Lecture 12: Dynamic Programming 2

CS 341: Algorithms

Tuesday, Feb 14th 2019

Outline For Today

1. Sequence Alignment

Sequence Alignment

- Fundamental Problem is Computational Genomics.
- ◆ Given 2 DNA strands, i.e., strings of A, G, T, C
- Want to determine how "similar" they are.

Q: Are these 2 strands similar?

Y A G G C T T

Underdefined. Need to define what similar means.

High-level idea: If we can align them well, they're similar, o.w., they're not similar.

Applications of Sequence Alignment

- Extrapolation
 - ◆ E.g: You know the function of a DNA fragment in a mouse
 - You want to find the most similar part in a human genome
- Similarity reflects proximity of species

Similarity Intuition

- X and Y can be aligned "quite well".
- Alignment 1:

Still underdefined.

There can be multiple ways to align.

Similarity Intuition

Alignment 2:

Need to define which is better:

(1 gap, 1 mismatch) OR (3 gaps, 0 mismatches)

Formal Computational Problem

- Assume we have experimentally determined penalties:
 - 1. Gaps: $\delta \geq 0$
 - 2. Mismatches for (i, j): $\alpha(i, j) \ge 0$ (assume: $\alpha(i, i) = 0$)
- Penalty of an alignment A: sum over penalties
- ♦ Input: (1) $X=x_1...x_m$; (2) $Y=y_1...y_n$; (3) $\delta \ge 0$; and (4) $\alpha(i,j) \ge 0$
- Output: NW-Score(X, Y), min penalty of any alignment (with final equal string lengths)

Formal Name in Genomics: Needleman-Wunsch score (1970s)

Small NW Score => X and Y are similar between X and Y

Interesting Note

- NW Score definition is intrinsically algorithmic
- I.e. without fast algorithms, NW score is useless Why?

You cannot even answer the question of what's the NW score of two strings X and Y

without computing the best alignment between them!

Recall Recipe of a DP Algorithm

- 1: Identify small # of subproblems
- 2: quickly + correctly solve "larger" subproblems given solutions to smaller ones
 - 3: After solving all subproblems, can quickly compute final solution

Question: What subproblems should we be thinking of?

Consider the last position in OPT (opt alignment of X,Y).

Consider the last position in OPT (opt alignment of X,Y).

Case 1: $x_m y_n$

Consider the last position in OPT (opt alignment of X,Y).

Case 1: $x_m y_n$

Case 2: x_m --

Consider the last position in OPT (opt alignment of X,Y).

Case 1: $x_m y_n$

Case 2: x_m --

Case 3: -- y_n

Let
$$X'=X-\{x_m\}$$
, and $Y'=Y-\{y_n\}$.

Induced alignment (IA) of two strings. Depending on which case we're at, the strings IA aligns are different.

Let $X = X - \{x_m\}$, and $Y = Y - \{y_n\}$.

If Case 1: $x_m y_n =>$

Let $X = X - \{x_m\}$, and $Y = Y - \{y_n\}$.

If Case 1: $x_m y_n => IA$ should be optimal X^*, Y^* alignment

Let $X' = X - \{x_m\}$, and $Y' = Y - \{y_n\}$.

If Case 1: $x_m y_n => IA$ should be optimal X`, Y` alignment

If Case 2: $x_m -- =>$

Let $X' = X - \{x_m\}$, and $Y' = Y - \{y_n\}$.

If Case 1: $x_m y_n => IA$ should be optimal X`, Y` alignment

If Case 2: $x_m -- => IA$ should be optimal X', Y alignment

.....

Let $X = X - \{x_m\}$, and $Y = Y - \{y_n\}$.

If Case 1: $x_m y_n => IA$ should be optimal $X^, Y$ alignment

If Case 2: $x_m -- => IA$ should be optimal X, Y alignment

If Case 3: -- $y_n =>$

Let $X' = X - \{x_m\}$, and $Y' = Y - \{y_n\}$.

If Case 1: $x_m y_n => IA$ should be optimal X`, Y` alignment If Case 2: $x_m -- => IA$ should be optimal X`, Y` alignment If Case 3: $-- y_n => IA$ should be optimal X, Y` alignment

Proof of Case 1

Let $X = X - \{x_m\}$, and $Y = Y - \{y_n\}$.

Claim: If $x_m y_n => IA$ should be optimal X, Y alignment

Proof: Assume the contrary that IA is not optimal.

Let penalty(IA) = p. Assume opt X`, Y` alignment is A* with penalty p* < p.

Append x_m and y_n to A^* , get an alignment for X, Y with penalty:

$$p^* + \alpha_{\{xm, yn\}} Q.$$

A Possible Recursive Algorithm

```
Recursive-Alignment-1: (X, Y, \delta, \alpha_{ii})
    1. Base Case 1: If |X| = 0 return |Y| * \delta;
   2. Base Case 2: If |Y| = 0 return |X| * \delta;
   3. Let A_1 = Recursive-Alignment-1(X\', Y\')
   4. Let A_2 = Recursive-Alignment-1(X\, Y)
   5. Let A_3 = Recursive-Alignment-1(X, Y`)
   6. return the min cost of: (1) A_1 \cup (x_m, y_n)
                                    (2) A_2 \cup (x_m, \_)
    Good news: The
algorithm is correct! (3) A_3 \cup (\_, y_n)
min(cost(A_1) + \alpha(x_m, y_n), cost(A_2) + \delta, cost(A_3) + \delta)
```

Q: How many distinct recursive calls?

Answer: only mn b/c each input is a prefix of X, and Y.

Put All Subproblems in An Array And Solve!

Let X_i be the substring $x_1, ..., x_i$ (let X_0 = empty string) Let Y_i be the substring y_1 , ..., y_i (let Y_0 = empty string) Let P_{ii} be the penalty of the optimal algnmt for X_i , $Y_{j.}$ Note, might be 0 if Then we showed $x_i = y_i$ $\forall i,j \ P_{ij} = min$ $P_{i-1, j-1} + \alpha(x_i, y_j)$ $P_{i-1, j} + \delta$ $P_{i, j-1} + \delta$

```
Let A[][] be an mxn matrix A[i][j] \text{ is penalty of optimal } X_i \text{ and } Y_j \text{ alignment} \text{procedure DP-Alignment}(X, Y, \delta, \alpha(i,j)): \text{Base Cases: } A[i][0] =
```

```
Let A[][] be an nxm matrix, A[i][j] \text{ is penalty of optimal } X_i \text{ and } Y_j \text{ alignment}  \begin{aligned} &\textbf{procedure} & \text{DP-Alignment}(X, Y, \delta, \alpha(i, j)): \\ &\text{Base Cases: } A[i][\emptyset] &= i\delta \\ &A[\emptyset][j] &= \end{aligned}
```

```
Let A[][] be an mxn matrix,
A[i][j] is penalty of optimal X<sub>i</sub> and Y<sub>i</sub> alignment
 procedure DP-Alignment(X, Y, \delta, \alpha_{ii}):
  Base Cases: A[i][0] = i\delta
                    A[0][j] = j\delta
  for i = 1 \dots m
      for j = 1 ... n
           A[i][j] =
```

```
Let A[][] be an m+1xn+1 matrix,
A[i][j] is penalty of optimal X<sub>i</sub> and Y<sub>i</sub> alignment
 procedure DP-Alignment(X, Y, \delta, \alpha_{ii}):
  Base Cases: A[i][0] = i\delta
                   A[0][j] = j\delta
  for i = 1 \dots m
      for j = 1 ... n
           A[i][j] = min \{A[i-1][j-1] + \alpha(x_i, y_i)\}
                                A[i-1][j] + \delta
                                A[i][j-1] + \delta
   return A[m][n]
```


X	А	G	G	Д	A	4	Т	Т	
Υ	A	G	G	С	Т	1			
δ =1, α_{ij} =5 for i ≠j, 0 o.w									
	-J	0	1	2	3	4	5	6	7
	0	0	1	2	3	4	5	6	7
	1	1	0	1	2	3	4	5	6
٨	2	2	1	0	1	2	3	4	5
A	3	3	2	1	0	1	2	3	4
	4	4	3	2	1	2	3	4	5
	5	5	4	3	2	3	4	3	4
	6	6	5	4	3	4	5	4	3

Correctness

```
Claim: At termination A[m][n] = P_{mn} = penalty of opt X, Y
alignment or the NW score of X and Y
Proof: By induction on i, and j. (exercise)
 procedure DP-Alignment(X, Y, \delta, \alpha_{ii}):
  Base Cases: A[i][0] = i\delta
                  A[0][i] = i\delta
  for i = 1 \dots m
      for j = 1 ... n
          A[i][j] = min \{A[i-1][j-1] + \alpha_{ij}\}
                               A[i-1][j] + \delta
                               A[i][j-1] + \delta
```

Runtime

O(mn)

b/c O(1) cost for each mn loop iterations!

How to Reconstruct Actual Alignment?

Same trick of tracing back in the array A.

```
procedure DP-Alignmt-Reconst(X, Y, \delta, \alpha_{ii}):
  let i = m, j = n
  let B be an empty linked list
  while (i > 0 \&\& j > 0):
       if (A[i][j] was filled by case 1):
         B.append(\langle x_i, y_i \rangle) i--, j--;
       else if(A[i][j] was filled by case 2):
          B.append(\langle x_i, \_ \rangle) i--;
       else if(A[i][j] was filled by case 3):
          B.append(<_{i} y_{i}>) j--;
```

δ =1, α_{ij} =5 for i \neq j, 0 o.w									
	J	0	1	2	3	4	5	6	7
A	0	0	1	2	3	4	5	6	7
	1	1	0	1	2	3	4	5	6
	2	2	1	0	1	2	3	4	5
	3	3	2	1	0	1	2	3	4
	4	4	3	2	1	2	3	4	5
	5	5	4	3	2	3	4	3	4
	6	6	5	4	3	4	5	4	3

Q: Which case was A[7][6]?

A: Case 1

Output:

T

Q: Which case was A[6][5]?

A: Case 1

Output:

T

55

Q: Which case was A[6][5]?

A: Case 1

Output:

ТТ

ТΤ

Q: Which case was A[5][4]?

A: Case 2 or 3 (say 2)

Output:

TT TT

Q: Which case was A[5][4]?

A: Case 2 or 3 (say 2)

Output:

ATT

- T T

Q: Which case was A[4][4]?

A: Case 2 or 3 (say 2)

Output:

 $\mathsf{A}\mathsf{T}\mathsf{T}$

- T T

4

3

Q: Which case was A[4][4]?

6

5

A: Case 2 or 3 (say 2)

Output:

5

3

AATT

- - T T

δ =1, α_{ij} =5 for i \neq j, 0 o.w									
	3	0	1	2	3	4	5	6	7
A	0	0	1	2	3	4	5	6	7
	1	1	0	1	2	3	4	5	6
	2	2	1	0	1	2	3	4	5
	3	3	2	1	0	1	2	3	4
	4	4	3	2	1	2	3	4	5
	5	5	4	3	2	3	4	3	4
	6	6	5	4	3	4	5	4	3

Final Output

AGG-AATT

AGGC--TT