TD1: Généralités sur les groupes

Exercice 1.

- 1. Soit E un ensemble. Décrire le quotient de E par la relation d'égalité, puis le quotient de E par la relation $R = E \times E$.
- 2. Soit *E* un ensemble, *R* une relation sur *E*, et *P* la conjonction d'une ou plusieurs des propriétés suivantes : "réflexive", "symétrique", "transitive". Démontrer qu'il existe une plus petite relation sur *E* contenant *R* et vérifiant *P*. En particulier, il existe une plus petite relation d'équivalence contenant *R* : c'est la relation d'équivalence engendrée par *R*.
- 3. Soit E un ensemble et \leq une relation d'ordre totale sur E. Identifier le quotient de E par la relation \leq .
- 4. Sur l'ensemble $\mathbb Z$ des entiers relatifs, on définit une relation R comme suit : xRy si et seulement s'il existe un nombre premier p tel que y=px. Identifier la plus petite relation réflexive et transitive sur $\mathbb Z$ contenant R, ainsi que la relation d'équivalence sur $\mathbb Z$ engendrée par R. Décrire le quotient de $\mathbb Z$ par la relation R.

Exercice 2.

Soit E un ensemble muni d'une loi de composition, associative, avec élément neutre e, et telle que tout élément de E possède un inverse à gauche. Démontrer que tout élément de E possède un inverse à droite qui coïncide avec son inverse à gauche. En déduire que E est un groupe.

Exercice 3.

Soit G un groupe tel que $g^2 = e$ pour tout $g \in G$. Démontrer que G est abélien.

Exercice 4.

Soit G un groupe et soit H un sous-ensemble fini non vide de G stable pour la loi de composition du groupe G.

- 1. Démontrer que H est un sous-groupe de G.
- 2. Trouver un exemple d'un groupe G et d'un sous-ensemble non vide de G stable pour la loi de composition du groupe G qui ne soit pas un sous-groupe de G.

Exercice 5.

Démontrer qu'il n'existe pas de morphisme de groupes surjectif de $(\mathbf{Q}, +)$ dans (\mathbf{Q}_+^*, \times) .

Exercice 6.

Donner la liste de tous les groupes (à isomorphisme près) de cardinal inférieur ou égal à 7.

Exercice 7.

On dit qu'un groupe G est d'exposant e si e est le plus petit entier $n \ge 1$ tel que pour tout $g \in G$, on a $g^n = 1$. Pour quels entiers e un groupe d'exposant e est-il nécessairement commutatif?

Exercice 8.

- 1. Démontrer que les sous-groupes de \mathbb{Z} sont les $n\mathbb{Z}$ pour $n \in \mathbb{N}$.
- 2. Démontrer que les sous-groupes non denses de \mathbb{R} sont les $a\mathbb{Z}$, avec $a \in \mathbb{R}$.

Exercice 9.

Soit G un groupe et soit H un sous-groupe de G d'indice 2. Démontrer que H est distingué dans G.

Exercice 10.

Soit S un sous-ensemble non vide d'un groupe fini G. Soient $N(S) := \{g \in G \mid gSg^{-1} = S\}$ et $C(S) := \{g \in G \mid \forall s \in S, gsg^{-1} = s\}$ le normalisateur et le centralisateur de S dans G. Montrer que :

- 1. N(S) < G et $C(S) \triangleleft N(S)$.
- 2. N(S) = G si et seulement si $S = \bigcup_{g \in G} gSg^{-1}$.
- 3. Si $H \triangleleft G$, alors $C(H) \triangleleft G$.
- 4. Si H < G, alors N(H) est le plus grand sous-groupe de G contenant H et dans lequel H est distingué.

Exercice 11.

Soit G un groupe et soit $H \triangleleft G$ un sous-groupe distingué.

- 1. Décrire les sous-groupes distingués de G/H en fonction de ceux de G.
- 2. Soit K un sous-groupe de G.
 - (a) Si K est distingué dans G et contient H, montrer que l'on a un isomorphisme $(G/H)/(K/H) \cong G/K$.
 - (b) Démontrer que HK est un sous-groupe de G égal à KH.
 - (c) Démontrer que H est distingué dans HK.
 - (d) Démontrer que l'on a un isomorphisme $K/(K \cap H) \cong (HK)/H$.

Exercice 12.

Soit G un groupe fini.

- 1. Démontrer qu'il existe $n \in \mathbb{N}$ tel que G soit (isomorphe à) un sous-groupe de \mathfrak{S}_n .
- 2. Démontrer qu'il existe $n \in \mathbb{N}$ tel que G soit (isomorphe à) un sous-groupe de \mathfrak{A}_n .
- 3. Démontrer qu'il existe $n \in \mathbb{N}$ tel que G soit (isomorphe à) un sous-groupe de $GL_n(k)$, pour tout corps k.

Exercice 13.

Déterminer les classes de conjugaison dans \mathfrak{S}_n . Et dans \mathfrak{A}_n ?

Exercice 14.

Démontrer que si $n \geq 2$, \mathfrak{S}_{n+2} a deux sous-groupes non conjugués isomorphes à \mathfrak{S}_n .

Exercice 15.

Soit $f: G_1 \to G_2$ un morphisme de groupes et soit x un élément de G_1 d'ordre fini. Démontrer que l'ordre de f(x) divise l'ordre de x.

Exercice 16.

Soit G un groupe. Vrai ou faux?

- 1. Si tout sous-groupe H de G est distingué dans G, alors G est abélien.
- 2. Si $H \triangleleft G$ et $K \triangleleft H$, alors $K \triangleleft G$.
- 3. Soient x et $y \in G$ d'ordre fini. Alors xy est nécessairement d'ordre fini.
- 4. Si G a un nombre fini de sous-groupes, alors G est fini.

Exercice 17.

Soit G un groupe fini.

- 1. Démontrer que des éléments conjugués dans G sont de même ordre.
- 2. Deux éléments de même ordre dans G sont-ils toujours conjugués?
- 3. Trouver tous les groupes abéliens finis G pour lesquels la question précédente a une réponse positive. Un exemple non abélien?

Exercice 18.

Soit N un entier naturel.

- 1. Démontrer qu'il n'y a qu'un nombre fini (à isomorphisme près) de groupes de cardinal au plus N.
- 2. Démontrer qu'il n'y a qu'un nombre fini (à isomorphisme près) de groupes abéliens finis possédant au plus N automorphismes.
- 3. Démontrer qu'il n'y a qu'un nombre fini (à isomorphisme près) de groupes finis possédant au plus N automorphismes.

Exercice 19

Soit k un corps fini à q éléments. Démontrer que les cardinaux de $GL_n(k)$, $SL_n(k)$ et $PGL_n(k)$ sont des fonctions polynomiales en q, que l'on explicitera.

Exercice 20

Soit $k = \mathbb{Z}/p\mathbb{Z}$ et soit n un entier naturel.

- 1. Déterminer le groupe des automophismes du groupe additif k^n .
- 2. Combien y a-t-il de sous-groupes de cardinal p dans k^2 ? Plus généralement, combien y a-t-il de sous-groupes de cardinal p^m (avec $m \le n$) dans k^n ?
- 3. Expliciter une bijection entre la droite projective sur k et l'ensemble des sous-groupes de cardinal p dans k^2 , telle que l'action de $\operatorname{Aut}(k^2)$ sur ce dernier ensemble corresponde à une action par homographies sur la droite projective.

Exercice 21

Soit G un groupe fini de cardinal $n \geq 1$.

- 1. Démontrer l'existence d'un système de générateurs $(a_i)_{i=1}^k$ de G tels que pour tout $i \in [|1, k|]$, l'élément a_i n'appartient pas au sous-groupe de G engendré par $(a_j)_{j < i}$.
- 2. Démontrer que G possède au plus $n^{\log_2(n)}$ endomorphismes.

Exercice 22

Soit G un groupe tel que le quotient par son centre est monogène. Démontrer que G est abélien.

Exercice 23

Quel est le nombre minimal de transpositions nécessaires pour engendrer le groupe \mathfrak{S}_n ?

Exercice 24

Soit G un groupe de type fini (i.e. engendré par un nombre fini d'éléments).

- 1. Un sous-groupe H de G est-il nécessairement de type fini?
- 2. Même question en supposant de plus que le cardinal de G/H est fini.

Exercice 25

Démontrer que tout sous-groupe d'indice n dans \mathfrak{S}_n est isomorphe à \mathfrak{S}_{n-1} .