Elektronika, energetika i telekomunikacije

predmet: Matematička analiza 2

datum: 15.11.2015. PREZIME I IME: BROJ INDEKSA:

BROJ BODOVA:

Predispitne obaveze - 25 poena

Umesto, upisati reč ili izraz koji nedostaje.

- 1. [1 poen] Korišćenjem integralnog kriterijuma ispitati konvergenciju reda $\sum \frac{1}{n^2}.$
- **2.** [2 poena] dat je red $\sum_{n=1} \ln \frac{n}{n+1} = \sum_{n=1} a_n$.
 - a. Naći $\lim_{n\to\infty} a_n = \dots$
 - b. Neka je $\{s_k\}$ niz parcijalnih suma. Tada je $s_2 = ...$, $s_k = ...$
 - c. Naći $\lim_{k\to\infty} s_k = \dots$
 - d. Da li $\sum_{n=1} a_n$ konvergira?
- 3. [2 poena] Dat je red $\sum_{n=1}^{\infty} \left(1 + \frac{(-1)^n}{2}\right)^n$.
 - a. Primenom količničkog kriterijuma ispitati konvergenciju datog reda.
 - b. Primenom korenskog kriterijuma ispitati konvergenciju datog reda.
- 4. [1 poen] Ispitati da li konvergira dvojni niz i ako konvergira, naći $\lim_{\substack{n\to\infty\\k\to\infty}} \sqrt[n]{\frac{k+1}{2k-1}}$.
- 5. [2 poena] Ispitati konvergenciju dvojnog reda $\sum_{n=2}^{\infty} \frac{1}{n^{3k}}$.
- 6. [2 poena] Naći sumu reda

a.
$$\sum_{n=0}^{\infty} \frac{(2-x)^n}{n!} = ..$$

a.
$$\sum_{n=0}^{\infty} \frac{(2-x)^n}{n!} = \dots$$

b. $\sum_{n=0}^{\infty} \frac{(-1)^n 4^n x^{2n}}{(2n)!} = \dots$

- 7. [1 poen] Ispitati tačkastu konvergenciju reda $\sum_{n=1} \frac{tg^n x}{n}.$
- 8. [1 poen] Razviti u Maklorenov red funkciju $\sin 3(x + \frac{\pi}{2}) = ...$
- 9. [2 poena] Naći površinu šrafirane figure sa slike
- 10. [2 poen] U integralu $\int_1^2 dy \int_{y-1}^{1+\sqrt{1-(y-1)^2}} f(x,y) \, dx$ izmeniti redosled integracije.

- 11. [2 poena] Da li je $\int 2xy\,dx + x^2\,dy$ nezavisan od putanje integracije? Ako jeste, naći V tako da je $dV = 2xy\,dx + x^2\,dy$. Naći vrednost datog integrala ako je L deo elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ u prvom kvadrantu orijentisan od tačke preseka sa apscisom do tačke preseka sa ordinatom.
- 12. [1 poen] Naći $\int_L (2x-y) \, dl$ ako je L deo kružnice $x^2+y^2=1$ od tačke (1,0) do tačke (0,-1).
- 13. [2 poen] U dvostrukom integralu postaviti granice i napisati podintegralnu funkciju za izračunavanje površine omotača kupe čija je visina 1 i poluprečnik osnove je 1 (ne izračunavati integral).
- 14. [4 poena] Brojni red
 - a. Osnovne definicije.

b. Osnovne osobine.