Compiler Construction: Assignment 1

Fabian Krause

November 8, 2021

Meta

- ▶ Name: Fabian Krause
- Contact: fabian.krause@students.uni-freiburg.de (also on course website)

Assignment 1: Partial evaluator for \mathcal{L}_{Int}

- ► Take commutativity, associativity & negation into account when partially evaluating arithmetic expressions
- ► E.g.
 - ▶ 32 + input_int() + 10 \sim 42 + input_int()
 - ► -(-3) + (-(input_int() + (-39))) \(\times \dagger 42 + (- input_int()))

Approach

Adjust pe_exp to return a residual:

Forces int's to the left!

Change pe_add and pe_neg to take and return residuals:

 $pe_add : Residual \rightarrow Residual \rightarrow Residual$ $pe_neg : Residual \rightarrow Residual$

Change pe_exp:

 $pe_exp : Expression \rightarrow Residual$

pe_add

pe_add cont.

pe_add cont.

$$ext{pe_add} (inert, m) = egin{array}{c} + \\ m & inert \end{array}$$
 $ext{pe_add} \left(egin{array}{c} + \\ m & inert_2 \end{array} \right) = egin{array}{c} + \\ inert_1 & inert_2 \end{array}$
 $ext{pe_add} (inert_1, inert_2) = egin{array}{c} + \\ inert_1 & inert_2 \end{array}$

pe_neg

pe_exp

$$\begin{aligned} \text{pe_exp} \left(\begin{array}{c} + \\ / \\ exp_1 & exp_2 \end{array} \right) &= \text{pe_add} \left(\text{pe_exp} \left(exp_1 \right), \text{pe_exp} \left(exp_2 \right) \right) \\ \text{pe_exp} \left(-exp \right) &= \text{pe_neg} \left(\text{pe_exp} \left(exp \right) \right) \\ \text{pe_exp} \left(n \right) &= n \\ \text{pe_exp} \left(input_int() \right) &= input_int() \end{aligned}$$

Optional Exercise

Partial evaluator for \mathcal{L}_{Var}

- Add an environment that maps variables to (partially) evaluated expressions
- ► Watch out for input_int() calls! Can't simply replace variables with their assigned expressions.
 - Fix: Predicate to check whether expressions includes input_int()
- For associativity, ...: Minor adjustments to pe_add and pe_neg, depending on the implementation.

Questions?