Poseidon: Practical Homomorphic Encryption Accelerator

(2023 HPCA)

Methodology NTT-fusion

COMPARISON BETWEEN CONVENTIONAL NTT AND NTT-FUSION. W IS THE NUMBER OF TWIDDLE FACTORS; K IS THE RADIX.

k	\mathbf{W}	${f W}$	Mult/Add	Mult/Add
K	(unfused)	(fused)	(unfused)	(fused)
2	2	2	8 / 8	12 / 12
3	4	5	24 / 24	56 / 56
4	8	13	64 / 64	240 / 240
5	16	34	160 / 160	992 / 992
6	32	85	384 / 384	4160 / 4160

HFAuto

FHE ACCELERATOR-POSEIDON

Overall Architecture

Fig. 2. Poseidon overall architecture.

Computational Cores MA/MM

Fig. 3. MA/MM core architecture. We implement fine-grained decomposition to reduce the resource consumption of ModMult. Following Barrett Reduction algorithm, we implement a subtractor to perform ModAdd.

RNSconv

Fig. 4. RNSconv architecture, designed by cascading MA and MM core.

NTT/INTT

Fig. 5. Data access pattern in Poseidon. We show the front three iterations (or phases) in TABLE III.

Data access pattern

TABLE III

DATA ACCESS PATTERN COMPARISON. PRIOR ACCELERATORS FOLLOW THE CONVENTIONAL NTT (12 PHASES FOR 4096 CIPHERTEXT), WHILE POSEIDON ADHERES TO NTT-FUSION (ONLY 4 PHASES). INDEX OFFSET DENOTES THE DATA ACCESS PATTERN.

	Prior accelerators			Poseidon $(k = 3)$			
ITERs	TAMs	Index Offset	ITERs	Fused TAMs	Index Offset		
1	4096	1	1	4096	1		
2	4096	2	/	/	/		
3	4096	4	/	/	/		
4	4096	8	2	4096	8		
5	4096	16	/	/	/		
6	4096	32	/	/	/		
7	4096	64	3	4096	64		
8	4096	128	/	/	/		
9	4096	256	/	/	/		
10	4096	512	4	4096	512		
11	4096	1024	/	/	/		
12	4096	2048	/	/	/		
Total: 12	Total: 12 phases, 4096*12 TAMs			4 phases, 40	96*4 TAMs		

Automorphism

Fig. 6. Automorphism architecture in Poseidon. Only one dual-port BRAM is needed. The result of Stage 4 will be written back to HBM directly.

EVALUATION

Platform

Xilinx Alveo U280(owns HBM) FPGA plugged into the PCIe slot of the mainboard

Vivado and Vitis on the host side.

Baseline

CPU (Intel Xeon Gold 6234) running at 3.3 GHz with a single thread state-of-the-art GPU

FPGA

4 FHE accelerator ASICs

Benchmark

- Logistic regression (LR). It is the HELR algorithm implementation based on the CKKS scheme. In combination with Bootstrapping, we use the multiplication depth of L = 38 and evaluate the average performance of 10 iterations supported by two Bootstrapping operations.
- LSTM. It is the Long-Term Short-Term (LSTM) model. It requires 50 Bootstrapping operations in total during one inference.
- ResNet-20. This benchmark is the inference of an image on the ResNet-20 model implemented with FHE.
- Packed bootstrapping(packed bootstrapping algorithm).
 bootstrapping L = 3; multiplication depth L = 57.

Accelerator Performance

FHE Basic Operations

Fig. 7. Operator core analysis. The ciphertext parameters are set to $N = 2^{16}, L = 44$.

TABLE IV
PERFORMANCE COMPARISON OF FHE BASIC OPERATIONS. WE USE "OPERATIONS PER SECOND" AS THE PERFORMANCE METRIC.

	CPU (Xeon)	Over 100x (GPU) [21]	HEAX (FPGA) [32]	Poseidon (FPGA)	speedup
HAdd	35.56	4807	4,161	13,310	374×
PMult	38.14	7,407	4,161	13,310	349×
CMult	0.38	57	119	273	718×
NTT	9.25	/	237	12,474	1,348×
Keyswitch	0.4	/	104	312	780 ×
Rotation	0.39	61	/	302	774×
Rescale	6.9	1,574	/	3,948	572×

Full-system performance

TABLE V
FULL-SYSTEM PERFORMANCE COMPARISON WITH SOTA ACCELERATOR PROTOTYPES. WE USE ACTUAL BENCHMARK EXECUTION TIME IN MS AS THE METRIC.

	LR [19]	LSTM [27]	ResNet-20 [28]	Packed Boot- strapping [30]
F1+ (ASIC)	639	2,573	2,693	58.3
CraterLake (ASIC)	119.52	138.0	249.45	3.91
BTS-1 (ASIC)	39.9	/	1,910	/
BTS-2 (ASIC)	28.4	/	2,020	1
BTS-3 (ASIC)	43.5	/	3,090	1
ARK (ASIC)	7.717	/	294	1
over100x (GPU)	775	1	/	/
Poseidon (FPGA)	72.98	1,848.89	2,661.23	127.45

TABLE VI COMPARISON OF THE STORAGE RESOURCE CONSUMPTION.

	HBM	Scratchpad	Running
	Capacity /	Fre. (GHz)	
	(GB / TB/s)	rie. (Gnz)	
F1+ [35], [36] (ASIC)	16 / 1	256 / 29	1
CraterLake [36] (ASIC)	16 / 1	256 / 29	1
BTS [24] (ASIC)	16 / 1	512 / 38.4	1.2
ARK [23] (ASIC)	32 / 2	512 / 20	1
Poseidon (FPGA)	8 / 0.45	8.6 / 3.4	0.45

Bandwidth Utilization
LOWEST AND AVERAGE BANDWIDTH UTILIZATION ANALYSIS OF BASIC
OPERATIONS AND WHOLE BENCHMARKS.

	LR [19]	LSTM [27]	ResNet-20 [28]	Packed Bootstrapping [30]
HAdd (%)	97.79	97.69	97.76	63.29
PMult (%)	97.65	97.15	97.48	97.48
CMult (%)	44.72	55.55	50.15	72.35
Keyswitch (%)	36.8	47.47	42.05	63.29
Rotation (%)	65	32.39	58.67	48.67
Rescale (%)	26.16	29.98	26.83	26.83
Bootstrapping (%)	46.39	56.43	52.18	/
Average (%)	42.78	51.99	48.08	59.07

Poseidon Specifics

Fig. 10. Parameter Selection -k. We evaluated the FPGA resource usage (in actual #) and the Average Execution Time per NTT (bottom right), scaled by k. The optimal point emerges at k = 3, where it consumes the lowest resources with the highest speed.

HFAuto

TABLE VIII
RESOURCE UTILIZATION COMPARISON OF THE AUTOMORPHSIM
OPERATOR CORE DESIGN.

	FF	DSP	LUT	BRAM	Latency (cycles)
Auto	88	0	0	0	131,073
HFAuto	572	0	25,751	512	517

TABLE IX HFAUTO PERFORMANCE IN POSEIDON.

	LR	LSTM	ResNet-20	Packed Bootstrap- ping
Poseidon-Auto (ms)	729.8	14,150.2	10,543.1	1,127.2
Poseidon-HFAuto	72.98	1,848.89	2,661.23	127.45
(ms)	(10×)	$(7.6\times)$	$(3.9\times)$	(8.8×)

Fig. 11. Sensitivity of the lanes.

Energy

Energy Consumption and Breakdown

Fig. 12. Energy consumption and breakdown. MM and NTT operator cores take the major proportion besides the memory access.

Efficiency and Utilization

TABLE X
EFFICIENCY ANALYSIS. WE USE ENERGY DELAY PRODUCT (EDP) AS THE METRIC. LOWER IS BETTER.

	Over 100x (GPU)	BTS-2 (ASIC)	ARK (ASIC)	Crater- Lake (ASIC)	Poseidon (FPGA)
LR	180.19	0.092	0.017	3.028	0.18
ResNet-20	/	545.95	24.31	17.08	236.17
LSTM	/	/	/	6.04	113.36
Packed Bootstrapping	/	/	/	0.0038	0.51

TABLE XI FPGA RESOURCE UTILIZATION OF POSEIDON.

	LUT (k)	FF (k)	DSP	BRAM	Latency (cycles)
$MA(\times 1)$	50	68	0	0	3
MM (×1)	170	160	1536	0	5
NTT (×1)	358	344	4032	1024	21
Automorphism $(\times 2)$	52	2	0	1024	517
SBT (×1)	98	403	3072	0	11

TABLE XII

RESOURCE UTILIZATION COMPARISON. FOR FAIRNESS, WE COMPARE TWO SELECTED COMPUTATIONS IN FHE - MODMULT AND A SINGLE TAM.

		Kim [25]	Kim [26]	HEAX [32]	Poseidon
Mod	LUT	1988	/	1663	523
Mult	REG	1810	/	4256	2000
Mult	DSP	12	/	22	9
Single	LUT	/	5368	2066	594
TAM	REG	/	4927	6297	973
IAWI	DSP	/	19.95	10	9.25