

Instituto Politécnico do Estado do Rio de Janeiro

Curso de Engenharia da Computação

Guilherme Cagide Fialho

Comparativo das solucões das equações de advecção e de advecção-difusão

Instituto Politécnico do Estado do Rio de Janeiro

Graduação em Engenharia da Computação

Guilherme Cagide Fialho

Comparativo das solucões das equações de advecção e de advecção-difusão

Relatório da Disciplina Métodos Númericos para Equações Diferenciais 2

Orientador: Prof. Hélio Pedro Amaral Souto

Lista de Figuras

1	Comparação das soluções de advecção e advecção-difusão para $D = 0.1$ no tempo $t = 0$. A linha	
	tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão	3
2	Comparação das soluções de advecção e advecção-difusão para $D=0.1$ no tempo $t=1$. A linha	
	tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão	4
3	Comparação das soluções de advecção e advecção-difusão para $D=0.1$ no tempo $t=2$. A li-	
	nha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão,	
	mostrando maior dispersão	5
4	Comparação das soluções de advecção e advecção-difusão para $D=0.1$ no tempo $t=3$. A li-	
	nha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão,	
	destacando o aumento da dispersão.	6
5	Comparação das soluções de advecção e advecção-difusão para $D=0.1$ no tempo $t=4$. A li-	
	nha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão,	
	mostrando um aumento na dispersão e na concentração do pico.	7
6	Comparação das soluções de advecção e advecção-difusão para $D=0.1$ no tempo $t=5$. A li-	
	nha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão,	
	destacando uma dispersão ainda maior	8

1 Introdução

Este trabalho tem como objetivo investigar e comparar as soluções das equações diferenciais unidimensionais de advecção e de advecção-difusão, que são fundamentais em diversas áreas da engenharia, especialmente na modelagem de fenômenos de transporte em meios contínuos. Para isso, utilizamos duas abordagens distintas: o método Lagrangiano, baseado na solução de d'Alembert, para a equação de advecção, e o método de Separação de Variáveis, auxiliado pela função de Green, para a equação de advecção-difusão.

A equação de advecção unidimensional modela o transporte de uma substância em um meio onde a velocidade do fluxo é constante, enquanto a equação de advecção-difusão leva em consideração tanto o transporte advectivo quanto o efeito da difusão, representado por um coeficiente de difusão *D*. Neste estudo, consideramos um domínio infinito, permitindo uma análise mais simplificada e a obtenção de soluções analíticas claras para os dois problemas.

As soluções analíticas dessas equações permitem a compreensão profunda dos fenômenos envolvidos e fornecem uma base sólida para o desenvolvimento de métodos numéricos mais avançados, que são frequentemente necessários para resolver problemas práticos com condições de contorno mais complexas. Além disso, a análise comparativa entre as soluções das duas equações, em diferentes instantes de tempo, possibilita uma avaliação detalhada do impacto do termo difusivo sobre a propagação do soluto no meio considerado.

No desenvolvimento teórico, a equação de advecção é resolvida utilizando a abordagem de d'Alembert, que explora a invariança da concentração ao longo das características do fluxo. Já a equação de advecção-difusão é abordada por meio de uma transformação que simplifica a equação para uma forma onde a solução pode ser expressa em termos de uma função de Green, proporcionando uma solução exata para o problema.

A implementação numérica das soluções, seguida de uma análise comparativa para diferentes coeficientes de difusão, permite avaliar a influência da difusão na dispersão do soluto e como essa influência se manifesta ao longo do tempo. Os resultados são apresentados em forma de tabelas e gráficos, que facilitam a visualização das diferenças entre os dois modelos e fornecem insights valiosos para a compreensão dos fenômenos de advecção e difusão.

2 Desenvolvimento Teórico

Neste trabalho, investigamos o comportamento de uma substância transportada em um meio contínuo, considerando dois modelos fundamentais: a equação de advecção e a equação de advecção-difusão. Esses modelos são resolvidos analiticamente para um domínio infinito, onde $-\infty < x < +\infty$, e assumimos que a substância está inicialmente confinada em um intervalo finito -L < x < L.

2.1 Equação de Advecção

A equação de advecção unidimensional descreve o transporte de uma substância em um meio quando esta é movida por um fluxo constante. Matematicamente, ela é expressa por:

$$\frac{\partial c}{\partial t} + \bar{u}\frac{\partial c}{\partial x} = 0,\tag{1}$$

onde c(x,t) representa a concentração da substância no ponto x e no tempo t, enquanto \bar{u} é a velocidade constante do fluxo. A condição inicial para essa equação é:

$$c(x,0) = \tilde{c}(x) = \begin{cases} c_0, & \text{se } -L < x < L, \\ 0, & \text{caso contrário.} \end{cases}$$
 (2)

Para encontrar a solução, seguimos o conceito das características, que nos permite acompanhar a trajetória da substância ao longo do tempo, assumindo que ela se move com a velocidade \bar{u} . Isso implica que, ao longo dessa trajetória, a concentração c permanece constante. A solução geral, então, é:

$$c(x,t) = \tilde{c}(x - \bar{u}t) = \begin{cases} c_0, & \text{se } -L + \bar{u}t < x < L + \bar{u}t, \\ 0, & \text{caso contrário.} \end{cases}$$
 (3)

Essa solução mostra que a substância é transportada ao longo do eixo x com a velocidade \bar{u} , mantendo sua concentração constante dentro da região delimitada pelo intervalo $-L + \bar{u}t$ a $L + \bar{u}t$.

2.2 Equação de Advecção-Difusão

A equação de advecção-difusão leva em conta não apenas o transporte da substância pelo fluxo, mas também o efeito da difusão, que tende a espalhar a substância ao longo do tempo. A equação é formulada como:

$$\frac{\partial c}{\partial t} + \bar{u}\frac{\partial c}{\partial x} = D\frac{\partial^2 c}{\partial x^2},\tag{4}$$

onde D é o coeficiente de difusão, representando a intensidade do espalhamento da substância. A condição inicial para este modelo é similar à usada na equação de advecção:

$$c(x,0) = \tilde{c}(x) = \begin{cases} c_0, & \text{se } -L < x < L, \\ 0, & \text{caso contrário.} \end{cases}$$
 (5)

Para resolver essa equação, aplicamos uma mudança de variável que simplifica o problema. Definimos uma nova variável W(x,t) como:

$$W(x,t) = c(x,t) \exp\left(-\frac{\bar{u}x}{2D} + \frac{\bar{u}^2t}{4D}\right). \tag{6}$$

Essa transformação elimina o termo de advecção, deixando uma equação de difusão pura:

$$\frac{\partial W}{\partial t} = D \frac{\partial^2 W}{\partial x^2},\tag{7}$$

A solução dessa equação, considerando um domínio infinito e uma condição inicial transformada, pode ser encontrada utilizando a função de Green:

$$W(x,t) = \int_{-\infty}^{+\infty} G(x - x', t) \tilde{W}(x') dx', \tag{8}$$

onde G(x-x',t) é a função de Green, expressa por:

$$G(x - x', t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{(x - x')^2}{4Dt}\right). \tag{9}$$

Finalmente, ao reverter a transformação inicial, obtemos a solução para a concentração c(x,t):

$$c(x,t) = \frac{c_0}{2} \left\{ \operatorname{erf} \left[\frac{L + (x - \bar{u}t)}{\sqrt{4Dt}} \right] + \operatorname{erf} \left[\frac{L - (x - \bar{u}t)}{\sqrt{4Dt}} \right] \right\}, \tag{10}$$

onde $erf(\cdot)$ é a função erro, que descreve a dispersão e o transporte da substância ao longo do tempo.

2.3 Comparação das Soluções

Para entender a diferença entre os dois modelos, comparamos as soluções das equações de advecção e advecção-difusão em diferentes instantes de tempo, variando o coeficiente de difusão D. A comparação revela como a difusão afeta a dispersão da substância, tornando a distribuição mais homogênea à medida que D aumenta, em contraste com o transporte puramente advectivo, onde a substância se move sem dispersão significativa.

Os resultados dessas comparações são apresentados em tabelas e gráficos, mostrando claramente como diferentes valores de *D* influenciam a propagação da substância ao longo do tempo.

3 Demonstração e Análise de Resultados

3.1 Caso: D = 0.1

3.1.1 Análise para o caso: D = 0.1 e t = 0

A Figura 1 mostra a distribuição da concentração de soluto no tempo inicial para um coeficiente de difusão D=0.1. Como observado, a solução de advecção-difusão mostra uma suavização inicial e um alargamento da distribuição da concentração em comparação com a advecção pura, que mantém a forma original da distribuição de concentração estabelecida pela condição inicial. Este efeito é típico de processos difusivos, onde a concentração tende a se espalhar para fora de sua posição inicial mais rapidamente.

Figura 1: Comparação das soluções de advecção e advecção-difusão para D=0.1 no tempo t=0. A linha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão.

Tabela 1: Valores numéricos da concentração para D=0.1 e t=0

X	Advecção	Advecção-Difusão
-2.250000	0.000000	0.000000
-1.690000	0.000000	0.000000
-1.140000	0.000000	0.000000
-0.580000	1.500000	1.500000
-0.030000	1.500000	1.500000
0.530000	1.500000	1.500000
1.080000	0.000000	0.000000
1.640000	0.000000	0.000000
2.190000	0.000000	0.000000
2.750000	0.000000	0.000000

3.1.2 Análise para o caso: D = 0.1 e t = 1

A Figura 2 mostra a distribuição da concentração de soluto no tempo t=1 para um coeficiente de difusão D=0.1. A advecção pura mantém a forma original retangular, simplesmente deslocada, enquanto a advecção-difusão revela uma significativa suavização e espalhamento da concentração, característico de um processo onde a difusão tem um papel importante.

Figura 2: Comparação das soluções de advecção e advecção-difusão para D=0.1 no tempo t=1. A linha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão.

Tabela 2: Valores numéricos da concentração para D=0.1 e t=1

X	Advecção	Advecção-Difusão
-0.750000	0.000000	0.003891
-0.190000	0.000000	0.090349
0.360000	0.000000	0.567097
0.920000	1.500000	1.236080
1.470000	1.500000	1.461555
2.030000	1.500000	1.281271
2.580000	0.000000	0.639132
3.140000	0.000000	0.114840
3.690000	0.000000	0.005674
4.250000	0.000000	0.000068

3.1.3 Análise para o caso: D = 0.1 e t = 2

A Figura 3 mostra a distribuição da concentração de soluto no tempo t=2 para um coeficiente de difusão D=0.1. A diferença entre a advecção pura e a advecção-difusão torna-se ainda mais evidente, com a difusão claramente aumentando o espalhamento do soluto além da simples deslocação causada pela advecção.

Figura 3: Comparação das soluções de advecção e advecção-difusão para D=0.1 no tempo t=2. A linha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão, mostrando maior dispersão.

Tabela 3: Valores numéricos da concentração para D=0.1 e t=2

X	Advecção	Advecção-Difusão
0.750000	0.000000	0.036080
1.310000	0.000000	0.204134
1.860000	0.000000	0.619096
2.420000	1.500000	1.108262
2.970000	1.500000	1.328708
3.530000	1.500000	1.146762
4.080000	0.000000	0.670639
4.640000	0.000000	0.234287
5.190000	0.000000	0.044211
5.750000	0.000000	0.004243

3.1.4 Análise para o caso: D = 0.1 e t = 3

A Figura 4 mostra a distribuição da concentração de soluto no tempo t=3 para um coeficiente de difusão D=0.1. Observa-se que a diferença entre a advecção pura e a advecção-difusão é acentuada, com a difusão produzindo um perfil de concentração significativamente mais suavizado e espalhado.

Figura 4: Comparação das soluções de advecção e advecção-difusão para D=0.1 no tempo t=3. A linha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão, destacando o aumento da dispersão.

Tabela 4: Valores numéricos da concentração para D=0.1 e t=3

X	Advecção	Advecção-Difusão
2.250000	0.000000	0.079917
2.810000	0.000000	0.277102
3.360000	0.000000	0.638956
3.920000	1.500000	1.026313
4.470000	1.500000	1.204510
5.030000	1.500000	1.056996
5.580000	0.000000	0.680379
6.140000	0.000000	0.306620
6.690000	0.000000	0.092273
7.250000	0.000000	0.017900

3.1.5 Análise para o caso: D = 0.1 e t = 4

A Figura 5 mostra a distribuição da concentração de soluto no tempo t=4 para um coeficiente de difusão D=0.1. O perfil de advecção-difusão agora exibe um pico ainda mais concentrado e caudas mais extensas, evidenciando a influência crescente da difusão na forma da distribuição da concentração.

Figura 5: Comparação das soluções de advecção e advecção-difusão para D=0.1 no tempo t=4. A linha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão, mostrando um aumento na dispersão e na concentração do pico.

Tabela 5: Valores numéricos da concentração para D=0.1 e t=4

X	Advecção	Advecção-Difusão
3.750000	0.000000	0.121478
4.310000	0.000000	0.326186
4.860000	0.000000	0.644859
5.420000	1.500000	0.961489
5.970000	1.500000	1.104326
6.530000	1.500000	0.986143
7.080000	0.000000	0.679442
7.640000	0.000000	0.353901
8.190000	0.000000	0.136036
8.750000	0.000000	0.037779

3.1.6 Análise para o caso: D = 0.1 e t = 5

A Figura 6 mostra a distribuição da concentração de soluto no tempo t=5 para um coeficiente de difusão D=0.1. A diferença entre a advecção pura e a advecção-difusão é ainda mais dramática, com a difusão resultando em uma dispersão substancial da concentração de soluto, suavizando e alargando significativamente o pico da distribuição.

Figura 6: Comparação das soluções de advecção e advecção-difusão para D=0.1 no tempo t=5. A linha tracejada representa a advecção pura, enquanto a linha contínua indica a advecção-difusão, destacando uma dispersão ainda maior.

Tabela 6: Valores	numéricos da	concentração	para $D=0.1$	e t = 5

X	Advecção	Advecção-Difusão
5.250000	0.000000	0.157609
5.810000	0.000000	0.360265
6.360000	0.000000	0.642820
6.920000	1.500000	0.907299
7.470000	1.500000	1.023754
8.030000	1.500000	0.927498
8.580000	0.000000	0.672274
9.140000	0.000000	0.385933
9.690000	0.000000	0.173177
10.250000	0.000000	0.059956

3.2 Conclusão do Caso: D = 0.1

Ao longo dos intervalos observados, de t=0 a t=5, as soluções numéricas para a equação de advecção-difusão com um coeficiente de difusão D=0.1 mostraram um padrão claro e consistente de alterações na distribuição da concentração de soluto. Inicialmente, em t=0, a advecção pura e a advecção-difusão começam com o mesmo perfil retangular de concentração, mas rapidamente divergem à medida que o tempo avança.

Com o aumento do tempo, a difusão exerce um impacto crescente na dispersão do soluto, resultando em perfis de concentração cada vez mais suavizados e alargados para a advecção-difusão. A advecção pura, por sua natureza, simplesmente translada o pulso de concentração sem alterar sua forma, enquanto a difusão, mesmo sendo moderada pelo valor relativamente pequeno de D=0.1, efetivamente suaviza e alarga o pico de concentração, aumentando significativamente as caudas do perfil distribuído.

Por t = 5, a diferença entre advecção pura e advecção-difusão é dramática. A distribuição sob influência da difusão mostra um pico que não apenas é mais alto e mais agudo do que nos estágios iniciais, mas também se estende muito além da localização original do pulso, demonstrando o poder da difusão em moldar a dinâmica do transporte de massa em meios contínuos.

Esta análise ressalta a importância da difusão na modulação das características de transporte de solutos em fluxos advectivos, particularmente em contextos onde a uniformidade da dispersão é crucial para as implicações práticas, como em processos químicos, ambientais e biológicos. A escolha de D=0.1, embora modesta, ilustra eficazmente como mesmo pequenas taxas de difusão podem influenciar significativamente a dinâmica de sistemas de transporte advectivo ao longo do tempo.