Лабораторна робота № 4.

КОРОТКОСТРОКОВЕ ПЛАНУВАННЯ ПРОЦЕСІВ

При обчисленні вважають, що процеси не роблять операцій введеннявиведення, а часом перемикання контексту можна знехтувати.

Чим менше значення пріоритету, тим він вище.

Завдання 1. Нехай в обчислювальну систему надходять п'ять процесів різної тривалості за наступною схемою (табл. 1):

Таблиця 1. – Вихідні дані до завдання 1

Номер процесу	Час виконання
1	4
2	3
3	5
4	2
5	9

Виконати планування процесів, знайти середній час очікування й середній час виконання процесу при використанні алгоритму планування FCFS (First Come First Served).

Порядок роботи:

1. Спочатку будуємо й заповнюємо таблицю (табл.3-2). Колонки відповідають моментам часу, рядки — процесам. Позначення \mathbf{U} використовується для процесів, що перебувають у стані виконання, позначення $\mathbf{\Gamma}$ — для процесів, що перебувають у стані готовність, порожні клітинки відповідають процесам, що завершилися. Стани процесів показані протягом відповідної одиниці часу, тобто колонка з номером 1 відповідає проміжку від 0 до 1.

Таблиця 2. Розв'язок завдання 1

Τ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	И	И	И	И																			
2	Γ	Γ	Γ	Γ	И	И	И																
3	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И	И											
4	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И									
5	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И	И	И	И	И	И

2. Для визначення середнього часу очікування підраховується кількість клітинок у таблиці, заповнених станом Γ – готовність. Наприклад, для першого процесу час очікування рівний 0, а для третього процесу — 7

одиницям часу. Отримані значення сумують, а результат ділять на кількість процесів. Середній час очікування СЧО= (0+4+7+12+14)/5 = 7,4 одиниць часу.

3. Для визначення середнього часу виконання підраховується загальна кількість заповнених клітинок у таблиці для кожного процесу. Наприклад, для першого процесу час виконання рівний 4, а для третього процесу — 12 одиницям часу. Отримані значення сумують, а результат ділять на кількість процесів. Середній час виконання СЧВ=(4+7+12+14+23)/5 = 12 одиниць часу.

Завдання 2. Розв'язати *завдання 1* із наступним порядком виконання процесів: 4, 2, 1, 3, 5. Виконати самостійно.

Завдання 3. Розв'язати *завдання 1* з урахуванням моменту надходження процесів у систему (табл. 3):

 Номер процесу
 Момент надходження в систему

 1
 2

 2
 1

 3
 4

 4
 3

 5
 0

Таблиця 3. Вихідні дані для завдання 3

Порядок роботи:

При розв'язанні таких завдань необхідно пам'ятати, що у вихідних даних указаний момент появи процесу. У таблиці-розв'язанні процес появляється у наступний квант часу в тому стані, який для нього визначила операційна система відповідно до використовуваного алгоритму планування.

1. Розв'язання показано в табл. 4. У таблиці новий процес появляється у наступний квант часу після появи. Наприклад, другий процес появився у перший квант часу, а із другого він появляється в таблиці в стані готовність. У таблиці відображаємо лише два стани: готовність і виконання.

Таблиця 4. Рішення завдання 3

T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1			Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И							
2		Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И											
3					Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И	И
4				Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И					
5	И	И	И	И	И	И	И	И	И														

- 2. Середній час очікування: C4O = (0+10+8+14+13)/5 = 9.
- 3. Середній час виконання: C4B=(14+11+19+15+9)/5=13,6.

Завдання 4. Нехай в обчислювальну систему надходять п'ять процесів різної тривалості за наступною схемою (табл. 5).

Виконати планування процесів, знайти середній час очікування й середній час виконання процесу при використанні алгоритму планування RR (Round Robin) із квантом часу рівним 3.

Таблиця 5. Вихідні дані для завдання 4

Номер процесу	Час виконання
1	4
2	3
3	5
4	2
5	9

Порядок роботи:

1. Розв'язання показано в табл. 6. При використанні алгоритму RR кожен процес по черзі виконується три кванти часу. У випадку, коли процесу потрібно менше часу для виконання, процесор відразу приступає до виконання наступного процесу протягом трьох квантів часу.

Таблиця 6. Розв'язання завдання 4

Т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	И	И	И	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И								
2	Γ	Γ	Γ	И	И	И																	
3	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	Γ	Γ	Γ	Γ	Γ	Γ	И	И						
4	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И												
5	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	Γ	Γ	Γ	И	И	И	И	И	И

- 2. Середній час очікування СЧО= (11+3+12+9+14)/5 = 9,8.
- 3. Середній час виконання СЧВ= (15+6+17+11+23)/5 = 14,4.

Завдання 5. Розв'язати *завдання 4* із квантом часу рівним 9. Виконати самостійно.

Завдання 6. Розв'язати *завдання 4* із урахуванням моменту надходження процесів у систему (табл. 7):

Таблиця 7. Вихідні дані для завдання 6

Номер процесу	Момент надходження в
	систему
1	2
2	1
3	4
4	3
5	0

Виконати самостійно.

Завдання 7. Нехай в обчислювальну систему надходять п'ять процесів різної тривалості за наступною схемою (табл. 8):

Таблиця 8. Вихідні дані для завдання 7

Номер процесу	Час виконання
1	4
2	3
3	5
4	2
5	9

Виконати планування процесів, знайти середній час очікування й середній час виконання процесу при використанні алгоритму планування SJF (Shortest Job First).

- 1. Розв'язання показано в табл. 9.
- 2. Середній час очікування СЧО= (5+2+9+14+0)/5 = 6.
- 3. Середній час виконання СЧВ= (9+5+14+2+23)/5 = 10,6.

Таблиця 9. Розв'язання завдання 7

Т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	Γ	Γ	Γ	Γ	Γ	И	И	И	И														
2	Γ	Γ	И	И	И																		
3	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И	И									
4	И	И																					
5	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И	И	И	И	И	И

Завдання 8. Розв'язати *завдання* 7 при використанні невитісняльного алгоритму SJF (Shortest Job First) із врахуванням моментів надходження процесів в систему (табл. 10).

Таблиця 10. Вихідні дані для завдання 8

Номер	Час	Момент
процесу	виконання	надходження в
		систему
1	4	2
2	3	1
3	5	4
4	2	3
5	9	0

Порядок роботи:

- 1. Розв'язання показано в табл. 11.
- 2. Середній час очікування СЧО= (12+10+14+6+0)/5 = 8,4.
- 3. Середній час виконання СЧВ= (16+13+19+8+9)/5 = 13.

Таблиця 11. Розв'язання завдання 8

Т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1			Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И					
2		Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И									
3					Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И	И
4				Γ	Γ	Γ	Γ	Γ	Γ	И	И												
5	И	И	И	И	И	И	И	И	И														

Завдання 9. Розв'язати *завдання* 8 при використанні витісняльного алгоритму SJF (Shortest Job First). Виконати самостійно.

У даному завданні є моменти часу, у які відбувається витиснення процесу, що виконується, процесом, який щойно надійшов, із меншим часом неперервного використання процесора. Наприклад, другий процес появляється у перший квант часу й надходить на виконання у другий квант часу. Його час виконання менше залишку, необхідного п'ятому процесу для завершення роботи, тому відбувається витиснення п'ятого процесу другим.

Завдання 10. Нехай в обчислювальну систему надходять п'ять процесів різної тривалості за наступною схемою (табл. 12):

Таблиця 12. Вихідні дані для завдання 10

Номер	Час	Момент	Пріоритет
процесу	виконання	надходження в	
		систему	
1	4	2	4
2	3	1	3
3	5	4	2
4	2	3	1
5	9	0	0

Виконати планування процесів, знай середній час очікування й середній час виконання процесу при використанні алгоритму невитісняльного пріоритетного планування. Виконати самостійно.

Завдання 11. Нехай в обчислювальну систему надходять п'ять процесів різної тривалості за наступною схемою (табл. 13).

Виконати планування процесів, знайти середній час очікування й середній час виконання процесу при використанні алгоритму витісняльного пріоритетного планування.

Таблиця 13. Вихідні дані для завдання 11

Номер	Час	Момент	Пріоритет
процесу	виконання	надходження	
1	4	0	4
2	1	2	2
3	5	4	3
4	2	5	1
5	3	3	0

- 1. Розв'язання показано в табл. 14. У третій квант часу відбувається витиснення першого процесу другим, тому що у другого процесу вище пріоритет. Потім усі процеси, потрапляючи на виконання, виконуються до кінця.
- 2. Середній час очікування СЧО= (11+0+4+1+0)/5 = 3,2.
- 3. Середній час виконання СЧВ= (15+1+9+3+3)/5 = 6,2.

Таблиця 14. Рішення завдання 11

Т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	И	И	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И
2			И												
3					Γ	Γ	Γ	Γ	И	И	И	И	И		
4						Γ	И	И							
5				И	И	И									

ЗАВДАННЯ ДЛЯ САМОСТІЙНОЇ РОБОТИ

Варіант 1. Виконати планування процесів з використанням алгоритму планування FCFS. Обчислити середній час очікування й середній час виконання процесів. Процеси надходять відповідно до номера (табл. 15).

Таблиця 15. Вихідні дані для варіанта 1

Номер процесу	Час виконання
1	13
2	4
3	1

Варіант 2. Розв'язати завдання із варіанта 1 зі зміною порядку виконання процесів: 3, 2, 1 з використанням табличного способу розв'язання.

Варіант 3. Виконати планування процесів з використанням алгоритму планування RR (табл. 16). Обчислити середній час очікування й середній час виконання процесів. Порядок процесу відповідає його номеру. Величина кванта часу – 4.

Таблиця 16. Вихідні дані для варіанта 3

Номер процесу	Час виконання	
1	8	
2	5	
3	3	

Варіант 4. Розв'язати попереднє завдання з величиною кванта часу, рівного 1.

Варіант 5. Виконати планування процесу із використанням невитісняльного алгоритму SJF (табл. 17)

Таблиця 17. Вихідні дані для варіанта 5

Номер процесу	Час виконання	
1	4	
2	2	
3	5	
4	1	

Варіант 6. Виконати планування процесів з використанням витісняльного алгоритму SJF з різними часами CPU burst і різними моментами появи процесів у черзі процесів, готових до виконання (табл. 18).

Таблиця 18. Вихідні дані для варіанта 6

Процес	Час появи в черзі	Тривалість	
	чергового CPU burst		
1	0	6	
2	2	2	
3	4	7	
4	0	5	

Варіант 7. Виконати планування процесів з використанням алгоритму невитісняльного пріоритетного планування (табл.19)

Таблиця 19. Вихідні дані для варіанта 7

Процес	Час появи в черги чергового CPU burst	Тривалість чергового CPU burst	Пріоритет
1	0	4	4
2	1	2	3
3	5	7	2
4	0	5	1

Варіант 8. Виконати планування процесів із варіанта 7 з використанням алгоритму невитісняльного пріоритетного планування. Чим менше значення пріоритету, тем він вище.

Варіант 9. Нехай в обчислювальну систему надходять п'ять процесів різної тривалості за наступною схемою (табл. 20):

Таблиця 20. Вихідні дані для варіанта 9

Номер процесу	Час виконання	
1	4	
2	3	
3	5	
4	2	
5	9	

Виконати планування процесів, знайти середній час очікування й середній час виконання при використанні алгоритму планування FCFS.

Варіант 10. Нехай в обчислювальну систему надходять п'ять процесів різної тривалості за наступною схемою (табл. 21):

Таблиця 21. Вихідні дані для варіанта 10

Номер процесу	Момент вступу в	Час виконання	
	систему		
1	2	4	
2	1	3	
3	4	5	
4	3	2	
5	0	9	

Виконати планування процесів, знайти середній час очікування й середній час виконання процесу при використанні невитісняльного алгоритму планування SJF (Shortest Job First)

Варіант 11. Нехай в обчислювальну систему надходять п'ять процесів різної тривалості за наступною схемою (табл. 22):

Таблиця 22. Вихідні дані для варіанта 11

Номер	Момент	Час	Пріоритет
процесу	надходження	виконання	
	в систему		
1	3	10	1
2	6	4	0
3	0	4	3
4	2	1	4
5	4	3	2

Виконати планування процесів, знайти середній час очікування й середній час виконання процесу при використанні витісняльного пріоритетного планування.

РОБОТА 3 PEECTPOM OC WINDOWS

Реєстром називають базу даних, у якій утримуються відомості про конфігурацію й параметри всіх версій Microsoft Windows.

Реєстр – це інформація й конфігурація апаратних засобів комп'ютера, програмного забезпечення, інформація про користувачів ПК, представлена у форматі двійкового файлу, що завантажується в RAM при вході в ОС Windows. Щоразу при установці ПЗ всі дані записуються до реєстру. Кореневі розділи реєстру:

HKEY_CLASSES_ROOT – Асоціації між додатками й розширеннями файлів і інформація OLE і COM.

HKEY_CURRENT_USER — Настроювання для поточного користувача (робочий стіл, настроювання мережі, додатки). Містить, профіль користувача, на даний момент, що зареєструвався в системі.

HKEY_LOCAL_MACHINE — Містить глобальну інформацію про комп'ютерну систему, включаючи такі дані про апаратні засоби й операційній системі, у тому числі: тип шини, системна пам'ять, драйвери пристроїв і управляючі дані, використовувані при запуску системи. Інформація, що міститься в цьому розділі, діє стосовно до всіх користувачів, що реєструються в системі Windows.

HKEY_USERS — Містить усі активно завантажені користувацькі профілі, включаючи HKEY_CURRENT_USER, а також профіль за замовчуванням. Користувачі, що мають віддалений доступ до сервера, не мають профілів, що містяться в цьому розділі; їхні профілі завантажуються в реєстри на їхніх власних комп'ютерах.

HKEY_CURRENT_ CONFIG – Конфігурація для поточного апаратного профілю.

Основний засіб роботи з реєстром – редактор реєстру **regedit.exe**.

Редактор реєстру дозволяє експортувати як увесь реєстр, так і окремі розділи у файл із розширенням *reg*. Імпорт, отриманого при експорті reдфайлу, дозволяє відновити реєстр. Для виконання цих операцій необхідно виконати команди: **Файл—Экспорт** або **Файл—Импорт** (рис. 1). Імпорт реєстру також можна виконати подвійним клацанням по ярлику експортованого reg-файлу.

Рис. 1. Меню реєстру

Завдання 12. Запустити віртуальну машину, створену при роботі із

файловими менеджерами. Виконати самостійно.

Далі працюємо у вікні віртуальної машини.

Завдання 13. Запустити реєстр командою **regedit.exe** у командному рядку й переглянути його (рис. 2).

Рис. 2. Структура реєстру

У лівій половині вікна видимий список *коренвых разделов* (root keys) реєстру. Кожний кореневий розділ може містити в собі вложенные разделы (subkeys) і параметры (value entries).

Кожна коренева гілка, позначена в редакторі зображенням папки, називається Улей, а Ульи у свою чергу містять Ключи (рис. 3). Кожний ключ також може мати інші ключі, які іноді називають підключами або підрозділами. Кінцевим елементом дерева реєстру є ключі або параметри, які діляться на три типи: Строковые (String) — наприклад "D:\WINNT", Двоичные (Binary) — наприклад 10 82 А0 8F, максимальна довжина такого ключа 16Кб, і DWORD — цей тип ключа займає 4 байта й відображається в шістнадцятирічному і в десятковому вигляді, наприклад 0х00000020 (32), у дужках звичайно вказано десяткове значення ключа.

Рис. 3. Основні елементи реєстру

Завдання 14. Робота з розділом **HKEY_CURRENT_USER**. Заховати логічні диски.

Для приховання дисків проводиться настроювання параметра **NoDrives**. Значення параметра визначає приховувані диски A-Z (табл. 23).

Таблиця 23. Значення параметрів для дисків

Диск	Параметр (є/немає)
A:	00000000/00000001
B:	00000000/00000002
C:	00000000/00000004
Для всіх дисків	00000000/0000000F

- 1. Відкрити розділ: HKEY_CURRENT_USER\SOFTWARE\Microsoft\ Windows\Current Version\Policies\Explorer.
- 2. Здійснити пошук параметра **NoDrives.** Якщо такого параметра немає, то перейти до пункту 3, якщо ϵ , то перейти до пункту 5.
- 3. Додати в розділ параметр **Nodrives** типу **DWORD**, виконавши команди меню реєстру: **Виправлення Створити Параметр DWORD**.

- 4. Увести ім'я параметра NoDrives.
- 5. Подвійним клацанням відкрити параметр і ввести його значення 4 (рис. 4).

Имя	Тип	Значение
🌉 (По умолчанию)	REG_SZ	(значение не присвоено)
NoDriveTypeAut	REG_DWORD	0x00000091 (145)
⊞ NoDrives	REG_DWORD	0x00000004 (4)

Рис. 4. Параметри розділу Explorer

6. Перезавантажити систему, подивитися вміст ярлика **Мой Компьютер**. Результат настроювання показано на рис 5.

Рис. 5 Відсутній жорсткий диск С:

7. Для відновлення показу диска С: знову відкрийте гілку

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\Current Version\Policies\Explorer і видаліть введений параметр.

8. Перезавантажте операційну систему й перегляньте Мой компьютер.

Завдання 15. Вивести поруч із відображенням годинника слово «Годинник», шляхом створення або редагування параметрів **sTimeFormat** і **s2359**.

- 1. Відкрити розділ **HKEY_CURRENT_USER\Control Panel\International**.
- 2. Здійснити пошук параметра **sTimeFormat**. якщо такий параметр ε, то перейти до пункту 4. Якщо такого параметра немає, то створити його, виконавши команду меню **Правка-Создать**. У списку створюваних елементів вибрати **Строковый параметр**.
- 3. Увести назву параметра $\mathbf{sTimeFormat}$.
- 4. Відредагувати значення параметра виконавши команди меню Правка -

Изменить

- 5. У полі введення Значение ввести значення **HH:mm:ss tt**.
- 6. Здійснити пошук параметра **s2359**. Якщо такий параметр ϵ , то перейти до пункту 7, інакше створити новий строковий параметр із іменем **s2359**.
- 7. Зробити зміну параметра, ввівши значення Годинник (рис. 6).

ab (По умолчанию)	REG_SZ	(значение не присвоено)
ab sTimeFormat	REG_SZ	HH:mm:ss tt
ab]s2359	REG_SZ	Часы

Рис. 6. Настроювання параметрів для виведення повідомлення поруч із годинником

8. Перезавантажити операційну систему. У результаті повинен бути сформований напис **Годинник** у правому нижньому куті панелі завдань (рис. 7).

Рис. 7. Відображення напису «ГОДИННИК»

Завдання 16. Змінити настроювання елементів меню Пуск (табл. 24).

При виконанні наступних завдань видаляються з меню й вертаються назад деякі пункти меню. Розглянемо приклад видалення з меню команди **Выполнить**.

- 1. Відкрити розділ реєстру: HKEY_CURRENT_USER\SOFTWARE\Microsoft\ Windows\ Current Version\Policies\Explorer.
- 2. Знайти або додати параметр **NoRun.**
- 3. Настроїти його тип і значення.
- 4. Виконати перезавантаження Windows.
- 5. Відкрити меню **Пуск**. Переконатися, що пункт меню **Выполнить** відсутній .
- 6. Для повернення команди **Выполнить** необхідно використовувати командний рядок і в ній ввести команду **REGEDIT**. Видалити в реєстрі

параметр **NoRun** або ввести нове значення параметра.

Таблиця 24. Список пунктів меню

Назва пункту меню	Параметр	Тип	Значення
Выполнить	NoRun	dword	1
Найти	NoFind	dword	1
Избранное	NoFavoritesMenu	dword	1
Документы	NoRecentDocsMenu	dword	1
Панель задач	NoSetTaskba	dword	1
Панель управления	NoSetFolders	dword	1
Пустой рабочий стол	NoDesktop	dword	1
Нет значка Интернет	NoInternetIcon	dword	1
Для повернення відключеного пункту меню поміняти значення 1 на 0			

Завдання 17. Перевірте настроювання всіх пунктів меню. Виконати самостійно.

Завдання 18. Відключити процес настроювання параметрів дисплея.

Порядок роботи:

- 1. Відкрити розділ **HKEY_CURRENT_USER\Software\Microsoft** Windows\Currentvers ion\Policies\System.
- 2. Здійснити пошук параметра **NoDispCPL**, якщо такий параметр ε, то перейти до пункту 4. Якщо такого параметра немає, то створити його, виконавши команди меню **Правка-Создать**. У списку створюваних елементів вибрати **Строковый параметр**.
- 3. Ввести назву параметра **NoDispCPL**.
- 4. Відредагувати значення параметра, виконавши команди меню **Правка - Изменить.** Ввести значення параметра 1.
- 5. Здійснити перезавантаження. Переконатися, що редагування параметрів екрана виконати не можна.

Завдання 19. Відобразити в правому нижньому куті екрана версію ОС Windows (рис. 8).

Порядок роботи:

1. Відкрийте розділ реєстру HKEY_CURRENT_USER\Control Panel\Desktop

2. Знайдіть параметр **PaintDesktopVersion**. Якщо такого параметра немає, створіть його. Встановіть тип параметра DWORD, значення 1. Якщо параметр ϵ , то поміняйте його значення на 1.

Windows XP Professional C6opka 2600.xpsp_sp2_rtm.040803-2158 (Service Pack 2)

Рис. 8. Версія операційної системи

Завдання 20. Відключити спливаючий буфер при багаторазовому копіюванні в буфер.

Це завдання можна виконати на комп'ютері із установленим пакетом Microsoft Office.

Порядок роботи:

- 1. Відкрийте розділ реєстру **HKEY_CURRENT_USER\Software\Microsoft** Office\9.0\Comm on\General
- 2. Здійснити пошук параметра **AcbControl**, поміняти його значення на 1. Якщо такого параметра немає, то створіть його, тип даних DWORD, значення –1.

Завдання 21. Відмінити виклик контекстного меню на панелі задач правою кнопкою миші.

Порядок роботи:

- 1. Відкрити розділ реєстру: HKEY_CURRENT_USER\Software\Microsoft\ Windows\Currentversion\Policies\Explorer.
- 2. Здійснити пошук параметра **NoSetTaskbar**. Якщо такого параметра немає, то створіть його, виконавши команди меню **Правка–Создать**. Тип параметра DWORD.
- 3. Змінити значення параметра на 1.
- 4. Перезавантажити комп'ютер і перевірити дію правої кнопки миші.

Завдання 22. Скасувати показ тулбаров (значків) на панелі задач. *Порядок роботи:*

- 1. Відкрити розділ реєстру: HKEY_CURRENT_USER\Software\Microsoft\ Windows\Currentversion\Policies\Explorer
- 2. Здійснити пошук параметра **NoToolbarsOnTaskbar**. Якщо такого параметра немає, то створіть його, виконавши команди меню **Правка Создать**. Тип параметра DWORD.
- 3. Змінити значення параметра на 1.
- 4. Перезавантажити комп'ютер і перевірити дію правої кнопки миші.

Завдання 23. Змінити заголовок Internet Explorer

Порядок роботи:

- 1. Відкрити розділ реєстру: HKEY_CURRENT_USER\Software\Microsoft\
 Internet Explorer\Main
- 2. Знайти або створити строковий параметр «Window Title». Ввести його значення «Мій браузер».
- 3. Перезавантажити комп'ютер.
- 4. Запустити Інтернет, подивитися заголовок вікна.

Завдання 24. Змінити варіант розміщення шпалер на робочому столі. За замовчуванням розміщення шпалер має три варіанти: *по-центру*, *замостить* й *растянуть*. Однак є можливість розмістити картинку з точністю до пікселя, вказавши координату верхнього лівого кута.

Порядок роботи:

- 1. Відкрити розділ реєстру: HKEY_CURRENT_USER\Control Panel\Desktop
- 2. Знайти або добавити строкові параметри WallpaperOriginX і WallpaperOriginY зі значеннями 200 і 100 відповідно.

Завдання 25. Заборонити пункт **Свойства** контекстного меню **Корзина**

Порядок роботи:

1. Відкрити розділ реєстру: HKEY_CURRENT_USER\Software\Microsoft\

Windows\Current Version\Policies\Explorer.

- 2. Знайти або створити параметр **NoPropertiesRecycleBin**, тип параметра dword.
- 3. Увести значення параметра 1.

Завдання 26. Настроїти використання текстового редактора «**Блокнот**» для читання нерозпізнаних системою файлів.

Порядок роботи:

- 1. Відкрити розділ **HKEY_CLASSES_ROOT*\shell**. Якщо папки **Shell** не існує, то створіть її. Клацніть правою кнопкою миші по папці із зірочкою, у меню виберіть пункт **Создать** й виконайте рядок **Раздел**. Ввести назву розділу **Shell**.
- 2. Під розділом **Shell** створіть новий розділ з іменем **Open**.
- 3. У правій частині з'явиться параметр за замовчуванням. Змініть цей параметр, встановіть значення параметра рівним рядку «Открыть в Блокноте».
- 4. Під розділом **Open** створіть новий розділ по імені **Command**, клацнувши правою кнопкою миші по розділу **Open**.
- 5. Відкрийте розділ **Open**.
- 6. Зміныть в розділі параметр за замовчуванням і встановите йому значення: «**notepad.exe** %1».
- 7. Перезавантажте комп'ютер. Перевірте настроювання.

Завдання 27. Настройте наступну поведінку програми на панелі задач: Коли програма вимагає уваги користувача, вона може або вискочити на передній план, або почати блимати кнопкою на панелі задач.

- 1. Розкрити розділ реєстру HKEY_CURRENT_USER\Control Panel\Desktop.
- 2. Знайдіть або додайте в нього два параметри: «ForegroundLockTimeout»=dword:0 ; выскакивать

«ForegroundLockTimeout»=dword:30D40; не выскакивать «ForegroundFlashCount»=dword:3 ; мигать столько раз «ForegroundFlashCount"=dword:0 ; мигать бесконечно

Завдання 28. Видалити ярлик Корзина із робочого стола.

Порядок роботи:

- 1. Розкрити розділ реєстру: **HKEY_LOCAL_MACHINE/Software\Microsoft** Windows\Current Version\Explorer\MyComputer\NameSpace.
- 3. Видалити папку {645FF040-5081-101B-9F08-00AA002F954E}.
- 4. Перезавантажити комп'ютер.
- 5. Відновити значок Корзина.

Завдання 29. Створити ярлик Корзина у папці Мой компьютер.

Порядок роботи:

- 1. Розкрити розділ : HKEY_ LOCAL_MACHINE\Software\Microsoft\ Windows\Current Version\Explorer\MyComputer\NameSpace.
- 2. Створити папку {645FF040-5081-101B-9F08-00AA002F954E}.
- 3. Перезавантажити комп'ютер.

Завдання 30. Змінити ім'я ярлика «Корзина»

Порядок роботи:

- 1. Запустити реєстр.
- 2. Виконати пункт Найти в меню Правка.
- 3. Ввести у вікні пошуку слово «**Корзина**».
- 4. Змінити значення знайденого параметра на слово «Мусорка».

Завдання 31. Заборонити пункт Свойства контекстного меню Корзина.

Порядок роботи:

1. Відкрити розділ реєстру: HKEY_CURRENT_USER\SOFTWARE\

$MICROSOFT \backslash WINDOWS \backslash CURRENTVERSION \backslash POLICIES \backslash EXPLORER.$

2. Знайти або вставити параметр NoPropertiesRecycleBin.

Тип - Dword, значення 1/0 – заборонити/дозволити.

3. Перезавантажити комп'ютер. Перевірити настроювання.