

PROJECT I PART B Page 1

The IR and UV Spectrum of Acrolein

Structure of Propenal (Acrolein)

1. Geometry of Acrolein

Construct the geometry of the acrolein molecule,

- a) by using a Z-matrix.
- b) by using the coordinates given below:

0	-1.242755	-1.344192	0.000000
U	-1.242755	-1.344192	0.000000
C	0.000000	0.741186	0.000000
C	1.219202	1.332734	0.000000
C	-0.110617	-0.794819	0.000000
Н	-0.885875	1.341286	0.000000
Н	0.775207	-1.395005	0.000000
Н	1.296116	2.400016	0.000000
Н	2.105077	0.732634	0.000000

2. Geometry Optimization of Acrolein

Optimize the molecular structure with the Gaussian program using the following methods:

- a) HF/cc-pVDZ
- b) B3LYP/cc-pVDZ

PROJECT I PART B Page 2

An example **Gaussian** input file for optimizing the acrolein is given below:

```
%chk=acrolein_opt
# HF/cc-pVDZ opt gfinput gfprint pop=full
```

Acrolein Ground state optimization

0	1			
0		-1.242755	-1.344192	0.000000
С		0.000000	0.741186	0.00000
С		1.219202	1.332734	0.00000
С		-0.110617	-0.794819	0.00000
Н		-0.885875	1.341286	0.000000
Н		0.775207	-1.395005	0.000000
Н		1.296116	2.400016	0.000000
Η		2.105077	0.732634	0.000000

(ends with a blank line)

Check the optimization convergence with the **Molden** program, or directly view the output of the **Gaussian** log file.

3. Vibrational Analysis of Acrolein

Verify that the optimization reached a minimum on the potential energy surface by performing a vibrational analysis at the optimized geometry.

```
%chk=acrolein_vib
```

HF/cc-pVDZ opt gfinput gfprint freq=raman pop=full guess=read geom=allcheck

Acrolein Vibrational Analysis at the Optimized Geometry

0 1

```
(ends with a blank line)
```

All calculated frequencies must be positive at the optimized geometry. A single negative (imaginary) frequency defines a transition state. More than one negative frequency represents a higher-order saddle point, usually without physical meaning.

PROJECT I PART B Page 3

4. Analysis of the IR Spectrum

- a) Visualize the vibrational normal modes with either **Jmol** or the **Molden** program.
- b) Assign the character of the normal modes (e.g. stretching, in-plane bending, out-of-plane bending, other deformations).
- c) Look for IR intensity and Raman activity in the Gaussian log file.
- d) Try to assign the vibrational bands in the experimental IR spectrum using the **GaussSum** program.

5. Analysis of Molecular Orbitals (MOs)

- a) Visualize the MOs with either Jmol or Molden.
- b) Sketch a qualitative MO diagram for the four highest occupied and five lowest unoccupied MOs. Both visualized MOs and energy levels should be included. Characterize the MOs by σ , σ^* , π , π^* , and n, i.e. bonding, antibonding, and non-bonding.

6. Analysis of the UV Spectrum

Calculate the UV (vertical excitation) spectrum using configuration interaction with single excitations (CIS(nstates=6)/cc-pVDZ) and time-dependent DFT (B3lYP/cc-pVDZ TD(Nstates=6)).

- a) Characterize the excitations $(\pi \to \pi^*,...)$ for the first few excited states.
- b) Compare the results of the CIS and TDDHF calculations.
- c) Compare the calculated excitation energies with the experimental UV spectrum using the **GaussSum** program.

PROJECT I PART B Page 4

Nist Chemistry Web Book (http://webBook.nist.gov/chemistry)

PROJECT I
PART B
Page 5

Nist Chemistry Web Book (http://webBook.nist.gov/chemistry)