TR29124 C++ Special Math Functions 2.0

Generated by Doxygen 1.8.9.1

Sun Apr 3 2016 11:55:35

Contents

1	Todo	List			1
2	Mod	ule Inde	ex		3
	2.1	Module	es		3
3	Nam	espace	Index		5
	3.1	Names	pace List		5
4	Clas	s Index			7
	4.1	Class I	_ist		7
5	File	Index			9
	5.1	File Lis	st		9
6	Mod	ule Doc	umentatio	ion	11
	6.1	Extend	ed Mather	ematical Special Functions	11
		6.1.1	Detailed	Description	19
		6.1.2	Enumera	ation Type Documentation	19
			6.1.2.1	anonymous enum	19
		6.1.3	Function	Documentation	19
			6.1.3.1	airy_ai	19
			6.1.3.2	airy_aif	19
			6.1.3.3	airy_ail	19
			6.1.3.4	airy_bi	19
			6.1.3.5	airy_bif	20
			6.1.3.6	airy_bil	20
			6.1.3.7	bernoulli	20
			6.1.3.8	bernoullif	20
			6.1.3.9	bernoullil	20
			6.1.3.10	bincoef	20

iv CONTENTS

6.1.3.11	bincoeff	20
6.1.3.12	bincoefl	20
6.1.3.13	chebyshev_t	20
6.1.3.14	chebyshev_tf	21
6.1.3.15	chebyshev_tl	21
6.1.3.16	chebyshev_u	21
6.1.3.17	chebyshev_uf	21
6.1.3.18	chebyshev_ul	22
6.1.3.19	chebyshev_v	22
6.1.3.20	chebyshev_vf	22
6.1.3.21	chebyshev_vl	22
6.1.3.22	chebyshev_w	22
6.1.3.23	chebyshev_wf	23
6.1.3.24	chebyshev_wl	23
6.1.3.25	clausen	23
6.1.3.26	clausen	23
6.1.3.27	clausen_c	23
6.1.3.28	clausen_cf	24
6.1.3.29	clausen_cl	24
6.1.3.30	clausen_s	24
6.1.3.31	clausen_sf	24
6.1.3.32	clausen_sl	25
6.1.3.33	clausenf	25
6.1.3.34	clausenf	25
6.1.3.35	clausenl	25
6.1.3.36	clausenl	25
6.1.3.37	comp_ellint_d	25
6.1.3.38	comp_ellint_df	26
6.1.3.39	comp_ellint_dl	26
6.1.3.40	comp_ellint_rf	26
6.1.3.41	comp_ellint_rf	26
6.1.3.42	comp_ellint_rf	26
6.1.3.43	comp_ellint_rg	26
6.1.3.44	comp_ellint_rg	26
6.1.3.45	comp_ellint_rg	27
6.1.3.46	conf_hyperg	27
6.1.3.47	conf_hyperg_lim	27

CONTENTS

6.1.3.48	8 conf_hyperg_limf	 27
6.1.3.49	9 conf_hyperg_liml	 27
6.1.3.50	0 conf_hypergf	 28
6.1.3.51	1 conf_hypergl	 28
6.1.3.52	2 coshint	 28
6.1.3.53	3 coshintf	 28
6.1.3.54	4 coshintl	 28
6.1.3.55	5 cosint	 29
6.1.3.56	6 cosintf	 29
6.1.3.57	7 cosintl	 29
6.1.3.58	8 cyl_hankel_1	 29
6.1.3.59	9 cyl_hankel_1	 29
6.1.3.60	0 cyl_hankel_1f	 30
6.1.3.61	1 cyl_hankel_1f	 30
6.1.3.62	2 cyl_hankel_1I	 30
6.1.3.63	3 cyl_hankel_1I	 30
6.1.3.64	4 cyl_hankel_2	 30
6.1.3.65	5 cyl_hankel_2	 30
6.1.3.66	6 cyl_hankel_2f	 31
6.1.3.67	7 cyl_hankel_2f	 31
6.1.3.68	8 cyl_hankel_2l	 31
6.1.3.69	9 cyl_hankel_2l	 31
6.1.3.70	0 dawson	 31
6.1.3.71	1 dawsonf	 32
6.1.3.72	2 dawsonl	 32
6.1.3.73	3 digamma	 32
6.1.3.74	4 digammaf	 32
6.1.3.75	5 digammal	 32
6.1.3.76	6 dilog	 32
6.1.3.77	7 dilogf	 32
6.1.3.78	8 dilogl	 32
6.1.3.79	9 dirichlet_beta	 33
6.1.3.80	0 dirichlet_betaf	 33
6.1.3.81	1 dirichlet_betal	 33
6.1.3.82	2 dirichlet_eta	 33
6.1.3.83	3 dirichlet_etaf	 33
6.1.3.84	4 dirichlet_etal	 33

vi CONTENTS

6.1.3.85	double_factorial	 . 34
6.1.3.86	double_factorialf	 . 34
6.1.3.87	double_factoriall	 . 34
6.1.3.88	ellint_cel	 . 34
6.1.3.89	ellint_celf	 . 34
6.1.3.90	ellint_cell	 . 34
6.1.3.91	ellint_d	 . 34
6.1.3.92	ellint_df	 . 35
6.1.3.93	ellint_dl	 . 35
6.1.3.94	ellint_el1	 . 35
6.1.3.95	ellint_el1f	 . 35
6.1.3.96	ellint_el1I	 . 35
6.1.3.97	ellint_el2	 . 35
6.1.3.98	ellint_el2f	 . 36
6.1.3.99	ellint_el2l	 . 36
6.1.3.100	0 ellint_el3	 . 36
6.1.3.101	1 ellint_el3f	 . 36
6.1.3.102	2 ellint_el3l	 . 36
6.1.3.103	3 ellint_rc	 . 36
6.1.3.104	4 ellint_rcf	 . 37
6.1.3.105	5 ellint_rcl	 . 37
6.1.3.106	6 ellint_rd	 . 37
6.1.3.107	7 ellint_rdf	 . 38
6.1.3.108	8 ellint_rdl	 . 38
6.1.3.109	9 ellint_rf	 . 38
6.1.3.110	0 ellint_rff	 . 38
6.1.3.111	1 ellint_rfl	 . 39
6.1.3.112	2 ellint_rg	 . 39
6.1.3.113	3 ellint_rgf	 . 39
6.1.3.114	4 ellint_rgl	 . 39
6.1.3.115	5 ellint_rj	 . 40
6.1.3.116	6 ellint_rjf	 . 40
6.1.3.117	7 ellint_rjl	 . 40
6.1.3.118	8 ellnome	 . 40
6.1.3.119	9 ellnomef	 . 41
6.1.3.120	0 ellnomel	 . 41
6.1.3.121	1 expint_e1	 . 41

CONTENTS vii

6.1.3.122 expint_e1f	 41
6.1.3.123 expint_e1I	 41
6.1.3.124 expint_en	 41
6.1.3.125 expint_enf	
6.1.3.126 expint_enl	 41
6.1.3.127 factorial	 41
6.1.3.128 factorialf	 41
6.1.3.129 factoriall	 42
6.1.3.130 fresnel_c	 42
6.1.3.131 fresnel_cf	 42
6.1.3.132 fresnel_cl	
6.1.3.133 fresnel_s	 42
6.1.3.134 fresnel_sf	
6.1.3.135 fresnel_sl	 42
6.1.3.136 gamma_I	
6.1.3.137 gamma_lf	 43
6.1.3.138 gamma_II	
6.1.3.139 gamma_p	
6.1.3.140 gamma_pf	
6.1.3.141 gamma_pl	 43
6.1.3.142 gamma_q	
6.1.3.143 gamma_qf	 43
6.1.3.144 gamma_ql	 43
6.1.3.145 gamma_u	 43
6.1.3.146 gamma_uf	 43
6.1.3.147 gamma_ul	 43
6.1.3.148 gegenbauer	 44
6.1.3.149 gegenbauerf	 44
6.1.3.150 gegenbauerl	 44
6.1.3.151 heuman_lambda	 44
6.1.3.152 heuman_lambdaf	 44
6.1.3.153 heuman_lambdal	 44
6.1.3.154 hurwitz_zeta	 44
6.1.3.155 hurwitz_zetaf	 45
6.1.3.156 hurwitz_zetal	 45
6.1.3.157 hyperg	 45
6.1.3.158 hypergf	 45

viii CONTENTS

6.1.3.159 hypergl
6.1.3.160 ibeta
6.1.3.161 ibetac
6.1.3.162 ibetacf
6.1.3.163 ibetacl
6.1.3.164 ibetaf
6.1.3.165 ibetal
6.1.3.166 jacobi
6.1.3.167 jacobi_cn
6.1.3.168 jacobi_cnf
6.1.3.169 jacobi_cnl
6.1.3.170 jacobi_dn
6.1.3.171 jacobi_dnf
6.1.3.172 jacobi_dnl
6.1.3.173 jacobi_sn
6.1.3.174 jacobi_snf
6.1.3.175 jacobi_snl
6.1.3.176 jacobi_zeta
6.1.3.177 jacobi_zetaf
6.1.3.178 jacobi_zetal
6.1.3.179 jacobif
6.1.3.180 jacobil
6.1.3.181 lbincoef
6.1.3.182 lbincoeff
6.1.3.183 lbincoefl
6.1.3.184 Idouble_factorial
6.1.3.185 Idouble_factorialf
6.1.3.186 Idouble_factorial
6.1.3.187 legendre_q
6.1.3.188 legendre_qf
6.1.3.189 legendre_ql
6.1.3.190 factorial
6.1.3.191 factorialf
6.1.3.192 factorial
6.1.3.193 logint
6.1.3.194 logintf
6.1.3.195 logintl

CONTENTS ix

6.1.3.196 lpochhammer_I	
6.1.3.197 pochhammer_lf	
6.1.3.198 lpochhammer_ll	 51
6.1.3.199 lpochhammer_u	 52
6.1.3.200 lpochhammer_uf	 52
6.1.3.201 lpochhammer_ul	 52
6.1.3.202 owens_t	 52
6.1.3.203 owens_tf	 52
6.1.3.204 owens_tl	 52
6.1.3.205 pochhammer_I	 53
6.1.3.206 pochhammer_lf	 53
6.1.3.207 pochhammer_II	 53
6.1.3.208 pochhammer_u	 53
6.1.3.209 pochhammer_uf	 53
6.1.3.210 pochhammer_ul	 53
6.1.3.211 polylog	 53
6.1.3.212 polylogf	 53
6.1.3.213 polylogl	 54
6.1.3.214 psi	 54
6.1.3.215 psif	 54
6.1.3.216 psil	 54
6.1.3.217 radpoly	 54
6.1.3.218 radpolyf	 54
6.1.3.219 radpolyl	 54
6.1.3.220 sinc	 54
6.1.3.221 sinc_pi	 55
6.1.3.222 sinc_pif	 55
6.1.3.223 sinc_pil	 55
6.1.3.224 sincf	 55
6.1.3.225 sincl	 55
6.1.3.226 sinhc	 55
6.1.3.227 sinhc_pi	 55
6.1.3.228 sinhc_pif	 55
6.1.3.229 sinhc_pil	 55
6.1.3.230 sinhcf	 55
6.1.3.231 sinhcl	 55
6.1.3.232 sinhint	 56

CONTENTS

6.1.3.233 sinhintf
6.1.3.234 sinhintl
6.1.3.235 sinint
6.1.3.236 sinintf
6.1.3.237 sinintl
6.1.3.238 sph_bessel_i
6.1.3.239 sph_bessel_if
6.1.3.240 sph_bessel_il
6.1.3.241 sph_bessel_k
6.1.3.242 sph_bessel_kf
6.1.3.243 sph_bessel_kl
6.1.3.244 sph_hankel_1
6.1.3.245 sph_hankel_1
6.1.3.246 sph_hankel_1f
6.1.3.247 sph_hankel_1f
6.1.3.248 sph_hankel_1I
6.1.3.249 sph_hankel_1I
6.1.3.250 sph_hankel_2
6.1.3.251 sph_hankel_2
6.1.3.252 sph_hankel_2f
6.1.3.253 sph_hankel_2f
6.1.3.254 sph_hankel_2l
6.1.3.255 sph_hankel_2l
6.1.3.256 sph_harmonic
6.1.3.257 sph_harmonicf
6.1.3.258 sph_harmonicl
6.1.3.259 theta_1
6.1.3.260 theta_1f
6.1.3.261 theta_1I
6.1.3.262 theta_2
6.1.3.263 theta_2f
6.1.3.264 theta_2l
6.1.3.265 theta_3
6.1.3.266 theta_3f
6.1.3.267 theta_3l
6.1.3.268 theta_4
6.1.3.269 theta_4f

CONTENTS xi

		6.1.3.270) theta_4	. 62
		6.1.3.271	I theta_c	. 62
		6.1.3.272	2 theta_cf	. 63
		6.1.3.273	3 theta_cl	. 63
		6.1.3.274	1 theta_d	. 63
		6.1.3.275	5 theta_df	. 63
		6.1.3.276	6 theta_dl	. 64
		6.1.3.277	⁷ theta_n	. 64
		6.1.3.278	3 theta_nf	. 64
		6.1.3.279	9 theta_nl	. 64
		6.1.3.280) theta_s	. 64
		6.1.3.281	I theta_sf	. 65
		6.1.3.282	2 theta_sl	. 65
		6.1.3.283	3 zernike	. 65
		6.1.3.284	4 zernikef	. 65
		6.1.3.285	5 zernikel	. 65
6.2	Mather	matical Sp	ecial Functions	. 66
	6.2.1	Detailed	Description	. 67
	6.2.2	Function	Documentation	. 68
		6.2.2.1	assoc_laguerre	. 68
		6.2.2.2	assoc_laguerref	. 68
		6.2.2.3	assoc_laguerrel	. 68
		6.2.2.4	assoc_legendre	. 68
		6.2.2.5	assoc_legendref	. 69
		6.2.2.6	assoc_legendrel	. 69
		6.2.2.7	beta	. 69
		6.2.2.8	betaf	. 69
		6.2.2.9	betal	. 70
		6.2.2.10	comp_ellint_1	. 70
		6.2.2.11	comp_ellint_1f	. 70
		6.2.2.12	comp_ellint_1l	. 70
		6.2.2.13	comp_ellint_2	. 70
		6.2.2.14	comp_ellint_2f	. 71
		6.2.2.15	comp_ellint_2l	. 71
		6.2.2.16	comp_ellint_3	. 71
		6.2.2.17	comp_ellint_3f	. 71
		6.2.2.18	comp_ellint_3l	. 72

xii CONTENTS

6.2.2.19	cyl_bessel_i	. 72
6.2.2.20	cyl_bessel_if	. 72
6.2.2.21	cyl_bessel_il	. 72
6.2.2.22	cyl_bessel_j	. 72
6.2.2.23	cyl_bessel_jf	. 73
6.2.2.24	cyl_bessel_jl	. 73
6.2.2.25	cyl_bessel_k	. 73
6.2.2.26	cyl_bessel_kf	. 73
6.2.2.27	cyl_bessel_kl	. 74
6.2.2.28	cyl_neumann	. 74
6.2.2.29	cyl_neumannf	. 74
6.2.2.30	cyl_neumannl	. 74
6.2.2.31	ellint_1	. 74
6.2.2.32	ellint_1f	. 75
6.2.2.33	ellint_1I	. 75
6.2.2.34	ellint_2	. 75
6.2.2.35	ellint_2f	. 75
6.2.2.36	ellint_2I	. 76
6.2.2.37	ellint_3	. 76
6.2.2.38	ellint_3f	. 76
6.2.2.39	ellint_3I	. 76
6.2.2.40	expint	. 77
6.2.2.41	expintf	. 77
6.2.2.42	expintl	. 77
6.2.2.43	hermite	. 77
6.2.2.44	hermitef	. 78
6.2.2.45	hermitel	. 78
6.2.2.46	laguerre	. 78
6.2.2.47	laguerref	. 78
6.2.2.48	laguerrel	. 79
6.2.2.49	legendre	. 79
6.2.2.50	legendref	. 79
6.2.2.51	legendrel	. 79
6.2.2.52	riemann_zeta	. 79
6.2.2.53	riemann_zetaf	. 80
6.2.2.54	riemann_zetal	. 80
6.2.2.55	sph_bessel	. 80

CONTENTS xiii

			6.2.2.56	sph_besself	80
			6.2.2.57	sph_bessell	81
			6.2.2.58	sph_legendre	81
			6.2.2.59	sph_legendref	81
			6.2.2.60	sph_legendrel	81
			6.2.2.61	sph_neumann	81
			6.2.2.62	sph_neumannf	82
			6.2.2.63	sph_neumannl	82
7	Nom	oon oo	Documer	ntation	83
′	7.1			espace Reference	
	7.1			Reference	
	7.2		•	nespace Reference	
	7.3	7.3.1		tion Type Documentation	
		7.3.1	7.3.1.1	anonymous enum	
		7.3.2	_	Documentation	
		1.3.2	7.3.2.1	airy	
			7.3.2.1	airy	
			7.3.2.2	airy ai	
			7.3.2.4	airy_arg	
			7.3.2.5	airy_asymp_absarg_ge_pio3	
			7.3.2.6	airy_asymp_absarg_lt_pio3	
			7.3.2.7	airy bessel i	
			7.3.2.8	airy bessel k	
			7.3.2.9	airy bi	
			7.3.2.10		
			7.3.2.11	assoc laguerre	
			7.3.2.12		
			7.3.2.13		
			7.3.2.14	bernoulli 2n	
			7.3.2.15	_	
			7.3.2.16		
			7.3.2.17	beta gamma	119
			7.3.2.18	beta_inc	
			7.3.2.19	beta_inc_cont_frac	
			7.3.2.20		
			7.3.2.21	beta_product	120

xiv CONTENTS

7.3.2.22bincoef
7.3.2.23binomial_cdf
7.3.2.24binomial_cdfc
7.3.2.25bose_einstein
7.3.2.26chebyshev_recur
7.3.2.27chebyshev_t
7.3.2.28chebyshev_u
7.3.2.29chebyshev_v
7.3.2.30chebyshev_w
7.3.2.31chi_squared_pdf
7.3.2.32chi_squared_pdfc
7.3.2.33chshint
7.3.2.34chshint_cont_frac
7.3.2.35chshint_series
7.3.2.36clamp_0_m2pi
7.3.2.37clamp_pi
7.3.2.38clausen
7.3.2.39clausen
7.3.2.40clausen_c
7.3.2.41clausen_c
7.3.2.42clausen_s
7.3.2.43clausen_s
7.3.2.44comp_ellint_1
7.3.2.45comp_ellint_2
7.3.2.46comp_ellint_3
7.3.2.47comp_ellint_d
7.3.2.48comp_ellint_rf
7.3.2.49comp_ellint_rg
7.3.2.50conf_hyperg
7.3.2.51conf_hyperg_lim
7.3.2.52conf_hyperg_lim_series
7.3.2.53conf_hyperg_luke
7.3.2.54conf_hyperg_series
7.3.2.55coshint
7.3.2.56cyl_bessel
7.3.2.57cyl_bessel_i
7.3.2.58cyl_bessel_ij_series

CONTENTS xv

7.3.2.59cyl_bessel_ik
7.3.2.60cyl_bessel_ik_asymp
7.3.2.61cyl_bessel_ik_steed
7.3.2.62cyl_bessel_j
7.3.2.63cyl_bessel_jn
7.3.2.64cyl_bessel_jn_asymp
7.3.2.65cyl_bessel_jn_steed
7.3.2.66cyl_bessel_k
7.3.2.67cyl_hankel_1
7.3.2.68cyl_hankel_1
7.3.2.69cyl_hankel_2
7.3.2.70cyl_hankel_2
7.3.2.71cyl_neumann
7.3.2.72cyl_neumann_n
7.3.2.73dawson
7.3.2.74dawson_const_frac
7.3.2.75dawson_series
7.3.2.76debye_region
7.3.2.77dilog
7.3.2.78dirichlet_beta
7.3.2.79dirichlet_beta
7.3.2.80dirichlet_eta
7.3.2.81dirichlet_eta
7.3.2.82double_factorial
7.3.2.83ellint_1
7.3.2.84ellint_2
7.3.2.85ellint_3
7.3.2.86ellint_cel
7.3.2.87ellint_d
7.3.2.88ellint_el1
7.3.2.89ellint_el2
7.3.2.90ellint_el3
7.3.2.91ellint_rc
7.3.2.92ellint_rd
7.3.2.93ellint_rf
7.3.2.94ellint_rg
7.3.2.95ellint_rj

xvi CONTENTS

7.3.2.96ellnome
7.3.2.97ellnome_k
7.3.2.98ellnome_series
7.3.2.99expint
7.3.2.100expint
7.3.2.101expint_asymp
7.3.2.102expint_E1
7.3.2.103expint_E1_asymp
7.3.2.104expint_E1_series
7.3.2.105expint_Ei
7.3.2.106expint_Ei_asymp
7.3.2.107expint_Ei_series
7.3.2.108expint_En_cont_frac
7.3.2.109expint_En_recursion
7.3.2.110expint_En_series
7.3.2.111expint_large_n
7.3.2.112 <u>f</u> _cdf
7.3.2.113f_cdfc
7.3.2.114factorial
7.3.2.115fermi_dirac
7.3.2.116fock_airy
7.3.2.117fpequal
7.3.2.118fpimag
7.3.2.119fpimag
7.3.2.120fpreal
7.3.2.121fpreal
7.3.2.122fresnel
7.3.2.123fresnel_cont_frac
7.3.2.124fresnel_series
7.3.2.125gamma
7.3.2.126gamma_cont_frac
7.3.2.127gamma_l
7.3.2.128gamma_p
7.3.2.129gamma_q
7.3.2.130gamma_series
7.3.2.131gamma_temme
7.3.2.132gamma_u

CONTENTS xvii

7.3.2.133 <u>gauss</u>	156
7.3.2.134gegenbauer_poly	156
7.3.2.135hankel	156
7.3.2.136hankel_debye	157
7.3.2.137hankel_params	157
7.3.2.138hankel_uniform	157
7.3.2.139hankel_uniform_olver	158
7.3.2.140hankel_uniform_outer	158
7.3.2.141hankel_uniform_sum	159
7.3.2.142heuman_lambda	159
7.3.2.143hurwitz_zeta	159
7.3.2.144hurwitz_zeta_euler_maclaurin	160
7.3.2.145hydrogen	160
7.3.2.146hyperg	160
7.3.2.147hyperg_luke	161
7.3.2.148hyperg_reflect	161
7.3.2.149hyperg_series	161
7.3.2.150jacobi_sncndn	162
7.3.2.151jacobi_zeta	162
7.3.2.152laguerre	162
7.3.2.153log_bincoef	162
7.3.2.154log_double_factorial	163
7.3.2.155log_double_factorial	163
7.3.2.156log_factorial	163
7.3.2.157log_gamma	163
7.3.2.158log_gamma_bernoulli	164
7.3.2.159log_gamma_lanczos	164
7.3.2.160log_gamma_sign	164
7.3.2.161log_gamma_spouge	165
7.3.2.162log_pochhammer_l	165
7.3.2.163log_pochhammer_u	166
7.3.2.164logint	166
7.3.2.165owens_t	166
7.3.2.166pochhammer_l	167
7.3.2.167pochhammer_u	167
7.3.2.168poly_hermite	167
7.3.2.169poly_hermite_asymp	168

xviii CONTENTS

7.3.2.170poly_hermite_recursion
7.3.2.171poly_jacobi
7.3.2.172poly_laguerre
7.3.2.173poly_laguerre_hyperg
7.3.2.174poly_laguerre_large_n
7.3.2.175poly_laguerre_recursion
7.3.2.176poly_legendre_p
7.3.2.177poly_legendre_q
7.3.2.178poly_radial_jacobi
7.3.2.179polylog
7.3.2.180polylog
7.3.2.181polylog_exp
7.3.2.182polylog_exp_asymp
7.3.2.183polylog_exp_int_neg
7.3.2.184polylog_exp_int_neg
7.3.2.185polylog_exp_int_pos
7.3.2.186polylog_exp_int_pos
7.3.2.187polylog_exp_neg
7.3.2.188polylog_exp_neg
7.3.2.189polylog_exp_neg_even
7.3.2.190polylog_exp_neg_odd
7.3.2.191polylog_exp_negative_real_part
7.3.2.192polylog_exp_pos
7.3.2.193polylog_exp_pos
7.3.2.194polylog_exp_pos
7.3.2.195polylog_exp_real_neg
7.3.2.196polylog_exp_real_neg
7.3.2.197polylog_exp_real_pos
7.3.2.198polylog_exp_real_pos
7.3.2.199psi
7.3.2.200psi
7.3.2.201psi_asymp
7.3.2.202psi_series
7.3.2.203riemann_zeta
7.3.2.204riemann_zeta_alt
7.3.2.205riemann_zeta_euler_maclaurin
7.3.2.206riemann_zeta_glob

CONTENTS xix

7.3.2.207riemann_zeta_m_1
7.3.2.208riemann_zeta_m_1_sum
7.3.2.209riemann_zeta_product
7.3.2.210riemann_zeta_sum
7.3.2.211sinc
7.3.2.212sinc
7.3.2.213sinc_pi
7.3.2.214sincosint
7.3.2.215sincosint_asymp
7.3.2.216sincosint_cont_frac
7.3.2.217sincosint_series
7.3.2.218sinhc
7.3.2.219sinhc
7.3.2.220sinhc_pi
7.3.2.221sinhint
7.3.2.222sph_bessel
7.3.2.223sph_bessel
7.3.2.224sph_bessel_ik
7.3.2.225sph_bessel_jn
7.3.2.226sph_hankel
7.3.2.227sph_hankel_1
7.3.2.228sph_hankel_1
7.3.2.229sph_hankel_2
7.3.2.230sph_hankel_2
7.3.2.231sph_harmonic
7.3.2.232sph_legendre
7.3.2.233sph_neumann
7.3.2.234sph_neumann
7.3.2.235students_t_cdf
7.3.2.236students_t_cdfc
7.3.2.237theta_1
7.3.2.238theta_2
7.3.2.239theta_2_asymp
7.3.2.240theta_2_sum
7.3.2.241theta_3
7.3.2.242theta_3_asymp
7.3.2.243theta_3_sum

XX CONTENTS

		7.3.2.244theta_4	197
		7.3.2.245theta_c	197
		7.3.2.246theta_d	197
		7.3.2.247theta_n	197
		7.3.2.248theta_s	198
		7.3.2.249zernike	198
		7.3.2.250znorm1	198
		7.3.2.251znorm2	198
		7.3.2.252 evenzeta	198
	7.3.3	Variable Documentation	198
		7.3.3.1 _Num_Euler_Maclaurin_zeta	198
		7.3.3.2 _S_double_factorial_table	199
		7.3.3.3 _S_Euler_Maclaurin_zeta	199
		7.3.3.4 _S_factorial_table	199
		7.3.3.5 _S_neg_double_factorial_table	199
		7.3.3.6 _S_num_double_factorials	199
		7.3.3.7 _S_num_double_factorials< double >	199
		7.3.3.8 _S_num_double_factorials< float >	199
		7.3.3.9 _S_num_double_factorials< long double >	199
		7.3.3.10 _S_num_factorials	199
		7.3.3.11 _S_num_factorials< double >	200
		7.3.3.12 _S_num_factorials< float >	200
		7.3.3.13 _S_num_factorials< long double >	200
		7.3.3.14 _S_num_neg_double_factorials	200
		7.3.3.15 _S_num_neg_double_factorials< double >	200
		7.3.3.16 _S_num_neg_double_factorials< float >	200
		7.3.3.17 _S_num_neg_double_factorials< long double >	200
		7.3.3.18 _S_num_zetam1	
		7.3.3.19 _S_zetam1	200
8	Class Docu	mentation	201
		detail::_Factorial_table< _Tp > Struct Template Reference	
	8.1.1	Detailed Description	
	8.1.2	Member Data Documentation	
		8.1.2.1factorial	
		8.1.2.2 <u>log_factorial</u>	
		8.1.2.3n	

CONTENTS xxi

9	File I	Docum	entation	203						
	9.1	bits/sf_	f_airy.tcc File Reference							
		9.1.1	Detailed Description	205						
		9.1.2	Macro Definition Documentation	205						
			9.1.2.1 _GLIBCXX_BITS_SF_AIRY_TCC	205						
	9.2	bits/sf_	_bessel.tcc File Reference	205						
		9.2.1	Detailed Description	207						
		9.2.2	Macro Definition Documentation	207						
			9.2.2.1 _GLIBCXX_BITS_SF_BESSEL_TCC	207						
	9.3	bits/sf_	_beta.tcc File Reference	207						
		9.3.1	Detailed Description	209						
		9.3.2	Macro Definition Documentation	209						
			9.3.2.1 _GLIBCXX_BITS_SF_BETA_TCC	209						
	9.4	bits/sf_	_cardinal.tcc File Reference	209						
		9.4.1	Macro Definition Documentation	211						
			9.4.1.1 _GLIBCXX_BITS_SF_CARDINAL_TCC	. 211						
	9.5	bits/sf_	_chebyshev.tcc File Reference	. 211						
		9.5.1	Detailed Description	212						
		9.5.2	Macro Definition Documentation	. 212						
			9.5.2.1 _GLIBCXX_SF_CHEBYSHEV_TCC	212						
	9.6 bits/sf_dawson.tcc File Reference									
		9.6.1	Detailed Description	214						
		9.6.2	Macro Definition Documentation	214						
			9.6.2.1 _GLIBCXX_SF_DAWSON_TCC	214						
	9.7	bits/sf_	_ellint.tcc File Reference	214						
		9.7.1	Detailed Description	. 216						
		9.7.2	Macro Definition Documentation	. 216						
			9.7.2.1 _GLIBCXX_BITS_SF_ELLINT_TCC	. 216						
	9.8	bits/sf_	_expint.tcc File Reference	. 217						
		9.8.1	Detailed Description	. 219						
		9.8.2	Macro Definition Documentation	. 219						
			9.8.2.1 _GLIBCXX_BITS_SF_EXPINT_TCC	. 219						
	9.9	bits/sf_	_fresnel.tcc File Reference	. 219						
		9.9.1 Detailed Description								
		9.9.2	Macro Definition Documentation	. 220						
			9.9.2.1 _GLIBCXX_SF_FRESNEL_TCC	. 220						
	9.10	bits/sf_	gamma.tcc File Reference	. 220						

xxii CONTENTS

	9.10.1 Detailed Description
	9.10.2 Macro Definition Documentation
	9.10.2.1 _GLIBCXX_BITS_SF_GAMMA_TCC
9.11	bits/sf_gegenbauer.tcc File Reference
	9.11.1 Detailed Description
	9.11.2 Macro Definition Documentation
	9.11.2.1 _GLIBCXX_SF_GEGENBAUER_TCC
9.12	bits/sf_hankel.tcc File Reference
	9.12.1 Detailed Description
	9.12.2 Macro Definition Documentation
	9.12.2.1 _GLIBCXX_BITS_SF_HANKEL_TCC
9.13	bits/sf_hankel_new.tcc File Reference
	9.13.1 Macro Definition Documentation
	9.13.1.1 _GLIBCXX_BITS_SF_HANKEL_NEW_TCC
9.14	bits/sf_hermite.tcc File Reference
	9.14.1 Detailed Description
	9.14.2 Macro Definition Documentation
	9.14.2.1 _GLIBCXX_BITS_SF_HERMITE_TCC
9.15	bits/sf_hydrogen.tcc File Reference
	9.15.1 Detailed Description
	9.15.2 Macro Definition Documentation
	9.15.2.1 _GLIBCXX_BITS_SF_HYDROGEN_TCC
9.16	bits/sf_hyperg.tcc File Reference
	9.16.1 Detailed Description
	9.16.2 Macro Definition Documentation
	9.16.2.1 _GLIBCXX_BITS_SF_HYPERG_TCC
9.17	bits/sf_hypint.tcc File Reference
	9.17.1 Detailed Description
	9.17.2 Macro Definition Documentation
	9.17.2.1 _GLIBCXX_SF_HYPINT_TCC
9.18	bits/sf_jacobi.tcc File Reference
	9.18.1 Detailed Description
	9.18.2 Macro Definition Documentation
	9.18.2.1 _GLIBCXX_SF_JACOBI_TCC
9.19	bits/sf_laguerre.tcc File Reference
	9.19.1 Detailed Description
	9.19.2 Macro Definition Documentation

CONTENTS xxiii

9.20	bits/sf_legendre.tcc File Reference	240
	9.20.1 Detailed Description	241
	9.20.2 Macro Definition Documentation	241
	9.20.2.1 _GLIBCXX_BITS_SF_LEGENDRE_TCC	241
9.21	bits/sf_mod_bessel.tcc File Reference	241
	9.21.1 Detailed Description	243
	9.21.2 Macro Definition Documentation	243
	9.21.2.1 _GLIBCXX_BITS_SF_MOD_BESSEL_TCC	243
9.22	bits/sf_owens_t.tcc File Reference	244
	9.22.1 Detailed Description	244
	9.22.2 Macro Definition Documentation	244
	9.22.2.1 _GLIBCXX_BITS_SF_OWENS_T_TCC	244
9.23	bits/sf_polylog.tcc File Reference	245
	9.23.1 Detailed Description	247
	9.23.2 Macro Definition Documentation	247
	9.23.2.1 _GLIBCXX_BITS_SF_POLYLOG_TCC	247
9.24	bits/sf_theta.tcc File Reference	247
	9.24.1 Detailed Description	249
	9.24.2 Macro Definition Documentation	249
	9.24.2.1 _GLIBCXX_SF_THETA_TCC	249
9.25	bits/sf_trigint.tcc File Reference	250
	9.25.1 Detailed Description	251
	9.25.2 Macro Definition Documentation	251
	9.25.2.1 _GLIBCXX_SF_TRIGINT_TCC	251
9.26	bits/sf_zeta.tcc File Reference	251
	9.26.1 Detailed Description	253
	9.26.2 Macro Definition Documentation	253
	9.26.2.1 _GLIBCXX_BITS_SF_ZETA_TCC	253
9.27	bits/specfun.h File Reference	254
	9.27.1 Detailed Description	264
	9.27.2 Macro Definition Documentation	264
	9.27.2.1cpp_lib_math_special_functions	264
	9.27.2.2STDCPP_MATH_SPEC_FUNCS	264
Index		265

Todo List

```
Member std::__detail::__dawson_const_frac (_Tp __x) this needs some compile-time construction!  
Member std::__detail::__expint_E1 (_Tp __x)  
Find a good asymptotic switch point in E_1(x).  
Member std::__detail::__expint_En_recursion (unsigned int __n, _Tp __x)  
Find a principled starting number for the E_n(x) downward recursion.
```

2 **Todo List**

Module Index

2.1 Modules

Here	15	а	list	Ot.	all	mc	าสม	166

Extended Mathematical Special Functions									 						- 1	11
Mathematical Special Functions							 		 				 		6	36

4	Module Index

Namespace Index

3.1 Namespace List

Here is a list of all namespaces with brief descriptions:

gn	u_cxx		 			 																	8
std .			 			 																	9
std::	detail		 			 																	9

6	Namespace Index

Class Index

4 4		1	: - 4
4.1	lass	L	IST

Here are the classes, structs, unions and $\ensuremath{\mathrm{i}}$	nterfaces with brief descriptions:
std::detail::_Factorial_table< _Tp >	

8	Class Index

File Index

5.1 File List

Here is a list of all files with brief descriptions:

bits/sf_airy.tcc
bits/sf_bessel.tcc
bits/sf_beta.tcc
bits/sf_cardinal.tcc
bits/sf_chebyshev.tcc
bits/sf_dawson.tcc
bits/sf_ellint.tcc
bits/sf_expint.tcc
bits/sf_fresnel.tcc
bits/sf_gamma.tcc
bits/sf_gegenbauer.tcc
bits/sf_hankel.tcc
bits/sf_hankel_new.tcc
bits/sf_hermite.tcc
bits/sf_hydrogen.tcc
bits/sf_hyperg.tcc
bits/sf_hypint.tcc
bits/sf_jacobi.tcc
bits/sf_laguerre.tcc
bits/sf_legendre.tcc
bits/sf_mod_bessel.tcc
bits/sf_owens_t.tcc
bits/sf_polylog.tcc
bits/sf_theta.tcc
bits/sf_trigint.tcc
bits/sf_zeta.tcc
bits/specfun.h

10	File Index

Module Documentation

6.1 Extended Mathematical Special Functions

Enumerations

Functions

```
template<typename _Tp >
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::airy_ai (_Tp __x)

    float gnu cxx::airy aif (float x)

    long double <u>__gnu_cxx::airy_ail</u> (long double <u>__x</u>)

template<typename _Tp >
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::airy_bi (_Tp __x)

    float gnu cxx::airy bif (float x)

    long double <u>gnu_cxx::airy_bil</u> (long double <u>x</u>)

template<typename _Tp >
   gnu cxx:: promote num t < Tp > gnu cxx::bernoulli (unsigned int n)

    float __gnu_cxx::bernoullif (unsigned int __n)

• long double __gnu_cxx::bernoullil (unsigned int __n)
template<typename _Tp >
  __gnu_cxx::_promote_num_t< _Tp > __gnu_cxx::bincoef (unsigned int __n, unsigned int __k)

    float __gnu_cxx::bincoeff (unsigned int __n, unsigned int __k)

    long double gnu cxx::bincoefl (unsigned int n, unsigned int k)

template<typename _Tp >
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::chebyshev_t (unsigned int __n, _Tp __x)

    float __gnu_cxx::chebyshev_tf (unsigned int __n, float __x)

• long double __gnu_cxx::chebyshev_tl (unsigned int __n, long double __x)
template<typename _Tp >
  gnu cxx:: promote num t< Tp > gnu cxx::chebyshev u (unsigned int n, Tp x)

    float __gnu_cxx::chebyshev_uf (unsigned int __n, float __x)

    long double __gnu_cxx::chebyshev_ul (unsigned int __n, long double __x)

template<typename _Tp >
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::chebyshev_v (unsigned int __n, _Tp __x)
```

12 Module Documentation

```
    float __gnu_cxx::chebyshev_vf (unsigned int __n, float __x)

    long double __gnu_cxx::chebyshev_vl (unsigned int __n, long double __x)

template<typename_Tp>
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::chebyshev_w (unsigned int __n, _Tp __x)

    float gnu cxx::chebyshev wf (unsigned int n, float x)

    long double gnu cxx::chebyshev wl (unsigned int n, long double x)

template<typename</li>Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::clausen (unsigned int __m, _Tp __w)
template<typename _Tp >
  std::complex< gnu cxx:: promote num t< Tp>> gnu cxx::clausen (unsigned int m, std::complex<
  \mathsf{Tp} > \mathsf{w}
template<typename _Tp >
   gnu cxx:: promote num t < Tp > gnu cxx::clausen c (unsigned int m, Tp w)

    float gnu cxx::clausen cf (unsigned int m, float w)

    long double gnu cxx::clausen cl (unsigned int m, long double w)

template<typename</li>Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::clausen_s (unsigned int __m, _Tp __w)

    float gnu cxx::clausen sf (unsigned int m, float w)

    long double __gnu_cxx::clausen_sl (unsigned int __m, long double __w)

    float gnu cxx::clausenf (unsigned int m, float w)

• std::complex < float > gnu cxx::clausenf (unsigned int m, std::complex < float > w)

    long double gnu cxx::clausenl (unsigned int m, long double w)

• std::complex< long double > __gnu_cxx::clausenl (unsigned int __m, std::complex< long double > __w)

    template<typename Tk >

   _gnu_cxx::__promote_num_t< _Tk > __gnu_cxx::comp_ellint_d (_Tk __k)

    float gnu cxx::comp ellint df (float k)

    long double gnu cxx::comp ellint dl (long double k)

    float __gnu_cxx::comp_ellint_rf (float __x, float __y)

    long double gnu cxx::comp ellint rf (long double x, long double y)

• template<typename _{\rm Tx}, typename _{\rm Ty} >
    _gnu_cxx::__promote_num_t< _Tx, _Ty > __gnu_cxx::comp_ellint_rf (_Tx __x, _Ty __y)

    float gnu cxx::comp ellint rg (float x, float y)

    long double gnu cxx::comp ellint rg (long double x, long double y)

• template<typename _{\rm Tx}, typename _{\rm Ty} >
   _gnu_cxx::__promote_num_t< _Tx, _Ty > __gnu_cxx::comp_ellint_rg (_Tx __x, _Ty __y)
- template<typename _Tpa , typename _Tpc , typename _Tp >
   _gnu_cxx::__promote_3< _Tpa, _Tpc, _Tp >::__type __gnu_cxx::conf_hyperg (_Tpa __a, _Tpc __c, _Tp __x)
• template<typename Tpc, typename Tp>
   _gnu_cxx::_ promote_2< _Tpc, _Tp >::_ type __gnu_cxx::conf_hyperg_lim (_Tpc __c, _Tp __x)

    float __gnu_cxx::conf_hyperg_limf (float __c, float __x)

    long double __gnu_cxx::conf_hyperg_liml (long double __c, long double __x)

    float __gnu_cxx::conf_hypergf (float __a, float __c, float __x)

    long double __gnu_cxx::conf_hypergl (long double __a, long double __c, long double __x)

    template<typename</li>
    Tp >

    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::coshint (_Tp __x)

    float gnu cxx::coshintf (float x)

    long double gnu cxx::coshintl (long double x)

template<typename_Tp>
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::cosint (_Tp __x)

    float gnu cxx::cosintf (float x)

    long double gnu cxx::cosintl (long double x)
```

```
template<typename _Tpnu , typename _Tp >
  std::complex< gnu cxx:: promote num t< Tpnu, Tp >> gnu cxx::cyl hankel 1 ( Tpnu nu, Tp
  Z)
template<typename _Tpnu , typename _Tp >
  std::complex< gnu cxx:: promote num t< Tpnu, Tp>> gnu cxx::cyl hankel 1 (std::complex< ←
  Tpnu > __nu, std::complex< _Tp > __x)

    std::complex< float > __gnu_cxx::cyl_hankel_1f (float __nu, float __z)

    std::complex < float > __gnu_cxx::cyl_hankel_1f (std::complex < float > __nu, std::complex < float > __x)

    std::complex < long double > gnu cxx::cyl hankel 1l (long double nu, long double z)

• std::complex < long double > __nu, std::complex < long double > __nu, std::complex < long
  double > __x)
template<typename _Tpnu , typename _Tp >
  std::complex< gnu cxx:: promote num t< Tpnu, Tp >> gnu cxx::cyl hankel 2 ( Tpnu nu, Tp
   _z)
template<typename _Tpnu , typename _Tp >
  std::complex< gnu cxx:: promote num t< Tpnu, Tp >> gnu cxx::cyl hankel 2 (std::complex< \leftarrow
  Tpnu > __nu, std::complex< _Tp > __x)

    std::complex< float > __gnu_cxx::cyl_hankel_2f (float __nu, float __z)

    std::complex < float > gnu cxx::cyl hankel 2f (std::complex < float > nu, std::complex < float > x)

• std::complex < long double > gnu cxx::cyl hankel 2l (long double nu, long double z)
• std::complex < long double > gnu cxx::cyl hankel 2l (std::complex < long double > nu, std::complex < long
  double > x)
template<typename _Tp >
   __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::dawson (_Tp __x)

    float gnu cxx::dawsonf (float x)

    long double __gnu_cxx::dawsonl (long double __x)

    template<typename</li>
    Tp >

    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::digamma (_Tp __z)

    float <u>gnu_cxx::digammaf</u> (float <u>z</u>)

    long double gnu cxx::digammal (long double z)

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::dilog (_Tp __x)

    float gnu cxx::dilogf (float x)

    long double gnu cxx::dilogl (long double x)

    template<typename</li>
    Tp >

  Tp gnu cxx::dirichlet beta (Tp x)

    float gnu cxx::dirichlet betaf (float x)

    long double gnu cxx::dirichlet betal (long double x)

    template<typename</li>
    Tp >

  _Tp __gnu_cxx::dirichlet_eta (_Tp __x)

    float __gnu_cxx::dirichlet_etaf (float __x)

    long double gnu cxx::dirichlet etal (long double x)

template<typename</li>Tp >
   __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::double_factorial (int __n)

    float gnu cxx::double factorialf (int n)

    long double gnu cxx::double factoriall (int n)

• template<typename Tk, typename Tp, typename Ta, typename Tb>
    _gnu_cxx::__promote_num_t< _Tk, _Tp, _Ta, _Tb > __gnu_cxx::ellint_cel (_Tk __k_c, _Tp __p, _Ta __a, _Tb
   b)

    float __gnu_cxx::ellint_celf (float __k_c, float __p, float __a, float __b)

    long double gnu cxx::ellint cell (long double k c, long double p, long double a, long double b)
```

```
    template<typename _Tk , typename _Tphi >

    _gnu_cxx::__promote_num_t< _Tk, _Tphi > __gnu_cxx::ellint_d (_Tk __k, _Tphi __phi)

    float gnu cxx::ellint df (float k, float phi)

    long double __gnu_cxx::ellint_dl (long double __k, long double __phi)

• template<typename Tp, typename Tk>
     gnu\_cxx::\_promote\_num\_t < \_Tp, \_Tk > \_gnu\_cxx::ellint\_el1 (\_Tp \__x, \_Tk k c)

    float gnu cxx::ellint el1f (float x, float k c)

    long double __gnu_cxx::ellint_el1l (long double __x, long double __k_c)

    template<typename _Tp , typename _Tk , typename _Ta , typename _Tb >

    _gnu_cxx::__promote_num_t< _Tp, _Tk, _Ta, _Tb > __gnu_cxx::ellint_el2 (_Tp __x, _Tk __k_c, _Ta __a, _Tb
    b)
• float <u>gnu_cxx::ellint_el2f</u> (float <u>x</u>, float <u>k_c</u>, float <u>a</u>, float <u>b</u>)

    long double __gnu_cxx::ellint_el2l (long double __x, long double __k_c, long double __a, long double __b)

• template<typename _{\rm Tx}, typename _{\rm Tk}, typename _{\rm Tp} >
    \underline{\hspace{0.1cm}} gnu\_cxx::\underline{\hspace{0.1cm}} promote\_num\_t < \underline{\hspace{0.1cm}} Tx, \underline{\hspace{0.1cm}} Tk, \underline{\hspace{0.1cm}} Tp > \underline{\hspace{0.1cm}} gnu\_cxx::ellint\_el3 (\underline{\hspace{0.1cm}} Tx \underline{\hspace{0.1cm}} x, \underline{\hspace{0.1cm}} Tk \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} k\underline{\hspace{0.1cm}} c, \underline{\hspace{0.1cm}} Tp \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} p)

    float __gnu_cxx::ellint_el3f (float __x, float __k_c, float __p)

    long double gnu cxx::ellint el3l (long double x, long double b, c, long double p)

• template<typename _Tp , typename _Up >
     gnu cxx:: promote num t < Tp, Up > gnu cxx::ellint rc (Tp x, Up y)

    float gnu cxx::ellint rcf (float x, float y)

    long double gnu cxx::ellint rcl (long double x, long double y)

- template<typename _Tp , typename _Up , typename _Vp >
    _gnu_cxx::__promote_num_t< _Tp, _Up, _Vp > __gnu_cxx::ellint_rd (_Tp __x, _Up __y, _Vp __z)

    float gnu cxx::ellint rdf (float x, float y, float z)

• long double <u>__gnu_cxx::ellint_rdl</u> (long double <u>__</u>x, long double <u>__</u>y, long double <u>__</u>z)
template<typename _Tp , typename _Up , typename _Vp >
    gnu cxx:: promote num t< Tp, Up, Vp > gnu cxx::ellint rf ( Tp x, Up y, Vp z)

    float gnu cxx::ellint rff (float x, float y, float z)

    long double __gnu_cxx::ellint_rfl (long double __x, long double __y, long double __z)

• template<typename Tp, typename Up, typename Vp>
    _gnu_cxx::__promote_num_t< _Tp, _Up, _Vp > __gnu_cxx::ellint_rg (_Tp __x, _Up __y, _Vp __z)

    float gnu cxx::ellint_rgf (float __x, float __y, float __z)

    long double gnu cxx::ellint rgl (long double x, long double y, long double z)

template<typename _Tp , typename _Up , typename _Vp , typename _Wp >
  __gnu_cxx::_promote_num_t< _Tp, _Up, _Vp, _Wp > __gnu_cxx::ellint_rj (_Tp __x, _Up __y, _Vp __z, _Wp
    _p)

    float gnu cxx::ellint rjf (float x, float y, float z, float p)

    long double __gnu_cxx::ellint_rjl (long double __x, long double __y, long double __z, long double __p)

• template<typename _Tp >
  _Tp __gnu_cxx::ellnome (_Tp __k)

    float gnu cxx::ellnomef (float k)

    long double __gnu_cxx::ellnomel (long double __k)

template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::expint_e1 (_Tp __x)

    float gnu cxx::expint e1f (float x)

    long double __gnu_cxx::expint_e1l (long double __x)

template<typename_Tp>
    gnu cxx:: promote num t< Tp > gnu cxx::expint en (unsigned int n, Tp x)

    float gnu cxx::expint enf (unsigned int n, float x)

    long double __gnu_cxx::expint_enl (unsigned int __n, long double __x)

template<typename_Tp>
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::factorial (unsigned int __n)
```

```
    float __gnu_cxx::factorialf (unsigned int __n)

    long double __gnu_cxx::factoriall (unsigned int __n)

template<typename_Tp>
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::fresnel_c (_Tp __x)

    float gnu cxx::fresnel cf (float x)

    long double <u>__gnu_cxx::fresnel_cl</u> (long double <u>__x)</u>

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::fresnel_s (_Tp __x)

    float gnu cxx::fresnel sf (float x)

    long double __gnu_cxx::fresnel_sl (long double __x)

• template<typename _Tn , typename _Tp >
   _gnu_cxx::__promote_num_t< _Tn, _Tp > __gnu_cxx::gamma_l (_Tn __n, _Tp __x)
• float gnu cxx::gamma If (float n, float x)

    long double __gnu_cxx::gamma_ll (long double __n, long double __x)

• template<typename Ta, typename Tp>
   gnu cxx:: promote num t< Ta, Tp> gnu cxx::gamma p ( Ta a, Tp x)

    float __gnu_cxx::gamma_pf (float __a, float __x)

    long double __gnu_cxx::gamma_pl (long double __a, long double __x)

• template<typename Ta, typename Tp>
    _gnu_cxx::__promote_num_t< _Ta, _Tp > __gnu_cxx::gamma_q (_Ta __a, _Tp __x)

    float __gnu_cxx::gamma_qf (float __a, float __x)

    long double __gnu_cxx::gamma_ql (long double __a, long double __x)

• template<typename _Tn , typename _Tp >
    gnu cxx:: promote_num_t< _Tn, _Tp > __gnu_cxx::gamma_u (_Tn __n, _Tp __x)

    float __gnu_cxx::gamma_uf (float __n, float __x)

    long double gnu cxx::gamma ul (long double n, long double x)

• template<typename _Talpha , typename _Tp >
   __gnu_cxx::__promote_num_t< _Talpha, _Tp > __gnu_cxx::gegenbauer (unsigned int __n, _Talpha __alpha,
  _Tp __x)
• float gnu cxx::gegenbauerf (unsigned int n, float alpha, float x)

    long double __gnu_cxx::gegenbauerl (unsigned int __n, long double __alpha, long double __x)

• template<typename _Tk , typename _Tphi >
   _gnu_cxx::_promote_num_t< _Tk, _Tphi > __gnu_cxx::heuman_lambda (_Tk __k, _Tphi __phi)
• float gnu cxx::heuman lambdaf (float k, float phi)
• long double __gnu_cxx::heuman_lambdal (long double __k, long double __phi)

    template<typename _Tp , typename _Up >

    gnu cxx:: promote num t< Tp, Up > gnu cxx::hurwitz zeta (Tp s, Up a)

    float gnu cxx::hurwitz zetaf (float s, float a)

• long double __gnu_cxx::hurwitz_zetal (long double __s, long double __a)

    template<typename _Tpa , typename _Tpb , typename _Tpc , typename _Tp >

   _gnu_cxx::__promote_4< _Tpa, _Tpb, _Tpc, _Tp >::__type __gnu_cxx::hyperg (_Tpa __a, _Tpb __b, _Tpc
   __c, _Tp ___x)

    float __gnu_cxx::hypergf (float __a, float __b, float __c, float __x)

    long double gnu cxx::hypergl (long double a, long double b, long double c, long double x)

template<typename _Ta , typename _Tb , typename _Tp >
    _gnu_cxx::__promote_num_t< _Ta, _Tb, _Tp > __gnu_cxx::ibeta (_Ta __a, _Tb __b, _Tp __x)
- template<typename _Ta , typename _Tb , typename _Tp >
   gnu cxx:: promote num t < Ta, Tb, Tp > gnu cxx::ibetac (Ta a, Tb b, Tp x)
• float __gnu_cxx::ibetacf (float __a, float __b, float __x)

    long double __gnu_cxx::ibetacl (long double __a, long double __b, long double __x)

    float gnu cxx::ibetaf (float a, float b, float x)

    long double gnu cxx::ibetal (long double a, long double b, long double x)
```

```
ullet template<typename _Talpha , typename _Tbeta , typename _Tp >
   gnu cxx:: promote num t< Talpha, Tbeta, Tp > gnu cxx::jacobi (unsigned n, Talpha alpha,
  Tbeta beta, Tp x)
ullet template<typename _Kp , typename _Up >
   _gnu_cxx::__promote_num_t< _Kp, _Up > __gnu_cxx::jacobi_cn (_Kp __k, _Up __u)
• float gnu cxx::jacobi cnf (float k, float u)

    long double gnu cxx::jacobi cnl (long double k, long double u)

• template<typename _Kp , typename _Up >
    _gnu_cxx::__promote_num_t< _Kp, _Up > __gnu_cxx::jacobi_dn (_Kp __k, _Up __u)
• float gnu cxx::jacobi dnf (float k, float u)

    long double __gnu_cxx::jacobi_dnl (long double __k, long double __u)

• template<typename _Kp , typename _Up >
    _gnu_cxx::__promote_num_t< _Kp, _Up > __gnu_cxx::jacobi_sn (_Kp __k, _Up __u)

    float gnu cxx::jacobi snf (float k, float u)

    long double __gnu_cxx::jacobi_snl (long double __k, long double __u)

• template<typename Tk, typename Tphi >
    gnu_cxx::__promote_num_t< _Tk, _Tphi > __gnu_cxx::jacobi_zeta ( Tk k, Tphi phi)

    float gnu cxx::jacobi zetaf (float k, float phi)

    long double __gnu_cxx::jacobi_zetal (long double __k, long double __phi)

    float gnu cxx::jacobif (unsigned n, float alpha, float beta, float x)

    long double __gnu_cxx::jacobil (unsigned __n, long double __alpha, long double __beta, long double __x)

template<typename _Tp >
   _gnu_cxx::_promote_num_t< _Tp > __gnu_cxx::lbincoef (unsigned int __n, unsigned int __k)

    float gnu cxx::lbincoeff (unsigned int n, unsigned int k)

• long double __gnu_cxx::lbincoefl (unsigned int __n, unsigned int __k)
template<typename _Tp >
   gnu cxx:: promote num t< Tp> gnu cxx::ldouble factorial (int n)

    float gnu cxx::ldouble factorialf (int n)

    long double __gnu_cxx::ldouble_factoriall (int __n)

template<typename</li>Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::legendre_q (unsigned int __n, _Tp __x)

    float __gnu_cxx::legendre_qf (unsigned int __n, float __x)

    long double __gnu_cxx::legendre_ql (unsigned int __n, long double __x)

template<typename_Tp>
    gnu cxx:: promote num t < Tp > gnu cxx::lfactorial (unsigned int n)

    float __gnu_cxx::lfactorialf (unsigned int __n)

    long double gnu cxx::lfactoriall (unsigned int n)

template<typename_Tp>
   __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::logint (_Tp __x)

    float gnu cxx::logintf (float x)

    long double gnu cxx::logintl (long double x)

    template<typename _Tp , typename _Tn >

    _gnu_cxx::__promote_num_t< _Tp, _Tn > __gnu_cxx::|pochhammer_l (_Tp __a, _Tn __n)

    float gnu cxx::lpochhammer lf (float a, float n)

    long double gnu cxx::lpochhammer II (long double a, long double n)

• template<typename _Tp , typename _Tn >
   _gnu_cxx::__promote_num_t< _Tp, _Tn > __gnu_cxx::lpochhammer_u (_Tp __a, _Tn __n)

    float gnu cxx::lpochhammer uf (float a, float n)

    long double gnu cxx::lpochhammer ul (long double a, long double n)

    template<typename _Tph , typename _Tpa >

    gnu cxx:: promote num t < Tph, Tpa > gnu cxx::owens t (Tph h, Tpa a)

    float gnu cxx::owens tf (float h, float a)
```

```
    long double __gnu_cxx::owens_tl (long double __h, long double __a)

• template<typename _Tp , typename _Tn >
    _gnu_cxx::__promote_num_t< _Tp, _Tn > __gnu_cxx::pochhammer_l (_Tp __a, _Tn __n)

    float __gnu_cxx::pochhammer_lf (float __a, float __n)

• long double gnu cxx::pochhammer II (long double a, long double n)
• template<typename _Tp , typename _Tn >
    _gnu_cxx::__promote_num_t< _Tp, _Tn > __gnu_cxx::pochhammer_u (_Tp __a, _Tn __n)

    float __gnu_cxx::pochhammer_uf (float __a, float __n)

    long double __gnu_cxx::pochhammer_ul (long double __a, long double __n)

template<typename _Tp >
  std::complex< __gnu_cxx::_promote_num_t< _Tp >> __gnu_cxx::polylog (_Tp __s, std::complex< _Tp >
  __w)
• std::complex< float > __gnu_cxx::polylogf (float __s, std::complex< float > __w)

    std::complex < long double > __gnu_cxx::polylogl (long double __s, std::complex < long double > __w)

template<typename</li>Tp >
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::psi (_Tp __x)

    float __gnu_cxx::psif (float __x)

    long double <u>__gnu_cxx::psil</u> (long double <u>__x</u>)

    template<typename</li>
    Tp >

    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::radpoly (unsigned int __n, unsigned int __m, _Tp __rho)

    float __gnu_cxx::radpolyf (unsigned int __n, unsigned int __m, float __rho)

    long double __gnu_cxx::radpolyl (unsigned int __n, unsigned int __m, long double __rho)

    template<typename</li>
    Tp >

   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinc (_Tp __x)
template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinc_pi (_Tp __x)

    float gnu cxx::sinc pif (float x)

    long double <u>gnu_cxx::sinc_pil</u> (long double <u>x</u>)

    float __gnu_cxx::sincf (float __x)

    long double <u>gnu_cxx::sincl</u> (long double <u>x</u>)

template<typename</li>Tp >
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinhc (_Tp __x)
template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinhc_pi (_Tp __x)

    float gnu cxx::sinhc pif (float x)

    long double __gnu_cxx::sinhc_pil (long double __x)

    float gnu cxx::sinhcf (float x)

    long double gnu cxx::sinhcl (long double x)

template<typename _Tp >
    gnu cxx:: promote num t< Tp> gnu cxx::sinhint (Tpx)

    float gnu cxx::sinhintf (float x)

    long double gnu cxx::sinhintl (long double x)

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinint (_Tp __x)

    float gnu cxx::sinintf (float x)

    long double <u>__gnu_cxx::sinintl</u> (long double <u>__x)</u>

template<typename_Tp>
   gnu cxx:: promote num t< Tp > gnu cxx::sph bessel i (unsigned int n, Tp x)

    float gnu cxx::sph bessel if (unsigned int n, float x)

    long double __gnu_cxx::sph_bessel_il (unsigned int __n, long double __x)

template<typename _Tp >
   __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sph_bessel_k (unsigned int __n, _Tp __x)
```

```
    float __gnu_cxx::sph_bessel_kf (unsigned int __n, float __x)

    long double gnu cxx::sph bessel kl (unsigned int n, long double x)

template<typename</li>Tp >
  std::complex< __gnu_cxx::__promote_num_t< _Tp >> __gnu_cxx::sph_hankel_1 (unsigned int __n, _Tp __z)
template<typename</li>Tp >
  std::complex< \underline{\quad gnu\_cxx::\_promote\_num\_t< \_Tp>> \underline{\quad gnu\_cxx::sph\_hankel\_1} \  \, (unsigned \ int \quad \  \, n, \ std \leftarrow 1)
  ::complex < _Tp > __x)

    std::complex< float > __gnu_cxx::sph_hankel_1f (unsigned int __n, float __z)

• std::complex < float > gnu cxx::sph hankel 1f (unsigned int n, std::complex < float > x)

    std::complex < long double > __gnu_cxx::sph_hankel_1l (unsigned int __n, long double __z)

    std::complex < long double > __gnu_cxx::sph_hankel_1l (unsigned int __n, std::complex < long double > __x)

    template<typename</li>
    Tp >

  std::complex < __gnu_cxx::__promote_num_t < _Tp > > __gnu_cxx::sph_hankel_2 (unsigned int __n, _Tp __z)
template<typename _Tp >
  std::complex< __gnu_cxx::_promote_num_t< _Tp >> __gnu_cxx::sph_hankel_2 (unsigned int __n, std-
  ::complex < Tp > x)

    std::complex< float > __gnu_cxx::sph_hankel_2f (unsigned int __n, float __z)

    std::complex < float > gnu cxx::sph hankel 2f (unsigned int n, std::complex < float > x)

• std::complex < long double > gnu cxx::sph hankel 2l (unsigned int n, long double z)

    std::complex < long double > gnu cxx::sph hankel 2l (unsigned int n, std::complex < long double > x)

• template<typename Ttheta, typename Tphi >
  std::complex< __gnu_cxx::_promote_num_t< _Ttheta, _Tphi >> __gnu_cxx::sph_harmonic (unsigned int ←
  I, int m, Ttheta theta, Tphi phi)
• std::complex< float > __gnu_cxx::sph_harmonicf (unsigned int __l, int __m, float __theta, float __phi)
• std::complex< long double > __gnu_cxx::sph_harmonicl (unsigned int __l, int __m, long double __theta, long
  double phi)
• template<typename Tpnu, typename Tp >
   _gnu_cxx::_promote_num_t< _Tpnu, _Tp > __gnu_cxx::theta_1 (_Tpnu __nu, _Tp __x)

    float __gnu_cxx::theta_1f (float __nu, float __x)

    long double __gnu_cxx::theta_1l (long double __nu, long double __x)

• template<typename Tpnu, typename Tp >
  __gnu_cxx::_promote_num_t< _Tpnu, _Tp > __gnu_cxx::theta_2 (_Tpnu __nu, _Tp __x)

    float __gnu_cxx::theta_2f (float __nu, float __x)

    long double gnu cxx::theta 2l (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tpnu, _Tp > __gnu_cxx::theta_3 (_Tpnu __nu, _Tp __x)
• float gnu cxx::theta 3f (float nu, float x)

    long double __gnu_cxx::theta_3l (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
   _gnu_cxx::__promote_num_t< _Tpnu, _Tp > <u>__gnu_cxx::theta_</u>4 (_Tpnu __nu, _Tp __x)
• float gnu cxx::theta 4f (float nu, float x)

    long double __gnu_cxx::theta_4l (long double __nu, long double __x)

• template<typename _Tpk , typename _Tp >
   _gnu_cxx::__promote_num_t< _Tpk, _Tp > __gnu_cxx::theta_c (_Tpk __k, _Tp _ x)

    float __gnu_cxx::theta_cf (float __k, float __x)

    long double __gnu_cxx::theta_cl (long double __k, long double __x)

template<typename _Tpk , typename _Tp >
    gnu cxx:: promote num t < Tpk, Tp > gnu cxx::theta d ( Tpk k, Tp x)

    float gnu cxx::theta df (float k, float x)

    long double __gnu_cxx::theta_dl (long double __k, long double __x)

template<typename _Tpk , typename _Tp >
  __gnu_cxx::__promote_num_t< _Tpk, _Tp > __gnu_cxx::theta_n (_Tpk __k, _Tp __x)
```

```
    float __gnu_cxx::theta_nf (float __k, float __x)
```

- long double __gnu_cxx::theta_nl (long double __k, long double __x)
- template<typename _Tpk , typename _Tp >
 __gnu_cxx::_promote_num_t< _Tpk, _Tp > __gnu_cxx::theta_s (_Tpk __k, _Tp __x)
- float __gnu_cxx::theta_sf (float __k, float __x)
- long double __gnu_cxx::theta_sl (long double __k, long double __x)
- template<typename _Trho , typename _Tphi >
 __gnu_cxx::_promote_num_t< _Trho, _Tphi > __gnu_cxx::zernike (unsigned int __n, int __m, _Trho __rho, _Tphi __phi)
- float __gnu_cxx::zernikef (unsigned int __n, int __m, float __rho, float __phi)
- long double __gnu_cxx::zernikel (unsigned int __n, int __m, long double __rho, long double __phi)

6.1.1 Detailed Description

A collection of advanced mathematical special functions.

6.1.2 Enumeration Type Documentation

6.1.2.1 anonymous enum

Enumerator

```
_GLIBCXX_JACOBI_SN
_GLIBCXX_JACOBI_CN
_GLIBCXX_JACOBI_DN
```

Definition at line 1393 of file specfun.h.

6.1.3 Function Documentation

Definition at line 2007 of file specfun.h.

```
6.1.3.2 float __gnu_cxx::airy_aif(float __x) [inline]
```

Definition at line 1987 of file specfun.h.

```
6.1.3.3 long double __gnu_cxx::airy_ail( long double __x ) [inline]
```

Definition at line 1995 of file specfun.h.

6.1.3.4 template<typename_Tp > __gnu_cxx::__promote_num_t<_Tp> __gnu_cxx::airy_bi(_Tp __x) [inline]

Definition at line 2038 of file specfun.h.

```
6.1.3.5 float __gnu_cxx::airy_bif( float __x ) [inline]
```

Definition at line 2018 of file specfun.h.

```
6.1.3.6 long double __gnu_cxx::airy_bil ( long double __x ) [inline]
```

Definition at line 2026 of file specfun.h.

```
6.1.3.7 template<typename_Tp > __gnu_cxx::_promote_num_t<_Tp> __gnu_cxx::bernoulli ( unsigned int __n ) [inline]
```

Return the Bernoulli number of integer order n.

The Bernoulli numbers are defined by

Parameters

```
__n The order.
```

Definition at line 2923 of file specfun.h.

```
6.1.3.8 float __gnu_cxx::bernoullif( unsigned int __n ) [inline]
```

Definition at line 2904 of file specfun.h.

```
6.1.3.9 long double __gnu_cxx::bernoullil( unsigned int __n ) [inline]
```

Definition at line 2908 of file specfun.h.

```
6.1.3.10 template < typename _Tp > __gnu_cxx::__promote_num_t < _Tp > __gnu_cxx::bincoef ( unsigned int __n, unsigned in
```

Definition at line 2874 of file specfun.h.

```
6.1.3.11 float __gnu_cxx::bincoeff ( unsigned int __n, unsigned int __k ) [inline]
```

Definition at line 2862 of file specfun.h.

```
6.1.3.12 long double __gnu_cxx::bincoefl ( unsigned int __n, unsigned int __k ) [inline]
```

Definition at line 2866 of file specfun.h.

Return the Chebyshev polynomials of the first kind of order n and argument x.

The Chebyshev polynomials of the first kind is defined by

Parameters

n	
X	

Definition at line 1574 of file specfun.h.

```
6.1.3.14 float __gnu_cxx::chebyshev_tf ( unsigned int __n, float __x ) [inline]
```

Return the Chebyshev polynomials of the first kind of order n and argument x.

See also

chebyshev_t for details.

Definition at line 1547 of file specfun.h.

```
6.1.3.15 long double __gnu_cxx::chebyshev_tl( unsigned int __n, long double __x ) [inline]
```

Return the Chebyshev polynomials of the first kind of order n and argument x.

See also

chebyshev_t for details.

Definition at line 1557 of file specfun.h.

Return the Chebyshev polynomials of the second kind of order n and argument x.

The Chebyshev polynomials of the second kind is defined by

Parameters

n	
X	

Definition at line 1616 of file specfun.h.

```
6.1.3.17 float __gnu_cxx::chebyshev_uf ( unsigned int __n, float __x ) [inline]
```

Return the Chebyshev polynomials of the second kind of order n and argument x.

See also

chebyshev_u for details.

Definition at line 1589 of file specfun.h.

```
6.1.3.18 long double __gnu_cxx::chebyshev_ul ( unsigned int __n, long double __x ) [inline]
```

Return the Chebyshev polynomials of the second kind of order n and argument x.

See also

chebyshev_u for details.

Definition at line 1599 of file specfun.h.

Return the Chebyshev polynomials of the third kind of order n and argument x.

The Chebyshev polynomials of the third kind is defined by

Parameters

n	
X	

Definition at line 1658 of file specfun.h.

```
6.1.3.20 float __gnu_cxx::chebyshev_vf( unsigned int __n, float __x ) [inline]
```

Return the Chebyshev polynomials of the third kind of order n and argument x.

See also

chebyshev_v for details.

Definition at line 1631 of file specfun.h.

```
6.1.3.21 long double __gnu_cxx::chebyshev_vI ( unsigned int __n, long double __x ) [inline]
```

Return the Chebyshev polynomials of the third kind of order n and argument x.

See also

chebyshev_v for details.

Definition at line 1641 of file specfun.h.

Return the Chebyshev polynomials of the fourth kind of order n and argument x.

The Chebyshev polynomials of the fourth kind is defined by

Parameters

n	
X	

Definition at line 1700 of file specfun.h.

```
6.1.3.23 float __gnu_cxx::chebyshev_wf( unsigned int __n, float __x) [inline]
```

Return the Chebyshev polynomials of the fourth kind of order n and argument x.

See also

chebyshev w for details.

Definition at line 1673 of file specfun.h.

```
6.1.3.24 long double __gnu_cxx::chebyshev_wl ( unsigned int __n, long double __x ) [inline]
```

Return the Chebyshev polynomials of the fourth kind of order n and argument x.

See also

chebyshev_w for details.

Definition at line 1683 of file specfun.h.

Return the Clausen function of integer order $\ensuremath{\mathtt{m}}$ and complex argument $\ensuremath{\mathtt{w}}.$

The Clausen function is defined by

Parameters

m	
w	The complex argument

Definition at line 3643 of file specfun.h.

Definition at line 3664 of file specfun.h.

Return the Clausen cosine function of order m and real argument x.

The Clausen cosine function is defined by

Parameters

m	
W	

Definition at line 3604 of file specfun.h.

```
6.1.3.28 float __gnu_cxx::clausen_cf ( unsigned int __m, float __w ) [inline]
```

Return the Clausen cosine function of order m and real argument x.

See also

clausen_c for details.

Definition at line 3579 of file specfun.h.

```
6.1.3.29 long double __gnu_cxx::clausen_cl ( unsigned int __m, long double __w ) [inline]
```

Return the Clausen cosine function of order m and real argument x.

See also

clausen c for details.

Definition at line 3588 of file specfun.h.

```
6.1.3.30 template<typename_Tp > \_gnu_cxx::\_promote_num_t<_Tp> \_gnu_cxx::clausen_s ( unsigned int \_m, \_Tp \_w )  
[inline]
```

Return the Clausen sine function of order m and real argument x.

The Clausen sine function is defined by

Parameters

m	
w	

Definition at line 3565 of file specfun.h.

```
6.1.3.31 float __gnu_cxx::clausen_sf ( unsigned int __m, float __w ) [inline]
```

Return the Clausen sine function of order m and real argument x.

See also

clausen s for details.

Definition at line 3540 of file specfun.h.

6.1.3.32 long double __gnu_cxx::clausen_sl (unsigned int __m, long double __w) [inline]

Return the Clausen sine function of order m and real argument x.

See also

clausen s for details.

Definition at line 3549 of file specfun.h.

Return the Clausen function of integer order m and complex argument w.

See also

clausen for details.

Definition at line 3618 of file specfun.h.

Definition at line 3652 of file specfun.h.

Return the Clausen function of integer order $\ensuremath{\mathtt{m}}$ and complex argument $\ensuremath{\mathtt{w}}.$

See also

clausen for details.

Definition at line 3627 of file specfun.h.

Definition at line 3656 of file specfun.h.

$$\textbf{6.1.3.37 template} < typename_Tk > \underline{\quad } gnu_cxx::\underline{\quad } promote_num_t < \underline{\quad } Tk > \underline{\quad } gnu_cxx::\underline{\quad } comp_ellint_d \textbf{ (} \underline{\quad } Tk \underline{\quad } k \textbf{) } \quad \texttt{[inline]}$$

Return the complete Legendre elliptic integral D of k and ϕ .

The complete Legendre elliptic integral D is defined by

$$D(k) = \int_0^{\pi/2} \frac{\sin^2 \theta d\theta}{\sqrt{1 - k^2 \sin 2\theta}}$$

Parameters

```
\_\_k \mid \mathsf{The} \ \mathsf{modulus} \ -1 <= k <= +1
```

Definition at line 3072 of file specfun.h.

```
6.1.3.38 float __gnu_cxx::comp_ellint_df( float __k ) [inline]
```

Definition at line 3053 of file specfun.h.

```
6.1.3.39 long double __gnu_cxx::comp_ellint_dl ( long double __k ) [inline]
```

Definition at line 3057 of file specfun.h.

```
6.1.3.40 float __gnu_cxx::comp_ellint_rf(float __x, float __y) [inline]
```

Definition at line 2133 of file specfun.h.

```
6.1.3.41 long double __gnu_cxx::comp_ellint_rf( long double __x, long double __y ) [inline]
```

Definition at line 2137 of file specfun.h.

Definition at line 2145 of file specfun.h.

```
6.1.3.43 float __gnu_cxx::comp_ellint_rg(float __x, float __y) [inline]
```

Return the Carlson complementary elliptic function $R_G(x,y)$.

See also

comp_ellint_rg for details.

Definition at line 2348 of file specfun.h.

```
6.1.3.44 long double __gnu_cxx::comp_ellint_rg ( long double __x, long double __y ) [inline]
```

Return the Carlson complementary elliptic function $R_G(x, y)$.

See also

comp_ellint_rg for details.

Definition at line 2357 of file specfun.h.

Definition at line 2365 of file specfun.h.

Return the confluent hypergeometric function of numeratorial parameter a, denominatorial parameter c, and argument x.

The confluent hypergeometric function is defined by

Parameters

a	
c	
X	

Definition at line 1073 of file specfun.h.

Return the confluent hypergeometric limit function of numeratorial parameter a and argument x.

The confluent hypergeometric limit function is defined by

Parameters

c	
X	

Definition at line 1162 of file specfun.h.

Return the confluent hypergeometric limit function of numeratorial parameter a and argument x.

See also

conf_hyperg_lim for details.

Definition at line 1135 of file specfun.h.

Return the confluent hypergeometric limit function of numeratorial parameter a and argument x.

See also

conf_hyperg_lim for details.

Definition at line 1145 of file specfun.h.

```
6.1.3.50 float __gnu_cxx::conf_hypergf ( float __a, float __c, float __x ) [inline]
```

Return the confluent hypergeometric function of numeratorial parameter a, denominatorial parameter c, and argument x.

See also

conf_hyperg for details.

Definition at line 1045 of file specfun.h.

```
6.1.3.51 long double __gnu_cxx::conf_hypergl( long double __a, long double __c, long double __x) [inline]
```

Return the confluent hypergeometric function of numeratorial parameter a, denominatorial parameter c, and argument x.

See also

conf_hyperg for details.

Definition at line 1055 of file specfun.h.

```
6.1.3.52 template < typename _Tp > __gnu_cxx::_promote_num_t < _Tp > __gnu_cxx::coshint( _Tp __x) [inline]
```

Return the hyperbolic cosine integral of argument x.

The hyperbolic cosine integral is defined by

Parameters

```
__x The argument
```

Definition at line 1386 of file specfun.h.

```
6.1.3.53 float __gnu_cxx::coshintf(float __x) [inline]
```

Definition at line 1362 of file specfun.h.

```
6.1.3.54 long double __gnu_cxx::coshintl(long double __x) [inline]
```

Return the hyperbolic cosine integral of argument ${\bf x}$.

See also

coshint for details.

Definition at line 1371 of file specfun.h.

Return the cosine integral of argument x.

The cosine integral is defined by

Parameters

```
__x The argument
```

Definition at line 1315 of file specfun.h.

Return the cosine integral of argument x.

See also

cosint for details.

Definition at line 1291 of file specfun.h.

Return the cosine integral of argument x.

See also

cosint for details.

Definition at line 1300 of file specfun.h.

Definition at line 1847 of file specfun.h.

Return the complex cylindrical Hankel function of the first kind of complex order ν and complex argument x.

The cylindrical Hankel function of the first kind is defined by

$$H_{\nu}^{(1)}(x) = J_{\nu}(x) + iN_{\nu}(x)$$

Parameters

nu	The complex order
X	The complex argument

Definition at line 3266 of file specfun.h.

```
6.1.3.60 std::complex<float> _gnu_cxx::cyl_hankel_lf(float _nu, float _z) [inline]
```

Definition at line 1835 of file specfun.h.

Return the complex cylindrical Hankel function of the first kind of complex order ν and complex argument x.

See also

```
cyl_hankel_1 for more details.
```

Definition at line 3239 of file specfun.h.

Definition at line 1839 of file specfun.h.

6.1.3.63 std::complex < long double >
$$_$$
gnu_cxx::cyl_hankel_1I (std::complex < long double > $_$ nu, std::complex < long double > $_$ x) [inline]

Return the complex cylindrical Hankel function of the first kind of complex order ν and complex argument x.

See also

```
cyl hankel 1 for more details.
```

Definition at line 3249 of file specfun.h.

Definition at line 1868 of file specfun.h.

$$\label{lem:complex} \textbf{6.1.3.65} \quad \text{template} < \text{typename } _\text{Tpnu} \text{ , typename } _\text{Tp} > \text{std::complex} < _\text{gnu_cxx::} _\text{promote_num_t} < _\text{Tpnu, } _\text{Tp} > \\ _\text{gnu_cxx::} _\text{cyl_hankel_2} \text{ (std::complex} < _\text{Tpnu} > _\textit{nu, } \text{ std::complex} < _\text{Tp} > _\textit{x } \text{) } \quad [\texttt{inline}]$$

Return the complex cylindrical Hankel function of the second kind of complex order ν and complex argument x.

The cylindrical Hankel function of the second kind is defined by

$$H_{\nu}^{(2)}(x) = J_{\nu}(x) - iN_{\nu}(x)$$

Parameters

nu	The complex order
X	The complex argument

Definition at line 3308 of file specfun.h.

Definition at line 1856 of file specfun.h.

6.1.3.67 std::complex < float > __nu, std::complex < float > __nu, std::complex < float > __x)
$$[\verb|inline|]$$

Return the complex cylindrical Hankel function of the second kind of complex order ν and complex argument x.

See also

cyl_hankel_2 for more details.

Definition at line 3281 of file specfun.h.

Definition at line 1860 of file specfun.h.

6.1.3.69 std::complex < long double >
$$_$$
gnu_cxx::cyl_hankel_2l (std::complex < long double > $_$ nu, std::complex < long double > $_$ x) [inline]

Return the complex cylindrical Hankel function of the second kind of complex order ν and complex argument x.

See also

cyl_hankel_2 for more details.

Definition at line 3291 of file specfun.h.

Return the Dawson integral, F(x), for real argument x.

The Dawson integral is defined by:

$$F(x) = e^{-x^2} \int_0^x e^{y^2} dy$$

and it's derivative is:

$$F'(x) = 1 - 2xF(x)$$

```
Parameters
```

```
__x | The argument -inf < x < inf.
```

Definition at line 2650 of file specfun.h.

```
6.1.3.71 float __gnu_cxx::dawsonf(float __x) [inline]
```

Return the Dawson integral, F(x), for float argument x.

See also

dawson for details.

Definition at line 2622 of file specfun.h.

```
6.1.3.72 long double __gnu_cxx::dawsonl( long double __x ) [inline]
```

Return the Dawson integral, F(x), for long double argument x.

See also

dawson for details.

Definition at line 2631 of file specfun.h.

Definition at line 2103 of file specfun.h.

```
6.1.3.74 float __gnu_cxx::digammaf(float __z) [inline]
```

Definition at line 2091 of file specfun.h.

```
6.1.3.75 long double __gnu_cxx::digammal ( long double __z ) [inline]
```

Definition at line 2095 of file specfun.h.

```
6.1.3.76 template<typename_Tp > __gnu_cxx::__promote_num_t<_Tp> __gnu_cxx::dilog( _Tp __x ) [inline]
```

Definition at line 2124 of file specfun.h.

```
6.1.3.77 float __gnu_cxx::dilogf(float __x) [inline]
```

Definition at line 2112 of file specfun.h.

```
6.1.3.78 long double __gnu_cxx::dilogl( long double __x ) [inline]
```

Definition at line 2116 of file specfun.h.

6.1.3.79 template<typename_Tp > _Tp __gnu_cxx::dirichlet_beta(_Tp __x) [inline]

Return the Dirichlet beta function of real argument x.

The Dirichlet beta function is defined by

Parameters

```
__x
```

Definition at line 3526 of file specfun.h.

```
6.1.3.80 float __gnu_cxx::dirichlet_betaf ( float __x ) [inline]
```

Definition at line 3507 of file specfun.h.

```
6.1.3.81 long double __gnu_cxx::dirichlet_betal ( long double __x ) [inline]
```

Definition at line 3511 of file specfun.h.

Return the Dirichlet eta function of real argument x.

The Dirichlet eta function is defined by

Parameters

```
__x
```

Definition at line 3498 of file specfun.h.

```
6.1.3.83 float __gnu_cxx::dirichlet_etaf(float __x) [inline]
```

Return the Dirichlet eta function of real argument x.

See also

dirichlet_eta for details.

Definition at line 3474 of file specfun.h.

```
6.1.3.84 long double __gnu_cxx::dirichlet_etal( long double __x ) [inline]
```

Return the Dirichlet eta function of real argument x.

See also

dirichlet_eta for details.

Definition at line 3483 of file specfun.h.

 $\textbf{6.1.3.85} \quad \textbf{template} < \textbf{typename} \ _\textbf{Tp} > \underline{\quad} \textbf{gnu_cxx::_promote_num_t} < \underline{\quad} \textbf{Tp} > \underline{\quad} \textbf{gnu_cxx::double_factorial(int_n)} \quad [\texttt{inline}]$

Definition at line 2811 of file specfun.h.

6.1.3.86 float __gnu_cxx::double_factorialf(int __n) [inline]

Definition at line 2799 of file specfun.h.

6.1.3.87 long double __gnu_cxx::double_factoriall(int __n) [inline]

Definition at line 2803 of file specfun.h.

Return the Bulirsch complete elliptic integral of ...

The Bulirsch complete elliptic integral is defined by

Parameters

k_c	The complementary modulus $k_c=\sqrt(1-k^2)$
p	The
a	The
b	The

Definition at line 3224 of file specfun.h.

Definition at line 3201 of file specfun.h.

Definition at line 3205 of file specfun.h.

Return the incomplete Legendre elliptic integral D of k and ϕ .

The Legendre elliptic integral D is defined by

$$D(k,\phi) = \int_0^\phi \frac{\sin^2 \theta d\theta}{\sqrt{1 - k^2 \sin 2\theta}}$$

Parameters

k	The modulus $-1 <= k <= +1$
phi	The angle

Definition at line 3101 of file specfun.h.

Definition at line 3081 of file specfun.h.

Definition at line 3085 of file specfun.h.

Return the Bulirsch elliptic integral of the first kind of ...

The Bulirsch elliptic integral of the first kind is defined by

Parameters

X	The argument
k_c	The complementary modulus $k_c=\sqrt(1-k^2)$

Definition at line 3130 of file specfun.h.

Definition at line 3110 of file specfun.h.

Definition at line 3114 of file specfun.h.

Return the Bulirsch elliptic integral of the second kind of ...

The Bulirsch elliptic integral of the second kind is defined by

Parameters

X	The argument
k_c	The complementary modulus $k_c=\sqrt(1-k^2)$
a	The
b	The

Definition at line 3162 of file specfun.h.

Definition at line 3139 of file specfun.h.

6.1.3.99 long double
$$_$$
gnu_cxx::ellint_el2l (long double $_$ x, long double $_$ k_c, long double $_$ a, long double $_$ b) [inline]

Definition at line 3143 of file specfun.h.

Return the Bulirsch elliptic integral of the third kind of ...

The Bulirsch elliptic integral of the third kind is defined by

Parameters

	X	The
	k_c	The complementary modulus $k_c=\sqrt(1-k^2)$
Ì	p	The

Definition at line 3192 of file specfun.h.

Definition at line 3171 of file specfun.h.

Definition at line 3175 of file specfun.h.

Return the Carlson elliptic function $R_C(x,y) = R_F(x,y,y)$ where $R_F(x,y,z)$ is the Carlson elliptic function of the first kind.

The Carlson elliptic function is defined by:

$$R_C(x,y) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

X	The first argument.
у	The second argument.

Definition at line 2235 of file specfun.h.

Return the Carlson elliptic function $R_C(x, y)$.

See also

ellint_rc for details.

Definition at line 2201 of file specfun.h.

Return the Carlson elliptic function $R_C(x, y)$.

See also

ellint_rc for details.

Definition at line 2210 of file specfun.h.

Return the Carlson elliptic function of the second kind $R_D(x,y,z) = R_J(x,y,z,z)$ where $R_J(x,y,z,p)$ is the Carlson elliptic function of the third kind.

The Carlson elliptic function of the second kind is defined by:

$$R_D(x,y,z) = \frac{3}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{3/2}}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- · Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

X	The first of two symmetric arguments.
у	The second of two symmetric arguments.
Z	The third argument.

Definition at line 2334 of file specfun.h.

```
6.1.3.107 float __gnu_cxx::ellint_rdf(float __x, float __y, float __z) [inline]
```

Return the Carlson elliptic function $R_D(x, y, z)$.

See also

ellint rd for details.

Definition at line 2298 of file specfun.h.

```
6.1.3.108 long double __gnu_cxx::ellint_rdl ( long double __x, long double __y, long double __z ) [inline]
```

Return the Carlson elliptic function $R_D(x, y, z)$.

See also

ellint_rd for details.

Definition at line 2307 of file specfun.h.

Return the Carlson elliptic function $R_F(x, y, z)$ of the first kind.

The Carlson elliptic function of the first kind is defined by:

$$R_F(x,y,z) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{1/2}}$$

Parameters

X	The first of three symmetric arguments.
у	The second of three symmetric arguments.
Z	The third of three symmetric arguments.

Definition at line 2187 of file specfun.h.

Return the Carlson elliptic function $R_F(x, y, z)$.

See also

ellint_rf for details.

Definition at line 2159 of file specfun.h.

6.1.3.111 long double __gnu_cxx::ellint_rfl(long double __x, long double __y, long double __z) [inline]

Return the Carlson elliptic function $R_F(x, y, z)$.

See also

ellint rf for details.

Definition at line 2168 of file specfun.h.

Return the symmetric Carlson elliptic function of the second kind $R_G(x, y, z)$.

The Carlson symmetric elliptic function of the second kind is defined by:

$$R_G(x,y,z) = \frac{1}{4} \int_0^\infty dt t [(t+x)(t+y)(t+z)]^{-1/2} \left(\frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right)$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

x	The first of three symmetric arguments.
у	The second of three symmetric arguments.
z	The third of three symmetric arguments.

Definition at line 2414 of file specfun.h.

Return the Carlson elliptic function $R_G(x, y)$.

See also

ellint_rg for details.

Definition at line 2379 of file specfun.h.

Return the Carlson elliptic function $R_G(x, y)$.

See also

ellint_rg for details.

Definition at line 2388 of file specfun.h.

Return the Carlson elliptic function $R_J(x, y, z, p)$ of the third kind.

The Carlson elliptic function of the third kind is defined by:

$$R_J(x, y, z, p) = \frac{3}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{1/2}(t+p)}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

X	The first of three symmetric arguments.
y	The second of three symmetric arguments.
z	The third of three symmetric arguments.
p	The fourth argument.

Definition at line 2284 of file specfun.h.

6.1.3.116 float _gnu_cxx::ellint_rjf(float _x, float _y, float _z, float _p) [inline]

Return the Carlson elliptic function $R_J(x, y, z, p)$.

See also

ellint_rj for details.

Definition at line 2249 of file specfun.h.

6.1.3.117 long double __gnu_cxx::ellint_rjl(long double __x, long double __y, long double __z, long double __p) [inline]

Return the Carlson elliptic function $R_J(x, y, z, p)$.

See also

ellint_rj for details.

Definition at line 2258 of file specfun.h.

6.1.3.118 template<typename_Tp > _Tp __gnu_cxx::ellnome(_Tp __k) [inline]

Return the elliptic nome function of modulus k.

The elliptic nome function is defined by

Parameters

```
\_\_k \mid \mathsf{The} \; \mathsf{modulus} \; -1 <= k <= +1
```

Definition at line 3852 of file specfun.h.

```
6.1.3.119 float __gnu_cxx::ellnomef(float __k) [inline]
```

Definition at line 3833 of file specfun.h.

```
6.1.3.120 long double __gnu_cxx::ellnomel( long double __k ) [inline]
```

Definition at line 3837 of file specfun.h.

```
6.1.3.121 template<typename_Tp > __gnu_cxx::_promote_num_t<_Tp> __gnu_cxx::expint_e1( _Tp __x ) [inline]
```

Definition at line 2666 of file specfun.h.

```
6.1.3.122 float __gnu_cxx::expint_e1f( float __x ) [inline]
```

Definition at line 2657 of file specfun.h.

```
6.1.3.123 long double __gnu_cxx::expint_e1l( long double __x ) [inline]
```

Definition at line 2661 of file specfun.h.

Definition at line 2685 of file specfun.h.

```
6.1.3.125 float __gnu_cxx::expint_enf( unsigned int __n, float __x ) [inline]
```

Definition at line 2673 of file specfun.h.

```
6.1.3.126 long double __gnu_cxx::expint_enl ( unsigned int __n, long double __x ) [inline]
```

Definition at line 2677 of file specfun.h.

Definition at line 2790 of file specfun.h.

```
6.1.3.128 float __gnu_cxx::factorialf ( unsigned int __n ) [inline]
```

Definition at line 2778 of file specfun.h.

6.1.3.129 long double __gnu_cxx::factoriall (unsigned int __n) [inline]

Definition at line 2782 of file specfun.h.

6.1.3.130 template<typename_Tp > _gnu_cxx::_promote_num_t<_Tp> _gnu_cxx::fresnel_c(_Tp _x) [inline]

Return the Fresnel cosine integral of argument x.

The Fresnel cosine integral is defined by

$$C(x) = \int_0^x \cos(\frac{\pi}{2}t^2)dt$$

Parameters

__x | The argument

Definition at line 2608 of file specfun.h.

6.1.3.131 float __gnu_cxx::fresnel_cf(float __x) [inline]

Definition at line 2589 of file specfun.h.

6.1.3.132 long double __gnu_cxx::fresnel_cl (long double __x) [inline]

Definition at line 2593 of file specfun.h.

Return the Fresnel sine integral of argument x.

The Fresnel sine integral is defined by

$$S(x) = \int_0^x \sin(\frac{\pi}{2}t^2)dt$$

Parameters

__x The argument

Definition at line 2580 of file specfun.h.

6.1.3.134 float __gnu_cxx::fresnel_sf(float __x) [inline]

Definition at line 2561 of file specfun.h.

6.1.3.135 long double __gnu_cxx::fresnel_sl(long double __x) [inline]

Definition at line 2565 of file specfun.h.

6.1.3.136 template<typename _Tn , typename _Tp > __gnu_cxx::__promote_num_t<_Tn, _Tp> __gnu_cxx::gamma_I (_Tn __n, _Tp __x) [inline]

Definition at line 2082 of file specfun.h.

```
6.1.3.137 float __gnu_cxx::gamma_lf(float __n, float __x) [inline]
```

Definition at line 2070 of file specfun.h.

```
6.1.3.138 long double __gnu_cxx::gamma_ll( long double __n, long double __x) [inline]
```

Definition at line 2074 of file specfun.h.

```
6.1.3.139 template < typename _Ta , typename _Tp > __gnu_cxx::__promote_num_t < _Ta, _Tp > __gnu_cxx::gamma_p ( _Ta __a, _Tp __x ) [inline]
```

Definition at line 2965 of file specfun.h.

```
6.1.3.140 float __gnu_cxx::gamma_pf(float __a, float __x) [inline]
```

Definition at line 2953 of file specfun.h.

```
6.1.3.141 long double __gnu_cxx::gamma_pl(long double __a, long double __x) [inline]
```

Definition at line 2957 of file specfun.h.

```
6.1.3.142 template < typename _Ta , typename _Tp > __gnu_cxx::__promote_num_t < _Ta, _Tp > __gnu_cxx::gamma_q ( _Ta __a, _Tp __x ) [inline]
```

Definition at line 2986 of file specfun.h.

```
6.1.3.143 float __gnu_cxx::gamma_qf(float __a, float __x) [inline]
```

Definition at line 2974 of file specfun.h.

```
6.1.3.144 long double __gnu_cxx::gamma_ql(long double __a, long double __x) [inline]
```

Definition at line 2978 of file specfun.h.

```
6.1.3.145 template<typename_Tn , typename_Tp > __gnu_cxx::__promote_num_t<_Tn, _Tp> __gnu_cxx::gamma_u ( _Tn __n, __Tp __x ) [inline]
```

Definition at line 2061 of file specfun.h.

```
6.1.3.146 float __gnu_cxx::gamma_uf(float __n, float __x) [inline]
```

Definition at line 2049 of file specfun.h.

```
6.1.3.147 long double __gnu_cxx::gamma_ul ( long double __n, long double __x ) [inline]
```

Definition at line 2053 of file specfun.h.

6.1.3.148 template<typename _Talpha , typename _Tp > __gnu_cxx::__promote_num_t<_Talpha, _Tp > __gnu_cxx::gegenbauer (unsigned int __n, _Talpha __alpha, _Tp __x) [inline]

Definition at line 1742 of file specfun.h.

6.1.3.149 float __gnu_cxx::gegenbauerf (unsigned int __n, float __alpha, float __x) [inline]

Definition at line 1730 of file specfun.h.

6.1.3.150 long double __gnu_cxx::gegenbauerl(unsigned int __n, long double __alpha, long double __x) [inline]

Definition at line 1734 of file specfun.h.

6.1.3.151 template < typename _Tk , typename _Tphi > __gnu_cxx::__promote_num_t < _Tk, _Tphi > __gnu_cxx::heuman_lambda (__Tk _ k, _Tphi __phi) [inline]

Return the Heuman lambda function of k and $@c\phi$.

The complete Heuman lambda function is defined by

Parameters

k	The modulus
phi	The angle

Definition at line 3044 of file specfun.h.

6.1.3.152 float __gnu_cxx::heuman_lambdaf (float __k, float __phi) [inline]

Definition at line 3024 of file specfun.h.

6.1.3.153 long double __gnu_cxx::heuman_lambdal(long double __k, long double __phi) [inline]

Definition at line 3028 of file specfun.h.

6.1.3.154 template<typename _Tp , typename _Up > __gnu_cxx::__promote_num_t<_Tp, _Up> __gnu_cxx::hurwitz_zeta (_Tp __s, _Up __a) [inline]

Return the Hurwitz zeta function of argument s, and parameter a.

The the Hurwitz zeta function is defined by

$$\zeta(s,a) =$$

Parameters

s	The argument

```
__a The parameter
```

Definition at line 2443 of file specfun.h.

```
6.1.3.155 float __gnu_cxx::hurwitz_zetaf( float __s, float __a ) [inline]
```

Definition at line 2423 of file specfun.h.

```
6.1.3.156 long double __gnu_cxx::hurwitz_zetal ( long double __s, long double __a ) [inline]
```

Definition at line 2427 of file specfun.h.

```
6.1.3.157 template<typename _Tpa , typename _Tpb , typename _Tpc , typename _Tp > __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tpc, _Tp >::__type __gnu_cxx::hyperg ( _Tpa __a, _Tpb __b, _Tpc __c, _Tp __x )  [inline]
```

Return the hypergeometric function of numeratorial parameters a, and b, denominatorial parameter c, and argument x.

The hypergeometric function is defined by

Parameters

a	
b	
c	
X	

Definition at line 1117 of file specfun.h.

```
6.1.3.158 float _gnu_cxx::hypergf (float _a, float _b, float _c, float _x ) [inline]
```

Return the hypergeometric function of numeratorial parameters a, and b, denominatorial parameter c, and argument x.

See also

hyperg for details.

Definition at line 1088 of file specfun.h.

```
6.1.3.159 long double __gnu_cxx::hypergl( long double __a, long double __b, long double __c, long double __x) [inline]
```

Return the hypergeometric function of numeratorial parameters a, and b, denominatorial parameter c, and argument x.

See also

hyperg for details.

Definition at line 1098 of file specfun.h.

Return the regularized incomplete beta function of parameters a, b, and argument x.

The regularized incomplete beta function is defined by

$$I_x(a,b) = \frac{B_x(a,b)}{B(a,b)}$$

where

$$B_x(a,b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$$

is the non-regularized beta function and B(a,b) is the usual beta function.]

Parameters

a	The first parameter
b	The second parameter
x	The argument

Definition at line 2521 of file specfun.h.

Return the regularized complementary incomplete beta function of parameters a, b, and argument x.

The regularized complementary incomplete beta function is defined by

$$I_x(a,b) = I_x(a,b)$$

Parameters

6	The parameter
	The parameter
	The argument

Definition at line 2552 of file specfun.h.

Definition at line 2530 of file specfun.h.

References gnu cxx::ibetaf().

Definition at line 2534 of file specfun.h.

References __gnu_cxx::ibetal().

Return the regularized incomplete beta function of parameters a, b, and argument x.

See ibeta for details.

Definition at line 2486 of file specfun.h.

Referenced by __gnu_cxx::ibetacf().

```
6.1.3.165 long double __gnu_cxx::ibetal ( long double __a, long double __b, long double __x ) [inline]
```

Return the regularized incomplete beta function of parameters a, b, and argument x.

See ibeta for details.

Definition at line 2496 of file specfun.h.

Referenced by __gnu_cxx::ibetacl().

```
6.1.3.166 template<typename _Talpha , typename _Tbeta , typename _Tp > __gnu_cxx::__promote_num_t<_Talpha, _Tbeta, _Tp > __gnu_cxx::jacobi ( unsigned __n, _Talpha __alpha, _Tbeta __beta, _Tp __x ) [inline]
```

Definition at line 1721 of file specfun.h.

References std::__detail::__beta().

Return the Jacobi elliptic cn integral of modulus k and argument u.

The Jacobi elliptic cn integral is defined by

Parameters

k	The modulus
u	The argument

Definition at line 1485 of file specfun.h.

```
6.1.3.168 float __gnu_cxx::jacobi_cnf(float __k, float __u) [inline]
```

Return the Jacobi elliptic cn integral of modulus k and argument u.

See also

jacobi_cn for details.

Definition at line 1454 of file specfun.h.

```
6.1.3.169 long double __gnu_cxx::jacobi_cnl ( long double __k, long double __u ) [inline]
```

Return the Jacobi elliptic cn integral of modulus k and argument u.

See also

jacobi cn for details.

Definition at line 1466 of file specfun.h.

Return the Jacobi elliptic ${\tt dn}$ integral of modulus ${\tt k}$ and argument ${\tt u}.$

The Jacobi elliptic dn integral is defined by

Parameters

k	The modulus
u	The argument

Definition at line 1531 of file specfun.h.

```
6.1.3.171 float __gnu_cxx::jacobi_dnf(float __k, float __u) [inline]
```

Return the Jacobi elliptic dn integral of modulus k and argument u.

See also

jacobi_dn for details.

Definition at line 1500 of file specfun.h.

```
6.1.3.172 long double __gnu_cxx::jacobi_dnl( long double __k, long double __u) [inline]
```

Return the Jacobi elliptic dn integral of modulus k and argument u.

See also

jacobi_dn for details.

Definition at line 1512 of file specfun.h.

Return the Jacobi elliptic sn integral of modulus k and argument u.

The Jacobi elliptic sn integral is defined by

Parameters

k	The modulus
u	The argument

Definition at line 1439 of file specfun.h.

```
6.1.3.174 float __gnu_cxx::jacobi_snf(float __k, float __u) [inline]
```

Return the Jacobi elliptic sn integral of modulus k and argument u.

See also

jacobi_sn for details.

Definition at line 1408 of file specfun.h.

```
6.1.3.175 long double __gnu_cxx::jacobi_snl( long double __k, long double __u) [inline]
```

Return the Jacobi elliptic sn integral of modulus k and argument u.

See also

jacobi_sn for details.

Definition at line 1420 of file specfun.h.

```
6.1.3.176 template<typename _Tk , typename _Tphi > __gnu_cxx::__promote_num_t<_Tk, _Tphi > __gnu_cxx::jacobi_zeta ( _Tk __k, _Tphi __phi ) [inline]
```

Return the Jacobi zeta function of k and $@c\phi$.

The Jacobi zeta function is defined by

Parameters

k	The modulus
phi	The angle

Definition at line 3015 of file specfun.h.

```
6.1.3.177 float __gnu_cxx::jacobi_zetaf ( float __k, float __phi ) [inline]
```

Definition at line 2995 of file specfun.h.

```
6.1.3.178 long double __gnu_cxx::jacobi_zetal ( long double __k, long double __phi ) [inline]
```

Definition at line 2999 of file specfun.h.

```
6.1.3.179 float __gnu_cxx::jacobif ( unsigned __n, float __alpha, float __beta, float __x ) [inline]
```

Definition at line 1709 of file specfun.h.

References std::__detail::__beta().

Definition at line 1713 of file specfun.h.

References std:: detail:: beta().

```
6.1.3.181 template<typename_Tp > __gnu_cxx::_promote_num_t<_Tp> __gnu_cxx::lbincoef ( unsigned int __n, unsigned int
          k) [inline]
Definition at line 2895 of file specfun.h.
6.1.3.182 float __gnu_cxx::lbincoeff ( unsigned int __n, unsigned int __k ) [inline]
Definition at line 2883 of file specfun.h.
6.1.3.183 long double __gnu_cxx::lbincoefl ( unsigned int __n, unsigned int __k ) [inline]
Definition at line 2887 of file specfun.h.
6.1.3.184 template<typename_Tp > __gnu_cxx::__promote_num_t<_Tp> __gnu_cxx::Idouble_factorial ( int __n )
          [inline]
Definition at line 2853 of file specfun.h.
6.1.3.185 float __gnu_cxx::ldouble_factorialf(int __n) [inline]
Definition at line 2841 of file specfun.h.
6.1.3.186 long double __gnu_cxx::ldouble_factoriall(int __n) [inline]
Definition at line 2845 of file specfun.h.
6.1.3.187 template<typename_Tp > __gnu_cxx::_promote_num_t<_Tp> __gnu_cxx::legendre_q ( unsigned int __n, _Tp __x )
          [inline]
Definition at line 2944 of file specfun.h.
6.1.3.188 float __gnu_cxx::legendre_qf( unsigned int __n, float __x ) [inline]
Definition at line 2932 of file specfun.h.
6.1.3.189 long double __gnu_cxx::legendre_ql( unsigned int __n, long double __x ) [inline]
Definition at line 2936 of file specfun.h.
6.1.3.190 template<typename_Tp > __gnu_cxx::__promote_num_t<_Tp> __gnu_cxx::lfactorial ( unsigned int __n )
          [inline]
Definition at line 2832 of file specfun.h.
6.1.3.191 float __gnu_cxx::lfactorialf ( unsigned int __n ) [inline]
Definition at line 2820 of file specfun.h.
```

6.1.3.192 long double __gnu_cxx::lfactoriall (unsigned int __n) [inline]

Definition at line 2824 of file specfun.h.

Return the logarithmic integral of argument x.

The logarithmic integral is defined by

Parameters

```
__x
```

Definition at line 1239 of file specfun.h.

```
6.1.3.194 float __gnu_cxx::logintf(float __x) [inline]
```

Return the logarithmic integral of argument x.

See also

logint for details.

Definition at line 1215 of file specfun.h.

```
6.1.3.195 long double __gnu_cxx::logintl( long double __x ) [inline]
```

Return the logarithmic integral of argument x.

See also

logint for details.

Definition at line 1224 of file specfun.h.

```
6.1.3.196 template<typename_Tp , typename_Tn > __gnu_cxx::__promote_num_t<_Tp, _Tn> __gnu_cxx::lpochhammer_I ( _Tp __a, _Tn __n )  [inline]
```

Definition at line 2727 of file specfun.h.

```
6.1.3.197 float __gnu_cxx::lpochhammer_lf(float __a, float __n) [inline]
```

Definition at line 2715 of file specfun.h.

```
6.1.3.198 long double __gnu_cxx::lpochhammer_ll( long double __a, long double __n) [inline]
```

Definition at line 2719 of file specfun.h.

Definition at line 2706 of file specfun.h.

6.1.3.200 float __gnu_cxx::lpochhammer_uf(float __a, float __n) [inline]

Definition at line 2694 of file specfun.h.

6.1.3.201 long double __gnu_cxx::lpochhammer_ul(long double __a, long double __n) [inline]

Definition at line 2698 of file specfun.h.

Return the Owens T function of thing1 h and thing2 a.

The Owens T function is defined by

$$T(h,a) = \frac{1}{2\pi} \int_0^a \frac{\exp\left[-\frac{1}{2}h^2(1+x^2)\right]}{1+x^2} dx$$

Parameters

h	The shape factor
a	The integration lomit

Definition at line 4048 of file specfun.h.

6.1.3.203 float __gnu_cxx::owens_tf(float __h, float __a) [inline]

Return the Owens T function function of thing h and argument a.

See also

owens_t for details.

Definition at line 4022 of file specfun.h.

6.1.3.204 long double __gnu_cxx::owens_tl(long double __h, long double __a) [inline]

Return the Owens T function function of thing h and argument a.

See also

owens t for details.

Definition at line 4031 of file specfun.h.

Definition at line 2769 of file specfun.h.

6.1.3.206 float __gnu_cxx::pochhammer_lf(float __a, float __n) [inline]

Definition at line 2757 of file specfun.h.

6.1.3.207 long double __gnu_cxx::pochhammer_ll(long double __a, long double __n) [inline]

Definition at line 2761 of file specfun.h.

Definition at line 2748 of file specfun.h.

6.1.3.209 float __gnu_cxx::pochhammer_uf(float __a, float __n) [inline]

Definition at line 2736 of file specfun.h.

6.1.3.210 long double __gnu_cxx::pochhammer_ul (long double __a, long double __n) [inline]

Definition at line 2740 of file specfun.h.

6.1.3.211 template<typename _Tp > std::complex<__gnu_cxx::__promote_num_t<_Tp> > __gnu_cxx::polylog (_Tp __s, std::complex<_Tp > __w) [inline]

Return the complex polylogarithm function of real thing s and complex argument w.

The polylogarithm function is defined by

Parameters

	s	
Ī	w	

Definition at line 3460 of file specfun.h.

6.1.3.212 std::complex < float > __gnu_cxx::polylogf (float __s, std::complex < float > __w) [inline]

Return the complex polylogarithm function of real thing s and complex argument w.

See also

polylog for details.

Definition at line 3433 of file specfun.h.

6.1.3.213 std::complex < long double > _gnu_cxx::polylogl (long double __s, std::complex < long double > _w) [inline]

Return the complex polylogarithm function of real thing s and complex argument w.

See also

polylog for details.

Definition at line 3443 of file specfun.h.

Return the psi or digamma function of argument x.

The the psi or digamma function is defined by

$$\psi(x) =$$

Parameters

X	The parameter

Definition at line 2471 of file specfun.h.

```
6.1.3.215 float __gnu_cxx::psif( float __x ) [inline]
```

Definition at line 2452 of file specfun.h.

```
6.1.3.216 long double __gnu_cxx::psil( long double __x ) [inline]
```

Definition at line 2456 of file specfun.h.

```
6.1.3.217 template<typename _Tp > __gnu_cxx::__promote_num_t<_Tp> __gnu_cxx::radpoly ( unsigned int __n, unsigned int __n, unsigned int __n, _Tp __rho ) [inline]
```

Definition at line 1784 of file specfun.h.

```
6.1.3.218 float __gnu_cxx::radpolyf ( unsigned int __n, unsigned int __m, float __rho ) [inline]
```

Definition at line 1772 of file specfun.h.

References std:: detail:: poly radial jacobi().

```
6.1.3.219 long double __gnu_cxx::radpolyl ( unsigned int __n, unsigned int __n, long double __rho ) [inline]
```

Definition at line 1776 of file specfun.h.

References std::__detail::__poly_radial_jacobi().

6.1.3.220 template<typename_Tp > __gnu_cxx::_promote_num_t<_Tp> __gnu_cxx::sinc(_Tp __x) [inline]

Definition at line 1201 of file specfun.h.

```
6.1.3.221 template<typename_Tp > __gnu_cxx::_promote_num_t<_Tp > __gnu_cxx::sinc_pi( _Tp __x ) [inline]
Definition at line 1183 of file specfun.h.
6.1.3.222 float __gnu_cxx::sinc_pif(float __x) [inline]
Definition at line 1171 of file specfun.h.
6.1.3.223 long double __gnu_cxx::sinc_pil( long double __x ) [inline]
Definition at line 1175 of file specfun.h.
6.1.3.224 float __gnu_cxx::sincf( float __x ) [inline]
Definition at line 1192 of file specfun.h.
6.1.3.225 long double __gnu_cxx::sincl( long double __x ) [inline]
Definition at line 1196 of file specfun.h.
 \textbf{6.1.3.226} \quad template < typename \_Tp > \_\_gnu\_cxx::\_promote\_num\_t < \_Tp > \_\_gnu\_cxx::sinhc ( \_Tp \_x ) \quad \texttt{[inline]} 
Definition at line 1826 of file specfun.h.
Definition at line 1805 of file specfun.h.
6.1.3.228 float __gnu_cxx::sinhc_pif(float __x) [inline]
Definition at line 1793 of file specfun.h.
6.1.3.229 long double __gnu_cxx::sinhc_pil( long double __x ) [inline]
Definition at line 1797 of file specfun.h.
6.1.3.230 float __gnu_cxx::sinhcf(float __x) [inline]
Definition at line 1814 of file specfun.h.
6.1.3.231 long double __gnu_cxx::sinhcl( long double __x ) [inline]
Definition at line 1818 of file specfun.h.
```

```
 \textbf{6.1.3.232} \quad template < typename \_Tp > \_\_gnu\_cxx::\_promote\_num\_t < \_Tp > \_\_gnu\_cxx::sinhint ( \_Tp \_\_x ) \quad [\texttt{inline}]
```

Return the hyperbolic sine integral of argument x.

The sine hyperbolic integral is defined by

Parameters

```
__x The argument
```

Definition at line 1353 of file specfun.h.

```
6.1.3.233 float __gnu_cxx::sinhintf(float __x) [inline]
```

Return the hyperbolic sine integral of argument x.

See also

sinhint for details.

Definition at line 1329 of file specfun.h.

```
6.1.3.234 long double __gnu_cxx::sinhintl( long double __x ) [inline]
```

Return the hyperbolic sine integral of argument x.

See also

sinhint for details.

Definition at line 1338 of file specfun.h.

Return the sine integral of argument x.

The sine integral is defined by

Parameters

```
__x The argument
```

Definition at line 1277 of file specfun.h.

```
6.1.3.236 float __gnu_cxx::sinintf(float __x) [inline]
```

Return the sine integral of argument x.

See also

sinint for details.

Definition at line 1253 of file specfun.h.

6.1.3.237 long double __gnu_cxx::sinintl(long double __x) [inline]

Return the sine integral of argument x.

See also

sinint for details.

Definition at line 1262 of file specfun.h.

6.1.3.238 template<typename _Tp > __gnu_cxx::__promote_num_t<_Tp> __gnu_cxx::sph_bessel_i (unsigned int __n, _Tp __x) [inline]

Definition at line 1941 of file specfun.h.

6.1.3.239 float __gnu_cxx::sph_bessel_if (unsigned int __n, float __x) [inline]

Definition at line 1919 of file specfun.h.

6.1.3.240 long double __gnu_cxx::sph_bessel_il (unsigned int __n, long double __x) [inline]

Definition at line 1928 of file specfun.h.

6.1.3.241 template<typename _Tp > __gnu_cxx::__promote_num_t<_Tp> __gnu_cxx::sph_bessel_k (unsigned int __n, _Tp __x) [inline]

Definition at line 1975 of file specfun.h.

6.1.3.242 float __gnu_cxx::sph_bessel_kf (unsigned int __n, float __x) [inline]

Definition at line 1953 of file specfun.h.

6.1.3.243 long double _gnu_cxx::sph_bessel_kl (unsigned int _n, long double _x) [inline]

Definition at line 1962 of file specfun.h.

Definition at line 1889 of file specfun.h.

Return the complex spherical Hankel function of the first kind of non-negative order n and complex argument x.

The spherical Hankel function of the first kind is defined by

$$h_n^{(1)}(x) = j_n(x) + i n_n(x)$$

Parameters

n	The integral order >= 0
X	The complex argument

Definition at line 3338 of file specfun.h.

6.1.3.246 std::complex<float> __gnu_cxx::sph_hankel_1f(unsigned int __n, float __z) [inline]

Definition at line 1877 of file specfun.h.

6.1.3.247 std::complex < float > __gnu_cxx::sph_hankel_1f (unsigned int __n, std::complex < float > __x) [inline]

Definition at line 3317 of file specfun.h.

6.1.3.248 std::complex<long double> __gnu_cxx::sph_hankel_11(unsigned int __n, long double __z) [inline]

Definition at line 1881 of file specfun.h.

6.1.3.249 std::complex < long double > __gnu_cxx::sph_hankel_1I (unsigned int __n, std::complex < long double > __x)
[inline]

Definition at line 3321 of file specfun.h.

6.1.3.250 template<typename _Tp > std::complex<__gnu_cxx::__promote_num_t<_Tp>> __gnu_cxx::sph_hankel_2 (unsigned int __n, _Tp __z) [inline]

Definition at line 1910 of file specfun.h.

6.1.3.251 template<typename _Tp > std::complex<__gnu_cxx::__promote_num_t<_Tp> > __gnu_cxx::sph_hankel_2 (unsigned int __n, std::complex< _Tp > __x) [inline]

Return the complex spherical Hankel function of the second kind of non-negative order n and complex argument x.

The spherical Hankel function of the second kind is defined by

$$h_n^{(2)}(x) = j_n(x) - in_n(x)$$

Parameters

n	The integral order >= 0
X	The complex argument

Definition at line 3368 of file specfun.h.

6.1.3.252 std::complex < float > __gnu_cxx::sph_hankel_2f (unsigned int __n, float __z) [inline]

Definition at line 1898 of file specfun.h.

6.1.3.253 std::complex < float > __gnu_cxx::sph_hankel_2f (unsigned int __n, std::complex < float > __x) [inline]

Definition at line 3347 of file specfun.h.

6.1.3.254 std::complex < long double > _gnu cxx::sph hankel 2I (unsigned int _n, long double _z) [inline]

Definition at line 1902 of file specfun.h.

6.1.3.255 std::complex < long double > $_$ gnu_cxx::sph_hankel_2I (unsigned int $_$ n, std::complex < long double > $_$ x) [inline]

Definition at line 3351 of file specfun.h.

Return the complex spherical harmonic function of degree 1, order m, and real zenith angle θ , and real azimuth angle ϕ .

The spherical harmonic function is defined by:

$$Y_l^m(\theta,\phi) = (-1)^m \left[\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!} \right] P_l^{|m|}(\cos\theta) \exp^{im\phi}$$

Parameters

	The order
m	The degree
theta	The zenith angle in radians
phi	The azimuth angle in radians

Definition at line 3418 of file specfun.h.

Return the complex spherical harmonic function of degree 1, order m, and real zenith angle θ , and real azimuth angle ϕ .

See also

sph_harmonic for details.

Definition at line 3383 of file specfun.h.

Return the complex spherical harmonic function of degree 1, order m, and real zenith angle θ , and real azimuth angle ϕ .

See also

sph harmonic for details.

Definition at line 3394 of file specfun.h.

6.1.3.259 template<typename _Tpnu , typename _Tp > __gnu_cxx::__promote_num_t<_Tpnu, _Tp > __gnu_cxx::theta_1 (_Tpnu __nu, _Tp __x) [inline]

Return the exponential theta-1 function of period nu and argument x.

The Neville theta-1 function is defined by

$$\theta_1(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} (-1)^j \exp\left(\frac{-(\nu + j - 1/2)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
X	The argument

Definition at line 3704 of file specfun.h.

6.1.3.260 float __gnu_cxx::theta_1f(float __nu, float __x) [inline]

Return the exponential theta-1 function of period nu and argument x.

See also

theta_1 for details.

Definition at line 3678 of file specfun.h.

6.1.3.261 long double __gnu_cxx::theta_1I (long double __nu, long double __x) [inline]

Return the exponential theta-1 function of period nu and argument x.

See also

theta 1 for details.

Definition at line 3687 of file specfun.h.

Return the exponential theta-2 function of period nu and argument x.

The exponential theta-2 function is defined by

$$\theta_2(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} (-1)^j \exp\left(\frac{-(\nu+j)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
X	The argument

Definition at line 3744 of file specfun.h.

Return the exponential theta-2 function of period nu and argument x.

See also

theta 2 for details.

Definition at line 3718 of file specfun.h.

Return the exponential theta-2 function of period nu and argument x.

See also

theta 2 for details.

Definition at line 3727 of file specfun.h.

Return the exponential theta-3 function of period nu and argument x.

The exponential theta-3 function is defined by

$$\theta_3(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} \exp\left(\frac{-(\nu+j)^2}{x}\right)$$

Parameters

nu	The periodic (period = 1) argument
X	The argument

Definition at line 3784 of file specfun.h.

Return the exponential theta-3 function of period nu and argument x.

See also

theta 3 for details.

Definition at line 3758 of file specfun.h.

6.1.3.267 long double __gnu_cxx::theta_3l (long double __nu, long double __x) [inline]

Return the exponential theta-3 function of period nu and argument x.

See also

theta_3 for details.

Definition at line 3767 of file specfun.h.

Return the exponential theta-4 function of period nu and argument x.

The exponential theta-4 function is defined by

$$\theta_4(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} \exp\left(\frac{-(\nu + j + 1/2)^2}{x}\right)$$

Parameters

nu	The periodic (period = 1) argument
x	The argument

Definition at line 3824 of file specfun.h.

Return the exponential theta-4 function of period \mathtt{nu} and argument $\mathtt{x}.$

See also

theta 4 for details.

Definition at line 3798 of file specfun.h.

Return the exponential theta-4 function of period nu and argument x.

See also

theta_4 for details.

Definition at line 3807 of file specfun.h.

Return the Neville theta-c function of modulus ${\bf k}$ and argument ${\bf x}$.

The Neville theta-c function is defined by

Parameters

k	The modulus $-1 <= k <= +1$
X	The argument

Definition at line 3930 of file specfun.h.

Return the Neville theta-c function of modulus ${\bf k}$ and argument ${\bf x}.$

See also

theta_c for details.

Definition at line 3905 of file specfun.h.

Return the Neville theta-c function of modulus k and argument x.

See also

theta c for details.

Definition at line 3914 of file specfun.h.

Return the Neville theta-d function of modulus ${\bf k}$ and argument ${\bf x}$.

The Neville theta-d function is defined by

Parameters

k	The modulus $-1 <= k <= +1$
X	The argument

Definition at line 3969 of file specfun.h.

Return the Neville theta-d function of modulus ${\bf k}$ and argument ${\bf x}$.

See also

theta_d for details.

Definition at line 3944 of file specfun.h.

```
6.1.3.276 long double __gnu_cxx::theta_dl( long double __k, long double __x ) [inline]
```

Return the Neville theta-d function of modulus k and argument x.

See also

theta d for details.

Definition at line 3953 of file specfun.h.

Return the Neville theta-n function of modulus ${\tt k}$ and argument ${\tt x}.$

The Neville theta-n function is defined by

Parameters

k	The modulus $-1 <= k <= +1$
X	The argument

Definition at line 4008 of file specfun.h.

```
6.1.3.278 float __gnu_cxx::theta_nf(float __k, float __x) [inline]
```

Return the Neville theta-n function of modulus ${\bf k}$ and argument ${\bf x}.$

See also

theta n for details.

Definition at line 3983 of file specfun.h.

```
6.1.3.279 long double __gnu_cxx::theta_nl( long double __k, long double __x ) [inline]
```

Return the Neville theta-n function of modulus ${\bf k}$ and argument ${\bf x}.$

See also

theta n for details.

Definition at line 3992 of file specfun.h.

Return the Neville theta-s function of modulus ${\bf k}$ and argument ${\bf x}$.

The Neville theta-s function is defined by

Parameters

k	The modulus $-1 \le k \le +1$
X	The argument

Definition at line 3891 of file specfun.h.

```
6.1.3.281 float __gnu_cxx::theta_sf(float __k, float __x) [inline]
```

Return the Neville theta-s function of modulus ${\bf k}$ and argument ${\bf x}.$

See also

theta_s for details.

Definition at line 3866 of file specfun.h.

```
6.1.3.282 long double __gnu_cxx::theta_sl( long double __k, long double __x ) [inline]
```

Return the Neville theta-s function of modulus ${\bf k}$ and argument ${\bf x}.$

See also

theta_s for details.

Definition at line 3875 of file specfun.h.

```
6.1.3.283 template<typename _Trho , typename _Tphi > __gnu_cxx::__promote_num_t<_Trho, _Tphi> __gnu_cxx::zernike ( unsigned int __n, int __m, _Trho __rho, _Tphi __phi ) [inline]
```

Definition at line 1763 of file specfun.h.

```
6.1.3.284 float _gnu_cxx::zernikef ( unsigned int _n, int _m, float _rho, float _phi ) [inline]
```

Definition at line 1751 of file specfun.h.

```
6.1.3.285 long double __gnu_cxx::zernikel ( unsigned int __n, int __m, long double __rho, long double __phi ) [inline]
```

Definition at line 1755 of file specfun.h.

6.2 Mathematical Special Functions

Functions

```
template<typename _Tp >
   _gnu_cxx::__promote< _Tp >::__type std::assoc_laguerre (unsigned int __n, unsigned int __m, _Tp __x)
• float std::assoc laguerref (unsigned int n, unsigned int m, float x)

    long double std::assoc_laguerrel (unsigned int __n, unsigned int __m, long double __x)

template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type std::assoc_legendre (unsigned int __l, unsigned int __m, _Tp __x)
• float std::assoc legendref (unsigned int I, unsigned int m, float x)

    long double std::assoc legendrel (unsigned int I, unsigned int m, long double x)

template<typename _Tpa , typename _Tpb >
   __gnu_cxx::__promote_2< _Tpa, _Tpb >::__type std::beta (_Tpa __a, _Tpb __b)

    float std::betaf (float a, float b)

    long double std::betal (long double __a, long double __b)

template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type std::comp_ellint_1 (_Tp __k)

    float std::comp_ellint_1f (float __k)

    long double std::comp_ellint_1l (long double ___k)

template<typename _Tp >
    gnu cxx:: promote < Tp >:: type std::comp ellint 2 ( Tp k)

    float std::comp ellint 2f (float k)

    long double std::comp ellint 2l (long double k)

• template<typename _Tp , typename _Tpn >
   _gnu_cxx::__promote_2< _Tp, _Tpn >::__type std::comp_ellint_3 (_Tp __k, _Tpn __nu)

    float std::comp_ellint_3f (float __k, float __nu)

      Return the complete elliptic integral of the third kind \Pi(k,\nu) for float argument.

    long double std::comp_ellint_3l (long double __k, long double __nu)

      Return the complete elliptic integral of the third kind \Pi(k, \nu).
• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_2< _Tpnu, _Tp >::__type std::cyl_bessel_i (_Tpnu __nu, _Tp __x)

    float std::cyl bessel if (float nu, float x)

    long double std::cyl_bessel_il (long double __nu, long double __x)

    template<typename _Tpnu , typename _Tp >

    gnu_cxx::__promote_2< _Tpnu, _Tp >::__type std::cyl_bessel_j (_Tpnu __nu, _Tp __x)

    float std::cyl_bessel_if (float __nu, float __x)

    long double std::cyl bessel jl (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_2< _Tpnu, _Tp >::__type std::cyl_bessel_k (_Tpnu __nu, _Tp __x)

    float std::cyl bessel kf (float nu, float x)

    long double std::cyl bessel kl (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
   _gnu_cxx::__promote_2< _Tpnu, _Tp >::__type std::cyl_neumann (_Tpnu __nu, _Tp __x)

    float std::cyl_neumannf (float __nu, float __x)

    long double std::cyl neumannl (long double nu, long double x)

template<typename _Tp , typename _Tpp >
    _gnu_cxx::__promote_2< _Tp, _Tpp >::__type std::ellint_1 (_Tp __k, _Tpp __phi)

    float std::ellint_1f (float __k, float __phi)

    long double std::ellint 11 (long double k, long double phi)
```

```
template<typename _Tp , typename _Tpp >
    _gnu_cxx::__promote_2< _Tp, _Tpp >::__type std::ellint_2 (_Tp __k, _Tpp __phi)

    float std::ellint 2f (float k, float phi)

      Return the incomplete elliptic integral of the second kind E(k,\phi) for float argument.

    long double std::ellint 2l (long double k, long double phi)

      Return the incomplete elliptic integral of the second kind E(k, \phi).
- template<typename _Tp , typename _Tpn , typename _Tpp >
   _gnu_cxx::_promote_3< _Tp, _Tpn, _Tpp >::_type std::ellint_3 (_Tp __k, _Tpn __nu, _Tpp __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).

    float std::ellint 3f (float k, float nu, float phi)

      Return the incomplete elliptic integral of the third kind \Pi(k,\nu,\phi) for float argument.

    long double std::ellint 3I (long double k, long double nu, long double phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).
template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type std::expint (_Tp __x)

    float std::expintf (float x)

    long double std::expintl (long double x)

template<typename</li>Tp >
    _gnu_cxx::__promote< _Tp >::__type std::hermite (unsigned int __n, _Tp __x)

    float std::hermitef (unsigned int __n, float __x)

    long double std::hermitel (unsigned int n, long double x)

template<typename</li>Tp >
    _gnu_cxx::__promote< _Tp >::__type std::laguerre (unsigned int __n, _Tp __x)

    float std::laguerref (unsigned int n, float x)

    long double std::laguerrel (unsigned int n, long double x)

template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type std::legendre (unsigned int __l, _Tp __x)

    float std::legendref (unsigned int I, float x)

    long double std::legendrel (unsigned int I, long double x)

    template<typename</li>
    Tp >

   _gnu_cxx::__promote< _Tp >::__type std::riemann_zeta (_Tp __s)

    float std::riemann_zetaf (float __s)

    long double std::riemann_zetal (long double __s)

template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type std::sph_bessel (unsigned int __n, _Tp __x)

    float std::sph besself (unsigned int __n, float __x)

    long double std::sph bessell (unsigned int n, long double x)

template<typename</li>Tp >
    _gnu_cxx::__promote< _Tp >::__type std::sph_legendre (unsigned int __I, unsigned int __m, _Tp __theta)
• float std::sph legendref (unsigned int I, unsigned int m, float theta)

    long double std::sph_legendrel (unsigned int __l, unsigned int __m, long double __theta)

    template<typename</li>
    Tp >

    _gnu_cxx::__promote< _Tp >::__type std::sph_neumann (unsigned int __n, _Tp __x)

    float std::sph neumannf (unsigned int n, float x)

    long double std::sph_neumannl (unsigned int __n, long double __x)
```

6.2.1 Detailed Description

A collection of advanced mathematical special functions.

6.2.2 Function Documentation

6.2.2.1 template<typename_Tp > __gnu_cxx::__promote<_Tp>::__type std::assoc_laguerre (unsigned int __n, unsigned int __n, unsigned int __n, _Tp __x) [inline]

Return the associated Laguerre polynomial of order n, degree m: $L_n^m(x)$.

The associated Laguerre function of real degree α , $L_n^{\alpha}(x)$, is defined by

$$L_n^{\alpha}(x) = \frac{(\alpha+1)_n}{n!} F_1(-n; \alpha+1; x)$$

where $(\alpha)_n$ is the Pochhammer symbol and ${}_1F_1(a;c;x)$ is the confluent hypergeometric function.

The associated Laguerre polynomial is defined for integral degree $\alpha=m$ by:

$$L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n+m}(x)$$

where the Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Parameters

n	The order of the Laguerre function.
m	The degree of the Laguerre function.
x	The argument of the Laguerre function.

Definition at line 161 of file specfun.h.

6.2.2.2 float std::assoc_laguerref (unsigned int _n, unsigned int _m, float _x) [inline]

Return the associated Laguerre polynomial of order n, degree m: $L_n^m(x)$ for float argument.

See also

assoc laguerre for more details.

Definition at line 119 of file specfun.h.

6.2.2.3 long double std::assoc_laguerrel (unsigned int __n, unsigned int __n, long double __x) [inline]

Return the associated Laguerre polynomial of order n, degree m: $L_n^m(x)$.

See also

assoc_laguerre for more details.

Definition at line 129 of file specfun.h.

6.2.2.4 template<typename_Tp > __gnu_cxx::__promote<_Tp>::__type std::assoc_legendre (unsigned int __l, unsigned int __

Return the associated Legendre function of degree 1 and order m.

The associated Legendre function is derived from the Legendre function $P_l(x)$ by the Rodrigues formula:

$$P_l^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x)$$

Parameters

	The degree of the associated Legendre function. $l>=0$.
m	The order of the associated Legendre function. $m <= l$.
X	The argument of the associated Legendre function. $ x \le 1$.

Definition at line 206 of file specfun.h.

6.2.2.5 float std::assoc_legendref (unsigned int __l, unsigned int __m, float __x) [inline]

Return the associated Legendre function of degree 1 and order m for float argument.

See also

assoc legendre for more details.

Definition at line 176 of file specfun.h.

6.2.2.6 long double std::assoc_legendrel (unsigned int __I, unsigned int __I, long double __x) [inline]

Return the associated Legendre function of degree 1 and order m.

See also

assoc_legendre for more details.

Definition at line 185 of file specfun.h.

Return the beta function: B(a, b).

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Parameters

a	The first argument of the beta function.
b	The second argument of the beta function.

Definition at line 236 of file specfun.h.

6.2.2.8 float std::betaf (float _a, float _b) [inline]

Definition at line 215 of file specfun.h.

6.2.2.9 long double std::betal (long double _a, long double _b) [inline]

Definition at line 219 of file specfun.h.

6.2.2.10 template < typename _Tp > __gnu_cxx::__promote < _Tp>::__type std::comp_ellint_1 (_Tp __k) [inline]

Return the complete elliptic integral of the first kind K(k) using the Carlson formulation.

The complete elliptic integral of the first kind is defined as

$$K(k) = F(k, \pi/2) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

where $F(k,\phi)$ is the incomplete elliptic integral of the first kind.

Parameters

k	The modulus

Definition at line 279 of file specfun.h.

6.2.2.11 float std::comp_ellint_1f(float __k) [inline]

Return the complete elliptic integral of the first kind E(k) for float argument.

See also

comp_ellint_1 for details.

Definition at line 251 of file specfun.h.

6.2.2.12 long double std::comp_ellint_1I(long double __k) [inline]

Return the complete elliptic integral of the first kind E(k).

See also

comp_ellint_1 for details.

Definition at line 260 of file specfun.h.

 $\textbf{6.2.2.13} \quad template < typename _Tp > __gnu_cxx::__promote < _Tp > ::__type \ std::comp_ellint_2 \ (_Tp __k \) \quad \texttt{[inline]}$

Return the complete elliptic integral of the second kind E(k).

The complete elliptic integral of the second kind is defined as

$$E(k,\pi/2) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta}$$

Parameters

k	The modulus

Definition at line 318 of file specfun.h.

6.2.2.14 float std::comp_ellint_2f(float __k) [inline]

Return the complete elliptic integral of the second kind E(k) for float argument.

See also

comp_ellint_2 for details.

Definition at line 294 of file specfun.h.

6.2.2.15 long double std::comp_ellint_2l (long double __k) [inline]

Return the complete elliptic integral of the second kind E(k).

See also

comp_ellint_2 for details.

Definition at line 303 of file specfun.h.

6.2.2.16 template<typename _Tp , typename _Tpn > __gnu_cxx::__promote_2<_Tp, _Tpn>::__type std::comp_ellint_3 (_Tp __k, _Tpn __nu) [inline]

Return the complete elliptic integral of the third kind $\Pi(k,\nu) = \Pi(k,\nu,\pi/2)$ using the Carlson formulation.

The complete elliptic integral of the third kind is defined as

$$\Pi(k,\nu) = \int_0^{\pi/2} \frac{d\theta}{(1-\nu\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}$$

Parameters

k	The modulus of the elliptic function.
nu	The argument of the elliptic function.

Definition at line 363 of file specfun.h.

6.2.2.17 float std::comp_ellint_3f (float __k, float __nu) [inline]

Return the complete elliptic integral of the third kind $\Pi(k,\nu)$ for float argument.

See also

comp_ellint_3 for details.

Definition at line 333 of file specfun.h.

6.2.2.18 long double std::comp_ellint_3I (long double __k, long double __nu) [inline]

Return the complete elliptic integral of the third kind $\Pi(k, \nu)$.

See also

comp_ellint_3 for details.

Definition at line 343 of file specfun.h.

Return the regular modified Bessel function of order ν : $I_{\nu}(x)$.

The regular modified cylindrical Bessel function is:

$$I_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(x/2)^{\nu+2k}}{k!\Gamma(\nu+k+1)}$$

Parameters

nu	The order of the regular modified Bessel function.
x	The argument of the regular modified Bessel function.

Definition at line 406 of file specfun.h.

6.2.2.20 float std::cyl_bessel_if (float __nu, float __x) [inline]

Return the regular modified Bessel function $I_{\nu}(x)$ of order ν for float argument.

See also

cyl_bessel_i for setails.

Definition at line 378 of file specfun.h.

6.2.2.21 long double std::cyl_bessel_il (long double __nu, long double __x) [inline]

Return the regular modified Bessel function $I_{\nu}(x)$ of order ν .

See also

cyl bessel i for setails.

Definition at line 388 of file specfun.h.

6.2.2.22 template<typename _Tpnu , typename _Tp > __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type std::cyl_bessel_j (_Tpnu __nu, _Tp __x) [inline]

Return the Bessel function of order ν : $J_{\nu}(x)$.

The cylindrical Bessel function is:

$$J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{\nu+2k}}{k! \Gamma(\nu+k+1)}$$

Parameters

nu	The order of the Bessel function.
X	The argument of the Bessel function.

Definition at line 449 of file specfun.h.

Return the Bessel function of the first kind $J_{\nu}(x)$ of order ν for float argument.

See also

```
cyl_bessel_j for setails.
```

Definition at line 421 of file specfun.h.

Return the Bessel function of the first kind $J_{\nu}(x)$ of order ν .

See also

Definition at line 431 of file specfun.h.

Return the irregular modified Bessel function $K_{\nu}(x)$ of order ν .

The irregular modified Bessel function is defined by:

$$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu \pi}$$

where for integral $\nu = n$ a limit is taken: $\lim_{\nu \to n}$. For negative argument we have simply:

$$K_{-\nu}(x) = K_{\nu}(x)$$

Parameters

nu	The order of the irregular modified Bessel function.
X	The argument of the irregular modified Bessel function.

Definition at line 498 of file specfun.h.

Return the irregular modified Bessel function $K_{
u}(x)$ of order u for float argument.

See also

cyl bessel k for setails.

Definition at line 464 of file specfun.h.

6.2.2.27 long double std::cyl_bessel_kl (long double __nu, long double __x) [inline]

Return the irregular modified Bessel function $K_{\nu}(x)$ of order ν .

See also

cyl_bessel_k for setails.

Definition at line 474 of file specfun.h.

Return the Neumann function of order ν : $N_{\nu}(x)$.

The Neumann function is defined by:

$$N_{\nu}(x) = \frac{J_{\nu}(x)\cos\nu\pi - J_{-\nu}(x)}{\sin\nu\pi}$$

where for integral $\nu=n$ a limit is taken: $lim_{\nu\to n}$.

Parameters

nu	The order of the Neumann function.
X	The argument of the Neumann function.

Definition at line 543 of file specfun.h.

6.2.2.29 float std::cyl_neumannf (float __nu, float __x) [inline]

Return the Neumann function of order ν : $N_{\nu}(x)$ for float argument.

See also

cyl_neumann for setails.

Definition at line 513 of file specfun.h.

6.2.2.30 long double std::cyl_neumannl (long double __nu, long double __x) [inline]

Return the Neumann function of order ν : $N_{\nu}(x)$.

See also

cyl neumann for setails.

Definition at line 523 of file specfun.h.

Return the incomplete elliptic integral of the first kind $F(k,\phi)$ using the Carlson formulation.

The incomplete elliptic integral of the first kind is defined as

$$F(k,\phi) = \int_0^\phi \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

Parameters

k	The modulus of the elliptic function.
phi	The integral limit argument of the elliptic function.

Definition at line 585 of file specfun.h.

Return the incomplete elliptic integral of the first kind E(k) for float argument.

See also

ellint_1 for details.

Definition at line 558 of file specfun.h.

Return the incomplete elliptic integral of the first kind E(k).

See also

ellint_1 for details.

Definition at line 567 of file specfun.h.

Return the incomplete elliptic integral of the second kind $E(k, \phi)$.

The incomplete elliptic integral of the second kind is defined as

$$E(k,\phi) = \int_0^\phi \sqrt{1 - k^2 sin^2 \theta}$$

Parameters

	The argument of the elliptic function.
pi	i The integral limit argument of the elliptic function.

Returns

The elliptic function of the second kind.

Definition at line 628 of file specfun.h.

Return the incomplete elliptic integral of the second kind $E(k,\phi)$ for float argument.

See also

ellint_2 for details.

Definition at line 600 of file specfun.h.

6.2.2.36 long double std::ellint_2l (long double __k, long double __phi) [inline]

Return the incomplete elliptic integral of the second kind $E(k, \phi)$.

See also

ellint 2 for details.

Definition at line 610 of file specfun.h.

6.2.2.37 template < typename _Tp , typename _Tpn , typename _Tpp > __gnu_cxx::__promote_3 < _Tp, _Tpn, _Tpp >::__type std::ellint_3 (_Tp __
$$k$$
, _Tpn __ nu , _Tpp __ phi) [inline]

Return the incomplete elliptic integral of the third kind $\Pi(k, \nu, \phi)$.

The incomplete elliptic integral of the third kind is defined as

$$\Pi(k,\nu,\phi) = \int_0^\phi \frac{d\theta}{(1-\nu\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}$$

Parameters

k	The modulus of the elliptic function.
nu	The second argument of the elliptic function.
phi	The integral limit argument of the elliptic function.

Returns

The elliptic function of the third kind.

Definition at line 675 of file specfun.h.

Return the incomplete elliptic integral of the third kind $\Pi(k,\nu,\phi)$ for float argument.

See also

ellint_3 for details.

Definition at line 643 of file specfun.h.

6.2.2.39 long double std::ellint_3I (long double __k, long double __nu, long double __phi) [inline]

Return the incomplete elliptic integral of the third kind $\Pi(k, \nu, \phi)$.

See also

ellint 3 for details.

Definition at line 653 of file specfun.h.

Return the exponential integral Ei(x).

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Parameters

__x The argument of the exponential integral function.

Definition at line 713 of file specfun.h.

6.2.2.41 float std::expintf (float __x) [inline]

Return the exponential integral Ei(x) for float argument x.

See also

expint for details.

Definition at line 689 of file specfun.h.

6.2.2.42 long double std::expintl (long double __x) [inline]

Return the exponential integral Ei(x).

See also

expint for details.

Definition at line 698 of file specfun.h.

Return the Hermite polynomial of order n: $H_n(x)$.

The Hermite polynomial is defined by:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

The Hermite polynomial obeys a reflection formula:

$$H_n(-x) = (-1)^n H_n(x)$$

Parameters

n	The order
X	The argument

Definition at line 759 of file specfun.h.

6.2.2.44 float std::hermitef (unsigned int __n, float __x) [inline]

Return the Hermite polynomial of order n: $H_n(x)$ for float argument x.

See also

hermite for details.

Definition at line 728 of file specfun.h.

6.2.2.45 long double std::hermitel (unsigned int __n, long double __x) [inline]

Return the Hermite polynomial of order n: $H_n(x)$ for long double argument x.

See also

hermite for details.

Definition at line 738 of file specfun.h.

Returns the Laguerre polynomial of degree n, and argument x : $L_n(x)$.

The Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Parameters

n	The order of the Laguerre function.
x	The argument of the Laguerre function.

Definition at line 801 of file specfun.h.

6.2.2.47 float std::laguerref (unsigned int __n, float __x) [inline]

Returns the Laguerre polynomial of degree n: $L_n(x)$ for float argument.

See also

laguerre for more details.

Definition at line 774 of file specfun.h.

6.2.2.48 long double std::laguerrel (unsigned int __n, long double __x) [inline]

Returns the Laguerre polynomial of degree n : $L_n(x)$.

See also

laguerre for more details.

Definition at line 784 of file specfun.h.

Return the Legendre polynomial by upward recursion on degree l.

The Legendre function of order l and argument x, $P_l(x)$, is defined by:

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$

Parameters

/	The order $l>=0$
X	The argument $ x <= 1$

Definition at line 844 of file specfun.h.

6.2.2.50 float std::legendref (unsigned int __I, float __x) [inline]

Return the Legendre polynomial by upward recursion on degree $\it l$ for float argument.

See also

legendre for more details.

Definition at line 816 of file specfun.h.

6.2.2.51 long double std::legendrel (unsigned int __I, long double __x) [inline]

Return the Legendre polynomial by upward recursion on degree $\it l. \rm$

See also

legendre for more details.

Definition at line 826 of file specfun.h.

6.2.2.52 template < typename _Tp > __gnu_cxx::__promote < _Tp>::_type std::riemann_zeta(_Tp __s) [inline]

Return the Riemann zeta function $\zeta(s)$.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} k^{-s} fors > 1 \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s) fors < 1$$

For s < 1 use the reflection formula:

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)$$

Parameters

s	The argument s != 1

Definition at line 888 of file specfun.h.

6.2.2.53 float std::riemann_zetaf (float __s) [inline]

Return the Riemann zeta function $\zeta(s)$ for float argument.

See also

riemann_zeta for more details.

Definition at line 858 of file specfun.h.

6.2.2.54 long double std::riemann_zetal (long double __s) [inline]

Return the Riemann zeta function $\zeta(s)$.

See also

riemann_zeta for more details.

Definition at line 867 of file specfun.h.

Return the spherical Bessel function $j_n(x)$ of order n.

The spherical Bessel function is defined by:

$$j_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} J_{n+1/2}(x)$$

Parameters

n	The non-negative integral order
x	The non-negative real argument

Definition at line 928 of file specfun.h.

6.2.2.56 float std::sph_besself (unsigned int __n, float __x) [inline]

Return the spherical Bessel function $j_n(x)$ of order n for float argument.

See also

sph_bessel for more details.

Definition at line 903 of file specfun.h.

6.2.2.57 long double std::sph_bessell (unsigned int __n, long double __x) [inline]

Return the spherical Bessel function $j_n(x)$ of order n.

See also

sph bessel for more details.

Definition at line 912 of file specfun.h.

Return the spherical Legendre function of non-negative integral degree 1 and order m and real angle θ in radians.

The spherical Legendre function is defined by

$$Y_l^m(\theta,\phi) = (-1)^m \left[\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!} \right] P_l^m(\cos\theta) \exp^{im\phi}$$

Parameters

/	The non-negative order $l >= 0$.
m	The non-negative degree $m>=0$ and $m<=l$.
theta	The radian polar angle argument

Definition at line 973 of file specfun.h.

Return the spherical Legendre function of non-negative integral degree 1 and order m and float angle θ in radians.

See also

sph_legendre for details.

Definition at line 943 of file specfun.h.

Return the spherical Legendre function of non-negative integral degree 1 and order m and long double angle θ in radians.

See also

sph_legendre for details.

Definition at line 953 of file specfun.h.

Return the spherical Neumann function of non-negative integral order n and non-negative real argument x.

The spherical Neumann function is defined by

$$n_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} N_{n+1/2}(x)$$

Parameters

n	The non-negative integral order
x	The non-negative real argument

Definition at line 1015 of file specfun.h.

6.2.2.62 float std::sph_neumannf (unsigned int __n, float __x) [inline]

Return the spherical Neumann function of non-negative integral order n and non-negative float argument x.

See also

sph_neumann for details.

Definition at line 988 of file specfun.h.

6.2.2.63 long double std::sph_neumannl (unsigned int _n, long double _x) [inline]

Return the spherical Neumann function of non-negative integral order n and non-negative real argument x.

See also

sph neumann for details.

Definition at line 998 of file specfun.h.

Chapter 7

Namespace Documentation

7.1 __gnu_cxx Namespace Reference

Enumerations

enum { _GLIBCXX_JACOBI_SN, _GLIBCXX_JACOBI_CN, _GLIBCXX_JACOBI_DN }

Functions

```
template<typename _Tp >
  __gnu_cxx::__promote_num_t< _Tp > airy_ai (_Tp __x)

 float airy_aif (float __x)

• long double airy ail (long double x)
• template<typename _{\mathrm{Tp}} >
    _gnu_cxx::__promote_num_t< _Tp > airy_bi (_Tp __x)

    float airy bif (float x)

    long double airy_bil (long double __x)

• template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > bernoulli (unsigned int __n)

    float bernoullif (unsigned int n)

    long double bernoullil (unsigned int __n)

template<typename</li>Tp >
   _gnu_cxx::__promote_num_t< _Tp > bincoef (unsigned int __n, unsigned int __k)
• float bincoeff (unsigned int __n, unsigned int __k)
• long double bincoefl (unsigned int n, unsigned int k)
template<typename</li>Tp >
  __gnu_cxx::__promote_num_t< _Tp > chebyshev_t (unsigned int __n, _Tp __x)

    float chebyshev_tf (unsigned int __n, float __x)

    long double chebyshev_tl (unsigned int __n, long double __x)

• template<typename _{\mathrm{Tp}} >
   _gnu_cxx::__promote_num_t< _Tp > chebyshev_u (unsigned int __n, _Tp __x)

    float chebyshev uf (unsigned int n, float x)

    long double chebyshev_ul (unsigned int __n, long double __x)

• template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > chebyshev_v (unsigned int __n, _Tp __x)

    float chebyshev_vf (unsigned int __n, float __x)
```

```
    long double chebyshev_vl (unsigned int __n, long double __x)

template<typename _Tp >
    gnu cxx:: promote num t < Tp > chebyshev w (unsigned int n, Tp x)

    float chebyshev wf (unsigned int n, float x)

    long double chebyshev wl (unsigned int n, long double x)

template<typename_Tp>
   _gnu_cxx::__promote_num_t< _Tp > clausen (unsigned int __m, _Tp __w)
template<typename _Tp >
  std::complex < gnu cxx:: promote num t < Tp > > clausen (unsigned int m, std::complex < Tp > w)
template<typename _Tp >
   gnu cxx:: promote num t< Tp> clausen c (unsigned int m, Tp w)

    float clausen_cf (unsigned int __m, float __w)

• long double clausen_cl (unsigned int __m, long double __w)
template<typename</li>Tp >
    gnu cxx:: promote num t< Tp > clausen s (unsigned int m, Tp w)

    float clausen_sf (unsigned int __m, float __w)

• long double clausen_sl (unsigned int __m, long double __w)

    float clausenf (unsigned int m, float w)

• std::complex< float > clausenf (unsigned int m, std::complex< float > w)
• long double clausenl (unsigned int m, long double w)

    std::complex < long double > clausenl (unsigned int m, std::complex < long double > w)

• template<typename_Tk>
    _gnu_cxx::__promote_num_t< _Tk > comp_ellint_d (_Tk k)

    float comp ellint df (float k)

    long double comp_ellint_dl (long double __k)

    float comp ellint rf (float x, float y)

    long double comp_ellint_rf (long double __x, long double __y)

    template<typename _Tx , typename _Ty >

   _gnu_cxx::__promote_num_t< _Tx, _Ty > comp_ellint_rf (_Tx __x, _Ty __y)

    float comp_ellint_rg (float __x, float __y)

• long double comp_ellint_rg (long double __x, long double __y)
template<typename _Tx , typename _Ty >
   gnu cxx:: promote num t< Tx, Ty> comp ellint rg (Txx, Tyy)

    template<typename _Tpa , typename _Tpc , typename _Tp >

   __gnu_cxx::__promote_3< _Tpa, _Tpc, _Tp >::__type conf_hyperg (_Tpa __a, _Tpc __c, _Tp __x)
• template<typename _Tpc , typename _Tp >
    _gnu_cxx::__promote_2< _Tpc, _Tp >::__type conf_hyperg_lim (_Tpc __c, _Tp __x)

    float conf hyperg limf (float c, float x)

    long double conf hyperg liml (long double c, long double x)

    float conf_hypergf (float __a, float __c, float __x)

    long double conf hypergl (long double a, long double c, long double x)

template<typename</li>Tp >
    _gnu_cxx::__promote_num_t< _Tp > coshint (_Tp __x)

    float coshintf (float x)

    long double coshintl (long double x)

template<typename</li>Tp >
   __gnu_cxx::__promote_num_t< _Tp > cosint (_Tp x)

    float cosintf (float x)

    long double cosintl (long double __x)

template<typename _Tpnu , typename _Tp >
  std::complex< __gnu_cxx::__promote_num_t< _Tpnu, _Tp >> cyl_hankel_1 (_Tpnu __nu, _Tp __z)
```

```
template<typename _Tpnu , typename _Tp >
  std::complex< __gnu_cxx::__promote_num_t< _Tpnu, _Tp >> cyl_hankel_1 (std::complex< _Tpnu > __nu,
  std::complex < Tp > x)

    std::complex< float > cyl_hankel_1f (float __nu, float __z)

• std::complex< float > cyl_hankel_1f (std::complex< float > __nu, std::complex< float > __x)

    std::complex < long double > cyl hankel 1l (long double nu, long double z)

• std::complex < long double > cyl hankel 1l (std::complex < long double > nu, std::complex < long double >
   __x)

    template<typename _Tpnu , typename _Tp >

  std::complex< __gnu_cxx::__promote_num_t< _Tpnu, _Tp >> cyl_hankel_2 (_Tpnu __nu, _Tp __z)
• template<typename _Tpnu , typename _Tp >
  std::complex< __gnu_cxx::__promote_num_t< _Tpnu, _Tp >> cyl_hankel_2 (std::complex< _Tpnu > __nu,
  std::complex < Tp > x)

    std::complex< float > cyl_hankel_2f (float __nu, float __z)

    std::complex < float > cyl hankel 2f (std::complex < float > nu, std::complex < float > x)

    std::complex < long double > cyl hankel 2l (long double nu, long double z)

    std::complex < long double > cyl hankel 2l (std::complex < long double > nu, std::complex < long double >

   X)
template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > dawson (_Tp __x)

    float dawsonf (float x)

    long double dawsonl (long double x)

template<typename</li>Tp >
    _gnu_cxx::__promote_num_t< _Tp > digamma (_Tp __z)

    float digammaf (float z)

    long double digammal (long double __z)

    template<typename</li>
    Tp >

   _gnu_cxx::__promote_num_t< _Tp > dilog (_Tp __x)

 float dilogf (float __x)

    long double dilogl (long double __x)

    template<typename</li>
    Tp >

  _Tp dirichlet_beta (_Tp __x)

    float dirichlet_betaf (float __x)

    long double dirichlet betal (long double x)

template<typename _Tp >
  _Tp dirichlet_eta (_Tp __x)

    float dirichlet etaf (float x)

    long double dirichlet etal (long double x)

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > double_factorial (int __n)

    float double factorialf (int n)

    long double double_factoriall (int __n)

- template<typename _Tk , typename _Tp , typename _Ta , typename _Tb >
   _gnu_cxx::__promote_num_t< _Tk, _Tp, _Ta, _Tb > ellint_cel (_Tk __k_c, _Tp __p, _Ta _ a, Tb b)

    float ellint_celf (float __k_c, float __p, float __a, float __b)

    long double ellint_cell (long double __k_c, long double __p, long double __a, long double __b)

• template<typename _Tk , typename _Tphi >
    gnu cxx:: promote num t < Tk, Tphi > ellint d (Tk k, Tphi phi)

    float ellint df (float k, float phi)

    long double ellint_dl (long double ___k, long double ___phi)

    template<typename _Tp , typename _Tk >

   _gnu_cxx::__promote_num_t< _Tp, _Tk > ellint_el1 (_Tp __x, _Tk __k_c)
```

```
    float ellint_el1f (float __x, float __k_c)

• long double ellint_el1l (long double __x, long double __k_c)
ullet template<typename _Tp , typename _Tk , typename _Ta , typename _Tb >
    _gnu_cxx::__promote_num_t< _Tp, _Tk, _Ta, _Tb > ellint_el2 (_Tp __x, _Tk __k_c, _Ta __a, _Tb __b)
• float ellint el2f (float x, float k c, float a, float b)

    long double ellint_el2l (long double __x, long double __k_c, long double __a, long double __b)

• template<typename _Tx , typename _Tk , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tx, _Tk, _Tp > ellint_el3 (_Tx __x, _Tk __k_c, _Tp __p)
• float ellint el3f (float x, float k c, float p)

    long double ellint_el3l (long double __x, long double __k_c, long double __p)

• template<typename _Tp , typename _Up >
    gnu cxx:: promote num t< Tp, Up > ellint rc (Tp x, Up y)

    float ellint rcf (float x, float y)

    long double ellint_rcl (long double __x, long double __y)

• template<typename _Tp , typename _Up , typename _Vp >
    gnu cxx:: promote num t< Tp, Up, Vp> ellint rd ( Tp x, Up y, Vp z)
• float ellint rdf (float x, float y, float z)

    long double ellint_rdl (long double __x, long double __y, long double __z)

    template<typename _Tp , typename _Up , typename _Vp >

    _gnu_cxx::__promote_num_t< _Tp, _Up, _Vp > ellint_rf (_Tp __x, _Up __y, _Vp __z)

    float ellint_rff (float __x, float __y, float __z)

    long double ellint_rfl (long double __x, long double __y, long double __z)

• template<typename _Tp , typename _Up , typename _Vp >
    _gnu_cxx::__promote_num_t< _Tp, _Up, _Vp > ellint_rg (_Tp __x, _Up __y, _Vp __z)

    float ellint_rgf (float __x, float __y, float __z)

    long double ellint rgl (long double x, long double y, long double z)

- template<typename _Tp , typename _Up , typename _Vp , typename _Wp >
    _gnu_cxx::__promote_num_t< _Tp, _Up, _Vp, _Wp > ellint_rj (_Tp __x, _Up __y, _Vp __z, _Wp __p)

    float ellint_rjf (float __x, float __y, float __z, float __p)

    long double ellint rjl (long double x, long double y, long double z, long double p)

template<typename_Tp>
  Tp ellnome (Tp k)

 float ellnomef (float __k)

    long double ellnomel (long double k)

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > expint_e1 (_Tp __x)

    float expint e1f (float x)

    long double expint e1l (long double x)

• template<typename _Tp >
    gnu cxx:: promote num t < Tp > expint en (unsigned int n, Tp x)

    float expint enf (unsigned int n, float x)

    long double expint enl (unsigned int n, long double x)

template<typename _Tp >
    gnu cxx:: promote num t< Tp> factorial (unsigned int n)

    float factorialf (unsigned int n)

    long double factoriall (unsigned int n)

template<typename_Tp>
    gnu cxx:: promote num t < Tp > fresnel c (Tp x)

    float fresnel cf (float x)

    long double fresnel_cl (long double __x)

template<typename_Tp>
   gnu cxx:: promote num t < Tp > fresnel s (Tp x)
```

```
 float fresnel_sf (float __x)

    long double fresnel_sl (long double __x)

• template<typename _Tn , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tn, _Tp > gamma_l (_Tn __n, _Tp __x)
• float gamma If (float n, float x)

    long double gamma_ll (long double __n, long double __x)

• template<typename _Ta , typename _Tp >
    _gnu_cxx::__promote_num_t< _Ta, _Tp > gamma_p (_Ta __a, _Tp __x)
• float gamma pf (float a, float x)

    long double gamma_pl (long double __a, long double __x)

• template<typename _Ta , typename _Tp >
    gnu cxx:: promote num t < Ta, Tp > gamma q ( Ta a, Tp x)
• float gamma_qf (float __a, float x)

    long double gamma_ql (long double __a, long double __x)

• template<typename Tn, typename Tp>
    gnu cxx:: promote num t < Tn, Tp > gamma u (Tn n, Tp x)

    float gamma_uf (float __n, float __x)

    long double gamma_ul (long double __n, long double __x)

• template<typename Talpha, typename Tp >
    _gnu_cxx::__promote_num_t< _Talpha, _Tp > gegenbauer (unsigned int __n, _Talpha __alpha, _Tp __x)

    float gegenbauerf (unsigned int __n, float __alpha, float __x)

    long double gegenbauerl (unsigned int __n, long double __alpha, long double __x)

• template<typename _Tk , typename _Tphi >
    gnu cxx:: promote num t< Tk, Tphi > heuman lambda (Tk k, Tphi phi)

    float heuman_lambdaf (float __k, float __phi)

    long double heuman lambdal (long double k, long double phi)

    template<typename _Tp , typename _Up >

    _gnu_cxx::__promote_num_t< _Tp, _Up > hurwitz_zeta (_Tp __s, _Up __a)

    float hurwitz_zetaf (float __s, float __a)

    long double hurwitz zetal (long double s, long double a)

template<typename _Tpa , typename _Tpb , typename _Tpc , typename _Tp >
    _gnu_cxx::__promote_4< _Tpa, _Tpb, _Tpc, _Tp >::__type hyperg (_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)

    float hypergf (float a, float b, float c, float x)

• long double hypergl (long double a, long double b, long double c, long double x)
• template<typename _Ta , typename _Tb , typename _Tp >
   _gnu_cxx::__promote_num_t< _Ta, _Tb, _Tp > ibeta (_Ta __a, _Tb __b, _Tp __x)
• template<typename _Ta , typename _Tb , typename _Tp >
   _gnu_cxx::__promote_num_t< _Ta, _Tb, _Tp > ibetac (_Ta __a, _Tb __b, _Tp __x)

    float ibetacf (float __a, float __b, float __x)

    long double ibetacl (long double a, long double b, long double x)

    float ibetaf (float a, float b, float x)

    long double ibetal (long double a, long double b, long double x)

    template<typename _Talpha , typename _Tbeta , typename _Tp >

    _gnu_cxx::__promote_num_t< _Talpha, _Tbeta, _Tp > jacobi (unsigned __n, _Talpha __alpha, _Tbeta __beta,
  Tp x)
• template<typename _Kp , typename _Up >
   _gnu_cxx::__promote_num_t< _Kp, _Up > jacobi_cn (_Kp __k, _Up __u)

    float jacobi cnf (float k, float u)

    long double jacobi cnl (long double k, long double u)

• template<typename _Kp , typename _Up >
    gnu_cxx::__promote_num_t< _Kp, _Up > jacobi_dn (_Kp __k, _Up __u)

    float jacobi dnf (float k, float u)
```

```
    long double jacobi_dnl (long double __k, long double __u)

\bullet \ \ \text{template} {<} \text{typename} \ \_{\text{Kp}} \ , \ \text{typename} \ \_{\text{Up}} >
    _gnu_cxx::__promote_num_t< _Kp, _Up > jacobi_sn (_Kp __k, _Up __u)

    float jacobi snf (float k, float u)

    long double jacobi snl (long double k, long double u)

    template<typename _Tk , typename _Tphi >

    _gnu_cxx::__promote_num_t< _Tk, _Tphi > jacobi_zeta (_Tk __k, _Tphi __phi)

    float jacobi_zetaf (float __k, float __phi)

• long double jacobi_zetal (long double __k, long double __phi)

    float jacobif (unsigned __n, float __alpha, float __beta, float __x)

    long double jacobil (unsigned __n, long double __alpha, long double __beta, long double __x)

template<typename_Tp>
    _gnu_cxx::__promote_num_t< _Tp > lbincoef (unsigned int __n, unsigned int __k)

    float lbincoeff (unsigned int n, unsigned int k)

• long double lbincoefl (unsigned int n, unsigned int k)
template<typename</li>Tp >
    _gnu_cxx::__promote_num_t< _Tp > Idouble_factorial (int __n)

    float Idouble factorialf (int

    long double Idouble factorial (int n)

    template<typename</li>
    Tp >

   _gnu_cxx::__promote_num_t< _Tp > legendre_q (unsigned int __n, _Tp __x)

    float legendre_qf (unsigned int __n, float __x)

    long double legendre_ql (unsigned int __n, long double __x)

template<typename_Tp>
   _gnu_cxx::__promote_num_t< _Tp > Ifactorial (unsigned int __n)

    float Ifactorialf (unsigned int n)

    long double Ifactoriall (unsigned int __n)

template<typename_Tp>
    _gnu_cxx::__promote_num_t< _Tp > logint (_Tp __x)

 float logintf (float __x)

    long double logintl (long double ___x)

• template<typename Tp, typename Tn >
   _gnu_cxx::__promote_num_t< _Tp, _Tn > lpochhammer_l (_Tp __a, _Tn __n)

    float lpochhammer_lf (float __a, float __n)

    long double lpochhammer II (long double a, long double n)

• template<typename _Tp , typename _Tn >
    _gnu_cxx::__promote_num_t< _Tp, _Tn > lpochhammer_u (_Tp __a, _Tn __n)

    float lpochhammer uf (float a, float n)

    long double lpochhammer ul (long double a, long double n)

• template<typename _Tph , typename _Tpa >
    _gnu_cxx::__promote_num_t< _Tph, _Tpa > owens_t (_Tph __h, _Tpa __a)

    float owens_tf (float __h, float __a)

    long double owens_tl (long double __h, long double __a)

• template<typename _Tp , typename _Tn >
    gnu cxx:: promote num t< Tp, Tn> pochhammer I (Tp a, Tn n)

    float pochhammer_lf (float __a, float __n)

    long double pochhammer II (long double a, long double n)

• template<typename _Tp , typename _Tn >
   _gnu_cxx::__promote_num_t< _Tp, _Tn > pochhammer_u (_Tp __a, _Tn __n)

    float pochhammer_uf (float __a, float __n)

    long double pochhammer ul (long double a, long double n)
```

```
template<typename _Tp >
  std::complex< __gnu_cxx::__promote_num_t< _Tp > > polylog (_Tp __s, std::complex< _Tp > __w)
• std::complex < float > polylogf (float s, std::complex < float > w)

    std::complex < long double > polylogl (long double ___s, std::complex < long double > __w)

template<typename</li>Tp >
    _gnu_cxx::__promote_num_t< _Tp > psi (_Tp __x)

    float psif (float x)

    long double psil (long double __x)

template<typename</li>Tp >
   _gnu_cxx::_promote_num_t< _Tp > radpoly (unsigned int __n, unsigned int __m, _Tp __rho)
• float radpolyf (unsigned int n, unsigned int m, float rho)

    long double radpolyl (unsigned int n, unsigned int m, long double rho)

template<typename</li>Tp >
    gnu\_cxx::\_promote\_num\_t < \_Tp > sinc (\_Tp \__x)
template<typename Tp >
   __gnu_cxx::__promote_num_t< _Tp > sinc_pi (_Tp __x)

 float sinc_pif (float __x)

    long double sinc_pil (long double __x)

    float sincf (float x)

    long double sincl (long double x)

template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > sinhc (_Tp __x)
template<typename</li>Tp >
   _gnu_cxx::__promote_num_t< _Tp > sinhc_pi (_Tp __x)

    float sinhc_pif (float __x)

    long double sinhc pil (long double x)

    float sinhcf (float x)

    long double sinhcl (long double x)

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > sinhint (_Tp __x)

    float sinhintf (float __x)

    long double sinhintl (long double x)

    template<typename</li>
    Tp >

    gnu cxx:: promote num t < Tp > sinint (Tp x)

 float sinintf (float __x)

    long double sinintl (long double x)

    template<typename</li>
    Tp >

   _gnu_cxx::__promote_num_t< _Tp > sph_bessel_i (unsigned int __n, _Tp __x)

    float sph_bessel_if (unsigned int __n, float __x)

    long double sph bessel il (unsigned int n, long double x)

    template<typename</li>
    Tp >

   _gnu_cxx::__promote_num_t< _Tp > sph_bessel_k (unsigned int __n, _Tp __x)

    float sph_bessel_kf (unsigned int __n, float __x)

    long double sph_bessel_kl (unsigned int __n, long double __x)

    template<typename</li>
    Tp >

  std::complex< __gnu_cxx::__promote_num_t< _Tp >> sph_hankel_1 (unsigned int __n, _Tp __z)
template<typename _Tp >
  std::complex< gnu cxx:: promote num t< Tp>> sph hankel 1 (unsigned int n, std::complex< Tp>
  X)

    std::complex< float > sph_hankel_1f (unsigned int __n, float __z)

    std::complex < float > sph hankel 1f (unsigned int n, std::complex < float > x)

    std::complex < long double > sph_hankel_1l (unsigned int __n, long double __z)
```

```
    std::complex < long double > sph_hankel_1l (unsigned int __n, std::complex < long double > __x)

template<typename_Tp>
  std::complex< __gnu_cxx::__promote_num_t< _Tp >> sph_hankel_2 (unsigned int __n, _Tp __z)
template<typename _Tp >
  std::complex< gnu cxx:: promote num t< Tp>> sph hankel 2 (unsigned int n, std::complex< Tp>
   x)

    std::complex< float > sph_hankel_2f (unsigned int __n, float __z)

    std::complex < float > sph hankel 2f (unsigned int n, std::complex < float > x)

    std::complex < long double > sph hankel 2l (unsigned int n, long double z)

    std::complex < long double > sph hankel 2l (unsigned int n, std::complex < long double > x)

• template<typename Ttheta, typename Tphi >
  std::complex< __gnu_cxx::__promote_num_t< _Ttheta, _Tphi >> sph_harmonic (unsigned int __l, int __m,
  Ttheta theta, Tphi phi)

    std::complex < float > sph_harmonicf (unsigned int __l, int __m, float __theta, float __phi)

• std::complex < long double > sph harmonicl (unsigned int I, int m, long double theta, long double phi)

    template<typename _Tpnu , typename _Tp >

    _gnu_cxx::__promote_num_t< _Tpnu, _Tp > theta_1 (_Tpnu __nu, _Tp __x)
• float theta 1f (float nu, float x)

    long double theta_1l (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tpnu, _Tp > theta_2 (_Tpnu __nu, _Tp __x)

    float theta 2f (float nu, float x)

    long double theta_2l (long double __nu, long double __x)

template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tpnu, _Tp > theta_3 (_Tpnu __nu, _Tp __x)

 float theta_3f (float __nu, float __x)

    long double theta 3I (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
   _gnu_cxx::__promote_num_t< _Tpnu, _Tp > theta_4 (_Tpnu __nu, _Tp __x)

    float theta 4f (float nu, float x)

    long double theta_4l (long double __nu, long double __x)

    template<typename _Tpk , typename _Tp >

   _gnu_cxx::__promote_num_t< _Tpk, _Tp > theta_c (_Tpk __k, _Tp __x)

 float theta_cf (float __k, float __x)

    long double theta cl (long double k, long double x)

• template<typename _Tpk , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tpk, _Tp > theta_d (_Tpk __k, _Tp __x)

    float theta df (float k, float x)

    long double theta_dl (long double __k, long double __x)

• template<typename _Tpk , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tpk, _Tp > theta_n (_Tpk __k, _Tp __x)

    float theta_nf (float __k, float __x)

    long double theta nl (long double k, long double x)

    template<typename Tpk, typename Tp >

    _gnu_cxx::__promote_num_t< _Tpk, _Tp > theta_s (_Tpk __k, _Tp __x)

    float theta sf (float k, float x)

    long double theta sl (long double k, long double x)

• template<typename _Trho , typename _Tphi >
   __gnu_cxx::__promote_num_t< _Trho, _Tphi > zernike (unsigned int __n, int __m, _Trho __rho, _Tphi __phi)

    float zernikef (unsigned int __n, int __m, float __rho, float __phi)

    long double zernikel (unsigned int n, int m, long double rho, long double phi)
```

7.2 std Namespace Reference

Namespaces

detail

Functions

```
template<typename</li>Tp >
  __gnu_cxx::__promote< _Tp >::__type assoc_laguerre (unsigned int __n, unsigned int __m, _Tp __x)

    float assoc_laguerref (unsigned int __n, unsigned int __m, float __x)

    long double assoc laguerrel (unsigned int n, unsigned int m, long double x)

template<typename_Tp>
   __gnu_cxx::__promote< _Tp >::__type assoc_legendre (unsigned int __l, unsigned int __m, _Tp __x)

    float assoc legendref (unsigned int I, unsigned int m, float x)

    long double assoc_legendrel (unsigned int __l, unsigned int __m, long double __x)

• template<typename _Tpa , typename _Tpb >
    _gnu_cxx::__promote_2< _Tpa, _Tpb >::__type beta (_Tpa __a, _Tpb __b)

    float betaf (float a, float b)

    long double betal (long double __a, long double __b)

    template<typename</li>
    Tp >

   _gnu_cxx::__promote< _Tp >::__type comp_ellint_1 (_Tp __k)

    float comp_ellint_1f (float __k)

• long double comp ellint 11 (long double k)
template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type comp_ellint_2 (_Tp __k)

    float comp ellint 2f (float k)

    long double comp ellint 2l (long double k)

• template<typename _Tp , typename _Tpn >
    _gnu_cxx::__promote_2< _Tp, _Tpn >::__type comp_ellint_3 (_Tp __k, _Tpn __nu)

    float comp_ellint_3f (float __k, float __nu)

      Return the complete elliptic integral of the third kind \Pi(k,\nu) for float argument.

    long double comp ellint 3l (long double k, long double nu)

      Return the complete elliptic integral of the third kind \Pi(k, \nu).
• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_i (_Tpnu __nu, _Tp __x)

    float cyl bessel if (float nu, float x)

    long double cyl bessel il (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_j (_Tpnu __nu, _Tp __x)

    float cyl_bessel_jf (float __nu, float __x)

    long double cyl_bessel_jl (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    gnu cxx:: promote 2< Tpnu, Tp >:: type cyl bessel k (Tpnu nu, Tp x)

    float cyl_bessel_kf (float __nu, float __x)

    long double cyl bessel kl (long double nu, long double x)

template<typename _Tpnu , typename _Tp >
   __gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_neumann (_Tpnu __nu, _Tp __x)

    float cyl_neumannf (float __nu, float __x)

    long double cyl_neumannl (long double __nu, long double __x)
```

```
template<typename _Tp , typename _Tpp >

    float ellint 1f (float k, float phi)

    long double ellint 11 (long double k, long double phi)

• template<typename _Tp , typename _Tpp >
    _gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_2 (_Tp __k, _Tpp __phi)
• float ellint_2f (float __k, float __phi)
      Return the incomplete elliptic integral of the second kind E(k, \phi) for float argument.

    long double ellint 2l (long double k, long double phi)

      Return the incomplete elliptic integral of the second kind E(k, \phi).

    template<typename Tp , typename Tpn , typename Tpp >

   __gnu_cxx::__promote_3< _Tp, _Tpn, _Tpp >::__type ellint_3 (_Tp __k, _Tpn __nu, _Tpp __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k,\nu,\phi).

    float ellint 3f (float k, float nu, float phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi) for float argument.

    long double ellint_3l (long double ___k, long double ___nu, long double ___phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).
template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type expint (_Tp __x)

    float expintf (float x)

    long double expintl (long double x)

template<typename_Tp>
    gnu cxx:: promote < Tp >:: type hermite (unsigned int n, Tp x)

    float hermitef (unsigned int __n, float __x)

    long double hermitel (unsigned int n, long double x)

template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type laguerre (unsigned int __n, _Tp __x)

    float laguerref (unsigned int __n, float __x)

    long double laguerrel (unsigned int __n, long double __x)

template<typename</li>Tp >
   _gnu_cxx::__promote< _Tp >::__type legendre (unsigned int __I, _Tp __x)

    float legendref (unsigned int ___l, float ___x)

    long double legendrel (unsigned int I, long double x)

template<typename _Tp >
   _gnu_cxx::__promote< _Tp >::__type riemann_zeta (_Tp __s)

    float riemann_zetaf (float __s)

    long double riemann_zetal (long double __s)

template<typename</li>Tp >
   _gnu_cxx::__promote< _Tp >::__type sph_bessel (unsigned int __n, _Tp __x)
• float sph_besself (unsigned int __n, float __x)

    long double sph_bessell (unsigned int __n, long double __x)

template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type sph_legendre (unsigned int __I, unsigned int __m, _Tp __theta)

    float sph legendref (unsigned int I, unsigned int m, float theta)

    long double sph_legendrel (unsigned int __l, unsigned int __m, long double __theta)

template<typename_Tp>
    _gnu_cxx::__promote< _Tp >::__type sph_neumann (unsigned int __n, _Tp __x)

    float sph neumannf (unsigned int n, float x)

    long double sph neumannl (unsigned int n, long double x)
```

7.3 std:: detail Namespace Reference

Classes

· struct Factorial table

Enumerations

enum { SININT, COSINT }

Functions

```
    template<typename _Tp >
        void __airy (_Tp __z, _Tp &_Ai, _Tp &_Bi, _Tp &_Aip, _Tp &_Bip)
```

Compute the Airy functions Ai(x) and Bi(x) and their first derivatives Ai'(x) and Bi(x) respectively.

template<typename _Tp >

```
void __airy (const std::complex< _Tp > &__z, _Tp __eps, std::complex< _Tp > &_Ai, std::complex< _Tp > &_Aip, std::complex< _Tp > &_Bip)
```

This function computes the Airy function Ai(z) and its first derivative in the complex z-plane.

template<typename _Tp >

```
std::complex< _Tp > __airy_ai (std::complex< _Tp > __z)
```

Return the complex Airy Ai function.

• template<typename $_{\rm Tp}>$

```
\label{lem:complex} \begin{tabular}{ll} void $\_\_airy\_arg$ (std::complex < \_Tp > $\_\_argp$, \\ std::complex < \_Tp > &\_\_argm$) \\ \end{tabular}
```

Compute the arguments for the Airy function evaluations carefully to prevent premature overflow. Note that the major work here is in safe_div. A faster, but less safe implementation can be obtained without use of safe div.

template<typename_Tp>

```
\label{local_complex} $$\operatorname{void}$ $\_\operatorname{airy}$ $_\operatorname{asymp}$ $_\operatorname{absarg}$ $_\operatorname{poisson}$ (std::complex < $_\operatorname{Tp} > $_z$, std::complex < $_\operatorname{Tp} > $_x$, std::co
```

This function evaluates Ai(z) and Ai'(z) from their asymptotic expansions for $|arg(z)| < 2 * \pi/3$. For speed, the number of terms needed to achieve about 16 decimals accuracy is tabled and determined from abs(z).

template<typenameTp >

This function evaluates Ai(z) and Ai'(z) from their asymptotic expansions for |arg(-z)| < pi/3. For speed, the number of terms needed to achieve about 16 decimals accuracy is tabled and determined from |z|.

• template<typename $_{\mathrm{Tp}}$ >

```
void __airy_bessel_i (const std::complex< _Tp > &__z, _Tp __eps, std::complex< _Tp > &_lp1d3, std\leftrightarrow::complex< _Tp > &_lm1d3, std::complex< _Tp > &_lm2d3)
```

• template<typename $_{\rm Tp}>$

```
void __airy_bessel_k (const std::complex< _Tp > &__z, _Tp __eps, std::complex< _Tp > &_Kp1d3, std\leftrightarrow ::complex< _Tp > &_Kp2d3)
```

Compute approximations to the modified Bessel functions of the second kind of orders 1/3 and 2/3 for moderate arguments.

• template<typename_Tp>

```
std::complex < \_Tp > \underline{\quad} airy\_bi \ (std::complex < \_Tp > \underline{\quad} z)
```

Return the complex Airy Bi function.

template<typename_Tp>

```
\label{local_problem} $$\operatorname{void}$ $\_\operatorname{airy\_hyperg\_rational}$ (const std::complex < \_Tp > \&\_z, std::complex < \_Tp > \&\_Ai, std::complex < \_Tp > \&\_Bip)$
```

This function computes rational approximations to the hypergeometric functions related to the modified Bessel functions of orders $\nu=+-1/3$ and $\nu+-2/3$. That is, A(z)/B(z), Where A(z) and B(z) are cubic polynomials with real coefficients, approximates

$$\frac{\Gamma(\nu+1)}{(z/2)^n u} I_{\nu}(z) =_0 F_1(; \nu+1; z^2/4),$$

where the function on the right is a confluent hypergeometric limit function. For |z| <= 1/4 and |arg(z)| <= pi/2, the approximations are accurate to about 16 decimals.

- template<typenameTp >
 - _Tp __assoc_laguerre (unsigned int __n, unsigned int __m, _Tp __x)

This routine returns the associated Laguerre polynomial of order n, degree m: $L_n^m(x)$.

- template<typenameTp >
 - _Tp __assoc_legendre_p (unsigned int __I, unsigned int __m, _Tp __x)

Return the associated Legendre function by recursion on l and downward recursion on m.

template<typename_Tp>

This returns Bernoulli number B_n .

template<typename
 Tp >

This returns Bernoulli number B_n .

- template<typename _Tp >
 - _GLIBCXX14_CONSTEXPR _Tp __bernoulli_series (unsigned int __n)

This returns Bernoulli numbers from a table or by summation for larger values.

template<typename_Tp>

Return the beta function B(a, b).

template<typename _Tp >

Return the beta function: B(a,b).

• template<typename $_{\mathrm{Tp}}>$

• template<typename $_{\mathrm{Tp}}>$

template<typename _Tp >

Return the beta function B(a,b) using the log gamma functions.

template<typename_Tp>

Return the beta function B(x, y) using the product form.

- template<typename_Tp>
 - Tp bincoef (unsigned int n, unsigned int k)

Return the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

- template<typename
 Tp >
 - GLIBCXX14 CONSTEXPR Tp binomial cdf (Tp p, unsigned int n, unsigned int k)

Return the binomial cumulative distribution function.

- template<typename _Tp >
 - _GLIBCXX14_CONSTEXPR _Tp __binomial_cdfc (_Tp __p, unsigned int __n, unsigned int __k)

Return the complementary binomial cumulative distribution function.

```
template<typename _Tp >
  _Tp __bose_einstein (_Tp __s, _Tp __x)

    template<typename</li>
    Tp >

  _Tp __chebyshev_recur (unsigned int __n, _Tp __x, _Tp _C0, _Tp _C1)
template<typename _Tp >
  Tp chebyshev t (unsigned int n, Tp x)

    template<typename</li>
    Tp >

  _Tp __chebyshev_u (unsigned int __n, _Tp __x)

    template<typename</li>
    Tp >

  Tp chebyshev v (unsigned int n, Tp x)
template<typename _Tp >
  _Tp __chebyshev_w (unsigned int __n, _Tp __x)
template<typename_Tp>
  GLIBCXX14 CONSTEXPR Tp chi squared pdf (Tp chi2, unsigned int nu)
     Return the chi-squared propability function. This returns the probability that the observed chi-squared for a correct model
     is less than the value \chi^2.

    template<typename</li>
    Tp >

  GLIBCXX14 CONSTEXPR Tp chi squared pdfc (Tp chi2, unsigned int nu)
     Return the complementary chi-squared propability function. This returns the probability that the observed chi-squared for
     a correct model is greater than the value \chi^2.
template<typename Tp >
  std::pair< _Tp, _Tp > __chshint (_Tp __x, _Tp &_Chi, _Tp &_Shi)
     This function returns the hyperbolic cosine Ci(x) and hyperbolic sine Si(x) integrals as a pair.
template<typename_Tp>
  void __chshint_cont_frac (_Tp __t, _Tp &_Chi, _Tp &_Shi)
     This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by continued fraction for
     positive argument.
template<typename _Tp >
  void __chshint_series (_Tp __t, _Tp &_Chi, _Tp &_Shi)
     This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by series summation for
     positive argument.
template<typename _Tp >
  std::complex< Tp > clamp 0 m2pi (std::complex< Tp > w)
template<typename_Tp>
  std::complex< _Tp > __clamp_pi (std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< Tp > clausen (unsigned int m, std::complex< Tp > w)
template<typename_Tp>
  _Tp __clausen (unsigned int __m, _Tp __w)
template<typename _Tp >
  _Tp __clausen_c (unsigned int __m, std::complex< _Tp > __w)
template<typename _Tp >
  Tp clausen c (unsigned int m, Tp w)
template<typename _Tp >
  Tp clausen s (unsigned int m, std::complex < Tp > w)
template<typename_Tp>
  _Tp __clausen_s (unsigned int __m, _Tp __w)
template<typename</li>Tp >
  Tp comp ellint 1 (Tp k)
     Return the complete elliptic integral of the first kind K(k) using the Carlson formulation.
template<typename _Tp >
  _Tp __comp_ellint_2 (_Tp __k)
```

Return the complete elliptic integral of the second kind E(k) using the Carlson formulation.

template<typename_Tp>

```
_Tp __comp_ellint_3 (_Tp __k, _Tp __nu)
```

Return the complete elliptic integral of the third kind $\Pi(k,\nu) = \Pi(k,\nu,\pi/2)$ using the Carlson formulation.

template<typename _Tp >

```
_Tp __comp_ellint_d (_Tp __k)
```

template<typename_Tp>

template<typename_Tp>

template<typename_Tp>

Return the confluent hypergeometric function ${}_1F_1(a;c;x)$.

template<typename _Tp >

Return the confluent hypergeometric limit function ${}_0F_1(-;c;x)$.

template<typename
 Tp >

```
_Tp __conf_hyperg_lim_series (_Tp __c, _Tp __x)
```

This routine returns the confluent hypergeometric limit function by series expansion.

template<typename_Tp>

Return the hypergeometric function $_1F_1(a;c;x)$ by an iterative procedure described in Luke, Algorithms for the Computation of Mathematical Functions.

template<typename_Tp>

This routine returns the confluent hypergeometric function by series expansion.

template<typename
 Tp >

Return the hyperbolic cosine integral li(x).

template<typename
 Tp >

$$std::complex<_Tp>__cyl_bessel\ (std::complex<_Tp>__nu,\ std::complex<_Tp>__z)$$

Return the complex cylindrical Bessel function.

template<typename _Tp >

Return the regular modified Bessel function of order ν : $I_{\nu}(x)$.

• template<typename $_{\rm Tp}>$

This routine returns the cylindrical Bessel functions of order ν : J_{ν} or I_{ν} by series expansion.

template<typename
 Tp >

Return the modified cylindrical Bessel functions and their derivatives of order ν by various means.

 $\bullet \ \ template {<} typename \ _Tp >$

This routine computes the asymptotic modified cylindrical Bessel and functions of order nu: $I_{\nu}(x)$, $N_{\nu}(x)$. Use this for $x >> nu^2 + 1$.

template<typenameTp >

Compute the modified Bessel functions $I_{\nu}(x)$ and $K_{\nu}(x)$ and their first derivatives $I'_{\nu}(x)$ and $K'_{\nu}(x)$ respectively. These four functions are computed together for numerical stability.

```
template<typename _Tp >
  _Tp __cyl_bessel_j (_Tp __nu, _Tp __x)
      Return the Bessel function of order \nu: J_{\nu}(x).

    template<typename</li>
    Tp >

 void __cyl_bessel_jn (_Tp __nu, _Tp __x, _Tp &_Jnu, _Tp &_Nnu, _Tp &_Jpnu, _Tp &_Npnu)
      Return the cylindrical Bessel functions and their derivatives of order \nu by various means.

    template<typename</li>
    Tp >

  void __cyl_bessel_jn_asymp (_Tp __nu, _Tp __x, _Tp &_Jnu, _Tp &_Nnu, _Tp &_Jpnu, _Tp &_Npnu)
      This routine computes the asymptotic cylindrical Bessel and Neumann functions of order nu: J_{\nu}(x), N_{\nu}(x). Use this for
     x >> nu^2 + 1.
template<typename _Tp >
  void cyl bessel jn steed (Tp nu, Tp x, Tp & Jnu, Tp & Nnu, Tp & Jpnu, Tp & Npnu)
      Compute the Bessel J_{\nu}(x) and Neumann N_{\nu}(x) functions and their first derivatives J'_{\nu}(x) and N'_{\nu}(x) respectively. These
      four functions are computed together for numerical stability.

    template<typename</li>
    Tp >

  _Tp __cyl_bessel_k (_Tp __nu, _Tp __x)
      Return the irregular modified Bessel function K_{\nu}(x) of order \nu.
template<typename_Tp>
  std::complex< _Tp > __cyl_hankel_1 (_Tp __nu, _Tp __x)
      Return the cylindrical Hankel function of the first kind H_{\nu}^{(1)}(x).
template<typename _Tp >
  std::complex < Tp > cyl hankel 1 (std::complex < Tp > nu, std::complex < Tp > z)
      Return the complex cylindrical Hankel function of the first kind.
template<typename</li>Tp >
  std::complex < _Tp > \__cyl_hankel_2 (_Tp \__nu, _Tp x)
      Return the cylindrical Hankel function of the second kind H_n^{(2)}u(x).
template<typename_Tp>
  std::complex < _Tp > \__cyl_hankel_2 (std::complex < _Tp > \__nu, std::complex < _Tp > \__z)
      Return the complex cylindrical Hankel function of the second kind.
template<typename_Tp>
  std::complex< Tp > cyl neumann (std::complex< Tp > nu, std::complex< Tp > z)
      Return the complex cylindrical Neumann function.
template<typename _Tp >
  _Tp __cyl_neumann_n (_Tp __nu, _Tp __x)
      Return the Neumann function of order \nu: N_{\nu}(x).
template<typename</li>Tp >
  _Tp __dawson (_Tp __x)
      Return the Dawson integral, F(x), for real argument x.
template<typename _Tp >
 Tp dawson const frac (Tp x)
      Compute the Dawson integral using a sampling theorem representation.

    template<typename</li>
    Tp >

 _Tp __dawson_series (_Tp __x)
      Compute the Dawson integral using the series expansion.
template<typename _Tp >
  void <u>debye_region</u> (std::complex< _Tp > __alpha, int &__indexr, char &__aorb)
template<typename _Tp >
  _Tp <u>__dilog</u> (_Tp __x)
      Compute the dilogarithm function Li_2(x) by summation for x \le 1.
```

```
template<typename _Tp >
  Tp dirichlet beta (std::complex < Tp > w)

    template<typename</li>
    Tp >

  _Tp __dirichlet_beta (_Tp __w)
template<typename _Tp >
  std::complex< Tp > dirichlet eta (std::complex< Tp > w)
template<typename _Tp >
  _Tp __dirichlet_eta (_Tp __w)
template<typename_Tp>
  GLIBCXX14 CONSTEXPR Tp double factorial (int n)
      Return the double factorial of the integer n.
template<typename _Tp >
  _Tp __ellint_1 (_Tp __k, _Tp __phi)
      Return the incomplete elliptic integral of the first kind F(k,\phi) using the Carlson formulation.
• template<typename _{\rm Tp}>
  _Tp <u>__ellint_2</u> (_Tp __k, _Tp __phi)
      Return the incomplete elliptic integral of the second kind E(k,\phi) using the Carlson formulation.
• template<typename _{\rm Tp}>
  _Tp __ellint_3 (_Tp __k, _Tp __nu, _Tp __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi) using the Carlson formulation.
template<typename_Tp>
  _Tp __ellint_cel (_Tp __k_c, _Tp __p, _Tp __a, _Tp __b)
template<typename _Tp >
  _Tp <u>__ellint_d</u> (_Tp __k, _Tp __phi)
template<typename_Tp>
  Tp ellint el1 (Tp x, Tp k c)

    template<typename _Tp >

  _Tp <u>__ellint_el2</u> (_Tp __x, _Tp __k_c, _Tp __a, _Tp __b)
template<typename Tp >
  _Tp <u>__ellint_el3</u> (_Tp __x, _Tp __k_c, _Tp __p)
template<typename _Tp >
  _Tp __ellint_rc (_Tp __x, _Tp __y)
      Return the Carlson elliptic function R_C(x,y) = R_F(x,y,y) where R_F(x,y,z) is the Carlson elliptic function of the first
template<typename _Tp >
  _Tp __ellint_rd (_Tp __x, _Tp __y, _Tp __z)
      Return the Carlson elliptic function of the second kind R_D(x,y,z) = R_J(x,y,z,z) where R_J(x,y,z,p) is the Carlson
      elliptic function of the third kind.
template<typename _Tp >
  _Tp __ellint_rf (_Tp __x, _Tp __y, _Tp __z)
      Return the Carlson elliptic function R_F(x, y, z) of the first kind.

    template<typename</li>
    Tp >

  _Tp __ellint_rg (_Tp __x, _Tp __y, _Tp __z)
      Return the symmetric Carlson elliptic function of the second kind R_G(x, y, z).
template<typename_Tp>
  _Tp __ellint_rj (_Tp __x, _Tp __y, _Tp __z, _Tp __p)
      Return the Carlson elliptic function R_J(x, y, z, p) of the third kind.
template<typename_Tp>
  _Tp __ellnome (_Tp __k)
template<typename _Tp >
  _Tp __ellnome_k (_Tp __k)
```

```
template<typename _Tp >
  Tp ellnome series (Tp k)

    template<typename</li>
    Tp >

  _Tp __expint (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x).
template<typename_Tp>
  _Tp __expint (_Tp __x)
      Return the exponential integral Ei(x).
template<typename _Tp >
  Tp expint asymp (unsigned int n, Tp x)
      Return the exponential integral E_n(x) for large argument.

    template<typename</li>
    Tp >

  _Tp __expint_E1 (_Tp __x)
      Return the exponential integral E_1(x).

    template<typename</li>
    Tp >

  _Tp __expint_E1_asymp (_Tp __x)
      Return the exponential integral E_1(x) by asymptotic expansion.
template<typename_Tp>
  _Tp __expint_E1_series (_Tp __x)
      Return the exponential integral E_1(x) by series summation. This should be good for x < 1.
template<typename_Tp>
  _Tp __expint_Ei (_Tp __x)
      Return the exponential integral Ei(x).
template<typename _Tp >
  _Tp __expint_Ei_asymp (_Tp __x)
      Return the exponential integral Ei(x) by asymptotic expansion.

    template<typename</li>
    Tp >

  _Tp __expint_Ei_series (_Tp __x)
      Return the exponential integral Ei(x) by series summation.

    template<typename</li>
    Tp >

  Tp expint En cont frac (unsigned int n, Tp x)
      Return the exponential integral E_n(x) by continued fractions.
template<typename _Tp >
  _Tp __expint_En_recursion (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) by recursion. Use upward recursion for x < n and downward recursion (Miller's
      algorithm) otherwise.

    template<typename</li>
    Tp >

  _Tp __expint_En_series (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) by series summation.
template<typename _Tp >
  Tp expint large n (unsigned int n, Tp x)
      Return the exponential integral E_n(x) for large order.
template<typename _Tp >
  GLIBCXX14 CONSTEXPR Tp f cdf (Tp F, unsigned int nu1, unsigned int nu2)
      Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model
      exceeds the value \chi^2.

    template<typename</li>
    Tp >

  _GLIBCXX14_CONSTEXPR _Tp __f_cdfc (_Tp __F, unsigned int __nu1, unsigned int __nu2)
      Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model
      exceeds the value \chi^2.
```

```
    template < typename _Tp >
        _GLIBCXX14_CONSTEXPR _Tp __factorial (unsigned int __n)
        Return the factorial of the integer n.
```

template<typename
 Tp >

template<typename Tp >

 $\label{local_complex} $$\operatorname{void}$ $_\operatorname{fock_airy} ($_Tp $__x$, std::complex< $_Tp > \&_w1$, std::complex< $_Tp > \&_w2$, std::complex< $_Tp > \&_w1$, std::complex< $_Tp > \&_w2$, std::complex< $_Tp > \&_$

Compute the Fock-type Airy functions $w_1(x)$ and $w_2(x)$ and their first derivatives $w_1'(x)$ and $w_2'(x)$ respectively.

$$w_1(x) = \sqrt{\pi}(Ai(x) + iBi(x))$$

$$w_2(x) = \sqrt{\pi}(Ai(x) - iBi(x))$$

ullet template<typename_Tp>

bool __fpequal (const _Tp &__a, const _Tp &__b)

• template<typename _Tp >

bool $__$ fpimag (const std::complex < $_$ Tp > & $__$ w)

template<typename_Tp>

bool __fpimag (const _Tp)

template<typename _Tp >

bool __fpreal (const std::complex< _Tp > &__w)

template<typename _Tp >

• template<typename $_{\rm Tp}>$

Return the Fresnel cosine and sine integrals as a complex number f(C(x) + iS(x))

• template<typename _Tp >

This function computes the Fresnel cosine and sine integrals by continued fractions for positive argument.

template<typename _Tp >

This function returns the Fresnel cosine and sine integrals as a pair by series expansion for positive argument.

 $\bullet \ \ template\!<\!typename\,_Tp>$

Return $\Gamma(x)$.

• template<typename _Tp >

• template<typename $_{\mathrm{Tp}}>$

Return the lower incomplete gamma function. The lower incomplete gamma function is defined by

$$\gamma(a, x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

template<typename _Tp >

Return the regularized lower incomplete gamma function. The regularized lower incomplete gamma function is defined by

$$P(a,x) = \frac{\gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\gamma(a,x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

is the lower incomplete gamma function.

template<typename _Tp > _Tp __gamma_q (_Tp __a, _Tp __x)

Return the regularized upper incomplete gamma function. The regularized upper incomplete gamma function is defined by

$$Q(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\Gamma(a,x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

is the upper incomplete gamma function.

- template<typename _Tp >
 std::pair< _Tp, _Tp > __gamma_series (_Tp __a, _Tp __x)
- template < typename _Tp >
 void __gamma_temme (_Tp __mu, _Tp &__gam1, _Tp &__gam2, _Tp &__gampl, _Tp &__gammi)

Compute the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1 + \mu)$ and $\Gamma(1 - \mu)$ are returned as well.

template<typename _Tp >_Tp __gamma_u (_Tp __a, _Tp __x)

Return the upper incomplete gamma function. The lower incomplete gamma function is defined by

$$\Gamma(a,x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

• template<typename_Tp>

_Tp __gauss (_Tp __x)

template<typename _Tp >
 _Tp __gegenbauer_poly (unsigned int __n, _Tp __alpha, _Tp __x)

template<typename_Tp>

void __hankel (std::complex< _Tp > __nu, std::complex< _Tp > __z, std::complex< _Tp > &_H1, std \leftarrow ::complex< _Tp > &_H2, std::complex< _Tp > &_H1p, std::complex< _Tp > &_H2p)

template<typename _Tp >

void __hankel_debye (std::complex< _Tp > __nu, std::complex< _Tp > __z, std::complex< _Tp > __alpha, int __indexr, char &__aorb, int &__morn, std::complex< _Tp > &_H1, std::complex< _Tp > &_H2, std::complex< _Tp > &_H2p, std::complex< _Tp > &_H2p)

• template<typename _Tp >

Compute parameters depending on z and nu that appear in the uniform asymptotic expansions of the Hankel functions and their derivatives, except the arguments to the Airy functions.

This routine computes the uniform asymptotic approximations of the Hankel functions and their derivatives including a patch for the case when the order equals or nearly equals the argument. At such points, Olver's expressions have zero denominators (and numerators) resulting in numerical problems. This routine averages results from four surrounding points in the complex plane to obtain the result in such cases.

template<typenameTp >

```
void __hankel_uniform_olver (std::complex < _Tp > __nu, std::complex < _Tp > __z, std::complex < _Tp > & \leftarrow _H1, std::complex < _Tp > & _H2p, std::complex < _Tp > & _H2p)
```

Compute approximate values for the Hankel functions of the first and second kinds using Olver's uniform asymptotic expansion to of order nu along with their derivatives.

template<typename _Tp >

```
\label{lem:complex} $$\operatorname{\sc omplex} = \operatorname{\sc omplex} = \operatorname{\sc
```

Compute outer factors and associated functions of z and nu appearing in Olver's uniform asymptotic expansions of the Hankel functions of the first and second kinds and their derivatives. The various functions of z and nu returned by $hankel_uniform_outer$ are available for use in computing further terms in the expansions.

template<typename_Tp>

```
\label{eq:complex} void \underline{\quad \mbox{hankel\_uniform\_sum}} (std::complex < \_Tp > \underline{\quad \mbox{p}}, std::complex < \underline{\quad \mbox{p}}, std::complex <
```

Compute the sums in appropriate linear combinations appearing in Olver's uniform asymptotic expansions for the Hankel functions of the first and second kinds and their derivatives, using up to nterms (less than 5) to achieve relative error eps.

template<typename_Tp>

template<typename_Tp>

Return the Hurwitz zeta function $\zeta(s, a)$ for all s = 1 and a > -1.

template<typename_Tp>

Return the Hurwitz zeta function $\zeta(s,a)$ for all s = 1 and a > -1.

template<typename_Tp>

std::complex< _Tp > __hydrogen (const unsigned int __n, const unsigned int __l, const unsigned int __m, const _Tp _Z, const _Tp __r, const _Tp __theta, const _Tp __phi)

template<typename _Tp >

$$_\mathsf{Tp} \, \underline{\hspace{1em}} \mathsf{hyperg} \; (\underline{\hspace{1em}} \mathsf{Tp} \, \underline{\hspace{1em}} \mathsf{a}, \, \underline{\hspace{1em}} \mathsf{Tp} \, \underline{\hspace{1em}} \mathsf{b}, \, \underline{\hspace{1em}} \mathsf{Tp} \, \underline{\hspace{1em}} \mathsf{c}, \, \underline{\hspace{1em}} \mathsf{Tp} \, \underline{\hspace{1em}} \mathsf{x})$$

Return the hypergeometric function $_2F_1(a,b;c;x)$.

template<typename _Tp >

Return the hypergeometric function $_2F_1(a,b;c;x)$ by an iterative procedure described in Luke, Algorithms for the Computation of Mathematical Functions.

template<typename_Tp>

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by the reflection formulae in Abramowitz & Stegun formula 15.3.6 for d=c-a-b not integral and formula 15.3.11 for d=c-a-b integral. This assumes a,b,c!= negative integer.

• template<typename $_{\rm Tp}>$

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by series expansion.

template<typename _Tp > std::tuple< _Tp, _Tp, _Tp > __jacobi_sncndn (_Tp __k, _Tp __u) template<typename_Tp>

_Tp __jacobi_zeta (_Tp __k, _Tp __phi)

template<typename _Tp >

This routine returns the Laguerre polynomial of order n: $L_n(x)$.

template<typename _Tp >

Return the logarithm of the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

template<typename _Tp > _GLIBCXX14_CONSTEXPR _Tp __log_double_factorial (_Tp __x)

• template<typename $_{\mathrm{Tp}}$ >

Return the logarithm of the double factorial of the integer n.

template<typename
 Tp >

Return the logarithm of the factorial of the integer n.

• template<typename $_{\rm Tp}>$

Return $log(|\Gamma(x)|)$. This will return values even for x < 0. To recover the sign of $\Gamma(x)$ for any argument use $\underline{\hspace{0.2cm}}log_{\hookleftarrow}$ gamma_sign.

template<typename
 Tp >

Return $log(\Gamma(x))$ by asymptotic expansion with Bernoulli number coefficients. This is like Sterling's approximation.

template<typename _Tp >

Return $log(\Gamma(x))$ by the Lanczos method. This method dominates all others on the positive axis I think.

template<typename Tp >

Return the sign of $\Gamma(x)$. At nonpositive integers zero is returned.

template<typename _Tp >

Return $\Gamma(z)$ by the Spouge algorithm:

$$\Gamma(z+1) = (z+a)^{z+1/2} e^{-z-a} \left[\sqrt{2\pi} \sum_{k=1}^{\lceil a \rceil + 1} \frac{c_k(a)}{z+k} \right]$$

where

$$c_k(a) = \frac{(-1)^{k-1}}{(k-1)!} (a-k)^{k-1/2} e^{a-k}$$

and the error is bounded by

$$\epsilon(a) < a^{-1/2} (2\pi)^{-a-1/2}$$

template<typename _Tp >

Return the logarithm of the lower Pochhammer symbol or the falling factorial function. The lower Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1 = \Gamma(a+1)/\Gamma(a-n+1)$$

In particular, f(n) = n! f. Thus this function returns

$$ln[(a)_n] = \Gamma(a+1) - \Gamma(a-n+1), ln[(a)_0] = 0$$

Many notations exist:

 $a^{\underline{n}}$

,

 $\left\{\begin{array}{c} a \\ n \end{array}\right\}$

, and others.

• template<typename _Tp >

Return the logarithm of the (upper) Pochhammer symbol or the rising factorial function. The Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a+k), (a)_0 = 1 = \Gamma(a+n)/\Gamma(n)$$

Thus this function returns

$$ln[(a)_n] = \Gamma(a+n) - \Gamma(n), ln[(a)_0] = 0$$

Many notations exist:

 $a^{\overline{n}}$

, and others.

ullet template<typename_Tp>

Return the logarithmic integral li(x).

• template<typename $_{\rm Tp}>$

 $\bullet \ \ \mathsf{template} \!<\! \mathsf{typename} \ _\mathsf{Tp} >$

Return the logarithm of the lower Pochhammer symbol or the falling factorial function. The lower Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1 = \Gamma(a+1)/\Gamma(a-n+1)$$

In particular, $f[(n)_n = n! f]$.

• template<typename $_{\rm Tp}>$

Return the (upper) Pochhammer function or the rising factorial function. The Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a+k), (a)_0 = 1 = \Gamma(a+n)/\Gamma(n)$$

Many notations exist:

 a^n

 $\begin{bmatrix} a \\ n \end{bmatrix}$

, and others.

```
template<typename _Tp >
  Tp poly hermite (unsigned int n, Tp x)
      This routine returns the Hermite polynomial of order n: H_n(x).
template<typename _Tp >
  Tp poly hermite asymp (unsigned int n, Tp x)
      This routine returns the Hermite polynomial of large order n: H_n(x). We assume here that x >= 0.
template<typename _Tp >
  _Tp __poly_hermite_recursion (unsigned int __n, _Tp __x)
      This routine returns the Hermite polynomial of order n: H_n(x) by recursion on n.
template<typename _Tp >
  _Tp __poly_jacobi (unsigned int __n, _Tp __alpha, _Tp __beta, _Tp __x)

    template<typename</li>
    Tpa, typename
    Tp >

  _Tp __poly_laguerre (unsigned int __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of order n, degree \alpha: L_n^a lpha(x).

    template<typename _Tpa , typename _Tp >

  _Tp __poly_laguerre_hyperg (unsigned int __n, _Tpa __alpha1, _Tp __x)
      Evaluate the polynomial based on the confluent hypergeometric function in a safe way, with no restriction on the arguments.

    template<typename _Tpa , typename _Tp >

  _Tp __poly_laguerre_large_n (unsigned __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of order n, degree \alpha for large n. Abramowitz & Stegun, 13.5.21.
• template<typename _{\rm Tpa}, typename _{\rm Tp} >
  _Tp __poly_laguerre_recursion (unsigned int __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of order n, degree \alpha: L_n^{\alpha}(x) by recursion.

    template<typename</li>
    Tp >

  _Tp __poly_legendre_p (unsigned int __l, _Tp __x)
      Return the Legendre polynomial by upward recursion on order l.
template<typename _Tp >
  Tp poly legendre q (unsigned int I, Tp x)
      Return the Legendre function of the second kind by upward recursion on order l.

    template<typename</li>
    Tp >

  Tp poly radial jacobi (unsigned int n, unsigned int m, Tp rho)
template<typename_Tp>
  _Tp __polylog (_Tp __s, _Tp __x)
template<typename _Tp >
  std::complex< _Tp > __polylog (_Tp __s, std::complex< _Tp > __w)

    template<typename _Tp , typename ArgType >

   _gnu_cxx::__promote_num_t< std::complex< _Tp >, ArgType > __polylog_exp (_Tp __s, ArgType __w)

    template<typename</li>
    Tp >

  std::complex< Tp > polylog exp asymp (const Tp s, std::complex< Tp > w)
template<typename _Tp >
  std::complex < _Tp > __polylog_exp_int_neg (const int __s, std::complex < _Tp > __w)

    template<typename</li>
    Tp >

  std::complex< _Tp > __polylog_exp_int_neg (const int __s, _Tp __w)
template<typename _Tp >
  std::complex< _Tp > __polylog_exp_int_pos (const unsigned int __s, std::complex< _Tp > __w)

    template<typename</li>
    Tp >

  std::complex < _Tp > __polylog_exp_int_pos (const unsigned int __s, _Tp __w)
template<typename_Tp>
  std::complex< _Tp > __polylog_exp_neg (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< Tp > polylog exp neg (int s, std::complex< Tp > w)
```

```
• template<typename _Tp , int __sigma>
  std::complex< _Tp > __polylog_exp_neg_even (unsigned int __n, std::complex< _Tp > __w)
• template<typename Tp , int sigma>
  std::complex< _Tp > __polylog_exp_neg_odd (unsigned int __n, std::complex< _Tp > __w)
• template<typename _PowTp , typename _Tp >
  Tp polylog exp negative real part (PowTp s, Tp w)
template<typename</li>Tp >
  std::complex< _Tp > __polylog_exp_pos (unsigned int __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< _Tp > __polylog_exp_pos (unsigned int __s, _Tp __w)
template<typename Tp >
  std::complex< _Tp > __polylog_exp_pos (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex < _Tp > __polylog_exp_real_neg (_Tp __s, std::complex < _Tp > __w)
template<typename_Tp>
  std::complex < \_Tp > \underline{\hspace{0.5cm}} polylog\underline{\hspace{0.5cm}} exp\underline{\hspace{0.5cm}} real\underline{\hspace{0.5cm}} neg \ (\underline{\hspace{0.5cm}} Tp \ \underline{\hspace{0.5cm}} s, \ \underline{\hspace{0.5cm}} Tp \ \underline{\hspace{0.5cm}} w)
template<typename</li>Tp >
  std::complex< _Tp > __polylog_exp_real_pos (_Tp __s, std::complex< _Tp > __w)
template<typename_Tp>
  std::complex< _Tp > __polylog_exp_real_pos (_Tp __s, _Tp __w)
template<typename _Tp >
  _Tp __psi (_Tp __x)
      Return the digamma function. The digamma or \psi(x) function is defined by
                                                            \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
```

For negative argument the reflection formula is used:

$$\psi(x) = \psi(1-x) - \pi \cot(\pi x)$$

template<typename _Tp >

Return the polygamma function $\psi^{(n)}(x)$.

template<typename
 Tp >

Return the digamma function for large argument. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

template<typename _Tp > _Tp __psi_series (_Tp __x)

Return the digamma function by series expansion. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

template<typename _Tp >

Return the Riemann zeta function $\zeta(s)$.

template<typename _Tp >

Evaluate the Riemann zeta function $\zeta(s)$ by an alternate series for s > 0.

template<typename _Tp >

```
_Tp __riemann_zeta_euler_maclaurin ( Tp s)
```

Evaluate the Riemann zeta function $\zeta(s)$ by an alternate series for s > 0.

template<typename _Tp >

Evaluate the Riemann zeta function by series for all s != 1. Convergence is great until largish negative numbers. Then the convergence of the > 0 sum gets better.

template<typename_Tp>

Return the Riemann zeta function $\zeta(s) - 1$.

template<typename _Tp >

Return the Riemann zeta function $\zeta(s)-1$ by summation for s>1. This is a small remainder for large s.

template<typenameTp >

Compute the Riemann zeta function $\zeta(s)$ using the product over prime factors.

template<typename _Tp >

Compute the Riemann zeta function $\zeta(s)$ by summation for s > 1.

template<typename _Tp >

Return the generalized sinus cardinal function

$$sinc_a(x) = \frac{\sin(\pi x/a)}{(\pi x/a)}$$

template<typename_Tp>

Return the normalized sinus cardinal function

$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

template<typename _Tp >

Return the unnormalized sinus cardinal function

$$sinc_{\pi}(x) = \frac{\sin(x)}{x}$$

template<typename Tp >

$$std::pair < _Tp, _Tp > \underline{\quad sincosint (_Tp \underline{\quad }x)}$$

This function returns the sine Si(x) and cosine Ci(x) integrals as a pair.

template<typename
 Tp >

$$void \verb| _sincosint_asymp (_Tp __t, _Tp \&_Si, _Tp \&_Ci)|$$

This function computes the sine Si(x) and cosine Ci(x) integrals by asymptotic series summation for positive argument.

template<typename Tp >

This function computes the sine Si(x) and cosine Ci(x) integrals by continued fraction for positive argument.

template<typename
 Tp >

This function computes the sine Si(x) and cosine Ci(x) integrals by series summation for positive argument.

```
template<typename _Tp >
   gnu cxx:: promote num t < Tp > sinhc (Tp a, Tp x)
      Return the generalized hyperbolic sinus cardinal function
                                                 sinhc_a(x) = \frac{\sinh(\pi x/a)}{\pi x/a}
template<typename _Tp >
   gnu cxx:: promote num t < Tp > sinhc (Tp x)
      Return the normalized hyperbolic sinus cardinal function
                                                   sinhc(x) = \frac{\sinh(\pi x)}{\pi x}
template<typename _Tp >
  \_gnu_cxx::\_promote_num_t< \_Tp > \_sinhc_pi (\_Tp \_x)
      Return the unnormalized hyperbolic sinus cardinal function
                                                   sinhc_{\pi}(x) = \frac{\sinh(x)}{x}
template<typename _Tp >
  _Tp __sinhint (const _Tp __x)
      Return the hyperbolic sine integral li(x).
template<typename _Tp >
  _Tp __sph_bessel (unsigned int __n, _Tp __x)
      Return the spherical Bessel function j_n(x) of order n and non-negative real argument x.
template<typename</li>Tp >
  std::complex< _Tp > __sph_bessel (unsigned int __n, std::complex< _Tp > __z)
      Return the complex spherical Bessel function.

    template<typename</li>
    Tp >

  void __sph_bessel_ik (unsigned int __n, _Tp __x, _Tp &__i_n, _Tp &__k_n, _Tp &__ip_n, _Tp &__kp_n)
      Compute the spherical modified Bessel functions i_n(x) and k_n(x) and their first derivatives i'_n(x) and k'_n(x) respectively.
template<typename_Tp>
  void __sph_bessel_jn (unsigned int __n, _Tp __x, _Tp &__j_n, _Tp &__n_n, _Tp &__jp_n, _Tp &__np_n)
      Compute the spherical Bessel j_n(x) and Neumann n_n(x) functions and their first derivatives j_n(x) and n'_n(x) respec-
      tively.
template<typename</li>Tp >
  void <u>sph_hankel</u> (unsigned int __n, std::complex < _Tp > __z, std::complex < _Tp > &_H1, std::complex < _Tp
  > &_H1p, std::complex< _Tp > &_H2, std::complex< _Tp > &_H2p)
      Helper to compute complex spherical Hankel functions and their derivatives.
template<typename</li>Tp >
  std::complex< _Tp > __sph_hankel_1 (unsigned int __n, _Tp __x)
      Return the spherical Hankel function of the first kind h_n^{(1)}(x).

    template<typename</li>
    Tp >

  std::complex < _Tp > __sph_hankel_1 (unsigned int __n, std::complex < _Tp > __z)
      Return the complex spherical Hankel function of the first kind.

    template<typename</li>
    Tp >

  std::complex< _Tp > __sph_hankel_2 (unsigned int __n, _Tp __x)
      Return the spherical Hankel function of the second kind h_n^{(2)}(x).
template<typename _Tp >
  std::complex< Tp > sph hankel 2 (unsigned int n, std::complex< Tp > z)
```

```
Return the complex spherical Hankel function of the second kind.
template<typename _Tp >
  std::complex< _Tp > __sph_harmonic (unsigned int __I, int __m, _Tp __theta, _Tp __phi)
      Return the spherical harmonic function.
template<typename_Tp>
  _Tp __sph_legendre (unsigned int __l, unsigned int __m, _Tp __theta)
      Return the spherical associated Legendre function.
template<typename _Tp >
  _Tp __sph_neumann (unsigned int __n, _Tp __x)
      Return the spherical Neumann function n_n(x) of order n and non-negative real argument x.

    template<typename</li>
    Tp >

  std::complex < _Tp > __sph_neumann (unsigned int __n, std::complex < _Tp > __z)
      Return the complex spherical Neumann function.

    template<typename</li>
    Tp >

  _GLIBCXX14_CONSTEXPR _Tp __students_t_cdf (_Tp __t, unsigned int __nu)
      Return the Students T probability function.
template<typename _Tp >
  _GLIBCXX14_CONSTEXPR _Tp <u>__students_t_cdfc</u> (_Tp __t, unsigned int __nu)
      Return the complement of the Students T probability function.
template<typename _Tp >
  _Tp <u>__theta_</u>1 (_Tp __nu, _Tp __x)

    template<typename</li>
    Tp >

  _Tp <u>__theta_2</u> (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp __theta_2_asymp (_Tp __nu, _Tp __x)
template<typename_Tp>
  _Tp <u>__theta_2_sum</u> (_Tp __nu, _Tp __x)

    template<typename _Tp >

  _Tp <u>__theta_3</u> (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp __theta_3_asymp (_Tp __nu, _Tp __x)
• template<typename _{\mathrm{Tp}} >
  _Tp __theta_3_sum (_Tp __nu, _Tp __x)

    template<typename _Tp >

  _Tp <u>__theta_4</u> (_Tp __nu, _Tp __x)
template<typename Tp >
  _Tp <u>__theta_</u>c (_Tp __k, _Tp __x)
• template<typename _{\mathrm{Tp}} >
  _Tp <u>__theta_d</u> (_Tp __k, _Tp __x)
template<typename</li>Tp >
  _Tp <u>theta_n (_Tp __k, _Tp __</u>x)
template<typename _Tp >
  _Tp <u>__theta_</u>s (_Tp __k, _Tp __x)
template<typename_Tp>
   _gnu_cxx::_promote_num_t< _Tp > __zernike (unsigned int __n, int __m, _Tp __rho, _Tp __phi)
template<typename</li>Tp >
  _Tp __znorm1 (_Tp __x)

    template<typename</li>
    Tp >

  _Tp <u>__znorm2</u> (_Tp __x)
template<typename _Tp = double>
  _Tp evenzeta (unsigned int __k)
```

Variables

```
    constexpr size t Num Euler Maclaurin zeta = 100

    constexpr Factorial table< long double > S double factorial table [301]

    constexpr long double _S_Euler_Maclaurin_zeta [_Num_Euler_Maclaurin_zeta]

    constexpr Factorial table< long double > S factorial table [171]

    constexpr Factorial table < long double > S neg double factorial table [999]

template<typename _Tp >
  constexpr std::size t S num double factorials = 0
template<>
  constexpr std::size_t _S_num_double_factorials< double > = 301
template<>
  constexpr std::size t S num double factorials < float > = 57
template<>
  constexpr std::size_t _S_num_double_factorials< long double > = 301
template<typename _Tp >
  constexpr std::size t S num factorials = 0
template<>
  constexpr std::size_t _S_num_factorials< double > = 171
template<>
  constexpr std::size t S num factorials < float > = 35
template<>
  constexpr std::size_t _S_num_factorials< long double > = 171
template<typename _Tp >
  constexpr std::size t S num neg double factorials = 0
template<>
  constexpr std::size_t _S_num_neg_double_factorials< double > = 150

    template<>

  constexpr std::size_t _S_num_neg_double_factorials< float > = 27
template<>
  constexpr std::size_t _S_num_neg_double_factorials< long double > = 999

    constexpr size t S num zetam1 = 33

    constexpr long double S zetam1 [S num zetam1]
```

7.3.1 Enumeration Type Documentation

7.3.1.1 anonymous enum

Enumerator

SININT

COSINT

Definition at line 42 of file sf trigint.tcc.

7.3.2 Function Documentation

```
7.3.2.1 template < typename _Tp > void std::__detail::__airy ( _Tp __z, _Tp & _Ai, _Tp & _Bi, _Tp & _Aip, _Tp & _Bip )
```

Compute the Airy functions Ai(x) and Bi(x) and their first derivatives Ai'(x) and Bi(x) respectively.

Parameters

Z	The argument of the Airy functions.
_Ai	The output Airy function of the first kind.
_Bi	The output Airy function of the second kind.
_Aip	The output derivative of the Airy function of the first kind.
_Bip	The output derivative of the Airy function of the second kind.

Definition at line 486 of file sf mod bessel.tcc.

References __cyl_bessel_ik(), and __cyl_bessel_in().

7.3.2.2 template < typename _Tp > void std::__detail::__airy (const std::complex < _Tp > & __z, _Tp __eps, std::complex < _Tp > & _Ai, std::complex < _Tp > & _Aip, std::complex < _Tp > & _Bi, std::complex < _Tp > & _Bip)

This function computes the Airy function Ai(z) and its first derivative in the complex z-plane.

The algorithm used exploits numerous representations of the Airy function and its derivative. The representations are recorded here for reference:

$$(1a)Ai(z) = \frac{\sqrt{z}}{3}(I_{-1/3}(\zeta) - I_{1/3}(\zeta))$$

$$(1b)Bi(z) = \sqrt{\frac{z}{3}}(I_{-1/3}(\zeta) + I_{1/3}(\zeta))$$

$$(2)Ai(z) = \frac{\sqrt{z/3}}{\pi}K_{1/3}(\zeta) = \frac{2^{2/3}3^{-5/6}}{\sqrt{(\pi)}}z \exp(-\zeta)U(5/6; 5/3; 2\zeta)$$

$$(3a)Ai(-z) = \frac{\sqrt{z}}{3}(J_{-1/3}(\zeta) + J_{1/3}(\zeta))$$

$$(3b)Bi(-z) = \sqrt{\frac{z}{3}}(J_{-1/3}(\zeta) - J_{1/3}(\zeta))$$

$$(4a)Ai'(z) = \frac{z}{3}(I_{2/3}(\zeta) - I_{-2/3}(\zeta))$$

$$(4b)Bi'(z) = \frac{z}{\sqrt{3}}(I_{-2/3}(\zeta) + I_{2/3}(\zeta))$$

$$(5a)Ai'(z) = -\frac{z}{\pi\sqrt{(3)}}K_{(2/3)}(zeta) = -\frac{4^{2/3}3^{-7/6}}{\sqrt{(\pi)}}z^2 \exp(-\zeta)U(7/6; 7/3; 2\zeta)$$

$$(6a)Ai'(-z) = \frac{z}{3}(J_{2/3}(\zeta) - J_{-2/3}(\zeta)),$$

$$(6b)Bi'(-z) = \frac{z}{\sqrt{3}}(J_{-2/3}(\zeta) + J_{2/3}(\zeta)),$$

Where $\zeta=-\frac{2}{3}z^{3/2}$ and U(a;b;z) is the confluent hypergeometric function defined in

See also

Stegun, I. A. and Abramowitz, M., Handbook of Mathematical Functions, Natl. Bureau of Standards, AMS 55, pp 504-515, 1964.

The asymptotic expansions derivable from these representations and Hankel's asymptotic expansions for the Bessel functions are used for large modulus of z. The implementation has taken advantage of the error bounds given in

See also

Olver, F. W. J., Error Bounds for Asymptotic Expansions, with an Application to Cylinder Functions of Large Argument, in Asymptotic Solutions of Differential Equations (Wilcox, Ed.), Wiley and Sons, pp 163-183, 1964

and

See also

Olver, F. W. J., Asymptotics and Special Functions, Academic Press, pp 266-268, 1974.

For small modulus of z, a rational approximation is used. This approximant is derived from

Luke, Y. L., Mathematical Functions and their Approximations, Academic Press, pp 361-363, 1975.

The identities given below are for Bessel functions of the first kind in terms of modified Bessel functions of the first kind are also used with the rational approximant.

For moderate modulus of z, three techniques are used. Two use a backward recursion algorithm with (1), (3), (4), and (6). The third uses the confluent hypergeometric representations given by (2) and (5). The backward recursion algorithm generates values of the modified Bessel functions of the first kind of orders + or - 1/3 and + or - 2/3 for z in the right half plane. Values for the corresponding Bessel functions of the first kind are recovered via the identities

$$J_{\nu}(z) = exp(\nu \pi i/2)I_{\nu}(zexp(-\pi i/2)), 0 \le arg(z) \le \pi/2$$

and

$$J_{\nu}(z) = exp(-\nu\pi i/2)I_{\nu}(zexp(\pi i/2)), -\pi/2 \le arg(z) < 0.$$

The particular backward recursion algorithm used is discussed in

See also

Olver, F. W. J, Numerical solution of second-order linear difference equations, NBS J. Res., Series B, VOL 71B, pp 111-129, 1967.

Olver, F. W. J. and Sookne, D. J., Note on backward recurrence algorithms, Math. Comp. Vol 26, No. 120, pp 941-947, Oct. 1972

Sookne, D. J., Bessel Functions I and J of Complex Argument and Integer Order, NBS J. Res., Series B, Vol 77B, Nos 3& 4, pp 111-113, July-December, 1973.

The following paper was also useful

See also

Cody, W. J., Preliminary report on software for the modified Bessel functions of the first kind, Applied Mathematics Division, Argonne National Laboratory, Tech. Memo. no. 357.

A backward recursion algorithm is also used to compute the confluent hypergeometric function. The recursion relations and a convergence theorem are given in

See also

Wimp, J., On the computation of Tricomi's psi function, Computing, Vol 13, pp 195-203, 1974.

Parameters

in	z	The argument at which the Airy function and its derivative are computed.
in	eps	Relative error required. Currently, eps is used only in the backward recursion
		algorithms.
out	_Ai	The value computed for Ai(z).
out	_Aip	The value computed for Ai'(z).
out	_Bi	The value computed for Bi(z).
out	_Bip	The value computed for Bi'(z).

Definition at line 1008 of file sf_airy.tcc.

References __airy_asymp_absarg_ge_pio3(), __airy_asymp_absarg_lt_pio3(), __airy_bessel_i(), __airy_bessel_k(), and __airy_hyperg_rational().

Referenced by __airy_ai(), __airy_bi(), __hankel_uniform_outer(), and __poly_hermite_asymp().

7.3.2.3 template<typename _Tp > std::complex< _Tp> std::__detail::__airy_ai (std::complex< _Tp > __z)

Return the complex Airy Ai function.

Definition at line 1145 of file sf airy.tcc.

References __airy().

7.3.2.4 template<typename _Tp > void std::__detail::__airy_arg (std::complex< _Tp > __num2d3, std::complex< _Tp > __zeta, std::complex< _Tp > & __argp, std::complex< _Tp > & __argm)

Compute the arguments for the Airy function evaluations carefully to prevent premature overflow. Note that the major work here is in safe_div. A faster, but less safe implementation can be obtained without use of safe div.

Parameters

	in	num2d3	$nu^{(-2/3)}$ - output from hankel_params.
Ī	in	zeta	zeta in the uniform asymptotic expansions - output from hankel_params.
Ī	out	argp	$\exp(+2*pi*i/3)*nu^{(2/3)}*zeta.$
ſ	out	argm	$\exp(-2*pi*i/3)*nu^{(2/3)}*zeta.$

Exceptions

std::runtime_error.	

Definition at line 241 of file sf_hankel.tcc.

Referenced by __hankel_uniform_outer().

7.3.2.5 template<typename _Tp > void std::__detail::__airy_asymp_absarg_ge_pio3 (std::complex< _Tp > __z, std::complex< _Tp > & _Ai, std::complex< _Tp > & _Aip, int __sign = -1)

This function evaluates Ai(z) and Ai'(z) from their asymptotic expansions for $|arg(z)| < 2 * \pi/3$. For speed, the number of terms needed to achieve about 16 decimals accuracy is tabled and determined from abs(z).

Note that for the sake of speed and the fact that this function is to be called by another, checks for valid arguments are not made.

See also

Digital Library of Mathematical Finctions Sec. 9.7 Asymptotic Expansions http://dlmf.nist.gov/9.7

Parameters

in	z	Complex input variable set equal to the value at which $Ai(z)$ and $Bi(z)$ and their
		derivative are evaluated. This function assumes $ z >15$ and $ arg(z) <2\pi/3$.
in,out	_Ai	The value computed for $Ai(z)$.
in,out	_Aip	The value computed for $Ai'(z)$.
in	sign	1 7 7
		Ai functions for $ arg(z) < \pi$. The value +1 gives the Airy Bi functions for
		$ arg(z) < \pi/3.$

Definition at line 71 of file sf airy.tcc.

Referenced by __airy().

This function evaluates Ai(z) and Ai'(z) from their asymptotic expansions for |arg(-z)| < pi/3. For speed, the number of terms needed to achieve about 16 decimals accuracy is tabled and determined from |z|.

Note that for the sake of speed and the fact that this function is to be called by another, checks for valid arguments are not made. Hence, an error return is not needed. This function assumes |z| > 15 and |arg(-z)| < pi/3.

Parameters

in	z	The value at which the Airy function and its derivative are evaluated.
out	_Ai	The computed value of the Airy function $Ai(z)$.
out	_Aip	The computed value of the Airy function derivative $Ai'(z)$.

Definition at line 187 of file sf airy.tcc.

Referenced by __airy().

Compute the modified Bessel functions of the first kind of orders +-1/3 and +-2/3 needed to compute the Airy functions and their derivatives from their representation in terms of the modified Bessel functions. This function is only used for z less than two in modulus and in the closed right half plane. This stems from the fact that the values of the modified Bessel functions occuring in the representations of the Airy functions and their derivatives are almost equal for z large in the right half plane. This means that loss of significance occurs if these representations are used for z to large in magnitude. This algorithm is also not used for z too small, since a low order rational approximation can be used instead.

This routine is an implementation of a modified version of Miller's backward recurrence algorithm for computation by from the recurrence relation

$$I_{\nu-1} = (2\nu/z)I_{\nu} + I_{\nu+1}$$

satisfied by the modified Bessel functions of the first kind. the normalization relationship used is

$$\frac{z/2)^{\nu}e^{z}}{\Gamma(\nu+1)} = I_{\nu}(z) + 2\sum_{k=1}^{\infty} \frac{(k+\nu)\Gamma(2\nu+k)}{k!\Gamma(1+2\nu)} I_{\nu+k}(z).$$

This modification of the algorithm is given in part in

Olver, F. W. J. and Sookne, D. J., Note on Backward Recurrence Algorithms, Math. of Comp., Vol. 26, no. 120, Oct. 1972.

And further elaborated for the Bessel functions in

Sookne, D. J., Bessel Functions I and J of Complex Argument and Integer Order, J. Res. NBS - Series B, Vol 77B, Nos. 3 & 4, July-December, 1973.

Insight was also gained from

Cody, W. J., Preliminary Report on Software for the Modified Bessel Functions of the First Kind, Argonne National Laboratory, Applied Mathematics Division, Tech. Memo. No. 357, August, 1980.

Cody implements the algorithm of Sookne for fractional order and nonnegative real argument. Like Cody, we do not change the convergence testing mechanism in any substantial way. However, we do trim the overhead by making the additional assumption that performing the convergence test for the functions of order 2/3 will suffice for order 1/3 as well. This assumption has not been established by rigourous analysis at this time. For the sake of speed the convergence tests are performed in the 1-norm instead of the usual Euclidean norm used in the complex plane using the inequality

$$|x| + |y| \le \sqrt{(2)}\sqrt{(x^2 + y^2)}$$

Parameters

in	z	The argument of the modified Bessel functions.
in	eps	The maximum relative error required in the results.
out	_lp1d3	The value of $I_{(}+1/3)(z)$.
out	_lm1d3	The value of $I_{(}-1/3)(z)$.
out	_lp2d3	The value of $I_{(}+2/3)(z)$.
out	_Im2d3	The value of $I_{(-2/3)(z)}$.

Definition at line 393 of file sf airy.tcc.

Referenced by airy().

Compute approximations to the modified Bessel functions of the second kind of orders 1/3 and 2/3 for moderate arguments.

This routine computes

$$E_{\nu}(z) = \exp z \sqrt{2z/\pi} K_{\nu}(z), for \nu = 1/3 and \nu = 2/3$$

using a rational approximation given in

Luke, Y. L., Mathematical functions and their approximations, Academic Press, pp 366-367, 1975.

Though the approximation converges in $|\arg(z)| <= pi$, The convergence weakens as abs(arg(z)) increases. Also, in the case of real order between 0 and 1, convergence weakens as the order approaches 1. For these reasons, we only use this code for $|\arg(z)| <= 3pi/4$ and the convergence test is performed only for order 2/3.

The coding of this function is also influenced by the fact that it will only be used for about 2 <= |z| <= 15. Hence, certain considerations of overflow, underflow, and loss of significance are unimportant for our purpose.

Parameters

in	z	The value for which the quantity E_nu is to be computed. it is recommended that
		abs(z) not be too small and that $ \arg(z) <= 3pi/4$.
in	eps	The maximum relative error allowable in the computed results. The relative error
		test is based on the comparison of successive iterates.
out	_Kp1d3	The value computed for $E_{+1/3}(z)$.
out	_Kp2d3	The value computed for $E_{\pm 2/3}(z)$.

Note

In the worst case, say, z=2 and $\arg(z)=3pi/4$, 20 iterations should give 7 or 8 decimals of accuracy.

Definition at line 607 of file sf_airy.tcc.

Referenced by airy().

7.3.2.9 template < typename _Tp > std::complex < _Tp > std::__detail::__airy_bi (std::complex < _Tp > __z)

Return the complex Airy Bi function.

Definition at line 1158 of file sf airy.tcc.

References airy().

7.3.2.10 template<typename _Tp > void std::__detail::__airy_hyperg_rational (const std::complex< _Tp > & _z, std::complex< _Tp > & _Ai, std::complex< _Tp > & _Bip)

This function computes rational approximations to the hypergeometric functions related to the modified Bessel functions of orders $\nu=+-1/3$ and $\nu+-2/3$. That is, A(z)/B(z), Where A(z) and B(z) are cubic polynomials with real coefficients, approximates

$$\frac{\Gamma(\nu+1)}{(z/2)^n u} I_{\nu}(z) =_0 F_1(;\nu+1;z^2/4),$$

where the function on the right is a confluent hypergeometric limit function. For |z| <= 1/4 and |arg(z)| <= pi/2, the approximations are accurate to about 16 decimals.

For further details including the four term recurrence relation satisfied by the numerator and denominator poly-nomials in the higher order approximants, see

Luke, Y.L., Mathematical Functions and their Approximations, Academic Press, pp 361-363, 1975.

An asymptotic expression for the error is given as well as other useful expressions in the event one wants to extend this function to incorporate higher order approximants.

Note also that for the sake of speed and the fact that this function will be driven by another, checks that are not absolutely necessary are not made.

Parameters

_			
	in	z	The argument at which the hypergeometric given above is to be evaluated. Since
			the approximation is of fixed order, $\left z\right $ must be small to ensure sufficient accuracy
			of the computed results.

out	_Ai	The Airy function $Ai(z)$.
out	_Aip	The Airy function derivative $Ai'(z)$.
out	_Bi	The Airy function $Bi(z)$.
out	_Bip	The Airy function derivative $Bi'(z)$.

Definition at line 791 of file sf airy.tcc.

Referenced by airy().

7.3.2.11 template < typename $_{\rm Tp}$ > $_{\rm Tp}$ std::__detail::__assoc_laguerre (unsigned int $_{\rm m}$, unsigned int $_{\rm m}$, $_{\rm Tp}$ $_{\rm x}$)

This routine returns the associated Laguerre polynomial of order n, degree m: $L_n^m(x)$.

The associated Laguerre polynomial is defined for integral $\alpha=m$ by:

$$L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n+m}(x)$$

where the Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Parameters

n	The order
m	The degree
X	The argument

Returns

The value of the associated Laguerre polynomial of order n, degree m, and argument x.

Definition at line 292 of file sf_laguerre.tcc.

Referenced by __hydrogen().

7.3.2.12 template < typename _Tp > _Tp std::__detail::__assoc_legendre_p (unsigned int __I, unsigned int __m, _Tp __x)

Return the associated Legendre function by recursion on l and downward recursion on m.

The associated Legendre function is derived from the Legendre function $P_l(x)$ by the Rodrigues formula:

$$P_l^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x)$$

Parameters

	The order of the associated Legendre function. $l>=0$.
m	The order of the associated Legendre function. $m <= l$.
x	The argument of the associated Legendre function. $ x <= 1$.

Definition at line 175 of file sf_legendre.tcc.

References __poly_legendre_p().

7.3.2.13 template < typename $_{Tp} > _{GLIBCXX14}CONSTEXPR _{Tp} std:: __detail:: __bernoulli (int <math>_{n}$)

This returns Bernoulli number B_n .

Parameters

n	the order n of the Bernoulli number.

Returns

The Bernoulli number of order n.

Definition at line 1673 of file sf_gamma.tcc.

7.3.2.14 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__bernoulli_2n (int __n)

This returns Bernoulli number B_n .

Parameters

_	the ander a of the Democritic acceptant
n	the order n of the Bernoulli number.

Returns

The Bernoulli number of order n.

Definition at line 1685 of file sf gamma.tcc.

7.3.2.15 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__bernoulli_series (unsigned int __n)

This returns Bernoulli numbers from a table or by summation for larger values.

Upward recursion is unstable.

Parameters

n the order n of the Bernoulli number.
--

Returns

The Bernoulli number of order n.

Definition at line 1608 of file sf_gamma.tcc.

7.3.2.16 template < typename _Tp > _Tp std::__detail::__beta (_Tp $_a$, _Tp $_b$)

Return the beta function B(a, b).

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Parameters

a	The first argument of the beta function.
b	The second argument of the beta function.

Returns

The beta function.

Definition at line 173 of file sf beta.tcc.

References __beta_lgamma().

Referenced by __poly_jacobi(), __gnu_cxx::jacobi(), __gnu_cxx::jacobif(), and __gnu_cxx::jacobil().

7.3.2.17 template<typename _Tp > _Tp std::__detail::__beta_gamma (_Tp $_a$, _Tp $_b$)

Return the beta function: B(a, b).

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Parameters

a	The first argument of the beta function.
b	The second argument of the beta function.

Returns

The beta function.

Definition at line 75 of file sf beta.tcc.

References __gamma().

7.3.2.18 template < typename _Tp > _Tp std::__detail::__beta_inc (_Tp __a, _Tp __b, _Tp __x)

Return the regularized incomplete beta function, $I_x(a,b)$, of arguments a, b, and x.

The regularized incomplete beta function is defined by:

$$I_x(a,b) = \frac{B_x(a,b)}{B(a,b)}$$

where

$$B_x(a,b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$$

is the non-regularized beta function and B(a,b) is the usual beta function.

Parameters

a	The first parameter
---	---------------------

b	The second parameter
X	The argument

Definition at line 262 of file sf beta.tcc.

References __beta_inc_cont_frac().

 $Referenced \ by \underline{\quad binomial_cdf(), \underline{\quad f_cdf(), \underline{\quad f_cdf(), \underline{\quad f_cdfc(), \underline{\quad students_t_cdf(), \underline{\quad students_t_cdf(), \underline{\quad binomial_cdf(), \underline{\quad binomial_cdfc(), \underline{\quad binomial_c$

7.3.2.19 template < typename _Tp > _Tp std::__detail::__beta_inc_cont_frac (_Tp __a, _Tp __b, _Tp __x)

Return the regularized incomplete beta function, $I_x(a,b)$, of arguments a, b, and x.

Parameters

a	The first parameter
b	The second parameter
X	The argument

Definition at line 193 of file sf beta.tcc.

Referenced by __beta_inc().

7.3.2.20 template < typename _Tp > _Tp std::__detail::__beta_lgamma (_Tp __a, _Tp __b)

Return the beta function B(a,b) using the log gamma functions.

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Parameters

a	The first argument of the beta function.
b	The second argument of the beta function.

Returns

The beta function.

Definition at line 109 of file sf beta.tcc.

References log gamma().

Referenced by __beta().

7.3.2.21 template < typename _Tp > _Tp std::__detail::__beta_product (_Tp __a, _Tp __b)

Return the beta function B(x,y) using the product form.

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Here, we employ the product form:

$$B(a,b) = \frac{a+b}{ab} \prod_{k=1}^{\infty} \frac{1 + (a+b)/k}{(1+a/k)(1+b/k)}$$

a	The first argument of the beta function.
b	The second argument of the beta function.

Returns

The beta function.

Definition at line 140 of file sf beta.tcc.

7.3.2.22 template < typename $_{\rm Tp} > _{\rm Tp}$ std::__detail::__bincoef (unsigned int $_{\rm n}$, unsigned int $_{\rm k}$)

Return the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Parameters

n	The first argument of the binomial coefficient.
k	The second argument of the binomial coefficient.

Returns

The binomial coefficient.

Definition at line 1888 of file sf_gamma.tcc.

7.3.2.23 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__binomial_cdf (_Tp __p, unsigned int __n, unsigned int __k)

Return the binomial cumulative distribution function.

The binomial cumulative distribution function is related to the incomplete beta function:

$$P(p|n,k) = I_p(k, n - k + 1)$$

Parameters

p	
n	
k	

Definition at line 404 of file sf beta.tcc.

References beta inc().

7.3.2.24 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__binomial_cdfc (_Tp __p, unsigned int __n, unsigned int __k)

Return the complementary binomial cumulative distribution function.

The binomial cumulative distribution function is related to the incomplete beta function:

$$Q(p|n,k) = I_{1-p}(n-k+1,k)$$

p	
n	
k	

Definition at line 434 of file sf_beta.tcc.

References __beta_inc().

```
7.3.2.25 template < typename _Tp > _Tp std::__detail::__bose_einstein ( _Tp __s, _Tp __x )
```

Return the Bose-Einstein integral of real order s and real argument x.

See also

```
https://en.wikipedia.org/wiki/Clausen_function
http://dlmf.nist.gov/25.12#iii
```

Parameters

s	The order $s \ge 0$.
X	The real argument.

Returns

The real Fermi-Dirac cosine sum G s(x),

Definition at line 1369 of file sf_polylog.tcc.

References __polylog_exp().

Definition at line 44 of file sf_chebyshev.tcc.

Referenced by __chebyshev_t(), __chebyshev_u(), __chebyshev_v(), and __chebyshev_w().

Definition at line 58 of file sf chebyshev.tcc.

References __chebyshev_recur().

```
7.3.2.28 template < typename _Tp > _Tp std::__detail::__chebyshev_u ( unsigned int __n, _Tp __x )
```

Definition at line 73 of file sf chebyshev.tcc.

References __chebyshev_recur().

```
7.3.2.29 template<typename _Tp > _Tp std::__chebyshev_v ( unsigned int __n, _Tp __x )
```

Definition at line 88 of file sf_chebyshev.tcc.

References chebyshev recur().

7.3.2.30 template<typename _Tp > _Tp std::__detail::__chebyshev_w (unsigned int __n, _Tp __x)

Definition at line 103 of file sf_chebyshev.tcc.

References __chebyshev_recur().

7.3.2.31 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__chi_squared_pdf (_Tp __chi2, unsigned int __nu)

Return the chi-squared propability function. This returns the probability that the observed chi-squared for a correct model is less than the value χ^2 .

The chi-squared propability function is related to the normalized lower incomplete gamma function:

$$P(\chi^2|\nu) = \Gamma_P(\frac{\nu}{2}, \frac{\chi^2}{2})$$

Definition at line 2544 of file sf gamma.tcc.

References __gamma_p().

7.3.2.32 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__chi_squared_pdfc (_Tp __chi2, unsigned int __nu)

Return the complementary chi-squared propability function. This returns the probability that the observed chi-squared for a correct model is greater than the value χ^2 .

The complementary chi-squared propability function is related to the normalized upper incomplete gamma function:

$$Q(\chi^2|\nu) = \Gamma_Q(\frac{\nu}{2}, \frac{\chi^2}{2})$$

Definition at line 2568 of file sf gamma.tcc.

References __gamma_q().

7.3.2.33 template<typename _Tp > std::pair<_Tp, _Tp> std::__detail::__chshint(_Tp __x, _Tp & _*Chi*, _Tp & _*Shi*)

This function returns the hyperbolic cosine Ci(x) and hyperbolic sine Si(x) integrals as a pair.

The hyperbolic cosine integral is defined by:

$$Chi(x) = \gamma_E + \log(x) + \int_0^x dt \frac{\cosh(t) - 1}{t}$$

The hyperbolic sine integral is defined by:

$$Shi(x) = \int_0^x dt \frac{\sinh(t)}{t}$$

Definition at line 162 of file sf hypint.tcc.

References chshint cont frac(), and chshint series().

```
7.3.2.34 template < typename _Tp > void std::__detail::__chshint_cont_frac ( _Tp __t, _Tp & _Chi, _Tp & _Shi )
```

This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by continued fraction for positive argument.

Definition at line 50 of file sf_hypint.tcc.

Referenced by chshint().

```
7.3.2.35 template < typename _Tp > void std::__detail::__chshint_series ( _Tp __t, _Tp & _Chi, _Tp & _Shi )
```

This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by series summation for positive argument.

Definition at line 93 of file sf hypint.tcc.

Referenced by __chshint().

```
7.3.2.36 template < typename _Tp > std::complex < _Tp > std::__detail::__clamp_0_m2pi ( std::complex < _Tp > __w )
```

Definition at line 136 of file sf polylog.tcc.

Referenced by $_polylog_exp_int_neg()$, $_polylog_exp_int_pos()$, $_polylog_exp_real_neg()$, and $_polylog_exp_\leftrightarrow real_pos()$.

```
7.3.2.37 template<typename_Tp > std::complex<_Tp> std::__detail::__clamp_pi ( std::complex<_Tp > __w )
```

Definition at line 123 of file sf polylog.tcc.

Referenced by $_$ polylog_exp_int_neg(), $_$ polylog_exp_int_pos(), $_$ polylog_exp_real_neg(), and $_$ polylog_exp_ \leftarrow real_pos().

```
7.3.2.38 template<typename_Tp > std::complex<_Tp> std::__detail::__clausen ( unsigned int __m, std::complex<_Tp > __w )
```

Return Clausen's function of integer order m and complex argument w. The notation and connection to polylog is from Wikipedia

Parameters

m	The non-negative integral order.
w	The complex argument.

Returns

The complex Clausen function.

Definition at line 1198 of file sf polylog.tcc.

References polylog exp().

```
7.3.2.39 template < typename _Tp > _Tp std::__detail::__clausen ( unsigned int __m, _Tp __w )
```

Return Clausen's function of integer order m and real argument w. The notation and connection to polylog is from Wikipedia

m	The integer order $m \ge 1$.
W	The real argument.

Returns

The Clausen function.

Definition at line 1222 of file sf_polylog.tcc.

References __polylog_exp().

Return Clausen's cosine sum Cl_m for positive integer order m and complex argument w.

See also

```
https://en.wikipedia.org/wiki/Clausen_function
```

Parameters

m	The integer order $m \ge 1$.
w	The real argument.

Returns

The Clausen cosine sum Cl_m(w),

Definition at line 1297 of file sf_polylog.tcc.

References __polylog_exp().

7.3.2.41 template < typename _Tp > _Tp std::__detail::__clausen_c (unsigned int
$$_m$$
, _Tp $_w$)

Return Clausen's cosine sum Cl_m for positive integer order m and real argument w.

See also

```
https://en.wikipedia.org/wiki/Clausen_function
```

Parameters

m	The integer order $m \ge 1$.
w	The real argument.

Returns

The real Clausen cosine sum Cl m(w),

Definition at line 1322 of file sf_polylog.tcc.

References __polylog_exp().

7.3.2.42 template < typename _Tp > _Tp std::__detail::__clausen_s (unsigned int $_m$, std::complex < _Tp > $_w$)

Return Clausen's sine sum SI m for positive integer order m and complex argument w.

See also

https://en.wikipedia.org/wiki/Clausen_function

Parameters

m	The integer order $m \ge 1$.
w	The complex argument.

Returns

The Clausen sine sum SI m(w),

Definition at line 1247 of file sf_polylog.tcc.

References __polylog_exp().

Return Clausen's sine sum SI m for positive integer order m and real argument w.

See also

https://en.wikipedia.org/wiki/Clausen_function

Parameters

m	The integer order $m \ge 1$.
w	The complex argument.

Returns

The Clausen sine sum SI_m(w),

Definition at line 1272 of file sf_polylog.tcc.

References polylog exp().

7.3.2.44 template _Tp std::__detail::__comp_ellint_1 (_Tp
$$_k$$
)

Return the complete elliptic integral of the first kind K(k) using the Carlson formulation.

The complete elliptic integral of the first kind is defined as

$$K(k) = F(k, \pi/2) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

where $F(k, \phi)$ is the incomplete elliptic integral of the first kind.

k	The modulus of the complete elliptic function.

Returns

The complete elliptic function of the first kind.

Definition at line 565 of file sf ellint.tcc.

References __comp_ellint_rf().

Referenced by __ellint_1(), __ellnome_k(), __jacobi_zeta(), __theta_c(), __theta_d(), __theta_n(), and __theta_s().

7.3.2.45 template<typename _Tp > _Tp std::__detail::__comp_ellint_2 (_Tp $_k$)

Return the complete elliptic integral of the second kind E(k) using the Carlson formulation.

The complete elliptic integral of the second kind is defined as

$$E(k, \pi/2) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta}$$

Parameters

k	The modulus of the complete elliptic function.

Returns

The complete elliptic function of the second kind.

Definition at line 638 of file sf ellint.tcc.

References __ellint_rd(), and __ellint_rf().

Referenced by __ellint_2().

7.3.2.46 template < typename _Tp > _Tp std::__detail::__comp_ellint_3 (_Tp $_k$, _Tp $_nu$)

Return the complete elliptic integral of the third kind $\Pi(k,\nu)=\Pi(k,\nu,\pi/2)$ using the Carlson formulation.

The complete elliptic integral of the third kind is defined as

$$\Pi(k,\nu) = \int_0^{\pi/2} \frac{d\theta}{(1-\nu\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}$$

Parameters

k	The argument of the elliptic function.
nu	The second argument of the elliptic function.

Returns

The complete elliptic function of the third kind.

Definition at line 727 of file sf_ellint.tcc.

References __ellint_rf(), and __ellint_rj().

Referenced by __ellint_3().

7.3.2.47 template<typename _Tp > _Tp std::__detail::__comp_ellint_d (_Tp __k)

Return the complete Legendre elliptic integral D.

Definition at line 832 of file sf_ellint.tcc.

References __ellint_rd().

7.3.2.48 template < typename _Tp > _Tp std::__detail::__comp_ellint_rf (_Tp __x, _Tp __y)

Definition at line 235 of file sf_ellint.tcc.

Referenced by __comp_ellint_1(), and __ellint_rf().

7.3.2.49 template<typename _Tp > _Tp std::__detail::__comp_ellint_rg (_Tp __x, _Tp __y)

Definition at line 346 of file sf_ellint.tcc.

Referenced by __ellint_rg().

7.3.2.50 template<typename _Tp > _Tp std::__detail::__conf_hyperg (_Tp __a, _Tp __c, _Tp __x)

Return the confluent hypergeometric function ${}_{1}F_{1}(a;c;x)$.

Parameters

a	The numerator parameter.
c	The denominator parameter.
X	The argument of the confluent hypergeometric function.

Returns

The confluent hypergeometric function.

Definition at line 281 of file sf_hyperg.tcc.

References __conf_hyperg_luke(), and __conf_hyperg_series().

7.3.2.51 template < typename $_Tp > _Tp$ std:: $_detail$:: $_conf_hyperg_lim (<math>_Tp __c, _Tp __x$)

Return the confluent hypergeometric limit function ${}_{0}F_{1}(-;c;x)$.

Parameters

c	The denominator parameter.
X	The argument of the confluent hypergeometric limit function.

Returns

The confluent limit hypergeometric function.

Definition at line 109 of file sf hyperg.tcc.

References __conf_hyperg_lim_series().

7.3.2.52 template<typename_Tp > _Tp std::__conf_hyperg_lim_series (_Tp __c, _Tp __x)

This routine returns the confluent hypergeometric limit function by series expansion.

$$_{0}F_{1}(-;c;x) = \Gamma(c) \sum_{n=0}^{\infty} \frac{1}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

If a and b are integers and a < 0 and either b > 0 or b < a then the series is a polynomial with a finite number of terms.

Parameters

c	The "denominator" parameter.
X	The argument of the confluent hypergeometric limit function.

Returns

The confluent hypergeometric limit function.

Definition at line 76 of file sf_hyperg.tcc.

Referenced by __conf_hyperg_lim().

Return the hypergeometric function ${}_1F_1(a;c;x)$ by an iterative procedure described in Luke, Algorithms for the Computation of Mathematical Functions.

Like the case of the 2F1 rational approximations, these are probably guaranteed to converge for x < 0, barring gross numerical instability in the pre-asymptotic regime.

Definition at line 176 of file sf_hyperg.tcc.

Referenced by __conf_hyperg().

7.3.2.54 template < typename _Tp > _Tp std::__detail::__conf_hyperg_series (_Tp
$$_a$$
, _Tp $_c$, _Tp $_x$)

This routine returns the confluent hypergeometric function by series expansion.

$$_1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)}{\Gamma(c+n)} \frac{x^n}{n!}$$

Parameters

a	The "numerator" parameter.
c	The "denominator" parameter.
X	The argument of the confluent hypergeometric function.

Returns

The confluent hypergeometric function.

Definition at line 141 of file sf hyperg.tcc.

Referenced by __conf_hyperg().

7.3.2.55 template<typename _Tp > _Tp std::__detail::__coshint (const _Tp __x)

Return the hyperbolic cosine integral li(x).

The hyperbolic cosine integral is given by

$$Chi(x) = (Ei(x) - E_1(x))/2$$

Parameters

Returns

The hyperbolic cosine integral.

Definition at line 558 of file sf_expint.tcc.

References __expint_E1(), and __expint_Ei().

7.3.2.56 template<typename_Tp > std::complex<_Tp> std::__detail::__cyl_bessel (std::complex<_Tp > __nu, std::complex< _Tp > __z)

Return the complex cylindrical Bessel function.

Parameters

in	nu	The order for which the cylindrical Bessel function is evaluated.
in	z	The argument at which the cylindrical Bessel function is evaluated.

Returns

The complex cylindrical Bessel function.

Definition at line 1222 of file sf_hankel.tcc.

References __hankel().

7.3.2.57 template < typename _Tp > _Tp std::__detail::__cyl_bessel_i (_Tp __nu, _Tp __x)

Return the regular modified Bessel function of order ν : $I_{\nu}(x)$.

The regular modified cylindrical Bessel function is:

$$I_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(x/2)^{\nu+2k}}{k!\Gamma(\nu+k+1)}$$

Parameters

nu	The order of the regular modified Bessel function.
----	--

ſ	X	The argument of the regular modified Bessel function.
	^	The digament of the regular medited becook function.

Returns

The output regular modified Bessel function.

Definition at line 375 of file sf mod bessel.tcc.

References __cyl_bessel_ij_series(), and __cyl_bessel_ik().

This routine returns the cylindrical Bessel functions of order ν : J_{ν} or I_{ν} by series expansion.

The modified cylindrical Bessel function is:

$$Z_{\nu}(x) = \sum_{k=0}^{\infty} \frac{\sigma^k (x/2)^{\nu+2k}}{k!\Gamma(\nu+k+1)}$$

where $\sigma = +1$ or -1 for Z = I or J respectively.

See Abramowitz & Stegun, 9.1.10 Abramowitz & Stegun, 9.6.7 (1) Handbook of Mathematical Functions, ed. Milton Abramowitz and Irene A. Stegun, Dover Publications, Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375

Parameters

nu	The order of the Bessel function.
X	The argument of the Bessel function.
sgn	The sign of the alternate terms -1 for the Bessel function of the first kind. +1 for the modified
	Bessel function of the first kind.
max_iter	The maximum number of iterations for sum.

Returns

The output Bessel function.

Definition at line 413 of file sf_bessel.tcc.

References log gamma().

Referenced by __cyl_bessel_i(), and __cyl_bessel_j().

Return the modified cylindrical Bessel functions and their derivatives of order ν by various means.

Parameters

nu	The order of the Bessel functions.
X	The argument of the Bessel functions.

_Inu	The output regular modified Bessel function.	
_Knu	The output irregular modified Bessel function.	
_lpnu	The output derivative of the regular modified Bessel function.	
_Kpnu	The output derivative of the irregular modified Bessel function.	

Definition at line 316 of file sf_mod_bessel.tcc.

References cyl bessel ik asymp(), and cyl bessel ik steed().

Referenced by __airy(), __cyl_bessel_i(), __cyl_bessel_k(), and __sph_bessel_ik().

This routine computes the asymptotic modified cylindrical Bessel and functions of order nu: $I_{\nu}(x)$, $N_{\nu}(x)$. Use this for $x >> nu^2 + 1$.

References: (1) Handbook of Mathematical Functions, ed. Milton Abramowitz and Irene A. Stegun, Dover Publications, Section 9 p. 364, Equations 9.2.5-9.2.10

Parameters

nu	The order of the Bessel functions.	
X	The argument of the Bessel functions.	
_Inu	The output regular modified Bessel function.	
_Knu	Knu The output irregular modified Bessel function.	
_lpnu	The output derivative of the regular modified Bessel function.	
_Kpnu	The output derivative of the irregular modified Bessel function.	

Definition at line 81 of file sf_mod_bessel.tcc.

Referenced by __cyl_bessel_ik(), and __cyl_bessel_ik_steed().

Compute the modified Bessel functions $I_{\nu}(x)$ and $K_{\nu}(x)$ and their first derivatives $I'_{\nu}(x)$ and $K'_{\nu}(x)$ respectively. These four functions are computed together for numerical stability.

Parameters

nu	The order of the Bessel functions.	
X	_x The argument of the Bessel functions.	
_Inu	The output regular modified Bessel function.	
_Knu	_Knu The output irregular modified Bessel function.	
_lpnu	The output derivative of the regular modified Bessel function.	
_Kpnu	The output derivative of the irregular modified Bessel function.	

Definition at line 152 of file sf_mod_bessel.tcc.

References __cyl_bessel_ik_asymp(), and __gamma_temme().

Referenced by __cyl_bessel_ik().

7.3.2.62 template < typename _Tp > _Tp std::__detail::__cyl_bessel_j (_Tp __nu, _Tp __x)

Return the Bessel function of order ν : $J_{\nu}(x)$.

The cylindrical Bessel function is:

$$J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{\nu+2k}}{k! \Gamma(\nu+k+1)}$$

Parameters

nu	The order of the Bessel function.	
x The argument of the Bessel function.		

Returns

The output Bessel function.

Definition at line 503 of file sf bessel.tcc.

References __cyl_bessel_ij_series(), and __cyl_bessel_jn().

Return the cylindrical Bessel functions and their derivatives of order ν by various means.

Definition at line 442 of file sf bessel.tcc.

References __cyl_bessel_jn_asymp(), and __cyl_bessel_jn_steed().

Referenced by __airy(), __cyl_bessel_j(), __cyl_hankel_1(), __cyl_hankel_2(), __cyl_neumann_n(), and __sph_← bessel_jn().

This routine computes the asymptotic cylindrical Bessel and Neumann functions of order nu: $J_{\nu}(x)$, $N_{\nu}(x)$. Use this for $x >> nu^2 + 1$.

References: (1) Handbook of Mathematical Functions, ed. Milton Abramowitz and Irene A. Stegun, Dover Publications, Section 9 p. 364, Equations 9.2.5-9.2.10

Parameters

	nu	The order of the Bessel functions.
	x	The argument of the Bessel functions.
out	_Jnu	The Bessel function of the first kind.
out	_Nnu	The Neumann function (Bessel function of the second kind).
out	_Jpnu	The Bessel function of the first kind.
out	_Npnu	The Neumann function (Bessel function of the second kind).

Definition at line 79 of file sf_bessel.tcc.

Referenced by __cyl_bessel_jn(), and __cyl_bessel_jn_steed().

Compute the Bessel $J_{\nu}(x)$ and Neumann $N_{\nu}(x)$ functions and their first derivatives $J'_{\nu}(x)$ and $N'_{\nu}(x)$ respectively. These four functions are computed together for numerical stability.

	nu	The order of the Bessel functions.
	x	The argument of the Bessel functions.
out	_Jnu	The output Bessel function of the first kind.
out	_Nnu	The output Neumann function (Bessel function of the second kind).
out	_Jpnu	The output derivative of the Bessel function of the first kind.
out	_Npnu	The output derivative of the Neumann function.

Definition at line 197 of file sf bessel.tcc.

References __cyl_bessel_jn_asymp(), and __gamma_temme().

Referenced by __cyl_bessel_in().

7.3.2.66 template < typename _Tp > _Tp std::__detail::__cyl_bessel_k (_Tp __nu, _Tp __x)

Return the irregular modified Bessel function $K_{\nu}(x)$ of order ν .

The irregular modified Bessel function is defined by:

$$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu \pi}$$

where for integral $\nu=n$ a limit is taken: $lim_{\nu\to n}$. For negative argument we have simply:

$$K_{-\nu}(x) = K_{\nu}(x)$$

Parameters

nu	The order of the irregular modified Bessel function.
X	The argument of the irregular modified Bessel function.

Returns

The output irregular modified Bessel function.

Definition at line 413 of file sf mod bessel.tcc.

References __cyl_bessel_ik().

7.3.2.67 template < typename _Tp > std::complex < _Tp> std::__detail::__cyl_hankel_1 (_Tp __nu, _Tp __x)

Return the cylindrical Hankel function of the first kind $H^{(1)}_{\nu}(x)$.

The cylindrical Hankel function of the first kind is defined by:

$$H_{\nu}^{(1)}(x) = J_{\nu}(x) + iN_{\nu}(x)$$

Parameters

nu	The order of the spherical Neumann function.

X	The argument of the spherical Neumann function.

Returns

The output spherical Neumann function.

Definition at line 568 of file sf bessel.tcc.

References __cyl_bessel_jn().

Return the complex cylindrical Hankel function of the first kind.

Parameters

in	nu	The order for which the cylindrical Hankel function of the first kind is evaluated.
in	Z	The argument at which the cylindrical Hankel function of the first kind is evaluated.

Returns

The complex cylindrical Hankel function of the first kind.

Definition at line 1190 of file sf_hankel.tcc.

References hankel().

Return the cylindrical Hankel function of the second kind $H_n^{(2)}u(x)$.

The cylindrical Hankel function of the second kind is defined by:

$$H_{\nu}^{(2)}(x) = J_{\nu}(x) - iN_{\nu}(x)$$

Parameters

nu	nu The order of the spherical Neumann function.	
x The argument of the spherical Neumann function.		

Returns

The output spherical Neumann function.

Definition at line 604 of file sf_bessel.tcc.

References __cyl_bessel_jn().

Return the complex cylindrical Hankel function of the second kind.

in	nu	The order for which the cylindrical Hankel function of the second kind is evaluated.
in	z	The argument at which the cylindrical Hankel function of the second kind is eval-
		uated.

Returns

The complex cylindrical Hankel function of the second kind.

Definition at line 1206 of file sf_hankel.tcc.

References __hankel().

Return the complex cylindrical Neumann function.

Parameters

in	nu	The order for which the cylindrical Neumann function is evaluated.
in	z	The argument at which the cylindrical Neumann function is evaluated.

Returns

The complex cylindrical Neumann function.

Definition at line 1238 of file sf_hankel.tcc.

References __hankel().

Return the Neumann function of order ν : $N_{\nu}(x)$.

The Neumann function is defined by:

$$N_{\nu}(x) = \frac{J_{\nu}(x)\cos\nu\pi - J_{-\nu}(x)}{\sin\nu\pi}$$

where for integral $\nu = n$ a limit is taken: $\lim_{\nu \to n}$.

Parameters

nu	The order of the Neumann function.
X	The argument of the Neumann function.

Returns

The output Neumann function.

Definition at line 538 of file sf_bessel.tcc.

References __cyl_bessel_jn().

7.3.2.73 template<typename _Tp > _Tp std::__dawson (_Tp __x)

Return the Dawson integral, F(x), for real argument x.

The Dawson integral is defined by:

$$F(x) = e^{-x^2} \int_0^x e^{y^2} dy$$

and it's derivative is:

$$F'(x) = 1 - 2xF(x)$$

Parameters

X	The argument $-inf < x < inf$.
---	---------------------------------

Definition at line 233 of file sf dawson.tcc.

References __dawson_const_frac(), and __dawson_series().

7.3.2.74 template<typename _Tp > _Tp std::__detail::__dawson_const_frac (_Tp __x)

Compute the Dawson integral using a sampling theorem representation.

Todo this needs some compile-time construction!

Definition at line 71 of file sf dawson.tcc.

Referenced by dawson().

7.3.2.75 template<typename _Tp > _Tp std::__dawson_series (_Tp __x)

Compute the Dawson integral using the series expansion.

Definition at line 47 of file sf dawson.tcc.

Referenced by __dawson().

7.3.2.76 template < typename _Tp > void std::__detail::__debye_region (std::complex < _Tp > __alpha, int & __indexr, char & __aorb)

Compute the Debye region in te complex plane.

Definition at line 54 of file sf_hankel.tcc.

Referenced by __hankel().

7.3.2.77 template<typename _Tp > _Tp std::__detail::__dilog (_Tp __x)

Compute the dilogarithm function $Li_2(x)$ by summation for x <= 1.

The Riemann zeta function is defined by:

$$Li_2(x) = \sum_{k=1}^{\infty} \frac{1}{k^s} fors > 1$$

For |x| near 1 use the reflection formulae:

$$Li_2(-x) + Li_2(1-x) = \frac{\pi^2}{6} - \ln(x)\ln(1-x)$$

$$Li_2(-x) - Li_2(1-x) - \frac{1}{2}Li_2(1-x^2) = -\frac{\pi^2}{12} - \ln(x)\ln(1-x)$$

For x < 1 use the reflection formula:

$$Li_2(1-x) - Li_2(1-\frac{1}{1-x}) - \frac{1}{2}(\ln(x))^2$$

Definition at line 194 of file sf zeta.tcc.

7.3.2.78 template < typename _Tp > _Tp std::__detail::__dirichlet_beta (std::complex < _Tp > __w)

Return the Dirichlet beta function. Currently, w must be real (complex type but negligible imaginary part.) Otherwise std::domain error is thrown.

Parameters

__w The complex (but on-real-axis) argument.

Returns

The Dirichlet Beta function of real argument.

Exceptions

std::domain_error if the argument has a significant imaginary part.

Definition at line 1160 of file sf_polylog.tcc.

References __fpequal(), and __polylog().

7.3.2.79 template < typename _Tp > _Tp std::__detail::__dirichlet_beta (_Tp __w)

Return the Dirichlet beta function for real argument.

Parameters

__w The real argument.

Returns

The Dirichlet Beta function of real argument.

Definition at line 1179 of file sf_polylog.tcc.

References __polylog().

 $7.3.2.80 \quad template < typename _Tp > std::complex < _Tp > std::_detail::_dirichlet_eta \ (\ std::complex < _Tp > _w \)$

Return the Dirichlet eta function. Currently, w must be real (complex type but negligible imaginary part.) Otherwise std::domain_error is thrown.

W	The complex (but on-real-axis) argument.

Returns

The complex Dirichlet eta function.

Exceptions

std::domain_error	if the argument has a significant imaginary part.

Definition at line 1123 of file sf polylog.tcc.

References __fpequal(), and __polylog().

Return the Dirichlet eta function for real argument.

Parameters

14/	The real argument
	The real argument.

Returns

The Dirichlet eta function.

Definition at line 1141 of file sf polylog.tcc.

References __polylog().

Return the double factorial of the integer n.

The double factorial is defined for integral n by:

$$n!! = 135...(n-2)n, noddn!! = 246...(n-2)n, neven - 1!! = 10!! = 1$$

The double factorial is defined for odd negative integers in the obvious way:

$$(-2m-1)!! = 1/(1(-1)(-3)...(-2m+1)(-2m-1)) = \frac{(-1)^m}{(2m-1)!!}$$

for f[n = -2m - 1 f].

Definition at line 2480 of file sf_gamma.tcc.

References factorial(), log double factorial(), S double factorial table, and S neg double factorial table.

Return the incomplete elliptic integral of the first kind $F(k,\phi)$ using the Carlson formulation.

The incomplete elliptic integral of the first kind is defined as

$$F(k,\phi) = \int_0^\phi \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

k	The argument of the elliptic function.
phi	The integral limit argument of the elliptic function.

Returns

The elliptic function of the first kind.

Definition at line 594 of file sf ellint.tcc.

References __comp_ellint_1(), and __ellint_rf().

7.3.2.84 template < typename
$$_{\rm Tp}$$
 > $_{\rm Tp}$ std::__detail::__ellint_2 ($_{\rm Tp}$ __k, $_{\rm Tp}$ __phi)

Return the incomplete elliptic integral of the second kind $E(k,\phi)$ using the Carlson formulation.

The incomplete elliptic integral of the second kind is defined as

$$E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2 \theta}$$

Parameters

k	The argument of the elliptic function.
phi	The integral limit argument of the elliptic function.

Returns

The elliptic function of the second kind.

Definition at line 673 of file sf_ellint.tcc.

References __comp_ellint_2(), __ellint_rd(), and __ellint_rf().

7.3.2.85 template < typename _Tp > _Tp std::__detail::__ellint_3 (_Tp
$$_k$$
, _Tp $_nu$, _Tp $_phi$)

Return the incomplete elliptic integral of the third kind $\Pi(k,\nu,\phi)$ using the Carlson formulation.

The incomplete elliptic integral of the third kind is defined as

$$\Pi(k,\nu,\phi) = \int_0^\phi \frac{d\theta}{(1-\nu\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}$$

Parameters

k	The argument of the elliptic function.
nu	The second argument of the elliptic function.
phi	The integral limit argument of the elliptic function.

Returns

The elliptic function of the third kind.

Definition at line 768 of file sf ellint.tcc.

References __comp_ellint_3(), __ellint_rf(), and __ellint_rj().

7.3.2.86 template < typename $_{Tp} > _{Tp}$ std::__detail::__ellint_cel ($_{Tp} _{kc}, _{Tp} _{p}, _{Tp} _{a}, _{Tp} _{b}$)

Return the Bulirsch complete elliptic integrals.

Definition at line 920 of file sf_ellint.tcc.

References __ellint_rf(), and __ellint_rj().

7.3.2.87 template < typename $_{\rm Tp} > _{\rm Tp}$ std::__detail::__ellint_d ($_{\rm Tp}$ __k, $_{\rm Tp}$ __phi)

Return the Legendre elliptic integral D.

Definition at line 809 of file sf ellint.tcc.

References __ellint_rd().

7.3.2.88 template < typename
$$_{\rm Tp} > _{\rm Tp}$$
 std::__ellint_el1 ($_{\rm Tp}$ __x, $_{\rm Tp}$ __k_c)

Return the Bulirsch elliptic integrals of the first kind.

Definition at line 848 of file sf ellint.tcc.

References __ellint_rf().

Return the Bulirsch elliptic integrals of the second kind.

Definition at line 869 of file sf ellint.tcc.

References __ellint_rd(), and __ellint_rf().

Return the Bulirsch elliptic integrals of the third kind.

Definition at line 894 of file sf ellint.tcc.

References __ellint_rf(), and __ellint_rj().

7.3.2.91 template < typename _Tp > _Tp std::__detail::__ellint_rc (_Tp
$$_x$$
, _Tp $_y$)

Return the Carlson elliptic function $R_C(x,y) = R_F(x,y,y)$ where $R_F(x,y,z)$ is the Carlson elliptic function of the first kind.

The Carlson elliptic function is defined by:

$$R_C(x,y) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

X	The first argument.
у	The second argument.

Returns

The Carlson elliptic function.

Definition at line 81 of file sf ellint.tcc.

Referenced by __ellint_rf(), and __ellint_rj().

Return the Carlson elliptic function of the second kind $R_D(x,y,z) = R_J(x,y,z,z)$ where $R_J(x,y,z,p)$ is the Carlson elliptic function of the third kind.

The Carlson elliptic function of the second kind is defined by:

$$R_D(x,y,z) = \frac{3}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{3/2}}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

X	The first of two symmetric arguments.
у	The second of two symmetric arguments.
Z	The third argument.

Returns

The Carlson elliptic function of the second kind.

Definition at line 163 of file sf ellint.tcc.

Referenced by $_$ comp $_$ ellint $_$ 2(), $_$ ellint $_$ d(), $_$ ellint $_$ d(), $_$ ellint $_$ d(), $_$ ellint $_$ rg(), and $_$ ellint $_$ rj().

Return the Carlson elliptic function $R_F(x, y, z)$ of the first kind.

The Carlson elliptic function of the first kind is defined by:

$$R_F(x,y,z) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{1/2}}$$

X	The first of three symmetric arguments.
у	The second of three symmetric arguments.
z	The third of three symmetric arguments.

Returns

The Carlson elliptic function of the first kind.

Definition at line 277 of file sf ellint.tcc.

References __comp_ellint_rf(), and __ellint_rc().

Referenced by __comp_ellint_2(), __comp_ellint_3(), __ellint_1(), __ellint_2(), __ellint_3(), __ellint_cel(), __ellint_el1(), __ellint_el2(), __ellint_el3(), and __heuman_lambda().

7.3.2.94 template < typename
$$_{\rm Tp}$$
 > $_{\rm Tp}$ std::__detail::__ellint_rg ($_{\rm Tp}$ __x, $_{\rm Tp}$ __y, $_{\rm Tp}$ __z)

Return the symmetric Carlson elliptic function of the second kind $R_G(x, y, z)$.

The Carlson symmetric elliptic function of the second kind is defined by:

$$R_G(x,y,z) = \frac{1}{4} \int_0^\infty dt t [(t+x)(t+y)(t+z)]^{-1/2} \left(\frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right)$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- · Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

X	The first of three symmetric arguments.
y	The second of three symmetric arguments.
z	The third of three symmetric arguments.

Returns

The Carlson symmetric elliptic function of the second kind.

Definition at line 408 of file sf_ellint.tcc.

References comp ellint rg(), and ellint rd().

Return the Carlson elliptic function $R_J(x, y, z, p)$ of the third kind.

The Carlson elliptic function of the third kind is defined by:

$$R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{1/2}(t+p)}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

X	The first of three symmetric arguments.
y	The second of three symmetric arguments.
Z	The third of three symmetric arguments.
p	The fourth argument.

Returns

The Carlson elliptic function of the fourth kind.

Definition at line 456 of file sf ellint.tcc.

References __ellint_rc(), and __ellint_rd().

Referenced by __comp_ellint_3(), __ellint_cel(), __ellint_el3(), __heuman_lambda(), and __jacobi_zeta().

7.3.2.96 template<typename _Tp > _Tp std::__detail::__ellnome (_Tp $\underline{\hspace{0.1cm}}$ k)

Return the elliptic nome given the modulus k.

Definition at line 292 of file sf_theta.tcc.

References __ellnome_k(), and __ellnome_series().

 $Referenced \ by \ \underline{\quad} theta_c(), \ \underline{\quad} theta_d(), \ \underline{\quad} theta_n(), \ and \ \underline{\quad} theta_s().$

7.3.2.97 template < typename $_{\rm Tp} > _{\rm Tp}$ std::__detail::__ellnome_k ($_{\rm Tp}$ __k)

Use the arithmetic-geometric mean to calculate the elliptic nome given the , k.

Definition at line 278 of file sf theta.tcc.

References __comp_ellint_1().

Referenced by __ellnome().

7.3.2.98 template < typename $_{\rm Tp} > _{\rm Tp}$ std::__ellnome_series ($_{\rm Tp}$ __k)

Use MacLaurin series to calculate the elliptic nome given the , k.

Definition at line 262 of file sf theta.tcc.

Referenced by __ellnome().

7.3.2.99 template<typename _Tp > _Tp std::__detail::__expint (unsigned int __n, _Tp __x)

Return the exponential integral $E_n(x)$.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

This is something of an extension.

n	The order of the exponential integral function.
X	The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 474 of file sf_expint.tcc.

References __expint_E1(), and __expint_En_recursion().

Referenced by __logint().

7.3.2.100 template<typename _Tp > _Tp std::__detail::__expint (_Tp $_x$)

Return the exponential integral Ei(x).

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Parameters

Х	The argument of the exponential integral function.
	The digament of the experiental integral fallottern

Returns

The exponential integral.

Definition at line 514 of file sf_expint.tcc.

References __expint_Ei().

7.3.2.101 template < typename $_{\rm Tp}$ > $_{\rm Tp}$ std::__expint_asymp (unsigned int $_{\rm n}$, $_{\rm Tp}$ __x)

Return the exponential integral $E_n(x)$ for large argument.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

This is something of an extension.

Parameters

n	The order of the exponential integral function.
X	The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 406 of file sf expint.tcc.

7.3.2.102 template<typename _Tp > _Tp std::__detail::__expint_E1 (_Tp __x)

Return the exponential integral $E_1(x)$.

The exponential integral is given by

$$E_1(x) = \int_1^\infty \frac{e^{-xt}}{t} dt$$

Parameters

__x The argument of the exponential integral function.

Returns

The exponential integral.

Todo Find a good asymptotic switch point in $E_1(x)$.

Todo Find a good asymptotic switch point in $E_1(x)$.

Definition at line 375 of file sf expint.tcc.

References __expint_E1_asymp(), __expint_E1_series(), __expint_Ei(), and __expint_En_cont_frac().

Referenced by __coshint(), __expint_Ei(), __expint_Ei(), __expint_En_recursion(), and __sinhint().

7.3.2.103 template<typename _Tp > _Tp std::__detail::__expint_E1_asymp (_Tp __x)

Return the exponential integral $E_1(x)$ by asymptotic expansion.

The exponential integral is given by

$$E_1(x) = \int_1^\infty \frac{e^{-xt}}{t} dt$$

Parameters

__x The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 112 of file sf expint.tcc.

Referenced by __expint_E1().

7.3.2.104 template<typename _Tp > _Tp std::__detail::__expint_E1_series (_Tp __x)

Return the exponential integral $E_1(x)$ by series summation. This should be good for x < 1.

The exponential integral is given by

$$E_1(x) = \int_1^\infty \frac{e^{-xt}}{t} dt$$

__x The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 75 of file sf expint.tcc.

Referenced by __expint_E1().

7.3.2.105 template<typename_Tp > _Tp std::__detail::__expint_Ei (_Tp __x)

Return the exponential integral Ei(x).

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Parameters

__x The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 351 of file sf expint.tcc.

References __expint_E1(), __expint_Ei_asymp(), and __expint_Ei_series().

Referenced by __coshint(), __expint(), __expint_E1(), and __sinhint().

7.3.2.106 template<typename _Tp > _Tp std::__detail::__expint_Ei_asymp (_Tp $_x$)

Return the exponential integral Ei(x) by asymptotic expansion.

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Parameters

__x The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 318 of file sf expint.tcc.

Referenced by __expint_Ei().

7.3.2.107 template<typename _Tp > _Tp std::__detail::__expint_Ei_series (_Tp __x)

Return the exponential integral Ei(x) by series summation.

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Parameters

x The argument of the exponential integral function.	

Returns

The exponential integral.

Definition at line 286 of file sf_expint.tcc.

Referenced by expint Ei().

 $7.3.2.108 \quad template < typename _Tp > _Tp \ std:: __expint_En_cont_frac \ (\ unsigned \ int __n, \ _Tp __x \)$

Return the exponential integral $E_n(x)$ by continued fractions.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

Parameters

n	The order of the exponential integral function.
x	The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 195 of file sf expint.tcc.

Referenced by __expint_E1().

7.3.2.109 template<typename _Tp > _Tp std::__expint_En_recursion (unsigned int __n, _Tp __x)

Return the exponential integral $E_n(x)$ by recursion. Use upward recursion for x < n and downward recursion (Miller's algorithm) otherwise.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

n	The order of the exponential integral function.
X	The argument of the exponential integral function.

Returns

The exponential integral.

Todo Find a principled starting number for the $E_n(\boldsymbol{x})$ downward recursion.

Definition at line 240 of file sf_expint.tcc.

References __expint_E1().

Referenced by __expint().

7.3.2.110 template<typename _Tp > _Tp std::__detail::__expint_En_series (unsigned int __n, _Tp __x)

Return the exponential integral $E_n(x)$ by series summation.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

Parameters

n	The order of the exponential integral function.
X	The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 149 of file sf_expint.tcc.

References psi().

7.3.2.111 template < typename _Tp > _Tp std::__detail::__expint_large_n (unsigned int $_n$, _Tp $_x$)

Return the exponential integral $E_n(x)$ for large order.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

This is something of an extension.

Parameters

n	The order of the exponential integral function.
X	The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 440 of file sf expint.tcc.

7.3.2.112 template<typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__f_cdf (_Tp __F, unsigned int __nu1, unsigned int __nu2)

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

The f-distribution propability function is related to the incomplete beta function:

$$Q(F|\nu_1, \nu_2) = I_{\frac{\nu_2}{\nu_2 + \nu_1 F}}(\frac{\nu_2}{2}, \frac{\nu_1}{2})$$

Parameters

nu1	
nu2	

Definition at line 349 of file sf beta.tcc.

References beta inc().

7.3.2.113 template<typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__f_cdfc (_Tp __F, unsigned int __nu1, unsigned int __nu2)

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

The f-distribution propability function is related to the incomplete beta function:

$$P(F|\nu_1,\nu_2) = 1 - I_{\frac{\nu_2}{\nu_2 + \nu_1 F}}(\frac{\nu_2}{2}, \frac{\nu_1}{2}) = 1 - Q(F|\nu_1,\nu_2)$$

Parameters

F	
nu1	
nu2	

Definition at line 378 of file sf_beta.tcc.

References beta inc().

7.3.2.114 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__factorial (unsigned int __n)

Return the factorial of the integer n.

The factorial is:

$$n! = 12...(n-1)n, 0! = 1$$

Definition at line 2422 of file sf_gamma.tcc.

References _S_factorial_table.

Referenced by __double_factorial().

7.3.2.115 template<typename _Tp > _Tp std::__detail::__fermi_dirac (_Tp __s, _Tp __x)

Return the Fermi-Dirac integral of real order s and real argument x.

See also

https://en.wikipedia.org/wiki/Clausen_function
http://dlmf.nist.gov/25.12#iii

Parameters

s	The order $s \ge 0$.
X	The real argument.

Returns

The real Fermi-Dirac cosine sum $F_s(x)$,

Definition at line 1347 of file sf_polylog.tcc.

References __polylog_exp().

Compute the Fock-type Airy functions $w_1(x)$ and $w_2(x)$ and their first derivatives $w_1'(x)$ and $w_2'(x)$ respectively.

$$w_1(x) = \sqrt{\pi}(Ai(x) + iBi(x))$$

$$w_2(x) = \sqrt{\pi}(Ai(x) - iBi(x))$$

Parameters

X	The argument of the Airy functions.	
w1	The output Fock-type Airy function of the first kind.	
w2	The output Fock-type Airy function of the second kind.	
w1p	The output derivative of the Fock-type Airy function of the first kind.	
w2p	The output derivative of the Fock-type Airy function of the second kind.	

Definition at line 569 of file sf mod bessel.tcc.

7.3.2.117 template<typename _Tp > bool std::__detail::__fpequal (const _Tp & __a, const _Tp & __b)

A function to reliably compare two floating point numbers.

Parameters

a	he left hand side.	
b	the right hand side	

Returns

returns true if a and b are equal to zero or differ only by max(a,b)*5*eps

Definition at line 62 of file sf_polylog.tcc.

7.3.2.118 template<typename _Tp > bool std::__detail::__fpimag (const std::complex< _Tp > & __w)

A function to reliably test a complex number for imaginaryness [?].

w	The complex argument.

Returns

true if Re(w) is zero within 5*epsilon, false otherwize.

Definition at line 107 of file sf_polylog.tcc.

References __fpequal().

7.3.2.119 template<typename _Tp > bool std::__detail::__fpimag (const _Tp)

Definition at line 117 of file sf_polylog.tcc.

7.3.2.120 template<typename _Tp > bool std::__detail::__fpreal (const std::complex< _Tp > & __w)

A function to reliably test a complex number for realness.

Parameters

W	The complex argument
VV	I ne complex argument.

Returns

true if Im(w) is zero within 5*epsilon, false otherwize.

Definition at line 84 of file sf_polylog.tcc.

References __fpequal().

Referenced by __polylog_exp_int_pos(), and __polylog_exp_real_pos().

7.3.2.121 template<typename _Tp > bool std::__detail::__fpreal (const _Tp)

Definition at line 94 of file sf_polylog.tcc.

7.3.2.122 template<typename _Tp > std::complex<_Tp> std::__detail::__fresnel (const _Tp __x)

Return the Fresnel cosine and sine integrals as a complex number f[C(x) + iS(x)].

The Fresnel cosine integral is defined by:

$$C(x) = \int_0^x \cos(\frac{\pi}{2}t^2)dt$$

The Fresnel sine integral is defined by:

$$S(x) = \int_0^x \sin(\frac{\pi}{2}t^2)dt$$

.,	The everyweent
X	The argument
	

Definition at line 166 of file sf fresnel.tcc.

References __fresnel_cont_frac(), and __fresnel_series().

7.3.2.123 template < typename _Tp > void std::__detail::__fresnel_cont_frac (const _Tp __ax, _Tp & _Cf, _Tp & _Sf)

This function computes the Fresnel cosine and sine integrals by continued fractions for positive argument.

Definition at line 105 of file sf fresnel.tcc.

Referenced by __fresnel().

7.3.2.124 template < typename _Tp > void std::__detail::__fresnel_series (const _Tp __ax, _Tp & _Cf, _Tp & _Sf)

This function returns the Fresnel cosine and sine integrals as a pair by series expansion for positive argument.

Definition at line 48 of file sf fresnel.tcc.

Referenced by __fresnel().

7.3.2.125 template<typename _Tp > _Tp std::__detail::__gamma (_Tp __x)

Return $\Gamma(x)$.

Parameters

__x The argument of the gamma function.

Returns

The gamma function.

Definition at line 1918 of file sf_gamma.tcc.

References log gamma().

Referenced by __beta_gamma(), and __riemann_zeta().

7.3.2.126 template<typename_Tp > std::pair<_Tp, _Tp > std::__detail::__gamma_cont_frac (_Tp __a, _Tp __x)

Definition at line 1964 of file sf gamma.tcc.

Referenced by __gamma_l(), __gamma_p(), __gamma_q(), and __gamma_u().

7.3.2.127 template<typename_Tp > _Tp std::__detail::__gamma_I (_Tp __a, _Tp __x)

Return the lower incomplete gamma function. The lower incomplete gamma function is defined by

$$\gamma(a, x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

.

Definition at line 2070 of file sf_gamma.tcc.

References __gamma_cont_frac(), and __gamma_series().

7.3.2.128 template < typename _Tp > _Tp std::__detail::__gamma_p (_Tp __a, _Tp __x)

Return the regularized lower incomplete gamma function. The regularized lower incomplete gamma function is defined by

$$P(a,x) = \frac{\gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\gamma(a,x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

is the lower incomplete gamma function.

Definition at line 2013 of file sf gamma.tcc.

References __gamma_cont_frac(), and __gamma_series().

Referenced by __chi_squared_pdf().

7.3.2.129 template < typename $_{\rm Tp} > _{\rm Tp}$ std::__detail::__gamma_q ($_{\rm Tp}$ __a, $_{\rm Tp}$ __x)

Return the regularized upper incomplete gamma function. The regularized upper incomplete gamma function is defined by

$$Q(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\Gamma(a,x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

is the upper incomplete gamma function.

Definition at line 2044 of file sf_gamma.tcc.

References __gamma_cont_frac(), and __gamma_series().

Referenced by __chi_squared_pdfc().

7.3.2.130 template<typename _Tp > std::pair<_Tp, _Tp> std::__detail::__gamma_series (_Tp __a, _Tp __x)

Definition at line 1930 of file sf gamma.tcc.

Referenced by __gamma_l(), __gamma_p(), __gamma_q(), and __gamma_u().

7.3.2.131 template<typename _Tp > void std::__detail::__gamma_temme (_Tp __mu, _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)

Compute the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1+\mu)$ and $\Gamma(1-\mu)$ are returned as well.

The accuracy requirements on this are exquisite.

Parameters

	mu	The input parameter of the gamma functions.
out	gam1	The output function $\Gamma_1(\mu)$
out	gam2	The output function $\Gamma_2(\mu)$
out	gampl	The output function $\Gamma(1+\mu)$
out	gammi	The output function $\Gamma(1-\mu)$

Definition at line 163 of file sf bessel.tcc.

Referenced by __cyl_bessel_ik_steed(), and __cyl_bessel_jn_steed().

7.3.2.132 template<typename _Tp > _Tp std::__detail::__gamma_u (_Tp __a, _Tp __x)

Return the upper incomplete gamma function. The lower incomplete gamma function is defined by

$$\Gamma(a,x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

.

Definition at line 2102 of file sf gamma.tcc.

References __gamma_cont_frac(), and __gamma_series().

7.3.2.133 template<typename $_{\rm Tp}$ > $_{\rm Tp}$ std::__detail::__gauss ($_{\rm Tp}$ __x)

The CDF of the normal distribution. i.e. the integrated lower tail of the normal PDF.

Definition at line 70 of file sf owens t.tcc.

7.3.2.134 template<typename_Tp > _Tp std::__gegenbauer_poly (unsigned int __n, _Tp __alpha, _Tp __x)

Definition at line 44 of file sf_gegenbauer.tcc.

7.3.2.135 template < typename _Tp > void std::__detail::__hankel (std::complex < _Tp > __nu, std::complex < _Tp > __z, std::complex < _Tp > & _H1, std::complex < _Tp > & _H2, std::complex < _Tp > & _H1p, std::complex < _Tp > & _H2p)

Parameters

in	nu	The order for which the Hankel functions are evaluated.
in	Z	The argument at which the Hankel functions are evaluated.

out	_H1	The Hankel function of the first kind.
out	_H1p	The derivative of the Hankel function of the first kind.
out	_H2	The Hankel function of the second kind.
out	_H2p	The derivative of the Hankel function of the second kind.

Definition at line 1127 of file sf hankel.tcc.

References debye region(), hankel debye(), and hankel uniform().

Referenced by __cyl_bessel(), __cyl_hankel_1(), __cyl_hankel_2(), __cyl_neumann(), and __sph_hankel().

7.3.2.136 template<typename_Tp > void std::__detail::__hankel_debye (std::complex<_Tp > __nu, std::complex<_Tp > __z, std::complex<_Tp > __alpha, int __indexr, char & __aorb, int & __morn, std::complex<_Tp > & _H1, std::complex<
_Tp > & _H2, std::complex<_Tp > & _H1p, std::complex<_Tp > & _H2p)

Parameters

in	nu	The order for which the Hankel functions are evaluated.
in	z	The argument at which the Hankel functions are evaluated.
in	alpha	
in	indexr	
out	aorb	
out	morn	
out	_H1	The Hankel function of the first kind.
out	_H1p	The derivative of the Hankel function of the first kind.
out	_H2	The Hankel function of the second kind.
out	_H2p	The derivative of the Hankel function of the second kind.

Definition at line 959 of file sf_hankel.tcc.

Referenced by __hankel().

```
7.3.2.137 template<typename _Tp > void std::__detail::__hankel_params ( std::complex< _Tp > __nu, std::complex< _Tp > __zhat, std::complex< _Tp > & __p, std::complex< _Tp > & __p2, std::complex< _Tp > & __nup2, std::complex< _Tp > & __nup2, std::complex< _Tp > & __num2d3, std::complex< _Tp > & __num2d3, std::complex< _Tp > & __zetaphf, std::complex< _Tp > & __zetamhf, std::complex< _Tp > & __zetam3hf, std::complex< _Tp > & __zetat )
```

Compute parameters depending on z and nu that appear in the uniform asymptotic expansions of the Hankel functions and their derivatives, except the arguments to the Airy functions.

Definition at line 110 of file sf hankel.tcc.

Referenced by hankel uniform outer().

```
7.3.2.138 template < typename _Tp > void std::__detail::__hankel_uniform ( std::complex < _Tp > __nu, std::complex < _Tp > __z, std::complex < _Tp > & _H1, std::complex < _Tp > & _H2, std::complex < _Tp > & _H1p, std::complex < _Tp > & _H2p )
```

This routine computes the uniform asymptotic approximations of the Hankel functions and their derivatives including a patch for the case when the order equals or nearly equals the argument. At such points, Olver's expressions have zero denominators (and numerators) resulting in numerical problems. This routine averages results from four surrounding points in the complex plane to obtain the result in such cases.

in	nu	The order for which the Hankel functions are evaluated.
in	z	The argument at which the Hankel functions are evaluated.
out	_H1	The Hankel function of the first kind.
out	_H1p	The derivative of the Hankel function of the first kind.
out	_H2	The Hankel function of the second kind.
out	_H2p	The derivative of the Hankel function of the second kind.

Definition at line 904 of file sf hankel.tcc.

References __hankel_uniform_olver().

Referenced by hankel().

7.3.2.139 template<typename _Tp > void std::__detail::__hankel_uniform_olver (std::complex < _Tp > __nu, std::complex < _Tp > __z, std::complex < _Tp > & _H1, std::complex < _Tp > & _H2, std::complex < _Tp > & _H1p, std::complex < _Tp > & _H2p)

Compute approximate values for the Hankel functions of the first and second kinds using Olver's uniform asymptotic expansion to of order nu along with their derivatives.

Parameters

in	nu	The order for which the Hankel functions are evaluated.
in	z	The argument at which the Hankel functions are evaluated.
out	_H1	The Hankel function of the first kind.
out	_H1p	The derivative of the Hankel function of the first kind.
out	_H2	The Hankel function of the second kind.
out	_H2p	The derivative of the Hankel function of the second kind.

Definition at line 818 of file sf hankel.tcc.

References __hankel_uniform_outer(), and __hankel_uniform_sum().

Referenced by hankel uniform().

7.3.2.140 template < typename _Tp > void std::__detail::__hankel_uniform_outer (std::complex < _Tp > __nu, std::complex < _Tp > __z, _Tp __eps, std::complex < _Tp > & __zhat, std::complex < _Tp > & __num1d3, std::complex < _Tp > & __num2d3, std::complex < _Tp > & __p, std::complex < _Tp > & __p2, std::complex < _Tp > & __etrat, std::complex < _Tp > & __aip, std::complex < _Tp > & __aip, std::complex < _Tp > & __o4dp, std::complex < _Tp > & __o4dm, std::complex < _Tp > & __o4ddm) }

Compute outer factors and associated functions of z and nu appearing in Olver's uniform asymptotic expansions of the Hankel functions of the first and second kinds and their derivatives. The various functions of z and nu returned by $hankel_uniform_outer$ are available for use in computing further terms in the expansions.

Definition at line 273 of file sf_hankel.tcc.

References __airy(), __airy_arg(), and __hankel_params().

 $Referenced\ by\ \underline{\quad} hankel_uniform_olver().$

7.3.2.141 template < typename _Tp > void std::__detail::__hankel_uniform_sum (std::complex < _Tp > __p, std::complex < _Tp > __p, std::complex < _Tp > __p, std::complex < _Tp > __aip, std::complex < _Tp > __o4dp, std::complex < _Tp > __o4dm, __rp __eps, std::complex < _Tp > __o4dm, std::complex < _Tp > __o4dm, __rp __eps, std::complex < _Tp > & __H1sum, std::complex < _Tp > & __H2sum, std::complex < __rp > & __H2sum)

Compute the sums in appropriate linear combinations appearing in Olver's uniform asymptotic expansions for the Hankel functions of the first and second kinds and their derivatives, using up to nterms (less than 5) to achieve relative error eps.

Parameters

in	p	
in	p2	
in	num2	
in	zetam3hf	
in	_Aip	The Airy function value $Ai()$.
in	o4dp	
in	_Aim	The Airy function value $Ai()$.
in	o4dm	
in	od2p	
in	od0dp	
in	od2m	
in	od0dm	
in	eps	The error tolerance
out	_H1sum	The Hankel function of the first kind.
out	_H1psum	The derivative of the Hankel function of the first kind.
out	_H2sum	The Hankel function of the second kind.
out	_H2psum	The derivative of the Hankel function of the second kind.

Definition at line 351 of file sf_hankel.tcc.

Referenced by hankel uniform olver().

7.3.2.142 template < typename _Tp > _Tp std::__detail::__heuman_lambda (_Tp __k, _Tp __phi)

Return the Heuman lambda function.

Definition at line 941 of file sf_ellint.tcc.

References ellint rf(), and ellint rj().

7.3.2.143 template<typename _Tp > _Tp std::__detail::__hurwitz_zeta (_Tp __s, _Tp __a)

Return the Hurwitz zeta function $\zeta(s,a)$ for all s = 1 and a > -1.

The Hurwitz zeta function is defined by:

$$\zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s}$$

The Riemann zeta function is a special case:

$$\zeta(s) = \zeta(s, 1)$$

s	The argument $s! = 1$
a	The scale parameter $a > -1$

Definition at line 702 of file sf zeta.tcc.

References __hurwitz_zeta_euler_maclaurin().

Referenced by __psi().

7.3.2.144 template<typename_Tp > _Tp std::__detail::__hurwitz_zeta_euler_maclaurin(_Tp __s, _Tp __a)

Return the Hurwitz zeta function $\zeta(s, a)$ for all s = 1 and a > -1.

See also

An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions, Linas Vep

Parameters

s	The argument $s! = 1$
a	The scale parameter $a>-1$

Definition at line 560 of file sf_zeta.tcc.

References _S_Euler_Maclaurin_zeta.

Referenced by hurwitz zeta().

Definition at line 44 of file sf_hydrogen.tcc.

References __assoc_laguerre(), __psi(), and __sph_legendre().

7.3.2.146 template<typename_Tp > _Tp std::__detail::__hyperg (_Tp __a, _Tp __b, _Tp __c, _Tp __x)

Return the hypergeometric function ${}_{2}F_{1}(a,b;c;x)$.

The hypergeometric function is defined by

$${}_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

Parameters

a	The first <i>numerator</i> parameter.
b	The second <i>numerator</i> parameter.

c	The denominator parameter.
X	The argument of the confluent hypergeometric function.

Returns

The confluent hypergeometric function.

Definition at line 776 of file sf hyperg.tcc.

References __hyperg_luke(), __hyperg_reflect(), __hyperg_series(), __log_gamma(), and __log_gamma_sign().

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by an iterative procedure described in Luke, Algorithms for the Computation of Mathematical Functions.

Definition at line 352 of file sf hyperg.tcc.

Referenced by __hyperg().

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by the reflection formulae in Abramowitz & Stegun formula 15.3.6 for d=c-a - b not integral and formula 15.3.11 for d=c-a - b integral. This assumes a, b, c!= negative integer.

The hypergeometric function is defined by

$$_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

The reflection formula for nonintegral d = c - a - b is:

$${}_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} {}_{2}F_{1}(a,b;1-d;1-x) + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} {}_{2}F_{1}(c-a,c-b;1+d;1-x)$$

The reflection formula for integral m = c - a - b is:

$${}_{2}F_{1}(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} \sum_{k=0}^{m-1} \frac{(m+a)_{k}(m+b)_{k}}{k!(1-m)_{k}} -$$

Definition at line 486 of file sf_hyperg.tcc.

References hyperg series(), log gamma(), log gamma sign(), and psi().

Referenced by __hyperg().

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by series expansion.

The hypergeometric function is defined by

$$_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

This works and it's pretty fast.

a	The first <i>numerator</i> parameter.
b	The second <i>numerator</i> parameter.
c	The denominator parameter.
X	The argument of the confluent hypergeometric function.

Returns

The confluent hypergeometric function.

Definition at line 321 of file sf_hyperg.tcc.

Referenced by hyperg(), and hyperg reflect().

$$7.3.2.150 \quad template < typename _Tp > std::tuple < _Tp, _Tp > std::__detail::__jacobi_sncndn \left(\ _Tp __k, \ _Tp __u \ \right)$$

Return a tuple of the three primary Jacobi elliptic functions: sn(k, u), cn(k, u), dn(k, u).

Definition at line 414 of file sf theta.tcc.

Return the Jacobi zeta function.

Definition at line 971 of file sf_ellint.tcc.

References __comp_ellint_1(), and __ellint_rj().

7.3.2.152 template_{\rm Tp} >
$$_{\rm Tp}$$
 std::__detail::__laguerre (unsigned int $_{\rm n}$, $_{\rm Tp}$ $_{\rm x}$)

This routine returns the Laguerre polynomial of order n: $L_n(x)$.

The Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Parameters

n	The order of the Laguerre polynomial.
X	The argument of the Laguerre polynomial.

Returns

The value of the Laguerre polynomial of order n and argument x.

Definition at line 312 of file sf_laguerre.tcc.

7.3.2.153 template < typename
$$_{\rm Tp} > _{\rm Tp}$$
 std::__detail::__log_bincoef (unsigned int $_{\rm L}n$, unsigned int $_{\rm L}k$)

Return the logarithm of the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

.

n	The first argument of the binomial coefficient.
k	The second argument of the binomial coefficient.

Returns

The logarithm of the binomial coefficient.

Definition at line 1862 of file sf gamma.tcc.

7.3.2.154 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__log_double_factorial (_Tp __x)

Definition at line 2450 of file sf_gamma.tcc.

References log gamma().

Referenced by __double_factorial(), and __log_double_factorial().

 $7.3.2.155 \quad template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp \ std:: __detail:: __log_double_factorial \ (\ int __n \)$

Return the logarithm of the double factorial of the integer n.

The double factorial is defined for integral n by:

$$n!! = 135...(n-2)n, noddn!! = 246...(n-2)n, neven - 1!! = 10!! = 1$$

The double factorial is defined for odd negative integers in the obvious way:

$$(-2m-1)!! = 1/(1(-1)(-3)...(-2m+1)(-2m-1)) = \frac{(-1)^m}{(2m-1)!!}$$

for f[n = -2m - 1 f].

Definition at line 2516 of file sf gamma.tcc.

References __log_double_factorial(), __log_factorial(), __S_double_factorial_table, and _S_neg_double_factorial_table.

7.3.2.156 template<typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__log_factorial (unsigned int __n)

Return the logarithm of the factorial of the integer n.

The factorial is:

$$n! = 12...(n-1)n, 0! = 1$$

Definition at line 2440 of file sf_gamma.tcc.

References __log_gamma(), and _S_factorial_table.

Referenced by __log_double_factorial().

7.3.2.157 template < typename $_{Tp} > _{Tp}$ std::__detail::__log_gamma ($_{Tp} _{x}$)

Return $log(|\Gamma(x)|)$. This will return values even for x < 0. To recover the sign of $\Gamma(x)$ for any argument use $\underline{\hspace{0.5cm}}log_{\hookleftarrow}$ $gamma_sign$.

__x The argument of the log of the gamma function.

Returns

The logarithm of the gamma function.

Definition at line 1800 of file sf gamma.tcc.

References log gamma lanczos().

Referenced by __beta_lgamma(), __cyl_bessel_ij_series(), __gamma(), __hyperg(), __hyperg_reflect(), __log_ \hookleftarrow double_factorial(), __log_factorial(), __log_pochhammer_u(), __poly_laguerre_large_n(), __psi(), __riemann_zeta(), \hookleftarrow __riemann_zeta_glob(), and __sph_legendre().

7.3.2.158 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__log_gamma_bernoulli (_Tp __x)

Return $log(\Gamma(x))$ by asymptotic expansion with Bernoulli number coefficients. This is like Sterling's approximation.

Parameters

__x The argument of the log of the gamma function.

Returns

The logarithm of the gamma function.

Definition at line 1699 of file sf gamma.tcc.

7.3.2.159 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__log_gamma_lanczos (_Tp __x)

Return $log(\Gamma(x))$ by the Lanczos method. This method dominates all others on the positive axis I think.

Parameters

__x The argument of the log of the gamma function.

Returns

The logarithm of the gamma function.

Definition at line 1755 of file sf gamma.tcc.

Referenced by __log_gamma().

7.3.2.160 template<typename _Tp > _Tp std::__detail::__log_gamma_sign (_Tp __x)

Return the sign of $\Gamma(x)$. At nonpositive integers zero is returned.

Parameters

__x The argument of the gamma function.

Returns

The sign of the gamma function.

Definition at line 1831 of file sf gamma.tcc.

Referenced by __hyperg(), __hyperg_reflect(), and __pochhammer_l().

7.3.2.161 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__log_gamma_spouge (_Tp __z)

Return $\Gamma(z)$ by the Spouge algorithm:

$$\Gamma(z+1) = (z+a)^{z+1/2} e^{-z-a} \left[\sqrt{2\pi} \sum_{k=1}^{\lceil a \rceil + 1} \frac{c_k(a)}{z+k} \right]$$

where

$$c_k(a) = \frac{(-1)^{k-1}}{(k-1)!} (a-k)^{k-1/2} e^{a-k}$$

and the error is bounded by

$$\epsilon(a) < a^{-1/2} (2\pi)^{-a-1/2}$$

.

See also

Spouge, J.L., Computation of the gamma, digamma, and trigamma functions. SIAM Journal on Numerical Analysis 31, 3 (1994), pp. 931-944

Parameters

 \underline{z} The argument of the gamma function.

Returns

The the gamma function.

Definition at line 1739 of file sf_gamma.tcc.

7.3.2.162 template<typename _Tp > _Tp std::__detail::__log_pochhammer_I (_Tp __a, _Tp __n)

Return the logarithm of the lower Pochhammer symbol or the falling factorial function. The lower Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1 = \Gamma(a+1)/\Gamma(a-n+1)$$

In particular, f(n) = n! f. Thus this function returns

$$ln[(a)_n] = \Gamma(a+1) - \Gamma(a-n+1), ln[(a)_0] = 0$$

Many notations exist:

 $a^{\underline{n}}$

,

$$\left\{\begin{array}{c} a \\ n \end{array}\right\}$$

, and others.

Definition at line 2209 of file sf gamma.tcc.

7.3.2.163 template < typename $_{\rm Tp} > _{\rm Tp}$ std::__detail::__log_pochhammer_u ($_{\rm Tp}$ __a, $_{\rm Tp}$ __n)

Return the logarithm of the (upper) Pochhammer symbol or the rising factorial function. The Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a+k), (a)_0 = 1 = \Gamma(a+n)/\Gamma(n)$$

Thus this function returns

$$ln[(a)_n] = \Gamma(a+n) - \Gamma(n), ln[(a)_0] = 0$$

Many notations exist:

 $a^{\overline{n}}$

,

$$n = \binom{a}{n}$$

, and others.

Definition at line 2144 of file sf_gamma.tcc.

References log gamma().

7.3.2.164 template<typename _Tp > _Tp std::__detail::__logint (const _Tp __x)

Return the logarithmic integral li(x).

The logarithmic integral is given by

$$li(x) = Ei(\log(x))$$

Parameters

 $\underline{}$ The argument of the logarithmic integral function.

Returns

The logarithmic integral.

Definition at line 535 of file sf_expint.tcc.

References __expint().

7.3.2.165 template<typename _Tp > _Tp std::__detail::__owens_t (_Tp __h, _Tp __a)

Return the Owens T function:

$$T(h,a) = \frac{1}{2\pi} \int_0^a \frac{\exp[-\frac{1}{2}h^2(1+x^2)]}{1+x^2} dx$$

This implementation is a translation of the Fortran implementation in

See also

Patefield, M. and Tandy, D. "Fast and accurate Calculation of Owen's T-Function", Journal of Statistical Software, 5 (5), 1 - 25 (2000)

Parameters

in	h	The scale parameter.
in	a	The integration limit.

Returns

The owens T function.

Definition at line 92 of file sf owens t.tcc.

References __znorm1(), and __znorm2().

7.3.2.166 template < typename _Tp > _Tp std::__detail::__pochhammer_I (_Tp $_a$, _Tp $_n$)

Return the logarithm of the lower Pochhammer symbol or the falling factorial function. The lower Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1 = \Gamma(a+1)/\Gamma(a-n+1)$$

In particular, $f(n)_n = n! f$.

Definition at line 2232 of file sf gamma.tcc.

References __log_gamma_sign().

7.3.2.167 template<typename _Tp > _Tp std::__detail::__pochhammer_u (_Tp $_a$, _Tp $_n$)

Return the (upper) Pochhammer function or the rising factorial function. The Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a+k), (a)_0 = 1 = \Gamma(a+n)/\Gamma(n)$$

Many notations exist:

$$a^{\overline{n}}$$

 $\begin{bmatrix} a \\ n \end{bmatrix}$

, and others.

Definition at line 2170 of file sf gamma.tcc.

7.3.2.168 template<typename _Tp > _Tp std::__detail::__poly_hermite (unsigned int __n, _Tp __x)

This routine returns the Hermite polynomial of order n: $H_n(x)$.

The Hermite polynomial is defined by:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

The Hermite polynomial obeys a reflection formula:

$$H_n(-x) = (-1)^n H_n(x)$$

n	The order of the Hermite polynomial.
X	The argument of the Hermite polynomial.

Returns

The value of the Hermite polynomial of order n and argument x.

Definition at line 179 of file sf hermite.tcc.

References __poly_hermite_asymp(), and __poly_hermite_recursion().

7.3.2.169 template < typename _Tp > _Tp std::__detail::__poly_hermite_asymp (unsigned int __n, _Tp __x)

This routine returns the Hermite polynomial of large order n: $H_n(x)$. We assume here that $x \ge 0$.

The Hermite polynomial is defined by:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

see "Asymptotic analysis of the Hermite polynomials from their differential-difference equation", Diego Dominici, arXiv ← :math/0601078v1 [math.CA] 4 Jan 2006

Parameters

n	The order of the Hermite polynomial.
x	The argument of the Hermite polynomial.

Returns

The value of the Hermite polynomial of order n and argument x.

Definition at line 113 of file sf_hermite.tcc.

References __airy().

Referenced by __poly_hermite().

7.3.2.170 template < typename _Tp > _Tp std::__detail::__poly_hermite_recursion (unsigned int $_n$, _Tp $_x$)

This routine returns the Hermite polynomial of order n: $H_n(x)$ by recursion on n.

The Hermite polynomial is defined by:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

Parameters

n	The order of the Hermite polynomial.
X	The argument of the Hermite polynomial.

Returns

The value of the Hermite polynomial of order n and argument x.

Definition at line 69 of file sf hermite.tcc.

Referenced by ___poly_hermite().

7.3.2.171 template<typename_Tp > _Tp std::__detail::__poly_jacobi (unsigned int __n, _Tp __alpha, _Tp __beta, _Tp __x)

Compute the Jacobi polynomial by recursion on x:

$$2k(\alpha+\beta+k)(\alpha+\beta+2k-2)P_k^{(\alpha,\beta)}(x) = (\alpha+\beta+2k-1)((\alpha^2-\beta^2) + x(\alpha+\beta+2k-2)(\alpha+\beta+2k))P_{k-1}^{(\alpha,\beta)}(x) - 2(\alpha+k-1)(\beta+k-1)(\alpha+\beta+2k-2)P_{k-1}^{(\alpha,\beta)}(x) = (\alpha+\beta+2k-1)((\alpha^2-\beta^2) + x(\alpha+\beta+2k-2)(\alpha+\beta+2k))P_{k-1}^{(\alpha,\beta)}(x) = (\alpha+\beta+2k-1)((\alpha^2-\beta^2) + x(\alpha+\beta+2k-2)(\alpha+\beta+2k))P_{k-1}^{(\alpha,\beta)}(x) = (\alpha+\beta+2k-1)(\alpha+\beta+2k-2)(\alpha+\beta+2k)P_{k-1}^{(\alpha,\beta)}(x) = (\alpha+\beta+2k-1)(\alpha+\beta+2k-2)(\alpha+\beta+2k)P_{k-1}^{(\alpha,\beta)}(x) = (\alpha+\beta+2k-1)(\alpha+\beta+2k-2)(\alpha+2k-2)(\alpha+2k-$$

Definition at line 57 of file sf jacobi.tcc.

References __beta().

Referenced by poly radial jacobi().

7.3.2.172 template<typename _Tpa , typename _Tp > _Tp std::__detail::__poly_laguerre (unsigned int __n, _Tpa __alpha1, _Tp __x)

This routine returns the associated Laguerre polynomial of order n, degree α : $L_n^a lpha(x)$.

The associated Laguerre function is defined by

$$L_n^{\alpha}(x) = \frac{(\alpha+1)_n}{n!} F_1(-n; \alpha+1; x)$$

where $(\alpha)_n$ is the Pochhammer symbol and ${}_1F_1(a;c;x)$ is the confluent hypergeometric function.

The associated Laguerre polynomial is defined for integral $\alpha=m$ by:

$$L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n+m}(x)$$

where the Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Parameters

n	The order of the Laguerre function.
alpha1	The degree of the Laguerre function.
X	The argument of the Laguerre function.

Returns

The value of the Laguerre function of order n, degree α , and argument x.

Definition at line 240 of file sf_laguerre.tcc.

References __poly_laguerre_hyperg(), __poly_laguerre_large_n(), and __poly_laguerre_recursion().

Evaluate the polynomial based on the confluent hypergeometric function in a safe way, with no restriction on the arguments.

The associated Laguerre function is defined by

$$L_n^{\alpha}(x) = \frac{(\alpha+1)_n}{n!} {}_1F_1(-n; \alpha+1; x)$$

where $(\alpha)_n$ is the Pochhammer symbol and ${}_1F_1(a;c;x)$ is the confluent hypergeometric function.

This function assumes x = 0.

This is from the GNU Scientific Library.

n	The order of the Laguerre function.
alpha1	The degree of the Laguerre function.
X	The argument of the Laguerre function.

Returns

The value of the Laguerre function of order n, degree α , and argument x.

Definition at line 125 of file sf laguerre.tcc.

Referenced by __poly_laguerre().

7.3.2.174 template<typename _Tpa , typename _Tp > _Tp std::__detail::__poly_laguerre_large_n (unsigned __n, _Tpa __alpha1, __Tp __x)

This routine returns the associated Laguerre polynomial of order n, degree α for large n. Abramowitz & Stegun, 13.5.21.

Parameters

n	The order of the Laguerre function.
alpha1	The degree of the Laguerre function.
X	The argument of the Laguerre function.

Returns

The value of the Laguerre function of order n, degree α , and argument x.

This is from the GNU Scientific Library.

Definition at line 70 of file sf laguerre.tcc.

References log gamma().

Referenced by __poly_laguerre().

7.3.2.175 template<typename _Tpa , typename _Tp > _Tp std::__detail::__poly_laguerre_recursion (unsigned int __n, _Tpa __alpha1, _Tp __x)

This routine returns the associated Laguerre polynomial of order n, degree α : $L_n^{\alpha}(x)$ by recursion.

The associated Laguerre function is defined by

$$L_n^{\alpha}(x) = \frac{(\alpha+1)_n}{n!} {}_1F_1(-n; \alpha+1; x)$$

where $(\alpha)_n$ is the Pochhammer symbol and ${}_1F_1(a;c;x)$ is the confluent hypergeometric function.

The associated Laguerre polynomial is defined for integral $\alpha=m$ by:

$$L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n+m}(x)$$

where the Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

n	The order of the Laguerre function.
alpha1	The degree of the Laguerre function.
X	The argument of the Laguerre function.

Returns

The value of the Laguerre function of order n, degree α , and argument x.

Definition at line 181 of file sf laguerre.tcc.

Referenced by __poly_laguerre().

7.3.2.176 template < typename _Tp > _Tp std::__detail::__poly_legendre_p (unsigned int __l, _Tp __x)

Return the Legendre polynomial by upward recursion on order l.

The Legendre function of order l and argument x, $P_l(x)$, is defined by:

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$

Parameters

	The order of the Legendre polynomial. $l>=0$.
X	The argument of the Legendre polynomial. $ x <= 1$.

Definition at line 73 of file sf legendre.tcc.

Referenced by __assoc_legendre_p(), and __sph_legendre().

7.3.2.177 template < typename _Tp > _Tp std::__detail::__poly_legendre_q (unsigned int $_l$, _Tp $_x$)

Return the Legendre function of the second kind by upward recursion on order l.

The Legendre function of order l and argument x, $Q_l(x)$, is defined by:

$$Q_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$

Parameters

	/	The order of the Legendre polynomial. $l>=0$.
ſ	X	The argument of the Legendre polynomial. $ x <= 1$.

Definition at line 123 of file sf_legendre.tcc.

7.3.2.178 template<typename _Tp > _Tp std::__detail::__poly_radial_jacobi (unsigned int __n, unsigned int __n, _Tp __rho)

Definition at line 111 of file sf jacobi.tcc.

References __poly_jacobi().

Referenced by __zernike(), __gnu_cxx::radpolyf(), and __gnu_cxx::radpolyl().

7.3.2.179 template<typename _Tp > _Tp std::__detail::__polylog (_Tp __s, _Tp __x)

Return the polylog $Li_s(x)$ for two real arguments.

s	The real index.
X	The real argument.

Returns

The complex value of the polylogarithm.

Definition at line 1072 of file sf_polylog.tcc.

References fpequal(), and polylog exp().

Referenced by __dirichlet_beta(), __dirichlet_eta(), and __polylog().

7.3.2.180 template<typename_Tp > std::complex<_Tp > std::__detail::__polylog (_Tp __s, std::complex<_Tp > __w)

Return the polylog in those cases where we can calculate it.

Parameters

s	The real index.
w	The complex argument.

Returns

The complex value of the polylogarithm.

Definition at line 1102 of file sf_polylog.tcc.

References __fpequal(), __polylog(), and __polylog_exp().

7.3.2.181 template<typename _Tp , typename ArgType > __gnu_cxx::__promote_num_t<std::complex<_Tp>, ArgType> std::__detail::__polylog_exp (_Tp __s, ArgType __ w)

This is the frontend function which calculates $Li_s(e^w)$ First we branch into different parts depending on the properties of s. This function is the same irrespective of a real or complex w, hence the template parameter ArgType.

Note

: I really wish we could return a variant<Tp, std::complex<Tp>>.

Parameters

s	The real order.
W	The real or complex argument.

Returns

The real or complex value of Li_s(e^{\wedge} w).

Definition at line 1039 of file sf_polylog.tcc.

Referenced by __bose_einstein(), __clausen(), __clausen_c(), __clausen_s(), __fermi_dirac(), and __polylog().

7.3.2.182 template<typename _Tp > std::complex<_Tp> std::__detail::__polylog_exp_asymp (const _Tp __s, std::complex< _Tp > __w)

This function implements the asymptotic series for the polylog. It is given by

$$2\sum_{k=0}^{\infty} \zeta(2k)w^{s-2k}/\Gamma(s-2k+1) - i\pi w^{(s-1)}/\Gamma(s)$$

for Re(w) >> 1

Don't check this against Mathematica 8. For real u the imaginary part of the polylog is given by $Im(Li_s(e^u)) = -\pi u^{s-1}/\Gamma(s)$ Check this relation for any benchmark that you use. The use of evenzeta leads to a speedup of about 1000.

Parameters

s	the real index s.
W	the large complex argument w.

Returns

the value of the polylogarithm.

Definition at line 686 of file sf_polylog.tcc.

References __fpequal().

Referenced by __polylog_exp_int_neg(), __polylog_exp_int_pos(), __polylog_exp_real_neg(), and __polylog_exp_\times real_pos().

7.3.2.183 template<typename _Tp > std::complex<_Tp> std::__detail::__polylog_exp_int_neg (const int __s, std::complex< _Tp > __w)

This treats the case where s is a negative integer.

Parameters

s	a negative integer.
w	an arbitrary complex number

Returns

the value of the polylogarith,.

Definition at line 856 of file sf polylog.tcc.

References $_$ clamp $_$ 0 $_$ m2pi(), $_$ clamp $_$ pi(), $_$ polylog $_$ exp $_$ asymp(), $_$ polylog $_$ exp $_$ neg(), and $_$ \hookleftarrow polylog $_$ exp $_$ negative $_$ real $_$ part().

Referenced by __polylog_exp().

7.3.2.184 template < typename _Tp > std::complex < _Tp > std::__detail::__polylog_exp_int_neg (const int __s, _Tp __w)

This treats the case where s is a negative integer and w is a real.

s	a negative integer.
w	the argument.

Returns

the value of the polylogarithm.

Definition at line 898 of file sf polylog.tcc.

References __fpequal(), __polylog_exp_asymp(), __polylog_exp_neg(), and __polylog_exp_negative_real_part().

7.3.2.185 template<typename _Tp > std::complex<_Tp> std::__detail::__polylog_exp_int_pos (const unsigned int __s, std::complex< _Tp > __w)

Here s is a positive integer and the function descends into the different kernels depending on w.

Parameters

_	_s	a positive integer.
_	_ <i>w</i>	an arbitrary complex number.

Returns

The value of the polylogarithm.

Definition at line 767 of file sf_polylog.tcc.

Referenced by __polylog_exp().

7.3.2.186 template<typename _Tp > std::complex<_Tp> std::__detail::__polylog_exp_int_pos (const unsigned int __s, _Tp __w)

Here s is a positive integer and the function descends into the different kernels depending on w.

Parameters

s	a positive integer
w	an arbitrary real argument w

Returns

the value of the polylogarithm.

Definition at line 815 of file sf polylog.tcc.

References $_$ fpequal(), $_$ polylog_exp_asymp(), $_$ polylog_exp_negative_real_part(), $_$ polylog_exp_pos(), and $_$ \leftarrow riemann_zeta().

7.3.2.187 template<typename _Tp > std::complex<_Tp> std::__detail::__polylog_exp_neg (_Tp __s, std::complex< _Tp > __w)

This function treats the cases of negative real index s. Theoretical convergence is present for $|w|<2\pi$. We use an optimized version of

$$Li_s(e^w) = \Gamma(1-s)(-w)^{(s-1)} + (2\pi)^{(-s)}/\pi A_p(w)$$
$$A_p(w) = \sum_k \Gamma(1+k-s)/k! \sin(\pi/2*(s-k))(w/2/\pi)^k \zeta(1+k-s)$$

Parameters

s	The real index
w	The complex argument

Returns

The value of the polylogarithm.

Definition at line 346 of file sf polylog.tcc.

References __fpequal(), __riemann_zeta(), and __riemann_zeta_m_1().

Referenced by __polylog_exp_int_neg(), and __polylog_exp_real_neg().

7.3.2.188 template<typename_Tp > std::complex < _Tp > std::__detail::__polylog_exp_neg (int __s, std::complex < _Tp > __w)

This function treats the cases of negative integer index s and branches accordingly

Parameters

	s	the integer index s.
ĺ	w	The Argument w

Returns

The value of the Polylogarithm evaluated by a suitable function.

Definition at line 564 of file sf_polylog.tcc.

References __polylog_exp_neg_even(), and __polylog_exp_neg_odd().

7.3.2.189 template < typename _Tp , int _sigma > std::complex < _Tp > std::__detail::__polylog_exp_neg_even (unsigned int __n, std::complex < _Tp > _w)

This function treats the cases of negative integer index s which are multiples of two.

In that case the sine occurring in the expansion occasionally takes on the value zero. We use that to provide an optimized series for p = 2n:

In the template parameter sigma we transport whether p=4k(sigma=1) or p=4k+2(sigma=-1)

$$Li_p(e^w) = Gamma(1-p)(-w)^{p-1} - A_p(w) - \sigma * B_p(w)$$

with

$$A_p(w) = 2(2\pi)^(p-1)(-p)!/(2\pi)^(-p/2)(1+w^2/(4pi^2))^{-1/2+p/2}\cos((1-p)ArcTan(2pi/w))$$

and

$$B_p(w) = -2(2pi)^{\ell}(p-1)\sum_{k=0}^{\infty} \Gamma(2+2k-p)/(2k+1)!(-1)^k(w/2\pi)^{\ell}(2k+1)(\zeta(2+2k-p)-T)$$

This is suitable for $|w| < 2\pi$ The original series is (This might be worthwhile if we use the already present table of the Bernoullis)

$$Li_p(e^w) = \Gamma(1-p)(-w)^{p-1} - \sigma(2\pi)^p/pi \sum_{k=0}^{\infty} \Gamma(2+2k-p)/(2k+1)!(-1)^k (w/2\pi)^{(2k+1)} \zeta(2+2k-p)$$

Parameters

n	the integral index $n=4k$.
W	The complex argument w

Returns

the value of the Polylogarithm.

Definition at line 450 of file sf_polylog.tcc.

References __fpequal().

Referenced by __polylog_exp_neg().

7.3.2.190 template<typename _Tp , int __sigma> std::complex<_Tp> std::__detail::__polylog_exp_neg_odd (unsigned int __n, std::complex< _Tp > __w)

This function treats the cases of negative integer index s which are odd.

In that case the sine occurring in the expansion occasionally vanishes. We use that to provide an optimized series for p = 1 + 2k: In the template parameter sigma we transport whether p = 1 + 4k(sigma = 1) or p = 3 + 4k(sigma = -1)

$$Li_p(e^w) = \Gamma(1-p) * (-w)^{p-1} + \sigma * A_p(w) - \sigma * B_p(w)$$

with

$$A_p(w) = 2(2\pi)^{(p-1)} * \Gamma(1-p)(1+w^2/(4pi^2))^{-1/2+p/2} \cos((1-p)ArcTan(2pi/w))$$

and

$$B_p(w) = 2(2pi)^{\ell}(p-1) * \sum_{k=0}^{\infty} \Gamma(1+2k-p)/(2k)!(-w^2/4/\pi^2)^k (\zeta(1+2k-p)-T p1)$$

This is suitable for $|w| < 2\pi$. The use of evenzeta gives a speedup of about 50 The original series is (This might be worthwhile if we use the already present table of the Bernoullis)

$$Li_{p}(e^{w}) = Gamma(1-p)*(-w)^{p-1} - \sigma*2*(2pi)^{(p-1)}*\sum_{k=0}^{\infty} \Gamma(1+2k-p)/(2k)!(-1)^{k}(w/2/\pi)^{(2k)}\zeta(1+2k-p)$$

Parameters

n	the integral index n = 4k.
w	The complex argument w.

Returns

The value of the Polylogarithm.

Definition at line 517 of file sf_polylog.tcc.

References __fpequal().

Referenced by __polylog_exp_neg().

7.3.2.191 template < typename _PowTp , typename _Tp > _Tp std::__detail::__polylog_exp_negative_real_part (_PowTp __s, _Tp __w)

Theoretical convergence for Re(w) < 0.

Seems to beat the other expansions for $Re(w) < -\pi/2 - \pi/5$. Note that this is an implementation of the basic series:

$$Li_s(e^z) = \sum_{k=1}^{\infty} e^{(k*z)} * k^{(-s)}$$

Parameters

s	is an arbitrary type, integral or float.
W	something with a negative real part.

Returns

the value of the polylogarithm.

Definition at line 737 of file sf_polylog.tcc.

References __fpequal().

Referenced by __polylog_exp(), __polylog_exp_int_neg(), __polylog_exp_int_pos(), __polylog_exp_real_neg(), and ← __polylog_exp_real_pos().

7.3.2.192 template<typename _Tp > std::complex<_Tp> std::__detail::__polylog_exp_pos (unsigned int __s, std::complex< _Tp > __w)

This function treats the cases of positive integer index s.

$$Li_s(e^w) = \sum_{k=0, k! = s-1} \zeta(s-k)w^k/k! + (H_{s-1} - \log(-w))w^(s-1)/(s-1)!$$

The radius of convergence is |w| < 2pi. Note that this series involves a $\log(-x)$. gcc and Mathematica differ in their implementation of $\log(e^(i\pi))$: gcc: $\log(e^(+-i*\pi)) = +-i\pi$ whereas Mathematica doesn't preserve the sign in this case: $\log(e^(+-i\pi)) = +i\pi$

s	the index s.
W	the argument w.

Returns

the value of the polylogarithm.

Definition at line 206 of file sf polylog.tcc.

References __fpequal(), and __riemann_zeta().

Referenced by __polylog_exp_int_pos(), and __polylog_exp_real_pos().

7.3.2.193 template<typename_Tp > std::complex<_Tp> std::__detail::__polylog_exp_pos (unsigned int __s, _Tp __w)

This function treats the cases of positive integer index s for real w.

This specialization is worthwhile to catch the differing behaviour of log(x).

$$Li_s(e^w) = \sum_{k=0, k!=s-1} \zeta(s-k)w^k/k! + (H_{s-1} - \log(-w))w^(s-1)/(s-1)!$$

The radius of convergence is $|w|<2\pi$. Note that this series involves a $\log(-x)$. The use of evenzeta yields a speedup of about 2.5. gcc and Mathematica differ in their implementation of $\log(e^{(i\pi)})$: gcc: $\log(e^{(i\pi)}) = -i\pi$ whereas Mathematica doesn't preserve the sign in this case: $\log(e^{(i\pi)}) = +i\pi$

Parameters

s	the index.
W	the argument

Returns

the value of the Polylogarithm

Definition at line 279 of file sf_polylog.tcc.

References __fpequal(), and __riemann_zeta().

7.3.2.194 template<typename_Tp > std::complex<_Tp> std::__detail::__polylog_exp_pos (_Tp __s, std::complex< _Tp > __w)

This function treats the cases of positive real index s.

The defining series is

$$Li_s(e^w) = A_s(w) + B_s(w) + \Gamma(1-s)(-w)(s-1)$$

with

$$A_s(w) = \sum_{k=0}^{m} \zeta(s-k)w^k/k!$$

$$B_s(w) = \sum_{k=m+1}^{\infty} \sin(\pi/2(s-k))\Gamma(1-s+k)\zeta(1-s+k)(w/2/\pi)^k/k!$$

s	the positive real index s.	
W	w The complex argument w.	

Returns

the value of the polylogarithm.

Definition at line 603 of file sf_polylog.tcc.

References __fpequal(), and __riemann_zeta().

Return the polylog where s is a negative real value and for complex argument. Now we branch depending on the properties of w in the specific functions

Parameters

s	s A negative real value that does not reduce to a negative integer.	
w The complex argument.		

Returns

The value of the polylogarithm.

Definition at line 985 of file sf_polylog.tcc.

References $_$ clamp $_$ 0 $_$ m2pi(), $_$ polylog $_$ exp $_$ asymp(), $_$ polylog $_$ exp $_$ neg(), and $_$ polylog $_$ exp $_$ exp $_$ exp $_$ negative $_$ real $_$ part().

Referenced by __polylog_exp().

7.3.2.196 template<typename _Tp > std::complex <_Tp> std::__detail::__polylog_exp_real_neg (_Tp __s, _Tp __w)

Return the polylog where s is a negative real value and for real argument. Now we branch depending on the properties of w in the specific functions.

Parameters

s	A negative real value.	
w A real argument.		

Returns

The value of the polylogarithm.

Definition at line 1013 of file sf_polylog.tcc.

References __polylog_exp_asymp(), __polylog_exp_neg(), and __polylog_exp_negative_real_part().

7.3.2.197 template < typename _Tp > std::complex < _Tp > std::__detail::__polylog_exp_real_pos (_Tp __s, std::complex < _Tp > __w)

Return the polylog where s is a positive real value and for complex argument.

s	A positive real number.	
W	w the complex argument.	

Returns

The value of the polylogarithm.

Definition at line 922 of file sf_polylog.tcc.

References $_$ clamp $_0$ m2pi(), $_$ clamp $_p$ i(), $_$ fpequal(), $_$ fpreal(), $_$ polylog $_e$ xp $_a$ symp(), $_$ polylog $_e$ xp $_e$ volved negative $_e$ real $_p$ art(), $_$ polylog $_e$ xp $_p$ os(), and $_$ riemann $_p$ zeta().

Referenced by __polylog_exp().

7.3.2.198 template<typename_Tp > std::complex<_Tp> std::__detail::__polylog_exp_real_pos(_Tp __s, _Tp __w)

Return the polylog where s is a positive real value and the argument is real.

Parameters

s	s A positive real number tht does not reduce to an integer.	
w The real argument w.		

Returns

The value of the polylogarithm.

Definition at line 956 of file sf_polylog.tcc.

References $_$ fpequal(), $_$ polylog_exp_asymp(), $_$ polylog_exp_negative_real_part(), $_$ polylog_exp_pos(), and $_$ \leftarrow riemann_zeta().

7.3.2.199 template < typename $_{\text{Tp}} > _{\text{Tp}}$ std::__detail::__psi ($_{\text{Tp}} _{\text{_x}}$)

Return the digamma function. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

For negative argument the reflection formula is used:

$$\psi(x) = \psi(1-x) - \pi \cot(\pi x)$$

Definition at line 2330 of file sf gamma.tcc.

References __psi_asymp().

Referenced by __expint_En_series(), __hydrogen(), __hyperg_reflect(), and __psi().

7.3.2.200 template<typename _Tp > _Tp std::__detail::__psi (unsigned int __n, _Tp __x)

Return the polygamma function $\psi^{(n)}(x)$.

The polygamma function is related to the Hurwitz zeta function:

$$\psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1, x)$$

Definition at line 2395 of file sf_gamma.tcc.

References __hurwitz_zeta(), __log_gamma(), and __psi().

7.3.2.201 template<typename _Tp > _Tp std::__detail::__psi_asymp (_Tp __x)

Return the digamma function for large argument. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

The asymptotic series is given by:

$$\psi(x) = \ln(x) - \frac{1}{2x} - \sum_{n=1}^{\infty} \frac{B_{2n}}{2nx^{2n}}$$

Definition at line 2299 of file sf gamma.tcc.

Referenced by __psi().

7.3.2.202 template<typename _Tp > _Tp std::__detail::__psi_series (_Tp __x)

Return the digamma function by series expansion. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

The series is given by:

$$\psi(x) = -\gamma_E - \frac{1}{x} \sum_{k=1}^{\infty} \frac{x-1}{(k+1)(x+k)}$$

Definition at line 2268 of file sf_gamma.tcc.

7.3.2.203 template<typename _Tp > _Tp std::__detail::__riemann_zeta (_Tp __s)

Return the Riemann zeta function $\zeta(s)$.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} k^{-s} \text{ for } s > 1 \frac{(2\pi)^s}{\pi} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s) \text{ for } s < 1$$

For s < 1 use the reflection formula:

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)$$

s	The argument

Definition at line 505 of file sf zeta.tcc.

Referenced by __polylog_exp_int_pos(), __polylog_exp_neg(), __polylog_exp_pos(), __polylog_exp_real_pos(), and evenzeta().

7.3.2.204 template<typename _Tp > _Tp std::__detail::__riemann_zeta_alt (_Tp __s)

Evaluate the Riemann zeta function $\zeta(s)$ by an alternate series for s > 0.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} fors > 1$$

For s < 1 use the reflection formula:

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)$$

Definition at line 329 of file sf_zeta.tcc.

7.3.2.205 template<typename _Tp > _Tp std:: $_$ detail:: $_$ riemann $_$ zeta $_$ euler $_$ maclaurin ($_$ Tp $__s$)

Evaluate the Riemann zeta function $\zeta(s)$ by an alternate series for s > 0.

This is a specialization of the code for the Hurwitz zeta function.

Definition at line 282 of file sf zeta.tcc.

References _S_Euler_Maclaurin_zeta.

7.3.2.206 template<typename _Tp > _Tp std::__detail::__riemann_zeta_glob (_Tp __s)

Evaluate the Riemann zeta function by series for all s = 1. Convergence is great until largish negative numbers. Then the convergence of the > 0 sum gets better.

The series is:

$$\zeta(s) = \frac{1}{1 - 2^{1 - s}} \sum_{n=0}^{\infty} \frac{1}{2^{n + 1}} \sum_{k=0}^{n} (-1)^k \frac{n!}{(n - k)! k!} (k + 1)^{-s}$$

Havil 2003, p. 206.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} fors > 1$$

For s < 1 use the reflection formula:

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)$$

Definition at line 374 of file sf_zeta.tcc.

References __log_gamma().

Referenced by riemann zeta().

7.3.2.207 template<typename _Tp > _Tp std::__detail::__riemann_zeta_m_1 (_Tp __s)

Return the Riemann zeta function $\zeta(s)-1. \label{eq:constraint}$

$$_s$$
 The argument $s! = 1$

Definition at line 672 of file sf_zeta.tcc.

References __riemann_zeta_m_1_sum(), _S_num_zetam1, and _S_zetam1.

Referenced by __polylog_exp_neg().

7.3.2.208 template < typename _Tp > _Tp std::__detail::__riemann_zeta_m_1_sum (_Tp __s)

Return the Riemann zeta function $\zeta(s)-1$ by summation for s>1. This is a small remainder for large s.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} fors > 1$$

Parameters

 $_s$ The argument s! = 1

Definition at line 645 of file sf_zeta.tcc.

Referenced by __riemann_zeta_m_1().

7.3.2.209 template<typename _Tp > _Tp std::__detail::__riemann_zeta_product (_Tp __s)

Compute the Riemann zeta function $\zeta(s)$ using the product over prime factors.

$$\zeta(s) = \prod_{i=1}^{\infty} \frac{1}{1 - p_i^{-s}}$$

where p_i are the prime numbers.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} fors > 1$$

For s < 1 use the reflection formula:

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)$$

Parameters

__s The argument

Definition at line 463 of file sf_zeta.tcc.

Referenced by ___riemann_zeta().

7.3.2.210 template < typename _Tp > _Tp std::__detail::__riemann_zeta_sum (_Tp __s)

Compute the Riemann zeta function $\zeta(s)$ by summation for s > 1.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} fors > 1$$

For s < 1 use the reflection formula:

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)$$

Definition at line 254 of file sf zeta.tcc.

Referenced by __riemann_zeta().

7.3.2.211 template<typename_Tp > __gnu_cxx::__promote_num_t<_Tp> std::__detail::__sinc (_Tp __a, _Tp __x)

Return the generalized sinus cardinal function

$$sinc_a(x) = \frac{\sin(\pi x/a)}{(\pi x/a)}$$

•

Definition at line 51 of file sf cardinal.tcc.

7.3.2.212 template<typename_Tp > __gnu_cxx::__promote_num_t<_Tp> std::__detail::__sinc (_Tp __x)

Return the normalized sinus cardinal function

$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

.

Definition at line 98 of file sf_cardinal.tcc.

7.3.2.213 template<typename_Tp > __gnu_cxx::__promote_num_t<_Tp> std::__detail::__sinc_pi (_Tp __x)

Return the unnormalized sinus cardinal function

$$sinc_{\pi}(x) = \frac{\sin(x)}{x}$$

Definition at line 78 of file sf cardinal.tcc.

7.3.2.214 template<typename _Tp > std::pair<_Tp, _Tp> std::__detail::__sincosint(_Tp __x)

This function returns the sine Si(x) and cosine Ci(x) integrals as a pair.

The sine integral is defined by:

$$Si(x) = \int_0^x dt \frac{\sin(t)}{t}$$

The cosine integral is defined by:

$$Ci(x) = \gamma_E + \log(x) + \int_0^x dt \frac{\cos(t) - 1}{t}$$

Definition at line 227 of file sf trigint.tcc.

References __sincosint_asymp(), __sincosint_cont_frac(), and __sincosint_series().

7.3.2.215 template < typename _Tp > void std::__detail::__sincosint_asymp (_Tp __t, _Tp & _Si, _Tp & _Ci)

This function computes the sine Si(x) and cosine Ci(x) integrals by asymptotic series summation for positive argument.

The asymptotic series is very good for x > 50.

Definition at line 163 of file sf_trigint.tcc.

Referenced by __sincosint().

7.3.2.216 template < typename _Tp > void std::__detail::__sincosint_cont_frac (_Tp __t, _Tp & _Si, _Tp & _Ci)

This function computes the sine Si(x) and cosine Ci(x) integrals by continued fraction for positive argument.

Definition at line 55 of file sf trigint.tcc.

Referenced by __sincosint().

7.3.2.217 template<typename _Tp > void std::__detail::__sincosint_series (_Tp __t, _Tp & _Si, _Tp & _Ci)

This function computes the sine Si(x) and cosine Ci(x) integrals by series summation for positive argument.

Definition at line 98 of file sf trigint.tcc.

Referenced by __sincosint().

 $7.3.2.218 \quad template < typename _Tp > _gnu_cxx::_promote_num_t < _Tp > std::_detail::_sinhc (_Tp _a, _Tp _x)$

Return the generalized hyperbolic sinus cardinal function

$$sinhc_a(x) = \frac{\sinh(\pi x/a)}{\pi x/a}$$

Definition at line 124 of file sf cardinal.tcc.

7.3.2.219 template<typename _Tp > __gnu_cxx::__promote_num_t<_Tp> std::__detail::__sinhc (_Tp __x)

Return the normalized hyperbolic sinus cardinal function

$$sinhc(x) = \frac{\sinh(\pi x)}{\pi x}$$

Definition at line 167 of file sf cardinal.tcc.

 $7.3.2.220 \quad template < typename _Tp > _gnu_cxx::_promote_num_t < _Tp > std::_detail::_sinhc_pi \left(\ _Tp \ _x \ \right)$

Return the unnormalized hyperbolic sinus cardinal function

$$sinhc_{\pi}(x) = \frac{\sinh(x)}{x}$$

Definition at line 149 of file sf cardinal.tcc.

.

7.3.2.221 template<typename _Tp > _Tp std::__detail::__sinhint (const _Tp $_x$)

Return the hyperbolic sine integral li(x).

The hyperbolic sine integral is given by

$$Shi(x) = (Ei(x) - E_1(x))/2$$

Parameters

X	The argument of the hyperbolic sine integral function.
^	The argument of the hyperbone sine integral function.

Returns

The hyperbolic sine integral.

Definition at line 581 of file sf expint.tcc.

References __expint_E1(), and __expint_Ei().

7.3.2.222 template<typename _Tp > _Tp std::__detail::__sph_bessel (unsigned int __n, _Tp __x)

Return the spherical Bessel function $j_n(x)$ of order n and non-negative real argument x.

The spherical Bessel function is defined by:

$$j_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} J_{n+1/2}(x)$$

Parameters

n	The non-negative integral order	
X	The non-negative real argument	

Returns

The output spherical Bessel function.

Definition at line 675 of file sf_bessel.tcc.

References __sph_bessel_jn().

7.3.2.223 template<typename _Tp > std::complex< _Tp> std::__detail::__sph_bessel (unsigned int __n, std::complex< _Tp > __z)

Return the complex spherical Bessel function.

Parameters

in	n	The order for which the spherical Bessel function is evaluated.
in	Z	The argument at which the spherical Bessel function is evaluated.

Returns

The complex spherical Bessel function.

Definition at line 1314 of file sf hankel.tcc.

References __sph_hankel().

7.3.2.224 template<typename _Tp > void std::__detail::__sph_bessel_ik (unsigned int __n, _Tp __x, _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)

Compute the spherical modified Bessel functions $i_n(x)$ and $k_n(x)$ and their first derivatives $i'_n(x)$ and $k'_n(x)$ respectively.

n	n The order of the modified spherical Bessel function.	
X	The argument of the modified spherical Bessel function.	
i_n	The output regular modified spherical Bessel function.	
k_n	The output irregular modified spherical Bessel function.	
ip_n	The output derivative of the regular modified spherical Bessel function.	
kp_n	The output derivative of the irregular modified spherical Bessel function.	

Definition at line 445 of file sf_mod_bessel.tcc.

References __cyl_bessel_ik().

Compute the spherical Bessel $j_n(x)$ and Neumann $n_n(x)$ functions and their first derivatives $j_n(x)$ and $n'_n(x)$ respectively.

Parameters

	n	The order of the spherical Bessel function.
	x	The argument of the spherical Bessel function.
out	j_n	The output spherical Bessel function.
out	n_n	The output spherical Neumann function.
out	jp_n	The output derivative of the spherical Bessel function.
out	np_n	The output derivative of the spherical Neumann function.

Definition at line 640 of file sf bessel.tcc.

References __cyl_bessel_jn().

Referenced by __sph_bessel(), __sph_hankel_1(), __sph_hankel_2(), and __sph_neumann().

Helper to compute complex spherical Hankel functions and their derivatives.

Parameters

in	n	The order for which the spherical Hankel functions are evaluated.		
in	z	The argument at which the spherical Hankel functions are evaluated.		
out	_H1	The spherical Hankel function of the first kind.		
out	_H1p	The derivative of the spherical Hankel function of the first kind.		
out	_H2	The spherical Hankel function of the second kind.		
out	_H2p	The derivative of the spherical Hankel function of the second kind.		

Definition at line 1258 of file sf_hankel.tcc.

References __hankel().

Referenced by __sph_bessel(), __sph_hankel_1(), __sph_hankel_2(), and __sph_neumann().

7.3.2.227 template<typename_Tp > std::complex<_Tp> std::_detail::_sph_hankel_1 (unsigned int __n, _Tp __x)

Return the spherical Hankel function of the first kind $h_n^{(1)}(x)$.

The spherical Hankel function of the first kind is defined by:

$$h_n^{(1)}(x) = j_n(x) + i n_n(x)$$

Parameters

n	The order of the spherical Neumann function.
x	The argument of the spherical Neumann function.

Returns

The output spherical Neumann function.

Definition at line 744 of file sf bessel.tcc.

References __sph_bessel_jn().

Return the complex spherical Hankel function of the first kind.

Parameters

in	n	The order for which the spherical Hankel function of the first kind is evaluated.
in	z	The argument at which the spherical Hankel function of the first kind is evaluated.

Returns

The complex spherical Hankel function of the first kind.

Definition at line 1282 of file sf_hankel.tcc.

References sph hankel().

Return the spherical Hankel function of the second kind $h_n^{(2)}(x)$.

The spherical Hankel function of the second kind is defined by:

$$h_n^{(2)}(x) = j_n(x) - in_n(x)$$

Parameters

n	The non-negative integral order

_		
	X	The non-negative real argument

Returns

The output spherical Neumann function.

Definition at line 777 of file sf_bessel.tcc.

References __sph_bessel_jn().

7.3.2.230 template<typename _Tp > std::complex<_Tp> std::__detail::__sph_hankel_2 (unsigned int __n, std::complex< _Tp > __z)

Return the complex spherical Hankel function of the second kind.

Parameters 4 8 1

in	n	The order for which the spherical Hankel function of the second kind is evaluated.
in	z	The argument at which the spherical Hankel function of the second kind is evalu-
		ated.

Returns

The complex spherical Hankel function of the second kind.

Definition at line 1298 of file sf_hankel.tcc.

References sph hankel().

7.3.2.231 template<typename _Tp > std::complex<_Tp> std::__detail::__sph_harmonic (unsigned int __l, int __m, _Tp __theta, _Tp __phi)

Return the spherical harmonic function.

The spherical harmonic function of l, m, and θ , ϕ is defined by:

$$Y_l^m(\theta,\phi) = (-1)^m \left[\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!} \right] P_l^{|m|}(\cos\theta) \exp^{im\phi}$$

Parameters

	The order of the spherical harmonic function. $l>=0$.
m	The order of the spherical harmonic function. $m <= l$.
theta	The radian polar angle argument of the spherical harmonic function.
phi	The radian azimuthal angle argument of the spherical harmonic function.

Definition at line 350 of file sf_legendre.tcc.

References sph legendre().

7.3.2.232 template<typename _Tp > _Tp std::__detail::__sph_legendre (unsigned int __l, unsigned int __m, _Tp __theta)

Return the spherical associated Legendre function.

The spherical associated Legendre function of l, m, and θ is defined as $Y_l^m(\theta, 0)$ where

$$Y_l^m(\theta,\phi) = (-1)^m \left[\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!} \right] P_l^m(\cos\theta) \exp^{im\phi}$$

is the spherical harmonic function and $P_l^m(x)$ is the associated Legendre function.

This function differs from the associated Legendre function by argument ($x = \cos(\theta)$) and by a normalization factor but this factor is rather large for large l and m and so this function is stable for larger differences of l and m.

Parameters

	The order of the spherical associated Legendre function. $l>=0$.
m	The order of the spherical associated Legendre function. $m <= l$.
theta	The radian polar angle argument of the spherical associated Legendre function.

Definition at line 253 of file sf_legendre.tcc.

References __log_gamma(), and __poly_legendre_p().

Referenced by __hydrogen(), and __sph_harmonic().

7.3.2.233 template < typename $_{\rm Tp}$ > $_{\rm Tp}$ std::__detail::__sph_neumann (unsigned int $_{\rm n}$, $_{\rm Tp}$ $_{\rm x}$)

Return the spherical Neumann function $n_n(x)$ of order n and non-negative real argument x.

The spherical Neumann function is defined by:

$$n_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} N_{n+1/2}(x)$$

Parameters

n	The order of the spherical Neumann function.
X	The argument of the spherical Neumann function.

Returns

The output spherical Neumann function.

Definition at line 712 of file sf_bessel.tcc.

References __sph_bessel_jn().

7.3.2.234 template<typename _Tp > std::complex<_Tp> std::__detail::__sph_neumann (unsigned int __n, std::complex< _Tp > __z)

Return the complex spherical Neumann function.

Parameters

in	n	The order for which the spherical Neumann function is evaluated.
in	Z	The argument at which the spherical Neumann function is evaluated.

Returns

The complex spherical Neumann function.

Definition at line 1330 of file sf hankel.tcc.

References sph hankel().

7.3.2.235 template < typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__students_t_cdf(_Tp __t, unsigned int __nu)

Return the Students T probability function.

The students T propability function is related to the incomplete beta function:

$$A(t|\nu) = 1 - I_{\frac{\nu}{\nu + t^2}}(\frac{\nu}{2}, \frac{1}{2})A(t|\nu) =$$

Parameters

<u>t</u>	
nu	

Definition at line 301 of file sf beta.tcc.

References __beta_inc().

7.3.2.236 template<typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__students_t_cdfc (_Tp __t, unsigned int __nu)

Return the complement of the Students T probability function.

The complement of the students T propability function is:

$$A_c(t|\nu) = I_{\frac{\nu}{\nu+t^2}}(\frac{\nu}{2}, \frac{1}{2}) = 1 - A(t|\nu)$$

Parameters

t	
nu	

Definition at line 324 of file sf beta.tcc.

References __beta_inc().

7.3.2.237 template<typename _Tp > _Tp std::__detail::__theta_1 (_Tp __nu, _Tp __x)

Return the exponential theta-1 function of period nu and argument x.

The Neville theta-1 function is defined by

$$\theta_1(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} (-1)^j \exp\left(\frac{-(\nu + j - 1/2)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
Х	The argument

Definition at line 190 of file sf_theta.tcc.

References __theta_2().

Referenced by __theta_s().

7.3.2.238 template<typename_Tp > _Tp std::__detail::__theta_2 (_Tp __nu, _Tp __x)

Return the exponential theta-2 function of period nu and argument x.

The exponential theta-2 function is defined by

$$\theta_2(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} (-1)^j \exp\left(\frac{-(\nu+j)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
X	The argument

Definition at line 162 of file sf_theta.tcc.

References __theta_2_asymp(), and __theta_2_sum().

Referenced by theta 1(), and theta c().

7.3.2.239 template<typename _Tp > _Tp std::__detail::__theta_2_asymp (_Tp __nu, _Tp __x)

Compute and return the θ_2 function by series expansion.

Definition at line 103 of file sf theta.tcc.

Referenced by __theta_2().

7.3.2.240 template<typename _Tp > _Tp std::__detail::__theta_2_sum (_Tp $_$ nu, _Tp $_$ x)

Compute and return the θ_1 function by series expansion.

Definition at line 49 of file sf theta.tcc.

Referenced by __theta_2().

7.3.2.241 template<typename _Tp > _Tp std::__detail::__theta_3 (_Tp __nu, _Tp __x)

Return the exponential theta-3 function of period nu and argument x.

The exponential theta-3 function is defined by

$$\theta_3(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} \exp\left(\frac{-(\nu+j)^2}{x}\right)$$

Parameters

nu	The periodic (period = 1) argument
Х	The argument

Definition at line 216 of file sf_theta.tcc.

References __theta_3_asymp(), and __theta_3_sum().

Referenced by __theta_4(), and __theta_d().

7.3.2.242 template<typename _Tp > _Tp std::__detail::__theta_3_asymp (_Tp $_$ nu, _Tp $_$ x)

Compute and return the θ_3 function by asymptotic series expansion.

Definition at line 128 of file sf theta.tcc.

Referenced by __theta_3().

7.3.2.243 template<typename_Tp > _Tp std::__detail::__theta_3_sum (_Tp __nu, _Tp __x)

Compute and return the θ_3 function by series expansion.

Definition at line 77 of file sf_theta.tcc.

Referenced by __theta_3().

7.3.2.244 template<typename _Tp > _Tp std::__detail::__theta_4 (_Tp __nu, _Tp __x)

Return the exponential theta-2 function of period nu and argument x.

The exponential theta-2 function is defined by

$$\theta_2(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} (-1)^j \exp\left(\frac{-(\nu+j)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
X	The argument

Definition at line 244 of file sf_theta.tcc.

References __theta_3().

Referenced by __theta_n().

7.3.2.245 template<typename _Tp > _Tp std::__detail::__theta_c (_Tp $_k$, _Tp $_x$)

Return the Neville θ_c function

Definition at line 337 of file sf theta.tcc.

References __comp_ellint_1(), __ellnome(), and __theta_2().

7.3.2.246 template<typename _Tp > _Tp std::__detail::__theta_d (_Tp $_k$, _Tp $_x$)

Return the Neville θ_d function

Definition at line 362 of file sf theta.tcc.

References __comp_ellint_1(), __ellnome(), and __theta_3().

7.3.2.247 template<typename _Tp > _Tp std::__detail::__theta_n (_Tp $_$ k, _Tp $_$ x)

Return the Neville θ_n function

Definition at line 387 of file sf_theta.tcc.

References __comp_ellint_1(), __ellnome(), and __theta_4().

7.3.2.248 template<typename _Tp > _Tp std::__detail::__theta_s (_Tp __k, _Tp __x)

Return the Neville θ_s function

Definition at line 311 of file sf_theta.tcc.

References __comp_ellint_1(), __ellnome(), and __theta_1().

7.3.2.249 template<typename _Tp > __gnu_cxx::__promote_num_t<_Tp> std::__detail::__zernike (unsigned int __n, int __m, __Tp __rho, _Tp __phi)

Definition at line 133 of file sf_jacobi.tcc.

References __poly_radial_jacobi().

7.3.2.250 template < typename $Tp > Tp std::_detail::_znorm1 (Tp <math>x$)

Definition at line 58 of file sf owens t.tcc.

Referenced by __owens_t().

7.3.2.251 template<typename $Tp > Tp std::_detail::_znorm2 (<math>Tp x$)

Definition at line 47 of file sf_owens_t.tcc.

Referenced by __owens_t().

7.3.2.252 template < typename $_$ Tp = double > $_$ Tp std:: $_$ detail::evenzeta (unsigned int $_$ $_k$)

A function to calculate the values of zeta at even positive integers. For values smaller than thirty a table is used.

Parameters

 $\underline{}$ an integer at which we evaluate the Riemann zeta function.

Returns

zeta(k)

Definition at line 156 of file sf_polylog.tcc.

References riemann zeta().

7.3.3 Variable Documentation

7.3.3.1 constexpr size_t std::__detail::_Num_Euler_Maclaurin_zeta = 100

Coefficients for Euler-Maclaurin summation of zeta functions.

 $B_{2j}/(2j)!$

where B_k are the Bernoulli numbers.

Definition at line 65 of file sf zeta.tcc.

7.3.3.2 constexpr _Factorial_table<long double> std::__detail::_S_double_factorial_table[301]

Definition at line 274 of file sf_gamma.tcc.

Referenced by __double_factorial(), and __log_double_factorial().

7.3.3.3 constexpr long double std::__detail::_S_Euler_Maclaurin_zeta[Num Euler Maclaurin zeta]

Definition at line 68 of file sf_zeta.tcc.

Referenced by __hurwitz_zeta_euler_maclaurin(), and __riemann_zeta_euler_maclaurin().

7.3.3.4 constexpr_Factorial_table<long double> std::_detail::_S_factorial_table[171]

Definition at line 84 of file sf gamma.tcc.

Referenced by __factorial(), and __log_factorial().

7.3.3.5 constexpr_Factorial_table<long double> std::__detail::_S_neg_double_factorial_table[999]

Definition at line 595 of file sf gamma.tcc.

Referenced by double factorial(), and log double factorial().

 $7.3.3.6 \quad template < typename _Tp > constexpr \ std:: std:: _detail:: _S_num_double_factorials = 0$

Definition at line 259 of file sf_gamma.tcc.

7.3.3.7 template <> constexpr std::size_t std::__detail::_S_num_double_factorials < double >= 301

Definition at line 264 of file sf_gamma.tcc.

7.3.3.8 template <> constexpr std::size_t std::__detail::_S_num_double_factorials < float > = 57

Definition at line 262 of file sf_gamma.tcc.

 $7.3.3.9 \quad template <> constexpr\ std:: \underline{\quad} detail:: \underline{\quad} num_double_factorials < long\ double > = 301$

Definition at line 266 of file sf gamma.tcc.

7.3.3.10 template<typename _Tp > constexpr std::size_t std::__detail::_S_num_factorials = 0

Definition at line 69 of file sf gamma.tcc.

Definition at line 596 of file sf_zeta.tcc.

Referenced by __riemann_zeta_m_1().

```
7.3.3.11 template <> constexpr std::size_t std::__detail::_S_num_factorials < double > = 171
Definition at line 74 of file sf gamma.tcc.
7.3.3.12 template <> constexpr std::size_t std:: detail:: S num factorials < float > = 35
Definition at line 72 of file sf_gamma.tcc.
7.3.3.13 template<> constexpr std::size_t std::__detail::_S_num_factorials< long double > = 171
Definition at line 76 of file sf_gamma.tcc.
7.3.3.14 template < typename Tp > constexpr std::size t std:: detail:: S num neg double factorials = 0
Definition at line 579 of file sf gamma.tcc.
7.3.3.15 template<> constexpr std::size_t std::__detail::_S_num_neg_double_factorials< double > = 150
Definition at line 584 of file sf gamma.tcc.
7.3.3.16 template <> constexpr std::size_t std:: detail:: S num neg double factorials < float > = 27
Definition at line 582 of file sf_gamma.tcc.
7.3.3.17 template<> constexpr std::size_t std::__detail::_S_num_neg_double_factorials< long double > = 999
Definition at line 586 of file sf_gamma.tcc.
7.3.3.18 constexpr size_t std::__detail::_S_num_zetam1 = 33
Table of zeta(n) - 1 from 2 - 32. MPFR - 128 bits.
Definition at line 592 of file sf_zeta.tcc.
Referenced by riemann zeta m 1().
7.3.3.19 constexpr long double std::__detail::_S_zetam1[ S_num_zetam1]
```

Chapter 8

Class Documentation

8.1 std::__detail::_Factorial_table < _Tp > Struct Template Reference

Public Attributes

- _Tp __factorial
- _Tp __log_factorial
- unsigned int __n

8.1.1 Detailed Description

template<typename _Tp>struct std::__detail::_Factorial_table< _Tp>

Definition at line 61 of file sf_gamma.tcc.

8.1.2 Member Data Documentation

 $\textbf{8.1.2.1} \quad template < type name _Tp > _Tp \ std::__detail::_Factorial_table < _Tp > ::__factorial_table < _Tp$

Definition at line 64 of file sf_gamma.tcc.

 $\textbf{8.1.2.2} \quad template < typename _Tp > _Tp \ \textbf{std::} __detail::_Factorial _table < _Tp > :: __log_factorial$

Definition at line 65 of file sf_gamma.tcc.

8.1.2.3 template < typename $_{Tp} >$ unsigned int std:: $_{detail}$:: $_{factorial}$ template < $_{Tp} >$:: $_{n}$

Definition at line 63 of file sf_gamma.tcc.

The documentation for this struct was generated from the following file:

• bits/sf_gamma.tcc

202	Class Documentation

Chapter 9

File Documentation

9.1 bits/sf_airy.tcc File Reference

#include <bits/complex_util.h>
Include dependency graph for sf_airy.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Macros

#define _GLIBCXX_BITS_SF_AIRY_TCC 1

Functions

template<typename _Tp >
 void std::__detail::__airy (const std::complex< _Tp > &__z, _Tp __eps, std::complex< _Tp > &_Ai, std
 ::complex< _Tp > &_Aip, std::complex< _Tp > &_Bi, std::complex< _Tp > &_Bip)

This function computes the Airy function Ai(z) and its first derivative in the complex z-plane.

template<typename_Tp >
 std::complex< _Tp > std::__detail::__airy_ai (std::complex< _Tp > __z)

Return the complex Airy Ai function.

template<typename _Tp >
 void std::__detail::__airy_asymp_absarg_ge_pio3 (std::complex < _Tp > __z, std::complex < _Tp > &_Ai, std
 ::complex < _Tp > &_Aip, int __sign=-1)

This function evaluates Ai(z) and Ai'(z) from their asymptotic expansions for $|arg(z)| < 2 * \pi/3$. For speed, the number of terms needed to achieve about 16 decimals accuracy is tabled and determined from abs(z).

template<typename _Tp >
 void std::__detail::__airy_asymp_absarg_lt_pio3 (std::complex< _Tp > __z, std::complex< _Tp > &_Ai, std
 ::complex< Tp > & Aip)

This function evaluates Ai(z) and Ai'(z) from their asymptotic expansions for |arg(-z)| < pi/3. For speed, the number of terms needed to achieve about 16 decimals accuracy is tabled and determined from |z|.

- template<typename _Tp >
 void std::__detail::__airy_bessel_i (const std::complex< _Tp > &__z, _Tp __eps, std::complex< _Tp > &_lp1d3, std::complex< _Tp > &_lm1d3, std::complex< _Tp > &_lm2d3)
- template<typename _Tp >
 void std::__detail::__airy_bessel_k (const std::complex< _Tp > &__z, _Tp __eps, std::complex< _Tp > &_
 Kp1d3, std::complex< _Tp > &_Kp2d3)

Compute approximations to the modified Bessel functions of the second kind of orders 1/3 and 2/3 for moderate arguments.

template<typename _Tp >
 std::complex< _Tp > std::__detail::__airy_bi (std::complex< _Tp > __z)
 Return the complex Airy Bi function.

template<typename _Tp >
 void std::__detail::__airy_hyperg_rational (const std::complex< _Tp > &__z, std::complex< _Tp > &_Ai, std↔
 ::complex< Tp > & Aip, std::complex< Tp > & Bi, std::complex< Tp > & Bip)

This function computes rational approximations to the hypergeometric functions related to the modified Bessel functions of orders $\nu = + -1/3$ and $\nu + -2/3$. That is, A(z)/B(z), Where A(z) and B(z) are cubic polynomials with real coefficients, approximates

$$\frac{\Gamma(\nu+1)}{(z/2)^n u} I_{\nu}(z) =_0 F_1(;\nu+1;z^2/4),$$

where the function on the right is a confluent hypergeometric limit function. For |z| <= 1/4 and |arg(z)| <= pi/2, the approximations are accurate to about 16 decimals.

9.1.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly.

9.1.2 Macro Definition Documentation

9.1.2.1 #define _GLIBCXX_BITS_SF_AIRY_TCC 1

Definition at line 31 of file sf_airy.tcc.

9.2 bits/sf_bessel.tcc File Reference

```
#include <utility>
#include <ext/math_const.h>
Include dependency graph for sf bessel.tcc:
```


This graph shows which files directly or indirectly include this file:

Namespaces

std

• std::__detail

Macros

#define _GLIBCXX_BITS_SF_BESSEL_TCC 1

Functions

template < typename _Tp >
 _Tp std::__detail::__cyl_bessel_ij_series (_Tp __nu, _Tp __x, _Tp __sgn, unsigned int __max_iter)

This routine returns the cylindrical Bessel functions of order ν : J_{ν} or I_{ν} by series expansion.

template<typename_Tp>

```
_Tp std::__detail::__cyl_bessel_j (_Tp __nu, _Tp __x)
```

Return the Bessel function of order ν : $J_{\nu}(x)$.

template<typename_Tp>

```
void std::__detail::__cyl_bessel_jn (_Tp __nu, _Tp __x, _Tp &_Jnu, _Tp &_Nnu, _Tp &_Jpnu, _Tp &_Npnu)
```

Return the cylindrical Bessel functions and their derivatives of order ν by various means.

template<typename_Tp>

void std::__detail::__cyl_bessel_jn_asymp (_Tp __nu, _Tp __x, _Tp &_Jnu, _Tp &_Nnu, _Tp &_Jpnu, _Tp &_↔ Npnu)

This routine computes the asymptotic cylindrical Bessel and Neumann functions of order nu: $J_{\nu}(x)$, $N_{\nu}(x)$. Use this for $x >> nu^2 + 1$.

template<typename _Tp >

void std::__detail::__cyl_bessel_jn_steed (_Tp __nu, _Tp __x, _Tp &_Jnu, _Tp &_Nnu, _Tp &_Jpnu, _Tp &_↔ Npnu)

Compute the Bessel $J_{\nu}(x)$ and Neumann $N_{\nu}(x)$ functions and their first derivatives $J'_{\nu}(x)$ and $N'_{\nu}(x)$ respectively. These four functions are computed together for numerical stability.

template<typename_Tp>

Return the cylindrical Hankel function of the first kind $H_{\nu}^{(1)}(x)$.

• template<typename $_{\rm Tp}>$

Return the cylindrical Hankel function of the second kind $H_n^{(2)}u(x)$.

• template<typename _Tp >

Return the Neumann function of order ν : $N_{\nu}(x)$.

template<typename_Tp>

Compute the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1+\mu)$ and $\Gamma(1-\mu)$ are returned as well.

template<typename_Tp>

Return the spherical Bessel function $j_n(x)$ of order n and non-negative real argument x.

template<typename _Tp >
 void std::__detail::__sph_bessel_jn (unsigned int __n, _Tp __x, _Tp &__j_n, _Tp &__n_n, _Tp &__jp_n, _Tp &__np_n)

Compute the spherical Bessel $j_n(x)$ and Neumann $n_n(x)$ functions and their first derivatives $j_n(x)$ and $n'_n(x)$ respectively.

template<typename _Tp >
 std::complex< _Tp > std::__detail::__sph_hankel_1 (unsigned int __n, _Tp __x)

Return the spherical Hankel function of the first kind $h_n^{(1)}(x)$.

template < typename _Tp >
 std::complex < _Tp > std::__detail::__sph_hankel_2 (unsigned int __n, _Tp __x)

Return the spherical Hankel function of the second kind $h_n^{(2)}(x)$.

template<typename _Tp >
 _Tp std::__detail::__sph_neumann (unsigned int __n, _Tp __x)

Return the spherical Neumann function $n_n(x)$ of order n and non-negative real argument x.

9.2.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.2.2 Macro Definition Documentation

9.2.2.1 #define GLIBCXX BITS SF BESSEL TCC 1

Definition at line 47 of file sf_bessel.tcc.

9.3 bits/sf beta.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_beta.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

• #define GLIBCXX BITS SF BETA TCC 1

Functions

```
template<typename _Tp >
 _Tp std::__detail::__beta (_Tp __a, _Tp __b)
     Return the beta function B(a,b).
template<typename _Tp >
  _Tp std::__detail::__beta_gamma (_Tp __a, _Tp __b)
     Return the beta function: B(a, b).
template<typename _Tp >
  _Tp std::__detail::__beta_inc (_Tp __a, _Tp __b, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__beta_inc_cont_frac (_Tp __a, _Tp __b, _Tp __x)
template<typename _Tp >
 _Tp std::__detail::__beta_lgamma (_Tp __a, _Tp __b)
      Return the beta function B(a,b) using the log gamma functions.

    template<typename</li>
    Tp >

 _Tp std::__detail::__beta_product (_Tp __a, _Tp __b)
      Return the beta function B(x, y) using the product form.

    template<typename</li>
    Tp >

  _GLIBCXX14_CONSTEXPR _Tp std::__detail::__binomial_cdf (_Tp __p, unsigned int __n, unsigned int __k)
      Return the binomial cumulative distribution function.

    template<typename</li>
    Tp >

  _GLIBCXX14_CONSTEXPR _Tp std::__detail::__binomial_cdfc (_Tp __p, unsigned int __n, unsigned int __k)
     Return the complementary binomial cumulative distribution function.
```

template < typename _Tp >
 GLIBCXX14 CONSTEXPR Tp std:: detail:: f cdf (Tp F, unsigned int nu1, unsigned int nu2)

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

template < typename _Tp >
 _GLIBCXX14_CONSTEXPR _Tp std:: _detail:: _f_cdfc (_Tp __F, unsigned int __nu1, unsigned int __nu2)

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

template<typename _Tp >
 _GLIBCXX14_CONSTEXPR _Tp std::__detail::__students_t_cdf (_Tp __t, unsigned int __nu)

Return the Students T probability function.

template<typename _Tp >
 _GLIBCXX14_CONSTEXPR _Tp std::__detail::__students_t_cdfc (_Tp __t, unsigned int __nu)

Return the complement of the Students T probability function.

9.3.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

9.3.2 Macro Definition Documentation

9.3.2.1 #define _GLIBCXX_BITS_SF_BETA_TCC 1

Definition at line 49 of file sf_beta.tcc.

9.4 bits/sf cardinal.tcc File Reference

#include <bits/complex_util.h>
Include dependency graph for sf_cardinal.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Macros

• #define _GLIBCXX_BITS_SF_CARDINAL_TCC 1

Functions

template<typename _Tp >
 __gnu_cxx::__promote_num_t< _Tp > std::__detail::__sinc (_Tp __a, _Tp __x)

Return the generalized sinus cardinal function

$$sinc_a(x) = \frac{\sin(\pi x/a)}{(\pi x/a)}$$

 $\bullet \ \ template {<} typename \ _Tp >$

 $__gnu_cxx::_promote_num_t < _Tp > std::__detail::__sinc (_Tp __x)$

Return the normalized sinus cardinal function

$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

• template<typename _Tp >

Return the unnormalized sinus cardinal function

$$sinc_{\pi}(x) = \frac{\sin(x)}{x}$$

• template<typename_Tp>

$$\underline{\quad \quad } gnu_cxx::\underline{\quad } promote_num_t < \underline{\quad } Tp > std::\underline{\quad } detail::\underline{\quad } sinhc \ (\underline{\quad } Tp \ \underline{\quad } a, \ \underline{\quad } Tp \ \underline{\quad } x)$$

Return the generalized hyperbolic sinus cardinal function

$$sinhc_a(x) = \frac{\sinh(\pi x/a)}{\pi x/a}$$

.

 $\bullet \ \ template {<} typename \ _Tp >$

$$\underline{\hspace{0.3cm}} gnu_cxx::\underline{\hspace{0.3cm}} promote_num_t < \underline{\hspace{0.3cm}} Tp > std::\underline{\hspace{0.3cm}} detail::\underline{\hspace{0.3cm}} sinhc \; (\underline{\hspace{0.3cm}} Tp \; \underline{\hspace{0.3cm}} x)$$

Return the normalized hyperbolic sinus cardinal function

$$sinhc(x) = \frac{\sinh(\pi x)}{\pi x}$$

.

• template<typename_Tp>

Return the unnormalized hyperbolic sinus cardinal function

$$sinhc_{\pi}(x) = \frac{\sinh(x)}{x}$$

.

9.4.1 Macro Definition Documentation

9.4.1.1 #define _GLIBCXX_BITS_SF_CARDINAL_TCC 1

Definition at line 30 of file sf_cardinal.tcc.

9.5 bits/sf_chebyshev.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_chebyshev.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

#define _GLIBCXX_SF_CHEBYSHEV_TCC 1

Functions

```
template<typename _Tp >
    _Tp std::__detail::__chebyshev_recur (unsigned int __n, _Tp __x, _Tp _C0, _Tp _C1)
template<typename _Tp >
    _Tp std::__detail::__chebyshev_t (unsigned int __n, _Tp __x)
template<typename _Tp >
    _Tp std::__detail::__chebyshev_u (unsigned int __n, _Tp __x)
template<typename _Tp >
    _Tp std::__detail::__chebyshev_v (unsigned int __n, _Tp __x)
template<typename _Tp >
    _Tp std::__detail::__chebyshev_w (unsigned int __n, _Tp __x)
```

9.5.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.5.2 Macro Definition Documentation

9.5.2.1 #define _GLIBCXX_SF_CHEBYSHEV_TCC 1

Definition at line 31 of file sf chebyshev.tcc.

9.6 bits/sf_dawson.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_dawson.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

#define _GLIBCXX_SF_DAWSON_TCC 1

Functions

```
• template<typename _Tp > 
 _Tp std::__detail::__dawson (_Tp __x) 
 Return the Dawson integral, F(x), for real argument x.
```

```
    template<typename_Tp >
        _Tp std::__detail::__dawson_const_frac (_Tp __x)
```

Compute the Dawson integral using a sampling theorem representation.

```
template<typename _Tp >
    _Tp std::__detail::__dawson_series (_Tp __x)
```

Compute the Dawson integral using the series expansion.

9.6.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.6.2 Macro Definition Documentation

9.6.2.1 #define _GLIBCXX_SF_DAWSON_TCC 1

Definition at line 31 of file sf_dawson.tcc.

9.7 bits/sf_ellint.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_ellint.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Macros

#define _GLIBCXX_BITS_SF_ELLINT_TCC 1

Functions

```
ullet template<typename _Tp >
  _Tp std::__detail::__comp_ellint_1 (_Tp __k)
      Return the complete elliptic integral of the first kind K(k) using the Carlson formulation.
template<typename _Tp >
  _Tp std::__detail::__comp_ellint_2 (_Tp __k)
      Return the complete elliptic integral of the second kind E(k) using the Carlson formulation.
template<typename _Tp >
  _Tp std::__detail::__comp_ellint_3 (_Tp __k, _Tp __nu)
      Return the complete elliptic integral of the third kind \Pi(k,\nu)=\Pi(k,\nu,\pi/2) using the Carlson formulation.
• template<typename _{\mathrm{Tp}} >
  _Tp std::__detail::__comp_ellint_d (_Tp __k)
template<typename _Tp >
  _Tp std::__detail::__comp_ellint_rf (_Tp __x, _Tp __y)
template<typename _Tp >
  _Tp std::__detail::__comp_ellint_rg (_Tp __x, _Tp __y)
• template<typename _Tp >
  _Tp std::__detail::__ellint_1 (_Tp __k, _Tp __phi)
      Return the incomplete elliptic integral of the first kind F(k, \phi) using the Carlson formulation.
template<typename _Tp >
  _Tp std::__detail::__ellint_2 (_Tp __k, _Tp __phi)
      Return the incomplete elliptic integral of the second kind E(k,\phi) using the Carlson formulation.
```

```
template<typename _Tp >
  _Tp std::__detail::__ellint_3 (_Tp __k, _Tp __nu, _Tp __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi) using the Carlson formulation.
template<typename</li>Tp >
  _Tp std::__detail::__ellint_cel (_Tp __k_c, _Tp __p, _Tp __a, _Tp __b)

    template<typename</li>
    Tp >

  _Tp std::__detail::__ellint_d (_Tp __k, _Tp __phi)

    template<typename _Tp >

  _Tp std::__detail::__ellint_el1 (_Tp __x, _Tp __k_c)
template<typename _Tp >
  _Tp std::__detail::__ellint_el2 (_Tp __x, _Tp __k_c, _Tp __a, _Tp __b)
• template<typename _{\rm Tp}>
  _Tp std::__detail::__ellint_el3 (_Tp __x, _Tp __k_c, _Tp __p)
template<typename _Tp >
  _Tp std::__detail::__ellint_rc (_Tp __x, _Tp __y)
      Return the Carlson elliptic function R_C(x,y) = R_F(x,y,y) where R_F(x,y,z) is the Carlson elliptic function of the first
      kind.
template<typename _Tp >
  _Tp std::__detail::__ellint_rd (_Tp __x, _Tp __y, _Tp __z)
      Return the Carlson elliptic function of the second kind R_D(x,y,z) = R_J(x,y,z,z) where R_J(x,y,z,p) is the Carlson
      elliptic function of the third kind.
template<typename_Tp>
  _Tp std::__detail::__ellint_rf (_Tp __x, _Tp __y, _Tp __z)
      Return the Carlson elliptic function R_F(x,y,z) of the first kind.
template<typename_Tp>
  _Tp std::__detail::__ellint_rg (_Tp __x, _Tp __y, _Tp __z)
      Return the symmetric Carlson elliptic function of the second kind R_G(x, y, z).
template<typename _Tp >
  _Tp std::__detail::__ellint_rj (_Tp __x, _Tp __y, _Tp __z, _Tp __p)
      Return the Carlson elliptic function R_J(x, y, z, p) of the third kind.
template<typename _Tp >
  _Tp std::__detail::__heuman_lambda (_Tp __k, _Tp __phi)
template<typename</li>Tp >
  _Tp std::__detail::__jacobi_zeta (_Tp __k, _Tp __phi)
```

9.7.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

9.7.2 Macro Definition Documentation

9.7.2.1 #define _GLIBCXX_BITS_SF_ELLINT_TCC 1

Definition at line 47 of file sf ellint.tcc.

9.8 bits/sf_expint.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_expint.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

#define _GLIBCXX_BITS_SF_EXPINT_TCC 1

Functions

```
• template<typename _Tp > 
 _Tp std::__detail::__coshint (const _Tp __x) 
 Return the hyperbolic cosine integral li(x).
```

```
template<typename _Tp >
  Tp std:: detail:: expint (unsigned int n, Tp x)
      Return the exponential integral E_n(x).
template<typename _Tp >
  _Tp std::__detail::__expint (_Tp __x)
      Return the exponential integral Ei(x).

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint_asymp (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) for large argument.
template<typename _Tp >
  Tp std:: detail:: expint E1 (Tp x)
      Return the exponential integral E_1(x).
template<typename_Tp>
  _Tp std::__detail::__expint_E1_asymp (_Tp __x)
      Return the exponential integral E_1(x) by asymptotic expansion.
template<typename _Tp >
  _Tp std::__detail::__expint_E1_series (_Tp __x)
      Return the exponential integral E_1(x) by series summation. This should be good for x < 1.

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint_Ei (_Tp __x)
      Return the exponential integral Ei(x).
template<typename_Tp>
  _Tp std::__detail::__expint_Ei_asymp (_Tp __x)
      Return the exponential integral Ei(x) by asymptotic expansion.
template<typename _Tp >
  _Tp std::__detail::__expint_Ei_series (_Tp __x)
      Return the exponential integral Ei(x) by series summation.

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint_En_cont_frac (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) by continued fractions.

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint_En_recursion (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) by recursion. Use upward recursion for x < n and downward recursion (Miller's
      algorithm) otherwise.
template<typename _Tp >
  _Tp std::__detail::__expint_En_series (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) by series summation.

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint_large_n (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) for large order.

    template<typename</li>
    Tp >

  _Tp std::__detail::__logint (const _Tp __x)
      Return the logarithmic integral li(x).
template<typename _Tp >
  _Tp std::__detail::__sinhint (const _Tp __x)
      Return the hyperbolic sine integral li(x).
```

9.8.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.8.2 Macro Definition Documentation

9.8.2.1 #define _GLIBCXX_BITS_SF_EXPINT_TCC 1

Definition at line 47 of file sf_expint.tcc.

9.9 bits/sf_fresnel.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf fresnel.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

std

• std::__detail

Macros

#define _GLIBCXX_SF_FRESNEL_TCC 1

Functions

```
    template<typename _Tp >
        std::complex< _Tp > std::__detail::__fresnel (const _Tp __x)
```

Return the Fresnel cosine and sine integrals as a complex number f(C(x) + iS(x))

```
    template<typename _Tp >
        void std::__detail::__fresnel_cont_frac (const _Tp __ax, _Tp &_Cf, _Tp &_Sf)
```

This function computes the Fresnel cosine and sine integrals by continued fractions for positive argument.

```
    template<typename _Tp >
        void std::__detail::__fresnel_series (const _Tp __ax, _Tp &_Cf, _Tp &_Sf)
```

This function returns the Fresnel cosine and sine integrals as a pair by series expansion for positive argument.

9.9.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.9.2 Macro Definition Documentation

9.9.2.1 #define _GLIBCXX_SF_FRESNEL_TCC 1

Definition at line 31 of file sf_fresnel.tcc.

9.10 bits/sf_gamma.tcc File Reference

```
#include <ext/math_const.h>
Include dependency graph for sf_gamma.tcc:
```


This graph shows which files directly or indirectly include this file:

Classes

struct std::__detail::_Factorial_table< _Tp >

Namespaces

- std
- std:: detail

Macros

#define _GLIBCXX_BITS_SF_GAMMA_TCC 1

Functions

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

template<typename_Tp >
 GLIBCXX14_CONSTEXPR_Tp std::__detail::__chi_squared_pdf (_Tp __chi2, unsigned int __nu)

Return the chi-squared propability function. This returns the probability that the observed chi-squared for a correct model is less than the value χ^2 .

template<typename
 Tp >

Return the complementary chi-squared propability function. This returns the probability that the observed chi-squared for a correct model is greater than the value χ^2 .

template<typename_Tp>

Return the double factorial of the integer n.

template<typename _Tp >

Return the factorial of the integer n.

template<typename_Tp>

Return $\Gamma(x)$.

template<typename_Tp>

template<typename _Tp >

Return the lower incomplete gamma function. The lower incomplete gamma function is defined by

$$\gamma(a, x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

.

template<typename_Tp>

Return the regularized lower incomplete gamma function. The regularized lower incomplete gamma function is defined by

$$P(a,x) = \frac{\gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\gamma(a,x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

is the lower incomplete gamma function.

• template<typename $_{\rm Tp}>$

Return the regularized upper incomplete gamma function. The regularized upper incomplete gamma function is defined by

$$Q(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\Gamma(a,x) = \int_{-\infty}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

is the upper incomplete gamma function.

template<typename _Tp >

$$std::pair < _Tp, _Tp > std:: __detail:: __gamma_series (_Tp __a, _Tp __x)$$

template<typename _Tp >

Return the upper incomplete gamma function. The lower incomplete gamma function is defined by

$$\Gamma(a,x) = \int_{-\infty}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

.

template<typename _Tp >

Return the logarithm of the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

template<typename_Tp>

template<typename_Tp>

Return the logarithm of the double factorial of the integer n.

template<typename _Tp >

Return the logarithm of the factorial of the integer n.

template<typename_Tp>

Return $log(|\Gamma(x)|)$. This will return values even for x < 0. To recover the sign of $\Gamma(x)$ for any argument use $_log_ \hookrightarrow gamma_sign$.

template<typename _Tp >

Return $log(\Gamma(x))$ by asymptotic expansion with Bernoulli number coefficients. This is like Sterling's approximation.

template<typename_Tp>

Return $log(\Gamma(x))$ by the Lanczos method. This method dominates all others on the positive axis I think.

template<typename_Tp>

Return the sign of $\Gamma(x)$. At nonpositive integers zero is returned.

template<typename _Tp >

Return $\Gamma(z)$ by the Spouge algorithm:

$$\Gamma(z+1) = (z+a)^{z+1/2} e^{-z-a} \left[\sqrt{2\pi} \sum_{k=1}^{\lceil a \rceil + 1} \frac{c_k(a)}{z+k} \right]$$

where

$$c_k(a) = \frac{(-1)^{k-1}}{(k-1)!} (a-k)^{k-1/2} e^{a-k}$$

and the error is bounded by

$$\epsilon(a) < a^{-1/2} (2\pi)^{-a-1/2}$$

template<typename_Tp>

Return the logarithm of the lower Pochhammer symbol or the falling factorial function. The lower Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1 = \Gamma(a+1)/\Gamma(a-n+1)$$

In particular, $f(n)_n = n!$ f]. Thus this function returns

$$ln[(a)_n] = \Gamma(a+1) - \Gamma(a-n+1), ln[(a)_0] = 0$$

Many notations exist:

 $a^{\underline{n}}$

$$\left\{\begin{array}{c} a \\ n \end{array}\right\}$$

, and others.

• template<typename $_{\mathrm{Tp}}$ >

Return the logarithm of the (upper) Pochhammer symbol or the rising factorial function. The Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a+k), (a)_0 = 1 = \Gamma(a+n)/\Gamma(n)$$

Thus this function returns

$$ln[(a)_n] = \Gamma(a+n) - \Gamma(n), ln[(a)_0] = 0$$

Many notations exist:

 $a^{\overline{n}}$

,

 $\begin{bmatrix} a \\ n \end{bmatrix}$

, and others.

template<typename _Tp >

Return the logarithm of the lower Pochhammer symbol or the falling factorial function. The lower Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1 = \Gamma(a+1)/\Gamma(a-n+1)$$

In particular, f(n) = n! f(n)

template<typename _Tp >

Return the (upper) Pochhammer function or the rising factorial function. The Pochammer symbol is defined by

$$(a)_n = \prod_{k=0}^{n-1} (a+k), (a)_0 = 1 = \Gamma(a+n)/\Gamma(n)$$

Many notations exist:

 $a^{\bar{\imath}}$

,

 $\left[\begin{array}{c} a \\ n \end{array}\right]$

, and others.

template<typename_Tp>

Return the digamma function. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

For negative argument the reflection formula is used:

$$\psi(x) = \psi(1-x) - \pi \cot(\pi x)$$

template<typename_Tp>

Return the polygamma function $\psi^{(n)}(x)$.

template<typename _Tp >
 _Tp std::__detail::__psi_asymp (_Tp __x)

Return the digamma function for large argument. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

.

template<typename_Tp>

Return the digamma function by series expansion. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

.

Variables

```
• constexpr Factorial table < long double > std:: detail:: S double factorial table [301]
```

- constexpr_Factorial_table < long double > std::__detail::_S_factorial_table [171]
- constexpr_Factorial_table< long double > std::__detail::_S_neg_double_factorial_table [999]
- template<typename_Tp >
 constexpr std::size_t std::__detail::_S_num_double_factorials = 0
- template<>
- constexpr std::size_t std::__detail::_S_num_double_factorials< double > = 301
- template<>
 constexpr std::size_t std::__detail::_S_num_double_factorials< float > = 57
- template<>
- constexpr std::size_t std::__detail::_S_num_double_factorials< long double > = 301
 template<typename_Tp >
- constexpr std::size_t std::__detail::_S_num_factorials = 0
- template<> constexpr std::size t std:: detail:: S num factorials< double > = 171
- template<>
 constexpr std::size t std:: detail:: S num factorials< float > = 35
- template<>
 constexpr std::size_t std:: __detail:: S_num_factorials< long double > = 171
- template<typename_Tp >
 constexpr std::size_t std::__detail::_S_num_neg_double_factorials = 0
- template<> constexpr std::size_t std::__detail::_S_num_neg_double_factorials< double > = 150
- template<>
 constexpr std::size_t std::__detail::_S_num_neg_double_factorials< long double > = 999

9.10.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

9.10.2 Macro Definition Documentation

9.10.2.1 #define _GLIBCXX_BITS_SF_GAMMA_TCC 1

Definition at line 49 of file sf_gamma.tcc.

9.11 bits/sf_gegenbauer.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_gegenbauer.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

#define _GLIBCXX_SF_GEGENBAUER_TCC 1

Functions

```
    template<typename _Tp >
        _Tp std::__detail::__gegenbauer_poly (unsigned int __n, _Tp __alpha, _Tp __x)
```

9.11.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.11.2 Macro Definition Documentation

9.11.2.1 #define _GLIBCXX_SF_GEGENBAUER_TCC 1

Definition at line 31 of file sf_gegenbauer.tcc.

9.12 bits/sf hankel.tcc File Reference

```
#include <complex>
#include <limits>
#include <vector>
#include <bits/complex_util.h>
Include dependency graph for sf_hankel.tcc:
```


This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Macros

• #define GLIBCXX BITS SF HANKEL TCC 1

Functions

```
template<typename _Tp >
  void std::__detail::__airy_arg (std::complex< _Tp > __num2d3, std::complex< _Tp > __zeta, std::complex<
  _Tp > &__argp, std::complex< _Tp > &__argm)
      Compute the arguments for the Airy function evaluations carefully to prevent premature overflow. Note that the major work
      here is in safe_div. A faster, but less safe implementation can be obtained without use of safe_div.
template<typename _Tp >
  std::complex< _Tp > std::__detail::__cyl_bessel (std::complex< _Tp > __nu, std::complex< _Tp > __z)
      Return the complex cylindrical Bessel function.
template<typename</li>Tp >
  std::complex< _Tp > std::__detail::__cyl_hankel_1 (std::complex< _Tp > __nu, std::complex< _Tp > __z)
      Return the complex cylindrical Hankel function of the first kind.
template<typename _Tp >
  std::complex< _Tp > std::__detail::__cyl_hankel_2 (std::complex< _Tp > __nu, std::complex< _Tp > __z)
      Return the complex cylindrical Hankel function of the second kind.
template<typename</li>Tp >
  std::complex< _Tp > std::__detail::__cyl_neumann (std::complex< _Tp > __nu, std::complex< _Tp > __z)
      Return the complex cylindrical Neumann function.
template<typename_Tp>
  void std:: __detail:: __debye_region (std::complex < _Tp > __alpha, int &__indexr, char &__aorb)
template<typename _Tp >
  void std::__detail::__hankel (std::complex< _Tp > __nu, std::complex< _Tp > __z, std::complex< _Tp > &_H1,
  std::complex< _Tp > &_H2, std::complex< _Tp > &_H1p, std::complex< _Tp > &_H2p)
```

- template<typename _Tp >
 void std::__detail::__hankel_debye (std::complex< _Tp > __nu, std::complex< _Tp > __z, std::complex< _Tp
 > _alpha, int __indexr, char &__aorb, int &__morn, std::complex< _Tp > &_H1, std::complex< _Tp > &_H2, std::complex< _Tp > &_H1p, std::complex< _Tp > &_H2p)

Compute parameters depending on z and nu that appear in the uniform asymptotic expansions of the Hankel functions and their derivatives, except the arguments to the Airy functions.

template<typename_Tp >
 void std::__detail::__hankel_uniform (std::complex< _Tp > __nu, std::complex< _Tp > __z, std::complex< _Tp > &_H1, std::complex< _Tp > &_H2, std::complex< _Tp > &_H1p, std::complex< _Tp > &_H2p)

This routine computes the uniform asymptotic approximations of the Hankel functions and their derivatives including a patch for the case when the order equals or nearly equals the argument. At such points, Olver's expressions have zero denominators (and numerators) resulting in numerical problems. This routine averages results from four surrounding points in the complex plane to obtain the result in such cases.

• template<typename _Tp > void std:: __detail:: __hankel_uniform_olver (std::complex< _Tp > __nu, std::complex< _Tp > __z, std \leftarrow ::complex< _Tp > &_H1, std::complex< _Tp > &_H1p, std::complex< _Tp > &_H2p)

Compute approximate values for the Hankel functions of the first and second kinds using Olver's uniform asymptotic expansion to of order nu along with their derivatives.

Compute outer factors and associated functions of z and nu appearing in Olver's uniform asymptotic expansions of the Hankel functions of the first and second kinds and their derivatives. The various functions of z and nu returned by $hankel_uniform_outer$ are available for use in computing further terms in the expansions.

Compute the sums in appropriate linear combinations appearing in Olver's uniform asymptotic expansions for the Hankel functions of the first and second kinds and their derivatives, using up to nterms (less than 5) to achieve relative error eps.

template<typename_Tp >
 std::complex< _Tp > std::__detail::__sph_bessel (unsigned int __n, std::complex< _Tp > __z)
 Return the complex spherical Bessel function.

template<typename _Tp >
 void std::__detail::__sph_hankel (unsigned int __n, std::complex< _Tp > __z, std::complex< _Tp > &_H1, std
 ::complex< _Tp > &_H1p, std::complex< _Tp > &_H2p)

Helper to compute complex spherical Hankel functions and their derivatives.

template<typename _Tp >
 std::complex< _Tp > std::__detail::__sph_hankel_1 (unsigned int __n, std::complex< _Tp > __z)

Return the complex spherical Hankel function of the first kind.

```
    template<typename _Tp >
        std::complex< _Tp > std::__detail::__sph_hankel_2 (unsigned int __n, std::complex< _Tp > __z)
        Return the complex spherical Hankel function of the second kind.
    template<typename _Tp >
        std::complex< _Tp > std::__detail::__sph_neumann (unsigned int __n, std::complex< _Tp > __z)
        Return the complex spherical Neumann function.
```

9.12.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly.

9.12.2 Macro Definition Documentation

```
9.12.2.1 #define _GLIBCXX_BITS_SF_HANKEL_TCC 1
```

Definition at line 31 of file sf_hankel.tcc.

9.13 bits/sf_hankel_new.tcc File Reference

```
#include <complex>
#include <limits>
#include <vector>
#include "specfun_util.h"
#include "complex_util.h"
Include dependency graph for sf_hankel_new.tcc:
```


Macros

#define _GLIBCXX_BITS_SF_HANKEL_NEW_TCC 1

9.13.1 Macro Definition Documentation

9.13.1.1 #define _GLIBCXX_BITS_SF_HANKEL_NEW_TCC 1

Definition at line 31 of file sf hankel new.tcc.

9.14 bits/sf_hermite.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_hermite.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

#define _GLIBCXX_BITS_SF_HERMITE_TCC 1

```
• template<typename _Tp > 
 _Tp std::__detail::__poly_hermite (unsigned int __n, _Tp __x) 
 This routine returns the Hermite polynomial of order n: H_n(x).
```

```
• template<typename _Tp > 
 _Tp std::__detail::__poly_hermite_asymp (unsigned int __n, _Tp __x) 
 _This routine returns the Hermite polynomial of large order n: H_n(x). We assume here that x >= 0. 
• template<typename _Tp > 
 _Tp std::__detail::__poly_hermite_recursion (unsigned int __n, _Tp __x) 
 _This routine returns the Hermite polynomial of order n: H_n(x) by recursion on n.
```

9.14.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.14.2 Macro Definition Documentation

```
9.14.2.1 #define _GLIBCXX_BITS_SF_HERMITE_TCC 1
```

Definition at line 42 of file sf_hermite.tcc.

9.15 bits/sf_hydrogen.tcc File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

#define _GLIBCXX_BITS_SF_HYDROGEN_TCC 1

Functions

template<typename _Tp >
 std::complex< _Tp > std::__detail::__hydrogen (const unsigned int __n, const unsigned int __l, const unsigned int __m, const _Tp _Z, const _Tp __r, const _Tp __theta, const _Tp __phi)

9.15.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly.

9.15.2 Macro Definition Documentation

9.15.2.1 #define _GLIBCXX_BITS_SF_HYDROGEN_TCC 1

Definition at line 31 of file sf_hydrogen.tcc.

9.16 bits/sf_hyperg.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_hyperg.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- · std:: detail

Macros

#define _GLIBCXX_BITS_SF_HYPERG_TCC 1

```
template<typename _Tp >
  _Tp std::__detail::__conf_hyperg (_Tp __a, _Tp __c, _Tp __x)
      Return the confluent hypergeometric function _1F_1(a;c;x).
• template<typename _Tp >
  _Tp std::__detail::__conf_hyperg_lim (_Tp __c, _Tp __x)
      Return the confluent hypergeometric limit function {}_{0}F_{1}(-;c;x).
• template<typename _Tp >
  _Tp std::__detail::__conf_hyperg_lim_series (_Tp __c, _Tp __x)
      This routine returns the confluent hypergeometric limit function by series expansion.
template<typename _Tp >
  _Tp std::__detail::__conf_hyperg_luke (_Tp __a, _Tp __c, _Tp __xin)
      Return the hypergeometric function _1F_1(a;c;x) by an iterative procedure described in Luke, Algorithms for the Compu-
      tation of Mathematical Functions.
template<typename _Tp >
  _Tp std::__detail::__conf_hyperg_series (_Tp __a, _Tp __c, _Tp __x)
      This routine returns the confluent hypergeometric function by series expansion.

    template<typename</li>
    Tp >

  _Tp std::__detail::__hyperg (_Tp __a, _Tp __b, _Tp __c, _Tp __x)
      Return the hypergeometric function _2F_1(a,b;c;x).
template<typename _Tp >
  _Tp std::__detail::__hyperg_luke (_Tp __a, _Tp __b, _Tp __c, _Tp __xin)
```

Return the hypergeometric function $_2F_1(a,b;c;x)$ by an iterative procedure described in Luke, Algorithms for the Computation of Mathematical Functions.

```
    template<typename _Tp >
        _Tp std::__detail::__hyperg_reflect (_Tp __a, _Tp __b, _Tp __c, _Tp __x)
```

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by the reflection formulae in Abramowitz & Stegun formula 15.3.6 for d=c-a-b not integral and formula 15.3.11 for d=c-a-b integral. This assumes a,b,c!= negative integer.

```
    template<typename _Tp >
        _Tp std::__detail::__hyperg_series (_Tp __a, _Tp __b, _Tp __c, _Tp __x)
```

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by series expansion.

9.16.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.16.2 Macro Definition Documentation

9.16.2.1 #define _GLIBCXX_BITS_SF_HYPERG_TCC 1

Definition at line 44 of file sf_hyperg.tcc.

9.17 bits/sf_hypint.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf hypint.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Macros

#define _GLIBCXX_SF_HYPINT_TCC 1

Functions

```
    template<typename_Tp >
        std::pair< _Tp, _Tp > std::__detail::__chshint (_Tp __x, _Tp &_Chi, _Tp &_Shi)
```

This function returns the hyperbolic cosine Ci(x) and hyperbolic sine Si(x) integrals as a pair.

• template<typename _Tp >

```
void std::__detail::__chshint_cont_frac (_Tp __t, _Tp &_Chi, _Tp &_Shi)
```

This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by continued fraction for positive argument.

```
    template<typename _Tp >
        void std::__detail::__chshint_series (_Tp __t, _Tp &_Chi, _Tp &_Shi)
```

This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by series summation for positive argument.

9.17.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.17.2 Macro Definition Documentation

9.17.2.1 #define _GLIBCXX_SF_HYPINT_TCC 1

Definition at line 31 of file sf hypint.tcc.

9.18 bits/sf_jacobi.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_jacobi.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

• #define _GLIBCXX_SF_JACOBI_TCC 1

Functions

template<typename _Tp >
 _Tp std::__detail::__poly_jacobi (unsigned int __n, _Tp __alpha, _Tp __beta, _Tp __x)

```
    template<typename _Tp >
        _Tp std::__detail::__poly_radial_jacobi (unsigned int __n, unsigned int __m, _Tp __rho)
```

```
    template<typename _Tp >
        __gnu_cxx::__promote_num_t< _Tp > std::__detail::__zernike (unsigned int __n, int __m, _Tp __rho, _Tp __phi)
```

9.18.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.18.2 Macro Definition Documentation

9.18.2.1 #define GLIBCXX SF JACOBI TCC 1

Definition at line 31 of file sf_jacobi.tcc.

9.19 bits/sf_laguerre.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_laguerre.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Macros

#define _GLIBCXX_BITS_SF_LAGUERRE_TCC 1

```
template<typename _Tp >
  _Tp std::__detail::__assoc_laguerre (unsigned int __n, unsigned int __m, _Tp __x)
      This routine returns the associated Laguerre polynomial of order n, degree m: L_n^m(x).

    template<typename</li>
    Tp >

  _Tp std::__detail::__laguerre (unsigned int __n, _Tp __x)
      This routine returns the Laguerre polynomial of order n: L_n(x).
• template<typename _{\rm Tpa}, typename _{\rm Tp} >
  _Tp std::__detail::__poly_laguerre (unsigned int __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of order n, degree \alpha: L_n^a lpha(x).

    template<typename _Tpa , typename _Tp >

  _Tp std::__detail::__poly_laguerre_hyperg (unsigned int __n, _Tpa __alpha1, _Tp __x)
      Evaluate the polynomial based on the confluent hypergeometric function in a safe way, with no restriction on the arguments.

    template<typename _Tpa , typename _Tp >

  _Tp std::__detail::__poly_laguerre_large_n (unsigned __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of order n, degree \alpha for large n. Abramowitz & Stegun, 13.5.21.
• template<typename Tpa, typename Tp>
  _Tp std::__detail::__poly_laguerre_recursion (unsigned int __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of order n, degree \alpha: L_n^n(x) by recursion.
```

9.19.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.19.2 Macro Definition Documentation

9.19.2.1 #define _GLIBCXX_BITS_SF_LAGUERRE_TCC 1

Definition at line 44 of file sf_laguerre.tcc.

9.20 bits/sf_legendre.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf legendre.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

std

• std::__detail

Macros

• #define _GLIBCXX_BITS_SF_LEGENDRE_TCC 1

Functions

```
template<typename _Tp >
    _Tp std::__detail::__assoc_legendre_p (unsigned int __l, unsigned int __m, _Tp __x)
    Return the associated Legendre function by recursion on l and downward recursion on m.
template<typename _Tp >
    _Tp std::__detail::__poly_legendre_p (unsigned int __l, _Tp __x)
    Return the Legendre polynomial by upward recursion on order l.
template<typename _Tp >
    _Tp std::__detail::__poly_legendre_q (unsigned int __l, _Tp __x)
    Return the Legendre function of the second kind by upward recursion on order l.
template<typename _Tp >
    std::complex< _Tp > std::__detail::__sph_harmonic (unsigned int __l, int __m, _Tp __theta, _Tp __phi)
    Return the spherical harmonic function.
template<typename _Tp >
    _Tp std::__detail::__sph_legendre (unsigned int __l, unsigned int __m, _Tp __theta)
```

9.20.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.20.2 Macro Definition Documentation

```
9.20.2.1 #define _GLIBCXX_BITS_SF_LEGENDRE_TCC 1
```

Return the spherical associated Legendre function.

Definition at line 47 of file sf_legendre.tcc.

9.21 bits/sf mod bessel.tcc File Reference

```
#include <utility>
#include <ext/math_const.h>
```

Include dependency graph for sf_mod_bessel.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

#define _GLIBCXX_BITS_SF_MOD_BESSEL_TCC 1

```
• template<typename _Tp > void std::__detail::__airy (_Tp __z, _Tp &_Ai, _Tp &_Bi, _Tp &_Aip, _Tp &_Bip) 
 Compute the Airy functions Ai(x) and Bi(x) and their first derivatives Ai'(x) and Bi(x) respectively. 
• template<typename _Tp > 
 _Tp std::__detail::__cyl_bessel_i (_Tp __nu, _Tp __x) 
 Return the regular modified Bessel function of order \nu: I_{\nu}(x).
```

template<typename _Tp >
 void std:: detail:: cyl bessel ik (Tp nu, Tp x, Tp & Inu, Tp & Knu, Tp & Ipnu, Tp & Kpnu)

Return the modified cylindrical Bessel functions and their derivatives of order ν by various means.

template<typename _Tp >
 void std::__detail::__cyl_bessel_ik_asymp (_Tp __nu, _Tp __x, _Tp &_Inu, _Tp &_Knu, _Tp &_Ipnu, _Tp &_
 Kpnu)

This routine computes the asymptotic modified cylindrical Bessel and functions of order nu: $I_{\nu}(x)$, $N_{\nu}(x)$. Use this for $x >> nu^2 + 1$.

template<typename _Tp >
 void std::__detail::__cyl_bessel_ik_steed (_Tp __nu, _Tp __x, _Tp &_Inu, _Tp &_Knu, _Tp &_Ipnu, _Tp &_Kpnu)

Compute the modified Bessel functions $I_{\nu}(x)$ and $K_{\nu}(x)$ and their first derivatives $I'_{\nu}(x)$ and $K'_{\nu}(x)$ respectively. These four functions are computed together for numerical stability.

template < typename _Tp >
 _Tp std::__detail::__cyl_bessel_k (_Tp __nu, _Tp __x)

Return the irregular modified Bessel function $K_{\nu}(x)$ of order ν .

template<typename _Tp >
 void std::__detail::__fock_airy (_Tp __x, std::complex< _Tp > &__w1, std::complex< _Tp > &__w2, std
 ::complex< _Tp > &__w1p, std::complex< _Tp > &__w2p)

Compute the Fock-type Airy functions $w_1(x)$ and $w_2(x)$ and their first derivatives $w_1'(x)$ and $w_2'(x)$ respectively.

$$w_1(x) = \sqrt{\pi}(Ai(x) + iBi(x))$$

$$w_2(x) = \sqrt{\pi}(Ai(x) - iBi(x))$$

template<typename _Tp >
 void std::__detail::__sph_bessel_ik (unsigned int __n, _Tp __x, _Tp &__i_n, _Tp &__k_n, _Tp &__ip_n, _Tp &__k_n)

Compute the spherical modified Bessel functions $i_n(x)$ and $k_n(x)$ and their first derivatives $i'_n(x)$ and $k'_n(x)$ respectively.

9.21.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

9.21.2 Macro Definition Documentation

9.21.2.1 #define _GLIBCXX_BITS_SF_MOD_BESSEL_TCC 1

Definition at line 47 of file sf mod bessel.tcc.

9.22 bits/sf_owens_t.tcc File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Macros

#define _GLIBCXX_BITS_SF_OWENS_T_TCC 1

Functions

```
template<typename _Tp >
    _Tp std::__detail::__gauss (_Tp __x)
template<typename _Tp >
    _Tp std::__detail::__owens_t (_Tp __h, _Tp __a)
template<typename _Tp >
    _Tp std::__detail::__znorm1 (_Tp __x)
template<typename _Tp >
    _Tp std::__detail::__znorm2 (_Tp __x)
```

9.22.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly.

9.22.2 Macro Definition Documentation

9.22.2.1 #define _GLIBCXX_BITS_SF_OWENS_T_TCC 1

Definition at line 31 of file sf_owens_t.tcc.

9.23 bits/sf_polylog.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_polylog.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

• #define _GLIBCXX_BITS_SF_POLYLOG_TCC 1

```
template<typename _Tp >
    _Tp std::__detail::__bose_einstein (_Tp __s, _Tp __x)
```

```
template<typename _Tp >
  std::complex< _Tp > std::__detail::__clamp_0_m2pi (std::complex< _Tp > __w)
template<typename_Tp>
  std::complex< _Tp > std::__detail::__clamp_pi (std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< Tp > std:: detail:: clausen (unsigned int m, std::complex< Tp > w)
template<typename _Tp >
  _Tp std::__detail::__clausen (unsigned int __m, _Tp __w)
template<typename _Tp >
  _Tp std::__detail::__clausen_c (unsigned int __m, std::complex< _Tp > w)
template<typename</li>Tp >
  _Tp std::__detail::__clausen_c (unsigned int __m, _Tp __w)
template<typename _Tp >
  _Tp std::__detail::__clausen_s (unsigned int __m, std::complex< _Tp > __w)

    template<typename</li>
    Tp >

  _Tp std::__detail::__clausen_s (unsigned int __m, _Tp __w)
template<typename _Tp >
  Tp std:: detail:: dirichlet beta (std::complex < Tp > w)
template<typename _Tp >
  _Tp std::__detail::__dirichlet_beta (_Tp __w)
template<typename_Tp>
  std::complex< Tp > std:: detail:: dirichlet eta (std::complex< Tp > w)
template<typename _Tp >
  Tp std:: detail:: dirichlet eta (Tp w)
template<typename _Tp >
  _Tp std::__detail::__fermi_dirac (_Tp __s, _Tp __x)

    template<typename</li>
    Tp >

  bool std::__detail::__fpequal (const _Tp &__a, const _Tp &__b)
template<typename _Tp >
  bool std::__detail::__fpimag (const std::complex < _Tp > &__w)
template<typename</li>Tp >
  bool std::__detail::__fpimag (const _Tp)

    template<typename</li>
    Tp >

  bool std::__detail::__fpreal (const std::complex < _Tp > &__w)
template<typename _Tp >
  bool std:: detail:: fpreal (const Tp)
template<typename _Tp >
  _Tp std::__detail::__polylog (_Tp __s, _Tp __x)

    template<typename</li>
    Tp >

  std::complex< _Tp > std::__detail::__polylog (_Tp __s, std::complex< _Tp > __w)
• template<typename _Tp , typename ArgType >
    _gnu_cxx::__promote_num_t< std::complex< _Tp >, ArgType > std::__detail::__polylog_exp (_Tp __s, Arg↔
  Type __w)
template<typename</li>Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_asymp (const _Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_int_neg (const int __s, std::complex< _Tp > __w)
template<typename</li>Tp >
  std::complex < _Tp > std:: _detail:: _polylog_exp_int_neg (const int __s, _Tp __w)
template<typename_Tp>
  std::complex< _Tp > std::__detail::__polylog_exp_int_pos (const unsigned int __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< Tp > std:: detail:: polylog exp int pos (const unsigned int s, Tp w)
```

```
template<typename _Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_neg (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_neg (int __s, std::complex< _Tp > __w)
• template<typename _Tp , int __sigma>
  std::complex< Tp > std:: detail:: polylog exp neg even (unsigned int n, std::complex< Tp > w)
• template<typename _Tp , int __sigma>
  std::complex< _Tp > std::__detail::__polylog_exp_neg_odd (unsigned int __n, std::complex< _Tp > __w)
• template<typename _PowTp , typename _Tp >
  Tp std:: detail:: polylog exp negative real part ( PowTp s, Tp w)

    template<typename</li>
    Tp >

 std::complex < Tp > std:: detail:: polylog exp pos (unsigned int s, std::complex < Tp > w)
template<typename</li>Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_pos (unsigned int __s, _Tp __w)
template<typename _Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_pos (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< _Tp > std:: __detail::__polylog_exp_real_neg (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_real_neg (_Tp __s, _Tp __w)
template<typename _Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_real_pos (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex < _Tp > std::__detail::__polylog_exp_real_pos (_Tp __s, _Tp __w)
• template<typename _Tp = double>
  Tp std:: detail::evenzeta (unsigned int k)
```

9.23.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

9.23.2 Macro Definition Documentation

```
9.23.2.1 #define _GLIBCXX_BITS_SF_POLYLOG_TCC 1
```

Definition at line 41 of file sf_polylog.tcc.

9.24 bits/sf theta.tcc File Reference

```
#include <vector>
#include <tuple>
#include <ext/math_const.h>
```

Include dependency graph for sf_theta.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

• #define _GLIBCXX_SF_THETA_TCC 1

```
template<typename _Tp >
    _Tp std::__detail::__ellnome (_Tp __k)
template<typename _Tp >
    _Tp std::__detail::__ellnome_k (_Tp __k)
template<typename _Tp >
    _Tp std::__detail::__ellnome_series (_Tp __k)
```

```
template<typename _Tp >
  std::tuple < _Tp, _Tp, _Tp > std::__detail::__jacobi_sncndn (_Tp __k, _Tp __u)
template<typename _Tp >
  _Tp std::__detail::__theta_1 (_Tp __nu, _Tp __x)
• template<typename _{\mathrm{Tp}} >
  _Tp std::__detail::__theta_2 (_Tp __nu, _Tp __x)
ullet template<typename _Tp >
  _Tp std::__detail::__theta_2_asymp (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_2_sum (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_3 (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_3_asymp (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_3_sum (_Tp __nu, _Tp __x)
template<typename_Tp>
  _Tp std::__detail::__theta_4 (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_c (_Tp __k, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_d (_Tp __k, _Tp __x)
template<typename</li>Tp >
  _Tp std::__detail::__theta_n (_Tp __k, _Tp __x)
template<typename_Tp>
  _Tp std::__detail::__theta_s (_Tp __k, _Tp __x)
```

9.24.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.24.2 Macro Definition Documentation

9.24.2.1 #define _GLIBCXX_SF_THETA_TCC 1

Definition at line 31 of file sf_theta.tcc.

9.25 bits/sf_trigint.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_trigint.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

• #define _GLIBCXX_SF_TRIGINT_TCC 1

Enumerations

enum { std::__detail::SININT, std::__detail::COSINT }

Functions

template < typename _Tp >
 std::pair < _Tp, _Tp > std::__detail::__sincosint (_Tp __x)

This function returns the sine Si(x) and cosine Ci(x) integrals as a pair.

template<typename _Tp >
 void std:: __detail:: __sincosint _asymp (_Tp __t, _Tp &_Si, _Tp &_Ci)

This function computes the sine Si(x) and cosine Ci(x) integrals by asymptotic series summation for positive argument.

template<typename _Tp >
 void std::__detail::__sincosint_cont_frac (_Tp __t, _Tp &_Si, _Tp &_Ci)

This function computes the sine Si(x) and cosine Ci(x) integrals by continued fraction for positive argument.

template < typename _Tp >
 void std:: __detail:: __sincosint_series (_Tp __t, _Tp &_Si, _Tp &_Ci)

This function computes the sine Si(x) and cosine Ci(x) integrals by series summation for positive argument.

9.25.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.25.2 Macro Definition Documentation

9.25.2.1 #define _GLIBCXX_SF_TRIGINT_TCC 1

Definition at line 31 of file sf_trigint.tcc.

9.26 bits/sf_zeta.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_zeta.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Macros

• #define GLIBCXX BITS SF ZETA TCC 1

convergence of the > 0 sum gets better.

```
template<typename</li>Tp >
  _Tp std::__detail::__dilog (_Tp __x)
      Compute the dilogarithm function Li_2(x) by summation for x \le 1.
template<typename _Tp >
  _Tp std::__detail::__hurwitz_zeta (_Tp __s, _Tp __a)
      Return the Hurwitz zeta function \zeta(s,a) for all s = 1 and a > -1.
template<typename _Tp >
  _Tp std::__detail::__hurwitz_zeta_euler_maclaurin (_Tp __s, _Tp __a)
      Return the Hurwitz zeta function \zeta(s,a) for all s \neq 1 and a > -1.
template<typename _Tp >
  _Tp std::__detail::__riemann_zeta (_Tp __s)
      Return the Riemann zeta function \zeta(s).

    template<typename</li>
    Tp >

  _Tp std::__detail::__riemann_zeta_alt (_Tp __s)
      Evaluate the Riemann zeta function \zeta(s) by an alternate series for s > 0.
template<typename _Tp >
  _Tp std::__detail::__riemann_zeta_euler_maclaurin (_Tp __s)
      Evaluate the Riemann zeta function \zeta(s) by an alternate series for s > 0.
template<typename _Tp >
  _Tp std::__detail::__riemann_zeta_glob (_Tp __s)
      Evaluate the Riemann zeta function by series for all s != 1. Convergence is great until largish negative numbers. Then the
```

```
template < typename _Tp >
_Tp std::__detail::__riemann_zeta_m_1 (_Tp __s)
Return the Riemann zeta function ζ(s) - 1.
template < typename _Tp >
_Tp std::__detail::__riemann_zeta_m_1_sum (_Tp __s)
Return the Riemann zeta function ζ(s) - 1 by summation for s > 1. This is a small remainder for large s.
template < typename _Tp >
_Tp std::__detail::__riemann_zeta_product (_Tp __s)
Compute the Riemann zeta function ζ(s) using the product over prime factors.
template < typename _Tp >
_Tp std::__detail::__riemann_zeta_sum (_Tp __s)
Compute the Riemann zeta function ζ(s) by summation for s > 1.
```

Variables

- constexpr size_t std::__detail::_Num_Euler_Maclaurin_zeta = 100
- constexpr long double std:: __detail:: S _Euler _Maclaurin _zeta [Num _Euler _Maclaurin _zeta]
- constexpr size_t std::__detail::_S_num_zetam1 = 33
- constexpr long double std::__detail::_S_zetam1 [_S_num_zetam1]

9.26.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

9.26.2 Macro Definition Documentation

9.26.2.1 #define _GLIBCXX_BITS_SF_ZETA_TCC 1

Definition at line 46 of file sf_zeta.tcc.

9.27 bits/specfun.h File Reference

```
#include <bits/c++config.h>
#include <limits>
#include <bits/stl_algobase.h>
#include <bits/specfun_util.h>
#include <type_traits>
#include <bits/numeric_limits.h>
#include <bits/complex_util.h>
#include <bits/sf_gamma.tcc>
#include <bits/sf_bessel.tcc>
#include <bits/sf_beta.tcc>
#include <bits/sf_cardinal.tcc>
#include <bits/sf_chebyshev.tcc>
#include <bits/sf dawson.tcc>
#include <bits/sf_ellint.tcc>
#include <bits/sf_expint.tcc>
#include <bits/sf_fresnel.tcc>
#include <bits/sf_gegenbauer.tcc>
#include <bits/sf_hyperg.tcc>
#include <bits/sf_hypint.tcc>
#include <bits/sf_jacobi.tcc>
#include <bits/sf_laguerre.tcc>
#include <bits/sf_legendre.tcc>
#include <bits/sf_hydrogen.tcc>
#include <bits/sf_mod_bessel.tcc>
#include <bits/sf_hermite.tcc>
#include <bits/sf_theta.tcc>
#include <bits/sf_trigint.tcc>
#include <bits/sf_zeta.tcc>
#include <bits/sf_owens_t.tcc>
#include <bits/sf_polylog.tcc>
#include <bits/sf_airy.tcc>
#include <bits/sf hankel.tcc>
Include dependency graph for specfun.h:
```


Namespaces

- __gnu_cxx
- std

Macros

- #define __cpp_lib_math_special_functions 201603L
- #define STDCPP MATH SPEC FUNCS 201003L

Enumerations

enum { __gnu_cxx::_GLIBCXX_JACOBI_SN, __gnu_cxx::_GLIBCXX_JACOBI_CN, __gnu_cxx::_GLIBCXX_J
 ACOBI_DN }

```
template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::airy_ai (_Tp __x)

    float __gnu_cxx::airy_aif (float __x)

    long double <u>__gnu_cxx::airy_ail</u> (long double <u>__x)</u>

template<typename</li>Tp >
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::airy_bi (_Tp __x)

    float __gnu_cxx::airy_bif (float __x)

• long double gnu cxx::airy bil (long double x)
template<typename _Tp >
    gnu cxx:: promote< Tp >:: type std::assoc laguerre (unsigned int n, unsigned int m, Tp x)

    float std::assoc_laguerref (unsigned int __n, unsigned int __m, float __x)

    long double std::assoc_laguerrel (unsigned int __n, unsigned int __m, long double __x)

template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type std::assoc_legendre (unsigned int __l, unsigned int __m, _Tp __x)

    float std::assoc legendref (unsigned int I, unsigned int m, float x)

    long double std::assoc legendrel (unsigned int I, unsigned int m, long double x)

template<typename_Tp>
    gnu cxx:: promote num t< Tp > gnu cxx::bernoulli (unsigned int n)

    float gnu cxx::bernoullif (unsigned int n)

    long double __gnu_cxx::bernoullil (unsigned int __n)

template<typename _Tpa , typename _Tpb >
   gnu cxx:: promote 2< Tpa, Tpb >:: type std::beta (Tpa a, Tpb b)

    float std::betaf (float a, float b)

    long double std::betal (long double __a, long double __b)

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::bincoef (unsigned int __n, unsigned int __k)
• float gnu cxx::bincoeff (unsigned int n, unsigned int k)

    long double gnu cxx::bincoefl (unsigned int n, unsigned int k)

template<typename</li>Tp >
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::chebyshev_t (unsigned int __n, _Tp __x)

    float gnu cxx::chebyshev tf (unsigned int n, float x)

    long double __gnu_cxx::chebyshev_tl (unsigned int __n, long double __x)

    template<typename</li>
    Tp >

    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::chebyshev_u (unsigned int __n, _Tp __x)

    float gnu cxx::chebyshev uf (unsigned int n, float x)

    long double __gnu_cxx::chebyshev_ul (unsigned int __n, long double __x)

template<typename _Tp >
    gnu cxx:: promote num t< Tp > gnu cxx::chebyshev v (unsigned int n, Tp x)

    float gnu cxx::chebyshev vf (unsigned int n, float x)

    long double gnu cxx::chebyshev vl (unsigned int n, long double x)

    template<typename</li>
    Tp >

   __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::chebyshev_w (unsigned int __n, _Tp __x)

    float gnu cxx::chebyshev wf (unsigned int n, float x)

    long double gnu cxx::chebyshev wl (unsigned int n, long double x)
```

```
template<typename _Tp >
   gnu cxx:: promote num t < Tp > gnu cxx::clausen (unsigned int m, Tp w)

    template<typename</li>
    Tp >

  std::complex< __gnu_cxx::__promote_num_t< _Tp >> __gnu_cxx::clausen (unsigned int __m, std::complex<
  _{\mathsf{Tp}} > _{\mathsf{w}}

    template<typename</li>
    Tp >

   _gnu_cxx::_ promote_num_t< _Tp > __gnu_cxx::clausen_c (unsigned int __m, _Tp __w)
• float <u>gnu_cxx::clausen_cf</u> (unsigned int <u>m</u>, float <u>w</u>)

    long double __gnu_cxx::clausen_cl (unsigned int __m, long double __w)

template<typename Tp >
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::clausen_s (unsigned int __m, _Tp __w)

    float gnu cxx::clausen sf (unsigned int m, float w)

    long double __gnu_cxx::clausen_sl (unsigned int __m, long double __w)

    float __gnu_cxx::clausenf (unsigned int __m, float __w)

• std::complex < float > gnu cxx::clausenf (unsigned int m, std::complex < float > w)

    long double __gnu_cxx::clausenl (unsigned int __m, long double __w)

    std::complex < long double > __gnu_cxx::clausenl (unsigned int __m, std::complex < long double > __w)

template<typename_Tp>
    gnu cxx:: promote < Tp >:: type std::comp ellint 1 (Tp k)

    float std::comp ellint 1f (float k)

    long double std::comp ellint 11 (long double k)

template<typename _Tp >
    _gnu_cxx::__promote< _Tp >::__type std::comp_ellint_2 (_Tp __k)

    float std::comp ellint 2f (float k)

    long double std::comp ellint 2l (long double k)

    template<typename _Tp , typename _Tpn >

   _gnu_cxx::__promote_2< _Tp, _Tpn >::__type std::comp_ellint_3 (_Tp __k, _Tpn __nu)

    float std::comp ellint 3f (float k, float nu)

      Return the complete elliptic integral of the third kind \Pi(k,\nu) for float argument.

    long double std::comp ellint 3l (long double k, long double nu)

      Return the complete elliptic integral of the third kind \Pi(k, \nu).
template<typename _Tk >
    gnu cxx:: promote num t < Tk > gnu cxx::comp ellint d (Tk k)

    float gnu cxx::comp ellint df (float k)

    long double gnu cxx::comp ellint dl (long double k)

    float __gnu_cxx::comp_ellint_rf (float __x, float __y)

• long double gnu cxx::comp ellint rf (long double x, long double y)
• template<typename _{\rm Tx}, typename _{\rm Ty} >
   _gnu_cxx::__promote_num_t< _Tx, _Ty > __gnu_cxx::comp_ellint_rf (_Tx __x, _Ty __y)

    float __gnu_cxx::comp_ellint_rg (float __x, float __y)

    long double gnu cxx::comp ellint rg (long double x, long double y)

• template<typename _Tx , typename _Ty >
    _gnu_cxx::__promote_num_t< _Tx, _Ty > __gnu_cxx::comp_ellint_rg (_Tx __x, _Ty __y)

    template<typename _Tpa , typename _Tpc , typename _Tp >

   _gnu_cxx::__promote_3< _Tpa, _Tpc, _Tp >::__type __gnu_cxx::conf_hyperg (_Tpa __a, _Tpc __c, _Tp __x)

    template<typename _Tpc , typename _Tp >

  __gnu_cxx::_promote_2< _Tpc, _Tp >::_type __gnu_cxx::conf_hyperg_lim (_Tpc __c, _Tp __x)

    float gnu cxx::conf hyperg limf (float c, float x)

    long double __gnu_cxx::conf_hyperg_liml (long double __c, long double __x)

    float __gnu_cxx::conf_hypergf (float __a, float __c, float __x)

    long double gnu cxx::conf hypergl (long double a, long double c, long double x)
```

```
template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::coshint (_Tp __x)

    float gnu cxx::coshintf (float x)

    long double <u>gnu_cxx::coshintl</u> (long double <u>x</u>)

template<typename</li>Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::cosint (_Tp __x)

    float gnu cxx::cosintf (float x)

    long double gnu cxx::cosintl (long double x)

template<typename _Tpnu , typename _Tp >
   _gnu_cxx::__promote_2< _Tpnu, _Tp >::__type std::cyl_bessel_i (_Tpnu __nu, _Tp __x)

    float std::cyl_bessel_if (float __nu, float __x)

    long double std::cyl bessel il (long double nu, long double x)

• template<typename Tpnu, typename Tp>
    _gnu_cxx::__promote_2< _Tpnu, _Tp >::__type std::cyl_bessel_j (_Tpnu __nu, _Tp __x)

    float std::cyl bessel if (float nu, float x)

    long double std::cyl_bessel_jl (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_2< _Tpnu, _Tp >::__type std::cyl_bessel_k (_Tpnu __nu, _Tp __x)

    float std::cyl bessel kf (float nu, float x)

    long double std::cyl_bessel_kl (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
  std::complex< __gnu_cxx::__promote_num_t< _Tpnu, _Tp >> __gnu_cxx::cyl_hankel_1 (_Tpnu __nu, _Tp
  __z)
• template<typename _{\rm Tpnu}, typename _{\rm Tp} >
  std::complex < \underline{gnu\_cxx::\_promote\_num\_t} < \underline{Tpnu, \_Tp} > \underline{gnu\_cxx::cyl\_hankel\_1} (std::complex < \underline{\leftarrow}
  Tpnu > __nu, std::complex< _Tp > __x)

    std::complex< float > __gnu_cxx::cyl_hankel_1f (float __nu, float __z)

    std::complex < float > __gnu_cxx::cyl_hankel_1f (std::complex < float > __nu, std::complex < float > __x)

• std::complex < long double > gnu cxx::cyl hankel 1l (long double nu, long double z)

    std::complex < long double > gnu cxx::cyl hankel 1l (std::complex < long double > nu, std::complex < long</li>

  double > x)
• template<typename _Tpnu , typename _Tp >
  std::complex< gnu cxx:: promote num t< Tpnu, Tp >> gnu cxx::cyl hankel 2 (Tpnu nu, Tp
  __z)
• template<typename _Tpnu , typename _Tp >
  std::complex < \underline{gnu\_cxx::\_promote\_num\_t < \underline{Tpnu}, \underline{Tp} > \underline{gnu\_cxx::cyl\_hankel\_2} (std::complex < \underline{\longleftrightarrow}
  Tpnu > __nu, std::complex< _Tp > __x)

    std::complex< float > __gnu_cxx::cyl_hankel_2f (float __nu, float __z)

    std::complex < float > __nu, std::complex < float > __nu, std::complex < float > __x)

• std::complex < long double > gnu cxx::cyl hankel 2l (long double nu, long double z)

    std::complex < long double > gnu cxx::cyl hankel 2l (std::complex < long double > nu, std::complex < long</li>

  double > x)
• template<typename _Tpnu , typename _Tp >
   gnu cxx:: promote 2< Tpnu, Tp >:: type std::cyl neumann (Tpnu nu, Tp x)

    float std::cyl neumannf (float nu, float x)

    long double std::cyl_neumannl (long double __nu, long double __x)

template<typename _Tp >
   gnu cxx:: promote num t < Tp > gnu cxx::dawson (Tp x)

    float __gnu_cxx::dawsonf (float __x)

    long double <u>__gnu_cxx::dawsonl</u> (long double <u>__x</u>)

template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::digamma (_Tp __z)
```

```
    float __gnu_cxx::digammaf (float __z)

    long double __gnu_cxx::digammal (long double __z)

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::dilog (_Tp __x)

    float gnu cxx::dilogf (float x)

    long double __gnu_cxx::dilogl (long double __x)

• template<typename _Tp >
  _Tp __gnu_cxx::dirichlet_beta (_Tp __x)

    float gnu cxx::dirichlet betaf (float x)

    long double gnu cxx::dirichlet betal (long double x)

template<typename _Tp >
  Tp gnu cxx::dirichlet eta (Tp x)

    float gnu cxx::dirichlet etaf (float x)

    long double <u>__gnu_cxx::dirichlet_etal</u> (long double <u>__x)</u>

template<typename</li>Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::double_factorial (int __n)

    float gnu cxx::double factorialf (int n)

    long double __gnu_cxx::double_factoriall (int __n)

• template<typename _Tp , typename _Tpp >
   _gnu_cxx::__promote_2< _Tp, _Tpp >::__type std::ellint_1 (_Tp __k, _Tpp __phi)

    float std::ellint_1f (float __k, float __phi)

    long double std::ellint 11 (long double k, long double phi)

    template<typename _Tp , typename _Tpp >

    _gnu_cxx::__promote_2< _Tp, _Tpp >::__type std::ellint_2 (_Tp __k, _Tpp __phi)

    float std::ellint 2f (float k, float phi)

      Return the incomplete elliptic integral of the second kind E(k, \phi) for float argument.

    long double std::ellint 2l (long double k, long double phi)

      Return the incomplete elliptic integral of the second kind E(k, \phi).

    template<typename Tp, typename Tpn, typename Tpp>

   _gnu_cxx::__promote_3< _Tp, _Tpn, _Tpp >::__type std::ellint_3 (_Tp __k, _Tpn __nu, _Tpp __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).

    float std::ellint 3f (float k, float nu, float phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi) for float argument.

    long double std::ellint_3l (long double __k, long double __nu, long double __phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).

    template<typename _Tk , typename _Tp , typename _Ta , typename _Tb >

    _gnu_cxx::__promote_num_t< _Tk, _Tp, _Ta, _Tb > <u>__gnu_cxx::ellint_cel</u> (_Tk <u>__k_c, _</u>Tp <u>__p, _</u>Ta <u>__a, _</u>Tb
   b)

    float __gnu_cxx::ellint_celf (float __k_c, float __p, float _ a, float _ b)

    long double gnu cxx::ellint cell (long double k c, long double p, long double a, long double b)

• template<typename _Tk , typename _Tphi >
    _gnu_cxx::__promote_num_t< _Tk, _Tphi > __gnu_cxx::ellint_d (_Tk __k, _Tphi _ phi)

    float __gnu_cxx::ellint_df (float __k, float __phi)

    long double gnu cxx::ellint dl (long double k, long double phi)

    template<typename _Tp , typename _Tk >

    _gnu_cxx::__promote_num_t< _Tp, _Tk > __gnu_cxx::ellint_el1 (_Tp __x, _Tk __k_c)

    float __gnu_cxx::ellint_el1f (float __x, float __k_c)

    long double __gnu_cxx::ellint_el1l (long double __x, long double __k_c)

    template<typename _Tp , typename _Tk , typename _Ta , typename _Tb >

    _gnu_cxx::__promote_num_t< _Tp, _Tk, _Ta, _Tb > __gnu_cxx::ellint_el2 (_Tp __x, _Tk __k_c, _Ta __a, _Tb
  __b)
```

```
    float __gnu_cxx::ellint_el2f (float __x, float __k_c, float __a, float __b)

    long double __gnu_cxx::ellint_el2l (long double __x, long double __k_c, long double __a, long double __b)

• template<typename \_Tx, typename \_Tk, typename \_Tp>
    _gnu_cxx::__promote_num_t< _Tx, _Tk, _Tp > __gnu_cxx::ellint_el3 (_Tx __x, _Tk __k_c, _Tp __p)
• float gnu cxx::ellint el3f (float x, float k c, float p)
• long double gnu cxx::ellint el3l (long double x, long double k c, long double p)
• template<typename Tp, typename Up>
    _gnu_cxx::__promote_num_t< _Tp, _Up > __gnu_cxx::ellint_rc (_Tp __x, _Up __y)

    float __gnu_cxx::ellint_rcf (float __x, float __y)

    long double __gnu_cxx::ellint_rcl (long double __x, long double __y)

• template<typename _Tp , typename _Up , typename _Vp >
    gnu cxx:: promote num t< Tp, Up, Vp > gnu cxx::ellint rd (Tp x, Up y, Vp z)

    float __gnu_cxx::ellint_rdf (float __x, float __y, float __z)

    long double gnu cxx::ellint rdl (long double x, long double y, long double z)

template<typename _Tp , typename _Up , typename _Vp >
   _gnu_cxx::_promote_num_t< _Tp, _Up, _Vp > __gnu_cxx::ellint_rf (_Tp __x, _Up __y, _Vp __z)

    float __gnu_cxx::ellint_rff (float __x, float __y, float __z)

    long double gnu cxx::ellint rfl (long double x, long double y, long double z)

• template<typename _Tp , typename _Up , typename _Vp >
    _gnu_cxx::__promote_num_t< _Tp, _Up, _Vp > __gnu_cxx::ellint_rg (_Tp __x, _Up __y, _Vp __z)

    float __gnu_cxx::ellint_rgf (float __x, float __y, float __z)

    long double __gnu_cxx::ellint_rgl (long double __x, long double __y, long double __z)

template<typename _Tp , typename _Up , typename _Vp , typename _Wp >
   _gnu_cxx::__promote_num_t< _Tp, _Up, _Vp, _Wp > __gnu_cxx::ellint_rj (_Tp __x, _Up __y, _Vp __z, _Wp
  __p)
• float gnu cxx::ellint rif (float x, float y, float z, float p)

    long double __gnu_cxx::ellint_rjl (long double __x, long double __y, long double __z, long double __p)

template<typename _Tp >
  Tp gnu cxx::ellnome (Tp k)

    float gnu cxx::ellnomef (float k)

    long double gnu cxx::ellnomel (long double k)

template<typename</li>Tp >
   __gnu_cxx::__promote< _Tp >::__type std::expint (_Tp __x)
template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::expint_e1 (_Tp __x)

    float gnu cxx::expint e1f (float x)

    long double gnu cxx::expint e1l (long double x)

template<typename</li>Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::expint_en (unsigned int __n, _Tp __x)
• float __gnu_cxx::expint_enf (unsigned int __n, float __x)

    long double __gnu_cxx::expint_enl (unsigned int __n, long double __x)

    float std::expintf (float x)

    long double std::expintl (long double x)

template<typename_Tp>
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::factorial (unsigned int __n)

    float gnu cxx::factorialf (unsigned int n)

    long double gnu cxx::factoriall (unsigned int n)

template<typename_Tp>
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::fresnel_c (_Tp __x)

    float <u>gnu_cxx::fresnel_cf</u> (float <u>x</u>)

    long double gnu cxx::fresnel cl (long double x)
```

```
template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::fresnel_s (_Tp __x)

    float gnu cxx::fresnel sf (float x)

    long double gnu cxx::fresnel sl (long double x)

• template<typename _Tn , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tn, _Tp > __gnu_cxx::gamma_l (_Tn __n, _Tp __x)

    float gnu cxx::gamma If (float n, float x)

    long double __gnu_cxx::gamma_ll (long double __n, long double __x)

• template<typename _Ta , typename _Tp >
    gnu cxx:: promote num t < Ta, Tp > gnu cxx::gamma p ( Ta a, Tp x)

    float gnu cxx::gamma pf (float a, float x)

    long double gnu cxx::gamma pl (long double a, long double x)

    template<typename _Ta , typename _Tp >

   _gnu_cxx::__promote_num_t< _Ta, _Tp > __gnu_cxx::gamma_q (_Ta __a, _Tp __x)

    float gnu cxx::gamma qf (float a, float x)

    long double gnu cxx::gamma ql (long double a, long double x)

• template<typename Tn , typename Tp >
    _gnu_cxx::__promote_num_t< _Tn, _Tp > __gnu_cxx::gamma_u (_Tn __n, _Tp __x)

    float __gnu_cxx::gamma_uf (float __n, float __x)

    long double gnu cxx::gamma ul (long double n, long double x)

• template<typename _Talpha , typename _Tp >
    _gnu_cxx::__promote_num_t< _Talpha, _Tp > __gnu_cxx::gegenbauer (unsigned int __n, _Talpha __alpha,
  Tp x)

    float gnu cxx::gegenbauerf (unsigned int n, float alpha, float x)

    long double __gnu_cxx::gegenbauerl (unsigned int __n, long double __alpha, long double __x)

template<typename_Tp>
   gnu cxx:: promote < Tp >:: type std::hermite (unsigned int n, Tp x)

    float std::hermitef (unsigned int n, float x)

• long double std::hermitel (unsigned int __n, long double __x)
\bullet \;\; \text{template} {<} \text{typename} \; {\_} \text{Tk} \; , \\ \text{typename} \; {\_} \text{Tphi} >
    gnu cxx:: promote num t< Tk, Tphi > gnu cxx::heuman lambda ( Tk k, Tphi phi)

    float gnu cxx::heuman lambdaf (float k, float phi)

    long double gnu cxx::heuman lambdal (long double k, long double phi)

    template<typename _Tp , typename _Up >

   _gnu_cxx::__promote_num_t< _Tp, _Up > __gnu_cxx::hurwitz_zeta (_Tp __s, _Up __a)

    float gnu cxx::hurwitz zetaf (float s, float a)

    long double gnu cxx::hurwitz zetal (long double s, long double a)

    template<typename _Tpa , typename _Tpb , typename _Tpc , typename _Tp >

    _gnu_cxx::__promote_4< _Tpa, _Tpb, _Tpc, _Tp >::__type __gnu_cxx::hyperg (_Tpa __a, _Tpb __b, _Tpc
   __c, _Tp ___x)

    float __gnu_cxx::hypergf (float __a, float __b, float __c, float __x)

    long double __gnu_cxx::hypergl (long double __a, long double __b, long double __c, long double __x)

- template<typename _Ta , typename _Tb , typename _Tp >
    _gnu_cxx::__promote_num_t< _Ta, _Tb, _Tp > __gnu_cxx::ibeta (_Ta __a, _Tb __b, _Tp __x)

    template<typename _Ta , typename _Tb , typename _Tp >

    _gnu_cxx::__promote_num_t< _Ta, _Tb, _Tp > __gnu_cxx::ibetac (_Ta __a, _Tb __b, _Tp __x)

    float gnu cxx::ibetacf (float a, float b, float x)

    long double gnu cxx::ibetacl (long double a, long double b, long double x)

    float gnu cxx::ibetaf (float a, float b, float x)

    long double gnu cxx::ibetal (long double a, long double b, long double x)
```

```
    template<typename _Talpha , typename _Tbeta , typename _Tp >

   _gnu_cxx::__promote_num_t< _Talpha, _Tbeta, _Tp > __gnu_cxx::jacobi (unsigned __n, _Talpha __alpha,
  Tbeta beta, Tp x)
• template<typename _Kp , typename _Up >
   _gnu_cxx::__promote_num_t< _Kp, _Up > __gnu_cxx::jacobi_cn (_Kp __k, _Up __u)
• float gnu cxx::jacobi cnf (float k, float u)

    long double gnu cxx::jacobi cnl (long double k, long double u)

• template<typename _Kp , typename _Up >
    _gnu_cxx::__promote_num_t< _Kp, _Up > __gnu_cxx::jacobi_dn (_Kp __k, _Up __u)
• float gnu cxx::jacobi dnf (float k, float u)

    long double __gnu_cxx::jacobi_dnl (long double __k, long double __u)

• template<typename _Kp , typename _Up >
    _gnu_cxx::__promote_num_t< _Kp, _Up > __gnu_cxx::jacobi_sn (_Kp __k, _Up __u)

    float gnu cxx::jacobi snf (float k, float u)

    long double __gnu_cxx::jacobi_snl (long double __k, long double __u)

• template<typename Tk, typename Tphi >
    _gnu_cxx::__promote_num_t< _Tk, _Tphi > __gnu_cxx::jacobi_zeta (_Tk __k, _Tphi __phi)

    float gnu cxx::jacobi zetaf (float k, float phi)

    long double __gnu_cxx::jacobi_zetal (long double __k, long double __phi)

    float gnu cxx::jacobif (unsigned n, float alpha, float beta, float x)

    long double __gnu_cxx::jacobil (unsigned __n, long double __alpha, long double __beta, long double __x)

template<typename _Tp >
   gnu cxx:: promote < Tp >:: type std::laguerre (unsigned int n, Tp x)

    float std::laguerref (unsigned int n, float x)

    long double std::laguerrel (unsigned int __n, long double __x)

    template<typename</li>
    Tp >

   gnu cxx:: promote num t < Tp > gnu cxx::lbincoef (unsigned int n, unsigned int k)
• float gnu cxx::lbincoeff (unsigned int n, unsigned int k)

    long double __gnu_cxx::lbincoefl (unsigned int __n, unsigned int __k)

    template<typename</li>
    Tp >

    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::ldouble_factorial (int __n)

    float __gnu_cxx::ldouble_factorialf (int __n)

    long double __gnu_cxx::ldouble_factoriall (int __n)

template<typename_Tp>
    _gnu_cxx::__promote< _Tp >::__type std::legendre (unsigned int __l, _Tp __x)
template<typename _Tp >
   __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::legendre_q (unsigned int __n, Tp x)

    float gnu cxx::legendre qf (unsigned int n, float x)

    long double gnu cxx::legendre ql (unsigned int n, long double x)

    float std::legendref (unsigned int I, float x)

    long double std::legendrel (unsigned int I, long double x)

template<typename_Tp>
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::lfactorial (unsigned int __n)

    float gnu cxx::lfactorialf (unsigned int

    long double gnu cxx::lfactoriall (unsigned int n)

template<typename_Tp>
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::logint (_Tp __x)

    float gnu cxx::logintf (float x)

    long double gnu cxx::logintl (long double x)

• template<typename _Tp , typename _Tn >
    _gnu_cxx::__promote_num_t< _Tp, _Tn > __gnu_cxx::lpochhammer_l (_Tp __a, _Tn __n)

    float gnu cxx::lpochhammer lf (float a, float n)
```

```
    long double __gnu_cxx::lpochhammer_ll (long double __a, long double __n)

• template<typename _Tp , typename _Tn >
    _gnu_cxx::__promote_num_t< _Tp, _Tn > __gnu_cxx::lpochhammer_u (_Tp __a, _Tn __n)

    float __gnu_cxx::lpochhammer_uf (float __a, float __n)

• long double gnu cxx::lpochhammer ul (long double a, long double n)
• template<typename _Tph , typename _Tpa >
    _gnu_cxx::__promote_num_t< _Tph, _Tpa > __gnu_cxx::owens_t (_Tph __h, _Tpa __a)

    float __gnu_cxx::owens_tf (float __h, float __a)

    long double gnu cxx::owens tl (long double h, long double a)

• template<typename _Tp , typename _Tn >
    _gnu_cxx::__promote_num_t< _Tp, _Tn > __gnu_cxx::pochhammer_l (_Tp __a, _Tn __n)

    float gnu cxx::pochhammer lf (float a, float n)

    long double __gnu_cxx::pochhammer_ll (long double __a, long double __n)

• template<typename _Tp , typename _Tn >
    _gnu_cxx::__promote_num_t< _Tp, _Tn > __gnu_cxx::pochhammer_u (_Tp __a, _Tn __n)

    float gnu cxx::pochhammer uf (float a, float n)

    long double __gnu_cxx::pochhammer_ul (long double __a, long double __n)

template<typename _Tp >
  std::complex< __gnu_cxx::_promote_num_t< _Tp >> __gnu_cxx::polylog (_Tp __s, std::complex< _Tp >

    std::complex < float > __gnu_cxx::polylogf (float __s, std::complex < float > __w)

    std::complex < long double > __gnu_cxx::polylogl (long double __s, std::complex < long double > __w)

template<typename Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::psi (_Tp __x)

    float __gnu_cxx::psif (float __x)

    long double __gnu_cxx::psil (long double __x)

    template<typename</li>
    Tp >

   __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::radpoly (unsigned int __n, unsigned int __m, _Tp __rho)

    float __gnu_cxx::radpolyf (unsigned int __n, unsigned int __m, float __rho)

    long double __gnu_cxx::radpolyl (unsigned int __n, unsigned int __m, long double __rho)

template<typename Tp >
   __gnu_cxx::__promote< _Tp >::__type std::riemann_zeta (_Tp __s)

    float std::riemann_zetaf (float __s)

    long double std::riemann zetal (long double s)

template<typename _Tp >
   _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinc (_Tp __x)
template<typename_Tp>
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinc_pi (_Tp __x)

    float gnu cxx::sinc pif (float x)

    long double gnu cxx::sinc pil (long double x)

    float gnu cxx::sincf (float x)

    long double gnu cxx::sincl (long double x)

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinhc (_Tp __x)
template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinhc_pi (_Tp __x)

    float __gnu_cxx::sinhc_pif (float __x)

    long double gnu cxx::sinhc pil (long double x)

    float gnu cxx::sinhcf (float x)

    long double __gnu_cxx::sinhcl (long double __x)

template<typename_Tp>
  __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinhint (_Tp __x)
```

```
    float __gnu_cxx::sinhintf (float __x)

    long double __gnu_cxx::sinhintl (long double __x)

template<typename _Tp >
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sinint (_Tp __x)

    float gnu cxx::sinintf (float x)

    long double <u>gnu_cxx::sinintl</u> (long double <u>x</u>)

template<typename _Tp >
   _gnu_cxx::__promote< _Tp >::__type std::sph_bessel (unsigned int __n, _Tp __x)
template<typename _Tp >
   __gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sph_bessel_i (unsigned int __n, _Tp __x)

    float gnu cxx::sph bessel if (unsigned int n, float x)

    long double gnu cxx::sph bessel il (unsigned int n, long double x)

template<typename_Tp>
    _gnu_cxx::__promote_num_t< _Tp > __gnu_cxx::sph_bessel_k (unsigned int __n, _Tp __x)

    float gnu cxx::sph bessel kf (unsigned int n, float x)

    long double gnu cxx::sph bessel kl (unsigned int n, long double x)

    float std::sph besself (unsigned int n, float x)

    long double std::sph_bessell (unsigned int __n, long double __x)

template<typename</li>Tp >
  std::complex< __gnu_cxx::__promote_num_t< _Tp >> __gnu_cxx::sph_hankel_1 (unsigned int __n, _Tp __z)

    template<typename</li>
    Tp >

  std::complex< __gnu_cxx::_promote_num_t< _Tp >> __gnu_cxx::sph_hankel_1 (unsigned int __n, std↔
  ::complex< _Tp> __x)

    std::complex < float > gnu cxx::sph hankel 1f (unsigned int n, float z)

    std::complex < float > __gnu_cxx::sph_hankel_1f (unsigned int __n, std::complex < float > __x)

    std::complex < long double > gnu cxx::sph hankel 1l (unsigned int n, long double z)

    std::complex < long double > gnu cxx::sph hankel 1l (unsigned int n, std::complex < long double > x)

template<typename_Tp>
  std::complex< gnu cxx:: promote num t< Tp>> gnu cxx::sph hankel 2 (unsigned int n, Tp z)
template<typename _Tp >
  std::complex< __gnu_cxx::_promote_num_t< _Tp >> __gnu_cxx::sph_hankel_2 (unsigned int __n, std↔
  ::complex < Tp > x)

    std::complex< float > gnu cxx::sph hankel 2f (unsigned int n, float z)

    std::complex < float > gnu cxx::sph hankel 2f (unsigned int n, std::complex < float > x)

    std::complex < long double > __gnu_cxx::sph_hankel_2l (unsigned int __n, long double __z)

• std::complex < long double > gnu cxx::sph hankel 2l (unsigned int n, std::complex < long double > x)
• template<typename Ttheta, typename Tphi >
  std::complex< __gnu_cxx::__promote_num_t< _Ttheta, _Tphi >> __gnu_cxx::sph_harmonic (unsigned int ←
  __l, int __m, _Ttheta __theta, _Tphi __phi)
• std::complex < float > gnu cxx::sph harmonicf (unsigned int I, int m, float theta, float phi)
• std::complex < long double > gnu cxx::sph harmonicl (unsigned int I, int m, long double theta, long
  double __phi)
template<typename _Tp >
   gnu cxx:: promote < Tp >:: type std::sph legendre (unsigned int I, unsigned int m, Tp theta)

    float std::sph legendref (unsigned int I, unsigned int m, float theta)

    long double std::sph_legendrel (unsigned int __l, unsigned int __m, long double __theta)

template<typename_Tp>
   gnu cxx:: promote < Tp >:: type std::sph neumann (unsigned int n, Tp x)

    float std::sph neumannf (unsigned int n, float x)

    long double std::sph_neumannl (unsigned int __n, long double __x)

    template<typename _Tpnu , typename _Tp >

   __gnu_cxx::__promote_num_t< _Tpnu, _Tp > __gnu_cxx::theta_1 (_Tpnu __nu, _Tp __x)
```

```
    float __gnu_cxx::theta_1f (float __nu, float __x)

    long double gnu cxx::theta 1l (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tpnu, _Tp > __gnu_cxx::theta_2 (_Tpnu __nu, _Tp __x)
• float gnu cxx::theta 2f (float nu, float x)

    long double __gnu_cxx::theta_2l (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::__promote_num_t< _Tpnu, _Tp > __gnu_cxx::theta_3 (_Tpnu __nu, _Tp __x)
• float gnu cxx::theta 3f (float nu, float x)

    long double __gnu_cxx::theta_3l (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
   gnu cxx:: promote num t< Tpnu, Tp > gnu cxx::theta 4 ( Tpnu nu, Tp x)
• float gnu cxx::theta 4f (float nu, float x)

    long double __gnu_cxx::theta_4l (long double __nu, long double __x)

• template<typename _Tpk , typename _Tp >
    gnu cxx:: promote num t < Tpk, Tp > gnu cxx::theta c ( Tpk k, Tp x)

    float __gnu_cxx::theta_cf (float __k, float __x)

    long double __gnu_cxx::theta_cl (long double __k, long double __x)

    template<typename Tpk, typename Tp >

    _gnu_cxx::__promote_num_t< _Tpk, _Tp > __gnu_cxx::theta_d (_Tpk __k, _Tp __x)

    float __gnu_cxx::theta_df (float __k, float __x)

    long double __gnu_cxx::theta_dl (long double __k, long double __x)

    template<typename Tpk, typename Tp >

    _gnu_cxx::__promote_num_t< _Tpk, _Tp > __gnu_cxx::theta_n (_Tpk __k, _Tp __x)

    float __gnu_cxx::theta_nf (float __k, float __x)

    long double __gnu_cxx::theta_nl (long double __k, long double __x)

    template<typename Tpk, typename Tp >

   __gnu_cxx::__promote_num_t< _Tpk, _Tp > __gnu_cxx::theta_s (_Tpk __k, _Tp __x)

    float __gnu_cxx::theta_sf (float __k, float __x)

• long double __gnu_cxx::theta_sl (long double __k, long double __x)
• template<typename Trho, typename Tphi >
    _gnu_cxx::__promote_num_t< _Trho, _Tphi > <u>__gnu_cxx::zernike</u> (unsigned int __n, int __m, _Trho __rho,
  Tphi phi)

    float gnu cxx::zernikef (unsigned int n, int m, float rho, float phi)

    long double gnu cxx::zernikel (unsigned int n, int m, long double rho, long double phi)
```

9.27.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly. Instead, include <cmath>.

9.27.2 Macro Definition Documentation

9.27.2.1 #define __cpp_lib_math_special_functions 201603L

Definition at line 39 of file specfun.h.

9.27.2.2 #define STDCPP MATH SPEC FUNCS 201003L

Definition at line 37 of file specfun.h.

Index

_GLIBCXX_BITS_SF_AIRY_TCC	sf_dawson.tcc, 214
sf_airy.tcc, 205	_GLIBCXX_SF_FRESNEL_TCC
_GLIBCXX_BITS_SF_BESSEL_TCC	sf_fresnel.tcc, 220
sf_bessel.tcc, 207	_GLIBCXX_SF_GEGENBAUER_TCC
_GLIBCXX_BITS_SF_BETA_TCC	sf_gegenbauer.tcc, 227
sf_beta.tcc, 209	_GLIBCXX_SF_HYPINT_TCC
_GLIBCXX_BITS_SF_CARDINAL_TCC	sf_hypint.tcc, 236
sf_cardinal.tcc, 211	_GLIBCXX_SF_JACOBI_TCC
_GLIBCXX_BITS_SF_ELLINT_TCC	sf_jacobi.tcc, 238
sf_ellint.tcc, 216	_GLIBCXX_SF_THETA_TCC
_GLIBCXX_BITS_SF_EXPINT_TCC	sf_theta.tcc, 249
sf_expint.tcc, 219	_GLIBCXX_SF_TRIGINT_TCC
_GLIBCXX_BITS_SF_GAMMA_TCC	sf_trigint.tcc, 251
sf_gamma.tcc, 226	_Num_Euler_Maclaurin_zeta
_GLIBCXX_BITS_SF_HANKEL_NEW_TCC	std::detail, 198
sf_hankel_new.tcc, 230	_S_Euler_Maclaurin_zeta
_GLIBCXX_BITS_SF_HANKEL_TCC	std::detail, 199
sf_hankel.tcc, 230	_S_double_factorial_table
_GLIBCXX_BITS_SF_HERMITE_TCC	std::detail, 199
sf_hermite.tcc, 232	_S_factorial_table
_GLIBCXX_BITS_SF_HYDROGEN_TCC	std::detail, 199
sf_hydrogen.tcc, 233	_S_neg_double_factorial_table
_GLIBCXX_BITS_SF_HYPERG_TCC	std::detail, 199
sf_hyperg.tcc, 235	_S_num_double_factorials
_GLIBCXX_BITS_SF_LAGUERRE_TCC	std::detail, 199
sf_laguerre.tcc, 240	$_$ S $_$ num $_$ double $_$ factorials $<$ double $>$
_GLIBCXX_BITS_SF_LEGENDRE_TCC	std::detail, 199
sf_legendre.tcc, 241	$_$ S $_$ num $_$ double $_$ factorials $<$ float $>$
_GLIBCXX_BITS_SF_MOD_BESSEL_TCC	std::detail, 199
sf_mod_bessel.tcc, 243	_S_num_double_factorials< long double >
_GLIBCXX_BITS_SF_OWENS_T_TCC	std::detail, 199
sf_owens_t.tcc, 244	_S_num_factorials
_GLIBCXX_BITS_SF_POLYLOG_TCC	std::detail, 199
sf_polylog.tcc, 247	_S_num_factorials< double >
_GLIBCXX_BITS_SF_ZETA_TCC	std::detail, 199
sf_zeta.tcc, 253	$_{\sf S_num_factorials} < {\sf float} >$
_GLIBCXX_JACOBI_CN	std::detail, 200
Extended Mathematical Special Functions, 19	$_$ S $_$ num $_$ factorials $<$ long double $>$
_GLIBCXX_JACOBI_DN	std::detail, 200
Extended Mathematical Special Functions, 19	_S_num_neg_double_factorials
_GLIBCXX_JACOBI_SN	std::detail, 200
Extended Mathematical Special Functions, 19	_S_num_neg_double_factorials< double >
_GLIBCXX_SF_CHEBYSHEV_TCC	std::detail, 200
sf_chebyshev.tcc, 212	$_$ S_num_neg_double_factorials $<$ float $>$
_GLIBCXX_SF_DAWSON_TCC	std::detail, 200

_S_num_neg_double_factorials< long double >	bose_einstein
std::detail, 200	std::detail, 122
_S_num_zetam1	chebyshev_recur
std::detail, 200	std::detail, 122
_S_zetam1	chebyshev_t
std::detail, 200	std::detail, 122
STDCPP_MATH_SPEC_FUNCS	chebyshev_u
specfun.h, 264	std::detail, 122
airy	chebyshev_v
std::detail, 110, 111	std::detail, 122
airy_ai	chebyshev_w
std::detail, 113	std::detail, 122
airy_arg	chi_squared_pdf
std::detail, 113	std::detail, 123
airy_asymp_absarg_ge_pio3	chi_squared_pdfc
std::detail, 113	std::detail, 123
airy_asymp_absarg_lt_pio3	chshint
std::detail, 114	std::detail, 123
airy_bessel_i	chshint_cont_frac
std::detail, 114	std::detail, 123
airy_bessel_k	chshint_series
std::detail, 115	std::detail, 124
airy_bi	clamp_0_m2pi
std::detail, 116	std::detail, 124
airy_hyperg_rational	clamp_pi
std::detail, 116	std::detail, 124
assoc_laguerre	clausen
std::detail, 117	std::detail, 124
assoc legendre p	_clausen_c
std::detail, 117	std::detail, 125
bernoulli	_clausen_s
std::detail, 117	std::detail, 125, 126
bernoulli_2n	comp_ellint_1
std::detail, 118	std::detail, 126
bernoulli_series	comp_ellint_2
std:: detail, 118	std::detail, 127
beta	comp_ellint_3
std::detail, 118	std::detail, 127
beta_gamma	comp_ellint_d
std::detail, 119	std::detail, 127
beta_inc	comp_ellint_rf
std::detail, 119	std::detail, 128
beta_inc_cont_frac	comp_ellint_rg
std::detail, 120	std:: detail, 128
beta_lgamma	conf_hyperg
std::detail, 120	std::detail, 128
beta_product	conf_hyperg_lim
std::detail, 120	std::detail, 128
bincoef	conf_hyperg_lim_series
std::detail, 121	std::detail, 128
binomial_cdf	conf_hyperg_luke
std::detail, 121	std::detail, 129
binomial_cdfc	conf_hyperg_series
std::detail, 121	std::detail, 129

coshint	ellint_3
std::detail, 129	std::detail, 140
cpp_lib_math_special_functions	ellint_cel
specfun.h, 264	std::detail, 140
cyl_bessel	ellint_d
std::detail, 130	std::detail, 141
cyl_bessel_i	ellint_el1
std::detail, 130	std::detail, 141
cyl_bessel_ij_series	ellint_el2
std:: detail, 131	std::detail, 141
cyl_bessel_ik	ellint el3
std::detail, 131	std::detail, 141
cyl_bessel_ik_asymp	ellint rc
std::detail, 132	std::detail, 141
cyl_bessel_ik_steed	ellint rd
std::detail, 132	std::detail, 142
cyl_bessel_j	ellint rf
std::detail, 132	std::detail, 142
cyl_bessel_jn	ellint_rg
std::detail, 133	std::detail, 143
cyl_bessel_in_asymp	ellint_rj
std::detail, 133	std::detail, 143
	ellnome
cyl_bessel_jn_steed	
std::detail, 133	std::detail, 144
cyl_bessel_k	ellnome_k
std::detail, 134	std::detail, 144
cyl_hankel_1	ellnome_series
std::detail, 134, 135	std::detail, 144
_cyl_hankel_2	expint
std::detail, 135	std::detail, 144, 145
cyl_neumann	expint_E1
std::detail, 136	std::detail, 145
cyl_neumann_n	expint_E1_asymp
std::detail, 136	std::detail, 146
dawson	expint_E1_series
std::detail, 136	std::detail, 146
dawson_const_frac	expint_Ei
std::detail, 137	std::detail, 147
dawson_series	expint_Ei_asymp
std::detail, 137	std::detail, 147
debye_region	expint_Ei_series
std::detail, 137	std::detail, 147
dilog	expint_En_cont_frac
std::detail, 137	std::detail, 148
dirichlet_beta	expint_En_recursion
std::detail, 138	std::detail, 148
dirichlet_eta	expint_En_series
std::detail, 138, 139	std::detail, 149
double_factorial	expint_asymp
std::detail, 139	std::detail, 145
ellint_1	expint_large_n
std::detail, 139	std::detail, 149
ellint_2	f_cdf
std::detail, 140	std::detail, 149

f_cdfc	hankel_uniform_sum
std::detail, 150	std::detail, 158
factorial	heuman_lambda
std::detail, 150	std::detail, 159
std::detail::_Factorial_table, 201	hurwitz_zeta
fermi_dirac	std::detail, 159
std::detail, 150	hurwitz_zeta_euler_maclaurin
fock_airy	std::detail, 160
std::detail, 151	hydrogen
fpequal	std::detail, 160
std::detail, 151	hyperg
fpimag	std::detail, 160
std::detail, 151, 153	hyperg_luke
fpreal	std::detail, 161
std::detail, 153	hyperg_reflect
fresnel	std::detail, 161
std::detail, 153	hyperg_series
fresnel_cont_frac	std::detail, 161
std:: detail, 154	jacobi sncndn
fresnel_series	std::detail, 162
std:: detail, 154	jacobi_zeta
gamma	std:: detail, 162
std::detail, 154	laguerre
gamma_cont_frac	std::detail, 162
std::detail, 154	_log_bincoef
	std::detail, 162
gamma_l	
std::detail, 154	log_double_factorial
gamma_p	std::detail, 163
std::detail, 155	log_factorial
gamma_q	std::detail, 163
std::detail, 155	std::detail::_Factorial_table, 201
gamma_series	log_gamma
std::detail, 155	std::detail, 163
gamma_temme	log_gamma_bernoulli
std::detail, 155	std::detail, 164
gamma_u	log_gamma_lanczos
std::detail, 156	std::detail, 164
gauss	log_gamma_sign
std::detail, 156	std::detail, 164
gegenbauer_poly	log_gamma_spouge
std::detail, 156	std::detail, 165
gnu_cxx, 83	log_pochhammer_l
hankel	std:: detail, 165
std::detail, 156	log_pochhammer_u
hankel_debye	std:: detail, 166
std::detail, 157	logint
hankel params	std:: detail, 166
std:: detail, 157	n
hankel_uniform	std::detail::_Factorial_table, 201
std::detail, 157	owens t
hankel_uniform_olver	std::detail, 166
std::detail, 158	pochhammer_l
hankel_uniform_outer	std::detail, 167
std::detail, 158	pochhammer_u

std::detail, 167	std::detail, 183
poly_hermite	riemann_zeta_alt
std::detail, 167	std::detail, 184
poly_hermite_asymp	riemann_zeta_euler_maclaurin
std::detail, 168	std::detail, 184
poly_hermite_recursion	riemann_zeta_glob
std::detail, 168	std::detail, 184
poly_jacobi	riemann_zeta_m_1
std::detail, 168	std::detail, 184
poly_laguerre	riemann_zeta_m_1_sum
std::detail, 169	std::detail, 186
poly_laguerre_hyperg	riemann_zeta_product
std::detail, 169	std::detail, 186
poly_laguerre_large_n	riemann_zeta_sum
std::detail, 171	std::detail, 186
poly_laguerre_recursion	sinc
std::detail, 171	std::detail, 187
poly_legendre_p	sinc_pi
std::detail, 172	std::detail, 187
poly legendre q	sincosint
std:: detail, 172	std:: detail, 187
poly_radial_jacobi	sincosint_asymp
std::detail, 172	std:: detail, 187
polylog	sincosint_cont_frac
std::detail, 172, 174	std:: detail, 188
polylog_exp	sincosint series
std::detail, 174	std::detail, 188
polylog_exp_asymp	sinhc
std:: detail, 174	std::detail, 188
polylog_exp_int_neg	sinhc_pi
std:: detail, 175	std::detail, 188
polylog_exp_int_pos	sinhint
std::detail, 176	std:: detail, 188
polylog_exp_neg	sph bessel
std::detail, 176, 177	std:: detail, 189
	sph bessel ik
polylog_exp_neg_even std::detail, 177	std::detail, 189
	sph bessel jn
polylog_exp_neg_odd std:: detail, 178	spri_besser_jri std:: detail, 191
polylog exp negative real part	sph_hankel
std::detail, 179	std:: detail, 191
olylog_exp_pos	sph_hankel_1
std:: detail, 179, 180	·
	std::detail, 191, 192
polylog_exp_real_neg	sph_hankel_2
std::detail, 181	std::detail, 192, 193
polylog_exp_real_pos	sph_harmonic
std::detail, 181, 182	std::detail, 193
psi	sph_legendre
std::detail, 182	std::detail, 193
psi_asymp	sph_neumann
std::detail, 183	std::detail, 194
psi_series	students_t_cdf
std::detail, 183	std::detail, 194
riemann_zeta	students_t_cdfc

std::detail, 195	assoc_legendrel
theta_1	Mathematical Special Functions, 69
std::detail, 195	Mathematical opedial Functions, 00
theta_2	bernoulli
std::detail, 195	Extended Mathematical Special Functions, 20
theta_2_asymp	bernoullif
std::detail, 196	Extended Mathematical Special Functions, 20
theta_2_sum	bernoullil
std::detail, 196	Extended Mathematical Special Functions, 20
theta 3	beta
std::detail, 196	Mathematical Special Functions, 69
	betaf
theta_3_asymp std::detail, 196	Mathematical Special Functions, 69
	betal
theta_3_sum std::detail, 197	Mathematical Special Functions, 69
	bincoef
theta_4	Extended Mathematical Special Functions, 20
std::detail, 197	bincoeff
theta_c	Extended Mathematical Special Functions, 20
std::detail, 197	bincoefl
theta_d	Extended Mathematical Special Functions, 20
std::detail, 197	bits/sf_airy.tcc, 203
theta_n	bits/sf_bessel.tcc, 205
std::detail, 197	bits/sf_beta.tcc, 207
theta_s	bits/sf_cardinal.tcc, 209
std::detail, 198	bits/sf_chebyshev.tcc, 211
zernike	bits/sf_dawson.tcc, 213
std::detail, 198	bits/sf_ellint.tcc, 214
znorm1	bits/sf_expint.tcc, 217
std::detail, 198	bits/sf_fresnel.tcc, 219
znorm2	bits/sf_gamma.tcc, 220
std::detail, 198	bits/sf_gegenbauer.tcc, 226
ainy ai	bits/sf_hankel.tcc, 227
airy_ai	bits/sf_hankel_new.tcc, 230
Extended Mathematical Special Functions, 19	bits/sf_hermite.tcc, 231
airy_aif	bits/sf_hydrogen.tcc, 232
Extended Mathematical Special Functions, 19	bits/sf_hyperg.tcc, 233
airy_ail	bits/sf_hypint.tcc, 235
Extended Mathematical Special Functions, 19	bits/sf_jacobi.tcc, 237
airy_bi	bits/sf_laguerre.tcc, 238
Extended Mathematical Special Functions, 19	bits/sf_legendre.tcc, 240
airy_bif	bits/sf_mod_bessel.tcc, 241
Extended Mathematical Special Functions, 19	bits/sf_owens_t.tcc, 244
airy_bil	bits/sf_polylog.tcc, 245
Extended Mathematical Special Functions, 20	bits/sf_theta.tcc, 247
assoc_laguerre	bits/sf_trigint.tcc, 250
Mathematical Special Functions, 68	bits/sf_zeta.tcc, 251
assoc_laguerref	bits/specfun.h, 254
Mathematical Special Functions, 68	COCINIT
assoc_laguerrel	COSINT
Mathematical Special Functions, 68	std::detail, 110
assoc_legendre	chebyshev_t
Mathematical Special Functions, 68	Extended Mathematical Special Functions, 20
assoc_legendref	chebyshev_tf
Mathematical Special Functions, 69	Extended Mathematical Special Functions, 21

chebyshev_tl	comp_ellint_3l
Extended Mathematical Special Functions, 21	Mathematical Special Functions, 71
chebyshev_u	comp_ellint_d
Extended Mathematical Special Functions, 21	Extended Mathematical Special Functions, 25
chebyshev uf	comp ellint df
Extended Mathematical Special Functions, 21	Extended Mathematical Special Functions, 26
chebyshev_ul	comp_ellint_dl
Extended Mathematical Special Functions, 21	Extended Mathematical Special Functions, 26
chebyshev_v	comp_ellint_rf
Extended Mathematical Special Functions, 22	Extended Mathematical Special Functions, 26
chebyshev vf	comp_ellint_rg
Extended Mathematical Special Functions, 22	Extended Mathematical Special Functions, 26
chebyshev_vl	conf_hyperg
Extended Mathematical Special Functions, 22	Extended Mathematical Special Functions, 27
chebyshev_w	conf_hyperg_lim
Extended Mathematical Special Functions, 22	Extended Mathematical Special Functions, 27
chebyshev_wf	conf hyperg limf
• —	
Extended Mathematical Special Functions, 23	Extended Mathematical Special Functions, 27
chebyshev_wl	conf_hyperg_liml
Extended Mathematical Special Functions, 23	Extended Mathematical Special Functions, 27
clausen	conf_hypergf
Extended Mathematical Special Functions, 23	Extended Mathematical Special Functions, 28
clausen_c	conf_hypergl
Extended Mathematical Special Functions, 23	Extended Mathematical Special Functions, 28
clausen_cf	coshint
Extended Mathematical Special Functions, 24	Extended Mathematical Special Functions, 28
clausen_cl	coshintf
Extended Mathematical Special Functions, 24	Extended Mathematical Special Functions, 28
clausen_s	coshintl
Extended Mathematical Special Functions, 24	Extended Mathematical Special Functions, 28
clausen_sf	cosint
Extended Mathematical Special Functions, 24	Extended Mathematical Special Functions, 28
clausen_sl	cosintf
Extended Mathematical Special Functions, 24	Extended Mathematical Special Functions, 29
clausenf	cosintl
Extended Mathematical Special Functions, 25	Extended Mathematical Special Functions, 29
clausenl	cyl_bessel_i
Extended Mathematical Special Functions, 25	Mathematical Special Functions, 72
comp_ellint_1	cyl_bessel_if
Mathematical Special Functions, 70	Mathematical Special Functions, 72
comp_ellint_1f	cyl_bessel_il
Mathematical Special Functions, 70	Mathematical Special Functions, 72
comp_ellint_1I	cyl_bessel_j
Mathematical Special Functions, 70	Mathematical Special Functions, 72
comp_ellint_2	cyl_bessel_jf
Mathematical Special Functions, 70	Mathematical Special Functions, 73
comp_ellint_2f	cyl_bessel_jl
Mathematical Special Functions, 71	Mathematical Special Functions, 73
comp_ellint_2l	cyl_bessel_k
Mathematical Special Functions, 71	Mathematical Special Functions, 73
comp_ellint_3	cyl_bessel_kf
Mathematical Special Functions, 71	Mathematical Special Functions, 73
comp_ellint_3f	cyl_bessel_kl
Mathematical Special Functions, 71	Mathematical Special Functions, 73

cyl_hankel_1	Extended Mathematical Special Functions, 34
Extended Mathematical Special Functions, 29	
cyl_hankel_1f	ellint_1
Extended Mathematical Special Functions, 30	Mathematical Special Functions, 74
cyl_hankel_1l	ellint_1f
Extended Mathematical Special Functions, 30	Mathematical Special Functions, 75
cyl_hankel_2	ellint_1I
Extended Mathematical Special Functions, 30	Mathematical Special Functions, 75
cyl_hankel_2f	ellint_2
Extended Mathematical Special Functions, 31	Mathematical Special Functions, 75
cyl_hankel_2l	ellint_2f
Extended Mathematical Special Functions, 31	Mathematical Special Functions, 75
cyl_neumann	ellint_2l
Mathematical Special Functions, 74	Mathematical Special Functions, 76
cyl_neumannf	ellint_3
Mathematical Special Functions, 74	Mathematical Special Functions, 76
cyl_neumannl	ellint_3f
Mathematical Special Functions, 74	Mathematical Special Functions, 76
	ellint_3l
dawson	Mathematical Special Functions, 76
Extended Mathematical Special Functions, 31	ellint_cel
dawsonf	Extended Mathematical Special Functions, 34
Extended Mathematical Special Functions, 32	ellint_celf
dawsonl	Extended Mathematical Special Functions, 34
Extended Mathematical Special Functions, 32	ellint_cell
digamma	Extended Mathematical Special Functions, 34
Extended Mathematical Special Functions, 32	ellint_d
digammaf	Extended Mathematical Special Functions, 34
Extended Mathematical Special Functions, 32	ellint_df
digammal	Extended Mathematical Special Functions, 35
Extended Mathematical Special Functions, 32	ellint_dl
dilog	Extended Mathematical Special Functions, 35
Extended Mathematical Special Functions, 32	ellint_el1
dilogf	Extended Mathematical Special Functions, 35
Extended Mathematical Special Functions, 32	ellint_el1f
dilogl	Extended Mathematical Special Functions, 35
Extended Mathematical Special Functions, 32	ellint_el1l
dirichlet_beta	Extended Mathematical Special Functions, 35
Extended Mathematical Special Functions, 32	ellint_el2
dirichlet_betaf	Extended Mathematical Special Functions, 35
Extended Mathematical Special Functions, 33	ellint_el2f
dirichlet_betal	Extended Mathematical Special Functions, 36
Extended Mathematical Special Functions, 33	ellint_el2l
dirichlet_eta Extended Mathematical Special Functions, 33	Extended Mathematical Special Functions, 36
dirichlet_etaf	ellint_el3 Extended Mathematical Special Functions, 36
	ellint_el3f
Extended Mathematical Special Functions, 33 dirichlet_etal	
Extended Mathematical Special Functions, 33	Extended Mathematical Special Functions, 36 ellint_el3l
double_factorial	Extended Mathematical Special Functions, 36
Extended Mathematical Special Functions, 33	ellint_rc
double_factorialf	Extended Mathematical Special Functions, 36
Extended Mathematical Special Functions, 34	ellint_rcf
double factorial	Extended Mathematical Special Functions, 37

ellint_rcl	_GLIBCXX_JACOBI_DN, 19
Extended Mathematical Special Functions, 37	_GLIBCXX_JACOBI_SN, 19
ellint_rd	airy_ai, 19
Extended Mathematical Special Functions, 37	airy_aif, 19
ellint_rdf	airy_ail, 19
Extended Mathematical Special Functions, 38	airy_bi, 19
ellint_rdl	airy_bif, 19
Extended Mathematical Special Functions, 38	airy_bil, 20
ellint_rf	bernoulli, 20
Extended Mathematical Special Functions, 38	bernoullif, 20
ellint_rff	bernoullil, 20
Extended Mathematical Special Functions, 38	bincoef, 20
ellint_rfl	bincoeff, 20
Extended Mathematical Special Functions, 38	bincoefl, 20
ellint_rg	chebyshev_t, 20
Extended Mathematical Special Functions, 39	chebyshev_tf, 21
ellint_rgf	chebyshev_tl, 21
Extended Mathematical Special Functions, 39	chebyshev_u, 21
ellint_rgl	chebyshev_uf, 21
Extended Mathematical Special Functions, 39	chebyshev_ul, 21
ellint_rj	chebyshev_v, 22
Extended Mathematical Special Functions, 39	chebyshev_vf, 22
ellint_rjf	chebyshev_vl, 22
Extended Mathematical Special Functions, 40	chebyshev_w, 22
ellint_rjl	chebyshev_wf, 23
Extended Mathematical Special Functions, 40	chebyshev_wl, 23
ellnome	clausen, 23
Extended Mathematical Special Functions, 40	clausen_c, 23
ellnomef	clausen_cf, 24
Extended Mathematical Special Functions, 41	
•	clausen_cl, 24
ellnomel	clausen_s, 24
Extended Mathematical Special Functions, 41	clausen_sf, 24
evenzeta	clausen_sl, 24
std::detail, 198	clausenf, 25
expint 77	clausenl, 25
Mathematical Special Functions, 77	comp_ellint_d, 25
expint_e1	comp_ellint_df, 26
Extended Mathematical Special Functions, 41	comp_ellint_dl, 26
expint_e1f	comp_ellint_rf, 26
Extended Mathematical Special Functions, 41	comp_ellint_rg, 26
expint_e1l	conf_hyperg, 27
Extended Mathematical Special Functions, 41	conf_hyperg_lim, 27
expint_en	conf_hyperg_limf, 27
Extended Mathematical Special Functions, 41	conf_hyperg_liml, 27
expint_enf	conf_hypergf, 28
Extended Mathematical Special Functions, 41	conf_hypergl, 28
expint_enl	coshint, 28
Extended Mathematical Special Functions, 41	coshintf, 28
expintf	coshintl, 28
Mathematical Special Functions, 77	cosint, 28
expintl	cosintf, 29
Mathematical Special Functions, 77	cosintl, 29
Extended Mathematical Special Functions, 11	cyl_hankel_1, 29
_GLIBCXX_JACOBI_CN, 19	cyl_hankel_1f, 30

cyl_hankel_1I, 30	ellnomel, 41
cyl_hankel_2, <mark>30</mark>	expint_e1, 41
cyl_hankel_2f, 31	expint_e1f, 41
cyl_hankel_2l, 31	expint_e1l, 41
dawson, 31	expint_en, 41
dawsonf, 32	expint_enf, 41
dawsonl, 32	expint_enl, 41
digamma, 32	factorial, 41
digammaf, 32	factorialf, 41
digammal, 32	factoriall, 41
dilog, 32	fresnel_c, 42
dilogf, 32	fresnel_cf, 42
dilogl, 32	fresnel_cl, 42
dirichlet_beta, 32	fresnel_s, 42
dirichlet_betaf, 33	fresnel_sf, 42
dirichlet_betal, 33	fresnel_sl, 42
dirichlet_eta, 33	gamma_l, <mark>42</mark>
dirichlet_etaf, 33	gamma_lf, 42
dirichlet_etal, 33	gamma_II, 43
double_factorial, 33	gamma_p, 43
double_factorialf, 34	gamma_pf, 43
double_factoriall, 34	gamma_pl, 43
ellint_cel, 34	gamma_q, 43
ellint_celf, 34	gamma_qf, 43
ellint_cell, 34	gamma_ql, 43
ellint_d, 34	gamma_u, 43
ellint_df, 35	gamma_uf, 43
ellint_dl, 35	gamma_ul, 43
ellint_el1, 35	gegenbauer, 43
ellint_el1f, 35	gegenbauerf, 44
ellint_el1l, 35	gegenbauerl, 44
ellint_el2, 35	heuman_lambda, 44
ellint_el2f, 36	heuman_lambdaf, 44
ellint_el2l, 36	heuman_lambdal, 44
ellint_el3, 36	hurwitz_zeta, 44
ellint_el3f, 36	hurwitz_zetaf, 45
ellint_el3l, 36	hurwitz_zetal, 45
ellint_rc, 36	hyperg, 45
ellint_rcf, 37	hypergf, 45
ellint_rcl, 37	hypergl, 45
ellint_rd, 37	ibeta, 45
ellint_rdf, 38	ibetac, 46
ellint_rdl, 38	ibetacf, 46
ellint_rf, 38	ibetacl, 46
ellint_rff, 38	ibetaf, 46
ellint_rfl, 38	ibetal, 47
ellint_rg, 39	jacobi, 47
ellint_rgf, 39	jacobi_cn, 47
ellint_rgl, 39	jacobi_cnf, 47
ellint_rj, 39	jacobi_cnl, 47
ellint_rjf, 40	jacobi_dn, <mark>47</mark>
ellint_rjl, 40	jacobi_dnf, 48
ellnome, 40	jacobi_dnl, 48
ellnomef, 41	jacobi_sn, 48

jacobi_snf, 48	sinhc_pif, 55
jacobi_snl, 49	sinhc_pil, 55
jacobi_zeta, 49	sinhcf, 55
jacobi_zetaf, 49	sinhcl, 55
jacobi_zetal, 49	sinhint, 55
jacobif, 49	sinhintf, 56
jacobil, 49	sinhintl, 56
Ibincoef, 49	sinint, 56
Ibincoeff, 50	sinintf, 56
Ibincoefl, 50	sinintl, 56
Idouble_factorial, 50	sph_bessel_i, 57
Idouble_factorialf, 50	sph_bessel_if, 57
Idouble_factoriall, 50	sph_bessel_il, 57
legendre_q, 50	sph_bessel_k, 57
legendre_qf, 50	sph_bessel_kf, 57
legendre_ql, 50	sph_bessel_kl, 57
Ifactorial, 50	sph_hankel_1, 57
Ifactorialf, 50	sph_hankel_1f, 58
Ifactoriall, 50	sph_hankel_1l, 58
logint, 51	sph_hankel_2, 58
logintf, 51	sph_hankel_2f, 58
logintl, 51	sph hankel 2l, 59
lpochhammer I, 51	sph_harmonic, 59
lpochhammer_lf, 51	sph_harmonicf, 59
lpochhammer_II, 51	sph_harmonicl, 59
lpochhammer_u, 51	theta_1, 60
lpochhammer_uf, 52	theta_1f, 60
lpochhammer_ul, 52	theta_1I, 60
owens t, 52	theta 2, 60
owens tf, 52	theta_2f, 61
owens_tl, 52	theta_2I, 61
pochhammer_I, 52	theta_3, 61
pochhammer If, 53	theta_3f, 61
pochhammer II, 53	theta 3I, 61
pochhammer u, 53	theta_4, 62
pochhammer_uf, 53	theta_4f, 62
pochhammer_ul, 53	theta_4I, 62
polylog, 53	theta_c, 62
polylogf, 53	theta_cf, 63
polylogl, 53	theta_cl, 63
psi, 54	theta_d, 63
psif, 54	theta_df, 63
psil, 54	theta_dl, 63
radpoly, 54	theta_di, 66
radpolyf, 54	theta_n, 64
radpolyl, 54	theta_nl, 64
sinc, 54	theta s, 64
sinc_pi, 54	theta_s, 64
sinc_pi, 54 sinc_pif, 55	theta_si, 65
sinc_pil, 55	zernike, 65
sinc_pii, 55 sincf, 55	zernike, 65
sincl, 55	zernikel, 65
sinho, 55	factorial
sinhc_pi, 55	iacional

Extended Mathematical Special Functions, 41 heuman_lambda factorialf Extended Mathematical Special Functions, 44 Extended Mathematical Special Functions, 41 heuman lambdaf factoriall Extended Mathematical Special Functions, 44 Extended Mathematical Special Functions, 41 heuman lambdal fresnel c Extended Mathematical Special Functions, 44 Extended Mathematical Special Functions, 42 hurwitz zeta Extended Mathematical Special Functions, 44 fresnel cf Extended Mathematical Special Functions, 42 hurwitz zetaf fresnel cl Extended Mathematical Special Functions, 45 Extended Mathematical Special Functions, 42 hurwitz zetal fresnel s Extended Mathematical Special Functions, 45 Extended Mathematical Special Functions, 42 hypera Extended Mathematical Special Functions, 45 fresnel sf Extended Mathematical Special Functions, 42 hypergf Extended Mathematical Special Functions, 45 fresnel sl Extended Mathematical Special Functions, 42 hypergl Extended Mathematical Special Functions, 45 gamma I Extended Mathematical Special Functions, 42 ibeta gamma If Extended Mathematical Special Functions, 45 Extended Mathematical Special Functions, 42 ibetac gamma II Extended Mathematical Special Functions, 46 Extended Mathematical Special Functions, 43 ibetacf Extended Mathematical Special Functions, 46 gamma p Extended Mathematical Special Functions, 43 ibetacl Extended Mathematical Special Functions, 46 gamma pf Extended Mathematical Special Functions, 43 ibetaf gamma pl Extended Mathematical Special Functions, 46 Extended Mathematical Special Functions, 43 ibetal gamma q Extended Mathematical Special Functions, 47 Extended Mathematical Special Functions, 43 jacobi gamma qf Extended Mathematical Special Functions, 47 Extended Mathematical Special Functions, 43 jacobi_cn gamma_ql Extended Mathematical Special Functions, 47 Extended Mathematical Special Functions, 43 jacobi cnf gamma u Extended Mathematical Special Functions, 47 Extended Mathematical Special Functions, 43 jacobi cnl gamma uf Extended Mathematical Special Functions, 47 Extended Mathematical Special Functions, 43 jacobi dn gamma ul Extended Mathematical Special Functions, 47 Extended Mathematical Special Functions, 43 jacobi dnf gegenbauer Extended Mathematical Special Functions, 48 Extended Mathematical Special Functions, 43 jacobi dnl gegenbauerf Extended Mathematical Special Functions, 48 Extended Mathematical Special Functions, 44 jacobi sn Extended Mathematical Special Functions, 48 Extended Mathematical Special Functions, 44 jacobi snf hermite Extended Mathematical Special Functions, 48 Mathematical Special Functions, 77 jacobi snl hermitef Extended Mathematical Special Functions, 49 Mathematical Special Functions, 78 jacobi zeta hermitel Extended Mathematical Special Functions, 49 Mathematical Special Functions, 78 jacobi zetaf

Extended Mathematical Special Functions, 49	lpochhammer_II
jacobi_zetal	Extended Mathematical Special Functions, 51
Extended Mathematical Special Functions, 49	lpochhammer_u
jacobif	Extended Mathematical Special Functions, 51
Extended Mathematical Special Functions, 49	lpochhammer_uf
jacobil	Extended Mathematical Special Functions, 52
Extended Mathematical Special Functions, 49	lpochhammer_ul
	Extended Mathematical Special Functions, 52
laguerre	
Mathematical Special Functions, 78	Mathematical Special Functions, 66
laguerref	assoc_laguerre, 68
Mathematical Special Functions, 78	assoc_laguerref, 68
laguerrel	assoc_laguerrel, 68
Mathematical Special Functions, 78	assoc_legendre, 68
lbincoef	assoc_legendref, 69
Extended Mathematical Special Functions, 49	assoc_legendrel, 69
lbincoeff	beta, 69
Extended Mathematical Special Functions, 50	betaf, 69
lbincoefl	betal, 69
Extended Mathematical Special Functions, 50	comp_ellint_1, 70
ldouble_factorial	comp_ellint_1f, 70
Extended Mathematical Special Functions, 50	comp_ellint_1I, 70
ldouble_factorialf	comp_ellint_2, 70
Extended Mathematical Special Functions, 50	comp_ellint_2f, 71
Idouble_factoriall	comp_ellint_2l, 71
Extended Mathematical Special Functions, 50	comp_ellint_3, 71
legendre	comp_ellint_3f, 71
Mathematical Special Functions, 79	comp_ellint_3l, 71
legendre_q	cyl_bessel_i, 72
Extended Mathematical Special Functions, 50	cyl_bessel_if, 72
legendre_qf	cyl_bessel_il, 72
Extended Mathematical Special Functions, 50	cyl_bessel_j, 72
legendre_ql	cyl_bessel_jf, 73
Extended Mathematical Special Functions, 50	cyl_bessel_jl, 73
legendref	cyl_bessel_k, 73
Mathematical Special Functions, 79	cyl_bessel_kf, 73
legendrel	cyl_bessel_kl, 73
Mathematical Special Functions, 79	cyl_neumann, 74
Ifactorial	cyl_neumannf, 74
Extended Mathematical Special Functions, 50	cyl_neumannl, 74
Ifactorialf	ellint_1, 74
Extended Mathematical Special Functions, 50	ellint_1f, 75
Ifactoriall	ellint 11, 75
Extended Mathematical Special Functions, 50	ellint_2, 75
logint	ellint_2f, 75
Extended Mathematical Special Functions, 51	ellint_2l, 76
logintf	ellint_3, 76
Extended Mathematical Special Functions, 51	ellint_3f, 76
logintl	ellint_3l, 76
Extended Mathematical Special Functions, 51	expint, 77
lpochhammer_I	expintf, 77
Extended Mathematical Special Functions, 51	expintl, 77
lpochhammer_lf	hermite, 77
Extended Mathematical Special Functions, 51	hermitef, 78
•	•

hermitel, 78	Extended Mathematical Special Functions, 54
laguerre, 78	radpolyl
laguerref, 78	Extended Mathematical Special Functions, 54
laguerrel, 78	riemann_zeta
legendre, 79	Mathematical Special Functions, 79
legendref, 79	•
legendrel, 79	riemann_zetaf
_	Mathematical Special Functions, 80
riemann_zeta, 79	riemann_zetal
riemann_zetaf, 80	Mathematical Special Functions, 80
riemann_zetal, 80	ONINT
sph_bessel, 80	SININT
sph_besself, 80	std::detail, 110
sph_bessell, 80	sf_airy.tcc
sph_legendre, 81	_GLIBCXX_BITS_SF_AIRY_TCC, 205
sph_legendref, 81	sf_bessel.tcc
sph_legendrel, 81	_GLIBCXX_BITS_SF_BESSEL_TCC, 207
sph_neumann, 81	sf_beta.tcc
sph_neumannf, 82	_GLIBCXX_BITS_SF_BETA_TCC, 209
sph_neumannl, 82	sf_cardinal.tcc
	_GLIBCXX_BITS_SF_CARDINAL_TCC, 211
owens_t	sf_chebyshev.tcc
Extended Mathematical Special Functions, 52	_GLIBCXX_SF_CHEBYSHEV_TCC, 212
owens_tf	sf_dawson.tcc
Extended Mathematical Special Functions, 52	GLIBCXX_SF_DAWSON_TCC, 214
owens_tl	sf_ellint.tcc
Extended Mathematical Special Functions, 52	_GLIBCXX_BITS_SF_ELLINT_TCC, 216
	sf_expint.tcc
pochhammer_l	_GLIBCXX_BITS_SF_EXPINT_TCC, 219
Extended Mathematical Special Functions, 52	sf_fresnel.tcc
pochhammer_lf	_GLIBCXX_SF_FRESNEL_TCC, 220
Extended Mathematical Special Functions, 53	sf_gamma.tcc
pochhammer_II	_GLIBCXX_BITS_SF_GAMMA_TCC, 226
Extended Mathematical Special Functions, 53	sf_gegenbauer.tcc
pochhammer_u	
Extended Mathematical Special Functions, 53	_GLIBCXX_SF_GEGENBAUER_TCC, 227
pochhammer_uf	sf_hankel.tcc
Extended Mathematical Special Functions, 53	_GLIBCXX_BITS_SF_HANKEL_TCC, 230
pochhammer_ul	sf_hankel_new.tcc
Extended Mathematical Special Functions, 53	_GLIBCXX_BITS_SF_HANKEL_NEW_TCC, 230
polylog	sf_hermite.tcc
Extended Mathematical Special Functions, 53	_GLIBCXX_BITS_SF_HERMITE_TCC, 232
polylogf	sf_hydrogen.tcc
Extended Mathematical Special Functions, 53	_GLIBCXX_BITS_SF_HYDROGEN_TCC, 233
polylogl	sf_hyperg.tcc
Extended Mathematical Special Functions, 53	_GLIBCXX_BITS_SF_HYPERG_TCC, 235
psi	sf_hypint.tcc
Extended Mathematical Special Functions, 54	_GLIBCXX_SF_HYPINT_TCC, 236
psif	sf_jacobi.tcc
Extended Mathematical Special Functions, 54	_GLIBCXX_SF_JACOBI_TCC, 238
psil	sf laguerre.tcc
Extended Mathematical Special Functions, 54	_GLIBCXX_BITS_SF_LAGUERRE_TCC, 240
Exterior matromatical operial i dilottorio, 04	sf_legendre.tcc
radpoly	_GLIBCXX_BITS_SF_LEGENDRE_TCC, 241
Extended Mathematical Special Functions, 54	sf mod bessel.tcc
radpolyf	_GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 243
r 7 ·	

sf_owens_t.tcc	Extended Mathematical Special Functions, 57
_GLIBCXX_BITS_SF_OWENS_T_TCC, 244	sph_bessel_il
sf_polylog.tcc	Extended Mathematical Special Functions, 57
_GLIBCXX_BITS_SF_POLYLOG_TCC, 247	sph_bessel_k
sf_theta.tcc	Extended Mathematical Special Functions, 57
_GLIBCXX_SF_THETA_TCC, 249	sph_bessel_kf
sf_trigint.tcc	Extended Mathematical Special Functions, 57
_GLIBCXX_SF_TRIGINT_TCC, 251	sph_bessel_kl
sf_zeta.tcc	Extended Mathematical Special Functions, 57
_GLIBCXX_BITS_SF_ZETA_TCC, 253	sph_besself
sinc	Mathematical Special Functions, 80
Extended Mathematical Special Functions, 54	sph_bessell
sinc_pi	Mathematical Special Functions, 80
Extended Mathematical Special Functions, 54	sph_hankel_1
sinc_pif	Extended Mathematical Special Functions, 57
Extended Mathematical Special Functions, 55	sph_hankel_1f
sinc_pil	Extended Mathematical Special Functions, 58
Extended Mathematical Special Functions, 55	sph_hankel_1I
sincf	Extended Mathematical Special Functions, 58
Extended Mathematical Special Functions, 55	sph_hankel_2
sincl	Extended Mathematical Special Functions, 58
Extended Mathematical Special Functions, 55	sph_hankel_2f
sinhc	Extended Mathematical Special Functions, 58
Extended Mathematical Special Functions, 55	sph_hankel_2l
sinhc_pi	Extended Mathematical Special Functions, 59
Extended Mathematical Special Functions, 55	sph_harmonic
sinhc_pif	Extended Mathematical Special Functions, 59
Extended Mathematical Special Functions, 55	sph_harmonicf
sinhc_pil	Extended Mathematical Special Functions, 59
Extended Mathematical Special Functions, 55	sph_harmonicl
sinhcf	Extended Mathematical Special Functions, 59
Extended Mathematical Special Functions, 55	sph_legendre
sinhcl	Mathematical Special Functions, 81
Extended Mathematical Special Functions, 55	sph_legendref
sinhint	Mathematical Special Functions, 81
Extended Mathematical Special Functions, 55	sph_legendrel
sinhintf	Mathematical Special Functions, 81
Extended Mathematical Special Functions, 56	sph_neumann
sinhintl	Mathematical Special Functions, 81
Extended Mathematical Special Functions, 56	sph_neumannf
sinint	Mathematical Special Functions, 82
Extended Mathematical Special Functions, 56	sph_neumannl
sinintf	Mathematical Special Functions, 82
Extended Mathematical Special Functions, 56	std, 91
sinintl	std::detail, 93
Extended Mathematical Special Functions, 56	_Num_Euler_Maclaurin_zeta, 198
specfun.h	_S_Euler_Maclaurin_zeta, 199
STDCPP_MATH_SPEC_FUNCS, 264	_S_double_factorial_table, 199
	_S_factorial_table, 199
sph_bessel	_S_neg_double_factorial_table, 199
Mathematical Special Functions, 80	_S_num_double_factorials, 199
	_S_num_double_factorials< double >, 199
sph_bessel_i	
Extended Mathematical Special Functions, 57 sph bessel if	_S_num_double_factorials< float >, 199 S num double factorials< long double >, 199
OPI DOUGOI II	o nam acable lactorials \ long acable /, 133

_S_num_factorials, 199	comp_ellint_rg, 128
_S_num_factorials< double >, 199	conf_hyperg, 128
_S_num_factorials< float >, 200	conf_hyperg_lim, 128
_S_num_factorials< long double >, 200	conf_hyperg_lim_series, 128
_S_num_neg_double_factorials, 200	conf_hyperg_luke, 129
_S_num_neg_double_factorials< double >, 200	conf_hyperg_series, 129
_S_num_neg_double_factorials< float >, 200	coshint, 129
_S_num_neg_double_factorials< long double >, 200	cyl_bessel, 130
_S_num_zetam1, 200	cyl_bessel_i, 130
_S_zetam1, 200	cyl_bessel_ij_series, 131
airy, 110, 111	cyl_bessel_ik, 131
airy_ai, 113	cyl_bessel_ik_asymp, 132
airy_arg, 113	cyl_bessel_ik_steed, 132
airy_asymp_absarg_ge_pio3, 113	cyl_bessel_j, 132
airy_asymp_absarg_lt_pio3, 114	cyl_bessel_jn, 133
airy_bessel_i, 114	cyl_bessel_jn_asymp, 133
airy_bessel_k, 115	cyl_bessel_jn_steed, 133
airy_bi, 116	cyl_bessel_k, 134
airy_hyperg_rational, 116	cyl_hankel_1, 134, 135
assoc_laguerre, 117	cyl_hankel_2, 135
assoc_legendre_p, 117	cyl_neumann, 136
bernoulli, 117	cyl_neumann_n, 136
bernoulli_2n, 118	dawson, 136
bernoulli_series, 118	dawson_const_frac, 137
beta, 118	dawson_series, 137
beta_gamma, 119	debye_region, 137
beta_inc, 119	dilog, 137
beta_inc_cont_frac, 120	dirichlet_beta, 138
beta_lgamma, 120	dirichlet eta, 138, 139
beta_product, 120	double_factorial, 139
bincoef, 121	ellint_1, 139
binomial_cdf, 121	ellint_2, 140
binomial_cdfc, 121	ellint_3, 140
bose_einstein, 122	ellint_cel, 140
chebyshev recur, 122	ellint d, 141
chebyshev_t, 122	ellint_el1, 141
chebyshev_u, 122	ellint_el2, 141
chebyshev_v, 122	ellint el3, 141
chebyshev_w, 122	ellint_rc, 141
chi_squared_pdf, 123	ellint_rd, 142
chi_squared_pdfc, 123	ellint_rf, 142
chshint, 123	ellint_rg, 143
	ellint rj, 143
chshint_cont_frac, 123 chshint_series, 124	<i></i> .
	ellnome, 144
clamp_0_m2pi, 124	ellnome_k, 144
clamp_pi, 124	ellnome_series, 144
clausen, 124	expint, 144, 145
clausen_c, 125	expint_E1, 145
clausen_s, 125, 126	expint_E1_asymp, 146
comp_ellint_1, 126	expint_E1_series, 146
comp_ellint_2, 127	expint_Ei, 147
comp_ellint_3, 127	expint_Ei_asymp, 147
comp_ellint_d, 127	expint_Ei_series, 147
comp_ellint_rf, 128	expint_En_cont_frac, 148

expint_En_recursion, 148	owens_t, 166
expint_En_series, 149	pochhammer_I, 167
expint_asymp, 145	pochhammer_u, 167
expint_large_n, 149	poly_hermite, 167
f_cdf, 149	poly_hermite_asymp, 168
f_cdfc, 150	poly_hermite_recursion, 168
factorial, 150	poly_jacobi, 168
fermi_dirac, 150	poly_laguerre, 169
fock_airy, 151	poly_laguerre_hyperg, 169
fpequal, 151	poly_laguerre_large_n, 171
fpimag, 151, 153	poly laguerre recursion, 171
fpreal, 153	poly_legendre_p, 172
fresnel, 153	poly_legendre_q, 172
fresnel_cont_frac, 154	poly_radial_jacobi, 172
fresnel_series, 154	polylog, 172, 174
gamma, 154	polylog_exp, 174
gamma_cont_frac, 154	polylog exp asymp, 174
gamma I, 154	polylog_exp_int_neg, 175
gamma_p, 155	polylog_exp_int_pos, 176
gamma q, 155	polylog_exp_neg, 176, 177
gamma_q, 100 gamma_series, 155	polylog_exp_neg_even, 177
gamma_temme, 155	polylog_exp_neg_odd, 178
gamma_u, 156	polylog_exp_negative_real_part, 179
gauss, 156	polylog_exp_pos, 179, 180
gados, 100 gegenbauer_poly, 156	polylog_exp_real_neg, 181
gogoniadaoi_posy, 100 hankel, 156	polylog_exp_real_pos, 181, 182
hankel_debye, 157	psi, 182
hankel_params, 157	psi, 102 psi_asymp, 183
hankel uniform, 157	psi_series, 183
hankel_uniform_olver, 158	riemann_zeta, 183
hankel_uniform_outer, 158	riemann_zeta_alt, 184
hankel_uniform_sum, 158	riemann_zeta_euler_maclaurin, 184
heuman lambda, 159	riemann_zeta_glob, 184
hurwitz zeta, 159	riemann_zeta_m_1, 184
hurwitz_zeta_euler_maclaurin, 160	riemann zeta m 1 sum, 186
hydrogen, 160	riemann_zeta_product, 186
hyperg, 160	riemann_zeta_sum, 186
hyperg_luke, 161	sinc, 187
hyperg_reflect, 161	sinc_pi, 187
hyperg series, 161	sincosint, 187
iacobi_sncndn, 162	sincosint asymp, 187
jacobi_zeta, 162	sincosint cont frac, 188
laguerre, 162	sincosint series, 188
log_bincoef, 162	sinhc, 188
log_double_factorial, 163	sinhc_pi, 188
log_factorial, 163	sinhint, 188
log_gamma, 163	sph bessel, 189
log_gamma_bernoulli, 164	sph_bessel_ik, 189
log_gamma_lanczos, 164	sph_bessel_in, 191
log_gamma_sign, 164	sph_bessel_in, 191
log_gamma_spouge, 165	sph_hankel_1, 191, 192
log_pochhammer_l, 165	sph_hankel_2, 192, 193
log_pochhammer_u, 166	sph_harmonic, 193
logint, 166	sph_legendre, 193

sph_neumann, 194	Extended Mathematical Special Functions, 63
students_t_cdf, 194	theta_cl
students_t_cdfc, 195	Extended Mathematical Special Functions, 63
theta_1, 195	theta_d
theta_2, 195	Extended Mathematical Special Functions, 63
theta_2_asymp, 196	theta_df
theta_2_sum, 196	Extended Mathematical Special Functions, 63
theta_3, 196	theta dl
theta_3_asymp, 196	Extended Mathematical Special Functions, 63
theta 3 sum, 197	theta_n
theta_4, 197	Extended Mathematical Special Functions, 64
theta_c, 197	theta_nf
theta_d, 197	Extended Mathematical Special Functions, 64
theta_n, 197	theta nl
theta_s, 198	Extended Mathematical Special Functions, 64
riota_s, 198	theta_s
znorm1, 198	Extended Mathematical Special Functions, 64
znorm2, 198	theta sf
COSINT, 110	Extended Mathematical Special Functions, 65
evenzeta, 198	theta_sl
SININT, 110	Extended Mathematical Special Functions, 65
std::detail::_Factorial_table	•
factorial, 201	zernike
log factorial, 201	Extended Mathematical Special Functions, 65
n, 201	zernikef
std::detail::_Factorial_table< _Tp >, 201	Extended Mathematical Special Functions, 65
	zernikel
theta 1	Extended Mathematical Special Functions, 65
Extended Mathematical Special Functions, 60	
theta 1f	
Extended Mathematical Special Functions, 60	
theta_1I	
Extended Mathematical Special Functions, 60	
theta 2	
Extended Mathematical Special Functions, 60	
theta 2f	
Extended Mathematical Special Functions, 61	
theta 2I	
Extended Mathematical Special Functions, 61	
theta 3	
Extended Mathematical Special Functions, 61	
theta 3f	
Extended Mathematical Special Functions, 61	
·	
theta_3l	
theta_3l Extended Mathematical Special Functions, 61	
theta_3l Extended Mathematical Special Functions, 61 theta_4	
theta_3I Extended Mathematical Special Functions, 61 theta_4 Extended Mathematical Special Functions, 62	
theta_3I Extended Mathematical Special Functions, 61 theta_4 Extended Mathematical Special Functions, 62 theta_4f	
theta_3I Extended Mathematical Special Functions, 61 theta_4 Extended Mathematical Special Functions, 62 theta_4f Extended Mathematical Special Functions, 62	
theta_3I Extended Mathematical Special Functions, 61 theta_4 Extended Mathematical Special Functions, 62 theta_4f Extended Mathematical Special Functions, 62 theta_4I	
theta_3I Extended Mathematical Special Functions, 61 theta_4 Extended Mathematical Special Functions, 62 theta_4f Extended Mathematical Special Functions, 62	

theta_cf