MA1200

Practice Exercise 1

Answers

(a)
$$(x+b)^2-39$$

(d)
$$(y + \frac{9}{2})^2 - \frac{77}{4}$$

 $(y-9)^2-76$

(c)
$$(x+3)^2-9$$

(e)
$$\left(x - \frac{7}{2}\right)^2 - \frac{33}{4}$$

(f)
$$(y-\frac{21}{2})^2-\frac{441}{4}$$

2. (a)
$$(2x+6)^2-45$$

(b)
$$(3y-3)^2-4$$

(c)
$$(5x+8)^2-39$$

(d)
$$(3y+1)^2+14$$

(e)
$$(\sqrt{2}x-3)^2-4$$

$$(f)$$
 $(\sqrt{7}y + 6)^2 - 15$

(e)
$$[y-(-1)]^2 = 4(-3)(x-2)$$

 $(x-\frac{1}{2})^2 = 4(3)[y-(-1)]$

Vertex aty(2,-1) Fours at F(-1,-1)

 $V\left(\frac{1}{2},-1\right)$

Focus at

eig. - To locate (y-1)2=4(2)(x-3), you may first think of a sketch of $y^2 = 4(2)x$, then $(y-1)^2 = 4(2)(x-3)$ is just to translate $y^2 = 4(2)x$ 3 units to the right and 1 unit upward.

4. (a) (-1-16,0) and (-1+16,0)

(c) The parabola does not cut the x-axis.

5. (a) $(x-1)^2 + [y-(-4)]^2 = 3^2$ \therefore Centre at C(1,-4)

(c) $\left[x - (-\frac{1}{2}) \right]^2 + (y - 1)^2 = 4^2$ i. Centre at $(-\frac{1}{2}, 1)$ radius = 4 units

- 6. (a) $\left(-\frac{3}{2}, \frac{3\sqrt{5}}{2}\right)$ (b) $\left(\frac{7\sqrt{3}}{2}, -\frac{7}{2}\right)$ (c) $\left(-3\sqrt{2}, -3\sqrt{2}\right)$ (d) $\left(0, 2\right)$
- 7. (a) (413,30°)

(b) $(x-\sqrt{2})^2+(y-\sqrt{3})^2=5^2$ i. Centre at C(\(\bar{12}, \bar{13} \)), Radius = 5 units

(d) $(x-2)^2 + [y-(-\frac{3}{2})]^2 = 1^2$: Centre at $(2, -\frac{3}{2})$, radius = | unit

- (b) (2,120°) (c) (8,-150°)
- (d) (4,-30°)

8. (a)
$$\frac{\chi^2}{6^2} + \frac{y^2}{2^2} = 1$$

Vertices at (6,0), (-6,0),

Two foil are at $(4\sqrt{2},0)$ and $(-4\sqrt{2},0)$ Centre is at (0,0).

(c)
$$\frac{(x-1)^2}{3^2} + \frac{(y-2)^2}{2^2} = 1$$

Vertices at (1+3,2+0), (1-3,2+0), (1+0,2+2), (1+0,2-2),

i.e. (4,2), (-2,2), (1,4), (1,0)

i. The two Toui are at (\$5+1,2) and (-\$5+1,2)

(b)
$$\frac{x^2}{5^2} + \frac{y^2}{13^2} = 1$$

Vertices at (5,0), (-5,0), (0,-13)

Two Foci are at (0,12) and (0,-12) Centre is at (0,0).

8(d).
$$25x^2+y^2-150x+2y+201=0$$

 $25x^2-150x+y^2+2y=-201$
 $25(x^2-6x)+y^2+2y=-201$
 $25(x^2-6x+9)+y^2+2y+1=-201+225+1$
 $25(x-3)^2+(y+1)^2=25$
 $\frac{(x-3)^2}{1^2}+\frac{(y-(-1))^2}{5^2}=1$
 $1 = 5, b=1$
 $1 = 5, b=1$
 $1 = 5$
 $1 = 5$
Note: For the equation $\frac{x^2}{1^2}+\frac{x^2}{5^2}=1$, $\frac{1}{1}$ will represent an ellipse with vertices at $\{1,0\},\{-1,0\},\{0,5\},\{0,-5\}$
Foi at $\{0,256\},\{0,-256\}$.

The ellipse we have: $\frac{(x-3)^2}{1^2} + \frac{[y-(-1)]^2}{5^2} = 1 - (*)$ is just to translate $\frac{x^2}{1^2} + \frac{y^2}{5^2} = 1$ for
3 units to the right and
(-1) unit upward. (i.e. | unit downward.)

Vertices (are: (1+3,0-1), (-1+3,0-1), (0+3,5-

i.e. (4,-1), (2,-1), (3,4), (3,-6). Focijare = (0+3,256-1) for (4) (0+3,-256-1) i.e. (3,256-1), (3,-256-1)

.. The sketch is as follows:

9. (a)
$$\frac{y^2}{4^2} - \frac{x^2}{5^2} = 1$$

(b)
$$\frac{x^2}{5^2} - \frac{y^2}{3^2} = 1$$

.. The vertices are (0,4) and (0,-4).

i. The vertices are (5,0) and (-5,0)

(c)
$$\frac{(x-1)^2}{3^2} - \frac{(y-(-2))^2}{4^2} = 1$$

(d)
$$\frac{(y-1)^2}{\sqrt{5}^2} - \frac{(x-(-1))^2}{2^2} = 1$$

in. The vertices of (*) are at (3+1,0-2) (-3+1, 0-2), i.e. (4,-2) and (-2,-2)

10. (a) $\left(x - \frac{1}{2}\right)^2 + \left(y - \left(-\frac{3}{2}\right)\right)^2 = 2^2$

It represents a circle.

(b) $(y-3)^2 = 4(-1)\left(x-\left(-\frac{1}{2}\right)\right)$

It represents a parabola.

(c) $\frac{x^2}{1^2} + \frac{(y-1)^2}{2^2} = 1$

It represents a hyperbola.

(d) $\frac{(x-1)^2}{2^2} + \frac{(y-(-3))^2}{1^2} = 1$

It represents an ellipse.

11. (a)
$$\frac{y'^2}{1} - \frac{x'^2}{3} = 1$$

(b)
$$\frac{{x'}^2}{4} - \frac{{y'}^2}{9} = 1$$

- 12. (a) Hyperbola (c) Hyperbola

- (b) Circle
- (d) An ellipse or a circle
- 13. (a) No intersection
- (b) (0,-2) and (1,0) (c) (0,1) and (0,-1)