Problems in Physics

(with SageMath)

Marcin Kostur, Jerzy Łuczka
Institute of Physics
University of Silesia
Poland

August 26, 2019

Download Juptyer Notebook files, pdf and html files of this book from https://github.com/marcinofulus/Mechanics_with_SageMath

Contents

1	Gia	nt Diffusion in Tilted Periodic Potentials	4
	1.1	Introduction	4
	1.2	Problems	4
	1.3	Langevin equation	6
	1.4	Fokker-Planck equation	6
		1.4.1 Results:	8
	1.5	How to implement SDE on CUDA	8
2	Roc	ked Ratchet (release)	12
	2.1	Introduction	12
	2.2		12
	2.3	Numerical integration of Langevin equation	13
	2.4		16
	2.5	•	17
			17
			18
3		1	20
	3.1	Geometry - "lens"	23
4	Latt	ice Boltzmann Method	26
	4.1	Reynolds number and scaling of equations	26
	4.2		27
	4.3		27
	4.4		27
			27
	4.5		28
	4.6	*	28
	4.7	1	28
	4.8		28
	4.9	1	29
	4.10		29
		±	 30
			30
		1	30
5	Scal	ing, advection-diffusion equation	31
6	LBN		33
	6.1	1	33
	6.2		34
			35
		±	36
			37
	6.3	~	37
			39
	6.4		40
			42
		6.4.2 Time propagation	43

7	Advection-diffusion in 2d				
	7.1	FitzHugh-Nagumo	45		
	7.2	in a function	48		
	7.3	Peclet number	51		

1 Giant Diffusion in Tilted Periodic Potentials

1.1 Introduction

Consider the overdamped motion of particle in the one dimensional periodic potential after the influence of a constant force, described by the following Langevien equation:

$$\dot{x} = f(x) + \sqrt{2D}\xi(t),$$

where:

- f(x) = -U'(x) and the potential is $U(x) = \sin(x) - Fx - xi(t)$ - white Gaussian noise with mean zero and $\langle \xi(t)\xi(s) \rangle = \delta(t-s)$ correlation function - D is the thermal diffusion of $D = kT/\gamma$ (in this case we have $\gamma = 1$)

We want to obtain an effective coarse grained coefficient

$$D_{eff} = \lim_{t \to \infty} \frac{\langle (x(t) - m(t))^2 \rangle}{t}$$

where:

- $m(t) = \langle x(t) \rangle$ - averaging is over the implementation of the system (trajectories) This system shows the phenomenon of D_{eff} growth in the $D \to 0$ boundary

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.010602

1.2 Problems

- 1. Implement the Euler-Maruyama scheme link for the above stochastic equation for CUDA.
- 2. Implement a scheme based on finite differences and explicit integration in time solving the Fokker-Planck equation for CUDA.
- 3. Recreate, for example, Figure 1 from [PhysRevLett.87.010602] (https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.010602) for each method.

```
In [1]: %matplotlib inline
    import numpy as np
    import matplotlib.pyplot as plt
    import sympy
    import time

In [2]: from sympy.codegen.ast import real, float32, float64
    from sympy.codegen.ast import Declaration, Variable, Pointer

    var = lambda x,p:sympy.ccode(Declaration(Variable(sympy.Symbol(x), type=p)))
    pvar = lambda x,p:sympy.ccode(Declaration(Pointer(sympy.Symbol(x), type=p))))
```

```
In [3]: precision = float32
        if precision == float64:
            np_prec = np.float64
        if precision == float32:
            np\_prec = np.float32
        def make_U_f(precision=float32):
            x = sympy.Symbol('x')
            U = sympy.sin(x) - 1.*x
            f = -sympy.diff(U, x, 1)
            U_lamb = sympy.lambdify([x, ], U, 'numpy')
            f_lamb = sympy.lambdify([x, ], f, 'numpy')
            f_code = sympy.ccode(f,type_aliases={real: precision})
            return U_lamb,f_lamb,f_code,var("",precision),pvar("",precision)
        U, f, f_code,fp,pfp = make_U_f(precision=precision)
        x = np.linspace(-7,7,100)
        plt.figure()
        plt.plot(x,U(x))
        plt.show()
        print(f_code,fp,pfp)
```



```
-cosf(x) + 1.0F float float *

In [4]: print(f_code,fp,pfp)

-cosf(x) + 1.0F float float *

In [5]: print(f([1,2,3]))

[0.45969769 1.41614684 1.9899925 ]
```

1.3 Langevin equation

1.4 Fokker-Planck equation

```
In [8]: import time
    import numpy as np

x1,x2 = -2*np.pi,30*np.pi

s = int((x2-x1)/(2*np.pi))
    N = s*250 # space discretization
```

39.04291105270386 16.392220322302983 M iterations/sek

```
h = (x2-x1)/(N-1)
                       total_t = nsteps*dt # from prev. sim!
                      Nsteps = 1000*int(total_t)
                       X = np.linspace(x1, x2, N+1)[:-1]
                       t = np.linspace(0,total_t,Nsteps)
                      dt = t[1] - t[0]
                      print( "N =",N,"dt =",dt,'Nsteps =',Nsteps)
                      F = f(X)
                      u = np.zeros(N)
                       i0 = np.where(np.isclose(X,0))[0][0]
                       u[i0:i0+1] = 1.0/h
                       every = 100
                       Tlst = []
                       tm = time.time()
                       for i in range(Nsteps):
                                  At = 1.0
                                  if i%every == 0:
                                             Tlst.append(u.copy())
                                  u[1:-1] = u[1:-1] + dt*(-np.gradient(F*u)[1:-1]/h + Dyf/h**2*np.diff(u,2))
                                   \#u[-1] = u[-1] + dt*(-At*(F[0]*u[0]-F[-2]*u[-2])/(2*h) + Dyf/h**2*(u[-2]+u[0]-F[-2]*u[-2])/(2*h) + Dyf/h**2*(u[-2]+u[0]-F[-2]*u[-2]*u[-2])/(2*h) + Dyf/h**2*(u[-2]+u[0]-F[-2]*u[-2]*u[-2])/(2*h) + Dyf/h**2*(u[-2]+u[0]-F[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2]*u[-2
                       tm = time.time()-tm
                       print ("Saved ",len(Tlst), " from ", Nsteps, "h= ",h)
                       print( tm, "s")
N = 4000 dt = 0.001000004000016 Nsteps = 250000
Saved 2500 from 250000 h= 0.02513902598521465
20.215567350387573 s
Now we can compute histograms of particle positions:
In [9]: hist_cpu,xs = np.histogram(x, np.linspace(0,100,1300), normed=True)
                      xs = (xs[1:]+xs[:-1])/2
In [10]: plt.figure(figsize=(12,4))
```

plt.plot(X,u)

```
plt.plot(xs,hist_cpu)
plt.ylim(0,.4)

ax = plt.gca()
fig = plt.gcf()
import matplotlib.ticker as tck
ax.xaxis.set_minor_locator(tck.MultipleLocator(base=np.pi))
ax.xaxis.set_major_locator(tck.MultipleLocator(base=2*np.pi))
ax.xaxis.set_major_formatter(tck.FuncFormatter(lambda x,pos: '%g $\pi$'%(x/(np.pi))
plt.show()
```


1.4.1 Results:

Averages calculated from the P(x) (u) distribution:

```
In [11]: print ('t=',dt*Nsteps,"v =", np.sum(X*u)*h/(dt*Nsteps), " Deff =",(h*np.sum((X-np)))
t= 250.00100000400002 v = 0.17097442883440386 Deff = 0.18405249503901214
```

Means after particles from the simulation of Langenvin equation:

1.5 How to implement SDE on CUDA

```
import pycuda
         cuda.init()
         device = cuda.Device(0)
         ctx = device.make_context()
         code = """
         #include <curand_kernel.h>
         extern "C" {
             __global__ void setup_kernel(curandState *state)
                 int id = threadIdx.x + blockIdx.x * blockDim.x;
                 curand_init(1234, id, 0, &state[id]);
             }
         __global__ void step_sde(curandState *state, %(pf)s x_global)
                 int idx = threadIdx.x + blockIdx.x * blockDim.x;
                 %(f)s x = x_global[idx];
                 curandState localState = state[idx];
                 x = curand_normal(&localState);
                 state[idx] = localState;
                 x_global[idx] = x;
         }
         """%{'fx':f_code,'dt':dt,'f':fp,'pf':pfp}
         block_size = 128
         N = 1000*block_size
         mod = SourceModule(code, no_extern_c=True)
         setup_kernel = mod.get_function("setup_kernel")
         step_sde = mod.get_function("step_sde")
         print(code)
#include <curand_kernel.h>
extern "C" {
    __global__ void setup_kernel(curandState *state)
        int id = threadIdx.x + blockIdx.x * blockDim.x;
```

from pycuda import gpuarray
import pycuda.driver as cuda

```
curand_init(1234, id, 0, &state[id]);
    }
__global__ void step_sde(curandState *state, float * x_global)
        int idx = threadIdx.x + blockIdx.x * blockDim.x;
        float x = x_global[idx];
        curandState localState = state[idx];
        x = curand_normal(&localState);
        state[idx] = localState;
        x_global[idx] = x;
}
}
In [14]: # 7s for 1mln generators
         rng_states = cuda.mem_alloc(N*pycuda.characterize.sizeof('curandState', '#include'
         setup_kernel(rng_states, block=(block_size,1,1), grid=(N//block_size,1))
         %time ctx.synchronize()
CPU times: user 14.9 ms, sys: 7.96 ms, total: 22.8 ms
Wall time: 22.8 ms
In [15]: x = gpuarray.zeros(N, dtype=np_prec)
In [16]: x.dtype
Out[16]: dtype('float32')
In [17]: step_sde(rng_states, x, block=(block_size,1,1), grid=(N//block_size,1,1))
         %time ctx.synchronize()
CPU times: user 193 ts, sys: 7 ts, total: 200 ts
Wall time: 149 ţs
In [18]: x.get()[:6]
Out[18]: array([ 0.7809736 , -0.2808486 , -1.0113329 , 1.4583255 , -0.1485764 ,
                -0.00414821], dtype=float32)
```


2 Rocked Ratchet (release)

2.1 Introduction

Consider overdamped motion in one dimensional periodic potential dependent explicitely on time:

$$\dot{x} = f(x, t) + \sqrt{2D}\xi(t),$$

where:

- f(x) = -U'(x) and the potential is:

$$U(x) = -\frac{1}{2\pi}(\sin(2\pi x) + \frac{1}{4}\sin(4\pi x) + xA\sin(\omega t)$$

- $\xi(t)$ - white Gaussian noise with mean zero and $\langle \xi(t)\xi(s)\rangle = \delta(t-s)$ correlation function - D is thermal diffusion $D=kT/\gamma$ (in this case we have $\gamma=1$)

The objective is to calculate the average speed of the molecule in the $v(t) = \lim_{t\to\infty} \langle x(t)/t \rangle$ system. Averaging is over the implementation of the system (trajectories) and over time (note that the system explicitly contains time). One option is to calculate the position of the particle after a long time and calculate $v = \Delta x/\Delta t$ for each particle.

The alternative is to solve the Fokker-Planck equation:

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} \left[f(x, t) P \right] + D \frac{\partial^2 P}{\partial x^2}$$

with periodic boundary condition P(x) = P(x + L), on one period of the system and calculation of speed from the current probability averaged over time (and space):

$$J(x,t) = f(x,t)P - D\frac{\partial P}{\partial x}$$

where $v = \langle J(x,t) \rangle_{x,t} L$.

2.2 Problems

- 1. Implement the Euler-Maruyama scheme [link] (https://el.us.edu.pl/ekonofizyka/index.php/MKZR:St for the above stochastic equation for CUDA.
- 2. Implement a scheme based on finite differences and explicit integration in time solving the Fokker-Planck equation for CUDA.
- 3. Recreate, for example, Figure 1 from [link] (http://www.physik.uni-augsburg.de/theo1/hanggi/Papers/163.pdf) each method.

2.3 Numerical integration of Langevin equation

The first approach to this problem will be to solve numrically Langevin equation. We will present an algorithm which will be based on numpy module.

```
In [1]: %matplotlib inline
        import numpy as np
        import matplotlib.pyplot as plt
        import sympy
        import time
        from ipywidgets import interact, IntSlider
In [2]: from sympy.codegen.ast import real, float32, float64
        from sympy.codegen.ast import Declaration, Variable, Pointer
        var = lambda x,p:sympy.ccode(Declaration(Variable(sympy.Symbol(x), type=p)) )
        pvar = lambda x,p:sympy.ccode(Declaration(Pointer(sympy.Symbol(x), type=p)) )
In [3]: precision = float64
        if precision == float64:
            np_prec = np.float64
        if precision == float32:
            np_prec = np.float32
        def make_U_f(precision=float32, A=0.5, omega=1):
            x = sympy.Symbol('x')
            t = sympy.Symbol('t')
            k = 2*sympy.pi
            U = -1/k*(sympy.sin(k*x) + 1/4*sympy.sin(2*k*x)) + x*A*sympy.sin(omega*t)
            f = -sympy.diff(U, x, 1)
            U_lamb = sympy.lambdify([x,t], U, 'numpy')
            f_lamb = sympy.lambdify([x,t], f, 'numpy')
            f_code = sympy.ccode(f,type_aliases={real: precision})
            return U_lamb,f_lamb,f_code,var("",precision),pvar("",precision)
        omega = 1.0
        U, f, f_code,fp,pfp = make_U_f(precision=precision, A=1.5, omega=omega)
        x = np.linspace(-1.2, 1.2, 100)
```

```
plt.figure()
plt.plot(x,U(x,t=0))
plt.show()
print(f_code,fp,pfp)
```


$$(1.0/2.0)*(2*M_PI*cos(2*M_PI*x) + 1.0*M_PI*cos(4*M_PI*x))/M_PI - 1.5*sin(1.0*t) \ double \$$

Let us prepare numerical values of parameters for the simulation:

```
In [4]: N = 1280

T = 2*np.pi/omega
n_periods = 261
T_end = n_periods*T # integer time period
spp = 1000

dt = T/spp
Dyf = 0.1

a = np.sqrt(2*Dyf*dt)
x = np.zeros(N)
dt,T_end
```

Out[4]: (0.006283185307179587, 1639.911365173872)

Having positions of particles at some given time, we can estimate the probability density function. We will use histogram function included in 'numpy' module. Note, that the option density=True will return normalized probability density instead counts in intervals.

2.4 Numerical solution of Fokker Plank equation

We will numerically solve the Fokker-Plank equation which is an equivalent description of this problem. For this purpose we will use finite differences on regular grid in space and explicit Euler scheme in time.

```
In [8]: import time
        import numpy as np
        T = 2*np.pi/omega
        n_{periods} = 3
        total_t = n_periods*T # integer time period
        spp = 20000
        dt = T/spp
        x1, x2 = 0,1
        N = 100 # space discretization
        h = (x2-x1)/(N-1)
        Nsteps = spp*n_periods
        X = np.linspace(x1, x2, N+1)[:-1]
        t = np.linspace(0,total_t,Nsteps+1)
        dt = t[1] - t[0]
        print( "N=",N,"dt=",dt,'Nsteps=',Nsteps)
        u = np.ones(N)
        tm = time.time()
        every = 100
        ulst = []
        tlst = []
        flst = []
        for i in range(Nsteps):
            F = f(X,i*dt)
            u[1:-1] = u[1:-1] + dt*(-np.gradient(F*u)[1:-1]/h + Dyf/h**2*np.diff(u,2))
```

```
u[0] = u[0] + dt*(-(F[1]*u[1]-F[-1]*u[-1])/(2*h) + Dyf/h**2*(u[-1]+u[1]-2.0*u[u[-1]] = u[-1]] + dt*(-(F[0]*u[0]-F[-2]*u[-2])/(2*h) + Dyf/h**2*(u[-2]+u[0]-2.0*u[u[-1]])/(2*h) + Dyf/h**2*(u[-2]+u[0]-2.0*u[u[-1]])/(2*h) + Dyf/h**2*(u[-2]+u[0]-2.0*u[u[-1]])/(2*h) + Dyf/h**2*(u[-2]+u[0]-2.0*u[u[-1]])/(2*h) + Dyf/h**2*(u[-2]+u[0]-2.0*u[u[-1]])/(2*h) + Dyf/h**2*(u[-1]+u[1]-2.0*u[u[-1]])/(2*h) + Dyf/h**2*(u[-2]+u[0]-2.0*u[u[-1]])/(2*h) + Dyf/h**2*(u[-2]+
```

2.5 Comparison of results

2.5.1 Probability density function

We will now compare P(x,t) obtained in above algorithm with estimation of density of particles computed from SDE simulation.

2.5.2 Average velocity in the system

We can compare probability flux J(x,t) with average velocity obtained from SDE simulation.

5.46249532699585 s

In [11]: np.mean(Js)

Out[11]: 0.04230393515561565

In [12]: plt.plot(tlst,Js)

Out[12]: [<matplotlib.lines.Line2D at 0x7f1828fb64e0>]

Out[13]: (0.04230393515561565, array([0.00044437, -0.0107466]))

Values are close, but higher precision is required.

3 Wave equation 2d

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

An explicit pattern over time, in 1d:

$$u_i^{j+1} = 2u_i^j - u_i^{j-1} + \frac{\Delta t^2 c^2}{\Delta x^2} \left(u_{i-1}^j + u_{i+1}^j - 2u_i^j \right)$$

- upper index is the time of the bottom space - the scheme is stable for small $\frac{\Delta t^2 c^2}{\Delta x^2}$.

- 1. Implement a similar scheme on CUDA in 2d or 3d,
- 2. Examine the performance and compare with the diagram in numpy.
- 3. Find an interesting example of a system that can be simulated on CUDA.

```
In [1]: %matplotlib inline
        import matplotlib.pyplot as plt
In [2]: import time
        import numpy as np
        from IPython.core.display import display, clear_output
In []:
In [3]: from PIL import Image
        from IPython.core import display
        from io import BytesIO
        from IPython.core.display import clear_output
        def display_pil_image(im):
            """Displayhook function for PIL Images, rendered as PNG."""
            b = BytesIO()
            im.save(b, format='png')
            data = b.getvalue()
            ip_img = display.Image(data=data, format='png', embed=True)
            return ip_img._repr_png_()
        # register display func with PNG formatter:
        png_formatter = get_ipython().display_formatter.formatters['image/png']
        dpi = png_formatter.for_type(Image.Image, display_pil_image)
```

```
def plot_as_im(u,a=-1,b=1):
                                            u = ((u-a)/(b-a))
                                            u[u>b] = b
                                            u[u < a] = a
                                             im = Image.fromarray(np.uint8(255*u))
                                             clear_output(wait=True)
                                            display.display(im)
In [4]: scale = 3
                             N = 140*scale
                             1 = 100.
                             dx = float(1)/(N-1)
                             c = .45
                              c2 = c**2
                             dt = 0.018
                             x = np.linspace(0,1,N)
                             y = np.linspace(0,1,N)
                             X,Y = np.meshgrid(x,y)
                             u = np.zeros((N,N))
                             u0 = np.zeros((N,N))
                             unew = np.zeros((N,N))
                             cx = np.ones_like(u)
                             cx = c2*cx
                              cx[((X-1/2)**2+(Y-73)**2>60**2)*(Y<1/5)+((X-1/2)**2+(Y+33)**2>60**2)*(Y>1/5)] = ((X-1/2)**2+(Y-73)**2>60**2)*(Y>1/5)
                              for i in range(100):
                                             cx[1:-1,1:-1] = cx[1:-1,1:-1] + 0.1*(np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.diff(cx,2,axis=0)[:,1:-1]+np.dif
                             ulst=[u.copy()]
                             T = .30*1/((n+0.25))/scale
                             a,b = -.8,.8 \# min/max for plotting
                             for i in range(12500):
                                            unew[1:-1,1:-1] = 2*u[1:-1,1:-1] - u0[1:-1,1:-1] +
```

```
dt**2 *cx[1:-1,1:-1]/dx**2*(np.diff(u,2,axis=0)[:,1:-1] + np.diff(u,2,axis=1)[
u0=u.copy()
u=unew.copy()

u[0,:] = u[1,:] - dx/dt*(u[1,:]-u0[1,:])
u[-1,:] = u[-2,:] - dx/dt*(u[-2,:]-u0[-2,:])
u[:,0] = u[:,1] - dx/dt*(u[:,1]-u0[:,1])
u[:,-1] = u[:,-2] - dx/dt*(u[:,-2]-u0[:,-2])

u[0,:] = 0.2*np.sin(dt*i/T*2.0*np.pi)

if i%40 == 0:
    ulst.append(u.copy())
    plot_as_im(u,a,b)
```


3.1 Geometry - "lens"

```
for i in range(120):
    c[1:-1,1:-1] = c[1:-1,1:-1] + 0.1*(np.diff(c,2,axis=0)[:,1:-1]+np.diff(c,2,axis=0)]
plt.imshow(c,origin='upper')
```

Out[7]: <matplotlib.image.AxesImage at 0x7f6a75d79518>

In [8]: plt.plot(c[75,:])

Out[8]: [<matplotlib.lines.Line2D at 0x7f6a75bef208>]

4 Lattice Boltzmann Method

Lattice Boltzmann methods (LBM) is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes.

4.1 Reynolds number and scaling of equations

Navier Stokes equations for incompressible fluid read:

$$\rho\left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u}\right) = -\vec{\nabla}p + \eta \Delta \vec{u}.$$

$$\vec{u}^* = \frac{\vec{u}}{u_0}, x^* = \frac{x}{l}, p^* = \frac{p}{\rho u_0^2}$$

In two dimensions:

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = -\frac{\partial p}{\partial x} + \eta\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) \tag{1}$$

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial y} + \eta\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) \tag{2}$$

$$\vec{u} = (u, v)$$

We have:

$$\tau = \frac{l}{u_0}, \text{ wic } t^* = \frac{t}{\tau} = \frac{tu_0}{l}$$

$$\vec{u} = \vec{u}^* u_0; x = x^* l; p = p^* \rho u_0^2; t = t^* \frac{l}{u_0}$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial (\frac{l}{u_0} t^*)} = \frac{u_0}{l} \frac{\partial}{\partial t^*}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial (x^* l)} = \frac{1}{l} \frac{\partial}{\partial x^*}$$

$$\rho\left(\frac{u_0^2}{l}\frac{\partial \vec{u}^*}{\partial t^*} + \frac{u_0^2}{l}(\vec{u^*}\cdot\nabla^*)\vec{u^*}\right) = -\frac{1}{l}\vec{\nabla}(p^*\rho u_0^2) + \eta\frac{u_0}{l^2}\Delta\vec{u}.$$

$$\frac{\partial \vec{u}^*}{\partial t^*} + (\vec{u^*} \cdot \nabla^*) \vec{u^*} = -\vec{\nabla} p^* + \frac{\eta}{\rho l u_0} \Delta \vec{u^*}.$$

4.2 Reynolds number

We are introducing a new variable: $\frac{1}{Re} = \frac{\eta}{\rho l u_0}$

$$Re = \frac{\rho l u_0}{\eta}$$

- η - dynamic viscosity - $\nu = \frac{\eta}{\rho}$ - kinematic viscosity

$$Re = \frac{lu_0}{v}$$

4.3 Viscosity

- η - dynamic viscosity $[Pa \cdot s]$ - $\nu = \frac{\eta}{\rho}$ - kinematic viscosity $[\frac{m^2}{s}]$ - interpretation - velocity diffusion constant Navier-Stokes equation:

$$\frac{\partial \vec{u}^*}{\partial t^*} + (\vec{u^*} \cdot \nabla^*) \vec{u^*} = -\vec{\nabla} p^* + \frac{1}{Re} \Delta \vec{u}.$$

4.4 Boltzmann equation

Kinetic description of gases.

We have the

$$f(\vec{x}, \vec{p})$$

function

Interpretation:

$$f(\vec{x}, \vec{p})dxdydzdp_xdp_ydp_z$$

- is the number of molecules in about shoots and positions in the volume $dxdydzdp_xdp_ydp_z$ The Boltzmann equation describes the evolution of this function over time:

$$\frac{\partial f}{\partial t} + (\vec{v} \cdot \vec{\nabla})f + m(\vec{F} \cdot \vec{\nabla}_v)f = \Omega(f)$$

4.4.1 Bhatnagar-Gross-Krook (BGK) approximation

$$\Omega(f) = -rac{1}{ au}(f - f_{eq})$$

4.5 Equilibrium function

$$f_{eq}(\vec{v}) = \left(\frac{m}{2\pi k_B T}\right)^{d/2} e^{-\frac{m(\vec{v} - \vec{u})^2}{2k_B T}}$$

- \vec{v} - local speed - \vec{u} - macroscopic speed

4.6 The Lattice Boltzmann Equation

Równanie Boltzmana na siatce przestrzennej z niewielk liczb wektorów prdkoci.

$$f_i(\vec{x} + \vec{c}_i \Delta t, t + \Delta t) = f_i(\vec{x}, t) - \frac{\Delta t}{\tau} (f_i - f_i^{eq})$$

$$f_i^{eq}(\vec{x}, t) = \rho w_i \left(1 + \frac{\vec{u} \cdot \vec{c}_i}{c_s^2} + \frac{(\vec{u} \cdot \vec{c}_i)^2}{2c_s^4} - \frac{\vec{u} \cdot \vec{u}}{2c_s^2} \right)$$

$$\nu_{LB}=c_s^2(\tau-\frac{1}{2})$$

4.7 Collision and Streaming

Równanie:

$$f_i(\vec{x} + \vec{c}_i \Delta t, t + \Delta t) = f_i(\vec{x}, t) - \frac{\Delta t}{\tau} (f_i - f_i^{eq})$$

moe byc przedstawione jako dwa kroki

1. Kolizja (collition):

$$f_i^*(\vec{x},t) = f_i(\vec{x},t) - \frac{\Delta t}{\tau} (f_i(\vec{x},t) - f_i^{eq}(\vec{x},t))$$

2. Propagacja (streaming):

$$f_i(\vec{x} + \vec{c}_i \Delta t, t + \Delta t) = f_i^*(\vec{x}, t)$$

4.8 The Lattice Boltzmann Equation

Boltzman equation on a spatial grid with a small number of velocity vectors.

$$f_i(\vec{x} + \vec{c}_i \Delta t, t + \Delta t) = f_i(\vec{x}, t) - \frac{\Delta t}{\tau} (f_i - f_i^{eq})$$

$$f_i^{eq}(\vec{x},t) = \rho w_i \left(1 + \frac{\vec{u} \cdot \vec{c}_i}{c_s^2} + \frac{(\vec{u} \cdot \vec{c}_i)^2}{2c_s^4} - \frac{\vec{u} \cdot \vec{u}}{2c_s^2} \right)$$

$$\nu_{LB}=c_s^2(\tau-\frac{1}{2})$$

4.9 Relaxation

Relaxation introduces diffusion.

$$f_i(\vec{x} + \vec{c}_i \Delta t, t + \Delta t) = f_i(\vec{x}, t) - \omega (f_i - f_i^{eq})$$

- $\omega=0$ - no relaxation - $\omega<1$ - monotonic relaxation towards f^{eq} - $\omega=1$ - complete relaxation - $f\to f^{eq}$ - $\omega>1$ - "overrelaxation" we subtract more than "need" f^{eq} , oscillations - $\omega=2$ - loss of stability

4.10 The Lattice Boltzmann Equation

Boltzman equation on a spatial grid with a small number of velocity vectors.

$$f_{i}(\vec{x} + \vec{c}_{i}\Delta t, t + \Delta t) = f_{i}(\vec{x}, t) - \frac{\Delta t}{\tau} (f_{i} - f_{i}^{eq})$$

$$f_{i}^{eq}(\vec{x}, t) = \rho w_{i} \left(1 + \frac{\vec{u} \cdot \vec{c}_{i}}{c_{s}^{2}} + \frac{(\vec{u} \cdot \vec{c}_{i})^{2}}{2c_{s}^{4}} - \frac{\vec{u} \cdot \vec{u}}{2c_{s}^{2}} \right)$$

$$\nu_{LB} = c_{s}^{2} (\tau - \frac{1}{2})$$

4.11 LBM - lattices: D2Q9 D3Q15 D3Q19

4.12 The Lattice Boltzmann Equation - macro vs. micro

- $\nu_{LB}=c_s^2(\tau-\frac{1}{2})$ - microscopic relaxation and macroscopic viscosity - Moments - zero gives density: $\rho(x,t)=\sum_{i=1}^{i=Q}f_i(x,t)$ - first speed: $\rho(x,t)\vec{u}(x,t)=\sum_{i=1}^{i=Q}f_i(x,t)\vec{c}_i$ - $p_{lu}=c_s^2\rho_{lu}$ - equation of state $(\frac{p}{\rho}=k_BT)$

4.13 LBM Algorithm

Distribution initialization from macroscopic fields

- relaxation for each node - propagation of distribution over the network - I / O, calculation of macroscopic quantities - boundary conditions

```
In [1]: %matplotlib inline
        import numpy as np
        import matplotlib.pyplot as plt
        tau = np.linspace(1e-4,4)
        plt.figure(figsize=(7,6))
        cs2 = 1/1.
        plt.plot(cs2*(tau-0.5),1/tau,'r',label=r'$\omega(\nu)$')
        plt.plot(cs2*(tau-0.5),tau,'b',label=r'$\tau(\nu)$')
        plt.axvline(.0,linestyle='dashed', linewidth=.6,color='black')
        plt.axvline(cs2*0.5,linestyle='dashed', linewidth=.6,color='black')
        plt.axhline(2.,linestyle='dashed', linewidth=.6,color='black')
        plt.axhline(1.,linestyle='dashed', linewidth=.6,color='black')
        plt.ylim(0,5)
        plt.legend()
        plt.xlabel(r'$Dyf,\nu_{LB}$')
        plt.show()
```


5 Scaling, advection-diffusion equation

$$\frac{\partial T}{\partial t} = -\frac{\partial (uT)}{\partial x} + D\frac{\partial^2 T}{\partial x^2}$$

$$u = u^* u_0; x = x^* l; t = t^* \frac{l}{u_0}$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial (\frac{l}{u_0} t^*)} = \frac{u_0}{l} \frac{\partial}{\partial t^*}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial (x^* l)} = \frac{1}{l} \frac{\partial}{\partial x^*}$$

$$\frac{\partial T}{\partial t^*} = -\frac{\partial (u^*T)}{\partial x^*} + \frac{D}{u_0 l} \frac{\partial^2 T}{\partial x^{*2}}$$

$$Pe = \frac{u_0 l}{D}$$

$$\frac{\partial T}{\partial t^*} = -\frac{\partial (u^*T)}{\partial x^*} + \frac{1}{Pe} \frac{\partial^2 T}{\partial x^{*2}}$$

6 LBM model 1d

6.1 Diffusion equation 1d

Let's solve the diffusion equation on the grid using the LBM method with the D1Q2 grid.

$$\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$$

T is a scalar macroscopic quantity (e.g. temperature). $-f^1$ is the number of particles at c=1 and f^2 with c=-1 - the equilibrium function does not depend on speed and is equal to

$$f_i^{eq}(T) = w_i T$$

with $w_i = (1/2, 1/2)$ weights - we consider the 1d grid of x_k points for which $f^i(x_k)$ distributes data in each point - collision operator:

$$-\omega(f-f_{eq})$$

- ω relaxation constant links the microscopic and macroscopic description. It can be shown that for the mesh model to approximate the diffusion equation, the following value must be taken:

$$\omega = \frac{1}{\frac{Dyf}{c_s^2} + 0.5}$$

- c_s has interpretation of the speed of sound on the network and in the case of D1Q2 takes the value 1 - boundary conditions: - consider the reflection at the right end: $f^i(x_{-1}) = f^i(x_{-2})$ for $i \in \{1,2\}$ - and the set value on the right: $f^2(x_0) + f^1(x_0) = T_0$

```
In [1]: %matplotlib inline
        import numpy as np
        import matplotlib.pyplot as plt
        lx = 100
        Tend = 100
        w = np.array([1/2.,1/2.])
        cs2 = 1.0
        c = np.array([1,-1])
        def f_eq(T,w):
            return w[:,np.newaxis]*T
        Dyf = 9.5
        omega = 1/(Dyf + 0.5)
        Tw = 1.0
        T_init = 0*np.ones(lx)
        f = f_eq(T_init,w)
        x = np.linspace(0,lx-1,lx)
```

```
T_lst = [T_init]
        for iteration in range(Tend):
            f[0,0] = Tw - f[1,0]
            # symetryczne odbicie (lub bounce-back ponizej)
            #for i,k in enumerate(c):
               f[i,-1] = f[i,-2]
            T = np.sum(f,axis=0)
            fOut = f - omega * (f-f_eq(T,w))
            #bounce back
            fOut[0,-1], fOut[1,-1] = f[1,-1], f[0,-1]
            for i,k in enumerate(c):
                f[i,:] = np.roll(fOut[i,:],k,axis=0)
            if iteration%1==0:
                T_lst.append( T )
        print("omega=",omega,"Dyf=",Dyf)
omega= 0.1 Dyf= 9.5
```

6.2 Analysis of solutions

As a result of the above code, we received a time evolution of f_1 and f_2 for $t \in (0, 100)$. In the table T_1st we have a record of all steps. We can draw the last of them on the chart:

Note - the artifact at the ends results from the fact that the stream is rolled periodically (" roll"). The actual values of the T field on the edge are given by the boundary condition.

6.2.1 Distributions

What do the $f_1(x)$ and $f_2(x)$ distributions look like in 100 steps?

Note that in balance we have:

$$f_1 = \frac{1}{2}Tf_2 = \frac{1}{2}T$$

From this it follows that the difference between distributors is proportional to how far the system is from equilibrium. For $\omega = 0.1$, the state of the system is clearly far from balance.

Investigate how it will look for larger ω (change Dyf)

6.2.2 Numerical reference solution of the diffusion equation

plt.xlim(0,None)

```
In [4]: dt = 1.0/20
        dx = 1.0
        nt = int(Tend/dt)
        u0 = np.zeros(lx)
        \#x = np.linspace(0,2,nx)
        print(nt*dt)
        u = u0.copy()
        for n in range(nt):
             u[1:-1] = u[1:-1] + Dyf*dt/dx**2*np.diff(u,2) #(u[2:]-2*u[1:-1]+u[:-2]) 
            u[0] = Tw
            u[-1] = u[-2]
100.0
In [5]: plt.figure()
        plt.plot(x,u,label='FDM@dt=%0.4f'%dt)
        plt.plot(x,T,label='LBM D1Q2')
        plt.ylim(0,Tw)
```

plt.legend()
plt.show()

6.2.3 Analysis of results

For the parameter Dyf = 9.5

Comparing the exact numerical solution with the solution obtained by the LBM method, we can see that there were discrepancies. It should be noted that

- the LBM model made 100 time steps on a 100-node grid. This means that with such parameters, the network model was practically unable to "penetrate" x=100. - distribution value analysis shows that with these parameters the model works at the low relaxation constant ω regime and therefore at every point the system is relatively far from equilibrium. The accuracy of BGK approximation assumes that we are close to balance. - The numerical model becomes stable for a time step by an order of magnitude smaller than the step of the LBM model (i.e. $\Delta t=1$)

6.3 Model D1Q3

We will perform calculations by adding a zero vector to the set of velocity vectors. It should be changed:

- $c_s^2 = \frac{1}{3}$ sound speed - determine new weights in equilibrium function - adjust the boundary condition to the new f_i set - if we use bounce-back then only the Dirichlet condition T(x=0)=1.

```
In [6]: #D1Q3 ()
        import numpy as np
        import matplotlib.pyplot as plt
        lx = 100
        w = np.array([4/6., 1/6., 1/6.])
        cs2 = 1/3.0
        c = np.array([0,1,-1])
        def f_eq(T,w):
            return w[:,np.newaxis]*T
        omega = 1/(3*Dyf+0.5)
        Tw = 1
        T_{init} = 0*np.ones(lx)
        f = f_eq(T_init,w)
        T_lst = [T_init]
        for iteration in range(Tend):
            f[1,0] = 1/3.0*Tw - f[2,0]
            f[0,0] = Tw*2/3.0
            #for i,k in enumerate(c):
            # f[i,-1] = f[i,-2]
            T = np.sum(f,axis=0)
            fOut = f - omega * (f-f_eq(T,w))
            # bounce back
            fOut[1,-1],fOut[2,-1] = f[2,-1],f[1,-1]
            for i,k in enumerate(c):
                f[i,:] = np.roll(fOut[i,:],k,axis=0)
            if iteration%1==0:
                T_lst.append( T )
        print(omega,Dyf)
0.034482758620689655 9.5
In [7]: plt.figure()
```

```
plt.plot(x,f[0,:],'r')
plt.plot(x,f[1,:],'g')
plt.plot(x,f[2,:],'b')
plt.plot(x,np.sum(f,axis=0),'k-.')
plt.show()
```


6.3.1 Solution of the D1Q3 model

Note - the analysis of the solution shows that the boundary condition is not correctly set (although the residue for x > 0 is small). It should be noted that for D = 9.5 the model is far from equilibrium and in x = 0 we set the equilibrium condition. This is the reason for the discrepancy. This can be improved, e.g. by bringing the model closer to balance by scaling what is done below.

```
plt.plot(np.linspace(0,100-1,lx),T_lst[-1],'r-',label='LBM D1Q3@n=%d'%lx)
res = res_D1d(T_lst[-1],T_lst[-2])
plt.plot(np.linspace(0,100-1,lx)[1:-1],100*res,label='residuum x 100')
plt.ylim(0,Tw)
plt.xlim(0,None)
plt.legend()
plt.show()
```


In []:

6.4 Scaling

Scaling $t = t^*\tau$; $x = x^*l_0$ leads to the equation:

$$\frac{\partial T}{\partial t^*} = D \frac{\tau}{l_0^2} \frac{\partial^2 T}{\partial x^{*2}}$$

So in scaled units we have:

$$D_{lu} = D \frac{\tau}{l_0^2}$$

From this it follows that we can lower 2x the diffusion constant in D_{lu} network units (and thus incur the relaxation parameter) in two ways:

- reducing the time step twice - reducing the number of nodes by $\sqrt{2}$

```
In [10]: #D1Q3 ()
         import numpy as np
         import matplotlib.pyplot as plt
         def solve_diff(a=1,b=1,Dyf = 9.5,time_evo=False):
             lx = int(100/np.sqrt(a))
             x = np.linspace(0,99-1,lx)
             w = np.array([4/6., 1/6., 1/6.])
             cs2 = 1/3.0
             c = np.array([0,1,-1])
             def f_eq(T,w):
                 return w[:,np.newaxis]*T
             omega = 1/(3*Dyf/(a*b)+0.5)
             Tw = 1
             T_init = 0*np.ones(lx)
             f = f_eq(T_init,w)
             #f0_eq = f_eq(np.array([Tw]), w)
             T_lst = [T_init]
             for iteration in range(int(b*Tend)):
                 f[1,0] = 1/3.0*Tw - f[2,0]
                 f[0,0] = Tw*2/3.0
                 #for i,k in enumerate(c):
                 # f[i,-1] = f[i,-2]
                 T = np.sum(f,axis=0)
                 fOut = f - omega * (f-f_eq(T,w))
                 # bounce back
                 fOut[1,-1], fOut[2,-1] = f[2,-1], f[1,-1]
```


6.4.1 Scaling the model

e.g:

-a = 4 means reduce the number of nodes by 2 times -b = 2 means reduce the time step 2 times

```
In [12]: %matplotlib notebook
         import matplotlib.pyplot as plt
         from ipywidgets import interact, Layout
         from ipywidgets.widgets import FloatSlider
         style = Layout(width='70%')
         f,ax = plt.subplots(figsize=(8,5))
         ax.plot(np.linspace(0,99,100),u,label='FDM@dt=%0.4f'%dt)
         lbm_plt = ax.plot([0],[0],'ro-')[0]
         f.canvas.draw()
         @interact(a=FloatSlider(min=1e-2,max=100,step=0.001,value=1.,layout=style),\
                  b=FloatSlider(min=1e-2, max=10, step=0.001, value=1., layout=style))
         def _(a,b):
             lbm_plt.set_data(*solve_diff(a=a,b=b))
omega= 0.034482758620689655 steps: 100 size: 100
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
```

6.4.2 Time propagation

```
In [13]: %matplotlib notebook

    from ipywidgets.widgets import IntSlider,Layout
    style = Layout(width='70%')

    x,Tlst = solve_diff(a=4,b=1,time_evo=True)
    f,ax = plt.subplots(figsize=(8,5))

    ax.plot(np.linspace(0,99,100),u,label='FDM@dt=%0.4f'%dt)

    lbm_t_plt = ax.plot([0],[0],'ro-')[0]
    f.canvas.draw()
    @interact(ith=IntSlider(min=0,max=len(Tlst)-1,layout=style))
    def _(ith):
        lbm_t_plt.set_data(x,Tlst[ith])
```

7 Advection-diffusion in 2d

```
In [1]: %matplotlib inline
        import matplotlib.pyplot as plt
        import numpy as np
        from ldc_utils import *
In []:
In [2]: # wersja numpy z indeksowaniem kartezjanskim
        nx = 64
        ny = 54
        Dyf
              = 0.1
        cs2 = 1.0/3.0
        omega = 1. / (Dyf/cs2+0.5) # relaxation parameter
        print(Dyf,omega)
        # weights
        w = np.array([4/9., 1/9., 1/9., 1/9., 1/36., 1/36., 1/36., 1/36.])
        c = [(0,0), (1,0), (0, 1), (-1, 0), (0, -1), (1, 1), (-1, 1), (-1, -1), (1, -1)]
        opp = [c.index((-c_[0],-c_[1])) for c_in c]
        c = np.array(c)
        # numpy version
        \#opp = [np.where(np.all((c == -c_), axis =-1))[0][0] \text{ for } c_i \text{ in } c]
        obst = np.ones((nx,ny)).astype(np.bool)
        obst[1:-1,1:-1] = False
        def f_eq(rho,u,c=c,w=w):
            cu = np.tensordot(c,u,axes=[1,0])
            f = rho * (1 + cu/cs2 + (cu**2)/(2*cs2**2) - np.sum((u**2),axis=0)/(2*cs2))
            return f*w[:,np.newaxis,np.newaxis]
        T_{init_1} = lambda x: (np.exp(-((x[0] - 23)**2+(x[1] - 13)**2)/20.0))
        X,Y = np.mgrid[0:nx,0:ny]
        rho_init = T_init_l([X,Y])
        u_adv = np.zeros((2,nx,ny))
        u_adv[0,:,:] = 0.1
        u_adv[1,:,:] = 0.2
        f = f_eq(rho_init,u_adv,c=c,w=w)
        u_t = []
        for iteration in range(100):
            rho = f.sum(axis=0)
```

```
fOut = f - omega * (f-f_eq(rho,u_adv))
            for i in range(9):
                fOut[i,obst] = f[opp[i],obst]
            #f_new = np.empty_like(f)
            for i,(k,1) in enumerate(c):
                \#k, l = -k, -l
                \# f[i,1:-1,1:-1] = fOut[i,1+k:(nx-1)+k,1+l:(ny-1)+l]
                f[i,:,:] = np.roll(np.roll(fOut[i,:,:],k,axis=0),l,axis=1)
            if iteration%1==0:
                u_t.append( rho.copy() )
0.1 1.25
In [3]: %matplotlib notebook
        import matplotlib.pyplot as plt
        from ipywidgets.widgets import IntSlider
        from ipywidgets import interact, Layout
        style = Layout(width='70%')
        f,ax = plt.subplots(figsize=(8,6))
        #ax.imshow(T_init_l([X,Y]),origin='lower')
        plt_evo = ax.imshow(u_t[1].T,origin='lower',extent=(0,nx,0,ny))
        plt_init = ax.contour(X,Y,T_init_l([X,Y]),colors='r')
        ax.set_aspect(1)
        @interact(ith=IntSlider(min=0,max=len(u_t)-1,layout=style))
        def _(ith):
            plt.title('\%f0\%d'\%(np.sum(u_t[ith]),ith))
            plt_evo.set_array(u_t[ith].T)
            print(np.sum(u_t[ith]))
```

62.831283471430396

7.1 FitzHugh–Nagumo

```
In [4]: import sympy
    a = .1
    b = .4
    d = .31
    fx = lambda u,v: u-u**3 - v + d
    fy = lambda u,v: u-a-b*v

x0,x1 = -2.,2.
    y0,y1 = -2.,2.
    nx,ny = 32*8,32*8
```

```
X,Y = np.mgrid[0:nx,0:ny]
        X = x0 + X*(x1-x0)/(nx-1)
       Y = y0 + Y*(y1-y0)/(ny-1)
        \#X, Y = np.meshgrid(np.linspace(x0, x1, nx), np.linspace(y0, y1, ny))
       Fx,Fy = fx(X,Y),fy(X,Y)
        f,ax = plt.subplots(figsize=(8,6))
        ax.streamplot(X.T,Y.T,Fx.T,Fy.T)
        ax.contourf(X.T,Y.T,np.sqrt(Fx**2+Fy**2).T,np.linspace(.0,3,10))
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
Out[4]: <matplotlib.contour.QuadContourSet at 0x7f8a2f0a4390>
In []:
In [5]: np.max(np.abs(Fx)),np.max(np.abs(Fy))
Out[5]: (8.31, 2.90000000000000004)
In []:
In [6]: %%time
        # wersja numpy z indeksowaniem kartezjanskim
       nx = 100
       ny = 100
       Dyf
             = 0.01
       u0 = 11.0
        cs2 = 1.0/3.0
        omega = 1. / (Dyf/cs2+0.5) # relaxation parameter
        print(Dyf,omega)
        # weights
        w =
              np.array([4/9., 1/9.,1/9.,1/9., 1/36.,1/36.,1/36.,1/36.])
        c = [(0,0), (1,0), (0, 1), (-1, 0), (0, -1), (1, 1), (-1, 1), (-1, -1), (1, -1)]
        opp = [c.index((-c_[0],-c_[1])) for c_in c]
        c = np.array(c)
        # numpy version
```

```
\#opp = [np.where(np.all((c == -c_), axis=-1))[0][0] for c_ in c]
obst = np.ones((nx,ny)).astype(np.bool)
obst[1:-1,1:-1] = False
def f_eq(rho,u,c=c,w=w):
    cu = np.tensordot(c,u,axes=[1,0])
    f = rho * (1 + cu/cs2 + (cu**2)/(2*cs2**2) - np.sum((u**2),axis=0)/(2*cs2))
    return f*w[:,np.newaxis,np.newaxis]
T_{init_1} = lambda x: (np.exp(-((x[0] - .5)**2+(x[1] - .0)**2)/.050))
rho_init = T_init_l([X,Y])
x0, x1 = -2., 2.
y0,y1 = -2.,2.
X,Y = np.mgrid[0:nx,0:ny]
X = x0 + X*(x1-x0)/(nx-1)
Y = y0 + Y*(y1-y0)/(ny-1)
X,Y = np.meshgrid(np.linspace(x0,x1,nx),np.linspace(y0,y1,ny),indexing='ij')
rho_init = T_init_l([X,Y])
rho_init[:] = 1.0
a = .1
b = .4
d = .31
fx = lambda u, v: u-u**3 - v + d
fy = lambda u, v: u-a-b*v
#fx = lambda u, v: 5.1
#fy = lambda u, v: 1.2
u_adv = np.zeros((2,nx,ny))
u_adv[0,:,:] = 1/u0*fx(X,Y)
u_adv[1,:,:] = 1/u0*fy(X,Y)
f = f_eq(rho_init,u_adv,c=c,w=w)
u_t = []
for iteration in range(1550):
    rho = f.sum(axis=0)
    fOut = f - omega * (f-f_eq(rho,u_adv))
    for i in range(9):
        fOut[i,obst] = f[opp[i],obst]
```

```
for i,(k,1) in enumerate(c):
                f[i,:,:] = np.roll(np.roll(fOut[i,:,:],k,axis=0),l,axis=1)
            if iteration%10==0:
                u_t.append( rho.copy() )
0.01 1.8867924528301885
CPU times: user 3.46 s, sys: 2.64 ms, total: 3.46 s
Wall time: 3.46 s
In [7]: %matplotlib notebook
        import matplotlib.pyplot as plt
        from ipywidgets.widgets import IntSlider
        from ipywidgets import interact, Layout
        style = Layout(width='70%')
        f,ax = plt.subplots(figsize=(8,6))
        #ax.imshow(T_init_l([X,Y]),origin='lower')
        plt_evo = ax.imshow(u_t[0].T,origin='lower',extent=(x0,x1,y0,y1),vmax=12.42,cmap='rank'
        plt_init = ax.contour(X,Y,T_init_l([X,Y]),colors='r')
        ax.set_aspect(1)
        @interact(ith=IntSlider(min=0,max=len(u_t)-1,layout=style))
        def _(ith):
            plt.title(r'$\int_V \rho(x,y) dxdy =%f$'%np.sum(u_t[ith]))
            plt_evo.set_array(u_t[ith].T)
In []:
7.2 in a function
In []:
In []:
In [8]: import numpy as np
        def D2Q9_solve_adv_diff(Dyf=0.1,u_adv=(1,1),ic=1.0,Niter=100,time_evo=False):
            HHHH
               numpy with matrix indexing (ij)
            nx,ny = ic.shape
            cs2 = 1.0/3.0
```

```
np.array([4/9., 1/9.,1/9.,1/9., 1/36.,1/36.,1/36.,1/36.])
            c = [(0,0), (1,0), (0, 1), (-1, 0), (0, -1), (1, 1), (-1, 1), (-1, -1), (1, -1)]
            opp = [c.index((-c_[0],-c_[1])) for c_in c]
            c = np.array(c)
            obst = np.ones((nx,ny)).astype(np.bool)
            obst[1:-1,1:-1] = False
            def f_eq(rho,u,c=c,w=w):
                cu = np.tensordot(c,u,axes=[1,0])
                f = rho * (1 + cu/cs2 + (cu**2)/(2*cs2**2) - np.sum((u**2),axis=0)/(2*cs2)
                return f*w[:,np.newaxis,np.newaxis]
            rho_init = np.empty_like( ic )
            if type(a) == np.ndarray:
                rho_init = ic
            else:
                rho_init[:] = ic
            print(np.sum(rho_init))
            f = f_eq(rho_init,u_adv,c=c,w=w)
            u_t = []
            for iteration in range(Niter):
                rho = f.sum(axis=0)
                fOut = f - omega * (f-f_eq(rho,u_adv))
                for i in range(9):
                    fOut[i,obst] = f[opp[i],obst]
                for i,(k,1) in enumerate(c):
                    f[i,:,:] = np.roll(np.roll(fOut[i,:,:],k,axis=0),l,axis=1)
                if (iteration%10==0 and time_evo) or iteration==(Niter-1):
                    u_t.append( rho.copy() )
            return u_t
In [9]: u0 = 11.0
       T_{init_1} = lambda x: (np.exp(-((x[0] - .5)**2+(x[1] - .0)**2)/.050))
       x0, x1 = -2., 2.
       y0,y1 = -2.,2.
```

omega = 1. / (Dyf/cs2+0.5) # relaxation parameter

weights

```
nx = 100
        ny = 100
        X,Y = np.meshgrid(np.linspace(x0,x1,nx),np.linspace(y0,y1,ny),indexing='ij')
        ic = T_init_1([X,Y])
        a = .1
        b = .4
        d = .31
        fx = lambda u,v: u-u**3 - v + d
        fy = lambda u,v: u-a-b*v
        u_adv = np.zeros((2,nx,ny))
        u_adv[0,:,:] = 1/u0*fx(X,Y)
        u_adv[1,:,:] = 1/u0*fy(X,Y)
        %time u_t = D2Q9_solve_adv_diff(Dyf=0.01, u_adv=u_adv, ic=ic, Niter=1000, time_evo=
96.22109249322985
CPU times: user 2.17 s, sys: 3.21 ms, total: 2.18 s
Wall time: 2.18 s
In []:
In [10]: %matplotlib notebook
         import matplotlib.pyplot as plt
         from ipywidgets.widgets import IntSlider
         from ipywidgets import interact, Layout
         style = Layout(width='70%')
         f,ax = plt.subplots(figsize=(8,6))
         \#ax.imshow(T\_init\_l([X,Y]),origin='lower')
         plt_evo = ax.imshow(u_t[0].T,origin='lower',extent=(x0,x1,y0,y1),vmax=.2,cmap='rain
         plt_init = ax.contour(X,Y,T_init_l([X,Y]),colors='r')
         ax.set_aspect(1)
         @interact(ith=IntSlider(min=0,max=len(u_t)-1,layout=style))
         def _(ith):
            plt.title(r'$\int_V \rho(x,y) dxdy =%f$'%np.sum(u_t[ith]))
             plt_evo.set_array(u_t[ith].T)
In []:
In [11]: u_t1 = D2Q9_solve_adv_diff(Dyf=0.01, u_adv=u_adv, ic=ic, Niter=1000, time_evo=True
```

```
96.22109249322985
```

```
In [12]: u_t2 = D2Q9_solve_adv_diff(Dyf=0.01*0.5, u_adv=0.5*u_adv, ic=ic, Niter=2000, time_6
96.22109249322985
In [13]: u_t3 = D2Q9_solve_adv_diff(Dyf=0.01/2, u_adv=u_adv[:,::2,::2], ic=ic[::2,::2], Nite
24.055273123307458
```

7.3 Peclet number

In []:

$$Pe = \frac{uL}{D}$$

```
In [14]: %matplotlib notebook
         import matplotlib.pyplot as plt
         from ipywidgets.widgets import IntSlider
         from ipywidgets import interact, Layout
         style = Layout(width='70%')
         f,(ax1,ax2) = plt.subplots(ncols=2,figsize=(8,6))
         plt_evo1 = ax1.imshow(u_t1[0].T,origin='lower',extent=(x0,x1,y0,y1),vmax=.2,cmap=':
         plt_evo2 = ax2.imshow(u_t3[0].T,origin='lower',extent=(x0,x1,y0,y1),vmax=.2,cmap=':
         ax.set_aspect(1)
         @interact(ith=IntSlider(min=0,max=len(u_t1)-1,layout=style))
         def _(ith):
            plt.title(r'$\int_V \rho(x,y) dxdy =%f$'%np.sum(u_t[ith]))
             plt_evo1.set_array(u_t1[ith].T)
             plt_evo2.set_array(u_t3[int(ith/2)].T)
In []:
In []:
```