AP CALCULUS BC	YouTube Live Virtual Lessons	Mr. Bryan Passwater Mr. Anthony Record
Topic: All Units	Free Response Question Stem Types Verbal Interpretations, Explanations & Reasoning	Date: April 30, 2020

Free Response Questions Stem Types: Verbal

2020 FRQ Practice Problem BC1

t (minutes)	0	1	4	6	10
E'(t) (students/minute)	21	18	8	3	1

- **BC1**: When Mr. Passwater starts his live online help session for his AP Calculus students, there are 25 students in the session. For $0 \le t \le 10$ minutes, students enter the online session at a rate modeled by the differentiable function, E'(t), where E'(t) is decreasing and measured in students per minute.
- (a) Use the data in the table to approximate E''(5). Using correct units, interpret the meaning of E''(5) in the context of the problem.

$$E''(5) \approx \frac{E'(6) - E'(4)}{6 - 4} = \frac{(3) - (8)}{2} = -\frac{5}{2}$$

At t = 5 minutes, the rate students enter

the online session is changing at a rate of $-\frac{5}{2}$ students per minute per minute.

- (**b**) Is there a time t, 0 < t < 10, at which E''(t) = -2? Justify your answer.
 - E'(t) is differentiable and continous on the interval 0 < t < 10 so by the Mean Value Theorem garantees there is at least one number t = c in 0 < t < 10 such that

$$E''(c) = \frac{E'(10) - E'(0)}{10 - 0} = \frac{1 - 21}{10} = -2.$$

The problem has been restated.

t (minutes)	0	1	4	6	10
E'(t) (students/minute)	21	18	8	3	1

- **BC1**: When Mr. Passwater starts his live online help session for his AP Calculus students, there are 25 students in the session. For $0 \le t \le 10$ minutes, students enter the online session at a rate modeled by the differentiable function, E'(t), where E'(t) is decreasing and measured in students per minute.
- (c) Using correct units, explain the meaning of $\int_0^{10} E'(t)dt$ in the context of the problem. Use a right Riemann with the four subintervals indicated in the table to estimate $\int_0^{10} E'(t)dt$.

 $\int_{0}^{10} E'(t)dt$ is the total number of students that enter the online session between t = 0 minutes and t = 10 minutes.

 $\int_{0}^{10} E'(t)dt \approx \left[E'(1)(1) + E'(4)(3) + E'(6)(2) + E'(10)(4) \right]$

 $= \left[(18)(1) + (8)(3) + (3)(2) + (1)(4) \right] = \left[(18) + (24) + (6) + (4) \right]$ = 52 students entered during the 10 minute time interval

(d) Is the approximation in part (b) an overestimate or underestimate of $\int_0^{10} E'(t)dt$? Give a reason for your answer.

E'(t) is decreasing for $0 \le t \le 10$ so the right Riemann sum approximation for $\int_{0}^{10} E'(t) dt$ is an underestimate.

(e) A tangent line to the graph of y = E(t) at t = 0 is used to approximate E(1). Does this approximation overestimate or underestimate E(1)? Give a reason for your answer. The approximation is overestimate because E'(t) is decreasing which means E(t) is concave down and the tangent line lies above the curve.

Free Response Questions Stem Types: Verbal

2020 FRQ Practice Problem BC2

- **BC2**: The function f is defined on the closed interval [-3, 12]. The graph of f, shown in the figure above, consists of three line segments and a semicircle centered at (10,0). Let g be the function defined by $g(x) = \int_{-1}^{x} f(t)dt$.
- (a) Find all value(s) of x on the open interval -3 < x < 12 for which the function g has a local maximum. Justify your answer.

g'(x) = f(x) There is a local maximum at x = 4 because g'(x) = f(x) changes from positive to negative at x = 4.

- (**b**) On what open intervals contained in -3 < x < 12 is the graph of g both concave up and decreasing? Explain your reasoning.
 - g(x) is concave up and decreasing when g'(x) = f(x) is increasing and negative.
 - g(x) is concave up and decreasing on three intervals -3 < x < -2 and 6 < x < 8 and 10 < x < 12.
- (c) For -3 < x < 12, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

The graph of g has a point of inflection when g'(x) = f(x) changes from increasing to decreasing or vice versa which also means g'(x) = f(x) has an extrema. The graph of g has a point of inflection when x = 0, 6, 8, and 10. The problem has been restated.

- **BC2**: The function f is defined on the closed interval [-3, 12]. The graph of f, shown in the figure above, consists of three line segments and a semicircle centered at (10,0). Let g be the function defined by $g(x) = \int_{-1}^{x} f(t)dt$.
- (d) Determine the minimum value of g on the closed interval [-3, 12]. Justify your answer.

local mimimum candidate: x = -2

endpoint candidates: x = -3,12

$$\begin{array}{c|c}
x & g(x) = \int_{4}^{x} f(t) dt \\
-3 & g(-3) = \int_{4}^{-3} f(t) dt = -\int_{-3}^{4} f(t) dt = -\left[-\frac{1}{2}(1)(2) + \frac{1}{2}(6)(4)\right] = -\left[(-1) + (12)\right] = -11 \\
-2 & g(-2) = \int_{4}^{-2} f(t) dt = -\int_{-2}^{4} f(t) dt = -\left[\frac{1}{2}(6)(4)\right] = -12 \\
12 & g(12) = \int_{4}^{12} f(t) dt = -\left[\frac{1}{2}(2)(4) + \frac{1}{2}\pi(2)^{2}\right] = -\left[(4) + 2\pi\right] = -4 - 2\pi \approx -10
\end{array}$$

The minimum value of g on $\begin{bmatrix} -3,12 \end{bmatrix}$ is g(-2) = -12

(e) Find
$$\lim_{x\to 3} \frac{g(2x) + x - 1}{1 - e^{f(x+1)}}$$
.

$$\lim_{x \to 3} (g(2x) + x - 1) = g(6) + 3 - 1 = -\frac{1}{2}(2)(2) + 3 - 1 = 0$$

$$\lim_{x \to 3} (1 - e^{f(x+1)}) = 1 - e^{f(4)} = 1 - e^{0} = 1$$

 $\lim_{x\to 3} \frac{g(2x)+x-1}{1-e^{f(x+1)}}$ produces the indeterminant form $\frac{0}{0}$ so we can apply l'Hospital's Rule

$$\lim_{x \to 3} \frac{g(2x) + x - 1}{1 - e^{f(x+1)}} = \lim_{x \to 3} \frac{g'(2x)(2) + 1}{-e^{f(x+1)}f'(x+1)} = \frac{g'(6)(2) + 1}{-e^{f(4)}f'(4)} = \frac{f(6)(2) + 1}{-e^{(0)}(-1)} = \frac{(-2)(2) + 1}{1} = -3$$

The problem has been restated.

BC2: The function f is defined on the closed interval [-3, 12]. The graph of f, shown in the figure above, consists of three line segments and a semicircle centered at (10,0). Let g be the function defined by

$$g(x) = \int_4^x f(t)dt.$$

(f) Let $H(x) = \begin{cases} \frac{x}{g(x)} & x < 8 \\ -2\ln|e + f(x)| & x \ge 8 \end{cases}$. Is H(x) continuous at x = 8? Why or why not?

$$H(8) = -2 \ln |e + f(8)| = -2 \ln |e + f(8)| = -2 \ln |e| = -2(1) = -2$$

$$\lim_{x \to 8^{-}} H(x) = \lim_{x \to 8^{-}} \frac{x}{g(x)} = \frac{8}{g(8)} = \frac{8}{\int_{4}^{8} f(t)dt} = \frac{8}{\left[-\frac{1}{2}(4)(2)\right]} = \frac{8}{-4} = -2$$

$$\lim_{x \to 8^{+}} H(x) = \lim_{x \to 8^{-}} \left(-2 \ln |e + f(x)| \right) = \lim_{x \to 8^{-}} \left(-2 \ln |e + (0)| \right) = -2$$

$$H(x) \text{ is continuous at } x = 8 \text{ because } \lim_{x \to 8} H(x) = H(8).$$

$$H(x)$$
 is continuous at $x = 8$ because $\lim_{x \to 8} H(x) = H(8)$