Notes on Mixed Integer Linear Programming

Martin Sig Nørbjerg

October 26, 2025

1 Introduction

The term *Mixed Integer Linear Programming (MILP)* arises from the field of mathematical optimization; in general, a *Linear Programming (LP)* problem is an optimization problem of the form:

$$\min_{x} z = c^{T} x$$
s.t. $Ax \le b$

$$x \ge 0$$

where $x, c \in \mathbb{R}^n, b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$. If the additional constraint that some or all of the entries in x only take on integer values, that is values in \mathbb{N} , is imposed then the LP problem transforms into a MILP problem.

Remark. The tool Xion, which these notes partly document is a tool for MILP problems. However it should be noted that xion was created purely for educational purposes.

Definition 1.1. A MILP is in *standard form* if its of the form:

$$\min_{x} z = c^{T} x$$
s.t. $Ax = b$

$$x > 0$$
(1)

with $A \in \mathbb{R}^{m \times n}$ and $b \geq 0$.

Remark. It is sufficient to consider problems in standard form since, every MILP problem can be converted into a MILP problem in standard form

1.1 Converting a MILP problem to standard form

If the objective is $\max_x z = c^T x$, then since $\max_x = -\min_x (-c^T x)$ we can consider $\overline{c} = -c$.

Converting the inequality constraints to equality constraints is less straight forward however consider the following inequality constraint:

$$a_i^T x < b_i \tag{2}$$

Where a_i is the *i*th row of A and b_i is the *i*th entry in b. Introducing a slack variable $s_i \geq 0$, allows us to transform the constraint into:

$$a_i^T x + s_i = b_i$$
$$s_i > 0$$

Finally if $b_i < 0$ multiplying both sides of the equation by -1 makes sure that the right hand side is positive. Conversely every constraint of the form:

$$a_i^T x \ge b_i \tag{3}$$

can be written as:

$$a_i^T x - s_i = b_i$$
$$s_i > 0$$

 ${\it Remark}.$ Under the hood xion only works with MILP problems in standard form.

2 Linear Programming and the Simplex Method

Let C be a convex set an extreme point $p \in C$ is a point, where $x\lambda + (1-\lambda)y = p$ implies x = y = p for all $\lambda \in (0, 1)$.

Let $P \subseteq \mathbb{R}^n$, then P is called a *polytope* if it is a convex hull of fintely many points in \mathbb{R}^n . If there exits a matrix $A \in \mathbb{R}^{n \times m}$ and vector $b \in \mathbb{R}^m$ such that $P = \{x \in \mathbb{R}^n | Ax \leq b\}$, then P is called a *polyhedron*.

Theorem 2.1 (Representation Theorem). Let $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^m$ and $Q := \{x \in \mathbb{R}^n | Ax \leq b\}$ and P be the convex hull of the extreme points in Q, and $C = \{x \in \mathbb{R}^n | Ax \leq 0\}$. If $\operatorname{rank}(A) = n$ then $Q = P + C := \{p + c | p \in P, c \in C\}$.

Definition 2.1. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m_{\geq 0}$ with $\operatorname{rank}(A) = \operatorname{rank}(A, b) = m$ and n > m, then a points \hat{x} is called a *basic solution* to (1) if Ax = b and the columns of A corresponding to the non-zero components of \hat{x} is linearly independent. Furthermore if $\hat{x} \geq 0$ then \hat{x} is referred to as a *basic feasible solution (BFS)* to (1). If more than n - m variables of a basic solution \hat{x} is zero, then \hat{x} is said to *degenerate*.

Theorem 2.2. Suppose $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A) = m$ and $b \in \mathbb{R}^m$, then $\hat{x} \in \{x \in \mathbb{R}^m_{>0} | Ax = b\}$ is an extreme point if and only if \hat{x} is a BFS.