1. Consider an optimized RF model (M) built on the set of autosomal chromosomes $\{k|i\notin k\}$ binned at some resolution r

2. for each chr i do

- 3. Construct the base-level resolution predictor space $A_{n \times p}$ where n is the length of chr i and p is the number of predictors
- 4. Assign threshold $\{t|0 \le t \le 1\}$ and $\{\epsilon | \epsilon > 0\}$
- 5. **if** |t| > 1 or $|\epsilon| > 1$ **then**
 - 6. Assign grid (g) of combinations of t and ϵ
 - 7. for each combination l in q do
 - 8. Evaluate M on $A_{n \times p}$ to get the probability of each genomic coordinate as being a domain boundary π_n
 - 9. Subset $\{\pi_n | \pi_n \ge t_l\}$
 - 10. Construct the pairwise distance matrix D between genomic coordinates where $\pi_n \geq t_l$
 - 11. Apply DBSCAN on D with MinPts = 3 and $\epsilon = \epsilon_l$
 - 12. for each cluster k identified by DBSCAN do
 - 13. Assign w_k as the number of coordinates that span each cluster of bases in k (PTBR)
 - 14. Perform PAM on the sub-distance matrix D_k to extract the cluster medoid b_k (PTBP)
 - 15. for each predictor p do
 - 16. Calculate the normalized enrichment (NE) over all predictors

$$NE = \frac{1}{p} \left[\Sigma_{s=1}^p \left[\frac{1}{b} \Sigma_{k=1}^b e_{ks} \right] \right]$$

where $e_{ks} = \mathbf{I}\{r_s \in (b_k - f, b_k + f)\}$ is the number of elemental regions r of predictor p that overlap with each flanked boundary

- 17. Determine where NE converges as optimal $\{t, \epsilon\}$ combination
- 18. Repeat steps 12-18 on A_{nxp} with optimal $\{t, \epsilon\}$

end end

 $\stackrel{|}{\mathrm{end}}$

else

19. Perform steps 12-18 on A_{nxp} such that $t=t_0$ and $\epsilon=\epsilon_0$

 \mathbf{end}

 \mathbf{end}

Algorithm 1: Psuedocode for *preciseTAD* implementation.