Rudimente de probabilități

Fie S o mulțime finită nevidă ce se va numi spațiu de modelare. O submulțime $A \subset S$ se numește eveniment al lui S iar un element $a \in S$ se numește eveniment elementar. S se numește evenimentul sigur iar \emptyset se numește evenimentul nul. Fie $\mathcal{P}(S)$ mulțimea tuturor evenimentelor lui S.

Definiția 1. Se numește distribuție a probabilității în S, o funcție

$$p: \mathcal{P}(S) \to \mathbb{R}$$

 $cu\ urm {\breve a}to are le\ propriet {\breve a} {\it ti}:$

- 1. $p(A) \ge 0$ pentru orice $A \subset S$.
- 2. p(S) = 1
- 3. Dacă $A, B \subset S$ sunt evenimente (mutual) exclusive, adică $A \cap B = \emptyset$, atunci:

$$p(A \cup B) = p(A) + p(B).$$

Dacă $A\subset S$ atunci p(A) se numește probabilitatea lui A. Avem următoarele consecințe imediate:

- 1. $p(\emptyset) = 0$.
- 2. Dacă $A \subseteq B$ atunci $p(A) \le p(B)$.
- 3. Pentru orice eveniment $A \subset S$ avem $p(S \setminus A) = 1 p(A)$.
- 4. $p(A) \in [0,1]$ pentru orice eveniment A.
- 5. Dacă $A_1, A_2, \dots, A_n \subset S$ sunt evenimente două căte două exclusive, atunci

$$p(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} p(A_i).$$

6. Deoarece S este finită, este suficient să definim distribuția probabilității pe evenimente elementare. Astfel, pentru orice eveniment $A \subset S$, făcând notația $p(a) = p(\{a\}), a \in A$, avem $p(A) = \sum_{a \in A} p(a)$.

Exemplul 1. Fie $S=\{1,2,3,4,5,6\}$ mulţimea feţelor unui zar şi două probabilităţi p,q definite pe A prin p(a)=1/6 pentru orice $a\in A$ (adică zarul nu este măsluit) şi q(a)=1/9 pentru $1\leq a\leq 3$, q(4)=q(5)=1/6, q(6)=1/3. Probabilitatea ca la aruncarea zarului să apară un număr par, adică probabilitatea evenimentului $A=\{2,4,6\}$, este p(A)=1/2 în cazul lui p, respectiv q(A)=1/9+1/6+1/3=11/18 în cazul lui q.

Definiția 2. Fie S este un spațiu de modelare pe care este dată o distribuție a probabilității p. $Dacă p(a) = \frac{1}{card(S)}$ pentru orice $a \in S$, p se numește distribuția uniformă a probabilității.

Definiția 3. Fie $A, B \subset S$ două evenimente ale lui S și p o distribuție a probabilității dată pe S. Dacă p(B) > 0, probabilitatea lui A condiționată de (realizarea lui) B sau probabilitatea ca evenimentul A să se realizeze în ipoteza că evenimentul B s-a întâmplat $(p(B) \neq 0)$, este definită prin

$$p(A|B) = \frac{p(A \cap B)}{p(B)}.$$

Exemplul 2. Considerăm din nou $S = \{1, 2, 3, 4, 5, 6\}$ mulțimea fețelor unui zar și probabilitatea p, definită pe S prin p(a) = 1/6 pentru orice $a \in S$ (distribuția uniformă). Presupunem că am aruncat zarul de trei ori și s-a obținut $\{4, 5, 6\}$, deci evenimentul $B = \{4, 5, 6\}$ s-a întâmplat. Cu această presupunere, care este probabilitatea (condiționată) ca să aruncăm un număr par? Cum $A = \{2, 4, 6\}$ iar B conține două numere pare, avem: p(A|B) = (2/6)/(3/6) = 2/3.

Definiția 4. Două evenimente se zic independente dacă $p(A \cap B) = p(A)p(B)$. Dacă A, B nu sunt independente ele se numesc dependente.

Observația 1. În ipoteza $p(B) \neq 0$, condiția de independență este echivalentă cu p(A|B) = p(A).

Teorema 1. (Teorema lui Bayes) Dacă A, B sunt evenimente cu p(A) > 0, p(B) > 0 atunci p(B)p(A|B) = p(A)p(B|A).

Demonstrație: Din definiție avem $p(A|B)p(B) = p(A \cap B)$ și $p(B|A)p(A) = p(A \cap B)$. Aceasta implică aserțiunea din lemă.