

Experimental characterization of the laser heater effects on a seeded FEL

E. Ferrari^{1,2}, G. Penco¹, E. Allaria¹, S. Spampinati¹, L. Giannessi^{1,3}, W. Fawley¹, Z. Huang⁴

- 1. Elettra Sincrotrone Trieste;
- 2. Universita' degli Studi di Trieste;
- 3. ENEA C.R. Frascati
- 4. SLAC National Accelerator Laboratory

Outline

- ★ Fermi experimental setup
- ★ Impact of the laser heater on seeded FEL
- ★ Non-Gaussian effects

Experimental setup

Fermi scheme

FEL intensity vs. Laser Heater

FEL intensity vs. Laser Heater

FEL intensity vs. Laser Heater

FEL intensity vs. Laser Heater

But if we enlarge the scan range...

But if we enlarge the scan range...

The effect can be dramatic!

Dependence on R56 and seed

Dependence on R56 and seed

Dependence on R56 and seed

Dependence on FEL wavelength

The number, position and relative intensity of secondary peaks can be tuned

How to explain this behaviour?

FEL vs. LH - Without gain

Without gain, the FEL intensity is almost proportional to the square of the bunching b_m

FEL intensity vs. heating (no gain, 32 nm)

Coherent emission from three radiators only

Bunching

(1)
$$\mathbf{b_m} = \exp(-\frac{1}{2}\mathbf{m^2D^2}\sigma_{\gamma}^2)\mathbf{J_m}(\mathbf{mD}\Delta\gamma)$$

FEL intensity vs. heating (no gain, 32 nm)

$$\mathbf{D} = rac{\mathbf{2}\pi\mathbf{R_{56}}}{\gamma_0\lambda}$$
 Dispersion

Momentum compaction

e- energy

FEL wavelength

m Harmonic number

 σ_{γ} Energy spread (rms)

 \mathbf{J}_{m} m-th order Bessel

 $\Delta \gamma$ FEL energy modulation

Bunching

(1)
$$\mathbf{b_m} = \exp(-\frac{1}{2}\mathbf{m^2D^2}\sigma_{\gamma}^2)\mathbf{J_m}(\mathbf{mD}\Delta\gamma)$$

FEL intensity vs. heating (no gain, 32 nm)

$$\mathbf{D} = rac{\mathbf{2}\pi\mathbf{R_{56}}}{\gamma_0\lambda}$$
 Dispersion

 R_{56} Momentum compaction

e- energy

FEL wavelength

m Harmonic number

 σ_{γ} Energy spread (rms)

 \mathbf{J}_{m} m-th order Bessel

 $\Delta \gamma$ FEL energy modulation

Longitudinal Phase Space and heating

Non-Gaussian energy spread

Same area and same second moment

Bunching with non-Gaussian energy spread

$$(2) \quad \mathbf{b_m} = \exp(-\frac{1}{2}\mathbf{m^2D^2}\sigma_{\gamma}^2)\mathbf{J_m}(\mathbf{mD\Delta\gamma})\mathbf{S_L}(\mathbf{mD\Delta\gamma}, \frac{\sigma_r}{\sigma_x}) \qquad \text{Z. Huang, PRSTAB 7,} \\ 074401 \text{ (2004)}$$

$$\mathbf{S_L}(\mathbf{A},\mathbf{B}) = \int \mathbf{R} d\mathbf{R} \exp\left(-\frac{\mathbf{R^2}}{2}\right) \mathbf{J_0} \left[\mathbf{A} \exp\left(-\frac{\mathbf{R^2}}{4\mathbf{B^2}}\right)\right]$$

bunching suppression factor

$$\mathbf{D} = \frac{2\pi \mathbf{R}_{\mathbf{56}}}{\gamma_0 \lambda}$$

m Harmonic number

 σ_{γ} Energy spread (rms)

 \mathbf{J}_{m} m-th order Bessel

 $\Delta \gamma$ FEL energy modulation

$$\mathbf{S_L}(\mathbf{A}, \mathbf{B}) = \begin{cases} J_0(A), & \text{if } B \gg 1\\ \frac{2J_1(A)}{A}, & \text{if } B = 1 \end{cases}$$

 $\sigma_{\rm r}$ laser spot size (in LH)

 $\sigma_{\rm x}$ e⁻ spot size (in LH)

Bunching with non-Gaussian energy spread

$$(2) \quad \mathbf{b_m} = \exp(-\frac{1}{2}\mathbf{m^2D^2}\sigma_{\gamma}^2)\mathbf{J_m}(\mathbf{mD\Delta\gamma})\mathbf{S_L}(\mathbf{mD\Delta\gamma}, \frac{\sigma_r}{\sigma_x}) \qquad \text{Z. Huang, PRSTAB 7,} \\ 074401 \text{ (2004)}$$

FEL intensity vs. heating (no gain, 32 nm)

bunching suppression factor

$$\mathbf{S_L}(\mathbf{A}, \mathbf{B}) = \begin{cases} J_0(A), & \text{if } B \gg 1\\ \frac{2J_1(A)}{A}, & \text{if } B = 1 \end{cases}$$

laser spot size (in LH)

 $\sigma_{\rm x}$ e⁻ spot size (in LH)

Simulated impact on high-harmonic emission

Summary

- ★ A Laser Heater is routinely used in FEL operations at FERMI.
- ★ The non-Gaussian distribution of the energy spread induced by the Laser Heater has been shown to be preserved up to the linac end and the undulators.
- ★ The shape of the slice energy spread distribution has a significant impact on FEL intensity, as it ultimately determines the bunching.
- ★ In particular, several FEL local maxima as a function of LH intensity have been observed, and can be controlled by tuning the machine parameters.
- ★ The unexpected behavior is well reproduced by previously developed LH theory.

Perspectives

- ★ Preliminary numerical simulations show that the non-Gaussian energy spread can increase the FEL power at high harmonic (i.e. shorter wavelength) in a HGHG FEL.
- ★ The significant increase in emission power could potentially extend the operation range of the single cascade HGHG scheme.

We acknowledge the support of the FERMI COMMISSIONING TEAM

Thanks for your attention!

