FCC ID: X25-GPS200MV

Report No.: DRTFCC1103-0086

Total 21 Pages

RF TEST REPORT

Į	es	t ı	te	m

CDMA GPS Mobile Terminal

Model No.

GPS200MV

Order No.

1101-00118

Date of receipt

2011-01-27

Test duration

2011-02-21 ~ 2011-03-16

Date of issue

2011-03-21

Use of report

: FCC Original Grant

Applicant : JOA TELECOM CO., LTD.

1007, SICOX Tower, 513-14, Sangdaewon-dong, Jungwon-gu, Seongnam-

si, Gyeonggi-do, 462-806, Korea

Test laboratory

Digital EMC Co., Ltd.

683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Kyunggi-Do, 449-080, Korea

Test specification

: §22(H)

Test environment

See appended test report

Test result

□ Pass

Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DIGITAL EMC CO., LTD.

Tested by:	Witnessed by:	Reviewed by:
	4.	-0
Engineer S.K.RYU	N/A	Manager W.J. Lee

CONTENTS

1. Equipment information	3
1.1 Equipment description	3
1.2 Ancillary equipment	3
2. Information about test items	4
2.1 Test mode	4
2.2 Auxiliary equipment	4
2.3 Tested environment	4
2.4 EMI Suppression Device(s)/Modifications	4
3. Description of tests	5
3.1 Effective radiated power & equivalent isotropic radiated power	er 5
3.2 Occupied bandwidth	
3.3 Spurious and harmonic emissions at antenna terminal	5
3.4 Radiation spurious and harmonic emissions	
3.6 Frequency stability/temperature variation	6
4. Test rport	7
4.1 Summary of tests	
4.2 Test data	
4.2.1 Conducted output power	8
4.2.2 Occupied bandwidth(99%)	
4.2.3 Spurious and harmonic emissions at antenna terminal	12
4.2.4 Band edge	15
4.2.5 Effective Radiated Power(CDMA850)	16
4.2.6 Radiated spurious emissions(CDMA850)	17
4.2.7 Frequency Stability(CDMA850)	18
4.2.8 SAMPLE CALCULATIONS	19
ADDENDIY	20

1. Equipment information

1.1 Equipment description

FCC Equipment Class	Licensed Non-Broadcast Station Transmitter(TNB)
Equipment type	CDMA GPS Mobile Terminal
Equipment model name	GPS200MV
Equipment add model name	GPS-200CV
Equipment serial no.	Identical prototype
Tx Freq. Range	824.70 ~ 848.31 MHz
Rx Freq. Range	869.70 ~ 893.31 MHz
Max. Power Rating	0.303W ERP(24.81dBm)
Emission Designators	1M27F9W
Power	DC 12V

1.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
ı	-	-	-	
-	-	-	-	-

2. Information about test items

2.1 Test mode

This Device was tested in continuous transmitting mode.(at maximum power)

Test Case 1	Only EUT
Test Case 2	-

2.2 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
				-
				-

2.3 Tested environment

Temperature	:	23 ~ 24 °C
Relative humidity content	:	28 ~ 31 % R.H.
Details of power supply	:	DC 12 V

2.4 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. Description of tests

3.1 Effective radiated power & equivalent isotropic radiated power

These measurements were performed outdoors at 3meter test range. The equipment under test is placed on a wooden turntable 0.8-meters above the ground plane and 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading.

For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

3.2 Occupied bandwidth

The EUT was setup to maximum output power at its lowest channel. The occupied bandwidth was measured using a spectrum analyzer. The measurements are repeated for the highest and a middle channel. The EUT's occupied bandwidth is measured as the width of the signal between two points, one below the carrier center frequency and one above the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Plots of the EUT's occupied bandwidth are shown herein.

3.3 Spurious and harmonic emissions at antenna terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

The EUT was setup to maximum output power at its lowest channel. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. The Resolution BW of the analyzer is set to 1 % of the emission bandwidth to show compliance with -13dBm limit [43+10log(P)], in the 1 MHz bands immediately outside and adjacent to the edge of the frequency block.

A display line was placed at -13dBm to show compliance. The high, lowest and a middle channel were tested for out of band measurements.

Band Edge Requirement

In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

TRF-RF-209(01)110318 Page 5 / 23

3.4 Radiation spurious and harmonic emissions

This measurement was performed outdoors at 3meter test range. The equipment under test is placed on a wooden turntable 0.8-meters above the ground plane and 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

For radiated power measurements below 1GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated power measurements above 1GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

This measurement was performed with the EUT oriented in 3 orthogonal axis.

3.5 Frequency stability/temperature variation.

The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from 30 °C to + 50 °C using an environmental chamber.
- **b.) Primary Supply Voltage**: The primary supply voltage is varied from battery end point to 115 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification - the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ± 0.000 25 %(± 2.5 ppm) of the center frequency.

Time Period and Procedure:

The carrier frequency of the transmitter is measured at room temperature. (25°C to provide a reference).

- The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter.
 Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 2. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

TRF-RF-209(01)110318 Page 6 / 23

4. Test rport

4.1 Summary of tests

FCC Part Section(s)	Parameter	Status Note 1
2.1046	Conducted Output Power	С
22.913(a)	Effective Radiated Power	С
22.917(a) 2.1049	Occupied Bandwidth	С
22.917(a) 2.1051	Band Edge Spurious and Harmonic Emissions at Antenna Terminal	С
22.917(a) 2.1053	Radiated Spurious and Harmonic Emissions	С
22.355 2.1055	Frequency Stability	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

The sample was tested according to the following specification: ANSI C-63.4-2003, ANSI/TIA/EIA-603-C-2004

4.2 Test data

4.2.1 Conducted output power

The output power was measured under all R.C.s and S.O.s which are listed below measurement data. This device was tested under the worst case(**SO55** of **RC3** for **CELLULAR band**).

SAR Measurement Procedures for 3G Devices(Released October 2007)

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP2 C.S0011 / TIA-98-E, Sec. 4.4.5
- Power measurement configurations
- 1. 1xRRT
- Test Mode 1(C.S0011 Table 4.4.5.2-1), SO55, RC1, Traffic Channel @9600bps
- Test Mode 3(C.S0011 Table 4.4.5.2-2), SO55 or SO32, RC3, FCH @9600bps
- Test Mode 3(C.S0011 Table 4.4.5.2-2), SO32, RC3, FCH+SCH @9600bps
- other configurations supported by the DUT
- power control
 - · Bits Hold for FCH+SCH
 - · otherwise ALL Bits Up
- 2. Ev-DO Rev.0
- FTAP: 2 slot version of 307.2Kbps(ACK in all slots)
- RTAP: 153.6Kbps in sub type 0/1 PHY Configuration
- 3. Ev-DO Rev.A
- FETAP: 2 slot version of 307.2Kbps(ACK in all slots)
- RETAP: 4096 bits payload with 16 slot termination target In Subtype 2PHY configuration

- Measurement data

		1X RRT					EvDo		EvDo	
Band	Channel	RC1	RC1	RC3	RC3	RC3	(Rev.0)		(Rev.A)	
		SO2	SO55	SO2	SO55	SO32 (TDSO)	FTAP	RTAP	FETAP	RETAP
	1013	23.05	23.10	23.21	23.43	N/A	N/A	N/A	N/A	N/A
Cellular	0384	23.04	23.03	23.08	23.26	N/A	N/A	N/A	N/A	N/A
	0777	23.24	23.31	23.36	23.49	N/A	N/A	N/A	N/A	N/A

4.2.2 Occupied bandwidth(99%)

Band	Channel	Test Result(MHz)
Cellular	1013	1.2709
	384	1.2722
	777	1.2729

⁻ Test Plots: Refer to next page.

Occupied Bandwidth(99 %)

Occupied Bandwidth(99 %) CDMA850 & Channel: 384

Occupied Bandwidth(99 %)

CDMA850 & Channel: 777

4.2.3 Spurious and harmonic emissions at antenna terminal

Spurious and Harmonic Emissions CDMA850 & Channel: 1013

Spurious and Harmonic Emissions CDMA850 & Channel: 1013

Spurious and Harmonic Emissions CDMA850 & Channel: 384

Spurious and Harmonic Emissions

4.2.4 Band edge

Band Edge CDMA850 & Channel: 1013

Band Edge CDMA850 & Channel: 777

4.2.5 Effective Radiated Power(CDMA850)

Channel	EUT Position	Ref. level (dBm)	Pol. (H/V)	ERP (dBm)	ERP (W)	Power Supply	Note.
1013	Y	-12.66	V	23.60	0.229	DC 12V	-
384	Y	-9.85	V	24.81	0.303	DC 12V	-
777	Y	-11.15	V	22.89	0.195	DC 12V	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This test is performed with EUT oriented in 3 orthogonal axis and horizontal/vertical polarization of detecting antenna. The worst case data is reported.

4.2.6 Radiated spurious emissions(CDMA850)

CH.	Max. ERP (dBm)	Freq. (MHz)	EUT Pos. (Axis)	ANT Pol. (H/V)	LEVEL@ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	(dBc)	Limit (dBc)
1013	23.60	1649.93	Y	٧	-22.70	7.18	-15.52	39.12	36.60
		2474.25	Υ	٧	-40.48	8.72	-31.76	55.36	
		3299.17	Υ	٧	-49.90	8.41	-41.49	65.09	
		4124.86	Υ	Н	-48.72	10.05	-38.67	62.27	
	24.81	1673.24	Υ	V	-23.58	7.30	-16.28	41.09	37.81
384		2508.59	Υ	V	-41.07	8.71	-32.36	57.17	
304		3347.16	Υ	V	-47.39	9.50	-37.89	62.70	
		4183.23	Υ	Н	-51.97	10.11	-41.86	66.67	
777	22.89	1696.55	Υ	V	-23.04	7.41	-15.63	38.52	35.89
		2545.07	Υ	V	-40.85	8.72	-32.13	55.02	
		3392.75	Υ	V	-48.18	9.60	-38.58	61.47	
		4242.66	Υ	Н	-54.29	10.16	-44.13	67.02	

⁻ Limit Calculation = 43 + 10 log₁₀ (ERP [W]) [dBc]

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This test is performed all axis of EUT and in horizontal/vertical polarization of detecting antenna. The worst case data is reported.

^{= 43 +} ERP[dBm] - 30

⁻ Emissions were not reported greater than below 30dB of the Limit.

4.2.7 Frequency Stability(CDMA850)

OPERATING FREQUENCY : <u>836,519,995</u> Hz CHANNEL : 0384(Mid)

REFERENCE VOLTAGE: 12.0 VDC
DEVIATION LIMIT: 4.0.00035

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQ (Hz)	Deviation (ppm)
100%	12.0	+25(Ref)	836,519,995	0.000
100%		-30	836,519,992	-0.004
100%		-20	836,519,995	0.000
100%		-10	836,519,993	-0.002
100%		0	836,520,005	0.012
100%		+10	836,519,994	-0.001
100%		+20	836,519,995	0.000
100%		+30	836,520,005	0.012
100%		+40	836,519,994	-0.001
100%		+50	836,520,007	0.014
85%	10.20	+25	836,520,006	0.013
115%	13.80	+25	836,519,996	0.001
BATT.ENDPOINT	N/A	+25	-	-

4.2.8 SAMPLE CALCULATIONS

A. Emission Designator

- Cellular Band -

Emission Designator = 1M27F9W

CDMA BW = 1.2729 MHz
F = Frequency Modulation
9 = Composite Digital Info
W = Combination (Audio/Data)
(Measured at the 99.75% power bandwidth)

APPENDIX

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Date (dd/mm/yy)	Next.Cal.Date (dd/mm/yy)	S/N
	Spectrum Analyzer	Agilent	E4440A	30/09/10	30/09/11	MY45304199
	Spectrum Analyzer	Rohde Schwarz	FSQ26	11/01/11	11/01/12	200445
	Spectrum analyzer	Agilent	E4404B	08/03/11	08/03/12	US41061134
	Spectrum Analyzer(RE)	H.P	8563E	04/10/10	04/10/11	3551A04634
\boxtimes	MXA Signal Analyzer	Agilent Technologies, Inc	N9020A	07/01/11	07/01/12	MY49100833
	Power Meter	H.P	EPM-442A	01/07/10	01/07/11	GB37170413
	Power Sensor	H.P	8481A	01/07/10	01/07/11	3318A96332
	Power Divider	Agilent	11636B	05/10/10	05/10/11	56471
	4-Way Power Divider	ET Industries	D-0526-4	24/12/10	24/12/11	210195001
\boxtimes	Power Splitter	Anritsu	K241B	05/10/10	05/10/11	020611
	Power Splitter	Anritsu	K241B	01/07/10	01/07/11	017060
	Power Splitters & Dividers	Aeroflex/Weinschel	1594	21/02/11	21/02/12	1177
	Frequency Counter	H.P	5342A	01/07/10	01/07/11	2119A04450
\boxtimes	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	04/10/10	04/10/11	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	07/03/11	07/03/12	3146A13475, US36122178
	Multifunction Synthesizer	HP	8904A	11/10/10	11/10/11	3633A08404
	Signal Generator	Rohde Schwarz	SMR20	08/03/11	08/03/12	101251
	Signal Generator	H.P	ESG-3000A	01/07/10	01/07/11	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	11/01/11	11/01/12	100148
	Vector Signal Generator	Rohde Schwarz	SMBV100A	11/01/11	11/01/12	255571
	Audio Analyzer	H.P	8903B	02/07/10	02/07/11	3011A09448
	Modulation Analyzer	H.P	8901B	01/07/10	01/07/11	3028A03029
\boxtimes	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	07/03/11	07/03/12	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU200	07/03/11	07/03/12	106760
	Bluetooth Tester	TESCOM	TC-3000B	01/07/10	01/07/11	3000B000268
	Thermo hygrometer	BODYCOM	BJ5478	13/01/11	13/01/12	090205-3
	Thermo hygrometer	BODYCOM	BJ5478	13/01/11	13/01/12	090205-2
	Thermo hygrometer	BODYCOM	BJ5478	13/01/11	13/01/12	090205-4
	AC Power supply	DAEKWANG	5KVA	08/03/11	08/03/12	20060321-1
\boxtimes	DC Power Supply	HP	6622A	07/03/11	07/03/12	3448A03760
	DC Power Supply	HP	6633A	07/03/11	07/03/12	3524A06634
	DC Power Supply	Protek	PWS-3010D	04/10/10	04/10/11	4072702
\boxtimes	BAND Reject Filter	Microwave Circuits	N0308372	05/10/10	05/10/11	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	05/10/10	05/10/11	2
	High-Pass Filter	ANRITSU	MP526D	04/10/10	04/10/11	M27756
	High-pass filter	Wainwright	WHNX2.1	N/A	N/A	1
	High-pass filter	Wainwright	WHNX3.0	N/A	N/A	9
	High-pass filter	Wainwright	WHNX5.0	N/A	N/A	8

	Туре	Manufacturer	Model	Cal.Date (dd/mm/yy)	Next.Cal.Date (dd/mm/yy)	S/N
	High-Pass Filter	Wainwright	WHKX8.5	N/A	N/A	1
\boxtimes	High-Pass Filter	Wainwright	D82346	N/A	N/A	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	32
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40- 10SSK	N/A	N/A	53
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	30
\boxtimes	HORN ANT	ETS	3115	04/10/10	04/10/11	21097
	HORN ANT	ETS	3115	14/07/10	14/07/11	6419
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/11	154
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/11	155
\boxtimes	HORN ANT	SCHWARZBECK	BBHA9120A	13/04/10	13/04/12	322
\boxtimes	Dipole Antenna	Schwarzbeck	VHA9103	29/11/10	29/11/11	2116
\boxtimes	Dipole Antenna	Schwarzbeck	VHA9103	29/11/10	29/11/11	2117
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	29/11/10	29/11/11	2261
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	29/11/10	29/11/11	2262
	LOOP Antenna	ETS	6502	29/10/10	29/10/11	3471
	Coaxial Fixed Attenuators	Agilent	8491B	01/07/10	01/07/11	MY39260700
\boxtimes	Attenuator (3dB)	WEINSCHEL	56-3	05/10/10	05/10/11	Y2342
	Attenuator (3dB)	WEINSCHEL	56-3	05/10/10	05/10/11	Y2370
\boxtimes	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/10	01/10/11	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	11/01/11	11/01/12	BP4387
	Attenuator (10dB)	WEINSCHEL	86-10-11	05/10/10	05/10/11	446
	Attenuator (10dB)	WEINSCHEL	86-10-11	05/10/10	05/10/11	408
	Attenuator (20dB)	WEINSCHEL	86-20-11	05/10/10	05/10/11	432
	Attenuator (30dB)	JFW	50FH-030-300	07/03/11	07/03/12	060320-1
	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/10	01/10/11	NN837
	Termination	H.P	HP-909D	02/07/10	02/07/11	02750
	Termination	H.P	HP-909D	02/07/10	02/07/11	02702
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	01/07/10	01/07/11	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	01/07/10	01/07/11	790
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	01/07/10	01/07/11	112
\boxtimes	Amplifier (30dB)	Agilent	8449B	07/03/11	07/03/12	3008A01590
	Amplifier (30dB)	H.P	8449B	07/03/11	07/03/12	3008A00370
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	04/10/10	04/10/11	1020
	RF Power Amplifier	OPHIRRF	5069F	01/07/10	01/07/11	1006
	EMI TEST RECEIVER	R&S	ESU	20/01/11	20/01/12	100014
	BILOG ANTENNA	SCHAFFNER	CBL6112B	14/07/10	14/07/11	2737
	Amplifier (22dB)	H.P	8447E	11/01/11	11/01/12	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	08/03/11	08/03/12	100364

	Туре	Manufacturer	Model	Cal.Date (dd/mm/yy)	Next.Cal.Date (dd/mm/yy)	S/N
	BICONICAL ANT.	Schwarzbeck	VHA 9103	29/11/10	29/11/11	91032789
\boxtimes	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	29/11/10	29/11/12	1098
\boxtimes	BICONICAL ANT.	Schwarzbeck	VHA 9103	21/12/10	21/12/12	91031946
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	07/07/10	07/07/11	0590
	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	07/03/11	07/03/12	1252741
	Low Noise Pre Amplifier	TSJ	MLA-00108-B02-36	11/01/11	11/01/12	1518831
	Amplifier (25dB)	Agilent	8447D	07/03/11	07/03/12	2944A10144
	Amplifier (25dB)	Agilent	8447D	01/07/10	01/07/11	2648A04922
	Spectrum Analyzer(CE)	H.P	8591E	07/03/11	07/03/12	3649A05889
	LISN	Kyoritsu	KNW-407	11/01/11	11/01/12	8-317-8
	LISN	Kyoritsu	KNW-242	02/07/10	02/07/11	8-654-15
	CVCF	NF Electronic	4420	08/03/11	08/03/12	304935/337980
	50 ohm Terminator	HME	CT-01	11/01/11	11/01/12	N/A
	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	02/07/10	02/07/11	4N-170-3
	Wideband Radio Communication Tester	R&S	CMW500	21/10/10	21/10/11	100988