FÍSICA

3ª SÉRIE

CIRCUITO ELÉTRICO II

AULA 18

LEI DE OHM

Vamos relembrar a lei de Ohm para circuitos elétricos:

$$U=R\cdot i$$

U representa a ddp ou tensão elétrica, são as fontes de energia (pilhas, tomadas, baterias, geradores), medida em volts (*V*).

R representa a resistência elétrica, são os resistores ou aparelhos resistivos, medida em ohms (Ω).

i representa a corrente elétrica que atua sobre o sistema, medida em ampères (A).

USANDO A LEI DE OHM

Observe o seguinte circuito:

Para resolvê-lo iniciamos identificando seus componentes e indicando a corrente elétrica.

Anotamos as informações:

$$U = 3 V$$

$$R = 900 \Omega$$

$$i = ?$$

Aplicamos a lei de Ohm para determinar a corrente elétrica i.

$$U = R \cdot i \quad \Rightarrow \quad i = \frac{U}{R}$$

$$i = \frac{3}{900}$$

É comum representar em miliampere: i = 3,3 mA

AGORA É SUA VEZ

Qual é a corrente elétrica que atua sobre o circuito elétrico representado no esquema a seguir:

LEI DE OHM EM APARELHOS ELÉTRICOS

Da mesma forma, pode-se usar a lei de Ohm analisando um sistema com apenas um aparelho como um circuito simples.

Considere um chuveiro elétrico ligado a uma rede de 220 V, com resistência de $8~\Omega$.

Para determinar a corrente elétrica que atua sobre ele, usamos a lei de Ohm:

$$U = R \cdot i \Rightarrow i = \frac{U}{R}$$
$$i = \frac{220}{8} = 27.5 \,\text{A}$$

Temos como solução uma corrente elétrica de *27,5 A*.

CALCULANDO A RESISTÊNCIA

Uma residência possui um disjuntor de 20 A, para as tomadas, que atuam com tensão elétrica de 110 V.

Vamos determinar a resistência mínima que pode ser ligada a este disjuntor.

Lembre-se **resistência mínima** atua com **corrente elétrica máxima**, então:

$$i = 20 A$$
 $U = 110 V$
 $R = ?$

Usando a lei de Ohm temos:

$$U=R\cdot i \quad \Rightarrow \quad R=rac{U}{i}$$

$$R=rac{110}{20}$$

$$R=5.5\,\Omega$$

A resistência mínima deste sistema é de $5,5 \Omega$.

CURTO CIRCUITO

Quando a corrente elétrica que atua sobre um disjuntor é maior do que a suportada, ele desarma (desliga, cai).

Isso ocorre, pois a resistência do sistema ficou muito baixa, aumentando a corrente elétrica.

Quando a resistência atinge um valor muito pequeno (tende a zero), a corrente elétrica torna-se muito alta, esse fenômeno é chamado de curto-circuito.

RESISTÊNCIA E IMPEDÂNCIA

Qual é a diferença entre resistência elétrica e impedância elétrica?

Para a Física, são grandezas equivalentes:

Resistência elétrica: usada em aparelhos, puramente resistivos, não geram campo magnético no seu interior, como chuveiro elétrico, ferro de passar, forno elétrico.

Impedância elétrica: usada em aparelhos, que geram campo magnético no seu interior, como motores, transformadores, alto-falantes.

CALCULANDO COM IMPEDÂNCIA (Z)

Um alto-falante de um carro opera a 12 V com impedância de 8 Ω . Qual é a corrente elétrica que atua sobre ele?

Observação: para impedância, na lei de Ohm troca-se a letra *R* pela letra *Z*.

Temos então:

$$U = 12 V$$
$$Z = 8 \Omega$$

$$i = ?$$

$$i = \frac{U}{Z}$$
 $i = \frac{12}{8}$
 $i = 1.5 \,\text{A}$

Esse alto-falante, está sob a ação de uma corrente elétrica de 1,5 A.

RETOMANDO AS QUESTÕES INICIAIS

Vocês já pararam para pensar por que um carregador de celular esquenta quando está conectado? Ou por que uma lâmpada acende quando ligamos o interruptor?

Estes fenômenos ocorrem devido a passagem da corrente elétrica por um sistema resistivo, segundo a lei de Ohm quanto menor a resistência (impedância) do sistema maior será a corrente elétrica, gerando fenômenos como aquecimento, realização de trabalho.