Health Care Project

As a part of this project activities below steps were taken into account to reach to meaningful predictions.

1. Import Libraries.

All the necessary libraries such as pandas, numpy, matplotlib, seaborn, etc were imported as shown below.

```
#Importing the libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

2. Load the dataset

The dataset for the given healthcare project has been uploaded.

```
#loading the dataset
health_data = pd.read_csv('1645792390_cep1_dataset.csv')
```

3. Perform preliminary data inspection

For preliminary data analysis, different basic inspection as head, tail, info, shape, statistical measures, etc has been figured out.

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

health_data.shape #Evaluating the shape(Rows, Columns)

health_data.info() #Extracting the information of dataset

health_data.describe() #Extracting the general statistical criteras of dataset

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.039604	1.399340	0.729373	2.31
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.161075	0.616226	1.022606	0.61
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.000000	0.00
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.000000	0.000000	2.00
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.800000	1.000000	0.000000	2.00
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.600000	2.000000	1.000000	3.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.000000	4.000000	3.00
4													-

health_data.columns #Extracting the columns names of dataset

4. Findings on the structure of the data, missing values, duplicates, etc.

```
health_data.isnull().sum() #Checking for the null values
```

age 0 sex 0 ср trestbps chol 0 fbs 0 restecg thalach 0 exang oldpeak 0 slope 0 ca thal target dtype: int64

5. Checking the value count of the dependent variable "target" and plotting the bar graph.

```
#Checking if our dataset is balanced
health_data['target'].value_counts()

1    165
0    138
Name: target, dtype: int64
```

```
#here 1 = male; 0 = female
health_data["target"].value_counts().plot(kind='bar', color=["green","yellow"])
plt.show()
```


6. Creating feature and Dependent variable sets.

```
#Creating feature and Dependent variabe sets
X = health_data.iloc[:,:-1] #all the row , all columns except last one
y = health_data.iloc[:,-1] #all rows and the last column
```

7. Evaluating the features after removing the dependent variable.

```
X.shape
(303, 13)
y.shape
(303,)
```

```
8. Evaluating the testing of the dataset using the sk learn model.
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=90)
from sklearn.ensemble import RandomForestClassifier
#Instanciating class to obj
rclf = RandomForestClassifier(criterion='gini', max depth=7, n estimators=100, random state=5)
rclf.fit(X_train,y_train)
               RandomForestClassifier
RandomForestClassifier(max_depth=7, random_state=5)
```

9. Feature importance

```
#feature importances
rclf.feature_importances_
array([0.08304076, 0.01581108, 0.15361364, 0.07054868, 0.07464994,
       0.00738674, 0.01935261, 0.10792509, 0.05140065, 0.12874262,
       0.06231756, 0.08722058, 0.13799003])
#displaying features
health data.columns
Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
       'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
      dtype='object')
#generating the predictions
y_pred = rclf.predict(X_test)
y_pred
array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
       0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,
       0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1,
       1, 1, 1, 1, 1, 1, 0, 1, 1], dtype=int64)
```

10. Evaluating the Random Forest Classifier accuracy and verifying Cross Validation Model.

```
#Accuracy of our random forest classifier
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,y_pred)
```

```
array([[22, 9],
[ 8, 37]], dtype=int64)
```

```
from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)
```

0.7763157894736842

```
#Cross validation
from sklearn.model_selection import cross_val_score
cross_val_score(rclf,X_train,y_train,cv=10)
```

```
array([0.86956522, 0.7826087, 0.82608696, 0.86956522, 0.7826087, 0.86956522, 0.86956522, 0.77272727, 0.81818182, 0.81818182])
```