

ECE/CS 252 Intro to Computer Engineering

Discussion

Input

Getting input from the user or outside world

Output

- Sending information to the user or outside world
- The direction of input and output is from the processor's point of view

- Memory-mapped IO versus isolated IO
 - To use IO devices, we need to be able to read/write from/to them using instructions
 - The LC-3 (and most processors) put the interface to IO devices into the memory, so we can access the devices using normal load/store instructions
 - This is memory-mapped IO
 - Some processors (most notably the Intel x86 family) have special instructions (and a different address space) to access IO devices
 - This is isolated IO

- Synchronous versus asynchronous
 - Synchronous = occurs at the same rate as the processor clock
 - Asynchronous = occurs at an unpredictable rate
- Since we don't know when asynchronous events will occur, we need
 - A way to check if the event has occurred (a synchronization mechanism)
 - A way to transfer the acknowledge that we have seen the event (a handshaking protocol)

- Polling versus interrupts
 - Polling = the processor must continually check to see if an event has occurred
 - **Interrupts** = the processor hardware causes to automatically stop normal processing and run a different part of the program to *handle* the event
 - We will only discuss the use of polling today
- Does the telephone system use polling or interrupt?
 - How would the telephone function if it used polling?

Using Console Input

- Console input is a simulated keyboard
 - You can type characters on the "keyboard" in the PennSim window
- The interface to the keyboard uses two memory locations (aka memory-mapped registers)

Name	Address	Description
KBSR Keyboard Status Register	xFE00	KBSR[15] is 1 when new character is available, KBSR[15] is cleared by reading KBDR
KBDR Keyboard Data Register	xFE02	KBDR[7:0] has most recently- typed ASCII character, KBDR[15:8] are 0

Using Console Output

- Console output is a simulated display screen
 - You can see the console output on the "terminal" window in PennSim
- The interface to the display uses two memory locations (aka memory-mapped registers)

Name	Address	Description
DSR D isplay S tatus R egister	xFE04	DSR[15] is 1 when display is ready to accept a new character, DSR[15] is 0 while display is not ready
DDR Display Data Register	xFE06	DDR[7:0] is ASCII character to send to display, DDR[15:8] must be 0

Example 0

Echo each character typed on the keyboard to the

display.

Example 1

Echo only lowercase letters.

Wrapping Up

 The best way to learn programming is to DO programming!

