一、特性描述

TM1911是高精度的单通道LED恒流驱动芯片,芯片可由一个外接电阻调整输出电流的大小。芯片具有极低的恒流输出转折压降,具有宽的输入电压范围,极高的恒流输出精度和恒流输出稳定度。此外,TM1911还支持100Hz²20kHz频率范围内的PWM调光,且在100Hz条件下可实现1024:1的调光深度。芯片具有过温保护功能,当芯片结温达到135℃时,随着芯片温度继续上升,芯片会线性降低输出电流。TM1911质量可靠,性能优秀,在各种LED照明产品中非常简单易用。

二、功能特点

- ▶ 单通道恒流LED驱动
- ➤ 15~300mA, 外部电阻设定电流
- ▶ 宽输入电压范围: 4.5V ~ 24V
- ▶ 100Hz~20kHz 调光频率
- ▶ 超低drop-out压降(20mA驱动时,低至300mV)
- ➤ ±5%输出电流精度
- ▶ 电源及负载调变率0.1%/V
- ➤ SOT23-6及ESOP8无铅环保封装

三、应用领域

- 标识牌照明(商标、指示牌、仓库存储、停车场等)
- 发光字
- 灯条,灯带。

V1.4

四、管脚定义:

图1

五、管脚功能定义:

可明友勒	引脚序号		功能说明	
引脚名称	S0T23-6	ESOP8	切配说明	
VDD	1		芯片电源输入端	
GND	2	2	芯片地	
PWM	3	3	PWM信号输入	
NC	6	4, 5, 8	空脚位	
SET	4	6	外接电阻设定输出电流值	
OUT	5	7	电流输出端	
EP		EP	散热片,亦是芯片地,推荐链接到PCB上的GND以增加系统散热	

集成电路系静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作焊接,可能会造成ESD损坏或者性能下降,芯片无法正常工作。

@Titan Micro Electronics www.titanmec.com

六、电气参数

1、极限工作条件

参数名称	参数符号	极限值	单位
VDD, Vout电压	_	-0. 3∼+28	V
PWM耐压	Vpwm	-0.3∼+6.5	V
SET耐压	Vset	-0.3∼+6.5	V
输出电流	Iout	300	mA
总功耗	D	S0T23-6 400 (TS≤100°C)	mW
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	P _{TOT}	ESOP8 1200 (TS≤100°C)	IIIW
最大结温	T_{JMAX}	150	$^{\circ}\mathbb{C}$
存储温度	Tstg	−65~+150	
工作结温	Topt	-40~+125	$^{\circ}\mathbb{C}$
ESD	ESD (HBM)	4000	V
ESD	ESD (MM)	200	V

2、推荐工作条件

在 Ta=+25℃下测试,除非另有说明						
参数名称	参数符号	测试条件	最小值	典型值	最大值	単位
电源电压	VDD	_	4. 5		24	V
静态电流	IQ	VDD≥4.5V	200	250	300	uA
驱动电流	Iout	VDD≥4.5V	5		300	mA
驱动电流精度	ISKEW	VDD=5V, Vout=3V			5	%
输出端漏电流	ILK	VDD=0, Vout=24V			1	uA
	Vout_MIN	VDD≥4.5V, Iout=20mA		0.3		
		VDD≥4.5V, Iout=60mA		0.35		V
最小稳定压降		VDD≥4.5V, Iout=150mA		0.6		
		VDD≥4.5V, Iout=200mA		0.8		
	1	VDD≥4.5V, Iout=300mA		1.0		
驱动电流线性调整	LDR	VDD=4.5V, Vout=3∼24V		0. 1		%/V
驱动电流负载调整	LNR	VDD=4. 5∼24V, Vout=3V		0.1		%/V
驱动电流温度调整	TR	VDD=4.5V, Vout=3V		0.1		%10℃
调光频率	fREQ		0.1		20	KHZ

@Titan Micro Electronics www.titanmec.com

单通道线性 LED 恒流驱动 IC TM1911

七、应用信息

典型恒流驱动应用原理图如下:

图2

图2中,VDD的限流电阻Rz: VCC=24V,推荐10K Ω -15K Ω ; VCC=12V,推荐3K Ω --5K Ω 。 OUT端口负载的LED数量 N_{LED} 社算公式如下:

 $N_{LED} = (V_{CC} - V_{Out}) / V_{LED}$;

例: V_{CC}=24V, V_{LED}=3V, 取Vout=1V时, N_{LED}=(24V-1V)/3V=7.6, N_{LED}表示串接的LED数量,即串联灯数不超过7个。

Vout表示TM1911的OUT端口与芯片GND间的电压(Vout应高于Iout恒流拐点电压)。实际应用中,当灯条较长,离电源接入点远的位置会存在VCC下降,如果Vout没有到达恒流拐点电压,会出现输出达不到额定恒流值,此时可以通过减少串联的灯数以提高Vout值,或者增加电源接入点。

输出电流设定

RSET脚用于设定输出电流,在使芯片管脚外接一个电流设定电阻SET到地,输出的电流就可以由下式算出:

Iout = (1000/Rset) A 如外接电阻 $5K\Omega$,则输出电流为200mA。

注意事项: 布板时应尽量让电阻Rset靠近SET脚, 否则容易受到干扰导致恒流不稳定。

过温保护:线性降电流

IC 结温过高可能会造成芯片损坏、系统发热着火等不可弥补的损失。过高的结温可能由大电流工作、线路板设计差或环境温度高等因素造成。

TM1911 具有过温保护功能。在 T 芯片结温上升到 135° C 时,过温保护电路会开始限制芯片输出电流。输出电流在芯片结温达到 160° C 时,输出电流会线性降低到 0。

@Titan Micro Electronics www.titanmec.com

八、典型工作特性曲线

测试条件: T_J=25℃, VDD=5V, Vout=3V。

九、IC 封装示意图(SOT23-6)

Cumbal	Dimensions In	Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.150	1.250	0.045 0.04		
A1		0.060		0.002	
A2	1.045	1.150	0.041	0.045	
b	0.350	0.500	0.014	0.020	
С	0.035	0.035	0.003	0.008	
D	2.774	3.066	0.109	0.120	
E	1.600	1.700	0.063	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.95 (BSC)		0.037(BSC)		
e1	1.90 (BSC)		0.075(BSC)		
L	0.400	0.600	0.015	0.024	
θ	0°	8°	0°	8°	

@Titan Micro Electronics www.titanmec.com

V1.4

十、IC 封装示意图(ESOP8)

CL-1	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol .	Min	Max	Min	Max	
P1	2. 972	3, 200	0.117	0. 126	
P2	2. 082	2. 311	0.082	0.091	
A	1. 350	1.750	0.053	0.069	
A1	0. 100	0. 250	0.004	0.010	
A2	1. 350	1.550	0.053	0.061	
b	0. 330	0.510	0.013	0.020	
c	0. 170	0. 250	0.006	0.010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3. 800	4. 000	0.150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

@Titan Micro Electronics www.titanmec.com