IN THE CLAIMS:

1	1. (Currently amended) A tire pressure monitoring apparatus, comprising:
2	a gauge that displays a pressure reading; and
3	a saddle valve including:
4	(i) a base member adapted to sealingly and threadingly connect to
5	a tire valve stem,
6	(ii) an upper member constructed and arranged to move relative to
7	the base member at a predetermined time to transfer pressure from a tire to
8	the gauge, and
9	(iii) a locking mechanism that, when engaged, secures the upper
10	member in a position that provides constant fluid communication between
11	the tire and the gauge until the locking mechanism is disengaged, at which
12	point the upper member is no longer secured by the locking mechanism.
1	2. (Original) The tire pressure monitoring apparatus as set forth in claim 1, wherein
2	the locking mechanism is engaged by rotating the upper member with respect to the base
3	member.
1	3. (Currently amended) The tire pressure monitoring apparatus as set forth in
2	claim 2, further comprising:
2	a fastening means that connects the unner member to the base member

- wherein, in response to the upper member being rotated with respect to the base
- 5 member, the fastening means is displaced along a curvilinear channel in the base member
- and acts to secure the upper member in a-the position providing constant fluid communi-
- 7 cation between the tire and the gauge.
- 4. (Original) The tire pressure monitoring apparatus as set forth in claim 1, further
- 2 comprising a center nub that contacts and depresses a preexisting valve in the tire valve
- stem in response to the upper member being moved closer to the base member.
- 5. (Original) The tire pressure monitoring apparatus as set forth in claim 4, wherein
- the initial spacing of the center nub and the preexisting valve is adjusted by raising or
- lowering the upper member relative to the base member.
- 6. (Original) The tire pressure monitoring apparatus as set forth in claim 1, wherein
- the saddle valve further includes a tap in fluid communication with the gauge.
- 7. (Original) The tire pressure monitoring apparatus as set forth in claim 6, wherein
- the gauge is coupled to the tap by a feed line.
- 1 8. (Original) The tire pressure monitoring apparatus as set forth in claim 1, wherein
- the upper member includes a secondary fill inlet constructed and arranged to enable pres-
- 3 sure to be transferred from a pressure source to the saddle valve.

- 9. (Original) The tire pressure monitoring apparatus as set forth in claim 8, wherein
- 2 pressure is transferred from the pressure source to the saddle valve after the locking
- mechanism is engaged.
- 10. (Original) The tire pressure monitoring apparatus as set forth in claim 1, further
- 2 comprising a housing for the gauge adapted to be mounted on and supported by the sad-
- 3 dle valve.
- 1 11. (Original) The tire pressure monitoring apparatus as set forth in claim 1, wherein
- the gauge comprises a pressure transducer and an interconnected electronic display and
- wherein the electronic display is mounted on a hub cap.
- 1 12. (Original) The tire pressure monitoring apparatus as set forth in claim 1, wherein
- the gauge comprises a mechanical pressure gauge having graduations.
- 1 13. (Original) The tire pressure monitoring apparatus as set forth in claim 1, wherein
- the gauge comprises an electronic pressure gauge in communication with a pressure
- transducer that converts a pressure into an electronic signal.
- 14. (Original) The tire pressure monitoring apparatus as set forth in claim 13, further
- 2 comprising:

3	a radio transmitter, interconnected with the transducer, for converting the
4	electric signal to a radio signal; and
5	a receiver, interconnected to an electronic display, for converting the radio
6	signal to a signal reported by the electronic display, the electronic display being
7	located remote from the gauge.
1	15. (Original) The tire pressure monitoring apparatus as set forth in claim 1, further
2	comprising a mounting bracket that supports the gauge, the mounting bracket comprising
3	a pliable block that is form-fitting with respect to opposing spokes of the wheel.
1	16. (Original) The tire pressure monitoring apparatus as set forth in claim 15,
2	wherein the block includes a tunnel for providing clearance for the valve stem and a tap
3	on the saddle valve.
	Kindly add new claim 17, as follows:
1	17. (New) A tire pressure monitoring apparatus, comprising:
2	a gauge that displays a pressure reading; and
3	a saddle valve including:
4	(i) a base member adapted to connect to a tire valve stem,
5	(ii) an upper member constructed and arranged to move relative to
6	the base member at a predetermined time to transfer pressure from a tire to
7	the gauge,

8	(iii) means for securing the upper member in a position that pro-
9	vides constant fluid communication between the tire and the gauge after
10	the upper member has been moved relative to the base member; and
11	(iv) means for unsecuring the upper member from the position that
12	provides constant fluid communication between the tire and the gauge.