

Redes e Infraestrutura conectada

Prof. Elton Dal Bem Galvão

• • • • •

- ✓ Protocolo de Internet IPv6;
- ✓ Exercícios.

Conteúdo formativo:

- Arquitetura de redes e meios de transmissão
- Comunicação em um Mundo
 Conectado
- Componentes, tipos e conexões
 de rede
- Redes sem fio e móveis
- Construindo uma Rede Doméstica
- Princípios de comunicação
- Mídia de rede
- A Camada de Acesso
- Protocolo de Internet (Internet Protocol IP)
- Endereçamento IPv4 IPv6
- Endereçamento dinâmico com DHCP
- Gateways para outras redes
- Resolução de Endereços
- Roteamento entre redes

- Camada de Transporte
- Serviços da Camada de Aplicação
- Utilitários de teste de rede
- Impactos ambientais relacionados à implantação de soluções computacionais
- Inovações tecnológicas sustentáveis
- TI Verde.
- Desenvolvimento de atividades práticas supervisionadas (APS);
- Desenvolvimento de atividades interdisciplinares, multidisciplinares e transdisciplinares.

O que vou aprender neste módulo?

• Objetivo do Módulo: Explicar os recursos do endereçamento IPv6.

Título do Tópico	Objetivo do Tópico
Problemas de IPv4	Explicar a necessidade do endereçamento IPv6.
Endereçamento IPv6	Explicar como representar endereços IPv6.

A Necessidade do IPv6

- Você já sabe que o IPv4 está ficando sem endereços. É por isso que você precisa aprender sobre IPv6.
- Projetado para ser o sucessor do IPv4, O IPv6 tem um espaço de endereço maior, de 128 bits, fornecendo 340 undecilhão (ou seja, 340 seguidos por 36 zeros) de endereços possíveis. No entanto, o IPv6 é mais do que, apenas, endereços maiores;
- Quando a IETF começou o desenvolvimento de um sucessor para o IPv4, aproveitou para corrigir as limitações do IPv4 e incluir aprimoramentos;
- Um exemplo é o ICMPv6 (Internet Control Message Protocol versão 6), que inclui a resolução de endereços e a configuração automática de endereços, não encontradas no ICMP para IPv4 (ICMPv4).

A Necessidade do IPv6

- O esgotamento de endereços IPv4 tem sido o fator motivador para a migração para o IPv6;
- À medida que África, Ásia e outras áreas do mundo ficarem mais conectadas à Internet, não haverá endereços IPv4 suficientes para acomodar esse crescimento;
- Conforme mostra a figura a seguir, quatro dos cinco RIRs estão com endereços IPv4 esgotados.

Datas de Esgotamento do IPv4 por RIR

A Necessidade do IPv6

- População mundial = 7,888 bilhões (2021);
- Dispositivos conectados à Internet = 27 bilhões (forbes.com);
- Qtdade endereçamento IPv4 = 4,3 bilhões (teórico);
- Qtdade endereçamento IPv6 = 340 undecilhão (34x10^38).

Coexistência entre IPv4 e IPv6

- Não há uma data exata para migrar para o IPv6.
- Tanto o IPv4 como o IPv6 coexistirão no futuro próximo e a transição levará vários anos;
- A IETF criou vários protocolos e ferramentas para ajudar os administradores de rede a migrarem as redes para IPv6;
- As técnicas de migração podem ser divididas em três categorias:
- 1. Pilha Dupla
- 2. Tunelamento
- 3. Conversão

Coexistência entre IPv4 e IPv6

- 1. Pilha Dupla
- A pilha dupla permite que IPv4 e IPv6 coexistam no mesmo segmento de rede;
- Os dispositivos de pilha dupla executam os protocolos IPv4 e IPv6 simultaneamente;
- Conhecido como IPv6 nativo, isso significa que a rede do cliente tem uma conexão IPv6 com seu ISP e é capaz de acessar o conteúdo encontrado na internet através de IPv6.

Coexistência entre IPv4 e IPv6

1. Pilha Dupla

Coexistência entre IPv4 e IPv6

2. Tunelamento

 Tunelamento é um método de transporte de pacote IPv6 através de uma rede IPv4. O pacote IPv6 é encapsulado dentro de um pacote IPv4, de forma semelhante a outros tipos de dados.

Coexistência entre IPv4 e IPv6

2. Tunelamento

Coexistência entre IPv4 e IPv6

3. Conversão

- O NAT64 (Network Address Translation 64) permite que os dispositivos habilitados para IPv6 se comuniquem com os dispositivos habilitados para IPv4 usando uma técnica de conversão semelhante ao NAT IPv4;
- Um pacote IPv6 é traduzido para um pacote IPv4 e um pacote IPv4 é traduzido para um pacote IPv6;
- Observação: O tunelamento e a tradução são para transição para IPv6 nativo e só devem ser usados quando necessário;
- O objetivo deve ser as comunicações IPv6 nativas da origem até o destino.

Coexistência entre IPv4 e IPv6

3. Conversão

Sistema de numeração hexadecimal

- Antes de abordar o endereçamento IPv6, é importante que você saiba que os endereços IPv6 são representados usando números hexadecimais;
- Este sistema numérico, de base dezesseis, usa os dígitos de 0 a 9 e as letras de A a F:

0123456789ABCDEF

 Nos endereços IPv6, esses 16 dígitos são representados por hextetos (discutidos a seguir), permitindo representar esses endereços enormes em um formato muito mais legível;

Sistema de numeração hexadecimal

- O primeiro passo para aprender sobre IPv6 em redes é entender a forma como um endereço IPv6 é escrito e formatado;
- Os endereços IPv6 são muito maiores do que os endereços IPv4, razão pela qual é improvável que fiquemos sem eles;
- Os endereços IPv6 têm 128 bits e são escritos como uma sequência de valores hexadecimais;
- Cada 4 bits são representados por um único dígito hexadecimal, totalizando 32 valores hexadecimais, como mostra a seguir;
- Os endereços IPv6 não diferenciam maiúsculas e minúsculas e podem ser escritos tanto em minúsculas como em maiúsculas.

Segmentos de 16 bits ou Hextets:

Formato Preferencial

- Como mostrado na anterior, o formato preferencial para escrever um endereço IPv6 é x: x: x: x: x: x: x: x, com cada "x" consistindo em quatro algarismos hexadecimais;
- O termo octeto refere-se aos oito bits em um endereço IPv4. No IPv6, um hexteto é o termo não oficial usado para se referir a um segmento de 16 bits ou quatro algarismos hexadecimais;
- Cada "x" é um único hexteto de 16 bits ou quatro dígitos hexadecimais;

Formato Preferencial

- Formato preferencial significa que o endereço IPv6 é gravado usando todos os 32 dígitos hexadecimais;
- Isso não significa necessariamente que é o método ideal para representar o endereço IPv6.

 A Figura abaixo tem exemplos de endereços IPv6 no formato preferencial:

```
2001 : 0db8 : 0000 : 1111 : 0000 : 0000 : 0000: 0200
2001 : 0db8 : 0000 : 00a3 : abcd : 0000 : 0000: 1234
2001 : 0db8 : 000a : 0001 : c012 : 9aff : fe9a: 19ac
2001 : 0db8 : aaaa : 0001 : 0000 : 0000 : 0000 : 0000
fe80 : 0000 : 0000 : 0000 : 0123 : 4567 : 89ab: cdef
fe80 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0001
fe80 : 0000 : 0000 : 0000 : 0123 : 4567 : 89ab: cdef

fe80 : 0000 : 0000 : 0000 : 0123 : 4567 : 89ab: cdef

0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0001
0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0001
```

 Existem duas regras que ajudam a reduzir o número de dígitos necessários para representar um endereço IPv6.

Regra 1 - Omitir zeros à esquerda

 A primeira regra para ajudar a reduzir a notação de endereços IPv6 é omitir os 0s (zeros) à esquerda de qualquer seção de 16 bits ou hexteto. Aqui estão quatro exemplos de maneiras de omitir zeros à esquerda:

> 01AB pode ser representado como 1AB 09f0 pode ser representado como 9f0 0a00 pode ser representado como a00 00ab pode ser representado como ab

- Essa regra se aplica somente aos 0s à esquerda, e NÃO aos 0s à direita;
- Caso contrário, o endereço ficaria ambíguo. Por exemplo, o hexteto "abc" poderia ser "0abc" ou "abc0", mas essas duas representações não se referem ao mesmo valor.

Tipo	Formato
Preferencial	2001 : 0 db8 : 000 0 : 1111 : 000 0 : 000 0 : 000 0 : 0 200
Sem 0s à esquerda	2001 : db8 : 0 : 1111 : 0 : 0 : 200
Preferencial	2001 : 0 db8 : 000 0 : 00 a3 : ab00 : 0 ab0 : 00 ab : 1234
Sem 0s à esquerda	2001 : db8 : 0 : a3 : ab00 : ab0 : ab : 1234
Preferencial	2001 : 0 db8 : 000 a : 000 1 : c012 : 90ff : fe90 : 000 1
Sem 0s à esquerda	2001 : db8 : a : 1 : c012 : 90ff : fe90 : 1
Preferencial	2001 : 0 db8 : aaaa : 000 1 : 000 0 : 000 0 : 000 0
Sem 0s à esquerda	2001 : db8 : aaaa : 1 : 0 : 0 : 0 : 0
Preferencial	fe80 : 000 0 : 000 0 : 0123 : 4567 : 89ab : cdef
Sem 0s à esquerda	fe80 : 0 : 0 : 123 : 4567 : 89ab : cdef
Preferencial	fe80 : 000 0 : 000 1
Sem 0s à esquerda	fe80 : 0 : 0 : 0 : 0 : 1
Preferencial	0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0001
Sem 0s à esquerda	0 : 0 : 0 : 0 : 0 : 1

Regra 2- Dois pontos duplos

- A segunda regra para ajudar a reduzir a notação de endereços IPv6 é que dois pontos duplos (::) podem substituir qualquer string única e contígua de um ou mais hextetos de 16 bits consistindo em zeros;
- Por exemplo, 2001:db8:cafe: 1:0:0:0:1 (0s iniciais omitidos) poderia ser representado como 2001:db8:cafe:1::1;
- Os dois-pontos duplos (::) são usados no lugar dos três hextetos compostos por zeros (0:0:0);
- Os dois-pontos duplos (::) só podem ser usados uma vez dentro de um endereço, caso contrário, haveria mais de um endereço resultante possível. Quando associada à técnica de omissão dos Os à esquerda, a notação do endereço IPv6 pode ficar bastante reduzida;
- É o chamado formato compactado.

Regra 2- Dois pontos duplos

Aqui está um exemplo do uso incorreto dos dois pontos duplos:

2001:db8::abcd::1234

- Os dois pontos duplos s\u00e3o usados duas vezes no exemplo acima;
- Aqui estão as possíveis expansões possíveis deste endereço de formato compactado incorretamente:

2001:db8::abcd:0000:0000:1234

2001:db8::abcd:0000:0000:0000:1234

2001:db8:0000:abcd::1234

2001:db8:0000:0000:abcd::1234

- Se um endereço tiver mais de uma string contígua de hextetos com zero, a melhor prática é usar dois pontos duplos (::) na string mais longa;
- Se as strings forem iguais, a primeira string deve usar dois pontos duplos (::).

Tipo	Formato
Preferencial	2001 : 0 db8 : 000 0 : 1111 : 000 0 : 000 0 : 000 0 : 0 200
Compactado/espaços	2001 : db8 : 0 : 1111 : : 200
Compactado	2001:db8:0:1111::200
Preferencial	2001 : 0 db8 : 000 0 : 000 0 : ab00 : 0000 : 0000
Compactado/espaços	2001 : db8 : 0 : 0 : ab00 ::
Compactado	2001:db8:0:0:ab00::

Preferencial	2001 : Odb8 : aaaa : 0001 : 0000 : 0000 : 0000
Compactado/espaços	2001 : db8 : aaaa : 1 ::
Compactado	2001:db8:aaaa:1::
Preferencial	fe80 : 0000 : 0000 : 0123 : 4567 : 89ab : cdef
Compactado/espaços	fe80 : : 123 : 4567 : 89ab : cdef
Compactado	fe80::123:4567:89ab:cdef
Preferencial	fe80 : 0000 : 0000 : 0000 : 0000 : 0000 : 0001
Compactado/espaços	fe80 : : 1
Compactado	fe80::1

Preferencial	0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0001
Compactado/espaços	:: 1
Compactado	::1
Preferencial	0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
Preferencial Compactado/espaços	0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 :

Atividade - Representações do Endereço IPv6

Instruções:

Formato preferencial	2001	0000	0db8	1111	0000	0000	0000	0200
Omitir zeros à esquerda								
Formato compactado								
Verifica	ar	Pr	óximo		Mostre-me		Redefi	inir

Atividade - Representações do Endereço IPv6

Instruções:

Formato preferencial	1031	1976	0001	0002	0003	0004	0000	0101
Omitir zeros à esquerda								
Formato compactado								
Verifica	ar	Pr	óximo		Mostre-me		Red	efinir

Atividade - Representações do Endereço IPv6

Instruções:

Formato preferencial	2001	0db8	ef01	2345	0678	0910	aaaa	bbbb
Omitir zeros à esquerda								
Formato compactado								
Verifica	Verificar Próximo			Mostre-me		Redet	inir	

Atividade - Representações do Endereço IPv6

Instruções:

Formato preferencial	2001	0000	0db8	1111	0000	0000	0000	0200
Omitir zeros à esquerda								
Formato compactado								
Verifica	Verificar Próximo			Mostre-me		Redefinir		

- Problemas de IPv4
- O esgotamento de endereços IPv4 tem sido o fator motivador para a migração para o IPv6;
- O IPv6 tem um espaço de endereços maior, de 128 bits, fornecendo 340 undecilhões de endereços possíveis;
- Quando a IETF começou o desenvolvimento de um sucessor para o IPv4, aproveitou para corrigir as limitações do IPv4 e incluir aprimoramentos;
- Um exemplo é o ICMPv6, que inclui resolução de endereços e configuração automática de endereços não encontrados no ICMPv4.

- Problemas de IPv4
- Ambos IPv4 e IPv6 coexistem e a transição para apenas IPv6 levará vários anos;
- A IETF criou vários protocolos e ferramentas para ajudar os administradores de rede a migrarem as redes para IPv6;

- Problemas de IPv4
- As técnicas de migração podem ser divididas em três categorias:
 pilha dupla, encapsulamento e tradução;
- Os dispositivos de <u>pilha dupla</u> executam os protocolos IPv4 e IPv6 simultaneamente.
- Tunelamento é um método de transporte de pacote IPv6 através de uma rede IPv4.

- Problemas de IPv4
- As técnicas de migração podem ser divididas em três categorias:
 pilha dupla, encapsulamento e tradução;
- O pacote IPv6 é <u>encapsulado</u> dentro de um pacote IPv4, de forma semelhante a outros tipos de dados.

- Problemas de IPv4
- As técnicas de migração podem ser divididas em três categorias:
 pilha dupla, encapsulamento e tradução;
- O NAT64 permite que dispositivos habilitados para IPv6 se comuniquem com dispositivos habilitados para IPv4 usando uma técnica de <u>tradução</u> semelhante ao NAT para IPv4;
- Um pacote IPv6 é traduzido para um pacote IPv4 e um pacote IPv4 é traduzido para um pacote IPv6.

- Endereçamento IPv6
- Os endereços IPv6 têm 128 bits e são escritos como uma sequência de valores hexadecimais;
- Cada quatro bits são representados por um único dígito hexadecimal; perfazendo um total de 32 dígitos hexadecimais;
- Os endereços IPv6 não diferenciam maiúsculas e minúsculas e podem ser escritos tanto em minúsculas como em maiúsculas;
- No IPv6, um hexteto que se refere a um segmento de 16 bits, ou quatro dígitos hexadecimais;
- Cada "x" é um único hexteto, que tem 16 bits ou quatro dígitos hexadecimais.

- Endereçamento IPv6
- <u>Formato preferencial</u> significa que o endereço IPv6 é gravado usando todos os 32 dígitos hexadecimais;
- Aqui está um exemplo -

```
fe80:0000:0000:0000:0123:4567:89ab:cdef.
```


O que aprendi neste módulo?

- Existem duas regras que ajudam a reduzir o número de dígitos necessários para representar um endereço IPv6:
- Regra 1 omitir zeros à esquerda Você só pode omitir zeros à esquerda, não zeros à direita.

01AB pode ser representado como 1AB

09f0 pode ser representado como 9f0

0a00 pode ser representado como a00

00ab pode ser representado como ab

- Existem duas regras que ajudam a reduzir o número de dígitos necessários para representar um endereço IPv6:
- Regra 2 dois pontos duplos
- Dois-pontos duplos (::) podem substituir qualquer sequência única e contígua de um ou mais hextetos de 16 bits que consistam em zeros;
- Por exemplo, 2001:db8:cafe: 1:0:0:0:1 (0s iniciais omitidos) poderia ser representado como 2001:db8:cafe:1::1
- Os dois-pontos duplos (::) são usados no lugar dos três hextetos compostos por zeros (0:0:0).

- Existem duas regras que ajudam a reduzir o número de dígitos necessários para representar um endereço IPv6:
- Regra 2 dois pontos duplos
- Os dois-pontos duplos (::) só podem ser usados uma vez dentro de um endereço, caso contrário, haveria mais de um endereço resultante possível;
- Se um endereço tiver mais de uma string contígua de hextetos com zero, a melhor prática é usar dois pontos duplos (::) na string mais longa;
- Se as strings forem iguais, a primeira string deve usar dois pontos duplos (::).

Sistema FIEP SESI SENAI IEL

OBRIGADO

eltondalbem@gmail.com