Cryptographic Hash Functions & Message Authentication Codes

Cryptography - CS 411 / CS 507

Erkay Savaş

Department of Computer Science and Engineering Sabancı University

October 25, 2019

Outline

- Cryptographic Hash functions
- Message Authentication Codes (MAC)

Hash Functions

- One-way hash functions do not use secret key.
- A hash function accepts an arbitrary length message M and
 - produces a fixed-length output, referred as <u>hash code</u>, or shortly <u>hash</u>, h=H(M);
 - message digest and <u>hash value</u> are also used.
- A message representative
 - A change to any bit (or bits) in the message results in a (big) change to the hash value.
- Hash functions are widely used in message authentication and digital signatures

Basic Use of Hash functions

• Both encryption and message authentication

Basic Use of Hash functions

 Message authentication only Sender Receiver

Requirements for a Hash Function

- One-way property
 - - making both hardware and software implementations practical
 - $\ \, \ \, \ \,$ For any given value h, it is computationally infeasible to find x such that H(x)=h
- Weak collision resistance
 - For any given message x, it is computationally infeasible to find $y \neq x$ such that H(x) = H(y)
- Strong collision resistance
 - It is computationally infeasible to find <u>any</u> pair (x,y) with $x \neq y$ such that H(x) = H(y)

How Hard to Find Collision?

- Depends on the hash length, *n*-bit
- ullet Ideally, after $2^{n/2}$ trials it is likely to find collisions due to "birthday attacks"

Collision Attacks on Hash Functions

- In 2004, many collisions were found for MD4, MD5, HAVAL-128, and RIPEMD
- MD5 collisions have been used to create two different and "meaningful" documents with the same hash.
- Lenstra et al. showed how to produce examples of X.509 certificates with the same hash

Secure Hash Standard (SHA-1)

- Proposed by NIST as standard hash function for certain US federal government applications (1995).
- The hash value is 160-bits.
- Five 32-bit chaining variables are used.
- Similar to DES, the chaining variables are processed in 20 rounds.
- For more information see http://www.nist.gov and Handbook of Applied Cryptography.

Cryptanalysis of SHA-1

- In Feb. 2005, Wang, Yin, and Yu announced that their attacks can find collisions requiring fewer than 2^{69} operations.
 - A brute-force search would require about 2^{80} operations due to "birthday attacks"
- In August 2006, Wang, Yao and Yao announced that finding collisions requires 2^{63} operations.
- In 2017, Google announced the SHAttered attack, in which they generated two different PDF files with the same SHA-1 hash in roughly $2^{63.1}$ SHA-1 evaluations.
- NIST proposes SHA-2 variants
 - SHA-256, SHA-384, and SHA-512.
 - Attacks on SHA-1 have not beed extended to SHA-2 variants yet.

NIST hash function competition

- The NIST hash function competition
 - an open competition held by the US NIST for a new SHA-3 function to replace the older SHA-1 and SHA-2 hash functions,
 - formally announced on November 2, 2007.
 - NIST selected 51 entries for the Round 1, and 14 of them advanced to Round 2.
 - Sarmal did not pass to round 2
 - Spectral Hash with substantial weakness.
 - SHAMATA retracted
 - Hamsi accepted for round 2.
 - Winner was announced in 2012. (Keccak)
 - http://keccak.noekeon.org/

Birthday Paradox

- Probability results are sometimes counterintuitive.
- In birthday paradox, we are looking for the smallest value of k such that $P(365,k) \geq 0.5$.
 - probability that at least two people in a group of k people have the same birthday is greater than 0.5. (Ignore the leap year)
- The problem statement:
 - $P(n,k) = \Pr(a_i = a_j)$ where a_1, a_2, \dots, a_k and $1 \le a_i, a_j \le n$ and $i \ne j$
 - Assume $n \geq k$.
 - $\boldsymbol{\mathsf{-}}$ each item is able to take one of n values equally likely
 - at least one duplicate in k items
 - What is the minimum value of k such that the $Pr(a_i=a_j) \geq 0.5$

Birthday Paradox

ullet Consider the number of different ways, N, that we can have k values with no duplicates.

$$- N = 365 \times 364 \times 363 \times \ldots \times (365 - k + 1) = \frac{365!}{(365 - k)!}$$

- The total number of possibilities is 365^k .
- Then the probability

$$P(365, k) = 1 - \frac{365!}{(365 - k)!365^k}$$

• When the probabilities are calculated P(365, 23) = 0.5073

Birthday Paradox

- If there are 23 people in a room, the probability of two people having the same birthday is greater than 0.5.
 - The probability is 89% that there is a match among 40 people.
- A useful inequality:

$$P(n,k)>1-e^{-k^2/2n} \qquad \qquad P(n,k)=1-\frac{n!}{(n-k)!n^k}$$
 if n is large enough

Birthday Paradox in Cryptography

- Two rooms with k people each.
 - Probability of a pair of people with the same birthday, elements of pairs from a different room:
 - $\approx 1 e^{-k^2/n}.$
 - Example:
 - $k = 19 \rightarrow \approx 63\%, 19 \approx 365^{1/2}$
 - $k = 30 \rightarrow 91.5\%$
- Application to hash functions
 - Two sets of messages with $k = 2^{m/2}$ messages each.
 - Messages choose one of the hash values of m-bit $(n=2^m)$ at random.

Birthday Attacks 1/3

- Assume hash code is a 64-bit value, m=64
- Alice signs the hash H(M) of a message M.
- An opponent would need to find M' such that H(M)=H(M') to substitute another message.
- After trying about 2^{64} different messages, we have high probability to find a message M^\prime that gives the same hash as M.
- However, a different attack based on birthday paradox is much more feasible.

Birthday Attacks 2/3

- Opponent forms two sets of messages:

 - Prepares an equal number of messages, all of which are variations on the fake message to be substituted for the original message
- These two sets of messages are compared to find a pair of messages that produces the same hash value.
 - The probability of success, by the birthday paradox, is greater than 0.5.
- If no match is found, additional messages are generated for the two sets.

Birthday Attacks 3/3

- The opponent offers the valid variation to Alice to sign.
- Alice generates a hash value for this message and signs it.
- The opponent replaces the original message with the fraudulent message that generates the same hash value.
- Now, the fradulent message has a valid signature.
- Since the hash value is 64-bit, the level of effort required is only on the order of 2^{32} .

Why Birthday Attacks Work?

- Variations are obtained by adding a space at the end of a line, modifying the punctuation, changing the wording slightly, etc.
- In two sets there are $k = 2^{m/2}$ messages each.
- The probability that a message from the first set of k produces the same hash value as a message from the second set of k is given by a similar formula with approximation

$$1 - e^{-k^2/n}$$

Why Birthday Attacks Work?

• $n=2^m o$ Probability that there is a match between the hash values of two messages from the two sets is approximately

$$1 - e^{-k^2/n} = 1 - e^{-1} = 0.63 > 0.5$$

http://www.win.tue.nl/hashclash/

Collision in MD5

25376E83 6FB36189 76AFD3F1 71A08898 36926338

Merkle Hash Tree

Password Protection

- The password is hashed and the hash value is stored.
- The user enters his/her password for authentication
- Its hash is computed and the hashes are compared
- If comparison is passed, the user is authenticated
- To increase security, salt is used (h=H(PWD||SALT), where SALT is a k-bit random integer.)

Dictionary Attack

- Dictionary Attack
- ullet Generate a dictionary of all possible passwords (or as many passwords as possible): ${
 m PWD}_i$ for $i=1,2,\ldots$
- Compute the hashes of all passwords in your dictionary: $H(PWD_i)$ for $i=1,2,\ldots$
- You have now pairs in your table: $[H(PWD_i), PWD_i]$ for $i=1,2,\ldots$
- If you use salt, then the table size increases significantly
 - Assume 16-bit salts
 - Then, for every password candidate PWD_i , we need to have 2^{16} possible hash values such that $\mathrm{H}(\mathrm{PWD}_i||0)$, $\mathrm{H}(\mathrm{PWD}_i||1), \ldots \mathrm{H}(\mathrm{PWD}_i||65535)$

Password Crack 1/2

- Time-memory trade-off
- \mathcal{P} : set of all passwords; $p \in \mathcal{P}$
- \mathcal{H} : image of hash function H; $h \in \mathcal{H}$
- Let $R: \mathcal{H} \to \mathcal{P}$
- Generate a chain of passwords

$$f: \mathcal{P} \to \mathcal{P}(p_{i+1} = R(H(p_i)))$$

Password Crack 2/2

ullet Create the following table and store only $p_{i,0}$ and $p_{i,t-1}$

- Given a hash value h corresponding to a password, compute $-p_0 = R(h)$ $-p_i = f(p_{i-1})$ for i = 1, 2, ..., t-2
- Compare p_i for $i=0,\ldots,t-2$ with $p_{j,t-1}$ for $j=1,\ldots,m$
- For more information, search for rainbowcrack

Why It Works

• Case 1:

- $p_0 = R(h)$
- compare p_0 and $p_{j,t-1}$ for $j=1,\ldots,m$
- If $p_0 = p_{j,t-1}$; then $R(h) = R(H(p_{j,t-2}))$
- $h = H(p_{j,t-2})$
- Then the password is $p_{j,t-2}$
- Compute $p_{j,0} \rightarrow p_{j,1} \rightarrow \ldots \rightarrow p_{j,t-2}$.
- t-2 hash computations in total
- m comparisons

Why It Works

Case 2:

- $p_0 = R(h)$ and $p_0 \neq p_{j,t-1}$ for j = 1, ..., m
- then compare $p_1 = f(p_0)$ and $p_{j,t-1}$ for $j = 1, \ldots, m$
- If $p_1 = p_{j,t-1}$ then $R(H(p_0)) = R(H(p_{j,t-2}))$
- $H(p_0) = H(p_{j,t-2})$
- $-p_0 = p_{j,t-2}$ then $R(h) = R(H(p_{j,t-3})) \to p_0 = p_{j,t-3}$
- Compute $p_{j,0} \to p_{j,1} \to \ldots \to p_{j,t-3}$.
- t-2 hash computations in total
 - One hash computation from p_0 to p_1 .
 - ullet t-3 hash computations from $p_{j,0}$ to $p_{j,t-3}$

Extendable-Output Functions (XOF)

- XOF is a generalization of a cryptographic hash function.
- Instead of creating a fixed-length digest (e.g. 32 bytes like SHA-2/256), it can produce outputs of any desired length.
- Used in cryptographic schemes
- Example: SHAKE-128 and SHAKE-256 based on SHA3

Message Authentication

- Message authentication ensures the integrity of a message
- i.e. its content has not been changed by unauthorized parties

Authentication with Encryption

- The ciphertext of the message serves as authenticator.
 - If the ciphertext decrypts into a meaningful plaintext, then the message is authentic.
- Several scenarios in which this scheme is not suitable:
 - May be hard to distinguish a meaningful message.
 - Authentication cannot be done on selective basis.
 - one destination is interested in the authentication while the others are interested only in confidentiality
 - Separation of authentication and confidentiality may offer architectural flexibility

Message Authentication Codes

- MAC or <u>cryptographic checksum</u> is a short, fixed-length bit string derived from a message of arbitrary length using a secret key.
- This technique assumes that two communicating parties, say A and B, share a secret key K_{AB} .
- When A has a message M to send to B, it calculates the MAC as a function of the message and the key: $\text{MAC} = C_{K_{AB}}(M)$ where C is the MAC function.
- where C is the MAC function.
- The message and MAC are transmitted to B.

Basic Use of MAC

• Message authentication without confidentiality

Properties of MAC Function

- A MAC function is similar to encryption in many ways.
- But it does not have to be reversible.
- A MAC function is a many-to-one function

Basic Uses of MAC

• Message authentication and confidentiality

Authentication code is tied to plaintext

Basic Uses of MAC

Message authentication and confidentiality

• Authentication is tied to ciphertext