Borne supérieure dans ${\mathbb R}$

Aperçu

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de ${\mathbb R}$

Borne supérieure dans $\mathbb R$

- 1. Théorème de la borne supérieure
- 1.1 Borne supérieure
- 1.2 Borne inférieure
- 1.3 La droite achevée $\overline{\mathbb{R}}$
- 2. Les dix types d'intervalles de R

- 1. Théorème de la borne supérieure
- 1.1 Borne supérieure
- 1.2 Borne inférieure
- 1.3 La droite achevée R
- 2. Les dix types d'intervalles de ℝ

C'est *la* propriété cruciale de \mathbb{R} .

E 3

D 1 Soit A une partie de \mathbb{R} . Si l'ensemble des majorants de A admet un plus petit élément, celui-ci est appelé la borne supérieure de A et on la note sup A.

On admet la propriété fondamentale suivante

T 2 Toute partie non vide et majorée de \mathbb{R} admet une borne supérieure.

- 1. L'ensemble $\mathbb N$ n'a pas de borne supérieure dans $\mathbb R$.
- 2. La borne supérieure de [0, 1] est 1, c'est aussi son plus grand élément.
- 3. La borne supérieure de [0, 1[est 1, mais [0, 1[n'a pas de plus grand élément.

C'est la propriété cruciale de \mathbb{R} .

D 1 Soit A une partie de \mathbb{R} . Si l'ensemble des majorants de A admet un plus petit élément, celui-ci est appelé la borne supérieure de A et on la note sup A.

On admet la propriété fondamentale suivante

- T 2 Toute partie non vide et majorée de \mathbb{R} admet une borne supérieure.
- **E** 3 1. L'ensemble \mathbb{N} n'a pas de borne supérieure dans \mathbb{R} .
 - 2. La borne supérieure de [0, 1] est 1, c'est aussi son plus grand élément.
 - 3. La borne supérieure de [0,1[est 1, mais [0,1[n'a pas de plus grand élément.
- Il est faux que toute partie non vide majorée de $\mathbb Q$ admet une «borne supérieure» dans $\mathbb Q$. Par exemple avec $A = \{ x \in \mathbb Q \mid x^2 < 2 \}$. L'ensemble des rationnels qui majore A est $[\sqrt{2}, +\infty \cap \mathbb Q]$: il n'a pas de plus petit élément dans $\mathbb Q$.

$$A = \left\{ -\frac{1}{n} \mid n \in \mathbb{N}^{+} \right\} = \left\{ -1, -\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, \dots \right\}$$

Alors A n'a pas de plus grand élément et $\sup(A) = 0$.

Soit A et B deux parties non vides de \mathbb{R} . On suppose que $A \subset B$ et que B est majorée. Alors A est majorée et sup $A \leq \sup B$.

- 1. Théorème de la borne supérieure
- 1.1 Borne supérieure
- 1.2 Borne inférieure
- 1.3 La droite achevée R
- 2. Les dix types d'intervalles de $\mathbb R$

- D 6 Soit A une partie de \mathbb{R} . Si l'ensemble des minorants de A admet un plus grand élément, celui-ci est appelé la borne inférieure de A et on la note inf A.
- **T 7** Toute partie non vide et minorée de \mathbb{R} admet une borne inférieure.
- **T 8** Soit A et B deux parties non vides de \mathbb{R} . On suppose que $A \subset B$ et que B est minorée. Alors A est minorée et inf $A \geq \inf B$.
- **T 9** Soit A une partie non vide majorée de \mathbb{R} . On pose $B = \{-x \mid x \in A\}$. Alors B est minorée et inf $B = -\sup A$.

- 1. Théorème de la borne supérieure
- 1.1 Borne supérieure
- 1.2 Borne inférieure
- 1.3 La droite achevée \mathbb{R}
- 2. Les dix types d'intervalles de \mathbb{R}

On note $\overline{\mathbb{R}}$ l'ensemble $\mathbb{R} \cup \{\, -\infty, +\infty \,\}$ appelé droite numérique achevée.

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de \mathbb{R}
- 2.1 Parties convexes de \mathbb{R}
- 2.2 Caractérisation des parties convexes

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de \mathbb{R}
- 2.1 Parties convexes de \mathbb{R}
- 2.2 Caractérisation des parties convexes

D 10 Une partie I de $\mathbb R$ est **convexe** lorsque tout segment dont les extrémités sont deux éléments de I est inclus dans I, c'est-à-dire

$$\forall (x,y) \in I^2, [x,y] \subset I.$$

ou encore

$$\forall (x, y) \in I^2, \forall z \in \mathbb{R}, x \le z \le y \implies z \in I.$$

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de \mathbb{R}
- 2.1 Parties convexes de R
- 2.2 Caractérisation des parties convexes

T 11 Caractérisation des partie convexes de $\mathbb R$

Les parties convexes de $\mathbb R$ sont les suivantes, les bornes a et b étant des nombres réels.

Les intervalles ouverts, de la forme

$$\begin{aligned}]a, +\infty[&= \{ \ x \in \mathbb{R} \ | \ a < x \ \} \\]-\infty, b[&= \{ \ x \in \mathbb{R} \ | \ x < b \ \} \\]a, b[&=]-\infty, b[\cap]a, +\infty[&= \{ \ x \in \mathbb{R} \ | \ a < x < b \ \} \\]-\infty, +\infty[&= \mathbb{R} \end{aligned}$$

T 11 Caractérisation des partie convexes de ℝ

Les parties convexes de $\mathbb R$ sont les suivantes, les bornes a et b étant des nombres réels.

Les intervalles fermés, de la forme

$$[a, +\infty[= \{ x \in \mathbb{R} \mid a \le x \}]$$

$$]-\infty, b] = \{ x \in \mathbb{R} \mid x \le b \}$$

$$[a, b] =]-\infty, b] \cap [a, +\infty[= \{ x \in \mathbb{R} \mid a \le x \le b \}]$$

$$]-\infty, +\infty[= \mathbb{R}$$

Les intervalles de la forme [a, b] fermés et bornées sont aussi appelés **segments**.

T 11 Caractérisation des partie convexes de $\mathbb R$

Les parties convexes de $\mathbb R$ sont les suivantes, les bornes a et b étant des nombres réels.

Les intervalles de la forme

$$[a, b] = \{ x \in \mathbb{R} \mid a < x \le b \}$$

 $[a, b[= \{ x \in \mathbb{R} \mid a \le x < b \}]$

Ces intervalles ne sont ni ouverts, ni fermés.

T 11 Caractérisation des partie convexes de $\mathbb R$

Les parties convexes de $\mathbb R$ sont les suivantes, les bornes a et b étant des nombres réels.

L'ensemble vide : Ø.

- Noter que si b < a, alors $]a,b[=[a,b]=\emptyset$. Si a=b, on a $[a,a]=\{a\}$.
- Par ailleurs, \mathbb{R} et \emptyset sont des intervalles ouverts et fermés.

C 12 Toute intersection d'intervalles est un intervalle.