

Education evenings 2016

Practical introduction to groundwater modelling

Computer exercises
02 02 Calibrating the more complex model

1

Purpose

In this exercise, we will use ModelMate to perform

- ✓ local sensitivity analysis and
- √ local optimization or calibration
- of the parameters we defined in our more complex model, and
- ✓ import the results back to ModelMuse.

-

Copy file previous exercise

- ✓ Copy file "/02_01_a_more_complex_model/ 02_01_a_more_complex_model.m mZLib" to folder "/02_02_calibrating_the_more_ complex_model/"
- ✓ Change the file name to "02_02_calibrating_the_more_complex_model.mmZLib"

2

Run MODFLOW again

- ✓ Open ModelMuse file

 "02_02_calibrating_the_more_
 complex_model.mmZLib"
- ✓ Press the Run MODFLOW-2005 button, save the name file and execute the model.
- ✓ Close ModelMonitor, the listing file and the command line window. All necessary files are now available for ModelMate.

Check model parameters

- ✓ Select Model | Manage Parameters...
- ✓ Note that we defined four parameters during the previous exercise:
 - ✓ HK_Par1 defines horizontal hydraulic conductivity in the left half of our first layer
 - ✓ HK_Par2 defines horizontal hydraulic conductivity in the right half of our first layer
 - ✓ HK_Par3 defines horizontal hydraulic conductivity in our third layer, and the vertical hydraulic conductivity of the nonsimulated second layer also depends on it
 - ✓ RCH_Par1 is multiplied with the recharge multipliers to obtain the recharge value

5

Set ModelMate executable location

- ✓ Choose Model | MODFLOW Program locations,
- ✓ fill in the ModelMate executable location ".../bch_gwmod_2016/ 05_software/ModelMate/ ModelMate 1 0 2.exe", and
- ✓ click **OK**.

Export ModelMate file

- ✓ Select File | Export | Export or Update ModelMate File,
- ✓ use file name "02_02_calibrating_the_more_ complex_model.mtc",
- make sure the Open with ModelMate checkbox is checked,
- ✓ and press Save.

7

This is what you should get

Create instruction files

- ✓ Note that ModelMuse did not automatically create instruction files allowing UCODE to adjust the parameters and read the simulated equivalents of our observations.
- ✓ Select Model | Create Instruction Files For Observations Defined In ModelMuse in ModelMate,
- ✓ and press **OK**.

9

Set program locations

- ✓ Select Project | Program locations,
- ✓ and fill in the UCODE_2005,
 MODFLOW-2005,
 Residual_analysis, and
 Residual_analysis_adv program
 names with the corresponding
 executables in the /05_software/
 folder (as in the image on the right).
- ✓ For **GW_Chart**, locate the installation folder of GW_Chart (typically in the C:/Program Files/USGS/ folder), and select the GW_Chart.exe executable.
- ✓ Then press OK.

Adjust Parameter Groups Table

- ✓ In the Parameter Groups Table, deselect Adjustable for ParamDefault, and
- ✓ select it for **HK** and **RCH**. In this way, our hydraulic conductivity and recharge parameters are included in the sensitivity analysis and parameter estimation modes.
- ✓ Set Maximum Change to 0.01 for both HK and RCH, to limit the size of parameter changes in one parameter-estimation iteration.

11

Perform forward simulation

- Check if the Forward UCODE mode is selected,
- ✓ press Create UCODE Input Files,
- ✓ and click **OK**.
- ✓ Then click on the **Run UCODE** button,
- ✓ and click **Yes** to start the UCODE run.

Check normal terminations of codes

- ✓ In the command line window, check for normal terminations of MODFLOW and UCODE.
- ✓ Also note the SUM OF SQUARED, WEIGHTED RESIDUALS, which is about 215 with our initial parameter values.
- ✓ Close the command line window.

10

Plot observations vs simulated equivalents (1/2)

✓ Select **Postprocessing | GW_Chart**, or use the corresponding button to bring up the observed compared to simulated values graph.

✓ Note this plot is not very useful because of the differences in magnitude between the head and river observations.

Plot observations vs simulated equivalents (2/2)

- ✓ Therefore, select Model Fit | default_project._ww in the File: drop-down list.
- ✓ This displays the weighted observed compared to the weighted simulated values, which is more informative in this case.

File: default_project._ww

15

Perform sensitivity analysis

- ✓ Now select the Sensitivity Analysis mode,
- ✓ press Create UCODE Input Files,
- ✓ and click OK.
- ✓ Then click on the **Run UCODE** button,
- ✓ and click Yes to start the UCODE run.

Visualize composite scaled sensitivities

- Close the command line window after it has finished,
- ✓ and launch GW_Chart again.
- ✓ Now select O-Par Sens
 Analysis |
 default_project._sc in the File:
 drop-down list.
- ✓ This displays the bar chart of composite scaled sensitivities (indicating parameter importance to all observations).

Visualize dimensionless scaled sensitivities

- ✓ Now select O-Par Sens Analysis | default_project._sc in the File: dropdown list.
- ✓ This displays the dimensionless scaled sensitivity for each observation by parameter (indicating the effect of each parameter on each observation).

10

Perform parameter estimation

- Now select the Parameter Estimation mode,
- ✓ press Create UCODE Input Files,
- ✓ and click OK.
- ✓ Then click on the Run UCODE button,
- ✓ and click Yes to start the UCODE run.

Visualize parameter evolution (1/2)

- Close the command line window after it has finished,
- ✓ and launch GW_Chart again.
- ✓ Now select Parameter Values | default_project._pa in the File: dropdown list.
- ✓ This displays the evolution of the different parameters with respect to their initial values.

21

Visualize parameter evolution (2/2)

✓ Deselect the Divide parameter values by their initial values to display the actual evolution of the different parameters.

Visualize model performance evolution

- ✓ Now select Model Fit | default_project._ss in the File: drop-down list.
- ✓ This displays the sum of squared, weighted residuals for each parameter-estimation iteration.

2:

View the UCODE main output file

- ✓ Select View | UCODE Main Output File,
- ✓ and scroll down to the bottom of the viewer window.
- ✓ Just before the end of the file, you should find the table on the right, which also provides the sum of squared weighted residuals for each parameter-estimation iteration.

Import calibrated parameters in ModelMate

- ✓ Select File | Import | Optimized Parameters (_paopt file)...,
- confirm replacing the current parameter values by clicking
 Yes,
- ✓ and select File | Save Project, or use the corresponding button.

20

Import calibrated parameters in ModelMuse

- Return to the ModelMuse window,
- ✓ and select
 File | Import | ModelMate Values.
- ✓ Choose

 "02_02_calibrating_the_more_co
 mplex model.mtc",
- ✓ and press Open.

Check if parameters have changed

✓ Select Model | Manage
Parameters... to see if the
parameter values in ModelMuse
have actually been modified.

27

Run model and visualize calibrated results

Education evenings 2016

Practical introduction to groundwater modelling

Computer exercises
02 02 Calibrating the more complex model

Questions? Found an error?
Please contact B. Rogiers at brogiers@sckcen.be.