高等計算機圖學與應用 Assignment 08 Final Term Report

資工碩一 7111056426 蘇亭云

- Assignment 01: 可逆權重色彩轉移
 - 1. 簡述:將 source 的色彩轉移向 target 的色彩靠近,和上學期相比,多加上 RGB 三通道的權重值,改善如果 target 某個色彩過重導致結果不好看。(例如: target 紅牆圖片紅色通道數值大,則 source 的色彩就會轉移成偏紅不好看)。
 - 最滿意之結果:
 手動設定權重 R=0.49 G=0.5 B=0.48
 Source:

Target:

Result:

- 3. 心得:改善了上學期,要很認真挑(source, target)的組合,才能得到好的色彩轉換結果,印象上學期作的結果很好的同學是用畫去更改風格,這次就嘗試了一下,結果還行,轉換後畫的顏色飽和度感覺有提升。
- Assignment 02:影像特徵統計特徵擷取
 - 1. 簡述:分別列出 source target 影像的 RGB 3 通道各別的 mean 和 standard deviation, 共 12 個。
 - 2. 結果舉例:

以上面 source 床圖片為例。

	red	green	blue
Mean	139.29	135.44	110.14
Standard Deviation	29.56	25.7	57.88

3. 心得:為了做 HW01 和 HW04 色彩轉換計算每張圖片的 mean 和 standard deviation4

$$R(x,y) = \frac{w\sigma_t + (1 - w)\sigma_s}{\sigma_s} [S(x,y) - \mu_s] + w\mu_t + (1 - w)\mu_s$$

R(x, y)色彩轉移後之結果像素

S(x, y)為 source image 像素

 μ_s 為 source image 之 mean 值

 μ_t 為 target image 之 mean 值

σ_s為 source image 之 standard deviation 值

σ_t 為 target image 之 standard deviation 值

- Assignment 03: IEEE 754 Conversion 轉換
 - 1. 簡述:

做十進制浮點數(decimal)與 IEEE 754 double precision (64 bits)二 進制(binary)間之互轉。檔案讀入與儲存都在 feature 目錄。以 bin 代表二進制檔案,以 dec 代表十進制檔案。

2. 結果舉例:

3. 心得:練習做轉換,印象中是為了上學期方便加密時將十進制轉乘 二進制,解密時轉回來。

- Assignment 04: Optimal Weight for Weighted Color Transfer
 - 1. 簡述:比起作業 01 更進階了,透過暴力法或二元分割法利用 histogram 自動找到 RGB 個別通道的最佳權重做色彩轉換。
 - 暴力法:generating 101 weighted ,w1=0.00, w2=0.01, …, w100=0.99, w101=1.00
 - 二元分割: histogram 靠近 source 往 target 走 weight 往 1 靠近; histogram 靠近 target 往 source 走 weight 往 0 靠近。讓 轉換結果圖的 histogram 和 source 及 target 的距離差不多 即 D(S, Iw) ≅ D(T, Iw)。
 - 2. 最滿意之結果:

Source:

Target:

Result:

暴力法 result: R=0.3 G=0.45 B=0.48

二元分割法 result: R=0.30078125 G=0.5 B=0.5

3. 心得:一開始做的時候搞錯以為暴力法要 3 通道各跑 101 次種可能,結果跑了 101 的 3 次方迴圈,根本跑不出結果 QQ,後來才發現自己搞錯,修正跑 101 次就很快有結果了。可以看到不管是暴力法還是二元分割法色彩轉換出的結果圖都不錯。

• Assignment 05: WM Tables Practice

- 1. 簡述: Weighted Modulus (WM)演算法嵌入訊息時,所需產生的像素變動表 (Pixel Alternation Table, PA)及同質像素變動表 (Homogeneous Alternation Table, HA)。
- 2. 結果舉例:

像素變動表 (Pixel Alternation Table, PA)

同質像素變動表 (Homogeneous Alternation Table, HA)

3. 心得:這個作業結果有明確答案,可以確定自己沒寫錯。

- Assignment 06: 3D Non-Equilateral Arnold Transform (3D-NEAT)
 - 1. 簡述:練習利用 3D Non-Equilateral Arnold Transform (3D-NEAT) 對灰階或彩色影像作 bit-level encryption and decryption。
 - 2. 結果舉例:

Source

Encrypt

Decryp

3. 心得:延續上學期最後講的 2D-NEAT 進階到 3D-NEAT,是這學期寫最久的作業,每張圖片約 6 分鐘,然後發現轉回來失敗很失望, 卡了很久才找到是自己 python 型態的問題,導致轉換過程的計算錯誤,後面才學聰明,先拿尺寸小的圖片找錯,確定有成功加密並解密轉回來是正確的,再開始跑圖片的大圖。 • Assignment 07: Metrics to measure the performance of the image encryption

1. 簡述:量測影像加密成效之各項標準評估方式。

程式-1:量測 variance of histogram (VOH)

程式-2:量測 histogram 的 Chi-square test (χtest2)

程式-3:對原始、加密影像各取 8000 sample pixels,量測得出的水平

(horizontal)、垂直

(vertical)、對角(diagonal) 方向之 Pear correlation coefficients.

程式-4:量測 Global information entropy。

2. 結果舉例:

A. 程式-1:量測 variance of histogram (VOH)

VOH		Plain			Cipher		
Image	Type	Red	Green	Blue	Red	Green	Blue
AtriumNig	color	5375724	5610356	7012235	286158.6	5610356	7012235
Boat	gray	1535879			20335.84		
Desk_oBA	color	12428290	10931798	20967898	1352809	10931798	20967898
kodim04	color	3013084	2539196	2163495	71803.73	2539196	2163495
kodim07	color	3095654	3311061	4368049	56474.43	3311061	4368049
kodim19	color	1824022	1822434	2753951	4121.063	1822434	2753951
kodim22	color	3021214	2212816	2943067	11192.92	2212816	2943067
kodim23	color	1822128	1525947	3620097	32708.27	1525947	3620097
Peppers	color	852748.9	1273532	1965713	57436.41	1273532	1965713
Tank	gray	8103600			18867.8		

B. 程式-2:量測 histogram 的 Chi-square test (xtest2)

CHI		Cipher						Results	
Image	Type	Red	Green	alpha	chi value	Red	Green	Blue	
AtriumNig	color	24287.31	24503.92	24594.2	0.05	293.248	Fail	Fail	Fail
Boat	gray	5083.959			0.05	293.248	Fail		
Desk_oBA	color	157514	154888.3	154739.8	0.05	293.248	Fail	Fail	Fail
kodim04	color	11967.29	12059.31	12136.41	0.05	293.248	Fail	Fail	Fail
kodim07	color	9412.405	9332.438	9497.881	0.05	293.248	Fail	Fail	Fail
kodim19	color	686.8438	728.194	743.2552	0.05	293.248	Fail	Fail	Fail
kodim22	color	1865.487	1831.479	1842.124	0.05	293.248	Fail	Fail	Fail
kodim23	color	5451.377	5310.568	5401.631	0.05	293.248	Fail	Fail	Fail
Peppers	color	14359.1	14432.68	14520.37	0.05	293.248	Fail	Fail	Fail
Tank	gray	4716.949			0.05	293.248	Fail		

C. 程式-3: 對原始、加密影像各取 8000 sample pixels Pear correlation coefficients

COR		Pla	ain									Cipher								
Sample		8000 red				green			blue			red			green			blue		
Image	Type	hor	rizontal	vertical	diagonal	horizontal	vertical	diagonal												
AtriumNi	g color	r (0.95666	0.930235	0.909468	0.953206	0.925931	0.902878	0.951909	0.925488	0.901202	0.044413	-0.01189	-0.01311	0.010867	-0.00249	-0.00547	0.022662	0.005162	-0.03456
Boat	gray	(0.97132	0.93495	0.91673							-0.02522	-0.00756	-0.01348						
Desk_oB.	A color	0.	.971045	0.970089	0.950244	0.963451	0.961399	0.934771	0.959069	0.966338	0.936718	0.492663	0.123723	0.118085	0.492686	0.102773	0.09706	0.490782	0.129018	0.147042
kodim04	color	0.	.961533	0.956011	0.937212	0.976731	0.972064	0.960572	0.977782	0.973424	0.962275	-0.0382	-0.02105	-0.01503	-0.03228	0.003401	-0.0108	-0.02271	-0.00315	-0.01735
kodim07	color	0.	.953987	0.970262	0.934055	0.939913	0.965066	0.918028	0.947034	0.967085	0.926148	-0.02592	-0.00471	-0.0013	0.005137	-0.00228	-0.00898	-0.00486	-0.00293	0.003557
kodim19	color	0.	953958	0.937291	0.906367	0.943336	0.924957	0.887496	0.945904	0.929514	0.893961	-0.03045	0.020126	0.004068	-0.0138	0.027176	0.000837	-0.00321	0.043616	0.002849
kodim22	color	0.	962998	0.955369	0.934541	0.951252	0.943165	0.915273	0.965153	0.95668	0.937289	0.022191	-0.06495	-0.05185	0.027755	-0.06393	-0.05609	0.012095	-0.07781	-0.06463
kodim23	color	0.	.984877	0.989065	0.97913	0.981572	0.986263	0.973423	0.985137	0.986827	0.977288	0.03397	-0.0378	-0.01791	-0.01249	-0.01635	-0.00806	-0.03909	0.003235	-0.00525
Peppers	color	0.	.970684	0.962436	0.956476	0.986897	0.979736	0.971631	0.972422	0.963834	0.949102	0.021707	0.010634	0.00978	-0.00431	-0.02021	0.041972	0.026761	0.01071	0.026461
Tank	gray	0.	932173	0.944717	0.899691							-0.07787	-0.01086	-0.01561						

D. 量測 Global information entropy

GIE		Plain			Cipher		
Image	Type	Red	Green	Blue	Red	Green	Blue
AtriumNig	color	7.560143	7.535293	7.436104	7.977658	7.977424	7.97735
Boat	gray	7.19137			7.985412		
Desk_oBA	color	7.144377	7.212651	6.490278	7.832441	7.83487	7.834654
kodim04	color	7.098279	7.222536	7.314506	7.977781	7.977655	7.977536
kodim07	color	7.176238	7.10187	6.920619	7.982964	7.983032	7.982754
kodim19	color	7.456972	7.432904	7.202384	7.998743	7.998664	7.998644
kodim22	color	7.143605	7.279389	7.140154	7.996545	7.996606	7.996603
kodim23	color	7.469886	7.481394	7.164972	7.989686	7.989959	7.989819
Peppers	color	7.338827	7.496253	7.058306	7.961425	7.961217	7.960999
Tank	gray	5.49574			7.986733		

3. 心得:最後結果都是不通過,老師上課有解釋原因,但還沒時間嘗試,有機會再嘗試看看套進自己做色彩轉換的圖經過 3D-NEAT 加密後的量測成效並改進 Pear correlation coefficients 做採樣點的部分。

• 7項作業中,請寫出最感到興趣的作業、獲得之心得、寫作業之收穫。

作業 06 3D Non-Equilateral Arnold Transform (3D-NEAT),因為卡最就,最後終於成功加密並轉回來真的很神奇,真得很佩服能想出這些方法的人,又多學到一個圖片加密解密的方法。

作業 04: Optimal Weight for Weighted Color Transfer 也有趣,接續上學期做了改進,印象上學期為了挑出好的結果,排列組合了超久,有了自動找最佳權重的方法,就不用這麼麻煩,不管選什麼 target 都能得到還不錯的色彩轉換結果圖。

• 7項作業中,請寫出最感到困難的作業與原因。

作業 06 3D Non-Equilateral Arnold Transform (3D-NEAT),因為是這學期寫最久的作業,每張圖片約 6 分鐘,然後發現轉回來失敗很失望,卡了很久才找到是自己 python 型態的問題,導致轉換過程的計算錯誤,但也增進自己 debug 能力,下次有碰到類似狀況就能更快排除。

• 對整個課程做一個述評

教師教學之優點與缺點,課程內容之優點與缺失。

很感謝老師每堂課都很認真準備課程內容,花很多時間讀最新的論文,整理成 PPT 教我們最新相關研究,受益良多,真的很感激有修到老師的課,能有專家帶領,比起自己摸索領域,會花大量時間讀論文,也很有可能看到不好的論文但分辨不出,老師真的可以多收學生,覺得能有老師當指導老師的學生很幸運。謝謝老師總是停下來確認我聽懂了沒,理解力沒其同學快,常常要聽老師講到第二遍才聽懂,感謝老師的耐心,也讓我不會害怕自己問了白痴問題很丟臉。

雖然知道作業大多沒有標準答案,大家做的都會些微不同,但有時候就有點無法判斷自己有沒有做錯。

> 建議後續課程改進之事項

課程最末老師有提到老師實際的專長是 3D 圖像方面的,很好奇想向老師學習相關的研究。雖然覺得課堂如果教 3D 可能自身能力會實作不出來,但還是蠻好奇的,希望後續課程,可以講一點點。

比起上學期這學期寫作業的時間拉長,有問題還可以在下次課堂 問老師,覺得很棒,雖然還是偶爾會因為自己程式寫錯找不到錯在哪 卡很久,但解出來還是很有成就感。