Homework for Math 351-003

Individual Homework: Due Wednesday, March 20.

- 1. Prove, using the ϵ - δ definition of continuity, that $h(x) = 2x^3$ is continuous at 1.
- 2. Suppose that $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ in the ϵ - δ definition of continuity. Prove that if (x_n) is a sequence in D converging to x_0 , then $(f(x_n))$ converges to $f(x_0)$.
- 3. Prove that if a function $f: D \to \mathbb{R}$ does not satisfy the $\epsilon \delta$ definition of continuity at some $x_0 \in D$, then it does not satisfy the sequence definition of continuity at x_0 .
- 4. Prove that if $\sum_{n=m}^{\infty} a_n = s$ for some real number s, then $\lim_{n \to \infty} a_n = 0$. (Hint: If $s_k = a_m + \dots + a_k$, then $a_k = s_k s_{k-1}$.)