Ecole	Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM) Institut Universitaire de Technologie (Lokossa)	Date	Janvier 2023
Niveau	1ère année Licence Professionnelle Génie civil	Durée	1 heure 30

DEVOIR SURVEILLE DE GEOLOGIE ET CARACTERISATION DES SOLS

Exercice 1

Tracer la courbe Proctor et les courbes de saturation (100% et 90%) dans le cas suivant :

Teneur en eau (%)	6	8	10	12
Densité sèche	2,03	2,11	2,13	2,03

Préciser les références Proctor.

On rappelle l'équation de la courbe de saturation : $\rho_d = \frac{S_r \rho_s}{S_r + w \frac{\rho_s}{\rho_w}}$. Prendre $\rho_s = 2.7 \text{ t/m}^3$

Exercice 2

- 1- Montrer les relations suivantes : $e = \frac{\gamma_s \gamma_d}{\gamma_d} \gamma = \frac{1+w}{1+e} \gamma_s$ et $w_{sat} = \gamma_w \cdot \left(\frac{1}{\gamma_d} \frac{1}{\gamma_s} \right)$
- 2- Un échantillon de sol possède un poids volumique apparent de 18 kN/m^3 et un indice des vides de 0,8. Le poids volumique des particules solides de ce sol étant de 26 kN/m^3 , déterminer la teneur en eau (w), la densité sèche γ_d et le degré de saturation (Sr) sachant que $S_r = \frac{w}{w_{sat}}$
- 3- On prélève dans ce sol un volume de 10 cm³. Déterminer le volume d'air (Va) présent dans l'échantillon.