CEJCHOVÁNÍ VOLTMETRU

návod do cvičení z předmětu Technický experiment

1 CÍL CVIČENÍ

Cílem cvičení je provést kontrolu nejistot multimetrů, které budou používány pro další úlohy tohoto předmětu. Měřicí přístroje budou používány zejména stejnosměrném rozsahu 10 V a nižším (cca 0,1 V ...10 V).

2 POTŘEBNÝ MATERIÁL A PŘÍSTROJE

- regulovatelný zdroj stejnosměrného napětí 0...10 V;
- kontrolovaný voltmetr (multimetr);
- referenční cejchovní voltmetr;
- cejchovní protokol referenčního voltmetru.

3 CEJCHOVÁNÍ

Měřený přístroj umístěte do měřeného prostředí minimálně 4 hodiny před měřením a měřte po 15 minutách po připojení napájecího napětí na všechny připojené přístroje.

Regulovaný zdroj propojte s referenčním přesným laboratorním voltmetrem a cejchovaným multimetrem na stejnosměrných rozsazích do 10 V (alespoň dva sousední rozsahy, tedy např. 1 V a 10 V). Na regulovaném zdroji nastavte postupně minimálně 10 hodnot napětí pro každou polaritu a odečtěte hodnotu z obou měřicích přístrojů. Rozložení zvolených napětí by mělo být rovnoměrné (hodnoty nemusí být přesné - není nutno nastavit přesně např. 0,2000 V, hodnota může být např. 1,98564 V ale musí se přesně odečíst).

Poznámka: pokud je cejchován multimetr s malou rozlišovací schopností (např. 3 ½ digitový), nastaví se na něm taková napětí, kdy se poslední digit přepne nahoru a dolů (např. pro 0,5 V to je 0,501 V a 0,499 V), pro tyto hodnoty se odečtou konvenčně pravé hodnoty (= "přesné" hodnoty z cejchovacího voltmetru) a do protokolu se uvede jejich aritmetický průměr. Tento postup je možno aplikovat i na vícedigitový multimetr.

Pro každou z naměřených hodnot stanovte relativní odchylky od referenční hodnoty (kterou je laboratorní voltmetr) a stanovte maximální relativní odchylku přístroje. Nejistotu laboratorního voltmetru odečtěte z kalibračního protokolu pro daný rozsah.

Pro vyhodnocení výsledné nejistoty se uvažuje i nejistota daná hodnotou kroku posledního digitu, tedy např. pro 4místný displej (např. zobrazení 0,534 V) je chyba ±0,001 V (pozn.: je nutno použít zejména u multimetrů s malou rozlišovací schopností).

Závislost mezi nastavenou a naměřenou hodnotou vykreslete v grafu (příklad na obr. 1), rovněž graficky zobrazte chyby měření v relativní velikosti (nejlépe v % - příklad na obr. 2). Uvedené příklady jsou pro cejchování v rozsahu \pm 1 V.

Tab. 1 – Naměřené a vypočtené hodnoty – příklad pro nastavený rozsah 2 V

Nastaveno V	Měřicí rozsah V	Naměřeno V	Rozdíl V	Relativní okamžitá odchylka %	Nejistota z posledního digitu V	Relativní okamžitá odchylka z posledního digitu %	Nejistota referenčního multimetru	Celková okamžitá nejistota
1,8776	4,0	1,878	-0,00040	-0,021%	0,001	0,053%	0,001%	0,057%
1,4859	4,0	1,486	-0,00010	-0,007%	0,001	0,067%	0,001%	0,068%
1,2502	4,0	1,250	0,00020	0,016%	0,001	0,080%	0,001%	0,082%
0,9021	4,0	0,902	0,00010	0,011%	0,001	0,111%	0,001%	0,111%
0,7269	4,0	0,727	-0,00010	-0,014%	0,001	0,138%	0,001%	0,138%
0,3996	4,0	0,399	0,00060	0,150%	0,001	0,250%	0,001%	0,292%
0,3054	0,4	0,3071	-0,00170	-0,557%	0,0001	0,033%	0,001%	0,558%
0,1182	0,4	0,1189	-0,00070	-0,592%	0,0001	0,085%	0,001%	0,598%
0,0695	0,4	0,0701	-0,00060	-0,863%	0,0001	0,144%	0,001%	0,875%
0,0355	0,4	0,0358	-0,00030	-0,845%	0,0001	0,282%	0,001%	0,891%

Celková nejistota multimetru σ_C je vypočtena podle vztahu

$$\sigma_C = \sqrt{\sigma_M^2 + \sigma_D^2 + \sigma_R^2}$$

kde σ_M je maximální chyba linearity kalibrovaného multimetru;

 σ_D je nejistota vzniklá nepřesností posledního digitu,

 σ_R je nejistota referenčního voltmetru v použitém rozsahu;

Obr. 1 - Příklad cejchovní křivky voltmetru. Rovnice lineární regresní přímky udává možný přepočet pro korigování naměřených hodnot, Pearsonův korelační koeficient udává míru linearity naměřených hodnot

Obr. 2 - Příklad odchylek měření

Obr. 3 - Příklad nejistoty měření včetně nejistoty z posledního digitu kalibrovaného voltmetru

V případě, že se při cejchování objeví odlehlá hodnota (obr. 4) (= její odchylka je více než 3x větší než je směrodatná odchylka měření), je nutno provést cejchování znovu.

Obr. 4 - Příklad průběhu chyby s odlehlou hodnotou (pro 0,9021 V).

4 ZÁVĚR

V závěru uveďte zjištěnou nepřesnost multimetru a zhodnoťte výsledné chyby jak z hlediska přesnosti uváděné výrobcem multimetru, tak z hlediska stavu rozložení jednotlivých chyb podle obr. 2 a 3 (zejména zda se jedná o nějakou charakteristickou vadu přístroje, nebo jde o náhodné chyby).

Protokol zhotovte v souladu s návodem "Protokol z měření - návod do cvičení z předmětu Technický experiment".
