Rafael Fernández Ortiz

Assignments 2

Exercise 2

Assume we extend the syntax of While statements with a new construct: repeat S until b. This statement is executed as follows:

- (1) Execute S.
- (2) Check whether b is false. In this case, step back to (1). Otherwise, finish.

Define the big-step and small-step semantic rules for this new construct. You cannot rely on the rules of while to define the rules of repeat. Finally, prove that repeat S until b is equivalent to (S; while $\neg b$ do S)

Definition of big-step and small-step semantic rules

Let $b \in BExp$ and $S \in Stm$ be. We can define the big-step and small-step semantic rules for repeat S until b constructor as follow:

(a) Big-step rules.

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma' \qquad \mathcal{B}[\![b]\!]\sigma' = true}{\langle \text{repeat } S \text{ until } b \ ,\sigma\rangle \Downarrow \sigma'} \quad [\text{UntilT}_{BS}]$$

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma'' \quad \mathcal{B}[\![b]\!]\sigma'' = false \quad \langle \text{repeat } S \text{ until } b \ , \sigma'' \rangle \Downarrow \sigma'}{\langle \text{repeat } S \text{ until } b \ , \sigma \rangle \Downarrow \sigma'} \quad [\text{UntilF}_{BS}] \quad \checkmark$$

(b) **Small-step rules**. The small step semantics is defined by rewriting steps.

$$\frac{}{\langle \text{repeat } S \text{ until } b \ , \sigma \rangle \longrightarrow \langle S; \text{ if } b \text{ then skip else repeat } S \text{ until } b \ , \sigma \rangle} \quad [\text{Until}_{SS}]$$

Proof the equivalence

In order to proof that both expression in the extension of while semantic are equivalent, we need to see

$$\langle \text{repeat } S \text{ until } b , \sigma \rangle \Downarrow \sigma' \iff \langle S; \text{ while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma'$$

For this purpose, we will prove a base case. Then we will continue by applying rule-induction.

Proof. \Rightarrow

Base case.

Let's consider a statement $S \in Stm$, a boolean expression $b \in BExp$ and any states $\sigma, \sigma' \in State$. The base case is when the semantic denotational of b is true for any σ' . We assume that

holds. Therefore we know that there is a derivation tree for it:

$$\frac{\langle S, \sigma \rangle \Downarrow \sigma' \qquad \mathcal{B}[\![b]\!] \sigma' = true}{\langle \text{repeat } S \text{ until } b , \sigma \rangle \Downarrow \sigma'} \quad [\text{UntilT}_{BS}]$$
 (1)

We can rewrite $\mathcal{B}[\![b]\!]\sigma' = true$ to $\mathcal{B}[\![\neg b]\!]\sigma' = false$ and reshape the $WhileF_{BS}$ rule as follow:

$$\frac{\mathcal{B}[\![\neg b]\!]\sigma = false}{\langle \text{while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma} \quad [\text{WhileF}_{BS}]$$
 (2)

Therefore, using the same assertions in (1) and appliying the Seq_{BS} rule and (2), we obtain:

The last cost of the same assertions in (1) and appropring the
$$Seq_{BS}$$
 rule and (2), we obtain the last cost of $S,\sigma > 0$ and $S,\sigma > 0$ are Seq_{BS} while $S,\sigma > 0$ and $S,\sigma > 0$ are Seq_{BS} . That will be our induction hypothesis (IH). Now, we have to prove the inductive calculation of the same assertions in (1) and appropring the Seq_{BS} and Seq_{BS} [Seq_{BS}]

That will be our induction hypothesis (IH). Now, we have to prove the inductive case, i.e when the semantic denotational of the boolean expression b is false. In this case and being rigorous, we can consider that exist a know α $k \in \mathbb{N}$ such that $\mathcal{B}[\![b]\!] \sigma_k = true$ and before that $\mathcal{B}[\![b]\!] \sigma_i = false$ for all $i \in \mathbb{N}$ with $i \leq k$.

Inductive case.

Let $S \in Stm$, $b \in BExp$, $\sigma, \sigma' \in State$ be and let $k \in \mathbb{N}$ be a natural number such that $\mathcal{B}[\![b]\!]\sigma_k = true \text{ and } \mathcal{B}[\![b]\!]\sigma_i = false \text{ for all } i \in \mathbb{N} \text{ with } i \leq k.$

We can assume that exist a derivation tree with root

$$\langle \text{repeat } S \text{ until } b \ , \sigma \rangle \Downarrow \sigma'$$

such that is obtained by derivating and apliying $UntilF_{BS}$ in all T_i subtree (for each i-big-step) and finally we obtain:

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma_1 \quad \mathcal{B}[\![b]\!] \sigma_1 = false \quad \langle \text{repeat } S \text{ until } b \ , \sigma_1 \rangle \Downarrow \sigma_2}{\underbrace{\langle \text{repeat } S \text{ until } b \ , \sigma \rangle \Downarrow \sigma_2}_{} \vdots \\ \underbrace{\langle S,\sigma\rangle \Downarrow \sigma_k \quad \mathcal{B}[\![b]\!] \sigma_k = true \quad \langle \text{repeat } S \text{ until } b \ , \sigma_k \rangle \Downarrow \sigma'}_{}$$

How we have obtained both $\langle S, \sigma \rangle \Downarrow \sigma_k$ and $\mathcal{B}[\![\neg b]\!] \sigma_k = false (\mathcal{B}[\![b]\!] \sigma_k = true)$ assertions. By IH results:

$$\frac{\langle S, \sigma \rangle \Downarrow \sigma_k \quad \mathcal{B}[\![\neg b]\!] \sigma_k = false}{\langle S; \text{ while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma'} \quad [\text{ IH }]$$

Therefore

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma_k \quad \mathcal{B}[\![\neg b]\!] \sigma_k = false \quad \langle \texttt{repeat } S \texttt{ until } b \ , \sigma_k\rangle \Downarrow \sigma'}{\langle S; \texttt{ while } \neg b \texttt{ do } S,\sigma\rangle \Downarrow \sigma'} \ [\texttt{ IH }]$$

and finally

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma_k \quad \mathcal{B}[\![\neg b]\!] \sigma_k = false \quad \langle S; \text{ while } \neg b \text{ do } S,\sigma_k\rangle \Downarrow \sigma'}{\langle S; \text{ while } \neg b \text{ do } S,\sigma\rangle \Downarrow \sigma'} \quad [\text{ IH }]$$

Proof. \Leftarrow

In order to prove this sense, we can proceed very similar as before. Assuming that $\langle S; \text{ while } \neg b \text{ do } S, \sigma \rangle \downarrow$ σ' holds, we have to deconstruct it in its assertions that is derivated in and to considerate the case base when the boolean expression is false.

Base case.

Let a statement $S \in Stm$, a boolean expression $b \in BExp$ and any states $\sigma, \sigma' \in State$ be. We assume $\langle S;$ while $\neg b$ do $S, \sigma \rangle \Downarrow \sigma'$ holds. So we have the following derivation tree:

$$\frac{\langle S, \sigma \rangle \Downarrow \sigma' \quad \langle \text{while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma'}{\langle S; \text{ while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma'} \quad [\text{Seq}_{BS}]$$
 (3)

Furthermore, since we assume that $\langle \text{while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma' \text{ holds, then there is a derivation sub$ tree for that expression from which it is derived.

$$\frac{\mathcal{B}[\![\neg b]\!]\sigma' = false}{\langle \mathtt{while} \ \neg b \ \mathtt{do} \ S, \sigma \rangle \Downarrow \sigma'} \ [\mathrm{WhileF}_{BS}]$$

And by rewriting the boolean expression

$$\frac{\mathcal{B}[\![b]\!]\sigma' = true}{\langle \text{while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma'} \quad [\text{WhileF}_{BS}]$$
(4)

Thus, combining (3) and (4) we finally obtain

$$\frac{\mathcal{B}[\![b]\!]\sigma' = true}{\langle S, \sigma \rangle \Downarrow \sigma'} \frac{\langle \text{While } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma'}{\langle S; \text{ while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma'} [\text{Seq}_{BS}]$$
(5)

On the other hand, using the same assertions in the equation (5), we obtain by definition:

$$\frac{\langle S, \sigma \rangle \Downarrow \sigma' \qquad \mathcal{B}[\![b]\!]\sigma' = true}{\langle \text{repeat } S \text{ until } b , \sigma \rangle \Downarrow \sigma'} \quad [\text{UntilT}_{BS}]$$

Inductive case.

to the left-fight implication.

We can prove the inductive case analogously at the right sense of the proof.

Let $S \in Stm$, $b \in BExp$, $\sigma, \sigma' \in State$ be and let $k \in \mathbb{N}$ be a natural number such that $\mathcal{B}[\neg b]\sigma_k = false \text{ and } \mathcal{B}[\neg b]\sigma_i = true \text{ for all } i \in \mathbb{N} \text{ with } i \leq k.$

We can assume that exist a derivation tree with root

$$\langle S : \text{ while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma'$$

such that is obtained by derivating and applying $While F_{BS}$ in all T_i subtree (for each i-big-step):

$$\frac{\langle S, \sigma \rangle \Downarrow \sigma_{1} \quad \mathcal{B}[\![\neg b]\!] \sigma_{1} = true \quad \langle \text{while } \neg b \text{ do } S, \sigma_{1} \rangle \Downarrow \sigma_{2}}{\langle \text{while } \neg b \text{ do } S, \sigma \rangle \Downarrow \sigma_{2}} \quad [\text{WhileF}_{BS}]$$

$$\vdots$$

$$\frac{\langle S, \sigma \rangle \Downarrow \sigma_{k} \quad \mathcal{B}[\![\neg b]\!] \sigma_{k} = false \quad \langle \text{while } \neg b \text{ do } S, \sigma_{k} \rangle \Downarrow \sigma'}{\langle S, \sigma \rangle \Downarrow \sigma_{k} \quad \mathcal{B}[\![\neg b]\!] \sigma_{k} = false \quad \langle \text{while } \neg b \text{ do } S, \sigma_{k} \rangle \Downarrow \sigma'} \quad (6)$$

Then, rewriting the boolean expression and applying inductive hypothesis IH:

$$\frac{\langle S, \sigma \rangle \Downarrow \sigma_k \qquad \mathcal{B}[\![b]\!] \sigma_k = true}{\langle \text{repeat } S \text{ until } b, \sigma \rangle \Downarrow \sigma'} \quad [\text{ IH }]$$
 (7)

Combining (6) and (7)

$$\frac{\langle S, \sigma \rangle \Downarrow \sigma_k \quad \mathcal{B}[\![b]\!] \sigma_k = true \quad \langle \text{while } \neg b \text{ do } S, \sigma_k \rangle \Downarrow \sigma'}{\langle \text{repeat } S \text{ until } b , \sigma \rangle \Downarrow \sigma'} \quad [\text{ IH }]$$

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma'' \quad \mathcal{B}[\![b]\!]\sigma'' = false \quad \langle \texttt{while} \ \neg b \ \texttt{do} \ S,\sigma''\rangle \Downarrow \sigma'}{\langle \texttt{repeat} \ S \ \texttt{until} \ b \ ,\sigma\rangle \Downarrow \sigma'} \ [\ \texttt{IH} \]$$

And finally we obtain $UntilF_{BS}$ axiom

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma'' \quad \mathcal{B}[\![b]\!]\sigma'' = false \quad \langle \text{repeat } S \text{ until } b \ ,\sigma'' \rangle \Downarrow \sigma'}{\langle \text{repeat } S \text{ until } b \ ,\sigma \rangle \Downarrow \sigma'} \quad [\text{UntilF}_{BS}]$$

Exercise 3

Add the following iterative construct to While: for $x := e_1$ to e_2 do S. Define its big-step and small-step semantic rules. You cannot rely on the while or repeat construct to do this exercise.

Definition of big-step and small-step semantic rules

Let $b \in BExp$ and $S \in Stm$ be. We can define the big-step and small-step semantic rules for repeat S until b constructor as follow:

(a) Big-step rules.

$$\frac{\mathcal{B}[\![e_1 \leq e_2]\!]\sigma = false}{\langle \text{for } x := e_1 \text{ to } e_2 \text{ do } S , \sigma \rangle \Downarrow \sigma[x \Rightarrow \mathcal{A}[\![e_1]\!]\sigma]} [\text{ForF}_{BS}]$$

$$\frac{\mathcal{B}[\![e_1 \leq e_2]\!]\sigma = true \quad \ \langle S, \sigma[x \to \mathcal{A}[\![e_1]\!]\sigma] \rangle \Downarrow \sigma_1 \quad \ \langle \text{for } x := e_1 + 1 \text{ to } e_2 \text{ do } S \text{ }, \sigma_1 \rangle \Downarrow \sigma'}{\langle \text{for } x := e_1 \text{ to } e_2 \text{ do } S \text{ }, \sigma \rangle \Downarrow \sigma'} \quad [\text{ForT}_{BS}]$$

(b) Small-step rules. The small step semantics is defined by rewriting steps.

$$\frac{}{\langle \text{for } x := e_1 \text{ to } e_2 \text{ do } S \text{ }, \sigma \rangle \longrightarrow \langle x := e_1; \text{ if } e_1 \leq e_2 \text{ then } S_1 \text{ else skip}, \sigma \rangle} \quad [\text{For}_{SS}]$$

where $S_1 = (S; \text{ for } x := e_1 + 1 \text{ to } e_2 \text{ do } S)$