Examen 1 – Base de Datos

JSON

- Archivos en formato texto para el intercambio de información
- Independiente del lenguaje
- Fácil de entender y manipular
- Es soportado su formato en casi todas las tecnologías del backend

```
var employeeData = {
  "employee_id": 12138,
  "name": "Juan Otaegui",
  "hire_date": "1/1/2013",
  "location": "Ituzaingo, Buenos Aires",
  "consultant": false,
  "visited_days": [ 4,15,17,24 ]
};
```

Tipos de datos

- Strings (encomillados)
- Números (enteros y reales)
- Booleanos (true / false)
- Arrays
- Objetos
- Permite indicar NULL

JSON vs XML

- Son texto plano
- Son autodescriptivos
- JSON es más liviano
 - JSON usa tipos para los objetos
 - JSON tiene menos sintaxis.
 - Las propiedad de JSON son inmediatamente accesibles en código JavaScript

NoSQL

- Usa pocas restricciones de esquema No implementa el modelo relacional
- Son desestructurados
- Enfocado en distribución de datos
- Escala horizontal
- Acceso fácil por API
- No usa modelos de ACID

Conceptos básicos

¿Qué es una base de datos?

- Una base de datos es una gran colección de datos relacionados (por pertenecer al mismo contexto) y almacenados para su posterior uso.
- Es una colección de datos lógicamente coherente con algún tipo de significado inherente.

Dato: Representación simbólica de un atrivuto cuantitativo o cualitativo

DBMS: Database Managment System

¿Qué es un DBMS?

• Un sistema de administración de datos (DBMS, DataBase Management System) es una colección de programas que permite a los usuarios crear y mantener una Base de Datos.

El **DBMS** es un sistema de software de propósito general que facilita los procesos de **definición**, **construcción**, **manipulación y compartición** de bases de datos entre varios usuarios y aplicaciones.

- Autodescriptiva
- Abstracción
- Multiusuario
- Concurrencia

Papel fundamental en las transacciones

- Aislamiento
- Atomicidad
- Carga
- Copia de seguridad
- Reorganización
- Monitorización de rendimiento

Ventajas:

- Control de redundancia
- Acceso seguro, eficiente y concurrente
- Interfaces de usuarios
- Administración uniforme de datos
- Integro
- Usa reglas para las acciones
- Backup y restore
- Implementa estándares
- Flexibilidad en mantenimiento
- Economías de escala

Bases de datos vs Sistemas de archivos

- Posibilidad de realizar consultas a un leguaje de 4ta
- generación (SQL)
- Control de redundancia.
- Control de Acceso
- Persistencia de objetos
- Backups y herramientas para migración.
- Accesos múltiples de usuarios. Concurrencia.
- Restricciones de integridad.
- Relaciones de los datos.
- Flexibilidad.
- Reduce tiempos-esfuerzos en desarrollos de sistemas.

Normalización

1er Forma

- Prohíbe atributos multivalor, compuestos y combinatorios
- Son atómicos
- Celda con único valor
- Clave primaria única
- Quita grupos repetidos

	Ejemplo no normalizado:			
Nombre	Tele	éfonos		
Juan		12345, 67890		
En 1FN:				
Nombre		Teléfono		
Juan		12345		
Juan		67890		
	Juan Nombre Juan	Juan 123 Nombre Juan		

2da Forma

- Que este Normalizada en 1er Forma
- Todos los atributos que no son clave dependen completamente de la clave primaria (elimina dependencias parciales).

Ejemplo 1FN pero no 2FN:			
ID Pedido	ID Producto	Nombre Producto	Fecha Pedido
101	P01	Laptop	2024-11-20
101	P02	Monitor	2024-11-20

Problema: "Nombre Producto" depende solo de "ID Producto", no de la clave completa ("ID Pedido" + "ID Producto").

En 2FN: Dividimos en dos tablas:			
1. Pedidos:			
ID Pedido	Fecha Pedido		
101	2024-11-20		
2. Productos:			
ID Producto	Nombre Producto		
P01	Laptop		
P02	Monitor		
3. Detalles Pedido:			
ID Pedido	ID Producto		
101	P01		
101	P02		

3ra Forma

- Que este Normalizada en 2da Forma
- No tiene **dependencias transitivas**. (Un atributo no clave no debe depender de otro atributo no clave).

Ejemplo en 2FN pero no 3FN:			
ID Cliente	Nombre Cliente	Ciudad	Código Postal
1	Juan	Buenos Aires	1001
2	Ana	Córdoba	5000

Problema: "Ciudad" depende de "Código Postal", no de "ID Cliente".

	En 3FN: Dividimos en dos tablas: 1. Clientes:			
	ID Cliente	Nombre Cliente		Código Postal
	1	Juan		1001
	2	Ana		5000
2.	2. Códigos Postales:			
	Código Postal		Ciudad	
	1001		Buenos Aires	
	5000		Córdoba	

Resumen de Reglas

- 1. 1FN: Sin valores repetidos o multivaluados (Varios valores en mismas celdas).
- 2. **2FN**: Sin dependencias parciales (todo depende de la clave completa).
- 3. **3FN**: Sin dependencias transitivas (nada depende de atributos no clave).

Machine Learning

Machine Learning es una rama de la inteligencia artificial que se centra en desarrollar algoritmos que permitan a las computadoras **aprender automáticamente a partir de datos** sin ser programadas explícitamente. El objetivo es crear modelos que puedan hacer predicciones o tomar decisiones basadas en patrones detectados en los datos. Se enfoca en **aprender y predecir**.

- ¿Como definir aprendizaje? (rae.es)
 - Adquirir conocimiento por el estudio, la experiencia o siendo instruido (recibir instrucciones).
 - Concebir algo por meras apariencias
 - o Ser consciente por información o por observación.
 - o Fijar algo en la memoria.
- En términos de computadoras...
- ¿Qué podemos decir?
- Podemos resumir diciendo que con ML o DM existe aprendizaje si con mayor tiempo (y datos) se logran mejores predicciones.

Tiene

- Automatización
- Predicción
- Entrenamiento
- Algoritmos comunes

Tipos de Aprendizaje en ML:

Supervisado:

- Se entrena el modelo con datos etiquetados (entrada y salida conocidas).
- o Ejemplo: Clasificación de correos como "spam" o "no spam".

No supervisado:

- No hay etiquetas; el objetivo es encontrar patrones o estructuras en los datos.
- o Ejemplo: Agrupación de clientes según comportamiento.

Aprendizaje por refuerzo:

- Un agente aprende a través de prueba y error, recibiendo recompensas o castigos.
- o Ejemplo: Un robot aprendiendo a caminar.

Big Data

- Es un concepto "esquivo" que representa una cantidad de datos digitales:
 - Incómodos para almacenar
 - o Incómodos para transportar
 - o Pero sobre todas las cosas incómodos para Analizar.
- Se tratan de volúmenes tan altos que sobrepasan la mayoría de las tecnologías actuales.
- Generan desafíos para desarrollar nuevas generaciones de herramientas.

Data mining

Data Mining es el proceso de **explorar y analizar grandes conjuntos de datos** para descubrir patrones, relaciones y tendencias útiles. Utiliza métodos estadísticos, matemáticos y algoritmos informáticos. Se enfoca en **descubrir patrones** y **extraer conocimiento**.

- Data mining es definido como el proceso de descubrimiento de patrones en los datos.
- El proceso debe ser automático (usualmente semiautomático)
- Los patrones descubiertos deben ser útiles en el sentido de poder sacar un provecho a través de su conocimiento.

Características

- **Exploración de datos**: Se enfoca en encontrar patrones en datos históricos.
- **Enfoque descriptivo**: Más orientado a describir lo que ocurrió en lugar de predecir lo que sucederá.
 - Interdisciplinar: Combina estadística, aprendizaje automático y bases de datos.

Técnicas comunes:

- o Reglas de asociación (ej.: Market Basket Analysis).
- o Clasificación.
- o Clustering (agrupación).
- o Análisis de series temporales.

Aspecto	Machine Learning	Data Mining
Objetivo	Crear modelos predictivos o sistemas autónomos.	Descubrir patrones y relaciones en datos.
Enfoque	Predicción y toma de decisiones.	Análisis descriptivo e interpretación.
Interacción humana	Minimiza la intervención humana.	Requiere más intervención para analizar resultados.
Metodología	Entrena modelos que aprenden automáticamente.	Utiliza técnicas estadísticas y exploratorias.
Uso de datos	Generalmente datos dinámicos y en tiempo real.	Datos históricos o estáticos.

Ejemplos:

• Machine Learning:

- o Un sistema de recomendación de películas (Netflix).
- Un modelo de predicción de enfermedades basado en datos médicos.

Data Mining:

- Descubrir que los clientes que compran pañales también suelen comprar cerveza (análisis de canasta de mercado).
- o Identificar patrones en fraudes financieros.

Pregunta de examen

Hacer DER y MR

Hacer consultas SQL basado en puntos anteriores

Explicar cuando es 1FN, 2FN, 3FN

Las siguientes características de los sistemas NoSQL. Seleccione la opción (o las opciones) correctas(s)

- a) Se enfoca principalmente en datos estructurados
- b) Utiliza pocas restricciones de esquema
- c) No implementa el modelo relacional
- d) Todas las opciones anteriores son correctas los sistemas

¿Propiedades que da DBMS cuál o cuáles son?

- a) Aislamiento
- b) Concurrencia
- c) Detectar Patrones (Es de Data Mining)
- d) Todas las opciones anteriores son correctas