Instance Based Classifiers MSC. BUI QUOC KHANH KHANHBQ@HANU.EDU.VN

Instance Based Classifiers

- Instance-based classifiers
 - do not induce a model from training data
 - use a set of pre-classified instances to predict "on the fly" the class label of unseen cases
 - Called lazy classifiers
- K-Nearest Neighbors (KNN)

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Eager vs Lazy Lernears

- Eager learner: induce a model fitting the training set – decision trees, rule-based classifiers, Naïve Bayes, etc
- Lazy learners: do not require model induction from data – they need to compute similarity of the unseen instance w.r.t. a set of pre-classified examples

Eager classifiers

- Decision trees
- Classification rules
- Naïve Bayes

Unseen

data

Lazy classifiers

K-Nearest-Neighbor Classifiers

- Requires three things
 - The set of pre-classified instances
 - Distance Metric to compute distance between instances
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unseen instance X:
 - Compute distance of X to other instances
 - Identify k nearest neighbors (smallest distance, highest similarity)
 - Use class labels of k nearest neighbors to determine the class label of unseen instance(e.g., by taking majority vote)

K-Nearest-Neighbor Classifiers

- Requires three things
 - The set of pre-classified instances
 - Distance Metric to compute distance between instances
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unseen instance X:
 - Compute distance of X to other instances
 - Identify k nearest neighbors (smallest distance, highest similarity)
 - Use class labels of k nearest neighbors to determine the class label of unseen instance(e.g., by taking majority vote)

Compute distance of X to other instances - Euclidean distance

- Compute distance between two points:
 - Euclidean distance

$$dist(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

- where $x=\langle x_1,...,x_n\rangle$ and $y=\langle y_1,...,y_n\rangle$ are two examples, n is the number of their attributes, and x_i and y_i the values of the i-th attributes of x and y
- Euclidean distances apply only to numerical attributes

Compute distance of X to other instances - Euclidean distance

$$dist(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Compute distance of X to other instances - SMC

Simple Matching Coefficient:

•
$$SMC = \frac{number\ of\ matching\ attribute\ values}{Number\ of\ attributes}$$

- Given
 - X1= <15,rome,yellow>
 - X2= <20,paris,yellow>
- SMC(X1,X2) = 1/3 = 0.33

Compute distance of X to other instances - Cosine

- Documents are represented as a document word matrix
- Given two vectors of attributes (documents), A and B, the cosine similarity cos(θ) is represented using a dot product and magnitude as

similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

 Since term frequencies are positive, cos(θ) ranges from 0 to 1, with 1 meaning exactly the same documents

Compute distance of X to other instances - Cosine

	W ₁	W ₂	W ₃	W ₄	W ₅	Class
d1	0	1	1	1	0	Sport, politics
d2	0	0	1	1	1	gossip
d3	1	0	0	1	0	Sport, gossip
d4	1	0	0	1	0	politics

•
$$Cos(d_1, d_2) = \frac{\sum_i d_1(i) \times d_2(i)}{\sqrt{\sum_i d_1(i)^2} \times \sqrt{\sum_i d_2(i)^2}}$$

Cos(d1,d2) =
$$\frac{2}{\sqrt{3} \times \sqrt{3}}$$
 = 0.66

Cos(d3,d4) =
$$\frac{2}{\sqrt{2} \times \sqrt{2}}$$
 = 1 (d3 and d4 are identical)

K-Nearest Neighbor Classifiers

- Requires three things
 - The set of pre-classified instances
 - Distance Metric to compute distance between instances
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unseen instance X:
 - Compute distance of X to other instances
 - Identify k nearest neighbors (smallest distance, highest similarity)
 - Use class labels of k nearest neighbors to determine the class label of unseen instance(e.g., by taking majority vote)

K-Nearest Neighbor Classifiers

- Requires three things
 - The set of pre-classified instances
 - Distance Metric to compute distance between instances
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unseen instance X:
 - Compute distance of X to other instances
 - Identify k nearest neighbors (smallest distance, highest similarity)
 - Use class labels of k nearest neighbors to determine the class label of unseen instance(e.g., by taking majority vote)

Determining the class of a new instance

- K-nearest neighbors of an instance X are data points (instances in the training set) that have the k smallest distances from X (the k most similar instances)
- What if the K-nearest neighbors have different class labels?

- K=3
- 1 positive and 2 negative examples
- What is the class of X?

Determining the class of a new instance

- Determining the class of a new instance X from the k nearest neighbors :
 - Each neighbor Y has associated a weight $w(Y) = 1/d^2$, where d is the distance of Y from X
 - Distant examples will have little effect on the class of X
 - Take the majority weighted vote of class labels among the knearest neighbors
 - NOTE: if the distance of X from Y is 0 (the two instances coincide),
 then class(X)=class(Y)

Determining the class of a new instance

- **Example**: k=3; 1 positive example with distance d_1 =2, and 2 negative ones, with distances d_2 =3 and d_3 =5, respectively.
 - w+ = 1/4 = 0.25
 - W = 1/9 + 1/25 = 0.15
 - Vote = 0.25-0.15 > 0
- The new instance is classified positive

K-NN The choice of K

 K-nearest neighbors of an instance X are data points (instances) that have the k smallest distances to x

K-Nearest Neighbor Classifiers

- Choosing the value of k:
 - If k is too small, sensitive to noise points

• If k is too large, neighborhood may include points from other

classes

Issues with K-NN Classifiers

- The quality of classification strongly depends on the proximity metrics
- Suppose we want to classify persons based on their height and weight
 - Height has a low variability from 1.5 to 1.9 meters
 - Weight has a higher variability from 50 to 150 kg
 - The proximity measure is dominated by the height, unless the scale of the attributes is not taken into consideration
- Suppose each example is described in terms of 50 attributes, but only 2 are relevant to classification; examples having identical values for the 2 attributes may nevertheless be distant –proximity is dominated by not relevant attributes

Conclusions

- k-NN classifiers are lazy learners that
 - do not build models explicitly (unlike eager learners such as decision tree induction and rule-based systems)
 - use a set of pre-classified instances along with similarity metrics for classifying unseen data
 - Classifying a test instance X may be expensive as the similarity of X to all training examples is to be computed