

Example: Anxiety and exam performance

- What are the effects of exam stress and revision on exam performance?
- Study participants are 103 students.
- Variables measured:
 - □ Gender;
 - ☐ Time spent revising (hours);
 - ☐ Exam performance (percentage score);
 - ☐ Exam Anxiety (score out of 100):
 - Based on a purposely developed and validated exam anxiety questionnaire, anxiety measured before an exam.

School of IT & Mathematical Sciences

Example: Scatterplots

Using PROC SGSCATTER to display multiple plots on the same page:

```
proc sgscatter data=work.examanxiety;
    plot exam * anxiety anxiety * revise;
run;
```

School of IT & Mathematical Sciences

-

Example: Scatterplots

Using COMPARE statement with PROC SGSCATTER, to plot exam scores against anxiety scores and time spent revising:

```
proc sgscatter data=work.examanxiety;
     compare y=exam x=(anxiety revise);
run;
```

School of IT & Mathematical Sciences

a

Example: Scatterplot matrix

Using PROC SGSCATTER to plot every variable against every other variable:

School of IT & Mathematical Sciences

11

Correlation analysis

- The consideration of whether there is a relationship or association between two numerical variables is called correlation analysis.
- A correlation coefficient is an index which defines the strength and direction of the relationship between two numerical variables.
- Visual impression can be formed using a *scatterplot*.
- We will see two types of correlation: Pearson and Spearman.
- The Pearson product moment correlation coefficient (linear correlation coefficient) measures the strength of the linear association between two quantitative variables.
- We use Spearman's Rho for non-parametric statistics.

School of IT & Mathematical Sciences

Pearson correlation coefficient

■ The covariance is the average cross-product deviations:

$$Cov(x, y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N - 1}$$

The correlation coefficient is the standardized version of covariance:

$$r = \frac{Cov(x, y)}{s_x s_y} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(N - 1)s_x s_y}$$

■ Correlation coefficient r has no units and it is always a number between -1 and 1.

School of IT & Mathematical Sciences

13

Positive and negative correlation

- If two variables x and y are positively correlated:
 - □ large (small) values of *x* are associated with large (small) values

of y.

- If two variables x and y are negatively correlated:
 - □ large (small) values of x are associated with small (large) values

of y.

School of IT & Mathematical Sciences

Interpreting correlation

- Correlation coefficient is an effect size:
 - $\square \pm 0.1 = \text{small effect};$
 - $\square \pm 0.3 = medium effect;$
 - \Box ±0.5 = large effect.

- The square of the Pearson's correlation coefficient is the coefficient of determination R^2 :
 - It measures the amount of variance in one variable that is shared by another variable.

School of IT & Mathematical Sciences

15

Assumptions behind Pearson's r

- If we want to establish whether a correlation coefficient is statistically significant, we need the following:
 - ☐ We are working with interval variables:
 - Equal intervals on the continuous scale being measured represent equal differences in the property being measured.
 - ☐ The sampling distribution is Normal:
 - This can be assumed when both variables are Normally distributed or we have a large sample.

School of IT & Mathematical Sciences

Example: Anxiety and exam performance

Significant correlation with the intended response variable means the variable should be included in a regression model.

P-values $\begin{array}{c} \mathsf{H_0:} \ \rho = 0 \\ \mathsf{H_1:} \ \rho \neq 0 \\ \alpha = 0.01 \end{array}$

Exam performance is significantly correlated with exam anxiety, r = -0.44, and time spent revising, r = 0.40 (both *P*-values < 0.0001). The time spent revising was also correlated with exam anxiety, r = -0.71 (P-value < 0.0001).

School of IT & Mathematical Sciences

17

Example: Correlation

Use PROC CORR to obtain all pairwise correlations:

Option to suppress simple descriptive statistics output

School of IT & Mathematical Sciences

Partial and semi-partial correlations

- Partial correlation:
- Semi-partial correlation:
 - Measures the relationship between two variables controlling for the effect that a third variable has on only one of the others.
 Exam ← Anxiety

Revision

Revision

School of IT & Mathematical Sciences

Example: Exam performance

	1 Partial Variables:	REVISE				
	Variables: EXAM ANXIETY					
Pos						
i cu	rson Partial Correlat Prob > r under					
EXAN	Prob > r under	H0: Partial Rho)=0			
EXAN	Prob > r under	H0: Partial Rho	o=0 ANXIETY			
EXAN	Prob > r under Performance (%)	H0: Partial Rho	-0.24667			

The partial correlation between exam performance and exam anxiety is -0.247, which is considerably less when the effect of revision time is not controlled (r = -0.44). This correlation is still statistically significant, but the relationship is diminished.

School of IT & Mathematical Sciences

23

Example: Partial correlation

Use PROC CORR:

```
PROC CORR data=chapter6.examanxiety;
     VAR exam anxiety;
     PARTIAL revise;
     RUN;
```

School of IT & Mathematical Sciences

Spearman's correlation coefficient

- The Spearman's rank correlation coefficient measures the strength of curved relationships between two quantitative variables that are strictly increasing or decreasing.
 - Also used when outliers are present.
- It is denoted by r_s or ρ (rho) and calculated by first ranking the data for each quantitative variable and then applying the linear correlation coefficient formula.
- A non-parametric alternative to Pearson's correlation coefficient (also Kendall's Tau for small samples).

School of IT & Mathematical Sciences

Correlation and causality

- If two variables are significantly correlated, this *does not imply* that one must be the cause of the other.
- Does x 'cause' y?
 - ☐ Temperature and weight of clothing worn?
 - □ Ice cream sales and number of drownings?
 - ☐ Shoe size and spelling ability?
 - ☐ Height and salary?

School of IT & Mathematical Sciences

Simple linear regression

- Suppose that a scatter diagram shows a reasonably strong, linear association between x and y variables.
- It is then natural to represent linear association by a straight line. A regression model is of the form:

■ For simple linear regression we have one explanatory variable (x):

$$\hat{y} = b_0 + b_1 x + e_i$$
outcome/dependent/response

can use this simple linear regression model to make prediction

• We can use this simple linear regression model to make predictions.

School of IT & Mathematical Sciences

Least squares regression

■ Minimise the sum of squares of residuals, which are the vertical distances from line to points.

School of IT & Mathematical Sciences

Is exam anxiety affected by revising?

	Parameter Estimates									
,	Variable	Label	DF	Parameter Estimate		t Value	Pr > t			
	Intercept	Intercept	1	87.66755	1.78184	49.20	<.0001			
	REVISE	Time Spent Revising	1	-0.67108	0.06637	-10.11	<.0001			

$$\hat{y} = b_0 + b_1 x$$

$$Anxiety = b_0 + b_1 Revise$$

$$Anxiety = 87.67 - 0.67 Revise$$

35

Interpretation of b_0 and b_1

- The intercept b_0 identifies the value of y when x is zero but it can be meaningless.
- The slope b_1 is the 'rate of change' of y with respect to x.
 - $\hfill\Box$ The slope b_1 determines how much the variable y will change when x increases by one unit.
- For the Exam Anxiety vs Revision Time regression model:
- Slope $b_1 = -0.67$
 - ☐ For every unit increase in *x* (revision time) there is a 0.67 decrease in *y* (decrease in exam anxiety score).
 - ☐ On average, exam anxiety decreases by 0.67 for each 1 hour increase in revision time.
- Intercept b_0 = 87.67
 - □ When x = 0 (no revision), y = 87.67 (exam anxiety score).
 - ☐ On average, exam anxiety score is 87.67 when revision time is 0.

School of IT & Mathematical Sciences

How good is the regression model?

R ² value (%)	Strength of linear association	Quality of simple linear regression model
>90	Very strong	Excellent
75-90	Strong	Very good
50-75	Reasonable	Good
25-50	Weak	Weak
<25	Very little	Poor

 \blacksquare R² is the coefficient of determination which measures the proportion of variance among the original *y* observations, which is 'explained' by the linear regression model that uses *x*.

School of IT & Mathematical Sciences

37

Variance explained by the model

Total amount of variance

The coefficient of determination R^2 is 50.3%. The line appears to be a *good* fit to the data. Revision time explains 50.3% of variability in exam anxiety scores.

$$\hat{y} = b_0 + b_1 x$$
 Anxiety = 87.67 - 0.67 Revise

School of IT & Mathematical Sciences

Checking the Linear Regression Model

■ The simple linear regression model

$$\hat{y} = (b_0) + (b_1)x + e_1$$

is a sample-based estimate of the population regression model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- Before using the sample-based model for prediction, test the model against the population regression model to determine if it is valid.
- We need to test the slope β_1 using b_1 and check assumptions.
- If the model passes these tests, we can use it for prediction. Otherwise we may need to revise the model structure.

School of IT & Mathematical Sciences

39

■ Null and alternative hypotheses

 H_0 : $\beta_1 = 0$ (no linear relationship)

 H_1 : $\beta_1 \neq 0$ (linear relationship does exist)

■ Test statistic

$$t = \frac{b_1}{SE_{b_1}}$$
 where $SE_{b_1} = \frac{S}{\sqrt{\sum (x - \overline{x})^2}}$ Standard error

■ Confidence interval

$$b_{1} \pm t_{\alpha/2}^{*} \times SE_{b_{1}}$$
 Critical value Degrees of freedom

School of IT & Mathematical Sciences

Parameter Estimates								
Variable	Label	DF		Standard Error		Pr > t	95% Confidence Limits	
Intercept	Intercept	1	87.66755	1.78184	49.20	<.0001	84.13285	91.20225
REVISE	Time Spent Revising	1	-0.67108	0.06637	-10.11	<.0001	-0.80274	-0.53942

H₀:
$$\beta_1$$
= 0
H₁: β_1 ≠ 0 with the test statistic t_{103-2} = t_{101} = -10.11 (for n=103)

Since the p-value < 0.0001, we reject H_0 . At 5% significance level, we conclude there is a relationship between exam anxiety and time spent revising. The slope is significantly different from zero.

We are 95% confident that the population value of the slope is between -0.803 and -0.539.

 $H_0: \beta_0 = 0$

We can similarly test the intercept β_0 , i.e. $H_1: \beta_0 \neq 0$

School of IT & Mathematical Sciences

41

Inference for overall model fit

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	1	15147	15147	102.23	<.0001			
Error	101	14965	148.16489					
Corrected Total	102	30112						

F-ratio

Improvement due to the model

Difference between the model and the observed data

A good model has a large F-ratio and a small P-value.

School of IT & Mathematical Sciences

Linear regression assumptions

- Best remembered using the acronym LINE:
 - ☐ Linearity: The relationship between y and x is linear.
 - □ Independent errors: the residuals are independent.
 - In particular, repeated observations on the same individual are not allowed.
 - □ Normality: the residuals are Normally distributed for any given value of x use a P-P or Q-Q Plot.
 - □ Equal Variance (homoscedasticity): the residuals have constant variance around the 0 line.
- Check these assumptions using plots.

School of IT & Mathematical Sciences

Confidence and prediction intervals for regression response

■ Confidence interval for the mean response μ_Y when x takes the value x^* :

$$\hat{y} \pm t^* \times SE_{\hat{\mu}}$$

Prediction interval for a single observation y when x takes the value x*:

 $\hat{y} \pm t^* \times SE_{\hat{y}}$ Different standard errors

- The prediction interval is always wider than the confidence interval.
 - ☐ Individuals are always more variable than averages.

School of IT & Mathematical Sciences

49

Making predictions

MY HOBBY: EXTRAPOLATING

School of IT & Mathematical Sciences

Making predictions

- We can use the regression model to predict the value of y for a specific value of each x.
- If the regression line is a poor fit to the data the prediction will be of little use.
- Even if the regression line is a good fit to the data, a prediction can still be 'suspect'.
 - ☐ Preferred prediction is based on *interpolation*.
 - ☐ It is always dangerous to make a prediction based on *extrapolation*.
 - □ *Extrapolation* involves at least one *x*-value outside the limits of the *x*-values used in producing the regression model.

School of IT & Mathematical Sciences

51

Example: Interpolation

- In the original data set:
 - ☐ Time spent revising ranged between 1 and 98 hours.
- To predict the anxiety score of a student who spent 20 hours revising, we use our linear regression model:

Anxiety = 87.67 - 0.67 Revise

 $Anxiety = 87.67 - 0.67 \times 20$

Anxiety = 74.25

- The predicted anxiety for this individual is 74.25.
- Since R² is moderate (50.3%) and this is an interpolation, the prediction is likely to be reasonably trustworthy.

School of IT & Mathematical Sciences

Example: Extrapolation

- What is the predicted anxiety score for a student who spends 120 hours revising?
- Using our linear regression model we now have:

Anxiety =
$$87.67 - 0.67$$
 Revise
Anxiety = $87.67 - 0.67$ x 120
Anxiety = 7.14

- The predicted anxiety for this individual is 7.14.
- Since R² is moderate (50.3%) and this is an extrapolation, the prediction may not be reliable.

School of IT & Mathematical Sciences