32 강 13 절 3 핵의 성질

Ø: G+G'를 춘동형시상이라 하자. Corol 13.18
 ⇒ Ø가 일대원함수 이기 위한 필요충분조건은 1œr(Ø)= fel 이다.
 198) 月) 자명하다. $\leftarrow 1) | | f \propto \epsilon G | \mathcal{O}(x) = \mathcal{O}(a) | | = |aH| = |H| = |aH| =$ Ø: G+G' 가 동형사상임을 보이기 위해서는 1. 여가 순동형4성 일을 보이다. 2. ker (Ø) = fes \(\mathbb{g} \) \(\mathbb{H} 0 \) \(\mathbb{A} \). 3. Ø가 약에서 당 위로의 사상형을 보이자. H가 G의 부분군이리 하자. Def 13.19 9은 g∈G에 대하여 gH=Hg 이번 H를 G의 정규부분군 (normal subgroup) Ø: G = G'가 존등형시상일 때 ker(Ø) 는 G의 검규부분군 이다 Corol 13.20 ① ker(Ø)가 주의 복본군임을 보이자 (→ Thm 13.15 에서 이미 보였다.) 198) fe'4 ≤ Y ② ker(Ø) 가 역의 정규복분군 위를 보이자. ■ gH C Hg 임을 보이자. $\Rightarrow \alpha = gh \ \text{e} \ \text{or} \ \emptyset(\alpha) = \emptyset(g) \emptyset(h) = \emptyset(g)$ \forall $e' = \emptyset(\mathcal{X})\emptyset(\mathcal{Y})^{\dashv} = \emptyset(\mathcal{X}\mathcal{Y}^{\dashv})$ □ Hg C gH 영을 보이는 것도 비슷한 방식으로 하면 된다. * 정규부분군이 정의되는 이유) 굉장히 중요

33 강: 14절 | 임여군 (factor group)

Def)	H가 G의 부분건이라 하자.
	→ G/H 는 약에서 H의 확임자유들의 집뿐이다.
질 운 :	G/H가 언제 군이 원짜?
0	이항면산 권의
	→ (aH)(bH) = (ab) H
9	갈 정의되었는기 ?
	→ QH = Q'H , b'H = bH 각 하가.
	all 다는 정칭에서 BH 다는 정칭에서 대로자들 대문자들 ask a.s. 또 보는 다.
	$\Rightarrow (aH)(bH) = (ab)H$
	→ (αH) (bH) = (α'b')H
	→ 2위면 (ab) H = (a^b') H 인가?
Summary)	G/H 가 큰이 되기 위해 성입해야 하는 것
	an.bH - 8번 ⇒ aH = α'H , bH = b'H 이런 (ab)H = (a'b')H 이다.
광 1:	"aH= a'H "는 "어떤 hell에 대하여 a'= ah "와 동체이다.
	(pb) aH an
	$\left(\begin{array}{cccc} \alpha & a_1 & a_2 & a_3 & \cdots & a_n \\ & & & & & & & \\ & & & & & & & \\ \end{array}\right)$
	alı alı alı
	⊨⇒) a'h₁ = ah₂ o/2.3. a'= ak₂h⁻¹ ah* □ শুল্ব n'3.4 e> এ%
	(m) aH의 정의에 의해 aH= a(H) 가 성입. S
	gaet.

34강 : 14철 2 일터군

Review)	* ^{숙/} ㅐ = 「ㅐ의 촤잉셔윾들의 집합 i	
	= f H. aH. bH. · · · {	다시 한번 더
	* G/H 에서 연산	정규부분군을 정의한 이유)
	(aH)(bH) = (ab)H	G/H 가 군을 이루게 하고 싶다
O'H	* 이 연신이 잘 정의되었는??	- 그러기 위해서는 연산이 잘
o'H 이동안 AH 수동편	(aH)(bH) = (ab) H ☐ 같은가?	정의되어야 하므로 이렇게 연산
(a, a')	(a'H) (b'H) = (a'b')H	을 정의.
*	aH= a'H ↔ a'= ah	
*	$\alpha' = a h_1$. $b' = b h_2$ $\Rightarrow \alpha' b' = ab h_3$ (h. ha.)	n∈H)
H가 이번 ⇒ 23%은 단축	이 가는 같은 필요 없으므로 분리해서 쓴다.	
H가 정국부분군 (normal subgroup)	G/H 의 연산이 칼 정의되었음 !	
Review)	G/H 가 군이 되기 위해 성립해야 하는것 :	
	aH = a'H, bH = b'H 이번 (ab)H = (a'b')H 이다	
	→ 추장 1을 이용하며 다시 말하면	
	a'= ahı, b'= bh2 (hı,h2∈H) 이번	a'b'= abh3 인 h3 € H 가 있다.
Thm 14.4	H가 G의 부분군이라 하자.	
	→ H가 G의 정규부분군이면 (즉 모든 a∈ G 에 이	대하여 all= Ha 이연)
	G/H 에서 이항면산이 갈 정익된다.	
(198)	$a'b'=ah_1bh_2=a(h_1b)h_2=a(bh'_1)h_2=abh'_1h_2$	= abha _
	정규부분인이라 Mb= bhí	

⇒ 영역군 2/n2 는 2n 에 동형이다.

SI 1 1 1 I $Z_n = \{0, 1, \dots, n+1\}$

Z/nz = fnz. 1+nz, (n-1)+nz1: a group

35강 : 14걸 3 _ _ _ _ _ _ 기본정리

- ㅋ 준동형사상
- ㅋ 일대일 항수
- ⇒ 전4항수

Thm 14.11 Ø: 9-9' 를 kernel (핵) H를 갖는 관동병사상이라 하자. U: G/H → Ø[G] > 8848014. (1) 9H → Ø(9) 7: G - G/H 4 AP Ø = M · 8 & CLARA. 연결보 (2) 1981) Let X, Y&G. 28) Then $\chi(xy) = (xy)H = (xH)(yH) = \chi(x)\chi(y)$ So 8 Is a homomorphism. 1981 v Ø(9) Since xH=H is and only is $x\in H$, we see that v 11.7(9) = 11(9H) = 10(9) the kernel of 1 is indeed H. 11. 8 = Ø 14월 4 청규부분군의 조건, 지기동령사상. 362 H가 G의 범군이라 하자. Thm 14. 13 = HOG의 3가지의 등치조건은 다음과 같다. O 97 geG of Hoth 9H=H9 ② BE GEG of aim $gHg^{-1} = H$ or .

이것반기억 Ø 모든 geG, heH 에 대해 ghg TeH 이다.

Clasin Procedure

① ab⁻¹ 통해 부분군임 ② ghg ⁻¹ 등해 정규부분군임

(PB)

 $(1) \Rightarrow (2)$ $(2) \Rightarrow (3)$ $(3) \Rightarrow (1)$

내부자기동형사상

G/G = 1G. 08 1 = 191

Def 14.15)	① Ø:G→G オ も哲小さの면 Ø 音 G의 automorphism.
	3 ig: G = G = 24 347. x+3 g xg=1
	→ 24번 . 1g ≥ G의 작가동병사장이다.
	ન ા લા. તુ કે 9 લા વરુ ૬થ પાયમગ કરી વડે (Timer automorphism)
31/8	15 철 1 : 잉역류 계단 1
	Factor group computations.
*	$A/B \simeq C$ $A.B.C: \exists$
*	
	p: Ġ¬ ⑥: きます 4.8
	$\exists A: G/H \rightarrow \emptyset(G) \qquad H = \ker \emptyset$ $G(G) \qquad G(G) \qquad $
	עוש דין ווס
*	$\emptyset:A\to C$ (onto)
	ker Ø = B
(Ex)	9/101 = G
	9 16년 1 - 9 이용한 바쁜지나와 동범인 것은 당면. 일대본대용 운동청시원의 가장 서보자.
*	$ \emptyset: \stackrel{\leftarrow}{q} \longrightarrow \stackrel{\leftarrow}{g} \stackrel{\leftarrow}{q} /_{\ell_1} \rightarrow \stackrel{\leftarrow}{q} \\ g \longmapsto g: \text{ant} \circ \qquad $
	ker Ø = fe4
	→ 从: G/ _{fei} → G : 동형시상
	50 -
(Ex)	9/9 = 101
(Pb)	다 다 보는 원소가 하나짜리 인명이므로 이용 바꾸기 가는 (유명)
by	ker Ø = G
(관등병사장의 개본정리)	च M : G1G → 101 : 8848 eG € → 0
GA.	! = _(H, aH, bH, {

```
(Ex 15.4)
                  Sn/An ~ Z2
         (Pb)
                    Sn/An = f An. (1.2) An 1 → 彩立 2개:
                    Ø: SA - Z2
                    \ker \emptyset = A_n
                   (Z2 × Z6) / <(0,1)> ~ Z4
 (Ex 15.7)
         (PB)
                    \emptyset: \begin{tabular}{lll} $\mathbb{Z}_2 \times \mathbb{Z}_6 & \to & \mathbb{Z}_2 \\ (a,b) & \longmapsto & a \end{tabular}
                     \ker \emptyset = \langle (0,1) \rangle = \int (0,b) |b = 0, \dots, 5|
                            Ø: 22 × 26 → Z2

(0, b) → 0

(1, b) → 0

(1, b) → 0

(24) projection 22 ±4 4 ₹€.
                   FHT에 의해서 세는 동형사상이다.
                    4 Fundamental Homomorphism Thm
                  G = Hxk & BA.
  Thm 15. 8)
                  H = f(h.e) | he H f 4 G
                   (H \times K)/\Pi \simeq K
            2
          (Pb)
                   모든 g \in G, h \in \widehat{H} 에 대하여 ghg^{\dashv} \in \widehat{H} 임을 보이면 된다.
                     \exists \quad (h_1,k)(h_2,e')(h_1,k)^{-1} = \quad (h_1h_2h_1^{-1}, kek^{-1}) = \quad (h_1h_2h_1^{-1}, e') \in \overrightarrow{H}   \qquad \qquad (H_1H_2h_1^{-1},k^{-1}) \qquad \qquad (H_2H_2h_1^{-1},e') \in \overrightarrow{H} 
                  2 Ø: Hxr → r
181x r 24 4471.

⇒ ker Ø = H = H × fef -
                     च FHT ला थमें AI: (HXK)/FI → leixk
```

Thm)
$$f_1 = f(e,k) + e f(e,k) + f(e,k)$$

대표자들

By FTH. Z+ × Z6/H ~ Z2 × Z3

	247 + ²⁴ / ₂ = [mt] = 4X3 or 2X2X3.
(E× 15. 11)	$(\mathbb{Z}_4 \times \mathbb{Z}_6)/\langle (2,3) \rangle \cong ? \mathbb{Z}_4 \times \mathbb{Z}_3$
	〈 (2.3)〉 = / (2.3), (新约 \ 2 附期以
	2 _(C,0)
	3
	0.00 () () () () () () () () () (
	COSE COSE 2 "Z2 X Z3
	< (1,0)> = 4
	(1.0) + = 4
Thm 15. 9	순환국의 잉머군은 순환군이다.
	* G=(a>
	Hod Aga
	G/H : स्थर १ क्म) - क्ष्म्
	48: G/# = <ah></ah>
	8명 : ³⁶ bH 은 G/H 에 대하다
	$bH = a^k H = (aH)^k \in \langle aH \rangle$ $b = a^k$
	단순군(Simple group)
Def 15.14	라이 비자명 진정규부분군들을 가지지 않는 F고 하면 그 군을 단순군 (Simple group)
75 IF IF	
Thm 15.15	An 은 n≥5 에 대해 せ순ਦ
(198)	생략
★ धमष्ठ राष्ट्रेते स्टिर×	# N≥5 S _N
G: simple group	
X	$\begin{pmatrix} A_n \\ \dot{e} \end{pmatrix}$

PB (*) NAG → Ø[N]A Ø[G]

O Ø[N] < Ø[G] pass

HAG GEG. hEH ghg→… ∈H

gEØ[G]. hEØ[N]

(2) Ø[N] 1 Ø[G]

Thm 15.16 G' G Ø[N] 4 Ø[G] N' 01 81491 NI 01 844403 3. Def 15.19

40강 15절 5 단순군

Ø: G-G'이 군 관등형사상이라고 하자. > N 1 G 0 P Ø[N] 1 Ø [G] 0/C; (*)

=N'19'019 0'[N']19 014. Ø[G](智)

maximum ㅋ 항상 제일 큰거

NI 보다 크면서 G보다 작은 Normal subgroup 이 없으면!

ghg+ ... € Ø[N]

 $g = \emptyset(a)$, $h = \emptyset(b)$ $a \in G. b \in N$

 $= \emptyset(aba^{-1}) \in \emptyset(N)$

NAG 0103 abateN

 $= \emptyset(a) \emptyset(b) \emptyset(a)^{-1} = \emptyset(a) \emptyset(b) \emptyset(a^{-1})$

상대적으로 제일 본지 극대경귀부분군 (maximal normal subgroup of a group)

M O G 의 정규부분군으로서 N+G OL

서울 포함하는 G가 이번 신경규부분군 N이 존재하지 않는다면,

Mol Gal actionally \mathcal{L} Mol Galactic \mathcal{L} And \mathcal{L}

서울 G의 극대정규 부분군 (maximal normal subgroup)

Thm 15.18)

* Canonical homomorphism

7: G - G/M

お子が ダノ州 Ol SImple Ol 아니라 おれた。

그러면 fM l 이나 G/M 이 아닌 G/M 의 normal subgroup N'이 존재한다. 17 [N'] 19 014

① N ≠ G 임을 보이자 : N'이 G/M 전체가 아니므로 N ≠ G 이다.

3 NOM: N'3 M 0123 7 87[N'] OM

3 N = M : N' = /M ! 0/03 N = M

(=1) 귀유법 Mol maximal 이 아니라 가정하자.

G M 이 아닌, 그리고 서울 포함하는 normal subgroup N 이 존재한다.

앞 것인에 의해 γ[N] d G/μ olch.

- ① 1[N] = G/M 영을 보이자.
 - N = G 이므로 성립
- ② \$[N] = 1M1 8€ 402+. NAM 이으로 생.

44강 15걸 8 경상 (center)

Det	G가 군이각고 하자.		
	ㅋ 청성 (center) Z(G) = [zeG]	Vg on chiad 29 = 9 र १ olch.	
<u> 산설</u>)	① Z(G) < G		
	② Z(G) 4 G		
	③ 2(4) 는 가환간이다.		
(198)	① a.b∈ Z(G) 이연 ab-1 ∈ Z(G) 인가?	b ⁻¹ g = gb ⁻¹	
	\Rightarrow $a(b^{-1}g) = a(gb^{-1}) = (ag)b^{-1} = (gb^{-1})$	$ga)b^{-1} = g(ab^{-1})$ $(b^{-1}g) = (g^{-1}b)^{-1} = (bg^{-1})^{-1}$	= g b ⁻¹
	② g≥g⁻¹ ∈ Z(G) (₹)?	* (939") k = k929"	
	9897 = gg18 = 8 E Z(G)	$\frac{7}{2(4)}$ $21 = 9\hat{\epsilon}g^{\dagger}k = \hat{\epsilon}gg^{\dagger}k = \hat{\epsilon}k$	
		9 = kg£g-1 = kgg+z = kz = zk	
(EX)	() Z(S3) = 1 Pos	@ Z(Z3 × Z5) = 1 Po1 × Z5	
	* 2(S3) = 1 pos		
	P. M. + M. P. P.M. = (123)(23)		
	$\ell_{2} \square + \square \ell_{2} = (12) + 12$		
	$\mathcal{M}_{1} \Box = \Box \mathcal{M}_{1} = (1 \ 3)$		
	N2 = M2		
	M ₃ □ ‡ □ M ₃		

바당 15월 9 교환자 부분군 (communitator subgroup)

Def)	G가 군이각 학자.
* '	ㅋ 고환자 부분군 (commuatator subgroup)
	$C(G) = \langle \{aba \neg b \neg 1 \ a, b \in G\} \rangle$
사실)	① C(G) < G
	② C(G) 1 G
1hm)	G/C(G) 는 개환군이다.
(p6)	(a C(G)) (bC(G)) (aC(G))
	(PC(e) (POC(e)
	abe ba C Ĉ(q)
	ab=bac old stop (= a-b-ab = (a-1)b-1)(a-1)-1(b-1)-1 E C(4)
Thm)	N이 G의 경취부분군이각 하자. * factor group (= quoffent group)
	→ G/N 이 기환군이 덜 필요충분조건은 C(G) ≤ N 이다. G/H <
히이)	G/N 이 기환군인 다의 가장 작은 청규부분군 N이 C(네 라는 것이다
	★ G/N : 7환 ㅂ C(G) ≤ N
	아이드아) GIN 이 개환이다 = abN=baN ba.be G 유표: abN=baN
	$\exists \ n \in \mathbb{N} \ s \cdot t ab = ban \qquad \qquad \underbrace{\mathbb{R}^{q_1} - \begin{pmatrix} ab = ban & (n \in \mathbb{N}) & 0 & n \in \mathbb{N} \\ n = a^+b^+ab & \in C(G) \subset \mathbb{N} \end{pmatrix}}_{q_1}$
	$ \begin{array}{ll} n = a^{-1}b^{-1}ab \in C(G) \\ N \supset (aba^{+1} \mid a,b \in G) \end{array} $ $ \begin{array}{ll} abN = ab(b^{+1}a^{+}ba)N \\ \widetilde{E}N \end{array} $
	N≥ (labarb" a.b∈41> = baN ole3 or p
* Thm 1.6) If G is a group and ax∈G for x∈I.	The commutators certainly generate a subgroup C ; we must show that it is normal in G .

Also $e = eee^{-i}e^{-i}$ is a commutator. Thm 7.6 then shows

Note that the inverse $(aba^{-1}b^{-1})^{-1}$ of a commutator is again a commutator, namely, $bab^{-1}a^{-1}$.

where powers of a fixed as may occur

of integral powers of the ai.

then the subgroup H of G generated by

faili∈II has as elements precisely those elements of G that are finite produts

several times in the product.

46강 18절 환

•	환과 제 (Rings and fields)
	〈환 RTing >
हुग)	
	ㅋ + 와 · 을 동시에 가지는 수학적 대상을 정의하는 것이 자연스럽다!