Задача 1 $^{\varnothing}$ **.** Упростите (представьте в виде цикла или произведения независимых циклов):

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}^{100}$$
;

- **6)** $(1 k)(1 k 1) \dots (1 3)(1 2);$
- **B)** $(i+1 \ i+2)(i \ i+1)(i+1 \ i+2);$
- Γ) $(1\ 2\ \dots\ n)^{n-1}$;
- д) $(1\ 2\ \dots\ n)(1\ 2)(1\ 2\ \dots\ n)^{n-1}$.

Задача 2 $^{\oslash}$. Докажите, что любая перестановка из S_n есть произведение

- а) транспозиций;
- **б)** элементарных транспозиций (то есть транспозиций вида $(i \ i+1)$, где $1 \le i \le n-1$);
- в) транспозиций вида (1 k), где $2 \le k \le n$.

Задача 3°. Пусть T — некоторое множество транспозиций из S_n . Отметим на плоскости n точек A_1, \ldots, A_n и соединим некоторые из них рёбрами по правилу: точки A_i и A_j соединяются ребром, если во множестве T есть транспозиция (i,j). Докажите, что получившийся граф будет связным тогда и только тогда, когда любая перестановка из S_n разлагается в произведение транспозиций, принадлежащих множеству T.

Задача 4*. Пусть граф из предыдущей задачи — дерево на n вершинах. Для каждого ребра возьмём отвечающую ему транспозицию и перемножим их все в некотором порядке. Докажите, что получится цикл длины n.

Задача 5 $^{\varnothing}$. Пусть $n\geqslant 2$. Какие перестановки из S_n получаются композициями перестановок, каждая из которых — транспозиция $(1\ 2)$ или цикл $(1\ 2\ \dots\ n)$?

Задача 6°. **a)** Постройте такое соответствие между элементами S_3 и движениями плоскости, переводящими равносторонний треугольник в себя, что композиции перестановок соответствует композиция соответствующих движений.

б) Аналогично постройте соответствие между элементами S_4 и вращениями пространства, переводящими куб в себя.

Задача 7[©]. (Задача по геометрии) Несколько человек хотят обменяться между собой квартирами. У каждого есть по квартире, но каждый хочет переехать в другую (разные люди — в разные квартиры). По закону разрешены только парные обмены: если двое обмениваются квартирами, то в тот же день не участвуют в других обменах. Всегда ли можно устроить парные обмены так, что уже через два дня каждый будет жить там, куда хотел переехать?

1 a	1 б	1 В	1 г	1 д	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	3	4	5	6 a	6 6	7