Analysis: Palindromic Factors

A simple way to test if a number is palindromic is to convert it to a string first and then check if the string equals its reverse. Since $\bf A$ has no more than 11 digits, we will assume that it is a constant time operation.

```
C++:
```

```
bool isPalindrome(long long a) {
    string s = to_string(a);
    string rev(s.rbegin(), s.rend());
    return s == rev;
}

Python:

def isPalindrome(a):
    s = str(a)
    rev = s[::-1]
    return s == rev

Java:

public static boolean isPalindrome(long a) {
    String s = Long.toString(a);
    StringBuilder rev = new StringBuilder(s);
    rev.reverse();
    return s.equals(rev.toString());
}
```

Test Set 1

For the small test set, we can afford to find all factors of \mathbf{A} by checking every integer $a \in \{1, 2, \dots, \mathbf{A}\}$. For each factor of \mathbf{A} , we also check if it is a palindrome and increment the answer accordingly.

The time complexity of this brute-force solution is $O(\mathbf{A})$.

Test Set 2

Let a and b be two factors of \mathbf{A} such that $\mathbf{A}=ab$ and $a\leq b$. Then $a\leq \sqrt{\mathbf{A}}$. It follows that we can find all factors of \mathbf{A} by checking the first $\sqrt{\mathbf{A}}$ numbers only. For each factor $a\leq \sqrt{\mathbf{A}}$, the number $b=\frac{\mathbf{A}}{a}\geq \sqrt{\mathbf{A}}$ is also a factor of \mathbf{A} .

The time complexity of the optimized algorithm is $O(\sqrt{\mathbf{A}})$.