Grupo 1 Red Neuronal

Segundo Fariña - 56176

Martin Victory - 56086

Sebastian Favaron - 57044

Ximena Zuberbuhler - 57287

Objetivo

 Desarrollar una red neuronal multicapa para aproximar un terreno a partir de un set limitado de coordenadas.

• La red recibe dos coordenadas (longitud y latitud) y devuelve una tercera coordenada (altura).

Arquitecturas

- Utilizamos las siguientes arquitecturas:
 - 1 capa oculta de 50 neuronas
 - 1 capa oculta de 30 neuronas
 - 2 capas ocultas de 10 neuronas cada una
 - o 2 capas ocultas de 15 y 30 neuronas
 - o 3 capas ocultas de 10 neuronas cada una

Análisis de Resultados

- Se comenzó con lera arquitectura ([2 50 1]).
 - Se decidieron los etas que se utilizaron para comparar.
- Con la 2da arquitectura ([2 30 1]) se observó un peor aprendizaje.
- Con la 3era arquitectura([2 10 10 1]) se observó mejoras que las anteriores,
 en especial con la función de activación tangente hiperbólica.
- La 4ta arquitectura ([2 15 30 1]) fue la que mejor aprendizaje tuvo.

1 capa oculta de 50 neuronas

Épocas	ETA	Error	Función
279	1	0,001	sigmoid
182	2	0,001	sigmoid
178	5	0,001	sigmoid
187	3	0,001	sigmoid
500	0,01	0,0039	tanh
500	0,03	0,0043	tanh
500	0,05	0,0043	tanh
500	0,075	0,0054	tanh

1 capa oculta de 30 neuronas

Épocas	ETA	Error	Función
500	1	0,0012	sigmoid
311	2	0,001	sigmoid
500	5	0,0013	sigmoid
493	3	0,001	sigmoid
500	0,01	0,0077	tanh
500	0,03	0,0059	tanh
500	0,05	0,0119	tanh
500	0,075	0,0061	tanh

2 capas ocultas de 10 neuronas

Épocas	ETA	Error	Función
297	1	0,001	sigmoid
249	2	0,001	sigmoid
227	5	0,001	sigmoid
445	3	0,001	sigmoid
500	0,01	0,0021	tanh
500	0,03	0,0011	tanh
306	0,05	0,001	tanh
252	0,075	0,001	tanh

2 capas ocultas de 15 y 30 neuronas

Épocas	ETA	Error	Función
206	1	0,001	sigmoid
231	2	0,001	sigmoid
158	5	0,001	sigmoid
117	3	0,001	sigmoid
500	0,01	0,0016	tanh
309	0,03	0,001	tanh
191	0,05	0,001	tanh
223	0,075	0,001	tanh

3 capas ocultas de 10 neuronas

Épocas	ETA	Error	Función
500	1	0,0601	sigmoid
196	3	0,001	sigmoid
289	5	0,001	sigmoid
500	0,01	0,0011	tanh

Grupo 1

Eta adaptativo

- Se encontraron mejoras en ciertas arquitecturas
- No se encontraron grandes mejoras en la cuarta arquitectura

Momentum

- Se encontraron mejoras en ciertas arquitecturas
- Mayores mejoras en redes con función de activación hiperbólica
- No se encontraron grandes mejoras en la cuarta arquitectura

Conclusiones

- La función de activación sigmoidal requiere valores de eta en el rango 1 a 5
- La función de activación hiperbólica requiere valores de eta en el rango 0,1 a 0,01
- En todas las arquitecturas planteadas, la función sigmoidal fue más eficiente.
- La arquitectura [2 15 30 1] obtuvo claramente los mejores resultados
- Las mejores eta adaptativo y momentum lograron realizar mejoras en diversas arquitecturas, pero no en la combinación elegida.