Answers and hints: Tut 6

- 6.1 Plot the data in the format given in the notes. Note that you can draw a straight line through the data that goes through the origin.
 - a) Data shows no effect of internal external or gas liquid mass transfer for these small particle sizes. Make sure you understand how to get to the same conclusion.
 - b) $\eta = 1$
 - c) $k_c = 4.458 \times 10^{-3} \text{ m. s}^{-1}$

6.2

- a) From plain old mol balance: $-r_a = 0.159 \ mol. \ m^{-3} s^{-1}$
- b) $k_L a_g = 0.03 \, s^{-1}$
- c) $C_s = 13.15 \ mol. \ m^{-3}$
- d) $\eta = 0.51$
- e) $C_s = 10.87 \ mol. \ m^{-3}$
- f) $C_{cat} = 3.53 \ kg \cdot m^{-3}$

6.3

- a) $C_s = 20.94 \, mol. \, m^{-3}$
- b) $\Omega = 0.255$
- c) $C_b = 40 \ mol. \ m^{-3}$
- d) k_c increases due to more vigorous mixing, $k_{c,new}=1.5\ k_{c,old}$
- e) Assume $k_c \alpha \ d_p^{-0.5}$ then x = 100%

6.4

- a) 10% increase in rate
- b) 83% increase
- c) $x_a = 94\%$