Variational Bayesian Unlearning Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet

Presented by Ananth Mahadevan

February 10, 2021

Contents

- Learning
 - VI and ELBO
- 2 Unlearning
 - Exact
 - EUBO
 - Adjusted EUBO
 - Reverse KL
- Results

Bayesian Basics

Learning

- ullet Unknown model parameters $oldsymbol{ heta}$
- Prior belief $p(\theta)$
- ullet Set ${\mathcal D}$ of training data
- ullet Learn approximate posterior belief $q(m{ heta}|\mathcal{D}) pprox p(m{ heta}|\mathcal{D})$

Unlearning

- ullet ${\cal D}$ partitioned into ${\cal D}_e$ erased data and ${\cal D}_r$ of remaining data
- $\mathcal{D} = \mathcal{D}_r \cup \mathcal{D}_e$ and $\mathcal{D}_r \cap \mathcal{D}_e = \emptyset$.
- Approximate $p(\theta|\mathcal{D}_r)$

Evidence Lower Bound (ELBO)

- Need to **minimize** the KL divergence $KL[q(\theta|\mathcal{D}) \parallel p(\theta|\mathcal{D})] \triangleq \int q(\theta|\mathcal{D}) \log(q(\theta|\mathcal{D})/p(\theta|\mathcal{D})) d\theta$
- Or, maximize the evidence lower bound (ELBO)

$$\mathcal{L} \triangleq \int \underbrace{q(\theta|\mathcal{D}) \, \log p(\mathcal{D}|\theta) \, d\theta}_{\text{increase likelihood}} - \underbrace{\mathsf{KL}[q(\theta|\mathcal{D}) \parallel p(\theta)]}_{\text{remember prior}}$$

- Use Black Box Variational Inference (BBVI) if ${\cal L}$ cannot be evaluated in closed form
 - Stochastic gradient estimates for Gradient Ascent

Exact Bayesian Unlearning

- Retraining on \mathcal{D}_r we can get $p(\theta|\mathcal{D}_r)$, but computationally costly,
- Alternatively, using Bayes' rule

$$p(\theta|\mathcal{D}_r) = p(\theta|\mathcal{D}) p(\mathcal{D}_e|\mathcal{D}_r)/p(\mathcal{D}_e|\theta) \propto p(\theta|\mathcal{D})/p(\mathcal{D}_e|\theta)$$

- ullet For discrete $oldsymbol{ heta}$ and conjugate priors can be obtained directly
- Paper focuses on non-conjugate priors

Approximate Bayesian Unlearning

- ullet Find $q_u(heta|\mathcal{D}_r)pprox p(heta|\mathcal{D}_r)$ by unlearning from erased data \mathcal{D}_e
- Predictive distributions
 - $q_u(y|\mathcal{D}_r) \triangleq \int p(y|\theta) \ q_u(\theta|\mathcal{D}_r) \ d\theta$
 - $p(y|\mathcal{D}_r) = \int p(y|\theta) \ p(\theta|\mathcal{D}_r) \ d\theta$
- Loss to minimize: $\mathsf{KL}[q_u(y|\mathcal{D}_r) \parallel p(y|\mathcal{D}_r)]$
 - Closed form may not exist
 - Hard to estimate and optimize

Approximate Bayesian Unlearning

- Find $q_u(\theta|\mathcal{D}_r) \approx \rho(\theta|\mathcal{D}_r)$ by unlearning from erased data \mathcal{D}_e
- Predictive distributions
 - $q_u(y|\mathcal{D}_r) \triangleq \int p(y|\theta) \ q_u(\theta|\mathcal{D}_r) \ d\theta$
 - $p(y|\mathcal{D}_r) = \int p(y|\theta) \ p(\theta|\mathcal{D}_r) \ d\theta$
- Loss to minimize: $\mathsf{KL}[q_u(y|\mathcal{D}_r) \parallel p(y|\mathcal{D}_r)]$
 - Closed form may not exist
 - Hard to estimate and optimize

Propostion 1 Bound

$$\mathsf{KL}[q_u(y|\mathcal{D}_r) \parallel p(y|\mathcal{D}_r)] \leq \mathsf{KL}[q_u(\theta|\mathcal{D}_r) \parallel p(\theta|\mathcal{D}_r)]$$

• How to **minimize** $KL[q_u(\theta|\mathcal{D}_r) \parallel p(\theta|\mathcal{D}_r)]$?

Evidence Upper Bound (EUBO)

• Similar to ELBO define an evidence upper bound

$$\mathcal{U} \triangleq \int \underbrace{q_u(\theta|\mathcal{D}_r) \, \log p(\mathcal{D}_e|\theta) \, d\theta}_{\mathsf{Forget} \, \mathcal{D}_e} + \underbrace{\mathsf{KL}[q_u(\theta|\mathcal{D}_r) \parallel p(\theta|\mathcal{D})]}_{\mathsf{Remember} \, \mathcal{D}(\mathsf{incudes} \, \mathcal{D}_r)}$$

- We can minimize $\mathsf{KL}[q_u(\theta|\mathcal{D}_r) \parallel p(\theta|\mathcal{D}_r)]$ in two ways
 - **1** Maximize ELBO while retraining using \mathcal{D}_r
 - **2** Minimize EUBO when unlearning with \mathcal{D}_e
- EUBO naturally has regularizing term to avoid catastrophic forgetting

EUBO and ELBO

(a) Unlearning from \mathcal{D}_e by minimizing EUBO

(b) Retraining with \mathcal{D}_r by maximizing ELBO

Figure: Plots of EUBO and ELBO when (a) unlearning from \mathcal{D}_e and (b) retraining with \mathcal{D}_r .

Reality Check

- In reality we only obtain approximations
- ullet VI training gives approximate posterior $q(oldsymbol{ heta}|\mathcal{D})$
- ullet We can estimate unknown $p(oldsymbol{ heta}|\mathcal{D}_r)$ using

$$ilde{
ho}(heta|\mathcal{D}_r) ~\propto~ q(heta|\mathcal{D})/p(\mathcal{D}_e| heta)$$

- $\tilde{q}_u(\theta|\mathcal{D}_r)$ from minimizing loss $\mathsf{KL}[\tilde{q}_u(\theta|\mathcal{D}_r) \parallel \tilde{p}(\theta|\mathcal{D}_r)]$
- Define following EUBO

$$\widetilde{\mathcal{U}} \triangleq \int \widetilde{q}_u(m{ heta}|\mathcal{D}_r) \log p(\mathcal{D}_e|m{ heta}) dm{ heta} + \mathsf{KL}[\widetilde{q}_u(m{ heta}|\mathcal{D}_r) \parallel q(m{ heta}|\mathcal{D})]$$

Issues

Two possible sources of inaccuracy in $q(\theta|\mathcal{D})$

- $lacksquare{1}{1} q(heta|\mathcal{D})$ often underestimates the variance of $p(heta|\mathcal{D})$
- 2 Unlikely that the ELBO is maximized using samples of θ with small $q(\theta|\mathcal{D})$

Hence, curb unlearning at values of $oldsymbol{ heta}$ with small $q(oldsymbol{ heta}|\mathcal{D})$

Figure: Plot of $q(\theta|\mathcal{D})$ learned using VI. Gray shaded region corresponds to values of θ where $q(\theta|\mathcal{D}) \leq \lambda \max_{\theta'} q(\theta'|\mathcal{D})$. Vertical blue strips on horizontal axis show 100 samples of $\theta \sim q(\theta|\mathcal{D})$.

Adjusted EUBO

Introduce $\lambda \in [0,1]$ to control focus of unlearning

$$p_{\mathrm{adj}}(\mathcal{D}_e|\boldsymbol{\theta};\lambda) \triangleq egin{cases} p(\mathcal{D}_e|\boldsymbol{\theta}) & ext{if } q(\boldsymbol{\theta}|\mathcal{D}) > \lambda \max_{\boldsymbol{\theta}'} q(\boldsymbol{\theta}'|\mathcal{D}) \ , \\ 1 & ext{otherwise (i.e., shaded area) ;} \end{cases}$$

$$ilde{
ho}_{
m adj}(m{ heta}|\mathcal{D}_r;\lambda) \propto egin{cases} q(m{ heta}|\mathcal{D})/p(\mathcal{D}_{
m e}|m{ heta}) & ext{if } q(m{ heta}|\mathcal{D}) > \lambda \max_{m{ heta}'} q(m{ heta}'|\mathcal{D}) \;, \\ q(m{ heta}|\mathcal{D}) & ext{otherwise (i.e., shaded area)} \end{cases}$$

$$\widetilde{\mathcal{U}}_{\mathsf{adj}}(\lambda) \triangleq \int \widetilde{q}_u(\boldsymbol{\theta}|\mathcal{D}_r;\lambda) \, \log p_{\mathsf{adj}}(\mathcal{D}_\mathsf{e}|\boldsymbol{\theta};\lambda) \, \mathrm{d}\boldsymbol{\theta} + \mathsf{KL}[\widetilde{q}_u(\boldsymbol{\theta}|\mathcal{D}_r;\lambda) \parallel q(\boldsymbol{\theta}|\mathcal{D})]$$

Reverse KL

- Minimize $\mathsf{KL}[\tilde{p}(\theta|\mathcal{D}_r) \parallel \tilde{q}_v(\theta|\mathcal{D}_r)]$ instead
- Now, $\tilde{q}_v(\theta|\mathcal{D}_r)$ overestimates the variance of $\tilde{p}(\theta|\mathcal{D}_r)$
- ullet Initialize $ilde{q}_{v}(heta|\mathcal{D}_{r})$ at $q(heta|\mathcal{D})$ for faster convergence
- Now, SGA naturally curbs unlearning at values of heta with small $q(heta|\mathcal{D})$

Adjusted EUBO and rKL

Figure: Plot of approximate posterior beliefs with varying λ obtained by minimizing (a) EUBO (i.e., $\tilde{q}_u(\theta|\mathcal{D}_r;\lambda)$) and (b) reverse KL (i.e., $\tilde{q}_v(\theta|\mathcal{D}_r;\lambda)$); horizontal axis denotes $\theta=\alpha$. In (a), a huge probability mass of $\tilde{q}_u(\theta|\mathcal{D}_r,\lambda=0)$ is at large values of α beyond the plotting area and the top of the plot of $\tilde{q}_u(\theta|\mathcal{D}_r,\lambda=10^{-20})$ is cut off due to lack of space.

Learning Unlearning Results

Reults