$11a_{364} (K11a_{364})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle u^{12} - u^{11} - 9u^{10} + 8u^9 + 29u^8 - 22u^7 - 40u^6 + 24u^5 + 22u^4 - 7u^3 - 5u^2 - 2u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 12 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \ I_1^u = \\ \langle u^{12} - u^{11} - 9u^{10} + 8u^9 + 29u^8 - 22u^7 - 40u^6 + 24u^5 + 22u^4 - 7u^3 - 5u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{11} - 8u^{9} + 22u^{7} - 24u^{5} + 7u^{3} + 2u \\ u^{11} + u^{10} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{11} - 8u^{9} + 22u^{7} - 24u^{5} + 7u^{3} + 2u \\ u^{11} + u^{10} + \dots + 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^7 24u^5 + 40u^3 16u 18$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7, c_8 c_9, c_{10}	$u^{12} + u^{11} + \dots + 2u + 1$
c_5, c_6, c_{11}	$u^{12} - u^{11} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7, c_8 c_9, c_{10}	$y^{12} - 19y^{11} + \dots - 14y + 1$
c_5, c_6, c_{11}	$y^{12} + 9y^{11} + \dots - 14y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.918662	-4.32682	-20.8190
u = 0.869352 + 0.224925I	-0.77801 - 3.34164I	-15.4899 + 4.8235I
u = 0.869352 - 0.224925I	-0.77801 + 3.34164I	-15.4899 - 4.8235I
u = -1.45905 + 0.09411I	-8.68176 + 4.52432I	-16.6614 - 3.3569I
u = -1.45905 - 0.09411I	-8.68176 - 4.52432I	-16.6614 + 3.3569I
u = 1.48275	-12.5580	-20.3090
u = -0.265128 + 0.394948I	2.75043 + 1.29945I	-9.45139 - 4.86548I
u = -0.265128 - 0.394948I	2.75043 - 1.29945I	-9.45139 + 4.86548I
u = 0.291792	-0.454596	-21.7250
u = 1.85950 + 0.02305I	18.1845 - 5.1402I	-16.9358 + 2.7955I
u = 1.85950 - 0.02305I	18.1845 + 5.1402I	-16.9358 - 2.7955I
u = -1.86522	14.1283	-20.0700

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7, c_8 c_9, c_{10}	$u^{12} + u^{11} + \dots + 2u + 1$
c_5, c_6, c_{11}	$u^{12} - u^{11} + \dots + 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7, c_8 c_9, c_{10}	$y^{12} - 19y^{11} + \dots - 14y + 1$
c_5, c_6, c_{11}	$y^{12} + 9y^{11} + \dots - 14y + 1$