Lecture 5

D'Alembert's ratio test

In a positive term series $\sum U_n$, if $\lim_{n\to\infty} \frac{U_{n+1}}{U_n} = \lambda$ then the series convergest for $\lambda < 1$ and diverges for $\lambda > 1$, but this test fails for $\lambda = 1$.

Ex: We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent while $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

for
$$\sum_{n=1}^\infty rac{1}{n}$$
, $\lim_{n o\infty} rac{U_{n+1}}{U_n} = rac{n}{n+1} = rac{1}{1+rac{1}{n}} = 1$.

for
$$\sum_{n=1}^\infty rac{1}{n^2}$$
 , $\lim_{n o\infty} rac{U_{n+1}}{U_n} = rac{n^2}{(n+1)^2} = rac{1}{(1+rac{1}{n})^2} = 1$.

Thus this test fails when $\lambda = 1$.

Proof.

$$\lim_{n o\infty}rac{U_{n+1}}{U_n}=\lambda$$

 \Rightarrow for $\epsilon > 0$ there exists a stage n_1 such that

$$\lambda - \epsilon < rac{U_{n+1}}{U_n} < \lambda + \epsilon \quad orall \quad n \geq n_1$$

Thus we need to show that $\sum_{n=n_1}^{\infty} U_n$ is convergent if $\lambda < 1$.

$$egin{aligned} s_1 &= u_1 \ s_2 &= u_1 + u_2 = u_1 \left[1 + rac{u_2}{u_1}
ight] \ s_3 &= u_1 + u_2 + u_3 = u_1 \left[1 + rac{u_2}{u_1} + rac{u_3}{u_1}
ight] = u_1 \left[1 + rac{u_2}{u_1} + rac{u_3}{u_2} \cdot rac{u_2}{u_1}
ight] \ dots \ s_n &= u_1 + u_2 + \dots + u_n = u_1 \left[1 + rac{u_2}{u_1} + rac{u_3}{u_2} \cdot rac{u_2}{u_1} + \dots + rac{u_{n-1}}{u_{n-1}} \cdot rac{u_{n-1}}{u_{n-2}} \cdots rac{u_2}{u_1}
ight] \end{aligned}$$

case (i) $\lambda < 1$, choose $\epsilon > 0$ such that $r = \lambda + \epsilon < 1$

$$\Rightarrow rac{U_{n+1}}{U_n} < r < 1 \quad orall \quad n \geq n_1$$

$$egin{aligned} s_1 &= u_1 \ s_2 &= u_1 \left[1 + rac{u_2}{u_1}
ight] < u_1 (1+r) \ s_3 &= u_1 \left[1 + rac{u_2}{u_1} + rac{u_3}{u_1}
ight] = u_1 \left[1 + rac{u_2}{u_1} + rac{u_3}{u_2} \cdot rac{u_2}{u_1}
ight] < u_1 (1+r+r^2) \ dots \ s_n &= u_1 \left[1 + rac{u_2}{u_1} + rac{u_3}{u_2} \cdot rac{u_2}{u_1} + \cdots + rac{u_n}{u_{n-1}} \cdot rac{u_{n-1}}{u_{n-2}} \cdots rac{u_2}{u_1}
ight] < u_1 (1+r+r^2+\cdots+r^{n-1}) \ &\lim_{n o \infty} s_n < \lim_{n o \infty} u_1 (1+r+r^2+\cdots+r^{n-1}) \ \Rightarrow \lim_{n o \infty} s_n < u_1 \left[rac{1}{1-r}
ight] \end{aligned}$$

 \Rightarrow s_n is monotonically increasing bounded above sequence.

 $\Rightarrow s_n$ is convergent $\Rightarrow \sum U_n$ is convergent.

case (ii) $\lambda > 1$

$$\lambda - \epsilon < rac{U_{n+1}}{U_n} < \lambda + \epsilon \quad orall \quad n \geq n_1$$

choose $\epsilon>0, r=\lambda-\epsilon>1$

$$\Rightarrow s_n > u_1(1+1+\cdots+1) = nu_1$$

$$\Rightarrow \lim_{n \to \infty} s_n \longrightarrow \infty$$

 $\Rightarrow \sum U_n$ is divergent when $\lambda > 1$

Cauchy's root test

In a positive term series $\sum U_n$, if $\lim_{n\to\infty} (U_n)^{1/n} = \lambda$ then the series converges for $\lambda < 1$ and diverges for $\lambda > 1$, but the test fails when $\lambda = 1$.

Proof.

case (i) $\lambda < 1$

There exists for $\epsilon>0$, a stage n_1 such that $(U_n)^{1/n}<\lambda+\epsilon\quad orall\quad n\geq n_1.$

choose $\epsilon>0$ such that $r=\lambda+\epsilon<1$

$$egin{aligned} (U_n)^{1/n} < r & orall & n \geq n_1 \ \Rightarrow U_n < r^n & orall & n \geq n_1 \end{aligned}$$

By comparision test $\sum U_n$ is convergent since $\sum r^n$ is convergent for r < 1.

case (ii) $\lambda>1$

$$egin{aligned} \lambda - \epsilon &< (U_n)^{1/n} & orall & n \geq n_1 \ \ &\Rightarrow (U_n)^{1/n} > 1 & orall & n \geq n_1 \end{aligned}$$

but the necessary condition for convergent is $\lim_{n \to \infty} U_n = 0$ which is not possible when $U_n > 1$.

 $\Rightarrow \sum U_n$ is divergent.

Ex: Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$

$$egin{align} &\lim_{n o\infty}rac{U_{n+1}}{U_n}=\lim_{n o\infty}rac{(n+1)^2}{3^{n+1}}\cdotrac{3^n}{n^2}\ &=\lim_{n o\infty}rac{1}{3}igg(1+rac{1}{n}igg)^2=\lambda=rac{1}{3}<1 \end{split}$$

 $\lambda < 1 \Rightarrow \sum U_n$ is convergent.

Ex: Test the convergence of $\frac{2}{1} + \frac{2 \cdot 5 \cdot 8}{1 \cdot 5 \cdot 9} + \frac{2 \cdot 5 \cdot 8 \cdot 11}{1 \cdot 5 \cdot 9 \cdot 13} + \cdots$

$$=2+\sum_{n=1}^{\infty}U_{n}$$

$$U_{n+1}=U_n\left(rac{3n+8}{4n+9}
ight)$$

$$\lim_{n o\infty}rac{U_{n+1}}{U_n}=\lim_{n o\infty}rac{3+rac{8}{n}}{4+rac{9}{n}}=rac{3}{4}$$

 $\lambda < 1 \Rightarrow$ series is convergent

#semester-1 #mathematics #real-analysis