

MONASH **INFORMATION**

TECHNOLOGY

Assignment Project Exam Help Database Design II: Logical Modelling https://powcoder.com

Add WeChat powcoder

Reference

Several of the examples and diagrams just the season taken from:

Hoffer, J. A., Prescott, M.B. & McFadden F.R. "Modern Database Management"

Add WeChat powcoder

Step 2 (and 3) of the Design Process

- Step 1 Conceptual Model (session 2)
 - Database Model independent
- Step 2 Logical Model (this session)
 - Select which type (model) of Patabase your conceptual model in
 - Network, Relational, OO, XML, NoSQL, Interest of the control of the
 - Database model dependent
- Step 3 Physical Model
 - Select which specific vendor for your Phosen model you will implement in
 - Oracle, MySQL, IBM DB2, SQL Server, ...
 - Database vendor dependent
 - Final output schema file to implement model (for relational model a set of tables)

Summary of Terminologies at Different Levels

Conceptual A S	signn-egisəl (Relational	t Exaphysica (Relational)
Entity	Relation	Table
Attribute	https://powco	der com
Instance	Tuple Tuple	Row
Identifier	Add WeChat	Primary Key
Relationship	Aud Wechai	powc <u>o</u> dei
	Foreign Key	Foreign Key

Recap Session 3 Relational Model Characteristics

- Each relation must have a unique name
- Each attribute of a relation must have a distinct name within the relation
- An attribute ca Anotigenmettival Ped (eans is kafne detip) values)
- All values of an attribute need to be from the same domain https://powcoder.com
- The order of attributes and tuples in a relation is immaterial
- Each relation must have a Windship tepowcoder
- Logical (not physical) connections are made between relations by virtue of primary/foreign keys

Q1. The relational model requires that each cell in a relation is single-valued (atomic). Considering this requirement, what construct in an ER diagram cannot be implemented directly (for example, without adding further entities) in the relational model (logical level)?

Assignment Project Exam Help

- a. Compositates://powcoder.com
- b. Composite attribute.
- c. Multi-valued attitude Chat powcoder
- d. Dependent attribute.
- e. More than one option is correct.

Revisit - Session 2 Conceptual Model

Transforming ER diagrams into relations (mapping conceptual level to logical level) Essentially

- KEY to PK
- Represent relationships with PK/FK pairs
 The steps are: Assignment Project Exam Help

 - Map strong (regular) entities
 Map weak entities
 - Map binary relationships
 Map associative entities

 WeChat powcoder

 - Map unary relationships
 - Map ternary relationships
 - Map supertype/subtype relationships (is not part of this unit).

Map Regular Entities

Composite Attributes

- When the regular entity type contains a composite attribute, only the simple component attributes of the composite attribute are included in the new relation.
 Assignment Project Exam Help
- Compared to composite attributes, simple attributes not only improve data accessibility but a polypoint and a pol
- Client input needed in some cases to determine if to be left as simple or broken into composite WeChat powcoder

Mapping a Composite Attribute

Monash Software Case Study

* = not null (must have value)

Map Regular Entities

Multivalued Attribute

- When the regular entity type contains a multivalued attribute, two new relations are created.
- The first relation comment the attacked the multivalued attribute itself.
- The second relation to the attributes is the PK from the first relation, which becomes the FK in the second relation and the other (s) the multivalued attribute.
- There can also be non key attributes in the second relation depending upon the data requirements.

Mapping a Multi valued Attribute

Is there a better solution than the one shown above?
What are the issues here - this was partially discussed in session 2

Revisit - Session 2 Conceptual Model - IMPROVED

added

Mapping a Weak Entity

• For each weak entity type, create a new relation and include all of the simple attributes as attributes of this relation. The PK of the identifying relation is also included as the FK in this new relation.

** Note: logical model must have verbs on relationships, excluded on slides for clarity

Conceptual

Assignment Project Exam Help

Mapping a 1:M Binary Relationship

Q2. Where would you place the Foreign Key when you map this ER diagram into the relational model?

- A. CUSTO https://powcoder.com
- B. ORDER
- C. Both CUATOM PRESCHARPERWCOder
- D. None, no FK is needed.

Map Binary Relationships (1:M)

For each 1:M binary relationship, first create a relation for each of the two entity types participating in the relationship. Then include the PK attribute (or attributes) of the entity on the one-side of the relationship as the FK on the many-side of the relationship.

Conceptual Assignment Project Exam Help

Mapping a M:N Binary Relationship

Q3. What will be the Primary Key of the new created relation resulting from mapping this ER model at the conceptual level into a relational model?

- A. The primary keyld the ocheat the previous
- B. The primary key of the PRODUCT table.
- C. The combination of primary keys of ORDER and PRODUCT.

Map Binary Relationship (M:N)

- For a M:N binary relationship
 - First create a relation for each of the two entity types participating in the relationship.
 - Then create a steich tand in the Example of the PK attribute (or attributes) for each of the two participating entity types. These attributes become the PK/of the we detail on m
 - If there are any nonkey attributes associated with the M:N relationship, they are also included in the new elation powcoder

Mapping an associative entity with an Identifier

Add WeChat powcoder

Mapping a 1:1 Binary Relationship

Location

Date of Birth

Q4. Where would you place the Foreign Key when mapping this ER diagram into a relational model?

NURSE

Nurse Psignment Project Centernal Location

CARE CENTRE

Care Centre

Location

- A. NURSE
- B. CARdo We Chat powcoder

https://powcoder.com

- C. Both NURSE and CARE CENTRE
- D. No FK is needed.

Relationship Participation Mandatory vs Optional

NURSE participation in this relationship?

CARECENTRE participation in this relationship?

Map Binary Relationship (1:1)

- Create two relations, one for each of the participating entity types.
 - The primary key (PK) on the mandatory side of the relationship becomes the foreign key (FK) on the optional side of the relationship.
 - where both are signal plate the ject of the whole causes the fewest nulls
 - Special case: 1:1 http://www.comparticipation from both sides)
 - Consider consolidating the two entity types into one relation Add WeChat powcoder

Map unary relationships

- Unary Relationship is a relationship between the instances of a single entity type.
- Unary 1:M Relationship A relation is created for the entity type. Add a FK within the same relation that references the PK values of the same relation https://powcoder.com
 Unary M:N Relationship Two relations are created, one for the entity
- Unary M:N Relationship Two relations are created, one for the entity type in the relationship the Char as the associative relation to represent the M:N relationship itself. The PK of the associative relation consists of two attributes (with different names) taking their values from the PK of the other relation.

Mapping a 1:M Unary Relationship

Q5. How many relations/tables and relationships do we need to implement the model below into a relational model?

A. 2 tables, A selationships
B. 2 tables, 2 relationships
C. 3 tables, 2 relationships
D. 4 tables, 3 relationships

Add WeChat powcoder

Mapping a M:N Unary Relationship

SQL Developer Data Modeler

Adding surrogate keys

Surrogate PK's may be added **ONLY** on the logical model provided they are justified (include in documentation / assumptions).

Need to ensure that the identified key in the roject of the lateral key:

Need to ensure that the identified key in the roject of the roject o

(emp_no, training_code, et_date_completed)

will still remain unique

Solution, where needed:

Define a unique index on the attributes of natural key Add WeChat powcoder

ter.	T 6	emp no	training_code	et_date_completed
	1	101	ORA01	1-Oct-2016
	2	101	ORA01	1-Oct-2016
A O T	3	101	ORA01	1-Oct-2016
\mathbf{n}	\sqrt{C}	$\frac{101}{6}$	ORA01	1-Oct-201

Ternary Relationships

Ternary modelled as binary: SUPPLIER CAMP PROJECT SUPPLIER **PROJECT** proj no (PK) supplier_no (PK) https://powcoder.com supply uses Add WeChat powcoder PART PART part no (PK) part_no (PK)

Ternary Relationships – model as binary relationships?

- Ternary represents more information than three binary relationships
- For example Supplier 1 supplies Project 2 with Part 3 -
 - ternary Assignment Project Exam Help
 - instance (supplier 1, project 2, part 3) exists
 - binaries https://powcoder.com
 - instances
 - (supplier 1, project 2) (project 2, part 3) (supplier 1, part 3)
 - BUT does not imply (supplier 1, project 2, part 3)
- How then do we map such relationships?

Mapping a Ternary Relationship

Map Ternary (and n-ary) Relationships

- Ternary relationship should be converted to an associative entity.
 - To map an associative entity type that links three regular entity types, an associative relation is created.
 - The default Assignment by Participating entity types.
 - Any attributes of the tassociano entributes of the new relation.

Add WeChat powcoder

Mapping a Ternary Relationship

Monash Software Amalgamation

