4-AMALIY TOPSHIRIQ

Mavzu: Suv bug'i kuch qurilmalarining sikllari

1-masala

Renkin siklida ishlayotgan bug' mashinasiga kirayotgan bug'ning bosimi P_1 = 1,5 MPa va harorati t_1 = 300 °S, turbinadan chiqayotgan bug'ning bosimi P_2 = 0,01 MPa. Bug'ning sarfi M = 940 kg/soat.

qurilmaning foydali ish koeffitsiyenti va quvvatini aniqlang.

Yechish.

qurilmaning foydali ish koeffitsiyenti:

$$\eta_{t} = \frac{h_{1} - h_{2}}{h_{1} - h_{2}^{t}}$$

bu tenglamada ${\bf h_1}$ va ${\bf h_2}$ bug'ning kengayishidan avvalgi va keyingi entalpiyalari, kj/kg; h_2^t - bosimi ${\bf R_2}$ ga teng bo'lgan kondensatning

entalpiyasi, kJ/kg ($h_2^t = c_p \cdot t_k$, $s_r = 4,19$ kJ/kg 0 S, t_k - kondensat harorati).

Bug'ning $\mathbf{h_1}$, $\mathbf{h_2}$ va h_2^t entalpiyalari va $\mathbf{t_k}$ lar \mathbf{h} - \mathbf{s} diagramasidan aniqlanadi (rasm 1). $\mathbf{h_1} = \mathbf{3040}$ kJ/kg, $\mathbf{h_2} = \mathbf{2190}$ kJ/kg, $h_2^t = \mathbf{47}$ kJ/kg.

U holda
$$\eta_t = \frac{3040 - 2190}{3040 - 47} = 0.3$$

Bug' qurilmas ining quvvati

$$N = M \cdot (h_2 - h_1) = \frac{940}{3600} \cdot (3040 - 2190) = 222 \text{ kVt}$$

bu tenglamada M - bug'ning sarfi, kg/sek.

Rasm 1. h-S diagrammasidan foydalanish sxemasi

2-masala

Uchta bug' qurilmasi Renkin siklida ishlamoqda. Uchta siklga ham boshlang'ich bosim $P_1=2$ MPa, keyingi bosim $P_2=0,02$ MPa.

Birinchi siklda ishchi jism - quruqlik darajasi x=0,9 bo'lgan nam bug'; ikkinchi siklda - quruq to'yingan bug' va uchinchi siklda xarorati $t_1=300$ 0S bo'lgan qizdirilgan bug'.

Sikllarning foydali ish koeffitsiyentlarini aniqlang va bir-biri bilan solishtiring.

Yechish.

Uchala sikl uchun ham foydali ish koeffitsiyentlari quyidagi tenglamadan aniqlanadi:

$$\eta_t = \frac{h_1 - h_2}{h_1 - h_2'}$$

h-S diagrammasidan:

a) birinchi sikl uchun

$$h_1{=}2620\;kJ/kg,\;h_2{=}1960\;kJ/kg,\;h_2^{/}\;=\;60\;\;kJ/kg$$

b) ikkinchi sikl uchun

$$h_1$$
=2800 kJ/kg, h_2 =2090 kJ/kg, h_2' = 60 kJ/kg

v) uchunchi sikl uchun

$$h_1$$
=3020 kJ/kg, h_2 =2230 kJ/kg, h_2' = 60 kJ/kg

U holda

a)
$$\eta_t = \frac{2620 - 1960}{2620 - 60} = 0.257$$

b)
$$\eta_t = \frac{2800 - 2090}{2800 - 60} = 0.259$$

v)
$$\eta_t = \frac{3020 - 2230}{3020 - 60} = 0,267$$

3-masala

Renkin siklida ishlayotgan bug' qurilmasiga qizdirilgan bug' kiritilagan. Bosimi $P_1 = 9$ MPa va harorati $t_1 = 450$ °S bo'lgan bug' trubinada bosimi P' = 2,9 MPa gacha kengaygandan keyin uning bosimi o'zgartirilmay t' = 350 °S gacha qayta qizdiriladi va yana turbinada bosimi $P_2 = 0,004$ MPa gacha kengayadi.

Siklning foydali ish koeffitsiyentini aniqlang.

Yechish

Sikldagi bug'ning kengayishi va qayta qizdirilishi 2- rasmda ifodalangan. Bu rasmda 1 - 2 bug'ning dastlabki kengayishi, 2 - 3 bug'ni qayta qizdirish, 3 - 4 bug'ning keyingi kengayishi.

Bug' qayta qizdiriluvchi Renkin siklining foydali ish koeffitsiyenti quyidagi tenglamadan aniqlanadi:

$$\eta_t = \frac{(h_1 - h_2) + (h_3 - h_4)}{(h_1 - h_k) + (h_3 - h_2)}$$

bu yerda $\mathbf{h_1}$, $\mathbf{h_2}$, $\mathbf{h_3}$, $\mathbf{h_4}$ - bug'ning 1,2,3 va 4 -holatlardagi (rasm 6) entalpiyasi, $\mathbf{kJ/kg}$;

 \mathbf{h}_{k} - kondensatning entalpiyasi, $\mathbf{kJ/kg}$ ($\mathbf{h}_{k} = \mathbf{c}_{r.} \mathbf{t}_{k}$).

h - S diagrammasidan: $h_1 = 3260 \text{ kJ/kg}$, $h_2 = 2960 \text{ kJ/kg}$,

 $h_3 = 3100 \text{ kJ/kg}, h_4 = 2030 \text{ kJ/kg}, h_k = 121 \text{ kJ/kg}.$

U holda
$$\eta_t = \frac{(3260 - 2960) + (3100 - 2030)}{(3260 - 121) + (3100 - 2960)} = 0,42$$

Rasm 2. Bug'ni qayta qizdirishning h - S diagrammada ko'rinishi.

5-vazifa

Bug' qizdirgichga kirayotgan bug'ning bosimi P_1 va quruqlik darajasi X_1 . qizdirgichdan chiqqan bug' turbinada bosimi P_2 gacha adiabatik jarayonda kengayadi. Turbinadan kondensatorga kirayotgan bug'ning quruqlik darajasi X_2 .

- 1) Bug' qizdirgichda 1 kg bug'ga berilgan issiqlik miqdorini (kJ/kg hisobida) va Renkin siklining issiqlik foydali ish koeffitsiyentini aniqlang.
- 2) Agarda bug' qizdirgichda bug' qo'shimcha Δ t ga qizdirilgach yana P_2 bosimgacha kengaytirilsa (X_2 bu holatda o'zgaradi) Renkin siklining foydali ish koeffitsiyenti qancha bo'ladi?
- 3) Bug'ni qizdirish va kengayish jarayonlarini **h S** diagrammasida chizib ko'rsating (masshtabsiz chizish mumkin).

Masalani yechish uchun ma'lumotlar 1 jadvalda keltirilgan.

Jadval 1

Shifrning oxirgi	P ₁ ,	X_1 ,	Shifrning oxirgidan	P ₂ ,	X_2 ,	Δt,
soni	MPa		oldingi soni	MPa		°S
0	6	0,87	0	0,12	0,98	110
1	4,7	0,85	1	0,15	0,99	120
2	6,9	0,91	2	0,09	0,95	100
3	3,1	0,94	3	0,08	0,97	90
4	4,3	0,89	4	0,14	0,96	130
5	2.5	0,9	5	0,05	0,98	185
6	5,7	0,92	6	0,07	0,95	160
7	3,5	0,88	7	0,035	0,94	105

8	4,5	0,86	8	0,02	0,96	140
9	5,0	0,89	9	0,025	0,98	115

Nazorat savoolari va topshiriqlar

1. Bugʻ kuch qurilmalari sxemalarini tasvirlang va ularning bir biridan farq qiluvchi xususiyatlarini koʻrsating. 2.Bugʻ kuch qurilmasi siklining FIK ni oshirish yoʻllarini koʻrsating. Siklning Ts — koordinatalardagi tasvirlanishidan foydalanib, sikl tahlilini bajaring