THEORY AND FORMULAE SHEETS

AMRITANSH SINGH

8584

22025558019

Here's a concise theory and formula sheet for **Rectangular (Cartesian)**, **Cylindrical**, **and Spherical coordinate systems**, including their interconversion formulas

Theory

1. Rectangular (Cartesian) Coordinates

- Represented as (x, y, z).
- o Defines a point in a 3D space using three perpendicular axes:
 - **x**: Horizontal axis.
 - **y**: Vertical axis.
 - z: Depth axis.

2. Cylindrical Coordinates

- \circ Represented as (r, θ, z) .
- o A mix of 2D polar coordinates (r, θ) and the height z:
 - r: Radial distance from the origin to the point in the xy-plane.
 - **0**: Angle with the positive x-axis (measured in radians).
 - **z**: Same as the Cartesian z-coordinate.

3. Spherical Coordinates

- o Represented as (ρ, θ, φ).
- Fully defines a point in 3D space with:
 - **ρ**: Radial distance from the origin to the point.
 - **θ**: Same angular coordinate as in cylindrical coordinates (angle in xy-plane).
 - φ: Polar angle (angle between the radial vector and the positive z-axis).

Interconversion Formulas

1. Rectangular to Cylindrical

$$r=\sqrt{x^2+y^2}$$

$$heta = an^{-1}\left(rac{y}{x}
ight) \quad (heta \in [0,2\pi))$$

$$z = z$$

2. Cylindrical to Rectangular

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

3. Rectangular to Spherical

$$ho=\sqrt{x^2+y^2+z^2}$$

$$heta = an^{-1}\left(rac{y}{x}
ight)$$

$$\phi = \cos^{-1}\left(rac{z}{
ho}
ight)$$

4. Spherical to Rectangular

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

5. Cylindrical to Spherical

$$ho=\sqrt{r^2+z^2}$$

$$\phi = an^{-1}\left(rac{r}{z}
ight) \quad (z
eq 0)$$

$$\theta = \theta$$

6. Spherical to Cylindrical

$$r=
ho\sin\phi$$

$$z = \rho \cos \phi$$

$$\theta = \theta$$

ELECTRIC FIELD

Theory of Electric Field

1. Definition

- The **electric field** (E) at a point in space represents the force experienced per unit positive charge at that point.
- o It is a **vector quantity**, having both magnitude and direction

$$\mathbf{E} = rac{\mathbf{F}}{q}$$

 \mathbf{F} : Electric force (N)

q: Test charge (Coulombs, C)

Source

• Electric fields are produced by charges, either **point charges**, continuous charge distributions, or changing magnetic fields.

Electric Field Formulas

1. Electric Field Due to a Point Charge

$$\mathbf{E} = rac{1}{4\pi\epsilon_0}rac{q}{r^2}\hat{r}$$

- q: Source charge (C)
- r: Distance from the charge to the point of interest (m)
- \hat{r} : Unit vector pointing away (for q>0) or toward (for q<0) the charge.
- ullet ϵ_0 : Permittivity of free space, $8.85 imes 10^{-12}\,\mathrm{F/m}$.

2. Electric Field Due to a Continuous Charge Distribution

• Linear Charge Distribution (λ)

$$\mathbf{E} = rac{1}{4\pi\epsilon_0}\intrac{\lambda\,dl}{r^2}\hat{r}$$

• Surface Charge Distribution (σ)

$$\mathbf{E} = rac{1}{4\pi\epsilon_0}\intrac{\sigma\,dA}{r^2}\hat{r}$$

Volume Charge Distribution (ρ)

$$\mathbf{E} = rac{1}{4\pi\epsilon_0}\intrac{
ho\,dV}{r^2}\hat{r}$$

3. Electric Field on an Infinite Plane (Uniform Surface Charge Density)

$$\mathbf{E} = rac{\sigma}{2\epsilon_0}$$

σ: Surface charge density (C/m²).

4. Electric Field Due to a Dipole

• At an axial point:

$$\mathbf{E}=rac{1}{4\pi\epsilon_0}rac{2p}{r^3}$$

• At an equatorial point:

$$\mathbf{E}=rac{1}{4\pi\epsilon_0}rac{p}{r^3}$$

 $ullet p = q \cdot d$: Dipole moment, r: Distance from the dipole center.

5. Relationship Between Electric Field and Potential

The electric field is the negative gradient of the electric potential (V):

$$\mathbf{E} = -\nabla V$$

In 1D:

$$E_x = -rac{dV}{dx}$$

Key Properties

- 1. Electric field lines:
 - Emanate from positive charges and terminate on negative charges.
 - o Do not intersect.
 - Are denser where the field is stronger.
- 2. In a conductor in electrostatic equilibrium:
 - o Electric field inside = 0.
 - o Electric field at the surface is perpendicular.

1. Gradient

Theory

• The **gradient** of a scalar field f(x,y,z)f(x,y,z) is a vector field that points in the direction of the greatest rate of increase of fff and whose magnitude represents the rate of change of fff in that direction.

Formula

$$oldsymbol{
abla} f = rac{\partial f}{\partial x} \hat{i} + rac{\partial f}{\partial y} \hat{j} + rac{\partial f}{\partial z} \hat{k}$$

- ∇f : Gradient of f.
- ullet \hat{i},\hat{j},\hat{k} : Unit vectors along x,y,z directions.

2. Divergence

Theory

• The **divergence** of a vector field F(x,y,z)\mathbf{F}(x, y, z)F(x,y,z) measures the net rate of "outflow" of the field from a given point. It is a scalar.

Formula

$$oldsymbol{
abla}\cdot\mathbf{F}=rac{\partial F_x}{\partial x}+rac{\partial F_y}{\partial y}+rac{\partial F_z}{\partial z}$$

- $\nabla \cdot \mathbf{F}$: Divergence of the vector field \mathbf{F} .
- F_x, F_y, F_z : Components of **F**.

3. Curl

Theory

• The **curl** of a vector field $\mathbf{F}(x,y,z)$ measures the rotation or "circulation" of the field at a point. It is a vector.

Formula

$$oldsymbol{
abla} extbf{ iny F} = egin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ F_x & F_y & F_z \end{bmatrix}$$

Expanding the determinant:

$$oldsymbol{
abla} \mathbf{
abla} imes \mathbf{F} = \left(rac{\partial F_z}{\partial y} - rac{\partial F_y}{\partial z}
ight)\hat{i} + \left(rac{\partial F_x}{\partial z} - rac{\partial F_z}{\partial x}
ight)\hat{j} + \left(rac{\partial F_y}{\partial x} - rac{\partial F_x}{\partial y}
ight)\hat{k}$$

Relationships

- 1. Gradient-Divergence Identity
 - The divergence of a gradient of any scalar field $m{f}$ is the Laplacian:

$$abla \cdot (
abla f) =
abla^2 f$$

- 2. Divergence-Curl Identity
 - The divergence of a curl of any vector field ${f F}$ is always zero:

$$abla \cdot (
abla imes \mathbf{F}) = 0$$

- 3. Curl-Gradient Identity
 - The curl of a gradient of any scalar field f is always zero:

$$abla imes (
abla f) = 0$$

Theory of Electric Potential

- 1. Definition
 - The electric potential VVV at a point in space is the work done per unit positive charge to move the charge from a reference point (often infinity) to that point in an electric field.
 - o It is a scalar quantity.

$$V=rac{W}{q}$$

- ullet W: Work done (Joules, J).
- q: Charge (Coulombs, C).

2. Relation to Electric Field

• The electric field ${f E}$ is the negative gradient of the electric potential V:

$$\mathbf{E} = -\nabla V$$

• In one dimension:

$$E_x = -rac{dV}{dx}$$

3. Potential Energy

• The electric potential energy (U) of a charge q at a point with electric potential V:

$$U = qV$$

Electric Potential Formulas

1. Electric Potential Due to a Point Charge

$$V=rac{1}{4\pi\epsilon_0}rac{q}{r}$$

- q: Source charge (C).
- r: Distance from the charge to the point (m).
- ϵ_0 : Permittivity of free space ($8.85 imes 10^{-12} \, \mathrm{F/m}$).

2. Electric Potential Due to Multiple Charges (Superposition Principle)

$$V = \sum_{i=1}^n rac{1}{4\pi\epsilon_0} rac{q_i}{r_i}$$

• Sum the potentials from all charges at a point.

Key Notes

1. Potential is Relative

Electric potential is often measured relative to infinity, where V=0V = 0V=0.

2. Equipotential Surfaces

- o Surfaces where the electric potential is constant.
- o No work is required to move a charge along an equipotential surface.
- o Equipotential surfaces are perpendicular to electric field lines.

3. Sign of Potential

- o Positive for positive source charges.
- Negative for negative source charges.

4. Potential Gradient

o The steeper the potential gradient, the stronger the electric field

1. Infinite Cylinder

(a) Non-Conducting Cylinder (Uniform Charge Distribution)

- Charge Distribution: Uniform volume charge density (ho) within radius R.
- Using Gauss's Law, $\oint \mathbf{E} \cdot d\mathbf{A} = rac{q_{
 m enc}}{\epsilon_0}$:

Electric Field (E)

1. Inside the cylinder (r < R):

$$E=rac{
ho r}{2\epsilon_0}$$

- $q_{
 m enc} =
 ho \cdot \pi r^2 \cdot L$.
- 2. Outside the cylinder ($r \geq R$):

$$E=rac{
ho R^2}{2\epsilon_0 r}$$

• $q_{
m enc} =
ho \cdot \pi R^2 \cdot L$

Electric Potential (V)

1. Outside the cylinder ($r \geq R$):

$$V = rac{
ho R^2}{2\epsilon_0} \ln \left(rac{R}{r}
ight) + V_0$$

- ullet V_0 : Reference potential, often set to 0 at $r o\infty$.
- 2. Inside the cylinder (r < R):

$$V = rac{
ho}{4\epsilon_0} \left(R^2 - r^2
ight) + V_{
m surface}$$

(b) Conducting Cylinder

• All charge resides on the **surface** (uniform surface charge density σ).

Electric Field (E)

1. Inside the cylinder (r < R):

$$E = 0$$

- Electric field inside a conductor is zero in electrostatic equilibrium.
- 2. Outside the cylinder ($r \geq R$):

$$E=rac{\sigma}{\epsilon_0 r}$$

• Equivalent to the field of a line charge.

Electric Potential (V)

1. Outside the cylinder ($r \geq R$):

$$V=rac{\sigma}{\epsilon_0}\ln\left(rac{R}{r}
ight)+V_0$$

2. Inside the cylinder (r < R):

$$V = constant$$

• The potential is constant everywhere inside a conductor.

2. Sphere

(a) Non-Conducting Sphere (Uniform Charge Distribution)

- Charge Distribution: Uniform volume charge density (ρ) within radius R.
- Using Gauss's Law:

Electric Field (E)

1. Inside the sphere (r < R):

$$E=rac{
ho r}{3\epsilon_0}$$

- $q_{
 m enc}=rac{4}{3}\pi r^3
 ho$.
- 2. Outside the sphere ($r \geq R$):

$$E=rac{
ho R^3}{3\epsilon_0 r^2}$$

Electric Potential (V)

1. Outside the sphere ($r \geq R$):

$$V=rac{
ho R^3}{3\epsilon_0 r}+V_0$$

2. Inside the sphere (r < R):

$$V = rac{
ho}{6\epsilon_0} \left(3R^2 - r^2
ight) + V_{
m surface}$$

(b) Conducting Sphere

• All charge resides on the **surface** (uniform surface charge density σ).

Electric Field (E)

1. Inside the sphere (r < R):

$$E = 0$$

2. Outside the sphere ($r \geq R$):

$$E=rac{1}{4\pi\epsilon_0}rac{Q}{r^2}$$

Electric Potential (V)

1. Outside the sphere ($r \geq R$):

$$V=rac{1}{4\pi\epsilon_0}rac{Q}{r}$$

2. Inside the sphere (r < R):

3. Electric Potential Due to a Continuous Charge Distribution

• Linear Charge Distribution (λ)

$$V=rac{1}{4\pi\epsilon_0}\intrac{\lambda\,dl}{r}$$

Surface Charge Distribution (σ)

$$V=rac{1}{4\pi\epsilon_0}\intrac{\sigma\,dA}{r}$$

Volume Charge Distribution (ρ)

$$V=rac{1}{4\pi\epsilon_0}\intrac{
ho\,dV}{r}$$