Dans tout le problème

- On note pour tout entier $n \ge 1$, $H_n = \sum_{k=1}^n \frac{1}{k}$.
- On note ζ la fonction définie pour x>1 par $\zeta(x)=\sum_{n=1}^{+\infty}\frac{1}{n^x}.$

Objet : Le but du problème est d'étudier des séries faisant intervenir la suite (H_n) et notamment d'obtenir une relation due à Euler qui exprime, pour r entier naturel supérieur ou égal à 2, $\sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r}$ à l'aide de valeurs de la fonction ζ en des points entiers.

Partie I: Représentation intégrale de sommes de séries

- 1. (a) Justifier que la série de terme général $a_n = \frac{1}{n} \int_{n-1}^n \frac{dt}{t}$ converge
 - (b) Montrer qu'il existe une constante réelle A telle que $H_n = \ln n + A + o(1)$. En déduire que $H_n \sim \ln n$
- 2. Soit r un entier naturel.

Pour quelles valeurs de r, la série $\sum_{n\geqslant 1} \frac{H_n}{(n+1)^r}$ est-elle convergente?

Dans toute la suite on notera $S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r}$ lorsque la série converge.

- 3. (a) Donner sans démonstration les développements en série entière des fonctions $t \mapsto \ln(1-t)$ et $t \mapsto \frac{1}{1-t}$ ainsi que leur rayon de convergence.
 - (b) En déduire que la fonction

$$t \longmapsto -\frac{\ln(1-t)}{1-t}$$

est développable en série entière sur]-1,1[et préciser son développement en série entière à l'aide des réels H_n

4. Pour tout couple d'entiers naturels (p,q) et pour tout $\varepsilon \in]0,1[$, on note

$$I_{p,q} = \int_0^1 t^p (\ln t)^q dt$$
 et $I_{p,q}^{\varepsilon} = \int_{\varepsilon}^1 t^p (\ln t)^q dt$

- (a) Montrer que l'intégrale $I_{p,q}$ existe pour tout couple d'entiers naturels (p,q)
- (b) Montrer que, $\forall p \in \mathbb{N}, \forall q \in \mathbb{N}^*, \forall \varepsilon \in]0,1[, I_{p,q}^{\varepsilon} = -\frac{q}{p+1}I_{p,q-1}^{\varepsilon} \frac{\varepsilon^{p+1}(\ln \varepsilon)^q}{p+1}$
- (c) En déduire que l'on a $\forall p \in \mathbb{N}, \forall q \in \mathbb{N}^*, \ I_{p,q} = -\frac{q}{p+1}I_{p,q-1}$
- (d) En déduire une expression de $I_{p,q}$ en fonction des entiers p et q.
- 5. Soit r un entier naturel non nul et f une fonction développable en série entière sur]-1,1[.

On suppose que pour tout x dans]-1,1[, $f(x)=\sum_{n=0}^{+\infty}a_nx^n$ et que $\sum_{n\geqslant 0}\frac{a_n}{(n+1)^r}$ converge absolument. Montrer que

$$\int_0^1 (\ln t)^{r-1} f(t) dt = (-1)^{r-1} (r-1)! \sum_{n=0}^{+\infty} \frac{a_n}{(n+1)^r}$$

6. (a) Déduire des questions précédentes que pour tout entier $r \ge 2$,

$$S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r} = \frac{(-1)^r}{(r-1)!} \int_0^1 (\ln t)^{r-1} \frac{\ln(1-t)}{1-t} dt$$

(b) Établir que l'on a alors $S_r = \frac{(-1)^r}{2(r-2)!} \int_0^1 \frac{(\ln t)^{r-2} (\ln (1-t))^2}{t} dt$

(c) En déduire que $S_2 = \frac{1}{2} \int_0^1 \frac{(\ln(t))^2}{1-t} dt$. puis trouver la valeur de S_2 en fonction de $\zeta(3)$

Partie II: La fonction β

7. La fonction Γ

- (a) Soit x>0. Montrer que $t\longmapsto t^{x-1}e^{-t}$ est intégrable sur $]0,+\infty[.$ Dans toute la suite, on notera Γ la fonction définie sur \mathbb{R}_+^* par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$. On admettra que Γ est de classe \mathcal{C}^{∞} sur son ensemble de définition, à valeurs strictement positives et qu'elle vérifie, pour tout réel x > 0, la relation $\Gamma(x+1) = x\Gamma(x)$
- (b) Soit x et α deux réels strictement positifs. Justifier l'existence de $\int_{0}^{+\infty} t^{x-1}e^{-\alpha t} dt$ et donner sa valeur en fonction de $\Gamma(x)$ et α^x
- 8. La fonction β et son équation fonctionnelle

Pour
$$(x,y) \in \mathbb{R}^{*2}_+$$
, on définit $\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$

- (a) Justifier l'existence de $\beta(x,y)$ pour x>0 et y>0
- (b) Montrer que pour tous réels x > 0 et y > 0, $\beta(x, y) = \beta(y, x)$
- (c) Soient x > 0 et y > 0. Établir que $\beta(x+1,y) = \frac{x}{x+y}\beta(x,y)$
- (d) En déduire que pour $x > 0, y > 0, \beta(x+1,y+1) = \frac{xy}{(x+y)(x+y+1)}\beta(x,y)$

Partie III: Relation entre la fonction β et la fonction Γ

On veut montrer que pour tout x > 0 et y > 0, $\beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ relation qui sera notée (\mathcal{R})

- 9. Expliquer pourquoi il suffit de montrer la relation (\mathcal{R}) pour x > 1 et y > 1. Dans toute la suite de cette question on suppose x > 1 et y > 1
- 10. Montrer que $\beta(x,y) = \int_0^{+\infty} \frac{t^{x-1}}{(1+t)^{x+y}} dt$.

On pourra utiliser le changement de variable $t = \frac{u}{1+u}$

11. On note $F_{x,y}$ la primitive sur \mathbb{R}_+^* de $t\longmapsto e^{-t}t^{x+y-1}$ qui s'annule en 0. Montrer que

$$\forall t \in \mathbb{R}_+, \quad F_{x,y}(t) \leqslant \Gamma(x+y)$$

12. Soit $G(a) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y} \left((1+u)a \right) du$. Montrer que G est définie et continue sur \mathbb{R}_+

- 13. Montrer que $\lim_{a \to +\infty} G(a) = \Gamma(x+y)\beta(x,y)$
- 14. Montrer que G est de classe \mathcal{C}^1 sur \mathbb{R}^*_{\perp}
- 15. Exprimer pour a > 0, G'(a) en fonction de $\Gamma(x)$, e^{-a} et a^{y-1}
- 16. Déduire de ce qui précède la relation (\mathcal{R})

Partie IV: La fonction digamma

On définit la fonction ψ (appelée fonction digamma) sur \mathbb{R}_+^* comme étant la dérivée de $x \mapsto \ln(\Gamma(x))$. Pour tout réel $x > 0, \ \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$

- 17. Montrer que pour tout réel x > 0, $\psi(x+1) \psi(x) = \frac{1}{x}$
- 18. Sens de variation de ψ
 - (a) À partir de la relation (\mathcal{R}) , justifier que $\frac{\partial \beta}{\partial x}$ est définie sur \mathbb{R}_+^{*2} . Établir que pour tous réels x > 0 et y > 0, $\frac{\partial \beta}{\partial x}(x,y) = \beta(x,y) (\psi(y) - \psi(x+y))$
 - (b) Soit x>0 fixé. Quel est le sens de variation sur \mathbb{R}_+^* de la fonction $y\longmapsto \beta(x,y)$
 - (c) Montrer que la fonction ψ est croissante sur \mathbb{R}_{+}^{*}
- 19. Une expression de ψ comme somme d'une série de fonctions
 - (a) Montrer que pour tout réel x > -1 et pour tout entier $n \ge 1$

$$\psi(1+x) - \psi(1) = \psi(n+x+1) - \psi(n+1) + \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x}\right)$$

(b) Soit n un entier ≥ 2 et x un réel x > -1. On pose p = E(x) + 1, où E(x) désigne la partie entière de x. Prouver que

$$0 \le \psi(n+x+1) - \psi(n) \le H_{n+p} - H_{n-1} \le \frac{p+1}{n}$$

(c) En déduire que, pour tout réel x > -1

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)$$

20. Un développement en série entière

On note g la fonction définie sur $[-1, +\infty[$ par

$$g(x) = \sum_{n=2}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right)$$

- (a) Montrer que g est de classe C^{∞} sur $[-1, +\infty[$ Préciser notamment la valeur de $g^{(k)}(0)$ en fonction de $\zeta(k+1)$ pour tout entier $k \ge 1$
- (b) Montrer que pour tout entier n et pour tout x dans]-1,1[

$$\left| g(x) - \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} x^{k} \right| \le \zeta(2) |x|^{n+1}$$

Montrer que g est développable en série entière sur]-1,1[

(c) Prouver que pour tout x dans]-1,1[

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} (-1)^{n+1} \zeta(n+1)x^n$$

Partie V: Une expression de S_r en fonction de valeurs entières de ζ

Dans cette partie, on note B la fonction définie sur \mathbb{R}_+^* par $B(x) = \frac{\partial^2 \beta}{\partial x^2}(x,1)$

21. Une relation entre B et ψ

Justifier que B est définie sur \mathbb{R}_+^* .

À l'aide de la relation trouvée au 18a établir que pour tout réel x>0

$$xB(x) = (\psi(1+x) - \psi(1))^2 - (\psi'(1) - \psi'(1+x))$$

En déduire que B est de \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*}

22. Expression de S_r à l'aide de la fonction B

- (a) Montrer que pour tout réel x>0, $B(x)=\int_0^1 \left(\ln(1-t)\right)^2 t^{x-1} dt$
- (b) Donner sans justification une expression, à l'aide d'une intégrale, de $B^{(p)}(x)$, pour tout entier naturel p et tout réel x > 0
- (c) En déduire que pour tout entier $r\geqslant 2,$ $S_r=\frac{(-1)^r}{2(r-2)!}\lim_{x\to 0^+}B^{(r-2)}(x)$
- (d) Retrouver alors la valeur de S_2 déjà calculée au 6c
- 23. Soit φ la fonction définie $]-1,+\infty[$ par $\varphi(x)=(\psi(1+x)-\psi(1))^2-(\psi'(1)-\psi'(1+x))$
 - (a) Montrer que φ est \mathcal{C}^{∞} sur son ensemble de définition et donner pour tout entier naturel $n \geqslant 2$ la valeur de $\varphi^{(n)}(0)$ en fonction des dérivées successives de ψ au point 1.
 - (b) Conclure que, pour tout entier $r \ge 3$,

$$2S_r = r\zeta(r+1) - \sum_{k=1}^{r-2} \zeta(k+1)\zeta(r-k)$$

Partie I: Représentation intégrale de sommes de séries

1. (a) Pour $n \ge 2$, on a

$$a_n = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) = -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

Soit $a_n \sim -\frac{1}{2n^2}$, la série $\sum_{n \geq 2} a_n$ est convergente

- (b) La suite de terme général $S_n = \sum_{k=2}^n a_k$ est convergente. Or pour tout $n \ge 2$, $S_n + 1 = H_n \ln n$, donc, en posant $A = \lim_{n \to +\infty} S_n + 1$, on obtient $H_n \ln n = A + o(1)$. Ainsi $H_n = \ln n + A + o(1)$, puis $H_n \sim \ln n$
- 2. Soit $r \in \mathbb{N}$. On a $\frac{H_n}{(n+1)^r} \sim \frac{\ln n}{n^r}$, on distingue deux cas
 - Si $r \leq 1$, alors $\frac{1}{n} = o\left(\frac{\ln n}{n^r}\right)$, donc la série diverge
 - Si $r \geqslant 2$, on a $\frac{\ln n}{n^2} = o\left(\frac{1}{\sqrt{n^3}}\right)$, donc la série converge, par le critère de Riemann

Bref la série considérée converge si, et seulement, si $r \geqslant 2$

3. (a) Les fonctions considérées sont développables en série entière avec

$$\forall t \in [-1, 1[, \ln(1-t)] = -\sum_{n=1}^{+\infty} \frac{t^n}{n}$$

et

$$\forall t \in]-1,1[, \frac{1}{1-t} = \sum_{n=0}^{+\infty} t^n$$

Les deux séries $\sum_{n\geqslant 1}\frac{t^n}{n}$ et $\sum_{n\geqslant 0}t^n$ ont même rayon de convergence R=1

(b) Le produit de deux fonctions développables en série entière est développable en série entière dont le développement est fourni par le produit de Cauchy

$$\forall t \in]-1, 1[, -\frac{\ln(1-t)}{1-t} = \sum_{n=1}^{+\infty} H_n t^n$$

- 4. (a) L'application $t \mapsto t^p (\ln t)^q$ est continue sur]0,1], avec $t^p (\ln t)^q = o\left(\frac{1}{\sqrt{t}}\right)$. Donc l'application considérée est intégrable sur]0,1], en particulier l'intégrale $I_{p,q}$ existe.
 - (b) Les deux applications $t \mapsto \frac{t^{p+1}}{p+1}$ et $t \mapsto (\ln t)^q$ sont de classe \mathcal{C}^1 sur $[\varepsilon, 1]$, alors par une intégration par parties, on obtient

$$I_{p,q}^{\varepsilon} = \int_{0}^{1} \left(\frac{t^{p+1}}{p+1}\right)' (\ln t)^{q} dt$$

$$= \left[\frac{t^{p+1}}{p+1} (\ln t)^{q}\right]_{\varepsilon}^{1} - \frac{q}{p+1} \int_{0}^{1} t^{p} (\ln t)^{q-1} dt$$

$$= -\frac{q}{p+1} I_{p,q-1}^{\varepsilon} - \frac{\varepsilon^{p+1} (\ln \varepsilon)^{q}}{p+1}$$

(c) Les deux intégrales $I_{p,q-1}$ et $I_{p,q}$ sont convergentes, donc les fonctions $\varepsilon \in]0,1[\mapsto I_{p,q-1}^{\varepsilon}$ et $\varepsilon \in]0,1[\mapsto I_{p,q-1}^{\varepsilon}$ et $I_{p,q}^{\varepsilon}$ admettent des limites respectives $I_{p,q-1}$ et $I_{p,q}$ en $I_{p,q}^{\varepsilon}$ en $I_{p,q}^{\varepsilon}$ en $I_{p,q-1}^{\varepsilon}$ et $I_{p,q-1}^{\varepsilon}$ et

- (d) Soit $p \in \mathbb{N}$. On montre par récurrence $q \in \mathbb{N}$ que $I_{p,q} = \frac{(-1)^q q!}{(p+1)^{q+1}}$
 - Pour q = 0, on a bien $I_{p,0} = \int_0^1 t^p dt = \frac{1}{p+1}$
 - Soit $q \in \mathbb{N}$, d'après la question précédente on a

$$I_{p,q+1} = -\frac{q+1}{p+1}I_{p,q} \stackrel{(HR)}{=} -\frac{q+1}{p+1}\frac{(-1)^q q!}{(p+1)^{q+1}} = \frac{(-1)^{q+1}(q+1)!}{(p+1)^{q+2}}$$

- 5. Il s'agit d'une application directe du théorème de la convergence dominée pour les séries :
 - Pour $n \in \mathbb{N}$, l'application $f_n: t \longmapsto a_n t^n \left(\ln t\right)^{r-1}$ est continue et intégrable sur]0,1[
 - $\sum_{n\geqslant 0} f_n$ converge simplement sur]0,1[de somme $t\longmapsto (\ln t)^{r-1}f(t)$ qui est continue sur]0,1[, car f est développable en série entière
 - Pour tout $n \in \mathbb{N}$, $\int_0^1 |f_n(t)| dt = |a_n| \int_0^1 t^n \left| \ln(t)^{r-1} \right| dt = \frac{|a_n|}{(n+1)^r} (r-1)!$. Par hypothèse $\sum_{n \geqslant 0} \frac{a_n}{(n+1)^r}$ converge absolument, donc la série $\sum_{n \geqslant 0} \int_0^1 |f_n(t)| dt$ converge

D'après le théorème de convergence dominée on peut intervertir somme et intégrale. Ainsi

$$\int_0^1 (\ln t)^{r-1} f(t) dt = \sum_{n=0}^{+\infty} \int_0^1 f_n(t) dt = \sum_{n=0}^{+\infty} a_n I_{n,r-1}$$
$$= (-1)^{r-1} (r-1)! \sum_{n=0}^{+\infty} \frac{a_n}{(n+1)^r}$$

6. (a) L'application $f: t \mapsto -\frac{\ln(1-t)}{1-t}$, vue en question 3, est développable en série entière sur]-1,1[avec $f(x) = \sum_{n=1}^{+\infty} H_n x^n$ pour tout $x \in]-1,1[$. En outre, d'après la question 2, la série à termes positifs $\sum_{n\geqslant 1} \frac{H_n}{(n+1)^r}$ converge puisque $r\geqslant 2$. On applique donc le résultat de la question 5 et on obtient la formule

$$S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r} = \frac{(-1)^r}{(r-1)!} \int_0^1 (\ln t)^{r-1} \frac{\ln(1-t)}{1-t} dt$$

(b) Les fonctions $t \mapsto (\ln t)^{r-1}$ et $t \mapsto \frac{-(\ln(1-t))^2}{2}$ sont de classe \mathcal{C}^1 sur]0,1[. Avec $-(\ln t)^{r-1} (\ln(1-t))^2 \underset{0+}{\sim} t^2 (\ln t)^{r-1} \xrightarrow[t\to 0^+]{} 0$ $-(\ln t)^{r-1} (\ln(1-t))^2 \underset{1-}{\sim} (t-1)^{r-1} (\ln(1-t))^2 \xrightarrow[t\to 1^-]{} 0$

Donc, par intégration par parties

$$\int_0^1 (\ln t)^{r-1} \frac{\ln(1-t)}{1-t} dt = \int_0^1 (\ln t)^{r-1} \left(\frac{\ln(1-t)^2}{-2}\right)' dt$$

$$= \underbrace{\left[(\ln t)^{r-1} \left(\frac{\ln(1-t)^2}{-2}\right)\right]_0^1}_{=0} - \int_0^1 \left((\ln t)^{r-1}\right)' \frac{\ln(1-t)^2}{-2} dt$$

$$= \frac{r-1}{2} \int_0^1 \frac{(\ln t)^{r-2} \ln(1-t)^2}{t} dt$$

Ainsi
$$S_r = \frac{(-1)^r}{2(r-2)!} \int_0^1 \frac{(\ln t)^{r-2} (\ln(1-t))^2}{t} dt$$

(c) Pour r = 2, on obtient $S_2 = \frac{1}{2} \int_0^1 \frac{(\ln(1-t))^2}{t} dt$. Via le changement de variable t = 1 - u ($u \mapsto 1 - u$ est une bijection de \mathcal{C}^1 de [0,1[sur lui-même), on obtient

$$S_2 = \frac{1}{2} \int_0^1 \frac{(\ln(u))^2}{1-u} \, \mathrm{d}u$$

On applique le résultat de la question 5, avec $t \mapsto \frac{1}{1-t}$, les a_n valent 1 et r=3. Alors

$$S_2 = \frac{1}{2} \int_0^1 \frac{(\ln(u))^2}{1 - u} du = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^3} = \zeta(3)$$

Partie II: La fonction β

7. La fonction Γ

- (a) Soit x > 0. On a $t \mapsto t^{x-1}e^{-t}$ est continue sur $]0, +\infty[$
 - Au voisinage de 0 : On a $t^{x-1}e^{-t} \sim t^{x-1} = \frac{1}{t^{1-x}}$ donc intégrable en 0 car 1-x < 1.
 - Au voisinage de $+\infty$: On a $t^{x-1}e^{-t} = o\left(\frac{1}{t^2}\right)$ donc intégrable en $+\infty$.

On déduit que $t \mapsto t^{x-1}e^{-t}$ est intégrable sur $]0, +\infty[$

(b) L'application $u \mapsto \frac{u}{\alpha}$ est une bijection de classe \mathcal{C}^1 de \mathbb{R}_+^* vers \mathbb{R}_+^* , donc les deux intégrales $\int_0^{+\infty} t^{x-1} e^{-\alpha t} dt$ et $\int_0^{+\infty} \frac{u^{x-1}}{\alpha^x} e^{-u} du$ sont de même nature et puisque la deuxième converge, alors la première l'est aussi et on a l'égalité des valeurs, c'est-à-dire

$$\int_0^{+\infty} t^{x-1} e^{-\alpha t} \, \mathrm{d}t = \frac{\Gamma(x)}{\alpha^x}$$

8. La fonction β et son équation fonctionnelle

(a) La fonction $t \mapsto t^{x-1}(1-t)^{y-1}$ est continue sur]0,1[.

En 0^+ : On a $t^{x-1}(1-t)^{y-1} \sim t^{x-1}$, elle est intégrable en 0^+ car 1-x<1

En 1^- : On a $t^{x-1}(1-t)^{y-1} \sim (1-t)^{y-1}$, elle est intégrable en 1^- car 1 - y < 1

Elle est donc intégrable sur [0,1[, en particulier $\beta(x,y)$ existe

- (b) Égalité obtenue avec le changement de variable affine $t \mapsto u = 1 t$, qui est une bijection de \mathcal{C}^1 de]0,1[sur lui-même.
- (c) Les fonctions $t \mapsto t^x$ et $t \mapsto \frac{-(1-t)^y}{y}$ sont de classe \mathcal{C}^1 sur]0,1[. Avec $t^x(1-t)^y \xrightarrow[t \to 1^-]{} 0$. Donc, par intégration par parties

$$\beta(x+1,y) = \int_0^1 t^x \left(\frac{(1-t)^y}{-y}\right)' dt$$

$$= \underbrace{\left[t^x \left(\frac{(1-t)^y}{-y}\right)\right]_0^1}_{=0} - \int_0^1 (t^x)' \frac{(1-t)^y}{-y} dt$$

$$= \frac{x}{y} \int_0^1 t^{x-1} (1-t)^y dt = \frac{x}{y} \beta(x,y+1)$$

Soit $\beta(x, y + 1) = \frac{y}{r}\beta(x + 1, y)$. D'autre part

$$\begin{split} \beta(x+1,y) + \beta(x,y+1) &= \int_0^1 t^x (1-t)^{y-1} \, \mathrm{d}t + \int_0^1 t^{x-1} (1-t)^y \, \mathrm{d}t \\ &= \int_0^1 t . t^{x-1} (1-t)^{y-1} \, \mathrm{d}t + \int_0^1 (1-t) . t^{x-1} (1-t)^{y-1} \, \mathrm{d}t \\ &= \int_0^1 t^{x-1} (1-t)^{y-1} \, \mathrm{d}t = \beta(x,y) \end{split}$$

Il vient donc
$$\beta(x,y) = \left(1 + \frac{y}{x}\right)\beta(x+1,y) = \frac{x+y}{x}\beta(x+1,y).$$
 Enfin

$$\beta(x+1,y) = \frac{x}{x+y}\beta(x,y)$$

(d) D'après la formule précédente $\beta(x+1,y+1) = \frac{x}{x+y+1}\beta(x,y+1)$ et par symétrie $\beta(x,y+1) = \beta(y+1,x) = \frac{y}{y+x}\beta(y,x)$, on remplace la dernière formule dans la première on obtient

$$\beta(x+1, y+1) = \frac{xy}{(x+y)(x+y+1)}\beta(x, y)$$

Partie III: Relation entre la fonction β et la fonction Γ

9. On suppose que $\forall x, y > 1, \ \beta(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}$

Soit x, y > 0 , on a

$$\beta(x,y) = \frac{(x+y)(x+y+1)}{xy}\beta(x+1,y+1)$$

Comme x + 1 et y + 1 sont strictement supérieurs à 1

$$\beta(x+1,y+1) = \frac{\Gamma(x+1)\Gamma(y+1)}{\Gamma(x+y+2)} = \frac{x\Gamma(x)y\Gamma(y)}{(x+y+1)(x+y)\Gamma(x+y)}$$

Après substitution et simplification : $\beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$

10. $u\mapsto t=\frac{u}{1+u}$ est une bijection de classe \mathcal{C}^1 de]0, $+\infty$ [sur]0, 1[. Donc

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

$$= \int_0^{+\infty} \left(\frac{u}{1+u}\right)^{x-1} \left(\frac{1}{u+1}\right)^{y-1} \frac{1}{(u+1)^2} du$$

$$= \int_0^{+\infty} \frac{u^{x-1}}{(u+1)^{x+y}} du$$

- 11. $F_{x,y}$ est une fonction croissante et $\forall t \in \mathbb{R}_+, F_{x,y}(t) = \int_0^t e^{-u} u^{x+y-1} du \leqslant \Gamma(x+y).$
- 12. L'application $\varphi:(a,u)\longmapsto \frac{u^{x-1}}{(1+u)^{x+y}}F_{x,y}\left((1+u)a\right)$ est continue sur \mathbb{R}^2_+ et vérifie

$$\forall (a, u) \in \mathbb{R}^2_+, \quad |\varphi(a, u)| \leqslant \frac{u^{x-1}}{(1+u)^{x+y}} \Gamma(x+y)$$

Où $u \longmapsto \frac{u^{x-1}}{(1+u)^{x+y}}$ est intégrable sur \mathbb{R}_+ . D'après le théorème de convergence dominée G est définie et continue sur \mathbb{R}_+

13. Soit (a_n) une suite de réels positifs de limite $+\infty$.

Pour $n \in \mathbb{N}$, on définit $f_n : u \in \mathbb{R}_+ \longmapsto \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y} ((1+u)a_n)$ qui est continue sur \mathbb{R}_+ . La suite (f_n) converge simplement vers $f : u \longmapsto \frac{u^{x-1}}{(1+u)^{x+y}} \Gamma(x+y)$ qui est continue sur \mathbb{R}_+ et

$$\forall u \in \mathbb{R}_+, \quad |f_n(u)| \leqslant \frac{u^{x-1}}{(1+u)^{x+y}} \Gamma(x+y)$$

Où $u \longmapsto \frac{u^{x-1}}{(1+u)^{x+y}}$ est intégrable sur \mathbb{R}_+ . D'après le théorème de convergence dominée

$$\lim_{n \to +\infty} G(a_n) = \lim_{n \to +\infty} \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y} ((1+u)a_n) du$$

$$= \int_0^{+\infty} \lim_{n \to +\infty} \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y} ((1+u)a_n) du$$

$$= \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} \Gamma(x+y) du$$

$$= \beta(x,y) \Gamma(x+y)$$

Ainsi $\lim_{n\to+\infty} G(a_n) = \beta(x,y)\Gamma(x+y)$. Ceci vrai pour toute suite (a_n) de réels positifs de limite $+\infty$, donc par la caractérisation séquentielle de la limite G admet $\beta(x,y)\Gamma(x+y)$ limite en $+\infty$

- 14. Soit $[c,d] \subset \mathbb{R}_+^*$
 - Pour tout $a \in [c, d]$, l'application $u \longmapsto \varphi(a, u) = \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y} ((1+u)a)$ est continue et intégrable sur \mathbb{R}_+
 - φ admet une dérivée partielle par rapport à a

$$\frac{\partial \varphi}{\partial a}: (a, u) \longmapsto a^{x+y-1}u^{x-1}e^{-(1+u)a}$$

qui est continue sur $[c,d] \times \mathbb{R}_+$

— Pour tout $(a, u) \in [c, d] \times \mathbb{R}_+$

$$\left| \frac{\partial \varphi}{\partial a}(a, u) \right| \le d^{x+y-1}u^{x-1}e^{-(1+u)c}$$

où $u \longmapsto u^{x-1}e^{-(1+u)c}$ est intégrable sur \mathbb{R}_+

D'après le théorème de convergence dominée la fonction G est de classe C^1 sur [c,d]. En déduire que G est de classe C^1 sur \mathbb{R}_+^* puisque elle est de classe C^1 sur [c,d] inclus dans \mathbb{R}_+^*

15. Soit a > 0. D'après la formule de Leibniz

$$G'(a) = \int_0^{+\infty} a^{x+y-1} u^{x-1} e^{-(1+u)a} du$$
$$= a^{x+y-1} e^{-a} \int_0^{+\infty} u^{x-1} e^{-ua} du$$
$$= a^{x+y-1} e^{-a} \frac{\Gamma(x)}{a^x} = a^{y-1} e^{-a} \Gamma(x)$$

16. Soit $\varepsilon, a \in \mathbb{R}_+^*$ tels que $\varepsilon \leqslant a$, alors

$$G(a) - G(\varepsilon) = \Gamma(x) \int_{\varepsilon}^{a} t^{y-1} e^{-t} dt$$

Par continuité de G et de sa nullité en 0 on a $G(\varepsilon) \xrightarrow[\varepsilon \to 0^+]{} G(0) = 0$. D'autre part, $G(a) \xrightarrow[a \to +\infty]{} \beta(x,y)\Gamma(x,y)$. Ainsi

$$\beta(x,y)\Gamma(x,y) = \Gamma(x) \int_0^{+\infty} t^{y-1} e^{-t} dt = \Gamma(x)\Gamma(y)$$

D'où la relation (\mathcal{R})

Partie IV: La fonction digamma

17. Soit $\Psi : x \in \mathbb{R}_+^* \longmapsto \ln(\Gamma(x))$. Pour x > 0, on a

$$\Psi(x+1) = \ln \left(\Gamma(x+1) \right) = \ln \left(x \Gamma(x) \right) = \Psi(x) + \ln(x)$$

Par dérivation $\psi(x+1) = \psi(x) + \frac{1}{x}$. Soit $\psi(x+1) - \psi(x) = \frac{1}{x}$

18. Sens de variation de ψ

(a) Par les théorèmes généraux $\beta:(x,y)\in\mathbb{R}_+^{*2}\longmapsto\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ admet une dérivée partielle par rapport à y, donc $\frac{\partial\beta}{\partial y}$ est définie sur \mathbb{R}_+^{*2} .

$$\begin{array}{lcl} \frac{\partial \beta}{\partial y}(x,y) & = & \frac{\Gamma(x)\Gamma'(y)}{\Gamma(x+y)} - \frac{\Gamma(x)\Gamma(y)\Gamma'(x+y)}{\Gamma(x+y)^2} \\ & = & \frac{\Gamma'(y)}{\Gamma(y)}\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} - \frac{\Gamma'(x+y)}{\Gamma(x+y)}\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \\ & = & \psi(y)\beta(x,y) - \psi(x+y)\beta(x,y) \\ & = & \beta(x,y)\left(\psi(y) - \psi(x+y)\right) \end{array}$$

- (b) Soit y, y' > 0 tels que y < y', pour tout $t \in]0,1[$ l'application $z \in \mathbb{R}_+^* \longmapsto (1-t)^z$ est strictement décroissante, donc $(1-t)^{y'} \leqslant (1-t)^y$, en multipliant par t^{x-1} puis en intégrant : $\beta(x,y') \leqslant \beta(x,y)$. Ainsi l'application considérée est décroissante
- (c) Pour x, y > 0, le signe de $\psi(y) \psi(x + y)$ est celui de $\frac{\partial \beta}{\partial x}(x, y)$ qui est négative, donc ψ est croissante
- 19. Une expression de ψ comme somme d'une série de fonctions
 - (a) Soit $k \in [1, n]$, on a $\psi(k+1) \psi(k) = \frac{1}{k}$ et $\psi(k+x+1) \psi(k+x) = \frac{1}{x+k}$. En sommant de k allant de 1 à n, alors par télescopage

$$\psi(n+1) - \psi(1) = \sum_{k=1}^{n} \frac{1}{k}$$
 et $\psi(x+n+1) - \psi(x+1) = \sum_{k=1}^{n} \frac{1}{x+k}$

Soit
$$\psi(1) = \psi(n+1) - \sum_{k=1}^{n} \frac{1}{k}$$
 et $\psi(x+1) = \psi(n+x+1) - \sum_{k=1}^{n} \frac{1}{x+k}$. Enfin, par différence

$$\psi(1+x) - \psi(1) = \psi(n+x+1) - \psi(n+1) + \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x}\right)$$

(b) L'inégalité de gauche est assurée par la croissance de ψ . En outre, $n+x+1\leqslant n+p+1$, donc

$$\psi(n+x+1) - \psi(n) \leqslant \psi(n+p+1) - \psi(n) = \sum_{k=n}^{n+p} \frac{1}{k} = H_{n+p} - H_{n-1}$$

Pour tout $k \in [n, n+p], \frac{1}{k} \leqslant \frac{1}{n}$, donc

$$H_{n+p} - H_{n-1} = \sum_{k=-p}^{n+p} \frac{1}{k} \leqslant \frac{p+1}{n}$$

Ainsi

$$0 \leqslant \psi(n+x+1) - \psi(n) \leqslant H_{n+p} - H_{n-1} \leqslant \frac{p+1}{n}$$

(c) Soit x > -1. D'après les encadrements précédents $\psi(n+x+1) - \psi(n) \xrightarrow[n \to +\infty]{} 0$. Alors de l'égalité

$$\psi(1+x) - \psi(1) = \psi(n+x+1) - \psi(n+1) + \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x}\right)$$

on tire la convergence de la série $\sum_{n\geqslant 1}\left(\frac{1}{k}-\frac{1}{n+x}\right)$ ainsi sa somme $\psi(1+x)-\psi(1)$. Donc

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)$$

20. Un développement en série entière

- (a) Pour $n \ge 2$, on pose $u_n : x \in [-1, +\infty[\longrightarrow \frac{1}{n} \frac{1}{n+x}]]$
 - u_n est de classe \mathcal{C}^{∞} sur $[-1, +\infty]$ et

$$\forall x \in [-1, +\infty[, u_n^{(k)}(x) = \frac{(-1)^{k+1}k!}{(n+x)^{k+1}}$$

- La série $\sum_{n\geq 2} u_n$ converge simplement de somme g
- Pour tout segment $[a,b] \subset [-1,+\infty[$ et $k \geqslant 1,$ on a $\forall x \in [a,b]:$

$$\left| u_n^{(k)}(x) \right| = \frac{k!}{(n+x)^{k+1}} \leqslant \frac{k!}{(n+a)^{k+1}} \sim \frac{k!}{n^{k+1}}$$

Donc g est de classe C^{∞} sur $[-1, +\infty[$ et

$$\forall k \in \mathbb{N}^*, \quad \forall x \in [-1, +\infty[\,, \quad g^{(k)}(x) = \sum_{n=2}^{+\infty} \frac{(-1)^{k+1} k!}{(n+x)^{k+1}}$$

En particulier $\forall k \in \mathbb{N}^*$, $g^{(k)}(0) = \sum_{n=2}^{+\infty} \frac{(-1)^{k+1} k!}{n^{k+1}} = (-1)^{k+1} k! \left(\zeta(k+1) - 1\right)$

(b) g est de \mathcal{C}^{∞} sur $]-1,1[\subset [-1,+\infty[$ et $\forall t\in]-1,1[$,

$$\left| g^{(n+1)}(t) \right| = \left| \sum_{k=2}^{+\infty} \frac{(-1)^{n+2}(n+1)!}{(k+x)^{n+2}} \right| \le (n+1)! \sum_{k=2}^{+\infty} \frac{1}{(k-1)^{n+2}} \le (n+1)! \zeta(2)$$

L'inégalité de Taylor Lagrange fournit donc

$$\left| g(x) - \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} x^{k} \right| \leqslant \zeta(2) |x|^{n+1}$$

Pour tout $x \in]-1, 1[, |x|^{n+1} \xrightarrow[n \to +\infty]{} 0$, donc la série de Taylor $\sum_{n\geqslant 0} \frac{g^{(n)}(0)}{n!} x^n$ converge de somme g. Ceci montre que g est développable en série entière sur]-1, 1[

(c) Soit x dans]-1,1[, on écrit

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right) = \psi(1) + 1 - \frac{1}{1+x} + g(x)$$

D'une part $1 - \frac{1}{1+x} = \sum_{n=1}^{+\infty} (-1)^{n+1} x^n$ et d'autre part, vu que g(0) = 0,

$$g(x) = \sum_{n=1}^{+\infty} \frac{g^{(n)}(0)}{n!} x^n = \sum_{n=1}^{+\infty} (-1)^{n+1} (\zeta(n+1) - 1) x^n$$

Ainsi l'égalité

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} (-1)^{n+1} \zeta(n+1) x^n$$

Partie V: Une expression de S_r en fonction de valeurs entières de ζ

21. Une relation entre B et ψ

 β admet une dérivée partielle en tout point (x,y) de \mathbb{R}_+^{*2} et

$$\frac{\partial \beta}{\partial y}(x,y) = \beta(x,y) (\psi(y) - \psi(x+y))$$

Une autre fois par les théorèmes généraux $\frac{\partial \beta}{\partial y}$ admet une dérivée partielle par rapport à y en tout point (x,y) et

$$\frac{\partial^2 \beta}{\partial y^2}(x,y) = \frac{\partial \beta}{\partial y}(x,y) (\psi(y) - \psi(x+y)) + \beta(x,y) (\psi'(y) - \psi'(x+y))$$
$$= \beta(x,y) (\psi(y) - \psi(x+y))^2 + \beta(x,y) (\psi'(y) - \psi'(x+y))$$

En particulier

$$\frac{\partial^{2} \beta}{\partial y^{2}}(x,1) = \beta(x,1) \left((\psi(1) - \psi(x+1))^{2} + (\psi'(1) - \psi'(x+1)) \right)$$

Avec $\beta(x,1) = \int_0^1 t^{x-1} dt = \frac{1}{x}$, on obtient

$$xB(x) = (\psi(1+x) - \psi(1))^2 + (\psi'(1) - \psi'(1+x))$$

Ou encore $B(x) = \frac{(\psi(1+x) - \psi(1))^2 + (\psi'(1) - \psi'(1+x))}{x}$, donc par les théorèmes généraux B est de classe \mathcal{C}^{∞} sur \mathbb{R}^*_{\perp}

22. Expression de S_r à l'aide de la fonction B

(a) Soit x > 0, on considère la fonction $f: (y,t) \in \mathbb{R}_+^* \times]0,1[\mapsto t^{x-1}(1-t)^{y-1}$. Une telle fonction admet des dérivées partielles d'ordre 1 et d'ordre 2 par rapport à y, avec

$$\frac{\partial f}{\partial y}(y,t) = \ln(1-t)t^{x-1}(1-t)^{y-1} \text{ et } \frac{\partial^2 f}{\partial y^2}(y,t) = \left(\ln(1-t)\right)^2 t^{x-1}(1-t)^{y-1}$$

telles que

- Pour tout $y \in \mathbb{R}_+^*$, les applications $t \mapsto t^{x-1}(1-t)^{y-1}$ et $t \mapsto \ln(1-t)t^{x-1}(1-t)^{y-1}$ sont continues et intégrables sur]0,1[
- $\frac{\partial^2 f}{\partial u^2} : (y,t) \in \mathbb{R}_+^* \times]0,1[\longmapsto \ln^2 (1-t)t^{x-1}(1-t)^{y-1} \text{ est continue}$
- Soit $[a, b] \subset \mathbb{R}_+^*$, pour tout $(y, t) \in [a, b] \times]0, 1[$

$$\left| \frac{\partial^2 f}{\partial y^2}(y,t) \right| \leqslant \left(\ln(1-t) \right)^2 t^{x-1} (1-t)^{a-1}$$

L'application $\varphi: t \in]0,1[\longmapsto (\ln(1-t))^2 t^{x-1} (1-t)^{a-1}$ est continue positive

— En 0, on a $\varphi(t) \sim t^{x+1}$, donc elle est prolongeable par continuité en 0

— En 1⁻, on a
$$\varphi(t) = \circ \left(\frac{1}{(1-t)^{\delta}}\right)$$
, où $\delta \in]1-a,1[$

Donc elle est intégrable, ainsi par le théorème de dérivation sous signe intégrale,

$$\frac{\partial^2 \beta}{\partial y^2}(x,y) = \int_0^1 (\ln(1-t))^2 t^{x-1} (1-t)^{y-1} dt$$

En particulier

$$B(x) = \frac{\partial^2 \beta}{\partial u^2}(x, 1) = \int_0^1 (\ln(1 - t))^2 t^{x - 1} dt$$

(b) Pour tout $p \in \mathbb{N}$ et $x \in \mathbb{R}_+^*$

$$B^{(p)}(x) = \int_0^1 (\ln(t))^p (\ln(1-t))^2 t^{x-1} dt$$

(c) Il suffit de démontrer, pour tout $r \ge 2$, que $\lim_{x \to 0^+} B^{(r-2)}(x) = \int_0^1 \frac{(\ln(t))^{r-2} (\ln(1-t))^2}{t} dt$. Soit (x_n) une suite de réels positifs telle que $x_n \xrightarrow[n \to +\infty]{} 0$.

Pour $n \in \mathbb{N}$, on pose $f_n : t \longmapsto (\ln(t))^p (\ln(1-t))^2 t^{x_n-1}$.

La suite (f_n) , de fonctions continues sur]0,1[, converge simplement vers $t \mapsto \frac{(\ln(t))^{r-2}(\ln(1-t))^2}{t}$ qui est continue sur]0,1[.

Pour tout $n \in \mathbb{N}$

$$|f_n(t)| = |\ln(t)|^p (\ln(1-t))^2 t^{x_n-1} \le \frac{|\ln(t)|^{r-2} (\ln(1-t))^2}{t}$$

L'application $\varphi: t \longmapsto \frac{\left|\ln(t)\right|^{r-2}\left(\ln(1-t)\right)^2}{t}$ est continue positive sur]0,1[

- En 0, on a $\varphi(t) \sim t \left| \ln(t) \right|^{r-2} \xrightarrow[t \to 0^+]{t} 0$, donc elle est prolongeable par continuité en 0
- En 1^- , on a:

$$\varphi(t) \underset{1^{-}}{\sim} (1-t)^{r-2} \ln(1-t)^2 = \circ \left(\frac{1}{\sqrt{1-t}}\right)$$

Une telle fonction φ est intégrable sur]0,1[. D'après le théorème de convergence dominée

$$\lim_{n \to +\infty} B^{(r-2)}(x_n) = \int_0^1 \frac{(\ln(t))^{r-2} (\ln(1-t))^2}{t} dt$$

Enfin, par la caractérisation séquentielle de la limite, $B^{(r-2)}$ admet une limite en 0 et

$$\lim_{x \to 0^+} B^{(r-2)}(x) = \int_0^1 \frac{(\ln(t))^{r-2} (\ln(1-t))^2}{t} dt$$

- (d) D'après la question précédente $S_2 = \frac{1}{2} \lim_{x \to 0^+} B(x)$. D'après les questions 21 et 20, $\lim_{x \to 0^+} B(x) = -\psi''(1)$ et $\psi''(1) = -2\zeta(3)$. Ainsi $S_2 = \zeta(3)$
- 23. (a) L'application $x \mapsto \psi(1+x)$ est de classe \mathcal{C}^{∞} sur $]-1,+\infty[$, donc, par les théorèmes généraux, φ est de classe \mathcal{C}^{∞} sur $]-1,+\infty[$. Pour tout $n\geqslant 2$, par la formule de Leibniz

$$\varphi^{(n)}(0) = \sum_{k=0}^{n} C_n^k (\psi(1+x) - \psi(1))^{(k)} (0) (\psi(1+x) - \psi(1))^{(n-k)} (0) - \psi'^{(n)} (1)$$

$$= \sum_{k=1}^{n-1} C_n^k \psi^{(k)} (1) \psi^{(n-k)} (1) - \psi^{(n+1)} (1)$$

(b) Soit $r \geqslant 3$, par la formule de Leibniz $\varphi^{(r-1)}(x) = xB^{(r-1)}(x) + (r-1)B^{(r-2)}(x)$. Cette formule permet de donner $\lim_{x\to 0^+} B^{(r-2)}(x) = \frac{1}{r-1} \varphi^{(r-1)}(0)$. Avec

$$\varphi^{(r-1)}(0) = \sum_{k=1}^{r-2} C_{r-1}^k \psi^{(k)}(1) \psi^{(r-1-k)}(1) - \psi^{(r)}(1)$$

$$= \sum_{k=1}^{r-2} C_{r-1}^k (-1)^{k+1} \zeta(k+1) (-1)^{r-k} \zeta(r-k) - (-1)^{r+1} r! \zeta(r+1)$$

$$= (-1)^{r+1} (r-1)! \sum_{k=1}^{r-2} \zeta(k+1) \zeta(r-k) - (-1)^{r+1} r! \zeta(r+1)$$

Donc

$$2S_r = \frac{(-1)^r}{(r-2)!} \frac{\varphi^{(r-1)}(0)}{r-1}$$
$$= r\zeta(r+1) - \sum_{k=1}^{r-2} \zeta(k+1)\zeta(r-k)$$

Centrale 2015