

COMPUTAÇÃO EM NUVEM

Material baseado nas aulas de [Eduardo Roloff - eroloff@inf.ufrgs.br - UFRGS - 2018] [Prof. Majd F. Sakr — Carnegie Mellon Qatar — CS15-319] Infraesrutura
Computacional Pt.3
Marco A. Z. Alves

SERVIDORES

O QUE É UM SERVIDOR?

Servidores são computadores que fornecem "serviços" para "clientes"

Eles são tipicamente projetados para confiabilidade e para atender número de pedidos

Organizações geralmente exigem muitos servidores físicos para fornecer vários serviços (Web, E-mail, Banco de Dados, etc.)

O hardware do servidor está se tornando mais poderoso e compacto

SERVIDORES COMPACTOS

Organizações gostariam de conservar a quantidade de espaço físico dedicado à sua infra-estrutura de computador

Para instalações em grande escala, servidores compactos são usados.

Isso ajuda com:

- Espaço no chão (área)
- Gerenciabilidade
- Escalabilidade
- Potência e Refrigeração

RACKS

Equipamentos (por exemplo, servidores) são normalmente colocados em prateleiras

Os equipamentos são projetados de maneira modular para caber em unidades de rack (1U, 2U etc.)

Um único rack pode acomodar até 42 servidores de 1U

BLADE SERVER VS. RACK SERVER

BLADES E BLADE ENCLOSURES

Um servidor blade é um computador reduzido com design modular

Um gabinete blade contém vários servidores blade e fornece energia, interfaces e refrigeração para os servidores blade individuais

DESEMPENHO DO BLADE

Considere a largura de banda e a latência entre essas camadas

9

DESEMPENHO ATRAVÉS DOS BLADES

Considere a largura de banda e latência entre os blades

A interconexão costuma ser o gargalo

O QUE É UM DATA CENTER?

Um data center é uma instalação usada para abrigar sistemas de computadores e componentes associados, como redes e sistemas de armazenamento, refrigeração, fonte de alimentação ininterrupta, filtros de ar ...

Um data center geralmente abriga um grande número de sistemas de computadores em rede

Um data center pode ocupar uma sala de um edifício, um ou mais andares, ou um edifício inteiro

COMPONENTES DE UM DATA CENTER

Ar condicionado

Mantenha todos os componentes na faixa de temperatura recomendada pelo fabricante

Energia Redundante

- UPS / Geradores
- Múltiplas alimentações de energia

Proteção contra fogo

Segurança física

CCTV / Controle de Acesso

Sistemas de Monitoramento

Conectividade

Vários ISPs / Linhas Alugadas

COMPONENTES DE UM DATA CENTER

COMUNICAÇÃO EM DATA CENTERS

A comunicação em data centers é mais frequentemente baseada em redes que executam o conjunto de protocolos IP

Os datacenters contêm um conjunto de roteadores e switches que transportam o tráfego entre os servidores e para o mundo externo

Tráfego nos data centers de hoje:

- 80% dos pacotes ficam dentro do data center
- Tendência é para uma comunicação ainda mais interna

Normalmente, os datacenters executam dois tipos de aplicativos:

- Serviços externos (servindo páginas da web para usuários)
- Computação interna (mineração de dados e cálculos de índice pense em MapReduce e HPC)

LATÊNCIA DE COMUNICAÇÃO

O atraso de propagação no data center é idealmente ZERO

Luz viaja um pé em um nanossegundo

A latência de ponta a ponta

- Latência do switch
- 10G a 10G: ~ 2,5 usec (store & fwd); 2 usec (cut-thru)
- Latência na fila
- Depende do tamanho das filas e da carga da rede

Tempos típicos em um data center: 10-20usec

ELASTICIDADE E DESEMPENHO

Os data centers tradicionais dificultam o crescimento / redução de aplicativos

- VLANs podem ser usadas para isolar aplicativos uns dos outros
- Endereços IP são determinados topologicamente por roteadores de acesso
- Reconfiguração de IPs e troncos de VLAN é dolorosa, propensa a erros, lenta e manual
- Além disso, nenhum isolamento de desempenho é fornecido:
- As VLANs normalmente fornecem apenas isolamento de acessibilidade
- Um serviço enviando / recebendo muito tráfego prejudica todos os serviços compartilhando sua subárvore

CONSUMO DE ENERGIA EM DATA CENTERS

Data centers muito bons têm eficiência de 30%

0,7 Watts perdidos para cada 1W entregue aos servidores

Como podemos reduzir os custos de energia?

- Crie servidores que usem menos energia?
- Servidor convencional usa de 200 a 500W
- As reduções têm efeitos cascata em todo o data center
- Principalmente um problema para os cientistas atacarem !!

Eliminar a redundância de energia?

Permitir que centros de dados inteiros falhem

Reduzir o uso de energia de equipamentos de rede?

A energia total consumida pelos switches é amortizada para 10-20W por servidor

UTILIZAÇÃO EM DATA CENTERS

Utilização de 10% a 30% é considerada "boa" em data centers

Causas:

Ajuste irregular da aplicação:

- Cada servidor tem CPU, memória e disco: a maioria dos aplicativos esgotam um recurso, encalhando os outros
- Prazos de provisionamento longo

Incerteza na demanda:

Demanda por um novo serviço pode aumentar rapidamente

Gerenciamento de risco:

Não ter servidores sobressalentes para atender às demandas dos aplicativos leva a falhas

QUE TAL?

Maximize o trabalho útil por dólar gasto - 59% dos dólares são gastos em servidores com utilização muito baixa (10%)

Transforme os servidores em um único grande pool de recursos e permita que os serviços "respirem": dinamicamente expandir e contrair o uso de recursos, conforme necessário

Dois requisitos principais:

Habilitado pela virtualização

- Meios para necessidades de recursos flutuantes de aplicação rápida e dinamicamente satisfatórias
- Significa que os servidores acessam de forma rápida e confiável dados compartilhados e persistentes
- Dados muito grandes para serem copiados durante o processo de provisionamento

Habilitado por modelos de programação e sistemas de arquivos distribuídos

A COMPUTAÇÃO EM NUVEM É

Um hardware e software de data center que os fornecedores usam para oferecer os recursos e serviços de computação

CONCEITOS DE CLOUD

CONCEITUAÇÃO

Cloud Computing é um modelo que pretende prover computação como um serviço, ou seja, prover recursos sob demanda;

Tais recursos devem estar disponíveis para o cliente sem muita (ou nenhuma) interação com o provedor de serviços;

Semelhante a serviços como energia e telefonia.

CONCEITUAÇÃO

A definição de Cloud Computing adotada é a definida pelo NIST (National Institute of Standards and Technology);

O NIST é uma agência, subordinada ao departamento de comércio dos EUA, que é responsável pelo desenvolvimento e aplicação de tecnologia, padrões e medidas.

Define como características essenciais de Cloud Computing:

- Configuração de recursos sob demanda;
- Acesso via rede (internet);
- Conjunto de recursos;
- Elasticidade;
- Serviço controlado.

MODELOS DE SERVIÇO

MODELOS DE SERVIÇOS

NIST define três modelos de serviços básicos

SaaS

- Software-as-a-Service
 - Applications running on browsers

PaaS

- Platform-as-a-Service
 - A software platform that is made available to developers to build cloud applications

laaS

- Infrastructure-as-a-Service
 - Basic computing resources such as CPU/Memory/Disk, made available to users in the form of Virtual Machine Instances

INFRAESTRUTURA COMO SERVIÇO (IAAS)

Oferece a capacidade de infraestrutura, onde o cliente controla máquinas, armazenamento (storage), dentre outros e pode rodar qualquer sistema operacional ou aplicação que deseje;

O cliente não gerencia fisicamente o sistema, o que ele recebe são VMs (máquinas virtuais);

Acessado normalmente através de navegador ou interface de linha de comando;

Exemplos:

INFRAESTRUTURA COMO SERVIÇO (IAAS)

SO desejado

API desejada

laaS

Máquinas Virtuais, QoS, SLA, Monitoria

Datacenter (facilities)

PLATAFORMA COMO SERVIÇO (PAAS)

Oferece uma plataforma que suporta um conjunto de determinadas linguagens e tecnologias, o cliente cria (ou compra) suas próprias aplicações;

O cliente não gerencia e nem conhece os detalhes físicos da plataforma (rede, storage, SO);

Gerenciada através de navegador, cliente proprietário ou IDE;

Exemplos:

PLATAFORMA COMO SERVIÇO (PAAS)

SOFTWARE COMO SERVIÇO (SAAS)

Oferece um sistema, o cliente somente utiliza o mesmo, que está instalado na infraestrutura do nuvem;

O cliente não gerencia e nem conhece os detalhes físicos do sistema (rede, storage, SO);

Normalmente é acessado através de um cliente leve e por navegador;

Exemplos:

SOFTWARE COMO SERVIÇO (SAAS)

MODELOS DE SERVIÇOS: XAAS

Information as a Service

Integration as a Service

Management/Governance as a Service

Process as a Service

Security as a Service

Storage as a Service

Testing as a Service

Desktop as a Service

Faxing as a Service

Hardware as a Service

A PILHA DA CLOUD

A PILHA DA CLOUD

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

34

A PILHA DA CLOUD APLICAÇÕES

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Aplicativos em nuvem podem variar de aplicativos da Web a trabalhos computacionais científicos

A PILHA DA CLOUD DADOS

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Gerenciamento de dados

Bancos de dados e sistemas de gerenciamento específicos para nuvem de nova geração Por exemplo, Hbase, Cassandra, Hive, Pig etc.

A PILHA DA CLOUD AMBIENTE DE EXECUÇÃO

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Plataformas de tempo de execução para suportar modelos de programação em nuvem Por exemplo, MPI, MapReduce, Pregel etc.

A PILHA DA CLOUD MIDDLEWARE PARA CLOUDS

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Plataformas de gerenciamento que permitem:

- Gestão de recursos
- Monitoramento
- Provisionamento
- Gerenciamento de Identidade e Segurança

A PILHA DA CLOUD SISTEMAS OPERACIONAIS

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Sistemas operacionais padrão usados em computação pessoal Empacotado com bibliotecas e software para implantação e provisionamento rápidos Por exemplo, o Amazon Machine Images (AMI) contém o sistema operacional, bem como os pacotes de software necessários, como um "instantâneo" para implantação instantânea

A PILHA DA CLOUD VIRTUALIZAÇÃO

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Componente chave
Virtualização de Recursos
O Amazon EC2 é baseado na plataforma de virtualização Xen

CAMADAS DE SERVIÇO EM NUVEM NOS NÍVEIS DE SERVIÇO

Packaged Software

Applications
Data
Runtime
Middleware
Operating System
Virtualization
Servers
Storage
Networking

User Managed

IaaS

User Managed

Applications
Data
Runtime
Middleware
Operating System
Virtualization
Servers
Storage
Networking

PaaS

SaaS

NIST define 4 modelos de implantação

- Nuvem Privada;
- Nuvem Comunitária;
- Nuvem Pública;
- Nuvem Híbrida.

Privado

Organização possui recursos

Os administra como nuvem

Nível alto de privacidade

Sem escalabilidade

Investimentos iniciais

Comunitário

Organização **possui** recursos

Utilizados em comunidade

Nível bom de privacidade

Escalabilidade é limitada

Investimentos iniciais

Configuração complexa

Público (cloud externa)

Organização aluga recursos

De um provedor (ex. Google, Amazon)

Nível baixo de privacidade

Escalabilidade "ilimitada"

Pay-per-use

Híbrido

Organização possui recursos

Organização aluga recursos

Privacidade controlada

Escalabilidade e pay-per-use

Problema da interconexão

HPC NA CLOUD

HIGH-PERFORMANCE COMPUTING — HPC

Aplicações HPC

- Dinâmica de fluidos
- Previsão do tempo

Muito cálculo/dados de entrada Precisam de muito processamento

NCEP GFS [T1534] 500 hPa Geopotential Height [dm] & Normalized Anomaly [standard deviations from climo]

INIT: 18Z05JAN2015 fx: [060] hr --> Thu 06Z08JAN2015

WxBell

HIGH-PERFORMANCE COMPUTING — HPC

Supercomputadores

Clusters

Aceleradores

Ambientes otimizados

HPC NA CLOUD

laaS

Provedores criam alternativas

- Amazon e Microsoft
- Máquinas com rede rápida
- Clusters na nuvem

Provider	Instance name	Processor model	Freq.	Cores per instance	Network
_	Cluster-1	E5-2660	2.2 GHz	16	10 Gbit/s Ethernet
	Cluster-2	E5-2640 v2	2.0 GHz	16	1 Gbit/s Ethernet
Amazon EC2	C3.8X	E5-2680 v2	2.8 GHz	32	10 Gbit/s Ethernet
Amazon EC2	X1.32X	E7-8880 v3	2.3 GHz	128	20 Gbit/s Ethernet
Microsoft Azure	A4	E5-2673 v3	3.3 GHz	8	32 Gbit/s Infiniband
Microsoft Azure	A9	E5-2670	2.6 GHz	16	
Microsoft Azure	A11	E5-2670	2.6 GHz	16	
Microsoft Azure	D5	E5-2673 v3	3.3 GHz	16	_
Microsoft Azure	G4	E5-2698 v3	2.3 GHz	16	
Microsoft Azure	G5	E5-2698 v3	2.3 GHz	32	

HPC NA CLOUD

Na prática, não tem bom desempenho...

OPORTUNIDADES DE PESQUISA

Bibliotecas para HPC

VM e Job placement

Modelo de Execução

Cloud Burst

Interoperabilidade

BIBLIOTECAS PARA HPC

MPI otimizado para cloud

Escalonadores para CloudHPC

Extensões de escalonadores

SLRUM, OAR

VM E JOB PLACEMENT

Mapear requisitos da aplicação

- Em conjunto com recursos na nuvem
- Melhor alocação

MODELO DE EXECUÇÃO

Alocação de recursos X Tarefas

- Mapeamento da aplicação
- Previsão de utilização de recursos
- Alocação Proativa
- Alocação Reativa

Elasticidade automática/automatizada

Gerenciamento de ciclo de vida

CLOUD BURST

Extensão de ambientes tradicionais

HPC with the cloud

Simulações de vários cenários

Caso de reservatórios: Petrobras

INTEROPERABILIDADE

Migração

Possibilidade de migrar para outro provedor

Modelos de migração

Framework antes do provedor

Modelos de deploy

Padronização de modelo