4일차. 분류 알고리즘 이해 및 실습

심선영 교수

강의 목표

- ❖ 머신러닝 시작예제 실습을 통해 머신러닝 기본 개념을 익힌다.
- ❖ Scikit-Learn 라이브러리를 주요 모듈을 익힌다.
- ❖ 머신러닝 주요개념을 이해하고 실습해 본다.
- ❖ 분류모델의 종류를 학습하고 실습해 본다.
- ❖ 함수 및 class를 import하는 방법을 복습한다.

강의 목차

- ❖ 머신러닝 시작 예제
 - 학습예제 및 머신러닝의 데이터 셋, 사이킷런 주요 모듈 소개
- ❖ 머신러닝 주요개념
 - 과대적합과 과소적합, 교차검증, 평가 지표
- ❖ 분류모델
 - 의사결정나무,앙상블, 랜덤포레스트,로지스틱 회귀
- ❖ 하이퍼 파라미터 튜닝
- ❖ Import 리뷰
 - 함수/클래스 import

강의 스케쥴

시간	목차		활동		
0.5h	Overview		PPT 학습		
1h	머신러닝 시작예제		머신러닝 시작예제 파이썬 실		파이썬 실습
1.5h		H신러닝 주요개념	파이썬 실습		
1h	н э	의사결정나무	파이썬 실습		
2h	분류 앙상블 / 랜덤 포레스트		TLOIM 시스		
0.5h	- 2	로지스틱 회귀	파이썬 실습		
1h	import 정리 및 복습		파이썬 실습		
0.5h	Wrap-Up		학습 정리		

머신러닝은 어떻게 스스로 학습하는가?

❖ 사례) 두 배우의 얼굴 분류

분류 기준: 얼굴 면적, 수염의 양

머신러닝은 어떻게 스스로 학습하는가?

❖ 사례) 두 배우의 얼굴 분류

머신러닝은 어떻게 스스로 학습하는가?

❖ 사례) 두 배우의 얼굴 분류

머신러닝 학습의 종류

- ❖ 지도학습(Supervised Learning)
 - 훈련데이터(train data set)에 타깃(target)또는 레이블(label)이라고 불리는 정답이 포함된 학습방 식
 - 훈련이 끝나면 정답이 포함되지 않은 새로운 데이터 셋(test data set)을 사용하여 정답을 예측하게 함
- ❖ 비지도학습(Unsupervised Learning)
 - 훈련데이터(train data set)가 타깃(target)또는 레이블(label)이라고 불리는 정답이 포함하지 않음
 - 훈련데이터에 별다른 가이드라인이 없어 기계학습모델이 스스로 학습하여 모델을 만듦

지도학습

❖ 개와 고양이의 분류 예시

비지도학습

❖ 개와 고양이의 군집화 예시

인공지능 기술의 분류

❖ 인공지능 > 머신러닝 > 딥러닝

머신러닝과 딥러닝 비교

- ❖ 전통적 머신러닝 기계가 학습을 하기 전에 미리 데이터 특성을 파악
 - 머신러닝에서는 특징추출이 중요!

Scikit-Learn 라이브러리

- ❖ 파이썬 머신러닝 라이브러리 중 가장 많이 사용되는 라이브러리
- ❖ 텐서플로(TensorFlow), 케라스(Keras)같은 딥러닝 전문 라이브러리가 최근 각광받지만 파이썬 기반 대표 머신러닝 라이브러리는 사이킷런임
- ❖ 아나콘다 설치 시 사이킷런도 같이 설치되므로 import하여 사용

Scikit-Learn 라이브러리

https://scikit-learn.org/stable/

머신러닝의 전체 단계

- 1. 머신러닝 라이브러리 불러오기 (ex. 사이킷런)
- 2. 데이터 불러오기
- 3. 데이터 전처리 및 EDA를 통한 변수(feature) 설정
- 4. 학습데이터 셋(train data set)을 훈련 및 검증 데이터로 분리
- 5. 적합한 머신러닝 알고리즘의 선택하고 학습 (train)
- 6. 학습된 알고리즘에 검증 데이터에 적용하여 예측 (predict)
- 7. 예측값과 실제값을 비교해 오차를 측정하여 알고리즘의 성능 평가 (evaluation)
- **8. 3-8단계를 반복**하며 알고리즘의 성능 고도화
- 9. 실제 예측을 원하는 데이터 셋(test data set)을 적용하여 최종 예측

사이킷런 주요 모듈

분류	모듈명	설명				
예제 데이터	sklearn.datasets	사이킷런에 내장되어 예제로 제공하는 데이터 세트				
데이터 분리, 검증 & 파라미터 튜닝	sklearn.model_selection	교차 검증을 위한 학습용/테스트용 분리, 그리드 서치(Grid Search)로 최적 파라미터 추출 등의 API 제공				
	sklearn.preprocessing	데이터 전처리에 필요한 다양한 가공 기능 제공(문자열을 숫자형 코드 값으로 인코딩, 정규 스케일링 등)				
	sklearn.feature_selection	알고리즘에 큰 영향을 미치는 피처를 우선순위 대회 셀렉션 작업을 수행하는 다양한 기능 제공				
피처 처리		텍스트 데이터나 이미지 데이터의 벡터화된 피처를 추출하는 데 사용됨.				
1 1 1 1		예를 들어 텍스트 데이터에서 Count Vectorizer 나 Tf ldf Vectorizer 등을 생성하는 기능 제공.				
	sklearn.feature_extraction	텍스트 데이터의 피처 추출은 sklearn.feature_extraction.text 모듈에, 이미지 데이터의 피처 추출은 sklearn.feature_extraction.image 모듈에 지원 API가 있음.				
피처 처리 & 차원 축소	sklearn.decomposition	차원 축소와 관련한 알고리즘을 지원하는 모듈임. PCA, NMF, Truncated SVD 등을 통해 차원 축소 기능을 수행할 수 있음				

분류	모듈명	설명			
평가	sklearn.metrics	분류, 회귀, 클러스터링, 페어와이즈(Pairwise)에 대한 다양한 성능 측정 방법 제공			
		Accuracy, Precision, Recall, ROC-AUC, RMSE 등 제공			
		앙상블 알고리즘 제공			
	sklearn.ensemble	랜덤 포레스트, 에이다 부스트, 그래디언트 부스팅 등을 제공			
	sklearn.linear_model	주로 선형 회귀, 릿지(Ridge), 라쏘(Lasso) 및 로지스틱 회귀 등 회귀 관련 알고리즘을 지원. 또한 SGD(Stochastic Gradient Descent) 관련 알고리즘도 제공			
ML알고리즘	sklearn.naive_bayes	나이브 베이즈 알고리즘 제공. 가우시안 NB , 다항 분포 NB 등.			
	sklearn.neighbors	최근접 이웃 알고리즘 제공. K-NN 등			
	sklearn.svm	서포트 벡터 머신 알고리즘 제공			
	sklearn.tree	의사 결정 트리 알고리즘 제공			
		비지도 클러스터링 알고리즘 제공			
	sklearn.cluster	(K-평균, 계층형, DBSCAN 등)			
유틸리티	sklearn.pipeline	피처 처리 등의 변환과 ML 알고리즘 학습, 예측 등을 함께 묶어서 실행할 수 있는 유틸리티 제공			

학습 예제 소개

❖ 학습예제의 데이터 셋

참고 (수염 양, 얼굴 면적)

4개의 특성들(features)

클래스(class)

					(Label, Target)	
	sepal_length	sepal_width	petal_length	petal_width	species	
Ì	5.8	4.0	1.2	0.2	setosa	
	5.1	2.5	3.0	1.1	versicolor	0,1,2
	6.6	3.0	4.4	1.4	versicolor	
	5.4	3.9	1.3	0.4	setosa	
	7.9	3.8	6.4	2.0	virginica	
М					\	

머신러닝 데이터 셋

❖ 훈련용(train set), 검증용(validation set), 예측용 (test set)

머신러닝의 데이터 셋

❖ 훈련용(train set), 검증용(validation set), 예측용 (test set)

과적합(Overfitting)과 저적합(Underfitting)

- ❖ 과적합 (과대적합)
 - 학습 모델이 현재의 훈련데이터에 지나치게 적합되어 학습하여 복잡한 모델을 생성
 - 일반화 (새로운 데이터에 대응) 어려움
- ❖ 저적합 (과소적합)
 - 주어진 훈련데이터도 충분히 학습을 하지 못 하여 (또는 훈련데이터가 충분치 않아서) 너무 간단한 모델을 생성
 - 예측 성능 떨어짐

과적합(Overfitting)과 저적합(Underfitting)

❖ 모델 복잡도와 예측 정확도의 관계

모델 복잡도

교차 검증

- ❖ 과적합 문제를 해결하는 방법
 - 모델 복잡도를 너무 높이지 않는다
 - 고정된 데이터로 학습과 검증을 하지 않는다.
- ❖ 고정된 학습데이터와 검증 데이터로 평가한다면?
 - → 학습한 데이터에만 최적의 성능을 발휘하도록 편향되게 모델이 만들어짐 (과적합!)
 - → 이를 방지하기 위해 교차 검증을 사용함

교차 검증

❖ K-폴드 교차검증

- 가장 보편적으로 사용하는 교차 검증 기법
- K개의 데이터 폴드 세트를 구성, K번 만큼 각 폴드 세트에서 학습과 검증을 반복적으로 수행
- 예를 들어, 4번을 반복수행 했다면,이를 평균하여 K폴드 평가 결과로 사용함

평가 지표

- ❖ 정확도 (Accuracy)
 정확도 = 예측 결과가 정확한 데이터 건수
 전체 예측 데이터 건수
- ❖ 오차 행렬
 - 이진분류에서 성능지표로 활용
 - 정확도 = $\frac{TN+TP}{TN+FP+FN+TP}$

	예측: Negative	예측: Positive		
실제: Negative	TN (True Negative)	FP (False Positive)		
실제: Positive	FN (False Negative)	TP (True Positive)		

- ❖ 정밀도와 재현율
 - 정밀도 = $\frac{TP}{FP+TP}$ (예측을 positive 로 한 대상 중 정확하게 한 건수의 비율)
 - →(코로나) 양성으로 나온 사람 중 실제 양성자의 비율
 - → positive 예측성능을 더욱 정밀하게 보기 위한 지표
 - 재현율 = $\frac{TP}{FN+TP}$ (실제 positive 대상 중 정확하게 positive로 예측 한 건수의 비율)
 - → (코로나) 실제 양성인 사람 중 양성으로 정확하게 예측된 비율
 - → 민감도

지도학습의 두 유형

- ❖ 분류 (classification) 어떤 집단에 속하는 지 판별해 내는 것
- ❖ 회귀 (regression) 주어진 값에 대한 결과값을 예측하는 것

분류 모델의 종류

- ❖ 의사결정나무 (Decision Tree)
- ❖ 앙상블 (서로 같거나/다른 알고리즘 간 결합)
 - Bagging Random Forest
 - Boosting Gradient Boosting, xgBoost, LightGBM
- ❖ 로지스틱 회귀

의사결정나무

- ❖ 의사결정나무는 매우 쉽고, 스케일링이나 정규화 등 사전 데이터 가공의 영향이 적음
- ❖ 예측 성능을 향상시키기 위해 복잡한 규칙 구조를 가져야 하고 이로 인한 과적합이 발 생, 예측성능 떨어질수도 있음
 - depth가 깊어질수록 의사결정나무의 예측성능은 저하될 수 있음

의사결정나무

- ❖ 복잡하고 엄격한 학습 규칙으로 인한 과적합 사례
 - 의사결정나무의 max depth를 제한하거나, 말단노드의 데이터 수를 완화하는 방식으로 해결

앙상블 (Ensemble)

- ❖ 학습 모델 간 결합을 통해 단순학습모델의 한계를 극복하고 성능을 향상시키는 방법
- ❖ 앙상블의 전통적 유형
 - 보팅(Voting)과 배깅(Bagging)
 - 보팅(Voting) 서로 <mark>다른</mark> 알고리즘을 가진 분류기를 결합
 - 배깅(Bagging) 모두 같은 알고리즘을 가진 분류기를 결합 (ex. 랜덤 포레스트)

앙상블에서 최종 예측값 결정

- ❖ 보팅 (Voting) 여러 개 모델의 예측값을 이용하여 최종 예측값을 결정
 - 하드 보팅
 - 다수결 원칙과 유사, 다수의 모델이 예측한 값을 최종 예측값으로 결정
 - 소프트 보팅
 - 각 모델들이 예측한 레이블별 결정 확률을 평균→확률이 가장 높은 레이블 값을 최종 예측값으로
 - 일반적으로 많이 사용하는 방법

랜덤 포레스트 (Random Forest)

- ❖ 앙상블 중 <mark>배깅</mark> 기법의 하나
 - 같은 알고리즘으로 여러 개의 모델을 만들고 보팅으로 최종 예측값 결정
- ❖ 개별 모델의 기반 알고리즘은 의사결정나무
- ❖ 개별 의사결정나무가 학습하는 데이트 세트는 Bootstrapping 분할된 데이터
 - ✓ 단, 학습 데이터는 원본 데이터를 샘플링 추출하여 사용함 (Bootstrapping)
 - ✓ 배깅 (샘플링 데이터간 중첩을 허용) VS 교차검증(데이터 세트간의 중첩을 허용하지 않음)

부스팅 (Boosting)

- ❖ 앙상블의 최신 유형
 - 여러 개의 모델이 순차적으로 학습
 - 이전 단계 학습에서 저적합되어 예측이 틀린 데이터에 대해서 다음 단계에서 가중치를 부여하여 학습
 - 계속해서 가중치를 "부스팅(boosting)"하면서 학습을 진행한다는 의미

❖ 부스팅의 종류

- AdaBoost
- GBM (Gradient Boost Machine)
- XGBoost (eXtra Gradient Boost)
- LightGBM (Light Gradient Boost)
 - 성능은 유사하지만 속도 빠름

AdaBoost 예시

앙상블의 다양한 사례

- ❖ 앙상블의 성능 향상을 기대하려면...
 - 개별학습 모델이 일정수준 이상의 성능을 확보 (사례3 X)

	사려	1			사례	2			사례	3	
	테스트 샘플1	테스트 샘플2	테스트 샘플3		테스트 샘플1	테스트 샘플2	테스트 샘플3		테스트 샘플1	테스트 샘플2	테스트 샘플3
Model1	V	V	Х	Model1	V	V	Х	Model1	V	Х	X
Model2	Х	V	V	Model2	V	V	Х	Model2	Х	V	Х
Model3	V	Х	V	Model3	V	٧	Х	Model3	Х	Х	٧
앙상블	V	٧	V	앙상블	V	V	Х	앙상블	Х	Х	Х
 ◆ 단일모델 정확도 66% ◆ 앙상블 학습 결과 100% 앙상블 성능 향상 				L델 정확도 남 학습 결고		과 없음		델 정확도 학습 결고		부작용	

로지스틱 회귀

- ❖ Target 데이터가 이산적 형태를 보일 때 사용하는 회귀 모델
 - 연속형 독립변수(X), 범주형 종속변수(Y)
 - 예측 값 > 0 → 1로 분류, 예측 값 < 0 → 0으로 분류</p>

로지스틱 회귀

❖ 로지스틱 함수

■ 입력 값을 0이나 1에 근사한 출력 값으로 전환

у	f(x)가 양의 값일 가능성	
1 – y	f(x)가 음의 값일 가능성	
$\frac{y}{1-y}$	f(x)가 양의 값일 상대적 가능성	

로지스틱 회귀

$$\Rightarrow y = \frac{1}{1 + e^{-f(x)}}$$

$$v^{-1} = 1 + e^{-f(x)}$$

$$varphi y^{-1} - 1 = e^{-f(x)} = \frac{1-y}{y}$$

$$\bullet e^{f(x)} = \frac{y}{1-y}$$

$$f(x) = h \left(\frac{y}{1-y} \right)$$

- ❖ Day4. Wrap-up 설문
 - https://forms.gle/CL6ZfcKNZM2f2ssS8

(참고)하이퍼 파라미터 최적화

하이퍼 파라미터 최적화

하이퍼 파라미터 (Hyper Parameter) 최적화

- ❖ 머신러닝 모델에서 우리가 직접 설정할 수 있는 값들 → 머신 러닝의 주요 구성요소
 - 하이퍼 파라미터 값을 조정하여 머신러닝 알고리즘의 성능 개선 → 하이퍼 파라미터 최적화

	파라미터 (Parameter)	하이퍼 파라미터 (Hyper Parameter)
의미	 매개변수 모델 내부에서 결정되는 값 데이터로부터 학습하여 결정 	 초매개변수 모델 학습에 반영되는 값 학습 전에 미리 설정
예시	선형회귀 계수	비용함수의 종류, 학습률, 의사결정나무의 최대 깊이(max-depth)
설정 가능 여부	직접 설정 안됨 (X)	직접 설정 가능 (O)