CSC413: Homework 2

Tianyu Du (1003801647)

2020/02/08 at 22:21:00

1 Optimization

1.1 Stochastic Gradient Descent (SGD)

1.1.1 Minimum Norm Solution

Answer. Recall from the previous homework that the solution found by gradient descent in the overparameterized situation was

$$\mathbf{w}^* = X^T (XX^T)^{-1} \mathbf{t} \tag{1.1}$$

Moreover, the solution \mathbf{w}^* reached by gradient descent was in the row space of X (i.e., the span of rows of X), and \mathbf{w}^* is a zero loss solution.

For one single updating using \mathbf{x}_i in the t^{th} iteration in the SGD process, the gradient is

$$\nabla_{\mathbf{w}_{t}} \mathcal{L}_{i} = \frac{\partial}{\partial \mathbf{w}_{t}} \left\| \mathbf{w}_{t}^{T} \mathbf{x}_{i} - t_{i} \right\|_{2}^{2}$$
(1.2)

$$= \underbrace{2(\mathbf{w}_t^T \mathbf{x}_i - t_i)}_{\in \mathbb{R}} \mathbf{x}_i \tag{1.3}$$

$$\implies -\eta \nabla_{\mathbf{w}_{i}} \mathcal{L}_{i} \in Row(X) \tag{1.4}$$

Provided that the starting point $\mathbf{w}_0 = \mathbf{0} \in Row(X)$, for every t, $\mathbf{w}_t \in Row(X)$ by an inductive argument. Because $\mathbf{w}_t \in Row(X)$, let

$$\mathbf{w}_t = X^T \mathbf{r}_t \quad \mathbf{r}_t \in \mathbb{R}^n \tag{1.5}$$

$$\hat{\mathbf{w}} = X^T \hat{\mathbf{r}} \quad \hat{\mathbf{r}} \in \mathbb{R}^n \tag{1.6}$$

Note that, if \mathbf{x}_i is chosen for the t^{th} iteration of SGD, then only the i^{th} components of \mathbf{r}_t and \mathbf{r}_{t+1} are different, and all other components are the same.

Suppose the solution $\hat{\mathbf{w}}$ reached by SGD is a zero loss solution, that is, $X\hat{\mathbf{w}} = \mathbf{t}$. Then

$$XX^T\hat{\mathbf{r}} = \mathbf{t} \tag{1.7}$$

Because $\hat{\mathbf{w}}$ is a global minimum and SGD converges to this point, then it must be the case that

$$\nabla_{\hat{\mathbf{w}}} \mathcal{L}_i(\mathbf{x}_i, \hat{\mathbf{w}}) = 0 \quad \forall i \in \{1, \cdots, n\}$$
(1.8)

That is, one additional iteration of SGD does not improve performance no matter which sample is chosen. This is the same as

$$\nabla_{r_i} \left\| X X^T \hat{\mathbf{r}} - \mathbf{t} \right\|_2^2 = 0 \quad \forall i \in \{1, \dots, n\}$$
(1.9)

$$\iff \nabla_{\mathbf{r}} \| X X^T \hat{\mathbf{r}} - \mathbf{t} \|_2^2 = 0 \tag{1.10}$$

$$\implies (XX^T\hat{\mathbf{r}} - \mathbf{t})^T XX^T = 0 \tag{1.11}$$

$$\implies XX^T(XX^T\hat{\mathbf{r}} - \mathbf{t}) = 0^T \tag{1.12}$$

$$\implies XX^TXX^T\hat{\mathbf{r}} = XX^T\mathbf{t} \tag{1.13}$$

$$\implies \hat{\mathbf{r}} = (XX^T)^{-1}\mathbf{t} \tag{1.14}$$

$$\implies \hat{w} = X^T \hat{\mathbf{r}} = X^T (XX^T)^{-1} \mathbf{t} \tag{1.15}$$

$$= \mathbf{w}^* \tag{1.16}$$

1.1.2 Mini-batch SGD (Optional)

Answer.

2 Gradient-Based Hyper-Parameter Optimization

2.1 Computation Graph of Learning Rates

2.1.1

2.1.2

Answer.

(Forward-Propagation) For each iteration t, the prediction $X\hat{\mathbf{w}} \in \mathbb{R}^n$ and label \mathbf{t} take memory of size 2t, the loss takes 1 unit of memory. Therefore, the overall memory complexity is $\mathcal{O}(d)$.

(Back-Propagation) $\nabla_{\eta} \mathcal{L}_t$ needs to be computed using chain rule through \mathbf{w}_{τ} for every $\tau \leq t$. Note that for every τ , $\nabla_{\mathbf{w}_{\tau}} \mathcal{L}_{\tau} \in \mathbb{R}^d$ and $\frac{d}{d\eta} \mathbf{w}_{\tau} \in \mathbb{R}^d$. The memory complexity is $\mathcal{O}(dt)$.

2.1.3

Answer. The memory complexity analysis in the previous question suggests the required memory of tracing gradient with respect to η grows linearly in the number of iterations, the memory cost can be prohibitive.

2.2 Learning Learning Rates

2.2.1

Answer.

$$\mathbf{w}_1 = \mathbf{w}_0 - \eta \nabla_{\mathbf{w}_0} \mathcal{L}_0 \tag{2.1}$$

$$= \mathbf{w}_0 - \frac{2\eta}{n} X^T (X\mathbf{w}_0 - \mathbf{t}) \tag{2.2}$$

$$\mathcal{L}_1 = \frac{1}{n} \left\| X \left[\mathbf{w}_0 - \frac{2\eta}{n} X^T (X \mathbf{w}_0 - \mathbf{t}) \right] - \mathbf{t} \right\|_2^2$$
 (2.3)

$$= \frac{1}{n} \left\| X \left[\mathbf{w}_0 - \frac{2\eta}{n} X^T \mathbf{a} \right] - \mathbf{t} \right\|_2^2 \tag{2.4}$$

$$= \frac{1}{n} \left\| X \mathbf{w}_0 - \frac{2\eta}{n} X X^T \mathbf{a} - \mathbf{t} \right\|_2^2 \tag{2.5}$$

$$= \frac{1}{n} \left\| \mathbf{a} - \frac{2\eta}{n} X X^T \mathbf{a} \right\|_2^2 \tag{2.6}$$

2.2.2

Answer. Note that the an arbitrary norm is convex: let $\lambda \in [0,1]$

$$\|\lambda x + (1 - \lambda)y\|_p \le \|\lambda x\|_p + \|(1 - \lambda)y\|_p \text{ (triangle inequality)}$$
 (2.7)

$$= |\lambda| \|x\|_{p} + |1 - \lambda| \|y\|_{p} \tag{2.8}$$

$$= \lambda \|x\|_{p} + (1 - \lambda) \|y\|_{p} \tag{2.9}$$

And $f(x) = x^2$ is strictly convex as well. Moreover, $\mathbf{a} - \frac{2\eta}{n} X X^T \mathbf{a}$ is linear in η . $\mathcal{L}_1(\eta)$ is a composite of linear, convex and strictly convex functions. Therefore, $\mathcal{L}_1(\eta)$ is strictly convex with respect to η .

2.2.3

Answer. The derivative of \mathcal{L}_1 w.r.t. η is

$$\nabla_{\eta} \mathcal{L}_1 = \nabla_{\eta} \frac{1}{n} \left\| \mathbf{a} - \frac{2\eta}{n} X X^T \mathbf{a} \right\|_2^2$$
 (2.10)

$$= \frac{2}{n} \left(\mathbf{a} - \frac{2\eta}{n} X X^T \mathbf{a} \right)^T X X^T \mathbf{a}$$
 (2.11)

$$= \frac{2}{n} \left(\mathbf{a}^T - \frac{2\eta}{n} \mathbf{a}^T X X^T \right) X X^T \mathbf{a}$$
 (2.12)

$$= \frac{2}{n} \left(\mathbf{a}^T X X^T \mathbf{a} - \frac{2\eta}{n} \mathbf{a}^T X X^T X X^T \mathbf{a} \right)$$
 (2.13)

Set derivative to zero and solve for the optimal learning rate η^* :

$$\nabla_n \mathcal{L}_1 = 0 \tag{2.14}$$

$$\implies \frac{2}{n} \left(\mathbf{a}^T X X^T \mathbf{a} - \frac{2\eta}{n} \mathbf{a}^T X X^T X X^T \mathbf{a} \right) = 0 \tag{2.15}$$

$$\implies \left\| X^T \mathbf{a} \right\|_2^2 = \frac{2\eta^*}{n} \left\| X X^T \mathbf{a} \right\|_2^2 \tag{2.16}$$

$$\implies \eta^* = \frac{n \left\| X^T \mathbf{a} \right\|_2^2}{2 \left\| X X^T \mathbf{a} \right\|_2^2} \tag{2.17}$$

3 Convolutional Neutral Networks

3.1 Convolutional Filters

Answer.

$$\mathbf{I} * \mathbf{J} = \begin{bmatrix} -1 & 2 & 2 & -2 & 0 \\ -2 & 1 & 0 & 2 & -1 \\ 3 & 0 & 0 & 1 & -1 \\ -2 & 2 & 0 & 2 & -1 \\ 0 & -2 & 3 & -2 & 0 \end{bmatrix}$$
(3.1)

This convolutional filter detect edges.

3.2 Size of ConvNets

Answer. The table below presents numbers of parameters in all layers.

Layer	Dim. In	Dim. Out	Num. Weights	Num. Bias	Total Params.
Conv3-64	112*112*3	112*112*64	3*3*3*64	64	1,792
Max Pool	112*112*64	56*56*64	0	0	0
Conv3-128	56*56*64	56*56*128	3*3*64*128	128	$73,\!856$
Max Pool	56*56*128	28*28*128	0	0	0
Conv3-256	28*28*128	28*28*256	3*3*128*256	256	295,168
Conv3-256	28*28*256	28*28*256	3*3*256*256	256	590,080
Max Pool	28*28*256	14*14*256	0	0	0
FC-1024	14*14*256	1024	14*14*256*1024	1024	51,381,248
FC-100	1024	100	1024*100	100	102,500
Softmax	100	100	0	0	0
Total					52,444,644