Lab Nr. 11, Numerical Calculus

Numerical Integration II

Romberg's Method; Gaussian Quadratures

- 1. Implement Romberg's method for the trapezoidal rule. Keep also track of the number of function evaluations.
- **2.** For the five weight functions and intervals given in the table, implement a Matlab routine that uses Gaussian quadratures to approximate the value of an integral, with a given number of nodes. Compute the nodes and the coefficients of the Gaussian quadrature formula using the Jacobi matrix (see Theorem 3.18, Lecture 10).

Applications

1. Approximate the integral

$$I = \int_{0}^{\pi/2} \frac{dx}{2 + \sin x}$$

(whose exact value is $\frac{\pi\sqrt{3}}{9}$), with 5 correct decimals using Romberg's method for the trapezium rule. Compute the error of the approximation and the number of function evaluations.

- **2.** Approximate π using a suitable Gaussian quadrature with 2 nodes. Find the error of the approximation.
- 3. Approximate the integral

$$I = \int_{0}^{\pi/4} e^{\cos x} \, dx,$$

using a Gaussian formula with $n=1,2,\ldots,5$ nodes. Display the approximate values of I and the errors of each approximation.

4. Use appropriate Gaussian quadratures with n=2,4,6,8 and 10 nodes to approximate the integrals

$$\mathbf{a)} \int_{0}^{\infty} e^{-x} \sin x \, dx \, \Big(= \frac{1}{2} \Big);$$

$$\mathbf{b)} \int\limits_{\mathbb{R}} e^{-x^2} \cos x \ dx;$$

c)
$$\int_{-1}^{1} \frac{\sin(x^2)}{\sqrt{1-x^2}} dx$$
.

Optional

5. Consider the integral

$$I = \int\limits_0^1 \frac{\sin x}{x} \, dx.$$

- a) Compute I with the Matlab function integral. So the integral exists.
- **b)** Use Romberg's method for the trapezoidal rule to approximate *I*. What is happening and why? Find a solution and fix the problem.

Name	Notation	Polynomial	Weight Fn.	Interval	α_k	$eta_{m{k}}$
						$\beta_0 = 2,$
Legendre	l_m	$\left[(x^2 - 1)^m \right]^{(m)}$	1	[-1, 1]	0	$\beta_k = (4 - k^{-2})^{-1}, k \ge 1$
			_			$\beta_0 = \pi,$
Chebyshev 1^{st}	T_m	$\cos\left(m \arccos x\right)$	$(1-x^2)^{-\frac{1}{2}}$	[-1, 1]	0	$\beta_1 = \frac{1}{2},$
						$\beta_k = \frac{1}{4}, k \ge 2$
		. [/				$\beta_0 = \frac{\pi}{2},$
Chebyshev 2 nd	Q_m	$\frac{\sin\left[(m+1)\arccos x\right]}{\sqrt{1-x^2}}$	$(1-x^2)^{\frac{1}{2}}$	[-1, 1]	0	$\beta_k = \frac{1}{4}, k \ge 1$
		·				$\beta_0 = \Gamma(1+a),$
Laguerre	L_m^a	$x^{-a}e^x \left(x^{m+a}e^{-x}\right)^{(m)}$	$x^a e^{-x}, \ a > -1$	$[0,\infty)$	2k+a+1	$\beta_k = k(k+a), k \ge 1$
						$\beta_0 = \sqrt{\pi},$
Hermite	H_m	$(-1)^m e^{x^2} \left(e^{-x^2}\right)^{(m)}$	e^{-x^2}	$(-\infty,\infty)$	0	$\beta_k = \frac{k}{2}, k \ge 1$