Térinformatikai alkalmazások fejleszése

DÉNES BOTOND

Választott témakör

- Felhő és felhőárnyék detektálás multi-temporális műholdfelvételek alapján
- A feladat publikus műholdfelvételekről a felhők és felhőárnyékok maszkolása, több időpillanatban készített felvételek alapján.
- A kutatás során Indonéziáról készített Landsat-8 műhold felvételei kerültek vizsgálatra. A cikk egy MCM (Multitemporal Cloud Masking) algoritmust mutat be, melynek segítségével magas pontosságú eredményeket érnek el.

A módszer, röviden

- Normalizáljuk a képeket, és válasszuk ki a Landsat-8 3. (zöld), 4. (piros), 5. (közeli-infravörös),
 (SWIR-Short Wave Infrared) sávokat.
- 2. Az adott területről készített képek közül válasszunk ki egy olyan képet, mely nem tartalmaz sem felhőket, sem felhő-árnyékokat. Ez lesz a **referencia képünk**.
- 3. Válasszunk ki egy **megvizsgálandó képet**. Egy pixelről úgy döntjük el, hogy felhős-e (vagy felhő árnyékos-e), hogy összehasonlítjuk a megvizsgálandó képen található pixelt a referencia képen található pixellel. Ha a kiválasztott sávokban levő eltérések megfelelőek, akkor az adott képkockát felhősnek, vagy felhő-árnyékosnak klasszifikáljuk annak függvényében, hogy melyik sávokban milyenek voltak az eltérések.

Az algoritmus

Figure 7. Flow chart of MCM method

A módszer által elért eredmény

- A módszert a "Confusion matrix" technikájával validálták.
- A False-negative-ok (omission error) aránya 0.003 felhő detektálásra, és 0.045 felhő-árnyék detektálásra.

A False-positive-ok (comission error) aránya 0.014 felhő detektálásra, és 0.017 felhő-árnyék detektálásra.

A módszer lehetőségei és limitációi

Lehetőségek:

- könnyen és magas pontossággal detektálhatunk felhőket és felhő-árnyékokat.
- Javíthatja az adatválasztást olyan kutatásoknál, melyek nem férnek hőmérő-sávokhoz.

Korlátok:

- Vastag felhők detektálására alkalmas csak.
- Kézi beavatkozásra van szükség, amikor a referencia-képeket kiválasztjuk.
- Nehéz megkülönböztetni azokat a pixeleket, melyek felhőt és épületet, illetve felhő-árnyékot és vizet tartalmaznak.

Megvalósítás terve

- Cél: reprodukálni a cikkben levő eredményt (elsősorban felhődetektálás), készíteni hozzá egy konzolos alkalmazást
- Választott programozási nyelv: Rust (Georust : GDAL, GeoJSON, GeoTIFF ...)
- Verziókezelés: Github
- Issue tracking: Github
- https://github.com/BotyDns/cloud-detection

Megvalósítás terve

Megvalósítás terve

Hét	Dátum	
4.	márc. 21.	Kutatási terv elkészítése és bemutatása
5.	márc. 28.	Adatgyűjtés, adatelemzés
6.	ápr. 4.	Felhődetektáló algoritmus prototípusának elkészítése
7.	ápr. 11.	Felhődetektáló algoritmus első szemmel látható eredményeinek előkészítése, beszámolása
8.	ápr. 18.	Felhődetektáló algoritmus paramétereinek javítása (ha nem sikerül reprodukálni az adatformátumot)
9.	ápr. 25.	Összehasonlítási metrikák bevezetése a konzolos alkalmazáson belül.
10.	máj. 2.	Haladás bemutatása, összehasonlítva más módszerekkel (Fmask, beépített módszerek)
11.	máj 9.	Ha minden jól megy: felhő-árnyék detektálás
12.	máj. 16.	Eredmények összesítése.
13.	máj. 23.	Végső eredmények bemutatása

Köszönöm a figyelmet!