

TRUYỀN ĐỘNG MỘT CHIỀU

Nhóm Truyền Động Điện

Viện Điện - Bộ Môn Tự Động Hóa Công Nghiệp

Đc: C9-104, Đại Học Bách Khoa Hà Nội

NỘI DUNG BÀI GIẢNG

- 2.1. Cấu tạo, nguyên lý hoạt động
- 2.2 Mô hình hóa động cơ DC
- 2.3 Đặc tính cơ và các thông số ảnh hưởng đến đặc tính cơ
- 2.4 Khởi động động cơ DC
- 2.5 Các chế độ phanh hãm
- 2.6 Các phương pháp điều khiển tốc độ
- 2.7 Hệ DC 4 góc phần tư
- 2.8 Điều khiển vòng kín hệ DC

www.LearnEngineering.org

Hình 2.1. Cấu tạo động cơ DC

* Quá trình chuyển mạch:

Lực điện từ:

$$F = BlI$$

Sức điện động:

$$e = Blv$$

o Từ cảm:

$$B = \frac{\mu_0 NI}{g}$$

Hình 2.2. Quá trình chuyển mạch và dạng mô men điện từ

* Để giảm độ đập mạch mô men, cần nhiều cuộn dây.

Hình 2.3. Cấu trúc nhiều thanh dẫn để giảm mô men đập mạch

Phản ứng phần ứng.

Hình 2.4. Đường sức từ của động cơ DC khi bỏ qua phản ứng phần ứng

Phản ứng phần ứng

Hình 2.5. Đường sức từ của động cơ DC khi có phản ứng phần ứng

□Chú ý: chổi than luôn đặt ở đường trung tính vật lý.

- * Cực từ phụ:
- Bù phản ứng phần ứng.
- Mắc nối tiếp với phần ứng.

Hình 2.6. Động cơ DC với cực từ phụ

2.2. MÔ HÌNH HÓA

Phương trình động học

Hình 2.7. Sơ đồ tương đương của động cơ DC

2.2. MÔ HÌNH HÓA

Phương trình động học

o Điện áp phần ứng:

$$V_a = R_a I_a + L_a \frac{di_a}{dt} + e_a$$

Sức phản điện động (Back Electromotive Force – back EMF)

$$e_a = K_T \Phi_f \omega_m$$

Mô men điện từ:

$$T_e = K_e \Phi_f I_a$$

Phương trình chuyển động:

$$T_e = J \frac{d\omega_m}{dt} + B\omega_m + T_L$$

Điện áp kích từ

$$U_f = R_f I_f + L \frac{dI_f}{dt}$$

 \square Thực tế: $K_T = K_e = K$

2.2. MÔ HÌNH HÓA

Phương trình động học

Hình 2.8. Mô tả động cơ DC kích từ độc lập

Hình 2.9. Đáp ứng tốc độ của động cơ DC

* Trạng thái xác lập:

$$\begin{cases} V_a = R_a I_a + E_a \\ E_a = K \Phi_f \omega_m \\ T_e = K \Phi_f I_a \end{cases}$$

❖ Phương trình đặc tính cơ điện:

$$\omega_m = \frac{V_a}{K\Phi_f} - \frac{R_a}{K\Phi_f} I_a$$

❖ Phương trình đặc tính cơ:

$$\omega_m = \frac{V_a}{K\Phi_f} - \frac{R_a}{\left(K\Phi_f\right)^2} T_e$$

❖ Độ cứng đặc tính cơ:

$$\beta = \frac{dT_e}{d\omega_m} = -\frac{\left(K\Phi_f\right)^2}{R_a}$$

❖ Độ sụt tốc độ:

$$\Delta\omega_m = \frac{R_a}{\left(K\Phi_f\right)^2} T_e = \frac{R_a}{K\Phi_f} I_a$$

* Tốc độ không tải lý tưởng:

$$\omega_0 = \frac{V_a}{K\Phi_f}$$

Hình 2.10. Đặc tính cơ động cơ DC

Hình 2.11. Đặc tính cơ-điện động cơ DC

❖ Dòng khởi động (Locked Rotor Current)

$$I_{\rm start} = \frac{V_a}{R_a} \approx (8 \div 10) I_{rated}$$

❖ Mô men khởi động (Locked Rotor Torque)

$$T_{start} = K\Phi_f \frac{V_a}{R_a}$$

Hình 2.12. Mô men khởi động (LRT)

Hình 2.13. Dòng khởi động (LRC)

* Ảnh hưởng của điện áp phần ứng

o Giả thiết:

$$R_a = constant$$

 $\Phi_f = constant$

Độ cứng đặc tính cơ:

$$\beta = \frac{dT_e}{d\omega_m} = -\frac{\left(K\Phi_f\right)^2}{R_a} = constant$$

 \circ Tốc độ không tải lý tưởng tỉ lệ với V_a :

$$\omega_0 = \frac{V_a}{K\Phi_f}$$

 \circ Mô men và dòng khởi động tỉ lệ với V_a :

$$T_{start} = K\Phi_f \frac{V_a}{R_a}$$

* Ảnh hưởng của điện áp phần ứng

Hình 2.14. Đặc tính cơ điều chỉnh điện áp phần ứng

* Ảnh hưởng của từ thông kích từ

o Giả thiết:

$$R_a = constant$$

 $V_a = constant$
 $\Phi_f \ kh \hat{o} ng \ bi \ bão \ hòa$

o Độ cứng đặc tính cơ giảm theo từ thông:

$$\beta = \frac{dT_e}{d\omega_m} = -\frac{\left(K\Phi_f\right)^2}{R_a}$$

 Tốc độ không tải lý tưởng tỉ lệ nghịch với từ thông:

$$\omega_0 = \frac{V_a}{K\Phi_f}$$

o Mô men khởi động giảm theo từ thông:

$$T_{start} = K\Phi_f \frac{V_a}{R_a}$$

Dòng khởi động không thay đổi:

$$I_{start} = \frac{V_a}{R_a}$$

❖ Ảnh hưởng của điện trở phần ứng

∘Giả thiết:

$$V_a = constant$$

 $\Phi_f = constant$

 Độ cứng đặc tính cơ giảm khi tăng điện trở:

$$\beta = \frac{dT_e}{d\omega_m} = -\frac{\left(K\Phi_f\right)^2}{R_a + R_{ad}}$$

o Tốc độ không tải lý tưởng không đổi $\omega_0 = \frac{V_a}{K\Phi_f}$

 Mô men và dòng khởi động giảm khi điện trở tăng:

$$T_{start} = K\Phi_f \frac{V_a}{R_a}; I_{start} = \frac{V_a}{R_a}$$

Hình 2.16. Ảnh hưởng của điện trở phần ứng

* Trình tự khởi động:

- o Cấp nguồn kích từ.
- Cấp nguồn phần ứng.
- ☐ Chú ý: động cơ DC luôn có bảo vệ mất kích từ.
- ❖ Các vấn đề khi khởi động trực tiếp:
- Dòng khởi động rất lớn:

$$I_{start} = \frac{V_a}{R_a} \approx (8 \div 10) I_{rated}$$

- Độ giật lớn gây ảnh hưởng đến kết cấu cơ khí.
- Đặc biệt nguy hiểm đối với phụ tải nâng hạ như cầu trục, thang máy.

❖ Biện pháp khắc phục:

- Nối thêm điện trở phần ứng.
- Tăng dần điện áp phần ứng.

❖ Hạn chế dòng khởi động bằng điện trở phần ứng

Hình 2.17. Hạn chế dòng khởi động bằng điện trở

Thời điểm khởi động:

$$I_{start} = \frac{V_a}{R_{\Sigma}} \le 2.5 I_{rated}$$

Khi động cơ đã quay:

$$I_{sw} = \frac{V_a - e_a}{R_{\Sigma i}}$$

* Hạn chế dòng khởi động bằng điện trở phần ứng

Hình 2.18. Họ đặc tính cơ quá trình khởi động

- * Hạn chế dòng khởi động bằng điện trở phần ứng
- ☐ Nhược điểm:
- Kích thước thiết bị lớn.
- o Phát nhiệt mạnh.
- Quá trình chuyển mạch gây xung động dòng điện và mô men lớn.
- Ngày nay rất ít sử dụng trong thực tế.

❖ Bài tập:

- Tìm một động cơ DC bất kỳ trong catalog của hãng ABB hoặc Siemens.
- o Mô tả lại động cơ bằng phần mềm Matlab Simulink.
- So sánh với động cơ có sẵn trong thư viện của Simulink
- Khảo sát đặc tính quá độ của động cơ ở chế độ không tải và đầy tải (đo mô men điện từ hoặc dòng điện phần ứng, tốc độ)
- Tính chọn điện trở phần ứng để khởi động động cơ với 3 cấp. Khảo sát đặc tính khởi động (đo dòng điện phần ứng, tốc độ trong quá trình khởi động).

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

TO BE CONTINUED