计算机视觉 Computer Vision

-- Matching 2

钟 凡

zhongfan@sdu. edu. cn

图像匹配

特征检测 特征匹配 运动估计

特征检测

特征匹配

特征=>特征描述

■ 将特征所在的局部图像块转换为一个描述特征的向量

对特征描述的要求

- 不变性 (Invariant)
- 区分性 (Distinctive, Discriminative)

- 没有明显的旋转、缩放等,只有小的对齐误差
- 需要考虑颜色的变化(光照、噪音、模糊)

光流 (Optical Flow)

$$q = M(p)$$

M

SSD (Sum of Square Difference)

$$ssd(P,Q) = \sum_{(x,y)} |P(x,y) - Q(x,y)|^2$$

M

SAD (Sum of Absolute Difference)

$$sad(P,Q) = \sum_{(x,y)} |P(x,y) - Q(x,y)|$$

M

NCC (Normalized Cross Correlation)

$$\operatorname{cc}(P,Q) = \langle P,Q \rangle$$

$$\operatorname{ncc}(P,Q) = \left\langle \frac{P}{\|P\|}, \frac{Q}{\|Q\|} \right\rangle$$

$$\operatorname{zncc}(P,Q) = \left\langle \frac{P - \overline{P}}{\|P - \overline{P}\|}, \frac{Q - \overline{Q}}{\|Q - \overline{Q}\|} \right\rangle$$

Census Transform

- 对图像块的二值编码
 - □ Non-parametric local transforms for computing visual correspondence, ECCV'1994.

120	127	97	\rightarrow	1	1	0
99	100	108		0		1
87	23	189		0	0	1

$$ct(P,Q) = CT(P) \text{ XOR } CT(Q)$$

BRIEF

■ BRIEF: Binary Robust Independent Elementary Features, ECCV'2010.

讨论

- 对光照颜色变化(加性、线性、仿射、噪音)的稳定性
- 对微小对齐误差的稳定性

考虑对齐误差

- Disadvantage of patches as descriptors:
 - > Small shifts can affect matching score a lot

Solution: histograms

58

Feature Descriptors: SIFT

- Scale Invariant Feature Transform
- Descriptor computation:
 - Divide patch into 4x4 sub-patches: 16 cells
 - Compute histogram of gradient orientations (8 reference angles)
 for all pixels inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "<u>Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

59

其它Histogram-based...

■ HOG

☐ Histograms of Oriented Gradients for Human Detection, CVPR'05

其它Histogram-based...

- Shape Context
 - ☐ Matching Shapes, ICCV'2001

PCA-SIFT

■ PCA-SIFT: A More Distinctive Representation for Local Image Descriptors, CVPR'2004.

SURF

■ SURF: Speeded Up Robust Features, ECCV'2006

缩放不变(Scale Invariant)

Automatic Scale Selection

Normalize: Rescale to fixed size

旋转不变(Rotation Invariant)

Rotation Invariant Descriptors

- Find local orientation
 - Dominant direction of gradient for the image patch

- Rotate patch according to this angle
 - This puts the patches into a canonical orientation.

SIFT主方向

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

SURF主方向

ORB主方向

- ORB: an efficient alternative to SIFT or SURF, ICCV'2011
- ORB=Orented-FAST and Rotated BRIEF

Intensity Centroid (亮度质心):

$$m_{pq} = \sum_{x,y} x^p y^q I(x,y)$$

$$C = \left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right)$$

$$\theta = \text{atan2}(m_{01}, m_{10})$$

小结

SIFT

□基于梯度直方图的主方向和特征描述

SURF

□基于小波梯度的主方向和特征描述

ORB

□ 基于亮度质心的主方向+基于BRIEF的特征描述

Detector	ORB	SURF	SIFT
Time per frame (ms)	15.3	217.3	5228.7

(时间消耗, ORB论文结果)

特征匹配 => 向量搜索

- BruteForce
- Hash-based
 - □ Local Sensitive Hash (LSH)
- Tree-based
 - **☐** Approximate Nearest Neighbor (ANN)
 - □ FLANN library

