Function $f(x)$	Derivative $f(x)$	Restrictions on domain of $x \in \mathbb{R}$
1. <i>C</i> (const)	0	
$2. x^{\alpha}$	$\alpha x^{\alpha-1}$	$x > 0$ for $\alpha \in \mathbb{R}$
		$x \in \mathbb{R} \text{ for } \alpha \in \mathbb{N}$
$3. a^x$	$a^x \ln a$	$x \in \mathbb{R} \ (a > 0, a = 1)$
$4.\log_a x $	$\frac{1}{x \ln a}$	$x \in \mathbb{R} \backslash 0 \ (a > 0, a = 1)$
$5. \sin x$	$\cos x$	
6. cos <i>x</i>	$-\sin x$	
7. tan <i>x</i>	$\frac{1}{\cos^2 x}$	$x = \frac{\pi}{2} + \pi k, k \in \mathbf{Z}$
8. cot <i>x</i>	$-\frac{1}{\sin^2 x}$	$x = \pi k, k \in \mathbb{Z}$
9. arcsin x	$\sqrt{1-x^2}$	x < 1
10. arccos <i>x</i>	$-\frac{1}{\sqrt{1-x^2}}$	x < 1
11. arctan <i>x</i>	$\frac{1}{1+x^2}$	
12. arccot <i>x</i>	$-\frac{1}{1+x^2}$	
13. sinh <i>x</i>	$\cosh x$	
14. cosh <i>x</i>	sinh x	
15. tanh <i>x</i>	$\frac{1}{\cosh^2 x}$	
16. coth <i>x</i>	$\frac{-\sin^2 x}{\sinh^2 x}$	x = 0
17. $\arcsin x = \ln(x + \sqrt{1 + x^2})$	$\sqrt{1+x^2}$	
$18. \operatorname{arcosh} x = \ln(x \pm \sqrt{x^2 - 1})$	$\pm \frac{1}{\sqrt{x^2-1}}$	x > 1
19. $\arctan x = \frac{1}{2} \ln \frac{1+x}{1-x}$	$\frac{1}{1-x^2}$	x < 1
20. $\operatorname{arcoth} x = \frac{1}{2} \ln \frac{x+1}{x-1}$	$\frac{1}{x^2-1}$	x > 1