P9120 - Statistical Learning and Data Mining

Lecture 13 - Recommender Systems

Min Qian

Department of Biostatistics, Columbia University

December 5th, 2024

Recommender Systems

Outline

- Collaborative Filtering
 - User-based collaborative filtering
 - Item-based collaborative filtering
 - Model-based collaborative filtering

- 2 Content-based Filtering
 - Content-based filtering using only item features
 - Content-based filtering using both user and item features

Collaborative Filtering

Collaborative filtering uses similarities between users and items simultaneously to provide recommendations.

Question: Which movie should be recommended to user A?

	Harr	y Pott	er 1	wilig	ht S	Star Wars		
Users	HP1	HP2	НР3	TW	SW1	SW2	SW3	
Α	4	?	3	4	1	?	?	
В	5	4	4			3		
С		1		2	4	5		
D		3	3	3		3	2	
E	5	5	5		2		3	

Solution: Predict user A's movie ratings for HP2, SW2, and SW3, and recommend the one(s) with the highest ratings.

User-based Collaborative Filtering: Similarity Measure

	Harr	y Pott	er '	Twilig	ht	Star V	Vars	
Users	HP1	HP2	HP3	TW	SW1	SW2	SW3	avg
Α	4	?	3	4	1	?	?	3
В	5	4	4			3		4
С		1		2	4	5		3
D		3	3	3		3	2	2.8
Ε	5	5	5		2		3	4

Mean-centered cosine similarity:

- Center the ratings for each user.
- 2. Impute unknown ratings by 0.
- 3. Calculate cosine similarity.

Users	HP1	HP2	НР3	TW	SW1	SW2	SW3
Α	1	0	0	1	-2	0	0
В	1	0	0	0	0	-1	0
С	0	-2	0	-1	1	2	0
D	0	0.2	0.2	0.2	0	0.2	-0.8
Е	1	1	1	0	-2	0	-1

$$sim(A, B) = 0.29$$
$$sim(A, C) = -0.39$$
$$sim(A, D) = 0.09$$
$$sim(A, E) = 0.72$$

Other similarity measures, e.g. cosine without mean-centering and zero imputation.

User-based Collaborative Filtering: Rating Prediction

Users	HP1	HP2	HP3	TW	SW1	SW2	SW3	avg	
Α	4	?	3	4	1			3	
В	5	4	4			3		4	sim(A,B)=0.29
С		1		2	4	5		3	sim(A,C) = -0.39
D		3	3	3		3	2	2.8	sim(A, D) = 0.09
E	5	5	5		2		3	4	sim(A, E) = 0.72

K: the set of K users most similar to user A who have rated item j Y_{kj} : user-k's rating for item-j.

- Naive: $\hat{Y}_{Aj} = \frac{1}{K} \sum_{k \in \mathcal{K}} Y_{kj} = \frac{4+5}{2} = 4.5.$
- Weighted average: $\widehat{Y}_{Aj} = \frac{\sum_{k \in \mathcal{K}} \sin(A, k) Y_{kj}}{\sum_{k \in \mathcal{K}} \sin(A, k)} = \frac{0.29*4 + 0.72*5}{0.29 + 0.72} = 4.7.$
- Mean-adjusted weighted average:

$$\widehat{Y}_{Aj} = \overline{Y}_{A.} + \frac{\sum_{k \in \mathcal{K}} \overline{\sin}(A, k)(Y_{kj} - \overline{Y}_{k.})}{\sum_{k \in \mathcal{K}} \sin(A, k)} = 3 + \frac{0.29*(4-4)+0.72*(5-4)}{0.29+0.72} = 3.7.$$

Item-based Collaborative Filtering

Users	HP1	HP2	НР3	TW	SW1	SW2	SW3
Α	4	?	3	4	1		
В	5	4	4			3	
С		1		2	4	5	
D		3	3	3		3	2
E	5	5	5		2		3
avg	4.67	3.25	3.75	3	2.33	3.67	2.5

 \mathcal{J} : set of J items rated by user A and similar to HP2.

Users	HP1	HP2	HP3	TW	SW1	SW2	SW3
Α	-0.67	0	-0.75	1	-1.33	0	0
В	0.33	0.75	0.25	0	0	-0.67	0
С	0	-2.25	0	-1	1.67	1.33	0
D	0	-0.25	-0.75	0	0	-0.67	-0.5
Е	0.33	1.75	1.25	0	-0.33	0	0.5
avg	4.67	3.25	3.75	3	2.33	3.67	2.5

sim(HP2, HP1) = 0.35 sim(HP2, HP3) = 0.52 sim(HP2, TW) = 0.54 sim(HP2, SW1) = -0.68 sim(HP2, SW2) = -0.69 sim(HP2, SW3) = 0.48

Item-based Collaborative Filtering

Users	HP1	HP2	НР3	TW	SW1	SW2	SW3
Α	4	?	3	4	1		
В	5	4	4			3	
С		1		2	4	5	
D		3	3	3		3	2
E	5	5	5		2		3
avg	4.67	3.25	3.75	3	2.33	3.67	2.5

Predicted rating:

$$\hat{Y}_{A,HP2} = \frac{\sum_{j \in \mathcal{J}} sim(HP2,j) Y_{A,j}}{\sum_{j \in \mathcal{J}} sim(HP2,j)}$$
$$= \frac{0.52*3+0.54*4}{0.52+0.54} = 3.5$$

 \mathcal{J} : set of J items rated by user A and similar to HP2.

Users	HP1	HP2	HP3	TW	SW1	SW2	SW3
Α	-0.67	0	-0.75	1	-1.33	0	0
В	0.33	0.75	0.25	0	0	-0.67	0
С	0	-2.25	0	-1	1.67	1.33	0
D	0	-0.25	-0.75	0	0	-0.67	-0.5
E	0.33	1.75	1.25	0	-0.33	0	0.5
avg	4.67	3.25	3.75	3	2.33	3.67	2.5

sim(HP2, HP1) = 0.35sim(HP2, HP3) = 0.52sim(HP2, TW) = 0.54sim(HP2, SW1) = -0.68sim(HP2.SW2) = -0.69sim(HP2,SW3) = 0.48

Model-based Collaborative Filtering

	Α	В	С	D	E	X ₁	X_2	Adult-targeted
HP1	4	5			5			↑ ^X 2
HP2		4	1	3	5			
HP3	3	4		3	5			Female- TW Male-
TW	4		2	3				targeted • HP3 targeted • HP2 • SW3 X1
SW1	1		4		2			HP1 SW2
SW2		3	5	3				• HP1 • SW1
SW3				2	3			Kid-friendly

Idea: predict user-i's rating for item-j by $\mathbf{x}_j.w_i + b_i$, where

- $\mathbf{x}_{j} = (x_{j1}, \dots, x_{jk})$ is a row vector of feature values of item-j
- $w_i \in \mathbb{R}^k, b_i \in \mathbb{R}$ are parameters for user-i

Latent Model

- Y_{ij} : user-i's rating of item-j.
- $1_{ij} = 1$ if user-i has rated item-j, and 0 o.w.
- n: # of users, m: # of items

Assume $\{\mathbf{x}_{i}: j=1,\ldots,m\}$ are known.

• Estimate user-i's parameters (w_i, b_i) by minimizing

$$\sum_{j=1}^{m} 1_{ij} [Y_{ij} - (\mathbf{x}_{j}.w_i + b_i)]^2 + \lambda ||w_i||_2^2$$

• Sum over all users, estimate $\{(w_i, b_i) : i = 1, ..., n\}$ by minimizing

$$\sum_{i=1}^{n} \sum_{j=1}^{m} 1_{ij} [Y_{ij} - (\mathbf{x}_{j} \cdot w_i + b_i)]^2 + \lambda \sum_{i=1}^{n} ||w_i||_2^2$$
 (1)

For binary outcome, use binomial deviance loss.

Latent Model

Assume $\{(w_i, b_i) : i = 1, \dots, n\}$ are known.

• Estimate item-j's feature values \mathbf{x}_{j} . by minimizing

$$\sum_{i=1}^{n} 1_{ij} [Y_{ij} - (\mathbf{x}_{j} \cdot w_i + b_i)]^2 + \lambda ||\mathbf{x}_{j} \cdot ||_2^2$$

• Sum over all items, estimate $\{\mathbf{x}_j: j=1,\ldots,m\}$ by minimizing

$$\sum_{j=1}^{m} \sum_{i=1}^{n} 1_{ij} [Y_{ij} - (\mathbf{x}_{j}.w_i + b_i)]^2 + \lambda \sum_{j=1}^{m} \|\mathbf{x}_{j}.\|_2^2$$
 (2)

Combining (1) and (2), estimate $\{(w_i, b_i) : i = 1, ..., n\}$ and $\{\mathbf{x}_j : j = 1, ..., m\}$ by minimizing

$$\sum_{i=1}^{n} \sum_{j=1}^{m} 1_{ij} [Y_{ij} - (\mathbf{x}_{j}.w_i + b_i)]^2 + \lambda_1 \sum_{i=1}^{n} ||w_i||_2^2 + \lambda_2 \sum_{j=1}^{m} ||\mathbf{x}_{j}.||_2^2$$

Mean Normalization

How to predict the rating for a new user / new item?

	A	В	С	D	E	F	X_1	X_2
HP1	4	5			5	?		
HP2		4	1	3	5	?		
HP3	3	4		3	5	?		
TW	4		2	3		?		
SW1	1		4		2	?		
SW2		3	5	3		?		
SW3				2	3	?		
Frozen	?	?	?	?	?	?		

- new users: normalize rating by item-specific mean
- new items: normalize rating by user-specific mean

Finding related items

The learned features X_1, X_2, \ldots can help find similar items.

• For item-j, find item-k such that \mathbf{x}_k is similar to \mathbf{x}_j , i.e., $\arg\min_k \|\mathbf{x}_k - \mathbf{x}_j\|_2^2$.

Content-based Filtering

Use features of user and item to find good match.

- With only item features:
 - Construct user's feature profile using weighted item feature profile, where the weights depend on the user's previous rating of different items.
 - ▶ Recommend items with feature profile(s) that are similar to user's profile.
- With both item features and user features
 - ▶ Use both user's features and item's features to predict user's rating for the item.
 - ▶ Recommend items to user with high predicted rating.

Item Feature Profile

Profile is a set of features

•	Genre	Features	HP1	HP2	HP4	TW	SW1	SW2	SW3
•	Actor	Romance	0	0	0	1	0	0	0
		Mystery	1	1	1	1	0	0	0
•	Theme	PG-13	0	0	0	1	0	0	1
•	Avg rating	Watson?	1	1	1	0	0	0	0
		Ava rotina	17	22	20	2	2.4	27	2.5

Use a scaling factor α to balance between binary and numeric features

Features	HP1	HP2	HP4	TW	SW1	SW2	SW3
Romance	0	0	0	1	0	0	0
Mystery	1	1	1	1	0	0	0
PG-13	0	0	1	1	0	0	1
Watson?	1	1	1	0	0	0	0
Avg rating	4.7α	3.3 <mark>α</mark>	3.8 <mark>α</mark>	3α	2.4α	3.7 <mark>α</mark>	2.5α

$$cos(HP2, HP4) = \frac{2+12.5\alpha^2}{\sqrt{(2+10.9\alpha^2)(3+14.4\alpha^2)}} = 0.97 \frac{\alpha}{\alpha} = 1, 0.85 \text{ for } \alpha = 0.2$$

User Profile based on Item Profile

	User	A's rat	ing					
	4		3	4	1			
Features	HP1	HP2	HP4	TW	SW1	SW2	SW3	User A profile
Romance	0	0	0	1	0	0	0	
Mystery	1	1	1	1	0	0	0	
PG-13	0	0	1	1	0	0	1	
Watson?	1	1	1	0	0	0	0	
Avg rating	0.94	0.66	0.76	0.6	0.48	0.74	0.5	

Build user-A's feature profile using weighted average of item profiles that user A has rated.

• Simple: user A's ratings

• Variant: user-specific mean normalized ratings

Making Recommendations

• For each candidate item j, calculate cosine similarity between user-A's profile, $\mathbf{x}_{u}^{(A)}$, and item j's profile $\mathbf{x}_{m}^{(j)}$:

$$\cos(A, j) = \frac{\langle \mathbf{x}_u^{(A)}, \mathbf{x}_m^{(j)} \rangle}{\|\mathbf{x}_u^{(A)}\| \|\mathbf{x}_m^{(j)}\|}.$$

• Recommend items with high similarity to user-A's profile.

Content-based Filtering with User and Item Features

User-*i*'s feature $\mathbf{x}_{u}^{(i)}$:

- Age
- Gender
- movies watched
- expressed preferences

...

Item-j's features $\mathbf{x}_m^{(j)}$:

- Genre
- Actor
- Theme
- Average rating
- ...

Idea:

- Embed $\mathbf{x}_u^{(i)}$ and $\mathbf{x}_m^{(j)}$ into $\mathbf{v}_u^{(i)}$ and $\mathbf{v}_m^{(j)}$, respectively, where $\mathbf{v}_u^{(i)}$ and $\mathbf{v}_m^{(j)}$ are vectors of the same length.
- Predict user i's rating of item j by $\langle \mathbf{v}_u^{(i)}, \mathbf{v}_u^{(i)} \rangle$

Neural Network Architecture to Learn the Embeddings

Learn parameters in NN by minimizing

$$\sum_{i=1}^{n} \sum_{j=1}^{m} 1_{ij} (\mathbf{v}_{u}^{(i)} \cdot \mathbf{v}_{m}^{(j)} - Y_{ij})^{2} + \text{ NN regularization terms}$$

Similar items can be found by minimizing $\|\mathbf{v}_m^{(k)} - \mathbf{v}_m^{(j)}\|$

Summary

Collaborative Filtering

- Need enough users in the system to find a good match.
- Not good recommendation for new items/users (cold start problem).
- Tends to recommend popular items.
- Does not use side information about items or users.

Content-Based Filtering

- No need for data from other users.
- Able to recommend new and unpopular items.
- Content features can help explain recommended items.
- Need careful design of features.
- Unable to exploit quality judgments of other users.

Reminder: Quiz for Lecture 13 is due at 9pm on Monday, Dec. 9th. Hw #4 is due at 12pm on Monday, Dec. 9th.

Final Project

- In-depth exploration of one methodology.
- If the method you plan to explore is not covered in class, a detailed introduction to it must be included in the final report.
- Include theoretical results and/or simulation studies and/or data analysis.
- Conclude with your results and discussion.
- Do not simply reproduce the results of a paper.
- Judged based on clarity, thoroughness, and originality.
- Reports must be ≤5 pages (not including tables, figures, and references), single spaced, 12 point font.
- The Final Project Report is due at 9pm on December 22nd.