EE615: Control and Computation Lab

Exp 1: Rotary Inverted Pendulum

Design a swing up controller and stabilization controller for the inverted pendulum.

Suggested Steps (your choice)

Derive Non-linear Model

$$\begin{split} \frac{d^2}{dt^2} &\theta(t) = -\frac{M_p^2 g \, l_p^{\ 2} r \cos(\theta(t)) \, \alpha(t)}{(M_p \, r^2 \sin(\theta(t))^2 - J_{eq} - M_p \, r^2) \, J_p - M_p \, l_p^{\ 2} \, J_{eq}} \\ &- \frac{J_p \, M_p \, r^2 \cos(\theta(t)) \sin(\theta(t)) \left(\frac{d}{dt} \, \theta(t)\right)^2}{(M_p \, r^2 \sin(\theta(t))^2 - J_{eq} - M_p \, r^2) \, J_p - M_p \, l_p^{\ 2} \, J_{eq}} \\ &- \frac{J_p \, \tau_{output} + M_p \, l_p^{\ 2} \, \tau_{output}}{(M_p \, r^2 \sin(\theta(t))^2 - J_{eq} - M_p \, r^2) \, J_p - M_p \, l_p^{\ 2} \, J_{eq}} \\ &\frac{d^2}{dt^2} \, \alpha(t) = -\frac{l_p \, M_p \, (-J_{eq} \, g + M_p \, r^2 \sin(\theta(t))^2 \, g - M_p \, r^2 \, g) \, \alpha(t)}{(M_p \, r^2 \sin(\theta(t))^2 - J_{eq} - M_p \, r^2) \, J_p - M_p \, l_p^{\ 2} \, J_{eq}} \\ &- \frac{l_p \, M_p \, r \sin(\theta(t)) \, J_{eq} \left(\frac{d}{dt} \, \theta(t)\right)^2}{(M_p \, r^2 \sin(\theta(t))^2 - J_{eq} - M_p \, r^2) \, J_p - M_p \, l_p^{\ 2} \, J_{eq}} \\ &+ \frac{l_p \, M_p \, r \, \tau_{output} \cos(\theta(t))}{(M_p \, r^2 \sin(\theta(t))^2 - J_{eq} - M_p \, r^2) \, J_p - M_p \, l_p^{\ 2} \, J_{eq}} \\ &+ \frac{l_p \, M_p \, r \, \tau_{output} \cos(\theta(t))}{(M_p \, r^2 \sin(\theta(t))^2 - J_{eq} - M_p \, r^2) \, J_p - M_p \, l_p^{\ 2} \, J_{eq}} \end{aligned}$$

where the torque generated at the arm pivot by the motor voltage V_m is

$$\tau_{output} = \frac{K_t \left(V_m - K_m \left(\frac{d}{dt} \, \theta(t) \right) \right)}{R_m}$$

Notation

Symbol	Description	Value	Unit
M _p	Mass of the pendulum assembly (weight and link combined).	0.027	kg
l _p	Length of pendulum center of mass from pivot.	0.153	m
L_p	Total length of pendulum.	0.191	m
r	Length of arm pivot to pendulum pivot.	0.08260	m
J_{m}	Motor shaft moment of inertia.	3.00E-005	kg·m²
M _{arm}	Mass of arm.	0.028	kg
g	Gravitational acceleration constant.	9.810	m/s ²
$ m J_{eq}$	Equivalent moment of inertia about motor shaft pivot axis.	1.23E-004	kg⋅m²
J_p	Pendulum moment of inertia about its pivot axis.	1.10E-004	kg·m²
\mathbf{B}_{eq}	Arm viscous damping.	0.000	N·m/(rad/s)
B_p	Pendulum viscous damping.	0.000	N·m/(rad/s)
R _m	Motor armature resistance.	3.30	Ω
Kı	Motor torque constant.	0.02797	N⋅m
K _m	Motor back-electromotive force constant.	0.02797	V/(rad/s)

Design Swing-up control

- Method is your choice
- Study literature for suitable swing-up control
- Energy based Swing-up control (https://web.ece.ucsb.edu/~hespanha/ece229/references/AstromFurutaAUTOM00.pdf)

Linearize the model (for stay-up control)

State-Space Matrix	Expression	
A	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \frac{rM_{p}^{2}l_{p}^{2}g}{J_{p}J_{eq}+M_{p}l_{p}^{2}J_{eq}+J_{p}M_{p}r^{2}} & -\frac{M_{p}l_{p}g(J_{eq}+M_{p}r^{2})}{J_{p}J_{eq}+M_{p}l_{p}^{2}J_{eq}+J_{p}M_{p}r^{2}} & -\frac{M_{p}l_{p}g(J_{eq}+M_{p}l_{p}^{2})}{J_{p}J_{eq}+M_{p}l_{p}^{2}J_{eq}+J_{p}M_{p}r^{2}} & -\frac{M_{p}l_{p}g(J_{eq}+M_{p}l_{p}^{2})}{J_{p}J_{eq}+M_{p}l_{p}^{2}J_{eq}+J_{p}M_{p}l_{p}^{2}} & -\frac{M_{p}l_{p}g(J_{eq}+M_{p}l_{p}^{2})}{J_{p}J_{eq}+J_{p}M_{$	$-M_{p}l_{p}K_{t}rK_{m}$
В	$\begin{bmatrix} 0 \\ 0 \\ K_{t}(J_{p} + M_{p} l_{p}^{2}) \\ (J_{p} J_{eq} + M_{p} l_{p}^{2} J_{eq} + J_{p} M_{p} r^{2}) \\ M_{p} l_{p} K_{t} r \\ (J_{p} J_{eq} + M_{p} l_{p}^{2} J_{eq} + J_{p} M_{p} r^{2}) \end{bmatrix}$	
С	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	
D		

Design state-feedback controller

use LQR based controller design