

02 수집 데이터 정의 및 처리 방안

데이터 전처리

STEEL_KIND	'CO' 데이터만 따로 추출.
WORK_GR FUR_NO	숫자로 치환. Ex) 1조 → 1.
SCALE HSB	적용 여부를 0,1로 치환. Ex) 미 적용 : 0, 적용 : 1 / 양품 : 0 , 불량 : 1
Other Data	의사 결정을 위한 데이터 삭제.

02 수집데이터정의 및 처리방안

일간의 제강 및 압연 과정 수집 데이터 각 노선 별 구분 포함

자료명	자료 설명	단위
SCALE	양품/불량	
SPEC	품명	
FUR_NO	생산시설 NO	
FUR_NO_ROW	생산시설 ROW	
FUR_HZ_TEMP	가열로_가열대_온도	<u>°C</u>
FUR_HZ_TIME	가열로_가열대_시간	<u>초</u>
FUR_SZ_TEMP	가열로_균열대_온도	<u>℃</u>
FUR_SZ_TIME	가열로_균열대_시간	<u>초</u>
FUR_TIME	가열로_내부에 있었던 시간	<u>초</u>
FUR_EXTEMP	가열로_추출온도	<u>°C</u>
ROLLING_TEMP_T5	롤링_온도	<u>°C</u>
HSB	HSB 적용여부	
ROLLING_DESCALING	ROLLING_DESCALING 작업 횟수	
WORK_GR	작업그룹	

HSB공정

High Performance Steel for Bridges 교량 맞춤형 고성능 강재

선택과 집중 -> CO 품목

EDA

상관계수는 0.773

	가열대 온도	가열대 시간	균열대 온도	균열대 시간
가열대 온도	1	-0.114395	<u>0.772907</u>	-0.222141
가열대 시간	-0.114395	1	-0.203401	0.177922
균열대 온도	<u>0.772907</u>	-0.203401	1	-0.45065
균열대 시간	-0.222141	0.177922	-0.450652	1

	가열대 온도	가열대 시간	균열대 온도	균열대 시간
가열대 온도	1	-0.086377	<u>0.792320</u>	-0.191196
가열대 시간	-0.086377	1	-0.175901	0.237392
균열대 온도	<u>0.792320</u>	-0.175901	1	-0.523054
균열대 시간	-0.191196	0.237392	-0.523054	1

'가열로 균열대시간 '

예측 모델을 통한 불량 분류

01

- Dataset을 train-test로 분리.
- 데이터 탐색을 위한 주요 모델 학습.

03 -RandomForest

- Max_depth = 3 으로 설정.
- N_estimator = 200 설정.

02 - DecisionTree

• Max depth = 3 으로 설정.

04 - GradientBoosting

- Max depth = 3 으로 설정.
- Learning_Rate =0.01 설정.

예측모델을 통한 물량 분류

7:3의 비율로 train : test 데이터 셋으로 나눔 및 모델 별 교사검증 적용

Decision Tree

 $max_depth = 3$

훈련 정확도 : 0.9488 테스트 정확도 : 0.9801

Random Forest

max_depth = 3,
n_estimators=200

Will I get an A on the next test?

Hours Slept ≥8	Plans to Cheat No	Hours Studied ≤3	Average Grade B	
	V			
	1	CX	VX	←
•		Yes	T.V	
		' '		

후련 정확도 : 0.96 테노트 정확도 : 0.974

Final Prediction: Yes

Gradient Boosting

max_depth = 3,
learning_rate = 0.01

훈련 정확도 : 0.949 테스트 정확도 : 0.98

..etc...etc...etc...

예측 모델을 통한 불량 분류

05 결론 도출 및 해결방안

#

- -각 호기별 2호선 점검 요망.
- -HSB공정은 문제없음.
- -CO를 제작하는 야간시간 작업자들에게 주의 요망.
 - --덧붙여 1조와 4조에게 세부사항 점검 및 교육 요망.
- -가열로 내부 시간을 취사선택할 필요가 있음.
- -획기적으로 불량율을 줄이기 위해 균열대 온도를 낮추어야 함.
 - --덧붙여 균열대 시간이 길수록 불량율이 매우 낮음.
- -제강 공정 : *가열로 시간을 줄이고 반대로 균열대 시간을 늘려야 함.*
- -압연 공정 : 롤링 출하 온도를 900도 내외로 맞춰 마무리 할 필요가 있음.

자료 출처

건설현장 불량 철강재 퇴출 나선다 | 한경닷컴 (hankyung.com) www.hankyung.com/news/article/2009032237901

팔마텍, 철강업계 '불량 제로' 견인한다 (ebn.co.kr) www.ebn.co.kr/news/view/617639

`건기법 개정` 불량 철강재 사용 근절 - 경북신문 (kbsm.net) www.kbsm.net/news/view.php?idx=26899

의사결정나무 이미지 Blog.hyeongeun.com/21

랜덤 포레스트 이미지 hleecaster.com/ml-random-forest-concept/

그레디언트 부스팅 이미지 bkshin.tistory.com/entry/머신러닝-15-Gradient-Boost

