SINGLE CORRECT CHOICE QUESTIONS

<u>LEVEL-I</u>

A.P., G.P., H.P. and Mean

(C) 28

1.	If the sum of first 2n terms of A.P. 2, 5, 8, is equal to the sum of the first n terms of the A.P. 5, 61,, then n equals						
	(A)10	(B) 12					
	(C) 11	(D) 13					
2.	If S denotes the sum to infinity and S_n the sum of n terms of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+$, such that $S-S_n < \frac{1}{1000}$, then the least value of n is						
	(A) 8	(B) 9					
	(C) 10	(D) 11					
3.	If a_1 , a_2 , a_3 , is an A.P. such that						
	$a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$,						
	then $a_1 + a_2 + a_3 + + a_{23} + a_{24}$ is equal to						
	(A) 909	(B) 75					
	(C) 750	(D) 900					
4.	. If the sum of first p terms, first q terms and first r terms of an A.P. be a, b and c re						
	$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q)$ is equal to						
	(A) 0	(B) 2					
	(C) pqr	(D) $\frac{8abc}{pqr}$					
5 .	The numbers $3^{2sin2\theta-1}$, 14, $3^{4-2 \ sin2\theta}$ form first	three terms of an A.P. Its fifth term is equal to					
	(A) –25	(B) –12					
	(C) 40	(D) 53					
6.	If sum of n terms of an A.P. is $3n^2 + 5n$ and	$T_{m} = 164, m = ?$					
	(A) 26	(B) 27					

(D) 25

- **16**. In a G.P. if the $(m + n)^{th}$ term be p and $(m n)^{th}$ term be q, then its m^{th} term is
 - (A) $\sqrt{(pq)}$

(B) $\sqrt{(p/q)}$

(C) $\sqrt{(q/p)}$

- (D) p/q
- 17. Between 1 and 31 m arithmetic means are inserted so that the ratio of the 7th and $(m-1)^{th}$ means is 5 : 9. Then the value of m is
 - (A) 12

(B) 13

(C) 14

(D) 15

A.G.P., V_n Medhod

- **18.** If $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \dots = \frac{\pi}{4}$, then value of $\frac{1}{1.3} + \frac{1}{5.7} + \frac{1}{9.11} + \dots$ is
 - (A) $\frac{\pi}{8}$

(B) $\frac{\pi}{6}$

(C) $\frac{\pi}{4}$

- (D) $\frac{\pi}{36}$
- **19.** Sum to n terms of the series $\frac{1}{(1+x)(1+2x)} + \frac{1}{(1+2x)(1+3x)} + \frac{1}{(1+3x)(1+4x)} + \dots$ is
 - (A) $\frac{nx}{(1+x)(1+nx)}$

(B) $\frac{n}{(1+x)[1+(n+1)x]}$

 $(C) \ \frac{x}{\left(1+x\right)\left(1+\left(n-1\right)x\right)}$

- (D) $\frac{nx}{(1+x)[1+(n+1)x]}$
- **20.** Sum of the series $S = 1 + \frac{1}{2}(1+2) + \frac{1}{3}(1+2+3) + \frac{1}{4}(1+2+3+4) + \dots$ upto 20 terms is
 - (A) 110

(B) 111

(C) 115

- (D) 116
- **21.** If $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ upto $\infty = \frac{\pi^2}{6}$, then value of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ upto to ∞ is
 - (A) $\frac{\pi^2}{4}$

(B) $\frac{\pi^2}{6}$

(C) $\frac{\pi^2}{8}$

(D) $\frac{\pi^2}{12}$

22. Sum of the series
$$S = 1^2 - 2^2 + 3^2 - 4^2 + \dots - 2002^2 + 2003^2$$
 is

(A) 2007006

(B) 1005004

(C) 2000506

(D) 1005040

Inequalities

23. If three positive real numbers a, b, c are in A.P., with abc = 4, then the minimum value of b is

(B) 3

(C)2

(D) 1/2

24. If x, y and z are positive real numbers such that x + y + z = a then

(A)
$$\frac{1}{x} + \frac{1}{v} + \frac{1}{z} \ge \frac{9}{a}$$

(B) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} < \frac{9}{a}$

(C)
$$(a-x)(a-y)(a-z) > \frac{8}{27}a^3$$

(D) $(a-x)(a-y)(a-z) > a^3$

25. If a, b and c are distinct positive real numbers and $a^2 + b^2 + c^2 = 1$, then

ab + bc + ca is

(A) less than 1

(B) equal to 1

(C) greater than 1

(D) any real number

LEVEL-II

Inequalities

26. The greatest value of $x^2y^3z^4$, (if x + y + z = 1, x, y, z > 0) is

(A)
$$\frac{2^9}{3^5}$$

(B) $\frac{2^{10}}{3^{15}}$

(C)
$$\frac{2^{15}}{3^{10}}$$

(D) $\frac{2^{10}}{3^{10}}$

27. If a, b and c are three positive real numbers, then the minimum value of the expression

$$\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$$
 is

(A) 1

(B) 2

(C) 3

(D) 6

A.P., G.P., H.P. & Mean

28.	If S be the sum.	P the pro	duct and R	the sum of the	e reciprocals of	n terms of a G.P.	then
	ii o bo allo calli,		adot and it	and during a tine	, roorprocare or	11 to 11110 of a o.i .	,

$$\left(\frac{S}{R}\right)^n =$$

(A) P

(B) P²

(C) P³

(D) √P

29. If x, y, z be respectively the pth, qth and rth terms of G.P., then

$$(q-r) \log x + (r-p) \log y + (p-q) \log z =$$

(A)0

(B) 1

(C) -1

(D) 2

30. In a G.P., $T_2 + T_5 = 216$ and $T_4 : T_6 = 1:4$ and all terms are integers, then its first term is

(A) 16

(B) 14

(C) 12

(D) 15

31. If the roots of the equation $x^3 - 12x^2 + 39x - 28 = 0$ are in A.P., then their common difference will be

(A) +1

(B) +2

(C) ±3

(D) ±4

32. If a, b, c, d are nonzero real numbers such that

 $(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) < (ab + bc + cd)^2$, then a, b, c, d are in

(A)AP

(B) GP

(C) HP

(D) AGP

33. Let $a_1, a_2, a_3, ...$ be in AP and a_p, a_q, a_r be in GP. Then a_q : a_p is equal to

(A) $\frac{r-p}{q-p}$

(B) $\frac{q-p}{r-q}$

(C) $\frac{r-q}{q-p}$

(D) 1

34. Three distinct real numbers a, b, c are in G.P. such that a + b + c = x b, then

(A) 0 < x < 1

(B) -1 < x < 3

(C) x < -1 or x > 3

(D) -1 < x < 2

- **43.** The sum of first n terms of the series $1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + \dots$ is $(n + 1)^2/2$ when n is even. When n is odd the sum of the series is
 - (A) n² (3n + 1)/4

(B) $n^2 \frac{(n+1)}{2}$

(C) $n^3 (n-1)/2$

- (D) none of these
- **44.** If $\sum_{r=1}^{n} t_r = \frac{1}{12} n(n+1)(n+2)$, then value of $\sum_{r=1}^{n} \frac{1}{t_r}$ is
 - (A) $\frac{2n}{n+1}$

(B) $\frac{n-1}{(n+1)!}$

(C) $\frac{4n}{(n+1)}$

- (D) $\frac{3n}{n+2}$
- **45.** Sum to n terms of the series $\frac{1}{5!} + \frac{1!}{6!} + \frac{2!}{7!} + \frac{3!}{8!} + \dots$ is
 - (A) $\frac{2}{5!} \frac{1}{(n+1)!}$

(B) $\frac{1}{4} \left(\frac{1}{4!} - \frac{n!}{(n+4)!} \right)$

(C) $\frac{1}{4} \left(\frac{1}{3!} - \frac{3!}{(n+2)!} \right)$

- (D) $\frac{1}{4} \left(\frac{1}{4!} + \frac{n!}{(n+4)!} \right)$
- **46.** Sum to n terms of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \frac{7}{4.5.6} + \dots$ is
 - $(A) \ \frac{n \big(n+1\big)}{2 \big(n+2\big) \big(n+3\big)}$

(B) $\frac{n(3n+1)}{4(n+1)(n+2)}$

(C) $\frac{1}{6} - \frac{5}{(n+1)(n+4)}$

- $(D)\frac{\left(3n+1\right)}{\left(n+1\right)\left(n+2\right)}$
- **47.** Sum to n terms of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots$ is
 - (A) $\frac{n}{24} (n^2 + 9n + 14)$

(B) $\frac{n}{24} (2n^2 + 7n + 15)$

(C) $\frac{n}{24} (2n^2 + 9n + 13)$

(D) $\frac{n}{24}(n^2 + 11n + 12)$

Inequalities

48. Let $p,q,r \in R^+$ and $27pqr \ge (p+q+r)^3$ and 3p+4q+5r=12 then $p^3+q^4+r^5$ is equal to

(A) 3

(B) 6

(C) 2

(D) 1

49. If a, a_1 , a_2 , a_3 , ... a_{2n-1} , b are in AP,a, b_1 , b_2 , b_3 ..., b_{2n-1} , b are in GP and a, c_1 , c_2 , c_3 , ..., c_{2n-1} , b are in HP, where a, b are positive, then the equation $a_n x^2 - b_n x + c_n = 0$ has its roots

(A) real and unequal

(B) real and equal

(C) imaginary

(D) none of these

Objective questions (One correct Answer)

		<u>LEVEL -I</u>							
1. C	2. D	3. D	4. A	5. D	6. B	7. A			
8. A	9. B	10. B	11. C	12. C	13. A	14. B			
15. C	16. A	17. C	18. A	19. B	20. C	21. C			
22. A	23. A	24. A	25. A						
	<u>LEVEL -II</u>								
26. B	27. D	28. B	29. A	30. C	31. C	32. B			
33. C	34. C	35. D	36. B	37. B	38. B	39. B			
40. C	41. D	42. C	43. B	44. C	45. B	46. B			
47. C	48. A	49. C							