MODEL TRANSPORTASI RISET OPERASI

PENGERTIAN

- Model transportasi adalah sebuah perencanaan trasnportasi barang atau produk dari sejumlah sumber ke sejumlah tujuan agar diperoleh biaya transportasi seminimal mungkin.
- Data yang digunakan untuk menyusun model ini meliputi:
 - Kapasitas masing-masing sumber dan kapasitas tujuan
 - ❖ Biaya transportasi per unit dari sumber ke setiap tujuan
- Prinsip dari model transportasi adalah bagaimana cara mengalokasikan barang untuk memenuhi permintaan dari tujuan berdasarkan ketersediaan barang yang ada di sumber dengan total biaya transportasi minimum.

Model Transportasi

Model:

Minimumkan $Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} X_{ij}$

Dengan syarat:

$$\sum_{j=1}^{n} x_{ij} = S_{i} \quad i=1,2,...,m$$

$$\sum_{i=1}^{m} x_{ij} = D_{j} \quad j=1,2,...,n$$

 x_{ij} = jumlah unit yang dikirim dari sumber i ke tujuan j, x_{ij} >0 c_{ii} =biaya kirim per unit dari sumber i ke tujuan j

S_i=kapasitas penawaran sumber ke i

D_i=kapasitas permintaan tujuan ke j

Z = total biaya kirim

Contoh

Suatu perusahaan memiliki 3 pabrik yang berada di W, H dan P. Sedangkan produk tersebut akan didistribusikan atau dialokasikan ke 3 gudang penjualan di A,B dan C. Kapasitas pabrik, kebutuhan gudang dan biaya pengangkutan per ton dari tiap pabrik ke tiap gudang adalah sebagai berikut:

Tabel 1. Kapasitas Pabrik

Pabrik	Kapasitas Produksi tiap bulan
W	90 ton
Н	60 ton
Р	50 ton
Jumlah	200 ton

Tabel 2. Kebutuhan Gudang A,B dan C

Gudang	Kebutuhan tiap bulan
Α	50 ton
В	110 ton
С	40 ton
Jumlah	200 ton

Tabel 3. Biaya Pengangkutan setiap ton dari Pabrik ke Gudang

Dari	Bia	ya tiap ton (0	000)
	Ke Gudang A	Ke Gudang B	Ke Gudang C
Pabrik W	20	5	8
Pabrik H	15	20	10
Pabrik P	25	10	19

Berapa total biaya transportasi yang harus dikeluarkan untuk memenuhi permintaan dari Gudang A, B, dan C? Dan dari pabrik mana saja permintaan tsb akan dipenuhi?

Contoh

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik	
Pabrik W	X ₁₁ 20	X ₁₂ 5	X ₁₃ 8	90	
Pabrik H	X ₂₁ 15	X ₂₂ 20	X ₂₃ 10	60	
Pabrik P	X ₃₁ 25	X ₃₂ 10	X ₃₃ 19	50	
Kebutuhan Gudang	50	110	40	200	

 X_{ij} = banyaknya alokasi dari sumber i ke tujuan j. Misal dari W ke A (sumber 1 ke tujuan pertama)

Nilai Xij inilah yang akan dicari

MODEL TRANSPORTASI

MIN Z =
$$20X_{11}+5X_{12}+8X_{13}$$

+ $15X_{21}+20X_{22}+10X_{23}$
+ $25X_{31}+10X_{32}+19X_{33}$

Dengan batasan:

$$\begin{array}{l} X_{11} + X_{12} + X_{13} \leq 90 \\ X_{21} + X_{22} + X_{23} \leq 60 \\ X_{31} + X_{32} + X_{33} \leq 50 \end{array} \quad \begin{array}{l} \text{Batasan} \\ \text{sumber} \end{array}$$

$$\begin{array}{l} X_{11} + X_{21} + X_{31} \geq 50 \\ X_{11} + X_{21} + X_{31} \geq 50 \\ X_{12} + X_{22} + X_{32} \geq 110 \\ X_{13} + X_{23} + X_{33} \geq 40 \end{array} \quad \begin{array}{l} \text{Batasan} \\ \text{tujuan} \end{array}$$

$$X_{ij} \geq 0, \ i = 1, 2, 3; \ j = 1, 2, 3 \end{array}$$

TABEL TRANSPORTASI

			JUMLAH			
		1	2		PENAWARAN (SUPPLY)	
SUMBER	1	X ₁₁ C11	X ₁₁ C12		X ₁₁ C1n	S1
(SUPPLY)	2	X ₂₁ C21			X ₁₁ C2n	S2
	m	X _{m1} Cm1			X _{mn} Cmn	Sm
JUMLAH PERMINTAAN (DEMAND)		D1	D2		Dn	$\sum_{i=1}^{m} S_{i} = \sum_{i=1}^{n} D_{j}$

Disusun untuk memudahkan penyelesaian model transportasi

METODE SOLUSI MODEL TRANSPORTASI

- Penyusunan Tabel Awal:
 - 1. Metode North West Corner (NWC) / Metode Sudut Barat Laut
 - 2. Metode Least Cost / Biaya Terkecil
 - 3. Metode VAM (Vogel Approximation Model)

Tabel transportasi awal disebut layak jika jumlah sel terisi = m+n-1.

- Pencarian Solusi Optimum:
 - 1. Metode Stepping Stone
 - 2. Metode MoDi (Modified Distribution)

Menyusun Tabel Awal 1. Metode North West Corner

Algoritma Metode NorthWest-Corner

- 1. Mulai pada pojok barat laut tabel (Kiri Atas) dan alokasikan sebanyak mungkin pada X_{II} tanpa menyimpang dari kendala penawaran atau permintaan X_{II} (min (S1,D1).
- 2. Jika salah satu kolom menghabiskan supply atau demand, maka lanjutkan dengan pengalokasian pada supply atau demand yang tak habis. Jika supply atau demand telah dihabiskan, pindahkan secara diagonal ke kotak berikutnya.
- 3. Lanjutkan dengan cara yang sama sampai semua supply telah dihabiskan dan semua demand telah dipenuhi.

Menyusun Tabel Awal 1. Metode North West Corner (NWC)

Tabel Alokasi Pertama dengan Metode Stepping Stone

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	20	5	8	
	50	40		90
Pabrik H	15	20	10	
		60		60
Pabrik P	25	10	19	
		10	40	50
Kebutuhan Gudang	50	110	40	200

Biaya Pengangkutan untuk Alokasi Tahap pertama=

- Alokasikan semaksimal mungkin di sel pojok kiri atas, lalu teruskan atau mengalir ke bawah atau ke kanan untuk mengisi sel berikutnya yang mungkin.
- Jumlah sel terisi = 5
- Jumlah baris (m) = 3
- Jumlah kolom (n) = 3
- m+n-1 = 3+3-1=5
- Jumlah sel terisi=m+n-1
- Tabel awal (layak)

Menyusun Tabel Awal 2. Metode Least-Cost

Metode Least Cost meminimasi biaya dengan pengalokasian secara sistematik pada kotak-kotak sesuai dengan besarnya biaya transpotasi per unit.

Algoritma Metode Least-Cost:

- 1. Pilih Variabel Xij dengan biaya transportasi Cij terkecil dan alokasikan sebanyak mungkin. Untuk Cij terkecil, Xij = Min (Si,Dj). Ini akan menghabiskan baris l atau kolom j.
- 2. Ulang langkah 1, untuk pengalokasian dengan melihat Cij terkecil untuk yang belum teralokasi.
- 3. Lanjutkan proses ini sampai semua supply dan demand terpenuhi.

Menyusun Tabel Awal 2. Metode Least-Cost

Ke Dari	Gudang	A	Gudan	g B	Gudang	Kapasitas Pabrik	
Pabrik W		20	90	5		8	90
Pabrik H	20	15		20	40	10	60
Pabrik P	30	25	20	10		19	50
Kapasitas Gudang	50		110		40		200

Biaya pengangkutan untuk alokasi tahap pertama= 90(5)+20(15)+40(10)+30(25)+20(10)=2100

- Ongkos terkecil = 5 di WB, alokasikan sebesar 90 di WB.
- Ongkos terkecil berikutnya
 = 10 ada di HC dan PB.
 Alokasikan sebesar 40 di HC dan 20 di PB (karena kapasitas B hanya 110 dan sudah terisi 90).
- Ongkos terkecil berikutnya
 = 15 di HA, alokasikan
 sebesar 20 (karena
 kapasitas H sudah terisi 40)
- Ongkos terkecil berikutnya
 = 25 di PA, alokasikan
 sebesar 30.
- Jumlah sel terisi = 5 (layak)

Metode Vogel selalu memberikan solusi yang lebih baik dibandingkan metode NorthWest-Corner dan sering lebih baik dari pada metode Least-Cost.

Algoritma Metode Vogel:

- 1. Hitung Opportunity (Difference) Cost untuk setiap baris dan kolom. Perbedaan biaya ini adalah selisih antara nilai Cij terkecil dengan nilai Cij terkecil berikutnya. Apabila perbedaan kedua nilai tersebut 0, maka dituliskan 0.
- Pilih baris atau kolom yang mempunyai perbedaan biaya yang terbesar (jika terdapat nilai yang sama pilih secara sembarang). Alokasikan Xij sebanyak mungkin untuk nilai Cij terkecil. Xij = Min [Si,Dj].
- 3. Hilangkan semua baris atau kolom yang sudah terpenuhi, jika masih terdapat supply atau demand yang belum teralokasikan. lanjutkan langkah 1.
- 4. Jika semua sudah teralokasi maka solusi awal telah diperoleh.

Langkah 1

Selisih kolom

Ke Kapasitas Gudang C Gudang A Gudang B Pabrik Dari 20 8 5 90 Pabrik W 15 20 10 60 Pabrik H 50 10 25 19 50 Pabrik P Kapasitas 50 110 40 200 Gudang

5

5

Selisih baris

5

 Alokasikan 50 di PB (cost terkecil)

 Baris P hapus krn sdh terpenuhi

Selisih baris

Langkah 2 L2

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	20	60 5	8	90
Pabrik H	15	20	10	60
Pabrik P	25	50 10	19	50
Kapasitas Gudang	50	110	40	200

Selisih kolom

- Alokasikan 60 di WB (cost terkecil)
- Kolom B hapus krn sdh terpenuhi

Langkah 3

Ke Dari	Gudang A	Gudang B		Gudang	Kapasitas Pabrik		
Pabrik W	2	20	60 5		30 8		90
Pabrik H	1	5	20		10		60
Pabrik P	2	25		10		19	50
Kapasitas Gudang	50	50			40		200

Selisih kolom

3

Selisih baris

WC(cost terkecil). Sel WC hanya berisi 30 krn baris W tinggal menyisakan kapasitas 30.

Alokasikan 30 di

Baris W hapus krn sdh terpenuhi

Selisih baris

Langkah 4 L4

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	20	60 5	30 8	90
Pabrik H	50 15	20	10	60
Pabrik P	25	50 10	19	50
Kapasitas Gudang	50	110	40	200

10

Selisih kolom

 Alokasikan 50 di HA (cost terkecil)

 Kolom A hapus krn sdh terpenuhi

Langkah 5 L5

Ke Dari	Gudang A		Gudang B		Gudang	Kapasitas Pabrik	
Pabrik W	2	0	60	5	30	8	90
Pabrik H	50	5		20	10	10	60
Pabrik P	2	5	50 10			19	50
Kapasitas Gudang	50		110		10 40		200

Selisih kolom

5

- - 10 L5 Selisih baris

5

-

)

 Alokasikan 10 di HC (cost terkecil)

 Kolom C dan Baris H hapus krn sdh terpenuhi

Pengisian selesai

	Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik	1		Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik	2	
	Pabrik W	20	5	8	90	3		Pabrik W	20	60 5	8	90	3	
Pinakasan	Pabrik H	15	20	10	60	5		Pabrik H	15	20	10	60	5	
Ringkasan	Pabrik P	25	50 10	19	50	9 L1		Pabrik P	25	50 10	19	50	-	
	Kapasitas Gudang	50	110	40	200			Kapasitas Gudang	50	110	40	200		
	1	5	5	2				2	5	15	2 L2		•	
	Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik	3		Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik	4	•
	Pabrik W	20	60 5	30 8	90	L3		Pabrik W	20	60 5	30 8	90	-	
	Pabrik H	15	20	10	60	5	5	Pabrik H	50 15	20	10	60	5	
	Pabrik P	25	50 10	19	50	-		Pabrik P	25	50 10	19	50	-	
	Kapasitas Gudang	50	110	40	200			Kapasitas Gudang	50	110	40	200		
	3	5	-	2				4	15	-	10			
	Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik	5							nap p	oertama
	Pabrik W	20	60 5	30 8	90	-					10)+50(1	10)		
	Pabrik H	50 15	20	10	60	10	=300 =189		750+100)+500				
	Pabrik P	25	50 10	19	50	-	107							
	Kapasitas Gudang	50	110	40	200									
	5	-	-	10 [_5									

Ringkasan dalam bentuk lain

Menyusun Tabel Awal 3. Metode VAM

Biaya pengangkutan untuk alokasi tahap pertama =60(5)+30(8)+50(15)+ 10(10)+50(10) =1890

Selisih Kolom

- 2 5 15 2 2 Langkah 3 5 2 4 9
- 1. Alokasikan 50 di PB (baris P hapus)
- 2. Alokasikan 60 di WB (kolom B hapus)
- 3. Alokasikan 30 di WC (baris W hapus)
- 4. Alokasikan 50 di HA (kolom A hapus)
- 5. Alokasikan 10 di HC (selesai)

Perbandingan Tabel Awal

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	50	40 5	8	90
Pabrik H	15	60	10	60
Pabrik P	25	10	19 → 40	50
Kebutuhan Gudang	50	110	40	200

Ke Dari	Gudang A		Gudang B		Gudang C		Kapasitas Pabrik
Pabrik W		20	90	5		8	90
Pabrik H	20	15		20	40	10	60
Pabrik P	30	25	20	10		19	50
Kapasitas Gudang	50		110		40		200

Ke Dari	Gudang A		Gudang B		Gudang C		Kapasitas Pabrik
Pabrik W		20	60	5	30	8	90
Pabrik H	50	15		20	10	10	60
Pabrik P		25	50	10		19	50
Kapasitas Gudang	50		110		40		200

NWC 3260 <u>LC</u> 2100

- Pada contoh ini, metode VA memberikan tabel awal terbaik (total cost minimal).
- Apakah ke-3 tabel sudah optimal? Perlu diperiksa dengan teknik optimalisasi.
- Terdapat 2 metode optimalisasi, yaitu: Metode Stepping Stone dan Metode MoDi (Modified Distribution)