# 1 Introduction

# **Terminology**

**Cryptography:** the act or art of writing in secret characters.

**Cryptanalysis:** the analysis and deciphering of secret writings.

**Cryptology:** the scientific study of cryptography and cryptanalysis.

**Encryption:** method for encoding messages.

**Decryption:** method for decoding messages.

Plaintext: unencrypted message (in the clear).

Ciphertext: encrypted message.

## **Applications of Cryptography**

Example applications:

- 1. Secure communications
- 2. Digital Signatures
- 3. End-to-end encryption
- 4. Protecting data
- 5. Storing passwords
- 6. Online payment
- 7. Online auctions
- 8. Electronic voting
- 9. Digital cash
- 10. Blockchain

### **Encryption/Decryption**

Encryption is a means of transforming plaintext into ciphertext

• Under the control of a secret key

We write  $c = e_k(m)$ , where

- *m* is the plaintext
- *e* is the encryption function
- *k* is the secret key

Geoff Hamilton

• c is the ciphertext

Decryption  $m = d_k(c)$ , where

- d is public
- the secrecy of m given c depends totally on the secrecy of k
- each party needs access to the secret key
- This needs to be known to both sides, but needs to be kept secret

### **Participants**



- Alice and Bob: two parties who want to communicate securely.
- Eve: an eavesdropper who wants to listen/modify their communication.

#### **Adversarial Model**

The number of keys must be large to prevent exhaustive search Worst case assumptions - assume attacker has:

- Full knowledge of the cipher algorithm
- A number of plaintext/ciphertext pairs associated to the target key

### Kerchoff's Principle (1883)

System should be secure even if algorithms are known, as long as key is secret.

The cipher designer must play the role of the cryptanalyst:

- In practice ciphers are used which are believed to be strong
- All this means is that the best attempts of experienced cryptanalysts cannot break them.

#### **Attacks**

There are two basic types of attack:

- Passive
- Active

With a passive attack, information is accessed but not modified.

- An administrator reading mail messages being sent across the Internet.
- A hacker gaining access to information contained in bank accounts.

With an active attack, information or the system is modified.

- An administrator modifying mail messages.
- · A hacker withdrawing money from a bank account.

#### **Attacks**

Some example types of attack:

**Ciphertext only attack:** ciphertext known to the adversary (eavesdropping)

Known plaintext attack: plaintext and ciphertext are known to the adversary

**Chosen plaintext attack:** the adversary can choose the plaintext and obtain its encryption (for example, has access to the encryption system)

**Chosen ciphertext attack:** the adversary can choose the ciphertext and obtain its decryption

**Dictionary attack:** the adversary builds a dictionary of ciphertexts and corresponding plaintexts

**Brute force attack:** the adversary tries to determine the key by attempting all possible keys

### What is a secure system?

- Every system is susceptible to attack.
- Security is about ensuring that attacks will not be successful.
- A security mechanism prevents an attack from being successful.
  - A password can prevent unauthorized access to a computer.
  - A hand-written signature can prevent someone denying that they entered into a contract.
  - Watermarking in bank notes can prevent forgery.
- A security mechanism detects, prevents, or recovers from a attack.
- A secure system is one in which known threats have been considered and suitable security mechanisms have been incorporated to prevent successful attacks.

## Geoff Hamilton

#### **Trust**

- In any secure system, certain components need to be trusted.
- A trusted component is assumed to behave correctly, i.e., we do not need security mechanisms to prevent it misbehaving.
  - It is common to trust operators of secure systems.
  - It is common to trust software within secure systems.
  - Of course, such trust is based on operators being vetted and software having been assured.
- In general, the number of trusted components in a system should be as small as possible.
- It is common to have components that have limited trust.
  - For example, they may be trusted within a limited part of a system.
  - In addition, their actions may be audited.
- It is also common to divide trust between a number of components.
  - Certain actions may require a number of individuals to agree.
  - For example, cheques may require two signatures.

#### **Security Policies**

- To build a secure system we need to:
  - Assess threats.
    - \* What threats exist?
    - \* What is the cost if there is a successful attack?
  - Identify trusted components.
  - Determine appropriate security mechanisms to counter threats.
    - \* What mechanisms will work and what will they cost?
    - \* How will these various mechanisms work together?
  - Define procedures to ensure the correct operation of the system.
  - Define review and audit mechanisms.
- All this requires a security policy.
- A system is only secure relative to the security policy that it enforces.

### **Security Objectives**

These were originally summarised as the CIA triad:

- Confidentiality: keeping information secret from those not entitled to see it.
- Integrity: ensuring that information has not been altered.
- Availability: ensuring that information can be accessed in an appropriate timeframe.
  - This includes preventing denial of service (DoS) attacks.

The following security objectives are also important:

- Authentication:
  - Entity Authentication: ensuring that the purported identity of an entity is correct.
  - Message Authentication: ensuring that the purported source of information is correct.
- Non-repudiation: ensuring that an entity cannot deny a previous action.

Depending on the particular system, these security objectives can be met by using a combination of cryptographic and non-cryptographic security mechanisms.

# **Types of Security**

- Physical Security: most security is based on ensuring that the physical access to resources is restricted.
- Secrecy: by keeping the existence or details of a system secret, then it may be more secure.
- Personnel Security: personnel who build and operate secure systems need to be trusted.
- IT Security: non-cryptographic mechanisms used in computers, networks, etc.
- Cryptographic Security: mechanisms based on the use of cryptography.

## **Perfect Security**

Is perfect security possible?

- The security of a system is a negative attribute.
  - In general, it is impossible to demonstrate absolute security.
- Security mechanisms have limited applicability.
  - A security mechanism will only prevent a limited number of possible attacks.

Geoff Hamilton

- Security mechanisms have associated costs.
  - There is no point using security mechanisms that cost more than the outcome of a successful attack.
- In many circumstances, security requirements evolve.
  - Security is not a static attribute of a system and typically, security must be "tightened" as attacks occur or threats increase.
- Prevention verses Detection.
  - The ideal is to prevent attacks becoming successful.

Therefore, except for the most trivial of systems, there is no perfectly secure system.

### What is a Security Protocol?

- Let us assume that we are operating some system in an environment consisting of a collection of entities or players.
- Some of these entities will be good guys trying to achieve one or more security objectives as part of the system.
- Others will be bad guys trying to attack the system and overcome the security objectives.
- A security protocol is a description of how the good guys should interact with each other to achieve the stated security objectives.
- A security protocol should be able to achieve the security objectives no matter what attacks are mounted by the bad guys.

### **Security and Networks**

- A network is like any other system, except that it is distributed.
- In addition to being physically distributed, ownership may also be distributed.
- The internet is the prime example of the problems associated with network security.
- How can security be realized in such a chaotic environment?
  - The answer is to use security protocols based on cryptography.
- Is cryptography sufficient?
  - No cryptography is necessary, but it is not sufficient.
  - We still need to use other forms of security.