XX Летняя Физическая Школа. 10 класс.

Занятия по решению задач.

Занятие 1

1	Найдите сопротивление R_0 цепи, показанной на рисунке.	$R \cap R \cap R \cap A$
2	Найдите сопротивление R_0 цепи, показанной на рисунке.	$R \cap R \cap R \cap R \cap A$
3	Найдите сопротивление R цепи, показанной на рисунке. Сопротивление каждого резистора R_0 , сопротивлением соединительных проводов можно пренебречь.	

Занятие 2

5	Найдите сопротивление R_0 проволочного тетраэдра, ключенного в цепь двумя вершинами. Сопротивление саждого ребра равно R .	
6	Найдите сопротивление R_0 цепи, показанной на рисунке. Сопротивление каждого резистора R (за исключением верхнего).	4R A B
7	Найдите сопротивление проволочного куба между точками A_1 и C . Сопротивление каждого ребра равно R .	A B_1 D C_1 A_1 D_1

Занятие 3

Занятие 4

11 Определите сопротивление бесконечных цепей.

Если в бесконечной схеме, состоящей из квадратных ячеек, через один узел A подводят ток I, а через соседний узел B отводят ток I, то какой ток идёт по сопротивлению, соединяющему узлы A и B? Каково эквивалентное сопротивление цепи между этими двумя узлами, если сопротивление стороны ячейки r?

Занятие 5

Тело бросают сначала под углом α к горизонту, а затем запускают вверх по абсолютно гладкой наклонной плоскости, наклоненной под тем же углом α к горизонту. Определите отношение начальных скоростей тела, если и в том и в другом случае оно поднялось на одну и ту же высоту h.

Галилей исследует падение шаров с пизанской башни высотой *Н*. У него есть два шара массами *т* и 2*т*. Учёный отпускает их один за другим через некоторый интервал времени. Начальная скорость шаров равна нулю. Соударения шаров с землей и друг с другом абсолютно упругие, шары двигаются по одной прямой. На какую максимальную высоту может подлететь лёгкий шар в результате одного столкновения с тяжелым? Сопротивлением воздуха пренебречь.

По горизонтальной шероховатой поверхности в направлении оси x движется брусок. Масса бруска m, скорость в начальный момент времени x = 0 v_0 , коэффициент трения о поверхность μ . К бруску прикладывают силу $F(t) = \alpha t$, направленную противоположно оси x. Постройте график зависимости проекции на ось x силы трения, действующей на брусок, от времени.

Занятие 6

Найдите наибольший объем легкой оболочки гелиевого метеорологического зонда, который может быть удержан невесомым нерастяжимым тросом, прикрепленным к верхней из двух одинаковых легких пластин площадью 0.07 м2, плотно притертых друг к другу. Нижняя пластина закреплена на земле. Плотность гелия равна 0.178 кг/м3, плотность воздуха — 1.293 кг/м3, атмосферное давление принять равным 105 Па.

Два тела массами m_1 и m_2 ($m_1 < m_2$), связанные невесомой нерастяжимой нитью, соскальзывают по наклонной плоскости с углом у основания α . Коэффициент трения между телами и плоскостью μ ($\mu < tg(\alpha)$). Найти силу натяжения нити.

Экспериментатор Вася исследует скорость таяния снега. При температуре 0 С в сильный снегопад он кладет большой плоский нагерватель на землю и записывает, с какой скоростью меняется высота сугроба на нагревателе. Нагреватель рассчитан на 4 возможные можности $P_1 = 0.25$ Вт, $P_2 = 0.5$ Вт $P_3 = 1$ Вт и $P_4 = 2$ Вт. Из-за небрежности, Вася записывает только абсолютное значение скорости, без указания опускался или поднимался уровень снега. Его данные для соответствующий мощностей нагревателя: $v_1 = 2.25$ мм/с, $v_2 = 1$ мм/с, $v_3 = 1.5$ мм/с. Помогите Васе найти v_4 . Определите также скорость выпадения снега на нагреватель в кг/с, если удельная теплота плавления льда $\lambda = 3.35 \cdot 10^5$ Дж/кг. Нагреватель установлен так, что растявший снег сразу стекает с него. Потерями тепла пренебречь.