Algorithm 1 randPatchEmbedding(\mathcal{D} , s, d)

1: **Input:** a set of instances $\mathcal{D} = \{\mathbf{x}^i\}_{i=1}^m$ over r.v.s $\mathbf{X} = \{X_1, \dots, X_n\}$, s as the number of patches to extract, d as the patch length,

2: **Output:** a set of embeddings $\mathcal{E} = \{\mathbf{e}^i\}_{i=1}^m, \mathbf{e}^i \in \mathbb{R}^k$ 3: $\mathcal{R} \leftarrow \{\}$

4: **for** i = 1, ..., s **do**

5: $\mathbf{x}^{\text{rand}} \leftarrow \text{selectRandomSample}(\mathcal{D})$ 6: $\mathbf{r}^{i} \leftarrow \text{extractRandomPatch}(\mathbf{x}^{\text{rand}}, d)$

7: $\mathcal{R} \leftarrow \mathcal{R} \cup \{\mathbf{r}^i\}$

8: $\theta \leftarrow \text{learnDensityEstimator}(\mathcal{R})$ 9: $\mathcal{E} \leftarrow \{\}$

10: **for** i = 1, ..., m **do**

12: **for each** patch $\mathbf{q}^i, |\mathbf{q}^i| = d$ in \mathbf{x}^i **do** 13: $e_i^i = p_\theta(\mathbf{q}^i)$

13. $\theta_j = p_{\theta}(\mathbf{q})$ 14: $j \leftarrow j + 1$

11: $i \leftarrow 0$

15: $\mathcal{E} \leftarrow \mathcal{E} \cup \{\mathbf{e}^i\}$