Cater to your likes: Prediction on user ratings of Restaurants with Yelp Dataset

Krishna Vastare, Lianming Shi, Te Sun, Tuoying Chen, Yu Zhang, Yizhou Chen, Runfeng Jiang

Introduction

- Yelp is one of the largest platforms.
 - Over 145 million/ month unique visitors.
 - Over 102 million reviews to date.
- Main question: How a user would rate a restaurant before they even had food there?
- Our Goal: Identify what users care most and determine what restaurants are doing right and wrong to receive these ratings.

Datasets

Check in	Checkin_time (days of the week), business_id.
Business	business_id, Name, Address, Stars, review_count, open or not, attributes, hours, categories.
Review	Review_id, user_id, business_id, stars, text, useful, funny, cool.
User	user_id, name, review_count, yelping_since, friends

Check-ins on a business.

```
// nested object of the day of the week with key
of the hour (using a 24hr clock) with the count of
checkins for that hour (e.g. 14:00 - 14:59).
    "time": {
        "Wednesday": {
            "14:00": 2,
            "16:00": 1,
            "2:00": 1,
            "0:00": 1
        },
        "Sunday": {
            "16:00": 8,
            "14:00": 3,
            "15:00": 3,
            "13:00": 1,
        },
        "Friday": {
            "16:00": 1
        },
    // string, 22 character business id, maps to
business in business.json
    "business id": "tnhfDv5Il8EaGSXZGiuQGg"
```

-- Data Preprocessing

Aggregation checkins by business ID

```
length of checkin data frame 146350
length of business data frame 174567
length of contatenated data frame 174567
```

- 2. Drop the business with NaN check-in time
- 3. Throw useless columns, like 'address', 'latitude', 'longitude', 'neighborhood', 'is open', and 'postal code'

-- Data Preprocessing

- 1. Number of total check-in: 16,648,352.
- 2. Number of total check-in hours: 168 (Monday Sunday, 24 hour based).
- 3. Proportion of total check in times captured in top # check in hours:

#	%		
Top 1	1.51%		
Top 10	14.12%		
Top 20	26.44%		
Top 30	37.06%		

-- Data Exploratory

Top 10 Popular check-in hour: Least 10 Popular check-in hour:

Rank	No. of times	Date	Time
1 251537		Saturday	19:00
2	246969	Saturday	20:00
3	245453	Saturday	1:00
4	236195	Saturday	2:00
5	235292	Sunday	1:00
6	229788	Saturday	21:00
7	229561	Sunday	19:00
8	225651	Saturday	18:00
9	225209	Sunday	0:00
10 224716		Sunday	2:00

Rank	No. of times Date		Time	
1	1 8837 Tuesday		9:00	
2	9200	Wednesday	10:00	
3	9448	Tuesday	10:00	
4	9776	THURSDAY	10:00	
5	10058	Thursday	9:00	
6	10432	Monday	10:00	
7	11000	Monday	9:00	
8	11837	Friday	10:00	
9	12452	Tuesday	8:00	
10	12484	Wednesday	8:00	

Business

Contains business data including:

- Location data
- Attributes
- Categories
- Hours

```
// string, 22 character unique string
business id
    "business id": "tnhfDv5Il8EaGSXZGiuQGg",
    // string, the business's name
    "name": "Garaje",
    // string, the city
    "city": "San Francisco",
    // string, 2 character state code, if
applicable
    "state": "CA",
    // float, latitude
    "latitude": 37.7817529521,
    // float, longitude
    "longitude": -122.39612197,
    // float, star rating, rounded to
half-stars
    "stars": 4.5,
    // interger, number of reviews
    "review count": 1198,
    // an array of strings of business
categories
    "categories": [
        "Mexican",
        "Burgers",
        "Gastropubs"
```

Business: Top 10 popular cities

Business: Review count and Stars

Restaurants with 3.5 stars to 4.5 stars have more review counts

Business: Las Vegas heatmap

Business: Dynamic heatmap

Contains full review text data including:

- user_id that wrote the review
- business_id that the review is written for

```
// string, 22 character unique review id
    "review id": "zdSx SD6obEhz9VrW9uAWA",
    // string, 22 character unique user id, maps to
the user in user.json
    "user id": "Ha3iJu77CxlrFm-vQRs 8g",
    // string, 22 character business id, maps to
business in business.json
    "business id": "tnhfDv5Il8EaGSXZGiuQGg",
    // integer, star rating
    "stars": 4,
    // string, date formatted YYYY-MM-DD
    "date": "2016-03-09",
    // string, the review itself
    "text": "Great place to hang out after work:
the prices are decent, and the ambience is fun.
It's a bit loud, but very lively. The staff is
friendly, and the food is good. They have a good
selection of drinks.",
    // integer, number of useful votes received
    "useful": 0,
    // integer, number of funny votes received
    "funny": 0,
    // integer, number of cool votes received
    "cool": 0
```

Review text topic analysis:

TF-IDF + K-Means

Cluster 1	Cluster 2	Cluster 3	
ice thai cream pad chicken nice tea place good food	sushi rolls roll place good fresh great service food sashimi	chicken good food fried rice burger sauce great salad ordered	

Logistic Regression Accuracy: 70.16%

KNN Accuracy: 75.09%

Basic statistics

- All ratings increase rapidly with year
- 5-star ratings have the highest increasing rate
- Might want to take a look into percentage of each star level

Basic statistic.

- Percentage of high star level(>3) is high.
- Percentage of high star level increase with year.
- Indicating a bias shift of user's average rating or a change in yelp's user interface.

Predictions

Prediction by collaborative filtering

- For a user-restaurant pair
- Find k-most similar users that visited the restaurant
- Use a weighted average to predict the ratings

Find users that behaves similar to user1!

	Re 1	Re 2	Re 3	Re 4	Re 5	Re 6
user1	5			4	4	1
user2	4		3	3	3	
user3	1			5		4
user4	1	1		5		4
user5			3	4		

Conclusion

- Data exploration showed us that there were over 16 million unique entries.
- Implemented TF IDF + K-means to cluster review text topics.
- With 10D sentimental features:
 - Logistic Regression Accuracy: 70.16%
 - KNN Accuracy: 75.09%
- Finally implemented Collaborative filtering to perform prediction of the rating system:
 - RMSE around 0.91

Thank you!

