Orthogonal Range Searching in 2D using Ball Inheritance

Mads Ravn

Computer Science, Aarhus University

2015

Outline

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
- 2 Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater

Outline

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
- 2 Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater

Orthogonal Range Searching

Preleminaries

- Alle koordinater er unikke
- Rank space
- *n* er en potens af 2

Orthogonal Range Searching

Vi er givet n punkter fra \mathbb{R}^2 som vi ønsker at indsætte i en datastruktur sådan at vi kan svare effektivt på forespørgslen $q = [x_1, x_2] \times [y_1, y_2]$. Et punkt $p = (p_x, p_y)$ ligger i $q = [x_1, x_2] \times [y_1, y_2]$ hvis $p_x \in [x_1, x_2]$ og $p_y \in [y_1, y_2]$. Man kunne derfor sige at et 2-dimensionelt query består af to 1-dimensional sub-queries. Kommer til at virke for alle tre datastrukturer.

Outline

- Introduction
 - Orthogonal Range Searching
 - Previous data structures.
- 2 Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater

kd-træ

Givet n punkter: Punkterne bliver sorteret efter x eller y på skift. Median bliver fundet og punkterne mindre end medianen bliver givet til venstre barn og punkterne højere end medianen bliver givet til højre barn. Et punkt per blad i træet.

- $\mathcal{O}(n)$ plads
- $\mathcal{O}(\sqrt{n}+k)$ tid

Opbygning af kd-træ

Det $\lceil \frac{n}{2} \rceil$ 'te element bliver valgt som median. Dette element fungerer som en skille-linje mellem de to punkt-mængder. Medianen bliver låst fast på denne plads i arrayet.

Søgning i kd-træ

BISintro

Ball Inheritance Search (BIS) er en datastruktur bygget som en simplificering af den datastruktur Chan et al laver.

Outline

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
- 2 Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater

• Vi er givet et perfekt binært træ.

- Vi er givet et perfekt binært træ.
- Roden indeholder *n* punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Elementerne i roden er sorteret.

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Elementerne i roden er sorteret.
- Hver knude har en liste over hvilke bolder der går igennem den. De bolde ender så i træet med rod i den knude. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Elementerne i roden er sorteret.
- Hver knude har en liste over hvilke bolder der går igennem den. De bolde ender så i træet med rod i den knude. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.
- Løs: Givet en knude og et index i knudens liste, hvilket blad ender denne bold ved? Vi kan følge bolden

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Elementerne i roden er sorteret.
- Hver knude har en liste over hvilke bolder der går igennem den. De bolde ender så i træet med rod i den knude. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.
- Løs: Givet en knude og et index i knudens liste, hvilket blad ender denne bold ved? Vi kan følge bolden
- Vi kan nu følge en bold fra en knude til et blad med $\mathcal{O}(\lg n)$ skridt.

Faster Queries

Vi ønsker at gøre antallet skridt fra en knude til et blad mindre. Vi udvider alfabetet på udvalgte niveauer. Det bruger

- $\mathcal{O}(\frac{n}{\epsilon}) = \mathcal{O}(n)$ plads
- $\mathcal{O}(\lg^{\epsilon} n)$ tid

hvor $\epsilon>0$ er en arbitrær lille konstant. Space-time tradeoff. Vis koncept, tid og plads her

Outline

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
- 2 Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater

Ball Inheritance Search

- $\mathcal{O}(n)$ plads
- $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ tid, hvor $\epsilon > 0$ er en arbitrær lille konstant

x-range

• Vi oversætter vores query til rank space $[x_1, x_2] \times [y_1, y_2] \Rightarrow [\hat{x}_1, \hat{x}_2] \times [\hat{y}_1, \hat{y}_2].$

x-range

- Vi oversætter vores query til rank space $[x_1, x_2] \times [y_1, y_2] \Rightarrow [\hat{x}_1, \hat{x}_2] \times [\hat{y}_1, \hat{y}_2].$
- Vi går ned til least common ancestor af \hat{x}_1 og \hat{x}_2 og herfra ned til \hat{x}_1 og \hat{x}_2 . På den måde finder vi knuder der kun indeholder punkter i $[x_1, x_2]$.

y-range

• Vi har opdateret $[\hat{y}_1, \hat{y}_2]$ fra roden til både \hat{x}_1 og \hat{x}_2 . Dvs vi ved hvilke bolde i hver knude vi fandt før der indeholder punkter i $[y_1, y_2]$.

y-range

- Vi har opdateret $[\hat{y}_1, \hat{y}_2]$ fra roden til både \hat{x}_1 og \hat{x}_2 . Dvs vi ved hvilke bolde i hver knude vi fandt før der indeholder punkter i $[y_1, y_2]$.
- Vi har nu nogle knuder og lister over indeces i disse knuder.
 Det er præcis det problem ball inheritance løser. Vi kan nu bruge ball inheritance på alle disse knuder til at finde ud af hvilke blade der indeholder punkter i [y1, y2].

ballinheritance

Vi har nu at hver knude der er fully contained laver ball inheritance på det y-range den får givet. Det tager $\mathcal{O}(k \cdot \lg^{\epsilon} n)$ tid. Det tager $\mathcal{O}(\lg n)$ at lave binær søgning og at gå fra roden til \hat{x}_1 og \hat{x}_2 .

ballinheritance

Vi har nu at hver knude der er fully contained laver ball inheritance på det y-range den får givet. Det tager $\mathcal{O}(k \cdot \lg^{\epsilon} n)$ tid. Det tager $\mathcal{O}(\lg n)$ at lave binær søgning og at gå fra roden til \hat{x}_1 og \hat{x}_2 . Det giver en kørselstid på $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ for at finde k punkter.

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

Bit vectors.

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

- Bit vectors.
- Store hop (Kommer vi til)

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

- Bit vectors.
- Store hop (Kommer vi til)
- Egentlig punkter

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

- Bit vectors.
- Store hop (Kommer vi til)
- Egentlig punkter
- Binær søgning

Små hop

Hvert niveau gemmer n bits som indikerer om bolden er gået til højre eller venstre. Hvert 32 bit gemmer vi et 32 bit major checkpoint. Precomputed tabel med 16 bit tal som tæller antal 1-entries. $\mathcal{O}(n)$ bits per level.

Store hop

 $\mathcal{O}(\lg \Sigma)$ per entry. $\Sigma = 2^{B^i}$. Så plads er $\mathcal{O}(B^i)$ bits per entry. Det er

$$\sum_{i=1}^{\lg_B \lg n} \frac{\lg n}{B^i} \cdot \mathcal{O}(B^i) = \mathcal{O}(\lg n \cdot \lg_B \lg n)$$

for hele kæden.

Store hop

Tid for store hop

Squared

vertical

