

# Roadmap

Asymptotic notation

#### Asymptotic notations

 $\Theta$ , O, and  $\Omega$  ('big theta', 'big omicron', and 'big omega').

 $f = \Theta(g)$  f is of order of g.

f = O(g) f is of order at most g.

 $f = \Omega(g)$  f is of otder at least g.

### Big Theta

We say that f is of order g, and write  $f = \Theta(g)$ , if there are positive constants C and D and a number  $n_0$  such that, for all  $n > n_0$ ,

$$Cg(n) \le f(n) \le Dg(n)$$

Examples

$$n(n+1)/2 = \Theta(n^2)$$

$$n^3 + n^2 + nlogn = \Theta(n^3)$$

$$n(1+1/2+1/3+\ldots) = \Theta(nlogn)$$

We write  $f(n) = \Theta(g(n))$  or  $f = \Theta(g)$  or  $f \in \Theta(g)$ .

Example: head(list), it is  $\Theta(1)$ .

## Big Omicron

We say that f is of order at most g, and write f = O(g), if there are positive constants C and a number  $n_0$  such that, for all  $n > n_0$ ,

$$f(n) \leq Cg(n)$$

In particular, O(1) stands for an anonymous function whose values are bounded above by some positive constant.

The running time of *takeWhile* on a list of length n is O(n) steps, assuming the test takes constant time.

In the worst case the running time is  $\Theta(n)$  steps but in the best case, when the first element does not pass the test, the running time is  $\Theta(1)$  steps.

### Big Omega

A running time of  $O(n^2)$  does not imply that the running time is not also O(n).

We say that f is of order at least g, and write  $f = \Omega(g)$ , if there is a positive constant C and a natural number  $n_0$  such that

$$f(n) \geq Cg(n)$$

It follows that  $f = \Theta(g)$  if and only if f = O(g) and  $f = \Omega(g)$ .