OPERATING SYSTEM

Solutions

1. Semaphore is used for:	
(a) Synchronization(c) Bounded Waiting	(b) Deadlock Avoidance(d) None
Solution: Option (a)	1/0
2. Assume that 'C' is a Counting Semaphore iniprogram segment:	tialized to value '10'. Consider the following
P(C); V(C); P(C); P(C); V(C); V(C) V(C); V(C); V(C); P(C); V(C); P(C)	60
What is the value of C? (a) 6 (c) 8	(b) 12 (d) 10
Solution: Option (b)	
3. Which of the following is not a valid deadlock p	prevention scheme?
(a) Release all resources before requesting a new r(b) Number the resources uniquely and never request resource with a lower number than last request(c) Never request a resource after releasing any res(d) Request all required resources before execution	est a ed source
Solution: Option (c)	
4. Suppose we want to synchronize two concurred S, T and U:	nt processes P and Q using binary semaphores
Process P:	Process Q:
P(S) P(T)	W: X:

P(U)	Y :
Print 'a'	Print 'a'
Print 'b'	Print 'b'
V(S)	A:
V(T)	B:
V(U)	C:

What should be written at W to avoid deadlock?

- (a) P(T) (b) P(U)
- (c) P(S) (d) Not possible to avoid deadlock

Solution: Option (a)

- **5.** What should be written at X and Y for the above problem?
- (a) P(S), P(T)

(b) P(T), P(U)

(c) P(S), P(U)

(d) None

Solution: Option (b)

6. The arrival time, priority and durations of the CPU and I/O bursts for each of the three processes P_1 , P_2 and P_3 are given in the table below. Each process has a CPU burst followed by an I/O burst followed by another CPU burst. Assume that each process has its own I/O resource.

Process	AT	Priority	Burst duration
			CPU, I/O, CPU
P_1	0	2	1, 5, 3
P_2	2	3 (lowest)	3, 3, 1
P_3	3	1 (highest)	2, 3, 1

If the Preemptive priority scheduling is used, what is the finish times of the processes?

(a) 11, 15, 9

(b) 10, 15, 9

(c) 11, 16, 10

(d) 12, 17, 11

Solution: Option (c)

7. The following code with two threads can run in parallel. S and Q are binary semaphores equipped with P & V operations.

S=	1	&	Q=	0;

Producer:		Consumer:	
	while (true) do	while (tru	e) do
	P(S);	P(Q);	
	<pre>x= Produce();</pre>	Consume	(x);
	V(Q)	V(S)	
	done	done.	
Which of the follo (a) The process ca (b) One of the thre (c) Some items pro (d) None of the ab	n deadlock eads can starve oduced may be lost		
Solution: Option (69	
8. Readers-Writers	s problem can be solved us	ing:	
(a) Semaphores (c) Both (a) & (b)		(b) Monitors (d) None	
Solution: Option	(c)	70,	
9 Consider the fol	llowing pseudo code fragm	ent:	
7. Consider the for	nowing pseudo code magni	ciit.	
Printf ("Hello"); if(!fork()) Printf("World");	ILON.		
Which of the follo (a) Hello Hello W (c) Hello World	wing is the output of the coorld World	ode fragment? (b) Hello World World (d) Hello World Hello W	orld/
Solution: Option	(c)		
10. Which of the f	ollowing is initiated by pro	ocess itself?	
(a) Running		(b) Ready	
(a) Kullining (c) Suspend		(d) Block	
(c) Buspellu		(d) Dlock	

Solution: Option (d)

11. Consider the following program:

```
main()
{
intpid
pid= fork();
printf("%d", pid);
}
```

What is the output by parent and child processes?

(a) child= 0, parent= 0

(b) child= 0, parent= process_id of child

(c) child= 1, parent= 0

(d) none

Solution: Option (b)

- **12.** A CPU generally handles an interrupt by executing an interrupt service routine:
- (a) as soon as an interrupt is raised
- (b) by checking the interrupt register at the end of fetch cycle
- (c) by checking the interrupt register after finishing the execution of the current instruction
- (d) none of the above

Solution: Option (c)

- **13.** A scheduling algorithm assigns priority proportional to the waiting time of a process. Every process starts with priority zero (the lowest). The scheduler re-valuates the process priorities every T time units and decides the next process to schedule. Which one of the following is true if the processes have no I/O operations and all arrive at time zero?
- (a) This algorithm is equivalent to FCFS
- (b) This algorithm is equivalent to Round Robbin
- (c) This algorithm is equivalent to SJF
- (d) This algorithm is equivalent to Shortest Remaining Time First

Solution: Option (b)

14. The highest response ratio next Scheduling policy favors 'X' jobs, but is also limits the waiting time of 'Y' jobs. What are X and Y?

(a) Shorter Jobs, Low Priority Jobs

(b) Longer Jobs, High Priority Jobs

(c) Longer Jobs, Shorter Jobs

(d) Shorter Jobs, Longer Jobs

Solution: Option (d)

15. Which of the following instructions should be allowed only in Kernel Mode?

(a) Disable all interrupts

(b) Read the time-of-day clock

(c) Set the time-of-day clock

(d) Change the Memory Map

Solution: Option (a)

16. Consider the below code fragment:

```
if(fork k() = = 0)
{
    a= a+5; printf("%d, %d \n", a, &a);
}
else
{
    a= a - 5;
printf("%d %d \n", 0, &a);
}
```

Let u, v be the values printed by parent process and x, y be the values printed by child process. Which one of the following is true?

(a) u = x + 10 and v = y

(b) u = x + 10 and $v \neq y$

(c) u + 10 = x and v = y

(d) u + 10 = x and $v \neq y$

Solution: Option (a)

17. Which of the following regarding semaphores are true?

- (a) Semaphores always guarantee Mutual Exclusion but fail to guarantee progress
- (b) Under certain situations may fail to guarantee Mutual exclusion
- (c) Improper usage of semaphore operations may lead to deadlock
- (d) Both (a) & (c) are true

Solution: Option (d)

18. Two concurrent processes P_1 and P_2 use four shared resources R_1 , R_2 , R_3 and R_4 as shown below:

P ₁ : Compute;	P ₂ : Compute;
Use R_1 ;	Use R_1 ;
Use R_2 ;	Use R ₂ ;
Use R_3 ;	Use R_3 ;
Use R ₄ :	Use R ₄ :

Both processes are started at the same time, and each resource can be accessed by only one process at a time. The following scheduling constraints exist between the accesses of resources by the processes:

 P_2 must complete use of R_1 before P_1 gets access to R_1

P₁ must complete use of R₂ before P₂ gets access to R₂

P₂ must complete use of R₃ before P₁ gets access to R₃

P₁ must complete use of R₄ before P₂ gets access to R₄

There are no other scheduling constraints between the processes above scheduling constraints, what is the minimum no. of binary semaphores needed?

(a) 1

(b) 2

(c)3

(d) 4

Solution: Option (d)

19. Consider the program segment:

x=0; y=0;

Cobegin

begin

x=1;

y=y+x;

end

begin

y=2;

x = x + 3;

end

Coend;

Which of the following indicates possible values for the variables when the segment finishes execution?

- (1) x= 1, y= 2
- (2) x= 1, y= 3
- (3) x= 4, y= 6
- (a) 1 only

(b) 1 & 2 only

(c) 1 & 3 only

(d) 2 & 3 only

(e) 1, 2, 3

Solution: Option (d)

20. Which of the following is not a necessary condition for a deadlock among processes?

(a) Shared Resources

- (b) No Preemption
- (c) Acyclic condition among processes
- (d) None of the above

Solution: Option (d)