1 Supporting Standard Results in Real Analysis

Proposition 1. Let $f : \mathbb{R}_{++} \to \mathbb{R}_{+}$ be a continuous function. Consider sequences x^n in \mathbb{R}_{++} and $f^n(x^n)$ in \mathbb{R}_{+} . If $f^n(x^n) \to f(x)$ as $n \to \infty$, then $x^n \to x$ as $n \to \infty$.

Proof. Given that f is continuous at x (with $x \in \mathbb{R}_{++}$), for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all y in \mathbb{R}_{++} with $|y - x| < \delta$, we have $|f(y) - f(x)| < \epsilon$.

Given $f^n(x^n) \to f(x)$, for the above ϵ , there exists an N such that for all n > N, $|f^n(x^n) - f(x)| < \epsilon$.

Assume for the sake of contradiction that x^n doesn't converge to x. This implies that there exists a $\delta > 0$ such that for infinitely many terms of the sequence x^n , $|x^n - x| \ge \delta$.

By the continuity of f at x, if $|x^n - x| \ge \delta$ for infinitely many n, then $|f^n(x^n) - f(x)| \ge \epsilon$ for those n, contradicting our assumption that $f^n(x^n) \to f(x)$.

Therefore, our assumption for contradiction is false, and it follows that $x^n \to x$ as $n \to \infty$.

Fact 1. Let $g: X \to \mathbb{R}_+$ be a continuous function, where $X \subseteq \mathbb{R}^n$ is an open convex set. Define the weighted supremum norm $\|\cdot\|_g$ of a real-valued function $f: X \to \mathbb{R}$ by

$$\|\mathbf{f}\|_{\mathbf{g}} := \sup_{x \in X} \frac{|\mathbf{f}(x)|}{\mathbf{g}(x)}.$$
 (1)

If $\lim_{n\to\infty} \|f_n - f^*\|_g = 0$, f_n converges to f^* uniformly on compact sets.

Proof. Let \tilde{X} be an arbitrary compact subset of X. Since \tilde{X} is compact, there exists a positive lower bound for g on this subset, denoted as

$$\bar{\mathbf{g}} = \min_{x \in \tilde{X}} \mathbf{g}(x) > 0. \tag{2}$$

Hence, on \tilde{X} , if $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}^*\|_{\mathbf{g}} = 0$, then $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}^*\|_{\infty} = 0$ on \tilde{X} , where $\|\cdot\|_{\infty}$ denotes the supremum norm.

Now, let K be a compact subset of X. Given the continuity of g, there exists a positive maximum value for g on K, denoted as M_K . Then, we have

$$\sup_{x \in K} |f_n(x) - f(x)| \le M_K \sup_{x \in K} \frac{|f_n(x) - f(x)|}{g(x)} \le M_K \sup_{x \in X} \frac{|f_n(x) - f(x)|}{g(x)}.$$
 (3)

Thus, $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}\|_{=0}$ implies that \mathbf{f}_n converges uniformly to \mathbf{f} on the compact set K. It's also worth noting that the convexity and openness of X aren't strictly necessary for this argument.

Fact 2. Let $\{f_n\}$ be a sequence of continuous functions defined on a subset of the real line and converging uniformly to a function on compact sets. If $\{x_n\}$ is a convergent sequence of real numbers with limit x, then $f_n(x_n)$ converges to f(x).

Proof. Let \tilde{X} be an arbitrary compact subset of X. Since \tilde{X} is compact, there exists a positive lower bound for g on this subset, denoted as

$$\bar{\mathbf{g}} = \min_{x \in \tilde{X}} \mathbf{g}(x) > 0. \tag{4}$$

Hence, on \tilde{X} , if $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}^*\|_{\mathbf{g}} = 0$, then $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}^*\|_{\infty} = 0$ on \tilde{X} , where $\|\cdot\|_{\infty}$ denotes the supremum norm.

Now, let K be a compact subset of X. Given the continuity of g, there exists a positive maximum value for g on K, denoted as M_K . Then, we have

$$\sup_{x \in K} |f_n(x) - f(x)| \le M_K \sup_{x \in K} \frac{|f_n(x) - f(x)|}{g(x)} \le M_K \sup_{x \in X} \frac{|f_n(x) - f(x)|}{g(x)}.$$
 (5)

Thus, $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}\|_{=0}$ implies that \mathbf{f}_n converges uniformly to \mathbf{f} on the compact set K. It's also worth noting that the convexity and openness of X aren't strictly necessary for this argument.

Fact 3. Let $\{f_n\}$ be a sequence of continuous functions defined on a subset of the real line and converging uniformly to a function f on compact sets. If $\{x_n\}$ is a convergent sequence of real numbers with limit x, then $f_n(x_n)$ converges to f(x).

Proof. Since x_n converges to x, the sequence $\{x_n\}$ is bounded. Therefore, there exists a compact set K (specifically, a closed interval in the real line) that contains all the x_n as well as x.

Given the uniform convergence of f_n to f on K, for every $\epsilon > 0$, there exists an N such that for all $n \geq N$ and for all $y \in K$, we have

$$|f_n(y) - f(y)| < \epsilon.$$

In particular, for $y = x_n$, we have

$$|f_n(x_n) - f(x_n)| < \epsilon$$

for all $n \geq N$.

Now, each f_n being continuous and x_n converging to x implies that $f(x_n)$ converges to f(x). Thus, for sufficiently large n, $f(x_n)$ can be made arbitrarily close to f(x).

Combining the two inequalities and taking n large enough, we deduce that $|f_n(x_n) - f(x)|$ can be made smaller than any given ϵ . Hence, $f_n(x_n)$ converges to f(x).

Claim 1. If f is convex and f < 0 on $(0, \lambda)$, then $\frac{f(s)}{s}$ is increasing on $(0, \lambda)$.

Proof. Let f be convex on $(0, \lambda)$ and f < 0 on $(0, \lambda)$. Let x_1 and x_2 be two points in $(0, \lambda)$. Choose $0 < \alpha < x_1$. Then, any point (in particular, x_1) in (α, x_2) can be written as $x_1 = t\alpha + (1 - t)x_2$ for some 0 < t < 1.

Now, define a new function F on $[\alpha, x_2]$ as:

$$F(x) = f(x) - f(\alpha).$$

Since f is convex, F(x) is also convex on $[\alpha, x_2]$. To see this, observe that:

$$F(t\alpha + (1-t)x_2) = \mathbf{f}(t\alpha + (1-t)x_2) - \mathbf{f}(\alpha) \le t\mathbf{f}(\alpha) + (1-t)\mathbf{f}(x_2) - \mathbf{f}(\alpha) = tF(\alpha) + (1-t)F(x_2).$$

Since $F(\alpha) = 0$, the inequality simplifies to $F(x_1) \leq (1-t)F(x_2)$. This implies that $\frac{F(s)}{s}$ is increasing. And thus, if $y_1 \leq y_2$, then:

$$\frac{F(y_1)}{y_1} \le \frac{F(y_2)}{y_2}.$$

Now, using the definition of F(x), we have:

$$\frac{f(y_1)}{y_1} = \frac{F(y_1)}{y_1} + \frac{f(\alpha)}{y_1}.$$

Similarly, for y_2 :

$$\frac{f(y_2)}{y_2} = \frac{F(y_2)}{y_2} + \frac{f(\alpha)}{y_2}.$$

Since $\frac{F(y_1)}{y_1} \leq \frac{F(y_2)}{y_2}$ and $f(\alpha) < 0$, we conclude that:

$$\frac{f(y_1)}{y_1} \le \frac{f(y_2)}{y_2}.$$

Thus, $\frac{\mathbf{f}(s)}{s}$ is increasing on $(0, \lambda)$, completing the proof.