Lista de Exercícios IPE # 4c

As referências a seções, equações, figuras, exemplos e exercícios são do livro *Intuitive Probability* and *Random Processes using MATLAB* de Stephen M. Kay, Springer, 2006.

Exercício I

Suponha que X é uma variável aleatória discreta com função de massa probabilidade mostrada abaixo (onde $0 \le \theta \le 1$ é um parâmetro). As seguintes dez observações independentes são obtidas da distribuição:

"X" 0 1 2 3
"P(X)"
$$\frac{2\theta}{3}$$
 $\frac{\theta}{3}$ $\frac{2(1-\theta)}{3}$ $\frac{1-\theta}{3}$

- a) Utilizando simulação, derive o estimador de máxima verossimilhança e o estimador do métodos dos momentos.
- b) Utilizando a função massa de probabilidade dada, crie uma sequência de observações bem maior do que a dada, refaça o que foi pedido em *a*) e verifique se as estimativas dos dois estimadores convergem.

Exercício 2

Suponha que X_1 , X_2 , X_3 , ..., X_n são IID com pdf $f(x \mid \sigma) = \frac{1}{2\sigma} e^{-\frac{|x|}{\sigma}}$. Use simulação parea verificar os estimadores de máximo verossimilhança e do métodos dos momentos. Há convergência com o aumento do tamanho da amostra?

Exercício 3

Estime, usando simulação, os parâmetros μ e σ para a função de densidade normal $f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{\sigma^2}}$ baseado na amostra $X_1, X_2, ..., X_n$. Aproveite prove que o estimador pelo método momentos é igual ao estimador de máxima verossimilhança neste caso.