Serial No. 10/763,686

Response dated March 23, 2005

Reply to Advisory Action dated March 15, 2005

IN THE CLAIMS

1. (Previously Presented) A heat-resistant magnesium alloy for casting, the magnesium alloy being good in terms of the castability and heat resistance, and consisting essentially of:

calcium (Ca) in an amount of from 1 to 15% by mass;

aluminum (Al) in a summed amount of from 4 to 25% by mass with the

amount of Ca;

manganese (Mn) in an amount of from 0.1 to 1% by mass;

the balance being magnesium (Mg) and inevitable impurities when the

entirety is taken as 100% by mass and

a mass ratio of the Ca amount with respect to the Al amount, Ca/Al by

mass, being 1 or more.

- 2. (Canceled)
- 3. (Previously Presented) The heat-resistant magnesium alloy set forth in claim 1, wherein the mass ratio of the Ca amount with respect to the Al amount, Ca/Al by mass, is 2 or more.
- 4. (Original) The heat-resistant magnesium alloy set forth in claim 1, wherein a solidification temperature width, a temperature difference between a liquidus temperature at which a molten metal starts solidifying and a solidus temperature at which the molten metal completes solidifying, is 110 °C or less.

- 5. (Canceled)
- 6. (Original) The heat-resistant magnesium alloy set forth in claim 1 whose average crystalline grain diameter indexing the structural roughness is 18 μm or less.
- 7. (Original) A heat-resistant magnesium alloy cast product being good in terms of the heat resistance, and produced by a process comprising the steps of:

pouring a molten alloy into a mold, the molten alloy comprising the heatresistance aluminum alloy set forth in claim 1; and

solidifying the molten alloy by cooling it after the pouring step.

- 8. (Original) The heat-resistant magnesium alloy cast product set forth in claim 7 being free from a rare-earth element.
- 9. (Original) The heat-resistant magnesium alloy cast product set forth in claim 7 whose average crystalline grain diameter indexing the structural roughness is $18~\mu m$ or less.
- 10. (Previously Presented) A heat-resistant magnesium alloy for casting, the magnesium alloy being good in terms of the castability and heat resistance, and consisting essentially of:

calcium (Ca) in an amount of from 1 to 15% by mass;

aluminum (Al) in an amount of from 4 to 10% by mass; and

the balance being magnesium (Mg) and inevitable impurities when the entirety is taken as 100% by mass, and

a mass ratio of the Ca amount with respect to the Al amount, Ca/Al by mass, being 1 or more.

- 11. (Previously Presented) The heat-resistant magnesium alloy set forth in claim 10 further comprising manganese (Mn) in an amount of from 0.1 to 1% by mass.
- 12. (Previously Presented) The heat-resistant magnesium alloy set forth in claim 10, wherein the mass ratio of the Ca amount with respect to the Al amount, Ca/Al by mass, is 2 or more.
- 13. (Previously Presented) The heat-resistant magnesium alloy set forth in claim 10, wherein a solidification temperature width, a temperature difference between a liquidus temperature at which a molten metal starts solidifying and a solidus temperature at which the molten metal completes solidifying, is 110°C or less.
- 14. (Previously Presented) The heat-resistant magnesium alloy set forth in claim 10 whose average crystalline grain diameter indexing the structural roughness is 18 μm or less.
- 15. (Previously Presented) A heat-resistant magnesium alloy cast product being good in terms of the heat resistance, and produced by a process comprising the steps of:

pouring a molten alloy into a mold, the molten alloy comprising the heatresistance aluminum alloy set forth in claim 1; and

solidifying the molten alloy by cooling it after the pouring step.

- 16. (Previously Presented) The heat-resistant magnesium alloy cast product set forth in claim 15 being free from a rare-earth element.
- 17. (Previously Presented) The heat-resistant magnesium alloy cast product set forth in claim 15 whose average crystalline grain diameter indexing the structural roughness is $18 \mu m$ or less.