Binary logistic regression: Part II

Mark Andrews Psychology Department, Nottingham Trent University

mark.andrews@ntu.ac.uk

Overview of logistic regression topic

Here are the things about logistic regression that you need to know or do:

- 1. The assumed statistical model (i.e. what model of the data does logistic regression assume).
- 2. How we infer the unknown coefficients.
- 3. What do the inferred coefficients mean.
- 4. How to do prediction in logistic regression.
- 5. How to do model comparison.

Logistic regression's assumed model (simple case)

For all $i \in 1...n$.

$$y_i \sim Bernoulli(\theta_i),$$

$$logit(\theta_i) = a + bx_i.$$

or equivalently

$$y_i \sim Bernoulli(\theta_i),$$

 $\theta_i = ilogit(a + bx_i),$

where

$$logit(\theta_i) \triangleq log\left(\frac{\theta}{1-\theta}\right)$$
,

and

$$ilogit(a + bx_i) \triangleq \frac{1}{1 + e^{-(a+bx_i)}}$$

Logistic regression's assumed model (multiple regression case)

▶ For all $i \in 1...n$,

$$y_i \sim Bernoulli(\theta_i),$$

$$logit(\theta_i) = \beta_0 + \sum_{k=1}^K \beta_k x_{ki}$$

or equivalently

$$\begin{aligned} &y_i \sim \text{Bernoulli}(\theta_i), \\ &\theta_i = ilogit(\beta_0 + \sum_{k=1}^K \beta_k x_{ki}). \end{aligned}$$

Inference of unknown coefficients

- ▶ With the assumed model just described, the values of the parameters β_0 , β_1 . . . β_K are unknown.
- ▶ We infer these by *maximum likelihood estimation*.

The likelihood function: Definition

- ▶ If \mathcal{D} is a set of observed data whose probability distribution is parameterized by θ , i.e. its probability distribution is $P(\mathcal{D}|\theta)$, then the likelihood function, $L(\theta|\mathcal{D})$ gives the probability of \mathcal{D} as a function of θ .
- More precisely, the likelihood is any function proportional to $P(\mathcal{D}|\theta)$ (treated as a function of θ), i.e.

$$L(\theta|\mathfrak{D}) \propto P(\mathfrak{D}|\theta)$$
.

For demo,

https://lawsofthought.shinyapps.io/binomial likelihood/

Maximum likelihood estimation

- ► The likelihood can be used for estimating the values of an unknown parameter.
- ► For example, given some observed number m of gold coins in a sample of n coins, the true value of p can be estimated by choosing the parameter that maximizes the likelihood function.
- ► This is the maximum-likelihood estimate.
- More precisely, $\hat{\theta}$ is the maximum likelihood estimate of the unknown parameter of a probability distribution if

$$\hat{\theta} = \underset{\Omega}{argmax} L(\theta|\mathcal{D}).$$

Prediction

▶ Given inferred values for β_0 , $\beta_1 \dots \beta_K$, the predicted log odds of the outcome variable taking the value of 1 if the predictor variables's values are $x_1, x_2 \dots x_K$ is

$$\beta_0 + \sum_{k=1}^K \beta_k x_k$$

Knowing the predicted log odds, the predicted probability or predicted odds is easily calculated.

From probabilities to odds to logits, and back

Understanding β *coefficients*

- In linear models, a coefficient for a predictor variable has a straightforward interpretation: 1 unit change for a predictor variable corresponds to β change in the outcome variable.
- ▶ As logistic regression curves are nonlinear, the change in the outcome variable is not a constant function of change in the predictor.
- ► This makes interpretation more challenging.
- The most common means to interpret β coefficients is in terms of odds ratios.

Odds ratios

- ► We have seen that an odds in favour of an event are $\frac{p}{1-p}$.
- We can compare two odds with an odds ratio.
- ► For example, the odds of getting a certain job for someone with a MBA might be $\frac{p}{1-p}$, while the odds of getting the same job for someone without an MBA might be $\frac{q}{1-q}$.
- ► The ratio of the odds for the MBA to those of the non-MBA are

$$\frac{p}{1-p} / \frac{q}{1-q}$$

This gives the factor by which odds for the job change for someone who gains an MBA.

β coefficients as (log) odds ratios

Consider a logistic regression model with a single dichotomous predictor, i.e.

$$\log\left(\frac{P(y_i=1)}{1-P(y_i=1)}\right) = \alpha + \beta x_i,$$

where $x_i \in \{0, 1\}$.

- ► The log odds that $y_i = 1$ when $x_i = 1$ is $\alpha + \beta$.
- ► The log odds that $y_i = 1$ when $x_i = 0$ is α .
- The log odds that $y_i = 1$ when $x_i = 1$ minus the log odds that $y_i = 1$ when $x_i = 0$ is

$$(\alpha + \beta) - \alpha = \beta.$$

β coefficients as (log) odds ratios

- Let's denote the probability that $y_i = 1$ when $x_i = 1$ by p, and denote the probability that $y_i = 1$ when $x_i = 0$ by q.
- ▶ Subtracting the log odds is the log of the odds ratio, i.e.

$$\log\left(\frac{p}{1-p}\right) - \log\left(\frac{q}{1-q}\right) = \log\left(\frac{p}{1-p} / \frac{q}{1-q}\right) = \beta$$

► As such,

$$e^{\beta} = \frac{p}{1-p} / \frac{q}{1-q}.$$

ightharpoonup This provides a general interpretation for the β coefficients.

Model Fit with Deviance

- ▶ Once we have the maximum likelihood estimate for the parameters, we can calculate *goodness of fit*.
- ▶ The *deviance* of a model is defined

$$-2 \log L(\hat{\alpha}, \hat{\beta}|\mathcal{D}),$$

where $\hat{\alpha}$, $\hat{\beta}$ are the mle estimates.

ightharpoonup This is counterpart to R^2 for generalized linear models.

Model Fit with Deviance: Model testing

- ▶ In a model with one predictor, a null model would be that $P(y_i = 1)$ is not a function of x_i .
- ► The difference in the deviance of the null model minus the deviance of the full model is

$$\Delta_D = D_0 - D_1 = -2\log\frac{L(\hat{\alpha}|\mathcal{D})}{L(\hat{\alpha},\hat{\beta}|\mathcal{D})}.$$

▶ Under the null hypothesis, Δ_D is distributed as χ^2 with 1df.

Deviance based model testing

- ▶ In general, we can compare any two *nested* models using χ^2 test applied to differences in deviance.
- ► The deviance of the subset model minus that of the full model will always be (approximately) distributed a χ^2 with df equalling the difference in the number of parameters between the two models.
- ▶ In other words, under the null hypothesis that subset and full models are identical, the difference in the deviances will be distributed as a χ^2 with df equal to the difference in the number of parameters between the two models.