

MATLAB을 이용한 고강도강 겹치기 레이저 용접부의 모델링

- 분류 모델 (Classification model) -

안 내

- 본 자료는 아래의 사람들이 만들었습니다.
 유현정 (Portland State University)
 김철희 (한국생산기술연구원, Portland State University)
- 예제 파일은 아래에서 받을 수 있습니다.
 https://deepjoining.github.io/dl/
- 문의사항 및 의견: <u>deepjoining@gmail.com</u>
- 자료는 한국생산기술연구원 용접접합그룹 신입대학원생 교육자료입니다.
 일체의 다른 용도 사용을 금지합니다.

1. 분류 모델을 통해 얻을 수 있는 결과

분류 모델을 사용하는 예: 어떠한 소재에 대해서 용접한 후 인장-전단 시험을 했을 때 파단이 발생하는 위치를 확인하기 위함

시청조건	ᄎᆏ 가	에ᄎ 가		
실험조건	측정 값	예측 값		
Case 1	모재	모재		
Case 2	모재	모재		
Case 3	모재	용접부		
	용접부	용접부		
	용접부	용접부		
	용접부	용접부		
	모재	모재		
	모재	모재		
	용접부	용접부		
	모재	모재		
	모재	모재		
Case n	용접부	용접부		

2. 풀어야 할 문제

- 소재: 인장강도 590~1500 MPa급 자동차용 강판 (cf. 연강의 경우 인장강도 270~300 MPa)
- 용접방법: 레이저 겹치기 용접
- 용접부 시험방법: 인장-전단 강도 평가
- 품질판단 기준: 파단의 위치
- 모델링할 문제
 - * 다양한 소재 조합 및 다양한 레이저 용접조건하에서
 - (1) 인장-전단 시험에서 파단위치는? (분류)

인장-전단 시험

용접 계면파단

HPF2.0G 용접부

3. 머신 러닝 모델 구축에 사용된 Input, Output parameter

- Input parameter

No.	1~7	8~14	15	16
Input	Chemical composition of the	Chemical composition of the	Wolding apood	Focal
parameter	upper sheet	lower sheet	Welding speed	position

- Output parameter

	Classification model			
Output	Fracture location			
parameter	Fracture location			

- Chemical compositions

Base materials (thickness)	С	Si	Mn	P	S	Cr	В
590 DP (1.2 mm)	0.078	0.363	1.808	0.011	0.001	-	-
780 DP (1.2 mm)	0.070	0.977	2.264	0.010	0.015	-	-
980 DP (1.2 mm)	0.170	1.340	2.000	0.016	0.001	-	-
1180 CP (1.2 mm)	0.110	0.110	2.790	0.019	0.004	1.040	-
1500 HPF (1.1 mm)	0.216	0.240	1.255	0.002	0.002	0.001	0.003

3. 머신 러닝 모델 구축에 사용된 데이터

- Input parameter

- Output parameter

			Chemical composition of lower sheet						eet	f upper she	position o	emical com	Ch			
Fracture	Focalposit	Weldingsp	В	Cr	S	Р	Mn	Si		С	Cr B	S	P	Mn	Si	C
	0	70	0	0	0.001	0.011	1.808	0.363	0.078	0	0	0.001	0.011	1.808	0.363	0.078
	-5	60	0	0	0.001	0.011	1.808	0.363	0.078	0	0	0.001	0.011	1.808	0.363	0.078
	-10	48	0	0	0.001	0.011	1.808	0.363	0.078	0	0	0.001	0.011	1.808	0.363	0.078
	-15	37	0	0	0.001	0.011	1.808	0.363	0.078	0	0	0.001	0.011	1.808	0.363	0.078
	-20	26	0	0	0.001	0.011	1.808	0.363	0.078	0	0	0.001	0.011	1.808	0.363	0.078
	-25	20	0	0	0.001	0.011	1.808	0.363	0.078	0	0	0.001	0.011	1.808	0.363	0.078
	0	70	0	0	0.015	0.01	2.264	0.977	0.07	0	0	0.001	0.011	1.808	0.363	0.078
	-5	60	0	0	0.015	0.01	2.264	0.977	0.07	0	0	0.001	0.011	1.808	0.363	0.078
	-10	48	0	0	0.015	0.01	2.264	0.977	0.07	0	0	0.001	0.011	1.808	0.363	0.078
	-10	40	0	0	0.015	0.01	2.264	0.977	0.07	0	0	0.001	0.011	1.808	0.363	0.078
	-15	32	0	0	0.015	0.01	2.264	0.977	0.07	0	0	0.001	0.011	1.808	0.363	0.078
	-20	24	0	0	0.015	0.01	2.264	0.977	0.07	0	0	0.001	0.011	1.808	0.363	0.078
	0	70	0	0	0.001	0.016	2	1.34	0.17	0	0	0.001	0.011	1.808	0.363	0.078
	-5	60	0	0	0.001	0.016	2	1.34	0.17	0	0	0.001	0.011	1.808	0.363	0.078

- 1. MATLAB 실행
- 2. 홈에서 데이터 가져오기 실행

3. Input과 Output data가 포함된 파일(all_data) 불러오기

- 4. 왼쪽 상단 메뉴 탭에서 앱 클릭 후 분류 학습기 클릭
- 5. 새 세션 클릭
- 6. 작업 공간에서 데이터 불러오기 (alldata)

- 7. 모델유형: 모두 선택 후 훈련 누르기
- 8. 각 모델의 정확도와 정오분류표 확인하기

9. 다음과 같이 스크립트를 작성하여 데이터 추출하기

5. 데이터 추출 및 모델의 정확성 판단하기

- 분류 모델의 데이터 분석 (오차율, 정확도)

5. 데이터 추출 및 모델의 정확성 판단하기

- 분류 모델의 데이터 분석 (분류 성능 평가 지표)

Si		True	False
Actual values	True	True Positive	False Positive
A	False	False Negative	True Negative

Predictive values

$$(Precision) = \frac{TP}{TP + FP}$$
 정밀도 : 모델이 true라고 분류한 것 중에서 실제 true인 것의 비율

$$(Recall) = \frac{TP}{TP + FN}$$
 재현율 : 실제 true인 것 중에서 모델이 true라고 예측한 것의 비율

감사합니다

다음 강의 내용: 매트랩을 이용한 SNN, DNN 모델 분석 방법