Lecture Three

Section 3.1 – Inner Products

Definition

An *inner product* on a real vector space V is a function that associates a real number $\langle \vec{u}, \vec{v} \rangle$ with each pair of vectors in V in such a way that the following axioms are satisfies for all vectors \vec{u}, \vec{v} , and \vec{w} in V and all scalars k.

1. $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$ Symmetry axiom

2. $\langle \vec{u} + \vec{v}, \ \vec{w} \rangle = \langle \vec{u}, \ \vec{w} \rangle + \langle \vec{v}, \ \vec{w} \rangle$ Additivity axiom

3. $\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$ Homogeneity axiom

4. $\langle \vec{v}, \vec{v} \rangle \ge 0$ and $\langle \vec{v}, \vec{v} \rangle = 0$ iff $\vec{v} = 0$ **Positivity axiom**

A real vector space with an inner product is called a real inner product space.

$$\langle \vec{u}, \vec{u} \rangle = \vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

This is called the *Euclidean inner product* (or the *standard inner product*)

Definition

If V is a real inner product space, then the norm (or length) of a vector \vec{v} in V is denoted by $\|\vec{v}\|$ and is defined by

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

And the *distance* between two vectors is denoted by $d(\vec{u}, \vec{v})$ and is defined by

$$d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| = \sqrt{\langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \rangle}$$

1

A vector of norm 1 is called a *unit vector*.

Theorem

If u and v are vectors in a real inner product space V, and if k is a scalar, then:

- a) $\|\vec{v}\| \ge 0$ with equality iff $\vec{v} = 0$
- **b)** $||k\vec{v}|| = |k|||\vec{v}||$
- c) $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$
- d) $d(\vec{u}, \vec{v}) \ge 0$ with equality iff $\vec{u} = \vec{v}$

Although the Euclidean inner product is the most important inner product on \mathbb{R}^n , there are various applications in which is desirable to modify it by weighing each term differently. More precisely, if $w_1, w_2, ..., w_n$ are positive real numbers, which we will call weighs, and if $\vec{u} = (u_1, u_2, ..., u_n)$ and are vectors in \mathbb{R}^n , then it can be shown that the formula

$$\langle \vec{u}, \vec{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$$

Defines an inner product on \mathbb{R}^n that we call the **weighted Euclidean inner product** with weights $w_1, w_2, ..., w_n$

Example

Let $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$ be vectors in \mathbb{R}^2 , verify that the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 2u_2v_2$ satisfies the four inner product axioms.

Solution

Axiom 1:
$$\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 2u_2v_2$$

 $= 3v_1u_1 + 2v_2u_2$
 $= \langle \vec{v}, \vec{u} \rangle$
Axiom 2: $\langle \vec{u} + \vec{v}, \vec{w} \rangle = 3(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2$
 $= 3(u_1w_1 + v_1w_1) + 2(u_2w_2 + v_2w_2)$
 $= 3u_1w_1 + 3v_1w_1 + 2u_2w_2 + 2v_2w_2$
 $= (3u_1w_1 + 2u_2w_2) + (3v_1w_1 + 2v_2w_2)$
 $= \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$
Axiom 3: $\langle k\vec{u}, \vec{v} \rangle = 3(ku_1)v_1 + 2(ku_2)v_2$
 $= k(3u_1v_1 + 2u_2v_2)$
 $= k\langle \vec{u}, \vec{v} \rangle$
Axiom 4: $\langle \vec{v}, \vec{v} \rangle = 3v_1v_1 + 2v_2v_2$
 $= 3v_1^2 + 2v_2^2 \ge 0$

 $v_1 = v_2 = 0$ iff $\vec{v} = \vec{0}$

Exercises Section 3.1 – Inner Products

1. Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (1, 1)$, $\vec{v} = (3, 2)$, $\vec{w} = (0, -1)$, and k = 3. Compute the following.

a) $\langle \vec{u}, \vec{v} \rangle$

c) $\langle \vec{u} + \vec{v}, \vec{w} \rangle$

e) $d(\vec{u}, \vec{v})$

b) $\langle k\vec{v}, \vec{w} \rangle$

d) $\|\vec{v}\|$

f) $\|\vec{u} - k\vec{v}\|$

2. Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (1, 1)$, $\vec{v} = (3, 2)$, $\vec{w} = (0, -1)$ and k = 3. Compute the following for the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 2u_1v_1 + 3u_2v_2$.

a) $\langle \vec{u}, \vec{v} \rangle$

c) $\langle \vec{u} + \vec{v}, \vec{w} \rangle$

e) $d(\vec{u}, \vec{v})$

b) $\langle k\vec{v}, \vec{w} \rangle$

d) $\|\vec{v}\|$

f) $\|\vec{u} - k\vec{v}\|$

3. Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (3, -2)$, $\vec{v} = (4, 5)$, $\vec{w} = (-1, 6)$, and k = -4. Verify the following.

a) $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$

d) $\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$

b) $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$

e) $\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$

c) $\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$

4. Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (3, -2)$, $\vec{v} = (4, 5)$, $\vec{w} = (-1, 6)$, and k = -4. Verify the following for the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 4u_1v_1 + 5u_2v_2$

a) $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$

d) $\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$

b) $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$

e) $\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$

c) $\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$

- 5. Let $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$. Show that the following are inner product on \mathbb{R}^2 by verifying that the inner product axioms hold. $\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 5u_2v_2$
- 6. Show that the following identity holds for the vectors in any inner product space

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

7. Show that the following identity holds for the vectors in any inner product space

$$\langle \vec{u}, \vec{v} \rangle = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

8. Prove that $||k\vec{v}|| = |k| ||\vec{v}||$

Section 3.2 - Angle and Orthogonality in Inner Product Spaces

Cosine Formula

If \vec{u} and \vec{v} are nonzero vectors that implies

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

$$\theta = \cos^{-1} \left(\frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|} \right)$$

$$-1 \le \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \le 1$$

Example

Let \mathbb{R}^4 have the Euclidean inner product. Find the cosine angle θ between the vectors $\vec{u} = (4, 3, 1, -2)$ and $\vec{v} = (-2, 1, 2, 3)$.

Solution

$$\|\vec{u}\| = \sqrt{4^2 + 3^2 + 1^2 + (-2)^2}$$

$$= \sqrt{30}$$

$$\|\vec{v}\| = \sqrt{4 + 1 + 4 + 9}$$

$$= \sqrt{18}$$

$$= 3\sqrt{2}$$

$$\langle \vec{u}, \vec{v} \rangle = 4(-2) + 3(1) + 1(2) - 2(3)$$

$$= -9$$

$$\cos \theta = -\frac{9}{3\sqrt{30}\sqrt{2}}$$

$$= -\frac{3}{\sqrt{60}}$$

$$= -\frac{3}{2\sqrt{15}}$$

Theorem - Cauchy-Schwarz Inequality

If \vec{v} and \vec{w} are vectors in a real inner product space V, then

$$\|\langle \vec{u}, \vec{v} \rangle\| \le \|\vec{u}\| \|\vec{v}\|$$

Proof

If either \vec{u} or \vec{v} is equal to zero, then both sides equal to zero Inequality holds.

Suppose that \vec{u} , $\vec{v} \neq 0$ and if \vec{w} any vector

$$\|\vec{w}\| = \vec{w} \ \vec{w} \ge 0$$

Let $\vec{w} = \vec{u} - t\vec{v}$, then:

$$0 \leq \overrightarrow{w}\overrightarrow{w}$$

$$= (\overrightarrow{u} - t\overrightarrow{v})(\overrightarrow{u} - t\overrightarrow{v})$$

$$= \overrightarrow{u} \cdot \overrightarrow{u} - t(\overrightarrow{u} \cdot \overrightarrow{v}) - t(\overrightarrow{v} \cdot \overrightarrow{u}) + t^{2}(\overrightarrow{v} \cdot \overrightarrow{v})$$

$$= \overrightarrow{u} \cdot \overrightarrow{u} - 2t(\overrightarrow{u} \cdot \overrightarrow{v}) + t^{2}(\overrightarrow{v} \cdot \overrightarrow{v}) \qquad \text{Let } t = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}$$

$$= \overrightarrow{u} \cdot \overrightarrow{u} - 2\left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right)(\overrightarrow{u} \cdot \overrightarrow{v}) + \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right)^{2}(\overrightarrow{v} \cdot \overrightarrow{v})$$

$$= \overrightarrow{u} \cdot \overrightarrow{u} - 2\left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right) + \frac{(\overrightarrow{u} \cdot \overrightarrow{v})^{2}}{\overrightarrow{v} \cdot \overrightarrow{v}}$$

$$= \overrightarrow{u} \cdot \overrightarrow{u} - 2\left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right) + \frac{(\overrightarrow{u} \cdot \overrightarrow{v})^{2}}{\overrightarrow{v} \cdot \overrightarrow{v}}$$

$$= \overrightarrow{u} \cdot \overrightarrow{u} - \frac{(\overrightarrow{u} \cdot \overrightarrow{v})^{2}}{\overrightarrow{v} \cdot \overrightarrow{v}}$$

$$= \frac{(\overrightarrow{u} \cdot \overrightarrow{u})(\overrightarrow{v} \cdot \overrightarrow{v}) - (\overrightarrow{u} \cdot \overrightarrow{v})^{2}}{\overrightarrow{v} \cdot \overrightarrow{v}} \qquad \text{Since } \overrightarrow{v} \cdot \overrightarrow{v} > 0$$

$$\leq (\overrightarrow{u} \cdot \overrightarrow{u})(\overrightarrow{v} \cdot \overrightarrow{v}) - (\overrightarrow{u} \cdot \overrightarrow{v})^{2}$$

$$(\overrightarrow{u} \cdot \overrightarrow{v})^{2} \leq (\overrightarrow{u} \cdot \overrightarrow{u})(\overrightarrow{v} \cdot \overrightarrow{v})$$

$$\|\langle \overrightarrow{u}, \overrightarrow{v} \rangle\| \leq \|\overrightarrow{u}\| \|\overrightarrow{v}\|$$

The following two alternative forms of the Cauchy-Schwarz inequality are useful to know:

$$\langle \vec{u}, \vec{v} \rangle^2 \le \langle \vec{u}, \vec{u} \rangle \langle \vec{v}, \vec{v} \rangle$$

 $\langle \vec{u}, \vec{v} \rangle^2 \le ||\vec{u}||^2 ||\vec{v}||^2$

Theorem

If \vec{u} , \vec{v} and \vec{w} are vectors in a real inner product space V, and if k is any scalar, then

a)
$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$$

(Triangle inequality for vectors)

b)
$$d(\vec{u}, \vec{v}) \le d(\vec{u}, \vec{w}) + d(\vec{w}, \vec{v})$$

(Triangle inequality for distances)

Proof (a)

$$\begin{aligned} \|\vec{u} + \vec{v}\|^2 &= \langle \vec{u} + \vec{v}, \ \vec{u} + \vec{v} \rangle \\ &= \langle \vec{u}, \ \vec{u} \rangle + 2 \langle \vec{u}, \ \vec{v} \rangle + \langle \vec{v}, \ \vec{v} \rangle \\ &\leq \langle \vec{u}, \ \vec{u} \rangle + 2 |\langle \vec{u}, \ \vec{v} \rangle| + \langle \vec{v}, \ \vec{v} \rangle \\ &\leq \langle \vec{u}, \ \vec{u} \rangle + 2 ||\vec{u}|| \ ||\vec{v}|| + \langle \vec{v}, \ \vec{v} \rangle \\ &= ||\vec{u}||^2 + 2 ||\vec{u}|| \ ||\vec{v}|| + ||\vec{v}||^2 \\ &= (||\vec{u}|| + ||\vec{v}||)^2 \\ ||\vec{u} + \vec{v}||^2 \leq (||\vec{u}|| + ||\vec{v}||)^2 \\ ||\vec{u} + \vec{v}|| \leq ||\vec{u}|| + ||\vec{v}|| \end{aligned}$$

Definition

Two vectors \vec{u} and \vec{v} in an inner product space are called orthogonal if $\langle \vec{u}, \vec{v} \rangle = 0$

Example

The vectors $\vec{u} = (1, 1)$ and $\vec{v} = (1, -1)$ are orthogonal with respect to the Euclidean inner product on \mathbb{R}^2 , since

$$\vec{u} \cdot \vec{v} = 1(1) + 1(-1)$$
$$= 0 \mid$$

They are not orthogonal with the respect to the weighted Euclidean inner product

$$\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 2u_2v_2$$
, since

$$\langle \vec{u}, \vec{v} \rangle = 3(1)(1) + 2(1)(-1)$$

= $1 \neq 0$

Example

$$U = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad and \quad V = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \text{ are orthogonal, since}$$

$$U \cdot V = 1(0) + 0(2) + 1(0) + 1(0)$$

$$= 0 \quad |$$

Definition

If W is a subspace of an inner product space V, then the set of all vectors are orthogonal to every vector in W is called the *orthogonal complement* of W and is denoted by the symbol W^{\perp}

Theorem

If W is a subspace of an inner product space V, then:

- a) W^{\perp} is a subspace of V.
- **b)** $W \cap W^{\perp} = \{0\}$

 $\langle \vec{v}, \vec{w} \rangle = 0$

Proof

a) Let set W^{\perp} contains at least the zero vector, since $\langle \vec{0}, \vec{w} \rangle = 0$ for every vector \vec{w} in W. We need to show that W^{\perp} is closed under addition and scalar multiplication. Suppose that \vec{u} and \vec{v} are vectors in W^{\perp} , so every vector \vec{w} in W we have $\langle \vec{u}, \vec{w} \rangle = 0$ and

$$\begin{split} \left\langle \vec{u} + \vec{v}, \ \vec{w} \right\rangle &= \left\langle \vec{u}, \ \vec{w} \right\rangle + \left\langle \vec{v}, \ \vec{w} \right\rangle \\ &= 0 + 0 \\ &= 0 \end{split}$$
 Closed under addition
$$\langle k\vec{u}, \ \vec{w} \rangle = k \left\langle \vec{u}, \ \vec{w} \right\rangle$$

$$= k(0)$$

$$= 0$$
Closed under scalar multiplication

Which proves that $\vec{u} + \vec{w}$ and $k\vec{u}$ are in W^{\perp}

b) If \vec{v} is any vector in both W and W^{\perp} , then \vec{v} is orthogonal to itself; that is, $\langle \vec{v}, \vec{v} \rangle = 0$. It follows from the positivity axiom for inner products that $\vec{v} = \vec{0}$

8

Theorem

If W is a subspace of a finite-dimensional inner product space V, then the orthogonal complement of W^{\perp} is W; that is

$$\left(W^{\perp}\right)^{\perp} = W$$

Example

Let W be the subspace of \mathbb{R}^6 spanned by the vectors

$$\vec{w}_1 = (1, 3, -2, 0, 2, 0),$$
 $\vec{w}_2 = (2, 6, -5, -2, 4, -3)$
 $\vec{w}_3 = (0, 0, 5, 10, 0, 15),$ $\vec{w}_4 = (2, 6, 0, 8, 4, 18)$

Find a basis for the orthogonal complement of W.

Solution

The Space W is the same as the row space of the matrix

The solution

$$\begin{aligned} \left(x_1, \, x_2, \, x_3, \, x_4, \, x_5, \, x_6\right) &= \left(-3x_2 - 4x_4 - 2x_5, \, x_2, \, -2x_4, \, x_4, \, x_5, \, 0\right) \\ &= x_2 \left(-3, \, 1, \, 0, \, 0, \, 0, \, 0\right) + x_4 \left(-4, \, 0, \, -2, \, 1, \, 0, \, 0\right) + x_5 \left(-2, \, 0, \, 0, \, 0, \, 1, \, 0\right) \\ \vec{v}_1 &= \left(-3, \, 1, \, 0, \, 0, \, 0, \, 0\right), \quad \vec{v}_2 &= \left(-4, \, 0, \, -2, \, 1, \, 0, \, 0\right), \quad \vec{v}_3 &= \left(-2, \, 0, \, 0, \, 0, \, 1, \, 0\right) \end{aligned}$$

Definition

A collection of vectors in \mathbb{R}^n (or inner space) is called orthogonal if any 2 are perpendicular.

$$\vec{v}_i \cdot \vec{v}_j = \vec{v}^T \vec{v} = \begin{cases} 0 & \text{for } i \neq j \quad (\text{orthogonal vectors}) \\ 1 & \text{for } i = j \end{cases} \quad (\text{unit vectors})$$

Theorem

If $\vec{v}_1, ..., \vec{v}_m$ are nonzero orthogonal vectors, then they are linearly independent.

Definition

A vector \vec{v} is called normal if $\|\vec{v}\| = 1$

A collection of vectors \vec{v}_1 , ..., \vec{v}_m is called orthonormal if they are orthogonal and each $\|\vec{v}_i\| = 1$. An orthonormal basis is a basis made up of orthonormal vectors.

Example

Q rotates every vector in the plane through the angle θ .

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$Q^{-1} = \frac{1}{\cos^2 \theta + \sin^2 \theta} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$= Q^T$$

The dot product $(\cos\theta\sin\theta - \sin\theta\cos\theta = 0)$, the columns are orthogonal.

They are unit vectors because $\cos^2 \theta + \sin^2 \theta = 1$. Those columns give an orthonormal basis for the plane \mathbb{R}^2 .

We have: $QQ^T = I = Q^T Q$ (This type is called *rotation*)

Exercises Section 3.2 – Angle and Orthogonality in Inner Product **Spaces**

1. Which of the following form orthonormal sets?

a)
$$(1, 0), (0, 2)$$
 in \mathbb{R}^2

b)
$$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^2

c)
$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^2

d)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^3

e)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right), \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \text{ in } \mathbb{R}^3$$

$$f$$
) $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$ in \mathbb{R}^3

2. Find the cosine of the angle between \vec{u} and \vec{v} .

a)
$$\vec{u} = (1, -3), \quad \vec{v} = (2, 4)$$

e)
$$\vec{u} = (1, 0, 1, 0), \vec{v} = (-3, -3, -3, -3)$$

b)
$$\vec{u} = (-1, 0), \quad \vec{v} = (3, 8)$$

$$\vec{u} = (2, 1, 7, -1), \quad \vec{v} = (4, 0, 0, 0)$$

c)
$$\vec{u} = (-1, 5, 2), \quad \vec{v} = (2, 4, -9)$$

c)
$$\vec{u} = (-1, 5, 2), \quad \vec{v} = (2, 4, -9)$$
 g) $\vec{u} = (1, 3, -5, 4), \quad \vec{v} = (2, -4, 4, 1)$

d)
$$\vec{u} = (4, 1, 8), \quad \vec{v} = (1, 0, -3)$$

h)
$$\vec{u} = (1, 2, 3, 4), \vec{v} = (-1, -2, -3, -4)$$

3. Find the cosine of the angle between A and B.

a)
$$A = \begin{pmatrix} 2 & 6 \\ 1 & -3 \end{pmatrix}$$
 $B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$

c)
$$A = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} -3 & 1 \\ 4 & 2 \end{pmatrix}$

d)
$$A = \begin{pmatrix} 1 & -2 & 7 \\ 6 & -3 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & -2 & 3 \\ 6 & 5 & -4 \end{pmatrix}$

4. Determine whether the given vectors are orthogonal with respect to the Euclidean inner product.

a)
$$\vec{u} = (-1, 3, 2), \quad \vec{v} = (4, 2, -1)$$

d)
$$\vec{u} = (-4, 6, -10, 1), \vec{v} = (2, 1, -2, 9)$$

b)
$$\vec{u} = (a, b), \quad \vec{v} = (-b, a)$$

e)
$$\vec{u} = (-4, 6, -10, 1), \vec{v} = (2, 1, -2, 9)$$

c)
$$\vec{u} = (-2, -2, -2), \vec{v} = (1, 1, 1)$$

Do there exist scalars k and l such that the vectors 5.

 $\vec{u} = (2, k, 6), \quad \vec{v} = (l, 5, 3), \quad and \quad \vec{w} = (1, 2, 3)$ are mutually orthogonal with respect to the Euclidean inner product?

Let \mathbb{R}^3 have the Euclidean inner product. For which values of k are \vec{u} and \vec{v} orthogonal?

a)
$$\vec{u} = (2, 1, 3), \quad \vec{v} = (1, 7, k)$$

b)
$$\vec{u} = (k, k, 1), \quad \vec{v} = (k, 5, 6)$$

- Let V be an inner product space. Show that if \vec{u} and \vec{v} are orthogonal unit vectors in V, then 7. $\|\vec{u} - \vec{v}\| = \sqrt{2}$
- Let S be a subspace of \mathbb{R}^n . Explain what $(S^{\perp})^{\perp} = S$ means and why it is true. 8.
- 9. The methane molecule CH_{Δ} is arranged as if the carbon atom were at the center of a regular tetrahedron with four hydrogen atoms at the vertices. If vertices are placed at (0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1) - (note) that all six edges have length $\sqrt{2}$, so the tetrahedron is regular). What is the cosine of the angle between the rays going from the center $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ to the vertices?
- 10. Determine if the given vectors are orthogonal.

$$\vec{x}_1 = (1, 0, 1, 0), \quad \vec{x}_2 = (0, 1, 0, 1), \quad \vec{x}_3 = (1, 0, -1, 0), \quad \vec{x}_4 = (1, 1, -1, -1)$$

Which of the following sets of vectors are orthogonal with respect to the Euclidean inner

a)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

b)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$
 $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$

- **12.** Consider vectors $\vec{u} = (2, 3, 5)$ $\vec{v} = (1, -4, 3)$ in \mathbb{R}^3
 - a) $\langle \vec{u}, \vec{v} \rangle$
- b) $\|\vec{u}\|$ c) $\|\vec{v}\|$
- d) Cosine between \vec{u} and \vec{v}
- Consider vectors $\vec{u} = (1, 1, 1)$ $\vec{v} = (1, 2, -3)$ in \mathbb{R}^3
 - a) $\langle \vec{u}, \vec{v} \rangle$
- b) $\|\vec{u}\|$ c) $\|\vec{v}\|$
- d) Cosine θ between \vec{u} and \vec{v}
- **14.** Consider vectors $\vec{u} = (1, 2, 5)$ $\vec{v} = (2, -3, 5)$ $\vec{w} = (4, 2, -3)$ in \mathbb{R}^3
 - a) $\langle \vec{u}, \vec{v} \rangle$
- g) Cosine α between \vec{u} and \vec{v}
- b) $\langle \vec{u}, \vec{w} \rangle$ e) $\|\vec{v}\|$
- h) Cosine β between \vec{u} and \vec{w} i) Cosine θ between \vec{v} and \vec{w}

- c) $\langle \vec{v}, \vec{w} \rangle$
- $(\vec{u} + \vec{v}) \cdot \vec{w}$

Consider polynomial f(t) = 3t - 5; $g(t) = t^2$ in $\mathbb{P}(t)$

a) $\langle f, g \rangle$ b) ||f|| c) ||g|| d) Cosine between f and g

16. Consider polynomial f(t) = t+2; g(t) = 3t-2; $h(t) = t^2 - 2t - 3$ in $\mathbb{P}(t)$

a) $\langle f, g \rangle$ d) ||f||

g) Cosine α between f and g

b) $\langle f, h \rangle$ e) $\|g\|$

h) Cosine β between f and h

c) $\langle g, h \rangle$

i) Cosine θ between g and h

17. Suppose $\langle \vec{u}, \vec{v} \rangle = 3 + 2i$ in a complex inner product space V. Find:

a) $\langle (2-4i)\vec{u}, \vec{v} \rangle$ b) $\langle \vec{u}, (4+3i)\vec{v} \rangle$ c) $\langle (3-6i)\vec{u}, (5-2i)\vec{v} \rangle$ d) $\|\vec{u}, \vec{v}\|$

Find the Fourier coefficient c and the projection $c\vec{v}$ of $\vec{u} = (3+4i, 2-3i)$ along $\vec{v} = (5+i, 2i)$ in \mathbb{C}^2

Suppose $\vec{v} = (1, 3, 5, 7)$. Find the projection of \vec{v} onto \vec{W} or find $\vec{w} \in \vec{W}$ that minimizes $||\vec{v} - \vec{w}||$, where W is the subspace of \mathbb{R}^4 spanned by:

a) $\vec{u}_1 = (1, 1, 1, 1)$ and $\vec{u}_2 = (1, -3, 4, -2)$

b) $\vec{v}_1 = (1, 1, 1, 1)$ and $\vec{v}_2 = (1, 2, 3, 2)$

20. Suppose $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ is an orthogonal set of vectors. Prove that (*Pythagoras*)

 $\|\vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n\|^2 = \|\vec{u}_1\|^2 + \|\vec{u}_2\|^2 + \dots + \|\vec{u}_n\|^2$

Suppose A is an orthogonal matrix. Show that $\langle \vec{u}A, \vec{v}A \rangle = \langle \vec{u}, \vec{v} \rangle$ for any $\vec{u}, \vec{v} \in V$

Suppose A is an orthogonal matrix. Show that $\|\vec{u}A\| = \|\vec{u}\|$ for every $\vec{u} \in V$ 22.

23. Let V be an inner product space over \mathbb{R} or \mathbb{C} . Show that

$$\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$$

If and only if

$$||s\vec{u} + t\vec{v}|| = s ||\vec{u}|| + t ||\vec{v}||$$
 for all $s, t \ge 0$

Let V be an inner product vector space over \mathbb{R} .

a) If e_1 , e_2 , e_3 are three vectors in V with pairwise product negative, that is,

$$\langle e_1, e_2 \rangle < 0, \quad i, j = 1, 2, 3, \quad i \neq j$$

Show that e_1 , e_2 , e_3 are linearly independent.

- b) Is it possible for three vectors on the xy-plane to have pairwise negative products?
- c) Does part (a) remain valid when the word "negative: is replaced with positive?
- d) Suppose \vec{u} , \vec{v} , and \vec{w} are three unit vectors in the xy-plane. What are the maximum and minimum values that

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle$$

Can attain? And when?

Section 3.3 – Gram-Schmidt Process

Definition

A set of two or more vectors in a real inner product space is said to be *orthogonal* if all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has norm 1 is said to be *orthonormal*.

Theorem

1. If $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is an orthogonal basis for an inner product space V, and if \vec{u} is any vector in V, then

$$\vec{u} = \frac{\left\langle \vec{u}, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 + \frac{\left\langle \vec{u}, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 + \cdots + \frac{\left\langle \vec{u}, \vec{v}_n \right\rangle}{\left\| \vec{v}_n \right\|^2} \vec{v}_n$$

2. If $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is an orthonormal basis for an inner product space V, and if \vec{u} is any vector in V, then

$$\vec{u} = \langle \vec{u}, \vec{v}_1 \rangle \vec{v}_1 + \langle \vec{u}, \vec{v}_2 \rangle \vec{v}_2 + \dots + \langle \vec{u}, \vec{v}_n \rangle \vec{v}_n$$

Proof

1. Since $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is a basis for V, every vector \vec{u} in V can be expressed in the form

$$\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_n \vec{v}_n$$

Let show that $c_i = \frac{\langle \vec{u}, \vec{v}_i \rangle}{\|\vec{v}_i\|^2}$ for i = 1, 2, ..., n

$$\begin{split} \left\langle \vec{u},\,\vec{v}_{i}\,\right\rangle &=\left\langle c_{1}\vec{v}_{1}+c_{2}\vec{v}_{2}+\right. \cdots +c_{n}\vec{v}_{n},\,\,\vec{v}_{i}\,\right\rangle \\ &=c_{1}\left\langle \vec{v}_{1},\,\vec{v}_{i}\,\right\rangle +c_{2}\left\langle \vec{v}_{2},\,\vec{v}_{i}\,\right\rangle +\right. \cdots \\ &\left.+c_{n}\left\langle \vec{v}_{n},\,\vec{v}_{i}\right\rangle \end{split}$$

Since S is an orthogonal set, all of the inner products in the last equality are zero except the i^{th} , so we have

$$\langle \vec{u}, \vec{v}_i \rangle = c_i \langle \vec{v}_i, \vec{v}_i \rangle$$

$$= c_i ||\vec{v}_i||^2$$

The Gram-Schmidt Process

To convert a basis $\{\vec{u}_1,\,\vec{u}_2,...,\,\vec{u}_r\}$ into an orthogonal basis $\{\vec{v}_1,\,\vec{v}_2,...,\,\vec{v}_r\}$, perform the following computations:

Step 1:
$$\vec{v}_1 = \vec{u}_1$$

Step 2:
$$\vec{v}_2 = \vec{u}_2 - \frac{\langle \vec{u}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1$$

Step 3:
$$\vec{v}_3 = \vec{u}_3 - \frac{\langle \vec{u}_3, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{u}_3, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2$$

Step 4:
$$\vec{v}_4 = \vec{u}_4 - \frac{\left\langle \vec{u}_4, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 - \frac{\left\langle \vec{u}_4, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 - \frac{\left\langle \vec{u}_4, \vec{v}_3 \right\rangle}{\left\| \vec{v}_3 \right\|^2} \vec{v}_3$$

To convert the orthogonal basis into an orthonormal basis $\{\vec{q}_1,\vec{q}_2,\vec{q}_3\}$, normalize the orthogonal basis

vectors. $| \vec{q}_i = \frac{\vec{v}_i}{\|\vec{v}_i\|} |$

Example

Assume that the vector space \mathbb{R} has the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors

$$\vec{u}_1 = (1, 1, 1)$$
 $\vec{u}_2 = (0, 1, 1)$ $\vec{u}_3 = (0, 0, 1)$

Into the orthogonal basis $\left\{\vec{v}_1,\ \vec{v}_2,\ \vec{v}_3\right\}$, and then normalize the *orthogonal* basis vectors to obtain an orthonormal basis $\left\{\vec{q}_1,\ \vec{q}_2,\ \vec{q}_3\right\}$

Solution

$$\vec{v}_1 = \vec{u}_1$$

$$= (1, 1, 1)$$

$$\vec{v}_2 = \vec{u}_2 - \frac{\left\langle \vec{u}_2, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1$$

$$= (0, 1, 1) - \frac{0+1+1}{1^2+1^2+1^2} (1, 1, 1)$$

$$= (0, 1, 1) - \frac{2}{3} (1, 1, 1)$$

$$= \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

$$\begin{split} \vec{v}_3 &= \vec{u}_3 - proj_{\vec{v}_2} \vec{u}_3 \\ &= \vec{u}_3 - \frac{\left\langle \vec{u}_3, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 - \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 \\ &= (0, 0, 1) - \frac{0 + 0 + 1}{1^2 + 1^2 + 1^2} (1, 1, 1) - \frac{0 + 0 + \frac{1}{3}}{\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) \\ &= (0, 0, 1) - \frac{1}{3} (1, 1, 1) - \frac{\frac{1}{3}}{2} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) \\ &= (0, 0, 1) - \frac{1}{3} (1, 1, 1) - \frac{1}{2} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) \\ &= \left(0, -\frac{1}{2}, \frac{1}{2}\right) \end{split}$$

$$\vec{q}_{1} = \frac{\vec{v}_{1}}{\|\vec{v}_{1}\|}$$

$$= \frac{(1, 1, 1)}{\sqrt{3}}$$

$$= \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

$$\vec{q}_{2} = \frac{\vec{v}_{2}}{\|\vec{v}_{2}\|}$$

$$= \frac{\left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)}{\sqrt{\left(\frac{2}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2}}}$$

$$= \frac{\left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)}{\frac{\sqrt{6}}{3}}$$

$$= \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$

$$\vec{q}_{3} = \frac{\vec{v}_{3}}{\|\vec{v}_{3}\|}$$

$$= \frac{\left(0, -\frac{1}{2}, \frac{1}{2}\right)}{\sqrt{0^{2} + \left(-\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}}}$$

$$= \frac{\left(0, -\frac{1}{2}, \frac{1}{2}\right)}{\frac{\sqrt{2}}{2}}$$

$$= \frac{\left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)}{\frac{\sqrt{2}}{2}}$$

Gram-Schmidt Process (Orthonormal)

Suppose $\vec{v}_1, ..., \vec{v}_n$ linearly independent in \mathbb{R}^n , construct n orthonormal $\vec{u}_1, ..., \vec{u}_n$ that span the same space: span $\{\vec{u}_1, ..., \vec{u}_k\}$ = span $\{\vec{v}_1, ..., \vec{v}_k\}$

Step 1: Since \vec{v}_i are linearly independent $(\neq 0)$, so $\|\vec{v}_1\| \neq 0$ (to create a normal vector)

Let $\vec{u}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|} = \vec{q}_1$, then $\|\vec{u}_1\| = 1$ since \vec{u}_1 is orthonormal and span $\{\vec{u}_1\} = span\{\vec{v}_1\}$ $\vec{w}_1 = \vec{v}_1 \implies \vec{v}_1 = \|\vec{w}_1\| \vec{u}_1$

Step 2:
$$\vec{w}_2 = \vec{v}_2 - (\vec{v}_2 \cdot \vec{q}_1) \vec{q}_1$$

$$\vec{w}_2 = \vec{v}_2 - \frac{\vec{v}_2 \cdot \vec{u}_1}{\|\vec{v}_1\|} \vec{v}_1 \qquad (\vec{w}_2 \perp \vec{u}_1)$$

$$\vec{v}_2 = \|\vec{w}_2\| \vec{u}_2 + (\vec{v}_2 \cdot \vec{u}_1) \vec{u}_1 \qquad \vec{w}_2 = \|\vec{w}_2\| \vec{u}_2$$

$$\vec{q}_2 = \frac{\vec{w}_2}{\|\vec{w}_2\|}$$

Step 3:
$$\vec{w}_3 = \vec{v}_3 - (\vec{v}_3 \cdot \vec{q}_1) \vec{q}_1 - (\vec{v}_3 \cdot \vec{q}_2) \vec{q}_2$$

$$\vec{q}_3 = \frac{\vec{w}_3}{\|\vec{w}_3\|}$$

	$\vec{q}_1 = \frac{\vec{v}_1}{\left\ \vec{v}_1\right\ }$
$\vec{w}_2 = \vec{v}_2 - (\vec{v}_2 \cdot \vec{q}_1) \vec{q}_1$	$\vec{q}_2 = \frac{\vec{w}_2}{\left\ \vec{w}_2\right\ }$
$\vec{w}_3 = \vec{v}_3 - (\vec{v}_3 \cdot \vec{q}_1) \vec{q}_1 - (\vec{v} \cdot \vec{q}_2) \vec{q}_2$	$\vec{q}_3 = \frac{\vec{w}_3}{\left\ \vec{w}_3\right\ }$
$\vec{w}_n = \vec{v}_n - (\vec{v}_n \cdot \vec{q}_1) \vec{q}_1 - (\vec{v}_n \cdot \vec{q}_2) \vec{q}_2 - \dots - (\vec{v}_n \cdot \vec{q}_{n-1}) \vec{q}_{n-1}$	$\vec{q}_n = \frac{\vec{w}_n}{\left\ \vec{w}_n\right\ }$

Example

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of

$$\vec{v}_1 = (1, 1, 0, 0) \quad \vec{v}_2 = (0, 1, 1, 0) \quad \vec{v}_3 = (1, 0, 1, 1)$$

Solution

Step 1:
$$\vec{q}_1 = \frac{(1, 1, 0, 0)}{\sqrt{1^2 + 1^2 + 0 + 0}}$$

$$= \frac{(1, 1, 0, 0)}{\sqrt{2}}$$

$$= \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right)$$

$$\begin{aligned}
&= \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right] \\
Step 2: \ \vec{w}_2 &= \vec{v}_2 - (\vec{v}_2 \cdot \vec{q}_1) \vec{q}_1 \\
&= (0, 1, 1, 0) - \left[(0, 1, 1, 0) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right) \right] \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right) \\
&= (0, 1, 1, 0) - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right) \\
&= (0, 1, 1, 0) - \left(\frac{1}{2}, \frac{1}{2}, 0, 0 \right) \\
&= \left(-\frac{1}{2}, \frac{1}{2}, 1, 0 \right) \right] \\
&\| \vec{w}_2 \| = \sqrt{\left(-\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 + 1} \\
&= \frac{\sqrt{3}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \\
&= \frac{\sqrt{6}}{2} \right] \\
&\vec{q}_2 = \frac{\vec{w}_2}{\left\| \vec{w}_2 \right\|} \\
&= \frac{\left(-\frac{1}{2}, \frac{1}{2}, 1, 0 \right)}{\sqrt{6}} \\
&= \frac{2}{\sqrt{6}} \left(-\frac{1}{2}, \frac{1}{2}, 1, 0 \right) \\
&= \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0 \right) \right|
\end{aligned}$$

Step 3:
$$\vec{v}_3 \cdot \vec{q}_1 = (1, 0, 1, 1) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right)$$

$$= \frac{1}{\sqrt{2}}$$

$$\vec{v}_3 \cdot \vec{q}_2 = (1, 0, 1, 1) \cdot \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0\right)$$

$$= -\frac{1}{\sqrt{6}} + \frac{2}{\sqrt{6}}$$

$$= \frac{1}{\sqrt{6}}$$

$$\vec{w}_3 = \vec{v}_3 - (\vec{v}_3 \cdot \vec{q}_1) \vec{q}_1 - (\vec{v} \cdot \vec{q}_2) \vec{q}_2$$

$$= (1, 0, 1, 1) - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right) - \frac{1}{\sqrt{6}} \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0\right)$$

$$= (1, 0, 1, 1) - \left(\frac{1}{2}, \frac{1}{2}, 0, 0\right) - \left(-\frac{1}{6}, \frac{1}{6}, \frac{2}{6}, 0\right)$$

$$= \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, 1\right)$$

$$\vec{q}_3 = \frac{\vec{w}_3}{\|\vec{w}_3\|}$$

$$= \frac{1}{\sqrt{\left(\frac{2}{3}\right)^2 + \left(-\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + 1^2}} \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, 1\right)$$

$$= \frac{1}{\sqrt{\frac{21}{9}}} \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, 1\right)$$

$$= \frac{3}{\sqrt{21}} \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, 1\right)$$

$$= \frac{3}{\sqrt{21}} \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, 1\right)$$

$$= \left(\frac{2}{\sqrt{21}}, -\frac{2}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{3}{\sqrt{21}}\right)$$

The *orthonormal* basis:

$$\left\{ \left(\frac{1}{\sqrt{2}}, \, \frac{1}{\sqrt{2}}, \, 0, \, 0 \right), \, \left(-\frac{1}{\sqrt{6}}, \, \frac{1}{\sqrt{6}}, \, \frac{2}{\sqrt{6}}, \, 0 \right), \, \left(\frac{2}{\sqrt{21}}, \, -\frac{2}{\sqrt{21}}, \, \frac{2}{\sqrt{21}}, \, \frac{3}{\sqrt{21}} \right) \right\}$$

QR-Decomposition

Problem

If A is an $m \times n$ matrix with linearly independent column vectors, and if Q is the matrix that results by applying the Gram-Schmidt process to the column vectors of A, what relationship, if any, exists between A and Q?

To solve this problem, suppose that the column vectors of A are $\vec{u}_1, \vec{u}_2, ..., \vec{u}_n$ and the orthonormal column vectors of Q are $\vec{q}_1, \vec{q}_2, ..., \vec{q}_n$.

$$\begin{split} \vec{u}_1 &= \left\langle \vec{u}_1, \, \vec{q}_1 \right\rangle \vec{q}_1 + \left\langle \vec{u}_1, \, \vec{q}_2 \right\rangle \vec{q}_2 + \dots + \left\langle \vec{u}_1, \, \vec{q}_n \right\rangle \vec{q}_n \\ \vec{u}_2 &= \left\langle \vec{u}_2, \, \vec{q}_1 \right\rangle \vec{q}_1 + \left\langle \vec{u}_2, \, \vec{q}_2 \right\rangle \vec{q}_2 + \dots + \left\langle \vec{u}_2, \, \vec{q}_n \right\rangle \vec{q}_n \\ \vdots & \vdots & \vdots \\ \vec{u}_n &= \left\langle \vec{u}_n, \, \vec{q}_1 \right\rangle \vec{q}_1 + \left\langle \vec{u}_n, \, \vec{q}_2 \right\rangle \vec{q}_2 + \dots + \left\langle \vec{u}_n, \, \vec{q}_n \right\rangle \vec{q}_n \end{split}$$

$$R = \begin{bmatrix} \left\langle \vec{u}_1, \vec{q}_1 \right\rangle & \left\langle \vec{u}_2, \vec{q}_1 \right\rangle & \cdots & \left\langle \vec{u}_n, \vec{q}_1 \right\rangle \\ 0 & \left\langle \vec{u}_2, \vec{q}_2 \right\rangle & \cdots & \left\langle \vec{u}_n, \vec{q}_2 \right\rangle \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \left\langle \vec{u}_n, \vec{q}_n \right\rangle \end{bmatrix}$$

The equation A = QR is a factorization of A into the product of a matrix Q with orthonormal column vectors and an invertible upper triangular matrix R. We call it the **QR-decomposition of** A.

Theorem

If A is an $m \times n$ matrix with linearly independent column vectors, then A can be factored as

$$A = QR$$

Where Q is an $m \times n$ matrix with orthonormal column vectors, and R is an $n \times n$ invertible upper triangular matrix.

Example

Find the QR-decomposition of

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Solution

The column vectors of are

$$\vec{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{u}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

From the previous example

$$\vec{q}_1 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \qquad \vec{q}_2 = \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right) \qquad \vec{q}_3 = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

$$R = \begin{bmatrix} \left\langle \vec{u}_1, \vec{q}_1 \right\rangle & \left\langle \vec{u}_2, \vec{q}_1 \right\rangle & \left\langle \vec{u}_3, \vec{q}_1 \right\rangle \\ 0 & \left\langle \vec{u}_2, \vec{q}_2 \right\rangle & \left\langle \vec{u}_3, \vec{q}_2 \right\rangle \\ 0 & 0 & \left\langle \vec{u}_3, \vec{q}_3 \right\rangle \end{bmatrix}$$

$$= \begin{bmatrix} (1)\frac{1}{\sqrt{3}} + (1)\frac{1}{\sqrt{3}} + (1)\frac{1}{\sqrt{3}} & 0 + (1)\frac{1}{\sqrt{3}} + (1)\frac{1}{\sqrt{3}} & 0 + 0 + (1)\frac{1}{\sqrt{3}} \\ 0 & 0\left(\frac{-2}{\sqrt{6}}\right) + (1)\frac{1}{\sqrt{6}} + (1)\frac{1}{\sqrt{6}} & 0\left(\frac{-2}{\sqrt{6}}\right) + 0\frac{1}{\sqrt{6}} + (1)\frac{1}{\sqrt{6}} \\ 0 & 0 + (0)\frac{-1}{\sqrt{2}} + (1)\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$= \begin{vmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{vmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$A = Q \qquad R$$

Calculus: Applying the Gram-Schmidt Process

We can apply the Gram-Schmidt orthogonalization procedure to generate some polynomials that are orthonormal on the interval $x \in [-1, 1]$ with inner product

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$$

Example

Apply the Gram-Schmidt orthonormalization process to the basis $B = \{1, x, x^2\}$ in \mathbb{P}_2 using the inner product

Solution

$$B = \{1, x, x^2\}$$
Let $\vec{u}_1 = 1$, $\vec{u}_2 = x$, $\vec{u}_3 = x^2$

$$\frac{\vec{v}_1 = \vec{u}_1 = 1}{\left\langle \vec{v}_1, \vec{v}_1 \right\rangle} = \int_{-1}^{1} dx$$

$$= x \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= \frac{1}{2}x^2 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= 0 \begin{vmatrix} 1 \\ \vec{v}_2 = \vec{u}_2 - \frac{\left\langle \vec{u}_2, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1$$

$$= x - \frac{0}{2}(1)$$

$$= x \begin{vmatrix} 1 \\ \vec{v}_2, \vec{v}_2 \end{vmatrix} = \int_{-1}^{1} x^2 dx$$

$$= \frac{1}{3}x^3 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
$$= \frac{2}{3}$$

$$\left\langle \vec{u}_3, \ \vec{v}_1 \right\rangle = \int_{-1}^{1} x^2 \ dx$$
$$= \frac{1}{3} x^3 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
$$= \frac{2}{3} \end{vmatrix}$$

$$\left\langle \vec{u}_3, \ \vec{v}_2 \right\rangle = \int_{-1}^{1} x^3 \ dx$$
$$= \frac{1}{4} x^4 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
$$= 0$$

$$\vec{v}_3 = \vec{u}_3 - \frac{\langle \vec{u}_3, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{u}_3, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2$$

$$= x^2 - \frac{3}{2}(x)(0) - \frac{1}{2}\frac{2}{3}$$

$$= x^2 - \frac{1}{3} \mid$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\left\|\vec{v}_1\right\|}$$
$$= \frac{1}{\sqrt{2}}$$

$$\vec{q}_{2} = \frac{\vec{v}_{2}}{\|\vec{v}_{2}\|}$$

$$= \frac{x}{\sqrt{2/3}}$$

$$= \frac{\sqrt{3}}{\sqrt{2}}x$$

$$\vec{q}_{3} = \frac{\vec{v}_{3}}{\|\vec{v}_{3}\|}$$

$$= \sqrt{\frac{45}{8}} \left(x^{2} - \frac{1}{3}\right)$$

$$= \frac{3\sqrt{5}}{2\sqrt{2}} \left(x^{2} - \frac{1}{3}\right)$$

The *orthonormal* basis is $\left\{ \frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \frac{1}{2}\sqrt{\frac{5}{2}}\left(3x^2-1\right) \right\}$

Exercises Section 3.3 – Gram-Schmidt Process

(1-14) Use the Gram-Schmidt process to find an *orthonormal* basis for the subspaces of \mathbb{R}^m .

1.
$$\vec{u}_1 = (1, -3), \quad \vec{u}_2 = (2, 2)$$

2.
$$\vec{u}_1 = (1, 0), \vec{u}_2 = (3, -5)$$

6.
$$\{(2, 2, 2), (1, 0, -1), (0, 3, 1)\}$$

7.
$$\{(1, -1, 0), (0, 1, 0), (2, 3, 1)\}$$

10.
$$\{(0, 2, -1, 1), (0, 0, 1, 1), (-2, 1, 1, -1)\}$$

11.
$$\vec{u}_1 = (1, 0, 0), \quad \vec{u}_2 = (3, 7, -2), \quad \vec{u}_3 = (0, 4, 1)$$

12.
$$\vec{u}_1 = (1, 1, 1, 1), \quad \vec{u}_2 = (1, 2, 4, 5), \quad \vec{u}_3 = (1, -3, -4, -2)$$

13.
$$\vec{u}_1 = (1, 1, 1, 1), \quad \vec{u}_2 = (1, 1, 2, 4), \quad \vec{u}_3 = (1, 2, -4, -3)$$

14.
$$\vec{u}_1 = (0, 2, 1, 0), \quad \vec{u}_2 = (1, -1, 0, 0), \quad \vec{u}_3 = (1, 2, 0, -1), \quad \vec{u}_4 = (1, 0, 0, 1)$$

(15 – 26) Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

15.
$$\{(1, 1, 0), (1, 2, 0), (0, 1, 2)\}$$

16.
$$\{(1, -2, 2), (2, 2, 1), (2, -1, -2)\}$$

17.
$$\{(1, 0, 0), (1, 1, 1), (1, 1, -1)\}$$

18.
$$\{(4, -3, 0), (1, 2, 0), (0, 0, 4)\}$$

19.
$$\{(0, 1, 2), (2, 0, 0), (1, 1, 1)\}$$

21.
$$\{(1, 2, -2), (1, 0, -4), (5, 2, 0), (1, 1, -1)\}$$

22.
$$\{(-3, 1, 2), (1, 1, 1), (2, 0, -1), (1, -3, 2)\}$$

23.
$$\{(2, 1, 1), (0, 3, -1), (3, -4, -2), (-1, -1, 3)\}$$

24.
$$\vec{u}_1 = (1, 1, 0, -1), \quad \vec{u}_2 = (1, 3, 0, 1), \quad \vec{u}_3 = (4, 2, 2, 0)$$

25.
$$\vec{u}_1 = (1, 1, 1, 1), \quad \vec{u}_2 = (1, 1, 2, 4), \quad \vec{u}_3 = (1, 2, -4, -3)$$

- **26.** $\{(3, 4, 0, 0), (-1, 1, 0, 0), (2, 1, 0, -1), (0, 1, 1, 0)\}$
- 27. Find the QR-decomposition of

a)
$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 & 5 \\ -4 & 0 \end{bmatrix}$$

$$c) \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$e) \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 1 \end{bmatrix}$$

28. Verify that the Cauchy-Schwarz inequality holds for the given vectors using the Euclidean inner product

$$\vec{u} = (0, -2, 2, 1), \quad \vec{v} = (-1, -1, 1, 1)$$

(29 – 33) Apply the Gram-Schmidt *orthonormalization* process in \mathbb{C}^0 [-1, 1] spanned by the functions, using the inner product

29.
$$f_1(x) = x + 2$$
, $f_2(x) = x^2 - 3x + 4$

30.
$$f_1(x) = x$$
, $f_2(x) = x^3$, $f_3(x) = x^5$

31.
$$f_1(x) = 1$$
, $f_2(x) = x$, $f_3(x) = \frac{1}{2}(3x^2 - 1)$

32.
$$f_1(x) = 1$$
, $f_2(x) = \sin \pi x$, $f_3(x) = \cos \pi x$

33.
$$f_1(x) = \sin \pi x$$
, $f_2(x) = \sin 2\pi x$, $f_3(x) = \sin 3\pi x$

34. For $\mathbb{P}_{3}[x]$, define the inner product over \mathbb{R} as

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$$

a) If
$$f(x)=1$$
 is a unit vector in $\mathbb{P}_3[x]$?

- b) Find an orthonormal basis for the subspace spanned by x and x^2 .
- c) Complete the basis in part (b) to an orthonormal basis for $\mathbb{P}_3[x]$ with respect to the inner product.
- d) Is

$$[f,g] = \int_0^1 f(x)g(x) dx$$

Also, an inner product for $\mathbb{P}_3[x]$

e) Find a pair of vectors \vec{v} and \vec{w} such that

$$\langle \vec{v}, \vec{w} \rangle = 0$$
 but $[\vec{v}, \vec{w}] \neq 0$

f) Is the basis found in part (c) are orthonormal basis for $\mathbb{P}_3[x]$ with respect to the inner product in part (d)?

Section 3.4 – Orthogonal Matrices

Definition

A square matrix A is said to be orthogonal if its transpose is the same as its inverse, that is, if

$$A^{-1} = A^T$$

or, equivalently, if

$$AA^T = A^T A = I$$

Example

The matrix
$$A = \begin{pmatrix} \frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & -\frac{3}{7} \end{pmatrix}$$

Solution

$$A^{T} A = \begin{pmatrix} \frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \end{pmatrix} \begin{pmatrix} \frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & -\frac{3}{7} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Example

The matrix
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Solution

$$A^{T} A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Theorem

The following are equivalent for $n \times n$ matrix A.

- a) A is orthogonal.
- b) The row vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.
- c) The column vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.

Theorem

- a) The inverse of an orthogonal matrix is orthogonal
- b) A product of orthogonal matrices is orthogonal
- c) If A is orthogonal, then det(A) = 1 or det(A) = -1

Theorem

If A is an $n \times n$ matrix, then the following are equivalent

- a) A is orthogonal.
- **b)** $||A\vec{x}|| = ||\vec{x}||$ for all **x** in R^n .
- c) $A\vec{x} \cdot A\vec{y} = \vec{x} \cdot \vec{y}$ for all \vec{x} and \vec{y} in R^n .

Let \vec{u}_1 and \vec{u}_2 be the unit vectors along the x- and y-axes and unit vectors \vec{u}_1' and \vec{u}_2' along the x'- and y'-axes.

The new coordinates (x', y') and the old coordinates (x, y) of a point P will be related by

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = P^{-1} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$P^{-1} = P^{T} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \vec{x}' \\ \vec{y}' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \vec{x} \\ \vec{y} \end{bmatrix}$$

$$\rightarrow \begin{cases} x' = x \cos \theta + y \sin \theta \\ y' = -x \sin \theta + y \cos \theta \end{cases}$$

These are sometimes called the *rotation equations*.

Example

Use the form $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ to find the new coordinates of the point Q(2, 1) if the coordinate axes of a rectangular coordinate system are rotated through an angle of $\theta = \frac{\pi}{4}$.

Solution

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\frac{\pi}{4} & \sin\frac{\pi}{4} \\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

The new coordinates of Q are $(x', y') = \left(\frac{3}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$

(1-2) Show that the matrix is orthogonal

1.
$$A = \begin{bmatrix} \frac{4}{5} & 0 & -\frac{3}{5} \\ -\frac{9}{25} & \frac{4}{5} & -\frac{12}{25} \\ \frac{12}{25} & \frac{3}{5} & \frac{16}{25} \end{bmatrix}$$

2.
$$A = \begin{vmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{vmatrix}$$

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse.

$$3. \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

4.
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

3.
$$\begin{vmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{vmatrix}$$

8.
$$\begin{bmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$11. \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{5}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{6} & -\frac{5}{6} \\ \frac{1}{2} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \end{bmatrix}$$

$$5. \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

6.
$$\begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$$

4.
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
5.
$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
6.
$$\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$
7.
$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \end{bmatrix}$$
7.
$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \end{bmatrix}$$
7.
$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \end{bmatrix}$$
8.
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
9.
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
9.
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
12.
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{1}{2} & 0 \end{bmatrix}$$

$$7. \quad \begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{pmatrix}$$

7.
$$\begin{pmatrix}
1 & 1 & -1 \\
1 & 3 & 4 \\
7 & -5 & 2
\end{pmatrix}$$
10.
$$\begin{bmatrix}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}}
\end{bmatrix}$$

Find a last column so that the resulting matrix is orthogonal

$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \cdots \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \cdots \\ -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & \cdots \end{bmatrix}$$

14. Determine if the given matrix is orthogonal. If it is, find its inverse

$$\begin{bmatrix} \frac{1}{9} & \frac{4}{5} & \frac{3}{7} \\ \frac{4}{9} & \frac{3}{5} & -\frac{2}{7} \\ \frac{8}{9} & -\frac{2}{5} & \frac{3}{7} \end{bmatrix}$$

- 15. Prove that if A is orthogonal, then A^T is orthogonal.
- 16. Prove that if A is orthogonal, then A^{-1} is orthogonal.
- 17. Prove that if A and B are orthogonal, then AB is orthogonal.

18. Let Q be an $n \times n$ orthogonal matrix, and let A be an $n \times n$ matrix. Show that $\det(QAQ^T) = \det(A)$

19. Let
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{pmatrix}$$

- a) Is matrix A an orthogonal matrix?
- b) Let B be the matrix obtained by normalizing each row of A, find B.
- c) Is B an orthogonal matrix?
- d) Are the columns of B orthogonal?

Section 3.5 – Least Squares Analysis

The use to *best* fit data, we will use results about orthogonal projections in inner product spaces to obtain a technique for fitting a line or other polynomial.

Fitting a Curve to Data

The common problem is to obtain a mathematical relationship between 2 variables x and y by *fitting* a curve to points in the xy-plane.

Some possibility of fitting the data

Least Squares Fit of a Straight Line

Recall that a system of equations $A\vec{x} = \vec{y}$ is called inconsistent if it does not have a solution. Suppose we want to fit a straight line y = mx + b to the determined points $(x_1, y_1), ..., (x_n, y_n)$

If the data points were collinear, the line would pass through all n points and the unknown coefficients m and b would satisfy the equations

36

$$y_{1} = mx_{1} + b$$

$$y_{2} = mx_{2} + b$$

$$\vdots \quad \vdots \quad \vdots$$

$$y_{n} = mx_{n} + b$$

$$\Rightarrow \begin{bmatrix} x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$A \quad \vec{x} = \vec{y}$$

The problem is to find m and b that minimize the errors is some sense.

Least Square Problem

Given a linear system $A\vec{x} = \vec{y}$ of m equations in n unknowns, find a vector \vec{x} that minimizes $\|\vec{y} - A\vec{x}\|$ with respect to the Euclidean inner product on \mathbb{R}^m . We call such as \vec{x} a least squares solution of the system, we call $\|\vec{y} - A\vec{x}\|$ the least squares error.

$$A\mathbf{x} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_m \end{pmatrix}$$

The term "least square solution" results from the fact the minimizing $\|\vec{y} - A\vec{x}\| = e_1^2 + e_2^2 + ... + e_m^2$

Example

Find the sums of squares of the errors of (2, 4), (4, 8), (6, 6)

Solution

$$4 = 2m + b \implies 4 - 2m - b = e_1$$

$$8 = 4m + b \implies 8 - 4m - b = e_2$$

$$6 = 6m + b \implies 6 - 6m - b = e_3$$

$$e_1^2 + e_2^2 + \dots + e_m^2 = (4 - 2m - b)^2 + (8 - 4m - b)^2 + (6 - 6m - b)^2$$

The least squares problem for this example to find the values m and b for which $e_1^2 + e_2^2 + ... + e_m^2$ is a minimum.

Theorem

If A is an $m \times n$ matrix, the equation $A\vec{x} = \vec{y}$ has a solution if and only if \vec{y} is in the column space of A. $\vec{y} - A\vec{x} = \vec{e}$

 $A\vec{x}$ is a vector that is in the column space of A. For this A the column space is a plane is \mathbb{R}^m

 \vec{y} is a vector, not in the column space of A (otherwise $A\vec{x} = \vec{y}$ has an exact solution)

 \vec{e} is the error vector, the difference between \vec{v} and $A\vec{x}$

The length $\|\vec{e}\|$ is a *minimum* exactly when $\vec{e} \perp CS(A)$

Best Approximation *Theorem*

If CS(A) is a finite dimensional subspace of an inner product space, and if \vec{y} is a vector in \vec{V} , then $proj_{CS(A)}\vec{y}$ is the best approximation to \vec{y} from CS(A) is the sense that

$$\left\| \vec{y} - proj_{CS(A)} \vec{y} \right\| < \| \vec{y} - CS(A) \|$$

For every vector \vec{w} in CS(A) that is different from $proj_{CS(A)} \vec{y}$

Theorem

For every linear system $A\vec{x} = \vec{y}$, the associated normal system

$$A^T A \vec{x} = A^T \vec{y}$$

Is consistent, and all solutions are least squares solutions of $A\vec{x} = \vec{y}$

If the columns of A are linearly independent, then A^TA is invertible so has a unique solution \overline{x} . This solution is often expressed theoretically as

$$\left(A^T A\right)^{-1} A^T A \overline{x} = \left(A^T A\right)^{-1} A^T \vec{y}$$

$$\overline{x} = \left(A^T A\right)^{-1} A^T \vec{y}$$

Proof

Let the vector \overline{x} is a least squares solution to $A\vec{x} = \vec{y} \iff (\vec{y} - A\overline{x}) \perp CS(A)$

$$(\vec{y} - A\vec{x}) \cdot \vec{z} = 0$$

$$(\vec{y} - A\vec{x}) \cdot \vec{z} = 0$$
 \vec{z} in $CS(A)$ & $\vec{z} = A\vec{w}$

$$(\vec{y} - A\overline{x}) \cdot A\vec{w} = 0$$
 \vec{w} in \mathbb{R}^n

$$\vec{w}$$
 in \mathbb{R}^h

$$A^T \left(\vec{y} - A\overline{x} \right) \cdot \vec{w} = 0$$

$$A^T \left(\vec{y} - A \overline{x} \right) = 0$$

$$A^T \vec{y} - A^T A \overline{x} = 0$$

$$A^T \vec{y} = A^T A \overline{x}$$

Theorem

If A is an $m \times n$ matrix, then the following are equivalent

- a) A has linearly independent column vectors.
- **b)** $A^T A$ is invertible.

Example

Find the equation of the line that best fits the given points in the least-squares sense.

$$(40, 482), (45, 467), (50, 452), (55, 432), (60, 421)$$

Solution

Let y = mx + b be the equation of the line that best fits the given points. Then

$$\begin{pmatrix} 40 & 1 \\ 45 & 1 \\ 50 & 1 \\ 55 & 1 \\ 60 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 482 \\ 467 \\ 452 \\ 432 \\ 421 \end{pmatrix}$$

Where
$$A = \begin{pmatrix} 40 & 1 \\ 45 & 1 \\ 50 & 1 \\ 55 & 1 \\ 60 & 1 \end{pmatrix}$$
 $\mathbf{x} = \begin{pmatrix} m \\ b \end{pmatrix}$ $\mathbf{y} = \begin{pmatrix} 482 \\ 467 \\ 452 \\ 432 \\ 421 \end{pmatrix}$

Using the normal equation formula: $A^T Ax = A^T y$

$$\begin{pmatrix} 40 & 45 & 50 & 55 & 60 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 40 & 1 \\ 45 & 1 \\ 50 & 1 \\ 55 & 1 \\ 60 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 40 & 45 & 50 & 55 & 60 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 482 \\ 467 \\ 452 \\ 432 \\ 421 \end{pmatrix}$$

$$\begin{pmatrix} 12,750 & 250 \\ 250 & 5 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 111,970 \\ 2,255 \end{pmatrix}$$

$$X = A^{-1}B$$

$$\binom{m}{b} = \frac{1}{1250} \binom{5}{-250} \frac{-250}{12,750} \binom{111,970}{2,255}$$

$$= \binom{-3.12}{607}$$

Or

$$m = \frac{\begin{vmatrix} 111,970 & 250 \\ 2,255 & 5 \end{vmatrix}}{\begin{vmatrix} 12,750 & 250 \\ 250 & 5 \end{vmatrix}}$$
$$= \frac{-3,900}{1,250}$$
$$= -\frac{78}{25}$$

$$b = \frac{\begin{vmatrix} 12,750 & 111,970 \\ 250 & 2,255 \end{vmatrix}}{1,250}$$
$$= \frac{758,750}{1,250}$$
$$= 607$$

Thus,
$$y = -\frac{78}{25}x + 607$$
 or $y = -3.12x + 607$

Example

Given the system equation:
$$\begin{cases} x_1 - x_2 = 4 \\ 3x_1 + 2x_2 = 1 \\ -2x_1 + 4x_2 = 3 \end{cases}$$

- a) Find the least-squares solution of the linear system $A\vec{x} = \vec{y}$
- b) Find the orthogonal projection of \vec{y} on the column space of A
- c) Find the error vector and the error

Solution

a)
$$A = \begin{pmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{pmatrix}$$
 $\vec{x} = \begin{pmatrix} m \\ b \end{pmatrix}$ $\vec{y} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$

$$A^{T} A \vec{x} = A^{T} \vec{y}$$

$$\begin{pmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 14 & -3 \\ -3 & 21 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix} m \\ b \end{pmatrix} = \frac{1}{285} \begin{pmatrix} 21 & 3 \\ 3 & 14 \end{pmatrix} \begin{pmatrix} 1 \\ 10 \end{pmatrix}$$

$$X = A^{-1}B$$

$$= \begin{pmatrix} \frac{51}{285} \\ \frac{143}{285} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{17}{95} \\ \frac{143}{285} \end{pmatrix}$$

Thus
$$y = \frac{17}{95}x + \frac{143}{285}$$
 or $y = 0.1789x + 0.5018$

b) The orthogonal projection of \vec{y} on the column space of A

41

$$A\vec{x} = \begin{pmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} \frac{17}{95} \\ \frac{143}{285} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{92}{285} \\ \frac{439}{285} \\ \frac{94}{57} \end{pmatrix}$$

$$c) \quad \vec{y} - A\vec{x} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} -\frac{92}{285} \\ \frac{439}{285} \\ \frac{94}{57} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1232}{285} \\ -\frac{154}{285} \\ \frac{4}{3} \end{pmatrix}$$

The *error*:
$$\|\vec{y} - A\vec{x}\| = \sqrt{\left(\frac{1232}{285}\right)^2 + \left(-\frac{154}{285}\right)^2 + \left(\frac{4}{3}\right)^2}$$

 ≈ 4.556

Exercises Section 3.5 – Least Squares Analysis

(1-7) Find the equation of the line that best fits the given points in the least-squares sense and find the error.

- 1. $\{(0, 2), (1, 2), (2, 0)\}$
- **2.** $\{(1, 5), (2, 4), (3, 1), (4, 1), (5, -1)\}$
- **3.** {(0, 1), (1, 3), (2, 4), (3, 4)}
- **4.** $\{(-2, 0), (-1, 0), (0, 1), (1, 3), (2, 5)\}$
- 5. $\{(2, 3), (3, 2), (5, 1), (6, 0)\}$
- **6.** $\{(-1, 0), (0, 1), (1, 2), (2, 4)\}$
- 7. $\{(1, 0), (2, 1), (4, 2), (5, 3)\}$

(8 – 10) Find the orthogonal projection of the vector \vec{u} on the subspace of \mathbb{R}^4 spanned by the vectors

- **8.** $\vec{u} = (-3, -3, 8, 9); \quad \vec{v}_1 = (3, 1, 0, 1), \quad \vec{v}_2 = (1, 2, 1, 1), \quad \vec{v}_3 = (-1, 0, 2, -1)$
- **9.** $\vec{u} = (6, 3, 9, 6); \quad \vec{v}_1 = (2, 1, 1, 1), \quad \vec{v}_2 = (1, 0, 1, 1), \quad \vec{v}_3 = (-2, -1, 0, -1)$
- **10.** $\vec{u} = (-2, 0, 2, 4); \quad v_1 = (1, 1, 3, 0), \quad \vec{v}_2 = (-2, -1, -2, 1), \quad \vec{v}_3 = (-3, -1, 1, 3)$
- 11. Find the standard matrix for the orthogonal projection P of \mathbb{R}^2 on the line passes through the origin and makes an angle θ with the positive x-axis.
- 12. Hooke's law in physics states that the length x of a uniform spring is a linear function of the force y applied to it. If we express the relationship as y = mx + b, then the coefficient m is called the spring constant.

Suppose a particular unstretched spring has a measured length of 6.1 *inches*.(i.e., x = 6.1 when y = 0). Forces of 2 pounds, 4 pounds, and 6 pounds are then applied to the spring, and the corresponding lengths are found to be 7.6 inches, 8.7 inches, and 10.4 inches. Find the spring constant.

- 13. Prove: If A has a linearly independent column vectors, and if \mathbf{b} is orthogonal to the column space of A, then the least squares solution of $A\vec{x} = \vec{b}$ is $\vec{x} = \vec{0}$.
- 14. Let A be an $m \times n$ matrix with linearly independent row vectors. Find a standard matrix for the orthogonal projection of \mathbb{R}^n onto the row space of A.
- **15.** Let W be the line with parametric equations x = 2t, y = -t, z = 4t
 - a) Find a basis for W.
 - b) Find the standard matrix for the orthogonal projection on W.
 - c) Use the matrix in part (b) to find the orthogonal projection of a point $P_0(x_0, y_0, z_0)$ on W.
 - d) Find the distance between the point $P_0(2, 1, -3)$ and the line W.
- 16. In \mathbb{R}^3 , consider the line *l* given by the equations x = t, y = t, z = tAnd the line *m* given by the equations x = s, y = 2s - 1, z = 1

Let P be the point on l, and let Q be a point on m.

Find the values of t and s that minimize the distance between the lines by minimizing the squared distance $||P-Q||^2$

- 17. Determine whether the statement is true or false,
 - a) If A is an $m \times n$ matrix, then $A^T A$ is a square matrix.
 - b) If $A^T A$ is invertible, then A is invertible.
 - c) If A is invertible, then $A^T A$ is invertible.
 - d) If $A\vec{x} = \vec{b}$ is a consistent linear system, then $A^T A \vec{x} = A^T \vec{b}$ is also consistent.
 - e) If $A\vec{x} = \vec{b}$ is an inconsistent linear system, then $A^T A \vec{x} = A^T \vec{b}$ is also inconsistent.
 - f) Every linear system has a least squares solution.
 - g) Every linear system has a unique least squares solution.
 - h) If A is an $m \times n$ matrix with linearly independent columns and \vec{b} is in R^m , then $A\vec{x} = \vec{b}$ has a unique least squares solution.
- 18. A certain experiment produces the data $\{(1, 1.8), (2, 2.7), (3, 3.4), (4, 3.8), (5, 3.9)\}$. Find the function that it will fit these data in the form of $y = \beta_1 x + \beta_2 x^2$

19. According to Kepler's first law, a comet should have an ellipse, parabolic, or hyperbolic orbit (with gravitational attractions from the planets ignored). In suitable polar coordinates, the position (r, υ) of a comet satisfies an equation of the form

$$r = \beta + e(r \cdot \cos \upsilon)$$

Where β is a constant and e is the eccentricity of the orbit, with $0 \le e < 1$ for an ellipse, e = 1 for a parabolic, and e > 1 for a hyperbola.

Suppose observations of a newly discovered comet provide the data below.

Determine the type of orbit, and predict where the orbit will be when v = 4.6 (radians)?

20. To measure the takeoff performance of an airplane, the horizontal position of the plane was measured every second, from t = 0 to t = 12

The position (in *feet*) were:

- a) Find the least square cubic curve $y = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3$ for these data.
- b) Estimate the velocity of the plane when t = 4.5 sec, using the result from part (a).