Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

DFAs akzeptieren reguläre Sprachen, Nichtdeterministische Endliche Automaten

Prof. Dr. David Sabel

LFE Theoretische Informatik

Wiederholung: Deterministische endliche Automaten

Definition (Deterministischer Endlicher Automat, DFA)

Ein deterministischer endlicher Automat (determinististic finite automaton, DFA) ist ein 5-Tupel $M=(Z,\Sigma,\delta,z_0,E)$ wobei

- Z ist eine endliche Menge von Zuständen,
- Σ ist das (endliche) Eingabealphabet mit $(Z \cap \Sigma) = \emptyset$,
- $\delta: Z \times \Sigma \to Z$ ist die Zustandsüberführungsfunktion (oder nur Überführungsfunktion),
- $z_0 \in Z$ ist der Startzustand und
- $E \subseteq Z$ ist die Menge der Endzustände (oder auch akzeptierende Zustände).

Theorem 4.2.1

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA. Dann ist L(M) regulär.

Theorem 4.2.1

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA. Dann ist L(M) regulär.

Beweis: Konstruiere für DFA M eine reguläre Grammatik G, sodass L(M) = L(G):

Theorem 4.2.1

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA. Dann ist L(M) regulär.

Beweis: Konstruiere für DFA M eine reguläre Grammatik G, sodass L(M) = L(G):

Sei $G=(V,\Sigma,P,S)$ die reguläre Grammatik mit V=Z, $S=z_0$ und

$$P = \{z_i \rightarrow az_j \mid \delta(z_i, a) = z_j\} \cup \{z_i \rightarrow a \mid \delta(z_i, a) = z_j \land z_j \in E\} \cup \{z_0 \rightarrow \varepsilon \mid \mathsf{falls} \ z_0 \in E\}$$

Theorem 4.2.1

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA. Dann ist L(M) regulär.

Beweis: Konstruiere für DFA M eine reguläre Grammatik G, sodass L(M) = L(G):

Sei $G=(V,\Sigma,P,S)$ die reguläre Grammatik mit V=Z, $S=z_0$ und

$$P = \{z_i \to az_j \mid \delta(z_i, a) = z_j\} \cup \{z_i \to a \mid \delta(z_i, a) = z_j \land z_j \in E\} \cup \{z_0 \to \varepsilon \mid \mathsf{falls}\ z_0 \in E\}$$

Leeres Wort: Offensichtlich gilt $\varepsilon \in L(M) \iff \varepsilon \in L(G)$.

Worte w mit $|w| = m \ge 1$:

Theorem 4.2.1

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA. Dann ist L(M) regulär.

Beweis: Konstruiere für DFA M eine reguläre Grammatik G, sodass L(M) = L(G):

Sei $G=(V,\Sigma,P,S)$ die reguläre Grammatik mit V=Z, $S=z_0$ und

$$P = \{z_i \to az_j \mid \delta(z_i, a) = z_j\} \cup \{z_i \to a \mid \delta(z_i, a) = z_j \land z_j \in E\} \cup \{z_0 \to \varepsilon \mid \mathsf{falls}\ z_0 \in E\}$$

Leeres Wort: Offensichtlich gilt $\varepsilon \in L(M) \iff \varepsilon \in L(G)$.

Worte w mit $|w| = m \ge 1$:

$$w = a_1 \cdots a_m \in L(M)$$

Theorem 4.2.1

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA. Dann ist L(M) regulär.

Beweis: Konstruiere für DFA M eine reguläre Grammatik G, sodass L(M) = L(G):

Sei $G=(V,\Sigma,P,S)$ die reguläre Grammatik mit V=Z, $S=z_0$ und

$$P = \{z_i \to az_j \mid \delta(z_i, a) = z_j\} \cup \{z_i \to a \mid \delta(z_i, a) = z_j \land z_j \in E\} \cup \{z_0 \to \varepsilon \mid \mathsf{falls}\ z_0 \in E\}$$

Leeres Wort: Offensichtlich gilt $\varepsilon \in L(M) \iff \varepsilon \in L(G)$.

Worte w mit $|w| = m \ge 1$:

$$w = a_1 \cdots a_m \in L(M)$$

g.d.w. es gibt $z_1, \ldots, z_m \in Z$ mit $\delta(z_{i-1}, a_i) = z_i$ und $z_m \in E$.

Theorem 4.2.1

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA. Dann ist L(M) regulär.

Beweis: Konstruiere für DFA M eine reguläre Grammatik G, sodass L(M) = L(G):

Sei $G = (V, \Sigma, P, S)$ die reguläre Grammatik mit V = Z, $S = z_0$ und

$$P = \{z_i \to az_j \mid \delta(z_i, a) = z_j\} \cup \{z_i \to a \mid \delta(z_i, a) = z_j \land z_j \in E\} \cup \{z_0 \to \varepsilon \mid \mathsf{falls}\ z_0 \in E\}$$

Leeres Wort: Offensichtlich gilt $\varepsilon \in L(M) \iff \varepsilon \in L(G)$.

Worte w mit |w| = m > 1:

$$w=a_1\cdots a_m\in L(M)$$
 g.d.w. es gibt $z_1,\ldots,z_m\in Z$ mit $\delta(z_{i-1},a_i)=z_i$ und $z_m\in E$. g.d.w. $z_0\Rightarrow_G a_1z_1$, für $1\leq i< m$: $a_1\cdots a_{i-1}z_{i-1}\Rightarrow_G a_1\cdots a_iz_i$ und

TCS | 07 DFAs und NFAs | SoSe 2022

 $a_1 \cdots a_{m-1} z_{m-1} \Rightarrow_G a_1 \cdots a_m$, d.h. $z_0 \Rightarrow_G^* a_1 \cdots a_m$

Theorem 4.2.1

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA. Dann ist L(M) regulär.

Beweis: Konstruiere für DFA M eine reguläre Grammatik G, sodass L(M) = L(G):

Sei $G = (V, \Sigma, P, S)$ die reguläre Grammatik mit V = Z, $S = z_0$ und

$$P = \{z_i \to az_j \mid \delta(z_i, a) = z_j\} \cup \{z_i \to a \mid \delta(z_i, a) = z_j \land z_j \in E\} \cup \{z_0 \to \varepsilon \mid \mathsf{falls}\ z_0 \in E\}$$

Leeres Wort: Offensichtlich gilt $\varepsilon \in L(M) \iff \varepsilon \in L(G)$.

Worte w mit |w| = m > 1:

$$w = a_1 \cdots a_m \in L(M)$$

g.d.w. es gibt $z_1, \ldots, z_m \in Z$ mit $\delta(z_{i-1}, a_i) = z_i$ und $z_m \in E$.

$$\text{g.d.w. } z_0 \Rightarrow_G a_1 z_1 \text{, für } 1 \leq i < m \text{: } a_1 \cdots a_{i-1} z_{i-1} \Rightarrow_G a_1 \cdots a_i z_i \text{ und}$$

$$a_1 \cdots a_{m-1} z_{m-1} \Rightarrow_G a_1 \cdots a_m$$
, d.h. $z_0 \Rightarrow_G^* a_1 \cdots a_m$

g.d.w.
$$w = a_1 \cdots a_m \in L(G)$$

Theorem 4.2.1

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA. Dann ist L(M) regulär.

Beweis: Konstruiere für DFA M eine reguläre Grammatik G, sodass L(M) = L(G):

Sei $G=(V,\Sigma,P,S)$ die reguläre Grammatik mit V=Z, $S=z_0$ und

$$P = \{z_i \to az_j \mid \delta(z_i, a) = z_j\} \cup \{z_i \to a \mid \delta(z_i, a) = z_j \land z_j \in E\} \cup \{z_0 \to \varepsilon \mid \mathsf{falls}\ z_0 \in E\}$$

Leeres Wort: Offensichtlich gilt $\varepsilon \in L(M) \iff \varepsilon \in L(G)$.

Worte w mit $|w| = m \ge 1$:

$$w = a_1 \cdots a_m \in L(M)$$

g.d.w. es gibt $z_1, \ldots, z_m \in Z$ mit $\delta(z_{i-1}, a_i) = z_i$ und $z_m \in E$.

 $\text{g.d.w. } z_0 \Rightarrow_G a_1 z_1 \text{, für } 1 \leq i < m \text{: } a_1 \cdots a_{i-1} z_{i-1} \Rightarrow_G a_1 \cdots a_i z_i \text{ und}$

$$a_1 \cdots a_{m-1} z_{m-1} \Rightarrow_G a_1 \cdots a_m$$
, d.h. $z_0 \Rightarrow_G^* a_1 \cdots a_m$

g.d.w.
$$w = a_1 \cdots a_m \in L(G)$$

Daher gilt L(M) = L(G) und somit ist L(M) regulär.

Beispiel: Konstruktion Typ 3-Grammatik aus DFA

DFA $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$ mit

Die erzeugte reguläre Grammatik dazu ist:

$$\begin{split} G &= (\{z_0, z_1, z_2\}, \{a, b\}, P, z_0) \text{ mit } \\ P &= \{z_0 \rightarrow az_1 \mid bz_0, \\ z_1 \rightarrow az_2 \mid a \mid bz_0, \\ z_2 \rightarrow az_2 \mid a \mid bz_2 \mid b\} \end{split}$$

Wird jede reguläre Sprache durch einen DFA akzeptiert?

- Der vorherige Beweis konstruiert:
 "für jeden DFA gibt es eine äquivalente reguläre Grammatik"
- Für die andere Richtung wäre notwendig "für jede reguläre Grammatik gibt es einen äquivalenten DFA"

Problem:

- Produktionen: $A \to aA_1$ und $A \to aA_2$ können in Grammatiken vorkommen
- Konstruktion des determinstischen Automaten zunächst unklar

Daher: Beweis, dass DFAs alle regulären Sprachen akzeptieren, erfolgt auf Umwegen und verwendet nichtdeterministische endliche Automaten

Nichtdeterministische Endliche Automaten

Ideen:

- Zustandswechsel nicht eindeutig, sondern nichtdeterministisch in einen von mehreren möglichen
- D.h. der Automat darf sozusagen "raten", welchen Nachfolgezustand er wählt
- Im Zustandsgraph erlaubt:

- Technisch:
 - ullet DFA $\delta:Z imes\Sigma o Z$ und ein Startzustand
 - NFA $\delta: Z \times \Sigma \to \mathcal{P}(Z)$ und Menge von Startzuständen

Definition NFA

Definition

Ein nichtdeterministischer endlicher Automat

(nondeterministic finite automaton, NFA) ist ein 5-Tupel $(Z, \Sigma, \delta, S, E)$ wobei

- Z ist eine endliche Menge von Zuständen,
- Σ ist das (endliche) Eingabealphabet mit $(Z \cap \Sigma) = \emptyset$,
- $\delta: Z \times \Sigma \to \mathcal{P}(Z)$ ist die Zustandsüberführungsfunktion.
- $S \subseteq Z$ ist die Menge der Startzustände und
- $E \subseteq Z$ ist die Menge der Endzustände.

Akzeptanz beim NFA

"Ein Wort w wird vom NFA akzeptiert, wenn es einen Pfad von einem Startzustand zum Endzustand entlang w gibt "

Definition (Akzeptierte Sprache eines NFA)

Sei $M = (Z, \Sigma, \delta, S, E)$ ein NFA.

Wir definieren $\widehat{\delta}: (\mathcal{P}(Z) \times \Sigma^*) \to \mathcal{P}(Z)$ induktiv durch:

$$\begin{array}{ll} \widehat{\delta}(X,\varepsilon) &:= X \text{ für alle } X \subseteq Z \\ \widehat{\delta}(X,aw) &:= \bigcup_{z \in X} \widehat{\delta}(\delta(z,a),w) \text{ für alle } X \subseteq Z \end{array}$$

Die von M akzeptierte Sprache ist

$$L(M) = \{ w \in \Sigma^* \mid \widehat{\delta}(S, w) \cap E \neq \emptyset \}$$

Beispiel: Leere Menge von Startzuständen

Sei $M = (Z, \Sigma, \delta, \emptyset, E)$ ein NFA. Dann ist L(M) = ?.

Beispiel: Leere Menge von Startzuständen

Sei $M = (Z, \Sigma, \delta, \emptyset, E)$ ein NFA. Dann ist $L(M) = \emptyset$.

Lauf beim NFA

Definition

Sei $M=(Z,\Sigma,\delta,S,E)$ ein NFA und $w\in\Sigma^*$ mit |w|=n.

Eine Folge von Zuständen q_0, \ldots, q_n mit $q_0 \in S$ und $q_i \in \delta(q_{i-1}, w[i])$ bezeichnet man als Lauf von M für Wort w.

Ein Lauf der mit einem Endzustand endet, nennen wir auch akzeptierender Lauf.

Beachte: Während es bei DFAs genau einen Lauf pro Wort gibt, kann es bei NFAs mehrere geben.

Beispiel

Sei $M=(\{z_0,z_1,z_2,z_3\},\{a,b,c\},\delta,\{z_0,z_3\},\{z_3\})$ ein NFA mit

$$\begin{array}{lll} \delta(z_0,a) = \{z_0,z_1\} & \delta(z_1,a) = \{z_2\} & \delta(z_2,a) = \{z_3\} & \delta(z_3,a) = \emptyset \\ \delta(z_0,b) = \{z_0\} & \delta(z_1,b) = \{z_2\} & \delta(z_2,b) = \{z_3\} & \delta(z_3,b) = \emptyset \\ \delta(z_0,c) = \{z_0\} & \delta(z_1,c) = \{z_2\} & \delta(z_2,c) = \{z_3\} & \delta(z_3,c) = \emptyset \end{array}$$

Der Zustandsgraph zu M ist $\overbrace{z_0}$ a $\underbrace{z_1}$ a, b, c $\underbrace{z_2}$ a, b, c $\underbrace{z_3}$

a, b, c

$$L(M) = ?$$

Beispiel

Sei $M=(\{z_0,z_1,z_2,z_3\},\{a,b,c\},\delta,\{z_0,z_3\},\{z_3\})$ ein NFA mit

$$\begin{array}{lll} \delta(z_0,a) = \{z_0,z_1\} & \delta(z_1,a) = \{z_2\} & \delta(z_2,a) = \{z_3\} & \delta(z_3,a) = \emptyset \\ \delta(z_0,b) = \{z_0\} & \delta(z_1,b) = \{z_2\} & \delta(z_2,b) = \{z_3\} & \delta(z_3,b) = \emptyset \\ \delta(z_0,c) = \{z_0\} & \delta(z_1,c) = \{z_2\} & \delta(z_2,c) = \{z_3\} & \delta(z_3,c) = \emptyset \end{array}$$

$$L(M) = \{\varepsilon\} \cup \{uaw \mid u \in \{a, b, c\}^*, w \in \{a, b, c\}^2\}$$