1 General Problems

Configuration and Specification (Sets)

Equivalence Problem

Input: $C = \{\alpha_1, \dots, \alpha_n\}$

Query: Whether $\exists K \subseteq C : K \equiv \beta$

Retricted Equivalence (R-equivalence

Input: $C = {\alpha_1, \dots, \alpha_n}$, beta, and a set V of variables

Query: Whether $\exists K \subseteq C : K \equiv^V \beta$

Implication Problem

Input: $C = \{\alpha_1, \dots, \alpha_n\}, beta$

Query: Whether $\exists K \subseteq C : K \models \beta$

Note: In all problems K is demanded satisfiable.

$$\alpha \equiv_V \beta \iff \forall \gamma \text{ over } V, (\alpha \models \gamma \Leftrightarrow \beta \models \gamma)$$

$$\alpha \models_{V} \beta \Longleftrightarrow \forall \gamma \text{ over } V, (\beta \models \gamma \Longrightarrow \alpha \models \gamma)$$

Euivalence Problem is in $P^{NP[log]}$

R-Equivalence Problem same as above

Implication Σ_2^P ?

2 Resticted to DHORN

C: set of DHORN, β : DHORN

Equivalence problem is in PTIME

Idea: Let

$$IMP(C, \beta) := \{ \alpha \mid \alpha \in C \text{ and } \beta \models \alpha \}$$

Then

$$\exists K \subset C(K \equiv \beta) \iff \text{IMP}(C, \beta) \models \beta$$

Implication problem is trivial

The existence of K is equivalent to $C \models \beta$

The V-equivalence problem

$$IMP(C, \beta, V) := \{ \alpha \in C \mid \beta \models_V \alpha \}$$

The existence of $K \equiv_V \beta$ is equivalent to $\mathrm{IMP}(C,\beta,V) \equiv_V \beta$.

we guess it is co-NP complete. See Hans's book page 251

3 Restricted to HORN

Equivalence Problem: same as the DHORN case (PTIME).

iff $\mathrm{IMP}(C,\beta)$ is satisfiable and $\mathrm{IMP}(C,\beta) \models \beta$

V-Equivalence Problem: idea Same as DHORN but Σ_2^P -complete

$$\Phi := \exists y_1, \cdots, y_k \forall x_1, \cdots, x_m (c_1 \lor \cdots \lor c_n)$$

Where c_i is a conjunction of literals.

for each variable z, introduce a new variable $\pi(\neg z)$. Let $\pi(z) = z$.

introduce U.

for a clause $c = L_1 \wedge \cdots \wedge L_s$, we write $\pi(c) := \pi(L_1) \wedge \cdots \wedge \pi(L_s)$

$$C := \begin{cases} \pi(c_i) \to U \mid i = 1, \dots, n \} \cup \\ \{\neg \pi(\neg x_j) \lor \neg x_j \mid j = 1, \dots, m \} \cup \\ \{\neg \pi(\neg y_i) \lor \neg y_i \mid i = 1, \dots, k \} \cup \\ \{y_i, \pi(\neg y_i) \mid i = 1, \dots, k \} \end{cases}$$

$$\beta := U \vee \left(\bigvee_{j=1}^{k} (\neg \pi(\neg x_j) \wedge \neg x_j) \right)$$

(Remark: using Tsting algorithm)

Let

$$V := \{U\} \cup \{x_1, \cdots, x_m\}$$

 $(\exists K \subseteq C \text{ such that } K \equiv_V \beta) \text{ if and only if } \Phi \text{ is true.}$

 $\begin{array}{c} \text{Implication Problem} \\ \text{NP-complete} \\ \text{Given a 3CNF } F \end{array}$

$$\bigwedge_{i=1}^{m} (L_{i,1} \vee L_{i,2} \vee L_{i,3}) \text{ over } x_1, \cdots, x_n$$

For each $i = 1, \dots, m$, pick a new variable z_i . For each $j = 1, \dots, n$ we pick a new variable $\pi(\neg x_j)$. For convenience, we also write x_j as $\pi(x_j)$.

Define C

$$C := \bigcup_{i=1}^{m} \{ \pi(L_{i,1}) \to z_i, \pi(L_{i,2}) \to z_i, \pi(L_{i,3}) \to z_i \} \cup \bigcup_{j=1}^{n} \{ \to x_j, \to \pi(\neg x_j) \cup \{ z_1 \wedge \cdots \wedge z_m \to z \}$$

Define

$$\beta := z \wedge \bigwedge (\neg \pi(\neg x_j) \vee \neg x_j)$$

Impliation problem iff F is satisfiable

Specification Problem

Given a partial configuration K, demand β , a set of variables V,W Looking for σ over W such that

- 1. $K \wedge \sigma(W) \equiv \beta$
- 2. $K \wedge \sigma(W) \equiv_V \beta$
- 3. $K \wedge \sigma(W) \models \beta$

Query Learning

black box α

equivalence query. Guess a β ask whether $\alpha \equiv \beta$. If the answer is no, output a truth assignment satisfying α and $\neg \beta$ or satisfying $\neg \alpha$ and β .

membership query

guess a truth assignment v answer $v(\alpha) = 0$ or 1.