ING161 Kjemi for ingeniører

Kapittel 1
Del 2

Tema:

Periodesystemet

Mendelejev (1834-1907)

- Året 1869.
 - 63 stabile grunnstoff var systematisert

Prinsipp for periodesystemet:

- Systematisering av grunnstoffene etter *masse* og *egenskaper*
- Grunnstoffene er plassert etter økende atommasse horisontalt mot høyre og nedover
- Atomer med lignende egenskaper er i samme kolonne under hverandre

Det moderne periodesystemet

1 1A																	18 8A
1 H	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B—	10	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	117	118
				<u>-</u>													

Metall

Ikke-metall

											_			
•	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

http://www.kjemi.uio.no/periodesystemet/

https://ptable.com/#Properties

Eksempler på grunnstoff med navn og opprinnelse

Les om grunnstoffene i http://www.kjemi.uio.no/periodesystemet/

Norsk navn	Kjemisk symbol	Opprinnelse								
Kalium	K	Fra arabisk: quali = aske (alkali = planteaske) (Engelsk navn: potassium, fra pottaske = K_2CO_3)								
Jern	Fe	Fra latin: ferrum (= fast)								
Kvikksølv	Hg	Fra latin: hydragyrum (= flytende)								
Gull	Au	Fra latin: Aurum (aurora = «morgenrøde», daggry)								
Sølv	$\mathbf{A}\mathbf{g}$	Fra latin: Argentum (skinnende) (Argentina = sølvlandet)								
Polonium	Po	Etter Polen , hjemlandet til Mm Curie								
Einsteinium	Es	Etter Albert Einstein								

1 1A		Inndeling i metall, halvmetall og ikke-metall															
1 H	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B—	10	11 1 B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	117	118
	Metal	1	·	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Halvn	netall		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	Ikke-r	netall															

http://www.kjemi.uio.no/periodesystemet/

Metaller, ikke-metaller og halv-metaller (metalloider)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chlorine Bromine Sulfur Carbon Iodine **NONMETALS** Arsenic Cadmium Antimony Silicon Copper ead **Bismuth** Tellurium Boron Halvmetaller Chromium

METALLOIDS

METALS

PERIODESYSTEMET

- Metall: til venstre i periodesystemet
- **Ikke-metall**: Til høyre i periodesystemet
- Halvmetall: over/under "trappetrinnet" fra grunnstoffet bor.
 - Ikke strømledere ved romtemperatur, men leder strøm ved høyere temperaturer
 (f. eks. silisium, antimon, germanium; som brukes i elektroniske kretser).

1 1A									,								18 8A					
1 H	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He					
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne					
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8 B —	10	11 1B	12 2B	13 A	14 Si	15 P	16 S	17 Cl	18 Ar					
19 K	20 Ca	21 Sc	22 Ti	23 V	24 D o ri	25	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 C	32 Ge	33 As	34 Se	35 Br	36 Kr					
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	Mo	ode Te	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 Ir	50 Sn	51 Sb	52 Te	53 I	54 Xe					
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn					
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	117	118					
	Metall			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu					
	Halvmetall				91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr					

1 1A																	18 8A
1 H	2 2A						13 3A	14 4A	15 5A	16 6A	17 7A	2 He					
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B—	10	11 1B	12 2B	13 A	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 C		33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 <u>C</u>	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	117	118
	Meta	11		58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Halvr	netall		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	Ikke-1	metall		\mathbf{C}		20120	los	2 1211		011011	og fi	1	10				

• Gruppene kan nummereres fra 1-18

Periodesystemet 18 Hovedgrupper: 1A-8A 13 15 16 Н He 2A 3A 5A 4A 6A Sidegrupper: 1B-8B 5 10 Li \mathbf{C} N 0 Be В Ne 11 15 16 18 17 9 10 5 11 6 Mg Cl Na Ar 3B 4B 5B 7B 2B6B -8B 1B 19 20 21 22 24 27 29 30 33 34 36 23 25 26 28 35 Ti K Ca Sc \mathbf{V} Cr Mn Fe Co Ni Cu Zn As Se Br Kr 37 38 39 42 44 45 47 51 52 53 54 40 41 43 46 48 \mathbf{Cd} Rb Sr \mathbf{Y} Zr Nb Mo Tc Ru Rh Ir Sn Sb Te Xe Pd Ag 55 79 84 86 56 73 74 75 78 80 81 At Cs \mathbf{W} Os TlPb Bi Po Hf Ta Re Pt Hg Rn Ir Au 87 104 106 107 108 109 110 111 112 113 114 115 116 118 105 117 Fr Rf Db Sg Bh Mt Hs Ds Rg 59 62 70 71 58 60 61 63 64 65 66 67 69 68 Metall Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 94 102 93 98 101 103 90 91 92 95 96 97 99 100 Halvmetall Th Cf Pa U Np Pu Cm Bk Es Fm Md No Lr Am

• Gruppene kan nummereres fra 1-18

Ikke-metall

• De kan også deles inn i hovedgrupper og sidegrupper

PERIODESYSTEMET

- **Grupper nummerert fra 1-18** = loddrette kolonner:
 - Atom med tilsvarende egenskaper er plassert under hverandre

• De 18 gruppene kan deles inn i hoved- og sidegrupper:

- 8 hovedgrupper
 - betegnes 1A-8A eller H1-H8 (kalles også IA-VIIIA)

- 8 sidegrupper
 - betegnes 1B-8B eller S1-S8 (kalles også IB-VIIIB)
 - kalles for transisjonsmetallene, overgangsmetallene eller sidegruppemetallene

Vanlige navn på noen grupper i periodesystemet

- 1. hovedgruppe (1A): Alkalimetallene
- 2. hovedgruppe (2A): Jordalkalimetallene

.

- 7. hovedgruppe (7A): Halogenene
- 8. hovedgruppe (8A): Edelgassene

PERIODESYSTEMET

- Perioder: finnes horisontalt i periodesystemet
 - Samme periode: de ytterste elektronene er i samme høyeste hovedenerginivå

Sjeldne jordmetaller:

Lantanidene og actinidene

- finnes nederst i periodesystemet, innskutt etter lantan (La, atomnr. 71) og actinium (Ac, atomnr.89)

Atomradius

- Atomet har radius i størrelsesorden på 10⁻¹⁰ meter *
 - Selve kjernen har bare en radius i størrelsesorden 10⁻¹⁴ meter

*Fra det minste (helium) med atomradius på 3,1·10⁻¹¹ meter (=31 pm)
Til det største (cesium) med atomradius på 2,65·10⁻¹⁰ meter (=265 pm)

 $1 \cdot 10^{-12}$ meter = 1 picometer = 1 pm

Trender i atomradius:

- Atomradiusen øker nedover i en gruppe
- Atomradiusen avtar mot høyre i periodesystemet

Atomradius

- Atomradiusen avtar mot høyre i periodesystemet:

- Tiltrekningskreftene mellom kjernen og elektronene øker i en gitt periode mot høyre fordi kjernen får større ladning (økt protontall) mens de ytterste elektronene befinner seg i samme hovedenerginivå i hele perioden.
- Dette gir mer effektiv tiltrekning mellom kjerne og elektroner: radiusen avtar

Bohrs modell

- **Bohr** utførte forsøk med hydrogenatomet
 - Hydrogenatomet har bare ett elektron
- Bohr viste at elektronets energi er *kvantisert*:
 - Et elektron kan bare ha bestemte energier

- Det er tiltrekningskrefter mellom positiv kjerne og negativt elektron:
 - laveste energinivå til hydrogen sitt elektron er nærmest kjernen
 - energien til et elektron øker med avstanden fra kjernen
- Laveste energitilstand til atomet kalles *grunntilstanden*
 - elektronet er da i sitt mest stabile energinivå

Elektronets posisjon og energi

Figur: Neon vist med Bohr si atommodell

- Bohr foreslo i sin enkle modell for atomet at:
 - elektronet har faste baner rundt kjernen
 - o men modellen viste seg å ikke være riktig

Figur: Hydrogen sin elektronsky viser sannsynligheten for hvor elektronet befinner seg rundt kjernen

- Bohrs forsøk med hydrogen var likevel nyttig og gav grunnlaget for "skallmodellen" for elektronene i et grunnstoff
- I skallmodellen representerer "elektronbanene" (eller skallene) *elektronene* sin energi.

Skall = hovedenerginivå

Elektronet og Bohrs atommodell

- Hver periode har et nytt høyeste hovedenerginivå (elektronskall).
- Alle grunnstoffene i en gitt periode har elektroner som er i dette hovedenerginivået.
 - F. eks. i 3. periode har de elektronene som har høyest energi, energi tilsvarende 3. hovedenerginivå.
- Det høyeste hovedenerginivået til elektronene i et grunnstoff, kalles for det ytterste skallet.

(I læreboka betegnes hovedenerginivåene (elektronskallene) med bokstavene K, L, M...)

Valenselektroner

Elektronene i ytterste skall:

- kalles for valenselektroner
- inngår i kjemiske bindinger

For grunnstoffene i hovedgruppene:

- Antall valenselektroner som et grunnstoff har er gitt ved hovedgruppenummeret til grunnstoffet Husk at «gruppene» er vertikale (kolonner)

Eksempel:

Kalsium i hovedgruppe 2 har 2 valenselektroner, og har altså 2 elektroner i ytterste skall Oksygen i hovedgruppe 6 har 6 valenselektroner, og har altså 6 elektroner i ytterste skall

EDELGASSER

- Edelgassene er stabile grunnstoff.
 - De er i hovedgruppe 8
 - De har 8 elektroner i ytterste skall (= valenselektroner).
 - Unntatt helium som har 2 elektroner
- Edelgassene
 - reagerer ikke med andre grunnstoff.
 - er de eneste grunnstoffene som opptrer enatomig
 - det er en sterk tiltrekning mellom den positive atomkjernen og elektronene i ytterste skall

Neon vist med Bohrs atommodell

• Alle grunnstoff søker **stabil elektronstruktur**, dvs. **edelgasstruktur** ved å avgi eller ta opp elektroner eller ved å dele elektroner med andre

Edelgasser og oktettregelen

Oktettregelen (kap. 2.2. side 47 i læreboka):

- Ingen atomer kan ha mer enn åtte elektroner i ytterste skall (høyeste hovedenerginivå)
- Kjemiske reaksjoner skjer når atomer med mindre enn åtte elektroner i ytterste skall, søker å oppnå edelgass-struktur (= stabil struktur), altså 8 elektroner i ytterste skall

Edelgass-struktur kan oppnås ved at:

- atomene avgir eller mottar elektroner fra andre atomer eller
- to atomer deler elektroner

Blokksystemet

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Inndeling av periodesystemet i blokker:

Hovedgruppene finnes i blokk s og p

Overgangsmetallene (sidegruppemetallene) finnes i blokk *d*

I blokk f finner vi: lantanoidene (i periode 6) og actenoidene (i periode 7)

Blokk-inndelingen er viktig for beskrivelsen av elektronenes sine energinivå for de ulike grunnstoffene (elektronkonfigurasjonen).

Dette er tema i kapittel 1.5. i læreboka, og er ikke med i vårt pensum.