WE CLAIM:

13

1. A method for identifying a compound that modulates cell cycle 1 2 arrest, the method comprising the steps of: 3 (i) contacting a cell comprising a target polypeptide selected from the group consisting of BRCA-1-Associated Protein-1 (BAP-1), Nuclear Protein 95 (NP95), 4 5 Fanconi anemia group A protein (FANCA), DEAD/H box polypeptide 9 (DDX9), insulin-like growth factor 1 receptor (IGF1R), ubiquitin-conjugating enzyme E2 variant 1 6 7 (UBE2V1), aldehyde dehydrogenase, pyruvate kinase, glucose-6-phosphate dehydrogenase, HCDR-3, DEAD/H box polypeptide 21 (DDX21), serine threonine 8 kinase 15 (ARK2), transmembrane 4 superfamily member 1, or ERCC1, or fragment 9 thereof with the compound, the target polypeptide encoded by a nucleic acid that 10 hybridizes under stringent conditions to a nucleic acid encoding a polypeptide having an 11 amino acid sequence a sequence selected from the group consisting of SEQ ID NO:2, 4, 12

(ii) determining the chemical or phenotypic effect of the compound upon the cell comprising the target polypeptide or fragment thereof, thereby identifying a compound that modulates cell cycle arrest.

6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28; and

- The method of claim 1, wherein the chemical or phenotypic effect is determined by measuring an activity selected from the group consisting of: helicase activity, receptor tyrosine kinase activity, ubiquitination, ligase, ubiquitin hydrolase activity, ubiquitin ligase activity, receptor binding activity, receptor cross-linking activity, protease, and endonuclease.
- 1 3. The method of claim1, wherein the chemical or phenotypic effect 2 is determined by measuring cellular proliferation.
- 1 4. The method of claim 3, wherein the cell cycle arrest is measured by assaying DNA synthesis or fluorescent marker level.
- 5. The method of claim 4, wherein DNA synthesis is measured by ³H thymidine incorporation, BrdU incorporation, or Hoescht staining.
- 1 6. The method of claim 4, wherein the fluorescent marker is selected 2 from the group consisting of a cell tracker dye or green fluorescent protein.

1		7.	The method of claim 1, wherein modulation is activation of cell
2	cycle arrest.		
1		8.	The method of claim 1, wherein modulation is activation of cancer
2	cell cycle arre	est.	
1		9.	The method of claim 1, wherein the host cell is a cancer cell.
1	•	10.	The method of claim 9, wherein the cancer cell is a breast, prostate
2	colon, or lung	g cancer	cell.
1 2	cell line.	11.	The method of claim 9, wherein the cancer cell is a transformed
2	con mic.		
1		12.	The method of claim 11, wherein the transformed cell line is PC3,
2	H1299, MDA	-MB-2	31, MCF7, A549, or HeLa.
1		13.	The method of claim 9, wherein the cancer cell is p53 null or
2	mutant.		
1		14.	The method of claim 9, wherein the cancer cell is p53 wild-type.
1		15.	The method of claim 1, wherein the polypeptide is recombinant.
1		16.	The method of claim 1, wherein the polypeptide is encoded by a
2	nucleic acid c	ompris	ing a sequence of SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23
3	25, or 27.		
1		17.	The method of claim 1, wherein the compound is an antibody.
1		18.	The method of claim 1, wherein the compound is an antisense
2	molecule.		
1		19 .	The method of claim 1, wherein the compound is an RNAi
2	molecule.		•
1	_	20 .	The method of claim 1, wherein the compound is a small organic
2	molecule.	20.	or ormur 1, wherein me combound to a construction

1	21. The method of claim 1, wherein the compound is a peptide.				
1	22. The method of claim 21, wherein the peptide is circular.				
1	23. A method for identifying a compound that modulates cell cycle				
2	arrest, the method comprising the steps of:				
3	(i) contacting the compound with a target polypeptide selected from the				
4	group consisting of BRCA-1-Associated Protein-1 (BAP-1), Nuclear Protein 95 (NP95),				
5	Fanconi anemia group A protein (FANCA), DEAD/H box polypeptide 9 (DDX9),				
6	insulin-like growth factor 1 receptor (IGF1R), ubiquitin-conjugating enzyme E2 variant				
7	(UBE2V1), aldehyde dehydrogenase, pyruvate kinase, glucose-6-phosphate				
8	dehydrogenase, HCDR-3, DEAD/H box polypeptide 21 (DDX21), serine threonine				
9	kinase 15 (ARK2), transmembrane 4 superfamily member 1, or ERCC1, or fragment				
10	thereof, the target polypeptide encoded by a nucleic acid that hybridizes under stringent				
11	conditions to a nucleic acid encoding a polypeptide having an amino acid sequence a				
12	sequence selected from the group consisting of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18,				
13	20, 22, 24, 26, and 28;				
14	(ii) determining the physical effect of the compound upon the target				
15	polypeptide; and				
16	(iii) determining the chemical or phenotypic effect of the compound upon				
17	a cell comprising the target polypeptide or fragment thereof, thereby identifying a				
18	compound that modulates cell cycle arrest.				
1	24. A method of modulating cell cycle arrest in a subject, the method				
2	comprising the step of administering to the subject a therapeutically effective amount of				
3	compound identified using the method of claim 1.				
1	25. The method of claim 24, wherein the subject is a human.				
1	26. The method of claim 25, wherein the subject has cancer.				
1	27. The method of claim 24, wherein the compound is an antibody.				
1	28. The method of claim 24, wherein the compound is an antisense				
2	molecule.				

1	2	29.	The method of claim 24, wherein the compound is an RNAI			
2	molecule.					
1	3	30 .	The method of claim 24, wherein the compound is a small organic			
2	molecule.		The moment of country, was provided by			
_	morodaro.		•			
1	3	31.	The method of claim 24, wherein the compound is a peptide.			
1	3	32.	The method of claim 31, wherein the peptide is circular.			
1	3	33.	The method of claim 24, wherein the compound inhibits cancer cell			
2	proliferation.					
	·					
1		34.	A method of modulating cell cycle arrests in a subject, the method			
2	•		f administering to the subject a therapeutically effective amount of a			
3			ected from the group consisting of BRCA-1-Associated Protein-1			
4	(BAP-1), Nucle	ar Pro	tein 95 (NP95), Fanconi anemia group A protein (FANCA),			
5	DEAD/H box polypeptide 9 (DDX9), insulin-like growth factor 1 receptor (IGF1R),					
6	ubiquitin-conju	gating	enzyme E2 variant 1 (UBE2V1), aldehyde dehydrogenase,			
7	pyruvate kinase	, gluco	ose-6-phosphate dehydrogenase, HCDR-3, DEAD/H box			
8	polypeptide 21	(DDX	21), serine threonine kinase 15 (ARK2), transmembrane 4			
9	superfamily me	mber	1, or ERCC1, or fragment thereof, the target polypeptide encoded by			
10	a nucleic acid tl	hat hył	oridizes under stringent conditions to a nucleic acid encoding a			
11	polypeptide having an amino acid sequence a sequence selected from the group consisting					
12	of SEQ ID NO:	2, 4, 6	5, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28.			
1	·	35.	A method of modulating cell cycle arrest in a subject, the method			
2	comprising the	step o	f administering to the subject a therapeutically effective amount of a			
3	_		a target polypeptide selected from the group consisting of BRCA-			
4	1-Associated P	rotein-	1 (BAP-1), Nuclear Protein 95 (NP95), Fanconi anemia group A			
5	protein (FANC	A), DI	EAD/H box polypeptide 9 (DDX9), insulin-like growth factor 1			
6	receptor (IGF1)	R), ubi	iquitin-conjugating enzyme E2 variant 1 (UBE2V1), aldehyde			
7	dehydrogenase, pyruvate kinase, glucose-6-phosphate dehydrogenase, HCDR-3,					
8	DEAD/H box polypeptide 21 (DDX21), serine threonine kinase 15 (ARK2),					
9	transmembrane	4 sup	erfamily member 1, or ERCC1, or fragment thereof, the nucleic			

- 10 acid hybridizing under stringent conditions to a nucleic acid encoding a polypeptide
- having an amino acid sequence a sequence selected from the group consisting of SEQ ID
- 12 NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 and 28.