

类神经网络训练不起来怎么办 (三)自动调整学习率 (Learning Rate)

loss不再下降不一定是卡在critical Point,有可能是单纯的loss不会下降。

Training stuck ≠ Small Gradient

 People believe training stuck because the parameters are around a critical point ...

可以看到,其实还是有梯度的,只是步长太大,导致无法更新loss。

所以我们是需要在梯度较小时(平缓)学习率较大,而在梯度较大时(陡峭)学习率 较小。

下面是Apagrad方法:

Root Mean Square
$$\theta_i^{t+1} \leftarrow \theta_i^t - \frac{\eta}{\sigma_i^t} g_i^t$$

$$\theta_{i}^{1} \leftarrow \theta_{i}^{0} - \frac{\eta}{\sigma_{i}^{0}} \boldsymbol{g}_{i}^{0} \qquad \sigma_{i}^{0} = \sqrt{\left(\boldsymbol{g}_{i}^{0}\right)^{2}} = \left|\boldsymbol{g}_{i}^{0}\right|$$

$$\theta_{i}^{2} \leftarrow \theta_{i}^{1} - \frac{\eta}{\sigma_{i}^{1}} \boldsymbol{g}_{i}^{1} \qquad \sigma_{i}^{1} = \sqrt{\frac{1}{2} \left[\left(\boldsymbol{g}_{i}^{0}\right)^{2} + \left(\boldsymbol{g}_{i}^{1}\right)^{2}\right]}$$

$$\theta_{i}^{3} \leftarrow \theta_{i}^{2} - \frac{\eta}{\sigma_{i}^{2}} \boldsymbol{g}_{i}^{2} \qquad \sigma_{i}^{2} = \sqrt{\frac{1}{3} \left[\left(\boldsymbol{g}_{i}^{0}\right)^{2} + \left(\boldsymbol{g}_{i}^{1}\right)^{2} + \left(\boldsymbol{g}_{i}^{2}\right)^{2}\right]}$$

$$\vdots$$

$$\theta_{i}^{t+1} \leftarrow \theta_{i}^{t} - \frac{\eta}{\sigma_{i}^{t}} \boldsymbol{g}_{i}^{t} \qquad \boldsymbol{g}_{i}^{t} = \sqrt{\frac{1}{t+1} \sum_{i=0}^{t} \left(\boldsymbol{g}_{i}^{t}\right)^{2}}$$

这样就可以根据不同的梯度,自适应学习率的大小。

下面是RMSProp方法

RMSProp
$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \left[\frac{\eta}{\sigma_{i}^{t}}\right] \boldsymbol{g}_{i}^{t}$$

$$\boldsymbol{\theta}_{i}^{1} \leftarrow \boldsymbol{\theta}_{i}^{0} - \frac{\eta}{\sigma_{i}^{0}} \boldsymbol{g}_{i}^{0} \qquad \sigma_{i}^{0} = \sqrt{\left(\boldsymbol{g}_{i}^{0}\right)^{2}} \qquad 0 < \alpha < 1$$

$$\boldsymbol{\theta}_{i}^{2} \leftarrow \boldsymbol{\theta}_{i}^{1} - \frac{\eta}{\sigma_{i}^{1}} \boldsymbol{g}_{i}^{1} \qquad \sigma_{i}^{1} = \sqrt{\alpha \left(\sigma_{i}^{0}\right)^{2} + (1 - \alpha) \left(\boldsymbol{g}_{i}^{1}\right)^{2}}$$

$$\boldsymbol{\theta}_{i}^{3} \leftarrow \boldsymbol{\theta}_{i}^{2} - \frac{\eta}{\sigma_{i}^{2}} \boldsymbol{g}_{i}^{2} \qquad \sigma_{i}^{2} = \sqrt{\alpha \left(\sigma_{i}^{1}\right)^{2} + (1 - \alpha) \left(\boldsymbol{g}_{i}^{2}\right)^{2}}$$

$$\vdots$$

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \frac{\eta}{\sigma_{i}^{t}} \boldsymbol{g}_{i}^{t} \qquad \sigma_{i}^{t} = \sqrt{\alpha \left(\sigma_{i}^{t-1}\right)^{2} + (1 - \alpha) \left(\boldsymbol{g}_{i}^{t}\right)^{2}}$$

现在常用的就是Adam,就是RMSProp+Momentum。

Without Adaptive Learning Rate

可以看到下面那个图就是加入了Apagrad的曲线,相对于没有自适应的Learning Rate,这个明显更靠近目标点,但是其中的爆炸,是因为在y方向先前积累了很多小的 σ ,达到一定程度就爆炸,但是爆炸跑远之后又会使梯度变大,从而学习率下降,恢复到原来状态。

当然上面的情况也是可以解决的。可以用Learning Rate decay

Learning Rate Scheduling

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\boldsymbol{\eta}^t}{\sigma_i^t} \boldsymbol{g}_i^t$$

Learning Rate Decay

As the training goes, we are closer to the destination, so we reduce the learning rate.

可以看到,我们随着训练次数的增加,不断地靠近目标点,所以我们不断地减少学习率。

除此以外我们也可以用warm up,先变大后变小。

Warm Up

Increase and then decrease?

一般训练BERT时会用到warm up。

关于优化的改良版:

Summary of Optimization

(Vanilla) Gradient Descent

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \eta \boldsymbol{g}_i^t$$

Various Improvements

root mean square of the gradients

only magnitude

17