DÉTECTION DE CARACTÉRISTIQUES

(feature detection)

Détection de contours

Arêtes des objets : brusque changement de la luminance.

(feature detection)

Détection de coins

Brusque changement de la luminance dans les deux dimensions, intersection de deux contours.

(feature detection)

Détection de lignes

Alignements de points (à effectuer après une détection de contours).

Extraction de caractéristiques (classification pour la reconnaissance de caractères, ...)

Association d'images (recalage, stabilisation de vidéo, ...)

Sommaire

- Détection de contours (edges)
- Détection de coins (corners)
- Détection de droites (lines)

Détection de contours

Détection de contours

- Modèles de contours
- Méthodes utilisant la morphologie mathématique
- Dérivées première et deuxième d'un contour
- Gradient et laplacien
- Méthodes basiques (filtres de Roberts, de Prewitt, de Sobel)
- Méthodes avancées (détecteurs de Marr-Hildreth, de Canny)

Exemples de contours

[GW]

La présence d'un contour est détectée...

- en analysant l'amplitude de la dérivée 1re
- ou en déterminant le passage à zéro de la dérivée 2e

...selon le profil d'intensité perpendiculairement au contour.

Dérivée 1^{re} (gradient)

$$\begin{pmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{pmatrix}$$

$$\begin{pmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} \\ \frac{\partial^2 f(x,y)}{\partial y^2} \end{pmatrix}$$

Dérivée 1^{re} (gradient)

$$\begin{pmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{pmatrix} = \begin{pmatrix} f(x+1,y) - f(x,y) \\ f(x,y+1) - f(x,y) \end{pmatrix}$$

$$\begin{pmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} \\ \frac{\partial^2 f(x,y)}{\partial y^2} \end{pmatrix}$$

Dérivée 1^{re} (gradient)

$$\begin{pmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{pmatrix} = \begin{pmatrix} f(x+1,y) - f(x,y) \\ f(x,y+1) - f(x,y) \end{pmatrix} = \begin{pmatrix} \partial_x f(x,y) \\ \partial_y f(x,y) \end{pmatrix}$$

$$\begin{pmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} \\ \frac{\partial^2 f(x,y)}{\partial y^2} \end{pmatrix}$$

Dérivée 1^{re} (gradient)

$$\begin{pmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{pmatrix} = \begin{pmatrix} f(x+1,y) - f(x,y) \\ f(x,y+1) - f(x,y) \end{pmatrix} = \begin{pmatrix} \partial_x f(x,y) \\ \partial_y f(x,y) \end{pmatrix}$$

$$\begin{pmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} \\ \frac{\partial^2 f(x,y)}{\partial y^2} \end{pmatrix} = \begin{pmatrix} f(x+1,y) - 2f(x,y) + f(x-1,y) \\ f(x,y+1) - 2f(x,y) + f(x,y-1) \end{pmatrix}$$

$$\partial_x f(x,y) = f(x+1,y) - f(x,y)$$

$$\partial_x f(x,y) = f(x+1,y) - f(x,y) = \sum_m \sum_n h_x(m,n) f(x-m,y-n)$$

$$\partial_x f(x,y) = f(x+1,y) - f(x,y) = \sum_m \sum_n h_x(m,n) f(x-m,y-n)$$
 où
$$\begin{cases} h_x(0,0) = -1 \\ h_x(-1,0) = +1 \\ h_x(m,n) = 0 \quad \text{ailleurs} \end{cases} \Rightarrow h_x = \begin{pmatrix} 0 & +1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\partial_x f(x,y) = f(x+1,y) - f(x,y) = \sum_m \sum_n h_x(m,n) f(x-m,y-n)$$
 où
$$\begin{cases} h_x(0,0) = -1 \\ h_x(-1,0) = +1 \\ h_x(m,n) = 0 \end{cases} \Rightarrow h_x = \begin{pmatrix} 0 & +1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\partial_y f(x,y) = f(x,y+1) - f(x,y)$$

$$\begin{split} \partial_x f(x,y) &= f(x+1,y) - f(x,y) = \sum_m \sum_n h_x(m,n) f(x-m,y-n) \\ \text{où} & \begin{cases} h_x(0,0) = -1 \\ h_x(-1,0) = +1 \\ h_x(m,n) = 0 \end{cases} \Rightarrow h_x = \begin{pmatrix} 0 & +1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \partial_y f(x,y) &= f(x,y+1) - f(x,y) = \sum_m \sum_n h_y(m,n) f(x-m,y-n) \\ \text{où} & \begin{cases} h_y(0,0) = -1 \\ h_y(0,-1) = +1 \\ h_y(i,j) = 0 \end{cases} \Rightarrow h_y = \begin{pmatrix} 0 & 0 & 0 \\ +1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{split}$$

Filtres de Roberts [Roberts 1965]:

$$\begin{pmatrix} 0 & +1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 \\ +1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} +1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & +1 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Filtres de Prewitt [Prewitt 1970] (permet de symétriser les filtres de Roberts) :

$$H_x = \begin{pmatrix} +1 & +1 & +1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix} \quad H_y = \begin{pmatrix} +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{pmatrix}$$

Filtres de Sobel [Sobel 1968] (version lissée du filtre de Prewitt):

$$H_x = \begin{pmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \quad H_y = \begin{pmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{pmatrix}$$

- Il existe des variantes diagonales.
- La somme des coefficients est égal à 0.

rappel: gradient =
$$\begin{pmatrix} \partial_x f(x,y) \\ \partial_y f(x,y) \end{pmatrix}$$

Amplitude (magnitude)

$$M(x,y) = \sqrt{\partial_x f(x,y)^2 + \partial_y f(x,y)^2}$$

Angle (direction)

$$A(x,y) = \operatorname{atan}\left(\frac{\partial_y f(x,y)}{\partial_x f(x,y)}\right)$$

M et A sont des images de la même taille que f.

Filtre de Sobel

Impact du bruit sur la détection

Impact du bruit sur la détection

Filtre de Sobel

Filtre moyenneur 5×5 puis filtre de Sobel

Seuillage du résultat

On peut seuiller l'image $|\partial_x f| + |\partial_y f|$ pour ne conserver que les grandes valeurs du gradient.

Techniques avancées de détection de contours

L'objectif est d'améliorer la détection en tenant compte du bruit et de la nature des contours.

- Détecteur de Marr-Hildreth [Marr & Hildreth 1980]
- Détecteur de Canny [Canny 1986]

Détecteur de Marr-Hildreth

Le détecteur de Marr-Hildreth consiste à :

- calculer le laplacien (dérivée 2^e) de l'image f sur laquelle un filtre gaussien g a été appliqué pour réduire le bruit,
- 2 déterminez les passages par zéro du résultat

Filtre gaussien:

$$g(x,y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Application d'un un filtre gaussien g puis calcul du laplacien sur f:

$$J = \partial^2(f * g)$$

Application d'un un filtre gaussien g puis calcul du laplacien sur f:

$$J = \partial^2(f * g) = h * (f * g)$$

Application d'un un filtre gaussien g puis calcul du laplacien sur f:

$$J = \partial^2 (f * g) = h * (f * g) = (h * g) * f$$

Laplacien du filtre gaussien (appelé LoG (Laplacian of Gaussian) ou chapeau mexicain) :

$$\partial^2 g(x,y) = -\left[\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right] \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Objectifs:

- tous les contours doivent être trouvés
- il doit y avoir un minimum de réponses parasites
- les contours correctement localisés
- l'épaisseur des contours détectés doit être de 1 pixel

Canny a exprimé ces objectifs sous forme mathématique et a proposé des solutions optimales vérifiant ces objectifs.

Algorithme:

- 1 lissage de l'image avec un filtre gaussien
- 2 calcul du gradient (magnitude et angle)
- 3 suppression des non-maxima sur l'image de magnitude
- seuillage par hystérésis

Lissage

Convolution de l'image f par un noyau gaussien $g(x,\!y)=e^{-\frac{x^2+y^2}{2\sigma^2}}$:

$$h = f * g.$$

Lissage

Convolution de l'image f par un noyau gaussien $g(x,y)=e^{-\frac{x^2+y^2}{2\sigma^2}}$:

$$h = f * g.$$

Calcul du gradient

$$M(x,y) = \sqrt{\partial_x f(x,y)^2 + \partial_y f(x,y)^2}$$
$$A(x,y) = \operatorname{atan}\left(\frac{\partial_y f(x,y)}{\partial_x f(x,y)}\right)$$

Suppression des non-maxima

L'objectif est de réduire les contours trop larges fournis par le calcul du gradient.

```
Pour chaque pixel (x,y) de l'amplitude M:
 | \text{ définir la direction } (\updownarrow, \nwarrow, \leftrightarrow, \swarrow) \text{ la plus proche de } A(x,y) 
 \text{ si } M(x,y) \text{ est plus faible que l'un des deux gradients voisin } 
 | \text{ dans sa direction :} 
 | \text{ alors le gradient est annulé : } M(x,y) = 0
```

Seuillage par hystérésis

L'objectif est d'éliminer les faux contours.

Définition de deux seuils tels que $s_{haut} > s_{bas}$.

```
pour chaque pixel (x,y) du gradient :  |si\ M(x,y)>s_{\text{haut}}: \\ |(x,y)\ \text{ est un point de contour}  si\ s_{\text{bas}}< M(x,y)< s_{\text{haut}}: \\ |(x,y)\ \text{ est un point de contour si et seulement}  s'il\ \text{ est voisin d'un point de contour}  si\ M(x,y)< s_{\text{bas}}: \\ |(x,y)\ \text{ n'est pas un point de contour}
```


Détection de coins

Détection de coins

- Jonction de deux contours
- Détecteur de Moravec [Moravec 1980]
- Détecteur de Harris [Harris & Stephens 1988]
- **.**.

Principe: observer les changements survenus en décalant légèrement un patch autour d'un pixel d'intérêt. Si les changements sont importants, alors le patch est centré sur un coin.

Principe: observer les changements survenus en décalant légèrement un patch autour d'un pixel d'intérêt. Si les changements sont importants, alors le patch est centré sur un coin.

zone plate : pas de changement

Principe: observer les changements survenus en décalant légèrement un patch autour d'un pixel d'intérêt. Si les changements sont importants, alors le patch est centré sur un coin.

contour: changement significatif

Principe: observer les changements survenus en décalant légèrement un patch autour d'un pixel d'intérêt. Si les changements sont importants, alors le patch est centré sur un coin.

coins : changement significatif dans toutes les directions

En chaque pixel (m,n) de l'image est calculé pour différents décalages (x,y) :

$$\forall m, n, x, y$$
 $E_{m,n}(x,y) = \sum_{u,v} w_{m,n}(u,v) [f(u+x,v+y) - f(u,v)]^2$

(seuls
$$(x,y) \in \{(1,0), (1,1), (0,1), (-1,1)\}$$
 sont testés).

où:

- $w_{m,n}$ est une fenêtre rectangulaire autour du pixel (m,n)
- $[f(u+x,v+y)-f(u,v)]^2$ représente la différence entre le patch f(u,v) et le patch décalé f(u+x,v+y)
- E(x,y) est la différence entre les patchs pour un décalage (x,y)

En chaque pixel (m,n) de l'image est calculé pour différents décalages (x,y) :

$$\forall m, n, x, y$$
 $E_{m,n}(x,y) = \sum_{u,v} w_{m,n}(u,v) [f(u+x,v+y) - f(u,v)]^2$

(seuls
$$(x,y) \in \{(1,0), (1,1), (0,1), (-1,1)\}$$
 sont testés).

Le minimum de $E_{m,n}(x,y)$ par rapport aux décalages t déterminé :

$$\forall m,n$$
 $F_{m,n} = \min_{x,y} E_{m,n}(x,y)$

Les coins détectés correspondent aux maxima locaux de $F_{m,n}$.

$$\forall m, n, x, y$$
 $E_{m,n}(x,y) = \sum_{u,v} w_{m,n}(u,v) [f(u+x,v+y) - f(u,v)]^2$

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0

$$\forall m, n, x, y$$
 $E_{m,n}(x,y) = \sum_{u,v} w_{m,n}(u,v) [f(u+x,v+y) - f(u,v)]^2$

1	1	1	1	1
1	1	1	1	1
1	1		0	
1	1	0	0	0
1	1	0	0	0

$$\forall m, n, x, y$$
 $E_{m,n}(x,y) = \sum_{u,v} w_{m,n}(u,v) [f(u+x,v+y) - f(u,v)]^2$

1	1	1	1	1
1	1	1	1	1
1		0	0	0
1	1	0	0	0
1	1	0	0	0

Problèmes:

- P1 la réponse du détecteur peut être bruitée car w est une fenêtre binaire
- P2) seuls des décalages de 45° sont considérés
- \bigcirc le détecteur est trop sensible aux contours car seul le minimum de E est considéré

Problèmes:

- P1 la réponse du détecteur peut être bruitée car w est une fenêtre binaire
- P2) seuls des décalages de 45° sont considérés
- $\stackrel{\hbox{\scriptsize P3}}{}$ le détecteur est trop sensible aux contours car seul le minimum de E est considéré

⇒ détecteur de Harris.

Pour éviter une réponse bruitée (problème (P1)), la fenêtre rectangulaire w est remplacée par une fenêtre w gaussienne dans :

$$E(x,y) = \sum_{u,v} w(u,v) (f(u+x,v+y) - f(u,v))^{2}$$

Pour étendre le modèle à n'importe quel angle (problème \bigcirc), on utilise un développement en série de Taylor de f(u+x,v+y):

$$f(u + x, v + y) \approx f(u, v) + x \partial_x f(u, v) + y \partial_y f(u, v)$$

Pour étendre le modèle à n'importe quel angle (problème (p)), on utilise un développement en série de Taylor de f(u+x,v+y):

$$f(u+x,v+y) \approx f(u,v) + x \partial_x f(u,v) + y \partial_y f(u,v)$$

$$\Rightarrow E(x,y) = \sum_{u,v} w(u,v) \left(f(u+x,v+y) - f(u,v) \right)^2$$

$$\approx \sum_{u,v} w(u,v) \left(x \partial_x f(u,v) + y \partial_y f(u,v) \right)^2$$

$$\approx \left(x \quad y \right) M \begin{pmatrix} x \\ y \end{pmatrix}$$
où
$$M = \sum_{u,v} w(u,v) \begin{pmatrix} (\partial_x f)^2 & \partial_x f \partial_y f \\ \partial_x f \partial_y f & (\partial_y f)^2 \end{pmatrix}$$

Le problème (P3) peut être évité en considérant une nouvelle mesure de la présence d'un coin : on peut obtenir d'autres informations sur le changement d'intensité dans la fenêtre en analysant les valeurs propres λ_1 et λ_2 de la matrice M.

$$E(x,y) = \begin{pmatrix} x & y \end{pmatrix} M \begin{pmatrix} x \\ y \end{pmatrix}$$

Le calcul des valeurs propres de ${\cal M}$ pouvant être difficile, une alternative est de calculer :

$$R = \det(M) - k(\operatorname{trace}(M))^2 = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$$

avec 0.04 < k < 0.06.

Le calcul des valeurs propres de ${\cal M}$ pouvant être difficile, une alternative est de calculer :

$$R = \det(M) - k(\operatorname{trace}(M))^2 = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$$

avec 0.04 < k < 0.06.

Les valeurs de R sont :

- faibles dans une région plate,
- négatives sur un contour,
- positives sur un coin.

 $R < -10^8$

 $R > 10^{8}$

Détection de droites

Transformée de Hough pour les droites

L'idée de la transformée de Hough [Hough 1962] est de représenter une droite de l'*image* en un point dans l'*espace des paramètres*.

Transformée de Hough pour les droites

L'idée de la transformée de Hough [Hough 1962] est de représenter une droite de l'*image* en un point dans l'*espace des paramètres*.

L'idée de la transformée de Hough [Hough 1962] est de représenter une droite de l'*image* en un point dans l'*espace des paramètres*.

Les points d'une droite y = ax + b dans l'image deviennent des droites qui se coupent en (a,b) dans l'espace des paramètres.

Nouvelle paramétrisation

L'inconvénient de la paramétrisation (a,b) est que l'espace des paramètres doit être borné et discrétisé \Rightarrow une droite verticale $(a=\infty)$ ne peut pas être représentée.

Nouvelle paramétrisation

L'inconvénient de la paramétrisation (a,b) est que l'espace des paramètres doit être borné et discrétisé \Rightarrow une droite verticale $(a=\infty)$ ne peut pas être représentée.

⇒ Nouvelle paramétrisation

Nouvelle paramétrisation

Pour chaque point (x_i,y_i) de l'image, une sinusoïde est associée dans l'espace (θ,s) :

$$s = x_i \cos(\theta) + y_i \sin(\theta)$$

Les sinusoïdes correspondant aux points d'une même droite se coupent au point (s^*, θ^*) paramétrisant cette droite.

Exemple

Exemple

Algorithme

Appliquer une détection de contours

Définir un accumulateur (= espace des paramètres discrétisé)

Pour chaque point des contours :

Déterminer la droite correspondante dans l'espace
des paramètres
Incrémenter l'accumulateur le long de cette droite

Rechercher les maxima de l'accumulateur
pour obtenir les paramètres des droites

Avantages:

- robuste au bruit
- robuste aux occlusions (peut détecter des objets partiellement recouverts)
- Extensible à tout objet paramétré (cercles, ellipses, ...)
 [Duda & Hart 1972]

Avantages:

- robuste au bruit
- robuste aux occlusions (peut détecter des objets partiellement recouverts)
- Extensible à tout objet paramétré (cercles, ellipses, ...)
 [Duda & Hart 1972]

Exemple pour la détection de cercles :

$$(x-a)^2 + (y-b)^2 = r^2 \rightarrow 3$$
 paramètres

Avantages:

- robuste au bruit
- robuste aux occlusions (peut détecter des objets partiellement recouverts)
- Extensible à tout objet paramétré (cercles, ellipses, ...)
 [Duda & Hart 1972]

Exemple pour la détection de cercles :

$$(x-a)^2 + (y-b)^2 = r^2 \rightarrow 3$$
 paramètres

Inconvénient:

■ la dimension de l'accumulateur est égal aux nombres de paramètres ⇒ le temps de calcul et la mémoire utilisée deviennent vite conséquents

Exercice

Conclusion

Conclusion

Détection de caractéristiques : approches différentes en fonction de la caractéristique cherchée !

- Contour: filtrage de l'image en utilisant le gradient ou le laplacien (Roberts, Prewitt, Sobel, Canny ...)
- Coin : mesurer les changements d'intensité dans le voisinage des pixels (Moravec, Harris ...)
- Ligne, cercle : représenter l'image dans l'espace des paramètres (Hough ...)

Bibliographie

- L.G. Roberts, « Machine Perception Of Three-Dimensional Solids », Computer Methods in Image Analysis IEEE Press, 1965.
- J.M.S. Prewitt, « Object enhancement and extraction », Picture Processing and Psychopictorics, Academic Press, 1970.
- I. Sobel et G. Feldman, «A 3 × 3 Isotropic Gradient Operator for Image Processing», In Stanford Artificial Intelligence Project, 1968.
- D. Marr et E. Hildreth, «Theory of Edge Detection » Proceedings of the Royal Society of London vol. 207, 1980.
- J. Canny, « A Computational Approach To Edge Detection », IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, 1986.
- R.O. Duda et P.E. Hart, « Use of the Hough Transformation to Detect Lines and Curves in Pictures », Comm. ACM, 15, p. 11–15, 1972.
- C. Harris, M. Stephens « A combined corner and edge detector », actes de l'Alvey Vision Conference, p. 147–151, 1988.
- P.V.C. Hough, Method and means for recognizing complex patterns, US Patent 3,069,654, 1962.
- H. Moravec, Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, rapport technique, Carnegie-Mellon University, Robotics Institute, 1980.