Geometria e Algebra - MIS-Z

Primo Appello

22/06/2022

Nome e Cognome:		
Corso di Laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- $\bullet\,$ se 30 < $x \leq$ 34, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) Per ogni $k \in \mathbb{R}$ l'insieme

$$U_k = \{(x, y, z) \in \mathbb{R}^3 : x + y + z + k = 0\}$$

è un sottospazio vettoriale di \mathbb{R}^3 .

- \square VERO
- \Box FALSO

- (b) Siano $A, B \in \mathcal{M}_n(\mathbb{R})$. Allora $\det(AB) \neq 0$ se e solo se A e B sono entrambe invertibili.
 - \square VERO
 - \Box FALSO

(c) Esiste un'applicazione lineare $f:\mathbb{R}^3 \to \mathbb{R}^2$ tale che

$$f(1,2,3) = (1,2),$$
 $f(3,2,1) = (3,4),$ e $f(4,4,4) = (5,6).$

- \square VERO
- \square FALSO

- (d) Sia V uno spazio euclideo con prodotto scalare $\langle \, , \, \rangle$. Siano $v,w \in V$ entrambi non nulli. Se v e w sono linearmente dipendenti allora $\langle v,w \rangle \neq 0$.
 - \square VERO
 - \square FALSO

ESERCIZIO 2 [6 punti]. Sistema con parametro.

(a) Si enunci il teorema di Rouché-Capelli.

(b) Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} 3Y - kZ = 1 \\ X - Y - Z = 0 \\ kX + Y - 4Z = 1 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni

(c) Si determinino i valori di k per i quali i piani dello spazio euclideo \mathbb{E}^3

$$3Y - kZ = 1$$
 $X - Y - Z = 0$ e $kX + Y - 4Z = 1$

si intersecano in una retta r e per tali valori si trovino le equazioni parametriche di r.

ESERCIZIO 3 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e un'equazione cartesiana del piano π_1 passante per i punti A(0,1,1), B(2,0,-2) e C(2,1,-1) di \mathbb{E}^3 .

(b) Sia $h \in \mathbb{R}$. Nella famiglia di rette di \mathbb{E}^3 definite dalle equazioni cartesiane

$$\begin{cases} X + (h+1)Y + Z = 2h \\ hX - Z = 2 \end{cases}$$

si determini la retta r passante per il punto (1, 1, 0).

(c) Si mostri che la retta r non è contenuta nel piano π_1 .

(d) Si determinino i valori di $k \in \mathbb{R}$ tali che il piano definito dalle equazioni parametriche

$$\left\{ \begin{array}{l} x = 2ks - 2t + k \\ y = 2s + kt \\ z = 3t + 3 \end{array} \right., \qquad s, t \in \mathbb{R}$$

sia parallelo a π_1 .

(e) Per i valori di k trovati in (d) si calcoli la distanza del piano corrispondente dal piano π_1 .

ESERCIZIO 4 [6 punti]. Prodotto scalare e sottospazio ortogonale.

(a) Sia V uno spazio vettoriale reale. Si definisca quando una funzione

$$\begin{array}{cccc} \langle\,,\,\rangle: & V\times V & \to & \mathbb{R} \\ & (v,w) & \mapsto & \langle v,w\rangle \end{array}$$

è detta un prodotto scalare su V.

(b) Sia V uno spazio euclideo munito del prodotto scalare $\langle \, , \, \rangle$. Sia $v \in V$. Si mostri che l'insieme dei vettori ortogonali a v, denotato v^{\perp} , è un sottospazio vettoriale di V.

(c) Si consideri lo spazio euclideo \mathbb{R}^4 munito del prodotto scalare standard e sia v=(2,-1,-2,-2). Si determini una base del sottospazio v^{\perp} .

(d) Sia $a\in\mathbb{R}$ e sia $W_a:=Span\{(1,2,3,a)\}.$ Si determinino i valori di a tali che $\mathbb{R}^4=v^\perp\oplus W_a,$

dove v^{\perp} è il sottospazio trovato al punto (c).

ESERCIZIO 5 [9 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

Per $k \in \mathbb{R}$, si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (2x + 2y, kx + kz, 2y + kz).$

(a) Si determinino i valori di k per cui f_k $\underline{\mathrm{non}}$ è un automorfismo.

(b) Per uno dei valori di k trovati in (a) si determini una base di $\ker(f_k)$ e di $\operatorname{Im}(f_k)$.

(c) Si richiami la definizione di autovettore e di autovalore di un endomorfismo di uno spazio vettoriale.

(d) Si determinino i valori di k per cui il vettore (2,3,3) è un autovettore di f_k . Per tali valori di k si determini l'autovalore corrispondente.

(e) Per k=2 si spieghi perché l'operatore f_2 è diagonalizzabile (richiamando l'enunciato dell'opportuno teorema) e si determini una base diagonalizzante per f_2 e ortornomale rispetto al prodotto scalare standard di \mathbb{R}^3 .