Data Mining with Spare Grids

Seminar: Computational Aspects of Machine Learning

Sebastian Kreisel October 4, 2015

Technische Universität München

Overview

- Motivation for Sparse Grids
- Sparse Grids: Basics
- Sparse Grids: Machine Learning
- Examples with Data Sets
- Parallelization and Implementation

Motivation for Sparse Grids

Grid based approaches in ML

- Discretizes the space into a grid
- Basis-functions around grid points, not data points

Motivation for Sparse Grids

Suitable for

- Big datasets
- Easily/automatically classifiable data
- Medical, seismic, commercial data

Curse of dimensionality

- The volume of a space is exponential in it's dimensions
- The amount of training data required becomes unmanageable
 - because of lacking computational/storage capacities
 - because data aquesition is expensive
- Becomes relevant for d > 3
- Applies to full-grid discretization

1. Function to discretize

2. Full, regular grid

3. Basis function (standard hat function)

4. Coefficient α (Surplus)

Sum over all basis functions

Full grid discretization in one dimension

- 1. A function f(x) to discretize
- 2. Gridpoints indexed by $i \in \{1, 2, \dots\}$
- 3. Basis/Ansatz functions; i.e. hat function $\phi(x) = \max(1 |x|, 0)$
- 4. Coefficients α_i (Surplusses)

$$f(x) \approx \hat{f}(x) = \sum_{i} \alpha_{i} \phi_{i}(x)$$

Level of detail

• Level $l \in \{1, 2, 4, 8...\}$ defining the number of gridpoints i

d > 1 dimensions

- For each dimension $\hat{f} = \sum \dots$
- Tensor product over all dimensions $\prod \hat{f}(x)$

$$\underbrace{\sum_{i} \alpha_{i} \phi_{i}(\mathbf{x}_{1})}_{d=1} \cdot \underbrace{\sum_{j} \alpha_{j} \phi_{j}(\mathbf{x}_{2})}_{d=2} \cdot \dots$$

Full grid with d = 2

Full grid discretization $\hat{f}_1(x_1) \cdot \hat{f}_2(x_2)$

Summary

- Girdpoints $i \in \{1..2^l\}$ defining $\phi_i(x)$
- For each dimension: sum over basisfunctions $\hat{f}(x) = \sum_i \alpha_i \phi_i(x)$
- For all dimensions: **product over dimensions** $\prod \hat{f}(x)$

Hirachial Basis

Hirachial basis (vs nodal basis)

- Grouping gridpoints into levels $I \in \{1, 2, 3 \dots\}$
- Basis function by index and level: $\phi_{I,i}(x)$

$$\hat{f}(x) = \sum_{I,i} \alpha_{I,i} \cdot \phi_{I,i}(x)$$

Hirachial Basis

Hirachial vs. nodal basis

Basis function subspaces

• Combination of levels through all dimensions

Hirachical gridpoints

Hirachical subspaces

Sparse grid – Changes

- Throwing away certain subspaces
- Finding those is a *a-priori* solvable optimization problem
- The resulting gird is now sparse

Profit

- Reducing the computational effort "a lot"
- Maintaining "high" accuracy

A sparse grid

Boundry and smoothness

- Boundries need special treatment
- The function needs to be sufficient smooth
 D²f need to be bounded

Adaptivity

- A-posteriori modifications to better fit the function
- Picking a single gridpoint and adding level of detail around it
- Prone to overfitting and huge computational effort

Summary

- Hirachial basis through grouping gridpoints into levels
- · Creating "subspaces" through combination of levels in dimensions
- Selecting and combining subspaces

To keep in mind

- Smoothness requirement for f(x)
- Boundry treatment
- Accuracy–effort trade-off
- Adaptivity options (a-posteriori)