

**UTILITY
PATENT APPLICATION
TRANSMITTAL**

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b))

Attorney Docket No. LUD5330.3DIV

First Inventor or Application Identifier Zimmerman et al.

Title ISOLATED PROTEINS CONTAINING PORTIONS OF FAP α AND OTHER PROTEINS

Express Mail Label No. EI605139215US

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. *Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)

2. Specification
(preferred arrangement set forth below)

- Descriptive title of the Invention
- Cross References to Related Applications
- Reference of Microfiche Appendix
- Background of the Invention
- Brief Summary of the Invention
- Brief Description of the Drawings (if filed)
- Detailed Description
- Claim(s)
- Abstract of the Disclosure

3. Drawing(s) (35 U.S.C. 113)

4. Oath or Declaration

- a. Newly executed (original or copy)
- b. Copy from a prior application (37 C.F.R. § 1.63(d))
(for continuation/divisional with Box 17 completed)

- i. **DELETION OF INVENTOR(S)**
Signed statement attached deleting inventor(s)
named in the prior application, see 37 C.F.R. §§ 1.63(d)(2) and 1.33 (b)

Incorporation By Reference (useable if Box 4b is checked)

5. The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered to be a part of the disclosure of the accompanying application and is hereby incorporated by reference therein

17. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:

Continuation Divisional Continuation-in-part (CIP)

of prior application No:

Prior application information: 08/940,391

Examiner: A. Navarro

Group / Art Unit: 1645

18. CORRESPONDENCE ADDRESS

<input type="checkbox"/> Customer Number or bar code label	(Insert Customer No. or Attach bar code label here)			<input type="checkbox"/> or	<input checked="" type="checkbox"/> Correspondence address below
Name	FULBRIGHT & JAWORSKI, L.L.P.				
Address	666 FIFTH AVENUE				
City	NEW YORK	State	NEW YORK	ZIP Code	10103
Country	U.S.A	Telephone	212-318-3000	Fax	212-752-5958

Name (Print/Type)	NORMAN D. HANSON	Registration No. (Attorney/Agent)	30,946
Signature		Date	March 10, 1999

ADDRESS TO: Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

6. Microfiche Computer Program (Appendix)

7. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)

- a. Computer Readable Copy
- b. Paper Copy (identical to computer copy)
- c. Statement verifying identity of above copies

JC5330 U.S. PTO
09/265606
03/10/99

ACCOMPANYING APPLICATION PARTS

8. Assignment Papers (cover sheet & document(s))

9. 37 C.F.R. §3.73(b) Statement
(when there is an assignee) Power of Attorney

10. English Translation Document (if applicable)

11. Information Disclosure Statement
(IDS)/PTO-1449 Copies of IDS Citations

12. Preliminary Amendment

13. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)

14. *Small Entity Statement(s)
(PTO/SB/09-12) Statement filed in prior
application, Status is proper and
desired

15. Certified Copy of Priority Document(s)

16. Other:

*NOTE FOR ITEMS 1 & 14: IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R. § 1.28)

VIA EXPRESS MAIL

"Express Mail" mailing label
Number EI605139215US
Date of Deposit March 10, 1999

LUD-5330.3 DIV

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under CFR 1.10 on the date indicated above, and is addressed to the Assistant Commissioner for Patents Trademarks, BOX PCT Washington, D.C. 20231

FULBRIGHT & JAWORSKI L.L.P.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s) : Zimmerman et al
Serial No. : Divisional of 08/940,391
Filed : Herewith
For : PROTEIN CONTAINING PORTIONS FAPOX AND OTHER PROTEINS
Group Art Unit : 1645
Examiner : M. Navarro

March 10, 1999

Hon. Commissioner of Patents
and Trademarks
Washington D.C. 20231

PRELIMINARY AMENDMENT

Prior to examination please amend this application as follows:

IN THE FIGURES

Replace original figure 1 by the attached.

IN THE TITLE

Change the title to: --ISOLATED PROTEINS CONTAINING PORTIONS OF FAP α AND OTHER PROTEINS--.

IN THE SPECIFICATION

Page 6, line 3: after amino acid “optimized” add -- SEQ ID NO: 2 gives the sequence of FAP. SEQ ID NO: 3 gives the amino acid sequence of CD26. --.

Page 10, line 7: change “Dod” to -- Dod --.

Page 11, line 23: change “2812” to -- 2815 --;
line 24: change “2277” to -- 2280 --.

Page 12, line 10: change “61” to -- 51 --;
line 13: change “48” to -- 52 --;
line 21: change “eight” to -- nine --.

Page 13, Table 2:

after “WGWSYGG” (each occurrence) add -- SEQ ID NO: 4 --;
after “GTADDNV” (each occurrence) add -- SEQ ID NO: 6 --;
after “DQNHGLS” add -- SEQ ID NO: 7 --;
after “DEDHGIA” (each occurrence) add -- SEQ ID NO: 8 --;
after “FGWSYGG” add -- SEQ ID NO: 4 --;
after “DSDHSIR” add -- SEQ ID NO: 8 --;
after “FGKDYGG” (each occurrence) add -- SEQ ID NO: 5 --;
after “PTADEKI” and each occurrence of “ATADEKI” add -- SEQ ID NO: 9 --;
after “DESHYFT”, “DESHYFH” and “DESHYFS” add -- SEQ ID NO: 10 --.

Page 14, line 2: change “describes” to -- described --;
line 12: change “kd” to -- kD --.

Page 19, line 19: change “due” to -- dye --.

Page 21, line 5: delete “,”.

Page 26, line 17: following “library” change “,” to -- . --, and add the following:

-- One can identify such enzyme inhibitors by combining a molecule which has FAP enzyme activity, such as the dimeric molecules of the invention, including dimers of SEQ ID NO: 2, with a substrate for the molecule with the enzymatic activity, as well as a substance believed to be an inhibitor. Then, one determines the activity of the molecule with enzymatic activity on its substrate, in the presence of the substance believed to be enzyme

inhibitor. If there is a decrease in activity when the test substance is present as compared to when it is absent, then the substance is an inhibitor. --.

IN THE SEQUENCES

Please see attached.

IN THE CLAIMS

Cancel claims 1-4 and 6-15 without prejudice.

Add claims 16-19 which follow:

Claim 16: The isolated protein of claim 5, wherein said non FAP protein is a CD8 protein.

Claim 17: The isolated protein of claim 5, wherein said at least one portion of a non FAP protein is an extracellular domain of a CD8 protein.

Claim 18: The isolated protein of claim 5, wherein said protein is a chimeric protein.

Claim 19: The isolated protein of claim 5, wherein said protein is a fuse in protein.

REMARKS

Entry of the foregoing is requested.

Respectfully submitted,

FULBRIGHT & JAWORSKI, L.L.P.

By

Norman D. Hanson
Reg. No. 30,946

666 Fifth Avenue
New York, New York 10103
(212) 318-3000

ISOLATED DIMERIC FIBROBLAST ACTIVATION
PROTEIN ALPHA, AND USES THEREOF

"Express Mail" envelope issued
Number E1720846712US
Date of issuance October 1, 1997
I hereby certify that 10 copies in total
below deposited with the United States Postal
Service "Express Mail" Post Office to
Address: written below of C.R. L.L.C. on the
date indicated above and is addressed to the
Commissioner of Patents and Trademarks,
Washington, D.C. 20231.

FRAN & LYNCH

Pauline Smith

(Printed name)

(Signature)

RELATED APPLICATION

This application is a continuation-in-part of Serial No. 08/230,491, filed April 20, 1994, now pending and incorporated by reference.

5

FIELD OF THE INVENTION

This invention relates to certain molecules associated with cancer tissues and reactive tumor stromal cells. More particularly, it relates to fibroblast activation protein alpha ("FAP α " hereafter) molecules. A monomeric form of the molecule has previously been identified immunochemically, but nucleic acid molecules coding for it had not been isolated or cloned nor have dimers been identified. These, *inter alia*, are features of the invention. The monomeric protein has a molecular weight of from about 88 to about 95 kilodaltons as determined by SDS-PAGE of boiled samples. The dimer has a molecular weight of about 170 kilodaltons as determined by SDS-PAGE of unboiled samples. FAP α is characterized by a number of features and properties which are shared by and characteristic of membrane bound enzymes, suggesting very strongly that it, too, is a membrane bound enzyme. The nucleic acid molecules, which are a key part of the invention, are useful both as probes for cells expressing FAP α , and as starting materials for recombinant production of the protein. The FAP α protein can then be used to produce monoclonal antibodies specific for the protein and are thus useful diagnostic agents themselves.

They also have additional uses, including uses related to enzymatic functions, as described herein.

BACKGROUND AND PRIOR ART

The invasive growth of epithelial cancers is associated with characteristic cellular and molecular changes in the supporting stroma. For example, epithelial cancers induce the formation of tumor blood vessels, the recruitment of reactive tumor stromal fibroblasts, lymphoid and phagocytic infiltrates, the release of peptide mediators and proteolytic enzymes, and the production of an altered extracellular matrix (ECM). See, e.g., Folkman, Adv. Cancer Res. 43: 175-203 (1985); Basset et al., Nature 348: 699-704 (1990); Denekamp et al., Cancer Metastasis Rev. 9: 267-282 (1990); Cullen et al., Cancer Res. 51: 4978-4985 (1991); Dvorak et al., Cancer Cells 3: 77-85 (1991); Liotta et al., Cancer Res. 51: 5054s-5059s (1991); Garin-Chesa et al., J. Histochem. Cytochem. 37: 1767-1776 (1989). A highly consistent molecular trait of the stroma in several common histologic types of epithelial cancers is induction of the fibroblast activation protein (FAP α), a cell surface glycoprotein with an observed M_r of 95,000 originally discovered with a monoclonal antibody, mAb F19, raised against proliferating cultured fibroblasts. See Rettig et al., Cancer Res. 46: 6406-6412 (1986); Rettig et al., Proc. Natl. Acad. Sci. USA 85: 3110-3114 (1988); Garin-Chesa et al., Proc. Natl. Acad. USA 87: 7235-7239 (1990); Rettig et al., Cancer Res. 53: 3327-3335 (1993). Each of

these four papers is incorporated by reference in its entirety.

Immunohistochemical studies such as those cited supra have shown that FAP α is transiently expressed in certain normal fetal mesenchymal tissues but that normal adult tissues are generally FAP α^- . Similarly, malignant epithelial, neural and hematopoietic cells are generally FAP α^- . However, most of the common types of epithelial cancers, including >90% of breast, lung, skin, pancreas, and colorectal carcinomas, contain abundant FAP α^+ reactive stromal fibroblasts. Garin-Chesa et al., Proc. Natl. Acad. Sci. USA 87: 7235-7239 (1990). The FAP α^+ tumor stromal fibroblasts almost invariably accompany tumor blood vessels, forming a distinct cellular compartment interposed between the tumor capillary endothelium and the basal aspect of malignant epithelial cell clusters. While FAP α^+ stromal fibroblasts are found in both primary and metastatic carcinomas, benign and premalignant epithelial lesions, such as fibroadenomas of the breast and colorectal adenomas only rarely contain FAP α^+ stromal cells. In contrast to the stroma-specific localization of FAP α in epithelial neoplasms, FAP α is expressed in the malignant cells of a large proportion of bone and soft tissue sarcomas. (Rettig et al., Proc. Natl. Acad. Sci. USA 85: 3110-3114 (1988)). Finally, FAP α^+ fibroblasts have been detected in the granulation tissue of healing wounds (Garin-Chesa et al., supra). Based on the restricted distribution pattern of FAP α in normal tissues and its uniform expression in the supporting stroma of many epithelial cancers,

clinical trials with ^{131}I -labeled mAb F19 have been initiated in patients with metastatic colon cancer (Welt et al., Proc. Am. Assoc. Cancer Res. 33: 319 (1992); Welt et al. J. Clin. Oncol. 12: 1561-1571 (1994)) to explore the concept of "tumor stromal targeting" for immunodetection and immunotherapy of epithelial cancers.

Rettig et al., Int. J. Cancer 58: 385-392 (1994), incorporated by reference, discusses the FAP α molecule and its features. Rettig et al postulate that FAP α is found in high molecular weight complexes in excess of 400 kilodaltons, but do not discuss the possibility of dimeric molecules, nor does the paper elaborate on the specific enzymatic properties of the molecule.

The induction of FAP α^+ fibroblasts at times and sites of tissue remodeling during fetal development, tissue repair, and carcinogenesis is consistent with a fundamental role for this molecule in normal fibroblast physiology. Thus, it is of interest and value to isolate and to clone nucleic acid molecules which code for this molecule. This is one aspect of the invention, which is described in detail together with other features of the invention, in the disclosure which follows. Further aspects of the invention include the dimeric FAP α molecules, and the exploitation of the properties of these molecules. These features are also elaborated upon hereafter.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 compares the deduced amino acid sequence for FAP α , and the known sequence of CD26. The alignment has been optimized.

Figures 2A-2H, inclusive, display immunohistochemical detection of FAP α and CD26 in various tissues. In figures 2A and 2B, breast cancer is studied, for FAP α (figure 2A), and CD26 (figure 2B). In figures 2C and 2D, malignant fibrous histiocytoma is studied, for FAP α (figure 2C), and CD26 (figure 2D). Dermal scar tissue is examined in figures 2E (FAP α), and 2F (CD26). Renal cell carcinoma is studied in figure 2G (FAP α), and 2H (CD26).

Figure 3 presents some of the data generated in experiments which showed that FAP α had extracellular matrix (ECM) protein degrading activity. When zymographic detection of gelatin degrading extracts of 293-FAP was carried out, the active substance was found to have a molecular weight of about 170 kD, via SDS-PAGE, using unboiled samples to preserve enzyme activity.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTSExample 1

Fibroblast cell line WI-38 had been observed, previously, to react with mAb F19 (Rettig et al., Canc. Res. 46: 6406-6412 (1986); Rettig et al., Proc. Natl. Acad. USA 85: 3110-3114 (1988); Garin-Chesa et al., Proc. Natl. Acad. Sci. USA 87: 7235-7239 (1990);

Rettig et al., Canc. Res. 53: 3327-3335 (1993)). It was used in the experiments which follow.

A cDNA library was prepared from WI-38, using well known techniques and commercially available materials. Specifically, the library was constructed in expression vector pCDNAI, using the Fast Track mRNA isolation kit, and Librarian cDNA phagemid system. Once the library was prepared, the vectors were electroporated into cell line E. coli MC 1061/P3. The pCDNAI expression vector contains an antibiotic resistance gene, so the E. coli were selected via antibiotic resistance. The colonies which were resistant were then used in further experiments. The plasmid DNA from the colonies was obtained via alkaline lysis and purification on CsCl₂, in accordance with Sambrook et al, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab, Cold Spring Harbor, N.Y. 2d Ed. 1989). The technique is well known to the art, but is incorporated by reference herein.

Once the plasmid DNA was isolated, it was used to transfect COS-1 cells, which were then cultured for forty-eight hours, after which these were tested with antibody coated dishes. The mAbs used included F19, as described by Rettig et al., (1986), *supra*, which is incorporated by reference in its entirety. As COS-1 cells are normally FAP α^- , any positive results indicated the presence of the coding sequence. The immunoselection protocol was that of Aruffo et al., Proc. Natl. Acad. Sci USA 84: 3365-3369 (1987), incorporated by reference herein.

Plasmid DNA from positive clones was recovered, in accordance with Hirt, J. Mol. Biol. 26: 365-369 (1967), reintroduced into E. coli MC 1061/P3, and reselected in COS-1 cells.

The protocol presented herein was followed for four rounds.

5 After this, the plasmid DNA of 50 isolated bacterial colonies was purified, using the Qiagen plasmid kit. Of the colonies, 27 clones were found to contain identical 2.8 kb inserts, as determined by EcoRI restriction enzyme mapping. Several of these were found to contain FAP α -specific cDNA as determined by transient expression
10 in COS-1 cells and direct immunofluorescence staining with mAb F19. One of these clones, i.e., "pFAP.38" was selected for further study, as elaborated upon infra.

Example 2

Once pFAP.38 had been identified, it was tested together with a vector coding for known cell surface marker CD26 ("pCD26"), as well as with control vector pCDNA I.

In these experiments, COS-1 cells were transfected with one of pFAP.38, pCD26, or pCDNAI. After forty-eight hours, the transfectants were tested, using the well known MHA rosetting assay
20 for cell surface antigen expression. In these experiments, mAb F19, which is FAP α specific, was used, together with mAb EF-1, which is CD26 specific. Also used were four other FAP α specific mAbs, i.e., FB23, FB52, FB58 and C48. Also tested were two cancer cell lines, which are known to react with mAb F19 (SW872
25 liposarcoma), or EF-1 (SK-OV6 ovarian cancer). The results are set

forth in Table 1, which follows.

Table 1. Cell surface expression of multiple FAP α epitopes and CD26 in human cells and COS-1 cell transfectants

5	Target cell	Cell surface antigen expression					
		F19	FB23	FB52	FB58	C48	EF-1
10	<u>Human cells</u>						
	SW872 liposarcoma	>95%	>95%	>95%	>95%	>95%	-
	SK-OV6 ovarian cancer	-	-	-	-	-	>95%
<u>COS-1 transfectants</u>							
15	COS-pCDNAI control	-	-	-	-	-	-
	COS-pFAP 38	40%	30%	40%	20%	20%	-
	COS-pCD26	-	-	-	-	-	40%

Example 3

20 Immunoprecipitation studies were then carried out to identify the antigen being targeted by the antibodies.

Cells were metabolically labelled with Trans 35 S-label, (ICN), extracted with lysis buffer (0.01 M Tris-HCl/0.15 M NaCl/0.01 M MgCl₂/0.5% Nonidet P-40/aprotinin (20 ug/ml)/2 mM phenylmethyl-sulfonyl fluoride), and then immunoprecipitated. The protocols used are all well known, as will be seen by reference to Rettig et

al., Canc. Res. 53: 3327-3335 (1993); and Fellinger et al., Canc. Res. 51: 336-340 (1991), the disclosures of which are all incorporated by reference in their entirety. Precipitating mAbs were negative control mouse Ig, mAb F19, or EF-1. Control tests were carried out with mock transfected COS-1 cells. Following immunoprecipitation, the immunoprecipitates were boiled in extraction buffer and separated by NaDODSO₄/PAGE, under reducing conditions. In some experiments, an additional test was carried out to determine whether or not the immunoprecipitated material was glycosylated. In these experiments, cell extracts were fractionated with Con A-SEPHAROSE prior to immunoprecipitation. Following immunoprecipitation, but prior to fractionation on NaDODSO₄/PAGE, these precipitates were digested with N-Glycanase.

The results showed that, in COS-1 cells, pFAP.38 directs expression of an 88 kd protein species (as determined via SDS-PAGE), which is slightly smaller than the 95 kd FAP α species produced by SW872, or cultured fibroblasts. Digestion with N-Glycanase produced peptides of comparable size (i.e., 74 kd versus 75 kd), showing that the glycosylation of the FAP α protein in COS-1 cells is different than in the human cell lines.

Example 4

Classic Northern blot analysis was then carried out, using the mRNA from FAP α^+ fibroblast cell lines WI-38 and GM 05389, and FAP α^- ovarian cancer cell line SK-OV6. Using the procedures of Sambrook

et al., supra, five micrograms of mRNA from each cell line were tested. The probes used were ^{32}P labelled, and were prepared from a 2.3 kb ECO I fragment of pFAP.38, a 2.4 kb Hind III fragment of CD26, and a 1.8 kb BamHI fragment of γ -actin cDNA. These fragments had been purified from 1% agarose gels.

The extracts of FAP α^+ fibroblast strains showed a 2.8 kb FAP mRNA species, but extracts of SK-OV6 do not. A γ -actin mRNA species (1.8 kb), was observed in all species.

Example 5

The cDNA identified as coding for FAP α was subjected to more detailed analysis, starting with sequencing. The classic Sanger methodology, as set forth in Proc. Natl. Acad. Sci. USA 74: 5463-5467 (1977), was used to sequence both strands of the cDNA. Once this was secured, an amino acid sequence was deduced therefrom. This information is presented in SEQ ID NO: 1. The sequence was then compared to the known amino acid sequence of CD26 (Morimoto et al., J. Immunol. 143: 3430-3437 (1989)). Figure 1 presents the comparison, using optimized sequence alignment. Any gaps in the comparison are indicated by asterisks, while identical amino acids are shown by dashes in the CD26 sequence. A hydrophobic, putative transmembrane sequence is double underlined, while potential N-glycosylation sites are single underlined.

The sequence analysis shows a 2812 base pair insert, wherein 2277 base pairs constitute the open reading frame. This ORF

extends from start codon ATG at nucleotide 209, to stop codon TAA at 2486.

The deduced polypeptide is 760 amino acids long, and has a molecular weight of 87,832. In contrast, N-Glycanase digested, 5 immunopurified FAP α was reported to have an estimated M_r of 75,000 on NaDODSO₄/PAGE (Rettig et al., Canc. Res. 53: 3327-3335 (1993)).

A GenBank data base search was carried out. The most closely related genes found were those encoding dipeptidyl peptidase IV homologues (DPPIV; EC 3.4.14.5), with human DPPIV (also known as 10 T-cell activation antigen CD26), showing 61% nucleotide sequence identity, and 48% amino acid sequence identity.

The second set of related genes are human, rat, and bovine homologues of DPPX, a gene of unknown function widely expressed in brain and other normal tissues. The predicted human DPPX gene product shows about 30% amino acid sequence identity with FAP α and 15 CD26. The FAP α molecule exhibits structural features typical of type II integral membrane proteins, including a large COOH-terminal extracellular domain, a hydrophobic transmembrane segment, and a short cytoplasmic tail. The putative extracellular domain contains 20 five potential N-glycosylation sites, eleven cysteine residues (eight of which are conserved between FAP α and CD26), and three segments corresponding to highly conserved catalytic domains characteristic of serine proteases, such as DPPIV. These conserved sequences are presented in Table 2, which follows. Comparisons to 25 DPPIV and DPPX were made via Morimoto et al., supra; Wada et al.,

Proc. Natl. Acad. Sci. USA 89: 197-201 (1992); Yokotani et al.,
 Human Mol. Genet. 2: 1037-1039 (1993).

Table 2. Putative catalytic domains of FAP α , DPPIV and DPPX.

	624	702	734
Human FAP αWGWSYGG.....	GTADDNV.....	DQNEGLS....
Human DPPIVWGWSYGG.....	GTADDNV.....	DEDHGIA....
Mouse DPPIVWGWSYGG.....	GTADDNV.....	DEDHGIA....
Rat DPPIVWGWSYGG.....	GTADDNV.....	DEDEGIA....
Yeast DPPIVFGWSYGG.....	GTGDDNV.....	DSDHSIR....
Human DPPXFGKDYGG.....	PTADEKI.....	DESHYFT....
Rat DPPXFGKDYGG.....	ATADEKI.....	DESHYFH....
Bovine DPPXFGKDYGG.....	ATADEKI.....	DESHYFS....

Example 6

An additional set of experiments were carried out to determine
 whether FAP α related sequences are present in non-human species.
 To do so, human, mouse, and Chinese hamster genomic DNA was

digested using restriction enzymes, and tested, via Southern blotting, using the 2.3 kb fragment, labelled with ^{32}P , describes supra. Hybridization was carried out using stringent washing conditions (0.1 x SSC, 0.1% NaDODSO₄, 68°C). Cross-hybridization 5 was readily observed with both the mouse and hamster DNA, suggesting the existence of highly conserved FAP α homologues. In control experiments using the CD26 cDNA fragment described supra, no evidence of cross hybridization was observed.

Example 7

The CD26 molecule shares a number of biochemical and serological properties with FAP β , which is a previously described, FAP α associated molecule having a molecular weight of 105 kd, and is found on cultured fibroblasts and melanocytes (Rettig et al., Canc. Res. 53: 3327-3335 (1993)). Cotransfection experiments were carried out to determine whether FAP β is a CD26 gene product. To test this, the same protocols were used which were used for transfection with pFAP.38 or pCD26, as described supra, but using 10 the two vectors. The results presented supra showed that cotransfection efficiency was about 40% for each vector, so about 15 20 10-20% of cell should be cotransfected.

Following cotransfection, the COS-1 cells were Trans ^{35}S -labeled, as described supra, then lysed, also as described supra.

The resulting cell extracts were separated on Con A SEPHAROSE, and the antigen (FAP α and/or CD26) were recovered in the Con A-

bound fraction. The bound fraction was eluted with 0.25 M α -D-mannopyranoside. Immunoprecipitation was then carried out, as described supra, and the precipitates were separated on NaDODSO₄/PAGE, also as discussed supra.

5 Those cells transfected only with pFAP.38 produced FAP α , but not FAP β (determined from mAb F19 immunoprecipitates). They also produce no CD26 antigen (tested with EF-1). Those cells transfected with pCD26 alone produce CD26 but no FAP α .
10 Cotransfectants produce CD26 and FAP α /FAP β heteromers, as determined in the mAb F19 precipitates. This result provides direct evidence that FAP β is a CD26 gene product.

Example 8

15 It has been observed previously that some cultured human cell types coexpress FAP α and CD26, and show FAP α /CD26 heteromer formation. In vivo distribution patterns of FAP α and CD26, however, as determined in previous immunohistochemical studies, appeared to be non-overlapping. (See Rettig et al., Proc. Natl. Acad. Sci. USA 85: 3110-3114 (1988); Garin-Chesa et al., Proc. Natl. Acad. Sci. USA 87: 7235-7329 (1990); Rettig et al., Canc. Res. 53: 3327-3335 (1993); Stein et al., in Knapp et al., eds. Leukocyte typing IV-white cell differentiation antigens, pp 412-415 (Oxford University Press, N.Y. 1989), pp. 412-415; Möbius et al., J. Exp. Immunol. 74: 431-437 (1988)). In view of the potential significance of FAP α /CD26 coassociation, tissue distribution was

reexamined, via side by side immunohistochemical staining of normal tissues and lesional tissues known to contain FAP α^+ fibroblasts or FAP α^+ malignant cells.

To test the samples, they were embedded in OCT compound, frozen in isopentane precooled in liquid nitrogen, and stored at -70°C until used. Five micrometer thick sections were cut, mounted on poly-L-lysine coated slides, air dried, and fixed in cold acetone (4°C, for 10 minutes). The sections were then tested with mAbs (10-20 ug/ml), using the well known avidin-biotin immuno-peroxidase method, as described by, e.g., Garin-Chesa et al., J. Histochem. Cytochem. 37: 1767-1776 (1989); Garin-Chesa et al., Proc. Natl. Acad. Sci. USA 87: 7235-7239 (1990); Rettig et al., Canc. Res. 53: 3327-3335 (1993); Garin-Chesa et al., Am. J. Pathol. 142: 557-567.

The results are shown in figure 2. Breast, colorectal, pancreas and lung carcinomas showed strong expression of FAP α and no CD26 was found (see figures 2A and 2B). Five FAP α^+ sarcomas, including malignant fibrous histiocytoma (figures 2C and 2D), were tested, and there was no expression of CD26. Examination of reactive fibroblasts of healing dermal wounds (figures 2E, 2F), showed abundant expression of both FAP α and CD26. The three renal carcinomas tested (figures 2G, 2H), showed expression of CD26 in malignant epithelium. FAP α was absent from malignant epithelial cells, and showed low expression in the stroma of these carcinomas.

Example 9

A mammalian cell line, transfected with a FAP α encoding cDNA, was prepared.

Human embryonic kidney cell line 293 is well known and widely
5 available from, e.g., the American Type Culture Collection.

Samples of 293 were maintained, in an incubator, at 37°C, in
an atmosphere of 95% air, and 5% CO₂. The cells were cultured in
a 50:50 mixture of Dulbecco's modified minimal essential medium and
Ham's F12 medium, augmented with 10% fetal bovine serum, penicillin
10 and streptomycin. Following the procedures described by Ustar et
al., Eur. Mol. Biol. J. 1991, and/or Park et al., J. Biol. Chem.
169: 25646-25654 (1994), both of which are incorporated by
reference, cDNA for FAP α (i.e., SEQ ID NO: 1), was transfected into
the 293 cells. Details of the cDNA vector are provided, supra
15 (pFAP.38). Transfectants were selected for resistance to
antibiotics (200 ug/ml Geneticin), and were then maintained in
selection medium, containing Geneticin.

Individual colonies of resistant cells were picked, grown to
confluence in 6 well tissue culture plates, and were tested for
20 FAP α expression in an immunofluorescence assay (IFA), using FAP α
specific monoclonal antibody F19 as described supra.

Those colonies which expressed FAP α were expanded, and
monitored by indirect IFA and cytofluorometric analysis, also as
set forth, supra.

The IFAs were positive for the transfecteds, referred to hereafter as cell line 293-FAP, but were negative for parental line 293.

Example 10

In order to confirm that recombinant FAP α was, in fact, being produced, a series of immunoprecipitation experiments were carried out. These followed the methods of Park, et al., supra, and Rettig et al., Canc. Res. 53: 3327-3335 (1993), both of which are incorporated by reference. Essentially, 35 [S] methionine labelled cell extracts were combined with monoclonal antibody F19, in the manner described supra. Precipitates were then boiled in extraction buffer and run on SDS-PAGE gels, using, as a negative control, mouse IgG1. Both cell line 293-FAP, and non transfected line 293 were tested. The results indicated clearly, that recombinant FAP α was produced by the transfected cell line 293-FAP. This was determined by immunoprecipitation analyses, using FAP α specific monoclonal antibody F19.

Example 11

The ability to produce recombinant FAP α permitted further study of the molecule's properties. Specifically, given the structural features outlined in the prior examples, experiments were designed to determine if FAP α possesses enzymatic activities. The experiments were designed to test whether or not FAP α had

extracellular matrix (ECM) protein degrading activity.

Extracts of 293-FAP cells were prepared, using an extraction buffer (0.15M NaCl, 0.05M Tris-HCl, pH 7.4, 10 mM MgCl₂, 1 percent Triton X-114), were cleared by centrifugation (4,000xg, 10 minutes at 4°C), and phase partitioned at 37°C for 10-20 minutes. This was followed by further centrifugation (4000xg, 20 minutes at 20-25°C). Detergent phases were diluted with buffer (0.15 M NaCl, 0.05 M Tris-HCl pH 7.4, 5 mM CaCl₂, 5 mM MgCl₂, 0.75% Empigen BB), and separated on concanavalin A-Sepharose following Rettig et al., supra. Any concanavalin A bound fractions were eluted with 0.25M methyl- α -D-mannopyranoside in elution buffer (0.15 M NaCl, 0.05 M Tris-HCl, pH 7.4, 5mM CaCl₂, 5 mM MgCl₂, 0.1% Triton X-100), mixed with zymography sample buffer (0.25 M Tris-HCl, pH 6.8, 8% SDS, 40% glycerol, 0.01% bromophenol blue), at a 3:1 ratio, and used for further analysis.

Aliquots of sample were loaded onto polyacrylamide gels containing 0.1% of either of gelatin or casein. Electrophoresis was then carried out in a Biorad Mini-Protein II system, at 20 mA constant current for 1.5 - 2 hours, until the bromophenol blue due fronts of samples had reached the lower end of the gel. The gel was removed and incubated for one hour at 20-25°C in a 2.5% aqueous solution of Triton X-100 on a rotary shaker. The Triton X-100 solution was decanted, and replaced with enzyme buffer (0.05M Tris-HCl, pH 7.5, 0.2M NaCl, 5 mM CaCl₂, 5 mM MgCl₂, 0.02% Brij 35). The gel was then incubated at 37°C or 41°C, followed by staining or

destaining at room temperature. Gels were stained with 0.5% of Coomassie Brilliant Blue G-250 in an aqueous solution of 30% methanol and 10% acetic acid for 15, 30, and 60 minutes, respectively. Subsequently, gels were incubated for 15 minutes in 5 an aqueous solution of 30% CH₃OH and 5% glycerol, followed by drying between sheets of cellophane.

Gelatinase activity was evaluated in accordance with Kleiner et al., Anal. Biochem. 218: 325-329 (1994), incorporated by reference in its entirety. This is a routine assay used to 10 determine whether or not a protease capable of digesting gelatin is present. Labelled molecular weight standard were run on the same gels, under reducing conditions, for molecular weight determinations.

Proteolytic activity for defined amino acid sequence motifs 15 were tested, using a well known membrane overlay assay. See Smith et al, Histochem. J. 24(9): 637-647 (1992), incorporated by reference. Substrates were Ala-Pro-7-amino-4-trifluoromethyl coumarin, Gly-Pro-7-amino-4-trifluoromethyl coumarin, and Lys-Pro-7-amino-4-trifluoromethyl coumarin.

The results of these experiments are depicted, in part, in 20 figure 3. This figure shows zymographic detection of gelatin degrading activity, in the cell extracts. See Kleiner et al., supra. A protein species of approximately 170 kilodaltons, as determined by SDS-PAGE, was observed to have gelatin degrading 25 activity. This species, which was found in the 293-FAP cell line,

but not in untransfected 293 cells, is thus identified as FAP α . The molecular weight is consistent with a dimer, i.e., a dimeric FAP α molecule.

5 The proteolytic activity described herein where gelatin is the substrate, was not observed when casein was the substrate.

Example 12

Further studies were then undertaken in order to characterize the 170 kD FAP α dimer further. Specifically, the experiments described in example 11 were repeated, except that 5% of 2-mercaptoethanol or 5 μ m iodoacetamide was added to the extracts prior to SDS-PAGE, or ethylenediamine N,N,N',N'-tetraacetic acid (10 mM) was added to the incubation buffer used for gelatin zymography. None of these treatments abolished the enzymatic activity. In contrast, heating at 100°C for five minutes prior to SDS-polyacrylamide gel electrophoresis abolished the gelatin-degrading activity.

Further work, using a membrane overlay assay, described by, e.g., Smith et al., Histochem J. 24(9): 643-647 (1992), incorporated by reference, revealed that the FAP α dimers were able 20 to cleave all of the Ala-Pro, Gly-Pro, and Lys-Pro dipeptides tested.

In further experiments, a fusion protein was produced which comprised the extracellular domains of both FAP α and murine CD8 proteins. This chimeric protein was produced in a baculovirus 25 system in insect cells. The chimeric protein exhibited the same

enzymatic activity as FAP α , using the model discussed supra.

The foregoing examples describe an isolated nucleic acid molecule which codes for fibroblast activating protein alpha ("FAP α "), as well as dimeric forms of the molecule, and uses thereof. The expression product of the sequence in COS-1 is a protein which, on SDS-PAGE of boiled samples, shows a molecular weight of about 88 kd. Deduced amino acid sequence, as provided in SEQ ID NO: 1, for one form of the molecule, yields a molecular weight of about 88 kd.

It should be noted that there is an apparent discrepancy in molecular weight in that the COS-1 isolate is glycosylated, while molecular weight from deduced amino acid sequences does not account for glycosylation. Membrane proteins are known to exhibit aberrant migration in gel systems, however, which may explain the difference observed here.

Also a part of the invention are chimeric and fusion proteins, which comprise a portion of FAP α which contain the molecule's catalytic domain, and additional, non FAP α components. The FAP α catalytic domain per se is also a part of the invention.

It is to be understood that, as described, FAP α may be glycosylated, with the type and amount of glycosylation varying, depending upon the type of cell expressing the molecule. The experiment described herein shows this. This is also true for the dimeric form of the molecule, first described herein, having a molecular weight of about 170 kilodaltons as determined by SDS-PAGE of unboiled samples.

The invention also comprehends the production of expression vectors useful in producing the FAP α molecule. In their broadest aspect, these vectors comprise the entire FAP α coding sequence or portions thereof, operably linked to a promoter. Additional 5 elements may be a part of the expression vector, such as protein domains fused to the FAP α protein or protein portions ("fusion protein") genes which confer antibiotic resistance, amplifiable genes, and so forth.

The coding sequences and vectors may also be used to prepare 10 cell lines, wherein the coding sequence or expression vector is used to transfect or to transform a recipient host. The type of cell used may be prokaryotic, such as E. coli, or eukaryotes, such as yeast, CHO, COS, or other cell types.

The identification of nucleic acid molecules such as that set 15 forth in SEQ ID NO: 1 also enables the artisan to identify and to isolate those nucleic acid molecules which hybridize to it under stringent conditions. "Stringent condition" as used herein, refers to those parameters set forth supra, whereby both murine and hamster sequences were also identified. It will be recognized by 20 the skilled artisan that these conditions afford a degree of stringency which can be achieved using parameters which vary from those recited. Such variance is apprehended by the expression "stringent conditions".

The ability of nucleic acid molecules to hybridize to 25 complementary molecules also enables the artisan to identify cells which express FAP α , via the use of a nucleic acid hybridization

assay. One may use the sequences described in the invention to hybridize to complementary sequences, and thus identify them. In this way, one can target mRNA, e.g., which is present in any cell expressing the FAP α molecule.

It is of course understood that the nucleic acid molecules of the invention are also useful in the production of recombinant FAP α , in both monomeric and dimeric form. The examples clearly show that host cells are capable of assembling the dimeric forms. The recombinant protein may be used, e.g., as a source of an immunogen for generation of antibodies akin to known mAb F19, and with the same uses. Similarly, the recombinant protein, and/or cells which express the molecule on their surface, may be used in assays to determine antagonists, agonists, or other molecules which interact with the FAP α molecule. Such molecules may be, but are not necessarily limited to, substrates, inhibiting molecules, antibodies, and so forth. This last feature of the invention should be considered in light of the observed structural resemblances to membrane bound enzymes. This type of molecule is associated with certain properties which need not be described in detail here. It will suffice to say that inhibition or potentiation of these properties as associated with FAP α is a feature of this invention. For example, one may identify substrates or the substrate for FAP α molecules, via the use of recombinant cells or recombinant FAP α per se. The substrates can be modified to improve their effect, to lessen their effect, or simply to label them with detectable signals so that they can be

used, e.g., to identify cells which express FAP α . Study of the interaction of substrate and FAP α , as well as that between FAP α and any molecule whatsoever, can be used to develop and/or to identify agonists and antagonists of the FAP α molecule.

Also a feature of the invention are isolated, dimeric FAP α molecules which have a molecular weight of about 170 kilodaltons as determined by SDS-PAGE, their use as an enzymatic cleaving agent, and other uses as are described herein. Enzymatically active forms of FAP α may also be produced as recombinant fusion proteins, comprising the catalytic domain of FAP α and other protein domains with suitable biochemical properties, including secretory signals protease cleavage sites, tags for purification, and other elements known to the artisan. The fact that FAP α has particular properties, as described herein, permits the identification of the molecule on cells expressing them. In turn, because the FAP α molecule is associated with tumors and tumor stromal cells, targeting of FAP α with therapeutic agents serves as a way to treat cancerous or precancerous condition, by administering sufficient therapeutic agent to alleviate cancer load.

The experiments showing the proteolytic properties of FAP α lead to yet a further aspect of the invention. It is well known that proteases which degrade extracellular matrix, or "ECM" proteins have an important role on certain aspects of tumor growth, including their effect on tumor cell invasion, tumor blood vessel formation (i.e., neoangiogenesis), and tumor metastasis. Collagens are of special interest vis-a-vis the substrates of proteases, as

the collagens are an important part of the ECM. The fact that FAP α digests ECM suggests a therapeutic role for inhibitors of the molecule. "Inhibitors", as used herein, refers to molecules which interfere with FAP α enzyme function. Specifically excluded from such inhibitors is the monoclonal antibody F19. This mAb is known to bind to but not inhibit the enzyme function of FAP α , and hence it is not an inhibitor. The art is quite well versed with respect to monoclonal antibodies which both bind to and inhibit enzymes. Further examples of such inhibitors would include, e.g., substrate derivatives, such as modified collagen molecules, which interfere with the active site or sites of the FAP α molecule. Other suitable inhibitors will be apparent to the skilled artisan, and need not be listed here. In addition, the recombinant FAP α proteins and FAP α -transfected cell lines described supra can be employed in an enzymatic screening assay, using the substrate described supra or other suitable substrates, to identify inhibitors from any compound library,

Other aspects of the invention will be clear to the skilled artisan, and need not be set forth here.

The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.

We claim:

1. Isolated, dimeric FAP α molecule, having a molecular weight of about 170 kilodaltons as determined by SDS-PAGE, wherein said dimeric FAP α molecule is capable of degrading extracellular matrix proteins.
2. The dimeric FAP α molecule of claim 1, wherein each monomer of said dimeric FAP α molecule consists of the amino acid sequence of SEQ ID NO: 2.
3. The dimeric FAP α molecule of claim 1, produced recombinantly.
4. The dimeric FAP α molecule of claim 3, produced by a eukaryotic cell.
5. Isolated protein consisting of:
 - (i) the FAP α catalytic domain, and
 - (ii) at least one portion of a non FAP α protein.
6. Method for cleaving a terminal dipeptide of formula Xaa-Pro from a molecule, comprising contacting said molecule with a second molecule, said second molecule having FAP α enzymatic activity.

7. The method of claim 6, wherein said second molecule is isolated, dimeric FAP α .
8. The method of claim 6, wherein said second molecule comprises an FAP α catalytic domain.
9. Method for identifying an enzyme inhibitor, comprising combining:
 - (i) a molecule having FAP α enzymatic activity;
 - (ii) a substrate for said molecule;
 - (iii) a substance believed to be an enzyme inhibitor; and
 - (iv) determining activity of (i) on (ii), wherein a decrease in activity when (iii) is present as compared to activity when (iii) is absent indicates that said substance is an enzyme inhibitor.
10. The method of claim 9, wherein said molecule is isolated dimeric FAP α .
11. The method of claim 9, wherein said molecule comprises an FAP α catalytic domain.

12. Method for treating a subject with a pathological condition characterized by FAP α expression, comprising administering to said subject an amount of a FAP α inhibitor sufficient to inhibit enzyme activity of FAP α .
13. The method of claim 12, wherein said inhibitor is a monoclonal antibody.
14. The method of claim 12, wherein said inhibitor is a collagen derivative.
15. The method of claim 12, wherein said pathological condition is a cancer.

ABSTRACT OF THE DISCLOSURE

The invention involves dimeric forms of the protein known as fibroblast activation protein alpha, or "FAP α " and its uses.

FIG. 1

FAP	1	MKTWVKIVFGV*ATSAVLALLVMCIVL RPSRVHNSEENTMRALTLDILN	49
CD26	1	--PW-VLL-LLGAA-LVTIITPV--LNKGTDATADSRKTY--T-Y-K	50
FAP	50	GTFSYKTFFPNWISGQEYLHQ SADNNIVLYNIETGQSYTILSNRTMKS*	98
CD26	51	N-YRL-LYSLR---DH---YKQ*E---LVF-A-Y-N-SVF-E-S-FDEFG	99
FAP	99	*NASNYGLSPDRQFVYLESDYSKLRWRSYTATYYIYDLSNGEFVRGNELP	147
CD26	100	HSIND-SI---G--IL--YN-V-Q--H---S-D---NKRQLITEERI-	149
		<u>fap-1</u>	
FAP	148	RPIQYLCWSPVGSKLAYVYQNNIYLKQRPGDPPFQITFNGRENKIFNGIP	197
CD26	150	NNT-WT-----H----WN-D--V-IE-NL-SYR--WT-K-DI-Y---T	199
		<u>fap-2</u>	
FAP	198	DWVYEEEMLP PTKYALWWSPNGKFLAYAEFNDKDIPVIAYSYYGDE**QYP	245
CD26	200	-----VFSAYS-----T-----Q---TEV-L-E--F-S--SL---	249
FAP	246	RTINIPYPKAGAKNPVVRIFIIDT***TYPAYVGPQEVPVPAMIASSDYY	292
CD26	250	K-VRV-----V--T-KF-VVN-DSLSSVTNATSIQITA--SMLIG-H-	299
FAP	293	FSWLTWVTDERVCLQWLKR VONVS VLSICDFREDWQTWDCPKTQEHIIES	342
CD26	300	LCDV--A-Q--IS---R-I--Y--MD---YD-SSGR-N-LVARQ---M-	349
FAP	343	RTGWAGGFFVSRPVFSYDAISYYKIFSDKDGKHIIYIKDTVENAIQITS	392
CD26	350	T---V-R-RP-E-H-TL-GN-F---I-NEE--R--C-FQIDKKDCTF--K	399
FAP	393	GKWEAINIFRVTQDSL FYSSNEFE YPGRRNIYRISIGSYPPSKKCVTCH	442
CD26	400	-T--V-G-EAL-S-Y-Y-I---YKGM--G--L-K-QLSD-T*KVT-LS-E	448
FAP	443	LRKER CQYYTASFS DYAKYYALVCY PGPI ISTLHDGRTDQEIKILEENK	492
CD26	449	-NP-----SV---KE---Q-R-S---L-LY---SSVN-KGLRV--D-S	498
		<u>fap-3</u>	
FAP	493	ELENALKNIQLPK EEIK LEVDEITLWYK MILPPQFD RSKKYPLLIQVYG	542
CD26	499	A-DKM-Q-V-M-SKKLDFIILN-TKF--Q-----H--K-----LD--A	548
FAP	543	GPCSQSVRSVFAVNWI SYLAS KEGMVIALVDGRGTAFQGDKLLYAVYRKL	592
CD26	549	-----KADT--RL--AT----T-NIIV-SF----SGY----IMH-IN-R-	598
FAP	593	GVYEVEDQITAVRKFIEMGFIDEKRIAIWGWSYEIRFITGPCIWNWSFQM	642
CD26	599	-TF-----E-A-Q-SK---V-N-----GGYVTSMLGSVGFK	648
FAP	643	WYSSGSSLQLGILRVCLHRE*IHGSPNKDDNLEHYKN STVM MARA EY FRNV	691
CD26	649	CGIAVAPVSRWEYYDSVYT-RYM-L-TPE---D--R----S---N-KQ-	698
FAP	692	DYLLI HGTADDNVHFQNSAQIAKALVNAQVDFQAMWYSDQN HGLSGLSTN	741
CD26	699	E-----Q---S---DVG-----T-ED--IASSTA H	748
FAP	742	*HLYTHMTHFLKQCFSLSD	
CD26	749	Q-I----S--I-----P	

FIG. 2

FAP α	Breast Cancer A	MFH C	Healing Wound E	Renal Cancer G
	(+)	(+)	(+)	(-)
CD26	B	D	F	H
	(-)	(-)	(+)	(+)

Immunohistochemistry (See Kodachromes)

FIG. 3

5601400 "903559260

DECLARATION FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My resident, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled ISOLATED DIMERIC FIBROBLAST ACTIVATION PROTEIN ALPHA, AND USES THEREOF, the specification of which

() is attached hereto.
 was filed on March 18, 1996 as Application Serial No. 08/619,280
 and was amended on (1) _____, (2) _____ (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, 1.56(a).

Foreign Priority Applications

I hereby claim foreign priority benefits under Title 35, United States Code §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Priority Claimed

<u>(Number)</u>	<u>(Country)</u>	<u>(Day/Month/Year Filed)</u>	Yes ()	No ()
-----------------	------------------	-------------------------------	---------	--------

<u>(Number)</u>	<u>(Country)</u>	<u>(Day/Month/Year Filed)</u>	Yes ()	No ()
-----------------	------------------	-------------------------------	---------	--------

U.S. Priority Applications

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

<u>08/230,491</u> (Applic. Serial No.)	<u>April 20, 1994</u> (Filing Date)	<u>Pending</u> (Status-patented/pending/abandoned)
---	--	---

<u>(Applic. Serial No.)</u>	<u>(Filing Date)</u>	<u>(Status-patented/pending/abandoned)</u>
-----------------------------	----------------------	--

Power of Attorney

I hereby appoint the following attorneys to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: John E. Lynch, Reg. No. 20,940; Peter F. Felfe, Reg. No. 20,297; Alfred H. Hemingway, Jr., Reg. No. 26,736; Vincent M. Fazzari, Reg. No. 26,879; Norman D. Hanson, Reg. No. 30,946; Walter G. Weissenberger, Reg. No. 17,344; F. Brice Faller, Reg. No. 29,532; Andrew L. Tiajoloff, Reg. No. 31,575; John P. Luther, Reg. No. 32,261; John A. Bauer, Reg. No. 32,554 and Patricia A. Pasqualini, Reg. No. 34,894, my attorneys with full power of substitution and revocation. Address all telephone calls to Norman D. Hanson, at (212) 688-9200. Address all correspondence to:

FELFE & LYNCH
805 Third Avenue
New York, New York 10022

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

(1) Rainer Zimmermann
Full Name/Sole or First Inventor

Rainer Zimmermann April, 22, 1996
Signature Date

Residence: Laurenbühlstrasse 17
D 88441 Mittelbiberach, Germany

German
Citizenship

Post Office Address: Laurenbühlstrasse 17
D 88441 Mittelbiberach, Germany

(2) John E. Park
Full Name/Second Inventor

JEP
Signature

April 22, 1996
Date

Residence: Widdersteinstrasse 162
D 88400 Biberach, Germany

U.S.A.
Citizenship

Post Office Address: Widdersteinstrasse 162
D 88400 Biberach, Germany

(3) Wolfgang Rettig
Full Name/Third Inventor

Residence: Amriswilstrasse 7
D 88400 Biberach, Germany

Signature

May 3, 1996
DateGerman
Citizenship

Post Office Address: Amriswilstrasse 7
D 88400 Biberach, Germany

(4) Lloyd J. Old

Full Name/Fourth Inventor

Signature

Date

Residence: 1345 Avenue of the Americas
New York, New York 10105

U.S.A.

Citizenship

Post Office Address: 1345 Avenue of the Americas
New York, New York 10105

DECLARATION FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My resident, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled ISOLATED DIMERIC FIBROBLAST ACTIVATION PROTEIN ALPHA, AND USES THEREOF, the specification of which

() is attached hereto.
 (X) was filed on March 18, 1996 as Application Serial No. 08/619,280
 and was amended on (1) _____, (2) _____ : (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, 1.56(a).

Foreign Priority Applications

I hereby claim foreign priority benefits under Title 35, United States Code §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

			<u>Priority Claimed</u>
(Number)	(Country)	(Day/Month/Year Filed)	Yes () No ()
-	-	-	Yes () No ()
(Number)	(Country)	(Day/Month/Year Filed)	Yes () No ()

U.S. Priority Applications

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

<u>08/230,491</u> (Applic. Serial No.)	<u>April 20, 1994</u> (Filing Date)	<u>Pending</u> (Status-patented/pending/abandoned)
(Applic. Serial No.)	(Filing Date)	(Status-patented/pending/abandoned)

Power of Attorney

I hereby appoint the following attorneys to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: John E. Lynch, Reg. No. 20,940; Peter F. Felfe, Reg. No. 20,297; Alfred H. Hemingway, Jr., Reg. No. 26,736; Vincent M. Fazzari, Reg. No. 26,879; Norman D. Hanson, Reg. No. 30,946; Walter G. Weissenberger, Reg. No. 17,344; F. Brice Faller, Reg. No. 29,532; Andrew L. Tiajoloff, Reg. No. 31,575; John P. Luther, Reg. No. 32,261; John A. Bauer, Reg. No. 32,554 and Patricia A. Pasqualini, Reg. No. 34,894, my attorneys with full power of substitution and revocation. Address all telephone calls to Norman D. Hanson, at (212) 688-9200. Address all correspondence to:

*FELFE & LYNCH
805 Third Avenue
New York, New York 10022*

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

(1) Rainer Zimmermann

Full Name/Sole or First Inventor

Signature

Date

Residence: Laurenbühlstrasse 17

D 88441 Mittelbiberach, Germany

German

Citizenship

Post Office Address: Laurenbühlstrasse 17

D 88441 Mittelbiberach, Germany

(2) John E. Park

Full Name/Second Inventor

Signature

Date _____

Residence: Widdersteinstrasse 162

D 88400 Biberach, Germany

U.S.A.

Citizenship

Post Office Address: Widdersteinstrasse 162

D 88400 Biberach, Germany

(3) Wolfgang Rettig
 Full Name/Third Inventor Signature Date

Residence: Amriswilstrasse 7
D 88400 Biberach, Germany German Citizenship

Post Office Address: Amriswilstrasse 7
D 88400 Biberach, Germany

(4) Lloyd J. Old Lloyd J. Old Signature April 7, 1976 Date

Residence: 1345 Avenue of the Americas
New York, New York 10105 U.S.A. Citizenship

Post Office Address: 1345 Avenue of the Americas
New York, New York 10105

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Zimmermann, Rainer; Park, John E.;
Rettig, Wolfgang; Old, Lloyd J.
- (ii) TITLE OF INVENTION: ISOLATED DIMERIC FIBROBLAST ACTIVATION PROTEIN ALPHA, AND USES THEREOF
- (iii) NUMBER OF SEQUENCES: 10
- (iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: Felfe & Lynch
(B) STREET: 805 Third Avenue
(C) CITY: New York City
(D) STATE: New York
(E) COUNTRY: USA
(F) ZIP: 10022
- (v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Diskette, 3.5 inch, 2.0 MB storage
(B) COMPUTER: IBM PS/2
(C) OPERATING SYSTEM: PC-DOS
(D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER: 08/619,280
(B) FILING DATE: 18-MARCH-1996
(C) CLASSIFICATION: 435
- (vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/230,491
(B) FILING DATE: 20-APRIL-1994
- (viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Hanson, Norman D.
(B) REGISTRATION NUMBER: 30,946
(C) REFERENCE/DOCKET NUMBER: LUD 5330.1
- (ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: (212) 688-9200
(B) TELEFAX: (212) 838-3884

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2815 Base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ. ID NO: 1:

AAGAACGCC	CCAAAATCTG	TTTCTAATT	TACAGAAATC	TTTGAAACT	TGGCACGGTA	60
TCAAAAGTC	CGTGGAAAGA	AAAAAACCTT	GTCCTGGCTT	CAGCTTCAA	CTACAAAGAC	120
AGACTTGGTC	CTTTCAACG	GTTCACAG	ATCCAGTGAC	CCACGCTCTG	AAGACAGAAT	180
TAGCTAACCT	TCAAAAACAT	CTGGAAAAAT	GAAGACTTGG	GTAAAATCG	TATTGGAGT	240
TGCCACCTCT	GCTGTGCTT	CCTTATTGGT	GATGTGCATT	GTCTTACGCC	CTTCAAGAGT	300
TCATAACTCT	GAAGAAAATA	CAATGAGAGC	ACTCACACTG	AAGGATATTT	AAATGGAAC	360
ATTTTCTTAT	AAAACATTTT	TTCCAAACTG	GATTCAGGA	CAAGAATATC	TTCATCAATC	420
TGCGATAAAC	AATATAGTAC	TTTATAATAT	TGAAACAGGA	CAATCATATA	CCATTTGAG	480
TAATAGAACCC	ATGAAAAGTG	TGAATGCTTC	AAATTACGGC	TTATCACCTG	ATCGGCAATT	540
TGTATATCTA	GAAAGTGATT	ATTCAAAGCT	TTGGAGATAC	TCTTACACAG	CAACATATTA	600
CATCTATGAC	CTTAGCAATG	GAGAATTGT	AAGAGGAAAT	GAGCTTCTC	GTCCAATTCA	660
GTATTTATGC	TGGTCGCCTG	TTGGGAGTAA	ATTAGCATAT	GTCTATCAA	ACAATATCTA	720
TTGAAACAA	AGACCAGGAG	ATCCACCTTT	TCAAATAACA	TTTAATGGAA	GAGAAAATAA	780
AATATTTAAT	GGAATCCCAG	ACTGGGTTTA	TGAAGAGGAA	ATGCTTCTA	CAAAATATGC	840
TCTCTGGTGG	TCTCTTAATG	GAAAATTTT	GGCATATGCG	GAATTAAATG	ATAAGGATAT	900
ACCAAGTTATT	GCCTATTCT	ATTATGGCGA	TGAACAATAT	CCTAGAACAA	TAAATATTCC	960
ATACCCAAAG	GCTGGAGCTA	AGAATCCCGT	TGTTCGGATA	TTTATTATCG	ATACCACTTA	1020
CCCTGCGTAT	GTAGGTCCCC	AGGAAGTGCC	TGTTCCAGCA	ATGATAGCCT	CAAGTGATTA	1080
TTATTCAGT	TGGCTCACGT	GGGTTACTGA	TGAACGAGTA	TGTTTGAGT	GGCTAAAAG	1140
AGTCCAGAAT	GTTCGGTCC	TGTCTATATG	TGACTTCAGG	GAAGACTGGC	AGACATGGGA	1200
TTGTCCAAG	ACCCAGGAGC	ATATAGAAGA	AAGCAGAACT	GGATGGGCTG	GTGGATTCTT	1260
TGTTTCAAGA	CCAGTTTCA	GCTATGATGC	CATTTCGTAC	TACAAAATAT	TTAGTGACAA	1320
GGATGGCTAC	AAACATATTC	ACTATATCAA	AGACACTGTG	GAAAATGCTA	TTCAAATTAC	1380
AAGTGGCAAG	TGGGAGGCCA	TAAATATATT	CAGAGTAACA	CAGGATTTCAC	TGTTTTATTC	1440
TAGCAATGAA	TTTGAAGAAT	ACCCCTGGAAG	AAGAAACATC	TACAGAATTA	GCATTGGAAG	1500
CTATCCTCCA	AGCAAGAAGT	GTGTTACTTG	CCATCTAAGG	AAAGAAAGGT	GCCAATATTA	1560
CACAGCAAGT	TTCAGCGACT	ACGCCAAGTA	CTATGCAC	GTCTGCTACG	GCCCAGGCAT	1620
CCCCATTCTC	ACCCTTCATG	ATGGACGCAC	TGATCAAGAA	ATTAAAATCC	TGGAAGAAAA	1680
CAAGGAATTG	GAAAATGCTT	TGAAAATAT	CCAGCTGCCT	AAAGAGGAAA	TTAAGAAACT	1740
TGAAGTAGAT	GAAATTACTT	TATGGTACAA	GATGATTCTT	CCTCCTCAAT	TTGACAGATC	1800
AAAGAAGTAT	CCCTTGCTAA	TTCAAGTGT	TGGTGGCTCC	TGCAGTCAGA	GTGTAAGGTC	1860
TGTATTTGCT	GTAAATTGGA	TATCTTATCT	TGCAAGTAAG	GAAGGGATGG	TCATTGCCTT	1920
GGTGGATGGT	CGAGGAACAG	CTTTCCAAGG	TGACAAACTC	CTCTATGCGAG	TGTATCGAAA	1980
GCTGGGTGTT	TATGAAGTTG	AAGACCAGAT	TACAGCTGTC	AGAAAATTCA	TAGAAATGGG	2040
TTTCATTGAT	AAAAAAAGAA	TAGCCATATG	GGGCTGGTCC	TATGGAGGAT	ACGTTTCATC	2100
ACTGGCCCTT	GCATCTGGAA	CTGGCTTTT	CAAATGTGGT	ATAGCAGTGG	CTCCAGTCTC	2160
CAGCTGGGAA	TATTACGCGT	CTGTCTACAC	AGAGAGATTG	ATGGGTCTCC	CAACAAAGGA	2220
TGATAATCTT	GAGCACTATA	AGAATTCAAC	TGTGATGGCA	AGAGCAGAAT	ATTTCAGAAA	2280
TGTAGACTAT	CTTCTCATCC	ACGGAACAGC	AGATGATAAT	GTGCACCTTC	AAAACCTCAGC	2340
ACAGATTGCT	AAAGCTCTGG	TTAATGCACA	AGTGGATTTC	CAGGCAATGT	GGTACTCTGA	2400
CCAGAACAC	GGCTTATCCG	GCCTGTCCAC	GAACCACTTA	TACACCCACA	TGACCCACTT	2460
CCTAAAGCAG	TGTTTCTCTT	TGTCAGACTA	AAAACGATGC	AGATGCAAGC	CTGTATCAGA	2520
ATCTGAAAAC	CTTATATAAA	CCCCTCAGAC	AGTTTGCTTA	TTTTATTTT	TATGTTGTAA	2580
AATGCTAGTA	AAACAAACA	AATTAAATGTT	GTTCTAAAGG	CTGTTAAAAA	AAAGATGAGG	2640
ACTCAGAAGT	TCAAGCTAAA	TATTGTTTAC	ATTTCTGGT	ACTCTGTGAA	AGAAGAGAAA	2700

AGGGAGTCAT GCATTTGCT TTGGACACAG TGTTTATCA CCTGTTCATT TGAAGAAAAA 2760
TAATAAAGTC AGAAGTCAA AAAAAAAA AAAAAAAA AAAGCGGCCG CTCGA 2815

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 760 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Lys Thr Trp Val Lys Ile Val Phe Gly Val Ala Thr Ser Ala Val
5 10 15

Leu Ala Leu Leu Val Met Cys Ile Val Leu Arg Pro Ser Arg Val His
20 25 30

Asn Ser Glu Glu Asn Thr Met Arg Ala Leu Thr Leu Lys Asp Ile Leu
35 40 45

Asn Gly Thr Phe Ser Tyr Lys Thr Phe Phe Pro Asn Trp Ile Ser Gly
50 55 60

Gln Glu Tyr Leu His Gln Ser Ala Asp Asn Asn Ile Val Leu Tyr Asn
65 70 75 80

Ile Glu Thr Gly Gln Ser Tyr Thr Ile Leu Ser Asn Arg Thr Met Lys
85 90 95

Ser Val Asn Ala Ser Asn Tyr Gly Leu Ser Pro Asp Arg Gln Phe Val
100 105 110

Tyr Leu Glu Ser Asp Tyr Ser Lys Leu Trp Arg Tyr Ser Tyr Thr Ala
115 120 125

Thr Tyr Tyr Ile Tyr Asp Leu Ser Asn Gly Glu Phe Val Arg Gly Asn
130 135 140

Glu Leu Pro Arg Pro Ile Gln Tyr Leu Cys Trp Ser Pro Val Gly Ser
145 150 155 160

Lys Leu Ala Tyr Val Tyr Gln Asn Asn Ile Tyr Leu Lys Gln Arg Pro
165 170 175

Gly Asp Pro Pro Phe Gln Ile Thr Phe Asn Gly Arg Glu Asn Lys Ile
180 185 190

Phe Asn Gly Ile Pro Asp Trp Val Tyr Glu Glu Glu Met Leu Pro Thr
195 200 205

Lys Tyr Ala Leu Trp Trp Ser Pro Asn Gly Lys Phe Leu Ala Tyr Ala
210 215 220

Glu Phe Asn Asp Lys Asp Ile Pro Val Ile Ala Tyr Ser Tyr Tyr Gly
225 230 235 240

Asp Glu Gln Tyr Pro Arg Thr Ile Asn Ile Pro Tyr Pro Lys Ala Gly
245 250 255

Ala Lys Asn Pro Val Val Arg Ile Phe Ile Ile Asp Thr Thr Tyr Pro
260 265 270

Ala Tyr Val Gly Pro Gln Glu Val Pro Val Pro Ala Met Ile Ala Ser
275 280 285

Ser Asp Tyr Tyr Phe Ser Trp Leu Thr Trp Val Thr Asp Glu Arg Val
290 295 300

Cys Leu Gln Trp Leu Lys Arg Val Gln Asn Val Ser Val Leu Ser Ile
305 310 315 320

Cys Asp Phe Arg Glu Asp Trp Gln Thr Trp Asp Cys Pro Lys Thr Gln
325 330 335

Glu His Ile Glu Glu Ser Arg Thr Gly Trp Ala Gly Gly Phe Phe Val
340 345 350

Ser Arg Pro Val Phe Ser Tyr Asp Ala Ile Ser Tyr Tyr Lys Ile Phe
355 360 365

Ser Asp Lys Asp Gly Tyr Lys His Ile His Tyr Ile Lys Asp Thr Val
370 375 380

Glu Asn Ala Ile Gln Ile Thr Ser Gly Lys Trp Glu Ala Ile Asn Ile
385 390 395 400

Phe Arg Val Thr Gln Asp Ser Leu Phe Tyr Ser Ser Asn Glu Phe Glu
405 410 415

Glu Tyr Pro Gly Arg Arg Asn Ile Tyr Arg Ile Ser Ile Gly Ser Tyr
420 425 430

Pro Pro Ser Lys Lys Cys Val Thr Cys His Leu Arg Lys Glu Arg Cys
435 440 445

Gln Tyr Tyr Thr Ala Ser Phe Ser Asp Tyr Ala Lys Tyr Tyr Ala Leu
450 455 460

Val Cys Tyr Gly Pro Gly Ile Pro Ile Ser Thr Leu His Asp Gly Arg
465 470 475 480

Thr Asp Gln Glu Ile Lys Ile Leu Glu Glu Asn Lys Glu Leu Glu Asn
485 490 495

Ala Leu Lys Asn Ile Gln Leu Pro Lys Glu Glu Ile Lys Lys Leu Glu
500 505 510

Val Asp Glu Ile Thr Leu Trp Tyr Lys Met Ile Leu Pro Pro Gln Phe
515 520 525

Asp Arg Ser Lys Lys Tyr Pro Leu Leu Ile Gln Val Tyr Gly Gly Pro
530 535 540

Cys Ser Gln Ser Val Arg Ser Val Phe Ala Val Asn Trp Ile Ser Tyr
545 550 555 560

Leu Ala Ser Lys Glu Gly Met Val Ile Ala Leu Val Asp Gly Arg Gly
565 570 575

Thr Ala Phe Gln Gly Asp Lys Leu Leu Tyr Ala Val Tyr Arg Lys Leu
580 585 590

Gly Val Tyr Glu Val Glu Asp Gln Ile Thr Ala Val Arg Lys Phe Ile
595 600 605

Glu Met Gly Phe Ile Asp Glu Lys Arg Ile Ala Ile Trp Gly Trp Ser
610 615 620

Tyr Gly Gly Tyr Val Ser Ser Leu Ala Leu Ala Ser Gly Thr Gly Leu
625 630 635 640

Phe Lys Cys Gly Ile Ala Val Ala Pro Val Ser Ser Trp Glu Tyr Tyr
645 650 655

Ala Ser Val Tyr Thr Glu Arg Phe Met Gly Leu Pro Thr Lys Asp Asp
660 665 670

Asn Leu Glu His Tyr Lys Asn Ser Thr Val Met Ala Arg Ala Glu Tyr
675 680 685

Phe Arg Asn Val Asp Tyr Leu Leu Ile His Gly Thr Ala Asp Asp Asn
690 695 700

Val His Phe Gln Asn Ser Ala Gln Ile Ala Lys Ala Leu Val Asn Ala
705 710 715 720

Gln Val Asp Phe Gln Ala Met Trp Tyr Ser Asp Gln Asn His Gly Leu
725 730 735

Ser Gly Leu Ser Thr Asn His Leu Tyr Thr His Met Thr His Phe Leu
740 745 750

Lys Gln Cys Phe Ser Leu Ser Asp
755 760

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 766 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Lys Thr Pro Trp Lys Val Leu Leu Gly Leu Leu Gly Ala Ala Ala .
5 10 15

Leu Val Thr Ile Ile Thr Val Pro Val Val Leu Leu Asn Lys Gly Thr
20 25 30

Asp Asp Ala Thr Ala Asp Ser Arg Lys Thr Tyr Thr Leu Thr Asp Tyr
35 40 45

Leu Lys Asn Thr Tyr Arg Leu Lys Leu Tyr Ser Leu Arg Trp Ile Ser
50 55 60

Asp His Glu Tyr Leu Tyr Lys Gln Glu Asn Asn Ile Leu Val Phe Asn
65 70 75 80

Ala Glu Tyr Gly Asn Ser Ser Val Phe Leu Glu Asn Ser Thr Phe Asp
85 90 95

Glu Phe Gly His Ser Ile Asn Asp Tyr Ser Ile Ser Pro Asp Gly Gln
100 105 110

Phe Ile Leu Leu Glu Tyr Asn Tyr Val Lys Gln Trp Arg His Ser Tyr
115 120 125

Thr Ala Ser Tyr Asp Ile Tyr Asp Leu Asn Lys Arg Gln Leu Ile Thr
130 135 140

Glu Glu Arg Ile Pro Asn Asn Thr Gln Trp Val Thr Trp Ser Pro Val
145 150 155 165

Gly His Lys Leu Ala Tyr Val Trp Asn Asn Asp Ile Tyr Val Lys Ile
170 175 180

Glu Pro Asn Leu Pro Ser Tyr Arg Ile Thr Trp Thr Gly Lys Glu Asp
185 190 195

Ile Ile Tyr Asn Gly Ile Thr Asp Trp Val Tyr Glu Glu Val Phe
200 205 210

Ser Ala Tyr Ser Ala Leu Trp Trp Ser Pro Asn Gly Thr Phe Leu Ala
215 220 225

Tyr Ala Gln Phe Asn Asp Thr Glu Val Pro Leu Ile Glu Tyr Ser Phe
230 235 240 245

Tyr Ser Asp Glu Ser Leu Gln Tyr Pro Lys Thr Val Arg Val Pro Tyr
250 255 260

Pro Lys Ala Gly Ala Val Asn Pro Thr Val Lys Phe Phe Val Val Asn
265 270 275

Thr Asp Ser Leu Ser Ser Val Thr Asn Ala Thr Ser Ile Gln Ile Thr
280 285 290

Ala Pro Ala Ser Met Leu Ile Gly Asp His Tyr Leu Cys Asp Val Thr
295 300 305

Trp Ala Thr Gln Glu Arg Ile Ser Leu Gln Trp Leu Arg Arg Ile Gln
310 315 320 325

Asn Tyr Ser Val Met Asp Ile Cys Asp Tyr Asp Glu Ser Ser Gly Arg
330 335 340

Trp Asn Cys Leu Val Ala Arg Gln His Ile Glu Met Ser Thr Thr Gly
345 350 355

Trp Val Gly Arg Phe Arg Pro Ser Glu Pro His Phe Thr Leu Asp Gly
360 365 370

Asn Ser Phe Tyr Lys Ile Ile Ser Asn Glu Glu Gly Tyr Arg His Ile
375 380 385

Cys Tyr Phe Gln Ile Asp Lys Lys Asp Cys Thr Phe Ile Thr Lys Gly
390 395 400 405

Thr Trp Glu Val Ile Gly Ile Glu Ala Leu Thr Ser Asp Tyr Leu Tyr
410 415 420

Tyr Ile Ser Asn Glu Tyr Lys Gly Met Pro Gly Gly Arg Asn Leu Tyr
425 430 435

Lys Ile Gln Leu Ser Asp Tyr Thr Lys Val Thr Cys Leu Ser Cys Glu
440 445 450

Leu Asn Pro Glu Arg Cys Gln Tyr Tyr Ser Val Ser Phe Ser Lys Glu
455 460 460

Ala Lys Tyr Tyr Gln Leu Arg Cys Ser Gly Pro Gly Leu Pro Leu Tyr
465 470 475 480

Thr Leu His Ser Ser Val Asn Asp Lys Gly Leu Arg Val Leu Glu Asp
485 490 495

Asn Ser Ala Leu Asp Lys Met Leu Gln Asn Val Gln Met Pro Ser Lys
500 505 510

Lys Leu Asp Phe Ile Ile Leu Asn Glu Thr Lys Phe Trp Tyr Gln Met
515 520 525

Ile Leu Pro Pro His Phe Asp Lys Ser Lys Lys Tyr Pro Leu Leu Leu
530 535 540

Asp Val Tyr Ala Gly Pro Cys Ser Gln Lys Ala Asp Thr Val Phe Arg
545 550 555 560

Leu Asn Trp Ala Thr Tyr Leu Ala Ser Thr Glu Asn Ile Ile Val Ala
565 570 575

Ser Phe Asp Gly Arg Gly Ser Gly Tyr Gln Gly Asp Lys Ile Met His
580 585 590

Ala Ile Asn Arg Arg Leu Gly Thr Phe Glu Val Glu Asp Gln Ile Glu
595 600 605

Ala Ala Arg Gln Phe Ser Lys Met Gly Phe Val Asp Asn Lys Arg Ile
610 615 620

Ala Ile Trp Gly Trp Ser Tyr Gly Gly Tyr Val Thr Ser Met Val Leu
625 630 635 640

Gly Ser Gly Ser Gly Val Phe Lys Cys Gly Ile Ala Val Ala Pro Val
645 650 655

Ser Arg Trp Glu Tyr Tyr Asp Ser Val Tyr Thr Glu Arg Tyr Met Gly
660 665 670

Leu Pro Thr Pro Glu Asp Asn Leu Asp His Tyr Arg Asn Ser Thr Val
675 680 685

Met Ser Arg Ala Glu Asn Phe Lys Gln Val Glu Tyr Leu Leu Ile His
690 695 700

Gly Thr Ala Asp Asp Asn Val His Phe Gln Gln Ser Ala Gln Ile Ser
705 710 715 720

Lys Ala Leu Val Asp Val Gly Val Asp Phe Gln Ala Met Trp Tyr Thr
725 730 735

Asp Glu Asp His Gly Ile Ala Ser Ser Thr Ala His Gln His Ile Tyr
740 745 750

Thr His Met Ser His Phe Ile Lys Gln Cys Phe Ser Leu Pro
755 760 765

(2) INFORMATION FOR SEQ ID NO: 4:
(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ix) FEATURE:
 (D) OTHER INFORMATION: The first Xaa is either Trp or Phe.
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Xaa Gly Trp Ser Tyr Gly Gly
5

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Phe Gly Lys Asp Tyr Gly Gly
5

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ix) FEATURE:
 (D) OTHER INFORMATION: Xaa is either Ala or Gly
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Gly Thr Xaa Asp Asp Asn Val
5

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Ala Gln Asn His Gly Leu Ser
5

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ix) FEATURE:

- (D) OTHER INFORMATION:

The first Xaa is Glu or Ser. When the first Xaa is Glu, the second Xaa is Gly and the third is Ala. When the first Xaa is Ser, the second Xaa is Ser, and the third Xaa is Arg.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Asp Xaa Asp His Xaa Ile Xaa

5

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ix) FEATURE:

- (D) OTHER INFORMATION:
Xaa is Pro or Ala.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Xaa Thr Ala Asp Glu Lys Ile

5

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ix) FEATURE:

- (D) OTHER INFORMATION:
Xaa is Thr, His or Ser.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Asp Glu Ser His Tyr Phe Xaa

5