CS 231: Computer Vision

What is Computer Vision?

- Input: images or video
- Output: description of the world

What is Computer Vision?

- Input: images or video
- Output: description of the world
 - Many levels of description

Low-Level or "Early" Vision

Considers local properties of an image

"There's an edge!"

Mid-Level Vision

Grouping and segmentation

"There's an object and a background!"

High-Level Vision

▶ Recognition

"It's a chair!"

Big Question #1: Who Cares?

- Applications of computer vision
 - ▶ In AI: vision serves as the "input stage"
 - In medicine: understanding human vision
 - ► In engineering: model extraction

Vision and Other Fields

Big Question #2: Does It Work?

- Situation much the same as AI:
 - Some fundamental algorithms
 - Large collection of hacks / heuristics
- Vision is hard!
 - Especially at high level, physiology unknown
 - Requires integrating many different methods
 - Requires reasoning and understanding: "Al completeness"

Computer and Human Vision

- Emulating effects of human vision
- Understanding physiology of human vision

Image Formation

- Human: lens forms image on retina, sensors (rods and cones) respond to light
- Computer: lens system forms image, sensors (CCD, CMOS) respond to light

Real-world Applications

Osuna et al:

Real-world Applications

Osuna et al:

Figure 5. Results from our Face Detection system

Outline

- Image formation and capture
- Filtering and feature detection
- Optical flow and tracking
- Segmentation and clustering
- ▶ Recognition

Textbooks

TEXTS IN COMPUTER SCIENCE

Computer Vision

Algorithms and Applications

Richard Szeliski

