EDEXCEL MECHANICS M2 (6678) – JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme		Marks	
1.	(a)	Differentiating: $\mathbf{a} = 3 \mathbf{i} - 5 \mathbf{j}$ (sufficient)	M1A1	(2)	
	(b)	Integrating: $\mathbf{r} = (\frac{3}{2}t^2 - 2t)\mathbf{i} - \frac{5}{2}t^2\mathbf{j} \ (+C)$			
		Using initial conditions to find C (3 \mathbf{i}); \mathbf{r} ($t = 2$) = 5 \mathbf{i} – 10 \mathbf{j}			
		Distance = $\sqrt{\{5^2 + (10)^2\}}$; = $5\sqrt{5}$ or 11.2 or 11.18 (m)	M1; A1	6)	
2.	(a)	$0 \le t \le 3$ $v = 2 t^2 - \frac{1}{3} t^3 (+C)$ Evidence of integration for M1	M1 A1		
		$t = 3 \implies v = 9 \text{ m s}^{-1}$	A1	(3)	
	(b)	$t \ge 3 \qquad \qquad v = -\frac{27}{t} \ \ (+C)$	B1		
		Using $t = 3$ and candidates' $v = 9$ to find C ; $C = 18$		M1; A1 ft	
		Substituting $t = 6$ in expression for v ; $v = 13.5$ m s ⁻¹	M1; A1	(5)	
				(8 marks)	
3.	(a)	Change in KE: $\frac{1}{2} \times 80 \times (8^2 - 5^2)$ [loss: 2560 – 1000 = 1560 J]	B1		
		Change in PE: $80 \times g \times (20 - 12)$ [loss: $15680 - 9408 = 6272 \text{ J}$]	B1		
		WD by cyclist = $20 \times 500 - (loss in K.E. + P.E.)$			
		= 2168 Nm (allow 2170 and 2200)		(5)	
	(<i>b</i>)	Equation of motion: $F - 20 = 80 \times 0.5$ [M1 requires three terms]	M1 A1		
	Power = $F_c \times 5$; = 300 W		M1 A1		
			(9 ma	rks)	

(ft = follow through mark)

EDEXCEL MECHANICS M2 (6678) – JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks
4.	(a)	Shape Square Semi-circle Lamina L	
		Relative masses 100 $12\frac{1}{2}\pi(39.3)$ $100 - 12\frac{1}{2}\pi(60.7)$	M1 A1
		Centre of mass from AB $\frac{20}{3\pi}$ (2.12) $\frac{1}{x}$	B1 B1
		Moments about AB: $100 \times 5 - 12\frac{1}{2}\pi \times \frac{20}{3\pi} = (100 - 12\frac{1}{2}\pi)^{-\frac{1}{2}}$	M1 A1
		Answer: 6.86 cm	A1 (cao) (7)
	(<i>b</i>)	D_{θ} Correct angle, diagram sufficient	M1
		Method to find θ [or $(90 - \theta)$]	M1
		$\int_{G} 10 - \bar{x} \qquad C \qquad \tan \theta = \frac{10 - \bar{x}_{c}}{5}$	A1 ft
		Answer: 32.1°	A1 (cao) (4)
5.	(a)	B1; B1	
		M1	
		$y = x \tan \alpha - \frac{gx^2}{2u^2 \cos^2 \theta}$	M1
		$y = x \tan \alpha - \frac{gx^2}{2u^2} (1 + \tan^2 \alpha) *$	A1 (5)
	(<i>b</i>)	$-2 = x \tan 45^{\circ} - \frac{9.8 \times x^{2}}{2 \times 14^{2}} (1 + \tan^{2} 45^{\circ})$	M1 A1
		Simplifying "correctly" to quadratic of form $ax^2 + bx + c = 0$ (may be implied, e.g. $x^2 - 20x - 40 = 0$; $-0.05x^2 + x + 2 = 0$; $4.9x^2 - 98x - 196 = 0$)	M1
		Solving for t (2.205 s), $x = 14 \cos 45^{\circ} t$, $x = 21.8 \text{ m}$	M1 A1 (5)
	(c)	$21.8_{c} = 14 \cos 45^{\circ} t$; $t = 2.2 \text{ s}$	M1 A1 (cao) (2)
			(12 marks)

(ft = follow through mark; cao = correct answer only; cso = correct solution only; * indicates answer is given on the examination paper)

EDEXCEL MECHANICS M2 (6678) – JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme		Marks	
6.	(a)	$ \begin{array}{ccc} \leftarrow v_1 & \rightarrow v_2 \\ \rightarrow u & 0 \\ A \odot & B \odot \\ m & 3m \end{array} $	CoM: $mu = -mv_1 + 3 mv_2$ $\Rightarrow u = -v_1 + 3 v_2$ NEL: $e u = v_2 + v_1$	M1 A1	
		Solving: $v_1 = \frac{1}{4}(3e - 1)u$ $v_2 = \frac{1}{4}(1 + e)u$		M1 A1 A1	(7)
		Speed of <i>B</i> after hitting wall =	10	B1 ft	
			$; \qquad \frac{3}{16} \ (1+e)u \ > \frac{1}{4} (3e-1)u$	M1	
		Solving, $e < \frac{7}{9}$		M1 A1	
		Finding lower bound using v	$_{1} > 0;$ $e > \frac{1}{3}$	M1	
		Complete range: $\frac{1}{3} < e < \frac{7}{9}$		A1 (cso)	(6)
			(13 ma	arks)	
7.	(a)		F = 0.6R (seen anywhere)	M1	
		R β	Moments about <i>B</i> : $R \times 2a \cos \alpha + F \times 2a \sin \alpha = W \times a \cos \alpha$ Using $\cos \alpha = \frac{12}{13}$ and $\sin \alpha = \frac{5}{13}$	M1 A1	
	(b)	F α W	Solving for R $\frac{24}{13}R + \frac{6}{13}R = \frac{12}{13}W \Rightarrow 30R = 12$	M1	
			$\Rightarrow R = \frac{2}{5} W^*$	A1	(6)
		Resolve \leftrightarrow : $T \cos \beta = F$; =	25	M1 A1	
		Resolve \updownarrow : $T \sin \beta + R = \frac{1}{2}$	$W T\sin\beta = \frac{3}{5} W$	M1 A1	
		Complete method for β [e.g. tages]	an $\beta = 2.5$]; $\beta = 68.2^{\circ}$	M1; A1	(6)
		Complete method for <i>T</i> : substi	tute for β or $\sqrt{\{(0.6 \text{ W})^2 + (0.24 \text{ W})^2\}}$	M1	
		$T = 0.646W \implies k = 0.65 \text{ or}$	0.646	A1	(2)
				(14 ma	arks)