

Análise Sintática Ascendente Tabelas LR(0) e SLR(1)

GCC130 - Compiladores

Tabelas LR

- Os diferentes parsers LR tem a mesma estrutura
- O que varia é a Tabela de Parsing, que pode ser:
 - LR(0)
 - SLR(1)
 - CLR(1)
 - LALR(1)

Tabelas LR

As tabelas LR são do seguinte formato

Ações a serem realizadas (Shift ou Reduce) conforme o símbolo lido na entrada e o estado atual do Parser.

Desvios para o próximo estado, após operações de Reduce.

Estados, configurações ou conjuntos de itens LR. Simulam estados de um autômato.

	ACTION			GO TO
	а	b	<u>\$</u>	S
0	S2			1
1			<u>ACC</u>	
2	S2	S4		3
3		S5		
4	R2	R2	R2	
5	R1	R1	R1	

- Considere a gramática
- $S \rightarrow aSb$
- $S \rightarrow ab$
- Passo 1: Estender a gramática (criar novo estado inicial que aponta para o estado inicial original)
- (0) $S' \rightarrow S$
- (1) $S \rightarrow aSb$
- (2) $S \rightarrow ab$

- Passo 2: Calcular os conjuntos de ITENS LR(0)
- Configuração ou ítem (ou ítem LR(0)) = uma regra da gramática com um 'ponto' em algum lugar à direita.
- Ex:

A → •ab (significa que está aguardando a leitura de "a")

A → a•b (significa que já fez a leitura de "a" e aguarda a leitura de "b")

 $A \rightarrow ab \bullet$ (significa que já fez a leitura de "ab" e está pronto para a operação REDUCE($A \rightarrow ab$)

- Passo 2: Calcular os conjuntos de ITENS LR(0)
 - Calcula-se os conjuntos canônicos de ítens= todos os itens alcançáveis a partir de um conjunto de regras da gramática.
 - Cada conjunto será um estado do parser
- O conjunto inicial é dado pela produção inicial (estendida), conforme segue:

- Em seguida aplica-se a propriedade fechamento:
- Propriedade de Fechamento:
 - Se T →X₁...X_i•X_{i+1}... X_n está em um conjunto, e Xi+1é um não-terminal que deriva emα, então também está no conjunto:Xi+1 →→→→ ••••α

- Em seguida aplica-se a propriedade fechamento:
- Propriedade de Fechamento:
 - Se T →X₁...X_i•X_{i+1}... X_n está em um conjunto, e X_{i+1} é um não-terminal que deriva em α, então também está no conjunto:

$$X_{i+1} \rightarrow \bullet \alpha$$

 Ou seja, sempre que o ponto precede um nãoterminal X, devem ser incluídas no conjunto todas as produções em que X está do lado esquerdo.

• Ex:

A partir do item **S'** → •**S**, a propriedade de fechamento diz que todas as produções em que S está do lado esquerdo devem ser adicionadas ao conjunto.

- Passo 3: Montar o autômato
 - Para cada item em que há um ponto precedendo um símbolo "a" (ou seja, em que está aguardando uma leitura) cria-se uma transição para um novo estado.
 - A aresta é rotulada pelo símbolo a ser lido ("a"), e o novo estado inclui os itens LR representando a situação em que o símbolo "a" já foi lido (i.e., o ponto move para a direita).
 - Repete-se o passo 2 sobre o novo estado (aplicando-se a propriedade de fechamento)

• Ex:

• Ex:

• Ex:

- Construir a tabela, onde
 - Há 1 linha para cada estado do autômato.
 - Duas seções de colunas:
 - ACTION: uma coluna para cada terminal mais o \$;
 - GOTO: uma coluna para cada não-terminal.
- Operações de SHIFT e GOTO
- Para cada estado I, para cada aresta de saída com símbolo "a"
 - Se "a" é terminal, adicionar operação de shift (S<estado alvo>) na célula [I,a] (seção ACTION)
 - Se "a" é não terminal, adicionar o estado destino na célula [I,a] (seção GOTO)

- Operações de REDUCE e ACCEPT
- Para cada estado I que contenha itens do tipo
 A → α•
 - Se A → α• é a nova produção inicial da gramática estendida, então adicione a ação ACCEPT na célula [I,\$]
 - Senão, adicione a operação de REDUCE(A → α•) em todas as células da linha I, na seção ACTION da tabela

- Durante a montagem da tabela, podem ser identificados conflitos, ou seja, células em que exista mais de uma entrada.
 - Casos de não-determinismo
- Caso haja conflito, significa que a gramática não é LR(0), portanto as palavras geradas por essa gramática não podem ser analisadas por um parser LR(0).

- $(1) E \rightarrow T + E$
- (2) $E \rightarrow T$
- (3) $T \rightarrow n$

Tabela LR(0)

	ACTION			GO TO	
	+	n	\$	Е	Т
0		S3		1	2
1			ACC		
2	S4 R2	R2	R2		
3	R3	R3	R3		
4		S3		5	2
5	R1	R1	R1		

- Há dois possíveis tipos de conflito:
 - Conflitos Shift-Reduce (SR)
 - Conflitos Reduce-Reduce(RR)

$$S \rightarrow \bullet b$$

 $S \rightarrow a \bullet$

	ACTION			GO TO
	а	b	\$	S
0	R	<u>S/R</u>	R	

		,	GO TO		
		а	b	\$	S
	0	R/R	R/R	<u>R/R</u>	

Tabela SLR(1)

- Mesmos procedimentos utilizados na montagem da Tabela LR(0).
- No entanto, o preenchimento de células referentes a operações de REDUCE é diferente
- A ideia é limitar as decisões de redução aos casos que o terminal que segue na entrada é compatível com a redução.
 - Look-ahead
- Seja um item A → a•, em determinado estado I, só serão adicionadas ações REDUCE(A → a) nas colunas referentes aos símbolos que pertencem ao conjunto SEGUIDORES(A).

 $(1) E \rightarrow T + E$

 $(2) E \rightarrow T$

(3) $T \rightarrow n$

 $SEGUIDORES(E) = \{\$\}$

 $SEGUIDORES(T) = \{\$, +\}$

Tabela SLR(1)

	ACTION			GO	GO TO	
	+	n	\$	Е	Т	
0		S3		1	2	
1			ACC			
2	S4		R2			
3	R3		R3			
4		S3		5	2	
5			R1			

Conflitos na Tabela SLR(1)

Shift-Reduce (SR)

 $\begin{array}{c} \mathsf{B} \to \bullet \mathsf{b} \\ \mathsf{A} \to \mathsf{a} \bullet \end{array}$

Somente se "b" pertence a SEGUIDORES(A)

Reduce-Reduce(RR)

 $\begin{bmatrix} \mathsf{B} \to \mathsf{b}^{\bullet} \\ \mathsf{A} \to \mathsf{a}^{\bullet} \end{bmatrix}$

Somente se $SEGUIDORES(A) \cap SEGUIDORES(B) \mathrel{!=} \varphi$

Se ainda assim, houver conflito, a gramática não é SLR(1)

GG

Referência bibliográfica

- Aho, A. V., Lam, M. S., Sethi, R. e Ullman, J. D. (2008).
 Compiladores: princípios, técnicas e ferramentas, 2.ed. São Paulo. Pearson Addison Wesley.
 - Capítulo 4 Análise Sintática