

Jornada de Aprendizagem – Otimização de sistemas e IoT

UniSenai PR – São José dos Pinhais

- 1. Baixar Arduino IDE (https://www.arduino.cc/en/software)
 - Obs: a versão atual apresenta algumas inconsistências;
 - Caso note alguma, baixar a versão Legacy IDE (1.8.19)

- 1. Em preferências, adicionar a URL correspondente ao json do ESP32:
 - https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

- 1. Criar pasta com o nome ledInterno;
- 2. Abrir a pasta, e criar o arquivo ledInterno.ino;
- 3. Colar o código disponibilizado.

Testar o ESP32 – led externo

- 1. Conectar o esp na protoboard;
- 2. Disponha os elementos da seguinte maneira:
 - a) Anodo (+) do LED \rightarrow GPIO (GPIO 4)
 - b) Cátodo (-, perna curta do LED) \rightarrow resistor (220 Ω -330 Ω)
 - c) Resistor \rightarrow GND do ESP32
- 3. Criar pasta ledExterno;
- 4. Abrir a pasta, e criar o arquivo ledExterno.ino;
- 5. Colar o código disponibilizado.

Testar o ESP32 – led externo via Blynk

- 1. Criar conta na plataforma Blynk;
- 2. Criar um novo template (new template) chamado led;
- 3. Configurar um web dashboard, adicionando um controle switch;
- 4. Criar um novo dispositivo (*new device*) a partir do template denominado led;
- 5. Copiar as informações apresentadas;
- 6. Executar o código disponibilizado.

