NPTEL MOOC, JAN-FEB 2015 Week 3, Module 7

# DESIGN AND ANALYSIS OF ALGORITHMS

**DAGs: Longest paths** 

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

#### Directed Acyclic Graphs

- \* G = (V,E), a directed graph
- \* No cycles
  - \* No directed path from any v in V back to itself
- \* Such graphs are also called DAGs

#### Topological ordering

- \* Given a DAG  $G = (V,E), V = \{1,2,...,n\}$
- \* Enumerate the vertices as {i1,i2,...,in} so that
  - \* For any edge (j,k) in E,
    - j appears before k in the enumeration
- \* Also known as topological sorting

\* Imagine these are courses

\* Edgesare pre-requisites





\* Imagine these are courses

\* Edgesare pre-requisites



#### Longest path in a DAG

- \* Equivalent to finding longest path in the DAG
- \* If indegree(j) = 0, longest\_path\_to(j) = 0
- \* If indegree(k) > 0, longest\_path\_to(k) is

1 + max{ longest\_path\_to(j) } among all

incoming neighbours j of k

#### Longest path in a DAG

- \* To compute longest\_path\_to(k)
  - \* Need longest\_path\_to(j) for all incoming neighbours of k
- \* If j is an incoming neighbour, (j,k) in E
  - \* j is enumerated before k in topological order
- \* Hence, compute longest\_path\_to(i) in topological order

#### Longest path in a DAG

- \* Let i<sub>1</sub>,i<sub>2</sub>,...,i<sub>n</sub> be a topological ordering of V
- \* All neighbours of ik appear before it in this list
- \* From left to right, compute longest\_path\_to(ik) as
  - 1 + max{ longest\_path\_to(ij) } among all
    - incoming neighbours ij of ik
- \* Can combine this calculation with topological sort



















#### Topological ordering with longest path

```
function TopologicalOrderWithLongestPath(G)
 for i = 1 to n
   indegree[i] = 0; LPT[i] = 0
   for j = 1 to n
    indegree[i] = indegree[i] + A[j][i]
 for i = 1 to n
   choose j with indegree[j] = 0
    enumerate j
    indegree[j] = -1
    for k = 1 to n
      if A[j][k] == 1
        indegree[k] = indegree[k]-1
        LPT[k] = max(LPT[k], 1 + LPT[j])
```

#### Topological ordering with longest path

- \* This implementation has complexity is O(n²)
- \* As before, we can use adjacency lists to improve the complexity to O(m+n)

#### Topological ordering with longest path 2

```
function TopologicalOrder(G) //Edges are in adjacency list
  for i = 1 to n { indegree[i] = 0; LPT[i] = 0}
 for i = 1 to n
   for (i,j) in E //proportional to outdegree(i)
     indegree[j] = indegree[j] + 1
 for i = 1 to n
   if indegree[i] == 0 { add i to Queue }
 while Queue is not empty
   j = remove_head(Queue)
   for (j,k) in E //proportional to outdegree(j)
     indegree[k] = indegree[k] - 1
     LPT[k] = max(LPT[k], 1 + LPT[j])
     if indegree \lceil k \rceil == \emptyset  { add k to Queue }
```

#### Summary

- \* Dependencies are naturally modelled using DAGs
- \* Topological ordering lists vertices without violating dependencies
- \* Longest path in a DAG represents minimum number of steps to list all vertices in groups
- \* Note: Computing the longest path with no duplicate vertices in an arbitrary graph is not known to have any efficient algorithm!