Fungsi Rekursif

Perkuliahan Algoritma Pemrograman pada Semester Ganjil 2020

Fungsi Iteratif

Buatlah fungsi untuk menghitung faktorial suatu bilangan seperti contoh berikut :

```
5! = 5 x 4 x 3 x 2 x 1 = 120
3! = 3 x 2 x 1 = 6
2! = 2 x 1 = 2
0! = 1
```

```
In [ ]:
```

```
def factorial(num):
    if num==0:
        temp=1
    else:
        temp==1:
        temp=temp*num
        num=num-1
    return(temp)

# Main Program #

a=int(input("Masukkan bilangan="))
b=factorial(a)
print (a,'!=',b)
```

Terdapat suatu bilangan fibonacci sebagai berikut :

```
0, 1, 1, 2, 3, 5, 8, 13, 21, ...
```

Bilangan fibonacci tersebut, dapat diperoleh melalui persamaan berikut :

$$F(n) = \begin{cases} 0, & \text{jika } n = 0\\ 1, & \text{jika } n = 1\\ F(n-1) + F(n-2), & \text{jika tidak} \end{cases}$$

In []:

```
def fibonaci1(number):
    fibo1=0;
    fibo2=1;
    count=2
    if (number==0):
        fibo=0
    elif (number==1):
        fibo=1
    else:
        while count <= number:
            fibo=fibo1+fibo2
            fibo1=fibo2
            fibo2=fibo
            count=count+1
    return(fibo)
#main
a=int(input("enter a number="))
b=fibonaci1(a)
print('fibonaci-',a,'=',b)
```

Fungsi Rekursif

Adalah suatu teknik algoritma yang memecahkan masalah dengan cara memecahkan masalah dengan ukuran yang lebih kecil. Hal ini dapat dilakukan dengan cara membuat suatu fungsi dengan ketentuan sebagai berikut :

- Didalam fungsi tersebut terdapat suatu syntax untuk memanggil fungsi itu sendiri dengan parameter dengan nilai semakin kecil
- · terdapat stopping condition (yang memberhentikan jalannya fungsi tersebut)

Misalkan pada permasalah faktorial tersebut, maka dapat dilihat bahwa faktorial suatu bilangan adalah :

```
5! = 5 \times 4 \times 3 \times 2 \times 1
= 5 \times 4!
= 5 \times 4 \times 3!
= 5 \times 4 \times 3 \times 2!
= 5 \times 4 \times 3 \times 2 \times 1!
= 5 \times 4 \times 3 \times 2 \times 1
n! = n \times (n-1)!
```

Pada permasalahan faktorial tersebut, fungsi akan berhenti memanggil dirinya sendiri ketika bilangan yang akan dicari nilai faktorialnya bernilai 1 (satu)

Berikut adalah contoh fungsi rekursif untuk perhitungan faktorial suatu bilangan

In []:

```
def factorialRecursive(number):
    if number==1 or number==0: #base function - stopping condition
        temp=1
    else:
        temp=number*factorialRecursive(number-1) # recursive
    return(temp)

# Main Program #

a=int(input("masukkan bilangan="))
b=factorialRecursive(a)
print (a,'!=',b)
```

In []:

```
def fibonaciRecursive(number):
    if (number==0): # stopping condition
        return(0)
    elif (number==1): # stopping condition
        return(1)
    else:
        return(fibonaciRecursive(number-1)+fibonaciRecursive(number-2))

# Main Program #
a=int(input("masukkan bilangan="))
b=fibonaciRecursive(a)
print('fibonaci-',a,'=',b)
```

Latihan

Buat fungsi iteratif dan rekursif untuk menghitung eksponential suatu bilangan (\mathbf{x}^n). Fungsi yang dibuat memiliki dua buah argument, yaitu \mathbf{x} dan n