NAVAROTE STATE OF THE PARTY OF

Vidyavardhini's College of Engineering and Technology, Vasai

Department of Computer Science & Engineering (Data Science)

AY: 2025-26

Class:	BE- CSE(DS)	Semester:	VII
Course Code:	CSDOL7011	Course Name:	NLP Lab

Name of Student:	Sahil Salunke
Roll No. :	45
Experiment No.:	1
Title of the Experiment:	Identifying and Critically Reviewing Research Papers on a Selected NLP Application
Date of Performance:	
Date of Submission:	

Evaluation

Performance Indicator	Max. Marks	Marks Obtained
Performance	5	
Understanding	5	
Journal work and timely submission	10	
Total	20	

Performance Indicator	Exceed Expectations (EE)	Meet Expectations (ME)	Below Expectations (BE)
Performance	4-5	2-3	1
Understanding	4-5	2-3	1
Journal work and timely submission	8-10	5-8	1-4

Checked by

Name of Faculty : Signature : Date :

CSDOL7011: Natural Language Processing Lab

Department of Computer Science & Engineering (Data Science)

Aim: To perform a critical literature review of five research papers on a chosen NLP application, focusing on the problem addressed, solution proposed, and limitations identified in each work.

Objective: To critically review five research papers on an NLP application, analyzing problems, solutions, and limitations.

Tools Required:

- Research databases: Google Scholar, IEEE Xplore, ACM Digital Library, Springer, Elsevier, or arXiv
- 2. MS Word / Google Docs or LaTeX for documentation
- 3. Internet access

Procedure:

- 1. Select a Real-World NLP Application:
 - a. Choose any one topic such as:
 - i. Machine Translation
 - ii. Sentiment Analysis
 - iii. Text Summarization
 - iv. Question Answering Systems
 - v. Chatbots
 - vi. Named Entity Recognition
 - vii. Information Retrieval, etc.
- 2. Search and Select 5 Research Papers:
 - a. Preferably from peer-reviewed journals or conferences.
 - b. Papers must be recent (preferably from the last 5–7 years).
 - c. Ensure papers are directly relevant to the chosen application.
- 3. Read and Analyze Each Paper:
 - a. Focus on these three aspects for each paper:
 - i. Problem Statement: What problem or challenge does the paper address?
 - ii. Proposed Solution: What model, algorithm, or framework is presented?

CSDOL7011: Natural Language Processing Lab

Vidyavardhini's College of Engineering and Technology, Vasai

Department of Computer Science & Engineering (Data Science)

- iii. Critical Evaluation: What are the limitations, gaps, or areas for improvement?
- 4. Prepare the Review Document:
 - a. Create a structured table or section for each paper with:
 - i. Title, Authors, Year, and Source
 - ii. Summary of problem
 - iii. Summary of solution
 - iv. Critical remarks and insights
- 5. Submit the Review:
 - a. The write-up should be minimum 4–5 pages.
 - b. Include references in standard citation format (APA/IEEE/MLA).

Description of the Experiment:

This experiment introduces students to academic research and the process of reviewing scientific literature in the field of NLP. It allows them to explore cutting-edge developments, analyze technical approaches, and reflect critically on current limitations. This lays the foundation for their final-year projects or research internships.

Detailed Description of the NLP Technique:

Since this experiment is open-ended, the NLP techniques will vary based on the papers selected. However, students will encounter:

- Deep learning architectures (e.g., LSTM, BERT, GPT, T5)
- Statistical NLP approaches (e.g., N-gram models, HMMs)
- Evaluation metrics (e.g., BLEU, ROUGE, Accuracy, F1-score)
- Datasets commonly used for training and evaluation

Conclusion:

CSDOL7011: Natural Language Processing Lab

Vidyavardhini's College of Engineering and Technology, Vasai

Department of Computer Science & Engineering (Data Science)

Name of the Paper	Solution Used	Drawbacks / Limitations	Areas of Improvement
1] Named Entity Recognition (NER) for Legal Document Analysis.	Used CRF, BiLSTM-CRF, and Transformer-based models (especially Legal-BERT) on Indian legal corpora. Achieved best performance with Legal-BERT (F1-score: 91.2%).	- Ambiguity in entities (e.g., "Delhi" as city/jurisdiction/organization) - Lack of annotated corpora - Multilingual complexity in Indian legal texts - Ethical risks in automated legal AI	- Develop multilingual NER models - Improve dynamic entity linking across jurisdictions - Address fairness and bias in AI models - Enhance corpus size and quality
2] Named Entity Recognition for Serbian Legal Documents.	Fine-tuned a Serbian- specific BERT model (BERTić) for NER task on a manually annotated dataset of appellate court rulings. Achieved an average F1-score of 0.96.	- Small-scale dataset - Cyrillic-to-Latin conversion required - Class imbalance (high number of "O" tokens) - Batch size limitations due to input length	- Expand the annotated dataset - Develop more efficient training techniques - Address token class imbalance - Improve multilingual support in PTMs
3] Improving Legal Entity Recognition Using a Hybrid Transformer Model and Semantic Filtering Approach.	Combined Legal-BERT with a semantic similarity filtering step to refine predictions. Cosine similarity used to retain valid entities. Achieved 93.4% F1-score.	- High computational cost due to hybrid architecture - Requires high-quality predefined legal patterns - Potential dependency on domain-specific patterns	- Optimize computational efficiency - Generalize filtering to broader legal subdomains - Automate pattern generation for new domains
4] Extracting Complex Named Entities in Legal Documents via Weakly Supervised Object Detection.	Used weakly supervised object detection and Document Layout Analysis (DLA) with pseudo-label generation and a multi-modal approach (LayoutLMv3).	- Dependent on OCR accuracy - Requires careful rule design for pseudo labeling - Performance drop in highly unstructured layouts	- Improve OCR robustness - Enhance object detection for irregular layouts - Expand exact label availability for supervised training