QAM Final Project

By Charles Rambo, Dhruv Chakervarti, Aadithya Narayanan, Michael Sun

Introduction

Research Objective: Comparative Analysis of Various Allocation Strategies

Inspired by paper: "Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy?" by DeMiguel et al.

Evaluation criteria: expected excess returns, standard deviations, Sharpe ratios, certainty equivalent returns, and turnover rates

Table 1: Strategies

#	Model	Abbreviation
1.	1/N with rebalancing	eq or $1/N$
2.	Value-weighting	vw
3.	Mean-Variance efficient in-sample	mv_{in}
4.	Mean-Variance efficient out-of-sample	mv_{out}
5.	Naïve risk-parity	rp

Sectors replicated & Data

-11	Table 2: List of Dataset and source	N	Abbreviation
#			
1.	S & P Sector data	10 + 1	SPX
	Source: S &P Dow Jones Indices		
2.	Ten industry portfolios and the	10 + 1	Industry
	US equity market portfolio		
	Source: Ken French's Web site		
3.	SMB and HML portfolios and the	2 + 1	MKT/SMB/HML
	US equity market portfolio		6
	Source: Ken French's Web site		
4.	Twenty size- and book-to-market	20 + 1	FF-1-factor
	portfolios and the US equity	20 1 1	11-1-lactor
	MKT		
_	Source: Ken French's Web site		
5.	Twenty size- and book-to-market	20 + 4	FF-4-factor
	portfolios and the MKT, SMB,		
	HML, and MOM portfolios		
	Source: Ken French's Web site		

Date Range: September 1989 to December 2019

MVE In sample/ Out Sample & Risk Parity

Mean Variance Efficient :

$$\min_{oldsymbol{w}_t} \quad oldsymbol{w}_t' \Sigma_t oldsymbol{w}_t$$
 subject to $\quad oldsymbol{1} \cdot oldsymbol{w}_t = 1.$

Naive Risk Parity:

$$w_t^i = \frac{1/\sigma_t^i}{1/\sigma_t^1 + 1/\sigma_t^2 + \ldots + 1/\sigma_t^N}.$$

Excess Returns & Standard Deviations

Table 3: Excess Returns						
	SPX	Industry Portfolios	Mkt/SMB/HML	FF 1-factor	FF 4-factor	Mean
Strategy	N = 11	N = 11	N = 3	N=21	N = 24	
$\overline{1/N}$	0.006584	0.006820879	0.002909	0.007769	0.007105	0.006237576
$\mathrm{mve_{in}}$	0.046232	0.011940283	0.004402	0.025654	0.006833	0.019012257
mve_{out}	0.015140	0.021819592	0.003321	0.023020	0.105233	0.033706718
vw	0.006841	0.006557692	0.006558	0.006558	0.006558	0.006614538
$^{\mathrm{rp}}$	0.006694	0.007302720	0.002368	0.008547	0.007191	0.006420544
		Table 4: Standa	rd Deviation of Exc	cess Returns		
	SPX	Industry Portfolios	Mkt/SMB/HML	FF 1-factor	FF 4-factor	Mean
Strategy	N = 11	N = 11	N = 3	N = 21	N=24	
1/N	0.04014436	0.03930094	0.019409	0.050617	0.044485	0.03879126
mve_{in}	0.10504217	0.15207191	0.025830	0.049555	0.012363	0.068972416
$\mathrm{mve_{out}}$	0.16135713	0.36925550	0.210896	0.161758	1.733706	0.527394526
vw	0.04049606	0.04217485	0.042175	0.042175	0.042175	0.041839182
rp	0.03914803	0.03675082	0.018359	0.050516	0.041462	0.03724717

Sharpe Ratio

The Sharpe ratio of naïve risk-parity produces the largest Sharpe ratio, while 1/N comes in second. The mean-variance-efficient portfolio out-of-sample produces a very low Sharpe ratio.

Table 5: Sharpe Ratios

	SPX	Industry Portfolios	Mkt/SMB/HML	FF 1-factor	FF 4-factor	Mean
Strategy	N = 11	N = 11	N = 3	N = 21	N=24	
1/N	0.164018	0.17355510	0.149891	0.153490	0.159727	0.16013622
mve_{in}	0.440128	0.07851735	0.170433	0.517681	0.552708	0.35189347
mve_{out}	0.093668	0.05909077	0.015748	0.142310	0.060698	0.074302954
vw	0.161893	0.15548821	0.155488	0.155488	0.155488	0.156769042
rp	0.170995	0.19870901	0.128997	0.169190	0.173446	0.178085003

Certainty Equivalent Returns (CEQ)

Formula for CEQ:

$$CEQ_k = \mu_k - \frac{\gamma}{2}(\sigma_k)^2.$$

Table 6: Certainty Equivalent Returns

	SPX	Industry Portfolios	Mkt/SMB/HML	FF 1-factor	FF 4-factor	Mean
Strategy	N = 11	N = 11	N = 3	N=21	N=24	
1/N	0.005778	0.0060485970	0.002721	0.006488	0.006116	0.005980866
mve_{in}	0.024096	0.0003773499	0.004069	0.024426	0.006757	0.013242087
mve_{out}	0.002077	-0.0463552197	-0.018917	0.009937	-1.397635	-0.290178644
vw	0.005948	0.005668333	0.005668	0.005668	0.005668	0.005738083
$^{\mathrm{rp}}$	0.005927	0.0066274083	0.002200	0.007271	0.006332	0.005671482

Turnover Rate

$$\frac{1}{T-M} \sum_{t=1}^{T-M} \sum_{i=1}^{N} \left| w_t^i - w_{t^-}^i \right| \quad \text{where} \quad w_{t^-}^i = \begin{cases} 0, & t=1 \\ \\ \frac{w_{t-1}^i (1 + R_{t-1}^i)}{1 + w_{t-1} \cdot R_{t-1}}, & t > 1. \end{cases}$$

Table 7: Asset Turn-Over

Table 7: Asset Turn-Over							
	SPX	Industry Portfolios	Mkt/SMB/HML	FF 1-factor	FF 4-factor	Mean	
Strategy	N = 11	N = 11	N=3	N=21	N=24		
1/N	0.006584	0.02194351	0.023718	0.018814	0.022231	0.018658102	
$\mathrm{mve_{in}}$	-	-	-	-	-	-	
mve_{out}	26.845508	26.46202826	6.078604	32.830331	46.131542	27.66960265	
vw	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
$^{\mathrm{rp}}$	0.071080	0.02829952	1.996711	19.937500	22.927632	8.992244504	

Takeaways

The 1/N was competitive with the other implementable strategies we considered. Though some strategies performed better in some circumstances, there was no clear winner. There seems to be no premium for sophistication.

Thank You

By Charles Rambo, Dhruv Chakervarti, Aadithya Narayanan, Michael Sun