Professeur : Rachid BELEMOU

: Oued Eddahab Lycée

Cours

Généralités sur les fonctions

Année : 2017-2018

Définition d'une fonction

Activité 1:

Dans une boutique de vente d'un article unique, coûte 45 Dhs, avec prix de livraison fixe de 20 Dhs quelque soit le nombre d'articles ou la distance.

On note:

x: le nombre d'articles achetés.

f(x): le prix total a payé qui dépend de x.

- 1- Déterminer la relation entre f(x) et x.(On peut dire "Déterminer f(x) en fonction de x").
- 2- Quel est le prix à payer pour 7 articles ?
- 3- Calculer f(3) et f(25).
- 4- Quel est le nombre de produits qu'on peut acheter à 425 Dhs?

Définition: Une fonction f est un procédé qui permet d'associer à tout nombre x, élément d'un ensemble E, un nombre unique noté f(x).

L'élément x de E est appelé la <u>variable</u>.

Le nombre f(x) est l'image de x par la fonction f.

Si x vérifie f(x) = y, on dit que x est un antécédent de y.

Ex: Soit la fonction définie sur l'intervalle [-3;5] par l'expression : $f(x) = x^2 - x + 2$.

L'ensemble de définition est [-3; 5].

Le nombre 4 a pour image f(4) = 14.

On calcule f(0) = 2 et f(1) = 2. Ainsi 0 et 1 sont deux antécédents de 2 par f.

Ex: Soit la fonction $f: x \to x^2 - x$

Déterminer l'image de -5; 0; 3 et 10, puis rechercher les antécédents de 0.

TT Ensemble de définition d'une fonction

Définition 1

On appelle ensemble de définition de la fonction f l'ensemble des valeurs que peut Définition: prendre la variable x dans le calcul de f(x).

Ex: Soit la fonction f définie sur l'intervalle [-1;6] par l'expression $f(x) = 3x^2 - 1$.

L'ensemble de définition de f est [-1,6]; pour tout nombre x de [-1,6] le nombre f(x)existe.

Ex: Soit la fonction q définie par l'expression $q(x) = \frac{1}{x}$.

Pour pouvoir calculer q(x), le nombre x ne doit pas être égal à zéro.

L'ensemble de définition de f est $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

Ex: Soit la fonction $h: x \to \sqrt{x}$.

Pour pouvoir calculer h(x), le nombre x ne doit pas être négatif.

L'ensemble de définition de h est donc $]0; +\infty[$.

Exercice 1 Déterminer l'ensemble de définition des fonctions :

$$f: x \mapsto \frac{1}{x+3}$$
; $g: x \mapsto \frac{1}{x^2-9}$; $h: x \mapsto \frac{1}{x^2-x}$; $j: x \mapsto \frac{1}{(x-3)(x+7)}$

$$k: x \mapsto \sqrt[4]{x-2} \; ; \quad l: x \mapsto \frac{\sqrt{x+3}}{x-2} \; ; \quad m: x \mapsto \sqrt{(x-1)(x-5)}$$

III Courbe représentative d'une fonction

1- Définition:

On appelle courbe représentative (ou représentation graphique) de la fonction f l'ensemble des points M du plan de coordonnées (x, f(x)), où x parcourt l'ensemble de définition E de f.

En d'autres termes, le point M(x;y) est sur la courbe représentative de la fonction f si et seulement si y = f(x).

Ex: Soit la fonction f définie par l'expression $f(x) = 3x^2 - 2x + 1$.

A(1,2) est sur la courbe de f, car f(1) = 2.

B(-3,34) est sur la courbe de f, car f(-3) = 34.

C(2,4) n'est pas sur la courbe de f, car f(2) = 9 /

Exercice 2 On sait que la fonction f vérifie les conditions suivantes :

- son ensemble de définition est D = [-5; 4];
- les nombres -4 et 4 ont la même image 3;
- les solutions de l'équation f(x) = -2 sont 1 et 2;
- le nombre -5 est un antécédent de 0 par f;
- f(-2) = -1, f(0) = -3 et f(3) = 0, 5.

, Tracer une courbe pouvant représenter la fonction f .

IV- Quelques cas particuliers

1 Les fonctions paires

Definition:

On note f une fonction et D_f son domaine de definition.

On dit que f est paire si et seulement si, les deux conditions ci-dessous sont verifiees :

ightharpoonup Si $x \in \mathbb{D}_f$ alors $-x \in D_f$ (tout nombre de D_f a son opposé dans D_f)

 \triangleright Pour tout $x \in D_f$ alors f(-x) = f(x) (un nombre et son opposé ont la meme image)

Graphiquement cela se traduit par le fait que : \mathcal{C}_f est symetrique par rapport à l'axe des ordonnees.

Exemple:

On note $f: x \rightarrow \neg x2 + 4$, montrer que f est paire

2 Les fonctions impaires

Definition:

On note f une fonction et D_f son domaine de definition.

On dit que f est impaire si et seulement si, les deux conditions ci-dessous sont verifiees :

ightharpoonup Si $x \in \mathbb{D}_f$ alors $-x \in D_f$ (tout nombre de D_f a son opposé dans D_f)

 \triangleright Pour tout $x \in D_f$ alors f(-x) = -f(x) (un nombre et son opposé ont des images opposees)

Graphiquement cela se traduit par le fait que : \mathcal{C}_f est symetrique par rapport à l'origine du repere.

Exemple:

On note $f: x \longmapsto -x^3$, montrer que f est impaire

IV Sens de variation des fonctions

1 Définition

Définition:	On dit qu'une fonction f est croissante (respectivement décroissante) sur un intervalle
	E lorsqu'elle conserve (respectivement inverse) l'ordre sur cet intervalle.
	Cela signifie que, pour tout couple (a,b) d'éléments de E , si $a < b$ alors, $f(a) \le f(b)$
	(respectivement $f(a) \ge f(b)$).

Professeur: Rachid BELEMOU

Cours

Lycée: Oued Eddahab

Généralités sur les fonctions

Niveau: TCT - BIOF

Année : 2017-2018

Pour tout couple (a, b) tel que a < b, f(a) < f(b): la fonction f est croissante.

Pour tout couple (a, b) tel que a < b, f(a) > f(b): la fonction f est décroissante.

Ex: Soit la fonction affine f définie par : f(x) = -3x + 2. Déterminer le sens de variation de f

2 Etude du sens de variation de fonctions

Activité:

- Soit la fonction g définie par $g(x) = 3x^2 2$. Montrer que g est décroissante sur \mathbb{R}^+ , et croissante sur \mathbb{R}^+ .
- Résumer ces résultats dans un tableau de variation :

Définition: On dit qu'une fonction f est monotone sur un intervalle I lorsqu'elle est soit croissante, soit décroissante sur cet intervalle.

Ex: La fonction g précédente est monotone $sur] - \infty; 0]$ et $sur [0; +\infty[$. Par contre, g n'est pas monotone $sur] - \infty; +\infty[= \mathbb{R}.$

Exercice 3 Soit la fonction g définie par l'expression $g(x) = -3x^2 + 2$.

- -Determiner le sens de variation de g sur les intervalles $]-\infty;0]$ et $[0;+\infty[$.
- -Donner alors le tableau de variation de la fonction g.

V Maximum et minimum d'une fonction

Définition: On appelle maximum de f, lorsqu'il existe, le nombre f(a) tel que : pour tout nombre réel x de E, $f(x) \le f(a)$.

On appelle minimum de f, lorsqu'il existe, le nombre f(b) tel que : pour tout nombre réel x de E, $f(x) \ge f(b)$.

Propriété: Si une fonction f est croissante sur l'intervalle [a;b], et décroissante sur l'intervalle [b;c], alors elle admet sur l'inter-valle [a;c] un maximum, atteint en x=b et égal à f(b)

Demonstration: f est croissante sur [a; b], donc pour tout $x \in [a; b]$, on a $f(x) \le f(b)$. De même, f est décroissante sur [b; c], donc pour tout $x \in [b; c]$, on a $f(x) \le f(b)$. Finalement, $f(x) \le f(b)$ pour tout $x \in [a; c]$.

Propriété: Si une fonction f est décroissante sur l'intervalle [a;b], et crois- sante sur l'intervalle [b;c], alors elle admet sur l'intervalle [a;c] un minimum atteint pour x=b et égal à f(b).

Exercice 4 Soit la fonction g définie sur l'intervalle [-10; 10] par l'expression $g(x) = (x-2)^2 + 3$.

- 1. Etudier le sens de variation de g sur les intervalles [-10; 2] et [2; 10]. Donner le tableau de variation de g.
- 2. Déterminer le minimum de g.

VI. RESOLUTIONS GRAPHIQUES

1. Equation linéquation du type f(x) = b ou f(x) > b (Exemple)

On a représenté la courbe C_t représentative d'une fonction f définie sur l'intervalle [-4 ; 4].

Résolution d'une équation

Résoudre l'équation f(x) = a revient à chercher les $nombres qui ont pour <math>image \ a$.

Graphiquement,cela revient à chercher l'abscisse des points d'intersection de la courbe avec la droite d'équation y = a.

$$S = \{-2; 3\}$$

Résolution d'une inéquation

Résoudre l'inéquation f(x) > b revient à chercher les nombres qui ont une image supérieure à b.

Graphiquement,cela revient à chercher l'abscisse des points de la courbe situés « au dessus » de la droite d'équation y = b.

$$S = [-4; -1[\cup]2; 4]$$

2. Equation linéquation du type f(x) = g(x) ou f(x) > g(x) (Exemple)

On a représenté les courbe C_f et C_q représentant eux fonctions f et g définies sur l'intervalle [-4; 4].

Résolution d'une équation

Résoudre l'équation f(x) = g(x) revient à chercher les nombres qui ont la même image par f et par g.

Graphiquement,cela revient à chercher l'abscisse des points d'intersection de la courbe C_f coupe la courbe C_g .

Résolution d'une inéquation

Résoudre l'inéquation f(x) > g(x) revient à chercher les nombres dont l'image par f est supérieure à l'image par g.

Graphiquement, cela revient à chercher l'abscisse des points pour lesquels de la courbe C_f est au dessus la courbe C_q .