Universidade de Aveiro Departamento de Matemática

Cálculo II — Agrupamento 4

2019/2020

Ficha de Exercícios 3

FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS REAIS (PARTE I):

Domínios; Conjuntos de nível; Limites; Continuidade; derivação parcial e diferenciabilidade

Exercícios Propostos

- 1. Represente geometricamente os seguintes conjuntos:
 - (a) $S = \{(x, y) \in \mathbb{R}^2 : 0 < x^2 + 2y^2 < 4\}$:
 - (b) $S = \{(x, y) \in \mathbb{R}^2 : 0 < (x 1)^2 + y^2 < 1\} \cup \{(x, 0) \in \mathbb{R}^2 : x > 2\};$
 - (c) $S = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$:
 - (d) $S = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, z \ge 0, x + y + z \le 1\};$
 - (e) $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 2 x^2 y^2\}.$

Caracterize cada um dos conjuntos do ponto de vista topológico (usando a topologia usual em \mathbb{R}^2 e em \mathbb{R}^3).

- 2. Determine o domínio das seguintes funções e descreva-o geometricamente:
 - (a) $f(x,y) = \sqrt{y x^2}$;

(b) $f(x, y, z) = \sqrt{y - x^2}$;

- (c) $f(x,y) = \frac{2 \sqrt{4 x^2 y^2}}{x^2 + y^2}$;
- (d) $f(x,y) = \ln(xy)$;
- (e) $f(x,y) = \ln(x^2 + y^2 1) + \sqrt{9 x^2 y^2};$ (f) $f(x,y,z) = \arcsin\frac{z}{\sqrt{r^2 + y^2}}.$
- 3. Determine as curvas / superfícies de nível das seguintes funções e descreva-as do ponto de vista geométrico:
- (a) f(x,y) = x 4y; (c) $f(x,y) = x^2 + y^2$; (e) $f(x,y,z) = x^2 y^2 z^2$;

- (b) $f(x,y) = x^2 4y$; (d) $f(x,y) = x^2 4y^2$; (f) $f(x,y,z) = x^2 + y^2 + z^2$.
- 4. Suponha que $T(x,y) = 40 x^2 y^2$ representa uma distribuição de temperatura no plano xOy(admita que x e y são dados em quilómetros e a temperatura T em graus Celsius). Um indivíduo encontra-se na posição (3, 2) e pretende dar um passeio.

Descreva o lugar geométrico dos pontos que ele deverá percorrer se desejar desfrutar sempre da mesma temperatura.

- 5. Determine, caso existam, os seguintes limites:
- (a) $\lim_{(x,y)\to(0,0)} \frac{x^4 4y^4}{2x^2 + 4y^2}$ (b) $\lim_{(x,y)\to(1,2)} \frac{x^2}{x^2 + y^2}$ (c) $\lim_{(x,y)\to(0,0)} (x^2 + 2y^2) \operatorname{sen}(\frac{1}{xy})$ (d) $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2 + 2y^2}$ (e) $\lim_{(x,y)\to(0,0)} \frac{x^4}{y^4 + (y-x)^2}$

- 6. Considere f a função de domínio contido em \mathbb{R}^2 tal que $f(x,y) = \frac{x^2y}{r^4+n^2}$.
 - (a) Determine o domínio de f e diga, justificando, se é um conjunto fechado.
 - (b) Determine as curvas de nível C_k de f, para k=0 e $k=\frac{1}{2}$, respetivamente. Faça os seus esboços gráficos.

- (c) Mostre que não existe $\lim_{(x,y)\to(0,0)} f(x,y)$.
- 7. Determine o domínio de continuidade das funções, de domínio \mathbb{R}^2 , definidas por:

(a)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x - y} & \text{se } x \neq y \\ 0 & \text{se } x = y \end{cases}$$
 (b) $f(x,y) = \begin{cases} x + y & \text{se } xy = 0 \\ 0 & \text{se } xy \neq 0 \end{cases}$.

8. Calcule as derivadas parciais de primeira ordem da função f dada por

$$f(x, y, z) = e^x \operatorname{sen} x + \cos(z - 3y).$$

9. Calcule, caso existam, as derivadas parciais de primeira ordem das seguintes funções nos pontos P indicados:

(a)
$$f(x,y) = \sqrt{xy}$$

(b)
$$f(x,y) = \begin{cases} \frac{xy}{4-x^2-2y^2}, & \text{se } x^2+2y^2 \neq 4\\ 0, & \text{se } x^2+2y^2 = 4 \end{cases}$$
 $[P = (2,0)];$

(c)
$$f(x,y) = \begin{cases} 0, & \text{se } (x,y) = (0,0) \\ x \sin \frac{1}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \end{cases}$$
 $[P = (0,0)].$

10. Determine as derivadas parciais de primeira e de segunda ordens da função

$$f(x,y) = \ln(x+y) - \ln(x-y).$$

- 11. Sendo $z = \ln(x^2 + xy + y^2)$, mostre que $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2$.
- 12. Mostre que a função $f(x,y) = \arctan(y/x)$ verifica a equação

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \qquad (equação \ de \ Laplace).$$

- 13. Considere a função $f(x,y) = \ln x + xy^2$.
 - (a) Indique o domínio de f.
 - (b) Determine equações do plano tangente e da reta normal ao gráfico de f no ponto (1,2,4).
- 14. Seja $f(x, y, z) = x \operatorname{sen}(yz)$.
 - (a) Determine o gradiente de f.
 - (b) Calcule a derivada direcional de f no ponto (1,3,0) segundo o vetor unitário U com a direção e sentido de V=(1,2,-1).
- 15. Considere a função f definida por $f(x,y) = \ln(x^2 + y^2)$.
 - (a) Indique o domínio D de f e caracterize-o do ponto de vista topológico.
 - (b) Descreva as curvas de nível da função f.
 - (c) Justifique que f é diferenciável em (3,0).
 - (d) Escreva a expressão geral das derivadas direcionais de f no ponto (3,0).
 - (e) Determine a direção e sentido segundo os quais se atinge o valor máximo das derivadas direcionais de f em (3,0).
- 16. Determine a reta normal e o plano tangente à superfície cónica

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : 3 - z = \sqrt{x^2 + y^2} \right\}$$

no ponto (3, 4, -2).

- 17. Considere a função f dada por $f(x, y, z) = 3xy + z^2$.
 - (a) Calcule o gradiente de f num ponto genérico.
 - (b) Determine uma equação do plano tangente à superfície de nível 4 de f, no ponto (1,1,1).

Exercícios Resolvidos

- 1. Seja $f: \mathbb{R}^3 \to \mathbb{R}$ tal que $f(x, y, z) = x + y + z + e^{xyz}$.
 - (a) Justifique que f é diferenciável em \mathbb{R}^3 .
 - (b) Determine a direção e sentido de maior crescimento de f no ponto $(0, \frac{1}{2}, \frac{1}{2})$ e calcule a derivada direcional correspondente nesse ponto.
 - (c) Determine uma equação cartesiana do plano tangente à superfície de nível 0 de f no ponto $(0, \frac{1}{2}, \frac{1}{2})$.

Resolução:

(a) As derivadas de 1.ª ordem de f em $(x, y, z) \in \mathbb{R}^3$ são:

$$\frac{\partial f}{\partial x}(x,y,z) = 1 - yz\,e^{xyz}\,, \quad \frac{\partial f}{\partial y}(x,y,z) = 1 - xz\,e^{xyz}\,, \quad \frac{\partial f}{\partial z}(x,y,z) = 1 - xy\,e^{xyz}$$

que são contínuas em \mathbb{R}^3 , logo, f é diferenciável em \mathbb{R}^3 .

(b) A direção e sentido de maior crescimento de f em $P=(0,\frac{1}{2},\frac{1}{2})$ é dada pelo vetor gradiente de f em P:

$$\begin{split} \nabla f(P) &= \left(\frac{\partial f}{\partial x}(0,\frac{1}{2},\frac{1}{2}),\frac{\partial f}{\partial y}(0,\frac{1}{2},\frac{1}{2}),\frac{\partial f}{\partial z}(0,\frac{1}{2},\frac{1}{2})\right) \\ &= \left(1-\frac{1}{4},1-0,1-0\right) \\ &= \left(\frac{3}{4},1,1\right) \end{split}$$

A norma deste vetor é $||\nabla f(P)|| = \frac{\sqrt{43}}{4}$. A derivada direcional correspondente nesse ponto é portanto $\frac{\sqrt{43}}{4}$.

(c) Notar que $S_0 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z - e^{xyz} = 0\}$ e portanto $P \in S_0$. Uma vez que $\nabla f(P) \neq 0$, o plano tangente a S_0 em $P = (0, \frac{1}{2}, \frac{1}{2})$ tem esse vetor como vetor ortogonal. Assim, uma equação desse plano é

$$\left(x-0, y-\frac{1}{2}, z-\frac{1}{2}\right) \cdot \left(\frac{3}{4}, 1, 1\right) = 0$$

ou seja, 3x + 4y + 4z - 4 = 0 é uma equação cartesiana do plano pedido.

Soluções

1. (a) É aberto.

(b) Não é aberto, nem é fechado.

- (c) É fechado.
- (d) É fechado.
- (e) É fechado.
- 2. (a) $D_f = \{(x, y) \in \mathbb{R}^2 : y \ge x^2\}.$

 $D_f = \{(x, y, z) \in \mathbb{R}^3 : y \ge x^2\}.$ Trata-se de um (b) cilindro parabólico (incluindo os pontos que se situam no seu interior).

(c) $D_f = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4 \land (x,y) \ne (0,0)\} = \{(x,y) \in \mathbb{R}^2 : 0 < x^2 + y^2 \le 4\}.$

(d) $D_f = \{(x,y) \in \mathbb{R}^2 : xy > 0\} = \{(x,y) \in \mathbb{R}^2 : (x > 0 \land y > 0) \lor (x < 0 \land y < 0)\} = (\mathbb{R}^+ \times \mathbb{R}^+) \cup (\mathbb{R}^- \times \mathbb{R}^-).$

(f)
$$D_f = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \neq (0, 0) \land z^2 \le x^2 + y^2\}.$$

- 3. (a) Para $k \in \mathbb{R}$, $C_k = \{(x,y) \in \mathbb{R}^2 : y = \frac{x}{4} \frac{k}{4}\}$ é a reta de declive $\frac{1}{4}$ e com ordenada na origem
 - (b) Para $k \in \mathbb{R}$, $C_k = \{(x,y) \in \mathbb{R}^2 : y = \frac{x^2}{4} \frac{k}{4}\}$ é uma parábola com concavidade voltada para cima e vértice $(0, -\frac{k}{4})$.
 - (c) $C_0 = \{(0,0)\}$. Para $k \in \mathbb{R}^+$, $C_k = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = k\}$ é a circunferência de centro (0,0) e raio \sqrt{k} .
 - (d) $C_0 = \{(x,y) \in \mathbb{R}^2 : y = \pm \frac{x}{2}\}$ são duas retas que passam na origem e com delives $\frac{1}{2}$ e $-\frac{1}{2}$. Para $k \in \mathbb{R}^+$, $C_k = \{(x,y) \in \mathbb{R}^2 : x^2 4y^2 = k\}$ são hipérboles cujos vértices se encontram no eixo Ox. Para $k \in \mathbb{R}^-$, $C_k = \{(x,y) \in \mathbb{R}^2 : x^2 4y^2 = k\}$ são hipérboles cujos vértices se encontram no eixo Oy.
 - (e) $S_0 = \{(x, y, z) \in \mathbb{R}^3 : x^2 = y^2 + z^2\}$ é uma superfície cónica; para $k \in \mathbb{R}^+$, $S_k = \{(x, y, z) \in \mathbb{R}^3 : x^2 y^2 z^2 = k\}$ é um hiperbolóide de duas folhas; para $k \in \mathbb{R}^-$, $S_k = \{(x, y, z) \in \mathbb{R}^3 : x^2 y^2 z^2 = k\}$ é um hiperbolóide de uma folha.
 - (f) $S_0 = \{(0,0,0)\}$ é um ponto (quádrica degenerada). Para cada $k \in \mathbb{R}^+$, $S_k = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = k\}$ é a superfície esférica de centro (0,0,0) e raio \sqrt{k} .

4.
$$\{(x,y): T(x,y) = T(3,2)\} = \{(x,y): x^2 + y^2 = 13\}$$

5.

(a) 0; (b)
$$\frac{1}{5}$$
; (c) 0; (d) 0; (e) Não existe.

6. (a)
$$D_f = \mathbb{R}^2 \setminus \{(0,0)\}.$$

(b)
$$C_0 = \{(x,y) \in \mathbb{R}^2 : x = 0 \lor y = 0\} \setminus \{(0,0)\}, C_{\frac{1}{2}} = \{(x,y) \in \mathbb{R}^2 : y = x^2\} \setminus \{(0,0)\}.$$

7. (a)
$$\{(x,y) \in \mathbb{R}^2 : x \neq y\} \cup \{(0,0)\}$$

(b)
$$\{(x,y) \in \mathbb{R}^2 : xy \neq 0\} \cup \{(0,0)\}$$

- 8. Para todo $(x, y, z) \in \mathbb{R}^3$, temos $\frac{\partial f}{\partial x}(x, y, z) = e^x(\operatorname{sen} x + \cos x),$ $\frac{\partial f}{\partial y}(x, y, z) = 3\operatorname{sen}(z 3y),$ $\frac{\partial f}{\partial z}(x, y, z) = -\operatorname{sen}(z 3y).$
- 9. (a) $\frac{\partial f}{\partial x}(2,2) = \frac{1}{2}$; $\frac{\partial f}{\partial y}(2,2) = \frac{1}{2}$.
 - (b) $\frac{\partial f}{\partial x}(2,0) = 0$; $\frac{\partial f}{\partial y}(2,0)$ não existe.
 - (c) $\frac{\partial f}{\partial x}(0,0)$ não existe; $\frac{\partial f}{\partial y}(0,0)=0.$
- 10. Para y > -x e x > y, temos $\frac{\partial f}{\partial x}(x,y) = \frac{2y}{y^2 x^2}; \quad \frac{\partial f}{\partial y}(x,y) = \frac{2x}{x^2 y^2},$ $\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{\partial^2 f}{\partial y^2}(x,y) = \frac{4xy}{(x^2 y^2)^2}; \quad \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y) = -\frac{2(x^2 + y^2)}{(x^2 y^2)^2}.$
- 11. –
- 12. -
- 13. (a) $D_f = \{(x, y) \in \mathbb{R}^2 : x > 0\} = \mathbb{R}^+ \times \mathbb{R}$.
 - (b) Plano tangente: 5x+4y-z-9=0. Reta normal: $(x,y,z)=(1,2,4)+\alpha(5,4,-1),\ \alpha\in\mathbb{R}\ (\text{equação vetorial})\ \text{ou}$ $\frac{x-1}{5}=\frac{y-2}{4}=4-z\quad (\text{equações cartesianas}).$
- 14. (a) $\nabla f(x, y, z) = (\text{sen}(yz), xz \cos(yz), xy \cos(yz)).$
 - (b) $D_{\frac{1}{\sqrt{6}}(1,2,-1)}f(1,3,0) = -\frac{3}{\sqrt{6}} = -\frac{\sqrt{6}}{2}$.
- 15. (a) $D_f = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 > 0\} = \mathbb{R}^2 \setminus \{(0,0)\}$ (é aberto e não é fechado).
 - (b) As curvas de nível $k \in \mathbb{R}$ de f são $C_k = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = e^k\}$ (circunferências de centro (0,0)).
 - (c) Sim, porque tem derivadas parciais de 1.ª ordem contínuas em todo o seu domínio, em particular em (3,0).
 - (d) $D_{(u,v)}f(3,0) = \frac{2}{3}u$, com $u^2 + v^2 = 1$.
 - (e) Na direção e sentido do vetor (1,0), (notar que é a direção e sentido do vetor gradiente de f em (3,0)).
- 16. Reta normal: $(x, y, z) = (3, 4, -2) + \alpha(3, 4, 5), \ \alpha \in \mathbb{R}$. Plano tangente: 3x + 4y + 5z 15 = 0.
- 17. (a) $\nabla f(x, y, z) = (3y, 3x, 2z)$.
 - (b) 3x + 3y + 2z 8 = 0.