Minimal polynomial #definition

$$ext{Let } A \in \mathbb{F}^{n imes n} \ ext{Let } f(x) \in \mathbb{F}[x]$$

f is called a minimal polynomial of A if

A is it's root and there are no such polynomials of smaller degree

Minimal matrix polynomial is denoted as $m_A(x)$

Note: minimal polynomial is always monic

Existence and uniqueness of minimal polynomial #lemma

$$egin{aligned} \operatorname{Let} A &\in \mathbb{F}^{n imes n} \ \exists ! m_A(x) : m_A(A) = 0 \end{aligned}$$

Proof:

By Cayley-Hamilton theorem: $P_A(A) = 0$

 $P_A(x)$ is of degree n

Let
$$f = P_A(x)$$

Let us make n choices:

 $\text{Choice 1.} \not\exists \deg m_A < \deg f$

$$\text{Choice 2. } \exists m_A \in \mathbb{F}[x]: \deg m_A < \deg f \implies f = m_A$$

After n choices, f definitely contains the minimal polynomial

Let f, g be minimal polynomials of A

$$f(x) = x^k + \sum_{i=1}^{k-1} \alpha_i x^i$$

$$g(x) = x^k + \sum_{i=1}^{k-1} \beta_i x^i$$

$$\implies f(x)-g(x)\in \mathbb{F}_t[x]: t\leq k-1, rac{1}{lpha_t-eta_t}(f-g)(A)=0- ext{Contradiction!}$$

 $\Longrightarrow \boxed{\exists ! f \text{ minimal polynomial of } A}$

Minimal polynomial divides any polynomial with matrix as a root #lemma

$$egin{aligned} \operatorname{Let} A &\in \mathbb{F}^{n imes n} \ \operatorname{Let} f(x) &\in \mathbb{F}[x] : f(A) = 0 \end{aligned}$$
 $egin{aligned} \operatorname{Then} m_A(x) \mid f(x) \end{aligned}$

Proof:

Case 0. f = 0 and we are done

Case 1.
$$f \neq 0$$

$$\deg f \geq \deg m_A$$

$$\implies \exists q,r \in \mathbb{F}[x]: f(x) = q(x)m_A(x) + r(x)$$

$$\deg r(x) < \deg m_A$$

$$f(A) = q(A) \underbrace{m_A(A)}_{=0} + r(A) = 0$$

$$\implies r(A) = 0 \implies egin{cases} r = 0 \ rac{1}{lpha}r ext{ is a minimal polynomial} \ \implies r = 0 \implies \boxed{m_A \mid f} \end{cases}$$

Corollary:

$$m_A \mid P_A$$

 \implies Roots of $m_A(x)$ are roots of $P_A(x)$ and eigenvalues of A

Characteristic polynomial divides any polynomial to the power of n with matrix as a root #lemma

Let
$$A \in \mathbb{F}^{n \times n}$$

Let $f(x) \in \mathbb{F}[x] : f(A) = 0, \deg f \leq n$

Then $P_A \mid f^n$

Proof:

Let $f(x) = b_n x^n + b_{n-1} x^{n-1} + \dots$

Let $f(A) = 0$
 $P_A \mid f^n \iff f^n(x) = P_A(x) \cdot q(x)$
 $f^n(x) = \det(f(x)I)$
 $P_A(x) = \det(f(x)I)$
 $P_A(x) = \det(xI - A)$

If exists $B(x) : (xI - A)B(x) = f(x)I$
 $\Rightarrow \det((xI - A)B(x)) = \det(f(x)I)$
 $\Rightarrow P_A(x) \det(B(x)) = f^n(x)$

Let $B(x) = x^{n-1}B_{n-1} + \dots + xB_1 + B_0 \in \mathbb{F}[x]$
 $(xI - A)(x^{n-1}B_{n-1} + \dots + xB_1 + B_0) =$
 $= x^n B_{n-1} + x^{n-1}(B_{n-2} + \dots + xB_{n-1} + x^{n-2}(B_{n-3} - AB_{n-2}) + \dots$

$$\begin{cases} \text{Let } B_{n-1} = b_n I \\ \text{Let } B_{n-2} = AB_{n-1} + b_{n-1}I \end{cases}$$
 $\Rightarrow x^n B_{n-1} + x^{n-1}(B_{n-2} - AB_{n-1}) + x^{n-2}(B_{n-3} - AB_{n-2}) + \dots =$
 $= x^n (b_n I) + x^{n-1}(AB_{n-1} + b_{n-1}I - AB_{n-1}) + \dots =$
 $= f(x) \cdot I$
 $\Rightarrow \exists B(x) : P_A(x) \det(B(x)) = f^n(x)$

Corollary:
 $P_A \mid m_A^n$

Corollary of two lemmas above

Minimal polynomial contains all irreducible factors of P_A at least once and at most algebraic multiplicity of each factor \implies All eigenvalues of A are roots of m_A

Jordan block #definition

Matrix A is called a Jordan block with element α if

$$A \in \mathbb{F}^{n imes n}: A_{ij} = egin{cases} lpha & i = j \ 1 & i = j - 1 \ 0 & ext{otherwise} \end{cases}$$

Jordan block is denoted as $J_n(\alpha)$

$$egin{aligned} P_{J_n(lpha)}(\lambda) &= (\lambda-lpha)^n \ \mu_{J_n(lpha)}(lpha) &= n \ \gamma_{J_n(lpha)}(lpha) &= 1 \end{aligned}$$

Useful property:

$$(J_n(0)^k)_{ij} = egin{cases} 1 & i=j-k \ 0 & ext{otherwise} \end{cases}$$

$$egin{align} m_{J_n(lpha)}(\lambda) &= (\lambda-lpha)^k, 1 \leq k \leq n \ &\Longrightarrow m_{J_n(lpha)}(J_n(lpha)) = J_n(0)^k \ m_{J_n(lpha)} &= 0 \implies k = n \implies m_{J_n(lpha)} = P_{J_n(lpha)} \ \end{array}$$

Jordan form #definition

Let
$$A \in \mathbb{F}^{n imes n}$$

A is said to be a matrix in Jordan form if

A can be written as a diagonal block matrix

where each block on the diagonal is a Jordan block and all other blocks are 0

$$ext{e.g. } A = egin{pmatrix} J_2(3) & 0 & 0 \ 0 & J_1(3) & 0 \ 0 & 0 & J_3(5) \end{pmatrix} \in \mathbb{F}^{6 imes 6}$$

The common notation is: $A=J_2(3)\oplus J_1(3)\oplus J_3(5)$

Jordan decomposition theorem #theorem

Let
$$A \in \mathbb{F}^{n imes n}$$

- 1. $A \sim A_J \iff P_A ext{ is factorizable into linear factors over } \mathbb{F}$
- 2. A_J is unique up to the order of Jordan blocks
- Then 3. $\mu_A(\alpha)$ is the sum of sizes of Jordan blocks corresponding to eigenvalue α
- 4. $\gamma_A(\alpha)$ is the number of Jordan blocks corresponding to eigenvalue α
 - 5. Algebraic multiplicity of α in the minimal polynomial

is the largest size of Jordan block corresponding to eigenvalue α

Example:

$$egin{aligned} P_A(\lambda) &= (\lambda-3)^5(\lambda-1) \ m_A(\lambda) &= (\lambda-3)^2(\lambda-1) \ \gamma_A(3) &= 3 \ \end{pmatrix} \ \implies A_J &= egin{aligned} \int J_1(1) & 0 & 0 & 0 \ 0 & J_1(3) & 0 & 0 \ 0 & 0 & 0 & J_2(3) \ \end{pmatrix} \end{aligned}$$

Diagonalization and minimal polynomial #theorem

Let
$$A \in \mathbb{F}^{n imes n}$$

 $A \sim D \iff m_A ext{ is factorizable into distinct linear factors}$

$$egin{aligned} &\operatorname{Proof:} \ & \Longrightarrow \operatorname{Let} A \sim D \ \ & \Longrightarrow P_A(\lambda) = \prod_{i=1}^k (\lambda - lpha_i)^{\mu_A(lpha_i)} \ \ & \Longrightarrow m_A(\lambda) = \prod_{i=1}^k (\lambda - lpha_i)^{t_i}, t_i \leq \mu_A(lpha_i) \ \ & A_I = D \end{aligned}$$

 \implies Largest Jordan block corresponding to any eigenvalue of A is of size 1

$$\implies orall i \in [1,k]: t_i = 1 \implies \boxed{m_A(\lambda) = \prod_{i=1}^k (\lambda - lpha_i)}$$

 \longleftarrow Let m_A be factorizable into distinct linear factors

$$\implies m_A(\lambda) = \prod_{i=1}^k (\lambda - lpha_i) \ \ \implies P_A(\lambda) = \prod_{i=1}^k (\lambda - lpha_i)^{\mu_A(lpha_i)} \implies A \sim A_J$$

 \implies Largest Jordan block corresponding to any eigenvalue of A is of size 1

$$\implies A_J = D \implies \boxed{A \sim D}$$