

SQL: Structured Query Language

Abdu Alawini

University of Illinois at Urbana-Champaign

CS411: Database Systems

Learning Objectives

After this lecture, you should be able to:

- •Write single-relation SQL queries
- •Write SQL queries with complex WHERE conditions
- •Write INNER, NATURAL and OUTER JOIN SQL queries
- Evaluate the effect of Null on SQL queries

SQL: Structured Query Language

The standard language for relational data

Invented by folks at IBM, esp. Don Chamberlin

Separated into

- •DDL (data definition language)
- •DML (data manipulation language)

DML based on relational calculus, which we discuss later

SQL – the language we use to talk to the Database Management System

SQL (cont.)

SQL is a standard... and there have been a series of SQL standards: 1986, 1989, 1992 (SQL2), 1999 (SQL3), ..., SQL:2011

But DBMS products differ in how much of the standard they support ... and how many extra features they have.

Single-Relation Query Form

•The principal form of a single-relation query is:

SELECT desired attributes

FROM one table (relation)

WHERE condition about tuples of the table

Example Query

Account	Number	Name	Balance Type
	101	J. Smith	1000.00 checking
	102	W. Wei	2000.00 checking
	103	J. Smith	5000.00 savings
	104	M. Jones	1000.00 checking
	105	H. Martin	10,000.00 checking
	SELE	CT Numl	ber, Owner

FROM Account
WHERE Type = "savings";

Number Owner

103 J. Smith

How a Single-Relation SQL query is evaluated

Third, the SELECT clause tells us which columns to keep in the query answer.

First, the FROM clause tells us the input tables.

Second, the WHERE clause is evaluated for all rows from the input table.

Renaming Attributes

- •If you want the result to have different attribute names, use "AS <new name>" to rename an attribute.
- •Example based on Account(number, owner, balance, type):

```
SELECT Number AS Acc_Num, Owner
FROM Accounts
WHERE Type = "savings";

Acc_Num Owner
103 J. Smith
```

Another Database Schema

- •We will be using the following database schema as a running example.
 - Underline indicates key attributes.

Drinks(name, manf)

Cafe(<u>name</u>, addr, license)

Customers(<u>name</u>, addr, phone)

Likes(customer, drink)

Sells(<u>cafe</u>, <u>drink</u>, price)

Frequents(<u>customer</u>, <u>cafe</u>)

Expressions in SELECT Clauses

•Any expression that makes sense can appear as an element of a SELECT clause.

•Example: from Sells (cafe, drink, price):

SELECT cafe, drink, price * 120 AS priceInYen
FROM Sells;

Creating temporary tables using INTO

We can create a name for the query answer:

temp3 can be used as a table in subsequent queries!

REMEMBER TO DELETE YOUR TEMPORARY TABLES!

Complex Conditions in WHERE Clause

•From Sells (cafe, drink, price), find the price Caffe bene charges for Mocha:

WHERE Clause Syntax

What you can use in WHERE:

- attribute names of the relation(s) used in the FROM.
- comparison operators: =, <>, <, >, <=, >=
- apply arithmetic operations: stockprice*2
- operations, comparisons on strings
- pattern matching: s LIKE p
- special stuff for comparing dates and times.

See the textbook for more...

Then, create bigger expressions using Boolean connectives

Syntax: Patterns and "LIKE"

•WHERE clauses can have conditions in which a string is compared with a pattern, to see if it matches.

```
•General form: <Attribute> LIKE <pattern> or <Attribute> NOT LIKE <pattern>
```

- Pattern is a quoted string with
 - % "any string"
 - "any character."

Example

•From Customers(name, addr, phone) find the customers that have phone numbers with middle three numbers 555:

```
SELECT name

FROM Customers

WHERE phone LIKE \%555- ';
```

Ordering the results

SELECT *
FROM Account
WHERE Name LIKE
'J%'
ORDER BY Balance

- Ordering is ascending, unless you specify the DESC keyword.
- Ties are broken by the second attribute on the ORDER BY list, etc.

Outline

- ✓ Single-Relation SQL Queries
 - Multi-Relation SQL Queries
 - Join SQL Queries

Multi-relation Queries

•Interesting queries often combine data from more than one relation.

 We can address several relations in one query by listing them all in the FROM clause.

•Distinguish attributes of the same name by "<relation>.<attribute>"

Example of Multi-Relation Query

SELECT A.Owner, A.Balance

FROM Account A, Deposit D

WHERE D.AcctNo = A.Number and A.Balance > 1000;

How does this work?
Which rows, from which tables,
are evaluated in the WHERE clause?

Example of Multi-Relation Query

SELECT A.Owner, A.Balance

FROM Account A, Deposit D

WHERE D.AcctNo = A.Number and A.Balance > 1000;

"A" is a <u>correlation name</u> for Account and

"D" is a <u>correlation name</u> for <u>Deposit</u>.

Correlation names are like local variables – they hold one tuple or row from the corresponding table.

You choose correlation names when you write the query.

Account				
Number	Owr	ner Bala	nce Type	e
101		J. Smith	1000.00	checking
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

Deposit			
AcctNo	T-id	Date	Amount
102 1	10/22	2/00	500.00
102 2	10/29	9/00	200.00
104 3	10/29	9/00	1000.00
105 4	11/02	2/00	10,000.00

SELECT A.Owner, A.Balance FROM Account A, Deposit D

WHERE D.AcctNo = A.Number and A.Balance > 1000;

We must check every combination of one row from Account with one row from Deposit.

Intermediate result (after processing the FROM & WHERE clauses)

Number	Owner	Balance	Type	AcctN	10	T-id Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00
105	H. Martin	10,000.00	checking	105	4	11/02/00	10,000.00

→ Process the SELECT

SELECT A.Owner, A.Balance

FROM Account A, Deposit D

WHERE D.AcctNo = A.Number and A.Balance > 1000;

Final query

answer: (notice that

W. Wei appears twice)

Owner	Balance
W. Wei	2000.00
W. Wei	2000.00
H. Martin	10,000.00

Intermediate result (after processing the FROM & WHERE clauses)

Number	Owner	Balance	Type	AcctN	10	T-id Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00
105	H. Martin	10,000.00	checking	105	4	11/02/00	10,000.00

SELECT DISTINCT A.Owner, A.Balance

FROM Account A, Deposit D

WHERE D.AcctNo = A.Number and A.Balance > 1000;

If we use the word
DISTINCT, then
duplicates are removed
from the query answer.
W. Wei only appears once.

Owner	Balance
W. Wei	2000.00
H. Martin	10,000.00

Operational Semantics of Multi-relation queries

Almost the same as for single-relation queries:

1. Start with the product of all the relations in the FROM clause.

2. Apply the selection condition from the WHERE clause.

3. Project onto the list of attributes and expressions in the SELECT clause.

Queries

		<u> </u>			
Account	Number	Owner	Balance	Type	
	101	J. Smith	1000.00 che	ecking	
	102	W. Wei	2000.00 che	ecking	
	103	J. Smith	5000.00 sav	vings	
	104	M. Jones	1000.00	checking	
	105	H. Martin	10,000.00	checking	
Notice tha	at a query	is SE	LECT Ow	ner	
Expressed	d against	the FR	OM Acc	count	
schema.		WH	IERE Type = '	'checking";	
But the qu	iery runs	or		Owner	
executes	against th	ne		Owner J. Smith	
instance (the data)				W. Wei	
	∕ give different ent instances	answers		M. Jones	
on anich				⊔ Martin	

H. Martin

Comments on Queries

Account	Number	Owner	Balance	Туре
	101	J. Smith	1000.00 checking	
	102	W. Wei	2000.00 checking	
	103	J. Smith	5000.00 savings	
	104	M. Jones	1000.00 checking	
	105	H. Martin	10,000.00 checking	

Notice that the answer to a query is always a table!

It doesn't always have a name (for the table).

The attribute names are deduced from the input tables (or supplied by the query author). It might or Might not have any rows.

×	
	Owner
	J. Smith
	W. Wei
	M. Jones
	H. Martin

Comments on Queries

Because the answer to a relational query is always a table

- This means that we can create arbitrarily complex queries!
- A query language is closed if it has this property.

Outline

- Single-Relation SQL Queries
- Multi-Relation SQL Queries
 - Join SQL Queries

Example Database

Employee table

Employee tubic				
LastName	DepartmentID			
Rafferty	31			
Jones	33			
Steinberg	33			
Robinson	34			
Smith	34			
John	NULL			

Department table

DepartmentID	DepartmentName
31	Sales
33	Engineering
34	Clerical
35	Marketing

				Department.DepartmentName	Department.DepartmentID	Employee.LastName	Employee.DepartmentID
				Sales	31	Rafferty	31
			Sales	31	Jones	33	
	Cross	Proal	JCT	Sales	31	Steinberg	33
				Sales	31	Smith	34
	Departmen	$t imes Em_{l}$	ployee	Sales	31	Robinson	34
				Sales	31	John	NULL
		Emplo	oyee table	Engineering	33	Rafferty	31
Depart	ment table	LastName	DepartmentID	Engineering	33	Jones	33
DepartmentID	DepartmentName	Rafferty	31	Engineering	33	Steinberg	33
31	Sales	Jones	33	Engineering	33	Smith	34
33	Engineering	Steinberg	33	Engineering	33	Robinson	34
34	Clerical	Robinson	34	Engineering	33	John	NULL
35	Marketing	Smith	34	Clerical	34	Rafferty	31
		John	NULL	Clerical	34	Jones	33
		JOHN	NOLL	Clerical	34	Steinberg	33
				Clerical	34	Smith	34
CTT.				Clerical	34	Robinson	34
SELECT * FROM Department, Employee			Clerical	34	John	NULL	
			Marketing	35	Rafferty	31	
				Marketing	35	Jones	33
				Marketing	35	Steinberg	33
				Marketing	35	Smith	34
				Marketing	35	Robinson	34
				Marketing	35	John	NULL

Employee table		
LastName	DepartmentID	
Rafferty	31	
Jones	33	
Steinberg	33	
Robinson	34	
Smith	34	
John	NULL	

DepartmentID	DepartmentName
31	Sales
33	Engineering
34	Clerical
35	Marketing

Donartment table

Equijoin

Employee Department

Employee.DeptID = Department.DeptID

SELECT *

FROM Employee emp JOIN Department dept
ON emp.DepartmentID = dept.DepartmentID

Employee.LastName	Employee.DepartmentID	Department.DepartmentName	Department.DepartmentID
Robinson	34	Clerical	34
Jones	33	Engineering	33
Smith	34	Clerical	34
Steinberg	33	Engineering	33
Rafferty	31	Sales	31

Employee table		
LastName	DepartmentID	
Rafferty	31	
Jones	33	
Steinberg	33	
Robinson	34	
Smith	34	
John	NULL	

DepartmentID	DepartmentName
31	Sales
33	Engineering
34	Clerical
35	Marketing

Department table

Natural Join

Employee Department

SELECT *

FROM Employee emp NATURAL JOIN Department dept

DepartmentID	Employee.LastName	Department.DepartmentName
34	Smith	Clerical
33	Jones	Engineering
34	Robinson	Clerical
33	Steinberg	Engineering
31	Rafferty	Sales

Nulls and Joins

- Sometimes need special variations of joins:
 - •I want to see all employees and their departments
 - •... But what if there's a department with no employees?
 - Or what if an employee has not been assigned to a department?
- Outer join:
 - Most common is left outer join

Outer Joins

- •Left outer join:
 - •Include the left tuple even if there's no match
- •Right outer join:
 - •Include the right tuple even if there's no match
- •Full outer join:
 - •Include both the left and right tuples even if there's no match

Employee table		
LastName	DepartmentID	
Rafferty	31	
Jones	33	
Steinberg	33	
Robinson	34	
Smith	34	
John	NULL	

DepartmentID	DepartmentName
31	Sales
33	Engineering
34	Clerical
35	Marketing

Department table

Left Outer Join

Employee Department Employee.DepartmentID = DepartmentID

SELECT *

FROM Employee emp LEFT OUTER JOIN Department dept
ON emp.DepartmentID = dept.DepartmentID

Employee.LastName	Employee.DepartmentID	Department.DepartmentName	Department.DepartmentID
Jones	33	Engineering	33
Rafferty	31	Sales	31
Robinson	34	Clerical	34
Smith	34	Clerical	34
John	NULL	NULL	NULL
Steinberg	33	Engineering	33

Employee table		
LastName	DepartmentID	
Rafferty	31	
Jones	33	
Steinberg	33	
Robinson	34	
Smith	34	
John	NULL	

•		
DepartmentID	DepartmentName	
31	Sales	
33	Engineering	
34	Clerical	
35	Marketing	

Donartment table

Right Outer Join

Employee Department

Employee.DepartmentID =

Department.DepartmentID

FROM Employee emp RIGHT OUTER JOIN Department dept

ON emp.DepartmentID = dept.DepartmentID

Employee.LastName	Employee.DepartmentID	Department.DepartmentName	Department.DepartmentID
Smith	34	Clerical	34
Jones	33	Engineering	33
Robinson	34	Clerical	34
Steinberg	33	Engineering	33
Rafferty	31	Sales	31
NULL	NULL	Marketing	35

Employee table				
LastName	DepartmentID 31			
Rafferty				
Jones	33			
Steinberg	33			
Robinson	34			
Smith	34			
John	NULL			

Department table				
DepartmentID	DepartmentName			
31 Sales				
33	Engineering			
34 Clerical				
35	Marketing			

Full Outer Join

Employee Department Employee.DepartmentID = DepartmentID

SELECT *
FROM Employee FULL OUTER JOIN Department dept
ON emp.DepartmentID = dept.DepartmentID

Employee.LastName	Employee.DepartmentID	Department.DepartmentName	Department.DepartmentID
Smith	34	Clerical	34
Jones	33	Engineering	33
Robinson	34	Clerical	34
John	NULL	NULL	NULL
Steinberg	33	Engineering	33
Rafferty	31	Sales	31
NULL	NULL	Marketing	35

Outline

- ✓ Single-Relation SQL Queries (Cont.)
- Multi-Relation SQL Queries
- Join SQL Queries