Assignment 1

Preliminaries

MAU22101 — Group Theory

Name and surname:	
STUDENT NUMBER:	
Note. Solutions to this assignment are due by 5	:00 pm on Monday, October 19th. Remember to fill in all the information above All
exercises are weighed equally unless otherwise	stated.

Recollections. Recall that a *cycle* is a permutation of the form $i_1 \mapsto i_2 \mapsto \cdots \mapsto i_j \mapsto i_1$, which we usually write $\tau = (i_1 \cdots i_j)$. The set $I = \{i_1, \dots, i_j\}$ is called the *support of* τ . We say two cycles are disjoint if their supports are disjoint sets. Any permutation σ can be written uniquely as a product $\tau_1 \cdots \tau_j$ of disjoint cycles, which we call the *cycle decomposition of* σ .

Exercise 1. Show that for the cycle $\sigma = (123456)$ in S_6 , the permutation σ^2 consists of 2 disjoint cycles, and the permutation σ^3 consists of 3 disjoint cycles.

Exercise 2. Show that if τ is any permutation in S_n and if $\sigma = (i_1 \cdots i_j)$ is a cycle, then

$$\tau \sigma \tau^{-1} = (\tau(i_1) \cdots \tau(i_j))$$

so that, in particular, $\tau \sigma \tau^{-1}$ is also a cycle. *Example*: (123)(1324)(123)⁻¹ = (2134).

Exercise 3. Draw a table with all the possible cycle decompositions of an element of S_4 , along with a representing permutation for each decomposition. *Hint:* show that these are in bijection with the ways to write 4 as a sum of positive integers so that, for example, (12)(34) corresponds to the expression 2+2=4.

¹Order the cycles by looking at the minimum element in each of them, for example.