Math101 Homework 0

Jeff Carney

January 20, 2017

1

```
Original statement: \exists l \text{ s.t. } \forall \epsilon > 0, \exists N \in N \text{ s.t. } \text{if } n > N \text{ then } |n - l| < \epsilon
Negation: Not \exists l \text{ s.t. } \forall \epsilon > 0, \exists N \in N \text{ s.t. } \text{if } n > N \text{ then } |n - l| < \epsilon
        \Rightarrow \forall l \text{ not } \forall \epsilon > 0, \exists N \in N \text{ s.t. if } n > N \text{ then } |n - l| < \epsilon
       \Rightarrow \forall l \ \exists \epsilon > 0, not \exists \ N \in N \ \text{s.t.} if n > N \ \text{then} \ |n - l| < \epsilon
       \Rightarrow \forall l \ \exists \epsilon > 0 \ \forall \ N \in N \ \text{not} \ \forall n > N \ \text{then} \ |n-l| < \epsilon
       \Rightarrow \forall l \ \exists \epsilon > 0 \ \forall \ \mathcal{N} \in N \ \exists n > \mathcal{N} \ \text{s.t.} \ |n-l| \geq \epsilon
```

2

```
Base case: n_0 = 2
   p(n_0) = the product of two odd numbers is odd
p(n) = the product of n odd numbers is odd (where n \ge 2)
```

3

a) $\forall x \in R, \exists n \in Ns.t.n > x$

True, both R and N are infinite sets thus for any given $x \in R$ there must be an integer in N greater than x.

b) $\exists n \in Ns.t. \forall x \in R \ n > x$

False, both sets are infite; further $N \subseteq R$. Thus if $n \in N$, then $n \in R$. Therefore $\exists x \in R$ s.t.

4

Two Rational Numbers:

Let
$$\frac{a}{b} \in Q$$
 and $\frac{c}{d} \in Q$ where $b \neq 0$ and $d \neq 0$, and $a, b, c, d \in Z$

Multiplication:

 $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ and given Z is closed under multiplaction $\Rightarrow ac, bd \in Z \Rightarrow \frac{ac}{bd} \in Q$. Thus the product of two rational numbers is a rational number.

Addition:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}$$

 $\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}$ Given that Z is closed under multiplication $ad, bc, bd \in Z$. And given Z is closed under addition $\Rightarrow ad + bc \in Z$. Therefore, since $bd, ad + bc \in Z \Rightarrow \frac{ad+bc}{bd} \in Q$.

Thus, the sum of two rational numbers is a rational number.

A Rational Number and An Irrational Number:

Let
$$\frac{a}{b} \in Q$$
, where $b \neq 0$, $a \neq 0$, and $a, b \in Z$ and Let $c \in R - Q$

Multiplication:

 $\frac{a}{b}\cdot c=\frac{ac}{b}.$ Assume that $ac\in Z,$ then $\frac{ac}{a}\in Q.$ $\frac{ac}{a}=\frac{c}{1}$ but $c\notin Z.$ Thus, $\frac{ac}{a}\notin Q$ and given that $a\neq 0$ then $ac\notin Z\Rightarrow \frac{ac}{b}\notin Q$

So the product of a rational number and an irrational number is an irrational number.

Addition

 $\frac{a}{b} + c = \frac{a}{b} + \frac{bc}{b} = \frac{a+bc}{b}$ but note that $bc \notin Z \Rightarrow a + bc \notin Z \Rightarrow \frac{a+bc}{b} \notin Q$ Thus, the sum of a rational number and an irrational number is an irrational number.

5

WTS: That $g \circ f$ is one-to-one and onto

Onto:

Let $x \in R$ be any real number. We are given that g is onto $\Rightarrow \exists y \in R$ s.t. g(y) = x. We are given that f is onto $\Rightarrow \exists z \in R$ s.t. f(z) = y. g(f(z)) = g(y) = x, $\forall x \in R \Rightarrow g \circ f$ is onto.

One-to-One:

Let $a,b\in R$ and assume g(f(a))=g(f(b))We are given that g is one-to-one $\Rightarrow f(a)=f(b)$ We are given that f is one-to-one as well $\Rightarrow a=b$ Thus for any $a,b\in R$ if g(f(a))=g(f(b)) then $a=b\Rightarrow g\circ f$ is one-to-one