ADDENDUM TO "SUPERCONNECTIONS AND PARALLEL TRANSPORT"

FLORIN DUMITRESCU

ABSTRACT. In this addendum to our article "Superconnections and Parallel Transport" we give an alternate construction to the parallel transport of a superconnection contained in Corollary 4.4 of [2], which has the advantage that is independent on the various ways a superconnection splits as a connection plus a bundle endomorphism valued form.

Consider as in Section 4 of [2] a superconnection \mathbb{A} in the sense of Quillen (see [3] and [1]) on a $\mathbb{Z}/2$ -graded vector bundle E over a manifold M, i.e. an odd first-order differential operator

$$A: \Omega^*(M, E) \to \Omega^*(M, E)$$

satisfying Leibniz rule

$$\mathbb{A}(\omega \otimes s) = d\omega \otimes s \pm \omega \otimes \mathbb{A}(s),$$

with $\omega \in \Omega^*(M)$ differential form on M and $s \in \Gamma(M; E)$ arbitrary section of the bundle E over M. For such a superconnection we defined in [2] a notion of parallel transport along (families of) superpaths $c: S \times \mathbf{R}^{1|1} \to M$ that is compatible under glueing of superpaths. Let us briefly recall this construction. First, let us write $\mathbb{A} = \mathbb{A}_1 + A$, with $\mathbb{A}_1 = \nabla$ the connection part of the superconnection \mathbb{A} and $A \in \Omega^*(M, End \ E)^{odd}$ the linear part of the superconnection. For an arbitrary superpath c in M consider the diagram

with \tilde{c} a canonical lift of the path c to ΠTM , the "odd tangent bundle" of M. Then parallel transport along c is defined by parallel sections $\psi \in \Gamma(c^*E)$

Date: January 4, 2011.

along c which are solutions to the following differential equation

$$(c^*\nabla)_D\psi - (\tilde{c}^*A)\psi = 0.$$

Here $D = \partial_{\theta} + \theta \partial_{t}$ denotes the standard (right invariant) vector field on $\mathbf{R}^{1|1}$, see Section 2.4 of [2].

Our alternate construction goes as follows. We first write $\mathbb{A} = \mathbb{A}_0 + \mathbb{A}$, where \mathbb{A}_0 denotes the zero part of the superconnection and $\bar{\mathbb{A}}$ the remaining part. Define then a connection ∇ on the bundle π^*E over ΠTM as follows

$$\bar{\nabla}_{\mathcal{L}_X}(\omega \otimes s) = \mathcal{L}_X \omega \otimes s \pm \iota_X \bar{\mathbb{A}} s,$$

$$\bar{\nabla}_{\iota_X}(\omega \otimes s) = \iota_X \omega \otimes s,$$

for $\omega \in \Omega^*(M)$ and $s \in \Gamma(M; E)$. Here, for a vector field X on M, \mathcal{L}_X and ι_X denote the Lie derivative respectively contraction in the X-direction acting as even respectively odd derivations on $\Omega^*(M) = \mathcal{C}^{\infty}(\Pi TM)$, i.e. as vector fields on ΠTM . These relations are enough to define a connection $\bar{\nabla}$ on the bundle π^*E over ΠTM since the algebra of vector fields on ΠTM is generated over $\mathcal{C}^{\infty}(\Pi TM)$ by vector fields of the type \mathcal{L}_X and ι_X , for X arbitrary vector field on M, i.e.

$$Vect(\Pi TM) = \mathcal{C}^{\infty}(\Pi TM) < \mathcal{L}_X, \iota_X \mid X \in Vect(M) > .$$

Parallel transport along a superpath $c: S \times \mathbf{R}^{1|1} \to M$ is defined by parallel sections $\psi \in \Gamma(c^*E)$ along c which are solutions to the following differential equation

$$(\tilde{c}^*\bar{\nabla})_D\psi - (c^*\mathbb{A}_0)\psi = 0.$$

As before, the parallel transport is well-defined (cf. Proposition 4.2 of [2]) by this "half-order" differential equation and is compatible under glueing of superpaths (i.e. it satisfies properties (i) and (ii) of Theorem 4.3 in [2]). The advantage of this construction resides in the fact that the parallel transport so defined is invariant under the various ways in which a superconnection can be written as a sum of a connection plus a linear part, as $\bar{\mathbb{A}}$ is invariant under such splittings.

Denote by D the de Rham differential on ΠTM . If ω is a function on ΠTM , then the 1-form $D\omega$ on ΠTM evaluated on the standard odd vector field d on ΠTM gives us

$$(D\omega)(d) = d\omega,$$

the differential of ω , understood as a function on ΠTM . This allows us to conclude that for any s a section of E,

$$\bar{\nabla}_d s = \bar{\mathbb{A}} s.$$

Let us note that the connection $\bar{\nabla}$ is torsion free in the odd directions, i.e.

$$[\bar{\nabla}_{\iota_X}, \bar{\nabla}_{\iota_Y}] = \bar{\nabla}_{[\iota_X, \iota_Y]} \ (=0),$$

where X and Y are vector fields on M.

The two constructions coincide when we consider connections instead of superconnections on the bundle E over M. When the manifold M reduces to a point, a graded vector bundle with superconnection reduces to a $\mathbb{Z}/2$ -vector space V together with an odd endomorphism $A (= \mathbb{A}_0)$ of V. The two constructions of parallel transport we considered also coincide in this situation giving rise to the supergroup homomorphism of Example 3.2.9 in [4]

$$\mathbf{R}^{1|1} \ni (t,\theta) \longmapsto e^{-tA^2 + \theta A} \in GL(V),$$

as solution to the "half-order" differential equation $D\psi = A\psi$.

We can also recover the superconnection from its associated parallel transport by first recovering the \mathbb{A}_0 from looking at constant superpaths in M, and then recover $\bar{\mathbb{A}}$ by looking at parallel transport along the superpath given by $\mathbf{R}^{1|1} \times \Pi TM \to \mathbf{R}^{0|1} \times \Pi TM \to M$, where the two maps are the obvious projection maps. The lift of such a superpath to ΠTM gives, after the obvious projection map, the flow of the vector field d on ΠTM . Given that $\bar{\nabla}_d s = \bar{\mathbb{A}} s$, this recovers $\bar{\mathbb{A}}$. Compare with Section 4.4 of [2].

Acknowledgements. The construction presented here is a mere continuation of an idea of Stephan Stolz who first thought to interpret a Quillen superconnection on a bundle E over M as a connection on the pullback bundle π^*E over ΠTM . I would like to thank Peter Teichner for suggesting to write up this Addendum.

REFERENCES

- [1] Nicole Berline, Ezra Getzler, and Michèle Vergne. Heat kernels and Dirac operators. Grundlehren Text Editions. Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original.
- [2] Florin Dumitrescu. Superconnections and parallel transport. *Pacific J. Math.*, 236(2):307–332, 2008.
- [3] Daniel Quillen. Superconnections and the Chern character. Topology, 24(1):89-95, 1985.
- [4] Stephan Stolz and Peter Teichner. What is an elliptic object? In *Topology, geometry* and quantum field theory, volume 308 of *London Math. Soc. Lecture Note Ser.*, pages 247–343. Cambridge Univ. Press, Cambridge, 2004.

Institute of Mathematics of the Romanian Academy "Simion Stoilow" 21 Calea Grivitei

Bucharest, Romania.

Email: florinndo@gmail.com