Image Processing and Computer Vision (IPCV)

Prof. Dr. J. Weickert Mathematical Image Analysis Group Winter term 13/14 Saarland University

Example Solutions for Classroom Assignment 13 (C13)

Problem 1 (Homogeneous Coordinates)

We first want to remark that all projective coordinates that are a multiple of each other, i.e. where $\tilde{a} = \lambda \tilde{b}$ for $\lambda \neq 0$, denote the same point. This reflects the depth ambiguity.

(a) If m_1 lies on l_1 the following holds:

$$a_1 x_1 + b_1 y_1 + c_1 = 0 (1)$$

Thus we have:

$$\widetilde{\boldsymbol{m}}_1^{\top} \boldsymbol{l}_1 = (x_1, x_2, 1)^{\top} \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} = x_1 \cdot a_1 + y_1 \cdot b_1 + 1 \cdot c_1 \stackrel{(1)}{=} 0.$$

(b) Since the intersection point m_1 lies on l_1 as well as on l_2 , we know from (a) that $\widetilde{\boldsymbol{m}}_1^{\top} \boldsymbol{l}_1 = 0$ and $\widetilde{\boldsymbol{m}}_1^{\top} \boldsymbol{l}_2 = 0$ holds. Furthermore we know, that the inner product between two vectors \boldsymbol{a} and \boldsymbol{b} is 0 iff $\boldsymbol{a} \perp \boldsymbol{b}$. Thus we have:

$$\widetilde{\boldsymbol{m}}_1 \perp \boldsymbol{l}_1$$
 and $\widetilde{\boldsymbol{m}}_1 \perp \boldsymbol{l}_2$

That means $\widetilde{\boldsymbol{m}}_1$ is a vector which is orthogonal to the vectors \boldsymbol{l}_1 and \boldsymbol{l}_2 at the same time. The vectors \boldsymbol{l}_1 and \boldsymbol{l}_2 are linearly independent since $\boldsymbol{l}_1 \not\parallel \boldsymbol{l}_2$. Hence, the vector $\widetilde{\boldsymbol{m}}_1$ is up to a scalar factor λ uniquely given by the crossproduct of \boldsymbol{l}_1 and \boldsymbol{l}_2 :

$$\widetilde{\boldsymbol{m}}_1 = \lambda(\boldsymbol{l}_1 \times \boldsymbol{l}_2)$$

 $\Leftrightarrow \frac{1}{\lambda}\widetilde{\boldsymbol{m}}_1 = \boldsymbol{l}_1 \times \boldsymbol{l}_2$

Due to the depth ambiguity this yields

$$\widetilde{\boldsymbol{m}}_1 = \boldsymbol{l}_1 \times \boldsymbol{l}_2$$

Alternatively:

If m_1 is the intersection point of l_1 and l_2 we know that following system of equations holds:

$$a_1 x_1 + b_1 y_1 + c_1 = 0$$

$$a_2x_1 + b_2y_1 + c_2 = 0$$

Solving it for x_1 and x_2 gives:

$$x_1 = \frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1}$$
 and $y_1 = \frac{a_1 c_2 - a_2 c_1}{a_1 b_2 - a_2 b_1}$

Note that $a_1b_2 - a_2b_1 \neq 0$ due to $\boldsymbol{l}_1 \not\parallel \boldsymbol{l}_2$. So

$$\widetilde{m{m}}_1 = \left(egin{array}{c} rac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1} \ rac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1} \ 1 \end{array}
ight) = \lambda \left(egin{array}{c} b_1c_2 - b_2c_1 \ a_1c_2 - a_2c_1 \ a_1b_2 - a_2b_1 \end{array}
ight) = \lambda (m{l}_1 imes m{l}_2)$$

with
$$\lambda = \frac{1}{a_1b_2 - a_2b_1}$$
.

So $\frac{1}{\lambda}\widetilde{\boldsymbol{m}}_1 = \boldsymbol{l}_1 \times \boldsymbol{l}_2$ and the depth ambiguity yield

$$\widetilde{\boldsymbol{m}}_1 = \boldsymbol{l}_1 \times \boldsymbol{l}_2$$

(c) Since both points, m_1 as well as m_2 lie on l_1 we know from (a) that $\widetilde{m}_1^{\top} l_1 = 0$ and $\widetilde{m}_2^{\top} l_1 = 0$ holds. We get again:

$$\widetilde{\boldsymbol{m}}_1 \perp \boldsymbol{l}_1$$
 and $\widetilde{\boldsymbol{m}}_2 \perp \boldsymbol{l}_1$

The vectors $\widetilde{\boldsymbol{m}}_1$ and $\widetilde{\boldsymbol{m}}_2$ are linearly independent since $\boldsymbol{m}_1 \neq \boldsymbol{m}_2$. So the vector \boldsymbol{l}_1 is up to a scalar factor λ uniquely given by the crossproduct of $\widetilde{\boldsymbol{m}}_1$ and $\widetilde{\boldsymbol{m}}_2$:

$$\mathbf{l}_1 = \lambda(\widetilde{\boldsymbol{m}}_1 \times \widetilde{\boldsymbol{m}}_2)
= (\lambda \widetilde{\boldsymbol{m}}_1) \times \widetilde{\boldsymbol{m}}_2
= \widetilde{\boldsymbol{m}}_1 \times (\lambda \widetilde{\boldsymbol{m}}_2)$$

The depth ambiguity yields

$$\boldsymbol{l}_1 = \widetilde{\boldsymbol{m}}_1 \times \widetilde{\boldsymbol{m}}_2$$

Alternatively:

We want to show, that l_1 is given by:

$$\boldsymbol{l}_1 = \widetilde{\boldsymbol{m}}_1 \times \widetilde{\boldsymbol{m}}_2 = \left(\begin{array}{c} x_1 \\ y_1 \\ 1 \end{array} \right) \times \left(\begin{array}{c} x_2 \\ y_2 \\ 1 \end{array} \right) = \left(\begin{array}{c} y_1 - y_2 \\ x_2 - x_1 \\ x_1 y_2 - x_2 y_1 \end{array} \right)$$

i.e.

$$(y_1 - y_2)x + (x_2 - x_1)y + (x_1y_2 - x_2y_1) = 0$$

Since a line is uniquely defined by two points it suffices to show, that the points m_1 and m_2 lie on l_1 .

Plugging in m_1 :

$$(y_1 - y_2)x_1 + (x_2 - x_1)y_1 + (x_1y_2 - x_2y_1)$$

$$= y_1x_1 - y_2x_1 + x_2y_1 - x_1y_1 + x_1y_2 - x_2y_1$$

$$= (y_1x_1 - x_1y_1) + (x_1y_2 - y_2x_1) + (x_2y_1 - x_2y_1)$$

$$= 0$$

Plugging in m_2 :

$$(y_1 - y_2)x_2 + (x_2 - x_1)y_2 + (x_1y_2 - x_2y_1)$$

$$= y_1x_2 - y_2x_2 + x_2y_2 - x_1y_2 + x_1y_2 - x_2y_1$$

$$= (y_1x_2 - x_2y_1) + (x_2y_2 - y_2x_2) + (x_1y_2 - x_1y_2)$$

$$= 0$$

Last but not least consider the following to pictures which summarise what we have learned in this assignment:

Problem 2 (Rotation Matrices in 3-D)

By three angles Φ , Θ and Ψ , the so-called *Euler angles*, we are able to describe the orientation of a 3-D-object in space using a single rotation matrix. To this end we state three matrices that describe rotations around the z, the x and again the z axis and concatenate them afterwards.

Rotation by Ψ degrees around the z-axis:

$$\boldsymbol{R}_{z}(\Psi) := \begin{pmatrix} \cos(\Psi) & -\sin(\Psi) & 0\\ \sin(\Psi) & \cos(\Psi) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Rotation by Θ degrees around the x-axis:

$$m{R}_x(\Theta) := \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos(\Theta) & -\sin(\Theta) \\ 0 & \sin(\Theta) & \cos(\Theta) \end{array}
ight)$$

Rotation by Φ degrees around the z-axis:

$$\mathbf{R}_z(\Phi) := \begin{pmatrix} \cos(\Phi) & -\sin(\Phi) & 0\\ \sin(\Phi) & \cos(\Phi) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Let $\mathbf{p} = (p_1, p_2, p_3)^{\top}$ be an object point. To get the new orientation we first rotate Ψ degrees around the original z-axis, i.e we compute $\mathbf{R}_z(\Psi)\mathbf{p}$. This is followed by a rotation around the new x-axis by an angle of Θ . That means we have to use the basistransformed rotation matrix $\mathbf{R}'_x(\Theta) := \mathbf{R}_z(\Psi)\mathbf{R}_x(\Theta)\mathbf{R}_z^{-1}(\Psi)$:

$$R'_x(\Theta)R_z(\Psi)p = R_z(\Psi)R_x(\Theta)R_z^{-1}(\Psi)R_z(\Psi)p$$

= $R_z(\Psi)R_x(\Theta)p$.

Finally we rotate Φ degrees around the z-axis that was created by the previous rotations. Again we have to use the basistransformed rotation matrix $\mathbf{R}'_z(\Phi) := \mathbf{R}_z(\Psi)\mathbf{R}_x(\Theta)\mathbf{R}_z(\Psi)(\mathbf{R}_z(\Psi)\mathbf{R}_x(\Theta))^{-1}$:

$$\begin{array}{lcl} \boldsymbol{R}_z'(\Phi)\boldsymbol{R}_z(\Psi)\boldsymbol{R}_x(\Theta)\boldsymbol{p} & = & \boldsymbol{R}_z(\Psi)\boldsymbol{R}_x(\Theta)\boldsymbol{R}_z(\Phi)(\boldsymbol{R}_z(\Psi)\boldsymbol{R}_x(\Theta))^{-1}\boldsymbol{R}_z(\Psi)\boldsymbol{R}_x(\Theta)\boldsymbol{p} \\ & = & \boldsymbol{R}_z(\Psi)\boldsymbol{R}_x(\Theta)\boldsymbol{R}_z(\Phi)\boldsymbol{R}_z^{-1}(\Theta)\boldsymbol{R}_z^{-1}(\Psi)\boldsymbol{R}_z(\Psi)\boldsymbol{R}_x(\Theta)\boldsymbol{p} \\ & = & \boldsymbol{R}_z(\Psi)\boldsymbol{R}_x(\Theta)\boldsymbol{R}_z(\Phi)\boldsymbol{R}_z^{-1}(\Theta)\boldsymbol{R}_x(\Theta)\boldsymbol{p} \\ & = & \boldsymbol{R}_z(\Psi)\boldsymbol{R}_x(\Theta)\boldsymbol{R}_z(\Phi)\boldsymbol{p} \end{array}$$

So the full concatenated rotation matrix M_{zxz} is then given as

$$\boldsymbol{M}_{zxz} = \boldsymbol{R}_z(\Psi)\boldsymbol{R}_x(\Theta)\boldsymbol{R}_z(\Phi) =$$

$$\begin{pmatrix} \cos(\Psi)\cos(\Phi) - \sin(\Psi)\cos(\Theta)\sin(\Phi) & -\cos(\Psi)\sin(\Phi) - \sin(\Psi)\cos(\Theta)\cos(\Phi) & \sin(\Psi)\sin(\Theta) \\ \sin(\Psi)\cos(\Phi) + \cos(\Psi)\cos(\Theta)\sin(\Phi) & \cos(\Psi)\cos(\Theta)\cos(\Phi) - \sin(\Psi)\sin(\Phi) & -\cos(\Psi)\sin(\Theta) \\ \sin(\Theta)\sin(\Phi) & \sin(\Theta)\cos(\Phi) & \cos(\Theta) \end{pmatrix}$$

As we rotate first around the z-axis, then around the x-axis and afterwards again around the z-axis, this definition of the Euler angles is called z-x-z convention. It is one of several common conventions; others are for example the x-y-z and z-y-x convention.

Note that $M_{zxz} \neq R_z(\Phi)R_x(\Theta)R_z(\Psi)$, which would describe a rotation by Ψ degrees around the original z-axis followed by a rotation of Θ degrees around the original z-axis followed by a rotation of Φ degrees around the original z-axis.