$\label{eq:Package} \textbf{Package} \\ \textbf{`Descriptive Representation Calculator'} \\$

October 13, 2023

October 13, 2023
Title Descriptive Representation Calculator from 'The Composition of Descriptive Representation'
Version 2.0
Author 'John Gerring <jgerring@austin.utexas.edu> [aut], Connor Jerzak <connor.jerzak@gmail.com> [aut, cre], Erzen Oncel <erzen.oncel@ozyegin.edu.tr> [aut]'</erzen.oncel@ozyegin.edu.tr></connor.jerzak@gmail.com></jgerring@austin.utexas.edu>
Description This package contains two main functions. The first computes the expected degree of representation for a given group in a political body under a random sampling model. The second computes the residual standard deviation in using the expected value as a prediction for observed values under the model.
Depends R (>= $3.3.3$)
License
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0, for academic use only.
Encoding UTF-8
LazyData true
Maintainer 'Connor Jerzak' <connor.jerzak@gmail.com></connor.jerzak@gmail.com>
Imports stats
RoxygenNote 7.2.3
R topics documented:
ExpectedRepresentation1ObservedRepresentation2SDRepresentation3
Index 5
ExpectedRepresentation
Compute the expected degree of representation for any group in a political body

Description

Finds the degree of expected representation for any group in a political body under a random sampling model as described in Gerring, Jerzak and Oncel (2023+).

Usage

ExpectedRepresentation(PopShares, BodyN)

Arguments

PopShares A numeric vector containing the group-level population proportions.

BodyN A positive integer denoting the size of the political body in question.

a=-0.5, b=1 Parameters controlling the affine transformation for how the representation mea-

sure is summarized. That is, a and b control how the expected L1 deviation of the population shares from the body shares is re-weighted. The expected L1 deviation is the average value of the absolute deviation of the population from body shares under a random sampling model. This expected L1 deviation is multiplied by a; b is as an additive re-scaling term: a*E[L1]+b. By default, a=-0.5 and b=1 so that the expected Rose Index of Proportionality is returned.

Value

The expected degree of representation (a scalar).

Examples

ObservedRepresentation

Compute the observed degree of representation for any group in a political body

Description

Finds the degree of observed representation for any group in a political body.

Usage

ObservedRepresentation(BodyMemberCharacteristics, PopShares)

Arguments

BodyMemberCharacteristics

A vector specifying the characteristics for members of a political body.

PopShares A numeric vector specifying population shares of identities specified in BodyMemberCharacteristic

The names of the entries in PopShares should correspond to identities in BodyMemberCharacteristi

(see Example).

BodyShares (optional) A numeric vector with same structure as PopShares specifying group

population shares of a given body. If specified, used by default instead of

BodyMemberCharacteristics.

SDRepresentation 3

a=-0.5, b=1

Parameters controlling the affine transformation for how the representation measure is summarized. That is, a and b control how the L1 deviation of the population shares from the body shares is re-weighted. This expected L1 deviation is multiplied by a; b is as an additive re-scaling term: a*L1+b. By default, a=-0.5 and b=1 so that the Rose Index of Proportionality is returned.

Value

The observed degree of representation (a scalar). By default, this quantity is the Rose Index of Proportionality.

Examples

SDRepresentation

Compute the amount of representation left unexplained by a random sampling model.

Description

Finds the residual standard deviation when using the expected representation for any group in a political body to predict observed representation as described in Gerring, Jerzak and Oncel, 2023+.

Usage

SDRepresentation(PopShares, BodyN)

Arguments

PopShares

A numeric vector containing the group-level population proportions.

BodyN

A positive integer denoting the size of the political body in question.

a=-0.5, b=1

Parameters controlling the affine transformation for how the representation measure is summarized. That is, a and b control how the expected L1 deviation of the population shares from the body shares is re-weighted. The expected L1 deviation is the average value of the absolute deviation of the population from body shares under a random sampling model. This expected L1 deviation is multiplied by a; b is as an additive re-scaling term: a*E[L1]+b. By default, a=-0.5 and b=1 so that the expected Rose Index of Proportionality is used in the calculation.

Value

A scalar summary of the amount of representation not explained by a random sampling model. More precisely, this function returns the the residual standard deviation when using the expected degree of representation to predict observed representation under a random sampling model.

4 SDRepresentation

Examples

```
SDRep <- SDRepresentation(PopShares = c(1/3, 2/3, 1/3), BodyN = 50)

print( SDRep )
```

Index

 ${\it Expected Representation}, 1$

ObservedRepresentation, 2

 ${\tt SDRepresentation}, {\tt 3}$