Discretization of an RC circuit state space*

Julio Gonzalez-Saenz¹

University of Portsmouth, Portsmouth, UK julio.gonzalez-saenz@myport.ac.uk http://www.myport.ac.uk

Abstract. The discretization of a RC circuit is presented. The literature does not address clear that problem. Therefore a proper article is required.

Keywords: RC circuit · discretization · Kalman Filtering.

1 Problem Description

1.1 A Subsection Sample

To be efficiently computable by the BMS, we will consider a discrete-time version of the cell dynamics. Each measurement interval, indexed by integer valued time index k (e.g., perhaps once per second) the model updates its state and output values based on its input. A very general framework that we may use is a state-space model of discrete-time lumped linear dynamic systems.

A simple example of linear Kalman filtering, We consider the system defined by the linear circuit in Fig. 1.1. We find the continuous-time state-space model of the model is :

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{x}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$
(1)

Using Kirchoff's law to determine the dynamic of the circuit, we have (See reference [3]):

$$\dot{\mathbf{v}}_c = -\frac{1}{R_2 C} v_c(t) - \frac{1}{C} i(t)$$

$$\mathbf{v}_t(t) = v_c(t) - R_1 i(t) + \nu(t)$$
(2)

where $v_c(t)$ is the capacitor voltage as a function of time, i(t) the current exciting the circuit, and $v_t(t)$ the terminal voltage, as indicated in the figure 1.1. This circuit is a crude linear model of a battery cell if both C and R_2 are large and

Fig. 1. Simple linear circuit.

 R_1 is small. R_2 is the resistor governing self-discharge and R_1 is the internal resistance of the cell.

Kalman filtering requires to discretize the continuous time system. There are good references in the literature from where the discretization of a time continues linear system can be follow. In this work, reference [1] will be followed. Needless to say, reference [2] is faster but less clear.

Following the steps in reference [1] , equation 1 will be solved using traditional solution of a linear equation, but observing that the variables are not real values but matrices.

$$\frac{d}{dt}\mathbf{e}^{\mathbf{A}t} = \mathbf{A}\mathbf{e}^{\mathbf{A}t} = \mathbf{e}^{\mathbf{A}t}\mathbf{A} \tag{3}$$

Multiplying both sides of equation (1) with $e^{-\mathbf{A}t}$

$$e^{-\mathbf{A}t}\dot{\mathbf{x}}(t) - e^{-\mathbf{A}t}\mathbf{A}\mathbf{x}(t) = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$$
 (4)

which implies,

$$\frac{d}{dt}(e^{-\mathbf{A}t}\mathbf{x}(t)) = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$$
 (5)

Its integration from 0 to t yields,

$$e^{-\mathbf{A}t}\mathbf{x}(t)|_{0}^{t} = \int_{0}^{t} e^{-\mathbf{A}\tau} \mathbf{B}\mathbf{u}(\tau) d\tau$$
 (6)

Thus, we have

$$e^{-\mathbf{A}t}\mathbf{x}(t) - e^{0}\mathbf{x}(0) = \int_{0}^{t} e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$$
 (7)

But the inverse of $e^{-\mathbf{A}t}$ is $e^{\mathbf{A}t}$ and e^0 is \mathbf{I} , then we have the final solution

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$
 (8)

^{*} Supported by Trilliant Inc.

A useful equation to prove that the (8) is indeed the solution is:

$$\frac{\partial}{\partial t} \int_{t_0}^{t} f(t,\tau) d\tau = \int_{t_0}^{t} \left(\frac{\partial}{\partial t} f(t,\tau) \right) d\tau + f(t,\tau)|_{t=\tau}$$
 (9)

Theorem 1. Consider the system of equations given by (1), where A, B, C, D are $n \times n, n \times p, q \times n$ and $q \times p$ respectively constant matrices. The solution of this system is given by the application of equation (8).

Proof. See from equation (3) to equation (8).

We need to transform the system of equations (2) into a state-form. This yield the following:

$$A = -\frac{1}{R_2 C}$$

$$B = -\frac{1}{C}$$
(10)

If we apply Theorem 1 to the system of equations presented in (2)

$$\mathbf{v}(t) = e^{\left(-\frac{1}{R_2C}t\right)}v(0) + \int_0^t e^{-\left(\frac{1}{R_2C}\tau\right)} \frac{-R_2}{R_2C}i(\tau)d\tau$$

$$= e^{\left(-\frac{1}{R_2C}t\right)}v(0) - R_2i \int_0^t e^{-\left(\frac{1}{R_2C}(t-\tau)\right)} \frac{1}{R_2C}(\tau)d\tau$$

$$= e^{\left(-\frac{1}{R_2C}t\right)}v(0) - R_2i e^{-\left(\frac{1}{R_2C}(t-\tau)\right)}|_0^t$$

$$= e^{-t/R_2C}v(0) - R_2i(1 - e^{-t/R_2C})$$
(11)

If now, use equation (11) and discrete it, we have:

$$v_{c,k} = e^{-T_s/R_2C}v_{c,k} - R_2i_k(1 - e^{-T_s/R_2C}) + \omega_k$$

$$v_{t,k} = v_{c,k} - R_1i_k + \nu_k$$
(12)

References

- 1. Chen, T.S.: Linear System Theory and Design. 3rd edn. Oxford Press, Oxford (1999)
- 2. Zarchan, P., Musoff, H.: Fundamentals of Kalman Filtering: A Practical Approach. 4th edn. Oxford Press, Progress in Astronautics and Aeronautics, USA (2013)
- 3. Plett, G.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background. Journal of Power Sources 134(5), 252–261 (2004)