a) We have a function

$$y = A \cdot \sin(2 \cdot \pi \cdot f \cdot t)$$

Where

$$f = 0.5Hz$$

$$A = \begin{cases} 1 & t \le 5s \\ 2 & 5s < t \le 10s \\ 3 & t > 10s \end{cases}$$

Plot y as a function of time, t, for a total time of 15 s. Report the maximum magnitude of y. Also report the RMS value of this quantity.

b) We have a function

$$y = A \cdot t^2 + B$$

Where

$$A = 1$$

$$B = \begin{cases} 1 - t & t \le 2s \\ 0 & t > 2s \end{cases}$$

Plot y as a function of time, t, until y becomes larger than 10.

a) We have a differential function

$$\dot{y} = \frac{3 - y}{0.2}$$

Solve the differential function numerically using Forward-Euler time integration scheme. Plot y as a function of time for 1.0 s. The initial value is y = 0.

b) We have a differential function

$$\ddot{y} = 100 \cdot (3 - y) - 12 \cdot \dot{y}$$

Solve the differential function numerically using Forward-Euler time integration scheme. Plot y as a function of time for 1.0 s. The initial values are y = 0 and $\dot{y} = 0$. Report the maximum magnitude of y and \dot{y} . Also report the RMS value of these two quantities.

Michael R. Hansen and Ali Poursina, University of Agder

An ideal mechanical pendulum is shown in Fig. 1.

Figure 1 Simple pendulum with concentrated mass.

The following data is given: L = 0.7 m and m = 24 kg. Simulate the motion of the pendulum with the following initial conditions: $\varphi(t=0) = 45^{\circ}$ and $\dot{\varphi}(t=0) = 2\frac{rad}{s}$. Simulate the motion for a total time of T = 8 s.

$$\ddot{\varphi} + \frac{g}{L}\sin\varphi = 0$$

Michael R. Hansen and Ali Poursina, University of Agder

A spring-damper-mass system as shown in Fig. 2 is to be examined. The mass is subjected to forces from gravity, spring and damper as well as an applied force, F, that varies with time as follows:

$$F(t) = F_0 \cdot \sin(\omega_p \cdot t)$$

The spring stiffness is k = 40 kN/m, the damping constant is c = 500 Ns/m and the mass is m = 100 kg.

The position of the mass is to be plotted for a period of 2 seconds. A total of four different situations are to be analyzed. In each situation the mass starts from rest in a position where the spring is undeformed, i.e., y = 0.

The only thing that varies in the four situations is the applied force, F:

Situation	Size of applied force, F_0 , [N]	Frequency, ω_p , [rad/s]
a	0	-
ь	500	10
С	500	20
d	500	30

Recommended time step: 0.0001 seconds. Report the maximum magnitude of y and \dot{y} . Also report the RMS value of these two quantities.

Figure 2 Mass-spring-damper system. The undeformed length of the spring, L_0 , is shown.

Solution as plot of y(t) in meter vs time in seconds.

In Fig. 3 is shown a body that can only rotate. It is connected to the ground via a rotational spring and a rotational damper.

Figure 3 Rotating spring-damper inertia.

The following data is given: $J=2~kg\cdot m^2$, $k_\theta=1800~\frac{N\cdot m}{rad}$ and $b_\theta=8~\frac{N\cdot m\cdot s}{rad}$. The rotational spring is undeformed when $\theta=0~rad$. Four different situations are to be investigated. They are characterized by the external applied moment:

$$M(t) = M_0 \cdot \sin(\omega_p \cdot t)$$

Situation	Size of applied moment, $M_0[N \cdot m]$	Frequency, $\omega_p \left[\frac{rad}{s} \right]$
a	0	-
ь	75	20
С	75	30
d	75	40

Simulate the motion of the rotating body for all four situations. The initial conditions are the same in all situations: $\theta(t=0) = 25^{\circ}$ and $\dot{\theta}(t=0) = 0 \frac{rad}{s}$. Simulate the motion for a total time of T=4 s.

Solution as plot of $\theta(t)$ in degree vs time in seconds.

Problem 6 (Previous exam, 15%)

A mechanical system consists of a mass, an incline, and a linear tension spring, see Figure 4. The mass slides on the incline and there is a friction force between the incline and the mass.

The end of the spring is subjected to a prescribed motion as a function of time:

$$x_0(t) = A + B \cdot t$$

where A = 0.2 m and $B = 0.1 \frac{m}{s}$. The undeformed length of the spring is $L_0 = 100 mm$ and the spring stiffness is k = 1000 N/m. The spring can only provide a tension force:

$$F_k = \begin{cases} k \cdot \Delta & \Delta \ge 0 \\ 0 & \Delta < 0 \end{cases}$$

where $\Delta = x_0 - x - L_0$.

The friction force acts against the motion and is given as:

$$F_{fr} = F_0 \cdot tanh\left[\frac{\dot{x}}{v_0}\right]$$

where $F_0 = 500 \, N$ and $v_0 = 0.01 \, \frac{m}{s}$.

The mass is $m = 300 \, kg$ and the incline angle is $\theta = 30^{\circ}$

At time t = 0 s the position of the mass is x = 100 mm and the velocity is $\dot{x} = 0$ $\frac{m}{s}$.

Make a simulation model of the mechanical system and simulate from t = 0 s to t = 25 s. Plot the position x of the mass as a function of time.

Figure 4 Mass on incline.

MAS416 - Problems 1st and 2nd Lecture

Solution as plot of x(t) in mm vs time in seconds.

Problem 7 (Previous exam, 30%)

A mechanical system is shown in Figure 5. It consists of two masses, three linear springs and three linear dampers.

The lower mass has a value of $m_1 = 2000$ kg and the upper mass has a value of $m_2 = 400$ kg. Both masses translate frictionless in the vertical direction.

All spring are linear and can be both in compression and tension. They are identical and have the following data: undeformed length of spring $L_0 = 500 \ mm$ and spring stiffness $k = 100 \ kN/m$.

The three linear dampers are identical and has a damping constant $b = 1500 \frac{N \cdot s}{m}$.

Further geometrical dimensions are: h = 800 mm and $h_0 = 3100 \text{ mm}$.

At time t=0 s the positions of the masses are $x_1=500$ mm and $x_2=1800$ mm. Also, at time t=0 s the masses are at rest, $\dot{x}_1=\dot{x}_2=0$ $\frac{m}{s}$.

Make a simulation model of the mechanical system and simulate from t = 0 s to t = 5 s. Plot the position of both masses, x_1 and x_2 , as a function of time.

Figure 5 Mechanical system.

Solution as plot of $x_1(t)$ (blue) and $x_2(t)$ (red) in mm vs time in seconds.

