Contents

CHAPTER I.	[the lone of	chap	ter].	 	•	 •	•	 •	•	•	•	 •	•	•	1
§1. [THE FI	RST SECTION]			•	 		 									1
§2. Moore	-Aaronszajn				 		 									4

CHAPTER I

[the lone chapter]

Conventions. Unless stated otherwise, assume the following:

- $K \in \{\mathbb{R}, \mathbb{C}\}.$
- X will denote a generic set.
- Vector spaces will be over K.
- Evaluation functions on any subset of K^X will be denoted by δ_x 's. These are clearly linear maps in case the domain is a subspace of K^X .
- \mathcal{H} will denote a Hilbert space over K.
- Abusing the notation slightly, the same notation will be used to denote the restriction to $\mathbb{R} \to \mathbb{R}$ of Re, Im and complex conjugation.
- Whenever $\langle \cdot, \cdot \rangle$ is semi-inner-product on a vector space, we'll use the usual $\| \cdot \|$ to denote the induced seminorm.
- For any function $k: X \times X \to K$, we'll use k_x to stand for $k(\cdot, x): X \to K$

1. [THE FIRST SECTION]

Definition 1.1 (p.s.d. kernels). A positive semi-definite kernel on a set X is a function $k: X \times X \to K$ that is

(i) conjugate symmetric, i.e., $k(y, x) = \overline{k(x, y)}$; and,

¹That is, it's almost a norm except not possibly satisfying the positive definiteness.

²Note that a semi-inner-product obeys the Cauchy-Schwarz inequality (just follow Schwarz's proof using the quadratic polynomial).

(ii) positive semi-definite, i.e., for any $x_1, \ldots, x_n \in X$ and any $\alpha_1, \ldots, \alpha_n \in K$, we have that

$$\sum_{i,j=1}^{n} \overline{\alpha_i} k(x_i, x_j) \alpha_j \ge 0.$$

Definition 1.2 (r.k.'s and RKHS's). A reproducing kernel for $\mathcal{H} \subseteq K^X$ is a function $k \colon X \times X \to K$ such that for any $x \in X$, we have that $k_x \in \mathcal{H}$ and that it obeys the reproducing property, i.e.,

$$f(x) = \langle f, k_x \rangle$$

for any $f \in \mathcal{H}$.

Further, if $\mathcal H$ admits a reproducing kernel, it's called a $reproducing\ kernel\ Hilbert\ space.$

Lemma 1.3. A reproducing kernel is a p.s.d. kernel.

Proof. Let k be a reproducing kernel of $\mathcal{H} \subseteq K^X$.

- Conjugate symmetry: $k(y,x) = k_x(y) = \langle k_x, k_y \rangle = \overline{\langle k_y, k_x \rangle} = \overline{k_y(x)} = \overline{k(x,y)}$.
- Positive semi-definite: Let $x_1, \ldots, x_n \in X$ and $\alpha_1, \cdots, \alpha_n \in K$. Then setting $k_x := k(\cdot, x)$, we have

$$\sum_{i,j} \overline{\alpha_i} k(x_i, x_j) \alpha_j = \sum_{i,j} \overline{\alpha_i} \langle k_{x_j}, k_{x_i} \rangle \alpha_j$$

$$= \sum_{i,j} \langle \alpha_j k_{x_j}, \alpha_i k_{x_i} \rangle$$

$$= \left\| \sum_i \alpha_i k_{x_i} \right\|^2$$

$$\geq 0.$$

Remark. The converse is the content of Theorem 2.3.

Lemma 1.4 (Characterizing RKHS's). $\mathscr{H} \subseteq K^X$ is an RKHS \iff evaluation functionals on it are continuous.

Proof. " \Rightarrow ": Let k be a reproducing kernel of \mathscr{H} . Then $|\delta_x(f)| = |f(x)| = |\langle f, k_x \rangle| \leq ||k_x|| ||f||$ (note that $k_x \in \mathscr{H}$). Thus $||\delta_x|| \leq ||k_x|| < +\infty$.

" \Leftarrow ": By Riesz, we can define $k \colon X \times X \to K$ such that $\delta_x = \langle \cdot, k_x \rangle$ (since δ_x 's are continuous). Then $f(x) = \delta_x(f) = \langle f, k_x \rangle$.

Corollary 1.5. Convergence in an RKHS \implies pointwise convergence.

What about the converse?

Theorem 1.6 (RKHS \mapsto r.k. is injective).

- (i) An RKHS's reproducing kernel is unique.
- (ii) Conversely, a reproducing kernel makes at most one Hilbert space into an RKHS.
 - (i) Suppose k and k' are reproducing kernels for $\mathcal{H} \subseteq K^X$. Then for any $f \in \mathcal{H}$ and $x \in X$, we have $\langle f, k_x - k_x' \rangle = f(x) - f(x) = 0$ so that $k_x = k_x'$. Since x was arbitrary, k = k'.
 - (ii) Let k be a reproducing kernel for $\mathcal{H} \subseteq K^X$. It suffices to show that \mathcal{H} is uniquely determined (along with its inner product³). Let \mathcal{H}_0 be the subspace of \mathcal{H} spanned by k_x 's for $x \in X$. Note that $\mathcal{H}_0^{\perp} = \{0\}$ (because of k's reproducing property) so that $\overline{\mathcal{H}_0} = (\mathcal{H}_0^{\perp})^{\perp} = \mathcal{H}^{.4}$ Since \mathcal{H}_0 is determined by k, it suffices to have that the topology on \mathcal{H} is also determined by $k \iff$ the norm on \mathcal{H} is determined by k. Note that this will also imply that the inner product is uniquely determined (due to polarization).

It suffices to have that the norm is determined on \mathcal{H}_0 for it is dense in \mathcal{H} . Indeed, for $f = \sum_{i=\alpha_i}^n \alpha_i k_{x_i}$, we have

$$||f||^2 = \sum_{i,j=1}^n \alpha_i \overline{\alpha_j} \langle k_{x_i}, k_{x_j} \rangle$$

$$= \sum_{i,j=1}^n \overline{\alpha_j} k(x_j, x_i) \alpha_i.$$

Remark. Note that completeness of \mathcal{H} was used in writing $\overline{\mathcal{H}}_0 = (\mathcal{H}_0^{\perp})^{\perp}$. Other than Any example that, it was not used elsewhere until now.

necessity of this?

We summarize our results so far. For any set X, we have:

$$\{\text{RKHS's on } K^X\} \xrightarrow[\text{(injective)}]{\text{Theorem 1.6}} \{\text{r.k.'s on } X\} \xrightarrow[\text{(inclusion)}]{\text{Lemma 1.3}} \{\text{p.s.d. kernels on } X\}$$

To complete the circle of ideas, we show in the next section that any p.s.d. kernel is a reproducing kernel for some (and hence unique) RKHS which will lead to the following satisfying correspondence:

$$\{RKHS's \text{ on } K^X\} \longleftrightarrow \{r.k.'s \text{ on } X\} = \{p.s.d. \text{ kernels on } X\}$$
³Note that addition and scalar multiplication are already determined (namely, pointwise) by

definition.

⁴A naïve glance suggests that this fixes \mathcal{H} , but it doesn't! At least yet. We haven't yet reduced the description of \mathcal{H} to only that of k. The closure of \mathcal{H}_0 (which does only depend on k) is dependent on the norm topology induced from \mathcal{H} , which might still depend on the choice of \mathcal{H} , not just k.

2. Moore-Aaronszajn

The upcoming lemmas are geared towards the following goal: Given a p.s.d. kernel k on a set X, we find an RKHS \mathcal{H} whose reproducing kernel is precisely k. We do so in the following steps:

- (i) Each k_x must lie in \mathcal{H} . Thus, we are motivated to first define a vector space \mathcal{H}_0 spanned by k_x 's.
- (ii) We show that there's a unique inner product on \mathcal{H}_0 with respect to which k has the reproducing property.
- (iii) Finally, we complete \mathcal{H}_0 , and verify that it's the required RKHS.

Lemma 2.1. Let k be a p.s.d. kernel. Define \mathcal{H}_0 to be the subspace of K^X generated by k_x 's for $x \in X$. Then \mathcal{H}_0 admits a unique inner product such that $f(x) = \langle f, k_x \rangle$ for any $f \in \mathcal{H}_0$.

Proof. We show that

$$\langle f, g \rangle = \sum_{i,j} \overline{\beta_j} k(y_j, x_i) \alpha_i$$
 (2.1)

defines an inner product on \mathcal{H}_0 for $f = \sum_{i=1}^m \alpha_i k_{x_i}$ and $g = \sum_{j=1}^n \beta_j k_{y_j}$. That it's well-defined follows because

$$\sum_{i} \overline{\beta_{j}} f(y_{j}) = \sum_{i,j} \overline{\beta_{j}} k(y_{j}, x_{i}) \alpha_{i} = \sum_{i} \overline{g(x_{i})} \alpha_{i}$$
 (2.2)

where the second equality follows since \underline{k} is conjugate symmetric. It's immediate from Eq. (2.1) that $\langle \cdot, \cdot \rangle$ is p.s.d. and conjugate symmetric (since \underline{k} is a p.s.d. kernel), and from Eq. (2.2) that it's bilinear with $\langle f, k_x \rangle = f(x)$ for any $x \in X$ (take $g = k_x$). Only positive definiteness remains to be shown:

Note that $\langle \cdot, \cdot \rangle$ is a semi-inner-product so that it obeys Cauchy-Schwarz and induces a seminorm. Now, let ||f|| = 0. Then for any $x \in X$, we have $|f(x)| = |\langle f, k_x \rangle| \le ||f|| ||k_x|| = 0$.

Lemma 2.2. Continuing Lemma 2.1, let⁵ $S := \{Cauchy \text{ sequences in } \mathcal{H}_0\}$. Then there exists a linear map $\phi \colon S \to K^X$ that maps Cauchy sequences to their pointwise limits, the kernel of which consists precisely of sequences that converge to 0 in \mathcal{H}_0 .

Proof. First we show that ϕ is indeed well-defined:

 $^{^5}$ "S" for "sequences".

Let (f_n) be Cauchy in \mathcal{H}_0 . Then for any $x \in X$, we have $|f_m(x) - f_n(x)| = |\langle f_m - f_n, k_x \rangle| \leq ||f_n - f_m|| ||k_x|| \stackrel{\text{w}}{\to} 0$ as $m, n \to \infty$ so that $(f_n(x))$ is Cauchy in K and hence convergent. Thus, pointwise limits of Cauchy sequences in \mathcal{H}_0 do exist, and since K is Hausdorff, these are unique.

Linearity of ϕ is easy. We now compute $\ker \phi$. If $f_n \to 0$ in \mathcal{H}_0 , then for any $x \in X$, we have $f_n(x) = \langle f_n, k_x \rangle \stackrel{\text{w}}{\to} 0$. Conversely, let (f_n) be a Cauchy sequence in \mathcal{H}_0 that converges to 0 pointwise. We show that it converges to 0 in \mathcal{H}_0 as well: Fix an N and write $f_N = \sum_{i=1}^n \alpha_i k_{x_i}$. Now,

$$||f_n||^2 = |\langle f_n - f_N, f_n \rangle + \langle f_N, f_n \rangle|$$

$$\leq |\langle f_n - f_N, f_n \rangle| + \left| \sum_{i=1}^n \overline{\alpha_i} f_n(x_i) \right|$$

$$\leq ||f_n - f_N|| ||f_n|| + \sum_{i=1}^n |\alpha_i| |f_n(x_i)|$$

so that taking N large enough ensures that the above is eventually less than any arbitrary $\varepsilon > 0$.

Thus, we have the following commutative diagram:

$$\mathcal{H}_0 \xrightarrow{\iota} S/\ker \phi \xrightarrow{\tilde{\phi}} \operatorname{im} \phi$$

The map $\mathcal{H}_0 \to S$ represents the function $f \mapsto (f, f, \ldots)$.

Now we make our final blow via the following list of arguments:

- (i) $\iota : f \mapsto \overline{(f, f, \ldots)}$ is a metric completion with the usual metric on $S/\ker \phi$, namely $d(\overline{(f_i)}, \overline{(g_i)}) = \lim_i d(f_i, g_i) \stackrel{\text{w}}{=} \lim_i ||f_i g_i||$.
- (ii) Thus, the metric space $S/\ker \phi$ admits a unique Hilbert space structure such that ι becomes a norm completion with the norm recovering the metric.
- (iii) That the vector space structure thus endowed on $S/\ker\phi$ matches with the one due to algebraic quotient is easy to show:

Note that any two generic elements of $S/\ker \phi$ are given by $\overline{(f_i)}$ and $\overline{(g_i)}$ where (f_i) , (g_i) are Cauchy sequences in \mathcal{H}_0 . Note that $\iota(f_n) \stackrel{n}{\to} \overline{(f_i)}$ and $\iota(g_n) \stackrel{n}{\to} \overline{(g_i)}$ (easy). Continuity of addition and linearity of ι ensure that $\iota(f_n + g_n) \stackrel{n}{\to} \overline{(f_i)} + \overline{(g_i)}$. Finally, note that $\iota(f_n + g_n) \stackrel{n}{\to} \overline{(f_i + g_i)}$ as well so that we indeed have $\overline{(f_i)} + \overline{(g_i)} = \overline{(f_i + g_i)}$, which is precisely the definition

of vector addition in the algebraic quotient. Similarly, one can verify for scalar multiplication.

- (iv) $\tilde{\phi}$ is a vector space isomorphism.⁶ Thus, the inner product on $S/\ker\phi$ can be transported to im ϕ without altering the latter's vector space structure, making $\tilde{\phi}$ an isometric isomorphism.
- (v) Note that $\tilde{\phi} \circ \iota$ is precisely the inclusion $\mathscr{H}_0 \hookrightarrow \operatorname{im} \phi$ (just traverse along the top arrows in the commutative diagram above) which is thus an isometric linear map.
- (vi) im ϕ is complete since $S/\ker \phi$ is, and thus is a Hilbert space.
- (vii) Finally, we show that k still has the reproducing property on im ϕ :

Let $f \in \operatorname{im} \phi$ be the pointwise limit of the Cauchy sequence (f_i) in \mathcal{H}_0 . Then $f_i \to f$ in $\operatorname{im} \phi$ as well:

Note that $f = \tilde{\phi}(\overline{(f_i)})$ and $f_j = \tilde{\phi} \circ \iota(f_j)$. Thus it suffices to have $\iota(f_j) \xrightarrow{j} \overline{(f_i)}$ in $S/\ker \phi$ which is indeed true.

Thus, for any $x \in X$, one has $\langle f, k_x \rangle = \lim_i \langle f_i, k_x \rangle = \lim_i f_i(x) = f(x)$ as claimed.

We have thus constructed a Hilbert space, namely im ϕ , whose reproducing kernel is precisely k, proving the following:

Theorem 2.3 (Moore-Aronszajn). Any p.s.d. kernel is a reproducing kernel.

⁶With respect to the algebraic vector space structure on $S/\ker\phi$, not necessarily the vector space structure coming from completion. Thus, it was crucial to show that these two structures are exactly the same.