CCF 全国青少年信息学奥林匹克联赛

CCF NOIP 2024

时间: 2024 年 11 月 30 日 08:30 ~ 13:00

题目名称	编辑字符串	遗失的赋值	树的遍历	树上查询
题目类型	传统型	传统型	传统型	传统型
目录	edit	assign	traverse	query
可执行文件名	edit	assign	traverse	query
输入文件名	edit.in	assign.in	traverse.in	query.in
输出文件名	edit.out	assign.out	traverse.out	query.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒	2.0 秒
内存限制	512 MiB	512 MiB	512 MiB	1024 MiB
测试点数目	20	20	25	25
测试点是否等分	是	是	是	是

提交源程序文件名

	对于 C++ 语言	edit.cpp	assign.cpp	traverse.cpp	query.cpp
--	-----------	----------	------------	--------------	-----------

编译选项

对于 C++ 语言	-O2 -std=c++14 -static
	-U2 -Sta=C++14 -Stat1C

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. main 函数的返回值类型必须是 int, 程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题, 申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @3.70GHz, 内存 32GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

编辑字符串(edit)

【题目描述】

小 M 有两个长度为 n 且字符集为 $\{0,1\}$ 的字符串 s_1, s_2 。

小 M 希望两个字符串中对应位置字符相同的出现次数尽可能多,即满足 $s_{1,i} = s_{2,i}$ 的 $i(1 \le i \le n)$ 尽可能多。为此小 M 有一个字符串编辑工具,这个工具提供的基本操作是在一个字符串中交换两个相邻的字符。为了保持字符串的可辨识性,规定两个字符串中的部分字符不能参与交换。小 M 可以用工具对 s_1 或 s_2 进行多次字符交换,其中可以参与交换的字符能够交换任意多次。

现在小 M 想知道,在使用编辑工具后,两个字符串中对应位置字符相同的出现次数最多能有多少。

【输入格式】

从文件 edit.in 中读入数据。

本题包含多组测试数据。

输入的第一行包含一个整数 T,表示测试数据的组数。

接下来包含 T 组数据,每组数据的格式如下:

- 第一行包含一个整数 n, 表示字符串长度。
- 第二行包含一个长度为 n 且字符集为 $\{0,1\}$ 的字符串 s_1 .
- 第三行包含一个长度为 n 且字符集为 $\{0,1\}$ 的字符串 s_2 。
- 第四行包含一个长度为 n 且字符集为 $\{0,1\}$ 的字符串 t_1 ,其中 $t_{1,i}$ 为 **1** 表示 $s_{1,i}$ 可以参与交换, $t_{1,i}$ 为 **0** 表示 $s_{1,i}$ 不可以参与交换。
- 第五行包含一个长度为 n 且字符集为 $\{0,1\}$ 的字符串 t_2 ,其中 $t_{2,i}$ 为 **1** 表示 $s_{2,i}$ 可以参与交换, $t_{2,i}$ 为 **0** 表示 $s_{2,i}$ 不可以参与交换。

【输出格式】

输出到文件 edit.out 中。

对于每组测试数据输出一行,包含一个整数,表示对应的答案。

【样例1输入】

 1
 1

 2
 6

 3
 011101

 4
 111010

 5
 111010

5 **101101**

【样例1输出】

1 4

-

【样例1解释】

最开始时, $s_1 =$ **011101**,第 4 和第 6 个字符不能参与交换; $s_2 =$ **111010**,第 2 和 第 5 个字符不能参与交换。

考虑如下操作: 先交换 $s_{1,1}$ 与 $s_{1,2}$ 得到 s_1 = **101101**,再交换 $s_{1,2}$ 与 $s_{1,3}$ 得到 s_1 = **110101**,最后交换 $s_{2,3}$ 与 $s_{2,4}$ 得到 s_2 = **110110**。此时 s_1 与 s_2 的前 4 个位置上的字符都是相同的。可以证明不存在更好的方案,故输出 **4**。

【样例 2】

见选手目录下的 edit/edit2.in 与 edit/edit2.ans。

该样例共有 10 组测试数据,其中第 $i(1 \le i \le 10)$ 组测试数据满足数据范围中描述的测试点 2i-1 的限制。

【数据范围】

对于所有的测试数据,保证: $1 \le T \le 10$, $1 \le n \le 10^5$ 。

测试点编号	$n \leq$	特殊性质	
$1 \sim 4$	10	无	
5,6	10^{3}	A	
7,8	10^{5}	A	
9,10	10^{3}	В	
11, 12	10^{5}	Б	
13, 14	10^{3}	C	
15, 16	10^{5}		
17, 18	10^{3}	无	
19, 20	10^{5}		

特殊性质 A: 保证 s_1 的所有字符相同。

特殊性质 B: 保证 $t_1 = t_2$ 。

特殊性质 C: 保证 t_1 和 t_2 中各自恰有一个字符 '0'。

遗失的赋值(assign)

【题目描述】

小 F 有 n 个变量 x_1, x_2, \dots, x_n 。每个变量可以取 1 至 v 的整数取值。

小 F 在这 n 个变量之间添加了 n-1 条二元限制,其中第 $i(1 \le i \le n-1)$ 条限制为: 若 $x_i = a_i$,则要求 $x_{i+1} = b_i$,且 a_i 与 b_i 为 1 到 v 之间的整数;当 $x_i \ne a_i$ 时,第 i 条限制对 x_{i+1} 的值不做任何约束。除此之外,小 F 还添加了 m 条一元限制,其中第 $j(1 \le j \le m)$ 条限制为: $x_{c_i} = d_j$ 。

小 F 记住了所有 c_j 和 d_j 的值,但把所有 a_i 和 b_i 的值都忘了。同时小 F 知道:存在给每一个变量赋值的方案同时满足所有这些限制。

现在小 F 想知道,有多少种 a_i , b_i ($1 \le i \le n-1$) 取值的组合,使得能够确保至少存在一种给每个变量 x_i 赋值的方案可以同时满足所有限制。由于方案数可能很大,小 F 只需要你输出方案数对 10^9+7 取模的结果。

【输入格式】

从文件 assign.in 中读入数据。

本题包含多组测试数据。

输入的第一行包含一个整数 T,表示测试数据的组数。

接下来包含 T 组数据,每组数据的格式如下:

第一行包含三个整数 n, m, v,分别表示变量个数、一元限制个数和变量的取值上限。接下来 m 行,第 i 行包含两个整数 c_i, d_i ,描述一个一元限制。

【输出格式】

输出到文件 assign.out 中。

对于每组测试数据输出一行,包含一个整数,表示方案数对109+7取模的结果。

【样例1输入】

```
      1
      3

      2
      2
      1
      2

      3
      1
      1
      4

      4
      2
      2
      2

      5
      1
      1
      1

      6
      2
      2
      2

      7
      2
      2
      2

      8
      1
      1
```

9 1 2

【样例1输出】

1 4

2 3

3 6

【样例1解释】

- 对于第一组测试数据,所有可能的 (a_1,b_1) 取值的组合 (1,1),(1,2),(2,1),(2,2) 都满足限制。例如, $(a_1,b_1)=(1,1)$ 时, $(x_1,x_2)=(1,1)$ 满足所有限制,而 $(a_1,b_1)=(2,2)$ 时, $(x_1,x_2)=(1,1)$ 与 $(x_1,x_2)=(1,2)$ 均满足所有限制。
- 对于第二组测试数据,只有 $(x_1, x_2) = (1, 2)$ 一种可能的变量赋值,因此只有 $(a_1, b_1) = (1, 1)$ 不满足限制,其余三种赋值均满足限制。
- 对于第三组测试数据,不存在一种变量赋值同时满足 $x_1 = 1$ 和 $x_1 = 2$,因此也不存在满足限制的 (a_1, b_1) 。

【样例 2】

见选手目录下的 assign/assign2.in 与 assign/assign2.ans。

该样例共有 10 组测试数据,其中第 $i(1 \le i \le 10)$ 组测试数据满足数据范围中描述的测试点 i 的限制。

【样例 3】

见选手目录下的 assign/assign3.in 与 assign/assign3.ans。

该样例共有 10 组测试数据,其中第 $i(1 \le i \le 10)$ 组测试数据满足数据范围中描述的测试点 i+10 的限制。

【数据范围】

对于所有的测试数据,保证:

- $1 \le T \le 10$,
- $1 < n < 10^9$, $1 < m < 10^5$, $2 < v < 10^9$,
- 对于任意的 $j(1 \le j \le m)$, 都有 $1 \le c_j \le n, 1 \le d_j \le v$ 。

	ı			1
测试点	$n \leq$	$m \leq$	$v \leq$	特殊性质
1, 2	6	6		
3	9	9	2	
4, 5	12	12		
6	10^{3}		10^{3}	
7	10^{5}	1	10^{5}	
8,9	10^{9}		10^{9}	
10	10^{3}	10^{3}	10^{3}	
11	10^{4}	10^{4}	10^{4}	A
12	10^{5}	10^{5}	10^{5}	
13	10^{4}	10^{3}	10^{4}	
14	10^{6}	10^{4}	10^{6}	В
15, 16	10^{9}	10^{5}	10^{9}	
17	10^{4}	10^{3}	10^{4}	
18	10^{6}	10^{4}	10^{6}	无
19, 20	10^{9}	10^{5}	10^{9}	

特殊性质 A: 保证 m=n, 且对于任意的 $j(1 \le j \le m)$, 都有 $c_j=j$ 。

特殊性质 B: 保证 $d_j = 1$ 。

树的遍历 (traverse)

【题目描述】

小 Q 是一个算法竞赛初学者,正在学习图论知识中的树的遍历。一棵由 n 个结点,n-1 条边构成的树,初始时所有结点都未被标记,它的遍历过程如下:

- 1. 选择一个结点 s 作为遍历起始结点,并把该结点打上标记。
- 2. 假设当前访问的结点为 u,寻找任意一个与 u 相邻且未标记的结点 v,将 v 作为新的当前访问结点并打上标记。之后再次进入第 2 步。
- 3. 假设在第 2 步中,与 u 相邻的结点都已被标记,如果 u = s 则遍历过程结束,否则将 u 设为遍历 u 之前的上一个结点并再进入第 2 步。

例如在下面的树中,一种可能的遍历过程如下:

- 选取1作为遍历起始结点,并把1打上标记;
- 2 与 1 相邻且未标记,将 2 设为当前访问结点,并把 2 打上标记。
- 2 与 3 相邻且未标记,将 3 设为当前访问结点,并把 3 打上标记。
- 3 所有相邻的结点都被标记,将当前访问结点设为遍历结点 3 之前的结点 2。
- 2 与 4 相邻且未标记,将 4 设为当前访问结点,并把 4 打上标记。
- 4 所有相邻的结点都被标记,将当前访问结点设为遍历结点 4 之前的结点 2。
- 2 所有相邻的结点都被标记,将当前访问结点设为遍历结点 2 之前的结点 1。
- 1 所有相邻的结点都被标记,且 1 是遍历起始结点,故遍历结束。

图 1: 样例 1 中的树

作为一个奇思妙想的学生,小Q在学习完上述知识后不满足于以结点为基础的遍历方式,于是开始研究以边为基础的遍历方式。定义两条边相邻,当且仅当它们有一个公共的结点。初始时,所有的边都未被标记。这种以边为基础的遍历过程如下:

- 1. 选择一条边 b 作为遍历起始边,并把该边打上标记。
- 2. 假设当前访问边为 e,寻找任意一条与 e 相邻且未标记的边 f,将 f 作为新的当前访问边并打上标记。之后再次进入第 2 步。

3. 假设在第 2 步中,与 e 相邻的边都已被标记,如果 e = b 则遍历过程结束,否则将 e 设为遍历 e 之前的上一条边并再进入第 2 步。

例如在上面的树中,一种可能的遍历过程如下(定义 $\{u,v\}$ 表示连接结点 u 和 v 的 边):

- 选取 {1,2} 作为遍历起始边,并把 {1,2} 打上标记;
- {1,2} 与 {2,3} 相邻且未标记,将 {2,3} 设为当前访问边,并把 {2,3} 打上标记。
- {2,3} 与 {2,4} 相邻且未标记,将 {2,4} 设为当前访问边,并把 {2,4} 打上标记。
- $\{2,4\}$ 所有相邻的边都被标记,将当前访问边设为遍历 $\{2,4\}$ 之前的边 $\{2,3\}$ 。
- {2,3} 所有相邻的边都被标记,将当前访问边设为遍历 {2,3} 之前的边 {1,2}。
- {1,2} 所有相邻的边都被标记,且 {1,2} 是遍历起始边,故遍历结束。

小 Q 惊奇的发现,在这个新的树的遍历过程中,如果将每条边看作一个新的结点,将步骤 2 中的所有新结点 e 和 f 连接一条新边,就会生成一棵由 n-1 个新结点和 n-2 条新边连接成的新树。例如上述遍历过程得到的新树如下(新的结点和新边都用红色表示):

图 2: 一种可能的新树

现在小 Q 在 n-1 条边中选择了 k 条关键边。小 Q 想知道,以任意一条关键边作为起始遍历边,通过上述遍历过程能够生成多少种不同的新树。这里两棵树被认为是不同的,当且仅当至少存在某一对新的结点,它们仅在其中一棵树中连有新边。

由于结果可能很大,你只需要输出其对 $10^9 + 7$ 取模的结果即可。

【输入格式】

从文件 traverse.in 中读入数据。

本题有多组测试数据。

输入的第一行包含两个整数 c, T,表示测试点的编号和测试数据的组数。在样例中,c 表示该样例与测试点 c 的数据范围相同。

接下来包含 T 组数据,每组数据的格式如下:

- 第一行包含两个整数 n, k,表示树的结点数以及小 Q 选择的关键边的数量。
- 接下来 n-1 行,第 i 行包含两个整数 u_i , v_i ,表示树上编号为 i 的边连接结点 u_i 和 v_i 。
- 接下来一行包含 k 个整数 e_1, e_2, \ldots, e_k ,表示小 Q 选择的关键边的编号。保证关键边的编号互不相同。

【输出格式】

输出到文件 traverse.out 中。

对于每组测试数据输出一行,包含一个整数,表示结果对109+7取模的结果。

【样例1输入】

```
      1
      1

      2
      4

      3
      1

      4
      2

      3
      2

      4
      2

      3
      3

      4
      2

      4
      3

      5
      2

      4
      4

      6
      1
```

【样例1输出】

1 2

【样例1解释】

两种可能的新树如下:

- 新结点 {1,2} 和新结点 {2,3} 连新边, 新结点 {2,3} 和新结点 {2,4} 连新边。
- 新结点 {1,2} 和新结点 {2,4} 连新边, 新结点 {2,4} 和新结点 {2,3} 连新边。

【样例 2 输入】

```
      1
      7
      1

      2
      5
      2

      3
      1
      2

      4
      1
      3

      5
      2
      4

      6
      2
      5

      7
      1
      3
```

【样例 2 输出】

1 3

【样例2解释】

三种可能的新树如下:

- 新结点 {1,2} 和 {1,3}, {1,2} 和 {2,4}, {2,4} 和 {2,5} 之间分别连新边。该新 树可以选择 {1,2} 作为起始遍历边得到。
- 新结点 {1,2} 和 {1,3}, {1,2} 和 {2,5}, {2,5} 和 {2,4} 之间分别连新边。该新树可以选择 {1,2} 或 {2,4} 作为起始遍历边得到。
- 新结点 {1,2} 和 {1,3}, {1,2} 和 {2,4}, {1,2} 和 {2,5} 之间分别连新边。该新树可以选择 {2,4} 作为起始遍历边得到。

【样例 3】

见选手目录下的 traverse/traverse3.in 与 traverse/traverse3.ans。 该组样例满足 c=4。

【样例 4】

见选手目录下的 traverse/traverse4.in 与 traverse/traverse4.ans。 该组样例满足 c=7。

【样例 5】

见选手目录下的 traverse/traverse5.in 与 traverse/traverse5.ans。 该组样例满足 c = 11。

【样例 6】

见选手目录下的 traverse/traverse6.in 与 traverse/traverse6.ans。 该组样例满足 c = 13。

【样例 7】

见选手目录下的 traverse/traverse7.in 与 traverse/traverse7.ans。该组样例满足 c = 15。

【样例 8】

见选手目录下的 traverse/traverse8.in 与 traverse/traverse8.ans。 该组样例满足 c = 16。

【样例 9】

见选手目录下的 traverse/traverse9.in 与 traverse/traverse9.ans。 该组样例满足 c=18。

【样例 10】

见选手目录下的 traverse/traverse10.in 与 traverse/traverse10.ans。 该组样例满足 c=19。

【样例 11】

见选手目录下的 traverse/traverse11.in 与 traverse/traverse11.ans。 该组样例满足 c=22。

【样例 12】

见选手目录下的 traverse/traverse12.in 与 traverse/traverse12.ans。 该组样例满足 c=24。

【数据范围】

对于所有的测试数据,保证:

- $1 \le T \le 10$;
- $2 < n < 10^5$;
- $1 \le k < n$;

- 对于任意的 $i(1 \le i \le n-1)$, 都有 $1 \le u_i, v_i \le n$, 且构成一颗合法的树。
- 对于任意的 $i(1 \le i \le k)$, 都有 $1 \le e_i < n$, 且两两不同。

测试点	n	k	特殊性质
$1 \sim 3$	≤ 5	≤ 1	
$4 \sim 6$	$< 10^5$	≥ 1	
$7 \sim 10$	$\leq 10^{\circ}$	≤ 2	
11, 12	≤ 500	≤ 8	无
13, 14	$\leq 10^{2}$		
15	≤ 500	< n	
16, 17		≤ 500	
18	$\leq 10^{5}$		A
$19 \sim 21$		/ m	В
22, 23	$\leq 2 \times 10^4$	< n	无
24, 25	$\leq 10^{5}$		

- 特殊性质 A: 对于任意的 $i(1 \le i \le n-1)$, 都有 $u_i = i, v_i = i+1$.
- 特殊性质 B: 对于任意的 $i(1 \le i \le n-1)$, 都有 $u_i = 1, v_i = i+1$.

【提示】

数据输入的规模可能较大,请选手注意输入读取方式的效率。

树上查询 (query)

【题目描述】

有一天小S 和她的朋友小N 一起研究一棵包含了n 个结点的树。

这是一棵有根树,根结点编号为 1,每个结点 u 的深度 dep_u 定义为 u 到 1 的简单路径上的**结点数量**。

除此之外,再定义 LCA*(l,r) 为编号在 [l,r] 中所有结点的最近公共祖先,即 $l,l+1,\dots,r$ 的公共祖先结点中深度最大的结点。

小 N 对这棵树提出了 q 个询问。在每个询问中,小 N 都会给出三个参数 l,r,k,表示他想知道 [l,r] 中任意长度大于等于 k 的连续子区间的最近公共祖先深度的最大值,即

$$\max_{l \leq l' \leq r' \leq r \ \land \ r'-l'+1 \geq k} \mathrm{dep}_{\mathrm{LCA}^*(l',r')}$$

你的任务是帮助小S来回答这些询问。

【输入格式】

从文件 query.in 中读入数据。

输入的第一行包含一个正整数 n,表示树的结点数。

接下来 n-1 行,每行包含两个正整数 u,v,表示存在一条从结点 u 到结点 v 的边。 第 n+1 行包含一个正整数 q,表示询问的数量。

接下来q行,每行包含三个正整数l,r,k,描述了一次询问。

【输出格式】

输出到文件 query.out 中。

对于每次询问输出一行,包含一个整数,表示对应的答案。

【样例1输入】

```
      1
      6

      2
      5
      6

      3
      6
      1

      4
      6
      2

      5
      2
      3

      6
      2
      4

      7
      3

      8
      2
      5

      9
      1
      4

      1
      1
```

10 1 6 3

【样例1输出】

1 3

2 4

3 3

【样例1解释】

图 3: 样例 1 中的树

- 对于第一组询问, $LCA^*(2,3) = 2$, $LCA^*(3,4) = 2$, $LCA^*(4,5) = 6$, 2 的深度为 3, 6 的深度为 2,因此答案为 $max\{3,3,2\} = 3$ 。
- 对于第二组询问,答案为 1,2,3,4 四个结点的最大深度,因此答案为 4。
- 对于第三组询问, $LCA^*(1,3) = 1$, $LCA^*(2,4) = 2$, $LCA^*(3,5) = 6$, $LCA^*(4,6) = 6$, 依旧是 2 的深度最大,因此答案为 3。

【样例 2】

见选手目录下的 query/query2.in 与 query/query2.ans。 该样例满足 $n, q \leq 500$ 。

【样例 3】

见选手目录下的 query/query3.in 与 query/query3.ans。 该样例满足 $n,q \le 10^5$ 且树符合链的形态。

【样例 4】

见选手目录下的 query/query4.in 与 query/query4.ans。 该样例满足 $n, q \le 5 \times 10^5$ 。

【数据范围】

对于所有的测试数据, 保证: $1 \le n, q \le 5 \times 10^5, 1 \le l \le r \le n, 1 \le k \le r - l + 1$

测试点编号	$n,q \leq$	特殊限制
$1 \sim 2$	500	无
$3 \sim 5$	5000	
$6 \sim 9$	10^{5}	满足性质 A
$10 \sim 13$	5×10^5	俩足住灰 A
$14 \sim 16$	$0 \times 10^{\circ}$	满足性质 B
$17 \sim 20$	10^{5}	无
$21 \sim 25$	5×10^5	

性质 A: 保证输入的树符合链的形态,且根结点的度数为 1。

性质 B: 对于每个询问保证 k = r - l + 1。