FE Analysis – What goes in and what comes out

Pankaj Pankaj

The University of Edinburgh School of Engineering

Input to and output from an FE program

Structural analysis

- ★ Given a structure described by
 - geometry
 - ▶ physical characteristics
 - ▶ boundary conditions
- ★ subjected to loads
- * evaluate the response quantities
 - ▶ displacements
 - stresses
 - strains
 - ▶ support reactions etc.

Input to a FE program

Output from a FE program

The above is required for any kind of structural analysis and not just for FE

Input to and output from an FE program

- ★ All FE programs require similar input so if you understand one you know others
- ★ The manner in which input is provided varies from one program to another
- \bigstar We will one of the most powerful commercial FE package that we use both for teaching and research ABAQUS
- ★ ABAQUS can solve many complex problems. The documentation in printed form exceeds 15000 pages. Online documentation is available at:

http://www.see.ed.ac.uk/it/online/abaqus-681/v6.8/index.html

We will discuss ABAQUS with reference to a simple problem that can easily be solved by hand

Consider a simple problem. For this problem, using elementary theory of beams you can easily work out:

- \star Displacements e.g. end displacement is given by $PL^3/3EI$
- ★ Moments
- \star Stresses and strains
- ★ Reactions at the support

We will consider what is required to solve this using ABAQUS

We will:

- ★ Use plane stress idealisation (to be discussed in detail)
- ★ Discretise the continuum into 16 elements choice arbitrary
- ★ Use 4-noded elements

FE input for the cantilever problem

We must now prepare a datafile (using any text editor on the computer). All ABAQUS datafiles must be of the form *filename*.inp where, *filename* is any name chosen by the analyst. Lets choose the name **cantbeam.inp** for this problem. The following lines show the contents of this file.

```
LINE 1
CANTILEVER WITH CONTINUUM ELEMENTS--END SHEAR, CPS4I, 4 X 4 MESH
                                                                         LINE 2
*NODE
                                                                         LINE 3
                                                                         LINE 4
1,0.,0.
17,6.,0.
                                                                         LINE 5
                                                     These are
401,0.,.2
                                                                         LINE 6
                                                     here for
                                                                         LINE 7
417,6.,.2
                                                     identification
*NGEN,NSET=FIX
                                                                         LINE 8
                                                     and are not
1,401,100
                                                                         LINE 9
                                                     actually input
*NGEN, NSET=END
                                                                         LINE 10
17,417,100
                                                                         LINE 11
*NFILL
                                                                         LINE 12
FIX, END, 4, 4
                                                                         LINE 13
```


FE input for the cantilever problem LINES 1 and 2 All lines beginning with a single * are keyword lines. The first line indicates that a heading is to follow. The heading is for our own convenience so that we can identify the problem at a later date. Indicates a heading or a title is to follow *HEADING CANTILEVER WITH CONTINUUM ELEMENTS--END SHEAR, CPS4I, 4 X 4 MESH

A title of our choice

Information provided so far

LINES 12 and 13

- ★ The *NFILL keyword fills nodes between two bounds.
- ★ The first two entries on line 12 give the names of the node sets defining the first and the second bounds of the region respectively.
- ★ The third entry gives the number of intervals between bounding nodes, which is 4 in our case.
- ★ The fourth entry gives the increment in node numbers from the node number at the first bound set.

FE input for the cantilever problem

Lines 14 and 15

- ★ The *ELEMENT is a keyword used to define an element directly by specifying its nodes
- ★ This has a required parameter TYPE that is required to be set equal to the element type. In our case we shall use a 4-noded element that has a name CPS4I in ABAQUS.
- ★ In line 15 one element is defined. The first entry on this line gives this element a number and entries 2 to 5 give it a "connectivity". Connectivity refers to the set of nodes connected to the element given in a specific order

Information provided so far

FE input for the cantilever problem

LINES 16 and 17

The *ELGEN keyword generates elements. We use an optional parameter ELSET to give the set of generated elements a name (we call them EALL). The entries on line 17 are:

- 1. Master element number 1 in our case as this is the master element that we shall use to generate other similar elements.
- 2. Number of elements to be defined in the first row generated, including the master element 4 in our problem.
- 3. Increment in node numbers of corresponding nodes from element to element in the row -4 in our case.
- 4. Increment in element numbers in the row let us choose 1.
- 5. Number of rows to be defined including the master row we need 4.
- 6. Increment in node numbers of corresponding nodes from row to row 100 in our case.
- 7. Increment in element numbers of corresponding elements from row to row we use 4.

*ELGEN, ELSET=EALL 1,4,4,1,4,100,4 LINE 16 LINE 17

FE input for the cantilever problem

LINES 18 to 22

- ★ The *MATERIAL keyword indicates the start of a material definition and has a required parameter NAME associated to it let us call it A1.
- ★ The *ELASTIC option in line 19 is used to define linear elastic moduli to the material A1. Young's modulus, E and Poisson's ratio, ν are specified in line 20.
- ★ The *SOLID SECTION keyword has been used here to define thickness 0.1m specified in line 22). This thickness is valid for all elements ELSET=EALL and these elements have elastic properties of MATERIAL=A1.

LINE 23

After you have run ABAQUS the numerical results are printed in the *filename*.dat file. This lines indicates that you would like your input file (*filename*.inp), the history data and the model data to be included in the results file.

*PREPRINT, ECHO=YES, MODEL=YES, HISTORY=YES

LINE 23

LINES 24 and 40

These two lines indicate the beginning and the end of a step. We have already provided the model data. The program now requires boundary conditions and loading. The parameter PERTURBATION indicates that we are conducting a linear analysis in which we shall be providing load and boundary changes.

*STEP,PERTURBATION LINE 24
.
.
.
*END STEP LINE 40

FE input for the cantilever problem

LINES 25 to 27

- **STATIC indicates that the step should be analysed as a static load step.
- \bigstar *BOUNDARY (line 26) is used to prescribe boundary conditions.
- ★ The first entry on data line (line 27) indicates that the boundary conditions relate to node set FIX. The following two entries on line 27 restrain degrees of freedom 1 and 2. Thus all nodes of the node set FIX are now restrained from displacement in both x- and y-directions.

LINES 28 to 30

- *CLOAD indicates concentrated loads are being specified.
- ★ In lines 29 and 30 concentrated loads have been applied on nodes 17 and 417, in the y-direction (degree of freedom -2), and the magnitude of these loads is 0.5. The minus sign indicates that the load acts downwards (y is positive upwards).

FE input for the cantilever problem

LINES 31 to 39

- ★ *EL PRINT is used to define output requests for element variables such as stresses and strains. FE does all calculations at integration points within elements.
- ★ Line 32 to 34 request output of the coordinates of integration points (COORD), stresses (S), and strains (E). By default option *EL PRINT outputs values at integration points. If we want averages of values extrapolated at the nodes, we can use the parameter POSITION=AVERAGED AT NODES. Here we have requested stresses (line 36).
- ★ *NODE PRINT is used to define output requests for nodal variables such as displacements and reactions
- ★ Here we want nodal displacements which are indicated by the letter U in line 38 and reaction forces indicated by RF in line 39.

MATERIAL DESCRIPTION

MATERIAL NAME: A1

ELASTIC YOUNG'S POISSON'S MODULUS RATIO

1.00000E+07 0.00000E+00

Values for material A1 as input

FE output for the cantilever problem

NODE DEFINITIONS

NODE NUMBER	COORI	DINATES		SINGLE PO	INT CONS	STRAINTS DOF
1	0.0000E+00	0.0000E+00	0.00000E+00		1 2	
5	1.5000	0.0000E+00	0.0000E+00			
9	3.0000	0.0000E+00	0.00000E+00			
13	4.5000	0.0000E+00	0.0000E+00			
•						

Nodal coordinates as input or generated by ABAQUS in accordance to our instructions in the input file. Note the constraints included.

BOUNDARY CONDITIONS

NODE	DOF	AMP. REF.	MAGNITUDE	NODE	DOF	AMP. REF.	MAGNITUDE
1	1	(RAMP)	0.00000E+00	1	2	(RAMP)	0.00000E+00
101	1	(RAMP)	0.00000E+00	101	2	(RAMP)	0.00000E+00
201	1	(RAMP)	0.00000E+00	201	2	(RAMP)	0.00000E+00
301	1	(RAMP)	0.00000E+00	301	2	(RAMP)	0.00000E+00
401	1	(RAMP)	0.00000E+00	401	2	(RAMP)	0.00000E+00

- (RAMP) OR (STEP) - INDICATE USE OF DEFAULT AMPLITUDES ASSOCIATED WITH THE STEP

CONCENTRATED LOADS

NODE	DOF	AMP.	AMPLITUDE	NODE	DOF	AMP.	AMPLITUDE	ŝ
17	2		-0 50000	417	2		-0 50000	

FE output for the cantilever problem

ELEMENT OUTPUT

THE FOLLOWING TABLE IS PRINTED FOR ALL ELEMENTS WITH TYPE CPS4I AT THE INTEGRATION POINTS

ELEMENT	PT FOOT-	COORD1	COORD2
	NOTE		
1	1	0.3170	1.0566E-02
1	2	1.183	1.0566E-02
1	3	0.3170	3.9434E-02
1	4	1.183	3.9434E-02

Integration points are points within the elements. You can verify from the above coordinates that for element 1 the points are approximately located as:

☆ 3	☆ 4
☆ 1	☆ 2

THE FOLLOWING TABLE IS PRINTED FOR ALL ELEMENTS WITH TYPE CPS4I AVERAGED AT THE NODES

FE output for the cantilever problem

NODE OUTPUT

THE FOLLOWING TABLE IS PRINTED FOR ALL NODES

FE output for the cantilever problem NODE FOOT- RF1 RF2

What should the total reactions in the two directions be?

THE ANALYSIS HAS BEEN COMPLETED