OUTRAGEOUSLY LARGE NEURAL NETWORKS: THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff Dean

2017

Google Brain

Noam Shazeer

- 딥러닝 및 자연어 처리 분야
- Attention is All You Need의 공동저자
- Mixture-of-Experts(MoE) 개발
- T5 (Text-to-Text Transfer Transformer) 개발
- Character.Al 공동 창업

연구 배경 및 문제점

- 딥러닝 성능은 모델 크기와 데이터 양에 의해 결정
- 기존 모델은 모든 샘플에 대해 모든 파라미터를 사용 → **연산량 증가**
- 문제점:
 - 1) 연산량이 모델 크기에 비례하여 증가
 - 2) GPU 연산에서 branching이 비효율적
 - 3) 데이터 배치 크기가 작아지면 계산 효율성 저하
 - 4) 네트워크 대역폭이 병목이 될 가능성
 - 5) 전문가(Experts) 간 부하 균형 유지가 어렵다

1-1. Conditional Computation

- 딥러닝에서 데이터와 모델의 크기가 중요한 요소이다.
- 데이터가 충분히 크면 파라미터 수를 늘리면 예측 정확도가 향상된다.
- 기존의 모델(2017년 이전)은 모든 입력 데이터에 대해 전체 모델이 활성화 되었다.
- 기존의 연구들은 계산 비용 증가 없이 모델 용량을 늘리기 위한 Conditional Computation 개념이 제안되었다.
- Conditional Computation은 네트워크의 일부만 활성화되며 case별로 다르게 결정됨을 의미한다.

1-2. Sparsely-Gated Mixture-of-Experts Layer

- 해당 논문에서는 Sparsely-Gated Mixture-of-Experts (MoE) Layer를 도입하여 조건부 연산이 어떻게 효율적인가를 설명한다.
- MoE는 다수의 피드포워드 네트워크(전문가, experts)로 구성되며, 학습 가능한 **게이팅 네트워크**가 각 입력에 대해 사용할 전문가 조합을 결정한다.
- MoE를 **자연어 처리(NLP) 문제**에 적용하여 **언어 모델링(Language Modeling) 및** 기계 번역(Machine Translation)에서 성능을 크게 향상시킨다.

1-2. Sparsely-Gated Mixture-of-Experts Layer

1-3. Related Work on Mixtures of Experts

- MoE는 1991년 Jacobs 등에 의해 처음 소개 되었으며, 다양한 형태로 발전되어 옴
- SVM, Gaussain Process, Dirichlet Process 등을 기반으로 한 MoE 모델들이 제안됨
- 기존엔 MoE가 모델 전체의 최상위 레이어였지만, 해당 논문에서는 딥러닝 모델 내에 계층적으로 MoE를 적용하는 방식을 소개

2. The Structure of the Mixture-of-Experts Layer

2-1. Structure

- 여러 개의 Expert Networks와 Gating Network로 구성
- 입력 x가 주어지면, 게이팅 네트워크 G(x)가 $E_i(x)$ 에 대한 가중치를 계산

$$y = \sum_{i=1}^n G(x)_i E_i(x)$$

2. The Structure of the Mixture-of-Experts Layer

2-2. Gating Network

Simple Way

$$G_{\sigma}(x) = Softmax(x \cdot W_g)$$

Noisy Top-K Gating

$$G(x) = Softmax(KeepTopK(H(x), k))$$

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$$

$$KeepTopK(v,k)_i = \begin{cases} v_i & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$

3. Addressing Perfomance Challenges

3-1. Shrinking Batch Problem

- MoE 모델에서는 입력 데이터가 게이팅 네트워크를 통해 소수의 Experts에게만 분배됨 즉, 각 미니배치 내의 샘플이 **일부 전문가에게 집중**된다.
- 이로 인해 **활성화된 전문가의 미니배치 크기가 줄어드는 문제**가 발생합니다.
- 이는 GPU 및 병렬 처리에서 비효율적인 연산을 초래한다.

 $\frac{kB}{n} < b$, (B: 배치크기, n: 전문가 개수, k: 활성된 전문가)

3. Addressing Perfomance Challenges

3-1. Shrinking Batch Problem (solution.)

- 1. 데이터 병렬성과 모델 병렬성을 혼합하여 전문가당 배치 크기를 증가
 - 동일한 모델을 여러 GPU에서 동시에 실행하는 데이터 병렬학습
 - 전문가 네트워크를 특정 GPU에 할당하는 모델 병렬학습 (전문가 당 배치 크기의 증가)

2. Convolutionality

- MoE 레이어를 계층 사이에 삽입하여 **한 번 호출될 때 time steps의 데이터를 한번에 처리**한다.
- 3. RNN 기반 모델에서는 배치 크기를 늘리는 추가 최적화 기법을 적용
 - Gradient Checkpointing
 - Recomputing Forward Activations

3. Addressing Perfomance Challenges

3-2. Network Bandwidth

- 분산 환경에서 전문가 네트워크 간 데이터 이동량이 많으면 네트워크 병목 현상이 발생
- 해결책
 - Stationary Experts
 - 전문가의 Hidden layer 크기 증가
 - 계층적 MoE 구조 (1차 게이팅: 상위 전문가 선택, 2차게이팅: 세부 전문가 선택)
 - 배치 크기 최적화
 - 데이터 공유 최소화

4. Balancing Expert Utilization

4. Balancing Expert Utilization

- 게이팅 네트워크가 특정 전문가를 반복적으로 선택하면 문제가 발생한다.
- 해결책
 - Importance Loss

Load Balancing Loss

$$Importance(X) = \sum_{x \in X} G(x)$$

$$L_{importance}(X) = w_{importance} \cdot CV(Importance(X))^2$$

$$Load(X)_i = \sum_{x \in X} P(x, i)$$

$$L_{load}(X) = w_{load} \cdot CV(Load(X))^2$$

4. Balancing Expert Utilization

4. Balancing Expert Utilization

Table 6: Experiments with different combinations of losses.

$w_{importance}$	w_{load}	Test Perplexity	CV(Importance(X))	CV(Load(X))	$\frac{max(Load(X))}{mean(Load(X))}$
0.0	0.0	39.8	3.04	3.01	17.80
0.2	0.0	35.6	0.06	0.17	1.47
0.0	0.2	35.7	0.22	0.04	1.15
0.1	0.1	35.6	0.06	0.05	1.14
0.01	0.01	35.7	0.48	0.11	1.37
1.0	1.0	35.7	0.03	0.02	1.07

5-1. 1B Word Language Modeling Benchmark

5-2. 100B Word Google News Corpus

5-3. Machine Translation (Single Language)

Table 2: Results on WMT'14 En→ Fr newstest2014 (bold values represent best results).

Model	Test	Test	ops/timenstep	Total	Training
	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	2.69	40.35	85M	8.7B	3 days/64 k40s
MoE with 2048 Experts (longer training)	2.63	40.56	85M	8.7B	6 days/64 k40s
GNMT (Wu et al., 2016)	2.79	39.22	214M	278M	6 days/96 k80s
GNMT+RL (Wu et al., 2016)	2.96	39.92	214M	278M	6 days/96 k80s
PBMT (Durrani et al., 2014)		37.0			
LSTM (6-layer) (Luong et al., 2015b)		31.5			
LSTM (6-layer+PosUnk) (Luong et al., 2015b)		33.1			
DeepAtt (Zhou et al., 2016)		37.7			
DeepAtt+PosUnk (Zhou et al., 2016)		39.2			

Table 3: Results on WMT'14 En \rightarrow De newstest2014 (bold values represent best results).

Model	Test	Test	ops/timestep	Total	Training
	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	4.64	26.03	85M	8.7B	1 day/64 k40s
GNMT (Wu et al., 2016)	5.25	24.91	214M	278M	1 day/96 k80s
GNMT +RL (Wu et al., 2016)	8.08	24.66	214M	278M	1 day/96 k80s
PBMT (Durrani et al., 2014)		20.7			
DeepAtt (Zhou et al., 2016)		20.6			

Table 4: Results on the Google Production En→ Fr dataset (bold values represent best results).

Model	Eval	Eval	Test	Test	ops/timestep	Total	Training
	Perplexity	BLEU	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	2.60	37.27	2.69	36.57	85M	8.7B	1 day/64 k40s
GNMT (Wu et al., 2016)	2.78	35.80	2.87	35.56	214M	278M	6 days/96 k80s

5-3. Machine Translation (Multilingual)

Table 5: Multilingual Machine Translation (bold values represent best results).

	GNMT-Mono	GNMT-Multi	MoE-Multi	MoE-Multi vs.
				GNMT-Multi
Parameters	278M / model	278M	8.7B	
ops/timestep	212M	212M	102M	
training time, hardware	various	21 days, 96 k20s	12 days, 64 k40s	
Perplexity (dev)		4.14	3.35	-19%
French → English Test BLEU	36.47	34.40	37.46	+3.06
German → English Test BLEU	31.77	31.17	34.80	+3.63
Japanese → English Test BLEU	23.41	21.62	25.91	+4.29
Korean → English Test BLEU	25.42	22.87	28.71	+5.84
Portuguese → English Test BLEU	44.40	42.53	46.13	+3.60
Spanish → English Test BLEU	38.00	36.04	39.39	+3.35
English → French Test BLEU	35.37	34.00	36.59	+2.59
English → German Test BLEU	26.43	23.15	24.53	+1.38
English → Japanese Test BLEU	23.66	21.10	22.78	+1.68
English \rightarrow Korean Test BLEU	19.75	18.41	16.62	-1.79
English \rightarrow Portuguese Test BLEU	38.40	37.35	37.90	+0.55
English → Spanish Test BLEU	34.50	34.25	36.21	+1.96

6. Conclusion

6. Conclusion

• Conditional Computation을 활용하여 기존 DL 모델보다 높은 모델 용량을 효율적으로 학습

• Sparsely-Gated Mixtur-of-Experts 레이어를 적용하여 대규모 데이터에서 성능을 극적으로 향상시킴

• 언어모델 뿐만 아니라 이미지처리, 음성 인식에서도 사용 가능