

Markscheme

May 2018

Chemistry

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Question				Answers			Notes	Total
1.	а	i			$a = 4 \times 1.01 + 2 \times 14.01 + 12.0$ $\frac{14.01}{0.07} \times 100 = 46.65 $	1 + 16.00» = 60.07 «g mol	⁻¹ » √	Award [2] for correct final answer. Award [1 max] for final answer not to two decimal places.	2
1.	а	ii	nitrogen»	»	AND lower N % «means higher o		nit of	Accept other reasonable explanations. Do not accept answers referring to safety/explosions.	1
1.	b				Electron geometry	Molecular geometry		Note: Urea's structure is more complex	
			N	itrogen	tetrahedral √	trigonal pyramidal √		than that predicted from VSEPR theory.	3
			C	Carbon	trigonal planar √	trigonal planar			
1.	С		` '	,	$0 \text{ dm}^3 \times 0.100 \text{ mol dm}^{-3}$ » = 5.00 $00 \times 10^{-3} \text{ mol} \times 60.07 \text{ g mol}^{-1}$ » =			Award [2] for correct final answer.	2
1.	d	i	$K_{c} = \frac{\left[\left(H_{c}\right)\right]}{\left[1\right]}$	$_{2}N)_{2}CO]\times [$ $NH_{3}]^{2}\times [CO]$	[H₂O] O₂] ✓				1
1.	d	ii		reases <i>Al</i>	VD reaction is exothermic				
			OR	orogogo Al	ND ALL in pagative				
			≪K _c » ded OR	reases AI	VD ∆H is negative				1
			«K _c » dec	reases <i>Al</i>	ND reverse/endothermic reaction	n is favoured √			

(Question 1d continued)

(Questi	on	Answers	Notes	Total
1.	d	iii	In $K = \frac{-\Delta G^{\Theta}}{RT} = \frac{-50 \times 10^{3} \text{ J}}{8.31 \text{ J K}^{-1} \text{ mol}^{-1} \times 298 \text{ K}} = -20 \checkmark$	Accept range of 20-20.2 for M1. Award [2] for correct final answer.	
			« K_c =» 2×10^{-9} OR 1.69×10^{-9} OR 10^{-9} ✓		2
1.	е	i	Any one of: urea has greater molar mass ✓ urea has greater electron density/greater London/dispersion ✓ urea has more hydrogen bonding ✓ urea is more polar/has greater dipole moment ✓	Accept "urea has larger size/greater van der Waals forces". Do not accept "urea has greater intermolecular forces/IMF".	1
1.	е	ii		Award [1] for each correct interaction. If lone pairs are shown on N or O, then the lone pair on N or one of the lone pairs on O MUST be involved in the H-bond. Penalize solid line to represent H-bonding only once.	2

(Question	Answers	Notes	Total
1.	f	$2(H_2N)_2CO(s) + 3O_2(g) \rightarrow 4H_2O(l) + 2CO_2(g) + 2N_2(g)$ correct coefficients on LHS \checkmark correct coefficients on RHS \checkmark	Accept $(H_2N)_2CO(s) + \frac{3}{2}O_2(g) \rightarrow$ $2H_2O(l) + CO_2(g) + N_2(g)$. Accept any correct ratio.	2
1.	g	$\text{«V} = \frac{0.600 \text{g}}{60.07 \text{g mol}^{-1}} \times 22700 \text{cm}^3 \text{mol}^{-1} = \text{»} 227 \text{«cm}^3\text{»} $ ✓		1
1.	h	lone/non-bonding electron pairs «on nitrogen/oxygen/ligand» given to/shared with metal ion ✓ co-ordinate/dative/covalent bonds ✓		2
1.	i	lone pairs on nitrogen atoms can be donated to/shared with C–N bond OR C–N bond partial double bond character OR delocalization «of electrons occurs across molecule» OR slight positive charge on C due to C=O polarity reduces C–N bond length ✓		1
1.	j	60: CON ₂ H ₄ + ✓ 44: CONH ₂ + ✓	Accept "molecular ion".	2

(Question		Answers	Notes	Total
1.	k		3450 cm ⁻¹ : N−H ✓ 1700 cm ⁻¹ : C=O ✓	Do not accept "O–H" for 3450 cm ⁻¹ .	2
1.	I	i	1 🗸		1
1.	I	ii	singlet ✓	Accept "no splitting".	1
1.	l	iii	acts as internal standard OR acts as reference point ✓ one strong signal OR 12 H atoms in same environment OR signal is well away from other absorptions ✓	Accept "inert" or "readily removed" or "non-toxic" for M1.	2

C	Questi	on	Answers	Notes	Total
2.	а		electrostatic attraction <i>AND</i> oppositely charged ions ✓		1
2.	b		multiply relative intensity by «m/z» value of isotope OR find the frequency of each isotope ✓ sum of the values of products/multiplication «from each isotope» OR find/calculate the weighted average ✓	Award [1 max] for stating "m/z values of isotopes AND relative abundance/intensity" but not stating these need to be multiplied.	2
2.	С		«promoted» electrons fall back to lower energy level ✓ energy difference between levels is different ✓	Accept "Na and Ca have different nuclear charge" for M2.	2
2.	d	i	Any two of: stronger metallic bonding ✓ smaller ionic/atomic radius ✓ two electrons per atom are delocalized OR greater ionic charge ✓ greater atomic mass ✓	Do not accept just "heavier" or "more massive" without reference to atomic mass.	2
2.	d	ii	delocalized/mobile electrons «free to move» ✓		1

C	Question		Answers	Notes	Total
2.	e		(i)		2
2.	f		pH > 7 √	Accept any specific pH value or range of values above 7 and below 14.	1

C	uesti	on	Answers	Notes	Total
2.	g	i	$sigma\ (\sigma)$: overlap «of atomic orbitals» along the axial/internuclear axis OR head-on/end-to-end overlap «of atomic orbitals» \checkmark $pi\ (\pi)$: overlap «of p-orbitals» above and below the internuclear axis OR sideways overlap «of p-orbitals» \checkmark	Award marks for suitable diagrams.	2
2.	g	ii	sigma (σ) : 3 AND pi (π) : 2 \checkmark		1

C	Questi	on	Answers	Notes	Total
3.	а	i	nickel/Ni «catalyst» ✓	Accept these other catalysts: Pt, Pd, Ir, Rh, Co, Ti.	
			high pressure OR heat ✓	Accept "high temperature" or a stated temperature such as "150 °C".	2
3.	а	ii	H H <td>Ignore square brackets and "n". Connecting line at end of carbons must be shown.</td> <td>1</td>	Ignore square brackets and "n". Connecting line at end of carbons must be shown.	1
3.	b		ethyne: $C_2H_2 + Cl_2 \rightarrow CHClCHCl \checkmark$ benzene: $C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl \checkmark$	Accept "C ₂ H ₂ Cl ₂ ".	2
3.	С	i	ΔH^{\ominus} = bonds broken − bonds formed \checkmark « ΔH^{\ominus} = 3(C≡C) − 6(C=C) _{benzene} / 3 × 839 − 6 × 507 / 2517 − 3042 =» −525 «kJ» \checkmark	Award [2] for correct final answer. Award [1 max] for "+525 «kJ»". Award [1 max] for: « $\Delta H^{\ominus} = 3(C = C) - 3(C - C) - 3(C = C) / 3 \times 839 - 3 \times 346 - 3 \times 614 / 2517 - 2880 = -363$ «kJ».	2

(continued...)

(Question 3c continued)

C	Questi	on	Answers	Notes	Total
3.	С	ii	$\Delta H^{\ominus} = \Sigma \Delta H_{\rm f} \text{ (products)} - \Sigma \Delta H_{\rm f} \text{ (reactants)} \checkmark$ $\ll \Delta H^{\ominus} = 49 \text{ kJ} - 3 \times 228 \text{ kJ} = \text{\textit{y}} -635 \text{ «kJ} \text{\textit{y}} \checkmark$	Award [2] for correct final answer. Award [1 max] for "+635 «kJ»".	2
3.	С	iii	$\Delta H_{\rm f}$ values are specific to the compound $\it OR$ bond enthalpy values are averages «from many different compounds» \checkmark		2
			condensation from gas to liquid is exothermic ✓	Accept "benzene is in two different states «one liquid the other gas»" for M2.	
3.	С	iv	« ΔS^{\ominus} = 173 − 3 × 201 = » −430 «J K ⁻¹ » ✓		1
3.	С	v	T = «25 + 273 =» 298 «K» ✓ ΔG^{Θ} « = -635 kJ - 298 K × (-0.430 kJ K ⁻¹)» = -507 kJ ✓ $\Delta G^{\Theta} < 0 \text{ AND } \text{spontaneous } \checkmark$	ΔG^{Θ} < 0 may be inferred from the calculation.	3
3.	d		equal C–C bond «lengths/strengths» OR regular hexagon OR «all» C–C have bond order of 1.5 OR «all» C–C intermediate between single and double bonds ✓	Accept "all C–C–C bond angles are equal".	1

C	Questic	on	Answers	Notes	Total
4.	а		Any two of: loss of mass «of reaction mixture/CO ₂ » ✓ «increase in» volume of gas produced ✓ change of conductivity ✓ change of pH ✓ change in temperature ✓	Do not accept "disappearance of calcium carbonate". Do not accept "gas bubbles". Do not accept "colour change" or "indicator".	2
4.	b	i	reaction is fast at high concentration <i>AND</i> may be difficult to measure accurately <i>OR</i> so many bubbles of CO₂ produced that inhibit contact of HCl (aq) with CaCO₃ (s) <i>OR</i> insufficient change in conductivity/pH at high concentrations <i>OR</i> calcium carbonate has been used up/is limiting reagent/ there is not enough calcium carbonate «to react with the high concentration of HCl» <i>OR</i> HCl is in excess <i>OR</i> so many bubbles of CO₂ produced that inhibit contact of HCl (aq) with CaCO₃ (s) ✓		1

(continued...)

(Question 4b continued)

Question	Answers	Notes	Total
4. b ii	22 20 18 16 16 17 19 10 10 10 10 10 10 10 10 10 10 10 10 10		1

(Question 4b continued)

Q	Question		Answers	Notes	Total
4.	b	iii	«directly» proportional ✓	Accept "first order" or "linear". Do not accept "rate increases as concentration increases" or "positive correlation".	1
4.	b	iv	rate = <i>k</i> [H ⁺] √	Accept "rate = k [HCl]".	1
4	b	v	0.02 ✓ s ⁻¹ ✓		2
4.	С		20.5×10^{-3} «mol dm $^{-3}$ s $^{-1}$ »	Accept any answer in the range 19.5–21.5.	1

Question		on	Answers	Notes	Total
4.	d	on	Answers ALTERNATIVE 1: carry out reaction at several temperatures ✓ plot $\frac{1}{T}$ against log rate constant ✓ $E_a = -$ gradient × R ✓ ALTERNATIVE 2: carry out reaction at two temperatures ✓ determine two rate constants OR determine the temperature coefficient of the rate ✓	Accept "gradient = $\frac{-E_a}{R}$ " for M3. Award both M2 and M3 for the formula $\ln \frac{rate_1}{rate_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right).$ Accept any variation of the formula,	Total 3
			use the formula $\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \checkmark$	such as $\frac{rate_1}{rate_2} = e^{-\frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$.	

Question		Answers	Notes	Total
5.	а	slower rate with ethanoic acid OR smaller temperature rise with ethanoic acid ✓	Accept experimental observations such as "slower bubbling" or "feels less warm".	
		 [H⁺] lower OR ethanoic acid is weak OR ethanoic acid is partially dissociated ✓ 		2
5.	b	Any one of: corrosion of materials/metals/carbonate materials ✓ destruction of plant/aquatic life ✓ «indirect» effect on human health ✓	Accept "lowering pH of oceans/lakes/waterways".	1
5.	С	Brønsted–Lowry base: $NH_3 + H^+ \rightarrow NH_4^+ \checkmark$ Lewis base: $NH_3 + BF_3 \rightarrow H_3NBF_3 \checkmark$	Accept "AlCl ₃ as an example of Lewis acid". Accept other valid equations such as $Cu^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2+}.$	2
5.	d	$[H^+] $	Accept "pH = 3.52". Award [2] for correct final answer. Accept other calculation methods.	2

Question		Answers	Notes	Total
5.	е	$(CH_3)_3CCOOH$ $(aq) + OH^-(aq) \rightarrow (CH_3)_3CCOO^ (aq) + H_2O$ (l)	Accept "HA" for the acid.	
		OR	Award [1 max] for correct explanations of buffering with addition	
		$(CH_3)_3CCOOH$ (aq) + OH^- (aq) \rightleftharpoons $(CH_3)_3CCOO^-$ (aq) + H_2O (l) AND addition of	of acid AND base without equilibrium	
		alkali causes equilibrium to move to right ✓	equations.	
				2
		$(CH_3)_3CCOO^ (aq) + H^+$ $(aq) \rightarrow (CH_3)_3CCOOH$ (aq)		
		OR		
		$(CH_3)_3CCOO^-$ (aq) + H ⁺ (aq) \rightleftharpoons (CH ₃) ₃ CCOOH (aq) AND addition of acid causes equilibrium to move to right \checkmark		

Question		n Answers	Notes	Total
6.	а	salt bridge ✓		_
		movement of ions OR balance charge ✓	Do not accept "to complete circuit" unless ion movement is mentioned for M2.	2
6.	b	Positive electrode (cathode): $Ag^{+}(aq) + e^{-} \rightarrow Ag(s) \checkmark$	Award [1 max] if correct equations given at wrong electrodes.	2
		Negative electrode (anode): $Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-} \checkmark$		
6.	С	in external wire from left to right ✓		1
6.	d	$\ll E = +0.80 \text{ V} - (-2.37 \text{ V}) = + \text{w} 3.17 \text{ eV} \text{w} \checkmark$		1
6.	е	«moles of silver = $\frac{0.10 \text{ g}}{107.87 \text{ g mol}^{-1}}$ » moles of magnesium = $\frac{0.5 \times 0.10 \text{ «g»}}{107.87 \text{ «g mol}^{-1}}$ ✓ «loss in mass of magnesium = $\frac{24.31 \text{ g mol} \times 0.5 \times 0.10 \text{ g}}{107.87 \text{ g mol}^{-1}}$ = » 0.011 «g» ✓	Award [2] for correct final answer.	2

Question		Answers	Notes	Total
7.	a	Any two similarities: heterolytic bond breaking OR chloride ions leave ✓ nucleophilic/OH⁻ substitution ✓ both first order with regard to [halogenoalkane] ✓ One difference: CH₃CH₂CH₂Cl is second order/bimolecular/S _N 2 AND (CH₃)₃CCl is first order/unimolecular/S _N 1 OR CH₃CH₂CH₂Cl rate depends on [OH⁻] AND (CH₃)₃CCl does not OR CH₃CH₂CH₂Cl is one step AND (CH₃)₃CCl is two steps OR (CH₃)₃CCl involves an intermediate AND CH₃CH₂CH₂Cl does not OR CH₃CH₂CH₂CH₂Cl has inversion of configuration AND (CH₃)₃CCl has c. 50 : 50 retention and inversion ✓	Do not accept "produces alcohol" or "produces NaCl". Accept "substitution in 1-chlorobutane and «some» elimination in 2-chloro-2-methylpropane".	3
7.	b	C–Br bond weaker than C–Cl bond ✓	Accept "Br - is a better leaving group". Do not accept "bromine is more reactive". Do not accept "C–Br bond is longer than C–Cl" alone.	1

Question		on	Answers	Notes	Total
7.	С	i	butan-1-ol/CH ₃ CH ₂ CH ₂ CH ₂ OH ✓	Do not accept "butanol" for "butan-1-ol". Accept "1-butanol". Do not penalize for name if correct formula is drawn.	1
7.	С	ii	«reduction with» lithium aluminium hydride/LiAlH₄ ✓	Do not accept "sodium borohydride/NaBH₄".	1
7.	С	iii	ester ✓		1