```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

url = "https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv"
df = pd.read_csv(url)

df.head()
```

Out[2]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [4]: print("Dataset Shape:", df.shape)
print("\nDataset Info:")
df.info()
print("\nMissing Values:")
print(df.isnull().sum())
print("\nBasic Statistics:")
df.describe()
```

Dataset Shape: (891, 12)

Dataset Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
<pre>dtypes: float64(2), int64(5), object(5)</pre>							

memory usage: 83.7+ KB

Missing Values:

PassengerId Survived Pclass 0 0 Name Sex 0 177 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2

dtype: int64

Basic Statistics:

Out[4]:		Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [6]: # Set up the visualization style
        sns.set_style("whitegrid")
        plt.figure(figsize=(12, 8))
        # 1. Survival count
        plt.subplot(2, 3, 1)
        sns.countplot(data=df, x='Survived')
        plt.title('Survival Count')
        # 2. Passenger class distribution
        plt.subplot(2, 3, 2)
        sns.countplot(data=df, x='Pclass')
        plt.title('Passenger Class Distribution')
        # 3. Gender distribution
        plt.subplot(2, 3, 3)
        sns.countplot(data=df, x='Sex')
        plt.title('Gender Distribution')
        # 4. Age distribution
        plt.subplot(2, 3, 4)
        sns.histplot(data=df, x='Age', bins=30, kde=True)
        plt.title('Age Distribution')
```

```
# 5. Fare distribution
plt.subplot(2, 3, 5)
sns.histplot(data=df, x='Fare', bins=30, kde=True)
plt.title('Fare Distribution')

# 6. Embarkation port
plt.subplot(2, 3, 6)
sns.countplot(data=df, x='Embarked')
plt.title('Embarkation Port')

plt.tight_layout()
plt.show()
```



```
In [8]: # Survival based on different factors
fig, axes = plt.subplots(2, 3, figsize=(15, 10))

# 1. Survival by Class
sns.countplot(data=df, x='Pclass', hue='Survived', ax=axes[0,0])
axes[0,0].set_title('Survival by Passenger Class')
```

```
# 2. Survival by Gender
sns.countplot(data=df, x='Sex', hue='Survived', ax=axes[0,1])
axes[0,1].set_title('Survival by Gender')
# 3. Survival by Embarkation Port
sns.countplot(data=df, x='Embarked', hue='Survived', ax=axes[0,2])
axes[0,2].set_title('Survival by Embarkation Port')
# 4. Age vs Survival
sns.boxplot(data=df, x='Survived', y='Age', ax=axes[1,0])
axes[1,0].set_title('Age Distribution by Survival')
# 5. Fare vs Survival
sns.boxplot(data=df, x='Survived', y='Fare', ax=axes[1,1])
axes[1,1].set_title('Fare Distribution by Survival')
# 6. Fare vs Class
sns.boxplot(data=df, x='Pclass', y='Fare', ax=axes[1,2])
axes[1,2].set_title('Fare Distribution by Class')
plt.tight_layout()
plt.show()
```



```
In [10]: # Correlation heatmap
    plt.figure(figsize=(10, 8))
    # Select only numerical columns for correlation
    numerical_df = df.select_dtypes(include=[np.number])
    correlation_matrix = numerical_df.corr()
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
    plt.title('Correlation Heatmap')
```

```
plt.show()

# Pairplot for key variables
sns.pairplot(df[['Age', 'Fare', 'Pclass', 'Survived']], hue='Survived')
plt.suptitle('Pairplot of Key Variables', y=1.02)
plt.show()
```


Pairplot of Key Variables

0 25 50 75 0 200 400 600 1 2 3 Age Fare Pclass

In []: