Exercice 1 : Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$.

- 1. Justifier l'existence de $z = \frac{1}{1 + \frac{e^{ix}}{2}}$ puis déterminer ses parties réelles et imaginaires.
- 2. On définit la somme $S_n = \sum_{k=0}^n \frac{(-1)^k}{2^k} e^{ikx} = 1 \frac{e^{ix}}{2} + \frac{e^{2ix}}{2^2} \frac{e^{3ix}}{2^3} + \dots + (-1)^n \frac{e^{inx}}{2^n}.$ Justifier l'égalité $z = S_n + \frac{(-1)^{n+1}}{2^{n+1}} \times \frac{e^{i(n+1)x}}{1 + \frac{e^{ix}}{2}}.$
- 3. En déduire les deux égalités

$$\frac{4+2\cos(x)}{5+4\cos(x)} = \left(\sum_{k=0}^{n} \frac{(-1)^k}{2^k} \cos(kx)\right) + \frac{(-1)^{n+1}}{2^n} \times \frac{2\cos((n+1)x) + \cos(nx)}{5+4\cos(x)}$$

et

$$\frac{2\sin(x)}{5+4\cos(x)} = \left(\sum_{k=0}^{n} \frac{(-1)^{k+1}}{2^k} \sin(kx)\right) + \frac{(-1)^n}{2^n} \times \frac{2\sin((n+1)x) + \sin(nx)}{5+4\cos(x)}.$$

4. En déduire l'existence et la valeur des limites

$$\lim_{n \to +\infty} \left(\sum_{k=0}^n \frac{(-1)^k}{2^k} \cos(kx) \right) \text{ et } \lim_{n \to +\infty} \left(\sum_{k=0}^n \frac{(-1)^k}{2^k} \sin(kx) \right).$$

Exercice 2:

Soit $\theta \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi; k \in \mathbb{Z}\}.$

- 1. Déterminer le module et un argument de $z = (e^{i\theta} + e^{3i\theta})^4$. (*Indication*: on commencera par utiliser judicieusement une formule du cours.)
- 2. Si $(a,b) \in \mathbb{C}^2$, développer $(a+b)^4$.
- 3. En déduire les solutions sur \mathbb{R} de l'équation $\cos(4\theta) + 4\cos(6\theta) + 6\cos(8\theta) + 4\cos(10\theta) + \cos(12\theta) = 0$. Quelles sont les solutions appartenant à l'intervalle $[0, 2\pi]$?

Exercice 3:

On souhaite montrer que, pour tout nombre complexe z de module 1, on a $|z^3 - z + 2| \le \sqrt{13}$ et déterminer les valeurs de z pour lesquelles l'égalité est réalisée.

- 1. Soit $\theta \in \mathbb{R}$. Linéariser $\cos^3 \theta$ puis exprimer $\cos(3\theta)$ en fonction de $\cos \theta$.
- 2. Soit f la fonction définie par : $\forall x \in \mathbb{R}, f(x) = 4x^3 x^2 4x + 2$.
 - (a) Déterminer les variations de f sur [-1,1].
 - (b) Soit z un nombre complexe de module 1 et θ un de ses arguments. Etablir :

$$\left|z^3 - z + 2\right|^2 = 4f(\cos\theta)$$

3. En déduire que, pour tout complexe z de module 1, on a : $|z^3-z+2| \leqslant \sqrt{13}$. Préciser de plus les complexes z de module 1 vérifiant $|z^3-z+2| = \sqrt{13}$.