I. Analiza topologică a unei mulțimi din $\mathbb R$

Definiția 1. Fie $x, r \in \mathbb{R}$, r > 0. Intervalul deschis (x - r, x + r) se numește bila de centru x si raza r și se notează $\mathcal{B}(x, r) = (x - r, x + r)$.

Definiția 2. O mulțime $V \subseteq R$ se numește **vecinătate a punctului** $x \in \mathbb{R}$ dacă și numai dacă există $r \in \mathbb{R}$, r > 0 astfel încât $\mathcal{B}(x,r) \subseteq V$. Notăm cu V_x mulțimea tuturor vecinătăților punctului x.

Definiția 3. Fie o mulțime $A \subseteq \mathbb{R}$. Vom spune că $x \in A$ se numește **punct interior al mulțimii** A dacă A este vecinătate pentru x (altfel spus, dacă există r > 0 astfel încât $(x - r, x + r) \subseteq A$). Mulțimea tuturor punctelor interioare ale mulțimii A se numește interiorul mulțimii A și se notează cu \mathring{A} .

Definiția 4. Mulțimea $A \subseteq \mathbb{R}$ se numește **deschisă** dacă $\forall x \in G, \exists r > 0$ astfel încât $\mathcal{B}(x,r) \subseteq A$.

Proprietăți:

- \mathring{A} este cea mai mare mulțime deschisă inclusă în A.
- $\mathring{A} \subseteq A$ si \mathring{A} este mulțime deschisă.
- A este deschisă dacă și numai dacă $\mathring{A} = A$.
- $\bullet \ A \subseteq B \implies \mathring{A} \subseteq \mathring{B}.$
- $\bullet \ \ A \overset{\circ}{\cap} B = \mathring{A} \cap \mathring{B}.$
- $A \stackrel{\circ}{\cup} B \supset \mathring{A} \cup \mathring{B}$.

Teorema 5. O mulțime $A \subseteq \mathbb{R}$ se numește **închisă** dacă $C_F = \mathbb{R} \setminus A$ este mulțime deschisă.

Proprietăți:

- 1. \emptyset și \mathbb{R} sunt mulțimi deschise;
- 2. intersecția a două mulțimi deschise este mulțime deschisă;
- 3. \emptyset , \mathbb{R} , \mathbb{N} și \mathbb{Z} sunt mulțimi închise;
- 4. reuniunea a doua mulțimi închise este mulțime închisă;
- 5. există multimi care sunt si deschise si închise;
- 6. există mulțimi care nu sunt deschise, nici închise $(A = [1, 3), \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q})$;
- 7. mulțimile deschise din R sunt de forma $(a, b), (-\infty, a), (a, \infty),$ unde $a, b \in \mathbb{R}, a < b$.

Definiția 6. $x \in \mathbb{R}$ se numește **punct aderent mulțimii** A dacă, $\forall V \in V_x$, $V \cap A \neq \emptyset$. Notăm cu \bar{A} mulțimea punctelor aderente.

Teorema 7. O mulțime A este închisă dacă și numai dacă $A = \bar{A}$.

Definiția 8. $x \in \mathbb{R}$ se numește **punct de acumulare al mulțimii** A dacă, $\forall V \in V_x$, $(V \setminus \{x\}) \cap A \neq \emptyset$. Notăm cu A' mulțimea punctelor de acumulare a mulțimii A.

Definiția 8'. $x \in \mathbb{R}$ este **punct de acumulare al mulțimii** A dacă și numai dacă în orice vecinătate a punctului x se găsesc o infinitate de elemente din A.

Definiția 9. Frontiera mulțimii A este $FrA = \bar{A} \setminus \mathring{A}$.

Proprietăți:

- $\bullet \ C_{\bar{A}} = \mathring{C}_{A}.$
- $\bullet \ C_{\mathring{A}} = \bar{C}_{A}.$
- $\bullet~\bar{A}$ este cea mai mică mulțime închisă care conține pe A.
- $\bar{A}\supseteq A$ și \bar{A} este mulțime închisă.
- A este închisă dacă și numai dacă $\bar{A} = A$.
- $A \subseteq B \implies \bar{A} \subseteq \bar{B}$.
- $\bullet \ \ A \cap B = \bar{A} \cap \bar{B}.$
- $\bullet \ \ A \,\bar{\cup}\, B \subseteq \bar{A} \cup \bar{B}.$
- $A' \subseteq \bar{A}$.
- $\bar{A} = A' \cup A$.
- $\bullet \ A \subseteq B \implies A' \subseteq B'.$
- $\bullet \ (A \cup B)' = A' \cup B'.$
- $\bullet \ (A')' \subseteq A'.$
- $\bullet \ \bar{A}' = A'.$
- A este deschisă $\iff A \cap FrA = \emptyset$.
- A este închisă $\iff FrA \subseteq A$.
- FrA este mulțime închisă.
- $Fr(A \cup B) \subseteq FrA \cup FrB$
- $\bullet \ Fr(A \cap B) \subseteq FrA \cup FrB$
- A este **mărginită** dacă și numai dacă $\exists x, r \in \mathbb{R}, r > 0$ astfel încât $A \subseteq \mathcal{B}(x r, x + r)$.

II. Exerciții

- 1. Determinați $\mathring{A}, \bar{A}, A', FrA$ și decideți dacă A este închisă, deschisă sau mărginită:
 - (a) $A = \{1, 2, 3, 4\}$
 - (b) $A = (0, 5] \cup \{7\}$
 - (c) $A = \mathbb{Q}$
 - (d) $A = [1, 2) \cap \mathbb{Q}$
 - (e) $A = \{\frac{(-1)^n}{n} : n \in \mathbb{N}^*\}$
 - (f) $A = [0,1) \cup \{-\frac{1}{4^n} : n \in \mathbb{N}\}$
 - (g) $A = [-4,7) \cup \{10,11\} \cup [(-9,-8) \cap \mathbb{Q}]$
 - (h) $A = (-3, 0] \cup \{\frac{n+\sqrt{2}}{3n+\sqrt{3}} : n \in \mathbb{N}\}$