Prøveeksamen i MAT 1110, V-08

Denne prøveeksamenen legger spesiell vekt på oppgavetyper som er underrepresentert i tidligere eksamenssett. For å få et mer fullstendig inntrykk av mulige oppgavetyper bør du derfor se på de tidligere settene også.

Oppgave 1: Finn den inverse matrisen til $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & 0 \\ 1 & 1 & 3 \end{pmatrix}$ og løs lig-

ningen
$$A\mathbf{x} = \mathbf{b} \operatorname{der} \mathbf{b} = \begin{pmatrix} -2\\1\\4 \end{pmatrix}$$
.

Oppgave 2: La $f: \mathbb{R}^3 \to \mathbb{R}$ være funksjonen $f(x,y,z) = xy^2e^z + z$. Vis at det finnes en funksjon g(x,y) definert i en omegn om (-1,2,0) slik at g(-1,2) = 0 og f(x,y,g(x,y)) = -4. Finn $\frac{\partial g}{\partial x}(-1,2)$ og $\frac{\partial g}{\partial y}(-1,2)$.

Oppgave 3: Vektorfeltet $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ er definert ved

$$\mathbf{F}(x,y) = (2xy^3 - 2e^{-2x})\mathbf{i} + (3x^2y^2 + \cos(\pi y) + 3)\mathbf{j}$$

Finn $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ der \mathcal{C} er en stykkevis glatt kurve som starter i (0,0) og ender i (2,1)

Oppgave 4: Kjeglesnittet K består av alle punkter (x, y) som oppfyller ligningen $9x^2 + 4y^2 - 18x + 16y = 11$

- a) Hva slags kjeglesnitt er K? Lag en tegning av K der alle viktige størrelser er tegnet inn (f.eks. sentrum, brennpunkter, halvakser, asymptoter etter hva som er aktuelt).
- b) Forklar at funksjonen f(x,y) = 2x + y har en største og minste verdi når den begrenses til mengden K. Finn disse maksimum- og minimumsverdiene.

Oppgave 5: Gir du kommandoene

```
>> theta=linspace(0,2*pi,100);
>> r=linspace(0,2,100);
>> [theta,r]=meshgrid(theta,r);
>> x=r.*cos(theta);
>> y=r.*sin(theta);
>> z=4-x.^2-y.^2;
>> mesh(x,y,z)
>> axis('equal')
```

i MATLAB, får du figuren nedenfor. Finn arealet til flaten.

Oppgave 6:

a) Finn egenverdiene og egenvektorene til matrisen

$$A = \left(\begin{array}{cc} 1.3 & -0.2\\ 0.1 & 1 \end{array}\right)$$

- b) Skriv vektorene $\binom{2}{0}$ og $\binom{4}{3}$ som lineærkombinasjoner av basisvektorene du fant i a).
- c) Funksjonen $f: \mathbb{R} \to \mathbb{R}$ er gitt ved $f(x) = \lambda x + k$ der λ og k er konstanter, $\lambda \neq 1$. Vis at når vi itererer f med startpunkt x_0 , så er $x_n = \lambda^n \left(x_0 \frac{k}{1-\lambda} \right) + \frac{k}{1-\lambda}$
- d) Anta at $\mathbf{r}_0 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ og at følgen $\{\mathbf{r}_n\}$ fremkommer ved iterasjonen $\mathbf{r}_{n+1} = A\mathbf{r}_n + \mathbf{b}$ der $\mathbf{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$. Finn \mathbf{r}_n .

SLUTT