PSI* – récolte oraux 2025

3 juillet 2025

Table des matières

Planche 1	(ENS)	1
Planche 2	(CCINP)	3
Planche 3	(Centrale 1)	7
Planche 4	(Centrale 1)	8
Planche 5	(CCINP)	9
Planche 6	(Centrale 1)	11
Planche 7	(CCINP)	13
Planche 8	(Centrale 1)	14
Planche 9	(Centrale 1)	15

Planche 1 (ENS)

Énoncé :

Soit $f:[0,1]\to\mathbb{R}$.

On définit la variation totale de f sur [0,1] par :

$$V(f) = \sup_{n \in \mathbb{N}} \sup_{0 \le t_0 \le t_1 \le \dots \le t_n \le 1} \sum_{i=1}^n |f(t_i) - f(t_{i-1})|$$

On appelle BV([0,1]) l'ensemble des fonctions à variation bornée, c'est-à-dire les fonctions $f:[0,1]\to\mathbb{R}$ telles que $V(f)<+\infty$.

- 1) Montrer que les fonctions monotones et lipschitziennes sont à variation bornée.
- 2) Les fonctions à variation bornée sont-elles bornées ?
- 3) Trouver une fonction continue qui n'est pas à variation bornée.
- 4) Montrer que $(BV, \|\cdot\|)$ est un \mathbb{R} -espace vectoriel normé avec

$$||f|| = |f(0)| + V(f)$$

- 5) Montrer que le produit de deux fonctions à variation bornée est à variation bornée.
- **6)** Soient $f:[0,1] \to \mathbb{R}$, $g:[0,1] \to [0,1]$ deux fonctions à variation bornée.

- a) Si g est monotone, montrer que $f \circ g \in BV$.
- **b)** Si f est monotone, $f \circ g \in BV$?

Indications

- Poser $f(x) = x \cos\left(\frac{\pi}{x}\right)$
- Poser $t_0 = 0, t_1 = x$
- Utiliser que $f \in BV \Rightarrow f$ est bornée
- $g(t_k)$ est une subdivision, $h \in [0,1]$

Corrigé:

1) a) Supposons f croissante (le cas décroissant est analogue). Soit

$$0 \le t_0 \le \dots \le t_n \le 1$$

une subdivision. Alors:

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| = f(t_n) - f(t_0) \le f(1) - f(0)$$

donc $f \in BV$.

b) Si f est K-lipschitzienne, alors :

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| \le K \sum_{k=1}^{n} |t_k - t_{k-1}| \le K$$

donc $f \in BV$.

2) Oui. Soit f non bornée. Soit $t_0 = 0$. Soit $M \in \mathbb{R}$ et $t_1 \in [0, 1]$ tel que $|f(t_1)| > M + |f(0)|$. Alors:

$$\sum_{k=1}^{1} |f(t_k) - f(t_{k-1})| = |f(t_1) - f(t_0)| > M$$

donc $f \notin BV$.

3) Soit $f: x \mapsto x \cos\left(\frac{\pi}{x}\right)$ si $x \neq 0$, et f(0) = 0. Soit $n \in \mathbb{N}^*$ et $t_k = \frac{1}{k+1}$. Alors:

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| = \sum_{k=1}^{n} \frac{1}{k+1} + \frac{1}{k} \to +\infty$$

et pourtant f est continue sur [0,1]. Donc $f \notin BV$.

- 4) $-0 \in BV$, évident.
 - $-\lambda f \in BV \text{ si } f \in BV, \text{ facile.}$
 - Si $f, g \in BV$, alors $f + g \in BV$ avec :

$$V(f+g) \le V(f) + V(g)$$

Ainsi, BV est un sous-espace vectoriel de $\mathcal{F}([0,1],\mathbb{R})$.

- $||f|| \ge 0$, évident.
- $\|\lambda f\| = |\lambda| \cdot \|f\|$, facile.

- Si $f,g \in BV$, nous avons vu que $V(f+g) \leq V(f) + V(g)$, ce qui implique facilement que $||f+g|| \leq ||f|| + ||g||$.
- Si ||f|| = 0, alors f(0) = V(f) = 0. Soit $x \in [0,1]$, posons $t_0 = 0, t_1 = x$. Alors:

$$0 \le \sum_{k=1}^{1} |f(t_k) - f(t_{k-1})| \le V(f) = 0$$

donc |f(x) - f(0)| = 0 et f(x) = f(0). Ainsi f est nulle.

Donc $\|\cdot\|$ est une norme.

5) Soient $f, g \in BV$, M un majorant de |f|, et N un majorant de |g|. Alors pour toute subdivision $0 \le t_0 \le \cdots \le t_n \le 1$, on a :

$$\sum_{k=1}^{n} |(fg)(t_k) - (fg)(t_{k-1})| = \sum_{k=1}^{n} |f(t_k)(g(t_k) - g(t_{k-1})) + g(t_{k-1})(f(t_k) - f(t_{k-1}))|$$

$$\leq M \sum_{k=1}^{n} |g(t_k) - g(t_{k-1})| + N \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})|$$

$$= MV(g) + NV(f)$$

donc $fg \in BV$.

6) a) Dans le cas où g est croissante, si $0 \le t_0 \le t_1 \le \cdots \le t_n \le 1$ alors $0 \le g(t_0) \le g(t_1) \le \cdots \le g(t_n) \le 1$ donc :

$$\sum_{k=1}^{n} |f(g(t_k)) - f(g(t_{k-1}))| \le V(f)$$

ainsi $f \circ g \in BV$.

Si g est décroissante, $1 \ge g(t_0) \le g(t_1) \ge \cdots \ge g(t_n) \ge 0$ mais le raisonnement est le même.

b) Non.

Posons:

$$f(x) = \begin{cases} 0 & \text{si } x \le \frac{1}{2} \\ 1 & \text{si } x > \frac{1}{2} \end{cases}, \quad g(x) = \frac{1}{2} \left(1 + x^3 \cos \left(\frac{\pi}{x} \right) \right)$$

Soit $n \in \mathbb{N}^*$, et $t_k = \frac{1}{k+1}$.

On remarque alors que :

$$f(g(t_k)) = \begin{cases} 0 & \text{si } g(t_k) < \frac{1}{2} \\ 1 & \text{si } g(t_k) > \frac{1}{2} \end{cases} \quad \text{donc } |f(g(t_k)) - f(g(t_{k-1}))| = 1.$$

Ainsi:

$$\sum_{k=1}^{n} |f(g(t_k)) - f(g(t_{k-1}))| = \sum_{k=1}^{n} 1 = n \to +\infty \text{ quand } n \to \infty$$

Donc $f \circ g \notin BV$.

Planche 2 (CCINP)

Énoncé:

Exercice 1 à préparer en 20 minutes : Soit A dans $\mathcal{M}_n(\mathbb{R})$ telle que $A^2 - 5A + 6I_n = 0$.

1) Donner 2 conditions nécessaire et suffisantes de diagonalisabilité pour une matrice carré.

- 2) Montrer que A est diagonalisable et que ses valeurs propres sont dans $\{2,3\}$. On note D la matrice diagonale associée.
- 3) Pour M dans $\mathcal{M}_n(\mathbb{R})$, on pose f(M) = MD + DM.
 - a) Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
 - b) Montrer que f est diagonalisable [indication : découper M et D en matrices par blocs].

Exercice 2 passage en 10 min sans préparation :

- 1) Chercher a, b, c tels que pour tout $t \in \mathbb{R} \setminus \{0, -1, 1\}, \frac{1}{t(t^2 1)} = \frac{a}{t} + \frac{b}{t 1} + \frac{c}{t + 1}$.
- 2) Résoudre l'équation différentielle $t(t^2-1)y'+2y=t^2$ sur $]1,+\infty[$ et sur]0,1[.

Corrigé:

Exercice 1:

- 1) Question de cours :
 - admet une base de vecteurs propres ;
 - les sous-espaces propres sont supplémentaires ;
 - le polynôme caractéristique est scindé et la multiplicité de chaque valeur propre est égale à la dimension du sous-espace propre associé.
- 2) Un polynôme annulateur de A est P = X² 5X + 6 = (X 2)(X 3). Il est scindé à racines simples, donc A est diagonalisable. Les valeurs propres de A sont parmi les racines de tout polynôme annulateur, donc elles sont dans {2,3}.
- 3) a) Si $M \in \mathcal{M}_n(\mathbb{R})$, $MD + DM \in \mathcal{M}_n(\mathbb{R})$. Et si $N \in \mathcal{M}_n(\mathbb{R})$, $\lambda \in \mathbb{R}$,

$$f(M+N) = MD + \lambda ND + DM + \lambda DN = f(M) + \lambda f(N)$$

donc $f \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$.

b) Si $D = 2I_n$ ou $3I_n$, f = 4id ou 6id, donc elle est évidemment diagonalisable. Sinon il existe $p \in [1, n-1]$ et q = n-p tel que dim $E_2(A) = p$ et dim $E_3(A) = q$.

Traitons le cas où

$$D = \begin{pmatrix} 2I_p & 0\\ 0 & 3I_q \end{pmatrix}$$

Alors en notant $M=\begin{pmatrix} K & L \\ N & Q \end{pmatrix}$ avec $K\in \mathscr{M}_p(\mathbb{R})$ et $Q\in \mathscr{M}_q(\mathbb{R})$, nous avons

$$f(M) = \begin{pmatrix} 2K & 3L \\ 2N & 3Q \end{pmatrix} + \begin{pmatrix} 2K & 2L \\ 3N & 3Q \end{pmatrix} = \begin{pmatrix} 4K & 5L \\ 5N & 6Q \end{pmatrix}$$

Soit $\mathscr{B} = (E_{ij})_{1 \leq i,j \leq n}$ la base canonique de $\mathscr{M}_n(\mathbb{R})$.

- Si $i, j \leq p, f(E_{ij}) = 4E_{ij}$;
- Si $i \leq p < j$ ou $j \leq p < i$, $f(E_{ij}) = 5E_{ij}$;
- Si p < i, j alors $f(E_{ij}) = 6E_{ij}$.

C'est une base de vecteurs propres, donc f est diagonalisable.

Dans le cas général, notons $D = diag(\lambda_1, \ldots, \lambda_n)$,

$$I_1 = \{i \in [1, n], \lambda_i = 2\}, I_2 = \{i \in [1, n], \lambda_i = 3\}$$

Alors $I_1 \sqcup I_2 = [1, n]$.

— Si
$$i, j \in I_1, f(E_{ij}) = 4E_{ij}$$
 (car $E_{ij}D = 2E_{ij}$ et $DE_{ij} = 2E_{ij}$)

— Si
$$i, j \in I_2$$
, $f(E_{ij}) = 6E_{ij}$ (car $E_{ij}D = 3E_{ij}$ et $DE_{ij} = 3E_{ij}$)

— Sinon
$$f(E_{ij}) = 5E_{ij}$$
 (car $D = 2$, $E_{ij}D = 2E_{ij}$ et $DE_{ij} = 3E_{ij}$ ou l'inverse)

et la conclusion est la même.

1) Conditions nécessaires et suffisantes de diagonalisabilité :

- Une matrice A est diagonalisable sur \mathbb{R} si et seulement si il existe une base de \mathbb{R}^n formée de vecteurs propres de A, c'est-à-dire si A est semblable à une matrice diagonale réelle.
- A est diagonalisable sur \mathbb{R} si et seulement si le polynôme minimal de A est scindé sur \mathbb{R} et que toutes ses racines sont simples (i.e. de multiplicité 1).

2) Étude de la matrice A:

L'équation:

$$A^2 - 5A + 6I_n = 0$$

correspond à une annulation par un polynôme. Posons :

$$P(X) = X^2 - 5X + 6 = (X - 2)(X - 3)$$

Comme P(A) = 0, cela signifie que le polynôme minimal de A divise P. Donc les seules valeurs propres possibles de A sont 2 et 3.

Puisque P est scindé à racines simples et que le polynôme minimal de A divise P, alors A est diagonalisable.

Donc A est diagonalisable et ses valeurs propres sont dans $\{2,3\}$.

3) On considère l'application :

$$f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), \quad f(M) = MD + DM$$

3a) Endomorphisme:

Pour montrer que f est un endomorphisme, on vérifie que f est une application linéaire. Soient $M_1, M_2 \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$,

$$f(M_1 + M_2) = (M_1 + M_2)D + D(M_1 + M_2) = M_1D + M_2D + DM_1 + DM_2 = f(M_1) + f(M_2)$$
$$f(\lambda M_1) = \lambda M_1D + D(\lambda M_1) = \lambda (M_1D + DM_1) = \lambda f(M_1)$$

Donc f est linéaire, et donc un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

3b) Diagonalisabilité de f:

Soit D une matrice diagonale réelle dont les valeurs propres sont dans $\{2,3\}$. Comme D est diagonale, on peut écrire M sous la forme matricielle bloc :

Supposons que D est de la forme suivante, en regroupant les lignes et colonnes selon les valeurs propres :

$$D = \begin{pmatrix} 2I_p & 0\\ 0 & 3I_q \end{pmatrix}, \text{ avec } p + q = n$$

On découpe alors toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ sous forme bloc compatible :

$$M = \begin{pmatrix} A & B \\ C & E \end{pmatrix}, \text{ avec } A \in \mathcal{M}_p(\mathbb{R}), E \in \mathcal{M}_q(\mathbb{R})$$

Alors:

$$f(M) = MD + DM = \begin{pmatrix} A & B \\ C & E \end{pmatrix} \begin{pmatrix} 2I_p & 0 \\ 0 & 3I_q \end{pmatrix} + \begin{pmatrix} 2I_p & 0 \\ 0 & 3I_q \end{pmatrix} \begin{pmatrix} A & B \\ C & E \end{pmatrix}$$
$$= \begin{pmatrix} 2A & 3B \\ 2C & 3E \end{pmatrix} + \begin{pmatrix} 2A & 2B \\ 3C & 3E \end{pmatrix} = \begin{pmatrix} 4A & 5B \\ 5C & 6E \end{pmatrix}$$

Cette action de f montre que f agit diagonalement sur les sous-espaces formés par les blocs :

- A est multiplié par 4
- --B est multiplié par 5
- C est multiplié par 5
- -E est multiplié par 6

Ainsi, $\mathcal{M}_n(\mathbb{R})$ se décompose en somme directe de sous-espaces stables par f, sur chacun desquels f agit comme une multiplication scalaire. Par conséquent, f est diagonalisable.

Exercice 2:

1) Après développement et identification on trouve

$$\frac{1}{t(t^2-1)} = -\frac{1}{t} + \frac{1}{2} \left(\frac{1}{t-1} + \frac{1}{t+1} \right).$$

2) Si $I =]1, +\infty[$ et J =]0, 1[

Sur I et J:

$$t(t^2 - 1)y' + 2ty = t$$
 équivaut à $y' + \frac{2}{t(t^2 - 1)}y = \frac{1}{t^2 - 1}$

Une primitive de $t \mapsto \frac{2}{t(t^2-1)}$ est $: t \mapsto -2\ln|t| + \ln|t-1| + \ln|t+1|$.

Donc l'ensemble des solutions de l'équation homogène sur I est :

$$\left\{ \begin{array}{l} I \to \mathbb{R} \\ t \mapsto K \frac{t^2}{t^2 - 1} \end{array} \right., \quad K \in \mathbb{R} \right\}$$

De même, sur J on trouve :

$$\left\{ \begin{array}{l} J \to \mathbb{R} \\ t \mapsto K \frac{t^2}{t^2 - 1} \end{array} \right., \quad K \in \mathbb{R} \right\}.$$

Sur I et J, on trouve une solution particulière avec la même méthode et les mêmes calculs. Soit $y \in \mathcal{E}^1(I \text{ ou } J)$, il existe $K \in \mathcal{E}^1(I \text{ ou } J)$ tel que :

$$y: t \mapsto K(t) \cdot \frac{t^2}{t^2 - 1}$$

Alors y est solution de (E) sur I ou J ssi :

$$\forall t \in I \text{ ou } J, \quad K'(t) \cdot \frac{t^2}{t^2 - 1} = \frac{t}{t^2 - 1}$$

ssi:

$$\forall t \in I \text{ ou } J, \quad K'(t) = \frac{1}{t}$$

Donc:

$$t \mapsto \ln(t) \cdot \frac{t^2}{t^2 - 1}$$

est une solution particulière.

Finalement, l'ensemble des solutions de (E) est :

$$\left\{ \begin{array}{l} I \text{ ou } J \to \mathbb{R} \\ t \mapsto (K + \ln(t)) \cdot \frac{t^2}{t^2 - 1} \end{array} \right., \quad K \in \mathbb{R} \right\}$$

Planche 3 (Centrale 1)

Énoncé:

Soit

$$\forall (x,y) \in [-1,1]^2, \ \varphi(x,y) = \int_{-1}^1 |t-x| \times |t-y| \, dt$$

- 1) Montrer que φ est continue sur $[-1,1]^2$.
- 2) Montrer que φ admet un minimum.
- 3) On pose $T = \{(x, y) \in [-1, 1]^2, -1 \le x \le y \le 1\}$. Monter que sur T, $\varphi(x, y) = \frac{1}{3}(y x)^3 + \frac{2}{3} + 2xy$.
- 4) Montrer que φ admet un minimum sur T, et qu'il est atteint à l'intérieur de T.
- **5)** Conclure sur le minimum de φ .

Corrigé:

- 1) $-\forall x \in [-1,1], t \mapsto |t-x| \text{ et } t \mapsto |t-y| \text{ sont continues sur } [-1,1].$
 - $--\forall x,y\in[-1,1],\,t\mapsto|t-x||t-y|$ est continue sur [-1,1].
 - $--\forall x,y\in[-1,1], |t-x||t-y|\leqslant 4$, qui est intégrable sur [-1,1].

Par théorème de convergence dominée, φ est continue selon les deux variables, donc elle est continue sur $[-1,1]^2$.

De plus, comme produit de segments, $[-1,1]^2$ est fermé et borné dans \mathbb{R}^2 qui est de dimension finie. Donc, grâce au théorème des bornes atteintes, φ admet un minimum sur $[-1,1]^2$.

2) Soit $(x_n, y_n) \in T^{\mathbb{N}}$ convergeant vers $(x, y) \in \mathbb{R}^2$.

Donc $x_n \to x$, $y_n \to y$ et $\forall n \in \mathbb{N}$, $-1 \leqslant x_n, y_n \leqslant 1$, par passage à la limite, $-1 \leqslant x, y \leqslant 1$, donc $(x,y) \in T$ et donc T est fermé. De plus, il est facilement borné, donc φ admet un minimum sur T.

3) Soit $(x,y) \in T$.

Alors:

$$\varphi(x,y) = \int_{-1}^{x} |t - x||t - y| dt + \int_{x}^{y} |t - x||t - y| dt + \int_{y}^{1} |t - x||t - y| dt$$
$$= \int_{-1}^{x} (x - t)(y - t) dt + \int_{x}^{y} (t - x)(y - t) dt + \int_{y}^{1} (t - x)(t - y) dt$$

Soit
$$f(t) = (x - t)(y - t)$$
 et $F(t) = \frac{1}{3}t^3 - \frac{x+y}{2}t^2 + xyt$ alors $F' = f$.

 Et

$$\varphi(x,y) = F(x) - F(-1) - F(y) + F(x) + F(1) - F(y)$$
$$= 2F(x) - 2F(y) = F(x) - F(1)$$

$$= \frac{1}{3}x^3 - xy^2 - \frac{1}{3}x^3 + x^2y + \frac{2}{3} + 2xy$$
$$= \frac{1}{3}(y - x)^3 + \frac{2}{3} + 2xy$$

En particulier $\varphi \in \mathscr{C}^2(T)$.

4)

$$\nabla \varphi(x,y) = \begin{pmatrix} -(y-x)^2 + 2y \\ (y-x)^2 + 2x \end{pmatrix}$$
 donc $\nabla \varphi(x,y) = 0$

ssi:

$$\begin{cases} (y-x)^2 + 2x = 0 \\ y+x = 0 \end{cases} \quad \text{ssi} \quad \begin{cases} y = -x \\ 4x^2 + 2x = 0 \end{cases} \quad \text{ssi} \quad x = 0 \text{ ou } x = -\frac{1}{2}, y = \frac{1}{2} \end{cases}$$

Mais $(0,0) \notin T$ donc le seul point critique est en $\left(-\frac{1}{2},\frac{1}{2}\right)$

$$\varphi\left(-\frac{1}{2},\frac{1}{2}\right) = \frac{1}{2}, \quad H_{\varphi}\left(-\frac{1}{2},\frac{1}{2}\right) = \begin{pmatrix} \frac{\partial^2 \varphi}{\partial x^2} & \frac{\partial^2 \varphi}{\partial x \partial y} \\ \frac{\partial^2 \varphi}{\partial y \partial x} & \frac{\partial^2 \varphi}{\partial y^2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2},\frac{1}{2} \end{pmatrix} = I_2$$

Donc φ admet un minimum local en $\left(-\frac{1}{2}, \frac{1}{2}\right) = A$.

Si φ admettait une valeur strictement inférieure en un point B du bord de T, alors $\varphi|_{[AB]}$ admettrait un maximum sur [AB] et le gradient s'y annulerait, ce qui est absurde. Donc le minimum de φ sur T est atteint en $\left(-\frac{1}{2},\frac{1}{2}\right)$ et vaut $\frac{1}{2}$.

Si $T' = [-1,1]^2 \setminus T$, on a $\forall (x,y) \in T$, $(y,x) \in T'$ et $\varphi(x,y) = \varphi(y,x)$, donc sur tout $[-1,1]^2$, le minimum de φ vaut $\frac{1}{2}$ et est atteint en $\left(-\frac{1}{2},\frac{1}{2}\right)$ et en $\left(\frac{1}{2},-\frac{1}{2}\right)$.

Planche 4 (Centrale 1)

Énoncé:

Soit (E): y'' + f(x)y = 0, où f est réelle, continue et intégrable sur \mathbb{R}_+ .

- 1) Soit y une solutions bornée de (E). Montrer que fy est intégrable sur \mathbb{R}_+ .
- 2) Toujours en supposant que y est bornée, montrer l'existence de la limite de y' en $+\infty$, et donner sa valeur.
- 3) Soit $g: x \mapsto y'_1(x)y_2(x) y'_2(x)y_1(x)$, où y_1 et y_2 sont des solutions bornées de (E). Montrer que g est constante et donner sa valeur.
- 4) Montrer que (E) admet des solutions non bornées.

Corrigé:

- 1) Immédiat car f est intégrable et continue, et y est bornée et continue.
- 2) Grâce à la question précédente, si $x \in \mathbb{R}_+$, $\int_0^x y'' + \int_0^x fy = 0$ donc $y'(x) = y'(0) \int_0^x fy$, qui a une limite finie en $+\infty$. Noton la ℓ . Si $\ell > 0$, alors pour x assez grand, $y'(x) \geqslant \frac{\ell}{2}$ donc grâce à l'IAF, $y \to +\infty$, ce qui est absurde. Idem si $\ell < 0$. Donc $y' \to 0$.

3) g est dérivable et

$$g'(x) = y_1''(x)y_2(x) + y_1'(x)y_2'(x) - y_2''(x)y_1(x) - y_2'(x)y_1'(x)$$

= $-f(x)y_1(x)y_2(x) + y_1(x)f(x)y_2(x)$
= 0

donc g est constante. Or grâce à la question précédente, $g \to 0$ en $+\infty$, donc g = 0.

4) L'ensemble F des solutions de (E) est un sev de dimension 2. Notons (y_1, y_2) une base de F. Si y_1 et y_2 sont toutes les deux bornées, toutes les solutions de (E) le sont aussi. Supposons que c'est le cas. Alors avec la question précédente, g=0, c'est-à-dire que pour tout $x\in \mathbb{R}_+$, $\begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = 0$. Hors-programme en PSI : ce déterminant s'appelle le wronskien et il ne peut pas être constant égal à zéro. Donc (E) admet des solutions non bornées.

Énoncé:

Exercice 1 à préparer en 30 minutes : Soit u un endomorphisme non nul de \mathbb{R}^3 tel que :

$$u^3 = -u.$$

- 1) Montrer que $\operatorname{Im}(u^2 + \operatorname{Id}) \subset \operatorname{Ker}(u)$.
- 2) Montrer que Ker(u) et $Ker(u^2 + Id)$ sont supplémentaires dans \mathbb{R}^3 .
- 3) Montrer que 0 est la seule valeur propre réelle de u. En déduire que Ker(u) et $Ker(u^2 + Id)$ ne sont pas réduits au singleton $\{0\}$.
- 4) Montrer qu'il existe une base dans laquelle la matrice de u est :

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Exercice 2 donné à l'oral sans préparation :

1) Montrer l'existence de l'intégrale

$$J = \int_0^{+\infty} \frac{x^2}{\mathrm{e}^x - 1} \, dx.$$

2) Montrer que:

$$J = \sum_{n=1}^{+\infty} \frac{2}{n^3}.$$

Corrigé:

Exercice 1:

1) Posons $v = u^2 + id$. Pour tout $x \in \mathbb{R}^3$.

$$u(v(x)) = u(u^{2}(x) + x) = u^{3}(x) + u(x) = -u(x) + u(x) = 0.$$

Donc $u \circ v = 0$, ce qui implique :

$$\operatorname{Im}(u^2 + \operatorname{id}) \subset \operatorname{Ker}(u).$$

2) On a $\operatorname{Im}(u^2 + \operatorname{id}) \subset \operatorname{Ker}(u)$. Soit $E = \mathbb{R}^3$. Notons $a = \dim(\operatorname{Ker}(u))$, $b = \dim(\operatorname{Ker}(u^2 + \operatorname{id}))$. On a :

$$\dim(\operatorname{Im}(u^2 + \operatorname{id})) \leq \dim(\operatorname{Ker}(u)) \operatorname{donc} 3 - b \leq a \operatorname{donc} a + b \geq 3.$$

Par ailleurs, si $x \in \text{Ker}(u) \cap \text{Ker}(u^2 + \text{id})$, alors u(x) = 0 et $u^2(x) = -x$ donc 0 = -x, donc x = 0. L'intersection est réduite à 0.

Donc $\operatorname{Ker}(u) \oplus \operatorname{Ker}(u^2 + \operatorname{id}) = \mathbb{R}^3$, ce sont des sous-espaces supplémentaires.

3) Soit $\lambda \in \mathbb{R}$ une valeur propre réelle de u, avec $u(v) = \lambda v, v \neq 0$. Alors :

$$u^{3}(v) = \lambda^{3}v = -\lambda v \text{ donc } \lambda^{3} + \lambda = 0 \text{ donc } \lambda(\lambda^{2} + 1) = 0.$$

Donc $\lambda = 0$ est la seule valeur propre réelle. Ainsi $\operatorname{Ker}(u)$ n'est pas réduit à 0. De plus $u \neq 0$ donc $\operatorname{Ker}(u) \neq \mathbb{R}^3$, et comme $\operatorname{Ker}(u) \oplus \operatorname{Ker}(u^2 + \operatorname{id}) = \mathbb{R}^3$, $\operatorname{Ker}(u^2 + \operatorname{id})$ ne peut être réduit à $\{0\}$.

4) Nous avons $a \ge 1$, $b \ge 1$ et a+b=3, donc a=1 et b=2 ou l'inverse. Soit $v_2 \in \operatorname{Ker}(u^2+\operatorname{id})$ non nul. Posons $v_3=u(v_2)$. Alors $u(v_3)=u^2(v_2)=-v_2$. Ainsi $v_3\ne 0$. Si (v_2,v_3) est liée, cela signifie que v_2 est un vecteur propre de u. Mais alors la valeur propre associée est nulle et $v_3=0$: c'est absurde. Donc (v_2,v_3) est libre et b=2. Alors a=1, et si v_1 est un vecteur directeur de $\operatorname{Ker}(u)$, (v_1,v_2v_3) est une base de \mathbb{R}^3 .

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Exercice 2:

1) Étudions le comportement de f près de 0 et à l'infini :

Alors, dans cette base, la matrice de u est :

- (i) Près de 0 : on utilise l'équivalent $e^x 1 \sim x$, donc $\frac{x^2}{e^x 1} \sim x$ quand $x \to 0^+$. Donc f, et est intégrable au voisinage de 0.
- (ii) Quand $x \to +\infty$: on a $e^x 1 \sim e^x$, donc:

$$f(x) \sim \frac{x^2}{e^x}$$
 quand $x \to +\infty$.

Et $\frac{x^2}{e^x} = o\left(\frac{1}{x^2}\right)$, donc est intégrable à l'infini.

De plus f est continue sur \mathbb{R}_+ donc elle y est intégrable, et J est bien définie.

2) On utilise l'identité classique de la somme sur les séries géométriques (valide pour x > 0):

$$\frac{1}{e^x - 1} = \sum_{n=1}^{+\infty} e^{-nx}.$$

On insère cette expression dans l'intégrale :

$$J = \int_0^{+\infty} \frac{x^2}{e^x - 1} dx = \int_0^{+\infty} x^2 \sum_{n=1}^{+\infty} e^{-nx} dx.$$

Pour inverser somme et intégrale, il reste à vérifier que si $v_n = \int_0^{+\infty} x^2 e^{-nx} dx \ge 0$, alors $\sum v_n$ converge.

On effectue le changement de variable u = nx:

$$\int_0^{+\infty} x^2 e^{-nx} dx = \frac{1}{n^3} \int_0^{+\infty} u^2 e^{-u} du.$$

Mais:

$$\int_0^{+\infty} u^2 e^{-u} du = 2 \text{ après deux IPP},$$

donc:

$$\int_0^{+\infty} x^2 e^{-nx} \, dx = \frac{2}{n^3},$$

qui est le terme général d'une série convergente. Nous pouvons donc inverser somme et intégrale et finalement :

$$J = \sum_{n=1}^{+\infty} \frac{2}{n^3}.$$

Planche 6 (Centrale 1)

Énoncé:

On définit, pour $\alpha \in \mathbb{R}$, la suite $\binom{\alpha}{n}_{n \in \mathbb{N}}$ par :

$$\begin{pmatrix} \alpha \\ n \end{pmatrix} = \begin{cases} 1 & \text{si } n = 0, \\ \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!} & \text{si } n \in \mathbb{N}^*. \end{cases}$$

On pose:

$$b_n = \int_0^1 \binom{t}{n} \, \mathrm{d}t.$$

1) Montrer que pour tout $t \in [0,1]$ et tout $n \in \mathbb{N}$, on a :

$$\left| \begin{pmatrix} t \\ n \end{pmatrix} \right| \leqslant 1.$$

- 2) Étudier la convergence de la série $\sum_{n=0}^{\infty} {t \choose n} x^n$, pour $t \in [0,1]$, et $x \in]-1,1[$.
- 3) Montrer que pour tout $x \in]-1,1[$:

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x}{\ln(1+x)}.$$

4) On peut définir:

$$f: x \mapsto \sum_{n=0}^{\infty} b_n x^n.$$

Montrer que:

$$f(x-1) \underset{x \to 0^+}{\sim} \frac{-1}{\ln(x)}.$$

- 5) La fonction f est-elle définie en -1 ? Est-elle dérivable en -1 ?
- 6) En déduire une valeur du rayon de convergence de f.

Corrigé:

1) Le résultat est évident pour n = 0.

Sinon, pour $t \in [0,1]$ et $n \in \mathbb{N}$, on a :

$$\left| \begin{pmatrix} t \\ n \end{pmatrix} \right| = \left| \frac{t(t-1)\cdots(t-n+1)}{n!} \right|.$$

Pour tout $k \in [0, n-1]$, $t-k \in [-k, 1]$, donc $|t-k| \le k+1$. Par produit, $|t(t-1)\cdots(t-n+1)| \le n!$ donc :

$$\left| \begin{pmatrix} t \\ n \end{pmatrix} \right| \leqslant \frac{n!}{n!} \leqslant 1.$$

2) Pour tout $t \in \mathbb{R}$, on sait que :

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n$$
, pour $|x| < 1$.

On peut aussi remarquer que $\left|\frac{\binom{t}{n}}{\binom{t}{n+1}}\right| = \frac{|t-n|}{n+1} \xrightarrow[n \to +\infty]{} 1$, donc avec le critère de d'Alembert on retrouve la convergence pour $x \in]-1,1[$.

3) On considère:

$$f(x) = \sum_{n=0}^{+\infty} b_n x^n = \sum_{n=0}^{+\infty} \int_0^1 x^n \binom{t}{n} dt.$$

Or $\int_0^1 \left| x^n \binom{t}{n} \right| dt \leqslant \int_0^1 |x^n| dt = |x^n|$ et $\sum |x_n|$ converge. Il est donc possible d'inverser somme et intégrale :

$$f(x) = \int_0^1 \sum_{n=0}^{+\infty} {t \choose n} x^n dt = \int_0^1 (1+x)^t dt.$$

On effectue le calcul :

$$f(x) = \int_0^1 (1+x)^t dt = \left[\frac{(1+x)^t}{\ln(1+x)} \right]_{t=0}^1 = \frac{(1+x)^1 - (1+x)^0}{\ln(1+x)} = \frac{(1+x) - 1}{\ln(1+x)} = \frac{x}{\ln(1+x)}.$$

Finalement:

$$\sum_{n=0}^{+\infty} b_n x^n = \frac{x}{\ln(1+x)}.$$

4) On a :

$$f(x-1) = \frac{x-1}{\ln x} \sim \frac{-1}{\ln x}$$
 quand $x \to 0^+$.

5) On étudie la limite de f(x) lorsque $x \to -1^+$:

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{x}{\ln(1+x)}.$$

Posons x = -1 + h avec $h \to 0^+$. Alors

$$f(x) = \frac{-1+h}{\ln(h)} \sim \frac{-1}{\ln(h)} \to 0.$$

La fonction f admet donc une limite finie en x = -1:

$$\lim_{x \to -1^+} f(x) = 0.$$

PSI* – récolte oraux 2025 Planche 7

Ainsi, f est prolongeable par continuité en x = -1 en posant f(-1) = 0. On continuera de nommer f ce prolongement.

On calcule la dérivée de f sur]-1,1[:

$$f'(x) = \frac{1}{\ln(1+x)} - \frac{x}{(1+x)\ln^2(1+x)}.$$

Alors

$$\lim_{x \to -1^+} f'(x) = +\infty.$$

D'après le théorème de la limite de la dérivée (f étant continue en -1), f n'est pas dérivable en -1.

6) Soit R le rayon de convergence de f. Grâce à la question 2), $R \ge 1$. Mais si R > 1, alors f serait dérivable en -1, ce qui est absurde. Donc R = 1.

Énoncé (à préparer en 30 minutes, le 2nd exercice est le même que celui de la planche 2) : Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que :

$$MM^{\top} = M^{\top}M$$
 et $M^2 + 2I_2 = 0$.

- 1) Montrer que $M^{\top}M$ est diagonalisable.
- **2)** Trouver les valeurs propres de $M^{\top}M$.
- 3) Montrer que $\frac{1}{\sqrt{2}}M$ est orthogonale.
- 4) Trouver toutes les matrices M qui vérifient ces conditions.

Corrigé:

1) On remarque que $M^{\top}M$ est symétrique car :

$$(\boldsymbol{M}^{\top}\boldsymbol{M})^{\top} = \boldsymbol{M}^{\top}(\boldsymbol{M}^{\top})^{\top} = \boldsymbol{M}^{\top}\boldsymbol{M}.$$

Une matrice réelle symétrique est toujours diagonalisable dans une base orthonormée. Donc :

$$M^{\top}M$$
 est diagonalisable

2) Utilisons la condition $M^2 = -2I_2$. Cela implique que M est inversible et que :

$$M^{-1} = -\frac{1}{2}M.$$

Posons $A = M^{\top}M$. Nous savons déjà qu'elle est symétrique, et il est facile et classique de montrer qu'elle est positive. De plus, puisque M est inversible, A est aussi inversible et donc elle est symétrique définie positive. Elle est doonc diagonalisable à valeurs propres strictement positives.

Enfin $A^2 = M^{\top}MM^{\top}M = M^{\top}M^2M^{\top} = -2(M^2)^{\top} = 4I_2$. Donc les valeurs propres de A sont parmi mes racines de $X^2 - 4$, donc ± 2 . Mais d'après la remarque précédente, seule 2 est racine de A, et donc

$$A = 2I_2$$

3) Soit
$$Q = \frac{1}{\sqrt{2}}M$$
. Alors :

$$Q^T Q = \frac{1}{\sqrt{2}} M^\top \cdot \frac{1}{\sqrt{2}} M = \frac{1}{2} M^\top M.$$

D'après la question précédente, $M^{\top}M = 2I_2$, donc :

$$Q^T Q = \frac{1}{2} \cdot 2I_2 = I_2.$$

Donc:

$$\frac{1}{\sqrt{2}}M$$
 est orthogonale.

4) Effectuons la synthèse. Soit M une solution. Posons $Q = \frac{1}{\sqrt{2}}M$. Alors Q est orthogonale. Si elle est indirecte, le cours assure que c'est une symétrie orthogonale, donc $Q^2 = I_2$, donc $M^2 = 2I_2$: c'est absurde, donc Q est directe. C'est donc la rotation d'un certain angle θ . Alors Q^2 est la rotation d'angle 2θ , donc $22\theta \equiv \pi$ [2π] et $\theta \equiv \pi/2$ [π], donc $Q = \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, et donc finalement l'ensemble des solutions est constitué des deux matrices

$$\boxed{\pm\sqrt{2}\begin{pmatrix}0&-1\\1&0\end{pmatrix}.}$$

Planche 8 (Centrale 1)

Énoncé:

Soit $(a_n)_{n\in\mathbb{N}^*}$ à valeurs dans \mathbb{R} . Nous posons $D=\{z\in\mathbb{C},\,|z|\leq 1\}$ et $f:D\mapsto\mathbb{C},\,z\mapsto\sum_{n=1}^{+\infty}a_nz^n$ de rayon de convergence R>1. Enfin nous supposons que f est injective.

- 1) Montrer que si $f(z) \in \mathbb{R}$, alors $z \in \mathbb{R}$
- **2)** Soit $g: [0,\pi] \to \mathbb{R}$ $\theta \mapsto \operatorname{Im}\left(f\left(e^{i\theta}\right)\right).$

Montrer que q ne change pas de signe.

3) Non donnée.

Corrigé:

1) Soit $z \in D$ tel que $f(z) \in \mathbb{R}$.

On sait que tous les coefficients a_n sont réels, donc :

$$\overline{f(z)} = \sum_{n=1}^{+\infty} a_n z^n = \sum_{n=1}^{+\infty} a_n \overline{z}^n = f(\overline{z})$$

Mais si $f(z) \in \mathbb{R}$, alors $\overline{f(z)} = f(z)$. Donc $f(\overline{z}) = f(z)$. Par injectivité de f, on en déduit que $\overline{z} = z$ donc $z \in \mathbb{R}$.

PSI* – récolte oraux 2025 Planche 9

2) On a $f(e^{i\theta}) = \sum_{n=1}^{+\infty} a_n e^{in\theta}$, donc :

$$g(\theta) = \operatorname{Im}\left(\sum_{n=1}^{+\infty} a_n e^{in\theta}\right) = \sum_{n=1}^{+\infty} a_n \sin(n\theta)$$

 $\theta \mapsto a_n e^{in\theta}$ est continue et puisque R > 1, la série de fonctions $\theta \mapsto \sum_{n=1}^{+\infty} a_n e^{in\theta}$ converge normalement sur $[0, \pi]$, donc elle est continue. Par continuité de $z \mapsto \operatorname{Im}(z)$, la fonction g est continue sur $[0, \pi]$.

Supposons par l'absurde que g change de signe. Alors il existe $\theta_1, \theta_2 \in [0, \pi]$ tels que :

$$g(\theta_1) > 0$$
 et $g(\theta_2) < 0$

Par le théorème des valeurs intermédiaires, il existe alors $\theta_0 \in (\theta_1, \theta_2)$ tel que :

$$g(\theta_0) = 0 \text{ donc } \operatorname{Im}\left(f\left(e^{i\theta_0}\right)\right) = 0 \text{ donc } f\left(e^{i\theta_0}\right) \in \mathbb{R}$$

Mais d'après la question 1, si $f(z) \in \mathbb{R}$, alors $z \in \mathbb{R}$. Or $e^{i\theta_0} \notin \mathbb{R}$ pour $\theta_0 \in]0, \pi[$. C'est une contradiction.

Donc g ne change pas de signe sur $[0, \pi]$.

Planche 9 (Centrale 1)

Énoncé:

On définit $\|\cdot\|_{\infty}$ sur \mathbb{R}^2 :

$$||(x,y)||_{\infty} = \max(|x|,|y|)$$

On définit :

$$\mathscr{B}(0,1) = \left\{ (x,y) \in \mathbb{R}^2 \mid ||(x,y)||_{\infty} < 1 \right\}$$

$$\overline{\mathscr{B}}(0,1) = \left\{ (x,y) \in \mathbb{R}^2 \mid \|(x,y)\|_{\infty} \leqslant 1 \right\}$$

On pose f:

$$f: \overline{\mathscr{B}}(0,1) \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto -(x^2+y^2)^2 + \frac{3}{2}(x^2+y^2) + 1$

- 1) Représenter $\mathcal{B}(0,1)$ et $\overline{\mathcal{B}}(0,1)$ comme produit cartésien d'ensembles de \mathbb{R} .
- 2) Justifiez que $f \in \mathcal{C}^1(\overline{\mathcal{B}}(0,1))$. Déterminer le gradient de f pour (x,y) appartenant à $\overline{\mathcal{B}}(0,1)$, et les points critiques de f.
- 3) On définit la surface S par :

$$S = \left\{ (x, y, f(x, y)) \mid (x, y) \in \overline{\mathscr{B}}(0, 1) \right\}$$

Déterminez tous les points (a, b) de $\overline{\mathscr{B}}(0, 1)$ tels que le plan tangent à S en (a, b, f(a, b)) est orthogonal au vecteur directeur (0, -1, 1).

4) Déterminer les extrema de f.

Corrigé:

1) On a :

$$||(x,y)||_{\infty} = \max(|x|,|y|) < 1 \iff |x| < 1 \text{ et } |y| < 1$$

Donc:

$$\mathscr{B}(0,1) =]-1,1[\times]-1,1[$$

et de même :

$$\overline{\mathscr{B}}(0,1) = [-1,1] \times [-1,1]$$

2) La fonction $f(x,y) = -(x^2 + y^2)^2 + \frac{3}{2}(x^2 + y^2) + 1$ est polynomiale donc elle est de classe \mathscr{C}^{∞} sur \mathbb{R}^2 et en particulier sur $\mathscr{B}(0,1)$.

Calculons le gradient :

$$\frac{\partial f}{\partial x} = -4x(x^2 + y^2) + 3x$$

$$\frac{\partial f}{\partial y} = -4y(x^2 + y^2) + 3y$$

Donc:

$$\nabla f(x,y) = \left(-4x(x^2 + y^2) + 3x, -4y(x^2 + y^2) + 3y\right)$$

Les points critiques sont les points où $\nabla f(x,y)=(0,0),$ ce qui se produit lorsque :

$$[x = 0 \text{ et } y = 0]$$
 ou $\left[-4(x^2 + y^2) + 3 = 0 \right]$.

Dans le second cas, on a :

$$x^2 + y^2 = \frac{3}{4}$$

Donc les points critiques sont :

- -(0,0)
- Tous les points du cercle de rayon $\frac{\sqrt{3}}{2}$ et de centre 0, qui est bien contenu dans $\mathcal{B}(0,1)$.
- 3) Soit $(a,b) \in \overline{\mathcal{B}}(0,1)$. Le plan tangent à S en (a,b,f(a,b)) est donné par :

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

On cherche $(a,b) \in \overline{\mathcal{B}}(0,1)$ tel que ce plan ait pour vecteur normal un vecteur colinéaire à (0,-1,1). Un vecteur normal au plan tangent est :

$$n = \left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b), -1\right)$$

On obtient donc le système :

$$\exists \lambda \in \mathbb{R}, \begin{cases} -4a^3 - 4b^2x & +3a = 0\\ -4b^3 - 4a^2y & +3b = -\lambda\\ & 1 = \lambda \end{cases}$$

soit

$$\exists \lambda \in \mathbb{R}, \begin{cases} 4a\left(-a^2 - b^2 + \frac{3}{4}\right) = 0\\ 4b\left(-a^2 - b^2 + \frac{3}{4}\right) = -\lambda\\ \lambda = 1 \end{cases}$$

i.e.

$$\begin{cases} 4a\left(-a^2 - b^2 + \frac{3}{4}\right) = 0\\ 4b\left(-a^2 - b^2 + \frac{3}{4}\right) = -1 \end{cases}$$

ou encore

$$[a = 0]$$
 et $[0 = 4b^3 - 3b - 1 = (b - 1)(4b^2 + 4b + 1) = (b - 1)(2b + 1)^2]$

Finalement les solutions sont : (0,1) et (0,-1/2).

4) Posons

$$g(t) = -t^2 + \frac{3}{2}t + 1.$$

Alors

$$f(x,y) = g(x^2 + y^2).$$

De plus, si $(x,y) \in \overline{\mathcal{B}}(0,1)$, $x^2 + y^2 \in [0,2]$. Nous allons donc étudier g sur [0,2]. Une étude de fonction classique et sans difficulté assure que g est strictement croissante sur [0,3/4] et strictement décroissante sur [3/4,2], qu'elle atteint son maximum valant $(5/4)^2$ en 3/4, et son minimum valant 0 en 2.

f atteint donc son maximum valant $(5/4)^2$ sur le cercle de centre 0 et de rayon $\frac{\sqrt{3}}{2}$ (ce qui est cohérent avec le résultat de la seconde question), et son minimum valant 0 en les quatre coins $(\pm 1, \pm 1)$ du carré $\overline{\mathcal{B}}(0,1)$ (ce qui est là aussi cohérent : ce ne sont pas des points critiques mais ils sont sur le bord du domaine).