Skoltech NLA 2020 Final Project

Active Subspace of Neural Networks: Structural Analysis

Team: Passive Subspaces

Problem statement

- What? Neural network compression, using active subspace structural analysis
- Why? Less memory, higher processing speed, more simple architecture
- **Hypothesis:** check that we can cut off network tail at some middle layer and approximate tail with a couple of much simpler layers with good compression rate and reasonable quality.
- Applications use compressed models in applications.
- How to measure quality? Compression rate how much nnz parameters are compressed in ASNet + accuracy w/ fine tuning and w/o

Active Subspace of Neural Networks: Structural Analysis and Universal Attacks, Chunfeng Cui, Kaiqi Zhang, Talqat Daulbaev, Julia Gusak, Ivan Oseledets, Zheng Zhang

Neural Network Compression Methods

- Weight Sharing
- Network Pruning
- Low Rank Matrix & Tensor Decompositions
- Knowledge Distillation
- Quantization

Neural Network Compression Techniques

- Weight Sharing
- Network Pruning
- Low Rank Matrix & Tensor Decompositions
- Knowledge Distillation
- Quantization

Major Points

- Activate Subspace
- Structural analysis and compression of deep neural networks
- Active subspace network (ASNet)
 - The active subspace layer
 - Polynomial chaos expansion layer
- The training procedure of the ASNet
- Experimental Results
- Conclusion

c(x) - continuous function

$$C = \mathbb{E}[\nabla c(x)\nabla c(x)^T]$$

$$C = V \Lambda V^T$$

$$\Lambda = diag(\lambda_1, ..., \lambda_n), \lambda_1 \ge \cdots \ge \lambda_n \ge 0$$

$$V = [V_1, V_2], \text{ where } V_1 \in \mathbb{R}^{n \times r} \text{ and } V_2 \in \mathbb{R}^{n \times (n-r)}$$

c(x) - continuous function

$$C = \mathbb{E}[\nabla c(x)\nabla c(x)^T]$$

$$C = V \wedge V^T$$

$$\Lambda = diag(\lambda_1, ..., \lambda_n), \lambda_1 \ge \cdots \ge \lambda_n \ge 0$$

$$V = [V_1, V_2], \text{ where } V_1 \in \mathbb{R}^{n \times r} \text{ and } V_2 \in \mathbb{R}^{n \times (n-r)}$$

Lemma 2.2 (see [10]). Suppose $c(\mathbf{x})$ is a continuous function and \mathbf{C} is obtained from (2.1). For the matrices \mathbf{V}_1 and \mathbf{V}_2 generated by (2.3), and the reduced vector

(2.5)
$$\mathbf{z} = \mathbf{V}_1^T \mathbf{x} \text{ and } \tilde{\mathbf{z}} = \mathbf{V}_2^T \mathbf{x},$$

it holds that

(2.6)
$$\mathbb{E}_{\mathbf{x}}[\nabla_{\mathbf{z}}c(\mathbf{x})^T\nabla_{\mathbf{z}}c(\mathbf{x})] = \lambda_1 + \dots + \lambda_r,$$

$$\mathbb{E}_{\mathbf{x}}[\nabla_{\tilde{\mathbf{z}}}c(\mathbf{x})^T\nabla_{\tilde{\mathbf{z}}}c(\mathbf{x})] = \lambda_{r+1} + \dots + \lambda_n.$$

2.1. Response surface. For a fixed \mathbf{z} , the best guess for g is the conditional expectation of c given \mathbf{z} , i.e.,

(2.7)
$$g(\mathbf{z}) = \mathbb{E}_{\tilde{\mathbf{z}}}[c(\mathbf{x})|\mathbf{z}] = \int c(\mathbf{V}_1 \mathbf{z} + \mathbf{V}_2 \tilde{\mathbf{z}}) \rho(\tilde{\mathbf{z}}|\mathbf{z}) d\tilde{\mathbf{z}}.$$

Based on the Poincaré inequality, the following approximation error bound is obtained [10].

Lemma 2.3. Assume that $c(\mathbf{x})$ is absolutely continuous and square integrable with respect to the probability density function $\rho(\mathbf{x})$; then the approximation function $g(\mathbf{z})$ in (2.7) satisfies

(2.8)
$$\mathbb{E}[(c(\mathbf{x}) - g(\mathbf{z}))^2] \le O(\lambda_{r+1} + \dots + \lambda_n).$$

Structural analysis and compression of deep neural networks

$$f(x_0) = f_L(f_{L-1}...(f_1(x_0)))$$
 $f(x_0) = f_{post}^l(f_{pre}^l(x_0))$

Definition 3.1. Suppose Λ is computed by (2.2). For any layer index $1 \leq l \leq L$, we define the number of active neurons $n_{l,AS}$ as follows:

(3.4)
$$n_{l,AS} = \arg\min\left\{i: \frac{\lambda_1 + \ldots + \lambda_i}{\lambda_1 + \ldots + \lambda_{n_l}} \ge 1 - \epsilon\right\},\,$$

where $\epsilon > 0$ is a user-defined threshold.

Active subspace network (ASNet)

Figure 2. (a) The original deep neural network. (b) The proposed ASNet with three parts: a pre-model, an active subspace (AS) layer, and a polynomial chaos expansion (PCE) layer.

The active subspace layer

Algorithm 3.2. The frequent direction algorithm for computing the active subspace.

Input: A dataset with m_{AS} input samples $\{\mathbf{x}_0^j\}_{j=1}^{m_{AS}}$, a pre-model $f_{\text{pre}}^l(\cdot)$, a subroutine for computing $\nabla c_l(\mathbf{x})$, and the dimension of truncated singular value decomposition r.

- 1: Select r samples \mathbf{x}_0^i , compute $\mathbf{x}^i = f_{\text{pre}}^l(\mathbf{x}_0^i)$, and construct an initial matrix $\mathbf{S} \leftarrow$ $[\nabla c_l(\mathbf{x}^1), \dots, \nabla c_l(\mathbf{x}^r)].$
- 2: **for** t=1, 2, ..., do
- Compute the singular value decomposition $\mathbf{V}\Sigma\mathbf{U}^T \leftarrow \text{svd}(\mathbf{S})$, where Σ = $\operatorname{diag}(\sigma_1,\ldots,\sigma_r).$
- If the maximal number of samples m_{AS} is reached, stop.
- Update S by the soft-thresholding (3.8). –
- Get a new sample $\mathbf{x}_0^{\text{new}}$, compute $\mathbf{x}^{\text{new}} = f_{\text{pre}}^l(\mathbf{x}_0^{\text{new}})$, and replace the last column of \mathbf{S} (now all zeros) by the gradient vector $\mathbf{S}(:,r) \leftarrow \nabla c_l(\mathbf{x}^{\text{new}})$.
- 7: end for

Output: The projection matrix $\mathbf{V} \in \mathbb{R}^{n_l \times r}$ and the singular values $\mathbf{\Sigma} \in \mathbb{R}^{r \times r}$. $\hat{n}_{l,AS} = \arg\min \left\{ i : \frac{\sqrt{\sigma_1^2 + \dots + \sigma_i^2}}{\sqrt{\sigma_1^2 + \dots + \sigma_r^2}} \ge 1 - \epsilon \right\}.$

$$\hat{n}_{l,AS} = \arg\min\left\{i: \quad \frac{\sqrt{\sigma_1^2 + \dots + \sigma_i^2}}{\sqrt{\sigma_1^2 + \dots + \sigma_r^2}} \ge 1 - \epsilon\right\}$$

 $\mathbf{S} \leftarrow \mathbf{V} \sqrt{\mathbf{\Sigma}^2 - \sigma_r^2}$

Polynomial Chaos Expansion Layer

$$\hat{\mathbf{y}} \approx \sum_{|\boldsymbol{\alpha}|=0}^{p} \mathbf{c}_{\boldsymbol{\alpha}} \boldsymbol{\phi}_{\boldsymbol{\alpha}}(\mathbf{z}), \text{ where } |\boldsymbol{\alpha}| = \alpha_1 + \dots + \alpha_d.$$

$$\min_{\{\mathbf{c}_{\boldsymbol{\alpha}}\}} \quad \frac{1}{m_{\text{PCE}}} \sum_{j=1}^{m_{\text{PCE}}} \|\mathbf{y}^j - \sum_{|\boldsymbol{\alpha}|=0}^p \mathbf{c}_{\boldsymbol{\alpha}} \boldsymbol{\phi}_{\boldsymbol{\alpha}}(\mathbf{z}^j)\|^2.$$

The training procedure of the ASNet

Algorithm 3.1. The training procedure of the ASNet.

Input: A pretrained deep neural network, the layer index l, and the number of active neurons r.

- Step 1 Initialize the active subspace layer. The active subspace layer is a linear projection where the projection matrix $\mathbf{V}_1 \in \mathbb{R}^{n \times r}$ is computed by Algorithm 3.2. If r is not given, we use $r = n_{\mathrm{AS}}$ defined in (3.4) by default.
- Step 2 Initialize the polynomial chaos expansion layer. The polynomial chaos expansion layer is a nonlinear mapping from the reduced active subspace to the outputs, as shown in (3.10). The weights \mathbf{c}_{α} is computed by (3.12).
- Step 3 **Construct the ASNet.** Combine the pre-model (the first *l* layers of the deep neural network) with the active subspace and polynomial chaos expansion layers as a new network, referred to as ASNet.
- Step 4 **Fine-tuning.** Retrain all the parameters in pre-model, active subspace layer, and polynomial chaos expansion layer in ASNet for several epochs by a proper (variant of) the stochastic gradient descent algorithm.

Output: A new network ASNet

Experimental Results: VGG19

Experimental Results: VGG19

Experimental Results: VGG19

Experimental Results: Resnet110

Experimental Results: Resnet110

Experimental Results: Resnet110

Summary

- Compression approach from <u>original paper</u> was reproduced for VGG19 and Resnet110 architectures
- Compression worked differently for different network topologies, cut-off layer selection is important
- Minor code errors from the original repository were fixed

References

- Active Subspace of Neural Networks: Structural Analysis and Universal Attacks, Chunfeng Cui,
 Kaiqi Zhang, Talgat Daulbaev, Julia Gusak, Ivan Oseledets, Zheng Zhang
- ResNet repo: https://github.com/Kaktusava/NLA_ResNet

Questions?