GOVERNMENT POLYTECHNIC, NAGPUR.

(An Autonomous Institute of Govt. of Maharashtra)

COURSE CURRICULUM

PROGRAMME : DIPLOMA IN CM/IT

LEVEL NAME : PROFESIONAL COURSES

COURSE CODE : CM404E^{\$}

COURSE TITLE : OPERATING SYSTEMS

PREREQUISITE : NIL

TEACHING SCHEME: TH: 03; TU: 00; PR: 02(CLOCK HRs.)

TOTAL CREDITS : 04 (1 TH/TU CREDIT = 1 CLOCK HR., 1 PR CREDIT = 2 CLOCK HR.)

TH. TEE : 03 HRs

PR. TEE : 02 HRs (External)

PT. : 01 HR

* RATIONALE:

The course provides the students with an understanding of the basic concepts of operating system and its working. Operating Systems are very essential components of the Computers. It is the interface between the user and the computer system. It is the first piece of software to run on a computer system when it is booted. Its job is to co-ordinate and provides services for the execution of application software. This is core technology subject and the knowledge of which is absolutely essential for Computer Engineers .It familiarizes the students with the concepts and functions of operating system. This subject provides knowledge to develop systems using advanced operating system concepts.

COURSE OUTCOMES:

After completing this course students will be able to-

- 1 Implement the functions of operating systems and the system calls.
- 2 Apply techniques of memory management and file system management.
- 3 Analyse various algorithms based on CPU scheduling, memory management and deadlock.
- 4 Execute the algorithms for Schedulers, Inter-process communications.
- 5 Perform Memory Management techniques.
- 6 Implement the file system and security concerns.

1

COURSE DETAILS:

THEORY:

Units	Specific Learning Outcomes (Cognitive Domain)	Topics and subtopics	Hrs	
1. Introduction to Operating System	 Define various terms related to Operating system State the organization and architecture of OS List various operations of OS and describe their working. List types of system calls Compare various operating systems. 	1.1 Introduction to Operating System - Organization , Architecture, Operations 1.2 Process , Memory , Storage Management 1.3 Special-Purpose Systems, Computing Environments, Open-Source Operating Systems. 1.4 System Calls, Types of System Calls 1.5 System Programs, Operating-System Structure	6	
2. Process Management	 Describe process scheduling. State various operations on processes. Define Inter process Communication Define thread. Compare multithreading and it's various models. Calculate average waiting time. Evaluate the scheduling algorithms 	2.1 Process Concept, Process Scheduling, Operations on Processes 2.2 Inter process Communication 2.3 Threads, multithreading model 2.4 Basic Concepts, Scheduling Criteria. Scheduling Algorithms, Algorithm evaluation	9	
3. Process Synchronizat ion	Define Race condition Define Semaphore. Describe Critical-Section Problem. State the solution for Critical-Section Problem State various problems of synchronization	3.1 The Critical-Section Problem 3.2 Peterson's Solution, Synchronization Hardware 3.3 Semaphores, Classic Problems of Synchronization		
4. Deadlocks	 Define related terms. Identify deadlocks. Describe resource allocation graph. Find safe state. State provision for recovery from deadlock. 	 4.1 System Model, Deadlock Characterization 4.2 Methods for Handling Deadlocks 4.3 Deadlock Prevention, Deadlock Avoidance 4.4 Deadlock Detection, Recovery from Deadlock 	8	
5. Memory Management	 Define related terms . Describe swapping. Describe Paging, Paging table. 	5.1 Main Memory: Background , Swapping 5.2 Contiguous Memory Allocation 5.3 Paging, Structure of the Page	10	

J - G	6.5 Security: The Security Problem, Program Threats, System and Network Threats	
4. State various operations on segment table. 5. Apply Page replacement policy for solving virtual memory problem. 6. Describe thrashing 1. Define related terms 2. Describe related terms. 3. Describe File system 4. List various goals of protection. 5. Compare access matrix, access control 6. Describe security problem.	Table 5.4 Segmentation 5.5 Virtual Memory: Background, Demand Paging, Copy on Write, Page Replacement. Allocation of frames, Trashing. 5.6 Memory Mapped Files 6.1 File-System Interface: File Concept, Access Methods, Directory and Disk Structure, File-System Mounting, File Sharing, Protection 6.2 File-System Implementation: File- System Structure, File-System Implementation, Directory Implementation, Allocation Methods, Free-Space Management 6.3 Protection: Goals of Protection, Principles of Protection, Domain of Protection 6.4 Access Matrix, Implementation of Access Matrix, Access Control	09

B. LIST OF PRACTICALS/LABORATORY EXPERIENCES/ASSIGNMENTS:

Practic lls	Specific Learning Outcomes (Psychomotor Domain)	Units	Hrs.				
1.	Execute the Disk Operating System (DOS) commands		2				
2.	Windows 2000 & Windows YP Operating Systems Introdu						
3.	Execute the LINUX Commands - man, apropos, clear, ls, mkdir, cd, rmdir, pwd, rm, touch, mv, tr, wc, sort, grep, wall, write, who, chmod, useradd, usermod, kill, ssh, ftp, telnet	Operating System	2				
4.	Develop, debug and Execute a C program to simulate the FCFS CPU scheduling algorithms to find turnaround time and waiting time.		2				
5.	Develop, debug and Execute a C program to simulate the SJF CPU scheduling algorithms to find turnaround time and waiting time.	December	2				
6.	Develop, debug and Execute a C program to simulate the Round Robin CPU scheduling algorithms to find turnaround time and waiting time.	Process Management	2				
7.	Develop, debug and Execute a C program to simulate the priority CPU scheduling algorithms to find turnaround time and waiting time.		2				
8.	Develop, debug and Execute a C program to simulate producer-consumer problem using semaphores.	Process Synchronization	4				
9.	Develop, debug and Executea C program to simulate FIFO page replacement algorithms		2				
10.	Develop, debug and Execute a C program to simulate LRU page replacement algorithms		2				
11.	Develop, debug and Execute a C program to simulate Optimal page replacement algorithms	Memory	2				
12.	Develop, debug and Executea C program to simulate LFU page replacement algorithms	Management	2				
13.	Develop, debug and Execute a C program to simulate the following contiguous memory allocation techniques a) Worst-fit b) Best-fit c) First-fit		2				
	-,,	Skill Assessment	2				
		Total Hrs	32				

SPECIFICATION TABLE FOR THEORY PAPER:

Unit	Units	Levels from C	Levels from Cognition Process Dimension						
No.		R	U	A	Total Marks				
1.	Introduction to Operating System	04(02)	04(00)	00(00)	08(02)				
2.	Process Management	06(02)	04(04)	06(04)	16(10)				
3.	Process Synchronization	02(00)	06(04)	00(00)	08(04)				
4.	Deadlocks	02(00)	04(04)	06(00)	12(04)				
5.	Memory Management	02(04)	08(00)	06(06)	16(10)				
6.	File System and Security	02(06)	04(04)	04(00)	10(10)				
	Total	18(14)	30(16)	22 (10)	70 (40)				

QUESTION PAPER PROFILE FOR THEORY PAPER:

Q.		Bit 1		Bit 2		Bit 3		0	Bit 4].5	Bit 5			Bit 6				
No	T	L	M	Т	L	M	T	L	M	T	L	M	T	L	М	T	L	М	option
01	2	R	2	3	R	2	4	R	2	5	R	2	6	R	2	1	R	2	E / 7
01	2	R	2				1	3	-		-	~	5						5/7
02	1	U	4	6	A	4	2	U	4	3	U	4	4	U	4				3/5
03	2	R	4	4	U	4	6	U	4	2	A	4	5	R	4				3/5
04	5	U	4	5	U	4	1	R	4	2	U	4	6	U	4				3/5
05	2	Α	6	4	Α	6	5	A	6										2/3
06	3	U	6	5	Α	6	6	R	6										2/3

T= Unit/Topic Number

L= Level of Question

M= Marks

R-Remember

U-Understand

A-Analyze/ Apply

* ASSESSMENT AND EVALUATION SCHEME:

	,	What	To Whom	Frequency	Max Marks	Min Marks	Evidence Collected	Course Outcomes			
ory	CA (Continuous Assessment)	Progressive Test (PT)	Students	Two PT (average of two tests will be computed)	20		Test Answer Sheets	1, 2, 3			
Direct Assessment Theory	Conti Assess	Assignments	Stud	Continuous	10		Assignment Book / Sheet	1, 2, 3			
Direct Asse	TEE (Term End Examination)	End Exam	Students	End Of the Course	70	28	Theory Answer Sheets	1, 2, 3			
				Total	100	40					
	essment)	Skill Assessment		Continuous	20	-	Rubrics & Assessment Sheets	4,5,6			
Direct Assessment Practical	CA (Continuous Assessment)	Journal Writing	Students	Students	Students	Student	Continuous	05	-	Journal	4,5,6
sessmer	(Con			TOTAL	25	10					
Direct As	TEE (Term End Examination)	End Exam	Students	End Of the Course	50	20	Rubrics & Practical Answer Sheets	4,5,6			
ssessment	Student Feedback on course End Of Course		St. J.	After First Progressive Test	Stud	lent Feedba	ack Form	122452			
Indirect A			Students	End Of The Course	1	Questionn	aires	1, 2, 3, 4,5,6			

SCHEME OF PRACTICAL EVALUATION:

S.N.	Description	Max. Marks
1	Drawing flow chart	10
2	Writing program	10
3	Debug the program	10
4	Execution of program	10
5	Viva voce	10
	TOTAL	50

* MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

1. Computer Engineering:-

Course	Program Outcomes (POs)										PSOs	
Outcomes	1	2	3	4	5	6	7	8	9	10	1	2
1	-	3	C	1/2	e F	1	7	1 - 1	-	3	-	-
2	-	3	2/	3	-		(-)		-	3	3	-
3	-	3)[-	3	PA		15	3	3	3	-	-
4	-	3	2	3	-	H	15	3	3	3	3	-
5	-	3	2	3	-	1	5	3	3	3	3	-
6	-	3	2	3	1	5	-	3	3	3	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

2. Information Technology:-

Course	Program Outcomes (POs)										PSOs	
Outcomes	1	2	3	4	5	6	7	8	9	10	1	2
1	-	3	-	-	-	-	-	-	-	3	-	-
2	-	3	-	3	-	-	-		-	3	-	-
3	-	3	-	3	-	-	-	3	3	3	-	-
4	-	3	2	3	-	-	-	3	3	3	-	2
5	-	3	2	3	-	-	-	3	3	3	-	2
6	-	3	2	3	1	-	-	3	3	3		2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

* REFERENCE & TEXT BOOKS:

S.N.	Title	Author, Publisher, Edition and Year Of publication	ISBN Number
1.	Operating System Concepts	Abraham, Silberschatz , Greg Gagne , Peter B. Galvin, Wiley India, 9 th Edition, 2012	13: 9788126520510
2.	Operating Systems: Internals and Design Principles	William Stallings. Pearson 8 th Edition, 2014	13:9780133805918
3.	Operating System	Achyut Godbole, Atul Kahate, Tata McGraw Hill Education,3rd Edition, 2005	13:9780070702035
4.	Operating System Concepts	EktaWalia, Khanna Publishers, 2 nd Edition, 2015	13:9789380016658

❖ E-REFERENCES:

http://nptel.ac.in/courses/106108101/, accessed on 21stAugust 2016 https://onlinecourses.nptel.ac.in/noc16_cs10, accessed on 21st August 2016 https://www.youtube.com/watch?v=MaA0vFKt-ew, accessed on 21st August 2016

❖ LIST OF MAJOR EQUIPMENTS/INSTRUMENTS WITH SPECIFICATION NIL

\$ LIST OF EXPERTS & TEACHERS WHO CONTRIBUTED FOR THIS CURRICULUM:

S.N.	Name	Designation	Institute / Industry		
1.	Dr. Mrs. A R Mahajan	Head, Information Technology	Government Polytechnic, Nagpur.		
2	Mr. S.P. Lambhade	Head of Computer Engineering	Government Polytechnic, Nagpur.		
3.	Shri R L Meshram	Lecturer in Information Technology	Government Polytechnic, Nagpur.		
4	Shri L D Vilhekar	Lecturer in Information Technology	Government Polytechnic, Nagpur.		
5	Shri. Atul Upadhyay	CEO	Vista Computers , Ram Nagar, Nagpur		
6	Shri. N. V. Chaudhari	Asst. Professor (CSE)	DBACEO, Wanadongri, Nagpur		
7	Shri. Manoj Jethawa	HOD Computer Science	ShriDattaMeghe Polytechni Nagpur		

(Member Secretary PBOS)	(Chairman PBOS)