	Name	Description	Support	PMF	CDF	E[X]	E[X ²]	var(X)	Transform
	Bernoulli	1 success, 0 failure	{0,1}	$P_X(1)=p, P_X(0)=1-p$	0, steps to (1-p) at 0, steps to (1) at 1.	р	р	p(1-p)	1 – p + pe ^s
	Binomial	# successes in n Bernoullis*	0 <k<n< td=""><td>$P_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$</td><td>$(n-k)\binom{n}{k}\int_{0}^{1-p}t^{n-k-1}(1-t)^{k}dt$</td><td>np</td><td>np(np-p+1)</td><td>np(1-p)</td><td>(1 – p + pe^s)ⁿ</td></k<n<>	$P_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$(n-k)\binom{n}{k}\int_{0}^{1-p}t^{n-k-1}(1-t)^{k}dt$	np	np(np-p+1)	np(1-p)	(1 – p + pe ^s) ⁿ
	Geometric	# trials to get first success (inclusive)	k ∈ I > 0	$P_X(k) = (1-p)^{k-1}p$	1-(1-p) ^k	1/p	(2-p)/p ²	(1-p)/p ²	$\frac{pe^s}{1-(1-p)e^s}$
DISCRETE	Poisson	# rare events; approximates binomial with λ=np when n da, p xiao (cont-time version of binomial, though the answer is still discrete)	k e I >= 0	$P_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ for k = 0,1,2	ugly	λ	λ+ λ ²	λ	$e^{\lambda(e^s-1)}$
D	Poission(k ,t)	prob there are exactly k arrivals in t time		$P_X(k,t) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$	ugly	λt	$\lambda t + \lambda^2 t^2$	λt	
	Uniform	an integer in the interval [a,b]	k ∈ I, a<= k<=b	$P_X(k) = 1/(b-a+1)$	(floor(k) – a + 1)/n, for k between a and b inclusive. $n = b-a+1$	(a+b)/2	(4a ² +3b ² +4 ab+2b- 2a)/12	$\frac{(b-a)(b-a+2)}{12}$	$\frac{e^{sa}(e^{s(b-a+1)}-1)}{(b-a+1)(e^s-1)}$
	Pascal	time to kth arrival in a Bernoulli process	t>=k, where k is fixed	$P_{Yk}(t) = {t-1 \choose k-1} p^k (1-p)^{t-k}$	ugly	$E[Y_k] = k/p$	k(k+1-p)/p ²	$var(Y_k) = k(1-p)/p^2$	
	Name	Description	Support	PDF	CDF	E[X]	E[X ²]	var(X)	Transform
	Uniform	a real number in [a,b]	a<=x<=b	1/(b-a)	$\frac{x-a}{b-a}$ btw a, b x <a,0 x="">b,1</a,0>	(a+b)/2	(a ² +b ² +ab)/ 3	(b-a) ² /12	$\frac{e^{sb} - e^{sa}}{s(b-a)}$
•	Exponen'l	Time to first success (cont version of geometric)	x>=0	λe ^{-λx}	1-e ^{-\(\lambda x\)} , x>=0	1/λ	<mark>2/ λ²</mark>	1/λ²	$\frac{\lambda}{\lambda - s}$ for s< λ
JOUS	Normal	Gaussian w/ mean μ , var σ^2	x∈R	$\frac{1}{\sqrt{2\pi} * \sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	Use lookup table	μ	$\sigma^2 + \mu^2$	σ^2	$e^{\left(\frac{\sigma^2 s^2}{2}\right) + \mu s}$
CONTINUOUS	Soarnorv	$Y = X_1 + + X_N$, Xs iid and N indep from all of them				E[Y]=E[N] E[X]	var + (E[X]) ² , it doesn't simplify	var(Y) = E[N]var(X) + (E[X]) ² var(N)	$M_Y(s) = M_N(lnM_X(s))$ aka find M_N and replace each e^s with $M_X(s)$
	Erlang 二郎	Time of kth arrival (cont version of pascal)	y > 0	$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}$	ugly	$E[Y_k] = kE[T] = k/\lambda$	$(k^2+k)/\lambda^2$	$var(Y_k) = kvar(T)$ = k/λ^2	

Think about rearranging these things:	LMS	LLMS	COUNTING	Ordered	Unordered ("Sets")	l
Law of conditional variances: $var(X) = E[var(X Y)] + var(E[X Y])$	Minimizes E[(Y-g(X)) ²] to	Minimizes E[(Y-ax-B) ²] to (1-		("Tuplets")	1	l
- note var _x (X Y) is an RV, func of Y	var(Y X)	ρ^2) σ_Y^2			1	l
Law of iterated expectation: E[X] = E[E[X Y]]	$\hat{Y} = g(X) = E[Y X]$	$\hat{Y} = I(X) = aX + B$	w/	n ^k	(n+k-1)	ĺ
- note E _X [X Y] is an RV, a func of Y		$\hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X])$	replacement		(k)	l
Variance: $var(X) = E[X^2] - (E[X])^2$	(BTW: LMS w/ no information,	var(X)			1	l
Total expectation theorem: $E[X] = E[X A]P(A) + E[X B]P(B)$,	i.e. no conditioning, is just E[X]		w/o	n!	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	ĺ
where A, B are disjoint events covering all of sample space	and error is var(X))		replacement	$\overline{(n-k)!}$	k^{j} $k!(n-k)!$	l
					1	l
1	1	1	1	1	4	

Eric Minikel - 6.431 QF Formula Sheet - 2009-05-19

Covariance cov(X,Y) = E[(X-E[X])(Y-E[Y])] = E[XY] – E[X]E[Y]. if cov(X,Y)==0, then X and Y are uncorrelated. cov positive means "tend" to have same sign, i.e. xy plot is increasing, negative means "tend" to have opposite sign,i.e. xy plot is decreasing cov(X,X) = var(X) cov(X,AY+b)=a*cov(X,Y) cov(X,Y+Z)=cov(X,Y)+cov(X,Z)	Correlation Coefficient ρ Normalized version of cov, ϵ [-1,1] $\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}}$	Var(X ₁ +X ₂), X ₁ ,X ₂ not nec. indep = var(X ₁) + var(X ₂) + 2cov(X ₁ ,X ₂)	$ (af + bg)' = af' + bg' $ $ (fg)' = f'g + fg' $ $ (\frac{f}{g})' = \frac{f'g - fg'}{g^2} $ $ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} $ $ \frac{d}{dx} \ln(x) = \frac{1}{x}, \qquad x > 0 $ $ \frac{d}{dx} a^x = \ln(a) a^x $ $ \frac{d}{dx} e^x = e^x $ $ \sum_{k=0}^{n} ar^k = \frac{a(r^{n+1} - 1)}{r - 1} $ $ \sum_{k=m}^{n} ar^k = \frac{a(r^{n+1} - r^m)}{r - 1} $	
Stuff about Gaussians $N(0,1): f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ $X^{\sim}N(\mu,\sigma^2), Y=aX+b 则 Y^{\sim}N(a\mu+b,a^2\sigma^2)$ $X^{\sim}N(\mu,\sigma^2), P(X<=x) = \Phi((x-\mu)/\sigma)$ If X, Y Gaussian and indep, W=X+Y is also Gaussian	Definitions $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$ $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ $var(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f_X(x) dx$ $= E[X^2] - (E[X])^2$ $E[aX+b] = aE[X] + b$ $var(aX+b) = a^2 var(X)$	Definitions $F_{X}(x) = P(X <= x)$ $continuous: = \int_{-\infty}^{x} f_{X}(t) dt$ $f_{X}(x) = \frac{dF_{X}}{dx}(x)$ $discrete: = \sum_{k \leq x} p_{X}(k)$ $p_{X}(k) = F_{X}(k) - F_{X}(k-1)$	$\sum_{k=0}^{n} ar^{k} = \frac{a(r^{n+1} - 1)}{r - 1}$ $\sum_{k=m}^{n} ar^{k} = \frac{a(r^{n+1} - r^{m})}{r - 1}$	
Conditioning $f_{X Y}(x y) = f_{X,Y}(x,y)/f_{Y}(y)$ $f_{X}(x) = \int_{-\infty}^{\infty} f_{Y}(y)f_{X Y}(x y)dy$ $P(A) = \int_{-\infty}^{\infty} P(A X = x)f_{X}(x)dx$ Derived distributions $Y = g(X) \text{ get CDF: } F_{Y}(y) = P(Y <= y) = P(g(X) <= y) = \int_{x g(x) \leq y} f_{X}(x)dx$ then differentiate: $\frac{dF_{Y}}{dy}(y) = f_{Y}(y)$ also if $Y = aX + b$ then $f_{Y}(y) = \frac{1}{ a }f_{X}(\frac{y - b}{a})$	Continous Bayes' Rule X,Y cont, N disc, A an event $ f_{X Y}(x y) = \frac{f_{Y X}(y x)f_X(x)}{f_Y(y)} = \frac{f_{Y X}(y x)f_X(x)}{\int_{-\infty}^{\infty} f_{Y X}(y t)f_X(t)dt} \\ P(A Y = y) = \frac{P(A)f_{Y A}(y)}{f_Y(y)} = \frac{P(A)f_{Y A}(y)}{f_{Y A}(y)P(A) + f_{Y Ac}(y)P(Ac)} \\ P(N = n Y = y) = \frac{p_N(n)f_{Y N}(y n)}{f_Y(y)} = \frac{p_N(n)f_{Y N}(y n)}{\sum_i p_N(i)f_{Y N}(y i)} $		$\int e^{u}du = e^{u} + C$ $\int a^{u}du = \frac{a^{u}}{\ln a} + C$ $\int ue^{u}du = e^{u}(u-1) + C$ $\int u^{n}e^{u}du = u^{n}e^{u} - n \int u^{n-1}e^{u}du$ $\int u^{n}a^{u}du = \frac{u^{n}a^{u}}{\ln a} - \frac{n}{\ln a} \int u^{n-1}a^{u}du + C$ $\int \frac{e^{u}}{u^{n}}du = -\frac{e^{u}}{(n-1)u^{n-1}} + \frac{1}{n-1} \int \frac{e^{u}}{u^{n-1}}du$ $\int \frac{a^{u}}{u^{n}}du = -\frac{a^{u}}{(n-1)u^{n-1}} + \frac{\ln a}{n-1} \int a^{u}u^{n-1}du$	
Convolution	Marginal pdf from a joint pdf $f_X(x) = integral[f_{X,Y}(x,y)dy]$ you integrate with respect to y because you want to get rid of y and just have x	Geometric series $1/(1-a) = 1 + a + a^2 +$ out to infinity, for $ a < 1$	$\int \frac{1}{u^n} du = -\frac{1}{(n-1)u^{n-1}} + \frac{1}{n-1} \int a^u u^{n-1} du$ $\int \ln u du = u \ln u - u + C$ Integration by parts: $\int u dv = uv - \int v du.$	
Transforms $\begin{aligned} &M_X(s)=E[e^{sX}]\\ &example \ of \ a \ transform:\\ &p_X(x)=\{\ 1/2,\ x=2;\ 1/6,\ x=3;\ 1/3,\ x=5\}. \ \ M_X(s)=(1/2)exp(2s)+\\ &(1/6)exp(3s)+(1/3)exp(5s)\\ ∵ \ of \ the \ definition \ of \ expectation. \ you \ know,\ M_X(s)=\end{aligned}$	How to do integrals on TI-83 MATH->fnInt(function,X,lowerlimit,upperlimit) ex. $fnInt(X^2,X,0,2) = 2.666667$ similarly, $nDeriv(X^2,X,3) = 6$		$\int u dv = uv - \int v du$.	

Eric Minikel - 6.431 QF Formula Sheet - 2009-05-19

	B	D	Balanca annation of a Manulau Chaire and hair	
summation($e^{sx}*p_X(x)$ for all x)	Bernoulli processes Bernoulli processes contd		Balance equations for Markov Chain analysis	
IF X and Y are independent, (otherwise the second-to-last step	$Y_k = T_1 + \dots + T_k$, Y_k is time of kth	Splitting a p process by means	π : steady state probabilities. defined as long as no	
doesn't hold)	arrival, T _i s are times between	of a q process: a pq process	reachable recurrent states are periodic.	
$Z=X+Y$ $M_Z(s) = E[e^{sZ}] = E[e^{s(X+Y)}] = E[e^{sX}e^{sY}] = E[e^{sX}]E[e^{sY}] =$	arrivals	and a	$\pi_j = \Sigma_i \pi_i p_{ij}$ (sum over <i>incoming</i> arrows)	
$M_X(s)M_Y(s)$	Each time slot: Bernoulli.	p(1-q) process	$1 = \sum_i \pi_i$	
addition of indep RVs corresponds to multiplication of transforms	Time til next arrival: Gemoetric.	Merging a p process and a q	(implies $1 * \pi^T = \pi^T * p$)	
	#arrivals in interval: Binomial.	process: a p+q-pq process. (-pq	μ: time to absorption in class A. defined when finite	
	Time of kth arrival: Pascal.	removes the double counting)	$\mu_i = 0$, i $\in A$	
Comparison of Poisson and Bernoulli processes	Poisson processes	Merge/split Poisson processes	$\mu_i = 1 + \Sigma_j p_{ij} \mu_j$ o.w. (sum over <i>outgoing</i> arrows)	
<u>Poisson</u> <u>Bernoulli</u>	When you merge them you get	Merge: new poisson,	a: absorption probability into class A	
Time of arrival Continuous Discrete	a new Poisson process with	parameter is sum	a _i = 0, i e C where C is a separate recurrent class	
Inter-arrival time Exponential Geometric	parameter = sum of the original	Split w/ prob q and (1-q)	$a_i = 1, i \in A$	
Number of arrivals Poisson Binomial	parameters. Time to first	results in two poisson	$a_i = \Sigma_i p_{ii} a_i$ o.w. (sum over <i>outgoing</i> arrows)	
Time of kth arrival Erlang Pascal	success is exponential.	processes of rate λq and $\lambda(1-q)$		
Markov Chains	Frequency interpretation of	Absorption	Markov Chain Transition Matrices	
probability of state j next is same whether conditioned on current	steady state probs	A recurrent state k is absorbing	Transition matrices are written	
state or on entire history so far; in other words, memory is just	Long-run frequency of being in	if probability of looping back to	p11 p12	
one step deep	state j is π_i	self is 1 and probability of	p21 p22	
one step deep	Frequency of transitions j->k is	going to any other state is 0.	i.e. each row is one i, and each column is one j for pij.	
	$\pi_i p_{ik}$ (useful for birth-death	going to any other state is o.	rows must sum to 1; columns needn't	
	processes)		Tows must sum to 1, columns needin t	
Limit Theorems	Markov Inequality	Convergence in Probability	Weak Law of Large Numbers	
If you see "deviation far from mean," think Chebyshev	P(X>=a)<=E[X]/a, X always >=0	For every $\epsilon > 0$,	For every $\epsilon > 0$, X_i iid, finite mean and variance, and	
If asked to prove a sample average converges in probability, think	Chebyshev Inequality	•	define $M_n = (X_1 + + X_n)/n$	
	$P(X-E[X] >=c)<=var(X)/c^2$	$\lim_{n\to\infty} n-\inf_{n\to\infty} P(Yn-a >\epsilon)=0$		
WLLN	.,	(note ε *strictly* > 0, NOT >=0)	lim n->inf $P(M_n-\mu >=\varepsilon)=0$ i.e. converges in prob to μ	
	or,		This is a special case of Chebyshev, b/c that would give	
	P(X-E[X] >=k\sigma)<=1/k ²		on right side $\sigma^2/n\epsilon^2$ which -> 0 as n->inf	
Pollster's Problem	Central Limit Theorem		Central Limit Theorem	
f = true fraction of population that support such-and-such	X_i iid with finite mean μ and var σ		central limit theorem (CLT) states conditions under	
want $P(M_n-f >=.01)<=.05$	Define $Z_n = \frac{\sum_{i=1}^n X_n - n\mu}{\sigma\sqrt{n}}$ to normalize	e it	which the sum of a sufficiently large number of	
Chebyshev: $P(M_n-\mu >=\epsilon) <= \sigma^2/n\epsilon^2$	As n->inf, Z_n converges to CDF of γ		independent random variables, each with finite mean	
plug in ϵ = .01, worst case scenario σ^2 = 1/4 (max variance for a	So $\lim n \to \inf P(Z_n \le z) = \Phi(z)$	N[0,1] a.k.a. ⊕(2)	and variance, will be approximately normally distributed	
Bernoulli), then to get right side of equation down to .05 you need	30 IIII II-> IIII $F(Z_n \times -Z) - \Psi(Z)$		P(S _n <=c) ~= Φ (z), where $z=\frac{c-n\mu}{\sigma\sqrt{n}}$, and S _n has mean n μ	
n >= 50,000	Romambar you can subtract CDEs to got the probability of being		and var $n\sigma^2$	
	Remember you can subtract CDFs to get the probability of being		i.e. μ and σ refer to the mean and stddev of the	
	between two numbers		ORIGINAL vars, not their sum	
Maximum Likelihood Estimation: Intro	Maximum Likelihood Estimation:	More	Properties that an estimator can have	
Distribution $p_{v}(x;\theta)$ has unknown parameter set θ which is not	You want to pick the value of θ that gives the largest likelihood of		Parameter (vector) to be estimated: θ	
1 2 7	what you observed, i.e.		1	
random. We know nothing about what it might be (this is classical	thetahat = $argmax_{n}p_{v}(x;\theta)$		Observation (vector) to use: X	
statistical inference)	o , , , ,	shine (2) is meanatanically	Estimator: g(X)	
Want a point-estimate of θ	Standard trick that works if somet	thing (?) is monotonically	Unbiased: $E[g(X)] = \theta$	
For each value θ you would get a different PDF or PMF and thus a	increasing:		Asymptotically unbiased: $\lim_{n\to \infty} E[g(X_1,,X_n)]=\theta$	
different likelihood of the observed vector $X = (X_1,,X_n)$	thetahat = $\operatorname{argmax}_{\theta} \ln p_{x}(x;\theta)$		Consistent: $g(X_1,,X_n)$ converges to θ in probability as	
If the X _i are iid, then the joint PDF of all them is the product of the	set $0 = [d/d\theta]$ of $\ln p_x(x;\theta)$		n -> inf	
individual PDFs. So its log is the sum of their logs.				

Eric Minikel - 6.431 QF Formula Sheet - 2009-05-19

Binary Hypothesis Testing	Likelihood Ratio	Neyman-Pearson Lemma	
Two hypotheses H ₀ and H ₁ , one of which is true.	The optimal way to do binary hypothesis testing.	For given α (false rejection), LRT gives smallest possible β	
H_0 : null hypothesis. $p_x(x H_0)$	$L(x) = p_x(x H_1)/p_x(x H_0)$	(false acceptance)	
H_1 : alternative hypothesis. $p_x(x H_1)$	Likelihood ratio test (LRT):		
We observe a value $X = x$, giving us "likelihoods" of H_0 and H_1	$L(x) \ge \mathcal{H}$ where > is H_1 and < is H_0		
	Target α = P(false rejection of null hypoth)		
	Choose \mathcal{H} such that $P(L(x)>\mathcal{H} H_0)=\alpha$		
	Reject H ₀ if L(x) > 开		
Types of error	Overall probability of an error	Overall error cont'd	
R is rejection [of H ₀] region	$P(error) = P(H_0)\alpha + P(H_1)\beta$, where $P(H_0) = P_0$ and $P(H_1) = P_1$ are a	$L(x) = f(x H_1)/f(x H_0) ≥ P_0/P_1 = $ \mp	
Type I: $\alpha = P(X \in R H_0)$	priori probabilities.	Where top (>) goes to H_1 and bottom (<) goes to H_0 .	
Type II: $\beta = P(X \in R \mid H_1)$ (that's a crossed-out epsilon)	$P(error) = P_0 integral_R(f_X(x H_0)dx) + P_1 *[1-integral_R(f_X(x H_1)dx)]$	Or sometimes you minimize a cost function	
	$P(error) = P_1 + integral_R [P_0 f_X(x H_0) - P_1 f_X(x H_1)] dx$	$cost = c_1 \alpha + c_2 \beta$	
	Sometimes you want to choose R to minimize P(error)		
Example of convolution from spring 2008 Q2	Confidence Intervals	Misc tricks and giggles	
c. Suppose X is uniformly distributed over [0,4] and Y is uniformly distributed over [0,1]. Assume X and Y are independent. Let Z = X + Y. Then	$\theta^{-} = g(X_1,, X_n)$	For X_i iid, unknown mean μ and variance σ^2	
A and I are independent. Let $Z = X + I$. Then (i) $f_Z(4.5) = 0$	$\theta^{+} = h(X_1,, X_n)$	$M_n = (X_1 + + X_n)/n$ is an unbiased & consistent estimator	
(i) $f_Z(4.5) \equiv 0$ (ii) $f_Z(4.5) = 1/8$	You want $P(\theta^- <= \theta <= \theta^+) >= .95$	of μ	
(iii) $f_Z(4.5) = 1/4$	suppose X_i Gaussian, known var ν and unknown mean θ	$V_n = summation_i [(X_i - M_n)^2]/(n-1)$ is unbiased	
(iv) $f_Z(4.5) = 1/2$	$\theta^{n} = \text{summation}_{i}(X_{i})/n$	You might be tempted to use	
Solution: Since X and Y are independent, the result follows by convolution:	Z _n = [θ^ _n – θ]/sqrt(v/n) 基本上 ~N[0,1]	$V_n = summation_i [(X_i - M_n)^2]/n$ which is the MLE but is	
$f_Z(4.5) = \int_{-\infty}^{\infty} f_X(\alpha) f_Y(4.5 - \alpha) d\alpha = \int_{3.5}^{4} \frac{1}{4} d\alpha = \frac{1}{8}$.	$P(Z_n <1.96) >= .95 \text{ implies } P(\theta^- <= \theta <= \theta^+) >= .95$	biased but is asymptóticamente unbiased.	
$J_{-\infty}$ $J_{3.5}$ 4 8	$\theta^{-} = \theta^{-}_{n} - 1.96 \operatorname{sqrt}(v/n)$		
	$\theta^{+} = \theta^{-}_{n} + 1.96 \operatorname{sqrt}(v/n)$		
	all because $\Phi(1.96)$ = .9750 so with both tails you get .95 between.		
Shit I don't think actually matters: t-distributions	Chernoff-Hoeffding Bounds, which totally suck	Chernoff-Hoeffding Bounds cont'd	
Again, for unknown mean and variance we can define	X_i iid, bounded in [a,b]. For all $\epsilon > 0$,	So, to use it, say you have n = 1000 and you need 95%	
$T_n = (M_n - \theta)/sqrt(V_n/n)$	$P(M_{n} - \mu > = \epsilon) < 2e^{-n\epsilon^2/(a-b)^2}$	confidence, then solve $2e^{-n\epsilon^2}$ = .05 to find ϵ .	
T_n is not quite a true normal distribution, because M_n or V_n could	Special case: bernoulli, so a and b are 0 and 1	Then add and subtract ϵ from M_n to get an upper and	
differ from true $\boldsymbol{\mu}$ and \boldsymbol{v} .	$P(M_n - \mu > = \epsilon) < 2e^{-n\epsilon^2}$	lower bound with 95% confidence.	
Instead it is a t-distribution with n-1 degrees of freedom.	Advantages: like the CLT and unlike Chebyshev, probability falls off	Advantage: uses no approximations; the bound is always	
Incidentally, somehow, this distribution does not depend on $\boldsymbol{\theta}$ or	exponentially. But unlike the CLT and like Chebyshev, it gives a	correct.	
v. For n large (like > 50 say), the t-dist becomes very close to the	bound rather than an approximation—"less handwaving".	Disadvantage: a looser confidence interval than some	
standard normal dist.		other things.	
Theorem of Total Probability	Check your Markov Chain!		
$p_{T}(t) = \int_{-\infty}^{\infty} p_{T Q}(t q) f_Q(q) dq$	Is it valid? For each ball, do all outgoing arrows sum to 1?		
for instance,			
$p_{T}(t) = \int_{0}^{1} (1 - q)^{t-1} q * 1 dq$			
where 0 to 1 is q's range, and the stuff left of * is conditional dist			
of t, and 1 is prob density of q.			
or G and 1 is prob density or q.			
	l .		