Contents

Chapter 6 확률분포

- 6.2 확률변수
- 6.3 이산확률변수와 확률분포
- 6.4 확률분포의 기댓값(평균)과 표준편차
- 6.5 두 확률변수의 확률분포
- 6.6 공분산과 상관계수

01 확률변수

확률변수 (Random variable)

: 각각의 근원사건들에 실수값을 내응시키는 함수, 표본공간에서 정의된 실수로의 함수 X, Y, \dots 등으로 표시

$$X:\Omega\to R$$

예) 동전을 2번 던지는 실험 : $\Omega = \{HH, HT, TH, TT\}$

예) 주사위를 던지는 실험 : $\Omega = \{1, 2, 3, 4, 5, 6\}$

- ① 이산확률변수: 확률변수가 가질 수 있는 값들이 유한하거나 무한하더라도 셀 수 있는 경우
- ② 연속확률변수 : 연속적인 구간에 속하는 모든 값을 다 가질 수 있는 경우

예제1) 확률변수 X: 3명 중에서 A 회사 제품의 승용차를 소유한 사람의 수

$$P(X = 0) = \frac{1}{8}, P(X = 1) = \frac{3}{8}, P(X = 2) = \frac{3}{8}, P(X = 3) = \frac{1}{8}$$

• 2.1, 2.2

02 이산확률변수와 확률분포

- 확률분포(Probability distribution)
 - : 확률변수가 갖는 값들과 그에 대응하는 확률값을 나타낸 것으로 나열된 표나 수식으로 표현 (보통은 확률변수 X의 분포라고 한다)
- 확률질량함수 (확률함수)

$$f_{X}(x_{i}) = P(X = x)$$

모든 x_i 에 대해 $0 \le f_X(x_i) \le 1$ 이고 $\sum f_X(x_i) = 1$ 를 만족

확률분포(표) $X f_X(x) = P(X = x)$ $x_1 f_X(x_1)$ $x_2 f_X(x_2)$ $\vdots \vdots$ $x_k f_X(x_k)$ 합계 1

• 확률분포표의 예시

동전을 2번 던지기

X	$f_X(x) = P(X = x)$
0	1/4
1	1/2
2	1/4
합계	1

X: 是对是 好程是 20叶

X	$f_X(x) = P(X = x)$
1	1/2
2	1/4
3	1/8
4	1/16
:	:
합계	1

X: 331 전半 其子

• 예제 3) 확률변수 X: 세 명 중 구두를 구매한 학생의 수

X	$f_X(x) = P(X = x)$
0	· · · · · · · · · · · · · · · · · · ·
1	3/3 ← 1 の · 1 それが変
2	3/6 ← 2% 1 30世年
3	हि ८ अलू । स्थास्ट्र
\overline{X}	
합계	1

- 예제 4
- 예제 5
- 3.1, 3.20

03 확률분포의 기댓값과 표준편차

• 기댓값 (Random variable) : 확률분포의 모평균 (모집단의 평균)

$$E(X) = \mu_{x}$$
 $\Rightarrow \mathcal{M}_{X}$.
= $\sum ($ 확률변수가 취하는 값 $) \times ($ 그 값을 가질 확률 $)$
= $\sum x_{i} \times P(X = x_{i}) = \sum x_{i} \times f_{X}(x_{i})$

X	$f_X(x) = P(X = x)$
0	1/8
1	3/8
2	3/8
3	1/8
합계	1

$xf_X(x)$
0 · 1/8
1 · 3/8
2 · 3/8
3 · 1/8

$$E(X) = \sum x_i \times f_X(x_i)$$

= $0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = 1.5$

1/2> (2) (1) (1)

Chapter 6 확률분포
설치, 발산은 올전환은 장에 위해 어뀉수 없이 건비하는 것이다.
(설산은 설짜 재미 의에 된다.)

• 분산 (Variance) : 확률분포의 모분산 (모집단의 분산) 모평균으로부터의 편차 제곱의 기대값으로 정의됨

$$Var(X) = \sigma_X^2 = \sum (x_i - \mu_X)^2 \times f_X(x_i)$$

• 분산의 계산식

$$Var(X) = E(X^2) - (E(X))^2 = \sum x_i^2 f_X(x_i) - \mu_X^2$$

•
$$E(X - \mu_X)^2 = E(X^2 - 2\mu_X X + \mu_X^2) = E(X^2) - 2\mu_X E(X) + \mu_X^2 = E(X^2) - \mu_X^2$$

• 표준편차 (Standard Deviation) : 확률분포의 모표준편차 (모집단의 표준편차) 모분산의 양의 제곱근

$$sd(X) = +\sqrt{Var(X)} = \sigma_X$$

예제 8

• 예제 9

X	$f_X(x) = P(X = x)$	$xf_X(x)$	$X - \mu_X$	$(X-\mu_X)^2$	$(X-\mu_X)^2 f_X(x)$	$x^2 f_X(x)$
0	0.1	0	-2	4	0.4	0
1	0.2	0.2	-1	1	0.2	0.2
2	0.4	0.8	0	0	0	1.6
3	0.2	0.6	1	1	0.2	1.8
4	0.1	0.4	2	4	0.4	1.6
합계	1.0	$2.0 = \mu_X$	0	10	$1.2 = \sigma_X^2$	5.2

$$\sum (x_i - \mu_X)^2 \times f_X(x_i) = 1.2$$
, $E(X^2) - \mu_X^2 = 5.2 - 4 = 1.2$

4.1, 4.5, 4.6, 4.11, 4.12

• 통계적추론과 확률분포 통계적 추론을 위해서는 먼저 모집단에 대해 분포가정을 해야 한다. 예) 어떤 자료(변수 X)가 "OO한 확률분포를 따른다" 라고 가정하는 것. 모집단의 확률분포 표본으로부터 얻어진

고집단의 확률분포 (참 확률분포) .

X	$f_X(x)$			
x_1	$f_X(x_1)$			
:	:			
χ_m	$f_X(x_m)$		$f_X(x_2)$	
Σ_x	1	$f_X(x_1)$		 $f_X(x_k)$
		x_1	x_2	 x_k

모집단의 중심위치의 척도 : μ_X 모집단의 퍼진정도의 척도 : σ_X^2 (성운 $\int d_X$)

※ 이렇게 모집단의 특성을 나타내는 값을 모수 (parameter)라고 함

(모집단에 대한) 추정된 확률분포

표본의 중심위치의 척도 : \bar{X} 표본의 퍼진정도의 척도 : S_x^2 ($\mathbf{5}$ 는 $\mathbf{5}$ \mathbf{x})

※ <mark>모수</mark>에 대한 추론을 위해 표본으로부터 계산 되는 양을 통계량(statistic)라고 함

04 두 확률변수의 결합분포

• 확률변수 X와 Y의 결합확률분포(Joint probability distribution) : X가 취하는 값과 Y가 취하는 값의 각 쌍에 대응되는 확률

For
$$X = (x_1, \dots, x_m)$$
, $Y = (y_1, \dots, y_n)$, $i = (1, \dots, m)$, $j = (1, \dots, n)$

$$f(x_i, y_j) = P(X = x_i, Y = y_j)$$

	y_1	y_2	•••	y_n
x_1	$f(x_1, y_1)$	$f(x_1, y_2)$	•••	$f(x_1, y_n)$
x_2	$f(x_2, y_1)$	$f(x_2,y_2)$	•••	$f(x_2, y_n)$
:	:	:	:	:
x_m	$f(x_m, y_1)$	$f(x_m, y_2)$	•••	$f(x_m, y_n)$

예제 10

Chapter 6 확률분포 X = { X1, X2, X3, X4;···, Xn}

• X와 Y의 주변확률분포(Marginal probability distribution) : X와 Y의 결합확률분포로부터 다음의 식으로 계산된 개별 확률변수 X, Y의 확률분포

$$f_X(x_i) = P(X = x_i) = \sum_{y} f(x_i, y_j), f_Y(y_j) = P(Y = y_j) = \sum_{x} f(x_i, y_j)$$

	y_1	y_2		y_n	Σ_{x}
x_1	$f(x_1, y_1)$	$f(x_1, y_2)$		$f(x_1, y_n)$	$f_X(x_1)$
x_2	$f(x_2, y_1)$	$f(x_2,y_2)$		$f(x_2, y_n)$	$f_X(x_2)$
:	:	:	:	:	:
x_m	$f(x_m, y_1)$	$f(x_m, y_2)$		$f(x_m, y_n)$	$f_X(x_m)$
$\Sigma_{\mathcal{Y}}$	$f_Y(y_1)$	$f_Y(y_2)$		$f_Y(y_n)$	1

X	$f_X(x)$
x_1	$f_X(x_1)$
:	:
x_m	$f_X(x_m)$
Σ_{x}	1
	•

Y	$f_{Y}(y)$
y_1	$f_{Y}(y_1)$
:	:
y_n	$f_{Y}(y_{n})$
Σ_y	1

• 예제 11

	y = 0	1	2	3
x = 0	0.05	0.05	0.10	0.00
1	0.05	0.10	0.25	0.10
2	0.00	0.15	0.10	0.05

Ρ	(X)	>	Y)

	y = 0	1	2	3
x = 0				
1	0.05			
2	0.00	0.15		

1 (1)	
- ()	

	V
X	$f_X(x)$
0	0.2
1	0.3
2	0.5
Σ_{x}	1

	Ľ
Y	$f_{Y}(y)$
1	0.1
2	0.3
3	0.45
4	0.15
Σ_{ν}	1

 $P(X + \overline{Y} = 3)$

	y = 0	1	2	3
x = 0				0.00
1			0.25	
2		0.15		

• 확률변수 X와 Y의 결합확률분포로부터 X와 Y로 이루어지는 "M로운 확률변수 Z"에 대한 확률분 포를 계산할 수 있음

$$P(Z = X + Y)$$

	0	1	2	3	4	5	Σ_z
$f_Z(z)$	0.05	0.10	0.20	0.40	0.20	0.05	1

$$E(Z) = \sum z_i \times f_Z(z_i) = 2.75$$

확률부포 Chapter 6

• 두 확률변수의 합에 대한 기댓값
$$E(X) = \sum x_i \times f_X(x_i)$$
 and $f_X(x) =$

$$E(X) = \sum_{i} x_i \times f_X(x_i) \text{ and } f_X(x) = \sum_{j} f(x_i, y_j)$$

$$E(a + bX + cY) = \sum_{j} \sum_{j} (a + bx_i + cy_j) f(x_i, y_j)$$

$$= a + b \sum_{j} \sum_{j} x_i f(x_i, y_j) + c \sum_{j} \sum_{j} y_j f(x_i, y_j)$$

$$= a + b \sum_{j} x_i \sum_{j} f(x_i, y_j) + c \sum_{j} y_j \sum_{j} f(x_i, y_j)$$

 $= a + b \sum_{i} x_i f_X(x_i) + c \sum_{i} y_j f_Y(y_j) = a + b \cdot E(X) + c \cdot E(Y)$ 4.1, 4.5, 4.6, 4.11, 4.12 समाधा भागा ह देन द्यारी

外州和州州村一州村村 Chapter 6 举量是平 サモ(メ)コから!!! 05 공분산과 상관계주 Eu) <=> lax, bx • 공분산 (Covariance) : 두 확률변수의 선형관계의 정도를 측정한 값 $Cov(X,Y) = E(X - \mu_X)(Y - \mu_Y) - E(X - E(Y))(Y - E(Y))$ $\frac{Cov(X,Y)}{E(X-\mu_X)(Y-\mu_Y)} = \frac{E(X-E(X))(Y-E(Y))}{E(XY-\mu_YX-\mu_XY+\mu_X\mu_Y)} = \frac{E(XY)-\mu_XE(Y)}{E(XY)-\mu_XE(Y)} + \frac{E(XY)-\mu_X\mu_Y}{E(XY)-\mu_X\mu_Y} = \frac{E(XY)-\mu_X\mu_Y}{E(XY)-\mu_X\mu_Y}$ = HAY)- HWIELY $E(XY) = \sum_{x} \sum_{y} x_{i} y_{j} f(x_{i}, y_{i})$ = 0x 0 x f(0,0) + 0x | x f(0,1) + 1x0 x f(1,0)+... C好的性吗? 刘烈, 예제 12 for ge sty att 9 + 2×3×fc2,3) =1.9 nact! 3 $E(XY) = \sum_{i} x_i y_j f(x_i, y_j) = 1.9$ v = 00.20 (F/(x=) 0.00 x = 00.05 0.05 0.10 0.50 Epx=1) $E(X) = \sum_{i} x_i f_X(x_i) = 1.10$ 1 0.05 0.10 0.25 0.10 0.30/ tr(x=2) 2 0.00 0.150.10 0.05 $E(Y) = \sum y_i f_Y(y_i) = 1.65$ Σ_{ν} 0.15 1.00 0.10 0.30 0.45 4014-2) LPLY-37 Lp(Y=1) L n(Y=0)

Chapter 6

Chapter 6 (모) 상관계수 (Correlation coefficients): Cov(aX+b,cY+d)Corr(aX + b, cY + d) $\sqrt{Var(aX+b)} \cdot \sqrt{Var(cY+d)}$ of (axth)= Var(axth) = \(q^2 x Var(x)

06 두 확률변수의 독립성

整計 到例

- 두 사건 A와 B가 서로 독립 :

$$P(A \cap B) = P(A) \cdot P(B)$$

- 두 확률변수 X와 Y가 서로 독립 :(x, Y 가 서울 홍길열 21H,)

예제 13

확률분포 Chapter 6 等等进行 X, Y2- 经设 $(1) \quad E(XY) = \sum_{x} \sum_{y} x_i y_j f(x_i, y_j) = \sum_{x} \sum_{y} x_i y_j f_X(x_i) \cdot f_Y(y_i)$ $= \sum_{X} x_i f_X(x_i) \cdot \sum_{Y} y_i f_Y(y_i) = E(X) \cdot E(Y)$ $Cov(X,Y) = E(XY) - \mu_X \mu_Y = 0$ and $Corr(X,Y) = \frac{Cov(X,Y)}{2}$ $Var(X \pm Y) = Var(X) + Var(Y) \pm 2 \cdot Cov(X, Y) = Var(X) + Var(Y)$ 두 확률변수가 독립이면 공분산과 상관계수는 0 이다 이라고 해서 두 확률변수가 반드시 독립은 아니디 예제 14 7.1