Exercício 2 - Teoria dos Grafos

João Lucas Lima de Melo

Outubro 2022

Exercício 3: Prove o Teorema de Hall por indução em |X|: "Seja $G=(X\cup Y,E)$ um grafo bipartido. G tem um emparelhamento que cobre X se, e somente se, $|N(S)|\geq |S|$ para todo $S\subset X$ ".

 (\Rightarrow) Seja $G=(X\cup Y,E)$ um grafo bipartido tal que possua um emparelhamento que cobre X.

Por definição de emparelhamento, para qualquer subconjunto $S \subset X$ há uma aresta sy onde $s \in S$ e $y \in Y$ de tal forma que sy não é vizinha a nenhuma outra aresta. A partir disso, podemos afirmar que $|N(S)| \geq |S|$, valendo a tese.

(\Leftarrow) Suponhamos um garfo G=(X,Y;E) bipartido e $|N(S)| \geq |S|$ para todo $S\subseteq X$. A demonstração de que o grafo G contém um emparelhamento que cobre X será feita por indução na cardinalidade de vértices |X|.

Para o caso base, onde |X|=1, segue que vale a hipótese e há um emparelhamente que cubra o único vértice de G, valendo a tese.

Suponhamos agora o caso onde $|X| \ge 2$. Para um grafo bipartido H = (A, B; E), podemos ter duas diferentes situações:

1. $|N_H(S)| \ge |S| + 1$ para qualquer subcoonjunto não vazio $S \subset X$.

Seja xy em G tal que x pertença à partição X e y pertença à partição Y. Iremos remover de G a aresta xy de tal forma a gerar um grafo $H = G[(X \cup Y) \setminus \{x,y\}]$. Aplicamos nele a hipótese de indução e sabemos que H contém um emparelhamento que cobre seus vértices.

A construção de H implica que para todo $S\subseteq X\backslash\{x\}$ temos $|N_H(S)|\ge |N_G(S)|-1.$ Daí, temos:

- $\Leftrightarrow |N_H(S)| \ge |N_G(S)| 1$ $\Leftrightarrow |N_H(S)| \ge |(S)| + 1 - 1$
- $\Leftrightarrow |N_H(S)| \ge |(S)|$

Portanto valndo a condição de Hall e valendo a tese.

2. Para algum subconjunto S de X, vale |N(S)| = |S|.

Seja S um subconjunto de X tal que |N(S)| = |S| e que X possua um subconjunto próprio X' tal que |X'| = |Y'| e |Y'| = N(X').

A partir disso, podemos contruir um grafo H, dado por $H = G[X' \cup Y']$.

Podemos aplicar a hipótese de indução em H, havendo um emparelhamento M' que cubra seu conjunto de vértices X'.

Aplicada a hipótese de indução, observamos que G-H ainda satisfaz a condição de Hall, de tal forma que podemos também aplicar hipótese de indução, observando que existe um emparelhamento M'' que cobre X'' = X - X'.

Então, podemos contruir um emparelhamento $M=M'\cup M''$ que cubra X, valendo a tese.

Exercício 4: Utilize o Teorema de Hall para provar o seguinte resultado: Seja G=(X;Y,E) um grafo bipartido. Se $|N(S)|\geq |S|-k$ para todo $S\subset X$ e k inteiro positivio, então G tem um emparelhamento com cardinalidade |X|-k.

Seja Y' o conjunto de vértices dados pelos vértices em Y unidos a $v_1, v_2, ..., v_k$ vértices que não estejam contidos no grafo.

Vamos construir um grafo bipartido H=(X,Y') de tal forma que uma aresta $e\in E(H)$ se, e somente se, $e\in E(G)$ ou é uma aresta entre os vértices de X e os que não pertencem a G.

Uma vez que $|N_G(S)| \ge |S| - k$ e $N_H(S)$ contém $v_1, v_2, ..., v_k$, temos que para todo $S \subseteq X$ temos $|N_H(S)| \ge |S|$.

Pelo teorema de Hall, conclui-se que H
 contém um emparelhamento M que cobre X,havendo, portanto,
 |X|arestas.

Nesse caso, $|M| \leq |E(H)\backslash E(G)| = k$. Portanto, G tem um emparelhamento com pelo menos |X| - k arestas.

Exercício 5:

- a. Prove que todo grafo bipartido k-regular com $k \geq 1$ tem um emparelhamento perfeito.
- b. Prove que todo grafo bipartido k-regular com $k \geq 2$ tem k emparelhamentos perfeitos dois a dois disjuntos.

Provaremos inicialmente que para todo k inteiro positivo, todo grafo bipartido k-regular contém um emparelhamento perfeito.

Seja G um grafo bipartido k-regular com (X,Y) bipartição de vértices. Vamos supor um subconjunto $S \subseteq X$ onde $|N_G(S)| \leq |S| - 1$. O conjunto de arestas entre S e N(S) é dado por E(S,N(S)). Uma vez que o grafo G é k-regular, temos que:

$$|S|k = |E(S, N(S))| \le |S|k - k \le |S|k - 1.$$

A inequação mostra uma contradição. Portanto, podemos concluir que a condição de Hall está satisfeita, sendo possível aplicar o teorema de Hall e concluindo que o grafo G contém um emparelhamento M que cobre X. Além disso, para todo bipartido regular G e toda bipartição (X,Y) de G, |X|=|Y|. Portanto, M é um emparelhamento perfeito.

Provado para todo k inteiro positivo, ao assumir k=1 temos que o grafo G bipartido 1-regular tem um emparelhamento perfeito.

Para $k \geq 2$, podemos supor um grafo bipartido k-regular G, removendo dele um conjunto de arestas de um emparelhamento tal que gere um grafo G' (k-1)-regular. Por hipótese, temos que G' possui k-1 emparelhamentos perfeitos. Reconstruímos, portanto, o grafo G ao reinserir em G' as arestas do emparelhamento removidas, resultando no grafo G k-regular com G'0 emparelhamentos perfeitos dois a dois disjuntos.