Lesson 13: Inference for difference in means from two independent samples

TB sections 5.3

Meike Niederhausen and Nicky Wakim

2024-11-13

Learning Objectives

- 1. Identify when a research question or dataset requires two independent sample inference.
- 2. Construct and interpret confidence intervals for difference in means of two independent samples.
- 3. Run a hypothesis test for two sample independent data and interpret the results.

Where are we?

Sampling Variability, **Probability** Data Inference for continuous data/outcomes and Statistical Inference Simple linear 3+ independent One sample **Probability** Collecting regression / t-test samples data rules Sampling correlation distributions 2 sample tests: Independence, Non-parametric Power and conditional paired and Categorical tests sample size Central independent vs. Numeric Limit Random Theorem variables and Inference for categorical data/outcomes probability distributions **Summary** Confidence Fisher's exact One proportion Non-parametric statistics Intervals Linear test tests test combinations Data Binomial, Hypothesis Power and Chi-squared 2 proportion visualization Normal, and tests sample size test test Poisson Data Data R Packages R Projects **Basics** Reproducibility Quarto • • • visualization wrangling

Different types of inference based on different data types

Lesson	Section	Population parameter	Symbol (pop)	Point estimate	Symbol (sample)	SE
11	5.1	Pop mean	μ	Sample mean	\overline{x}	$\frac{s}{\sqrt{n}}$
12	5.2	Pop mean of paired diff	μ_d or δ	Sample mean of paired diff	\overline{x}_d	$rac{s_d}{\sqrt{n}}$
13	5.3	Diff in pop means	$\mu_1 - \mu_2$	Diff in sample means	$\overline{x}_1 - \overline{x}_2$????
15	8.1	Pop proportion	p	Sample prop	\widehat{p}	
15	8.2	Diff in pop prop's	p_1-p_2	Diff in sample prop's	$\widehat{p}_1 - \widehat{p}_2$	

Learning Objective

What are data from two independent sample?

- Two independent samples: Individuals between and within samples are independent
 - Typically: measure the same outcome for each sample, but typically the two samples differ based on a single variable

- Examples
 - Any study where participants are randomized to a control and treatment group
 - Study with two groups based on their exposure to some condition (can be observational)
 - Book: "Does treatment using embryonic stem cells (ESCs) help improve heart function following a heart attack?"
 - Book: "Is there evidence that newborns from mothers who smoke have a different average birth weight than newborns from mothers who do not smoke?"

• Pairing (like comparing before and after) may not be feasible

Poll Everywhere Question 1

For two independent samples: Population parameters vs. sample statistics

Population parameter

- Population 1 mean: μ_1
- Population 2 mean: μ_2

• Difference in means: $\mu_1 - \mu_2$

- Population 1 standard deviation: σ_1
- Population 2 standard deviation: σ_2

Sample statistic (point estimate)

- Sample 1 mean: \overline{x}_1
- Sample 2 mean: \overline{x}_2

• Difference in sample means: $\overline{x}_1 - \overline{x}_2$

- Sample 1 standard deviation: s_1
- Sample 2 standard deviation: s_2

Does caffeine increase finger taps/min (on average)?

• Use this example to illustrate how to calculate a confidence interval and perform a hypothesis test for two independent samples

Study Design:¹

- 70 college students students were trained to tap their fingers at a rapid rate
- Each then drank 2 cups of coffee (double-blind)
 - Control group: decaf
 - Caffeine group: ~ 200 mg caffeine
- After 2 hours, students were tested.
- Taps/minute recorded

Does caffeine increase finger taps/min (on average)?

- Load the data from the csv file CaffeineTaps.csv
- The code below is for when the data file is in a folder called data that is in your R project folder (your working directory)

```
1 CaffTaps <- read.csv(here::here("data", "CaffeineTaps_n35.csv"))
2
3 glimpse(CaffTaps)</pre>
```

```
Rows: 70
Columns: 2
$ Taps <int> 246, 248, 250, 252, 248, 250, 246, 248, 245, 250, 242, 245, 244,...
$ Group <chr> "Caffeine", "Caffeine",
```

EDA: Explore the finger taps data

► Code to make these histograms

Summary statistics stratified by group

Group	variable	n	mean	sd
Caffeine	Taps	35	248.114	2.621
NoCaffeine	Taps	35	244.514	2.318

Then calculate the difference between the means:

```
1 diff(sumstats$mean)
[1] -3.6
```

- Note that we cannot calculate 35 differences in taps because these data are not paired!!
- Different individuals receive caffeine vs. do not receive caffeine

Poll Everywhere Question 2

What would the distribution look like for 2 independent samples?

What distribution does $\overline{X}_1 - \overline{X}_2$ have? (when we know pop sd's)

- Let \overline{X}_1 and \overline{X}_2 be the means of random samples from two independent groups, with parameters shown in table:
- Some theoretical statistics:
 - lacksquare If \overline{X}_1 and \overline{X}_2 are independent normal RVs, then $\overline{X}_1-\overline{X}_2$ is also normal
 - lacksquare What is the mean of $\overline{X}_1 \overline{X}_2$?

$$E[\overline{X}_1 - \overline{X}_2] = E[\overline{X}_1] - E[\overline{X}_2] = \mu_1 - \mu_2$$

lacksquare What is the standard deviation of $\overline{X}_1 - \overline{X}_2$?

$$egin{align} Var(\overline{X}_1-\overline{X}_2) &= Var(\overline{X}_1) + Var(\overline{X}_2) = rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2} \ SD(\overline{X}_1-\overline{X}_2) &= \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}} \ \end{cases}$$

	Gp 1	Gp 2
sample size	n_1	n_2
pop mean	μ_1	μ_2
pop sd	σ_1	σ_2

$$\overline{X}_1 - \overline{X}_2 \sim$$

What would the distribution look like for 2 independent samples?

Single-sample mean:

Paired mean difference:

Diff in means of 2 ind samples:

Approaches to answer a research question

• Research question is a generic form for 2 independent samples: Is there evidence to support that the population means are different from each other?

Calculate CI for the mean difference δ :

$$\overline{x}_1 - \overline{x}_2 \pm \ t^* imes \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$$

• with t^* = t-score that aligns with specific confidence interval

Run a **hypothesis test**:

Hypotheses

$$egin{aligned} H_0: & \mu_1 = \mu_2 \ H_A: & \mu_1
eq \mu_2 \ (or <,>) \end{aligned}$$

Test statistic

$$rac{z_{x_1-\overline{x}_2}}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$$

Learning Objectives

95% CI for the difference in population mean taps $\mu_1-\mu_2$

Confidence interval for $\mu_1 - \mu_2$

$$\overline{x}_1 - \overline{x}_2 \pm t^* imes ext{SE}$$

• with $ext{SE} = \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$ if population sd is not known

- ullet t^* depends on the confidence level and degrees of freedom
 - lacktriangle degrees of freedom (df) is: df=n-1
 - lacksquare n is minimum between n_1 and n_2

95% CI for the difference in population mean taps

```
1 CaffTaps %>% group_by(Group) %>% get_summary_stats(type = "mean_sd") %>%
2 gt() %>% tab_options(table.font.size = 40)
```

Group	variable	n	mean	sd
Caffeine	Taps	35	248.114	2.621
NoCaffeine	Taps	35	244.514	2.318

95% CI for $\mu_{caff} - \mu_{ctrl}$:

$$egin{align*} \overline{x}_{ ext{caff}} - \overline{x}_{ ext{ctrl}} \pm t^* \cdot \sqrt{rac{s_{ ext{caff}}^2}{n_{ ext{caff}}}} + rac{s_{ ext{ctrl}}^2}{n_{ ext{ctrl}}} \ 248.114 - 244.514 \pm 2.032 \cdot \sqrt{rac{2.621^2}{35}} + rac{2.318^2}{35} \ 3.6 \pm 2.032 \cdot \sqrt{0.196 + 0.154} \ (2.398, \! 4.802) \end{aligned}$$

Used
$$t^* = qt(0.975, df=34) = 2.032$$

Conclusion:

We are 95% confident that the difference in (population) mean finger taps/min between the caffeine and control groups is between 2.398 mg/dL and 4.802 mg/dL.

95% CI for the difference in population mean taps (using R)

► We can tidy the output

```
estimate 1 estimate 2 statistic p.value parameter conf.low conf.high method alternative 3.6 248.1143 244.5143 6.086677 6.265631e-08 67.00222 2.41945 4.78055 Welch Two Sample t-test two.sided
```

Conclusion:

We are 95% confident that the difference in (population) mean finger taps/min between the caffeine and control groups is between 2.398 mg/dL and 4.802 mg/dL.

Poll Everywhere Question 3

Learning Objectives

Reference: Steps in a Hypothesis Test

- 1. Check the assumptions
- 2. Set the level of significance α
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 4. Calculate the test statistic.
- 5. Calculate the p-value based on the observed test statistic and its sampling distribution
- 6. Write a conclusion to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Step 1: Check the assumptions

- The assumptions to run a hypothesis test on a sample are:
 - Independent observations: Each observation from both samples is independent from all other observations
 - Approximately normal sample or big n: the distribution of each sample should be approximately normal, or the sample size of each sample should be at least 30

• These are the criteria for the Central Limit Theorem in Lesson 09: Variability in estimates

- In our example, we would check the assumptions with a statement:
 - The observations are independent from each other. Each caffeine group (aka sample) has 35 individuals.
 Thus, we can use CLT to approximate the sampling distribution for each sample.

Step 2: Set the level of significance

- Before doing a hypothesis test, we set a cut-off for how small the p-value should be in order to reject H_0 .
- Typically choose lpha=0.05

• See Lesson 11: Hypothesis Testing 1: Single-sample mean

Step 3: Null & Alternative Hypotheses

Notation for hypotheses (for two ind samples)

$$H_0: \mu_1 = \mu_2 \ ext{vs.} \ H_A: \mu_1
eq , <, ext{or}, > \mu_2$$

Hypotheses test for example

$$H_0: \mu_{caff} = \mu_{ctrl} \ ext{vs.} \ H_A: \mu_{caff} > \mu_{ctrl} \$$

ullet Under the null hypothesis: $\mu_1=\mu_2$, so the difference in the means is $\mu_1-\mu_2=0$

$$H_A:\mu_1
eq\mu_2$$

$$H_A: \mu_1 < \mu_2$$

 believe that population mean of group 1 is greater than population mean of group 2

$$H_A:\mu_1>\mu_2$$

 believe that population mean of group 1 is less than population mean of group 2

• $H_A: \mu_1
eq \mu_2$ is the most common option, since it's the most conservative

Step 3: Null & Alternative Hypotheses: another way to write it

• Under the null hypothesis: $\mu_1=\mu_2$, so the difference in the means is $\mu_1-\mu_2=0$

$$H_A:\mu_1\neq\mu_2$$

 not choosing a priori whether we believe the population mean of group 1 is different than the population mean of group 2

$$H_A: \mu_1 - \mu_2 \neq 0$$

 not choosing a priori whether we believe the difference in population means is greater or less than 0

$$H_A:\mu_1>\mu_2$$

 believe that population mean of group 1 is greater than population mean of group 2

$$H_A: \mu_1 - \mu_2 > 0$$

 believe that difference in population means (mean 1 mean 2) is greater than 0

$$H_A: \mu_1 < \mu_2$$

 believe that population mean of group 1 is less than population mean of group 2

$$H_A: \mu_1 - \mu_2 < 0$$

 believe that difference in population means (mean 1 mean 2) is less than 0

Step 3: Null & Alternative Hypotheses

• Question: Is there evidence to support that drinking caffeine increases the number of finger taps/min?

Null and alternative hypotheses in words

- H_0 : The population difference in mean finger taps/min between the caffeine and control groups is 0
- H_A : The population difference in mean finger taps/min between the caffeine and control groups is greater than 0

Null and alternative hypotheses in **symbols**

$$H_0: \mu_{caff} - \mu_{ctrl} = 0$$

$$H_A: \mu_{caff} - \mu_{ctrl} > 0$$

Step 4: Test statistic

Recall, for a two sample independent means test, we have the following test statistic:

$$t_{\overline{x}_1-\overline{x}_2} = rac{\overline{x}_1-\overline{x}_2-0}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$$

- ullet $\overline{x}_1,\overline{x}_2$ are the sample means
- ullet $\mu_0=0$ is the mean value specified in H_0
- s_1, s_2 are the sample SD's
- n_1, n_2 are the sample sizes

- Statistical theory tells us that $t_{\overline{x}_1-\overline{x}_2}$ follows a **student's t-distribution** with
 - $lacksquare dfpprox {\sf smaller} \ {\sf of} \ n_1-1 \ {\sf and} \ n_2-1$
 - lacktriangle this is a conservative estimate (smaller than actual df)

Step 4: Test statistic (where we do not know population sd)

From our example: Recall that $\overline{x}_1=248.114$, $s_1=2.621$, $n_1=35$, $\overline{x}_2=244.514$, $s_2=2.318$, and $n_2=35$: The test statistic is:

$$\text{test statistic} = t_{\overline{x}_1 - \overline{x}_2} = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{248.114 - 244.514 - 0}{\sqrt{\frac{2.621^2}{35} + \frac{2.318^2}{35}}} = 6.0869$$

ullet Statistical theory tells us that $t_{\overline{x}}$ follows a **Student's t-distribution** with df=n-1=34

Step 5: p-value

The p-value is the probability of obtaining a test statistic just as extreme or more extreme than the observed test statistic assuming the null hypothesis H_0 is true.

Sampling distribution of difference in means

Calculate the p-value using the **Student's t-distribution** with df=n-1=35-1=34:

$$ext{p-value} = P(T > 6.08691) \ = 3.3 imes 10^{-7}$$

```
1 pt(tstat,
2    df = min(n1 - 1, n2 - 1),
3    lower.tail = FALSE)
[1] 3.321969e-07
```

Step 4-5: test statistic and p-value together using t.test()

• I will have reference slides at the end of this lesson to show other options and how to "tidy" the results

- Why are the degrees of freedom different? (see Slide Section 5.4)
 - Degrees of freedom in R is more accurate
 - Using our approximation in our calculation is okay, but conservative

Poll Everywhere Question 4

Step 6: Conclusion to hypothesis test

$$H_0: \mu_1=\mu_2$$

vs.
$$H_A: \mu_1 > \mu_2$$

- Need to compare p-value to our selected lpha=0.05
- Do we reject or fail to reject H_0 ?

If p-value $< \alpha$, reject the null hypothesis

• There is sufficient evidence that the difference in population means is discernibly greater than 0 (p-value =)

If p-value $\geq \alpha$, fail to reject the null hypothesis

• There is insufficient evidence that the difference in population means is discernibly greater than 0 (p-value =)

Step 6: Conclusion to hypothesis test

$$egin{aligned} H_0:&\mu_{caff}-\mu_{ctrl}=0\ H_A:&\mu_{caff}-\mu_{ctrl}>0 \end{aligned}$$

- ullet Recall the p-value = $3 imes 10^{-8}$
- Use α = 0.05.
- Do we reject or fail to reject H_0 ?

Conclusion statement:

- Stats class conclusion
 - There is sufficient evidence that the (population) difference in mean finger taps/min with vs. without caffeine is greater than 0 (p-value < 0.001).
- More realistic manuscript conclusion:
 - The mean finger taps/min were 248.114 (SD = 2.621) and 244.514 (SD = 2.318) for the control and caffeine groups, and the increase of 3.6 taps/min was statistically discrenible (p-value = 0).

Reference: Ways to run a 2-sample t-test in R

R: 2-sample t-test (with long data)

• The CaffTaps data are in a long format, meaning that

mean in group Caffeine mean in group NoCaffeine

248.1143

- all of the outcome values are in one column and
- another column indicates which group the values are from
- This is a common format for data from multiple samples, especially if the sample sizes are different.

244.5143

tidy the t.test output

```
# use tidy command from broom package for briefer output that's a tibble
tidy(Taps_2ttest) %>% gt() %>% tab_options(table.font.size = 40)

estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high method alternative

3.6 248.1143 244.5143 6.086677 3.132816e-
08 67.00222 2.613502 Inf Welch Two
Sample t-test
```

Pull the p-value:

```
1 tidy(Taps_2ttest)$p.value # we can pull specific values from the tidy output
[1] 3.132816e-08
```

R: 2-sample t-test (with wide data)

```
1 # make CaffTaps data wide: pivot wider needs an ID column so that it
 2 # knows how to "match" values from the Caffeine and NoCaffeine groups
   CaffTaps wide <- CaffTaps %>%
      mutate(id = c(rep(1:10, 2), rep(11:35, 2))) %>% # "fake" IDs for pivot wider stell
      pivot wider(names from = "Group",
                   values from = "Taps")
   glimpse(CaffTaps wide)
Rows: 35
Columns: 3
$ id
           <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...
$ Caffeine <int> 246, 248, 250, 252, 248, 250, 246, 248, 245, 250, 251, 251, ...
$ NoCaffeine <int> 242, 245, 244, 248, 247, 248, 242, 244, 246, 242, 244, 245,...
 1 t.test(x = CaffTaps_wideCaffeine, y = CaffTaps wideNoCaffeine, alternative = "gre
      tidy() %>% gt() %>% tab options(table.font.size = 40)
estimate estimate1 estimate2
                                        p.value parameter conf.low conf.high method
                                                                                     alternative
                            statistic
                                                                      Inf - Welch Two
                                   3.132816e-
67.00222 2.613502
    3.6 248.1143 244.5143 6.086677
                                                                         Sample t-test greater
```

Why are the df's in the R output different?

From many slides ago:

- Statistical theory tells us that $t_{\overline{x}_1-\overline{x}_2}$ follows a **student's t-distribution** with
 - $lacksquare dfpprox {\sf smaller}\ {\sf of}\ n_1-1\ {\sf and}\ n_2-1$
 - this is a **conservative** estimate (smaller than actual df)

The actual degrees of freedom are calculated using Satterthwaite's method:

$$u = rac{[(s_1^2/n_1) + (s_2^2/n_2)]^2}{(s_1^2/n_1)^2/(n_1-1) + (s_2^2/n_2)^2/(n_2-1)} = rac{[SE_1^2 + SE_2^2]^2}{SE_1^4/df_1 + SE_2^4/df_2}$$

Verify the *p*-value in the R output using ν = 17.89012:

```
1 pt(3.3942, df = 17.89012, lower.tail = FALSE)
```

[1] 0.001627588