SISTEMAS OPERATIVOS - PRÁCTICAS MODULO I - SESION 3

REFLEXION 1. Sean estos tres script bash de nombres s1, s2 y s3:

s1	s2	s3
lim=1000000 for ((C=1;C <lim;c++));do< td=""><td>lim=1000000 for</td><td>lim=1000000</td></lim;c++));do<>	lim=1000000 for	lim=1000000
## se ejecuta el script	((C=1;C <lim;c++));do< td=""><td>sleep \$lim</td></lim;c++));do<>	sleep \$lim
<pre>## llamado calculo1 que realiza un ## calculo aritmetico de 1 seg</pre>	sleep 1	
calculo1 ## done		
echo Fin s1 con pid \$\$	done echo Fin s2 con pid \$\$	echo Fin s3 con pid \$\$

Califique los siguientes enunciados como Verdaderos o Falsos: (Soluciones al final)

	,	
1.	El proceso resultante de ejecutar s1 es un proceso "limitado por CPU"	
2.	El proceso resultante de ejecutar s2 es un proceso "limitado por E/S"	
3.	El proceso resultante de ejecutar s3 es un proceso "limitado por E/S"	
4.	Si como únicos procesos tenemos muchas ejecuciones simultáneas de s1 , la cola de ejecutables estará vacía la mayor parte del tiempo.	
5.	Si como únicos procesos tenemos muchas ejecuciones simultáneas de s3 , la cola de ejecutables estará vacía la mayor parte del tiempo.	
6.	Si como únicos procesos tenemos muchas ejecuciones simultáneas de s3 con distintas prioridades , el hecho de que tengan distintas prioridades no va a repercutir apreciablemente en cómo van progresando en su ejecución.	
7.	Si como únicos procesos tenemos muchas ejecuciones simultáneas de s1 con distintas prioridades , el hecho de que tengan distintas prioridades no va a repercutir apreciablemente en cómo van progresando en su ejecución.	

REFLEXION 2. Observemos estas dos posibilidades de ejecutar la orden time sobre el script prueba pasándole como argumento el valor 10000 (supongamos que . no está en \$PATH); explique porqué una da error y otra no:

- a) time prueba 10000 &
- b) time bash prueba 10000 &

REFLEXION 3. Sobre la orden nice —n <ruta>

Ejecuta <ruta> cambiando la prioridad que por defecto tienen los procesos que crea este usuario: le suma el valor n

En el valor de prioridad de un proceso, menor valor implica mayor importancia

Si n es positivo (ej: nice -10 /home/ruz/e1) se está creando un proceso con **menor** importancia relativa que los que este usuario crea por defecto.

Si n es negativo (ej: nice --10 /home/ruz/e1) se está creando un proceso con **mayor** importancia relativa que los que este usuario crea por defecto.

REFLEXION 4. Sobre las "marcas de tiempo": En Linux existen tres tiempos almacenados en un inodo:

- **ctime**: 'change time' indica el tiempo de la última modificación que se realizó a los metadatos del archivo. Es posible ver este tiempo con la opción *c* de la orden ls.
- **atime**: 'access time' indica el tiempo en que el contenido del archivo fue por última accedido para mostrar su contenido. Es posible ver este tiempo con la opción *u* de la orden ls.
- **mtime**: 'modify time' indica el tiempo en que el contenido del archivo fue por última vez modificado. Es posible ver este tiempo con la opción *l* de la orden ls.

REFLEXION 5. Sobre la orden siguiente (el carácter | expresa opcionalidad entre lo que se expresa a la izquierda y a la derecha):

Si se ha especificado +:

Selecciona los archivos descendientes de ruta que tienen un valor de tiempo ctime o mtime o atime (según se haya especificado) **inferior** a (fecha actual — n días)

Si se ha especificado -:

Selecciona los archivos descendientes de ruta que tienen un valor de tiempo ctime o mtime o atime (según se haya especificado) **superior** a (fecha actual — n días)

Solución Reflexión 1:

- 1. V
- 2.V La orden sleep provoca el bloqueo del proceso, por lo que éste tiene ráfagas cortas.
- 3. V
- 4. F Un proceso resultante de ejecutar s1 no se bloquea nunca, por tanto siempre que no se esté ejecutando estará en estado ejecutable
- 5. V
- 6. V
- 7. F