Near-Optimal LP Rounding for Correlation Clustering

Grigory Yaroslavtsev

http://grigory.us

With Shuchi Chawla (University of Wisconsin, Madison), Konstantin Makarychev (Microsoft Research), Tselil Schramm (University of California, Berkeley)

Correlation Clustering

Inspired by machine learning at WhizBang

• Practice: [Cohen, McCallum '01, Cohen, Richman '02]

• Theory: [Blum, Bansal, Chawla '04]

Correlation Clustering: Example

Minimize # of incorrectly classified pairs:

Covered non-edges + # Non-covered edges

- 4 incorrectly classified =
- 1 covered non-edge +
- 3 non-covered edges

Min-CSP, but # labels is unbounded

Approximating Correlation Clustering

- Minimize # of incorrectly classified pairs
 - $-\approx 20000$ -approximation [Blum, Bansal, Chawla'04]
 - [Demaine, Emmanuel, Fiat,
 Immorlica'04], [Charikar, Guruswami, Wirth'05],
 [Williamson, van Zuylen'07], [Ailon, Liberty'08],...
 - 2.5 [Ailon, Charikar, Newman'05]
 - APX-hard [Charikar, Guruswami, Wirth'05]
- Maximize # of correctly classified pairs
 - $-(1-\epsilon)$ -approximation [Blum, Bansal, Chawla'04]

Correlation Clustering

One of the most successful clustering methods:

- Only uses qualitative information about similarities
- # of clusters unspecified (selected to best fit data)
- Applications: document/image deduplication (data from crowds or black-box machine learning)
- NP-hard [Bansal, Blum, Chawla '04], admits simple approximation algorithms with good provable guarantees
- Agnostic learning problem

Correlation Clustering

More:

- Survey [Wirth]
- KDD'14 tutorial: "Correlation Clustering: From Theory to Practice" [Bonchi, Garcia-Soriano, Liberty] http://francescobonchi.com/CCtuto-kdd14.pdf
- Wikipedia article: <u>http://en.wikipedia.org/wiki/Correlation_cluster</u> <u>ing</u>

Data-Based Randomized Pivoting

3-approximation (expected) [Ailon, Charikar, Newman]

Algorithm:

- Pick a random pivot vertex v
- Make a cluster $v \cup N(v)$, where N(v) is the set of neighbors of v
- Remove the cluster from the graph and repeat

Modification: $(3 + \epsilon)$ -approx. in $O(\log^2 n / \epsilon)$ rounds of MapReduce [Chierichetti, Dalvi, Kumar, KDD'14] http://grigory.us/blog/mapreduce-clustering

Data-Based Randomized Pivoting

- Pick a random pivot vertex p
- Make a cluster $p \cup N(p)$, where N(p) is the set of neighbors of p
- Remove the cluster from the graph and repeat

- 8 incorrectly classified =
- 2 covered non-edges +
- 6 non-covered edges

Integer Program

Minimize:
$$\sum_{(u,v)\in E} x_{uv} + \sum_{(u,v)\notin E} (1-x_{uv})$$
$$x_{uv} \leq x_{uw} + x_{wv} \qquad \forall u,v,w$$
$$x_{uv} \in \{0,1\}$$

- Binary distance:
 - $x_{uv} = 0 \Leftrightarrow u$ and v in the same cluster
 - $x_{uv} = 1 \Leftrightarrow u$ and v in different clusters
- Objective is exactly MinDisagree
- Triangle inequalities give transitivity:
 - $x_{uv} = 0, x_{wv} = 0 \Rightarrow x_{uv} = 0$
 - $u \sim v$ iff $x_{uv} = 0$ is an equivalence relation, equivalence classes form a partition

Linear Program

Embed vertices into a (pseudo)metric:

Minimize:
$$\sum_{(u,v)\in E} x_{uv} + \sum_{(u,v)\notin E} (1-x_{uv})$$
$$x_{uv} \leq x_{uw} + x_{wv} \qquad \forall u,v,w$$
$$x_{uv} \in [0,1]$$

• Integrality gap $\geq 2 - o(1)$

Integrality Gap

Minimize:
$$\sum_{(u,v)\in E} x_{uv} + \sum_{(u,v)\notin E} (1-x_{uv})$$
$$x_{uv} \leq x_{uw} + x_{wv} \qquad \forall u,v,w$$
$$x_{uv} \in [0,1]$$

• IP cost = n - 2

- LP solution x_{nn} :
 - $-\frac{1}{2}$ for edges (u, v_i)
 - **1** for non-edges (v_i, v_j)
 - LP cost = $\frac{1}{2}$ (n 1)
- IP / LP = 2 o(1)

Can the LP be rounded optimally?

- 2.06-approximation
 - Previous: 2.5-approximation [Ailon, Charikar, Newman, JACM'08]
- 3-approximation for objects of k types (comparisons data only between different types)
 - Matching 3-integrality gap
 - Previous: 4-approximation for 2 types [Ailon, Avigdor-Elgrabli, Libety, van Zuylen, SICOMP'11]
- 1.5-approximation for weighted comparison data satisfying triangle inequalities
 - Integrality gap 1.2
 - Previous: 2-approximation [Ailon, Charikar, Newman, JACM'08]

LP-based Pivoting Algorithm [ACN]

$$\begin{aligned} \text{Minimize:} & \sum_{(u,v) \in E} x_{uv} + \sum_{(u,v) \notin E} (1-x_{uv}) \\ & x_{uv} \leq x_{uw} + x_{wv} & \forall u,v,w \\ & x_{uv} \in [0,1] \end{aligned}$$

Get all "distances" x_{uv} by solving the LP

- Pick a random pivot vertex p
- Let S(p) be a random set containing every other vertex v with probability $1 x_{pv}$ (independently)
- Make a cluster $p \cup S(p)$
- Remove the cluster from the graph and repeat

LP-based Pivoting Algorithm [ACN]

Get all "distances" x_{uv} by solving the LP

- Pick a random pivot vertex p
- Let S(p) be a random set containing every other vertex \boldsymbol{v} with probability $1-x_{pv}$ (independently)
- Make a cluster $p \cup S(p)$
- Remove the cluster from the graph and repeat

• LP solution x_{uv} :

$$-\frac{1}{2}$$
 for edges (u, v_i)

- **1** for non-edges (v_i, v_j)
- $LP cost = \frac{1}{2} (n 1)$

LP-based Pivoting Algorithm

• v_i is a pivot (prob. 1 - 1/n)

$$\mathbb{E}[cost|v_i \text{ is a pivot}] \approx \frac{1}{2}n + \frac{1}{2}\mathbb{E}[cost]$$

• u is a pivot (prob. 1/n)

$$\mathbb{E}[\cos t | \mathbf{u} \text{ is a pivot}] \approx \frac{n^2}{8}$$

- $\mathbb{E}[cost] \approx \mathbb{E}[cost|v_i]$ is a pivot] $+\frac{1}{n}\mathbb{E}[cost|u]$ is a pivot] = $\left(\frac{n}{2} + \frac{1}{2}\mathbb{E}[cost]\right) + \frac{n}{8} \Rightarrow \mathbb{E}[cost] \approx \frac{5n}{4}$
- LP $\approx \frac{n}{2} \Rightarrow \frac{\mathbb{E}[cost]}{LP} \approx \frac{5}{2} = \text{approximation in the ACN analysis}$

Our (Data + LP)-Based Pivoting

Get all "distances" x_{uv} by solving the LP

- Pick a random pivot vertex p
- Let S(p) be a random set containing every other vertex v with probability $f(x_{pv},(p,v))$ (independently)
- Make a cluster $p \cup S(p)$
- · Remove the cluster from the graph and repeat
 - Data-Based Pivoting:

$$f(x_{pv},(p,v)) =$$

LP-Based Pivoting:

1, if
$$(p, v)$$
 is an edge 0, if (p, v) is a non-edge

$$f(x_{pv}, (p, v)) = 1 - x_{pv}$$

Our (Data + LP)-Based Pivoting

(Data + LP)-Based Pivoting:

$$f(x_{pv},(p,v)) = \begin{cases} 1 - f^+(x_{pv}), & \text{if } (p,v) \text{ is an edge} \\ 1 - x_{pv}, & \text{if } (p,v) \text{ is a non-edge} \end{cases}$$

$$f^{+}(x) =$$
0, if $x \le a$
1, if $x \ge b$

$$\left(\frac{x-a}{b-a}\right)^{2}$$
, otherwise

a = 0.19, b = 0.5095

Analysis

- S_t = cluster constructed at pivoting step t
- V_t = set of vertices left before pivoting step t

Analysis

•
$$ALG_t =$$

$$\sum_{\substack{(u,v)\in E\\u,v\in V_t}} \left(\mathbb{1}(u\in S_t,v\not\in S_t) \right. \\ \left. +\mathbb{1}(u\not\in S_t,v\in S_t)\right) + \sum_{\substack{(u,v)\notin E\\u,v\in V_t}} \mathbb{1}(u\in S_t,v\in S_t)$$

•
$$LP_t =$$

$$\sum_{\substack{(u,v) \in E \\ u,v \in V_t}}^{\infty} \mathbb{1}(u \in S_t \text{ or } v \in S_t) \, x_{uv} + \sum_{\substack{(u,v) \notin E \\ u,v \in V_t}} \mathbb{1}(u \in S_t \text{ or } v \in S_t) \, (1 - x_{uv})$$

- Suffices to show: $\mathbb{E}[ALG_t] \leq \alpha \mathbb{E}[LP_t]$
- $\mathbb{E}[ALG] = \mathbb{E}[\sum_t ALG_t] \leq \alpha \mathbb{E}[\sum_t LP_t] = \alpha LP$

Triangle-Based Analysis: Algorithm

• $ALG_{\mathbf{w}}(\mathbf{u}, \mathbf{v}) = \mathbb{E}[error\ on\ (\mathbf{u}, \mathbf{v})|\ \mathbf{p} = \mathbf{w};\ \mathbf{u} \neq \mathbf{v}, \mathbf{w} \in V_t]$

$$= \begin{cases} f(x_{wu})(1 - f(x_{wv})) + \psi(v)(1 - f(x_{wu})), & \text{if } (u, v) \in E \\ f(x_{wu}) f(x_{wv}), & \text{if } (u, v) \notin E \end{cases}$$

Triangle-Based Analysis: LP

• $LP_{\mathbf{w}}(\mathbf{u}, \mathbf{v}) = \mathbb{E}[LP \ contribution \ of \ (\mathbf{u}, \mathbf{v}) | \ \mathbf{p} = \mathbf{w}; \mathbf{u} \neq \mathbf{v}, \mathbf{w} \in V_t \]$

$$= \begin{cases} (f(x_{wu}) + f(x_{wv}) - f(x_{wu})f(x_{wv}))x_{uv}, & \text{if } (u, v) \in E\\ (f(x_{wu}) + f(x_{wv}) - f(x_{wu})f(x_{wv}))(1 - x_{uv}), & \text{if } (u, v) \notin E \end{cases}$$

Triangle-Based Analysis

•
$$\mathbb{E}[ALG_{t}] = \sum_{u,v \in V_{t}} \left(\frac{1}{|V_{t}|} \sum_{w \in V_{t}} ALG_{w}(u,v)\right) = \frac{1}{2|V_{t}|} \sum_{u,v,w \in V_{t},u \neq v} ALG_{w}(u,v)$$

•
$$\mathbb{E}[LP_t] = \sum_{\boldsymbol{u},\boldsymbol{v}\in V_t} \left(\frac{1}{|V_t|} \sum_{\boldsymbol{w}\in V_t} LP_{\boldsymbol{w}}(\boldsymbol{u},\boldsymbol{v})\right) = \frac{1}{2|V_t|} \sum_{\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}\in V_t,\boldsymbol{u}\neq\boldsymbol{v}} LP_{\boldsymbol{w}}(\boldsymbol{u},\boldsymbol{v})$$

• Suffices to show that for all triangles (u, v, w) $ALG_w(u, v) \leq \alpha LP_w(u, v)$

Triangle-Based Analysis

• For all triangles (u, v, w)

$$ALG_{w}(u,v) \leq \alpha LP_{w}(u,v)$$

- Each triangle:
 - Arbitrary edge / non-edge configuration (4 total)
 - Arbitrary LP weights satisfying triangle inequality
- For every fixed configuration functional inequality in LP weights (3 variables)
- $\alpha \approx 2.06! \ \alpha \geq 2.025 \ \text{for any } f!$

Our Results: Complete Graphs

Minimize:
$$\sum_{(u,v)\in E} x_{uv} + \sum_{(u,v)\notin E} (1-x_{uv})$$
$$x_{uv} \leq x_{uw} + x_{wv} \qquad \forall u,v,w$$
$$x_{uv} \in \{0,1\}$$

- 2.06-approximation for complete graphs
- Can be derandomized (previous: [Hegde, Jain, Williamson, van Zuylen '08])
- Also works for real weights satisfying probability constraints

Our Results: Triangle Inequalities

Minimize:
$$\sum_{(u,v)} (1 - c_{uv}) x_{uv} + c_{uv} (1 - x_{uv})$$

 $x_{uv} \le x_{uw} + x_{wv} \quad \forall u, v, w$
 $x_{uv} \in \{0,1\}$

Weights satisfying triangle inequalities and probability constraints:

```
-c_{uv} \in [0,1]-c_{uv} \le c_{uw} + c_{wv} \forall u, v, w
```

- 1.5-approximation
- 1.2 integrality gap

Our Results: Objects of **k** types

$$\begin{aligned} \text{Minimize: } & \sum_{(u,v) \in \textbf{\textit{E}}} (1-\textbf{\textit{c}}_{uv}) x_{uv} + \textbf{\textit{c}}_{uv} (1-x_{uv}) \\ & x_{uv} \leq x_{uw} + x_{wv} & \forall u,v,w \\ & x_{uv} \in \{0,1\} \end{aligned}$$

- Objects of k-types:
 - $-c_{uv} \in \{0,1\}$
 - $-\mathbf{E}$ = edges of a complete \mathbf{k} -partite graph
- **3**-approximation
- Matching 3-integrality gap

Thanks!

Better approximation:

- Can stronger convex relaxations help?
 - − Integrality gap for natural Semi-Definite Program is $\geq \frac{1}{2-\sqrt{2}} \approx 1.7$
 - Can LP/SDP hierarchies help?

Better running time:

- Avoid solving LP?
- < 3-approximation in MapReduce?

Related scenarios:

- Better than 4/3-approximation for consensus clustering?
- o(log n)-approximation for arbitrary weights (would improve MultiCut, no constant –factor possible under UGC [Chawla, Krauthgamer, Kumar, Rabani, Sivakumar '06])