1

Assignment

Sarvesh K— EE22BTECH11046

Question 9.3.18

From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

Solution:

Parameter	Value	Description	
X	{0,1,2,3,4}	Number of defective bulbs taken	
n	4	Number of bulbs taken	
p	0.2	Taking a defective bulb	
q	0.8	Taking a non defective bulb	
$\mu = np$	0.8	Mean of Binomial distribution	
$\sigma^2 = npq$	0.64	Varience of Binomial distribution	

TABLE 1: Parameter description

Binomial

The PMF of the distribution is,

$$p_X(k) = {}^{n}C_k p^k (1-p)^{n-k}$$
(1)

1)

$$k = 0 (2)$$

$$\implies p_X(0) = {}^{4}C_0(0.2)^0(0.8)^4 \tag{3}$$

$$= 0.4096$$
 (4)

2)

$$k = 1 \tag{5}$$

$$\implies p_X(1) = {}^{4}C_1(0.2)^1(0.8)^3 \tag{6}$$

$$= 0.4096$$
 (7)

3)

$$k = 2 \tag{8}$$

$$\implies p_X(2) = {}^{4}C_2(0.2)^2(0.8)^2 \tag{9}$$

$$=0.1536$$
 (10)

4)

$$k = 3 \tag{11}$$

$$\implies p_X(3) = {}^{4}C_3(0.2)^3(0.8)^1 \tag{12}$$

$$=0.0256$$
 (13)

5)

$$k = 4 \tag{14}$$

$$\implies p_X(2) = {}^{4}C_4(0.2)^4(0.8)^0 \tag{15}$$

$$= 0.0016$$
 (16)

Gaussian

let Y be a gaussian Random variable

$$Y \sim N(np, npq) \tag{17}$$

$$\sim N(0.8, 0.64)$$
 (18)

Due to continuity correction Pr(X = x) can be approximated using gaussian distribution as

$$Pr(X = x) \approx Pr(x - 0.5 < Y < x + 0.5)$$
(19)

$$\approx \Pr(Y < x + 0.5) - \Pr(Y < x - 0.5) \tag{20}$$

$$\approx F_Y(x+0.5) - F_Y(x-0.5) \tag{21}$$

CDF of Y is defined as:

$$F_Y(x) = \Pr(Y < x) \tag{22}$$

$$=\Pr\left(\frac{Y-\mu}{\sigma}<\frac{x-\mu}{\sigma}\right) \tag{23}$$

$$\implies \frac{Y - \mu}{\sigma} \sim N(0, 1) \tag{24}$$

$$=1-\Pr\left(\frac{Y-\mu}{\sigma}>\frac{x-\mu}{\sigma}\right) \tag{25}$$

$$=1-Q\left(\frac{x-\mu}{\sigma}\right) \tag{26}$$

Then PDF in terms of Q funtion is

$$\implies \Pr(X = x) \approx Q\left(\frac{(x - 0.5) - \mu}{\sigma}\right) - Q\left(\frac{(x + 0.5) - \mu}{\sigma}\right) \tag{27}$$

1)

$$X = 0 (28)$$

The Gaussian approximation for Pr(X = 0) is

$$\approx Q(-8.125) - Q(-1.875) \tag{29}$$

$$\approx 0.3017\tag{30}$$

2)

$$X = 1 \tag{31}$$

The Gaussian approximation for Pr(X = 1) is

$$\approx Q(-1.875) - Q(4.375) \tag{32}$$

$$\approx 0.4555\tag{33}$$

3)

$$X = 2 \tag{34}$$

The Gaussian approximation for Pr(X = 2) is

$$\approx Q(4.375) - Q(10.625) \tag{35}$$

$$\approx 0.1739\tag{36}$$

4)

$$X = 3 \tag{37}$$

The Gaussian approximation for Pr(X = 3) is

$$\approx Q(10.625) - Q(16.875) \tag{38}$$

$$\approx 0.0164 \tag{39}$$

5)

$$X = 4 \tag{40}$$

The Gaussian approximation for Pr(X = 4) is

$$\approx Q(16.875) - Q(23.125) \tag{41}$$

$$\approx 0.00036\tag{42}$$

Number of defective bulbs	Binomial distribution	Gaussian approximation	Error
0	0.4096	0.3017	26.342773437
1	0.4096	0.4555	11.206054688
2	0.1536	0.1739	13.216145833
3	0.0256	0.0164	35.9375
4	0.0016	0.00036	77.5

TABLE 2: Comparing the gaussian approximation with binomial

Fig. 1: Binomial and gaussian distribution