Methylation-Selection Analysis Toolkit

A comprehensive computational framework for inferring differential selection pressures across methylation states and mutation origins in cancer genomics.

Table of Contents

- Overview
- Scientific Background
- Installation
- Quick Start
- Complete Workflow
- Tools Description
- Configuration
- Output Interpretation
- Advanced Usage
- Troubleshooting

Overview

This toolkit implements a novel methodology to study how DNA methylation states influence evolutionary selection pressures on both germline and somatic mutations. The framework integrates multi-omics data to reveal methylation-dependent genetic constraints and their implications for cancer evolution.

Key Features

- Comprehensive methylation classification with multiple algorithms
- Multi-format mutation annotation (VCF, TSV) with functional consequences
- Advanced selection inference using dN/dS ratios, site frequency spectra, and Bayesian methods
- Statistical comparison framework with permutation testing and effect size estimation
- Automated pipeline orchestration with quality control and validation
- Publication-ready visualizations and comprehensive reports

Scientific Innovation

- Joint modeling of methylation state and mutation origin
- Context-specific selection coefficients revealing epigenetic-genetic interactions
- Tumor evolution pathway preferences identification
- Novel therapeutic target discovery through synthetic vulnerability mapping

Scientific Background

Hypothesis

DNA methylation state modulates selection pressures through multiple mechanisms:

Hypomethylated Regions: - Open chromatin structure - Active transcription and repair machinery - Stronger purifying selection - Higher functional constraint

Hypermethylated Regions:

- Closed chromatin structure - Transcriptional silencing - Relaxed selection pressure - Reduced repair efficiency

Differential Origins: - Germline mutations: Population-level evolutionary constraints - **Somatic mutations**: Tumor-specific selection advantages

Statistical Framework

The toolkit employs multiple complementary approaches:

- 1. dN/dS Analysis: Classic molecular evolution metric with confidence intervals
- 2. Site Frequency Spectrum: Population genetics approach for selection inference
- 3. McDonald-Kreitman Tests: Comparative method using polymorphism vs divergence
- 4. Bayesian Hierarchical Models: Account for gene-level and patient-level effects
- 5. Permutation Testing: Robust significance assessment with multiple testing correction

Installation

Prerequisites

```
pip install pandas numpy scipy matplotlib seaborn
pip install scikit-learn pybedtools pysam PyVCF3
pip install argparse pathlib datetime pyyaml
```

Python Requirements (>=3.8)

R Requirements (>=4.0)

```
# BEDTools for genomic interval operations
sudo apt-get install bedtools
# Optional: VEP for variant annotation
# Follow installation instructions at: https://ensembl.org/info/docs/tools/vep/
```

External Tools

Installation Steps

1. Clone the repository:

```
git clone https://github.com/your-repo/methylation-selection-toolkit.git
cd methylation-selection-toolkit
```

2. Set up Python environment:

```
python -m venv methylation_env
source methylation_env/bin/activate
pip install -r requirements.txt
```

3. Verify R packages:

```
Rscript -e "library(tidyverse); library(lme4); cat('R packages loaded successfully\n')"
```

4. Test installation:

```
python methylation_selection_pipeline.py --create-config
python data_validation_utils.py --help
```

Quick Start

1. Create Configuration File

```
python methylation_selection_pipeline.py --create-config
```

This creates example_config.yaml with all parameters. Edit the file paths:

```
input_files:
    methylation_data: "/path/to/your/methylation_data.bedgraph"
    germline_mutations: "/path/to/your/germline_variants.vcf"
    somatic_mutations: "/path/to/your/somatic_variants.vcf"
# ... additional optional files
```

2. Validate Your Data

```
python data_validation_utils.py \
    --methylation-data /path/to/methylation_data.bedgraph \
    --germline-mutations /path/to/germline_variants.vcf \
    --somatic-mutations /path/to/somatic_variants.vcf \
    --create-plots \
    --output validation_results/
```

3. Run Complete Pipeline

```
python methylation_selection_pipeline.py \
   --config your_config.yaml \
   --output results/
```

4. View Results

```
# Main results directory
ls results/

# Key files:
# - comprehensive_analysis_report.html (if generated)
# - comprehensive_analysis.png (main plots)
# - selection_analysis_selection_metrics.tsv (raw metrics)
# - ANALYSIS_SUMMARY.txt (executive summary)
```

Complete Workflow

The analysis consists of five main steps:

Step 1: Methylation Classification

```
python methylation_classify.py \
    --input methylation_data.bedgraph \
    --output methylation_classified.bed \
    --method threshold \
    --hypo-threshold 0.3 \
    --hyper-threshold 0.7 \
    --cpg-islands cpg_islands.bed \
    --plot-output methylation_distribution.png
```

Input formats supported: - BedGraph: chr start end methylation_level - Bismark: Standard Bismark cytosine report - Custom: Tab-separated with required columns

Classification methods: - threshold: Simple cutoff-based (default) - adaptive: Data-driven percentile thresholds

- kmeans: Unsupervised clustering approach

Step 2: Mutation Annotation

```
python annotate_mutations.py \
    --germline germline_variants.vcf \
    --somatic somatic_variants.vcf \
    --methylation-regions methylation_classified.bed \
    --output mutations_annotated.tsv \
    --vep-annotations vep_output.txt \
    --cadd-scores cadd_scores.tsv \
    --calculate-burdens \
    --calculate-selection
```

Features: - Multi-format mutation support (VCF, TSV) - Functional annotation integration (VEP, ANNO-VAR, CADD) - Methylation state assignment with distance metrics - Preliminary selection metric calculation

Step 3: Selection Calculation

```
Rscript calculate_selection.R \
--mutations mutations_annotated.tsv \
--output selection_analysis \
--gene-lengths gene_lengths.tsv \
--min-mutations 5 \
--bootstrap-n 1000 \
--cores 4
```

Statistical methods: - dN/dS ratios with confidence intervals and neutrality tests - Site frequency spectrum metrics (Tajima's D, Fu & Li's D) - McDonald-Kreitman test statistics

 $\textbf{- Bayesian hierarchical} \ \ \text{selection estimation} \ \textbf{- Mixed-effects models} \ \ \text{with gene-level random effects}$

Step 4: Comprehensive Comparison

```
Rscript compare_selection.R \
--selection-scores selection_analysis_selection_metrics.tsv \
--mutations mutations_annotated.tsv \
--output comprehensive_analysis \
--permutations 10000 \
--generate-report
```

Advanced analyses: - Permutation testing (10,000 replicates) for robust significance - Effect size estimation (Cohen's d) with confidence intervals - Multiple testing correction (Benjamini-Hochberg) - Bayesian multilevel modeling with complex interactions - Publication-ready visualizations and HTML reports

Step 5: Quality Control

Automated quality control includes: - Input/output file validation - Pipeline execution monitoring - Performance metrics tracking - Data integrity checks - Comprehensive reporting

Tools Description

Core Analysis Tools

1. methylation_classify.py Purpose: Classify genomic regions by methylation state

Key features: - Multiple classification algorithms (threshold, adaptive, k-means) - Genomic context integration (CpG islands, promoters, enhancers) - Regional analysis with sliding windows - Comprehensive validation and visualization

Output: BED file with methylation classifications, summary statistics, distribution plots

2. annotate_mutations.py Purpose: Annotate mutations with methylation states and functional consequences

Key features: - Multi-format input support (VCF, TSV) - Methylation state assignment with distance calculation - Functional annotation integration (VEP, ANNOVAR, CADD, conservation scores) - Mutation burden calculation - Preliminary selection metrics

Output: Comprehensive mutation annotation file, burden statistics, selection metrics

3. calculate_selection.R Purpose: Calculate comprehensive selection metrics

 $\label{eq:Key features: - dN/dS calculation with proper statistical framework - Site frequency spectrum analysis - McDonald-Kreitman tests - Bayesian hierarchical modeling - Bootstrap confidence intervals - Mixed-effects modeling with gene-level random effects$

Output: Selection metrics table, statistical test results, model summaries

4. compare_selection.R Purpose: Advanced statistical comparison and visualization

Key features: - Comprehensive permutation testing - Effect size estimation with confidence intervals - Multiple testing correction - Bayesian multilevel modeling - Publication-ready visualizations - HTML report generation

Output: Comparison results, effect sizes, comprehensive plots, HTML report

Utility Tools

5. methylation_selection_pipeline.py Purpose: Complete pipeline orchestration

Key features: - Configuration-based execution - Automatic dependency tracking - Error handling and recovery - Quality control integration - Performance monitoring - Comprehensive logging

6. data_validation_utils.py Purpose: Comprehensive data validation and quality control

Key features: - Multi-format file validation - Data integrity checks - Quality metrics calculation - Validation plots generation - Detailed reporting with recommendations

Configuration

Configuration File Structure

```
input_files:
    # Required files
methylation_data: "/path/to/methylation.bedgraph"

# At least one mutation file required
germline_mutations: "/path/to/germline.vcf"
somatic_mutations: "/path/to/somatic.vcf"

# Optional annotation files
cpg_islands: "/path/to/cpg_islands.bed"
promoters: "/path/to/promoters.bed"
enhancers: "/path/to/enhancers.bed"
```

```
# Optional functional annotations
 vep_annotations: "/path/to/vep_output.txt"
 annovar_annotations: "/path/to/annovar_output.txt"
 cadd scores: "/path/to/cadd scores.tsv"
 conservation_scores: "/path/to/conservation.tsv"
 gene_lengths: "/path/to/gene_lengths.tsv"
parameters:
 # Methylation classification
 hypo_threshold: 0.3
                                    # Hypomethylation cutoff
 hyper_threshold: 0.7
                                    # Hypermethylation cutoff
 classification_method: "threshold" # threshold, adaptive, or kmeans
                                   # bedgraph, bismark, or custom
 methylation_format: "bedgraph"
 # Mutation processing
                                    # vcf or table
 germline_format: "vcf"
 somatic_format: "vcf"
                                    # vcf or table
 # Analysis parameters
 regional analysis: true
                                   # Enable regional methylation analysis
 window size: 1000
                                    # Regional analysis window size
                                 # Minimum mutations for gene analysis
 min_mutations_per_gene: 5
 bootstrap iterations: 1000
                                  # Bootstrap replicates
 permutation_tests: 10000
                                    # Permutation test replicates
 # Statistical parameters
 fdr method: "BH"
                                    # Multiple testing correction method
 effect_size_threshold: 0.1
                                    # Minimum meaningful effect size
 significance_threshold: 0.05
                                    # Alpha level
 confidence_level: 0.95
                                    # Confidence interval level
 # Computational parameters
 cores: 4
                                    # Number of CPU cores
 continue_on_failure: false
                                    # Continue pipeline on step failure
output_settings:
 cleanup intermediates: false
                                    # Remove intermediate files
 generate html report: true
                                    # Generate HTML report
 create_plots: true
                                    # Generate visualization plots
```

Parameter Tuning Guidelines

```
Methylation Thresholds: - Conservative: 0.2 \text{ (hypo)} / 0.8 \text{ (hyper)} - Strict classification - Standard: 0.3 \text{ (hypo)} / 0.7 \text{ (hyper)} - Balanced approach - Liberal: 0.4 \text{ (hypo)} / 0.6 \text{ (hyper)} - More intermediate states Statistical Parameters: - Permutation tests: 1,000 \text{ (quick)} / 10,000 \text{ (standard)} / 100,000 \text{ (publication)} - Bootstrap iterations: 100 \text{ (quick)} / 1,000 \text{ (standard)} / 10,000 \text{ (precise)} - Min mutations per gene: 3 \text{ (liberal)} / 5 \text{ (standard)} / 10 \text{ (conservative)} Effect Size Interpretation: - Small effect: |\mathbf{d}| = 0.2 - Medium effect: |\mathbf{d}| = 0.5 - Large effect: |\mathbf{d}| = 0.8
```

Output Interpretation

Key Output Files

1. Selection Metrics Table (selection_metrics.tsv)

gene_symbol	methylation_class	mutation_origin	dnds	ci_lower	ci_upper	p_value
TP53	hypomethylated	germline	0.324	0.156	0.492	0.001
TP53	hypermethylated	germline	0.756	0.423	1.089	0.234
KRAS	hypomethylated	somatic	1.234	0.987	1.481	0.012

Key columns: - dnds: Selection coefficient (< 1 = purifying, > 1 = positive, = 1 = neutral) - ci_lower/ci_upper: 95% confidence intervals - p_value: Test for deviation from neutrality (dN/dS = 1)

2. Effect Sizes Table (effect_sizes.csv)

```
comparison cohens_d ci_lower ci_upper magnitude hypomethylated_vs_hypermethylated_germline -0.524 -0.789 -0.259 Medium germline_vs_somatic_hypomethylated 0.312 0.078 0.546 Small
```

Interpretation: - Negative Cohen's d: First group has lower dN/dS (stronger selection) - Positive Cohen's d: First group has higher dN/dS (weaker selection) - Confidence intervals: Significant if CI doesn't include 0

3. Permutation Results (permutation_results.csv)

test_statistic	observed_value	p_value	significant
hypo_vs_hyper_germline	-0.234	0.0023	TRUE
germ vs som hypomethylated	0.156	0.0456	TRUE

Biological Interpretation

Typical Patterns Pattern 1: Methylation-Dependent Selection - Hypomethylated regions: dN/dS < 1 (strong purifying selection) - Hypermethylated regions: dN/dS = 1 or > 1 (relaxed/positive selection) - Interpretation: Open chromatin enables efficient selection against deleterious mutations

Pattern 2: Origin-Specific Effects

- Germline mutations: Generally stronger selection (lower dN/dS) - Somatic mutations: Context-dependent selection patterns - **Interpretation**: Population-level vs. tumor-specific constraints

Pattern 3: Gene-Specific Modulation - Essential genes: Strong selection regardless of methylation - Non-essential genes: Methylation-dependent selection patterns - Interpretation: Functional importance overrides epigenetic context

Statistical Significance

P-value interpretation: - p < 0.001: Highly significant departure from neutrality - p < 0.01: Significant selection - p < 0.05: Weak evidence for selection

- p >= 0.05: No evidence for selection (potentially neutral)

Effect size guidelines: - |Cohen's d| < 0.2: Trivial effect - 0.2 <= |Cohen's d| < 0.5: Small effect - 0.5 <= |Cohen's d| < 0.8: Medium effect

- |Cohen's d| >= 0.8: Large effect

Clinical Implications

Therapeutic Target Identification: 1. Hypermethylated oncogenes with relaxed selection \rightarrow Demethylating agents 2. Hypomethylated tumor suppressors with strong selection \rightarrow Synthetic lethality approaches 3. Context-specific vulnerabilities \rightarrow Precision therapy strategies

Biomarker Development: 1. Selection signature scores for prognosis 2. Methylation-mutation interaction patterns for treatment response 3. Evolutionary trajectory prediction for resistance mechanisms

Advanced Usage

Custom Analysis Workflows

1. Gene Set Enrichment Analysis

```
# Analyze selection changes over tumor evolution stages
import pandas as pd
import numpy as np

def temporal_selection_analysis(mutations_df, time_points):
    """
    Analyze selection patterns across tumor evolution stages
    """
    results = []

for time_point in time_points:
    subset = mutations_df[mutations_df['time_point'] == time_point]
```

2. Temporal Analysis

```
# Compare selection patterns across cancer types
compare_cancer_types <- function(selection_data) {</pre>
  # Group by cancer type and methylation class
  cancer_comparison <- selection_data %>%
    group_by(cancer_type, methylation_class, mutation_origin) %>%
    summarise(
      median_dnds = median(dnds, na.rm = TRUE),
      iqr_dnds = IQR(dnds, na.rm = TRUE),
      n_{genes} = n(),
      .groups = "drop"
   )
  # Statistical testing
  pairwise_results <- cancer_comparison %>%
   group_by(methylation_class, mutation_origin) %>%
   do(model = aov(median_dnds ~ cancer_type, data = .)) %>%
      p_value = map_dbl(model, ~ summary(.)[[1]][["Pr(>F)"]][1]),
      significant = p_value < 0.05
  return(list(comparison = cancer_comparison,
              statistics = pairwise_results))
```

3. Multi-Cancer Comparison

Integration with Existing Pipelines

```
# Download and process TCGA data
def process_tcga_data(cancer_type):
    # Download methylation data
    meth_data = download_tcga_methylation(cancer_type)
```

```
# Download mutation data
mut_data = download_tcga_mutations(cancer_type)

# Process for pipeline
meth_processed = process_methylation_for_pipeline(meth_data)
mut_processed = process_mutations_for_pipeline(mut_data)

return meth_processed, mut_processed

# Usage
meth_data, mut_data = process_tcga_data("BRCA")
```

1. TCGA Data Integration

```
# Integrate with single-cell methylation data
process_sc_methylation <- function(sc_meth_data, cell_annotations) {</pre>
  # Aggregate by cell type
  celltype_meth <- sc_meth_data %>%
   left_join(cell_annotations, by = "cell_id") %>%
    group_by(cell_type, genomic_region) %>%
   summarise(
      mean_methylation = mean(methylation_level),
      cell_count = n(),
      .groups = "drop"
   )
  # Create cell-type-specific methylation profiles
  celltype_profiles <- celltype_meth %>%
   pivot_wider(names_from = cell_type,
                values_from = mean_methylation)
 return(celltype_profiles)
}
```

2. Single-Cell Integration

Performance Optimization

```
# Process large datasets in chunks
def process_large_methylation_file(filepath, chunk_size=100000):
    """
    Process methylation files too large for memory
    """
    chunk_results = []

for chunk in pd.read_csv(filepath, sep='\t', chunksize=chunk_size):
    # Process chunk
```

1. Large Dataset Handling

```
# Parallelize selection calculations
library(parallel)
library(foreach)
library(doParallel)

# Setup parallel backend
cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)

# Parallel selection calculation
selection_results <- foreach(gene = unique_genes, .combine = rbind) %dopar% {
   gene_data <- mutations_df[mutations_df$gene_symbol == gene, ]
   calculate_gene_selection(gene_data)
}
stopCluster(cl)</pre>
```

2. Parallel Processing

Troubleshooting

Common Issues and Solutions

1. Memory Issues Problem: Pipeline fails with memory errors on large datasets Solutions:

```
# Increase system memory limits
ulimit -v 16777216 # 16GB virtual memory

# Use chunked processing
python methylation_classify.py --chunk-size 50000

# Enable memory-efficient mode
python annotate_mutations.py --memory-efficient
```

2. R Package Dependencies Problem: Missing R packages cause script failures Solutions:

```
# Install missing packages
install.packages(c("lme4", "lmerTest", "emmeans"))

# Install Bioconductor packages
BiocManager::install(c("GenomicRanges", "rtracklayer"))

# Check package versions
packageVersion("lme4") # Should be >= 1.1-26
```

3. File Format Issues Problem: Input files not recognized or parsed correctly **Solutions:**

```
# Validate file formats
python data_validation_utils.py --methylation-data input.bedgraph

# Convert between formats
# BedGraph to custom format
awk 'OFS="\t" {print $1, $2, $3, $4, ".", "+"}' input.bedgraph > output.bed

# Fix chromosome naming
sed 's/^chr//' input.bed > output_nochr.bed
```

4. Statistical Convergence Issues Problem: Mixed-effects models fail to converge Solutions:

5. Low Statistical Power Problem: Few significant results due to insufficient data Solutions:

Performance Benchmarks

Typical Runtime Expectations

Dataset Size	Step 1	Step 2	Step 3	Step 4	Total
Small (1M sites, 10K mutations)	5 min	10 min	15 min	20 min	50 min
Medium (10M sites, 100K mutations)	30 min	45 min	1.5 hr	2 hr	4.5 hr
Large (100M sites, 1M mutations)	3 hr	4 hr	8 hr	12 hr	27 hr

Memory Requirements

Dataset Size	RAM Required	Disk Space	Cores Recommended
Small	4 GB	10 GB	2-4
Medium	16 GB	$50~\mathrm{GB}$	4-8
Large	64 GB	$200~\mathrm{GB}$	8-16

Getting Help

```
# Check pipeline logs
tail -f results/pipeline.log

# Search for errors
grep -i "error\|failed" results/pipeline.log

# Check validation results
cat results/quality_control_report.txt
```

1. Log File Analysis

```
# System information
python --version
R --version
bedtools --version

# Package versions
python -c "import pandas; print(pandas.__version__)"
Rscript -e "packageVersion('lme4')"
```

2. Diagnostic Information

```
# Generate synthetic test data
python generate_test_data.py --output test_data/

# Run pipeline on test data
python methylation_selection_pipeline.py --config test_config.yaml --output test_results/
```

3. Test Data

Citation

If you use this toolkit in your research, please cite:

[Your Citation Here]

Methylation-Selection Analysis Toolkit: A comprehensive framework for inferring differential selection pressures across methylation states in cancer genomics.

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

License

This project is licensed under the MIT License - see LICENSE file for details.

Acknowledgments

- Research supported by [Your Funding Sources]
- Built with open-source tools: pandas, R/tidyverse, BEDTools
- Inspired by evolutionary genomics and cancer biology communities