Lab 4 on embedded Artificial Intelligence on micro-controler

Polytech Nice Sophia

During this lab, you will use the software tools installed during Lab1 to optimize artificial neural networks for execution on the embedded platform Nucleo-64 depicted in the following figure.

Part I. Train a network

In this part, your goal is to define a Convolutional Neural Network reaching **at least 90%** of good recognition (accuracy) on the **UCI HAR** Dataset (available here).. The accuracy of your model must be confirmed by an average **on 3 learning** and the validation **on 100 inferences** on laptop and on target!

(Obviously, the statistical studies would need more trials, but it is here a first introduction to CNN exploration)

First, get the new notebook from https://lms.univ-cotedazur.fr and test it. Note that data are time series. Consequently, the shape of data is 1D, just as the convolution kernels.

Firstofall, **modify the script in order to plot the accuracy and loss** during the training according to epochs. It will help you to interpret the good or bad behavior of your tuning.

The **test dataset** has been splitted in two parts: the all test set composed of 2793 vectors, and a subpart of it composed only of 250 vectors for on-board validation.

To reach better accuracy you can change the following hyper-parameters of your CNN in the Build model and Train model parts of notebook:

- The Learning rate
- The number of **epochs** of learning (how many time the network will learn the entire dataset)

To reach better accuracy you can change the following hyper-parameters of your CNN in the Build model and Train model parts of TF script:

- The number of **filters** in each convolution (*Conv1D*) layer
- The size of the **kernels** in each convolution layer
- The number of **Convolution layers**
- The use of *MaxPool1D* layers between *Conv1D* layers
- The number of **Dense layers**
- The number of **neurons** in each dense layer (except the output layer)

When you get the expected accuracy, fill the following table as your result.

Layer	Output shape	Number of parameters	Kernel (If conv2D)
Input			
Total trainable			
parameters			
Number of Epochs		<u>-</u>	

Final model	Accuracy on test		Loss on test		Accuracy on validation	
Learn 1						
Learn 2						
Learn 3						
Results	Average	Std deviation	Average	Std		
				deviation		

Part II. Evaluate the performance of a network

Once you finished part I with a satisfying model, open STM32CubeIDE and import your model as explained in Lab1 (additional software -> network -> browse and select the corresponding .h5 file).

Analyze the original model layer per layer

- o If your model does not satisfy the memory requirements, come back to tensor flow and reduce the size of the network (the number of parameters)
- o If the model is correct, fill the following table

	Туре	Param #	MACC	MACC (%)	ROM (bytes)	ROM (%)	Bytes per Param
Layer 1							
Layer 2							

•••				
TOTAL				

• Validate on desktop and select compression factor

Results during inference	Number of inferences (test dataset)	Accuracy	RMSE	MAE	MACC	ROM (bytes)
Original model (result from TF)	100					
Without compression						
Compression X4						
Compression X8						

Part III. Validate a network on target

Results during inference	Number of inferences (test dataset)	Accuracy without compression	RMSE	Total latency (ms)	CPU cycles	Cycles / MACC
Original model	(test dataset)	compression		(1113)		
(result from TF)						
Model validated on						
Laptop without						
compression						
Model validated on						
Target without	100					
compression						
Model validated on						
Target with						
compression X4						
Model validated on						
Target with						
compression X8						

Compare the results obtained on this dataset with the MNIST dataset.