

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

WIRELESS LAN MODULE

MODEL NUMBER: FZ09913-200

FCC ID: W2Z-02000002 IC: 7736B-02000002

REPORT NUMBER: 33BE0111-SH-R1

ISSUE DATE: SEPTEMBER 24, 2012

Prepared for

Fuji Film Corporation 798 Miyanodai, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8538 Japan

Prepared by

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number: +81 463 50 6400 Facsimile number: +81 463 50 6401 JAB Accreditation No. : RTL02610

Revision History

Rev.	Issue Date	Revisions	Revised By
	09/24/12	Initial Issue	A.Hayashi
1	10/02/12	Addition of the test instruments (SHA-04, SAF-08, SCC-G17) that was used for the radiated tests. *This report is a revised version of 33BE0111-SH, which is replaced with this report.	A.Hayashi
		Changing the "9.MAXIMUM PERMISSIBLE EXPOSURE" to a "Not applied". Addition of the "10.Statement for exclusion of RF Exposure".	,

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
2. TE	ST METHODOLOGY	6
3. FA	CILITIES AND ACCREDITATION	6
4. CA	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	6
5. EQ	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MAXIMUM OUTPUT POWER	7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5. <i>4</i> .	SOFTWARE AND FIRMWARE	7
5.5.	WORST-CASE CONFIGURATION AND MODE	
5.6.	DESCRIPTION OF TEST SETUP	
	ST AND MEASUREMENT EQUIPMENT	
7. AN	ITENNA PORT TEST RESULTS	
7.1.	802.11b MODE IN THE 2.4 GHz BAND	
	I.2. 99% BANDWIDTH	
	I.3. OUTPUT POWER	19
	I.4. AVERAGE POWER	
	I.5. POWER SPECTRAL DENSITYI.6. CONDUCTED SPURIOUS EMISSIONS	
7.2.		
	2.1. 6 dB BANDWIDTH	
7.2	2.2. 99% BANDWIDTH	
	2.3. OUTPUT POWER	
	2.4. AVERAGE POWER 2.5. POWER SPECTRAL DENSITY	
	2.6. CONDUCTED SPURIOUS EMISSIONS	
7.3.		
	3.1. 6 dB BANDWIDTH	
_	3.2. 99% BANDWIDTH	
	3.3. OUTPUT POWER	_
_	3.4. AVERAGE POWER 3.5. POWER SPECTRAL DENSITY	
	3.6. CONDUCTED SPURIOUS EMISSIONS	
7.4	802.11n HT40 SISO MODE IN THE 2.4 GHz BAND	76
	4.1. 6 dB BANDWIDTH	
	Page 3 of 130	

REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

	7 4 0	OOOL DANDWIDTH	70
	7.4.2.		
	7.4.3.	OUTPUT POWER	
	7.4.4.	AVERAGE POWER	83
	7.4.5.	POWER SPECTRAL DENSITY	84
	7.4.6.	CONDUCTED SPURIOUS EMISSIONS	
8.	RADIA	TED TEST RESULTS	97
8	.1. LIN	MITS AND PROCEDURE	97
8	.2. TR	RANSMITTER ABOVE 1 GHz	98
	8.2.1.	802.11b MODE	
	822	802.11g MODE	
		802.11n HT20 SISO MODE	
		802.11n HT40 SISO MODE	
	0.2.4.	602.1111 F1140 3130 WODE	113
8	.3. W(ORST-CASE	118
_		DOWER LINE CONDUCTED EMISSIONS	40.4
8	. <i>4.</i> AC	C POWER LINE CONDUCTED EMISSIONS	121
9.	MAXIM	IUM PERMISSIBLE EXPOSURE	125
10.	State	ement for exclusion of RF Exposure	126
11.	SFTI	UP PHOTOS	127

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Fuji Film Corporation

798 Miyanodai, Kaisei-machi,

Ashigarakami-gun, Kanagawa 258-8538 Japan

EUT DESCRIPTION: Wireless LAN Module

MODEL: FZ09913-200

SERIAL NUMBER: 719591 (Antenna port tests),

71958E (other tests)

DATE TESTED: SEPTEMBER 12-18, 2012

APPLICABLE STANDARDS

STANDARD

CFR 47 Part 15 Subpart C

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

INDUSTRY CANADA RSS-GEN Issue 3

Pass

Pass

UL Japan Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by any government agency.

Approved & Released For UL Japan, Inc. By:

Tested By:

Go Ishiwata

Manager of WiSE Japan, UL Verification Service Akio Hayashi Engineer of WiSE Japan, UL Verification Service

Page 5 of 130

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN.

UL Japan is accredited by JAB, Laboratory Code RTL02610. The full scope of accreditation can be viewed at

http://www.jab.or.jp/cgi-bin/jab exam proof j.cgi?page=2&authorization number=RTL02610

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY	
Power Line Conducted Emission	150kHz-30MHz	+/- 3.5 dB
	30MHz-300MHz	+/- 4.9 dB
	300MHz-1000MHz	+/- 4.9 dB
Radiated Emission	1GHz-15GHz	+/- 4.9 dB
	15GHz-18GHz	+/- 5.6 dB
	18GHz-26.5GHz	+/- 4.4 dB

Uncertainty figures are valid to a confidence level of 95% using a coverage factor k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Wireless LAN Module. The radio module is manufactured by Mitsumi.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	b	16.53	44.98
2412 - 2462	g	20.08	101.86
2412 - 2462	HT20 SISO	20.04	100.93
2422 - 2452	HT40 SISO	19.82	95.94

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes PCB Printed antenna, with a maximum gain of -4.14 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was WiFi_GUI_TOOL (Release x86) Ver. 1.0.0.0.

CC ID: W2Z-02000002 IC: 7736B-02000002

DATE: OCTOBER 02, 2012

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

All final tests in the 802.11b Mode were made at 1 Mb/s.

All final tests in the 802.11g mode were made at 6 Mb/s.

All final tests in the 802.11n HT20 SISO mode were made at MCS 0.

All final tests in the 802.11n HT40 SISO mode were made at MCS 0.

The fundamental and spurious was measured in three different orientations X, Y and Z to find worst-case orientation, and final testing for radiated emissions was performed with EUT in following orientation.

	Horizontal	Vertical
Carrier	X	Υ
Spurious (below 1GHz)	X	Υ
Spurious (above 1GHz)	X	Υ
Spurious (Harmonics)	X	Υ

DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

5.6.

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)

I/O CABLES

Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks
1	Flat	1	FPC	Un-shielded	0.04m	N/A
2	DC	1	DC	Un-shielded	1.2m	N/A
3	AC	1	AC	Un-shielded	0.9m	N/A
4	DC	1	DC	Un-shielded	1.9m	N/A

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

SETUP DIAGRAM FOR TESTS

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

report:	Lastonia	Manufastonen	MadalNa	O INI-	Testiles	O-Pharter D-tr
Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	AT	2012/03/26 * 12
SPM-06	Power Meter	Anritsu	ML2495A	850009	AT	2012/04/19 * 12
SPSS-03	Power sensor	Anritsu	MA2411B	917063	AT	2012/04/19 * 12
SAT20-07	Attenuator	Weinschel Corp.	54A-20	31484	AT	2012/04/12 * 12
SCC-G12	Coaxial Cable	Suhner	SUCOFLEX 102	30790/2	AT	2012/03/12 * 12
KSA-08	Spectrum Analyzer	Agilent	E4446A	MY46180525	AT	2012/02/16 * 12
SAEC-03(NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2011/09/23 * 12
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2012/07/18 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2012/04/10 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2012/05/22 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2012/08/17 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2012/02/06 * 12
KSA-08	Spectrum Analyzer	Agilent	E4446A	MY46180525	RE	2012/02/16 * 12
SAT20-01	Attenuator(above1G Hz)	Agilent	8493C-020	74889	RE	2011/12/27 * 12
SFL-02	Highpass Filter	MICRO-TRONICS	HPM50111	51	RE	2011/12/27 * 12
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2012/02/10 * 12
SAT6-03	Attenuator	JFW	50HF-006N	-	RE	2012/02/10 * 12
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2011/10/23 * 12
SCC- C1/C2/C3/C4/C 5/C10/SRSE-03	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhn er/Suhner/Suhner/Suh ner/TOYO		-/0901-271(RF Selector)	RE	2012/04/10 * 12
SLA-03	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108- A 0901	RE	2011/10/23 * 12
SHA-04	Horn Antenna	ETS LINDGREN	3160-09	LM3640	RE	03/30/2012 * 12
SAF-08	Pre Amplifier	TOYO Corporation	HAP18-26W	00000019	RE	03/12/2012 * 12
SCC-G17	Coaxial Cable	Suhner	SUCOFLEX 104A	46291/4A	RE	03/12/2012 * 12
SJM-10	Measure	PROMART	SEN1935	-	CE	-
COTS-SEMI-1	EMI Software	TSJ	TEPTO- DV(RE,CE,RFI,MF)	-	CE	-
SCC- C9/C10/SRSE- 03	Coaxial Cable&RF Selector	Suhner/Suhner/TOYO	S4906	-/0901-271(RF Selector)	CE	2012/04/10 * 12
SLS-05	LISN	Rohde & Schwarz	ENV216	100516	CE	2012/02/23 * 12
SAT3-06	Attenuator	JFW	50HF-003N	-	CE	2012/02/17 * 12
STM-05	Terminator	TME	CT-01 BP	-	CE	2012/01/05 * 12
STR-03	Test Receiver	Rohde & Schwarz	ESI40	100054/040	CE	2012/06/14 * 12

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Page 11 of 130

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

TEL: +81 463 50 6400 FAX: +81 463 50 6401

Test Item:

RE: Radiated emission, CE: Conducted emission, AT: Antenna terminal disturbance voltage

7. ANTENNA PORT TEST RESULTS

7.1. 802.11b MODE IN THE 2.4 GHz BAND

7.1.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	9.14	0.5
Middle	2437	9.15	0.5
High	2462	9.14	0.5

6 dB BANDWIDTH

7.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of SPAN. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	11.9271
Middle	2437	11.9501
High	2462	11.9662

99% BANDWIDTH

99% BANDWIDTH HIGH CH R L # Agilent Ref -13 dBm #Atten 10 dB #Samp Log 10 dB/ LgAv M1 S2 Center 2.462 00 GHz Span 50 MHz #Res BW 510 kHz #VBW 1.5 MHz Sweep 1.04 ms (1201 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** -6.00 dB 11.9662 MHz Transmit Freq Error 29.706 kHz x dB Bandwidth 9.466 MHz*

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	16.04
Middle	2437	16.41
High	2462	16.53

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	12.82	
Middle	2437	12.91	
High	2462	12.98	

7.1.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-15.95	8	-23.95
Middle	2437	-15.84	8	-23.84
High	2462	-15.44	8	-23.44

POWER SPECTRAL DENSITY

PSD HIGH CH R L # Agilent Mkr1 2.462 693 26 GHz Ref 10 dBm #Atten 20 dB -15.44 dBm #Peak Log 10 dB/ Offst 21.6 dB ¹ DI 8.0 LgAv S1 S2 M3 FS AA **£**(f): f>50k Swp Center 2.462 900 00 GHz Span 1.5 MHz #Res BW 3 kHz #VBW 10 kHz #Sweep 500 s (1201 pts)

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

REPORT NO: 33BE0111-SH-R1 DATE: OCTOBER 02, 2012 FCC ID: W2Z-02000002

IC: 7736B-02000002

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

TEL: +81 463 50 6400 FAX: +81 463 50 6401

7.2. 802.11g MODE IN THE 2.4 GHz BAND

7.2.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	16.49	0.5
Middle	2437	16.51	0.5
High	2462	16.52	0.5

6 dB BANDWIDTH

REPORT NO: 33BE0111-SH-R1 DATE: OCTOBER 02, 2012

FCC ID: W2Z-02000002 IC: 7736B-02000002

7.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of SPAN. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.1357
Middle	2437	17.1288
High	2462	17.2622

99% BANDWIDTH

7.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	19.89	
Middle	2437	20.03	
High	2462	20.08	

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	11.01
Middle	2437	11.13
High	2462	11.30

7.2.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-17.82	8	-25.82
Middle	2437	-17.25	8	-25.25
High	2462	-16.97	8	-24.97

POWER SPECTRAL DENSITY

PSD HIGH CH R L # Agilent Mkr1 2.461 065 78 GHz Ref 10 dBm #Atten 20 dB -16.97 dBm #Peak Log 10 dB/ Offst 21.6 dB DΙ 8.0 LgAv S1 S2 M3 FS AΑ **£**(f): f>50k Swp Center 2.461 367 00 GHz Span 1.5 MHz #Res BW 3 kHz #VBW 10 kHz #Sweep 500 s (1201 pts)

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

SPURIOUS EMISSIONS, MID CHANNEL

TEL: +81 463 50 6400 FAX: +81 463 50 6401

REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

SPURIOUS EMISSIONS, HIGH CHANNEL

REPORT NO: 33BE0111-SH-R1 DATE: OCTOBER 02, 2012 FCC ID: W2Z-02000002

IC: 7736B-02000002

7.3. 802.11n HT20 SISO MODE IN THE 2.4 GHz BAND

7.3.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	17.69	0.5
Middle	2437	17.69	0.5
High	2462	17.70	0.5

6 dB BANDWIDTH

7.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of SPAN. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	Low 2412 17.8435	
Middle	2437	17.8316
High	High 2462 17.8159	

99% BANDWIDTH

99% BANDWIDTH HIGH CH RL # Agilent Ref -13 dBm #Atten 10 dB #Samp Log 10 dB/ LgAv M1 S2 Center 2.462 00 GHz Span 50 MHz #Res BW 510 kHz Sweep 1.04 ms (1201 pts) #VBW 1.5 MHz Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** -6.00 dB 17.8159 MHz 16.752 kHz 17.526 MHz* Transmit Freq Error x dB Bandwidth

7.3.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	19.81
Middle	2437	20.04
High	2462	20.01

7.3.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	11.04
Middle	2437	11.07
High	2462	11.32

7.3.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-17.67	8	-25.67
Middle	2437	-17.61	8	-25.61
High	2462	-17.18	8	-25.18

POWER SPECTRAL DENSITY

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

TEL: +81 463 50 6400 FAX: +81 463 50 6401

REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

SPURIOUS EMISSIONS, MID CHANNEL

TEL: +81 463 50 6400 FAX: +81 463 50 6401

REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

SPURIOUS EMISSIONS, HIGH CHANNEL

REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

7.4. 802.11n HT40 SISO MODE IN THE 2.4 GHz BAND

7.4.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2422	36.13	0.5
Middle	2437	36.39	0.5
High	2452	36.26	0.5

6 dB BANDWIDTH

REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

> 6 dB BANDWIDTH HIGH CH R L # Agilent Ref -13 dBm #Atten 10 dB #Peak Log 10 dB/ LgAv Center 2.452 00 GHz Span 100 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.6 ms (1201 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** -6.00 dB 35.8888 MHz Transmit Freq Error 22.200 kHz 36.257 MHz x dB Bandwidth

DATE: OCTOBER 02, 2012

IC: 7736B-02000002

7.4.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of SPAN. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2422	36.1066
Middle	2437	36.1223
High	2452	36.0623

99% BANDWIDTH

99% BANDWIDTH HIGH CH RL # Agilent Ref -13 dBm #Atten 10 dB #Samp Log 10 dB/ Anny Property of the belief of the property of the belief 大きななる かんしゅうかん かんかん かんかん はんかんかん LgAv M1 S2 Center 2.452 00 GHz Span 100 MHz #Res BW 1 MHz #VBW 3 MHz Sweep 1.04 ms (1201 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** −6.00 dB 36.0623 MHz Transmit Freq Error 83.869 kHz x dB Bandwidth 35.816 MHz*

7.4.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2422	19.74
Middle	2437	19.78
High	2452	19.82

7.4.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2422	10.79
Middle	2437	10.98
High	2452	11.10

7.4.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2422	-18.81	8	-26.81
Middle	2437	-20.01	8	-28.01
High	2452	-19.13	8	-27.13

POWER SPECTRAL DENSITY

PSD HIGH CH # Agilent RL Mkr1 2.454 524 15 GHz Ref 10 dBm #Atten 20 dB -19.13 dBm #Peak Log 10 dB/ Offst 21.6 dB. 0.000 - 0.00 MANA BANGARAN BAN DΙ 8.0 LgAv S1 S2 M3 FS AA **£**(f): f>50k Swp Center 2.453 870 00 GHz Span 1.5 MHz #Res BW 3 kHz #VBW 10 kHz #Sweep 500 s (1201 pts)

7.4.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

TEL: +81 463 50 6400 FAX: +81 463 50 6401

REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

SPURIOUS EMISSIONS, MID CHANNEL

REPORT NO: 33BE0111-SH-R1

DATE: OCTOBER 02, 2012 FCC ID: W2Z-02000002 IC: 7736B-02000002

SPURIOUS EMISSIONS, HIGH CHANNEL

TEL: +81 463 50 6400 FAX: +81 463 50 6401

REPORT NO: 33BE0111-SH-R1

DATE: OCTOBER 02, 2012 FCC ID: W2Z-02000002 IC: 7736B-02000002

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. 802.11b MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date September 12, 2012 September 13, 2012 24 deg.C , 48%RH Akio Hayashi Temperature / Humidity 28 deg.C , 46%RH Akio Hayashi Engineer

Tx, IEEE802.11b Mode

Tx 2412MHz

1 X 2 7 1 2 1 V 1	112											
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4824.000	PK	51.0	31.1	6.8	41.2	47.7	73.9	26.2	100	217	
Hori.	4824.000	AV	43.5	31.1	6.8	41.2	40.2	53.9	13.7	100	217	
Vert.	4824.000	PK	50.7	31.1	6.8	41.2	47.4	73.9	26.5	119	150	
Vert.	4824.000	AV	43.4	31.1	6.8	41.2	40.1	53.9	13.8	119	150	

Tx 2437MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4874.000	PK	49.6	31.3	6.9	41.1	46.7	73.9	27.2	100	158	
Hori.	4874.000	AV	41.5	31.3	6.9	41.1	38.6	53.9	15.3	100	158	
Vert.	4874.000	PK	50.4	31.3	6.9	41.1	47.5	73.9	26.4	100	225	
Vert.	4874.000	AV	42.9	31.3	6.9	41.1	40.0	53.9	13.9	100	225	

Tx 2462MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4924.000	PK	50.9	31.5	6.9	41.0	48.3	73.9	25.6	100	250	
Hori.	4924.000	AV	43.2	31.5	6.9	41.0	40.6	53.9	13.3	100	250	
Vert.	4924.000	PK	52.0	31.5	6.9	41.0	49.4	73.9	24.5	106	227	
Vert.	4924.000	AV	44.8	31.5	6.9	41.0	42.2	53.9	11.7	106	227	

 $\label{eq:Result} Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier) \\ ^{\circ}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). \\ No noise was detected above the 3rd order harmonics. \\ Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB$

20log(3.0m/1.0m)= 9.5dB

TEL: +81 463 50 6400 FAX: +81 463 50 6401

8.2.2. 802.11g MODE
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

No.3 Semi Anechoic Chamber Test place

UL Japan, Inc. Shonan EMC Lab. September 12, 2012 September 13, 2012 24 deg.C , 48%RH Date Temperature / Humidity 28 deg.C , 46%RH Akio Hayashi Engineer Akio Hayashi

Mode Tx, IEEE802.11g

Tx 2412MHz

Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4824.000	PK	50.6	31.1	6.8	41.2	47.3	73.9	26.6	100	50	
Hori.	4824.000	AV	43.3	31.1	6.8	41.2	40.0	53.9	13.9	100	50	
Vert.	4824.000	PK	50.4	31.1	6.8	41.2	47.1	73.9	26.8	107	235	
Vert.	4824.000	AV	43.0	31.1	6.8	41.2	39.7	53.9	14.2	107	235	

Tx 2437MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4874.000	PK	49.4	31.3	6.9	41.1	46.5	73.9	27.4	130	55	
Hori.	4874.000	AV	40.9	31.3	6.9	41.1	38.0	53.9	15.9	130	55	
Vert.	4874.000	PK	50.1	31.3	6.9	41.1	47.2	73.9	26.7	137	231	
Vert.	4874.000	AV	42.6	31.3	6.9	41.1	39.7	53.9	14.2	137	231	

Tx 2462MHz

Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4924.000	PK	50.3	31.5	6.9	41.0	47.7	73.9	26.2	100	250	
Hori.	4924.000	AV	41.7	31.5	6.9	41.0	39.1	53.9	14.8	100	250	
Vert.	4924.000	PK	51.0	31.5	6.9	41.0	48.4	73.9	25.5	104	232	
Vert.	4924.000	AV	44.1	31.5	6.9	41.0	41.5	53.9	12.4	104	232	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier) *Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). No noise was detected above the 3rd order harmonics.

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

TEL: +81 463 50 6400 FAX: +81 463 50 6401 REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

FCC ID: W2Z-02000002 IC: 7736B-02000002

DATE: OCTOBER 02, 2012

8.2.3. 802.11n HT20 SISO MODE RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date September 12, 2012 September 13, 2012 Temperature / Humidity 28 deg.C , 46%RH 24 deg.C , 48%RH Akio Hayashi Akio Hayashi Engineer

Mode Tx, IEEE802.11n HT20

Tx 2412MHz

12 27121	1112											
Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4824.000	PK	50.4	31.1	6.8	41.2	47.1	73.9	26.8	100	49	
Hori.	4824.000	AV	43.1	31.1	6.8	41.2	39.8	53.9	14.1	100	49	
Vert.	4824.000	PK	50.8	31.1	6.8	41.2	47.5	73.9	26.4	135	233	
Vert.	4824.000	AV	43.8	31.1	6.8	41.2	40.5	53.9	13.4	135	233	

Tv 2/1271/1U-

1 X 243 /1VL	A 245 /WHZ													
Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark		
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]			
Hori.	4874.000	PK	50.0	31.3	6.9	41.1	47.1	73.9	26.8	106	51			
Hori.	4874.000	AV	41.8	31.3	6.9	41.1	38.9	53.9	15.0	106	51			
Vert.	4874.000	PK	50.3	31.3	6.9	41.1	47.4	73.9	26.5	100	231			
Vert.	4874.000	AV	43.1	31.3	6.9	41.1	40.2	53.9	13.7	100	231			

Tx 2462MHz

Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4924.000	PK	50.4	31.5	6.9	41.0	47.8	73.9	26.1	100	72	
Hori.	4924.000	AV	41.4	31.5	6.9	41.0	38.8	53.9	15.1	100	72	
Vert.	4924.000	PK	51.4	31.5	6.9	41.0	48.8	73.9	25.1	112	229	
Vert.	4924.000	AV	44.0	31.5	6.9	41.0	41.4	53.9	12.5	112	229	

 $\label{eq:Result} Result = Reading + Ant\ Factor\ + Loss\ (Cable+Attenuator+Filter-Distance\ factor(above\ 15GHz)) - Gain(Amprifier) \ ^{\circ}Other\ frequency\ noises\ omitted\ in\ this\ report\ were\ not\ seen\ or\ have\ enough\ margin\ (more\ than\ 20dB).$ No noise was detected above the 3rd order harmonics.
Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

TEL: +81 463 50 6400 FAX: +81 463 50 6401 REPORT NO: 33BE0111-SH-R1 FCC ID: W2Z-02000002

DATE: OCTOBER 02, 2012 IC: 7736B-02000002

8.2.4. 802.11n HT40 SISO MODE RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

TEL: +81 463 50 6400 FAX: +81 463 50 6401

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber Test place

September 13, 2012 24 deg.C , 48%RH September 12, 2012 Date Temperature / Humidity 28 deg.C , 46%RH Engineer Akio Hayashi Akio Hayashi

Mode Tx, IEEE802.11n HT40

Tx 2422MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4844.000	PK	50.1	31.2	6.8	41.1	47.0	73.9	26.9	108	40	
Hori.	4844.000	AV	43.3	31.2	6.8	41.1	40.2	53.9	13.7	108	40	
Vert.	4844.000	PK	51.1	31.2	6.8	41.1	48.0	73.9	25.9	104	234	
Vert.	4844.000	AV	43.5	31.2	6.8	41.1	40.4	53.9	13.5	104	234	

Tx 2437MHz

12 /												
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4874.000	PK	49.9	31.3	6.9	41.1	47.0	73.9	26.9	125	52	
Hori.	4874.000	AV	41.8	31.3	6.9	41.1	38.9	53.9	15.0	125	52	
Vert.	4874.000	PK	50.4	31.3	6.9	41.1	47.5	73.9	26.4	100	234	
Vert.	4874.000	AV	42.6	31.3	6.9	41.1	39.7	53.9	14.2	100	234	

Tx 2452MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height		Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4904.000	PK	50.7	31.4	6.9	41.0	48.0	73.9	25.9	100	55	
Hori.	4904.000	AV	42.4	31.4	6.9	41.0	39.7	53.9	14.2	100	55	
Vert.	4904.000	PK	50.9	31.4	6.9	41.0	48.2	73.9	25.7	107	229	
Vert.	4904.000	AV	43.0	31.4	6.9	41.0	40.3	53.9	13.6	107	229	

 $Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter-Distance factor (above \ 15 GHz)) - Gain (Amprifier)$

*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). No noise was detected above the 3rd order harmonics.

Distance factor: 15GHz 40GHz: 20log(3.0m/1.0m)= 9.5dB

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

RADIATED EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

RADIATED EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

HORIZONTAL AND VERTICAL DATA

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.3 Semi-Anechoic Chamber Date: 2012/09/13

: MITSUMI ELECTRIC CO., LTD. : Wireless LAN Module : DWM-W094 : 71958E Company Kind of EUT Model No. Serial No.

: Tx 2.4GHz Worst Case : 33BE01111-SH : DC 3.3V : 25deg.C. / 65%RH Mode Report No. Power Temp./Humi.

Remarks

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Akio Hayashi

<<	QP DATA	>>											
No.	Freq.	Reading <qp></qp>	Ant.Fac	Loss	Gain	Result <qp></qp>	Limit <qp></qp>	Margin <qp></qp>	Pola.	Height	Angle	Ant. Type	Comment
	[MHz]	[d Bu V]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[c m]	[deg]	1,500	
1	30,480	23.8	17.8	6.5	32.2	15.9	40.0	24.1	Hori	300	275	BC	
2	52.000	23.6	10.5	6.7	32.2	8.6	40.0			151	144	BC	
3	67.879	24.0	7.0	6.5		5.3	40.0			100	2	BC	
												BC	
4	78.000	23.7	6.2	7.3	32.2	5.0	40.0			121	285		
5	130.000		13.6	7.4	32.1	12.5	43.5			120	61	BC	
6	520.000		18.0	9.5	32.0	19.0	46.0			152	159	LP	
7	721.234			10.2		22.3	46.0			100	6	LP	
8	30.480	23.7	17.8	6.5	32.2	15.8	40.0			100	88	BC	
9	52.000	23.6	10.5	6.7	32.2	8.6	40.0	31.4	Vert.	100	321	BC	
10	67.879	26.6	7.0	6.5	32.2	7.9	40.0	32.1	Vert.	100	155	BC	
11	78,000	24.3	6.2	7.3	32.2	5.6	40.0	34.4	Vert.	100	358	BC	
12	130.000	23.4	13.6	7.4	32.1	12.3	43.5	31.2	Vert.	100	134	BC	
13	520.000		18.0		32.0	18.5	46.0			100	4	LP	
14			20.7			22.5	46.0			100	284	LP	
	721.204	20.4	20.7	10.2	01.0	22.0	45.0	20.0	TOIL.	1.50	204		
		l							l	ı			
		l							l	1			
		l							l	l			
		l							l	l			
		l							l	l			
										l			
										1			
										1			
									ĺ	1			
		1								1			
		İ								1			
										1			
									l				
									l				
		l						ı	l	1			
		l							l	ı			
		l							l	l			
		l							l	l			
		l							l	l			
		l							l	1			
									l	1			
		l						1	l	l			
		l							l	1			
		l							l	1			
		l						l	l	1			
		l						l	l	1			
		l							l	l			
		l							l	l			
		l							l	l			
		l							l	1			
		l							l	1			
		l							l	1			
		l							l	l			
		l							l	1			
		l							l	1			
		l								1			
		ı	1		1		1	ı	I	1	1		

 $\label{localization:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ Ant.Type = BC:Biconical Antenna, LP:Logperiodic Antenna, SHA03:Horn Antenna \\ \label{localization:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ \label{localization:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ \label{localization:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ \label{localization:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ \label{localization:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ \label{localization:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ \label{localization:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ \label{localization:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ \label{localization:Result [dBuV/m] = Reading [dB/m] + Loss (Cable + ATT) [dB/m] + Loss (Cable + ATT) [dB/m] \\ \label{localization:Result [dB/m] = Reading [dB/m] + Loss (Cable + ATT) [dB/m] + Loss (Cable + ATT) [dB/m] \\ \label{localization:Result [dB/m] = Reading [dB/m] + Loss (Cable + ATT) [dB/m] + Loss (Cable + ATT) [dB/m] \\ \label{localization:Result [dB/m] = Reading [dB/m] + Loss (Cable + ATT) [dB/m] + Loss (Cable + ATT) [dB/m] \\ \label{localization:Result [dB/m] = Reading [dB/m] + Loss (Cable + ATT) [dB/m] + Loss (Cable + ATT) [dB/m] \\ \label{localization:Result [dB/m] = Reading [dB/m] + Loss (Cable + ATT) [dB/m] + Loss (Cable + ATT) [dB/m] \\ \label{localization:Result [dB/m] = Reading [dB/m] + Loss (Cable + ATT) [dB/m] + Loss (Cable + ATT) [dB/m] \\ \label{localization:Result [dB/m] = Reading [dB/m] + Loss (Cable + ATT) [dB/m] + Loss (Cable + ATT) [dB/m] \\ \label{localization:Result [dB/m] = Reading [dB/$

TEL: +81 463 50 6400 FAX: +81 463 50 6401

AC POWER LINE CONDUCTED EMISSIONS 8.4.

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted I	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

RESULTS

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV Engineer : Akio Hayashi

<< QP/AV DATA >>

Ò	Dooding		Reading		O F Results							1
N	Freq.			C.Fac				mit		rgin	Db	0
No.		<qp></qp>	<av></av>		<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
-	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]		[dB]	[dB]		
1	0.15600	30.6	4.7	12.7	43.3	17.4	65.6	55.6	22.3	38.2	N	
2	0.18200	34.8	19.2	12.7	47.5	31.9	64.3	54.3	16.8	22.4	N	
3	0.24200	27.4	12.6	12.7	40.1	25.3	62.0	52.0	21.9	26.7	N	
4	0.33400	13.4	1.7	12.7	26.1	14.4	59.3	49.3	33.2	34.9	N	
5	0.42300	18.4	12.8	12.7	31.1	25.5	57.3	47.3	26.2	21.8	N	
6	3.62240	11.3	2.5	12.8	24.1	15.3	56.0	46.0	31.9	30.7	N	
7	0.15600	30.2	4.6	12.7	42.9	17.3	65.6	55.6	22.7	38.3	L1	
8		26.6	9.0	12.7	39.3	21.7	64.0	54.0	24.7	32.3	L1	
9	0.24300	26.9	12.4	12.7	39.6	25.1	61.9	51.9	22.3	26.8	L1	
10		13.7	1.2	12.7	26.4	13.9	59.3	49.3	32.9	35.4		
11	0.42300	17.5	13.3	12.7	30.2	26.0	57.3	47.3	27.1	21.3	L1	
12	3.62240	14.3	4.9	12.8	27.1	17.7	56.0	46.0	28.9	28.3	L1	

 $\label{linear_calculation} \mbox{Calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN+Cable+ATT) [dB] \\ LISN:SLS-05$

LINE 1 RESULTS

LINE 2 RESULTS

