Laboratorio Computazionale di Scambio Termico

LAB 1

Ripasso delle principali istruzioni e costrutti di MATLAB: assegnazione di matrici e ricerca sugli elementi, cicli

Esercizio 1

Assegna il vettore $\left[\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right)\ln(2)\right]$:

(Prima di risolvere ogni punto rifletti sul risultato che dovresti ottenere)

- 1. Arrotonda tutti gli elementi del vettore all'intero più vicino;
- 2. Arrotonda tutti gli elementi del vettore all'intero inferiore;
- 3. Arrotonda tutti gli elementi del vettore all'intero superiore;
- 4. Trasforma il vettore in un vettore colonna.

Esercizio 2 (A CASA)

Assegna i seguenti vettori utilizzando una notazione "efficiente" (<u>non copiando semplicemente i numeri, e ricorda che potrebbe esserci sempre più di un modo efficiente</u>):

$$AA = \begin{bmatrix} 2 & 4 & 6 & 8 \end{bmatrix}; \quad BB = \begin{bmatrix} 10^2 & 10^5 & 10^8 & 10^{11} \end{bmatrix}$$

(Cerca di risolvere anche tutti i punti seguenti in maniera efficiente, riflettendo su ciò che ti aspetti di ottenere)

- 1. Genera un vettore *CC* contenente gli esponenti degli elementi di *BB*;
- 2. Genera una matrice DD che abbia come prima riga il vettore AA e come seconda riga il vettore CC (in almeno due modi), e verificane le dimensioni, salvando in un vettore rr il numero di righe, e in un vettore cc il numero di colonne;
- 3. Trasforma DD in una matrice quadrata aggiungendo una riga di 3 e una riga di zeri;
- 4. Esegui il prodotto matriciale tra *DD* e la sua trasposta, poi genera il vettore della somma degli elementi lungo le righe *RR* e il vettore della somma degli elementi lungo le colonne *KK*, e infine genera un vettore *TT* contenente gli indici degli elementi di *RR* non nulli e gli indici degli elementi di *KK* minori di 100.

Esercizio 3

Assegna la matrice:

$$AA = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 2 & 6 & 0 \\ 0 & 0 & 2 & 9 \\ 0.5 & 1 & 1.5 & 2 \end{bmatrix}$$

- 1. Genera una matrice *BB* 2X4 contenente, su ogni riga, rispettivamente il massimo di ogni colonna e il minimo di ogni riga di *AA*;
- 2. Genera il vettore degli indici degli elementi di BB non nulli;
- 3. Effettua la moltiplicazione matriciale tra AA e BB' (Perché non si può calcolare AA * BB?)
- 4. Effettua l'operazione $AA^{-1} * BB'$ (Perché non si può calcolare $AA^{-1} * BB$?);
- 5. Quale matrice tra AA e BB posso elevare a potenza? Esegui l'operazione, poi confronta il risultato con quello ottenuto elevando a potenza la stessa matrice elemento per elemento.

Esercizio 4

Assegna la matrice MM (prima di partire con la scrittura di un codice osserva bene la matrice!):

$$MM = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 10 & 0 & 1 \\ 0 & 1 & 0 & 0 & 10^3 & 0 & 10 & 0 \\ 0 & 0 & 1 & 0 & 2 & 10^6 & 0 & 10 \\ 0 & 0 & 0 & 1 & 0 & 3 & 10^9 & 0 \\ 0 & 10^3 & 2 & 0 & 2 & 1 & 1 & 1 \\ 10 & 0 & 10^6 & 3 & 1 & 2 & 1 & 1 \\ 0 & 10 & 0 & 10^9 & 1 & 1 & 2 & 1 \\ 1 & 0 & 10 & 0 & 1 & 1 & 1 & 2 \end{bmatrix}$$

- 1. Genera un vettore che contenga la somma degli elementi lungo le colonne pari;
- 2. Genera un vettore che contenga la somma degli elementi lungo le righe dispari;
- 3. Calcola la somma dei termini lungo la diagonale principale;
- 4. Calcola la somma dei termini lungo le diagonali pari;
- 5. Sostituisci tutti gli elementi = 1 con elementi = -1;
- 6. Sostituisci con 3 tutti gli elementi ≥ 0 e ≤ 10 .

Esercizio 5 (A CASA)

Assegna la matrice QQ:

$$QQ = \begin{bmatrix} -12 & \frac{3\pi}{2} & -2 & 0\\ \frac{\pi}{2} & -7 & 2\pi & -1\\ 3 & \pi & -2 & \frac{5\pi}{2}\\ 0 & 4 & \frac{3\pi}{2} & 1 \end{bmatrix}$$

- 1. Sostituisci gli elementi della prima colonna nell'ultima colonna;
- 2. Sostituisci gli elementi della seconda riga nella terza colonna;
- 3. Estrai dalla matrice QQ una matrice NN 4X2 che contenga nella prima colonna gli elementi della prima riga e nella seconda colonna gli elementi della seconda colonna;
- 4. Prova a calcolare $QQ^{-1} * NN$. Cosa ti aspetti?

Esercizio 6

Considera la stessa matrice QQ dell'esercizio precedente (senza le sostituzioni fatte in 5.1 e 5.2):

- 1. Sostituisci con 10 tutti gli elementi della diagonale principale;
- 2. Somma 1 al primo elemento della seconda riga di *QQ* finché esso resta minore del primo elemento della prima riga di *QQ*;
- 3. Calcola la somma degli elementi lungo le diagonali pari (<u>utilizzando un ciclo, e non come fatto</u> nell'Esercizio 4, che puoi però usare come t~est della correttezza del ciclo);
- 4. Sostituisci con uno gli elementi uguali a zero della matrice QQ, utilizzando due modi "efficienti".

Esercizio 7 (A CASA)

Costruire la successione di Fibonacci per gli interi da 0 a 20. La successione di Fibonacci è definita ricorsivamente secondo la seguente regola:

$$F(0) = 0$$

$$F(1) = 1$$

$$F(n) = F(n-1) + F(n-2)$$

Esercizio 8

Scrivere uno script che calcoli il primo numero intero n tale che $n! > 10^6$ (1e6).

Esercizio 9

Scrivere uno script che definisca un vettore xx contenente tutti i numeri interi da 1 a 10^6 in tre modi diversi, calcolandone il tempo di esecuzione (consulta help tic):

- 1. Utilizzando un ciclo for senza pre-assegnare le dimensioni del vettore;
- 2. Utilizzando un ciclo *for* pre-assegnando le dimensioni del vettore;
- 3. Senza utilizzare alcun ciclo.

Esercizio 10 (A CASA)

Crea due matrici AA e BB contenenti elementi random, una utilizzando il comando rande una con il comando randi (consulta help rand e help randi per capirne le differenze) in modo tale che possano essere concatenate verticalmente.

- 1. Trova gli indici degli elementi della matrice CC, ottenuta dalla concatenazione verticale di AA e BB, che siano > 0.001, e verifica le dimensioni di tale matrice.
- 2. Genera un ciclo per assegnare nuovamente AA e BB concatenabili verticalmente, esegui la concatenazione per ottenere CC e scopri dopo quante iterazioni riesci a ottenere un vettore degli indici dei suoi elementi > 0.001 che non contenga tutti gli elementi di CC;
- 3. Assegna delle nuove matrici AA e BB concatenabili verticalmente, esegui la concatenazione per ottenere CC e sostituisci con degli zeri i valori sulle colonne pari di CC (consulta help mod). Se la somma degli elementi della matrice è > 30, sottrai 1 agli elementi delle righe dispari e 2 agli elementi delle colonne pari, mentre se la somma è compresa tra 25 e 30 dividi per 2 gli elementi della prima riga; in ogni altro caso invece dividi tutti gli elementi della matrice per 2. Esegui un ciclo finché la somma degli elementi della matrice non sia maggiore di 10.

Esercizio 11 (A CASA)

Scrivi uno script per stimare il valore di π seguendo gli step elencati:

- 1. Genera *n* coppie (x_i, y_i) di valori random compresi tra 0 e 1;
- 2. Calcola il numero m dei punti determinati dalle coppie al punto precedente che cadono all'interno della circonferenza goniometrica;
- 3. Calcola l'approssimazione di π come 4 m/n.
- 4. Esegui uno script per valori diversi di n che aumentino progressivamente, fino ad ottenere un errore rispetto al valore calcolato tramite il comando pi di MATLAB inferiore a 1e-6.

Esercizio 12

Prova a concatenare verticalmente due vettori: $AA = [1\ 2\ 3], BB = [4;5;6]$. Ovviamente, così come sono, i due vettori non possono essere concatenati verticalmente, e Matlab restituirà un errore. Utilizza quindi un blocco *try-catch* per provare la concatenazione verticale dei due vettori così come definiti sopra e, se viene restituito un errore, fai in modo di fornire una spiegazione per risolverlo e applica la correzione.