B-SPLINES-BASED SOLUTIONS OF DIFFERENTIAL EQUATIONS IN BIOENGINEERING: MOTION MONITORING AND IMAGE PROCESSING APPLICATIONS

Bachelor's thesis

Degree in Biomedical Engineering

Author: Antonio Manuel Ramírez Márquez

Tutor: David Casillas Pérez

Co-tutor: Sara García de Villa

Introduction

Framework to provide solutions to differential equation in the field of bioengineering.

Bioengineering applications:

Estimate human motion in rehabilitation.

Represent preoperative models as splines.

Objectives

The methodology is scalable in term of variate nature.

The methodology is scalable to systems of equations.

The methodology is scalable to non-linear equations.

To determine good choice in the process decisions.

To estimate tumour cells proliferation.

To estimate orientation and human motion from IMUs.

To represent a preoperative model as a spline.

About splines

Smoothness

$$B_{j,0} = \begin{cases} 1 & t_j < t < t_{j+1} \\ 0 & otherwise \end{cases}$$

$$B_{j,k}(x) = \frac{x - t_j}{t_{j+k-1} - t_j} B_{j,k-1}(x) + \frac{t_{j+k} - x}{t_{j+k} - t_{j+1}} B_{j+1,k-1}(x)$$

$$f(x) = \sum_{i=1}^{n} B_{j,k} a_j$$

$f(x) = \sum_{j=1}^{n} B_{j,k} a_{j}$ Tensor product splines

$$f(x_1, ..., x_v) = \sum_{i=1}^m ... \sum_{j=1}^n B_{i,k} ... B_{j,k} a_{i,...,j}$$

$$\mathbb{R}^n \Rightarrow \mathbb{R}^d \quad dxa_1x...xa_{n+1}$$

Knots: (k1, k1, k1, k1, k2, k3, k4, k5, k5, k5, k5)

Collocation methods

Spline design

- Order
- Knots sequence
 - Domain
 - Smoothness

$$f(x_0, y(c_k|x_0), \frac{dy(c_k|x_0)}{dx}, ..., \frac{d^ny(c_k|x_0)}{dx^n}) = 0$$

Decisions and impact

$$\begin{cases} y - y' = 0; \\ y(0) = 1 \end{cases}$$

Best choices

- •Collocation points at Legendre Quadrature
- 5 breaks per sin cycle
- 4 collocation points per sub polynomial
- Sixth-order spline

$$\begin{cases} y + y'' = 0; \\ y(0) = 1 \\ y(2\pi) = 1 \end{cases}$$

Multivariate splines

Laplace equation

$$\frac{d^2z}{dx^2} + \frac{d^2z}{dy^2} = f(x,y)$$

$$\begin{cases} f(x,y) = 10(x-1)\cos(5y) - 25(x-1)(y-1)\sin(5y) \\ z(0,y) = (1-y)5y \\ z(1,y) = 0 \\ z(x,0) = 0 \\ z(x,1) = 0 \end{cases}$$

Multivariate collocation

- · Cartesian grid of the collocation sites of each variable.
- Collocation as Cartesian product of the univariate collocation.

$$\begin{cases} f(x,y) = f(x,y) = \sin x\pi \sin y\pi \\ z(0,y) = 0 \\ z(1,y) = 0 \\ z(x,0) = 0 \\ z(x,1) = 0 \end{cases}$$

$$\begin{cases} f(x,y) = 0 \\ z(0,y) = 0 \\ \frac{dz}{dx}(1,y) = 0 \\ z(x,0) = 0 \\ z(x,1) = \sin\left(\frac{x\pi}{2}\right) \end{cases}$$

Multidimensional splines

System of equations and domain outcome

Non-linear DE

- A linear term that is one order higher than the order of the differential equation is introduced to it.
- The method consists on applying the Newton method to that equation.

Non-viscous approach

• The viscosity term is set to zero.

$$\varepsilon y'' = \frac{50}{(1+\sin 2x)^2} - (y')^2 - y^2$$

Viscous approach

• The viscosity term is set.

Gompertz model

Estimate the number of cells depending on the time of a tumour in angiogenesis stage.

It depends on the initial number of cells, the intrinsic growth rate and the carrying capacity.

$$N'(t) = rN \log \left(\frac{C}{N}\right)$$

Parameters

- N(0) = 1109 cells
- r = 0.006 cells/t
- $C = 1_{10}13$ cells

Motion monitoring

Inertial Measurement Unit (IMU):

KFE

SQT

HAA

Euler angles:

Orientation results

$$\overrightarrow{\omega} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\psi & \sin\psi\cos\theta \\ 0 & -\sin\psi & \cos\psi\cos\theta \end{bmatrix} \begin{pmatrix} \psi' \\ \theta' \\ \phi' \end{pmatrix}$$

Table 5.18: Error metrics of KFE orientation.

Angle (rad)	Mean error	Max error	Std error
Yaw (ψ)	0.12	0.57	0.12
Pitch (θ)	0.11	0.30	0.07
Roll (ϕ)	0.16	0.55	0.12

Motion results

$$a(t) \cdot M_z(\psi, \theta, \phi) - \frac{d^2z(t)}{dt^2} = 0$$

$$a(t) \cdot M_y(\psi, \theta, \phi) - \frac{d^2y(t)}{dt^2} = 0$$

$$a(t) \cdot M_x(\psi, \theta, \phi) - \frac{d^2x(t)}{dt^2} = 0$$

$$M = \begin{bmatrix} \cos \psi \cos \theta & \sin \psi \cos \theta & -\sin \theta \\ -\sin \psi \cos \theta + \cos \psi \sin \theta \sin \phi & \cos \psi \cos \theta + \sin \psi \sin \theta \sin \phi & \cos \theta \sin \phi \\ \sin \psi \sin \theta + \cos \psi \sin \theta \cos \phi & -\sin \psi \sin \theta + \sin \psi \sin \theta \cos \phi & \cos \theta \cos \phi \end{bmatrix}$$

Table 5.19: Error metrics of KFE linear displacement.

Axis (m)	Mean error	Max error	Std error
Z	0.03	0.12	0.02
Y	0.01	0.04	0.01
X	0.05	0.10	0.02

Image processing

Preoperative model

Tumour 1

Tumour 2

Spherical coordinates

Tumour 3

Tumour 4

Spline of

14/16

Conclusions and SDGs

- The method is scalable to multivariate function, systems and non-linear equations.
- The estimation of the orientation is satisfactory and the human motion in the KFE exercise.

- 2 It is determined a good criteria for different choices including the order, the collocation sites, the viscosity, etc.
- The preoperative model of tumours are successfully represented as differentiable splines.

SDGs: Goal 3: Good health and well-being

Non-communicable diseases

Universal health coverage

Health risk management

Future lines

A1

We must evaluate the motion estimation including the time requirements.

A2

It is needed to improve the determination of the ridge parameter in the displacement estimation. 3 fra

To provide a close path framework is needed for the circular bases domain in the preoperative tumour models.

Open path

Closed path

