Esame scritto ALAN 22-06-2022, prima parte.

1) Siano
$$\lambda \in \mathbb{R}$$
 e $A = \begin{pmatrix} 1 & 0 & -1 & \lambda \\ \lambda & 0 & 3 & 9 \\ 0 & 1 - \lambda & 2 & -1 \end{pmatrix} \in M_{3,4}(\mathbb{R})$

- a) stabill
re il numero di soluzioni del sistema omogeneo associato
 AX=0al variare di $\lambda\in\mathbb{R}.$
- b) al variare di $\lambda \in \mathbb{R}$ dire se esiste, ed eventualmente determinarne uno, un vettore dei termini noti $B \in \mathbb{R}^3$ tale che il sistema AX = B non abbia soluzioni.

2) Sia A la matrice
$$\begin{pmatrix} 3 & -1 & 2 \\ 0 & 1 & 4 \\ 1 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R}).$$

- a) stabilire se A è invertibile e, in caso affermativo, determinarne l'inversa verificando il risultato.
 - b) stabilire se esiste un vettore $X \in \mathbb{R}^3$ perpendicolare a $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ tale che $AX = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.
- 3) Dire, motivando la risposta, se le seguenti affermazioni sono vere o false:
 - a) Se una matrice invertibile $A \in M_4(\mathbb{R})$ è tale che $A^2 = -A$, allora $\det A = -1$.
 - b) Se $A = (a_{ij}) \in M_5(\mathbb{R})$ è una matrice triangolare superiore, $\det(A) = a_{11}a_{22}a_{33}a_{44}a_{55}$.
 - c) Due vettori non nulli di \mathbb{R}^2 formano una base.

4) Dati i vettori
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, v_4 = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}, v_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ di } \mathbb{R}^3,$$

- a) Dire quanti sono i sottoinsiemi $A \subseteq \{1,2,3,4,5\}$ tali che i vettori v_i con $i \in A$ formano una base di \mathbb{R}^3 .
- b) Esiste un sottoinsieme $A \subseteq \{1, 2, 3, 4, 5\}$ tali che i vettori v_i con $i \in A$ formano una base ortogonale di \mathbb{R}^3 ?