1

Assignment 18

Pulkit Saxena

1 PROBLEM UGC JUNE 2015 Q71

Let S be the set of 3x3 real matrices A with

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{1.0.1}$$

Then the set contains:-

- 1) a Nilpotent Matrix
- 2) a matrix of rank one
- 3) a matrix of rank two
- 4) a non-zero skew symmetric matrix.

2 Essential Framework Required to solve problem

Proof 1	Let $\mathbf{A}x=0$ and $\mathbb{N}(\mathbf{A})$ is the null space of \mathbf{A}
$Rank(\mathbf{A}) = Rank(\mathbf{A}^T \mathbf{A})$	Then $\mathbf{A}^T \mathbf{A} \mathbf{x} = 0$ which means $\mathbb{N}(\mathbf{A}) \subset \mathbb{N}(\mathbf{A}^T \mathbf{A})$
	Thus if $\mathbf{A}^T \mathbf{A} \mathbf{x} = 0$, then
	$x^T \mathbf{A}^T \mathbf{A} x = 0 \implies \mathbf{A} x = 0$
	Which means $\mathbf{A}x = 0$ thus
	$\mathbb{N}(\mathbf{A}^{\mathbb{T}}\mathbf{A})\subset\mathbb{N}(\mathbf{A})$
	From the Above two condition we can say that $N(\mathbf{A}^T\mathbf{A}) = \mathbb{N}(\mathbf{A})$
	$rank(\mathbf{A}) = n - \mathbb{N}(\mathbf{A})$
	$rank(\mathbf{A}) = rank(\mathbf{A}^T \mathbf{A})$
	Hence Proved.
Proof 2	Suppose $A = (a_1 \dots a_n)$ where a_i is the column vector of A
$ Rows(\mathbf{A}^T \mathbf{A}) = Rows(\mathbf{A}) $	$\mathbf{A}^T \mathbf{A} = \mathbf{A}^T \begin{pmatrix} \mathbf{a_1} & \dots & \mathbf{a_n} \end{pmatrix} = \begin{pmatrix} \mathbf{A}^T \mathbf{a_1} & \dots \mathbf{A}^T \mathbf{a_n} \end{pmatrix}$
	For each column of $\mathbf{A}^T \mathbf{A}$

$$\mathbf{A}^T \mathbf{a_i} = (\mathbf{b_1} \dots \mathbf{b_n}) \mathbf{a_i}$$
 where $\mathbf{b_i}$ is the column vector of \mathbf{A}^T and Row of \mathbf{A}

$$= (\mathbf{b_1} \dots \mathbf{b_n}) \begin{pmatrix} a_{i1} \\ \vdots \\ a_{in} \end{pmatrix} = \sum_{j=1}^n a_{ij} b_j$$
So column of $\mathbf{A}^T \mathbf{A}$ is the linear combination of rows of \mathbf{A} .

Since $\operatorname{rank}(\mathbf{A}^T \mathbf{A}) = \operatorname{Column}(\mathbf{A}^T \mathbf{A}) = \operatorname{Row}(\mathbf{A})$

 $Row(\mathbf{A}^T\mathbf{A}) = Column(\mathbf{A}^T\mathbf{A}) = Row(\mathbf{A})$

Hence Proved.

TABLE 1: Proofs

3 Solution

Option 1 From Proof 2,Set S contained a set of matrix whose First Column is Non-zero. $S \in \operatorname{Set} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ Nilpotent Matrix check Given $\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ So the only matrix **A** which satisfy $\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $\mathbf{A}^2 = 0$ such that $\mathbf{A} \in S$ $\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in S$ $\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ which is a nilpotent matrix}$ Option 1 is correct. Option 2 In Proof 1 we already prove that $Rank(\mathbf{A}) = Rank(\mathbf{A}^T\mathbf{A})$

matrix of rank one check	Since the $Rank(\mathbf{A}^T\mathbf{A}) = 1$ so the $Rank(\mathbf{A}) = 1$ There fore Set S always contains only Rank 1 matrices. Hence Option 2 is correct.
Option 3 matrix of rank two check	Since set S contain only rank 1 matrices and none of rank 2 matrices as already proved above therefore Option 3 is incorrect.
Option 4 non-zero skew . symmetric matrix check	Proved by contradiction Assume Rank of A is 1 so A can be written as $\mathbf{A} = \mathbf{u}\mathbf{v}^T$ for any non-zero Columns vectors \mathbf{u} , \mathbf{v} with \mathbf{n} entries. If A is skew symmetric, we have:- $\mathbf{A}^T = -\mathbf{A}$ $(\mathbf{u}\mathbf{v})^T = -\mathbf{u}\mathbf{v}^T \ \mathbf{v}\mathbf{u}^T = -\mathbf{u}\mathbf{v}^T$ The Column space of these matrices is same. The column space of $\mathbf{v}\mathbf{u}^T$ is span of \mathbf{v} , where as the column space of $\mathbf{u}\mathbf{v}^T$ is the span of \mathbf{u} , So we must have $\mathbf{v} = k\mathbf{u}$ for some $k \in \mathbb{R}$. So the equation becomes $k\mathbf{u}\mathbf{u}^T = -k\mathbf{u}\mathbf{u}^T$ and since $\mathbf{u} \neq 0$; We can conclude that $\mathbf{k} = 0$, which means $\mathbf{v} = 0$ therefore $\mathbf{A} = 0$. This Contradicts our assumption that \mathbf{A} has rank 1. Thus real skew symmentric matrix can never have rank=1. Hence option 4 is incorrect.
Answers	Option 1 and Option 2 are correct.

TABLE 2: Solution Table