QCM n° 10

Langages formels et automates

Q1. Si on construit un automate à pile à partir d'une grammaire G (forme de Greibach modifiée) et ensuite on reconstruit une grammaire à partir de l'automate à pile on retrouve G.

A. vrai

B. faux

70%

Q6. Dans la grammaire obtenue par construction à partir d'un automate à pile toutes les variables sont accessibles.

A. vrai

B. faux

24%

Q2. Dans l'algorithme de construction d'une grammaire à partir d'un automate à pile, le nombre de variables obtenues est k^2v+1 , (k désigne le nombre d'états et v la taille de l'alphabet de pile).

A. vrai

B. faux

71%

Q7. Si le langage L est engendré par une grammaire linéaire, alors il peut être engendré par une grammaire dont toutes les productions à partir d'un même variable X commencent par des lettres différentes.

A. vrai

B. faux

69%

Q3. L'union d'un langage algébrique et d'un langage rationnel est un langage rationnel.

A. vrai

B. faux

90%

Q8. Si une grammaire est sous forme normale de Chomsky, alors dans toute arbre de dérivation les nœuds internes sont d'arité au plus 2.

A. vrai

B. faux

82%

Q4. On peut avoir deux langages, L_1 algébrique et L_2 rationnel t.q. leur concaténation L_1L_2 est rationnel.

A. vrai

B. faux

60%

Q9. L'intersection d'un langage algébrique et d'un langage rationnel est un langage algébrique.

A. vrai

B. faux

82%

Q5. L'intersection d'un langage algébrique et d'un langage rationnel est un langage rationnel.

A. vrai

B. faux

74%

Q10. Dans l'algorithme de recherche des variables accessibles, une règle de production sert au plus une fois.

A. vrai

B. faux

62%