Prof. W. C. Freitas Jr., 2024.2

Instruções (0 points)

1. Calcule a entropia da imagem 4×8 de 256 tons de cinza a seguir. Recalcule a entropia, mas considerando que toda a imagem fosse formada pelo valor de pixel 110.

22	22	22	95	167	234	234	234
22	22	22	95	167	234	234	234
22	22	22	95	167	234	234	234
22	22	22	95	167	234	234	234

Solução:

2. Uma imagem de fac-símile (fax) é formada quando um documento é digitalizado por um dispositivo eletrônico sensível à luz, que gera um sinal elétrico com um pulso forte que corresponde a um ponto escuro na linha de varredura e um pulso fraco para um ponto branco. Em máquinas de fax digital, o sinal elétrico é posteriormente digitalizado em dois níveis e processado, antes da transmissão através de uma linha telefônica. Uma propriedade que claramente se destaca é a natureza em cluster dos pixels em preto (b) e branco (w). Os pixels ocorrem em rajadas. É justamente essa propriedade que é explorada pela maioria das técnicas de compressão. A forma natural de explorar esta propriedade é utilizar run-length coding, técnica utilizada amplamente para codificação de imagem em fac-símiles. A ideia é executar a codificação usando um par run-length, em vez da codificação dos pixels individuais.

Considere então uma imagem escaneada linha por linha. A distribuição de probabilidade p(n) dos runs de cada linha, em que n é o comprimento do run, é dada pela figura abaixo.

- 1. Calcule a entropia H(p) dos runs.
- 2. Qual o comprimento médio dos runs?

Solução:

- **3.** Prove as seguintes propriedades:
 - 1. $\mathcal{H}(X,Y) \leq \mathcal{H}(X) + \mathcal{H}(Y)$
 - 2. $\Im(X;Y) = \Re(X) \Re(X|Y) = \Re(Y) \Re(Y|X)$
 - 3. $\mathcal{H}(\mathcal{S}^n) = n \cdot \mathcal{H}(\mathcal{S})$

Solução:

Nome:

- 4. Dois países, A e B, irão jogar a final de um importante campeonato de futebol e um apostador faz uma aposta X=A ou X=B sobre o resultado final Z=A ou Z=B. A probabilidade, ou prognóstico, de a aposta ser feita no país A é igual a $P(X=A)=P_A=0,6$, e resulta de um certo favoritismo desse país no mercado internacional de apostas. Supõe-se, não se sabe bem como, que a probabilidade de as equipes estarem empatadas ao fim do tempo regulamentar vale $\alpha=0,3$ e não depende dos favoritismos. A constituição física das equipes faz prever que, havendo prorrogação, a probabilidade de a equipe A ganhar a Taça é $\beta=0,4$.
 - 1. Tendo em consideração o prognóstico P_A calcule a entropia da situação do jogo ao fim do tempo regulamentar.
 - 2. Calcule a probabilidade de o país A ganhar a taça.
 - 3. Alguém que não liga nada para futebol e só conhece as probabilidades P_A , α e β (em todas as transmissões de futebol as televisões estão sempre a falar disso nas estatísticas de todos as equipes), não sabe se houve prorrogação ou não, e só no dia seguinte ficou sabendo pelos jornais quem que ganhou a Taça. Em quanto que o jornal reduziu a dúvida que este não-adepto ao futebol tinha sobre a situação do jogo ao fim do tempo regulamentar?
 - 4. Determine a informação mútua média e a equivocação entre a aposta X e o resultado final Z.
 - 5. Calcule o valor do prognóstico $P(X = A) = P_A$ para o qual a incerteza quanto ao vencedor é máxima.

Solução:

5. Na figura abaixo está representado um canal discreto designado por Binary Erasure Channel (BEC).

Determine a informação mútua média do canal quando $p_0=1/4$ e p=0,1. Solução:

6. Uma fonte X produz letras de um alfabeto de três símbolos com as probabilidades $P_X(0) = 1/4$, $P_X(1) = 1/4$ e $P_X(2) = 1/2$. Cada letra x da fonte é transmitida direta e simultaneamente através de dois canais com saídas y e z com as probabilidades de transição indicadas a seguir:

Calcule $\mathcal{H}(X)$, $\mathcal{H}(Y)$, $\mathcal{H}(Z)$, $\mathcal{H}(YZ)$, $\mathcal{I}(X,Y)$ e $\mathcal{I}(X,Z)$. Interprete as expressões da informação mútua. Solução:

ъ. т		
N	ome	٠
LΝ	OHIC	

- 7. Uma série de cinco jogos entre duas equipes termina logo que uma delas ganhe três vezes. Seja X a variável aleatória que representa o resultado dos jogos entre as equipes A e B; exemplos de valores possíveis de X são AAA, BABAB e BBAAA. Seja Y o número de jogos jogados (Y=3, 4 ou 5).
 - 1. Admitindo que as duas equipes tem igual nível competitivo e que os jogos são independentes, calcule $\mathcal{H}(X)$, $\mathcal{H}(Y)$, $\mathcal{H}(Y|X)$ e $\mathcal{H}(X|Y)$.
 - 2. Seja Z a equipe vencedora. Determine $\mathcal{H}(X|Z)$ e compare com $\mathcal{H}(X)$. Determine ainda $\mathcal{H}(Z|X)$. Solução:
- 8. Considere um canal gaussiano em que a saída Y está relacionada com a entrada X através de Y = X + N, onde N representa o ruído gaussiano branco de média nula e desvio padrão 700mV. Determine a entropia condicional $\mathcal{H}(X|N)$, em bits/símbolo, se X for um sinal gaussiano sem componente contínua e de potência média 936,8mW.

Solução:

- 9. Prove as seguintes propriedades:
 - 1. $L \leq \mathcal{H}(\mathcal{S})$, em que L é o comprimento médio da palavra código
 - 2. $\sum_{k=0}^{K-1} 2^{-l_k} \leq 1$ (Desigualdade de Kraft), em que l_k é o comprimento da palavra código k
 - 3. Para fontes estendidas de ordem n, $\lim_{n\to\infty} \frac{L_n}{n} = \mathcal{H}(\mathcal{S})$ Solução:
- 10. Exercícios capítulo 9 livro Haykin:

Da versão em português:

- 9.10 10.7
- 9.11 10.8
- 9.12 10.9
- 9.16 10.12

Solução: