

Chpt.7 Statistical Inference: Parameter Estimation

第七章 参数估计

7.1 参数的点估计

[1] 参数点估计

现象:

很多随机变量/总体的分布是有几个参数完全决定的。

正态分布 $N(\mu, \sigma^2)$

Poisson分布 $\pi(\lambda)$

假定分布形式已知,知道了参数就可以确定分布

问题:

设总体X的分布函数的形式已知,但他的一个或多个参数未知借助总体X的样本来估计总体分布中的未知参数θ问题称为参数的点估计问题。

7.1 参数的点估计

[1]参数点估计

概念:

设总体X的分布函数 $F(X,\theta)$ 的形式为已知, θ 是待估参数。

 X_1, X_2, \dots, X_n 是X的一个样本, X_1, X_2, \dots, X_n 是相应的一个样本观测值。

估计问题就是构造一个适当的统计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$,用它的观测值 $\hat{\theta}(x_1, x_2, \dots, x_n)$ 作为未知参数 θ 的近似值。

我们称 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 为<u> θ 的估计量</u>, $\hat{\theta}(x_1, x_2, \dots, x_n)$ 为<u> θ </u>的估计值。

[2] 矩估计

设X为连续随机变量,其概率密度为 $f(x;\theta_1,\theta_2,L,\theta_k)$,其中 $\theta_1,\theta_2,\cdots,\theta_k$ 为待估参数, X_1,X_2,\cdots,X_n 是来自总体X的样本,假设总体 X 的前 k 阶矩存在:

$$\mu_{l} = E(X^{l}) = \int_{-\infty}^{\infty} x^{l} f(x; \theta_{1}, \theta_{2}, L, \theta_{k})$$
$$= \mu_{l}(\theta_{1}, \theta_{2}, L, \theta_{k})$$

$$l=1,2,\cdots,k$$

 μ_l 是 $\theta_1, \theta_2, \dots, \theta_k$ 的函数。由此可以求解得到:

[2] 矩估计

$$\begin{cases} \theta_1 = \theta_1(\mu_1, \dots, \mu_k) \\ \vdots \\ \theta_k = \theta_k(\mu_1, \dots, \mu_k) \end{cases}$$

但是k 阶矩不能得到,用样本矩 $A_l = \frac{1}{n} \sum_{i=1}^n X_i^l$ (l=1,2,...,k), 代替 μ_l ,形成对 θ_l 的估计:

$$\begin{cases} \hat{\theta}_1 = \theta_1(A_1, \dots, A_k) \\ \vdots \\ \hat{\theta}_k = \theta_k(A_1, \dots, A_k) \end{cases}$$

这样地估计称为矩估计量,得到的值是矩估计(或者说是用矩作估计)。

[例] 设总体X 的均值 μ 方差 σ^2 都存在但未知,又设 X_1, \dots, X_n 是来自总体的样本,求 μ 与 σ^2 的矩估计。

解:

$$\begin{cases} \mu_1 = E(X) = \mu \\ \mu_2 = E(X^2) = D(X) + [E(X)]^2 = \sigma^2 + \mu^2 \end{cases}$$

得到 $\begin{cases} \mu = \mu_1 \\ \sigma^2 = \mu_2 - \mu_1^2 \end{cases}$

分别以一二阶样本矩代替 μ_1 , μ_2 得到,

$$\begin{cases} \hat{\mu} = A_1 = \overline{X} \\ \hat{\sigma}^2 = A_2 - A_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \end{cases}$$

这说明均值、方差的矩估计表达式不因分布的不同而不同。

[3] 衡量估计值优劣的标准

应该存在不同的估计量和估计值

比如 σ^2 的估量。

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$S_*^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

不同的估计量,哪个好,哪个差,这是估计量的评选问题。需要有一些标准

[3] 衡量估计值优劣的标准

<u> 无偏性</u>

$$X_1, X_2, \dots, X_n$$
 是总体X的样本

 $\theta \in \Theta$ 是包含在总体X中的未知参数

若估计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 的数学期望 $E(\hat{\theta})$ 存在且等于未知参数 θ ,即

$$E(\hat{\theta}) = \theta$$

则称 $\hat{\theta}(X_1, X_2, L, X_n)$ 为 θ 的无偏估计量.

此时, 用 $\hat{\theta}(x_1, \dots, x_n)$ 代替 θ 不含系统误差.

样本均值是总体均值的无偏估计; 样本方差是总体方差的无偏估计.

设总体X的数学期望为 $E(X) = \mu$,方差为 $D(X) = \sigma^2$

$$E(\overline{X}) = \mu, D(\overline{X}) = \frac{1}{n}\sigma^{2}$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (X_{i}^{2} - 2X_{i}\overline{X} + \overline{X}^{2})$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} - 2\overline{X} \frac{1}{n-1} \sum_{i=1}^{n} X_{i} + \frac{n}{n-1} \overline{X}^{2}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} - 2 \frac{n}{n-1} \overline{X}^{2} + \frac{n}{n-1} \overline{X}^{2}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} - \frac{n}{n-1} \overline{X}^{2}$$

样本均值是总体均值的无偏估计; 样本方差是总体方差的无偏估计.

$$E(S^{2}) = \frac{1}{n-1} \sum_{i=1}^{n} E(X_{i}^{2}) - \frac{n}{n-1} E(\overline{X}^{2})$$

$$= \frac{n}{n-1} \Big[D(X_{i}) + (EX_{i})^{2} \Big] - \frac{n}{n-1} \Big[D(\overline{X}) + (E(\overline{X}))^{2} \Big]$$

$$= \frac{n}{n-1} (\sigma^{2} + \mu^{2}) - \frac{n}{n-1} \Big(\frac{1}{n} \sigma^{2} + \mu^{2} \Big)$$

$$= \sigma^{2}$$

这也是为什么用
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$
 而不用 $Y_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ 的进一步原因。

所以, S^2 是 σ^2 的无偏估计值.

有效性

无偏估计值未必是唯一的,当然应选对 θ 的平均偏差较小者为好,即估计值应有尽量小的方差。这就引出了有效性标准

设 $\hat{\theta}_1(X_1,X_2,\cdots,X_n)$ 与 $\hat{\theta}_2(X_1,X_2,\cdots,X_n)$ 都是 θ 的无偏估计如果在样本容量相同的情况下, $\hat{\theta}_1$ 较 $\hat{\theta}_2$ 更密集在真值 θ 附近,即

$$D(\hat{\theta}_1) \le D(\hat{\theta}_2)$$

则称 $\hat{\theta}_1$ 较 $\hat{\theta}_2$ **有效**; 如果对给定的 n, $D(\hat{\theta})$ 的值达到最小,则称 $D(\hat{\theta})$ 为 θ 的**有效估计值**.

有效性

例如 \overline{X} 与 X_i 均为总体均值 μ 无偏估计,

但是
$$D(\overline{X}) = \frac{\sigma^2}{n} < \sigma^2 = D(X_i)$$

因此, \overline{X} 较 X_i 有效.

一般时候,虽然都是样本均值,但是随着样本个数的增加,估计的方差会减小,即

$$D(\overline{X}_n) = \frac{1}{n}\sigma^2 > \frac{1}{n+k}\sigma^2 = D(\overline{X}_{n+k})$$

相合性(一致性)

由于统计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 与n有关,不妨记为 $\hat{\theta}_n$,我们自然希望 n 越大时,对 θ 的估计越精确.于是有相合性(一致性)标准。

 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 是参数 θ 的估计量,如对任意的 $\theta \in \Theta$, 当 $n \to \infty$ 时, $\hat{\theta}_n$ 按概率收敛于 θ ,即对任意 $\varepsilon > 0$, $\lim_{n \to \infty} P\{|\hat{\theta}_n - \theta| < \varepsilon\} = 1$ 则称 $\hat{\theta}_n$ 是 θ 的相合估计值(一致估计值)。

样本均值 \overline{X} 是总体均值 μ 的一致估计值

这是因为由切比雪夫定理的推论可知 $\lim_{n\to\infty}P\left\{ |\overline{X}-\mu|<\varepsilon\right\} =1$ 从而,样本均值 \overline{X} 是总体均值 μ 的一致估计值.

样本方差 S^2 是总体方差 σ^2 的一致估计值

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} - \frac{n}{n-1} \overline{X}^{2}$$

$$= \frac{n}{n-1} \bullet \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \frac{n}{n-1} \overline{X}^{2}$$

$$= \frac{n}{n-1} \left(\overline{X}^{2} - \overline{X}^{2} \right)$$

当 $n \to \infty$ 时, $\overline{\chi^2}$ 与 $\overline{\chi}^2$ 分别按概率收敛于 $E(X^2)$ 与 $(EX)^2$

从而 S^2 按概率收敛于 $E(X^2)$ - $(EX)^2$ =DX= O^2

所以, S^2 是 σ^2 的一致估计值.

7.2 极大似然法

[1] 思想方法

极大似然法的想法是,一随机试验,已知有若干个结果

$$A_1, A_2, \cdots, A_i, \cdots$$

如果在一次试验中 A_i 发生了,则可认为当时的条件最有利于 A_i 发生,故应如此选择分布的参数,使发生 A_i 的概率最大。

7.2 极大似然法

[例] 已知甲乙两射手命中靶心的概率分别为 p_1 =0.8和 p_2 =0.5, 今有一张靶纸上表明10枪6中靶心,又知靶子肯定是甲乙之一射的,问究竟是谁所射的可能性最大?

[解] 设事件 $A = \{10枪6中靶心\}$

若是甲所射,则A发生的概率为,

$$P_1(A) = C_{10}^6 (0.8)^6 (0.2)^4 = 0.088$$

若是乙所射,则A发生的概率为,

$$P_2(A) = C_{10}^6 (0.5)^6 (0.5)^4 = 0.21$$

显然, $P_1(A) < P_2(A)$, 故可认为乙所射的可能性较大.

7.2 极大似然法

[2] 似然函数

含参数 θ 的总体X的样本 X_1, \dots, X_n , 设 X_1, \dots, X_n 为样本的观测值.

□ 当X是离散型时,设其概率分布为 $P\{X=x\}=p(x,\theta)$,令

$$L(\theta) = \prod_{i=1}^{n} p(x_i, \theta)$$

 $L(\theta)$ 称为<mark>似然函数</mark>, 其实质就是样本观测值出现的概率.

 \square 当X是连续型时,设其概率密度为 $f(x,\theta)$,类似得到似然函数

$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$

[3] 参数的估计

参数的取值应使所抽到的样本以最大的概率出现. 换言之 $_{i}$ 应使似然函数 $_{i}$ 处到最大值.

最大相似然估计 $\hat{\theta}(x_1, x_2, \dots, x_n)$ 与样本观测值直接相关,它是使得似然函数 $L(\theta)$ 达到最大值的估计值:

$$L(x_1, x_2, \dots, x_n; \hat{\theta}) = \max_{\theta \in \Theta} L(x_1, x_2, \dots, x_n; \theta)$$

相应的统计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 称为<u>最大似然估计量</u>。

[3] 参数的估计

Remark 1: 在很多情况下 $p(x,\theta)$ 、 $f(x,\theta)$ 关于 θ 可微,这时最大似然估

计值可在方程 $\frac{d}{d\theta}L(x_1, x_2, \dots, x_n; \theta) = 0$ 处求得。

Remark 2: 为考虑方便,常用似然函数的对数--对数似然函数来代替它。

因为InL是L的单增函数,有相同的最大值

$$\frac{d}{d\theta}\ln L(x_1, x_2, \dots, x_n; \theta) = 0$$

[4] 部分例子

[例1] 泊松分布参数的估计。设总体X 服从泊松分布 $P\{X = x\} = \frac{\lambda^{n}}{x!}e^{-\lambda}$ 其中参数 λ 未知,求它的极大似然估计值.

 \mathbf{m} 设 x_1, \dots, x_n 为其样本观察值,则似然函数为

$$L = \prod_{i=1}^{n} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!} e^{-n\lambda}$$

$$\ln L = \left(\sum_{i=1}^{n} x_i\right) \ln \lambda - \sum_{i=1}^{n} \ln(x_i!) - n\lambda$$

解方程:

$$\frac{d}{d\lambda} \ln L = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - n = 0$$

得到极大似然估计值
$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

[4] 部分例子

[例2] 捕鱼问题模拟试验

为了估计湖中鱼的数量 n,先从湖中捕捞出 r 条鱼,并做了记号后放回湖中.

经过适当时间后,可认为有记号的鱼的分布基本均匀.

然后再在湖中捕捞出S条鱼,结果发现有X条鱼是有记号的.

如何用极大似然估计法从已知数 r, s, x估计出未知数 n?

[例2] 捕鱼问题模拟试验

[M]: 第二次捕捞出有记号的鱼数Y服从超几何分布

$$P{Y = k} = \frac{C_r^k C_{n-r}^{s-k}}{C_n^s}$$

未知数 n 应使得 $P{Y=x}=C_r^xC_{n-r}^{s-x}/C_n^s$ 最大

未知数 n 应该为 $\hat{n} = \frac{rs}{x}$ (参见补充材料)

由于 n 为整数,故此取 $\hat{n} = \left\lceil \frac{rs}{x} \right\rceil$ 。

其实质就是,按第二次捕捞到的有记号的鱼占所捕捞到的全部

鱼的比例来估算 n 的值,即认为 $\frac{r}{n} = \frac{x}{s}$.

[例3] 均匀分布的参数的极大似然估计

设总体X服从[a,b]均分布, x_1 ,···, x_n 为样本观测值,求a,b的极大似然估计.

解 记
$$\underline{x} = \min(x_1, \dots, x_n), \ \overline{x} = \max(x_1, \dots, x_n),$$

总体X的密度函数为

$$f(x,a,b) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & other \end{cases}$$

似然函数为

$$L(x,a,b) = \prod_{i=1}^{n} f(x_i,a,b) = \frac{1}{(b-a)^n}$$

[例3] 均匀分布的参数的极大似然估计

而我们知道

$$a = \underline{x} = \min(x_1, \dots, x_n)$$

$$b = x = \max(x_1, \dots, x_n)$$

时似然函数达到最大.

故的a,b最大似然估计值为

$$\hat{a} = \min(x_1, \dots, x_n)$$

$$\hat{b} = \max(x_1, \dots, x_n)$$

a, b的最大似然估计量

$$\hat{a} = \min(X_1, \dots, X_n)$$
 $\hat{b} = \max(X_1, \dots, X_n)$

[例4] 正态分布的参数的极大似然估计

设总体X服从正态分布 $N(\mu,\sigma^2)$,其中参数 μ,σ^2 未知求它们的极大似然估计值.

 \mathbf{R} 设为 X_1, \dots, X_n 其样本观察值,则似然函数为

$$L = \prod_{i=1}^{n} \left| \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \right|$$

$$\ln L = \sum_{i=1}^{n} \ln \left[\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \right]$$

$$\ln L = -\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2} - n \ln \sigma - \frac{n}{2} \ln 2\pi$$

[例4] 正态分布的参数的极大似然估

$$\frac{\partial}{\partial \mu} \ln L = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = 0$$

$$\frac{\partial}{\partial \sigma} \ln L = \frac{1}{\sigma^3} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{\sigma} = 0$$

解得

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{n-1}{n} S^2$$

7.3 区间估计

[1] 为何要引进参数的区间估计

- $flue{0}$ 参数点估计方法不能回答估计值的可靠度与精度问题 我们知道 $\hat{ heta}$ 是 heta 的一个估计,即使它是无偏的, $E(\hat{ heta})= heta$ 但是 "估计值 $\hat{ heta}$ 落在区间 [heta- ϵ , θ + ϵ] 的概率有多大?"
- □ 许多应用场合不需要对参数给出一个精确估计,而只要大致范围

例如,要估计一批电子产品的平均寿命,往往不需要一个很精确的数,而只需给出一个不大的范围即可,如8000~9000小时.当然,还要求对这个估计有较高的"可信程度",比如95%.

设某厂生产的灯泡使用寿命 $X \sim N(\mu, 100^2)$, 现随机抽取5只, 测量其寿命如下:

1455, 1502, 1370, 1610, 1430,

则该厂灯泡的平均使用寿命的点估计值为

$$\overline{x} = \frac{1}{5} (1455 + 1502 + 1370 + 1610 + 1430) = 1473.4$$

可以认为该种灯泡的使用寿命在1473.4个单位时间左右,但范围有多大呢?又有多大的可能性在这"左右"呢?

pp. 28

引例

如果要求有95%的把握判断 μ 在1473.4左右,相当于要求对应统

计量
$$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$$
 以95%概率落在0周围。

$$P\left\{\left|\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}\right| \le z_{0.025}\right\} = 0.95$$

$$\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}$$

[2] 区间估计的概念

设 $\hat{\theta}_1(X_1, \dots, X_n)$ 及 $\hat{\theta}_2(X_1, \dots, X_n)$ 是由样本确定的两个统计量

$$\hat{\theta}_1 < \hat{\theta}_2$$

如果对于给定的 α ($0<\alpha<1$),有

$$P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} = 1 - \alpha$$

则随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 称做参数 θ 的置信水平为1- α 的置信区间;其中 $\hat{\theta}_1$ 叫做置信下限, $\hat{\theta}_2$ 叫做置信上限.

注意: $\hat{\theta}_1 < \hat{\theta}_2$ 的含义是概率意义下成立

置信区间的意义:

从总体X中抽取容量为 n 的样本,共进行N次随机抽样,每次得到的样本值记为 $(x_{1k}, x_{2k}, \dots, x_{nk})$, $(k = 1, 2, \dots, N)$;

由
$$\hat{\theta}_1(X_1,\dots,X_n)$$
及 $\hat{\theta}_2(X_1,\dots,X_n)$ 得到 N 个区间
$$(\hat{\theta}_{1k},\hat{\theta}_{2k}),(k=1,2,\dots,N)$$

这N 个区间中,有的包含参数 θ 的真值,有的不包含。

包含参数 θ 的真值的区间大约占 $100(1-\alpha)$ %, 不包含参数 θ 的真值的区间约占 100α %.

[2] 区间估计的概念

对应于已给的置信水平,根据样本观测值来确定未知参数 θ 的置信 区间,称为参数 θ 的区间估计.

满足置信水平 $1-\alpha$ 的 θ 的置信区间 $(\hat{\theta}_1,\hat{\theta}_2)$ 有无穷多个。

置信区间越小,估计越精确,但置信水平会降低;相反,置信水平越大,估计越可靠,但精确度会降低,置信区间会较长。

对于固定的样本容量,不能同时做到精确度高(置信区间小)可靠程度也高($1-\alpha$ 大)。

如果不降低可靠性,而要缩小估计范围,则必须增大样本容量,增加抽样成本。

[例1] 设总体 $X \sim N(\mu, \sigma^2), (X_1, X_2, \dots, X_n)$ 是他的一个样本, σ^2 已知, μ 未知,求 μ 的置信水平为 1 $-\alpha$ 的置信区间。

[解]:我们知道 \overline{X} 是 μ 的无偏估计,且 $\frac{X-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$,按照标准正态分布 α 分位点的定义

$$P\left\{\left|\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}\right| \le z_{\alpha/2}\right\} = 1 - \alpha$$

$$P\left\{\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \mu \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right\} = 1 - \alpha$$

这样我们就得到 μ 的置信水平为 1 $-\alpha$ 的置信区间

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

7.3 区间估计

我们所得到μ的置信水平为 1 一α的置信区间

7.3 区间估计

如果 α =0.05, σ =1, n=16, 查表得 $z_{\alpha/2} = z_{0.05} = 1.96$, 于是得到一个 置信水平为0.95的置信区间 $\left(\overline{X} - 0.49, \overline{X} + 0.49\right)$

如果我们得到样本的一组观测值,计算得到 $\bar{x} = 5.20$,则得到更为具体的置信区间(4.71, 5.69)。

例2 某地一旅游者的消费额 X 服从正态分布 $N(\mu,\sigma^2)$,且标准差 $\sigma=12$ 元,今要对该地旅游者的平均消费额 EX 加以估计,为了能以95%的置信度相信这种估计误差小于2元,问至少要调查多少人?

解 由题意知: 消费额 $X \sim N(\mu, 12^2)$, 设要调查 n 人, 使得。

$$P\left\{\left|\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right| < 1.96\right\} = 0.95$$

$$P\left\{\left|\overline{X} - \mu\right| < 1.96 \times \frac{\sigma}{\sqrt{n}}\right\} = 0.95$$

$$\overline{m} \left|\overline{X} - \mu\right| < 2 \longrightarrow 1.96 \times \frac{\sigma}{\sqrt{n}} < 2$$
解得 $n > \left(\frac{1.96 \times 12}{2}\right)^2 = 138.29$

至少要调查139人

7.3 区间估计

注意到 $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$, 那么概率为 $1-\alpha$ 的区间有无穷多个。

比如
$$\alpha$$
=0.05时,必有 $Piggl\{-z_{0.04} \leq rac{ar{X} - \mu}{\sigma/\sqrt{n}} \leq z_{0.01}iggr\} = 0.95$,那么以下区间 $\left(ar{X} - rac{\sigma}{\sqrt{n}} z_{0.01}, ar{X} + rac{\sigma}{\sqrt{n}} z_{0.04}
ight)$ 是 μ 的置信水平为0.95的置信区

区间
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{0.01}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{0.04}\right)$$
 是 μ 的置信水平为0.95的置信区

间

pp. 37 南开大学软件学院

两个置信水平相等的区间,显然区间长度较短的估计精度更高如果把估计区间说成($-\infty,\infty$),那等于什么也没说

上面两个置信水平都为0.95的置信区间的长度分别为

$$2 \times \frac{\sigma}{\sqrt{n}} z_{0.025} = 3.92 \times \frac{\sigma}{\sqrt{n}}$$

$$\frac{\sigma}{\sqrt{n}}(z_{0.04} + z_{0.01}) = 4.08 \times \frac{\sigma}{\sqrt{n}}$$

事实上由于 $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$, 其概率密度是对称的单峰函数,可以断定对称置信区间 $\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$ 长度最短。

[3] 单侧置信区间

前面讨论的估计量的置信区间都是双侧的,在有些实际问题中,例如某元件的使用寿命,平均寿命没有上限的限制问题,太短就不行,在这种情况下,可将置信上限取为+∞,而只考虑置信下限。在相反的情况下,则只考虑置信上限。这两种估计方法称为单侧置信区间的估计法。

[3] 单侧置信区间

对于给定的 $(0<\alpha<1)$,根据样本确定的统计量 $\underline{\theta}(X_1,\dots,X_n)$,对于任意的 $\theta\in\Theta$ 有 $P\{\underline{\theta}<\theta\}=1-\alpha$,则随机区间 $(\underline{\theta},+\infty)$ 称做参数 θ 的置信水平为 $1-\alpha$ 的单侧置信区间;其中 $\underline{\theta}$ 叫做置信水平为 $1-\alpha$ 的单侧置信下限。

又若,统计量 $\overline{\theta}(X_1, \dots, X_n)$,对于任意的 $\theta \in \Theta$ 有 $P\{\theta < \overline{\theta}\} = 1 - \alpha$ 则随机区间 $(-\infty, \overline{\theta})$ 称做参数 θ 的置信水平为 $\mathbf{1}$ - α 的单侧置信区间;其中 $\overline{\theta}$ 叫做置信水平为 $\mathbf{1}$ - α 的单侧置信上限.

Review

统计任务:

[1] 参数估计

- -- 点估计
- -- 区间估计

[2] 假设检验

- -- 关于参数的假设
- -- 关于分布的假设

基本概念

- □ 对某一数量(或几个)指标进行随机实验、观察, 将试验的全部可能的观察值称为总体。
- 每个可能的观察值称为<u>个体</u>

总体 ◆ 随机变量

Review

抽样:对总体进行一次观察并记录其结果,称为一次抽样; 对X独立进行n次观察,并将结果按顺序记为

$$X_1, \dots, X_n$$

样本:随机抽取部分个体,以用于推断总体的特性。 样本与总体是同分布的

样本之间是独立的

统计量: 样本的函数,除了样本、样本的参数外,不含有 其他未知量

抽样分布: 统计量的分布称为抽样分布

几类抽样分布(对 $X\sim N(\mu, \sigma^2)$ 而言的)

样本均值分布
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

T分布
$$t = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

$$\chi^2$$
分布
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

F分布
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1, n_2-1)$$

两个总体的样本分布 $N(\mu_1, \sigma_1^2)$ $N(\mu_2, \sigma_2^2)$

[1]
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

[2]
$$\frac{S_{1}^{2}}{S_{1}^{2}} = \frac{S_{1}^{2}}{\sigma_{1}^{2}} = \frac{S_{2}^{2}}{\sigma_{1}^{2}}$$
$$\sigma_{2}^{2} = \frac{S_{2}^{2}}{\sigma_{2}^{2}}$$

[3] 当
$$\sigma_1 = \sigma_2 = \sigma$$
时

其中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

参数估计

点估计: 总体X的形式已知, 但有参数未知;

借助总体X的样本来估计总体分布中的未知参数θ

矩估计

最大似然估计

区间估计: 确定两个估计量 $\hat{\theta}_1(X_1,\dots,X_n), \hat{\theta}_2(X_1,\dots,X_n)$

并给出落在此区间的概率 $1-\alpha$ 。

称 $(\hat{\theta}_1, \hat{\theta}_2)$ 为置信水平为1- α 的置信区间。

7.4 单个正态总体均值与方差的区间估计

7.5 两个正态总体均值差与方差比的区间估计

7.6 非正态总体参数的区间估计

7.4 正态总体均值与方差的区间估计

正态总体均值 μ 的区间估计

- (1) 正态总体 $X \sim N(\mu, \sigma^2)$,已知 $\sigma = \sigma_0$,求 μ 的区间估计
- (2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 σ , 求 μ 的区间估计

正态总体方差 σ^2 的区间估计

- (1) 正态总体 $X \sim N(\mu, \sigma^2)$,已知 $\mu = \mu_0$,求 σ^2 的区间估计
- (2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 μ , 求 σ^2 的区间估计

正态总体均值µ的区间估计

(1) 设正态总体 $X \sim N(\mu, \sigma^2)$, 已知 $\sigma = \sigma_0$, 求 μ 区间估计

因为
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 ,所以 $\overline{Y} = \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \sim N(0,1)$,对于给定的概率 a ,

我们取区间 $\left(-z_{\alpha/2}, z_{\alpha/2}\right)$,构造概率为1- α 的事件

$$P\left\{\frac{\left|\overline{X} - \mu\right|}{\sigma_0/\sqrt{n}} \le z_{\alpha/2}\right\} = 1 - \alpha$$

 $z_{\alpha/2}$ 是标准正态分布的 $\alpha/2$ 分位点,即

$$P\left\{X \ge z_{\alpha/2}\right\} = \frac{\alpha}{2}$$

正态总体均值µ的区间估计

(1) 设正态总体 $X \sim N(\mu, \sigma^2)$, 已知 $\sigma = \sigma_0$, 求 μ 区间估计

把上述关于事件概率的描述转化为关于均值 μ 的概率描述:

$$P\left\{\overline{X} - \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2} \le \mu \le \overline{X} + \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2}\right\} = 1 - \alpha$$

由此,求得关于 μ 的置信水平为1- α 的 μ 的置信区间(用观测值):

$$\left(\bar{x} - \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2}, \quad \bar{x} + \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2}\right)$$

正态总体均值µ的区间估计

例1 从一批零件中, 抽取9个零件, 测得其直径(毫米) 为 19.7 20.1 19.8 19.9 20.2 20.0 19.9 20.2 20.3 设零件直径服从 $X \sim N(\mu, \sigma^2)$,且已知 σ =0.21(毫米),求这批零件 直径的均值 μ 对应于置信水平0.95的置信区间.

解: n=9, 直接计算得 x=20.01(毫米). 若置信水平1- α , 则 α =0.05, 查表得 $Z_{\alpha/2}=Z_{0.025}=1.96$

曲此得
$$\frac{\sigma_0}{\sqrt{n}} z_{\alpha/2} = \frac{0.21}{\sqrt{9}} \times 1.96 = 0.14$$

得 μ 的置信区间为(19.87, 20.15)

南开大学软件学院 pp

(2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 σ , 求 μ 的区间估计

因 σ 未知,在上面的估计中无法使用 σ^2 ,我们用 S^2 代替 σ^2 ,得随机变量

$$Y = \frac{\overline{X} - \mu}{S/\sqrt{n}} \square \ t(n-1)$$

对于给定的置信水平1- α ,我们取区间 $\left(-t_{\alpha/2},t_{\alpha/2}\right)$,构造概率事件

$$\left\{ \left| \frac{\overline{X} - \mu}{S / \sqrt{n}} \right| \le t_{\alpha/2} \right\}$$

其满足:

$$P\left\{\left|\frac{\overline{X}-\mu}{S/\sqrt{n}}\right| \le t_{\alpha/2}\right\} = 1 - \alpha$$

(2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 σ , 求 μ 的区间估计

由此转化为关于 μ 的关系式

$$P\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2} \le \mu \le \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}\right) = 1 - \alpha$$

用观测值带入,求得置信水平为 $1-\alpha$ 的 μ 的置信区间(用观测值):

$$\left(\bar{x} - \frac{s}{\sqrt{n}} t_{\alpha/2}, \quad \bar{x} + \frac{s}{\sqrt{n}} t_{\alpha/2}\right)$$

(2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 σ , 求 μ 的区间估计

M1续 未知 σ , 求这批零件直径的均值 μ 对应于置信水平0.95的置信区间.

解: 直接计算得 x = 20.01 (毫米). s = 2.03 (毫米).

若置信水平1-α=0.95时, α=0.05,

选自由度为n-1=8, 查 t分布表得 $t_{\alpha/2} = t_{0.025} = 2.31$, 由此得,

$$\frac{s}{\sqrt{n}}t_{\alpha/2} = \frac{0.203}{\sqrt{9}} \times 2.316 = 0.16$$

得 μ 的置信区间为(19.85, 20.17).

可以看出与上述置信区间与已知 σ 时得到的估计相差不多。

正态总体方差 σ^2 的区间估计

(1) 正态总体 $X \sim N(\mu, \sigma^2)$, 已知 $\mu = \mu_0$, 求 σ^2 的区间估计

利用随机变量
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \square \chi^2(n)$$
 进行估计

由于此分布曲线不对称,故对于给定的置信水平1- α ,很难找到最短的置信区间. 通常模仿前面的做法,取区间 $\left(\chi_{1-\alpha/2}^2,\ \chi_{\alpha/2}^2\right)$ 使得:

$$P\left\{\chi_{1-\alpha/2}^{2} \leq \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \leq \chi_{\alpha/2}^{2}\right\} = 1 - \alpha$$

正态总体方差 σ^2 的区间估计

(1) 设正态总体 $X \sim N(\mu, \sigma^2)$, 已知 $\mu = \mu_0$, 求 σ^2 的区间估计

转化为关于 σ^2 的概率描述,

$$P\left\{\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\alpha/2}^{2}} \le \sigma^{2} \le \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\alpha/2}^{2}}\right\} = 1 - \alpha$$

得置信水平为1- α 的 σ 2的置信区间:

$$\left(\frac{\sum_{i=1}^{n} (x_i - \mu_0)^2}{\chi_{\alpha/2}^2}, \frac{\sum_{i=1}^{n} (x_i - \mu_0)^2}{\chi_{1-\alpha/2}^2}\right)$$

(2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 μ , 求 σ^2 的区间估计

由于
$$\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$$
 中 μ 未知,用 \overline{X} 代替,得到

$$\chi^{2} = \frac{n-1}{\sigma^{2}} \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \xrightarrow{\mu \Rightarrow \overline{X}} \frac{n-1}{\sigma^{2}} S^{2} \square \chi^{2} (n-1)$$

此只是与上面的差一个自由度,对给定的置信水平1-a,我们取区

间
$$\left(\chi^2_{1-lpha/2},\ \chi^2_{lpha/2}
ight)$$
,使

$$P\left\{\chi_{1-\alpha/2}^2 \le \frac{n-1}{\sigma^2}S^2 \le \chi_{\alpha/2}^2\right\} = 1-\alpha$$

得置信水平为1- α 的 σ^2 的置信区间:

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}\right)$$

(2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 μ , 求 σ^2 的区间估计

例3 从一批零件中, 抽取9个零件, 测得其直径(毫米)为 19.7, 20.1, 19.8, 19.9, 20.2, 20.0, 19.9, 20.2, 20.3 设零件直径 $X \sim N(\mu, \sigma^2)$, 且未知 μ 求这批零件直径的方差 σ^2 对应于置信水平0.95的置信区间.

解: 已知 α = 0.05, n = 9, s^2 = 0.411, 按自由度 k = 8 查表得,

$$\chi^2_{0.975} = 2.18, \quad \chi^2_{0.025} = 17.5$$

所求置信区间为:
$$\left(\frac{8 \times 0.411}{17.5}, \frac{8 \times 0.411}{2.18}\right)$$

即(0.188,1.508).

Summary on Estimation for Normal Parameters

STEP 1: 确定一个合适的样本统计量

[1] 其分布是已知的;

[2] 统计量中含有待估计的参数

STEP2:对给定的置信水平1-α构造满足其的一个随机事件 (一般用区间表示)

STEP3: 把关于事件的概率描述转化为关于参数的概率描述

STEP4:用满足置信水平 $1-\alpha$ 的参数区间作为置信区间

(用样本观测值)

Summary on Estimation for Normal Parameters

均值	方差已知	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \square N(0,1)$
	方差未知	$\frac{\overline{X} - \mu}{S/\sqrt{n}} \square \ t(n-1)$
方差	均值已知	$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \square \chi^2(n)$
	均值未知	$\frac{n-1}{\sigma^2}S^2 \square \chi^2(n-1)$

南开大学软件学院

7.5 两个正态总体均值差与方差比的区间估计

不同工艺生产的两批同类产品,可以认为是来自两个相互独立的不同总体。有时我们要对其某个质量指标作比较,分析它们是否有显著的差异. 这时可观察 $\mu_1 - \mu_2$ 和 σ_1^2/σ_2^2 的置信区间.

以下讨论两个正态总体均值差与方差比的区间估计问题..

设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 且 $(x_1, x_2, \dots, x_{n_1})$ 和 $(y_1, y_2, \dots, y_{n_2})$ 分别是总体 X 与 Y 的样本观察值.

(1) 设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 已知 σ_1, σ_2 ,求 $\mu_1 - \mu_2$ 的区间估计

选择包含
$$\mu_1 - \mu_2$$
 随机变量
$$V = \frac{(X - Y) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \square N(0, 1)$$

对于给定的置信水平1- α , 取区间 $(-z_{\alpha/2}, z_{\alpha/2})$, 使

$$P\left\{-z_{\alpha/2} \le V \le z_{\alpha/2}\right\} = 1 - \alpha$$

$$P\left\{-z_{\alpha/2} \le \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \le z_{\alpha/2}\right\} = 1 - \alpha$$

(1) 设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 已知 σ_1, σ_2 ,求 $\mu_1 - \mu_2$ 的区间估计

把关于随机事件的概率描述转化为关于 $\mu_1 - \mu_2$ 的概率描述

$$P\left\{\overline{X} - \overline{Y} - z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2 \le \overline{X} - \overline{Y} + z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right\} = 1 - \alpha$$

得置信水平为1- α 的 $\mu_1 - \mu_2$ 的置信区间:

$$\left(\frac{z}{x} - \frac{1}{y} - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \frac{z}{x} - \frac{1}{y} + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

注: 若 σ_1 , σ_2 未知且 n_1 与 n_2 很大时,可用 s_1^2 , s_2^2 分别代替 σ_1^2 , σ_2^2 ,仍使用上式作 $\mu_1 - \mu_2$ 的区间估计.

(2) 设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 未知 σ_1, σ_2 , 但是

$$\sigma_1 = \sigma_2$$
 , 求 $\mu_1 - \mu_2$ 的区间估计。

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

对于给定的置信水平1- α , 我们取区间 $(-t_{\alpha/2}, t_{\alpha/2})$, 使

$$P\left\{\frac{\left|(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)\right|}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \le t_{\alpha/2}\right\} = 1 - \alpha$$

(2) 设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 未知 σ_1, σ_2 , 但是 $\sigma_1 = \sigma_2$, 求 $\mu_1 - \mu_2$ 的区间估计。

把关于随机事件的概率描述转化为关于 $\mu_1 - \mu_2$

$$P\left\{\overline{X} - \overline{Y} - t_{\alpha/2}S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \leq \mu_{1} - \mu_{2} \leq \overline{X} - \overline{Y} + t_{\alpha/2}S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right\} = 1 - \alpha$$

得置信水平为1- α 的 $\mu_1 - \mu_2$ 的置信区间(用样本观测值)

$$\left(\frac{1}{x} - \frac{1}{y} - t_{\alpha/2}S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}, \frac{1}{x} - \frac{1}{y} + t_{\alpha/2}S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right)$$

例1 两台机床生产同一个型号的滚珠,从甲机床生产的滚珠中抽取8个,

从乙机床生产的滚珠中抽取9个,测得这些滚珠的直径(毫米)如下:

甲机床: 15.0, 14.8, 15.2, 15.4, 14.9, 15.1, 15.2, 14.8;

乙机床: 15.2, 15.0, 14.8, 15.1, 15.0, 14.6, 14.8, 15.1, 14.5.

设两台机床生产的滚珠直径服从正态分布

求: 这两台机床生产的滚珠直径均值差 $\mu_1 - \mu_2$ 的对应于置信水平**0.90** 的置信区间,如果:

- (1) 已知两台机床生产的滚珠直径的标准差分别是 σ_1 =0. 18(毫米)及 σ_2 =0. 24(毫米);
- (2) 未知 σ_1 及 σ_2 , 但假设 $\sigma_1 = \sigma_2$

pp. 65

 \mathbf{m} (1) σ_1 及 σ_2 已知,估计 $\mu_1 - \mu_2$,采用统计量

$$V = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \square N(0, 1)$$

置信水平为1- α 的 $\mu_1 - \mu_2$ 的置信区间

$$\left(\frac{z}{x} - \frac{1}{y} - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \quad \frac{z}{x} - \frac{1}{y} + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

查正态分布表得 $z_{0.05}$ =1.645,代入上式得所求的置信区间(-0.018,0.318)

 \mathbf{m} (2) σ_1 , σ_2 未知,但 σ_1 = σ_2 , 估计 $\mu_1 - \mu_2$,采用统计量

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \square t(n_1 + n_2 - 2)$$

置信水平为1- α 的 $\mu_1 - \mu_2$ 的置信区间

$$\left(\frac{1}{x} - \frac{1}{y} - t_{\alpha/2}S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \frac{1}{x} - \frac{1}{y} + t_{\alpha/2}S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$$

取自由度k=8+9-2=15, 查t 分布表得 $t_{0.05}=1.753$, 再计算 $S_w=0.228$,

代入上式得所求的置信区间为(-0.044, 0.344).

(1) 设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 已知 μ_1, μ_2 ,求 σ_1^2/σ_2^2 的区间估计

利用随机变量

$$F = \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1 \sigma_1^2}{\sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2 \sigma_2^2} \square F(n_1, n_2)$$

对于给定的置信水平1- α ,构造置信区间 $(F_{1-\alpha/2}, F_{\alpha/2})$

$$P\left\{F_{1-\alpha/2} \leq \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1 \sigma_1^2}{\sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2 \sigma_2^2} \leq F_{\alpha/2}\right\} = 1 - \alpha$$

(1) 设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 已知 μ_1, μ_2 ,求 σ_1^2/σ_2^2 的区间估计

把上述对于事件的描述转化为关于对方差比的描述

$$P\left(\frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1}{F_{\alpha/2} \sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1}{F_{1-\alpha/2} \sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2}\right) = 1 - \alpha$$

得置信水平为1- α 的 σ_1^2/σ_2^2 的置信区间:

$$\frac{\sum_{i=1}^{n_1} (x_i - \mu_1)^2 / n_1}{F_{\alpha/2} \sum_{j=1}^{n_2} (y_j - \mu_2)^2 / n_2}, \quad \frac{\sum_{i=1}^{n_1} (x_i - \mu_1)^2 / n_1}{F_{1-\alpha/2} \sum_{j=1}^{n_2} (y_j - \mu_2)^2 / n_2}$$

(2) 设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 未知 μ_1, μ_2 ,求 σ_1^2/σ_2^2 的区间估计

由于二者的总体均值未知,替代为样本均值,采用随机变量:

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \square F(n_1 - 1, n_2 - 1)$$

对于给定的置信水平1- α ,构造置信区间 $(F_{1-\alpha/2},F_{\alpha/2})$

得置信水平为1- α 的 σ_1^2/σ_2^2 的置信区间

$$\left(rac{s_{1}^{2}}{F_{lpha/2}s_{2}^{2}}, rac{s_{1}^{2}}{F_{1-lpha/2}s_{2}^{2}}
ight)$$

例2 两台机床生产同一个型号的滚珠,从甲机床生产的滚珠中抽取8个,

从乙机床生产的滚珠中抽取9个,测得这些滚珠的直径(毫米)如下:

甲机床: 15.0, 14.8, 15.2, 15.4, 14.9, 15.1, 15.2, 14.8;

乙机床: 15.2, 15.0, 14.8, 15.1, 15.0, 14.6, 14.8, 15.1, 14.5.

设两台机床生产的滚珠直径服从正态分布

求: 这两台机床生产的滚珠直径方差比 σ_1^2/σ_2^2 的对应于置信水平 $1-\alpha=0.90$ 的置信区间,如果:

- (1) 已知两台机床生产的滚珠直径的均值分别是 μ_1 =15. 0(毫米) 及 μ_2 =14. 9(毫米);
- (2) 未知 μ₁及 μ_{2.}

pp. 71

解 已知 n₁=8, n₂=9, α=0.10,

(1) 取自由度 $\mathbf{n_1}=8$, $\mathbf{n_2}=9$, 查F 分布表得 $F_{\alpha/2}=F_{0.05}(8,9)=3.23$

利用
$$F$$
 分布的性质计算 $F_{1-\alpha/2} = F_{0.95}(8,9) = \frac{1}{F_{0.05}(9,8)} = \frac{1}{3.39} = 0.295$

再计算

$$\sum_{i=1}^{8} (x_i - \mu_1)^2 = 0.34, \quad \sum_{i=1}^{9} (y_i - \mu_2)^2 = 0.46$$

代入求得置信区间(0.257, 2.819).

解 已知 n₁=8, n₂=9, α=0.10,

(2) 取自由度 $\mathbf{n_1}$ =**8-1**, $\mathbf{n_2}$ =**9-1**, 查**F** 分布表得 $F_{\alpha/2} = F_{0.05}(7,8) = 3.50$

利用F 分布的性质计算

$$F_{1-\alpha/2} = F_{0.95}(7,8) = \frac{1}{F_{0.05}(8,7)} = \frac{1}{3.73} = 0.268$$

再计算

$$s_1^2 = 0.0457, \quad s_2^2 = 0.0575$$

代入求得置信区间(0.227, 2.966).

均值	$\mu_1 - \mu_2$

方差已知
$$V = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \square N(0,1)$$

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

方差
$$\sigma_1^2/\sigma_2^2$$

均值已知

$$\frac{\sum_{i=1}^{n_1} (x_i - \mu_1)^2 / n_1 \sigma_1^2}{\sum_{j=1}^{n_2} (y_j - \mu_2)^2 / n_2 \sigma_2^2} \square F(n_1, n_2)$$

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \Box F(n_1-1,n_2-1)$$

7.6 非正态总体参数的区间估计

若总体不服从正态分布时,一般是很难确定总体中的未知参数的;

但当样本容量 n 很大时,中心极限定理告诉我们 $\frac{\overline{X} - \mu(\theta)}{\sigma(\theta)/\sqrt{n}}$ 近似 服从标准正态分布 N(0,1). 可利用此作出近似的区间估计.

设总体X服从某一分布,其概率函数或密度中含有未知参数 θ ,则总体均值与方差都依赖于参数 θ 、对于样本 X_1, X_2, \cdots, X_n 它们相互独立且与总体同分布,而且

$$E(X_i) = \mu(\theta), \ D(X_i) = \sigma^2(\theta), \ (i = 1, 2, \dots, n)$$

7.6 非正态总体参数的区间估计

当样本容量n充分大(\geq 50)时,由列维定理知,样本函数 $\frac{X-\mu(\theta)}{\sigma(\theta)/\sqrt{n}}$

$$\frac{\overline{X} - \mu(\theta)}{\sigma(\theta) / \sqrt{n}}$$

似服从标准正态分布N(0,1).

因此,对给定的置信水平1-α,有

$$P\left\{\frac{\left|\overline{X} - \mu(\theta)\right|}{\sigma(\theta)/\sqrt{n}} \le z_{\alpha/2}\right\} \approx 1 - \alpha$$

若能从不等式 $\frac{\left|x-\mu(\theta)\right|}{C(\theta)^{1/2}} \leq Z_{\alpha/2}$ 解出参数 θ , 把关于随机事件的概

率描述转换为关于参数 θ 的描述,则得参数 θ 的近似置信水平为 $1-\alpha$ 的

 μ 的置信区间。

服从 "0-1"分布的总体参数p的区间估计

设总体X服从 "0-1"分布: x=0 或者 x=1,其中参数 p 未知. 则 E(X)=p

D(X) = p(1-p) 对给定的置信水平1- α ,得

$$P\left\{\frac{\left|\overline{X}-p\right|}{\sqrt{p(1-p)}/\sqrt{n}} \le z_{\alpha/2}\right\} \approx 1-\alpha$$

把不等式 $\frac{\left|\bar{x}-p\right|}{\sqrt{p(1-p)}/\sqrt{n}} \le z_{\alpha/2}$ 两边平方并整理得

$$P(n(x-p)^2 \le p(1-p)z_{\alpha/2}^2) \approx 1-\alpha$$

再化作关于p的二次不等式

$$(n+z_{\alpha/2}^2)p^2 - (2nx + z_{\alpha/2}^2)p + nx^{-2} \le 0$$

服从 "0-1"分布的总体参数p的区间估计

$$\Rightarrow : \quad a = n + z_{\alpha/2}^2, \quad b = -(2nx + z_{\alpha/2}^2), \quad c = nx^{-2}$$

得:

$$p_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$p_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

因为各 x_i 取值0或1,故 $0 \le x \le 1$,从而判别式

$$b^{2} - 4ac = 4n\overline{x}(1 - \overline{x})z_{\alpha/2}^{2} + z_{\alpha/2}^{4} > 0$$

即 p_1, p_2 是两个实根. 则参数 p 的近似置信区间为 (p_1, p_2) .

服从 "0-1"分布的总体参数p的区间估计

例1从一批产品中,抽取100个样品,发现其中有75个优质品 求 这批产品的优质品率 p 对应于置信水平 0.95 的置信区间.

则 X 服从 "0-1"分布: $P\{X = x\} = p^x (1-p)^{1-x}$

x=0 或者 x=1; 其中 p 为这批产品的优质品率.

按题意,样本容量n=100,在样本观测中恰有25个0与75个1,所以x=0.75 查表得 $z_{\alpha/2}=z_{0.025}=1.96$,于是代入公式计算得

$$a = 100 + 1.96^2 = 103.8406$$

$$b = -(2 \times 100 \times 0.75 + 1.96^2) = -153.8416$$

$$c = 100 \times 0.75^2 = 56.25$$

由此得 $p_1 = 0.657$, $p_2 = 0.825$.

服从指数分布的总体参数 θ 的区间估计

总体X 服从指数分布 $e(\theta)$, 其中参数 θ 未知, 则 $E(X) = \theta$, $D(X) = \theta^2$.

对给定的置信水平1-
$$\alpha$$
,有 $P\left\{\frac{\left|\overline{X}-\theta\right|}{\theta/\sqrt{n}} \le z_{\alpha/2}\right\} \approx 1-\alpha$

$$P\left\{\frac{\overline{X}}{1+\frac{z_{\alpha/2}}{\sqrt{n}}} \le \theta \le \frac{\overline{X}}{1-\frac{z_{\alpha/2}}{\sqrt{n}}}\right\} \approx 1-\alpha$$

故参数 θ 的近似置信区间为

$$\left(\frac{\frac{z}{x}}{1+\frac{z_{\alpha/2}}{\sqrt{n}}}, \frac{\frac{z}{x}}{1-\frac{z_{\alpha/2}}{\sqrt{n}}}\right)$$

例2 从一批电子元件中,随机抽取 50 个样品,测得它们的平均寿命为 1200 小时,设电子元件的使用寿命服从指数分布 $e(\theta)$,求参数 θ 相应 于置信水平 0.99 的置信区间.

解 已知 n = 50, $\bar{x} = 1200$, $\alpha = 0.01$, 查正态分布表得 $Z_{0.005} = 2.576$.

$$\theta_1 = \frac{\overline{x}}{1 + \frac{z_{\alpha/2}}{\sqrt{n}}} = \frac{1200}{1 + \frac{2.576}{\sqrt{50}}} = 879.571$$

$$\theta_2 = \frac{\overline{x}}{1 - \frac{z_{\alpha/2}}{\sqrt{n}}} = \frac{1200}{1 - \frac{2.576}{\sqrt{50}}} = 1887.687$$

故所求参数 θ 的置信区间为 (879.571, 1887.687).