Masked Autoencoders Are Scalable Vision Learners

Kaiming He (Facebook Al Research), 2021

Chioh Lee 202555439 Dept. of AI, School of CSE

Abstract, Introduction (Crash Course)

Rationales:

- (1) ViT = Data-hungry
- (2) GPT: Autoregressive Modeling
- (3) BERT: Masked Autoencoding
- (4) Image has heavy spatial redundancy(mask can be reversed w/ extrapolation)

Abstract, Introduction (Crash Course)

Methodologies:

- (1) Mask image patches
 - → Reconstruct
- (2) Asymmetric Encoder-Decoder (smaller decoder)

Findings:

- (1) Masking significant portion of image
 → nontrivial performance increase
- (2) Training Acceleration (> 3x)

Approach: Patchfying

$$P \times P$$

$$N = \frac{H \cdot W}{P^2}$$

$$z_i = \text{PatchEmbed}(x_i), \quad z_i \in \mathbb{R}^D \quad \text{for } i = 1, \dots, N$$

$$Z = [z_1, z_2, \dots, z_N] \in \mathbb{R}^{N \times D}$$

Approach: Masking ← rationale (4)

$$\tilde{Z}_V = \{ z_i + p_i \mid i \in V \}$$

Approach: Encoder

Approach: Decoder

$$\tilde{Z}_{\text{dec}} = \text{Sort}(\{h_i\}_{i \in V} \cup \{z_{\text{mask}} + p_i\}_{i \in M})$$

$$\hat{x}_i = f_{\text{dec}}(\tilde{Z}_{\text{dec}})_i \quad \text{for } i \in M$$

Approach: Reconstruction Target

$$\mathcal{L} = \frac{1}{|M|} \sum_{i \in M} \|\hat{x}_i - x_i\|^2$$

Approach: Results

Experiments: Masking Ratio

Experiments: Depth, Accuracy, Train

encoder	dec. depth	ft acc	hours	speedup
ViT-L, w/ [M]	8	84.2	42.4	-
ViT-L	8	84.9	15.4	$2.8 \times$
ViT-L	1	84.8	11.6	3.7 ×
ViT-H, w/ [M]	8	*	119.6	-
ViT-H	8	85.8	34.5	3.5×
ViT-H	1	85.9	29.3	4.1×

Experiments: Ablation Studies

blocks	ft	lin
1	84.8	65.5
2	84.9	70.0
4	84.9	71.9
8	84.9	73.5
12	84.4	73.3

(a) Decoder depth.	A deep decoder can	im-
prove linear probing	accuracy.	

case	ft	lin	
pixel (w/o norm)	84.9	73.5	
pixel (w/ norm)	85.4	73.9	
PCA	84.6	72.3	
dVAE token	85.3	71.6	

(d) **Reconstruction target**. Pixels as reconstruction targets are effective.

dim	ft	lin
128	84.9	69.1
256	84.8	71.3
512	84.9	73.5
768	84.4	73.1
1024	84.3	73.1

(b) Decoder width.	The decoder can be nar-
rower than the encod	er (1024-d).

	case	ft	lin	
	none	84.0	65.7	
	crop, fixed size	84.7	73.1	
	crop, rand size	84.9	73.5	
	crop + color jit	84.3	71.9	
_	50 000	120	100	1000

(e) **Data augmentation**. Our MAE works with minimal or no augmentation.

case	ft	lin	FLOPs
encoder w/ [M]	84.2	59.6	3.3×
encoder w/o [M]	84.9	73.5	1×

(c) **Mask token**. An encoder without mask tokens is more accurate and faster (Table 2).

case	ratio	ft	lin
random	75	84.9	73.5
block	50	83.9	72.3
block	75	82.8	63.9
grid	75	84.0	66.0

(f) **Mask sampling**. Random sampling works the best. See Figure 6 for visualizations.

Questions

Q. Use of smaller decoder?

In vision, the decoder reconstructs pixels, hence its output is of a lower semantic level than common recognition tasks; different from BERT, where the decoder predicts missing words that contain rich semantic information.

Q. Use of mask tokens in decoder input?

If the encoder uses mask tokens, it performs worse. The encoder has a large portion of mask tokens in its input in pretraining, which does not exist in uncorrupted images. By skipping the mask token in the encoder, this may also reduce training computation.