Matemática Computacional

Soluções de Equações

Felipe Augusto Lima Reis felipe.reis@ifmg.edu.br

Objetivos

- Nesta seção serão desenvolvidas aproximações numéricas para a solução de equações algébricas em uma única variável real;
- O principal objetivo é encontrar o zero de funções reais.
- Serão aprendidos os seguintes métodos:
 - Método da Bisseção;
 - Método de Newton:
 - Método da Secante.

Método Newton

Objetivos

- Os algoritmos utilizados nesta seção serão baseados no livro-texto da disciplina:
 - JUSTO, Dagoberto; SAUTER, Esequia; AZEVEDO, Fábio; GUIDI, Leonardo; KONZEN, Pedro. Cálculo Numérico, Um Livro Colaborativo -Versão Python. UFGRS - REAMAT. 2020.

Método Bisseção

Sumário

- Conceitos e Teoremas
- 2 Protocolo [Ruggiero]
- Método Bisseção
- Método Newton
- Método Secante
- Considerações

CONCEITOS E TEOREMAS

Prof. Felipe Reis Matemática Computacional 05/2021 5 / 65

Raiz de uma função

• Definição: Um número real ξ é um **zero da função** f(x) ou raiz da equação f(x) = 0 se $f(\xi) = 0$ [Ruggiero and Lopes, 2000].

Raiz de uma função

Conceitos e Teoremas

- Raízes de equações podem ser complexas ou reais
 - Nesta disciplina, nos interessaremos apenas pelos zeros reais.

Teorema Fundamental da Álgebra

Considerações

• Definição: Uma equação algébrica de grau *n* tem **exatamente** n raízes, reais ou complexas.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_0 = 0$$

 Corolário: Uma equação algébrica de grau ímpar com coeficientes reais tem, no mínimo, uma raiz real.

Conceitos e Teoremas

Teorema do Valor Intermediário¹

Considerações

• Seja f uma função real contínua no intervalo [a, b]. Se existe um valor d, tal que $f(a) \le d \le f(b)$, ou $f(b) \le d \le f(a)$, então existe um valor c tal que f(c) = d.

Método Bisseção

¹ Também chamado de Teorema de Bolzano.

Prof. Felipe Reis

Conceitos e Teoremas

Conceitos e Teoremas

Considerações

Corolário do Teorema de Bolzano²

• Seja f uma função real no intervalo [a, b]. Se y = f(x) é uma função contínua tal que $f(a) \times f(b) < 0$, então existe $c \in (a, b)$ tal que f(c) = 0.

² Denominado apenas "Teorema de Bolzano" em [Justo et al., 2020].

Prof. Felipe Reis Matemática Computacional 05/2021 10 / 65

Proposição - Corolário do Teorema de Bolzano

- Proposição a partir do Corolário do Teorema de Bolzano [Justo et al., 2020]
 - Seja f uma função real contínua no intervalo [a, b]. Se y = f(x) é uma função diferenciável e existe $f(a) \times f(b) < 0$ e f'(x) > 0, ou f'(x) < 0, para todo $x \in (a, b)$, então existe um único $c \in (a, b)$ tal que f(c) = 0.

Conceitos e Teoremas

Proposição - Corolário do Teorema de Bolzano

- Proposição a partir do Corolário do Teorema de Bolzano
 - Para garantirmos que exista um único zero de uma dada função diferenciável em um intervalo, é suficiente que ela troque de sinal e seja monótona neste intervalo [Justo et al., 2020]
 - Uma função entre dois conjuntos ordenados é monótona quando ela preserva (função crescente) ou inverte (função decrescente) a relação de ordem.

Conceitos e Teoremas

00000000000000000

• Seja f uma função real no intervalo [a, b]. Se y = f(x) é uma função contínua e existe $f(a) \times f(b) < 0$, então a equação f(x) = 0tem um número ímpar de raízes no intervalo (a, b). Se f'(x)preservar o sinal em (a, b) então, neste intervalo, há uma única raiz. [Ferreira, 2013]

Prof. Felipe Reis Matemática Computacional 05/2021 13 / 65

14 / 65

2 Seja f uma função real no intervalo [a, b]. Se y = f(x) é uma função contínua e existe $f(a) \times f(b) > 0$, então a equação f(x) = 0tem um número par de raízes, ou nenhuma raiz, no intervalo (a, b). [Ferreira, 2013]

Prof. Felipe Reis Matemática Computacional 05/2021 000000000000000000

Conceitos e Teoremas

- Um ponto $x = x^*$ tal que $g(x^*) = x^*$ é chamado de **ponto fixo** da função g(x) [Justo et al., 2020].
 - Geometricamente, um ponto fixo é um ponto de interseção entre a reta y = x com o gráfico da função g(x).

Problema do ponto fixo é a reescrita de uma função f(x) em uma equação equivalente na forma g(x) = x.

Prof. Felipe Reis Matemática Computacional 05/2021 15/65

Iteração do Ponto Fixo

Conceitos e Teoremas

• Iteração do ponto fixo consiste em computar a sequência recursiva $x^{(n+1)} = g(x^{(n)})$, onde $n \ge 1$ e $x^{(0)}$ corresponde a uma aproximação inicial do ponto fixo.

Prof. Felipe Reis

Iteração do Ponto Fixo - Contração

• Definição: Seja g uma função real no intervalo [a, b]. Uma contração corresponde a:

$$|g(x) - g(y)| \le \beta |x - y|, 0 \le \beta \le 1$$

Conceitos e Teoremas

Teorema do Ponto Fixo

Conceitos e Teoremas

• Definição: Seja g uma função real no intervalo [a,b]. Se y=g(x) é uma contração, então existe um único ponto $x^* \in [a,b]$ tal que $g(x^*)=x^*$, isto é, x^* é ponto fixo de g(x). A sequência $\{x^{(n)}\}_{n\in N}$ dada pela expressão abaixo converge para x^* para qualquer $x^{(1)} \in [a,b]$. [Justo et al., 2020]

$$x^{(n+1)} = g(x^{(n)})$$

Unicidade do Ponto Fixo

Conceitos e Teoremas

- Seja g uma função real no intervalo [a, b]. Se y = g(x) é uma contração, para todo $x \in [a, b]$, g terá um ponto fixo em [a, b]
 - Se g'(x) existir em (a,b) e existir uma constante positiva c < 1 tal que $|g'(x)| \le c$, para todo $x \in (a, b)$, então o ponto fixo em [a, b] será único [Andretta, 2012].

Teste de convergência do Ponto Fixo

• Seja g uma função real no intervalo [a, b]. Se y = g(x) é uma contração e $x^* \in [a, b]$, um ponto fixo de g, então, x^* é dito estável se existe uma região $(x^* - \delta, x^* + \delta)$ chamada bacia de atração tal que $x^{(n+1)} = g(x^{(n)})$ é convergente sempre que $x^{(0)} \in (x^* - \delta, x^* + \delta)$ [Justo et al., 2020].

Conceitos e Teoremas

Conceitos e Teoremas

- A partir do Teorema do Ponto Fixo, seu teste de convergência e sua condição de unicidade, temos as seguintes condições [Justo et al., 2020]³:
 - Se $|g'(x^*)| < 1$, então, a distância de $x^{(n)}$ até o ponto fixo x^* está diminuindo a cada passo;
 - Se $|g'(x^*)| > 1$, então, a distância de $x^{(n)}$ até o ponto fixo x^* está aumentando a cada passo;
 - Se $|g'(x^*)| = 1$, então, nossa aproximação de primeira ordem não é suficiente para compreender o comportamento da seguência.

Prof. Felipe Reis Matemática Computacional 05/2021 21 / 65

³Não serão demonstrados os cálculos que levam a essa conclusão. Ver [Justo et al., 2020], pág. 61-77.

Protocolo [Ruggiero]

Conceitos e Teoremas

Prof. Felipe Reis Matemática Computacional 05/2021 22 / 65

Como encontrar raízes?

Conceitos e Teoremas

Considerações

- Como encontrar raízes de uma função qualquer?
 - Funções de 2° grau possuem fórmulas explícitas, no entanto, polinômios de graus mais elevados não as possuem.
 - Para encontrar raízes de funções complexas de grau > 2, é necessário utilizar aproximações.

Conceitos e Teoremas

24 / 65

 Realizar uma aproximação inicial e, em seguida, refinar o método por um processo iterativo (aproximações sucessivas)⁴ [Ruggiero and Lopes, 2000]

Método Bisseção

- Os métodos são constituídos de duas fases:
 - Fase 1: Localização ou isolamento de raízes;
 - Fase 2: Refinamento (aproximações sucessivas).

⁴Veia seção Aproximação Sucessiva, na aula de Introdução

Prof. Felipe Reis Matemática Computacional 05/2021

Considerações

Fase 1: Localização ou isolamento de raízes

- Busca determinar intervalos que contenham, cada um, uma única raiz [Ruggiero and Lopes, 2000] [Ferreira, 2013].
- Pode utilizar os seguintes métodos:
 - Análise Teórica:
 - Análise Gráfica.

Fase 2: Refinamento (aproximações sucessivas)

- Utiliza métodos numéricos, com precisão pré-fixada, para calcular cada uma das raízes:
- Escolhidas as aproximações iniciais (Fase 1), refina-se o método até obter uma aproximação, com precisão ϵ definida [Ruggiero and Lopes, 2000] [Ferreira, 2013].
- Pode utilizar os seguintes métodos:
 - Método da Bisseção;
 - Método de Newton:
 - Método da Secante:
 - Método do Ponto Fixo...

Fase 1: Isolamento de Raízes

Prof. Felipe Reis Matemática Computacional 05/2021 27 / 65

Considerações

Isolamento de Raízes

- Busca determinar intervalos que contenham, cada um, uma única raiz [Ruggiero and Lopes, 2000] [Ferreira, 2013].
- Tanto a análise teórica quanto a análise gráfica buscam determinar raízes por meios de aproximações.
 - Essas aproximações serão úteis na Fase 2: Refinamento das raízes.

Análise Teórica

- A análise teórica busca avaliar a existência de raízes, com base nos Teoremas da Álgebra;
- Teoremas:
 - Teorema de Bolzano:
 - Corolário do Teorema de Bolzano:
 - Teorema de Cauchy-Bolzano.

Análise Teórica

Conceitos e Teoremas

- Teorema de Bolzano Tabelamento
 - Suponha a equação: $f(x) = x^3 9x + 3$
 - As raízes podem ser isoladas por meio de um simples tabelamento
 - Substituição de valores na equação, em busca de mudança de sinal em um determinado intervalo.
 - Nos intervalos [-5,-3], [0, 1] e [2, 3] há mudança de sinal, indicando que existência raízes no intervalo.

	Χ	$-\infty$	-100	-10	-5	-3	-1	0	1	2	3	4	5
Ì	f(x)	_	_	_	_	+	+	+	_	_	+	+	+

Fonte: [da Silva, 2020]

Prof. Felipe Reis

Análise Gráfica

Conceitos e Teoremas

- Suponha a equação: $f(x) = x^3 9x + 3$
- Podemos ver o comportamento da equação no gráfico abaixo
 - Devemos localizar todos os pontos que cortam a curva \vec{ox} .

Fonte: Próprio autor

Prof. Felipe Reis Matemática Computacional

Método Newton

Análise Gráfica

Conceitos e Teoremas

- Suponha a equação: $f(x) = x^3 9x + 3$
- Uma segunda opção é obter a equivalência g(x) = h(x), a partir de f(x) = 0.
 - Assim, temos que $g(x) = x^3$ e h(x) = 9x 3;
 - Em seguida, plotamos as duas curvas para obter as interseções.

Fonte: Próprio autor

Prof. Felipe Reis Matemática Computacional 05/2021 32 / 65

Fase 2: Refinamento de Raízes

Refinamento de Raízes

- A Fase 1, determina um ou mais intervalos [a, b], em que existe um valor ξ_n , correspondente as n raízes da equação;
- A Fase 2, irá determinar os valores de ξ_n , nos intervalos retornados pela Fase 1.
 - Para solução, são utilizados métodos iterativos.

Refinamento de Raízes

- Para determinar as raízes da equação, devemos fazer o refinamento
 - Parte-se de um valor inicial $x_0 \in [a, b]$;
 - Gera-se uma sequência $\{x_0, x_1, x_2, ..., x_k, ...\}$;
 - A sequência deve convergir para a raiz exata ξ de f(x) = 0.

Método Newton

36 / 65

Refinamento de Raízes

Conceitos e Teoremas

MÉTODO DA BISSEÇÃO

Prof. Felipe Reis Matemática Computacional 05/2021 37 / 65

Método Newton

Método da Bisseção

Conceitos e Teoremas

• Seja y = f(x) uma função contínua em um intervalo [a, b]que contém uma, e só uma, raiz da equação f(x) = 0.

Fonte: [Justo et al., 2020]

Prof. Felipe Reis Matemática Computacional 05/2021 38 / 65

Método da Bisseção

Conceitos e Teoremas

• O método consiste em dividir o intervalo [a, b], de forma iterativa, ao meio.

Prof. Felipe Reis Matemática Computacional

Método da Bisseção

Conceitos e Teoremas

• O Teorema de Bolzano é utilizado para verificar se a raiz está na primeira ou na segunda metade do intervalo inicial [Ferreira, 2013].

Fonte: [Justo et al., 2020]

Prof. Felipe Reis Matemática Computacional 05/2021 40 / 65

Método da Bisseção

Conceitos e Teoremas

• O processo é repetido para aquela metade que contém a raiz (o intervalo possui valores numéricos com sinais opostos).

Prof. Felipe Reis Matemática Computacional Conceitos e Teoremas

• A função de iteração do método de bisseção é dada por:

$$x_k = \frac{a+b}{2}$$
 , onde $k = 1, 2, 3...$

• Na função, os pontos *a* e *b* são atualizados constamente, subdividindo os intervalos [Ferreira, 2013].

Critério de Parada

Conceitos e Teoremas

• A função executará até que uma precisão requerida ϵ seja atingida, cujo valor é dado por [Ruggiero and Lopes, 2000]:

$$(b-a)<\epsilon$$

 O critério de parada também pode ser definido como um valor de tolerância [Justo et al., 2020]:

$$\frac{|b^n - a^n|}{2} < TOL$$

 Outro critério de parada seria a definição de um número máximo de iterações [Ferreira, 2013].

Conceitos e Teoremas

• Seja f uma função real no intervalo [a, b]. Se y = f(x) é uma função contínua tal que $f(a) \times f(b) < 0$ e c é o único zero de f(x) no intervalo (a,b), então a sequência $\{x^n\}_{n\geq 0}$ do método da bisseção satisfaz:

$$\left| |x^n - c| < \frac{b - a}{2^{n+1}} \right|, \forall n \ge 0 \right|^5$$

⁵Em particular, $x^n \to c$ quando $n \to \infty$ [Justo et al., 2020]

Estimativa de Iterações

Conceitos e Teoremas

- O método de bisseção pode ter seu número de iteração estimados a priori;
- Para isso, consideremos uma raiz ξ e uma precisão ϵ no intervalo [a, b];
- Em cada iteração, é possível obter a raiz ξ ou uma sequência infinita intervalos

$$\{[a_1,b_1],[a_2,b_2],...,[a_n,b_n]\}$$
 , onde $f(a)\times f(b)<0$

• Na *k*-ésima iteração, temos:

$$b_k - a_k = \frac{b - a}{2^k}$$

Prof. Felipe Reis

Conceitos e Teoremas

46 / 65

• Quantas *k* iterações são necessárias até atingir o critério da parada?

$$\boxed{ (b_k - a_k) \le \epsilon } \qquad \Longrightarrow \qquad \boxed{ \frac{(b-a)}{2^k} \le \epsilon } \qquad \Longrightarrow \qquad \boxed{ 2^k \ge \frac{(b-a)}{\epsilon} }$$

$$\implies \qquad \log_2 2^k \ge \log_2 \frac{(b-a)}{\epsilon} \qquad \implies \qquad k \log_2 2 \ge \log_2 \frac{(b-a)}{\epsilon}$$

$$\implies k \ge \log_2 \frac{(b-a)}{\epsilon}$$

Mais informações sobre logaritmos: https://www.todamateria.com.br/propriedades-dos-logaritmos/

Prof. Felipe Reis Matemática Computacional 05/2021

Considerações

Comentários Finais

- O método de bisseção tem convergência lenta, portanto é pouco eficiente;
- O método nem sempre decresce monotonicamente;
- O número de iterações tende a ser maior quanto menor for o valor de ϵ :
- O método da bisseção pode ser usado junto a outros métodos de convergência mais rápida.

MÉTODO DE NEWTON-RAPHSON

Conceitos e Teoremas

Prof. Felipe Reis Matemática Computacional 05/2021 48 / 65

Considerações

Método de Newton-Raphson

• Seja f uma função real contínua no intervalo [a,b], que contém uma, e só uma, raiz da equação f(x) = 0 e suas derivadas f'(x) e f''(x) não se anulam e preservam o sinal [Ferreira, 2013].

- Protocolo (Análise da Tangente):
 - Atribuir estimativa inicial $x_0 \in [a, b]$ para f(x) = 0 (raiz);
 - Gerar uma sequência de estimativas, $\{x_{k+1}\}$, onde cada ponto é a interseção da reta tangente a y = f(x), em $[x_k, f(x_k)]$, com o eixo das abscissas.

Prof. Felipe Reis Matemática Computacional 05/2021 50 / 65

• Método de Newton-Raphson:

Conceitos e Teoremas

$$tan(\alpha) = \frac{f(x_0)}{x_0 - x_1} = f'(x_0)$$
 \implies $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

Prof. Felipe Reis Matemática Computacional 05/2021 51 / 65

52 / 65

• Método de Newton-Raphson:

Conceitos e Teoremas

$$tan(\beta) = \frac{f(x_1)}{x_1 - x_2} = f'(x_1)$$
 \implies $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$

Prof. Felipe Reis Matemática Computacional 05/2021

• Método de Newton-Raphson:

Conceitos e Teoremas

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Fonte: [Ferreira, 2013]

Prof. Felipe Reis Matemática Computacional 05/2021 53/65

- Método de Newton-Raphson (pelo Teorema Ponto Fixo)
 [Justo et al., 2020] [Ruggiero and Lopes, 2000]:
 - Consideremos x^* ponto fixo da função g(x), onde $\alpha(x) \neq 0$ e $\alpha(x)$ é uma função arbitrária

$$g(x) = x + \alpha(x)f(x)$$

 A taxa de convergência é dada em função do valor absoluto da derivada de g(x), resultando em

$$g'(x) = 1 + \alpha(x)f'(x) + \alpha'(x)f(x)$$

Método de Newton-Raphson (Análise TPF)

- Método de Newton-Raphson (pelo Teorema Ponto Fixo):
 - No ponto $x = x^*$, temos

$$g'(x^*) = 1 + \alpha(x^*)f'(x^*) + \alpha'(x^*)f(x^*)$$

• Como $f(x^*) = 0$, temos

$$g'(x^*) = 1 + \alpha(x^*)f'(x^*)$$

Método de Newton-Raphson (Análise TPF)

- Método de Newton-Raphson (pelo Teorema Ponto Fixo):
 - Como a convergência é mais rápida quanto menor for |g'(x)|, escolhemos $g'(x^*) = 0$, resultando em

$$\alpha(x^*) = -\frac{1}{f'(x)}$$

• Considerando uma função de iteração

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

Método Newton

00000000000

Método de Newton-Raphson (Análise TPF)

- Método de Newton-Raphson (pelo Teorema Ponto Fixo):
 - Escolhendo um valor x_0 na sequência $\{x_k\}$ temos a fórmula de Newton definida, para k=1,2,3,... como:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Convergência do Método de Newton-Raphson

- O Método de Newton somente converge se x_0 escolhido for "suficientemente próximo" da raiz [Ferreira, 2013]
 - Logo, os pontos iniciais devem ser escolhidos cuidadosamente na Fase 1 do Protocolo.

Exemplo:
$$f(x) = 0.05x^3 - 0.4x^2 + 3\sin(x)x$$
, com raíz $\xi \in [-10, -2]$

$$x_0 = -10 \Rightarrow \bar{x} \approx 0 \notin \begin{bmatrix} -10, -2 \end{bmatrix}$$
 $x_0 = -2 \Rightarrow \bar{x} \approx -2.65 \in \begin{bmatrix} -10, -2 \end{bmatrix}$

Fonte: [da Silva, 2020]

Prof. Felipe Reis Matemática Computacional 05/2021 59/65

Método da Secante

Conceitos e Teoremas

Considerações

- O Método de Newton-Raphson tem como desvantagem a necessidade de se obter f'(x) e calcular seu valor a cada iteração [Ruggiero and Lopes, 2000]
- O Método da Secante busca substituir, de forma aproximada, a derivada pelo quociente das diferenças:

$$f'(x_k) \cong \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Conceitos e Teoremas

INSTITUTO FEDERAL Minas Gerals

 A função de iteração do Método da Secante⁶, após substituição, é dada por:

$$x_{k+1} = \frac{(f(x_k) \cdot x_{k-1}) - (f(x_{k-1}) \cdot x_k)}{f(x_k) - f(x_{k-1})}$$

⁶Na função de iteração são necessárias duas aproximações iniciais.

Considerações sobre os Métodos

Conceitos e Teoremas

Considerações sobre os Métodos

Considerações

- Segundo [Ruggiero and Lopes, 2000], podemos considerar:
 - O Método da Bisseção tem sua convergência garantida desde que $f(a) \times f(b) < 0$:
 - Os métodos de Newton-Raphson e da Secante são mais restritivos quanto a convergência
 - No entanto, são consideravelmente mais rápidos;
 - Considerando que condições de convergência estejam seguras, o método de Newton-Raphson é o mais recomendado:
 - Se o objetivo for reduzir o intervalo que contém a raiz, não são recomendados os métodos de Newton e da Secante.

Prof. Felipe Reis Matemática Computacional

Considerações sobre os Métodos

• Resumo dos métodos [Justo et al., 2020]⁷

Método	Convergência	Erro	Critério de parada
Bisseção	Linear	$\epsilon_{n+1} = \frac{1}{2}\epsilon$	$\frac{b_n - a_n}{2} < \text{erro}$
	(p=1)		
Newton	Quadrática $(p=2)$	$\epsilon_{n+1} pprox rac{1}{2} \left rac{f''(x^*)}{f'(x^*)} \right \epsilon_n^2$	$ \Delta_n < { m erro}$
Secante	$p = \frac{\sqrt{5} + 1}{2}$ $\approx 1,618$	$\varepsilon_{n+1} \approx \left \frac{f''(x^*)}{f'(x^*)} \right \varepsilon_n \varepsilon_{n-1}$ $\approx M \varepsilon_n^{\phi}$	$ \Delta_n < ext{erro}$

Fonte: Adaptado de [Justo et al., 2020]

Prof. Felipe Reis

⁷O erro corresponde ao erro absoluto esperado [Justo et al., 2020]

Referências I

Considerações

Conceitos e Teoremas

Andretta, M. (2012).

Determinaçãao de raízes de funções: Método do ponto fixo.

da Silva, D. M. (2020).

Cálculo Numérico - Slides de Aula.

IFMG - Instituto Federal de Minas Gerais, Campus Formiga.

Ferreira, J. Á. T. (2013).

Cálculo numérico - notas de aulas.

http://www.decom.ufop.br/bcc760/material_de_apoio/notas_de_aulas/notas_raizes.pdf.

Justo, D., Sauter, E., Azevedo, F., Guidi, L., and Konzen, P. H. (2020).

Cálculo Numérico, Um Livro Colaborativo - Versão Python.

UFRGS - Universidade Federal do Rio Grande do Sul.

https://www.ufrgs.br/reamat/CalculoNumerico/livro-py/livro-py.pdf.

MATEMATICA.PT (2020).

Como é que utilizo o Teorema de Bolzano? [Online]; acessado em 18 de Agosto de 2020.

Ruggiero, M. A. G. and Lopes, V. L. d. R. (2000).

Cálculo Numérico - Aspectos Teóricos e Computacionais. Editora Makron, 2 edition.