

REC'D 2 FMARO20

INVESTOR IN PEOPLE

CT/GB 2003 / O O O 8 7 2~

WIPO

PCT

The Patent Office Concept House

Cardiff Road

Newport

South Wales

NP10 800

COMPLIANCE WITH RULE 17.1(a) OR (b)

PRIORITY

SUBMITTED OR TRANSMITTED IN

DOCUME

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely the company to certain additional company law rules.

Signed

Dated

6 February 2003

BEST AVAILABLE COPY

its Form 1/77 Patents Act 1977 (Rule 16) **銷离02 E701027-8 C7692**] THE PATENT OFFICE 7700 0.00-0205170.4 The Patent Office Request for grant of a patent (See the notes on the back of this form. You can also get - 6 MAR 2002 Cardiff Road an explanatory leaflet from the Patent Office to help Newport you fill in this form) Gwent NP9 1RH 10066NEWPOR Your reference 0205170.4 - 6 MAR 2002 Patent application number (The Patent Office will fill in this part) AstraZeneca AB 3. Pull name, address and postcode of the or of S-151 85 Sodertalje each applicant (underline all surnames) Sweden 1895448003 Patents ADP number (if you know it) If the applicant is a corporate body, give the Sweden country/state of its incorporation Title of the invention CHEMICAL COMPOUNDS 5. Name of your agent (if you have one) Rachel M. Tinsley "Address for service" in the United Kingdom AstraZeneca UK Limited to which all correspondence should be sent Global Intellectual Property (including the postcode) Mereside, Alderley Park Macclesfield Cheshire SK10 4TG ECOSBT 16PW Patents ADP number (if you know it) Date of filing Priority application number 6. If you are declaring priority from one or more Country (day / month / year) (if you know it) earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number Date of filing Number of earlier application If this application is divided or otherwise (day / month / year) derived from an earlier UK application, give the number and the filing date of the earlier application 8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if: a) any applicant named in part 3 is not an inventor, or b) there is an inventor who is not named as an

applicant, or

See note (d))

c) any named applicant is a corporate body.

ents F	form 1/77	.*		:
followin	e number of sheets for any of the ag items you are filing with this form. count copies of the same document		· ·	
	Continuation sheets of this form			
. :	Description	54		
	Claim(s)		A	·
	Abstract			
	Drawing(s)		·	
	e also filing any of the following, w many against each item.			•
	Priority documents			
	. Translations of priority documents		•	
	Statement of inventorship and right to grant of a patent (Patents Form 7/77)			•
,	Request for preliminary examination and search (Patents Form 9/77)		T'	. •
	Request for substantive examination (Patents Form 10/77)		,	
	Any other documents (please specify)			
11.		I/We	request the grant of a patent on the	e basis of this application.
	·	Signa		Date
			Authorised Signatory	05/03/2002
12. Name and person to	i daytime telephone number of contact in the United Kingdom	of Joanne M. Marshall - 01625 - 516485		
Warning				***************************************

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be probibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need belp to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

10

15

20

25

30

CHEMICAL COMPOUNDS

The present invention relates to heterocyclic amide derivatives, pharmaceutically acceptable salts and *in vivo* hydrolysable esters thereof. These heterocyclic amides possess glycogen phosphorylase inhibitory activity and accordingly have value in the treatment of disease states associated with increased glycogen phosphorylase activity and thus are potentially useful in methods of treatment of a warm-blooded animal such as man. The invention also relates to processes for the manufacture of said heterocyclic amide derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments to inhibit glycogen phosphorylase activity in a warm-blooded animal such as man.

The liver is the major organ regulating glycaemia in the post-absorptive state. Additionally, although having a smaller role in the contribution to post-prandial blood glucose levels, the response of the liver to exogenous sources of plasma glucose is key to an ability to maintain euglycaemia. An increased hepatic glucose output (HGO) is considered to play an important role in maintaining the elevated fasting plasma glucose (FPG) levels seen in type 2 diabetics; particularly those with a FPG >140mg/dl (7.8mM). (Weyer et al, (1999), J Clin Invest 104: 787-794; Clore & Blackgard (1994), Diabetes 43: 256-262; De Fronzo, R. A., et al, (1992) Diabetes Care 15; 318 - 355; Reaven, G.M. (1995) Diabetologia 38; 3-13).

Since current oral, anti-diabetic therapies fail to bring FPG levels to within the normal, non-diabetic range and since raised FPG (and glycHbA1c) levels are risk factors for both macro- (Charles, M.A. et al (1996) Lancet 348, 1657-1658; Coutinho, M. et al (1999) Diabetes Care 22; 233-240; Shaw, J.E. et al (2000) Diabetes Care 23, 34-39) and micro-vascular disease (DCCT Research Group (1993) New. Eng. J. Med. 329; 977-986); the reduction and normalisation of elevated FPG levels remains a treatment goal in type 2 DM.

It has been estimated that, after an overnight fast, 74% of HGO was derived from glycogenolysis with the remainder derived from gluconeogenic precursors (Hellerstein et al (1997) Am J Physiol, 272: E163). Glycogen phosphorylase is a key enzyme in the generation by glycogenolysis of glucose-1-phosphate, and hence glucose in liver and also in other tissues such as muscle and neuronal tissue.

Liver glycogen phosphorylase a activity is elevated in diabetic animal models including the db/db mouse and the fa/fa rat (Aiston S et al (2000). Diabetalogia 43, 589-597).

-10

15

Inhibition of hepatic glycogen phosphorylase with chloroindole inhibitors (CP91149 and CP320626) has been shown to reduce both glucagon stimulated glycogenolysis and glucose output in hepatocytes (Hoover et al (1998) J Med Chem 41, 2934-8; Martin et al (1998) PNAS 95, 1776-81). Additionally, plasma glucose concentration is reduced, in a dose related manner, db/db and ob/ob mice following treatment with these compounds.

Studies in conscious dogs with glucagon challenge in the absence and presence of another glycogen phosphorylase inhibitor, Bay K 3401, also show the potential utility of such agents where there is elevated circulating levels of glucagon, as in both Type 1 and Type 2 diabetes. In the presence of Bay R 3401, hepatic glucose output and arterial plasma glucose following a glucagon challenge were reduced significantly (Shiota et al, (1997), Am J Physiol, 273: E868).

The heterocyclic amides of the present invention possess glycogen phosphorylase inhibitory activity and accordingly are expected to be of use in the treatment of type 2 diabetes, insulin resistance, syndrome X, hyperinsulinaemia, hyperglucagonaemia, cardiac ischaemia and obesity, particularly type 2 diabetes.

According to one aspect of the present invention there is provided a compound of formula (1):

20

30

wherein:

Z is CH or nitrogen;

25 R^4 and R^5 together are either $-S-C(R^6)=C(R^7)$ - or $-C(R^7)=C(R^6)$ -S-;

R⁶ and R⁷ are independently selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulfamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)₃amino, N-(C₁₋₆alkyl)₄amino, N-(C₁₋₆alkyl)₄amino, N-(C₁₋₆alkyl)₅amino, N-(C₁₋₆alkyl)₆amino, N-(C₁₋₆alkyl)

6alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁.... 6alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino and C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino;

5 A is phenylene or heteroarylene;

n is 0, 1 or 2;

R¹ is independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, N-C₁₋₄alkylcarbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, sulphamoyl, N-C₁₋₄alkylsulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, sulfino, sulfo, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, hydroxyC₁₋₄alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethyl, trifluoromethyl,

15 R¹ is of the formula A' or A'':

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

20 r is 1 or 2; and when r is 1 the group

is a substituent on carbon (2) and when r is 2 (hereby forming a six membered ring) the same group is a substituent on carbon (2) or on carbon (3);

25 Y is $-NR^2R^3$ or $-OR^3$;

10

15

20

25

 R^2 and R^3 are independently selected from hydrogen, hydroxy, $C_{1\text{-4}}$ alkyl (substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), $C_{5\text{-7}}$ cycloalkyl (optionally substituted with 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), cyano($C_{1\text{-4}}$)alkyl, 4-butanolidyl, 5-pentanolidyl, tetrahydrothiopyranyl, 1-oxotetrahydrothiopyranylgroup, 1,1-dioxotetrahydrothiopyranyl, fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, $C_{1\text{-4}}$ alkyl [substituted by 1 or 2 R^8 groups (provided that when there are 2 R^8 groups they are not substituents on the same carbon)], - COR^8 , SO_bR^8 (wherein b is 0, 1 or 2) and groups of the formulae B and B':

wherein y is 0 or 1, t is 0, 1, 2 or 3 and u is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen);

{wherein R⁸ is independently selected from hydrogen, hydroxy, C₁₋₄alkoxyC₁₋₄alkoxy, hydroxyC₁₋₄alkoxy, 2,2-dimethyl-1,3-dioxolan-4-yl, heterocyclyl (optionally substituted on carbon or nitrogen by 1 or 2 groups selected from hydrogen, nitro, halo, cyano, hydroxy and C₁₋₄alkyl), (heterocyclyl)C₁₋₄alkyl (wherein the heterocyclyl is optionally substituted on carbon or nitrogen by 1 or 2 groups selected from hydrogen, nitro, halo, cyano, hydroxy and C₁₋₄alkyl), aryl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C₁₋₄alkyl, C₁₋₄alkyl, C₂₋₄alkenyl, cyclo(C₃₋₈)alkyl, C₁₋₄alkoxy, cyano(C₁₋₄)alkyl, amino(C₁₋₄)alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C₁₋₄alkyl, hydroxy, hydroxy(C₁₋₄)alkyl, dihydroxy(C₁₋₄)alkyl, aryl and aryl(C₁₋₄)alkyl), C₁₋₄alkylS(O)_c(C₁₋₄)alkyl (wherein c is 0, 1 or 2), -N(OH)CHO, -CH₂CH(CO₂R⁹)N(R⁹R¹⁰), -CH₂OR⁹, (R⁹)(R¹⁰)N-, -COOR⁹ and -CH₂COOR⁹, -CH₂CONR⁹R¹⁰, -(CH₂)₀CH(NR⁹R¹⁰)CO₂R⁹ (wherein u is 1, 2 or 3);

[wherein R^9 and R^{10} are independently selected from hydrogen, hydroxy, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{5-7} cycloalkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{2-4} alkenyl, cyano(C_{1-4})alkyl, 4-butanolidyl, 5-pentanolidyl,

10

25

tetrahydrothiopyranyl, 1-oxotetrahydrothiopyranylgroup, 1,1-dioxotetrahydrothiopyranyl, 2,2-dimethyl-1,3-dioxolan-4-yl, aryl (optionally substituted by 1 or 2 substituents selected from hydrogen, nitro, halo, hydroxy and C_{1-4} alkyl) and C_{1-4} alkyl substituted by R^{13} ;

(wherein R^{13} is selected from hydroxy, C_{1-4} alkoxy, heterocyclyl, C_{1-4} alkanoyl, C_{1-4} alkylS(O)_d (wherein d is 0, 1 or 2)l, -N(OH)CHO, (R^{11})(R^{12})NCO-, (R^{11})(R^{12})NSO₂-, -COCH₂OR¹¹ and (R^{11})(R^{12})N-;

{wherein R^{11} and R^{12} are independently selected from hydrogen, C_{1-4} alkyl, C_{1-4} alkyl, C_{1-4} alkylS(O)_e (wherein e is 0, 1 or 2)}); and

R⁹ and R¹⁰ can together with the nitrogen to which they are attached form 4- to 6-membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents selected from oxo, hydroxy, carboxy, halo, nitro, nitroso, cyano, isocyano, amino, N-C₁-4alkylamino, N,N-(C₁₋₄)₂alkylamino, carbonyl, sulfo, C₁₋₄alkoxy, heterocyclyl, C₁₋₄alkanoyl, C₁₋₄alkylS(O)_f(C₁₋₄)₂alkyl (wherein f is 0, 1 or 2), -N(OH)CHO, (R¹¹)(R¹²)NCO-, (R¹¹)(R¹²)NSO₂-, -COCH₂OR¹¹, (R¹¹)(R¹²)N-;

wherein R¹¹ and R¹² are as defined above];

provided that when R¹ is of the formula A' or A'' then R² and R³ do not contain a group of the formula B or B' and when R² or R³ is of the formula B or B' then R¹ does not contain a group of the formula A' or A'' such that a compound of formula (1) can contain only one of A', A'', B and B';

or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof; with the proviso that the compound of formula (1) is not:

- i) 2,3-dichloro-5-(N-{1-[N-(1,1-dimethylethoxy)carbonylamino]indan-2-yl}carbamoyl)-4H-thieno[3,2-b]pyrrole;
- ii) 5-[N-(1-aminoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole
- iii) 5-[N-(1-acetamidoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole
- iv) 2,3-dichloro-5- $\{N-[1-(methanesulphonamido)indan-2-yl]carbamoyl\}-4H-thieno[3,2-b]pyrrole$
- v) 2,3-dichloro-5-{N-[1-(methylamino)indan-2-yl]carbamoyl}-4H-thieno[3,2-b]pyrrole;
- 30 vi) 2,3-dichloro-5-{N-[1-(methylacetamido)indan-2-yl]carbamoyl}-4H-thieno[3,2-b]pyrrole;
 - vii) 2,3-dichloro-5-[N-(1-hydroxyindan-2-yl)carbamoyl]-4H-thieno[3,2-b]pyrrole;
 - viii) 2-chloro-5-[N-(1-hydroxyindan-2-yl)carbamoyl-6H-thieno[2,3-b]pyrrole;

10

15

20

25

30

- ix) 2,3-dichloro-5-[N-(6-fluoro-1-hydroxyindan-2-yl)carbamoyl-4H-thieno[3,2-b]pyrrole
- x) 2,3-dichloro-5-[N-(1-methoxyindan-2-yl)carbamoyl-4H-thieno[3,2-b]pyrrole;
- xi) 2,3-dichloro-5-[N-(1-hydroxy-1,2,3,4-tetrahydronaphth-2-yl)carbamoyl]-4*H*-thieno[3,2-*b*]pyrrole.

In another aspect, the invention relates to compounds of formula (1) as hereinabove defined or to a pharmaceutically acceptable salt.

It is to be understood that, insofar as certain of the compounds of formula (1) defined above may exist in optically active or racemic forms by virtue of one or more asymmetric carbon atoms, the invention includes in its definition any such optically active or racemic form which possesses glycogen phosphorylase inhibition activity. The synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form. Similarly, the above-mentioned activity may be evaluated using the standard laboratory techniques referred to hereinafter.

Within the present invention it is to be understood that a compound of the formula (1) or a salt thereof may exhibit the phenomenon of tautomerism and that the formulae drawings within this specification can represent only one of the possible tautomeric forms. It is to be understood that the invention encompasses any tautomeric form which has glycogen phosphorylase inhibition activity and is not to be limited merely to any one tautomeric form utilised within the formulae drawings. The formulae drawings within this specification can represent only one of the possible tautomeric forms and it is to be understood that the specification encompasses all possible tautomeric forms of the compounds drawn not just those forms which it has been possible to show graphically herein.

It is also to be understood that certain compounds of the formula (1) and salts thereof can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which have glycogen phosphorylase inhibition activity.

It is also to be understood that certain compounds of the formula (1) may exhibit polymorphism, and that the invention encompasses all such forms which possess glycogen phosphorylase inhibition activity.

10

15

20

25

30

The present invention relates to the compounds of formula (1) as hereinbefore....... defined as well as to the salts thereof. Salts for use in pharmaceutical compositions will be pharmaceutically acceptable salts, but other salts may be useful in the production of the compounds of formula (1) and their pharmaceutically acceptable salts. Pharmaceutically acceptable salts of the invention may, for example, include acid addition salts of the compounds of formula (1) as hereinbefore defined which are sufficiently basic to form such salts. Such acid addition salts include for example salts with inorganic or organic acids affording pharmaceutically acceptable anions such as with hydrogen halides (especially hydrochloric or hydrobromic acid of which hydrochloric acid is particularly preferred) or with sulphuric or phosphoric acid, or with trifluoroacetic, citric or maleic acid. Suitable salts include hydrochlorides, hydrobromides, phosphates, sulphates, hydrogen sulphates, alkylsulphonates, arylsulphonates, acetates, benzoates, citrates, maleates, fumarates, succinates, lactates and tartrates. In addition where the compounds of formula (1) are sufficiently acidic, pharmaceutically acceptable salts may be formed with an inorganic or organic base which affords a pharmaceutically acceptable cation. Such salts with inorganic or organic bases include for example an alkali metal salt, such as a sodium or potassium salt, an alkaline earth metal salt such as a calcium or magnesium salt, an ammonium salt or for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.

An *in vivo* hydrolysable ester of a compound of formula (1) containing carboxy or hydroxy group is, for example. A pharmaceutically acceptable ester which is cleaved in the human or animal body to produce the parent acid or alcohol.

Suitable pharmaceutically acceptable esters for carboxy include C₁₋₆alkoxymethyl esters for example methoxymethyl, C₁₋₆alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C₃₋₈cycloalkoxycarbonyloxyC₁₋₆alkyl esters for example 1-cyclohexylcarbonyloxyethyl; 1,3-dioxolen-2-onylmethyl esters for example 5-methyl-1,3-dioxolen-2-onylmethyl; and C₁₋₆alkoxycarbonyloxyethyl esters for example 1-methoxycarbonyloxyethyl and may be formed at any carboxy group in the compounds of this invention.

Suitable pharmaceutically-acceptable esters for hydroxy include inorganic esters such as phosphate esters (including phosphoramidic cyclic esters) and α -acyloxyalkyl ethers and related compounds which as a result of the *in-vivo* hydrolysis of the ester breakdown to give

In this specification the generic term "alkyl" includes both straight-chain and branched-chain alkyl groups. However references to individual alkyl groups such as "propyl" are specific for the straight chain version only and references to individual branched-chain alkyl groups such as *t*-butyl are specific for the branched chain version only. For example, "C₁₋₄alkyl" includes methyl, ethyl, propyl, isopropyl and *t*-butyl and examples of "C₁₋₆alkyl" include the examples of "C₁₋₄alkyl" and additionally pentyl, 2,3-dimethylpropyl, 3-methylbutyl and hexyl. An analogous convention applies to other generic terms, for example "C₂₋₄alkenyl" includes vinyl, allyl and 1-propenyl and examples of "C₂₋₆alkenyl" include the examples of "C₂₋₄alkenyl" and additionally 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, 3-methylbut-1-enyl, 1-pentenyl, 3-pentenyl and 4-hexenyl. Examples of "C₂₋₆alkynyl" includes ethynyl, 1-propynyl and 2-propynyl and examples of "C₂₋₆alkynyl"include the examples of "C₂₋₆alkynyl" and additionally 3-butynyl, 2-pentynyl and 1-methylpent-2-ynyl.

The term "hydroxyC₁₋₄alkyl" includes hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxyisopropyl and hydroxybutyl. The term "hydroxyethyl" includes 1-hydroxypropyl and 2-hydroxypropyl. The term "hydroxypropyl" includes 1-hydroxypropyl, 2-hydroxypropyl and 3-hydroxypropyl and an analogous convention applies to terms such as hydroxybutyl. The term "dihydroxyC₁₋₄alkyl" includes dihydroxymethyl, dihydroxyethyl, dihydroxypropyl, dihydroxyisopropyl and dihydroxybutyl. The term "dihydroxyethyl" includes 1,1-

dihydroxyethyl 2,2-dihydroxyethyl and 1,2-dihydroxyethyl. An analogous convention applies to terms such as dihydroxypropyl, dihydroxyisopropyl and dihydroxybutyl.

The term "halo" refers to fluoro, chloro, bromo and iodo.

Examples of "C₁₋₄alkoxy" include methoxy, ethoxy, propoxy and isopropoxy. Examples of " C_{1-6} alkoxy" include the examples of " C_{1-4} alkoxy" and additionally butyloxy, t-5 butyloxy, pentoxy and 1,2-(methyl)2propoxy. Examples of "C1-4alkanoyl" include formyl, acetyl and propionyl. Examples of "C1-6alkanoyl" include the example of "C1-4alkanoyl" and additionally butanoyl, pentanoyl, hexanoyl and 1,2-(methyl)2propionyl. Examples of " C_{1-4} alkanoyloxy" are formyloxy, acetoxy and propionoxy. Examples of " C_{1-6} alkanoyloxy" include the examples of " C_{1-4} alkanoyloxy" and additionally butanoyloxy, pentanoyloxy, 10 hexanoyloxy and 1,2-(methyl)2propionyloxy. Examples of "N-(C1-4alkyl)amino" include methylamino and ethylamino. Examples of "N-(C1-6alkyl)amino" include the examples of "N-(C_{1-4} alkyl)amino" and additionally pentylamino, hexylamino and 3-methylbutylamino. Examples of "N,N-(C_{1-4} alkyl)₂amino" include N-N-(methyl)₂amino, N-N-(ethyl)₂amino and N-ethyl-N-methylamino. Examples of " $N,N-(C_{1-6}alkyl)_2$ amino" include the example of 15 " $N,N-(C_{1-4}alkyl)_2$ amino" and additionally N-methyl-N-pentylamino and N,N-(pentyl)₂amino. Examples of "N-(C_{1-4} alkyl)carbamoyl" are methylcarbamoyl and ethylcarbamoyl. Examples of "N-(C_{1-6} alkyl)carbamoyl" are the examples of "N-(C_{1-4} alkyl)carbamoyl" and additionally pentylcarbamoyl, hexylcarbamoyl and 1,2-(methyl)2propylcarbamoyl. Examples of " $N,N-(C_{1-4}alkyl)_2$ carbamoyl" are $N,N-(methyl)_2$ carbamoyl, $N,N-(ethyl)_2$ carbamoyl and $N-(methyl)_2$ carbamoyl are $N,N-(methyl)_2$ carbamoyl are $N,N-(methyl)_2$ carbamoyl, $N,N-(methyl)_2$ carbamoyl are $N,N-(methyl)_2$ carbamoyl, $N,N-(methyl)_2$ carbamoyl and $N-(methyl)_2$ carbamoyl are $N,N-(methyl)_2$ carbamoyl, $N,N-(methyl)_2$ carbamoyl are $N,N-(methyl)_2$ 20 methyl-N-ethylcarbamoyl. Examples of "N,N-(C_{1-6} alkyl)₂carbamoyl" are the examples of " $N,N-(C_{1-4}alkyl)_2$ carbamoyl" and additionally $N,N-(pentyl)_2$ carbamoyl, $N-methyl-N-(pentyl)_2$ pentylcarbamoyl and N-ethyl-N-hexylcarbamoyl. Examples of "N-(C_{1-4} alkyl)sulphamoyl" are N-(methyl)sulphamoyl and N-(ethyl)sulphamoyl. Examples of "N-(C_{1-6} alkyl)sulphamoyl" are the examples of "N-(C_{1-4} alkyl)sulphamoyl" and additionally N-pentylsulphamoyl, N-25 hexylsulphamoyl and 1,2-(methyl)2propylsulphamoyl. Examples of " $N,N-(C_{1-4}alkyl)_2$ sulphamoyl" are $N,N-(methyl)_2$ sulphamoyl, $N,N-(ethyl)_2$ sulphamoyl and N-(methyl)-N-(ethyl)sulphamoyl. Examples of "N,N-(C_{1-6} alkyl) $_2$ sulphamoyl" are the examples of " $N,N-(C_{1-4}alkyl)_2$ sulphamoyl" and additionally $N,N-(pentyl)_2$ sulphamoyl, $N-(pentyl)_2$ sulphamoyl, $N-(pentyl)_2$ sulphamoyl, $N-(pentyl)_2$ sulphamoyl, $N-(pentyl)_2$ sulphamoyl methyl-N-pentylsulphamoyl and N-ethyl-N-hexylsulphamoyl. 30

Examples of "cyano(C_{1-4})alkyl" are cyanomethyl, cyanoethyl and cyanopropyl. Examples of " C_{5-7} cycloalkyl" are cyclopentyl, cyclohexyl and cycloheptyl. Examples of " C_{3-8} cycloalkyl" include " C_{5-7} cycloalkyl, cyclopropyl, cyclobutyl and cyclooctyl.

10

15

The term "aminoC₁₋₄alkyl" includes aminomethyl, aminoethyl, aminopropyl, aminoisopropyl and aminobutyl. The term "aminoethyl" includes 1-aminoethyl and 2-aminoethyl. The term "aminopropyl" includes 1-aminopropyl, 2-aminopropyl and 3-aminopropyl and an analogous convention applies to terms such as aminoethyl and aminobutyl.

Examples of " C_{1-4} alkoxy C_{1-4} alkoxy" are methoxymethoxy, ethoxymethoxy, ethoxyethoxy and methoxyethoxy. Examples of "hydroxy C_{1-4} alkoxy" are hydroxyethoxy and hydroxypropoxy. Examples of "hydroxypropoxy" are 1-hydroxypropoxy, 2-hydroxypropoxy and 3-hydroxypropoxy.

Examples of "C₁₋₆alkylS(O)_a (wherein a is 0 to 2)" include methylthio, ethylthio, propylthio, methanesulphinyl, ethanesulphinyl, propanesulphinyl, mesyl, ethanesulphonyl, propanesulphonyl, isopropanesulphonyl, pentanesulphonyl and hexanesulphonyl.

Examples of " C_{1-4} alkyl $S(O)_c$ (wherein c is 0 to 2)", " C_{1-4} alkyl $S(O)_d$ (wherein d is 0 to 2)", " C_{1-4} alkyl $S(O)_c$ (wherein e is 0 to 2)", and " C_{1-4} alkyl $S(O)_f$ (wherein f is 0 to 2)" independently include methylthio, ethylthio, propylthio, methanesulphinyl, ethanesulphinyl, propanesulphinyl, mesyl, ethanesulphonyl, propanesulphonyl and isopropanesulphonyl.

Examples of " C_{1-6} alkoxycarbonyl" include methoxycarbonyl, ethoxycarbonyl, n- and t-butoxycarbonyl. Examples of " C_{1-6} alkoxycarbonylamino" include methoxycarbonylamino, ethoxycarbonylamino, n- and t-butoxycarbonylamino. Examples of

" $C_{1\text{-}6}$ alkylsulphonyl-N-($C_{1\text{-}6}$ alkyl)amino" include methylsulphonyl-N-methylamino, ethylsulphonyl-N-methylamino and propylsulphonyl-N-ethylamino. Examples of " $C_{1\text{-}6}$ alkylsulphonylamino" include methylsulphonylamino, ethylsulphonylamino and propylsulphonylamino. Examples of " $C_{1\text{-}6}$ alkanoylamino" include formamido, acetamido and propionylamino.

Where optional substituents are chosen from "0, 1, 2 or 3" groups it is to be understood that this definition includes all substituents being chosen from one of the specified groups or the substituents being chosen from two or more of the specified groups. An analogous convention applies to substituents chose from "0, 1 or 2" groups and "1 or 2" groups.

"Heterocyclyl" is a saturated, partially saturated or unsaturated, monocyclic ring containing 5 to 7 atoms of which 1, 2, 3 or 4 ring atoms are chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked, wherein a -CH₂-group can optionally be replaced by a -C(O)-and a ring sulphur atom may be optionally

20

25

30

10

15

20 .

25

30

oxidised to form the S_{*}oxide(s). Examples and suitable values of the term "heterocyclyl" are morpholino, morpholinyl, piperidino, piperidyl, pyridyl, pyranyl, pyrrolyl, imidazolyl, thiazolyl, thiazolyl, thiadiazolyl, piperazinyl, isothiazolidinyl, triazolyl, tetrazolyl, pyrrolidinyl, 2-oxazolidinonyl, 5-isoxazolonyl, thiomorpholino, pyrrolinyl, homopiperazinyl, 3,5-dioxapiperidinyl, 3-oxopyrazolin-5-yl, tetrahydropyranyl, , pyrimidyl, pyrazinyl, pyridazinyl, isoxazolyl, 4-oxopyridyl, 2-oxopyrrolidyl, 4-oxothiazolidyl, furyl, thienyl, oxazolyl, and oxadiazolyl. Preferably a "heterocyclyl" is morpholino, morpholinyl, piperidino, piperidyl, pyridyl, pyranyl, pyrrolyl, imidazolyl, thiazolyl, thiadiazolyl, piperazinyl, isothiazolidinyl, 1,3,4-triazolyl, tetrazolyl, pyrrolidinyl, thiomorpholino, pyrrolinyl, homopiperazinyl, 3,5-dioxapiperidinyl, pyrimidyl, pyrazinyl, pyridazinyl, isoxazolyl, 4-oxopyridyl, 2-oxopyrrolidyl, 4-oxothiazolidyl, furyl, thienyl, oxazolyl and 1,2,4-oxadiazolyl. More preferably heterocyclyl is oxazolyl, 1,2,4-oxadiazolyl, pyridyl, furyl, thienyl, morpholino, pyrazinyl and piperazinyl.

Examples of "(heterocyclyl) C_{1-4} alkyl" are morpholinomethyl, morpholinethyl, morpholinylmethyl, piperidinomethyl, piperidinomethyl, piperidinomethyl, piperidylmethyl, piperidylmethyl, piperidylmethyl, oxazolylmethyl, oxazolylmethyl, oxazolylmethyl 1,2,4-oxadiazolylmethyl, pyridylmethyl, pyridylmethyl, furylmethyl, furylmethyl, furylmethyl, (thienyl)methyl, (thienyl)ethyl, pyrazinylmethyl, pyrazinylmethyl, piperazinylmethyl and piperazinylethyl.

Examples of "aryl" are phenyl and naphthyl.

Examples of "aryl(C_{1-4})alkyl" are benzyl, phenethyl, naphthylmethyl and naphthylethyl.

"Heteroarylene" is a diradical of a heteroaryl group. A heteroaryl group is aryl, monocyclic ring containing 5 to 7 atoms of which 1, 2, 3 or 4 ring atoms are chosen from nitrogen, sulphur or oxygen. Examples of heteroarylene are pyridylene, pyrimidinylene, pyrazinlyene, pyridazinylene, pyrrolylene, thienylene and furylene.

Preferred values of A, Y, R¹, R⁴, R⁵, r and n are as follows. Such values may be used where appropriate with any of the definitions, claims or embodiments defined hereinbefore or hereinafter.

In one aspect of the present invention there is provided a compound of formula (1) as depicted above wherein z is CH.

In another aspect of the invention Z is nitrogen.

In one aspect of the present invention there is provided a compound of formula (1) as depicted above wherein \mathbb{R}^4 and \mathbb{R}^5 are together $-S-C(\mathbb{R}^6)=C(\mathbb{R}^7)$ -.

In another aspect of the invention R^4 and R^5 are together $-C(R^7)=C(R^6)-S$ -.

In a further aspect of the invention, R⁶ and R⁷ are independently selected from hydrogen, halo or C_{1.6}alkyl.

Preferably R⁶ and R⁷ are independently selected from hydrogen, chloro, bromo or methyl.

Particularly R⁶ and R⁷ are independently selected from hydrogen or chloro.

More particularly both of R^6 and R^7 are chloro.

In one aspect of the invention A is phenylene.

In another aspect of the invention A is heteroarylene.

Preferably A is selected from phenylene, pyridylene, pyrimidinylene, pyrrolylene, thienylene and furylene.

In one aspect of the invention n is 0 or 1.

Preferably n is 1.

In another aspect of the present invention R¹ is selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, C₁₋₄alkoxy and and R¹ is of the formula A' or A'':

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

Preferably R¹ is hydrogen or halo.

More preferably R¹ is hydrogen, chloro or fluoro.

In one aspect of the invention r is 1 and when r is 1 the group

is a substituent on carbon (2) such that an example of when r is 1 is:

$$\mathbb{R}^4$$
 \mathbb{N}
 \mathbb{N}

In another aspect of the invention r is 2 and when r is 2 the group

is a substituent on carbon (2) such that an example of when r is 2 is:

$$R^4$$
 O
 Y
 (2)
 (11)
 A
 $(R^1)_r$

10 In another aspect of the invention r is 2 and when r is 2 the group

is a substituent on carbon (3) such that an example of when r is 2 is:

In one aspect of the invention Y is -NR²R³.

In another aspect of the invention Y is -OR³.

10

15

20

25

30

In one aspect on the invention R^2 and R^3 are independently selected from hydrogen, hydroxy, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{5-7} cycloalkyl (optionally substituted with 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), cyano(C_{1-4})alkyl, fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, C_{1-4} alkyl [substituted by 1 or 2 R^8 groups (provided that when there are 2 R^8 groups they are not substituents on the same carbon)], - COR^8 and $-SO_bR^8$ (wherein b is 0, 1 or 2);

{wherein R^8 is independently selected from hydrogen, hydroxy, C_{1-4} alkoxy C_{1-4} alkoxy, hydroxy C_{1-4} alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothiopyranyl, tetrahydrothiopyranyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C_{1-4} alkyl), pyrazinyl, 4-methylpiperazino, piperazinyl, C_{1-4} alkyl, C_{2-4} alkenyl, cyclo(C_{3-8})alkyl, C_{1-4} alkoxy, cyano(C_{1-4})alkyl, amino(C_{1-4})alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C_{1-4} alkyl, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, aryl and aryl(C_{1-4})alkyl), C_{1-4} alkyl, (wherein c is 0, 1 or 2), $-CH_2CH(CO_2R^9)N(R^9R^{10})$, $-CH_2OR^9$, $(R^9)(R^{10})N_{7}$, $-COOR^9$ and $-CH_2COOR^9$, $-CH_2CONR^9R^{10}$, $-CH_2CH_2CH(NR^9R^{10})CO_2R^9$;

[wherein R^9 and R^{10} are independently selected from hydrogen, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{5-7} cycloalkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{2-4} alkenyl, cyano(C_{1-4})alkyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano) and C_{1-4} alkyl substituted by R^{13} ;

(wherein R^{13} is selected from $C_{1\text{-4}}$ alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl($C_{1\text{-4}}$)alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl($C_{1\text{-4}}$)alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl,

10

15

20

25

30

tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C_{1-4} alkyl, pyrazinyl, piperazinyl, C_{1-4} alkylS(O)_d(C_{1-4})alkyl (wherein d is 0, 1 or 2);

{wherein R¹¹ is selected from hydrogen, C₁₋₄alkyl, C₁₋₄alkoxy, hydroxyC₁₋₄alkyl, C₁₋₄alkylS(O)_e (wherein e is 0, 1 or 2)}); and

 R^9 and R^{10} can together with the nitrogen to which they are attached form 4- to 6-membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents selected from oxo, hydroxy, carboxy, halo, nitro, nitroso, cyano, isocyano, amino, N- C_{1-4} -4alkylamino, N-N- $(C_{1-4})_2$ alkylamino, carbonyl, sulfo, C_{1-4} alkoxy, heterocyclyl, C_{1-4} alkanoyl, and C_{1-4} alkyl $S(O)_f(C_{1-4})$ alkyl (wherein f is 0, 1 or 2)]};

In a further aspect of the invention R^2 and R^3 are independently selected from hydrogen, hydroxy, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), cyano(C_{1-4})alkyl, trifluoromethylcarbonyl, C_{1-4} alkyl [substituted by 1 or 2 R^8 groups (provided that when there are 2 R^8 groups they are not substituents on the same carbon)], -COR 8 and -SO $_b$ R 8 (wherein b is 0, 1 or 2);

{wherein R^8 is independently selected from hydrogen, hydroxy, C_{1-4} alkoxy C_{1-4} alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano and hydroxy), C_{2-4} alkenyl, cyclo(C_{3-8})alkyl, cyano(C_{1-4})alkyl, amino(C_{1-4})alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C_{1-4} alkyl, hydroxy, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, aryl and aryl(C_{1-4})alkyl), C_{1-4} alkylS(O)_c(C_{1-4})alkyl (wherein c is 0, 1 or 2), -CH₂CH(CO_2R^9)N(R^9R^{10}), -CH₂OR⁹, (R^9)(R^{10})N-, - $COOR^9$, -CH₂COOR⁹, -CH₂CONR⁹R¹⁰, and -CH₂CH₂CH(CO_2R^9)

[wherein R^9 and R^{10} are independently selected from hydrogen, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{2-4} alkenyl, cyano(C_{1-4})alkyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano) and C_{1-4} alkyl substituted by R^{13} ;

10

15

20

25

30

(wherein R^{13} is selected from $C_{1\text{-4}}$ alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl($C_{1\text{-4}}$)alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl($C_{1\text{-4}}$)alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and $C_{1\text{-4}}$ alkyl); and

 R^9 and R^{10} can together with the nitrogen to which they are attached form 4- to 6-membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents selected from 0x0, hydroxy, carboxy, halo, nitro, nitroso, eyano, isocyano, amino, $N-C_1$ -4alkylamino, $N,N-(C_{1-4})_2$ alkylamino, carbonyl, sulfo, C_{1-4} alkoxy, heterocyclyl, C_{1-4} alkanoyl, C_{1-4} alkylS(O)_f(C_{1-4})alkyl (wherein f is 0, 1 or 2)]}.

In a further aspect of the invention R^2 and R^3 are independently selected from hydrogen, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), cyano(C_{1-4})alkyl, trifluoromethylcarbonyl, C_{1-4} alkyl [substituted by 1 or 2 R^8 groups (provided that when there are 2 R^8 groups they are not substituents on the same carbon)], -COR 8 and -SO $_b$ R 8 (wherein b is 0, 1 or 2);

{wherein R^8 is independently selected from hydrogen, hydroxy, C_{1-4} alkoxy C_{1-4} alkoxy, hydroxy C_{1-4} alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano and hydroxy), C_{2-4} alkenyl, cyano(C_{1-4})alkyl, cyclo(C_{3-8})alkyl, amino(C_{1-4})alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C_{1-4} alkyl, hydroxy, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, aryl and aryl(C_{1-4})alkyl), C_{1-4} alkylS(O)c(C_{1-4})alkyl (wherein c is 0, 1 or 2), - $CH_2CH(CO_2R^9)N(R^9R^{10})$, - CH_2OR^9 , (R^9)(R^{10})N-, - $COOR^9$, - CH_2COOR^9 , - CH_2COOR^9 , - CH_2COOR^9 , and - $CH_2CH_2CH(NR^9R^{10})CO_2R^9$;

[wherein R^9 and R^{10} are independently selected from hydrogen, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{2-4} alkenyl, and phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano).

10

15

In another aspect of the invention R^2 is selected from hydrogen or C_{1-4} alkyl. In yet a further aspect of the inventions R³ is selected from hydrogen, methyl, hydroxyethyl, hydroxypropyl, 1,3-dihydroxyisopropyl, 1-hydroxy-2-hydroxymethyl-propyl, 1,2-dihydroxypropyl, cyanomethyl, cyanoethyl, cyanopropyl, cyanomethylcarbonyl, cyanoethylcarbonyl, cyanopropylcarbonyl, carbamoyl, trifluoromethylcarbonyl, carboxymethanoyl, 1-amino-1-carboxybutanoyl, carboxyethyl, formyl, acetyl, propanoyl, methanesulfinyl, methanesulfonyl, morpholinomethylcarbonyl, phenylcarbonyl, furylcarbonyl, thienylcarbonyl, nitrofurylcarbonyl, pyrazinylcarbonyl, cyclopropylcarbonyl, morpholinocarbonyl, methylmercaptoethyl, N,N-dimethylcarbamoyl, 4methylpiperazinocarbonyl, thienylsulfonyl, N-ethylcarbamoyl, N-allylcarbamoyl, Ndinitrophenylcarbamoyl, pyridinylcarbonyl, cyanophenylcarbonyl, hydroxyphenylcarbonyl, acryloyl, 1-amino-1-carboxyethylcarbonyl, 2-(tert-butoxycarbonyl)-2-(tertbutoxycarbonylamino)ethylcarbonyl, 2-(tert-butoxycarbonyl)ethylcarbonyl, aminobutanoyl, aminobutanoyl, aminopropanoyl, aminoacetyl, N-methylaminoacetyl, 1-amino-1carboxypropanoyl, chloroacetyl, hydroxyacetyl, N-methyl-N-hydroxyethylaminoacetyl, Nbenzyl-N-hydroxyethylaminoacetyl, N-(1,2-dihydroxyethyl)-N-methylaminoacetyl, N-(2,3dihydroxypropyl)-N-methylaminoacetyl hydroxypiperidinoaminoacetyl, hydroxypyrrolidinylaminoacetyl, N,N-bis(hydroxyethyl)aminoacetyl, 3-amino-2hydroxypropyl, 3-amino-2-methoxypropyl, 3-amino-2-ethoxypropyl, 3-(N,N-dimethylamino)-20 2-hydroxypropyl, 3-(N,N-dimethylamino)-2-methoxypropyl and 3-(N,N-dimethylamino)-2-

A preferred class of compound is of the formula (1) wherein; 25 Z is CH;

 R^4 and R^5 are together $-S-C(R^6)=C(R^7)$ -;

R⁶ is halo or hydrogen; 30

ethoxypropyl.

R⁷ is halo or hydrogen;

A is phenylene; ...

n is 1 or 2;

R¹ is independently selected from hydrogen, halo, cyano, nitro, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, C₁₋₄alkoxy and and R¹ is of the formula A' or A'':

-CH₂CH(OH)(CH₂)_uCO₂H (A')

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

r is 1 or 2;

10

25

Y is $-NR^2R^3$ or $-OR^3$;

15 R² and R³ are independently selected from hydrogen, hydroxy, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₅₋₇cycloalkyl (optionally substituted with 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), cyano(C₁₋₄)alkyl, fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, C₁₋₄alkyl [substituted by 1 or 2 R⁸ groups (provided that when there are 2 R⁸ groups they are not substituents on the same carbon)], -COR⁸ and -SO_bR⁸ (wherein b is 0, 1 or 2);

{wherein R^8 is independently selected from hydrogen, hydroxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, morpholino, pyridyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano,

10

15

20

25

30

hydroxy and C₁₋₄alkyl), pyrazinyl, piperazinyl, 4-methylpiperazino, C₁₋₄alkyl, C₂₋₄alkenyl, cyclo(C₃₋₈)alkyl, C₁₋₄alkoxy, cyano(C₁₋₄)alkyl, amino(C₁₋₄)alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C₁₋₄alkyl, hydroxy, hydroxy(C₁₋₄)alkyl, dihydroxy(C₁₋₄)alkyl, aryl and aryl(C₁₋₄)alkyl), C₁₋₄alkylS(O)_c(C₁₋₄)alkyl (wherein c is 0, 1 or 2), -CH₂CH(CO₂R⁹)N(R⁹R¹⁰), -CH₂OR⁹, (R⁹)(R¹⁰)N-, -COOR⁹, -CH₂COOR⁹, -CH₂COOR⁹, -CH₂CONR⁹R¹⁰, and -CH₂CH₂CH(NR⁹R¹⁰)CO₂R⁹; [wherein R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₅₋₇cycloalkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₂₋₄alkenyl, cyano(C₁₋₄)alkyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano) and C₁₋₄alkyl substituted by R¹³;

(wherein R^{13} is selected from C_{1-4} alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C_{1-4} alkyl), pyrazinyl, piperazinyl, C_{1-4} alkylS(O)_d(C_{1-4})alkyl (wherein d is 0, 1 or 2)); and

 R^9 and R^{10} can together with the nitrogen to which they are attached form 4- to 6-membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents selected from oxo, hydroxy, carboxy, halo, nitro, nitroso, cyano, isocyano, amino, N- C_{1-4} alkylamino, N-N- $(C_{1-4})_2$ alkylamino, carbonyl, sulfo, C_{1-4} alkoxy, heterocyclyl, C_{1-4} alkanoyl, and C_{1-4} alkyl $S(O)_f(C_{1-4})$ alkyl (wherein f is 0, 1 or 2)]}; or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof; with the proviso that the compound of formula (1) is not:

- i) 2,3-dichloro-5- $(N-\{1-[N-(1,1-dimethylethoxy)carbonylamino]indan-2-yl\}carbamoyl)-4H-thieno[3,2-b]pyrrole;$
- ii) 5-[N-(1-aminoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole
- iii) 5-[N-(1-acetamidoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole
- iv) 2,3-dichloro-5- $\{N-[1-(methanesulphonamido)indan-2-yl]carbamoyl\}-4H-thieno[3,2-b]pyrrole$

vi) 2,3-dichloro-5-{N-[1-(methylamino)indan-2-yl]carbamoyl}-4H-thieno[3,2-b]pyrrole;
vi) 2,3-dichloro-5-{N-[1-(methylacetamido)indan-2-yl]carbamoyl}-4H-thieno[3,2-b]pyrrole;
vii) 2,3-dichloro-5-[N-(1-hydroxyindan-2-yl)carbamoyl]-4H-thieno[3,2-b]pyrrole;
viii) 2,3-dichloro-5-[N-(6-fluoro-1-hydroxyindan-2-yl)carbamoyl-4H-thieno[3,2-b]pyrrole;
ix) 2,3-dichloro-5-[N-(1-methoxyindan-2-yl)carbamoyl-4H-thieno[3,2-b]pyrrole
x) 2,3-dichloro-5-[N-(1-hydroxy-1,2,3,4-tetrahydronaphth-2-yl)carbamoyl]-4H-thieno[3,2-b]pyrrole

Another preferred class of compounds is of formula (1) wherein:

Z is CH;

15

 R^4 and R^5 are together $-C(R^7)=C(R^6)-S$ -;

R⁶ is chloro;

20

R⁷ is hydrogen;

A is phenylene;

n is 1 or 2;

25

 R^1 is independently selected from hydrogen, halo, nitro, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy and and R^1 is of the formula A' or A'':

 $-CH_2CH(OH)(CH_2)_uCO_2H$ (A')

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

r is 1 or 2;

5

10

15

20

25

30

Y is $-NR^2R^3$ or $-OR^3$;

R² and R³ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₅₋₇cycloalkyl (optionally substituted with 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), cyano(C₁₋₄)alkyl, fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, C₁₋₄alkyl [substituted by 1 or 2 R⁸ groups (provided that when there are 2 R⁸ groups they are not substituents on the same carbon)], -COR⁸ and -SO_bR⁸ (wherein b is 0, 1 or 2);

{wherein R^8 is independently selected from hydrogen, hydroxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C_{1-4} alkyl), pyrazinyl, piperazinyl, C_{1-4} alkyl, C_{2-4} alkenyl, cyclo(C_{3-8})alkyl, C_{1-4} alkoxy, cyano(C_{1-4})alkyl, amino(C_{1-4})alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C_{1-4} alkyl, hydroxy, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, aryl and aryl(C_{1-4})alkyl), C_{1-4} alkylS(O)_c(C_{1-4})alkyl (wherein c is 0, 1 or 2), $-CH_2CH(CO_2R^9)N(R^9R^{10})$, $-CH_2OR^9$, (R^9)(R^{10})N-, $-COOR^9$ and $-CH_2COOR^9$, $-CH_2CONR^9R^{10}$, $-CH_2CH(NR^9R^{10})CO_2R^9$;

[wherein R^9 and R^{10} are independently selected from hydrogen, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{5-7} cycloalkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{2-4} alkenyl, cyano(C_{1-4})alkyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano) and C_{1-4} alkyl substituted by R^{13} ;

(wherein R^{13} is selected from C_{1-4} alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl (C_{1-4}) alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl (C_{1-4}) alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C_{1-4} alkyl), pyrazinyl, piperazinyl, C_{1-4} alkylS(O)_d(C_{1-4})alkyl (wherein d is 0, 1 or 2)); and

membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents selected from oxo, hydroxy, carboxy, halo, nitro, nitroso, cyano, isocyano, amino, N-C₁-4alkylamino, N,N-(C₁₋₄)₂alkylamino, carbonyl, sulfo, C₁₋₄alkoxy, heterocyclyl, C₁₋₄alkanoyl, and C₁₋₄alkylS(O)_f(C₁₋₄)alkyl (wherein f is 0, 1 or 2)]}; or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof; with the proviso that the compound of formula (1) is not:

i) 2-chloro-5-[N-(1-hydroxyindan-2-yl)carbamoyl-6H-thieno[2,3-b]pyrrole;

Another preferred class of compound is of the formula (1) wherein:

Z is CH;

20

 R^4 and R^5 are together $-S-C(R^6)=C(R^7)$ -;

R⁶ is chloro;

25 R⁷ is hydrogen or chloro;

A is phenylene;

n is 1 or 2;

30

 R^1 is independently selected from hydrogen, halo, nitro, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy and and R^1 is of the formula A' or A'':

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

5 r is 1 or 2;

15

20

25

Y is $-NR^2R^3$;

R² and R³ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, C₁₋₄alkyl [substituted by 1 or 2 R⁸ groups (provided that when there are 2 R⁸ groups)], -COR⁸ and -SO_bR⁸ (wherein b is 0, 1 or 2);

{wherein R⁸ is independently selected from hydrogen, hydroxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C₁₋₄)alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C₁₋₄)alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C₁₋₄alkyl), pyrazinyl, piperazinyl, 4-methylpiperazino, C₁₋₄alkyl, C₂₋₄alkenyl, cyclo(C₃₋₈)alkyl, C₁₋₄alkoxy, cyano(C₁₋₄)alkyl, amino(C₁₋₄)alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C₁₋₄alkyl, hydroxy, hydroxy(C₁₋₄)alkyl, dihydroxy(C₁₋₄)alkyl, aryl and aryl(C₁₋₄)alkyl), C₁₋₄alkylS(O)_c(C₁₋₄)alkyl (wherein c is 0, 1 or 2), - CH₂CH(CO₂R⁹)N(R⁹R¹⁰), -CH₂OR⁹, (R⁹)(R¹⁰)N-, -COOR⁹, -CH₂COOR⁹, -CH₂CONR⁹R¹⁰, and -CH₂CH₂CH(NR⁹R¹⁰)CO₂R⁹;

[wherein R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₅₋₇cycloalkyl (optionally substituted by 1 or 2 hydroxy

10

15

20

25

groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{2-4} alkenyl, cyano(C_{1-4})alkyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano) and C_{1-4} alkyl substituted by R^{13} ;

(wherein R¹³ is selected from C₁₋₄alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C₁₋₄)alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C₁₋₄)alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C₁₋₄alkyl), pyrazinyl, piperazinyl,

 R^9 and R^{10} can together with the nitrogen to which they are attached form 4- to 6-membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents selected from oxo, hydroxy, carboxy, halo, nitro, nitroso, cyano, isocyano, amino, N- C_{1-4} alkylamino, N-N- $(C_{1-4})_2$ alkylamino, carbonyl, sulfo, C_{1-4} alkoxy, heterocyclyl, C_{1-4} alkanoyl, and C_{1-4} alkyl $S(O)_f(C_{1-4})$ alkyl (wherein f is 0, 1 or 2)]}; or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof; with the proviso that the compound of formula (1) is not:

- i) 2,3-dichloro-5-(N-{1-[N-(1,1-dimethylethoxy)carbonylamino]indan-2-yl}carbamoyl)-4H-thieno[3,2-b]pyrrole;
- ii) 5-[N-(1-aminoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole
- iii) 5-[N-(1-acetamidoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole
- iv) 2,3-dichloro-5- $\{N-[1-(methanesulphonamido)indan-2-yl]carbamoyl\}-4H-thieno[3,2-b]pyrrole$
- v) 2,3-dichloro-5-{N-[1-(methylamino)indan-2-yl]carbamoyl}-4H-thieno[3,2-b]pyrrole;
 - vi) 2,3-dichloro-5- $\{N-[1-(methylacetamido)indan-2-yl]carbamoyl\}-4H$ -thieno[3,2-b]pyrrole.
- 30 Another preferred class of compound is of the formula (1) wherein:

C₁₋₄alkylS(O)_d(C₁₋₄)alkyl (wherein d is 0, 1 or 2); and

Z is CH;

 R^4 and R^5 are together -S-C(R^6)=C(R^7)-;

R⁶ is hydrogen or halo;

R⁷ is hydrogen or halo;

5

A is phenylene;

n is 1 or 2;

10 R¹ is independently selected from hydrogen, halo, nitro, hydroxy, C₁₋₄alkyl. C₁₋₄alkoxy and and R¹ is of the formula A' or A'':

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

15

r is 1 or 2;

Y is $-OR^3$;

20

 R^3 is selected from hydrogen, $C_{1\text{-4}}$ alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, $C_{1\text{-4}}$ alkyl [substituted by 1 or 2 R^8 groups (provided that when there are 2 R^8 groups they are not substituents on the same carbon)], -COR 8 and -SO $_b$ R 8 (wherein b is 0, 1 or 2);

25

{wherein R^8 is independently selected from hydrogen, hydroxy, $C_{1\text{-}4}$ alkoxy $C_{1\text{-}4}$ alkoxy, hydroxy $C_{1\text{-}4}$ alkoxy, heterocyclyl (optionally substituted on carbon or nitrogen by 1 or 2 groups selected from nitro, halo, hydroxy, cyano and $C_{1\text{-}4}$ alkyl), (heterocyclyl)($C_{1\text{-}4}$)alkyl (optionally substituted on carbon or nitrogen by 1 or 2 groups selected from nitro, halo, hydroxy, cyano and $C_{1\text{-}4}$ alkyl), aryl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano,

10

15

20

30

hydroxy and C_{1-4} alkyl, C_{2-4} alkenyl, cyclo(C_{3-8})alkyl, C_{1-4} alkoxy, cyano(C_{1-4})alkyl, amino(C_{1-4})alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C_{1-4} alkyl, hydroxy, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, aryl and aryl(C_{1-4})alkyl), C_{1-4} alkylS(O)_c(C_{1-4})alkyl (wherein c is 0, 1 or 2), -(CH₂)_uCH(CO₂R⁹)N(R⁹R¹⁰) (wherein u is 0, 1 or 2), -CH₂OR⁹, (R⁹)(R¹⁰)N-, -COOR⁹ and -CH₂COOR⁹, -CH₂CONR⁹R¹⁰, -CH₂CH(NR⁹R¹⁰)CO₂R⁹;

[wherein R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₅₋₇cycloalkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₂₋₄alkenyl, cyano(C₁₋₄)alkyl, and phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano)]}.

or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof; with the proviso that the compound of formula (1) is not:

- i) 2,3-dichloro-5-[N-(1-hydroxyindan-2-yl)carbamoyl]-4H-thieno[3,2-b]pyrrole;
- ii) 2,3-dichloro-5-[N-(6-fluoro-1-hydroxyindan-2-yl)carbamoyl-4H-thieno[3,2-b]pyrrole;
- iii) 2,3-dichloro-5-[N-(1-methoxyindan-2-yl)carbamoyl-4H-thieno[3,2-b]pyrrole
- iv) 2,3-dichloro-5-[N-(1-hydroxy-1,2,3,4-tetrahydronaphth-2-yl)carbamoyl]-4*H*-thieno[3,2-*b*]pyrrole.

A further preferred class of compound is of the formula (1) wherein;

Z is CH:

25 R^4 and R^5 are together $-C(R^7)=C(R^6)-S$ -;

R⁶ is halo;

R⁷ is hydrogen;

A is phenylene:

n is 1 or 2;

 R^1 is independently selected from hydrogen, halo, nitro, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy and and R^1 is of the formula A' or A'':

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

r is 1;

10 Y is $-NR^2R^3$;

15

20

25

R² is hydrogen or C₁₋₄alkyl;

R³ is selected from fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, C₁₋₄alkyl [substituted by 1 or 2 R⁸ groups (provided that when there are 2 R⁸ groups they are not substituents on the same carbon)], -COR⁸ and -SO_bR⁸ (wherein b is 0, 1 or 2);

{wherein R⁸ is independently selected from hydrogen, hydroxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C₁₋₄)alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C₁₋₄)alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C₁₋₄alkyl), pyrazinyl, piperazinyl, C₁₋₄alkyl, C₂₋₄alkenyl, cyclo(C₃₋₈)alkyl, C₁₋₄alkoxy, cyano(C₁₋₄)alkyl, amino(C₁₋₄)alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C₁₋₄alkyl, hydroxy, hydroxy(C₁₋₄)alkyl, dihydroxy(C₁₋₄)alkyl, aryl and aryl(C₁₋₄)alkyl), C₁₋₄alkylS(O)_c(C₁₋₄)alkyl (wherein c is 0, 1 or 2), -CH₂CH(CO₂R⁹)N(R⁹R¹⁰), -CH₂OR⁹, (R⁹)(R¹⁰)N-, -COOR⁹, -CH₂COOR⁹, -CH₂COOR⁹, -CH₂CONR⁹R¹⁰, and -CH₂CH(NR⁹R¹⁰)CO₂R⁹;

·[wherein R^9 and R^{10} are independently C_{1-4} alkenyl or phenyl (optionally substituted by nitro, halo or cyano)]}.

or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.

5 A preferred class of compound is of the formula (1) wherein;

Z is nitrogen;

 R^4 and R^5 are together $-S-C(R^6)=C(R^7)-$;

10 R⁶ is halo or hydrogen;

R⁷ is halo or hydrogen;

A is phenylene;

n is 1 or 2;

15

20

25

R¹ is independently selected from hydrogen, halo, 'cyano, nitro, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, C₁₋₄alkoxy and and R¹ is of the formula A' or A'':

-CH₂CH(OH)(CH₂)_uCO₂H (A')

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

r is 1 or 2;

Y is $-NR^2R^3$ or $-OR^3$;

 R^2 and R^3 are independently selected from hydrogen, hydroxy, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are

10

15

20

25

30

not substituents on the same earbon); C_{5-7} cycloalkyl (optionally substituted with 1 or 2..... hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), cyano(C_{1-4})alkyl, fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, C_{1-4} alkyl [substituted by 1 or 2 R^8 groups (provided that when there are 2 R^8 groups they are not substituents on the same carbon)], $-COR^8$ and $-SO_bR^8$ (wherein b is 0, 1 or 2);

{wherein R^8 is independently selected from hydrogen, hydroxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, morpholino, pyridyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C_{1-4} alkyl), pyrazinyl, piperazinyl, 4-methylpiperazino, C_{1-4} alkyl, C_{2-4} alkenyl, cyclo(C_{3-8})alkyl, C_{1-4} alkoxy, cyano(C_{1-4})alkyl, amino(C_{1-4})alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C_{1-4} alkyl, hydroxy, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, aryl and aryl(C_{1-4})alkyl), C_{1-4} alkylS(O)_c(C_{1-4})alkyl (wherein c is 0, 1 or 2), $-CH_2CH(CO_2R^9)N(R^9R^{10})$, $-CH_2OR^9$, $(R^9)(R^{10})N$, $-COOR^9$, $-CH_2COOR^9$, $-CH_2COOR^9$, and $-CH_2CH_2CH(NR^9R^{10})CO_2R^9$;

[wherein R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₅₋₇cycloalkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₂₋₄alkenyl, cyano(C₁₋₄)alkyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano) and C₁₋₄alkyl substituted by R¹³;

(wherein R^{13} is selected from C_{1-4} alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C_{1-4} alkyl), pyrazinyl, piperazinyl, C_{1-4} alkylS(O)_d(C_{1-4})alkyl (wherein d is 0, 1 or 2)); and

membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents selected from oxo, hydroxy, carboxy, halo, nitro, nitroso, cyano, isocyano, amino, N-C₁.

4alkylamino, N,N-(C₁₋₄)₂alkylamino, carbonyl, sulfo, C₁₋₄alkoxy, heterocyclyl, C₁₋₄alkanoyl, and C₁₋₄alkylS(O)_f(C₁₋₄)alkyl (wherein f is 0, 1 or 2)]};
or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof.

10 Another preferred class of compounds is of formula (1) wherein:

Z is nitrogen;

 R^4 and R^5 are together $-C(R^7)=C(R^6)-S$ -;

15 R⁶ is chloro;

R⁷ is hydrogen;

A is phenylene;

n is 1 or 2;

20

25

 R^1 is independently selected from hydrogen, halo, nitro, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy and and R^1 is of the formula A' or A'':

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

r is 1 or 2;

10

15

20

25

30

Y is $-NR^2R^3$ or $-OR^3$;

R² and R³ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₅₋₇cycloalkyl (optionally substituted with 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), cyano(C₁₋₄)alkyl, fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, C₁₋₄alkyl [substituted by 1 or 2 R⁸ groups (provided that when there are 2 R⁸ groups they are not substituents on the same carbon)], -COR⁸ and -SO_bR⁸ (wherein b is 0, 1 or 2);

{wherein R⁸ is independently selected from hydrogen, hydroxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C₁₋₄)alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C₁₋₄)alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C₁₋₄alkyl), pyrazinyl, piperazinyl, C₁₋₄alkyl, C₂₋₄alkenyl, cyclo(C₃₋₈)alkyl, C₁₋₄alkoxy, cyano(C₁₋₄)alkyl, amino(C₁₋₄)alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C₁₋₄alkyl, hydroxy, hydroxy(C₁₋₄)alkyl, dihydroxy(C₁₋₄)alkyl, aryl and aryl(C₁₋₄)alkyl), C₁₋₄alkylS(O)_c(C₁₋₄)alkyl (wherein c is 0, 1 or 2), -CH₂CH(CO₂R⁹)N(R⁹R¹⁰), -CH₂OR⁹, (R⁹)(R¹⁰)N-, -COOR⁹ and -CH₂COOR⁹, -CH₂CONR⁹R¹⁰, - CH₂CH(NR⁹R¹⁰)CO₂R⁹;

[wherein R^9 and R^{10} are independently selected from hydrogen, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{5-7} cycloalkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C_{2-4} alkenyl, cyano(C_{1-4})alkyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano) and C_{1-4} alkyl substituted by R^{13} ;

(wherein R^{13} is selected from C_{1-4} alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro

20

energoups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C_{1-4} alkyl), pyrazinyl, piperazinyl, C_{1-4} alkylS(O)_d(C_{1-4})alkyl (wherein d is 0, 1 or 2)); and

 R^9 and R^{10} can together with the nitrogen to which they are attached form 4- to 6-membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents selected from oxo, hydroxy, carboxy, halo, nitro, nitroso, cyano, isocyano, amino, N- C_{1-4} -4alkylamino, N-N- (C_{1-4}) -2alkylamino, carbonyl, sulfo, C_{1-4} -4alkoxy, heterocyclyl, C_{1-4} -4alkanoyl, and C_{1-4} -4alkylS(O)- C_{1-4} -4alkyl-(wherein f is 0, 1 or 2)]};

or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.

Another preferred class of compound is of the formula (1) wherein:

Z is nitrogen;

15 R^4 and R^5 are together $-S-C(R^6)=C(R^7)$ -;

R⁶ is chloro;

R⁷ is hydrogen or chloro;

A is phenylene;

n is 1 or 2;

R¹ is independently selected from hydrogen, halo, nitro, hydroxy, C₁₋₄alkyl, C₁₋₄alkoxy and and R¹ is of the formula A' or A'':

$$-(CH_2)_p$$
 $(OH)_x$
 (A)
 $-CH_2CH(OH)(CH_2)_uCO_2H$ (A')

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

r is 1 or 2;

Y is $-NR^2R^3$:

5

10

15

20

 R^2 and R^3 are independently selected from hydrogen, C_{1-4} alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, C_{1-4} alkyl [substituted by 1 or 2 R^8 groups (provided that when there are 2 R^8 groups)], -COR 8 and -SO $_b$ R 8 (wherein b is 0, 1 or 2);

{wherein R^8 is independently selected from hydrogen, hydroxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl($C_{1\cdot4}$)alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl($C_{1\cdot4}$)alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and $C_{1\cdot4}$ alkyl), pyrazinyl, piperazinyl, 4-methylpiperazino, $C_{1\cdot4}$ alkyl, $C_{2\cdot4}$ alkenyl, cyclo($C_{3\cdot8}$)alkyl, $C_{1\cdot4}$ alkoxy, cyano($C_{1\cdot4}$)alkyl, amino($C_{1\cdot4}$)alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, $C_{1\cdot4}$ alkyl, hydroxy, hydroxy($C_{1\cdot4}$)alkyl, dihydroxy($C_{1\cdot4}$)alkyl, aryl and aryl($C_{1\cdot4}$)alkyl), $C_{1\cdot4}$ alkylS(O)c($C_{1\cdot4}$)alkyl (wherein c is 0, 1 or 2), - $CH_2CH(CO_2R^9)N(R^9R^{10})$, - CH_2OR^9 , (R^9)(R^{10})N-, - $COOR^9$, - CH_2COOR^9 , - $CH_2CONR^9R^{10}$, and - $CH_2CH_2CH(NR^9R^{10})CO_2R^9$;

[wherein R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₅₋₇cycloalkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₂₋₄alkenyl, cyano(C₁₋₄)alkyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano) and C₁₋₄alkyl substituted by R¹³;

30

25

(wherein R^{13} is selected from $C_{1\text{-}4}$ alkoxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl($C_{1\text{-}4}$)alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl($C_{1\text{-}4}$)alkyl (wherein thienyl is optionally substituted on carbon by 1 or 2 nitro

20

groups), 1;2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydrofuryl, tetrahydrothiopyranyl, tetrahydrothiopyranyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C₁₋₄alkyl), pyrazinyl, piperazinyl, C₁₋₄alkylS(O)_d(C₁₋₄)alkyl (wherein d is 0, 1 or 2); and

 R^9 and R^{10} can together with the nitrogen to which they are attached form 4- to 6-membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents selected from oxo, hydroxy, carboxy, halo, nitro, nitroso, cyano, isocyano, amino, N- C_{1-4} alkylamino, N-N- C_{1-4} alkylamino, carbonyl, sulfo, C_{1-4} alkoxy, heterocyclyl, C_{1-4} alkanoyl, and C_{1-4} alkyl C_{1

or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.

Another preferred class of compound is of the formula (1) wherein:

Z is nitrogen;

15 R^4 and R^5 are together $-S-C(R^6)=C(R^7)$ -;

R⁶ is hydrogen or halo;

R⁷ is hydrogen or halo;

A is phenylene;

n is 1 or 2;

R¹ is independently selected from hydrogen, halo, nitro, hydroxy, C₁₋₄alkyl. C₁₋₄alkoxy and and R¹ is of the formula A' or A'':

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

r is 1 or 2;

Y is $-OR^3$:

5

10

15

20

25

 R^3 is selected from hydrogen, $C_{1 ext{-}4}$ alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, $C_{1 ext{-}4}$ alkyl [substituted by 1 or 2 R^8 groups (provided that when there are 2 R^8 groups they are not substituents on the same carbon)], -COR 8 and -SO $_b$ R 8 (wherein b is 0, 1 or 2);

{wherein R^8 is independently selected from hydrogen, hydroxy, C_{1-4} alkoxy C_{1-4} alkoxy, hydroxy C_{1-4} alkoxy, heterocyclyl (optionally substituted on carbon or nitrogen by 1 or 2 groups selected from nitro, halo, hydroxy, cyano and C_{1-4} alkyl), (heterocyclyl)(C_{1-4})alkyl (optionally substituted on carbon or nitrogen by 1 or 2 groups selected from nitro, halo, hydroxy, cyano and C_{1-4} alkyl), aryl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C_{1-4} alkyl, C_{1-4} alkyl, C_{2-4} alkenyl, cyclo(C_{3-8})alkyl, C_{1-4} alkoxy, cyano(C_{1-4})alkyl, amino(C_{1-4})alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C_{1-4} alkyl, hydroxy, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, aryl and aryl(C_{1-4})alkyl), C_{1-4} alkylS(O)_c(C_{1-4})alkyl (wherein c is 0, 1 or 2), -(CH₂)_uCH(CO₂R⁹)N(CR⁹R¹⁰) (wherein u is 0, 1 or 2), -CH₂CH₂CH(CR⁹)N(CR⁹R¹⁰), -CCOOR⁹ and -CH₂COOR⁹, -CH₂CONR⁹R¹⁰, -CCH₂CH(CCO2R⁹);

[wherein R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₅₋₇cycloalkyl (optionally substituted by 1 or 2 hydroxy groups provided that when there are 2 hydroxy groups they are not substituents on the same carbon), C₂₋₄alkenyl, cyano(C₁₋₄)alkyl, and phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, hydroxy and cyano)]}.

or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof.

30 A further preferred class of compound is of the formula (1) wherein;

Z is nitrogen;

 R^4 and R^5 are together $-C(R^7)=C(R^6)-S$ -;

R⁶ is halo;

R⁷ is hydrogen;

.5

A is phenylene;

n is 1 or 2;

10 R^1 is independently selected from hydrogen, halo, nitro, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy and and R^1 is of the formula A' or A'':

-CH₂CH(OH)(CH₂)_uCO₂H (A')

wherein x is 0 or 1, p is 0, 1, 2 or 3 and s is 1 or 2; provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

15

r is 1;

Y is $-NR^2R^3$:

20

25

R² is hydrogen or C₁₋₄alkyl;

 R^3 is selected from fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, C_{1-4} alkyl [substituted by 1 or 2 R^8 groups (provided that when there are 2 R^8 groups they are not substituents on the same carbon)], -COR 8 and -SO $_b$ R 8 (wherein b is 0, 1 or 2);

{wherein R^8 is independently selected from hydrogen, hydroxy, furyl (optionally substituted on carbon by 1 or 2 nitro groups), thienyl (optionally substituted on carbon by 1 or 2 nitro groups), morpholino, furyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon by 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein thienyl is optionally substituted on carbon

tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, phenyl (optionally substituted by 1 or 2 groups selected from nitro, halo, cyano, hydroxy and C₁₋₄alkyl), pyrazinyl, piperazinyl, C₁₋₄alkyl, C₂₋₄alkenyl, cyclo(C₃₋₈)alkyl, C₁₋₄alkoxy, cyano(C₁₋₄)alkyl, amino(C₁₋₄)alkyl (optionally substituted on nitrogen by 1 or 2 groups selected from hydrogen, C₁₋₄alkyl, hydroxy, hydroxy(C₁₋₄)alkyl, dihydroxy(C₁₋₄)alkyl, aryl and aryl(C₁₋₄)alkyl), C₁₋₄alkylS(O)_c(C₁₋₄)alkyl (wherein c is 0, 1 or 2), -CH₂CH(CO₂R⁹)N(R⁹R¹⁰), -CH₂OR⁹, (R⁹)(R¹⁰)N-, -COOR⁹, -CH₂COOR⁹, -CH₂CONR⁹R¹⁰, and -CH₂CH(NR⁹R¹⁰)CO₂R⁹;

[wherein R^9 and R^{10} are independently C_{1-4} alkenyl or phenyl (optionally substituted by nitro, halo or cyano)]}.

or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.

In another aspect of the invention, preferred compounds of the invention are any one

15 of:

5

10

5-[N-(1-formamidoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole; N-[(1R,2R)-2-[[(2-Chloro-6H-thieno[2,3-b]pyrrol-5-yl)carbonyl]amino]-2,3-dihydro-1H-inden-1-yl]-glycine;

N-[(1R,2R)-2-[[(2,3-Dichloro-4H-thieno[3,2-b]pyrrol-5-yl)carbonyl] amino]-2,3-dihydro-1H-thieno[3,2-b]pyrrol-5-yl)carbonyl] amino]-2,3-dihydro-1H-thieno[3,2-b]pyrrol-5-yl)carbonyl] amino]-2,3-dihydro-1H-thieno[3,2-b]pyrrol-5-yl)carbonyl] amino]-2,3-dihydro-1H-thieno[3,2-b]pyrrol-5-yl)carbonyl] amino]-2,3-dihydro-1H-thieno[3,2-b]pyrrol-5-yl)carbonyl] amino]-2,3-dihydro-1H-thieno[3,2-b]pyrrol-5-yl] amino[-2,3-dihydro-1H-thieno[3,2-b]pyrrol-5-yl] amino[-2,3-dihydro-1H-thieno[3,3-b]pyrrol-5-yl] amino[-2,3-dihydro-1H-thieno[3,3-b]pyrrol-5-yl] amino[-2,3-dihydro-1H-thieno[3,3-b]pyrrol-5-yl] amino[-2,3-d

20 inden-1-yl]-glycine;

 $\label{eq:N-[(1R,2R)-1-[(2-Amino-2-oxoethyl)amino]-2,3-dihydro-1H-inden-2-yl]-2,3-dichloro-4H-thieno[3,2-b] pyrrole-5-carboxamide;$

N-[(1R,2R)-1-[(2-Amino-2-oxoethyl)amino]-2,3-dihydro-1H-inden-2-yl]-2-chloro-6H-thieno[2,3-b]pyrrole-5-carboxamide;

N-[(1R,2R)-1-[(2-Amino-2-oxoethyl)amino]-2,3-dihydro-1H-inden-2-yl]-5,6-dichloro-1H-thieno[2,3-d]imidazole-2-carboxamide;

N-[(1R,2R)-1-[(2-Amino-2-oxoethyl)amino]-2,3-dihydro-1H-inden-2-yl]-5-chloro

or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof.

Another aspect of the present invention provides a process for preparing a compound of formula (1) or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester thereof

15

20

25

which process (wherein A, Y, R¹, R⁴, R⁵, r and n are, unless otherwise specified, as defined in formula (1)) comprises of:

a) reacting an acid of the formula (2):

$$R^4$$
 Z
 OH
 N
 O
 (2)

or an activated derivative thereof; with an amine of formula (3):

$$NH_2$$
 (3)

and thereafter if necessary:

- i) converting a compound of the formula (I) into another compound of the formula (I);
 - ii) removing any protecting groups;
 - iii) forming a pharmaceutically acceptable salt or in vivo hydrolysable ester.

Specific reaction conditions for the above reaction are as follows.

Process a) Acids of formula (2) and amines of formula (3) may be coupled together in the presence of a suitable coupling reagent. Standard peptide coupling reagents known in the art can be employed as suitable coupling reagents, or for example carbonyldiimidazole, 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide hydrochloride and dicyclohexyl-carbodiimide, optionally in the presence of a catalyst such as 1-hydroxybenzotriazole, dimethylaminopyridine or 4-pyrrolidinopyridine, optionally in the presence of a base for example triethylamine, di-isopropylethylamine, pyridine, or 2,6-di-alkyl-pyridines such as 2,6-lutidine or 2,6-di-tert-butylpyridine. Suitable solvents include dimethylacetamide, dichloromethane, benzene, tetrahydrofuran and dimethylformamide. The coupling reaction may conveniently be performed at a temperature in the range of -40 to 40°C.

Suitable activated acid derivatives include acid halides, for example acid chlorides, and active esters, for example pentafluorophenyl esters. The reaction of these types of compounds with amines is well known in the art, for example they may be reacted in the

presence of a base, such as those described above, and in a suitable solvent, such as those described above. The reaction may conveniently be performed at a temperature in the range of -40 to 40°C.

A compounds of formula (2) where Z is CH may be prepared according to Scheme 1:

R4 CHO i)
$$N_3CH_2CO_2Me$$
, $MeONa/MeOH$

R5 ii) xylene, Δ

(2a)

 $N_3CH_2CO_2Me$, N_3CH

Scheme 1

Compounds of formula (2a) are commercially available or they are known compounds or they are prepared by processes known in the art.

10

5

A compound of the formula (2) wherein X is nitrogen, can be prepared from a compound of the formula (6):

15

20

by firstly converting the oxo group to chlorine or bromine with a halogenating agent such as POCl3 or POBr₃, in an inert organic solvent such as dichloromethane in a temperature range of ambient temperature to reflux (for example see *Nucleic Acid Chem.* 1991, 4, 24-6), then displacing the chlorine or bromine group with cyanide using a cyanide salt such as potassium cyanide, in an inert organic solvent such as toluene, benzene or xylene, optionally in the presence of a catalyst such as 18-crown-6 (for example see *J. Heterocycl. Chem* 2000, 37(1), 119-126) and finally hydrolysing the cyano group to a carboxy group, with for example, an aqueous acid such as aqueous hydrogen chloride (for example see *Chem. Pharm. Bull.* 1986, 34(9), 3635-43).

Alternatively, a compound of the formula (2) wherein X is nitrogen may be formed by reacting the compound of the formula (6) with (Cl₃CCO)₂O and Cl₃CCO₂H in the presence of magnesium chloride using Cl₃CCO₂H as solvent, to form a compound of the formula (7):

$$R^{5}$$
 N
 CCI_{3}
 (7)

5

and then hydrolyising the compound of the formula (7), using, for example, aqueous sodium hydroxide, at a temperature range of ambient temperature to reflux (for example see *J Heterocycl. Chem.* 1980, 17(2), 381-2).

The compound of formula (6) may be prepared from a compound of formula (12) and (13) using conditions known for the Curtius rearrangement (*Tetrahedron* 1999, <u>55</u>, 6167):

$$R^4$$
 N
 O
 O
 O
 O
 O
 O
 O

The compounds of the formula (10) and (11):

15

transform into compounds of the formula (12) and (13) respectively. This transformation either occurs spontaneously or may be induced with acid or base.

20

Compounds of the formula (10) and (11) may be prepared by introducing a carboxy group into a compound of the formula (8) or (9):

25

wherein P' is an amino protecting group such as butoxycarbonyl.

- A carboxy group is introduced into the compound of the formula (8) or (9) by reacting an alkyl lithium reagent such as n-butyl lithium, in an inert organic solvent such as THF, at low temperature, for example in the range -10°C to -78°C and then forming the compound of the formula (10) or (11) as appropriate by either
 - a) reacting the resulting compound with carbon dioxide; or
- 10 b) by reacting with DMF in the temperature range of -10°C to ambient temperature to form the corresponding aldehyde and oxidizing the aldehyde to carboxy with standard reagents to give the compound of the formula (10) or (11).

Compounds of the formula (8) and (9) may be prepared from a compound of the formula (14) and (15):

$$R^4$$
 OH R^5 OH (14) R^4 OH (15)

using conditions known for the Curtius reaction.

- Compounds of the formula (14) and (15) may be prepared by oxidizing the corresponding aldehyde using standard oxidizing reagents such as potassium manganate or sodium periodate.
 - The aldehyde precursor of a compound of the formula (14) or (15) can be prepared using standard techniques known in the art. For example, many compounds of the formula (14) or (15) may be prepared by introducing the appropriate R⁶ and R⁷ into a compound of the formula (16) or (17) as appropriate:

15

20

For example, when R⁶ and R⁷ are both chloro a compound of the formula (16) or (17) may be chlorinated with a chlorinating agent such as chlorine in the presence of aluminium chloride or iron (III) chloride, in an inert organic chlorinated solvent such as dichloromethane or 1,2-dichloroethane, followed by treatment with an aqueous base, such as, aqueous sodium hydroxide. The mono chlorinated compound can be formed in the same way.

Compounds of formula (3) where Y is OR³ are commercially available or they are known compounds or they are prepared by processes known in the art. When Y is NR²R³, the amines of formula (3) may be prepared according to *Scheme 2*:

HO ()_r (3a)
$$\frac{MsCl / triethylamine}{THF}$$
 O (O)_r A (O)_n O (O)_n O (O)_r O (O)_n O (O)_n

Scheme 2

Compounds of formula (3a) are commercially available or they are known compounds or they are prepared by processes known in the art.

It will be appreciated that certain of the various ring substituents in the compounds of the present invention may be introduced by standard aromatic substitution reactions or generated by conventional functional group modifications either prior to or immediately following the processes mentioned above, and as such are included in the process aspect of the

invention. Such reactions and modifications include, for example, introduction of a substituent by means of an aromatic substitution reaction, reduction of substituents, alkylation of substituents and oxidation of substituents. The reagents and reaction conditions for such procedures are well known in the chemical art. Particular examples of aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halogen group. Particular examples of modifications include the reduction of a nitro group to an amino group by for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkylsulphinyl or alkylsulphonyl.

It will also be appreciated that in some of the reactions mentioned herein it may be necessary/desirable to protect any sensitive groups in the compounds. The instances where protection is necessary or desirable and suitable methods for protection are known to those skilled in the art. Conventional protecting groups may be used in accordance with standard practice (for illustration see T.W. Green, Protective Groups in Organic Synthesis, John Wiley and Sons, 1991). Thus, if reactants include groups such as amino, carboxy or hydroxy it may be desirable to protect the group in some of the reactions mentioned herein.

A suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or t-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate). A suitable alternative protecting group for a

10

15

20

primary amino group is, for example, a phthaloyl group which may be removed by treatment... with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.

A suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl. The deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.

Alternatively an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.

A suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.

The protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art.

Certain intermediates in the preparation of a compound of the formula (1) are novel and form another aspect of the invention.

As stated hereinbefore the compounds defined in the present invention possesses glycogen phosphorylase inhibitory activity. This property may be assessed, for example, using the procedure set out below.

Assay

25

30

The activity of the compounds is determined by measuring the inhibitory effect of the compounds in the direction of glycogen synthesis, the conversion of glucose-1-phosphate into glycogen with the release of inorganic phosphate, as described in EP 0 846 464 A2. The reactions were in 96well microplate format in a volume of 100µl. The change in optical density due to inorganic phosphate formation was measured at 620nM in a Labsystems iEMS Reader MF by the general method of (Nordlie R.C and Arion W.J, Methods of Enzymology, 1966, 619-625). The reaction is in 50mM HEPES, 2.5mM MgCl₂, 2.25mM ethylene glycolbis(b-aminoethyl ether) N,N,N',N'-tetraacetic acid, 100mM KCl, 2mM D-(+)-glucose pH7.2,

10

15

20

25

30

containing 0.5mM dithiothreitol, the assay buffer solution, with 0.1mg type III glycogen, 0.15ug glycogen phosphorylase a (GPa) from rabbit muscle and 0.5mM glucose-1-phosphate. GPa is pre-incubated in the assay buffer solution with the type III glycogen at 2.5 mg ml⁻¹ for 30 minutes. 40µl of the enzyme solution is added to 25µl assay buffer solution and the reaction started with the addition of 25µl 2mM glucose-1-phosphate. Compounds to be tested are prepared in 10µl 10% DMSO in assay buffer solution, with final concentration of 1% DMSO in the assay. The non-inhibited activity of GPa is measured in the presence of 10µl 10% DMSO in assay buffer solution and maximum inhibition measured in the presence of 30µM CP320626 (Hoover et al (1998) J Med Chem 41, 2934-8; Martin et al (1998) PNAS 95, 1776-81). The reaction is stopped after 30min with the addition of 50µl acidic ammonium molybdate solution, 12ug ml⁻¹ in 3.48% H₂SO₄ with 1% sodium lauryl sulphate and 10ug ml⁻¹ ascorbic acid. After 30 minutes at room temperature the absorbency at 620nm is measured.

The assay is performed with a range of test concentrations of inhibitor to determine an IC₅₀, a concentration predicted to inhibit the enzyme reaction by 50%.

Activity is calculated as follows:-

% inhibition = (1 - (compound OD620 - fully inhibited OD620)/ (non-inhibited rate OD620 - fully inhibited OD620)) * 100.

OD620 = optical density at 620 nM.

Typical IC50 values for compounds of the invention when tested in the above assay are in the range 100 μ M to 1nM. For example the IC50 value of example 1 is 0.3 μ M.

According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of the formula (1), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof, as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.

The composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository.

In general the above compositions may be prepared in a conventional manner using conventional excipients.

The compound of formula (1) will normally be administered to a warm-blooded animal at a unit dose within the range 5-5000 mg per square meter body area of the animal,

10

15

20

25

30

i.e. approximately 0.1-100 mg/kg, and this normally provides a therapeutically-effective dose.

A unit dose form such as a tablet or capsule will usually contain, for example 1-250 mg of active ingredient. Preferably a daily dose in the range of 1-50 mg/kg is employed. However the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.

According to a further aspect of the present invention there is provided a compound of the formula (1), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof, as <u>defined hereinbefore</u>, for use in a method of treatment of a warm-blooded animal such as manby therapy.

According to an additional aspect of the invention there is provided a compound of the formula (1), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof, as defined hereinbefore, for use as a medicament.

According to an additional aspect of the invention there is provided a compound of the formula (1), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof, as defined hereinbefore, for use as a medicament in the treatment of type 2 diabetes, insulin resistance, syndrome X, hyperinsulinaemia, hyperglucagonaemia, cardiac ischaemia or obesity in a warm-blooded animal such as man.

According to this another aspect of the invention there is provided the use of a compound of the formula (1), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof, as defined hereinbefore in the manufacture of a medicament for use in the treatment of type 2 diabetes, insulin resistance, syndrome X, hyperinsulinaemia, hyperglucagonaemia, cardiac ischaemia or obesity in a warm-blooded animal such as man.

According to this another aspect of the invention there is provided the use of a compound of the formula (1), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof, as defined hereinbefore in the manufacture of a medicament for use in the treatment of type 2 diabetes in a warm-blooded animal such as man.

According to a further feature of this aspect of the invention there is provided a method of producing a glycogen phosphorylase inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (1).

10

15

20

25

30

-According to this further feature of this aspect of the invention there is provided a method of treating type 2 diabetes, insulin resistance, syndrome X, hyperinsulinaemia, hyperglucagonaemia, cardiac ischaemia or obesity in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (1).

According to this further feature of this aspect of the invention there is provided a method of treating type 2 diabetes in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (1).

As stated above the size of the dose required for the therapeutic or prophylactic treatment of a particular cell-proliferation disease will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated. A unit dose in the range, for example, 1-100 mg/kg, preferably 1-50 mg/kg is envisaged.

In addition to their use in therapeutic medicine, the compounds of formula (1) and their pharmaceutically acceptable salts are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of cell cycle activity in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.

In the above other pharmaceutical composition, process, method, use and medicament manufacture features, the alternative and preferred embodiments of the compounds of the invention described herein also apply.

Examples

The invention will now be illustrated by the following non-limiting examples in which, unless stated otherwise:

- (i) temperatures are given in degrees Celsius (°C); operations were carried out at room or ambient temperature, that is, at a temperature in the range of 18-25°C and under an atmosphere of an inert gas such as argon;
- (ii) organic solutions were dried over anhydrous magnesium sulphate; evaporation of solvent was carried out using a rotary evaporator under reduced pressure (600-4000 Pascals; 4.5-30 mmHg) with a bath temperature of up to 60°C;
- (iii) chromatography means flash chromatography on silica gel; thin layer chromatography (TLC) was carried out on silica gel plates; where a Bond Elut column is referred to, this

means a column containing 10 g or 20 g or 50 g of silica of 40 micron particle size; the silica being contained in a 60 ml disposable syringe and supported by a porous disc, obtained from Varian, Harbor City, California, USA under the name "Mega Bond Elut SI"; "Mega Bond Elut" is a trademark; where a Biotage cartridge is referred to this means a cartridge containing KP-SILTM silica, 60μ, particle size 32-63mM, supplied by Biotage, a division of Dyax Corp., 1500 Avon Street Extended, Charlottesville, VA 22902, USA;

(iv) in general, the course of reactions was followed by TLC and reaction times are given for illustration only;

(v) yields are given for illustration only and are not necessarily those which can be obtained by diligent process development; preparations were repeated if more material was required;

- (vi) where given, NMR data is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard, determined at 300 MHz using perdeuterio dimethyl sulphoxide (DMSO- δ_6) as solvent unless otherwise indicated, other solvents (where indicated in the text) include deuterated chloroform
- 15 CDCl₃;

5

10

- (vii) chemical symbols have their usual meanings; SI units and symbols are used;
- (viii) reduced pressures are given as absolute pressures in Pascals (Pa); elevated pressures are given as gauge pressures in bars;
- (ix) solvent ratios are given in volume : volume (v/v) terms;
- 20 (x) mass spectra (MS) were run with an electron energy of 70 electron volts in the chemical ionisation (CI) mode using a direct exposure probe; where indicated ionisation was effected by electron impact (EI), fast atom bombardment (FAB) or electrospray (ESP); values for m/z are given; generally, only ions which indicate the parent mass are reported and unless otherwise stated the value quoted is (M-H);
- 25 (xi) The following abbreviations are used:

SM starting material;
EtOAc ethyl acetate;
MeOH methanol;
EtOH ethanol;

OCM dichloromethane;
HOBT 1-hydroxybenzotriazole;
DIPEA di-isopropylethylamine;

EDCI- 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide

hydrochloride;

Et₂O diethyl ether;

THF tetrahydrofuran;

DMF N, N-dimethylformamide;

HATU O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-

tetramethyluroniumhexafluorophosphate

10 Example 1

5

15

20

25

5-[N-(1-Formamidoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole

To a suspension of 5-[N-(1-aminoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole trifluoroacetic acid salt (Method 8; 240mg, 0.50mmol) in DCM (5 ml) was added DIPEA (0.17 ml, 1.0mmol), formic acid (60mg, 1.4mmol) and HOBT (67mg, 0.5mmol). The mixture was stirred for 5 mins and then EDCI (120mg, 6.25mmol) added. After a period of 3hrs at room temperature formic acid (60mg) and EDCI (120mg) was added to facilitate complete reaction. The mixture was diluted with EtOAc (20 ml) and washed with water and brine. Drying over magnesium sulphate followed by evaporation gave the title compound (175mg, 89%) as a pale brown foam.

¹H NMR 2.85 (dd, 1H), 3.20 (dd, 1H), 4.60 (m, 1H), 5.50 (m, 1H), 7.15 (m, 1H), 7.40 (dd, 1H), 7.50 (dd, 1H), 7.70 (d, 1H), 7.90 (d, 1H), 8.55 (d, 1H), 8.60 (d, 1H), 12.36 (broad s, 1H).

Method 1

3-Chloro-5-methoxycarbonyl-4H-thieno[3,2-b]pyrrole

Methanolic sodium methoxide solution (28%) (5 ml, 25.9 mmol) was diluted with MeOH (5 ml) and was cooled to -25°C under nitrogen. A solution of 4-chloro-2-thiophenecarboxaldehyde (J Heterocyclic Chem, 1976, 13, 393; 1.1 g, 7.5 mmol) and methyl azidoacetate (3.0 g, 26.1 mmol) in MeOH (20 ml) was added dropwise, maintaining the temperature at -25°C. On completion of addition the solution was allowed to warm to 5°C over a period of approximately 16 hours. The solution was added to saturated aqueous ammonium chloride (250 ml) and the mixture was extracted using DCM. The combined organic layers were concentrated at 0°C. The residue was taken up in xylene (30 ml) and this solution was added dropwise to xylene (120 ml) under reflux. The solution was heated under reflux for 30 minutes before being cooled and concentrated. The title compound was purified by a mixture of crystallisation (EtOAc/isohexane) and chromatography on a Bond Elut column eluting with a graduated solvent of 5-50% EtOAc in isohexane (640 mg, 40%). NMR (CDCl₃) 9.1 (1H, br), 7.1 (2H, s), 3.9 (3H, s); m/z 214.3.

Method 2

The following compounds were made by the process of Method 1 using the appropriate starting materials

Meth	Compound	NMR (CDCl ₃)	M/z
21	CI NH ON	9.2 (1H, br), 7.0 (1H, s), 3.9 (3H, s)	248.2

1 Aldehyde: DE 2814798

Method 3

5-Carboxy-3-chloro-4H-thieno[3,2-b]pyrrole

15

20

10

5

was taken up in MeOH (10 ml) and was heated under reflux. Aqueous lithium hydroxide (2.0 M, 3.0 ml, 6.0 mmol) was added portionwise over 45 minutes. The mixture was heated under reflux for 30 minutes before being cooled and concentrated. Water (20 ml) was added and the solution was neutralised using aqueous hydrochloric acid (2.0 M, 3.0 ml). The solution was extracted using EtOAc, and the combined organic layers were concentrated to afford the title compound as a yellow solid (0.57 g, 100%). NMR: 12.4 (1H, br), 7.4 (1H, s), 7.0 (1H, s); m/z 200.3.

10 Method 4

5

15

20

The following compounds were made by the process of **Method 3** using the appropriate starting materials.

appropriate stat		NMR	M/z	SM
Method 4	Compound	7.0 (1H, s)	234.2	Method 2
	CI H			

Method 5 Cis-1-[(1,1-dimethylethoxy)carbonylamino]-2 hydroxyindan

Cis-1-amino-2-hydroxyindan (12.0g, 80.5mmol) was dissolved in DCM (500 ml) and triethylamine (22.4 ml, 161mmol). Di-tert-butyl dicarbonate (22.0g, 100mmol) in DCM (50 ml) was added and the mixture stirred at room temperature for 20 hours then evaporated. EtOAc (200 ml) was added, the solution washed with water, dried over magnesium sulphate and evaporated. The crude product was purified by chromatography on silica with 4:1 iso-hexane:EtOAc as eluent to give the title compound (17.9 g, 90%) as a white solid.

¹H NMR 1.42,(s,.9H), 2.78 (dd, 1H), 3.00 (dd, 1H), 4.40 (m, 1H), 4.85 (m, 1H), 4.95 (m,.1H), 6.30 (d, 1H), 7.10 (m, 4H).

Method 6

5 Trans-2-amino-1-[(1,1-dimethylethoxy)carbonylamino]indan

Cis-1-[(1,1-dimethylethoxy)carbonylamino]-2-hydroxyindan (**Method 5**; 14.0g, 56.2mmol) was dissolved in DCM (200 ml) and triethylamine (11.8 ml, 84.3mmol).

Methanesulfonyl chloride (7.1g, 61.9mmol) dissolved in DCM (20 ml) was added and the mixture stirred at room temperature for 3 hours. The mixture was evaporated and EtOAc (250 ml) added. After washing with water and drying over magnesium sulphate the organic solution was evaporated to yield *Cis*-1-[(1,1-dimethylethoxy)carbonylamino]-2-methanesulphonyloxyindan (9.7g, 98%) as a white solid.

¹H NMR 1.45 (s, 9H), 3.15 (m, 2H), 3.18 (s, 3H), 5.20 (m, 1H), 5.35 (m, 1H), 7.15 (m, 4H), 7.45 (d, 1H).

Cis-1-[(1,1-dimethylethoxy)carbonylamino]-2-methanesulphonyloxyindan (18.1g, 55.3mmol) was dissolved in dry dimethyl acetamide (100 ml). Sodium azide (5.4g, 83.0mmol) was added and the mixture heated to 90°C for 6 hours. The reaction was cooled, diluted with ethyl acetate (150 ml), washed with water (6 x 200 ml) and dried over magnesium sulphate. 10% Palladium on activated carbon was added and the mixture stirred under a hydrogen atmosphere for 24 hours. Filtration through celite followed by evaporation gave the title compound (2.6g, 98%) as a white solid.

25 ¹H NMR: 1.45 (s, 9H), 2.50 (dd, 1H), 3.05 (dd, 1H), 3.30 (m, 3H), 4.55 (m, 1H), 7.1 (m, 5H).

10

15

2,3-Dichloro-5- $(N-\{1-[N-(1,1-dimethylethoxy)carbonylamino]indan-2-yl\}carbamoyl)-<math>4H$ thieno[3,2-b]pyrrole

5-Carboxy-2,3-Dichloro-4H-thieno[3,2-b]pyrrole (Method 4; 2.36g, 10.0mmol), trans-2-amino-1-{N-[(1,1-dimethylethoxy)]carbonylamino}indan (Method 6; 2.5g, 10.0mmol), DIPEA (1.7 ml, 10.0mmol) and HOBT (1.35g, 10.0mmol) was stirred in DCM (75 ml) at room temperature for 2 minutes. EDCI (2.4g, 12.5mmol) was added and the mixture stirred at room temperature for 20 hours during which time the product precipitated. The reaction was filtered, washed with DCM (2 x 25 ml) and dried to give the title compound (3.7 g, 80%) as a pale green powder.

¹H NMR 1.40 (s, 9H), 2.81 (dd, 1H), 3.20 (dd, 1H), 4.55 (m, 1H), 5.15 (m, 1H), 7.15 (m, 5H), 7.35 (d, 1H), 8.55 (d, 1H), 12.36 (broad s, 1H); m/z 463.7/465.7.

Method 8

5-[N-(1-Aminoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole

20

4H-thieno[3,2-b]pyrrole (Method 7; 3.7g, 7.9mmol) was dissolved in DCM (75 ml). Trifluoroacetic acid (10 ml) was added and the mixture stirred at room temperature for 24

hours. The reaction was filtered and the isolated solid washed with DCM to give the trifluoroacetic acid salt of the title compound (3.1g, 82%) as a pale green powder.

¹H NMR 3.05 (dd, 1H), 3.42 (d, 1H), 4.7 (m, 2H), 7.20(d, 1H), 7.35 (m, 3H), 7.55 (d, 1H), 8.60 (broad s, 3H), 8.80 (d, 1H), 12.5 (broad s, 1H).

5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:			
	☐ BLACK BORDERS		
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
	☐ FADED TEXT OR DRAWING		
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
	☐ SKEWED/SLANTED IMAGES		
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
•	☐ GRAY SCALE DOCUMENTS		
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		
	Потитер.		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.