A Fully Automated Derivation of State-based Eigentriphones for Triphone Modeling with No Tied States using Regularization

Tom Ko

Brian Mak

Department of Computer Science & Engineering The Hong Kong University of Science and Technology Hong Kong SAR, China

Interspeech-2011

Outline

- Introduction
- Motivation and Related Past Works
- 3 Eigentriphone acoustic modeling (ICASSP 2011)
- Proposed improvements: Training with Regularized likelihood
- Experimental evaluation
- Summary

Vilfredo Pareto's 80/20 Principle

- WSJ0+WSJ1: 80% of samples are concentrated on the most frequent 20% of all seen triphones.
- How to train the infrequent triphones robustly?

Solution 1: Parameters Tying

Many HMM parameters may be tied:

- models: generalized triphones
- states: tied-state HMM
- Gaussians (mixtures): TMHMM / SCHMM
- sub-vector Gaussians : SDCHMM
- means, covariances, weights

Solution 2: Model Interpolation

M. F. Lee on generalized triphones

$$\lambda \cdot \mathsf{CD} \; \mathsf{model} + (1 - \lambda) \cdot \mathsf{CI} \; \mathsf{model}$$

Solution 2: Model Interpolation

• K. F. Lee on generalized triphones

$$\lambda \cdot \mathsf{CD} \; \mathsf{model} + (1 - \lambda) \cdot \mathsf{CI} \; \mathsf{model}$$

Chang & Glass, "A back-off discriminative acoustic model for automatic speech recognition" (Interspeech 2009)

 $\lambda \cdot \mathsf{CD} \; \mathsf{model} + (1 - \lambda) \cdot \mathsf{broad}\text{-phonetic-class model}$

Solution 2: Model Interpolation

• K. F. Lee on generalized triphones

$$\lambda \cdot \mathsf{CD} \; \mathsf{model} + (1 - \lambda) \cdot \mathsf{CI} \; \mathsf{model}$$

Chang & Glass, "A back-off discriminative acoustic model for automatic speech recognition" (Interspeech 2009)

$$\lambda \cdot \mathsf{CD} \; \mathsf{model} + (1 - \lambda) \cdot \mathsf{broad}\text{-phonetic-class model}$$

Side effect: acoustic score of each back-off CD model is distinct.

Solution 3: Basis Approach

- Subspace Gaussian Mixture Model [Povey ..., ICASSP 2010]
 - A global basis for mixture *i* is used to derive the *i*th Gaussian mixture mean for each state *j*.

$$\mathbf{m}_{ji} = \mathbf{M}_i \mathbf{v}_j$$
 (state j , mixture i)

Solution 3: Basis Approach

- Subspace Gaussian Mixture Model [Povey ..., ICASSP 2010]
 - A global basis for mixture *i* is used to derive the *i*th Gaussian mixture mean for each state *j*.

$$\mathbf{m}_{ji} = \mathbf{M}_i \mathbf{v}_j$$
 (state j , mixture i)

- 2 Bayesian Sensing HMM [Saon & Chien, ICASSP 2011]
 - A local basis for mixture i is used to derive the ith Gaussian mixture mean of state j.

$$\mathbf{m}_{ji} = \Phi_{ji} \mathbf{w}_t$$
 (state j, mixture i, time t)

Solution 3: Basis Approach

- Subspace Gaussian Mixture Model [Povey ..., ICASSP 2010]
 - A global basis for mixture i is used to derive the ith Gaussian mixture mean for each state j.

$$\mathbf{m}_{ji} = \mathbf{M}_i \mathbf{v}_j$$
 (state j , mixture i)

- 2 Bayesian Sensing HMM [Saon & Chien, ICASSP 2011]
 - A local basis for mixture i is used to derive the ith Gaussian mixture mean of state j.

$$\mathbf{m}_{ji} = \Phi_{ji}\mathbf{w}_t$$
 (state j, mixture i, time t)

- Canonical State Model [Gales & Yu, Interspeech 2010]
 - A set of global (CI) canonical states:

$$s_g = \{..., \{c_g^{(m)}, \mathbf{m}_g^{(m)}, \Sigma_g^{(m)}\}, ...\}$$

• A set of CD-state-dependent transforms:

$$\mathcal{T} = \{..., \{w_{x}^{(n)}, \theta_{s}^{(n)}\}, ...\}$$

• CD state parameters are derived from some transformation of the canonical states parameters.

Proposed Solution: Eigentriphones (ICASSP 2011)

- No tied states!.
- Like the back-off acoustic model, the acoustic model scores are distinct.

Proposed Solution: Eigentriphones (ICASSP 2011)

- No tied states!.
- Like the back-off acoustic model, the acoustic model scores are distinct.
- A global basis for each base phoneme eigentriphones.
- All triphones of a base phoneme are distinct points in the space of its eigentriphones.

Proposed Solution: Eigentriphones (ICASSP 2011)

- No tied states!.
- Like the back-off acoustic model, the acoustic model scores are distinct.
- A global basis for each base phoneme eigentriphones.
- All triphones of a base phoneme are distinct points in the space of its eigentriphones.
- Acoustic modeling as an adaptation problem: derive the infrequent CD triphones using the Eigenvoice adaptation approach.

Eigentriphones vs. Eigenvoice

Item	Eigenvoice	Eigentriphone	
No. of bases	1	39 (model-based)	
		$3 \times 39 = 117$ (state-based)	
Baseline model	SI model	CI model	
Training models	SD models	frequent triphones models	
Adaptation	new speaker; few data	infrequent triphones	

For each base phoneme *i*:

• Train a 3-state monophone HMM; *M*-mixture GMM states.

- **1** Train a 3-state monophone HMM; *M*-mixture GMM states.
- ② Initialize its triphones by cloning from the monophone HMM.

- **1** Train a 3-state monophone HMM; *M*-mixture GMM states.
- 2 Initialize its triphones by cloning from the monophone HMM.
- No state tying!

- **1** Train a 3-state monophone HMM; *M*-mixture GMM states.
- 2 Initialize its triphones by cloning from the monophone HMM.
- No state tying!
- Two disjoint sets of triphones:

```
poor triphones: \#samples < \theta_r = 200
```

rich triphones:
$$\#$$
samples $\geq \theta_r = 200$

For each base phoneme *i*:

- **1** Train a 3-state monophone HMM; *M*-mixture GMM states.
- 2 Initialize its triphones by cloning from the monophone HMM.
- No state tying!
- Two disjoint sets of triphones:

```
poor triphones: #samples < \theta_r = 200
```

rich triphones:
$$\#$$
samples $\geq \theta_r = 200$

Re-estimate the Gaussian means only for the rich triphones.

- **1** Train a 3-state monophone HMM; *M*-mixture GMM states.
- 2 Initialize its triphones by cloning from the monophone HMM.
- No state tying!
- Two disjoint sets of triphones:

```
poor triphones: #samples < \theta_r = 200
rich triphones: #samples > \theta_r = 200
```

- Re-estimate the Gaussian means only for the rich triphones.
- Gaussian covariances, mixture weights, transition probabilities are not reestimated.

- **1** Train a 3-state monophone HMM; *M*-mixture GMM states.
- 2 Initialize its triphones by cloning from the monophone HMM.
- No state tying!
- Two disjoint sets of triphones:

```
poor triphones: #samples < \theta_r = 200
rich triphones: #samples > \theta_r = 200
```

- Re-estimate the Gaussian means only for the rich triphones.
- Gaussian covariances, mixture weights, transition probabilities are not reestimated.
- "Eigentriphone adaptation" for Gaussian means. (See next page)

- **1** Train a 3-state monophone HMM; *M*-mixture GMM states.
- 2 Initialize its triphones by cloning from the monophone HMM.
- No state tying!
- Two disjoint sets of triphones:

```
poor triphones: #samples < \theta_r = 200
rich triphones: #samples > \theta_r = 200
```

- Re-estimate the Gaussian means only for the rich triphones.
- Gaussian covariances, mixture weights, transition probabilities are not reestimated.
- "Eigentriphone adaptation" for Gaussian means. (See next page)
- Re-estimate the other HMM parameters for the rich triphones.

Gaussian mean of a poor triphone in the eigentriphone space is:

$$\mathbf{v}_{ip} = \mathbf{m}_i + \sum_{k=1}^{K_i} w_{ipk} \mathbf{e}_{ik}$$

where

- i : base phoneme index
- p: triphone index
- \mathbf{v}_{ip} : supervector for the Gaussian means of p
- e_{ik}: kth largest eigenvector in the basis of phoneme i
- w_{ipk}: kth weight of triphone p
- \bullet m_i : supervector for the Gaussian means of monophone i

#Eigenvectors for Different Variations Coverage

Base Phone	100%	80%	60%	40%	20%
t	535	146	51	11	2
d	468	150	58	13	3
S	451	107	32	8	2
n	446	124	41	8	2
ah	434	100	26	7	2
er	411	127	46	10	2
I	390	120	41	7	1
z	382	101	33	9	3
iy	379	100	32	7	2
k	365	95	28	7	2

Improvement 1: Regularized Optimization

Before: Objective = max log likelihood of training data

$$Q(\mathbf{w}_{ip}) = L(\mathbf{w}_{ip})$$

Improvement 1: Regularized Optimization

Before: Objective = max log likelihood of training data

$$Q(\mathbf{w}_{ip}) = L(\mathbf{w}_{ip})$$

Now: Objective = max penalized log likelihood of training data

$$Q(\mathbf{w}_{ip}) = L(\mathbf{w}_{ip}) - \beta R(\mathbf{w}_{ip})$$

Penalty function:

$$R(\mathbf{w}_{ip}) = \sum_{k=1}^{N_i} \frac{w_{ipk}^2}{\lambda_{ik}}$$

Improvement 1: Regularized Optimization

Before : Objective = max log likelihood of training data

$$Q(\mathbf{w}_{ip}) = L(\mathbf{w}_{ip})$$

Now: Objective = max penalized log likelihood of training data

$$Q(\mathbf{w}_{ip}) = L(\mathbf{w}_{ip}) - \beta R(\mathbf{w}_{ip})$$

Penalty function:

$$R(\mathbf{w}_{ip}) = \sum_{k=1}^{N_i} \frac{w_{ipk}^2}{\lambda_{ik}}$$

- Now each triphone of a base phoneme may use a different number of eigentriphones.
- In general, favor small weights.
- For triphone with few data, back-off to the monophone means.
- Try to de-emphasize eigentriphones with small eigenvalues.

Improvement 2: Expanding the Rich Set

The poor triphones set and the rich triphones set now overlaps.

```
poor triphones: #samples \leq \theta_m^P = 200
```

rich triphones: #samples
$$\geq \theta_m^R = 30$$

Improvement 3: State-based Eigentriphones

An eigenspace for each of the 3 states of the triphones

$$\Rightarrow$$
 3 × 39 = 117 bases

Improvement 4: More Detailed Control on Parameter Estimation Thresholds

θ_m^P	poor triphone threshold	200
θ_m^R	rich triphone threshold mean reestimation threshold	30
θ_{v}^{R}	variance reestimation threshold	200
θ_w^R	mixture weight reestimation threshold	30
θ_t^R	transition reestimation threshold	200

Evaluation on 5K WSJ

Data Set	#Speakers	#Utterances	Vocab Size	OOV
train: SI284	283	37,413	13,646	
dev: si_dt_05.odd	10	248	1,260	0
test: Nov'92	8	330	1,270	0
test: Nov'93	10	215	1,004	0.29%

Feature Extraction

- 10ms frames; 25ms window
- standard 39-dimensional MFCC acoustic vectors.

Acoustic Models

- 18,777 cross-word triphones CDHMM derived from 39 base phonemes; 6,481 tied states
- left-to-right 3-state HMMs; 16 Gaussian components / state
- Language Model: bigram, PP = \sim 110; trigram, PP = \sim 60.
- $\beta = 15$ (empirically determined)

Model	Description	Nov'92
baseline1	tied-state triphones	94.56%

Model	Description	Nov'92
baseline1	tied-state triphones	94.56%
baseline2	no state tying; HMM parameters are reestimated according to the thresholds: $\theta_m^R, \theta_v^R, \theta_w^R, \theta_t^R$	93.98%

Model	Description	Nov'92
baseline1	tied-state triphones	94.56%
baseline2	no state tying; HMM parameters are reestimated according to the thresholds: $\theta_m^R, \theta_v^R, \theta_w^R, \theta_t^R$	93.98%
baseline3	no state tying; only Gaussian means of rich triphones are re-estimated	93.50%

Model	Description	Nov'92
baseline1	tied-state triphones	94.56%
baseline2	no state tying; HMM parameters are reestimated according to the thresholds: $\theta_m^R, \theta_v^R, \theta_w^R, \theta_t^R$	93.98%
baseline3	no state tying; only Gaussian means of rich triphones are re-estimated	93.50%
	+ state-based eigentriphone "adaptation" of means for poor triphones	93.78%

Model	Description	Nov'92
baseline1	tied-state triphones	94.56%
baseline2	no state tying; HMM parameters are reestimated according to the thresholds: $\theta_m^R, \theta_v^R, \theta_w^R, \theta_t^R$	93.98%
baseline3	no state tying; only Gaussian means of rich triphones are re-estimated	93.50%
	+ state-based eigentriphone "adaptation" of means for poor triphones + remaining HMM parameters are reestimated according to the thresholds: $\theta_v^R, \theta_w^R, \theta_t^R$	93.78% 94.53%

Trigram Result: State-based vs. Model-based Eigentriphones

System	Nov'92	Nov'93
tied-state triphone system	96.45%	93.89%
state-based eigentriphone system	96.41%	94.47%
model-based eigentriphone system	96.47%	94.44%

Result: Effect of Regularization (bigram, nov'93)

• Note: Just after "eigentriphone adaptation" of the Gaussian meas; no further re-estimation of other HMM parameters.

Analysis: Triphones of [jh]

Summary and Conclusions

- The expanded set of rich triphones give better results.
- The use of regularization improves performance by avoiding a hard decision on the number of eigentriphones (eigenvectors) for each triphone of the same base phoneme.
- Model-based eigentriphones are preferred over state-based eigentriphones for simplicity since both give similar performance.
- Tied states are not necessary.
- Triphones trained using the eigentriphone approach are mostly distinct.