04

07

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI (NEW) EXAMINATION - WINTER 2021

Subject Code	:3160	618		Date:04/12/2021
G 1 4 4 3 7	\sim	~-	1 01	

Subject Name:Open Channel flow

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Define gradually varied and rapidly varied flow. 03
 - **(b)** What is surge in fluid? What is the difference between positive surge and negative surge?
 - (c) Draw definition sketch for energy equation 07
- Q.2 (a) Explain with sketch: critical depth. 03
 - (b) Write about subcritical flow in a width construction, transition width a change in width.
 - (c) Show that in triangular channel the froude number corresponding to alternate depth are given by F1/F2 =

$$(4+F_2^2)^5/^2/(4+F_2^2)^5/^2$$

OR

- (c) In rectangular channel F1 and F2 are froude nos. Corresponding to the alternative depth of variation discharge show that (F2/F1)²/₃=(2+f2²) / (2+F1 ²)
- Q.3 (a) What is open channel? Why bed slope is provided in open channel? Explain various types of open cahnnels with sketch.
 - (b) Explain different types of shear theories for turbulent flow. 04
 - (c) Find the width and depth of a rectangular channel to convey a discharge of 1.5 m³/s at a velocity of 0.5 m/s. Take Chezy's constant equal to 60 and the bed slope equal to 0.00012.

OR

- Q.3 (a) Write advantages and disadvantages of shear theories. 03
 - (b) Explain various types of open cahnnels with sketch. 04
 - (c) A concrete lined trapezoidal channel has to discharge 600 cumecs. The side slopes are 1 in 1 and the bed slope is 1 in 4000. The permissible velocity is 2.5 m/s. Determine the bottom
 07

		width and depth of the channel. Take Manning's N=0.014.	
Q.4	(a)	What is Hydraulic jump? How it is formed?	03
	(b)	Explain about mobile boundary channels.	04
	(c)	Derive differentiate equation of gradually varied flow with assumptions made in it.	07
		OR	
Q.4	(a)	Write the the different end conditions on the flow in Gradually-	
		varied flow and explain any one case.	03
	(b)	Obtain the value of N for (a) a wide rectangular channel and	
		(b) a triangular channel.	04
	(c)	Draw M1, M2, and M3 type surface profiles using basic equation	
		gradually varied flow.	07
Q.5	(a)	Write about sharp crested weir.	03
	(b)	Explain contractions on the Spillway.	04
	(c)	Derive the equation for uniformly progressive wave.	07
		OR	
Q.5	(a)	What are the limitations of Kennedy's theory?	03
	(b)	Explain in brief Lacey's regime theory.	04
	(c)	Write short note on: Shield's diagram.	07

Seat No.:	E 1 4 NI -
Sear NO:	Enrolment No.
scat 110	Linding 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

_	ect Co	SE - SEMESTER-VI (NEW) EXAMINATION – SUMMER 2022 ode:3160618 Date:10/	06/2022
Subject Name:Open Channel flow Fime:10:30 AM TO 01:00 PM Instructions: Total M			
	 At M Fi 	ttempt all questions. Take suitable assumptions wherever necessary. In gures to the right indicate full marks. In the summation of the summati	MARKS
Q.1	(a)	Differentiate between Gradually varied flow and Rapidly varied	03
	(b)	flow. Explain various types of channels.	04
	(c)	Derive the expressions for critical depth in channels of circular and trapezoidal sections.	07
Q.2	(a) (b)	Define (1) Specific energy (2) Section factor (3) Froude Number. Obtain the value of first hydraulic exponent (M) for the rectangular and triangular channels.	03 04
	(c)	A trapezoidal channel is 10 m wide and has a side slope of 1.5(H): 1(V). The bed slope is 0.0003. The channel is lined with smooth concrete of n=0.012. Compute the mean velocity and discharge for a depth of flow of 3.0 m. Also find the bottom slope necessary to carry only 50 m ³ /s of the discharge at a depth of 3.0 m.	07
		OR	
	(c)	Explain concept of shield's analysis for uniform flow in mobile boundary channels	07
Q.3	(a) (b)	Explain the second hydraulic exponent (N). A square conduit of side s, placed with its diagonal vertical acts as an open channel. Show that the channel carries maximum discharge when $y=0.95\ D$	03 04
	(c)	A spillway discharges a flood flow at a rate of 7.75 m ³ /s per metre width. At the downstream horizontal apron, the depth of flow was found to be 0.50 m. What tailwater depth is needed to form a hydraulic jump? If a jump is formed, find its (a) type, (b) length, (c) head loss, (d) energy loss as a percentage of the initial energy.	07
		OR	
Q.3	(a) (b)	Briefly explain incipient motion condition in uniform flow. Derive the expression for estimating equivalent roughness of a channel.	03 04
	(c)	Explain critical slope and limit slope.	07
Q.4	(a)	Draw the typical section of a lined irrigation canal.	03
	(h)	Give the classification of flow profiles	04

	(c)	A trapezoidal channel is to carry a discharge of 50 m³/s. The maximum slope that can be used is 0.004. The soil is hard. Design the channel as (a) a lined canal with concrete lining and (b) an unlined non-erodible channel. Take, For lined canal m=1.0, n for concrete = 0.013, For B/y0=8.0, ω = 0.03108 For unlined canal, m=1.0, n for hard soil surface = 0.020, For B/y0=8.0, ω = 0.03108	07
		OR	
Q.4	(a)	Distinguish between direct step method and standard step methods for computation of flow profiles.	03
	(b)	Describe the flow profiles in divided channels.	04
	(c)	Write the steps to design lined channel using different empirical equations.	07
Q.5	(a)	Draw the schematic sketch of Gradually varied flow.	03
((b)	Discuss the characteristics of jump in rectangular channel.	04
	(c)	Explain (1) Parshall Flume (2) Standing Wave Flume.	07
		OR	
Q.5	(a)	Discuss positive surge and negative surge.	03
-	(b)	Describe the characteristics of Sluice-Gate flow.	04
	(c)	Derive the equation of motion for Gradually Varied Unsteady Flow (GVUF) in a prismatic channel.	07
