

იეროგლიფები

მკვლევართა ჯგუფი იკვლევს იეროგლიფების მიმდევრობებს შორის მსგავსებას. ისინი თითოეულ იეროგლიფს წარმოადგენენ არაუარყოფითი მთელი რიცხვით. კვლევის ჩასატარებლად მკვლევარები მიმდევრობების შესახებ იყენებენ შემდეგ ცნებებს:

ფიქსირებული A მიმდევრობისთვის S მიმდევრობას ეწოდება მისი **ქვემიმდევრობა** მაშინ და მხოლოდ მაშინ, თუ შესაძლებელია S მიმდევრობის მიღება A მიმდევრობისაგან ამ უკანასკნელში ზოგიერთი სიმბოლოების წაშლით (შეიძლება არცერთის).

ქვემოთ მოცემულ ცხრილში ნაჩვენებია A=[3,2,1,2] მიმდევრობის ზოგიერთი ქვემიმდევრობის მაგალითები.

ქვემიმდევრობა	როგორ შეიძლება მისი მიღება A -საგან
[3, 2, 1, 2]	არცერთი ელემენტი არ არის წაშლილი.
[2, 1, 2]	[3 , 2, 1, 2]
[3, 2, 2]	[3, 2, 1 , 2]
[3, 2]	[3, 2 , 1 , 2] ან [3, 2, 1 , 2]
[3]	[3, 2 , 1 , 2]
[]	[3 , 2 , 1 , 2]

მეორეს მხრივ, [3,3] ან [1,3] არ წარმოადგენენ A-ს ქვემიმდევრობებს.

განვიხილოთ იეროგლიფების ორი, A და B მიმდევრობა. S მიმდევრობას ეწოდება A და B მიმდევრობების **საერთო ქვემიმდევრობა** მაშინ და მხოლოდ მაშინ, თუ S არის როგორც A-ს, ისე B-ს ქვემიმდევრობა. უფრო მეტიც, ჩვენ ვიტყვით, რომ U მიმდევრობა არის A და B მიმდევრობების **უნივერსალური საერთო ქვემიმდევრობა** მაშინ და მხოლოდ მაშინ, თუ სრულდება შემდეგი ორი პირობა:

- U არის A და B მიმდევრობების საერთო ქვემიმდევრობა;
- A და B მიმდევრობების ყოველი საერთო ქვემიმდევრობა ასევე U-ს ქვემიმდევრობაცაა.

შეიძლება იმის ჩვენება, რომ ნებისმიერ ორ A და B მიმდევრობას აქვს არაუმეტეს ერთი უნივერსალური საერთო ქვემიმდევრობა.

მკვლევარებმა აღმოაჩინეს იეროგლიფების ორი A და B მიმდევრობა. A მიმდევრობა შედგებაN რაოდენობის იეროგლიფისაგან, ხოლო B მიმდევრობა კი - M რაოდენობის იეროგლიფისაგან. დაეხმარეთ მკვლევარებს იპოვონ A და B მიმდევრობების უნივერსალური საერთო ქვემიმდევრობა ან დაადგინონ, რომ ასეთი ქვემიმდევრობა არ არსებობს.

იმპლემენტაციის დეტალები

თქვენ უნდა მოახდინოთ შემდეგი პროცედურის იმპლემენტაცია.

```
std::vector<int> ucs(std::vector<int> A, std::vector<int> B)
```

- A: N სიგრძის მასივი, რომელიც აღწერს პირველ მიმდევრობას;
- B:M სიგრძის მასივი, რომელიც აღწერს მეორე მიმდევრობას;
- თუ არსებობს A და B მიმდევრობების უნივერსალური საერთო ქვემიმდევრობა, მაშინ პროცედურამ უნდა დააბრუნოს მასივი, რომელიც ამ ქვემიმდევრობას შეიცავს. წინააღმდეგ შემთხვევაში პროცედურამ უნდა დააბრუნოს [-1] (ერთელემენტიანი მასივი, რომლის ერთადერთი ელემენტია -1).
- ყველა ტესტისათვის ეს პროცედურა გამოძახებული იქნება ზუსტად ერთხელ.

შეზღუდვები

- $1 \le N \le 100\,000$
- $\bullet \quad 1 \leq M \leq 100\,000$
- ullet $0 \leq A[i] \leq 200\,000$ თითოეული i-სათვის, სადაც $0 \leq i < N$
- ullet $0 \leq B[j] \leq 200\,000$ თითოეული j-სათვის, სადაც $0 \leq j < M$

ქვეამოცანები

ქვეამოცანა	ქულა	დამატებითი შეზღუდვები
1	3	N=M; A და B მიმდევრობებიდან თითოეული შეიცავს N რაოდენობის განსხვავებულ მთელ რიცხვს 0 -დან $(N-1)$ -მდე (ჩათვლით)
2	15	ნებისმიერი მთელი k -სათვის, (A მიმდევრობის ელემენტთა რაოდენობას, რომელიც k -ს ტოლია) პლიუს (B მიმდევრობის ელემენტთა რაოდენობა, რომელიც ასევე k -ს ტოლია) არ აღემატება 3 -ს.
3	10	$A[i] \leq 1$ თითოეული i-სათვის, სადაც $0 \leq i < N$; $B[j] \leq 1$ თითოეული j -სათვის, სადაც $0 \leq j < M$
4	16	არსებობს A და B მიმდევრობების უნივერსალური საერთო ქვემიმდევრობა.
5	14	$N \leq$ 3000; $M \leq$ 3000
6	42	დამატებითი შეზღუდვების გარეშე.

მაგალითები

მაგალითი 1

განვიხილოთ შემდეგი გამოძახება.

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

აქ A და B მიმდევრობების საერთო ქვემიმდევრობებია: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] და [0,1,0,2].

რადგანაც [0,1,0,2] არის A და B მიმდევრობების საერთო ქვემიმდევრობა და A და B მიმდევრობების ყველა საერთო ქვემიმდევრობა არის [0,1,0,2]-ის ქვემიმდევრობა, ამიტომ პროცედურამ უნდა დააბრუნოს [0,1,0,2].

მაგალითი 2

განვიხილოთ შემდეგი გამოძახება.

```
ucs([0, 0, 2], [1, 1])
```

აქ A და B მიმდევრობების ერთადერთი საერთო ქვემიმდევრობა არის ცარიელი მიმდევრობა $[\]$, ამიტომ პროცედურამ უნდა დააბრუნოს ცარიელი მასივი $[\]$.

მაგალითი 3

განვიხილოთ შემდეგი გამოძახება.

```
ucs([0, 1, 0], [1, 0, 1])
```

აქ A და B მიმდევრობების საერთო ქვემიმდევრობებია: $[\],[0],[1],[0,1]$ და [1,0]. შეიძლება იმის ჩვენება, რომ უნივერსალური საერთო ქვემიმდევრობა არ არსებობს, ამიტომ პროცედურამ უნდა დააბრუნოს [-1].

სანიმუშო გრადერი

შეტანის ფორმატი:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

გამოტანის ფორმატი:

```
T
R[0] R[1] ... R[T-1]
```

აქ R არის მასივი, რომელსაც აბრუნებს $\mathop{\mathrm{ucs}}
olimits$ და T არის მისი სიგრძე.