Extending Trace Theory for Concurrent Program Analysis

S. Karageorgieva, N. Kumar, R. Liu, A. Roze

November 12, 2022

• Important problem in computer science: modelling types of programs using mathematical structures, e.g. for program verification/analysis.

- Important problem in computer science: modelling types of programs using mathematical structures, e.g. for program verification/analysis.
- One idea is to represent a basic step as a letter, and a program as a string.

- Important problem in computer science: modelling types of programs using mathematical structures, e.g. for program verification/analysis.
- One idea is to represent a basic step as a letter, and a program as a string.
- Concurrent programs: need to consider steps that execute concurrently, or independently of each other.

- Important problem in computer science: modelling types of programs using mathematical structures, e.g. for program verification/analysis.
- One idea is to represent a basic step as a letter, and a program as a string.
- Concurrent programs: need to consider steps that execute concurrently, or independently of each other.
- To represent concurrency, we allow some substrings to commute when adjacent.

- Important problem in computer science: modelling types of programs using mathematical structures, e.g. for program verification/analysis.
- One idea is to represent a basic step as a letter, and a program as a string.
- Concurrent programs: need to consider steps that execute concurrently, or independently of each other.
- To represent concurrency, we allow some substrings to commute when adjacent.
- Concatenating strings represents running two programs in succession—we obtain a monoid.

Content

- Trace monoids.
- $\bullet \ Regular \ languages.$
- Generalized trace monoids.
- Our progress so far.

Formally, trace theory is the study of partially commutative free monoids.

Formally, trace theory is the study of partially commutative free monoids.

Notation

• The (finite) set of all symbols Σ is called an **alphabet** and the symbols are called **letters**.

Formally, trace theory is the study of partially commutative free monoids.

- The (finite) set of all symbols Σ is called an **alphabet** and the symbols are called **letters**.
- \bullet let x be a string of letters (ex. abc), we call x a word

Formally, trace theory is the study of partially commutative free monoids.

- The (finite) set of all symbols Σ is called an **alphabet** and the symbols are called **letters**.
- \bullet let x be a string of letters (ex. abc), we call x a word
- Σ^* is the set of all strings over Σ

Formally, trace theory is the study of partially commutative free monoids.

- The (finite) set of all symbols Σ is called an **alphabet** and the symbols are called **letters**.
- \bullet let x be a string of letters (ex. abc), we call x a word
- Σ^* is the set of all strings over Σ
- A language T is a set of strings $(T \subseteq \Sigma^*)$

Formally, trace theory is the study of partially commutative free monoids.

- The (finite) set of all symbols Σ is called an **alphabet** and the symbols are called **letters**.
- \bullet let x be a string of letters (ex. abc), we call x a word
- Σ^* is the set of all strings over Σ
- A language T is a set of strings $(T \subseteq \Sigma^*)$
- The independence relation I is a symmetric and irreflexive subset of $\Sigma \times \Sigma$.

• I induces an equivalence relation \sim_I over Σ^* .

- I induces an equivalence relation \sim_I over Σ^* .
- Strings $u, v \in \Sigma^*$ are equivalent if u can be transformed into v via a sequence of strings which differ by a single commutation of adjacent letters.

- I induces an equivalence relation \sim_I over Σ^* .
- Strings $u, v \in \Sigma^*$ are equivalent if u can be transformed into v via a sequence of strings which differ by a single commutation of adjacent letters.
- Formally: there exist strings $w_1, \ldots, w_n \in \Sigma^*$ such that $w_1 = u$, $w_n = v$, and $w_i = w_i'abw_i''$ and $w_{i+1} = w_i'baw_i''$, where $(a, b) \in I$, for each i.

- I induces an equivalence relation \sim_I over Σ^* .
- Strings $u, v \in \Sigma^*$ are equivalent if u can be transformed into v via a sequence of strings which differ by a single commutation of adjacent letters.
- Formally: there exist strings $w_1, \ldots, w_n \in \Sigma^*$ such that $w_1 = u$, $w_n = v$, and $w_i = w_i'abw_i''$ and $w_{i+1} = w_i'baw_i''$, where $(a, b) \in I$, for each i.
- Furthermore, \sim_I respects string concatenation, i.e. \sim_I induces a congruence \equiv_I .

Trace Monoid

• A partially commutative free monoid, or **trace monoid**, is the quotient monoid $\mathbb{M}(\Sigma, I) = \Sigma^*/_{\equiv_I}$.

Trace Monoid

- A partially commutative free monoid, or **trace monoid**, is the quotient monoid $\mathbb{M}(\Sigma, I) = \Sigma^*/_{=_I}$.
- The elements of $\mathbb{M}(\Sigma, I)$ are called **traces**.

Trace Monoid

- A partially commutative free monoid, or **trace monoid**, is the quotient monoid $\mathbb{M}(\Sigma, I) = \Sigma^*/_{\equiv_I}$.
- The elements of $\mathbb{M}(\Sigma, I)$ are called **traces**.
- The binary operation is **concatenation**.

Trace Monoid

- A partially commutative free monoid, or **trace monoid**, is the quotient monoid $\mathbb{M}(\Sigma, I) = \Sigma^*/_{\equiv_I}$.
- The elements of $\mathbb{M}(\Sigma, I)$ are called **traces**.
- The binary operation is **concatenation**.
- Subsets of $\mathbb{M}(\Sigma, I)$ are called **trace languages**.

Trace Monoid

- A partially commutative free monoid, or **trace monoid**, is the quotient monoid $\mathbb{M}(\Sigma, I) = \Sigma^*/_{\equiv_I}$.
- The elements of $\mathbb{M}(\Sigma, I)$ are called **traces**.
- The binary operation is **concatenation**.
- Subsets of $\mathbb{M}(\Sigma, I)$ are called **trace languages**.

Example

Let
$$\Sigma=\{a,b,c,d\}$$
 and $I=\{(a,d),(d,a),(b,c),(c,b)\}$. An example of a trace is
$$[baadcb]_I=\{baadcb,baadbc,badacb,badabc,bdaabc,bdaacb\}$$

Regularity of Trace Languages

Regular Language

- Language can be recognized by an algorithm using **constant space**
- Goal: To efficiently find out whether a particular concurrent system works
- Method: By determining whether a trace language is regular

Regularity of Trace Languages

Regular Language

- Language can be recognized by an algorithm using **constant space**
- Goal: To efficiently find out whether a particular concurrent system works
- Method: By determining whether a trace language is regular
- Example: $(a)^* = \{a^n \mid n \in \mathbb{N}\}$ (the language of all strings consisting only of the letter a)
 - ightharpoonup Algorithm: Walk through the string left-to-right and check if every letter is a
 - ▶ Runs in constant space since no need to keep track of any other letter

$$aa\overset{\downarrow}{a}aaa \rightarrow aaa\overset{\downarrow}{a}aa$$

Regularity of Trace Languages

Regular Language

- Language can be recognized by an algorithm using **constant space**
- Goal: To efficiently find out whether a particular concurrent system works
- Method: By determining whether a trace language is regular
- Example: $(a)^* = \{a^n \mid n \in \mathbb{N}\}$ (the language of all strings consisting only of the letter a)
 - ightharpoonup Algorithm: Walk through the string left-to-right and check if every letter is a
 - ▶ Runs in constant space since no need to keep track of any other letter

$$aa\overset{\downarrow}{a}aaa \rightarrow aaa\overset{\downarrow}{a}aa$$

- Counterexample: $\{a^nb^n \mid n \in \mathbb{N}\}$
 - ▶ No constant-space algorithm recognizes this language
 - \blacktriangleright Need to remember the number of as while counting number of bs

Properties of Regular Languages

Consider two regular languages L_1 and L_2 .

- Closure Properties
 - ▶ Union: Run the algorithm for L_1 and L_2 on the word and take the OR of the results.
 - ▶ Intersection: Run the algorithm for L_1 and L_2 on the word and take the AND of the results.
 - ▶ Complement: Run the algorithm for L_1 on the word and take the NOT of the results.

Properties of Regular Languages

Consider two regular languages L_1 and L_2 .

- Closure Properties
 - ▶ Union: Run the algorithm for L_1 and L_2 on the word and take the OR of the results.
 - ▶ Intersection: Run the algorithm for L_1 and L_2 on the word and take the AND of the results.
 - ▶ Complement: Run the algorithm for L_1 on the word and take the NOT of the results.
- Finiteness Properties
 - ▶ Regular languages can be written as expressions of the languages \emptyset , Σ^* and the language consisting only of a single letter, (a)
 - Regular languages are recognized by machines which have finite memory, known as Finite State Automata

What Languages Are We Interested In?

- 1. The Lexicographic Language $Lex(\Sigma^*)$
 - Consider any trace, say $t = \{abc, bac, acb\}$ where $I = \{(a, b), (b, c)\}$
 - Order the elements of t in **dictionary order**, ie. abc < acb < bac
 - Then the minimal element abc = Lex(t)
 - The language of **minimal elements of traces** is $Lex(\Sigma^*)$

Both these languages are **regular**.

What Languages Are We Interested In?

1. The Lexicographic Language $Lex(\Sigma^*)$

- Consider any trace, say $t = \{abc, bac, acb\}$ where $I = \{(a, b), (b, c)\}$
- Order the elements of t in **dictionary order**, ie. abc < acb < bac
- Then the minimal element abc = Lex(t)
- The language of **minimal elements of traces** is $Lex(\Sigma^*)$

2. The Ordered Language

- Consider the language $\{aub \mid a \prec_{I,aub} b\}$
- Language of all words of the form aub where a and b cannot be exchanged so that a appears in front of b

Both these languages are **regular**.

• $\mathbb{I} \subseteq \Sigma^* \times \Sigma^*$ (instead of $\mathbb{I} \subseteq \Sigma \times \Sigma$)

• $\mathbb{I} \subseteq \Sigma^* \times \Sigma^*$ (instead of $\mathbb{I} \subseteq \Sigma \times \Sigma$)

Example

Let $\Sigma := \{a, b, c, d\}$ and let $\mathbb{I} := \{(abc, da), (da, abc)\}$. Then

 $bcabcdadd \equiv bcdaabcdd$

• $\mathbb{I} \subseteq \Sigma^* \times \Sigma^*$ (instead of $\mathbb{I} \subseteq \Sigma \times \Sigma$)

Example

Let
$$\Sigma:=\{a,b,c,d\}$$
 and let $\mathbb{I}:=\{(abc,da),(da,abc)\}.$ Then
$$bcabcdadd \equiv bcdaabcdd$$

• The set of equivalence classes forms a monoid with the operation of concatenation.

• $\mathbb{I} \subseteq \Sigma^* \times \Sigma^*$ (instead of $\mathbb{I} \subseteq \Sigma \times \Sigma$)

Example

Let
$$\Sigma:=\{a,b,c,d\}$$
 and let $\mathbb{I}:=\{(abc,da),(da,abc)\}.$ Then
$$bcabcdadd \equiv bcdaabcdd$$

 The set of equivalence classes forms a monoid with the operation of concatenation.

Example

$$\Sigma := \{a, b, c, d\}, \ \mathbb{I} := \{(abc, da), (da, abc)\}$$

$$ab \cdot cda = abcda = daabc = d \cdot aabc$$

What goes wrong?

• The cancellation property fails. e.g. if $\mathbb{I} = \{(a, ab), (ab, a)\}$, then

$$aab \equiv aba$$

but

 $ab \not\equiv ba$

Example

Let
$$I = \{(a, c), (ad, c), (ad, b)\}$$
. Then

$$bacc \dots cd \equiv bcc \dots cad \equiv badcc \dots c \equiv adbcc \dots c$$

What goes wrong? cont.

The languages which interest us are no longer necessarily regular.

• Suppose $\mathbb{I} = \{(ab, cd), (a, cd), (c, d)\}$. Then $(\Sigma^* \setminus Lex(\Sigma^*)) \cap ac^*d^*b = \{ac^nd^nb : n \ge 1\}$.

What goes wrong? cont.

The languages which interest us are no longer necessarily regular.

- Suppose $\mathbb{I} = \{(ab, cd), (a, cd), (c, d)\}$. Then $(\Sigma^* \setminus Lex(\Sigma^*)) \cap ac^*d^*b = \{ac^nd^nb : n \ge 1\}$.
- For instance:

$$acddb \equiv cdadb$$
 (not enough c 's)
 $accdb \equiv acdcb \equiv acdcb \equiv cdacb$ (not enough d 's)
 $accddb \equiv acdcdb \equiv cdacdb \equiv abcdcd$
(enough c 's and d 's; not in lexicographical order!)

What goes wrong? cont.

The languages which interest us are no longer necessarily regular.

- Suppose $\mathbb{I} = \{(ab, cd), (a, cd), (c, d)\}$. Then $(\Sigma^* \setminus Lex(\Sigma^*)) \cap ac^*d^*b = \{ac^nd^nb : n \ge 1\}$.
- For instance:

$$acddb \equiv cdadb$$
 (not enough c 's)
 $accdb \equiv acdcb \equiv acdcb \equiv cdacb$ (not enough d 's)
 $accddb \equiv acdcdb \equiv cdacdb \equiv abcdcd$
(enough c 's and d 's; not in lexicographical order!)

• Why? $ac^n d^n b \equiv a(cd)^n b \equiv (cd)^n ab \equiv ab(cd)^n$

What goes wrong? cont.

The languages which interest us are no longer necessarily regular.

- Suppose $\mathbb{I} = \{(ab, cd), (a, cd), (c, d)\}$. Then $(\Sigma^* \setminus Lex(\Sigma^*)) \cap ac^*d^*b = \{ac^nd^nb : n \ge 1\}$.
- For instance:

$$acddb \equiv cdadb$$
 (not enough c 's)
 $accdb \equiv acdcb \equiv acdcb \equiv cdacb$ (not enough d 's)
 $accddb \equiv acdcdb \equiv cdacdb \equiv abcdcd$
(enough c 's and d 's; not in lexicographical order!)

- Why? $ac^n d^n b \equiv a(cd)^n b \equiv (cd)^n ab \equiv ab(cd)^n$
- On the other hand, if $n \neq m$, then $ac^n d^m b \equiv w$ implies w = uavb, where $u, v \in \{c, d\}^*$, $|v|_c |v|_d = n m \neq 0$

What goes wrong? cont.

The languages which interest us are no longer necessarily regular.

- Suppose $\mathbb{I} = \{(ab, cd), (a, cd), (c, d)\}$. Then $(\Sigma^* \setminus Lex(\Sigma^*)) \cap ac^*d^*b = \{ac^nd^nb : n \ge 1\}$.
- For instance:

$$acddb \equiv cdadb$$
 (not enough c 's)
 $accdb \equiv acdcb \equiv acdcb \equiv cdacb$ (not enough d 's)
 $accddb \equiv acdcdb \equiv cdacdb \equiv abcdcd$
(enough c 's and d 's; not in lexicographical order!)

- Why? $ac^n d^n b \equiv a(cd)^n b \equiv (cd)^n ab \equiv ab(cd)^n$
- On the other hand, if $n \neq m$, then $ac^n d^m b \equiv w$ implies w = uavb, where $u, v \in \{c, d\}^*, |v|_c |v|_d = n m \neq 0$
- $\{ac^nd^nb: m \geq 1\}$ is irregular, since the automaton has to remember the number of c's. Hence, $Lex(\Sigma^*)$ is irregular.

• Our goal is to characterize when these languages, $\mathcal{L}_{a \prec b}$ and $Lex(\Sigma^*)$, are regular.

- Our goal is to characterize when these languages, $\mathcal{L}_{a \prec b}$ and $Lex(\Sigma^*)$, are regular.
- Let $\tilde{\mathbb{I}} := \{u : (u, v) \in \mathbb{I} \text{ for some } v\}$, i.e. $\tilde{\mathbb{I}}$ is the set of "swappable" strings.

- Our goal is to characterize when these languages, $\mathcal{L}_{a \prec b}$ and $Lex(\Sigma^*)$, are regular.
- Let $\tilde{\mathbb{I}} := \{u : (u, v) \in \mathbb{I} \text{ for some } v\}$, i.e. $\tilde{\mathbb{I}}$ is the set of "swappable" strings.
- ullet Idea 1: restrict the definition of \mathbb{I} .

- Our goal is to characterize when these languages, $\mathcal{L}_{a \prec b}$ and $Lex(\Sigma^*)$, are regular.
- Let $\tilde{\mathbb{I}} := \{u : (u, v) \in \mathbb{I} \text{ for some } v\}$, i.e. $\tilde{\mathbb{I}}$ is the set of "swappable" strings.
- Idea 1: restrict the definition of \mathbb{I} .

Theorem

Let \mathbb{I} be finite. If $\Sigma = \Sigma_1 \sqcup \Sigma_2$, $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$, and no string $u \in \tilde{\mathbb{I}}$ is a prefix or suffix of another string $v \in \tilde{\mathbb{I}}$, then $\mathcal{L}_{a \prec b}$ is regular.

- Our goal is to characterize when these languages, $\mathcal{L}_{a \prec b}$ and $Lex(\Sigma^*)$, are regular.
- Let $\tilde{\mathbb{I}} := \{u : (u, v) \in \mathbb{I} \text{ for some } v\}$, i.e. $\tilde{\mathbb{I}}$ is the set of "swappable" strings.
- Idea 1: restrict the definition of \mathbb{I} .

Theorem

Let \mathbb{I} be finite. If $\Sigma = \Sigma_1 \sqcup \Sigma_2$, $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$, and no string $u \in \tilde{\mathbb{I}}$ is a prefix or suffix of another string $v \in \tilde{\mathbb{I}}$, then $\mathcal{L}_{a \prec b}$ is regular.

Theorem

Let \mathbb{I} be finite. Suppose that no string $u \in \tilde{\mathbb{I}}$ has a prefix which is a suffix of another string $v \in \tilde{\mathbb{I}}$, then $\mathcal{L}_{a \prec b}$ is regular.

- Our goal is to characterize when these languages, $\mathcal{L}_{a \prec b}$ and $Lex(\Sigma^*)$, are regular.
- Let $\tilde{\mathbb{I}} := \{u : (u, v) \in \mathbb{I} \text{ for some } v\}$, i.e. $\tilde{\mathbb{I}}$ is the set of "swappable" strings.
- Idea 1: restrict the definition of \mathbb{I} .

Theorem

Let \mathbb{I} be finite. If $\Sigma = \Sigma_1 \sqcup \Sigma_2$, $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$, and no string $u \in \mathbb{I}$ is a prefix or suffix of another string $v \in \mathbb{I}$, then $\mathcal{L}_{a \prec b}$ is regular.

Theorem

Let \mathbb{I} be finite. Suppose that no string $u \in \tilde{\mathbb{I}}$ has a prefix which is a suffix of another string $v \in \tilde{\mathbb{I}}$, then $\mathcal{L}_{a \prec b}$ is regular.

• Both theorems have sufficient conditions that allow the expression of strings u as a unique concatenation of swappable substrings $u_1 \dots u_n$.

Our progress so far cont.

• Idea 2: study less complex but similar languages.

Our progress so far cont.

• Idea 2: study less complex but similar languages.

Theorem

Let $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^*$. Let $a \in \Sigma_1$. Let $\tilde{\mathbb{I}}$ be regular. Then, the following languages are regular:

- $2 \mathcal{L}_{a,v} := \{ u \in \Sigma_2^* : uav \equiv uva \}, where v \in \Sigma_2^*.$
- $\mathcal{L}_{\neg a} := \{uaw \in \Sigma_2^* a \Sigma_2^* : uaw \equiv uwa\}.$

Questions