My title*

My subtitle if needed

Yimiao Yuan

April 9, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

Table of contents

1	Introduction	2
2	Data	2
	2.1 Data Source	2
	2.2 Features	
	2.3 Methodology	2
	2.4 Data Analysis	3
3	Model	3
	3.1 Model set-up	6
	3.1.1 Model justification	
4	Results	6
5	Discussion	6
	5.1 First discussion point	6
	5.2 Second discussion point	7
	5.3 Third discussion point	7
	5.4 Weaknesses and next steps	7
Αŗ	ppendix	8
Λ	Additional data details	8

В	Mod	del details	8
	B.1	Posterior predictive check	8
	B.2	Diagnostics	8
Re	feren	nces	9

1 Introduction

You can and should cross-reference sections and sub-sections. We use R Core Team (2023) and Wickham et al. (2019).

The remainder of this paper is structured as follows. Section 2...

2 Data

2.1 Data Source

2.2 Features

2.3 Methodology

Table 5: Preview of the cleaned pet owners and non-pet owners dataset

pet_group	age_group	gender	bmi_status	depression_status	pet_type
non-pet owners	26-35 years	female	normal weight	non-depressed	NA
non-pet owners	15-25 years	male	over weight	non-depressed	NA
non-pet owners	46-55 years	male	normal weight	depressed	NA
non-pet owners	26-35 years	female	obese	non-depressed	NA
non-pet owners	15-25 years	male	over weight	non-depressed	NA

Table 6: Statistics summary of the cleaned pet owners and non-pet owners dataset

pet_group	age_group	gender	bmi_status	depression_stat	uspet_type
non-pet owners:140	less than 15 years : 0	male :117	under weight: 28	depressed: 89	cat: 93
pet owners :140	15-25 years :126		63normal weight:149	non- depressed:191	dog: 13

petgro	up age_group	gender	bmi_status	depression_s	tatuspet_type
NA	26-35 years :142	NA	over weight:	NA	dog, cat : 12
NA	36-45 years : 7	NA	obese: 28	NA	cat, bird:
NA	46-55 years : 3	NA	NA	NA	bird:5
NA	greater than 56 years: 2	NA	NA	NA	(Other):
NA	NA	NA	NA	NA	NA's :140

2.4 Data Analysis

Figure 1: The distribution of pet species

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Table 1: Preview of the raw pet owners and non-pet owners dataset

id	Group	Agegroup	Gender	Marital	BMIStatus	IncomeGroup	Occupation
141	1	2	1	1	1	0	3
142	1	1	0	1	2	0	0
143	1	4	0	1	1	0	3
144	1	2	1	0	3	0	2
145	1	1	0	1	2	0	0

Religion	Education	Tobacco	Alcohol	Disability	phqtotal	Depressionstatus
0	0	1	1	1	1	1
0	0	1	1	1	2	1
0	0	0	1	0	13	0
0	0	1	1	1	9	1
0	0	1	1	1	0	1

DifficultyofWorking	Typeofpet	Month Group of having Pets	Purposeofpets
0		NA	
0		NA	
1		NA	
1		NA	
1		NA	

Figure 2: The relationship between BMI status and pet ownership by gender

Figure 3: The relationship between depression status and pet ownership by age group

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the number of seconds that the plane remained aloft. Then β_i is the wing width and γ_i is the wing length, both measured in millimeters.

$$y_i | \mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \alpha + \beta_i + \gamma_i \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta \sim \text{Normal}(0, 2.5)$$
 (4)

$$\gamma \sim \text{Normal}(0, 2.5)$$
 (5)

$$\sigma \sim \text{Exponential}(1)$$
 (6)

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in Table 7.

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

Table 7: Explanatory models of flight time based on wing width and wing length

	First model
(Intercept)	1.12
	(1.70)
length	0.01
	(0.01)
width	-0.01
	(0.02)
Num.Obs.	19
R2	0.320
R2 Adj.	0.019
Log.Lik.	-18.128
ELPD	-21.6
ELPD s.e.	2.1
LOOIC	43.2
LOOIC s.e.	4.3
WAIC	42.7
RMSE	0.60

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In **?@fig-ppcheckandposteriorvsprior-1** we implement a posterior predictive check. This shows...

In **?@fig-ppcheckandposteriorvsprior-2** we compare the posterior with the prior. This shows...

Examining how the model fits, and is affected by, the data

Figure 4: ?(caption)

B.2 Diagnostics

?@fig-stanareyouokay-1 is a trace plot. It shows... This suggests...

?@fig-stanareyouokay-2 is a Rhat plot. It shows... This suggests...

Checking the convergence of the MCMC algorithm

Figure 5: ?(caption)

References

- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.