Chapitre 8 : Produit scalaire

Ref [Déclic 1ière spé math $_$ p 243] / [COURS DE MATHEMATIQUES 2^e Collection racine VUIBERT 1981]

5 avril 2025

Introduction: (Fiche d'exercices rappels sur les vecteurs)

1 Produit scalaire dans le plan

1.1 Définitions

Définition 1 (Norme d'un vecteur)

Soit A et B deux points du plan. On note $\vec{u} = \vec{AB}$, le vecteur qui vas de A à B. La norme du vecteur \vec{u} est la distance AB. On la note $||\vec{u}||$

Remarque : Dans un repère orthonormé (O, \vec{i}, \vec{j}) , on considère $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$. On a alors :

$$||\vec{u}|| = \sqrt{x^2 + y^2}$$

Faire visualisation (utilisation du théorème de pythagore)

Exemple: 1.1 On considère $\vec{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$. On a alors :

$$||\vec{u}|| = \sqrt{3^2 + 2^2} = \sqrt{13}$$

Définition 2 (Produit scalaire)

Soit $\vec{u} = \vec{AB}$ et $\vec{v} = \vec{AC}$ deux vecteurs. On note $\theta = \widehat{BAC}$ l'angle dans le sens trigonométrique de ces deux vecteurs.

On définit le produit scalaire de \vec{u} et \vec{v} , noté $\vec{u} \cdot \vec{v}$, comme :

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times cos(\theta)$$

Ou encore on peut noter : $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times cos(\widehat{BAC})$

Faire visualisation (illustration de l'angle θ entre \vec{u} et \vec{v})

Remarque:

- Si \vec{u} ou \vec{v} est nul, alors le produit scalaire $\vec{u} \cdot \vec{v}$ est égal à 0
- \bullet On note également le produit scalaire de \vec{u} et \vec{v} comme : $<\vec{u},\vec{v}>$

Propriété: 2.1 (Cas particulier important)

Soit \vec{u} et \vec{v} deux vecteurs non nuls du plan. On a :

- 1. Si \vec{u} et \vec{v} sont colinéaires de même sens alors : $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}||$
- 2. Si \vec{u} et \vec{v} sont colinéaires de sens contraire alors : $\vec{u} \cdot \vec{v} = -||\vec{u}|| \times ||\vec{v}||$

Preuve : C'est direct en remplaçant θ (l'angle entre \vec{u} et \vec{v}) par 0 et π

1.2 Orthogonalité et produit scalaire

Propriété: 2.2 (Une autre expression du produit-scalaire par le projeté orthogonal) Soit A,B et C trois points du plan. On note H le projeté orthogonal de C sur (AB). On a :

- $Si \ \vec{AB} \ et \ \vec{AH} \ sont \ de \ mêmes \ sens$; $\vec{AB} \cdot \vec{AC} = \vec{AB} \times \vec{AH}$
- Si \vec{AB} et \vec{AH} sont de sens opposés; $\vec{AB} \cdot \vec{AC} = -AB \times AH$

Preuve : • On se place dans le cas où \vec{AB} et \vec{AH} sont de mêmes sens.

Par définition du cosinus et du projeté orthogonal H de C sur (AB), on a :

$$cos(\widehat{ABC}) = \frac{AH}{AC}$$

Donc $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times cos(\widehat{ABC}) = AB \times AC$

• On se place dans le cas où \overrightarrow{AB} et \overrightarrow{AH} sont de sens contraires.

On utilise le lemme suivant :

Lemme: $(-\vec{u}) \cdot \vec{v} = -(\vec{u} \cdot \vec{v})$

En effet, Par définition, comme $||\vec{u}|| = ||-\vec{u}||$, on a :

$$(-\vec{u}) \cdot \vec{v} = ||-\vec{u}|| \times ||\vec{v}|| \times cos(\widehat{-\vec{u},\vec{v}}) = ||\vec{u}|| \times ||\vec{v}|| \times cos(\widehat{-\vec{u},\vec{v}})$$

Or comme on le voit sur le dessin suivant, les deux vecteur \vec{u} et $-\vec{u}$ sont colinéaires de sens contraires, donc il forment un angle plat. D'où $-\vec{u}$, $\vec{u} = \pi$ et donc $-\vec{u}$, $\vec{v} = \pi - \theta$

Et par les formules de trigonométries on a : $cos(\pi - \theta) = -cos(\widehat{u}, \widehat{v})$. D'où :

$$(-\vec{u}) \cdot \vec{v} = -||\vec{u}|| \times ||\vec{v}|| \times \cos(\widehat{\vec{u}, \vec{v}}) = -(\vec{u} \cdot \vec{v})$$

Ici on a $\vec{AB} = -\vec{BA}$, on obtient donc par le lemme : $\vec{AB} \cdot \vec{AC} = (-\vec{BA}) \cdot \vec{AC} = -(\vec{BA} \cdot \vec{AC}) =$ $-BA \times AC = -AB \times AC$. (Car \overrightarrow{BA} et \overrightarrow{AC} sont de même sens)

Définition 3 (Vecteurs orthogonaux)

On dit que deux vecteurs non nuls \vec{u} et \vec{v} sont orthogonaux lorsque les droites qu'ils engendrent sont perpendiculaires.

Par convention, le vecteur nul est orthogonal à tout vecteur

Propriété: 3.1

Pour \vec{u} et \vec{v} deux vecteurs quelconques, on a :

 \vec{u} et \vec{v} sont orthogonaux $\Leftrightarrow \vec{u} \cdot \vec{v} = 0$

Exercices 1,2,3,4 p247

2 Propriétés du produit-scalaire

2.1 Symétrie et bilinéarité du produit scalaire

• Symétrie

Propriété: 3.2 (symétrie)

Pour tous \vec{u} et \vec{v} deux vecteurs du plan, on a :

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

On dit que le produit scalaire est symétrique

Preuve: En effet on a:

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\theta) = ||\vec{v}|| \times ||\vec{u}|| \times \cos(\theta) = \vec{v} \cdot \vec{u}$$

• Distributivité du produit-scalaire par rapport à l'addition

Propriété: 3.3

Soit \vec{u} , \vec{v} , \vec{w} trois vecteurs du plan, on a :

1.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

2.
$$(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$$

Preuve: On fait la preuve pour le 1) le cas 2) est analogue.

Soit A, B, C et D des points tels que : $\vec{u} = \vec{AB}$, $\vec{v} = \vec{AC}$ et $\vec{w} = \vec{CD}$.

On pose H et K les projetés orthogonaux de C et D sur la droite (AB) comme fait ci-dessous :

On obtient donc:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = AB \times AK$$

Par ailleurs

$$\vec{u} \cdot \vec{v} = AB \times AH$$
$$\vec{u} \cdot \vec{w} = AB \times HK$$

Or AK=AH+HK, donc:

$$\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} = AB \times AK$$

D'où:

$$\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} = \vec{u} \cdot (\vec{v} + \vec{w})$$

• Multiplication par un réel λ du produit-scalaire

Propriété: 3.4

Soit \vec{u} et \vec{v} deux vecteurs du plan, et λ un réel quelconque on a :

- 1. $\vec{u} \cdot k\vec{v} = k(\vec{u} \cdot \vec{v})$
- 2. $k\vec{u} \cdot \vec{v} = k(\vec{u} \cdot \vec{v})$

Preuve : On fait la preuve pour le 1) le cas 2) est analogue. On fait une distinction de cas :

- 1. Si $\vec{u} = \vec{0}$, $\vec{v} = \vec{0}$ ou k = 0 on montre facilement le résultat
- 2. On suppose $\vec{u} \neq \vec{0}$, $\vec{v} \neq \vec{0}$ ou $k \neq 0$. On pose les points A, B, C et D tels que $\vec{u} = \vec{AB}$, $\vec{v} = \vec{AC}$ et $\lambda \vec{v} = \vec{AD}$. Et on note H et K les projettés orthogonaux de C et D sur la droite (AB) comme fait ci-dessous :

On obtient donc:

$$\vec{u} \cdot \lambda \vec{v} = AB \times AK$$
 (*)
 $\vec{u} \cdot \vec{v} = AB \times AH$

On utilise le théorème de Thalès, on obtient les égalités suivantes :

$$\frac{AK}{AH} = \frac{AD}{AC}$$

Or $AD = \lambda \times AC$ par construction, donc $\frac{AD}{AC} = \frac{\lambda \times AC}{AC} = \lambda$. Donc finallement :

$$\frac{AK}{AH} = \lambda \Leftrightarrow AK = \lambda \times AH$$

En le remplaçant dans l'expression (*), on obtient le résultat voulu.

Remarque:

- 1. On peut résumer ces propriétés en disant que le produit scalaire est <u>symétrique</u> et <u>bilinéaire</u>. Pourquoi "bilinéaire" ?
 - "Linéaire" parceque l'on peut aussi voir le "produit-scalaire" comme une fonction appliquée sur un couple de vecteurs, et les propriétés énoncées sont par définition une conservation de la structure des vecteurs.
 - "Bi" parcequ'il est linéaire à gauche et à droite.
- 2. On peut voir une utilisation pratique de ces propriétés, le produit-scalaire vérifie les identités remarquables!

2.2 Carré scalaire et identitées remarquables du produit scalaire

Définition 4 (Carré scalaire)

On appelle carré scalaire du vecteur \vec{u} , noté \vec{u}^2 , le produit scalaire de \vec{u} par lui même

Propriété: 4.1 (Propriété direct du carré scalaire)

Pour tous vecteurs \vec{u} , on a:

$$\vec{u}^2 = ||\vec{u}||^2$$

Preuve : En effet, on a $\vec{u}^2 = \vec{u} \cdot \vec{u} = ||\vec{u}|| \times ||\vec{u}|| \times cos(0) = ||\vec{u}||^2$

Propriété: 4.2 (Les identités remarquables du produit-scalaire)

Pour tous \vec{u} et \vec{v} deux vecteurs du plan, on a :

1.
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$$
 (ou encore : $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$)

2.
$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2$$
 (ou encore : $||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 - 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$)

3.
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$
 (ou encore : $||\vec{u}||^2 - ||\vec{v}||^2$)

Remarque : Ici il faut faire attention à la notation du carré " \cdot 2" qui peut être au sens du produit-scalaire, ou du produit usuel

Exercice: 4.1

Soit \vec{u} et \vec{v} deux vecteurs de normes respectives 2 et 3 et tels que : $\vec{u} \cdot \vec{v} = 1$. Calculer :

- 1. $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v})$
- 2. $\vec{u} \cdot (\vec{u} + \vec{v})$
- β . $-2\vec{v}\cdot(3\vec{u}-\vec{v})$

2.3Produit scalaire et normes

Propriété: 4.3

Pour tous \vec{u} et \vec{v} deux vecteurs du plan :

$$\vec{u} \cdot \vec{v} = \frac{1}{2}(||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2) = \frac{1}{2}(||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2)$$

Preuve:

- 1. On développe $||\vec{u} + \vec{v}||^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$ et on utilise les propriétés de bilinéarité et symétrie du produit scalaire pour trouver le résultat
- 2. On développe $||\vec{u} \vec{v}||^2 = (\vec{u} \vec{v}) \cdot (\vec{u} \vec{v})$ et on utilise les propriétés de bilinéarité et symétrie du produit scalaire pour trouver le résultat

Corollaire: 4.1

Soit A,B et C trois points. On a:

$$\vec{AB} \cdot \vec{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$

Preuve : On utilise la propriété précédente $(\vec{u} \cdot \vec{v} = \frac{1}{2}(||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2)$ et on utilise la relation de Chasles

Exemple d'application :On considère un triangle ABC tel que AB=3, AC=5 et BC=6.

On a:

$$\vec{AB} \cdot \vec{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2) = \frac{1}{2}(3^2 + 5^2 - 6^2) = \frac{1}{2}(34 - 36) = -1$$

Produit scalaire en repère orthonormé

Propriété: 4.4

Propriete: 4.4

Dans un repère orthonormé (O, \vec{i}, \vec{j}) pour tous vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a:

$$\vec{u} \cdot \vec{v} = xx' + yy'$$

Preuve : On se place dans un repère $(0,\vec{i},\vec{j})$ et on considère les vecteurs $\vec{u}=\begin{pmatrix}x\\y\end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$.

On a donc : $\vec{u} = x\vec{i} + y\vec{j}$ et $\vec{v} = x'\vec{i} + y'\vec{j}$.

On utilise alors la bilinéarité du produit-scalaire, et l'orthogonalité de \vec{i} et \vec{j} pour conclure. En effet, on a:

Faire un dessin du repère orthonormé (O, \vec{i}, \vec{j}) et des vecteurs \vec{u}, \vec{v} dans ce repère.

3 Quelques applications du produit-scalaire

3.1 Une nouvelle approche du théorème de Pythagore

• Une nouvelle preuve au théorème de Pythagore

Théorème 4.1 (Pythagore)

On considère le triangle ABC, on a :

$$ABC$$
 est rectangle en $A \Leftrightarrow AB^2 + AC^2 = BC^2$

Preuve (par le produit-scalaire):

• " \Rightarrow " Soit ABC un triangle rectangle en A, donc $\vec{BA} \cdot \vec{AC} = 0$ et on a :

$$\vec{BC} = \vec{BA} + \vec{AC} \quad \Rightarrow \vec{BC}^2 = (\vec{BA} + \vec{AC})^2$$

$$\Leftrightarrow \vec{BC}^2 = \vec{BA}^2 + 2\vec{BA} \cdot \vec{AC} + \vec{AC}^2$$

$$\Leftrightarrow \vec{BC}^2 = \vec{BA}^2 + \vec{AC}^2$$

$$\Leftrightarrow ||\vec{BC}||^2 = ||\vec{BA}||^2 + ||\vec{AC}||^2$$

(Faire un dessin pour se convaincre)

• " \Leftarrow " Soit ABC un triangle quelconque qui vérifie $AB^2 + AC^2 = BC^2 *$. Or $\vec{BC} = \vec{BA} + \vec{AC}$. Donc en élevant au carré (au sens du produit scalaire) on a :

$$\vec{BC}^2 = \vec{BA}^2 + 2\vec{BA} \cdot \vec{AC} + \vec{AC}^2 \Leftrightarrow BA^2 + AC^2 + 2\vec{BA} \cdot \vec{AC}$$

Par identification avec la formule * on obtient :

$$2\vec{BA} \cdot \vec{AC} = 0$$

C'est-à-dire : \vec{BA} et \vec{AC} sont orthogonaux. Donc ABC est rectangle en A.

• Une généralisation au théorème de Pythagore : Les formules d'Al-Kashi

Théorème 4.2 (Les formules d'Al-Kashi)

Soit ABC un triangle quelconque:

On a alors les formules suivantes :

1.
$$a^2 = b^2 + c^2 - 2 \times b \times c \times \cos(\hat{A})$$

2.
$$b^2 = a^2 + c^2 - 2 \times a \times c \times cos(\hat{B})$$

3.
$$c^2 = a^2 + b^2 - 2 \times a \times b \times \cos(\hat{C})$$

Preuve: On ne montrera que la formule 1), les autres cas sont analoques.

On a
$$\vec{AB} \cdot \vec{AC} = c \times b \times \cos(\hat{A})$$
 et $\vec{AB} \cdot \vec{AC} = \frac{1}{2}(c^2 + b^2 - a^2)$

Donc
$$c \times b \times cos(\hat{A}) = \frac{1}{2}(c^2 + b^2 - a^2) \Leftrightarrow a^2 = b^2 + c^2 - 2 \times b \times c \times cos(\hat{A})$$

Exercice: 4.2 (Application des formules d'Al-Kashi)

- 1. On considère un triangle ABC qui vérifie : AB=4, AC=6 et $\widehat{BAC}=60^{\circ}$. Calculer la longueur BC. (On donnera une valeur arrondie au dixième.)
- 2. On considère un triangle ABC qui vérifie : AB=6, AC=5 et CB=4. Calculer la mesure de l'angle $\widehat{BAC} = 60$ au degré près.

Transformation de l'expression $\vec{MA} \cdot \vec{MB}$ 3.2

Propriété: 4.5

Soit deux points distincts A et B du plan et et I le milieu du segment [AB]. Pour tout point M du plan, on $a: \vec{MA} \cdot \vec{MB} = MI^2 - \frac{1}{4}AB^2$

Preuve : (la clef de la preuve est que I est le milieu du segment [AB])
On a
$$\vec{MA} \cdot \vec{MB} = (\vec{MI} + \vec{IA}) \cdot (\vec{MI} + \vec{IB}) \\ = \vec{MI} \cdot \vec{MI} + \vec{MI} \cdot \vec{IA} + \vec{IA} \cdot \vec{MI} + \vec{IA} \cdot \vec{BI}$$

Or on a : $\vec{MI} \cdot \vec{MI} = MI^2$; $\vec{IA} \cdot \vec{BI} = (-\frac{1}{2}\vec{AB}) \cdot (\frac{1}{2}\vec{AB}) = \frac{1}{4}AB^2$

Et $\vec{MI} \cdot \vec{IB} + \vec{IA} \cdot \vec{MI} = \vec{MI} \cdot \vec{IB} + \vec{MI} \cdot \vec{IA} = \vec{MI} \cdot (\vec{IB} + \vec{IA}).$

I étant le milieur de [AB] on a $\vec{IB} + \vec{IA} = \vec{0}$ D'où : $\vec{MI} \cdot \vec{0} = 0$

On obtient finalement : $\vec{MA} \cdot \vec{MB} = MI^2 - \frac{1}{4}AB^2$

Remarque: Ce qui est intéressant dans cette propriété c'est surtout le corollaire qui en découle. Une caractérisation du cercle!

Corollaire: 4.2

Soit deux points distincts A et B du plan et I le milieu du segment [AB]. On a pour tous points M:

L'ensemble des points M du plan tels que $\vec{MA} \cdot \vec{MB} = 0$ représentent les points du cercle de diamètre [AB] et de centre I.

Preuve: On a:

$$\vec{MA} \cdot \vec{MB} = 0 \Leftrightarrow MI^2 - \frac{1}{4}AB^2 = 0 \Leftrightarrow MI^2 = (\frac{1}{2}AB)^2 \Leftrightarrow MI = \frac{1}{2}AB)$$

Ainsi M vérifie, $\vec{MA} \cdot \vec{MB} = 0$, si et seulement si, M appartient au cercle de centre I et de rayan

FICHE RECAP: voir p 252 du manuel! Fiche