실험 결과 보고서 (10주차)

1. 실험 제목 : Sine-Wave & Pulse Measurements

2. 실험 목적

- 가. Sine-Wave Measurements
 - 1) 오실로스코프를 이용해 Sine파의 주기와 주파수를 측정한다.
 - 2) 오실로스코프의 difference 기능을 이용해 ungrounded components를 측정한다.

나. Pulse Measurements

- 1) Pulse파의 rise time, fall time, pulse 반복 시간, pulse 폭, duty cycle을 측정한다.
- 2) Pulse파 측정의 한계를 설명한다.
- 3) 3% 정확도로 rise time을 측정하는데 필요한 오실로스코프의 대역폭을 계산한다.

3. 실험절차

가. 회로도

그림 1. Sine-wave & Pulse 측정 회로도

- 나. 실험절차 및 장비 셋팅 Sine-wave 축정
 - 1) 함수 발생기를 1.0 V_{pp} , 1.25kHz의 sine파로 설정한다.
 - 2) 화면에 완전한 cycle을 표시하기 위해 오실로스코프의 SEC/DIV 컨트롤을 0.1ms/div 로 설정한다.
 - 3) 오실로스코프의 결과를 통해 sine파의 주기를 측정하고 계산값과 비교한다.
 - 4) 주파수를 1.90 / 24.5 / 83.0 / 600.0kHz로 바꿔가며 1) ~ 3) 과정을 반복한다.
 - 5) 그림 \mathbb{I} 의 회로도를 구성한 후 함수 발생기의 V_{nn} 와 R_2 를 거친 V_{nn} 의 측정값과 계산 . 값을 비교한다.

다. 실험절차 및 장비 셋팅 - Pulse 측정

- 1) 그림 1 회로도를 구성한 후 함수 발생기를 pulse로 설정한다.
- 2) 오실로스코프의 화면 출력 값을 통해 Rise time, Fall time, 주기, 펄스폭, Percent duty cycle을 측정한다.

라. 사용기구 및 부품

- 1) 오실로스코프, 함수 발생기
- 2) 브레드 보드, 1.8kΩ 저항 2개

마. 팀원 역할 분담 내역

오실로스코프, 측정 및 계산, 사진 촬영 함수 발생기, 회로 구성

4. 실험결과

가. 결과표

1) Table 1 - Sine wave 측정

1) Table 1 One wave 48					
Function Generator Dial Frequency	Computed Period	Oscilloscope SEC/DEV	Number of Divisions	Measured Period	
1.25 kHz	0.8 ms	0.1 ms/div	8.0 div	0.8 ms	
1.90 kHz	0.53 ms	0.1 ms/div	5.25 div	0.525 ms	
24.5 kHz	0.04 ms	10 μs/div	4 div	40 µs	
83.0 kHz	12 µs	4 μs/div	3 div	12 µs	
600.0 kHz	1.6 ມຣ	0.4 µs/div	4.2 div	1.68 µs	

그림 2. 주파수에 따른 주기 계산 및 측정값

2) Table 2 - Sine wave 측정

	Function Gen	Voltage across R_1	Voltage across R_2	
Measured	Voltage $1.0 V_{pp}$		0.5 V _{pp}	
Computed	$1.0 V_{pp}$		$0.5 V_{pp}$	

그림 3. 그림 1에서의 V_{pp} 계산 및 측정값

3) Table 1 (2) - Pulse 측정

BW	100MHz
$t_{(r)}$	0.35/100MHz

크림 4. 오실로스코프 특성

4) Table 2 (2) - Pulse 측정

1) 14515 2 (2)		
Rise time, $t_{(r)}$	64ns	
Fall time, $t_{(r)}$	72ns	
Period, T	10ms	
Pulse width, $t_{(r)}$	5ms	
Percent duty cycle	50%	

그림 4. Pulse 측정값

나. 실험 사진

그림 5. 1.90kHz Sine파 모습

그림 6. 회로 사진 (그림 1 구현)

그림 6. 1.90kHz Sine파 Ch1. Ch2. 결과

그림 7. Pulse파 결과

그림 8. Pulse파 확대 결과

다. PSPICE 과제 1) 회로도

그림 9. Pulse 회로도

그림 10. Sine 회로도

그림 11. Pulse 회로 결과

그림 12. Sine 회로 결과

- 3) KVL 성립하는가?
 - 가) Pulse 회로
 - : 성립한다, 그래프에서 노랑색과 보라색 범례를 더하면 초록색 범례(source)가 되는 것을 알 수 있다.
 - 나) Sine 회로
 - : 마찬가지로 성립한다, 그래프에서 초록색과 빨강색 범례를 더하면 보라색 범례(source)가 되는 것을 알 수 있다.

라. A-9(1) EVALUATION AND REVIEW QUESTIONS

- 1) #2 Using the measured voltages in Table 2, show that Kirchhoff's voltage law is satisfied.
 - : R_1 과 R_2 저항 값이 서로 같고 R_2 에서 $0.5\,V_{pp}$ 로 측정되었기 때문에 R_1 에서도 $0.5\,V_{pp}$ 로 측정될 것임을 예상할 수 있다. 따라서 $V_{R_1}+V_{R_2}=V_{F.G}=1.0\,V_{PP}$ 이며, KVL이 만족함을 알 수 있다.
- 2) #3 An oscilloscope display shows one complete cycle of a sine wave in 6.3 divisions. The SEC/DIV control is set to 20 ms/div.
 - (a) What is the period? $\underline{6.3 \, div} \times 20 \, ms/div = 126 \, ms$
 - (b) What is the frequency? $\frac{1}{126 \, ms} = 7.9 \, Hz$
- 3) #4 You wish to display a 10 kHz sine wave on the oscilloscope. What setting of the sec/div control will show one complete cycle in 10 divisions?

SEC/DIV?
$$\frac{1}{10 \, kHz} = 0.1 ms$$
, $0.1 \, ms \div 10 \, div = 0.01 \, ms/div$

- 4) #5 Explain how to measure the voltage across an ungrounded component.
 - : 한 쪽의 전압 값과 반대 쪽의 전압 값을 각각 측정해 두 결과의 차로 측정한다.

마. A-9(2) EVALUATION AND REVIEW QUESTIONS

- 1) #1 Were any of the measurements limited by the bandwidth of the oscilloscope? If so, which ones?
 - : 오실로스코프 화면 우측 상단부의 위쪽에 보면 100MHz로 표시되어있다.
- 2) #2 If you need to measure a pulse with a predicted rise time of 10 ns, what bandwidth should the oscilloscope have to measure the time within 3%?
 - : rise time은 $10\%\sim 90\%$ 의 시간 값이므로 $10ns:80\%=t_{3\%}:3\%$ 이 비례식이 작성된다. 따라서 $0.375 \mathrm{ns}$ 이다.
- 3) #4 An oscilloscope presentation has the SEC/DIV control set to 2.0 ms/div and the X10 magnifier is OFF. Determine the rise time of the pulse shown in 2.
 - : Figure 2에서 rise time 구간인 $10\% \sim 90\%$ 사이는 4 div이므로, rise time은 $4 \, div \times 2.0 \, ms / div \equiv 8 \, ms$

Figure 2

바. 고찰 및 이론값 풀이

- 1) Sine파 실험(Table 1)에서 '주기는 주파수의 역수' 관계를 이용해 계산할 수 있었다. 측정값은 오실로스코프의 SEC/DEV 값과 눈으로 어림잡은 한 주계가 차지하는 Division 수를 곱하여 산출한다. 계산값과 측정값은 근소한 차이를 보였는데, 에는 오실로스코프에서 화면에 나오는 크레프를 보고 눈으로 측정했다는 점이 크게 작용했을 것으로 추측된다.
- 2) Sine파 두 번째 실험(Table 2)에서는 저항을 걸리는 V_{pp} 를 계산했는데, 이는 직류 전원에서 이용되던 Voltage Divider를 그대로 적용하여 계산할 수 있었다. 실험에 사용한 저항이 서로 같은 값을 가져 반감되었다. 측정값과 오차는 없었다.
- 3) Scope 특성에서 BW는 오실로스코프 화면 우측 상단에 표기된 최대 측정 가능 주파수를 외미한다. 실험에 사용된 오실로스코프의 BW값은 100MHz였다.
- 4) Pulse파 실험에서 파형을 확대하자 신호가 안정화되지 않아 정상적인 진행이 어려웠다. 브레드 보드도 교체해봤으나 여전히 깔끔한 신호가 trigger 되지 않았고 크나마 가장 괜찮은 상태에서 stop시켜 사진 촬영을 하였다.
- 5) 이번 실험은 물론 앞으로 있을 오실로스코프 이용 실험에서도 Scope 설정(Coupling, Probe, 옴)과 함수 발생기의 CH 버튼 점등 여부 등 장비 이해도에 따라 실험 시간에 많은 차이를 보일 것으로 생각됐다.