LxMLS Day 0: Basic Math Recitation

Gopala Krishna Anumanchipalli

INESC-ID/IST Lisboa & Carnegie Mellon University

July 20, 2011

Agenda

- Probability Theory
- Linear Algebra
- Optimization

Probability

- A language for quantifying uncertainity, belief in the world, common sense etc.,
- ► Sample space X is the set of all possible outcomes of a conceptual, physical, repeatable experiment
 - ▶ Eg., 2-Coin toss: $\mathcal{X} = \{HH, TH, HT, TT\}$
 - ▶ Eg., Possible nucleotides at a DNA site: $X = \{A, T, C, G\}$
 - ▶ Eg., Parts of speech: $\mathcal{X} = \{NN, PP, NNP, DT, \ldots\}$.
- Event is any subset of X
 - ▶ Eg., The event of getting heads on only one coin. $(A \subset \mathcal{X}) = \{TH, HT\}$

Probability: Kolmogorov Axioms

- ▶ Probability is a function that maps events A into the interval $[0,1]: \mathbb{P}: A \to [0,1]$
 - ▶ $0 \le P(A) \le 1$
 - $P(\mathcal{X})=1$
 - ▶ $P(\phi) = 0$
 - ▶ For two events A and B, $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Random Variable

- ▶ A random variable (RV) is a function that associates a unique numerical value $X(\omega)$ with every outcome $\omega \subset \mathcal{X}$ of an experiment.
 - $X(\omega)$ may be finite ($\{0,1\}$), or infinite (\mathbb{R})
 - $X(\omega)$ may be discrete (\mathbb{N}) or continuous (\mathbb{R})
 - $X(\omega)$ may have one or several variables (\mathbb{R}^d random vectors)

Discrete Probability Distribution

- ▶ In the discrete case, a probability distribution P on $\mathcal X$ is an assignment of a non-negative real number P(x) to each $x \in \mathcal X$ such that
 - ▶ $0 \le P(X = x) \le 1$ and
- ightharpoonup Example: Bernoulli distribution with parameter θ

$$P(x) = \begin{cases} 1 - \theta & x = 0 \\ \theta & x = 1 \end{cases}$$

Continuous Probability Distribution

- ▶ A continuous random variable, X can assume any value in an interval on the real line or in a region in high dimensional space.
 - We talk about the probability of the variable assuming a value in a given interval $P(X \in [x_1, x_2])$
- ▶ The probability of the RV in a given interval $[x_1, x_2]$ is defined to be the **area under the graph** of the *probability density function*
- Probability mass: $P(X \in [x_1, x_2]) = \int_{x_1}^{x_2} p(x) dx$
- Cumulative distribution function(CDF):

$$F(x) = P(X \le x) = \int_{-\infty}^{x} p(x')dx'$$

▶ Probability density function (PDF): $p(x) = \frac{d}{dx}F(x)$

Continuous Distributions

► Uniform PDF: $p(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{elsewhere} \end{cases}$

Normal (Gaussian) PDF: $p(x) \sim \mathcal{N}(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$

Statistical Characterizations of RVs

Expectation: The centre of mass, mean value, first moment

$$\mathbb{E}(X) = \begin{cases} \sum_{\substack{x \\ \infty}} xp(x) & \text{discrete} \\ \int_{-\infty}^{x} xp(x)dx & \text{continuous} \end{cases}$$

Variance: The spread

$$Var(X) = \left\{ egin{array}{ll} \sum\limits_{x} [x - \mathbb{E}(x)]^2 p(x) & ext{discrete} \\ \sum\limits_{x} [x - \mathbb{E}(x)]^2 p(x) dx & ext{continuous} \end{array}
ight.$$

▶ Useful formula: $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Example: Bernoulli Distribution

► $X \sim Bernoulli(\theta)$, hence $\mathcal{X} = \{0, 1\}; P(X = 1) = \theta, P(X = 0) = 1 - \theta$

▶ The expectation of *X* is

$$\begin{split} \mathbb{E}[X] &= \sum_{i=\{0,1\}} iP(X=i) \\ \mathbb{E}[X] &= 0*(1-\theta)+1*\theta \\ \mathbb{E}[X] &= \theta \end{split}$$

▶ The variance of X is

$$Var[X] = \sum_{i=\{0,1\}} i^{2}P(X=i) - \left(\sum_{i=\{0,1\}} iP(X=i)\right)^{2}$$

$$Var[X] = 0^{2} * (1-\theta) + 1^{2} * \theta - \theta^{2}$$

$$Var[X] = \theta(1-\theta)$$

Joint Probability

- ► A joint probability distribution for a set of RVs gives the probability of every atomic event (sample point)
 - ▶ Eg., Joint probability $P(X, Y) = P(X = true \land Y = true)$
- ▶ Marginal probability of RV X, $P(X) = \sum_{i \in X} P(X \land Y = y_i)$

Independence

▶ Events *A* and *B* are independent if $P(A \cap B) = P(A) * P(B)$

- ▶ Random variables X and Y are independent $(X \perp Y)$ if and only if their joint probability, $P_{X,Y}$ is the product of their marginal probabilities: $P_{X,Y} = P_X P_Y$
 - if X and Y are independent $Cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y] = 0$
 - ► Corollary: RVs $X_1, ..., X_n$ are independent iff $P_{X_1,...,X_n} = \prod_{i=1}^n P_{X_i}$

Conditional Probability

- ▶ Probability of event *A* conditioned on event *B* having occured: if P(B) > 0, $P(A|B) = \frac{P(A \cap B)}{P(B)}$
 - Corollary: Chain Rule: $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$
 - ▶ If A and B are independent, P(A|B) = P(A)
- ▶ If RVs (X, Y) and Y have PDF $p_{(X,Y)}$ and p_Y , then $P_{X|Y}$ is the corresponding PDF: $p_{X|Y} = \frac{p_{(X,Y)}}{p_Y}$

Bayes Rule

For events A and B, joint probability P(A, B) can be written as P(A)P(B|A) or P(B)P(A|B), rearranging,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 (Bayes Rule)

- Bayes rule for statistical inference
 - X is a random variable that is observed
 - \triangleright Θ is a random variable denoting the **parameter(s)**
 - ▶ Goal: given observed data X, find the best guess for Θ
- ▶ Bayes rule : $P_{\Theta|Y}(\theta|y) = \frac{P_{Y|\Theta}(y|\theta)P_{\Theta}(\theta)}{\int P_{Y|\Theta}(y|\theta)P_{\Theta}(\theta)d\theta}$

$$posterior = \frac{likelihood \times prior}{joint \ probability}$$

Estimators

Under independent and identically distributed (iid) assumptions likelihood of the data, given a model is

$$\mathcal{L}(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f(x_i|\theta)$$
 (1)

- ▶ Maximum Likelihood Estimate : $\theta_{ML} = argmax_{\theta}P_{Y|\Theta}(y|\theta)$.
- ▶ Maximum a posteriori Estimate : $\theta_{MAP} = argmax_{\theta}P_{\Theta|Y}(\theta|y)$.

Conjugate priors: Choosing a conjugate prior ensures that the posterior distribution is the same family of distributions as the likelihood. Ex: exponential family; bernoulli vs. beta etc.,

Example: Bernoulli model

- Data:
 - We observed Niid coin tossing: $D = \{1, 0, 1, ..., 0\}$
- Model:

$$P(x) = \begin{cases} 1 - \theta & \text{for } x = 0 \\ \theta & \text{for } x = 1 \end{cases} \Rightarrow P(x) = \theta^{x} (\mathbf{1} - \theta)^{1-x}$$

• How to write the likelihood of a single observation x_i ?

$$P(x_i) = \theta^{x_i} (\mathbf{1} - \theta)^{1 - x_i}$$

• The likelihood of dataset $D = \{x_1, ..., x_N\}$:

$$\begin{split} L(\theta) &= P(x_1, x_2, ..., x_N; \theta) = \prod_{i=1}^{N} P(x_i; \theta) = \prod_{i=1}^{N} \left(\theta^{x_i} (1-\theta)^{1-x_i}\right) \\ &= \theta^{\sum_{i=1}^{N} x_i} (1-\theta)^{\sum_{i=1}^{N} 1-x_i} = \theta^{\#\text{bead}} (1-\theta)^{\#\text{tails}} \end{split}$$

MLE: Bernoulli model

Objective function:

$$\ell(\theta) = logL(\theta) = log\theta^{n_h} (1 - \theta)^{n_t} = n_h log\theta + (N - n_h) log(1 - \theta)$$

- We need to maximize this w.r.t. θ
- Take derivatives wrt θ

$$\frac{\partial \ell}{\partial \theta} = \frac{n_h}{\theta} - \frac{N - n_h}{1 - \theta} = 0$$

$$\widehat{\theta}_{MLE} = \frac{n_h}{N}$$
or $\widehat{\theta}_{MLE} = \frac{1}{N} \sum_{i} x_i$
Frequency as sample mean

- Sufficient statistics
 - $\bullet \quad \text{The counts,} \quad n_{_h}, \text{where} \ n_{_h} = \sum\nolimits_{_i} \!\! x_{_i}, \text{are} \ \text{sufficient statistics} \ \text{of data} \ \mathcal{D}$

Example: MLE: Univariate Normal Distribution

- Data:
 - We observed Niid real samples:
 D={-0.1, 10, 1, -5.2, ..., 3}
- Model: $P(x) = (2\pi\sigma^2)^{-1/2} \exp\{-(x-\mu)^2/2\sigma^2\}$ $\theta = (\mu, \sigma^2)$
- · Log likelihood:

$$\ell(\theta) = \log L(\theta) = \prod_{i=1}^{N} P(x_i) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{\sigma^2}$$

MLE: take derivative and set to zero:

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_{n} (x_n - \mu)$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n} (x_n - \mu)^2$$

$$\mu_{MLE} = \frac{1}{N} \sum_{n} x_n$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n - \mu_{ML})^2$$

Agenda

- ▶ Probability Theory ✓
- ► Linear Algebra
- Optimization

Linear Algebra

 Linear Algebra provides a compact way of representing and operating on sets

$$4x_1 -5x_2 = -13$$
$$-2x_1 +3x_2 = 9$$

► This is a system of linear equations in 2 variables. In matrix notation we can write the system more compactly as

$$Ax = b$$

with

$$A = \begin{bmatrix} 4 & 5 \\ -2 & 3 \end{bmatrix}, b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Notation

- ▶ $A \in \mathbb{R}^{m \times n}$ is a **matrix** with m rows and n columns.
- $\mathbf{x} \in \mathbb{R}^n$ is a **vector** with n entries.
- ▶ A vector can also be thought of as a matrix with n rows and 1 column, known as a column vector.
- A row vector a matrix with 1 row and n columns is denoted as x^T, the transpose of x.
- ▶ The *i*th element of a vector x is denoted x_i

$$x = \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right].$$

Inner/ Outer Products of vectors

► Given vectors $x, y \in \mathbb{R}^n$ the inner product $x^T y$, or dot product:

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

▶ Given vectors $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, the **outer product** $xy^T \in \mathbb{R}^{m \times n}$ is given by $xy^T \in \mathbb{R}^{m \times n} =$

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \dots & x_1y_n \\ x_2y_1 & x_2y_2 & \dots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \dots & x_my_n \end{bmatrix}.$$

Norms of vectors

▶ The **norm** of a vector is informally the measure of the "length" of the vector. The commonly used Euclidean or ℓ_2 norm is given by

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

▶ More generally, the ℓ_p norm of a vector $x \in \mathbb{R}^n$, where $p \ge 1$ is defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Note:

$$\ell_1$$
 norm : $\|x\|_1 = \sum_{i=1}^n |x_i|$ ℓ_∞ norm : $\|x\|_\infty = \max_i |x_i|$.

Vector spaces

A set of vectors $\mathcal S$ is a vector space if it is closed under

- Addition
- Multiplication by a scalar

A subspace A is a subset of vector space S that is also closed under the above operations.

Matrix Operations

▶ Product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is the matrix $C = AB \in \mathbb{R}^{m \times p}$, where

$$C_{ij} = \sum_{k=1}^n A_{ik} B_{kj}.$$

- ▶ Matrix multiplication is associative: (AB)C = A(BC).
- ▶ Matrix multiplication is distributive: A(B + C) = AB + AC.
- Matrix multiplication is (generally) not commutative : AB ≠ BA.
- ▶ The **transpose** of a matrix results from "flipping" the rows and columns. Given a matrix $A \in \mathbb{R}^{m \times n}$, the transpose $A^T \in \mathbb{R}^{n \times m}$ is the $n \times m$ matrix whose entries are given by $(A^T)_{ij} = A_{ji}$. Also.

$$(A^{T})^{T} = A;$$
 $(AB)^{T} = B^{T}A^{T};$ $(A+B)^{T} = A^{T} + B^{T}$

Special Matrices

▶ The **identity matrix**, denoted $I \in \mathbb{R}^{n \times n}$, is a square matrix with ones on the diagonal and zeros everywhere else. That is,

$$I_{ij} = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$$

It has the property that for all $A \in \mathbb{R}^{m \times n}$, AI = A = IA.

- ► A diagonal matrix is a matrix where all non-diagonal elements are 0.
- ▶ A square matrix $A \in \mathbb{R}^{n \times n}$ is **symmetric** if $A = A^T$.
 - ► The **trace** of a square matrix $A \in \mathbb{R}^{n \times n}$ is the sum of the diagonal elements, $\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}$

Linear Independence and Rank

- ▶ A set of vectors $\{x_1, x_2, ..., x_n\} \subset \mathbb{R}^m$ is said to be (linearly) independent if no vector can be represented as a linear combination of the remaining vectors.
- ► The **rank** of a matrix is the number of linearly independent columns.
 - ▶ For $A \in R^{m \times n}$, rank $(A) \le \min(m, n)$. If rank $(A) = \min(m, n)$, then A is said to be **full rank**.
 - For $A \in R^{m \times n}$, rank(A)=rank (A^T) .
 - ▶ For $A \in R^{m \times n}$, $B \in R^{n \times p}$, $rank(AB) \le min(rank(A), rank(B))$.
 - ▶ For $A, B \in R^{m \times n}$, rank $(A + B) \le \text{rank}(A) + \text{rank}(B)$.

Orthogonal Matrix

▶ Two vectors $x, y \in \mathbb{R}^n$ orthogonal if $x^Ty = 0$. A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthogonal to each other and are normalized ($||x||_2 = 1$), It follows that

$$U^T U = I = UU^T$$
.

Determinant of a Matrix

- ▶ The **determinant** of a square matrix $A \in \mathbb{R}^{n \times n}$, is a function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$, denoted |A|. The absolute value of the determinant is a measure of the "volume" of the restricted span S of set of column vectors.
 - ▶ For $A \in \mathbb{R}^{n \times n}$, $|A| = |A^T|$.
 - For $A, B \in \mathbb{R}^{n \times n}$, |AB| = |A||B|.
 - ► For $A \in \mathbb{R}^{n \times n}$, |A| = 0 if and only if A is singular (i.e., non-invertible).
 - ▶ For $A \in \mathbb{R}^{n \times n}$ and A is non-singular, $|A^{-1}| = 1/|A|$.

Inverse of a matrix

▶ The **inverse** of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted by A^{-1} , and is a unique matrix such that $A^{-1}A = I = AA^{-1}$. Only some square matrices have inverses, and these are also referred to as **invertible** or **non-singular** matrices. For A^{-1} to exist, A must be full rank.

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^{-1})^T = (A^T)^{-1}$.

Positive Semi-definite matrices

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$, the scalar value $x^T A x$ is called a **quadratic form**.

$$x^{T}Ax = \sum_{i=1}^{n} x_{i}(Ax)_{i} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_{i}x_{j}.$$

- ▶ A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive semi-definite**(PSD) if for all non-zero vectors $x \in \mathbb{R}^n$, $x^T A x \ge 0$. If strictly, $x^T A x > 0$, A is **positive definite** (PD).
- ► All positive-definite and negative-definite matrices are full rank, hence are invertible.

Matrix Factorizations

Important to find inverses, bases and solutions to equations

▶ Singular Value Decomposition (SVD) : $A = UDV^T$

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & \\ \vdots & \vdots & \ddots & \\ x_{m1} & & & x_{mn} \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & u_{1r} \\ \vdots & \ddots & \\ u_{m1} & & u_{mr} \end{pmatrix} \begin{pmatrix} s_{11} & 0 & \dots \\ 0 & \ddots & \\ \vdots & & s_{rr} \end{pmatrix} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & \\ v_{r1} & & v_{rn} \end{pmatrix}$$

$$m \times r \qquad r \times r$$

ightharpoonup A = LU for diagonally dominant matrices

$$\begin{bmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} & \mathbf{m}_{13} & \cdots & \mathbf{m}_{1N} \\ \mathbf{m}_{21} & \mathbf{m}_{22} & \mathbf{m}_{23} & \cdots & \mathbf{m}_{2N} \\ \mathbf{m}_{31} & \mathbf{m}_{32} & \mathbf{m}_{33} & \cdots & \mathbf{m}_{3N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{m}_{N1} & \mathbf{m}_{N2} & \mathbf{m}_{N3} & \cdots & \mathbf{m}_{NN} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{11} & \mathbf{u}_{12} & \mathbf{u}_{13} & \cdots & \mathbf{u}_{1N} \\ \mathbf{0} & \mathbf{u}_{22} & \mathbf{u}_{23} & \cdots & \mathbf{u}_{2N} \\ \mathbf{0} & \mathbf{0} & \mathbf{u}_{33} & \cdots & \mathbf{u}_{3N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{u}_{NN} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{1}_{21} & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{1}_{31} & \mathbf{1}_{32} & \mathbf{1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{1}_{N1} & \mathbf{1}_{N2} & \mathbf{1}_{N3} & \cdots & \mathbf{1} \end{bmatrix}$$

Symmetric Semi-definite matrices: $A = U^T U$

Gradient of a $f: \mathbb{R}^{m \times n} \to \mathbb{R}$

The Gradient: Suppose that $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a function that takes as input, a matrix A of size $m \times n$ and returns a real value. Then the **gradient** of f (with respect to $A \in \mathbb{R}^{m \times n}$) is the matrix of partial derivatives, defined as:

$$\nabla_{A}f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}.$$

- ▶ For $t \in \mathbb{R}$, $\nabla_x(tf(x)) = t\nabla_x f(x)$.
- Let $f: \mathbb{R}^m \to \mathbb{R}$ be the function defined by $f(z) = z^T z$, $\nabla_z f(z) = 2z$.

The Hessian Matrix

The Hessian: Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a function that takes a vector in \mathbb{R}^n and returns a real number, then the <u>Hessian</u> matrix with respect to x, written $\nabla_x^2 f(x)$ (or H) is the $n \times n$ matrix of partial derivatives,

$$\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} \end{bmatrix}.$$

Least Squares

(Least squares) Given a full rank matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}$ such that $b \notin \mathcal{R}(A)$, where $\mathcal{R}(A)$ is the vector space of the columns of matrix A. In this case, it is not possible to find a vector $x \in \mathbb{R}^n$, such that Ax = b. So, instead we want to find a vector x such that Ax is as close as possible to b, as measured by the L_2 norm $\|Ax - b\|_2^2$.

Using the fact that $||x||_2^2 = x^T x$, we have

$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b)$$

= $x^T A^T Ax - 2b^T Ax + b^T b$

Taking gradient with respect to x, we have

$$\nabla_{x}(x^{T}A^{T}Ax - 2b^{T}Ax + b^{T}b) = \nabla_{x}x^{T}A^{T}Ax - \nabla_{x}2b^{T}Ax + \nabla_{x}b^{T}b$$
$$= 2A^{T}Ax - 2A^{T}b$$

Setting this last expression to zero and solving for x, gives the **normal equations** for the least-squares problem:

$$x = (A^T A)^{-1} A^T b$$

Agenda

- ▶ Probability Theory ✓
- ▶ Linear Algebra √
- Optimization

Minimizing a function

Goal: find the minimum/minimizer of $f: \mathbb{R}^d \to \mathbb{R}$

Existence of a mimimum?

- f' = 0
- f" is positive.

If $f: \mathbb{R}^{m \times n} \to \mathbb{R}$, conditions for minimum:

▶ Hessian matrix f'' is positive semi-definite.

Are these global minima?

▶ No, (local minima, saddle points, . . .)

Iterative descent methods

Goal: find the minimum/minimizer of $f: \mathbb{R}^d \to \mathbb{R}$

- Proceed in small steps in the optimal direction till a stopping criterion is met.
- ► **Gradient descent**: updates of the form: $x^{(t+1)} \leftarrow x^{(t)} \eta_{(t)} \nabla f(x^{(t)})$

Figure: Illustration of gradient descent. The blue circles correspond to the function values at different points, while the red lines correspond to steps taken in the negative gradient direction.

Convex functions

Pro: Guarantee of a global minima ✓

Figure: Illustration of a convex function. The line segment between any two points on the graph lies entirely above the curve.

Non-Convex functions

Pro: No guarantee of a global minima X

Figure: Illustration of a non-convex function. Note the line segment intersecting the curve.

Agenda

- ▶ Probability Theory ✓
- ► Linear Algebra ✓
- ▶ Optimization ✓

All the Best!