

مرور مباحث قبل

Loop Invariant

while (condition) { invariant I code

- Initialization
- Maintenance
- *Termination

مرتبه زماني

INSERTION-SORT(A) 1 for i = 2 to A, length // Insert A[j] into the sorted A[i+1] = key

- Best case
- Worst case
- Average

اهمیت طراحی اگوریتم

- کامپیوترها سریع هستند ولی نه بینهایت!
 - حافظه ارزان است ولی رایگان نیست!

منابع محدود و مشخص

مرتبسازي

Ex. Input: sequence 31, 41, 59, 26, 41, 58

Output: sequence 26, 31, 41, 41, 58, 59

درس طراحی الگوریتم (ترم اول ۱۰۰۱) | INTRODUCTION TO ALGORITHM

تحلیل زمانی مرتبسازی درجی

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	C_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = kev	$C_{\mathbf{R}}$	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

مثال مرتبسازی

Ex. Input: sequence 31, 41, 59, 26, 41, 58

Output: sequence 26, 31, 41, 41, 58, 59

درس طراحی الگوریتم (ترم اول ۱۴۰۱) NTRODUCTION TO ALGORITHM |

تحليل بهترين حالت

Best case | The array is already sorted

1	2	3	4	5	6
1	2	3	4	5	6

INSERTION-SORT (A)			times
1 f	or $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n - 1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n - 1
4	i = j - 1	c_4	n - 1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

تحلیل بدترین حالت

Worst case | The array is in reverse sorted order

1	2	3	4	5	6
6	5	4	3	2	1

```
INSERTION-SORT(A)
                                                      times
                                             cost
   for j = 2 to A. length
      key = A[i]
                                                     n-1
      // Insert A[j] into the sorted
           sequence A[1...j-1].
                                                     n-1
                                                     n-1
     i = i - 1
                                                     \sum_{j=2}^{n} t_j
      while i > 0 and A[i] > key
                                             c_6 \sum_{j=2}^{n} (t_j - 1) c_7 \sum_{j=2}^{n} (t_j - 1)
    A[i+1] = A[i]
      i = i - 1
     A[i+1] = key
```

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$
and
$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right).$$

بدترین زمان اجرا و زمان اجرای متوسط

• Worst-case running time:

- the longest running time for any input of size n:
 - Upper bound on the running time for any input
 - For some algorithms, the worst case occurs fairly often
 - The "average case" is often roughly as bad as the worst case

Average-case or expected running time:

- Technique of probabilistic analysis
- · Assume that all inputs of a given size are equally likely
- Difficult to analyze

متوسط زمان اجرای مرتب سازی درجی؟

تكنيكهاي طراحي الگوريتم و الگوريتمهاي تقسيم و حل

- Insertion sort: Incremental approach A[1..j-1] A[j] \rightarrow A[1..j]
- The divide-and-conquer approach:
 - Divide the problem into a number of subproblems (similar to original problem).
 - **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
 - **Combine** the solutions to the subproblems into the solution for the original problem.
- Recursive structure: to solve a given problem, they call themselves recursively one or more times to deal with closely related subproblems.

مثال تقسیم و حل: Merge Sort

Conquer

Combine

مثال تقسیم و حل: Merge Sort

Divide

Conquer

Combine

الگوریتم مرتبسازی ادغامی | Merge Sort

• Divide: Divide the n-elements sequence to

be sorted into two subsequences of

n/2 elements each

• Conquer: Sort the two subsequences recursi -vely using merge sort

• **Combine:** Merge the two sorted subsequences to produce the sorted answer.

Merge-Sort(A, p, r)			
1	if $p < r$		
2	$q = \lfloor (p+r)/2 \rfloor$		
3	Merge-Sort(A, p, q)		
4	Merge-Sort(A, q + 1, r)		
5	MERGE(A, p, q, r)		

الگوریتم مرتبسازی ادغامی | Merge Sort

```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
 2 \quad n_2 = r - q
   let L[1...n_1 + 1] and R[1...n_2 + 1] be new arrays
   for i = 1 to n_1
    L[i] = A[p+i-1]
    for j = 1 to n_2
    R[j] = A[q+j]
   L[n_1+1]=\infty
    R[n_2+1]=\infty
    i = 1
    for k = p to r
        if L[i] \leq R[j]
13
14
            A[k] = L[i]
15
           i = i + 1
     else A[k] = R[j]
16
            j = j + 1
```

11

س طراحی الگوریتم (ترم اول ۱ ه۱۰۰) INTRODUCTION TO ALGORITHM

الگوریتم مرتبسازی ادغامی | Merge Sort

```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
2 n_2 = r - q
 3 let L[1...n_1 + 1] and R[1...n_2 + 1] be new arrays
 4 for i = 1 to n_1
   L[i] = A[p+i-1]
   for j = 1 to n_2
    R[j] = A[q+j]
  L[n_1+1]=\infty
   R[n_2+1]=\infty
10 i = 1
    i = 1
    for k = p to r
                                           L[1..n_1+1]
                             A[p .. k-1]
        if L[i] \leq R[j]
                                           R[1..n_2+1]
            A[k] = L[i]
                                 L[i]
           i = i + 1
      else A[k] = R[j]
                                 R[j]
            j = j + 1
```


مثال مرتبسازی ادغامی

تحلیل زمانی الگوریتمهای تقسیم و حل

- Divide: $D(n) = \Theta(1)$.
- **Conquer:** solve two subproblems, each of size n/2, which contributes 2T (n/2) to the running time.
- Combine: the MERGE procedure on \square an n-element subarray takes time $\Theta(n)$, so $C(n) = \Theta(n)$.

$$T(n) = \begin{cases} \theta(1) & \text{if } n = 1 \\ 2 T(n/2) + \theta(n) & \text{if } n > 1 \end{cases}$$

$\Theta(1) \begin{array}{c} n_1 = q - p + 1 \\ n_2 = r - q \end{array}$

 $n_2 = r - q$ let $L[1 ... n_1 + 1]$ and $R[1 ... n_2 + 1]$ be new arrays

for i = 1 to n_1 L[i] = A[p + i - 1]for j = 1 to n_2 R[j] = A[q + j] $L[n_1 + 1] = \infty$ $R[n_2 + 1] = \infty$

j = 1 $\mathbf{for} \ k = p \ \mathbf{to} \ r$ $\mathbf{if} \ L[i] \le R[j]$ A[k] = L[i] i = i + 1 $\mathbf{else} \ A[k] = R[j]$

MERGE-SORT(A,p,r)

 $\begin{array}{ccc} & \text{if } p < r \\ & q = \lfloor (p+r)/2 \rfloor \\ & \text{MERGE-SORT}(A,p,q) \\ & \text{T(n/2)} & \text{MERGE-SORT}(A,q+1,r) \\ & \Theta(\mathbf{n}) & \text{MERGE}(A,p,q,r) \end{array}$

تحلیل زمانی با درخت بازگشتی

$$T(n) = \begin{cases} \theta(1) & \text{if } n = 1 \\ 2 T(n/2) + \theta(n) & \text{if } n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2 T(n/2) + cn & \text{if } n > 1 \end{cases}$$

تحلیل زمانی با درخت بازگشتی

تمرین: تحلیل زمانی روش تقسیم و حل

Use mathematical induction to show that when *n* is an exact power of 2, the solution of the recurrence

$$T(n) = \begin{cases} 2 & \text{if } n = 2, \\ 2T(n/2) + n & \text{if } n = 2^k, \text{ for } k > 1 \end{cases}$$

is $T(n) = n \lg n.$

راه حل تمرین

$$T(n) = \begin{cases} 2 & \text{if } n = 2, \\ 2T(n/2) + n & \text{if } n = 2^k, \text{ for } k > 1 \end{cases} \longrightarrow T(n) = n \lg n$$

The base case is when n = 2, and we have $n \lg n = 2 \lg 2 = 2 \cdot 1 = 2$.

For the inductive step, our inductive hypothesis is that $T(n/2) = (n/2) \lg(n/2)$. Then

$$T(n) = 2T(n/2) + n$$

= $2(n/2) \lg(n/2) + n$
= $n(\lg n - 1) + n$
= $n \lg n - n + n$
= $n \lg n$,

which completes the inductive proof for exact powers of 2.