MATEMATIKOS PAGRINDINĖS SESIJOS VALSTYBINIO BRANDOS EGZAMINO KANDIDATŲ DARBŲ VERTINIMO INSTRUKCIJA

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	C	D	C	В	C	A	В	D	C	В

II dalis

11.1	5.
11.2	19/25 (arba 0,76, arba 76 %).
12	$2\sqrt{2}$ (arba $\sqrt{8}$).
13.1	$1-k^2$.
13.2	$-k \text{ arba } -k\sqrt{1-k^2} + \frac{\sqrt{3}}{2} - \sqrt{3}k^2.$
14.1	$0,25 \text{ (arba } \frac{1}{4}, \text{arba } 25\%).$
14.2	$0.95 \text{ (arba } \frac{19}{20}, \text{ arba } 95\%).$
15	17.
16	4.
17.1	$x \in (-6; -5), (0; 5).$
17.2	0.
17.3	y = -2x + 4.

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
18		2	
	$15 \cdot 4 + 15 \cdot 0,4 = 66$ (Eur),	1	Už teisingai pasirinktą sprendimo būdą penkių treniruočių kainai apskaičiuoti.
	250:66=3,(78),	1	Už gautą teisingą atsakymą.
	$250 - 66 \cdot 3 = 52,$		
	52:15=3,4(6),		
	$3 \cdot 5 + 3 = 18$. Ats.: 18 treniruočių (arba 18).		

Užd.	Sprendimas ir atsakyma	S	Taškai	Vertinimas
19			4	
19.1			1	
	$\log_5(x-7) = \log_5 5^0,$		1	Už teisingą atsakymą.
	x-7=1,			
	x = 8.			
	Ats.: 8.			
19.2			3	
	$\sin x + 2\sin x \cos x = 0,$ $\sin x (1 + 2\cos x) = 0,$		1	Už teisingai pritaikytą sinuso dvigubojo kampo formulę ir pertvarkytą lygtį.
	arba	$x + 2\cos x = 0,$ $\cos x = -\frac{1}{2},$	2	Po vieną tašką už teisingai išspręstą kiekvieną trigonometrinę lygtį.
		$x = \pm \frac{2\pi}{3} + 2\pi k, k \in \mathbb{Z}.$		
	Ats.: $x = \pi k$ arba $x = \pm \frac{1}{2}$	$\frac{2\pi}{3} + 2\pi k, k \in \mathbb{Z}.$		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
20		4	
20.1		2	
	Gautos pajamos už parduotas apyrankes: $(38-x)(10+x)$.	1	Už bent vieną teisingai parašytą išraišką.
	Apyrankių pagaminimo kaštai: $20(10+x)$,		
	P(x) = (38-x)(10+x) - 20(10+x) = $= (10+x)(38-x-20) =$	1	Už gautą teisingą pelno išraišką.
	$= -x^2 + 8x + 180.$		
20.2	$\lambda + 6\lambda + 180$.	2	
20,2	I būdas $P(x) = -x^{2} + 8x + 180, 0 \le x \le 18.$ $P'(x) = -2x + 8,$ $-2x + 8 = 0,$ $x = 4.$	1	Už teisingai pasirinktą sprendimo būdą (pvz., teisingai apskaičiuotą išvestinę ir gautą kritinį tašką).
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Už teisingą pagrindimą, kad su gautąja <i>x</i> reikšme pelnas bus didžiausias.
	Ats.: x = 4.	1	TIX 4-1-10-1-10-1-10-1-4-
	II būdas $x_{v} = \frac{-8}{-2} = 4.$	1	Už teisingai pasirinktą sprendimo būdą (pvz., teisingai surastą parabolės viršūnės abscisę).
	Kadangi $a = -1 < 0$, parabolės šakos nukreiptos žemyn, todėl didžiausia funkcijos reikšmė yra parabolės viršūnės taške. Ats.: $x = 4$.	1	Už teisingą pagrindimą, kad su gautąja <i>x</i> reikšme pelnas bus didžiausias.
	III būdas	1	Už teisingai pasirinktą
	$P(x) = -x^{2} + 8x + 180, 0 \le x \le 18.$ $P'(x) = -2x + 8,$ $-2x + 8 = 0,$		sprendimo būdą (pvz., teisingai apskaičiuotą išvestinę ir gautą kritinį tašką).
	x=4.		
	$0 \le x \le 18$, P(0) = 180, P(4) = 196,	1	Už teisingą pagrindimą, kad su gautąja <i>x</i> reikšme pelnas bus didžiausias.
	P(18) = 0. Didžiausią reikšmę funkcija įgyja kritiniame taške. Ats.: x = 4.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21		7	
21.1		1	
	$S_{\text{pagrindo}} = \frac{1}{2} \cdot 6 \cdot 6 \cdot \sin 60^{\circ} = 9\sqrt{3}.$	1	Už teisingą pagrindimą.
21.2		3	
	I būdas $V_{\text{prizmės}} = S_{\text{pagrindo}} \cdot H = 9\sqrt{3} \cdot 6 = 54\sqrt{3},$	1	Už teisingai apskaičiuotą prizmės tūrį.
	$V_{\text{piramidės}} = \frac{1}{3} S_{\text{pagrindo}} \cdot H_{\text{piramidės}} = 3\sqrt{3} \cdot H_{\text{piramidės}},$	1	Už teisingą išraišką piramidės tūriui apskaičiuoti.
	$3\sqrt{3} \cdot H_{\text{piramidės}} = 54\sqrt{3},$	1	Už gautą teisingą atsakymą.
	$H_{\text{piramidės}} = 18.$ Ats.: 18.		
	II būdas	1	Už teisingą lygybę.
	$S_{\text{pagrindo}} \cdot H = \frac{1}{3} S_{\text{pagrindo}} \cdot H_{\text{piramides}},$		
	$H = \frac{1}{3} H_{\text{piramidės}},$	1	Už teisingai gautą aukštinių santykį.
	$H_{\text{piramidės}} = 3H = 3 \cdot 6 = 18.$ Ats.: 18.	1	Už gautą teisingą atsakymą.
21.3.		3	
21.3.1		1	
	$A \longrightarrow C$	1	Už teisingą pagrindimą.
	Kadangi CD yra lygiakraščio trikampio pusiaukraštinė, tai ji yra ir aukštinė. Pagal trijų statmenų teoremą ir C_1D yra statmena AB .		
21.3.2		2	
	$CD = \sqrt{6^2 - 3^2} = \sqrt{27} = 3\sqrt{3},$	1	Už teisingai apskaičiuotą pagrindo aukštinės ilgį.
	$tgC_1DC = \frac{C_1C}{CD} = \frac{6}{3\sqrt{3}} = \frac{2\sqrt{3}}{3}.$ Ats.: $tgC_1DC = \frac{2\sqrt{3}}{3}$.	1	Už gautą teisingą atsakymą.
	$Ats.: tgC_1DC = \frac{2\sqrt{3}}{3}.$		
Pastaha			

Pastaba

Jei mokinys, spręsdamas 21.3.2 dalį, pateikia atsakymą arba $tgC_1DC=\frac{6}{\sqrt{27}}$, arba $tgC_1DC=\frac{6}{3\sqrt{3}}$, arba $tgC_1DC=\frac{2}{\sqrt{3}}$, jam skiriamas antras taškas.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22	S P 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	V 02 022222
22.1		1	
	$T_{18} = \frac{1+18}{2} \cdot 18 = 171.$ Ats.: 171.	1	Už gautą teisingą atsakymą.
22.2	Als.: 1/1.	2	
22.2	$\frac{1+n}{2} \cdot n = 7750,$ $n^2 + n - 15500 = 0,$	1	Už teisingai sudarytą lygtį <i>n</i> reikšmei apskaičiuoti.
	$D = 62001$, $n_1 = -125$ (netenkina uždavinio sąlygos), $n_2 = 124$, $n = 124$ yra natūralusis skaičius, todėl 7750 yra šimtas dvidešimt ketvirtas trikampis skaičius. $Ats.$: Taip.	1	Už gautą teisingą atsakymą.
22.3	1	3	
	I būdas $ \frac{1+n}{2} \cdot n \le 9999, n \in \mathbb{N}, $ $ n^{2} + n - 19998 \le 0, $	1	Už teisingai pasirinktą sprendimo būdą (pvz., už teisingai sudarytą nelygybę arba lygtį <i>n</i> reikšmei rasti).
	$n \in \left[\frac{-1 - \sqrt{79993}}{2}; \frac{-1 + \sqrt{79993}}{2}\right].$	1	Už teisingai išspręstą nelygybę arba lygtį.
	Šio intervalo didžiausias natūralusis skaičius $n = 140$, todėl $T_{140} = \frac{141}{2} \cdot 140 = 9870$.	1	Už gautą teisingą atsakymą.
	Ats.: 9870.	1	IIX taiginga gunga dinas kada
	II būdas Skaičių seka (T_n) , kur $T_n = \frac{n+1}{2} \cdot n$, $n \in N$, yra didėjančioji.	1	Už teisingo sprendimo būdo pasirinkimą.
	$T_{140} = \frac{1+140}{2} \cdot 140 = 9870.$	1	Už teisingai apskaičiuotą T_{140} .
	$T_{141} = \frac{142}{2} \cdot 141 = 10011 > 9999$, todėl T_{140} yra didžiausias. Ats.: 9870.	1	Už teisingą pagrindimą, kad T_{140} didžiausias keturženklis trikampis skaičius.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		2	
	$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BF} =$	1	Už teisingai pasirinktą sprendimo būdą.
	$EF = EA + AB + BF =$ $= \frac{1}{3}\overrightarrow{DA} + \overrightarrow{AB} + \frac{2}{3}\overrightarrow{BC} =$ $= \frac{1}{3}\overrightarrow{b} + \overrightarrow{a} - \frac{2}{3}\overrightarrow{b} = \overrightarrow{a} - \frac{1}{3}\overrightarrow{b}.$ $Ats.: \overrightarrow{EF} = \overrightarrow{a} - \frac{1}{3}\overrightarrow{b}.$	1	Už gautą teisingą atsakymą.
24		3	
	I būdas Merginų skaičius – x , vaikinų skaičius – $3x$, iš viso jaunuolių – $4x$, n – visų galimų bandymo baigčių skaičius, m – įvykiui A palankių baigčių skaičius, $n = \frac{4x(4x-1)}{2} = 2x(4x-1)$, $m = \frac{x(x-1)}{2}$.	1	Už bent vieną teisingai sudarytą reiškinį <i>n</i> arba <i>m</i> reikšmei apskaičiuoti.
	Ivykis A – pasirinktos dvi merginos, $\mathbf{P}(A) = \frac{x(x-1)}{2} = \frac{1}{20}, x > 0,$	1	Už teisingai sudarytą lygtį.
	20x(x-1) = 4x(4x-1), $5x-5 = 4x-1,$ $x = 4.$ Ats.: 4 merginos ir 12 vaikinų.	1	Už gautą teisingą atsakymą.
	H būdas Merginų skaičius $-x$, vaikinų skaičius $-3x$, iš viso jaunuolių $-4x$. Tikimybė, kad pirma bus pasirinkta mergina, yra lygi $\frac{x}{4x}$, tikimybė, kad antra bus pasirinkta mergina, yra lygi $\frac{x-1}{4x-1}$.	1	Už teisingai sudarytą reiškinį $\frac{x-1}{4x-1}$ tikimybei apskaičiuoti.
	Įvykis A – pasirinktos dvi merginos, $\mathbf{P}(A) = \frac{x}{4x} \cdot \frac{x-1}{4x-1} = \frac{1}{20}, x > 0,$	1	Už teisingai sudarytą lygtį.

	20x(x-1) = 4x(4x-1),	1	Už gautą teisingą atsakymą.
	5x - 5 = 4x - 1,		
	x = 4.		
	Ats.: 4 merginos ir 12 vaikinų.		
Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25	,	4	
	I būdas	1	Už teisingai sudarytą tiesės lygtį.
	$y = kx, A(a; a^5),$		
	$k=a^4$,		
	$y = a^4 x$,		
		1	Už teisingą figūros ploto <i>S</i>
	$S = \int_{0}^{a} \left(a^4 x - x^5\right) dx =$	1	išreiškimą apibrėžtiniu integralu.
	0		
	(a + b)a	1	Už teisingai užrašytą pirmykštę
	$=\left(\frac{a^4 \cdot x^2}{2} - \frac{x^6}{6}\right)\Big _{0}^{a} =$		funkciją.
	$\begin{pmatrix} 2 & 6 \end{pmatrix}_0$		
	6	1	Už teisingą pagrindimą.
	$=\frac{a^6}{3}$.	1	CZ teisingą pagrinamią.
	3		
	$S_{ABOC} = a \cdot a^5 = a^6 \Rightarrow S = \frac{1}{3}a^6 = \frac{1}{3}S_{ABOC}.$		
	II būdas	1	Už teisingą stačiojo trikampio
	$S_{\Delta OCA} = \frac{1}{2} a \cdot a^5 = \frac{a^6}{2},$		arba stačiakampio ABOC ploto
	$S_{\Delta OCA} = \frac{1}{2} a \cdot a = \frac{1}{2}$		išraišką per a.
	a <u>.</u>	1	Už teisingą figūros ploto S
	$S = S_{\Delta OCA} - \int_{0}^{a} x^{5} dx =$		išreiškimą apibrėžtiniu integralu.
	0		
	a^6 a^6	1	Už teisingai užrašytą pirmykštę funkciją.
	$=\frac{a^6}{2}-\frac{x^6}{6}\bigg _{0}^{a}=$		runkciją.
	2 6 0		
	α ⁶	1	Už teisingą pagrindimą.
	$=\frac{a^6}{3}$.		
	J 1 1		
	$S_{ABOC} = a \cdot a^5 = a^6 \Rightarrow S = \frac{1}{3}a^6 = \frac{1}{3}S_{ABOC}.$		
	III būdas	1	Už teisingą stačiojo trikampio
	$a = 1$ a^5 a^6		arba stačiakampio ABOC ploto
	$S_{\Delta OCA} = \frac{1}{2} a \cdot a^5 = \frac{a^6}{2},$		išraišką per <i>a</i> .
	ą	1	Už teisingą figūros ploto S ₁
	$S_1 = \int_1^a x^5 dx =$		išreiškimą apibrėžtiniu integralu.
	0		

$ = \frac{x^6}{6} \bigg _0^u = \frac{a^6}{6}, $	1	Už teisingai užrašytą pirmykštę funkciją ir rėžių įstatymą.
$S = S_{\Delta OCA} - S_1 = \frac{a^6}{2} - \frac{a^6}{6} = \frac{a^6}{3},$ $S_{ABOC} = a \cdot a^5 = a^6 \Rightarrow S = \frac{1}{2} a^6 = \frac{1}{2} S_{ABOC}.$	1	Už teisingą pagrindimą.
	Taxles	Vantinings
Sprendimas ir atsakymas	_	Vertinimas
$\Delta BEC = \Delta ADB$ pagal dvi kraštines (BC = AB ir CE = BD) ir kampą tarp jų $(\angle BCE = \angle ABD = 60^{\circ})$.	1	Už teisingą pagrindimą, kad $\Delta BEC = \Delta ADB$.
Todėl $\angle BEC = \angle ADB = \alpha$. Iš keturkampio $CDEF$: $180^{\circ} - \angle AFE + \alpha + 180^{\circ} - \alpha + 60^{\circ} = 360^{\circ}$, $\angle AFE = 60^{\circ}$.	1	Už teisingą pagrindimą, kad ∠AFE = 60°.
	1	
$\triangle ACD \sim \triangle AFE$ pagal du kampus, nes $\angle CAD$ – bendras, o $\angle AFE = \angle ACD = 60^{\circ}$.	1	Už teisingą pagrindimą, kad $\triangle ACD \sim \triangle AFE$.
	3	
I būdas $\frac{AF}{AC} = \frac{AE}{AD}.$ Pažymėkime $AC = 5x$. Iš $\triangle ACD$ pagal kosinusų teoremą: $AD^2 = AC^2 + CD^2 - 2 \cdot AC \cdot CD \cdot \cos 60^\circ =$ $= 25x^2 + 4x^2 - 10x^2 = 19x^2.$ $AD = x\sqrt{19},$	1	Už teisingą kraštinės <i>AD</i> išraišką per <i>x</i> .
$\frac{AF}{5x} = \frac{2x}{x\sqrt{19}},$ $AF = \frac{x \cdot 10\sqrt{19}}{19} \left(\text{arba } \frac{10x}{\sqrt{19}} \right),$	1	Už teisingą kraštinės <i>AF</i> išraišką per <i>x</i> .
$FD = AD - AF = \frac{x \cdot 9\sqrt{19}}{19} \left(\text{arba } \frac{9x}{\sqrt{19}} \right),$ $\frac{AF}{FD} = \frac{10}{9}.$ $Ats.: \frac{10}{9} \text{ (arba } 10: 9, \text{ arba } 1\frac{1}{9}).$	1	Už teisingą kraštinės <i>FD</i> išraišką per <i>x</i> ir gautą teisingą atsakymą.
	$S = S_{\Delta OCA} - S_1 = \frac{a^6}{2} - \frac{a^6}{6} = \frac{a^6}{3},$ $S_{ABOC} = a \cdot a^5 = a^6 \Rightarrow S = \frac{1}{3} a^6 = \frac{1}{3} S_{ABOC}.$ Sprendimas ir atsakymas $\Delta BEC = \Delta ADB \text{ pagal dvi kraštines}$ $(BC = AB \text{ ir } CE = BD) \text{ ir kampą tarp jų}$ $(\angle BCE = \angle ABD = 60^\circ).$ $Todėl \ \angle BEC = \angle ADB = \alpha.$ Iš keturkampio $CDEF$: $180^\circ - \angle AFE + \alpha + 180^\circ - \alpha + 60^\circ = 360^\circ,$ $\angle AFE = 60^\circ.$ $\Delta ACD \sim \Delta AFE \text{ pagal du kampus, nes } \angle CAD - \text{bendras, o } \angle AFE = \angle ACD = 60^\circ.$ $I \text{ būdas}$ $\frac{AF}{AC} = \frac{AE}{AD}.$ Pažymėkime $AC = 5x$. Iš ΔACD pagal kosinusų teoremą: $AD^2 = AC^2 + CD^2 - 2 \cdot AC \cdot CD \cdot \cos 60^\circ = 25x^2 + 4x^2 - 10x^2 = 19x^2.$ $AD = x\sqrt{19},$ $\frac{AF}{5x} = \frac{2x}{x\sqrt{19}},$ $AF = \frac{x \cdot 10\sqrt{19}}{19} \left(\text{arba } \frac{10x}{\sqrt{19}} \right),$ $FD = AD - AF = \frac{x \cdot 9\sqrt{19}}{19} \left(\text{arba } \frac{9x}{\sqrt{19}} \right),$	$S = S_{\triangle OCA} - S_1 = \frac{a^6}{2} - \frac{a^6}{6} = \frac{a^6}{3},$ $S_{\triangle ABOC} = a \cdot a^5 = a^6 \Rightarrow S = \frac{1}{3} a^6 = \frac{1}{3} S_{\triangle ABOC}.$ Sprendimas ir atsakymas Taškai 6 2 $\triangle BEC = \triangle ADB \text{ pagal dvi kraštines} $ $(BC = AB \text{ ir } CE = BD) \text{ ir kampą tarp jų} $ $(\angle BCE = \angle ABD = 60^\circ).$ Todėl $\angle BEC = \angle ADB = \alpha.$ Iš keturkampio $CDEF:$ $180^\circ - \angle AFE + \alpha + 180^\circ - \alpha + 60^\circ = 360^\circ,$ $\angle AFE = 60^\circ.$ 1 $\triangle ACD \sim \triangle AFE \text{ pagal du kampus, nes } \angle CAD - 1$ bendras, o $\angle AFE = \angle ACD = 60^\circ.$ 3 I būdas $\frac{AF}{AC} = \frac{AE}{AD}.$ Pažymėkime $AC = 5x.$ Iš $\triangle ACD$ pagal kosinusų teoremą: $AD^2 = AC^2 + CD^2 - 2 \cdot AC \cdot CD \cdot \cos 60^\circ = 25x^2 + 4x^2 - 10x^2 = 19x^2.$ $AD = x\sqrt{19},$ $\frac{AF}{5x} = \frac{2x}{x\sqrt{19}},$ $AF = \frac{x \cdot 10\sqrt{19}}{19} \left(\text{arba } \frac{10x}{\sqrt{19}} \right),$ $FD = AD - AF = \frac{x \cdot 9\sqrt{19}}{19} \left(\text{arba } \frac{9x}{\sqrt{19}} \right),$ $\frac{AF}{FD} = \frac{10}{9}.$

$ \begin{array}{c} \text{Iš } \Delta ACD \\ AD^2 = AC \end{array} $	me $AC = 5x$. pagal kosinusų teoremą: $x^{2} + CD^{2} - 2 \cdot AC \cdot CD \cdot \cos 60^{\circ} = x^{2} - 10x^{2} = 19x^{2}.$	1	Už teisingą kraštinės <i>AD</i> išraišką per <i>x</i> .
$\frac{S_{\Delta AFE}}{S_{\Delta ACD}} = \left(\frac{1}{2}\right)^{\frac{1}{2}}$	$\left(\frac{AE}{AD}\right)^2 = \left(\frac{2x}{\sqrt{19x}}\right)^2 = \frac{4}{19}.$	1	Už teisingą trikampių <i>AFE</i> ir <i>ACD</i> plotų santykį.
$\frac{AF \cdot 2x}{AD \cdot 5x} = \frac{AF}{AD} = \frac{10}{19}$	$\frac{\cdot \sin \alpha}{\cdot \cdot \sin \alpha} = \frac{4}{19},$ $\frac{4}{19},$ $\Rightarrow \frac{AF}{FD} = \frac{10}{9}.$ Arba 10: 9, arba $1\frac{1}{9}$).	1	Už gautą teisingą atsakymą.