The Midterm

STAT 464/864 \sim Fall 2024

Discrete Time Series Analysis | *Skye P. Griffith* ~ Queen's University

Monday, October $21^{st} \sim 10:30\text{-}11:20$ (in class)

Learning Outcomes

If you successfully complete the midterm, you will have demonstrated an understanding of most of the following themes (depending on which stars you choose to complete).

Room 1: The Terrace | Classical Time Series Modelling

- 1. Trends
- 2. Seasonality
- 3. Autocorrelation & Stationarity
- 4. White Noise hypothesis testing

Room 2: The Fountain | $Filters, MA(q) \ and \ AR(p)$

- 1. Linear Filters & Proposition 2.2.1
- 2. Causality
- 3. MA(q) processes
- 4. AR(p) processes

Galaxy Grading

The Terrace contains 3 Stars. So does the Fountain. Each Star is worth 5 points.

Undergraduate students: Complete any 4 Stars.

Graduate students: Complete any 5 stars.

There are no alternate stars or anything because, like... this is a test.

50 min. Calculators permitted. By that I mean like a Casio 991, not a computer. No R, no cheetsheet.

The Terrace \mid Star 1 \star

True or False Mini-game

- Each [?] floating next to a TRUE statement contains a coin.
- Each ? floating next to a FALSE statement contains a poison mushroom!
- Break (colour-in, cross out, etc.) each box containing a coin, avoid the poison mushrooms.

You have an observed time series $\{x_t\}_{t=1}^{500}$.

You wish to model this data according to the classical decomposition

$$X_t = m_t + s_t + Y_t \qquad (\star),$$

where Y_t is assumed to be zero-mean, Gaussian (normally distributed $\forall t$) white noise.

Consider the operation $H_q(\cdot)$, defined by $H(x_t)\stackrel{def}{=}\frac{1}{2q+1}\sum_{j=-q}^q x_{t-j}$

- $\mid \; ? \mid \; H_q(\cdot)$ outputs a polynomial regression line of degree q
- $\overline{}$ $H_q(\cdot)$ is a moving average smoother of order q
- $\ \ ? \ \ \ H_q(\cdot)$ is an exponential smoother with parameter q

Assuming \boldsymbol{x}_t does NOT have a significant \boldsymbol{s}_t component with period 10,

- $\mid \cdot \mid H_{q:=10}(\cdot)$ will dampen high-frequency fluctuations (low-pass filter)
- $? \hspace{0.5cm} H_{q:=10}(\cdot)$ eliminates gradual/polynomial trends over large time-scales

Assuming x_t DOES have a significant s_t component with period 10,

- $\fbox{?} \hspace{0.5cm} H_{q:=10}(\cdot)$ will model s_t by fitting one or more sinusoids
- $\mid \ \ \, | \ \ \, H_{q:=10}(\cdot) \text{ estimates } s_t \text{ without assuming its behaviour within a given cycle of period 10}.$

The Terrace | Star 2 \star

Drawing Mini-game

Name one of the three requirements for weak stationarity

(reminder: this is what we've simply been calling "stationarity" in class, as is conventional).

Answer here:

In plot 1: Draw a time series which satisfies the condition you chose, above. It does not necessarily need to be stationary, it just needs to satisfy your chosen condition.

In plot 2: Draw a time series which does NOT satisfy your chosen condition.

Plot 1: Condition Satisfied

Plot 2: Condition NOT Satisfied

The Terrace | Star 3 \star

White Noise Hypothesis Mini-game

Consider the time series $\{x_t\}_{t=1}^{10\,000},$ whose sample ACF $\hat{\rho}_x(h)$ is plotted, below.

We want to test whether this series is a white noise process at the $\alpha=0.05$ level.

- 1. Write ${\cal H}_0$ as a mathematical expression, in terms of $\rho(h)$.
- 2. Write ${\cal H}_A$ as a mathematical expression, in terms of $\rho(h).$
- 3. The ACF plot shows $\hat{\rho}_x(h)$ for $h=0,\ldots,40$. Recall, $\alpha=0.05$. How many times is $\hat{\rho}_x$ allowed to enter the plot's rejection region before we reject H_0 ?
- 4. What is the conclusion of your hypothesis test, according to the sample ACF plot? Give your answer in terms of the null hypothesis, H_0 . Do you believe x_t is white noise? Why?

The Fountain \mid Star 1 \star

True or False Mini-game

Each ? | floating next to a TRUE statement contains a coin.

Each |? | floating next to a FALSE statement contains a poison mushroom!

Break (colour-in, cross out, etc.) each box containing a coin, avoid the poison mushrooms.

$$\text{Consider the following:} \qquad X_t = \sum_{j=-\infty}^{\infty} \psi_j X_{t-j} \qquad \text{where} \qquad \psi_j = \begin{cases} (-1)^j & |j| < 10 \\ 0 & else \end{cases}$$

- ? $\{\psi_j\}$ is a linear filter
- ? $\{\psi_i\}$ is a causal filter
- $\{\psi_j\}$ is a linear process

Now let Y_t be stationary and zero mean, but NOT white noise. Let γ_Y and σ_Y^2 respectively denote the ACVF and variance of Y_t

Let
$$Z_t = \sum_{j=-\infty}^{\infty} \psi_j Y_{t-j}$$

- $E[Z_t] = 0$
- $Var[Z_t] = Var[Y_t]$
- The ACVF $\gamma_Z(h)$ exists, and can be expressed in terms of γ_Y and σ_Y^2
- ? $\gamma_Z(h)$ exists, and can be expressed in terms of σ_Y^2 only

The Fountain \mid Star 2 \star

Matching Mini-game

Fill in the plot titles based on which simulations (w,x,y,z) you believe produced each ACF.

```
N <- 1000
t <- 1:N
y.mod <- specify(ar = c(0, 0, 0.75))
z.mod <- specify(ma = c(0, 0, 0.75))

w <- rnorm(N)
x <- w + cos(2*pi*0.2*t)
y <- sim(y.mod, N)
z <- sim(z.mod, N)</pre>
```


The Fountain \mid Star 3 \star

Calculation Mini-game

Let $\{Z_t\}$ be zero mean and stationary, with ACVF $\gamma_Z(h).$

Let $\{s_t\}$ be a seasonal component with period $d \geq 2$.

Let
$$Y_t = s_t + Z_t$$

Let $X_t = Y_t - Y_{t-d}$, and suppose all this is defined for $t \in \mathbb{Z}.$

Questions:

Is $\{X_t\}$ stationary?

If yes, compute the ACVF $\gamma_{X}(h).$

If no, does $\{X_t\}$ itself have a seasonal component? What is its period?