Esercizio simulazione Monte-Carlo

Lorenzo Tasca

Dipartimento di Fisica "Giuseppe Occhialini" Università degli Studi di Milano-Bicocca

Aprile 2024

$$N = 25, E_{min} = -8 \, eV$$

$$N = 25, E_{min} = -8 \, eV$$

$$N = 25, E_{min} = -8 \, eV$$

$$N = 27, E_{min} = -8.6 \, eV$$

$$N = 27, E_{min} = -8.6 \, eV$$

$$N = 27, E_{min} = -8.6 \, eV$$

Obtain minimum energy configuration for different values of N

Obtain minimum energy configuration for different values of N

Obtain minimum energy configuration for different values of N

Zero temperature MC, energy variation with N

Zero temperature MC, μ variation with N

Zero temperature MC, number of neighbours variation with N

$$T = 4 K$$

$$T = 4 K$$

 $T = 604 \, K$

 $T = 604 \, K$

 $T = 1904 \, K$

T = 1904 K

Mean energy variation with temperature

Mean energy variation with temperature

Minimum energy configuration variation with J_0 Final configuration, J0=-0.1 eV

Minimum energy configuration variation with J_0 Final configuration, J0=0.1 eV

N1/N @ T = 0 K

N1/N @ T = 500 K

N1/N@T = 1000 K

N1/N@T = 1000 K

N1/N@T = 1000 K

