Lecture Contents:

- Open-loop vs closed-loop.
- Bang-bang control & P control.
- PID control.
- Tuning of controllers.
- Simple control law for differential drive.
- Control in context.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Low-level control

Getting a dynamical system to follow a

reference trajectory.

- E.g.
 - Cruise controller.
 - Thermostat.
 - Wall-follower.
 - Trajectory follower.
 - Hovering controller.
 - Balancing controller.

Low-level control example

- Car travelling along a road at constant velocity.
- Wants to stay in the middle.
- Can measure distance away from the middle. s_d
- Can steer. ω

Open-loop control vs closed-loop control

- Open-loop control:
 - No feedback incorporated.

- Closed-loop control:
 - Feedback incorporated.

Closed vs open loop control: car example

- Open loop control: $\omega = O_o = 0$
 - Keep the wheel straight.
- Closed-loop control: $\omega = O_f = f_C(s_d)$
 - Steer depending on movement away from centre.

Closed-loop control vs. agents . Where is the

environment actions sensors ?

- Where is the controller function f_c ?
- Where is the controlled system?
- Where is the control signal?
- Where is the sensed signal?

$$O(t,r,s)=f_C(t,r,s)$$

- Where are the percepts?
- Where are the actions?
- Where is the agent?
- Where is the environment?

Lecture Contents:

- Open-loop vs closed-loop.
- Bang-bang control & P control.
- PID control.
- Tuning of controllers.
- Simple control law for differential drive.
- Control in context.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Two basic kinds of feedback control

Bang-bang control:

Switch between modes based on thresholds.

$$O_f = f_p(s) = \begin{cases} o_1 & \text{if } s > s_{thresh} \\ o_2 & \text{otherwise} \end{cases}$$

• Proportional (P) control:

Alter control signal proportional to error.

$$O_f = f_{bb}(s) = -k_p s$$
 (k_p is gain)

Error = difference between reference and sensed state.

Bang-bang control: car example

$$\omega = O_f = f_{bb}(s_v) = \begin{cases} -25^\circ & \text{if } s_d > 0.0. \\ 25^\circ & \text{otherwise.} \end{cases}$$

- Car too far left?
 - Bang! Turn right!
- Car too far right?
 - Bang! Turn left!

Bang-bang control evaluation

- Good for boiling an egg (optimal).
- Not good for driving a car.
 - Car needs smooth control.

Proportional (P) control: car example

$$\omega = O_f = f_p(s_v) = -10 s_v$$

Degree of steer is proportional to distance from centre.

Problems with P control

1. Steady-state error (e.g. strong side-wind).

→ Solution: PI control.

2. Oscillations & overshooting.

→ Solution: PD control.(provides damping)

Lecture Contents:

- Open-loop vs closed-loop.
- Bang-bang control & P control.
- PID control.
- Tuning of controllers.
- Simple control law for differential drive.
- Control in context.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

PD, PI and PID control

- PI control: Output signal proportional to:
 - Error (P).

$$O_f = f_{pi}(s) = -k_p s - k_i \int_s s$$

- Time-integral of error (I).
- PD control: Output signal proportional to:
 - Error (P).

$$O_f = f_{pd}(s) = -k_p s - k_d \frac{ds}{dt}$$

- Time-derivative of error (D).
- PID control: Output signal proportional to:
 - Error (P).
 - Time-integral of error (I).

$$O_f = f_{pid}(s) = -k_p s - k_i \int_t s - k_d \frac{ds}{dt}$$

• Time-derivative of error (D).

Control demonstration

Available from

http://blog.analogmachine.org/2012/02/04/pid-control-demonstration/

(works with wine on linux, mostly)

Lecture Contents:

- Open-loop vs closed-loop.
- Bang-bang control & P control.
- PID control.
- Tuning of controllers.
- Simple control law for differential drive.
- Control in context.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Tuning controllers (Ziegler-Nichols method)

- Choice of gains important: k_p, k_i, k_d
- Ziegler-Nichols method:
 - Set all gains to 0.
 - Increase k_p until oscillation.
 - Oscillating k_p is k_c .
 - Period of oscillation is T_c .
 - Set gains from this table:

	$k_{ ho}$	k _i	K _d
P controller	0.5k _c	0	0
PI controller	0.45k _c	$1.2k_p/T_c$	0
PID controller	0.5k _c	$2k_{p}/T_{c}$	$k_{p}T_{c}/8$

Differential-drive pose control with goal-centred coordinates

A simple control law:

$$\dot{x}_r = -k_\rho \rho$$

$$\dot{\Theta}_r = -k_\alpha \alpha - k_\beta \beta$$

Question: Is this P control, PI control, PD control, or PID control?

Current position

What low-level control is good for

- Excellent understanding of simple system behaviour.
- Complex goals not so well understood.

With more detail: sensing, inference.

• Controller:

• With sensing:

• With inference:

