

SUBJECT INDEX

A

- Acetate
milk fat synthesis
nutritional regulation and,
203, 207–10
- Acetyl CoA carboxylase
milk fat synthesis
nutritional regulation and,
219–20
- Acne
gugulipid and, 307–8
- Adaptinol
lutein and zeaxanthin
protective role in eye, 190
- Adipocytes
hypothalamic control of
bone formation and,
403–4
- metabolic pathway fluxes
and, 391–94
- Adipose tissue
diabetes type 2 prevalence
and, 364–66
- Adolescents
iron status and neural
functioning, 41, 52–53
- Africa
diabetes type 2 prevalence
and, 348, 350, 352,
360–61, 365
- African Americans
diabetes type 2 prevalence
and, 356
- diabetes type 2 prevention
and, 155
- diet of US poor and
minority communities
100 years ago, 81, 84–87
- Age-related macular
degeneration (AMD)
lutein and zeaxanthin
protective role in eye, 171,
174, 180, 183–84, 187–93
- Alcohol
diabetes type 2 prevention
and, 161
- metabolic pathway fluxes
and, 388–90
- Aldose reductase
galactosemia and, 70, 75
- Aleuts
diabetes type 2 prevalence
and, 355
- All-source
lipogenesis/lipolysis
metabolic pathway fluxes
and, 390–91
- Alouatta* spp.
diabetes type 2 prevalence
and, 349
- American-born poor
diet of US poor and
minority communities
100 years ago, 81, 90
- Amino acids
determination of
requirements
adult dietary
indispensable amino
acid requirement,
108–11
- carbon oxidation
techniques, 112
- childhood essential
amino acid
requirement, 112
- conclusions, 112–13
- data analysis
considerations, 108
- experimental design
considerations, 107–8
- introduction, 102–3
- methods, 103–6
- prior adaptation to the
level of the test amino
acid, 106–7
- summary, 112–13
- perioperative patient and
nutrition, 268, 271–72
- selenoprotein synthesis
and, 17–34
- trophic and cytoprotective
nutrition for intestine,
229–50
- Anemia
iron-deficiency
iron status and neural
functioning, 41
- Antibiotic resistance
foodborne illness reduction
and, 326
- Antigen presentation
vitamin D and analogs,
117–36
- Antioxidants
lutein and zeaxanthin
protective role in eye,
181–83, 189–91
- lutein and zeaxanthin
protective role in eye,
171–93
- perioperative patient and
nutrition, 271
- trophic and cytoprotective
nutrition for intestine,
240–42
- Apical transporter
dietary iron absorption and,
288
- Apoptosis
trophic and cytoprotective
nutrition for intestine,
229–50

- Appalachia**
diet of US poor and minority communities
100 years ago, 81, 87–89
- Arcuate nucleus (ARC)**
hypothalamic control of bone formation and, 406
- Arginine**
perioperative patient and nutrition, 268, 271
trophic and cytoprotective nutrition for intestine, 229, 238–40
- Arthritis**
gugulipid and, 308
- Aruba**
diabetes type 2 prevalence and, 349
- Asia**
diabetes type 2 prevalence and, 348–49, 361
diabetes type 2 prevention and, 149
- Aspergillus spp.**
foodborne illness reduction and, 326
- Astrovirus**
foodborne illness reduction and, 323
- Ateles spp.**
diabetes type 2 prevalence and, 349
- Australopithecus**
diabetes type 2 prevalence and, 350
- Autoimmunity**
vitamin D and immune activation, 117, 128–29, 135–36
- Avoparcin**
foodborne illness reduction and, 326
- Ay mice**
hypothalamic control of bone formation and, 407
- Ayurvedic medicine**
gugulipid and, 303–10
- A-ZIP/F1 transgenic mice**
hypothalamic control of bone formation and, 405
- B**
- Bacillus cereus**
foodborne illness reduction and, 319, 327–28
- Bacteria**
foodborne illness reduction and, 315–41
metabolic engineering of metabolic pathway fluxes and, 381–82
- milk fat synthesis nutritional regulation and, 203, 207, 216
- selenoprotein synthesis and, 26
- Brain**
diabetes type 2 prevalence and, 349
- Barbados**
diabetes type 2 prevalence and, 349
- Barrier function**
trophic and cytoprotective nutrition for intestine, 229–50
- Basolateral transfer**
dietary iron absorption and, 289–91
- Bermuda**
diabetes type 2 prevalence and, 349
- β -blockers**
gugulipid and, 308
hypothalamic control of bone formation and, 403, 408–9
- Bile acid receptor**
gugulipid and, 303, 309–10
- Biohydrogenation theory**
milk fat synthesis nutritional regulation and, 214, 216–20
- Biological legacy**
diabetes type 2 prevalence and, 353–55
- Biosynthetic flux**
measurements multiple concurrent metabolic pathway fluxes and, 379
- Blacks**
diabetes type 2 prevalence and, 356
diabetes type 2 prevention and, 155, 157
diet of US poor and minority communities 100 years ago, 81, 84–87
- Blindness**
lutein and zeaxanthin protective role in eye, 171, 190–91
- Blue light absorption**
lutein and zeaxanthin protective role in eye, 171, 179–80, 183, 185–86, 190, 191
- B lymphocytes**
vitamin D and immune activation, 117, 124–25
- Body fat**
diabetes type 2 prevention and, 147–48, 154
- Body weight**
gugulipid and, 308
hypothalamic control of bone formation and, 403–6, 408–9
- Bone**
hypothalamic control of bone formation and, 403–9
vitamin D and immune activation, 117, 132
- Botswana**
diabetes type 2 prevalence and, 360

- Botulism toxin
foodborne illness reduction and, 319
- Bowel resection
trophic and cytoprotective nutrition for intestine, 229
- Brain
galactosemia and, 59, 74
hypothalamic control of bone formation and, 403–9
iron status and neural functioning, 41–53
- Brazil
diabetes type 2 prevalence and, 348
- British Virgin Islands
diabetes type 2 prevalence and, 349
- Butyrate
milk fat synthesis
nutritional regulation and, 203, 207, 208–10
- Butyrivibrio fibrosolvens*
milk fat synthesis
nutritional regulation and, 216
- C**
- Cachexia
perioperative patient and nutrition, 273–74
- Caenorhabditis elegans*
selenoprotein synthesis and, 27
- Calcineurin inhibitors
vitamin D and immune activation, 133
- Calcium
diabetes type 2 prevention and, 161
vitamin D and immune activation, 117, 132, 134
- Calorically dense/low-fiber/high-glycemic foods
- diabetes type 2 prevalence and, 345
- Campylobacter* spp.
foodborne illness reduction and, 316, 319, 325–37
- Canada
diabetes type 2 prevalence and, 350
foodborne illness reduction and, 331
- Cancer
perioperative patient and nutrition, 264, 266, 269, 273–74
- Candida albicans*
foodborne illness reduction and, 326
- Carbohydrates
dietary
diabetes type 2 prevention and, 157–59, 162
metabolic pathway fluxes and, 379, 383–88
- Carbon dioxide (CO₂)
galactosemia and, 63–64
- Carbon oxidation techniques
amino acid requirement determination and, 101, 103, 105–6, 109, 111–13
- Caribbean region
diabetes type 2 prevalence and, 349, 359
- β-Carotene
diabetes type 2 prevention and, 159–60
lutein and zeaxanthin protective role in eye, 177, 189–90, 192
- Carotenoids
diabetes type 2 prevention and, 159–60
lutein and zeaxanthin protective role in eye, 171–93
- Cataracts
galactosemia and, 73
- lutein and zeaxanthin protective role in eye, 189–90
- Caucasians
diabetes type 2 prevention and, 155, 157
- Cayman Islands
diabetes type 2 prevalence and, 349
- Cell differentiation
trophic and cytoprotective nutrition for intestine, 229–50
vitamin D and immune activation, 135
- Cell migration
trophic and cytoprotective nutrition for intestine, 229–50
- Cell proliferation
metabolic pathway fluxes and, 391–95
trophic and cytoprotective nutrition for intestine, 229–50
- Cell recruitment
vitamin D and immune activation, 135
- Cellular retinoic acid binding protein (CRABP)
history of research, 12–13
- Cellular retinol binding protein (CRBP)
history of research, 12–13
- Central mediation
hypothalamic control of bone formation and, 405–6
- Central obesity
diabetes type 2 prevention and, 153–54
- Cerebellum
iron status and neural functioning, 43, 48
- Chemotherapy
trophic and cytoprotective

- nutrition for intestine, 235–38, 242, 245
- Children**
- amino acid requirement determination and, 101, 112
 - diabetes type 2 prevalence and, 345, 348–49, 366
 - iron status and neural functioning, 41–42, 51
- Chile**
- diabetes type 2 prevalence and, 360
- China**
- diabetes type 2 prevalence and, 348, 359, 361, 365
 - diabetes type 2 prevention and, 149, 151, 154
 - selenoprotein synthesis and, 19
- Cholesterol**
- gugulipid and, 303–10
- Chorioretinal changes**
- lutein and zeaxanthin protective role in eye, 191
- Choroidema**
- lutein and zeaxanthin protective role in eye, 190
- Choroid plexus**
- iron status and neural functioning, 44
- Chromatic aberration**
- lutein and zeaxanthin protective role in eye, 179–80
- Chromium**
- diabetes type 2 prevention and, 160
- Chytil F, 1–14**
- Cicer arietinum*
- gugulipid and, 307
- cis*-acting sequences
- selenoprotein synthesis and, 17–18, 21, 24–26
- Clofibrate**
- gugulipid and, 307
- Clostridium* spp.
- foodborne illness reduction and, 318–19, 327
- Cognate immunity**
- vitamin D and immune activation, 118–19
- Cognitive dysfunction**
- galactosemia and, 59, 74
- Cold tolerance**
- foodborne illness reduction and, 328–29
- Collagen**
- hypothalamic control of bone formation and, 405
- Color filter**
- lutein and zeaxanthin protective role in eye, 171, 179–80
- Commiphora mukul*
- gugulipid and, 303–10
- Congo**
- diabetes type 2 prevalence and, 365
- Conjugated linoleic acid (CLA)**
- milk fat synthesis
 - nutritional regulation and, 203, 214–20
- Consolidation in food industry**
- foodborne illness reduction and, 330
- Cortex**
- iron status and neural functioning, 43, 48, 50
- Corticosteroids**
- vitamin D and immune activation, 133–34
- Costa Rica**
- iron status and neural functioning, 50
- Cost/benefit analysis**
- foodborne illness reduction and, 315
 - perioperative patient and nutrition, 264, 271–73
- Cross-talk**
- vitamin D and immune activation, 118–19
- Cryptococcus neoformans*
- foodborne illness reduction and, 326
- Cryptosporidium parvum*
- foodborne illness reduction and, 322, 325, 337
- Cyclic adenosine monophosphate (cAMP)**
- history of research, 1, 9–10
 - hypothalamic control of bone formation and, 408
- Cyclospora cayetanensis*
- foodborne illness reduction and, 322, 325, 331, 337
- Cyclosporine**
- vitamin D and immune activation, 133
- Cytochrome P450 genes**
- gugulipid and, 308
- Cytokines**
- vitamin D and immune activation, 133
- Cytoprotective nutrition**
- trophic and cytoprotective nutrition for intestine, 229–50
- Czech Republic**
- diabetes type 2 prevalence and, 349
- D**
- Dark adaptation**
- decreased
 - lutein and zeaxanthin protective role in eye, 190
- db/db* mice
- hypothalamic control of bone formation and, 405
- DCT1 transporter**
- dietary iron absorption and, 283, 288
- Dcytb* gene
- dietary iron absorption and, 283, 288–89

- Dendritic cells
vitamin D and immune activation, 117, 120–22, 135–36
- De novo lipogenesis (DNL)
metabolic pathway fluxes and, 384–88
- Developed countries
diabetes type 2 prevalence and, 345–50, 358–63, 365–66
- Developing countries
diabetes type 2 prevalence and, 345–46, 348–50, 359–62, 365–66
- Developmental delay
iron status and neural functioning, 41–53
- Dexamethasone
vitamin D and immune activation, 127, 133–34
- Diabetes type 2
prevalence
adipose tissue, 364–66
adults, 347–66
biological legacy, 353–55
children, 348–49, 366
definition, 346–47
diagnosis, 346–47
diversity, 361–62
early hominid diets and lifeways, 351–52
energetics, 360–61
etiology, 346–47
evolutionary theories, 355–58
evolutionary trends, 349–55
food preferences, 354–55
food production, 360–61
globalization, 361–62
glycemic index, 363–64
input, 361
insulin resistance
- metabolic syndrome, 357
introduction, 346–47
modernization of diets, 359–64
movement
transportation, 360
natural selection for fatness and fat infants, 353–54
- Neolithic transitions in diet and lifeways, 352–53
- new food systems, 359–64
- New World syndrome, 356
- nonhuman primates, 349–51
- obesity, 364–66
- output, 360–61
- overview, 346–47
- paleonutrition, 351–52
- patterns of food ingestion, 362–63
- positive energy balance, 364–66
- prenatal phenotypic programming, 357–58
- subsistence energy costs, 360–61
- summary, 366
- supersizing foods, 362
- Syndrome X, 357
- taste, 354–55
- thrifty genotypes, 355–56
- worldwide prevalence, 347–49
- prevention
anthropometric factors, 148–51
central obesity, 153–54
conclusions, 161–62
diagnostic factors, 148–51
- dietary carbohydrate, 157–59
- dietary fat, 154–57
- dietary fiber, 157–58
- dietary protein, 159
- energy balance, 149, 152–54
- ethanol, 161
- fruits, 159–60
- glycemic index, 158–59
- introduction, 148
- metabolic factors, 148–51
- micronutrients, 160–61
- nutritive sweeteners, 158
- overall obesity, 152–53
- physical activity, 154
- S₁, 154–56
- starch, 158
- summary, 161–62
- vegetables, 159–60
- Dietary essential amino acids
amino acid requirement determination and, 101
- Dietary globalization
diabetes type 2 prevalence and, 345–66
- Diltiazem
gugulipid and, 308
- Direct amino acid oxidation (DAAO) and 24-h balance
amino acid requirement determination and, 101, 103–4, 108–10, 112
- Diversity
diabetes type 2 prevalence and, 361–62
- DMT1 transporter
dietary iron absorption and, 283, 288
- DNA synthesis
metabolic pathway fluxes and, 379, 391–395
- Dopamine
iron status and neural functioning, 41, 46

- Dopamine β -hydroxylase and, 318, 320, 325, 328–29, 337–38 history of research, 1, 9 selenoprotein synthesis and, 21, 23–24, 31
- Drosophila melanogaster* selenoprotein synthesis and, 27
- Drug metabolism gugulipid and, 307–10
- E**
- eEFsec elongation factor selenoprotein synthesis and, 27
- Egypt diabetes type 2 prevalence and, 348 iron status and neural functioning, 52
- Elderly lutein and zeaxanthin protective role in eye, 171–93
- Endocrine control hypothalamic control of bone formation and, 403–9
- Energy balance diabetes type 2 prevalence and, 360–61 diabetes type 2 prevention and, 149, 152–54
- England diabetes type 2 prevalence and, 358
- Enteral nutrition perioperative patient and nutrition, 263–64, 266–74
- Enterococcus* spp. foodborne illness reduction and, 326–27
- Epidemiology lutein and zeaxanthin protective role in eye, 188–91
- Escherichia coli* foodborne illness reduction and, 318, 320, 325, 328–29, 337–38 history of research, 1, 9 selenoprotein synthesis and, 21, 23–24, 31
- Eskimos diabetes type 2 prevalence and, 355
- Essential amino acids amino acid requirement determination and, 101–13
- Ethanol diabetes type 2 prevention and, 161 metabolic pathway fluxes and, 388–90
- Eukaryotes selenoprotein synthesis and, 24–31
- Eurasia diabetes type 2 prevalence and, 361
- Europe diabetes type 2 prevalence and, 361 foodborne illness reduction and, 326
- European immigrants diet of US poor and minority communities 100 years ago, 91–94
- Evolution diabetes type 2 prevalence and, 345–66
- Extracellular matrix hypothalamic control of bone formation and, 404–5
- Eye lutein and zeaxanthin protective role in, 171–93
- F**
- Farnesoid X receptor (FXR) gugulipid and, 303, 309–10
- Fatness diabetes type 2 prevalence and, 353–54
- Fats dietary diabetes type 2 prevention and, 154–57, 162 metabolic pathway fluxes and, 379, 383–84 milk fat synthesis nutritional regulation and, 203–20
- Fatty acids milk fat synthesis nutritional regulation and, 203–20 trophic and cytoprotective nutrition for intestine, 229, 243–48
- Fatty acid synthase milk fat synthesis nutritional regulation and, 219–20
- Federal responsibilities foodborne illness reduction and, 335
- Ferric reductase dietary iron absorption and, 288–89
- Ferritin iron status and neural functioning, 44
- Ferroportin dietary iron absorption and, 288
- Fiber dietary diabetes type 2 prevention and, 157–58, 162 milk fat synthesis nutritional regulation and, 207–11, 213, 215–20 trophic and cytoprotective nutrition

- for intestine, 229, 245–48
- Finland**
diabetes type 2 prevention and, 152, 156, 160
- Flux measurement**
metabolic pathway fluxes and, 379–99
- Foodborne illness**
antibiotic resistance, 326
approaches to reducing illness, 337–40
better outbreak detection, 337–38
calls for change, 335–36
chronic sequelae of infection, 325–26
cold tolerance, 328–29
complexity of food safety network, 331–32
conclusions, 340–41
consolidation in food industry, 330
detection of microorganisms in food and patient specimens, 324
divided regulatory responsibilities, 333–35
education, 338–39
emergence of new foodborne pathogens, 324–25
federal responsibilities, 335
foodborne pathogens yet to be identified, 325
food processing, 326–29
government responsibilities, 332–33, 335
heat/acid resistance, 327–28
imported foods, 330–31
infectious dose estimates, 318–24
information, 338–39
- intentional contamination, 336
introduction, 317–18
large facilities, 330
local responsibilities, 335
minimally processed foods, 329
multiple interventions, 329
overview, 316–17
population surveillance, 337–38
prevention-based regulatory approaches, 338
private sector responsibilities, 332–33
raw foods, 329
regulatory framework, 332–36
resources, 334
risk-based system for food safety, 339–40
scientific challenges, 318–26
small facilities, 330
spoilage, 328–29
state responsibilities, 335
structure of food industry, 330–32
very small facilities, 330
workforce, 332
- Food ingestion patterns**
diabetes type 2 prevalence and, 362–63
- Food preferences**
diabetes type 2 prevalence and, 354–55
- Food processing**
foodborne illness reduction and, 315, 326–29
- Food production**
diabetes type 2 prevalence and, 360–61
- Food restriction**
metabolic pathway fluxes and, 393–94
- Food safety**
foodborne illness reduction and, 315–41
- Food systems**
new
diabetes type 2 prevalence and, 359–64
- French Canadians**
diet of US poor and minority communities 100 years ago, 91
- Fruits**
diabetes type 2 prevention and, 159–60
- Functional genomics**
metabolic pathway fluxes and, 379–99
- G**
- Galactosemia**
aldose reductase, 70, 75
cataracts, 73
chronic brain effects, 74
enzymes, 69–73
future research, 75–76
galactitol, 65
galactokinase, 69
galactonate, 66
galactose, 63, 76
galactose-1-phosphate, 65–66
galactose-1-phosphate uridylyltransferase, 69
human sibling pairs, 75–76
introduction, 60–61
lactose, 61–63
liver, 76
magnitude of clinical effect of consumed galactose in humans, 76
metabolites, 65–68
mice, 75–76
modifier gene, 75–76
neonatal toxicity, 73–74
ovarian failure, 74
oxidation to CO₂, 63–64
pathophysiologic process, 73–74

- phenotype, 75
 protector gene, 75–76
 summary, 68, 76
 target organs, 76
 UDP-galactose, 66–68
 UDP-galactose-4-epimerase, 71–73
 UDP-glucose, 66–68
 UDP-glucose pyrophosphorylase, 70–71
 uridine controversy, 75
GALT deficiency
 galactosemia and, 59–76
Gamma-aminobutyric acid (GABA)
 iron status and neural functioning, 42, 45, 47–53
Genetically-based
 autoimmune disease
 vitamin D and immune activation, 127–29
Genomics
 metabolic pathway fluxes and, 379–99
Ghrelin
 diabetes type 2 prevalence and, 364
Giardia lamblia
 foodborne illness reduction and, 322
GK genes
 galactosemia and, 69–70
Globalization
 dietary
 diabetes type 2 prevalence and, 359–64
 diabetes type 2 prevalence and, 345–66
Glucocorticoids
 history of research, 12–13
Glucogenic-insulin theory
 milk fat synthesis
 nutritional regulation and, 210–13
Glucose
- diabetes type 2 prevention and, 147–62
 metabolic pathway fluxes and, 385–88
 perioperative patient and nutrition, 272–73
Glutamate
 trophic and cytoprotective nutrition for intestine, 229
Glutamine
 trophic and cytoprotective nutrition for intestine, 229, 232–38
Glutathione
 trophic and cytoprotective nutrition for intestine, 229, 240–42
Glycemic index
 diabetes type 2 prevalence and, 363–64
 diabetes type 2 prevention and, 158–59
Glycine
 trophic and cytoprotective nutrition for intestine, 229, 238
Glycogen storage disease
 metabolic pathway fluxes and, 382
Goldthioglucose
 hypothalamic control of bone formation and, 406, 408
Government responsibilities
 foodborne illness reduction and, 332–33, 335
Grenada
 diabetes type 2 prevalence and, 349
Gugulipid
 animal studies, 305–6
 clinical studies, 306–7
Commiphora mukul, 304
 farnesoid X receptor, 309
 guggulsterone, 304–5
 history, 304
- hypolipidemic activity, 305–8
 introduction, 303–5
 mechanism of action, 309
 metabolic effects, 305–8
 overview, 303–4
 potential activities, 307–8
 side effects, 309–10
 summary, 310
 toxicity, 309–10
Gut barrier functions
 trophic and cytoprotective nutrition for intestine, 229–50
GW4064
 gugulipid and, 309
- H**
- ²H₂O labeling
 metabolic pathway fluxes and, 379, 390–91, 395, 398–99
- Haidinger's brushes**
 lutein and zeaxanthin protective role in eye, 180–81
- Hawaii**
 diabetes type 2 prevention and, 149
- Hazard Analysis and Critical Control Points (HACCP) system**
 foodborne illness reduction and, 338–40
- Heat/acid resistance**
 foodborne illness reduction and, 327–28
- Heme iron absorption**
 dietary iron absorption and, 284–85
- Hepatitis A virus (HAV)**
 foodborne illness reduction and, 323
- Hepcidin**
 dietary iron absorption and, 294–95

- Heterochromatic flicker photometry (HFP)**
- lutein and zeaxanthin protective role in eye, 185–86**
- HFE protein**
- dietary iron absorption and, 293–94
- High-performance liquid chromatography (HPLC)**
- lutein and zeaxanthin protective role in eye, 173, 188**
- Histidine**
- trophic and cytoprotective nutrition for intestine, 238
- Hominids**
- diabetes type 2 prevalence and, 351–52
- Homo* spp.**
- diabetes type 2 prevalence and, 350–52
- Hong Kong**
- diabetes type 2 prevalence and, 349
- Hormones**
- history of research, 1, 12
- hypothalamic control of bone formation and, 403–9
- Humoral mediator**
- hypothalamic control of bone formation and, 403, 407
- β -Hydroxybutyrate**
- milk fat synthesis
- nutritional regulation and, 209, 211
- Hypercalcemia**
- vitamin D and immune activation, 132, 134
- Hypolipidemic activity**
- gugulipid and, 305–8
- Hypothalamus**
- leptin and bone formation
- central mediation of leptin effect on bone mass, 405–6
- hormonal regulation of bone remodeling, 404
- hypothalamic neurons controlling bone formation and body weight, 406–7
- inhibition of bone formation, 404–5
- neuronal pathways controlling bone formation and body weight, 406–7
- sympathetic nervous system, 407–9
- therapeutic implications, 407–9
- Hypothyroidism**
- gugulipid and, 308
- I**
- Immigrant households**
- diet of US poor and minority communities 100 years ago, 81, 89–94
- Immune activation**
- vitamin D and analogs, 117–36
- Imported foods**
- foodborne illness reduction and, 330–31
- India**
- amino acid requirement determination and, 107
- diabetes type 2 prevalence and, 359, 361
- perioperative patient and nutrition, 266
- Indicator amino acid oxidation (IAAO) and 24-h balance**
- amino acid requirement determination and, 101, 104–13
- Indispensable amino acids**
- amino acid requirement determination and, 101–13
- determination and, 101–13
- Indonesia**
- diabetes type 2 prevalence and, 348, 362
- iron status and neural functioning, 50
- Induced immune-mediated disease**
- vitamin D and immune activation, 129–30
- Infants**
- diabetes type 2 prevalence and, 353–54
- galactosemia and, 59–76
- iron status and neural functioning, 41–42, 49–51
- Infectious dose estimates**
- foodborne illness reduction and, 318–24
- Inflammation**
- gugulipid and, 307–8
- Inflammatory bowel disease (IBD)**
- trophic and cytoprotective nutrition for intestine, 229, 233–34, 241–44
- Innate immunity**
- vitamin D and immune activation, 118–19, 135
- Insulin**
- diabetes type 2 prevention and, 147
- milk fat synthesis
- nutritional regulation and, 207, 210–13
- Insulin resistance metabolic syndrome**
- diabetes type 2 prevalence and, 357
- Intentional contamination**
- foodborne illness reduction and, 336
- Interferon- β (IFN- β)**
- vitamin D and immune activation, 133

- Interventional epidemiology
lutein and zeaxanthin
protective role in eye,
189–91
- Intestinal adaptation
trophic and cytoprotective
nutrition for intestine,
229–50
- Intestinal transit
dietary iron absorption and,
287
- Intracerebroventricular (ICV)
infusion
hypothalamic control of
bone formation and, 403,
405–8
- Ireg1* gene
dietary iron absorption and,
283, 289–90
- Iron absorption
dietary
apical transporter, 288
basolateral transfer,
289–91
DCT1, 288
Dcytb, 288–89
DMT1, 288
ferric reductase, 288–89
ferroportin, 288
genetics, 292–95
heme iron absorption,
284–85
hepcidin, 294–95
HFE, 293–94
intestinal lumen, 285–88
intestinal transit, 287
introduction, 283–84
Ireg1, 289–90
iron speciation in
intestinal lumen,
285–86
iron transport genes,
287–88
ligands, 286
luminal redox reactions,
287
MTP1, 289–90
- mucus, 286–88, 292
nonheme iron
absorption, 284
Nramp2, 288
overview of iron
absorption in
mammals, 284–85
pH, 286
regulation, 285–88,
291–92, 294–95
scope of review, 283–84
SLC 11AC, 289–90
summary, 295–96
transfer, 292–93
- Iron status
neural functioning and
acute effects, 49–50
adolescents, 52–53
conclusions, 53
function, 45–47
GABA, 47–53
human studies of iron
deficiency, 48
infant studies, 49–51
introduction, 42
location and uptake of
brain iron, 42–45
long-term effects,
50–51
monoamines, 45–47
myelin, 45
neonatal iron deficiency,
49
neurodevelopment,
47–48
oligodendrocytes, 45
preschool children, 51
- Isomerization
lutein and zeaxanthin
protective role in eye,
179
- Isoproterenol
hypothalamic control of
bone formation and, 408
- Italy
diabetes type 2 prevalence
and, 348
- J**
- Japan
diabetes type 2 prevalence
and, 348, 362
diabetes type 2 prevention
and, 149
- K**
- Kidney
gugulipid and, 309–10
- Kinetics
selenoprotein synthesis
and, 23–24
- Klebsiella pneumoniae*
foodborne illness reduction
and, 325–26
- Knockdowns
iron status and neural
functioning, 44
- Knockouts
galactosemia and, 59
metabolic pathway fluxes
and, 382
- L**
- Lactobacillus* spp.
history of research, 6
- Lactose
galactosemia and, 59–76
- Latin America
diabetes type 2 prevalence
and, 359–61, 365–66
iron status and neural
functioning, 42
- Leflunamide
vitamin D and immune
activation, 133
- Leptin
diabetes type 2 prevalence
and, 354, 364
hypothalamic control of
bone formation and,
403–9
metabolic pathway fluxes
and, 393–94
- Lifestyle changes
diabetes type 2 prevention

- and, 162
- Ligands**
- dietary iron absorption and, 286
 - gugulipid and, 303–10
- Light absorption**
- lutein and zeaxanthin protective role in eye, 171, 178–80, 183, 185–86, 190–91
- Light filter**
- lutein and zeaxanthin protective role in eye, 171, 179–80
- Lipid pathway dynamics**
- metabolic pathway fluxes and, 379, 384–85
- Lipids**
- gugulipid and, 303–10
 - milk fat synthesis nutritional regulation and, 203–20
 - trophic and cytoprotective nutrition for intestine, 229
- Lipofuscin**
- lutein and zeaxanthin protective role in eye, 187
- Lipogenesis/lipolysis**
- all-source metabolic pathway fluxes and, 390–91
- Lipoprotein synthesis**
- metabolic pathway fluxes and, 379
- Listeria monocytogenes***
- foodborne illness reduction and, 320, 325, 328–29, 337–38
- Liver**
- galactosemia and, 76
 - gugulipid and, 309–10
 - history of research, 1, 8, 10
 - metabolic pathway fluxes and, 379, 395–98
 - milk fat synthesis nutritional regulation and, 207
- Local responsibilities**
- foodborne illness reduction and, 335
- Long-lived protein synthesis**
- metabolic pathway fluxes and, 379, 398
- Low-fat milk syndrome**
- milk fat synthesis nutritional regulation and, 204–8
- Low-fiber diets**
- milk fat synthesis nutritional regulation and, 207–11, 213, 215–20
- Lumen**
- intestinal dietary iron absorption and, 285–88
- Lutein/zeaxanthin**
- protective role in eye age-related macular degeneration, 189–90 aggregation, 177 antioxidation, 181–83 biological properties, 179–83 cataracts, 189–90 characterization, 176–77 chemical properties, 174–78 chromatic aberration, 179–80 conclusions, 192–93 current recommendations, 192–93 dietary sources, 183–84 epidemiological evidence, 188–91 fluorescence of lipofuscin, 187 future recommendations, 193 Haidinger's brushes, 180–81 heterochromatic flicker photometry, 185–86
- history, 172–74
- interventional epidemiology**, 189–91
- introduction**, 172–74
- isomerization**, 179
- light absorption**, 178–79
- light filter**, 17–80
- macular pigment**, 172–74
- macular region of retina**, 172–73
- measurement of macular pigment in vivo**, 184–88
- membrane properties**, 180–81
- miscellaneous eye diseases**, 190–91
- observational epidemiology**, 188–89
- orientation in membranes**, 181
- oxidation**, 177
- oxidation/reduction products**, 177–78
- physical properties**, 178–79
- polarity**, 177
- potential role**, 174
- pro-oxidation**, 181–83
- protective actions**, 191–92
- reactivity**, 177
- reflectometry**, 186–87
- resonance Raman spectroscopy**, 187–88
- solubility**, 177, 181
- sources**, 183–84
- supplements**, 184
- M**
- Macronutrient intake**
- metabolic pathway fluxes and, 379
- Macronutrient intake de novo lipogenesis (MIDA)**
- metabolic pathway fluxes

- and, 384–85
- Macrophages**
vitamin D and immune activation, 120–22, 135
- Macular degeneration**
age-related
lutein and zeaxanthin protective role in eye, 171, 174, 180, 183–84, 187–93
- Magnesium**
diabetes type 2 prevention and, 160
- Malnutrition**
perioperative patient and nutrition, 263–74
trophic and cytoprotective nutrition for intestine, 229
- Marine oil diets**
milk fat synthesis nutritional regulation and, 207, 209, 217–18
- Mass spectrometry**
metabolic pathway fluxes and, 379–99
- Mauritius**
diabetes type 2 prevalence and, 349
- MC4R-deficient mice**
hypothalamic control of bone formation and, 405, 407
- Medicare**
perioperative patient and nutrition, 268, 272
- Mediterranean region**
diabetes type 2 prevalence and, 348
- Megasphaera elsdenii***
milk fat synthesis nutritional regulation and, 216
- Melanocortin**
hypothalamic control of bone formation and, 405–8
- Menopause**
- hypothalamic control of bone formation and, 403
- Mergers in food industry**
foodborne illness reduction and, 330
- Metabolic pathway fluxes**
in vivo measurements
adipose tissue acyl-glycerides, 391–92
adipose tissue lipids and cells, 391–94
all-source lipogenesis and lipolysis, 390–91
cell proliferation, 391–95
CHO surplus, 385–88
comment, 390, 395
conclusions, 398–99
defining operational unit of function, 382–83
de novo lipogenesis, 384–88
depots, 39–92
dietary carbohydrates and fats, 383–84
distal phenotypic consequences of inborn errors of metabolism in humans, 382
DNA synthesis, 391–95
emergent property, 381–82
ethanol, 388–90
food restriction, 393–94
functional genomics, 380–83
genetic analysis of complex diseases or traits, 382
glucose metabolism, 385–88
 $^2\text{H}_2\text{O}$ labeling, 390–91, 395, 398
hepatic VLDL assembly, 395–98
improving observability of fully assembled systems, 383
introduction, 380
knockout mice, 382
leptin, 393–94
lipid pathway dynamics, 384–85
metabolic engineering of bacteria, 381–82
MIDA technique, 384–85
mitochondrial components, 395
ob/ob mice, 391, 393–94
phenotype, 382, 390–91
static concentrations, 383–84
summary, 398–99
tension between whole and parts, 382–83
transgenic mice–82
unpredictability, 381–82
- Metabolism**
amino acid requirement determination and, 101, 109
diabetes type 2 prevention and, 148–51
galactosemia and, 59, 65–68
gugulipid and, 305–8
hypothalamic control of bone formation and, 403, 409
iron status and neural functioning, 41, 45–46
milk fat synthesis nutritional regulation and, 203–4
stress and, 1, 6–7
vitamin D and immune activation, 117
- Metformin**
diabetes type 2 prevention and, 151, 153
- Methanococcus jannaschi***
selenoprotein synthesis

- and, 26–27
Mexican Americans
 diet of US poor and minority communities 100 years ago, 81, 89
Mexico
 diabetes type 2 prevalence and, 348–49
Microbes
 foodborne illness reduction and, 315–41
 milk fat synthesis nutritional regulation and, 203, 207, 216
Micronutrients
 diabetes type 2 prevention and, 160–62
Middle East
 diabetes type 2 prevalence and, 348–49, 361, 366
Milk fat synthesis
 nutritional regulation of acetate, 208–10
 background, 205–8
 biohydrogenation theory, 216–20
 butyrate, 208–10
 conclusions, 220
 fatty acid origins, 205–6
 glucogenic-insulin theory, 210–13
 introduction, 204
 low-fat milk syndrome, 206–8
 milk fat depression, 208–16
 rumen, 20–10
trans fatty acid theory, 214–16
Minimally processed foods
 foodborne illness reduction and, 329
Minority households
 diet of US poor and minority communities 100 years ago, 81–97
Mitochondria
 metabolic pathway fluxes and, 395
Modernization
 diabetes type 2 prevalence and, 345–66
Modifier gene
 galactosemia and, 75–76
Monoamines
 iron status and neural functioning, 45–47
Monocytes
 vitamin D and immune activation, 120–22
Monosodium glutamate (MSG)
 hypothalamic control of bone formation and, 406, 408
Mountaineers
 diet of US poor and minority communities 100 years ago, 87–89
Movement transportation
 diabetes type 2 prevalence and, 360
***MTP1* gene**
 dietary iron absorption and, 289–90
Mucus
 dietary iron absorption and, 286–88, 292
 trophic and cytoprotective nutrition for intestine, 229–50
Mycophenolate mofetil
 vitamin D and immune activation, 133
Myelin
 iron status and neural functioning, 41, 45
Myopia
 lutein and zeaxanthin protective role in eye, 191

N

Native Americans
 diabetes type 2 prevalence and, 355–56
Natural killer (NK) cells
 vitamin D and immune activation, 124–25
Natural selection
 diabetes type 2 prevalence and, 353–54
Near East
 diabetes type 2 prevalence and, 352
Neolithic transitions
 diabetes type 2 prevalence and, 352–53
Neomercaptozole
 gugulipid and, 308
Neonatal iron deficiency
 iron status and neural functioning, 49
Neonatal toxicity
 galactosemia and, 73–74
Netherlands
 diabetes type 2 prevention and, 156
 perioperative patient and nutrition, 268
Neural functioning
 iron status and, 41–53
Neurodevelopment
 iron status and neural functioning, 41, 47–48
Neurons
 hypothalamic control of bone formation and, 403, 405–7
 iron status and neural functioning, 43
Neuropeptide Y (NPY)
 diabetes type 2 prevalence and, 364
 hypothalamic control of bone formation and, 406
Neurotoxins
 hypothalamic control of bone formation and, 406
Neurotransmitters
 iron status and neural

- functioning, 41–42, 45, 47–53
- New World syndrome
diabetes type 2 prevalence and, 356
- Niger
iron status and neural functioning, 49
- Nitrogen balance
amino acid requirement determination and, 101, 103–6, 108, 110–13
- Nitrogen species
lutein and zeaxanthin protective role in eye, 182
- Nonesterified fatty acids (NEFAs)
milk fat synthesis nutritional regulation and, 206, 212–13
- Nonheme iron absorption
dietary iron absorption and, 284
- North America
diabetes type 2 prevalence and, 348, 361, 365–66
- Norwalk-like virus
foodborne illness reduction and, 322, 325
- Nramp2 transporter
dietary iron absorption and, 283, 288
- Nucleus accumbens
iron status and neural functioning, 46
- Nutritional history
diet of US poor and minority communities 100 years ago, 81–97
- Nutritive sweeteners
diabetes type 2 prevention and, 158
- O**
- Obesity
diabetes type 2 prevalence and, 345, 348, 353–54, 359–60, 362–66
- diabetes type 2 prevention and, 147–55, 159, 162
- gugulipid and, 307
- hypothalamic control of bone formation and, 405
- ob/ob* mice
hypothalamic control of bone formation and, 406–8
- metabolic pathway fluxes and, 391, 393–94
- Observational epidemiology
lutein and zeaxanthin protective role in eye, 188–89
- Oligodendrocytes
iron status and neural functioning, 43, 45
- Oncostatin M
hypothalamic control of bone formation and, 405
- Orlistat
diabetes type 2 prevention and, 150, 152
- Osteoblasts
hypothalamic control of bone formation and, 403–5, 408
- Osteoclasts
hypothalamic control of bone formation and, 403–4
- Osteopenia
hypothalamic control of bone formation and, 408–9
- Osteoporosis
hypothalamic control of bone formation and, 404, 409
- Outbreak detection
foodborne illness reduction and, 337–38
- Ovarian failure
galactosemia and, 59, 74
- Ovariectomy
hypothalamic control of bone formation and, 403, 409
- Overall obesity
diabetes type 2 prevention and, 152–53
- Oxidation
galactosemia and, 59, 63–64
- lutein and zeaxanthin protective role in eye, 177–78
- Oxidative stress
diabetes type 2 prevention and, 160
- iron status and neural functioning, 44
- P**
- Pacific Islanders
diabetes type 2 prevalence and, 348–49, 355, 365
- Pakistan
diabetes type 2 prevalence and, 348–49
- Paleonutrition
diabetes type 2 prevalence and, 351–52
- Pan troglodytes*
diabetes type 2 prevalence and, 350
- Papua, New Guinea
diabetes type 2 prevalence and, 349
- Parenteral nutrition
perioperative patient and nutrition, 263–74
- Partially hydrogenated vegetable oils (PHVOs)
milk fat synthesis nutritional regulation and, 217
- Pathogenicity
foodborne illness reduction and, 315–41
- Penicillin

- foodborne illness reduction and, 326
- Perioperative patient nutrition in**
cost, 271–73
introduction, 263–64
postoperative nutrition support, 268–71
preoperative nutrition support, 264–68
unresolved issues, 273–74
- Peripheral mediator**
hypothalamic control of bone formation and, 403
- Permissive effects**
vitamin D and immune activation, 136
- Peru**
diabetes type 2 prevention and, 149
- pH**
dietary iron absorption and, 286
- Phenotype**
diabetes type 2 prevalence and, 345, 357–58, 366
galactosemia and, 59, 75
high bone mass, 409
metabolic pathway fluxes and, 382, 390–91
- Phenylketonuria (PKU)**
amino acid requirement determination and, 105–6, 112
- Philippines**
diabetes type 2 prevalence and, 361
- Phosphorous**
vitamin D and immune activation, 117
- Phosphorylation**
hypothalamic control of bone formation and, 405
- Photoreceptors**
lutein and zeaxanthin protective role in eye, 171, 183, 191
- Physical activity**
diabetes type 2 prevention and, 147–48, 152–54, 162
- Plasmodium* spp.
diabetes type 2 prevalence and, 353
- Policy issues**
foodborne illness reduction and, 315, 332–36
- Polyunsaturated fatty acids (PUFAs)**
milk fat synthesis nutritional regulation and, 203, 207–8, 220
- Pons**
iron status and neural functioning, 43
- Population surveillance**
foodborne illness reduction and, 337–38
- Positive energy balance**
diabetes type 2 prevalence and, 364–66
- Postoperative nutrition support**
perioperative patient and nutrition, 263, 268–71
- Potassium**
diabetes type 2 prevention and, 160
- Poverty**
diet of US poor and minority communities 100 years ago, 81–97
- Prebiotics**
trophic and cytoprotective nutrition for intestine, 245–48
- Pregnancy**
amino acid requirement determination and, 113
iron status and neural functioning, 42, 49
- Pregnane X receptor (PXR)**
gugulipid and, 308–10
- Prenatal phenotypic programming**
diabetes type 2 prevalence and, 357–58
- Preoperative nutrition support**
perioperative patient and nutrition, 263–68
- Preschool children**
iron status and neural functioning, 41, 51
- Prevention**
diabetes type 2 and, 147–62
- Prevention-based regulatory approaches**
foodborne illness reduction and, 338
- Private sector responsibilities**
foodborne illness reduction and, 332–33
- Probiotics**
perioperative patient and nutrition, 271
- Processive insertion**
selenoprotein synthesis and, 27–28
- Prokaryotes**
selenoprotein synthesis and, 17, 21–24
- Pro-oxidation**
lutein and zeaxanthin protective role in eye, 181–83
- Propionibacterium* spp.
milk fat synthesis nutritional regulation and, 216
- Propranolol**
gugulipid and, 308
hypothalamic control of bone formation and, 408–9
- Prostaglandins**
trophic and cytoprotective nutrition for intestine, 243–44
- Protector gene**

- galactosemia and, 75–76
- P**
- Protein
- dietary
 - diabetes type 2
 - prevention and, 159
- Protein-sparing therapy
- perioperative patient and
 - nutrition, 265, 269
- Puberty
- hypothalamic control of
 - bone formation and, 403
- Q**
- Quaternary complex
- selenoprotein synthesis
 - and, 22–23
- R**
- Radiation
- trophic and cytoprotective
 - nutrition for intestine,
 - 235–38, 242, 245
- Raw foods
- foodborne illness reduction
 - and, 329
- Reactive oxygen species
- lutein and zeaxanthin
 - protective role in eye,
 - 171–93
- Redox reactions
- lumenal
 - dietary iron absorption
 - and, 287
- Reflectometry
- lutein and zeaxanthin
 - protective role in eye,
 - 186–87
- Reflex sympathetic dystrophy
- hypothalamic control of
 - bone formation and,
 - 409
- Regulation
- dietary iron absorption and,
 - 285–95
 - milk fat synthesis
 - nutritional regulation and,
 - 203–20
- selenoprotein synthesis
- and, 17–34
 - vitamin D and immune
 - activation, 117–36
- Regulatory issues
- foodborne illness reduction
 - and, 315, 332–36
- Remodeling
- bone
 - hypothalamic control of
 - bone formation and,
 - 403–4
- Reproduction
- hypothalamic control of
 - bone formation and,
 - 403–5
- Resonance Raman
- spectroscopy
 - lutein and zeaxanthin
 - protective role in eye,
 - 187–88
- Retina
- lutein and zeaxanthin
 - protective role in eye,
 - 171–93
- Retinitis pigmentosa
- lutein and zeaxanthin
 - protective role in eye,
 - 190–91
- Retinoids
- history of research,
 - 1–14
- N*-Retinyl-*N*-retinylidene
- ethanolamine (A2E)
 - lutein and zeaxanthin
 - protective role in eye,
 - 191, 193
- Ribosomes
- selenoprotein synthesis
 - and, 17–18
- Risk-based system for food
- safety
 - foodborne illness reduction
 - and, 339–340
- Rotavirus
- foodborne illness reduction
 - and, 323
- Rumen
- milk fat synthesis
 - nutritional regulation and,
 - 203–4, 207–10, 214,
 - 216–17, 219–20
- Russia
- diabetes type 2 prevalence
 - and, 365
- S**
- Saccharomyces cerevisiae*
- selenoprotein synthesis
 - and, 33
- Salmonella* spp.
- foodborne illness reduction
 - and, 320–21, 325–26,
 - 328–29, 337, 340
- SBP2 protein
- selenoprotein synthesis
 - and, 26, 33
- SECIS element
- selenoprotein synthesis
 - and, 17, 22–29,
 - 32–33
- Sedentary lifestyles
- diabetes type 2 prevalence
 - and, 345–66
- SelB elongation factor
- selenoprotein synthesis
 - and, 21–22
- Selenium
- lutein and zeaxanthin
 - protective role in eye, 182
- Selenoprotein synthesis
- cis*-acting sequences,
 - 24–26
 - concentration of factors,
 - 23–24
 - conclusions, 33–34
 - eEFsec, 27
 - efficiency, 23–24
 - Escherichia coli*, 23–24
 - hierarchy, 32
 - introduction, 18
 - kinetics, 23–24
 - limiting factors as key
 - point of regulation, 31

- mammalian selenoproteins, 19
function, 20
identification, 20
regulation, 31–33
mRNA stability, 32–33
perspectives, 33–34
processive insertion, 27–28
quaternary complex, 22–23
regulation, 23–24
SBP2, 26–33
SECIS element, 24–26
SelB, 21–22
selenium, 19, 31–33
selenocysteine
efficiency of insertion, 29–31
eukaryotes, 24–25
function, 19
insertion, 20–31
model for Sec insertion, 23
prokaryotes, 21–24
structure, 19
termination, 24
translational decoding of UGA as, 20–21
tRNA, 21
unique aspects of Sec insertion compared to normal protein synthesis, 20–21
trans-acting proteins, 26
UGA codon, 29, 31
unanswered questions, 28–29
Self-tolerance
vitamin D and immune activation, 136
sel genes
selenoprotein synthesis and, 21
***Shigella* spp.**
foodborne illness reduction and, 321, 325, 329, 331, 337
Short bowel syndrome
trophic and cytoprotective nutrition for intestine, 229, 234–35, 244–45
Short-chain fatty acids (SCFAs)
trophic and cytoprotective nutrition for intestine, 229, 245–48
Signaling
vitamin D and immune activation, 125–27
Sirolimus
vitamin D and immune activation, 133
SLC 11A3 protein
dietary iron absorption and, 289–90
Slow turnover proteins
metabolic pathway fluxes and, 379, 398
Small intestine
gugulipid and, 309
Specialized nutritional support (SNS)
perioperative patient and nutrition, 263–74
Speciation
dietary iron absorption and, 285–86
Spoilage
foodborne illness reduction and, 328–29
Stable isotope-mass/spectrometric methods
metabolic pathway fluxes and, 379–99
***Staphylococcus* spp.**
foodborne illness reduction and, 321
Starch
diabetes type 2 prevention and, 158
Stat3 molecule
hypothalamic control of bone formation and, 405
State responsibilities
foodborne illness reduction and, 335
Static concentrations
metabolic pathway fluxes and, 383–84
Steroid hormones
history of research, 1, 12
St. Kitts and Nevis
diabetes type 2 prevalence and, 349
***Streptococcus* spp.**
foodborne illness reduction and, 321, 326
Stress
metabolic changes and, 1, 6–7
Striatum
iron status and neural functioning, 41, 46, 48, 50
Subsistence energy costs
diabetes type 2 prevalence and, 360–61
Supersizing foods
diabetes type 2 prevalence and, 362
Supplements
diabetes type 2 prevention and, 160–61
lutein and zeaxanthin protective role in eye, 184
Sympathetic nervous system (SNS)
hypothalamic control of bone formation and, 403, 407–9
Syndrome X
diabetes type 2 prevalence and, 345, 357, 365
T
Tacrolimus
vitamin D and immune activation, 133
***Taenia* spp.**
foodborne illness reduction and, 324

- Taste
diabetes type 2 prevalence and, 354–55
- Termination
selenoprotein synthesis and, 17, 24
- Tetracycline
gugulipid and, 308
- Th-1-type cellular immune responses
vitamin D and immune activation, 135
- Thailand
diabetes type 2 prevalence and, 359, 366
iron status and neural functioning, 52
- Thrifty genotypes
diabetes type 2 prevalence and, 345, 355–56, 366
- Thymopentine
perioperative patient and nutrition, 271
- Thyroid gland
gugulipid and, 307–8
- Tissue metabolism
milk fat synthesis
nutritional regulation and, 203–4
- T lymphocytes
vitamin D and immune activation, 117, 123–24, 136
- α -Tocopherol
diabetes type 2 prevention and, 160
- Tonga
diabetes type 2 prevalence and, 349
- Toxoplasma gondii*
foodborne illness reduction and, 322, 324–25
- trans-acting factors
selenoprotein synthesis and, 17–18, 26, 28
- trans fatty acid theory
milk fat synthesis
- nutritional regulation and, 214–16
- Transfer
dietary iron absorption and, 292–293
- Transferrin
iron status and neural functioning, 43–44
- Transgenics
hypothalamic control of bone formation and, 404–5
metabolic pathway fluxes and, 382
- Translational decoding
selenoprotein synthesis and, 17, 20–21
- Transplantation
vitamin D and immune activation, 117, 130–31
- Transport genes
dietary iron absorption and, 287–88
- Trichinella spiralis*
foodborne illness reduction and, 322, 324
- Trinidad and Tobago
diabetes type 2 prevalence and, 349
- Trophic/cytoprotective nutrition
for intestine
antioxidants, 240–42
arginine, 238–40
chemotherapy, 235–42, 245
critical illness, 235–38, 242, 245
dietary fiber, 245–48
fatty acids, 243–44
glutamine, 232–38
glutathione, 240–42
glycine, 238
gut mucosal growth and adaptation, 230–32
histidine, 238
inflammatory bowel disease, 233–44
prebiotics, 245–48
prostaglandins, 243–44
radiation, 235–42, 245
short bowel syndrome, 234–35, 244–45
short-chain fatty acids, 245–48
summary, 249–50
vitamin A, 242–43
zinc, 248–49
- Tryptophan oxygenase
history of research, 1, 8, 10
- 24-hour balance
amino acid requirement determination and, 101, 103–5, 107, 109–10
- Two-phase linear regression crossover
amino acid requirement determination and, 101, 108
- U**
- UDP-galactose galactosemia and, 59, 63, 66–68, 70–73, 75
- UGA codon
selenoprotein synthesis and, 17–18, 20–21, 29, 31
- United Kingdom
iron status and neural functioning, 50
- United States
diabetes type 2 prevalence and, 347–48, 358, 360–63, 365–66
diabetes type 2 prevention and, 149, 153, 155–59
foodborne illness reduction and, 315–41
poor and minority communities 100 years ago
African American diets, 84–87
American-born poor, 90

- Appalachia, 87–89
 conclusions, 97
 discussion, 95–97
 early dietaries and their method, 82–84
 Europeans, 91–94
 French Canadians, 91
 immigrants, 91–94
 introduction, 82
 Mexican Americans, 89
 mountaineers, 87–89
 poor urban and immigrant households, 89–94
- Urban households
 diet of US poor and minority communities 100 years ago, 89–94
- Uridine controversy
 galactosemia and, 75
- V**
- Vegetables
 dark-green leafy
 lutein and zeaxanthin protective role in eye, 171, 184–85, 188–89
- diabetes type 2 prevention and, 159–60
- Ventro-medial hypothalamic (VMH) nucleus
 hypothalamic control of bone formation and, 406–7
- Very-low-density lipoprotein (VLDL)
 metabolic pathway fluxes and, 395–98
- Vibrio* spp.
 foodborne illness reduction and, 321–22, 337
- Viruses
 foodborne illness reduction and, 322–23, 325
- Vitamin A
 history of research, 1, 11–14
- trophic and cytoprotective nutrition for intestine, 229, 242–43
- Vitamin B₁₂
 history of research, 7
- Vitamin C
 lutein and zeaxanthin protective role in eye, 182, 190
- Vitamin D and analogs
 immune activation and antigen presentation autoimmunity, 135–36
 B lymphocytes, 124–25
 clinical applications, 131–33
 cognate immunity, 118–19
 combined effects with other immunomodulatory agents, 133–34
 conclusions, 136
 cross-talk, 118–19
 dendritic cells, 120–36
 dietary influences, 134
 experimental models of immune-mediated disease, 127–31
 genetically-based autoimmune disease, 127–29
 hypercalcemia, 132, 134
 immune cell types, 120–25
 immune system regulation, 118–19
 in vitro vs *in vivo* potency, 131–32
 induced immune-mediated disease, 129–30
 initial observations, 119–20
 innate immunity, 11–19, 135
- macrophages, 120–22, 135
 modulation of intracellular signaling in immune cells, 125–27
 monocytes, 120–22
 NK cells, 124–25
 permissive effects, 136
 physiological roles, 135–36
 self-tolerance, 136
 Th-1-type cellular immune responses, 135–36
 Th-2 T cells, 136
 therapeutic considerations, 131–33
 timing and duration of therapy, 132–33
 T lymphocytes, 123–24
 transplantation, 130–31
 T_{reg}-type T-cells, 136
 vitamin D deficiency, 120
 vitamin D receptors in immune system cells, 119–20
 vitamin D therapy, 127–31
- Vitamin E
 diabetes type 2 prevention and, 160
 lutein and zeaxanthin protective role in eye, 182, 190
- Volatile fatty acids (VFAs)
 milk fat synthesis nutritional regulation and, 208–10
- W**
- Weight loss
 diabetes type 2 prevention and, 147–48, 150–55, 162

- perioperative patient and nutrition, 264, 269, 273-74
- Western lifestyles**
diabetes type 2 prevalence and, 345-66
- Women**
iron status and neural functioning, 42, 49
- X**
- Xanthophylls**
lutein and zeaxanthin protective role in eye, 171-93
- Xerophthalmia**
history of research, 13-14
- Y**
- Yeast**
selenoprotein synthesis and, 33
- Yersinia enterocolitica**
foodborne illness reduction and, 322, 325, 328, 337
- Z**
- Zanzibar**
- iron status and neural functioning, 51
- Zeaxanthin**
lutein and zeaxanthin protective role in eye, 171-93
- Zinc**
diabetes type 2 prevention and, 160
lutein and zeaxanthin protective role in eye, 188, 190
trophic and cytoprotective nutrition for intestine, 229, 248-49

CONTENTS

FRONTISPICE— <i>Frank Chytil</i>	xiv
ROUGH AND ROCKY ROAD TO THE RETINOID REVOLUTION, <i>Frank Chytil</i>	1
MECHANISM AND REGULATION OF SELENOPROTEIN SYNTHESIS, <i>Donna M. Driscoll and Paul R. Copeland</i>	17
IRON STATUS AND NEURAL FUNCTIONING, <i>John L. Beard and James R. Connor</i>	41
INSIGHTS INTO THE PATHOGENESIS OF GALACTOSEMIA, <i>Nancy D. Leslie</i>	59
DIET AND NUTRITION IN POOR AND MINORITY COMMUNITIES IN THE UNITED STATES 100 YEARS AGO, <i>Robert Dirks</i>	81
DIFFERENT APPROACHES TO DEFINE INDIVIDUAL AMINO ACID REQUIREMENTS, <i>Paul B. Pencharz and Ronald O. Ball</i>	101
VITAMIN D AND ITS ANALOGS AS REGULATORS OF IMMUNE ACTIVATION AND ANTIGEN PRESENTATION, <i>Matthew D. Griffin, Nianzeng Xing, and Rajiv Kumar</i>	117
NUTRITION AND PREVENTION OF TYPE 2 DIABETES, <i>T. Costacou and E.J. Mayer-Davis</i>	147
BIOLOGIC MECHANISMS OF THE PROTECTIVE ROLE OF LUTEIN AND ZEAXANTHIN IN THE EYE, <i>Norman I. Krinsky, John T. Landrum, and Richard A. Bone</i>	171
NUTRITIONAL REGULATION OF MILK FAT SYNTHESIS, <i>Dale E. Bauman and J. Mikko Gruinari</i>	203
TROPHIC AND CYTOPROTECTIVE NUTRITION FOR INTESTINAL ADAPTATION, MUCOSAL REPAIR, AND BARRIER FUNCTION, <i>Thomas R. Ziegler, Mary E. Evans, Concepción Fernández-Estívariz, and Dean P. Jones</i>	229
NUTRITION IN THE PERIOPERATIVE PATIENT, <i>Lyn Howard and Christopher Ashley</i>	263
PHYSIOLOGY AND MOLECULAR BIOLOGY OF DIETARY IRON ABSORPTION, <i>Silvia Miret, Robert J. Simpson, and Andrew T. McKie</i>	283

GUGULIPID: A NATURAL CHOLESTEROL-LOWERING AGENT, <i>Nancy L. Urizar and David D. Moore</i>	303
CHALLENGES AND APPROACHES TO REDUCING FOODBORNE ILLNESS, <i>Catherine E. Woteki and Brian D. Kineman</i>	315
DIETARY, EVOLUTIONARY, AND MODERNIZING INFLUENCES ON THE PREVALENCE OF TYPE 2 DIABETES, <i>Leslie Sue Lieberman</i>	345
IN VIVO MEASUREMENT OF FLUXES THROUGH METABOLIC PATHWAYS: THE MISSING LINK IN FUNCTIONAL GENOMICS AND PHARMACEUTICAL RESEARCH, <i>Marc K. Hellerstein</i>	379
COMMON ENDOCRINE CONTROL OF BODY WEIGHT, REPRODUCTION, AND BONE MASS, <i>Shu Takeda, Florent Elefteriou, and Gerard Karsenty</i>	403
INDEXES	
Subject Index	413
Cumulative Index of Contributing Authors, Volumes 19–23	433
Cumulative Index of Chapter Titles, Volumes 19–23	436
ERRATA	
An online log of corrections to <i>Annual Review of Nutrition</i> chapters (if any, 1997 to the present) may be found at http://nutr.annualreviews.org/	

