(11)Publication number:

2000-299497

(43)Date of publication of application : 24.10.2000

(51)Int.CI.

H01L 33/00 H01L 21/20 HO1S 5/343 // H01L 21/205

(21)Application number: 11-331797

22.11.1999 (22)Date of filing:

(71)Applicant : NICHIA CHEM IND LTD

(72)Inventor: NAGAHAMA SHINICHI

NAKAMURA SHUJI

(30)Priority

Priority number: 11030990

Priority date: 09.02.1999

Priority country: JP

(54) NITRIDE SEMICONDUCTOR ELEMENT

(57)Abstract

PROBLEM TO BE SOLVED: To prevent generation of fine cracks on a device structure to be grown on a GaN substrate in order to improve element characteristic such as operation life characteristic, by growing a nitride semiconductor having a thermal expansion coefficient that is smaller than that of GaN on a GaN substrate and then forming a device structure thereon.

SOLUTION: After a buffer layer consisting of GaN is grown on a substrate 11, a first nitride semiconductor layer 12 consisting of undoped GaN having a thermal expansion coefficient smaller than that of GaN is grown and thereafter a second nitride semiconductor layer 13 consisting of undoped GaN is grown. Thereafter, a device structure including undoped n-type contact layer 1, n-type contact layer 2, crack preventing layer 3, n-type clad layer 4, n-type guide layer 5, active layer 6 of multiple quantum well structure, p-type electron confining layer 7, p-type guide layer 8 consisting of undoped GaN, p-type crack layer 9, p-type contact layer 10 and ptype electrode 20 via a second protection film 62 is formed.

LEGAL STATUS

[Date of request for examination]

15.04.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

BEST AVAILABLE COPY

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

http://www19.ipdl.jpo.go.jp/PA1/result/detail/main/wAAAuVaymVDA412299497P1.... 04/09/10

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-299497 (P2000-299497A)

(43)公開日 平成12年10月24日(2000.10.24)

H 0 1 L 33/00 21/20			(43)公開口 十八十二
(21) 出願番号 特顧平11-331797 (71) 出願人 000226057 日並化学工業株式会社 協島県阿南市上中町岡491番地100 長濱 慎一 徳島県阿南市上中町岡491番地100 日亜信 (31) 優先権主張番号 特顧平11-30990 学工業株式会社内 (72) 発明者 中村 修二 (72) 発明者 中村 修二	21/20 H 0 1 S 5/343	設別記号	H01L 33/00 C 21/20 H01S 5/343 H01L 21/205
	(22)出顧日 (31)優先権主張番号	平成11年11月22日(1999.11.22) 特顧平11-30990	(71) 出頭人 000226057 日亜化学工業株式会社 協島県阿南市上中町岡491番地100 (72) 発明者 長濱 慎一 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内

(54) 【発明の名称】 窒化物半導体素子

(57)【要約】

【課題】 GaN基板上に成長させるデバイス構造に微 細なクラックが発生することを防止し、寿命特性などの 素子特性を向上させ、信頼性の更なる向上が可能な窒化 物半導体素子を提供することである。

【解決手段】 GaN基板上に、GaNより熱膨張係数 の小さい窒化物半導体 $[Al_aGa_{1-a}N$ (0 < a < 1)]を成長させ、その上にデバイス構造を形成させて なる。

【特許請求の範囲】

【請求項1】 GaN基板上に、GaNより熱膨張係数 の小さい窒化物半導体を成長させ、その上にデバイス構 造を形成させてなる窒化物半導体索子。

【請求項2】 前記熱膨張係数の小さい窒化物半導体 が、AlaGal-aN(0 < a ≦ 1)であることを特徴と する請求項1に記載の窒化物半導体素子。

【請求項3】 前記熱膨張係数の小さい窒化物半導体 が、前記GaN基板に接して形成されていることを特徴 とする請求項1又は2に記載の窒化物半導体案子。

【請求項4】 前記デバイス構造が、少なくともAlを 含有する n型クラッド層、InGaNを含んでなる活性 層、及び少なくともAlを含有する p 型クラッド層を少 なくとも有するダブルヘテロ構造であることを特徴とす る請求項1又は2に記載の窒化物半導体索子。

【請求項5】 前記GaN基板が、窒化物半導体のみか らなることを特徴とする請求項1又は2に記載の窒化物 半導体索子。

【請求項6】 前記窒化物半導体のみからなるG a N基 板が、窒化物半導体と異なる材料よりなる異種基板の上 に窒化物半導体を成長させた後、窒化物半導体の横方向 の成長を利用して転位の低減される方法により、再び窒 化物半導体を成長させ、その後異種基板を除去して得ら れる基板であることを特徴とする請求項5に記載の窒化 物半導体索子。

【請求項7】 前記GaN基板が、異種基板上に窒化物 半導体を形成してなる異種基板と窒化物半導体とからな ることを特徴とする請求項1又は2に記載の窒化物半導 体索子。

【請求項8】 前記異種基板と窒化物半導体とからなる GaN基板が、窒化物半導体と異なる材料よりなる異種 基板の上に窒化物半導体を成長させた後、窒化物半導体 の横方向の成長を利用して転位の低減される方法によ り、再び窒化物半導体を成長させて得られる基板である ことを特徴とする請求項7に記載の窒化物半導体案子。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、発光ダイオード (LED) 、レーザダイオード (LD) あるいは他の電 子デバイス、パワーデバイスなどに使用される窒化物半 導体(InχAlγGal-X-YN、0≦X、0≦Y、X+Y≦ 1) よりなる窒化物半導体素子に関し、特に、GaN基 板上に形成されるデバイス構造に生じる微細なクラック を防止されてなる窒化物半導体案子に関する。

[0002]

【従来の技術】近年、窒化物半導体からなる青色発光ダ イオードが実用化され、更に青色レーザダイオードの実 用も可能になっている。例えば、本発明者等は、Japane se Journal of Aplide Physics. Vol. 37 (1998) pp. L309-L312 に、GaN基板上に、デバイス構造を形成してな

2

る窒化物半導体レーザ索子を開示している。GaN基板 は、サファイア上に一旦成長させたG a N層上に、S i O2よりなる保護膜を部分的に形成し、この上から再度 GaNを成長させた後、サファイア基板を除去してなる ものである。このようにして得られたGaN基板は、G a Nの横方向の成長を利用して転位の進行を成長の初期 に止めることで、転位の少ないG a N基板となってい る。そして、転位の少ないGaN基板を用いて製造され た窒化物半導体レーザ素子は、1万時間以上の連続発振 を達成することができるものである。

[0003]

【発明が解決しようとする課題】しかしながら、窒化物 半導体レーザ素子の実用化にあたって、レーザ素子の信 頼性の更なる向上のために、検討を重ねた結果、GaN 基板上に成長されてなるデバイス構造、特にG a N基板 上に形成されるn型コンタクト層内に微細なクラックが 発生する場合があることが確認された。このような微細 なクラックの発生は、しきい値の上昇や寿命特性の低下 などレーザ素子へ悪影響を及ぼす可能性がある。更に、 G a N基板を用いてなる窒化物半導体素子を得る場合 に、上記のような微細なクラックの発生という問題は、 索子の信頼性を向上させるために、解決されることが望 ましい。そこで、本発明の目的は、GaN基板上に成長 させるデバイス構造に微細なクラックが発生することを 防止し、寿命特性などの素子特性を向上させ、信頼性の 更なる向上が可能な窒化物半導体索子を提供することで

ある。 [0004]

【課題を解決するための手段】即ち、本発明は、下記 (1) ~ (8) の構成により、本発明の目的を達成する ことができる。

- (1) GaN基板上に、GaNより熱膨張係数の小さ い窒化物半導体を成長させ、その上にデバイス構造を形 成させてなる窒化物半導体素子。
- (2) 前記熱膨張係数の小さい窒化物半導体が、A1 aG a 1-aN (0 < a ≦ 1) であることを特徴とする
- (1) に記載の窒化物半導体素子。
- 前記熱膨張係数の小さい窒化物半導体が、前記 G a N基板に接して形成されていることを特徴とする
- (1) 又は(2)に記載の窒化物半導体索子。
- 前記デバイス構造が、少なくともAlを含有す るn型クラッド層、InGaNを含んでなる活性層、及 び少なくともAlを含有するp型クラッド層を少なくと も有するダブルヘテロ構造であることを特徴とする
- (1) 又は(2) に記載の窒化物半導体素子。
- 前記GaN基板が、窒化物半導体のみからなる ことを特徴とする(1)又は(2)に記載の窒化物半導 体索子。
- (6) 前記窒化物半導体のみからなるGaN基板が、 窒化物半導体と異なる材料よりなる異種基板の上に窒化

.3

物半導体を成長させた後、窒化物半導体の横方向の成長 を利用して転位の低減される方法により、再び窒化物半 導体を成長させ、その後異種基板を除去して得られる基 板であることを特徴とする (5) に記載の窒化物半導体 索子。

- (7) 前記GaN基板が、異種基板上に窒化物半導体を形成してなる異種基板と窒化物半導体とからなることを特徴とする(1)又は(2)に記載の窒化物半導体素子。
- (8) 前記異種基板と窒化物半導体とからなるGaN基板が、窒化物半導体と異なる材料よりなる異種基板の上に窒化物半導体を成長させた後、窒化物半導体の横方向の成長を利用して転位の低減される方法により、再び窒化物半導体を成長させて得られる基板であることを特徴とする(7)に記載の窒化物半導体案子。

【0005】つまり、本発明は、GaN基板より熱膨張 係数の小さい窒化物半導体を成長させることにより、微 細なクラックを良好に防止することができるものであ る。

【0006】本発明者等は、従来の課題であるGaN基 板上にGaNを成長させた場合にGaN内部に微細なク ラックが発生する問題について、種々検討した結果、G a N基板と、その上に成長させる窒化物半導体との熱膨 張係数の関係が、微細なクラックの発生に関与している のではないかと考えた。例えば、熱膨張係数として、S i Cをεl、GaNをε2、サファイアをε3、とする と、それぞれの熱膨張係数の関係は、 ϵ 1 < ϵ 2 < ϵ 3 の ように大小の関係がある。そして、SiC基板上にGa Nを成長させた場合、熱膨張係数 ϵ 1< ϵ 2となることか ら、SiC基板上に成長させたGaNには、面内方向に 引っ張り歪みがかかり、このような状態ではG a Nにク ラックが発生しやすくなる。また、サファイア基板にG a Nを成長させた場合、熱膨張係数 ε 2< ε 3となること から、サファイア基板上に成長させたGaNには、面内 方向に圧縮歪みがかかり、このような状態ではG a Nに クラックが発生しにくくなる。つまり、GaNに発生す るクラックは、GaNにかかる歪みが、引っ張り歪みで あるか、圧縮歪みであるかによって、発生する傾向が相 違してくる。

【0007】しかし、上記のことを踏まえて、GaN基板上にGaNを成長させる場合には、熱膨張係数は等しいので、基板上のGaNには引っ張り歪みも圧縮歪みも発生していないと思われるが、実際にはGaN基板上に成長されたGaNには微細なクラックが発生する傾向がある。このことから、本発明者等は、GaN基板上に成長させる材料の熱膨張係数が、GaNの熱膨張係数と同じ以上の値であると、GaN基板上に成長させるGaNの内部に微細なクラックが発生するのではないか、そしてGaN基板上のGaNにわずかに圧縮歪みがかかるようにすれば、GaNでの微細なクラックの発生を防止で

きるのではないか、と考察した。

【0008】そこで、本発明者等は、上記の如く、Ga N基板より熱膨張係数の小さい窒化物半導体を成長させ ることにより、デバイス構造に微細なクラックが発生す るのを防止することを達成した。

【0009】さらに本発明において、GaN基板より熱膨張係数の小さい材料が、AlaGal-aN(0<a≦1)からなる窒化物半導体であると、GaN基板の熱膨張係数に対して、AlaGal-aNの熱膨張係数の値が、若干小さくなるため素子構造内の微細なクラックを防止でき好ましい。またさらに、本発明において、熱膨張係数の小さい窒化物半導体が、GaN基板に接して形成されていると、デバイス構造に生じる微細なクラックの発生を良好に防止でき好ましい。またさらに本発明において、デバイス構造が、少なくともAlを含有するn型クラッド層、InGaNを含んでなる活性層、及び少なくともAlを含有するp型クラッド層を少なくとも有するがブルヘテロ構造であると、微細なクラックの発生を防止することによることと相乗的に作用し、素子特性の良好な素子が得られ好ましい。

【0010】またさらに本発明において、GaN基板 が、窒化物半導体のみからなると、G a N基板のデバイ ス構造を形成されてなる面とは反対の面にn電極を形成 することができ、チップを小さくすることができる点で 好ましい。またGaN基板が窒化物半導体のみからなる と、放熱性や劈開により共振面を形成する場合の劈開性 が向上する等の点でも好ましい。またさらに本発明にお いて、前記窒化物半導体のみからなるG a N基板が、窒 化物半導体と異なる材料よりなる異種基板の上に窒化物 半導体を成長させた後、窒化物半導体の横方向の成長を 利用して転位の低減される方法により、再び窒化物半導 体を成長させ、その後異種基板を除去して得られる基板 であると、転位の低減された窒化物半導体を得ることが でき、デバイス構造を形成してなる素子の素子特性が向 上し好ましい。また、このような窒化物半導体のみから なると、GaN基板のデバイス構造が形成されている面 の反対側の面にn質極を設けることもでき、チップを小 さくすることができる。また、窒化物半導体のみからな るGaN基板において、デバイス構造を形成する面は異 種基板を除去されてなる面とは反対の面に形成すると、 索子特性の点で好ましい。

【0011】またさらに本発明において、GaN基板が、異種基板上に窒化物半導体を形成してなる異種基板と窒化物半導体とからなると、ウエハの割れや欠けが防止できハンドリング性の点で好ましい。また、異種基板を除去する工程が不要となるので製造時間の短縮化等の点でも好ましい。またさらに、本発明において、異種基板と窒化物半導体とからなるGaN基板が、窒化物半導体と異なる材料よりなる異種基板の上に窒化物半導体を成長させた後、窒化物半導体の横方向の成長を利用して

<u>第2000-299497 (P2000-299497A)</u>

転位の低減される方法により、再び窒化物半導体を成長 させて得られる基板であると、転位の低減された窒化物 半導体上にデバイス構造が形成されるので素子特性の点 で好ましく、さらに異種基板を有していることでウエハ の割れや欠けが生じ難くなりハンドリング性の点等で好

【0012】また、GaN基板上にGaNより熱膨張係 数の小さい窒化物半導体を成長させる前に、GaN基板 の表面をエッチングしてから熱膨張係数の小さい窒化物 半導体を形成してもよい。 G a N基板の熱膨張係数の小 さい窒化物半導体を形成する面は、G a N基板が作製さ れる過程で、表面がでこぼこしていて平坦でない場合が あるので、エッチングして表面を平坦にし、この上に熱 膨張係数の小さい窒化物半導体を成長させることが微細 なクラックを防止する点で好ましい。

[0013]

【発明の実施の形態】以下に、本発明をさらに詳細に説 明する。本発明において、GaN基板上に成長されるG a Nより熱膨張係数の小さい窒化物半導体としては、特 に限定されず、熱膨張係数がGaNより小さければいず れの窒化物半導体でもよいが、微細なクラックの防止と 共に、結晶性を損なわないような組成の窒化物半導体が 好ましい。 本発明において、G a Nより熱膨張係数の小 さい窒化物半導体として、具体的に好ましい材料は、A $l_aGa_{1-a}N$ (0 < a ≤ 1) が挙げられ、より好ましく は、aの値が0 < a < 0 . 3 であり、更に好ましくは、 aの値が、0 < a < 0. 1 である。このような組成の窒 化物半導体であると微細なクラックを防止するのに好ま しく、さらにAl組成比が比較的小さいと微細なクラッ クの発生が良好に防止できると共に、結晶性もよいため 好ましい。

【0014】上記GaNより熱膨張係数の小さい窒化物 半導体層は、GaN基板上のいずれに形成してもよい が、GaN基板からの影響で生じる微細なクラックを良 好に防止するのに、GaN基板に接して形成させること が好ましい。また、GaN基板と熱膨張係数の小さい窒 化物半導体層との間にその他の層を形成してもよい。ま た、G a N基板上に熱膨張係数の小さい窒化物半導体層 を形成する前に、GaN基板の形成面をエッチングして もよい。G a N基板の作製の方法などによっては、G a N基板の表面がでこぼこしている場合があるので、一旦 表面をエッチングして平坦にしてから熱膨張係数の小さ い窒化物半導体層、例えばAlaGal-aN、を形成する と微細なクラックの防止の点で好ましい。

【0015】GaNより熟膨張係数の小さい例えばAl aGal-aNからなる窒化物半導体層の膜厚は、特に限定 されないが、好ましくは 1 u m以上であり、より好まし くは3~10μmである。このような膜厚であると微細 なクラックの防止の点で好ましい。また、本発明におい て、例えばA l_a G a_{1-a} Nからなる熱膨張係数の小さい 6

窒化物半導体層は、G a N基板とデバイス構造とのバッ ファ層、n電極を形成するn型コンタクト層、また、光 を閉じ込めるためのクラッド層等を兼ねることができ る。AlaGal-aNを成長させてなる層が、デバイス構 造の上記のような層を兼ねる場合は、兼ねている層の機 能を考慮して、上記膜厚の範囲内で膜厚を調整する。

【0016】更に、熱膨張係数の小さい窒化物半導体層 を成長させる際に、不純物をドープさせてもよく、不純 物としては特に限定されず、n型でもp型でもよい。不 純物のドープ量は、上記のようにデバイス構造のある 層、例えばコンタクト層やクラッド層等、を兼ねる場 合、層の機能を良好にする範囲のドープ量でn型あるい はp型不純物を適宜調節してドープする。

【0017】例えば、本発明において、熱膨張係数の小 さい窒化物半導体層が、図5に示されるように、n型コ ンタクト層2の機能を兼ねる場合、 n 型不純物(好まし くはSi)をドープされた窒化物半導体層を成長させ る。 n 型不純物のドープ量としては、1×10¹⁸/cm $3\sim5\times1~0^{18}/c~m^3$ である。この n 型コンタクト層 2に n 電極が形成される。 n 型コンタクト層 2 の 膜厚とし ては、好ましくは1~10μmである。この範囲である と、微細なクラックを防止し、n型コンタクト層2とし ての機能を発揮でき好ましい。

【0018】更に、図5に示されるように、熱膨張係数 の小さい窒化物半導体層として、例えばアンドープのA laGal-aNを成長させてなる層(アンドープn型コン タクト層1)が、GaN基板とAlaGal-aNからなる n型コンタクト層2との間に、形成されてもよく、この ようにアンドープのAlaGal-aNからなるn型コンタ クト層1を成長させると、微細なクラックの防止及び結 晶性の点で好ましい。この場合のアンドープのAlaG al-aNのn型コンタクト層lは、バッファ層のような 作用を兼ね偏えた層として作用している。アンドープn 型コンタクト層1が、GaN基板と不純物含有のn型コ ンタクト層の間に成長されると結晶性が良好となり、寿 命特性を向上させるのに好ましい。アンドープn型コン タクト層1の膜厚は、数μmである。

【0019】本発明において、GaN基板となるGaN の製造方法としては、特に限定されないが、いずれの方 法により得られるGaNでもよい。また、本発明におい て、G a N基板は、窒化物半導体のみからなるG a N基 板、異種基板と窒化物半導体とからなるG a N 基板が挙 げられる。ここで、異種基板と窒化物半導体とからなる GaN基板の場合、下記に示すようなSiO2等の保護 膜を用いて窒化物半導体の横方向の成長を利用し転位の 低減される成長方法 (ELOG成長) が用いられると、 異種基板上の窒化物半導体内にSiO2等の保護膜を有 することもある。

【0020】まず以下にGaN基板が窒化物半導体のみ 50 からなる場合について記載する。 窒化物半導体のみから 7

なるG a N基板として、どのような成長方法により得られたものでもよく、例えば、前記 J. J. A. P. に記載されているように、SiO2を用いてGaNの横方向の成長を利用してなるGaNや、特願平10-77245、同10-275826、同10-119377、同10-132831、同11-37827、同11-37826、同10-146431、同11-168079、同11-218122各号の明細書等に提案されているELOG成長などを用いることができる。但し、各号の明細書に記載されている成長方法により得られるGaNは、ELOG成長後に異種基板を除去されてなるものである。

【0021】上記の各号の明細書等に記載されているE LOG成長により得られるG a Nは、転位密度の低減さ れた基板となり、寿命特性など索子特性の向上の点で好 ましく、本発明のGaNより熱膨張係数の小さい窒化物 半導体をこの転位の低減されたG a N基板上に成長させ デバイス構造を成長させると、より良好な寿命特性が得 られ好ましい。例えば特願平11-37827号明細書 には、サファイア等の異種基板上に一旦GaNを成長さ せ、このG a Nに凹凸を形成し、更にこの上からG a N を成長させてなる方法により G a N基板を作製する方法 が提案されており、その方法の具体例としては、実施例 にその一実施の形態を示す。ここで、サファイアなどの 異種基板上に、SiO2や凹凸など形成した後に成長さ れたGaN層は、サファイアなどを除去してGaNのみ とされる。このようにサファイアなどの除去面と、成長 面とは、表面の物理的性質が異なり、GaN単体にやや 反りが入る傾向がある。そして、前記本発明の課題で記 載した微細なクラックは、このような表面の物理的な相 違により発生することも考えられる。しかし、上記した ように、GaN基板上にAlaGal-aNを成長させる と、微細なクラックの発生を防止でき、結晶性の良好な デバイス構造を形成することができる。

【0022】また、本発明において、窒化物半導体のみからなるGaN基板の膜厚としては、特に限定されないが、好ましくは $50\sim500\mu$ mであり、より好ましくは $100\sim300\mu$ mである。GaN基板の膜厚が上記範囲であると、転位の良好な低減と共に機械的強度が保たれ好ましい。

【0023】次に、GaN基板が異種基板と窒化物半導体とからなる場合に付いて以下に示す。異種基板と窒化物半導体とからなるGaN基板としては、いずれの成長方法により得られたものでもよいが、好ましくは転位の低減される上記に列記した各号明細書に記載されているELOG成長などにより得られる異種基板上に転位の低減された窒化物半導体を形成し、異種基板を除去していないものが挙げられる。異種基板と窒化物半導体とからなるGaN基板が、異種基板上に転位の少なくなる方法で得られた窒化物半導体であると、この上にデバイス標

造を形成して得られるレーザ案子の寿命特性等の案子特性が向上し好ましい。異種基板として、上記列記した明細書に記載されている種々異種基板を用いることができる。例えば、サファイア、スピネルなどを挙げることができる。本発明において、異種基板と窒化物半導体とからなるGaN基板の窒化物半導体の部分の膜厚としては、特に限定されないが、例えば好ましい具体例としては、100μm以下、好ましくは50μm以下、より好ましくは20μm以下である。膜厚の下限値は特に覆けれて転位の低減できる程度の膜厚であればよく、例えば数μm以上である。膜厚がこの範囲であると、転位の低減の点で好ましいと共に、異種基板と窒化物半導体の熱膨張係数差によるウェハの反りが防止でき、更にこの上にデバイス構造を良好に成長させることができる。

【0024】本発明は、GaNの熱膨張係数と同じかそれ以上の値を有する窒化物半導体層を、GaN基板上、特にGaN基板に接して、成長させる場合に内部に微細なクラックが発生すると言った問題点を解決することができるものである。そして、微細なクラックに着目するにあたっては、長時間の連続発振が可能なレーザ案子を得ることができるようになったことで、さらなる実用性の可能性を高めることが望まれるようになってきているからである。

【0025】また、ここで、本発明の課題である微細なクラックの発生の原因は上記熱膨張係数の差が関係すると思われるが、この考察は定かではなく、上記厚膜のGaN基板上に、薄膜のGaNを成長させると何らかの原因で、微細なクラックが発生するのではないかという考察もできる。このことから、微細なクラックの発生という問題は、GaN単体を基板としたときに生じる問題とも考えられる。

【0026】また、本発明において、デバイス構造の前 記n型コンタクト層以外のその他の活性層等の層として は、特に限定されず、種々の層構造を用いることができ る。本発明は、G a N 基板上にG a N より熱膨張係数の 小さい、例えば好ましくはAlGaNを成長させること により、GaN基板上に種々のデバイス構造を成長させ ても微細なクラックの発生が生じないことから、寿命特 性などが向上する傾向がある。本発明のデバイス構造と しては、少なくともAIを含有するn型クラッド層、I n G a Nを含んでなる活性層、及び少なくともAlを含 有するp型クラッド層を少なくとも有するダブルヘテロ 構造であることが、案子特性の点で好ましい。デバイス 構造の具体的な実施の形態としては、従来公知のダブル ヘテロ構造の索子構造を用いることができ、例えば後述 の実施例に記載されているデバイス構造が挙げられる。 また、電極等も特に限定されず種々のものを用いること ができる。

【0027】本発明において、窒化物半導体の成長は、

MOVPE(有機金属気相成長法)MOCVD(有機金 属化学気相成長法)、HVPE(ハライド気相成長 法)、MBE(分子線気相成長法)等、窒化物半導体を 成長させるのに知られている全ての方法を適用できる。

[0028] 【実施例】以下に本発明の一実施の形態である実施例を 示す。しかし本発明はこれに限定されない。

【0029】 [実施例1] 実施例1として、図5に示さ れる本発明の一実施の形態である窒化物半導体レーザ素 子を製造する。

【0030】(GaN基板の製造方法)図1~図4に示 されている各工程に沿ってGaN基板を製造する。2イ ンチφ、C面を主面とし、オリフラ面をA面とするサフ ァイア基板11を反応容器内にセットし、温度を510 ℃にして、キャリアガスに水素、原料ガスにアンモニア とTMG(トリメチルガリウム)とを用い、サファイア 基板11上にGaNよりなるバッファ層(図示されてい ない)を約200オングストロームの膜厚で成長させ る。

【0031】バッファ層を成長後、TMGのみ止めて、 温度を1050℃まで上昇させる。1050℃になった ち、原料ガスにTMG、アンモニアを用い、アンドープ のG a Nよりなる第1の窒化物半導体層12を2μmの 膜厚で成長させる(図1)。

【0032】第1の窒化物半導体層12を成長後、スト ライブ状のフォトマスクを形成し、スパッタ装置により ストライプ幅 (凸部の上部になる部) 5μm、ストライ プ間隔(凹部底部となる部分) 15μmにパターニング された SiO_2 膜を形成し、続いて、RIE装置により SiO2膜の形成されていない部分の第1の窒化物半導 体層12を第1の窒化物半導体12が残る程度に途中ま でエッチングして凹凸を形成することにより、凹部側面 に第1の窒化物半導体12を露出させる(図2)。図2 のように凹凸を形成した後、凸部上部の SiO_2 を除去 する。なお、ストライプ方向は、オリフラ面に対して垂 直な方向で形成する。

【0033】次に、反応容器内にセットし、温度を10 50℃で、原料ガスにTMG、アンモニアを用い、アン ドープのGaNよりなる第2の窒化物半導体層13を約 320μmの膜厚で成長させる(図3及び図4)。

【0034】第2の窒化物半導体層13を成長後、ウェ ーハを反応容器から取り出し、アンドープのG a Nより なるGa N基板を得る。この得られたGa N基板からサ ファイア基板を除去し、除去した面とは反対の成長面上 に、図5に示されるように、下記のデバイス構造を成長 させる。GaNからなる基板の膜厚は約300μmであ

【0035】(アンドープn型コンタクト層1:本発明 のAlaGal-aN) GaN基板上に、1050℃で原料 ガスにTMA(トリメチルアルミニウム)、TMG、ア 10

ンモニアガスを用いアンドープのAl_{0.05}G a _{0.95}Nよ りなるアンドープ η型コンタクト層 1を 1 μ mの膜厚で 成長させる。

(n型コンタクト層2:本発明のAlaGal-aN) 次 に、同様の温度で、原料ガスにTMA、TMG及びアン モニアガスを用い、不純物ガスにシランガス(S i H_4)を用い、 $Si を 3 \times 10^{18} / cm^3$ ドープしたAI0.05G a 0.95Nよりなる n 型コンタクト層 2 を 3 μ mの 膜厚で成長させる。

【0036】ここで、上記の成長されたn型コンタクト 層2(n型コンタクト層1を含む)には、微細なクラッ クが発生しておらず、微細なクラックの発生が良好に防 止されている。また、GaN基板に微細なクラックが生 じていても、n型コンタクト層2を成長させることで微 細なクラックの伝播を防止でき結晶性の良好な素子構造 を成長さることができる。結晶性の改善は、n型コンタ クト層 2 のみの場合より、上記のようにアンドープ n 型 コンタクト層 1 を成長させることにより、より良好とな

【0037】(クラック防止層3)次に、温度を800 ℃にして、原料ガスにTMG、TMI(トリメチルイン ジウム) 及びアンモニアを用い、不純物ガスにシランガ スを用い、Siを $5 \times 10^{18}/cm^3$ ドープしたIn0.08G a 0.92Nよりなるクラック防止層 3 を 0.1 5 μ mの膜厚で成長させる。

【0038】 (n型クラッド層4) 次に、温度を105 0℃にして、原料ガスにTMA、TMG及びアンモニア を用い、アンドープのA 1 0. 14G a 0. 86NよりなるA層 を25オングストロームの膜厚で成長させ、続いて、T MAを止め、不純物ガスとしてシランガスを用い、Si を5×10¹⁸/cm³ドープしたGaNよりなるB層を 25オングストロームの膜厚で成長させる。そして、こ の操作をそれぞれ160回繰り返してA層とB層とを積 層し、総膜厚8000オングストロームの多層膜(超格 子構造) よりなる n 型クラッド層 4 を成長させる。

【0039】(n型ガイド層5)次に、同様の温度で、 原料ガスにTMG及びアンモニアを用い、アンドープの GaNよりなるn型ガイド層を0. 075μmの膜厚で 成長させる。

【0040】(活性層6)次に、温度を800℃にし て、原料ガスにTMI、TMG及びアンモニアを用い、 不純物ガスとしてシランガスを用い、Siを5×10¹⁸ /cm³ドープしたⅠn_{0.01}Ga_{0.99}Nよりなる障壁層 を100オングストロームの膜厚で成長させる。 続い て、シランガスを止め、アンドープの I no. 11G a o. 89 Nよりなる井戸層を50オングストロームの膜厚で成長 させる。この操作を3回繰り返し、最後に障壁層を積層 した総膜厚550オングストロームの多重量子井戸構造 (MQW) の活性層 6 を成長させる。

【0041】(p型電子閉じ込め層7)次に、同様の温

Abo: Gai 神

度で、原料ガスにTMA、TMG及びアンモニアを用 い、不純物ガスとしてCp2Mg(シクロペンタジエニ ルマグネシウム) を用い、Mgを1×10¹⁹/cm³ド ープしたAl0.4Ga0.6Nよりなるp型電子閉じ込め層 7を100オングストロームの膜厚で成長させる。

【0042】 (p型ガイド層8) 次に、温度を1050 ℃にして、原料ガスにTMG及びアンモニアを用い、ア ンドープのG a Nよりなる p型ガイド層 8 を 0 . 0 7 5 μmの膜厚で成長させる。このp型ガイド層 8 は、アン ドープとして成長させるが、p型電子閉じ込め層7から のMgの拡散により、Mg濃度が5×10¹⁶/cm³と なりp型を示す。

【0043】 (p型クラッド層9) 次に、同様の温度 で、原料ガスにTMA、TMG及びアンモニアを用い、 アンドープのAl_{0.1}Ga_{0.9}NよりなるA層を25オン グストロームの膜厚で成長させ、続いて、TMAを止 め、不純物ガスとしてCp2Mgを用い、Mgを5×1 0¹⁸/cm³ドープしたGaNよりなるB層を25オン グストロームの膜厚で成長させる。そして、この操作を それぞれ100回繰り返してA層とB層とを積層し、総 膜厚5000オングストロームの多層膜 (超格子構造) よりなるp型クラッド層9を成長させる。

【0044】 (p型コンタクト層10) 次に、同様の温 度で、原料ガスにTMG及びアンモニアを用い、不純物 ガスとして $C_{p2}Mg$ を用い、Mgを $1 \times 10^{20}/cm^3$ ドープしたGaNよりなるp型コンタクト層10を15 0 オングストロームの膜厚で成長させる。

【0045】反応終了後、反応容器内において、ウエハ を窒素雰囲気中、700℃でアニーリングを行い、p型 層を更に低抵抗化する。アニーリング後、ウエハを反応 容器から取り出し、最上層のp側コンタクト層の表面に SiO2よりなる保護膜を形成して、RIE(反応性イ オンエッチング) を用いSiCl4ガスによりエッチン グし、図5に示すように、n 電極を形成すべき n 側コン タクト層2の表面を露出させる。次に図6 (a) に示す。 ように、最上層のp側コンタクト層10のほぼ全面に、 PVD装置により、Si酸化物 (主として、SiO₂) よりなる第1の保護膜61を0.5μmの膜厚で形成し た後、第1の保護膜61の上に所定の形状のマスクをか け、フォトレジストよりなる第3の保護膜63を、スト ライブ幅1.8 μ m、厚さ1 μ mで形成する。次に、図 6 (b) に示すように第3の保護膜63形成後、RIE (反応性イオンエッチング) 装置により、CF4ガスを 用い、第3の保護膜63をマスクとして、前記第1の保 護膜をエッチングして、ストライプ状とする。その後エ ッチング液で処理してフォトレジストのみを除去するこ とにより、図6(c)に示すように p 側コンタクト層 1 0の上にストライプ幅1. 8μmの第1の保護膜61が 形成できる。

12

イブ状の第1の保護膜61形成後、再度RIEによりS i C 14ガスを用いて、p側コンタクト層 1.0、および p側クラッド層 9 をエッチングして、ストライプ幅 1. 8 μ mのリッジ形状のストライプを形成する。リッジス トライプ形成後、ウェーハをPVD装置に移送し、図6 (e) に示すように、Zr酸化物 (主としてZrO₂) よりなる第2の保護膜62を、第1の保護膜61の上 と、エッチングにより露出されたp側クラッド層9の上 に 0.5μmの膜厚で連続して形成する。このように Z r酸化物を形成すると、p-n面の絶縁をとるためと、 横モードの安定を図ることができ好ましい。次に、ウェ ーハをフッ酸に浸漬し、図6(f)に示すように、第1 の保護膜61をリフトオフ法により除去する。

【0047】次に図6(g)に示すように、p側コンタ クト層10の上の第1の保護膜61が除去されて露出し たその p 側コンタクト層の表面にN i /A u よりなる p 電極20を形成する。但しp電極20は100μmのス トライブ幅として、この図に示すように、第2の保護膜 62の上に渡って形成する。第2の保護膜62形成後、 図5に示されるように露出させた n 側コンタクト層2の 表面にはTi/Alよりなるn電極21をストライプと 平行な方向で形成する。

【0048】以上のようにして、n電極とp電極とを形 成したウエハのG a N基板を研磨してほぼ100μmと した後、ストライプ状の電極に垂直な方向で、基板側か らバー状に劈開し、劈開面(11-00面、六角柱状の 結晶の側面に相当する面=M面)に共振器を作製する。 共振器面にSiO2とTiO2よりなる誘電体多層膜を形 成し、最後にp電極に平行な方向で、バーを切断して図 5に示すようなレーザ素子とする。なお共振器長は30 0~500μmとすることが望ましい。 得られたレーザ 素子をヒートシンクに設置し、それぞれの電極をワイヤ ーポンディングして、室温でレーザ発振を試みた。その 結果、室温においてしきい値2.5kA/c m^2 、しき い値電圧5Vで、発振波長400nmの連続発振が確認 され、室温で1万時間以上の寿命を示す。

【0049】 [実施例2] 実施例1において、アンドー プn型コンタクト層 1 を成長させずに n型コンタクト層 2を成長させる他は同様にしてレーザ素子を製造する。 40 得られた索子は、実施例1に比べやや結晶性が劣る傾向 が見られるものの、実施例1とほぼ同様に微細なクラッ クの発生が防止され、素子特性も良好である。

【0050】 [実施例3] 実施例1において、アンドー プn型コンタクト層1及びSiドープのn型コンタクト 層2のAl組成の比を0.05から0.2に変更する他 は同様にしてレーザ素子を成長させた。得られた案子 は、実施例1とほぼ同様に良好な結果が得られた。

【0051】 [実施例4] 実施例1において、アンドー プn型コンタクト層1及びSiドープのn型コンタクト 【0046】さらに、図6 (d) に示すように、ストラ 50 層2のA1組成の比を0.05から0.5に変更する他 13

は同様にしてレーザ素子を成長させた。得られた素子は、実施例1に比べA!組成の比が大きくなったため結晶性がやや劣る傾向が見られるものの、実施例1と同様に微細なクラックを防止でき、素子特性も良好である。【0052】[実施例5]実施例1において、アンドープのn型コンタクト層1をA!Nとし、Siドープのn型コンタクト層2をA!Nとする他は同様にしてレーザ素子を作製する。得られたレーザ素子は、実施例1よりn型コンタクト層1及びn型コンタクト層2のA!組成比が大きいのでやや結晶性が劣るが、実施例1と同等に良好細なクラックを防止でき、実施例1とほぼ同等に良好

な寿命特性を得ることができる。
【0053】 [実施例6] 実施例1において、第2の窒化物半導体層13の膜厚を15μmとし、さらにサファイア基板を除去しない、異種基板と窒化物半導体からなるGaN基板とする他は同様にしてレーザ素子を作製する。得られたレーザ素子は、実施例1に比べて反りがやや大きい傾向が見られるが、微細なクラックは実施例1と同等に防止される。また、実施例6のレーザ素子は、絶縁性のサファイア基板を有しているので、実施例1に比べるとやや放熱性の点で劣るものの、実施例1とほぼ同等の寿命特性を有する。

[0054]

【発明の効果】本発明は、G a N基板上に成長させるデバイス構造に微細なクラックが発生することを防止し、 寿命特性などの素子特性を向上させ、信頼性のさらなる 向上が可能な窒化物半導体素子を提供することができ 14

3.

【図面の簡単な説明】 【図1】本発明の方法の各工程において得られる窒化物 半導体ウェーハの構造を示す模式的断面図である。

【図2】本発明の方法の各工程において得られる窒化物 半導体ウェーハの構造を示す模式的断面図である。

【図3】本発明の方法の各工程において得られる窒化物 半導体ウェーハの構造を示す模式的断面図である。

【図4】本発明の方法の各工程において得られる窒化物 10 半導体ウェーハの構造を示す模式的断面図である。

【図5】図5は、本発明の一実施の形態である窒化物半 導体レーザ素子を示す模式的断面図である。

【図6】図6は、リッジ形状のストライプを形成する一 実施の形態である方法の各工程におけるウエハの部分的 な構造を示す模式的断面図である。

【符号の説明】

1・・・アンドープコンタクト層

2···n型コンタクト層

3・・・クラック防止層

4・・・n型クラッド層

5・・・n型ガイド層

6・・・活性層

7・・・p型電子閉じ込め層

8・・・p型ガイド層

g・・・p型クラッド層

10・・・p型コンタクト層

(9)

[図6]

