Übung zur Vorlesung Berechenbarkeit und Komplexität

Blatt 4

Tutoriumsaufgabe 4.1

Sei

 $L := \{ w_i \mid i \in \mathbb{N}, M_i \text{ verwirft } w_i \}.$

Zeigen Sie durch Diagonalisierung, dass L nicht entscheidbar ist.

Tutoriumsaufgabe 4.2

Formulieren Sie folgende Probleme als Sprache (z.B. $H := \{\langle M \rangle w \mid M \text{ terminiert bei Eingabe } w\}$ für das Halteproblem). Zeigen oder widerlegen Sie, welche der folgende Probleme entscheidbar sind. (Zeigen Sie insbesondere die Korrektheit.)

- (a) Eingabe: Eine TM M; ein Wort w; ein Zustand q.
 - Frage: Erreicht M jemals den Zustand q, wenn M auf dem Eingabewort w gestartet wird?
- (b) Eingabe: Eine TM M.

Frage: Stoppt M auf keiner Eingabe?

(c) Eingabe: Eine TM M; ein Wort w.

Frage: Bewegt M jemals den Kopf einen Schritt nach links, wenn M auf dem Eingabewort w gestartet wird?

Tutoriumsaufgabe 4.3

Zeigen oder widerlegen Sie, welche der folgende Probleme entscheidbar sind. (Zeigen Sie insbesondere die Korrektheit.)

- (a) $H_{\leq 97} = \{\langle M \rangle w \mid M \text{ hält auf Eingabe } w \text{ und zwar nach höchstens 97 Schritten}\}$
- (b) $H_{>97} = \{\langle M \rangle w \mid M \text{ hält auf Eingabe } w \text{ und zwar nach mehr als 97 Schritten}\}$

Hausaufgabe 4.1 (3 Punkte)

Sei

 $L := \{1^i \mid i \in \mathbb{N}, M_i \text{ akzeptiert } 1^i \text{ nicht}\}.$

Zeigen Sie durch Diagonalisierung, dass L nicht entscheidbar ist.

Hausaufgabe 4.2 (3+2 Punkte)

Formulieren Sie folgende Probleme als Sprache (z.B. $H := \{\langle M \rangle w \mid M \text{ terminiert bei Eingabe } w\}$ für das Halteproblem). Zeigen oder widerlegen Sie, welche der folgende Probleme entscheidbar sind. (Zeigen Sie insbesondere die Korrektheit.)

(a) Eingabe: Eine TM M und ein Wort w.

Frage: Schreibt die TM M bei Eingabe w jemals ein # auf das Band?

(b) Eingabe: Eine TM M.

Frage: Schreibt M jemals einen Buchstaben $a \in \Gamma$ mit $a \neq B$ aufs Band, wenn M mit dem leeren Eingabewort gestartet wird?

Hausaufgabe 4.3 (3+3 Punkte)

Für $\gamma \in \Gamma^*$ mit $\gamma = \gamma_1 \dots \gamma_n$ sei $||\gamma||$ der maximale Differenz von Positionen $i, j \in \{1, \dots, n\}$ mit $\gamma_i \neq B$ und $\gamma_j \neq B$ (z.B. gilt ||BabcB|| = ||abc|| = 2).

(a) Zeigen Sie, dass folgendes Problem entscheidbar ist: (Zeigen Sie insbesondere die Korrektheit.)

Eingabe: Eine TM M; ein Wort w; eine natürliche Zahl k.

Frage: Falls die TM M auf dem Eingabewort w gestartet wird, erreicht M dann jemals eine Konfiguration $\alpha q \beta$ mit $||\alpha \beta|| \ge k$?

(b) Zeigen Sie, dass folgendes Problem unentscheidbar ist. (Zeigen Sie insbesondere die Korrektheit.)

Eingabe: Eine TM M; ein Wort w.

Frage: Gibt es eine Zahl k mit folgender Eigenschaft: Falls die TM M auf dem Eingabewort w gestartet wird, so erreicht M nie eine Konfiguration $\alpha q\beta$ mit $||\alpha\beta|| \ge k$?