

Programmazione Matematica: Introduzione

Daniele Vigo D.E.I. – Università di Bologna

daniele.vigo@unibo.it

rev. 1.0 - 2023

Preliminari

Notazione

- R : insieme dei numeri reali (Rⁿ : spazio vettoriale a n dimensioni)
- Z: insieme dei numeri interi (Z+: numeri interi positivi)
- $[a, b] = \{x \in R : a \le x \le b\}$ (intervallo chiuso)
- $(a, b) = \{x \in R : a < x < b\}$ (intervallo aperto)
- $\|\mathbf{x}\| = \sqrt{\sum_{i=1}^{n} x_i^2}$: norma euclidea; $\|\mathbf{z}\|$: valore assoluto dello scalare $\mathbf{z} \in \mathbb{R}$
- Q = $\{q_1,...,q_n\}$: insieme degli n elementi $q_1,...,q_n$
- Q = $\{x \in \mathbb{R}^n : P(x)\}$: insieme dei punti di \mathbb{R}^n che soddisfano le condizioni P
- |Q| : cardinalità dell'insieme Q
- argmin{f(i):i∈l}: i*∈l tale che f(i*)=min{f(i):i∈l}
- $[z]=\max\{i\in Z:i\leq z\}; [z]=\min\{i\in Z:i\geq z\}$

Notazione

$$\triangleright x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} : \text{ vettore colonna } n \text{ dimensionale } (x \in R^n)$$

$$\triangleright c^T = [c_1, \dots, c_n]$$
 : vettore riga n -dimensionale

$$\triangleright c^T x = \sum_{j=1}^n c_j x_j$$
: prodotto scalare (o anche cx)

$$hd A = \left[egin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{array}
ight] : \mbox{ matrice } m imes n$$

$$\triangleright A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix} = \begin{bmatrix} a^1 \\ \vdots \\ a^m \end{bmatrix} = [A_1, \dots, A_n] = [a_1, \dots, a_n]$$

$$\triangleright Ax = \begin{bmatrix} \sum_{j=1}^{n} a_{1j}x_j \\ \vdots \\ \sum_{j=1}^{n} a_{mj}x_j \end{bmatrix} = \begin{bmatrix} a_1^Tx \\ \vdots \\ a_m^Tx \end{bmatrix} = \begin{bmatrix} a^1x \\ \vdots \\ a^mx \end{bmatrix}$$

$$\triangleright Ax = b \rightarrow \begin{cases} a_1^T x = b_1 \\ \vdots \\ a_m^T x = b_m \end{cases} \equiv \begin{cases} a^1 x = b_1 \\ \vdots \\ a^m x = b_m \end{cases}$$

- \triangleright rango(A): rango di A
- $\triangleright \det(A)$: determinante di A
- $\, \rhd \, A^{-1} \colon \operatorname{matrice inversa \ di} \, A$

Combinazione Convessa

Def.: z, è combinazione convessa di x,y se

 $\exists \ \lambda \in [0,1] \text{ tale che } z = \lambda x + (1-\lambda) y$

Combinazione Convessa (2)

Def.: Combinazione convessa di K punti

$$p_1,p_2,\ldots,p_K\in R^n$$

$$z = \sum_{i=1,K} \lambda_i p_i \quad con \lambda_i \ge 0 \quad e \quad \sum_{i=1,K} \lambda_i = 1$$

Es.
$$z = \lambda x + (1-\lambda) y$$
, $\lambda_1 = \lambda > 0$, $\lambda_2 = 1-\lambda$, $\lambda_1 + \lambda_2 = 1$

$$\mathbf{p}_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \mathbf{p}_{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ \mathbf{p}_{3} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\lambda_i = \{0.5, 0.2, 0.3\} \ z = \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix}$$

Def.: $F \subseteq \mathbb{R}^n$ è un insieme convesso se

$$\forall x, y \in F \ e \ \forall \lambda \in [0,1],$$

$$z = \lambda x + (1 - \lambda) y \in F$$

Es.
$$x,y \in \mathbb{R}^2$$

Proprietà degli Insiemi Convessi

Proprietà 0: R^n è convesso (ovvio)

Proprietà 1: Dati F_i convessi \Rightarrow

$$F = \bigcap F_i$$
 è convesso

DIM.:

$$x,y \in F \Rightarrow x,y \in F_i \ \forall i$$

 $\Rightarrow z = \lambda x + (1-\lambda) \ y \in F_i \ \forall i, \ \forall \lambda$
 $\Rightarrow z \in \cap F_i \ \Box$

Vertici ed Insiemi Convessi

Def.: z è vertice di un insieme convesso F

⇔ non è combinazione convessa di altri punti di F

Def.: Dato un insieme di punti $P = \{p_1, p_2, ..., p_K\} \subset R^n$ si dice chiusura convessa di P, conv(P) il più piccolo insieme convesso che contiene P.

Funzioni Convesse

Def.: Dato $F \subseteq \mathbb{R}^n$ convesso, $\varphi : F \to \mathbb{R}$ è convessa in F se $\forall x, y \in F$, $\forall \lambda \in [0,1]$, si ha $\varphi(\lambda x + (1 - \lambda) y) \le \lambda \varphi(x) + (1 - \lambda)\varphi(y)$

Problemi di ottimizzazione

Problemi di Ottimizzazione

- $x = (x_1, ..., x_n) \in \mathbb{R}^n$: vettore di variabili decisionali
 - prodotti da realizzare, istanti in cui produrli ...
 - merci o materie prime da stoccare: quanto, quando ...
 - luogo in cui realizzare una infrastruttura ...
 - tratti di strada da scegliere in un percorso ...
- $F \subseteq \mathbb{R}^n$: insieme delle soluzioni ammissibili (regione ammissibile)
- $\varphi: F \to \mathbb{R}$: funzione obiettivo (f. costo)

$$(P) \quad \min_{x \in F} \varphi(x)$$

Problemi di Ottimizzazione (2)

$$(P) \quad \min_{x \in F} \varphi(x)$$

ovvero determinare $x^* \in F$ (ottimo globale) tale che:

$$\varphi(x^*) \le \varphi(x) \qquad \forall x \in F$$

$$\forall x \in F$$

In generale φ ed Fsono qualsiasi

storicamente detti problemi di programmazione

Regione Ammissibile

La regione ammissibile *F* può essere definita:

- esplicitamente: specificando le proprietà di x∈F
 - Es. $[0,1]^2$; x intere nell'ipercubo di lato 1

Elenco la regione ammissibile che ci serve: da 1 a 10 etc...

• implicitamente: servendosi di equazioni e

disequazioni

Definisco la regione ammissibile attraverso una funzione

$$F := \{x \in \mathbb{R}^n : g_i(x) \le 0, (i=1, ..., m)$$
$$h_j(x) = 0, (j=1, ..., p)\}$$

Esempio di regione ammissibile

$$F = \{x \in \mathbb{R}^2 : 5x_1 + 3x_2 \le 15; 5x_1 - 3x_2 \ge 0; x_2 \ge \frac{1}{2}, x_1, x_2 \ge 0\}$$

Minimi Locali e Globali

- non è detto che x^* esista ($F = \emptyset$) o che sia unica
- possono esistere ottimi (minimi) locali e globali

(P) richiede di trovare almeno un ottimo globale

Esempio 1

problema continuo:

$$F = [0,3/2]^2 \subset \mathbb{R}^2$$

$$\max \varphi(x) = x_1 + x_2$$

Esempio 2

problema discreto:

$$F = \{0, 3/2\}^2 \subset \mathbb{R}^2$$
3/2

1

0

1

3/2

1

3/2

1

3/2

1

$$\max \varphi(x) = x_1 + x_2$$

si può valutare $\varphi(x)$ in ciascun vertice se $F=\{0,1\}^{100}$ $\Rightarrow 2^{100} \sim 10^{30}$ valutazioni

Esempio 3

problema continuo:

$$F = [0,1]^2 \subset \mathbb{R}^2$$

min
$$\varphi(x) = (x_1 - 1/2)^2 + (x_2 - 1/2)^2$$

Algoritmi Numerici

- Un algoritmo non ha visione completa di φ ed F
- valuta $\varphi(x)$ in una sequenza di punti $x \in F$

STUDIORUM

Algoritmi Numerici (2)

Gli algoritmi per i problemi di ottimizzazione sono generalmente di tipo iterativo:

- 1.Sia x_0 ($\in F$) una soluzione iniziale; k := 0;
- 2. repeat
 - 2.1 verifica l'ottimalità (locale) di x_k
 - 2.2 se x_k non ottima genera x_{k+1} ($\in F$) tale che

$$\varphi\left(x_{k+1}\right) \leq \varphi\left(x_{k}\right)$$
 e poni $k := k + 1$;

until $(x_k \text{ ottima})$ o $(condizione \ di \ terminazione)$

Algoritmi Numerici (3)

- La sequenza $x_0, x_1, ..., x_k$ converge alla soluzione ottima x^* (o ad un ottimo locale)
- Nel caso generale (φ ed F qualsiasi) la convergenza è ad un ottimo locale ed il numero di iterazioni è molto elevato
- Nel caso continuo si termina quando si è raggiunta l'approssimazione desiderata (piccole variazioni tra iterazioni successive)

Ottimi Locali ed Intorni

Def.: $y \in F$ è un ottimo locale se \exists un intorno $N \subseteq F$

tale che
$$\varphi(y) \le \varphi(x) \quad \forall x \in N$$

Es. $N_{\varepsilon}(y) := \{x \in F : ||y - x|| \le \varepsilon, \varepsilon > 0\}$ (intorno euclideo)

Nè esatto se un ottimo locale rispetto ad Nè ottimo globale

$$(Es. N_1)$$

Convessità ed Intorno Euclideo

Th.: Dato (F,φ) con $F \subseteq \mathbb{R}^n$ convesso e φ convessa, $N_{\varepsilon}(x) = \{ y \in F : || x-y || \le \varepsilon \}$ è esatto $\forall \varepsilon > 0$

 \Rightarrow (ottimo locale \equiv ottimo globale)

Dimostrazione

 $x = \text{ottimo locale rispetto ad } N_{\varepsilon} \text{ ma non globale !!; lo è } y \in F;$

$$z = \lambda x + (1 - \lambda) y \text{ in } N_{\varepsilon}(x) \ (\lambda \text{ prossimo a 1});$$

$$\varphi(z) = \varphi(\lambda x + (1 - \lambda) y) \le \lambda \varphi(x) + (1 - \lambda) \varphi(y) \Rightarrow$$

$$\Rightarrow \varphi(y) \ge [\varphi(z) - \lambda \varphi(x)]/(1 - \lambda); z \in N_{\varepsilon}(x) \Rightarrow \varphi(z) \ge \varphi(x)$$

$$\Rightarrow \varphi(y) \ge [\varphi(x) - \lambda \varphi(x)]/(1 - \lambda) = \varphi(x)$$
 (contraddizione!!)

Classificazione

 φ , g_i , h_j qualunque

⇒ Progr. Non Lineare (PNL, NLP)

Non esistono algoritmi generali di ottimizzazione

∃ metodi che convergono a ottimi locali

 φ , g_i , convesse

)

⇒ Programmazione Convessa (PC,CP)

h_j <mark>lineari</mark>

ottimo locale = ottimo globale

∃ algoritmi ma non efficienti

Classificazione (2)

```
\varphi, g_i, h_j lineari \Rightarrow Programmazione Lineare (PL, LP) ottimo locale \equiv ottimo globale
```

∃ algoritmi efficienti (Simplesso, Elissoide ...)

```
PL con variabili intere
```

- ⇒ Progr. Lineare Intera (PLI, ILP)
 Problema difficile (∞ PNL)
 - ∃ algoritmi generali (Branch-and-Bound, Branch-and-Cut, Branchand-Price ...)