Intelligence Artificielle – TD 6 et 7

Agents logiques et inférence en logique propositionnelle

CORRECTION

Exercice 1

Soit un vocabulaire ne comportant que 4 propositions A, B, C et D. Combien il y a-t-il de modèles pour les énoncés suivants?

- 1. $(A \land B) \Rightarrow (C \lor D)$
- 2. $(A \wedge B) \vee (B \wedge C)$ 3. $A \vee B$
- $4. (A \Leftrightarrow B) \Leftrightarrow C$

Solution: Ne pas oublier les variables qui n'appartiennent pas à la formule!

- 1. $(A \land B) \Rightarrow (C \lor D)$
 - 15 $(3+4+4+4): A,B,C,D; A,B,C,\neg D; A,B,\neg C,D; A,\neg B$ et les 4 possibilités pour C et D; idem pour $\neg A, B$; $\neg A, \neg B$.
- 2. $(A \wedge B) \vee (B \wedge C)$
 - $6: A,B,C; A,B,\neg C, \neg A,B,C;$ puis D et $\neg D$ pour chaque modèle
- 3. $A \vee B$
 - $12: A, B; \neg A, B; A, \neg B;$ puis $C, \neg C, D, \neg D$ pour chacun des modèles \rightarrow on multiplie par
- 4. $(A \Leftrightarrow B) \Leftrightarrow C$
 - 8:A,B,C; $\neg A,\neg B,C$; $A,\neg B,\neg C$; $\neg A,B,\neg C$; puis D et $\neg D$ pour chaque modèle

Exercice 2

Décidez si chacun des énoncés suivants est valide, satisfiable ou insatisfiable.

- 1. $Fumee \Rightarrow Fumee$
- 2. $Fumee \Rightarrow Feu$
- 3. $(Fumee \Rightarrow Feu) \Rightarrow (\neg Fumee \Rightarrow \neg Feu)$
- 4. $Fumee \lor Feu \lor \neg Feu$
- 5. $Fumee \land Feu \land \neg Feu$
- 6. $((Fumee \land Chaleur) \Rightarrow Feu) \Leftrightarrow ((Fumee \Rightarrow Feu) \lor (Chaleur \Rightarrow Feu))$
- 7. $(Fumee \Rightarrow Feu) \Rightarrow ((Fumee \land Chaleur) \Rightarrow Feu)$

Solution:

1. $Fumee \Rightarrow Fumee$ Valide

- 2. $Fumee \Rightarrow Feu$
 - Satisfiable
- 3. $(Fumee \Rightarrow Feu) \Rightarrow (\neg Fumee \Rightarrow \neg Feu)$ $\equiv \neg(\neg Fumee \lor Feu) \lor (Fumee \lor \neg Feu)$ $\equiv (Fumee \land \neg Feu) \lor (Fumee \lor \neg Feu)$ Satisfiable
- 4. $Fumee \lor Feu \lor \neg Feu$ Valide
- 5. $Fumee \wedge Feu \wedge \neg Feu$ Insatisfiable
- 6. $((Fumee \land Chaleur) \Rightarrow Feu) \Leftrightarrow ((Fumee \Rightarrow Feu) \lor (Chaleur \Rightarrow Feu))$ $\equiv (\neg Fumee \lor \neg Chaleur \lor Feu) \Leftrightarrow (\neg Fumee \lor Feu \lor \neg Chaleur \lor Feu)$ Valide
- 7. $(Fumee \Rightarrow Feu) \Rightarrow ((Fumee \land Chaleur) \Rightarrow Feu)$ $\equiv \neg(\neg Fumee \lor Feu) \lor (\neg Fumee \lor \neg Chaleur \lor Feu)$ $\equiv (Fumee \land \neg Feu) \lor \neg Fumee \lor \neg Chaleur \lor Feu$ Valide

1. Montrez que la formule suivante est une tautologie :

$$(p \land q) \lor r \lor (\neg q \land \neg r) \lor (\neg p \land \neg r)$$

Solution:

- Si r est vrai, la formule est vraie
- Si r est faux :
 - \diamond Si p est faux, la formule est vraie
 - \diamond Si q est faux, la formule est vraie
 - \diamond Si p et q sont tous les deux vrais, la formule est vraie
- 2. Pour chacun des trois ensembles de formules suivants, indiquez s'il est inconsistant. Dans le cas contraire, donnez-en un modèle
 - (a) $\{p \lor q, p \Rightarrow q, \neg q\}$
 - (b) $\{p \Rightarrow q, q \Rightarrow r, r \Rightarrow \neg p\}$
 - (c) $\{p \Rightarrow q, q \Rightarrow r, r \Rightarrow \neg p, p \lor \neg s, s\}$

Solution:

- (a) Inconsistant : q est faux, donc p est vrai, donc q doit être vrai
- (b) Satisfiable, avec le modèle : p faux, q faux, r faux
- (c) Inconsistant : s est vrai, donc p est vrai, donc q est vrai, donc p est faux

On rappelle que $\alpha \models \beta$ ssi β est vraie dans tous modèles dans lesquels α est vraie. Prouver les énumérations suivantes :

1. α est valide si et seulement si $Vrai \models \alpha$

Solution: Rappel : $\alpha \models \beta$ ssi $M(\alpha) \subseteq M(\beta)$.

Un énoncé valide est un énoncé vrai dans tous les modèles. L'énoncé Vrai est vrai dans tous les modèles. Donc,

- \Rightarrow si α est valide, α et vrai sont vrais dans tous les modèles, donc $vrai \models \alpha$
- \Leftarrow si $vrai \models \alpha$, α doit être vrai dans tous les modèles, donc α est valide
- 2. Pour tout α , $Faux \models \alpha$

Solution: Faux n'est vrai dans aucun modèle, donc α est vraie dans tous les modèles dans lesquels Faux est vrai

 $M(Faux) = \emptyset \subseteq M(\alpha), \forall \alpha$

3. $\alpha \models \beta$ si et seulement si l'énoncé $(\alpha \Rightarrow \beta)$ est valide

Solution:

- \Rightarrow si $\alpha \models \beta$, $M(\alpha) \subseteq M(\beta)$. Soit m un modèle.
 - \diamond si $m \in M(\alpha)$, alors $m \in M(\beta)$. α et β sont vrais dans m, donc $\alpha \Rightarrow \beta$ vrai dans m
 - \diamond si $m \notin M(\alpha)$, alors $\alpha \Rightarrow \beta$ vrai dans m
- $\Leftarrow \alpha \Rightarrow \beta$ est valide.

Soit $m \in M(\alpha)$, donc α est vrai dans m. Comme $\alpha \Rightarrow \beta$ est valide, $\alpha \Rightarrow \beta$ est vrai dans m. Donc β est vrai dans m, et $m \in M(\beta)$. Donc $M(\alpha) \subseteq M(\beta)$

4. $\alpha \models \beta$ si et seulement si l'énoncé $(\alpha \land \neg \beta)$ est insatisfiable

Solution: $(\alpha \land \neg \beta)$ est insatisfiable si cet énoncé est faux dans tous les modèles. Donc, $\neg(\alpha \land \neg \beta)$ est vrai dans tous les modèles. Donc $\neg \alpha \lor \beta$ est valide. Donc d'après 3, $\alpha \models \beta$.

Soit le vocabulaire suivant :

t: La musique est triste r: La musique est rythmée e: Il écoute de la musique

d: Il danse b: Il baille j: Il est joyeux

Traduire en logique propositionnelle les phrases suivantes :

- 1. La musique n'est ni triste ni rythmée
- 2. Il ne baille pas, il est même joyeux.
- 3. Quand il écoute de la musique rythmée, il est joyeux et il danse.
- 4. S'il danse en baillant, c'est qu'il n'est pas joyeux.
- 5. Il écoute en ce moment de la musique triste sans bailler.
- 6. S'il écoute de la musique et qu'il danse, c'est qu'il est joyeux.

Solution:

- 1. $\neg t \land \neg r$
- 2. $\neg b \wedge j$
- 3. $(e \wedge r) \Rightarrow (j \wedge d)$
- 4. $(d \wedge b) \Rightarrow \neg j$
- 5. $e \wedge t \wedge \neg b$
- 6. $(d \wedge e) \Rightarrow j$

Exercice 6

Définir le vocabulaire, et traduire en logique propositionnelle les phrases suivantes :

- 1. Mon père et ma mère ont les yeux marrons et j'ai les yeux bleus
- 2. J'ai les yeux bleus si et seulement si je porte le gène ABleu et le gène BBleu
- 3. Je porte le gène ABleu si et seulement si ma mère le porte, et le gène BBleu si et seulement si mon père le porte.
- 4. Ma mère a les yeux marrons si elle porte le gène ABleu et le gène BMarron

Solution: Un erreur fréquente sur cet exercice est de choisir le vocabulaire suivant :

 $P: p\`ere; M: m\`ere; J: moi; MN yeux marrons; B: yeux bleus$

La première phrase se traduit alors par $P \wedge MN \wedge M \wedge MN \wedge J \wedge B$. Comme la conjonction est commutative, on a :

$$P \wedge MN \wedge M \wedge MN \wedge J \wedge B \equiv P \wedge M \wedge J \wedge B \wedge MN$$

Qui a les yeux bleus? Les yeux marrons? Il est indispensable de lier, à travers le vocabulaire, l'objet et sa caractéristique.

<u>Voca</u>: PM: mon père a les yeux marrons; MM: ma mère a les yeux marrons; B: j'ai les yeux bleus; AB: je porte le gène AB; BB: je porte le gène BB; MAB: ma mère porte le gène ABleu; PBB: mon père porte le gène BBleu; MBM: ma mère porte le gène BMarron

- 1. $PM \wedge MM \wedge B$
- 2. $B \Leftrightarrow (AB \wedge BB)$
- 3. $(AB \Leftrightarrow MAB) \land (BB \Leftrightarrow PBB)$
- 4. $(MAB \land MBM) \Rightarrow MM$

Exercice 7

Appliquez la résolution pour prouver la relation de conséquences suivante :

$$\{p \lor q \lor r, \neg p \lor q \lor r, \neg q \lor r\} \models r$$

Solution: Résolution par contradiction : on applique le théorème de la déduction dans sa forme $\alpha \models \beta$ si et seulement si l'énoncé $(\alpha \land \neg \beta)$ est insatisfiable.

On rajoute la négation de la conclusion $(\neg r)$ dans la base de connaissance, et on essaie de trouver une contradiction.

1.
$$p \lor q \lor r$$

2.
$$\neg p \lor q \lor r$$

3.
$$\neg q \lor r$$

$$4. \neg r$$

5.
$$(3.+4.) \neg q$$

6.
$$(1.+4.)$$
 $p \vee q$

7.
$$(5.+6.)$$
 p

8.
$$(2.+4.) \neg p \lor q$$

9.
$$(8.+5.) \neg p$$

10.
$$(7.+9.) \perp$$

Exercice 8

Appliquez la résolution pour prouver la relation de conséquences suivante :

$$\{p \lor \neg r \lor \neg t, r, t \lor \neg p \lor \neg r, t \lor \neg q, \neg p \lor \neg q \lor \neg r\} \models \neg q$$

Solution:	1. $p \lor \neg r \lor \neg t$	7. $(6.+5) \neg p \lor \neg r$
	2. r	8. $(2.+7.) \neg p$
	3. $t \lor \neg p \lor \neg r$	9. $(1.+8.) \neg r \lor \neg t$
	4. $t \vee \neg q$	10. $(4.+6.)$ t
	5. $\neg p \lor \neg q \lor \neg r$	11. $(10.+9.) \neg r$
	6. q	12. $(2.+11.) \perp$

Soit la base de connaissances suivante :

- 1. $(\neg p \Rightarrow q) \land (q \Rightarrow t)$
- 2. $(\neg q \Rightarrow s) \land (\neg p \Rightarrow s)$
- 3. $(t \Rightarrow r) \land (p \Rightarrow r)$

Transformez cette base de connaissances en bases de clauses BC, et utilisez la résolution pour prouver que $BC \models r$

Solution: On commence par transformer la bases de connaissances en forme normale conjonctive:

1.
$$(\neg p \Rightarrow q) \land (q \Rightarrow t) \equiv (p \lor q) \land (\neg q \lor t)$$

2.
$$(\neg q \Rightarrow s) \land (\neg p \Rightarrow s) \equiv (q \lor s) \land (p \lor s)$$

$$\begin{array}{lll} 1. & (\neg p \Rightarrow q) \wedge (q \Rightarrow t) & \equiv & (p \vee q) \wedge (\neg q \vee t) \\ 2. & (\neg q \Rightarrow s) \wedge (\neg p \Rightarrow s) & \equiv & (q \vee s) \wedge (p \vee s) \\ 3. & (t \Rightarrow r) \wedge (p \Rightarrow r) & \equiv & (\neg t \vee r) \wedge (\neg p \vee r) \end{array}$$

On peut à présent appliquer la résolution, en ajoutant la négation de la conclusion dans la base de connaissances:

7. $\neg r$

1.
$$p \lor q$$

2.
$$\neg q \lor t$$
 8. $(6.+7) \neg p$

3.
$$q \lor s$$
 9. (1.+8.) q
4. $p \lor s$ 10. (2.+9.) t

5.
$$\neg t \lor r$$
 11. (5.+10). r 6. $\neg p \lor r$ 12. (7.+11.) \bot

Soit la base de connaissances suivante :

- 1. $b \Rightarrow (a \land d)$
- 2. $(q \Rightarrow b) \land (q \Rightarrow h)$
- 3. $a \wedge b \wedge d \wedge h \Rightarrow e \wedge c$
- 4. $c \wedge d \wedge e \Rightarrow f$

Transformez cette base de connaissances en bases de clauses BC, et utilisez la résolution pour prouver que $BC \models (\neg g \lor f)$

Solution: On commence par transformer la bases de connaissances en forme normale conjonctive :

1.
$$b \Rightarrow (a \land d) \equiv \neg b \lor (a \land d)$$

$$\equiv (\neg b \lor a) \land (\neg b \lor d)$$

2.
$$(g \Rightarrow b) \land (g \Rightarrow h) \equiv (\neg g \lor b) \land (\neg g \lor h)$$

3.
$$a \wedge b \wedge d \wedge h \Rightarrow e \wedge c \equiv \neg a \vee \neg b \vee \neg d \vee \neg h \vee (e \wedge c)$$

$$\equiv (\neg a \vee \neg b \vee \neg d \vee \neg h \vee e) \wedge (\neg a \vee \neg b \vee \neg d \vee \neg h \vee c)$$

 $\neg Conclusion. \ \neg(\neg g \lor f) \qquad \equiv g \land \neg f$

On peut à présent appliquer la résolution, en ajoutant la négation de la conclusion dans la base de connaissances :

1.
$$\neg b \lor a$$

2.
$$\neg b \lor d$$

3.
$$\neg g \lor b$$

4.
$$\neg g \lor h$$

5.
$$\neg a \lor \neg b \lor \neg d \lor \neg h \lor e$$

6.
$$\neg a \lor \neg b \lor \neg d \lor \neg h \lor c$$

7.
$$\neg d \lor \neg e \lor \neg c \lor f$$

9.
$$\neg f$$

10.
$$(5.+7) \neg a \lor \neg b \lor \neg d \lor \neg h \lor \neg c \lor f$$

11.
$$(10.+6.) \neg a \lor \neg b \lor \neg d \lor \neg h \lor f$$

12.
$$(11.+1.) \neg b \lor \neg d \lor \neg h \lor f$$

13.
$$(12.+2.) \neg b \lor \neg h \lor f$$

14.
$$(13.+3.) \neg g \lor \neg h \lor f$$

15.
$$(14.+4.) \neg g \lor f$$

16.
$$(15.+8.)$$
 f

17.
$$(16. + 9) \perp$$

Exercice 11

Traduire en logique propositionnelle les phrases suivantes :

- 1. Jules n'est jamais en vacances quand il lit le journal.
- 2. Pour que Jules soit à la mer, il suffit qu'on soit en été.
- 3. Si Jules est à la mer mais qu'il n'est pas en forme alors il lit le journal.
- 4. Quand Jules n'est pas en vacances alors il ne lit pas le journal.

Utilisez le principe de résolution pour prouver que Jules est toujours en forme en été.

Solution: $\underline{\text{Voca}}:V:\text{Jules est en vacances}\;;L:\text{Jules lit le journal}\;;M:\text{Jules à la mer}\;;E:\text{C'est l'été}\;;F:\text{Jules en forme}$

- 1. $L \Rightarrow \neg V$
- 2. $E \Rightarrow M$

(Il suffit que P pour $Q: P \Rightarrow Q$)

- 3. $(M \land \neg F) \Rightarrow L$
- 4. $\neg V \Rightarrow \neg L$
- 5. Concl : $E \Rightarrow F$; $\neg \text{Concl} : E \land \neg F$

Transformation de la base de connaissance en FNC :

- 1. $\neg L \lor \neg V$
- 2. $\neg E \lor M$
- 3. $\neg M \lor F \lor L$
- 4. $V \vee \neg L$
- 5. E
- 6. $\neg F$
- 7. (2.+5.) M
- 8. $(3.+7.) F \vee L$
- 9. (8.+6.) L
- 10. $(1.+9.) \neg V$
- 11. $(10.+4.) \neg L$
- 12. (11.+9.) \perp

Exercice 12

Soit la base de connaissance suivante :

- 1. $B \wedge D \wedge E \Rightarrow F$
- $2. \ G \wedge D \Rightarrow A$
- 3. $C \wedge F \Rightarrow A$
- 4. $B \Rightarrow X$
- 5. $D \Rightarrow E$
- 6. $X \wedge A \Rightarrow H$

- 7. $C \Rightarrow D$
- 8. $X \wedge C \Rightarrow A$
- 9. $X \wedge B \Rightarrow D$
- 10. B
- 11. C

Peut-on conclure sur H en chaînage avant? En chaînage arrière?

Solution: <u>Chaînage avant</u>: on parcourt les règles, dans l'ordre dans lequel elles apparaissent, et déduisons des nouvelles connaissances dès que nous le pouvons. Nous nous arrêtons lorsqu'on a pas déduit de nouvelle connaissance dans un tour, ou quand on a trouvé le but cherché.

- 1. Tour 1
 - 10. B est vrai
 - 11. C est vrai
- 2. Tour 2
 - 4. Comme B est vrai, X est vrai
 - 7. Comme C est vrai, D est vrai
 - 8. Comme X et C sont vrais, A est vrai
 - 9. Comme X et B sont vrais, D est vrai $(d\acute{e}j\grave{a}\ prouv\acute{e})$
- 3. Tour 3
 - 5. Comme D est vrai, E est vrai
 - \bullet 6. : Comme X et A sont vrais, H est vrai

 $\underline{\text{Chaînage arrière}}: \text{On part du but recherché, et on essaie de prouver les prémisses des règles qui le génèrent}$

Pour prouver H, il faut prouver X et A (6.)

- Pour prouver X, il faut prouver B (4.)
 - \diamond B est vrai (10.)
- Pour prouver A, il faut prouver G et D (2.)
 - \diamond Impossible de prouver G, il n'est dans aucune partie droite des règles \rightarrow échec
- Pour prouver A, il faut prouver C et F (3.)
 - \diamond C est vrai (11.)
 - \diamond Pour prouver F, il faut prouver B, D et E
 - $\star B$ est vrai (4.)
 - \star Pour prouver D il faut prouver C
 - * C est vrai (11.)
 - \star Pour prouver E il faut prouver D (5.)
 - * D est vrai (déjà prouvé)

Exercice 13

Soit la base de connaissance suivante :

1.
$$E \wedge B \Rightarrow C$$

5.
$$B \wedge D \Rightarrow F$$

2.
$$B \wedge D \Rightarrow A$$

6.
$$E \wedge F \Rightarrow O$$

3.
$$I \wedge H \Rightarrow B$$

4.
$$D \wedge E \Rightarrow B$$

Peut-on conclure sur C en chaînage arrière?

Solution: Chaînage arrière:

Pour prouver C, il faut prouver E et B (1.)

- E est prouvé (7.)
- Pour prouver B, il faut prouver I et H (3.)
 - \diamond Impossible de prouver I, il n'est dans aucune partie droite des règles \rightarrow **échec**
- Pour prouver B, il faut prouver D et E (4.)
 - \diamond Impossible de prouver D, il n'est dans aucune partie droite des règles \rightarrow **échec**
- Il n'y a pas d'autre règle pour prouver B, c'est donc un **échec**

Il n'y a pas d'autre règle pour prouver $C,\,C$ n'est donc pas conséquence logique de cette base de connaissances.