2022 年 5 月 9 日 实变函数 强基数学 002 吴天阳 2204210460 59

习题 2.3

6. 设 $\mathbf{R} \not\in \mathbf{X}$ 的某些子集所成的环, $\mu \not\in \mathbf{R}$ 上的测度. 任取 $E \subset \mathbf{X}$, 记 $\mathbf{R}_E = \{F : F \in \mathbf{R}, F \subset E\}$, $\mu_E \not\in \mu$ 在环 \mathbf{R}_E 上的限制. \mathbf{R}_E^* , $\mu_E^* \not\in \mathbf{R}_E$ 上 μ_E 按 Caratheodory 条件的扩张. 举例说明 $\mathbf{R}_E^* \neq \mathbf{R}^* \cap E$.

解答. 设 X 为直线 \mathbb{R} , $R = \{\emptyset, (0,1]\}$, $\mu(\emptyset) = 0$, $\mu((0,1]) = 1$, 则 $R^* = R$, $\mu^* = \mu$. 设 E = (0,1], 则 $R^* \cap E = \emptyset$, 但 $R_E = \{(0,1]\}$, 则 $R_E^* = \{\emptyset, (0,1]\} \neq R^* \cap E$.

7. 举例说明环 R 上测度 μ 按 Caratheodory 条件所得的扩张 R^* , μ^* 并不一定是 R, μ 的最大扩张.

解答. 设 **R** 为 **X** 上的环, 且 **X** 的基数大于 1. 令 **R** = { \varnothing , **X**}, $\mu(\varnothing)$ = 0, $\mu(X)$ = ∞ , 则 \mathbf{R}^* = \mathbf{R} , μ^* = μ . 令 \mathbf{R}_1 为 **X** 的全体子集所成之集, 由于 $\overline{\overline{X}}$ > 1, 则 $\mathbf{R} \subsetneq \mathbf{R}_1$, 令 $\mu_1(\varnothing)$ = 0, $\mu_1(E)$ = ∞ ($E \in \mathbf{R}_1$), 则 μ_1 也为 μ 的扩张, 且比 μ^* 大.

10. 设 \mathbf{R} 是 \mathbf{X} 的某些子集所成的 σ -环, μ 是 \mathbf{R} 上测度. \mathbf{N} 是一切 μ -零集的一切子集全体. \mathbf{R}' 为一切 $E = (F \cup N_1) - N_2$ ($F \in \mathbf{R}$, N_1 , $N_2 \in \mathbf{N}$) 全体, 并规定 $\mu'(E) = \mu(F)$. 证明 μ' 是 σ -环 \mathbf{R}' 上的完全测度. 即证明 (i) \mathbf{R}' 是 σ -环; (ii) 定义 $\mu'(E) = \mu(F)$ 是确当的, 即 μ' 在 E 上的值不依赖于表示 $E = (F \cup N_1) - N_2$ 的具体形式; (iii) μ' 是 \mathbf{R}' 上的完全测度.

证明. (i) 任取 \mathbf{R}' 中的一列 $\{F^{(i)} \cup N_1^{(i)} - N_2^{(i)}\}$, 则有

$$\bigcup_{i=1}^{\infty} \left(F^{(i)} \cup N_1^{(i)} - N_2^{(i)} \right) \subset \bigcup_{i=1}^{\infty} \left(F^{(i)} \cup N_1^{(i)} \right) = \left(\bigcup_{i=1}^{\infty} F^{(i)} \right) \cup \left(\bigcup_{i=1}^{\infty} N_1^{(i)} \right) \in \mathbf{R}',$$

$$(F \cup N_1 - N_2) - (F' \cup N_1' - N_2') \subset (F - F') \cup (N_1 \cup N_2 \cup N_1' \cup N_2') \in \mathbf{R}',$$

所以 \mathbf{R}' 是 σ -环.

由于两边取到等号, 所以上式中不等号均为等号, 于是

$$\mu(F) = \mu^*(F \cup N_1) = \mu^*(F \cup N_1 - N_2) = \mu^*(E) = \mu^*(F' \cup N_1' - N_2') = \mu^*(F' \cup N_1') = \mu(F'),$$
故 μ' 在 E 上的值于 E 的表示式无关.

(iii) 设 $F \cup N_1 - N_2 \in \mathbf{R}'$ 满足 $\mu'(F \cup N_1 - N_2) = \mu(F) = 0$, 任取 $M \subset F \cup N_1 - N_2$. 由于 $N_1 \in \mathbf{N}$, 则存在 $\widetilde{N} \in \mathbf{N}$ 使得 $N_1 \subset \widetilde{N}$, 于是

$$M \subset F \cup N_1 - N_2 \subset F \cup \widetilde{N} \in \mathbf{N}.$$

所以 μ' 为 \mathbf{R}' 上的完全测度.

12. 设 $R \in X$ 的某些子集所成的环, $\mu \in S(R)$ 上的 σ -有限测度. 举例说明当 μ 限制在 R 上时, μ 不是 R 上的 σ -有限测度.

解答. 设 $X = \mathbb{Q}$,取

$$\mathbf{R} = \left\{ \bigcup_{i \in I} (a_i, b_i] \cap \mathbb{Q} : -\infty < a_i \leqslant b_i < +\infty, I$$
为有限集 $\right\},$

 $E \in \mathbb{R}$, 令 $\mu(E)$ 为 E 中有理点的个数. 由于

$$S(\mathbf{R}) = \left\{ \bigcup_{i \in I} E_i : E_i \in R$$
或 $E_i = \{a_i\}, \ a_i \in \mathbb{Q}, \ I$ 为可列集 $\right\},$

对于任意的 $E \in S(\mathbf{R})$, 都有 $E \subset \mathbb{Q}$, 所以 E 可由 $S(\mathbf{R})$ 中可列个有理点点集覆盖, 即存在 $\{a_i\}_{i \in I}$, $a_i \in \mathbb{Q}$, I 为可列集, 使得 $E \subset \bigcup_{i \in I} a_i$, 且 $\mu\{a_i\} = 1$ 为有限测度. 所以 μ 是 $S(\mathbf{R})$ 上的 σ -有限测度. 但任意的 $E \in \mathbf{R}$, 若 E 非空, 则 $\mu(E) = \infty$, 所以 μ 不是 \mathbf{R} 上的 σ -有限测度.