

Table des matières

A	vant-propos	x
Ι	Leçons d'algèbre et de géométrie	1
1	Exercices sur les groupes	3
	1.1. Groupes d'exposant égal à 2	3
	1.2. Pour un plan euclidien E , un sous-groupe fini de $\mathcal{O}(E)$ ou de $GL(E)$ est cyclique ou diédral	4
	1.3. Groupes et topologie : petits sous-groupes bornés de $GL_n(\mathbb{C})$ 1.4. Groupes et topologie : on s'intéresse aux sous-groupes additifs de \mathbb{R} et à quelques applications de leur caractérisation (ils sont denses ou	6
	discrets)	7
	1.5. Groupes et géométrie : applications affines conservant un cube dans	0
	un espace euclien	9 12
2	Exercices faisant intervenir le théorème de Bézout	15
	2.1. Les groupes $GL_2(\mathbb{Z})$ et $SL_2(\mathbb{Z})$	15
	2.2. Matrices inversibles dans $\mathcal{M}_2(\mathbb{Z})$ et nombres de Fibonacci 2.3. Périodicité de la suite $(A(n) \wedge B(n))_{n \in \mathbb{N}}$ pour A, B dans $\mathbb{Z}[X]$ pre-	17
	miers entre eux dans $\mathbb{C}[X]$	20
	2.4. Condition pour que l'application $X \mapsto AX - XB$ soit un automor-	
	phisme de $\mathcal{M}_n(\mathbb{C})$	21
	2.5. Théorème de décomposition des noyaux	22 24
3	Exercices faisant intervenir les notions de pgcd et ppcm	27
	3.1. pgcd de $a^n - 1$ et $a^m - 1$ dans \mathbb{Z} et pgcd de $X^n - 1$ et $X^m - 1$ dans	07
	$\mathbb{K}[X]$	27
	3.2. Une minoration de ppcm $(1, 2, \dots, n)$ pour $n \ge 7$ 3.3. Théorème de Lamé sur le nombre de divisions euclidiennes que né-	28
	cessite l'algorithme d'Euclide pour calculer le pgcd de a et b	31
	3.4. Exposant d'un groupe fini	34

iv

	3.5. Condition pour que $\frac{1}{m}\sum_{k=0}^{m-1}J^k$ soit inversible pour J matrice de per-	
	mutation	36 37
4	Exercices utilisant le corps $\mathbb{Z}/p\mathbb{Z}$ 4.1. Résolution d'une équation de degré 2 dans \mathbb{F}_{17}	39 39 41 42 45
5	Exercices utilisant des polynômes et fractions rationnelles 5.1. Fonctions symétriques élémentaires des racines et formules de Newton. 5.2. Exemples d'utilisation des polynômes d'interpolation de Lagrange. 5.3. Produit scalaire et projection orthogonale sur $\mathbb{R}[X]$ 5.4. Décomposition en éléments simples et déterminant de Cauchy 5.5. Calcul de $\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^k}{x+k}$	49 51 54 55 57
6	Exercices faisant intervenir des polynômes irréductibles 6.1. Polynômes réels à valeurs positives	63
	6.2. Irréductibilité de $\prod_{k=1}^{n} (X - a_k) - 1$ et $Q(X) = \prod_{k=1}^{n} (X - a_k)^2 + 1$ dans $\mathbb{Z}[X]$	64 65 66 68 71
7	Exercices d'algèbre linéaire faisant intervenir les polynômes 7.1. Un calcul de polynôme minimal et de puissances d'une matrice. 7.2. Une démonstration du théorème de Cayley-Hamilton. 7.3. Matrices de permutation et matrices circulantes. 7.4. Polynômes ultra-sphériques. 7.5. Polynôme minimal d'un endomorphisme. 7.6. Commutant d'un endomorphisme.	75 75 77 78 82 85 87
8	Exercices illustrant l'utilisation de déterminants 8.1. Utilisation des déterminants de Vandermonde	93 93 96 97

	8.4. Déterminant jacobien et volume d'une boule de \mathbb{R}^n	98
	8.5. Déterminant jacobien et moments d'une variable aléatoire à densité	10
	à deux dimensions	101 104
	8.6. Résultant de deux polynômes	104
9	Exercices utilisant des vecteurs et valeurs propres	107
	9.1. Exponentielle de matrice et système différentiel	107
	9.2. Valeurs propres d'un opérateur différentiel	110
	9.3. Équations différentielles et valeurs propres	111
	9.4. Nature d'une conique dans le plan euclidien ou d'une quadrique dans	
	l'espace euclidien	112
	9.5. Nombres algébriques	114
10	Endomorphismes diagonalisables ou trigonalisables	117
	10.1. Un exemple de diagonalisation	117
	10.2. Densité de l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{C})$.	119
	10.3. Sous-groupes commutatifs d'exposant fini de $GL_n(\mathbb{C})$	121
	10.4. Diagonalisabilité de l'endomorphisme $M \mapsto AM + MB$ de $\mathcal{M}_n(\mathbb{K})$.123
	10.5. Diagonalisation et calcul des puissances d'une matrice	127
	10.6. Matrices complexes normales	129
11	Exercices faisant intervenir des décompositions de matrices 11.1. Algorithmes de Gauss et de décomposition LR pour une matrice	133
	tridiagonale	133
	11.2. Un algorithme permettant d'obtenir la décomposition de Dunford.	135
	11.3. Décompositions additive et multiplicative de Dunford	139
	11.4. Calcul du polynôme caractéristique d'une matrice réelle ou com-	
	plexe par la méthode de Souriau	140
	11.5. Le groupe $SL_n(\mathbb{Z})$	141
	11.6. Morphisme de groupes de $GL_n(\mathbb{K})$ dans \mathbb{K}^* qui sont fonctions	
	polynomiales des coefficients des matrices	145
12	Exercices faisant intervenir des automorphismes orthogonaux	149
	12.1. Nature d'une isométrie en dimension 3	149
	12.2. Dans $\mathcal{M}_n(\mathbb{R})$ les matrices tAA et A tA sont orthogonalement	
	semblables.	151
	12.3. Isométries affines conservant une hélice circulaire	151
	12.4. Composantes connexes du groupe orthogonal $\mathcal{O}\left(E\right)$	153
	12.5. Caractérisation des rotations de \mathbb{R}^3 comme solutions non nulles de	
	l'équation fonctionnelle $f(x \wedge y) = f(x) \wedge f(y)$	155
	12.6. Décomposition polaire	158
13	Exercices sur les formes quadratiques	163
_	13.1. Un exemple de réduction de Gauss	163
	13.2. Exemples de formes quadratiques réelles définies positives	166
	13.3. La forme quadratique $\operatorname{Tr}(M^2)$ sur $\mathcal{M}_n(\mathbb{R})$	170
	13.4. Formes quadratiques et géométrie : ellipsoïdes dans l'espace eucli-	
	dien \mathbb{R}^n	171

vi

13.5. Lemme de Morse	176
13.6. Formes quadratiques sur le $\mathbb{K}(X)$ -espace vectoriel $(\mathbb{K}(X))^n$, the rème de Pfister	
14.1. Un critère de cocyclicité de 4 points. 14.2. Une suite de polygones. 14.3. Le cercle des neuf points d'Euler. 14.4. Relations trigonométriques pour un triangle. 14.5. Ellipse de Steiner. 14.6. Quelques expressions de l'aire d'un triangle.	183 186 188 190 196
15.1. Plus courte distance entre deux points d'une sphère. 15.2. Puissance d'un point par rapport à une sphère. 15.3. Cercle orthoptique d'une ellipse ou d'une hyperbole. 15.4. Recouvrement du plan par des cercles. 15.5. Recouvrement de l'espace par des sphères. 15.6. Cocyclicité de 4 points sur une conique.	204 208 211 212
 16 Exercices faisant intervenir des dénombrements 16.1. Calculs de sommes en utilisant un argument de dénombrement 16.2. Probabilité pour que deux entiers compris entre 1 et n soient pairers entre eux. 16.3. Carrés dans un corps fini. 16.4. Racines n-èmes de l'unité sur un corps fini 16.5. Nombre d'automorphismes d'un espace vectoriel sur un corps 16.6. Formule des classes. 	pre 221 222 224 fini. 225 228
II Leçons d'analyse et de probabilité	231
17 Exemples de suites définies par une relation de récurrence 17.1. Suite récurrente $x_{n+1} = \ln(1+x_n)$, développement asymptotis 17.2. Suites homographiques.	
17.3. Suite définie par $x_n = \sqrt{\alpha_1 + \sqrt{\alpha_2 + \dots + \sqrt{\alpha_{n-1} + \sqrt{\alpha_n}}}}$ 17.4. Suite réelle définie par $x_{n+2} = \sqrt{x_{n+1}} + \sqrt{x_n}$ 17.5. Un algorithme de calcul l'inverse d'une matrice	241 242
18 Exemples de calcul exact de la somme d'une série numériqu	
18.1. Calcul de $\sum \frac{P(n)}{n!}$ pour P dans $\mathbb{C}[X]$	247
18.2. Calcul élémentaire de $\sum_{n=0}^{+\infty} \frac{(-1)^n}{\alpha n + 1}$ pour $\alpha > 0$	248

	18.3. Utilisation des polynômes de Tchebychev de deuxième espèce pour				
	$\frac{1}{2}$				
	le calcul de $\sum_{1}^{+\infty} \frac{1}{n^2}$				
	18.4. Utilisation du théorème de Raabe-Duhamel pour calculer la somme				
	1)	252			
	$\frac{+\infty}{\cos(nx)}$				
	18.5. Calcul de $\sum_{n=0}^{\frac{\sin(n\pi)}{n}}$ pour $x \in]0,\pi[\ldots\ldots\ldots]$	254			
	18.5. Calcul de $\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n}$ pour $x \in]0, \pi[$				
	18.6. Calcul de $\sum_{n=1}^{n-1} \frac{1}{n(n+1)^p}$ pour $p \in \mathbb{N}^*$	250			
	18.6. Calcul de $\sum_{n=1}^{\infty} \frac{1}{n(n+1)^p}$ pour $p \in \mathbb{N}$	258			
	n=1				
19	Évaluation de restes ou sommes partielles de séries	261			
	$+\infty$ x^k $\left(\sum_{n=1}^{\infty} x^k\right) \left(\sum_{n=1}^{\infty} x^k\right)$				
	19.1. Équivalents de $\sum_{k=n+1}^{+\infty} \frac{x^k}{k!}$ et $\left(\sum_{k=0}^n \frac{x^k}{k!}\right) \left(\sum_{k=0}^n (-1)^k \frac{x^k}{k!}\right) - 1$	261			
	k=n+1 $k=0$ $k=0$ $k=0$				
	10.2 Convergence do $\begin{pmatrix} 1 & \sum_{k=1}^{n} k_{k+1} \end{pmatrix}$	262			
	19.2. Convergence de $\left(\frac{1}{n^2 u_n} \sum_{k=0}^n k u_k\right)_{n \in \mathbb{N}^*}$	202			
	19.3. Un équivalent des restes d'une série alternée	263			
	19.4. Sommes partielles et restes de séries de Riemann et de Bertrand.	264			
	19.5. Développement asymptotique des sommes partielles de la série har-				
	monique et d'une série de Bertrand.	269			
	19.6. Équivalents des sommes partielles ou des restes d'une série de la				
	forme $\sum f(n) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	272			
	forme $\sum f(n) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	272			
20	Exemples d'utilisation de polynômes en analyse	277			
20	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss				
20	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients	277 277			
20	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282			
20	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284			
20	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284 291			
20	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284 291 295			
20	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284 291			
	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284 291 295 299			
	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284 291 295 299 303			
	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284 291 295 299 303			
	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284 291 295 299 303			
	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284 291 295 299 303 303 305			
	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes	277 277 282 284 291 295 299 303 303 305			
	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss	277 277 282 284 291 295 299 303 303 305			
	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss	277 277 282 284 291 295 299 303 303 305 307 310 312			
	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss	277 277 282 284 291 295 299 303 303 305			
21	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss. 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes. 20.3. Polynomes de Bernstein. 20.4. Polynômes de Bernoulli et formule d'Euler-Maclaurin. 20.5. Exemples d'utilisation de la formule d'Euler-Maclaurin. 20.6. Polynômes orthogonaux. Exemples d'applications des séries entières 21.1. Utilisation d'un théorème radial d'Abel. 21.2. Étude de $\sum a_n z^n$ et $\sum \frac{a_n}{n!} z^n$, une relation fonctionnelle. 21.3. Utilisation des séries entières pour résoudre des équations différentielles. 21.4. Calcul de det $(I_n + zA)$. 21.5. Utilisation de la série géométrique pour l'étude de $GL(E)$. 21.6. Fonction génératrice d'une variable aléatoire discrète. Exemples de séries de Fourier et de leurs applications	277 277 282 284 291 295 299 303 303 305 307 310 312			
21	Exemples d'utilisation de polynômes en analyse 20.1. Plusieurs démonstrations du théorème de d'Alembert-Gauss. 20.2. Quelques caractérisations des fonctions polynomiales à coefficients complexes. 20.3. Polynômes de Bernstein. 20.4. Polynômes de Bernoulli et formule d'Euler-Maclaurin. 20.5. Exemples d'utilisation de la formule d'Euler-Maclaurin. 20.6. Polynômes orthogonaux. Exemples d'applications des séries entières 21.1. Utilisation d'un théorème radial d'Abel. 21.2. Étude de $\sum a_n z^n$ et $\sum \frac{a_n}{n!} z^n$, une relation fonctionnelle. 21.3. Utilisation des séries entières pour résoudre des équations différentielles. 21.4. Calcul de det $(I_n + zA)$. 21.5. Utilisation de la série géométrique pour l'étude de $GL(E)$. 21.6. Fonction génératrice d'une variable aléatoire discrète.	277 277 282 284 291 295 299 303 303 305 307 310 312 314			

viii

	Lea	
	22.2. Calcul de $\sum_{n=1}^{+\infty} \frac{\sin(nx)\sin(na)}{n^2}$	320
	22.3. Utilisation d'une série de Fourier pour calculer $\int_0^{\pi} \frac{\cos(nx)}{\lambda + \cos(x)} dx.$	323
	22.4. Résolution de l'équation différentielle $y''(x) + y(x) = \sin(x) $	325
	22.5. Équation de la chaleur	326
	22.6. Équation des ondes	329
23	Applications du théorème des accroissements finis	333
	23.1. Prolongements par continuité ou par dérivabilité, applications de	222
	la règle de l'Hospital	333
	23.3. Une démonstration du théorème de Darboux qui nous dit qu'une	337
	fonction dérivée vérifie la propriété des valeurs intermédiaires. Ap-	
	plications	341
	23.4. L'équation fonctionnelle $f' = f \circ f$ où $f : \mathbb{R} \to \mathbb{R}$ est strictement	
	croissante et dérivable n'a pas de solution	344
	23.5. Différentiabilité de la fonction $(x,y)\mapsto \frac{f(y)-f(x)}{y-x}$ 23.6. Un système non linéaire de deux équations à deux inconnues	346
	20.6. Enterentiation of the following $y-x$	
	23.6. Un système non lineaire de deux equations à deux inconnues	347
24	Exemples d'utilisation d'intégrales simples et multiples	349
	24.1. Utilisation d'une intégrale double pour calculer l'intégrale de Gauss	
	$\int_0^{+\infty} e^{-t^2} dt \dots \dots \dots$	349
	24.2. Comparaison de la longueur de deux courbes	351
	24.3. Aire de l'intérieur d'une courbe simple fermée définie par une équa-	
	tion paramétrique ou polaire	353
	24.4. Utilisation d'une intégrale double pour calculer $\zeta(2)$	355
	24.5. Problème de l'aiguille de Buffon	357
	24.6. Volume de la boule unité de l'espace euclidien \mathbb{R}^n	360
25	Calcul exact et approché d'une intégrale sur un segment	363
	25.1. Utilisation de sommes de Riemann pour le calcul de la valeur d'une	
	intégrale.	363
	25.2. Un calcul classique des intégrales de Wallis et une minoration de	
	$\binom{2n}{2}$	366
	25.3. Majoration de l'erreur dans la méthode de quadrature des rec-	
	tangles à gauche	367
	$\int_{0}^{x} dt dt$	
	25.4. Calcul de $\int_0^x \frac{dt}{(1+t^2)^n}$ pour $n \ge 1$	372
	25.5. Erreur d'approximation dans la méthode des trapèzes	375
	25.6. Un procédé d'accélération de la méthode des trapèzes	378
26	Théorèmes de convergence dominée et monotone	381
	26.1. Calculs de limites utilisant le théorème de convergence dominée	382
	~	

		ix
	26.2. $\int_0^{+\infty} e^{-t} \ln(t) dt = -\gamma$	383
	26.3. Calcul de $\sum_{n=0}^{+\infty} \frac{\sin(nx)}{n}$ et de $\sum_{n=0}^{+\infty} \frac{\cos(nx)}{n^2}$	384
	26.4. Un lemme de Cantor	387 389
	$\left(\int_0^{\frac{\pi}{2}} n \sin^n(t) \cos(t) f\left(\frac{2}{\pi}xt\right) dt\right)_{n \in \mathbb{N}^*} \dots \dots \dots$	390
27	Exemples d'étude de fonctions définies par une intégrale	393
	27.1. Dérivabilité de $x \mapsto \int_{u(x)}^{v(x)} f(x,t) dt$	393
	27.2. $\int_{0}^{+\infty} \frac{e^{-tx}}{1+t^2} dt = \int_{0}^{+\infty} \frac{\sin(t)}{t+x} dt \text{ sur } \mathbb{R}^+. \dots \dots \dots$	397
	27.3. Calculs de $\int_0^{+\infty} e^{-t^2} \cos(xt^2) dt$ et $\int_0^{+\infty} e^{-t^2} \sin(xt^2) dt$	399
	27.4. Irrationalité de π	400
	27.5. Transformée de Laplace et intégrale de Dirichlet	403 405
2 8	Applications des transformées de Fourier et Laplace 28.1. Transformation de Fourier et produit de convolution de deux fonc-	411
	tions intégrables	412
	formée de Fourier	417 421
	28.4. Calcul l'intégrale de Dirichlet $\int_{0}^{+\infty} \frac{\sin(t)}{t} dt$	424
	28.5. Transformation de Laplace et équation différentielle linéaire à coefficients constants	426
29	Norme d'une application linéaire continue	431
	29.1. Normes sur $\mathcal{M}_n(\mathbb{R})$, norme de la forme linéaire trace 29.2. Norme d'un endomorphisme continu d'un espace préhilbertien	432 434
	29.3. Norme d'une forme linéaire continue sur l'espace des suites numériques bornées	435
	29.4. Opérateur de dérivation	437
	29.5. Normes d'une forme linéaire continue sur l'espace vectoriel des	101
	fonctions continues sur $[0,1]$	438
	29.6. Normes d'endomorphismes continus sur l'espace vectoriel des fonctions continues sur $[0,1]\dots\dots\dots\dots$.	441
30	Exemples d'applications du théorème des fonctions implicites	445
_ 3	30.1. Théorème des fonctions implicites et développements limités	445
	30.2. Théorèmes du point fixe et des fonctions implicites	448
	30 3. Un résultat de continuité des valeurs propres	449

			\in	Đ
_				l

x	Avant-pr	opos
	30.4. Théorème des extrema liés	452 455
31	Exemples de problèmes de dénombrement	457
	31.1. Un problème d'anniversaires	457
	31.2. Permutations sans points fixes	459
	31.3. Un problème de scrutin	462
	31.4. Partitions d'un ensemble fini, nombres de Stirling de deuxième	
	espèce	464
	31.5. Partitions d'un ensemble fini, nombres de Bell	467
32	Exercices faisant intervenir des variables aléatoires	471
	32.1. Taux de panne et variables aléatoires sans mémoire	471
	32.2. Égalité $\mathbb{E}(X) = \sum_{n=0}^{+\infty} \mathbb{P}(X > n) = \int_0^{+\infty} \mathbb{P}(X > t) dt$ pour une va-	
	riable aléatoire discrète à valeurs dans \mathbb{N}	475
	32.3. Chaîne de Markov en probabilités	477
	32.4. Probabilité qu'une matrice soit diagonalisable	480
	32.5. Variables aléatoires réelles discrètes mutuellement indépendantes .	481
	32.6. Preuve probabiliste du théorème de Weirstrass	487
33	Exercices sur les propriétés métriques des courbes planes	493
	33.1. Courbure et rayon de courbure	493
	33.2. Lemniscate de Bernoulli	495
	33.3. Comparaison de la longueur de deux courbes	496
	33.4. Théorème de relèvement et équation intrinsèque d'une courbe plane	.498
	33.5. L'inégalité isopérimétrique	499
	33.6. Nombre de rotations d'une ligne polygonale fermée	505
	Bibliographie	509

Avant-propos

L'objectif de cet ouvrage, qui est le deuxième d'une série de deux livres, est de proposer aux candidats à l'agrégation interne de mathématiques des outils pour préparer la deuxième épreuve orale de ce concours.

Pour cette épreuve, le candidat doit être capable de présenter les énoncés de 3 à 6 exercices sur une thème mathématique donné en motivant ses choix. Le niveau des exercices dépasse celui du Lycée, il doit se situer au niveau d'une classe préparatoire MP ou de la troisième année de licence, étant entendu que tout ce qui est présenté doit être maîtrisé.

Pour cette épreuve, après une préparation de 3 heures, le candidat présente en 10 minutes maximum, en justifiant ses choix, tous les exercices sélectionnés, puis il propose de résoudre, en 15 minutes maximum, l'exercice qu'il juge le plus instructif pour le thème correspondant. Enfin, pour les 25 minutes restantes le jury pose des questions sur l'exercice résolu (corrections de coquilles et maladresses, estil possible de généraliser? est-il possible de diminuer les hypothèses?, résolution d'un autre des exercices proposés, ...) et sur les autres exercices.

Comme pour la première épreuve, une solide préparation est nécessaire. Dans les rapports de jury, il est précisé que « motiver le choix d'une liste d'exercices, c'est en expliquer la pertinence par des raisons d'ordre pédagogique ou mathématique (l'une n'excluant pas l'autre), préciser les prérequis, situer les exercices dans leur contexte, commenter leur apport sur le plan pédagogique, etc. »

Le jury attend des candidats qu'ils proposent des exercices appliquant à des domaines variés, par leurs domaines spécifiques ou bien par leurs méthodes de traitement, et non pas plusieurs habillages d'une seule et même idée. Le candidat doit veiller à ce que les exercices qu'il propose entrent bien dans le cadre délimité par le titre du sujet : le hors sujet est sanctionné! Les exercices doivent être consistants ne pas relever d'une astuce sans réel d'intérêt. Il est bon de privilégier des méthodes de résolution porteuses et pédagogiquement efficace. Les exercices trop proches du cours ne sont pas conseillés.

Le but de ce livre est de répondre à ces exigences. On pourra consulter les livres de Jean-François Dantzer et ceux de Jean-Etienne Rombaldi (cours d'algèbre et livre d'exercices) dans la même collection pour des compléments. Par exemple, la leçon « exemples d'équations fonctionnelles » est traitée dans [23] (chapitre 7).

Les exercices proposés ne sont certainement pas des modèles (il n'y en a pas), ce sont des bases sur lesquels chacun élaborera sa leçon en fonction de ses connaissances et de ses capacités. Il est conseillé de modifier un exercice en modifiant les données ou en allégeant les hypothèses pour ne traiter qu'un cas particulier dans

xii Avant-propos

la mesure ou cela reste consistant et pertinent. Certains exercices peuvent sembler trop long, du fait d'une rédaction précise. Le candidat devra construire sur cette base des exercices respectant la contrainte de temps en utilisant des raccourcis, en supprimant des questions, ...

Les exercices proposés dans ce livre sont aussi l'occasion d'entraînement pour les épreuves écrites.

Le livre d'exercices de Jean-Etienne Rombaldi dans la même collection présente des exercices qui peuvent être utilisés pour cette épreuve orales, en particulier pour les leçons non traitées dans cet ouvrage. Ces exercices sont en général de niveau et difficultés plus élevés et s'adressent de préférence aux candidats qui visent les première place.

Il y a 36 sujets d'algèbre et géométrie et 43 sujets d'analyse et probabilités pour la deuxième épreuve orale d'exposé. Plusieurs sujets gravitant autour d'un même sujet, j'ai décidé de rédiger des plans pour 16 leçons d'algèbre et 17 leçons d'analyse pour éviter un livre trop volumineux. Les exercices proposés peuvent aussi faire l'objet de développements pour la première épreuve.

Dans les divers rapports de jury, on peut trouver les remarques suivantes sur quelques unes des leçons traitées dans cet ouvrage.

304 : Exercices faisant intervenir le théorème de Bézout.

Ce sujet ne doit pas se limiter à des situations issues de l'arithmétique entière et devrait comporter au moins une partie d'algèbre linéaire.

306: Exercices faisant intervenir les notions de PGCD et PPCM.

Les algorithmes attendus ne se limitent pas à l'algorithme d'Euclide, certains candidats proposent le calcul des coefficients de l'identité de Bézout (permettant la recherche de l'inverse d'un élément dans un anneau de classes résiduelles), parfois illustré d'une mise en oeuvre informatique. On mentionne, beaucoup plus rarement, la recherche des décompositions en éléments simples des fractions rationnelles.

307 : Exercices faisant intervenir les dénombrements.

Ce sujet permet une ouverture vers de nombreux domaines (pas uniquement aux probabilités) : théorie des groupes (équation aux classes, ...), formule du crible, arithmétique (indicatrice d'Euler, ...)...

Les exercices portant sur les coefficients binomiaux ne sont pas tous a priori des exercices de dénombrement : encore faut-il mettre en évidence la situation de dénombrement associée à la formule visée!

309: Exercices faisant intervenir des polynômes et fractions rationnelles sur $\mathbb R$ ou $\mathbb C.$

Le jury a entendu avec plaisir une présentation de l'application des polynômes à la recherche des polygones réguliers. Quelques évocations du polynôme minimal d'une matrice ont varié le menu, il eût même été possible d'aborder le polynôme minimal d'un élément algébrique sur un corps.

Des calculs sur les polynômes caractéristiques de matrices par blocs ont été effectués mais sans rigueur.

314 : Exercices illustrant l'utilisation de déterminants.

Les exercices choisis pour ce sujet furent souvent originaux mais pas toujours correctement maîtrisés (le calcul des déterminants est un sujet potentiellement très technique). L'usage de corps finis a permis de renouveler quelque peu ce sujet, il

Avant-propos xiii

convenait toute fois de s'assurer que la caractéristique du corps était différente de $2\,$

315 : Exercices illustrant l'utilisation de vecteurs propres et valeurs propres dans des domaines variés.

Un candidat, qui voulait illustrer ce sujet par un système différentiel linéaire à coefficients constants, s'est enlisé dans des détails techniques mal maîtrisés. Il convenait de mieux préparer la démarche de résolution voire d'utiliser les logiciels mis à disposition.

317: Exercices sur les endomorphismes diagonalisables ou trigonalisables.

On peut, pour ce sujet comme pour le 315 (valeurs propres), s'intéresser au nouveau programme de spécialité en série S qui aborde ces questions à travers les itérations d'une transformation matricielle (ou application linéaire).

Ce sujet a été brillamment illustré par un candidat qui a choisi de s'appuyer sur une situation issue de la Physique avec une utilisation judicieuse d'un logiciel de géométrie dynamique. Un autre candidat a fait preuve d'originalité en s'attaquant à une diagonalisation sur un corps fini! En sens inverse, le calcul d'un polynôme caractéristique suivi de la recherche des éléments propres présentent peu d'intérêt quand un système de calcul formel peut accomplir les mêmes tâches en peu de temps; ce type d'illustration n'a d'attrait que si l'ordinateur n'en vient pas à bout.

Des calculs sur les polynômes caractéristiques de matrices par blocs ont été effectués mais sans rigueur.

405 : Exemples de calcul exact de la somme d'une série numérique.

Les exercices proposés ont été assez variés. Pour diversifier encore, on pourra songer aux situations probabilistes sur des espaces probabilisés dénombrables.

407 : Exemples d'évaluation asymptotique de restes de séries convergentes, de sommes partielles de séries divergentes.

Les études numériques (pouvant s'appuyer sur l'usage d'un logiciel) sont ici appréciées. On pourrait évoquer les sommes de Riemann, l'estimation de la convergence de la méthode de Newton. La recherche d'équivalents est rarement maîtrisée.

409 : Exemples d'utilisation de polynômes en analyse.

Les candidats qui ont choisi ce sujet en ont souvent tiré un bon parti; un candidat s'est ainsi intéressé au calcul des polynômes de Legendre et de Tchebychev au moyen d'un système de calcul formel. Le lien avec les problèmes de plus courte distance et de meilleure approximation pourrait fournir d'autres applications.

Dans ce sujet bien sûr, on peut faire référence aux polynômes orthogonaux, mais ouvre d'autres perspectives telles les courbes de Bézier ou les situations d'approximation en analyse, etc.

414 : Exemples de séries de Fourier et de leurs applications.

Ce sujet a donné lieu à de bonnes prestations; le théorème de Fejér a été plusieurs fois proposé, c'est une démarche qui peut être longue si elle n'est pas efficacement conduite.

415 : Exemples d'applications du théorème des accroissements finis et de l'inégalité des accroissements finis pour une fonction d'une ou plusieurs variables réelles.

xiv Avant-propos

Ce sujet a souvent donné lieu à des exercices très proches du cours, peu intéressants en soi; on déplore l'oubli presque systématique des fonctions de plusieurs variables. On pouvait, par exemple, s'intéresser à des suites récurrentes dans \mathbb{R} ou \mathbb{R}^2 .

421 : Exemples de calcul exact ou de calcul approché de l'intégrale d'une fonction continue sur un segment. Illustration algorithmique.

Proposer une valeur approchée pour une intégrale n'a pas de sens si on ne donne pas une majoration de l'erreur.

427 : Exemples d'étude de fonctions définies par une intégrale.

Plusieurs candidats ont eu de la peine à citer un théorème de changement de variables pour une intégrale simple avec les bonnes hypothèses (ce qui nécessite du soin dans le cas des fonctions continues par morceaux).

437 : Exercices faisant intervenir des variables aléatoires.

On aimerait ici voir apparaître quelques variables aléatoires à densité!

438 : Exemples de problèmes de dénombrement, utilisation en probabilités.

Ce sujet a donné lieu à un très bon choix d'exercices avec des applications en analyse, probabilités, arithmétique, en plus des problèmes classiques de dénombrement.

438 : Exemples d'étude d'applications linéaires continues et de leur norme.

Le caractère continu et une estimation de la norme de l'application linéaire considérée doivent être le coeur de l'exercice.

440 : Exercices sur les propriétés métriques des courbes planes (longueur, courbure...).

Avec de tels intitulés, il n'est pas inutile de proposer un exercice donnant un sens géométrique clair à la notion de courbure, par exemple démontrer qu'un cercle qui est tangent en un point $M\left(s_{0}\right)$ à un arc birégulier et qui passe par un point $M\left(s\right)$ admet pour limite quand s tend vers s_{0} le cercle centré au centre de courbure et dont le rayon algébrique est $R\left(s_{0}\right)$. On pourra également proposer les formules usuelles donnant les vecteurs vitesse et accélération dans le repère de Frenet, avec des applications. L'étude des mouvements à accélération centrale a toute sa place ici. On vérifie que la trajectoire de M est plane lorsqu'elle ne passe pas par le centre O. En supposant de plus l'accélération centrale newtonienne, on pourra établir, par exemple à l'aide des formules de Binet, que la trajectoire du point M est incluse dans une conique. Ce dernier point pourra également intervenir utilement dans une leçon sur les coniques.

