a) Dla wszystkich badanych obwodów wykonać wykresy punktowe Usk(Isk).

				R_1L_3
Lp.	$U_{sk}[V]$	I_{sk} [mA]	$I_{sk}[A]$	f[Hz]
1	0.01	0.25	0.00025	50
2	1.971	13.12	0.01312	$R_{L3}[\Omega]$
3	3.89	25.6	0.0256	1.3
4	6.11	40.1	0.0401	$u(R_{L3})[\Omega]$
5	7.95	52.3	0.0523	0.1
6	9.7	63.7	0.0637	
7	12.08	79.3	0.0793	
8	14.23	93.5	0.0935	Tabelka 1.1
9	16	105.1	0.1051	Wartości zmierzonyc
10	17.92	117.9	0.1179	h dla
11	20.24	133.3	0.1333	obwodu RL
12	22.28	146.9	0.1469	
13	24.11	159.1	0.1591	
aı.		7,		151.8

b) Określanie metodą regresji liniowej współczynnika kierunkowego Z_L i $u(Z_L)$ $U_{sk} = Z_L I_{sk}$

 $Z_L = 151.80 \,\Omega$

$$u(Z_L) = 0.165367794 \approx \underline{0.17\Omega}$$

e) Dla szeregowego obwodu RL, z zależności (15) wyznaczyć indukcyjność L oraz jej niepewność uc(L). Obliczenia dla punktu nr 6

$$\underline{R = 150\Omega} \qquad \underline{u_C(R) = \underline{3}\Omega}$$

$$L_3 = L_3(Z_L, R, R_L, \mathsf{f})$$

$$u(f) = 0.87[Hz]$$

$$\frac{\partial L_3}{\partial Z_L} = \frac{Z_L}{2\pi f \sqrt{Z_L^2 - (R + R_L)^2}} = \frac{151.8}{314*\sqrt{23043.24 - 22891.69}} = \frac{151.8}{314*12.31056} = 0.03927$$

$$\frac{\partial L_3}{\partial f} = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f^2} = \frac{12.31056}{15700} = 0.000784 = 7.9E-04$$

$$\frac{\partial L_3}{\partial f} = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f^2} = \frac{12.31056}{15700} = 0.000784 = 7.9E-04$$

$$\frac{\partial L_3}{\partial R} = \frac{\partial L}{\partial R_L} = -\frac{(R + R_L)}{2\pi f \sqrt{Z_L^2 - (R + R_L)^2}} = -\frac{151.3}{314 * 12.31056} = -\frac{151.3}{3865.517} = -0.039141$$

$$u_{C}(L_{3}) = \sqrt{\left(\frac{\partial L}{\partial Z_{L}} * u(Z_{L})\right)^{2} + \left(\frac{\partial L}{\partial R} * u(R)\right)^{2} + \left(\frac{\partial L}{\partial R_{L}} * u(R_{L})\right)^{2} + \left(\frac{\partial L}{\partial f} * u(f)\right)^{2}} = 0$$

 $\sqrt{(0.03927 * 0.17)^2 + (-0.03914 * 3)^2 + (-0.03914 * 0.1)^2 + (7.90E-04 * 0.87)^2} = \sqrt{4.45676E-05 + 0.013788161 + 1.53202E-05 + 4.72E-07} = \sqrt{1.38E-02}$

$$L_3 = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f} = \frac{12.31056}{314} = 0.03921 \approx 0.04[H]$$