

「지능화 파일럿 프로젝트」

머신비전의 딥러닝 활용 사례

CONTENTS

Chungbuk National University Industrial Al Research Center

- 머신비전과 딥러닝
- 딥러닝 활용 사례

● 머신비전과 딥러닝●

머신비전

• 머신비전이란

: 기계에 인간이 가지고 있는 <mark>시각과 판단 기능</mark>을 부여하여 사람이 인지하고 판단하는 기능을 하드웨어와 소프트웨어로 구성된 시스템으로 구현한 기술

• 머신비전의 활용 분야

: 제품 불량 검사, 의료, 보안, 자율주행 기술 등 다양한 분야에서 활용

딥러닝

- 기계학습이란
 - : 특정 작업(task)에 대한 데이터를 이용하여 컴퓨터로 하여금 스스로 특정 작업에 대한 규칙(또는 모델)을 학습 하도록 하는 것 (MLP / SVM / Decision Tree 등)
- 딥러닝이란
 - : 복잡한 문제해결, 성능향상을 위하여 기존 기계학습을 더 깊게(Deep) 심화된 기술 (CNN / RNN / DNN)

딥러닝

- 기존 기계학습 모델은 학습에 필요한 특징 추출을 사용자에 의존
- 딥러닝 모델은 학습에 필요한 특징 추출이 모델 자체에서 이루어짐

MACHINE LEARNING

DEEP LEARNING

딥러닝

• 딥러닝의 주요 모델 3가지 : 분류(Classification), 물체검출(Object Detection), 군집화(Segmentation) 분류(Classification) : 데이터의 종류(lable or class or etc..)를 판별하는 모델 물체 검출(Object Detection) : 데이터의 종류와 함께 위치를 판별하는 모델 군집화(Segmentation) : 데이터의 종류와 함께 물체의 경계선을 판별하는 모델

Classification

Object Detection

Segmentation

딥러닝

• 딥러닝 모델의 학습과 적용을 위한 4 단계

- 딥러닝 모델 필요한 데이터 수
- 데이터베이스 구선

[x1, y1, x2, y2]

학습된 모델로 실 데이터 검증 수행 검증 결과 분석 및 피드백

Segmentation

● 딥러닝 활용 사례 ●

답러닝 기반 부품 분류 기술

- 부품과 부품 라이브러리를 매칭하는 티칭 과정이 기존에 육안으로 이루어져 공정 효율이 낮음
- 부품과 부품 라이브러리를 자동으로 매칭하여 티칭 과정에 소요되는 시간 단축

1. PCB 이미지 with Gerber

<기존 사용자 육안에 의한 부품 분류 및 티칭>

딥러닝 기반 부품 분류 기술

Device Image

SOT3

SOT3(with Silk)

SOT4

딥러닝 기반 부품 분류 기술

- 실크, 패턴 등 불필요영역을 제거하여 부품 영역 추출
- 추출된 부품 영역으로 분류 결과 기존 결과에 비해 높은 분류 정확도 달성

부품유형 사용방법	DT	SVM	MLP[1]	분류 네트워크	제안방법
평균 정확도	82	68	86	90.2	96.6
Precision	82	69	86	92.9	96.6
Recall	83.2	80.7	87.1	81.1	90.6
F1-measure	81.7	68.3	85.9	81.7	91.3

<추출된 부품 영역>

<부품 분류 결과>

- 프린트(Print) : PCB 기판에 솔더(뗌납) 도포
- 마운트(Mount) : 해당 위치에 부품 위치
- 리플로우(Reflow): 가열하여 부품과 PCB 부착

- SMT 결함의 특징이 뚜렷하고 불필요한 배경 영역이 적은 솔더 영역을 추출
- 두 개의 이미지를 입력으로 하는 다중 스트림 합성곱 신경망을 이용하여 결함의 학습
- 학습한 합성곱 신경망을 이용하여 SMT 결함을 분류

- SMT 결함의 특징이 뚜렷하고 불필요한 배경 영역이 적은 솔더 영역을 추출
- 두 개의 이미지를 입력으로 하는 다중 스트림 합성곱 신경망을 이용하여 결함의 학습 및 분류
- 분류 모델 : ResNet

- 기존 CNN 대비 개발 방법이 높은 분류 정확도, 정밀도 및 재현율 보유
- 실제 PCB 기반에 대한 검사 수행

Method Measure		Non-CNN Based			CNN-Based	
		Decision Trees	SVM	MLP	Late-Merge (Proposed)	
Average Acc	curacy (%)	45.6	88.4	84.9	96.0	
Precision (%)		62.2	93.4	90.3	97.9	
Recall (%)		45.6	88.4	84.9	96.0	
F1-score (%)		52.6	90.8	87.5	96.9	

Method	Cinala Ctroam	Dual-Stream		
Measure	Single-Stream	Early-Merge	Late-Merge (Proposed)	
Average Accuracy (%)	95.9	90.1	96.0	
Precision (%)	87.8	83.5	97.9	
Recall (%)	95.9	90.3	96.0	
score (%)	91.6	86.8	96.9	

딥러닝 기반 소형 카메라 모듈(CCM) 결함 분류

- 모델 교체 주기가 빠른 CCM의 외관 검사를 위한 유연성이 있는 결함 분류 알고리즘 필요
- 크기가 작은 미세 결함에 대한 분류 정확도를 높이기 위하여 영상 분할 방법 사용

이물 결함

<크기가 작은 미세 결함>

그리드 분할

슬라이딩 윈도우 분할

<영상 분할 방법>

딥러닝 기반 소형 카메라 모듈(CCM) 결함 분류

- 겹쳐짐을 허용하는 슬라이딩 윈도우 방식으로 검사 패치 추출
- 학습한 결함 분류 네트워크에 패치를 입력하여 분류 결과를 출력, 종합하여 최종 결함 분류
- 분류 모델 : EfficientNet

딥러닝 기반 소형 카메라 모듈(CCM) 결함 분류

정상

코팅 벗겨짐

$\lambda =$	1 JL	I + I	
	ᄔᅜ	ᇄ	

얼룩

And the second of the second o	The second second second
是	쪼

<결함 분류 결과>

	CNN	Patch-based + CNN
정상	86.2	87.3
코팅 벗겨짐	91.2	94.7
스크래치	95.4	95.5
얼룩	90.7	93.3
파티클	93.1	98.8
찍힘	94.1	99.2
평균	91.8	94.8

평가항목	목표	시험결과	판정
불량검출률	95 % 이상	98.3 %	PASS
가성불량률	10 % 이하	0.6 %	PASS
불량 종류	5 종	5 종	PASS
검사 시간	500 ms 이하	93.65 ms	PASS

<CCM 결함 분류 영상>

딥러닝 기반 메모리 모듈 리드 검사

• 메모리 모듈 리드에서 발생하는 결함 검사

[메모리모듈]

[메모리 모듈 리드 결함]

딥러닝 기반 메모리 모듈 리드 검사

- 스크래치 결함 : 결함이 선 형태로 이어진 결함
- 얼룩 결함 : 리드 표면에 주변부보다 밝거나 어두운 영역이 존재하는 결함
- 이물질 결함 : 리드 표면에 이물질이 부착된 결함

[스크래치]

[이물질]

[얼룩]

[검사 영상]

딥러닝 기반 메모리 모듈 리드 검사

• 분류 네트워크 : TransUNet (UNet)

딥러닝 기반 메모리 모듈 리드 검사

• Segmentation 기반으로 93.2 % 불량 검출률 달성

입력 영상

Mask 영상

결함 검사 결과

구분	Segmentation 기반
GPU RAM 사용량	약 3GB
학습 시간	1시간 이내
검사 시간 (ms / lead)	최대 : 200 ms 최소 : 45 ms
불량 검 출률	93.2 %
가성 불량률	0.1 %

- 실제 제조 라인에서 결함 샘플의 취득이 어려움 (데이터 불균형)
 정상 샘플만으로 정확하게 결함의 분류가 가능한 검사 알고리즘이 필요

- 특징 벡터를 합성곱 신경망으로 Mapping하여 정상 샘플의 특징 벡터를 군집화
 군집화된 정상 샘플의 특징 벡터를 구분하는 임계값 추출
- 임계값을 통하여 양/불 판정

- 오토인코더 (Auto-Encoder) 기반의 불량 검출 시스템 개발
 오토인코더의 핵심 정보 추출을 담당하는 인코더 / 디코더 구조 이용
- 정상 데이터만을 학습하여 인코더가 정상 샘플만 출력하도록 학습
- 검사 샘플 입력 시, 불량 제외한 맵 도출

- 오토인코더 (Auto-Encoder) 기반의 불량 검출 시스템 개발
- 오토인코더의 핵심 정보 추출을 담당하는 인코더 / 디코더 구조 이용
- 정상 데이터만을 학습하여 인코더가 정상 샘플만 출력하도록 학습
- 검사 샘플 입력 시, 불량 제외한 맵 도출

TABLE III PERFORMANCE OF DEFECT DETECTION METHODS

Method Defect Type	L2 Autoencoder [18]	SSIM Autoencoder [18]	Variational Autoencoder [16]	VQ-VAE [29]	VQ-VAE with Feature Vector Frequency Map (Proposed)
Coating	60.4	60.7	66.9	57.4	81.8
Scratch	57.0	58.1	60.1	62.1	69.1
Stain	61.4	62.3	69.6	78.5	84.7
Average	59.6	60.4	65.5	66.0	78.5

"경청해 주셔서 감사합니다"

