University of Hradec Králové Faculty of Informatics and Management Department of Information Technologies

MASTER'S THESIS

Radio Fingerprint Acquisition Using Smartwatch

Author: Bc. David Sucharda

Study programme: Applied Informatics

Supervisor: Ing. Pavel Kříž, Ph.D.

Hradec Králové April 2018

Prohlášení Prohlašuji, že jsem diplomovou práci vypracoval samostatně a uvedl jsem všechny použité prameny a literaturu.
Declaration I declare that I have elaborated this thesis independently and listed all the sources and literature.
Hradec Králové day 26th of April 2018 Bc. David Sucharda

Poděkování Rád bych zde poděkoval Ing. Pavlu Kříži, Ph.D. za odborné vedení práce, podnětné rady a čas, který mi věnoval. **Thanks** I would like to thank to Ing. Pavel Křiž, Ph.D. for professional guidance, incentive advices, and the time he gave me.

Anotace

Název práce: Sběr rádiových fingerprintů pomocí chytrých hodinek

Diplomová práce se zabývá možnostmi sběru rádiových otisků (fingerprintů) za pomoci chytrých hodinek. Tyto otisky se používají k lokalizaci uvnitř budovy. Hlavním cílem této práce je prozkoumat možnosti sběru otisků a návrh aplikace která bude tento sběr umožňovat. V první části práce je potřeba zjistit, jestli je tento sběr na hodinkách vůbec možný. V další části je zpracování aplikace na mobil a hodinky. A jako poslední část této práce je sběr otisků a jejich analýza. Jeden z osobních cílů je zpracovat tuto aplikaci aby byla co nejvíce uživatelky přívětivá.

Annotation

The Master's thesis deals with possibilities of collecting radio fingerprints with the help of smart watches. These prints are used in indoor localization. Main aim of this thesis is to explore possibilities of fingerprint collection and creation of application that will allow it. First part is to figure out if this collection is even possible using smart watch. Next part deals with creation of such application not only for watch but also for the phone. And at the end part there is testing of fingerprint collection and data analysis. One of the personal goal is to make this application as user friendly as possible.

Content

1	Introduction						
	1.1	Goals of this thesis	2				
	1.2	Reason for selection of this topic	2				
2	RSS	RSS Indoor localization					
	2.1	Triangulation	3				
		2.1.1 Lateration	3				
		2.1.2 Angulation	4				
	2.2	Fingerprinting	5				
	2.3	Proximity	5				
	2.4	Other techniques	6				
3	And	droid Wear 2.0	7				
	3.1	What is Android Wear 2.0	7				
	3.2	Other wear technologies	7				
4	alysis, design and implementation	8					
	4.1	Hardware	9				
		4.1.1 Smart Watch	9				
4.2 Software		Software	9				
		4.2.1 Android	9				
		Android Wear	9				
		4.2.2 AltBeacon Library	9				
		4.2.3 SQLite database	9				
		4.2.4 Couchbase database	9				
		4.2.5 TileView	9				
	4.3	Application structure	9				
		4.3.1 Mobile application	9				

Lit	_iterature									
	6.1	Appli	ication improvements	. 1	1					
6 Conclusion					1					
	5.2	Analy	ysis	. 10	0					
	5.1	Data c	collection	. 10	0					
5	Test	ing an	nd data analysis	10	0					
		4.3.2	Wear application	. !	9					
			Utilities	. 9	9					
			Model	. (9					
			Activities	. 9	9					

List of figures

1.1	Comparison of Positioning Technologies (source: [4])	1
2.1	2D and 3D Trilateration (source: [10])	3
2.2	Multilateration (source: [11])	4
2.3	3D location using AoA from Quuppa Intelligent Locating System (source: [15])	5

List of tables

1 Introduction

As the technology evolves it unlocks more and more possibilities. Just few years back there were no smart watches or phones but at this time they are important part of our lives. As they evolve there is the need for them to have more functions and features. One of them is to locate it's position on the map. This information is very useful since it can prevent people from getting lost, figuring out path to drive, used by military and countless more cases.

Finding out such position is possible using Global Navigation Satellite System (GNSS). Multiple implementations of this system exist like GPS, GLONASS or Galileo. All of these systems provide location using sufficient number (at least four) of satellites.[1][2] GNSS solution requires clear path between satellites and the receiving device because signal is not able to pass through buildings. That makes it the main reason why it cannot be used for indoor localization.

There are multiple approaches to find out location inside the building. They can be divided into three main types. First type is using wireless signal ranging approach with multiple kinds of data like Time of Arrival (ToA). Second approach is using special equipment like active bats (Ultrasonic). And final type based on Signal Strength Fingerprint Maps (SSFM), in which first part is to collect signal strengths from the environment and construct fingerprint maps. They are then used to match with current signal to obtain the location.[3]

Figure 1.1: Comparison of Positioning Technologies (source: [4])

In addition to these types there are also multiple algorithms used in indoor localization. Some of them are location fingerprinting, triangulation, proximity and dead reckoning.[5] Description of few algorithms can be found in chapter 2.

This thesis is focused on method using radio signal strength (RSS) fingerprinting collecting data from bluetooth, wireless and cellular networks.

1.1 Goals of this thesis

Main goal of this thesis is to explore possibilities of fingerprint collection using smart watch technology. The first question that needs to be answered is if this can be done. Is smart watch capable of RSS data collection? And the answer to this question is yes since smart watches have the similar specifications as low-end smart phones.

One of the goals for this thesis is to create an application for Android phone and wear device which handles fingerprint collection. Problem with smart watches is their diversity in operational system because a lot of watch creators build their own custom systems which can complicate things. Luckily there is new system from Android called Wear 2.0 and it is basically port of Android system to wearable devices.

And final goal is to test created application and figure out if it's data are useful for indoor localization or not.

1.2 Reason for selection of this topic

The reason behind selection of this topic is rather simple. I was introduced to Android during my studies at the University but it was not any deep knowledge so I decided to go for a study abroad to deepen my knowledge. Part of that study was to work for a company where we developed rather technical heavy Android application. It's core part was using multiple APIs but it was focused only on a singe device. So next thing I wanted try was working with multiple kinds of devices and since Android Wear 2.0 is rather new I wanted to test it out. So the main reason is to get more experienced with Android and as a developer.

2 RSS Indoor localization

This chapter describes most common techniques and methods for indoor localization using radio signal strength (RSS).

2.1 Triangulation

Methods based on Triangulation use geometric properties of triangles to determine target position. This can further be divided into Lateration and Angulation. [6] There are multiple sources of data these methods can use like distance estimation between device and specific transmitters, measurements of the signal propagation-time (TOA: Time Of Arrival and TDOA: Time Difference of Arrival[7]) and the direction of received signal (AOA: Angle of Arrival[8]).[9]

2.1.1 Lateration

Lateration refers to the technique of determining position based on distance measurements that are calculated using specific devices that know their own position. Mainly used types of Lateration and are Trilateration and Multilateration.

Figure 2.1: 2D and 3D Trilateration (source: [10])

Trilateration uses distance measurements from at least three devices in particular as "tri" in

the name suggests.[6] Figure 2.1 illustrates usage of Trilateration in 2D and 3D environment. While working in 2D plane will result with only one specific location point. Moving to the 3D plane can create a problem because signal is send in a sphere which could result in more than one position. That is the reason why some systems use at least four signal sources, example of such system is GPS.[2] Advantage is easy implementation and simple calculations. One down side of this approach is that all devices must have synchronized clock.[6]

Multilateration also known as hyperbolic positioning is using Time Difference of Arrival (TDoA) instead of Time Of Arrival (ToA) used in previous case. This approach involves the intersections of hyperbolas rather than circles as shown in Figure 2.2. Main advantage of this method is that only receiving devices must have synchronized clock instead of all.[12] Multilateration was developed for tracking aircraft position and it is widely used.

Figure 2.2: Multilateration (source: [11])

Note: At this time term Multilateration is not as strict as it used to be. It can now refer Lateration with more than three devices.

2.1.2 Angulation

This technique uses Angle of Arrival (AoA) of radio signals to determine location. It uses highly directional antennas or antenna arrays. Same as Lateration these antennas are placed in known location and basic AoA requires at least two of them to determine position on 2D plane but more of them can be used to improve accuracy.[6] That makes it an advantage over Trilateration. Second advantage of this approach is no need for synchronization between devices.

There are few disadvantages of this approach since it needs complex hardware setup due

to the use of antennas. Other problem is with multipath locations since it can cause signal reflection making it not useful for indoor localization. And final one to mention is the decrease of accuracy when mobile target moves further from the antennas.[13][14]

Figure 2.3: 3D location using AoA from Quuppa Intelligent Locating System (source: [15])

2.2 Fingerprinting

This method is a part of already mentioned Signal Strength Fingerprint Maps (SSFM) type. Main point of this method is using previously recorded data to figure out location inside the building. Hence fingerprint term in the name. There is multiple kinds of data that can be recorded like magnetic field strength or light signals but as it was already mentioned this topic is focused RSS. There are also multiple sources of radio signals like bluetooth, wireless or cellular devices and networks.

This method has two main stages where the first one is fingerprint maps construction also called offline stage. They are created using collecting Received Signal Strength (RSS) at different positions with specific coordinates of this place. All fingerprints are saved in the database and this is called fingerprint map. The other part is localization stage also known as online stage where client device measures data and compares them with fingerprint maps to approximate position. [3][16]

2.3 Proximity

Proximity detection also knows as connectivity based positioning is one of the simplest method to implement.

2.4 Other techniques

3 Android Wear 2.0

This chapter will provide information about Android Wear 2.0 technology. Why it was developed and what are the differences between previous version and other wear technologies.

3.1 What is Android Wear 2.0

3.2 Other wear technologies

4 Analysis, design and implementation

This chapter describes all important information about created application. One of the main parts are hardware and software used for developing and testing of the application. Other part is structure and description of core parts used in the application.

4.1 Hardware

4.1.1 Smart Watch

4.2 Software

4.2.1 Android

Android Wear

- 4.2.2 AltBeacon Library
- 4.2.3 SQLite database
- 4.2.4 Couchbase database
- 4.2.5 TileView

4.3 Application structure

4.3.1 Mobile application

Activities

Model

Utilities

4.3.2 Wear application

5 Testing and data analysis

This chapter goal is to show application testing, data collection and analysis.

- 5.1 Data collection
- 5.2 Analysis

6 Conclusion

6.1 Application improvements

Literature

- [1] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger and Elmar Wasle. *GNSS Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more.* Springer Science & Business Media, 2007 [cited 2018-01-10], ISBN 9783211730171.
- [2] AviationChief. Global Navigation Satellite System (GNSS) Global Positioning Satellite (GPS) System [online]. AviationChief.Com, 2017 [cited 2018-01-15]. Available at: http://www.aviationchief.com/gps-system.html
- [3] Xinglin Piao, Yong Zhang, Tingshu Li, Yongli Hu, Hao Liu, Ke Zhang and Yun Ge. *RSS Fingerprint Based Indoor Localization Using Sparse Representation with Spatio-Temporal Constraint* [online]. National Center for Biotechnology Information, 2016 [cited 2018-01-14], Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134504/
- [4] Stéphane Beauregard and Harald Haas. *Pedestrian Dead Reckoning: Basis for Personal Positioning* [online]. School of Engineering and Science International University Bremen, 2006, Available at: http://ave.dee.isep.ipp.pt/~lbf/PINSFUSION/BeHa06.pdf
- [5] Gabriel Deak, Kevin Curran and Joan Condell. A survey of active and passive indoor localisation systems. In: Computer Communications. Elsevier, 2012 [cited 2018-01-11], Volume 35, Issue 16, ISSN: 0140-3664.
- [6] Zahid Farid, Rosdiadee Nordin, and Mahamod Ismail. *Recent Advances in Wireless Indoor Localization Techniques and System* [online]. School of Electrical, Electronics & System Engineering, University Kebangsaan Malaysia (UKM), 2013 [cited 2018-01-15], Available at: http://downloads.hindawi.com/journals/jcnc/2013/185138.pdf
- [7] Shweta Singh, Ravi Shakya and Yaduvir Singh. Localization techniques in wireless sensor networks [online]. Department of Computer Science, Ideal

- Institute of Technology, Ghaziabad, 2015 [cited 2018-01-15], ISSN: 0975-9646, Available at: https://pdfs.semanticscholar.org/6299/85defbf9ccla937a1b88c9c2a893552e3d89.pdf
- [8] Paweł Kułakowski, Javier Vales-Alonso, Esteban Egea-López, Wiesław Ludwin and Joan García-Haro. *Angle-of-arrival localization based on antenna arrays for wireless sensor networks* [online]. In: *Computers & Electrical Engineering*. Elsevier, 2010 [cited 2018-01-15], Volume 36, Issue 6, Pages 1181-1186. Available at: http://ai2-s2-pdfs.s3.amazonaws.com/17c6/0e17c4e72cc3fd821e12169c1c2ca7736bd4.pdf
- [9] Pavel Kriz, Filip Maly, and Tomas Kozel. *Improving Indoor Localization Using Bluetooth Low Energy Beacons* [online]. In: *Mobile Information Systems*. Hindawi Publishing Corporation, 2016 [cited 2018-01-15], Volume 2016, Article ID 2083094. Available at: https://www.hindawi.com/journals/misy/2016/2083094/abs/
- [10] GISGeography. *Trilateration vs Triangulation How GPS Receivers Work* [online]. GIS-Geography.com, 2018 [cited 2018-01-15]. Available at: http://gisgeography.com/trilateration-triangulation-gps/
- [11] Kenjirou Fujii, Yoshihiro Sakamoto, Wei Wang, Hiroaki Arie, Alexander Schmitz and Shigeki Sugano. *Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization* [online]. MDPI AG, Basel, 2015 [cited 2018-01-15]. Available at: http://www.mdpi.com/1424-8220/15/10/25157/htm
- [12] David Munoz, Frantz Bouchereau Lara, Cesar Vargas and Rogerio Enriquez-Caldera. Position Location Techniques and Applications. Elsevier Science Publishing Co Inc, 2009 [cited 2018-01-15], ISBN: 9780080921938. Available at: http://www.mdpi.com/1424-8220/15/10/25157/htm
- [13] Group 891: Wireless Location. ANGULATION: AOA (Angle Of Arrival) [online]. DE-PARTMENT OF ELECTRONIC SYSTEMS, Aalborg University, 2010 [cited 2018-01-15]. Available at: http://kom.aau.dk/group/10gr891/methods/Triangulation/Angulation/ANGULATION.pdf
- [14] Jais, M. I., Ehkan, P., Ahmad, R. B., Ismail, I., Sabapathy, T., and Jusoh, M. Review of angle of arrival (AOA) estimations through received signal strength indication (RSSI) for wireless sensors network (WSN) [online]. In: Computer,

Communications, and Control Technology (I4CT), 2015 International Conference on IEEE, 2015, [cited 2018-01-15], p. 354-359. Available at: https://www.researchgate.net/profile/Phaklen_Ehkan/publication/
283476641_Review_of_angle_of_arrival_AOA_estimations_through_received_sign
links/564106b008aebaaea1f6d6e5/Review-of-angle-of-arrival-AOAestimations-through-received-signal-strength-indication-RSSIfor-wireless-sensors-network-WSN.pdf

- [15] Quuppa Oy. Quuppa Intelligent Locating System [online]. 2018 [cited 2018-01-15]. Available at: http://quuppa.com/technology/
- [16] Krishna Chintalapudi, Anand Padmanabha Iyer, and Venkata N. Padmanabhan. *Indoor Localization Without the Pain* [online]. In: Proceedings of the sixteenth annual international conference on Mobile computing and networking, 2010 [cited 2018-01-14], Available at: http://dl.acm.org/citation.cfm?id=1860016