Linear Transformations

$$T:R^n o R^m$$
 is linear if $egin{cases} T(u+v) &=T(u)+T(v)\ T(cv) &=cT(v) \end{cases}$

Create a 2×2 matrix A that applies a linear transformation that rotates by an angle θ counterclockwise

$$A = \begin{bmatrix} \vec{a_1}, \vec{a_2} \end{bmatrix}$$

$$T(\vec{e_1}) = \vec{a_1}$$

$$T(\vec{e_1}) = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

$$\vec{a_1} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

$$T(\vec{e_2}) = \vec{a_2}$$

$$T(\vec{e_2}) = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

$$\vec{a_2} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Geometric Transformations

Reflections

Through $x_1 - axis$

$$T(egin{bmatrix}1\\1\end{bmatrix})=egin{bmatrix}1\\-1\end{bmatrix}$$

So,

$$A = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$

Through $x_2 - axis$

$$T(egin{bmatrix}1\\1\end{bmatrix})=egin{bmatrix}-1\\1\end{bmatrix}$$

$$A = egin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$$

Through $x_2 = x_1$

$$T(egin{bmatrix}1\0\end{bmatrix}) = egin{bmatrix}0\1\end{bmatrix} \ T(egin{bmatrix}0\1\end{bmatrix}) = egin{bmatrix}1\0\end{bmatrix}$$

So,

$$A = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$

Through $x_2 = -x_1$

$$T(egin{bmatrix}1\\0\end{bmatrix}) = egin{bmatrix}0\\-1\end{bmatrix} \ T(egin{bmatrix}0\\1\end{bmatrix}) = egin{bmatrix}-1\\0\end{bmatrix}$$

So,

$$A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

Contractions and Expansions

Horizontal

Contractions ($\left|k\right|<1$)

$$T(egin{bmatrix}1\0\end{bmatrix})=egin{bmatrix}k\0\end{bmatrix}\ T(egin{bmatrix}0\1\end{bmatrix})=egin{bmatrix}0\1\end{bmatrix}$$

So,

$$A = egin{bmatrix} k & 0 \ 0 & 1 \end{bmatrix}$$

Expansions (|k| > 1)

$$T(egin{bmatrix}1\0\end{bmatrix}) = egin{bmatrix}k\0\end{bmatrix} \ T(egin{bmatrix}0\1\end{bmatrix}) = egin{bmatrix}0\1\end{bmatrix}$$

So,

$$A = egin{bmatrix} k & 0 \ 0 & 1 \end{bmatrix}$$

Vertical

Contractions ($\left|k\right|<1$)

$$T(egin{bmatrix}1\0\end{bmatrix}) = egin{bmatrix}1\0\end{bmatrix} \ T(egin{bmatrix}0\1\end{bmatrix}) = egin{bmatrix}0\k\end{bmatrix}$$

So,

$$A = egin{bmatrix} 1 & 0 \ 0 & k \end{bmatrix}$$

Expansions (|k|>1)

$$egin{aligned} T(egin{bmatrix} 1 \ 0 \end{bmatrix}) &= egin{bmatrix} 1 \ 0 \end{bmatrix} \ T(egin{bmatrix} 0 \ 1 \end{bmatrix}) &= egin{bmatrix} 0 \ k \end{bmatrix} \end{aligned}$$

So,

$$A = egin{bmatrix} 1 & 0 \ 0 & k \end{bmatrix}$$

Shears

Horizontal Shear

Left(k < 0)

$$egin{aligned} Tigg(egin{bmatrix}1\0\end{bmatrix}igg) &= egin{bmatrix}1\0\end{bmatrix}\ Tigg(egin{bmatrix}0\1\end{bmatrix}igg) &= egin{bmatrix}k\1\end{bmatrix} \end{aligned}$$

$$A = egin{bmatrix} 1 & k \ 0 & 1 \end{bmatrix}$$

Right(k > 0)

$$T(egin{bmatrix} 1 \ 0 \end{bmatrix}) = egin{bmatrix} 1 \ 0 \end{bmatrix} \ T(egin{bmatrix} 0 \ 1 \end{bmatrix}) = egin{bmatrix} k \ 1 \end{bmatrix}$$

So,

$$A = egin{bmatrix} 1 & k \ 0 & 1 \end{bmatrix}$$

Vertical Shear

Down(k < 0)

$$T(egin{bmatrix}1\0\end{bmatrix}) = egin{bmatrix}1\k\end{bmatrix} \ T(egin{bmatrix}0\1\end{bmatrix}) = egin{bmatrix}0\1\end{bmatrix}$$

So,

$$A = egin{bmatrix} 1 & 0 \ k & 1 \end{bmatrix}$$

Up(k > 0)

$$T(egin{bmatrix}1\\0\end{bmatrix})=egin{bmatrix}1\\k\end{bmatrix}$$
 $T(egin{bmatrix}0\\1\end{bmatrix})=egin{bmatrix}0\\1\end{bmatrix}$

So,

$$A = egin{bmatrix} 1 & 0 \ k & 1 \end{bmatrix}$$

Projections

On to the $x_1 - \mathrm{Axis}$

$$T(egin{bmatrix}1\0\end{bmatrix}) = egin{bmatrix}1\0\end{bmatrix} \ T(egin{bmatrix}0\1\end{bmatrix}) = egin{bmatrix}0\0\end{bmatrix}$$

So,

$$A = egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}$$

On to the $x_2-\mathrm{Axis}$

$$egin{aligned} T(egin{bmatrix}1\0\end{bmatrix}) &= egin{bmatrix}0\0\end{bmatrix}\ T(egin{bmatrix}0\1\end{bmatrix}) &= egin{bmatrix}0\1\end{bmatrix} \end{aligned}$$

So,

$$A = egin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix}$$