External API

Note

More tools that integrate well with scanpy and annuata can be found on the ecosystem page.

Import Scanpy's wrappers to external tools as:

```
import scanpy.external as sce
```

If you'd like to include a tool here, consider making a pull request (instructions). If the tool already uses scanpy or annuata, it may fit better in the ecosystem page.

Preprocessing: PP

Data integration

pp.bbknn (adata[, batch_key, use_re	b,]) Batch balanced kNN [Polanski19].
pp.harmony_integrate (adata, key[, l	asis,]) Use harmonypy [Korunsky19] to integrate differer
pp.mnn_correct (*datas[, var_index,]) Correct batch effects by matching mutual nearest
pp.scanorama_integrate (adata, key	, basis,]) Use Scanorama [Hie19] to integrate different expe
4	_

Sample demultiplexing, Doublet detection

4	<u> </u>
pp.hashsolo (adata, cell_hashing_columns[,])	Probabilistic demultiplexing of cell hashing data u
pl.scrublet_score_distribution (adata[,])	Plot histogram of doublet scores for observed trai
<pre>pp.scrublet_simulate_doublets (adata[,])</pre>	Simulate doublets by adding the counts of randon
pp.scrublet (adata[, adata_sim, batch_key,])	Predict doublets using Scrublet [Wolock19].

Imputation

Note that the fundamental limitations of imputation are still under debate.

pp.dca (adata[, mode, ae_type,])	Deep count autoencoder [Eraslan18].
pp.magic (adata[, name_list, knn, decay,])	Markov Affinity-based Graph Imputation of Cells (M/
4	

Tools: TL

Embeddings

tl.phate (adata[, n_components, k, a,])	PHATE [Moon17].
tl.palantir (adata[, n_components, knn,])	Run Diffusion maps using the adaptive anisotropi
tl.trimap (adata[, n_components, n_inliers,])	TriMap: Large-scale Dimensionality Reduction Us
tl.sam (adata[, max_iter, num_norm_avg, k,])	Self-Assembling Manifolds single-cell RNA seque
4	

Clustering and trajectory inference

4	
tl.palantir_results (adata, early_cell[,])	Running Palantir
tl.palantir (adata[, n_components, knn,])	Run Diffusion maps using the adaptive anisotropic l
tl.wishbone (adata, start_cell[, branch, k,])	Wishbone identifies bifurcating developmental traje
tl.harmony_timeseries (adata, tp[,])	Harmony time series for data visualization with aug
tl.phenograph (adata[, clustering_algo, k,])	PhenoGraph clustering [Levine15].

Gene scores, Cell cycle

tl.sandbag (adata[, annotation, fraction,]) tl.cyclone (adata[, marker_pairs,])	Calculate marker pairs of genes. Assigns scores and predicted class to observations [

Plotting: PL

pl.phate (adata, *[, color, gene_symbols,])	Scatter plot in PHATE basis.
pl.trimap (adata, *[, color, gene_symbols,])	Scatter plot in TriMap basis.
pl.sam (adata[, projection, c, cmap,])	Scatter plot using the SAM projection or another
pl.wishbone_marker_trajectory (adata, markers)	Plot marker trends along trajectory, and return tr

Exporting

exporting.spring_project (adata, project_dir,)	Exports to a SPRING project directory [Wein
exporting.cellbrowser (adata, data_dir, data_name)	Export adata to a UCSC Cell Browser project