Ungleichungen und ähnlich verwirrende Konzepte

Maxi Brandstetter, Felix Kirschner, Arne Heimendahl

University of Cologne

September 18, 2018

Outline

- Introduction
 - ksjladüys
- Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
- Grothendieck Inequality

Let's get on the same page

- We should know what a state is
- We should know what the tensor product does
- We should be familiar with the *Dirac notation*

Quantum systems

- A quantum system is a portion of the whole universe. For example a set electrons.
- A quantum system X is associated with a copy of \mathbb{C}^k
- It may consist of subsystems X_1, \ldots, X_N each of which is associated with a copy of \mathbb{C}^{n_i} . In this case $k = n_1 \ldots n_N$

Measurements

- ullet A measurement can be performed on a system X that is in state ho
- ullet Let $\mathcal A$ be a finite set of outcomes of the measurement
- The measurement itself is defined by a set of psd matrices $\{F^a\}_{a\in\mathcal{A}}\subseteq\mathbb{C}^{n\times n}$ that sum up to the identity matrix, i.e. $\sum_{a\in\mathcal{A}}F^a=I$

Measurements

- A projective measurement is defined by psd matrices that satisfy $F^aF^b=\delta_{ab}F^a\ \forall a,b\in\mathcal{A}$
- The outcome of a measurement is a random variable χ with probability distribution: $\mathbb{P}[\chi=a]=\mathrm{Tr}(\rho F^a)$
- ullet To define an expected value we define outcomes in ${\mathcal A}$ as real numbers

Measurements

- $\mathbb{E}[\chi] = \sum_{a \in \mathcal{A}} a \mathrm{Tr}(\rho F^a) = \mathrm{Tr}(\rho(\sum_{a \in \mathcal{A}} a F^a))$
- $\sum_{a \in \mathcal{A}} aF^a$ is called observable
- ullet A simple case we will use later are $\{-1,1\}$ -valued observables
- if we consider projective measurements we have

$$(F^{+} - F^{-})^{2} = \underbrace{F^{+^{2}}}_{=F^{+}} - \underbrace{F^{+}F^{-}}_{\delta_{+-}=0} + \underbrace{F^{-^{2}}}_{F^{-}} = F^{+} + F^{-} = I$$

ullet i.e. a $\{-1,1\}$ -valued observable is both unitary an Hermitian

Doling out subsystems

- Consider a system X consisting of subsystems $X_1, \ldots X_N$ which we distribute among N parties, which may be located anywhere in the universe
- The parties *share* the state *X* is in
- Every party may perform a measurement on their subsystem X_i , i.e. there are N sets of psd matrices $\{F^{a_1}\}_{a_1\in\mathcal{A}_1}\in\mathbb{C}^{n_1\times n_1},\ldots,\{F^{a_N}\}_{a_N\in\mathcal{A}_N}\in\mathbb{C}^{n_N\times n_N}$

The joint probability distribution of the N measurement outcomes χ_1,\ldots,χ_N is

$$\mathbb{P}\left[\chi_1=\mathsf{a}_1,\chi_2=\mathsf{a}_2,\ldots,\chi_N=\mathsf{a}_N\right]=\mathsf{Tr}\big(\rho \mathsf{F}_1^{\mathsf{a}_1}\otimes\cdots\otimes \mathsf{F}_N^{\mathsf{a}_N}\big)$$

Entanglement

- We will only consider pure states meaning states that they have rank 1 and therefore can be written as $\rho=|\psi\rangle\langle\psi|$
- A state is called product state if it can be written as $|\psi\rangle=|\psi_1\rangle|\psi_2\rangle\dots|\psi_N\rangle$
- When a vector $|\psi\rangle$ is referred to as a state we mean the matrix $|\psi\rangle\langle\psi|$
- A state that is not a product state is called entangled

Example

- Let $|\psi\rangle = |\psi_A\rangle |\psi_B\rangle$ be a system and give $|\psi_A\rangle$ to Alice and $|\psi_B\rangle$ to Bob
- Let them perform measurements $\{G^b\}_{b\in\mathcal{B}}$ and $\{F^a\}_{a\in\mathcal{A}}$ on their respective quantum systems
- What is the probability of Alice getting measurement outcome $\chi_A = a$ and Bob getting $\chi_B = b$?

Example

$$\begin{aligned} \operatorname{Tr}(|\psi\rangle\langle\psi|F^{a}\otimes G^{b}) &= \langle\psi|F^{a}\otimes G^{b}|\psi\rangle \\ &= (\langle\psi_{A}|\otimes\langle\psi_{B}|)(F^{a}\otimes G^{b})(|\psi_{A}\rangle\otimes|\psi_{B}\rangle) \\ &= ((\langle\psi_{A}|F^{a})\otimes(\langle\psi_{B}|G^{b}))(|\psi_{A}\rangle\otimes|\psi_{B}\rangle) \\ &= \langle\psi_{A}|F^{a}|\psi_{A}\rangle\otimes\langle\psi_{B}|G^{b}|\psi_{B}\rangle \\ &= \langle\psi_{A}|F^{a}|\psi_{A}\rangle\langle\psi_{B}|G^{b}|\psi_{B}\rangle \end{aligned}$$

This is equal to the product of the probabilities of Alice measuring a and Bob measuring b, i.e. the outcome do not correlate.

Nonlocal games

- Three participants: Alice, Bob and a referee
- Referee doles out a question s to Alice and a question t to Bob
- Alice and Bob are assumed to be located anywhere in the universe respectively
- Alice and Bob must not communicate
- Alice sends answer a Bob sends answer b back to the referee, who then
 decides whether both win or both lose

Nonlocal games

Mathematically speaking

- Four finite sets $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$
- probability distribution π over $\mathcal{S} \times \mathcal{T}$ $\pi: \mathcal{S} \times \mathcal{T} \to [0,1]$
- The referee sends with probability $\pi(s,t)$ s to Alice and t to Bob
- ullet They answer with an element $a\in\mathcal{A}$ and $b\in\mathcal{B}$ respectively
- $\bullet \ \mathsf{A} \ \mathsf{map} \ \mathsf{V} : \mathcal{S} \times \mathcal{T} \times \mathcal{A} \times \mathcal{B} \to \{0,1\}$
- They win if V(s, t, a, b) = 1 and lose otherwise

Classical strategies

- ullet All players know π and V and the information they received but not what the other players received
- They are allowed to agree on a strategy beforehand but must not communicate once the game started
- A deterministic strategy is a map $a: \mathcal{S} \to \mathcal{A}$ for Alice and $b: \mathcal{T} \to \mathcal{B}$ for Bob The winning probability then is:

$$\mathbb{E}_{s,t\sim\pi}\left[V(a(s),b(t),s,t)\right]$$

Quantum case

- Suppose Alice and Bob have a subsystem X_A, X_B of a quantum system X which is in state ρ , i.e. Alice and Bob share state ρ
- If the state is entangled measurements can give correlated measurement outcomes
- Alice and Bob may gain information by performing measurements
- Answering according to measurement outcomes could increase winning probability

Mathematically speaking

- A quantum system X consisting of two n-dimensional subsystems X_A, X_B in some entangled state ρ
- Alice performs a measurement $\{F_s^a\}_{a\in\mathcal{A}}\subseteq\mathbb{C}^{n\times n}$ on her subsystem X_A and Bob performs a measurement $\{G_t^b\}_{b\in\mathcal{B}}\subseteq\mathbb{C}^{n\times n}$ on his subsystem X_B
- They send their measurement outcome as their answer to the referee
- Their winning probability is:

$$\mathbb{E}_{s,t \sim \pi} \left[\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mathsf{Tr}(
ho \mathsf{F}^a_s \otimes \mathsf{G}^b_t) V(a,b,s,t)
ight]$$

Two player XOR games

- Let the sets $\mathcal A$ and $\mathcal B$ be $\{0,1\}$, so Alice and Bob both answer either with 1 or 0
- The predicate V is defined as $V(a,b,s,t)=[a\oplus b=f(s,t)]$, where $f:\mathcal{S}\times\mathcal{T}\to\{0,1\}$
- A truth table for $a \oplus b$ looks like this

\oplus	0	1
0	0	1
1	1	0

Bias and violation ratio

- Alice and Bob can always win with probability $\frac{1}{2}$ by flipping an unbiased coin
- The classical bias of an XOR game G is defined as the difference of the probabilities of winning and losing for an optimal strategy and denoted by $\beta(G)$
- The bias $\beta^*(G)$ of entangled strategies is calculated the same way
- ullet It is twice the amount by which the maximal winning probability exceeds $rac{1}{2}$
- Since $\frac{1}{2} + \gamma (1 \frac{1}{2} \gamma)) = 2\gamma$
- The violation ratio is defined as $\frac{\beta^*(G)}{\beta(G)}$

Signs and observables

- It is convenient to use the $\{-1,1\}$ -basis instead of the $\{0,1\}$ -basis for boolean valued objects.
- Let $a: \mathcal{S} \to \{0,1\}$ and $b: \mathcal{T} \to \{0,1\}$ be classical strategies and π the probability distribution the referee uses to pick s,t
- The bias is given by the probability under π that $a(s) \oplus b(t) = f(s,t)$ minus the probability under π that $a(s) \oplus b(t) \neq f(s,t)$

This means the bias can be written as:

$$\mathbb{E}_{(s,t)\sim\pi} \left[(-1)^{[a(s)\oplus b(t)=f(s,t)]} \right] =$$

$$= \mathbb{E}_{(s,t)\sim\pi} \left[(-1)^{a(s)\oplus b(t)+f(s,t)} \right] =$$

$$= \mathbb{E}_{(s,t)\sim\pi} \left[(-1)^{a(s)} (-1)^{b(t)} (-1)^{f(s,t)} \right]$$

And we can define the sign matrix $\Sigma_{s,t}=(-1)^{f(s,t)}$ and functions $\chi(s)=(-1)^{a(s)}$ and $\psi(t)=(-1)^{b(t)}$. So the bias is

$$\mathbb{E}_{(s,t)\sim\pi}\left[\chi(s)\psi(t)\Sigma_{st}\right]$$

- The outcomes in an XOR game are $\{0,1\}$
- Alice and Bob have measurements $\{F_s^0, F_s^1\}$ and $\{G_t^0, G_t^1\}$ and share an entangled state
- The probability of Alice and Bob answering with a,b upon receiving s,t respectively is $\langle \psi | F_s^a \otimes G_t^b | \psi \rangle$
- Lets calculate the expected value of $(-1)^{a \oplus b}$

$$\begin{aligned} &(1) \cdot \mathbb{P} \left[a = b \right] + (-1) \cdot \mathbb{P} \left[a \neq b \right] = \\ &= \langle \psi | F_s^0 \otimes G_t^0 | \psi \rangle + \langle \psi | F_s^1 \otimes G_t^1 | \psi \rangle \\ &- \langle \psi | F_s^1 \otimes G_t^0 | \psi \rangle - \langle \psi | F_s^0 \otimes G_t^1 | \psi \rangle \\ &= \langle \psi | (F_s^0 - F_s^1) \otimes (G_t^0 - G_t^1) | \psi \rangle \end{aligned}$$

- Define $\{-1,1\}$ -observables $F_s = F_s^0 F_s^1$ and $G_t = G_t^0 G_t^1$ with the property that its difference squared is the identity matrix
- Using this strategy the bias becomes

$$\mathbb{E}_{(s,t)\sim\pi}\left[\langle\psi|F_s\otimes G_t|\psi\rangle\Sigma_{s,t}\right]$$

More generally speaking

- For any XOR game the bias is defined as the difference of the probabilities of winning and loosing
- Which is, if considering the $\{-1,1\}$ basis, the expected value
- We are looking to maximize this quantity

Classical strategies

When using classical strategies this is

$$\max\{\mathbb{E}_{(s,t)\sim\pi}\left[\Sigma_{st}\chi(s)\psi(t)\right]:\chi:\mathcal{S}\to\{-1,1\},\\ \psi:\mathcal{T}\to\{-1,1\}\}$$

Entangled strategies

When using entangled strategies the winning probability might increase indefinitely with the dimensions, so we use the $\sup_{n\in\mathbb{N}}$

$$\sup_{n\in\mathbb{N}} \{\mathbb{E}_{(s,t)\sim\pi} \left[\Sigma_{st} \langle \psi | F_s \otimes G_t | \psi \rangle \right] : |\psi\rangle \in \mathbb{C}^n \otimes \mathbb{C}^n, F_s, G_t \in O(\mathbb{C}^n) \}$$

The CHSH game

- The CHSH game (Clauser, Horner, Shimony, Holt) is a two player XOR game with $\mathcal{A}=\mathcal{B}=\mathcal{S}=\mathcal{T}=\{0,1\}$ and π being the uniform distribution
- $f(s,t) = s \wedge t$, i.e. f(1,1) = 1 and f(0,0) = f(0,1) = f(1,0) = 0
- Alice and Bob can win $\frac{3}{4}$ of the games by using deterministic strategies (0,0),(1,0) or (0,1)

Quantum strategy

- Let Alice and Bob share an EPR state
- Define

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

- XY + YX = 0 and $X^2 = Y^2 = I$
- For Alice define the observable for question 0 by $F_0 = X$ and for question 1 by $F_1 = Y$
- Bobs observables are going to be $G_0 = (X Y)/\sqrt{2}$ for question 0 and $G_1 = (X + Y)/\sqrt{2}$ for question 1

The following auxiliary calculations will be helpful later:

$$\langle \mathsf{EPR} | X \otimes X | \mathsf{EPR} \rangle = rac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= rac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = rac{2}{2} = 1$$

$$\begin{split} \langle \mathsf{EPR} | \mathsf{Y} \otimes \mathsf{Y} | \mathsf{EPR} \rangle &= \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} -1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = -1 \end{split}$$

$$\begin{split} \langle \mathsf{EPR} | X \otimes Y | \mathsf{EPR} \rangle &= \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} i & 0 & 0 & -i \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = 0 \\ \langle \mathsf{EPR} | Y \otimes X | \mathsf{EPR} \rangle &= 0 \end{split}$$

Lets calculate the expected values of the sign $a \oplus b$:

$$\langle \mathsf{EPR}|F_0\otimes G_0|\mathsf{EPR}\rangle = \langle \mathsf{EPR}|X\otimes \frac{1}{\sqrt{2}}(X-Y)|\mathsf{EPR}\rangle$$

$$= \langle \mathsf{EPR}|X\otimes \frac{1}{\sqrt{2}}X|\mathsf{EPR}\rangle - \langle \mathsf{EPR}|X\otimes \frac{1}{\sqrt{2}}Y|\mathsf{EPR}\rangle$$

$$= \frac{1}{\sqrt{2}} - 0 = \frac{1}{\sqrt{2}}$$

$$\langle \mathsf{EPR}|F_1\otimes G_1|\mathsf{EPR}\rangle = \langle \mathsf{EPR}|Y\otimes \frac{1}{\sqrt{2}}(X+Y)|\mathsf{EPR}\rangle$$

$$= \langle \mathsf{EPR}|Y\otimes \frac{1}{\sqrt{2}}X|\mathsf{EPR}\rangle + \langle \mathsf{EPR}|Y\otimes \frac{1}{\sqrt{2}}Y|\mathsf{EPR}\rangle$$

$$= 0 - \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}$$

$$\langle \mathsf{EPR}|F_0\otimes G_1|\mathsf{EPR}\rangle = \langle \mathsf{EPR}|X\otimes \frac{1}{\sqrt{2}}(X+Y)|\mathsf{EPR}\rangle$$

$$= \langle \mathsf{EPR}|X\otimes \frac{1}{\sqrt{2}}X|\mathsf{EPR}\rangle + \langle \mathsf{EPR}|X\otimes \frac{1}{\sqrt{2}}Y|\mathsf{EPR}\rangle$$

$$= \frac{1}{\sqrt{2}} + 0 = \frac{1}{\sqrt{2}}$$

$$\langle \mathsf{EPR}|F_1\otimes G_0|\mathsf{EPR}\rangle = \langle \mathsf{EPR}|Y\otimes \frac{1}{\sqrt{2}}(X-Y)|\mathsf{EPR}\rangle$$

$$= \langle \mathsf{EPR}|Y\otimes \frac{1}{\sqrt{2}}X|\mathsf{EPR}\rangle - \langle \mathsf{EPR}|Y\otimes \frac{1}{\sqrt{2}}Y|\mathsf{EPR}\rangle$$

$$= 0 - (-\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}$$

Thus, we have

$$\langle \mathsf{EPR} | F_s \otimes G_t | \mathsf{EPR}
angle = egin{cases} rac{1}{\sqrt{2}}, (0,0), (1,0), (0,1) \ -rac{1}{\sqrt{2}}, (1.1) \end{cases}$$

which is equivalent to

$$\langle \mathsf{EPR}|F_s\otimes G_t|\mathsf{EPR}
angle = rac{(-1)^{s\wedge t}}{\sqrt{2}}, s,t\in\{0,1\}$$

The bias of the entangled strategy equals

$$\begin{split} \mathbb{E}_{(s,t) \sim \pi} \left[\Sigma_{s,t} \langle \psi | F_s \otimes G_t | \psi \rangle \right] &= \\ &= \frac{1}{4} \sum_{s,t=0}^{1} (-1)^{s \wedge t} \langle \mathsf{EPR} | F_s \otimes G_t | \mathsf{EPR} \rangle \\ &= \frac{1}{4} \cdot \frac{4}{\sqrt{2}} = \frac{1}{\sqrt{2}} \end{split}$$

The bias is $\frac{1}{\sqrt{2}}$ from which follows that the winning probability is by definition:

$$\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \cos(\pi/8) \approx 0.85 \dots$$

Outline

- Introduction
 - ksjladüys
- 2 Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
- Grothendieck Inequality

• Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$
- Their common answer is the product $\xi_i \eta_i$

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$
- Their common answer is the product $\xi_i \eta_i$
- Instead of deterministic strategies they can also answer according to the probability distribution of random variables X_i, Y_i

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$
- Their common answer is the product $\xi_i \eta_i$
- Instead of deterministic strategies they can also answer according to the probability distribution of random variables X_i , Y_i
- Their common answer is $\mathbb{E}[X_i Y_i]$

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$
- Their common answer is the product $\xi_i \eta_i$
- Instead of deterministic strategies they can also answer according to the probability distribution of random variables X_i, Y_i
- ullet Their common answer is $\mathbb{E}[X_iY_j]$
- This information can be encoded in an $\mathcal{S} \times \mathcal{T}$ matrix \P

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

• Set of all local correlation matrices: $LC_{m,n}$

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

• Set of all local correlation matrices: $LC_{m,n}$

Lemma

$$LC_{m,n} = conv\{\xi \eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$$

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

• Set of all local correlation matrices: $LC_{m,n}$

Lemma

$$\mathsf{LC}_{m,n} = \mathsf{conv}\{\xi \eta^T \,|\, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$$

• No matter which probabilistic strategy there is a deterministic one which as at least as good as the one one chooses

 $\mathsf{LC}_{\mathit{m},\mathit{n}} \supset \mathsf{conv}\{\xi\eta^T \,|\, \xi \in \{-1,1\}^\mathit{m}, \eta \in \{-1,1\}^\mathit{n}\}.$

• $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_i \equiv \eta_i$)

 $LC_{m,n} \supset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)
- Suffices to show that $LC_{m,n}$ is convex.

 $LC_{m,n} \supset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)}Y_j^{(k)}]$ for $k \in \{0,1\}$

 $LC_{m,n} \supset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ii}^{(k)} = \mathbb{E}[X_i^{(k)} Y_i^{(k)}]$ for $k \in \{0, 1\}$
- Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that

$$\beta a_{ij}^{(0)} + (1 - \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$$

for $\beta \in [0,1]$

 $\mathsf{LC}_{\mathit{m},\mathit{n}} \supset \mathsf{conv}\{\xi\eta^{\mathit{T}} \,|\, \xi \in \{-1,1\}^{\mathit{m}}, \eta \in \{-1,1\}^{\mathit{n}}\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ii}^{(k)} = \mathbb{E}[X_i^{(k)} Y_i^{(k)}]$ for $k \in \{0, 1\}$
- Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that

$$\beta a_{ij}^{(0)} + (1 - \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$$

for $\beta \in [0,1]$

• Define a Bernoulli random variable α (which is independent form $X_i^{(k)}, Y_j^{(k)}$) such that $\mathbb{P}(\alpha = 0) = \beta$, $\mathbb{P}(\alpha = 1) = 1 - \beta$ and set $X_i = X_i^{(\alpha)}, Y_j = Y_j^{(\alpha)}$

 $\mathsf{LC}_{\mathit{m},\mathit{n}}\supset\mathsf{conv}\{\xi\eta^{\mathit{T}}\,|\,\xi\in\{-1,1\}^{\mathit{m}},\eta\in\{-1,1\}^{\mathit{n}}\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ii}^{(k)} = \mathbb{E}[X_i^{(k)} Y_i^{(k)}]$ for $k \in \{0, 1\}$
- Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that

$$\beta a_{ij}^{(0)} + (1 - \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$$

for $\beta \in [0,1]$

- Define a Bernoulli random variable α (which is independent form $X_i^{(k)}, Y_j^{(k)}$) such that $\mathbb{P}(\alpha = 0) = \beta$, $\mathbb{P}(\alpha = 1) = 1 \beta$ and set $X_i = X_i^{(\alpha)}, Y_j = Y_j^{(\alpha)}$
- Then

$$\mathbb{E}[X_i Y_j] = \mathbb{E}[X_i^{(\alpha)} Y_j^{(\alpha)} \mathbb{1}_{\{\alpha = 0\}}] + \mathbb{E}[X_i^{(\alpha)} Y_j^{(1)}] \mathbb{1}_{\{\alpha = 1\}}]$$
$$= \beta \mathbb{E}[X_i^{(0)} Y_j^{(0)}] + (1 - \beta) \mathbb{E}[X_i^{(1)} Y_j^{(1)}]$$

$\mathsf{LC}_{m,n} \subset \mathsf{conv}\{\xi\eta^T \,|\, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

• Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_i| \leq 1$ almost surely.

$\mathsf{LC}_{m,n} \subset \mathsf{conv}\{\xi\eta^T \,|\, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

- Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_j| \leq 1$ almost surely.
- Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.

$\mathsf{LC}_{\mathit{m},\mathit{n}} \subset \mathsf{conv}\{\xi\eta^{\mathsf{T}} \,|\, \xi \in \{-1,1\}^{\mathit{m}}, \eta \in \{-1,1\}^{\mathit{n}}\}$

- Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_j| \leq 1$ almost surely.
- Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.
- Hypercube description by its vertices: $[-1,1]^d = \text{conv}\{\xi \mid \xi \in \{-1,1\}^d\}$

$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

- Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_j| \leq 1$ almost surely.
- Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.
- Hypercube description by its vertices: $[-1,1]^d = \operatorname{conv}\{\xi \,|\, \xi \in \{-1,1\}^d\}$
- ullet Define random variables $\lambda_{\xi}^{(X)}:\Omega^m o [0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$

$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

ullet Define random variables $\lambda_{arepsilon}^{(X)}:\Omega^m o[0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and
$$\sum_{\xi \in \{-1,1\}^m} \lambda_\xi^{(X)}(\omega) = 1$$

$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

ullet Define random variables $\lambda_{\xi}^{(\mathcal{X})}:\Omega^m
ightarrow [0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$

• Using the same decomposition for Y we obtain

$$\begin{aligned} a_{ij} &= \mathbb{E}[X_{i}Y_{j}] = \mathbb{E}\Big[\Big(\sum_{\xi \in \{-1,1\}^{m}} \lambda_{\xi}^{(X)} \xi_{i}\Big) \Big(\sum_{\eta \in \{-1,1\}^{n}} \lambda_{\eta}^{(Y)} \eta_{j}\Big)\Big] \\ &= \sum_{\xi \in \{-1,1\}^{m}, \eta \in \{-1,1\}^{n}} \mathbb{E}\Big[\lambda_{\xi}^{(X)} \lambda_{\eta}^{(Y)}\Big] \xi_{i} \eta_{j} \\ &= \Big(\sum_{\xi \in \{-1,1\}^{m}, \eta \in \{-1,1\}^{n}} \mathbb{E}[\lambda_{\xi}^{(X)}] \mathbb{E}[\lambda_{\eta}^{(Y)}]\Big) \xi_{i} \eta_{j} \end{aligned}$$

$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

ullet Define random variables $\lambda_{\xi}^{(\mathcal{X})}:\Omega^m o[0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$

• Using the same decomposition for Y we obtain

$$\begin{aligned} a_{ij} &= \mathbb{E}[X_{i}Y_{j}] = \mathbb{E}\Big[\big(\sum_{\xi \in \{-1,1\}^{m}} \lambda_{\xi}^{(X)} \xi_{i}\big) \big(\sum_{\eta \in \{-1,1\}^{n}} \lambda_{\eta}^{(Y)} \eta_{j}\big)\Big] \\ &= \sum_{\xi \in \{-1,1\}^{m}, \eta \in \{-1,1\}^{n}} \mathbb{E}\big[\lambda_{\xi}^{(X)} \lambda_{\eta}^{(Y)}\big] \xi_{i} \eta_{j} \\ &= \big(\sum_{\xi \in \{-1,1\}^{m}, \eta \in \{-1,1\}^{n}} \mathbb{E}[\lambda_{\xi}^{(X)}] \mathbb{E}[\lambda_{\eta}^{(Y)}]\big) \xi_{i} \eta_{j} \end{aligned}$$

• Due to $\sum_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \mathbb{E}[\lambda_{\xi}^{(X)}] \mathbb{E}[\lambda_{\eta}^{(Y)}] = 1$ the matrix (a_{ij}) is a convex combination of $\xi \eta^T$, $\xi \in \{-1,1\}^m$, $\eta \in \{-1,1\}^n$

• Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$

- Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$
- \bullet They perform measurements $\{F_s^\xi\}_{\xi=\pm 1}$, respectively $\{G_t^\eta\}_{\eta=\pm 1}$

- Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$
- \bullet They perform measurements $\{F_s^\xi\}_{\xi=\pm 1}$, respectively $\{G_t^\eta\}_{\eta=\pm 1}$
- The probability that their response is (ξ, η) for inputs (i, j) is given by $a_{ij} = \text{Tr}(\rho F_s^{\xi} \otimes G_t^{\eta})$

- Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$
- \bullet They perform measurements $\{F_s^\xi\}_{\xi=\pm 1}$, respectively $\{G_t^\eta\}_{\eta=\pm 1}$
- The probability that their response is (ξ, η) for inputs (i, j) is given by $a_{ij} = \text{Tr}(\rho F_s^{\xi} \otimes G_t^{\eta})$
- Again we can encode this information in a matrix

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1,d_2 , satisfying $\|X_i\|_{\infty},\|Y_j\|_{\infty}\leq 1$. $A=(a_{ij})$ is called quantum correlation matrix if there exists a state on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}$) such that

$$a_{ij}=\operatorname{Tr}\rho(X_i\otimes Y_j).$$

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1,d_2 , satisfying $\|X_i\|_{\infty},\|Y_j\|_{\infty}\leq 1$. $A=(a_{ij})$ is called quantum correlation matrix if there exists a state on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}$) such that

$$a_{ij}=\operatorname{Tr}
ho(X_i\otimes Y_j).$$

• Set of all quantum correlation matrices denoted by $QC_{m,n}$

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1,d_2 , satisfying $\|X_i\|_{\infty},\|Y_j\|_{\infty}\leq 1$. $A=(a_{ij})$ is called quantum correlation matrix if there exists a state on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}$) such that

$$a_{ij} = \operatorname{Tr} \rho(X_i \otimes Y_j).$$

ullet Set of all quantum correlation matrices denoted by $QC_{m,n}$

Lemma

$$\mathsf{QC}_{m,n} = \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\},$$

$\mathsf{QC}_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \leq 1 \leq m, 1 \leq j \leq n} \,|\, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$

• $a_{ij} = \operatorname{Tr} \rho X_i \otimes Y_j$, sate ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \geq m}$, $(Y_j)_{1 \geq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}$, $\|Y_i\|_{\infty} < 1$

$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

- $a_{ij} = \operatorname{Tr} \rho X_i \otimes Y_j$, sate ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \geq m}$, $(Y_j)_{1 \geq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on \mathcal{H} by $\beta: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ where $\beta(S,T) = \text{Re}(\text{Tr } \rho ST)$.

$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

- $a_{ij} = \operatorname{Tr} \rho X_i \otimes Y_j$, sate ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \geq m}$, $(Y_j)_{1 \geq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on \mathcal{H} by $\beta: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ where $\beta(S,T) = \text{Re}(\text{Tr } \rho ST)$.

$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

- $a_{ij} = \operatorname{Tr} \rho X_i \otimes Y_j$, sate ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \geq m}$, $(Y_j)_{1 \geq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on \mathcal{H} by $\beta: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ where $\beta(\mathcal{S}, \mathcal{T}) = \text{Re}(\text{Tr}\,\rho\mathcal{S}\mathcal{T})$.
- Obtain an inner product space $U := B^{sa}(\mathcal{H})/\ker\beta$ equipped with the inner product

$$\tilde{\beta}([S],[T]) = \beta(S,T).$$

$\mathsf{QC}_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

- $a_{ij}=\operatorname{Tr}
 ho X_i\otimes Y_j$, sate ho on a Hilbert space $\mathcal{H}=\mathbb{C}^{d_1}\otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1\geq m}, \ (Y_j)_{1\geq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty}\leq 1$
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on \mathcal{H} by $\beta: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ where $\beta(\mathcal{S}, \mathcal{T}) = \text{Re}(\text{Tr}\,\rho\mathcal{S}\mathcal{T})$.
- Obtain an inner product space $U := B^{sa}(\mathcal{H})/\ker \beta$ equipped with the inner product

$$\tilde{\beta}([S],[T]) = \beta(S,T).$$

$$\tilde{\beta}(x_i, y_j) = \beta(X_i, Y_j) = Re Tr(\rho X_i \otimes Y_j) = a_{ij}$$

$$\mathsf{QC}_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \leq 1 \leq m, 1 \leq j \leq n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}.$$

$$\tilde{eta}(x_i,y_j)=eta(X_i,Y_j)=\mathsf{ReTr}\left(
ho X_i\otimes Y_j
ight)=\mathsf{a}_{ij}$$

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

$$\tilde{\beta}(x_i, y_j) = \beta(X_i, Y_j) = ReTr(\rho X_i \otimes Y_j) = a_{ij}$$

• $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by using a *Schmidt-decomposition* of ρ and using $\|X_i\|_{\infty}, \|Y_i\|_{\infty} \leq 1$)

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

$$ilde{eta}(\mathsf{x}_i,\mathsf{y}_j) = eta(\mathsf{X}_i,\mathsf{Y}_j) = \mathsf{ReTr}\left(
ho \mathsf{X}_i \otimes \mathsf{Y}_j
ight) = \mathsf{a}_{ij}$$

- $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by using a *Schmidt-decomposition* of ρ and using $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$)
- Project the y_j 's orthogonally onto span $\{x_1,...,x_m\}$ (wlog $m \le n$)

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

$$ilde{eta}(\mathsf{x}_i,\mathsf{y}_j) = eta(\mathsf{X}_i,\mathsf{Y}_j) = \mathsf{ReTr}\left(
ho \mathsf{X}_i \otimes \mathsf{Y}_j
ight) = \mathsf{a}_{ij}$$

- $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by using a *Schmidt-decomposition* of ρ and using $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$)
- Project the y_j 's orthogonally onto span $\{x_1,...,x_m\}$ (wlog $m \le n$)
- $\pi(y_j)$ the projection of y_j then $\tilde{\beta}(x_i, \pi(y_j)) = \tilde{\beta}(x_i, y_j)$

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

$$ilde{eta}(\mathsf{x}_i, \mathsf{y}_j) = eta(\mathsf{X}_i, \mathsf{Y}_j) = \mathsf{ReTr}\left(
ho \mathsf{X}_i \otimes \mathsf{Y}_j
ight) = \mathsf{a}_{ij}$$

- $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by using a *Schmidt-decomposition* of ρ and using $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$)
- Project the y_j 's orthogonally onto span $\{x_1,...,x_m\}$ (wlog $m \le n$)
- $\pi(y_j)$ the projection of y_j then $\tilde{\beta}(x_i, \pi(y_j)) = \tilde{\beta}(x_i, y_j)$
- The vectors have still not the right dimension but again, we can project them onto vectors in \mathbb{R}^m

In order to show

$$\mathsf{QC}_{m,n}\supset\{\big(\langle x_i,y_j\rangle\big)_{1\leq 1\leq m,1\leq j\leq n}\,|\,x_i,y_j\in\mathbb{R}^{\min\{m,n\}},|x_i|\leq 1,|y_j|\leq 1\}$$

we will use the following

In order to show

$$\mathsf{QC}_{m,n}\supset\{\big(\langle x_i,y_j\rangle\big)_{1\leq 1\leq m,1\leq j\leq n}\,|\,x_i,y_j\in\mathbb{R}^{\min\{m,n\}},|x_i|\leq 1,|y_j|\leq 1\}$$

we will use the following

Proposition

For all $n \ge 1$ there is a subspace of the $2^n \times 2^n$ Hermitian matrices where every vector is the multiple of a unitary matrix.

In order to show

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \leq 1 \leq m, 1 \leq j \leq n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$$

we will use the following

Proposition

For all $n \ge 1$ there is a subspace of the $2^n \times 2^n$ Hermitian matrices where every vector is the multiple of a unitary matrix.

• The proof is based on n—fold tensor products of the Pauli matrices which are the three matrices

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\bullet \ \ X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Proof.

Define

$$U_{i} = I^{\otimes (i-1)} \otimes X \otimes Y^{\otimes (n-i)},$$

$$U_{n+i} = I^{\otimes (i-1)} \otimes Z \otimes Y^{\otimes (n-i)}, i = 1, \dots n$$

- U_i 's are anti-commuting traceless Hermitian unitaries, i.e. $U_iU_j=-U_jU_i$ for $i\neq j$ and $U_i^2=I$
- For $X = \sum_{i=1}^{2n} \xi_i U_i$, $Y = \sum_{i=1}^{2n} \eta_i U_i$ we can calculate

$$XY = \sum_{i=1}^{2n} \xi_{i} \eta_{i} I + \sum_{1 \leq i, j \leq \leq 2n} \xi_{i} \eta_{j} U_{i} U_{j}$$

$$= \sum_{i=1}^{2n} \xi_{i} \eta_{i} I + \sum_{1 \leq i < j \leq \leq 2n} \xi_{i} \eta_{j} U_{i} U_{j} - \sum_{1 \leq i < j \leq \leq 2n} U_{i} U_{j} = \sum_{i=1}^{2n} \xi_{i} \eta_{i} I$$

$$= \langle \xi, \eta \rangle I.$$

• The result follows by setting X = Y.

 $\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

• Let $(x_i)_{1 \le i \le m}$, $(y_j)_{1 \le j \le n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \le 1$.

$$QC_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

- Let $(x_i)_{1 \leq i \leq m}$, $(y_j)_{1 \leq j \leq n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \leq 1$.
- Let $X_i = \sum_{k=1}^{\min\{m,n\}} x_i(k) U_i$ and $Y_j^T = \sum_{k=1}^{\min\{m,n\}} y_j(k) U_k$ where the U_i 's are $d \times d$ matrices with $d = 2^{\lceil \min\{m,n\}/2 \rceil}$

$$QC_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

- Let $(x_i)_{1 \leq i \leq m}$, $(y_j)_{1 \leq j \leq n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \leq 1$.
- Let $X_i = \sum_{k=1}^{\min\{m,n\}} x_i(k) U_i$ and $Y_j^T = \sum_{k=1}^{\min\{m,n\}} y_j(k) U_k$ where the U_i 's are $d \times d$ matrices with $d = 2^{\lceil \min\{m,n\}/2 \rceil}$
- Tr $(X_iY_j^T) = d \cdot \langle x_i, y_j \rangle$ and $||X_i||_{\infty} \leq 1$ since $X_iX_i^* = |x_i|^2I$ and $|x_i|^2 \leq 1$ (the same holds for Y_i)

$\mathsf{QC}_{m,n} \supset \{ (\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1 \}$

- Let $(x_i)_{1 \leq i \leq m}$, $(y_j)_{1 \leq j \leq n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \leq 1$.
- Let $X_i = \sum_{k=1}^{\min\{m,n\}} x_i(k) U_i$ and $Y_j^T = \sum_{k=1}^{\min\{m,n\}} y_j(k) U_k$ where the U_i 's are $d \times d$ matrices with $d = 2^{\lceil \min\{m,n\}/2 \rceil}$
- Tr $(X_iY_j^T) = d \cdot \langle x_i, y_j \rangle$ and $\|X_i\|_{\infty} \leq 1$ since $X_iX_i^* = |x_i|^2 I$ and $|x_i|^2 \leq 1$ (the same holds for Y_j)
- Let $|\phi\rangle=\frac{1}{\sqrt{d}}\sum_{i=1}^{d}|ii\rangle$ and $\rho=|\phi\rangle\,\langle\rho|$. Note that we can write ρ as

$$\rho = |\phi\rangle\langle\phi| = \frac{1}{d}\sum_{1 \le k,l \le d} |kk\rangle\langle ll| = \frac{1}{d}\sum_{1 \le k,l \le d} |k\rangle\langle l| \otimes |k\rangle\langle l|$$

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

• Let $|\phi\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |ii\rangle$ and $\rho = |\phi\rangle\langle\rho|$. Note that we can write ρ as

$$\rho = \left|\phi\right\rangle\left\langle\phi\right| = \frac{1}{d}\sum_{1 < k, l < d}\left|kk\right\rangle\left\langle II\right| = \frac{1}{d}\sum_{1 < k, l < d}\left|k\right\rangle\left\langle I\right| \otimes \left|k\right\rangle\left\langle I\right|$$

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

• Let $|\phi\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |ii\rangle$ and $\rho = |\phi\rangle \langle \rho|$. Note that we can write ρ as

$$\rho = \left|\phi\right\rangle\left\langle\phi\right| = \frac{1}{d}\sum_{1 < k, l < d}\left|kk\right\rangle\left\langle ll\right| = \frac{1}{d}\sum_{1 < k, l < d}\left|k\right\rangle\left\langle l\right| \otimes \left|k\right\rangle\left\langle l\right|$$

Then

$$\operatorname{Tr}(\rho X_{i} \otimes Y_{j}) = \frac{1}{d} \sum_{1 \leq k, l \leq d} \operatorname{Tr}(|k\rangle \langle l| X_{i} \otimes |k\rangle \langle l| Y_{j})$$

$$= \frac{1}{d} \sum_{1 \leq k, l \leq d} \operatorname{Tr}(|k\rangle \langle l| X_{i}) \operatorname{Tr}(|k\rangle \langle l| Y_{j})$$

$$= \frac{1}{d} \operatorname{Tr} X_{i} Y_{j}^{T} = \langle x_{i}, y_{j} \rangle.$$

40.40.41.41.1.1.000

• $QC_{m,n}$ is convex

- $QC_{m,n}$ is convex
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_i|, |\bar{x}_i|, |\bar{y}_i| \leq 1$.

- $QC_{m,n}$ is convex
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j|, |\bar{x}_i|, |\bar{y}_j| \leq 1$.
- define vectors $\tilde{x}_i := (\sqrt{\lambda}x_i, \sqrt{1-\lambda}\bar{x}_i), \ \tilde{y}_j := (\sqrt{\lambda}y_j, \sqrt{1-\lambda}\bar{y}_j) \ \text{for} \ \lambda \in [0,1]$

- $QC_{m,n}$ is convex
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j|, |\bar{x}_i|, |\bar{y}_j| \leq 1$.
- define vectors $\tilde{x}_i := (\sqrt{\lambda}x_i, \sqrt{1-\lambda}\bar{x}_i), \ \tilde{y}_j := (\sqrt{\lambda}y_j, \sqrt{1-\lambda}\bar{y}_j) \ \text{for} \ \lambda \in [0,1]$
- it holds $|\tilde{x}_i| \leq \lambda |(x_i, 0)| + (1 \lambda)|(0, \bar{x}_i)| \leq 1$ and $\langle \tilde{x}_i, \tilde{y}_j \rangle = \lambda \langle x_i, y_j \rangle + (1 \lambda)\langle \tilde{x}_i, \tilde{y}_j \rangle$.

- $QC_{m,n}$ is convex
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j|, |\bar{x}_i|, |\bar{y}_j| \leq 1$.
- define vectors $\tilde{x}_i := (\sqrt{\lambda}x_i, \sqrt{1-\lambda}\bar{x}_i), \ \tilde{y}_j := (\sqrt{\lambda}y_j, \sqrt{1-\lambda}\bar{y}_j) \ \text{for} \ \lambda \in [0,1]$
- it holds $|\tilde{x}_i| \leq \lambda |(x_i, 0)| + (1 \lambda)|(0, \bar{x}_i)| \leq 1$ and $\langle \tilde{x}_i, \tilde{y}_j \rangle = \lambda \langle x_i, y_j \rangle + (1 \lambda) \langle \tilde{x}_i, \tilde{y}_j \rangle$.
- Right dimension is obtained by projecting $(\tilde{x}_i)_{1 \leq i \leq m}$, $(\tilde{y}_j)_{1 \leq i \leq n}$ on span $\{x_1, \ldots, x_m\}$ or span $\{y_1, \ldots, y_n\}$, as in the proof before.

The relations between quantum correlation and local correlation matrices

• $LC_{m,n} \subset QC_{m,n}$

The relations between quantum correlation and local correlation matrices

- $LC_{m,n} \subset QC_{m,n}$
- Set $x_i = \xi_i |0\rangle$ and $y_j = \eta_j |0\rangle$ it immediately follows $\xi_i \eta_j = \langle x_i, y_j \rangle$. Hence, $\xi \eta^T \in QC_{m,n}$ (rest follows with the convexity of $QC_{m,n}$)

The relations between quantum correlation and local correlation matrices

- $LC_{m,n} \subset QC_{m,n}$
- Set $x_i = \xi_i |0\rangle$ and $y_j = \eta_j |0\rangle$ it immediately follows $\xi_i \eta_j = \langle x_i, y_j \rangle$. Hence, $\xi \eta^T \in QC_{m,n}$ (rest follows with the convexity of $QC_{m,n}$)
- Inclusion is strict in general

• Let us consider the case n = m = 2.

- Let us consider the case n = m = 2.
- Recall $LC_{2,2} = \{\xi \eta^T | \xi \in \{-1,1\}^2, \, \eta \in \{-1,1\}^2\}$
- It holds

$$\mathsf{LC}_{2,2} = \mathsf{conv}\{\pm \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\}.$$

- Let us consider the case n = m = 2.
- Recall $LC_{2,2} = \{\xi \eta^T \mid \xi \in \{-1,1\}^2, \ \eta \in \{-1,1\}^2\}$
- It holds

$$\mathsf{LC}_{2,2} = \mathsf{conv}\{\pm \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\}.$$

W can also write it as in intersections of halfspaces:

$$LC_{2,2} = \{ A \in \mathbb{R}^{2 \times 2} \mid -1 \le \operatorname{Tr} AM \le 1 \text{ for all } M \in \mathcal{H} \}, \tag{1}$$

where
$$\mathcal{K}=\{\frac{1}{2}\sigma(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}),\sigma(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix})\,|\,\sigma\in\{\mathsf{id},(1\ 2),(1\ 3),(1\ 4)\}\}.$$

• We will show that the inclusion is strict by showing that both sets yield different values if we maximize in a certain direction

- We will show that the inclusion is strict by showing that both sets yield different values if we maximize in a certain direction
- Let $M = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

- We will show that the inclusion is strict by showing that both sets yield different values if we maximize in a certain direction
- Let $M = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
- $\begin{array}{l} \bullet \ \ \mathsf{LC}_{2,2} = \{A \in \mathbb{R}^{2 \times 2} \, | \, -1 \leq \mathsf{Tr} \, AM \leq 1 \ \text{for all} \ M \in \mathcal{H}\}, \, \text{where} \\ \mathcal{H} = \{\frac{1}{2}\sigma(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}), \sigma(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) \, | \, \sigma \in \{\mathsf{id}, (1\ 2), (1\ 3), (1\ 4)\}\}. \end{array}$
- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$

 $\bullet \ \max\{\operatorname{Tr}(AM) \,|\, A \in \mathsf{LC}_{2,2}\} = 2$

- $\max\{\text{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| le 1\}$

- $\max\{\text{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| le 1\}$

- $\max\{\text{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| le 1\}$
- $A \in QC_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$Tr(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| le 1\}$
- $A \in QC_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$\mathsf{Tr}(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

•
$$(|x_1 + x_2| + |x_1 - x_2|)^2 \le 4(|x_1|^2 + |x_2|^2)$$

- $\max\{\operatorname{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| le 1\}$
- $A \in \mathsf{QC}_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$\mathsf{Tr}(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

- $(|x_1 + x_2| + |x_1 x_2|)^2 \le 4(|x_1|^2 + |x_2|^2)$
- Tr $(AM) \le |x_1 + x_2| + |x_1 x_2| \le 2\sqrt{|x_1|^2 + |x_2|^2} \le 2\sqrt{2}$.

- $\max\{\operatorname{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| le 1\}$
- $A \in QC_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$\mathsf{Tr} (AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

- $(|x_1 + x_2| + |x_1 x_2|)^2 \le 4(|x_1|^2 + |x_2|^2)$
- Tr $(AM) \le |x_1 + x_2| + |x_1 x_2| \le 2\sqrt{|x_1|^2 + |x_2|^2} \le 2\sqrt{2}$.
- Bound is achieved by $A=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&1\end{pmatrix}$, induced by the vectors $x_1=x_2=\frac{1}{\sqrt{2}}(1,1)$ and $y_1=y_2=(1,0)$

Let $x, y \in \mathbb{R}^d$ be unit vectors. Let $r \in \mathbb{R}^d$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

Proof.

• if x and y are linearly dependent, then

Let $x, y \in \mathbb{R}^d$ be unit vectors. Let $r \in \mathbb{R}^d$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- if x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$

Let $x, y \in \mathbb{R}^d$ be unit vectors. Let $r \in \mathbb{R}^d$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- if x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$

Let $x, y \in \mathbb{R}^d$ be unit vectors. Let $r \in \mathbb{R}^d$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- if x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$
- if x and y are linearly independent, then

Let $x, y \in \mathbb{R}^d$ be unit vectors. Let $r \in \mathbb{R}^d$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- if x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$
 - if x = -y: $\operatorname{arccos}(\langle x, y \rangle) = \operatorname{arccos}(-1) = \pi$
- if x and y are linearly independent, then
 - project r orthogonally on span $\{x,y\}$ which gives us a vector s with $\langle x,r\rangle=\langle x,s\rangle$ and $\langle y,r\rangle=\langle y,s\rangle$

Let $x, y \in \mathbb{R}^d$ be unit vectors. Let $r \in \mathbb{R}^d$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{r}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- if x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$
- if x and y are linearly independent, then
 - project r orthogonally on span $\{x, y\}$ which gives us a vector s with $\langle x, r \rangle = \langle x, s \rangle$ and $\langle y, r \rangle = \langle y, s \rangle$
 - the normalized vector $n := s/\|s\|$ is uniformly distributed on the intersection of the unit sphere and span $\{x, y\}$ by the O(d)-invariance of the probability distribution

