Higher order spline HAL

Milos Mathias Koch - milos.koch@sund.ku.dk

September 3, 2025

-				
<u>Distributional notation</u>				
$X \sim P_0$	X is distributed according to P_0 .			
$X Y(=y) \sim P_0$	X is distributed according to P_0 given $Y(=y)$.			
$X \sim Y$	X and Y are equal in distribution.			
X(P)	The distribution of X .			
(X Y(=y))(P)	The distribution of X given $Y(=y)$.			
$X \perp\!\!\!\perp Y$	X and Y are independent.			
$X \perp \!\!\! \perp Y Z$	X and Y are independent given Z .			
$\mathcal{N}(\mu,\Sigma)$	The Gaussian distribution with mean μ and (co)variance			
V · · /	$\Sigma.$			
	Convergence notation			
$\stackrel{P_0}{\Longrightarrow}$	Convergence in probability under P_0 .			
$\xrightarrow{P_n}$	Convergence in probability under the sequence $(P_n)_{n\in\mathbb{N}}$.			
$\stackrel{\theta}{\to}$	Convergence in probability under P_{θ} .			
$\stackrel{P_0}{\leadsto}$	Convergence in distribution under P_0 .			
$\stackrel{P_n}{\leadsto}$	Convergence in distribution under the sequence $(P_n)_{n\in\mathbb{N}}$.			
heta				
~ →	Convergence in distribution under P_{θ} .			

1 General results and notation

1.1 Knot points and index sets

The approximation results in this note depend on the L^2 -approximation of cumulative functions in d dimensions of bounded sectional variation. It is shown in [van der Laan 2023] that such a function can be approximated with J knot points at a O(r(d, M, J)) rate, where

$$r(d, M, J) \sim M \cdot \frac{\log(J)^{2(d-1)}}{J}.$$

We let $R \equiv R(d, J)$ be any set of J (deterministic) knot points that satisfy this approximation bound in $L^2(m)$ with m, the Lebesgue measure.

1.2 Motivation

It is well known that any càdlàg function can represented with basis zero-order splines

$$f(x) = f(0) + \sum_{s \subset \{1, \dots, d\}} \int 1(u_s \le x_s) df(u_s, 0_{-s}),$$

where for subset s and vector x, x_s is the subvector of x with only the entries with indices in s and x_{-s} is complementary subvector. For convenience, we will write $f_s(x) = f(x_s, 0_{-s})$ for the s-section of f.

Example 1.1. Consider the càdlàg function of variation $f:[0,1]^2\to\mathbb{R}$ given by

$$f(x,y) = 1 + 2x + 3y + 4xy.$$

Then we can represent f with integrals with respect to the Radon-Nikodym derivatives of the sections $f_s, s \subseteq \{1, 2\}$. As f is smooth the Radon-Nikodym derivatives coincide with the classical derivatives, and so

$$\frac{df_{\{1,2\}}}{dm}(x,y) = \frac{df}{dxdy}(x,y) = 4$$
$$\frac{df_{\{1\}}}{dm}(x,y) = \frac{df}{dx}(x,0) = 2 + 4 \cdot 0 = 2$$
$$\frac{df_{\{1\}}}{dm}(x,y) = \frac{df}{dy}(0,y) = 3 + 4 \cdot 0 = 3,$$

and so

$$f(0) + \int 1(u_1 \le x) df_{\{1\}}(u_1, 0) + \int 1(u_2 \le y) df_{\{2\}}(0, u_2) + \int 1(u \le (x, y)) df_{\{1, 2\}}(u_1, u_2)$$

$$= f(0) + 2 \int 1(u_1 \le x) du + 3 \int 1(u_2 \le y) du_2 + 4 \int (u \le (x, y)) d(u_1, u_2)$$

$$= 1 + 2x + 3y + 4xy,$$

where we have equipped $[0,1]^2$ with the coordinatewise partial order.

The crux of the article [van der Laan 2023] is that estimating these sectional derivatives leads to a faster convergence rate when estimating the entire function.

We consider the function space of k-order smooth càdlàg functions, $D^{(k)}[0,1]^d$ on the d-dimensional unit cube, which are defined as càdlàg functions, f, for any nested list of subset, $S(k+1) = (s_1, \ldots, s_{k+1})$ of $\{1, \ldots, d\}$ the S(k+1)-derivative of f exists in the following sense:

¹In the sense of $s_1 \supset s_2 \supset \ldots \supset s_{k+1}$.

1. If at any point along the list, $s_{j+1} = \emptyset$, we define any subsequent derivative as

$$f_{S(l)}^{(l)} = f_{S(l)}^{(j)}(x(s_l), 0(-s_l)), \text{ for } l = j + 1, \dots, k$$

2. For non-empty s_{k+1} , we define $f^{(k+1)}$ as the Radon-Nikodym derivative of $f_{S(k)}$ with respect to $m_{s_{k+1}}$, the Lebesgue measure on $[0,1]^{s_{k+1}}=\{x_{s_{k+1}}\mid x\in[0,1]^d\}$.

We let S(k) denote the set of all such nested lists.

Lemma 1.2.
$$\#S(k) = (k+1)^d$$

Proof. For each $x \in \{1, ..., d\}$, then the inclusion of x in each entry of a list $S(k) \in \mathcal{S}(k)$ can be represented with a non-decreasing binary sequence, as such

$$s_k,$$
 $s_{k-1}, \ldots,$ $s_i, s_{i-1},$ \ldots, s_1 $0,$ $0, \ldots,$ $0, 1,$ $\ldots, 1.$

So for each x, there is k+2 possible lists². In our example above, x is identified with i-1.

There are d such x's, whence we see the result.

To model these derivatives, we will need higher order splines.

Definition 1.3. For a knot point $u \in [0,1]$, let ϕ_u^0 be the zero-order spline $\phi_u^0(x) = 1 (u \le x)$.

Recursively define the j-order spline as

$$\phi_u^j(x) = \int_{(u,x]} \phi_{u'}^{j-1} dm(u')$$

for $j = 1, \dots k$.

For $u \in [0,1]^d$, we can then define the d-dimensional k-order spline as

$$\phi_u^k(x) = \prod_{j=1}^d \phi_{u_j}^k(x_j),$$

and the d-dimensional k-order S(k) spline at 0 as

$$\Phi_{S(k)} = \prod_{j=1, \#s_j > 0}^k \phi_0^j(x_{s_k \setminus s_{k+1}})$$

²One for each entry in the list and one for the list that contains x in none of its entries

Example 1.4.

$$\phi_{0.3}^0(x) = 1(0.3 \le x) = \begin{cases} 1, & x \ge 0.3, \\ 0, & x < 0.3. \end{cases}$$

$$\phi_{0.3}^1(x) = \max(x - 0.3, 0).$$

Let $u = (0.2, 0.5), x = (x_1, x_2)$. Then

$$\phi_{(0.2,0.5)}^2(x) = \phi_{0.2}^2(x_1) \cdot \phi_{0.5}^2(x_2),$$

where, under Lebesgue measure,

$$\phi_{0.2}^2(x_1) = \frac{1}{2} \max(x_1 - 0.2, 0)^2, \quad \phi_{0.5}^2(x_2) = \frac{1}{2} \max(x_2 - 0.5, 0)^2.$$

Hence,

$$\phi_{(0.2,0.5)}^2(x) = \frac{1}{4} \max(x_1 - 0.2, 0)^2 \cdot \max(x_2 - 0.5, 0)^2.$$

In general, the single-dimensional splines are very much alike Taylor polynomials, and we realize

$$\phi_u^k(x) = \frac{(x-u)_+^k}{k!}$$
 where $(x-u)_+ := \max(x-u,0)$.

$$\phi_u^k(x) = \begin{cases} \frac{(x-u)^k}{k!}, & x \ge u, \\ 0, & x < u. \end{cases}$$

$$\phi_u^k(x) = \prod_{j=1}^d \frac{(x_j - u_j)_+^k}{k!}, \quad u = (u_1, \dots, u_d) \in [0, 1]^d, \quad x = (x_1, \dots, x_d) \in \mathbb{R}^d.$$

1.3 Main theorem

Similarly to a Taylor expansion, we want to represent a function in terms of its derivatives. To this end we define primitives, or antiderivatives, in terms of these derivatives.

Definition 1.5. A kth order primitive of a kth order smooth function, $f:[0,1]^d \to \mathbb{R}$ can be represented as

$$f(x) = \int_{(0,y_1]} \dots \int_{(0,y_{k-1}]} f^{(k)}(y_k) \prod_{j=k}^{1} dm(y_j),$$

where $\prod_{j=k}^{1}$ is a descending product. We define the linear operator, $m^{k}: D[0,1]^{d} \to D^{(k)}$, as

$$m^{k}(f) = \int_{(0,y_{1}]} \dots \int_{(0,y_{k-1}]} f(y_{k}) \prod_{j=k}^{1} dm(y_{j}),$$

from which we see $m^k(f^{(k)}) = f$. We can then define f to be càdlàg k order smooth if $f^{(k)}$ is in $D[0,1]^d$. This should be compared to the ordinary definition of C^k .

This leads us directly to our main representation result

Theorem 1.6. Let $f \in D^{(k)}[0,1]^d$, then

$$f(x) = \sum_{S(k+1)\in\mathcal{S}(k+1)} \Phi_{S(k+1)}(x) m^k \left(f^{(k)} \right)$$

$$= \sum_{S(k+1)\mid\#s_{k+1}=0} \Phi_{S(k+1)}(x) f_{t(S(k+1))}^{(t(S(k+1)))}(0_{s_{t(S(k+1))}})$$

$$+ \sum_{S(k+1)\mid\#s_{k+1}>0} \Phi_{S(k+1)}(x) m^k \left(f^{(k)} \right).$$

Note that as the lists are nested, we are not counting any terms more than once in the second representation.

Case 1: d = 1, k = 3

S(4)	$\Phi_{S(4)}(x)$	t(S(4))	f term
$(\emptyset,\emptyset,\emptyset,\emptyset)$	1	0	$f_0^{(0)}(0)$
$(\{1\},\emptyset,\emptyset,\emptyset)$	$\phi_0^1(x_1)$	1	$\phi_0^1(x_1)f_1^{(1)}(0)$
$(\{1\},\{1\},\emptyset,\emptyset)$	$\phi_0^1(x_1)\phi_0^2(x_1)$	2	$\phi_0^1(x_1)\phi_0^2(x_1)f_2^{(2)}(0)$
$(\{1\},\{1\},\{1\},\emptyset)$	$\phi_0^1(x_1)\phi_0^2(x_1)\phi_0^3(x_1)$	3	$\phi_0^1(x_1)\phi_0^2(x_1)\phi_0^3(x_1)f_3^{(3)}(0)$
$(\{1\},\{1\},\{1\},\{1\})$	$\phi_0^1(x_1)\phi_0^2(x_1)\phi_0^3(x_1)$	4	$\phi_0^1(x_1)\phi_0^2(x_1)\phi_0^3(x_1)m^3(f^{(3)}(x_1))$

Case 2: d = 2, k = 2

S(3)	$\Phi_{S(3)}(x)$	t(S(3))	f term
$(\emptyset,\emptyset,\emptyset)$	1	0	$f_0^{(0)}(0)$
$(\{1\},\emptyset,\emptyset)$	$\phi_0^1(x_1)$	1	$\phi_0^1(x_1)f_{1}^{(1)}(0)$
$(\{2\},\emptyset,\emptyset)$	$\phi_0^1(x_2)$	1	$\phi_0^1(x_2)f_1^{(1)}(0)$
$(\{1,2\},\emptyset,\emptyset)$	$\phi_0^1(x_1)\phi_0^1(x_2)$	1	$\phi_0^1(x_1)\phi_0^1(x_2)f_1^{(1)}(0)$
$(\{1\},\{1\},\emptyset)$	$\phi_0^1(x_1)\phi_0^2(x_1)$	2	$\phi_0^1(x_1)\phi_0^2(x_1)f_2^{(2)}(0)$
$(\{2\},\{2\},\emptyset)$	$\phi_0^1(x_2)\phi_0^2(x_2)$	2	$\phi_0^1(x_2)\phi_0^2(x_2)f_2^{(2)}(0)$
$(\{1,2\},\{1\},\emptyset)$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)f_2^{(2)}(0)$
$(\{1,2\},\{2\},\emptyset)$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_2)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_2)f_2^{(2)}(0)$
$(\{1,2\},\{1,2\},\emptyset)$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)\phi_0^2(x_2)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)\phi_0^2(x_2)f_2^{(2)}(0)$
$(\{1\},\{1\},\{1\})$	$\phi_0^1(x_1)\phi_0^2(x_1)$	3	$\phi_0^1(x_1)\phi_0^2(x_1)m^2(f^{(2)}(x_1))$
$(\{2\},\{2\},\{2\})$	$\phi_0^1(x_2)\phi_0^2(x_2)$	3	$\phi_0^1(x_2)\phi_0^2(x_2)m^2(f^{(2)}(x_2))$
$(\{1,2\},\{1\},\{1\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)$	3	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)m^2(f^{(2)}(x_1))$
$(\{1,2\},\{2\},\{2\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_2)$	3	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_2)m^2(f^{(2)}(x_2))$
$(\{1,2\},\{1,2\},\{1\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)\phi_0^2(x_2)$	3	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)\phi_0^2(x_2)m^2(f^{(2)}(x_1))$
$(\{1,2\},\{1,2\},\{2\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)\phi_0^2(x_2)$	3	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)\phi_0^2(x_2)m^2(f^{(2)}(x_2))$
$(\{1,2\},\{1,2\},\{1,2\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)\phi_0^2(x_2)$	3	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^2(x_1)\phi_0^2(x_2)m^2(f^{(2)}(x_1,x_2))$

Case 3: d = 3, k = 1

S(2)	$\Phi_{S(2)}(x)$	t(S(2))	f term
(\emptyset,\emptyset)	1	0	$f_0^{(0)}(0)$
$(\{1\},\emptyset)$	$\phi_0^1(x_1)$	1	$\phi_0^1(x_1)f_1^{(1)}(0)$
$(\{2\},\emptyset)$	$\phi_0^1(x_2)$	1	$\phi_0^1(x_2)f_1^{(1)}(0)$
$(\{3\},\emptyset)$	$\phi_0^1(x_3)$	1	$\phi_0^1(x_3)f_1^{(1)}(0)$
$(\{1,2\},\emptyset)$	$\phi_0^1(x_1)\phi_0^1(x_2)$	1	$\phi_0^1(x_1)\phi_0^1(x_2)f_1^{(1)}(0)$
$(\{1,3\},\emptyset)$	$\phi_0^1(x_1)\phi_0^1(x_3)$	1	$\phi_0^1(x_1)\phi_0^1(x_3)f_1^{(1)}(0)$
$(\{2,3\},\emptyset)$	$\phi_0^1(x_2)\phi_0^1(x_3)$	1	$\phi_0^1(x_2)\phi_0^1(x_3)f_1^{(1)}(0)$
$(\{1,2,3\},\emptyset)$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)$	1	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)f_1^{(1)}(0)$
$(\{1\},\{1\})$	$\phi_0^1(x_1)$	2	$\phi_0^1(x_1)m^1(f^{(1)}(x_1))$
$(\{2\}, \{2\})$	$\phi_0^1(x_2)$	2	$\phi_0^1(x_2)m^1(f^{(1)}(x_2))$
$(\{3\}, \{3\})$	$\phi_0^1(x_3)$	2	$\phi_0^1(x_3)m^1(f^{(1)}(x_3))$
$(\{1,2\},\{1\})$	$\phi_0^1(x_1)\phi_0^1(x_2)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)m^1(f^{(1)}(x_1))$
$(\{1,2\},\{2\})$	$\phi_0^1(x_1)\phi_0^1(x_2)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)m^1(f^{(1)}(x_2))$
$(\{1,3\},\{1\})$	$\phi_0^1(x_1)\phi_0^1(x_3)$	2	$\phi_0^1(x_1)\phi_0^1(x_3)m^1(f^{(1)}(x_1))$
$(\{1,3\},\{3\})$	$\phi_0^1(x_1)\phi_0^1(x_3)$	2	$\phi_0^1(x_1)\phi_0^1(x_3)m^1(f^{(1)}(x_3))$
$(\{2,3\},\{2\})$	$\phi_0^1(x_2)\phi_0^1(x_3)$	2	$\phi_0^1(x_2)\phi_0^1(x_3)m^1(f^{(1)}(x_2))$
$(\{2,3\},\{3\})$	$\phi_0^1(x_2)\phi_0^1(x_3)$	2	$\phi_0^1(x_2)\phi_0^1(x_3)m^1(f^{(1)}(x_3))$
$(\{1,2,3\},\{1\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)m^1(f^{(1)}(x_1))$
$(\{1,2,3\},\{2\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)m^1(f^{(1)}(x_2))$
$(\{1,2,3\},\{3\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)m^1(f^{(1)}(x_3))$
$(\{1,2,3\},\{1,2\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)m^1(f^{(1)}(x_1,x_2))$
$(\{1,2,3\},\{1,3\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)m^1(f^{(1)}(x_1,x_3))$
$(\{1,2,3\},\{2,3\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)m^1(f^{(1)}(x_2,x_3))$
$(\{1,2,3\},\{1,2,3\})$	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)$	2	$\phi_0^1(x_1)\phi_0^1(x_2)\phi_0^1(x_3)m^1(f^{(1)}(x_1,x_2,x_3))$

Assume that we, for each S(k+1) have a set of knot points R(S(k+1),J) such that we can estimate

$$\tilde{f^{(k)}}(x_{s_{k+1}}) = \sum_{u \in R(\#s_{k+1}, J)} \beta_u \phi_u^0.$$

This is the HAL-MLE in the case where $R(\#s_{k+1}, J)$ are the section of the covariates. The by linearity of m^k , we have

$$\begin{split} \tilde{f}(x) &= \sum_{S(k+1) \in \mathcal{S}(k+1)} \Phi_{S(k+1)}(x) m^k \left(f^{(k)} \right) \\ &= \sum_{S(k+1) \mid \#s_{k+1} = 0} \Phi_{S(k+1)}(x) f_{t(S(k+1))}^{(t(S(k+1)))} (0_{s_{t(S(k+1))}}) \\ &+ \sum_{S(k+1) \mid \#s_{k+1} > 0} \Phi_{S(k+1)}(x) \sum_{u \in R(\#s_{k+1}, J)} \beta_u \phi_u^k. \end{split}$$

This is the higher order HAL-MLE.

References

[van der Laan 2023] Mark van der Laan, Higher Order Spline Highly Adaptive Lasso Estimators of Functional Parameters: Pointwise Asymptotic Normality and Uniform Convergence Rates, arχiv, 2023.