

# Этикетка

# КСНЛ.431251.002 ЭТ

Микросхема 1564ТВЗТЭП

Микросхема интегральная 1564ТВЗТЭП Функциональное назначение:

Два триггера J – К



Таблица назначения выводов

| №      | Обозначение | Назначение вывода              | №      | Обозначение | Назначение                       |
|--------|-------------|--------------------------------|--------|-------------|----------------------------------|
| вывода | вывода      |                                | вывода | вывода      | вывода                           |
| 1      | CLK1        | Тактовый вход<br>1-го триггера | 9      | J2          | Вход 2-го триггера               |
| 2      | S1          | Предустановка<br>1-го триггера | 10     | QN2         | Инверсный выход 2-го<br>триггера |
| 3      | R1          | Сброс 1-го триггера            | 11     | Q2          | Выход 2-го триггера              |
| 4      | J1          | Вход 1-го триггера             | 12     | K2          | Вход 2-го триггера               |
| 5      | $V_{CC}$    | Питание                        | 13     | 0V          | Общий                            |
| 6      | CLK2        | Тактовый вход<br>2-го триггера | 14     | QN1         | Инверсный выход 1-го<br>триггера |
| 7      | S2          | Предустановка 2-го триггера    | 15     | Q1          | Выход 1-го триггера              |
| 8      | R2          | Сброс 2-го триггера            | 16     | K1          | Вход 1-го триггера               |

## ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при  $t = 25\pm10$  °C)

|                                                                    | Буквенное        | Ној      | Норма    |  |
|--------------------------------------------------------------------|------------------|----------|----------|--|
| Наименование параметра, единица измерения, режим измерения         | обозначение      | не менее | не более |  |
| 1                                                                  | 2                | 3        | 4        |  |
| 1. Максимальное выходное напряжение низкого уровня, В, при:        |                  |          |          |  |
| $U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, I_{O}=20 \text{ MKA}$ | $U_{OL\;max}$    | -        | 0,10     |  |
| $U_{CC}$ =4,5 B, $U_{IL}$ =0,9 B, $I_{O}$ = 20 мкА                 |                  | -        | 0,10     |  |
| $U_{CC}$ =6,0 B, $U_{IL}$ =1,2 B, $I_{O}$ = 20 мкА                 |                  | -        | 0,10     |  |
| при:                                                               |                  |          |          |  |
| $U_{CC}$ =4,5 B, $U_{IL}$ =0,9 B, $I_{O}$ = 4,0 mA                 |                  | -        | 0,26     |  |
| $U_{CC}=6,0 \text{ B}, U_{IL}=1,2 \text{ B}, I_{O}=6,0 \text{ mA}$ |                  | -        | 0,26     |  |
| 2. Минимальное выходное напряжение высокого уровня, В, при:        |                  |          |          |  |
| $U_{CC}=2,0 \text{ B}, U_{IH}=1,5 \text{ B}, I_{O}=20 \text{ MKA}$ | $ m U_{OHmin}$   | 1,9      | -        |  |
| $U_{CC}$ =4,5 B, $U_{IH}$ =3,15 B, $I_{O}$ = 20 mKA                |                  | 4,4      | -        |  |
| $U_{CC}$ =6,0 B, $U_{IH}$ =4,2 B, $I_{O}$ = 20 mkA                 |                  | 5,9      | -        |  |
| при: $U_{CC}$ =4,5 B, $U_{IH}$ =3,15 B, $I_{O}$ =4,0 мА            |                  | 3,98     | -        |  |
| $U_{CC}=6.0 \text{ B}, U_{IH}=4.2 \text{ B}, I_{O}=5.2 \text{ mA}$ |                  | 5,48     | -        |  |
| 3. Входной ток низкого уровня, мкА, при:                           |                  |          |          |  |
| $U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$    | ${ m I}_{ m IL}$ | -        | /-0,1/   |  |
| 4. Входной ток высокого уровня, мкА, при:                          |                  |          |          |  |
| $U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$    | $I_{IH}$         | -        | 0,1      |  |
| 5. Ток потребления, мкА, при                                       |                  |          |          |  |
| $U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$    | $I_{CC}$         | -        | 4,0      |  |
| 6. Динамический ток потребления, мА, при:                          |                  |          |          |  |
| $U_{CC} = 6.0 \text{ B}, f = 10 \text{ M} \Gamma \text{ц}$         | I occ            | -        | 10       |  |
| 7. Частота следования импульсов тактовых сигналов, МГц, при:       |                  |          |          |  |
| $U_{CC} = 5.0 \text{ B}, C_L = 15  \Pi \Phi$                       | $f_{\rm C}$      | 30       | -        |  |
| $U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$                   |                  | 5        | -        |  |
| $U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$                   |                  | 27       | -        |  |
| $U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$                   |                  | 31       | -        |  |

| 8. Время задержки распространения сигнала при включении и выклюни, нс | $t_{PHL}$    |   |     |
|-----------------------------------------------------------------------|--------------|---|-----|
| -вывода 14, 15 относительно вывода 1;                                 | $(t_{PLH})$  |   |     |
| -вывода 10, 11 относительно вывода 6                                  |              |   |     |
| при:                                                                  |              | - | 21  |
| $U_{CC} = 5.0 \text{ B}, C_L = 15 \text{ m}\Phi$                      |              | - | 126 |
| $U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$                      |              | - | 25  |
| $U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$                      |              | - | 21  |
| $U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$                      |              |   |     |
| -вывода 14, 15 относительно вывода 2;                                 |              |   |     |
| -вывода 10, 11 относительно вывода 7                                  |              |   |     |
| при:                                                                  |              |   |     |
| $U_{CC} = 5.0 \text{ B}, C_L = 15 \text{ m}\Phi$                      |              | - | 26  |
| $U_{CC} = 2,0 \text{ B}, C_L = 50 \text{ п}\Phi$                      |              | - | 155 |
| $U_{CC} = 4.5 \text{ B, } C_L = 50  \Pi \Phi$                         |              | - | 31  |
| $U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi$                      |              | - | 26  |
| , , , =                                                               |              |   |     |
| -вывода 14, 15 относительно вывода 3;                                 |              |   |     |
| -вывода 10, 11 относительно вывода 8                                  |              |   |     |
| при:                                                                  |              |   |     |
| $U_{CC} = 5.0 \text{ B, } C_L = 15 \text{ m}\Phi$                     |              | _ | 28  |
| $U_{CC} = 2.0 \text{ B}, C_1 = 50 \text{ п}\Phi$                      |              | _ | 165 |
| $U_{CC} = 4.5 \text{ B, } C_L = 50 \text{ m}\Phi$                     |              | _ | 33  |
| $U_{CC} = 6.0 \text{ B}, C_1 = 50 \text{ n}\Phi$                      |              | _ | 28  |
| 500 5,0 ±, 51 15 11                                                   |              |   |     |
| 9. Время перехода при включении и выключении, нс, при:                |              |   |     |
|                                                                       | $t_{ m THL}$ | - | 75  |
| $U_{CC} = 2,0 \text{ B, } C_L = 50 \text{ п}\Phi$                     | $t_{TLH}$    | = | 15  |
| $U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$                      |              | = | 13  |
| $U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$                      |              |   |     |
| 10. Входная емкость, пФ, при:                                         |              |   |     |
| $U_{CC} = 0 B$                                                        | $C_{I}$      | - | 10  |

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г. в том числе: г/мм на 16 выводах длиной мм.

#### 2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5)  $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при  $U_{CC} = 5B \pm 10\%$  - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ( $T_{\text{Су}}$ ) при  $\gamma$  = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП. должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

## 3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-19 ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

## 4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТВЗТЭП соответствуют техническим условиям АЕЯР.431200.424-19ТУ и признаны годными для эксплуатации.

| Приняты по от (извещение, акт и др.) (дата) | _                   |
|---------------------------------------------|---------------------|
| Место для штампа ОТК                        | Место для штампа ПЗ |
| Место для штампа « Перепроверка произведена | »<br>(дата)         |
| Приняты по от дата) от (дата)               |                     |
| Место для штампа ОТК                        | Место для штампа ПЗ |
| Цена договорная                             |                     |

# 5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – вывод общий, вход-вывод питание. Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.