

मोतीलाल नेहरू राष्ट्रीय प्रौद्योगिकी संस्थान इलाहाबाद प्रयागराज-211004 [भारत]

Motilal Nehru National Institute of Technology Allahabad Prayagraj-211004 [India]

Department of Mathematics Mid Semester (Odd) Examination 2022-23

Programme Name: B. Tech. Course Code: MA11101 Branch:.....

Duration: 90 Minutes

C ~ 100	nester:	1
Sen	iester.	- 1

Course Name: Mathematics |

Student Reg. No.:

Max. Marks.: 20

and the same of th	

Instructions: (i) Attempt all the questions. Marks are indicated on write side.

(ii) Attempt each part of a question in continuation.

Q1 a State and prove Lagrange's Mean Value theorem. Discuss the geometrical interpretation of it. b Using Cauchy Mean Value theorem, show that $\frac{2\log_e x}{2\sin^{-1}x - \pi} < \frac{\sqrt{1-x^2}}{x}$. Q2 a Define ε - δ definition of continuity of a function of two variables $f: D \subset R^2 \to R$. Using ε - δ definition, discuss the continuity of the function $f(x,y) = \begin{cases} \frac{x^2 + y^2}{3 + \sin x}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$ b Define the differentiability of function of two variables $f: D \subset R^2 \to R$ at the point (x,y) . Check the differentiability of function of two variables $f: D \subset R^2 \to R$ at the point $(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0), \end{cases}$ Q3 a Show that for the function $f(x,y) = \begin{cases} \frac{y(x^2 - y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0), \end{cases}$ D If $u = \sin^{-1} \sqrt{\frac{x^{1/2} + y^{1/3}}{x^{1/2} + y^{1/2}}}$, then show that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12}\right)$. Q4 a If $xyz - u = 0, x^2 + y^2 + z^2 - v = 0$, and $x + y + z - w = 0$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$. D Obtain a quadratic Taylor's series approximation to the function $f(x,y) = \cos x \cos y$ about the point $(0,0)$. Also, estimate the maximum absolute error in the region $ x < 0.2, y < 0.1$. Q5 a The temperature T at any point (x,y,z) in space is given by $T(x,y,z) = kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere			Marks
Define ε - δ definition of continuity of a function of two variables $f:D\subset R^2\to R$. Using ε - δ definition, discuss the continuity of the function $f(x,y)=\begin{cases} \frac{x^2+y^2}{3+\sin x}, & if(x,y)\neq(0,0)\\ 0, & if(x,y)=(0,0) \end{cases}$ at $(0,0)$. Define the differentiability of function of two variables $f:D\subset R^2\to R$ at the point (x,y) . Check the differentiability of the function $f(x,y)=\begin{cases} (x^2+y^2)\sin\left(\frac{1}{x^2+y^2}\right), & if(x,y)\neq(0,0)\\ 0, & if(x,y)=(0,0), \end{cases}$ at $(0,0)$. Or $f(x,y)=\begin{cases} (x^2+y^2)\sin\left(\frac{1}{x^2+y^2}\right), & if(x,y)\neq(0,0)\\ 0, & if(x,y)=(0,0), \end{cases}$ at $(0,0)$. Or $f(x,y)=f(x,$	La		2
Q2 a Define ε - δ definition of continuity of a function of two variables $f:D\subset R^2\to R$. Using ε - δ definition, discuss the continuity of the function $f(x,y) = \begin{cases} \frac{x^2+y^2}{3+\sin x}, & \text{if } (x,y)\neq (0,0)\\ 0, & \text{if } (x,y)=(0,0) \end{cases}$ at $(0,0)$. b Define the differentiability of function of two variables $f:D\subset R^2\to R$ at the point (x,y) . Check the differentiability of the function $f(x,y) = \begin{cases} (x^2+y^2)\sin\left(\frac{1}{x^2+y^2}\right), & \text{if } (x,y)\neq (0,0)\\ 0, & \text{if } (x,y)=(0,0), \end{cases}$ at $(0,0)$. Q3 a Show that for the function $f(x,y) = \begin{cases} \frac{y(x^2-y^2)}{x^2+y^2}, & \text{if } (x,y)\neq (0,0)\\ 0, & \text{if } (x,y)=(0,0), \end{cases}$ $\int_{xy}^{xy}(0,0)\neq f_{yx}(0,0).$ b If $u=\sin^{-1}\sqrt{\frac{x^{1/3}+y^{1/3}}{x^{1/2}+y^{1/2}}}$ then show that $x^2u_{xx}+2xyu_{xy}+y^2u_{yy}=\frac{\tan u}{12}\left(\frac{13}{12}+\frac{\tan^2 u}{12}\right).$ Q4 a If $xyz-u=0, x^2+y^2+z^2-v=0$, and $x+y+z-w=0$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$. b Obtain a quadratic Taylor's series approximation to the function $f(x,y)=\cos x\cos y$ about the point $(0,0)$. Also, estimate the maximum absolute error in the region $ x <0.2, y <0.1.$ Q5 a The temperature T at any point (x,y,z) in space is given by $T(x,y,z)=kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere	b		2
b Define the differentiability of function of two variables $f: D \subset R^2 \to R$ at the point (x,y) . Check the differentiability of the function $f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right), & if (x,y) \neq (0,0) \\ 0, & if (x,y) = (0,0), \end{cases}$ at $(0,0)$. Q3 a Show that for the function $f(x,y) = \begin{cases} \frac{y(x^2 - y^2)}{x^2 + y^2}, & if (x,y) \neq (0,0) \\ 0, & if (x,y) = (0,0), \end{cases}$ b If $u = \sin^{-1} \sqrt{\frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}}}$, then show that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12}\right)$. Q4 a If $xyz - u = 0, x^2 + y^2 + z^2 - v = 0$, and $x + y + z - w = 0$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$. Dobtain a quadratic Taylor's series approximation to the function $f(x,y) = \cos x \cos y$ about the point $(0,0)$. Also, estimate the maximum absolute error in the region $ x < 0.2, y < 0.1$. Q5 a The temperature T at any point (x,y,z) in space is given by $T(x,y,z) = kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere		Define ε - δ definition of continuity of a function of two variables $f:D\subset R^2\to R$. Using ε - δ definition, discuss the continuity of the function $f(x,y)=\left\{\frac{x^2+y^2}{3+\sin x}, if(x,y)\neq (0,0)\right\} \text{at } (0,0).$	2
$ f_{xy}(0,0) \neq f_{yx}(0,0). $ b If $u = sin^{-1} \sqrt{\frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}}}$, then show that $x^2 u_{xx} + 2xyu_{xy} + y^2 u_{yy} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12}\right).$ Q4 a If $xyz - u = 0, x^2 + y^2 + z^2 - v = 0$, and $x + y + z - w = 0$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$. b Obtain a quadratic Taylor's series approximation to the function $f(x,y) = cosx cosy$ about the point $(0,0)$. Also, estimate the maximum absolute error in the region $ x < 0.2, y < 0.1$. Q5 a The temperature T at any point (x,y,z) in space is given by $T(x,y,z) = kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere	b	Define the differentiability of function of two variables $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point (x,y) . Check the differentiability of the function	2
Q4 a If $xyz - u = 0$, $x^2 + y^2 + z^2 - v = 0$, and $x + y + z - w = 0$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$. 2 b Obtain a quadratic Taylor's series approximation to the function $f(x,y) = \cos x \cos y$ about the point $(0,0)$. Also, estimate the maximum absolute error in the region $ x < 0.2$, $ y < 0.1$. Q5 a The temperature T at any point (x,y,z) in space is given by $T(x,y,z) = kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere	3 a		2
b Obtain a quadratic Taylor's series approximation to the function $f(x,y) = cosx cosy$ about the point $(0,0)$. Also, estimate the maximum absolute error in the region $ x < 0.2, y < 0.1$. Q5 a The temperature T at any point (x,y,z) in space is given by $T(x,y,z) = kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere	b	If $u = \sin^{-1} \sqrt{\frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}}}$, then show that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12} \right)$.	2
about the point $(0,0)$. Also, estimate the maximum absolute error in the region $ x < 0.2$, $ y < 0.1$. Q5 a The temperature T at any point (x, y, z) in space is given by $T(x, y, z) = kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere	4 a	If $xyz - u = 0$, $x^2 + y^2 + z^2 - v = 0$, and $x + y + z - w = 0$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$.	2
Q5 a The temperature T at any point (x, y, z) in space is given by $T(x, y, z) = kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere	b	about the point $(0,0)$. Also, estimate the maximum absolute error in the region $ x < 0.2$, $ y < 0.1$.	
$x^2 + y^2 + z^2 = a^2.$	5 a	The temperature T at any point (x, y, z) in space is given by $T(x, y, z) = kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere $x^2 + y^2 + z^2 = a^2$.	3

मोतीलाल नेहरू राष्ट्रीय प्रौद्योगिकी संस्थान इलाहाबाद प्रयागराज-211004 [भारत]

Motilal Nehru National Institute of Technology Allahabad Prayagraj-211004 [India]

Department of Mathematics

End Semester (Odd) Examination 2022-23

Programme Name: B.Tech	Semester: 1
Course Code: MA11101	Course Name: Mathematics I
Branch: All	Student Reg. No.:

Duration: 150 Minutes Max. Marks: 50

Instructions: (i) Attempt all the questions. Marks are indicated on right side.

(ii) Attempt each part of a question in continuation.

referies autoritar ti que hibber	and a facility and a facility		Marks
Q1 3	a	Show that the functions $u=3x+2y-z$, $v=x-2y+z$ and $w=x(x+2y-z)$ are functionally related.	2
	b	If $u=\ln(x^3+y^3-x^2y-xy^2)$, then prove that $u_x+u_y=\frac{2}{x+y}$. Hence, show that $u_{xx}+2u_{xy}+u_{yy}=-\frac{4}{(x+y)^2}$.	4
	×	State and prove the sufficient condition for the continuity of a function of two variables $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at a point $(x_0, y_0) \in D$.	4
Q2 U	A	Calculate the area lying inside the cardioid $r=2(1+\cos\theta)$ and outside the circle $r=2$.	2
garden very representation	Þ	Find the volume of the spindle-shaped solid generated by revolving the astroid $x = a \sin^3 t$, $y = a \cos^3 t$ about x-axis.	4
age statement of the	C	Find the volume of the region bounded by the cylinder $x^2 + y^2 = 4$ and the planes $y + z = 4$, and $z = 0$.	4
Q3	a	Evaluate the integral $\int_0^{\pi/2} \int_x^{\pi/2} \frac{\sin y}{y} dy dx$ by changing the order of the integration.	2

	Þ	Using the Beta and Gamma functions, evaluate the following integrals: (i) $\int_{-1}^{1} (1-x^2)^n dx$ $(n \in \mathbb{N})$, (ii) $\int_{0}^{\infty} \frac{x^c}{c^x} dx$.	4
	c	Find the unit normal vector to the surface $xy^2 + 2yz = 8$ at the point $(3, -2, 1)$. Also, find the equation of the tangent plane at this point.	4
Q4 %	æ	Show that the vector field $\vec{F}(x,y,z) = 2x(y^2+z^3)\hat{\imath} + 2x^2y\hat{\jmath} + 3x^2z^2\hat{k}$ is conservative. Find its scalar potential and work done in moving a particle from $(-1,2,1)$ to $(2,3,4)$.	2
	Ь	State and prove the Green's theorem. Hence, evaluate $\oint_C x^2 y dx + x^2 dy$, where C is the boundary of the triangle with vertices $(0,0)$, $(0,1)$ and $(1,1)$, described counter-clockwise.	4
	C	Verify Gauss's divergence theorem for the vector field $\vec{F}(x,y,z) = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{k}$ over the surface S . Here, S is the surface of the cube bounded by the planes $x=0$, $x=1$, $y=0$, $y=1$, $z=0$ and $z=1$.	4
Q5	ą	Solve the first order differential equation $(1 + y^2)dx = (\tan^{-1} y - x)dy$.	2
10	b	Find the general solution of the differential equation $x^2y'' - 3xy' + 5y = x \log x$.	4
	Q	Using the method of undetermined coefficient, solve the following differential equation $y'' - 4y' + y = x^2 - 2x + 2$.	4