c.炒鸡矿工

(chicken.cpp/c/pas,1s,256MB)

【问题背景】

炒鸡矿工不是黄金矿工,而是dst在00小游戏中看到的一个沙雕小游戏。

【问题描述】

这个游戏的玩法建立在一个挖矿系统上。

我们认为游戏从第0分钟开始,每过p分钟,炒鸡矿工可以完成一次挖矿,每次可以挖重量为c的金矿,准确的说,在一次挖矿中,dst会在第p分钟末收获重量为c的金矿。炒鸡矿工在开局后会不断地重复挖矿操作,不能休息。

金矿可以储存或用于升级挖矿系统。

开局时,挖矿系统的等级为1级。挖矿系统最多升到n+1级。升级操作不消耗时间,但只能在一次挖矿开始前进行。每次升级会从第i级升级到第i+1级($1 \le i \le n$),需要花费重量为 w_i 的金矿,可以使每次挖矿的重量增加 v_i ,使每次挖矿的时间变成 s_i 。由于升级不消耗时间,dst可以在一瞬间多次升级。

开局时,dst拥有重量为m的金矿。他想知道,在开局后恰好t分钟时,他最多能拥有的金矿重量g是多少。

【输入】

输入共4行。

第1行包含5个非负整数p,c,n,m,t。

第2行包含n个非负整数,第i个数表示 w_i 。

第3行包含n个非负整数,第i个数表示 v_i 。

第4行包含n个正整数,第i个数表示 s_i 。

若n = 0,则第2行,第3行,第4行为空行。

【输出】

输出共1行,包含1个非负整数q。

【输入输出样例】

chicken.in	chicken.out
3 2 2 1 6	17

1 3	
3 0	
3 1	

【输入输出样例说明】

下面给出一种可行的方案(同一行内相同颜色标记表示相关联的变化):

	等级	收矿倒计时	拥有金矿重量
开局	1		1
0s	1 + 1 = 2	3	1 - 1 = 0
1s	2	2	0
2s	2	1	0
3s	2 + 1 = 3	0 + 1 = 1	0 + 5 - 3 = 2
4s	3	0 + 1 = 1	2 + 5 = 7
5s	3	0 + 1 = 1	7 + 5 = 12
6s	3	0	12 + 5 = 17

【数据规模与约定】

对于5%的数据, n=0。

另外10%的数据, $w_i = 0$ 。

另外10%的数据, $v_i = 0$ 。

另外10%的数据, $s_i = p$ 。

另外10%的数据, $t \le 100$ 。

另外10%的数据, $m, c, w_i, v_i \leq 10$ 。

对于80%的数据, $p, s_i \leq 10$ 。

对于100%的数据, $1 \le p, s_i, t \le 10^3; 0 \le n \le 10^3; 0 \le m, c, w_i, v_i \le 10^9$ 。