For golden section method: gs.m

### Method:

$$a_1 = a_0 + \varphi(b_0 - a_0)$$

$$b_1 = a_0 + (1 - \varphi)(b_0 - a_0)$$

$$\varphi = \frac{3 - \sqrt{5}}{2}$$

若最小化後的值比前一次小,則調整區間至 $[a_0,b_1]$ 若最小化後的值比前一次大,則調整區間至 $[a_1,b_0]$ 



### Result:

Golden section search on f(x)



For fibonacci method: Fib.m, fibonacci.m

### Method:

```
Initialize the Fibonacci sequence F_0 = F_1 = 1
while F_n \leq (b-a)/\varepsilon do
  Calculate Fibonacci numbers F_n = F_{n-1} + F_{n-2}
end while
d = b - a
for k=1:n do
  d \leftarrow d \times F_{n-k}/F_{n-k+1}
  x_1 \leftarrow b - d
  x_2 \leftarrow a + d
  if f(x_1) \leq f(x_2) then
     b \leftarrow x_2
   else
     a \leftarrow x_1
   end if
end for
```

若最小化後的值比前一次小,則調整區間至 $[a_0, b_1]$ 若最小化後的值比前一次大,則調整區間至 $[a_1, b_0]$ 

### Result:



For hooke method: Hooke.m

Method:参考 http://www.netlib.org/opt/hooke.c

# Exploratory move

- Current solution is  $x^c$ ; set i = 1;  $x = x^c$
- S1: f = f(x),  $f^+ = f(x_i + \Delta_i)$ ,  $f^- = f(x_i \Delta_i)$
- S2:  $f_{min} = min (f, f^+, f^-)$ ; set x corresponding to  $f_{min}$
- S3: If i = N, go to 4; else i = i + 1, go to 1
- S4: If  $x \neq x^c$ , success, else failure

## Result:



For Powell's conjugate method: Powells.m, backtr.m

Method: 参考 https://t.co/nd2illLXfn , https://t.co/3esqrvXVDb

## For a quadratic function IN 2 VARIABLES

- TAKE 2 POINTS x<sup>1</sup> & x<sup>2</sup> AND
- A DIRECTION 'd'

IF 
$$y^1$$
 IS A SOLUTION OF MIN  $f(x^1 + \lambda d)$  &  $y^2$  IS A SOLUTION OF MIN  $f(x^2 + \lambda d)$ 

THEN  $(y^2-y^1)$  IS CONJUGATE TO d

OPTIMUM LIES ALONG (y²- y¹)



### Result:

