nRF905 无线模块使用手册

NBC905_V2.0-----2011.9.8

合肥炜煌电子有限公司 www.hfwhdz.com

目录

一、這	产品简介	3
	功能简介	
	主要参数	
	<u> </u>	
	硬件介绍	
	软件控制介绍	
	电路原理图	
3√	巴跔尿理图	TI

一、产品简介

1、功能简介

2、

NBC905_V2.0,是基于挪威NORDIC公司的最新封装改版NRF905无线收发IC基础上优化设计的一款高性能433M无线收发模块。模块具有体积小,距离远,功耗低,通信稳定,抗干扰性强等特点。

主	要领域有:
?	□移动终端
?	□无线局域网
?	□远程抄表系统
?	□无线监控
?	□无线遥控
?	□无线遥测
?	□数据采集
?	□ID识别
?	□无线门禁
?	□玩具
?	□报警安防系统
?	□家庭自动化
?	□机器人
主要	是参数
NB	C905_V2.0主要有如下参数特点:
?	□尺寸: 35mm x 19mm
?	□工作电压范围: DC1.9V-DC3.6V
?	□采用GFSK调制,433Mhz开放ISM频段免许可证使用
?	□接收发送功能合一,收发完成中断标志
?	□170个频道,满足多点通讯和跳频通讯需求,实现组网通讯,TDMA-CDMA-FDMA
?	□内置硬件8/16位CRC校验,开发更简单,数据传输可靠稳定
?	□接收灵敏度达-100dBm
?	□收发模式切换时间 < 650us
?	□每次最多可发送接收32字节,并可软件设置发送/接收缓冲区大小2/4/8/16/32字节
?	□模块可软件设地址,只有收到本机地址时才会输出数据(提供中断指示),可直接接各种
	单片机使用,软件编程非常方便
?	□最大发射功率10毫瓦,发射模式:最大电流<30mA;接收模式:电流12.2mA
?	□内置SPI接口,也可通过I/O口模拟SPI实现。最高SPI时钟可达10M
?	□发射速率50 Kbps,外置433MHz天线,空旷通讯距离可达300米左右,室内通信3-6层可实
	现可靠通信,抗干扰性能强,很强的障碍穿透性能

② □低功耗,休眠电流2.5uA

二、使用说明

1、硬件介绍

NBC905_V2.0模块带有一个 14 针2.54mm间距的接口。

	J1		
VCC	1	2	TXEN
TRX CE	3	4	PWR UP
UPCLK	5	6	<u> </u>
AM	. 7	8	DR
MISO	,	10	MOSI
SPI SCK	11	12	SPI CSN
GND	13	14	GND
	13	14	

接口功能如下表所示:

管脚编号	nRF905管脚	功能描述
1		电源(1.9V-3.6V)
	VCC	强调: nRF905的供电必须保
		证不超过3.6V,否则将烧毁。
2	TXEN	1:发射模式, 0:接收模式
3	CE	使能发射/接收
4	PWR	POWER DOWN模式
5	CLK	时钟输出
6	CD	载波检测
7	AM	地址匹配输出
8	DR	数据准备就绪输出

9	MISO	SPI输出
10	MOSI	SPI输入
11	SCK	SPI时钟
12	CSN	SPI使能,低电平有效
13	GND	地
14	GND	地

该接口可以直接和 3.3V的MCU 相连接。对于5V的MCU,为防止I/O口的输出灌电流过大烧毁模块,该模块和 MCU 连接需作如下处理,即在IO与NRF905接口间加1个限流电阻来减小灌电流。

模块原理图对应的硬件实物图如下图所示(图片未经过任何处理),请用户使用时务必注意接口管脚功能和序号对应插接,否则会烧毁模块。

实物对照图1

实物对照图2

实物对照图3

2、软件控制介绍

工作模式

nRF905有两种工作模式和两种节能模式。两种工作模式分别是ShockBurstTM接收模式和ShockBurstTM发送模式,两种节能模式分别是关机模式和空闲模式。nRF905的工作模式由TRX_CE、TX_EN和PWR_UP三个引脚决定,详见下表。

PWR_UP	TRX_CE	TX_EN	工作模式
0	X	X	掉电和 SPI 编程
Ĭ	0	X	Standby 和 SPI 编程
1	1	0	ShockBurst RX
12	1	1	ShockBurst TX

与射频数据包有关的高速信号处理都在nRF905片内进行,数据速率由微控制器配置的SPI接口决定,数据在微控制器中低速处理,但在nRF905中高速发送,因此中间有很长时间的空闲,这很有利于节能。由于nRF905工作于ShockBurstTM模式,因此使用低速的微控制器也能得到很高的射频数据发射速率。在ShockBurstTM接收模式下,当一个包含正确地址和数据的数据包被接收到后,地址匹配(AM)和数据准备好(DR)两引脚通知微控制器。在ShockBurstTM发送模式,nRF905自动产生字头和CRC校验码,当发送过程完成后,数据准备好引脚通知微处理器数据发射完毕。由以上分析可知,nRF905的ShockBurstTM收发模式有利于节约存储器和微控制器资源,同时也减小了编写程序的时间。下面具体详细分析nRF905的发送流程和接收流程。

nRF905发送流程分以下几步:

- A. 当微控制器有数据要发送时,通过SPI接口,按时序把接收机的地址和要发送的数据送传给nRF905,SPI接口的速率在通信协议和器件配置时确定;
 - B. 微控制器置高TRX CE和TX EN,激发nRF905的ShockBurstTM发送模式;
 - C. nRF905的ShockBurstTM发送:
 - □射频寄存器自动开启;
 - □数据打包(加字头和CRC校验码);
 - □发送数据包;
 - □当数据发送完成,数据准备好引脚被置高;
 - D. AUTO RETRAN被置高, nRF905不断重发, 直到TRX CE被置低;
 - E. 当TRX_CE被置低,nRF905发送过程完成,自动进入空闲模式。

ShockBurstTM工作模式保证,一旦发送数据的过程开始,无论TRX_EN和TX_EN引脚是高或低,发送过程都会被处理完。只有在前一个数据包被发送完毕,nRF905才能接受下一个发送数据包。

从standby模式到ShockBurst TX模式时序图

接收数据流程:

- A. 当TRX CE为高、TX EN为低时,nRF905进入ShockBurstTM接收模式;
- B. 650us后, nRF905不断监测, 等待接收数据;
- C. 当nRF905检测到同一频段的载波时,载波检测引脚CD被置高;

- D. 当接收到一个相匹配的地址,地址匹配引脚AM被置高;
- E. 当一个正确的数据包接收完毕,nRF905自动移去字头、地址和CRC校验位,然后把数据准备好引脚DR置高
 - F. 微控制器把TRX CE置低, nRF905进入空闲模式;
 - G. 微控制器通过SPI口,以一定的速率把数据移到微控制器内:
 - H. 当所有的数据接收完毕, nRF905把数据准备好引脚DR和地址匹配引脚AM置低;
 - I. nRF905此时可以进入ShockBurstTM接收模式、ShockBurstTM发送模式或关机模式。

当正在接收一个数据包时,TRX_CE或TX_EN引脚的状态发生改变,nRF905立即把其工作模式改变,数据包则丢失。当微处理器接到地址匹配引脚的信号之后,其就知道nRF905正在接收数据包,其可以决定是让nRF905继续接收该数据包还是进入另一个工作模式。

通过上面的介绍,对 nRF905 的接收流程有了一定的了解。在应用过程中一定要注意在进入接收模式之前, nRF905 需要 650ns 的反应时间,这是不可忽略的。

从standby模式到ShockBurst RX模式时序图

节能模式

nRF905 的节能模式包括关机模式和节能模式。

在关机模式,nRF905 的工作电流最小,一般为 2.5uA。进入关机模式后,nRF905 保持配置字中的内容,但不会接收或发送任何数据。

空闲模式有利于减小工作电流,其从空闲模式到发送模式或接收模式的启动时间也比较短。 在空闲模式下,nRF905内部的部分晶体振荡器处于工作状态。nRF905在空闲模式下的工作电流跟外部晶体振荡器的频率有关。

器件配置

所有配置字都是通过 SPI 接口送给 nRF905。SPI 接口的工作方式可通过 SPI 指令进行设置。当 nRF905 处于空闲模式或关机模式时,SPI 接口可以保持在工作状态。

SPI 写操作

1)、 SPI 接口配置

SPI 接口由状态寄存器、射频配置寄存器、发送地址寄存器、发送数据寄存器和接收数据寄存器 5 个寄存器组成。状态寄存器包含数据准备好引脚状态信息和地址匹配引脚状态信息;射频配置 寄存器包含收发器配置信息,如频率和输出功能等;发送地址寄存器包含接收机的地址和数据的字节数;发送数据寄存器包含待发送的数据包的信息,如字节数等;接收数据寄存器包含要接收的数据的字节数等信息。

SPI 串行接口指令			
指令名称	指令格式	操作	
W_CONFIG (WC)	0000AAAA	写配置寄存器。AAAA 指出写操作的开始字节,字节数量取决于AAAA 指出的开始地址。	
R_CONFIG (RC)	0001AAAA	读配置寄存器。AAAA 指出读操作的开始字节,字节数量取决于 AAAA 指出的开始地址。	
W_TX_PAYLOA D (WTP)	00100000	写 TX 有效数据: 1-32 字节。写操作全部从字节 0 开始。	
R_TX_PAYLOA D (RTP)	00100001	读 TX 有效数据: 1-32 字节。读操作全部从字节 0 开始。	
W_TX_ADDRES S (WTA)	00100010	写 TX 地址: 1-4 字节。写操作全部从字节 0 开始	
R_TX_ADDRES S (RTA)	00100011	读 TX 地址: 1-4 字节。读操作全部从字节 0 开始。	
R_RX_PAYLOA D (RRP)	00100100	读 RX 有效数据: 1-32 字节。读操作全部从字节 0 开始。	
CHANNEL_CON FIG (CC)	1000pphc ccccccc	快速设置配置寄存器中 CH_NO, HFREQ_PLL 和 PA_PWR 的专用命令。CH_NO=cccccccc; HFREQ_PLL=h; PA_PWR=pp	

2)、射频配置

射频配置寄存器和内容如表所示:

参数	位宽	说明		
CH_NO	9	同 HFREQ_PLL 一起设置中心频率默认值=001101100b=180d FRF= 422.4+ CH NOd/10 *(1+ HFREQ PLLd)MHZ		
HFREQ_ PLL	1	设置 PLL 在 433或868/915MHZ 模式 默认值=0 0 -器件工作在 433MHZ 频段 1 -器件工作在 868/915MHZ 频段		
PA_PWR	2	输出功率 默认值=00 00 -10dBm 01 -2dBm 10 +6dBm 11 +10dBm		
RX_RED_PWR	1	降低接收模式电流消耗至 1.6mA 灵敏度降低 默认值=0 0 -正常模式 1 -低功耗模式		
AUTO_RETRAN	1	重发数据 如果 TX 寄存器的 TRX_CE和 TX_EN被设置为高 默认 值=0		
RX_AWF	3	RX 地址宽度 默认值=100 001-1 字节 RX 地址宽度 100-4 字节 RX 地址宽度		
TX_AWF	3	TX 地址宽度 默认值=100 001-1 字节 TX 地址宽度 100-4 字节 TX 地址宽度		
RX_PW	6	RX 接收有效数据宽度 默认值=100000 000001 -1 字节 RX 有效数据宽度 000010 -2 字节 RX 有效数据宽度 100000 -32 字节 RX 有效数据宽度		

1		
TX PW	6	TX 有效数据宽度 默认值=100000
_		000001 -1 字节 TX 有效数据宽度
		000010 -2 字节 TX 有效数据宽度
		000001 -1 字节 TX 有效数据宽度 000010 -2 字节 TX 有效数据宽度 100000 -32 字节 TX 有效数据宽度
RX_ADDRESS	32	RX 地址使用字节依赖于RX_AFW 默认值=E7E7E7E7h
UP_CLK_ FREQ	2	输出时钟频率 默认值=11
	_	00 -4MHZ
		01 -2MHZ
		10 -1MHZ
		11 -500KHZ
UP CLK EN	1	输出时钟使能 默认值=1
	_	0 -没有外部时钟
		1 -外部时钟信号使能
XOF	3	晶体振荡器频率必须依据外部晶体的标称频率设置 默认值=100
		001-8MHZ
		010-12MHZ
		011-16MHZ
		100-20MHZ
CRC EN	1	CRC 校验允许 默认值=1
	_	0 -不允许
		1 -允许
CRC MODE	1	CRC 模式 默认值=1
	_	0-8位 CRC 校验位
		1-16位 CRC 校验位
	3	0 -没有外部时钟 1 -外部时钟信号使能 晶体振荡器频率必须依据外部晶体的标称频率设置 默认值=10 000-4MHZ 001-8MHZ 010-12MHZ 011-16MHZ 100-20MHZ CRC 校验允许 默认值=1 0 -不允许 1 -允许

射频寄存器的各位的长度是固定的。然而,在ShockBurstTM收发过程中,TX_PAYLOAD、RX_PAYLOAD、TX_ADDRESS和RX_ADDRESS 4个寄存器使用字节数由配置字决定。nRF905进入关机模式或空闲模式时,寄存器中的内容保持不变。

3、电路原理图

nRF905 在使用中,根据不同需要,其电路图不尽相同,图 2 所示为典型的应用原理图,该电路天线部分使用的是 50 Ω 单端天线。在 nRF905 的电路板设计中,也可以使用环形天线,把天线布在 PCB 板上,这可减小系统的体积。更详细的设计,读者可参考 nRF905 的芯片手册。

