Finding pvalues (and critical values) STAT 401 - Statistical Methods for Research Workers

Jarad Niemi

Iowa State University

7 September 2013

Recall

Definition

A pvalue is the probability of observing a test statistic as or more extreme than that observed, if the null hypothesis is true.

Recall

Definition

A pvalue is the probability of observing a test statistic as or more extreme than that observed, if the null hypothesis is true.

Three key features:

a test statistic calculated from data

Recall

Definition

A pvalue is the probability of observing a test statistic as or more extreme than that observed, if the null hypothesis is true.

Three key features:

- a test statistic calculated from data
- a sampling distribution for the test statistic under the null hypothesis

Recall

Definition

A pvalue is the probability of observing a test statistic as or more extreme than that observed, if the null hypothesis is true.

Three key features:

- a test statistic calculated from data
- a sampling distribution for the test statistic under the null hypothesis
- a region that is as or more extreme

Recall

Definition

A pvalue is the probability of observing a test statistic as or more extreme than that observed, if the null hypothesis is true.

Three key features:

- a test statistic calculated from data
- a sampling distribution for the test statistic under the null hypothesis
- a region that is as or more extreme

Recall

Definition

A pvalue is the probability of observing a test statistic as or more extreme than that observed, if the null hypothesis is true.

Three key features:

- a test statistic calculated from data
- a sampling distribution for the test statistic under the null hypothesis
- a region that is as or more extreme

The difference between one-sided and two-sided hypotheses is that they affect the region.

Let's assume, we have

- calculated a test statistic z that
- ullet has a $Z \sim N(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_{df} for some df.

Let's assume, we have

- calculated a test statistic z that
- ullet has a $Z \sim N(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_{df} for some df.

Now, we can have one of three types of hypotheses:

• Two-sided: P(|Z| > |z|)

Let's assume, we have

- calculated a test statistic z that
- ullet has a $Z\sim \mathit{N}(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_{df} for some df.

- Two-sided: P(|Z| > |z|)
- One-sided:

Let's assume, we have

- calculated a test statistic z that
- ullet has a $Z\sim \mathit{N}(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_{df} for some df.

- Two-sided: P(|Z| > |z|)
- One-sided:
 - P(Z > z)

Let's assume, we have

- calculated a test statistic z that
- has a $Z \sim N(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_{df} for some df.

- Two-sided: P(|Z| > |z|)
- One-sided:
 - P(Z>z)
 - P(Z < z)

Let's assume, we have

- calculated a test statistic z that
- ullet has a $Z\sim \mathit{N}(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_{df} for some df.

- Two-sided: P(|Z| > |z|) = P(Z > |z|) + P(Z < -|z|)
- One-sided:
 - P(Z>z)
 - P(Z < z)

Let's assume, we have

- calculated a test statistic z that
- has a $Z \sim N(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_{df} for some df.

- Two-sided: P(|Z| > |z|) = P(Z > |z|) + P(Z < -|z|)= 2P(Z < -|z|)
- One-sided:
 - P(Z>z)
 - P(Z < z)

Let's assume, we have

- calculated a test statistic z that
- has a $Z \sim N(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_{df} for some df.

- Two-sided: P(|Z| > |z|) = P(Z > |z|) + P(Z < -|z|)= 2P(Z < -|z|)
- One-sided:
 - P(Z > z) = P(Z < -z)
 - P(Z < z)

Let's assume, we have

- calculated a test statistic z that
- ullet has a $Z\sim \mathit{N}(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_{df} for some df.

Now, we can have one of three types of hypotheses:

- Two-sided: P(|Z| > |z|) = P(Z > |z|) + P(Z < -|z|)= 2P(Z < -|z|)
- One-sided:
 - P(Z > z) = P(Z < -z)
 - P(Z < z)

F(c) = P(Z < c) is the cumulative distribution function for the standard normal.

Symmetric distributions

The standard normal and t distribution are both symmetric around zero.

Symmetric distributions

The standard normal and t distribution are both symmetric around zero.

Symmetric distributions

The standard normal and t distribution are both symmetric around zero.

$$P(Z > c) = P(Z < -c)$$
 blue area is equal to red area

In the minilecture on the paired t-test,

In the minilecture on the paired t-test, we had

• a one-sided hypothesis, namely the difference is greater than zero

In the minilecture on the paired t-test, we had

- a one-sided hypothesis, namely the difference is greater than zero
- a test statistic t = 2.43

In the minilecture on the paired t-test, we had

- a one-sided hypothesis, namely the difference is greater than zero
- a test statistic t = 2.43
- which has a t distribution with 7 degrees of freedom

In the minilecture on the paired t-test, we had

- a one-sided hypothesis, namely the difference is greater than zero
- a test statistic t = 2.43
- which has a t distribution with 7 degrees of freedom

In the minilecture on the paired t-test, we had

- a one-sided hypothesis, namely the difference is greater than zero
- a test statistic t = 2.43
- which has a t distribution with 7 degrees of freedom

So we need to calculate

$$P(t_7 > 2.43)$$

In the minilecture on the paired t-test, we had

- a one-sided hypothesis, namely the difference is greater than zero
- a test statistic t = 2.43
- which has a t distribution with 7 degrees of freedom

So we need to calculate

$$P(t_7 > 2.43) = 1 - P(t_7 < 2.43)$$

In the minilecture on the paired t-test, we had

- a one-sided hypothesis, namely the difference is greater than zero
- a test statistic t = 2.43
- which has a t distribution with 7 degrees of freedom

So we need to calculate

$$P(t_7 > 2.43) = 1 - P(t_7 < 2.43)$$

where t_7 represents a t-distribution with 7 degrees of freedom.

Using SAS or R

```
In SAS,
PROC IML;
  p = 1-CDF('T', 2.43, 7);
  PRINT p;
  QUIT;
In R.
p = 1-pt(2.43,7)
```

Both obtain p=0.0227.

A related quantity are critical values for confidence interval construction,

A related quantity are critical values for confidence interval construction, e.g.

$$(\overline{Y}_2 - \overline{Y}_1) \pm t_{df} (1 - \alpha/2) SE(\overline{Y}_2 - \overline{Y}_1).$$

A related quantity are critical values for confidence interval construction, e.g.

$$(\overline{Y}_2 - \overline{Y}_1) \pm t_{df} (1 - \alpha/2) SE(\overline{Y}_2 - \overline{Y}_1).$$

The red area is $\alpha/2$.

A related quantity are critical values for confidence interval construction, e.g.

$$(\overline{Y}_2 - \overline{Y}_1) \pm t_{df} (1 - \alpha/2) SE(\overline{Y}_2 - \overline{Y}_1).$$

The red area is $\alpha/2$. Let $c = t_{df}(1 - \alpha/2)$,

A related quantity are critical values for confidence interval construction, e.g.

$$(\overline{Y}_2 - \overline{Y}_1) \pm t_{df}(1 - \alpha/2)SE(\overline{Y}_2 - \overline{Y}_1).$$

The red area is $\alpha/2$. Let $c = t_{df}(1 - \alpha/2)$, then we need $P(t_{df} < c) = 1 - \alpha/2$.

Using SAS or R

```
If \alpha = 0.05, then 1 - \alpha/2 = 0.975.
In SAS.
PROC IML;
  q = QUANTILE('T', 0.975, 7);
  PRINT q;
  QUIT;
In R,
q = qt(0.975,7)
```

Both obtain q=2.364.