Aula 1 Técnicas Digitais

Visão Geral da Aula

Apresentação da disciplina Plano de ensino

Avaliação da disciplina

Introdução a Técnicas Digitais

Onde encontramos Eletrônica Digital? computadores

- Smartphones
- Caixas eletrônicos
- TVs digitais
- Automóveis
- Diversos aparelhos domésticos (geladeira, máquina de lavar...)
- Diversas máquinas específicas na indústria
- Sistemas embarcados em geral

Sistemas com Sinais analógicos e Digitais

Amostragem

- Amostragem: processo de selecionar um valor de uma sinal analógico em tempo discreto
- Sinal Digital

Em sistemas eletrônicos Digitais, a base é o **sistema binário**.

Tipos de sistemas

- Decimal
- Binário
- Hexadecimal
- Octal

Sistema binário

 Cada dígito do sistema binário é denominado BIT (binary digit);

 Um quarteto (4) de bits é denominado de NIBBLE;

Um octeto (8) de bits é chamado de BYTE;

Representação de números

Computadores são sistemas digitais

Unidade de informação = Bit Bit pode assumir apenas 2 estados

- 0 Nível lógico baixo
- 1 Nivel lógico alto

Desta forma, a base numérica natural para os sistemas computacionais é a base binária

Representação de números

- Os computadores utilizam o sistema binário de computação.
 - Exemplos: 100010, 1101010, 11101000
- Sistemas mais utilizados:
 - Numeração decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Numeração binária: 0,1
 - Numeração octal: 0, 1, 2, 3, 4, 5, 6, 7
 - Numeração hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7,
 8, 9, A, B, C, D, E, F.

Representação de números

Decimal	Binário 4	Hexa	Octal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	Е	16
15	1111	F	17

Sistema Binário

 Qual o maior numero que consigo representar com 8bits ? 	

Conversão de Bases

Métodos mais utilizados:

- Método Polinomial: de qualquer base para a base decimal
- ➤ Método de Subtrações da base decimal para qualquer base
- Método das Divisões
 da base decimal para qualquer base
- ➤ Método da Substituição Direta apenas entre bases potencias inteiras entre si

Conversão de Bases

Métodos mais utilizados:

- Método Polinomial:
 de qualquer base para a base decimal
- ➤ Método de Subtrações da base decimal para qualquer base
- Método das Divisões
 da base decimal para qualquer base
- ➤ Método da Substituição Direta apenas entre bases potencias inteiras entre si

Método Polinomial

 Cada número pode ser representado como um polinômio em uma certa base:

$$a = X_{n-1}.B^{n-1} + X_{n-2}.B^{n-2} + ... + X_2.B^2 + X_1.B + X_0$$

Onde:

B = base do sistema de numeração

X_n = dígito de ordem n

n = número da ordem

a = valor na base decimal

Método Polinomial

$$a = X_{n-1}.B^{n-1} + X_{n-2}.B^{n-2} + ... + X_2.B^2 + X_1.B + X_0$$

Exemplos:

$$D5_{16} =$$

Método Polinomial

$$a = X_{n-1}.B^{n-1} + X_{n-2}.B^{n-2} + ... + X_2.B^2 + X_1.B + X_0$$

Exemplos:

$$1001_2 = 1001_2 = 10001_$$

$$D5_{16} =$$
 $Dx16^{1} + 5x16^{0} = 213$
 $514_{7} =$

$$5x7^2 + 1x7^1 + 4x7^0 = 256$$

Exercícios

Transforme para a base decimal os seguintes valores na sua respectiva base:

$$AB3D_{16} =$$

Exercícios

Transforme para a base decimal os seguintes valores na sua respectiva base:

$$101010001_2 = 337$$

$$1011101_2 = 93$$

$$AB3D_{16} = 43837$$

$$56741_8 = 24033$$

Conversão de Bases

Métodos mais utilizados:

- Método Polinomial: de qualquer base para a base decimal
- ➤ Método de Subtrações da base decimal para qualquer base
- Método das Divisões
 da base decimal para qualquer base
- ➤ Método da Substituição Direta apenas entre bases potencias inteiras entre si

Conversão de Bases

Métodos mais utilizados:

- Método Polinomial:de qualquer base para a base decimal
- ➤ Método de Subtrações da base decimal para qualquer base
- ➤ Método das Divisões da base decimal para qualquer base
- ➤ Método da Substituição Direta apenas entre bases potencias inteiras entre si

Converter um número decimal para binário: O número é dividido pela nova base e o resto da divisão forma o algarismo mais à direita do resultado

Exemplo: 53 para binário

Converter um número decimal para binário:

O número é dividido pela nova base e o resto da divisão forma o algarismo mais à direita do resultado.

O processo termina quando o quociente for 0.

Binário = 110101

Consiste em dividir sucessivamente o número em decimal pelo quociente da base desejada.

Consiste em dividir sucessivamente o número em decimal pelo quociente da base desejada.

Exemplo: Decimal para Octal

Leitura

Exercícios

- 1) Converter para a base decimal os seguintes números:
- a) 101010₂
- b) 1010₃
- c) 1021₄
- d) 1025₆
- e) 2165₈
- f) 1FA2₁₆
- g) E1A₁₆
- h) 707₈

Exercícios

- 2) Converta os seguintes números decimais para a base indicada utilizando os dois métodos para cada caso: o método das divisões e das subtrações:
- a) 96 para binária
- b) 96 para a base octal
- c) 258 para a base hexadecimal
- d) 49 para a base binária
- e) 57 para a base binária
- f) 56 para a base binária
- g) 56 para a base hexadecimal