

... Dialog

High purity alumina prodn. from aluminium chloride hydrate - using hot alumina product as heat source in the initial decomposition. stage

Patent Assignee: METALLGESELLSCHAFT AG; PECHINEY SAINT GOBAIN

Inventors: MARCHESSAU P; MARCHESSAUX P; PLASS L; REH L; SOOD R

Patent Family (18 patents, 17 countries)

Patent Number	Kind	Date	Application Number	Kind	Date	Update	Type
EP 3713	A	19790822	EP 1979420009	A	19790206	197934	B
DE 2805906	A	19790823	DE 2805906	A	19780213	197935	E
BE 874141	A	19790813				197939	E
DK 197900557	A	19790903				197939	E
JP 54117397	A	19790912				197943	E
BR 197900836	A	19790904				197946	E
FR 2416865	A	19791012				197947	E
ZA 197900593	A	19800118				198013	E
DD 141919	A	19800528				198034	E
US 4226844	A	19801007	US 19799115	A	19790205	198043	E
CA 1110825	A	19811020				198147	E
IL 56599	A	19811030				198148	E
EP 3713	B	19821027	EP 1979420009	A	19790206	198244	E
HU 23874	T	19821028				198246	E
JP 1983025048	B	19830525				198324	E
DE 2805906	C	19860814	DE 2805906	A	19780213	198633	E
SU 1232143	A	19860515				198652	E
IT 1113406	B	19860120				198722	E

Priority Application Number (Number Kind Date): EP 1979420009 A 19790206; DE 2805906 A 19780213

Patent Details

Patent Number	Kind	Language	Pages	Drawings	Filing Notes
EP 3713	A	FR			
Regional Designated States,Original	GB NL SE				
BE 874141	A	FR			
BR 197900836	A	PT			
ZA 197900593	A	EN			
CA 1110825	A	EN			
IL 56599	A	EN			

EP 3713	B	FR
Regional Designated States,Original	GB NL SE	

Alerting Abstract: EP A

Aluminium chloride hydrate (I) is thermally decomposed to alumina by (a) contact with hot gases to effect at least partial decompsn. of (I), (b) treatment in a highly turbulent fluidised bed, (c) retention in a weakly fluidised bed, and (d) cooling in a bed fluidised by an O₂-contg. gas. The novelty is that in step (a) moist (I) is contacted with gas in the turbulent state in the presence of hot calcined alumina product as heat carrier. The product is fed to bed (b) from the top of which solids and gas are removed, sepd. solids being passed to bed (c). Part of the solids in (c) are recycled to (b) to control the density of solids in the highly fluidised bed, while another part is passed to bed (d). The heat exit gas from (d) is fed to bed (b), as a secondary fluidising gas, at a point above the main gas inlet, and fuel is supplied between these two inlets to heat the bed. Recycle of hot calcined alumina provides a higher temp. than is economically possible from other sources and addition of moisture to the starting material (I) gives a product gas in stage (a) which has a high HCl content. High quality alumina is produced.

International Classification (Main): B01J-008/24 **(Additional/Secondary):** C01F-007/30, C22B

US Classification, Issued: 423625, 3410, 423DIG.016, 423481

Original Publication Data by Authority**Belgium**

Publication Number: BE 874141 A (Update 197939 E)

Publication Date: 19790813

Language: FR

Brazil

Publication Number: BR 197900836 A (Update 197946 E)

Publication Date: 19790904

Language: PT

Canada

Publication Number: CA 1110825 A (Update 198147 E)

Publication Date: 19811020

Language: EN

German Democratic Republic

Publication Number: DD 141919 A (Update 198034 E)

Publication Date: 19800528

Language: DE

Germany

Publication Number: DE 2805906 A (Update 197935 E)

Publication Date: 19790823

Verfahren zur thermischen Spaltung von Aluminiumchloridhydrat

Assignee: Aluminium Pechiney, Lyon, FR

Inventor: Marchessaux, Philippe, Aix-en-Provence,, FR Reh, Lothar, Dr.-Ing. Dr., 6000 Bergen-Enkheim Plass, Ludolf, Dr.-Ing. Dr., 6242 Kronberg Sood, Raman, Dr., Kingston, Ontario, CA

Agent: Fischer, E., Dr., Rechtsanwalt, 6000 Frankfurt

Language: DE

Application: DE 2805906 A 19780213 (Local application)

Original IPC: C01F-7/30

Current IPC: C01F-7/30(A)

Claim: * 1. Verfahren zur thermischen Spaltung von Aluminiumchloridhydrat mit Katalyse zu Aluminiumoxid unter Verwendung eines Wirbelzustandes mit stark aufgelockerter Wirbelschicht, die mit einem Gefülle der Feststoffkonzentration von unten nach oben sowie Austrag der Feststoffe zusammen mit den Gasen am oberen Teil des Reaktorschachtes verbunden ist (Wirbelzone), bei dem aufgegebenes Aluminiumchloridhydrat vor dem Eintrag in die Wirbelzone zwecks mindestens teilweiser Spaltung mit Gasen in Kontakt gebracht und dann der Wirbelzone zugeleitet wird, die mit den Gasen am oberen Teil der Wirbelzone ausgetragenen Feststoffe abgetrennt und in eine mit geringer Gasgeschwindigkeit fluidisierte Verweilzone eingetragen werden, aus der ein Feststoffteilstrom zur Einstellung einer bestimmten Suspensionsdichte in die Wirbelzone kontrolliert rückgeführt und ein weiterer Teilstrom nach hinreichend langer Verweilzeit einer Wirbelkühlung zugeleitet wird, die mit sauerstoffhaltigem Gas als Fluidisierungsgas betrieben wird, mindestens ein Teil des aus der Wirbelkühlung austretenden erhitzten Fluidisierungsgases der Wirbelzone als Sekundärgas oberhalb der Fluidisierungsgaszuführung zugeleitet wird und die Beheizung der Wirbelzone durch Zufuhr von Brennstoff in die Zone zwischen Fluidisierungsgaszuführung und Sekundärgaszuführung erfolgt, dadurch gekennzeichnet, dass man aufgegebenes Aluminiumchloridhydrat mit Gasen im Wirbelzustand und unter Zufuhr von heissem prozesseigenen Kalzinit in Kontakt bringt und dabei mindestens teilweise spaltet.
|DE 2805 906 C (Update 198633 E)

Publication Date: 19860814

Verfahren zur thermischen Spaltung von Aluminiumchloridhydrat

Assignee: Aluminium Pechney, Lyon, FR

Inventor: Marchessaux, Philippe, Aix-en-Provence, FR Reh, Lothar, Dr.-Ing. Dr., 6000 Bergen, DE Plass, Ludolf, Dr.-Ing. Dr., 6242 Kronberg, DE Sood, Raman, Dr., Kingston, Ontario, CA

Agent: Fischer, E., Dr., Rechtsanwalt, 6000 Frankfurt

Language: DE

Application: DE 2805 906 A 19780213 (Local application)

Original IPC: C01F-7/30

Current IPC: C01F-7/30(A)

Denmark

Publication Number: DK 197900557 A (Update 197939 E)

Publication Date: 19790903

Language: DA

European Patent Office

Publication Number: EP 3713 A (Update 197934 B)

Publication Date: 19790822

Verfahren zur thermischen Spaltung von Aluminiumchlorid-Hexahydrat durch indirekte Erhitzung Process for the thermic decomposition of aluminium chloride hexahydrate by indirect heating Procede de décomposition thermique du chlorure d'aluminium hexahydrate par chauffage indirect

Assignee: ALUMINIUM PECHINEY, 28, rue de Bonnel, F-69433 Lyon Cedex 3, FR (PECH)

METALLGESELLSCHAFT AG (METG)

Inventor: Reh, Lothar, Pommernstrasse 3, D-6000 Bergen-Enkheim, DE Plass, Ludolf, Parkstrasse 11, D-6242

Kronberg, DE Marchessaux, Philippe, Chemin des Trois Moulins, F-13100 Aix en Provence, FR

Agent: Gaucherand, Michel, et al, PECHINEY UGINE KUHLMANN 28 rue de Bonnel, F-69433 Lyon Cedex 3, FR

Language: FR

Application: EP 1979420009 A 19790206 (Local application)

Priority: DE 2805906 A 19780213

Designated States: (Regional Original) GB NL SE

Original IPC: B01J-8/24 C01F-7/30 C22B-0/00

Current IPC: B01J-8/24 C01F-7/30 C22B-0/00|EP 3713 B (Update 198244 E)

Publication Date: 19821027

Verfahren zur thermischen Spaltung von Aluminiumchlorid-Hexahydrat durch indirekte Erhitzung Process for the thermic decomposition of aluminium chloride hexahydrate by indirect heating Procede de décomposition thermique du chlorure d'aluminium hexahydrate par chauffage indirect

Assignee: ALUMINIUM PECHINEY, 28, rue de Bonnel, F-69433 Lyon Cedex 3, FR

Inventor: Reh, Lothar, Pommernstrasse 3, D-6000 Bergen-Enkheim, DE Plass, Ludolf, Parkstrasse 11, D-6242 Kronberg, DE Marchessaux, Philippe, Chemin des Trois Moulins, F-13100 Aix en Provence, FR Sood, Raman, Rural Route Number 8, Kingston Ontario K7L 4V4, CA

Agent: Gaucherand, Michel, et al, PECHINEY UGINE KUHLMANN 28 rue de Bonnel, F-69433 Lyon Cedex 3, FR

Language: FR

Application: EP 1979420009 A 19790206 (Local application)

Designated States: (Regional Original) GB NL SE

Original IPC: C01F-7/30 B01J-8/24

Current IPC: C01F-7/30(A) B01J-8/24

France

Publication Number: FR 2416865 A (Update 197947 E)

Publication Date: 19791012

Language: FR

Hungary

Publication Number: HU 23874 T (Update 198246 E)

Publication Date: 19821028

Language: HU

Israel

Publication Number: IL 56599 A (Update 198148 E)

Publication Date: 19811030

Language: EN

Italy

Publication Number: IT 1113406 B (Update 198722 E)

Publication Date: 19860120

Language: IT

Japan

Publication Number: JP 54117397 A (Update 197943 E)

Publication Date: 19790912

Language: JA|JP 1983025048 B (Update 198324 E)

Publication Date: 19830525

Language: JA

Soviet Union

Publication Number: SU 1232143 A (Update 198652 E)

Publication Date: 19860515

Language: RU

United States

Publication Number: US 4226844 A (Update 198043 E)

Publication Date: 19801007

Method of thermally splitting hydrate of aluminum chloride

Assignee: Aluminum Pechiney

Inventor: Reh, Lothar, DE Plass, Ludolf Marchessaux, Philippe Sood, Raman

Agent: McDougall, Hersh Scott

Language: EN

Application: US 19799115 A 19790205 (Local application)

Original IPC: C01F-7/30

Current IPC: C01F-7/30(A)

Original US Class (main): 423625

Original US Class (secondary): 3410 423DIG.016 423481

Original Abstract: Thermally splitting hydrate of aluminum chloride to produce aluminum oxide wherein the hydrate is at least partially split by contact with hot gases and hot calcined product in a turbulent zone, transmitting the material from the turbulent zone into a residence zone, recycling a portion of the solids from the residence zone to the turbulent zone in an amount to maintain a desired suspension density while the remainder is passed to a turbulent cooling zone in heat exchange with the fluidizing gas introduced into the turbulent zone.

South Africa

Publication Number: ZA 197900593 A (Update 198013 E)

Publication Date: 19800118

Language: EN

Derwent World Patents Index

© 2008 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 1737590

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Patentschrift
⑯ DE 2805906 C2

⑯ Int. Cl. 4:

C01F 7/30

DE 2805906 C2

- ⑯ Aktenzeichen: P 28 05 906.5-41
⑯ Anmeldetag: 13. 2. 78
⑯ Offenlegungstag: 23. 8. 79
⑯ Veröffentlichungstag der Patenterteilung: 14. 8. 86

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑦ Patentinhaber:

Aluminium Pechiney, Lyon, FR

⑧ Vertreter:

Fischer, E., Dr., Rechtsanw., 6000 Frankfurt

⑦ Erfinder:

Marchessaux, Philippe, Aix-en-Provence, FR; Reh, Lothar, Dr.-Ing. Dr., 6000 Bergen, DE; Plass, Ludolf, Dr.-Ing. Dr., 6242 Kronberg, DE; Sood, Raman, Dr., Kingston, Ontario, CA

⑨ Im Prüfungsverfahren entgegengehaltene Druckschriften nach § 44 PatG:

DE-OS 26 36 854

⑩ Verfahren zur thermischen Spaltung von Aluminiumchloridhydrat

DE 2805906 C2

Patentansprüche:

1. Verfahren zur thermischen Spaltung von Aluminiumchloridhydrat mit Kalzination zu Aluminiumoxid in einer stark aufgelockerten Wirbelschicht, die mit einem Gefälle der Feststoffkonzentration von unten nach oben sowie Austrag der Feststoffe zusammen mit den Gasen am oberen Teil des Reaktorschachtes verbunden ist, bei dem aufgegebenes Aluminiumchloridhydrat vor dem Eintrag in die Wirbelzone zwecks mindestens teilweiser Spaltung mit Gasen in Kontakt gebracht und dann der Wirbelzone zugeleitet wird, die mit den Gasen am oberen Teil der Wirbelzone ausgetragenen Feststoffe abgetrennt und in eine mit geringer Gasgeschwindigkeit fluidisierte Verweilzone eingetragen werden, aus der ein Feststoffteilstrom in die Wirbelzone kontrolliert rückgeführt und ein weiterer Teilstrom einer Wirbelkühlung zugeleitet wird, die mit sauerstoffhaltigem Gas als Fluidisierungsgas betrieben wird, mindestens ein Teil des aus der Wirbelkühlung austretenden erhitzten Fluidisierungsgases der Wirbelzone als Sekundärgas oberhalb der Fluidisierungsgaszuführung zugeleitet wird und die Beheizung der Wirbelzone durch Zufuhr von Brennstoff in die Zone zwischen Fluidisierungsgaszuführung und Sekundärgaszuführung erfolgt, dadurch gekennzeichnet, daß man aufgegebenes Aluminiumchloridhydrat in einer mit Gasen betriebenen Wirbelschicht unter Zufuhr von heißem prozeßeigenen Kalzinat spaltet.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Spaltung in zwei Wirbelschichtstufen vornimmt, wobei man die erste unter Wärmezufuhr über Heizflächen auf eine Temperatur von 150 bis 300°C und die zweite unter Wärmezufuhr über heißes Kalzinat auf eine höhere, bis 600°C reichende Temperatur einstellt.

Die Erfindung betrifft ein Verfahren zur thermischen Spaltung von Aluminiumchloridhydrat mit Kalzination zu Aluminiumoxid in einer stark aufgelockerten Wirbelschicht, die mit einem Gefälle der Feststoffkonzentration von unten nach oben sowie Austrag der Feststoffe zusammen mit den Gasen am oberen Teil des Reaktorschachtes verbunden ist, bei dem aufgegebenes Aluminiumchloridhydrat vor dem Eintrag in die Wirbelzone zwecks mindestens teilweiser Spaltung mit Gasen in Kontakt gebracht und dann der Wirbelzone zugeleitet wird, die mit den Gasen am oberen Teil der Wirbelzone ausgetragenen Feststoffe abgetrennt und in eine mit geringer Gasgeschwindigkeit fluidisierte Verweilzone eingetragen werden, aus der ein Feststoffteilstrom in die Wirbelzone kontrolliert rückgeführt und ein weiterer Teilstrom einer Wirbelkühlung zugeleitet wird, die mit sauerstoffhaltigem Gas als Fluidisierungsgas betrieben wird, mindestens ein Teil des aus der Wirbelkühlung austretenden erhitzten Fluidisierungsgases der Wirbelzone als Sekundärgas oberhalb der Fluidisierungsgaszuführung zugeleitet wird und die Beheizung der Wirbelzone durch Zufuhr von Brennstoff in die Zone zwischen Fluidisierungsgaszuführung und Sekundärgaszuführung erfolgt.

Zur thermischen Spaltung von Aluminiumchloridhy-

drat ist neben Verfahren in der »klassischen« Wirbelschicht, also mit einem Verteilungszustand, bei dem eine dichte Phase durch einen deutlichen Dichtesprung von dem darüber befindlichen Gas- oder Staubraum getrennt ist (DE-OS 16 67 195, DE-OS 22 61 083), auch ein solches bekannt, das sich einer zirkulierenden Wirbelschicht bedient (DE-OS 17 67 628). Hierbei liegen Verteilungszustände ohne definierte obere Grenzschicht vor, die erhalten werden, indem eine wesentlich höhere Geschwindigkeit eingestellt wird als zur Aufrechterhaltung einer klassischen Wirbelschicht zulässig ist, und bei der der Feststoff vom Gas schnell aus dem Reaktor ausgetragen würde, wenn nicht ständig neues Material nachgespeist wird. Die Feststoffkonzentration ist niedriger als im Bett, aber erheblich höher als im Staubraum einer klassischen Wirbelschicht. Ein Dichtesprung zwischen dichter Phase und darüber befindlichem Staubraum ist nicht vorhanden, jedoch nimmt innerhalb des Reaktors die Feststoffkonzentration von unten nach oben kontinuierlich ab.

Mit dem Verfahren der DE-OS 17 67 628 gelingt insbesondere eine weitestgehende Ausnutzung der Abwärme von Abgas und ausgetragenem Feststoff, so daß eine maximale Brennstoffausnutzung, d. h. optimale Wärmeverbrauchszahl, erreichbar ist. Die Verbrennung in zwei Stufen, nämlich zunächst nur mit Fluidisierungsgas unterstöchiometrisch im Bereich hoher Dispersionsdichte, dann in Gegenwart von Sekundärgas stöchiometrisch bzw. geringfügig überstöchiometrisch schließt Überhitzungen einzelner Bereiche des Wirbelbettes aus. Hohe Temperaturkonstanz und genaue Temperatursteuerung sind möglich.

Trotz dieser großen Vorteile weist dieses bekannte Verfahren bei seiner Anwendung auf die Spaltung von Aluminiumchloridhydrat einen Nachteil auf, wenn aus reaktionstechnischen Gründen, z. B. wegen Phasenumwandlungen oder Erzielung hoher Produktreinheit, hohe Mindestverweilzeiten des gebildeten Aluminiumoxids im Reaktorsystem erforderlich sind. Zwar ist auch bei dem bekannten Verfahren eine hohe Mindestverweilzeit durch Vergrößerung der Ofenhöhe erreichbar, jedoch steigt hierbei der Druckverlust im Wirbelschichtreaktor und damit der Energiebedarf an.

Gemäß einem weiteren bekannten Verfahren wird dieser Nachteil vermieden, indem die vom Gas abgetrennten Feststoffe in einem mit geringer Gasgeschwindigkeit fluidisierten Verweilzeitreaktor eingetragen werden, ein Feststoffteilstrom zur Einstellung einer bestimmten Suspensionsdichte in den Wirbelschichtofen kontrolliert rückgeführt und ein weiterer Teilstrom nach hinreichend langer Verweilzeit dem Wirbelkühler zugeleitet wird (DE-OS 25 24 541). Die Durchführung des Verfahrens erfolgt mithin in einem im wesentlichen aus einem Wirbelschichtreaktor und einem Verweilzeitreaktor bestehenden, das Kernstück des Verfahrens bildenden System, indem die einzelnen Phasen der Gesamtreaktion entsprechend den reaktionstechnischen Erfordernissen den beiden Reaktoren zugeordnet werden. Der beim Spaltprozeß den Hauptanteil des Wärmebedarfs verbrauchende Schritt der Aufheizung der Teilchen erfolgt im Wirbelschichtreaktor. Das Erreichen der endgültigen Produktqualität, das gegenüber der Spaltreaktion eine vergleichsweise längere Reaktionszeit z. B. aufgrund von Phasenumwandlungen oder Diffusionsprozessen, erfordert und nur noch einer geringen Wärmezufuhr bedarf, geschieht dann im Verweilzeitreaktor.

Ein Nachteil des zuletzt genannten Verfahrens ist,

daß infolge des vorgegebenen Energiebedarfs und damit des Bedarfs an Brennstoff und zur Verbrennung erforderlichen sauerstoffhaltigen Gase ein Abgas anfällt, dessen Chlorwasserstoffkonzentration bei hohen Gasvolumina vergleichsweise gering ist und daher apparativ aufwendige Absorptionsanlagen und große Kühlmittelmengen für die Abführung der Wärme aus dem Abgas erforderlich macht.

Bei dem aus der DE-OS 17 67 628 bekannten Verfahren kommt zum vorgenannten Nachteil hinzu, daß bei der Kalzination zu Aluminiumoxid wegen der hohen erforderlichen Verweilzeit ein beträchtlicher Energieaufwand durch häufige Rezirkulation der Feststoffe in Kauf genommen werden muß.

Aus der DE-OS 26 36 854 ist es bekannt, Aluminiumchloridhydrat mit Kalzination zu Aluminiumoxid derart umzusetzen, daß in einer ersten Stufe Aluminiumchloridhydrat im Wirbelzustand durch indirekte Beheizung zum überwiegenden Teil von Chlorwasserstoff befreit und das Spaltprodukt in einer aus Wirbelschichtreaktor und Verweilzeitreaktor bestehenden Kalzinerstufe kalziniert wird. Bei dieser Arbeitsweise sind nur vergleichsweise geringe Spalttemperaturen einstellbar, so daß ein Spaltgrad von maximal 90% erreichbar ist und demzufolge die erwünschte möglichst hohe Chlorwasserstoffkonzentration im Abgas nicht vorliegt. Auch weist zwangsläufig das Abgas der Kalzinerstufe eine relativ hohe Chlorwasserstoffkonzentration auf, die aufwendige Absorptionseinrichtungen erforderlich macht.

Aufgabe der Erfindung ist es, ein Verfahren bereitzustellen, das die bekannten, insbesondere die vorgenannten Nachteile vermeidet und bei hoher Qualität des erzeugten Aluminiumoxids ein Abgas mit vergleichsweise hohem Chlorwasserstoffgehalt entstehen läßt.

Diese Aufgabe wird durch das im Patentanspruch angegebene Verfahren gelöst.

Das erfindungsgemäße Verfahren kann in der Weise geführt werden, daß die zur Spaltung erforderliche Wärmeenergie praktisch ausschließlich durch heißes Kalzinat gedeckt wird. Es ist jedoch auch möglich, die Spaltung in zwei Stufen vorzunehmen, wobei dann zweckmäßigerweise in der ersten Stufe die Wärmezufuhr über beheizte Flächen und in der zweiten Stufe durch Zufuhr von Kalzinat erfolgt.

Der Vorzug der zuletzt genannten Ausführungsform besteht insbesondere darin, daß ein wesentlicher Anteil der Spalt- und Verdampfungsenergie mittels flüssiger zur Beheizung der heißen Flächen dienender Wärmeträger eingebracht wird und die rezirkulierte Kalzinatmenge geringer gehalten werden kann. Gegenüber der alleinigen Verwendung von heißen Flächen zur Zufuhr der erforderlichen Wärme besteht der Vorzug der zweistufigen Arbeitsweise insbesondere darin, daß höhere Temperaturen in der Spaltstufe möglich sind als es bei Verwendung heißer Flächen üblicherweise möglich ist.

Die für den Spaltprozeß erforderliche Kalzinatmenge ergibt sich einerseits aus der mit der Masseneinheit zur Verfügung gestellten Wärmeenergie und andererseits aus dem Energiebedarf, der sich aus Spalt- und Verdampfungsenergie sowie Erhöhung der fühlbaren Wärme zusammensetzt und in einfacher Weise errechenbar ist. Bei der zweistufigen Spaltung wird selbstverständlich die über die Heizflächen eingebrachte Wärmeenergie in Abzug gebracht.

In beiden Ausführungsformen, also bei ein- oder zweistufiger Spaltung, kann der Wirbelzustand, bei dem Chlorwasserstoff abgespalten wird, dem einer klassischen Wirbelschicht, vorzugsweise mit einer mittleren

Suspensionsdichte von 300 bis 600 kg/m³ und einer Wirbelgasgeschwindigkeit von kleiner 0,8 m/sec, oder aber einer zirkulierenden Wirbelschicht, vorzugsweise mit einer mittleren Suspensionsdichte von 40 bis 250 kg/m³ und einer Wirbelgasgeschwindigkeit von 1,5 bis 5 m/sec, entsprechen.

Im Hinblick auf die zweistufige Spaltung mit Wärmezufuhr über Heizflächen liegt ein Vorzug der Verwendung einer klassischen Wirbelschicht in den hohen Wärmeübergangszahlen, bedingt durch die hohe Suspensionsdichte. Ein Nachteil ist, daß infolge der geringen Wirbelintensität Verbackungerscheinungen auftreten können, die zur lokalen Defluidisierung führen. Bei Verwendung einer zirkulierenden Wirbelschicht werden 15 Verbackungerscheinungen mit Sicherheit vermieden. Außerdem wird der Nachteil der kleineren Wärmeübergangszahlen durch die Möglichkeit einer hohen Zirkulationsrate weitgehend ausgeglichen.

Die vorgenannte Wirbelgasgeschwindigkeit bezieht 20 sich auf die effektive Geschwindigkeit des Gases, das bei der indirekten Spaltung anfällt. Es besteht im wesentlichen aus einer Mischung des verwendeten Fluidisierungsgases, das in bevorzugter Ausgestaltung aus Wasserdampf besteht, des aus eingebrachter Feuchtigkeit und Kristallwasser gebildeten Dampfes und des Chlorwasserstoffes, der durch chemische Reaktion des Aluminiumchlorids sowie Verdampfen von physikalisch anhaftendem Chlorwasserstoff entsteht. Die Gasgeschwindigkeit gilt für den wirbelgutfreien Spaltreaktor.

Zum Betrieb des oder der Wirbelbettes(n) können gegebenenfalls vorgeheizte Fremdgase in geringen Mengen, vorzugsweise Wasserdampf, verwendet werden.

Sofern eine zweistufige Spaltung vorgesehen ist, geschieht die indirekte Beheizung in der ersten Spaltstufe zweckmäßigerweise durch in den Reaktor eingehängte Heizflächen, die mit flüssigen Wärmeträgern, wie Salzschmelzen oder Ölen, beaufschlagt werden. Die Aufheizung der Wärmeträger kann mit herkömmlichen Brennern erfolgen. Zur Aufheizung der Wärmeträger kann aber auch der Wärmeinhalt des erzeugten Kalzinats ausgenutzt werden. Für die Wärmeübertragung sind Rohrbündel besonders vorteilhaft. Bei Verwendung einer klassischen Wirbelschicht empfiehlt sich ein Einbau der Rohrbündel derart, daß ein horizontaler Verlauf der Röhre, bei Verwendung einer zirkulierenden Wirbelschicht aus Gründen einer reduzierten Erosion ein vertikaler Verlauf der Röhre resultiert. Zufuhr von Wärmeträger, Fluidisierungsgas sowie Aluminiumchloridhydrat sind dabei derart abzustimmen, daß — gemäß bevorzugter Ausgestaltung der Erfindung — die Temperatur des Wirbelgutbettes in der ersten Stufe zwischen 150 und 300°C liegt.

In der zweiten mit Kalzinatteintrag arbeitenden Spaltstufe sollten höhere Spalttemperaturen, etwa bis 600°C, eingestellt werden, damit die mit dem Feststoff in die Kalzinerstufe eingebrachte Chlorwasserstoffmenge möglichst gering ist.

Bei Anwendung einer einstufigen Spaltung, die lediglich mit Kalzinatteintrag arbeitet, sollten Temperaturen im Bereich von 200 bis 450°C eingestellt werden.

Unabhängig von der gewählten Ausführung in der Spaltstufe werden Verweilzeit und Temperatur des Wirbelgutes zweckmäßigerverweise derart gewählt, daß ein Spaltgrad von mindestens 80% erreicht wird.

Aus der Spaltzone wird kontinuierlich ein Strom Wirbelgut abgezogen und in die Kalzinerzone eingetragen. Hier werden die Teilchen, die etwa im Korngrößenbe-

reich von 20 bis 300 μm , bezogen auf die mittlere Korngröße d_p 50, liegen, infolge der im Wirbelschichtreaktor herrschenden hohen Temperaturen sehr rasch aufgeheizt und spalten aufgrund ihrer hohen spezifischen Oberfläche sehr schnell das restliche Chlorid unter Abgabe von Chlorwasserstoff ab. Dies ist im wesentlichen bereits nach dem ersten Verlassen der Wirbelzone und vor dem Eintrag in die Verweilzone geschehen. Die schnelle Aufheizung ist die Folge einer durch den in der Wirbelzone herrschenden Wirbelzustand gegebenen intensiven Wärmezufuhr, wobei in Anbetracht der weichen, weil zweistufigen, insgesamt nahstöchiometrischen Verbrennung gleichzeitig das Produkt geschont wird. Die bei der Kalzination des Aluminiumoxids auftretenden Phasenwandlungen, die vergleichsweise wenig Energie, jedoch hohe Verweilzeiten erfordern, erfolgen dann wirtschaftlich sowie produkt- und appratusschonend in der Verweilzone. Die Verweilzone kann mit Wasserdampf und/oder Luft fluidisiert werden.

Von der Verweilzone wird gerade so viel Feststoff zurückgeführt, als zur Einstellung der Suspensionsdichte in der Wirbelzone und als gegebenenfalls zur Vermeidung nennenswerter Temperaturunterschiede im Gesamtsystem Wirbelzone/Verweilzone notwendig sind.

Zweckmäßig werden die Betriebsbedingungen in der Wirbelzone und die Rückführung von Feststoff aus der Verweilzone unter Berücksichtigung des neu zugeführten Materials derart gewählt, daß in der Zone zwischen Gasverteiler und Sekundärgasleitung eine mittlere Suspensionsdichte von 20 bis 300 kg/m^3 und in der Zone oberhalb der Sekundärgasleitung eine solche von 1 bis 20 kg/m^3 resultiert.

Bei den vorgenannten Bedingungen herrscht in der Wirbelzone ein Druckverlust von 250 bis 900 mm WS.

Bei Definition dieser Betriebsbedingungen für die Wirbelzone über die Kennzahlen von Froude und Archimedes ergeben sich die Bereiche:

$$0.1 < 3/4 \cdot Fr^2 \cdot \frac{\rho g}{\rho k - \rho g} < 10$$

bzw.

$$0.1 < Ar < 100$$

wobei

$$Ar = \frac{d_k \cdot g (\rho k - \rho g)}{\rho g \cdot v^2}$$

ist.

Es bedeuten:

Fr die Froudezahl,

Ar die Archimedeszahl,

ρg die Dichte des Gases in kg/m^3 ,

g die Gravitationskonstante in m/sec^2 ,

ρk die Dichte des Feststoffteilchens in kg/m^3 ,

d_k den Durchmesser des kugelförmigen Teilchens in m,

v die kinematische Zähigkeit in m^2/sec .

Die Suspensionsdichte in der Verweilzone ist demgegenüber aufgrund der geringen Fluidisierungsgassgeschwindigkeit, die im wesentlichen lediglich eine Durchmischung des Feststoffes bewirken soll, erheblich höher. Um den vollen Nutzen des Verweilzeitreaktors auszuschöpfen, sollte die Suspensionsdichte größer als

500 kg/m^3 sein.

In der Definition bezüglich Froude und Archimedes ergeben sich der gleiche Archimedeszahlbereich wie in der Wirbelzone und eine Froudezahl entsprechend

$$3/4 \cdot Fr^2 \cdot \frac{\rho g}{\rho k - \rho g} < 5 \cdot 10^{-3}$$

Die Abmessung von Wirbelzone und Verweilzone relativ zueinander werden im wesentlichen von der zur Erzeugung einer bestimmten Produktqualität erforderlichen mittleren Gesamtverweilzeit bestimmt. Im allgemeinen ist es vorteilhaft, die mittlere Verweilzeit der Feststoffe in der Wirbelzone auf 10 bis 30 Minuten und in der Verweilzone auf das Zweie- bis Zwanzigfache einzustellen.

Bei der Definition der mittleren Verweilzeit in der Wirbelzone geht die aus der Verweilzone rückgeföhrte Feststoffmenge mit ein und ist errechenbar aus der Summe der mittleren Suspensionsdichten in beiden Zonen, bezogen auf die stündliche Produktmenge. Die Wahl der Fluidisierungs- und Sekundärgasmengen, insbesondere aber die Aufteilung beider Gasströme und die Höhe der Sekundärgaszuführung, geben zusätzliche Regelungsmöglichkeiten an die Hand.

Das Sekundärgas wird zweckmäßig in einer Höhe zugeführt, die bei 10 bis 30% der Gesamthöhe der Wirbelzone liegt. Das Mengenverhältnis von der Wirbelzone zugeführtem Sekundärgas zu Fluidisierungsgas sollte dabei auf 10 : 1 bis 1 : 2 eingestellt werden.

Sofern zur Einstellung der erforderlichen Suspensionsdichte in der Wirbelzone eine nur geringe Rückführung von Feststoff aus der Verweilzone notwendig, jedoch eine vergleichsweise lange Gesamtverweilzeit erwünscht ist, ist es zweckmäßig, in der Verweilzone durch direkte Brennstoffzugabe zuzuheizen. Im Hinblick auf die Temperatur im System dient dann die Zirkulation nicht der vollständigen Deckung, z. B. der Abstrahlungsverluste der Verweilzone, sondern lediglich der Feinregulierung.

Nach hinreichend langer Verweilzeit wird ein Feststoffteilstrom einer Wirbelkühlung, die zweckmäßigerweise in mehreren nacheinander durchfließbaren Kühlkammern durchgeführt wird, zugeleitet. Die zur Aufrechterhaltung des Betriebszustandes verwendeten sauerstoffhaltigen Fluidisierungsgase werden mindestens teilweise der Wirbelzone als Sekundärgas zugeleitet. Der Wirbelkühler kann zusätzlich mit in die Kammern eintauchenden Kühlregistern ausgestattet sein, in denen beispielsweise Fluidisierungsgas für die Wirbelzone und gegebenenfalls für die Verweilzone aufgeheizt wird.

Die den Zonen zugeführten Gasmengen werden zweckmäßigerweise derart gewählt, daß in der Kalzinerzone eine Wirbelgasgeschwindigkeit von 3 bis 15 m/sec , vorzugsweise 4 bis 10 m/sec , und in der Verweilzone eine Wirbelgasgeschwindigkeit von 0,1 bis 0,3 m/sec , jeweils auf den leeren Reaktor bezogen, herrscht.

Die Arbeitstemperaturen in der Wirbelzone und in der Verweilzone sind in weiten Grenzen beliebig und richten sich im wesentlichen nach der angestrebten Produktqualität. Sie können in einem Bereich von 650 bis 1050°C liegen.

Als Fluidisierungs- und Sekundärgas, das in jedem Fall Sauerstoff enthält, kann Luft eingesetzt werden. Im Hinblick auf geringe Abgasmengen kann es vorteilhaft sein, als Fluidisierungsgas und/oder als Sekundärgas

sauerstoffreiche Gase, gegebenenfalls mit Sauerstoffgehalten bis 70 Vol.-%, einzusetzen.

Im Verfahren gemäß Fig. 1 erfolgt die Spaltung des Aluminiumchlorhydrats in zwei Stufen. Hierzu wird Aluminiumchlorhydrat über die Aufgabevorrichtung 1 und die Dosierbandwaage 2 dem Wirbelschichtreaktor 3 aufgegeben. Der Wirbelschichtreaktor 3 ist als zirkulierende Wirbelschicht mit Abscheider 4 und Rückführleitung 5 konzipiert. Seine Beheizung erfolgt über Heizflächen 6, die über einen geschlossenen Wärmeträgerkreislauf 7 mit der Aufheizvorrichtung 8 verbunden sind. Als Fluidisierungsgas dient über Leitung 9 zugeführter Dampf. Das Abgas des Wirbelschichtreaktors 3 gelangt über Leitung 10 in ein Elektrofilter 11 und schließlich in die Abgasleitung 12, die in die Anlage zur Absorption des Chlorwasserstoffes führt. Im Elektrofilter 11 abgeschiedener Staub wird über Leitung 13 in den Wirbelschichtreaktor 3 zurückgeführt. Aus der zirkulierenden Wirbelschicht 3 wird ein Teilstrom teilweise gespaltenen Aluminiumchlorids über Leitung 14, dem zweiten Spaltreaktor 15, der als klassische Wirbelschicht betrieben wird, zugeleitet. Er wird mit über Leitung 16 zugeführtem Dampf und über Leitung 17 zugeführtem Kalzinat gespeist. Das Abgas gelangt über Leitung 18 in das Elektrofilter 11.

Der Austrag des Produktes aus dem zweiten Spaltreaktor 15 geschieht über Leitung 19 in eine pneumatische Fördereinrichtung 20, die es in einem Abscheider 36 einträgt. Der pneumatisch geförderte Feststoff wird dann dem Venturiwirbler 21 zugeleitet, der Gasstrom über Leitung 37 abgeführt. Im Venturiwirbler 21 wird das mindestens teilweise gespaltene Aluminiumchlorid vom aus der Wirbel-/Verweilzone stammenden Gasstrom erfaßt, im Abscheider 22 vom Gas getrennt und der Wirbelzone 23 zugeleitet. Der Betrieb der Wirbelzone 23 erfolgt mit über Leitung 24 herangeführtem Fluidisierungsgas und mit über Leitung 25 zugeführtem Sekundärgas. Brennstoff, der insbesondere aus Heizöl oder Heizgas besteht, wird über Lanzent 26 aufgegeben.

Der durch die herrschenden Betriebsbedingungen aus der Wirbelzone 23 ausgetragene Feststoff wird im oberen Bereich der Verweilzone 27 vom Gas getrennt und gelangt in den unteren, durch die Zuführung von Gas über Leitung 28 schwach fluidisierten Bereich. Die kontrollierte Rückführung von Feststoff in die Wirbelzone 23 geschieht über Leitung 29, die Rückführung von Kalzinat in den zweiten Spaltreaktor 15 über Leitung 17 und die Entnahme von fertigkalziniertem Aluminiumoxid über Austragsleitung 30. Dieser Teilstrom wird dem Wirbelschichtkühler 31 aufgegeben, der mit über Leitung 32 zugeführtem sauerstoffhaltigem Gas fluidisiert wird. Das den Wirbelschichtkühler 31 über Leitung 25 verlassende Gas wird als Sekundärgas in die Wirbelzone 23 eingeleitet. Gekühltes Aluminiumoxid wird schließlich über Leitung 33 ausgetragen.

Das Abgas des Abscheiders 22 durchläuft einen Wärmeaustauscher 38, in dessen erster Stufe über Leitung 39 herangeführte Luft für die pneumatische Förderung und in dessen zweiter Stufe Verbrennungsluft für die Brenner der Aufheizvorrichtung 8 aufgeheizt wird. Nach Durchgang durch den Wärmeaustauscher 38 wird das Gas im Elektrofilter 34 von Staub befreit. Der im Elektrofilter 34 anfallende Staub gelangt über Leitung 35 in die Verweilzone 27 zurück.

Die der Wirbel-/Verweilzone 23 bzw. 27 über Leitungen 25 bzw. 28 zugeführten Gasströme werden zuvor im Wirbelschichtkühler 31 unter Abkühlung von heißem Kalzinat aufgeheizt. Leitung 25 nimmt zudem noch das

aus dem Abscheider 36 stammende und über Leitung 37 abgeführte Gas auf.

Der Aufheizvorrichtung 8 ist schließlich gasseitig ein weiterer Wärmeaustauscher 40 nachgeschaltet, in den 5 Abgaswärme an frisch zugeführte, für die Brenner der Aufheizvorrichtung 8 bestimmte Luft übertragen wird.

Gemäß Fig. 2 erfolgt die Spaltung des Aluminiumchlorhydrats in einer Spaltstufe, die als zirkulierende Wirbelschicht mit Wirbelschichtreaktor 3, Abscheider 4, 10 gasseitig nachgeschaltetem Venturiwirbler 41 und Abscheider 42 betrieben wird. Das Aluminiumchlorhydrat wird über Aufgabevorrichtungen 1 und Dosierbandwaagen 2 zum Teil dem Wirbelschichtreaktor 3, zum Teil – zwecks Abgaskühlung – dem Venturiwirbler 41 aufgegeben. Über den Abscheider 42 und Leitungen 13 und 5 gelangt dann auch dieser Teilstrom in den Wirbelschichtreaktor 3. Die Wärmezufuhr erfolgt durch über Leitung 17 rückgeföhrtes heißes Kalzinat. Als Fluidisierungsgas dient dem Wirbelschichtreaktor 3 15 über Leitung 9 zugeführter Dampf. Sein Abgas wird über Leitung 10, Venturiwirbler 41 und Abscheider 42 in ein Elektrofilter 11 geführt, dort von Staub, der über Leitung 13 in den Wirbelschichtreaktor 3 zurückgeführt wird, befreit und der Absorptionsanlage für Chlorwas- 20 serstoff zugeleitet.

Aus der zirkulierenden Wirbelschicht 3 wird das teilweise gespaltene Aluminiumchlorid über Leitung 19 in eine pneumatische Fördereinrichtung 20 geführt, die es in einen Abscheider 36 einträgt.

Der Eintrag in die Wirbelzone 23 und die Betriebsbedingungen hinsichtlich Wirbelzone 23, Verweilzone 27 und Kühler 31 entsprechen denen gemäß Fig. 1.

Da das Verfahren gemäß Fig. 2 die Spaltung lediglich mit rückgeföhrttem Kalzinat vorsieht, sind Heizflächen und Aufheizvorrichtung 8 entbehrlich. Statt dessen wird ein zusätzlicher Frischluftstrom, der über Leitung 43 zugeführt wird und der Wirbelzone 23 als zusätzliche Sekundärluft dient, im Wärmeaustauscher 38 aufgeheizt.

Beispiel 1

Unter Bezugnahme auf Fig. 1 wurden über Aufgabevorrichtung 1 und Dosierbandwaage 2 stündlich 54 t $\text{AlCl}_3 \cdot 6 \text{H}_2\text{O}$ mit einer Oberflächenfeuchte von ca. 15% und einem mittleren Korndurchmesser d_{50} von 150 μm in den Wirbelschichtreaktor 3 eingetragen. Sein Innen- 45 durchmesser war 3,0 m, seine Höhe 18 m.

Der Wirbelschichtreaktor 3 wurde mit 3000 Nm^3/h 50 Dampf von 180°C, der über Leitung 9 herangeführt wurde, betrieben. Die Heizung des Wirbelschichtreaktors 3 erfolgte mit einer Schmelze eines Alkalichloridge misches, die über den Kreislauf 7 mit 460°C eingeführt und mit 420°C ausgetragen wurde.

Die Wiederaufheizung der Schmelze geschah in der 55 Aufheizvorrichtung 8 durch Verbrennung von 2580 kg/h schwerem Heizöl mit einem Heizwert von $H_v = 39\,800 \text{ kJ/kg}$.

Im Wirbelschichtreaktor 3 stellte sich eine Temperatur von 200°C ein. Die Wirbelgasgeschwindigkeit betrug 2,0 m/sec. Infolge der großen Gasgeschwindigkeit wurde ein hoher Anteil der Feststoffe mit dem Gas zusammen am oberen Teil des Wirbelschichtreaktors 3 ausgetragen. Nach Abscheidung im nachgeschalteten Abscheider 4 gelangte der Feststoff über Leitung 5 in den Wirbelschichtreaktor 3 zurück. Infolge der Feststoffrückführung in den Wirbelschichtreaktor 3 und der 60 dort gewählten Betriebsbedingungen stellte sich im

Wirbelschichtreaktor 3 eine mittlere Suspensionsdichte von etwa 150 kg/m^3 und ein Druckverlust von 2700 mm Wassersäule ein. Die mittlere Verweilzeit lag bei 1,7 Stunden. Aufgrund der vorgenannten Bedingungen wurden etwa 80% des Aluminiumchlorids gespalten.

Über Leitung 14 wurden 22,4 t/h Feststoff in den Spaltreaktor 15 überführt. Er besaß einen inneren Durchmesser von 4,6 m. Die Höhe der Wirbelschicht betrug 5,0 m. Vermittels Leitung 16 wurden $1000 \text{ Nm}^3/\text{h}$ Dampf von 180°C eingetragen. Infolge Rückführung von Kalzinat über Leitung 17 in einer Menge von 46 t/h mit einer Temperatur von 950°C stellte sich im Spaltreaktor 15 eine Temperatur von 500°C ein. Die Wirbelgasgeschwindigkeit betrug 0,5 m/sec. Die mittlere Suspensionsdichte betrug 400 kg/m^3 , die mittlere Verweilzeit 35 min. $12\,050 \text{ Nm}^3/\text{h}$ Abgas mit 500°C wurden über Leitung 18 abgeführt und mit dem über Leitung 10 ausgetragenen 200°C heißen Abgas von $30\,000 \text{ Nm}^3/\text{h}$ vereinigt dem Elektrofilter 11 zur Entstaubung zugeführt. Die Chlorwasserstoffkonzentration betrug 34,6%, die Gastemperatur 290°C .

Aus dem Spaltreaktor 15 wurden 58 t/h Feststoff entnommen. Bezogen auf das frisch aufgegebene Aluminiumchloridhydrat, betrug der erzielte Spaltgrad 99,6%. Der Feststoff wurde unter Verwendung von 2900 Nm^3/h im Wärmeaustauscher 38 auf 500°C vorgewärmter Luft mittels Vorrichtung 20 pneumatisch in den Abscheider 36 eingetragen. Der Feststoff gelangte in den Venturiwirbler 21, wurde vom Abgas der Wirbel-/Verweilzone 23 und 27, das in Mengen von $17\,023 \text{ Nm}^3/\text{h}$ anfiel, erfaßt und in den Abscheider 22 eingetragen. Das Abgas, das vor dem Austritt aus Wirbel-/Verweilzone 23 und 27 eine Temperatur von 950°C besaß, wurde insbesondere durch Kontakt mit den Feststoffen auf 700°C abgekühlt und dem Wärmeaustauscher 38 zugeleitet.

In der Wirbelzone 23 und der Verweilzone 27 erfolgte die restliche Spaltung des Aluminiumchlorids mit Kalzinierung zu Aluminiumoxid. Es trugen in der Wirbelzone 23 die lichte Höhe des Reaktors 14 m und der Innendurchmesser 2,2 m, in der Verweilzone 27 im zylindrischen unteren Teil der Innendurchmesser 3,5 m und die Höhe 3,4 m, bezogen auf das Wirbelbett.

Zur Fluidisierung der Wirbelzone 23 diente über Leitung 24 und den Gasverteiler herangeführte Luft in Mengen von $4225 \text{ Nm}^3/\text{h}$, die im Wirbelschichtkühler 31 durch indirekten Wärmeaustausch auf 550°C vorgewärmt worden war. $8500 \text{ Nm}^3/\text{h}$ Luft, hiervon 2900 Nm^3 mit 500°C über Leitung 37 und 5600 Nm^3 mit 600°C aus dem Wirbelschichtkühler 31 herangeführt, wurden der Wirbelzone 23 über Leitung 25 zugeführt und 2,5 m über dem Gasverteiler als Sekundärgas eingetragen. Das Verhältnis von Fluidisierungsgas zu Sekundärgas betrug mithin 1 : 2,0. Im Bereich zwischen Gasverteiler und Sekundärluftleitung 25 wurden 1160 kg schweres Heizöl ($H_v = 39\,800 \text{ kJ/kg}$) mit Lanzentyp 26 eingespritzt. Im Bereich zwischen Gasverteiler und Sekundärgasleitung 25 war die Verbrennung unvollständig. Vollständiger Ausbrand erfolgte oberhalb der Zugabe des Sekundärgases mit Leitung 25.

Die aus der Wirbelzone 23 ausgetragenen Feststoffe wurden im oberen Teil der Verweilzone 27 vom Gas getrennt, gelangten in dessen unteren Teil und bildeten dort ein dichtes Wirbelbett.

Die Verweilzone 27 wurde mit $1100 \text{ Nm}^3/\text{h}$ Luft, die im Wirbelschichtkühler 31 auf 500°C vorgeheizt wurden, fluidisiert.

Durch Feststoffzirkulation in der Wirbelzone sowie

durch Feststoffrückführung aus der Verweilzone 27 über Leitung 29 stellte sich im gesamten Zirkulationssystem eine einheitliche Temperatur von 950°C ein.

Die Aufteilung der Gesamtverweilzeit des Aluminiumoxids von ca. 1,96 h auf Wirbelzone 23 und Verweilzone 27 lag etwa bei 1 : 11 (10 min Wirbelzone 23, 1,8 Std. Verweilzone 27). Der Druckverlust in der Wirbelzone 23 wurde auf etwa 430 mm Wassersäule eingestellt. Die mittlere Suspensionsdichte im Bereich zwischen Gasverteiler und Sekundärgasleitung 25 lag bei 150 kg/m^3 und die mittlere Suspensionsdichte oberhalb der Sekundärgasleitung 25 bei 5 kg/m^3 . In der Verweilzone 27 herrschte in dem von Feststoff erfüllten Bereich eine Suspensionsdichte von ca. 550 kg/m^3 .

Die Produktion in Höhe von 10 t/h Aluminiumoxid wurde aus der Verweilzone 27 über Leitung 30 in den Wirbelschichtkühler 31 eingetragen. Im Wirbelschichtkühler, der mit $5600 \text{ Nm}^3/\text{h}$ Luft fluidisiert und in Kühlregistern mit $4225 \text{ Nm}^3/\text{h}$ bzw. mit $1100 \text{ Nm}^3/\text{h}$ beaufschlagt worden war, erfolgte unter Zuhilfenahme einer zusätzlichen Wasserkühlung eine Abkühlung des Aluminiumoxids auf eine Temperatur von 100°C .

Die durch indirekte Erhitzung auf 550 bzw. 500°C vorgewärmten Luftströme wurden dem vorher geschilderten Verwendungszweck zugeführt.

Das aus dem Elektrofilter 34 austretende Abgas von $17\,023 \text{ Nm}^3/\text{h}$ besaß eine Temperatur von 300°C und einen HCl-Gehalt von 0,25 Vol.-%.

Die zum Betrieb der Aufheizvorrichtung 8 erforderliche Verbrennungsluft in Mengen von $34\,400 \text{ Nm}^3/\text{h}$ wurde im Wärmeaustauscher 40 auf 250°C und im Wärmeaustauscher 38 auf 500°C aufgeheizt.

Beispiel 2

Unter Bezugnahme auf Fig. 2 wurden über Aufgabevorrichtung 1 und Dosierbandwaage 2 stündlich 54 t $\text{AlCl}_3 \cdot 6 \text{ H}_2\text{O}$ mit einer Oberflächenfeuchte von ca. 15% und einem mittleren Korndurchmesser d_{50} von $150 \mu\text{m}$ in den Wirbelschichtreaktor 3 aufgegeben und im Verhältnis 40 : 1 dem Wirbelschichtreaktor 3 und dem Venturiwirbler 41 zugeführt. Der Innendurchmesser des Wirbelschichtreaktors 3 betrug 5,5 m, seine Höhe 18 m.

Der Wirbelschichtreaktor 3 wurde mit $3000 \text{ Nm}^3/\text{h}$ Dampf von 180°C , der über Leitung 9 herangeführt wurde, betrieben. Die Beheizung des Wirbelschichtreaktors 3 erfolgte durch Eintrag von 180 t/h Kalzinat von 950°C , das über Leitung 17 herangeführt wurde.

Im Wirbelschichtreaktor 3 stellte sich eine Temperatur von 400°C ein. Die Wirbelgasgeschwindigkeit betrug 4,6 m/sec. Infolge der großen Gasgeschwindigkeit wurde ein hoher Anteil der Feststoffe mit dem Gas zusammen am oberen Teil des Wirbelschichtreaktors 3 ausgetragen. Nach Abscheidung im nachgeschalteten Abscheider 4 gelangte der Feststoff über Leitung 5 in den Wirbelschichtreaktor 3 zurück. Infolge der Feststoffrückführung in den Wirbelschichtreaktor 3 und der dort gewählten Betriebsbedingungen stellte sich im Wirbelschichtreaktor 3 eine mittlere Suspensionsdichte von etwa 100 kg/m^3 und ein Druckverlust von 1800 mm Wassersäule ein. Die mittlere Verweilzeit lag bei 0,5 Stunden. Aufgrund der vorgenannten Bedingungen wurden etwa 98% des Aluminiumchlorids gespalten.

$38\,400 \text{ Nm}^3/\text{h}$ aus dem Abscheider 42 austretendes Abgas wurde dem Elektrofilter 11 zur Entstaubung zugeführt. Die Chlorwasserstoffkonzentration betrug 37%, die Gastemperatur 250°C .

Aus dem Spaltreaktor 3 wurden 194 t/h Feststoff ent-

28 05 906

11

nommen und unter Verwendung von 9700 Nm³/h im Wärmeaustauscher 38 auf 400°C vorgewärmter Luft mittels Vorrichtung 20 pneumatisch in den Abscheider 36 eingetragen. Der Feststoff gelangte in den Venturiwirbler 21, wurde vom Abgas der Wirbel-/Verweilzone 23 und 27, das in Mengen von 45 000 Nm³/h anfiel, erfaßt und in den Abscheider 22 eingetragen. Das Abgas, das vor dem Austritt aus Wirbel-/Verweilzone 23 und 27 eine Temperatur von 950°C besaß, wurde durch Kontakt mit den Feststoffen auf 640°C abgekühlt und dem 10 Wärmeaustauscher 38 zugeleitet.

In der Wirbelzone 23 und der Verweilzone 27 erfolgte die restliche Spaltung des Aluminiumchlorids mit Kalzination zu Aluminiumoxid. Es betragen in der Wirbelzone 23 die lichte Höhe des Reaktors 16 m und der Innendurchmesser 3,5 m, in der Verweilzone 27 im zylindrischen unteren Teil der Innendurchmesser 3,5 m und die Höhe 3,4 m, bezogen auf das Wirbelbett.

Zur Fluidisierung der Wirbelzone 23 diente über Leitung 24 und den Gasverteiler herangeführte Luft in 20 Mengen von 5000 Nm³/h, die im Wirbelschichtkühler 31 durch indirekten Wärmeaustausch auf 550°C vorgewärmt worden war. 36 230 Nm³/h Luft, hiervon 9700 Nm³/h mit 400°C über Leitung 37 und 5600 Nm³/h mit 600°C aus dem Wirbelschichtkühler 31 und 20 930 25 Nm³/h mit 500°C über Leitung 43 und Wärmeaustauscher 38 herangeführt, wurden der Wirbelzone 23 über Leitung 25 zugeführt und 4,0 m über dem Gasverteiler als Sekundärgas eingetragen. Das Verhältnis von Fluidisierungsgas zu Sekundärgas betrug mithin 1 : 7,2. 30 Im Bereich zwischen Gasverteiler und Sekundärluftleitung 25 wurden 3570 kg schweres Heizöl ($H_u = 39\,800$ kJ/kg) mit Lanzen 26 eingespritzt. Im Bereich zwischen Gasverteiler und Sekundärgasleitung 25 war die Verbrennung unvollständig. Vollständiger Ausbrand erfolgte oberhalb der Zugabe des Sekundärgases mit Leitung 25. 35

Die aus der Wirbelzone 23 ausgetragenen Feststoffe wurden im oberen Teil der Verweilzone 27 vom Gas getrennt, gelangten in dessen unteren Teil und bildeten 40 dort ein dichtes Wirbelbett.

Die Verweilzone 27 wurde mit 1100 Nm³/h Luft, die im Wirbelschichtkühler 31 auf 400°C vorgeheizt werden war, fluidisiert.

Durch Feststoffzirkulation in der Wirbelzone 23 sowie durch Feststoffrückführung aus der Verweilzone 27 über Leitung 29 stellte sich im gesamten Zirkulationssystem eine einheitliche Temperatur von 950°C ein. 45

Die Aufteilung der Gesamtverweilzeit des Aluminiumoxids von ca. 2,26 Stunden auf Wirbelzone 23 und Verweilzone 27 lag etwa bei 1 : 3,8 (38 Min. Wirbelzone 23, 1,8 Stunden Verweilzone 27). Der Druckverlust in der Wirbelzone 23 wurde auf etwa 660 mm Wassersäule eingestellt. Die mittlere Suspensionsdichte im Bereich zwischen Gasverteiler und Sekundärgasleitung 25 lag 50 bei 150 kg/m³ und die mittlere Suspensionsdichte oberhalb der Sekundärgasleitung 25 bei 5 kg/m³. In der Verweilzone 27 herrschte in dem von Feststoff erfüllten Bereich eine Suspensionsdichte von ca. 550 kg/m³. 55

Die Produktion in Höhe von 10 t/h Aluminiumoxid 60 wurde aus der Verweilzone 27 über Leitung 30 in den Wirbelschichtkühler 31 eingetragen. Im Wirbelschichtkühler, der mit 5600 Nm³/h Luft fluidisiert und in Kühlregistern mit 5000 Nm³/h bzw. mit 1100 Nm³/h beaufschlagt worden war, erfolgte unter Zuhilfenahme einer 65 zusätzlichen Wasserkühlung eine Abkühlung des Aluminiumoxids auf eine Temperatur von 100°C. Die durch indirekte Erhitzung auf 550 bzw. 400°C vorgewärmten

12

Luftströme wurden dem vorher geschilderten Verwendungszweck zugeführt.

Das aus dem Elektrofilter 34 austretende Abgas von 45 000 Nm³/h besaß eine Temperatur von 350°C und 5 einen HCl-Gehalt von 0,5 Vol.-%.

Hierzu 2 Blatt Zeichnungen

Fig 2