

Dynamic Allocation of Emergency Resources

Zachary Barnes, Frank Cipollone, Tyler Romero CS221 Final Project Poster

Motivation

Emergency services respond to millions of calls every year throughout the city of San Diego

- Minutes/seconds in response time difference between life/death
- High base cost from high static staffing
- Simple station staffing model
- Maximum average response time

Figure 1: Burning building

Save lives by decreasing response time through effective routing and allocation of resources.

Data

- 8 years of emergency incident data from the city of San Diego
- Cleaned, and converted in latitude and longitude

Temporal-spatial correlation but unknown underlying dynamics.

Models

Incident,

State Representation:

- A state is comprised of a grid, a list of truck positions, and a list of current incidents.
- An action is an assignment of each truck to a destination.

Baseline & Oracle:

Baseline:

- Random exploration
- Greedy assignment to current incidents

Oracle:

 Greedy assignment to future incidents

Greedy-Q Learning:

- Random initial positions
- Actions
 - Sampled state space
 - Greedy assignment
- Feature Extraction
 - Distance between trucks
 - Distance between truck and incident
- **Reward Function**
 - Inv. distance to incident

Cost Constraint:

- trucks
- Feature Extraction
 - Inv. distance to incident

- Random initial positions
- - Add/remove

- Actions
- - Time of day
 - Current allotment
- Reward Function

 - Inv. Cost

In Progress

Implementation

- Pull from historic data
- Generate grid representation of location
- Feed incidents based on simulation time

Historic Emergency Incident Database Simulator: -Uses model to update Keeps state data Data Dispenser: -Parse data System Visualization -Sets grid and sim Feeds data on time step Model: -Determines next action Learn from results

Results

Iteration response time for 10x10 grid time Avg. Iteration response

Comparison of green oracle, blue qlearning greedy model, and red baseline

Number of trucks

	Baseline Model:	Greedy-Q Learning Model:
Response Time	1.53 iterations	1.34 iterations

Discussion

- Difficulty handling large state space
 - Sampled space for reduction
- Feature selection issues in statistical sharing
- Need to capture temporal patterns
- Potential: region specific strained models
- Potential: Joint problem with constraint of maximum cost

Learn actions in large state space with heavy sampling and feature sharing Learn patters from divisions and constraints

References

[1] Haynes, Hylton JG. "Fire loss in the United States during 2015." National Fire Protection Association. Fire Analysis and Research Division, 2016. [2] San Diego Open Data Portal. The City

of San Diego, n.d. Web. 21 Oct. 2016.

