

FPGA OS_5in_5out_tsnnic 使用文档

主题	FPGA OS_5in_5out_tsnnic 使用文档	
文档号		
创建时间	2019-12-16	
最后修改	2019-12-16	
版本号	1.0	
文件名	FPGA OS_5in_5out_tsnnic 使用文档.pdf	
文件格式	Portable Document Format	

目录

一、	FAST 结构介绍	4
二、	FPGA OS 与 UM 接口定义	. 4
三、	数据分组结构定义	7
四、	接口分组定义	8
五、	数据报文 Metadata 格式定义	
六、	设备 MAC 地址配置	(

修改记录

版本号	修改人	日期	备注
1.0	张彦龙	2019-12-16	初始版本

一、 FAST 结构介绍

FAST 结构如图 1 所示。其分为 FPGA_OS 和 UM 两部分。FPGA OS 包括 FPGA OS Ingress、FPGA OS egress 及 FPGA OS CDC 三部分; UM 由用户自己定义。

图 1 FAST 平台结构图

FPGA OS Ingress 部分:主要用于完成 1)接口及 DMA 数据输入的汇聚及输入调度功能; 2)对接口输入的分组数据封装 FAST 的 Metadata 头。

FPGA OS Egress 部分: 主要用于完成 1)接口数据输出控制; 2)对接口输出的分组数据解封装 FAST 的 Metadata 头; 3)在 1号接口输出的报文第 4 拍添加时间戳。

FPGA OS CDC 部分: 主要用于完成 CPU 与硬件模块的数据交互。

二、 FPGA OS 与 UM 接口定义

FPGA OS 内与 UM 的连接的信号图如 2 所示。

图 2 FPGA与 UM 接口定义

接口信号定义及列表

设口旧马足入及列农				
信号名	方向	位宽	描述	
CLK and RESET				
user_clk	Input	1	125Mhz 的输入时钟	
user_reset_n	Input	1/-	复位信号,低有效	
FPGA OS Ingress to UM 信	号定义	4V.		
pktin_N_data_wr	Input	1	报文数据写信号,N为0-3	
pktin_N _data	Input	134	报文数据,N为0-3	
pktin_N _data_valid	Input	1	报文数据标志位,1 为有效分	
			组,0为无效分组,N为0-3	
pktin_N _data_valid_wr	Input	1	报文数据标志位写信号,N为	
	/X		0-3	
pktin_N _ready	output	1	数据 ready 信号,N 为 0-3	
mac_addr	input	48	设备本地 mac 地址	
FPGA OS CDC to UM 信号定义				
cpu2um_data_wr	Input	1	报文数据写信号	
cpu2um _data	Input	134	报文数据	
cpu2um _data_valid	Input	1	报文数据标志位,1 为有效分	
			组,0为无效分组。	
cpu2um _data_valid_wr	Input	1	报文数据标志位写信号	
um2cpu _ready	output	1	数据 ready 信号	
UM to FPGA OS Egress 信号定义				
pktout_N _data_wr	output	1	输出报文写信号,N为0-3	
pktout_N _data	output	134	输出报文数据,N为0-3	
pktout_N _data_valid	output	1	输出报文标志位,N为0-3	
pktout_N _data_valid_wr	output	1	输出 FIFO usedw 值, N为 0-3	
pktout_N _ usedw	input	8	输出报文 ready 信号, N为 0-3	
UM to FPGA OS CDC 信号	号定义			
um2cpu _data_wr	output	1	报文数据写信号,N为0-3	
		116-1-1 240 ==	E.V.沙丘楼区中中校供园(北 202 安	

地址:湖南长沙岳麓区中电软件园 6 栋 303 室

um2cpu _data	output	134	报文数据
um2cpu _data_valid	output	1	报文标志位
um2cpu _data_valid_wr	output	1	报文标志位写信号
um2cpu _ ready	input	1	报文 ready 信号
UM to FPGA OS 信号定义			
cyc_init	output	1	用于根据调整后的计数器值 同步外围时钟计数的有效信 号
temp_cnt	output	48	用于根据调整后的计数器值 同步外围时钟计数,[47:17]单 位为 ms,[16:0]单位为 8ns

接口时序

FPGA OS Ingress to UM 信号时序定义:

操作步骤:

- 1) 在 pktin_ready 输出有效时,即为1时,检测接收分组;
- 2) 当检测到 pktin_data_wr 为 1 时,表示数据分组 pktin_data 输入数据有效;
- 3) 当数据输入到最后一拍时,则 pktin_data_valid_wr 为 1, 输入分组有效 时 pktin_data_valid 为 1, 否则为 0。

UM to FPGA OS Egress 信号时序定义:

操作步骤:

- 1) 在 pktout_usedw 为小于 8'd161 时,即可以缓存一个最长分组,输出分组:
- 2)数据分组输出时即 pktout_data 输出数据时,置 pktout_data_wr 信号为 1;

3) 当数据输出到最后一拍时,则pktout_data_valid与pktout_data_valid_wr为1。

FPGA OS CDC to UM 信号时序定义:

操作步骤:

- 4) 在 um2cpu ready 输出有效时,即为1时,检测接收分组;
- 5) 当检测到 cpu2um_data_wr 为 1 时,表示数据分组 cpu2um_data 输入数据 有效;
- 6) 当数据输入到最后一拍时,则 cpu2um_data_valid_wr 为 1, 输入分组有 效时 cpu2um_data_valid 为 1, 否则为 0。

UM to FPGA OS CDC 信号时序定义:

操作步骤:

- 1) 在 cpu2um ready 输入有效时,即为1时,输出分组;
- 2)数据分组输出时即 um2cpu_data 输出数据时,置 um2cpu_data_wr 信号为 1:
- 3) 当数据输出到最后一拍时,则um2cpu_data_valid与um2cpu_data_valid_wr为1。

三、 数据分组结构定义

输入及输出数据分组包括 Metadata 头部及有效数据分组两部分,格式如图 3 所示,Metadata 在 FAST 报文的前 32 字节携带,每个分组进出 UM 的第 1 拍 16 字节为 Metadata0,第二拍数据为 Metadata1。

图 3 分组数据传输格式

四、 接口分组定义

接口分组(packet)是应用在 FPGA OS 与 UM 接口上的 134bit 的数据格式,其中高 6 位为控制信息,低 128 位为报文数据。分组的前两拍为 FPGA OS 添加的 32 字节的 metadata,两拍后的数据为有效分组数据。134 位的数据由 2 位的头尾标识,4 位无效字节数,128 位的有效数据组成。

其中,[133:132]位为报文数据的头尾标识,01 代表报文头部,11 代表报文中间数据,10 代表报文尾部;[131:128]位为 4 位的无效字节数,其中 0000 表示16 个字节全部有效,0001 表示最低一个字节无效,最高 15 个字节有效,依次类推,1111 表示最低 15 个字节无效,最高一个字节有效。格式如图 4 所示。

带外控制信息			报文数据
1	33 132	131 128	3 127
	头尾标识	无效字节数	报文数据
	01	0000	Metadata0
	11	0000	Metadata1
	11	0000	报文前16个字节
	11	0000	报文第17至32字节
	•	•	•
	•	•	•
	10 vbyte		报文尾部数据

图 4 报文分组传输格式

五、 数据报文 Metadata 格式定义

Metadata0 格式定义如下:

[127]	1	pktsrc	分组的来源, 0 为网络接口输入, 1 为 CPU 输入
[126]	1	pktdst	分组目的, 0 为网络接口输出, 1 为送 CPU
[125:120]	6	inport	分组的输入端口号
[119:118]	2	outtype	00:直接输出,01: 查组播,10,11 保留
[117:112]	6	outport	直接输出: bitmap 方式输出,查组播表: 为查找索引。
[111:109]	3	priority	分组优先级
[108]	1	discard	丢弃位
[107:96]	12	len	包含 Metadata 字段的分组长度
[95:88]	8	smid	最近一次处理分组的模块 ID
[87:80]	1	dmid	下一个处理分组的模块 ID
[79:72]	8	pst	标准协议类型,图4所示
[71:64]	8	seq	分组接收序列号
[63:50]	14	flowid	流 ID
[49:48]	17	reserve	保留
[47:0]	48	ts	时间戳

Metadata1:为用户预留的 16B 的自定义空间,用户可以根据自己需求,自定义内容及使用。

六、 设备 MAC 地址配置

在硬件逻辑中添加了一个 48 位的 mac 地址寄存器,用于配置设备本地 mac 地址。在硬件逻辑中已经将该信号引入 um 模块顶层,用户可以在 um 中声明调用该信号,verilog 声明方法如下:

input wire [47:0] mac addr

寄存器读写方式如下:

> 读: reg_rw rd 10

> 写: reg rw wr 10 mac addr(48位 mac 地址)