Ultra low power integer-N ADPLL

Master's thesis project - meeting 10

Cole Nielsen
Department of Electronic Systems, NTNU
20 March 2020 (calendar week 12)

Layout.

816 MHz Pseudo-differential delay cell.

Overall revised design.

Specs/performance.

- Now implementing only 6 stage differential at 816 MHz (eq. to quadrature at 2.448 GHz), due to challenge with meeting power, phase noise, frequency and tuning requirements.
- M1=M5 = 800n/80n, M2=M6=100n/80n, M3=M4= 400n/80n. All PVT bank caps 80n/20n.
- Power = 57.5 μ W at 816 MHz (200 aF node cap, 6x PVT caps), FOM = -162 dB.

Ring oscillator floorplan

For equal wire length

Blue is PVT calibration bank, white is delay cell.

4

PLL components

Loop filter

- Loop filter
- Control/calibration logic
 - · Lock detect, gear switching
 - PVT cal
 - Estimate initial DCO control word
- Phase detectors
 - BBPD
 - Synchronous counter (7-8 bit)
 - · Counter phase error decoder
- Level shifter (0.5V → 0.8V)
- CDACs
 - 5 bit coarse
 - 10 bit fine
- Ring oscillator
- RO buffer

Architecture

Block Diagram

Power Targets (revised)

(Divider not necessary)

DCO	Phase detector	Digital (LF)	Other	SUM
50 μW	10 μW	10 μW	0 ≤ 5 μW	\leq 70 $\frac{100}{\mu}$ μ W

Specification

System Performance Targets

Parameter	Value	Unit	Notes
Frequency	2.4-2.4835	GHz	2.4G ISM Band
Ref. frequency	16	MHz	Yields 6 channels
Power	\leq 70 $\frac{75}{\mu}$ μ W	μW	Minimize!
FSK BER	≤ 1e-2		GFSK* with f_{dev} = \pm 250 KHz
CNR	> 20	dBc	Yields -235 dB FOM _{jitter} ideally
Initial Lock Time	≤ 10	μs	Upon cold start
Re-lock Time	≤ 5	μs	Coming out of standby, $f_{error} < 1 \text{ MHz}$
Lock ∆f tolerance	100	kHz	
FOM _{jitter}	≤ -230	dB	For state of art in size/power
Area	< 0.01	mm ²	

^{*} Using BT=0.3, 1 MSymbols/s, 4 demodulated symbols averaged per bit to yield 250 kbps.

Specification

Component-level specs

Parameter	Value	Unit
Counter range	256 steps	coverage of 150-155
Divider ratio	150-155	(For non-counter based)
TDC resolution	≥ 155	steps/reference cycle
DCO gain K _{DCO}	10 ⁴	Hz/LSB
DCO tuning range	10	MHz
DCO DAC resolution	10	bit
DCO Phase noise	< -80	dBc/Hz @ $\Delta f = 10^6$ Hz, $f_c = 2.448$ GHz
DCO Power	≤ 50	μW
Digital filter word resolution	≤ 16	bits (power grows as $\mathcal{O}(n^2)$)
BB-PD jitter	≤ 12	ps _{rms}

Time plan (pt. 1)

Week #	Dates	Tasks	Outcomes
4	20.1 - 26.1	Finalize high level modeling	Component level specification
5	27.1 - 2.2	Establish test bench in Virtuoso	With ideal PLL implementation
6	3.2 - 9.2	Schem. design: phase detector	TDC - flash and counter based
7	10.2 - 16.2	Schem. design: phase detector	Bang-bang phase detector
8	17.2 - 23.2	RTL, synthesis, place&route	Digital loop filter
9	24.2 - 1.3	RTL, synthesis, place&route	Digital loop filter
10	2.3 - 8.3	Schem. design: oscillator	Ring DCO
11	9.3 - 15.3	Layout: oscillator	
12	16.3 - 22.3	CDAC/Ring oscillator	Layout
13	23.3 - 29.3	CDAC/Ring oscillator	Layout
14	30.3 - 5.4	Calibration/control logic	RTL, synth, PnR for calibration
15	6.4 - 12.4	Easter	-
16	13.4 - 19.4	Layout	Phase detector
17	20.4 - 26.4	Layout	Oscillator

Legend: Done Current Revised

Time plan (pt. 2)

Week #	Dates	Tasks	Outcomes
18	27.4 - 3.5	Layout	Divider/calibration
19	4.5 - 10.5	Layout	Finalization/system integration
20	11.5 - 17.5	Flex week (layout) OR yield improvement	Depending on progress
21	18.5 - 24.5	Report writing	
22	25.5 - 31.5	Report writing	
23	1.6 - 7.6	Report writing	Deadline 8.6

Legend: Done Current Revised

References

- [1] L. Dai and R. Harjani, "Analysis and design of low-phase-noise ring oscillators," ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514), Rapallo, Italy, 2000, pp. 289-294. doi: 10.1145/344166.344639
- [2] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," in IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
- [3] G. Jacquemod et al., "Study and reduction of variability in 28 nm FDSOI technology," 2015 International Workshop on CMOS Variability (VARI), Salvador, 2015, pp. 19-22.