Exercices de prolongement pour la seconde

> Ensemble de nombres

Exercice 1:

- Faire un diagramme de Venn des ensembles \mathbb{N} , \mathbb{Z} , \mathbb{D} et \mathbb{Q} et placer sur ce diagramme les nombres -8 ; $\frac{45}{12}$; 0 ; 4,017 ; $\frac{9^{24}}{3^{49}}$; 10^{100} ; $0,2^4$.
- (2)Calculer et placer sur ce diagramme :

a=l'inverse du double de la somme de 3 et de 5

b =l'opposé du carré de la différence de 4 et de 9

c=la somme de l'inverse de 6 et de l'opposé de -3

d=le produit de 12 par la somme des inverses de 4 et de 3

Exercice 2:

Compléter par le symbole correct parmi $\in, \not\in, \subset, \not\subset$:

$$\frac{6}{2}$$
... \mathbb{N}

$$\{-26\}$$
...... \mathbb{Z}

$$3,2\dots\mathbb{Z}$$

$$\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\} \dots \mathbb{D} \qquad 27 \dots \mathbb{Z}$$

$$\frac{7}{5}$$
... \mathbb{D}

$$-47...\mathbb{Q}$$
 $-\frac{1}{3}...\mathbb{D}$

$$\frac{11}{13}$$
... \mathbb{Q}

$$\mathbb{N}$$
..... \mathbb{D}

$$-\frac{21}{3}\dots\mathbb{Z}$$

$$-\frac{21}{3}\dots\mathbb{Z}$$
 $-9478\dots\mathbb{Z}$

$$-\frac{0,1}{0,002}....\mathbb{Z}$$

$$\varnothing \dots \mathbb{D}$$

$$\left\{-\frac{1}{7},\frac{3}{4}\right\}\dots\mathbb{D}$$
 $\frac{2}{3}\dots\mathbb{D}$

$$\frac{2}{3}$$
... \mathbb{D}

$$\frac{11}{13}$$
... \mathbb{Q}

Exercice 3:

Calculer si nécessaire les nombres du tableau, puis compléter chaque case par \in ou $\not\in$:

	N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}
$a = -\frac{56}{8}$					
$b = \frac{9}{4}$					
$c = \frac{1}{3} : \left(-\frac{5}{6} \right)$					
$d = -\sqrt{3}$					
$e = \frac{2013}{9}$					

Notions d'intervalles

Exercice 5:

Écrire sous forme d'intervalles les représentations graphiques suivantes:

b)
$$+$$
 $+$ $+$ $+$ $+$ 0 2

Exercice 7:

Recopier et compléter le tableau suivant :

Inégalité	Intervalle	Représentation	
x < 2			
		$\begin{array}{ccccc} + & & & & \\ \hline -2 & & 0 & 1 \end{array} \longrightarrow$	
	$[-2; +\infty[$	***	
$-1 \leqslant x \leqslant 2$		***	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$]-\infty ; 0]$		
$0 < x \leqslant 1$			

Exercice 6:

Compléter les équivalences suivantes :

a)
$$-1 \leqslant x \leqslant 5$$
 équivaut à $x \in \dots$

b) ...
$$x$$
... équivaut à $x \in [0; 4]$.

c)
$$2 < x < \frac{7}{2}$$
 équivaut à $x \in \dots$

d) ...
$$x$$
 ... équivaut à $x \in [-2; 1[$.

e)
$$-5 \leqslant x < 0$$
 équivaut à $x \in \dots$

Exercice 8:

Compléter les pointillés par le symbole qui convient (∈ ou

a)
$$-2 \dots [-2; 1];$$

b)
$$-3...[-5; -1]$$

a)
$$-2...[-2; 1[;$$
 b) $-3...[-5; -1[;$ c) $-\frac{26}{5}...]-5; -4[;$ d) $4...[-3; 4[;$ e) $2\pi...]7; 8[;$ f) $0...]-\infty; +\infty[.$

d)
$$4 \dots [-3; 4]$$

e)
$$2\pi ...]7$$
; 8[

f)
$$0 \dots]-\infty$$
; $+\infty$

Exercice 9:

a)
$$[0:2] \cap [1:5]$$
:

b)
$$]-\infty:3] \cap [4:7]:$$

c)
$$]5:6] \cap [-2:7[:$$

d)
$$]-1:5] \cap]5:+\infty[$$

e)
$$]-\infty$$
; 1] \cap [1; $+\infty$ [.

Exercice 10:

a)
$$]-\infty:4] \cup [3:+\infty[:$$

b)
$$]-2:3] \cup [-5:7]$$

c)
$$]-4:3] \cup [2:+\infty[:$$

d)
$$]-8:-5] \cup [0:1]$$