bcast - soluție

Problema cere determinarea unui arbore de broadcast în care momentul de timp maxim la care un calculator primește informațiile este minim. Vom calcula valorile **Tmin[i,S]**, ca fiind timpul minim al unui arbore de broadcast ce are ca nod rădăcină nodul i și din arbore fac parte toate nodurile din submulțimea S (S este reprezentat ca un număr pe N biți, în care biții de 1 reprezintă nodurile ce fac parte din submulțime ; nodul i face neapărat parte din submulțime). Pentru calculul lui Tmin[i,S] avem următoarele relații:

- Tmin[i, submulțimea formată doar din nodul i]=0
- Tmin[i,S] = minim dupa ((S_1 inclus in S) si (j nod din S_1)) din {Durata transmisie(i,j)+maxim{Tmin[j,S_1],Tmin[i,S-S_1]}}

Răspunsul îl vom avea în Tmin[1,submulțimea formată din toate nodurile]. Complexitatea algoritmului este $O(3^{N_*}N^2)$.

emax - soluție

1. Solutia $O(N^3)$

Se pastreaza doua matrice MIN[i][j] cu MAX[i][j] cu valoarea minima, respectiv maxima pentru o expresie care foloseste numerele A_i , A_{i+1} ... A_{j-1} , A_j din sir. Este nevoie de numere mari pentru a calcula aceste doua matrice.

2. Solutia O (N²)

Fie $V_i = |A_i|$. Se observa ca adancimea parantezarii nu ajunge niciodata la nivelul 2, astfel o solutie optima este mereu de forma $(V_1 + V_2 + \ldots + V_{i1}) * (V_{i1+1} + \ldots + V_{i2}) * \ldots * (V_{ik+1} \ldots + V_N)$ $(0 < i1 < i2 \ldots < ik < N)$. Astfel, o solutie de complexitate patratica se poate obtine calculcand MAX[i] = valoarea maxima pentru o expresie care foloseste primii i termeni din sir.

```
MAX[i] = max(MAX[j]*(S_i-S_j)), j < i, unde S_i=V_1+V_2+...+V_i.
```

Pentru a evita lucrul cu numere mari vom considera ca MAX[i] reprezinta logaritmul valorii maxime care se obtine cu primii i termeni. Relatia de recurenta devine:

```
MAX[i] = max(MAX[j] + lg(S_i-S_j)), j < i
```

Pentru a calcula rezultatul final modulo 666013 se pastreaza si un vector de predecesori.

3. Solutia O (N)

Se observa ca daca toate valorile V_i ar fi>1 solutia optima ar fi sa se inmulteasca toate numerele. Este evident ca valorile V_i =0 nu afecteaza rezultatul, astfel ca se pot ignora de la inceput. In schimb, valorile V_i =1 pot afecta rezultatul putand fi folosite in paranteze la adunare. Se mai observa ca numarul termenilor dintr-o paranteza este foarte mic, deoarece in general este mai avantajos sa se inmulteasca numerele decat sa se adune. Astfel, putem aplica aceeasi dinamica de la solutia $O(N^2)$, dar care foloseste doar un numar constant de termeni intr-o paranteza (maxim 5 in solutia oficiala, desi 3 este de ajuns). Este necesar sa se efectueze dinamica cu numar constant de termeni abia dupa ce au fost eliminate elementele nule pentru a functiona.

perm - soluție

Orice permutare poate fi descompusă în produs de cicluri $p=c_1c_2...c_k$

Să notăm cu lgi=lungimea ciclului i.

Gradul permutarii este egal cu cmmmc (lg₁, lg₂, ..., lg_k).

Prin urmare trebuie să determinăm o partiție a lui n cu proprietatea ca cmmmc al elementelor partiției este maxim.

Odată determinată această partiție (cu alte cuvinte determinate lungimile ciclurilor permutării), pentru a obține prima permutare de grad maxim în ordine lexicografică vom construi permutarea astfel:

1. Considerăm că lg₁<=lg₂<=...<=lg_k

2. Pentru ca permutarea să fie minimă din punct de vedere lexicografic, ciclul 1 va conține elementele 1, 2, ..., $1g_1$, pe care le vom plasa în permutare în ordinea:

```
2 3... lg<sub>1</sub> 1
```

Dacă $lg_1=1$, atunci p[1]=1.

Ciclul al doilea va conține elementele \lg_1+1 , ..., $\lg_1+\lg_2$, pe care le plasăm în permutare în ordinea:

```
lg_1+2, lg_1+3, ..., lg_1+lg_2, lg_1+1.
```

Dacă $lg_2=1$, atunci p[2]=2.

etc.

Rămâne să analizăm cum determinăm o partiție a lui n cu proprietatea că cmmmc este maxim. Să amintim câteva relații:

```
cmmmc(a,b) = a*b/cmmmdc(a,b).
```

Să considerăm o partiție a lui n: $\lg_1 + \lg_2 + ... \lg_k = n$, unde $\lg_i \ge 1$.

Să considerăm descompunerea în factori primi a lui cmmmc:

```
cmmmc (lg_1, lg_2, ..., lg_k) =p_1^{a1} p_2^{a2}...p_m^{am}. cmmmc este maxim dacă:
```

```
cmmdc (lg_i, lg_j) = 1, pentru orice i \neq j
Prin urmare lg_i = p_i^{ai}.
```

Vom numi partiție a lui n de tip \mathbf{P} o partiție de forma $n=1+1+\ldots 1+p_1^{a1}+p_2^{a2}+\ldots+p_m^{am}$

O partiție de tip P se numește optimală dacă produsul p_1^{a1} p_2^{a2} ... p_m^{am} este maxim (valoarea acestui produs fiind costul partiției).

Să considerăm de asemenea șirul numerelor prime $\leq n$, memorate în ordine crescătoare în vectorul Prim. Notăm \lg numărul de numere prime $\leq n$.

Notăm

 $C(x, k) = costul maxim al unei partiții a lui x de tip P, în care factorii primi sunt <math>\leq Prim[k]$.

```
 \begin{array}{l} \texttt{C}(\texttt{x},\texttt{0}) = \texttt{1} \\ \texttt{C}(\texttt{x},\texttt{k}) = \texttt{max} \{ \texttt{C}(\texttt{x},\texttt{k-1}) \\ \texttt{Prim}[\texttt{k}]^{\texttt{i}} \texttt{C}(\texttt{x-Prim}[\texttt{k}]^{\texttt{i}}, \texttt{k-1}), \text{ unde i astfel } \texttt{n} \texttt{cat } \texttt{1} < \texttt{Prim}[\texttt{k}]^{\texttt{i}} \leqslant \texttt{n} \end{array} \}
```

Soluția o vom obține în C (n, lg).

Pentru reconstituirea soluției, vom reține în Sol[n][k]=0, daca C(n, k) = C(n, k-1) sau i, dacă $C(n, k) = Prim[k]^{i}C(n-Prim[k]^{i}, k-1)$.

Observăm că nu este necesară memorarea întregii matrice C, este suficient să reținem doar coloana curentă și coloana următoare.