## Assignment - Constrained optimization Interior Point Method applied to linear programming problems

Matteo Bunino

January 21, 2020

## 1 Problem definition

The Predictor-Corrector is an Interior Point Method built to iteratively solve a nonlinear system of equations, obtained by defining the KKT condition for the pair primal-dual problem.

The linear system to solve is:

$$F(x,\lambda,s) = \begin{bmatrix} Ax - b \\ s + A^{T}\lambda - c \\ XSe \end{bmatrix} = 0$$

According to Newton method for nonlinear system of equation, the system can locally linearized and solved. To linearize this system is necessary to compute the Jacobian of F at each iteration and solve the linear system:

$$F'(x_k, \lambda_k, s_k) \cdot \begin{pmatrix} \Delta x_k \\ \Delta \lambda_k \\ \Delta s_k \end{pmatrix} + F(x_k, \lambda_k, s_k) = 0$$

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S_k & 0 & X_k \end{pmatrix} \cdot \begin{pmatrix} \Delta x_k \\ \Delta \lambda_k \\ \Delta s_k \end{pmatrix} + F(x_k, \lambda_k, s_k) = 0$$

Where  $X_k = diag(x_k)$  and  $S_k = diag(s_k)$ .

Interior point methods are variants of Newton method that guarantee that each iterate  $(x_k, \lambda_k, s_k)$  satisfy the constraint  $x, s \ge 0$ .

## 2 Problem data

$$A = (1, \dots 1) \in \Re^{1*n},$$
  
 $b = 1,$ 

 $c\in\Re^n:c_i=a$  if i is odd, otherwise 1.  $x\in\Re^n.$ 

After having built the sparse jacobian of F, using the command spy() it's possible to inspect its structure:



Using the command  $[R,p]=\operatorname{chol}(J)$  it's possible to notice, thanks to the value of p, that the matrix isn't positive definite. Hence I could not use: gradient method, conjugate gradient or Cholesky decomposition.

Since this matrix isn't symmetric, I didn't use the LDL decomposition neither.

Analyzing the structure of the block matrix, I could notice that it's possible to make some reductions, rewriting the left hand part in a more compact way:

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S_k & 0 & X_k \end{pmatrix} \cdot \begin{pmatrix} \Delta x_k \\ \Delta \lambda_k \\ \Delta s_k \end{pmatrix} = \begin{pmatrix} r_a \\ r_b \\ r_c \end{pmatrix}$$

Since X is invertible (x > 0) is guarateed by the IPM:

$$\begin{pmatrix} A & 0 \\ -X^{-1}S & A^T \end{pmatrix} \cdot \begin{pmatrix} \Delta x_k \\ \Delta \lambda_k \end{pmatrix} = \begin{pmatrix} r_a \\ r_b - X^{-1}r_c \end{pmatrix}$$

S is invertible for the same reason:

$$AS^{-1}XA^{T}\Delta\lambda = r_a + AXS^{-1}r_b - AS^{-1}r_c$$
 
$$\Delta s = r_b - A^{T}\Delta\lambda$$
 
$$\Delta x = S^{-1}r_c - XS^{-1}\Delta s$$

The matrix  $AS^{-1}XA^T\in\Re^{mxm}$  is a real number, since in this case m=1. This makes the computation of the system trivial, avoiding the problem of working with singular or indefinite matrices.

## 3 Results

|   | n iter   | a |    |     |      |
|---|----------|---|----|-----|------|
|   | Triter   | 2 | 20 | 200 | 2000 |
|   | 1,00E+04 | 7 | 9  | 9   | 10   |
| n | 1,00E+06 | 8 | 10 | 9   | 11   |

|   | time     | a      |         |         |        |  |
|---|----------|--------|---------|---------|--------|--|
|   |          | 2      | 20      | 200     | 2000   |  |
|   | 1,00E+04 | 0,1542 | 0,1038  | 0,0988  | 0,1635 |  |
| n | 1,00E+06 | 9,1605 | 11,1476 | 10,1838 | 12,089 |  |

Figure 1: Starting point of all ones.

| n iter |          | a |    |     |      |  |
|--------|----------|---|----|-----|------|--|
|        |          | 2 | 20 | 200 | 2000 |  |
| n      | 1,00E+04 | 9 | 10 | 10  | 11   |  |
|        | 1,00E+06 | 9 | 10 | 10  | 12   |  |

|   | time     | a       |        |         |         |  |
|---|----------|---------|--------|---------|---------|--|
|   |          | 2       | 20     | 200     | 2000    |  |
| n | 1,00E+04 | 0,166   | 0,1329 | 0,1328  | 0,1449  |  |
|   | 1,00E+06 | 10,2799 | 11,78  | 13,3218 | 13,8344 |  |

Figure 2: Starting point of all 100.

| n iter |          | a |    |     |      |  |
|--------|----------|---|----|-----|------|--|
|        | II itei  | 2 | 20 | 200 | 2000 |  |
|        | 1,00E+04 | 4 | 4  | 4   | 4    |  |
| n      | 1,00E+06 | 4 | 4  | 4   | 4    |  |

|   | Time     | a      |        |        |        |  |
|---|----------|--------|--------|--------|--------|--|
|   |          | 2      | 20     | 200    | 2000   |  |
|   | 1,00E+04 | 0,1044 | 0,0677 | 0,0662 | 0,0657 |  |
| n | 1,00E+06 | 5,2523 | 5,274  | 5,193  | 5,2321 |  |

Figure 3: Starting point as suggested on the book.