1. Линейные системы

1.1. Постановка задачи

$$t \in [0,T] \longmapsto x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

Линейное неоднородное уравнение:

$$\dot{x}(t)=A(t)x(t)+f(t),\ t\in(0,T) \qquad (1)$$

$$A(t) = ((a_{ij}(t))), i, j = \overline{1, n}$$

$$f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

$$\begin{cases} \dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n + f_1 \\ \vdots \\ \dot{x}_n = a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n + f_n \end{cases}$$

Линейное однородное уравнение:

$$(1_0) \qquad \dot{x} = A(t)x$$

Задача Коши для (1):

$$(2) \qquad x(0) = x^{(0)} \in \mathbb{R}^n$$

1.2. Матмодели

1.2.1. Температура в доме

 $x_{1,2}(t)$ — температура на 1, 2 этаже

 x_q — температура земли

 x_e — температура на улице

$$\dot{x}_1 = k_1 \big(x_q - x_1 \big) + k_2 (x_2 - x_1) + k_3 (x_e - x_1) + p(t)$$

Коэффициент передачи через пол, через потолок, через стены + печка.

$$\dot{x}_2 = k_2(x_1 - x_2) + k_4(x_e - x_2)$$

Числа $k_{1,2,3,4}$ известны.

$$A = \begin{pmatrix} -(k_1 + k_2 + k_3) & k_2 \\ k_2 & -(k_2 + k_4) \end{pmatrix} \qquad f = \begin{pmatrix} p + k_1 x_g + k_3 x_e \\ k_4 x_e \end{pmatrix}$$

1.2.2. Динамика цен и запасов

s(t) — объём продаж за единицу времени.

p(t) — текущая цена.

I(t) — уровень запасов на каком-то складе.

Q(t) — скорость поступления товара.

 p_* — равновесная цена.

 I_{st} — желаемый запас.

$$\begin{cases} \dot{s} = \beta(p-p_*), \ \beta < 0 \\ \dot{p} = \alpha(I-I_*), \ \alpha < 0 \end{cases} \quad x(t) = \begin{pmatrix} s(t) \\ p(t) \\ I(t) \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & \beta & 0 \\ 0 & 0 & \alpha \\ -1 & 0 & 0 \end{pmatrix} \qquad f = \begin{pmatrix} -\beta p_* \\ -\alpha I_* \\ Q \end{pmatrix}$$

1.3. Корректность задачи Коши

(1)
$$\dot{x}(t) = A(t)x(t) + f(t), \ t \in (0,T)$$

(2)
$$x(0) = x^{(0)}$$

$$(*) \qquad \begin{cases} t > 0 \\ x^{(0)} \in \mathbb{R}^n \\ f \in C[0, T] \\ A \in C[0, T] \ \left(a_{ij} \in C[0, T]\right) \end{cases}$$

Th.1

Пусть выполнены условия (*). Тогда \exists ! решение (1) - (2).

1.4. Априорные оценки решения задачи Коши

$$x, y \in \mathbb{R}^n$$
 $|x| = \sqrt{\sum_{1}^{n} x_j^2}$
$$(x, y) = \sum_{1}^{n} x_j y_j$$

$$(\dot{x}, x) = (Ax, x) + (f, x)$$

С другой стороны:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} |x|^2 = (\dot{x}, x)$$

Неравенство Коши-Буняковского:

$$\begin{aligned} |(x,y)| &\leq |x| \cdot |y| \\ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} |x|^2 &\leq |Ax| \cdot |x| + |f| \cdot |x| \\ |\underbrace{Ax}_y| &= \sqrt{\sum y_i^2} \end{aligned}$$

$$\begin{split} y_i &= \sum_{j=1}^n a_{ij} x_j \leq \sqrt{\sum_{j=1}^n a_{ij}^2} \cdot |x| \\ M_1 &= \max_{t \in [0,T]} \sum_{j=1}^n a_{ij}^2 \\ y_i^2 \leq M_1 \ |x|^2 \\ y &= |Ax| = \sqrt{\sum_i y_i^2} \leq \sqrt{M_1 n |x|^2} \\ M_2 &= \max_{t \in [0,T]} f(t) \\ \frac{1}{2} \frac{d}{dt} \ |x|^2 \leq \sqrt{M_1 n} \ |x|^2 + M_2 \ |x| \\ \frac{d}{dt} \ |x| \leq \sqrt{M_1 n} \ |x| + M_2 \\ \frac{d}{dt} \ |x| - \sqrt{M_1 n} \ |x| \leq M_2 \\ \left(\frac{d}{dt} \ |x| - \sqrt{M_1 n} \ |x|\right) e^{-\sqrt{M_1 n}t} \leq M_2 e^{-\sqrt{M_1 n}t} \\ \frac{d}{dt} \left(e^{-\sqrt{M_1 n}t} \ |x(t)|\right) \leq M_2 e^{-\sqrt{M_1 n}t} \end{split}$$

Интегрируем:

$$\begin{split} \int_0^t \frac{d}{dt} \Big(e^{-\sqrt{M_1 n} t} \ |x(t)| \Big) & \leq \int_0^t M_2 e^{-\sqrt{M_1 n} t} \\ e^{-\sqrt{M_1 n} t} \Big(|x(t)| - |x^{(0)}| \Big) & \leq \frac{M_2}{\sqrt{M_1 n}} \Big(1 - e^{-\sqrt{M_1 n} t} \Big) \end{split}$$

$$|\mathbf{x}(t)| \le e^{\sqrt{M_1 n}t} |x^{(0)}| + \frac{M_2}{\sqrt{M_1 n}} (e^{\sqrt{M_1 n}t} - 1)$$

1.5. Однородная система линейных ОДУ

(3)
$$\dot{x} = A(t)x, \ t \in (0,T)$$

Замечание

Пусть

$$\begin{cases} \dot{x} = Ax, \ t \in (0, T) \\ x(0) = 0 \end{cases}$$

Тогда, существует единственное решение $x(t)\equiv 0$

Лемма 1

Множество решений (3) есть линейное пространство

Определение

Пусть вектор-функции $x^{(1)},...,x^{(m)}\in C[0,T]$

$$x^{(1)} = \begin{pmatrix} x_1^{(1)} \\ \vdots \\ x_n^{(1)} \end{pmatrix}, \dots$$

Система векторов называется линейно независимой, если:

$$\sum_{j=1}^m c_j x^{(j)}(t) = 0, \ t \in [0,T] \Rightarrow c_1 = \ldots = c_m = 0$$

Определение

Система из n линейно независимых решений однородной задачи (3) называется фундаментальной системой решений.

Определение

Пусть $x^{(1)},...,x^{(n)}$ — решение (3)

 $W(t) = \det \left(x^{(1)}(t), ..., x^{(n)}(t) \right) -$ определитель Вронского.

Определение

 $\Phi(t)=\left(arphi^{(1)},...,arphi^{(n)}
ight)$ — фундаментальная матрица системы (3), где $arphi^{(1)},...,arphi^{(n)}$ — ф.с.р.

Лемма 2

$$\det \Phi(t) \neq 0, \ t \in [0, T]$$

27 Сентября 2024

$$A(t) = \left(\left(a_{ij}(t)\right)\right)_{i,j=\overline{1.n}} \qquad n \in \mathbb{N}, \ n \ge 2$$

$$(1) \quad \dot{x} = A(t)x \qquad x = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \qquad t \in [0,T]$$

Замечание

(2)
$$\dot{\Phi}(t) = A(t)\Phi(t)$$

Утверждение

Пусть B(t) дифференциируемая матрица, $\det B(t) \neq 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\det B(t)) = \det(B(t)) \cdot \mathrm{tr}(B^{-1}\dot{B})$$

Пусть Φ — фундаментальная матрица.

$$\frac{\mathrm{d}}{\mathrm{d}t}\det\Phi(t)=\det(\Phi(t))\operatorname{tr}\!\left(\Phi^{-1}\dot{\Phi}\right)=\det(\Phi(t))\operatorname{tr}\!\left(\Phi^{-1}A\Phi\right)$$

Так как $W(t)=\det\Phi(t)$, а след матрицы обладает свойством $\mathrm{tr}(AB)=\mathrm{tr}(BA)$, получаем:

$$\dot{W} = W \operatorname{tr} A$$

Формула Остроградского-Лиувилля:

$$W(t) = W(t_0) \exp\left(\int_{t_0}^t \operatorname{tr} A(s) \, \mathrm{d}s\right)$$

Теорема

Пусть $\Phi(t), t \in [0, T]$ — фундаментальная матрица (1).

Тогда,
$$x(t), t \in [0,T]$$
 — решение (1) $\Leftrightarrow \begin{cases} x(t) = \Phi(t)c \\ c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \text{const} \end{cases}$

 (\Leftarrow) :

$$\dot{x} = \dot{\Phi}c = A\Phi c = A \cdot \Phi c$$

Значит, Φc — решение.

(⇒):

Пусть x = x(t) — решение (1).

Рассмотрим СЛАУ $\Phi(0)c = x(0)$

 $\det \Phi(t) \neq 0$

 $\exists c \in \mathbb{R}^n$

 $y(t) \coloneqq \Phi(t)c$ — решение (1)

Покажем, что $y \equiv x$

$$\dot{x} = Ax$$
 $\dot{y} = Ay$ $x(0) = y(0)$

В силу единственности решения задачи Коши:

$$x(t) = y(t) = A(t)c \blacksquare$$

Замечание

Общее решение (1):

$$(3)$$
 $x(t) = \Phi(t)c$, где $c \in \mathbb{R}^n$

Теорема

Существует фундаментальная система решений для системы (1).

Ищем решение матричного дифференциального уравнения:

$$\dot{\Phi} = A\Phi, \Phi(0) = I$$

Пусть φ — первый столбец

$$\dot{arphi}=Aarphi, arphi(0)=egin{pmatrix}1\\0\\\vdots\\0\end{pmatrix}, \exists !$$
 решение задачи Коши.

$$\det\Phi(0)=1\neq 0\Rightarrow \det\Phi(t)\neq 0,\ t\in[0,T]$$

Замечание 2

Пусть X- пространство решений (1). Из формулы (3) следует, что $\dim X=n$

Пример

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1 \end{cases} \qquad A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\dot{x} = Ax \qquad \varphi^{(1)}(t) = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} \qquad \varphi^{(2)}(t) = \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}$$

$$\det \Phi(t) = \det \begin{pmatrix} \sin t & -\cos t \\ \cos t & \sin t \end{pmatrix} = 1 \neq 0$$

$$x(t) = \begin{pmatrix} \sin t & -\cos t \\ \cos t & \sin t \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

$$x_1 = c_1 \sin t - c_2 \cos t$$

$$x_2 = c_1 \cos t + c_2 \sin t$$

1.6. Система линейных неоднородных диффуров

$$(1) \qquad \dot{x}=A(t)x+f(t), \ \mathrm{rge}\ f(t)=\begin{pmatrix} f_1(t)\\ \vdots\\ f_n(t) \end{pmatrix}\not\equiv 0$$

Теорема

Пусть $\Phi(t)$, где $t \in [0,T]$ — фундаментальная система однородной системы.

$$x = \hat{x}(t), \,\,$$
где $t \in [0,T]$ — частное решение (1)

$$x=x(t)$$
 — решение (1) $\Leftrightarrow x(t)=\Phi(t)$ с + $\hat{x}(t)$ (2)

То есть, о.р.н.с. = о.р.о.с. + ч.р.н.с.

(⇐):

Обозначим $y(t) := \Phi(t)$ с

$$\dot{y} = Ay$$

$$\dot{x} = \dot{y} + \dot{\hat{x}} = Ay + A\hat{x} + f = A(y + \hat{x}) + f = Ax + f$$

 (\Rightarrow) :

x — решение (1)

$$y \coloneqq x - \hat{x}$$

$$\dot{y} = \dot{x} - \dot{\hat{x}} = Ax + f - A\hat{x} - f = Ay \Rightarrow y = \Phi c \blacksquare$$

1.6.1. Метод вариации произвольных постоянных

$$x(t) = \Phi(t)c(t)$$

Подставим в (1)

$$\dot{\Phi}c + \Phi\dot{c} = A\Phi c + f$$

Так как, $\dot{\Phi}=A\Phi$, то:

$$A\Phi c + \Phi \dot{c} = A\Phi c + f$$

$$\Phi \dot{c} = f$$

$$\dot{c} = \Phi^{-1} f$$

$$c(t) = \int_0^t \Phi^{-1}(s) f(s) \, \mathrm{d}s + K,$$
где $K-$ настоящая константа

Пример
$$\begin{cases} \dot{x}_1 = x_2 + 1 \\ \dot{x}_2 = -x_1 \end{cases}$$

$$\Phi = \begin{pmatrix} \sin t & -\cos t \\ \cos t & \sin t \end{pmatrix}$$

$$\begin{cases} \sin \dot{c}_1 - \cos \dot{c}_2 = 1 \\ \cos \dot{c}_1 + \sin \dot{c}_2 = 0 \end{cases}$$

$$\dot{c}_1 = \det \begin{pmatrix} 1 & -\cos t \\ 0 & \sin t \end{pmatrix} = \sin t$$

$$\dot{c}_2 = \det \begin{pmatrix} \sin t & 1 \\ \cos t & 0 \end{pmatrix} = -\cos t$$

$$c_1 = -\cos t + K_1$$

$$c_2 = -\sin t + K_2$$

$$x = (-\cos t + K_1) \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} + (-\sin t + K_2) \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}$$

$$x = K_1 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} + K_2 \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

1.6.2. Решение задачи Коши

$$(CP) \begin{cases} \dot{x} = A(t)x + f(t) \\ x(0) = x^{(0)} \in \mathbb{R}^n \end{cases}$$
$$x(t) = \Phi(t) \left(\int_0^t \Phi^{-1}(s)f(s) \, \mathrm{d}s + K \right)$$

$$x^{(0)} = \Phi(0)K, \ K = \Phi^{-1}(0)x^{(0)}$$

$$x(t) = \Phi(t)\Phi^{-1}(0)x^{(0)} + \int_0^t \Phi(t)\Phi^{-1}(s)f(s)\,\mathrm{d}s$$

Определение

Матрица Коши (импульсная матрица):

$$K(t,s) = \Phi(t)\Phi^{-1}(s)$$

$$x(t) = K(t,0)x^{(0)} + \int_0^t K(t,s)f(s) \, \mathrm{d}s$$

4 Октября 2024

Теорема повышения гладкости

$$x = x(t), \; \text{где} \; t \in [0,T] - ext{решение}$$
 $\dot{x} = A(t)x + f(t), \; \text{где} \; 0 < t < T$ $A \in C^k[0,T], \; \text{где} \; f \in C^k[0,T]$ $k = 0,1,...$

Тогда,

$$x \in C^{k+1}[0,T]$$

$$\ddot{x} = \dot{A}x + A\dot{x} + \dot{x}$$

$$\dot{A}x + A\dot{x} + \dot{x} \in C[0,T]$$

$$\Rightarrow x \in C^2[0,T]$$
 и т.д. \blacksquare

2. Системы диффуров с постоянными коэффициентами

Однородная система:

(1)
$$\dot{x} = Ax, t \in [0, T]$$

$$A = ((a_{kj}))_{k,j=\overline{1,n}} \in \mathbb{R}^{n \times n}$$

$$x = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

Замечание

Рассмотрим случай, когда Наташа равна единичке. Если $\dot{x}=ax$, тогда $x=Ce^{at}$

2.1. Матричная экспонента

Пусть
$$A \in \mathbb{R}^{n \times n}, A = \left(\left(a_{kj}\right)\right)$$

$$\|A\| = \max_{1 \leq k \leq n} \sum_{j=1}^{n} \left|a_{kj}\right|$$

$$A_m \underset{m \to \infty}{\longrightarrow} A \ \stackrel{\text{def}}{=} \ \|A_m - A\| \underset{m \to \infty}{\longrightarrow} 0$$

$$B = \sum_{m=1}^{\infty} A_m \ \stackrel{\text{def}}{=} \ \left\|B - \sum_{m=1}^{N} A_m\right\| \underset{N \to \infty}{\longrightarrow} 0$$

Определение

$$\exp A = e^A = \sum_{j=0}^{\infty} \frac{1}{j!} A^j$$

Лем ма

 $\forall A \in \mathbb{R}^{n \times n}$ матричный ряд e^A сходится

$$S_m = \sum_{j=0}^m \frac{1}{j!} A^j$$

Пользуясь фактом $||A^j|| \le ||A||^j$

$$\left\|S_m - S_{m+k}\right\| = \left\|\sum_{j=m+1}^{m+k} \frac{1}{j!} A^j\right\| \leq \sum_{j=m+1}^{m+k} \frac{1}{j!} \|A\|^j \underset{m \to \infty}{\longrightarrow} 0 \ \blacksquare$$

Замечание

$$e^{A+B} = e^A e^B = e^B e^A \Leftrightarrow AB = BA$$

Теорема

$$\Phi(t) = e^{tA} - фундаментальная матрица системы (1)$$

$$\begin{split} \dot{\Phi}(t) &= \lim_{h \to 0} \frac{1}{h} \Big(e^{(t+h)A} - e^{tA} \Big) = \lim_{h \to 0} \frac{1}{h} \Big(e^{hA} - I \Big) e^{tA} = \\ &= \lim_{h \to 0} \frac{1}{h} \bigg(I + hA + \frac{1}{2!} (hA)^2 + \dots - I \bigg) e^{tA} = A e^{tA} \\ &\det \Phi(0) = 1 \neq 0 \Rightarrow \blacksquare \end{split}$$

Следствие 1

Общее решение (1):

$$x(t)=e^{tA}c,$$
 где $c=egin{pmatrix} c_1\ dots\ c_n \end{pmatrix}$

Следствие 2

Решение задачи Коши:

$$x = Ax, \ x(t_0) = x^{(0)}$$

$$x(t) = e^{(t-t_0)A}x^{(0)}$$

2.2. Структура e^{tA}

2.2.1. Жорданова форма матрицы

Определение

Функция
$$\lambda\mapsto \det(P-\lambda I)=$$

$$=(-1)^n\lambda^n+a_1\lambda^{n-1}+\ldots+a_{n-1}\lambda+a_n$$

это характеристический многочлен матрицы P

$$a_1 = (-1)^n \operatorname{tr}(P)$$
$$a_n = \det(P)$$

Определение

$$P,Q\in\mathbb{R}^{n,n}$$
 называются подобными $(P\sim Q),$ если
$$\exists S,\det S\neq 0$$

$$Q=S^{-1}PS \text{ или } SQ=PS$$

$$\det(Q-\lambda I)=\det\bigl(S^{-1}(P-\lambda I)S\bigr)=\det(P-\lambda I)$$

У подобных матриц одинаковы и следы и определители.

Определение

$$J = \text{diag}\{J_1, J_2, ..., J_k\}$$

$$J = \begin{pmatrix} J_1 & J_2 & O & O \\ O & J_2 & J_0 \\ O & O & J_0 \end{pmatrix}$$

$$J_m = egin{pmatrix} \lambda_m & 1 & & & & \\ & \lambda_m & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \lambda_m & 1 & \\ & & & & \lambda_m \end{pmatrix}$$
 — клетка Жордана

Теорема

$$A \sim J = \text{diag}\{J_0, J_1, ..., J_q\}$$

$$J_0 = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_p \end{pmatrix} \quad J_k = \begin{pmatrix} \lambda_{p+k} & 1 & & & \\ & \lambda_{p+k} & 1 & & \\ & & & \ddots & \ddots & \\ & & & & \lambda_{p+k} & 1 \\ & & & & & \lambda_{p+k} \end{pmatrix}$$

где $\lambda_1,...,\lambda_p$ — простые собственные числа A

 λ_{p+k} — кратные собственные числа A кратности r_k

$$n = p + q$$

Даже если матрица имеет элементы $\in \mathbb{R}$, её собственные числа могут $\in \mathbb{C}$.

$$A = SJS^{-1}, \det S \neq 0$$

$$A^k = SJ\underline{S^{-1} \cdot S}JS^{-1} \cdot \dots \cdot SJS^{-1} = SJ^kS^{-1}$$

$$e^{tA} = \sum_{j=0}^{\infty} \frac{1}{j!} (tA^j) = \sum_{j=0}^{\infty} \frac{1}{j!} t^j SJ^j S^{-1} = Se^{tJ}S^{-1}$$

$$\Psi(t) := e^{tJ} = S^{-1}e^{tA}S$$

$$\dot{\Psi} = S^{-1}Ae^{tA}S$$

2.2.2. Экспонента Жордановской матрицы

Утверждение 1
$$J=\mathrm{diag}\big\{J_0,J_1,...,J_q\big\}\Rightarrow$$

$$e^{tJ}=\mathrm{diag}\big\{e^{tJ_0},e^{tJ_1},...,e^{tJ_q}\big\}$$

$$e^{tJ_0} = \begin{pmatrix} e^{t\lambda_1} & & & \\ & e^{t\lambda_2} & & \\ & & \ddots & \\ & & & e^{t\lambda_p} \end{pmatrix}$$

$$B = \lambda I + H, \quad H = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & & \\ & & 0 & 1 & \\ & & & \ddots & \ddots \\ & & & & 0 & 1 \\ & & & & & 0 \end{pmatrix}$$

Утверждение 3

Пусть
$$B=egin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & \\ & & \lambda & 1 & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ & & & \lambda \end{pmatrix} r$$
 столбцов
$$e^{tB}=e^{t\lambda I}e^{tH}=e^{\lambda t}Ie^{tH}=e^{\lambda t}e^{tH}$$

$$e^{tH} = e^{t\lambda I}e^{tH} = e^{\lambda t}Ie^{tH} = e^{\lambda t}e^{tH}$$
 $e^{tH} = I + tH + \frac{1}{2!}t^2H^2 + \dots$

$$H^2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 1 & \dots & 0 \\ & & & & \ddots & & \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

$$e^{tB} = e^{\lambda t} \begin{pmatrix} 1 & t & \frac{1}{2!}t & \dots & \frac{1}{(r-1)!}t^{r-1} \\ & 1 & t & \dots & \frac{1}{(r-2)!}t^{r-2} \\ & & \ddots & \ddots & \\ & & & 1 & t \\ & & & & 1 \end{pmatrix}$$

Теорема
$$J = \operatorname{diag} \big\{ J_0, J_1, ..., J_q \big\}$$

$$= \begin{pmatrix} \begin{pmatrix} e^{t\lambda_1} & & \\ & \ddots & \\ & & e^{t\lambda_p} \end{pmatrix} \\ & = \begin{pmatrix} 1 & t & \frac{1}{2!}t & \dots & \frac{1}{(r-1)!}t^{r-1} \\ 1 & t & \dots & \frac{1}{(r-2)!}t^{r-2} \\ & \ddots & \ddots & \\ & & 1 & t \\ & & & 1 \end{pmatrix}$$

$$\vdots$$