МЕТОДЫ И ТЕХНОЛОГИИ МАШИННОГО ОБУЧЕНИЯ

Занятие 3. Среда Jupyter Notebook.

Введение в Scikit-Learn.

Анализ главных компонент.

Алексейчук Андрей Сергеевич, ст. преп. каф. 805

Jupyter Notebook

Jupyter Notebook — интерактивная оболочка для интерпретируемых языков программирования — Python, R, Ruby, позволяющая объединить код, текст, диаграммы и распространять их для других пользователей. Язык Python и среда Jupyter Notebook широко используются в сфере Data Science.

Установка Jupyter Notebook

Самый простой способ установки – с
помощью пакета Anaconda Distribution.
Доступны версии для Windows, Linux, macOS.
https://www.anaconda.com/distribution/

• Можно запустить готовый образ Debian с установленным Jupyter при помощи Docker.

- Ha Linux: запуск командой jupyter notebook
- Команда откроет браузер на локальном хосте, по умолчанию http://127.0.0.1:8888.
- Ha Windows: через главное меню, пункт Программы > Anaconda > Jupyter Notebook.

• В окне терминала отображается служебная информация. После запуска в окне браузера появляется панель со списком файлов. Преимущество файлов Jupyter (.ipynb) заключается в том, что они выглядят одинаково при написании кода и публикации. Есть все возможности для перемещения кода, запуска кода в ячейках, просмотра результатов.

• Для создания нового ноутбука надо выбрать в меню «New» пункт «Python 3».

• В браузере открывается новая вкладка с ячейкой для ввода кода.

• В ячейках можно писать как код на языке Python, так и текстовое содержимое. Доступно форматирование и отображение формул, картинок и т.д.

Библиотеки ML на языке Python

- NumPy библиотека для выполнения операций линейной алгебры и численных преобразований
- **Pandas** библиотека для извлечения и подготовки данных для алгоритмов ML
- Scikit-learn библиотека классических алгоритмов ML: регрессия, кластеризация, классификация, построение деревьев решений
- Matplotlib библиотека для визуализации данных
- TensorFlow, Theano, Keras, PyTorch библиотеки алгоритмов построения нейронных сетей глубокого обучения

Пакет NumPy

• NumPy - это пакет для научных вычислений на Python. Это библиотека Python, которая предоставляет объект многомерного массива *ndarray* и набор подпрограмм для быстрых операций над массивами, включая математические, логические, манипуляции с формами, сортировку, выбор, дискретные преобразования Фурье, операции линейной алгебры, основные статистические операции, случайное моделирование и многое другое.

Часто используемые функции NumPy

• Создание массивов

arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones like, r, zeros, zeros like

• Манипуляции с массивами

array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize, squeeze, swapaxes, take, transpose, vsplit, vstack

• Генераторы случайных чисел

random.rand, random.randn

• Сортировка

argmax, argmin, argsort, max, min, ptp, searchsorted, sort

• Агрегатные функции

choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum

• Статистика

cov, mean, std, var

• Операции линейной алгебры

cross, dot, outer, linalg.svd, vdot, @

Полный список:

https://docs.scipy.org/doc/numpy/reference/index.html

https://docs.scipy.org/doc/numpy/reference/routines.html

Примеры работы с NumPy

```
In [1]: import numpy as np
In [11]: # Создание массива NumPy из обычного массива
         a = np.array([1, 2, 3])
Out[11]: array([1, 2, 3])
In [12]: # Создание многомерного массива NumPy, тип данных - float
         b = np.array([[1, 2, 4], [5, 8, 7]], dtype = 'float')
Out[12]: array([[1., 2., 4.],
                [5., 8., 7.]])
In [16]: # Создание двумерного массива из нулей
         np.zeros((3, 4))
Out[16]: array([[0., 0., 0., 0.],
                [0., 0., 0., 0.],
                [0., 0., 0., 0.]])
In [17]: # Создание двумерного массива из случайных чисел с распределением ~R(0,1)
         np.random.random((2, 2))
Out[17]: array([[0.53515076, 0.53905543],
                [0.55807025, 0.20695782]])
In [19]: # Создание массива NumPy в заданных границах и с заданным шагом
         np.arange(0, 20, 3)
Out[19]: array([ 0, 3, 6, 9, 12, 15, 18])
```

Примеры работы с NumPy

```
In [20]: # Создание массива NumPy в заданных границах с заданным количеством элементов
         np.linspace(0, 5, 10)
Out[20]: array([0. , 0.55555556, 1.111111111, 1.66666667, 2.222222222,
                2.77777778, 3.33333333, 3.88888889, 4.44444444, 5.
In [23]: # Матрица случайных величин ~N(0,1)
         np.random.randn(2, 2)
Out[23]: array([[ 0.98833887, 1.23435556],
                [-1.50398899, 1.1051629211)
In [22]: # То же, аргумент - кортеж
         np.random.standard normal((2, 2))
Out[22]: array([[0.53587506, 0.24660406],
                [0.97454901, 0.95685792]])
In [25]: # Матрица 4x2 случайных величин ~N(1/2, 3)
         0.5 * np.random.randn(2, 4) + 3
Out[25]: array([[3.77525847, 3.39517863, 2.61948809, 2.5058802],
                [2.51170106, 3.00217656, 1.71279075, 3.76501393]])
In [37]: # Умножение матриц
         a = np.array([[1, 2, 4], [5, 8, 7]])
         b = np.array([[2, 1], [0, 3], [1, 2]])
         print('a @ b=\n', a @ b)
         a @ b=
         [[ 6 15]
          [17 43]]
```

- Pandas это пакет Python, предоставляющий быстрые, гибкие и выразительные структуры данных, предназначенные для того, чтобы сделать работу с «реляционными» или «помеченными» данными простой и интуитивно понятной.
- В отличие от NumPy, предназначенной для обработки массивов однородных данных (прежде всего числовых), Pandas предназначен для хранения и обработки произвольных разнородных данных в таблицах, похожих по структуре на таблицы реляционных БД.

• В библиотеке имеются три встроенных типа данных: Series, DataFrame и Panel (для одномерных, двумерных и трехмерных данных соответственно). Наиболее часто используется DataFrame, представляющий собой двумерную таблицу.

Создание DataFrame из массива NumPy:

• Создание DataFrame из обычного словаря Python:

```
In [15]: df2 = pd.DataFrame({'A': 1.,
                               'B': pd.date range('20130101', periods=4),
                               'C': pd.Series([x for x in list(range(4))], dtype='float32'),
                               'D': np.random.randn(4),
                               'E': pd.Categorical(["test", "train", "test", "train"]),
                               'F': 'foo'})
          df2
Out[15]:
              Α
                                          E F
          0 1.0 2013-01-01 0.0 0.863346 test foo
          1 1.0 2013-01-02 1.0 -1.686990 train foo
          2 1.0 2013-01-03 2.0 -0.615800 test foo
          3 1.0 2013-01-04 3.0 0.870753 train foo
In [16]: # Столбцы получившейся структуры содержат различные типы данных:
          df2.dtypes
Out[16]: A
                       float64
               datetime64[ns]
                       float32
          С
          D
                       float64
                      category
                        object
          dtype: object
```

• Создание DataFrame из файла CSV:

In [2]:	data = pd.read_csv("iris.csv") # Вывести первые 5 строк data.head()					
Out[2]:						
		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

• Строки DataFrame идентифицируются индексами (обычно строки или числа), столбцы — именами.

• Вывод одного столбца DataFrame

```
In [17]: data = pd.read csv("iris.csv")
          # Вывести содержимое столбца sepal length
          data['sepal length']
Out[17]: 0
                 5.1
                 4.9
                 4.7
                5.0
                5.4
                 5.0
                 4.4
                 5 4
          10
In [18]: # Первое значение в столбце sepal length
         data['sepal length'][0]
Out[18]: 5.1
```

• Вывод нескольких столбцов DataFrame

```
In [25]: # Вывод столбцов sepal length, sepal width
           data[['sepal length', 'sepal width']]
Out[25]:
                sepal_length sepal_width
             0
                        5.1
                                    3.5
             1
                        4.9
                                    3.0
             2
                        4.7
                                    3.2
             3
                        4.6
                                    3.1
             4
                        5.0
                                    3.6
             5
                        5.4
                                    3.9
             6
                        4.6
                                    3.4
             7
                        5.0
                                    3.4
```

• Выбор строк DataFrame

Если индекс явно не задан, то можно использовать метод iloc[].

In [20]: first row = data.iloc[0]

```
first row
Out[20]: sepal length
                                5.1
           sepal width
                                3.5
           petal length
           petal width
                                0.2
           species
                             setosa
           Name: 0, dtype: object
In [22]: first three rows = data.iloc[0:3]
          first three rows
Out[22]:
              sepal_length sepal_width petal_length petal_width species
           0
                     5.1
                                 3.5
                                            1.4
                                                            setosa
                     4.9
                                 3.0
                                            1.4
                                                            setosa
           2
                                 3.2
                                                       0.2 setosa
                     4.7
                                            1.3
```

• Выбор строк DataFrame по индексу

```
In [24]: # Выбор произвольных строк
           data.iloc[[1,2,3,5,8]]
Out[24]:
               sepal_length sepal_width petal_length petal_width species
            1
                       4.9
                                   3.0
                                                1.4
                                                            0.2
                                                                 setosa
            2
                       4.7
                                   3.2
                                                1.3
                                                                 setosa
            3
                       4.6
                                   3.1
                                                1.5
                                                            0.2
                                                                 setosa
            5
                       5.4
                                   3.9
                                                1.7
                                                            0.4
                                                                 setosa
                                   2.9
                       4.4
                                                1.4
                                                            0.2 setosa
```

- Выбор строк DataFrame по индексу
- Если индекс задан явно, то можно использовать метод loc[]. Метод iloc[] также доступен.

```
In [28]: d = {'one' : pd.Series([1, 2, 3], index=['row 1', 'row 2', 'row 3']),
            'two' : pd.Series([1, 2, 3, 4], index=['row 1', 'row 2', 'row 3', 'row 4'])}
         df = pd.DataFrame(d)
         df
Out[28]:
                one two
          row 1
               1.0
          row_2 2.0 2
          row_3 3.0
          row_4 NaN
In [29]: df.loc['row 2']
Out[29]: one
                2.0
                2.0
         Name: row 2, dtype: float64
In [32]: df.iloc[1]
Out[32]: one
                2.0
                2.0
         Name: row 2, dtype: float64
```

• Выбор определенных строк и столбцов DataFrame

```
In [48]: # Выбор определенных строк и столбцов data.loc[[0,1,10,100],['sepal_length','petal_length']]

Out[48]:

sepal_length petal_length

0 5.1 1.4

1 4.9 1.4

10 5.4 1.5

100 6.3 6.0
```

• Выбор строк DataFrame по условию

```
In [33]: # Выбор строк по условию sepal length=4.9
           data[data.sepal length == 4.9]
Out[33]:
                 sepal_length sepal_width petal_length petal_width
                                                                    species
                         4.9
              1
                                      3.0
                                                  1.4
                                                              0.2
                                                                     setosa
                         4.9
                                      3.1
                                                  1.5
                                                              0.1
                                                                     setosa
             34
                         4.9
                                      3.1
                                                  1.5
                                                              0.1
                                                                     setosa
             37
                         4.9
                                      3.1
                                                  1.5
                                                              0.1
                                                                     setosa
             57
                                      2.4
                                                  3.3
                                                              1.0 versicolor
                         4.9
                                      2.5
                                                                    virginica
            106
                         4.9
                                                  4.5
```

• Выбор строк DataFrame по условию

```
In [34]: # Выбор строк по условию 4.7 <= sepal_length <= 4.9 data[(data.sepal_length >= 4.7) & (data.sepal_length <= 4.9)]
Out[34]:
```

		sepal_length	sepal_width	petal_length	petal_width	species
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	9	4.9	3.1	1.5	0.1	setosa
	11	4.8	3.4	1.6	0.2	setosa
	12	4.8	3.0	1.4	0.1	setosa
	24	4.8	3.4	1.9	0.2	setosa
	29	4.7	3.2	1.6	0.2	setosa
	30	4.8	3.1	1.6	0.2	setosa
	34	4.9	3.1	1.5	0.1	setosa
	37	4.9	3.1	1.5	0.1	setosa
	45	4.8	3.0	1.4	0.3	setosa
	57	4.9	2.4	3.3	1.0	versicolor
	106	4.9	2.5	4.5	1.7	virginica

Другие возможности Pandas

- Загрузка данных из файлов CSV, XLS, TXT и т.п., а также из баз данных
- Простая обработка отсутствующих данных (представленных как NaN)
- Добавление, удаление, перемещение столбцов
- Группировка данных
- Преобразование разнородных, по-разному проиндексированных данных в один DataFrame
- Конкатенация и объединение наборов данных
- Иерархическая маркировка осей (возможность иметь несколько меток)
- Функции обработки временных рядов: генерация диапазона дат, ресэмплинг и т.п.

Литература по Pandas

- http://pandas.pydata.org/pandas-docs/version/0.15.2/index.html
- <a href="https://www.tutorialspoint.com/python-pandas/python-pandas-python-py
- https://nikgrozev.com/2015/12/27/pandas-in-jupyter-quickstart-and-useful-snippets/
- http://tomaugspurger.github.io/modern-1-intro

Пакет Scikit-learn

- Пакет Scikit-learn самый распространенный выбор для решения задач классического машинного обучения на Python. Он предоставляет широкий выбор алгоритмов обучения с учителем (supervised learning) и без учителя (unsupervised learning). Библиотека тесно интегрирована с пакетами Pandas и NumPy.
- Официальный сайт: https://scikit-learn.org/

Пакет Scikit-learn

Библиотека Scikit-learn реализует следующие основные типы моделей машинного обучения:

- Линейные модели
- Метрические модели
- Деревья решений
- Ансамблевые методы
- Нейронные сети
- Машины опорных векторов

Также предоставляются методы понижения размерности и валидации моделей (кросс-валидация, ROC-кривые и т.д.)

Это — лишь базовый список. Помимо этого, Scikit-learn содержит большое число функций для расчета значений метрик, выбора моделей, препроцессинга данных и др.

Общая схема построения и обучения модели в Scikit-Learn

- 1. Загрузка данных: pd.read_from_csv(...)
- 2. Предобработка данных: Pandas.*, train_data=..., test_data=...
- 3. Создание модели: model = TheCoolClassifier(...)
- 4. Обучение модели: model.fit(train_data)
- 5. Тестирование модели: model.predict(test_data)
- 6. Оценка качества модели: confusion_matrix(...), classification_report(...)
- 7. Визуализация результатов: Matplotlib.plot(...)

Пакет Scikit-learn

B Scikit-learn приняты единые сигнатуры методов работы с моделями преобразования данных и методов работы с моделями ML.

Модели преобразования данных (понижение размерности и т.п.):

- model.fit(X) обучение модели
- model.transform(X) преобразование данных (обученной) моделью
- model.fit_transform(X) обучение и преобразование одной командой

Модели ML (классификация, кластеризация):

- model.fit(X, y) обучение с учителем
- model.fit(X) обучение без учителя
- model.predict(X_test) применение (обученной) модели к данным

Построение классификатора DecisionTreeClassifier для набора данных Iris

```
In [2]: import numpy as np
        import pandas as pd
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.model selection import train test split
In [3]: # Считываем файл csv и загружаем его в объект DataFrame
        data = pd.read csv("iris.csv")
        data.head()
Out[3]:
            sepal length sepal width petal length petal width species
         0
                   5.1
                             3.5
                                                  0.2 setosa
         1
                   4.9
                             3.0
                                                  0.2 setosa
                             3.2
                                                  0.2 setosa
         3
                   4.6
                             3.1
                                        1.5
                                                  0.2 setosa
                             3.6
                                                  0.2 setosa
In [4]: # Выделяем признаки для обучения X и целевой признак у
        X = data[['sepal length', 'sepal width', 'petal length', 'petal width']]
        v = data['species']
In [5]: # Разделяем выборку на обучающую и тестовую в соотношении 70% / 30%
        X train, X test, y train, y test = train test split(X, y, test size = 0.3, random state = 1)
In [6]: # Инициализируем классификатор и обучаем его на полученной выборке
        classifier = DecisionTreeClassifier()
        classifier.fit(X train, y train);
In [7]: # Запускаем предсказание на тестовой выборке, чтобы сравнить
         # полученные результаты с известными значениями целевого атрибута
        prediction = classifier.predict(X test)
```

Построение классификатора DecisionTreeClassifier для набора данных Iris

```
In [8]: # Выведем бок-о-бок известные (ground truth) и предсказанные (prediction) значения pd.DataFrame({'ground truth': y_test, 'prediction': prediction})
```

Out[8]:

	ground truth	prediction
14	setosa	setosa
98	versicolor	versicolor
75	versicolor	versicolor
16	setosa	setosa
131	virginica	virginica
56	versicolor	versicolor
141	virginica	virginica
44	setosa	setosa
29	setosa	setosa
120	virginica	virginica
94	versicolor	versicolor
5	setosa	setosa
102	virginica	virginica
51	versicolor	versicolor
78	versicolor	versicolor
42	setosa	setosa
92	versicolor	versicolor
66	versicolor	versicolor
31	setosa	setosa

around truth prediction

Построение классификатора DecisionTreeClassifier для набора данных Iris

• Анализ качества модели:

```
In [9]: # Матрица ошибок
       from sklearn.metrics import classification report, confusion matrix
        print(confusion matrix(y test, prediction))
        [[14 0 0]
         [ 0 17 1]
         [ 0 1 12]]
In [10]: # Сводный отчет
       print(classification report(y test, prediction))
                    precision recall f1-score
                                                support
                        1.00
                                 1.00
                                          1.00
             setosa
                        0.94 0.94 0.94
         versicolor
                        0.92 0.92 0.92
          virginica
                                          0.96
                                                    45
           accuracy
                        0.96 0.96
                                        0.96
                                                    45
          macro avg
                        0.96 0.96 0.96
        weighted avg
                                                    45
```

Precision and recall

 Допустим, что классификатор предсказывает значение целевого атрибута label=1 (область внутри круга) и label=0 (область вне круга).

•
$$Precision = \frac{TP}{TP + FP} = \frac{\Box}{\Box}$$

(точность)

•
$$Recall = \frac{TP}{TP + FN} = \frac{\Box}{\Box}$$

(полнота)

Precision and recall

• Высокая точность, низкая полнота:

• Низкая точность, высокая полнота:

• На практике, чтобы учесть обе метрики, используют гармоническое среднее между чувствительностью и полнотой — F1-score.

SVC (метод опорных векторов) для Iris

 SVC (Support Vector Classification) – метод классификации, основанный на определении положения оптимальной разделяющей гиперплоскости, максимизирующей сумму расстояний от нее до ближайших к ней элементов выборки.

SVC (метод опорных векторов) для Iris

```
In [1]: import numpy as np
         import pandas as pd
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.model selection import train test split
         import seaborn as sns
In [88]: data = pd.read csv('iris.csv')
In [6]: from sklearn import svm
         X = data[['sepal length' , 'sepal width' , 'petal length' , 'petal width']]
         y = data['species']
         X train, X test, y train, y test = train test split(X, y, test size = 0.3, random state = 1)
In [14]: clf = svm.SVC(gamma='auto')
         clf.fit(X train, y train)
Out[14]: SVC(C=1.0, cache size=200, class weight=None, coef0=0.0,
           decision function shape='ovr', degree=3, gamma='auto', kernel='rbf',
           max iter=-1, probability=False, random state=None, shrinking=True,
           tol=0.001, verbose=False)
In [15]: prediction = clf.predict(X test)
In [16]: pd.DataFrame({'truth': y test, 'prediction': prediction})
```

SVC (метод опорных векторов) для Iris

• Анализ метрик:

```
In [47]: from sklearn.metrics import classification report, confusion matrix
In [48]: print(confusion matrix(y test, prediction))
         [ 0 17 1]
         [ 0 0 13]]
In [49]: print(classification_report(y_test, prediction))
                     precision recall f1-score support
                         1.00
                                  1.00
                                           1.00
              setosa
                                  0.94 0.97
                       1.00
          versicolor
                                  1.00
                                          0.96
           virginica
                     0.93
                                            0.98
                                                       45
            accuracy
                                   0.98 0.98
           macro avq
                          0.98
                                                      45
        weighted avg
                         0.98
                                   0.98
                                          0.98
                                                       45
```

PCA (Principal Component Analysis)

• PCA – метод главных компонент – применяется для снижения размерности пространства признаков. Идея метода состоит в том, что зачастую исходные признаки сильно коррелируют между собой, и поэтому используемый алгоритм классификации занимается восстановлением тривиальных линейных зависимостей между признаками. Поэтому можно ввести новые оси координат, направленные вдоль направлений наибольшего разброса значений исходного набора данных, и спроецировать данные на новые оси.

PCA (Principal Component Analysis)

- Можно показать, что направления наибольшего разброса значений набора данных совпадают с направлениями собственных векторов ковариационной матрицы, которым соответствуют наибольшие по модулю собственные значения.
- Ковариационная матрица K это матрица, у которой каждый элемент K_{ij} является корреляцией между соответствующими признаками X_i, X_j . Если собственные значения матрицы K сильно отличаются (на порядки), то имеет смысл использовать PCA.

• Строим матрицу корреляций признаков набора Iris. Видно, что многие элементы вне главной диагонали близки по модулю к 1, что говорит о сильной коррелированности соответствующих пар признаков.

- Вычисляем матрицу выборочных ковариаций и находим ее собственные значения. Видим, что первые два СЗ значительно больше остальных.
- Собственные значения матрицы ковариаций это и есть дисперсии вдоль преобразованных осей. Поэтому мы оставляем только оси с наибольшей дисперсией, соответствующие первым двум СЗ.

• Чтобы оценить объем потерянной информации, можно вычислить выборочную дисперсию по каждой из преобразованных осей. Атрибут explained_variance_ratio_ представляет долю дисперсии по каждой оси в процентах от суммы дисперсий по всем осям. В данном случае сохранено около 97,7% информации при сокращении количества признаков вдвое.

```
In [63]: pca.explained_variance_ratio_
Out[63]: array([0.92461621, 0.05301557])
```

• Недостатком РСА является то, что новые признаки могут не иметь физического смысла или какой-либо разумной интерпретации.

- Произведем обучение модели SVC на преобразованных признаках.
- Произошло небольшое (приемлемое) ухудшение точности.

```
In [46]: X reduced = PCA(n components=2).fit transform(X)
In [47]: X train, X test, y train, y test = train test split(
                                 X reduced, y, test size=0.3, random state=3)
In [48]: clf = svm.SVC()
         clf.fit(X train, y train)
Out[48]: SVC(C=1.0, cache size=200, class weight=None, coef0=0.0,
           decision function shape='ovr', degree=3, gamma='auto', kernel='rbf',
           max iter=-1, probability=False, random state=None, shrinking=True,
           tol=0.001, verbose=False)
In [49]: prediction = clf.predict(X test)
In [50]: pd.DataFrame({'truth': y test, 'prediction': prediction})
In [89]: print(confusion matrix(y test, prediction))
         [[17 0 0]
          [ 0 12 2]
          [ 0 0 14]]
```

PCA+SVC

 Выбор оптимальной размерности пространства производится исходя из баланса между размерностью пространства и точностью классификации.
 Обычно зависимость между размерностью и точностью имеет следующий вид:

• Оптимальная размерность начинается с момента «выхода на плато» графика.

Домашнее задание

• Выбрать произвольный набор данных. Реализовать понижение размерности исходных данных при помощи метода РСА и произвести классификацию при помощи SVC (или другого алгоритма, по желанию). Построить график зависимости точности (accuracy) от размерности преобразованного пространства. Выбрать оптимальную размерность преобразованного пространства.