Graph States

Ammar Husain

August 20, 2018

1 Graph States

1.1 Definition (Graph State) Let G be an undirected graph with V vertices.

$$|\psi_G\rangle \equiv \prod_{(a,b)\in E} CZ_{a,b} |+\rangle^{\otimes V}$$

This is well founded because $CZ_{a,b} = CZ_{b,a}$ so the choice of orientation for $(a,b) \in E$ does not matter. Also they commute so the order of the product does not have to be specified.

1.2 Lemma For $K_i = X_i \otimes_{j \in N(i)} Z_j$, $K_i \mid \psi_G \rangle = (+1) \mid \psi_G \rangle$. $K_i^2 = Id$, and they commute. So they form an independent set in the sense of the Coxeter graph as the general program described in the Coxeter compiler paper.

2 Hypergraph States

- **2.1 Definition (k-Uniform Hypergraph)** A hypergraph such that each hyperedge contains exactly k vertices. If k = 2, that is a usual graph.
- **2.2** Definition (Uniform Hypergraph State) Let G be a k-uniform hypergraph on V vertices.

$$|\psi_G\rangle \equiv \prod_{(a_1, a_2 \cdots a_k) \in E} CZ_{a_1, a_2 \cdots a_k} |+\rangle^{\otimes V}$$

where $CZ_{a_1,a_2\cdots a_k}$ acts as -1 only on $|1\rangle^{\otimes k}$ and 1 otherwise. Again the symmetry means there is no impact of the choice of ordering $a_1\cdots a_k$ necessary in the hyperedge.

2.3 Lemma For $K_i = X_i \otimes \prod_{(i,i_2\cdots i_k)\in E} CZ_{i_2\cdots i_k}$, $K_i \mid \psi_G \rangle = (+1) \mid \psi_G \rangle$. Again $K_i^2 = Id$, and they commute. Again they form an independent set in the sense of the Coxeter graph as the general program described in the Coxeter compiler paper.

2.4 Definition (Hypergraph state)

Proof https://arxiv.org/pdf/1211.5554.pdf https://arxiv.org/pdf/1612.06418.pdf □

3 Bayesian DAG States

3.1 Definition Let G be a DAG where the vertices v_i represent random variables on d_i possibilities. So the entire Hilbert space is $\bigotimes_{i=0}^{V-1} \mathbb{C}^{d_i}$ The edges indicate causation.

Let b be vertex and $\{a_1 \cdots a_n\}$ be it's possibly empty set of immediate predecessors $U_{\{a\},b}$ is then chosen to be a unitary satisfying

$$U_{\{a\},b} \mid e_{i_1} \rangle \otimes \cdots \mid e_{i_n} \rangle \otimes \mid 0 \rangle = \sqrt{P_j} \mid e_{i_1} \rangle \otimes \cdots \mid e_{i_n} \rangle \otimes \mid j \rangle$$

$$P_j = P(b = j \mid a_1 = i_1 \cdots a_n = i_n)$$

Initialize in the state $| 0 \rangle^{\otimes V}$. Do a topological sort on G. Then apply the operators $U_{\varnothing,b}$ for the bottom of the poset. Then build up from there with $U_{\{a\},b}$

If you wish to ask a question conditioned on some variables like the random variable for vertex v_j is in state i_j , perform amplitude amplification first. The ratios between the terms with $v_j = i_j$ remain the same amongst each other. That is what one is probing anyways. Relative likelihoods.