RASGELE SAYI ÜRETEÇLERİ

- Uniform (Tekdüze)
- Non-Uniform (Tekdüze Olmayan)

RASSAL SAYI ÜRETEÇLERİNDEN İSTENİLEN ÖZELLİKLER:

- Rassallık
- Büyük Period
- Yeniden Üretilebilirlik (Reproducibility)
- Hesaplama Etkinliği

TEKDÜZE DAĞITIMLI RASTGELE SAYILAR

- Dil derleyicileri [0,1] aralığında tekdüze dağılımlı rastgele sayılar için olanak sağlar.
- Böyle yordamlar U [0,1] üreteçleri olarak bilinir.
- Örneğin; BASIC dilinde RND çağrısı 0<=x<=1 aralığında bir x kesiri döndürecektir.
- Kesin konuşmak gerekirse, bu ayrık bir rastgele değişkendir.
- Fakat pratikte sürekli olduğu varsayılır
- 100 defa RND fonksiyonunu çağırırsanız kabaca %10'u 0 ile 0.1 arasında, %10'u 0.1 ile 0.2 arasında vb. dağılımlar oluşacaktır.

RASSAL SAYI ÜRETİMİ İÇİN TEKNİKLER

1) ORTA KARE YÖNTEMİ

- 1916'da Von Neumann ve Metropolis tarafından önerilen "ORTAKARE" yöntemidir
- Bu yöntemde , (m) basamaklı ve genellikle tek olan bir sayı başlangıç değeri olarak alınır
- İkinci aşamada, bu sayının karesi alınarak bulunan sayının ortasındaki m kadar basamaklı sayı alınır
- Bu bir rassal sayı olarak kayıt edilir
- Tekrar bu rassal sayının karesi alınır ve yine ortadaki m basamaklı sayı bir rassal sayı olarak kaydedilir
- Bu işlem, istenilen sayıda rassal sayı elde edilinceye kadar devam eder.

Örnek:

 $X_0 = 5497$ olarak seçilsin.

$$X_0^2 = (5497)^2 = 30.217.0,09 \implies X_1 = 2170$$

$$U_1 = 0.2170$$

$$X_1^2 = (2170)^2 = 4.708.900 \Rightarrow X_2 = 7089$$

$$U_2 = 0,7089$$

$$X_2^2 = (7089)^2 = 50.253.921 \Rightarrow X_3 = 2539$$

$$U_3 = 0,2539$$

Bu tekniğin dezavantajları;

- İlk sayı ve dizinin tekrar uzunluğu arasındaki ilişkiyi (peryod) önceden bilmek mümkün değildir. Çoğu kez tekrar uzunluğu kısadır
- Elde edilen sayılar rassal olmayabilir
- Yani dizide dejenerasyon söz konusu olabilir.
- Bu yöntemle belirli bir sayı aritmetik işleme başlangıç değeri (seed) olarak verilmekte ve buna bağlı olarak bir sayı hesaplanmaktadır
- Hesaplanan sayı, bu kez başlangıç değeri olarak alınmakta ve yeni bir sayı üretilmektedir
- Böylece her üretilen sayıdan yeni bir sayı üretilerek bir sayı dizisi elde edilmektedir

TEKDÜZE DAĞITIMLI RASTGELE SAYILAR

- Tek düze rastgele sayı üreteçlerinin çoğu LCG (Linear Congruential) Generators) – Lineer Eşleşiksel Üreteçler – şeklindedir.
- Bunlar genelde deterministik olup bir algoritmaya dayalıdır.
- LCG, tahmin edilemez gibi görünen bir dizi sayılar oluşturur.
- Başlamak için bir ilk değer çekirdeğe Z_0 ihtiyaç duyar.
- Bu çekirdek ve Z_k dizisinin ardışıl terimleri bir LCG formülüne uygulanır.
- Ardından, Z_k , $0 \le U_k \le 1$ aralığında bir U_k çıkışına normalize edilir.
- Yani,

$$Z_0 =$$
"çekirdek", $Z_{k+1} = (aZ_k + c)mod(m)$

$$U_k = \frac{Z_k}{m}$$

a : çarpan, c: artım ve m: genlik

TEKDÜZE DAĞITIMLI RASTGELE SAYILAR

• Örnek: a=5, c=3, m=16 ve Z_0 = 7 değerleri ile LCG kullanarak oluşturulan sayı dizisini belirleyelim.

$$U_0 = \frac{Z_0}{m} = \frac{7}{16} \approx 0.437$$

$$Z_{k+1} = (5Z_k + 3) mod(16)$$

$$Z_0 = 7 \Rightarrow Z_1 = (5*7+3) \mod 16 = 6 U_1 = 6/16 = 0.375 \text{ olur.}$$

- Benzer şekilde k=1 için Z2=1 ve U2=0.062 elde edilir.
- Burada Zk m ile bölünme sonucu elde edildiğinden, sadece m adet kalan vardır.
- Dolayısıyla bu örnekte maksimum 16 rastgele sayı mümkündür.
- Büyük m değerleri iyi bir seri elde etmek için gereklidir.
- m adet tekrar için m farklı sayının oluştuğu durumda seçilen LCG'nin tam periyoda sahip olduğu söylenir.
- Bu her bir Zk bir kez tekrar ettiği için tam periyot oluşmaktadır. Yukarıda verilen örnek tam periyoda sahip olup elde edilen rastgele sayılar aşağıdaki tabloda verilmiştir.

LCG ile oluşturulmuş sözde rastgele dizi					
k	Z_k	U _k			
0	7	0.437			
1	6	0.375			
2	1	0.062			
3	8	0.500			
4	11	0.688			
5	10	0.625			
6	5	0.313			
7	12	0.750			
8	15	0.938			
9	14	0.875			
10	9	0.563			
11	0	0.000			
12	3	0.188			
13	2	0.125			
14	13	0.813			
15	4	0.250			

Dizinin ilk 16 elemanı tablodaki gibidir.

m tekrarlı bir durum için, m farklı rastgele sayı oluştuğunda LCG seçimi tam periyoda sahiptir.

 Z_k nın bir tekrarında tam bir döngü izler.

Buradaki, LCG, tam periyoda sahiptir.

Hull-Dobell Teoremi

- Parametrelerin seçiminde Hull-Dobell teoremi oldukça kullanışlıdır.
- Bu teorem tam periyodu elde etmek için gerekli ve yeterli şartları sağlar.
- LCG ancak ve ancak aşağıdaki üç şartı sağlarsa tam periyoda sahiptir.
 - I. a ve c asal olmalı
 - II. m sayısının bölünebildiği bütün asal sayılara a-1 de bölünebilmelidir.
 - III. Eğer m dörde bölünüyorsa a-1 de 4'e bölünebilir.
- Önceki örnekte
 - 5 ve 3 asal olduğu için şart (I),
 - m=16 olduğundan 16 sadece 2 asal sayısına bölünür ve a-1=5-1=4 de 2 ye bölünür(şart II).
 - 16 dörde bölünmekte ve a-1 de dörde bölünmektedir (şart III).
- Bütün şartlar sağlandığı için tam periyoda sahiptir.
- Bir bilgisayar uygulaması, bu algoritmayı donanım aşamasında ele alır.
 Çünkü, işlemler hesaplama ve hız odaklıdır.
- İşlem makineye shiftregister kullanılarak yaptırılır.
- *m*, 2'nin kuvveti şeklinde alınır.

TEKDÜZE DAĞITIMLI RASTGELE SAYILAR

Örnek: Önceki örnekteki problemi düşünelim. Değişkenler a=5, c=3, ve m = $16=2^4$. Dolayısıyla LCG 4-bit shiftregister ile tam sayıları gösterebilir.

$$R = [r_{-1} \quad r_{-2} \quad r_{-3} \quad r_{-4}].$$

Register içeriği 4 bit olacaktır.

 $Z_6 = 5$ olduğundan R:[0101] dir

$$Z_7$$
'yi elde etmek için $5Z_6 + 3 = R$: [1 1100] = 28

Burada baştaki 1 shift-register 4 bit olduğundan kaybedilir.

$$28 \mod(16) = 12 = R: [1100]$$

R←5R+3: [1 1 1 1] elde edilir Z8=15 olur.

İkili nokta uygulandığında $(0.1100)_2 = 0.75$

- Gerçek bilgisayarlarda farklı ölçüde üreteçler vardır.
- IBM'in RANDU üreteçleri, $a=2^{16}+3$, c=0 ve $m=2^{31}$ sahiptir.

Üreteçlerin İstatistiksel Özellikleri

- Donanım hesaplanabilirliği için seçilen mod işlemi ve geniş bir periyoda sahip olmanın yanı sıra bir U[0,1] üreteci istatistiksel anlamda iyi davranmalıdır.
- Şu iki özelliğin sağlanması önemlidir:
 - Üreteç tekdüze olmalı: Herhangi bir L uzunluk aralığında oluşan sayıların miktarı, diğer bir L uzunluk aralığında oluşan miktara yakın olmalı.
 - Dizi bağımsız olmalı: Özellikle, herhangi bir sayı bir sonrakine etkisini göstermemelidir. Aksi halde dizi boşluk veya gruplama eğilimi gösterir.
- Üreteçleri test etmek için teorik ve deneysel araçlar vardır.
- Birinci özelliği test etmek için chi-square (Ki-Kare) testi uygulanır.
- Ki-Kare testi; beklenen frekans değerler ile gözlenen frekans değerlerinin karşılaştırılıp, aradaki uyuma bakılmasıdır.

Frekans Dağıtım Tablosu						
Aralık sayısı k	Aralık	Deneysel frekans f_k	Beklenilen frekans e_k			
1	[0,1/m]	f_1	e_1			
2	[1/m, 2/m]	f_2	e_2			
3	[2/m, 3/m]	f_3	e_3			
m	[(m-1)/m,1]	f_m	e_m			

- Bu test için, FDT (Frequency Distribution Table) Frekans Dağıtım Tablosufaydalanılır.
- m rastgele sayı oluşturularak ve her birini bir m sınıfına atayarak $f_1, f_2, \dots f_m$ frekansları çizelgeye geçirilir.
- Her bir sınıf için beklenen $e_k = \frac{n}{m}$ frekansı ile karşılaştırılır.

$$\chi^{2} = \sum_{k=1}^{m} \frac{(f_{k} - e_{k})^{2}}{e_{k}}$$

$$= \frac{m}{n} \sum_{k=1}^{m} (f_k - \frac{n}{m})^2$$

v=m-1 bağımsızlık derecesidir.

Üreteçlerin İstatistiksel Özellikleri

• Örnek: SNAFU olarak isimlendirilen U[0,1] üreteci 100 sayı üretilerek test edilmiş ve frekansları sayılmıştır. Frekans değerleri aşağıda verilmiştir.

$$0.00 \le x < 0.25$$

 $0.25 \le x < 0.50$
 $0.50 \le x < 0.75$
 $0.75 \le x < 1.00$
uniform olup olmadığını bulunuz?

n=100 m=4 sınıf var. n/m=25 sayı her sınıfta olmalıdır. Ki-kare testi ile aşağıdaki gibi bir sonuç elde edilir.

$$\chi^2 = \frac{4}{100}[(21-25)^2 + (31-25)^2 + (26-25)^2 + (22-25)^2] = 2.48,$$

Bağımsızlık derecesi v=4-1=3 χ^2 değeri $\alpha = 95\%\chi_c^2 = 7.81$ (Appendix F) olduğu ki-kare tablosundan bulunabilir.

 $\chi^2 < \chi_c^2$ olduğundan uniform olduğu söylenebilir.

Appendix F THE CHI-SQUARE DISTRIBUTION FUNCTION

Values of x for given 1 - F(x) with ν degrees of freedom

Degrees of freedom v	Complemented distribution, $1 - F(x)$				
	0.10	0.05	0.02	0.01	
1	2.706	3.841	5.412	6.635	
2	4.605	5.001	7.824	9.210	
3	6.251	7.815	9.837	11.341	
4	7.779	9.488	11.688	13.277	
5	9.236	11.070	13.388	15.086	
6	10.645	12.592	15.033	16.812	
7	12.017	14.067	16.622	18,475	
8	13.362	15.507	18.168	20.090	
9	14.684	16.919	19.679	21.666	
10	15.987	18.307	21.161	23.209	
11	17.275	19.675	22.618	24.725	
12	18.549	21.026	24.054	26.217	
13	19.812	22.362	25.472	27.688	
14	21.064	23.685	26.873	29.141	
15	22.307	24.996	28.259	30.578	
16	23.542	26.296	29.633	32.000	
17	24.769	27.587	30.995	33.409	
18	25.989	28.869	32.346	34.805	
19	27.204	30.144	33.687	36.191	
20	28,412	31.410	35.020	37.566	
21	29.615	32.671	36.343	38.932	
22	30.813	22.924	37.659	40.289	
23	32.007	35.172	38.968	45.638	
24	33.196	36.415	40.270	42.980	
25	34.382	37.652	41.566	44.314	
26	35.563	38.885	42.856	45,642	
27	36.741	40.113	44.140	46.963	
28	37.916	41.337	45.419	48.278	
29	39.087	42.557	46.693	49.588	
30	40.256	43.773	47.962	50.892	

TEKDÜZE OLMAYAN RASGELE DEĞİŞKENLERİN ÜRETİMİ

- İstatistiksel dağıtımda, isteğe bağlı sayıları oluşturabilmek önemlidir. Bunu yapabilmek için bazı bilinen algoritmalar vardır.
 - Ters Dönüşüm Metodu
 - Ret Metodu
 - Konvolüsyon Metodu

- f(x) olasılık yoğunluk fonksiyonunun verildiğini kabul edelim.
- Amaç f(x) 'ten bir rassal değişken üretmektir.

$$F(x) = \int_{-\infty}^{x} f(x)dx \quad 0 \le F(x) \le 1$$

$$u = F(x) \quad i \text{çin} \quad x = F^{-1}(u) \to ters \text{ fonksiyon}$$

$$u \sim u(0,1)$$

$$u = F(x)$$
 için $x = F^{-1}(u) \rightarrow ters fonksiyon$
 $u \sim u(0,1)$

 $0 \le F(x) \le 1$ dir. F(x) a

dir. F(x) artan bir fonksiyondur.

TERS DÖNÜŞÜM TEKNİĞİ:

• Algoritma:

$$1.u \sim u(0,1) r.d.$$
 üret

$$1.u \sim u(0,1) r.d.$$
 üret $2.x = F^{-1}(u)$ den X r.d.ni ni hesapla

Örnek:

$$x = 4u$$
 $0 \le u < \frac{1}{4}$; yani $\begin{cases} x = 0 & u = 0 \\ x = 1 & u = \frac{1}{4} \end{cases}$

$$u = \int_{0}^{1} \frac{1}{4} dt + \int_{1}^{x} \frac{3}{4} dt = \frac{1}{4} t \Big|_{0}^{1} + \frac{3}{4} t \Big|_{1}^{x} = \frac{1}{4} + \frac{3}{4} x - \frac{3}{4}$$

$$u = \frac{3}{4}x - \frac{2}{4} \Rightarrow x = \frac{4}{3}u + \frac{2}{3}$$

$$x = \frac{4}{3}u + \frac{2}{3}; \frac{1}{4} \le u < 1$$
; buradan
$$\begin{cases} x = 1 & u = \frac{1}{4} \\ x = 2 & u = 1 \end{cases} dir$$

$$F^{-1}(u) = \begin{cases} 4u & 0 \le u < \frac{1}{4} \\ \frac{4}{3}u + \frac{2}{3} & \frac{1}{4} \le u < 1 \end{cases}$$

$$\begin{cases} x = 1 & u = \frac{1}{4} \\ x = 2 & u = 1 \end{cases} dir$$

ALGORİTMA

$$1.u \sim u(0,1)$$

$$2.if \ u < \frac{1}{4} \Rightarrow x = 4u$$

$$3.if \quad u \ge \frac{1}{4} \Rightarrow x = \frac{4}{3}u + \frac{2}{3}$$

4. RETURN

Örnek 2:

Üstel dağılımdan rassal değişken üreten algoritmayı yazın.

$$f(x) = \begin{cases} \frac{-x}{\beta} & x > 0 \\ \frac{1}{\beta} e^{\frac{-x}{\beta}} & x > 0 \end{cases} \qquad \mu = \frac{1}{\beta}$$

$$\sigma^2 = \frac{1}{\beta^2}$$

$$u = F(x) = \int_{0}^{x} \frac{1}{\beta} e^{\frac{-x}{\beta}} = -e^{\frac{-x}{\beta}} \Big|_{0}^{x} = -e^{\frac{-x}{\beta}} + 1$$

$$u = F(x) = 1 - e^{\frac{-x}{\beta}} \Rightarrow$$

$$e^{\frac{-x}{\beta}} = 1 - F(x)$$

$$\frac{-x}{\beta} = \ln(1 - F(x))$$

$$x = -\beta \ln(1 - F(x))$$

$$x = -\beta \ln(1 - u) \text{ veya } x = -\beta \ln(u)$$

Algoritma:

1.
$$u \sim u (0,1)$$

2. $x = -\beta \ln (u)$
3. RETURN

Örnek 2:

Aşağıda verilen olasılık yoğunluk fonksiyonuna uygun rassal değişken üreten algoritmayı ters dönüşüm tekniğiyle çıkarınız

$$f_1(x) = hx$$
 $f_2(x) = h$

$$f_1(x) = hx \quad f_2(x) = h$$

$$f(x) = \begin{cases} hx & 0 \le x \le 1 \\ h & 1 \le x \le 2 \end{cases}$$

A+B=1 olması gerekir.

A+B; f(x) altındaki toplam alandır.

$$\frac{1}{2}.h.1+h.1=1 \Rightarrow \frac{3}{2}h=1 \Rightarrow h=\frac{2}{3}$$
 Üçgen ve kare alanının hesabından h bulunur

$$f(x) = \begin{cases} \frac{2}{3}x & 0 \le x \le 1\\ \frac{2}{3} & 1 \le x \le 2 \end{cases}$$

$$F(x) = \begin{cases} \int_{0}^{x} \frac{2}{3}t dt = \frac{1}{3}x^{2} & 0 \le x \le 1\\ \int_{0}^{1} \frac{2}{3}t dt + \int_{1}^{x} \frac{2}{3}t dt = \frac{1}{3} + \frac{2}{3}(x - 1) & 1 \le x \le 2 \end{cases}$$

$$x = F^{-1}(u) \qquad u = \frac{1}{3}x^2 \Rightarrow x = \sqrt{3u} \qquad 0 \le x \le \frac{1}{3}$$
$$u = \frac{1}{3} + \frac{2}{3}(x - 1) \Rightarrow x = \frac{3}{2}u + \frac{1}{2} \qquad \frac{1}{3} \le u \le 1$$

$$x = F^{-1}(u) = \begin{cases} \sqrt{3u} & 0 \le u \le \frac{1}{3} \\ \frac{3}{2}u + \frac{1}{2} & \frac{1}{3} \le u \le 1 \end{cases}$$

ALGORİTMA

$$1.u \sim u(0,1)$$

$$2.if u < \frac{1}{3} \Rightarrow x = \sqrt{3u}$$

$$2.if u < \frac{1}{3} \Rightarrow x = \sqrt{3u}$$
$$3.if u > \frac{1}{3} \Rightarrow x = \frac{3}{2}u + \frac{1}{2}$$

4. RETURN

Örnek:

Şekilde görülen f(x) fonksiyonundan ters dönüşüm tekniği ile rassal değişken üreten algoritmayı yazınız

$$f(x) = \begin{cases} f_1(x) & 1 \le x \le 2 \\ f_2(x) & 2 \le x \le 4 \end{cases}$$

$$A + B = 1 \Rightarrow \frac{1}{2} \cdot h \cdot 1 + h \cdot 1 = 1 \Rightarrow h = \frac{2}{3} \quad m = \frac{2}{3}$$

$$f_1(x) = m(x - x_1) \Rightarrow f_1(x) = \frac{2}{3}(x - 1)$$

$$f(x) = \begin{cases} \frac{2}{3}(x-1) & 1 \le x \le 2\\ \frac{2}{3} & 2 \le x \le 4 \end{cases}$$

$$F(x) = \begin{cases} \int_{1}^{x} \frac{2}{3}(x-1)dx \\ \int_{1}^{2} \frac{2}{3}(x-1)dx + \int_{3}^{x} \frac{2}{3}dx \end{cases}$$

$$F(x) = \begin{cases} \frac{1}{3} (x^2 - 2x + 1) & 1 \le x \le 2\\ \frac{1}{3} + \frac{2}{3} (x - 3) & 3 \le x \le 4 \end{cases}$$

$$\frac{1}{3}(x^2 - 2x + 1) \rightarrow \begin{cases} x = 1 \Rightarrow & u = 0 \\ x = 2 \Rightarrow & u = \frac{1}{3} \end{cases}$$

$$\frac{1}{3} + \frac{2}{3}(x-3) \rightarrow \begin{cases} x = 3 \Rightarrow & u = \frac{1}{3} \\ x = 4 \Rightarrow & u = 1 \end{cases}$$

$$F(x) = u \Rightarrow x = F^{-1}(u) = x$$

$$F^{-1}(u) = \begin{cases} \sqrt{3u} + 1 & 0 \le u_1 \le \frac{1}{3} \\ \frac{3}{2}u - \frac{1}{2} + 3 & \frac{1}{3} \le u_1 \le 1 \end{cases}$$

ALGORÍTMA

 $1.u \sim u(0,1)$

$$2. if \ 0 \le u < \frac{1}{3} \Rightarrow x = \sqrt{3u} + 1$$

$$2. if \ 0 \le u < \frac{1}{3} \Rightarrow x = \sqrt{3u} + 1$$
$$3. if \ \frac{1}{3} \le u \le 1 \Rightarrow x = \frac{3}{2}u - \frac{1}{2} + 3$$

4. RETURN