结构化数据预测问题

【数据集样例】

Data fields

- id: ad identifier
- click: 0/1 for non-click/click
- hour: format is YYMMDDHH, so 14091123 means 23:00 on Sept. 11, 2014 UTC.
- C1 -- anonymized categorical variable
- banner_pos
- site_id
- site_domain
- site_category
- app_id
- app_domain
- app_category
- device_id
- device_ip
- device_model
- device_type
- device_conn_type
- C14-C21 -- anonymized categorical variables

	id	click	hour	C1	banner_pos	site_id	site_domain	site_category	app_id	app_doi
0	1000009418151094273	0	14102100	1005	0	1fbe01fe	f3845767	28905ebd	ecad2386	7801e8c
1	10000169349117863715	0	14102100	1005	0	1fbe01fe	f3845767	28905ebd	ecad2386	7801e8c
2	10000371904215119486	0	14102100	1005	0	1fbe01fe	f3845767	28905ebd	ecad2386	7801e8c
3	10000640724480838376	0	14102100	1005	0	1fbe01fe	f3845767	28905ebd	ecad2386	7801e8c
4	10000679056417042096	0	14102100	1005	1	fe8cc448	9166c161	0569f928	ecad2386	7801e8c
4										-

难点

- 传统模型学习能力有限
- 类别特征多,矩阵稀疏,深度模型很难更新
- 交叉特征对预测很有帮助,但手工设计交叉特征耗时费力

传统模型

- 逻辑回归
 - 。 线性模型,模型能力有限

- 。 难以利用特征之间的关系
- 矩阵分解(Matrix Factorization)
 - 。 对每个实体进行embedding
- 因子分解机(Factorization Machines)
 - 。 更好的获得特征对之间的交叉特征信息
- 序列模型(RNN)
 - 。 将一个用户的浏览/点解行为看作序列数据
 - 。 利用历史行为的依赖信息
 - 。 训练好的模型, W是不变的, 但用户的行为偏好会变化

深度模型

优点 模型能力强大,可学习特征间的低、高阶交叉特征

缺点 可解释性差(通过手工设计网络结构、加入注意力模块缓解)

1. A Convolutional Click Prediction Model(CCPM, 2015ACM)

- CNN可以获得不同元素之间的交叉信息
- 可以提取序列中的局部-整体特征

Figure 1: The framework of CCPM. The left part is an input instance (single ad impression or sequential ad impression) with varied elements and the length of element embedding is d=4. The architecture has two convolutional layers with two feature maps each. The widths of filters at two layers are three and two respectively. The flexible pooling layer p_1 changes with length of instance and the last pooling layer $p_2=2$.

1.1 卷积层

每个样本有 n 个离散特征,每个离散特征都是用 d 维的嵌入向量 $\mathbf{e}_i \in R^d$ 表示,则一个样本可以表示为矩阵 $\mathbf{s} \in R^{d \times n}$:

$$\mathbf{s} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \mathbf{e}_1 & \cdots & \mathbf{e}_n \\ \vdots & \vdots & \vdots \end{bmatrix} . \tag{1}$$

卷积层是通过卷积核 $\mathbf{w} \in R^{d \times w}$ 沿着行方向移动。这样 \mathbf{s} 经过卷积后得到矩阵 \mathbf{r} ,其维度为 $d \times (n+w-1)$ 。可以记为: $\mathbf{r} = \mathbf{F}(\mathbf{s},\mathbf{w})$ (\mathbf{F} 表示卷积函数)。

从行的角度看,给定 $\mathbf{w}_i \in R^w, \mathbf{s}_i \in R^n$,经过卷积可以得到:

$$\mathbf{r}_{i} = \mathbf{w}_{i}^{T} \mathbf{s}_{i,j-w+1:j}, (j \in [1, n+w-1])$$
 (2)

1.2 灵活的p-Max池化

对于卷积后的矩阵 \mathbf{r} 的第 i行向量 $\mathbf{r}_i \in R^n$, 选择前 p个最大的值作为池化后的向量 $\mathbf{s}_i^p \in R^p$ 。

对于序列的 s 是变长的,因此池化层应该具有灵活性,对于较长的序列,抽取多个最大值作为池化结果;对于较短序列只需要抽取较少的最大值作为池化结果。本文使用下面的函数作为p值的大小:

$$p_{i} = \{ \begin{pmatrix} (1 - (i/\hbar)^{i})n, & i = 1, \dots, i - 1 \\ 3, & i = i \end{pmatrix},$$
 (3)

其中,/是网络中卷积层的总层数,n是输入样例的长度, p_i 表示第i层池化层。

该函数的优点:

- 最后一层池化层是固定的,保证最后输出的向量是定长的
- 幂指函数在开始时变化较慢,避免在前几层丧失重要特征

激活函数: 池化层后使用tanh激活函数

2. Deep Learning over Multi-field Categorical Data (2016)

本文使用三种特征转换方法:因子分解机(FM)、受限玻尔兹曼机(RBM)、去噪自编码器,将类别特征转化为稠密的向量,再利用深度网络有效提取高阶交叉特征。

2.1 Factorisation-machine supported Neural Networks (FNN)

Fig. 1. A 4-layer FNN model structure.

从上到下依次是输出层、隐藏层、Dense Real(z)层、稀疏表示层,Dense Real layer实际上相当于嵌入层,只是嵌入矩阵使用因子分解机训练得到的向量初始化。因子分解机:

$$y_{FM} = sigmoid(w_0 + \sum_{i=1}^{N} w_i x_i + \sum_{i=1}^{N} \sum_{j=i+1}^{N} \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j,$$
 (1)

2.2 Sampling-based Neural Networks (SNN)

Fig. 2. A 4-layer SNN architecture and two first-layer pre-training methods.

最底层使用sigmoid函数的全连接层,为了在稀疏one-hot编码情况下有效学习权重W,本文使用受限玻尔兹曼机和降噪自编码器预训练得到W的初始值,在用于网络的更新。

3. Product-based Neural Networks for User Response Prediction (2016)

本文使用embedding层建立基于乘积的神经网络(PNN),用于捕捉两个类别特征之间的交叉模式, 后接深度神经网络捕获高阶交叉特征。

3.1 Product-based Neural Network

Fig. 1: Product-based Neural Network Architecture.

其中,第一个隐藏层和Product层是全连接的,其输出是 $I_1 \in R^{D_1}$,输入由线性信号 I_Z 和二阶交叉信号 I_D 组成:

$$\boldsymbol{l}_1 = re/u(\boldsymbol{l}_z + \boldsymbol{l}_D + \boldsymbol{b}_1) , \qquad (1)$$

其中, $l_z, l_p, b_1 \in R^{D_1}$ 。

$$\mathbf{l}_{Z} = (l_{Z}^{1}, l_{Z}^{2}, \cdots, l_{Z}^{n}, \cdots, l_{Z}^{n}), \qquad l_{Z}^{n} = W_{Z}^{n}z$$

$$\mathbf{l}_{p} = (l_{p}^{1}, l_{p}^{2}, \cdots, l_{p}^{n}, \cdots, l_{p}^{n}), \qquad l_{p}^{n} = W_{p}^{n}p$$
(2)

第一个隐藏层本质上是分别对 z 和 p 线性转换后进行相加的操作。

而 z 是 1 和各个特征的embedding的concat:

$$z = (z_1, z_2, \cdots, z_N) \stackrel{\triangle}{=} (f_1, f_2, \cdots, f_N)$$
 (3)

$$p = \{p_{i,j} = g(f_i, f_j)\}, i = 1, \dots, N, j = 1, \dots, N$$
(4)

4. Wide & Deep Learning for Recommender Systems (2016)

Figure 1: The spectrum of Wide & Deep models.

Figure 4: Wide & Deep model structure for apps recommendation.

5. Factorization-Machine based Neural Network for CTR Prediction(2017)

Figure 1: Wide & deep architecture of DeepFM. The wide and deep component share the same input raw feature vector, which enables DeepFM to learn low- and high-order feature interactions simultaneously from the input raw features.

6. Deep & Cross Network for Ad Click Predictions(2017)

Figure 1: The Deep & Cross Network

Figure 3: The architecture of the Cross Network.

Figure 2: Visualization of a cross layer.

7. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks

Figure 1: The neural network architecture of our proposed Attentional Factorization Machine model.

8. Neural Factorization Machines for Sparse Predictive Analytics

Figure 2: Neural Factorization Machines model (the first-order linear regression part is not shown for clarity).

$$f_{BI}(\mathcal{V}_x) = \sum_{i=1}^n \sum_{j=i+1}^n x_i \mathbf{v}_i \odot x_j \mathbf{v}_j,$$