Curves

No Cover Image

Use $\coveringe{filename}$ to add an image

Contents

1	The	e First Properties of Curves	1
	1.1	Riemann-Roch Theorem for Curves	-
	1.2	Classification of Curves	
	1.3	Hurwitz's Formula]
	1.4	Positivity on Curves	2
2	Elliptic Curve		6
	2.1	Elliptic curves are cubic curves	6
		Group structure on elliptic curves	
		As Riemannian surfaces	
2	Cur	eves of Higher Genus	2
J			
	3.1	Hyperelliptic Curves	

1 The First Properties of Curves

Let k be an algebraically closed field. Unless otherwise specified, everything is defined over k. A *curve* is a one-dimensional variety.

1.1 Riemann-Roch Theorem for Curves

Theorem 1.1 (Riemann-Roch Theorem for Curves). Let C be a smooth proper curve of genus g over k. Then for any divisor D on C, we have

$$h^0(D) - h^1(D) = \deg D + 1 - g.$$

That is, the number $\deg D + \chi(\mathcal{O}_{\mathcal{C}}(D))$ is independent of D.

| Proof. Yang: To be filled.

1.2 Classification of Curves

1.3 Hurwitz's Formula

Theorem 1.2 (Hurwitz's Formula). Yang: To be filled.

Date: October 5, 2025, Author: Tianle Yang, My Homepage

2

1.4 Positivity on Curves

Theorem 1.3. Let C be a smooth proper curve of genus g over k and D a divisor on C.

- (a) If $\deg D \geq 2g$, then D is base point free.
- (b) If $\deg D \ge 2g + 1$, then D is very ample.

Proof. Yang: To be filled.

2 Elliptic Curve

Let k be an algebraically closed field. Unless otherwise specified, everything is defined over k.

- 2.1 Elliptic curves are cubic curves
- 2.2 Group structure on elliptic curves
- 2.3 As Riemannian surfaces
- 3 Curves of Higher Genus
- 3.1 Hyperelliptic Curves