YOLOX: Exceeding YOLO Series in 2021

Zheng Ge* Songtao Liu*† Feng Wang Zeming Li Jian Sun Megvii Technology

{gezheng, liusongtao, wangfeng02, lizeming, sunjian}@megvii.com

论文下载地址: https://arxiv.org/abs/2107.08430

博文: https://blog.csdn.net/qq_37541097/article/details/125132817

公众号"阿喆学习小记"输入YOLOX获取

2021 CVPR

Anchor-Free

decoupled detection head

advanced label assigning strategy(SimOTA)

1st Streaming Perception
Challenge

目录

- ▶ 0前言
- ▶ 1 YOLOX网络结构
- ➤ 2 Anchor-Free
- ▶ 3 损失计算
- ▶ 4 正负样本匹配SimOTA

前言

Models	AP (%)	Parameters	GFLOPs	Latency
YOLOv5-S	36.7	7.3 M	17.1	8.7 ms
YOLOX-S	39.6 (+2.9)	9.0 M	26.8	9.8 ms
YOLOv5-M	44.5	21.4 M	51.4	11.1 ms
YOLOX-M	46.4 (+1.9)	25.3 M	73.8	12.3 ms
YOLOv5-L	48.2	47.1 M	115.6	13.7 ms
YOLOX-L	50.0 (+1.8)	54.2 M	155.6	14.5 ms
YOLOv5-X	50.4	87.8 M	219.0	16.0 ms
YOLOX-X	51.2 (+0.8)	99.1 M	281.9	17.3 ms

网络结构 (YOLOX-L)

网络结构

decoupled detection head

加速收敛,提升AP 参数不共享

Anchor-Free

注意尺度

损失计算

由于在网络的检测头中有Cls.分支、Reg.分支以及IoU.分支(其实是Obj.分支),所以损失由 L_{cls} 、 L_{reg} 以及 L_{obj} 这三部分组成。其中 L_{cls} 和 L_{obj} 采用的都是二值交叉熵损失(BCELoss)而 L_{reg} 采用的是IoULoss。还要注意的是, L_{cls} 以及 L_{reg} 只计算正样本的损失,而 L_{obj} 既计算正样本 也计算负样本的损失。

$$Loss = \frac{L_{cls} + \lambda L_{reg} + L_{obj}}{N_{pos}}$$

- ▶ L_{cls}代表分类损失
- ▶ L_{reg}代表定位损失
- ▶ L_{obj}代表obj损失
- ν λ代表定位损失的平衡系数,源码中设置是5.0
- ▶ N_{pos}代表被分为正样的Anchor Point数

正负样本匹配SimOTA

SimOTA是由OTA (Optimal Transport Assignment) 简化得到的, OTA也是旷视科技同年出的一篇文章, 论文名称叫做《Optimal transport assignment for object detection》目的是将匹配正负样本的过程看成一个最优传输问题。

Methods	AP (%)	Parameters	GFLOPs	Latency	FPS
YOLOv3-ultralytics ²	44.3	63.00 M	157.3	10.5 ms	95.2
YOLOv3 baseline	38.5	63.00 M	157.3	10.5 ms	95.2
+decoupled head	39.6 (+1.1)	63.86 M	186.0	11.6 ms	86.2
+strong augmentation	42.0 (+2.4)	63.86 M	186.0	11.6 ms	86.2
+anchor-free	42.9 (+0.9)	63.72 M	185.3	11.1 ms	90.1
+multi positives	45.0 (+2.1)	63.72 M	185.3	11.1 ms	90.1
+SimOTA	47.3 (+2.3)	63.72 M	185.3	11.1 ms	90.1
+NMS free (optional)	46.5 (-0.8)	67.27 M	205.1	13.5 ms	74.1

正负样本匹配SimOTA

★: 城市

●:牛奶生产基地

正负样本匹配SimOTA

在SimOTA正负样本匹配过程中,**城市**对应的是**每个样本**(对应论文中的anchor point,其 实就是grid网格中的每个cell) , **牛奶生产基地**对应的是标注好的GT Bbox, 那现在的目标 是怎样以最低的成本 (cost) 将GT分配给对应的样本。根据论文中的公式1, cost的计算公 $c_{ij} = L_{ij}^{cls} + \lambda L_{ij}^{reg}$ 式如下,其中心为平衡系数,代码中设置的是3.0:

$$c_{ij} = L_{ij}^{cls} + \lambda L_{ij}^{reg}$$

最小化cost可以理解为让网络以最小的学习成本学习到有用的知识

正负样本匹配SimOTA

feature map (grid)

$$c_{ij} = L_{ij}^{cls} + \lambda L_{ij}^{reg}$$

```
cost = (
    pair_wise_cls_loss
    + 3.0 * pair_wise_ious_loss
    + 1000000.0 * (~is_in_boxes_and_center)
)
```


正负样本匹配SimOTA

	A1	A2	A3	A4	A5	A6
GT1	0.1	0.2	1.2	2.9	0.3	0.5
GT2	1.5	7.7	0.2	0.1	0.2	8.6

Anchor Point与 GT的cost矩阵

	A1	A2	A3	A4	A5	A6
GT1	0.9	0.8	0.1	0	0.7	0.2
GT2	0.3	0.1	0.7	0.9	0.8	0.2

Anchor Point与GT的IoU矩阵

n_candidate_k = min(10, ious_in_boxes_matrix.size(1)) topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)

正负样本匹配SimOTA

	A1	A2	A3	A4	A5	A6
GT1	0.1	0.2	1.2	2.9	0.3	0.5
GT2	1.5	7.7	0.2	0.1	0.2	8.6

Anchor Point与 GT的cost矩阵

	A1	A2	A3	A4	A5	A6
GT1	0.9	0.8	0.1	0	0.7	0.5
GT2	0.3	0.1	0.7	0.9	0.8	0.2

3

Anchor Point与 GT的IoU矩阵

计算每个GT对应Anchor Point个数 (动态)

dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)

正负样本匹配SimOTA

	A1	A2	A3	A4	A5	A6
GT1	0.1	0.2	1.2	2.9	0.3	0.5
GT2	1.5	7.7	0.2	0.1	0.2	8.6

Anchor Point与 GT的cost矩阵

	A1	A2	A3	A4	A5	A6
GT1	1	1	0	0 1	1	0
GT2	0	0	感影	肩下し	1	0

3

Anchor Point 分配矩阵

根据dynamic_ks以及cost分配对应的Anchor Point

dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)

正负样本匹配SimOTA

	A1	A2	A3	A4	A5	A6
GT1	0.1	0.2	1.2	2.9	0.3	0.5
GT2	1.5	7.7	0.2	0.1	0.2	8.6

Anchor Point与 GT的cost矩阵

	A1	A2	A3	A4	A5	A6
GT1	1	1	0	0	0	0
GT2	0	0	或情		1	0

Anchor Point 分配矩阵

如果多个GT同时分配给一个Anchor Point,那么只取cost最小的GT