Recursive Neural Structural Correspondence Network for Cross-domain Aspect and Opinion Co-Extraction

Problem definition: Fine-grained opinion analysis

Extract aspect and opinion terms from each sentence for opinion summarization.

- Denote a sentence by a sequence of tokens: $\mathbf{x} = (w_1, w_2, ..., w_n)$
- The output is a sequence of token-level labels:

$$y = (y_1, y_2, ..., y_n)$$
 $y_i \in \{BA, IA, BO, IO, N\}$

Problem definition: Cross-domain Fine-grained opinion analysis

- One active line focuses on projecting original feature spaces of two domains into the same low-dimensional space to reduce domain shift using pivot features as a bridge.
- Another line learns domain-invariant features via autoencoders.

Motivation: Cross-domain Fine-grained opinion analysis

The dependency relations.

"They offer good appetizers"

"The laptop has a <u>nice screen</u>"

"OPINION-amod-ASPECT"

Figure 1: An example of two reviews with similar syntactic patterns.

 Structural learning: the success of target task depends on the ability of finding good predictive structures learned from other related tasks.

Model: RNSCN-GRU

Figure 2: The architecture of RNSCN-GRU.

Model: Recursive Neural Structural Correspondence Network (RNSCN)

$$\mathbf{h}_1 = \tanh(\mathbf{W}_x \mathbf{x}_1 + \mathbf{b}), \quad \mathbf{h}_3 = \tanh(\mathbf{W}_x \mathbf{x}_3 + \mathbf{b})$$

$$\mathbf{x}_4$$
 (appetizers) $\xrightarrow{\text{amod}} \mathbf{x}_3$ (good)

$$\mathbf{r}_{43} = \tanh(\mathbf{W}_h \mathbf{h}_3 + \mathbf{W}_x \mathbf{x}_4)$$

$$\hat{\mathbf{y}}_{43}^R = \operatorname{softmax}(\mathbf{W}_R \mathbf{r}_{43} + \mathbf{b}_R)$$

$$\mathbf{h}_4 = \tanh(\mathbf{W}_{\mathbf{amod}}\mathbf{r}_{43} + \mathbf{W}_x\mathbf{x}_4 + \mathbf{b})$$

$$\mathbf{h}_n = \tanh(\sum_{m \in \mathcal{M}_n} \mathbf{W}_{R_{nm}} \mathbf{r}_{nm} + \mathbf{W}_x \mathbf{x}_n + \mathbf{b})$$

Model: Reduce Label Noise with Auto-encoders

Figure 3: An autoencoder for relation grouping.

$$p(G_{nm} = i | \mathbf{r}_{nm}) = \frac{\exp(\mathbf{r}_{nm}^{\top} \mathbf{W}_{enc} \mathbf{g}_i)}{\sum_{j \in G} \exp(\mathbf{r}_{nm}^{\top} \mathbf{W}_{enc} \mathbf{g}_j)} \quad \hat{\mathbf{y}}_{nm}^R = \operatorname{softmax}(\mathbf{W}_R \cdot \mathbf{r}_{nm} + \mathbf{b}_R)$$

$$|G|$$

$$\mathbf{g}_{nm} = \sum_{i=1}^{|G|} p(G_{nm} = i | \mathbf{r}_{nm}) \mathbf{g}_i \qquad \hat{\mathbf{y}}_{nm}^R = \operatorname{softmax}(\mathbf{W}_R \mathbf{g}_{nm} + \mathbf{b}_R)$$

Model: RNSCN+GRU/RNSCN+CRF

GRU:

$$\mathbf{h}'_n = f_{GRU}(\mathbf{h}'_{n-1}, \mathbf{h}_n; \mathbf{\Theta})$$

$$\hat{\mathbf{y}}_n = \operatorname{softmax}(\mathbf{W}_l \cdot \mathbf{h}'_n + \mathbf{b}_l)$$

CRF:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y}} p(\mathbf{y}|\mathbf{H})
= \arg \max_{\mathbf{y}} \frac{1}{Z(\mathbf{H})} \prod_{c \in C} \exp \langle \mathbf{W}_c, g(\mathbf{H}, \mathbf{y}_c) \rangle
= \frac{1}{Z(\mathbf{H})} \prod_{c \in C} \exp \langle \mathbf{W}_c, g(\mathbf{H}, \mathbf{y}_c) \rangle$$

Model: Train

RNSCN+ Loss:

$$\ell_R = \ell_{R_1} + \alpha \ell_{R_2} + \beta \ell_{R_3},$$

where

$$\ell_{R_1} = \|\mathbf{r}_{nm} - \mathbf{W}_{dec}\mathbf{g}_{nm}\|_2^2\,,$$
 Auto-encoder loss

$$\ell_{R_2} = \sum_{l=1}^{R} -\mathbf{y}_{nm[k]}^R \log \hat{\mathbf{y}}_{nm[k]}^R,$$
 Relation classification loss

$$\ell_{R_3} = \left\| \mathbf{I} - \bar{\mathbf{G}}^{\top} \bar{\mathbf{G}} \right\|_F^2$$
. Enforces orthogonality: \mathbf{g}_i and \mathbf{g}_j for $i \neq j$

RNSCN+-GRU Loss:

$$\mathcal{L} = \sum_{\mathcal{D}_S} \ell_S(\mathbf{y}_{S_i}, \hat{\mathbf{y}}_{S_i}) + \gamma \sum_{\mathcal{D}_R} \ell_R(\mathbf{r}_j, \mathbf{y}_j^R)$$

Experiments:

Models	R-	\rightarrow L	$R \rightarrow D$		$L\rightarrow R$		$L \rightarrow D$		$D \rightarrow R$		$D \rightarrow L$	
Models	AS	OP	AS	OP	AS	OP	AS	OP	AS	OP	AS	OP
CrossCRF	19.72	59.20	21.07	52.05	28.19	65.52	29.96	56.17	6.59	39.38	24.22	46.67
CIOSSCRF	(1.82)	(1.34)	(0.44)	(1.67)	(0.58)	(0.89)	(1.69)	(1.49)	(0.49)	(3.06)	(2.54)	(2.43)
DAD	25.92	62.72	22.63	54.44	46.90	67.98	34.54	54.25	45.44	60.67	28.22	59.79
RAP	(2.75)	(0.49)	(0.52)	(2.20)	(1.64)	(1.05)	(0.64)	(1.65)	(1.61)	(2.15)	(2.42)	(4.18)
Hier-Joint	33.66	-	33.20	-	48.10	-	31.25	-	47.97	-	34.74	-
mei-joint	(1.47)	-	(0.52)	-	(1.45)	-	(0.49)	-	(0.46)	-	(2.27)	
RNCRF	24.26	60.86	24.31	51.28	40.88	66.50	31.52	55.85	34.59	63.89	40.59	60.17
KNCKF	(3.97)	(3.35)	(2.57)	(1.78)	(2.09)	(1.48)	(1.40)	(1.09)	(1.34)	(1.59)	(0.80)	(1.20)
RNGRU	24.23	60.65	20.49	52.28	39.78	62.99	32.51	52.24	38.15	64.21	39.44	60.85
KNOKU	(2.41)	(1.04)	(2.68)	(2.69)	(0.61)	(0.95)	(1.12)	(2.37)	(2.82)	(1.11)	(2.79)	(1.25)
RNSCN-CRF	35.26	61.67	32.00	52.81	53.38	67.60	34.63	56.22	48.13	65.06	46.71	61.88
KNSCN-CKF	(1.31)	(1.35)	(1.48)	(1.29)	(1.49)	(0.99)	(1.38)	(1.10)	(0.71)	(0.66)	(1.16)	(1.52)
RNSCN-GRU	37.77	62.35	33.02	57.54	53.18	71.44	35.65	60.02	49.62	69.42	45.92	63.85
KINSCIN-GRU	(0.45)	(1.85)	(0.58)	(1.27)	(0.75)	(0.97)	(0.77)	(0.80)	(0.34)	(2.27)	(1.14)	(1.97)
RNSCN ⁺ -GRU	40.43	65.85	35.10	60.17	52.91	72.51	40.42	61.15	48.36	73.75	51.14	71.18
KINSUN '-GRU	(0.96)	(1.50)	(0.62)	(0.75)	(1.82)	(1.03)	(0.70)	(0.60)	(1.14)	(1.76)	(1.68)	(1.58)

Table 2: Comparisons with different baselines.

Experiments: Auto-encoder

Dataset	Description	# Sentences	Training	Testing
R	Restaurant	5,841	4,381	1,460
L	Laptop	3,845	2,884	961
D	Device	3,836	2,877	959

Table 1: Data statistics with number of sentences.

Models	$R{ ightarrow}L$		$R{ ightarrow}D$		$L \rightarrow R$		$L\rightarrow D$		$D \rightarrow R$		$D \rightarrow L$	
Wiodels	AS	OP	AS	OP	AS	OP	AS	OP	AS	OP	AS	OP
RNSCN-GRU	37.77	62.35	33.02	57.54	53.18	71.44	35.65	60.02	49.62	69.42	45.92	63.85
RNSCN-GRU (r)	32.97	50.18	26.21	53.58	35.88	65.73	32.87	57.57	40.03	67.34	40.06	59.18
RNSCN ⁺ -GRU	40.43	65.85	35.10	60.17	52.91	72.51	40.42	61.15	48.36	73.75	51.14	71.18
RNSCN ⁺ -GRU (r)	39.27	59.41	33.42	57.24	45.79	69.96	38.21	59.12	45.36	72.84	50.45	68.05

Table 3: Comparisons with different variants of the proposed model.

Experiments: the effect of different components

		$R \rightarrow L$		$R{ ightarrow}D$		$L{\rightarrow}R$		$L{\rightarrow}D$		$D \rightarrow R$		$D{ ightarrow}L$	
		AS	OP	AS	OP	AS	OP	AS	OP	AS	OP	AS	OP
	Hier-Joint	33.66	-	33.20	-	48.10	-	31.25	-	47.97	-	34.74	-
OUT	RNSCN ⁺ -GRU*	39.06	-	34.07	-	47.98	-	38.51	-	47.49	-	48.49	-
001	RNSCN ⁺	31.60	65.89	24.37	60.01	39.58	71.03	34.40	60.47	41.02	71.23	45.54	69.00
	RNSCN ⁺ -GRU	40.43	65.85	35.10	60.17	52.91	72.51	40.42	61.15	48.36	73.75	51.14	71.18
	Hier-Joint	32.41	-	29.79	-	47.04	-	31.26	-	47.41	-	33.80	-
IN	RNSCN ⁺ -GRU*	40.34	-	30.75	-	48.69	-	37.40	-	46.49	-	48.50	-
111	RNSCN ⁺	30.76	63.65	22.48	59.24	39.54	70.25	35.32	60.00	37.75	70.64	43.72	68.27
	RNSCN ⁺ -GRU	41.27	65.44	33.58	60.28	52.48	72.10	39.73	60.18	47.10	72.19	50.23	70.21

Table 4: Comparisons with different transfer setting.

OUT: Inductive setting

IN: Transductive setting

Experiments: robustness and capability

(b) On number of groups.

Figure 4: Sensitivity studies for $L\rightarrow D$.

(a) On trade-off parameter.

Figure 5: F1 vs proportion of unlabeled target data.