

## correspondence problem

## A general







## **Approaches**



## **Assumptions**



$$Y = \{\mathbf{y}^{(j)}\}_{j=1}^m, \mathbf{y}^{(j)} \in \mathcal{Y} \subset \mathbb{R}^{d_y}$$

$$X = \{\mathbf{x}^{(i)}\}_{i=1}^n, \mathbf{x}^{(i)} \in \mathcal{X} \subset \mathbb{R}^{d_x}$$

## Two collections of points:

## No prior correspondences are known

are "unregistered" (i.e., not globally aligned) Spaces and

#### Learn correspondences between and

## 1. Optimal Transport with Global Invariances.

## 2. Using the Gromov-Wasserstein Distance.

# A general correspondence problem

**Data** | Two collections of points: 
$$X = \{\mathbf{x}^{(i)}\}_{i=1}^n, \mathbf{x}^{(i)} \in \mathcal{X} \subset \mathbb{R}^{d_x}$$
  
  $Y = \{\mathbf{y}^{(j)}\}_{j=1}^m, \mathbf{y}^{(j)} \in \mathcal{Y} \subset \mathbb{R}^{d_y}$ 

**Assumptions** No prior correspondences are known Spaces  $\mathcal{X}$  and  $\mathcal{Y}$  are "unregistered" (i.e., not globally aligned)

**Goal** Learn correspondences between X and Y

- **Approaches**1. Optimal Transport with Global Invariances.
  2. Using the Gromov-Wasserstein Distance.

# First Approach: OT with Invariances

AM, Jegelka, Jaakkola. AISTATS 2019