

CP8319/CPS824 Lecture 10

Instructor: Nariman Farsad

* Some of the slides in this deck are adopted from courses offered David Silver, Emma Brunskill, and Sergey Levine.

Today's Agenda

1. Review of Previous Lectures

2. Model-Free Control (Monte Carlo)

3. Model-Free Control (Temporal Difference)

4. Model-Free Control (Q-Learning)

Policy Iteration: Known Model

```
Set i=0
Initialize \pi_0(s) randomly for all states s
While i=0 or \parallel \pi_i - \pi_{i-1} \parallel_1 > 0 (L1-norm, measures if the policy changed for any state):
```

- $v^{\pi_i} \leftarrow \text{MDP}$ value function policy evaluation of π_i
- $\pi_{i+1} \leftarrow \text{Policy improvement on } v^{\pi_i}$
- i = i + 1

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Model Free Policy Iteration

Set i=0Initialize $\pi_0(s)$ randomly for all states sWhile i=0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if

the policy changed for any state):

- $Q^{\pi_i} \leftarrow \text{MDP}$ value function $\underline{\text{MC}}$ policy Q evaluation of π_i
- $\pi_{i+1} \leftarrow \epsilon$ -greedy Policy improvement on Q^{π_i}
- i = i + 1

greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} 1, & \text{if } a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q^{\pi_i}(s, a') \\ 0, & \text{otherwise} \end{cases}$$

ϵ -greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon \,, & \text{if } a = \argmax_{a' \in \mathcal{A}} Q^{\pi_i}(s, a') \\ \epsilon/m \,, & \text{otherwise} \end{cases}$$

Policy evaluation Monte-Carlo policy evaluation, $Q=q_{\pi}$ Policy improvement ϵ -greedy policy improvement

ϵ -Greedy and Greedy Example

- Let's say in a state s_1 we can take 3 actions a_1 , a_2 , a_3 .
- Assume that $a_1 = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q^{\pi_i}(s, a')$ and $\epsilon = 0.5$.
- What are the ϵ -greedy and greedy policies $\pi(a|s_1)$?

greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} 1, & \text{if } a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q^{\pi_i}(s, a') \\ 0, & \text{otherwise} \end{cases}$$

ϵ -greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon, & \text{if } a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} \, Q^{\pi_i}(s, a') \\ \epsilon/m, & \text{otherwise} \end{cases}$$

Today's Agenda

1. Review of Previous Lectures

2. Model-Free Control (Monte Carlo)

3. Model-Free Control (Temporal Difference)

4. Model-Free Control (Q-Learning)

Model Free Policy Iteration

Set i=0 Initialize $\pi_0(s)$ randomly for all states s While i=0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if the policy changed for any state):

- $Q^{\pi_i} \leftarrow \text{MDP}$ value function $\underline{\text{MC}}$ policy Q evaluation of π_i
- $\pi_{i+1} \leftarrow \epsilon$ -greedy Policy improvement on Q^{π_i}
- i = i + 1

 ϵ -greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon \,, & \text{if } a = \argmax_{a' \in \mathcal{A}} Q^{\pi_i}(s, a') \\ \epsilon/m \,, & \text{otherwise} \end{cases}$$

Starting Q, π q_*, π_*

Policy evaluation Monte-Carlo policy evaluation, $Q=q_{\pi}$ Policy improvement ϵ -greedy policy improvement

Does ϵ -greedy step provably improve policy?

Monotonic ϵ -Greedy Policy Improvement

Theorem

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \geq V^{\pi_i}$

$$Q^{\pi_{i}}(s, \pi_{i+1}(s)) = \sum_{a \in A} \pi_{i+1}(a|s)Q^{\pi_{i}}(s, a)$$

$$= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_{i}}(s, a) \right] + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a)$$

$$= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_{i}}(s, a) \right] + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a) \frac{1 - \epsilon}{1 - \epsilon}$$

$$= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_{i}}(s, a) \right] + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a) \sum_{a \in A} \frac{\pi_{i}(a|s) - \frac{\epsilon}{|A|}}{1 - \epsilon}$$

$$\geq \frac{\epsilon}{|A|} \left[\sum_{a \in A} Q^{\pi_{i}}(s, a) \right] + (1 - \epsilon) \sum_{a \in A} \frac{\pi_{i}(a|s) - \frac{\epsilon}{|A|}}{1 - \epsilon} Q^{\pi_{i}}(s, a)$$

$$= \sum_{a \in A} \pi_{i}(a|s)Q^{\pi_{i}}(s, a) = V^{\pi_{i}}(s)$$

Each step of policy improvement improves policy or keeps it the same

Model Free Policy Iteration

Set i=0 Initialize $\pi_0(s)$ randomly for all states s While i=0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if the policy changed for any state):

- $Q^{\pi_i} \leftarrow \text{MDP}$ value function $\underline{\text{MC}}$ policy Q evaluation of π_i
- $\pi_{i+1} \leftarrow \epsilon$ -greedy Policy improvement on Q^{π_i}
- i = i + 1

 ϵ -greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon \,, & \text{if } a = \operatorname*{argmax}_{a' \in \mathcal{A}} Q^{\pi_i}(s, a') \\ \epsilon/m \,, & \text{otherwise} \end{cases}$$

Starting $Q = q_{\pi}$ $Q = q_{\pi}$ $Q_{\pi} = \varepsilon - greedy(Q)$

Policy evaluation Monte-Carlo policy evaluation, $Q=q_{\pi}$ Policy improvement ϵ -greedy policy improvement

Although ϵ -greedy step provably improve policy, does it converge to the optimal policy?

Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty} N_i(s,a)\to\infty$$

 Behavior policy (policy used to act in the world) converges to greedy policy

 $\lim_{i o \infty} \pi(a|s) o \operatorname{arg\,max}_a Q(s,a)$ with probability 1

• A simple GLIE strategy is ϵ -greedy where ϵ is reduced to 0 with the following rate: $\epsilon_i = 1/i$

GLIE Monte Carlo Control

Theorem

GLIE Monte-Carlo control converges to the optimal state-action value function $Q(s,a) \rightarrow Q^*(s,a)$

Monte Carlo Online Control/On Policy Improvement

```
1: Initialize Q(s,a)=0, N(s,a)=0 \forall (s,a), Set \epsilon=1, k=1
2: \pi_k = \epsilon-greedy(Q) // Create initial \epsilon-greedy policy
 3: loop
       Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \ldots, s_{k,T}) given \pi_k
       G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \cdots \gamma^{T_i-1} r_{k,T_i}
 4:
       for t = 1, \ldots, T do
 5:
          if First visit to (s, a) in episode k then
 6:
             N(s, a) = N(s, a) + 1
             Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s,a)}(G_{k,t} - Q(s_t, a_t))
 8:
          end if
 9:
       end for
10:
     k = k + 1, \epsilon = 1/k
11:
       \pi_k = \epsilon-greedy(Q) // Policy improvement
12:
13: end loop
```

MC for On Policy Control Example

- Robot with two actions
 - \cdot R(-, a_1) = [100000+10] and R(-, a_2) = [000000+5]

s_1	s_2	s_3	S_4	s_5	s ₆	S ₇

- $\pi(s) = a_1 \, \forall s, \gamma = 1, \epsilon = 0.5$. Any action from s1 and s7 terminates episode
- Sample episode = $(s_3, a_1, 0, s_2, a_2, 0, s_3, a_1, 0, s_2, a_2, 0, s_1, a_1, 1 \text{ terminal})$
- First visit MC estimate of Q of each (s, a) pair?

$$Q^{\pi}(-, a_1) = [1\ 0\ 1\ 0\ 0\ 0\ 0], \ Q^{\pi}(-, a_2) = [0\ 1\ 0\ 0\ 0\ 0]$$

• What is $\pi(s) = \arg \max_{a} Q^{\pi}(s, a) \ \forall S$?

• What is new ϵ -greedy policy, if k=3, $\epsilon=1/k$? Give an example for $\pi(s_1)$.

Today's Agenda

1. Review of Previous Lectures

2. Model-Free Control (Monte Carlo)

3. Model-Free Control (Temporal Difference)

4. Model-Free Control (Q-Learning)

Why TD?

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online learning
 - Incomplete sequences

- Natural idea: use TD instead of MC in our control loop
 - Apply TD to Q(s, a)
 - Use ϵ -greedy policy improvement
 - Update every time-step

Updating Action-Value Functions with SARSA

 Stat, Action, Reward, Next State, Next Action (SARSA) is the TD methods that can be used to evaluate the Q-value

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

SARSA For On-Policy Control

- 1: Set initial ϵ -greedy policy π , t=0, initial state $s_t=s_0$
- 2: Take $a_t \sim \pi(s_t)$ // Sample action from policy
- 3: Observe (r_t, s_{t+1})
- 4: **loop**
- 5: Take action $a_{t+1} \sim \pi(s_{t+1})$
- 6: Observe (r_{t+1}, s_{t+2})
- 7: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- 8: $\pi(s_t) = \arg\max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 9: t = t + 1
- 10: end loop

Every time-step:

Policy evaluation Sarsa, $Q pprox q_{\pi}$

Policy improvement ϵ -greedy policy improvement

Convergence Properties of SARSA

Theorem

SARSA for finite-state and finite-action MDPs converges to the optimal action-value, $Q(s, a) \rightarrow Q^*(s, a)$, under the following conditions:

- The policy sequence $\pi_t(a|s)$ satisfies the condition of GLIE
- 2 The step-sizes α_t satisfy the Robbins-Munro sequence such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

- For ex. $\alpha_t = \frac{1}{t}$ satisfies the above condition.
- Would one want to use a step size choice that satisfies the above in practice? Likely not.

Windy Gridworld Example

Because of the wind

- Reward = -1 per time-step until reaching goal
- Undiscounted $\gamma = 1$

SARSA on the Windy Gridworld

SARSA Example

```
1: Set initial \epsilon-greedy policy \pi, t=0, initial state s_t=s_0

2: Take a_t \sim \pi(s_t) // Sample action from policy

3: Observe (r_t, s_{t+1})

4: loop

5: Take action a_{t+1} \sim \pi(s_{t+1})

6: Observe (r_{t+1}, s_{t+2})

7: Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))

8: \pi(s_t) = \arg\max_a Q(s_t, a) w.prob 1 - \epsilon, else random

9: t = t + 1

10: end loop
```

s_1	s_2	s_3	S_4	s_5	s ₆	<i>S</i> ₇

- Initialize $\gamma=1, \epsilon=1/k, k=1$, and $\alpha=0.5$
- Initialize $Q(-, a_1) = [1, 0, 0, 0, 0, 0, 10], \ Q(-, a_2) = [1, 0, 0, 0, 0, 0, 5]$
- Assume we observe tuple by acting in the word according to SARSA:

$$(s_6, a_1, 0, s_7, a_2)$$

• What is $Q(s_6, a_1)$ after a SARSA update?

Today's Agenda

1. Review of Previous Lectures

2. Model-Free Control (Monte Carlo)

3. Model-Free Control (Temporal Difference)

4. Model-Free Control (Q-Learning)

Off-Policy Learning

- Evaluate *target policy* $\pi(a|s)$ to compute $v^{\pi}(s)$ or $q^{\pi}(s,a)$
- While following behavior policy $\mu(a|s)$

$$\{s_1, a_1, r_2, \dots, s_T\} \sim \mu$$

- Why is this important?
 - Learn from observing humans or other agents
 - Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$
 - Learn about <u>optimal</u> policy, while following <u>exploratory</u> policy
 - Learn about multiple policies while following one policy

Q-Learning: Learning the Optimal State-Action Value

- SARSA is an on-policy learning algorithm
 - SARSA estimates the value of the current behavior policy (policy used to take actions in the world)
 - i.e., both target policy and behavior policy are the same
- For MDP:
 - We know that optimal policy π^* (i.e., target policy) is deterministic (i.e., greedy)
 - But we need the *behavior policy* to be stochastic (i.e., ϵ -greedy) to explore
- Can we directly estimate the value of the *greedy target policy*, while acting with an ϵ -greedy behavior policy?
 - Yes! Q-learning, an off-policy RL algorithm

Q-Learning: Learning the Optimal State-Action Value

Q-learning: off-policy learning of action-values Q(s, a)

• Next action is chosen using ϵ -greedy behavior policy $a_{t+1} \sim \mu(\cdot | s_t)$ where

$$\mu(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon, & \text{if } a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} \, Q(s, a') \\ \epsilon/m, & \text{otherwise} \end{cases}$$

• But when updating Q-values consider alternative successor action according to greedy target policy $a'' \sim \pi(\cdot | s_t)$ where

$$\pi(a|s) = \begin{cases} 1, & \text{if } a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a') \\ 0, & \text{otherwise} \end{cases}$$

or since this is deterministic:

$$a'' = \pi(s) = \arg \max_{a' \in \mathcal{A}} Q(s, a')$$

Q-Learning: Learning the Optimal State-Action Value

$$a_{t+1} \sim \mu(\cdot | s_t)$$

$$a'' \sim \pi(\cdot | s_t)$$
 or since deterministic $a'' = \pi(s_t) = \arg \max_{a' \in \mathcal{A}} Q(s_t, a')$

SARSA Update:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

Q-Learning Update:

$$Q(s_{t}, a_{t}) \leftarrow Q(s_{t}, a_{t}) + \alpha(r_{t} + \gamma Q(s_{t+1}, a'') - Q(s_{t}, a_{t}))$$

$$Q(s_{t}, a_{t}) \leftarrow Q(s_{t}, a_{t}) + \alpha(r_{t} + \gamma Q(s_{t+1}, \arg \max_{a' \in \mathcal{A}} Q(s_{t+1}, a')) - Q(s_{t}, a_{t}))$$

$$Q(s_{t}, a_{t}) \leftarrow Q(s_{t}, a_{t}) + \alpha(r_{t} + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') - Q(s_{t}, a_{t}))$$

Q-Learning Algorithm

```
1: Initialize Q(s,a), \forall s \in S, a \in A \ t = 0, initial state s_t = s_0

2: Set \pi_b to be \epsilon-greedy w.r.t. Q

3: loop

4: Take a_t \sim \pi_b(s_t) // Sample action from policy

5: Observe (r_t, s_{t+1})

6: Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t))

7: \pi(s_t) = \arg \max_a Q(s_t, a) w.prob 1 - \epsilon, else random

8: t = t + 1

9: end loop
```

Q-Learning Convergence

- What conditions are sufficient to ensure that Q-learning with ε -greedy exploration converges to optimal Q^* ?
 - Visit all (s, a) pairs infinitely often, and the step-sizes α_t satisfy the Robbins-Munro sequence. Note: the algorithm does not have to be greedy in the limit of infinite exploration (GLIE) to satisfy this (could keep ϵ large).

- What conditions are sufficient to ensure that Q-learning with ϵ -greedy exploration converges to optimal π^* ?
 - The algorithm is GLIE, along with the above requirement to ensure the Q value estimates converge to the optimal Q.

Q-learning Example

```
1: Initialize Q(s,a), \forall s \in S, a \in A \ t = 0, initial state s_t = s_0

2: Set \pi_b to be \epsilon-greedy w.r.t. Q

3: loop

4: Take a_t \sim \pi_b(s_t) // Sample action from policy

5: Observe (r_t, s_{t+1})

6: Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t))

7: \pi(s_t) = \arg\max_a Q(s_t, a) w.prob 1 - \epsilon, else random

8: t = t + 1

9: end loop
```

s_1	s_2	s_3	S_4	s_5	s ₆	s ₇

- Initialize $\gamma=1, \epsilon=1/k, k=1$, and $\alpha=0.5$
- Initialize $Q(-, a_1) = [1, 0, 0, 0, 0, 0, 10], \ Q(-, a_2) = [1, 0, 0, 0, 0, 0, 5]$
- Assume we observe tuple by acting in the word: $(s_6, a_1, 0, s_7)$
- What is $Q(s_6, a_1)$ after a Q-Learning update? How does this compare to SARSA?

Cliff Walking Example

- Q-learning is more optimistic than SARSA by taking the max action
- SARSA is preferred in environments where you must be more cautious
 - Environments with large negative rewards
 - A real robot acting in real world, which might break or cause damage
- Q-Learning is better in environments where you do not need to be cautious
 - Where we do not have many negative results
 - Training in simulation environment
- Both algorithms eventually converge

