INVENTORY STORE MANAGEMENT SYSTEM

Project submitted to the

SRM University - AP, Andhra Pradesh

for the partial fulfillment of the requirements to award the degree of

Bachelor of Technology/Master of Technology

In

Computer Science and Engineering School of Engineering and Sciences

Submitted by

K . Jaya Prakash (AP20110010403)

Under the Guidance of

Prof. Dr Rajiv Senapati

Department of Computer science Engineering

SRM University-AP
Neerukonda, Mangalagiri, Guntur
Andhra Pradesh - 522 240
[December, 2022]

Certificate

Date: 19-Jul-23

This is to certify that the work present in this Project entitled "INVENTORY STORE MANAGEMENT SYSTEM" has been carried out by K. Jaya Prakash under my/our supervision. The work is genuine, original, and suitable for submission to the SRM University – AP for the award of Bachelor of Technology/Master of Technology in School of Engineering and Sciences.

Supervisor

(Signature)

Prof. / Dr. [Name]

Designation,

Affiliation.

Co-supervisor

(Signature)

Prof. / Dr. [Name]

Designation,

Affiliation.

Acknowledgements

We thank **Dr**. **Rajiv Senapati**, our professor in charge, for the help and direction finishing the project on the subject inventory store management system. It was a fantastic learning opportunity. This subject has given me an opportunity to explore the field I always have been curious about. Your insightful counsel and recommendations were quite beneficial to me as I finished the assignment. I will always be grateful to you for this.

Table of Contents

Cer	rtificate	i
Ack	knowledgements	iii
Tab	ole of Contents	iv
Abs	stract	vi
1.	Introduction	1
2.	Methodology	3
3.	List of Entities:	3
4.	ER MODEL:	6
5.	ER MODEL TO RELATIONAL MODEL	7
6.	Normalization:	9
7.	SQL Code for the project:	19
8.	SQL QUERIES :	32
9.	Concluding Remarks	36
10	References:	38

Abstract

Data needs to be stored in an organized way so that it is easy to use and manipulate the information. This Project talks about inventory store management system which is an combination of (software and hardware) and process and procedures that oversee the monitoring and maintenance of stocked products, which includes management of raw materials, components and finished products. This system can be widely used by normal shops and departmental stores for keeping proper track of stock, it contains manager details, customer details etc. Checking requirements, finding all entities and their properties, ER diagram, converting ER to relational model, Normalizing, and SQL code are the steps followed. The main theme is to decrease the redundancy and inconsistency of the data.

1. Introduction

There are various ways to store and retrieve the data. Older versions like using files for data organizing have many issues and take more manpower and time. Data redundancy, Data inconsistency, Data isolation, Atomicity, Concurrent access, Security are the few tasks which become an anomaly by using files. Database management system (DBMS) helps to hold all above issues.

Store management system is one of the applications where maintaining a database is required. In this report the simple requirements were considered. This database system stores the data about the availability of the products, information regarding sale statistics, details of manager so that customers can contact with them easily.

2. Methodology

<u>Step 1:</u>

3. List of Entities:

- 1.Manager
- 2.Supplyers
- 3.Products
- 4.Store
- 5.Workers
- 6.Billing
- 7.Sales
- 8.Customer
- 9.Payment
- 10.Tax

Step 2:

List of attributes:

- Manager(<u>manager_id</u>, manager_name, manager_Qualification, manager_ContactNumber, manager_dateofbirth,, manager_gender, manager_address).
- 2. Supplyer(<u>supplyer_id</u>, supplyer_name, supplyer_address, supplyer_contactnumber).

- 3. Products(<u>product_id</u>, product_name, product_type, product_cost, product_discription).
- 4. Store(<u>store_id</u>, store_name, store_contactnumber, store_address).
- 5. Workers(<u>worker_id</u>, worker_name, worker_type, worker_salary, worker_contact, worker_gender).
- 6. Billing(billing_id, billing_date, billing_amount).
- 7. Sales(<u>sales_id</u>, sales_cost, sales_discription).
- 8. Customer_id , customer_name , customer_address , customer_contact , customer_email_id).
- 9. Payment_id , payment_date , payment_amount , payment_type , payment_status).
- 10. Tax(<u>tax_id</u>, tax_amount, tax_type).

Step 3:

4. ER MODEL:

ER Diagram:

5. ER MODEL TO RELATIONAL MODEL

RELATIONAL MODEL: Data is represented as relation (or table) which consists of rows and columns.

Below are the rules used for conversion of ER model to Relational model

- 1. An entity in the ER model is represented by a relational table in the relational model.
- 2. All the attributes of the ER model are represented in different columns as an attribute.
- 3. Primary key attribute of the ER model is represented as the primary key in the relational model.
- 4. Composite key of the ER model is split in different columns in the relational model.
- 5. Derived attributes must be dropped in relational models.
- 6. Multi valued attributes need to be kept separate in a new table.
- 7. If the relationship between two entities is 1:1 then the primary key of one relation becomes foreign key in another relation.
- 8. If the relationship between entities is 1:M or M:1 then the primary key attribute of one-sided relations becomes a foreign key in many-sided relations.
- 9. If the relationship between entities is M:M then a new table needs to be created to represent that relation, where the new relation will have the primary key of both relations as the foreign keys.

Relational model:

6. Normalization:

Normalization is a process of analyzing and decomposing the complex relation which satisfies some constraint to form a simple relation.

There are 5 Normal forms:

- 1. First Normal Form (1NF)
- 2. Second Normal Form (2NF)
- 3. Third Normal Form (3NF) or Boyes Cord Normal Form (BCNF)
- 4. Fourth Normal Form (4NF)
- 5. Fifth Normal Form (5F) or Project Join Normal Form (PJNF)

Manager Table:

Attributes:

Manager-ID, Mfirst_name, Mmiddle_name, Mlast-name, Manager_qualification, Manager-DOB, House-number, Location, City, State.

functional Dependencies:-

```
Manager - ID → Mfirst_name
```

Manager ID → Mmiddle_name

Manager ID → Mlast_name

Manager ID → Manager_qualification

Manager-ID → Manager_D.O.B

Manager-ID → Location

Manager-ID → City

Manager-ID → State

Manager-ID → Gender

Primary_Key: Manager_ID

First Normal Form(1NF):

CONDITION: If a relation is said to be in 1NF only if it has no non atomic attributes in it.

The table is already in First Normal Form because there are no non atomic attributes present in it.

Second Normal Form(2NF):

If a relation is said to be in 2NF then the relation should be in 1NF and should satisfy any one of the below conditions.

CONDITIONS: 1. If the primary_key consists of only one attribute.

- 2.If there exists no non key attributes.
- 3. Every non key attribute present in the relation should be fully functionally dependent on the full set of the primary_key.

The table is already in 2NF because it is 1NF and satisfies the first condition of the second normal form.

Third Normal Form(3NF):

CONDITION: If a relation is said to be in 3NF only if the relation is in 1NF, 2NF & it has no transitive functional dependency in it.

The table is already in 3NF because it is in 1NF, 2NF and there is no transitive functional dependency in the table.

Boyce Codd Normal Form(BCNF):

CONDITION: If a relation is said to be in BCNF only if it is in 1NF, 2NF, 3NF and satisfies any one of the below conditions.

- 1. $X \rightarrow Y$, Y be a subset of X
- 2. X is a Super Key

The table is already in BCNF because it is in 1NF, 2NF, 3NF & it satisfies the first condition of BCNF.

Fourth Normal Form(4NF):

If a relation is said to be in fourth normal form(4NF) only if it has no multivalued dependencies.

The table is already in 4NF because it has no multivalued dependencies.

Manager_Contact Table:

Attributes:

Manager_ID, Manager_contact

Functional Dependencies:

Manager_ID → Manager_Contact

Primary & Foreign Key: Manager_ID

First Normal Form(1NF):

The table is already in 1NF because it has no non atomic attributes present in it.

Second Normal Form(2NF):

The table is already in 2NF because it is in 1NF & satisfies the third condition of 2NF.

Third Normal Form(3NF):

The table is already in 3NF because the table is in 1NF, 2NF and it does not have any transitive functional dependency int it.

Boyce Codd Normal Form(BCNF):

The table is already in BCNF because the table is in 1NF, 2NF, 3NF & it satisfies the first condition of the Boyce Codd Normal Form.

Fourth Normal Form(4NF):

The table is already in 4NF because the table has no multivalued dependencies in it.

Products Table:

Attributes:

Product_ID, Product_Name, Product_Type, Product_cost, Product_description

Functional Dependencies:

Product_ID → Product_name

Product_ID → Product_Type

Product_ID → Product_cost

Product_ID → Product_description

Primary Key: Product_iD

First Normal Form(1NF):

The table is already in 1NF because the table has no non atomic attributes present in it.

Second Normal Form(2NF):

The table is already in 2NF because the table is in 1NF & has no partial functional dependencies in it.

Third Normal Form(3NF):

The table is already in 3NF because the table is in 1NF, 2NF & has no transitive functional dependency among the attributes.

Fourth Normal Form(4NF):

The table is already in 4NF because it has no multivalued dependency in it.

Sales Table:

Attributes:

Sales_ID, cost, Sales_description

Functional Dependencies:

Sales_ID → cost

Sales_ID → Sales_description

Primary Key: Sales_ID

First Normal Form(1NF):

The table is already in 1NF because the table has no non atomic attributes in it.

Second Normal Form(2NF):

The table is already in 2NF because the table is in 1NF & has only one Primary Key in it which satisfies the first condition of 2NF.

Third Normal Form(3NF):

The table is already in 3NF because the table is in 1NF, 2NF & has no transitive functional dependency among the attributes.

Fourth Normal Form(4NF):

The table is already in 4NF because it has no multivalued dependency in it.

Store Table:

Attributes:

Store_ID, Store_Name, Street_name, Location, city, state

Functional Dependencies:

Store_ID → Store_Name

Store_ID → Street_name

Store_ID → Location

Store_ID → city

Store_ID → State

Primary Key: Showroom_ID

First Normal Form(1NF):

The table is already in 1NF because the table has no non atomic attributes in it.

Second Normal Form(2NF):

The table is already in 2NF because the table is in 1NF & has no partial dependencies in it which satisfies the third condition of 2NF.

Third Normal Form(3NF):

The table is already in 3NF because the table is in 1NF, 2NF & has no transitive functional dependency among the attributes.

Fourth Normal Form(4NF):

The table is already in 4NF because it has no multivalued dependency in it.

Worker_Table:

Attributes:

Worker_ID, Wfirst_name, Wmiddle_name, Wlast_name, Worker_type, Worker_salary, Worker_description, Gender.

Worker_ID → Wfirst_name

Worker_ID → Wmiddle_name

Worker _ID → Wlast_name

Worker_ID → Worker_type

Worker_ID → Worker_salary

Worker_ID → Worker_description

Worker_ID → Gender

Primary Key: Worker_ID

First Normal Form(1NF):

The table is already in 1NF because the table has no non atomic attributes in it.

Second Normal Form(2NF):

The table is already in 2NF because the table is in 1NF & has only one primary key in it which satisfies the first condition of 2NF.

Third Normal Form(3NF):

The table is already in 3NF because the table is in 1NF, 2NF & has no transitive functional dependency among the attributes.

Fourth Normal Form(4NF):

The table is already in 4NF because it has no multivalued dependency in it.

Payment Table:

Attributes:

Payment_ ID, Payment_ date, Payment_ Amount, Payment_ type, Status

Functional Dependencies:

Payment _ID → Payment _date

Payment _ID → Payment _Amount

Payment _ID → Payment _type

Payment _ID → Status

Primary Key: Payment _ID

First Normal Form(1NF):

The table is already in 1NF because the table has no non atomic attributes in it.

Second Normal Form(2NF):

The table is already in 2NF because the table is in 1NF & has only one primary key in it which satisfies the first condition of 2NF.

Third Normal Form(3NF):

The table is already in 3NF because the table is in 1NF, 2NF & has no transitive functional dependency among the attributes.

Fourth Normal Form(4NF):

The table is already in 4NF because it has no multivalued dependency in it.

Customer Table:

Attributes:

Customer_ID, Cfirst_ name, Cmiddle_ name, Clast_name, Location, city, state.

Functional Dependencies:

Customer _ID → Cfirst_ name

Customer _ID → Cmiddle_ name

Customer _ID → Clast_name

Customer _ID → Location

Customer _ID → city

Customer _ID → State

Primary Key: Customer _ID

First Normal Form(1NF):

The table is already in 1NF because the table has no non atomic attributes in it.

Second Normal Form(2NF):

The table is already in 2NF because the table is in 1NF & has only one primary key in it which satisfies the first condition of 2NF.

Third Normal Form(3NF):

The table is already in 3NF because the table is in 1NF, 2NF & has no transitive functional dependency among the attributes.

Fourth Normal Form(4NF):

The table is already in 4NF because it has no multivalued dependency in it.

Tax Table:

Attributes:

Tax_ ID, Tax_ Amount, Tax_ Type

Functional Dependencies:

Tax _ID → Tax _Amount

 $Tax _ID \rightarrow Tax _Type$

Primary Key: Payment _ID

First Normal Form(1NF):

The table is already in 1NF because the table has no non atomic attributes in it.

Second Normal Form(2NF):

The table is already in 2NF because the table is in 1NF & has only one primary key in it which satisfies the first condition of 2NF.

Third Normal Form(3NF):

The table is already in 3NF because the table is in 1NF, 2NF & has no transitive functional dependency among the attributes.

Fourth Normal Form(4NF):

The table is already in 4NF because it has no multivalued dependency in it.

Multivalued Tables:

First Normal Form(1NF):

All the multivalued tables are already in 1NF because all the tables has no non atomic attributes in them.

Second Normal Form(2NF):

All the multivalued tables are already in 2NF because all the tables are in 1NF & has no partial dependencies in them which satisfies the first condition of 2NF.

Third Normal Form(3NF):

All the tables are already in 3NF because the tables are in 1NF, 2NF & has no transitive functional dependency among the attributes in the multivalued tables.

Fourth Normal Form(4NF):

All the tables are already in 4NF because the tables has no multivalued dependency in them.

7. SQL Code for the project:

```
create database project;
use project;
     -----#CREATINGTABLES:-----
#1.MANAGER TABLE....
create table manager (
Manager_id int primary key,
Mfirst_name varchar(20),
Mmiddle_name varchar(20),
Mlast_name varchar(20),
Manager_Qualification varchar(20),
Manager_DOB date,
Gender varchar(15),
Location varchar(20),
city varchar(20),
State varchar(20)
);
create table Billing_details (
Billing_id int primary key,
Billing_date date,
Billing_amount int,
Manager_id int references manager(Manager_id)
```

```
);
create table manager_contact (
Manager_id int references manager(Manager_id),
Manager_contact int
);
create table supplyer (
Supplyer_id int primary key,
Supplyer_store_name varchar(20),
Supplyer_first_name varchar(20),
Supplyer_middle_name varchar(20),
Supplyer_last_name varchar(20),
Supplyer_location varchar(20),
city varchar(20),
State varchar(20),
Supplyer_Gender varchar(10)
);
create table Supplyer_contact (
Supplyer_id int references supplyer(Supplyer_id),
Supplyer_contact int
);
create table manager_supplyer (
Manager_id int references manager(Manager_id),
```

```
Supplyer_id int references supplyer(Supplyer_id)
);
create table products (
Product_id int primary key,
Product_name varchar(20),
Product_type varchar(20),
Product_cost varchar(20),
Product_discription varchar(20),
Supplyer_id int references supplyer(Supplyer_id)
);
create table store (
Store_id int primary key,
Store_name varchar(20),
Store_street_name varchar(20),
location varchar(20),
city varchar(20),
state varchar(20)
);
create table store_contact (
Store_id int references store(Store_id),
Store_contact_number int
);
create table Supplyer_store (
```

```
Supplyer_id int references supplyer(Supplyer_id),
Store_id int references store(Store_id)
);
create table workers
(
Workers_id int primary key,
Workers_first_name varchar(20),
Workers_middle_name varchar(20),
Workers_last_name varchar(20),
Store_id int references store(Store_id),
Workers_type varchar(20),
Workers_salary int,
Workers_discription varchar(20)
);
create table workers_contact
(
Workers_id int references workers(Workers_id),
Workers_contact int
);
create table customer
Customer_id int primary key,
Customer_first_name varchar(20),
```

```
Customer_middle_name varchar(20),
Customer_last_name varchar(20),
Customer_street_name varchar(20),
location varchar(20),
city varchar(20),
state varchar(20),
Customer_gender varchar(10)
);
create table sales
Sales_id int primary key,
Product_id int references products(Product_id),
cost int,
Sales_discription varchar(20),
Store_id int references store(Store_id),
Customer_id int references customer(Customer_id)
);
create table tax
(
Tax_id int primary key,
Tax_amount int,
Tax_type varchar(20),
Sales_id int references sales(Sales_id)
);
create table customer_email
```

```
(
Customer_id int references customer(Customer_id),
email_id varchar(20)
);
create table customer_contact
(
Customer_id int references customer(Customer_id),
Customer_contact_number int
);
create table payment
Payment_id int primary key,
Customer_id int references customer(Customer_id),
Payment_date date,
Payment_amount int,
Payment_type varchar(20),
Payment_status varchar(20)
);
insert into manager values(1,'kadiyala','jaya','prakash','PHD','2003-06-
14', 'male', 'gannavaram', 'vijayawada', 'AP');
select*from manager;
```

	Manager_id	Mfirst_name	Mmiddle_name	Mlast_name	Manager_Qualification	Manager_DOB	Gender	Location	city	State
•	1	kadiyala	jaya	prakash	PHD	2003-06-14	male	gannavaram	vijayawada	AP

insert into Billing_details values(11,'2022-11-27','56000',2);

insert into Billing_details values(16,'2005-04-27','100000',1); insert into Billing_details values(120,'2000-12-11','56000',4); insert into Billing_details values(17,'2011-02-01','4326000',3); select*from Billing_details;

insert into manager_contact values(1,'90146447');
select*from manager_contact;

insert into supplyer

values(1,'ravi_store','komminani','jagadeesh','chowdary','kasarapalli','vijayawada','A P','male');

insert into supplyer

values(2,'jagu_store','komminani','ravi','teja','nidamaru','guntur','AP','male');

insert into supplyer

values(3,'narayana_store','kadiyala','narayana','murthy','koragalu','vijayawada','AP',' male');

insert into supplyer

values(4,'chandu_store','komminani','chandra','shakar','kasarapalli','vijayawada','AP', 'male');

select*from supplyer;

Supplyer_id	Supplyer_store_name	Supplyer_first_name	Supplyer_middle_name	Supplyer_last_name	Supplyer_location	city	State	Supplyer_Gender
1	ravi_store	komminani	jagadeesh	chowdary	kasarapalli	vijayawada	AP	male
2	jagu_store	komminani	ravi	teja	nidamaru	guntur	AP	male
3	narayana_store	kadiyala	narayana	murthy	koragalu	vijayawada	AP	male
4	chandu_store	komminani	chandra	shakar	kasarapalli	vijayawada	AP	male

insert into Supplyer_contact values(1,'123456789'); insert into Supplyer_contact values(2,'098765432'); insert into Supplyer_contact values(3,'756484657'); insert into Supplyer_contact values(4,'999999999'); select*from Supplyer_contact;

	Supplyer_id	Supplyer_contact
•	1	123456789
	2	98765432
	3	756484657
	4	999999999

insert into manager_supplyer values(1,1); select *from manager_supplyer; insert into manager_supplyer values(1,4); insert into manager_supplyer values(4,3); insert into manager_supplyer values(22,7);

insert into products values(101,'santoor','soap','100','itwillcleanourbody',1); insert into products values(102,'samsunggalaxyA21S','mobile','15000','used to talk',2); insert into products values(103,'colgate','paste','80','used to clean teeth',3); insert into products values(104,'crocks','footwear','1500','protect our foot',4); select*from products;

	Product_id	Product_name	Product_type	Product_cost	Product_discription	Supplyer_id
•	101	santoor	soap	100	itwillcleanourbody	1
	102	samsunggalaxyA21S	mobile	15000	used to talk	2
	103	colgate	paste	80	usedto dean teeth	3
	104	crocks	footwear	1500	protect our foot	4

insert into store values(1,'jaya_store','royalstreet','gannavaram','vijayawada','AP'); insert into store values(2,'chandu_store','shoppingstreet','mangalagiri','gunture','AP'); insert into store values(3,'srujana_store','cinemastreet','jalandhar','patiala','punjab'); insert into store values(4,'nithin_store','changestreet','ludhiana','bathinda','bihar');

select * from store;

Store_id	Store_name	Store_street_name	location	city	state
1	jaya_store	royalstreet	gannavaram	vijayawada	AP
2	chandu_store	shoppingstreet	mangalagiri	gunture	AP
3	srujana_store	cinemastreet	jalandhar	patiala	punjab
4	nithin_store	changestreet	ludhiana	bathinda	bihar

insert into store_contact values(1,'878799098'); insert into store_contact values(2,'656567743'); insert into store_contact values(3,'949083829'); insert into store_contact values(4,'888776654');

select * from store_contact;

	Store_id	Store_contact_nummber
•	1	878799098
	2	656567743
	3	949083829
	4	888776654

insert into Supplyer_store values(1,1001);

```
insert into Supplyer_store values(2,1002); insert into Supplyer_store values(4,203); insert into Supplyer_store values (3,303);
```

select*from Supplyer_store;

	Supplyer_id	Store_id
•	1	1001
	2	1002
	4	203
	3	303

insert into workers values(10,'nikith','sai','reddy',1,'phone_display','20000','whoexplainsphones');

insert into workers values(11, 'mahamad', 'ashmi', 'irfan', 2, 'cashier', '50000', 'whocollectscash');

insert into workers values(12,'boddu','lakshmi','sndeep',3,'cleaner','5000','whocleansfloor');

insert into workers values(13,'sai','vishnu','vrdhan',4,'securitygard','10000','protectfromthieves');

select * from workers;

Workers_id	Workers_first_name	Workers_middle_name	Workers_last_name	Store_id	Workers_type	Workers_salary	Workers_discription
10	nikith	sai	reddy	1	phone_display	20000	whoexplainsphones
11	mahamad	ashmi	irfan	2	cashier	50000	whocollectscash
12	boddu	lakshmi	sndeep	3	deaner	5000	whodeansfloor
13	sai	vishnu	vrdhan	4	securitygard	10000	protectfromthieves
NUU I	NUU I	NUUL	AU U I	AU U I	AU U I	AU U I	SH H I

insert into workers_contact values(10,'849384848'); insert into workers_contact values(11,'545454544'); insert into workers_contact values(12,'500004544');

insert into workers_contact values(13,'545212124');

select * from workers_contact;

	Workers_id	Workers_contact
•	10	849384848
	11	545454544
	12	500004544
	13	545212124

insert into customer

values(1,'shaik','azaj','uddin','marketstreet','mangalagiri','gunture','AP','male');

insert into customer

values(2,'mahesh','kumar','reddy','golastreet','jagadiriguta','hydrabad','telangana','ma le');

insert into customer

values(3,'valabanani','srujana','sri','katuru','govindrapata','kammam','telangana','fem ale');

insert into customer

values(4,'puttaparti','sai','venkat','chittoor','palamneru','hanumukonda','gujarath','ma le');

select * from customer;

Customer_id	Customer_first_name	Customer_middle_name	Customer_last_name	Customer_street_name	location	city	state	Customer_gender
1	shaik	azaj	uddin	marketstreet	mangalagiri	gunture	AP	male
2	mahesh	kumar	reddy	golastreet	jagadiriguta	hydrabad	telangana	male
3	valabanani	srujana	sri	katuru	govindrapata	kammam	telangana	female
4	puttaparti	sai	venkat	chittoor	palamneru	hanumukonda	gujarath	male

insert into sales values(110,101,'500','good',2,1);

insert into sales values(111,103,'4000','best',4,2);

insert into sales values(112,102,'1000','average',3,3);

insert into sales values(113,103,'6000','good',1,4);

select * from sales;

Sales_id	Product_id	cost	Sales_discription	Store_id	Customer_id
110	101	500	good	2	1
111	103	4000	best	4	2
112	102	1000	average	3	3
113	103	6000	good	1	4

insert into tax values(1000,'250','retailtax',110); insert into tax values(1001,'840','wholesaletax',111); insert into tax values(1002,'110','valueaddedtax',112); insert into tax values(1003,'504','manufacturerstax',113);

select*from tax;

Tax_id	Tax_amount	Tax_type	Sales_id
1000	250	retailtax	110
1001	840	wholesaletax	111
1002	110	valueaddedtax	112
1003	504	manufacturerstax	113

insert into customer_email values(1,'jaya11@gmail.com');
insert into customer_email values(2,'sai@gmail.com');
insert into customer_email values(3,'venkat@gmail.com');
insert into customer_email values(4,'prakash@gmail.com');

select* from customer_email;

Customer_i	d email_id
1	jaya11@gmail.com
2	sai@gmail.com
3	venkat@gmail.com
4	prakash@gmail.com

insert into customer_contact values(1,'909090909');

```
insert into customer_contact values(2,'666666666'); insert into customer_contact values(3,'8888888888'); insert into customer_contact values(4,'111111111');
```

select*from customer_contact;

Customer_id	Customer_contact_number
1	909090909
2	666666666
3	888888888
4	111111111

insert into payment values(100001,2,'2022-11-20','10000','cardpayment','success'); insert into payment values(100002,1,'2022-10-11','5000','onlinepayment','success'); insert into payment values(100003,3,'2022-09-23','2000','cashpayment','success'); insert into payment values(100004,4,'2022-11-27','5000','onlinepayment','success');

select * from payment;

Payment_id	Customer_id	Payment_date	Payment_amount	Payment_type	Payment_status
100001	2	2022-11-20	10000	cardpayment	success
100002	1	2022-10-11	5000	onlinepayment	success
100003	3	2022-09-23	2000	cashpayment	success
100004	4	2022-11-27	5000	onlinepayment	success

8. SQL QUERIES:

Customer_middle_name

azaj kumar srujana

	-#QUERIES
	
select all Product_name	
from products	
where Product_type ='soap';	
Product_name santoor	
select all Product_name	
from products	
where Product_type ='mobile';	
Product_name samsunggalaxyA21S	
select customer_middle_name	
from customer, sales	
where	
sales.Customer_id=customer.Customer_id;	

select customer.Customer_middle_name from customer,sales

where

sales.Customer_id=customer.Customer_id and
State='telangana';

select Product_name, max(Product_cost)
from products;

select Product_name, min(Product_cost)
from products;

select Product_name,Customer_middle_name,Product_cost
from products,customer;

Product_name	Customer_middle_name	Product_cost
crocks	azaj	1500
colgate	azaj	80
samsunggalaxyA21S	azaj	15000
santoor	azaj	100
crocks	kumar	1500
colgate	kumar	80
samsunggalaxyA21S	kumar	15000
santoor	kumar	100
crocks	sruiana	1500

Product_name	Customer_middle_name	Product_cost
crocks	srujana	1500
colgate	srujana	80
samsunggalaxyA21S	srujana	15000
santoor	srujana	100
crocks	sai	1500
colgate	sai	80
samsunggalaxyA21S	sai	15000
santoor	sai	100

select Sales_discription,Product_name,Customer_middle_name,Product_cost from sales,products,customer where sales.Product_id=products.Product_id and sales.Customer_id=customer_id;

Sales_discription	Product_name	Customer_middle_name	Product_cost
good	santoor	azaj	100
best	colgate	kumar	80
average	samsunggalaxyA21S	srujana	15000
good	colgate	sai	80

select Sales_discription,Product_name,Customer_middle_name,Product_cost from sales,products,customer;

Sales_discription	Product_name	Customer_middle_name	Product_cost
good	crocks	azaj	1500
best	crocks	azaj	1500
average	crocks	azaj	1500
good	crocks	azaj	1500
good	colgate	azaj	80
best	colgate	azaj	80
average	colgate	azaj	80
good	colgate	azaj	80

Sales_discription	Product_name	Customer_middle_name	Product_cost
good	samsunggalaxyA21S	sai	15000
best	samsunggalaxyA21S	sai	15000
average	samsunggalaxyA21S	sai	15000
good	samsunggalaxyA21S	sai	15000
good	santoor	sai	100
best	santoor	sai	100
average	santoor	sai	100
good	santoor	sai	100

9. Concluding Remarks

A description of the background and context of the project and its relation to work already done in the area. Made statement of the aims and objectives of the project. The description of Purpose, Scope, and applicability. I have defined the problem on which I had worked in the project. I have described the requirement Specifications of the system and the actions that can be done on these things. I had understood the problem domain and produce a model of the system, which describes operations that can be performed on the system. I have included the features and operations in detail, including screen layouts.

10. Future work

Today India is flooded with various super markets and stores for customers to buy In the last couple of years the growth of inventory store management system has been phenomenal as more store managers and customers started discovering the benefits of using this platform. There is enough scope for inventory store management system in the future if they understand the Indian shoppers psyche and cater to their needs. So, I would like to develop a webpage for this project in the coming days.

11. References:

- 1. https://github.com/topics/inventory-management-system
- 2. https://www.geeksforgeeks.org/dbms/
- 3. https://www.unleashedsoftware.com/inventory-management-guide/inventory-management-systems
- 4. https://youtu.be/4eSjYd68AI0
- 5. https://www.camcode.com/blog/what-is-an-inventory-management-system/