Critters Project Part I

- 1. Contributors
 - a. Donald Maze-England
 - b. Jennifer Sin
- 2. Stages
 - a. Stage 1
 - i. makeCritter located in the Critter class, creates the Critter of a specified Critter type and adds to a population list
 - 1. The population list is maintained throughout the simulation. It will hold each of the active critter objects.
 - 2. Default Class Values
 - a. Position will be set randomly using the x-y coordinate system
 - b. Default energy will be set using the constant value in Param class
 - c. Will throw an invalid exception for invalid class names
 - ii. Time Step
 - 1. World time step
 - a. Will be applied to every active critter in the population list
 - b. Will call individual critter's doTlmeStep
 - 2. Do time step
 - a. Individual do time steps will determine individual fight response
 - b. Reproduction decisions
 - c. Movement behavior
 - 3. Walk
 - a. Walking direction is determined by an integer ranging from 0 to7- with each walk there is a set parameter to deduct it
 - O will be East, 1 will be Northeast, 2 will be North, 3 will be Northwest, 4 will be West, 5 will be Southwest, 6 will be South, and 7 will be Southeast
 - 4. Population list update
 - a. Will go through the list checking for 0-energy critters and remove those critters from the list
 - iii. View Component located in Critter class, creates a visual representation for the console of the Critter world with its current active occupants
 - 1. A boarder containing the specified width and length of the world will be created for the console
 - a. Outputs the one char representation for the critter occupying the space
 - iv. Controller Component
 - 1. Quit
 - a. Using the keyboard scanner object when quit is detected it will terminate the program
 - 2. Show
 - a. Calls the Critter.displayWorld() method

- 3. Step
 - a. Calls a World Time Step on all the active Critters
- b. Stage 2
 - i. Time Step
 - 1. Reproduction limitations are defined
 - 2. List of babies is populated to keep from birth to straight fight
 - ii. Do Time Steps
 - 1. Individual fight decisions and reactions completed
 - 2. Moves are made
 - 3. Reproduction may occur
 - iii. Algae and Test critters
 - 1. Test critters are created
 - 2. Algae do not move but will have resting energy subtracted
 - a. Will not fight, means of food
 - b. A fixed parameter number of algae are added to the world at each world time step
 - iv. Control component
 - 1. Seed input
 - a. To set the seed for the random number generator
- c. Stage 3
 - i. Walking and Running
 - 1. In each World Time Step Critter will only walk once
 - 2. Appropriate movement energy costs applied
 - ii. Fight
 - 1. When two critters are on the same spot fight sequence will engage
 - a. Winner is determined by the random generated integer ranging from 0 to the energy level of the critter. The higher roll will be the winter
 - b. The loser will die and half of its energy will be applied to the winner's energy.
 - iii. Controller Component
 - 1. Stats
 - a. When the user prompts stats for a particular class the method for that class will be invoked.
 - iv. Exceptions and Errors
 - 1. Applied appropriate try/catch blocks for commands throwing exceptions and output error messages
- 3. Project components
 - a. Main
 - b. Critters
 - c. Craig
 - d. Yoshi

- e. Ruca
- f. Stego
- g. Params
- h. Algae
- i. SuperAlgae