Notatki z AiSD. Nr 6. 3 maja 2020

Programowanie dynamiczne

IIUWr. II rok informatyki. Opracował: Krzysztof Loryś

1 Wstęp

Zastosowanie metody Dziel i Zwyciężaj do problemów zdefiniowanych rekurencyjnie jest w zasadzie ograniczone do przypadków, gdy podproblemy, na które dzielimy problem, są niezależne. W przeciwnym razie metoda ta prowadzi do wielokrotnego obliczania rozwiązań tych samych podproblemów. Jednym ze sposobów zaradzenia temu zjawisku jest tzw. spamiętywanie, polegające na pamiętaniu rozwiązań podproblemów napotkanych w trakcie obliczeń. W przypadku, gdy przestrzeń wszystkich możliwych podproblemów jest nieduża, efektywniejsze od spamiętywania może być zastosowanie metody programowania dynamicznego. Polega ona na obliczaniu rozwiązań dla wszystkich podproblemów, począwszy od podproblemów najprostszych.

```
Przykład 1.
Problem:
Dane: Liczby naturalne n, k.
Wynik: \binom{n}{k}.
```

Naturalna metoda redukcji problemu obliczenia $\binom{n}{k}$ korzysta z zależności $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. Zastosowanie metody Dziel i Zwyciężaj byłoby jednak w tym przypadku nierozważne, ponieważ w trakcie liczenia $\binom{n-1}{k-1}$ jak i $\binom{n-1}{k}$ wywoływalibyśmy rekurencyjnie procedurę dla tych samych danych (tj. dla n-2 i k-1), co w konsekwencji prowadzi do tego, że niektóre podproblemy byłyby rozwiązywane wykładniczą liczbę razy. Poniższa procedura unika tego wykorzystując tablicę tab[1..n, 1..k] do spamiętywania.

```
\begin{array}{c} \text{for i=1 to n do} \\ \text{for } j=0 \text{ to } k \text{ do } tab_{i,j} \leftarrow ??" \\ & \dots \\ \text{function nPOk}(n,k) \\ \text{if } k=n \text{ or } k=0 \text{ then } tab_{k,n} \leftarrow 1; \text{ return } 1; \\ \text{if } tab_{n-1,k-1} = ??" \text{ then } tab_{n-1,k-1} \leftarrow \text{nPOk}(n-1,k-1) \\ \text{if } tab_{n-1,k} = ??" \text{ then } tab_{n-1,k} \leftarrow \text{nPOk}(n-1,k) \\ tab_{n,k} = tab_{n-1,k-1} + tab_{n-1,k} \\ \text{return } tab_{n,k} \end{array}
```

Rekurencyjne obliczanie $\binom{n}{k}$ z użyciem spamiętywania

Za zastosowaniem w tym przypadku programowania dynamicznego przemawia fakt, iż liczba różnych podproblemów, jakie mogą pojawić się w trakcie obliczania $\binom{n}{k}$ jest niewielka, a mianowicie $O(n^2)$. Podobnie jak w metodzie spamiętywania, algorytm dynamiczny oblicza początkowy fragment trójkąta Pascala i umieszcza go w tablicy tab. W przeciwieństwie jednak do poprzedniej metody, która jest metodą "top-down" i jest implementowana rekurencyjnie, algorytm dynamiczny jest metodą "bottom-up" i jest implementowany iteracyjnie. To pozwala w szczególności na wyeliminowanie kosztów związanych z obsługą rekursji.

```
for i = 1 to n do tab_{i,0} \leftarrow 1
function nPOk(n, k)
    for j = 1 to k do
        tab_{j,j} \leftarrow 1
        for i = j + 1 to n do tab_{i,j} \leftarrow tab_{i-1,j-1} + tab_{i-1,j}
    return tab_{n,k}
```

Obliczanie $\binom{n}{k}$ metodą programowania dynamicznego

Fakt, że metoda programowania dynamicznego oblicza w sposób systematyczny rozwiązania wszystkich podproblemów, pozwala często na poczynienie dodatkowych oszczędności w stosunku do metody spamiętywania. W tym przykładzie możemy znacznie zredukować koszty pamięciowe. Jak łatwo zauważyć, obliczenie kolejnej przekątnej trójkąta Pascala wymaga znajomości jedynie wartości z poprzedniej przekątnej. Tak więc zamiast tablicy $n \times k$ wystarcza tablica $n \times 2$, a nawet tablica $n \times 1$.

Podobnie jak w przypadku metody dziel i zwycieżaj, kluczem do zastosowania programowania dynamicznego jest znalezienie takiego sposobu dzielenia problemu na podproblemy, by optymalne rozwiązanie problemu można było w prosty sposób otrzymać z optymalnych rozwiązań podproblemów. Wskazaniem na zastosowanie wówczas programowania dynamicznego a nie metody dziel i zwyciężaj jest sytuacja, gdy sumaryczny rozmiar podproblemów jest duży. Oczywiście, jak już wspominaliśmy, aby algorytm dynamiczny był efektywny, przestrzeń wszystkich możliwych podproblemów nie może być zbyt liczna.

Przykład 2.

Problem:

Dane:Wunik:

Tablica $\{a_{i,j}\}$ liczb nieujemnych $(i=1,\ldots,n;\,j=1,\ldots,m)$ Ciąg indeksów i_1,\ldots,i_m taki, że $\forall_{j=1,\ldots,m-1}|i_j-i_{j+1}|\leq 1$, minimalizujący sumę $\sum_{j=1}^m a_{i_j,j}$ Interpretacja: Ciąg i_1,\ldots,i_m wyznacza trasę wiodącą od pierwszej do ostatniej

kolumny tablicy a. Startujemy z dowolnego pola pierwszej kolumny i kończymy na dowolnym polu ostatniej kolumny. W każdym ruchu przesuwamy się o jedno pole: albo w prawo na wprost albo w prawo na ukos (jak pokazano na rysunku 1). Chcemy znaleźć trasę o minimalnej długości rozumianej jako suma liczb z pól znajdujących sie na trasie.

Rysunek 1: Możliwe kierunki ruchu w tablicy a.

Jak łatwo sprawdzić liczba wszystkich prawidłowych tras jest wykładnicza, więc rozwiązanie siłowe nie wchodzi w rachubę.

Rozważmy najpierw nieco prostsze zadanie, polegające na znalezieniu długości optymalnej trasy. Potem pokażemy w jaki sposób zorganizować obliczenia, by wyznaczenie samej trasy było proste.

Niech $d_{i,k}$ oznacza minimalną długość trasy wiodącej od dowolnego pola pierwszej kolumny do pola $a_{i,k}$, a P(i,k) - problem wyznaczenia $d_{i,k}$. Rozwiązanie P(i,k) (dla k>1) można łatwo otrzymać z rozwiązań trzech prostszych podproblemów, a mianowicie P(i-1,k-1), P(i,k-1) i P(i+1,k-1) (w przypadku P(1,k) i P(n,k) - dwóch podproblemów). Problem spełnia więc wymagane kryterium optymalności.

Jeśli za rozmiar P(i,k) przyjmiemy wartość k, to problem rozmiaru k redukujemy do trzech podproblemów rozmiaru k-1. To zbyt skromna redukcja, by stosować metodę dziel i zwyciężaj. Z drugiej strony przestrzeń wszystkich podproblemów jest stosunkowo niewielka - składa się z nm elementów (zawiera wszystkie P(i,j) dla $i=1,\ldots,n,\ j=1,\ldots,m$), możemy więc zastosować programowanie dynamiczne.

```
\begin{array}{l} \text{for } j = 1 \text{ to } m \text{ do } d_{0,j} \leftarrow d_{n+1,j} \leftarrow \infty \\ \text{for } i = 1 \text{ to } n \text{ do } d_{i,1} \leftarrow a_{i,1} \\ \text{for } j = 2 \text{ to } m \text{ do} \\ \text{ for } i = 1 \text{ to } n \text{ do } d_{i,j} \leftarrow a_{i,j} + \min\{d_{i-1,j-1}, d_{i,j-1}, d_{i+1,j-1}\} \\ \text{return } \min\{d_{i,m} \mid i = 1, \dots, n\} \end{array}
```

Pozostaje wyjaśnić, w jaki sposób można odtworzyć optymalną trasę. Niech i_0 będzie wartością i, dla której osiągane jest $\min\{d_{i,m}\mid i=1,\ldots,n\}$, a więc $a_{i_0,m}$ jest ostatnim polem optymalnej trasy. Aby wyznaczyć przedostatnie pole wystarczy sprawdzić, która z trzech wartości $d_{j,m-1}$ (dla $j\in\{i_0-1,i_0,i_0+1\}$) jest minimalna. Postępując dalej rekurencyjnie wyznaczymy całą trasę.

```
\begin{array}{l} \textbf{procedure } \mathsf{trasa}(i,j) \\ \{ & \textbf{if } j = 1 \textbf{ then return } i \\ & \textbf{if } d_{i-1,j-1} < d_{i,j-1} \textbf{ then } k \leftarrow i-1 \textbf{ else } k \leftarrow i \\ & \textbf{if } d_{i+1,j-1} < d_{k,j-1} \textbf{ then } k \leftarrow i+1 \\ & \textbf{return } concat(\mathsf{trasa}(k,j-1),i) \\ \} \\ & \dots \\ & \textbf{write}(\mathsf{trasa}(i_0,m)) \end{array}
```

Programowanie dynamiczne jest częstą metodą rozwiązywania problemów optymalizacyjnych. Przykład 2 stanowi ilustrację klasycznego sposobu rozwiązania takiego problemu: najpierw znajdujemy wartość optymalnego rozwiązania a dopiero potem, na podstawie wyliczeń tej wartości, konstruujemy optymalne rozwiązanie.

2 Dalsze przykłady

2.1 Najdłuższy wspólny podciąg.

2.1.1 Definicja problemu

Definicja 1 Ciąg $Z = \langle z_1, z_2, \dots, z_k \rangle$ jest podciągiem ciągu $X = \langle x_1, x_2, \dots, x_n \rangle$, jeśli istnieje ściśle rosnący ciąg indeksów $\langle i_1, i_2, \dots, i_k \rangle$ $(1 \leq i_j \leq n)$ taki, że

$$\forall_{j=1,2,\ldots k} \ x_{i_j} = z_j.$$

 $Jeśli\ Z\ jest\ podciągiem\ zarówno\ ciągu\ X\ jak\ i\ ciągu\ Y\ ,\ to\ mówimy,\ że\ Z\ jest\ wspólnym\ podciągiem\ ciągów\ X\ i\ Y\ .$

KONWENCJA: Dla wygody, w dalszej części ciągi będziemy traktować jako napisy nad ustalonym alfabetem.

Przykład:

'BABA' jest wspólnym podciągiem ciągów 'ABRACADABRA' i 'RABARBAR', ale nie jest ich najdłuższym wspólnym podciągiem (dłuższym jest np. 'RAAAR').

OZNACZENIA:

- $LCS(X,Y) = \{Z \mid Z \text{ jest wspólnym podciągiem } X \text{ i } Y \text{ o maksymalnej długości} \}$
- przez X_i oznaczamy *i*-literowy prefiks ciągu $X = \langle x_1, x_2, \dots, x_n \rangle$, tj. podciąg $\langle x_1, x_2, \dots, x_i \rangle$; w szczególności przez X_0 oznaczamy ciąg pusty.

PROBLEM:

Dane: ciągi $X = \langle x_1, x_2, \dots, x_m \rangle$ i $Y = \langle y_1, y_2, \dots, y_n \rangle$ Wynik: dowolny ciąg Z z LCS(X, Y)

2.1.2 Redukcja problemu

Problem znalezienia ciągu Z z LCS(X,Y) możemy zredukować do prostszych problemów na podstawie następującej obserwacji:

- jeśli ostatnia litera X i ostatnia litera Y są takie same, to litera ta musi być ostatnim elementem każdego ciągu z LCS(X,Y).
- jeśli X i Y różnią się na ostatniej pozycji (tj. $x_m \neq y_n$), to istnieje ciąg w LCS(X,Y), który na ostatniej pozycji ma literę różną od x_m lub istnieje ciąg w LCS(X,Y), który na ostatniej pozycji ma literę różną od y_n .

W pierwszym przypadku problem znalezienia ciągu z $LCS(X_m, Y_n)$ redukujemy do podproblemu znalezienia ciągu z $LCS(X_{m-1}, Y_{n-1})$. Rozwiązaniem będzie konkatenacja znalezionego ciągu i ostatniej litery X-a. W drugim przypadku problem redukujemy do dwóch podproblemów: znalezienie ciągu z $LCS(X_{m-1}, Y_n)$ i znalezienie ciągu z $LCS(X_m, Y_{n-1})$. W tym przypadku rozwiązaniem będzie dłuższy ze znalezionych ciągów.

2.1.3 Algorytm

Najpierw koncentrujemy się na obliczeniu wartości rozwiązania optymalnego, którą w tym przypadku jest długość elementów z LCS(X,Y). Sposobu na obliczenie tej wartości dostarcza nam obserwacja poczyniona w poprzednim paragrafie.

Fakt 1 Niech $d_{i,j}$ oznacza długość elementów z $LCS(X_i, Y_j)$. Wówczas:

$$d_{i,j} = \begin{cases} 0 & \text{je\'sli } i = 0 \text{ lub } j = 0, \\ 1 + d_{i-1,j-1} & \text{je\'sli } i, j > 0 \text{ i } x_i = y_j, \\ \max(d_{i,j-1}, d_{i-1,j}) & \text{je\'sli } i, j > 0 \text{ i } x_i \neq y_j \end{cases}$$

Tablicę d możemy obliczać kolejno wierszami (lub kolumnami), a wynik odczytamy z $d_{m,n}$.

```
Procedure LCS(X_m,Y_n)
for i \leftarrow 1 to m do d_{i,0} \leftarrow 0
for j \leftarrow 0 to n do d_{0,j} \leftarrow 0
for i \leftarrow 1 to m do
for j \leftarrow 1 to n do
if x_i = y_j then d_{i,j} \leftarrow 1 + d_{i-1,j-1}
else d_{i,j} \leftarrow \max\{d_{i-1,j},d_{i,j-1}\}
```

Aby wypisać jakiś element z LCS musimy przejść tablicę d jeszcze raz, począwszy od elementu $d_{n,m}$, w podobny sposób jak to robiliśmy w Przykładzie 2.

Jeśli zależy nam na szybkości algorytmu, możemy nieco przyspieszyć tę jego fazę. W tym celu, w trakcie obliczania tablicy d, możemy w dodatkowej tablicy zapamiętywać "drogę dojścia" do poszczególnych elementów tablicy d. Elementy dodatkowej tablicy przyjmowałyby jedną z trzech różnych wartości, w zależności od tego czy $d_{i,j}$ powstał przez dodanie 1 do $d_{i-1,j-1}$, czy przez przepisanie $d_{i-1,j}$, czy też wreszcie przez przepisanie $d_{i,j-1}$.

2.1.4 Koszt algorytmu

Obliczenie każdego elementu tablicy d odbywa się w czasie stałym. Tak więc całkowity koszt wypełnienia tablicy d jest równy $\Theta(n \cdot m)$. Koszt skonstruowania najdłuższego podciągu na podstawie tablicy d jest liniowy.

2.2 Wyznaczanie optymalnej kolejności mnożenia macierzy.

2.2.1 Definicja problemu

Mamy obliczyć wartość wyrażenia \mathcal{M} postaci $M_1 \times M_2 \times \cdots \times M_n$, gdzie M_i są macierzami. Zakładamy, że wyrażenie jest poprawne, tj. liczba kolumn macierzy M_i jest równa liczbie wierszy macierzy M_{i+1} (dla $i=1,\ldots,n-1$).

Ponieważ mnożenie macierzy jest działaniem łącznym, wartość \mathcal{M} możemy liczyć na wiele sposobów. Wybór sposobu może w istotny sposób wpłynąć na liczbę operacji skalarnych jakie wykonamy podczas obliczeń.

Przykład Niech macierze M_1, M_2, M_3 mają wymiary odpowiednio $d \times 1$, $1 \times d$ i $d \times 1$. Rozważmy dwa sposoby obliczenia ich iloczynu:

- $(M_1 \times M_2) \times M_3$ W wyniku pierwszego mnożenia otrzymujemy macierz $d \times d$, więc jego koszt (niezależnie od przyjętej metody mnożenia macierzy) wynosi co najmniej d^2 . W drugim mnożeniu także musimy wykonać $\Theta(d^2)$ operacji.
- $M_1 \times (M_2 \times M_3)$ Koszt obliczenia $M_2 \times M_3$ wynosi O(d). W jego wyniku otrzymujemy macierz 1×1 , więc koszt następnego mnożenia wynosi także O(d).

Dalsze rozważania będziemy przeprowadzać przy następującym założeniu¹:

Koszt pomnożenia macierzy o wymiarach $a \times b$ i $b \times c$ wynosi abc.

¹Jest to koszt mnożenia wykonanego metodą tradycyjną; później poznamy inne, szybsze metody.

PROBLEM:

Dane: d_0, d_1, \ldots, d_n - liczby naturalne

Interpretacja: $d_{i-1} \times d_i$ - wymiar macierzy M_i .

Zadanie: Wyznaczyć kolejność mnożenia macierzy $M_1 \times M_2 \times \cdots \times M_n$, przy której koszt

obliczenia tego iloczynu jest minimalny.

2.2.2 Rozwiązanie siłowe

Rozwiązanie siłowe, polegające na sprawdzeniu wszystkich możliwych sposobów wykonania obliczeń, jest nieakceptowalne. Liczba tych sposobów dana jest wzorem

$$S(n) = \left\{ \begin{array}{ll} 1 & \text{jeśli } n=1 \\ \sum_{i=1}^{n-1} \ S(i)S(n-i) & \text{jeśli } n>1 \end{array} \right.$$

UZASADNIENIE WZORU: Każde z n-1 mnożeń występujących w ciągu $M_1 \times \ldots \times M_n$, może być ostatnim, jakie wykonamy obliczając ten iloczyn. Liczba sposobów mnożenia macierzy, w których i-te mnożenie jest ostatnim, jest równa iloczynowi $S(i) \cdot S(n-i)$ (tj. liczby sposobów, na które można pomnożyć i pierwszych macierzy oraz liczby sposobów, na które można pomnożyć n-i ostatnich macierzy).

Rozwiązaniem powyższego równania jest S(n) = n-1 liczba Catalana $= \frac{1}{n} {2n-2 \choose n-1} = \Omega(\frac{4^n}{n^2})$. Tak więc koszt sprawdzania wszystkich możliwych iloczynów jest wykładniczy.

2.2.3 Rozwiązanie dynamiczne

Zauważamy, że problem spełnia kryterium optymalności. Jeśli bowiem k-te mnożenie jest ostatnim jakie wykonamy w optymalnym sposobie obliczeń, to iloczyny $M_1 \times \ldots \times M_k$ oraz $M_{k+1} \times \ldots \times M_n$ też musiały być obliczone w optymalny sposób.

Na podstawie tej własności możemy ułożyć następujący algorytm rekurencyjny wyznaczający optymalny koszt obliczeń.

```
 \begin{aligned} & \textbf{function} \  \, matmult(i,j) \\ & \textbf{if} \  \, i = j \  \, \textbf{then} \  \, \textbf{return} \  \, 0 \\ & opt \leftarrow \infty \\ & \textbf{for} \  \, k \leftarrow i \  \, \textbf{to} \  \, j-1 \  \, \textbf{do} \\ & opt \leftarrow \min(opt, \  \, d_{j-1}d_kd_j + matmult(i,k) + matmult(k+1,j)) \\ & \textbf{return} \  \, opt \end{aligned}
```

Algorytm ten, jakkolwiek szybszy od metody siłowej, nadal działa w czasie wykładniczym $(\Theta(3^n))$. Przyczyna tkwi w wielokrotnym wykonywaniu obliczeń dla tych samych wartości parametrów (i,j). Unikniemy tego mankamentu stosując programowanie dynamiczne. Niech

$$m_{i,j} =$$
 "minimalny koszt obliczenia $M_i \times M_{i+1} \times \cdots \times M_i$ "

Dla wygody przyjmujemy, że $m_{i,j}=0$ (dla $i\geq j). Wówczas$

$$m_{i,j} = \min_{i \le k < j} (m_{i,k} + m_{k+1,j} + d_{i-1}d_kd_j).$$

Składnik $m_{i,k}$ jest kosztem obliczenia $M_i \times M_{i+1} \times \cdots \times M_k$, składnik $m_{k+1,j}$ - kosztem obliczenia $M_{k+1} \times M_{k+2} \times \cdots \times M_j$, natomiast $d_{i-1}d_kd_j$ to koszt obliczenia iloczynu dwóch powstałych macierzy.

```
\begin{aligned} & \mathbf{procedure} \ dyn - matmult(d[0..n]); \\ & \mathbf{int} m[1..n, 1..n], \ \ p[1..n, 1..n] \\ & \mathbf{for} \ \ i \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \ m_{ii} \leftarrow 0; \\ & \mathbf{for} \ \ s \leftarrow 1 \ \mathbf{to} \ n - 1 \ \mathbf{do} \\ & \mathbf{for} \ \ i \leftarrow 1 \ \mathbf{to} \ n - s \ \mathbf{do} \\ & j \leftarrow i + s \\ & m_{ij} \leftarrow \min_{i \leq k < j} (m_{i,k} + m_{k+1,j} + d_{i-1}d_kd_j) \\ & p_{ij} \leftarrow \text{"to} \ k, \ \mathsf{przy} \ \mathsf{kt\acute{o}rym} \ \mathsf{osiagane} \ \mathsf{by\acute{lo}} \ \mathsf{minimum} \ \mathsf{dla} \ m_{ij} \ \mathsf{return} \ \ p[1..n, 1..n] \end{aligned}
```

Algorytm oblicza wartości $m_{i,i+s}$ (na podstawie powyższego wzoru) oraz wartości $p_{i,i+s}$, które umożliwiają późniejsze skonstruowanie rozwiązania.

Koszt algorytmu. Tablicę $m_{i,j}$ liczymy przekątna za przekątną począwszy od głównej przekątnej. Koszt policzenia jednego elementu $m_{i,i+l}$ na s-tej przekątnej wynosi $\Theta(s)$. Ponieważ na s-tej przekątnej znajduje się n-s elementów, koszt algorytmu wynosi

$$T(n) = \sum_{s=0}^{n-1} \Theta(s) \cdot (n-s) = \Theta(n^3).$$

Odtworzenie rozwiązania Odtworzenia rozwiązania dokonujemy w standardowy sposób na podstawie tablicy p. Zwróć uwagę, że znalezienie rozwiązania na podstawie samych tylko wartości m_{ij} wymagałoby czasu $\Theta(n^2)$.