KMM5324004CK/CKG & KMM5324104CK/CKG Fast Page Mode with EDO Mode 4M x 32 DRAM SIMM using 4Mx4, 4K/2K Refresh, 5V

GENERAL DESCRIPTION

The Samsung KMM53240(1)04CK is a 4Mx32bits Dynamic RAM high density memory module. The Samsung KMM53240(1)04CK consists of eight CMOS 4Mx4bits DRAMs in 24-pin SOJ package mounted on a 72-pin glass-epoxy substrate. A 0.1 or 0.22uF decoupling capacitor is mounted on the printed circuit board for each DRAM. The KMM53240(1)04CK is a Single In-line Memory Module with edge connections and is intended for mounting into 72 pin edge connector sockets.

PERFORMANCE RANGE

Speed	trac	tcac	trc	tHPC
-5	50ns	13ns	90ns	25ns
-6	60ns	15ns	110ns	30ns

FEATURES

- · Part Identification
 - KMM5324004CK(4096 cycles/64ms Ref, SOJ, Solder)
 - KMM5324004CKG(4096 cycles/64ms Ref, SOJ, Gold)
 - KMM5324104CK(2048 cycles/32ms Ref, SOJ, Solder)
 - KMM5324104CKG(2048 cycles/32ms Ref, SOJ, Gold)
- · Fast Page Mode with Extended Data Out
- CAS-before-RAS refresh capability
- RAS-only and Hidden refresh capability
- · TTL compatible inputs and outputs
- Single +5V±10% power supply
- · 1st Gen. JEDEC standard PDPin & pinout
- PCB : Height(1000mil), single sided component

PIN CONFIGURATIONS

PIN NAMES

Pin Name	Function
A0 - A11	Address Inputs(4K Ref)
A0 - A10	Address Inputs(2K Ref)
DQ0 - DQ31	Data In/Out
W	Read/Write Enable
RAS0	Row Address Strobe
CASO - CAS3	Column Address Strobe
PD1 -PD4	Presence Detect
Vcc	Power(+5V)
Vss	Ground
NC	No Connection

PRESENCE DETECT PINS (Optional)

Pin	50NS	60NS
PD1	Vss	Vss
PD2	NC	NC
PD3	Vss	NC
PD4	Vss	NC

^{*} Pin connection changing available

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

* NOTE: A11 is used for only KMM5324004CK/CKG (4K ref.)

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS *

Item	Symbol	Rating	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-1 to +7.0	V
Voltage on Vcc supply relative to Vss	Vcc	-1 to +7.0	V
Storage Temperature	Tstg	-55 to +150	°C
Power Dissipation	Pd	8	W
Short Circuit Output Current	los	50	mA

^{*} Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for intended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to Vss, TA = 0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	VIH	2.4	-	Vcc+1*1	V
Input Low Voltage	VIL	-1.0 ^{*2}	-	0.8	V

^{*1:} Vcc+2.0V/20ns, Pulse width is measured at Vcc.

DC AND OPERATING CHARACTERISTICS (Recommended operating conditions unless otherwise noted)

Comple al	Cross	KMM5324004CK/CKG		KMM53241	l lmit	
Symbol	Speed	Min	Max	Min	Max	Unit
ICC1	-5 -6	-	720 640	-	880 800	mA mA
ICC2	Don't care	-	16	-	16	mA
ICC3	-5 -6	-	720 640	-	880 800	mA mA
ICC4	-5 -6	-	640 560	- -	720 640	mA mA
ICC5	Don't care	-	8	-	8	mA
ICC6	-5 -6	-	720 640		880 800	mA mA
lı(L) lo(L)	Don't care	-40 -5	40 5	-40 -5	40 5	uA uA
VOH VOL	Don't care	2.4	0.4	2.4	0.4	V V

Icc1 : Operating Current * (RAS, CAS, Address cycling @trc=min)

ICC2: Standby Current (RAS=CAS=W=VIH)

ICC3: RAS Only Refresh Current * (CAS=VIH, RAS cycling @trc=min)

ICC4 : EDO Mode Current * (RAS=VIL, CAS Address cycling : thpc=min)

ICC5 : Standby Current (RAS=CAS=W=Vcc-0.2V)

Icc6: CAS-Before-RAS Refresh Current * (RAS and CAS cycling @trc=min)

II(L) : Input Leakage Current (Any input 0≤VIN≤Vcc+0.5V, all other pins not under test=0 V)

IO(L): Output Leakage Current(Data Out is disabled, 0V≤Vo∪T≤Vcc)

VOH: Output High Voltage Level (IOH = -5mA)

Vol.: Output Low Voltage Level (IoL = 4.2mA)

* NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as an average current. In Icc1 and Icc3, address can be changed maximum once while RAS=VIL. In Icc4, address can be changed maximum once within one EDO mode cycle, tHPc.

^{*2: -2.0}V/20ns, Pulse width is measured at Vss.

DRAM MODULE

CAPACITANCE (TA = 25°C, VCC=5V, f = 1MHz)

Item	Symbol	Min	Max	Unit
Input capacitance[A0-A11(A10)]	CIN1	_	55	pF
Input capacitance[W]	CIN2	-	70	pF
Input capacitance[RAS0]	CIN3	-	70	pF
Input capacitance[CAS0 - CAS3]	CIN4	-	30	pF
Input/Output capacitance[DQ0-31]	CDQ1	-	20	pF

AC CHARACTERISTICS (0°C \leq TA \leq 70°C, VCC=5.0V \pm 10%. See notes 1,2.) Test condition : Vih/ViI=2.4/0.8V, Voh/VoI=2.0/0.8V, output loading CL=100pF

Parameter	Symbol	hol -5		-	-6		Note
Faianietei	Syllibol	Min	Max	Min	Max	- Unit	Note
Random read or write cycle time	trc	90		110		ns	
Access time from RAS	trac		50		60	ns	3,4,10
Access time from CAS	tcac		13		15	ns	3,4,5
Access time from column address	taa		25		30	ns	3,10
CAS to output in Low-Z	tclz	3		3		ns	3
Output buffer turn-off delay from CAS	tcez	3	13	3	15	ns	6,11,12
Transition time(rise and fall)	tτ	2	50	2	50	ns	2
RAS precharge time	trp	30		40		ns	
RAS pulse width	tras	50	10K	60	10K	ns	
RAS hold time	trsh	13		15		ns	
CAS hold time	tcsн	38		45		ns	
CAS pulse width	tcas	8	10K	10	10K	ns	13
RAS to CAS delay time	trcd	20	37	20	45	ns	4
RAS to column address delay time	tRAD	15	25	15	30	ns	10
CAS to RAS precharge time	tcrp	5		5		ns	
Row address set-up time	tasr	0		0		ns	
Row address hold time	trah	10		10		ns	
Column address set-up time	tasc	0		0		ns	
Column address hold time	tcah	8		10		ns	
Column address to RAS lead time	tral	25		30		ns	
Read command set-up time	trcs	0		0		ns	
Read command hold time referenced to CAS	trch	0		0		ns	8
Read command hold time referenced to RAS	trrh	0		0		ns	8
Write command hold time	twch	10		10		ns	
Write command pulse width	twp	10		10		ns	
Write command to RAS lead time	trwL	13		15		ns	
Write command to CAS lead time	tcwL	8		10		ns	
Data-in set-up time	tos	0		0		ns	9
Data-in hold time	tон	8		10		ns	9
Refresh period (4K Ref)	tref		64		64	ms	
Refresh period (2K Ref)	tref		32		32	ms	
Write command set-up time	twcs	0		0		ns	7
CAS setup time(CAS-before-RAS refresh)	tcsr	5		5		ns	
CAS hold time(CAS-before-RAS refresh)	tchr	10		10		ns	
RAS to CAS precharge time	trpc	5		5		ns	

DRAM MODULE

AC CHARACTERISTICS (0°C≤TA≤70°C, VCC=5.0V±10%. See notes 1,2.)

Test condition: Vih/Vil=2.4/0.8V, Voh/Vol=2.0/0.8V, output loading CL=100pF

Parameter	Symbol		-5		-6	Unit	Note
Parameter	Syllibol	Min	Max	Min	Max	Unit	Note
$\overline{\text{CAS}}$ precharge time ($\overline{\text{C}}$ -B- $\overline{\text{R}}$ counter test)	t CPT	20		20		ns	
Access time from CAS precharge	t CPA		30		35	ns	3
Hyper page mode cycle time	thpc	25		30		ns	13
CAS precharge time(Hyper page cycle)	tcp	8		10		ns	
RAS pulse width(Hyper page cycle)	trasp	50	200K	60	200K	ns	
RAS hold time from CAS precharge	trhcp	30		35		ns	
W to RAS precharge time(C-B-R refresh)	twrp	10		10		ns	
W to RAS hold time(C-B-R refresh)	twrh	10		10		ns	
Output data hold time	tдон	5		5		ns	
Output buffer turn off delay from RAS	trez	3	13	3	15	ns	7,11,12
Output buffer turn off delay from $\overline{\mathbb{W}}$	twez	3	13	3	15	ns	7,11
W to data delay	twed	15		15		ns	
W pulse width (Hyper Page Cycle)	twpe	5		5		ns	

NOTES

- An initial pause of 200us is required after power-up followed by any 8 RAS-only or CAS-before-RAS refresh cycles before proper device operation is achieved.
- 2. VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Transition times are measured between VIH(min) and VIL(max) and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the tRCD(max) limit insures that tRAC(max) can be met. tRCD(max) is specified as a reference point only. If tRCD is greater than the specified tRCD(max) limit, then access time is controlled exclusively by tCAC.
- 5. Assumes that tRCD≥tRCD(max).
- This parameter defines the time at which the output achieves the open circuit condition and is not referenced to VoH or VoL.
- 7. twcs is non-restrictive operating parameter. It is included in the data sheet as electrical characteristics only. If twcs≥twcs(min), the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.

- 8. Either tRCH or tRRH must be satisfied for a read cycle.
- 9. These parameter are referenced to the $\overline{\text{CAS}}$ leading edge in early write cycles and to the $\overline{\text{W}}$ leading edge in read-write cycles.
- 10. Operation within the tRAD(max) limit insures that tRAC(max) can be met. tRAD(max) is specified as reference point only. If tRAD is greater than the specified tRAD(max) limit, then access time is controlled by tAA.
- tcez(max), tRez(max), twez(max) and toez(max) define the time at which the output achieves the open circuit condition and are not referenced to output voltage level.
- 12. If RAS goes to high before CAS high going, the open circuit condtion of the output is achieved by CAS high going. If CAS goes to high before RAS high going, the open circuit condtion of the output is achieved by RAS high going.
- 13. tasc≥tcp min

READ CYCLE

WRITE CYCLE (EARLY WRITE)

NOTE: Dout = OPEN

HYPER PAGE READ CYCLE

Don't care

Undefined

HYPER PAGE WRITE CYCLE (EARLY WRITE)

NOTE: Dout = OPEN

RAS - ONLY REFRESH CYCLE*

NOTE : \overline{W} , \overline{OE} , DIN = Don't care

DOUT = OPEN

CAS - BEFORE - RAS REFRESH CYCLE

NOTE : \overline{OE} , A = Don't care

^{*} In RAS-only refresh cycle of 64Mb A-dile & B-die, when CAS signal transits from Low to High, the valid data may be cut off.

HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

NOTE: Dout = OPEN

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

NOTE: This timing diagram is applied to all devices besides 64M DRAM based modules.

CAS - BEFORE - RAS SELF REFRESH CYCLE

NOTE : \overline{OE} , A = Don't care

TEST MODE IN CYCLE

NOTE : \overline{OE} , A = Don't care

PACKAGE DIMENSIONS

Units: Inches (millimeters)

(Back view)

Gold & Solder Plating Lead

Tolerances: ±.005(.13) unless otherwise specified

NOTE : The used device are 4Mx4 EDO DRAM (SOJ & 300mil) DRAM Part No. : KMM5324004CK/CKG -- KM44C4004CK (300 mil)

KMM5324104CK/CKG -- KM44C4104CK (300 mil)

Revision History Rev 0.0 : Aug. 1997

