Présentiel	À Distance
 CM 1 : Présentation du Dispositif Pédagogique : Méthodes Numériques Discret/Continu, Erreur : arrondis et troncature, (suite analytique convergente, numérique divergente) Modèles (équations EDP EDO) / Méthodes Linéaire/Non Linéaire 	
TD 1 Euler-Cauchy, RK2 : • Comprendre comment s'opère les calculs, • Influence du pas et méthode $y_1^{n+1} = EC(t, y_1^n, y_2^n), \ y_2^n = RK(t, y_1^n, y_2^n)$	• Grandeurs/ Type Équation / Dimensions / Variables • EDO degré $n \to$ ode degré 1 • Problème bien posé $(\dot{x} = \sin t, , x(0) = 0, x(2\pi) = 0 \dots)$ Discrétization (subdivision, intervalle, noeuds)
TD 2 : Euler-Cauchy, RK2 sur un problème contextualisé d'ordre > 1 $(M\ddot{y} + C\dot{y} + Ky = f(t), \ y(0) = y_0, \ \dot{y}(0) = \tilde{y}_0)$	• Mettre en place Euler-Cauchy en 1 dimension
CM 2 : Synthèse et Approfondissement : Théorie sur les méthodes (calculs des coeffs de RK2)	
 TP 1 : Amortisseur de voiture : equation linéaire du second ordre (coefficients constants puis coefficients numériques) : ÿ + αÿ + ky = f(t) TD 3 : Utilisation de ode45, ode23 sur Matlab : pas numérique doit être de √ε où ε est la précision machine. Traiter des exemples non-triviaux, notions d'erreur relative et absolue 	
TD 4 : Méthode de résolution implicite/explicite : Écriture Matricielle Discrétisation des CL / CI et des dérivées	 Formules de Taylor, Dérivées Numériques Réseau de points Discrétization exos entrainement
Discretisation des CL / Cl et des deur les Discretisation Equation de la chaleur 1D TP 2: Equation de la chaleur $\frac{\partial T}{\partial t} = k\Delta T$, $CI + CL$ Explicite, CL Dirichlet et Ci Neumann	• Résolution problème 1D en implicite
BE 1 : Problème implicite en dim 3: $\frac{\partial T}{\partial t} = k\Delta T$ TP 3 : Equation de la chaleur $\frac{\partial T}{\partial t} = k\Delta T$, $CI + CL$ Implicite et Mixte Implicite/Explicite, CL Dirichlet et Ci Neumann -> stabilité	
CM 3 : Synthèse et approfondissement : ordre d'un schéma numérique (approche par Fourier) Arbre de décision avec les différents types d'EDP (parabolique, elliptique) et les différents schémas (implicite/explicite) avec avantages et inconvénients	
TD 6: Consistence, Stabilité et Convergence Liens avec l'erreur d'un schéma	