

Generating Scan Patterns for Scan Chains with Intermittent Timing Problems

Richard Illman
Dialog Semiconductor

June 25th, 2015 SNUG Munich

Agenda

Scan Chain Design Issues

Problems of Diagnosing Failures

New Approach

Example Design

Production Patterns for Designs with Timing Issues

Conclusions

Scan Chain Design Issues

- Flop-to-flop paths are short
 - Q output to SI input
 - Clock skew between different domains may be significant
 - High peak switching during scan shift may cause IR drop issues
- lockup latches prevent race hazards at domain boundaries
 - DC
 - set_scan_configuration -internal_clocks multi
 - set_scan_configuration -add_lockup true
 - TetraMAX
 - report_lockup_latches -gated_clock \-latch based balanced

Scan Chain Continuity Patterns

- Specialised patterns can be created
 - e.g. Low switching activity

Diagnosing Chain Failure

Diagnosing the failure type is simple

Diagnosing the location is difficult Fail signature is the same no matter where the fail is located


```
LLHHLLHH Expected
.LLHHLLH Delay (one cycle)
LHHLLHH. Race (one cycle)
LHHHLHHH Race (data rising)
LLLHLLLH Race (data falling)
LLLLLLLL ???
```

Set/Reset Test

- Load chain with 0s
- Pulse set/reset
- Unload chain

Provides information on fail location

Set/reset test

- Load of a constant value pattern is unaffected by race condition
- The set/reset pulse creates a different pattern
- During unload data transitions between the scan-in and race location are corrupted
 - Location of the timing issue can be localised

Set/reset test

Set/reset test

Unload set/reset values

Set/reset test improvements

- Modify/Add test to load constant 1 instead of constant 0
- Use other capture clock sequences

Set/reset test limitations

- Limited possible patterns
 - Load zero, pulse set/reset
 - Non-set/reset flops=0, set flops=1, reset flops=0
 - Load one, pulse set/reset
 - Non-set/reset flops=1, set flops=1, reset flops=0
- Often flops are mostly reset
 - Very few transitions in the unload data
 - Little localisation
- Design Options
 - Counter & FSM start values of hex 55 or AA
 - Reorder chains to mix flop types
 - Unpopular, costly, hopefully not needed

Scan chain diagnostics

- Location of scan chain failures can be diagnosed within TetraMAX
- Simulated effects of different fail modes/locations are "scored" against fails observed on the tester.

Issues

- Large volumes of fail data required
 - Fail memory may be limited on the tester
- Location may not be accurately diagnosed
 - More difficult than for fails outside the scan chains

Intermittent failures affect accuracy

Load

Capture/Unload

Advantages of the set/reset test

Advantages

- The test uses load patterns unaffected by the timing issue
- Fails are seen only in the faulty chain
- Fails easily diagnosed and located between the last good transition and the first bad transition

Disadvantages

- Only two different possible load patterns, all-0, all-1
- Only two possible unload patterns

Requirements for improved scan chain diagnostics

- Load patterns are unaffected by the timing issue
- Different unload patterns giving transitions across more of the chain
- Apparently there are only two suitable load patterns

All-zero and All-one

Example ATPG Pattern

Testing for SA-0 on AND gate inputs/output

Use of "Guard Values"

"Guard values" ensure that the gate "sees" the correct input values in the presence (or absence) of a race condition anywhere in the scan chain.

The guard values themselves must be simulated as "X" but physically present in the test data applied to the device

Repeat Values

Repeat values can be used to minimise undefined values. Guard bits are only needed between conflicting "care" values

ATPG Requirements

Generate patterns with no adjacent and conflicting care bits in the load pattern for the faulty scan chain

Generating Patterns – Stage 1


```
set_atpg -fill X;  # allow only the care bits to be seen
set_atpg -merge off;  # prevent conflicts from different tests
set_atpg -decision random;
run_atpg -ndetects d;  # generate different patterns
```

Do not use "run_atpg -optimize" or "run_atpg basic -auto" ATPG setting are ignored/modified

Stage 1

Initial ATPG

Generating Patterns – Stage 2

- Modify the STIL file with external scripts
 - Add the "repeat" bits into the faulty chain(s)
 - The guard bits must remain as X
 - Add fill (random) to any other chains
 - Change all expect bits in the unload data to zero
- run_simulation -override_differences
 - # Change the "dummy" expect values to logically correct ones

Stage 2

Initial ATPG

Add repeat bits & fill the expect bits

X1111X0000X111111XX Load LLHHXXXHXLXHXXLHXLL Unload

run_simulation
-override_differences

Generating Patterns – Stage 3

Fault simulate the patterns to minimise the fault set

```
run_simulation -detected_pattern_storage
```

- write_faults filename -class DT
- Parse the fault file to find the effective pattern numbers and create a reorder file
- Write only the effective patterns as a STIL file
 - write_patterns filename -reorder file -format
 stil

Process the STIL file to add the guard bits into the STIL

Stage 3

Initial ATPG

Add repeat bits & fill the expect bits

X1111X0000X111111XX Load LLHHXXXHXLXHXXLHXLL Unload

run_simulation
-override_differences

111110000011111111XX Load LLHHXXXHXLXHXXLHXLL Unload

Add guard bits

Generating Patterns – Stage 4

- Convert patterns to tester format and run/log as standard
- Diagnosing failures
 - Find the lower failing bit number in the unload
 - Run conventional TMAX chain diagnostics

```
run_diagnosis file_name \
  [-assume_chain_defect fast chain_name >]
```

Example Design

- Counter block with around 180 scan flops.
 - Two scan sub-chains of 90 bits each.
 - Separate chains in compression mode
 - Contained within 2 longer chains in full (legacy) scan mode
 - Contained in analogue block outside main digital
- Both chains showed intermittent race conditions on some devices (about 20%).

Standard diagnostics did not identify the location

Example Design – shmoo plots

Good Device

Example Faulty Devices

Example Design

- New diagnostic approach
 - First chain diagnosed to failure between bits 20 and 0 (scan out)
 - Second chain diagnosed to failure between bits 8 and 0.

Production Patterns

- Hierarchy of possible approaches
- add cell constraints XX chain name
- add cell constraints 0X chain name
- add_cell_constraints 1X chain_name

Partially diagnosed chain

If the "suspect region" is close to the scan-out pin there is very little coverage

New Technique

- Generate patterns as for diagnostics
 - Use of guard bits in the load data
- Look for "unloaded guarded" bits in the unload data
 - The following bit is the same
 - Replace the "unload guard bits" with X
 - Original Unload LLXHHHXXLXHHHXLL
 - Modified Unload XLXXHHXXXXXHHXXL
- Fault simulate the patterns to check coverage
 - Value will be the coverage in the error free circuit
 - Functionally we aren't concerned with scan chain race conditions

Pattern Verification

- Generate the testbench in "serial only mode"
 - stil2verilog -ser_only
 - Independent of internal netlist structure
- Generate modified netlist(s) with "race conditions"
 - Bypass one of the flops in the chain
 - Typically try the first/last bit positions

Simulate the testbench and check that there are no failures

Results – Example Design

- Two chains both had errors near the scan-out pins
- OX (observe X) constraint on the full chain
- Isolated from main digital block
- The modified continuity pattern gave ~20% coverage

New patterns gave coverage ~80%

Issues

- These techniques only work on uncompressed (legacy) scan
 - ATPG "fill" options not supported for compression
 - Failing chain diagnosis from compression mode can narrow the target are for initial diagnosis
- Increased pattern counts due to "no merge ATPG"
 - Not an issue for diagnostics
- Large intermediate STIL files during the generation process

Conclusions

- The quality of scan chain diagnostics can be improved by use of load patterns which are unaffected by the timing issue.
- It is possible to create limited scan patterns which work reliably even in the presence of scan chain timing issues.

- New features for DFTMAX Ultra
 - add chain masks

Thank You

Selecting the fault list

Faults on the D inputs of flops in the faulty chain

- Add "OX" cell constraints and "capture masks" on flops in all other chains
 - Only faults feeding flops in the faulty chain will be testable

Production Patterns

Create a timing tolerant scan continuity pattern

```
- set_atpg -chain_test 00001111R
```

- Modify the expect values in the STIL file
 - LLLLHHHHLLLLHHHH
 - XLLXXHHXXLLXXHHX

- Provides around 10~20% coverage
 - Checks flops/clock are functional