Chương 10 Sao lưu

Linux và phần mềm mã nguồn mở 2009

Nội dung

- I. Quá trình sao lưu và phục hồi dữ liệu
- II. Sao lưu thư mục và tệp
- III. Sao lưu phân vùng và ổ đĩa

Quá trình sao lưu và phục hồi dữ liệu: Vì sao ?

- Hệ thống có thể bị lỗi
 - Phần cứng, phần mềm, lỗi thao tác do quản trị viên
- Dữ liệu có thể bị phá hủy
 - Lỗi phần cứng, lỗi phần mềm, lỗi con người
 - Thiên tai, hỏa hoạn, chập điện
- Cần phục hồi hệ thống sau sự cố
- Để phục hồi thành công, trước khi xảy ra sự cố cần tiến hành SAO LUU hệ thống
- Sự cố có thể xảy ra bất cứ lúc nào
- Luôn luôn đảm bảo có bản sao lưu cập nhật nhất của hệ thống

Các loại sao lưu

- Sử dụng các phần cứng dự trữ
- Sao lưu thư mục và tệp
 - Sử dụng command tar
- Sao lưu phân vùng và ổ đĩa
 - Sử dụng lệnh dump và restore

Dự trữ thiết bị vật lý

- Máy chủ dự trữ
- Ô đĩa dự trữ
- Dịch vụ dự trữ
- Dạng dự trữ
 - Cold backup: máy tính sẵn sàng để phục hồi dịch vụ khi có dữ liệu để phục hồi
 - Warm: máy tính đã có sẵn dữ liệu để phục hồi
 - Hot: máy tính đã ở trạng thái vận hành
- Vị trí
 - Đơn vị chuyên thực hiện dự trữ
 - Vị trí khác của đơn vị
 - Một đơn vị khác, thỏa thuận chia sẻ thiết bị để sao lưu
 - Không cùng một vị trí

Sao lưu dữ liệu

- Nhiệm vụ
 - Chép dữ liệu ra một vị trí an toàn
 - Kiểm tra dữ liệu có thể phục hồi được
 - Luôn sẵn sàng để phục hồi
- Chiến lược sao lưu
 - Qui định khi nào, ai, công cụ nào để sao lưu
 - Qui trình sao lưu và phục hồi

Các loại sao lưu

- Theo đối tượng sao lưu
 - Tệp và thư mục; toàn bộ hệ thống
- Theo phương pháp sao lưu
 - Sao lưu toàn phần
 - Sao lưu tăng dần
 - Sao lưu vi sai
- Theo môi trường lưu trữ sao lưu
 - Băng từ, ổ cứng, ổ mạng

Nội dung

- I. Quá trình sao lưu và phục hồi dữ liệu
- II. Sao lưu thư mục và tệp
- III. Sao lưu phân vùng và ổ đĩa

II. Sao lưu tệp và thư mục

Using 'tar' command

```
(1) # tar cvf file1.tar ./homework1
```

- (2) # tar x file1.tar
- (a) # tar cvfz backup.tar.gz file1 file2 file3
- (c) # tar xvfz backup.tar.gz

Thao tác trên băng từ

```
(1) #mt -f /dev/nst0 fsf 2
(2) #mt- f /dev/nst0 bsfm 1
(3) #mt -f /dev/st0 rewind
```

Sao lưu tệp và thư mục

- Nguồn sao lưu
 - -/home/~user
 - /etc/
 - -/var/?
- Đích sao lưu
 - /archives/
 - Phân vùng khác/ổ đĩa khác

Phục hồi tệp và thư mục

- Cần kiểm tra các tệp trước khi phục hồi
- Phục hồi toàn bộ
- Phục hồi một phần

Nội dung

- I. Quá trình sao lưu và phục hồi dữ liệu
- II. Sao lưu thư mục và tệp
- III. Sao lưu phân vùng và ổ đĩa

Câu lệnh dd

- dd: copy dữ liệu thô ở mức thấp >block
- Có thể copy phân vùng/ổ đĩa sang tệp và ngược lại
- Có thể sử dụng để backup, copy, move các phân vùng
- Đòi hỏi bối cảnh phần cứng/phần mềm tại đích phải giống với nguồn
- Không thực hiện việc nén dữ liệu
- Thời gian copy lâu/tốc độ copy nhanh

Câu lệnh dd

```
dd count=xxx if=/dev/hda of=/dev/hdb2
  count: số block
 if: nguồn
  of: đích
dd count=xxx if=/dev/hda1 of=/dev/hdb2
dd count=xxx if=/dev/hda of=/dev/hdb
dd count=xxx if=/dev/hda1 of=/dev/hdb1
dd count=xxx if=/dev/hda of=f1
dd count=xxx if=f1 of=/dev/hda
```

Các lệnh dump và restore

- dump → lưu bản sao của hệ thống tệp vào thiết bị lưu trữ và lưu lịch sử lưu trữ
 - Dump kiểm tra các tệp và sao lưu các tệp cần thiết
 - Full dump (level 0): Sao lưu toàn bộ
 - Incremental dump (level >0): sao lưu tăng tiến
 - Sao lưu các tệp mới thay đổi
- Restore → phục hồi hệ thống tệp từ bản sao trên thiết bị lưu trữ
 - Phục hồi toàn bộ
 - Phục hồi một nhánh thư mục

Sử dụng câu lệnh dump

(1) Chuyển về chế độ 1 NSD

```
# init 1
```

(2) unmount và kiểm tra hệ thống tệp

```
# umount /home; fsck -aV /dev/hda6
```

(3) Dump vào thiết bị lưu trữ ngoài

```
(a) # dump Ouf /dev/st0 /dev/hda6
(b) # dump 5uf /dev/st0 /dev/hda6
(c) # dump 9uf /dev/st0 /dev/hda6
  # dump 9uf /dev/nst0 /dev/hda5
  # dump 9uf /dev/nst0 /dev/hda1
```

Lệnh dump

- Tùy chọn
 - u: Cập nhật thời gian dump vào /etc/dumpdates
 - f: dump ra một tệp đích, có thể là tệp thiết bị
- Các mức dump
 - − Mức 0: Dump tất cả các tệp → Full dump
 - Mức N >0: Dump các tệp mới hoặc đã sửa đổi kể từ lần dump trước có mức nhỏ hơn N.

Các mức dump và quản lý các bản sao

Ví dụ về sao lưu

Tháng Năm 09						
Thứ Hai	Thứ Ba	Thứ Tư	Thứ Năm	Thứ Sáu	Thứ Bảy	Chủ Nhật
Tháng Tư 27	28	29	30	Tháng Năm 1	2	3
Dump mức 4	Dump mức 5	Dump mức 6	Dump mức 7	Dump mức 8	Dump mức 9	Dump mức 0
4	5	6	7	8	9	10
Dump mức 4	Dump mức 5	Dump mức 6	Dump mức 7	Dump mức 8	Dump mức 9	Dump mức 1
11	12	13	14	15	16	17
Dump mức 4	Dump mức 5	Dump mức 6	Dump mức 7	Dump mức 8	Dump mức 9	Dump mức 2
18	19	20	21	22	23	24
Dump mức 4	Dump mức 5	Dump mức 6	Dump mức 7	Dump mức 8	Dump mức 9	Dump mức 3
25	26	27	28	29	30	31
Dump mức 4	Dump mức 5	Dump mức 6	Dump mức 7	Dump mức 8	Dump mức 9	Dump mức 0

Sử dụng câu lệnh restore

- (2) Phục hồi tất cả các tệp vào thư mục hiện tại # restore -rf /dev/st0
- (3) Phục hồi một số tệp và thư mục # restore -cf /dev/st0 .x/usr00
- (4) Phục hồi một số tệp và thư mục một cách tương tác

```
# restore -if /dev/st0
```

Ví dụ phục hồi thư mục home

```
# mkfs /dev/hda6
# fsck -aV /dev/hda6
# mount /dev/hda6 /home
# cd /home # cd /home
# restore rf /dev/st0
# rm restoresymtable
```

• Chữa bài kiểm tra giữa kỳ