

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2013

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 24 pages. *Hierdie memorandum bestaan uit 24 bladsye.*

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out question.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord het, merk slegs die eerste poging.
- As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, merk die deurgehaalde antwoord.
- Volgehoue akkuraatheid is DEURGAANS in ALLE aspekte van die memorandum van toepassing.
- Aanvaarding van waardes/antwoorde om 'n problem op te los, is onaanvaarbaar.

1.1.1	x^2-x	-12 = 0		
	(x-4)(x-4)	(c+3)=0	OTE:	✓ factors
	(,, ,)(,	x = 4 or $x = -3$ A	answer only: max 2/3 marks	✓ answer ✓ answer (3)
	$ \begin{array}{ c c } \mathbf{OR} \\ x^2 - x - \end{array} $	12 = 0		(3)
		$\frac{\pm\sqrt{b^2-4ac}}{2a}$		
	= -(-	$\frac{(-1)\pm\sqrt{(-1)^2-4(1)(-12)}}{2(1)}$		✓ substitution into the correct formula
	$=\frac{1\pm\sqrt{2}}{2}$	$\sqrt{49}$		✓ answer
	-	$\frac{2}{\text{or} -3}$ $\frac{x-11=0}{x-1}$		✓ answer (3)
1.1.2 (a)		$x-11 = 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)}}{2(2)}$	NOTE: Wrong formula: $0/4$ marks $2(-11)$	 ✓ correct substitution of b into correct formula ✓ correct substitution of a and c into correct
		$= \frac{5 \pm \sqrt{113}}{4}$ = 3,91 or -1,41	1	formula $ \checkmark \checkmark \frac{5 \pm \sqrt{113}}{4} \text{ OR decimal} $ answers
	OR	NOTE: • Answer only: max 2	D/A marks	(4)
			as $\frac{5 \pm \sqrt{113}}{4}$: 4/4 marks	
			nes after correct surd but nswers: max 4/4 marks	

	$2x^{2} - 5x - 11 = 0$ $x^{2} - \frac{5}{2}x = \frac{11}{2}$	✓ division by 2
	$\left(x - \frac{5}{4}\right)^2 = \frac{11}{2} + \frac{25}{16}$ $\left(x - \frac{5}{4}\right) = \pm \sqrt{\frac{113}{16}}$	$\checkmark \left(x - \frac{5}{4}\right) = \pm \sqrt{\frac{113}{16}}$
	$x = \frac{5}{4} \pm \sqrt{\frac{113}{16}}$ $x = 3.91 \text{or} x = -1.41$	$\checkmark x = \frac{5}{4} \pm \sqrt{\frac{113}{16}}$ $\checkmark \text{answers}$
	OR	(4)
	$2x^{2} - 5x - 11 = 0$ $x^{2} - \frac{5x}{2} - \frac{11}{2} = 0$ $-b \pm \sqrt{b^{2} - 4ac}$	✓ division by 2
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-\left(-\frac{5}{2}\right) \pm \sqrt{\left(-\frac{5}{2}\right)^2 - 4\left(1\right)\left(-\frac{11}{2}\right)}}{2(1)}$ $\frac{5}{2} + \sqrt{\frac{113}{2}}$	✓ subs into correct formula $\frac{5}{2} \pm \sqrt{\frac{113}{4}}$
	$=\frac{\frac{5}{2}\pm\sqrt{\frac{113}{4}}}{2}$	$\checkmark \frac{\frac{5}{2} \pm \sqrt{\frac{113}{4}}}{2}$
	x = 3.91 or $x = -1.41$	✓ answer
1.1.2 (b)	$2x^{3} - 5x^{2} - 11x = 0$ $x(2x^{2} - 5x - 11) = 0$ $x = 0 \text{ or } x = 3.91 \text{ or } x = -1.41$	(4) ✓ factors ✓ answers (2)
	OR $x = 0 \text{or} x = \frac{5 \pm \sqrt{113}}{4}$ NOTE: • Division by x : max $1/2$ • Use quadratic formula to so • Answer only: $2/2$ mark	lve cubic: 0/2 marks
1.1.3	-3(x+7)(x-5)<0	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ critical values $\checkmark x < -7$ $\checkmark x > 5$ $\checkmark \text{ or } / \cup$
	w · , or w / o or w c (30 , 1) o (5 , 30)	→ 01 / ○

OR

(4)

(4)

OR

$$-3(x+7)(x-5) < 0$$
$$(x+7)(x-5) > 0$$

✓ critical values

OR

$$x < -7$$
 or $x > 5$

$$x < -7$$
 or $x > 5$ OR $x \in (-\infty; -7) \cup (5; \infty)$

$$\checkmark x < -7$$
 $\checkmark x > 5$

OR

✓or/∪

NOTE:

In this alternative, award max 3/4 marks since there is no conclusion

NOTE:

If (x + 7)(x - 5) < 0 and get -7 < x < 5: max 2 / 4 marks

NOTE:

If the candidate gives the correct graphical answer but then concludes incorrectly: award max 2 / 4 marks

If the candidate writes x < 5 or x > -7 **OR** $x \in (-\infty; 5) \cup (-7; \infty)$ **OR** award maximum 1/4 marks

If the candidate writes $x \le -7$ or $x \ge 5$ **OR** $x \in (-\infty; -7] \cup [5; \infty)$ award maximum 3/4 marks

If the candidate writes x < -7 or x < 5 as a final answer, award maximum 2/4 marks

If the candidate writes x < -7 x > 5 only (i.e. omits "or") award maximum 3/4 marks.

	1150/	NSS – Wemorandum		
1.2	$y + 2 = x$ and $y = x^2 - x - 10$			
	y+2=x	Note: If candidate makes	✓ substitution	
	$y = (y+2)^2 - (y+2)-10$	a mistake which leads to	Substitution	
	$y = y^2 + 4y + 4 - y - 2 - 10$	both equations being		
	$0 = y^2 + 2y - 8$	LINEAR award maximum 2/6 marks	$\checkmark 0 = y^2 + 2y - 8$	
	0 = (y+4)(y-2)	✓ substitution		
	y = -4 or 2	✓ first unknown	✓ factors ✓ y-values	
	x = -4 + 2 or $x = 2 + 2$		y-values	
	=-2 $=4$		✓✓ x-values	
				(6)
	OR			
	2			
	$y + 2 = x$ and $y = x^2 - x - 10$		✓ substitution	
	$x^2 - x - 10 + 2 = x$			
	$0 = x^2 - 2x - 8$			
	$0 = x^2 - 2x - 8$		$\checkmark 0 = x^2 - 2x - 8$	
	0 = (x-4)(x+2)			
	x = 4 or -2		✓ factors	
	y = 4 - 2 or $y = -2 - 2$		✓ x-values	
	= 2 $= -4$		✓✓ y-values	
				(6)
	OR			
	$y + 2 = x$ and $y = x^2 - x - 10$			
	y = x - 2		✓ substitution	
	$x-2=x^2-x-10$			
	$0 = x^2 - 2x - 8$			
	$0 = x^2 - 2x - 8$		$\checkmark 0 = x^2 - 2x - 8$	
	0 = (x-4)(x+2)			
	x = 4 or -2		✓ factors	
	y = 4 - 2 or $y = -2 - 2$		✓ x-values	
	= 2 $= -4$		✓✓ y-values	
			y-values	(6)
1.3	$3^{2015} + 3^{2013}$			/
	9 ¹⁰⁰⁶			
	$=\frac{3^{2013}(3^2+1)}{3^{2012}}$		$\checkmark 3^{2013} (3^2 + 1)$	
	I -		\checkmark denominator	
	=3(10)			
	= 30		✓ answer	
	OR			(2)
	UN			(3)

$\frac{3^{2015} + 3^{2013}}{9^{1006}}$	
	$\checkmark 3^{2012}(3^3+3)$
$=\frac{3^{2012}\left(3^3+3\right)}{3^{2012}}$	✓ denominator
= 27 + 3	✓ answer
= 30	unswei
	(3)
OR	
Let $x = 3^{2012}$	
$3^{2015} + 3^{2013}$	
9^{1006}	(-2012 - 2 - 2012 -)
$=\frac{3^{2012}.3^3+3^{2012}.3}{3^{2012}}$	$\checkmark 3^{2012}.3^3 + 3^{2012}.3 / 27x + 3x$
$={3^{2012}}$	✓ denominator
27x+3x	✓ answer
$-{x}$	
$=\frac{30x}{}$	(3)
-x	[22]
= 30	[22]

2.1	Given geometric sequence:	7; <i>x</i> ; 63
-----	---------------------------	------------------

$$\frac{I_2}{T_1} = \frac{I_3}{T_2}$$

$$\frac{x}{7} = \frac{63}{x}$$

$$x^2 = 441$$

$$x = \pm 21$$

OR

Given geometric sequence: $7; x; 63 \dots$

$$\frac{T_2}{T_1} = \frac{T_3}{T_2}$$

$$\frac{x}{7} = \frac{63}{x}$$

$$x^2 = 441$$

$$x^2 - 441 = 0$$

$$(x-21)(x+21) = 0$$

 $x = \pm 21$

OR

$$63 = 7r^2$$

$$r^2 = 9$$

$$r = \pm 3$$

$$x = \pm 21$$

If the candidate rounds off early and gets r = 0.67, then $T_{10} = 0.41$:

3/3 marks

$$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2} / \frac{x}{7} = \frac{63}{x}$$

$$\checkmark x^2 = 441$$

✓ both answers

$$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2} / \frac{x}{7} = \frac{63}{x}$$

$$\checkmark x^2 = 441$$

✓ both answers

$$63 = 7r^2$$

$$\checkmark r^2 = 9$$

✓ both answers

(3)

(3)

(3)

(3)

2.2.1
$$r = \frac{10}{15} = \frac{2}{3}$$
$$T_n = ar^{n-1}$$

$$T_n = ar^{n-1}$$

$$T_{10} = 15\left(\frac{2}{3}\right)^{10-1}$$

$$= 2560$$
 or

$$=\frac{2560}{6561} \quad \text{or} \quad 0.39$$

OR

$$r = \frac{10}{15} = \frac{2}{3}$$

Expansion of the series

$$15 + 10 + \frac{20}{3} + \frac{40}{9} + \frac{80}{27} + \frac{160}{81} + \frac{320}{243} + \frac{640}{729} + \frac{1280}{2187} + \frac{2560}{6561}$$
$$T_{10} = \frac{2560}{6561}$$

$$\checkmark r = \frac{2}{3}$$

✓ correct subs into correct formula

✓ answer

$$r = \frac{2}{3}$$

✓ expansion of the series

✓answer

(3)

2.2.2	$S_n = \frac{a(r^n - 1)}{r - 1}$	
	$S_9 = \frac{15\left(\left(\frac{2}{3}\right)^9 - 1\right)}{\frac{2}{3} - 1}$	✓ correct substitution into correct formula
	$= \frac{95855}{2187}$ = 43,83	✓answer (2)
	OR	
	$S_n = \frac{a(1-r^n)}{1-r}$	
	$S_9 = \frac{15\left(1 - \left(\frac{2}{3}\right)^9\right)}{1 - \left(\frac{2}{3}\right)}$	✓ substitution into
	(3)	correct formula
	$= \frac{95855}{2187}$ $= 43,83$	✓answer (2)
2.3.1	$T_{191} = 0$	✓answer (1)
2.3.2	Since the sum of all odd-positioned terms will be zero, need only consider the sum of the even-positioned terms, which form an arithmetic sequence, i.e. the sum of 250 even terms:	
	Omdat die som van al die terme in onewe posisies nul is, slegs nodig om die som van die terme in ewe posisies te oorweeg, wat 'n rekenkundige ry vorm, m.a.w. die som van 250 ewe terme:	
	$S_{500} = \frac{250}{2} \left[2 \left(-\frac{1}{2} \right) + (250 - 1)(1) \right]$	$\checkmark n = 250$ $\checkmark a = -\frac{1}{2} \text{ and } d = 1$
	NOTE: Breakdown: If $n = 500$ with $a = -\frac{1}{2}$ and $d = 1$	✓ substitution into correct formula ✓ answer
	then $S_n = 124 500$: max 2/4 marks	
	OR $S_{500} = \frac{125[2(-1) + 249(2)]}{2}$ = 31000	\checkmark n = 125 \checkmark a = -1 and d = 2 \checkmark subs into correct formula \checkmark answer (4)
	OR	

	$\frac{3}{2} + \frac{5}{2} + $ to 248 terms	✓ n = 248
	$= 124 \left[\frac{3}{2} + \frac{497}{2} \right]$ $= 124 \times 250$ $= 31000$	✓ subs into correct formula ✓ $\frac{3}{2} + \frac{247}{2}$ ✓ answer
	OR	(4)
	$\frac{3}{2} + \frac{5}{2} + \text{to } 248 \text{ terms}$ $= 124[3 + 247]$ $= 124 \times 250$	\checkmark n = 248 \checkmark subs into correct formula \checkmark 3 + 247
	= 31000	✓ answer (4)
	OR Sum = 0 + 4 + 8 +to 125 terms = $\frac{125}{2}$ [0 + (125 - 1)4] = 31000	$ \checkmark n = 125 $ $ \checkmark a = 0 \text{ and } d = 4 $ $ \checkmark \text{ subs into correct formula} $ $ \checkmark \text{ answer} $ (4)
2.4.1	$T_1 = (4(1)-1)^2$ = 3^2 = 9 NOTE: If $k = 1$, $T_1 = 3$: max $1/2$ mark	✓ subs $x = 1$ and $k = 2$ ✓ answer (2)
2.4.2	r = 4x - 1	$\checkmark r = 4x - 1$
	NOTE: -1 < 4x - 1 < 1 0 < 4x < 2 $0 < x < \frac{1}{2}$ Incorrect $r : \max 1/3 \text{ marks}$ If candidate only writes down $4x - 1$ and does nothing else: $0/3 \text{ marks}$	\checkmark -1 < 4x -1 < 1 ✓ answer (3)
	L	[18]

3.1.1	$T = \Lambda n = 7$	√4n
3.1.1	$T_n = 4n - 7$	√ -7
	OR	(2)
	$T_n = -3 + (n-1)(4)$	$\sqrt{-3}$
	"	$\checkmark (n-1)(4)$
2 1 2		(2)
3.1.2	$T_4 = 9$	✓ any TWO consecutive answers
	$T_5 = 13$	correct
	$T_6 = 17$	✓ last TWO answers
	$T_7 = 21$	correct
2.1.2		(2)
3.1.3	0;1;2;0;1;2;0	2 marks for all 7 correct
		OR 1 mark for only first / last
		3 correct
		OR
		0 marks if less than 3
		correct
3.1.4	Multiples of 2 in the nottons and 2 . 0 . 21	(2)
3.1.4	Multiples of 3 in the pattern are: $-3;9;21$	
	$T_n = -3 + 12(n-1)$ $T_n = a + (n-1)d$	
	$T_n = 12n - 15 393 = -3 + (n-1)(12)$	$\checkmark 12n-15$
	$393 = 12n - 15 \qquad \text{or} \qquad 393 = 12n - 15$	$\checkmark 393 = 12n - 15$
	12n = 408 12n = 408	(24
	n = 34 $n = 34$	✓ <i>n</i> = 34
	$S_n = \frac{n}{2}[a+L]$ $S_n = \frac{n}{2}[2a+(n-1)d]$	
	$\int_{0}^{\infty} \frac{1}{2} \left[\frac{2u + u}{2} \right]$	\checkmark subs $a = -3$ and $d = 12$
	$S_{34} = \frac{34}{2}[-3+393]$ or $S_{34} = \frac{34}{2}[2(-3)+33(12)]$	into correct formula
	$S_{34} = 6630$ $S_{34} = 6630$	
	34	$\checkmark S_{34} = 6630$
	NOTE:	
	If the candidate does not show the working to get to	(5)
	n = 34: no penalty	
	If a candidate sums the whole sequence: 0/5 marks	
	Answer only: max 1/5 marks	
3.2.1	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	4 7 10 13	
	3 3 3	✓✓ answer
	$T_{5} = 35$	(2)

	OR		
	The sequence is 1, 5, 12, 22, 35. Therefore $T_5 = 35$		✓✓ answer (2)
	OR		
	$T_5 = 22 + 13 = 35$		✓✓ answer (2)
3.2.2	$T_{50} = T_1 + \frac{49}{2} [2(4) + 48(3)]$	NOTE:	$\checkmark a = 4$ $\checkmark d = 3$
	=1+3724	Answer only: max 1 mark	$\checkmark n = 49$
	= 3725	If the candidate calculates	✓ substitution into correct
	- 3723	the general formula in	formula ✓ answer
	OR $2a = 3$	3.2.1, they can be awarded 5/5 marks in 3.2.2	(5)
	$a = \frac{3}{2}$		$\checkmark a = \frac{3}{2}$
	$3\left(\frac{3}{2}\right) + b = 4$ $b = -\frac{1}{2}$		$\checkmark b = -\frac{1}{2}$
	$\left(\frac{3}{2}\right) + \left(-\frac{1}{2}\right) + c = 1$ $c = 0$		$\checkmark c = 0$
	$T_n = \frac{3}{2}n^2 - \frac{1}{2}n$ $T_{50} = \frac{3}{2}(50)^2 - \frac{1}{2}(50)^2 = 3725$	50)	✓ subs $n = 50$ ✓ answer (5)
	OR $T_1 = 1$ $T_2 - T_1 = 4$ $T_3 - T_2 = 7$ $T_4 - T_3 = 10$		✓✓ expansion
	T_{4} T_{3} = 10 $T_{50} - T_{49} = ?$ Add both sides		
	$T_{50} = 1 + 4 + 7 + 10 + \dots$ to 50 te	rms	$T_{50} = 1 + 4 + 7 + 10 +$ to 50 terms
	$= \frac{50}{2}(2+49(3))$ $= 3725$		✓ subs into correct formula ✓ answer (5)

[18]

Given: $f(x) = -2x^2 - 5x + 3$

4.1	(0; 3) OR • If there is evidence that the candidate has indicated that $x = 0$ and $y = 3$: 1 mark $x = 0$ and $y = 3$ • If candidate just states $y = 3$: 1 mark $0 = -2x^2 - 5x + 3$ $0 = 2x^2 + 5x - 3$	✓ both values correct	(1)
	$0 = (2x-1)(x+3)$ $x = \frac{1}{2} \text{or} -3$	✓ factors ✓ x-values	(3)
4.3	$f(x) = -2x^{2} - 5x + 3$ $x = -\frac{b}{2a}$ $= -\frac{(-5)}{2(-2)}$ $= -\frac{5}{4} \text{ or } -1\frac{1}{4}$ $y = f\left(-\frac{5}{4}\right)$ $= -2\left(-\frac{5}{4}\right)^{2} - 5\left(-\frac{5}{4}\right) + 3$ $= \frac{49}{8} \text{ or } 6\frac{1}{8}$ $\frac{1}{2} - 3}{2}$ $x = -\frac{5}{4} \text{ or } -1\frac{1}{4}$ $x = -\frac{5}{4} \text{ or } -1\frac{1}{4}$ $= -\frac{5}{4} + 3$ $= \frac{49}{8} \text{ or } 6\frac{1}{8}$	$\checkmark x = -\frac{(-5)}{2(-2)} \text{ or }$ $f'(x) = 0 \text{ or } \frac{\frac{1}{2} - 3}{2}$ $\checkmark x\text{-coordinate}$	
	Whence the turning point of f is $\left(-\frac{5}{4}; \frac{49}{8}\right)$ or $(-1,25; 6,13)$ OR $f(x) = -2x^2 - 5x + 3$ $= -2\left(x^2 + \frac{5x}{2} - \frac{3}{2}\right)$ $= -2\left(x + \frac{5}{4}\right)^2 + \frac{25}{8} + \frac{24}{8}$ $= -2\left(x + \frac{5}{4}\right)^2 + \frac{49}{8}$ Hence the turning point of f is $\left(-\frac{5}{4}; \frac{49}{8}\right)$	✓ y-coordinate ✓ $-2\left(x+\frac{5}{4}\right)^2 + \frac{49}{8}$ ✓ x-coordinate ✓ y-coordinate	(3)
	4 ' 8)	((3)

No, the inverse of f is not a function because there are some input (x) values (for example, x = 0) which have more than one output (y) value.

Nee, die inverse van f is nie 'n funksie nie omdat van die x-waardes (bv. x = 0) meer as een y-waarde het.

No, for one *x*-value there are more than one *y*-values. *Nee, vir 'n x-waarde is daar meer as een y-waarde.*

✓ valid reason (2)

✓ not a function

(2)

[11]

(2)

(2)

QUESTION/VRAAG 6

OR

Given: $f(x) = \frac{x-d}{x-p}$

6.1.1
$$0 = \frac{2-d}{2-p}$$

$$d = 2$$

$$-1-p = 0$$

$$p = -1$$

NOTE:

If candidate leaves answer as

$$f(x) = \frac{x-2}{x+1}$$
: 2/2 marks

✓d value

✓ p value

6.1.2 $y = \frac{x-2}{x+1}$ $= \frac{(x+1)-3}{x+1}$ $= \frac{x+1}{x+1} - \frac{3}{x+1}$ $= \frac{-3}{x+1} + 1$

NOTE:

• If the candidate starts with $y = \frac{a}{x+1} + 1$ and substitutes (2; 0) and proves a = -3: 0/2 marks

• If the candidate starts with $y = \frac{-3}{x+1} + 1$ and calculates (2; 0) as x-intercept: 0/2 marks

 $\checkmark \frac{x+1}{x+1} - \frac{3}{x+1}$

 $\checkmark \frac{x-2}{x+1} = \frac{x+1-3}{x+1}$

OR $\frac{-3}{x+1} + 1$ $= \frac{-3+x+1}{x+1}$ $= \frac{x-2}{x+1}$

	OR	$\sqrt{\frac{-3+x+1}{x+1}}$
	(x+1)x-2	✓ simplification
	$\frac{-x-1}{-3}$	(2)
	Remainder = -3 $\therefore x - 2 = 1(x + 1) - 3$	
	$\frac{x-2}{x+1} = 1 - \frac{3}{x+1}$	
	$f(x) = \frac{-3}{x+1} + 1$	✓ long division
		✓ remainder = -3 (2)
6.1.3	P(-1;1)	\checkmark x-coordinate \checkmark y-coordinate (2)
6.1.4	(-2;4)	✓ x-coordinate ✓ y-coordinate
6.2	q = 1	$\checkmark q = 1 $ (2)
	Substitute A(0;-2) into $g(x) = p \cdot 2^{x} + 1$: $-2 = p(2)^{0} + 1$	✓ substitute A(0; –2)
	p = -3	✓ p = -3
	Hence $g(x) = -3.2^x + 1$ NOTE: Answer only: 3/3 marks	(3) [11]

			<u> </u>
7.1.1	$i_{eff} = \left(1 + \frac{0,09}{4}\right)^{4}$ $i_{eff} = \left(1 + \frac{0,09}{4}\right)^{4} - 1$ $= 0,093083318$ $= 0,0931$ $= 9,31\%$		$\checkmark \left(1 + \frac{0.09}{4}\right)^{4}$ $\checkmark 9.31\% \text{ or } 0.0931$ (2)
7.1.2	$A = P(1+i)^{n}$ $30440 = 12500 \left(1 + \frac{0,09}{4}\right)^{4k}$ $\frac{30440}{12500} = \left(1 + \frac{0,09}{4}\right)^{4k}$ $2,4352 = 1,0225^{4k}$ $4k = \log_{1,0225} 2,4352$ $4k = 40,00020365$ $k = 10 \text{ years}$	$A = P(1+i)^{n}$ $30440 = 12500 \left(1 + \frac{0,09}{4}\right)^{4k}$ $\frac{30440}{12500} = \left(1 + \frac{0,09}{4}\right)^{4k}$ $2,4352 = 1,0225^{4k}$ $4k \log 1,0225 = \log 2,4352$ $4k = \frac{\log 2,4352}{1,0225}$ $4k = 40,00020365$ $k = 10 \text{ years}$	$ √ n = 4k $ $ √ i = \frac{0,09}{4} $ ✓ subs into correct formula ✓ use of logs
	OR $A = P(1+i)^{n}$ $30440 = 12500(1+0.0930)$ $\frac{30440}{12500} = (1+0.09308)^{k}$ $2.4352 = (1.09308)^{k}$ $k = \log_{1.09308} 2.4352$ $k = 9.998336572$ $k = 10 \text{ years}$	$A = P(1+i)^{n}$ $30440 = 12500(1+0.09308)^{k}$ $\frac{30440}{12500} = (1+0.09308)^{k}$ $2.4352 = (1.09308)^{k}$ $k \log 1.09308 = \log 2.4352$	✓ answer (5) ✓ $n = k$ ✓ $i = 0.09308$ (from 7.1.1) ✓ subs into correct formula ✓ use of logs
	OR	NOTE: Incorrect formula: max 2/5 marks If A and P are swapped: max 2/5 marks	✓answer (5)

	$4n = \frac{\log \frac{A}{P}}{\log(1+i)}$ $4k = \frac{\log \frac{30440}{12500}}{\log(1+\frac{0.09}{4})}$ $4k = 40,00020365$ $k = 10 \text{ years}$	$ √ n = 4k $ $ √ i = \frac{0,09}{4} $ ✓ substinto correct formula ✓ use of logs ✓ answer	(5)
7.2.1	30% of R18 480 $= \left(\frac{30}{100}\right) (18 480)$ $= R5 544$ $P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $= \frac{5544 \left[1 - \left(1 + \frac{0.08}{12}\right)^{-300}\right]}{\frac{0.08}{12}}$ $= R 718 305,71$ OR	$ \begin{array}{ c c c c } \hline \checkmark n = 300 \\ \checkmark \text{substitution} \end{array} $	(1)
	$x\left(1 + \frac{0.08}{12}\right)^{300} = \frac{5544\left[\left(1 + \frac{0.08}{12}\right)^{300} - 1\right]}{\frac{0.08}{12}}$ $x\left(1 + \frac{0.08}{12}\right)^{300} = 5272490,33$ $x = R 718 305,71$	$ \checkmark i = \frac{0.08}{12} $ $ \checkmark n = 300 $ $ \checkmark \text{substitution} $ $ \checkmark \text{answer} $	(4) [12]

8.1.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		✓ formula	
	$= \lim_{h \to 0} \frac{3(x+h)^2 - 4 - (3x^2 - 4)}{h}$		✓ substitution of of $x + h$	
	$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 4 - 3x^2 + 4}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ NOTE: • Incormance marks	rect notation: max 4/5	✓ simplification to $\frac{6xh + 3h^2}{h}$	
	$= \lim_{h \to 0} h $ use of $= \lim_{h \to 0} (6x + 3h)$ = in tincorn	ring out limit / incorrect f limit, leaving out $f'(x)$, he wrong place constitute rect notation)	$\checkmark \lim_{h\to 0} (6x+3h)$	
	$ \begin{array}{ccc} & = 6x \\ & \text{OR} & & \text{If } \lim_{h \to 0} \\ & & \text{take } c \\ & & \text{correct} \end{array} $	$\frac{3x^2 + 6xh + 3h^2 - 3x^2 - 8}{h},$ but common factor, then ct to the final answer: max	✓ answer	(5)
	$f(x) = 3x^{2} - 4$ $f(x+h) = 3(x+h)^{2} - 4$ $= 3x^{2} + 6xh + 3h^{2} - 4$ $f(x+h) - f(x) = 6xh + 3h^{2}$	NOTE: If candidate uses differentiation rules: 0/5 marks	✓ substitution of of $x + h$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		✓ simplification to $6xh + 3h^2$ ✓ formula	
	$= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$		$\checkmark \lim_{h\to 0} (6x+3h)$	
0.1.0	=6x		✓ answer	(5)
8.1.2	$f(x) = 3x^{2} - 4$ average gradient of f between A(-2; y) $y = 3(-2)^{2} - 4 = 8$	and $B(x; 23)$	✓ <i>y</i> = 8	
	$23 = 3x^2 - 4$ $27 = 3x^2$		$\checkmark 23 = 3x^2 - 4$	
	$9 = x^2$ $x = 3$		$\checkmark x = 3$	

		23 – v	23 – v
	Average gradient $= -\frac{1}{x}$	$\frac{23-y}{-(-2)}$	$\checkmark \frac{23-y}{x-(-2)}$
		$\frac{3-8}{8+2}$	
	_	3+2	./ong.vvon
	= 3	Nome	✓answer (5)
8.2	r + 5	NOTE: There is a maximum penalty of 1 mark	(*)
	$y = \frac{x+5}{x^{\frac{1}{2}}}$	for incorrect notation in question 8.	
	• • • • • • • • • • • • • • • • • • • •		
	$= \frac{x}{x^{\frac{1}{2}}} + \frac{5}{x^{\frac{1}{2}}}$		
	$= x^{\frac{1}{2}} + 5x^{-\frac{1}{2}}$		$\sqrt{x^{\frac{1}{2}} + 5x^{-\frac{1}{2}}}$
	$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} - \frac{5}{2}x^{-\frac{3}{2}}$		
	$\int \frac{dx}{dx} - \frac{1}{2}x - \frac{1}{2}x$		$\sqrt{\frac{1}{2}}x^{-\frac{1}{2}}$ or $\frac{1}{2\sqrt{x}}$
	OR		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	OK		$\checkmark x^{\frac{1}{2}} + 5x^{-\frac{1}{2}}$ $\checkmark \frac{1}{2}x^{-\frac{1}{2}} \text{ or } \frac{1}{2\sqrt{x}}$ $\checkmark -\frac{5}{2}x^{-\frac{3}{2}} \text{ or } \frac{-5}{2\sqrt{x^3}}$
	$y = \frac{x+5}{x^{\frac{1}{2}}}$		
	, , , , , , , , , , , , , , , , , , ,		(3)
	By the quotient rule $\frac{1}{2}$ $\frac{1}{2}$		
	$\frac{dy}{dx} = \frac{1 \cdot x^{\frac{1}{2}} - \frac{1}{2} x^{-\frac{1}{2}} (x+5)}{\left(x^{\frac{1}{2}}\right)^2}$		$1 r^{\frac{1}{2}} 1 r^{-\frac{1}{2}} (r+5)$
	$\frac{1}{dx} = \frac{1}{(x^{\frac{1}{2}})^2}$		$\sqrt{1.x^{\frac{1}{2}} - \frac{1}{2}x^{-\frac{1}{2}}(x+5)} \frac{1.x^{\frac{1}{2}} - \frac{1}{2}x^{-\frac{1}{2}}(x+5)}{\left(x^{\frac{1}{2}}\right)^{2}}$
	$\frac{1}{2}$ 1 $\frac{1}{2}$ 5 $-\frac{1}{2}$		$\left(x^{\frac{1}{2}}\right)^{\mu}$
	$=\frac{x^{\frac{1}{2}}-\frac{1}{2}x^{\frac{1}{2}}-\frac{5}{2}x^{-\frac{1}{2}}}{2}$		
	\mathcal{X}		$\frac{1}{\sqrt{1-\frac{1}{2}}}$ or $\frac{1}{\sqrt{1-\frac{1}{2}}}$
	$=\frac{1}{1}-\frac{5}{3}$		$\checkmark \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{1}{2\sqrt{x}}$ or
	$2x^{\overline{2}}$ $2x^{\overline{2}}$		$-\frac{5}{2}x^{-\frac{3}{2}}$ or $\frac{-5}{2\sqrt{x^3}}$
			= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
8.3	$f(x) = 2x^3 + 4x + 5$		(3)
	$f(x) = -3x^3 - 4x + 5$ $f'(x) = -9x^2 - 4$		$\sqrt{-9x^2}$
			√ -4
	$m_{\text{tan}} = -9(-1)^2 - 4$ $= -13$		✓ substitution of $x = -1$ ✓ answer
	=-13		(4)
			[17]

Given: $f(x) = x^3 + ax^2 + bx - 2$

P(-1;-1) and R are the turning points of f.

9.1
$$f(x) = x^3 + ax^2 + bx - 2$$

$$-1 = (-1)^3 + a(-1)^2 + b(-1) - 2$$

$$2 = a - b$$
 ...(1)

$$f'(x) = 3x^2 + 2ax + b$$

$$0 = 3(-1)^2 + 2a(-1) + b$$

$$-3 = -2a + b$$

$$-3 = -2a + b$$
 ...(2)
 $-1 = -a$ (1)+(2)

NOTE:

$$a = 1$$

$$b = -1$$

 \checkmark -1 = $(-1)^3 + a(-1)^2 + b(-1) - 2$

$$\checkmark 2 = a - b$$

$$f'(x) = 3x^2 + 2ax + b$$

$$f'(-1) = 0$$

$$\sqrt{-3} = -2a + b$$

✓ method

R is a turning point of f, hence at R, f'(x) = 09.2

i.e.
$$3x^2 + 2x - 1 = 0$$

• The = 0 must be explicitly stated

• If the candidate starts with what is given and then prove (1; 1) is a TP: 0/6 marks

$$(3x-1)(x+1) =$$

$$(3x-1)(x+1)=0$$

NOTE:

Answer only: 1/3 marks

$$x = \frac{1}{3} \text{ or } -1$$

$$\therefore x = \frac{1}{3}$$

$$\checkmark f'(x) = 0$$

$$f'(x) = 3x^2 + 2x - 1$$

✓ selection of $x = \frac{1}{2}$

(3)

9.3 (-1; 2f(-1)-4)

$$= (-1; -6)$$

✓ y-coordinate

OR

$$\left(\frac{1}{3}; 2f\left(\frac{1}{3}\right) - 4\right)$$

$$=\left(\frac{1}{3}; -\frac{226}{27}\right)$$
 or $(0,33; -8,37)$

 \checkmark x-coordinate

(2) [11]

(2)

(6)

_			
10.1	$\frac{dr}{dt} = -0.4t + 10$ $0 = -0.4t + 10$ $0.4t = 10$	$\checkmark \frac{dr}{dt} = -0.4t + 10$ $\checkmark 0 = -0.4t + 10$	
	$t = \frac{10}{0.4}$ = 25 seconds	✓ t value	
	\mathbf{OR} $t = -\frac{b}{2a}$	1.	(3)
	$= -\frac{10}{2(-0.2)}$ = 25 seconds	$\checkmark t = -\frac{b}{2a}$ $\checkmark \text{ substitution}$	
	OR	✓ t value	(3)
	$r = \frac{1}{5}t(50 - t)$ $0 = \frac{t}{5}(50 - t)$	$\checkmark t = 0 \text{ or } t = 50$ $\checkmark t = \frac{0 + 50}{2}$	
	$t = 0 or t = 50$ Fastest at $t = \frac{0+50}{2}$	$\checkmark t = \frac{3 + 30}{2}$ $\checkmark t \text{ value}$	
10.2	t = 25 seconds	(0 24 ² + 104 0	(3)
10.2	$-0.2t^{2} + 10t = 0$ $t(-0.2t + 10) = 0$ $-0.2t + 10 = 0 or t = 0$ NOTE: Answer only: 3/3 marks	$\checkmark -0.2t^2 + 10t = 0$ $\checkmark \text{ factors}$	
	$t = \frac{-10}{-0.2}$ $= 50 \sec$	✓answer	(3)
	Hence the water stops flowing 50 seconds after it started. OR		(3)
	$-0.2t^{2} + 10t = 0$ $t^{2} - 50t = 0$ $t(t - 50) = 0$	$\checkmark -0.2t^2 + 10t = 0$ $\checkmark \text{ factors}$	
	t = 0 or $t = 50Hence the water stops flowing 50 seconds after it started.$	✓answer	(3) [6]

TOTAL/*TOTAAL*:

