WS #10 - Bootstrap t

Monday, October 6, 2025

Your Name:	
Names of people you worked with:	

Name the people sitting one table over from you. Tell your partner one fantastic thing from your weekend.

Task:

Put in the back of your head the distribution of: $\frac{\overline{X}-\mu}{s/\sqrt{n}}$ (which, incidentally, we know is distributed according to t_{n-1} if $X_i \overset{iid}{\sim} N(\mu, \sigma^2)$.)

Additionally, let

$$\begin{array}{lll} \hat{\theta}^*(b) & = & \text{estimate of } \theta \text{ from the } b^{th} \text{ resample} \\ \hat{SE}^* & = & \left[\frac{1}{B-1} \sum_{b=1}^B (\hat{\theta}^*(b) - \hat{\theta}^*)^2 \right]^{1/2} \end{array}$$

- 1. If you sample B times from a population, how many copies of \overline{X} will there be? How many copies of s/\sqrt{n} will there be?
- 2. If you re-sample B times from a single dataset, how many copies of $\hat{\theta}^*(b)$ will there be? How many copies of \hat{SE}^* ?
- 3. Gosset realized that s varies from sample to sample. In bootstrapping, we want to mimic the process of sampling from a population. What is the problem with using the bootstrap values given above to produce a bootstrapped test statistic?
- 4. To address the problem, suggest a way of estimating the SE of $\hat{\theta}$ separately for each b.

Solution:

- 1. When sampling from a population, there will be B copies each of \overline{X} and s/\sqrt{n} .
- 2. When re-sampling from a dataset, there will be B copies of $\hat{\theta}^*(b)$ and 1 copy of \hat{SE}^* .
- 3. Somehow we need to create a test statistic where both the numerator and the denominator are random variables.
- 4. To find $\widehat{SE}(b)$, we must bootstrap twice. The algorithm is as follows:
 - a. Generate B_1 bootstrap samples (resamples from the original data), and for each
 - sample \underline{X}^{*b} compute the bootstrap estimate $\hat{\theta}^*(b)$. b. Take B_2 bootstrap samples (resamples from the bootstrapped data) from \underline{X}^{*b} , and estimate the standard error, $\hat{SE}^*(b)$.
 - c. The resulting distribution will be based on B_1 values for $T^*(b) = \frac{\hat{\theta}^*(b) \hat{\theta}}{\hat{SE}^*(b)}$.