

Universidade Federal de Viçosa Departamento de Informática Centro de Ciências Exatas e Tecnológicas

INF 100 – Introdução à Programação

Comando de Seleção (ou condicionais)

se ... senão ...

if ... else ...

• Faça um programa que leia do teclado os valores a, b e c de uma equação do 2^o grau $ax^2 + bx + c = 0$

e depois calcule e escreva na tela as raízes da equação.

 Exercício: analise o problema e monte um algoritmo contendo a solução inicial. Suponha que a ≠ 0 e que a equação possui raízes reais.

leia a, b, c

$$\Delta = b^2 - 4ac$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

escreva x1 escreva x2

Agora traduza o algoritmo para a linguagem
 Python. No lugar de:

$$\sqrt{\Delta}$$

você pode usar:

delta ** 0.5

Programa em Python

```
print('Equação do 2º grau ax² + bx + c = 0')
print('Entre com os valores:')
a = float (input('a = '))
b = float (input('b = '))
c = float (input('c = '))
delta = b*b - 4*a*c
x1 = (-b + delta**0.5) / (2 * a)
x2 = (-b - delta**0.5) / (2 * a)
print('x1 = ', x1)
print('x2 = ', x2)
```


Exemplo de Programa em Python

Mas o que fazer nas seguintes situações:

- a = 0 (não é equação do 2° grau)
- Δ < 0 (equação não possui raízes reais)

Nos algoritmos, podemos escrever:

```
se condição:
comando<sub>1</sub>
comando<sub>2</sub>
```

• • •

o que faz com que <u>os comandos só sejam</u> <u>executados se a condição dada for Verdadeira</u>.

Nos algoritmos, podemos escrever:

se condição: comando₁ comando₂

Outros comandos pode vir depois do comando *se*. Como podemos definir quais comandos dependem da condição? Opções:

- usando indentação;
- usando terminadores explícitos.

Nos algoritmos, podemos escrever:

se condição: comando₁ comando₂

OU:

se condição:
comando₁
comando₂
...
fim_se

Outros comandos pode vir depois do comando *se*. Como podemos definir quais comandos dependem da condição? Opções:

- usando indentação;
- usando terminadores explícitos.

Compare os seguintes trechos de algoritmo:

se condição: comando₁ comando₂ comando₃ se condição: comando₁ comando₂ comando₃

 Considerando que a indentação é usada para definir a dependência com o comando condicional, então os dois trechos diferem na semântica – qual é a diferença???

Compare os seguintes trechos de algoritmo:

```
se condição:

→ comando<sub>1</sub>

comando<sub>2</sub>

comando<sub>3</sub>
```

se condição: comando₁ comando₂ comando₃

- No primeiro caso:
 - 2 comandos dependem da condição.
 - comando₃ sempre será executado, independente da condição.

Compare os seguintes trechos de algoritmo:

```
se condição:

comando<sub>1</sub>

comando<sub>2</sub>

comando<sub>3</sub>
```


- No segundo caso:
 - comando₁ depende da condição.
 - $comando_2$ e $comando_3$ sempre serão executados, independentes da condição.

 Abaixo usamos um terminador explícito 'fim_se' para definir a dependência dos comandos condicionais, em vez da indentação.

```
se condição:
    comando<sub>1</sub>
    comando<sub>2</sub>
fim_se
comando<sub>3</sub>
```

se condição: comando₁ fim_se comando₂ comando₃

- Ao escrever os algoritmos, você pode usar a indentação <u>ou</u> os terminadores explícitos para definir a dependência dos comandos.
- Algumas linguagens de programação usam a indentação (e.g. Python) e outras usam terminadores explícitos (C, C++, Java...).

Uma versão estendida do comando é:

se condição: comando₁ senão: comando₂

o que significa que, se a condição for verdadeira, **comando**₁ será executado; caso contrário, **comando**₂ será executado.

Sintaxe em Python

Algoritmo

Python

se condição: comando₁

if condição: comando₁

se condição: comando₁ senão: comando₂

if condição:
 comando₁
else:
 comando₂

 Operadores lógicos de comparação e seus equivalentes em Python

Operador	Equivalente em Python
=	==
≠	!=
>	>
<	<
≥	>=
≤	<=

Traduzindo para Python

O que será
 escrito na tela
 pelo trecho de
 código ao lado?

```
a=2
b=1
if a < b:
   a=3
else:
   b=0
   a=4
print( a, b )
a=1
b=2
if a < b:
   a=3
else:
   b=0
a=4
print( a, b )
```


leia a, b, c

$$\Delta = b^2 - 4ac$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

escreva x1 escreva x2 Estender esse algoritmo para as seguintes situações:

- a = 0 (não é equação do 2° grau)
- Δ < 0 (equação não possui raízes reais)

a = 0 (não é equação do 2º grau)

leia a, b, c se a = 0: escreva 'Não é equação do 2º grau' senão:

$$\Delta = b^2 - 4ac$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

escreva x1 escreva x2

a = 0 (não é equação do 2º grau)

leia a, b, c se a = 0:

Sescreva 'Não é equação do 2º grau'

senao:

$$\Delta = b^2 - 4ac$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

escreva x1 escreva x2

a = 0 (não é equação do 2º grau)

```
print('Equação do 2º grau ax² + bx + c = 0')
print('Entre com os valores:')
a = float (input('a = '))
b = float (input('b = '))
c = float (input('c = '))
if a == 0:
  print('Não é equação do 2º grau.')
else:
  delta = b*b - 4*a*c;
  x1 = (-b + delta**0.5) / (2 * a)
  x2 = (-b - delta**0.5) / (2 * a)
  print('x1 = ', x1)
  print('x2 = ', x2)
```


Exemplo de Programa em Python

Mas o que fazer nas seguintes situações:

- a = 0 (não é equação do 2º grau) resolvido!
- Δ < 0 (equação não possui raízes reais)

Outras situações:

- $\Delta = 0$ (equação possui uma única raiz real)
- $\Delta > 0$ (equação possui duas raízes reais)

Δ < 0 (equação não possui raízes reais)

```
print('Equação do 2º grau ax² + bx + c = 0')
print('Entre com os valores:')
a = float (input('a = '))
b = float (input('b = '))
c = float (input('c = '))
if a == 0:
   print('Não é equação do 2º grau.')
else:
   delta = b*b - 4*a*c
   if delta < 0:
      print('Nenhuma raiz real.')
   else:
      x1 = (-b + delta**0.5) / (2 * a)
      x2 = (-b - delta**0.5) / (2 * a)
      print('x1 = ', x1)
      print('x2 = ', x2)
```


Δ < 0 (equação não possui raízes reais)

```
print('Equação do 2º grau ax² + bx + c = 0')
print('Entre com os valores:')
a = float (input('a = '))
b = float (input('b = '))
c = float (input('c = '))
if a == 0:
   print('Não é equação do 2º grau.')
else:
   delta = b*b - 4*a*c
   if delta < 0:
      print('Nenhuma raiz real.')
   else:
      x1 = (-b + delta**0.5) / (2 * a)
      x2 = (-b - delta**0.5) / (2 * a)
      print('x1 = ', x1)
      print('x2 = ', x2)
```

Δ < 0 (equação não possui raízes reais)

```
print('Equação do 2º grau ax² + bx + c = 0')
print('Entre com os valores:')
a = float (input('a = '))
b = float (input('b = '))
c = float (input('c = '))
if a == 0:
   print('Não é equação do 2º grau.')
else:
   delta = b*b - 4*a*c
   if delta < 0:
      print('Nenhuma raiz real.')
   else:
      x1 = (-b + delta**0.5) / (2)
      x2 = (-b - delta**0.5) / (2 * a)
      print('x1 = ', x1)
      print('x2 = ', x2 )
```


Observações Importantes

- Comandos if..else aninhados podem criar situações que parecem ambíguas. O uso de comentários ajuda muito no entendimento do código.
- Um erro comum é usar = em vez de == ao comparar dois valores. O compilador irá indicar erro de sintaxe nesse caso.

 Faça um programa que leia a nota final de um aluno, e escreva na tela uma mensagem dizendo se ele passou direto, se ficou de Prova Final, ou se foi reprovado (de acordo com as normas da UFV).

Uma possível solução...

```
leia nota
se nota < 40:
   escreva 'Reprovado.'
senão
   se nota < 60:
      escreva 'Prova Final.'
   senão
      escreva 'Aprovado.'
```


Outra possível solução...

```
leia nota
se nota ≥ 60:
   escreva 'Aprovado.'
senão
   se nota ≥ 40:
      escreva 'Prova Final.'
   senão
      escreva 'Reprovado.'
```


Traduzindo para Python

```
nota = float (input('Nota final: '))
if nota >= 60:
    print('Aprovado.')
else:
    if nota \Rightarrow 40:
         print('Prova Final.')
    else:
         print('Reprovado.')
```


 Estenda o programa para que ele verifique se a nota digitada está dentro do intervalo válido [0..100].


```
leia nota
se 0 ≤ nota ≤ 100:
   se nota ≥ 60:
      escreva 'Aprovado.'
   senão
      se nota ≥ 40:
         escreva 'Prova Final.'
      senão
         escreva 'Reprovado.'
senão
   escreva 'Nota inválida.'
```


Traduzindo para Python

```
nota = float (input('Nota final: '))
if 0 <= nota <= 100:
    if nota \geq 60:
        print('Aprovado.')
    else:
        if nota >= 40:
            print('Prova Final.')
        else:
            print('Reprovado.')
else:
    print('Nota inválida.')
```


Mas...

A expressão:	É equivalente a
0 ≤ nota ≤ 100	nota ≥ 0 e nota ≤ 100

• ... o que nos dá outra possível solução:

Exercício

```
leia nota
se nota ≥ 0 e nota ≤ 100:
   se nota ≥ 60:
      escreva 'Aprovado.'
   senão
      se nota ≥ 40:
         escreva 'Prova Final.'
      senão
         escreva 'Reprovado.'
senão
   escreva 'Nota inválida.'
```


Estruturas de Seleção

Operadores lógicos de conexão (e, ou, não)

Operador	Equivalente em Python
е	and
ou	or
não	not

Traduzindo para Python

```
nota = float (input('Nota final: '))
if nota \geq 0 and nota \leq 100:
    if nota >= 60:
        print('Aprovado.')
    else:
        if nota >= 40:
            print('Prova Final.')
        else:
            print('Reprovado.')
else:
    print('Nota inválida.')
```


Outra solução

```
leia nota
se nota < 0 ou nota > 100:
   escreva 'Nota inválida.'
senão
   se nota ≥ 60:
      escreva 'Aprovado.'
   senão
      se nota ≥ 40:
         escreva 'Prova Final.'
      senão
         escreva 'Reprovado.'
```


Traduzindo para Python

```
nota = float (input('Nota final: '))
if nota < 0 or nota > 100:
    print('Nota inválida.')
else:
    if nota >= 60:
        print('Aprovado.')
    else:
         if nota \Rightarrow= 40:
             print('Prova Final.')
        else:
             print('Reprovado.')
```


Juntando else + if: comando elif

```
nota = float (input('Nota final: '))
if nota < 0 or nota > 100:
    print('Nota inválida.')
elif nota >= 60:
    print('Aprovado.')
elif nota >= 40:
    print('Prova Final.')
else:
    print('Reprovado.')
```


Considerando também as faltas...

```
nota = float (input('Nota final: '))
if nota < 0 or nota > 100:
    print('Nota inválida.')
else:
    faltas = int (input('Nº faltas: '))
    pctFaltas = faltas/30 # só aulas teóricas
    if nota < 40 or pctFaltas > 0.25:
        print('Reprovado.')
    elif nota < 60:
        print('Prova Final.')
    else:
        print('Aprovado.')
```


- Operador e (and)
- a e b resultará em verdadeiro somente se a for verdadeiro e b também for verdadeiro.

a	b	a and b
V	V	V
V	F	F
F	V	F
F	F	F

 O operador and pode ser visto como uma multiplicação, onde cada valor verdadeiro é codificado como sendo 1, e cada valor <u>falso</u> é codificado como sendo 0.

a	b	a and b
1	1	1
1	0	0
0	1	0
0	0	0

- Operador ou (or)
- a ou b resultará em verdadeiro se <u>qualquer</u>
 dos valores a ou b for verdadeiro. Ou seja, o
 resultado só será falso se todos os operandos
 forem iguais a falso.

a	b	a or b
V	V	V
V	F	V
F	V	V
F	F	F

O operador or pode ser visto como uma soma.
 Neste caso, qualquer soma diferente de zero resulta em verdadeiro.

a	b	a or b
1	1	1
1	0	1
0	1	1
0	0	0

- Operador não (not)
- Este operador é unário, ou seja, ele atua em um operando de cada vez

a	not a
V	F
F	V

Exemplo

```
if idade < 18:
    print('Menor de idade.')
else:
    print('Maior de idade.')
if not (idade >= 18)
    print('Menor de idade.')
else:
    print('Maior de idade.')
```


Propriedades de expressões lógicas

not (a or b) é equivalente a not a and not b
not (a and b) é equivalente a not a or not b

Exemplo de expressões equivalentes:

nota < 0 or nota > 100

Expressões Lógicas

 O valor de um teste lógico falso/verdadeiro pode ser armazenado em uma variável:

```
x = 1
y = 2
a = y < 5
b = x == y
c = (x < y) and a
print('2 < 5:', a)
print('x == y:', b)
print('(x < y) and a:', c)</pre>
```


Precedência dos Operadores

Prioridade	Operador(es) e Comando =	Exemplo
1	**	x ** 3
2	- (unário)	- X
3	* / // %	x / y
4	+ -	x - y
5	< <= > >= == !=	x < y
6	not	not x < y
7	and	x > 10 and y < 0
8	or	x > 10 or y < 0
9	=	x = 2

Exemplos

Expressão	Resultado
(2 >= 1) or (5 != 4)	
not (2 < 4)	
(4 == 2 + 2) and (3 > 8)	
not ((5 > 9) or (3 == 1 + 2)) and (2 <= 7)	
not (5 > 9) or (3 == 1 + 2) and (2 <= 7)	
(8 % 2 == 4) or (3 / 2 > 1.6)	

Exemplos

Expressão	Resultado
(2 >= 1) or (5 != 4)	True
not (2 < 4)	False
(4 == 2 + 2) and $(3 > 8)$	False
not ((5 > 9) or (3 == 1 + 2)) and (2 <= 7)	False
not (5 > 9) or (3 == 1 + 2) and (2 <= 7)	True
(8 % 2 == 4) or (3 / 2 > 1.6)	False

Exercício "Conceitos"

 Faça um programa que leia a nota final (inteira) de um aluno, e escreva na tela uma mensagem contendo a situação do aluno de acordo com a seguinte regra:

Nota	Situação
Entre 90 e 100	Conceito 'A'
Entre 75 e 89	Conceito 'B'
Entre 60 e 74	Conceito 'C'
Menor que 60	Reprovado

Exercício "Conceitos"

```
nota = int( input("Nota do aluno (0 a 100): "))
if nota >= 90:
    print("Conceito A")
elif nota >= 75:
    print("Conceito B")
elif nota >= 60:
    print("Conceito C")
else:
    print("Reprovado")
```


Exercício "IMC"

- O Índice de Massa Corporal (IMC) é um método aproximado para se medir o grau de obesidade de uma pessoa. É calculado como sendo a massa da pessoa (em kg) dividido pelo quadrado da altura da mesma (em metros).
- Faça um programa que peça ao usuário seus dados de peso e altura, calcule seu IMC e exiba em tela o resultado, junto com a classificação de acordo com a tabela a seguir.

Exercício "IMC"

IMC	Classificação
Abaixo de 18,5	Abaixo do peso ideal
Entre 18,5 e 24,9	Peso ideal
Entre 25,0 e 29,9	Sobrepeso
30,0 ou mais	Obeso

Exercício "IMC"

```
peso = float( input('Peso (kg): '))
altura = float( input('Altura (m): '))
imc = peso / (altura * altura)
print('IMC = %.1f kg/m2' % imc)
if imc < 18.5:
    print('Abaixo do peso ideal')
elif imc < 25:
    print('Peso normal')
elif imc < 30:
    print('Sobrepeso')
else:
    print('Obeso')
```


- Bafômetro (ou etilômetro): aparelho que permite determinar a concentração de bebida alcoólica em uma pessoa, analisando o ar exalado dos pulmões.
- Taxa de alcoolemia: quantidade de álcool existente no sangue de um indivíduo, em determinado momento, expressa em gramas de álcool por litro de sangue (g/l). Ex.: uma alcoolemia de 0,5 g/l é o mesmo que dizer que existem 0,5 g de álcool por litro de sangue.

Alcoolemia (valor aproximado):

Taxa de alcoolemia = Álcool consumido (g) / (Peso corporal (kg) x <u>coeficiente</u>)

0,7 nos homens em jejum0,6 nas mulheres em jejum1,1 durante as refeições (ambos os sexos)

Obs.: Limite até Jan/2013: 0,2 g/l; Hoje: 0,0 g/l

- Desenvolva um programa que permita calcular e exibir na tela a taxa de alcoolemia do sangue de pessoas de acordo com o número de copos de cerveja ingeridos por uma pessoa.
- Considere que cada copo pequeno de cerveja (150 ml) possui 4,8 gramas de álcool.


```
peso = float( input('Peso (kg): '))
copos = int( input('Número de copos de 150ml de cerveja consumidos: '))
jejum = input('Em jejum (S/N)? ')
if jejum == 'n' or jejum == 'N':
    coeficiente = 1.1
else:
    sexo = input('Sexo (M/F)?')
    if sexo == 'm' or sexo == 'M':
        coeficiente = 0.7
    else:
        coeficiente = 0.6
taxa = (copos * 4.8) / (peso * coeficiente)
print('Taxa de alcoolemia: %.1f g/l' % taxa)
if taxa > 0.2:
    print('Você bebeu demais!')
else:
    print('Pode dirigir.')
    print('Você é uma pessoa responsável.')
```


Exercício "xyz"

- Suponha que x, y e z são valores numéricos (reais), e m é a média desses valores.
- Escreva um programa em Python para calcular n, o número de valores maiores que m.
- Exemplo: Suponha que x = 5, y = 7, z = 18. Então m = 10. Nesse caso, somente z é maior que m, e temos, portanto, n = 1.

Exercício "xyz"

```
x = float( input("X = "))
y = float( input("Y = "))
z = float( input("Z = "))
m = (x + y + z)/3
maiores = 0
if x > m:
    maiores = maiores + 1
if y > m:
    maiores = maiores + 1
if 7 > m:
    maiores = maiores + 1
print("Média =", m )
print("Existe(m)", maiores, "valor(es) maior(es) que a média.")
```

