In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Out[3]:

,		Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
	208 Michael 674∖nLauı	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
)7	188 John Suite (Kathl	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
ar	9127 Stravenue\nD V	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
۱n	USS Barnett	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
or	USNS Raym	0.000405-+05	00054 400470	4.00	7 000000	E 040555	F0000 407000	4

In [4]: df.head()

Out[4]:

Addres	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry Ar 674\nLaurabury, N 3701	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Viev Suite 079\nLak Kathleen, CA	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizabe Stravenue\nDanieltow WI 06482	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO A 4482	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\nFP AE 0938	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4

```
In [5]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object
2 3 4 5	Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population Price	5000 non-null 5000 non-null 5000 non-null 5000 non-null	floate floate floate

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [6]: df.describe()

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [7]: df.columns

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x2008d429760>

In [9]: sns.distplot(df['Price'])

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x200933b87f0>

Out[10]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06

5000 rows × 6 columns

In [11]: sns.heatmap(df1.corr())

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x200949215e0>

- In [13]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
- Out[14]: LinearRegression()
- In [15]: print(lr.intercept_)

-2641794.141165103

```
In [16]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
coeff
```

Co-efficient

Out[16]:

	CO-emclem
Avg. Area Income	21.607424
Avg. Area House Age	165787.455956
Avg. Area Number of Rooms	119761.330154
Avg. Area Number of Bedrooms	2966.556750
Area Population	15.235893

```
In [17]: prediction= lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[17]: <matplotlib.collections.PathCollection at 0x20095400070>


```
In [18]: print(lr.score(x_test,y_test))
```

0.9151159556191661

```
In [22]: print(lr.score(x_train,y_train))
```

0.9191770522897472

```
In [24]: from sklearn.linear_model import Ridge,Lasso
```

```
In [25]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
```

Out[25]: Ridge(alpha=10)

```
In [26]: rr.score(x_test,y_test)
```

Out[26]: 0.9151013995998052

```
In [27]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[27]: Lasso(alpha=10)

In [28]: la.score(x_test,y_test)

Out[28]: 0.9151162539739033

In []:
```