shagunsodhani / OpenVocabularyNMT.md

Created 5 years ago • Report abuse

Summary of "Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models" paper

Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models

Introduction

- The paper presents a novel open vocabulary NMT(Neural Machine Translation) system that translates mostly at word level and falls back to character level models for rare words.
- · Advantages:
 - Faster and easier to train as compared to character models.
 - Does not produce unknown words in the translations which need to be removed using *unk replacement* techniques.
- Link to the paper

Unk Replacement Technique

- Most NMT operate on constrained vocabulary and represent unknown words with unk token.
- A post-processing step replaces *unk* tokens with actual words using alignment information.
- Disadvantages:
 - These systems treat words as independent entities while they are morphologically related.
 - Difficult to capture things like name translation.

Proposed Architecture

Word-level NMT

- Deep LSTM encoder-decoder.
- Global attention mechanism and bilinear attention scoring function.
- Similar to regular NMT system except in the way unknown words are handled.

Character-level NMT

- Deep LSTM model used to generate on-the-fly representation of rare words (using final hidden state from the top layer).
- Advantages:
 - Simplified architecture.
 - Efficiency through precomputation representations for rare sources words can be computed at once before each mini-batch.
 - The model can be trained easily in an end-to-end fashion.

Hidden-state Initialization

- For source representation, layers of the LSTM are initialized with zero hidden states and cell values.
- For target representation, the same strategy is followed except for the hidden state of the first layer where one of the following approaches are used:
 - same-path target generation approach
 - Use the context vector just before softmax (of word-level NMT).
 - seperate-path target generation approach
 - Learn a new weight matrix W that will be used to generate the context vector.

Training Objective

- $J = J_W + \alpha J_C$
- J total loss
- J_W loss in a regular word-level NMT
- αJ_c loss in the character-level NMT

Word Character Generation Strategy

• The final hidden state from character-level decoder could be interpreted as the representation of *unk* token but this approach would not be efficient.

- Instead, *unk* is fed to the word-level decoder as it is so as to decouple the execution for the character-level model as soon the word-level model finishes.
- During testing, a beam search decoder is run at the word level to find the best translation using the word NMT alone.
- Next, a character-level encoder is used to generate the words in place of unk to minimise the combined loss.

Experiments

Data

WMT'15 translation task from English into Czech with newstest2013 (3000 sentences) as dev set and newstest2015 (2656 sentences) as a test set.

Metrics

- Case-sensitive NIST BLEU.
- chrF3

Models

- Purely word based
- Purely character based
- Hybrid (proposed model)

Observations

- Hybrid model surpasses all the other systems (neural/non-neural) and establishes a new state-of-the-art result for English-Czech translation in WMT'15 with 19.9 BLEU.
- Character-level models, when used as a replacement for the standard unk replacement technique in NMT, yields an improvement of up to +7.9 BLEU points.
- Attention is very important for character-based models as the non-attentional character models perform poorly.
- Character models with shorter time-step backpropagation perform inferior as compared to ones with longer backpropagation.
- Separate-path strategy outperforms same-path strategy.

Rare word embeddings

Obtain representations for rare words.

- Compare the Spearman correlation between similarity scores assigned by humans and by the model.
- Outperforms the recursive neural network model (which also uses a morphological analyser) on this task.