

at Northeastern University

Assignment Project Exam Help

Wireless Sensor Notworks (and The Internet of Things)
Add WeChat powcoder

Prof. Francesco Restuccia

Email: f.restuccia@northeastern.edu Office: 318 Dana

March 4, 2021

Architecture of a WSN-MSs

Why Mobile Sinks?

- Mobile sinks deal with isolated regions (sparse WSNs)
- Constraints on network connectivity can be relaxed
- ➤ Fewer nodes → → Reduced Costs! Help
- Can exploit trains buses shuttles on cars and attach sinks to them
- Multi-hop netwarks WeChatppowisedery interference and collisions
- Mitigate (or eliminate) the funnelling effect

Challenges and Opportunities

- 1. Detection of Mobile Sinks (i.e., discovery problem)
- 2. Mobility-aware Power Management Assignment Project Exam Help
- 3. Reliable Data Transfer https://powcoder.com
- 4. Mobility Control (kth We other type) oder

Sensors/Sink Interaction

- Discovery & Data Transfer phases
- Mobility can be Deterministic or Random
 - 1) Enters the communication range of sensor nodes at specific, and usually periodic, times (e.g., shuttles)
 - 2) Contacts may take place not regularly, but with a distribution probability

Discovery Process

Scheduled rendez-vous

- Assume sensor nodes and MSs agree on a specific instant at which they will be in contact
- Know exactly when the ME will enter the contact area, and can thus wakes spenting the Exam Help
- Simple to implement but requires tight synchronization https://powcoder.com On-demand

 - Sensors can wake up by the MS
 Can use multiple radios → long-range and high-power radio for data communication, low-range low-power radio to wake up nodes
 - Exploits radio-triggered activation similar to RFID, send messages with enough energy to trigger the activation of the static sensor node (i.e., an interrupt).

Discovery Process (2)

Asynchronous (used the most)

- Define sleep/wake-up patterns to communicate without explicitly agreeing on activation instants
- explicitly agreeing on activation instants

 Periodic Listering (PL): MS sends periodic discovery

 messages, while the static node cyclically wakes up and listens for advertisements for a short line.
- If it does not detect any discovery message it can return to sleep, otherwise it can estand and experience of the MS
- Discovery parameters and the duty-cycle have to be properly defined to ensure that the MS will be actually discovered

Data Collection Process - What Matters

E. Borgia, G. Anastasi, M. Conti, <u>Energy Efficient and Reliable Data Delivery in Urban Sensing Applications: A Performance Analysis</u>, *Computer Networks*, Vol. 57, N. 17, December 2013, pp. 3389 - 3409. Elsevier.

- Trajectory and speed impact significantly MLP
- How do we evaluate how much they impact?

Can we come up with a mathematical model of the discovery and thansfer

https://powcoder.com/ Processes? Add WeChat powcoder

If yes, how?

at Northeastern University

Assignment Religious Help

Wireless Sensor Notworks (and The Internet of Things)
Add WeChat powcoder

Prof. Francesco Restuccia

Email: f.restuccia@northeastern.edu
Office: 318 Dana

March 8, 2021

Modeling Discovery and Data Transfer

G. Anastasi, M. Conti, M. Di Francesco, Reliable and Energy-efficient Data Collection in Sparse Sensor Networks with Mobile Elements, Performance Evaluation, Special Issue on Performance Evaluation of Ubiquitous Networks, Vol. 66, N. 12, pp. 791-810, December 2009. Elsevier.

Modeling Discovery and Data Transfer (2)

Beacon Discovery Process

Markov Chains

A Markov chain is a

- stochastic model
- describing a sequence of possible events
- in which the probability of each event depends only on the state attained in the previous event
- Assignment Project Exam Help is a discrete-time Markov chain (DTMC)

https://powcoder.com

Add WeChat powcoder

$$P_t^{(k)} = egin{pmatrix} \mathbb{P}(X_{t+k} = 1 \mid X_t = 1) & \mathbb{P}(X_{t+k} = 2 \mid X_t = 1) & \dots & \mathbb{P}(X_{t+k} = n \mid X_t = 1) \ \mathbb{P}(X_{t+k} = 1 \mid X_t = 2) & \mathbb{P}(X_{t+k} = 2 \mid X_t = 2) & \dots & \mathbb{P}(X_{t+k} = n \mid X_t = 2) \ dots & dots & \ddots & dots \ \mathbb{P}(X_{t+k} = 1 \mid X_t = n) & \mathbb{P}(X_{t+k} = 2 \mid X_t = n) & \dots & \mathbb{P}(X_{t+k} = n \mid X_t = n) \end{pmatrix}$$

Stationary Distributions in DTMC

- A stationary distribution of a DTMC is a probability distribution that remains unchanged as time progresses.
- Represented as a row vector π whose entries are probabilities summing to 1 and satisfies the following relationship with the transition matrix P:

https://powcoder.com

Add We Chart powcoder

 Absorbing Markov chains have stationary distributions with nonzero elements only in absorbing states

Stationary Distribution in DTMC

$$(\pi \mathbf{P})^T_{\mathrm{Assignment}}$$
 Project EP $^T_{\mathrm{Am}}$ The T_{Project} EP $^T_{\mathrm{Am}}$ The T_{Project} https://powcoder.com

• The stationary distribution is a left engeweeder (as opposed to the usual right eigenvectors) of the transition matrix

Beacon Discovery Process

- ► B_o is the **initial state** where the MDC has not yet transmitted the first beacon while in the contact area
- \triangleright B_i is entered after **missing the first** $j \in [1, N-1]$ beacons
- > B_N is entered when the static node **has not detected** the MDC
- ➤ Finally, B_{N+1} is entered when the static node has **successfully received a beacon**
- ➢ B_N and B_{N+1} are absorbing states

Beacon Discovery Process (2)

$$\mathbf{H} = \begin{pmatrix} 0 & H_{01} & 0 & \cdots & 0 & H_{0,N+1} \\ 0 & 0 & H_{12} & 0 & H_{1,N+1} \\ \vdots & \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & H_{N-1,N} & H_{N-1,N+1} \\ 0 & 0 & 0 & \mathbf{A:ssignment}^{0} \mathbf{Project} & \mathbf{Exam} \\ 0 & 0 & 0 & \cdots & 0 & H_{N+1,N+1} \end{pmatrix} \mathbf{Holimits}^{1} \mathbf{h}^{kl}_{(s_{i},r_{i}),(s_{j},r_{j})} = \mathbb{P}\left\{B_{l},(s_{j},r_{j}) \mid B_{k},(s_{i},r_{i})\right\}$$

$$\mathbf{https://powcoder.com}$$

- ► H_{kl} are sub-blocks denoting the transition probability from the state B_k to the state B_l
- State B_0 is evaluated at time t = 0, while state B_i $i \in [1, N]$ is evaluated at the i-th beacon transmission time t_i
- In addition to the state B related to the beacon reception, the H

 blocks also keep track of the radio state of the static node

Beacon Discovery Process (3)

$$\mathbf{X}^{(k)} = \begin{pmatrix} X_0^{(k)} & X_1^{(k)} & \cdots & X_{N-1}^{(k)} & X_N^{(k)} & X_{N+1}^{(k)} \end{pmatrix}$$

$$\mathbf{X}^{(0)} = \begin{pmatrix} X_0^{(0)} & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

$$\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)} : \mathbf{H} \text{ for } k = 0, 1, 2, ..., N-1$$

Assignment Project Exam Help

$$d(m, t_0) = \begin{cases} X_{N+1}^{(k)} - X_{N+1}^{(k-1)} & \text{if } m = t_k, k \in [1, N-1] \\ Add & \text{WeChat powcoder} \end{cases}$$

$$d(m) = \sum_{\hat{t}_0 \in \mathcal{T}} d(m, \hat{t}_0) \cdot \mathbb{P} \left\{ \hat{t}_0 \right\} = \frac{\Delta}{T_B} \sum_{\hat{t}_0 \in \mathcal{T}} d(m, \hat{t}_0)$$

Data Transfer Analysis

Assignment Project Exam Help

$$\mathbb{E}[R(t)] = \mathbb{E}[N(t)] \cdot \mathbb{E}[A(t)] = \sum_{i=0}^{w-1} [1 - p(t+i \cdot T_s)] \cdot [1 - p(t+w \cdot T_s)]$$
https://powcoder.com

- Focus now on a single window starting at the generic time t
- Message loss changes with the distance and changes over time
- Assume that the message loss is **constant** during the message, i.e. that the i-th message in the window starting at time t will experience a message loss probability p(t + i · Ts).
- Is it reasonable?

Energy Model

$$\overline{E}_{disc} = P_{sl} \cdot (\sigma + \mathbb{E}[D]) \cdot (1 - \delta) + P_{rx} \cdot (\sigma + \mathbb{E}[D]) \cdot \delta$$

$$\overline{E}_{dt,r} = \left(\frac{\mathbb{E}\left[c_{max} - D\right]}{w \text{Assignment Project Exam Help}} \cdot T_s\right) \cdot (w \cdot P_{tx} + P_{rx})$$

https://powcoder.com

- First part of the equation is avg # of windows in the residual contact time plus the average of the contact the contact
- > Assume that application has always data to transfer
- ➤ Using N_{ack}/2 in under the assumption that the static node remains awake for a number of windows uniformly distributed in [0, N_{ack}]
- The second term is the amount of power spent during each window

Performance Evaluation

Performance Evaluation

Performance Evaluation

Assignment Project Exam Help We cap:/pocbetter than

Add WeChat powcoder

Periodic Listening

Dual-beacon Discovery (2BD)

Restuccia, F., Anastasi, G., Conti, M., & Das, S. K. (2014). Analysis and optimization of a protocol for mobile element discovery in sensor networks. *IEEE Transactions on Mobile Computing*, *13*(9), 1942-1954.

Modeling 2BD

Howsitm Wering Hab? Think about the PL model Add WeChat powcoder.

Modeling 2BD (2)

Results

Results (2)

R (m)	δ^{opt}	δ_L^{opt}	δ_H^{opt}	L	H	CR_{2bd}	CR_{pl}
100	1.5	1.7	5.8	5.89	6.88	64.37%	66.48%
150	1.5	1.2	4.2	8.35	11.65	64.59%	66.48%
175	1.5	1.0	5.6	10.26	13.23	64.85%	66.48%
200	1.5	0.8	6.4	12.54	15.78	65.50%	66.48%
250	1.5	0.6	7.6	14.82	18.04	64.59%	66.48%
R (m)	δ^{opt}	δ_L^{opt}	δ_H^{opt}	L	H	CR_{2bd}	CR_{pl}
100	0.8	1.2	4.0	8.35	10.32	55.43%	59.21%
150	0.8	0.8	4.6	12.54	15.90	55.26%	59.21%
175	0.8	0.7	5.1	12.54	15.90	55.26%	59.21%
200	0.8	0.6	5.5	16.72	22.15	59.75%	59.21%
250	0.8	0.5	6.2	20.12	28.02	59.43%	59.21%

What are the Pros and Cons of PL and 2BD? Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Think-Pair-Share!

Aren't we missing something? Add WeChat powcoder.

Can weining rejected ability without compromising energy Add We Chat powcoder efficiency?

The SISSA Algorithm

- What about deploying MORE nodes in a specific area?
- Can extend lifetime significantly, but need to take care of MAC!
- > Need to self-organize in a reliable, distributed, energy-efficient way
- Swarm-intelligence Based Sensor Selection Algorithm (SISSA)
- > We want to oAtivizen frenchiletioje or .Elyang/Help and reliability)

https://powcoder.com

Francesco Restuccia and Sajal K. Das. 2016. Optimizing the Lifetime of Sensor Networks with Uncontrollable Mobile Sinks and QoS Constraints. ACM Trans. Sen. Netw. 12, 1, Article 2 (March 2016), 31 pages

The Swarm and Communication Phases

- Every node has a node ID, defines a TDMA scheme
- Swarm agents are broadcast as soon as a beacon is received
- They contain the residual energy level of each sensor
- > Every swarm agent is transmitted **reliably** since TDMA is used
- When each node receives every swarm agent, the k nodes having the most residual energy level transmit their data ct Exam Help

Comments on Swarm Phase

- (1) Cannot converge until every sensor receives a swarm agent from all other sensors
- Each sensor node will terminate the swarm phase at the same time
- Without any Ask information jet the Example Help synchronization, each sensor knows the swarm phase is completed https://powcoder.com
- > (2) The sensor radio remains active only during the instants of swarn delay be short pewcodes
- We assume no homogeneous initial energy budget nor a homogeneous sensor platform

Worst-case Convergence of SISSA

Worst-case convergence is bound

- $E_{max}^{sp} = P_{TX}^{sa} \cdot \frac{t_j^{\tau}}{T_{bi}} \cdot T_{sa} + P_{RX} \cdot T_{sa} \cdot (S-1).$
- 2. Number of messages is constant O(t*;/Tbi)
- 3. Min Channel Time, max Energy Consumption

$$heta_{min} = T_k \cdot \left| \left. rac{C_{min} - t_j^*}{T_{bi}} \,
ight|$$

Experimental Evaluation

40 TelosB nodes, both indoor and outdoor scenarios Wanted to test accuracy of mathematical model What is the major problem with the swarm phase?

 $\delta = 9\%$

Transmission Powel Level CI21 CI18 ± 0.012

 ± 0.021 0.994 ± 0.032 0.996 0.956 0.928 ± 0.056 0.906 ± 0.037 ± 0.016 ± 0.012 0.984 0.994 ± 0.015 ± 0.089 ± 0.079 0.894 ± 0.026 0.956 0.960 ± 0.018 0.966 ± 0.043 0.990 ± 0.021 0.982 ± 0.086 0.894 ± 0.075 ± 0.032 0.990 ± 0.009 0.990 ± 0.024 0.986 ± 0.040

 $\delta = 7\%$

Fig. 10. Energy spent (mJ) during communication phase.

Table III. Swarm Phase Energy Consumption (S = Number of Sensors, δ = Duty-Cycle Ratio, CI = Confidence Interval)

	\sim 1			nowacoden				0 — 1 /0			0 - 0 /0		
(S	Mod	I xp		M d.	Ji p.	er	Mod.	Exp.	CI	Mod.	Exp.	CI
	5	2.26	2.36	± 0.52	1.45	1.74	± 0.18	1.07	1.17	± 0.23	0.89	0.98	± 0.44
	1	3.58	3.77	± 1.06	2.29	2.94	± 0.32	1.71	1.95	± 0.30	1.42	1.76	± 0.60
	2	6.21	5.47	± 1.62	3.98	4.67	± 0.60	2.97	3.29	± 0.41	2.46	2.86	± 0.95
	3	8.85	9.28	± 2.56	5.66	5.87	± 0.68	4.23	4.43	± 0.50	3.50	3.50	± 1.15
	40	11.50	11.00	± 2.47	7.34	7.70	± 0.90	5.49	5.81	± 0.60	4.54	4.94	± 1.84

warm Phase Convergence Time (S = Number of Sensors, δ = Duty-Cycle Ratio, CI = Confidence Interval)

		$\delta = 3\%$			$\delta = 5\%$			$\delta = 7\%$			$\delta=9\%$			
S	Mod.	Exp.	CI	Mod.	Exp.	\mathbf{CI}	Mod.	Exp.	CI	Mod.	Exp.	CI		
5	5.80	5.67	± 0.20	3.60	3.78	± 0.17	2.60	2.56	± 0.34	2.2	2.60	± 0.51		
1	6.20	6.06	± 0.30	3.60	3.64	± 0.21	2.80	2.88	± 0.40	2.2	2.40	± 0.36		
2)	6.20	6.53	± 0.35	4.00	4.12	± 0.24	3.00	3.14	± 0.55	2.4	2.46	± 0.25		
3	6.60	6.61	± 0.15	4.00	3.95	± 0.20	3.00	2.75	± 0.50	2.4	2.57	± 0.42		
40	6.80	6.54	± 0.28	4.00	4.06	± 0.30	3.00	3.44	± 0.50	2.4	2.85	± 0.58		

Simulations

Pure TDMA, SISSA, Unslotted 802.15.4

Fig. 14. Energy per byte, SISSA vs. 802.15.4 and TDMA.

What are the Pros and Cons of SISSA? Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Think-Pair-Share!

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

