CpE 645 Image Processing and Computer Vision

Prof. Hong Man

Department of Electrical and Computer Engineering Stevens Institute of Technology

Elements of Image/Video Compression

Three stage image/video coding structure.

Transform Coding

Data Transformation

- Data transformation:
 - represent an input data array by a new data array through an invertible data transform method.
- Why:
 - energy compaction,
 - de-correlation,
 - helpful data structure.
- How:
 - discrete cosine transform (DCT),
 - subband/wavelet transform.

Wavelet Transform

- Classical Fourier decompositions have good frequency resolution but poor time localization.
- Wavelet representations decompose the signal in terms of functions that are localized in both time and frequency.
- The basis functions of a wavelet transform are *wavelets*, which are dilated (scaled) and translated versions of a *mother wavelet*.
- Wavelets usually has finite space or time duration, which can provide localized information of a signal.
- Wavelets are also band limited in frequency, which can represent frequency components in a signal.

Wavelet Tutorial

A nice wavelet tutorial

http://engineering.rowan.edu/~polikar/WAVELETS/WTtutorial.html

Wavelet Transform

(a) Short-time Fourier Transform (STFT)

(b) Continuous wavelet transform

• A discrete wavelet transform (DWT) can be implemented through a 2-band subband filtering:

```
h<sub>0</sub>=[0.4829629131445341,
0.8365163037378079,
0.2241438680420134,
-0.1294095225512604];
```


h₁=[0.1294095225512604, 0.2241438680420134, -0.8365163037378079, 0.4829629131445341];

Visual Information Environment Laboratory

• The corresponding scaling function and wavelet function:

• Some dilated DWT basis functions:

- A graphical recursion algorithm to associate filter banks with wavelets:
 - 1. Initialize a continuous unit square waveform.
 - 2. Pass it through the digital filters
 - 3. Represent each output sample as a new square waveform with half the time duration, and pass each of them through the filters,
 - 4. Linearly combine them to form the out put of this recursion, go back to step 3.

Wavelets with 4-tap FIR Filters

Wavelets with 8-tap FIR Filters

Visual Information Environment Laboratory

Wavelets with 16-tap FIR Filters

Subband Coding

- <u>Subband Coding</u> is to decompose a signal into components by applying frequency-selective filtering. Then select the best coding technique that best suits each component (subjectively and objectively).
- *Example*: decompose a signal into slow- and fast-varying components:

$$y[n-1]=x[n]+x[n-1], y[n]=x[n]-x[n-1].$$

The signal x[n] can be recovered as:

$$x[n-1]=-(y[n]-y[n-1])/2, x[n]=(y[n]+y[n-1])/2.$$

The corresponding filters are:

$$h[n]=\delta[n]+\delta[n-1], \quad g[n]=\delta[n]-\delta[n-1].$$

Visual Information Environment Laboratory

Subband Encoding

Subband Decoding

Filter Bank Decomposition

Subband Coding Design

- Design issues:
 - Filter banks design
 - Quantization
 - Entropy coding
 - Bit allocation among all subbands.
- The general form of digital filters is:

$$y[n] = \sum_{i=0}^{N} a_i x[n-i] + \sum_{i=1}^{M} b_i y[n-i]$$

• Filters can be analyzed in the time domain (convolution), frequency domain (Fourier transformation), or Z domain (transfer functions.)

Two-Band Filter Banks

- For M=2 the filters are easy to analyze.
- Goal:
 - good frequency-domain separation
 - no aliasing terms
 - perfect reconstruction: system is equivalent to a delay

• Quadrature Mirror Filters (QMF, Croisier, Esteban, Galand 1976, Johnston 1980):

symmetric: $h_0[n] = h_0[N-1-n],$

also satisfy: $h_1[n] = (-1)^n h_0[n],$

 $g_0[n]=h_0[n],$

 $g_1[n] = -(-1)^n h_0[n].$

- Properties:
 - No aliasing, no magnitude distortion, some phase distortion.
 - The decomposition efficiency (i.e. frequency domain separation) increases with the length of filters.
 - Efficient polyphase implementation.

• Conjugate Quadrature Filters (CQF, Smith-Barnwell, 1984):

$$h_1[n] = (-1)^n h_0[L-1-n],$$

 $g_0[n] = h_0[L-1-n],$
 $g_1[n] = -(-1)^n h_0[n].$

- Properties:
 - Perfect reconstruction, i.e. $x[n] = \hat{x}[n+m]$, where m is a linear delay.
 - Better frequency characteristics for the same number of taps comparing to the Johnston filters.
 - Closely related to wavelets.

• 9/7 biorthogonal FIR filter bank (Cohen, Daubechies and Feauveau, 1992):

$$g_1[n] = (-1)^{n+1} h_0[-1+n],$$

 $h_1[-n] = (-1)^{n+1} g_0[1-n],$
 $\sum_n h_0[-n] g_0[n+2k] = \delta[k].$

- Properties:
 - Perfect reconstruction,
 - Symmetric, linear phase,
 - Most popular filter bank in image compression.

• 9/7 biorthogonal FIR filter bank:

n	$h_0[n]$	$h_1[n]$	$g_0[n]$	$g_1[n]$
-4	0.037829	0	0	0
-3	-0.023849	0	-0.064539	0.037829
-2	-0.110624	0.064539	-0.040690	0.023849
-1	0.377403	-0.040690	0.418092	-0.110624
0	0.852699	-0.418092	0.788485	-0.377403
1	0.377403	0.788485	0.418092	0.852699
2	-0.110624	-0.418092	-0.040690	-0.377403
3	-0.023849	-0.040690	-0.064539	-0.110624
4	0.037829	0.064539	0	0.023849
5	0	0	0	0.037829

Tree-Structured Filter Banks

• We can design an M-band filter bank by successively applying the **2**-band filter banks.

<u>Uniform</u> filter bank decomposition: Visual Information Environment Laboratory

Institute of Technology

Tree-Structured Filter Banks (cont.)

Octave Band filter bank decomposition

2-D Tree-Structured Filter Banks

• Most 2-D filter banks are obtained by applying 1-D decompositions separably.

Uniform decomposition Octave-tree decomposition

Example of Subband Decomposition

Quantization

• Quantization:

map a large number of input amplitude levels to a small number of output amplitude levels with non-recoverable loss of quality.

• Why:

 reduced level of amplitude ⇒ reduced number of bits required to represent each pixel.

• How:

- scalar quantization (SQ),
- vector quantization (VQ).

Example of SQ

Examples of VQ

Scalar Quantization

• The quantized $\hat{x}[n]$ is a discrete source of symbols with probabilities

$$P[S_{i}] = \int_{t_{i}}^{t_{i+1}} p_{X_{n}}(x_{n}) dx_{n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Scalar Quantization (cont.)

• An N-point quantizer is a mapping

$$Q: \mathfrak{R} \rightarrow C = \{y_1, ..., y_N\} \subset \mathfrak{R}$$

where C is the set of output points or reproduction values.

• A quantizer is completely specified by its codebook *C* and the partition of the real axis into cells

$$R_i = \{x \in \Re; Q(x) = y_i\} = Q^{-1}(y_i)$$

note that
$$\bigcup R_i = \Re$$

$$R_i \cap R_j = \emptyset$$
 for $i \neq j$

Regular Scalar Quantizers

- We are only concerned with <u>regular</u> quantizers for which
 - the cells $\mathbf{R_i}$ are intervals of the form (x_{i-1}, x_i) together with one or both of its endpoints.
 - The reconstruction levels $y_i \in \mathbf{R_i}$.

Regular Scalar Quantizers (cont.)

Visual Information Environment Laboratory

Inverse Quantization

- Quantization error: $\varepsilon[n] = Q(x[n]) x[n]$
- Any distortion measure can be used. The most widely used is the MSE:

$$D = E[(X - Q(X))^{2}] = \int_{-\infty}^{+\infty} (x - Q(x))^{2} f_{X}(x) dx$$

For regular quantizers:

$$D = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} (x - y_i)^2 f_X(x) dx$$

Uniform Quantizers

- Regular quantizers with:
 - same size partitions in the granular region
 - reconstruction levels are the midpoints of the cells
- The most popular and simple
- According to the way they handle x = 0:
 - midtread quantizer: zero is one of the reconstruction levels.
 - midrise quantizer: zero is one of the thresholds.
- Minimizes maximum distortion.
- For uniform sources, it is optimum for any distortion.

Uniform Quantizers (cont.)

- For uniform distributions, the quantization error $\varepsilon = Q(x) x$ of an N-point uniform quantizer is uniformly distributed in the interval $[-\Delta/2, + \Delta/2]$, where $\Delta = 2x_{\text{max}}/N$.
- Then $E[\varepsilon] = 0$, $E[\varepsilon^2] = \Delta^2/12$, $E[|\varepsilon|] = \Delta/4$.
- If the quantizer output is encoded using **n** bits per sample:

$$SNR(dB) = 10\log_{10}\frac{\sigma_x^2}{\sigma_{\varepsilon}^2} = 10\log_{10}N^2 = 6.02\log_2 N = 6.02n$$

• If *pdf* is not uniform, an optimal quantization step size can be found that minimizes **D**.

Optimum Quantizers

- Non-uniform quantizers attempt to decrease the average distortion by assigning more quantization levels to more probable regions.
- For given N and input pdf $f_X(x)$, we need to choose $\{x_1, \ldots, x_N\}$ and $\{y_1, \ldots, y_N\}$ that minimize the distortion (MSE)

$$D = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} (x - y_i)^2 f_X(x) dx$$

• It is usually difficult to solve this optimization problem with 2N variables.

Optimum Quantizers (cont.)

- It is easier to find the optimal solutions under these conditions:
 - For a given interval partition (x_{i-1}, x_i) (encoder), design the optimum reconstruction levels y_i (decoder);
 - For a given reconstruction levels y_i (decoder), design the optimum interval partition (x_{i-1}, x_i) (encoder).
- When both the reconstruction levels and the partition are optimal, we have a (locally?) optimal quantizer.

The Optimum Codebook

• For a given interval partition (x_{i-1}, x_i) , to minimize the MSE:

$$D = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} (x - y_i)^2 f_X(x) dx$$

The y_i that minimizes

$$\int_{x_{i-1}}^{x_i} (x - y_i)^2 f_X(x) dx = E[(x - y_i)^2 \mid x \in R_i]$$

is the <u>centroid</u> of $R_i = (x_i, x_{i-1})$:

$$y_{i}^{*} = E[x \mid x \in R_{i}] = \frac{\int_{x_{i-1}}^{x_{i}} x f_{X}(x) dx}{\int_{x_{i-1}}^{x_{i}} f_{X}(x) dx}$$

The Optimum Partition

• If the codebook (*i.e.* the set of reconstruction levels) is fixed, for any distortion measure, the optimum partition cell \mathbf{R}_i is defined by the <u>nearest neighbor</u> encoder rule:

$$R_i = \{x : d(x, y_i) \le d(x, y_j) \text{ for all } j \ne i\}$$

• For regular quantizers and "normal" distortion function, the optimum thresholds (*i.e.* cell boundaries) are:

$$x_{i-1} = \frac{y_{i-1} + y_i}{2}$$

The Lloyd Algorithm

- It is difficult to solve both sets of equations analytically.
- An iterative algorithm known as the <u>Lloyd algorithm</u> solves the problem by iteratively optimizing the encoder and decoder until both conditions are met with sufficient accuracy.

Implementing the Lloyd Algorithm

- When the *pdf* is known, the centroids can be computed using numerical integration.
- In practice, the pdf is usually not known. A sufficiently large representative set (training set) of input samples is used, and statistical averages are replaced by set averages. The centroid of the set R_i is computed as

$$y_i = \frac{1}{N_i} \sum_{x_i \in R_i} x_i$$

where N_i is the number of training samples in R_i .

Properties of Lloyd Quantizers

- E[Q(X)] E[X] (mean preservation) where X is quantizer input and Q(X) is output.
- $E[Q(X) \cdot (Q(X) X)] = 0$ (orthogonality) where (Q(X) - X) is the quantization noise.
- $E[(Q(X)-X)^2] = \sigma_X^2 \sigma_{Q(X)}^2$ where σ_X^2 is the variance of the input, $\sigma_{Q(X)}^2$ is the variance of the output.
- $\sigma_{Q(X)}^2 \leq \sigma_X^2$
- $E[X \cdot (Q(X) X)] = -\sigma_{Q(X)}^2$

Vector Quantization

• VQ is a generalization of scalar quantization. It is a mapping from a *k*-dimensional real value vector to a codeword

$$Q: \mathbb{R}^k \to C = \{\underline{y}_1, ..., \underline{y}_N\} \subset \mathbb{R}^k$$

- C is called the codebook and has size N. Each of its element is a k-dimensional real value vector.
- Associated with an *N*-point VQ is a partition of the k-dimensional real space into *N* regions (cells) given by:

$$R_i = \{\underline{x} \in \Re^k; Q(\underline{x}) = \underline{y}_i\} = Q^{-1}(\underline{y}_i)$$
where $\bigcup R_i = \Re^k, R_i \cap R_j = \emptyset$ for $i \neq j$

Vector Quantization (cont.)

- If the output of the VQ codebook is fixed-rate coded, then the rate of the VQ is $r = (\text{Log}_2 N)/k$.
- Definition: A Vector Quantizer (VQ) is called <u>regular</u> if:
 - Each cell \mathbf{R}_i is a convex set.
 - For each i, the corresponding code vector belongs to R_i .
- The encoder needs to know the geometry of the space partition. The encoding involves searching the nearest code vector in the set of all code vectors.
- The decoder needs to know the codebook (*i.e.* code words and code vectors). The decoding is usually a table-lookup.

Vector Quantization (cont.)

- An example of a 2-D Vector Quantizer:
 - A map of the city that is divided into school districts.
 - Each school in its district represents the code vector.
 - Input: Location of child's residence.
 - Output: Rule by which each child is assigned to a school.
- Shannon's lossy source coding theorem states that: Given a signal vector (or data vector), no other coding technique exists that can outperform vector quantization.

Vector Quantization (cont.)

• The advantages of the VQ:

Exploit linear dependencies (correlation) and non-linear

dependencies,

Better multi-dimensional space filling.

