Procesy decyzyjne Markowa

Paweł Rychlikowski

Instytut Informatyki UWr

22 kwietnia 2021

Procesy decyzyjne Markowa (MDP)

- Coś pomiędzy grami a zwykłym zadaniem przeszukiwania
- (zwłaszcza jeżeli przypomnimy sobie gry z węzłami losowymi)
- a jednocześnie krok w stronę uczenia ze wzmocnieniem

MDP a przeszukiwanie

Standardowe przeszukiwanie

Znamy mechanikę świata i wiemy, że akcja w stanie da nam konretny rezultat (inny stan).

MDP

Znamy mechanikę świata i wiemy, że akcja w stanie da nam pewien rozkład prawdopodobieństwa na następnych stanach.

Nie wiemy, co dokładnie się stanie, ale wiemy co **może** się stać i z jakim prawdopodobieństwem.

Własność Markowa

- Przyszłość zależy od ostatniego stanu.
- Nie zależy od historii...
- Chyba, że jej fragment (o długości N) uznamy za część stanu.

Ważna uwaga

Zakładamy skończoną liczbę stanów

Uwaga na wulkany (1)

- Dobrze omawia się MDP na prostych światach na prostokątnej kratce.
- I od takich modeli zaczniemy.

Generalnie myślimy na początku o przestrzeni stanów na tyle małej, że nie będzie kłopotów z pamiętaniem różnych wartości dla każdego stanu.

Uwaga na wulkany (2)

Volcano crossing

	-50	20
	-50	
2		

CS221 / Autumn 2017 / Liang & Ermon

Mechanika świata wulkanów

	-50	20
	-50	
2		

- Możliwe 4 akcje (UDLR)
- W normalnym przypadku efekt oczywisty (próba wyjścia poza planszę oznacza pozostanie na polu)
- Z prawdopodobieństwem p możemy się poślizgnąć, wówczas poruszamy się w losowym kierunku.
- Dojście do pola z liczbą kończy grę (i odpowiednią dostajemy wypłatę).

Inny przykład. Gra w kości

Uwaga

Nagroda może być przydzielana w sposób ciągły, nie tylko w stanie końcowym.

- Mamy dwie opcje: pozostanie albo rezygnacja.
- rezygnacja oznacza wypłatę 10\$
- pozostanie to wypłata 4\$ po której rzucamy kostką.
- Interpretacja wyniku:
 - 1,2 koniec gry
 - 3,4,5,6 gramy dalej

Pytanie

Ile mamy stanów? Odpowiedź: 2

Dla gry w kości

- 1 stan z decyzją, dwie polityki (czyli sensowne sposoby gry) (schemat na kolejnym slajdzie).
- Możemy policzyć oczekiwaną wartość dla każdej:
 - rezygnacja 10
 - pozostanie (na kolejnym slajdzie)

Schemat stanów

Wartość Pozostania

Oceniamy strategię pozostanie, czyli przedłużania gry.

- Oznaczamy przez V wartość tej polityki (czyli ile średnio zarobimy, jak nie będziemy nigdy rezygnować z gry)
- V spełnia równanie:

$$V = \frac{2}{3} \times (4 + V) + \frac{1}{3} \times 4 = 4 + \frac{2}{3} \times V$$

• Czyli V=12, zatem opłaca się pozostawać w grze (bo $12\geq 10$)

Uwaga

Tu była tylko jedna decyzja: 10 czy V, ale podobnie można rozwiązywać również (dużo) bardziej złożone MDP: rozwiązując równania i znajdując wartości stanów.

MDP – formalna definicja

Definicja

Markowowski proces decyzyjny (MDP) zawiera następujące składowe:

- 2 Stan startowy, $s_{\text{start}} \in S$
- Actions(s) zbiór możliwych akcji w stanie s
- T(s,a,s') prawdopodobieństwo przejścia z s do s' w wyniku akcji a
- Reward(s,a,s') nagroda (wypłata) związana z tym przejściem
- IsEnd(s) czy stan jest końcowy?
- **1** Discount factor, $0 < \gamma \le 1$ sprawia, że nagrody w przyszłości cieszą mniej.

MDP – komentarz do definicji

- Można też myśleć, że dla pary (s, a) mamy rozkład prawdopodobieństw po parach (nowy-stan, nagroda).
- Nagroda może być pozytywna bądź negatywna

Uwaga

Oczywiście MDP jest ogólniejsze niż zadanie przeszukiwania (bo wystarczy przypisać niektórym rezultatom p-stwo 1, reszcie 0 i mamy zwykłe zadanie przeszukiwania)

Czym jest rozwiązanie MDP?

- Przypominamy: rozwiązaniem zadania przeszukiwania jest ciąg akcji (ale to nie tu nie działa, bo?)
 - (wyniki akcji są niedeterministyczne, więc nie wystarczy podać jednego ciągu akcji)
- Rozwiązanie: agent musi wiedzieć, co zrobić w każdym stanie.

Polityka

Definicja 1

Polityką deterministyczną nazwiemy funkcję, która każdemu stanowi przypisuje akcję (możliwą w tym stanie).

Definicja 2

Polityką nazwiemy funkcję, która każdemu stanowi przypisuje rozkład prawdopodobieństwa na akcjach (możliwych w tym stanie).

Koniec części II

Polityka

Definicja 1

Polityką deterministyczną nazwiemy funkcję, która każdemu stanowi przypisuje akcję (możliwą w tym stanie).

Definicja 2

Polityką nazwiemy funkcję, która każdemu stanowi przypisuje rozkład prawdopodobieństwa na akcjach (możliwych w tym stanie).

Wartościowanie polityki

- Gdy używamy polityki, otrzymujemy ciąg stanów, akcji i nagród
- Dla takiej ścieżki możemy zsumować nagrody, otrzymując użyteczność dla tej ścieżki
- Wartością polityki jest oczekiwana użyteczność polityki (tzn. wartość oczekiwana zmiennej losowej wyrażającej użyteczność takiej ścieżki)

Discounting

- Realizując politykę, otrzymaliśmy ciąg stanów, nagród i akcji
 - $s_0, a_1, r_1, s_1, a_2, r_2, s_2, \ldots, s_n, a_{n+1}, r_{n+1}, s_{n+1}, \ldots$
- Nagroda po uwzględnieniu zniżek:

$$r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \dots$$

- Widzimy że:
 - ullet Dla $\gamma=1$ po prostu sumujemy nagrody cząstkowe
 - Dla $0<\gamma<1$ mamy możliwość mówienia o wartości nieskończonych ciągów akcji.

Uwaga o γ

- Zwróćmy uwagę, że discounting ma sens również w przypadku, gdy nagroda wypłacana jest jedynie w stanie końcowym.
- Jeżeli wypłata jest tylko w ostatnim stanie, to:
 - **1** Agent, który wygrywa (R > 0) woli dostać ją wcześniej,
 - $oldsymbol{0}$ agent, który przegrywa (R < 0) woli dostać ją później.

Przyśpieszanie zwycięstwa i opóźnianie porażki jest "sensownym" zachowaniem.

Wartość polityki

Definicja

Wartość $V_{\pi}(s)$ jest oczekiwaną użytecznością dla agenta startującego w stanie s i działającego zgodnie z polityką π

Definicja

Wartość $Q_{\pi}(s,a)$ jest oczekiwaną użytecznością dla agenta startującego w stanie s, wykonującego w tym stanie akcję a i **dalej** działającego zgodnie z polityką π

Źródło: CS221 / Autumn 2017 / Liang & Ermon

Zależności pomiędzy V i Q

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') (\text{Reward}(s, a, s') + \gamma V_{\pi}(s'))$$

Algorytm: policy evaluation

Napiszmy rekurencyjny wzór dla wartości V (przy zadanej polityce)

•

$$V_{\pi}(s) = \sum_{s'} T(s, \pi(s), s') (\operatorname{Reward}(s, \pi(s), s') + \gamma V_{\pi}(s'))$$

- Mamy układ równań (liniowych), który można rozwiązywać standardowymi metodami.
- Równań jest tyle co stanów (czyli potencjalnie sporo)

Algorytm: policy evaluation (2)

Możemy ten wzór zmodyfikować, mówiąc: zamiast nieznanego V po prawej stronie weźmiemy poprzednie przybliżenie V:

$$V_{\pi}^{(t+1)}(s) = \sum_{s'} T(s,\pi(s),s') (\mathsf{Reward}(s,\pi(s),s') + \gamma V_{\pi}^{(t)}(s'))$$

Algorytm: policy evaluation (3)

- **⑤** Zainicjuj $V_{\pi}^{(0)}(s) \leftarrow 0$, dla wszystkich s
- ② Powtarzaj dla $t = 1, ..., t_{PE}$
 - Powtarzaj dla każdego stanu s

$$V_{\pi}^{(t+1)}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') (\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t)}(s'))$$

Uwagi implementacyjne

- ullet Kończymy, gdy dla każdego stanu zmiana mniejsza niż arepsilon
- Oczywiście nie musimy pamiętać całej historii, tylko dwa ostatnie jej elementy (stany zmieniane i poprzednie)

Złożoność

 $O(t_{PE}SS')$, gdzie S to liczba stanów, a S' (maksymalna) liczba stanów z niezerową T(s,a,s').

Polityka optymalna

 Interesuje nas wyznaczanie polityki (a nie tylko ocenianie jej wartości).

Definicja

Optymalną wartością stanu $V_{opt}(s)$ jest maksymalna wartość stanu (ze względu na wszystkie polityki).

Rekurencja dla polityki optymalnej

Jaka polityka jest optymalna? Taka, która wybiera stany o optymalnej wartości

Przypominamy, dla każdej polityki mamy:

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') (\text{Reward}(s, a, s') + \gamma V_{\pi}(s'))$$

ullet Dla polityki optymalnej: $V_{ ext{opt}}(s) = \max_{a \in \mathsf{Actions}(s)} Q_{ ext{opt}}(s,a)$

Możemy podstawić do drugiego wzoru wzór na Q_{π} dla $\pi=$ opt.

$$V_{\mathsf{opt}}(s) = \max_{a \in \mathsf{Actions}(\mathsf{s})} \sum_{s'} T(s, a, s') (\mathsf{Reward}(s, a, s') + \gamma V_{\mathsf{opt}}(s'))$$

Algorytm Iteracji wartości – Bellman, 1957

Polityka optymalna (do poprzedniego slajdu)

$$\pi_{\mathsf{opt}}(s) = \mathsf{arg} \, \mathsf{max}_{a \in \mathsf{Actions}(s)} \, Q_{\mathsf{opt}}(s, a)$$

Nasz wzorek zmieniony na wersję do iterowania

$$V_{\text{opt}}^{(t+1)}(s) = \max_{a \in \mathsf{Actions}(s)} \sum_{s'} T(s, a, s') (\mathsf{Reward}(s, a, s') + \gamma V_{\text{opt}}^{(t)}(s'))$$

Algorytm Bellmana (value iteration)

- Mamy dodatkową pętlę wybierającą optymalną akcję (zamiast akcji danej przez politykę)
- Reszta bez zmian, tak jak w policy evaluation.

Warunki zbieżności

Algorytm jest zbieżny, jeżeli zachodzi któryś z warunków

- \bullet $\gamma < 1$
- Graf MDP jest acykliczny

Uwaga

W tym ostatnim przypadku wymagana jest jedna iteracja, w której stany przeglądane są w odwrotnym porządku topologicznym (wyjaśnienie na ćwiczeniach)

Uwaga

Zwróćmy uwagę na to ci się dzieje, jeżeli $\gamma=1$ i mamy cykl. Dla niezerowych nagród na krawędziach cyklu wartość oczekiwana może być nieokreślona

Koniec części II

Przykład. Wyścigi samochodzików.

- Prędkość autka jest wektorem $(dx, dy) \in \{-3, -2, \dots, 2, 3\} \times \{-3, -2, \dots, 2, 3\}$
- Akcja: zmiana prędkości (każda składowa o co najwyżej 1)
- Celem jest (przejechać) przez metę (możemy to uprościć poszerzając metę i mówiąc, że celem jest dotarcie do piksela mety)
- W pełni deterministyczny świat (BFS, A*?)

Wyścigi samochodzików. (2)

- Dodajemy plamy po oleju
- Ruch z pola oleju dodaje dodatkową składową losową do prędkości (znamy rozkład).

W tym momencie klasyczne MDP + algorytm Bellmana (czyli iteracji wartości) powinny dać dobry wynik.

Wynik algorytmu Value Iteration

Zwróćmy uwagę, że bez żadnych dodatkowych obliczeń można umieszczać w innych miejscach punkt startowy.

Jeszcze o autach i oleju

- Fajnie jest dojechać na metę. (+100)
- Ale jeszcze fajniej nie dać się zabić. (-100?)

Uwaga

Pamiętamy, że monotoniczna zmiana funkcji wypłaty:

- nie zmienia wartości MiniMax-owej gry,
- może zmienić ExpectMinMax

Rozwiązanie podstawowe

Pytanie: Czego spodziewamy się, jeżeli zamienimy karę na wypadek na 10000?

Kara=100

Kara=10000

Wyścigi samochodzików. (3)

- Problem: dużo większa plansza, dużo większa liczba stanów.
- Pomysł 1: położenie "rozmyte", na przykład w kwadracie 10×10 pikseli.
- Pomysł 2: dodatkowo informacja, czy jestem 1, 2, czy 3 raz w takim kwadracie (3 < 100)

Fundamentalny problem: nie znamy mechaniki takiego świata (i wielu innych)

Wyścigi samochodzików. Float

- Prędkość autka jest wektorem $(v \cos(d), v \sin(d))$,
- Możemy zmieniać d (skręcać), oraz v (przyśpieszać, hamować)
- Celem jest meta.
- W pełni deterministyczny świat, ale bardzo duża liczba stanów, zawierających liczby float)

Autka float. Rozwiązanie

- Możemu stworzyć stan abstrakcyjny i opisać mechanikę świata dla takich stanów
- Oczywiście będzie ona niedeterministyczna, bo nigdy nie będziemy wiedzieć, czy zmiana w świecie float-ów przenosi się na zmianę w świecie int-ów.

Uwaga

Możemy myśleć o tym, że modelujemy błędy pomiarowe (int zamiast float) za pomocą losowości.