Proposizioni

P	Q	$P \implies Q$	$P \iff Q$
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	V

Massimo e minimo

 $A\subset \mathbb{R}, A
eq \emptyset$

- Può non esistere
- Se esiste è unico
- $M \in A$ si dice massimo per A ($M = \max(A)$) se $\forall x \in A \ M \geq x$
- $m \in A$ si dice minimo per A ($m = \min(A)$) se $\forall x \in A \ m \leq x$

Estremo

 $A\subset \mathbb{R}, A
eq \emptyset$

• $\bar{x}\in\mathbb{R}$ si dice estremo superiore di A ($\bar{x}=\sup A$) se è il più piccolo dei maggioranti, ovvero

$$\left\{ egin{aligned} orall x \in A & x \leq ar{x} \ orall \epsilon > 0 & \exists x \in A : x - \epsilon < ar{x} \end{aligned}
ight.$$

• $\underline{x} \in \mathbb{R}$ si dice estremo inferiore di A ($\underline{x} = \inf A$) se è il più grande dei minoranti, ovvero

$$\begin{cases} \forall x \in A \ \, x \geq \underline{x} \\ \forall \epsilon > 0 \ \exists x \in A : x - \epsilon > \underline{x} \end{cases}$$

Disuguaglianza triangolare

 $orall x_1,x_2\in\mathbb{R} \quad |x_1+x_2|\leq |x_1|+|x_2|$

Trasformazioni di funzioni

- Riflessione rispetto all'asse delle x: -f(x)
- Riflessione rispetto all'asse delle y: f(-x)
- Valore assoluto di f: |f(x)|
- Parte positiva di f:

$$f_+(x) = egin{cases} f(x) & f(x) \geq 0 \ 0 & f(x) < 0 \end{cases}$$

Parte negativa di f:

$$f_-(x)egin{cases} -f(x) & f(x) \leq 0 \ 0 & f(x) > 0 \end{cases}$$

- Traslazione verticale: f(x) + a
- Traslazione orizzontale: f(x + a)
- Riscalamento verticale: $k \cdot f(x)$
 - dilatazione se k>1
 - $\bullet \ \ {\rm compressione} \ {\rm se} \ 0 < k < 1 \\$
- Riscalamento orizzontale: $f(k \cdot x)$
 - $\bullet \ \ {\rm dilatazione \ se} \ 0 < k < 1 \\$
 - compressione se k > 1

Numeri complessi

- Forme
 - Cartesiana: z = x + yi
 - Trigonometrica: $z = |z|(\cos \theta + i \sin \theta)$
 - Esponenziale: $z = |z|e^{i\theta}$
- Coniugato: $\bar{z} = x iy$
- Modulo: $|z| = \sqrt{x^2 + y^2}$
- Reciproco: $z^{-1} = \frac{\bar{z}}{|z|}$
- Somma:

•
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

- Prodotto:
 - $z \cdot a = ax + iay$
 - $ullet z_1 \cdot z_2 = (x_1x_2 y_1y_2) + i(x_1y_2 + x_2y_1)$
 - $z_1 \cdot z_2 =$

$$|z_1||z_2|(\cos(heta_1+ heta_2)+i\sin(heta_1+ heta_2))$$

- $z_1 \cdot z_2 = |z_1||z_2|e^{i(heta_1+ heta_2)}$
- · Quoziente:

$$rac{z_1}{z_2}=rac{|z_1|}{|z_2|}(\cos(heta_1- heta_2)+i\sin(heta_1- heta_2))$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\theta_1 - \theta_2)}$$

- Elevamento a potenza:
 - $\quad \bullet \quad z^n = |z|^n (\cos(n \cdot \theta) + i \sin(n \cdot \theta)) \\$
 - $z^n = |z|^n e^{i \cdot n \cdot \theta}$
- Proprietà:
 - $\overline{z+w} = \bar{z} + \bar{w}$
 - $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
 - $z + \bar{z} = 2\operatorname{Re}(z)$
 - $z \bar{z} = 2i \mathrm{Im}(z)$
 - $\bullet \ |z|=0 \iff z=0$
 - $|z + w| \le |z| + |w|$
 - $z \cdot \bar{z} = |z|^2$
 - $|z \cdot w| = |z| \cdot |w|$

Fattoriale

 $n! := 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$ Proprietà:

- $n! = n \cdot (n-1)!$
- $\frac{n!}{(n-k)!} = n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$

Coefficiente binomiale

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-1)!} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k-1)}{k!}$$

Proprietà:

- $\binom{n}{0} = \binom{n}{n} = 1$
- $\binom{n}{k} = \binom{n}{n-k}$
- $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$

Binomio di Newton

$$(a+b)^n = \sum_{k=0}^n inom{n}{k} \cdot a^{n-k} \cdot b^k$$

Successioni

- Limitatezza delle successioni convergenti:
 - $a_n o l \implies orall n \in \mathbb{N} \; \exists M \in \mathbb{R} : |a_n| \le M$
- · Successione di Nepero:

$$\exists \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{n \to +\infty} |a_n| = +\infty \implies \lim_{n \to +\infty} \left(1 + \frac{1}{a_n}\right)^{a_n} = e$$

$$lpha \in \mathbb{R} \quad \lim_{n o +\infty} \left(1 + rac{lpha}{a_n}
ight)^{a_n} = e^{lpha}$$

Permanenza del segno:

$$x_n \to l > 0 \implies \exists \bar{n} : \forall n \geq \bar{n} \ x_n > 0$$

Confronto:

$$a_n \to a, \; b_n \to b \; \exists \bar{n} : \forall n \geq \bar{n} \; a_n \leq b_n \implies a \leq b$$

Due carabinieri:

$$a_n o a, \ b_n o b \ \exists ar{n} : \forall n \geq ar{n} \ a_n \leq c_n \leq b_n \\ \implies c_n o l$$

Criterio del rapporto:

$$orall n \in \mathbb{N}, \ a_n > 0 \ rac{a_{n+1}}{a_n} o l$$

- $l>1 \implies a_n \to +\infty$
- $l < 1 \implies a_n \rightarrow 0$
- Gerarchia di infiniti: $\log_a(n)$; n^{α} ; a^n ; n!; n^n

Limiti

 $D \subset \mathbb{R}, \; f:D o \mathbb{R}, \; x_0 \in \mathbb{R}$

• Punto di accumulazione: x_0 si dice punto di accumulazione per D se

$$\forall \delta>0 \quad (x_0-\delta,x_0+\delta)\cap D\setminus \{x_0\}\neq \emptyset, \\ \text{equivalentemente}$$

$$orall \delta > 0 \; \exists x \in D : 0 < |x - x_o| < \delta$$

• Limite finito in un punto: x_o punto di accumulazione per D, $l\in\mathbb{R}$ si dice limite di f per $x\to x_0$ se

$$orall \epsilon > 0 \; \exists \delta > 0 : orall x \in (x_0 - \delta, x_0 + \delta) \cap D \setminus \{x_0\}$$

• Funzione continua: $x_0 \in D$, una funzione f è continua in x_0 se

$$orall \epsilon>0\ \exists \delta>0: orall x\in (x_0-\delta,x_0+\delta)\cap D\setminus \{x_0\}$$
 , ovvero $\lim_{x o x_0}f(x)=f(x_0)$

 Limite infinito in un punto: x₀ punto di accumulazione per D,

$$\lim_{x o x_0} f(x) = +\infty \iff orall M > 0 \; \exists \delta > 0 : orall x \in (x_0)$$

• Limite all'infinito: D illimitato superiormente

$$\lim_{x o +\infty}f(x)=l\in\mathbb{R}\iff orall \epsilon>0\;\exists k>0:orall x\in (k)$$

$$\lim_{x \to +\infty} f(x) = +\infty \iff \forall M > 0 \; \exists k > 0 : \forall x \in G$$

- Discontinuità:
 - Eliminabile in x_0 se esiste finito

$$\lim_{x \to \infty} f(x) \neq f(x_0)$$

• A salto in x_0 se esistono finiti

$$\lim_{x o x_0^+}f(x)
eq\lim_{x o x_0^-}f(x)$$

· Essenziale negli altri casi

Limiti notevoli

$$\lim_{x o 0}rac{\sin(x)}{x}=1$$

$$\lim_{x o 0}rac{1-\cos(x)}{x^2}=rac{1}{2}$$

$$\lim_{x o 0} rac{ an(x)}{x} = 1$$

$$\lim_{x o\pm\infty}\left(1+rac{lpha}{x}
ight)^x=e^lpha$$

$$\lim_{x\to 0}(1+x)^{1/x}=e$$

$$\lim_{x o 0}rac{\ln(1+x)}{x}=1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x o 0}rac{a^x-1}{x}=\ln(a)$$

$$\lim_{x o 0}rac{(1+x)^lpha-1}{x}=lpha$$

Proprietà delle funzioni continue

- ullet Teorema degli zeri: $f:[a,b] o\mathbb{R}$ continua in [a,b], $f(a)\cdot f(b)<0 \implies \exists x_0\in (a,b): f(x_0)=0$
- Intersezione di funzioni: $f,g:[a,b]\to\mathbb{R}$ continue, $f(a)>g(a),f(b)< g(b)\implies \exists x_0\in(a,b):f(x_0)=g(x_0)$
- Teorema dei valori intermedi: $f:[a,b]\to\mathbb{R}$ continua $\Longrightarrow f$ assume tutti i valori compresi tra $\inf_{x\in[a,b]}f(x)$ e $\sup_{x\in[a,b]}f(x)$, ovvero
- Massimo e minimo assoluto: $f:D
 ightarrow \mathbb{R}$ continua
 - ullet M si dice massimo assoluto di f in D se
 - $\forall x \in D \ f(x) \leq M$
 - $\exists x_0 \in D: f(x_0) = M$ detto punto di massimo
 - ullet m si dice minimo assoluto di f in D se
 - $\bullet \ \ \forall x \in D \ f(x) \geq m$
 - $\exists x_0 \in D: f(x_0) = m$ detto punto di minimo
- Teorema di Weierstrass: $f:[a,b] \to \mathbb{R}$ continua $\implies \exists M,m$ massimo e minimo di f in [a,b] e f([a,b])=[m,M]

Derivate

$$f:(a,b) o \mathbb{R},\; x_0\in (a,b)$$

• f è derivabile in x_0 se esiste finito

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- f derivabile in $x_0 \Longrightarrow$ ammette retta tangente con equazione $y=f(x_0)+f'(x_0)(x-x_0)$
- Punto angoloso: x_0 è detto punto angoloso se esistono finiti $f'(x_0^+)
 eq f'(x_0^-)$
- Cuspide: x_0 è detto cuspide se $f'(x_0^+)=\pm\infty,\ f'(x_0^-)=\mp\infty$
- Punto a tangente verticale: x_0 è detto punto a tangente verticale se $f'(x_0) = \pm \infty$

Sin e cos

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	1
$\cos \theta$	1	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	0

$\sin(-x) = -\sin(x)$	$\cos(-x) = \cos(x)$	$\tan(-x) = -\tan(x)$
$\sin\left(rac{\pi}{2}\pm x ight)=\mp\cos(x)$	$\cos\left(rac{\pi}{2}\pm x ight)=\mp\sin(x)$	$ an\left(rac{\pi}{2}\pm x ight)=\mp\cot(x)$
$\sin(\pi\pm x)=\mp\sin(x)$	$\cos(\pi\pm x)=-\cos(x)$	$ an(\pi\pm x)=\pm an(x)$

$$\begin{aligned} \sin(x \pm y) &= \sin(x)\cos(x) \pm \cos(x)\sin(y) \\ \cos(x \pm y) &= \cos(x)\cos(y) \mp \sin(x)\sin(y) \\ \sin(2x) &= 2\sin(x)\cos(x) \\ \cos(2x) &= \cos^2(x) - \sin^2(x) = 2\sin^2(x) - 1 \end{aligned}$$