PHYSICS **Chapter 4**

2th **SECONDARY**

DIMENSIONES

¿Para qué nos sirve las dimensiones?

dimensiones?
Mediante las dimensiones o análisis dimensional podemos reconocer la naturaleza física de las cantidades físicas.

Por ej.: ¿como se mide el tamaño de un televisor?

Estos artefactos vienen especificados solo por la medida de su diagonal de la pantalla y lo miden en unidades de **PULGADAS**.

[50 pulgadas]

Mide la longitud de la diagonal.

Por lo tanto tiene la naturaleza física de Longitud.

[Longitud] = L

1 pulgada = 2.54 cm = 0.0254 m

50 pulgadas = 1.27 m

DIMENSIONES DE LAS CANTIDADES FUNDAMENTALES EN EL SI.

Cantidad física fundamental	Unidad Nombre Símb <mark>ol</mark> o		Dimensió n
Longitud	metro	m	L
Masa	kilogramo	kg	М
Tiempo	segundo	S	Т
Temperatura	kelvin	К	Θ
Intensidad de corriente eléctrica	ampere	Α	I
Intensidad Iuminosa	candela	cd	J
Cantidad de sustancia	mol	mol	N

DIMENSIONES DE UNA CANTIDAD DERIVADA

Llamadas también fórmulas dimensionales.

Sea X una cantidad física:

[X] se lee: Dimensiones de X o fórmula dimensional de X

$$[altura] = L, [recorrido] = L$$

$$[área] = L^2, [periodo] = T$$

$$[velocidad] = LT^{-1}$$
, $[aceleración] = LT^{-2}$

CANTIDADES ADIMENSIONALES

- No presentan unidades, por lo tanto:
- Todo número es adimensional
 - Sea el número 20 → [20] = 1
 - Sea la constante π \rightarrow $[\pi] = 1$

En General:

[adimensional] = 1

- 1.- Relacione
- a. Longitud $(d)\theta$
- b. Tiempo (b) T
- c. Masa (C) M
- d. Temperatura (e) N
- e. Cantidad de sustancia (a) L

El área se expresa en unidades de metro cuadrado (m^2). Determine sus dimensiones.

RESOLUCIÓN:

$$[\acute{a}rea] = [metro]^2$$

 $[\acute{a}rea] = [m]^2$
 $[\acute{a}rea] = L^2$

Determine las dimensiones del volumen (V) si $V = A \cdot h$ donde:

A: tiene unidades de m^2 , h: tiene unidades de longitud RESOLUCIÓN:

$$[V] = [A][h]$$

$$[V] = [m^2][h]$$

$$[V] = L^2 \cdot L$$

$$[V] = L^3$$

Determine las dimensiones de la cantidad física R si, R = S·A·C·O donde

S: es longitud; A: tiene unidades de masa; C: se mide en metros; O: tiene unidades de tiempo

RESOLUCIÓN:

$$S:[longitud] = L$$

$$A:[masa] = M$$

$$C:[longitud] = L$$

$$O:[tiempo] = T$$

$$R = S \cdot A \cdot C \cdot O$$

Se toma la dimensión

$$[R] = [S][A][C][O]$$

$$[R] = L M L T$$

$$[R] = L^2 M T$$

Determine las dimensiones de la aceleración si su unidad en SI es metro por segundo cuadrado (m/ s^2). RESOLUCIÓN:

EJEMPLO:

.a=
$$4\frac{m}{s^2}$$

[aceleración] =
$$\frac{[LONGITUD]}{[TIEMPO]^2} = \frac{L}{T^2}$$

[aceleración] =
$$LT^{-2}$$

Determine las dimensiones de la aceleración si su unidad en SI es metro por segundo cuadrado (m/ s^2). RESOLUCIÓN:

EJEMPLO:

.a=
$$4\frac{m}{s^2}$$

[aceleración] =
$$\frac{[LONGITUD]}{[TIEMPO]^2} = \frac{L}{T^2}$$

$$[aceleración] = LT^{-2}$$

Wendy se encuentra en un cerro y se acuerda que la roca porosa a través de la cual se mueve el agua subterránea es llamada manto acuífero.

Si el volumen V de agua que en un tiempo t se mueve por el caudal(Q) el cual se determina como Q = $\frac{V}{t}$ calcule las dimensiones del caudal. Resolución

RESOLUCIÓN:

SABEMOS

$$V:[volumen] = L^3$$

$$.t:[tiempo] = T$$

Caudal
$$[\mathbf{Q}] = \frac{[volumen]}{[tiempo]}$$

$$[\boldsymbol{Q}] = \frac{L^3}{T}$$

$$[0] = L^3 T^{-1}$$