Diamond cut analysis

Objective

Objective of this project is to accurately predict the price of a diamond. There are various factors (variables) that affect the price of a diamond. In this project, we will analyze the price of a diamond based on those factors.

Data

Data Sourcing

The data is sourced from kaggle website. https://www.kaggle.com/shivam2503/diamonds (https://www.kaggle.com/shivam2503

Data description. We will use this for our analysis.</u>
price = price in US dollars (\$326--\$18,823)
carat =weight of the diamond (0.2--5.01)
cut = quality of the cut (Fair, Good, Very Good, Premium, Ideal)
color = diamond colour, from J (worst) to D (best)
clarity = a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best))
x = length in mm (0--10.74)
y = width in mm (0--58.9)
z = depth in mm (0--31.8)

 $\underline{depth = total\ depth\ percentage = z\ /\ mean(x, y) = 2\ ^*\ z\ /\ (x + y)\ (43 - -79)}$

table = width of top of diamond relative to widest point (43--95)

Exploratory Data Analysis

<u>Out[]:</u>

	Unnamed: 0	<u>carat</u>	<u>cut</u>	<u>color</u>	<u>clarity</u>	<u>depth</u>	<u>table</u>	<u>price</u>	<u>x</u>	У.	<u>z</u>
0	1	0.23	<u>ldeal</u>	<u>E</u>	<u>SI2</u>	<u>61.5</u>	<u>55.0</u>	<u>326</u>	<u>3.95</u>	3.98	2.43
1	<u>2</u>	0.21	<u>Premium</u>	<u>E</u>	<u>SI1</u>	<u>59.8</u>	<u>61.0</u>	<u>326</u>	<u>3.89</u>	<u>3.84</u>	<u>2.31</u>
<u>2</u>	<u>3</u>	0.23	Good	<u>E</u>	<u>VS1</u>	<u>56.9</u>	<u>65.0</u>	<u>327</u>	<u>4.05</u>	<u>4.07</u>	<u>2.31</u>
<u>3</u>	<u>4</u>	0.29	<u>Premium</u>	<u>1</u>	<u>VS2</u>	<u>62.4</u>	<u>58.0</u>	<u>334</u>	<u>4.20</u>	<u>4.23</u>	2.63
<u>4</u>	<u>5</u>	0.31	<u>Good</u>	<u>J</u>	<u>SI2</u>	<u>63.3</u>	<u>58.0</u>	<u>335</u>	<u>4.34</u>	<u>4.35</u>	<u>2.75</u>

In []: data.shape

Out[]: (53940, 11)

There are 53k records and 10 variables

In []: data.dtypes

Out[_]: Unnamed: 0 int64 float64 carat cut <u>object</u> color <u>object</u> <u>clarity</u> <u>object</u> float64 depth float64 table price int64 float64 float64 float64 dtype: object

In [_]: data.describe()

<u>Out[]:</u>

	Unnamed: 0	<u>carat</u>	<u>depth</u>	<u>table</u>	<u>price</u>	<u>x</u>	у.	<u>z</u>
count	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000
mean	26970.500000	0.797940	61.749405	57.457184	3932.799722	<u>5.731157</u>	<u>5.734526</u>	3.538734
std	15571.281097	0.474011	1.432621	2.234491	3989.439738	<u>1.121761</u>	<u>1.142135</u>	0.705699
<u>min</u>	1.000000	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
<u>25%</u>	13485.750000	0.400000	61.000000	56.000000	950.000000	<u>4.710000</u>	4.720000	2.910000
<u>50%</u>	26970.500000	0.700000	61.800000	<u>57.000000</u>	2401.000000	5.700000	<u>5.710000</u>	3.530000
<u>75%</u>	40455.250000	1.040000	62.500000	<u>59.000000</u>	5324.250000	6.540000	6.540000	4.040000
<u>max</u>	53940.000000	<u>5.010000</u>	79.000000	95.000000	18823.000000	10.740000	<u>58.900000</u>	31.800000

Remove unwated variables

Analyze Missing values

In []: # quick check on null in the data data.isnull().sum()

There are no missing values. All the column can be used for our analysis

In []: # Lets visualize the data

Correlation matrix visualisation

import seaborn as sns

import matplotlib.pyplot as plt

sns.set(style="whitegrid")

sns.set(font scale=1.0)

corr = data.corr()

sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns, annot=True, cmap=plt.cm.Reds)
plt.show()

From the correlation matrix, we can see that the variables price, x, y, z are highly correlated. we can remove x, y, z and keep price.

In []: # drop the variables with high correlation
data.drop(columns=['y','z'], inplace=True)

In []: data.head()

<u>Out[]:</u>

	<u>carat</u>	<u>cut</u>	<u>color</u>	<u>clarity</u>	<u>depth</u>	<u>table</u>	<u>price</u>	<u>X</u>	У.	<u>z</u>
 <u>0</u>	0.23	<u>Ideal</u>	<u>E</u>	<u>SI2</u>	<u>61.5</u>	<u>55.0</u>	<u>326</u>	<u>3.95</u>	<u>3.98</u>	<u>2.43</u>
1	0.21	<u>Premium</u>	<u>E</u>	<u>SI1</u>	<u>59.8</u>	<u>61.0</u>	<u>326</u>	<u>3.89</u>	<u>3.84</u>	<u>2.31</u>
<u>2</u>	0.23	Good	<u>E</u>	<u>VS1</u>	<u>56.9</u>	<u>65.0</u>	<u>327</u>	<u>4.05</u>	<u>4.07</u>	<u>2.31</u>
<u>3</u>	0.29	<u>Premium</u>	<u>1</u>	<u>VS2</u>	<u>62.4</u>	<u>58.0</u>	<u>334</u>	<u>4.20</u>	<u>4.23</u>	<u>2.63</u>
<u>4</u>	0.31	Good	<u>J</u>	<u>SI2</u>	63.3	<u>58.0</u>	<u>335</u>	<u>4.34</u>	4.35	2.75

In []: # Lets check the distribution of the data
data.hist(bins=50, figsize=(20,15))
plt.show()

We could see there are some outliers in the price column. For now we do not remove it. Let us see if we can remove the outliers later.

Feature Engineering

In []: sns.countplot(x='clarity', data=data)
plt.show()

In []: sns.countplot(x='cut', data=data)
plt.show()


```
In [ ]: # we have below categorical variables. we need to transform them into numerical variables
          # as per the requirement we need to use the dummy variables. The categories are ordinal
          data['cut'] = data['cut'].map({'Fair':0, 'Good':1, 'Very Good':2, 'Premium':3, 'Ideal':4})
          data['color'] = data['color'].map({'J':0, 'I':1, 'H':2, 'G':3, 'F':4, 'E':5, 'D':6})
          data['clarity'] = data['clarity'].map({'II':0, 'SI2':1, 'SI1':2, 'VS2':3, 'VS1':4, 'VVS2':5, 'VVS1':6, 'IF':7
          data.head()
Out[_]:
              carat cut color clarity depth table price
                                                            <u>X</u>
                                                                  <u>у. </u> <u>г</u>
           0 0.23
                                        61.5
                                              <u>55.0</u>
                                                     <u>326</u> <u>3.95</u> <u>3.98</u> <u>2.43</u>
               0.21
                                                     326 3.89 3.84 2.31
                                        59.8
                                              61.0
               0.23
                                              65.0
                                                          <u>4.05</u> <u>4.07</u> <u>2.31</u>
                                        56.9
                                                     327
               0.29
                      3
                                        <u>62.4</u>
                                              <u>58.0</u>
                                                     <u>334</u> <u>4.20</u> <u>4.23</u> <u>2.63</u>
           4 0.31
                     <u>1</u>
                                        63.3
                                              58.0
                                                     <u>335</u> <u>4.34</u> <u>4.35</u> <u>2.75</u>
                            0
In [ ]: data.isnull().sum()
Out[ ]: carat
          cut
          color
                        0
          <u>clarity</u>
          depth
          table
          price
                        0
```

Model Building

dtype: int64

```
In []: # We will not scale the data first. We will scale the data after we have done the analysis
    X = data.drop(columns=['price'])
    y = data['price'].

In []: # Lets split the data into train and test
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42).

In []: # define rmse function
    import numpy as np
    from sklearn.metrics import mean_squared_error
    def rmse(y_true, y_pred):
        return np.sqrt(mean_squared_error(y_true, y_pred)).
```

Models without Scaling

1201.2077317517576

```
In []: # Lets use Linear Regression
    from sklearn.linear_model import LinearRegression
    linearRegression = LinearRegression()
    linearRegression.fit(X_train, y_train).

Out[]: LinearRegression()

In []: linearRegression_rmse = rmse(y_test, linearRegression.predict(X_test))
    print(linearRegression_rmse).
```


Out[]: 1201.2489660741646

Model with Scaling

```
In [ ]: linearRegression = LinearRegression()
          linearRegression.fit(X train scaled, y train)
          linearRegression rmse = rmse(y test, linearRegression.predict(X test scaled))
          lassoRegression = Lasso()
          lassoRegression.fit(X train scaled, v train)
          lassoRegression rmse = rmse(v test, lassoRegression.predict(X test scaled))
          ridgeRegression = Ridge()
          ridgeRegression.fit(X train scaled, y train)
          ridgeRegression rmse = rmse(y test, ridgeRegression.predict(X test scaled))
          (linearRegression rmse, lassoRegression rmse, ridgeRegression rmse)
  Out[]: (1201.2077317517578, 1207.505274155642, 1204.0125324315045)
  <u>In [ ]: # there are no improvement in the scores. We can conclude that the data is not scaled.</u>
Models with Scaling and Cross Validation
  In [ ]: | from sklearn.linear model import RidgeCV
          ridgeCV = RidgeCV(alphas = [0.005, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 80], cv=5)
          ridgeCV.fit(X train scaled, y train)
          ridgeCV rmse = rmse(y test, ridgeCV.predict(X test scaled))
          print(ridgeCV.alpha , ridgeCV rmse)
          0.3 1201.7293422060393
  In [ ]: from sklearn.linear model import LassoCV
```

lassoCV = LassoCV(alphas = [0.005, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 80], cv=5, max iter=10000)

0.05 1201.377746019673

lassoCV.fit(X train scaled, y train)

print(lassoCV.alpha , lassoCV rmse)

lassoCV rmse = rmse(y test, lassoCV.predict(X test scaled))

In []: from sklearn.linear_model import ElasticNetCV elasticNetCV = ElasticNetCV(alphas = [0.005, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 80], cv=5, max_iter=10000) elasticNetCV.fit(X_train_scaled, y_train) elasticNetCV_rmse = rmse(y_test, elasticNetCV.predict(X_test_scaled)) print(elasticNetCV.alpha_, elasticNetCV.ll_ratio_, elasticNetCV_rmse)

0.005 0.5 1436.3297976166275

```
In []: rmse_vals = [linearRegression_rmse, ridgeCV_rmse, lassoCV_rmse, elasticNetCV_rmse]

labels = ['Linear', 'Ridge', 'Lasso', 'ElasticNet']

rmse_df = pd.Series(rmse_vals, index=labels).to_frame()

rmse_df.rename(columns={0: 'RMSE'}, inplace=1)

rmse_df
```

Out[]:

RMSE

Linear <u>1201.207732</u>

Ridge 1201.729342

Lasso 1201.377746

ElasticNet <u>1436.329798</u>

Other Regression Techniques

In []: # XGBoost Regressor

import xgboost as xgb

random forest regressor

from sklearn.ensemble import RandomForestRegressor

decision tree regressor

from sklearn.tree import DecisionTreeRegressor

elastic net regressor

from sklearn.linear model import ElasticNet

import pipeline

from sklearn.pipeline import Pipeline

from sklearn.linear_model import SGDRegressor

catboost regressor

from catboost import CatBoostRegressor

```
In [ ]: # create pipeline for each model
        f = plt.figure(figsize=(6,6))
        ax = plt.axes()
        new rmses = {}
        model pipelines = {
            'Linear': Pipeline([('scaler', scaler), ('linear', linearRegression)]),
           'Lasso': Pipeline([('scaler', scaler), ('lasso', lassoRegression)]),
            'Ridge': Pipeline([('scaler', scaler), ('ridge', ridgeRegression)]),
          'ElasticNet': Pipeline([('scaler', scaler), ('elasticNet', elasticNetCV)]),
           'CatBoost': Pipeline([ ('catboost', CatBoostRegressor(verbose=False))]),
            'SGD': Pipeline([('scaler', scaler), ('SGD', SGDRegressor())]),
           'XGBoost': Pipeline([('scaler', scaler), ('XGBoost', xqb.XGBRegressor())]),
            'RandomForest': Pipeline([('scaler', scaler), ('RandomForest', RandomForestRegressor())]),
            'DecisionTree': Pipeline([('scaler', scaler), ('DecisionTree', DecisionTreeRegressor())]),
        # fit each model
        for model label, model pipeline in model pipelines.items():
        print(f'Fitting {model label}')
           model pipeline.fit(X train, y train)
         new rmses[model label] = rmse(y test, model pipeline.predict(X test))
        ax.plot(y test, model pipeline.predict(X test), marker='o', ls='',
         ms=3.0, label=model label)
        leg = plt.legend(frameon=True)
        leg.get frame().set edgecolor('black')
        leg.get frame().set linewidth(1.0)
        ax.set(xlabel='Actual Price',
               ylabel='Predicted Price',
               title='Linear Regression Results');
        # create dataframe of new rmse values
        new rmses df = pd.Series(new rmses, index=model pipelines.keys()).to frame()
        new rmses df.rename(columns={0: 'RMSE'}, inplace=1)
        new rmses df
```

Fitting Linear
Fitting Lasso
Fitting Ridge
Fitting ElasticNet
Fitting CatBoost
Fitting SGD
Fitting XGBoost
Fitting RandomForest
Fitting DecisionTree

Out[]:

	<u>RMSE</u>
Linear	1201.207732
Lasso	1207.505274
<u>Ridge</u>	1204.012532
<u>ElasticNet</u>	1436.329798
CatBoost	<u>515.413999</u>
SGD	1237.525854
XGBoost	543.243708
RandomForest	538.256622
<u>DecisionTree</u>	740.379380

Conclusion

Based on the analysis we could conclude that **Catboost** is the best model for this project. It has the best accuracy and the best performance. We can also revisit the same model if we get additional data about the diamonds in other categories.