Objetivo

Determinar la resistencia eléctrica de una muestra de 30 cables de cobre comunes y de uso cotidiano en función de su longitud y grosor, mediante la construcción de un modelo de regresión lineal múltiple, con el propósito de identificar la relación entre estas variables bajo las condiciones específicas de cables de cobre de aplicación habitual.

Registro

Número de obser- vaciones	<i>y</i> : Resistencia en Ohm	x_1 : Largo en cm	x_2 : Diámetro en cm
1	5.8	300	0.0163
2	2.9	50	0.0163
3	2.8	40	0.0163
4	2.4	30	0.0163
5	2.5	20	0.0163
6	4.2	10	0.0163
7	3.2	100	0.0326
8	2.6	90	0.0326
9	2.2	80	0.0326
10	2	70	0.0326
11	2	60	0.0326
12	2	50	0.0326
13	2.6	10	0.0326
14	2.1	150	0.0129
15	2.2	140	0.0129
16	2	130	0.0129
17	2.1	120	0.0129
18	2	110	0.0129
19	2	100	0.0129
20	2.1	90	0.0129
21	2.4	80	0.0129
22	2	70	0.0129
23	2.1	60	0.0129
24	2	50	0.0129
25	2.2	40	0.0129
26	2.4	30	0.0129
27	2.6	20	0.0129
28	2.7	10	0.0129
29	2.4	20	0.001

30	2.4	10	0.001
• •		- 0	0.002

i	y_i	<i>x</i> ₁	x_2 : Diámetro en cm
1	5.8	300	0.0163
2	2.9	50	0.0163
3	2.8	40	0.0163
4	2.4	30	0.0163
5	2.5	20	0.0163
6	4.2	10	0.0163
7	3.2	100	0.0326
8	2.6	90	0.0326
9	2.2	80	0.0326
10	2	70	0.0326
11	2	60	0.0326
12	2	50	0.0326
13	2.6	10	0.0326
14	2.1	150	0.0129
15	2.2	140	0.0129
16	2	130	0.0129
17	2.1	120	0.0129
18	2	110	0.0129
19	2	100	0.0129
20	2.1	90	0.0129
21	2.4	80	0.0129
22	2	70	0.0129
23	2.1	60	0.0129
24	2	50	0.0129
25	2.2	40	0.0129
26	2.4	30	0.0129
27	2.6	20	0.0129
28	2.7	10	0.0129
29	2.4	20	0.001
30	2.4	10	0.001