Non-parametric tests

How to deal with Categorial data?
How to deal with cases where parametric assumptions are violated?

Selecting a statistical test

- Different tests are used according to the level of measurement:
 - Interval
 - Ordinal
 - Categorical
- Parametric vs non-parametric (makes no assumption on the population distribution or sample size) assumptions

Selecting a statistical test

- Different tests are used for varying amount of groups/conditions:
 - two samples
 - > two samples
- Different tests are used for related versus unrelated designs:
 - unrelated samples = between subjects designs
 - related samples = within subjects designs & matched pairs

Choosing a statistical test

This flowchart helps you choose among parametric tests

https://www.scribbr.com/statistics/statistical-tests/

	Predictor variable	Outcome variable	Research question example
Simple linear regression	Continuous1 predictor	Continuous1 outcome	What is the effect of income on longevity?
Multiple linear regression	Continuous2 or more predictors	Continuous1 outcome	What is the effect of income and minutes of exercise per day on longevity?
Logistic regression	• Continuous	• Binary	What is the effect of drug dosage on the survival of a test subject?

Regression tests

Regression tests look for **cause-and-effect** relationships. They can be used to estimate the effect of one or more continuous variables on another variable.

	Predictor variable	Outcome variable	Research question example
Paired t-test	Categorical1 predictor	Quantitativegroups come from the same population	What is the effect of two different test prep programs on the average exam scores for students from the same class?
Independent t-test	Categorical1 predictor	Quantitativegroups come from different populations	What is the difference in average exam scores for students from two different schools?
ANOVA	Categorical1 or more predictor	Quantitative1 outcome	What is the difference in average pain levels among post-surgical patients given three different painkillers?
MANOVA	Categorical1 or more predictor	Quantitative2 or more outcome	What is the effect of flower species on petal length, petal width, and stem length?

Comparison tests

Comparison tests look for **differences among group means**. They can be used to test the effect of a categorical variable on the <u>mean value</u> of some other characteristic.

<u>T-tests</u> are used when comparing the means of precisely two groups (e.g., the average heights of men and women). <u>ANOVA</u> and MANOVA tests are used when comparing the <u>means</u> of more than two groups (e.g., the average heights of children, teenagers, and adults).

https://www.scribbr.com/statistics/statistical-tests/

Correlation tests

Correlation tests **check whether variables are related** without hypothesizing a cause-andeffect relationship.

These can be used to test whether two variables you want to use in (for example) a multiple regression test are autocorrelated.

	Variables	Research question example
Pearson's r	 2 continuous variables 	How are latitude and temperature related?

Selecting a statistical test

Figure 23.1 Choosing an appropriate two-sample test.

	Predictor variable	Outcome variable	Use in place of
Spearman's <i>r</i>	 Quantitative 	 Quantitative 	Pearson's r
Chi square test of independence	• Categorical	 Categorical 	Pearson's <i>r</i>
Sign test	 Categorical 	 Quantitative 	One-sample <i>t</i> -test
Kruskal–Wallis <i>H</i>	Categorical3 or more groups	 Quantitative 	ANOVA
ANOSIM	Categorical3 or more groups	Quantitative2 or more outcome variables	MANOVA
Wilcoxon Rank-Sum test	Categorical2 groups	Quantitativegroups come from	Independent t- test
Wilcoxon Signed-rank test	Categorical2 groups	Quantitativegroups come from the same population	Paired t-test

Choosing a nonparametric test

Non-parametric tests don't make as many assumptions about the data, and are useful when one or more of the common statistical assumptions are violated. However, the inferences they make aren't as strong as with parametric tests.

Different types of tests

Test type	Between subjects designs (Independent samples)	Within subject designs (repeated measures/matched pairs)
Non-parametric (for categorical data)	Chi-square test	The binomial sign test
Non-parametric (for ordinal data)	Mann-Whitney U	Wilcoxon Signed-Rank Test The binomial sign test
Parametric	Unrelated t-test (level of data: interval)	Related t-test (level of data: interval)

Chi-Square Test

Theoretical categorical disribution vs
Observed categorical distribution

Weekend in college

preference for one brand

Chi-Square test

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Chi-Square Test - Applications

- Goodness-of-fit:
 - compare the observed sample distribution with the expected probability distribution
 - H_0 = no difference from a known population
- Chi-Square fit test:
 - determines how well theoretical distribution fits the empirical distribution
 - H_0 = no difference, equal proportions

Chi-Square Test - Applications

- Test for Independence (for two variables):
 - test *relationship* between two separate variables
 - H_0 = there is no relationship between the variables
 - eg: females prefer pepsi more than males

Chi-Square Test

Applications of Chi-square test

- Chi-square test is used to compare categorical variables. There are two type of chi-square test
 - 1. Goodness of fit test which determines if a sample matches the population.
 - 2. A chi-square fit test for two independent variables is used to compare two variables in a contingency table to check if the data fits.
 - The hypothesis being tested for chi-square is
 - Null: Variable A and Variable B are independent
 - Alternate: Variable A and Variable B are not independent.
- What to expect?
 - A small chi-square value means that data fits / variables independent
 - A high chi-square value means that data doesn't fit / variables not independent

Chi-Square test/goodness-offit

 H_0

M&Ms Color Distribution % according to their website

H₀: The color distribution is equal

revised H₀:

The color distribution is 13% brown, 13% red, 14% yellow, 24% blue, 20% orange, 16% green

Ha: The color distribution is different from 13% brown, 13% red, 14% yellow, 24% blue, 20% orange, 16% green

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

$$df = ?$$

$$\chi^2 = 12.94$$

$$\chi^2 = 1.53$$

$$H_0$$
?

Chi-Square distribution & df

- Degrees of freedom for goodness-of-fit
 - number of cells you would need to calculate all other cell values, assuming we know marginal values
- df = C-1, C = no. of categories

df = ?

https://www.khanacademy.org/math/statistics-probability/inference-categorical-data-chi-square-tests/chi-square-

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

9.488 13.277 18.467

11.070 15.086 20.515

12.592 16.812 22.458

14.067 18.475 24.322

15.507 20.090 26.125

16.919 21.666 27.877

18.307 23.209 29.588

5

9

10

df = 5

23.685 29.141

24.996 30.578

26.296 32.000

28.869 34.805

30.144 36.191

31.410 37.566

33.409

27.587

14

15

17

19

$$\chi^2 = 12.94$$

Degrees of Freedom (df)

- number of independent pieces of information that go into the estimate of a parameter
- df depends on
 - particular calculation you will be performing
 - what you already know before making calculation

H_{A:} artists typically tend to be Aries or Cancer

df = ?

H

Category	Observed	Expected
Aries	29	21.333
Taurus	24	21.333
Gemini	22	21.333
Cancer	19	21.333
Leo	21	21.333
Virgo	18	21.333
Libra	19	21.333
Scorpio	20	21.333
Sagittarius	23	21.333
Capricorn	18	21.333
Aquarius	20	21.333
Pisces	23	21.333

On 256 artists

Please submit on Moodle [07-Mar-2025]:

Is the Null Hypothesis Accepted or Rejected based on Chi-Square

Test

df=1 df=2 df=3 0.8 df=4 df=5 df=6 0.6 df=7 df=8 df=9 df=10 0.4 df=11 df=12 df=13 df=14 0.2 df=15 15 20 25 0 10 30

Chi-square Distribution Table

d.f.	.995	.99	.975	.95	.9	.1	.05	.025
1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02
2	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38
3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35
4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45
7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12

zodiac signs are evenly distributed across artists

Chi-Square test for independence

test *relationship* between two separate variables H_{01} = there is no relationship between extroversion and comfort level of dancing in public

test *difference* between two conditions H_{02} = there is no difference in comfort level of dancing in public between introverts and extraverts

Chi-Square (example) $\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$

	Extroverts	Introverts	TOTAL
Not comfortable	10	40	50
comfortable	40	10	50
TOTAL	50	50	100

observed frequencies of Introverts and Extroverts who say they would or would not feel comfortable dancing in public

	Extroverts	Introverts	TOTAL
Not comfortable	10	40	50
comfortable	40	10	50
TOTAL	50	50	100

expected frequencies if the null hypothesis were true?

row total × column total total *n* for table

	Extroverts	Introverts	TOTAL
Not comfortable	25 10	25 40	50
comfortable	25 40	10	50
TOTAL	50	50	100

observed and **expected** frequencies Introverts and Extroverts who say they would or would not feel comfortable dancing in public

	Extroverts	Introverts	TOTAL
Comfortable	10	40	50
Not Comfortable	40	10	50
TOTAL	50	50	100

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}}$$

$$\frac{(40-25)^2}{25} + \frac{(10-25)^2}{25} + \frac{(10-25)^2}{25} + \frac{(40-25)^2}{25}$$
9 + 9 + 9 + 9

$$\chi^2 = 36$$
 df=?

- Degrees of freedom for independence
 - number of cells you would need to calculate all other cell values, assuming we know marginal values

$$df = (R-1)(C-1)$$

$$df = (2-1)(2-1) = 1$$

- Our chi-square is significant
 - Introverts tend to feel more comfortable dancing in public compared to Extroverts (surprise!)
 - Cooked-up data!!

$$\chi^2 = 36$$
 H_0 REJECTED

Gender Study

H₀: There is no relationship between gender and willingness to use metal health services

H_{A1}: The distribution of reported willingness to use mental health services for males has proportions that are different from those in females

H₀: The distribution of reported willingness to use mental health services has the same proportions for males and females

H_{A:} The distribution of reported willingness to use mental health services for males has proportions that are different from those in females

Contingency Table

row total × column total total *n* for table

Willingness to Use Mental Health Services (n=150)

	No	Maybe	Yes	Total
Males	17 12	32 30	11 18	60
Female	13 18	43 45	34 27	90
Total	30	75	45	150

$$df = (R-1)(C-1)$$

df = 2

Note: How did we estimate "expected" values?

30 said NO - so we would expect equal distribution of 15 and 15. BUT only 40% are males so 40% of 30 makes it 12.

Gender Study

Willingness to Use Mental Health Services

$$\chi^2 = 8.23$$

$$df = 2$$

Males are less willing to use Mental Health Services

Effect Size

Phi =
$$sqrt(8.23/150)$$

= 0.23

Results showed a significant difference between males' and females' attitude toward using metal health services,

$$\chi^2$$
 (2, $n = 150$) = 8.23, $p < .05$, $V = 0.23$

Chi-Square Test and Correlation

Participant	Self- Esteem X	Academic Performance Y
A	13	73
В	19	88
C	10	71
D	22	96
E	20	90
F	15	82
. 0		-

	Level of Self-Esteem				
		High	Medium	Low	
Academic	High	17	32	11	60
Performance	Low	13	43	34	90
Establishment	grant sold	30	75	45	n = 150
Service of the service of		30	Manual Lay	51,148	

Chi-square and independent measures *t* and ANOVA

articipant	Self- Esteem X	Academic Performance Y
A	13	73
В	19	88
C	10	71
D	22	96
E	20	90
F	15	82
. 4		

		Level of Self-Esteem				
		High	Medium	Low		
Academic Performance	High	17	32	11	60	
	Low	13	43	34	90	
maja valitati	go n to shi	30	75	45	n = 150	

Median Test for Independent Samples

- non-parametric alternative to independent measures t-test (or ANOVA) to determine significant group differences
- H_0 = different samples come from population that share a common median

		Self-Ester ree Level				e	
Hi	gh	Name of Street	Me	dium		Lo	w
22	14	22	13	24	20	11	19
19	18	. 18	22	10	16	13	15
12	21	19	15	14	19	20	16
20	18	11	18	11	10	10	18
23	20	12	19	15	12	15	11

Median Test for Independent Samples

- calculate median for combined group (n = 40)
- within each group, perform median (17) split and fill contingency table

		Self-Ester ree Level			dren formance		
Hi	gh	Springer!	Me	dium		Lo	w
22	14	22	13	24	20	11	19
19	18	. 18	22	10	16	13	15
12	21	19	15	14	19	20	16
20	18	11	18	11	10	10	18
23	20	12	19	15	12	15	11

	Academic Performance				
	High	Medium	Low		
Above Median	8	9	3		
Below Median	2	11	7		

Median Test for Independent Samples

	Academic Performance				
	High	Medium	Low		
Above Median	8	9 10	3		
Below Median	2 5	11 10	7 5		

$$\chi^2 = 5.4$$
 df = 2 $\chi^2 = 5.99$ (p < .05)

—> not sufficient evidence to conclude that there are significant differences among the self-esteem for these three groups of students

Chi-Square test

Limitations

- Observations must be unique to one cell (Between subjects)
 - each person must fall into only one cell
 - not valid for within subject designs (repeated measures/matched pairs)
- Only frequencies can be studied, not means, percentages, ratios, etc.
- Low expected frequencies cause problems (should be ≥ 5)
 - loss of statistical power
- No group should contain less than 10 (or 5) (try to regroup instead)
- Not apt for low sample size.
- Informs of presence or absence (probability of occurrence) of association but doesn't measure strength of association

Can J Psychiatry. 1998 Oct;43(8):837-42.

Life after chi-squared: an introduction to log-linear analysis.

Streiner DL¹, Lin E.

Author information

1 Kunin-Lunenfeld Applied Research Unit, Baycrest Centre for Geriatric Care, North York, Ontario. dstreiner@rotman-baycrest.on.ca

Abstract

Chi-squared tests are used to examine the relationships among categorical variables. However, they are difficult to use and interpret when more than 2 variables are involved. In such cases, it is better to use a related statistic, called log-linear analysis. This article is an introduction to log-linear models, illustrating how they can be used to tease apart relationships among several variables in looking at the factors associated with photonumerophobia.

	Age catego	ry of car	
	New	Old	Total
Male drivers			
Behaviour at amber light			
Stopped	79	63	142
Did not stop	87	95	182
Total	166	158	324
Female drivers			
Behaviour at amber light			
Stopped	95	83	178
Did not stop	51	94	145
Total	146	177	323
Total old/new cars:	312	335	647

Table 18.15 Stopping behaviour of male and female drivers in old and new cars.

Log-Linear Analysis

- variable of interest is proportional or categorical
- have two or more options
- no assumptions of IV or DV

used for both hypothesis testing and model

building

Different types of tests (Summary)

Test type	Between subjects designs (Independent samples)	Within subject designs (repeated measures/matched pairs)
Non-parametric (for categorical data)	Chi-square	The binomial sign test
Non-parametric (for ordinal data)	Mann-Whitney U	Wilcoxon Signed-Rank test The binomial sign test
Parametric	Unrelated t-test (level of data: interval)	Related t-test (level of data: interval)