CURSO DE ARDUINO

MÓDULO 2

Por: Julián Andrés Castro Estudiante ingeniería electrónica

CEIMTUN – RAS UNIVERSIDAD NACIONAL DE COLOMBIA

Conócenos:

Web: ceimtun

CONTENIDO: MÓDULO 2

- Transductores / Actuadores
- Medición de temperatura con LM35
- ▶ Interruptor de luz con LDR
- Control de Motores con Módulo L298N
- Comunicación inalámbrica bluetooth

Diapositiva 3

https://www.flaticon.com/authors/becris JULIAN ANDRES CASTRO PARDO, 14/02/2019 JACP2

TRANSDUCTORES Y ACTUADORES

Sistemas interactivos físicos valiéndose del uso de software y hardware para sensar y responder al mundo analógico.

- Transforman magnitudes físicas en señales eléctricas y viceversa.
- *Transductores*: Sensores de temperatura, lumínicos, infrarrojo, etc.
- Actuadores: Motores, parlantes, bobinas, polímeros retroactivos, etc.

ARDUINO

- Plataforma de electrónica abierta para la creación de prototipos.
- Es de bajo costo, flexible y fácil de usar.
- Creada para artistas, diseñadores, aficionados y cualquier interesado en crear entornos u objetos interactivos.

JACP7

Lenguaje basado en Wiring / procesing

Historia Arduino: https://arduinohistory.github.io/

Diapositiva 5

Basasdo en Wiring con entorno de desarrollo Processing JULIAN ANDRES CASTRO PARDO, 15/02/2019 JACP7

ARDUINO UNO

PINES **ALIMENTACIÓN**

PINES **ANALÓGICOS** **APLICACIONES**

- Prototipos
- Juguetes
- Robótica simple
- Arte
- ▶ IoT Internet of Things

HOME STORE SOFTWARE EDU RESOURCES COMMUNITY HELP

FAQ

CONTACT US

STORE SUPPORT

Download the Arduino IDE

Instalar drivers

Partes fundamentales del IDE de Arduino

Seleccionar placa

Seleccionar puerto

ACTIVIDADES

Descarga los Scripts en <u>GitHub</u>!

CONTROL DE MOTORES

EJEMPLO 1: Control de Motores con Módulo L298N

Control PWM.

Puente H

Materiales Ej. 1

- 1 Tarjeta Arduino
- ▶ 1 motor DC 3-6V
- 1 Módulo Driver motor L298N
- ► 1 Potenciómetro (1-10k)Ω
- 9 Jumpers macho-macho (cables)

EJEMPLO 1: Control de Motores con Módulo L298N

EJEMPLO 2: Medición de temperatura con LM35

- 1 Tarjeta Arduino con cable USB
- 1 Sensor de temperatura LM35
- 3 Jumpers macho-macho (cables)
- ▶ 1Protoboard

Temperatura operación: -55 ~ 150 °C

Alimentación: 4 ~ 30V

▶ Salida: -1 ~ 6V

Variación: 10mV / °C

Exactitud: ± 0.5°C

Pinout:

- 1. +Vs
- 2. Vout
- 3. GND

Vista inferior

EJEMPLO 2: Medición de temperatura con LM35

```
// Variables globales
                                   // Almacena el valor obtenido del sensor (0 a 1023)
 2 float medida, temperaturaC;
3 int pinLM35 = A0;
                                   // Pin de entrada del sensor (A0)
4 float t ref = 100.0;
                                    // float t ref =96.0; //°C
6 void setup() (
     analogReference (INTERNAL); // Cambio de referencia entradas analógicas (1.1v)
     Serial.begin(9600);
                                   // Configura el puerto serial a 9600 bps
 9
10
11 E void loop() {
     medida = analogRead(pinLM35); // analogRead lee el sensor (0-1023)
12
13
     temperaturaC = (1.1 * medida * t ref) / 1024.0; // Calcula la temperatura
14
     Serial.print(1.1 * medida / 1024.0); // Envía el dato crudo
15
     Serial.print(" mV ");
16
     Serial.print(temperaturaC);
                                   // Envía el dato al puerto serial
17
     Serial.println(" °C");
18
19
     delay(1000);
20
                                    // Espera ls para repetir el loop
21 1
```

EJEMPLO 3: Interruptor de luz con LDR

Materiales Ej. 3

1 Tarjeta Arduino

3 Leds 5mm (cualquier color)

3 Resistencias (220-330) Ω

1 Resistencias 10kΩ

▶ 1Fotorresistor(LDR)

6 Jumpers macho-macho (cables)

1 Protoboard

EJEMPLO 3: Interruptor de luz con LDR

```
// Variables globales
   int pinLedG = 2;
                                   // Pin conecta led Verde
   int pinLedY = 3;
                                  // Pin conecta led Amarillo
   int pinLedR = 4;
                                  // Pin conecta led Rojo
   int pinLDR = A5;
                                  // Pin analógico entrada del LDR
   int valorLDR = 0;
                                   // Almacena el valor del LDR
   float voltajeLDR = 0.0;
                                   // Almacena el valor del voltaje del LDR
9 void setup()
10日{
    pinMode (pinLedR, OUTPUT); // Configura como salida el pin del led
11
   pinMode (pinLedY, OUTPUT);
12
13
    pinMode (pinLedG, OUTPUT);
14
15
     Serial.begin (9600);
                                  // Configura el puerto serial
16 1
```

EJEMPLO 3: Interruptor de luz con LDR

```
17 void loop()
18日 {
19
     digitalWrite(pinLedR, LOW);
                                   // Apaga el led R al iniciar el ciclo
20
     digitalWrite(pinLedY, LOW); // Apaga el led Y al iniciar el ciclo
21
     digitalWrite(pinLedG, LOW); // Apaga el led G al iniciar el ciclo
22
     valorLDR = analogRead(pinLDR); // Lee el valor de voltaje del LDR
23
     voltajeLDR = valorLDR * 5.0 / 1024.0; // Calcula el valor del voltaje
24
25
     Serial.print(valorLDR); Serial.print(" ADC ");
26
                                    // Voltaje leido en el monitor serial
     Serial.print(voltajeLDR);
27
     Serial.println(" V");
28
29
     // Encender los leds de acuerdo al valor de ADC
30 ☐ if (valorLDR > 256.0) {
31
       digitalWrite (pinLedR, HIGH);
32
33 ☐ if (valorLDR > 612.0) {
34
       digitalWrite (pinLedY, HIGH);
35
36⊟ if (valorLDR > 850.0) {
37
     digitalWrite (pinLedG, HIGH);
38
39
     delay(200);
                                     //Espera 200 mS antes de actualizar
40 }
```

SENSORES DIGITALES

EJEMPLO 4: Medición de distancia con módulo de ultrasonido HC-SR04

Materiales Ej. 4

1 Tarjeta Arduino

▶ 1 módulo de ultrasonido HC-SR04

4 Jumpers machomacho (cables)

▶ 1Protoboard

Características del sensor HC-SR04

- Rango de operación: 2cm ~ 4m
- Alimentación: 5V
- t de disparo (Pulso TTL): 10μs JACP13
- Resolución: ± 3cm
- Pinout:
 - 1. +V
 - 2. Trig
 - 3. Echo
 - 4. GND

JACP13 TTL: Transistor - Transistor - Logic
JULIAN ANDRES CASTRO PARDO, 26/06/2020

EJEMPLO 4: Medición de distancia con módulo de ultrasonido HC-SR04

- Se mide el tiempo que pasa entre el envío y la recepción del pulso.
- Velocidad del sonido: $V_s = 343 \, m/_s$

$$343 \ ^{m}/_{s} = 100 \ ^{cm}/_{m} * \frac{1}{1000000 \mu s} = \frac{1}{29.2^{\mu s}/_{cm}}$$

Distancia(cm) = $\frac{Tiempo(\mu s)}{2*29.2\mu s}$

Tiempo = 2 * (Distancia / Velocidad)
Distancia = Tiempo · Velocidad / 2

Características del sensor HC-SR04

EJEMPLO 4: Medición de distancia con módulo de ultrasonido HC-SR04

EJEMPLO 4: Medición de distancia con HC-SR04

```
12 woid loop() (
     distancia = medirDistancia();
                                         // Mide la distancia en cm
13
     Serial.print("Distancia: ");
14
15
     Serial.print(distancia);
                                          // Visualización en monitor serie
16
     Serial.println(" cm");
17
     delay(500);
18
19
20 = long medirDistancia() {
     long tiempoPulso, distancia cm;
21
     digitalWrite(pinTrig, LOW);
                                        // Limpiar el disparador
22
     delayMicroseconds(4);
23
     digitalWrite(pinTrig, HIGH);
24
     delayMicroseconds(10);
25
                                          // Tiempo del disparo 10 mS
     digitalWrite (pinTrig, LOW);
26
     tiempoPulso = pulseIn(pinEco, HIGH); // Lee la duración de un pulso
27
     if ( tiempoPulso == 0 ) {
28日
      tiempoPulso = tiempoEspera;
29
30
31
     distancia cm = tiempoPulso / 29 / 2; // Calcula la distancia
32
     return distancia cm;
33 1
```

COMUNICACIÓN INALÁMBRICA

EJEMPLO 5: Comunicación inalámbrica bluetooth con módulo HC-05 o HC-06.

Materiales Ej. 5

- 1 Tarjeta Arduino
- ► 1 Módulo bluetooth HC-05 o HC-06.
- ▶ 1 Led (cualquier color)
- 1 Resistencia (220-330) Ω
- 7 Jumpers macho-macho (cables)
- ▶ 1 Protoboard

EJEMPLO 5: Comunicación inalámbrica bluetooth

¿QUÉ QUEDA POR APRENDER?

- Uso de periféricos: Shields, Pantallas, etc.
- Demás sensores
- Conexión a internet

PROYECTO: Robot (OPCIONAL)

PROYECTO: Robot

```
1 = /*
 2
 3
    Contador de pulsos
 5
   //Declara puertos de entradas y salidas y variables
   int conta = 0; //Variable para guardar el conteo de los pulsos
    //-----
12
13 //Función principal
14 //-----
15 - void setup() { // Se ejecuta cada vez que el Arduino se inicia
16
     Serial.begin(9600); //Inicia comunicación serial
17
    pinMode (2, INPUT); //Configura el pin 2 como una entrada, pulsador
     pinMode(13, OUTPUT); //Configura el pin 13 como una salida, LED
18
19 }
20
```


LISTA DE ENLACES

- 1. Referencia del lenguaje: <u>www.arduino.cc/reference/en/</u>
- 2. Imágenes libres: https://www.freepng.es/ https://thenounproject.com/ www.flaticon.com/
- 3. Blog sobre programación: https://programarfacil.com/blog/arduino-blog/curso-de-arduino/
- 4. Tienda de materiales: https://www.vistronica.com/
- 5. Libro kit básico TdRobótica: https://issuu.com/tdrobotica/docs/libro_kit_basico/4
- 6. Medir distancia: https://www.luisllamas.es/medir-distancia-con-arduino-y-sensor-de-ultrasonidos-hc-sr04/

ANEXO: LISTA DE MATERIALES MÓDULO 2

- ▶ 1 Tarjeta Arduino con cable USB
- ▶ 1 sensor de temperatura LM35
- 1 Fotorresistencia (LDR)
- ▶ 1 motor DC 3-6V
- ▶ 1 módulo ultrasonido HC-SR04
- 1 Módulo Driver motor L298N
- ► 1 Módulo bluetooth HC-06 o HC-05
- 3 Leds 5mm (Cualquier color)
- > 3 Resistencias (220-330) Ω
- 1 Resistencias 10kΩ
- ► 1 Potenciómetro (1-10k) Ω
- ▶ 10 Jumpers o más.
- 1 Protoboard

¿Alguna pregunta?

Contacto al correo UNAL:

juacastropa@unal.edu.co

GRACIAS!

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>

