

功能基因高通量定量方法

High-Throughput qPCR Assays for Functional Genes

3 安新丽¹, 栗利娟^{1,3}, 周昕原^{1,3}, 黄福义^{1,3}, 朱永官^{1,2}, 苏建强^{1,*}

4

1

2

- 5 1城市环境与健康重点实验室,中国科学院城市环境研究所,厦门,福建省;2城市与区域生态国家重点
- 6 实验室,中国科学院生态研究中心,北京;3中国科学院大学,北京
- 7 *通讯作者邮箱: jqsu@iue.ac.cn

8

- 9 摘要:高通量定量 PCR 的原理是在模板 DNA 的 PCR 反应体系中加入荧光基团,进行
- 10 高温变性,低温复性,适温延伸的热循环聚合酶链式反应。高通量定量 PCR 包括染料
- 11 法和探针法, 其通过荧光信号实时监测 PCR 反应进程, 实现荧光信号积累与 PCR 产物
- 12 形成同步, 进而求得 Ct 值, 获得扩增曲线和溶解曲线。同时利用已知模板浓度的标准
- 13 品做对照,进而获得未知样本目的基因拷贝数。功能基因高通量定量 PCR 方法是基于
- 14 日本 TAKARA 公司 SmartChip 微孔芯片可进行高通量、高密度、纳升级别的实时定量
- 15 PCR 的方法。高通量定量 PCR 需要采用纳升级多样品自动加样器将样品分配到微孔芯
- 16 片上,并通过高密度实时定量 PCR 仪收集荧光信号,获得 Ct 值。微孔芯片一次运行可
- 17 以进行 5184 个独立扩增反应,单孔反应体系仅 100 nL,规避了以往传统 qPCR 方法的
- 18 基因检测单一化、费用成本高和效率低等缺点。该方法具有高通量、低样本量、低成本、
- 19 周期短、操作简单等优势,可广泛适用于各种环境样本,例如水体(湖泊、海洋、污水、
- 20 地下水等)、土壤、植物、沉积物、粪便、气溶胶颗粒等样品的功能基因标志物的精确
- 21 定量和 SNP 基因分型等。
- 22 关键词:高通量荧光定量,标准曲线,绝对丰度,微孔芯片

23

24

材料与试剂

- 25 1. 各种型号吸头(Mettler Toledo company,Rainin,RC LTS)
- 26 2. SmartChip MyDesign Chip(s) (Takara Biomedical Technology, Clontech, 640032)
- 27 3. 384 方孔板和封板膜 (Thermo Fisher, Thermo Scientific Nunc, 264573)
- 28 4. 无菌平底 96 孔板(Thermo Fisher,Thermo Scientific Nunc,174897)
- 29 5. LightCycler 480 SYBR Green I Master (Roche, 4887352001, -20°避光保存,

bio-101

- 30 保质期通常6个月)
- 31 6. High-Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Life
- 32 Technologies, 4374966, -20°避光长期保存)
- 33 7. 无核酸酶的 PCR 级水(任意供应商)
- 34 8. 一次性无菌加样槽 (Corning, Costar 4870)
- 35 9. PCR 引物对及探针(任意供应商)
- 10. TaqMan® Gene Expression Master Mix(Life Technologies,4369016,4°避光保
- 37 存)
- 38 11. 无核酸酶的 1X TE buffer pH 8.0 (任意供应商)
- 39 12. ROX 参比染料 (50X) (Life Technologies, 12223-012)
- 40 13. 牛血清蛋白 BSA (Sigma, A1933)
- 41 14. 0.2 ml, 1.5 ml 和 2ml 离心管 (Axygen,MCT-150-C,MCT-200-C)
- 15. Invitrogen Qubit dsDNA HS Assay (Thermo Fisher, Invitrogen,Q32851)
- 44 仪器设备

43

- 1. SmartChip Multisample Nanodispenser (Takara Biomedical Technology)
- 2. SmartChip Cycler (Takara Biomedical Technology)
- 47 3. 离心机 (Eppendorf, 5424 R, 5430)
- 48 4. 荧光定量 PCR 仪(Roche, LightCycler480II)
- 49 5. 超纯水 (任意供应商)
- 50 6. 氮气瓶 (任意供应商)
- 51 7. 移液器 (Eppendorf, 3120000909, 3122000035, 3122000051)
- 52 8. Vortex 蜗旋仪 (Scientific Industries, Vortex-Genie 2, SI-0246 (G560E))
- 53 9. Qubit 4.0 荧光定量仪(Thermo Fisher, Q33226)
- 55 实验步骤

54

- 56 一、引物、探针和质粒的配制
- 57 1. 模板 DNA 准备及质粒混标制备

- 58 1.1 模板 DNA 样品采用 Qubit 荧光定量仪检测 DNA 浓度,确保 DNA 浓度统一稀 59 释为 20-50 ng/μl 的浓度。若样品 DNA 浓度低于 20 ng/μl,建议对样品进行浓 60 缩。针对气溶胶、深层底泥、原生动物肠道等特殊样品,由于其 DNA 量极低, 建议直接进行高通量定量检测。
- 1. 2 针对 RNA 样品,准备 100-600 ng 的 RNA,采用 High-Capacity cDNA Reverse Transcription Kit with RNase Inhibitor 试剂盒对 RNA 进行反转录制备 cDNA。
- 1.3 每个质粒采用 TE buffer 溶解,按照每个质粒相同拷贝数进行合并,做成混合标
 液,最终浓度 2×10⁸ copies/μl,总体积约 500 μl 左右。
- 66 2. 引物和探针稀释
- 2.1 引物和探针干粉首先离心机微离,使得干粉聚集离心管底部(防止超净台稀释 引物或探针时粉末被吹出,造成引物或探针量减少),分别用 TE buffer 稀释成终浓度 100 μM 的母液。
- 70 3. HT-qPCR 用的引物板的配制
- 71 3.1 针对 SYBR Green 染料法[1-3]
- 72 1) 采用无菌 96 孔板,在每一个孔中加入一个靶基因的相应上下游引物,并记 73 录相应位置。按下列体积在每个孔中添加:

74 100 μM forward primer 8.5 μl
 75 100 μM reverse primer 8.5 μl
 76 1xTE buffer 83 μl

77 Total volume 100 μl

- 78 3. 2 针对 **Tagman** 探针法^[4,5]
- 79 1) 采用无菌 96 孔板,在每一个孔中加入一个靶基因的相应上下游引物及探针, 80 并记录相应位置。按下列体积在每个孔中添加:

100 μM forward primer 10.9 μl
 100 μM reverse primer 10.9 μl
 100 μM probe 3 μl
 1×TE buffer 75.2 μl
 Total volume 100 μl

86

87 二、标准曲线的测定

88 1. 将混标进行 10 倍系列稀释。系列稀释的混标(2×10⁸、2×10⁷、2×10⁶、2×10⁵、2
 89 ×10⁴、2×10³、2×10²)作为标准 DNA 样本,进行高通量定量分析,以不同基因标
 90 准质粒的对数值为横坐标,以测得的 Ct 值为纵坐标,绘制标准曲线^[4]。

91

92

三、高通量定量运行

- 93 1. 高通量定量运行的技术流程如图 1 所示。以 72 assays×72 samples 的阵列为例,
- 94 简要流程概述如下:
- 95 1.1.获得原始实验样品后,对样本中的微生物总 DNA 进行提取,之后对 DNA 样品
- 96 进行总量及纯度检测。检测合格后将 DNA 样品和 qPCR 所用的试剂添加至 384 孔
- 97 板作为样品板(Sample Sourceplate),同时将引物和 qPCR 所用的试剂添加至另
- 98 一 384 孔板作为引物板(Assay Sourceplate)。采用高通量自动微量加样设备分别
- 99 将样品板和引物板试剂添加至高通量 qPCR 芯片的微孔中,在 SmartChip
- 100 Real-Time PCR System 中实行 qPCR 反应及荧光信号检测,并自动生成扩增曲线
- 101 和溶解曲线。

72 samples imes 72 assays Sample Sourceplate Assay Sourceplate Sample/ PCR Reagents in 384-well plate SmartChip Multisample Nanodispenser Dispense primers/probes 5184 Dispense MyDesign 100nL samples chip reactions WAFERGEN SmartChip Cycler Experiment analysis

103 图 1 高通量定量 PCR 技术流程^[4]

102

104

105

106

107

2. 各试剂在微孔芯片运行的反应体系参考表 1(SYBR Green 染料法)和表 2(Taqman 探针法)。

表 1. SYBR Green 染料法荧光定量的体系(100 nl)

Reagent	Final concentration
Forward primer	0.5 μΜ

Reverse primer	0.5 μΜ	
SYBR Green I Master Mix	1x	
BSA (50 mg/ml)	1 mg/ml	
模板 DNA	5 ng/ul	

108

109

表 2. Taqman 探针法荧光定量的体系(100 nl)

Reagent	Final concentration
Forward primer	0.9 μΜ
Reverse primer	0.9 μΜ
Probe	0.25 µM
TaqMan Gene Expression Master Mix	1x
BSA (50 mg/ml)	1 mg/ml
模板 DNA	5 ng/ul

110

123

- 111 3. 根据以上终浓度分别配制 sample plate mix 和 assay plate mix。以 72 assays×72 samples 的阵列为例:
- 3.1 配制 sample PCR reagent Mix(一个 chip 的量)。如表 3:

表 3 Sample PCR reagent Mix 的配制

SYBR Green I Master Mix/	BSA (50 mg/ml)	PCR-grade	Total
Taqman Master mix		H ₂ O	volume
652 ul	20.9 ul	370.1 ul	1043 ul

- 1)将配置好的 PCR regent mix 混合均匀,转移进加样槽中,按照 72 assays×72 samples 的阵列样品分布格局 (如图 1) 避光条件下在 384-well sample sourceplate
- 117 上分配体积,每个孔中加样体积如下:

118 Prepared mix 12.4 ul

119 DNA 样品 3.1 ul

- 120 注:排枪使用"倒吸法"防止气泡产生,同时避光操作
- 3. 2 配制 assay PCR reagent Mix(一个chip 的量)。如表 4(SYBR Green 染料法)

122 和表 5 (Tagman 探针法):

表 4 SYBR Green 染料法 assay PCR reagent Mix 的配制

SYBR Green I Master Mix	PCR-grade	Total volume
	H ₂ O	
652 ul	391 ul	1043 ul

124

125

表 5 Taqman 探针法 assay PCR reagent Mix 的配制

Taqman Master mix	ROX (50x)	PCR-grade H ₂ O	Total volume
652 ul	26.1 ul	365 ul	1043 ul

126

127

128

129

130

131

132

133

134

135

136

138

143

144

145

146

1)将配置好的 PCR regent mix 混合均匀,转移到加样槽中,按照 72 assays×72 samples 的阵列样品分布格局(如图 1)避光条件下在 384-well assay sourceplate 上分配体积,每个孔中加样体积如下:

Prepared mix 12.4 ul

引物探针 3.1 ul

注:排枪使用"倒吸法"防止气泡产生,同时避光操作

- 3. 3 将分装好试剂的 assay sourceplate 和 sample sourceplate 的无菌 384 板上贴上封板膜,采用刮板将封板膜紧密贴在 384 板上,将 384 板于冷冻离心机 4°, 3500 *x g* 离心 5 min。随后将 384 板置于 4 ℃冰箱避光保存备用。
- 注: 切勿反转 384 板以免液体黏在封板膜上
- 137 3.4 高通量定量仪器运行操作
 - 1) 运行 SmartChip Multisample Nanodispenser 仪器
- 139 注: 该仪器主要用于将 384 板上的 mixture 分装到芯片上
- a. 打开 SmartChip Multisample Nanodispenser 仪器开关;
- b. 检查气瓶气体含量(确保气体含量>0.3 mpa),检查曝气瓶,确保曝气 水瓶装满超纯水;
 - c. 检查 NaClO 溶液瓶,每周更换一次 NaClO 溶液(NaClO 有效氯终浓度 0.2%,主要用于清洗管道除菌);
 - d. 打开气瓶气阀与曝气水瓶气阀,曝气 30min,压力控制 40 psi; 注:曝气务必充分,否则导致芯片表面有水珠出现
- e. 曝气完毕,关闭曝气水瓶上的气阀,在电脑操作界面进行 daily warm up 三次和 tip clean 一次;

bio-101

149	f.	设置参数—setup-mode-gene expression + Chip numberassays
150		(72), samples (72);
151	g.	输入引物板排列文件和样品板排列文件,输出 layout—Chip number 的
152		layout 文件;
153	h.	分装 assay sourceplate 即引物板,将 384 板放置仪器样品分装室内侧
154		(注:确保 384 板紧扣位置,且分装样品靠近最内侧)。放置芯片,记
155		录芯片编号,并将标有编号的一端靠近分装室最外侧。点击"dispense
156		assays"—"yes",运行完毕点击"tip clean"3 次。
157	i.	取下芯片,采用滤纸覆盖轻压表面,检查是否有水珠出现,小心在表面
158		粘贴白膜,冷冻离心机 4°,3500×g 离心 5 min。
159	j.	取下 assay sourceplate,同样的方式置换 sample sourceplate,重新放
160		置已分装引物的芯片(注:必须与前一步放置方向相同),点击"dispense
161		assays"—"yes",运行完毕点击"tip clean"3 次。
162		注:每次芯片分装完样品注意一定要进行 tip clean,分装完所有样品后
163		务必进行 daily clean。
164	k.	取下芯片,采用滤纸覆盖轻压表面,检查是否有水珠出现,小心在表面
165		粘贴蓝膜(注意贴膜方向),冷冻离心机 4°,3500×g 离心 10 min。
166	2) 运	行 SmartChip Cycler 仪器
167	注:该	仪器主要用于运行荧光定量 PCR 程序,收集荧光信号。
168	a.	首先打开 SmartChip Cycler 仪器,随后再打开电脑电源;
169	b.	检查气瓶压强,确保气瓶总压力不低于 100psi,否则及时更换气瓶,仪
170		器运行时压力维持在 120 psi;
171		注: 此步较为重要,影响后续荧光信号的收集。
172	C.	设置需要的 protocol,导入 Multisample Nanodispenser 仪器仪器上生
173		成的 layout 文件,选择 project;
174	d.	放置芯片,使蓝膜周边与仪器紧密粘贴,设置芯片信息,点击"run",运
175		行仪器;
176		注:确保芯片放置方向正确。

205

177	e. 选择结果文件存放位置,检查 pressure 是否处于"OK"状态,检查是	否
178	出峰。	
179	f. 运行结束后导出数据,点击"analysis",随后选择"file"下拉"save o	ell
180	data as"保存为 txt 格式文档。	
181		
182	3.5 数据处理—计算功能基因拷贝数	
183	1) 使用 Canco 软件获得各基因在各样本中的检出情况和 Ct 值(扩增循环数)	,
184	同时构建分别含有待检测的功能基因的标准质粒,根据已知浓度的标准	质
185	粒的 Ct 值绘制标准曲线 y=kx+b;	
186	2) 根据 SmartChip Real-Time PCR System 和 Canco 软件给出的各基因在	各
187	样本中的 Ct 值整理成 Ct 值总表并进行质控,质控条件如下:	
188	a. 当扩增效率小于 1.8 或大于 2.2 将舍弃该基因;	
189	b. 当阴性对照有扩增,则舍弃该基因;	
190	c. 当 Ct 值大于 31 时将认为没有扩增, 舍弃该基因在对应样本中的 Ct 值	0
191	注:其中在表格中标注"0"代表该基因在对应样本中未检出。而只有在三个技	术
192	重复中均被检出的基因,才会将该基因判定为阳性,并计算其平均值作	为
193	该基因在对应样本中 Ct 值。Ct 值代表该基因在对应样本中的扩增循环刻	쓏,
194	Ct 值越小意味着该基因在对应样本中的起始含量越高。	
195	3) 将样本 Ct 值代入标准曲线公式,获得样本基因的绝对定量信息,统计各	基
196	因在各样本中的基因数目。相对丰度的计算采用公式:相对拷贝数	=
197	10^(31-Ct)/(10/3)进行计算。	
198		
199	溶液配方	
200	1. 无菌 384 板、无菌枪头及无菌离心管:采用高压蒸汽灭菌,灭菌条件为 120°,30 min	,
201	103.4kPa。	
202		
203	致谢	
204	本工作的开展是在国家重点研发计划(2017YFE0107300), 国家自然科学基	金

(31722004,21936006)等项目的支持下完成的,感谢科技部与国家自然科学基金委的支

206 持。

207

208

参考文献

- Zhao, Y., Su, J. Q., Ye, J., Rensing, C., Tardif, S., Zhu, Y. G., Brandt K. K. (2019)
 AsChip: A High-Throughput qPCR Chip for Comprehensive Profiling of Genes
- Linked to Microbial Cycling of Arsenic. *Environ Sci Technol.* 2019, 53, 798–807.
- 212 2. Zheng, B. X., Zhu, Y. G., Sardans, J., Peñuelas, J. and Su, J. Q. (2018) QMEC:
- a tool for high-throughput quantitative assessment of microbial functional potential
- in C, N, P, and S biogeochemical cycling. Science China Life Sciences, 61: 1451-
- 215 **1462**.
- 3. Zhu, Y. G., Johnson, T. A., Su J. Q., Qiao M., Guo G. X., Stedtfeld, R. D.,
- Hashsham, S. A., Tiedje, J. M. (2013) Diverse and abundant antibiotic resistance
- genes in Chinese swine farms. *Proc Natl Acad Sci U S A*. 110(9): 3435-40.
- 219 4. An, X. L., Wang, J. Y., Pu, Q., Li, H., Pan, T., Li, H. Q., Pan, F. X., Su, J. Q. (2020)
- 220 High-throughput diagnosis of human pathogens and fecal contamination in
- marine recreational water. *Environ Res*, 190:109982.
- 222 5. Zhuang, F. F., Li, H., Zhou, X. Y., Zhu, Y. G., Su, J. Q. (2013) Quantitative
- detection of fecal contamination with domestic poultry feces in environments in
- 224 China. *AMB Express* 7(1): 80.

225

226