

Centralna Komisja Egzaminacyjna w Warszawie

EGZAMIN MATURALNY 2010

MATEMATYKA POZIOM ROZSZERZONY

Klucz punktowania odpowiedzi

Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie przyznajemy maksymalną liczbę punktów.

Zadanie 1. (0-4)

Obszar standardów	Sprawdzane umiejętności
Użycie i tworzenie strategii	Rozwiązanie nierówności z wartością bezwzględną

I sposób rozwiązania (wyróżnienie na osi liczbowej przedziałów)

Wyróżniamy na osi liczbowej przedziały: $(-\infty, -2)$, $\langle -2, 1 \rangle$, $\langle 1, \infty \rangle$.

Rozwiązujemy nierówności w poszczególnych przedziałach i w każdym przedziale bierzemy część wspólną tego przedziału z otrzymanym zbiorem rozwiązań nierówności.

$x \in (-\infty, -2)$	$x \in \langle -2, 1 \rangle$	$x \in \langle 1, \infty \rangle$
$-2x-4-x+1 \le 6$	$2x+4-x+1 \le 6$	$2x+4+x-1 \le 6$
$-3x \le 9$	$x \le 1$	$3x \leq 3$
$x \ge -3$	W tym przypadku	$x \le 1$
W tym przypadku	rozwiązaniem nierówności	W tym przypadku
rozwiązaniem nierówności	$jest -2 \le x < 1$	rozwiązaniem nierówności jest
$jest -3 \le x < -2$		x = 1

Łącząc otrzymane rozwiązania, podajemy ostateczną odpowiedź: $-3 \le x \le 1$ lub zapisujemy odpowiedź: Zbiorem rozwiązań nierówności jest $\langle -3,1 \rangle$.

II sposób rozwiązania (zapisanie czterech przypadków)

Zapisujemy cztery przypadki:
$$\begin{cases} 2x+4 \ge 0 & \begin{cases} 2x+4 \ge 0 \\ x-1 \ge 0 \end{cases} & \begin{cases} 2x+4 < 0 \\ x-1 < 0 \end{cases} & \begin{cases} 2x+4 < 0 \\ x-1 < 0 \end{cases}$$

$\int 2x + 4 \ge 0$	$\int 2x + 4 \ge 0$	$\int 2x + 4 < 0$	$\int 2x + 4 < 0$
$\begin{cases} x-1 \ge 0 \end{cases}$	$\begin{cases} x-1<0 \end{cases}$	$\int x-1 \ge 0$	$\int x-1<0$
$\int 2x + 4 \ge 0$	$\int 2x + 4 \ge 0$		$\int 2x + 4 < 0$
$\begin{cases} x-1 \ge 0 \end{cases}$	$\begin{cases} x-1 < 0 \end{cases}$	niemożliwe	$\begin{cases} x-1 < 0 \end{cases}$
$2x+4+x-1 \le 6$	$2x+4-x+1 \le 6$		$\left -2x - 4 - x + 1 \le 6 \right $
$x \ge -2$	$x \ge -2$		$\int x < -2$
$\begin{cases} x \ge 1 \end{cases}$	$\begin{cases} x < 1 \end{cases}$		$\begin{cases} x < 1 \end{cases}$
$3x \le 3$	$x \le 1$		$\left -3x \le 9 \right $
$x \ge -2$			$\int x < -2$
$\begin{cases} x \ge 1 \end{cases}$	$x \in \langle -2,1 \rangle$		$\begin{cases} x < 1 \end{cases}$
$x \le 1$			$x \ge -3$
x = 1			$x \in \langle -3, -2 \rangle$
			l ' ' '

Łącząc otrzymane rozwiązania, podajemy ostateczną odpowiedź: $-3 \le x \le 1$ lub zapisujemy odpowiedź: Zbiorem rozwiązań nierówności jest $\langle -3,1 \rangle$.

Schemat oceniania

Rozwiązanie, w którym jest istotny postęp1 pkt Zdający wyróżni na osi liczbowej przedziały $(-\infty, -2)$, $\langle -2, 1 \rangle$, $\langle 1, \infty \rangle$. albo

• zapisze cztery przypadki: $\begin{cases} 2x+4 \ge 0 & \begin{cases} 2x+4 \ge 0 & \begin{cases} 2x+4 < 0 & \begin{cases} 2x+4 < 0 \end{cases} \\ x-1 < 0 & \begin{cases} x-1 \le 0 \end{cases} \end{cases}$

Zdający zapisze nierówności w poszczególnych przedziałach, np.

I.
$$x \in (-\infty, -2)$$
 $-2x-4-x+1 \le 6$

II.
$$x \in \langle -2, 1 \rangle$$
 $2x + 4 - x + 1 \le 6$
III. $x \in \langle 1, \infty \rangle$ $2x + 4 + x - 1 \le 6$

III.
$$x \in \langle 1, \infty \rangle$$
 $2x + 4 + x - 1 \leq 6$

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają

• zdający poprawnie rozwiąże nierówności i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami tylko w dwóch przypadkach, popełni błąd w trzecim przypadku i konsekwentnie doprowadzi rozwiązanie do końca

albo

zdający poprawnie rozwiąże nierówności tylko w dwóch przedziałach i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami i konsekwentnie doprowadzi rozwiązanie do końca

albo

zdający rozpatrzy cztery przypadki, poprawnie rozwiąże nierówności i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami tylko w dwóch przypadkach, stwierdzi, że jeden jest niemożliwy, popełni bład w trzecim przypadku i konsekwentnie doprowadzi rozwiązanie do końca

Rozwiązanie pełne 4 pkt Zdający zapisze odpowiedź: $x \in \langle -3,1 \rangle$.

III sposób rozwiązania (graficznie)

Rysujemy wykresy funkcji f(x) = |2x+4| + |x-1| i prostą o równaniu y = 6.

Wyróżniamy na osi liczbowej przedziały: $(-\infty, -2)$, $\langle -2, 1 \rangle$, $\langle 1, \infty \rangle$.

Zapisujemy wzór funkcji f w poszczególnych przedziałach bez wartości bezwzględnej, np.

$$f(x) = \begin{cases} -3x - 3 & \text{dla } x \in (-\infty, -2) \\ x + 5 & \text{dla } x \in \langle -2, 1 \rangle \\ 3x + 3 & \text{dla } x \in \langle 1, \infty \rangle \end{cases}$$

Rysujemy wykres funkcji f i prostą o równaniu y = 6

Odczytujemy odcięte punktów przecięcia się wykresu funkcji f i prostej o równaniu y = 6: x = -3 i x = 1.

Podajemy argumenty, dla których $f(x) \le 6$: $x \in \langle -3, 1 \rangle$.

Schemat oceniania

I.
$$x \in (-\infty, -2)$$
 $f(x) = -3x - 3$

II.
$$x \in \langle -2, 1 \rangle$$
 $f(x) = x + 5$

III.
$$x \in \langle 1, \infty \rangle$$
 $f(x) = 3x + 3$

lub

$$f(x) = \begin{cases} -3x - 3 & \text{dla } x \in (-\infty, -2) \\ x + 5 & \text{dla } x \in \langle -2, 1 \rangle \\ 3x + 3 & \text{dla } x \in \langle 1, \infty \rangle \end{cases}$$

Zadanie 2. (0–4)

Obszar standardów	Sprawdzane umiejętności
Użycie i tworzenie strategii	Rozwiązanie równania trygonometrycznego

Rozwiązanie

Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja trygonometryczna:

$$2(1-\sin^2 x)-5\sin x-4=0$$

Porządkujemy to równanie i wprowadzamy niewiadomą pomocniczą:

$$-2\sin^2 x - 5\sin x - 2 = 0$$
, $t = \sin x$, gdzie $t \in \langle -1, 1 \rangle$. Równanie przyjmuje teraz postać:

$$2t^2 + 5t + 2 = 0$$

Rozwiązujemy równanie kwadratowe ze zmienną t:

$$\Delta = 9$$
 $t_1 = -2$ $t_2 = -\frac{1}{2}$ ale $t_1 \notin \langle -1, 1 \rangle$

Zapisujemy rozwiązania równania $\sin x = -\frac{1}{2}$ należące do przedziału $\langle 0, 2\pi \rangle$:

$$x = \frac{11\pi}{6}$$
 i $x = \frac{7}{6}\pi$.

Schemat oceniania

$$-2\sin^2 x - 5\sin x - 2 = 0$$
 lub $2\sin^2 x + 5\sin x + 2 = 0$.

Pokonanie zasadniczych trudności zadania......3 pkt

Rozwiązanie równania kwadratowego (t = -2 lub $t = -\frac{1}{2}$) i odrzucenie rozwiązania t = -2.

Uwaga

Zdający może od razu rozwiązywać równanie kwadratowe (w którym niewiadomą jest $\sin x$) i zapisać rozwiązanie w postaci $\sin x = -\frac{1}{2}$ lub $\sin x = -2$ oraz zapisać, że równanie

 $\sin x = -2$ jest sprzeczne.

$$x = \frac{7}{6}\pi$$
 lub $x = \frac{11}{6}\pi$

albo

$$x = 210^{\circ} \text{ lub } x = 330^{\circ}$$

Zadanie 3. (0-4)

Obszar standardów	Sprawdzane umiejętności
Użycie i tworzenie strategii	Rozwiązanie zadania, umieszczonego w kontekście praktycznym, prowadzącego do badania funkcji kwadratowej

Rozwiązanie

Długości odcinków |BE| i |CF| są następujące: |BE| = 1 - 2x, |CF| = 1 - x. Pole trójkąta AEF jest więc równe:

$$P_{AEF} = P_{ABCD} - P_{ABE} - P_{ECF} - P_{FDA} = 1 - \frac{1}{2}(1 - 2x) - \frac{1}{2} \cdot 2x \cdot (1 - x) - \frac{1}{2}x = x^2 - \frac{1}{2}x + \frac{1}{2}x = x^2$$

Pole trójkąta *AEF* jest funkcją zmiennej x: $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$ dla $x \in \left\langle 0, \frac{1}{2} \right\rangle$.

Ponieważ $x_w = -\frac{1}{2} = \frac{1}{4} \in \left\langle 0, \frac{1}{2} \right\rangle$, a parabola o równaniu $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$ ma ramiona

skierowane "ku górze", więc dla $x = \frac{1}{4}$ pole trójkąta *AEF* jest najmniejsze.

Schemat oceniania

Zapisanie P_{AEF} w postaci trójmianu kwadratowego zmiennej x: $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$.

II sposób rozwiązania (geometria analityczna)

Przyjmujemy współrzędne punktów na płaszczyźnie: A = (0,0), F = (x,1), E = (1,1-2x). Wyznaczamy pole trójkąta AFE:

$$P = \frac{1}{2} |(x-0)(1-2x-0) - (1-0)(1-0)| = \frac{1}{2} |x(1-2x) - 1| = \frac{1}{2} |x-2x^2 - 1| = \frac{1}{2} |2x^2 - x + 1|$$

$$P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$$

Ponieważ
$$x_w = -\frac{1}{2} = \frac{1}{4} \in \left\langle 0, \frac{1}{2} \right\rangle$$
, a parabola o równaniu $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$ ma ramiona

skierowane "ku górze", więc dla $x = \frac{1}{4}$ pole trójkąta *AEF* jest najmniejsze.

Schemat oceniania

<u>Schemat oceniania</u>
Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do całkowitego
rozwiązania zadania 1 pkt
Wyznaczenie współrzędnych punktów na płaszczyźnie:
A = (0,0), F = (x,1), E = (1,1-2x).
Rozwiązanie, w którym jest istotny postęp2 pkt
Wyznaczenie pola trójkąta AFE:
$P = \frac{1}{2} (x-0)(1-2x-0)-(1-0)(1-0) = \frac{1}{2} x(1-2x)-1 = \frac{1}{2} x-2x^2-1 = \frac{1}{2} 2x^2-x+1 $
Pokonanie zasadniczych trudności zadania3 pkt
Zapisanie P_{AEF} w postaci trójmianu kwadratowego zmiennej x: $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$.
Rozwiązanie pełne4 pkt
Wyznaczenie x , dla którego funkcja przyjmuje minimum: $x = \frac{1}{4}$.

Zadanie 4. (0–4)

Obszar standardów	Sprawdzane umiejętności
Użycie i tworzenie strategii	Stosowanie twierdzenia o reszcie z dzielenia wielomianów
	przez dwumian

Rozwiązanie

Korzystając z warunków zadania zapisujemy układ równań

$$\begin{cases} 8+4a+2b+1=7\\ 27+9a+3b+1=10 \end{cases}$$
Z układu równań obliczamy *a* i *b*

$$\begin{cases} 4a+2b=-2\\ 9a+3b=-18 \end{cases}$$

$$\begin{cases} b=-2a-1\\ 9a-6a-3=-18 \end{cases}$$

$$\begin{cases} a=-5 \end{cases}$$

Warunki zadania są spełnione dla a = -5, b = 9.

Schemat oceniania

b = 9

Pokonanie zasadniczych trudności zadania2pkt Zapisanie układu równań:

$$\begin{cases} 8+4a+2b+1=7\\ 27+9a+3b+1=10 \end{cases}$$

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)3pkt.
Rozwiązanie układu równań z błędem rachunkowym.

Rozwiązanie układu równań: a = -5, b = 9.

Zadanie 5. (0–5)

Obszar standardów	Sprawdzane umiejętności
Modelowanie matematyczne	Wykorzystanie własności ciągu arytmetycznego i ciągu
	geometrycznego

I sposób rozwiązania

Z własności ciągu arytmetycznego mamy: 2b = a + c. Stąd i z warunków zadania otrzymujemy, że : 2b = 10 czyli b = 5.

Z własności ciągu geometrycznego zapisujemy równanie: $(b+4)^2 = (a+1) \cdot (c+19)$.

Zatem otrzymujemy układ równań, np. $\begin{cases} b=5\\ a+c=10\\ (b+4)^2=(a+1)\cdot(c+19) \end{cases}$

Z drugiego równania wyznaczamy a = 10 - c lub c = 10 - a i wstawiamy do trzeciego równania.

Otrzymujemy równanie, np. $9^2 = (10 - c + 1)(c + 19)$ lub $9^2 = (a + 1)(10 - a + 19)$.

Przekształcamy to równanie i otrzymujemy równanie z niewiadomą c lub a, np.

$$c^2 + 8c - 128 = 0$$
 lub $a^2 - 28a + 52 = 0$.

Rozwiązaniem równania sa:

$$c_1 = 8$$
, $c_2 = -16$ lub $a_1 = 2$, $a_2 = 26$.

Zatem szukanymi liczbami są: a = 2, b = 5, c = 8 lub a = 26, b = 5, c = -16.

Schemat oceniania do I sposobu rozwiązania

2b = a + c

albo

•
$$(b+4)^2 = (a+1)(c+19)$$

$$\begin{cases} 2b = a+c \\ a+c = 10 \\ (b+4)^2 = (a+1)\cdot(c+19) \end{cases}$$

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe) 4 pkt

- poprawne rozwiązanie równania kwadratowego, odrzucenie jednego z rozwiązań i poprawne wyznaczenie drugiej trójki liczb
 albo
 - przekształcenie układu równań z jedną niewiadomą do równania kwadratowego z błędem rachunkowym, np. błąd w redukcji wyrazów podobnych lub w przepisywaniu i konsekwentne doprowadzenie rozwiązania do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste).

II sposób rozwiązania

Oznaczamy: przez a – pierwszy wyraz ciągu arytmetycznego, a przez r – różnicę tego ciągu. Wówczas $b=a+r,\ c=a+2r.$

Z własności ciągu arytmetycznego i z warunków zadania mamy 2a + 2r = 10, stad a + r = 5

Z własności ciągu geometrycznego zapisujemy równanie, np.

$$(a+r+4)^2 = (a+1)(a+2r+19),$$

a następnie zapisujemy układ równań: $\begin{cases} a+r=5\\ \left(a+r+4\right)^2=\left(a+1\right)\left(a+2r+19\right) \end{cases}$

Z pierwszego równania wyznaczamy a = 5 - r i podstawiamy do drugiego równania.

Otrzymujemy równanie kwadratowe z niewiadomą *r*:

$$(5-r+r+4)^2 = (5-r+1)(5-r+2r+19)$$
 lub $r^2+18-63=0$.

Rozwiązaniami tego równania są: $r_1 = 3$ lub $r_2 = -21$.

Następnie obliczamy a, b, c.

Warunki zadania spełniają liczby: a = 2, b = 5, c = 8 lub a = 26, b = 5, c = -16.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp2 pkt Wykorzystanie własności ciągu geometrycznego i zapisanie układu równań, np.

$$\begin{cases} a+r=5\\ (a+r+4)^2 = (a+1)(a+2r+19) \end{cases}$$

Pokonanie zasadniczych trudności zadania3 pkt Przekształcenie układu równań do równania z niewiadomą *r*, np.

$$(5-r+r+4)^2 = (5-r+1)(5-r+2r+19)$$
 lub $r^2+18-63=0$.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)......4 pkt

• poprawne rozwiązanie równania kwadratowego, odrzucenie jednego z rozwiązań, np. r < 0 i poprawne wyznaczenie drugiej trójki liczb

albo

• przekształcenie układu równań z jedną niewiadomą do równania kwadratowego z błędem rachunkowym, np. błąd w redukcji wyrazów podobnych lub w przepisywaniu i konsekwentne doprowadzenie rozwiązania do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste).

Zadanie 6. (0–5)

Obszar standardów	Sprawdzane umiejętności
Użycie i tworzenie strategii	Przeprowadzanie dyskusji trójmianu kwadratowego
	z parametrem

I sposób rozwiązania (wzory Viète'a)

$$x^2 + mx + 2 = 0$$

Zapisujemy układ warunków:

$$\begin{cases} \Delta > 0 \\ x_1^2 + x_2^2 > 2m^2 - 13 \end{cases}$$

Rozwiązujemy pierwszą nierówność tego układu:

$$\Delta = m^{2} - 8$$

$$\Delta > 0$$

$$m^{2} - 8 > 0$$

$$m \in \left(-\infty, -2\sqrt{2}\right) \cup \left(2\sqrt{2}, \infty\right)$$

Aby rozwiązać drugą nierówność, najpierw przekształcimy lewą stronę nierówności, korzystając ze wzorów Viète'a:

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = (-m)^2 - 2 \cdot 2 = m^2 - 4$$

Rozwiązujemy zatem nierówność:

$$m^2 - 4 > 2m^2 - 13$$

 $m^2 - 9 < 0$, with $m \in (-3,3)$

Wyznaczamy wspólną część zbiorów rozwiązań układu nierówności:

$$m \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)$$
 i $m \in (-3,3)$, wifec $m \in (-3, -2\sqrt{2}) \cup (2\sqrt{2},3)$.

II sposób rozwiązania (wzory na pierwiastki trójmianu)

Zapisujemy układ warunków:

$$\begin{cases} \Delta > 0 \\ x_1^2 + x_2^2 > 2m^2 - 13 \end{cases}$$

Rozwiązujemy pierwszą nierówność:

$$\Delta = m^2 - 8$$

$$\Delta > 0 \qquad m^2 - 8 > 0$$

$$m \in \left(-\infty, -2\sqrt{2}\right) \cup \left(2\sqrt{2}, \infty\right)$$

Obliczamy pierwiastki równania kwadratowego:

$$x_1 = \frac{-m + \sqrt{m^2 - 8}}{2}$$

$$x_2 = \frac{-m - \sqrt{m^2 - 8}}{2}$$

Obliczamy sumę kwadratów pierwiastków równania kwadratowego:

$$x_1^2 + x_2^2 = \left(\frac{-m + \sqrt{m^2 - 8}}{2}\right)^2 + \left(\frac{-m - \sqrt{m^2 - 8}}{2}\right)^2 =$$

$$= \frac{m^2 - 2m\sqrt{m^2 - 8} + m^2 - 8}{4} + \frac{m^2 + 2m\sqrt{m^2 - 8} + m^2 - 8}{4} =$$

$$= \frac{2m^2 + 2m^2 - 16}{4} = m^2 - 4$$

Rozwiązujemy drugą nierówność:

$$m^2 - 4 > 2m^2 - 13$$

$$m^2 - 9 < 0$$

$$m \in (-3,3)$$

Wyznaczamy wspólną część zbiorów rozwiązań układu nierówności:

$$m \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)$$
 i $m \in (-3,3)$, wifec $m \in (-3, -2\sqrt{2}) \cup (2\sqrt{2},3)$.

Schemat oceniania

Rozwiązanie zadania składa się z trzech części.

a) Pierwsza polega na rozwiązaniu nierówności $\Delta > 0$, $m \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)$. Za poprawne rozwiązanie tej części zdający otrzymuje 1 punkt.

Uwaga

Jeżeli zdający rozwiązuje nierówność $\Delta \ge 0$, to **nie otrzymuje punktu** za tę część.

- na rozwiązaniu nierówności $x_1^2 + x_2^2 > 2m^2 13$, $m \in (-3.3)$. b) Druga polega Za tę część rozwiązania zdający otrzymuje **3 punkty**.
- c) Trzecia polega na wyznaczeniu części wspólnej rozwiązań nierówności z a) i b). Za poprawne rozwiązanie trzeciej części zdający otrzymuje 1 punkt.

W ramach drugiej części rozwiązania wyróżniamy następujące fazy:

Rozwiązanie części b), w którym postęp jest niewielki, ale konieczny na drodze do pelnego rozwiązania......1 pkt

- zapisanie nierówności $x_1^2 + x_2^2 > 2m^2 13$ w postaci równoważnej $m^2 4 > 2m^2 13$ albo
- wykorzystanie wzorów na pierwiastki trójmianu kwadratowego i zapisanie nierówności

$$\left(\frac{-m+\sqrt{m^2-8}}{2}\right)^2 + \left(\frac{-m-\sqrt{m^2-8}}{2}\right)^2 > 2m^2 - 13.$$

Pokonanie zasadniczych trudności części b) zadania2 pkt Doprowadzenie do postaci nierówności kwadratowej $m^2 - 9 < 0$.

Rozwiązanie bezblędne części b)......3 pkt Rozwiązanie nierówności: $m \in (-3,3)$.

Rozwiązanie pełne 5 pkt Wyznaczenie części wspólnej rozwiązań nierówności i podanie odpowiedzi:

$$m \in (-3, -2\sqrt{2}) \cup (2\sqrt{2}, 3).$$

Zadanie 7. (0–6)

Obszar standardów	Sprawdzane umiejętności
Użycie i tworzenie strategii	Stosowanie równań i nierówności do opisania zależności
	w prostokątnym układzie współrzędnych

Rozwiązanie

Obliczamy odległość punktu A od prostej y = x + 1: $d = \frac{\left|-2 - 5 + 1\right|}{\sqrt{1 + 1}} = 3\sqrt{2}$.

Obliczona odległość d jest równa długości wysokości trójkąta ABC poprowadzonej do boku BC. Znamy pole trójkąta ABC, więc obliczamy długość boku BC.

$$P_{ABC} = 15 \text{ stad } \frac{1}{2} d \cdot |BC| = 15 \text{ , wiec } |BC| = \frac{30}{3\sqrt{2}} = 5\sqrt{2}$$

Punkt C = (x, y) leży na prostej o równaniu y = x + 1, zatem C = (x, x + 1). Z warunków zadania mamy |AC| = |BC|, więc ze wzoru na długość odcinka zapisujemy równanie:

$$\sqrt{(x+2)^2 + (x+1-5)^2} = 5\sqrt{2}.$$

Rozwiązujemy otrzymane równanie:

$$\sqrt{(x+2)^2 + (x+1-5)^2} = 5\sqrt{2} \quad ()^2$$

$$x^2 + 4x + 4 + x^2 - 8x + 16 = 50$$

$$x^2 - 2x - 15 = 0$$

$$\Delta = 64 \qquad x_1 = 5 \qquad x_2 = -3$$

Obliczamy rzędne punktów: $y_1 = 6$ $y_2 = -2$

Warunki zadania spełniają dwa punkty: $C_1 = (5,6)$ $C_2 = (-3,-2)$.

Schemat oceniania

$$\begin{cases} y = x + 1 \\ (x+2)^2 + (y-5)^2 = 50 \end{cases}$$

i sprowadzenie układu do równania kwadratowego: $x^2 - 2x - 15 = 0$.

Zadanie 8. (0-5)

Obszar standardów	Sprawdzane umiejętności
Rozumowania i argumentacji	Przeprowadzenie dowodu algebraicznego

Rozwiązanie

Zapisujemy współrzędne dwóch punktów leżących na wykresie funkcji $f(x) = \frac{1}{x^2}$ oraz na prostej równoległej do osi Ox, np. $A = \left(x, \frac{1}{x^2}\right)$, $B = \left(-x, \frac{1}{x^2}\right)$, gdzie $x \neq 0$.

Zapisujemy pole trójkąta ABC, gdzie C = (3,-1) w zależności od jednej zmiennej:

$$P_{\Delta ABC} = \frac{2 \cdot |x| \cdot \left| \frac{1}{x^2} + 1 \right|}{2} = \frac{1}{|x|} + |x|.$$

Wystarczy wobec tego udowodnić, (lub powołać się na znaną nierówność), że dla dowolnej liczby a>0 zachodzi nierówność $\frac{1}{a}+a\geq 2$. Po pomnożeniu obu stron nierówności przez a otrzymujemy nierówność równoważną $1+a^2\geq 2a$, czyli $a^2-2a+1\geq 0$, a więc nierówność $\left(a-1\right)^2\geq 0$.

Schemat oceniania

Uwaga

Zdający otrzymuje 0 punktów, jeżeli wybierze konkretne dwa punkty A oraz B i dla tych punktów obliczy pole trójkąta ABC.

Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze do całkowitego rozwiązania1 pkt

Zapisanie współrzędnych dwóch punktów leżących na wykresie funkcji $f(x) = \frac{1}{x^2}$ oraz

na prostej równoległej do osi
$$Ox$$
, np. $A = \left(x, \frac{1}{x^2}\right)$, $B = \left(-x, \frac{1}{x^2}\right)$, gdzie $x \neq 0$.

Rozwiązanie, w którym jest istotny postęp2 pkt

Zapisanie długości odcinka AB(|AB|=2|x|) oraz wysokości h trójkąta $ABC(h=\frac{1}{x^2}+1)$.

$$P_{\Delta ABC} = \frac{2 \cdot |x| \cdot \left| \frac{1}{x^2} + 1 \right|}{2} = \frac{1}{|x|} + |x|$$

Uwaga

Zdający może założyć, że x > 0 i zapisać wzór na pole trójkąta w postaci:

$$P_{\Delta ABC} = \frac{2 \cdot x \cdot \left(\frac{1}{x^2} + 1\right)}{2} = \frac{1}{x} + x$$

Zdający może powołać się na (znane) twierdzenie o sumie liczby dodatniej i jej odwrotności.

Zadanie 9. (0–4)

Obszar standardów	Sprawdzane umiejętności
Rozumowania i argumentacji	Przeprowadzenie dowodu geometrycznego

Rozwiązanie

Czworokąt \overline{ABCD} jest równoległobokiem, czworokąt DCFE jest kwadratem, więc |AB| = |CD| = |CF|. W kwadracie CBHG odcinki BC i CG są równe.

Niech α oznacza kąt ABC danego równoległoboku. Wówczas $\square BCD = 180^{\circ} - \alpha$.

W kwadratach *CDEF* oraz *CBHG* mamy $\square DCF = \square DCF = 90^{\circ}$, więc

$$\square FCG = 360^{\circ} - (180^{\circ} - \alpha) - 90^{\circ} - 90^{\circ} = \alpha = \square ABC.$$

W trójkątach ABC i FCG mamy zatem: |AB| = |CF|, |BC| = |CG| oraz $|\Box FCG| = |\Box ABC|$, więc trójkąty ABC i FCG są przystające (cecha bkb). Stąd wnioskujemy, że |AC| = |FG|.

Schemat oceniania:

Zadanie 10. (0–4)

Obszar standardów	Sprawdzane umiejętności
Modelowanie matematyczne	Obliczanie prawdopodobieństwa z zastosowaniem
	klasycznej definicji prawdopodobieństwa

Rozwiązanie

Zdarzeniami elementarnymi są trzywyrazowe ciągi o wartościach w zbiorze sześcioelementowym. Mamy model klasyczny. $|\Omega| = 6^3 = 216$.

Reszta z dzielenia kwadratu liczby całkowitej przez 3 może być równa 0 lub 1. Suma kwadratów trzech liczb będzie podzielna przez 3 wtedy, gdy każdy z nich będzie podzielny przez 3 albo gdy reszta z dzielenia każdego z nich przez 3 będzie równa 1.

Kwadraty liczb 3 i 6 są liczbami podzielnymi przez 3.

Kwadraty liczb 1, 2, 4 i 5 dają z dzielenia przez 3 resztę 1.

|A| możemy obliczać następująco:

I sposób

- ciągi o wartościach ze zbioru $\{3,6\}$ jest ich $2^3 = 8$,
- ciągi o wartościach ze zbioru $\{1,2,4,5\}$ jest ich $4^3 = 64$,

czyli
$$|A| = 2^3 + 4^3 = 72$$

II sposób

- ciągi stałe jest ich 6,
- ciągi, w których występują dwie liczby ze zbioru $\{3,6\}$ jest ich $2 \cdot 3 = 6$,
- ciągi, w których występują dwie liczby ze zbioru $\{1,2,4,5\}$ jest ich $4 \cdot 3 \cdot 3 = 36$,
- ciągi różnowartościowe o wartościach ze zbioru $\{1,2,4,5\}$ jest ich $4\cdot 3\cdot 2=2$ 4, czyli |A|=6+6+36+24=72,

III sposób

- ciągi, w których występują liczby dające tę sama resztę przy dzieleniu przez 3 jest ich $3 \cdot 2^3 = 24$.
- ciągi, w których występują dwie liczby dające przy dzieleniu przez 3 resztę 1 i jedna liczba dająca przy dzieleniu przez 3 resztę 2 jest ich $3 \cdot 2 \cdot 2^2 = 24$,
- ciągi, w których występują dwie liczby dające przy dzieleniu przez 3 resztę 2 i jedna liczba dająca przy dzieleniu przez 3 resztę 1 jest ich $3 \cdot 2 \cdot 2^2 = 24$,

czyli
$$|A| = 24 + 24 + 24 = 72$$
,

Zatem
$$P(A) = \frac{72}{216} = \frac{1}{3}$$
.

Schemat oceniania

Pokonanie zasadniczych trudności zadania3 pkt

Zdający poprawnie obliczy liczbę zdarzeń elementarnych sprzyjających zajściu zdarzenia A: |A| = 72 i na tym zakończy lub dalej rozwiązuje błędnie.

Zadanie 11. (0-5)

Obszar standardów	Sprawdzane umiejętności
Użycie i tworzenie strategii	Obliczanie objętości wielościanu z wykorzystaniem
	trygonometrii

<u>Uwaga</u>

Strategię rozwiązania zadania można zrealizować na wiele sposobów. W każdym z nich wyróżniamy następujące etapy rozwiązania

- Poprawna interpretacja bryły i podanego kąta dwuściennego w tej bryle.
- Wyznaczenie m lub h w zależności od a i α .
- Wyznaczenie jednej z wielkości: x, b, h_b (w zależności od a i α), z której można już wyznaczyć H.
- Wyznaczenie H w zależności od a i α .
- Wyznaczenie V w zależności od a i α .

Użyliśmy oznaczeń jak na rysunku

Rozwiązanie (wyznaczenie *m*, wyznaczenie *x*, wyznaczenie *H* z podobieństwa trójkątów *OCS* i *ECF*)

Wysokość podstawy ostrosłupa jest równa $h_p = \frac{a\sqrt{3}}{2}$.

Wyznaczamy wysokość FE trójkąta równoramiennego ABE

$$\operatorname{tg}\alpha = \frac{|FB|}{|BE|} = \frac{\frac{1}{2}a}{m}, \text{ stad } m = \frac{a}{2\operatorname{tg}\alpha}.$$

Wyznaczamy długość odcinka EC z twierdzenia Pitagorasa w trójkącie FCE:

$$x = \sqrt{h_p^2 - m^2}$$

$$x = \sqrt{\left(\frac{a\sqrt{3}}{2}\right)^2 - \left(\frac{a}{2\lg\alpha}\right)^2} = a\sqrt{\frac{3\lg^2\alpha - 1}{4\lg^2\alpha}} = \frac{a\sqrt{4\sin^2\alpha - 1}}{2\sin\alpha}$$

Z podobieństwa trójkątów OCS i ECF mamy

$$\frac{|OS|}{|OC|} = \frac{|EF|}{|EC|}, \text{ czyli } \frac{H}{\frac{2}{3}h_p} = \frac{m}{x}.$$

Stad
$$H = \frac{m \cdot \frac{2}{3} \cdot \frac{a\sqrt{3}}{2}}{\frac{a\sqrt{4}\sin^2\alpha - 1}{2\sin\alpha}} = \frac{\frac{a}{2\operatorname{tg}\alpha} \cdot \frac{a\sqrt{3}}{3}}{\frac{a\sqrt{4}\sin^2\alpha - 1}{2\sin\alpha}} = \frac{a\cos\alpha}{\sqrt{3}\sqrt{4\sin^2\alpha - 1}}.$$

Wyznaczamy objętość ostrosłupa:

$$V = \frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot H = \frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot \frac{a \cos \alpha}{\sqrt{3} \sqrt{4 \sin^2 \alpha - 1}} = \frac{a^3 \cos \alpha}{12 \sqrt{4 \sin^2 \alpha - 1}}.$$

Schemat oceniania

Uwaga

Nie wymagamy rysunku, jeżeli z dalszych obliczeń wynika, że zdający poprawnie interpretuje treść zadania. **Rozwiązanie, w którym jest istotny**2 pkt

Wyznaczenie wysokości EF trójkąta ABE w zależności od a i α : $m = \frac{a}{2 \operatorname{tg} \alpha}$. **Pokonanie zasadniczych trudności zadania**3 pkt

Wyznaczenie długości odcinka EC: $x = \frac{a\sqrt{4 \sin^2 \alpha - 1}}{2 \sin \alpha}$. **Rozwiązanie prawie całkowite**4 pkt

Wyznaczenie wysokości ostrosłupa: $H = \frac{a \cos \alpha}{\sqrt{3 \left(4 \sin^2 \alpha - 1\right)}}$. **Rozwiązanie pełne**5 pkt

Wyznaczenie objętości ostrosłupa: $V = \frac{1}{12} \frac{a^3 \cos \alpha}{\sqrt{4 \sin^2 \alpha - 1}}$.