caracterización-conjunto-ec

Sean $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes:

(a) S es Σ -efectivamente computable

(Es decir) Hay un procedimiento que computa a $\chi_S^{\omega^n \times \Sigma^{*m}}$

(b) S y $\omega^n \times \Sigma^{*m} - S$ Σ -efectivamente enumerables

 $(Solo caso (b) \implies (a))$

$$S \: \Sigma ext{-ec} \implies S \: \mathsf{y} \: ar{S} \: \Sigma ext{-ee}$$

Suponemos que podemos generar S y S^{-1}

Dado un $(\vec{x}, \vec{\alpha})$ de consulta vamos a realizar un ciclo finito, ya que eventualmente se cumple la condición

En cada paso generamos valores de ambos conjuntos, y si alguno de los valores generados es el valor de consulta devolvemos 0 o 1 según cual de los generados coincida

Si $S=\emptyset$ o $S=\omega^n imes \Sigma^{*m}$ entonces es trivial, por lo tanto suponemos $S\subset \omega^n imes \Sigma^{*m}$ no vacío. Sea

- \mathbb{P}_1 un procedimiento efectivo que enumera a S y
- \mathbb{P}_2 un procedimiento efectivo que enumera a $\omega^n \times \Sigma^{*m} S$ }.

Es fácil ver que el siguiente procedimiento computa al predicado $\chi_S^{\omega^n \times \Sigma^{*m}}$.

Etapa1:

Asignar a la variable T el valor 0

Etapa2:

Realizar \mathbb{P}_1 con el valor de T como entrada, obteniendo como salida la upla $(\vec{y}, \vec{\beta})$. Etapa3:

Realizar \mathbb{P}_2 con el valor de T como entrada, obteniendo como salida la upla $(\vec{z}, \vec{\gamma})$. Etapa4:

Si $(\vec{y}, \vec{\beta}) = (\vec{x}, \vec{\alpha})$ detenerse y devolver 0.

Si $(\vec{z}, \vec{\gamma}) = (\vec{x}, \vec{\alpha})$ detenerse y devolver 1.

Caso contrario, aumentar T en 1 e ir a la etapa 2