Démonstration du théorème d'Ampère à partir de la formule de Biot & Savart

Soit une surface ouverte S s'appuyant sur un contour orienté C_P , d'orientation compatible (règle de la main droite ou du tire-bouchon), vue depuis le point M sous un angle solide Ω .

On déplace "en bloc" le contour \mathcal{C}_P , d'un vecteur $d \not \ell$, on forme le nouveau contour \mathcal{C}_P ', sur lequel s'appuie une surface ouverte orientée \mathcal{S}' , vue depuis le point M sous un angle solide Ω '. On veut exprimer $d\Omega = \Omega' - \Omega$

Le contour \mathcal{C}_P au cours de son déplacement $d \not \ell$, engendre une surface dS, que l'on nommera "surface latérale", notée $dS_{latérale}$. L'ensemble $\mathcal{S} \cup \mathcal{S}' \cup dS_{latérale}$ forme une surface fermée Σ , sur l'on orientera en "normale sortante", ce qui a pour conséquence de changer le sens positif de la surface \mathcal{S} , et pour autre conséquence d'orienter la surface latérale $dS_{latérale}$ vers l'extérieur, pour un élément de cette surface latérale pris dans un voisinage du point P, on peut écrire $d^{\mathbf{II}} \overrightarrow{S}_{latérale} = d \overrightarrow{\ell}_P \wedge d \overrightarrow{\ell}$, cet élément de surface

est vu depuis M sous un angle solide élémentaire algébrique : $d^{II}\Omega_{latérale} = \frac{d \overrightarrow{\ell}_P \wedge d \overrightarrow{\ell} \cdot \overrightarrow{MP}}{MP^3}$

Or, l'angle solide algébrique sous lequel on voit une surface fermée depuis un point extérieur à celle-ci est nul, On en tire donc $0 = \Omega' - \Omega + d\Omega_{latérale}$, le signe "-" de $-\Omega$ provient de l'orientation opposée entre

la surface fermée Σ et $d\Omega_{\text{latérale}} = \oint_{C_p} \frac{d \overrightarrow{\ell}_P \wedge d \overrightarrow{\ell}.\overrightarrow{MP}}{MP^3} = -\Omega' + \Omega = -d\Omega$ variation de l'angle solide sous

lequel on voit la surface $\mathcal S$ depuis M, pendant son déplacement de $d \not \ell$.

Application au calcul de la circulation du champ magnétique créé par un contour filiforme.

Soit un circuit filiforme C_P parcouru par un courant d'intensité i. L'élément de longueur $d \not\in_P$ pris dans un voisinage du point P, parcouru par le courant i créé en M un champ magnétique élémentaire $d \not B$ donné par la formule de Biot & Savart :

$$d\vec{B} = \frac{\mu_0 \cdot i}{4\pi} \cdot \frac{d\vec{\ell}_P \wedge \overrightarrow{PM}}{PM^3}$$

soit un champ magnétique total créé par le circuit CP en M:

$$\vec{B}(M) = \oint_{C_P} \frac{\mu_0 i}{4\pi} \cdot \frac{d \vec{\ell}_P \wedge \overrightarrow{PM}}{PM^3}$$

Le but est de trouver la circulation du champ total sur un contour orienté C_M , la circulation élémentaire $d\mathbb{C}$ du champ $\vec{B}(M)$ sur l'élément de longueur (orienté) $d\vec{\ell}_M$ pris dans un voisinage de M soit : $d\mathbb{C} = \vec{B}(M)$. $d\vec{\ell}_M$.

On peut remarquer que si M' est un point infiniment proche de M pris sur le contour orienté C_M , alors $d \vec{\ell}_M = \overrightarrow{MM}'$.

On pose Ω l'angle solide algébrique sous lequel on voit une surface (ouverte) s'appuyant sur C_P depuis M, la surface étant orientée selon le sens positif défini par l'orientation du contour C_P . On pose également Ω' l'angle solide sous lequel on voit cette même surface depuis M'.

On veut calculer Ω' – $\Omega = d\Omega$ variation de l'angle solide lorsque M passe de M à M'. Tout se passe comme si au lieu de déplacer M de $d \not\in M$, on déplaçait de circuit C_P de $-d \not\in M$, et que l'on s'intéresse à la variation d'angle solide à M fixé.

Avec le calcul préliminaire, on trouve avec $d \vec{\ell} = -d \vec{\ell}_M = -\overrightarrow{MM}'$:

$$d\Omega = -d\Omega_{\text{latérale}} = -\oint_{C_{p}} \frac{d\overrightarrow{\ell}_{P} \wedge d\overrightarrow{\ell}.\overrightarrow{MP}}{MP^{3}} = \oint_{C_{p}} \frac{d\overrightarrow{\ell}_{P} \wedge d\overrightarrow{\ell}_{M}.\overrightarrow{MP}}{MP^{3}} = \oint_{C_{p}} \frac{\overrightarrow{MP} \wedge d\overrightarrow{\ell}_{P}}{MP^{3}}.d\overrightarrow{\ell}_{M} = \oint_{C_{p}} \frac{d\overrightarrow{\ell}_{P} \wedge \overrightarrow{PM}}{MP^{3}}.d\overrightarrow{\ell}_{M}$$

donc pour la circulation élémentaire :

$$dC = \overrightarrow{B}(M) \cdot d\overrightarrow{\ell}_{M} = \oint_{C_{n}} \frac{\mu_{0} \cdot i}{4\pi} \cdot \frac{d\overrightarrow{\ell}_{P} \wedge \overrightarrow{PM}}{PM^{3}} \cdot d\overrightarrow{\ell}_{M} = \frac{\mu_{0} \cdot i}{4\pi} \cdot d\Omega$$

Où d Ω est la variation d'angle solide sous lequel on voit C_P depuis M, lorsqu'on se déplace de M à M', avec $d \vec{\ell}_M = \overrightarrow{MM}$ '

La circulation sur un segment AB orienté donnera donc $C_{A\to B} = \frac{\mu_0 i}{4\pi} [\Omega_B - \Omega_A]$, où Ω_B est l'angle solide sous lequel on voit le circuit C_P (parcouru par un courant d'intensité i) depuis B, et Ω_A l'angle solide depuis A.

Calcul de la variation d'angle solide.

On considère la surface S_P s'appuyant sur le contour C_P et orientée selon le sens positif du contour. On passe de A à B selon deux chemins différents (1) faisant "le tour" de S_P et (2) "traversant" S_P .

Par le chemin 1, la variation de l'angle solide se fait de façon continue, et on obtient $\Delta\Omega = \Omega_B - \Omega_A$. Par le chemin 2, l'angle solide subit une discontinuité à la traversée de la surface, au point J. On nomme J^- le point juste avant la traversée, J^+ juste après.

 $\Delta\Omega$ s'obtient donc comme $\Omega_B-\Omega_{J^+}+\Omega_{J^-}-\Omega_A.$

 Ω_{J^+} est l'angle solide sous lequel on voit la surface S_P depuis J^+ (extrêmement proche de S_p), S_P apparaît donc comme un plan infini, l'angle solide, compte-tenu des orientations, vaut donc -2π .

 Ω_J est l'angle solide sous lequel on voit la surface S_P depuis J^- ... ici + 2π

On en tire donc : $\Delta\Omega = \Omega_B - \Omega_{J+} + \Omega_{J-} - \Omega_A = \Omega_B - \Omega_A + 4\pi$

Pour la variation d'angle complet sur un contour fermé :

Si le contour ne traverse pas S_P : $\Delta\Omega=\Omega_{final}-\Omega_{initial}=0$ (pas de discontinuité)

Si le contour traverse la surface dans le sens de son orientation :

$$\Delta\Omega = \Omega_{final} - \Omega_{initial} + 4\pi = 4\pi$$

Si le coutour traverse la surface dans le sens contraire: $\Delta\Omega=\Omega_{final}-\Omega_{initial}-4\pi=-4\pi$

On en tire donc le théorème d'Ampère : $C = \oint_{C_M} \vec{B}(M) \cdot d \vec{\ell}_M = \mu_0 \cdot \Sigma i_{\text{enlacés}}$

Le signe de $i_{\text{enlac}\acute{e}}$ étant fixé par le sens de traversée du contour, selon les schémas ci-dessus.