Polinomios de Hermite

- Son polinomios osculantes con $m_i = 1, \forall i$
- Coinciden el polinomio y la función en sus valores y en sus primeras derivadas, en todos los puntos x_i (i = 0, 1, ... n)
- Ejemplo:
 - Sea una función dada en 2 puntos: x_0 y x_1 . El polinomio de Hermite debe ser tal que:

$$P(x_0) = f(x_0)$$

$$P(x_1) = f(x_1)$$

$$P'(x_0) = f'(x_0)$$

$$P'(x_1) = f'(x_1)$$

- (Cont. ejemplo)
 - Hay 4 ecuaciones de las cuales se pueden despejar 4 coeficientes que son los necesarios para un polinomio de grado 3.
 - Se puede dar la forma al polinomio:

$$P(x) = a + b(x - x_0) + c(x - x_0)^2 + d(x - x_0)^2(x - x_1)$$

Y su derivada:

$$P'(x) = b + 2c(x - x_0) + 2d(x - x_0)(x - x_1) + d(x - x_0)^2$$

- (Cont. ejemplo)
 - Reemplazando en las cuatro ecuaciones anteriores, se obtiene:.

$$a = f(x_0)$$

$$b = f'(x_0)$$

$$a + b(x_1 - x_0) + c(x_1 - x_0)^2 = f(x_1)$$

$$b + 2c(x_1 - x_0) + d(x_1 - x_0)^2 = f'(x_1)$$

de donde se despejan las cuatro constantes a, b, c y d

• (Cont. ejemplo)

Teorema:

Si $f \in C^1[a,b]$ y $x_0.x_1, \ldots x_n \in [a,b]$ son distintos, el único polinomio de menor grado, que coincide con $f(x_i)$ y $f'(x_i)$ en $x_0, x_1, \ldots x_n$ es un polinomio de grado $\leq 2n+1$ dado por:

$$H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \hat{H}_{n,j}(x)$$

donde

$$H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)] L^2_{n,j}(x)$$

У

$$\hat{H}_{n,j}(x) = (x - x_j)L_{n,j}^2(x)$$

siendo $L_{n,j}$ el polinomio de Lagrange

$$L_{n,j}(x) = \prod_{\substack{i=0;\\i\neq j}}^{n} \frac{x - x_i}{x_j - x_i}$$

• Se puede verificar que para $i = 0, 1, 2 \dots n$

$$H_{2n+1}(x_i) = f(x_i)$$

$$H'_{2n+1}(x_i) = f'(x_i)$$

• Esto es pues los polinomios $H_{n,j}$ y $\hat{H}_{n,j}$ cumplen:

$$H_{n,j}(x_i) = \begin{cases} 0 & \text{si } j \neq i \\ 1 & \text{si } j = i \end{cases}$$
$$\hat{H}_{n,j}(x_i) = 0$$

• Y las derivadas de los polinomios $H_{n,j}$ y $\hat{H}_{n,j}$ cumplen:

$$H'_{n,j}(x_i) = 0$$

$$\hat{H}'_{n,j}(x_i) = \begin{cases} 0 & \text{si } j \neq i \\ 1 & \text{si } j = i \end{cases}$$

Se puede verificar que el error está dado por:

$$f(x) - H_{2n+1}(x) = \frac{(x-x_0)^2 \dots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi)$$

si

$$f(x) \in C^{2n+2}[a,b]$$

y siendo $\xi \in [a,b]$

Forma en dif. divididas de Newton para Pol. de Hermite

- Se puede proceder como se ha visto para el caso de polinomios interpoladores en diferencias divididas de Newton.
- Pero en este caso, en lugar de calcular las primeras diferencias, se toman los datos dados para las derivadas de f(x)
- Se introducirá a través de un ejemplo

Forma en dif. divididas de Newton para Pol. de Hermite

- Sea hallar un polinomio que pase por tres puntos (x_0, x_1, x_2) , y cuya derivada coincida con la de la función en esos puntos.
- Se define una nueva sucesión: $z_0, z_1, z_2 \dots z_{2n+1}$ tal que

$$z_{2i} = z_{2i+1} = x_i$$
 para $i = 0, 1, 2 \dots n$

Forma en dif. divididas de Newton para Pol. de Hermite

z	f(x)	Prim.Dif.Divididas	Seg. Dif. Div.
$z_0 = x_0$	$f[z_0] = f(x_0)$		
		$f[z_0, z_1] = f'(x_0)$	
$z_1 = x_0$	$f[z_1] = f(x_0)$		$f[z_0, z_1, z_2] = \frac{f[z_1, z_2] - f[z_0, z_1]}{z_2 - z_0}$
		$f[z_1, z_2] = \frac{f[z_2] - f[z_1]}{z_2 - z_1}$	~2 ~0
$72 = x_1$	$f[z_2] = f(x_1)$	$z_2 - z_1$	$f[z_1, z_2, z_3] = \frac{f[z_2, z_3] - f[z_1, z_2]}{z_3 - z_1}$
	J [42] J (41)	$f[z_2, z_3] = f'(x_1)$	z_3-z_1
$72 = x_1$	$f[z_3] = f(x_1)$	$J[\sqrt{2}/\sqrt{3}] = J(\sqrt{1})$	$f[z_2, z_3, z_4] = \frac{f[z_3, z_4] - f[z_2, z_3]}{z_4 - z_2}$
~31	J [~3] J (*1)	$f[z_3, z_4] = \frac{f[z_4] - f[z_3]}{z_4 - z_2}$	$J \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
	c[] c/)	$J[23,24] = \frac{1}{z_4 - z_3}$	$f[z_4, z_5] - f[z_3, z_4]$
$z_4 = x_2$	$f[z_4] = f(x_2)$		$f[z_3, z_4, z_5] = \frac{f[z_4, z_5] - f[z_3, z_4]}{z_5 - z_3}$
	-5 7 -4)	$f[z_4,z_5]=f'(x_2)$	
$z_5 = x_2$	$f[z_5] = f(x_2)$		