Gaussian Elimination High-Performance Implementation

Mohamed Imad Eddine Ghodbane May, 2024

CONTENT

01	PROJECT OVERVIEW
02	PLUQ FACTORIZATION
03	MODULAR ARITHMETIC USING SIMD
04	SIMD IMPLEMENTATION OF PLUQ
05	CROUT METHOD
06	SIMD SCALAR PRODUCT
07	SIMD IMPLEMENTATION OF CROUT METHOD
08	RESULTS

PROJECT OVERVIEW

Primary Objective

- Develop a high-performance implementation of Gaussian elimination.
- Focus on exact linear algebra over finite fields (Fp=Z/pZ) with a prime number stored on 30 bits.

Existing Libraries

- FFLAS-FFPACK, Flint, NTL.
- High performance for large matrices and small prime fields.

Areas for Improvement

- Intermediate matrix dimensions (hundreds to thousands).
- Larger prime numbers.

$$A = PLUQ$$

Input

• Matrix A of size $m \times n$ with entries in the finite field Fp.

Output

• LU decomposition of A, with permutation matrices P and Q.

Key Operations

- Swap rows and columns.
- Zero out elements below the pivot (Row Reduction).

Data Representation

- P and Q are represented as vectors.
- Compact storage for L and U.

Column Transposition

Q

1

2

3

4

5

6

- Choose the next first non-zero entry in the row.
- Column transposition to move the non-zero entry to the pivot position.

Column Transposition

Q

1

3

2

4

5

6

- Choose the next first non-zero entry in the row.
- Column transposition to move the non-zero entry to the pivot position.

Row Rotation

6

Perform row rotation to move the zero row to the last row position.

Row Rotation

Perform row rotation to move the zero row to the last row position.

$$l_{ij} = u_{ii}^{-1} \cdot a_{ij}$$

- Compute the inverse of the pivot modulo p.
- Multiply the pivot inverse by the elements of the pivot row.
- Use the updated pivot row to eliminate the elements below the pivot in the current column.

$$a_{ij} = a_{ij} - l_{ik} \cdot u_{kj}$$

$$=$$

$$=$$

$$=$$

$$\times$$

- Compute the inverse of the pivot modulo p.
- Multiply the pivot inverse by the elements of the pivot row.
- Use the updated pivot row to eliminate the elements below the pivot in the current column.

$$l_{ij} = u_{ii}^{-1} \cdot a_{ij}$$

$$a_{ij} = a_{ij} - l_{ik} \cdot u_{kj}$$

- Compute the inverse of the pivot modulo p.
- Multiply the pivot inverse by the elements of the pivot row.
- Use the updated pivot row to eliminate the elements below the pivot in the current column.

$$l_{ij} = u_{ii}^{-1} \cdot a_{ij}$$

$$a_{ij} = a_{ij} - l_{ik} \cdot u_{kj}$$

- Compute the inverse of the pivot modulo p.
- Multiply the pivot inverse by the elements of the pivot row.
- Use the updated pivot row to eliminate the elements below the pivot in the current column.

$$l_{ij} = u_{ii}^{-1} \cdot a_{ij}$$

$$a_{ij} = a_{ij} - l_{ik} \cdot u_{kj}$$

- Compute the inverse of the pivot modulo p.
- Multiply the pivot inverse by the elements of the pivot row.
- Use the updated pivot row to eliminate the elements below the pivot in the current column.

$$l_{ij} = u_{ii}^{-1} \cdot a_{ij}$$

$$a_{ij} = a_{ij} - l_{ik} \cdot u_{kj}$$

- Compute the inverse of the pivot modulo p.
- Multiply the pivot inverse by the elements of the pivot row.
- Use the updated pivot row to eliminate the elements below the pivot in the current column.

Negligible Operation

15 Operations

One Iteration

```
/*
Find Pivot
*/
// Row Reduction
for (int k = matrixRank + 1; k < m; k++) {
   A->data[k * n + matrixRank] = mult(
   A->data[k * n + matrixRank], inv, p);
    for (int j = matrixRank + 1; j < n; j++)
        A->data[k * n + j] = sub(
        A->data[k * n + j],
        mult(A->data[k * n + matrixRank],
        A->data[matrixRank * n + j], p), p);
```

Subtraction

```
int sub(int a, int b, int p) {
   int r = a - b;
   return r < 0 ? r + p : r;
}</pre>
```

```
int mult(int a, int b, int p) {
   long long r = (long long) a * b;
   return r % p;
}
```


Multiplication

```
int mult(int a, int b, int p) {
   long long r = (long long)a * b;
   return r % p;
}
```

There is no modulus operation in AVX2!!

Solution: compute the remainder of the division by p.

$$h = ab = cp + e$$

$$d = \frac{h}{p}$$

$$c = \lfloor d \rfloor$$

$$e = h - cp$$

```
__m256d h = _mm256_mul_pd(a, b);
__m256d d = _mm256_mul_pd(h, u);
__m256d c = _mm256_floor_pd(d);
__m256d e = _mm256_fnmadd_pd(c, p, h);
```



```
__m256d h = _mm256_mul_pd(a, b);
__m256d d = _mm256_mul_pd(h, u);
__m256d c = _mm256_floor_pd(d);
__m256d e = _mm256_fnmadd_pd(c, p, h);
```



```
__m256d h = _mm256_mul_pd(a, b);
__m256d d = _mm256_mul_pd(h, u);
__m256d c = _mm256_floor_pd(d);
__m256d e = _mm256_fnmadd_pd(c, p, h);
```



```
__m256d h = _mm256_mul_pd(a, b);
__m256d d = _mm256_mul_pd(h, u);
__m256d c = _mm256_floor_pd(d);
__m256d e = _mm256_fnmadd_pd(c, p, h);
```


Multiplication

The Product exceeds the 52-bit length. This can lead to a loss of precision in the final result!!


```
m256d h = mm256 mul pd(a, b);
 m256d l = mm256 fmsub pd(a, b, h);
 _{m256d} d = _{mm256} mul_pd(h, u);
 m256d c = mm256 floor pd(d);
 m256d b = mm256 fnmadd pd(c, p, h);
 _{m256d} = _{mm256} add_{pd(b, 1);}
 m256d t = mm256 sub pd(e, p);
  e = mm256 blendv pd(t, e, t);
 t = mm256 add pd(e, p);
 return _mm256_blendv_pd(e, t, e);
```

SIMD IMPLEMENTATION OF PLUQ

```
rows_elimination_avx2(int *A_data,int n, int matrixRank, int c,int p ,
__m256d vp, __m256d vu ,__m128i vp_128, int k) {
   _{m256d} vc = _{mm256} set1_pd(c);
    m256d tmp;
   int i;
    for (i = matrixRank + 1; i + 3 < n; i += 4) {
       _{m128i} v1 = _{mm_loadu_si128((__m128i *)&A_data[matrixRank*n+i]);
       m128i v2 = mm loadu si128(( m128i *)&A data[k*n+i]);
       __m256d vDouble = _mm256_cvtepi32_pd(v1);
       tmp = mul_mod_p(vc, vDouble, vu, vp);
       m128i resultInt = _mm256_cvttpd_epi32(tmp);
       m128i result = sub_avx2(v2, resultInt, vp_128);
       mm storeu si128(( m128i *)&A data[k * n + i], result);
  loop handles elements that don't fit into chunks of 4
```

RESULTS

AVX2 vs Basic PLUQ

Sizes	100	300	500	1000	1200
Basic (ms)	0.69	18.70	86.57	694.06	1199.92
AVX2 (ms)	0.15	3.90	17.80	139.98	242.56
Speedup	4.60	4.79	4.86	4.95	4.95

PLUQ Speedups using AVX2 and 12 Bits Length Prime

RESULTS

AVX2 vs FLINT

RESULTS

AVX2 vs FFLAS-FFPACK

Sizes	100	300	500	1000	1200
FFLAS-FFPACK (ms)	0.34	4.43	15.01	62.32	88.28
AVX2 (ms)	0.15	3.90	17.80	139.98	242.56
Speedup	2.26	1.13	0.85	0.42	0.35

FFLAS-FFPACK Speedups using AVX2 and 12 Bits Length Prime

CROUT METHOD

Algorithm 2 Crout variant of PLUQ with lexicographic search and column rotations.

```
1: k \leftarrow 1
 2: for i = 1 ...m do
         A_{i,k..n} \leftarrow A_{i,k..n} - A_{i,1..k-1} \times A_{1..k-1,k..n}
         if A_{i,k..n} = 0 then
             Loop to next iteration
 6:
         end if
         Let A_{i,s} be the left-most nonzero element of row i.
         A_{i+1..m,s} \leftarrow A_{i+1..m,s} - A_{i+1..m,1..k-1} \times A_{1..k-1,s}
         A_{i+1..m,s} \leftarrow A_{i+1..m,s}/A_{i,s}
         Bring A_{*,s} to A_{*,k} by column rotation
10:
         Bring A_{i,*} to A_{k,*} by row rotation
11:
12:
         k \leftarrow k+1
13: end for
```

"Fast computation of the rank profile matrix and the generalized bruhat decomposition" written by Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan.

CROUT METHOD

Key Operation

• Computes uij and lij using the multiplication equation A=LU and the previously computed values of L and U.

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix} = P \cdot \begin{pmatrix} 1 & 0 & 0 \\ l_{10} & 1 & 0 \\ l_{20} & l_{20} & 1 \end{pmatrix} \cdot \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ 0 & u_{11} & u_{12} \\ 0 & 0 & u_{22} \end{pmatrix} \cdot Q$$

$$A = P \cdot \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ l_{10}u_{00} & l_{10}u_{01} + u_{11} & l_{10}u_{02} + u_{12} \\ l_{20}u_{00} & l_{20}u_{01} + l_{21}u_{11} & l_{20}u_{02} + l_{21}u_{12} + u_{22} \end{pmatrix} \cdot Q$$

CROUT METHOD

$$u_{ij} = a_{ij} - \sum_{k=0}^{j-1} l_{ik} \cdot u_{ki}$$

$$l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

$$l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

$$l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

$$u_{ij} = a_{ij} - \sum_{k=0}^{j-1} l_{ik} \cdot u_{ki}$$

$$l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

$$u_{ij} = a_{ij} - \sum_{k=0}^{j-1} l_{ik} \cdot u_{ki}$$

$$l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

$$u_{ij} = a_{ij} - \sum_{k=0}^{j-1} l_{ik} \cdot u_{ki}$$

$$l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

$$u_{ij} = a_{ij} - \sum_{k=0}^{j-1} l_{ik} \cdot u_{ki}$$

$$l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

$$u_{ij} = a_{ij} - \sum_{k=0}^{j-1} l_{ik} \cdot u_{ki}$$

$$l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

Row Reduction

$$u_{ij} = a_{ij} - \sum_{k=0}^{j-1} l_{ik} \cdot u_{ki}$$

$$l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

Crout's method uses 74 operations for modular reduction, while the basic PLUQ method uses 125.

SIMD SCALAR PRODUCT

Scalar Product

```
int sum = 0;
for (int i = 0; i < length; i++) {
    sum += a[i] * b[i];
}
return sum % p;</pre>
```


SIMD SCALAR PRODUCT

Scalar Product

```
int sum1 = 0;
int sum1 = 0;
int sum1 = 0;
int sum1 = 0;
for (int i = 0; i < length; i+=4) {</pre>
    sum1 += a[i] * b[i];
    sum2 += a[i+1] * b[i+1];
    sum3 += a[i+2] * b[i+2];
    sum4 += a[i+3] * b[i+3];
return (sum1+sum2+sum3+sum4) % p;
```


SIMD SCALAR PRODUCT

Scalar Product

$$result = (sum_1 + sum_2 + sum_3 + sum_4) \mod p$$

AVX2 vs Basic Crout PLUQ

Sizes	100	300	500	1000	1200
Crout Basic (ms)	0.71	19.00	87.40	697.97	1204.63
Crout AVX2 (ms)	0.11	2.37	12.97	135.07	246.83
Speedup	6.45	8.01	6.73	5.16	4.86

Crout PLUQ Speedups using AVX2 and 12 Bits Length Prime

AVX2 vs FLINT

AVX2 vs FFLAS-FFPACK

Sizes	100	300	500	1000	1200
FFLAS-FFPACK (ms)	0.34	4.43	15.01	62.32	88.28
Crout AVX2 (ms)	0.11	2.37	12.97	135.07	246.83
Speedup	3.09	2.37	1.16	0.46	0.36

FFLAS-FFPACK Speedups using Crout PLUQ AVX2 and 12 Bits Length Prime

Crout vs Basic PLUQ

Sizes	100	300	500	1000	1200
Basic PLUQ (ms)	0.69	18.70	86.57	694.06	1199.92
Crout PLUQ (ms)	0.71	19.00	87.40	697.97	1204.63
Basic PLUQ AVX2 (ms)	0.15	3.90	17.80	145.03	249.08
Crout AVX2 (ms)	0.11	2.37	12.97	135.07	246.83

Crout PLUQ vs Basic PLUQ using AVX2 and 12 Bits Length Prime