

Sri Lanka Institute of Information Technology

Quantitative Risk Analysis - Exercise

Individual Assignment

IE3052 -Information Security Risk Management

Submitted by:

Student Registration Number	Student Name
IT19003610	K.G.S.SHIRANTHAKA

Date of submission:

2 May 2021

Exercise (Week 7 - Tutorial)

You are tasked with conducting a quantitative risk assessment for a local software developing organization. Key information about the organization is given and you shall use the provided data tables for your calculations. Calculate SLE, ALE and propose countermeasures for each scenario. Calculate countermeasure cost/benefit analysis by calculating the difference between the ALE prior to implementing the countermeasure to the ALE after implementing the countermeasures. In each section you can introduce your suggestions (assets, risk factors & threat scenarios) Note: Each team will get different answers for latter calculations. Why? Clearly state your assumptions.

<u>Part 1</u>

TechnoCode Pvt Ltd. is a small software developing company. An initial evaluation was done to identify critical assets of the organization along with their values.

Critical Assets & their Values

- Customer Information Server Rs. 350,000/=
- Software Developing Platform Server Rs. 750,000/=
- Middleware Platform (software) with licensed OS Rs. 800,000/=
- Patented Software Design Blueprints Rs. 1,000,000/=
- Senior Software Developer (Team Leader) **Rs. 130, 000/=**
- Storage Servers Rs. 385, 000/=
- Air Condition System (For entire system) Rs. 500, 000/=

A vulnerability study has indicated that the following 5 are the top risk factors.

Top Risk factors

- DoS Attack Servers
- Virus Attacks for Software
- Intellectual Property Theft

- Customer Information can disclosure.
- Phishing and Social engineering attacks and threats
- Failure of Air-condition system

Data Table

Following information is extracted from various security sources.

Risk/Threat Scenario	Source	ARO	Exposure Factor
Denial of Service	CSI	0.4	22%
Virus Infection	Symantec	0.28	15%
Theft of Intellectual Property	CSI	0.20	8%
Information Disclosure of Customer Information	CSI	0.28	12%
Phishing and Social engineering attacks and threats	-	0.5	25%
Failure of Air-condition system	CSI	0.4	50%

Part 2

- Calculate SLE for each threat scenario.
- Calculate ALE
- Suggest suitable countermeasures.
- Conduct safeguard cost/Benefit Analysis.
- Suggest Implementation of countermeasures according to their priority & ROI.

1. Threat Scenario: Denial of Service

Assets

- Customer Information Server Rs.350, 000/=
- Software Developing Platform Server Rs.750, 000/=

Suitable Countermeasures

• Implement firewall and Denial of Service (DoS) protection such as Cloudflare.

Cost = Rs. 40,000/=

Calculations

Before Applying Controls	After Applying Controls
Asset Value = 350,000 + 750, 000	Asset Value = 350,000 + 750, 000
Asset Value = 1, 100, 000	Asset Value = 1, 100, 000
SLE = Asset Value * EF (Exposure Factor)	SLE = Asset Value * EF (Exposure Factor)
SLE = 1, 100, 000 * 22%	SLE = 1, 100, 000 * 12%
SLE = 242,000	SLE = 132,000
ARO = 0.4	ARO = 0.4
ALE = SLE * ARO	ALE = SLE * ARO
ALE = 242, 000 * 0.4	ALE = 132, 000 * 0.4
ALE = 96,800	ALE = 52,800

Calculations Summary

Key Terms	Before Applying Controls	After Applying	g Controls
EF	22%	EF	12%
SLE	Rs. 242, 000	SLE	Rs.132, 000
ARO	0.4	ARO	0.4
ALE	Rs. 96, 800	ALE	Rs. 52, 800

Safeguard Cost Benefit Analysis = (ALE before implementing safeguard) – (ALE after implementing safeguard) – (annual cost of safeguard)

$$= 96,800 - (52,800 + 40,000) =$$
Rs. 4,000/=

2. Threat Scenario: Virus Infection

Assets

• Middleware Platform (software) with licensed OS – Rs. 800, 000/=

Suitable Countermeasures

• Implement the enterprise standard malware protection software and update the operating system.

$$Cost = Rs. 20, 800/=$$

Calculations

Before Applying Controls	After Applying Controls
Asset Value = 800, 000	Asset Value = 800, 000
SLE = Asset Value * EF (Exposure Factor)	SLE = Asset Value * EF (Exposure Factor)
SLE = 800, 000 * 15%	SLE = 800, 000 * 5%
SLE = 120,000	SLE = 40,000
ARO = 0.28	ARO = 0.15
ALE = SLE * ARO	ALE = SLE * ARO
ALE = 120, 000 * 0.28	ALE = 40, 000 * 0.15
ALE = 33,600	$\mathbf{ALE} = 6,000$

Calculations Summary

Key Terms	Before Applying Controls	After Applying Controls	
EF	15%	EF	5%

SLE	Rs. 120, 000	SLE	Rs. 40, 000
ARO	0.28	ARO	0.15
ALE	Rs. 33, 600	ALE	Rs. 6, 000

Safeguard Cost Benefit Analysis = (ALE before implementing safeguard) – (ALE after

implementing safeguard) – (annual cost of safeguard)

$$= 33,600 - (6,000 + 20,800) =$$
Rs. $6,800/=$

3. Threat Scenario: Theft of Intellectual Property

Assets

• Patented Software Design Blueprints – Rs.1,000, 000/=

Suitable Countermeasures

• Prioritize Intellectual Property and Trade Secret Protection

Cost = Rs. 9,000/=

Calculations

Before Applying Controls	After Applying Controls
Asset Value = 1, 000, 000	Asset Value = 1, 000, 000
SLE = Asset Value * EF	SLE = Asset Value * EF
SLE = 1, 000, 000 * 8%	SLE = 1, 000, 000 * 3%
SLE = 80,000	SLE = 30,000
ARO = 0.20	ARO = 0.20
ALE = SLE * ARO	ALE = SLE * ARO
ALE = 80, 000 * 0.20	ALE = 30, 000 * 0.20
ALE = 16,000	ALE = 6,000

Calculations

Key Terms	Before Applying Controls	After Applying Controls	
EF	8%	EF	3%
SLE	Rs. 80, 000	SLE	Rs. 30, 000
ARO	0.20	ARO	0.20
ALE	Rs. 16, 000	ALE	Rs. 6, 000

 $\textbf{Safeguard Cost Benefit Analysis} = (ALE \ before \ implementing \ safeguard) - (ALE \ after \ after \ before \ implementing \ safeguard) - (ALE \ after \ implementing \ s$

implementing safeguard) – (annual cost of safeguard)

$$= 16,000 - (6,000 + 9,000) =$$
Rs. 1,000/=

4. Threat Scenario: Information Disclosure of Customer Information

Assets

• Storage Servers – Rs. 385, 000/=

Suitable Countermeasures

• Upgrade the Storage Server and update server control panel regularly.

Cost = Rs. 7,000/=

Calculation Summary

Before Applying Controls	After Applying Controls
Asset Value = 385, 000	Asset Value = 385, 000
SLE = Asset Value * EF	SLE = Asset Value * EF
SLE = 385, 000 * 12%	SLE = 385, 000 * 5%
SLE = 46,200	SLE = 19, 250
ARO = 0.28	ARO = 0.15

ALE = SLE * ARO ALE = 46, 200 * 0.28	ALE = SLE * ARO ALE = 19, 250 * 0.18
ALE = 12,936	ALE = 3,465
12,700	11LL = 3, 403

Calculations

Key Terms	Before Applying Controls	After Applying Controls	
EF	12%	EF	5%
SLE	Rs. 46, 200	SLE	Rs. 19, 250
ARO	0.28	ARO	0.18
ALE	Rs. 12, 936	ALE	Rs. 3, 465

 $\textbf{Safeguard Cost Benefit Analysis} = (ALE \ before \ implementing \ safeguard) - (ALE \ after \ after \ before \ implementing \ safeguard) - (ALE \ after \ implementing \ s$

implementing safeguard) – (annual cost of safeguard)

$$= 12,936 - (3,465 + 7,000) =$$
Rs. 2, 471/=

5. Threat Scenario: Phishing and Social engineering attacks and threats

Assets

• Senior Software Developers (Team Leader) – Rs. 130, 000/=

Suitable Countermeasures

- Train and maintain the workshops for security awareness.
- Deploy a SPAM filter that detects malware and virus.

$$Cost = Rs. 12,000/=$$

Calculations

Before Applying Controls	After Applying Controls
Asset Value = 130, 000	Asset Value = 130, 000
SLE = Asset Value * EF	SLE = Asset Value * EF
SLE = 130, 000 * 25%	SLE = 130, 000 * 10%
SLE = 32,500	SLE = 13,000
ARO = 0.5	ARO = 0.2
ALE = SLE * ARO	ALE = SLE * ARO
ALE = 32, 500 * 0.5	ALE = 13, 000 * 0.2
ALE = 16,250	ALE = 2,600

Calculations Summary

Key Terms	Before Applying Controls	After Applying	g Controls
EF	25%	EF	10%
SLE	Rs. 32, 500	SLE	Rs.13, 000
ARO	0.5	ARO	0.2
ALE	Rs. 16, 250	ALE	Rs. 2, 600

Safeguard Cost Benefit Analysis = (ALE before implementing safeguard) – (ALE after

implementing safeguard) – (annual cost of safeguard)

= 16, 250 - (2, 600 + 12, 000) =Rs. 1, 650/=

6. Threat Scenario: Failure of Air-Condition System

Assets

Air-condition system (for entire system) – Rs. 500, 000/=

Suitable Countermeasures

Repair the Air-Condition system.

Cost = Rs.25, 000/=

Calculation Summary

Before Applying Controls	After Applying Controls
Asset Value = 500, 000	Asset Value = 500, 000
SLE = Asset Value * EF	SLE = Asset Value * EF
SLE = 500, 000 * 50%	SLE = 500, 000 * 30%
SLE = 250,000	SLE = 150,000
ARO = 0.4	ARO = 0.3
ALE = SLE * ARO	ALE = SLE * ARO
ALE = 240, 000 * 0.4	ALE = 150, 000 * 0.3
ALE = 100,000	ALE = 45,000

Key Terms	Before Applying Controls	After Applyin	g Controls
EF	50%	EF	30%
SLE	Rs. 250, 000	SLE	Rs. 150, 000
ARO	0.4	ARO	0.3
ALE	Rs. 100, 000	ALE	Rs. 45, 000
Safeguard Cost Benefit Analysis = (ALE before implementing safeguard) – (ALE after			

implementing safeguard) – (annual cost of safeguard)

= 100,000 - (45,000 + 25,000) =Rs. 30,000/=

Exposure Factor (EF) Calculations

Start off with 100% for the starting exposure factor and answer each of the following questions ...

- 1. Does the system under attack have any redundancies/ backups/ copies?
 - Subtract 30% if the answer is YES.

2. Is the system under attack behind a firewall?

Subtract 10% if the answer is YES.

- 3. Is the attack from outside?
 - Subtract 20% if the answer is YES.
- 4. What is the potential rate of attack? (10% damage / hour vs. 10%

damage / min)

- Subtract 20% if the answer is less than 20% damage/hr
- Subtract 40% if the answer is less than 2% damage/hr

5. What is the likelihood that the attack will go undetected in time for a full

recovery?

- Subtract 10% if the probability of being undetected is less than 20%
- Subtract 30% if the probability of being undetected is less than 10%

6. How soon can a countermeasure be implemented in time if at all?

- Subtract 30% if the countermeasure can be implemented within ½ hour.
- Subtract 20% if the countermeasure can be implemented within 1 hour.
- Subtract 10% if the countermeasure can be implemented within 2 hours.

Suggest Implementation of countermeasures according to their priority & ROI.

Threat	Assets	Countermeasures according to their priority
Denial of Service	Customer Information Server	Implement firewall and DOS protection.
	Software Developing Platform	Maintain Backup regularly
	Server	Monitor the unwanted behavior of
		the network traffic
Virus Infection	Middleware Platform (software)	Implement the enterprise standard
	with licensed OS	malware protection software and
		update the operating system.
		Maintain the Backup regularly
Theft of Intellectual Property	Patented Software Design	Prioritize Intellectual Property and
	Blueprints	Trade Secret Protection
		Follow the government rules and
		regulations.
		Work and projects should be
		protected with copyrights act.
Information Disclosure of	Storage Servers	Upgrade the Storage server
Customer Information		Vulnerability Assessment and
		Penetration testing process
		periodically
		System hardening and best security
		practices.
Phishing and Social	Senior Software Developer	Create standard policies and
engineering attacks and	(Team Lead)	introduce those policies to
threats		employees by conducting
		awareness sessions.
		Implement a SPAM filter for
		filtering viruses.

		Create incident response plan and team.
Failure of Air-condition	Air-condition system (for entire	Repair the System checking the
system	system)	status prodically.
		Audit the assets periodically via
		internal audits and external audit
		process.