

Chapter 3: Jaringan Access

Chapter 3: Objectives

Mahasiswa akan mampu:

- Menjelaskan bagaimana protokol pada layer fisik dan layanannya menyokong komunikasi melalui jaringan data.
- Membangun jaringan sederhana menggunakan peralatan yang ada.
- Menjelaskan peran dari layer data link dalam menyokong komunikasi melalui jaringan data.
- Membandingkan teknik media access control techniques dan logical topologies yang digunakan di jaringan.

Chapter 3

- 3.1 Protokol Layer Fisik
- 3.2 Media Jaringan
- 4.1 Protokol Layer Data Link
- 4.2 Media Access Control (MAC)
- 3-4 Simpulan

Membuatnya Terkoneksi

Terhubung ke Jaringan

Home Router

Membuatnya Terkoneksi

Terhubung ke Jaringan

Connecting to the Wired LAN

Membuatnya Terhubung

Network Interface Cards

Terhubung dengan Wireless LAN menggunakan Range Extender

Tujuan dari Layer Fisik

Layer Fisik

In diagrams, signals on the physical media are depicted by this line symbol.

Tujuan dari Layer Fisik

Media Layer Fisik

Sample electrical signals transmitted on copper cable

Representative light pulse fiber signals

Microwave (wireless) signals

Tujuan dari Layer Fisik

Standar dari Layer Fisik

Standard organization	Networking Standards	
ISO	 ISO 8877: Officially adopted the RJ connectors (e.g., RJ-11, RJ-45) ISO 11801: jaringan cabling standard similar to EIA/TIA 568. 	
EIA/TIA	 TIA-568-C: Telecommunications cabling standards, used by nearly all voice, video dan data jaringan. TIA-569-B: Commercial Building Standards for Telecommunications Pathways dan Spaces TIA-598-C: Fiber optic color coding TIA-942: Telecommunications Infrastructure Standard for Data Centers 	
ANSI	• 568-C: RJ-45 pinouts. Co-developed with EIA/TIA	
ITU-T	• G.992: ADSL	
IEEE	 802.3: Ethernet 802.11: Wireless LAN (WLAN) & Mesh (Wi-Fi certification) 802.15: Bluetooth 	

Prinsip – prinsip dari Layer Fisik

Media	Physical Components	Frame Encoding Technique	Signalling Method
Copper cable	UTPCoaxialConnectorsNICsPortsInterfaces	 Manchester Encoding Non-Return to Zero (NRZ) techniques 4B/5B codes are used with Multi-Level Transition Level 3 (MLT-3) signaling 8B/10B PAM5 	 Changes in the electromagnetic field Intensity of the electromagnetic field Phase of the electromagnetic wave
Fiber Optic cable	 Single-mode Fiber Multimode Fiber Connectors NICs Interfaces Lasers dan LEDs Photoreceptors 	Pulses of lightWavelength multiplexing using different colors	A pulse equals 1.No pulse is o.
Wireless media	Access PointsNICsRadioAntennae	 DSSS (direct-sequence spread-spectrum) OFDM (orthogonal frequency division multiplexing) 	Radio waves

Bandwidth

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = 1,000 bps = 10^3 bps
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10^6 bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10^9 bps
Terabits per second	Tbps	1 Tbps = 1,000,000,000,000 bps = 10^12 bps

Throughput

Tipe – tipe media Fisik

Media Jaringan

Kabel Tembaga

Karakteristik dari Media Tembaga

Media Tembaga

Kabel Shielded Twisted-Pair (STP) Resided Shield Twisted Pairs

Kabel Coaxial

Pengamanan Media Tembaga

The separation of data and electrical power cabling must comply with safety codes.

Cables must be connected correctly.

Installations must be inspected for damage.

Equipment must be grounded correctly.

Standar Pengkabelan UTP

Category 5 and 5e Cable (UTP)

- Used for Data transmission
- Cat 5 supports 100
 Mbps and can support
 1000 Mbps but it is not
 recommended
- Cat 5e supports 1000 Mbps

Konektor UTP

Tipe – tipe Kabel UTP Cable

Cable Type	Standard	Application
Ethernet Straight-through	Both ends T568A or both ends T568B	Connecting a network host to a network device such as a switch or hub.
Ethernet Crossover	One end T568A, other end T568B	Connecting two network hosts. Connecting two network intermediary devices (switch to switch, or router to router).
Rollover	Cisco proprietary	Connect a workstation serial port to a router console port, using an adapter.

T568A

T568B

Menguji Kabel UTP

Properti dari Pengkabelan Fiber Optic

Pengkabelan Fiber Optic

Desain Media Kabel Fiber

solvents, and other contaminants. This outer jacket composition can vary depending on the cable

usage.

Click on each component for more information.

Tipe – tipe Media Fiber

- Small Core
- · Less Dispersion
- · Suited for long distance applications
- · Uses lasers as the light source
- Commonly used with campus backbones for distances of several thousand meters

- · Larger core than single mode cable
- Allows greater dispersion and therefore, loss of signal
- Suited for long distance applications, but shorter than single mode
- · Uses LEDs as the light source
- Commonly used with LANs or distances of a couple hundred meters within a campus network

Pengkabelan Fiber Optic

Konektor Jaringan Fiber

ST Connectors

SC Connectors

LC Connector

Duplex Multimode LC Connectors

Fiber Optic Pengkabelan

Menguji Kabel Fiber

Optical Time Domain Reflectometer (OTDR)

Pengkabelan Fiber Optic

Fiber versus Tembaga

Implementation issues	Copper media	Fibre-optic	
Bandwidth supported	10 Mbps – 10 Gbps	10 Mbps – 100 Gbps	
Distance	Relatively short (1 – 100 meters)	Relatively High (1 – 100,000 meters)	
Immunity to EMI dan RFI	Low	High (Completely immune)	
Immunity to electrical hazards	Low	High (Completely immune)	
Media dan connector costs	Lowest	Highest	
Installation skills required	Lowest	Highest	
Safety precautions	Lowest	Highest	

Properti dari Media Nirkabel

Tipe – tipe dari Media Nirkabel

- IEEE 802.11 standards
- Commonly referred to as Wi-Fi.
- Uses CSMA/CA
- Variations include:
 - 802.11a: 54 Mbps, 5 GHz
 - 802.11b: 11 Mbps, 2.4 GHz
 - 802.11g: 54 Mbps, 2.4 GHz
 - 802.11n: 600 Mbps, 2.4 dan 5 GHz
 - 802.11ac: 1 Gbps, 5 GHz
 - 802.11ad: 7 Gbps, 2.4 GHz, 5 GHz, dan 60 GHz

- IEEE 802.15 standard
- Supports speeds up to 3 Mbps
- Provides device pairing over distances from 1 to 100 meters.

- IEEE 802.16 standard
- Provides speeds up to 1 Gbps
- Uses a point-to-multipoint topology to provide wireless broadband access.

Wireless LAN

Cisco Linksys EA6500 802.11ac wireless router

Standar 802.11 Wi-Fi

Standard	Maximum Speed	Frequency	Backwards compatible
802.11a	54 Mbps	5 GHz	No
802.11b	11 Mbps	2.4 GHz	No
802.11g	54 Mbps	2.4 GHz	802.11b
802.11n	600 Mbps	2.4 GHz atau 5 GHz	802.11b/g
802.11ac	1.3 Gbps (1300 Mbps)	2.4 GHz dan 5.5 GHz	802.11b/g/n
802.11ad	7 Gbps (7000 Mbps)	2.4 GHz, 5 GHz dan 60 GHz	802.11b/g/n/ac

Layer Data Link

Penggunaan Layer Data Link

Sublayer Data Link

jaringan				
Data Link	LLC Sublayer			
Data Link	MAC Sublayer			
Physical		802.3 Ethernet	802.11 Wi-Fi	802.15 Bluetooth

Chapter 4

Penggunaan Layer Data Link

Media Access Control

Data link layer protocols govern how to format a frame for use on different media.

At each hop along the path, an intermediary device accepts frames from one medium, decapsulates the frame and then forwards the packets in a new frame. The headers of each frame are formatted for the specific medium that it will cross.

Penggunaan Layer Data Link

Menyediakan Akses ke Media

Struktur Frame Layer 2

Layer Data Link

Standar-standar Layer 2

Data Link Layer

Physical Layer

LLC Sublayer		IEEE 802.2						
MAC Sublayer	rnet	8	t)	3z net)	ab r Copper)	802.6		
Physical Layer	Ethernet	IEEE 802.3 (Ethernet)	IEEE 802.3u (FastEthernet)	IEEE 802.3z (GigabitEthernet)	IEEE 802.3ab (GigabitEthernet over C	Token Ring/iEEE 802.6	FDDI	

OSI Layers

LAN Specification

Standar Layer Data Link

Standard organization	Networking Standards
IEEE	 802.2: Logical Link Control (LLC) 802.3: Ethernet 802.4: Token bus 802.5: Token passing 802.1: Wireless LAN (WLAN) & Mesh (Wi-Fi certification) 802.15: Bluetooth 802.16: WiMax
ITU-T	 G.992: ADSL G.8100 - G.8199: MPLS over Transport aspects Q.921: ISDN Q.922: Frame Relay
ISO	 HDLC (High Level Data Link Control) ISO 9314: FDDI Media Access Control (MAC)
ANSI	• X ₃ T _{9.5} dan X ₃ T ₁₂ : Fiber Distributed Data Interface (FDDI)

Topologi Fisik Umum dari WAN

Full mesh topology

Topologi WAN

Topologi Fisik Point-to-Point

Topologi WAN

Topologi Logik Point-to-Point

Topologi WAN

Half dan Full Duplex

Topologi Fisik LAN

Physical Topologies

Star topology

Extended star topology

Bus topology

Ring topology

Topologi Logik untuk Shared Media

Topologi LAN

Topologi Multi-Access

Topologi LAN Topologi Ring

Alamat Layer 2

Logical Multi-Access Topology

Logical Point-to-Point Topology

Data Link layer Addresses not required.

A Point-to-Point frame has only 1 possible destination.

Frame LAN dan Frame WAN

Frame Ethernet

A Common Data Link Layer Protocol for LANs

Frame

Field name	riedilible	Destination	Source	Туре	Data	Frame Check Sequence
Size	8 bytes	6 bytes	6 bytes	2 bytes	46 - 1500 bytes	4 bytes

Preamble - used for synchronization; also contains a delimiter to mark the end of the timing information.

Destination Address - 48 bit MAC address for the destination node.

Source Address- 48 bit MAC address for the source node.

Type - value to indicate which upper layer protocol will receive the data after the Ethernet process is complete.

Data or payload - this is the PDU, typically an IPv4 packet, that is to be transported over the media.

Frame Check Sequence (FCS) - A value used to check for damaged frames.

Protokol Frame Point-to-Point

A Common Data Link Protocol for WANs

Frame

-								
Field name	Flag	Address	Control	Protocol	Data	FCS		
Size	1 byte	1 byte	1 byte	2 bytes	variable	2 or 4 bytes		

Flag - A single byte that indicates the beginning or end of a frame. The flag field consists of the binary sequence 01111110.

Address - A single byte that contains the standard PPP broadcast address. PPP does not assign individual station addresses.

Control- A single byte that contains the binary sequence 00000011, which calls for transmission of user data in an unsequenced frame.

Protocol- Two bytes that identify the protocol encapsulated in the data field of the frame. The most up-to-date values of the protocol field are specified in the most recent Assigned Numbers Request For Comments (RFC).

Data - Zero or more bytes that contain the datagram for the protocol specified in the protocol field.

Frame Check Sequence (FCS) - Normally 16 bits (2 bytes). By prior agreement, consenting PPP implementations can use a 32-bit (4-byte) FCS for improved error detection.

Frame Nirkabel 802.11

Cisco Networking Academy® Mind Wide Open™