

JFET Input Operational Amplifiers

These low cost JFET input operational amplifiers combine two state—of—the—art analog technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

The Motorola BIFET family offers single, dual and quad operational amplifiers which are pin–compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices. The MC34001/ 34002/34004 series are specified from 0° to $+70^{\circ}$ C.

Input Offset Voltage Options of 5.0 mV and 10 mV Maximum

Low Input Bias Current: 40 pA
Low Input Offset Current: 10 pA
Wide Gain Bandwidth: 4.0 MHz
High Slew Rate: 13 V/µs

• Low Supply Current: 1.4 mA per Amplifier

• High Input Impedance: $10^{12} \Omega$

• High Common Mode and Supply Voltage Rejection Ratios: 100 dB

• Industry Standard Pinouts

MC34001, B MC34002, B MC34004, B

JFET INPUT OPERATIONAL AMPLIFIERS

ORDERING INFORMATION

Op Amp Function	Device	Operating Temperature Range	Package
Single	MC34001BD, D	T _A = 0° to+ 70°C	SO-8
Single	MC34001BP, P	1μ = 0 10+ 70 0	Plastic DIP
Dual	MC34002BD, D	$T_A = 0^{\circ} \text{ to } +70^{\circ}\text{C}$	SO-8
Duai	MC34002BP, P	1μ=0 10+70 0	Plastic DIP
Quad	MC34004BP, P	$T_A = 0^\circ \text{ to } +70^\circ \text{C}$	Plastic DIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	VCC, VEE	±18	V
Differential Input Voltage (Note 1)	VID	±30	V
Input Voltage Range	V _{IDR}	±16	V
Open Short Circuit Duration	tsc	Continuous	
Operating Ambient Temperature Range	T _A	0 to +70	°C
Operating Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTES: 1. Unless otherwise specified, the absolute maximum negative input voltage is equal to the

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.)

Symbol	Min	Тур	Max	Unit
VIO		3.0 5.0	5.0 10	mV
ΔV _{IO} /ΔΤ	_	10	_	μV/°C
lio		25 25	100 100	рА
IB		50 50	200 200	рА
rį	_	1012	_	Ω
VICR	±11 —	+15 -12	_ _	V
AVOL	50 25	150 100		V/mV
Vo	±12 ±10	±14 ±13		V
CMRR	80 70	100 100		dB
PSRR	80 70	100 100	_	dB
ID	_	1.4 1.4	2.5 2.7	mA
SR	_	13	_	V/μs
GBW	_	4.0	_	MHz
e _n	_	25	_	nV/√Hz
		t	1	1
	ΔV _{IO} /ΔT IIO IIB r _i VICR AVOL VO CMRR PSRR I _D SR GBW		- 3.0 - 5.0 ΔVIO/ΔT - 10 IIO - 25 - 25 - 25 IIB - 50 - 50 - 50 - 50 VICR ±11 +15 - 12 ΔVOL 50 150 25 100 VO ±12 ±14 ±10 ±13 CMRR 80 100 70 100 PSRR 80 100 70 100 PSRR 80 100 70 100 ID - 1.4 - 1.4 SR - 13 GBW - 4.0	- 3.0 5.0 10 ΔV _{IO} /ΔT - 10

NOTES: 2. T_{IOW} = 0°C for MC34001/34001B MC34002

 $T_{high} = +70^{\circ}C \text{ for MC34001/34001B} \\ MC34002$

MC34002
MC34004/34004B
MC34004/34004B

3. The input bias currents approximately double for every 10°C rise in junction temperature, T_J. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heatsink is recommended if input bias current is to be kept to a minimum.

4. Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_{A} = T_{low}$ to T_{high} [Note 2].)

Characteristics	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k) MC3400XB MC3400X	VIO	_	_	7.0 13	mV
Input Offset Current (V _{CM} = 0) (Note 3) MC3400XB MC3400X	I _{IO}			4.0 4.0	nA
Input Bias Current (V _{CM} = 0) (Note 3) MC3400XB MC3400X	IIB			8.0 8.0	nA
Common Mode Input Voltage Range	VICR	±11	_	_	V
Large Signal ($V_O = \pm 10$ V, $R_L = 2.0$ k) MC3400XB MC3400X	AVOL	25 15			V/mV
Output Voltage Swing $(R \ge 10 \text{ k})$ $(R \ge 2.0 \text{ k})$	Vo	±12 ±10	_		V
Common Mode Rejection Ratio (R _S ≤ 10 k) MC3400XB MC3400X	CMRR	80 70		_ _	dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k) (Note 4) MC3400XB MC3400X	PSRR	80 70			dB
Supply Current (Each Amplifier) MC3400XB MC3400X	ID	_		2.8 3.0	mA

NOTES: 2. $T_{low} = 0^{\circ}\text{C}$ for MC34001/34001B MC34002 MC34004 MC34002 MC34004/34004B MC34004 MC34004/34004B MC34004/34004B MC34004/34004B MC34004/34004B MC34004/34004B MC34004/34004B MC34004/34004B

correlated to junction temperature. Use of a heatsink is recommended if input bias current is to be kept to a minimum.

^{4.} Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

Figure 1. Input Bias Current versus Temperature

100 VCC/VEE = ±15 V VCC/VEE =

Figure 2. Output Voltage Swing versus Frequency

Figure 3. Output Voltage Swing versus Load Resistance

Figure 4. Output Voltage Swing versus Supply Voltage

Figure 5. Output Voltage Swing versus Temperature

Figure 6. Supply Current per Amplifier versus Temperature

Figure 7. Large–Signal Voltage Gain and Phase Shift versus Frequency

Figure 8. Large-Signal Voltage Gain versus Temperature

Figure 9. Normalized Slew Rate versus Temperature

Figure 10. Equivalent Input Noise Voltage versus Frequency

Figure 11. Total Harmonic Distortion versus Frequency

Representative Circuit Schematic (Each Amplifier) Bias Circuitry Common to All Output Amplifiers ¬ Vcc Q2 Q4 Q5 Q6 Inputs §2.0 k Q17 Q20 J3 Q15 Q19 10 pF Q14 Q24 Q21 Q22 Q13 Q12 Q16 Q10 Q25 Q9 Q8 Q11 Q18 Offset 1.5 k 1.5 k Null (MC34001 only) O VEE

Figure 12. Output Current to Voltage Transformation for a D-to-A Converter

Settling time to within 1/2 LSB is approximately 4.0 μs from the time all bits are switched (C = 68 pF).

The value of C may be selected to minimize overshoot and ringing.

Theoretical V_O

$$V_O = \frac{V_{ref}}{R1} \left(R_O \right) \left[\, \frac{A1}{2} \, + \frac{A2}{4} \, + \frac{A3}{8} \, + \frac{A4}{16} \, + \frac{A5}{32} \, + \frac{A6}{64} \, + \frac{A7}{128} \, + \frac{A8}{256} \, \right]$$

Figure 13. Positive Peak Detector

Figure 14. Long Interval RC Timer

Time (t) = R4 Cn (V_R/V_R-V_I), $R_3 = R_4$, $R_5 = 0.1 R_6$ If R1 = R2: t = 0.693 R4C

Figure 15. Isolating Large Capacitive Loads

overshoot < 10% $t_S = 10 \,\mu s$ When driving large C_L , the V_O slew rate is determined by C_L and $I_{O(max)}$:

$$\frac{\Delta V_O}{\Delta t} = \frac{I_O}{C_L} \ = \ \frac{0.02}{0.5} \quad \text{V/}\mu\text{s} = 0.04 \text{ V/}\mu\text{s} \ (\text{with } C_L \text{ shown})$$

Figure 16. Wide BW, Low Noise, Low Drift Amplifier

Parasitic input capacitance (C1 \cong 3.0 pF plus any additional layout capacitance) interacts with feedback elements and creates undesirable high–frequency pole. To compensate add C2 such that: R2C2 \cong R1C1.

OUTLINE DIMENSIONS

P SUFFIX PLASTIC PACKAGE CASE 626-05 ISSUE K

- NOTES:
 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.40	10.16	0.370	0.400
В	6.10	6.60	0.240	0.260
С	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.070
G	2.54	BSC	0.100 BSC	
Н	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300 BSC	
М	_	10°		10°
N	0.76	1.01	0.030	0.040

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. DIMENSIONS ARE IN MILLIMETERS.
 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

- DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION: ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
 OF THE B DIMENSION AT MAXIMUM MATERIAL

	MILLIMETERS			
DIM	MIN MAX			
Α	1.35	1.75		
A1	0.10	0.25		
В	0.35	0.49		
С	0.18	0.25		
D	4.80	5.00		
E	3.80	4.00		
е	1.27	BSC		
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.25		
θ	0°	7°		

OUTLINE DIMENSIONS

P SUFFIX PLASTIC PACKAGE CASE 646-06 ISSUE L B ∇ SEATING PLANE

- NOTES:

 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.

 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 4. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.715	0.770	18.16	19.56
В	0.240	0.260	6.10	6.60
С	0.145	0.185	3.69	4.69
D	0.015	0.021	0.38	0.53
F	0.040	0.070	1.02	1.78
G	0.100 BSC		2.54 BSC	
Н	0.052	0.095	1.32	2.41
J	0.008	0.015	0.20	0.38
K	0.115	0.135	2.92	3.43
L	0.300 BSC		7.62	BSC
M	0°	10°	0°	10°
N	0.015	0.039	0.39	1 01

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.