CS 6501 Natural Language Processing

Probabilistic Context-free Grammars

Yangfeng Ji

October 1, 2019

Department of Computer Science University of Virginia

Overview

- 1. Introduction
- 2. Context-Free Grammars
- 3. Ambiguity
- 4. Probabilistic CFGs

Introduction

Syntactic Parse Tree

- ▶ Input: UVa is located in Charlottesville
- Output:

Information Conveyed by Parse Trees

Part of speech for each word

Information Conveyed by Parse Trees (II)

Phrase

- ▶ PP: *in Charlottesville*
- ▶ VP: located in Charlottesville

Information Conveyed by Parse Trees (III)

Useful relationships

Relationship between UVa and Charlottesville

Example Applications (I): Question answering

Question answering: where is UVa?

Example Applications (II): Machine translation

- English word order: Subject Verb Object
- ► Japanese word order: subject object verb

Example Applications (II): Machine translation

- ► English word order: subject verb object
- ▶ Japanese word order: subject object verb

Example I

- ► English: IBM bought Lotus
- ▶ Japanese: IBM Lotus bought

Example Applications (II): Machine translation

- ► English word order: subject verb object
- ► Japanese word order: subject object verb

Example I

- ► English: IBM bought Lotus
- ▶ Japanese: IBM Lotus bought

Example II

- English: Sources said that IBM bought Lotus yesterday
- ► Japanese: Sources yesterday IBM Lotus bought that said

[Collins, 2017]

Example Applications (III)

Other applications:

- Grammar checking
- Dialogue understanding
- Text generation

Context-Free Grammars

Formal Definition

A context free grammar $G = (N, \Sigma, R, S)$ where

- ► *N*: a set of non-terminal symbols
- ► $S \in N$: a distinguished start symbol
- \triangleright Σ : a set of terminal symbols
- ► *R*: a set of rules of the form $X \to Y_1 Y_2 \cdots Y_n$ for $n \ge 0, X \in N, Y_i \in N \cup \Sigma$

[Collins, 2017]

A Context-Free Grammar for English

- ► *N* = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
- \triangleright S = S
- Σ = {sleeps, saw, man, woman, telescope, the, with, in}
- ► R¹

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

¹S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

(Left-Most) Derivations

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VΡ	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

 Left-most derivation: always pick the left-most non-terminal symbol for replacement

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VΡ	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VΡ	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VΡ	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	$NN \rightarrow man$
the man VP	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	$NN \rightarrow man$
the man VP	$\text{VP} \rightarrow \text{Vi}$
the man Vi	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	$NN \rightarrow man$
the man VP	$\mathrm{VP} \to \mathrm{Vi}$
the man Vi	$Vi \rightarrow sleeps$
the man sleeps	

From Derivations to Parse Tree

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	$NN \rightarrow man$
the man VP	$\text{VP} \rightarrow \text{Vi}$
the man Vi	$Vi \rightarrow sleeps$
the man sleeps	

Properties of CFGs

► A CFG defines a set of possible derivations

Properties of CFGs

- ► A CFG defines a set of possible derivations
- ▶ A string $s \in \Sigma^*$ is in the language defined by the CFG if there is at least one derivation that yield s

Properties of CFGs

- ► A CFG defines a set of possible derivations
- ▶ A string $s \in \Sigma^*$ is in the language defined by the CFG if there is at least one derivation that yield s
- ► **Ambiguity**: each string in the language generated by the CFG may have more than one derivation

Ambiguity

An Example of Ambiguity

Sentence: We saw the kid with the telescope

An Example of Ambiguity (II)

Sentence: We saw the kid with the telescope

Problem with Parsing: Ambiguity

Sentence: She announced a program to promote safety in trucks and vans

Problem with Parsing: Ambiguity

Sentence: She announced a program to promote safety in trucks and vans

- ▶ She announced a program to promote (safety in (trucks and vans))
- ► She announced a program to promote ((safety in trucks) and (vans))

Problem with Parsing: Ambiguity

Sentence: She announced a program to promote safety in trucks and vans

- She announced a program to promote (safety in (trucks and vans))
- ► She announced a program to promote ((safety in trucks) and (vans))
- ► She announced ((a program to promote safety in trucks) and (vans))

Sources of Ambiguity (I)

Part-of-Speech ambiguity

▶ $NN \rightarrow duck$

Sources of Ambiguity (I)

Part-of-Speech ambiguity

- ▶ $NN \rightarrow duck$
- ightharpoonup Vi
 ightharpoonup duck

Sources of Ambiguity (II)

Noun premodifiers

Sources of Ambiguity (III)

Noun premodifiers

Probabilistic CFGs

A Probabilistic Context-Free Grammar (PCFG)

- ► *N*: a set of non-terminal symbols
- ► $S \in N$: a distinguished start symbol
- \triangleright Σ : a set of terminal symbols
- ► *R*:

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Probability of a Tree

The probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \ldots, \alpha_n \to \beta_n$$

is

$$p(t) = \prod_{i=1}^{n} p(\alpha_i \to \beta_i)$$
 (1)

$$= \prod_{i=1}^{n} p(\beta_i \mid \alpha_i) \tag{2}$$

where $p(\alpha \to \beta)$ is the *generative* rule of $\alpha \to \beta$

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$p(t) = p(S \to NP VP) \cdot p(NP \to DT NN) \cdot p(DT \to the)$$
$$\cdot p(NN \to man) \cdot p(VP \to Vi) \cdot p(Vi \to sleeps)$$
$$= 1.0 \times 0.3 \times 1.0 \times 0.7 \times 0.4 \times 1.0$$

Properties of PCFGs

- Assigns a probability to each derivation, or parse-tree, allowed by the underlying CFG
- ► If one sentence has more than one derivations, we can rank them based on their probabilities
- ► The most likely parse tree for a sentence is

$$\underset{t \in \mathcal{T}(s)}{\operatorname{argmax}} \, p(t) \tag{3}$$

Deriving a PCFG from a Corpus

 Given a set of example trees (a treebank), the underlying CFG can simply be all rules seen in the corpus

Maximum likelihood estimates:

$$p(\alpha \to \beta) = p(\beta \mid \alpha) = \frac{\#(\alpha \to \beta)}{\#(\alpha)} \tag{4}$$

Penn Treebank

- ▶ 50,000 sentences with associated trees
- Usual setup: 40,000 training sentences, 2,400 test sentences

Some Penn Treebank Rules with Counts

```
40717 \text{ PP} \rightarrow \text{IN NP}
                                                 100 VP \rightarrow VBD PP-PRD
33803 S \rightarrow NP-SBJ VP
                                                 100 PRN \rightarrow : NP :
22513 NP-SBJ → -NONE-
                                                 100 NP \rightarrow DT JJS
21877 \text{ NP} \rightarrow \text{NP PP}
                                                 100 NP-CLR \rightarrow NN
20740 \text{ NP} \rightarrow \text{DT NN}
                                                 99 NP-SB I-1 \rightarrow DT NNP
14153 S \rightarrow NP-SBJ VP
                                                 98 VP → VBN NP PP-DIR
12922 VP \rightarrow TO VP
                                                 98 VP → VBD PP-TMP
11881 PP-LOC \rightarrow IN NP
                                                 98 PP-TMP → VBG NP
11467 NP-SBJ \rightarrow PRP
                                                 97 \text{ VP} \rightarrow \text{VBD ADVP-TMP VP}
11378 NP \rightarrow -NONE-
11291 NP \rightarrow NN
                                                 10 WHNP-1 \rightarrow WRB JJ
                                                 10 VP \rightarrow VP CC VP PP-TMP
989 VP → VBG S
                                                 10 VP \rightarrow VP CC VP ADVP-MNR
985 NP-SBJ → NN
                                                 10 VP \rightarrow VBZ S , SBAR-ADV
983 PP-MNR → IN NP
                                                 10 VP \rightarrow VB7 S ADVP-TMP
```

Reference

Collins, M. (2017). Natural language processing: Lecture notes.