

R V College of Engineering Department of Computer Science and Engineering CIE - II: Question Paper

Subject: Database Management Systems (CD252IA) Semester: 5TH BE (Code)

	Date:07/01/2025 Duration: 120 minutes Staff:HR/CNS/PD/SB/SNM/PH/MNV/PT									
Name :		USN:	120 mmates	Section:	7/1 D /(D D /(D)	CS-A/B/C/D/CD/CY/IS/AIML				
S.N	PART-A					CO TI DI CI DI CI	M	BT		
			PAR	K1-A			IVI	DI	Со	
1.1		T =								
	P 10	Q A	R 5	A 10	B b	<u>C</u> 5	2	L3	4	
	10	A] 3	10	U					
1.2.	1 The ettribut	The attributes in FK have the same domain(s) as the primary key attributes 1M								
1.2.						•				
	PK of $R2$; the attributes FK are said to reference or refer to the relation $R2$. 2. A value of FK in a tuple $t1$ of the current state $r1(R1)$ either occurs as a value of								2	
	PK for some tuple $t2$ in the current state $r2(R2)$ or is NULL. In the former case, we								2	
	have $t1[FK] = t2[PK]$, and we say that the tuple $t1$ references or refers to the tuple									
	t21M		•	•		•				
1.3.	Nested Query	– Syntax 1M					2	L2	3	
	Logic -1 M									
1.4	`	(reflexive rule) ₁ : If $Y \subseteq X$ then $X \rightarrow Y$ 1M						L1	1	
1.5	decomposition, or projective, rule): {X-> YZ} =X-> Y -1M									
1.5	A correlated subquery is a subquery that contains a reference to a table that also							L2	4	
	appears in the outer query. 1M Example -1M								•	
	Example 11vi	<u>.</u>		PART-B						
2 a.	Explain the fo	ollowing relati	onal model co		example.					
		in Constraint								
	ii Key Constraint: Definition ,Example							L1	2	
	Key ,Super Key, Candidate Key ,Primary Key 3M									
	iii Entity Integrity Constraint Definition and example 1,5M									
b.					•	olated by delete				
	operation. and the types of actions that may be taken if delete operation causes									
	violation							L2	3	
	Relational model constraints that may be violated by delete operation – Foreign								3	
	Key Constraint Example and Explanation 3 M									
	Example and Explanation -3 M Action – Restrict, CASCADE, SET NULL, SET DEFAULT -1M									
3 a.										
<i>5</i> u.	-	Explain the relational algebra operation for set theory with examples. Union Compatibility Definition 1.5						L1	1	
		•		on Intersection	n Differen	ce -1.5 *3 =4.5				
b.		nitions R,S,T		,			4	1.2		
		values in T –					4	L2	4	

	In general, the DIVISION operation is applied to two relations $R(Z) \div S(X)$, where the attributes of R are a subset of the attributes of S ; that is, $X \subseteq Z$. Let Y be the set of attributes of R that are not attributes of S ; that is, $Y = Z - X$ (and hence $Z = X \cup Y$). The result of DIVISION is a relation $T(Y)$ that includes a tuple t if tuples t_R appear in R with $t_R[Y] = t$, and with $t_R[X] = t_S$ for every tuple t_S in S . This means that, for a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with every tuple in S . Note that in the formulation of the DIVISION Example -1M			
4	i Find driver-id# of every person, who owns a 'Toyota Fortuner' or a 'Hyundai Creta' car model ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	10	L3	4
5.	i Find the sailors information whose name begins and ends with 'A' and has at least 3 characters. SELECT * FROM Sailors WHERE name LIKE 'A_ %A' ii Find the ids of sailors who have reserved a red boat or a green boat. SELECT DISTINCT R_sid FROM Boats B, Reserves R WHERE R_bid = B_bid AND (B_color = 'red' or B_color = 'green') iii Find the name of sailors who have not reserved red boat SELECT name FROM Sailors WHERE sid NOT IN (SELECT R_sid FROM Boats B, Reserves R WHERE R_bid = B_bid AND B_color = 'red') iv Find the ids and names of sailors who have reserved two different boats on the same day. SELECT DISTINCT S_sid, S_sname FROM Sailors S, Reserves R1, Reserves R2 WHERE S_sid = R1.sid AND S_sid = R2.sid AND R1.day = R2.day AND R1.bid ◇ R2.bid v Find the average age of sailors for each rating level that has at least two sailors. SELECT S_rating, AVG(S_age) AS avg_age FROM Sailors S GROUP BY S_rating HAVING COUNT(*) > 1	10	L3	5
6.a.	Consider the relation scheme $R = \{E, F, G, H, I, J, K, L, M, N\}$ and the set of functional dependencies $\{E, F\} \rightarrow \{G\}, \{F\} \rightarrow \{I, J\},$	4	L2	3

	$ \begin{split} \{E,H\} &-> \{K,L\}, \\ K &-> \{M\}, \\ L &-> \{N\} \\ \{E,F,H\}^+ = \{E,F,G,H,I,J,K,L,M,N\} \ \ \text{one of the keys. 2M} \\ Steps 2M \end{split} $			
b	Explain with an example Aggregate functions ,Grouping and Having clause in SQL Expiation 3M Example -3M	6	L2	1

Course Outcomes:

CO1: Understand and explore the needs and concepts of relational, NoSQL database and Distributed Architecture

CO2: Apply the knowledge of logical database design principles to real time issues.

CO3: Analyze and design data base systems using relational, NoSQL and Big Data concepts

CO4: Develop applications using relational and NoSQL database

CO5: Demonstrate database applications using various technologies.

	L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4	CO5
Total Marks	16	22	22	-	-	_	14	08	18	10	-