Übungsblatt 20 zur Homologischen Algebra II

Aufgabe 1. Beispiele für Ext-Gruppen

- a) Seien A und B abelsche Gruppen. Sei U eine Untergruppe von A. Sei $f:U\to B$ ein Gruppenhomomorphismus. Formuliere und verifiziere ein hinreichendes und notwendiges Kriterium dafür, dass sich f zu einem Gruppenhomomorphismus \overline{f} : $A \to B$ fortsetzen lässt, in dem $\operatorname{Ext}^1_{\mathbb{Z}}(A/U, B)$ vorkommt.
- b) Sei A eine abelsche Gruppe. Zeige: $\operatorname{Ext}^n_{\mathbb{Z}}(\mathbb{Z},A)=0$ für alle n>0.
- c) Sei A eine abelsche Torsionsgruppe. Zeige: $\operatorname{Ext}^1_{\mathbb{Z}}(A,\mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}(A,\mathbb{Q}/\mathbb{Z})$.
- d) Zeige: $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/(m),\mathbb{Z}/(n)) \cong \mathbb{Z}/(m,n)$.

Aufgabe 2. Kohomologischer Kleber

Seien X und Y Objekte einer abelschen Kategorie A.

- a) Sei $\eta: Y[0] \to X[2]$ ein Morphismus in $\mathcal{D}(\mathcal{A})$ und C^{\bullet} ein Kegel von η . Zeige: $H^{-2}(C^{\bullet}) \cong X$, $H^{-1}(C^{\bullet}) \cong Y$ und die restliche Kohomologie verschwindet.
- b) Sei C^{\bullet} ein Komplex mit $H^{-2}(C^{\bullet}) \cong X$, $H^{-1}(C^{\bullet}) \cong Y$ und restlicher Kohomologie Null. Zeige, dass C^{\bullet} ein Kegel eines Morphismus $\eta: Y[0] \to X[2]$ ist.
- c) Ziehe das Fazit: Komplexe mit Kohomologie wie in Teilaufgabe b) sind bis auf Isomorphie eindeutig durch H^{-2} , H^{-1} und kohomologischen Kleber gegeben.

Aufgabe 3. Kein kohomologischer Kleber

Sei \mathcal{A} eine abelsche Kategorie mit $\operatorname{Ext}^n(X,Y)=0$ für alle Objekte X und Y und alle $n \geq 2$. Zeige, dass jeder beschränkte Komplex K^{\bullet} in $\mathcal{D}^b(\mathcal{A})$ isomorph zu seinem Kohomologiekomplex $H^{\bullet}(K^{\bullet})$ (mit Nulldifferentialen) ist.

Hinweis: Verwende ohne Beweis, dass ein ausgezeichnetes Dreieck der Form $A^{\bullet} \rightarrow B^{\bullet} \rightarrow C^{\bullet} \rightarrow$, wobei der Morphismus $C^{\bullet} \to A^{\bullet}[1]$ Null ist, zerfällt und daher insbesondere B^{\bullet} isomorph zu $A^{\bullet} \oplus C^{\bullet}$ ist. Das werden wir in angemessener Allgemeinheit später beweisen. Tipp: Führe einen Induktionsbeweis über die Amplitude von K^{ullet} (was kann das wohl sein?) und verwende die kanonische Filtrierung (Blatt 19, Aufgabe 5).

Aufgabe 4. Homotopie und Pfadobjekt

Sei L ein Komplex. Das Pfadobjekt L^I ist durch $(L^I)^n = L^n \oplus L^{n-1} \oplus L^n$ und d(u, p, v) = (du, -dp - u - v, dv) definiert.

- a) Definiere zwei kanonische Morphismen $\operatorname{ev}_0, \operatorname{ev}_1 : L^I \to L.$ b) Zeige, dass Homotopien $h: f \simeq g$ von Komplexmorphismen $f, g: K \to L$ in

 Eine Korrespondenz zu kommutativen Diagrammen wie abgebildet stehen. Was bedeutet das anschaulich?

