

深度学习-图像处理篇

bilibili: 霹雳吧啦Wz

作者: 神秘的wz

传统卷积神经网络,**内存需求大、运算量大** 导致无法在移动设备以及嵌入式设备上运行

Figure 1. MobileNet models can be applied to various recognition tasks for efficient on device intelligence.

MobileNet网络是由google团队在2017年提出的,专注于移动端或者嵌入式设备中的轻量级CNN网络。相比传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量。(相比VGG16准确率减少了0.9%,但模型参数只有VGG的1/32)

网络中的亮点:

- Depthwise Convolution(大大减少运算量和参数数量)
- ▶ 增加超参数α、β

- 卷积核channel=输入特征矩阵channel
- 输出特征矩阵channel=卷积核个数

传统卷积

DW卷积 Depthwise Conv

卷积核channel=1

- 输入特征矩阵channel=卷积核个数=输出特 征矩阵channel

$$\begin{bmatrix} \underline{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F} \end{bmatrix} \quad \text{DW + PW}$$

$$\begin{bmatrix} \overline{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F} \end{bmatrix} \quad \text{普通卷积}$$

$$= \frac{1}{N} + \frac{1}{D_K^2} = \frac{1}{N} + \frac{1}{9}$$

理论上普通卷积计算 量是DW+PW的8到9倍

Table 1. MobileNet Body Architecture

Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Conv/s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$
Conv/s1	$1\times1\times64\times128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$
Conv/s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$
Conv/s1	$1\times1\times128\times256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \mathrm{dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
Conv dw / s1	$3 \times 3 \times 512 \mathrm{dw}$	$14 \times 14 \times 512$
Conv/s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv/s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$
FC/s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

Table 8. MobileNet Comparison to Popular Model
--

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

Multiply-Add 计算量

Table 6. MobileNet Width Multiplier

	Million	Million	ImageNet	Width Multiplier
	Parameters	Mult-Adds	Accuracy	
	4.2	569	70.6%	1.0 MobileNet-224
Width	2.6	325	68.4%	0.75 MobileNet-224
vviatii	1.3	149	63.7%	0.5 MobileNet-224
	0.5	41	50.6%	0.25 MobileNet-224

 α

Width Multiplier

Resolution ImageNet Million Million
Accuracy Mult-Adds Parameter

70.6%

69.1%

67.2%

64.4%

1.0 MobileNet-224

1.0 MobileNet-192

1.0 MobileNet-160

1.0 MobileNet-128

 Million
 Million

 alt-Adds
 Parameters

 569
 4.2

 418
 4.2

 290
 4.2

 186
 4.2

 β

Resolution Multiplier

depthwise部分的卷积核容易费掉,即卷积核参数大部分为零。

MobileNet v2网络是由google团队在2018年提出的,相比MobileNet V1网络,准确率更高,模型更小。

MobileNetV2: Inverted Residuals and Linear Bottlenecks

Mark Sandler Andrew Howard Menglong Zhu Andrey Zhmoginov Liang-Chieh Chen Google Inc.

网络中的亮点:

- ➢ Inverted Residuals (倒残差结构)
- Linear Bottlenecks

- ① 1x1 卷积降维
- ② 3x3 卷积
- ③ 1x1 卷积升维

- ① 1x1 卷积升维
- ② 3x3 卷积
- ③ 1x1 卷积降维

(a) Residual block

(b) Inverted residual block

$$y = \text{ReLU6}(x) = \min(\max(x, 0), 6)$$

Figure 1: Examples of ReLU transformations of low-dimensional manifolds embedded in higher-dimensional spaces. In these examples the initial spiral is embedded into an n-dimensional space using random matrix T followed by ReLU, and then projected back to the 2D space using T^{-1} . In examples above n=2,3 result in information loss where certain points of the manifold collapse into each other, while for n=15 to 30 the transformation is highly non-convex.

ReLU激活函数对 低维特征信息照 成大量损失

Input	Operator	Output
$h \times w \times k$ $h \times w \times tk$ $\frac{h}{s} \times \frac{w}{s} \times tk$	1x1 conv2d, ReLU6 3x3 dwise s=s, ReLU6 linear 1x1 conv2d	$\begin{array}{c} h \times w \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times k' \end{array}$

Table 1: Bottleneck residual block transforming from k to k' channels, with stride s, and expansion factor t.

当stride=1且输入特征矩阵与输出特征 矩阵shape相同时才有shortcut连接

(d) Mobilenet V2

Input	Operator	$\mid t \mid$	c	$\mid n \mid$	s
$224^2 \times 3$	conv2d	_	32	1	2
$112^{2} \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^2 \times 32$	bottleneck	6	64	4	2
$14^{2} \times 64$	bottleneck	6	96	3	1
$14^{2} \times 96$	bottleneck	6	160	3	2
$7^2 \times 160$	bottleneck	6	320	-1	1
$7^2 imes 320$	conv2d 1x1	-	1280	1	1
$7^2 \times 1280$	avgpool 7x7	-	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	_	

- □ t是扩展因子
- □ c是输出特征矩阵深度channel
- □ n是bottleneck的重复次数
- □ s是步距(针对第一层,其他为1)

Classification

Network	Top 1	Params	MAdds	CPU
MobileNetV1	70.6	4.2M	575M	113ms
ShuffleNet (1.5)	71.5	3.4M	292M	-
ShuffleNet (x2)	73.7	5.4M	524M	-
NasNet-A	74.0	5.3M	564M	183ms
MobileNetV2	72.0	3.4M	300M	75ms
MobileNetV2 (1.4)	74.7	6.9M	585M	143ms

bi Object Detection 吧 E

Network	mAP	Params	MAdd	CPU
SSD300[34]	23.2	36.1M	35.2B	_
SSD512[34]	26.8	36.1M	99.5B	-
YOLOv2[35]	21.6	50.7M	17.5B	-
MNet V1 + SSDLite	22.2	5.1M	1.3B	270ms
MNet V2 + SSDLite	22.1	4.3M	0.8B	200ms

沟通方式

1.github

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

2.CSDN

https://blog.csdn.net/qq_37541097/article/details/103482003

3.bilibili 霹雳吧啦Wz

https://space.bilibili.com/18161609/channel/index

尽可能每周更新

感谢各位的观看!