Tan Jun Wei

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. A-106

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für E mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz f
 ür das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Gr
 ößen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b / cm	m /g
	214,8 196,6 201,9 221,5 220,2 210,7				
1. Abgabe	211,0 ±4,1	$5,528 \pm 0,087$	$82,89 \pm 0,69$	$3,539 \pm 0,025$	131,4 ± 1,5
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul:
$$E = (145,5 \pm 8,5) \times 10^{9}$$
 Pa

5 = 23 1 F = 21 Apple Mg fehlerbehafteten Messgrößen: 2,5,4,5,1 E= (82,89×10-2m)3 (131,4×10-3ky) (4,810 mi-2)
4/3 (34×10-2m) (5,528 mi2)3(21/410-6m) $Q_{2} = \left[\left(\frac{3E}{3L} \right)^{2} \sigma_{1}^{2} + \left(\frac{3E}{3h} \right)^{2} \sigma_{2}^{2} + \left(\frac{3E}{3h} \right)^{2} \sigma_{1}^{2} \right]^{1/2}$ = -6, 90 ×10 4 Pam = -7,40 × 10 Pam = 5,27 × 10 1 Pam 1 $\frac{\partial E}{\partial J} = -\frac{myl^3}{41113}, \qquad \frac{\partial E}{\partial n} = \frac{92^3}{4113}$ = -4,71x 1012 Pan4 = 1,11 x1012 my-1

1. Korr	ektur		

$$\sigma_{\mathcal{E}} = \left[(4.75 \times 10^{24}) (4.1 \times 10^{-6})^{2} + (6.23 \times 10^{27}) (8.7 \times 10^{-5})^{2} + (2.77 \times 10^{27}) (8.04)^{2} + (1.64 \times 10^{25}) (9.000)^{2} + (1.23 \times 10^{27}) (9.0015)^{2} \right]^{1/2}$$