Optimizing Hotel Room Pricing for Azure Hotels

Introduction

This notebook presents a comprehensive analysis for Azure Hotels to optimize room pricing strategies aimed at maximizing revenue and profitability. The analysis includes customer segmentation, identification of pricing drivers, development of a pricing strategy, and quantification of the strategy's impact.

Step 1: Load and Inspect the Dataset

We start by loading the dataset and inspecting its structure to understand the available data and prepare for further analysis.

```
In [1]: # Import necessary libraries
import pandas as pd

# Load the dataset
data_path = './Quantzig - Campus Hiring - DS Dataset 1.xlsx'
data = pd.read_excel(data_path)
In [2]: # Display basic information and the first few rows to understand the structure
print(data.info())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119390 entries, 0 to 119389
Data columns (total 32 columns):

```
Column
                                   Non-Null Count
                                                   Dtype
--- -----
                                   _____
0
    hotel
                                   119390 non-null object
1
    is_canceled
                                  119390 non-null object
    lead time
                                  119390 non-null int64
3
    arrival_date_year
                                  119390 non-null int64
    arrival_date_month
                                  119390 non-null object
 5
    arrival_date_week_number
                                 119390 non-null int64
    arrival date day of month
                                  119390 non-null int64
 7
                                  119390 non-null int64
    stays_in_weekend_nights
    stays_in_week_nights
                                  119390 non-null int64
    adults
                                  119390 non-null int64
10 children
                                  119386 non-null float64
 11 babies
                                  119390 non-null int64
12 meal
                                  119390 non-null object
13 country
                                  118902 non-null object
14 market_segment
                                  119390 non-null object
15 distribution_channel
                                  119390 non-null object
16 is_repeated_guest
                                  119390 non-null int64
17 previous_cancellations
                                 119390 non-null int64
18 previous_bookings_not_canceled 119390 non-null int64
19 reserved_room_type
                                  119390 non-null object
                                  119390 non-null object
20 assigned_room_type
21 booking_changes
                                  119390 non-null int64
22 deposit_type
                                  119390 non-null object
23 agent
                                  103050 non-null float64
24 company
                                  6797 non-null float64
25 days_in_waiting_list
                                  119390 non-null int64
 26 customer_type
                                  119390 non-null object
27 adr
                                  119390 non-null float64
28 required_car_parking_spaces
                                 119390 non-null int64
29 total of special requests
                                 119390 non-null int64
30 reservation status
                                  119390 non-null object
 31 reservation status date
                                  119390 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(4), int64(15), object(12)
memory usage: 29.1+ MB
None
```

In [3]: print(data.head())

```
hotel is_canceled lead_time
                                        arrival_date_year arrival_date_month
0
  Resort Hotel Cancelled
                                    342
                                                      2021
1 Resort Hotel Cancelled
                                    737
                                                      2021
                                                                          July
2 Resort Hotel Cancelled
                                     7
                                                      2021
                                                                          July
3 Resort Hotel Cancelled
                                    13
                                                      2021
                                                                          July
  Resort Hotel Cancelled
                                     14
                                                      2021
                                                                          July
   arrival_date_week_number
                             arrival_date_day_of_month
0
                         27
1
                         27
2
                         27
                                                      1
3
                         27
                                                      1
                         27
4
   stays_in_weekend_nights
                            stays_in_week_nights
                                                   adults
                                                                deposit_type
0
                         0
                                                0
                                                        2
                                                                   No Deposit
1
                         0
                                                0
                                                        2
                                                                   No Deposit
2
                         0
                                                1
                                                        1
                                                                   No Deposit
                                                           . . .
3
                         0
                                                                   No Deposit
                                                           . . .
4
                         0
                                                        2
                                                                   No Deposit
   agent company days_in_waiting_list customer_type
                                                       adr \
0
     NaN
             NaN
                                     0
                                           Transient
     NaN
             NaN
                                     0
                                           Transient
                                                       0.0
1
2
     NaN
             NaN
                                           Transient 75.0
 304.0
             NaN
                                     0
                                           Transient 75.0
3
  240.0
             NaN
                                           Transient 98.0
   required_car_parking_spaces total_of_special_requests reservation_status \
0
                                                                      Check-Out
                              0
                                                         0
                                                                      Check-Out
1
2
                              0
                                                         0
                                                                      Check-Out
3
                              0
                                                         0
                                                                      Check-Out
                                                                      Check-Out
  reservation_status_date
0
               2015-07-01
1
               2015-07-01
2
               2015-07-02
3
               2015-07-02
               2015-07-03
```

[5 rows x 32 columns]

Step 2: Customer Segmentation

We will segment the customer base using K-means clustering based on features that may impact their booking behaviors and preferences.

Feature Selection and Preprocessing

We select features relevant for clustering and scale them to ensure that all features contribute equally.

```
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
```

```
# Selecting features for clustering
features = data[['adults', 'children', 'lead_time', 'total_of_special_requests']
# Scaling the features
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)
# Determine the optimal number of clusters using the elbow method
inertia = []
for k in range(1, 11):
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(features_scaled)
    inertia.append(kmeans.inertia_)
# Plotting the elbow curve
plt.figure(figsize=(10, 6))
plt.plot(range(1, 11), inertia, marker='o')
plt.title('Elbow Method for Optimal k')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')
plt.show()
# Applying K-means clustering with an assumed optimal number of clusters
optimal_k = 4 # Assuming visual inspection from the elbow plot
clusters = KMeans(n_clusters=optimal_k, random_state=42).fit_predict(features_sd
# Adding the cluster labels to the DataFrame
data.loc[features.index, 'Cluster'] = clusters
# Print column names with added spacing for better readability
print("\nColumns in DataFrame:\n", data.columns)
# Displaying the first few rows with cluster labels from the 'data' DataFrame wi
print("\nFirst few rows with cluster labels:\n", data[['adults', 'children', 'le
```



```
Columns in DataFrame:
 Index(['hotel', 'is_canceled', 'lead_time', 'arrival_date_year',
       'arrival_date_month', 'arrival_date_week_number',
       'arrival_date_day_of_month', 'stays_in_weekend_nights',
       'stays_in_week_nights', 'adults', 'children', 'babies', 'meal',
       'country', 'market_segment', 'distribution_channel',
       'is_repeated_guest', 'previous_cancellations',
      'previous_bookings_not_canceled', 'reserved_room_type',
       'assigned_room_type', 'booking_changes', 'deposit_type', 'agent',
       'company', 'days_in_waiting_list', 'customer_type', 'adr',
      'required_car_parking_spaces', 'total_of_special_requests',
       'reservation_status', 'reservation_status_date', 'Cluster'],
     dtype='object')
First few rows with cluster labels:
   adults children lead_time total_of_special_requests Cluster
0
      2
              0.0
                         342
                                                             0.0
           0.0
      2
                         737
                                                             0.0
1
                                                      0
2
      1
             0.0
                          7
                                                      0
                                                             3.0
3
      1
             0.0
                         13
                                                     0
                                                             3.0
4
       2
              0.0
                           14
                                                             1.0
```

Step 3: Pricing Drivers Identification

We analyze factors that influence room pricing, which includes understanding how different variables like booking lead times, room types, and customer segments affect pricing.

```
In [5]: import numpy as np
        from sklearn.linear_model import LinearRegression
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean_squared_error
        from sklearn.impute import SimpleImputer
        # Selecting features for the regression analysis and filling NaN values in numer
        numeric_features = ['lead_time', 'adults', 'children', 'stays_in_week_nights',
        # Check and fill NaNs only for numeric features
        for feature in numeric_features:
            if data[feature].isnull().any():
                data[feature] = data[feature].fillna(data[feature].median())
        # Assuming 'adr' (average daily rate) is also a numeric column
        if data['adr'].isnull().any():
            data['adr'] = data['adr'].fillna(data['adr'].mean())
        # Define predictors X and target y
        X = data[numeric_features]
        y = data['adr']
        # Splitting the dataset into training and testing sets
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
        # Building and training the regression model
        model = LinearRegression()
        model.fit(X_train, y_train)
        # Predicting and evaluating the model's performance
```

```
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
```

Mean Squared Error: 1903.6792577816489

Step 4: Develop Pricing Strategy

Based on the insights from customer segmentation and regression analysis, we develop a dynamic pricing strategy tailored to customer behavior and booking patterns.

Strategy Formulation

We design a pricing function that adjusts room rates based on customer segments and booking lead time, aiming to maximize revenue during high-demand periods while maintaining competitive pricing in lower-demand periods.

```
In [6]: # Define a simple pricing strategy function based on clustering results
def pricing_strategy(cluster, lead_time):
    if cluster == 0 and lead_time < 10:
        return 1.1 # increase prices by 10%
    elif cluster == 1 and lead_time >= 10:
        return 0.95 # decrease prices by 5%
    else:
        return 1.0 # no change

# Applying the pricing strategy
data['Adjusted_Price'] = data.apply(lambda row: row['adr'] * pricing_strategy(row));
```

Step 5: Impact Quantification

We estimate the financial impact of our recommended pricing strategy on the hotel's revenue and profitability.

Revenue Impact Calculation

```
In [7]: # Calculate the potential revenue increase
    original_revenue = data['adr'].sum()
    new_revenue = data['Adjusted_Price'].sum()
    increase = new_revenue - original_revenue

# Formatting the output for better readability and adding interpretation
    print(f"Original Revenue: ${original_revenue:,.2f}")
    print(f"New Revenue: ${new_revenue:,.2f}")
    print(f"Increase in Revenue: ${increase:,.2f}")

# Adding a statement to interpret the revenue change
    if increase > 0:
        print("The new pricing strategy has led to an increase in revenue, indicatin
    elif increase < 0:
        print("The new pricing strategy has led to a decrease in revenue, which may
    else:
        print("There has been no change in revenue, indicating that the new pricing</pre>
```

Original Revenue: \$12,157,617.60 New Revenue: \$12,039,178.93 Increase in Revenue: \$-118,438.67

The new pricing strategy has led to a decrease in revenue, which may suggest adve

rse effects on booking patterns or market competitiveness.

Conclusion

This analysis provided a detailed approach to optimize room pricing at Azure Hotels. By understanding customer segments, identifying key pricing drivers, and implementing a dynamic pricing strategy, we aim to enhance profitability. Future steps include refining the model with more granular data and continuous monitoring of market trends.

Next Steps

- Further refine pricing models with real-time data integration.
- Continuous A/B testing of pricing strategies to adapt to market changes.
- Regular updates of customer segmentation based on latest booking trends.

In []: