Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № 1
Тема Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.
Студент <u>Жигалкин Д.Р.</u>
Группа ИУ7-65Б
Оценка (баллы)
Преподаватель Градов В.М.

Москва. 2021 г. **Цель работы.** Получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

Исходные данные. ОДУ, не имеющее аналитического решения

$$u(x) = x^2 + u^2$$
$$u(0) = 0$$

Результат работы программы. Таблица, содержащая значения аргумента с заданным шагом в интервале [0, хтах] и результаты расчета функции u(x) в приближениях Пикара (от 1-го до 4-го), а также численными методами. Границу интервала хтах выбирать максимально возможной из условия, чтобы численные методы обеспечивали точность вычисления решения уравнения u(x) до второго знака после запятой.

Теоретические сведения:

Существует задача Коши

$$\begin{cases} u'(x) = f(x, u) \\ u(\varepsilon) = n \end{cases}$$

Если аналитического решения нет. Эту задачу можно решить методом Пикара:

$$y^{(i)}(x) = n + \int_{0}^{x} f(t, y^{(i-1)}(t))dt$$
$$y^{(0)} = n$$

Рассмотрим пример:

$$\begin{cases} u'(x) = x^2 + u^2 \\ u(0) = 0 \end{cases}$$

Тогда

$$y^{(1)}(x) = 0 + \int_0^x t^2 dt = \frac{x^3}{3}$$
$$y^{(2)}(x) = 0 + \int_0^x \left[t^2 + \left(\frac{t^3}{3}\right)^2\right] dt = \frac{t^3}{3} + \frac{t^7}{63} \Big|_0^x = \frac{x^3}{3} + \frac{x^7}{63}$$

$$y^{(3)}(x) = 0 + \int_{0}^{x} \left[t^{2} + \left(\frac{x^{3}}{3} + \frac{x^{7}}{63}\right)^{2}\right] dt = \frac{x^{3}}{3} + \frac{x^{7}}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

$$y^{(4)}(x) = 0 + \int_{0}^{x} \left[t^{2} + \left(\frac{x^{3}}{3} + \frac{x^{7}}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}\right)^{2}\right] dt$$

$$= \frac{x^{3}}{3} + \frac{x^{7}}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535} + \frac{2x^{15}}{93555} + \frac{2x^{19}}{3393495} + \frac{2x^{19}}{2488563} + \frac{2x^{23}}{86266215} + \frac{x^{23}}{99411543} + \frac{2x^{27}}{3341878155} + \frac{x^{31}}{109876902975}$$

Также эту задачу можно решить, используя численные методы:

- 1) Явная схема Эйлера: $y_{n+1} = y_n + hf(x_n, y_n)$, где $f(x_n, y_n) = y_n^2 + x_n^2$
- 2) Метод Рунге-Кутты 2-го порядка точности:

$$y_{n+1}=y_n+h*[(1-lpha)*k_1+lpha*k_2]$$
, где $k_1=f(x_n,y_n)$ $k_2=f(x_n+rac{h}{2lpha},y_n+rac{h}{2lpha}*k_1)$ $lpha=rac{1}{2}$ или $lpha=1$

Реализация.

Метод Пикара 1-е, 2-е, 3-е и 4-е приближения:

Явная схема Эйлера:

```
# n - количество итераций, h - шаг, (x, y) - начальная точка
def Euler(n, h, x, y):
    answer = []
    for i in range(n):
            y += h * function(x, y)
            answer.append(y)
            x += h
        except OverflowError:
            answer.append("Over")
    return answer # решение
Метод Рунге-Кутты:
def rungeKutta(n, h, x, y, alpha = 0.5):
    answer = []
    for i in range(n):
            step1 = (1 - alpha) * function(x, y)
            step2 = alpha * function(x + h / (2 * alpha), y + (h / (2 * alpha))
* function(x, y))
            step3 = step1 + step2
            y += h * step3
            answer.append(y)
            x += h
        except OverflowError:
            answer.append("Over")
    return answer # решение
```

Результат работы программы.

Значения функции u(x) с шагом h=1e-6 и lpha=0.5

		Метод	Метод	Метод		
x	 1-е прибл.	 2-е прибл.	3-е прибл.	 4-е прибл.	Эйлера	Рунге-Кутты
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.02	0.00	0.00	0.00	0.00	0.00	0.00
0.04	0.00	0.00	0.00	0.00	0.00	0.00
0.06	0.00	0.00	0.00	0.00	0.00	0.00
0.08	0.00	0.00	0.00	0.00	0.00	0.00
0.10	0.00	0.00	0.00	0.00	0.00	0.00
0.12	0.00	0.00	0.00	0.00	0.00	0.00
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.16	0.00	0.00	0.00	0.00	0.00	0.00
0.18	0.00	0.00	0.00	0.00	0.00	0.00
0.20	0.00	0.00	0.00	0.00	0.00	0.00
0.22	0.00	0.00	0.00	0.00	0.00	0.00
0.24	0.00	0.00	0.00	0.00	0.00	0.00
0.24	0.01	0.01	0.01	0.01	0.01	0.01
0.28	0.01	0.01	0.01	0.01	0.01	0.01
0.30	0.01	0.01	0.01	0.01	0.01	0.01
0.32	0.01	0.01	0.01	0.01	0.01	0.01
0.34	0.01	0.01	0.01	0.01	0.01	0.01
0.36	0.02	0.02	0.02	0.02	0.02	0.02
0.38	0.02	0.02	0.02	0.02	0.02	0.02
0.40	0.02	0.02	0.02	0.02	0.02	0.02
0.42	0.02	0.02	0.02	0.02	0.02	0.02
0.44	0.03	0.03	0.02	0.03	0.03	0.03
0.46	0.03	0.03	0.03	0.03	0.03	0.03
0.48	0.04	0.04	0.04	0.04	0.04	0.04
0.50	0.04	0.04	0.04	0.04	0.04	0.04
0.52	0.05	0.05	0.05	0.05	0.05	0.05
0.54	0.05	0.05	0.05	0.05	0.05	0.05
0.56	0.06	0.06	0.06	0.06	0.06	0.06
0.58	0.07	0.07	0.07	0.07	0.07	0.07
0.60	0.07	0.07	0.07	0.07	0.07	0.07
0.62	0.08	0.08	0.08	0.07	0.08	0.08
0.64	0.00	0.00	0.00	0.00	0.09	0.00
0.66	0.10	0.10	0.10	0.10	0.10	0.10
0.68	0.10	0.11	0.11	0.10	0.10	0.10
0.70	0.10	0.11	0.11	0.12	0.11	0.11
0.70	0.11	0.12	0.12	0.12	0.12	0.12
0.74	0.12	0.13	0.13	0.14	0.13	0.13
0.74	0.14	0.14	0.14	0.15	0.14	0.14
0.78	0.15	0.15	0.16	0.15	0.15	0.16
0.80	0.17	0.10	0.10	0.17	0.10	0.10
0.82	0.17	0.17	0.17	0.19	0.17	0.17
0.84	0.20	0.20	0.20	0.20	0.20	0.19
0.86	0.21	0.20	0.22	0.22	0.20	0.22
0.88	0.21	0.22	0.22	0.23	0.23	0.22

0.90	0.24	0.25	0.25	0.25	0.25	0.25
0.92	0.26	0.27	0.27	0.27	0.27	0.27
0.94	0.28	0.29	0.29	0.29	0.29	0.29
0.96	0.29	0.31	0.31	0.31	0.31	0.31
0.98	0.31	0.33	0.33	0.33	0.33	0.33
1.00	0.33	0.35	0.35	0.35	0.35	0.35
1.02	0.35	0.37	0.37	0.37	0.37	0.37
1.04	0.37	0.40	0.40	0.40	0.40	0.40
1.06	0.40	0.42	0.42	0.42	0.42	0.42
1.08	0.42	0.45	0.45	0.45	0.45	0.45
1.10	0.44	0.47	0.48	0.48	0.48	0.48
1.12	0.47	0.50	0.51	0.51	0.51	0.51
1.14	0.49	0.53	0.54	0.54	0.54	0.54
1.16	0.52	0.57	0.57	0.57	0.57	0.57
1.18	0.55	0.60	0.60	0.60	0.60	0.60
1.20	0.58	0.63	0.64	0.64	0.64	0.64
1.22	0.61	0.67	0.68	0.68	0.68	0.68
1.24	0.64	0.71	0.72	0.72	0.72	0.72
1.26	0.67	0.75	0.76	0.76	0.76	0.76
1.28	0.70	0.79	0.80	0.80	0.81	0.81
1.30	0.73	0.83	0.85	0.85	0.85	0.85
1.32	0.77	0.88	0.90	0.90	0.90	0.90
1.34	0.80	0.93	0.95	0.95	0.96	0.96
1.36	0.84	0.98	1.01	1.01	1.01	1.01
1.38	0.88	1.03	1.06	1.07	1.07	1.07
1.40	0.91	1.08	1.12	1.13	1.13	1.13
1.42	0.95	1.14	1.19	1.19	1.20	1.20
1.44	1.00	1.20	1.26	1.26	1.27	1.27
1.46	1.04	1.26	1.33	1.34	1.35	1.35
1.48	1.08	1.33	1.41	1.42	1.43	1.43
1.50	1.13	1.40	1.49	1.50	1.52	1.52
1.52	1.17	1.47	1.57	1.59	1.61	1.61
1.54	1.22	1.54	1.67	1.69	1.71	1.71
1.56	1.27	1.62	1.76	1.79	1.82	1.82
1.58	1.31	1.70	1.87	1.90	1.95	1.95
1.60	1.37	1.79	1.98	2.02	2.08	2.08
1.62	1.42	1.88	2.10	2.14	2.22	2.22
1.64	1.47	1.98	2.23	2.28	2.38	2.38
1.66	1.52	2.08	2.36	2.43	2.56	2.56
1.68	1.58	2.18	2.51	2.59	2.75	2.75
1.70	1.64	2.29	2.67	2.77	2.97	2.97
1.72	1.70	2.40	2.84	2.96	3.22	3.22
1.74	1.76	2.52	3.02	3.17	3.51	3.51
1.76	1.82	2.65	3.21	3.40	3.84	3.84
1.78	1.88	2.78	3.42	3.65	4.23	4.23
1.80	1.94	2.92	3.65	3.92	4.69	4.69
1.82	2.01	3.06	3.89	4.22	5.25	5.25
1.84	2.08	3.21	4.15	4.56	5.94	5.94
1.86	2.14	3.37	4.44	4.93	6.81	6.81
1.88	2.21	3.53	4.75	5.33	7.97	7.97
1.90	2.29	3.71	5.08	5.79	9.57	9.57
1.92	2.36	3.89	5.44	6.30	11.92	11.92
1.94	2.43	4.08	5.83	6.87	15.75	15.76
1.96	2.51	4.27	6.26	7.50	23.12	23.12
1.98	2.59	4.48	6.72	8.22	43.17	43.17
2.00	2.67	4.70	7.22	9.03	317.25	317.82
2.02	2.75	4.93	7.76	9.94	Over	Over
2.04	2.83	5.16	8.35	10.97	Over	Over
2.06	2.91	5.41	9.00	12.15	Over	Over
2.08	3.00	5.67	9.70	13.48	Over	Over
. = 1						

Ответы на вопросы по лабораторной работе.

1) Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.

Ответ: Искомым интервалом значений аргумента является интервал [0, 0.66], поскольку в нём совпадают результаты вычислений u(x) всех четырех приближений, округленных до 2 знака после запятой.

2) Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

Ответ: Необходимо устремить шаг к нулю, однако стоит учитывать возникающую из-за этого погрешность, которая является следствием представления вещественных чисел в компьютере. Если при изменении шага результат остается неизменным, то это и есть решение.

3) Каково значение функции при х=2, т.е. привести значение u(2)

Ответ:

Полученное значение функции u(2) представлено ниже:

ī			Метод Пикара							ı	Метод	Метод			
x	x	Ī	1-е прибл.	I	2-е прибл.	I	3-е прибл.	I	4-е прибл.	 	Эйлера 	1	Рунге-Кутты	1	
ī	2.00		2.67		4.70	1	7.22		9.03	1	317.25		317.82		