18-10-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-9_Key&Sol's

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 18-10-15

 Time: 3 Hours
 2011-P1-Model
 Max Marks: 240

PAPER-I KEY & SOLUTIONS

CHEMISTRY

1	D	2	С	3	A	4	В	5	С	6	С
7	В	8	CD	9	ВС	10	ABC	11	ABD	12	В
13	A	14	В	15	D	16	С	17	2	18	6
19	2	20	2	21	6	22	3	23	8		

PHYSICS

24	В	25	С	26	A	27	D	28	В	29	С
30	D	31	С	32	AD	33	CD	34	BC	35	В
36	В	37	В	38	A	39	В	40	5	41	7
42	4	43	5	44	4	45	3	46	6		

MATHS

47	С	48	A	49	С	50	A	51	В	52	С
53	С	54	AC	55	BCD	56	BD	57	AB	58	С
59	D	60	В	61	D	62	В	63	2	64	6
65	2	66	3	67	0	68	1	69	8		

MATHS

47.
$$\vec{p} \cdot \vec{a} = \vec{q} \cdot \vec{a} = \vec{r} \cdot \vec{a} = 64$$
 gives $y^3 - 12x^2 + 48x - 64 = 0$; $z^3 - 12y^2 + 48y - 64 = 0$; $x^3 - 12z^2 + 48z - 64 = 0$ Adding, we get $(x - 4)^3 + (y - 4)^3 + (z - 4)^3 = 0$ gives $x = y = z = 4$. So, $[xi + yj - zk \quad zi - xj + yk \quad -yi + zj + xk] = 256$

48. D.R.s of the line joining points (-1,2,3),(-3,5,-3) are 2,-3,6

Let θ be the acute angle between the lines, $|\cos \theta| = \frac{20}{21}$

49.
$$\begin{vmatrix} 5 & 2 & 13 - p \\ 1 & 2 & 3 \\ -1 & 2 & -3 \end{vmatrix} = 0 \Rightarrow p = -2$$

- 50. Since \vec{x}, \vec{y} and $\vec{x} \times \vec{y}$ are linearly independent, $\frac{c}{3} = \frac{a}{4} = \frac{b}{5}$ \Rightarrow the triangle is right angled
- 51. Equation of the plane which in passing through the line of intersection of $\vec{r} \cdot \vec{a} = p \& \vec{r} \cdot \vec{b} = q$ and through $C(\vec{c})$ is $\vec{r} \cdot \{\hat{c} \times (\vec{a} \times \vec{b}) + p\vec{b} q\vec{a}\} = q(\hat{c} \cdot \vec{a}) p(\hat{c} \cdot \vec{b})$. Hence $\alpha = \vec{b} \cdot \hat{c} = b \cos \theta$, $\beta = \hat{c} \cdot \vec{a} = a \sin \theta$
- 52. Let A is origin and $\overrightarrow{AB} = \overrightarrow{DC} = \overrightarrow{b}; \overrightarrow{BC} = \overrightarrow{AD} = \overrightarrow{c}$ $\frac{BL}{LC} = \frac{1}{2} \text{ gives } \overrightarrow{AL} = \overrightarrow{b} + \frac{1}{3}\overrightarrow{c}. \text{ AL intersects BD at P. So, } \overrightarrow{AP} = \frac{3}{4}\overrightarrow{b} + \frac{1}{4}\overrightarrow{c}$ $\frac{DM}{MC} = 2 \text{ gives } \overrightarrow{AM} = \frac{2}{3}\overrightarrow{b} + \overrightarrow{c}. \text{ AM intersects BD in Q. So, } \overrightarrow{AQ} = \frac{2}{5}\overrightarrow{b} + \frac{3}{5}\overrightarrow{c}$
- 53. $(i+j-3k) \cdot (3i-2j-6k) 5 = 13 > 0 \cdot (2i+j-k) \cdot (3i-2j-6k) 5 = 5 > 0$
- 54. Let the plane be l(x-2) + m(y-3) + n(z+1) = 0Solving 1-2m+2n=0; 21+3m-n=0 we get $\frac{1}{-4} = \frac{m}{5} = \frac{n}{7}$ So, the plane is $4(x-2)-5(y-3)-7(z+1) = 0 \Rightarrow 4x-5y-7z = 0$
- 55. Take circum center as origin
- 56. Required plane is perpendicular to the line and plane given, and passes through (-1,0,1) or any plane passing through the intersection of this plane and given plane.
- 58, 59 & 60 $D\left(1, \frac{5}{3}, \frac{7}{3}\right), E\left(\frac{8}{3}, \frac{1}{3}, \frac{11}{3}\right) F\left(\frac{8}{7}, \frac{9}{7}, \frac{19}{7}\right)$ $\overrightarrow{FP} \parallel \overrightarrow{AB} \times \overrightarrow{AC} \text{ hence } \overrightarrow{FP} = 2(j+k)$ $P\left(\frac{8}{7}, \frac{23}{7}, \frac{33}{7}\right)$

Volume =
$$\frac{1}{42} \begin{vmatrix} 8 & 9 & 19 \\ 3 & -1 & 1 \\ 0 & -3 & 3 \end{vmatrix} = \frac{14}{3}$$

Sri Chaitanya IIT Academy

18-10-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-9_Key&Sol's

Vector equation of \overrightarrow{AP} is $\overrightarrow{r} = 3i + j + 3k + t(13i - 16j - 12k)$

61 & 62.

$$7(x-y) = 3(x^2 + xy + y^2)$$
. Let $x-y = 9t$. This gives $63t = 3(81t^2 + 3(9t + y)y)$

This can be written as $(2y+9t)^2 = 28t-27t^2$

This is possible for only t=1. This gives (x,y)=(5,-4),(4,-5)

63.
$$\vec{p} = \vec{a} - \vec{a} \times \vec{b}$$

64.
$$ax + by + cz + 1 = 0$$
 makes 45° with the line $x = y - z = 0$ ie., $\frac{x}{0} = \frac{y}{1} = \frac{z}{1} \Rightarrow \frac{b + c}{\sqrt{a^2 + b^2 + c^2}} = 1$ and makes 60° with the line $x = y = z$. $\Rightarrow \frac{a + b + c}{\sqrt{a^2 + b^2 + c^2}} = \frac{3}{2}$. Hence $\frac{a}{\sqrt{a^2 + b^2 + c^2}} = \frac{1}{2} \Rightarrow k = 3$

65.
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$
$$\vec{a} \times \{ (\vec{r} - \vec{b}) \times \vec{a} \} + \vec{b} \times \{ (\vec{r} - \vec{c}) \times \vec{b} \} + \vec{c} \times \{ (\vec{r} - \vec{a}) \times \vec{c} \} = \vec{0} \Rightarrow 2\vec{r} = \vec{a} + \vec{b} + \vec{c}$$

$$66. \qquad \cos\theta = \frac{1}{\sqrt{6}}$$

68. Volume =
$$\frac{6^2}{24}\begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = 6$$

69. The plane is
$$3x-3y+z=2$$