X_t)v_t^* - \mathbf{y}_t|^2$$
 and
$$\hat{R}_{w_t}(X_t)\hat{V}_{t-1} = R_{w_{t-1}}(X_t)V_{t-1}$$
 (17)

Recall Assumption 1, we get

$$|R_{w_t}^*(X_t)v_t^* + \mathbf{z}_t - \hat{R}_{w_t}(X_t)\hat{v}_t|^2 \le |\mathbf{z}_t|^2$$
(18)

which indicates

$$|R_{w_t}^*(X_t)v_t^* - \hat{R}_{w_t}(X_t)\hat{v}_t|^2 \le 2\langle \mathbf{z}_t, R_{w_t}^*(X_t)v_t^* - \hat{R}_{w_t}(X_t)\hat{v}_t \rangle \tag{19}$$

Denote $\mathbf{a} = R_{w_t}^*(X_t)v_t^* - \hat{R}_{w_t}(X_t)\hat{v}_t \in \mathbb{R}^{n_1}$, the above equality reads $|\mathbf{a}|_F^2 \leq 2\langle \mathbf{z}_t, \mathbf{a} \rangle$. We can get

$$|\mathbf{a}|_F \le 2\langle \mathbf{z}_t, \frac{\mathbf{a}}{|\mathbf{a}|_F} \rangle \le 2 \sup_{\bar{\mathbf{a}} \in \mathcal{F}_{\mathcal{X}}(\Phi)} \langle \bar{\mathbf{a}}, \mathbf{z}_t \rangle$$
 (20)

By definition 3.1, we know $\mathbb{E}_{\mathbf{z}_t}[\sup_{\bar{\mathbf{a}}\in\mathcal{F}_{\mathcal{X}}(\Phi)}\langle\mathbf{a},\sigma^{-1}\mathbf{z}_t\rangle] = \mathcal{G}(\mathcal{F}_{\mathcal{X}}(\Phi))$. By Chebyshev's inequality, we probability at least $1-\delta$

$$\sup_{\bar{\mathbf{a}}\in\mathcal{F}_{\mathcal{X}}(\Phi)}\langle\bar{\mathbf{a}},\sigma^{-1}\mathbf{z}_{t}\rangle\leq\mathbb{E}_{\mathbf{z}_{t}}[\sup_{\bar{\mathbf{a}}\in\mathcal{F}_{\mathcal{X}}(\Phi)}\langle\mathbf{a},\sigma^{-1}\mathbf{z}_{t}\rangle]+\sqrt{\log\frac{1}{\delta}}=\mathcal{G}(\mathcal{F}_{\mathcal{X}}(\Phi))+\sqrt{\log\frac{1}{\delta}}$$
(21)

Therefore, original objective is bounded by

$$|R_{w_t}^*(X_t)v_t^* - \hat{R}_{w_t}(X_t)\hat{v}_t|^2 \le \sigma^2(\mathcal{G}(\mathcal{F}_{\mathcal{X}}(\Phi)) + \sqrt{\log\frac{1}{\delta}})^2$$
 (22)

4 Few Shot Class Incremental Learning

4.1 Setting

Learner f(x) is composed of two parts: the representation function R(x) and linear classifier v. Few shot class incremental learning problem is defined over T tasks $\{D_0, D_1, ..., D_T\}$, and the corresponding label of D_t is C_t . Different tasks have no overlapped classes, i.e. $\forall i, j$ and $i \neq j, C_i \cap C_j = \emptyset$. First dataset D_0 is bigger than the rest, i.e. $|D_0| >> |D_t|$ for t > 0.

Assumption 3 (Fixed Representation). Assume learner can learn good representation only from the first task. When learning task t > 0, we only train the classifier v and fix R(x).

The goal is to learn new classes C_t from only a few new training examples without forgetting knowledge about old classes C_j , j < t. At the evaluation session after learning task t, test dataset includes samples from previous tasks and current task, i.e. the label space of $C_0 \cup C_1 ... \cup C_t$. Let $\hat{C}_t = C_0 \cup C_1 ... \cup C_t = \{\hat{c}_t^1, \hat{c}_t^2, ..., \hat{c}_t^{n_t}\}$, where n_t is the number of classes from 0-th task to t-th task.

4.2 Linear Representation

Task identity is unknown in the evalution session of class incremental learning, so learner needs to learn v continually. Define v_t as the classifier after learning task t. There are two kinds of classifier:

- (1) $v_t \in \mathbb{R}^m$. It outputs the predicted label \hat{y}_t directly, which is the same as [1].
- (2) $v_t \in \mathbb{R}^{m \times n_T}$. It produces a output vector $o_t \in \mathbb{R}^{n_T}$, which need an activation function (e.g. softmax function) to predict the probability over all classes.

4.2.1 Ideas of (2)

By fixing $v_{t,i}$, $\forall i \in \hat{C}_{t-1}$, we can fix the probability of all classes in \hat{C}_{t-1} when learning task t. However, this idea cannot maintain good performace of previous tasks since the probability of new tasks might be higher.

References

[1] S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei. Few-shot learning via learning the representation, provably. arXiv preprint arXiv:2002.09434, 2020.