Dependable Hybrid Systems Design: Prelude

Zheng Cheng Dominique Méry

Nov, 2020

Outlines

Introduction to Hybrid Systems

Review of Calculus

Derivatives

Power Rule

Chain Rule

Differential Equations

Design Hybrid Systems in Event-B

Review of Event-B

Develop Theories in Event-E

► Hybrid = Continuous + Discrete behaviors

- ► Hybrid = Continuous + Discrete behaviors
- ► Open-loop vs. Close-loop

- ► Hybrid = Continuous + Discrete behaviors
- ► Open-loop vs. Close-loop
- Ubiquitous

- ► Hybrid = Continuous + Discrete behaviors
- ► Open-loop vs. Close-loop
- Ubiquitous
- Safety

Tool Support for Design Safe Hybrid Systems

Tool Support for Design Safe Hybrid Systems

- Requirement engineering(formal specification)
- Theorem Proving(formal verification)
- Model Checking(formal validation)
- Simulation(real-time animation)

Requirement engineering

- Workflow
 - Rewriting informal requirement into formal specification(preconditions and postconditions)
- ▶ e.g. Event-B, Z, TLA+

Theroem proving

- Workflow
 - Hybrid system safety as a theorem: {Precondition} System {Postcondition}
 - Interacting with a mechanized theorem prover to generate proofs
- ▶ e.g. KeYmaera, HHL, Z3
- Expensive, time consuming

Model Checking

- Workflow
 - Building model, specify its initial states of interest, and safety property
 - Checking every execution of model starting in an initial state always stays within the set of safe states
- e.g. HyTech, SpaceEx, Flow*
- ▶ Undecidable in general

Simulation

- Workflow
 - Building model(behaviors, environment, interactions)
 - ▶ Computational evaluation of a model instance over time
 - Checking evaluation result
- e.g. Ptolemy, Matlab(Simulink, Stateflow), SAMSON
- Inconclusive result (valid only on the chosen input)

Outlines

Introduction to Hybrid Systems

Review of Calculus

Derivatives

Power Rule

Chain Rule

Differential Equations

Design Hybrid Systems in Event-B

Review of Event-B

Develop Theories in Event-E

▶ The rate of change of function f(x), w.r.t. x

- ▶ The rate of change of function f(x), w.r.t. x
- Slope of the tangent line!

- ▶ The rate of change of function f(x), w.r.t. x
- Slope of the tangent line!

$$\frac{df}{dx} \approx \frac{f(x+\delta) - f(x)}{\delta}$$

- ▶ The rate of change of function f(x), w.r.t. x
- Slope of the tangent line!

$$\frac{df}{dx} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

Power Rule

Try
$$f(x) = x^n$$
, (Power Rule): $\frac{df}{dx} = nx^{n-1}$

$$\begin{split} \frac{df}{dx} &\approx \frac{f(x+\delta) - f(x)}{\delta} & \text{(approximation)} \\ &= \frac{1}{\delta}[(x+\delta)^n - x^n] & \text{(rewriting)} \\ &= \frac{1}{\delta}(x^n + nx^{n-1}\delta + \frac{n(n-1)}{2}x^{n-2}\delta^2 ... - x^n) & \text{(Pascal-triangle)} \\ &= \frac{1}{\delta}(nx^{n-1}\delta + O(\delta^2)) \\ &= nx^{n-1} + O(\delta) \end{split}$$

Chain Rule

$$\frac{d}{dx}(f(g(x))) = \dot{f}(g(x)) \cdot \dot{g}(x)$$

Ex:

- $f(x) = cos(x^3)$
- $f(x) = 2^x$
- $f(x) = e^{x^2} \sin(x)$

Differential Equations

Ex: x is the size of a population of procreate bunnies...

- ▶ Population grows at a rate λ proportional to its population size: $\frac{dx}{dt} = \lambda x$
- What is population as a function over time?

▶ Determine C by initial conditions, e.g. $(x_0 \text{ at } t_0)$

Outlines

Introduction to Hybrid Systems

Review of Calculus

Derivatives

Power Rule

Chain Rule

Differential Equations

Design Hybrid Systems in Event-B

Review of Event-B

Develop Theories in Event-B

Review of Event-B

- Context: static properties of Event-B models
 - Sets: user-defined types
 - Constants: static object in development
 - Axioms: presumed properties about sets and constants
 - ▶ Theorems: derived properties about sets and constants

Review of Event-B

- Machine: behavioral properties of Event-B models
 - ► Variables: states
 - ▶ Invariants: properties of variables that always need to hold
 - ► Theorems: derived properties about variables
 - Events: possible state changes

Review of Event-B

- ► Proof obligations: must be proved to show that Event-B models fulfill their specified properties.
 - ► INV: invariant preservation
 - ► FIS: action feasibility
 - **.**..

Develop Theories in Event-B

- ► Theory plugin: more modularize and reusable polymorphic "Context"
- Developed at University of Southampton, still under development
- Installation: http://rodin-b-sharp.sourceforge.net/updates
 - $\blacktriangleright \ \, \mathsf{Modelling} \,\, \mathsf{Extensions} \to \mathsf{Theory} \,\, \mathsf{Feature}$
- Let us develop a theory for real numbers
- Fork: https://github.com/veriatl/LORIA_WEEK1
 - Open model "theory-axiom-reals"

Exercise One (*)

- ▶ Prove: a + b + c = c + b + a on real numbers
- ? How to write this theorem
- ? What is the key to prove this theorem
- ? How to use theory plugin to prove this

Exercise Two (**)

- ▶ Develop the power operator a^b
- ? What are its arguments and results
- ? What is its semantics

Exercise Three (***)

- ► Open model "ex-pattern-const-DE"
- ? What this model does
- ? What is its invariant
- ? What operators are needed to express this invariant, and what are their semantics
- ? How to prove your invariant

Caveats

- \blacktriangleright Axioms inconsistency \rightarrow Introduce when necessary, Prove when you can
- lacktriangle Big fat theories ightarrow Modular theories