

1

Understand how biological molecules are represented and stored in the computer.

Dr. Khalifa, Spr21

- DNA data
- Sequences as strings
- Data Storage and formats
- Database searching
- The Bioconductor package
- Reading/writing sequence data

Sequence Data

Dr. Khalifa, Spr21

3

Sequence data

Dr. Khalifa, Spr21

4

DNA sequence data

- How do we represent the crazily complex biochemical structure of DNA in the computer?
- Simplify!
 - Flatten the structure and zoom in
 - Focus on the four bases
- Use Letters for data storage
 - The whole human genome ~= 3 billion letters ~= 6 MB of data.

Dr. Khalifa, Spr21

5

5

String data structure

- $\Sigma \rightarrow$ a finite alphabet consisting of a set of characters (or symbols).
- The cardinality of the alphabet denoted by | Σ |
 - Expresses the number of distinct characters in the alphabet.
- A string or word (w) is an ordered list of zero or more characters drawn from the alphabet.
 - w[1 \cdots n] = w[1]w[2] \cdots ,w[n] , where w[i] $\in \Sigma$ for 1 \leq i \leq n
 - |w| denotes the length of w.

Dr. Khalifa, Spr21

Sequences as Strings

- The basic types of DNA, RNA, and protein molecules can be represented as strings
- DNA are strings over the alphabet {A,C,G,T}
 - four bases adenine, cytosine, guanine, and thymine
- RNA are strings over the alphabet {A,C,G,U}
 - uracil replacing thymine
- Proteins are strings over an alphabet of the 20 amino acids

20 natural amino acid notation		
Amino Acid o	3-Letter ^[4] ø	1-Letter ^[4] o
Alanine	Ala	Α
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	Е
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	lle	1
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Тут	Y
Valine	Val	V

Dr. Khalifa, Spr21

7

7

Data Storage and formats

- Types of text-based format for representing biological sequences (DNA, RNA and protein):
 - Raw Sequence: Data without description.
 - FASTA Format: One line of description, then sequence.
 - GenBank Record: Lots of detailed description about the sequence.

FASTA Example

- Simple and widely used!
- begins with a singleline description, followed by lines of sequence data.
- The description starts with a greater-than (">") symbol in the first column.
 - Multiple Entries
- It is recommended that all lines of text be shorter than 80 characters in length.

>PF00181|NF01243182 508 ribosomal protein L2 [Coxiella bumetii]
MALVKTKPTSPGRRFVVKVVHPELHKGDPYAPLVESKNR INSRNNQGRITVRRRGGGHKRNYRIIDFKRDKEGIEGKVE RLEYDPNRSAHIALVLYPDGERRYIIJAPKGVHKGSKVVSG REAPIRPGNCLPLONIPLGATIHNIELKPGKGAQLVRSAGA SAQLAAKEGIVAIRMRSGETRKILAVCRACIGEVSNSEHN LRSLGKAGAKRWRGRRPTVRGVAKNNPVDHPHGGGEGK TSGGRHPVSPTGKPTKGYKTRANKTSNMIIDRRKK

https://zhanglab.ccmb.med.umich.edu/FASTA/

Dr. Khalifa, Spr21

9

9

Biological Databases

- US, The National Centre for Biotechnology Information (NCBI) sequence database www.ncbi.nlm.nih.gov
- Europe, the European Molecular Biology Laboratory (EMBL) Sequence Database www.ebi.ac.uk/embl
- Japan, the DNA Data Bankof Japan (DDBJ) www.ddbj.nig.ac.jp.
- These three databases exchange data every night, so at any one point in time, they contain almost identical data.
- Each sequence is stored in a separate record and is assigned a unique identifier that can be used to refer to that sequence record.
 - The identifier is known as an <u>accession</u> and consists of a mixture of numbers and letters.
 - Different databases have different accessions, as they each use their own numbering systems for referring to their own sequence records.

Dr. Khalifa, Spr21

The NCBI Database

https://www.kelleybioinfo.org/algorithms/basics/databases/ncbi.pdf

Dr. Khalifa, Spr21

11

11

GenBank Record

Dengue virus 1, complete genome

```
NCBI Reference Sequence: NC_001477.1
FASTA Graphics
Go to: ☑
                                           NC_981477 18179 bp ss-RNA linear VRL 03-MAY-2019
Dengue virus 1, complete genome.

NC_981477 REGION: 95.18273
NC_981477. REGION: 95.18273
NC_981477.18
BioProject: PR2NA485481
Ref5eq.
Dengue virus 1
Dengue virus 1
Dengue virus 1
1 Classes 1 to 18179)
Puri, B., Nelson, W. N., Henchal, E. A., Hoke, C. H., Eckels, K. H., Dubois, D. R., Porter, K.R. and Hayes, C. G.
Molecular analysis of dengue virus attenuation after serial passage in primary dog kidney cells
1. Gen. Virol. 78 (PT 9). 287-2291 (1997)
2232816
2 (bases 1 to 18179)
McKee, K.T. Jr., Bancroft, W. H., Eckels, K. H., Redfield, R. R., Summers, P. L., and Russell, P. K.
Lack of attenuation of a candidate dengue 1 vaccine (45AZ5) in human volunteers
Am. J. Trop. Ned. Hyg. 36 (2), 435-442 (1987)
3826584
LOCUS
 DEFINITION
ACCESSION
 VERSION
 DBLINK
KEYWORDS
SOURCE
       ORGANISM
  REFERENCE
       AUTHORS
       JOURNAL
 PUBMED
REFERENCE
       AUTHORS
        TITLE
        JOURNAL
            PUBMED
```

Dr. Khalifa, Spr21

12

13

BioConductor

- the Bioconductor set of R packages (<u>www.bioconductor.org</u>) contains several packages with many R functions for analyzing biological data sets.
- Bi oconductor has a particular approach to making packages available.
- Each six months, in spring and fall, the current 'devel' version of packages is branched to become the next 'release'.
 - Packages within a release are tested with one another, so it is important to install packages from the same release.
- The first step to package installation is to make sure that the BiocManager package has been installed using standard R procedures.

```
if (!require(BiocManager)) install.packages("BiocManager",
repos = "https://cran.r-project.org")
BiocManager::install(c("Biostrings", "GenomicRanges"))
```

Dr. Khalifa, Spr21

Reading a sequence File in R

- the SeqinR package contains R functions for obtaining sequences from DNA and protein sequence databases, and for analyzing DNA and protein sequences.
- Steps:
 - Download the FASTA file from database website
 - Load the seqinr package
 - Read the FASTA file from its location
 mysequence <- read.fasta(file = "myfasta.fasta")</pre>
 - Access sequence data using getSequence command
 - the first element of the list object contains the DNA sequence

Dr. Khalifa, Spr21

15

Retrieving a sequence in R

- Retrieving sequences from data bases requires the following:
 - The seginr library installed and loaded in the R session
 - A sequence ID or keyword for searching
 - Access to the database via the Internet
- R us es the ACNUC database:
 - it brings together data from various different sources
 - organized into various different ACNUC (sub)-databases
 - To List all sub-databases choosebank()

Dr. Khalifa, Spr21

17

17

Retrieving a sequence in R - Steps

1. Choose the data bank

```
choosebank ( source )
```

2. query the bank with the search of your interest, using accession number

```
Q<-query( "Q", "AC=#######")
attributes(Q)</pre>
```

3. Fetch a specific sequence from the query object

```
Seq<- getSequence(Q$req[[#]] )</pre>
```

4. Find more info.

```
Access <- getName(Q$req[[#]])
Annot <- getAnnot(Q$req[[#]])</pre>
```

5. close the data bank

closebank()

Dr. Khalifa, Spr21

19

All in one function!

A little book of R, Page#15

Dr. Khalifa, Spr21

20

Complex queries

- Search for a sequence by a particular :
 - NCBI accession → "AC=" argument
 - Type (DNA or mRNA) \rightarrow "M=" argument
 - organism or taxon → "SP=" argument
 - Journal publication → "R=Jor/vol/page"
 - Find more on "query ()" function helppage

Dr. Khalifa, Spr21

(21

21

Export data to FASTA

 You can write out a sequence to a FASTA-format file in R by using the write.fasta() function from the SeqinRR package.

```
write.fasta(myseqs, mynames, file.out = "Myfile.fasta")
```

- The arguments are:
 - the name of the output file using the "file.out" argument
 - the R variable that contains the sequence using the "sequences" argument myseqs <- getSequence(Q)
 - the name that you want to give to the sequence using the "names" argument.

```
mynames <- getName(Q)
```

Dr. Khalifa, Spr21

