V21

Optisches Pumpen

Schokoladen por sche

Durchführung: 28.10.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Motivation	3							
2	· · · · · · · · · · · · · · · · · · ·	3							
	2.1 Energieniveaus der Rubidiumisotope								
	2.2 HF-Spektroskopie und das Prinzip des optischen Pumpens								
	2.3 Der quadratische Zeeman-Effekt								
	2.4 Magnetfeld im Mittelpunkt einer Helmholtz-Spule	6							
3	Aufbau	7							
4	Durchführung	8							
5	Auswertung								
	5.1 Erdmagnetfeld	9							
	5.2 Kernspins über die Resonanzen	9							
	5.3 Isotopenverhältnis	12							
	5.4 Quadratischer Zeeman-Effekt								
	5.5 Schwing-Kernspin	12							
6	Diskussion	14							
Lit	Literatur								

1 Motivation

In diesem Versuch geht es darum, mit Hilfe des optischen Pumpens den Kernspin zweier Rubidium Isotope zu bestimmen. Dazu wird ein Gasgemisch der Isotope mit HF^1 -Strahlung bestrahlt um durch das herstellen einer Besetzungsinversion letztendlich auf den Kernspin zu schließen.

2 Theoretische Grundlagen

2.1 Energieniveaus der Rubidiumisotope

Rubidium ist ein Alkalimetall, welches nur ein Elektron in der fünften Schale hat. Die Quantenzahl der Elektronenhülle hängt also ausschließlich von diesem Elektron ab. Bei Vernachlässigung jeglicher Korrekturen liegt das Elektron als Spin-1/2-Teilchen in dem Zustand mit $n=5,\ L=0$ und $M_L=0$, wobei n die Hauptquantenzahl, L die Nebenoder auch Drehimpulsquantenzahl und M_L die zu ihr gehörige magnetische Quantenzahl bezeichnet. In niedrigster Ordnung verfügt das Niveau mit L=1 und $M_L=0,\pm 1$ über die gleiche Energie wie der besetzte Zustand, sie sind also entartet.

In nächster Näherung wird die Spin-Bahn-Kopplung betrachtet welche zeigt, dass die obige Entartung nicht korrekt sein kann. Eine neue Erhaltungsgröße J, welche aus der Vektoraddition des Bahndrehimpulses \vec{L} und des Spins \vec{S} des Elektrons besteht, ist der Grund. Die neuen Quantenzahlen J und M_J definieren nun einen Zustand, wobei J von |L-S| bis |L+S| geht. Somit sind Zustände mit unterschiedlichem J nicht mehr entartet, jedoch bleibt die M_J Entartung ohne äußeres B-Feld erhalten. Diese Aufspaltung wird auch Feinstruktur genannt.

Die nächste Korrektur erhält man nun, wenn die Spin-Spin-Kopplung des Gesamtdrehimpulses der Elektronenhüllen an den Kernspin betrachtet wird. Der Gesamtimpuls \vec{F} setzt sich aus der Vektoraddition von J und I. F kann Werte zwischen |J-I| und |J+I| annehmen, mit M_F als magnetischer Quantenzahl. Ohne äußeres Magnetfeld bleiben Zustände mit verschiedenem M_F trotz gleichen F entartet.

Für die Aufhebung dieser Entartung ist der Zeeman-Effekt verantwortlich. Er spaltet einen F Zustand in 2F+1-Zustände auf. Die Energiedifferenz zweier benachbarter Zeeman-Niveaus beträgt

$$\Delta E_Z = g_F \mu_B B \tag{1}$$

und ist somit proportional zur magnetischen Flussdichte B. Der Faktor $\mu_{\rm B}=\frac{e\hbar}{2m_e}$ ist das Bohrsche Magneton, das kleinstmögliche magnetische Moment welches ein Elektron tragen kann. Der Landé-Faktor des Gesamtdrehimpulses des Atoms g_F ergibt sich aus

 $^{^1}$ Hochfrequenz

Abbildung 1: Schematische Darstellung der Energieniveaus in 87 Rb mit I=3/2 [2].

Kopplungsdiagrammen der beteiligten Drehimpulse näherungsweise zu

$$g_F = g_J \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)}, \qquad (2)$$

wobei der Landé-Faktor des Gesamtdrehimpulses des Elektrons

$$g_J = \frac{3,0023J(J+1) + 1,0023(S(S+1) - L(L+1))}{2J(J+1)} \tag{3}$$

beträgt.

2.2 HF-Spektroskopie und das Prinzip des optischen Pumpens

Die häufig verwendete Schreibweise für die Darstellung der Feinstrukturniveaus ist ${}^{2S+1}L_J$ mit der Multiplizität 2S+1 und dem Kennbuchstaben L für den elektronischen Drehimpuls, wobei $L=0,1,2,\ldots$ den Schalen S,P,D,\ldots zugeordnet wird. Ohne äußere, zeitabhängige Störung folgt die Besetzung dann näherungsweise einer thermischen Boltzmann-Verteilung, sodass die Elektronen größtenteils im Grundzustand mit niedrigstem m_F sind. Es wird nun rechtszirkular polarisiertes Licht der Frequenz des D_1 -Überganges eingestrahlt, dessen Energie dem Übergang von ${}^2P_{1/2}$ nach ${}^2S_{1/2}$ entspricht.

Übergänge, die durch Absorption dieser Photonen entstehen, gehorchen der Auswahlregel $M_F=+1$, während die spontane Emission keine bestimmten Übergänge bevorzugt. Es gelingt also, durch dieses Prinzip den niedrigsten Zustand nahezu leer zu pumpen und den S-Zustand mit F=2, $M_F=2$ anzureichern und eine Besetzungsinversion herbeizuführen. Eine schematische Darstellung der erlaubten übergänge bei einem Pumpvorgang sind in Abbildung 2 dargestellt.

Abbildung 2: Schema des Pumpvorgangs für Rubidiumatome bei Einstrahlung von rechtszirkular polarisiertem Licht. [2]

Ein geeignetes Maß für die Besetzungsinversion stellt die Transparenz der Dampfzelle gegenüber dem einstrahlenden D_1 -Licht dar. Diese wird mit einer ansteigenden Exponentialfunktion parametrisiert, welche sich bei vollständiger Inversion sättigt, da das Licht dann aufgrund der Auswahlregel keinen Übergang anregen kann. Obwohl die Zeeman-Aufspaltung das Phänomen des optischen Pumpens erst möglich macht, wird Letzteres oft als spektroskopisches Verfahren eingesetzt, um die aufgespaltenen Energieniveaus mit hoher Genauigkeit zu vermessen. Dieses Messverfahren bedient sich eines zweiten, hochfrequenten magnetischen Feldes (RF-Feld), welches stimulierte Emission aus den angereicherten Niveau heraus anregt. Für die Flussdichte B_m gilt dann

$$hf = g_F \mu_B B_m \Delta M_F \implies B_m = \frac{4\pi m_e}{eg_F} f,$$
 (4)

sodass ein linearer Zusammenhang zu der Frequenz des Feldes besteht. Da mit der stimulierten Emission eine Entleerung des zuvor angereicherten Niveaus verbunden wird, wird das Erreichen der Feldstärke B_m mit einer deutlichen Abnahme der Transparenz des Gases verbunden sein, weil der konkurrierende Prozess der Besetzungsinversion durch optisches Pumpen wieder aufnehmen kann. Grafisch ist dies in Abbildung 3 dargestellt. Der ausgedehnte Dip um Null herum ist dem Erdmagnetfeld zuzuschreiben, während der B_m -Dip durch das resonante RF-Feld bewirkt wird.

Um 0 herum sinkt die Transparenz deutlich ab, dort kann keine Besetzungsinversion hergestellt werden. Dies liegt daran, dass dies in einem Zweiniveausystem nicht möglich ist,

Abbildung 3: Transparenz der Dampfzelle in Abhängigkeit eines äußeren Magnetfelds. [3]

da die Prozesse der Absorption und der stimulierten Emission miteinander konkurrieren, wobei die zusätzliche spontane Emission die Besetzung des Grundzustandes noch weiter bevorzugt. Experimentell wird dies ausgenutzt, um den Einfluss des Erdmagnetfelds zu minimieren.

2.3 Der quadratische Zeeman-Effekt

Bei schwachen Magnetfeldern können die obigen Annahmen getroffen werden. Sobald starke Felder angelegt werden, wird die Drehimpulskopplung getroffen. Um die Effekte bei mittleren Feldern zu untersuchen, werden zusätzliche Terme der Störungsreihe in Betracht gezogen. Hierbei spricht man unter anderem vom quadratischen Zeeman-Effekt. In niedrigster Ordnung kann die Energiedifferenz aus Gleichung (1) zu

$$\Delta E_{Z} = g_{F} \mu_{\rm B} B + g_{F}^{2} \mu_{\rm B}^{2} B^{2} \frac{1 - 2M_{F}}{\Delta E_{\rm Hy}} \tag{5}$$

korrigiert wird, wobei $E_{\rm Hy}$ die Hyperfeinstrukturaufspaltung zwischen den Niveaus F und F+1 bezeichnet.

2.4 Magnetfeld im Mittelpunkt einer Helmholtz-Spule

Die Magnetfelder werden in diesem Versuchsaufbau mit Helmholtz-Spulen erzeugt. Die Stärke des Magnetfeldes B im Mittelpunkt kann ausgehend vom BIOT-SAVART-Gesetz

$$B_i(x) = \frac{\mu_o n_i I_i R_i}{2(R_i^2 + x^2)^{\frac{3}{2}}}$$
 (6)

als

$$B = \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{\mu_0 nI}{R} \tag{7}$$

bestimmt werden.

3 Aufbau

In Abbildung 4 ist eine schematische Skizze des Aufbaus dargstellt. Durch eine Rubidiumspektrallampe wird Licht emittiert, welches zunächst kollimiert wird. Dahinter wird ein Interferenzfilter geschaltet um nur die D_1 -Wellenlänge durchzulassen. Im Anschluss wird das Licht linear polarisiert und mittels eines $\lambda/4$ -Plättchens rechtszirkular polarisiert. Danach fällt es auf die Dampfzelle. Für Licht aus thermischen Emissionen gilt, dass alle Übergänge erlaubt sind, da es eine gewisse Linienbreite aufweist.

Innerhalb der Dampfzelle befindet sich das Rubidum-Neon Gasgemisch. Der Neonanteil sorgt dafür, dass es keine Besetzungsinversion gibt wenn die Rubidumatome mit den Wänden der Dampfzelle kollidiert. Außerdem wird bei Stößen zwischen Neon- und Rubidumatomen kein Drehimpuls zwischen den Elektronenhüllen ausgetauscht, sodass das herstellen der Besetzungsinversion nicht abgeschwächt wird. Das Licht wird nach dem hindurchtreten durch die Dampfzelle in eine Photozelle fokussiert, sodass die Transparenz des Gases für die D_1 -Linie gemessen werden kann.

Abbildung 4: Schematischer Aufbau des Versuches [3].

Es stehen drei Helmholtzspulen zur Verfügung, um Magnetfelder anzulegen. Eine Horizontalfeldspule erzeugt ein statisches Horizontalfeld, während die Sweep-Spule auf die Horizontalfeldspule aufgewickelt ist und ein Sägezahnsignal liefert. Das RF-Feld wird mit einem externen Funktionsgenerator angesteuert.

Tabelle 1: Daten der Spulen.

Spule	Windungszahl N	Radius r / cm	Gainknopf	
Sweep	11	16,39	0,3	
Horizontal	154	15,79	0,1	
Vertikal	20	11,735	0,1	

4 Durchführung

Zu Beginn des Versuchs wird der Strahlengang auf eine maximale Intensität eingestellt und die Apparatur abgedeckt, um Streulicht von der Photozelle abzuhalten. Das Prinzip der Messung ist, das Sweep-Feld auf den X-Eingang des Oszilloskops zu legen, sodass ein durchlaufender Leuchtpunkt die Intensität in Abhängigkeit der Magnetfeldstärke zeigt. Wenn nur das Sweep-Feld angelegt ist, wird ein breiter Dip bzw. Peak zu sehen sein (Nulldip in Abb. 3), der dem Erdmagnetfeld zuzuordnen ist. Um seinen Effekt auf die Versuchsdurchführung zu minimieren, wird das Vertikalfeld so eingestellt, dass der Dip möglichst schmal ist, zustzlich wird der Tisch in Nord-Süd- Richtung orientiert.

Zur Bestimmung der RF-Feldstärke B_m , abhängig von der Frequenz des RF-Feldes, wird ein Frequenzgenerator mit einem 4 V Sinus-Signal verwendet. Zu sehen sind zwei Dips für unterschiedliche B_m aufgrund der beiden Isotope des Rubidiums im Gasgemisch. Für die Vermessung der Resonanzfrequenz gegen Magnetfeld wird die Frequenz von 100 kHz bis 1 MHz durchfahren. Zusätzlich wird bei einer Frequenz von 100 kHz ein Bild des Signals dazu verwendet aus der Tiefe der Dips das Isotopenverhältniss zu bestimmen.

Bei der Frequenz an den beiden Dips wird das Feld resonant eingestellt. Die RF-Spannung wird nun durch eine Rechteckspannung auf dem "Input RF Modulation" mit einer Frequenz von 5 Hz an- und ausgeschaltet. Die RF-Frequenz selbst beträgt dabei 100 kHz. Dieses Signal wird auf Kanal 1 des Oszilloskops gelegt, das in diesem Teil des Versuchs nicht im XY-Betrieb, sondern im YT-Betrieb läuft. Aufgrund der Präzessionsbewegung des Spins ist eine exponentiell sättigende Transparenz für ein ausgeschaltetes RF-Feld und eine Abschwingung für ein eingeschaltetes RF-Feld zu erkennen. Die Periodendauer dieser Oszillationen wird für Amplituden von 2 bis 10 V für beide Isotope, also unterschiedliche Resonanzmagnetfeldstärken, bestimmt.

5 Auswertung

5.1 Erdmagnetfeld

Die Kompensation des Erdmagnetfeldes mit der Vertikalspule führt zu einem Spulenstrom von 0,215 A. Daraus ergibt sich mit den Daten in Tabelle 1 und Gleichung (7)

$$B_{\rm V} = \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{\mu_0 \cdot 20 \cdot 0,215 \,\mathrm{A}}{11,735 \,\mathrm{cm}} = 32,948 \,\mathrm{\mu T} \tag{8}$$

für die Vertikalkomponente des Erdmagnetfeldes. Der Literaturwert [4] beträgt

$$B_{\text{lit}} = 45,136 \,\mu\text{T} \,.$$
 (9)

5.2 Kernspins über die Resonanzen

Die Messwerte sind in Tabelle 2 aufgetragen. Von diesen ausgehend wird mit der Skalierung des Potentiometers von 0,3 multipliziert. Die errechneten Stromstärken werden dann mit der Gleichung (7) in die entsprechenden B-Feldstärken umgerechnet. In der Abbildung 5 sind diese gegen die Frequenz der Sinuswelle aufgetragen.

Die Bezeichung erfolgt anhand von Abbildung 6 von links nach rechts.

Mit der Ausgleichsgeraden

$$B_i = m_i \cdot f + b_i \tag{10}$$

liefert scipy die Werte

$$m_1 = (3.77 \pm 0.01) \cdot 10^{-17} \frac{\mu \text{T}}{\text{kHz}}$$
 (11)

$$b_1 = (21,047\,216\,910 \pm 0,000\,000\,004)\,\mu\text{T}$$
 (12)

$$m_2 = (148 \pm 1) \frac{\mu T}{\text{kHz}}$$
 (13)

$$b_2 = (20.9 \pm 0.7) \,\mu\text{T} \tag{14}$$

$$m_3 = (221.5 \pm 0.3) \frac{\mu T}{\text{kHz}}$$
 (15)

$$b_3 = (20.7 \pm 0.2) \,\mu\text{T} \,.$$
 (16)

Nach Gleichung (4) sind die m_i die Proportionalitätsfaktoren zwischen f und B. Mit umstellen zu

$$g_{(f,i)} = \frac{4\pi \cdot m_{e}}{e \cdot m_{i}} \tag{17}$$

folgen die Werte

$$g_{(f,2)} = 0.483 \pm 0.003 \tag{18}$$

$$g_{(f,3)} = 0.3226 \pm 0.0004$$
. (19)

Mit der Gleichung

$$I = \frac{g_j}{(4 \cdot g_3)} - 1 + \sqrt{\left(\frac{g_j}{4 \cdot g_f} - 1\right)^2 + \frac{3}{4} \cdot \left(\frac{g_j}{g_f} - 1\right)}$$
 (20)

ergeben sich die Kernspins zu

$$I_2 = 1,573 \pm 0,005 \tag{21}$$

$$I_3 = 2,603 \pm 0,004$$
 . (22)

Durch einen Vergleich mit der Literatur [1] kann das Minimum 2 $^{87}{\rm Rb}$ mit einem Kernspin von $^{3}/\!_{2}$ und das Minimum 3 $^{85}{\rm Rb}$ mit einem Kernspin von $^{5}/\!_{2}$ zugeordnet werden.

Abbildung 5: Darstellung der Daten aus Messung c).

Abbildung 6: Oszilloskopbild der Messung. (Messauftrag f) Von links nach rechts: Min. 1 \to Min. 2 \to Min. 3

Tabelle 2: Messwerte und Magnetfeldstärken in der Messung c).

	Mini	mum 1	Mini	mum 2	Minimum 3		
f/kHz	I_1 / A	$B_1 / \mu T$	I_2 / A	$B_2/\mu\mathrm{T}$	I_3 / A	B_3 / μT	
100	0,024	21,05	0,040	35,08	0,049	42,97	
200	0,024	$21,\!05$	0,057	49,99	0,074	64,90	
300	0,024	$21,\!05$	0,074	64,90	0,099	86,82	
400	0,024	$21,\!05$	0,094	82,43	$0,\!125$	109,62	
500	0,024	21,05	$0,\!108$	94,71	$0,\!150$	$131,\!55$	
600	0,024	$21,\!05$	$0,\!125$	$109,\!62$	$0,\!175$	$153,\!47$	
700	0,024	$21,\!05$	$0,\!142$	$124,\!53$	0,200	$175,\!39$	
800	0,024	$21,\!05$	$0,\!158$	$138,\!56$	$0,\!226$	198,19	
900	0,024	21,05	$0,\!175$	$153,\!47$	$0,\!251$	$220,\!12$	
1000	0,024	21,05	0,193	$169,\!25$	0,276	242,04	

5.3 Isotopenverhältnis

Das Verhältnis wird über die Stärke der Pulse ermittelt, dieses beträgt

$$\frac{7}{11} = 0, \overline{63}, \quad \text{bzw.} \quad \frac{11}{7} = 1,57$$
 (23)

Es ergibt sich für die relativen Anteile

87
Rb: 39% (24)

85
Rb: 61% . (25)

Die Literaturwerte [1] sind

$$^{87}\text{Rb}: 28\%$$
 (26)

85
Rb: 72% . (27)

5.4 Quadratischer Zeeman-Effekt

Nach Gleichung (5) kann der quadratische Zeeman-Effekt zu

$$\Delta E_{85} = 2.01 \cdot 10^{-24} \,\text{J}$$
 $\Delta E_{hu.85} = (-2.227 \pm 0.006) \,\text{J}$ (28)

$$\Delta E_{87} = 4.53 \cdot 10^{-24} \,\text{J}$$

$$\Delta E_{hy,87} = (-1.33 \pm 0.02) \,\text{J}$$
(29)

bestimmt werden.

5.5 Schwing-Kernspin

Die Funktion

$$T = a + \frac{b}{x - c} \tag{30}$$

wird, wieder mit scipy an die genommenen Messwerte gefittet. Dabei ist x die RF-Amplitude. Die Parameter sind für die blaue Kurve

$$a_1 = (-105 \pm 77) \,\mu\text{s}$$
 (31)

$$b_1 = (5.5 \pm 0.7) \cdot 10^3 \,\text{µs V}$$
 (32)

$$c_1 = (-0.01 \pm 0.20) \,\mathrm{V} \tag{33}$$

und für die grüne Kurve

$$a_2 = (20 \pm 74) \,\mu\text{s}$$
 (34)

$$b_2 = (7.3 \pm 0.7) \cdot 10^3 \,\text{µs V} \tag{35}$$

$$c_2 = (-0.14 \pm 0.16) \,\mathrm{V} \,.$$
 (36)

Das Verhältnis der Parameter \boldsymbol{b}_i beträgt

$$\frac{b_2}{b_1} = 1.3 \pm 0.2, \tag{37}$$

der Literaturwert [3] ist

$$\frac{b_2}{b_1} = 1, 5. (38)$$

Abbildung 7: Messwerte der Abschwingvorgänge.

6 Diskussion

Bei der Messung der Vertikalkomponente des Erdmagnetfeldes gibt es aufgrund der Messmethode verschiedene Unsicherheiten. Zum einen ist hier die Ablesegenauigkeit des Einstellungsknopfes zu nennen, andererseits die Feeinustierung des Knopfes, damit ist gemeint ob bei der Einstellung 0 tatsächlich kein Strom fließt. Das ablesen am Oszilloskop selber ist hier jedoch die größte Fehlerquelle und für die Abweichung verantwortlich.

Die Messung der Kernspins in Kapitel 5.2 liefert vom Zahlenwert her einen Wert nahe den theoretischen Werten, die Unsicherheiten der experimentellen Werte sind jedoch sehr klein. Da diese Werte aus den Steigungen der Ausgleichsgeraden folgen und hier die Unsicherheiten ebenfalls klein sind, ist auf einen systematischen Fehler zu schließen. Dieser ist eventuell in den Potentiometern zu suchen.

Das Isotpenverhältnis ist nahe dem das in der Quelle gegeben ist. Die Abweichungen sind auf die Auflösung auf dem Oszilloskop zurückzuführen.

Das in dem letzten Auswertungsteil bestimmte Verhältnis liegt nahe dem in der Anleitung gegebenen. Dieses liegt sogar in der $1-\sigma$ -Umgebung.

Literatur

- [1] Eric D. Black. Optical Pumping. 14. Nov. 2019. URL: https://www.phas.ubc.ca/~phys409/manuals/Optical_Pumping-CalTech.pdf.
- [2] TU Dortmund. Versuchsanleitung V21. 2019. URL: http://129.217.224.2/ HOMEPAGE/PHYSIKER/BACHELOR/FP/V21.pdf.
- [3] TU Dortmund. <u>Versuchsanleitung V21</u>. 2019. URL: https://moodle.tu-dortmund.de/.
- [4] GFZ Helmholtz Center Potsdam. <u>ISCD: IGRF Declination Calculator</u>. 14. Nov. 2019. URL: http://isdc.gfz-potsdam.de/igrf-declination-calculator/.

	Masta		EP	V	27 -	Op	rtisches	Pemper	5	78.10.201
	b)	Vertical	mugn	etoc fi	eccl		2,15			
	c) /	[litz]						Tig 2.Mig	3. M.n.	
		100		0,2	4		-905	925		
	-	200								
		300		0,2	*	0,97	-0,05	0,43	97	
		100					-0,05	0,6	0,94	
	3	100					-0,05	978	7,20	
ACTUAL DA	6	00					-905	2,95	1,45	
		200					-0,05	211	177	
	8	200					-0105	7,28	7,96	
	the state of the s	100					-0,05	7,45	2,21	
		500						362	2,41	
	2) R-10	10. 10.	2114	12						
	4) B:(d	a be.	200	80	1 - 100	14	-1	15 (1000)		
	9)	MAR	7	Survey C	pe (C)	7 164 7	21104	- Jesse		
		E. 11.7	7	Stricte	Somon	0 0	- V			
						3 =0				
		-					2 44			
	c) verbase			7. Min	2. Min		3.M:n			
		700		0,24	0,4		0,49			
		200		0,24	0,5.7		a74			
		300		924	0,74		0.99			
		400		924	0.94		7,25			
		500		0/24	1,08		1,50			
		600		9536	7,25		7,75			
		200		0,24	7,42		200			
		800		0,24	1,58		2,26 2,57 2,76			
		900		0, 24	1,75		2,57			
		1000		0,24	1,93		2,76			
							0,49			
	RF-40	plitude	EVI	0.4/TIM	7	The	3 249 8	Bida 4 eyi	EMOT Cu	57
	0,1			MA		\$8n				
	9,6			1018		dom				
	2,6	7		2620			in s		3440	
	3,6			1780			ms		2260	
	4,5					8,8			1820	
	5,0			1280 360		12		Ro	Ø 1470	2
				7-60		12/11		30	0 1231	
	6,6			680		SIL	745	2	0 1040	
-	7,6 8,6	0		540		810	45	28	900	
						8/10	ms.	2/8	0 900 0 820 1 710	
	9,6			\$8 0560		9,0	ms	2/8 ₀	3 340	
	10			480		4.8	ms	280	יוכ	
				7 8 8						
-										