Word Embeddings in high dimensional spaces and Transformers

Vanni Leonardo

First, we ensure the representation can be used by a machine

$$Cat = \vec{E} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_{d-1} \\ x_d \end{bmatrix} \quad s.t \ x_i \in \mathbb{R} \ \forall i, d >> 100$$

one-hot encoding is s.t $x_j = 0 \ \forall j \neq i$

Let
$$\vec{E_1} \cdot \vec{E_2} \coloneqq ||\vec{E_1}||||\vec{E_2}||\cos(\theta) \implies \vec{E_1} \approx \vec{E_2} \iff \theta \approx 0 \iff \vec{E_1} \cdot \vec{E_2} \ large$$

Next, we impose conditions to capture relationships between words that are semantically related

Map words to vectors in a vector space using models like Word2Vec

High Dimensional Spaces

Each dimension can now encode some aspect of meaning, like gender, tense or geographical location.

Cosine similarity is perfect

Superposition

Overview of Transformers

Recurrent Neural Networks (RNNs) and LSTMs process words sequentially, leading to errors in longterm dependencies

Transformers solve this by looking at all the words in a sentence at once

Self-Attention Mechanism

The cat is on the table.

Given a sentence of d words $\vec{E} = [\vec{E_1}, ..., \vec{E_d}]$, calculate Key, Query,

Value Vectors for each embedding with W_Q, W_K, W_V learned

 $W_Q \cdot \vec{E_1} = \text{ what info is } \vec{E_1} \text{ looking for?}$

 $W_K \cdot \vec{E_1} = \text{ what info does } \vec{E_1} \text{ offer}$

 $W_V \cdot \vec{E_1} = \text{ what info does } \vec{E_1} \text{ contribute when it's relevant to other words}$

Softmax Function

Value Updates

For each word, we ask its query to every (preceding if decoder) word

$$\forall i \ relevance_{ji} = Q_i \cdot K_j \ s.t \ j < i$$

Rescale by
$$\sqrt{d_k}$$
 and softmax: $attention_{ij} = \frac{exp(\vec{Q_i} \cdot \vec{K_j})}{\sum_k exp(\vec{Q_i} \cdot \vec{K_k})}$

Self-Attention Algorithm

Algorithm 1 Attention Mechanism (Encoder/Decoder)

```
Require: \vec{E} = [\vec{E_1}, ..., \vec{E_d}]
                                                      ▶ Input word embeddings for d words
Require: W_Q, W_K, W_V \triangleright Learned weight matrices for Query, Key, and Value
 1: for each word i = 1 to d do
         Q_i \leftarrow W_Q \vec{E_i}
                                                                  \triangleright Compute Query for word i
       K_i \leftarrow W_K \vec{E_i}
                                                                     \triangleright Compute Key for word i
      V_i \leftarrow W_V \vec{E_i}
                                                                  \triangleright Compute Value for word i
 5: end for
 6: for each word i = 1 to d do
         for each word j = 1 to d do
                                                           ▶ Attend to all words in Encoder
              if Decoder and j > i then
                                                                     ▷ Causal mask in Decoder
                  attention_{ij} \leftarrow 0
                                                                           ▶ Ignore future words
10:
                  attention_{ij} \leftarrow \frac{\exp(Q_i \cdot K_j / \sqrt{d_k})}{\sum_k \exp(Q_i \cdot K_k / \sqrt{d_k})}
              end if
12:
         end for
13:
         New \vec{E_i} \leftarrow \sum_{j=1}^d attention_{ij} \cdot V_j
                                                                     ▶ Weighted sum of Values
15: end for
16: return [New \vec{E_1}, \dots, \text{New } \vec{E_d}]
                                                                  ▶ Updated word embeddings
```


It allows every word in the sequence to attend (gather context) to every other word.

Encoder

Gather the full context before making a prediction

Models: BERT and variants

Use cases: text classification, translation, summarization, named entity recognition.

Decoder

Attends only to previous words, enforcing sequential generation process.

Use cases: text generation, language modeling, question answering

Models: GPT and LLMs in general