Notación O grande y o pequeña

Pedro Villar Análisis Numérico - Primer Cuatrimestre 2024

Sucesión convergente

Una sucesión $\{x_n\}$ es convergente si existe un número L tal que para todo $\varepsilon > 0$ existe un $N \in \mathbb{N}$ tal que si $n \geq N$ entonces $|x_n - L| < \varepsilon$.

Convergencia lineal, superlineal y cuadrática

Sea $\{x_n\}$ una sucesión convergente a x_{ast} .

• Se dice que la sucesión $\{x_n\}$ tiene tasa de convergencia (al menos) **lineal** si existe una constante c tal que 0 < c < 1 y un $N \in \mathbb{N}$ tal que

$$|x_{n+1} - x_*| \le c|x_n - x_*|, \quad \forall n \ge N.$$

• Se dice que la tasa de convergencia es (al menos) superlineal si existe una sucesión $\{\epsilon_n\}$ que converge a 0 y un $N \in \mathbb{N}$ tal que

$$|x_{n+1} - x_*| \le \epsilon_n |x_n - x_*|, \quad \forall n \ge N.$$

ullet Se dice que la tasa de convergencia es (al menos) **cuadrática** si existe una constante positiva c y un $N \in \mathbb{N}$ tal que

$$|x_{n+1} - x_*| \le c|x_n - x_*|^2, \quad \forall n \ge N.$$

Notación O grande y O chica

Introducimos una notación para comparar sucesiones y funciones. Sean $\{x_n\}$ y $\{\alpha_n\}$ dos sucesiones.

• Decimos que

$$\{x_n\} = \mathcal{O}(\alpha_n)$$

si existe una constante C > 0 y un $r \in \mathbb{N}$ tal que

$$|x_n| \le C|\alpha_n|, \quad \forall n \ge r.$$

• Decimos que

$$\{x_n\} = O(\alpha_n)$$

si existe una sucesión $\{\varepsilon_n\}$ que converge a 0, con $\varepsilon_n \geq 0$ y un $r \in \mathbb{N}$ tal que $|x_n| \leq \varepsilon_n |\alpha_n|$, $\forall n \geq r$. Esta notación también se puede extender a funciones. Se dice que

$$f(x) = \mathcal{O}(g(x))$$
 cuando $x \to \infty$

si existe una constante C>0 y un $r\in\mathbb{R}$ tal que $|f(x)|\leq C|g(x)|, \quad \forall x\geq r$. Análogamente, se dice que

$$f(x) = O(g(x))$$
 cuando $x \to \infty$

si $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$.

Ejemplo de notación o con sucesiones

$$\frac{1}{n \cdot ln(n)} = O\left(\frac{1}{n}\right)$$

Si

$$\frac{1}{n \cdot ln(n)} = O\left(\frac{1}{n}\right).$$

$$\frac{1}{n \cdot ln(n)} \le \varepsilon_n \left(\frac{1}{n}\right).$$

basta tomar $\varepsilon_n = \frac{1}{\ln(n)}$.