1 Tema

Os automóveis representam um importante papel na sociedade atual sendo aproveitados não somente para locomoção, mas também como meio de serviço. O Departamento Nacional de Trânsito (DENATRAN), órgão governamental responsável pelo levantamento da frota de veículos do território nacional, estima em sua última pesquisa, realizada em abril de 2018, que o Brasil possui 98 201 128 veículos (DENATRAN, 2018).

O comportamento de um motorista pode ser modelado considerando as capacidades do condutor e a execução da tarefa de direção. A capacidade do condutor caracteriza a parcela biológica do modelo, sendo responsável pela sua velocidade de processamento, tempo de reação e seus limites físicos (FULLER, 2005). Este aspecto biológico leva em consideração a unicidade de cada indivíduo e o seu modo ímpar de interação com os instrumentos de condução do veículo. Estas duas características singulares permitem a formação e a extração de dados biométricos que podem utilizados para identificar ou validar um condutor de modo não intrusivo.

2 Motivação

Em uma sociedade onde os veículos estão presentes nos mais variados ramos da atividade econômica, é preciso saber de antemão quem é o motorista por trás do volante. Contudo, somente essa informação preliminar isolada não é o suficiente para prevenir fraudes de identidade. Uma validação não intrusiva, durante a execução da atividade de direção, é necessária para aumentar a confiabilidade da informação.

Fazendo uso dos dados sensoriados do veículo que está sob comando do condutor, o reconhecimento biométrico permite estabelecer a identidade de uma pessoa pela análise de suas características comportamentais (NANDAKUMAR; JAIN; NAGAR, 2008).

3 Lacuna

Os trabalhos mais atuais que contemplam a análise comportamental de motoristas estão mais preocupados em identificar o estado fisiológico do condutor como sonolência, distração, agressividade e afins (AL-SULTAN; AL-BAYATTI; ZEDAN, 2013; LIANG;

LEE; REYES, 2007; GINDELE; BRECHTEL; DILLMANN, 2015; CHONG et al., 2013). Poucos trabalhos como os de (LIANG; LEE, 2014; LIU et al., 2018; LEE; JANG, 2017) foram desenvolvidos com o objetivo principal de analisar o perfil do motorista de forma não intrusiva, empregando os dados sensoriados em tempo real provenientes do veículo, e aplicando técnicas de deep learning.

4 Objetivo

Apresentar um modelo, que contemple o uso de dados sensoriados do veículo extraídos em tempo real, com o intuito de realizar a análise comportamental do motorista durante a execução da tarefa de direção. Além da tarefa descrita anteriormente, o modelo deve ser apto à identificar o motorista com base no seu perfil de condução, gerado na tarefa anterior, empregando técnicas de deep learning.

5 Hipótese

Espera-se que com o uso de técnicas de aprendizagem profunda (deep learning), que são capazes de trabalhar em conjunto com séries temporais de alta dimensionalidade e em tempo real, seja possível obter resultados mais apurados ao realizar a extração de características e a identificação biométrica do motorista através do seu comportamento de direção. Tais técnicas devem apresentar melhores índices de sucesso no uso dos métodos f-score e curvas ROC, quando comparados aos resultados obtidos aplicando-se técnicas de aprendizado superficial (shallow learning).

Além da expectativa acima, almeja-se que o custo computacional para a execução de tais atividades e sua operacionalização não inviabilize a sua utilização pelo mercado.

6 Justificativa

Caso a aplicação da técnica de aprendizagem profunda apresente os resultados esperados, será possível explorar novas maneiras para criar-se perfis comportamentais de direção com menores custos computacionais.

7 Metodologia

Esta seção descreve detalhadamente as atividades necessárias para se alcançar o objetivo proposto anteriormente. A figura 1 organiza e ordena a execução destas atividades durante o período de um ano, que é o prazo esperado para a realização da pesquisa.

A metodologia de pesquisa que caracteriza este estudo é a quantitativa, pois os resultados obtidos por meio do modelo biométrico para identificação do condutor serão comparados com outros estudos disponíveis na comunidade como o (LIU et al., 2018). Além disso, esta pesquisa também possui caráter experimental porque há o desenvolvimento do modelo responsável pela identificação biométrica.

Atividade Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez

1 Estudos bibliográficos exploratórios
2 Revisão sistemática da literatura
3 Escolha e tratamento do conjunto de dados
4 Organização e documentação do conjunto de dados
5 Desenvolvimento do modelo biométrico
6 Definição do protocolo de qualidade de avaliação
7 Execução dos experimentos
8 Avaliação do experimento
9 Análise da avaliação para comprovação ou refutação

Figura 1 – Cronograma de execução das atividades.

Fonte: Lucas Freire Lima, 2018

Primeiramente é preciso entender qual é o estado da arte e quais trabalhos são relevantes quando abordamos o tema de identificação biométrica e identificação de condutores utilizando dados sensoriados do veículo, por isso as atividades de estudos bibliográficos exploratórios e a revisão sistemática da literatura serão executadas nos primeiros 4 meses. Sabendo de antemão como o problema está sendo abordado, é preciso selecionar, tratar e documentar a/as bases de dados que serão utilizadas tanto para a validação do modelo proposto quanto para a reprodução desta pesquisa pela comunidade científica. Esta necessidade impõe uma restrição sobre os dados, pois eles precisam estar disponíveis publicamente aos interessados.

A quinta atividade do cronograma consiste em desenvolver o modelo responsável por identificar o condutor de acordo com os dados sensoriados do veículo. Este modelo será desenvolvido aplicando-se técnicas de aprendizagem profunda devido a sua capacidade de extrair características de séries temporais multidimensionais. A sexta atividade definirá o

protocolo de qualidade para avaliação dos resultados provenientes da aplicação do modelo descrito anteriormente; esta atividade é detalhada separadamente no capitulo 8.

O segundo semestre desta proposta de pesquisa será dedicado à execução dos experimentos utilizando as bases de dados selecionadas com a apresentação de diferentes combinações do conjunto de dados, que foram organizados na quarta atividade; a previsão de duração para este item são de três meses. No último trimestre do ano serão executadas as avaliações dos experimentos que definirá a comprovação ou refutação desta proposta de projeto de pesquisa.

8 Avaliação

A avaliação dos experimentos será realizada considerando duas etapas. A primeira diz respeito a geração das bioassinaturas de condução, que é a representação matemática do perfil de condução motorista, e a segunda se dedica a identificação do condutor por meio da sua assinatura biométrica.

Na etapa de confecção da bioassinatura serão considerados o tempo de execução e o custo computacional para se obter o modelo matemático. Para a identificação do motorista serão utilizados o f-score, curvas ROC, o tempo médio para se identificar o motorista e seu custo computacional.

O melhor modelo será aquele que apresentar o maior resultado considerando a execução das duas atividades como um todo, para isso será aplicada uma razão ponderada composta por cada requisito das duas etapas.

9 Contribuições e Limitações

9.1 Contribuições

Esta pesquisa apresenta uma alternativa às opções de identificação biométrica disponíveis atualmente, por ser uma técnica não intrusiva, pode ser aplicada os mais diversos ramos da industria sem comprometer a individualidade e a privacidade dos usuários.

O setor automobilístico, de transportes e seguros são os mais propensos à adotarem esta técnica pois auxilia na prevenção à roubos e fraudes.

9.2 Limitações

Esta pesquisa possui uma restrição quanto ao tipo de veículo que foi utilizado pois este quesito é definido pela base de dados escolhida. Além disso, não há controle sobre a idade, condições fisiológicas e nem a experiência de condução dos motoristas que foram selecionados.

Outro ponto que é merece ser destacado são as condições ambientais sob as quais os dados foram captados, o tipo e as condições das vias que foram escolhidas pelos responsáveis do conjunto de dados.

Referências¹

- AL-SULTAN, S.; AL-BAYATTI, A.; ZEDAN, H. Context-aware driver behavior detection system in intelligent transportation systems. *IEEE Transactions on Vehicular Technology*, v. 62, n. 9, p. 4264–4275, 2013. Citado 2 vezes nas páginas 1 e 2.
- CHONG, L.; ABBAS, M.; FLINTSCH, A. M.; HIGGS, B. A rule-based neural network approach to model driver naturalistic behavior in traffic. *Transportation Research Part C: Emerging Technologies*, v. 32, p. 207–223, 2013. Citado 2 vezes nas páginas 1 e 2.
- DENATRAN. 01 Frota por UF e Tipo de Veículo. 2018. Citado na página 1.
- FULLER, R. Towards a general theory of driver behaviour. *Accident Analysis and Prevention*, v. 37, n. 3, p. 461–472, 2005. Citado na página 1.
- GINDELE, T.; BRECHTEL, S.; DILLMANN, R. Learning driver behavior models from traffic observations for decision making and planning. *IEEE Intelligent Transportation Systems Magazine*, v. 7, n. 1, p. 69–79, 2015. Citado 2 vezes nas páginas 1 e 2.
- LEE, J.; JANG, K. A framework for evaluating aggressive driving behaviors based on in-vehicle driving records. *Transportation Research Part F: Traffic Psychology and Behaviour*, 2017. Citado na página 2.
- LIANG, Y.; LEE, J. A hybrid bayesian network approach to detect driver cognitive distraction. *Transportation Research Part C: Emerging Technologies*, v. 38, p. 146–155, 2014. Citado na página 2.
- LIANG, Y.; LEE, J.; REYES, M. Nonintrusive detection of driver cognitive distraction in real time using bayesian networks. *Transportation Research Record*, n. 2018, p. 1–8, 2007. Citado 2 vezes nas páginas 1 e 2.
- LIU, H.; TANIGUCHI, T.; TAKENAKA, K.; BANDO, T. Defect-repairable latent feature extraction of driving behavior via a deep sparse autoencoder. *Sensors (Switzerland)*, v. 18, n. 2, 2018. Citado 2 vezes nas páginas 2 e 3.
- NANDAKUMAR, K.; JAIN, A.; NAGAR, A. Biometric template security. *Eurasip Journal on Advances in Signal Processing*, v. 2008, 2008. Citado na página 1.

¹De acordo com a Associação Brasileira de Normas Técnicas. NBR 6023.