עבורה $\operatorname{Vol}_n:\mathcal{P}\left(\mathbb{R}^n
ight) o [0,\infty]$ עבורה אזי לא קיימת $n\in\mathbb{N}$ יהי

- $.Vol_n([0,1]^n) = 1 \bullet$
- . $\operatorname{Vol}_n\left(\biguplus_{i=1}^\infty A_i\right) = \sum_{i=1}^n \operatorname{Vol}_n\left(A_i\right)$ אזי $\left\{A_i\right\}_{i=1}^\infty \subseteq \mathbb{R}^n$ תהיינה
- . Vol $_n\left(\varphi\left(A\right)\right)=$ Vol $_n\left(A\right)$ אז
י א $A\subseteq\mathbb{R}^n$ ותהא איזומטריה עיזומטרי $\varphi:\mathbb{R}^n\to\mathbb{R}^n$ תהא

קבוצות חופפות בחלקים: $X,Y\subseteq\mathbb{R}^n$ עבורן קיים $X,Y\subseteq\mathbb{R}^n$ קיימות איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ איזומטריות חופפות בחלקים: $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות המקיימות איזומטריות וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות המקיימות איזומטריות וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות איזומטריות וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריים איזומטריים איזומטריות איזומטריות איזומטריות איזומטריים איזומטריי

 $X \equiv Y$ אזי בחלקים חופפות $X,Y \subseteq \mathbb{R}^n$ סימון: תהיינה

 $X \equiv Y$ אזי $(Y) \neq \varnothing$ וכן $(X) \neq \varnothing$ וונן וונן $(X) \neq \varnothing$ חסומות עבורן חסומות ווהיינה ווהיינה

- $.Vol_n([0,1]^n) = 1 \bullet$
- . $\mathrm{Vol}_n\left(A \uplus B\right) = \mathrm{Vol}_n\left(A\right) + \mathrm{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- . $\mathrm{Vol}_n\left(\varphi\left(A\right)\right)=\mathrm{Vol}_n\left(A\right)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $\varphi:\mathbb{R}^n o\mathbb{R}^n$ ההא

עבורה $\operatorname{Vol}_n:\mathcal{P}\left(\mathbb{R}^n
ight) o [0,\infty]$ אזי קיימת $n\in\{1,2\}$ יהי יהי

- $.Vol_n([0,1]^n) = 1 \bullet$
- $\operatorname{Vol}_n\left(A \uplus B\right) = \operatorname{Vol}_n\left(A\right) + \operatorname{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- $\operatorname{Vol}_n\left(\varphi\left(A
 ight)
 ight)=\operatorname{Vol}_n\left(A
 ight)$ איזי $A\subset\mathbb{R}^n$ איזומטריה ותהא $\varphi:\mathbb{R}^n o\mathbb{R}^n$ תהא

אלגברה: תהא X קבוצה אזי $\mathcal{A}\subseteq\mathcal{P}\left(X\right)$ אלגברה

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- . | או סופית מתקיים בכל $E\subseteq\mathcal{A}$

 $A\cap B\in\mathcal{A}$ אזי א $A,B\in\mathcal{A}$ טענה: תהא

אידיאל: תהא X קבוצה אזי $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ המקיימת

- $X \notin \mathcal{I} \bullet$
- $. \forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $E \in \mathcal{A}$ סופית מתקיים $E \subset \mathcal{A}$ לכל

המקיימת $\mathcal{A} \subseteq \mathcal{P}\left(X\right)$ אזי קבוצה X המקיימת σ

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- $E \subseteq \mathcal{A}$ בת מנייה מתקיים $E \subseteq \mathcal{A}$ לכל

מסקנה: תהא $\mathcal A$ אלגברה אזי σ אלגברה.

המקיימת $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה אזי תהא X המקיימת σ

- $X \notin \mathcal{I} \bullet$
- $\forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $\bigcup E \in \mathcal{A}$ בת מנייה מתקיים $E \subseteq \mathcal{A}$ לכל

. אלגברה $\sigma \cap_{\alpha \in I} \mathcal{A}_{\alpha}$ אזי $\sigma \in \sigma \{\mathcal{A}_{\alpha}\}_{\alpha \in I} \subseteq \mathcal{P}(X)$ טענה: תהיינה

 $\sigma\left(A
ight)=\pi$ אזי א המכילות את מעל X המכילות מעל כל ה σ ־אלגברה ווארינה $A\subseteq\mathcal{P}\left(X
ight)$ ותהיינה $A\subseteq\mathcal{P}\left(X
ight)$ המכילות את $A\subseteq\mathcal{P}\left(X
ight)$ המכילות את $A\subseteq\mathcal{P}\left(X
ight)$ החלגברה וואר כל חלגברה וואר מעל $A\subseteq\mathcal{P}\left(X
ight)$ המכילות את $A\subseteq\mathcal{P}\left$

A אא הינה היסילה ביותר הקטנה הינה ה־ σ אא אי $A\subseteq\mathcal{P}\left(X\right)$ אה מסקנה: תהא

 $\mathcal{B}\left(X
ight)=\sigma\left(\left\{\mathcal{O}\in\mathcal{P}\left(X
ight)\mid$ פתוחה $\mathcal{O}\left\{\mathcal{O}\in\mathcal{P}\left(X
ight)\mid$ מרחב מטרי אזי מרחב מטרי אזי מרחב מטרי אזי

טענה: יהי X מרחב מטרי אזי הקבוצות הבאות שוות

- .X אלגברה בורל על σ
- $.\sigma\left(\left\{B_r\left(a\right)\mid\left(r>0\right)\wedge\left(a\in X\right)\right\}\right)$ •
- $.\sigma\left(\left\{B_r\left(a\right)\mid\left(r\in\mathbb{Q}_+\right)\wedge\left(a\in X\right)\right\}\right)$ •
- $.\sigma\left(\left\{ B_{r}\left(a
 ight)\mid\left(r\in\mathbb{Q}_{+}\right)\wedge\left(a\in Y
 ight)
 ight\}
 ight)$ צפופה אזי $Y\subseteq X$ תהא

 $A=igcap_{i=1}^\infty \mathcal{O}_i$ עבורה קיימות פתוחות פתוחות איימות $\{\mathcal{O}_i\}_{i=1}^\infty$ עבורה קיימות עבורה איימות $A\subseteq X:G_\delta$

 $A=igcup_{i=1}^\infty \mathcal{O}_i$ סגורות המקיימות סגורות קיימות קיימות עבורה קיימות עבורה איימות $A\subseteq X:F_\delta$ מסקנה: תהא A קבוצה A אוי A קבוצה A אוי A קבוצה A קבוצה להיימות מסקנה: תהא A קבוצה להיימות מסקנה:

טענה: הקבוצות הבאות שוות

- \mathbb{R}^n אלגברה בורל על σ
- $.\sigma\left(\left\{\prod_{i=1}^{n} \left[a_i, b_i\right) \mid a_1, b_1 \dots a_n, b_n \in \mathbb{R}\right\}\right) \bullet$
- $.\sigma\left(\left\{\prod_{i=1}^n \left[a_i, b_i\right) \mid a_1, b_1 \dots a_n, b_n \in \mathbb{Q}\right\}\right) \bullet$

אזי $C\left(f
ight)=\left\{x\in\mathbb{R}\mid x$ ביפה ב־ $f
ight\}$ ותהא $f:\mathbb{R} o\mathbb{R}$ אזי משפט: תהא

- $.C(f) \in G_{\delta} \bullet$
- $.C\left(f
 ight) =X$ עבורה f אזי קיימת $X\in G_{\delta}$ תהא

.int $(\overline{A})=\varnothing$ המקיימת $A\subseteq X$ מרחב מטרי אזי מרחב מימת אזי דלילה: יהי X

 $A=igcup_{i=1}^\infty B_i$ דלילות עבורן דלילות עבורה קיימות אזי א עבורה מטרי אזי אזי מרחב מטרי אזי זהי אונה: יהי א מרחב מטרי אזי אוורה אזי א

- האשונה. מקטגוריה מקטגוריה מטרי אזי אזי מקטגוריה מקטגורייה מקטגוריה מקטגורייה מקטגוריה מקטגוריה מקטגוריה מקט

 $A^{\mathcal{C}}$ אזי יהי א מקטגוריה מטרי ותהא אות מטרי ותהא אזי איזי יהי א מרחב מטרי ותהא

למה: יהי X מרחב מטרי אזי

- . דלילה Bאזי אז
י $B\subseteq A$ ותהא דלילה דלילה דלילה \bullet
- . דלילה $\bigcup_{i=1}^n A_i$ אזי דלילות אזי $A_1 \dots A_n \subseteq X$ דלילה
 - . דלילה אזי \overline{A} דלילה אזי $A\subseteq X$ תהא

מסקנה: קבוצות דלילות מהוות אידיאל.

 $\operatorname{sint}(A)=arnothing$ אזי ראשונה אזי משפט בייר: יהי א מרחב מטרי שלם ותהא ותהא $A\subseteq X$

מסקנה: קבוצות דלילות מהוות σ ־אידיאל.

 $\mathbb{Q} \notin G_{\delta}$:מסקנה

 $A=F\uplus N$ משפט: תהא $A\subseteq\mathbb{R}$ זניחה עבורה אזי קיימת מקטגוריה משפט: תהא $A\subseteq\mathbb{R}$ אזי קיימת

משפט בנך: במרחב המטרי $\{f\in C\left([0,1]\right)\mid\exists x\in\left(0,1\right).f\in\mathcal{D}\left(x
ight)\}$ היא מקטגוריה נורמת מקסימום הקבוצה בנך: במרחב המטרי ראשונה.

הערה: "רוב" הפונקציות הרציפות לא גזירות באף נקודה.

קבורה עבורה עבורה עבורה קיימת $Q\subseteq X$ פתוחה וקיימת עבורה אזי איז מרחב מטרי אזי מרחב מטרי אזי עבורה קיימת $A\subseteq X$ מקטגוריה ראשונה עבורה $A=G\triangle Q$

 $A = F \triangle P$ מקטגוריה ראשונה עבורה $A \subseteq X$ משפט:תהא אזי (ל־A = A יש את תכונת בייר) אזי (קיימת $A \subseteq X$ סגורה וקיימת $A \subseteq X$ אזי (ל־ $A \subseteq X$ יש את תכונת בייר אזי $A \subseteq X$ בעלת תכונת בייר.

 $\{A\subseteq X\mid$ בעלת תכונת בייר $A\}=\sigma$ ($\{A\subseteq X\mid$ משפט: יהי $A\}=\sigma$ ($\{A\subseteq X\mid$ מקטגוריה ראשונה) אזי ($\{A\subseteq X\mid$ משפט: יהי אזי מרחב מטרי אזי ($\{A\subseteq X\mid$

נסמן lpha+1 נסמן, $\mathcal{F}_0=\mathcal{T}\cup\{\varnothing,\Omega\}$ נסמן $\mathcal{T}\subseteq\mathcal{P}\left(X
ight)$ נסמן אוקב X לכל סודר עוקב X

באשר $\sigma\left(\mathcal{T}\right)=\mathcal{F}_{\omega_{1}}$ אזי $\mathcal{F}_{\lambda}=\bigcup_{\alpha<\lambda}\mathcal{F}_{\alpha}$ נסמן λ נסמן λ ולכל סודר גבול $\mathcal{F}_{\alpha+1}=\mathcal{F}_{\alpha}\cup\left\{A^{\mathcal{C}}\mid A\in\mathcal{F}_{\alpha}\right\}\cup\left\{\bigcap_{n=1}^{\infty}A_{n}\mid A_{n}\in\mathcal{F}_{\alpha}\right\}$ באשר ω_{1} הסודר הגבולי הקטן ביותר שאינו בן מניה.

 $|\sigma\left(X
ight)|=\aleph$ אזי און עבורה עבורה X קבוצה עבורה טענה: תהא