Common Laplace Transforms and Properties

f(t)	$F(s) = \mathcal{L}\left\{f(t)\right\}$
1.0	$\frac{1}{s}$, $s > 0$
e^{at}	$\frac{1}{s-a}, \ s > a$ $n!$
$t^n, n=1,2,\ldots$	$\frac{n!}{s^{n+1}}, \ s > 0$
$\sin\left(bt\right)$	$\frac{b}{s^2 + b^2}, \ s > 0$
$\cos\left(bt\right)$	$\frac{s}{s^2 + b^2}, \ s > 0$
$e^{at}t^n, \ n=1,2,\dots$	$\frac{n!}{(s-a)^{n+1}}, \ s > a$
$e^{at}\sin\left(bt\right)$	$\frac{b}{(s-a)^2+b^2}, \ s>a$
$e^{at}\cos\left(bt\right)$	$\frac{s-a}{(s-a)^2+b^2}, \ s>a$

Properties:

L.1 $\mathscr{L}\{cf(t)\}=c\mathscr{L}\{f(t)\}$, where c is a constant.

L.2
$$\mathcal{L}\{f_1(t) + f_2(t)\} = \mathcal{L}\{f_1(t)\} + \mathcal{L}\{f_2(t)\}$$

L.3 If $F(s) = \mathcal{L}\{f(t)\}$ exists for all $s > \alpha$, then $\mathcal{L}\{e^{at}f(t)\} = F(s-a)$ for all $s > \alpha + a$.

L.4 If $F(s) = \mathcal{L}\{f(t)\}$ exists for all $s > \alpha$, then for all $s > \alpha$,

$$\mathscr{L}\left\{f^{(n)}(t)\right\} = s^{n} \mathscr{L}\left\{f(t)\right\} - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

L.5 If $F(s)=\mathcal{L}\left\{f(t)\right\}$ exists for all $s>\alpha$, then $\mathcal{L}\left\{t^nf(t)\right\}=(-1)^n\frac{d^nF}{ds^n}$ for all $s>\alpha$.

$$y(t) \quad \mathcal{S}_{\xi}y(t) \mathcal{F} = Y(s)$$

L.5 If
$$F(s) = \mathcal{L}\{f(t)\}$$
 exists for all $s > \alpha$, then $\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n F}{ds^n}$ for all $s > \alpha$.

$$\begin{cases} \gamma(t) \\ \xi \\ \gamma(t) \end{cases} = \begin{cases} \gamma(t) \\ \zeta \\ \gamma$$

$$n=1$$
 $\int_{3}^{6} \frac{3}{3} = 5 \sum_{5}^{6} \frac{5}{5} - \frac{1}{5} \frac{5}{5}$

$$0=3 \quad 3 \leq 7''' \leq 3 = 3 \qquad 7(s) - 6 \qquad 7(0) - 5 \qquad 7(0) - 7(0)$$

Section 6.2: Solving ODE's

Step 1 Take the Laplace transform of both sides. Refer to properties.

Step 2 Rearrange and group like terms to solve for $\{y(t)\} = Y(s)$

Step 3 Take the inverse Laplace transform and solve for $y(t) = \{x^{-1}\}\{Y(x)\}$.

1. Solve the initial value problem using Laplace Transforms (not previous methods).

(a) y'' - 2y' + 5y = 0 with y(0) = 2 and y'(0) = 4.

 $2(sY_{(s)}-2)+5Y_{(s)}=0$

(b)
$$y'' - y' - 2y = 0$$
 with $y(0) = -2$ and $y'(0) = 5$.

(c)
$$y'' - 4y' - 5y = 4e^{3t}$$
 with $y(0) = 2$ and $y'(0) = 7$.

(d) ty'' - ty' + y = 2 with y(0) = 2 and y'(0) = -1.

(e) y'' + ty' - y = 0 with y(0) = 0 and y'(0) = 3.