1D DCT & IDCT

$$C(u) = \alpha(u) \sum_{x=0}^{N-1} f(x) \cos \frac{(2x+1)u\pi}{2N}$$

$$f(x) = \sum_{u=0}^{N-1} \alpha(u) C(u) \cos \frac{(2x+1)u\pi}{2N}$$

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{for } u=0\\ \sqrt{\frac{2}{N}} & \text{for } u=1,2,...,N-1 \end{cases}$$

2D DCT & IDCT

$$C(u,v) = \alpha(u)\alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u)\alpha(v)C(u,v) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{for } u=0\\ \sqrt{\frac{2}{N}} & \text{for } u=1,2,...,N-1 \end{cases}$$

DCT basis

DCT reconstruction

JPG (Encoding & Decoding)

JPG

luminance								
16	11	10	16	24	40	51	61	
12	12	14	19	26	58	60	55	
14	13	16	24	40	57	69	56	
14	17	22	29	51	87	80	62	
18	22	37	56	68	109	103	77	
24	35	55	64	81	104	113	92	
49	64	78	87	103	121	120	101	
72	92	95	98	112	100	103	99	

c]	hro	on	na	anc	e	
		_	_	_	_	_

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

Standard quantization tables

DCT

DCT

DCT

STFT

DWT

Scale-shifting process

DWT

Scale-shifting process

DWT

Trasformata wavelet del precedente segnale composto

Haar

La prima trasformata wavelet è stata introdotta da Haar (1909) e si presta bene all'analisi di segnali ad onda quadra. Inoltre, è veloce da realizzare poiché si basa solo su semisomme e semidifferenze.

Esempio di trasformata di Haar

Haar

$$\frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 2 & -2 & 0 & 0 \\ 0 & 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} 9 \\ 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 4 \\ 1 \end{pmatrix}$$

The Haar matrix multiplication

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 1 \\ 2 \\ 0 \end{pmatrix}$$

Esempio di scomposizione matriciale della trasformata di Haar

Filter Bank

Decomposizione standard

Decomposizione non standard

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Haar scaling function φ and wavelet ψ .

Daubechies scaling function φ and wavelet ψ .

B₁-spline scaling function φ and wavelet ψ .

Meyer scaling function φ and wavelet ψ .

B₃-spline scaling function φ and wavelet ψ .

Battle-Lemarié scaling function φ and wavelet ψ .

À trous

$$I_0(\mathbf{p}) = I(\mathbf{p})$$
 $I_i(\mathbf{p}) = I_{i-1}(\mathbf{p}) \otimes \ell_i$
 $W_i(\mathbf{p}) = I_{i-1}(\mathbf{p}) - I_i(\mathbf{p})$
 $\ell_i(2^{i-1}\mathbf{q}) = \ell(\mathbf{q})$

À trous

$$B_s(z) = \frac{1}{2s!} \sum_{t=0}^{s+1} (-1)^t \binom{t}{s+1} \left| z + t - \frac{s+1}{2} \right|^s$$

 B_1 -spline scaling function ϕ and wavelet ψ

$$\ell = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\ell = \frac{1}{16} \begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$B_{3}(x) = \frac{1}{12} \left| |x-2|^{3} - 4|x-1|^{3} + 6|x|^{3} - 4|x+1|^{3} + |x+2|^{3} \right|$$

B₃-spline scaling function φ and wavelet ψ

JPG vs JPG2000

 \overline{JPG} (bpp = 0.3; MSE = 150; PSNR = 26.2)

 $JPG\overline{2K \text{ (bpp} = 0.3; MSE = 73; PSNR} = 29.5dB)$

JPG vs JPG2000

JPG (bpp = 0.2; MSE = 320; PSNR = 23.1dB)

JPG2K (bpp = 0.2; MSE = 113; PSNR = 27.6dB)