Department of Computer Science and Engineering (Data Science)

Subject: Machine Learning – I (DJ19DSC402)

AY: 2022-23

Experiment 5

NAME: DIVYESH KHUNT SAPID: 60009210116

(Logistic Regression)

Aim: Implement Logistic Regression on a given Dataset with binary and multiclass labels.

Lab Assignments to complete in this session:

Use the given dataset and perform the following tasks:

Dataset 1: Synthetic Dataset

Dataset 2: IRIS.csv

Dataset 3: Airlines_Passanger.csv

- 1. Perform required Logistic Regression from scratch on Dataset 1. Compare the F1 score of the LR model built from scratch and built using python library.
- 2. Perform Multimodal classification on Dataset 2 using python library.
- 3. Compare the results of Logistic Regression model with and without regularization.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science) From scratch o synthetic data

```
#Libraries
import numpy as np
from numpy import log,dot,e,shape
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
```

```
#synthetic dataset
X,y = make_classification(n_features = 4,n_classes=2)
X_tr,X_te,y_tr,y_te = train_test_split(X,y,test_size=0.1)
```

```
def standardize(X_tr):
    for i in range(shape(X_tr)[1]):
        X_tr[:,i] = (X_tr[:,i] - np.mean(X_tr[:,i]))/np.std(X_tr[:,i])
```

```
class LogidticRegression:
      def sigmoid(self,z):
            return 1/(1+e**(-z))
      def initialize(self,X):
            weights = np.zeros((shape(X)[1]+1,1))
            X = np.c_{np.ones}((shape(X)[0],1)),X]
            return weights,X
      def fit(self,X,y,alpha=0.001,iter=400):
            weights,X = self.initialize(X)
            def cost(theta):
                z = dot(X, theta)
                cost0 = y.T.dot(log(self.sigmoid(z)))
                cost1 = (1-y).T.dot(log(1-self.sigmoid(z)))
                cost = -((cost1 + cost0))/len(y)
                return cost
            cost_list = np.zeros(iter,)
            for i in range(iter):
                weights = weights - alpha*dot(X.T,self.sigmoid(dot(X,weights))-np.reshape(y,(len(y),1)))
                cost_list[i] = cost(weights)
            self.weights = weights
            return cost_list
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

```
def pred(self,X):
    z = dot(self.initialize(X)[1],self.weights)
    lis = []
    for i in self.sigmoid(z):

        if i>0.5:
            lis.append(1)
        else:
            lis.append(0)
        return lis

standardize(X_tr)
    standardize(X_te)
    obj1 = LogidticRegression()
    model= obj1.fit(X_tr,y_tr)
    y_pred = obj1.pred(X_te)
    y_train = obj1.pred(X_tr)
```

```
def f1(y,y_hat):
    tp,tn,fp,fn = 0,0,0,0
    for i in range(len(y)):
        if y[i] == 1 and y_hat[i] == 1:
            tp += 1
        elif y[i] == 1 and y_hat[i] == 0:
            fn += 1
        elif y[i] == 0 and y_hat[i] == 1:
            fp += 1
        elif y[i] == 0 and y_hat[i] == 0:
            tn += 1
    precision = tp/(tp+fp)
    recall = tp/(tp+fn)
    f1 = 2*precision*recall/(precision+recall)
    return f1
F1_TR = f1(y_tr,y_train)
F1_TS = f1(y_te,y_pred)
print(F1 TR)
print(F1_TS)
0.8686868686868686
0.44444444444445
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science)

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score
model = LogisticRegression().fit(X_tr,y_tr)
y_pred = model.predict(X_te)
print(f1_score(y_te,y_pred))
```

0.9090909090909091

Department of Computer Science and Engineering (Data Science)

Using sklearn on IRIS dataset

```
#LOADING IRIS DATASET
from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
x = iris.data
y = iris.target
```

```
from sklearn.model_selection import train_test_split
x_tr, x_ts, y_tr, y_ts = train_test_split(x, y, test_size=0.3, random_state=0)
```

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(x_tr)
x_tr_std = sc.transform(x_tr)
x_ts_std = sc.transform(x_ts)
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
lr = LogisticRegression(random_state=0, multi_class = 'auto')
lr.fit(x_tr_std, y_tr)
y_pred = model.predict(x_ts_std)
print(accuracy_score(y_ts, y_pred))
```



```
#Regularising model
#all the libraries are already imported in above code
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
```

```
#split
x_tr, x_ts, y_tr, y_ts = train_test_split(X, y, test_size=0.3, random_state=0)
```

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(x_tr)
x_tr_std = sc.transform(x_tr)
x_ts_std = sc.transform(x_ts)
```

```
from sklearn.linear_model import LogisticRegression

weights, params = [], []
for c in np.arange(0, 5):
    lr = LogisticRegression(C=10**c, random_state=0)
    lr.fit(x_tr_std, y_tr)
    weights.append(lr.coef_[1])
    params.append(10**c)

weights = np.array(weights)
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

```
import matplotlib.pyplot as plt
plt.plot(params, weights[:, 0], color='red', marker='x', label='petal length')
plt.plot(params, weights[:, 1], color='black', marker='o', label='petal width')
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.legend(loc='right')
plt.xscale('log')
plt.show()
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

```
#Logistic regression using sklearn
from sklearn import datasets
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
```

```
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

```
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
  markers = ('s', 'x', 'o', '^', 'v')
  colors = ('green', 'white', 'orange', 'blue', 'cyan')
  cmap = ListedColormap(colors[:len(np.unique(y))])
  x1_{min}, x1_{max} = X[:, 0].min() - 1, X[:, 0].max() + 1
  x2_{min}, x2_{max} = X[:, 1].min() - 1, X[:, 1].max() + 1
  xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
  np.arange(x2_min, x2_max, resolution))
  Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
  Z = Z.reshape(xx1.shape)
  plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
  plt.xlim(xx1.min(), xx1.max())
  plt.ylim(xx2.min(), xx2.max())
  x ts, y ts = X[test idx, :], y[test idx]
  for idx, cl in enumerate(np.unique(y)):
      plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
               alpha=0.8, c=cmap(idx),
               marker=markers[idx], label=cl)
  if test idx:
     x_ts, y_ts = X[test_idx, :], y[test_idx]
      plt.scatter(x_ts[:, 0], x_ts[:, 1], c='Yellow',
               alpha=1.0, linewidth=1, marker='o',
               s=55, label='test set')
X_combined_std = np.vstack((x_tr_std, x_ts_std))
y_combined = np.hstack((y_tr, y_ts))
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

