Ultrasonic Range Finder Proposal

•••

Siddhartha Bajracharya, Joshua Wilbur

Motivation

- This device will allow for versatile short-range distance measurements without needing physical tools.
- Real-time distance measurements are needed by many automated machines.

This project allows us to practice and showcase our embedded system skills to

current and prospective students.

How Is This Problem Solved?

- One method is to use a measuring tape or similar tool for short-range measurements.
 - This can be inconvenient and/or cumbersome depending on the situation.
- Another approach is to use a laser rangefinder.
 - Results may be more accurate, but the cost and complexity of making a laser rangefinder is greater.
 Laser rangefinders typically draw more power, which isn't desirable in our project.
- Our approach is to use ultrasonic waves to determine distance.
 - This solution is inexpensive and simpler to implement. Our project doesn't require extreme precision, so this solution fits best.

How Will We Solve The Problem?

- The primary idea of our project is to use an ultrasonic sensor to determine distance.
- The sensor works similar to the echolocation used by bats in caves. It will send out a 40kHz signal and generate a pulse proportional to return time.
- We will analyze the pulse and extract the distance. This distance will be averaged over a short period of time for accuracy.
- We will use PWM to continuously trigger the sensor and obtain readings.
- A display will be used to output the averaged distance along with other relevant metrics.

Design & Block Diagram

Hardware:

- Raspberry Pi 0W
- OLED Display
- Ultrasonic sensor module
- Solderboard
- Breadboard for initial prototyping
- USB Power Supply

Software:

- The C programming language will be used to interface with components.
- A display library may be used due to the complexity of driving I2C displays.

Bill of Materials

Component	Part Number	Unit Price	Supplier
Raspberry Pi Zero W	3400	\$15.00	Adafruit
OLED Display	SSD1306	\$5.50	Digikey
Ultrasonic sensor module	HC-SR04	\$4.50	Sparkfun
Jumper Wires	N/A	\$0.00	The team
Solder Board	N/A	\$0.00	The team

Estimated Project Timeline

Project Progress

What is accomplished?

- Basic design and proposal
- Acquired hardware

What is left? (EVERYTHING)

- Attach components to the Pi
- Write software to interface with the components.
- Get a working prototype.
- Extensive testing to fine-tune the software.
- Solder the components.
- 3D print a case, if time avails.

Problems We May Need Help With

- We may need help setting up PWM on the Raspberry Pi.
- Finding a display library.

Thank You! Questions?