MAD Assignment 1 Assignment 1

Ask Jensen

24. november 2021

Indhold

Problem 1	1
l.1 (a)	1
1.2 (b)	1
1.3 (c)	2
	2
2.1 (a)	2
2.2 (b)	2
	2
3.1 (a)	2
3.2 (b)	2
3.4 (d)	2
Problem 4	2
1 1 1 1 2 2 2 3 3 3	Problem 1 1.1 (a) 1.2 (b) 1.3 (c) Problem 2 2.1 (a) 2.2 (b) 2.3 (c) Problem 3 3.1 (a) 3.2 (b) 3.3 (c) 3.4 (d) Problem 4

Assignemtn 1 Ask Jensen

1 Problem 1

the exercise is to compute the partial derivations of the following three problems each containing a different function.

1.1 (a)

Considering the function, it is fairly straight forward to compute the derivative with respect to x and y. Both derivations will be done using the power rule: $x^n = nx^{n-1}$

$$f(x, y) = x^4 y^3 + x^5 - e^y$$

Answer:

calculating $\frac{\partial}{\partial x}$

$$f_x' = 4x^3y^3 + 5x^4$$

calculating $\frac{\partial}{\partial y}$

$$f_y' = x^4 3y^2 - e^y$$

It is worth mentioning, that the exponent (e^y) will derive to itself even though the power function states otherwise.

1.2 (b)

This function is bit harder to compute.

$$f(x,y) = \frac{1}{\sqrt{x^3 + xy + y^2}}$$

I will start by deriving the innter function with respect to x and y since these derivations are going to be used later on in the calculations.

calculating $\frac{\partial}{\partial x}$

$$f_x' = 3x^2 + y$$

calculating $\frac{\partial}{\partial y}$

$$f_y' = x + 2y$$

Answer:

I will rewrite the function using simple fraction rules in order to make the function a bit easier to work with.

$$f(x, y) = (x^3 + xy + y^2)^{-\frac{1}{2}}$$

applying the power rule

$$f(x, y) = -\frac{1}{2}(x^3 + xy + y^2)^{-\frac{3}{2}}$$

applying the chain rule

$$f(x,y) = -\frac{1}{2}(x^3 + xy + y^2)^{-\frac{3}{2}} \cdot (3x^2 + y)$$

1.3 (c)

$$f(x,y) = \frac{x^3 + y^2}{x + y}$$

- 2 Problem 2
- 2.1 (a)
- **2.2** (b)
- 2.3 (c)
- 3 Problem 3
- 3.1 (a)
- 3.2 (b)
- 3.3 (c)
- 3.4 (d)
- 4 Problem 4