Vector Spaces (I)

- 1. Introduction to Vector spaces
- 2. Column-space and Nullspace
- 3. Solving Ax = 0. Pivot variables, special functions

A new level of understanding for Matrix calculation

- For the newcomer involves lots of NUMBERS
- ❖ For the beginner involves the use of **VECTORS**, i.e. **Ax** and **AB** are linear combinations of n vectors, the columns of A
- ❖ For the initiated the third level of understanding SPACES of vectors
- \rightarrow completes the understanding of Ax = b

VECTOR SPACES

- ❖ One can add vectors & multiply them by scalars → linear combinations
- Define Vector Spaces
- \clubsuit Example vector space \Re^2 set of all vectors with 2 real nb. components
- ❖ Vector [V] represented by an arrow from origin to (a, b) call ℝ² the x-y plane

The 8 rules

- Given 2 vectors \mathbf{x} and \mathbf{y} , both vector addition and multiplication should obey the following rules: (1) $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
 - (2) x + (y + z) = (x + y) + z
 - (3) There is a unique "zero vector" such that x + 0 = x for all x
 - (4) For each x there is a unique vector -x such that x + (-x) = 0
 - (5) 1 times x equals x
 - (6) $(c_1c_2)x = c_1(c_2x)$
 - (7) c(x + y) = cx + cy
 - (8) $(c_1 + c_2)x = c_1x + c_2x$.

SUBSPACES

- ❖ A vector space that is contained inside of another vector space is called a subspace of that space.
- ***** For example, take any non-zero vector v in \Re^2 . Then the set of all vectors c**v**, where c is a real number, forms a subspace of \Re^2 . [0]
- \clubsuit A line in \Re^2 that does not pass through the origin [0] is not a subspace of \mathbb{R}^2 .
- ❖ Multiplying any vector on that line by 0 gives the zero vector, which does not lie on the line.
- Every subspace *must contain the zero vector* because vector spaces are closed under multiplication.

- A set of vectors is "closed" under addition v + w & multiplication cv (and cw), if these operations do NOT leave the subspace!
- ❖ CLOSURE if collection of vectors is "closed" under linear combinations
 Example: the collection of vectors with exactly 2 positive real valued components is NOT a vector space.

Examples of Subspaces

- riangle The subspaces of \Re^2 :
 - \triangleright all of \Re^2
 - > any line through [0]
 - > the zero vector alone Z
- riangle The subspaces of \Re^3 :
 - \triangleright all of \Re^3
 - > any plane through the origin
 - > any line through the origin
 - > the zero vector alone Z

Key points:

- Every Subspace contains the ZERO vector
- Lines through the origin are also subspaces
- ❖ ℜ^N is also a valid subspace

COLUMN SPACE

❖ Given a matrix **A** with columns in \Re^3 – these columns and all their linear combinations form a subspace in \Re^3 –

Column space C(A)

❖ The column space of A is the plane through the origin of \Re^3 that contains both $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$

❖ The goal for this lecture → understand
Ax = b in terms of subspaces & column
space.

Ax = b A =
$$\begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix}$$
 b = $x_1 \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ + $x_2 \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$

COLUMN SPACE

- The most important subspaces are tied directly to a matrix A.
- ❖ The goal is still to solve Ax = b
- ❖ If **A** is not invertible, the system is solvable for some **b**' but not for the others
- ❖ The "good" b vectors that can be written as linear combinations of A columns
- → these b's form the column space of matrix A
- To solve Ax = b is equivalent to expressing b as a combination of A's columns
- ❖ When **b** is in the column space it is a combination of the columns of **A**
- The coefficients in that combination is the **SOLUTION** for **Ax** = **b**

COLUMN SPACE example

❖ Does Ax = b always has a solution for any RHS b?

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Possible b's that give solutions:
$$\begin{bmatrix} 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ x_3 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
Possible b's that give solutions:
$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

<u>Subspaces – Union & Intersection</u>

- \Leftrightarrow A **vector space** is a collection of vectors which is closed under linear combinations for any two vectors \mathbf{v} and \mathbf{w} in the space and any two real numbers \mathbf{c} and \mathbf{d} , the vector $\mathbf{c}\mathbf{v} + d\mathbf{w}$ is also in the vector space.
- A plane **P** containing (0,0,0) and a line **L** containing (0,0,0) are both subspaces of \Re^3 .
- \clubsuit The union **PUL** is generally NOT a subspace of \Re^3 .
- **The intersection P** \cap L is always a subspace of \Re^3 .

COLUMN SPACE – Other Examples

 \clubsuit Let's try to describe the column spaces (as subspaces of \Re^2) for:

$$\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$$

- ❖ The column space of I is the WHOLE space \Re^2 every vector is a combination of the columns of I → C(I) is \Re^2
- ❖ The column space of A is only a LINE the column space contains (1,2) and (2,4) as well as other vectors (c, 2c) but they are along the same line
- \rightarrow C(A) is a line
- ❖ The column space of **B** is the WHOLE space \Re^2 . Every b is attainable! Ex: b = (5,4) is col-2 + col-3, or 2col-1 + col-3.

Recap – Column spaces

- A column space of a matrix **A** is the vector space made up of all linear combinations of the columns of **A**.
- Ax = b
- \Leftrightarrow Given a matrix **A**, for what vectors **b** does **Ax** = **b** have a solution **x**?

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}$$

Ax = **b** does not have a solution for every choice of **b** b/c solving the eq. is equivalent to solving four linear equations in three unknowns.

Recap - Column spaces

- \Leftrightarrow If there is a solution **x** to Ax = b, then **b** must be a linear combination of the columns of **A**.
- ❖ Only three columns cannot fill the entire four dimensional vector space some vectors **b** cannot be expressed as linear combinations of columns of **A**.
- ❖ what b's allow Ax = b to be solved?
- A useful approach is to choose **x** and find the vector **b** = **Ax** corresponding to that solution. The components of x are just the coefficients in a linear combination of columns of **A**.
- ❖ The system of linear equations Ax = b is solvable exactly when b is a vector in the column space of A.

Recap – Column spaces

- ❖ For our example matrix **A**, what can we say about the column space of **A**?
- Are the columns of A independent?
- ❖ In other words, does each column *contribute something new* to the subspace?
- ❖ The third column of A is the sum of the first two columns, so does not add anything to the subspace throw it away?
- **The column space of our matrix A** is a two dimensional subspace of \Re^4 .

Definition

- The nullspace N(A) of a matrix A is the collection of all solutions $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$ to the equation $\mathbf{A}\mathbf{x} = \mathbf{0}$. These vectors \mathbf{x} are in $\Re^{\mathbf{N}}$.
- A(m, n) square or rectangular \rightarrow one immediate solution is x = 0
- \Rightarrow If **A** is invertible then $\mathbf{x} = 0$ is the only solution
- \Leftrightarrow For non-invertible A, there are also non-zero solutions to Ax = 0
- \rightarrow each of these solutions belong to the nullspace of $A \rightarrow N(A)$

The possible solutions for the Nullspace:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} c \\ c \\ -c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad c = 0, \text{ or any scalar}$$

This Nullspace N(A) is a line in \Re^3

Check that solution vectors form a subspace

- \Rightarrow Suppose **x** and **y** are in the nullspace \Rightarrow **Ax** = 0 and **Ay** = 0
- **The rules of matrix multiplication** $\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) = \mathbf{0} + \mathbf{0}$ and $\mathbf{A}(\mathbf{c} \mathbf{x}) = \mathbf{c}\mathbf{A}\mathbf{x} = \mathbf{c}\mathbf{0}$
- \Rightarrow Since RHS are zero \Rightarrow x + y and cx are in the nullspace N(A)
- ❖ The solution vectors \mathbf{x} have \mathbf{n} components → they are vectors in $\mathfrak{R}^{\mathbf{N}}$ → the nullspace N(A) is a subspace of $\mathfrak{R}^{\mathbf{N}}$
- ightharpoonup The column space C(A) is a subspace of \mathfrak{R}^{M} .
- \clubsuit If the right side **b** is not zero, the solutions of Ax = b do not form a subspace.
- ightharpoonup The vector $\mathbf{x} = 0$ is only a solution if $\mathbf{b} = 0$.
- ❖ When the set of solutions does not include **x** = 0, it cannot be a subspace!!!

Example (1)
Silven an SLE
$$\begin{cases} x_1 + 2x_2 = 0 \\ 3x_1 + 6x_2 = 0 \end{cases}$$
 A =
$$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
 matrix **A** is singular

- **❖** What is the **Nullspace** of A?
- In the row picture line $x_1 + 2x_2 = 0$ is the same as $3x_1 + 6x_2 = 0$ (x3)
- Arr This line is the **N(A)** and it contains all solutions (x_1, x_2)
- ❖ Best way to describe a nullspace → choose one point "special solution", i.e. for $x_2 = 1$, $x_1 = -2$ from first equation.
- Conclusion: the **Nullspace N(A)** contains all multiples of $s = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

Example (2)

- Given x + 2y + 3z = 0 the corresponding matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$
- ❖ The equation Ax = 0 produces a **plane** through the origin (0, 0, 0) → this plane is a subspace of \Re^3 and it is the nullspace of A
- The plane x + 2y + 3z = 0 has 2 special solutions: $s_1 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$ $s_2 = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ $s_3 = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$
- These vectors $\mathbf{s_1}$ and $\mathbf{s_2}$ lie on the plane x + 2y + 3z = 0 which is N(A).
- \clubsuit All vectors in the plane are combinations of $\mathbf{s_1} \& \mathbf{s_2}$ (zeros in col 2 & 3 *free*)
- ❖ Col-1 contains the pivot so first component **x** is not "**free**"

Siven 3 matrices
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$$

Example (3)
Silven 3 matrices
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$$
 $\mathbf{B} = \begin{bmatrix} A \\ 2A \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 4 \\ 6 & 16 \end{bmatrix}$ $\mathbf{C} = [A \ 2A] = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix}$

$$\mathbf{C} = [A \ 2A] = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix}$$

- →let's describe their nullspaces
- Ax = 0 has only the zero solution $\rightarrow N(A) = Z$

A is invertible – all columns of A have pivots

❖ The rectangular matrix **B** has the same nullspace Z - by adding extra eq., the N(B) cannot become larger \rightarrow the extra rows impose more conditions on the vectors **x** in the nullspace.

Example (3)

- ❖ The rectangular matrix **C** is very different has extra columns vs. rows
- The solution vector x has 4 components elimination will produce pivots in the first 2 columns of C – the other 2 columns are free:

$$\mathbf{C} = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix} \implies \mathbf{U} = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 2 & 0 & 4 \end{bmatrix}$$

- ❖ For the free variables x₃ & x₄

For the free variables
$$\mathbf{x}_3 \& \mathbf{x}_4$$

we make special choices of ones and zeros

The pivot variables $\mathbf{x}_1 \& \mathbf{x}_2$ are determined by $\mathbf{U}\mathbf{x} = 0$

$$\mathbf{x}_1 = \begin{bmatrix} 0 & 2 & 0 & 4 \\ 1 & \text{pivot} & \text{free} \\ \text{columns} & \text{columns} \\ \text{columns} & \text{columns} \\ \text{solumns} & \text{solumns} \\ \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{x}_4 \\ \mathbf{x}_4 & \mathbf{x}_5 & \mathbf{x}_6 & \mathbf{x}_7 & \mathbf{x}_8 & \mathbf{x}_9 \\ \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{x}_4 & \mathbf{x}_9 & \mathbf{x}_9 & \mathbf{x}_{10} \\ \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_2 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_3 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_1 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_2 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_3 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_1 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_1 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_1 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_2 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_3 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{x}_{10} \\ \mathbf{x}_1 & \mathbf{x}_{10} & \mathbf{x}_{10} & \mathbf{$$

Example (3)

- The Elimination procedure will NOT stop at the upper triangular matrix U!
- Continue the procedure to make the matrix simpler:
 - Produce '0' above pivots by eliminating upward
 - > Produce '1' in the pivots by dividing whole row by its pivot
- \Rightarrow RHS Zero vector does not change \Rightarrow N(C) stays the same easier to be see when one reaches the **Reduced Row Echelon Form R**:

$$\mathbf{U} = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 2 & 0 & 4 \end{bmatrix} \implies \mathbf{R} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix} \quad \begin{array}{c} \text{(1) R1} - \text{R2} \\ \text{(2) R2 times } \frac{1}{2} \end{array}$$

❖ Special solution are MUCH easier to find with **Rx** = 0

Recap remarks

- ightharpoonup For many matrices, the only solution to $\mathbf{A}\mathbf{x} = 0$ is $\mathbf{x} = 0$.
- ❖ Their nullspaces N(A) = Z contain only that zero vector.
- ❖ The only combination of the columns that produces **b** = 0 is then the "zero combination" or "trivial combination".
- ightharpoonup The solution is trivial (just x = 0) but the idea is not trivial.
- ❖ This case of a zero nullspace Z is of the greatest importance → meaning is that the columns of A are independent. No combination of columns gives the zero vector (except the zero combination).
- ❖ All columns have pivots, and no columns are free.

3. Solving Ax = 0. Pivots & Special solutions

- ❖ A way to do elimination on Rectangular matrices!
- Allowing all matrices not just "nice" square matrices with inverses
- Pivots are still nonzero
- The columns below the pivots are still zero
- ❖ But it might happen that a column has no pivot
- That free column doesn't stop the calculation
 - → Go on to the next column!

Example

❖ Given a 3 by 4 rectangular matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 2 & 8 & 10 \\ 3 & 3 & 10 & 13 \end{bmatrix} \implies \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 4 & 4 \end{bmatrix}$$
 substract 2 x row 1 substract 3 x row 1

❖ Trouble for pivot 2 → got to next column – second pivot is "4"

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 2 & 8 & 10 \\ 3 & 3 & 10 & 13 \end{bmatrix} \implies \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 4 & 4 \end{bmatrix} \implies \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
substract row 2 from row 3

❖ Only 2 pivots and last equations: 0 = 0

Back substitution for Ux = 0

- ❖ We have 4 unknowns and just 2 pivots → many possible solutions!
- Separate pivot variables from free variables
- ❖ When A is invertible, all variables are pivot variables
- Free variables $x_2 \& x_4$ could be given ANY values \rightarrow then back substitute into the pivot variables x₁ & x₂
- - \rightarrow set $x_2 = 1 \& x_4 = 0$; back substitution $\rightarrow x_3 = 0 \& x_1 = -1$
 - \rightarrow set $x_2 = 0 \& x_4 = 1$; back substitution $\rightarrow x_3 = -1 \& x_4 = -1$

Complete solution

$$\Rightarrow$$
 s₁ \Rightarrow x₂ = 1 & x₄ = 0

$$* s_2 \rightarrow x_2 = 0 \& x_4 = 1$$

All solutions are
linear combinations of

linear combinations of s₁ & s₂

$$\mathbf{x} = \mathbf{x}_{2} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \mathbf{x}_{4} \begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\mathbf{x}_{2} - \mathbf{x}_{4} \\ \mathbf{x}_{2} \\ -\mathbf{x}_{4} \\ \mathbf{x}_{4} \end{bmatrix}$$
special special complete

- ❖ The special solutions are in the nullspace N(A) and their linear combinations are filling out the whole nullspace
- There is special solution for every free variable
- \clubsuit If no free variables, there are n pivots, only solution is the trivial one $\mathbf{x} = 0$.
- ❖ The nullspace contains only Z zero vector

Echelon matrices

- \Leftrightarrow Forward elimination A \rightarrow U acts by row operations (row exchanges)
- ❖ When no pivot available (=0) moves to the next column
- ❖ An echelon matrix is an *m x n* "staircase" U matrix less pivots than columns

$$\mathbf{U} = \begin{bmatrix} p & x & x & x & x & x & x \\ 0 & p & x & x & x & x & x \\ 0 & 0 & 0 & 0 & p & x \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \text{ pivot variables } x_1, x_2, x_6 \\ 4 \text{ free variables } x_3, x_4, x_5, x_7 \\ 4 \text{ special solution in N(U)} \end{bmatrix}$$

❖ The columns have 4 components → C(U) lies in \Re^4 - Every vector in C(U) has 4th component zero $(u_1, u_2, u_3, 0)$. The b' in Ux = b are combinations of the 7 columns ❖ The nullspace N(U) is a subspace of \Re^7 → The solutions of Ux = 0 are all the combinations of the 4 special solutions – one for each free variable

Echelon matrices

- \diamond Columns 3-4-5-7 have no pivots \rightarrow free variables x_3 , x_4 , x_5 , x_7
- Set 1 free variable to '1' and the other free variables to '0'
- Solve Ux = 0 for the pivot variables x_1 , x_2 , x_6
- This gives one of the 4 special solutions in the N(U)

Theorem:

- ightharpoonup If Ax = 0 has more unknowns than equations (more columns than rows, n>m), there is at least one free variable, and one special solution non-zero
- ❖ A short-wide matrix always has non-zero vectors in its nullspace
- The nullspace has the dimension of the number of free variables

Reduced Echelon matrix

- Go an extra step from an echelon U matrix:
- (a) divide second row by 4
- (b) subtract 2 times new row from 1st row $\mathbf{R} = \mathbf{rref(A)} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- The reduced row echelon matrix **R** has '1' as pivots & '0' above pivots
- If A in invertible, its R = I
- R makes it very easy to find special solutions directly from R

❖ Special solutions:
$$x_1 + x_2 + 2x_3 + 3x_4 = 0$$
 & $4x_3 + 4x_4 = 0$

> set $x_2 = 1$ & $x_4 = 0$; back substitution → $x_3 = 0$ & $x_1 = -1$ $x = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ -1 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -x_2 - x_4 \\ x_2 \\ -x_4 \\ x_4 \end{bmatrix}$

> set $x_2 = 0$ & $x_4 = 1$; back substitution → $x_3 = -1$ & $x_1 = -1$

1 1 2 3 0 0 4 4 0 0 0 0

Review of Key ideas:

- 1. The nullspace N(A) is a subspace of R^n . It contains all solutions to Ax = 0
- 2. Elimination produces an echelon matrix **U**, and then a row reduced **R**, with pivot columns and free columns
- 3. Every free column of \mathbf{U} or \mathbf{R} leads to a special solution. One free variable could be set to '1' and the others to '0'. Back substitution solves $\mathbf{A}\mathbf{x} = 0$
- 4. The complete solution to Ax = 0 is a combination of the special solutions
- 5. If **n > m** then **A** has at least one column without pivots, giving a special solution. So there are nonzero vectors x in the nullspace of this rectangular **A**