

Department of CSIT

Information Technology

FINAL PROJECT Rana, Karan

CSIT230_SP21, 03

Instructor: Dr. G.E. Antoniou

Problem 1

1.

Design a digital logic circuit (all steps are required), using minimal amount of gates, that will realize a digital logic circuit corresponding to the following *A097803 polynomial*:

$$A = 3(2x^2 + 1)$$
, with input $(x) : 0 \le (x) \le 7$

(a) Set-up the truth-table

[Binary inputs: (x); Binary outputs: A_1 , A_2 , A_3 , A_4 , ...]

	X1	X2	Х3	A	A1	A2	A3	A4	A5	A6	A7	A8	A9
0	0	0	0	3	0	0	0	0	0	0	0	1	1
1	0	0	1	9	0	0	0	0	0	1	0	0	1
2	0	1	0	27	0	0	0	0	1	1	0	1	1
3	0	1	1	57	0	0	0	1	1	1	0	0	1
4	0	0	0	99	0	1	1	1	0	0	0	1	1
5	0	0	1	153	0	0	0	0	1	1	0	0	1
6	0	1	0	219	0	1	1	0	1	1	0	1	1
7	0	1	1	297	1	0	0	1	0	1	0	0	1

(b) Derive the output expressions

$$A1 = x1x2x3$$

$$A2 = x1x2'x3 + x1x2x3'$$

$$A3 = x1x2'x3' + x1x2x3'$$

$$A4 = x1'x2x3 + x1x2'x3' + x1x2x3$$

$$A5 = x1'x2x3' + x1'x2x3 + x1x2'x3 + x1x2x3'$$

$$A6 = x1'x2'x3 + x1'x2x3' + x1'x2x3 + x1x2'x3 + x1x2x3' + x1x2x3$$

$$A7 = 0$$

$$A8 = x1'x2'x3' + x1'x2x3' + x1x2'x3' + x1x2x3'$$

Final Project

(c) Simplify (optimally) the derived expressions, USING ONLY K–Maps $\,$

A1

	00	01	11	10
0	0	0	0	0
1	0	0	1	0

A2

	00	01	11	10
0	0	0	0	0
1	0	1	0	1

А3

	00	01	11	10
0	0	0	0	0
1	1	0	0	1

A4

	00	01	11	10
0	0	0	1	0
1	1	0	1	0

A5

Final Project

	00	01	11	10
0	0	0	1	1
1	0	1	0	1

A6

	00	01	11	10
0	0	1	1	1
1	0	1	1	1

A7

	00	01	11	10
0	0	0	0	0
1	0	0	0	0

A8

	00	01	11	10
0	1	0	0	1
1	1	0	0	1

A9

	00	01	11	10
0	1	1	1	1
1	1	1	1	1

(d) Implement the simplified digital logic circuit, using *LogiSim*.

Problem 2

2. Design a Read Only Memory (ROM) to implement the following, *A097803*, polynomial

$$A = 3(2x^2 + 1)$$
, with input $(x) : 0 \le (x) \le 7$

(a) What is the size of the initial (unsimplified) ROM?

Knowing that it is a ROM we need 4-8 decoders and 16 or gates are needed.

(b) What is the size of the final (simplified) ROM ?

When the input
$$X = 0$$
 -> $3(2*(0)^2 + 1)$

= 0

The same thing goes on when X = 1,2,3,4,5,6,7,8

X=1

Final Project

 $=3(2*(7)^2+1)$

= 297

(c) Show in detail the final ROM layout, using *LogiSim*.

Final Project

Problem 3

3.

Using MIPS assembly–language evaluate the following, *A097803*, polynomial:

$$A = 3(2x^2 + 1)$$
, for $x = 0, 1, 2, 3, 4, 5, 6, 7$

- (a) The program should be simple modularized and well-documented
- (b) Appropriate comments in the program are necessary
- (c) Place the results, in the command line window (console). In the report include a clear screenshot of the DECIMAL results (command line window-console area) and the REGISTERS with the DECIMAL results

Final Project

(registers area)

(d) Indicate if the program runs successfully according to specifications and clearly state the results (DECIMAL numbers).

.data

pr1: .asciiz # formula A= 3(2*x^2+1) newline: .asciiz#print new line pr2: .asciiz #The Program run successfully re1: .asciiz

.text .globl main

main:

li \$v0, 4 #call for string for 1 la \$a0, pr1 #String being stored syscall

li \$v0, 4 # call for new line instructions la \$a0, newline # string being stored syscall

li \$t0, 0 #storing 0 in \$t0 li \$t1, 7 #storing 7 in \$t1

startingloop:

mul \$t2, \$t0, \$t0 #square root mul \$t2, \$t2, 2 #multiplying 2 into t2 add \$t2, \$t2 1 #adding 1 into t2 mul \$t2, \$t2, 3 #multiplying 3 into t2 li \$v0, 4 #call for print string 1 la \$a0, re1 #address of string syscall li \$v0, 1 #print new line integer move \$a0, \$t2 #move t2 to a0 syscall

add \$t0, \$t0, 1 # 1++ incrementation ble \$t0,\$t1,startingloop #loop

#finaloop

li \$v0, 4 #call for new line la \$a0, newline #String loaded syscall

li \$v0, 4 #printing node 2 la \$a0, pr2 #string location in register syscall

li \$v0, 10 #exit syscall

