```
In [ ]:
```

Analyzing Loan Data from Prosper

Flow of the notebook

- Introduction
- Gathering Data
- · Assesssing Data
- · Cleaning Data
- Univariate Exploration
- Bivariate Exploration
- · Multivariate Exploration

Introduction

This dataset is financial dataset and this is related to the loan, borrowers, lenders, interest rates and stuffs like that. Prosper or Prosper Marketplace Inc. is a San Francisco, California based company specializing in loans at low interest rates to the borrowers. In this dataset, we are using the data from the Posper to analyse it and trying to find the pattern in the Prosper data. This may be tedious because of the sheer size of the dataset and the complicated nature of all the financial datasets. We are using Python libraries to plot some visualizations.

Our investigation will focus on analyzing the factors that affect borrower's APR and What type of loan has been taken by what kind of borrower.

Gathering Data

We have downloaded the data from the link given by Udacity. It is downloaded in 'csv' format and we will start by importing it.

pd.set option('display.max rows', None)

```
In [15]: df_loan = pd.read_csv('prosperLoanData.csv')
    df_loan.head()
```

Out[15]:

	ListingKey	ListingNumber	ListingCreationDate	CreditGrade	Term	LoanStatus
0	1021339766868145413AB3B	193129	2007-08-26 19:09:29.263000000	С	36	Completed
1	10273602499503308B223C1	1209647	2014-02-27 08:28:07.900000000	NaN	36	Current
2	0EE9337825851032864889A	81716	2007-01-05 15:00:47.090000000	HR	36	Completed
3	0EF5356002482715299901A	658116	2012-10-22 11:02:35.010000000	NaN	36	Current
4	0F023589499656230C5E3E2	909464	2013-09-14 18:38:39.097000000	NaN	36	Current
df	loan, shape					

```
In [16]: df_loan.shape
Out[16]: (113937, 81)
```

Using .shape we can deduce the information about number of rows and columns in the dataset. We see that there are 81 attributes with 113,937 entries.

In [17]: df_loan.dtypes

Out[17]:	ListingKey	object
	ListingNumber	int64
	ListingCreationDate	object
	CreditGrade	object
	Term	int64
	LoanStatus	object
	ClosedDate	object
	BorrowerAPR	float64
	BorrowerRate	float64
	LenderYield	float64
	EstimatedEffectiveYield	float64
	EstimatedLoss	float64
	EstimatedReturn	float64
	ProsperRating (numeric)	float64
	ProsperRating (Alpha)	object
	ProsperScore	float64
	ListingCategory (numeric)	int64
	BorrowerState	object
	Occupation	object
	EmploymentStatus	object
	EmploymentStatusDuration	float64
	IsBorrowerHomeowner	bool
	CurrentlyInGroup	bool
	GroupKey	object
	DateCreditPulled	object
	CreditScoreRangeLower	float64
	CreditScoreRangeUpper	float64
	FirstRecordedCreditLine	object
	CurrentCreditLines	float64
	OpenCreditLines	float64
	TotalCreditLinespast7years	float64
	OpenRevolvingAccounts	int64
	OpenRevolvingMonthlyPayment	float64
	InquiriesLast6Months	float64
	TotalInquiries	float64
	CurrentDelinquencies	float64
	AmountDelinquent	float64
	DelinquenciesLast7Years	float64
	PublicRecordsLast10Years	float64
	PublicRecordsLast12Months	float64
	RevolvingCreditBalance	float64
	BankcardUtilization	float64
	AvailableBankcardCredit	float64
	TotalTrades	float64
	TradesNeverDelinquent (percentage)	float64
	TradesOpenedLast6Months	float64
	DebtToIncomeRatio	float64
	IncomeRange	object
	IncomeVerifiable	bool
	StatedMonthlyIncome	float64
	LoanKey	object
	TotalProsperLoans	float64
	TotalProsperPaymentsBilled	float64
	OnTimeProsperPayments	float64
	ProsperPaymentsLessThanOneMonthLate	float64
	ProsperPaymentsOneMonthPlusLate	float64
	ProsperPrincipalBorrowed	float64

ProsperPrincipalOutstanding	float64
ScorexChangeAtTimeOfListing	float64
LoanCurrentDaysDelinquent	int64
LoanFirstDefaultedCycleNumber	float64
LoanMonthsSinceOrigination	int64
LoanNumber	int64
LoanOriginalAmount	int64
LoanOriginationDate	object
LoanOriginationQuarter	object
MemberKey	object
MonthlyLoanPayment	float64
LP_CustomerPayments	float64
LP_CustomerPrincipalPayments	float64
LP_InterestandFees	float64
LP_ServiceFees	float64
LP_CollectionFees	float64
LP_GrossPrincipalLoss	float64
LP_NetPrincipalLoss	float64
LP_NonPrincipalRecoverypayments	float64
PercentFunded	float64
Recommendations	int64
InvestmentFromFriendsCount	int64
InvestmentFromFriendsAmount	float64
Investors	int64

dtype: object

Assessing and Cleaning Data

1) What is the structure of Data?

- The data consist of a total 81 attributes and accounts for 113,937 entrie s. Each entry gives us idea about the borrower and it's background and the d etails of the loan associated with them.

2) What are the main features of your analysis?

- The above question is answered by keeping the attributes of concern and re moving the others. Done below.

3) Does all the entries have a prosper score associated with it?

4) What feature(s) do I think will help most in the analysis of my interest?

- I assume that 'Borrower's APR', 'Prosper Rating', and 'Occupation' will pl ay a major role in determining the result of analysis. The answer to this qu estion will be answered in detail by visualization.

Question 3

We can realize that once we get rid of the data that is not associated with prosper score, number of entries gets reduced by a significant number.

Question 2: What are the main features of your analysis?

```
In [19]:
         There are 2 ways to go about doing this. 1) we select only that we want,
         & 2) we unselect the ones that we dont want
         we will take the second route of unselecting the not-required columns.
          we can check from above the columns that have large amount of null valu
         es and remove them since getting that lost
         data is not a possible and become redundant while we analyze.
         df_loan_copy = df_loan.copy()
         df_loan_copy.drop(['ListingKey', 'ListingNumber', 'ListingCreationDate',
          'CreditGrade', \
                          'ClosedDate', 'CurrentlyInGroup', 'GroupKey', 'DateCredi
         tPulled', 'FirstRecordedCreditLine',\
                          'LoanKey', 'TotalProsperLoans', 'TotalProsperPaymentsBil
         led', 'OnTimeProsperPayments',\
                          'ProsperPaymentsLessThanOneMonthLate', 'ProsperPaymentsO
         neMonthPlusLate',\
                          'ProsperPrincipalBorrowed', 'ProsperPrincipalOutstandin
         g', 'ScorexChangeAtTimeOfListing',\
                          'LoanCurrentDaysDelinquent', 'LoanFirstDefaultedCycleNum
         ber'], axis=1, inplace = True)
```

In [20]: df_loan_copy.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 84853 entries, 1 to 113936
Data columns (total 61 columns):

Data	columns (total 61 columns):			
#	Column	Non-N	ull Count	Dtype
		04050		
0	Term		non-null	int64
1	LoanStatus		non-null	object
2	BorrowerAPR		non-null	float64
3	BorrowerRate		non-null	float64
4	LenderYield		non-null	float64
5	EstimatedEffectiveYield		non-null	float64
6	EstimatedLoss		non-null	float64
7	EstimatedReturn		non-null	float64
8	ProsperRating (numeric)		non-null	float64
9	ProsperRating (Alpha)		non-null	object
10	ProsperScore		non-null	float64
11	ListingCategory (numeric)		non-null	int64
12	BorrowerState		non-null	object
13	Occupation		non-null	object
14	EmploymentStatus		non-null	object
15	EmploymentStatusDuration		non-null	float64
16	IsBorrowerHomeowner		non-null	bool
17	CreditScoreRangeLower		non-null	float64
18	CreditScoreRangeUpper		non-null	float64
19	CurrentCreditLines		non-null	float64
20	OpenCreditLines		non-null	float64
21	TotalCreditLinespast7years		non-null	float64
22	OpenRevolvingAccounts		non-null	int64
23	OpenRevolvingMonthlyPayment		non-null	float64
24	InquiriesLast6Months		non-null	float64
25	TotalInquiries		non-null	float64
26	CurrentDelinquencies		non-null	float64
27	AmountDelinquent		non-null	float64
28	DelinquenciesLast7Years		non-null	float64
29	PublicRecordsLast10Years		non-null	float64
30	PublicRecordsLast12Months		non-null	float64
31	RevolvingCreditBalance		non-null	float64
32	BankcardUtilization		non-null	float64
33	AvailableBankcardCredit		non-null	float64
34	TotalTrades		non-null	float64
35	TradesNeverDelinquent (percentage)		non-null	float64
36	TradesOpenedLast6Months		non-null	float64
37	DebtToIncomeRatio		non-null	float64
38	IncomeRange		non-null	object
39	IncomeVerifiable		non-null	bool
40	StatedMonthlyIncome		non-null	float64
41	LoanMonthsSinceOrigination	84853	non-null	int64
42	LoanNumber	84853	non-null	int64
43	LoanOriginalAmount		non-null	int64
44	LoanOriginationDate	84853	non-null	object
45	LoanOriginationQuarter	84853	non-null	object
46	MemberKey	84853	non-null	object
47	MonthlyLoanPayment		non-null	float64
48	LP_CustomerPayments	84853	non-null	float64
49	LP_CustomerPrincipalPayments		non-null	float64
50	LP_InterestandFees		non-null	float64
51	LP_ServiceFees	84853	non-null	float64

```
LP CollectionFees
                                         84853 non-null
                                                         float64
 53
    LP GrossPrincipalLoss
                                         84853 non-null
                                                         float64
 54
    LP NetPrincipalLoss
                                         84853 non-null
                                                        float64
    LP NonPrincipalRecoverypayments
                                         84853 non-null
                                                         float64
 56
    PercentFunded
                                         84853 non-null float64
                                         84853 non-null
 57
    Recommendations
                                                        int64
    InvestmentFromFriendsCount
                                         84853 non-null
                                                         int64
                                         84853 non-null float64
 59
    InvestmentFromFriendsAmount
 60
    Investors
                                         84853 non-null
                                                         int64
dtypes: bool(2), float64(41), int64(9), object(9)
memory usage: 39.0+ MB
```

We see that the dimensions of our copied dataset has reduced in terms of num ber of attributes since we removed unnecessary columns.

Univariate Exploration

· Which values of APR are most occuring?

```
In [21]: df_loan_copy.BorrowerAPR.value_counts().head(10)
Out[21]: 0.35797
                     3672
          0.35643
                     1644
          0.30532
                      902
          0.29510
                      747
          0.35356
                      721
          0.15833
                      651
          0.24246
                      605
          0.24758
                      601
         0.12528
                      559
          0.17359
                      547
         Name: BorrowerAPR, dtype: int64
```

```
In [22]: # Lets plot different values of BorrowerAPR
bins = np.arange(0, df_loan_copy['BorrowerAPR'].max(), 0.005)
plt.hist(data = df_loan_copy, x='BorrowerAPR', bins = bins)
plt.title('BorrowerAPR values')
plt.xlabel('BorrowerAPR in %')
plt.ylabel('count')
plt.xticks(np.arange(0, df_loan_copy['BorrowerAPR'].max()+0.05, 0.05));
```


BorrowerAPR distribution seems fairly normal with mean around ~0.19, with an exception of value ~0.35 which is surprisingly high and this needs to be probed.

What are the most pursued occupation in our dataset?

Lets see the types of occupation that our borrower are involved in

```
In [24]: df_loan_copy['Occupation'].value_counts()[9::-1].plot(kind='barh')
    plt.title('Top 10 Occupations Count')
    plt.xlabel('count')
    plt.ylabel('Occupation')
    plt.fontsize = 10
    plt.figsize=(14,14);
```


Occupations: We see a huge number of entries as 'Other' and 'Professional', we can deduce that these people are relectant in disclosing their actual professions. The rest of occupation categories are evenly distributed.

• What Prosper scored occurs the most?

```
In [26]: # see which ProsperScore borrowers received the most

df_loan_copy['ProsperScore'].value_counts().plot(kind='bar')
    plt.title('ProsperScore Count')
    plt.xlabel('ProsperScore')
    plt.ylabel('Count')
    plt.fontsize = 10
    plt.figsize=(14,14);
```


ProsperScore: Upon inspection we can say that more the money you borrow, the lesser ProsperScore you get.

• Let us explore the mean values of ProsperScore by each occupation.

```
In [27]: # bar plot for APR means of top 10 occupations.

top_10 = df_loan_copy.groupby('Occupation').BorrowerAPR.mean()[9::-1]
top_10.plot(kind='bar');
```


We can observe that there is negligible difference between mean APR scores of top 10 occupations. Hence this exploration is not substantial. We can consider that Occupation might not be the most appropriate attribute in our analysis.

· Lets put some light on delinquencies from past.

```
In [44]: plt.figure(figsize = [10, 5])
         plt.subplot(1, 2, 1)
         bins = np.arange(0, df_loan_copy['DelinquenciesLast7Years'].max(), 2)
         plt.hist(data = df_loan_copy, x = 'DelinquenciesLast7Years', bins = bins
         plt.xticks(np.arange(2, 100+1, 10))
         plt.title('DelinquenciesLast7Years Count')
         plt.xlabel('Amount of Delinquencies')
         plt.ylabel('count');
         plt.subplot(1, 2, 2)
         bins = np.arange(1, df_loan_copy['DelinquenciesLast7Years'].max(), 2)
         plt.hist(data = df_loan_copy, x = 'DelinquenciesLast7Years', bins = bins
         )
         plt.xticks(np.arange(2, 100+1, 10))
         plt.title('DelinquenciesLast7Years Count')
         plt.xlabel('Amount of Delinquencies')
         plt.ylabel('count');
```


DelinquenciesLast7Years: The first plot shows overall delinquencies and we can infer that most of the borrowers dont have any delinquency. But, as we remove those records where there is no delinquency, the spread becomes more distributed and the decrease is gradual.

Bivariate Exploration

• Let us check for BorrowerAPR mean by ProsperRating mean

BorrowerAPR mean by ProsperRating

BorrowerAPR mean by ProsperRating: The ProsperRating categories have been labelled from highest to lowest manner (i.e. AA, A, B, C, D, E, HR). We can observe that the highest rating of AA has received lowest mean APR and vice-versa, i.e. lowest ratings have received highest mean APR. This is somewhat intuitive because better ratings induce more trust in customer and hence in case of any default also, the punishment in terms of APR is low.

Comparing CreditScoreRangeLower & CreditScoreRangeUpper

```
In [45]: plt.figure(figsize = [10, 5])

plt.subplot(1, 2, 1)
bins = np.arange(550, df_loan_copy['CreditScoreRangeLower'].max(), 20)
plt.hist(data = df_loan_copy, x = 'CreditScoreRangeLower', bins = bins)
plt.xticks(np.arange(550, 1000, 100))
plt.title('CreditScoreRangeLower Count')
plt.xlabel('CreditScoreRangeLower')
plt.ylabel('count');

plt.subplot(1, 2, 2)
bins = np.arange(550, df_loan_copy['CreditScoreRangeUpper'].max(), 20)
plt.hist(data = df_loan_copy, x = 'CreditScoreRangeUpper', bins = bins)
plt.xticks(np.arange(550, 1000, 100))
plt.title('CreditScoreRangeUpper Count')
plt.xlabel('CreditScoreRangeUpper')
plt.ylabel('count');
```


In [32]: display(df_loan_copy.CreditScoreRangeLower.describe())

count	84853.000000
mean	699.390240
std	47.095937
min	600.000000
25%	660.000000
50%	700.000000
75%	720.000000
max	880.000000

Name: CreditScoreRangeLower, dtype: float64

```
In [33]:
         display(df_loan_copy.CreditScoreRangeUpper.describe())
                   84853.000000
         count
                     718.390240
         mean
         std
                      47.095937
         min
                     619.000000
         25%
                     679.000000
         50%
                     719.000000
         75%
                     739.000000
                     899.000000
         max
         Name: CreditScoreRangeUpper, dtype: float64
```

CreditScoreRangeLower & CreditScoreRangeLower : The plots are quiet similar and nothing substantial to differentiate.

• Let's see how the AvailableBankcardCredit is distributed.

We can see that the plot above is not so informative. We can improve upon the filters and then try to re-plot so as to get a better glimps of the distribution.

```
In [36]: # let us set a baseline of 150,000
High_Creditavailible = df_loan_copy[df_loan_copy['AvailableBankcardCredit'] > 150000]
High_Creditavailible.AvailableBankcardCredit.sort_values(ascending = False)
```

Out[36]:	80178	498374.0
	92406	432613.0
	98518	413367.0
	99673	412785.0
		406125.0
		403880.0
	86383	403534.0
	45212	395500.0
	58930	373348.0
	38163	364284.0
	56942	360000.0
	39963	
		360000.0
		360000.0
		360000.0
	76296	360000.0
	1801	360000.0
	32553	350777.0
	99273	305996.0
	43998	302928.0
	8352	285475.0
	69640	273978.0
		267126.0
	49365	265757.0
	68191	264939.0
	80379	256031.0
	24958	246231.0
		241928.0
		238114.0
		237704.0
	64323	228829.0
	31141	227347.0
	85922	225413.0
	54325	223896.0
	73613	217557.0
	54038	217349.0
	18457	217218.0
	111386	215434.0
	23693	213800.0
	106726	212800.0
	49261	212613.0
	7337	210764.0
	94729	206964.0
	63908	206000.0
	74369	204322.0
	40041	203472.0
	7448	202528.0
	65874	202397.0
	17455	201674.0
	24493	200395.0
	62779	195685.0
	110598	194405.0
	87618	190480.0
	73521	186042.0
	86793	184487.0
	48988	183218.0
	47705	182687.0
	24801	182559.0

99839	182040.0
107135	181721.0
32006	181025.0
95456	179413.0
42512	178850.0
54923	178248.0
28818	177994.0
80370	175625.0
6820	175523.0
52120	172366.0
102543	171786.0
22767	171446.0
68558	171135.0
28947	169405.0
29096	169266.0
79516	169213.0
	169006.0
	168426.0
31618	167952.0
79652	167852.0
15152	166467.0
94372	166438.0
13912	165764.0
81937	164971.0
89996 10075	163568.0 163531.0
32159	163393.0
88033	163089.0
29229	163069.0
109758	162995.0
85176	162873.0
25880	162506.0
	162368.0
84993	161989.0
33347	161218.0
54112	161183.0
55107	160560.0
60923	159880.0
53134	159738.0
4784	158941.0
68405	158745.0
79568	158607.0
94367	156591.0
25696	155880.0
64324	155734.0
66035	154790.0
18028	154752.0
75012	153327.0
50574	153288.0
102225	153214.0
85524	152236.0
2970	151424.0
82691	151069.0
8570	150853.0
7875	150528.0
95998	150114.0
Namo. Arrai	labloBanko

Name: AvailableBankcardCredit, dtype: float64

```
In [37]: print(len(High_Creditavailible['AvailableBankcardCredit']))

# remove fewer people who has high Creditavailible
df_loan_1 = df_loan_copy.drop(High_Creditavailible.index)

# check
print(len(df_loan_1[df_loan_1['AvailableBankcardCredit'] > 150000]))

113
0
```

Now that we have removed all the entries beyond the bracket and hence we can go on to plot again

We can clearly see that the above plot now shows how the Available Bankcard Credit is distributed in more detail.

While performing this basic analysis, did you find any feature or attribute to be behaving unusually?

Yes, features like Occupation truned out to give no significant idea about h ow it is affecting Borrower's APR. In real, occupation can be generalized to give a sense of background and income which indirectly affects APR but from the above preliminary analysis, we cannot say so.

Multivariate Exploration

• Lets see how the attributes are influencing each other and also how are they correlated using the Correlation plot.

The correlations are mostly negative and that can be understood and also is justified. The highest negative correlation is between 'ProsperScore' and 'BorrowerAPR', which should be true because higher the prosperscore, higher will be the trust in customer and his ability to repay the dues hence they are inversely proportional or negatively correlated. Same relation can be seen in Credit Score and BorrowerAPR also.

lets have a look at scatter plots for these variables.

Out[47]: Text(0.5, 1, 'Matrix Plot')

<Figure size 720x360 with 0 Axes>

The Matrix plot also turns out to be similar to the correlation plot in determining which attributes have positive and which attributes have negative correlation. We can deduce that ProsperScore has most negative correlation with BorrowerAPR, we can try and analyze it better by explicitly plotting them in different and more informative manner.

```
In [48]:
         # scatter and heat plot for comparing ProsperScore and BorrowerAPR.
         plt.figure(figsize = [15, 5])
         plt.subplot(1, 2, 1)
         plt.scatter(data = df_loan_1, x = 'BorrowerAPR', y = 'ProsperScore', alp
         ha = 0.005)
         plt.yticks(np.arange(0, 12, 1))
         plt.title('BorrowerAPR vs. ProsperScore')
         plt.xlabel('BorrowerAPR')
         plt.ylabel('ProsperScore')
         plt.subplot(1, 2, 2)
         bins x = \text{np.arange}(0, \text{ df loan } 1['BorrowerAPR'].max()+0.05, 0.03)
         bins_y = np.arange(0, df_loan_1['ProsperScore'].max()+1, 1)
         plt.hist2d(data = df_loan_1, x = 'BorrowerAPR', y = 'ProsperScore', bins
         = [bins x, bins y],
                         cmap = 'viridis r', cmin = 0.5)
         plt.colorbar()
         plt.title('BorrowerAPR vs. ProsperScore')
         plt.xlabel('BorrowerAPR (1)')
         plt.ylabel('ProsperScore');
```


Our assumtion is likely to be true about both of these variables being Negatively correlated.

 Let us plot a similar scatter plot and heat map for other 2 variable i.e. BorrowerAPR and CreditScoreRangeUpper

```
In [58]: plt.figure(figsize = [15, 5])
         plt.subplot(1, 2, 1)
         plt.scatter(data = df_loan_1, y = 'CreditScoreRangeUpper', x = 'Borrower')
         APR', alpha = 0.01)
         plt.title('BorrowerAPR vs. CreditScoreRangeUpper')
         plt.xlabel('BorrowerAPR')
         plt.ylabel('CreditScoreRangeUpper');
         plt.subplot(1, 2, 2)
         bins_x = np.arange(0, df_loan_copy['BorrowerAPR'].max()+0.05, 0.02)
         bins_y = np.arange(500, df_loan_copy['CreditScoreRangeUpper'].max()+100,
         20)
         plt.hist2d(data = df_loan_1, x = 'BorrowerAPR', y = 'CreditScoreRangeUpp
         er', bins = [bins_x, bins_y],
                        cmap = 'viridis_r', cmin = 0.5)
         plt.colorbar()
         plt.title('BorrowerAPR vs. CreditScoreRangeUpper')
         plt.xlabel('BorrowerAPR (1)')
         plt.ylabel('CreditScoreRangeUpper');
```


The above plot makes sense because the higher the Credit Score, the lower will be the BorrowerAPR. The Credit Score also is positively correlated with the ProsperScore.

• Lets try to plot relation between BorrowerAPR and ProsperScore & ProsperRating. The primary focus while doing this viz is to uncover some information that might not be visible using the above plotted plots.

```
In [57]: plt.figure(figsize = [20, 10])

plt.subplot(1, 2, 1)
    sns.boxplot(data = df_loan_copy, x = 'ProsperRating (Alpha)', y = 'Borro werAPR')
    plt.gcf().set_size_inches(15, 8)
    plt.title('BorrowerAPR v/s ProsperRating')
    plt.xlabel('ProsperRating')
    plt.ylabel('BorrowerAPR')

plt.subplot(1, 2, 2)
    sns.boxplot(data = df_loan_copy, x = 'ProsperScore', y = 'BorrowerAPR')
    plt.gcf().set_size_inches(15, 8)
    plt.title('BorrowerAPR v/s ProsperScore')
    plt.xlabel('ProsperScore')
    plt.ylabel('BorrowerAPR');
```


The Violin plot for BorrowerAPR and ProsperRating & ProsperScore gives us the idea that ProsperRating cannot substantially help in seeing how it affects the BorrowerAPR. ProsperScore plot clearly shows a negative correlation with the BorrowerAPR.

What are some of the relationships of our interest and what is their nature?

- The plots above have revealed 2 features / attributes having a relationship of our interest and should be probed for further insights.
- We can say that ProsperScore and CreditScoreRangeUpper, both, have a negat ive correlation to the BorrowerAPR. A probable reason for such behavior are mentioned below each of the plots.
- We will utilize these variables to try 2 kinds of plot and try and implement Multivariate Visualization

Multivariate Exploration

```
In [63]: # Lets us try and implement these 3 variables together.

plt.figure(figsize = [18, 5])

plt.subplot(1, 2, 1)
plt.scatter(data = df_loan_1, x = 'CreditScoreRangeUpper', y = 'Borrower APR', alpha = 0.3)
plt.title('BorrowerAPR vs. CreditScoreRangeUpper')
plt.ylabel('BorrowerAPR')
plt.xlabel('CreditScoreRangeUpper');

plt.subplot(1, 2, 2)
plt.scatter(data = df_loan_1, x = 'CreditScoreRangeUpper', y = 'Borrower APR', c = 'ProsperScore', alpha = 0.3)
plt.colorbar(label = 'ProsperScore')
plt.title('BorrowerAPR vs. CreditScoreRangeUpper & ProsperScore')
plt.ylabel('BorrowerAPR')
plt.xlabel('CreditScoreRangeUpper');
```


• Here we start by plotting two variables at first and then try to include third variable in the same plot to get a multivariate visualization

- The negative correlations (BorrowerAPR and ProsperScore & BorrowerAPR and CreditScoreRangeUpper) is visible from second plot itself.
- As the Credit Score Range goes higher, the BorrowerAPR can be seen decreasing.
- Similarly, with lower ProsperScore (i.e. bluish dots) the BorrowerAPR stays higher or on top of the plot unlike the yellow dots including lower BorrowerAPR and at the same time also some positive correlation with Credit Score.

Let's try and use FacetGrid() to do a similar multivariate visual

```
In [64]: viz = sns.FacetGrid(data= df_loan_1, col='ProsperRating (Alpha)', col_wr
    ap=4, size=3)
    viz.map(plt.scatter, 'BorrowerAPR', 'ProsperScore', alpha= 0.2)
    viz.set_xlabels('BorrowerAPR')
    viz.set_ylabels('ProsperScore')

plt.show();
```

/Users/parthpatel/opt/anaconda3/lib/python3.7/site-packages/seaborn/axi sgrid.py:243: UserWarning: The `size` parameter has been renamed to `he ight`; please update your code.

warnings.warn(msg, UserWarning)

This plot shows us the correlation between BorrowerAPR and ProsperScore for each of the ProsperRating individually. We can deduce that the ProsperRating categories would not have any pattern of correlation with BorrowerAPR. But we can deduce that the people with lower ratings usually tend to have a higher APR and which can be true in real world too.

```
In [ ]:
```