AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-8 (Canceled):

Claim 9 (Currently Amended): A method for suppressing aldehyde generation by thermal decomposition of (A) at least one diacetal represented by the formula (1):

$$\begin{array}{c|c}
 & O \\
 & O \\$$

wherein R^1 and R^2 are the same or different and each represents a hydrogen atom, a C_1 to C_4 alkyl group, a C_1 to C_4 alkoxy group, a C_1 to C_4 alkoxycarbonyl group or a halogen atom; a and b each represents an integer of 1 to 5; c is 0 or 1; when a is 2, the two R^1 groups taken together with the

benzene ring to which they are linked may form a tetralin ring; and when b is 2, the two R² groups taken together with the benzene ring to which they are linked may form a tetralin ring; the method comprising adding the following components (B) and (C) to the diacetal, wherein

- (i) component (B) is (B1) and component (C) is one member selected from the group consisting of (C1), (C3) and (C4) or
- (ii) component (B) is (B2) and component (C) is one member selected from the group consisting of (C2), (C3) and (C4),

wherein component (B) is

- (B1) C₆ to C₃₂ saturated or unsaturated aliphatic alcohols; or
- (B2) C_8 to C_{32} saturated or unsaturated aliphatic carboxylic acids having at least one hydroxyl group per molecule, and component (C) is
- (C1) at least one anionic surfactant selected from the group consisting of C_6 to C_{30} saturated or unsaturated aliphatic alcohol sulfuric ester salts, polyoxyethylene alkyl (C_8 to C_{22}) or alkenyl (C_8 to C_{22}) ether sulfuric ester salts in which the number of moles of ethylene oxide added is 1 to 8, polyoxyethylene alkyl (C_8 to C_{22}) phenyl ether sulfuric ester salts in which the number of moles of ethylene oxide added is 1 to 10, sulfuric ester salts of polyhydric alcohol fatty acid partial esters formed from a C_3 to C_6 polyhydric alcohol and a C_8 to C_{22} saturated or unsaturated fatty acid, and C_8 to C_{22} saturated or unsaturated fatty acid monoalkanol (C_2 to C_6)

amide sulfuric ester salts, wherein the sulfuric ester salts are lithium salts, sodium salts, potassium salts or ammonium salts;

- (C2) at least one member selected from the group consisting of alkali metal salts of C_8 to C_{32} saturated or unsaturated fatty acids which may have at least one hydroxyl group per molecule;
- (C3) at least one aliphatic amine selected from the group consisting of dialkanolamine, trialkanolamine, and $di(C_8 \text{ to } C_{22} \text{ alkyl or alkenyl})$ methylamine; or
 - (C4) a mixture of at least two of (C1), (C2) and (C3).

Claim 10 (Currently Amended): The method according to claim 9, wherein component (B) is (B1) at least one member selected from the group consisting of lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol and behenyl alcohol, or component (B) is (B2) at least one member selected from the group consisting of 9-hydroxystearic acid, 10-hydroxystearic acid, 12-hydroxystearic acid and 9,10-dihydroxystearic acid.

component (C) is (C2a) at least one member selected from the group consisting of lithium salts, sodium salts and potassium salts of C_8 to C_{32} saturated or unsaturated fatty acids which may have at least one hydroxyl group per molecule, or

component (C) is (C1a) at least one sulfuric ester salt selected from the group consisting of lauryl sulfate salts, stearyl sulfate salts, oleyl sulfate salts, polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) lauryl ether sulfate salts, polyoxyethylene (the

number of moles of ethylene oxide added = 2 to 3) stearyl ether sulfate salts, polyoxyethylene

(the number of moles of ethylene oxide added = 2 to 3) nonylphenyl ether sulfate salts,

polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) dodecylphenyl ether

sulfate salts, glyceryl monolaurate sulfate salts, glyceryl monostearate sulfate salts, lauric acid

monoethanolamide sulfuric ester salts, stearic acid monoethanolamide sulfuric ester salts, and

oleic acid monoethanolamide sulfuric ester salts, wherein the sulfuric ester salts or sulfate salts

are lithium salts, sodium salts or potassium salts.

Claim 11 (Currently Amended): The method according to claim 10, wherein

component (C) is at least one member selected from the group consisting of sodium lauryl

sulfate[[,]] and potassium lauryl sulfate, sodium stearate, potassium stearate, sodium 12-

hydroxystearate and potassium 12-hydroxystearate.

Claim 12 (Original): The method according to any one of claims 9-11, wherein

the weight ratio of component (B) to component (C) is 1:0.2 to 5.

Claim 13-14 (Canceled):

Claim 15 (Currently Amended): A granular or powdery diacetal composition

wherein transfer of odor and taste originating from the diacetal is suppressed; the composition

5

comprising components (A), (B) and (C),

wherein component (A) is at least one diacetal represented by the formula (1)

$$\begin{array}{c|c}
 & O \\
 & O \\$$

wherein R^1 and R^2 are the same or different and each represents a hydrogen atom, a C_1 to C_4 alkyl group, a C_1 to C_4 alkoxy group, a C_1 to C_4 alkoxycarbonyl group or a halogen atom; a and b each represents an integer of 1 to 5; c is 0 or 1; when a is 2, the two R^1 groups taken together with the benzene ring to which they are linked may form a tetralin ring; and when b is 2, the two R^2 groups taken together with the benzene ring to which they are linked may form a tetralin ring, wherein

- (i) component (B) is (B1) and component (C) is one member selected from the group consisting of (C1), (C3) and (C4) or
- (ii) component (B) is (B2) and component (C) is one member selected from the group consisting of (C2), (C3) and (C4),

wherein component (B) is

- (B1) C₆ to C₃₂ saturated or unsaturated aliphatic alcohols; and
- (B2) C₈ to C₃₂ saturated or unsaturated aliphatic carboxylic acids having at least one hydroxyl group per molecule, or component (C) is
- saturated or unsaturated aliphatic alcohol sulfuric ester salts, polyoxyethylene alkyl (C_8 to C_{22}) or alkenyl (C_8 to C_{22}) ether sulfuric ester salts in which the number of moles of ethylene oxide added is 1 to 8, polyoxyethylene alkyl (C_8 to C_{22}) phenyl ether sulfuric ester salts in which the number of moles of ethylene oxide added is 1 to 10, sulfuric ester salts of polyhydric alcohol fatty acid partial esters formed from a C_3 to C_6 polyhydric alcohol and a C_8 to C_{22} saturated or unsaturated fatty acid, and C_8 to C_{22} saturated or unsaturated fatty acid, wherein the sulfuric ester salts are lithium salts, sodium salts, potassium salts or ammonium salts;
- (C2) at least one member selected from the group consisting of alkali metal salts of C₈ to C₃₂ saturated or unsaturated fatty acids which may have at least one hydroxyl group per molecule;
- (C3) at least one aliphatic amine selected from the group consisting of dialkanolamine, trialkanolamine, and $di(C_8 \text{ to } C_{22} \text{ alkyl or alkenyl})$ methylamine; or (C4) a mixture of at least two of (C1), (C2) and (C3).

Serial Number: 10/500,867 OA dated July10, 2008

Amdt. dated December 10, 2008

Claim 16 (Original): The diacetal composition according to claim 15, wherein based on the total amount of components (A), (B) and (C), component (B) is present in a proportion of 0.1 to 5 wt% and component (C) is present in a proportion of 0.1 to 5 wt%.

Claim 17 (Original): The diacetal composition according to claim 16, wherein the weight ratio of component (B) to component (C) is 1:0.2 to 5.

Claim 18 (Previously Presented): A polyolefin resin nucleating agent comprising the diacetal composition according to any one of claims 15 to 17, wherein transfer of odor and taste originating from the diacetal is suppressed.

Claim 19 (Original): A polyolefin resin composition comprising the polyolefin resin nucleating agent according to claim 18 and a polyolefin resin, wherein transfer of odor and taste originating from the diacetal is suppressed.

Claim 20 (Original): The polyolefin resin composition according to claim 19, wherein the polyolefin resin nucleating agent according to claim 18 is present in an amount of 0.05 to 3 weight parts per 100 weight parts of the polyolefin resin.

Claim 21 (Original): A polyolefin resin molded product prepared by molding the

8

Serial Number: 10/500,867

OA dated July10, 2008

Amdt. dated December 10, 2008

polyolefin resin composition according to claim 19 or 20, wherein transfer of odor and taste

originating from the diacetal is suppressed.

Claim 22 (Original): A container or a packaging material for foods, cosmetics or

medicines comprising the polyolefin resin molded product according to claim 21, wherein

transfer of odor and taste originating from the diacetal is suppressed.

Claim 23 (Original): A method for suppressing odor originating from a diacetal at

the time of molding a polyolefin resin, comprising mixing the nucleating agent according to

claim 18 with a polyolefin resin and molding a resultant resin composition.

Claim 24 (Previously Presented): A method for suppressing transfer of odor and

taste originating from a diacetal to a content, characterized in that it comprises placing the

content in a packaging material or a container prepared by mixing the nucleating agent according

to claim 18 with a polyolefin resin and molding a resultant resin composition.

9