Chapter 18 - Circuits - resistance

After this you can

- discuss the new quantity of current
- differentiate the direction of current in real devices

Conditions for current flow:

- 1. charges present in a region
- 2. charge are free to move
- 3. electric field is present

metal conductines wire

Leonly electrons more

How of charge

Volumetric flow rate:

AV = A·V

Nack flow rate:

Am = Pm·A·V

At a kg/m³

Charge flow rate: $T = \Delta g = Pc \cdot A \cdot V$ The charge denintry C/m^{2} $T = P \cdot N \cdot A \cdot V$

After this you can

- discuss the construction of a circuit
- use Ohm's law to determine the resistence of a circuit
- discuss power input and output in circuits

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 18.1	Resistivities and Temperature Coefficients at 20°C				
	$\rho\left(\Omega\cdot\mathbf{m}\right)$	$\alpha(^{\circ}\mathbf{C}^{-1})$		$\rho\left(\Omega\cdot\mathbf{m}\right)$	$\alpha(^{\circ}C^{-1})$
Conductors	Semiconductors (pure)				
Silver	1.59×10^{-8}	3.8×10^{-3}	Carbon	3.5×10^{-5}	-0.5×10^{-3}
Copper	1.67×10^{-8}	4.05×10^{-3}	Germanium	0.6	-50×10^{-3}
Gold	2.35×10^{-8}	3.4×10^{-3}	Silicon	2300	-70×10^{-3}
Aluminum	2.65×10^{-8}	3.9×10^{-3}			
Tungsten	5.40×10^{-8}	4.50×10^{-3}			
Iron	9.71×10^{-8}	5.0×10^{-3}	Insulators		
Lead	21×10^{-8}	3.9×10^{-3}	Glass	$10^{10} - 10^{14}$	
Platinum	10.6×10^{-8}	3.64×10^{-3}	Lucite	$> 10^{13}$	
Manganin	44×10^{-8}	0.002×10^{-3}	Quartz (fused)	$> 10^{16}$	
Constantan	49×10^{-8}	0.002×10^{-3}	Rubber (hard)	$10^{13} - 10^{16}$	
Mercury	96×10^{-8}	0.89×10^{-3}	Teflon	$> 10^{13}$	
Nichrome	108×10^{-8}	0.4×10^{-3}	Wood	$10^8 - 10^{11}$	
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.					

After this you can

- discuss the difference between resistors connected in series and resistors connected in parallel

- use the conservation of energy to set up an equation to solve for

an unknown quantity in a circuit "emf"

P = Wb. Ib

= 9V. 0.45 A

P = 4.05 Wats

$$\Delta V_b = \Delta V_R$$

$$\Delta V_R = \mathbf{T} \cdot \mathbf{R}$$

$$\Delta V_R = \mathbf{T} \cdot \mathbf{R}$$

$$\frac{\Delta V_b}{R} = I \qquad \Rightarrow \frac{9V}{20D} = I = 0.45 A$$

Resistors in series

- resistors connected end to end
- one pathway out of the battery
- current is the same through each resistor

Resistors in parallel

- each resistor has its own connection to the power supply
- potential drop is the same across each resistor

- current through the battery is the sum of the currents through each branch

$$N_b - \Delta V_1 = 0$$

$$N_b - \Delta V_2 = 0$$

$$\Delta V_b = I_1 \cdot R_1$$

$$N_b = I_2 R_2$$

$$N_b = I_3 R_3$$

$$N_b = I_3 R_3$$

$$N_b = I_3 R_3$$

$$T_{b} = T_{1} + T_{2} + T_{3}$$

$$T_{b} = \frac{N_{b}}{R_{1}} + \frac{N_{b}}{R_{2}} + \frac{N_{b}}{R_{3}}$$

$$Tb = \Delta V_b \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right)$$

$$\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right)$$

$$\Delta V_b = T_b \cdot \frac{1}{R_1 + \frac{1}{R_2} + \frac{1}{R_3}}$$

$$\Rightarrow R_{E} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots}$$

$$\frac{1}{RE} = \frac{1}{R} + \frac{1}{Rz} + \frac{1}{Rz} + \frac{1}{Rz}$$
from the book