1

A1110 Assignment 3 12.13.1.15

K.SaiTeja AI22BTECH11014

Question: Consider the experiment of throwing a die.

- If a multiple of 3 comes up, throw the die again
- If any other number comes, toss a coin.

Find the conditional probability of the event 'the coin shows a tail', given that 'at least one die shows a 3'.

Solution:

CONTENTS

I	Markov Chain States	1
II	States	1
III	Markov graph	1
IV	Description of Graphs and States	1
V	Transition Probability	1
VI	Transition Probability Matrix	2
VII	Initial Condition and Limiting State	2

I. MARKOV CHAIN STATES

- Let us construct a Markov chain X_n with discrete time n.
- The states e_0 and e_1 describe the outcomes from the latest dice throw.
- The states e_2 and e_3 describe the outcomes of the latest coin toss.

II. STATES

Let $Y \in \{1, 2, 3, 4, 5, 6\}$ denote the number obtained from a die throw.

i	State (e_i)
0	Y = 3 OR Y = 6
1	$\sum (Y = k); k \in \{1, 2, 4, 5\}$
2	Obtaining heads from coin toss
3	Obtaining tails from coin toss

TABLE 1: States in Markov Chain

Fig. 1: Graph of Markov Chain

III. MARKOV GRAPH

IV. DESCRIPTION OF GRAPHS AND STATES

 $p_{j/i}$ is the probability of moving from state e_i to e_j .

$$p_{j/i} = \Pr\left(\frac{X_{n+1} = j}{X_n = i}\right) \tag{1}$$

Absorbing States States e_2 and e_3 are absorbing states because $p_{2/2} = 1$ and $p_{3/3} = 1$. Once entered, they cannot be left.

Transient States States e_0 and e_1 are transient states, because they lead to other states which have no return path, For example, $p_{2/1} = \frac{1}{2}$ but $p_{1/2} = 0$. Their probability will reduce to 0 eventually.

V. TRANSITION PROBABILITY

State Probabilities in Next Step: State Probabilities in Next Step Let $P_i^{(n)}$ be the probability of

state i at time n. Then the state vector is,

$$\mathbf{Q_n} = \begin{pmatrix} P_0^{(n)} \\ P_1^{(n)} \\ P_2^{(n)} \\ P_3^{(n)} \end{pmatrix} \tag{2}$$

The probabilities after one step in time are

$$P_0^{(n+1)} = \frac{2}{6} \times P_0^{(n)} \tag{3}$$

$$P_1^{(n+1)} = \frac{4}{6} \times P_0^{(n)} \tag{4}$$

$$P_2^{(n+1)} = \frac{1}{2} \times P_1^{(n)} + 1 \times P_2^{(n)} \tag{5}$$

$$P_3^{(n+1)} = \frac{1}{2} \times P_1^{(n)} + 1 \times P_3^{(n)} \tag{6}$$

VI. TRANSITION PROBABILITY MATRIX

The previous equations can be summarized as

$$Q_{n+1} = PQ_n \tag{7}$$

Where **P** is the transition probability matrix. Its elements are values of $p_{i/j}$

$$\mathbf{P} = \begin{pmatrix} 2/6 & 0 & 0 & 0 \\ 4/6 & 0 & 0 & 0 \\ 0 & 1/2 & 1 & 0 \\ 0 & 1/2 & 0 & 1 \end{pmatrix} \tag{8}$$

VII. INITIAL CONDITION AND LIMITING STATE

Initial Condition The given condition is that '3 occurs at least once'. Let the first occurrence of 3 be the initial state Q_0 .

$$\mathbf{Q_0} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \tag{9}$$

Using equation (7), further states can be generated.

$$\mathbf{Q_1} = \mathbf{PQ_0} = \begin{pmatrix} \frac{2}{6} \\ \frac{4}{6} \\ 0 \\ 0 \end{pmatrix} \tag{10}$$

$$\mathbf{Q_2} = \mathbf{PQ_1} = \mathbf{P}^2 \mathbf{Q_0} = \begin{pmatrix} \frac{4}{9} \\ \frac{8}{9} \\ \frac{5}{24} \\ \frac{5}{12} \end{pmatrix}$$
(11)

$$\vdots (12)$$

$$\mathbf{Q_n} = \mathbf{P}^n \mathbf{Q_0} \tag{13}$$

Limiting Probabilities of States These can can be approximately calculated by taking large value of n,

$$\lim_{n \to \infty} \mathbf{Q_n} = \begin{pmatrix} 0 \\ 0 \\ 1/2 \\ 1/2 \end{pmatrix} \tag{14}$$

Required Conditional Probability Probability of the coin showing tails, given that at least one die shows a 3,

$$\lim_{n \to \infty} P_3^{(n)} = 0.5 \tag{15}$$