Atomic collisions with Time-Dependent Density Functional Theory

TDDFT without lasers

Guillermo Avendaño-Franco

guillermo.avendano@uclouvain.be

Bernard Piraux

Myrta Grüning

Xavier Gonze

Université Catholique de Louvain (UCL) Belgium

October 22, 2012

Time-of-Flight Secondary Ion Mass Spectrometry

SIMS

- Gun 1
- @ Gun 2
- Target sample
- Sputtered atoms
- Magnetic lenses
- Collimator
 - Electron multiplier
- CCD screen

Positive SIMS

Partial positive secondary ion mass spectra (180 < m/z < 300) of Au-metallized PP samples upon (a) 15 keV Ga+ (b) 15 keV C60+ bombardment.

CMD

Classical Molecular dynamics simulation of a C60 molecule impacting on a Au-metallized PP samples.

Outline

- Proton impacting Helium
- 2 Gold-Butane collision
- Velocity phase correction
- 4 Conclusions and acknowledgements

Proton impacting Helium

Why proton and Helium?

- It is simple, only 2 electrons involved
- Experimental data
- Higher levels of Theory
- Spin saturated system

- TDDFT: Octopus
- Initial kinetic energy
- Parallelepiped (17Å,10Å,10Å)
- Impact parameter

- TDDFT: Octopus
 - Real-space grid discretization
 - Ehrenfest dynamics for the nuclei (Phys. Rev. Lett. 101, 096403 (2008))
 - Real-time TDDFT propagation
 (J. Chem. Phys. 121, 3425 (2004))
 - Norm-conserving pseudo-potentials
- Initial kinetic energy
- Parallelepiped (17Å,10Å,10Å)
- Impact parameter

- TDDFT: Octopus
- Initial kinetic energy

From 10 keV to 500 keV

- Parallelepiped (17Å,10Å,10Å)
- Impact parameter

- TDDFT: Octopus
- Initial kinetic energy
- Parallelepiped (17Å,10Å,10Å)

Impact parameter

- TDDFT: Octopus
- Initial kinetic energy
- 3 Parallelepiped (17Å,10Å,10Å)
- Impact parameter

The impact parameter b is defined as the perpendicular distance between the path of a projectile and the center of the field U(r) created by an object that the projectile is approaching *Wikipedia*

Charge transfer

Impact parameter is 0.74 Å, Initial kinetic energy of the proton is 26.8 keV.

Charge transfer

Impact parameter is 0.74 Å, Initial kinetic energy of the proton is 26.8 keV.

Hirshfeld analysis

Hirshfeld FL

Bonded-atom fragments for describing molecular charge densities Theo Chim Acta 44:129 (1977)

Doi:10.1007/BF00549096

- Radial description of the density
- All the charge is associated to the atoms

Hirshfeld analysis

Hirshfeld FL

Bonded-atom fragments for describing molecular charge densities Theo Chim Acta 44:129 (1977)

Doi:10.1007/BF00549096

Charge transfer

Capture cross section

Satisfactory agreement with experimental data.

- Challenging (113 electrons instead of 2)
- Beyond the reach of WFT methods
- Motivated by Secondary Ion Mass Spectrometry

Challenging (113 electrons instead of 2)

Using norm-conserving pseudo-potentials the number of electrons treated explicitly can be reduce to 37

The dimension of the parameter space is 5

- Beyond the reach of WFT methods
- Motivated by Secondary Ion Mass Spectrometry

- Challenging (113 electrons instead of 2)
- Beyond the reach of WFT methods

Atomic physics WFT methods are cumbersome for 37 electrons.

Motivated by Secondary Ion Mass Spectrometry

- Challenging (113 electrons instead of 2)
- Beyond the reach of WFT methods
- Motivated by Secondary Ion Mass Spectrometry

The fragmentation should be similar to those occurring in organic polymers due to secondary collision of the atoms from a gold deposit seuface as in metal-assisted SIMS

Gold-Butane collision (Ionization and fragmentation)

Gold 23.9 keV directed to a C-C bond

Gold-Butane collision (Ionization and fragmentation)

Hirshfeld charges during the simulation

Velocity phase correction

What happens when you compute the GS of an light atom (H) and after you propagate with a kinetic energy of 10 keV?

Electronic Ground State of a moving particle

The electronic ground-state of a inertial frame of reference (under Galilean Transformations) can be found from the electronic ground-state of the same particle at rest.

$$\psi_{\vec{v}}(\vec{r},t=0) = \varphi_{\vec{v}=0}(\vec{r})e^{i\vec{v}\cdot\vec{r}}$$

Kinetic energy: 10 keV

100X smaller

Than without the correction

Kinetic energy: 1 keV

100X smaller

Than without the correction

Charge loss after displacement (8 Bohr)

When several particles are moving

We introduce a sigmoid function to weight the phase

$$S(r) = -\frac{1}{1 + e^{-\alpha(r-r_c)}}$$

When several particles are moving

We introduce a sigmoid function to weight the phase

$$S(r) = -\frac{1}{1 + e^{-\alpha(r-r_c)}}$$

- The moving particle must be suficiently differentiated
- The parameters α and r_c must be tune to avoid an important overlapping between regions

Conclusions

- Capture cross sections can be computed within the TDDFT approach with reasonable agreedment with experimental results.
- Computation within TD-DFT of Ionization and fragmentation of molecules are computationally challenging but feasible.
- A velocity phase correction should be introduced for light projectiles with large kinetic energies (keV) when those projectiles carry some charge described explicitly.

Perspectives

- Going to bigger but symmetrical molecules
- Explore the reliability of transfer of charge and fragmentation under a broader range of kinetic energies

Acknowledgements

- Octopus developers for create a nicely coded piece of software.
- A. Delcorte and O. Restrepo related with secondary ion mass spectrometry.
- 3 Y. Popov concerning the proton-Helium collision.
- Communauté française de Belgique, through the Action de Recherche Concertée 07/12-003 "Nanosystèmes hybrides metal-organiques", and by the FRS-FNRS Belgium (FRFC Grant 2.4.589.09.F).

Thank you for your attention.