WHY DO WE NEED A CNN FOR IMAGE DATA

EDGE FILTERS

mage made up of by

Vertical Edge Filter

Horizontal Edge Filter

10 12

9

Svertic	d edgel
J fi	iter /

$$(6+0-10)+(5+0-8)+(7+0-9)$$

 $\Rightarrow -4-3-2 \Rightarrow \boxed{-9}$

$$\Rightarrow$$
 (n x n) * (f x f) = (n - f + 1) x (n - f + 1)
 $(6x6)$ * $(3x3)$ \Rightarrow $(6-3+1)$ x $(6-3+1)$ \Rightarrow (4) x (4)

multip de Scale doutput image withly layers & filter (n-f+1) $\times (n-f+1)$ $\times (c)$ (fxf) x (c) $(n \times n) \times ($ Grey sale îmage - I layer (K) Co bour îmage - 3 layer (RGB) layer

1 tim	2		√ 6	tim	e,	
		1	1	0	0	0
	1	1		0	0	0
76x6/	1	1	1	0	0	0
[bx]	1	1	1	0	0	0
	1	1	1	0	0	0
	1	1	1	0	0	0
Cherles	7					

d	ر _{۱۱} ۰۰	d) e	
1	0	-1	
1	0	-1	=
1	0	-1	
م ا	2 × 3	Pxy	

*

6	3	3	0
0	3	3	0/
6/	3	3	0
O	3	3	Ø
	£ 4)	47	× J

*

$$n \times n \times 3$$

$$(ayer (RGB))$$

$$(n-f+1) \times (n-f+1) \times 1$$

PADDING

paddling help to retain the output y > of also it helps to analyse edge pirally

Pixel size w.R.T input pixel

O O O O O O

			_
			1
			,—

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

of 6xby

£8×8)

0	0	0	0	0	0	0	0
0							0
0							0
0		٩	X	Q			0
0							0
0							0
-							

PADDING

$$\{3 \times 3\}$$

 $\{6 \times 6\}$

$$\begin{cases} 8 \times 8 \end{cases} \quad (n \times n) \times (f \times f) = \begin{cases} n - f + i \end{cases} \times \begin{cases} n - f + i \end{cases} \\ (8 \times 8) \times (2 \times 3) = \begin{cases} 8 - 3 + i \end{cases} \\ \times \begin{cases} 8 - 3 + i \end{cases} \end{cases}$$

+ bxb + original image size

Types:

PADDING

2. Same Convolution
$$\Rightarrow A' = n + 2p$$

$$\Rightarrow (n'-f+i) = n$$

$$\Rightarrow \left(n + ap - f + 1\right) = n$$

$$\Rightarrow \alpha p = n - (n - f + 1)$$

$$\Rightarrow ag = n - n + f - 1$$

$$\Rightarrow ap = n - n + f - 1$$
 $\Rightarrow ap = f - 1 \Rightarrow p = f(f - 1)/2f \Rightarrow padding size formula$

PADDING

$$d6x63x d3x33$$
 \Rightarrow $dnxn3 xd4xf3$

$$\Rightarrow \langle n'-f+i \rangle = n$$

$$\Rightarrow \langle n+ap-f+i \rangle = n \Rightarrow \langle b+ap-3+i \rangle = b$$

Python:

tf.nn. convad (x, w,

$$\Rightarrow 2p = 6 - (6 - 3 + 1)$$

$$\Rightarrow 2p = 6 - b + 3 - 1$$

$$\Rightarrow P = 2/2 \Rightarrow P = 1$$

$$n' = n + 2p$$

$$n' = b + 2[i]$$

$$n' \Rightarrow 8$$

$$(n' \times n')$$

STRIDE

Stride = 1

(6xb) (3x3) => (4xH)

1	6	9	10	2	8
2	5	1	8	4	2
3	7	4	9	10	3
9	8	3	6	7	9
8	0	9	4	7	2
9	10	12	6	9	8

1	6	9	10	2	8
2	5	1	8	4	2
3	7	4	9	10	3
9	8	3	6	7	9
8	0	9	4	7	2
9	10	12	6	9	8

6	9	10	2	8
5	1	8	4	2
7	4	9	10	3
8	3	6	7	9
0	9	4	7	2
10	12	6	9	8
	5 7 8 0	5 1 7 4 8 3 0 9	5 1 8 7 4 9 8 3 6 0 9 4	5 1 8 4 7 4 9 10 8 3 6 7 0 9 4 7

1	6	9	10	2	8
2	5	1	8	4	2
3	7	4	9	10	3
9	8	3	6	7	9
8	0	9	4	7	2
9	10	12	6	9	8

1	6	9	10	2	8
2	5	1	8	4	2
3	7	4	9	10	3
9	8	3	6	7	9
8	0	9	4	7	2
9	10	12	6	9	8

1	6	9	10	2	8
2	5	1	8	4	2
3	7	4	9	10	3
9	8	3	6	7	9
8	0	9	4	7	2
9	10	12	6	9	8

1	6	9	10	2	8
2	5	1	8	4	2
3	7	4	9	10	3
9	8	3	6	7	9
8	0	9	4	7	2
9	10	12	6	9	8

1	6	9	10	2	8
2	5	1	8	4	2
3	7	4	9	10	3
9	8	3	6	7	9
8	0	9	4	7	2
9	10	12	6	9	8

STRIDE

	1	6	9	10	2	8
	2	5	1	8	4	2
Stride = 2	3	7	4	9	10	3
Stride – Z	9	8	3	6	7	9
	8	0	9	4	7	2
	9	10	12	6	9	8

1	6	9	10	2	$\langle \! \rangle$
2	5	1	8	4	\bigotimes
3	7	4	9	10	
9	8	3	6	7	
8	0	9	4	7	<u></u>
9	10	12	6	9	8

f. T		
Jool (11 +	+ 1
	5,	
		> Stride

$$\left[\frac{6-3}{2}+1\right]\times\left[\frac{7-3}{2}+1\right]$$

This type of convolution is called strided convolution