Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа ядерных технологий Направление – Ядерные физика и технологии Отделение ядерно-топливного цикла

Отчет по практической работе №4

по дисциплине

«Теория каскадов для разделения двухкомпонентных изотопных смесей»

Влияние потоков закрутки на ступенях отбора тяжелой и легкой фракций на параметры каскада постоянной ширины

Вариант 6

Исполнитель:			
Студент, гр. 0А8Д	подпись	дата	Кузьменко А.С.
Проверил:			
Профессор ОЯТЦ	—————————————————————————————————————		Орлов А.А.

ЦЕЛЬ РАБОТЫ

Исследование влияния потоков закрутки на ступенях отбора тяжелой и легкой фракций на полный коэффициент разделения ступеней, эффективную разделительную способность каскада, фактическую разделительную способность каскада, схемный КПД каскада, коэффициент использования разделительной мощности каскада.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Иногда для достижения необходимого обогащения и производительности каскада используют так называемые потоки закрутки (рисунок 1). Часть потока легкой фракции, выходящей из ступени n_p , образует поток отбора легкой фракции каскада P, а другая часть возвращается на питание той же ступени, где смешивается с легкой фракцией предыдущей ступени. Аналогично, часть потока тяжелой фракции, выходящей из ступени 1, извлекается из каскада, образуя поток отбора тяжелой фракции каскада W, а другая часть возвращается в ту же ступень и смешивается с потоком тяжелой фракции второй ступени.

Рисунок 1 – Прямоугольный каскад с закруткой потоков на концах

2. ИСХОДНЫЕ ДАННЫЕ

Таблица 1 – Исходные данные

Количество ступеней	Ступень питания	Количество ГЦ в ступени	Концентрация отбора, %	Концентрация отвала, %
5	3	35000	3	0,2

3. ПРАКТИЧЕСКАЯ ЧАСТЬ

Проведен расчет каскада без потоков закрутки, с потоком закрутки на ступени отбора легкой фракции, с потоком закрутки на ступени отбора тяжелой фракции, с двумя потоками закрутки на крайних ступенях каскада. Результаты расчетов представлены в таблицах 2 и 3.

Таблица 2 — Результаты расчета полных коэффициентов разделения ступеней для различных вариантов использования закруток

Номер	Каскад	χ_I	χ_2	χ3	χ4	X 5
1	без потоков закрутки	2,246	1,973	1,884	2,058	2,367
2	с потоком закрутки на ступени отбора легкой фракции каскада	2,236	1,962	1,870	2,030	2,340
3	с потоком закрутки на ступени отбора тяжелой фракции каскада	2,246	1,973	1,884	2,058	2,367
4	с двумя потоками закрутки на крайних ступенях каскада	2,236	1,962	1,870	2,030	2,340

По данным таблицы 2 построена зависимость полного коэффициента разделения от номера ступени (рисунок 2).

Из рисунка 2 видно, что зависимость полного коэффициента разделения в ступени от номера ступени каскада нелинейная с минимумом на ступени подачи питания. На ступени отбора легкой фракции для всех кривых значение полного коэффициента разделения ступеней максимально, наибольшее значение наблюдается для каскадов без потоков закрутки и с потоком закрутки на ступени отбора тяжелой фракции каскада $\chi = 2,367$. На ступени отбора тяжелой фракции максимальное значение $\chi = 2,246$ наблюдается для каскадов без потоков закрутки и с потоком закрутки на ступени отбора тяжелой фракции каскада; минимальное значение $\chi = 2,236$

наблюдается для каскада с потоком закрутки на ступени отбора легкой фракции каскада и с двумя потоками закрутки.

Рисунок 2 — Зависимость полного коэффициента разделения в ступени от номера ступени каскада

Рассчитанные значения эффективной и фактической разделительных способностей, схемного КПД каскада и коэффициента использования разделительной мощности каскада приведены в таблице 3.

Таблица 3 — Результаты расчета характеристик эффективности каскада для различных вариантов использования закруток

Номер	Каскад	$E_{ eg\phi\phi}$	$E_{\phi a \kappa m}$	η_{cx} , %	Ким, %
1	без потоков закрутки	124,822	131,673	94,80	5165
2	с потоком закрутки на ступени отбора легкой фракции каскада	127,606	145,165	87,90	52,80

3	с потоком закрутки на ступени отбора тяжелой фракции каскада	124,822	131,673	94,80	51,65
4	с двумя потоками закрутки на крайних ступенях каскада	127,606	145,165	87,90	52,80

По данным таблицы 3 построены зависимости эффективной и фактической разделительной способности от типа каскада (рисунок 3).

Рисунок 3 — Значения эффективной и фактической разделительных способностей каскада в зависимости от наличия/отсутствия потоков закрутки

Из рисунка 3 видно, что наибольшие значения фактической и эффективной разделительных способностей каскада наблюдается для каскадов с потоком закрутки на ступени отбора легкой фракции каскада и с двумя потоками закрутки ($E_{\phi a \kappa \tau} = 145,165 \text{ г/c}$, $E_{9 \phi \phi} = 127,606 \text{ г/c}$). Для каскадов с такими потоками закрутки фактическая разделительная способность каскада превышает эффективную на 12,1 %.

По данным таблицы 3 построены зависимости схемного КПД и коэффициента использования разделительной мощности каскада от типа каскада (рисунок 4).

Рисунок 4 — Значения схемного КПД каскада и коэффициента использования разделительной мощности каскада в зависимости от наличия/отсутствия потоков закрутки

Из рисунка 4 видно, что наибольшие значения $\eta_{\rm cx}$ принимает при наличии потоков закрутки на ступени отбора тяжелой фракции и при их отсутствии ($\eta_{\rm cx}=0.95$). Наибольшие значения $K_{\rm um}$ принимает при наличии потоков закрутки на ступени отбора легкой фракции и при наличии потоков закрутки на крайних ступенях каскада ($K_{\rm um}=0.5280$). Наличие или отсутствие потока закрутки в большей степени влияет на схемный КПД (около 7,3 %), чем на коэффициент использования разделительной способности (около 2,2 %).

ВЫВОДЫ

Исследовано влияние потоков закрутки на ступенях отбора тяжелой и легкой фракций на полный коэффициент разделения ступеней, эффективную разделительную способность каскада, фактическую разделительную способность каскада, схемный КПД каскада, коэффициент использования разделительной мощности каскада.

- 1. Установлено, что максимальное значение полного коэффициента разделения в ступени достигается для каскадов без потоков закрутки и с потоком закрутки на ступени отбора тяжелой фракции.
- 2. Показано, что наибольшие значения эффективной и фактической разделительных способностей наблюдаются для каскадов с потоком закрутки на ступени отбора легкой фракции и с двумя потоками закрутки.
- 3. Определено, что максимальное значение схемного КПД достигается при наличии потоков закрутки на ступени отбора тяжелой фракции и при их отсутствии, а максимальное значение коэффициента использования разделительной мощности каскада достигается при наличии потоков закрутки на ступени отбора легкой фракции и при наличии потоков закрутки на крайних ступенях каскада.
- 4. Рекомендовано использовать каскад с потоком закрутки на ступени отбора легкой фракции каскада и каскад с двумя потоками закрутки на крайних ступенях каскада, поскольку при данных типах достигается максимальное значение эффективной и фактической разделительных способностей.