2023/2024

Instalación y configuración del laboratorio virtual

Jesús Lorenzo Limon

Configurar las redes del laboratorio virtual	2
Adaptadores de red de las MVs:	2
Configuración de los nombres de las maquinas	2
Netplans y archivo .yaml	2
Configurar enrrutamiento	3
Configurar DNS	4
Configurar nombres y dominios	5
Configurar SSH en router	6
Configurar SSH en servidor	6
Configurar APACHE	6

Configurar las redes del laboratorio virtual

Importante: toda la configuración aquí albergada esta cogiendo de referencia una dirección personal, en caso de querer utilizar otra u tener otra deberás buscar la tuya propia para poder configurarlo a gusto.

Adaptadores de red de las MVs:

En el router, instalación de 3 adaptadores virtuales de red

- El externo, en modo puente.
- 2) Dos en modo red interno:
 - a. emp, que representa la red de empleados de la empresa
 - dmz, que representa la red de servidores de la empresa o DMZ (Demilitarized Zone).

En el cliente, un adaptador en modo red interna. La red se llama emp.

En el **servidor**, un adaptador en modo red interna. La red se llama **dmz**.

Configuración de los nombres de las maquinas

Modificamos el archivo encontrado en /etc/hostname en cada máquina. (Anotación, el cambio también deberíamos hacerlo en el archivo con ruta /etc/hosts)

Netplans y archivo .yaml

Empezando por el **router**, entramos en /etc/netplans/ y modificamos el archivo 00-network-manager-all.yaml y empezamos a configurar la red de la siguiente forma:

ROUTER

Empezando por el **router**, entramos en /etc/netplans/ y modificamos el archivo 00-network-manager-all.yaml y empezamos a configurar la red de la siguiente forma:

```
#Let NetworkManager manage all devices on system
network:
  version: 2
  renderer: NetworkManager
  etehrnets:
    enp0s3:
       dhcp: no
       addresses:
         - 172.28.5.1/16 #en este caso esta red pertenece a la red de la maquina real
       routes:
         - to: default
           via: 172 28 0 5
    enp0s8:
       addresses:
         - 192.168.1.1/24 #red emp
    enp0s9:
       addresses:
```

#Let NetworkManager manage all devices on system

CLIENTE

network:

En el caso del **cliente y el servidor**, entramos en /etc/netplans/ y modificamos el archivo 01-network-manager-all.yaml y empezamos a configurar la red de la siguiente forma:

```
version: 2
  renderer: NetworkManager
  etehrnets:
    enp0s3:
       dhcp: no
       addresses:
         - 192.168.1.10/24 #en este caso esta red pertenece a la red de la maquina real
       routes:
         - to: default
           via: 192.168.1.1
SERVIDOR
#Let NetworkManager manage all devices on system
network:
  version: 2
  renderer: NetworkManager
  etehrnets:
    enp0s3:
       dhcp: no
       addresses:
         - 10.0.1.1/16 #en este caso esta red pertenece a la red de la maguina real
```

una vez cambiado el archivo .*yaml* de cada máquina ejecutamos el comando *netplan apply* para que la red se actualice en las maquinas y usando *ip a* verificamos que los cambios se hayan llevado a cabo

En principio todos los dispositivos deberían poder hacerse ping entre ellos ya que las peticiones llegan al **router** y sabe resolver las peticiones.

Configurar enrrutamiento

routes:

to: default
 via: 10 0 1 254

Para configurar el router para que enrrute tenemos que seguir los siguientes pasos:

1º Cambiamos el archivo /etc/sysctl.conf, y des comentamos la línea que ponga net.ipv4.ip_forward=1 (existen alguna forma más pero no son persistentes y solo sirven para la sesión actual por lo que si reiniciamos volvería al valor default).

2º creamos los siguientes archivos:

```
nano /etc/iptables/iptables.reglas
```

iptables -t nat -A POSTROUTING -o enp0s3 -j MASQUERADE

nano /etc/iptables/iptables.reglas

```
#!/bin/sh
iptables -t filter -F
iptables -t nat -F
iptables -X iptables -Z
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -P OUTPUT ACCEPT
exit 0
```

les damos permisos de ejecución con chmod +x /etc/iptables/iptables.re* y ahora creamos el servicio cortafuegos

nano /etc/systemd/system/cortafuegos.service

[Unit]

Description=Packet Filtering Framework

[Service]
Type=oneshot
ExecStart=/etc/iptables/iptables.reglas
ExecReload=/etc/ iptables/iptables.reglas
ExecStop=/etc/ iptables/iptables.reseteo
RemainAfterExit=yes

[Install] WantedBy=multi-user.target

Una vez realizado estos pasos lanzamos los siguientes comandos:

systemctl enable cortafuegos // para que se inicia cuando se inicia el dispositivo systemctl start cortafuegos // para iniciarlo en la sesión actual systemctl status cortafuegos // para comprobar que este activo

una vez hecho esto nos va a resolver 3 de las 5 pruebas propuestas, las 2 que no va a saber resolver son **cliente<->**<u>www.google.com</u> y **servidor<->**<u>www.google.com</u> ya que no tenemos ningún DNS configurado aún

Configurar DNS

Para configurar los DNS añadimos lo siguiente al archivo que ya modificamos en su momento, el .yam/ Importante, solo en cliente y servidor ya que el router tiene en su tarjeta de red configurado el default del instituto

CLIENTE

#Let NetworkManager manage all devices on system network:
version: 2
renderer: NetworkManager
etehrnets:
enp0s3:
dhcp: no
addresses:

```
- 192.168.1.10/24 #en este caso esta red pertenece a la red de la maquina real routes:
```

- to: default via: 192.168.1.1 nameservers:

addresses:

- 192.168.1.1 # Router propio
- 172.28.0.5 # Instituto
- 8.8.8.8 # Google

SERVIDOR

#Let NetworkManager manage all devices on system

network: version: 2

renderer: NetworkManager

etehrnets: enp0s3: dhcp: no

ancp: no addresses:

- 10.0.1.1/16 #en este caso esta red pertenece a la red de la maquina real

routes:

 to: default via: 10.0.1.254 nameservers: addresses:

- 10.0.1.254 # Router propio
- 172.28.0.5 # Instituto
- 8.8.8.8 # Google

Una vez hecho esto hacemos *netplan apply* y ya podemos realizar todas las pruebas que se nos proponen, tanto el ping a Google con ambas maquinas, como las actualizaciones

Configurar nombres y dominios

En el archivo /etc/hosts añadimos u modificamos lo siguiente

ROUTER 127.0.1.1

192.168.1.10 cliente 10.0.1.1 servidor 127.0.1.1 router.iesclaradeltey.org

192.168.1.10 cliente.iesclaradeltey.org 10.0.1.1 servidor.iesclaradeltey.org

router

CLIENTE

127.0.1.1 cliente 192.168.1.10 router 10.0.1.1 servidor

127.0.1.1 cliente.iesclaradeltey.org 192.168.1.1 router.iesclaradeltey.org 10.0.1.1 servidor.iesclaradeltey.org

SERVIDOR

127.0.1.1 servidor

192.168.1.10 cliente 10.0.1.254 router

127.0.1.1 servidor.iesclaradeltey.org 192.168.1.10 cliente.iesclaradeltey.org 10.0.1.254 router.iesclaradeltey.org

Ya deberían de funcionar todas las conexiones entre si con los nuevos nombres.

Configurar SSH en router

La instalación de ssh seria apt instal openssh-server

Una vez instalado modificamos 2 archivos, el primero sería /etc/hosts.deny y añadimos la línea sshd: ALL y el archivo /etc/hosts.allow al cual añadimos la línea sshd: 172.28.254.145 (esta dirección será personal para cada maquina real)

Hacemos ssh alumno@172.28.5.1 para probar la conexión desde la maquina real

Configurar SSH en servidor

La instalación de ssh seria apt instal openssh-server

Con *htop* vemos las conexiones y buscamos ssh para ver que el puerto que se nos habilita para esa conexión es la 22

Configurar APACHE

Instalamos apache con apt install apache2

En la maquina real entramos en los adaptadores de red y añadimos una ruta en ipv4 poniendo que cada vez que se haga una petición con una red en 10.0.0.0 con mascara de red 255.255.0.0 se la envíe a la maquina con ip 172.28.5.1 para que se lo solucione y listo ya podemos hacer las pruebas pertinentes, cono dato si buscamos http://servidor no nos va a saber solucionar el nombre porq en la maquina real no tenemos ese nombre dentro del DNS, pero si ponemos http://10.0.1.1:80 si que nos aparecerá el servidor