Foundations of Computer Science – Exercise 1

2. a)

C = A OR B

D = B XOR C = B XOR (A OR B)

b)

\sim		A 7x 1	\mathbf{T}	\mathbf{r}
(:	= 4	AN		В

D = B OR C = B OR (A AND B)

\boldsymbol{A}	В	C	D
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	0

A	В	С	D
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	1

c)

C = A XOR B

D = NOT B

E = C AND D

= (A XOR B) AND (NOT B)

A	В	С	D	Е
0	0	0	1	0
0	1	1	0	0
1	0	1	1	1
1	1	0	0	0

3.

а	≥1 • 0
	&
b	1

a	b	o
0	0	0
0	1	0
1	0	1
1	1	1

⇒ Value of output must be compromised as it not only depends on but also affects the whole operation of the circuit.

4.

- a) $(P \lor Q) \land P \land (Q \lor R) \land (P \lor \neg P \lor \neg R) \land (\neg Q \lor R)$
- = $(P \lor Q) \land P \land (Q \lor R) \land (1 \lor \neg R) \land (\neg Q \lor R)$ (Complementation law)
- = $(P \lor Q) \land P \land (Q \lor R) \land 1 \land (\neg Q \lor R)$ (Identity law)
- = $(P \lor Q) \land P \land (Q \lor R) \land (\neg Q \lor R)$ (Identity law)
- = $(P \lor Q) \land P \land (R \lor (Q \land \neg Q))$ (Distribution law)
- = $(P \lor Q) \land P \land R$ (Complementation law + Identity law)
- = $((P \land R) \land P) \lor ((P \land R) \land Q)$ (Distribution law)
- = $(P \land R) \lor ((P \land R) \land Q)$ (Idempotence law)
- $= P \wedge R$ (Absorption law)

b)
$$\neg$$
 ((P \lor Q) $\land \neg$ R) (Distribution law)
= \neg ((P $\land \neg$ R) \lor (Q $\land \neg$ R)) (De Morgan law)
= \neg (P $\land \neg$ R) $\lor \neg$ (Q $\land \neg$ R) (De Morgan law)
= (\neg P \land R) \lor (\neg Q \land R) (De Morgan law)

5.

DNF:

$$O = x'y'z + xy'z + xyz' + xyz$$

$$= y'z(x' + x) + xy'z + xyz' + xyz$$

$$= y'z + xy'z + xyz' + xyz$$

$$= y'z + xy(z' + z)$$

$$= y'z + xy$$

X	y	Z	$((x \land (y \lor z)) \lor (\neg y \land z))$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

