Graduate Algebra, Midterm Exam Practice Sheet

- 1. Give an example of a ring R and an ideal $I \triangleleft R$ such that I is prime, but not maximal, and not principal.
- 2. Give an example of a group G with and a normal subgroup N, such that G cannot be written as a semidirect product of H and N for any subgroup H < G.
- 3. Let F be a field, and consider the rings F[x] of polynomials and F[[x]] of power series. Let $S \subset F[x]$ be the multiplicative set consisting of those polynomials with a nonzero constant term.
 - (a) Show that the inclusion $F[x] \to F[[x]]$ extends to a homomorphism $F[x][S^{-1}] \to F[[x]]$.
 - (b) Show that F[[x]] is a PID.

Hint: Show that if $f(x) = a_d x^d + a_{d+1} x^{d+1} + \cdots$ with $a_d \neq 0$, and if $g(x) = b_e x^e + b_{e+1} x^{e+1} + \cdots$ with $b_e \neq 0$ and $d \leq e$, then f(x)|g(x).

- 4. Let G be a group of order 30, and suppose G has exactly 15 Sylow subgroups of order 2. Show that G must be isomorphic to a dihedral group $\langle \sigma, \tau \mid \sigma^{15} = 1, \tau^2 = 1, \tau \sigma \tau = \sigma^{-1} \rangle$.
- 5. Let $X \subset \mathbb{R}$ be a collection of disjoint closed intervals, and let R be the ring of continuous functions from X to \mathbb{R} . Recall that an element $e \in R$ is called idempotent if $e^2 = e$. Show that the only idempotents in R are 0 and 1 if and only if X is connected.
- 6. Let R be a commutative ring. Recall that an element $x \in R$ is nilpotent if $x^n = 0$ for some n > 0. Show that the set of nilpotent element of R form an ideal of R.
- 7. Show that if G is a group with G/Z(G) cyclic, then G is Abelian.
- 8. Show that every group of order 45 is Abelian.
- 9. Show that in any group, G and prime number p dividing the order of G, if P is a Sylow-p subgroup, then the normalizer $N_G(P)$ of P in G cannot be a normal subgroup unless $N_G(P) = G$.