Infectious Disease Dynamics in RevBayes

Inferring epidemiological dynamics based on genetic sequence data

Tracy Heath & Tanja Stadler

Data

of infected individuals through time

Models

Population dynamics described by SIR models:

$$\frac{dS}{dt} = -\lambda_0 I S/N$$

$$\frac{dI}{dt} = \lambda_0 I S/N - \delta I$$

$$\frac{dR}{dt} = \delta I$$

Data

of infected individuals through time

Models

Population dynamics described by SIR models:

Limitations

If sampling in early epidemic was missed:

Data

of infected individuals through time

Models

Population dynamics described by SIR models:

Limitations

If sampling in early epidemic was missed:

- Time of epidemic outbreak?
- ▶ Basic reproductive number R₀?

Data

of infected individuals through time

Models

Population dynamics described by SIR models:

Limitations

If sampling in early epidemic was missed:

- Time of epidemic outbreak?
- ▶ Basic reproductive number R₀?

Data does not tell who infected whom:

Population structure?

Inf1 ACACACCC Inf2 TCACACCT

Inf3 AAAGACTT

Inf4 ACAGACTT

Input:

Pathogen genetic data from different hosts

Inf1 ACACACCC

Inf2 TCACACCT

Inf3 AAAGACTT

Inf4 ACAGACTT

Phylogenetics

Input:

Pathogen genetic data from different hosts

Output:

Transmission chain (who infected whom)

Phylogenetics

Input:

Pathogen genetic data from different hosts

Output:

Transmission chain (who infected whom)

Emergence of HIV

Epidemic identified in 1980s

Phylogenetics

Input:

Pathogen genetic data from different hosts

Output:

Transmission chain (who infected whom)

Example key result Emergence of HIV

Epidemic identified in 1980s

Phylogenetics

Input:

Pathogen genetic data from different hosts

Output:

Transmission chain (who infected whom)

Example key result

Emergence of HIV

Epidemic identified in 1980s

Sequence data tells us about pre-1980

Zoonosis from chimps

State of process

▶ Time and geographic location of outbreak

Emergence of a pathogen (here HIV)
Hahn et al. (Science, 2000)

State of process

Time and geographic location of outbreak

Emergence of a pathogen (here HIV)
Hahn et al. (Science, 2000)

Dynamics of process

Transmission process

Basic reproductive number of an emerging pathogen (here H1N1) Fraser et al. (Science, 2009)

Phylogenetics

State of process

Time and geographic location of outbreak

Emergence of a pathogen (here HIV)
Hahn et al. (Science, 2000)

Dynamics of process

Transmission process

Basic reproductive number of an emerging pathogen (here H1N1) Fraser et al. (Science, 2009)

Epidemiological models <u>Ideally:</u> assume epidemiological model in phylogenetics (birth-death model)

Quantification of all model parameters!

Phylogenetics

State of process

Time and geographic location of outbreak

Emergence of a pathogen (here HIV)
Hahn et al. (Science, 2000)

Dynamics of process

Transmission process

Basic reproductive number of an emerging pathogen (here H1N1) Fraser et al. (Science, 2009)

Epidemiological models <u>Ideally:</u> assume epidemiological model in phylogenetics (birth-death model)

Quantification of all model parameters!

Approximate: by population genetic model (coalescent)

Merge epidemiology and phylogenetics

Methodology to:

Simultaneously infer phylogenetic trees and epidemiological parameters

Merge epidemiology and phylogenetics

Methodology to:

Simultaneously infer phylogenetic trees and epidemiological parameters

Quantification of spread of infectious diseases?

Factors governing transmission dynamics?

(e.g. population structure, environment, vaccines)

Epidemiolo gical model

Growth of tree

parameters η

Epidemiolo gical model

Growth of tree

parameters η

Epidemiolo gical model

Growth of tree

parameters η

Evolutionary model Evolution of sequences along tree

parameters θ

Epidemiolo gical model

Growth of tree

parameters η

Evolutionary model Evolution of sequences along tree

parameters θ

Tree distribution

Defined through η and θ

Epidemiolo gical model

Growth of tree

parameters η

Evolutionary model Evolution of sequences along tree

parameters θ

Tree distribution

Defined through η and θ

Sequence alignment

tree epidemiolgical dynamics
$$\int \int e vololutionary \ dynamics \\ f[\Psi, \eta, \theta| data]$$

tree epidemiolgical dynamics
$$f[\Psi,\eta,\theta|data] = \frac{f[data|\Psi,\theta]f[\Psi|\eta]f[\eta,\theta]}{f[data]}$$

Evolutionary Dynamics

RevBayes samples the posterior distribution of trees and parameters

Part A

Coalescent as a model for transmission

Part A

Coalescent as a model for transmission

Part A

Coalescent as a model for transmission

Estimating Ro from sequencing data

Little known before first isolation, ie. pre-1989.

How can we determine basic reproductive number R₀?

Estimating Ro from sequencing data

Hepatitis C

Little known before first isolation, ie. pre-1989.

How can we determine basic reproductive number R₀?

Inference

40-100 sequences per subtype

Fit exponential-growth coalescent to sequences and obtain growth rate r (i.e. $\eta=r$)

 $R_0 = \lambda/\delta = rD+1$ (where D is expected time of infectiousness)

Estimating Ro from sequencing data

Hepatitis C

Little known before first isolation, ie. pre-1989.

How can we determine basic reproductive number R₀?

Inference

40-100 sequences per subtype

Fit exponential-growth coalescent to sequences and obtain growth rate r (i.e. $\eta=r$)

 $R_0 = \lambda/\delta = rD+1$ (where D is expected time of infectiousness)

Results

Piecewise constant population size

Piecewise constant population size

Assumption

Piecewise constant population size

- Egypt highest HCV prevalence worldwide (about 13 %)
- Neighboring countries low prevalence
- When did the high prevalence emerge?
- Why?

Assumption

Piecewise constant population size

HCV in Egypt

- Egypt highest HCV prevalence worldwide (about 13 %)
- Neighboring countries low prevalence
- When did the high prevalence emerge?
- ▶ Why?

Comparing coalescent times under the birth-death model and the coalescent

N = 10000

birth-death

coalescent

Coalescent overestimates growth rate for small (realistic) R₀

Part 2

Birth-death model as model for transmission

- transmission rate λ
- "becoming-non-infectious" rate δ
- sampling probability p

Parameters may depend on:

- 1) constant (epidemic outbreak)
- 2) time (environmental effect)
- 3) # of susceptibles (SIR model)
- 4) type of infected individual

Stadler (JTB, 2010)

Part 2

Birth-death model as model for transmission

Birth-death model

- transmission rate λ
- "becoming-non-infectious" rate δ
- sampling probability p

Parameters may depend on:

- 1) constant (epidemic outbreak)
- 2) time (environmental effect)
- 3) # of susceptibles (SIR model)
- 4) type of infected individual

Phylogenetic trees

Stadler (JTB, 2010)

Part 2

Birth-death model as model for transmission

Simulation study: Comparing exact method to coalescent

Simulation study: Comparing exact method to coalescent

Simulating epidemic outbreak

Exact method

- λ - δ is population size growth rate
- ▶ 95% HPD interval contains true value in **97%** of the simulated trees

Simulation study: Comparing exact method to coalescent

Simulating epidemic outbreak

Exact method λ - δ is population size growth rate

▶ 95% HPD interval contains true value in **97%** of the simulated trees

Coalescent approximation

Parameterizes deterministic population size growth

95% HPD interval contains true value in 55% of the simulated trees

Piecewise constant birth-death model, or: Birth-death skyline plot

Epidemiological rates may change through time:

Piecewise constant birth-death model, or: Birth-death skyline plot

Epidemiological rates may change through time:

Piecewise constant birth-death model, or: Birth-death skyline plot

Epidemiological rates may change through time:

Graphical model

Hepatitis C virus in Egypt

Effective reproductive number $\mathbf{R}_{e}(t)$ generalizes

Basic reproductive number $R_0 = R_e(0)$

Hepatitis C virus in Egypt

Effective reproductive number R_e(t) generalizes

Basic reproductive number $R_0 = R_e(0)$

Analysis of 63 seq:

$$R_e(t) = \lambda(t)/\delta(t)$$
—— median
95% HPD interval

Hepatitis C virus in Egypt

Effective reproductive number $\mathbf{R}_{e}(t)$ generalizes

Basic reproductive number $R_0 = R_e(0)$

Analysis of 63 seq:

$$\mathbf{R_e(t)} = \lambda(t)/\delta(t)$$
—— median
95% HPD interval

The two skyline models

Birth-death skyline plot: effective reproductive number

The two skyline models

Birth-death skyline plot: effective reproductive number

Coalescent skyline plot: effective population size

Exercises: Analysis of HCV dataset using RevBayes

HCV sequencing data from 1993

Infer trees and parameters using the birth-death skyline model