

Research Log - ML SEM-4 PROJECT

Avantika Agarwal

TOPIC: Multimodal ML models integrating Genomic and medical information for ASD detection

DATE: 23/01/24

Model Description and Input

The model used was Logistic Regression and the input was a Breast cancer dataset present as a default dataset in scikit learn (for practice purposes). In this model, the probabilities describing the possible outcomes of a single trial are modeled using a logistic function. In this code, we are carrying out Binary Logistic Regression, meaning, there would be two possible outcomes of the prediction (that is, it predicts the presence or absence of breast cancer - 0/1).

Results

PARAMETER	EXPLANATION	VALUE
Accuracy score (normalized)	The accuracy_score function computes the accuracy→ the fraction (default) in this case	0.951048951048951
Accuracy score (no normalization)	The accuracy_score function computes the accuracy→ the count (normalize=False) of correct predictions.	136
Area under the curve (AUC)	AUC - ROC curve is a performance measurement for the classification problems at various threshold settings. ROC is a probability curve and AUC represents the degree or measure of separability. It tells how much the model is capable of distinguishing between classes. Compute Area Under the Curve (AUC) using the trapezoidal rule.	0.993710691823899 4

	This is a general function, given points on a curve	
Sensitivity	Sensitivity = TP / (TP + FN)	0.9444444444444444444444444444444444444
Specificity	Specificity = TN / (TN + FP)	0.962264150943396
Precision	The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0.	0.977011494252873 6
F1 score	F1 score, also known as balanced F-score or F-measure, can be interpreted as a harmonic mean of precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is: F1 = 2 * TP / (2 * TP + FN + FP)	0.96045197740113
	Where "TP" is the number of true positives, "FN" is the number of false negatives, and "FP" is the number of false positives. F1 is by default calculated as 0.0 when there are no true positives, false negatives, nor false positives.	

Interpretations

Values close to 1 (>0.95) were obtained for all the parameters, indicating that the Logistic Regression Model is a good classification model for the breast cancer dataset

DATE: 23/01/24

Model Description and Input

The models used were:

- 1) Random Forests
- 2) Decision Trees
- 3) Support Vector Machine
- 4) XGBoost

The input was a Breast cancer dataset present as a default dataset in scikit learn (for practice purposes). The same steps as that of logistic regression were implemented in all the above 4 models and the various results obtained were compared.

Results

PARAMETER	RANDOM FOREST	DECISION TREE	SVM	XGBOOST
Accuracy score (normalized)	0.9720279720	0.88111888111	0.9370629370	0.972027972027
	27972	88811	629371	972
Accuracy score (no normalization)	139	126	134	139
Area under the curve (AUC)	0.9969601677	0.89392033542	0.9842767295	0.998742138364
	148846	97695	597485	7799
Sensitivity	0.9666666666 666667	0.8444444444 44444	0.988888888 888889	0.9666666666666666666666666666666666666
Specificity	0.9811320754	0.94339622641	0.8490566037	0.981132075471
	716981	50944	735849	6981

F1 score	0.9775280898	0.89940828402	0.9518716577	0.977528089887
	876404	36687	540107	6404
Precision	0.9886363636	0.96202531645	0.9175257731	0.988636363636
	363636	56962	958762	3636

Interpretation

- It was observed that the runtime of the random forests code was greater compared to the others
- Even xgboost had a slightly greater runtime relative to decision trees and svm
- Decision trees gave a lower accuracy, AUC, Sensitivity and F1 score relative to the other models indicating that this model is not that suitable for predicting breast cancer
- Random Forests and XGBoost models gave exactly same values for all the metric (accuracy, precision, sensitivity etc) when the data was split into train and test sets using random state = 0, changing the value of random state (say 40 for both models) gave different values.

DATE: 24/01/24

Model Description and Input

The input was a Breast cancer dataset present as a default dataset in scikit learn (for practice purposes). The logistic regression code of Experiment 1 was modified to scale data and carry out 10 fold cross validation on the same as part of the pipeline. The pipeline (Pipeline from scikit-learn) includes two steps: standardization (StandardScaler) and logistic regression (LogisticRegression). StandardScaler transform was applied to standardize the input variables. The pipeline was further evaluated using a 10 fold cross validation - RepeatedStratifiedKFold. Each fold was trained on the scaled data

n_splits=10: Specifies the number of folds in the cross-validation. In this case, it's set to 10, meaning the dataset will be split into 10 parts, and the model will be trained and evaluated 10 times, each time using a different fold as the test set and the remaining data as the training set.

n_repeats=3: Specifies the number of times the cross-validation process will be repeated. It repeats the entire cross-validation process three times with different random splits.

random_state=1: Provides a seed for the random number generator. Setting a seed ensures reproducibility, meaning if you run the code with the same seed, you should get the same random splits each time.

Results

```
Accuracy of pipeline: 0.977 (0.018)
Accuracy Score - default: 0.958041958041958
AUC: 0.9914046121593292
Sensitivity: 0.9666666666666667
Specificity: 0.9433962264150944
F1 score: 0.9666666666666667
Precision: 0.9666666666666666667
             precision recall f1-score support
                 0.94
                        0.94
                                  0.94
                 0.97
                                    0.96
   accuracy
                 0.96
                          0.96
                                    0.96
  macro avg
weighted avg
                 0.96
                          0.96
                                    0.96
```

```
Accuracy Score - default: 0.951048951048951
Accuracy Score - no normalization: 136
AUC: 0.9937106918238994
Sensitivity: 0.94444444444444444
Specificity: 0.9622641509433962
F1 score: 0.96045197740113
Precision: 0.9770114942528736
            precision recall f1-score support
              0.91 0.96
                                   0.94
               0.98
                        0.94
                                   0.96
                                   0.95
                         0.95
                                   0.95
  macro avq
                 0.95
                          0.95
                                   0.95
weighted avg
```

LHS -> Metrics obtained after standardization and cross validation

RHS -> Metrics obtained after experiment 1

Interpretation

The pipeline accuracy was close to 1 indicating that the standardization done was proper. Slight increase in accuracy and sensitivity was observed. However, overall the model was not quite affected by the standardization, indicated by the similar values of the metrics pre and post standardization

DATE: 25/01/24

Model Description and Input

Implemented 10 fold cross validation(without using the default function in sci-kit learn) and standardization on all the 5 classifiers and printed metrics for each fold, finally printing the mean and standard deviation of each of the 6 metrics. Input used was the breast cancer dataset present by default in sci-kit learn.

Results

Mean and Standard deviation of Metrics over 10 fold cross validation for the 5 classifiers

LOGISTIC REGRESSION

+	+	
Metric Mean Stand	dard Deviation	
+======+======	=+========	=====+
Accuracy 0.865972	0.274663	
++	+	
AUC 0.902248	0.285399	
++	+	
Sensitivity 0.883766	0.280223	
+	+	
Specificity 0.836678	0.271012	
+	+	
F1 score 0.875243	0.277244	
++	+	
Precision 0.867883	0.276302	

+	+
RANDOM FORESTS	
+	+
Metric Mean Standar	•
Accuracy 0.870785 +	0.276297
AUC	.284401
Sensitivity 0.883622	0.280178
Specificity 0.849075	0.276065
F1 score 0.878971 ++	0.278497
Precision 0.875487 	0.279092
DECISION TREES	·
++	+
Metric Mean Standar	•
+======++====++ Accuracy 0.821172 +++	0.261122
AUC	
Sensitivity 0.832468 +	0.266304
Specificity 0.80244 (0.267702

F1 score 0.838499
Precision 0.847754 0.272047
++ SUPPORT VECTOR MACHINE
++ Metric Mean Standard Deviation
+======+ Accuracy 0.830799 0.264151
++ AUC
++ Sensitivity 0.888817
++ Specificity 0.734357
++ F1 score 0.849673 0.269425
++ Precision 0.815038
++ <u>XGBOOST</u>
++ Metric Mean Standard Deviation
+======++=====++=====+++++++++++++++++
++ AUC
Sensitivity 0.888672

```
+-----+
| Specificity | 0.870523 | 0.277784 |
+-----+
| F1 score | 0.887495 | 0.281156 |
+-----+
| Precision | 0.886626 | 0.28121 |
+-----+
```

Interpretation

Each of the models gave similar results for the metrics, which might have been due to the near ideal nature of the dataset

DATE: 30/01/24

Description and Input

This experiment involved analysis of the different datasets in SPARK (.csv files) in R for detection of the number of individuals affected by ASD and the number of unaffected individuals.

Results

File	Total Individuals	ASD Affected	Non-ASD
core_descriptive_variables-2023-0 7-21.csv	132368	132368	0
basic_medical_screening-2023-07- 21.csv	192557	79631	112926
cbcl_1_5-2023-07-21.csv	2835	2835	0
cbcl_6_18-2023-07-21.csv	10290	10290	0
dcdq-2023-07-21.csv	35097	35097	0
individuals_registration-2023-07-21 .csv	328974	132139	196835

predicted_iq_experimental-2023-0 7-21.csv	132368	132368	0
rbsr-2023-07-21.csv	46517	46517	0
roles_2023-07-17.csv	132368	132368	0
scq-2023-07-21.csv	89678	63491	26187
srs-2_adult_self-2023-07-21.csv	1798	0	1798
vineland-3-2023-07-21.csv background_history_sibling-2023-0	23160	23159	1
7-21.csv	19700	21	19679

Filename: asd_noasd_num_basicmedical.r and asd_noasd_num_multipledatasets.r

Interpretation

Only 3 datasets: individual registration, basic medical screening and scq has relevant number of both ASD affected and unaffected individuals, indicating that these datasets can probably used for future experiments

Recommendations for Improvement

- 1) The above 3 mentioned datasets can be used as primary datasets for building model
- 2) For the subject IDs mentioned in these 3 datasets, relevant information (columns) can be extracted from the other datasets and added to a single data frame
- 3) Datasets can be merged on the basis of unique subject ID

DATE: 01/02/24

Description and Input

This experiment involved analysis of the basic medical screening dataset in SPARK (.csv file) in R for detection of the number of affected and unaffected individuals for the following disorders:

- 1) ASD
- 2) ADHD
- 3) ODD
- 4) OCD
- 5) Schizophrenia

Results

TOTAL NUMBER OF INDIVIDUALS -> 192557, Filename: asd_comorbidities.r

Disease	Non-Affected Individuals	Affected Individuals
ASD	112926	79631
ADHD	148304	44253
ODD	185436	7121
OCD	179556	13001
Schizophrenia	190794	1763

DATE: 02/02/24

Description and Input

This experiment involved analysis of the basic medical screening dataset in SPARK (.csv file) in R for detection of the following conditions pertaining ASD and ADHD:

- 1) Individuals affected by ASD only and no other comorbidities
- 2) Individuals affected by ADHD only and no other comorbidities
- 3) Individuals affected by both ASD and ADHD
- 4) Individuals unaffected by any of the 2 disorders

Results

TOTAL NUMBER OF INDIVIDUALS -> 192557

ASD only	ADHD only	Both ASD and ADHD	Unaffected by any of the 2 disorders
49804	14426	29827	98500

Filename: asd_adhd_numbers.r

DATE: 03/02/24

Description and Input

This experiment involved analysis of the basic medical screening dataset in SPARK (.csv file) and filtering out the columns that will be used to develop the ML model (based on certain criteria inferred from literature).

Results

TOTAL NUMBER OF INDIVIDUALS -> 192557

IGNORED COLUMNS:

- Ignored the columns containing various SPARK ids because the dataset will be used as a whole for model building and not use individual ids
 - subject_sp_id
 - respondent_sp_id
 - o family sf id
 - biomother sp id
 - o biofather_sp_id
 - current_depend_adult
- Ignored the columns concerning other comorbidities:
 - o behav conduct
 - behav_intermitt_explos
 - behav_odd
- Current depend adult
- Flag
- The following columns are broad columns having sub-columns (branching qs):-They are probably placing 1/ null on the basis of answers to all the sub questions but it is vague what is the basis of choosing the final value
 - Attn behav
 - Birth_def_cns -> Branching Question: Brain and spinal cord birth defects
 - Birth_def_bone
 - o birth def fac
 - Birth_def_gastro

- Birth_def_thorac (heart or lung)
- Birth_def_urogen
- Dev_lang
- o Gen_test
- med_cond_birth
- med_cond_birth_def
- med_cond_growth
- med_cond_neuro
- Med_cond_visaud
- mood ocd
- Birth defects: (defects not impacting asd/adhd)
 - Birth_def_bone_club
 - birth_def_bone_miss
 - birth_def_bone_polydact
 - birth_def_bone_spine
 - birth_def_cleft_lip
 - Birth_def_cleft_palate
 - Birth_def_cns_myelo
 - birth_def_gi_esoph_atres
 - birth_def_gi_hirschprung
 - birth_def_gi_intest_malrot
 - o Birth_def_gi_pylor_sten
 - birth_def_thorac_heart
 - Birth_def_thorac_lung
 - birth_def_urogen_hypospad
 - birth_def_urogen_renal
 - birth_def_urogen_renal_agen
 - birth_def_urogen_uter_agen
 - Birth_def_oth_calc
 - o birth_ivh
 - o Birth_oth_calc
- Eating_probs Not professionally diagnosed so probably not a definitive measure
- Eating_disorder Not directly associated with ASD
- Etoh_subst
- gen_dx_oth_calc_self_report
- Genetic testing:
 - o gen_test_cgh_cma
 - gen_test_chrom_karyo

- o gen_test_ep
- gen_test_fish_angel
- gen_test_fish_digeorge
- gen_test_fish_williams
- gen_test_fish_oth
- gen_test_frax
- gen_test_id
- gen_test_mecp2
- gen_test_nf1
- gen_test_noonan
- o gen_test_pten
- gen_test_tsc
- gen_test_unknown
- gen_test_wes
- gen_test_wgs
- Gen_test_oth_calc
- Calculated variable: individual has entered in text field an "Other" growth condition not represented in current coding
- growth_low_wt
- growth_macroceph
- growth_microceph
- growth_obes
- growth_short
- Growth_oth_calc
- prev_study_calc
- Eval_year
- neuro_inf
- Neuro_lead
- neuro_sz
- neuro_tbi

- Neuro_oth_calc
- pers_dis
- prev_study_oth_calc
- psych_oth_calc
- Schiz
- visaud blind
- visaud_catar
- visaud deaf
- Visaud_strab
- sleep_dx
- sleep_eat_toilet
- sleep_probs
- tics

CHOSEN COLUMNS:

- 1) Sex -> To know which gender is more susceptible to a particular disorder
- 2) Asd -> Professional diagnosis results
- 3) Age_at_eval_months -> To know the age distribution of each disorder
- 4) Age_at_eval_years -> To know the age distribution of each disorder (we can use any one of 3 or 4 -
- 5) Behav_adhd -> professional diagnosis of adhd
- 6) Birth defects:
 - a) Birth def cns brain -> Brain malformation/abnormality (shown on MRI)
 - b) Birth_def_thorac_cdh -> Congenital diaphragmatic hernia Increased Risk: Studies have shown that children with CDH have a higher risk of developing Autism Spectrum Disorder (ASD) compared to the general population. The estimated prevalence of ASD in CDH survivors is around 9-14%, compared to 1.5% in the general population. Although there is research on the increased risk of ASD in CDH, there is currently no established direct link between CDH and Attention Deficit Hyperactivity Disorder (ADHD).
 - Birth_etoh_subst -> Fetal Alcohol Syndrome, alcohol or drug exposure in mother's pregnancy

- d) Birth_oxygen > Insufficient oxygen at birth with NICU stay Studies suggest a higher risk of ASD and ADHD in children who experienced HIE compared to the general population.
- e) Birth_pg_inf -> Serious prenatal infection (for example, German measles) Studies suggest a modest increase in the risk of ASD in children whose mothers contracted certain severe infections during pregnancy
- f) Birth_prem -> Premature birth (delivery before 37 weeks) Premature birth, delivering before 37 weeks of pregnancy, is indeed linked to an increased risk of Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). The earlier the birth, the higher the risk, according to multiple studies
- 7) cog_med- Cognitive delays or impairment due to another medical condition or exposure (For example, brain injury, stroke, lead poisoning, FAS, HIV, radiation, hydrocephalus, brain tumor, drug effects, etc.) —> Too many factors so might make it confusing
- 8) Developmental properties:
 - a) Dev_id Intellectual disability, cognitive impairment, global developmental delay, or borderline intellectual functioning
 - b) Dev_lang_dis Language difficulties are core features of ASD for many individuals. While not a core symptom of ADHD, individuals with ADHD can sometimes experience language difficulties.
 - c) Dev_ld Learning disability (LD, learning disorder, including reading, written expression, math, or NVLD (Nonverbal learning disability))
 - d) Dev_motor Motor delay (e.g., delay in walking) or developmental coordination disorder Both motor delays and DCD can co-occur with ASD and ADHD.
 - e) Dev_mutism Mutism, particularly SM, can co-occur with ASD and ADHD.
 - f) Dev_soc_prag Social (Pragmatic) Communication Disorder SCD can co-occur with both ASD and ADHD.
 - g) Dev_speech Speech articulation problems are more common in individuals with ASD compared to the general population. Not much in ADHD
- 9) Encopres Encopresis (has bowel accidents beyond age expected). Studies suggest children with ASD and ADHD might be at higher risk for encopresis compared to the general population.
- 10) Enures Enuresis (wets self beyond age expected). Children with ASD are 2-3 times more likely to experience enuresis compared to typically developing children

- 11) Feeding_dx Feeding/eating problems Children with ASD are five times more likely to experience feeding difficulties compared to typically developing peers.
- 12) Parent-reported genetic testing:
 - a) Gen_test_aut_dd Parent reported Genetic testing for autism or developmental delay genes
- 13) Gest_age How many weeks (gestational age) was a child/dependent when he/she was born? Premature birth (born before 37 weeks) is associated with a slightly increased risk of developing both ASD and ADHD.
- 14) Mood disorders: usually associated with ASD / ADHD
 - a) Mood_anx Anxiety disorder, such as panic, phobia, agoraphobia, or generalized anxiety disorder (GAD) except for social anxiety
 - b) Mood bipol Bipolar (Manic-Depressive) Disorder
 - c) Mood_dep Depression or dysthymia
 - d) Mood_dmd Disruptive Mood Dysregulation Disorder
 - e) Mood_hoard Hoarding
 - f) Mood_or_anx Obsessive-Compulsive Disorder
 - g) Mood_sep_anx Separation Anxiety
 - h) Mood_soc_anx Social Anxiety Disorder/Social Phobia

```
prev_study_agre
prev_study_asc
prev_study_charge
prev_study_earli
prev_study_marbles
prev_study_mssng
prev_study_seed
prev_study_sec
prev_study_ssc
prev_study_vip
```

DATE: 17/02/24

Description and Input

We developed a XGBoost Classifier on the basic medical screening dataset to make a 3-way classification model that classifies patients into individuals with ASD only, ADHD only or both.

COLUMNS CHOSEN FOR FEATURES ARE:

Categorical columns: ['sex']

Numerical columns: ['age_at_eval_months', 'age_at_eval_years', 'birth_def_cns_brain', 'birth_def_thorac_cdh', 'birth_etoh_subst', 'birth_oxygen', 'birth_pg_inf', 'birth_prem', 'cog_med', 'dev_id', 'dev_lang_dis', 'dev_ld', 'dev_motor', 'dev_mutism', 'dev_soc_prag', 'dev_speech', 'eating_probs', 'eating_disorder', 'encopres', 'enures', 'feeding_dx', 'gen_test_aut_dd', 'gest_age', 'mood_anx', 'mood_bipol', 'mood_dep', 'mood_dmd', 'mood_hoard', 'mood_or_anx', 'mood_sep_anx', 'mood_soc_anx', 'prev_study_agre', 'prev_study_asc', 'prev_study_charge', 'prev_study_earli', 'prev_study_marbles', 'prev_study_mssng', 'prev_study_seed', 'prev_study_ssc', 'prev_study_vip', 'sleep_dx', 'sleep_eat_toilet', 'sleep_probs']

Results

Df size after removing unaffected people = 94057

Number of X features = 44

MEAN AND STANDARD DEVIATION OF VARIOUS METRICS

MEAN AND STANDARD DEVIATION OF VARIOUS METRICS

Accuracy 0.686094	0.00584678
+	+
Sensitivity 0.671497	0.0134625
+	+
Specificity 0.939345	0.00220678
+	+
F1 score 0.682309	0.00617388
+	+
Precision 0.681323	0.00621106
+	+

Filename: model_3way_basicmedical_1.py

Interpretation

The classification of the numerical and categorical columns was incorrect as all the columns with Boolean values became a part of the Numerical columns while they should have been a part of the categorical columns. The ROC-AUC value is not being calculated for a 3 way classification model.

Recommendations for Improvement

- The classification of the numerical and categorical columns should be improved by manually observing the numerical and categorical columns
- Modifying the chosen features some features are important but not part of the model

DATE: 20/02/24

Description and Input

We modified the above XGBoost Classifier on the basic medical screening dataset to make a 3-way classification model that classifies patients into individuals with ASD only, ADHD only or both by making changes in the features being used, also modifying the columns (categorical and numerical) used by the column transformer

COLUMNS CHOSEN FOR FEATURES ARE:

Categorical columns: ['birth_def_bone_club', 'birth_def_bone_miss', 'birth_def_bone_polydact', 'birth_def_bone_spine', 'birth_def_cleft_lip', 'birth_def_cleft_palate', 'birth_def_cns_brain', 'birth_def_cns_myelo', 'birth_def_gi_esoph_atres', 'birth_def_gi_hirschprung', 'birth_def_gi_intest_malrot', 'birth_def_gi_pylor_sten', 'birth_def_thorac_cdh', 'birth_def_thorac_heart', 'birth_def_thorac_lung', 'birth_def_urogen_hypospad', 'birth_def_urogen_renal', 'birth_def_urogen_renal_agen', 'birth_def_urogen_uter_agen', 'birth_etoh_subst', 'birth_ivh', 'birth_oxygen', 'birth_pg_inf', 'birth_prem', 'cog_med', 'dev_id', 'dev_lang_dis', 'dev_ld', 'dev_motor', 'dev_mutism', 'dev_soc_prag', 'dev_speech', 'eating_probs', 'eating_disorder', 'encopres', 'enures', 'feeding_dx', 'growth_low_wt', 'growth_macroceph', 'growth_microceph', 'growth_obes', 'growth_short', 'mood_anx', 'mood_bipol', 'mood_dep', 'mood_dmd', 'mood_hoard', 'mood_or_anx', 'mood_sep_anx', 'mood_soc_anx', 'neuro_inf', 'neuro_lead', 'neuro_sz', 'neuro_tbi', 'sleep_dx', 'sleep_eat_toilet', 'sleep_probs', 'visaud_blind', 'visaud_catar', 'visaud_deaf', 'visaud_strab']

Numerical columns: ['gest_age']

Results

Df size after removing unaffected people = 94057 Number of X features = 62

MEAN AND STANDARD DEVIATION OF VARIOUS METRICS

MEAN AND STANDARD DEVIATION OF VARIOUS METRICS

+-----+
| Metric | Mean | Standard Deviation |
+========+=====+====++=====++
| Accuracy | 0.650914 | 0.00487393 |
+-----+
| Sensitivity | 0.538473 | 0.00984392 |
+-----+
| Specificity | 0.928407 | 0.00376441 |
+-----+
| F1 score | 0.641011 | 0.00519251 |
+-----+
| Precision | 0.643825 | 0.00509689 |
+------+

Filename: model_3way_basicmedical_2.py

Interpretation

The low accuracy but high sensitivity might indicate that the features being used are good for predicting ASD only \rightarrow ADHD is not being predicted well.

Recommendations for Improvement

- 1) Reading up about the features being used and finding out what can be eliminated features should be decreased
- 2) Try ordinal encoding instead of one hot on all the categorical columns
- 3) Try recursive feature elimination to work on features
- 4) Gestational age column replace NAN with 40
- 5) EDA on categorical columns as a bar plot
- 6) To make it inclusive of normal individuals include bg datasets bg child, sibling etc.

DATE: 27/02/24

Description and Input

I carried out Exploratory data analysis on the chosen features to understand which of the features are truly relevant. I plotted a histogram for the numerical column (gestational age) and created a table for the categorical ones.

COLUMNS CHOSEN FOR FEATURES ARE:

Categorical columns: ['birth_def_bone_club', 'birth_def_bone_miss', 'birth_def_bone_polydact', 'birth_def_bone_spine', 'birth_def_cleft_lip', 'birth_def_cleft_palate', 'birth_def_cns_brain', 'birth_def_cns_myelo', 'birth_def_gi_esoph_atres', 'birth_def_gi_hirschprung', 'birth_def_gi_intest_malrot', 'birth_def_gi_pylor_sten', 'birth_def_thorac_cdh', 'birth_def_thorac_heart', 'birth_def_thorac_lung', 'birth_def_urogen_hypospad', 'birth_def_urogen_renal', 'birth_def_urogen_renal_agen', 'birth_def_urogen_uter_agen', 'birth_etoh_subst', 'birth_ivh', 'birth_oxygen', 'birth_pg_inf', 'birth_prem', 'cog_med', 'dev_id', 'dev_lang_dis', 'dev_ld', 'dev_motor', 'dev_mutism', 'dev_soc_prag', 'dev_speech', 'eating_probs', 'eating_disorder', 'encopres', 'enures', 'feeding_dx', 'growth_low_wt', 'growth_macroceph', 'growth_microceph', 'growth_obes', 'growth_short', 'mood_anx', 'mood_bipol', 'mood_dep', 'mood_dmd', 'mood_hoard', 'mood_or_anx', 'mood_sep_anx', 'mood_soc_anx', 'neuro_inf', 'neuro_lead', 'neuro_sz', 'neuro_tbi', 'sleep_dx', 'sleep_eat_toilet', 'sleep_probs', 'visaud_blind', 'visaud_catar', 'visaud_deaf', 'visaud_strab']

Numerical columns : ['gest_age']

Results

Df size after removing unaffected people = 94057 Number of X features = 62

Results for gestational age:

Results for categorical columns

Column_Name	Value_1_Count	Value_0_Count
birth_def_bone_club	200	93857
birth_def_bone_miss	356	93701
birth_def_bone_polydact	73	93984
birth_def_bone_spine	154	93903

birth_def_cleft_lip	106	93951
birth_def_cleft_palate	147	93910
birth_def_cns_brain	280	93777
birth_def_cns_myelo	63	93994
birth_def_gi_esoph_atres	32	94025
birth_def_gi_hirschprung	15	94042
birth_def_gi_intest_malrot	45	94012
birth_def_gi_pylor_sten	38	94019
birth_def_thorac_cdh	23	94034
birth_def_thorac_heart	664	93393
birth_def_thorac_lung	58	93999
birth_def_urogen_hypospa d	257	93800
birth_def_urogen_renal	83	93974

birth_def_urogen_renal_ag en	20	94037
birth_def_urogen_uter_age n	5	94052
birth_etoh_subst	1092	92965
birth_ivh	637	93420
birth_oxygen	5461	88596
birth_pg_inf	228	93829
birth_prem	10380	83677
cog_med	4348	89709
dev_id	16516	77541
dev_lang_dis	41394	52663
dev_ld	19937	74120
dev_motor	13796	80261
dev_mutism	1013	93044

dev_soc_prag	13506	80551
dev_speech	21610	72447
eating_probs	29433	64624
eating_disorder	1840	92217
encopres	5850	88207
enures	6368	87689
feeding_dx	11593	82464
growth_low_wt	2974	91083
growth_macroceph	2473	91584
growth_microceph	796	93261
growth_obes	2302	91755
growth_short	2015	92042
mood_anx	25518	68539

mood_bipol	4814	89243
mood_dep	16045	78012
mood_dmd	2612	91445
mood_hoard	1770	92287

Filename: eda_model.r

Interpretation

Many columns have value <1000 for Value=1 and can be ignored. These are:

```
'birth_def_bone_club', 'birth_def_bone_miss', 'birth_def_bone_polydact',

'birth_def_bone_spine', 'birth_def_cleft_lip', 'birth_def_cleft_palate',

'birth_def_cns_brain', 'birth_def_cns_myelo', 'birth_def_gi_esoph_atres',

'birth_def_gi_hirschprung', 'birth_def_gi_intest_malrot', 'birth_def_gi_pylor_sten',

'birth_def_thorac_cdh', 'birth_def_thorac_heart', 'birth_def_thorac_lung',

'birth_def_urogen_hypospad', 'birth_def_urogen_renal', 'birth_def_urogen_renal_agen',

'birth_def_urogen_uter_agen', 'birth_ivh', 'birth_pg_inf', 'growth_microceph', 'neuro_inf',

'neuro_lead', 'neuro_tbi', 'visaud_blind', 'visaud_catar'
```

EXTRA - FEATURES TO BE USED

sex

birth_def_bone_club birth_def_bone_miss birth_def_bone_polydact birth_def_bone_spine birth_def_cleft_lip birth_def_cleft_palate

birth_def_cns_brain birth_def_cns_myelo

birth_def_fac

birth_def_gi_esoph_atres birth_def_gi_hirschprung birth_def_gi_intest_malrot birth_def_gi_pylor_sten

birth_def_thorac_cdh
birth_def_thorac_heart
birth_def_thorac_lung

birth_def_urogen_hypospad birth_def_urogen_renal birth_def_urogen_renal_agen birth_def_urogen_uter_agen

birth_etoh_subst

birth_ivh

birth_oth_calc

birth_oxygen

birth_pg_inf

cog_med

dev_id

dev_lang

dev_lang_dis

dev_ld

dev_motor

dev_mutism

dev_soc_prag

dev_speech

eating_probs

eating_disorder

feeding_dx

gest_age

growth_low_wt

growth_macroceph

growth_microceph

growth_obes

growth_short

med_cond_birth

med_cond_birth_def

med_cond_growth

```
med_cond_neuro
med_cond_visaud
neuro_inf
neuro lead
neuro sz
neuro tbi
 features = [
    "sex", "gest_age", "eating_probs", "feeding_dx",
    "med_cond_birth", "birth_oth_calc",
    "med_cond_birth_def", #"birth_def_oth_calc" is not used because all are nans
    "med_cond_growth", "growth_oth_calc",
    "med_cond_neuro", "med_cond_visaud"
 ]
  # use this set of features for SPARK experiments
 features = [
    "sex", 'mother_highest_education', 'father_highest_education',
'annual household income',
    "smiled_age_mos", "sat_wo_support_age_mos", "crawled_age_mos", "walked_age_mos",
    "fed_self_spoon_age_mos", "used_words_age_mos", "combined_words_age_mos",
    "combined_phrases_age_mos", "bladder_trained_age_mos", "bowel_trained_age_mos",
"hand",
    "twin_mult_birth", 'num_asd_parents', 'num_asd_siblings'
 ]
```

DATE: 28/02/24

Description and Input

We modified the above XGBoost Classifier on the basic medical screening dataset to make a 3-way classification model that classifies patients into individuals with ASD only, ADHD only or both by replacing nan values in the gest_age column with 40. Some features are removed as well.

COLUMNS CHOSEN FOR FEATURES ARE:

Categorical columns: ['birth_etoh_subst', 'birth_oxygen', 'birth_prem', 'cog_med', 'dev_id', 'dev_lang_dis', 'dev_ld', 'dev_motor', 'dev_mutism', 'dev_soc_prag', 'dev_speech', 'eating_probs', 'eating_disorder', 'encopres', 'enures', 'feeding_dx', 'growth_low_wt', 'growth_macroceph', 'growth_obes', 'growth_short', 'mood_anx', 'mood_bipol', 'mood_dep', 'mood_dmd', 'mood_hoard', 'mood_or_anx', 'mood_sep_anx', 'mood_soc_anx', 'neuro_sz', 'sleep_dx', 'sleep_eat_toilet', 'sleep_probs', 'visaud_deaf', 'visaud_strab']

Numerical columns : ['gest_age']

Results

Number of X features = 35

Df size after removing unaffected people = 94057

MEAN AND STANDARD DEVIATION OF VARIOUS METRICS

Specificity 0.928131	0.00273799
++	+
F1 score 0.639835	0.0055437
++	+
Precision 0.642732	0.00539781
+	+

Filename: model_3way_basicmedical_3.py

DATE: 29/02/24

Description and Input

We modified the above XGBoost Classifier on the basic medical screening dataset to make a 3-way classification model that classifies patients into individuals with ASD only, ADHD only or both by using 11 features.

COLUMNS CHOSEN FOR FEATURES ARE:

Categorical columns: ['birth_etoh_subst', 'birth_oxygen', 'birth_prem', 'cog_med', 'dev_id', 'dev_lang_dis', 'dev_ld', 'dev_motor', 'dev_mutism', 'dev_soc_prag', 'dev_speech', 'eating_probs', 'eating_disorder', 'encopres', 'enures', 'feeding_dx', 'growth_low_wt', 'growth_macroceph', 'growth_obes', 'growth_short', 'mood_anx', 'mood_bipol', 'mood_dep', 'mood_dmd', 'mood_hoard', 'mood_or_anx', 'mood_sep_anx', 'mood_soc_anx', 'neuro_sz', 'sleep_dx', 'sleep_eat_toilet', 'sleep_probs', 'visaud_deaf', 'visaud_strab']

Numerical columns: ['gest_age']

Results

Number of X features = 11

Df size after removing unaffected people = 94057

Metric Mean Stand	dard Deviation
+======+=======	=+======+
Accuracy 0.563212	0.00516725
++	+
Sensitivity 0.559269	0.0169223
++	+
Specificity 0.906569	0.00333269

++	+	+
F1 score	0.494427	0.00511255
++	+	+
Precision	0.537941	0.00903289
++	+	+

Filename: model_3way_basicmedical_4.py

DATE: 04/03/24

Description and Input

We modified the above XGBoost Classifier on the basic medical screening dataset to make a 2-way classification model that classifies patients into individuals with ADHD or not using 11 features. We also tried out the same code using other classifiers used earlier to compare the values of the different metrics. We tried this with and without class balance.

COLUMNS CHOSEN FOR FEATURES ARE:

Categorical columns: 'sex', 'eating_probs', 'feeding_dx',

'med_cond_birth', 'birth_oth_calc',

'med_cond_birth_def',

'med_cond_growth', 'growth_oth_calc',

'med cond neuro', 'med cond visaud'

Numerical columns: ['gest_age']

Results

Number of X features = 11

Number of samples = 192557

Number of individuals affected by ADHD: 44253

Number of unaffected individuals: 148304

CASE 1: WITHOUT CLASS BALANCE

METRIC	XGBOOST		LOGISTIC REGRESSION				RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD

Accuracy	0.7698 3459	0.000 74839 3	0.769 367	0.000 65391 3	0.7687 85	0.000 8960 79	0.7688 11	0.000 80017 2
Sensitivity	0.9836 21	0.001 22201	0.982 819	0.001 05313	0.9817 6	0.001 4927 2	0.9800 95	0.000 96415 4
Specificity	0.0533 75	0.004 34085	0.054 0304	0.002 16125	0.0550 472	0.002 859	0.0607 419	0.002 63818
F1 score	0.6907 39	0.001 75082	0.690 699	0.000 86351 9	0.6907 06	0.001 0792 5	0.6926 63	0.001 20247
Precision	0.7116 27	0.003 81884	0.709 654	0.002 96767	0.7073 54	0.003 8157 8	0.7084 62	0.003 35527
ROC-AUC Score	0.6507 92	0.005 35774	0.648 02	0.004 88875	0.6425 75	0.006 2481 3	0.6448 86	0.005 97992

Filename: model_2way_basicmedical_adhd_1.py

CASE 2: WITH CLASS BALANCE

METRIC	XGBOOST		LOGISTIC REGRESSION		DECISION TREES		RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
Accuracy	0.6185 57	0.005 2565	0.614 908	0.006 80877	0.6141 84	0.004 7184 1	0.6158 68	0.004 74355
Sensitivity	0.7231 6	0.005 38263	0.762 389	0.006 75764	0.7301 65	0.005 9262	0.7275 21	0.006 19465
Specificity	0.5139 54	0.009 87442	0.467 427	0.016 2587	0.4982 04	0.008 9733 3	0.5042 15	0.009 68887
F1 score	0.6143	0.005	0.606	0.007	0.6089	0.005	0.6109	0.005

	19	59345	282	91234	06	0261 7	98	08422
Precision	0.6239 9	0.005 17802	0.625 864	0.006 26792	0.6206 89	0.004 7498 2	0.6219 63	0.004 71774
ROC-AUC Score	0.6485 31	0.005 03725	0.646 848	0.005 28093	0.6434 74	0.005 0575 5	0.6444 31	0.004 93622

Filename: model_2way_basicmedical_adhd_2.py

DATE: 05/03/24

Description and Input

We modified the above XGBoost Classifier on the basic medical screening dataset to make a 2-way classification model that classifies patients into individuals with ASD or not using 11 features. We also tried out the same code using other classifiers used earlier to compare the values of the different metrics. We tried this with and without class balance.

COLUMNS CHOSEN FOR FEATURES ARE:

Categorical columns: 'sex', 'eating_probs', 'feeding_dx',

'med_cond_birth', 'birth_oth_calc',

'med_cond_birth_def',

'med_cond_growth', 'growth_oth_calc',

'med cond neuro', 'med cond visaud'

Numerical columns : ['gest_age']

Results

Number of X features = 11

Number of samples = 192557

Number of individuals affected by ASD 79631

Number of unaffected individuals: 112926

CASE 1: WITHOUT CLASS BALANCE

METRIC	XGBOOST		LOGISTIC REGRESSION				RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD

Accuracy	0.8172 33	0.001 86797	0.812 035	0.002 14957	0.8160 28	0.001 9088 5	0.8166 05	0.001 71887
Sensitivity	0.9165 65	0.001 84422	0.934 107	0.001 60649	0.9173	0.001 9256 5	0.9169 01	0.002 01713
Specificity	0.6763 7	0.004 60801	0.638 922	0.006 08115	0.6724 14	0.004 5736 2	0.6743 73	0.004 39409
F1 score	0.8129 45	0.002 00906	0.805 614	0.002 44153	0.8115 67	0.002 0475 7	0.8122 31	0.001 84546
Precision	0.8215 25	0.001 79507	0.821 631	0.001 7688	0.8206 16	0.001 8593 6	0.8210 41	0.001 68447
ROC-AUC Score	0.8655 2	0.001 82675	0.861 471	0.001 93155	0.8634 16	0.002 0814 5	0.8645	0.001 87666

Filename: model_2way_basicmedical_asd_1.py

CASE 2: WITH CLASS BALANCE

METRIC	XGBOOST		LOGISTIC REGRESSION		DECISION TREES		RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
Accuracy	0.7974 53	0.002 90681	0.790 17	0.002 76503	0.7960 34	0.002 8530 5	0.7967	0.002 99884
Sensitivity	0.9104 12	0.002 06959	0.928 52	0.002 51392	0.9110 52	0.002 1763 1	0.9113 54	0.002 12653
Specificity	0.6844 95	0.004 55889	0.651 819	0.004 26426	0.6810 16	0.004 4453 5	0.6820 46	0.004 70103

F1 score	0.7948 34	0.003 01352	0.786 073	0.002 88724	0.7932 98	0.002 9579 6	0.7939 9	0.003 1119
Precision	0.8134 54	0.002 67131	0.814 233	0.002 68003	0.8125 77	0.002 6507 9	0.8131 69	0.002 75482
ROC-AUC Score	0.8656 77	0.001 96406	0.861 935	0.002 1349	0.8636 16	0.002 0229 5	0.8645 49	0.002 07078

Filename: model_2way_basicmedical_asd_2.py

DATE: 06/03/24

Description and Input

Analysis of the features being used as model input from the different datasets and finding out which feature belongs to which dataset and which are common to multiple datasets

DATASETS CHOSEN FOR MODEL:

- 1) df1 = basic_medical_screening-2023-07-21.csv
- 2) df2 = background_history_adult-2023-07-21.csv
- 3) df3 = background_history_child-2023-07-21.csv
- 4) df4 = background_history_sibling-2023-07-21.csv
- 5) df5 = roles 2023-07-17.csv
- 6) df6 = individuals_registration-2023-07-21.csv

Results

SL.NO	FEATURE	DATASETS TO WHICH IT BELONGS
1)	sex	All 6
2)	mother_highest_educa tion	df2, df3, df4
3)	father_highest_educati on	df2, df3, df4
4)	annual_household_inc ome	df2, df3, df4
5)	smiled_age_mos	df3, df4
6)	sat_wo_support_age_m os	df3, df4

7)	crawled_age_mos	df3, df4
8)	fed_self_spoon_age_m os	df3, df4
9)	used_words_age_mos	df3, df4
10)	combined_words_age_ mos	df3, df4
11)	combined_phrases_ag e_mos	df3, df4
12)	bladder_trained_age_ mos	df3, df4
13)	bowel_trained_age_mo s	df3, df4
14)	twin_mult_birth	df3, df4
15)	num_asd_parents	df6
16)	num_asd_siblings	df6

DATE: 13/03/24

Description and Input

Successfully implemented the 2-way classification model for ASD using 4 datasets and XGBoost classifier - with and without Class balancing.

DATASETS CHOSEN FOR MODEL:

- 1) df1 = basic_medical_screening-2023-07-21
- 2) df2 = background_history_child-2023-07-21
- 3) df3 = background_history_sibling-2023-07-21
- 4) df4 = individuals_registration-2023-07-21

Results

Number of X features = 28, Number of samples = 65897 (without class balance),38360(with class balance)

ASD- affected = 46717, Unaffected = 19180

METRIC	XGBOOST		XGBOOST BALANCED		
	MEAN SD		MEAN	SD	
Accuracy	0.836396	0.00511932	0.814964	0.00758401	
Sensitivity	0.682586	0.0126251	0.830918	0.00887275	
Specificity	0.899544 0.0035826		0.799009	0.00771655	
F1 score	0.834504	0.00531861	0.814914	0.00758268	
Precision	0.833499	0.00540914	0.8153	0.00761652	
ROC-AUC Score	0.895154	0.00558414	0.891596	0.00732261	

Filename: model_2way_asd_multidata.py & model_2way_asd_multidata_balanced.py

DATE: 13/03/24

Description and Input

Successfully implemented the 2-way classification model for ADHD using 4 datasets and XGBoost classifier - with and without Class balancing.

DATASETS CHOSEN FOR MODEL:

- 1. df1 = basic_medical_screening-2023-07-21
- 2. df2 = background_history_child-2023-07-21
- 3. df3 = background_history_sibling-2023-07-21
- 4. df4 = individuals_registration-2023-07-21

Results

Number of X features = 28, Number of samples = 65897 (without class balance), 40188 (with class balance)

ADHD- affected = 20094, Unaffected = 45803

METRIC	XGBOOST		XGBOOST BALANCED		
	MEAN SD		MEAN	SD	
Accuracy	0.710138	0.0051083	0.596397	0.00620875	
Sensitivity	0.891732	0.00510639	0.585798	0.0104099	
Specificity	0.296207	0.0131839	0.606998	0.0110402	
F1 score	0.680386	0.00609839	0.596321	0.00620687	
Precision	0.682649	0.00694207	0.596471	0.00621796	
ROC-AUC Score	0.722084	0.00316626	0.635234	0.00931322	

Filename: model_2way_adhd_multidata.py & model_2way_adhd_multidata_balanced.py

DATE: 13/03/24

Description and Input

Successfully implemented the 3-way classification model for classification of individuals into patients affected with ASD-only, ADHD-only or both using 4 datasets and XGBoost classifier - with and without Class balancing.

DATASETS CHOSEN FOR MODEL:

- 1. df1 = basic_medical_screening-2023-07-21
- 2. df2 = background_history_child-2023-07-21
- 3. df3 = background_history_sibling-2023-07-21
- 4. df4 = individuals_registration-2023-07-21

Results

Number of X features = 28, Number of samples = 65897

ADHD- only= 2793, ASD- only = 29416, Both = 17301

Prediction	Value
0	ADHD only
1	ASD only
2	Both

METRIC	XGBOOST		XGBOOST BALANCED	
	MEAN SD		MEAN	SD
Accuracy	0.637407	0.00591548	0.585153	0.0147246
Sensitivity	0.191192	0.023343	0.724324	0.0173023

Specificity	0.985872	0.00129488	0.797537	0.0198403	
F1 score 0.624134 0.00557477		0.582287	0.0155735		
Precision	0.62149	0.00572235	0.582548	0.0157496	

Filename: model_3way_multidata.py & model_3way_multidata_balanced.py

DATE: 20/03/24

Description and Input

Obtained 2 sets of genomic data (.TSV file) on variant counts - ASD prediction in one and ADHD prediction in the other as the last column. This data contains numerical information about the number of each type of variant. I merged each of these datasets with the previous 4 datasets and counted the number of NANs for features(columns) in this merged df - for each TSV file.

DATASETS CHOSEN FOR MODEL:

- 1) Server_final_updated_data_with_target_all_variants + previous 4 datasets
- 2) Server_final_updated_data_with_target_all_variants_with_adhd + previous 4 datasets

Results

The results were stored in 2 excel sheets:

- 1) nan counts asd
- 2) nan counts adhd

Filename: dataset_genomic_features_adhd.py and dataset_genomic_features_asd.py

DATE: 20/03/24

Description and Input

Successfully implemented the 2-way classification model for ASD and ADHD using 5 datasets and XGBoost classifier - with Class balancing.

DATASETS CHOSEN FOR MODEL:

- 1) df1 = basic_medical_screening-2023-07-21
- 2) df2 = background_history_child-2023-07-21
- 3) df3 = background_history_sibling-2023-07-21
- 4) df4 = individuals_registration-2023-07-21
- 5) df5 = server_final_updated_data_with_target_all_variants.tsv

Results

Number of X features = 43

+	+
Metric Mean Star	ndard Deviation
+======+====	+
Accuracy 0.842813	0.00702391
+	+
Sensitivity 0.848936	0.00850976
++	+
Specificity 0.836691	0.0117813
+	+
F1 score 0.842799	0.0070277
++	+
Precision 0.842942	0.00700073

+	+
ROC-AUC Score: 0.842814	0.00702212
+	+

MEAN AND STANDARD DEVIATION OF VARIOUS METRICS - ADHD

+	+
Metric Mean Stand	ard Deviation
+========	=+=====+
Accuracy 0.649302	0.00659275
+	+
Sensitivity 0.611879	0.0101125
+	+
Specificity 0.686727	0.0158678
+	+
F1 score 0.648765	0.0064883
+	+
Precision 0.650235	0.00685656
+	+
ROC-AUC Score 0.649303	0.00659524
+	+

Filename: model_2way_asd_genomic.py & model_2way_adhd_genomic.py

EXTRA - NATURE PAPER FEATURES PRESENT IN BASIC MEDICAL SCREENING AND TRIED

<u>Features</u>

Preterm birth

Hypoxia at birth

Fetal alcohol syndrome - did not help alone

Bleeding into brain

Traumatic brain injury

Brain infection

Infection in pregnancy

Lead poisoning

DATE: 28/03/24, 05/04/24

Description and Input

Successfully implemented the 2-way classification model using multiple datasets and XGBoost classifier - with Class balancing for classifying individuals into:

- 1. affected by ASD only v/s both ASD and ADHD
- 2. Affected by ADHD only v/s both ASD and ADHD

DATASETS CHOSEN FOR MODEL:

- 1) df1 = basic_medical_screening-2023-07-21
- 2) df2 = background_history_child-2023-07-21
- 3) df3 = background_history_sibling-2023-07-21
- 4) df4 = individuals registration-2023-07-21

Results

CASE 1: ADHD ONLY V/S BOTH

The number of individuals affected is -> ADHD only: 2793, Both: 17301

+	++	+
Metric	Mean Stand	ard Deviation
+=======	=====+======	==+======+
Accuracy	0.725921	0.0180678
+	+	+
Sensitivity	0.740764	0.0294121
+	+	+
Specificity	0.711065	0.0225297
+	+	+
F1 score	0.725764	0.0180266

+-----+
| Precision | 0.726458 | 0.0183136 |
+-----+
| ROC-AUC Score: | 0.797711 | 0.0185465 |
+-----+

Filename: model_adhdonly_both.py

Filename: model_asdonly_both.py

CASE 2: ASD ONLY V/S BOTH

The number of individuals affected is -> ASD only: 29416, Both: 17301

+		+
Metric	Mean Stand	dard Deviation
+========	=====+======	==+=====+
Accuracy	0.660858	0.00533556
+	·	+
Sensitivity	0.59141	0.00780647
+	·	+
Specificity	0.730305	0.00795559
+	·	+
F1 score	0.659202	0.00535843
+	·	+
Precision	0.664047	0.00550446
+	·	+
ROC-AUC S	core: 0.715058	0.00476497
+	++	+

DATE: 05/04/24

Description and Input

Successfully implemented the 2-way classification model removing dataset 3 and XGBoost classifier - with Class balancing for classifying individuals into:

- 1. Affected by ASD only v/s both ASD and ADHD
- 2. Affected by ADHD only v/s both ASD and ADHD -> This crashed as no of individuals with ADHD only became 0

DATASETS CHOSEN FOR MODEL:

- 1) df1 = basic_medical_screening-2023-07-21
- 2) df2 = background_history_child-2023-07-21
- 3) df3 = background_history_sibling-2023-07-21 REMOVED DATASET
- 4) df4 = individuals_registration-2023-07-21

Results

ASD ONLY V/S BOTH

The number of individuals affected are:

ASD only: 29395

Both: 17301

Specificity	0.736547	0.00660572
+	+	+
F1 score	0.655249	0.00582323
+	+	+
Precision	0.661479	0.00570259
+	+	+
ROC-AUC S	score: 0.707441	0.00707333
+	+	+

Filename: model_adhdonly_both_nodf3.py

DATE: 05/04/24

Description and Input

Successfully implemented the 2-way classification model using the basic medical screening dataset and XGBoost classifier - with Class balancing for classifying individuals into:

- 1. Affected by ASD only v/s both ASD and ADHD
- 2. Affected by ADHD only v/s both ASD and ADHD

DATASET CHOSEN FOR MODEL:

basic_medical_screening-2023-07-21

Results

CASE1: ASD ONLY V/S BOTH

The number of individuals affected are:

ASD only: 49804

Both: 29827

Number of features = 11+5(nature paper) = 16, No of samples = 59654

Filename: model_asdonly_both_basic_medical.py

CASE2: ADHD ONLY V/S BOTH

Sample size = 28852, Features = 11

The number of individuals affected are:

ADHD only: 14426, Both: 29827

MEAN AND STANDARD DEVIATION OF VARIOUS METRICS

+-----+ | Metric | Mean | Standard Deviation | | Accuracy | 0.774332 | 0.00629648 | +----+ | Sensitivity | 0.84944 | 0.00788158 | +----+ | Specificity | 0.699226 | 0.0111601 +-----+ | F1 score | 0.773037 | 0.00642595 | +-----+ | Precision | 0.780723 | 0.00613561 | +-----+ | ROC-AUC Score: | 0.837856 | 0.00623604 | +-----+

Filename: model_adhdonly_both_basic_medical.py

DATE: 18/04/24

Description and Input

A repetition of exp 24 - classifying individuals into those Affected by ADHD only v/s both ASD and ADHD using 4 different classifiers and comparing results -> **THIS IS THE FINAL RESULT FOR POSTER**

DATASET CHOSEN FOR MODEL:

basic_medical_screening-2023-07-21

Results

Sample size = 28852, Features = 11

The number of individuals affected are:

ADHD only: 14426, Both: 29827

METRIC	XGBOOST		LOGISTIC REGRESSION		DECISION TREES		RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
Accuracy	0.7743 32	0.006 29648	0.763 449	0.005 61958	0.7690 98	0.006 6501	0.7718 71	0.006 24375
Sensitivity	0.8494 4	0.007 88158	0.872 315	0.007 33369	0.8523 51	0.008 2993 6	0.8506 18	0.008 36235
Specificity	0.6992 26	0.011 1601	0.654 584	0.009 4651	0.6858 47	0.011 0038	0.6931 25	0.010 3141
F1 score	0.7730 37	0.006 13561	0.760 599	0.005 77574	0.7674 72	0.006 7841 2	0.7704 34	0.006 342

Precision	0.7807 23	0.006 13561	0.776 608	0.005 7287	0.7768 27	0.006 6100 5	0.7788 43	0.006 26712
ROC-AUC Score	0.8378 56	0.006 23604	0.776 608	0.006 80111	0.8293 93	0.006 2120 5	0.8340 9	0.005 98536

FLOWCHART FOR WORKFLOW

DATE: 01/05/24

Description and Input

The model used in experiment 24 (XGBoost classifier) was subjected to SHAP analysis after preprocessing the encoded categorical columns. Different plots were obtained

DATASET CHOSEN FOR MODEL:

basic_medical_screening-2023-07-21

Results

Filename: model_adhdonly_both_basic_medical_new.py

DATE: 03/05/24

Description and Input

The model used in experiment 24 (ADHD only v/s AuDHD) was implemented without using sex as one of the features

DATASET CHOSEN FOR MODEL:

basic_medical_screening-2023-07-21

Results

Sample size = 28852, Features = 10

The number of individuals affected are:

ADHD only: 14426, Both: 29827

METRIC	XGBOOST		LOGISTIC REGRESSION		DECISION TREES		RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
Accuracy	0.7752 33	0.005 46441	0.769 93	0.006 48469	0.7717 32	0.005 0222 6	0.7733 61	0.005 63606
Sensitivity	0.8479 14	0.008 14457	0.853 044	0.008 51792	0.8500 64	0.008 0921 7	0.8489 54	0.008 24876
Specificity	0.7025 53	0.009 63431	0.686 818	0.014 4099	0.6934 02	0.008 2722 7	0.6977 7	0.009 7316
F1 score	0.7740 27	0.005 53714	0.768 301	0.006 74435	0.7703 13	0.005 0635 1	0.7720 46	0.005 71314

Precision	0.7812 33	0.005 51508	0.777 702	0.005 9043	0.7786 22	0.005 2570 3	0.7798 15	0.005 69779
ROC-AUC Score	0.7895 1	0.006 6396	0.789 977	0.006 32248	0.7841 12	0.005 7639 5	0.7863 97	0.006 87734

Filename: model_adhdonly_both_basic_medical_2.py

DATE: 04/05/24

Description and Input

The plots for model used in experiment 24 (ADHD only v/s AuDHD) was implemented

DATASET CHOSEN FOR MODEL:

basic_medical_screening-2023-07-21

Results

Sample size = 28852, Features = 11

The number of individuals affected are:

ADHD only: 14426, Both: 29827

Confusion matrix plot

Metrics fold changes

ROC-Curve(All 10 folds)

Feature Correlation Heatmap

Precision-Recall curve

Metrics Change Across the 4 Classifiers

Filename: model_adhdonly_both_basic_medical_new.py

DATE: 05/05/24

Description and Input

The model used in experiment 24 (ADHD only v/s AuDHD) was implemented by class balancing based on sex instead of AuDHD/ADHD

DATASET CHOSEN FOR MODEL:

basic_medical_screening-2023-07-21

Results

The number of males in the dataset are: 27382

The number of females in the dataset are: 16871

The number of individuals affected are:

ADHD only: 14426, Both: 29827 Sample size = 33742, Features = 11

METRIC	XGBOOST		LOGISTIC REGRESSION		DECISION TREES		RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
Accuracy	0.7947 36	0.006 97491	0.794 558	0.006 38615	0.7906 17	0.007 4243 2	0.7928 69	0.007 25836
Sensitivity	0.6522	0.011	0.652	0.011	0.6545	0.011	0.6539	0.011
	53	2078	577	4871	97	7495	51	3246
Specificity	0.8772	0.006	0.876	0.005	0.8693	0.006	0.8733	0.006
	46	34492	778	4623	84	6536	15	47984
F1 score	0.7911	0.007	0.790	0.006	0.7874	0.007	0.7895	0.007
	38	11084	991	58026	49	5520	07	38632

						6		
Precision	0.7918 42	0.007 2634	0.791 651	0.006 65449	0.7875 96	0.007 6891 7	0.7899	0.007 53867
ROC-AUC Score	0.8398 79	0.006 26137	0.835 232	0.006 68988	0.8348 19	0.006 7662 1	0.8371 27	0.006 93749

Filename: model_adhdonly_both_basic_medical_sex_classbalance.py

DATE: 06/05/24

Description and Input

The model used in experiment 24 (ADHD only v/s AuDHD) was implemented by age stratification. 3 sets of experiments were done (i.e. 3 age groups):

- 1. 0-2 years (includes age 0 and 1 years)
- 2. 2-6 years (includes age 2 to 5 years)
- 3. 6-10 years (inclues age 6 to 9 years)

DATASET CHOSEN FOR MODEL:

basic_medical_screening-2023-07-21

Results

CASE 1: 0-2 YEARS —--> NOT RELIABLE

The number of individuals affected are:

ADHD only: 19

Both: 11

Sample size = 22, Features = 11

METRIC	XGBOOST		LOGISTIC REGRESSION		DECISION TREES		RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
Accuracy	0.5166 67	0.283 333	0.733 333	0.351 188				
Sensitivity	0.65	0.45	0.8	0.4				
Specificity	0.35	0.45	0.7	0.458 258				

F1 score	0.4333 33	0.3	0.683 333	0.397 562		
Precision	0.3916 67	0.316 338	0.661 111	0.420 317		
ROC-AUC Score	0.6	0.435 89	0.7	0.458 258		

CASE 2: 2-6 YEARS

The number of individuals affected are:

ADHD only: 254

Both: 2712

Sample size = 508, Features = 11

METRIC	XGBOOST		LOGISTIC REGRESSION		DECISION TREES		RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
Accuracy	0.6278	0.059	0.627	0.059	0.6104	0.064	0.5866	0.063
	04	2887	961	7866	31	5274	27	8246
Sensitivity	0.6926	0.047	0.672	0.100	0.6850	0.060	0.6490	0.118
	15	5223	615	531	77	5929	77	875
Specificity	0.5633	0.111	0.582	0.099	0.5356	0.115	0.5238	0.083
	85	669	769	2082	92	115	46	7275
F1 score	0.6246	0.061	0.624	0.061	0.6063	0.066	0.5824	0.063
	27	317	582	0932	01	41	42	1818
Precision	0.6315	0.060	0.631	0.059	0.6142	0.064	0.5914	0.067
	81	5925	822	2133	26	8531	23	7295
ROC-AUC	0.6209	0.066	0.657	0.070	0.5837	0.084	0.5966	0.077
Score	69	0103	526	4169	14	9531	71	3416

CASE 3: 6-10 YEARS

The number of individuals affected are:

ADHD only: 1295

Both: 8433

Sample size = 2590, Features = 11

METRIC	XGBOOST		LOGISTIC REGRESSION		DECISION TREES		RANDOM FOREST	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
Accuracy	0.6436	0.035	0.647	0.035	0.6200	0.024	0.6444	0.024
	29	1775	104	4372	77	5531	02	4466
Sensitivity	0.7521	0.036	0.742	0.040	0.7290	0.027	0.7165	0.028
	53	5042	934	305	04	8377	77	5023
Specificity	0.5350	0.052	0.551	0.063	0.5111	0.031	0.5721	0.053
	75	298	366	3908	87	0315	94	503
F1 score	0.6389	0.036	0.643	0.036	0.6154	0.025	0.6420	0.025
	91	5761	172	6321	03	1177	05	7016
Precision	0.6509	0.035	0.653	0.034	0.6262	0.025	0.6479	0.023
	05	4967	502	9924	02	8833	87	1872
ROC-AUC	0.6835	0.033	0.702	0.035	0.6605	0.020	0.6841	0.024
Score	81	3613	239	3258	52	8956	12	6874

Filename: model_adhdonly_both_basic_medical_age_strat.py

DATE: 08/05/24

Description and Input

The model used in experiment 24 (ADHD only v/s AuDHD) was subjected to various types of statistical analysis

DATASET CHOSEN FOR MODEL:

basic_medical_screening-2023-07-21

Results

1. Confusion Matrix Analysis:

Chi-Squared Test:

Chi-Squared Statistic: 942.9356814557027

P-value: 4.553633162985258e-207

Fisher's Exact Test:

Odds Ratio: 14.498431668841725

P-value: 1.0934394995396334e-221

Interpretation:

Based on the results of the statistical tests:

1.Chi-Squared Test:

- Chi-Squared Statistic: 942.94

- P-value: 4.55e-207

The chi-squared statistic is a measure of the discrepancy between the observed and expected frequencies in the contingency table. A larger chi-squared statistic indicates a greater discrepancy. The extremely small p-value (close to zero) suggests strong evidence against the null hypothesis, indicating that there is a significant association between the predicted and actual class labels.

2. Fisher's Exact Test:

- Odds Ratio: 14.50

- P-value: 1.09e-221

Fisher's exact test is another method for determining the association between categorical variables, particularly when the sample size is small. The odds ratio measures the strength of association between the two variables. In this case, the odds ratio of 14.50 indicates a strong association. The very small p-value (close to zero) suggests strong evidence against the null hypothesis, indicating that there is a significant association between the predicted and actual class labels.

In summary, both tests provide strong evidence to reject the null hypothesis, indicating a significant association between the predicted and actual class labels. This suggests that the model's predictions are not random and are indeed associated with the true class labels.