

MOSFET - Power, Single N-Channel, Source Down 33, WDFN9 25 V, 0.58 mΩ, 310 A

NTTFSSH0D7N02X

Features

- Advanced Source–Down Package Technology (3.3 x 3.3 mm) with Excellent Thermal Conduction
- Ultra Low R_{DS(on)} to Improve System Efficiency
- Low Q_G and Capacitance to Minimize Driving and Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Switching Frequency DC-DC Conversion
- Synchronous Rectifier

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage	V_{DSS}	25	V	
Gate-to-Source Voltage	V _{GS}	-12/+16	V	
Continuous Drain Current	T _C = 25°C	I _D	310	Α
(Notes 1, 2)	T _C = 100°C		196	
Power Dissipation (Note 1)	T _C = 25°C	P_{D}	87	W
Pulsed Drain Current $T_C = 25^{\circ}C, t_p = 100 \ \mu s$		I _{DM}	1342	Α
Operating Junction and Storage T Range	T _J , T _{stg}	-55 to +150	°C	
Source Current (Body Diode)	Is	146	Α	
Single Pulse Avalanche Energy (N (I _{PK} = 62 A)	E _{AS}	192	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown, they are not constants and are valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 1 in² pad size, 1 oz Cu pad.
- 3. E_{AS} of 192 mJ is based on started T_J = 25°C, I_{AS} = 62 A, V_{GS} = 10 V, 100% avalanche tested.

1

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
05.1/	$0.58 \text{ m}\Omega$ @ V_{GS} = 10 V	010.4
25 V	0.80 mΩ @ V _{GS} = 4.5 V	310 A

N-CHANNEL MOSFET

MARKING DIAGRAM

0D7N02 = Specific Device Code

= Work Week

A = Assembly Location

WL = Wafer Lot

Y = Year

XXXXXX XXXXXX AWLYWW •

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.4	°C/W
Thermal Resistance, Junction-to-Ambient (Note 4)	$R_{\theta JA}$	60	

^{4.} Surface-mounted on FR4 board using a 1 in² pad size, 1 oz Cu pad.

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA	25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	ΔV _{(BR)DSS} / ΔT _J	I _D = 1 mA, Referenced to 25 °C		21		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 20 V			10	μΑ
		V _{DS} = 20 V, TJ = 125 °C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = +16 V			100	nA
ON CHARACTERISTICS				•	-	
Drain-to-Source On Resistance	R _{DS(ON)}	$V_{GS} = 10 \text{ V}, I_D = 24 \text{ A}$		0.51	0.58	mΩ
		V _{GS} = 6 V, I _D = 19 A		0.56	0.65	
		V _{GS} = 4.5 V, I _D = 19 A		0.66	0.80	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 484 \mu A$	1.1		2.0	V
Gate Threshold Voltage Temperature Coefficient	$\Delta V_{GS(TH)}/ \Delta T_J$	$V_{GS} = V_{DS}$, $I_D = 484 \mu A$		-3		mV/°C
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 24 A		190		S
CHARGES, CAPACITANCES & GATE F	RESISTANCE			•		
Input Capacitance	C _{ISS}	V _{GS} = 0 V, V _{DS} = 12 V, f = 1 MHz		3980		pF
Output Capacitance	C _{OSS}			1160		
Reverse Transfer Capacitance	C _{RSS}			124		
Output Charge	Q _{OSS}			22		nC
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DD} = 12 V; I _D = 24 A		25		
		V _{GS} = 6 V, V _{DD} = 12 V; I _D = 24 A		33		
		V _{GS} = 10 V, V _{DD} = 12 V; I _D = 24 A		55		
Threshold Gate Charge	Q _{G(TH)}			5.7		
Gate-to-Source Charge	Q_{GS}			9.7		
Gate-to-Drain Charge	Q_{GD}			4.1		
Gate Plateau Voltage	V_{GP}			2.5		V
Gate Resistance	R_{G}	f = 1 MHz		0.4		Ω
SWITCHING CHARACTERISTICS				•		
Turn-On Delay Time	t _{d(ON)}	Resistive Load,		4		ns
Rise Time	t _r	$V_{GS} = 0/10 \text{ V}, V_{DD} = 12 \text{ V},$ $I_{D} = 24 \text{ A}, R_{G} = 2.5 \Omega$		6		
Turn-Off Delay Time	t _{d(OFF)}	-		26		1
Fall Time	t _f			57		1
SOURCE-TO-DRAIN DIODE CHARAC	TERISTICS					
Forward Diode Voltage	V_{SD}	V_{GS} = 0 V, I_S = 24 A, T_J = 25 °C		0.76	1.2	V
		V _{GS} = 0 V, I _S = 24 A, T _J = 125 °C		0.63		1

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SOURCE-TO-DRAIN DIODE CHARACTERISTICS						
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, I _S = 24 A, dI/dt = 700 A/μs, V _{DD} = 12 V		17		ns
Charge Time	t _a	di/dt = 700 A/μs, V _{DD} = 12 V		10		
Discharge Time	t _b			7		
Reverse Recovery Charge	Q_{RR}	1		58		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current

Figure 5. Normalized ON Resistance vs. Junction Temperature

Figure 6. Drain Leakage Current vs Drain Voltage

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Characteristics

Figure 11. Safe Operating Area (SOA)

Figure 12. Avalanche Current vs Pulse Time (UIS)

TYPICAL CHARACTERISTICS

Figure 13. IDM vs Pulse Width

Figure 14. Transient Thermal Response

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTTFSSH0D7N02X	0D7N02	WDFN9 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

8

0.10 A

Œ

PIN 1

INDICATOR

WDFN9 3.3x3.3, 0.65P

CASE 511EB **ISSUE B**

DATE 21 JUL 2021

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS
 2. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.

 3. DIMENSIONS D1, D2, E1 AND E2 DO NOT
- INCLUDE MOLD FLASH.
- SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

UNIT IN MILLIMETER DIM NOM MIN MAX 0.70 0.75 0.80 0.02 0.00 0.05 А3 0.20 RE b 0.30 b2 0.37 0.47 0.42 D 3.30 3.40 3.20 D1 2.31 2.41 2.51 D2 1.58 1.68 1.78 D3 2.31 2.41 2.51 Е 3.20 3.30 3.40 E1 1.50 1.60 1.70 0.94 1.04 E2 0.84 E3 0.25 0.20 E4 0.35 0.45 0.55 е 0.650 BSC e/2 0.325 BSC k 0.75 REF k1 0.45 REF 0.73 0.93 0.83 L1 0.10 0.20 0.30

0.50

0.60

0.40

L4

A

□ 0 10 B

SEE DETAIL A

FRONT VIEW

TOP VIEW

Ç

5

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX XXXXXX **AWLYWW** XXXX = Specific Device Code

= Assembly Location

= Wafer Lot WI = Year

= Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON08290H	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN9 3.3x3.3, 0.65P		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales