Big-O and other asymptotic notations

Question 1

Let $a(n) = 10^6 n^2$ and $b(n) = 10^n$. Computer A performs 10^6 operations per second; computer B performs 10^{12} operations per second. In the worst case on an instance of size n, an implementation of an algorithm α solves a problem P in a(n) operations on computer A, and an implementation of an algorithm β solves P in b(n) operations on computer B.

- (a) Which instances of P would you solve using the implementation of α on A, and which using the implementation of β on B?
- (b) Estimate how long it would take in the worst case to solve an instance of P of size 30 using α on A and using β on B.

Solution:

To determine which instances of the problem P you would solve using the implementations of algorithms α on computer A and β on computer B, we need to analyze the time complexity of each algorithm relative to the computing power of the respective computers.

Computers' performance:

- Computer A: 10^6 operations per second.
- Computer B: 10^{12} operations per second.

Time taken by each implementation:

- Implementation of lpha on computer A requires $a(n)=10^6n^2$ operations.
- Implementation of eta on computer B requires $b(n)=10^n$ operations.

Time taken to execute on each computer:

• For computer A:

Time for
$$\alpha = \frac{a(n)}{10^6} = \frac{10^6 n^2}{10^6} = n^2$$
 seconds

• For computer B:

Time for
$$\beta = \frac{b(n)}{10^{12}} = \frac{10^n}{10^{12}} = 10^{n-12}$$
 seconds

- 1. $n^2 < 10^{n-12}$ (favorable to use lpha on A).
- 2. $n^2 > 10^{n-12}$ (favorable to use β on B).

To find the transition point, we set up the inequality:

$$n^2 < 10^{n-12}$$

Taking the logarithm (base 10) of both sides:

$$\log_{10}(n^2) < n-12$$

$$2\log_{10}(n) < n-12$$

Now, rearranging gives:

$$n-2\log_{10}(n)>12$$

This inequality can be evaluated for different values of n:

- 1. Trial with small n:
 - $\bullet \quad \text{For } n=1 :$

$$1-2\cdot 0=1\pmod{>12}$$

 $\bullet \quad \text{For } n=2\text{:}$

$$2 - 2 \cdot 0.301 = 1.398 \pmod{>12}$$

 $\bullet \quad \text{For } n=3\text{:}$

$$3 - 2 \cdot 0.477 = 2.046 \pmod{>12}$$

 $\bullet \quad \text{For } n=10\text{:}$

$$10 - 2 \cdot 1 = 8 \pmod{> 12}$$

 $\bullet \quad \text{For } n=20\text{:}$

$$20 - 2 \cdot 1.301 = 17.398 \quad (>12)$$

2- Finding the exact the transition point n=15. Use computer A when n>=15 and computer B when n<15. **b.**

For Algorithm α on Computer A:

1. Operations required:

$$a(30) = 10^6 \cdot 30^2 = 10^6 \cdot 900 = 9 \times 10^8$$
 operations

2. Time taken: Computer A performs 10^6 operations per second, so:

Time for
$$\alpha = \frac{a(30)}{10^6} = \frac{9 \times 10^8}{10^6} = 900$$
 seconds

For Algorithm β on Computer B:

1. Operations required:

$$b(30) = 10^{30}$$
 operations

2. Time taken: Computer B performs 10^{12} operations per second, so:

Time for
$$\beta = \frac{b(30)}{10^{12}} = \frac{10^{30}}{10^{12}} = 10^{18}$$
 seconds

Summary of Results:

- Time to solve using α on A: 900 seconds (or 15 minutes).
- Time to solve using β on B: 10^{18} seconds, which is approximately 31.7 billion years.

Thus, in the worst case:

- Using α on computer A will take **900 seconds**.
- Using β on computer B will take approximately 10^{18} seconds, which is impractically long.

ð

Question 2

- Suppose that k is a positive integer. Show that if $f = O(n^k)$ then there are constants a, b > 0 such that $f(n) \le an^k + b$ for all $n \ge 0$.

Solution:

If $f = O(n^k)$ then there are c > 0 and n_0 such that for all $n \ge n_0$ we have $f(n) \le cn^k$. Take a = c and $b = 1 + \max\{f(n) : n < n_0\}$ where $\max \emptyset = 0$, then $f(n) \le an^k + b$ for all $n \ge 0$.

Question 3

Give yes/no answers to the following:

	f(n)	g(n)	f = O(g)?	$f = \Omega(g)?$	$f = \Theta(g)?$
a.	n - 100	n - 200			
b.	$n^{1/2}$	$n^{2/3}$			
c.	$100n + \log n$	$n + (\log n)^2$			
d.	$n \log n$	$10n \log 10n$			
e.	$\log 2n$	$\log 3n$			
f.	$n^{0.1}$	$(\log n)^{10}$			
g.	\sqrt{n}	$(\log n)^3$			
h.	$n2^n$	3^n			
i.	2^n	2^{n+1}			
j.	$(\log n)^{\log n}$	$2^{(\log n)^2}$			

Solution: we use rules in the course

- a. Yes, Yes, Yes
- b. Yes, No, No
- c. Yes, Yes, Yes,
- d. Yes, Yes, Yes
- e. Yes, Yes, Yes
- f. No, Yes, No
- g. No, Yes, No
- h. Yes, No, No,
- i. Yes, Yes, Yes,
- j. Yes, No, No,

Exercise 4. Relative asymptotic growths

Determine weather A is O(B), $\Omega(B)$ or $\Theta(B)$

A	B
$- \lg^k n$	n^{ϵ}
n^k	c^n
\sqrt{n}	$n^{\sin n}$
2^n	$2^{n/2}$
$n^{\log c}$	$c^{\log n}$
$\log(n!)$	$\log(n^n)$

Solution:

A	B	O	o	Ω	ω	Θ
$- \lg^k n$	n^{ϵ}	yes	yes	no	no	no
n^k	c^n	yes	yes	no	no	no
\sqrt{n}	$n^{\sin n}$	no	no	no	no	no
2^n	$2^{n/2}$	no	no	yes	yes	no
$n^{\log c}$	$c^{\log n}$	yes	no	yes	no	yes
$\log(n!)$	$\log(n^n)$	yes	no	yes	no	yes

Question 5

Show that $\log(n!) = \Theta(n \log n)$.

Solution:

Another approach to show $\log(n!) = \mathcal{O}(n \log(n))$

$$\begin{array}{lcl} n! & = & (n-0)(n-1)(n-2)...(n-(n-1)) \\ & = & n(1-\frac{0}{n})\cdot n(1-\frac{1}{n})\cdot n(1-\frac{2}{n})\cdot ...\cdot n(1-\frac{n-1}{n}) \\ & = & n^n\cdot (1-\frac{0}{n})\cdot (1-\frac{1}{n})\cdot (1-\frac{2}{n})\cdot ...\cdot (1-\frac{n-1}{n}) \\ & = & n^n\prod_{k=0}^{n-1}(1-\frac{k}{n}) \end{array}$$

$$\log(n!) = \log(n^n \prod_{k=0}^{n-1} (1 - \frac{k}{n}))$$

$$= \log(n^n) + \log(\prod_{k=0}^{n-1} (1 - \frac{k}{n}))$$

$$= n \log(n) + \log(\prod_{k=0}^{n-1} (1 - \frac{k}{n}))$$

$$= \mathcal{O}(n \log(n))$$

Exercise 6

Asymptotically rank the following functions:

n, n1/2, log(n), log(log(n)), log2(n),
$$\frac{1}{3}^n$$
, 4, $\frac{3}{2}^n$, n!

Solution:

$$\frac{1}{3}^{n} < 4 < \log(\log(n)) < \log(n) < \log(2(n)) < \sqrt{(n)} < n < \frac{3}{2}^{n} < n!$$

Exercise 7.

For every given f(n) and g(n) prove that $f(n) = \Theta(g(n))$

a)
$$g(n) = n^3$$
, $f(n) = 3n^3 + n^2 + n$

b)
$$g(n) = 2^n$$
, $f(n) = 2^{n+1}$

c)
$$g(n) = \ln(n), f(n) = \log_{10}(n) + \log_{10}(\log_{10} n)$$

Solution:

For all the given f(n) and g(n) we can prove that $f(n) = \Theta(g(n))$ using the limit test and/or proving the following statement:

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n) \,\forall \, n \ge n_0 \tag{1}$$

a)
$$q(n) = n^3$$
, $f(n) = 3n^3 + n^2 + n$

Solution 1 Using equation 1 we get

$$0 \leq c_1(g(n)) \leq f(n) \leq c_2(g(n)) \quad \forall n \geq n_0$$

$$= 0 \leq c_1 n^3 \leq 3n^3 + n^2 + n \leq c_2 n^3 \quad \forall n \geq n_0$$

dividing by n^3

$$= 0 \leq c_1 \leq 3 + \frac{1}{n} + \frac{1}{n^2} \leq c_2 \qquad \forall n \geq n_0$$

Choosing $c_1 = 3$, $c_2 = 5$, and $n_0 = 1$ helps us in proving the relations of the equation

$$= 0 \le 3 \le 3+1+1 \le 5$$
$$= 0 \le 3 \le 5 \le 5$$

Therefore, $f(n) = \Theta(g(n))$

Solution 2

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{3n^3 + n^2 + n}{n^3}$$

$$= 3 + \frac{1}{n} + \frac{1}{n^2}$$

$$= 3 + 0 + 0$$

 $= 3 \in R^+$

Therefore, $f(n) = \Theta(g(n))$

b)
$$g(n) = 2^n$$
, $f(n) = 2^{n+1}$

Solution 1 Using equation 1 we get

$$0 \le c_1(g(n)) \le f(n) \le c_2(g(n)) \quad \forall n \ge n_0$$
$$= 0 \le c_1 2^n \le 2^{n+1} \le c_2 2^n \quad \forall n \ge n_0$$

dividing by 2^n

$$= 0 \le c_1 \le c_2 \le c_2$$

Choosing $c_1 = 2$, $c_2 = 2$, and $n_0 = 1$ helps us in proving the relations of the equation

$$= \quad 0 \quad \leq \quad 2 \quad \leq \quad 2 \quad \leq \quad 2$$

Therefore, $f(n) = \Theta(g(n))$.

Solution 2

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \frac{2^{n+1}}{2^n}$$

$$= \frac{2 \cdot 2^n}{2^n}$$

$$= 2 \in R^+$$

c)
$$g(n) = \ln(n), f(n) = \log_{10}(n) + \log_{10}(\log_{10} n)$$

Solution 1

$$\lim_{n\to\infty}\frac{f(n)}{g(n)} = \frac{\log_{10}(n) + \log_{10}(\log_{10}(n))}{\ln(n)}$$
$$= \frac{\infty}{\infty} 1$$

 $Using \ L'H\^opital's \ rule$

$$\lim_{n \to \infty} \frac{f'(n)}{g'(n)} = \frac{\frac{1}{n \ln(10)}}{\frac{1}{n}} + \frac{\frac{1}{\log_{10}(n) \ln(10)} \cdot \frac{1}{n \ln(10)}}{\frac{1}{n}}$$

$$= \frac{n}{n \ln(10)} + \frac{n}{\ln^2(10) n \log_{10}(n)}$$

$$= \frac{1}{\ln(10)} + \frac{1}{\ln^2(10) \log_{10}(n)}$$

$$= 0.434(3d \cdot p) + 0 \in R^+$$

Therefore, $f(n) = \Theta(g(n))$

Solution 2

$$= 0 \le c_1 \le \log_{10}(e) + \frac{\log_{10}(\log_{10}(n))}{\ln(n)} \le c_2$$
 $\forall n \ge n_0$

Choosing $c_1 = 0.434$, $c_2 = 0.5$, and $n_0 = 10$ helps us in proving the relations of the equation

$$= 0 \le 0.434 \le 0.434 \le 0.5$$

Therefore, $f(n) = \Theta(g(n))$

Exercise 8. Asymptotic notation properties

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

a.
$$f(n) = O(g(n))$$
 implies $g(n) = O(f(n))$.

b.
$$f(n) + g(n) = \Theta(\min\{f(n), g(n)\}).$$

c.
$$f(n) = O(g(n))$$
 implies $\lg f(n) = O(\lg g(n))$, where $\lg g(n) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n .

d.
$$f(n) = O(g(n))$$
 implies $2^{f(n)} = O(2^{g(n)})$.

e.
$$f(n) = O((f(n))^2)$$
.

$$f.$$
 $f(n) = O(g(n))$ implies $g(n) = \Omega(f(n))$.

g.
$$f(n) = \Theta(f(n/2))$$
.

h.
$$f(n) + o(f(n)) = \Theta(f(n))$$
.

Solution:

- a. False. Counterexample: $n = O(n^2)$ but $n^2 \neq O(n)$.
- b. False. Counterexample: $n + n^2 \neq \Theta(n)$.
- c. True. Since f(n) = O(g(n)) there exist c and n_0 such that $n \geq n_0$ implies $f(n) \leq cg(n)$ and $f(n) \geq 1$. This means that $\log(f(n)) \leq \log(cg(n)) = \log(c) + \log(g(n))$. Note that the inequality is preserved after taking logs because $f(n) \geq 1$. Now we need to find d such that $\log(f(n)) \leq d\log(g(n))$. It will suffice to make $\log(c) + \log(g(n)) \leq d\log(g(n))$, which is achieved by taking $d = \log(c) + 1$, since $\log(g(n)) \geq 1$.
- d. False. Counterexample: 2n = O(n) but $2^{2n} \neq 2^n$ as shown in exercise 3.1-4.
- e. False. Counterexample: Let $f(n)=\frac{1}{n}$. Suppose that c is such that $\frac{1}{n}\leq c\frac{1}{n^2}$ for $n\geq n_0$. Choose k such that $kc\geq n_0$ and k>1. Then this implies $\frac{1}{kc}\leq \frac{c}{k^2c^2}=\frac{1}{k^2c}$, a contradiction.
- f. True. Since f(n)=O(g(n)) there exist c and n_0 such that $n\geq n_0$ implies $f(n)\leq cg(n)$. Thus $g(n)\geq \frac{1}{c}f(n)$, so $g(n)=\Omega(f(n))$.
- g. False. Counterexample: Let $f(n) = 2^{2n}$. By exercise 3.1-4, $2^{2n} \neq O(2^n)$.
- h. True. Let g be any function such that g(n)=o(f(n)). Since g is asymptotically positive let n_0 be such that $n\geq n_0$ implies $g(n)\geq 0$. Then $f(n)+g(n)\geq f(n)$ so $f(n)+o(f(n))=\Omega(f(n))$. Next, choose n_1 such that $n\geq n_1$ implies $g(n)\leq f(n)$. Then $f(n)+g(n)\leq f(n)+f(n)=2f(n)$ so f(n)+o(f(n))=O(f(n)). By Theorem 3.1, this implies $f(n)+o(f(n))=\Theta(f(n))$.