# LIGHTNING FAST DATAFRAMES WITH POLARS

Going beyond Pandas

Overview and performance

Alberto Danese

# One question: why all the hype?



### About me



Alberto Danese Head of Data Science

nexi

www.linkedin.com/in/albertodanese

Computer Engineer (Politecnico di Milano) 15+ years in data & tech, mostly in financial services

Competitions Grandmaster on **kaggle** 

I write regularly on: allaboutdata.substack.com  $A^2D$ 

Speaker at AWS Re:Invent, Google, Codemotion, Kaggle and other data & tech events



eBook and paperback

- Working with data in Python used to be an easy choice!
- Does the data fit in your machine RAM? Pandas!
- It doesn't? (py)Spark



- A large ecosystem a pandas dataframe is what most libraries in the data and ML field expect
- A huge community with 1000s of contributors with code, documentation, guide, tutorials
- A relatively stable API as many projects depend on it
- All of this have to be expected: it's the de facto standard for Python dataframes, developed since 2008



- It would be too long to list all of Spark's benefits, as it's much more than a DF library, but when it comes to handling data, it provides:
- Horizontal scaling you can add computation at need
- A set of tools to deal with data, starting from SparkSQL to a proper adoption of the pandas API (koalas has been integrated in the pySpark codebase since 3.2)

# The not-so good



- **Limited scaling** begin designed as single threaded severely limits performances
- Questionable syntax you may like it or not, but it easily gets messy



- It's **complicated**! (this is also the reason why many love it)
- Sometimes you'd just avoid the **complexity** of handling a cluster unless it's really needed

Most of the time, we are somehow in the middle: the data is not big enough for Spark, but too big for Pandas

Memo: 96 vCPU and 768GB of ram cost just 8\$/hour on major/ Cloud providers























Memory mapping alternative (not to load a df in memory), apparently not developed since December 2022 Wannabe drop-in replacement of Pandas with a single line of code, providing parallelism





Porting of the R library by H2O.ai team, very concise and fast... once it was the fastest around



Fast dataframe library, if you have a GPU and the GPU ram is enough

CUDF (RAPIDS)
THE DATAFRAME LIBRARY FOR GPU DATA SCIENCE







- Designed from scratch (from early 2020), initially to provide a dataframe library to the Rust ecosystem
- Built on top of Arrow for efficiency
- Written in Rust, but available with bindings for Python as well
- Personal project of Ritchie Vink that got a bit out of hand: 16.000+ stars on Github, 6.000+ commits (still 70% by the original author) in just 3 years!

# Why Polars?



### **SPEED**

Often an order of magnitude (or more) faster than Pandas, plus lazy evaluation and larger-than-memory data support

### **SYNTAX**

Pure **pythonic** syntax, just **intuitive** and **expressive** 





### The ex-H2O.ai db benchmark

- In Mid-april 2023, DuckDB forked the original H2O.ai db benchmark (stuck in 2021) and ran several analytical workloads on 10 libraries, with different data size (0.5GB, 5GB, 50GB) and families of operations (mainly groupby and join)
- The code is open, here: <a href="https://duckdblabs.github.io/db-benchmark/">https://duckdblabs.github.io/db-benchmark/</a>

### Some results







# Key features: eager vs. lazy

### **Eager** evaluation

- What we are used to (in pandas aswell): each command gets executed right away, line-byline
- Nothing else: as simple as that!

### Lazy evaluation

- You can pipe as many operations as you like in lazy way: nothing actually happens until you call a collect()
- This leaves room for optimizing an appropriate query plan and much more

df = pl.read\_csv('ghtorrent-2019-02-04.csv')



df = pl.scan\_csv('ghtorrent-2019-02-04.csv')



# Key features of lazy evaluation

### **Optimizations**

According to the actual needs of the process to be collected, the query planner takes care of:

- Predicate pushdown: filter data as early as possible
- Projection pushdown: select columns that are really needed
- Join ordering: to minimize memory usage
- Various tricks to optimize groupby strategy
- And much (much!) more

https://pola-rs.github.io/polars-book/user-guide/optimizations/intro.html

### Larger-than-memory dataframes

- Remember reading data in chunks to avoid out of memory errors? Polars takes care of this under the hood
- How: collect -> collect(streaming=True)
- Not all operations are supported in streaming mode (but most are)
- The final dataset has to fit in memory...
  unless you sink it directly to a parquet file
  on disk

https://pola-rs.github.io/polars-book/user-guide/lazy-api/streaming.html



# Integration in a pandas codebase?



# My own benchmarks (1/3)



A 20GB csv ©

~90M rows x 11 columns

https://www.kaggle.com/datasets/stephangarland/ghtorrent-pull-requests

| shape: (5, 11)  |          |            |                 |                 |          |               |           |          |            |                     |
|-----------------|----------|------------|-----------------|-----------------|----------|---------------|-----------|----------|------------|---------------------|
| actor_login     | actor_id | comment_id | comment         | repo            | language | author_login  | author_id | pr_id    | c_id       | commit_date         |
| str             | i64      | i64        | str             | str             | str      | str           | i64       | i64      | i64        | datetime[µs]        |
| "calbach"       | 87112    | 273585366  | "nit: slightly  | "workbench"     | null     | "dolbeew"     | 44115666  | 59573116 | 1358455907 | 2019-02-04 21:10:24 |
| "njohner"       | 9058655  | 194786075  | "done"          | "opengever.core | "Python" | "deiferni"    | 971629    | 40421364 | 1038953673 | 2019-02-04 13:09:03 |
| "calbach"       | 87112    | 279063421  | "rm"            | "workbench"     | null     | "dolbeew"     | 44115666  | 60894156 | 1375725662 | 2019-02-04 21:10:24 |
| "michaelvidal24 | 34641709 | 270884365  | "Should we be c | "Fabric.ldentit | "C#"     | "hckenmiller" | 44348190  | 59127871 | 1348009853 | 2019-02-04 20:23:57 |
| "jasiekmiko"    | 3470241  | 245735843  | "Ah great spot  | "beis-mspsds"   | null     | "DWRendell"   | 7504910   | 52750526 | 1258777659 | 2019-02-04 17:18:14 |

# My own benchmarks (2/3)

A serious benchmark is already DuckDB's one (formerly H2O)... but let's first-hand try something not-so-fancy (group by's, datetime operations, counts, lists of uniques)

Tested on a 2016 desktop PC with 32GB of RAM

```
gby_lazy = (
  df
  .groupby('actor_login')
  .agg(
        pl.count(),
        pl.col('repo').unique().alias('unique repos'),
        pl.col('repo').n_unique().alias('unique_repos_count'),
        pl.min('commit date').alias('first commit'),
        pl.max('commit date').alias('last commit'),
        (pl.max('commit_date') - pl.min('commit_date')).alias('delta_time')
  .sort('count', descending=True)
  .collect()
  .limit(5)
gby lazy
```

# My own benchmarks (3/3)

|                      |                            |                             | N.                              | (8)                           |  |
|----------------------|----------------------------|-----------------------------|---------------------------------|-------------------------------|--|
|                      | Polars 0.17.9<br>Lazy eval | Polars 0.17.9<br>Eager eval | Pandas 2.0.1<br>Pyarrow backend | Pandas 2.0.1<br>Numpy backend |  |
| Full dataset read    | Os*                        | ∞                           | ∞                               | $\infty$                      |  |
| Full dataset query   | 34.9s                      | $\infty$                    | ∞                               | $\infty$                      |  |
|                      |                            |                             |                                 |                               |  |
| First 10M rows read  | Os*                        | 3.2s                        | 9.5s**                          | 29.1s**                       |  |
| First 10M rows query | 6.1s                       | 1.6s                        | 26.5s                           | 28.3s                         |  |
|                      |                            |                             |                                 |                               |  |

<sup>\*</sup> By definition of lazy, not a proper *read* 

<sup>\*\*</sup> Not including casting time for dates

# If it's not enough... approx



Approximate (i.e. wrong) result, but may be good enough in some cases and takes a fraction of time



# Sneak peek on syntax

```
gby lazy = (
  df
  .groupby('actor_login')
  .agg(
        pl.count(),
        pl.col('repo').unique().alias('unique_repos'),
        pl.col('repo').n_unique().alias('unique_repos_count'),
        pl.min('commit date').alias('first commit'),
        pl.max('commit date').alias('last commit'),
        (pl.max('commit_date') - pl.min('commit_date'))
  .sort('count', descending=True)
  .collect()
  .limit(5)
gby_lazy
```

My point of view on Polars' syntax:

- Pythonic and easy to read even for newbies
- Very **expressive**
- Typically **not as concise** as Pandas

# So what is missing?

- There's a strong reason why everybody is talking about Polars (and you'll enjoy syntax as much as performance)
- Yet there are many things that are missing (so far)
- 1. **Stability**: close to daily releases, frequent breaking changes
- 2. Ecosystem: first projects based on top of polars starts to show (e.g. ultibi), but most libraries (e.g. ML ones) do require a pandas dataframe pandas native support for pyarrow (and consequently zero-copy from polars to pandas) may be a game-changer!
- 3. **Community**: documentation, user guide, tutorials are all getting old very quickly

# What I mean with frequent releases





https://pypi.org/project/polars/#history

https://pypi.org/project/pandas/#history

# My take on Polars vs. Pandas vs. rest

- For those who do not like Pandas syntax and/or speed, or have data that is big but not huge, there's a valid alternative!
- Built on top of SOTA technologies, with eager/lazy support, a growing community, intuitive syntax and frequent releases, Polars is here to stay – the other competitors of pandas have lost momentum
- And if you thought Pandas 2.0 with support for pyarrow could dramatically change the landscape... think again!
- Adoption is key: check out the (free and beautiful) course over at Calmcode.com\* and give Polars a try!



**Alberto Danese** Head of Data Science

www.linkedin.com/in/albertodanese



eBook and paperback

# THANKS!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

https://slidesgo.com/theme/data-science-consulting