ES 115 Design, Innovation and prototyping 5 Human factors

Human factors

Study of human behavior, abilities, limitations, application to design of systems, tasks/activities, environments, equipment and technologies.

Human factors

Construction of **good methods of work**, in order to have *minimum expenditure* of human energy for *maximum production*.

An ergonomic product/ space is.....

Safe

Comfortable

Intuitive

Inclusive

Safety

Safety

Indicators

Protective gear

Protocols

Safety against injuries

Blunt force trauma

Cuts and bruises

Burns

Toxic substances

Safety against RSI

Repetitive strain injury:

cumulative trauma

Workers in certain fields are at risk of repetitive strains.

Most occupational injuries are musculoskeletal disorders, and many of these are caused by

Comfort

Comfort

Lighting

Ventilation

Sound levels

Temperature

Comfort

Breathability

Textures

Weight

Intuitiveness

Book: Design of Everyday things by Don Norman

Intuitive

- Controls for interfaces

- Feedback loops

Physical abilities

Stimuli cutlery: Jinhyun Jeon

Oneware: Lim Loren

Robson Square waterfalls Vancouver, B.C. Canada Planned and designed 1973

Rubik's tactile cube

Physical abilities

Spectrum of disability

https://www.microsoft.com/design/inclusive/ Inclusive design 101

Language barriers to

be removed

Specializations

Domains of specialization

- Physical ergonomics
- Visual ergonomics*
- Organizational ergonomics
- Cognitive ergonomics

Visual ergonomics may not be recognized as a separate specialization by many; but has distinct thumb-rules for visual design

Physical ergonomics

Is concerned with human anatomical, anthropometric, physiological and biomechanical characteristics as they relate to **physical** activity.

AUSTRALOPITHECUS HOMO ERECTUS NEANDERTHALENSIS HOMO SAPIENS

Physical ergonomics - dimensions

Physical ergonomics - Safety

Physical ergonomics - postures + practices

Visual ergonomics

- Concerned with visual processes: viewing comfort + safety.
- It deals with **readability, legibility** and avoiding visual stresses

Visual ergonomics : displays

Visual ergonomics: Interfaces

Organizational ergonomics

Socio-technical **systems**, organizational structures, policies, and processes.

- Work design
- Design of working times
- Teamwork, Cooperative work

Organizational ergonomics: Layouts

https://technobrax.com/what-is-an-alice-keyboard/

https://danielscottkitchens.co.uk/blog/can-the-work-triangle-improve-your-kitchen-design/

Organizational ergonomics: Process

Organizational ergonomics: policies

Ensuring the physical and mental well-being of employees

Improving both individual and organization performance

Studying and understanding human behavior in the workplace

Increasing workplace productivity

Cognitive ergonomics

Is concerned with **mental processes**, such as perception, memory, reasoning, and motor response

- Mental workload
- Decision-making
- Skilled performance
- Human-machine interaction

Cognitive ergonomics

Messages/ warnings

Fire safety in staircases

Cognitive ergonomics

Bad examples

Cognitive ergonomics

Bad example

Summary

- An ergonomically designed product is: **safe**, **comfortable**, **inclusive and intuitive**
- **Specializations:** physical, visual, cognitive and organizational ergonomics
- Construction of **good methods of work:** minimum expenditure of human energy and maximum production.

Visual ergonomics may not be recognized as a separate specialization by many; but has distinct thumb-rules for visual design

Applied ergonomics

- Anthropometry
- Design for ergonomics
- Thumb Rules

Anthropometry

The Corbusier man Le Corbusier

The Vitruvian man Leonardo Da Vinci

Earnst Neufert

DER MENSCH DAS MASS ALLER DINGE

Maßverhältnisse des Menschen,

aufgebaut in Anlehnung an die Ermittlungen von A. Zeising 40

Den ältesten bekannten Kanon über die Maßverhältnisse des % h - der ganze Oberkörper von der Spaltung an, Menschen fand man in einer Grabkammer der Pyramidenfelder 1/4 h - Beinlänge v. Knöchel b. Knie u. Länge v. Kinn bis Nabel, bei Memphis (etwa 3000 Jahre v. Chr.). Also mindestens seit dieser Zeit haben sich Wissenschaftler und Künstler bis heute um 1, h - Kopflänge vom Scheitel bis Unterkante Kinn, die Entschleierung der menschlichen Maßverhältnisse bemüht. Abstand der Brustwarzen,

Wir kennen den Kanon des Pharaonenreiches, der Ptolomäer-

zeit, der Griechen und Römer, den Kanon des Polyklet, der lange Zeit als Norm galt, die Angaben von Alberti, Leonardo

da Vinci, Michelangelo und der Menschen des Mittelalters, vor

allem das weitbekannte Werk Dürers. Bei diesen erwähnten

Arbeiten wird der Körper des Menschen berechnet nach Kopf-, Gesichts- oder Fußlängen, die dann in späterer Zeit

weiter unterteilt und zueinander in Beziehung gebracht wurden.

so daß sie sogar im allgemeinen Leben maßgebend wurden.

Bis in unsere Zeit waren Fuß und Elle gebräuchliche Maße.

Die Angaben Dürers wurden vor allem Gemeingut. Er ging aus

von der Höhe des Menschen und legte die Unterteilungen in

Brüchen wie folgt fest:

1/4 h - Gesichtshöhe u.-Breite (einschließlich Ohren). Handlänge bis zur Handwurzel,

1., h - Gesichtsbreite in Höhe der Unterkante Nase,

Im vergangenen Jahrhundert hat vor allen anderen A. Zeising durch seine Untersuchungen der Maßverhältnisse des Menschen auf der Grundlage des Goldenen Schnittes durch genaueste Messungen und Vergleiche größere Klarheit geschaffen. Leider fand das Werk bis vor kurzem nicht die gebührende Beachtung, bis der bedeutendste Forscher auf diesem Gebiet, E. Moessel, way auf seine Bedeutung hinwies und die Arbeit Zeisings durch eingehende Untersuchungen nach seiner Methode stützte.

Anthropometry

- Measurements of the human body
- Product/space dimensions should **fit** extremes.
- Is used in various fields such as biometric design, forensic sciences, evolutionary biology etc
- Plays an important role in industrial design, clothing design and architecture to optimize products/spaces for use

Anthropometry: Need

Custom-made products according to individual customer's need

Anthropometry: Need

What happens when you have to mass produce a product?

"India is the second largest global producer of footwear (**16 billion pairs**)

- India Trade Fair report, 2019

Anthropometric data

DINED / Anthropometry in design

Indian Anthropometric Dimensions for Ergonomic Design Practice - Debkumar Chakrabarti

The Measure of Man: Human Factors in Design, Henry Dreyfuss

R No	Parameters			P	ercent	iles	Max	Mean	±SD	Ratio		
	The Company of the Company			5th	25th	50th	75th	95th		parameters.		
1	Weight, Kg.	Male	34	42	48	54	62	76	118	57	11	
		Female	30	35	41	48	55	66	88	49.5	9.9	
		Combined	30	40	47	53	60	74	118	55.2	11.3	
2	Normal standing	Male	1396	1529	1598	1645	1688	1751	1939	1645	74	0.99
		Female	1276	1406	1457	1504	1548	1615	1681	1506	68	0.99
		Combined	1276	1439	1541	1610	1671	1741	1939	1607	98	0.99
3	Stature	Male	1486	1537	1599	1648	1691	1781	1950	1650	70	1
		Female	1288	1429	1478	1517	1567	1632	1711	1523	65	1
		Combined	1288	1465	1555	1619	1673	1771	1950	1614	87	1
4	Eye	- Male	1293	1419	1485	1529	1571	1645	1821	1530	68	0.93
		Female	1215	1315	1368	1411	1454	1514	1600	1411	62	0.93
		Combined	1215	1355	1445	1507	1557	1633	1821	1502	84	0.93

Percentile data

It's a characteristic of human variation that *most people*are near to the average, then there are proportionately fewer and fewer people towards the extremes.

R.No.	Parameters		Min		P	ercent	iles	Max	Mean	±SD	Ratio	
				5th	25th	50th	75th	95th			5276	
1	Weight, Kg.	Male	34	42	48	54	62	76	118	57	11	
		Female	30	35	41	48	55	66	88	49.5	9.9	
		Combined	30	40	47	53	60	74	118	55.2	11.3	
2	Normal standing	Male	1396	1529	1598	1646	1688	1751	1939	1645	74	0.99
		Female	1276	1406	1457	1504	1548	1615	1681	1506	68	0.99
		Combined	1276	1439	1541	1610	1671	1741	1939	1607	98	0.99

https://www.bostontec.com/designing-an-industrial-workbench-for-adjustability/

Percentile data: discussion

Percentile data

- Design should address to the needs from 5th to 95th percentile as applicable
- A person may have 95th percentile height but may have 50th percentile weight and 5th percentile distance between eyes
- Factors like age/ gender/ race / somatotype / living conditions will affect anthropometry

Static anthropometry

When a **person is in a static posture:** standing, sitting or adopted postures

Dynamic anthropometry

The human rather, always dynamic.

are termed dynamic anthropometry.

The dimensional measurements of the human body with various movements taken into consideration in different adopted postures which the work context demands,

The Measure of Man and Woman: Human Factors in Design, Henry Dreyfuss Associated

Anthropometry: spaces

The Measure of Man and Woman: Human Factors in Design, Henry Dreyfuss Associated

Interface

Airbus 320

Image credit: https://in.pinterest.com/pin/307018899594765105/

Let's watch some examples

Good practices: thumb rules

Communication

to this site is

strictly forbidden

play on this site

Postures and methods

Design assisting good postures

Standards

Automotive Research Association of India

Conformité Européenne (French for European Conformity)

Bureau of Indian Standards

Process in short

- Consider all the possible dynamics between user and the product
- Prioritize them: amount of time and nature of hazard
- **Study standards** and/or **anthropometric data** to define product attributes.
- Design and validate

Few straightforward applications

- Deciding bulk of the product
- Designing Grip/ Handles
- Adjustments of height/ width
- Providing flexibility of use through pivots/levers/ ratchets etc.

Analyze interaction

Prioritize

- Fatality of any issue
- The amount of time spent (energy expenditure / RSI)
- Define desired experience (safety/ comfort/ intuitiveness and inclusivity)

Indicating and representing ergonomic issues

Quantifying (strains, energy expenditure)

Study anthropometry

Thumb rules

1. Neutral postures

- 'S' curve of spine
- Proper angles for limbs e.g. 90^o angle for the elbow and knees
- Natural wrist position
- Neck alignment

https://ehs.stanford.edu/topic/ergonomics/postural-awareness

https://www.researchgate.net/figure/Recommendations-for-hand-tool-handle-design-5_fig10_234056130

2. Reduce effort (force / motion)

- By means of adjusting <u>bulk/ size</u> etc.
- Use of power or mechanical tools to <u>reduce repetitive motions</u>
- Removing hurdles such as uneven surfaces or

3. Easy reach

Hands and feet, visibility etc.

4. Appropriate Clearance

- Clearances become important especially in case of movements
- Knees, Elbows, Head injuries could occur with lack of clearances

5. Minimize Fatigue & Static Load

- Standing on feet, raising arms overhead etc.
- Design of proper grips, working heights/ footrests can solve the issues.

6. Minimize Pressure Points

Minimizing pressure points is critical

E.g. Pressure on legs in a chair / Pain in fingers and palm while writing

7. Move, Exercise, and Stretch

- Take adequate breaks to avoid stress and strain
- Make sure that workstation allows change of postures

https://anderson-ergo.ca/about-us/resources/industrial-stretching-poster-2012-colour-2/

Adjustability and trade-offs

- Reach, operational force etc for 5th percentile
- Clearance for 95th percentile
- Adjustable sizes for all variations

Standard door width 24, 30, 36"

Recommended videos

- Niels Diffrient
- Applied ergonomics by <u>NPTEL</u>

Standards

Indian Society of Ergonomics (ISE)

International Ergonomics Association (IEA)

Chartered Institute of Ergonomics & Human Factors

Human Factors and Ergonomics Society

Human factors

"Human factors is the **scientific discipline** concerned with the understanding of **interactions** among humans and other elements of a system, and the profession that applies **theory**, **principles**, **data**, and other methods to design in order to optimize **human well-being** and overall system performance"

(International Ergonomics Association, 2010)

Summary

- Human factors : *scientific discipline* understanding *interactions* among humans and other elements of a system
- An ergonomic product : safe, comfortable, intuitive, inclusive.
- Ergonomics: Physical, visual*, cognitive and organizational
- Anthropometry
- Thumb rules (reach, clearance, neutral postures)

ES 115
Design, Innovation and prototyping

5 Human factors

Next class ... 'Presentation and Representation'

Two submissions: 22nd September Glider demo on 20th September.