Based on slides by Jared Moore

Key: Most-significant bit has a weight of -2^{N-1} rather than 2^{N-1}

For 1101₂, instead of

$$2^3 + 2^2 + 2^0 = 13$$

we have

$$-2^3 + 2^2 + 2^0 = -3$$

Negation Algorithm:

- 1. Flip all bits in the number
- 2. Add 1 to the least-significant bit
- 3. (Ignore overflow)
- Convert the following to their 2's Complement Negative (4-bits):
 - 1₁₀
 - 5₁₀
 - 0₁₀
 - 7₁₀

Negation Algorithm:

- 1. Flip all bits in the number
- 2. Add 1 to the least-significant bit
- 3. (Ignore overflow)

Note on terminology:

The number system is referred to as "Two's complement numbers".

The negation algorithm above is called "taking the two's complement".

Two's Complement -- why bother?

One representation for 0. (How?)

What implication on the range of possible values does this have? Think about the 4-bit case.

Adding Two's Complement

$$6_{10} + 1_{10}$$

Adding Two's Complement

$$\begin{array}{r} 0110_2 \\ + 0001_2 \\ \hline 0111_2 \end{array}$$

$$\begin{array}{r}
 1100_2 \\
 + 1110_2 \\
 \hline
 1010_2
 \end{array}$$

$$\begin{array}{r} 0100_2 \\ + 1110_2 \\ \hline 0010_2 \end{array}$$

$$\begin{array}{r}
 1010_2 \\
 + 0010_2 \\
 \hline
 1100_2
 \end{array}$$

Should be

7

-6

2

-4

Two's Complement -- why bother?

One representation for 0.

• This is nice, but *not* the biggest reason we use two's complement

Identical to unsigned in terms of addition!

Subtracting Two's Complement

First, need to decide on number of bits. Assume 4-bit numbers for this

Then, (1) negate the second number and (2) add the numbers

Another way to think of two's complement numbers is to remember that

$$X + -X = 0$$

To negate 6-bit two's complement number 110110₂, find number that results in sum of 0

 110110_2

 $+001001_2$

111111₂

 $+000001_2$

 000000_2

Number we want is thus $001001_2 + 000001_2 = 001010_2$

This is the same as algorithm learned earlier, just from a different perspective

Sign Extension

Given that -4 in 4-bit two's complement is 1100_2 , what is -4 in 5-bit two's complement?

Turns out, it is simply 11100_2 (You should check if you are not sure)

Just prepended a 1 to bit version

Sign Extension

Similar idea works for positive numbers:

$$4 = 0100_2$$
 (4-bit)
 $4 = 00100_2$ (5-bit)

To represent the same number with more bits: For negative numbers, prepend 1 For positive numbers, prepend 0

In general, prepend the sign bit to the number

- Magnitude of negative numbers works opposite of intuition
 - 1111 is the smallest in magnitude negative number
 - 1000 is the largest in magnitude negative number
- Positive numbers work exactly as expected
 - 0111 is the largest positive number
 - 0001 is the smallest positive number
- First bit can still be considered the sign. Why?

System	Range
Unsigned	$[0, 2^N - 1]$
Sign/Magnitude	$[-2^{N-1} + 1, 2^{N-1} - 1]$
Two's Complement	$[-2^{N-1}, 2^{N-1} - 1]$

