Package 'monocle'

March 10, 2014

Type Package

Version 0.99.0

Title Analysis tools for single-cell expression experiments.

Date 2013-11-19				
Author Cole Trapnell				
Maintainer Cole Trapnell <cole@broadinstitute.org></cole@broadinstitute.org>				
Description Monocle performs differential expression and time-series analysis for single-cell expression experiments. It orders individual cells according to progress through a biological process, without knowing ahead of time which genes define progress through that process. Monocle also performs differential expression analysis, clustering, visualization, and other useful tasks on single cell expression data. It is designed to work with RNA-Seq and qPCR data, but could be used with other types as well.				
License Artistic-2.0				
Depends Biobase, VGAM, irlba, matrixStats, igraph, combinat, fastICA,grid, ggplot2, reshape2, plyr, parallel, methods				
VignetteBuilder knitr				
Suggests knitr				
LazyData true				
R topics documented: monocle-package . 2 CellDataSet . 3 cellPairwiseDistances . 3 cellPairwiseDistances . 4 compareModels . 5 detectGenes . 5				
differentialGeneTest				

2 monocle-package

monocle-package		Differential expression and time-series analysis for single-cell expression experiments.										?S-							
Index																			18
	setOrderingFilter .						•			•		 •	 •	•	 •		•		1
	responseMatrix																		
	reduceDimension .																		10
	reducedDimW<											 							1.
	reducedDimW																		
	reducedDimS<																		
	reducedDimS																		
	reducedDimA<																		
	reducedDimA																		
	plot_genes_jnter . plot_spanning_tree																		
	plot_genes_in_pseud plot_genes_jitter .																		
	orderCells																		
	newCellDataSet																		
	minSpanningTree<-																		
	minSpanningTree .																		
	HSMM											 							
	fitModel																		

Description

Monocle is a set of tools for analyzing single-cell gene expression experiments. Monocle has been tested with RNA-Seq and qPCR, but could work with other types of data as well. The package provides basic differential expression and clustering tools, as well as more sophisticated tools. Monocle can place individual cells in the order of their progress through a biological process such as cell differentiation. This enables Monocle to find genes that are differentially expressed as a function of that process.

Details

Package: monocle
Type: Package
Version: 0.1.0
Date: 2013-11-19
License: Boost

CellDataSet 3

Author(s)

Cole Trapnell Maintainer: Cole Trapnell <cole@broadinstitute.org>

References

Trapnell, Cacchiarelli, et al

CellDataSet

The CellDataSet class

Description

The main class used by Monocle to hold single cell expression data. CellDataSet extends the basic Bioconductor ExpressionSet class.

Details

This class is initialized from a matrix of expression values Methods that operate on CellDataSet objects constitute the basic Monocle workflow.

Slots

- reducedDimS: Matrix of class "numeric", containing the source values computed by Independent Components Analysis.
- reducedDimW: Matrix of class "numeric", containing the whitened expression values computed during Independent Components Analysis.
- reducedDimA: Matrix of class "numeric", containing the weight values computed by Independent Components Analysis.
- minSpanningTree: Object of class "igraph", containing the minimum spanning tree used by Monocle to order cells according to progress through a biological process.
- cellPairwiseDistances: Matrix of class "numeric", containing the pairwise distances between cells in the reduced dimension space.

cellPairwiseDistances

Retrieves a matrix capturing distances between each cell in the reduced-dimensionality space

Description

Retrieves a matrix capturing distances between each cell in the reduced-dimensionality space

Usage

cellPairwiseDistances(cds)

4 cellPairwiseDistances<-

Arguments

cds

expression data matrix for an experiment

Value

A square, symmetric matrix containing the distances between each cell in the reduced-dimensionality space.

Examples

```
data(HSMM)
D <- cellPairwiseDistances(HSMM)</pre>
```

```
cellPairwiseDistances<-
```

Sets the matrix containing distances between each pair of cells used by Monocle during cell ordering. Not intended to be called directly.

Description

Sets the matrix containing distances between each pair of cells used by Monocle during cell ordering. Not intended to be called directly.

Usage

```
cellPairwiseDistances(cds) <- value</pre>
```

Arguments

cds A CellDataSet object.

value a square, symmetric matrix containing pairwise distances between cells.

Value

An updated CellDataSet object

compareModels 5

compareModels

Compare model fits

Description

Performs likelihood ratio tests on nested vector generalized additive models

Usage

```
compareModels(full_models, reduced_models)
```

Arguments

full_models a list of models, e.g. as returned by fitModels(), forming the numerators of the L.R.Ts.

reduced_models

a list of models, e.g. as returned by fitModels(), forming the denominators of the L.R.Ts.

Value

a data frame containing the p values and q-values from the likelihood ratio tests on the parallel arrays of models.

detectGenes

Sets the global expression detection threshold to be used with this Cell-DataSet. Counts how many cells each feature in a CellDataSet object that are detectably expressed above a minimum threshold. Also counts the number of genes above this threshold are detectable in each cell.

Description

Sets the global expression detection threshold to be used with this CellDataSet. Counts how many cells each feature in a CellDataSet object that are detectably expressed above a minimum threshold. Also counts the number of genes above this threshold are detectable in each cell.

Usage

```
detectGenes (cds, min_expr)
```

Arguments

cds the CellDataSet upon which to perform this operation

min_expr the expression threshold

6 differentialGeneTest

Value

an updated CellDataSet object

Examples

```
data(HSMM)
HSMM <- detectGenes(HSMM, min_expr=0.1)</pre>
```

differentialGeneTest

Tests each gene for differential expression as a function of progress through a biological process, or according to other covariates as specified.

Description

Tests each gene for differential expression as a function of progress through a biological process, or according to other covariates as specified.

Usage

```
differentialGeneTest(cds,
  fullModelFormulaStr = "expression~VGAM::bs(Pseudotime, df=3)",
  reducedModelFormulaStr = "expression~1", min_expr = 0.1, max_expr = Inf,
  cores = 1)
```

Arguments

a CellDataSet object upon which to perform this operation

fullModelFormulaStr

a formula string specifying the full model in differential expression tests (i.e. likelihood ratio tests) for each gene/feature.

reducedModelFormulaStr

a formula string specifying the reduced model in differential expression tests (i.e. likelihood ratio tests) for each gene/feature.

min_expr

the minimum expression value considered reliably measured in the experiment the maximum expression value considered reliably measured in the experiment

Value

cores

a data frame containing the p values and q-values from the likelihood ratio tests on the parallel arrays of models.

the number of cores to be used while testing each gene for differential expression

fitModel 7

fitModel	Fits a model for each gene in a CellDataSet object.
110110401	This a model for each gene in a containable object.

Description

Fits a model for each gene in a CellDataSet object.

Usage

```
fitModel(cds, modelFormulaStr = "expression~VGAM::bs(Pseudotime, df=3)",
    min_expr = 0.1, max_expr = Inf, cores = 1)
```

Arguments

cds	the CellDataSet upon which to perform this operation			
modelFormulaStr				
	a formula string specifying the model to fit for the genes.			
min_expr	the minimum expression value considered reliably measured in the experiment.			
max_expr	the maxmium expression value considered reliably measured in the experiment			
cores	the number of processor cores to be used during fitting.			

Details

This function fits a Tobit-family vector generalized additive model (VGAM) from the VGAM package for each gene in a CellDataSet. The default formula string speficies that the (log transformed) expression values follow a Tobit distribution with upper and lower bounds specificed by max_expr and min_expr, respectively. By default, expression levels are modeled as smooth functions of the Pseudotime value of each cell. That is, expression is a function of progress through the biological process. More complicated formulae can be provided to account for additional covariates (e.g. day collected, genotype of cells, media conditions, etc).

Value

a list of VGAM model objects

HSMM	The HSMM single-cell RNA-Seq timeseries from Trapnell, Cac-	
	chiarelli et al.	

Description

The HSMM single-cell RNA-Seq timeseries from Trapnell, Cacchiarelli et al.

8 minSpanningTree<-

Author(s)

Cole Trapnell <cole@broadinstitute.org>

References

```
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529
```

minSpanningTree

Retrieves the minimum spanning tree generated by Monocle during cell ordering.

Description

Retrieves the minimum spanning tree generated by Monocle during cell ordering.

Usage

```
minSpanningTree(cds)
```

Arguments

cds

expression data matrix for an experiment

Value

An igraph object representing the CellDataSet's minimum spanning tree.

Examples

```
data(HSMM)
T <- minSpanningTree(HSMM)</pre>
```

minSpanningTree<- Sets the minimum spanning tree used by Monocle during cell ordering.

Not intended to be called directly.

Description

Sets the minimum spanning tree used by Monocle during cell ordering. Not intended to be called directly.

Usage

```
minSpanningTree(cds) <- value</pre>
```

newCellDataSet 9

Arguments

cds A CellDataSet object.

value an igraph object describing the minimum spanning tree.

Value

An updated CellDataSet object

newCellDataSet Creates a new CellDateSet object.

Description

Creates a new CellDateSet object.

Usage

```
newCellDataSet(cellData, phenoData = NULL, featureData = NULL)
```

Arguments

cellData expression data matrix for an experiment

phenoData data frame containing attributes of individual cells

featureData data frame containing attributes of features (e.g. genes)

Value

a new CellDataSet object

Examples

```
## Not run:
sample_sheet_small <- read.delim("../data/sample_sheet_small.txt", row.names=1)
sample_sheet_small$Time <- as.factor(sample_sheet_small$Time)
gene_annotations_small <- read.delim("../data/gene_annotations_small.txt", row.names=1)
fpkm_matrix_small <- read.delim("../data/fpkm_matrix_small.txt")
pd <- new("AnnotatedDataFrame", data = sample_sheet_small)
fd <- new("AnnotatedDataFrame", data = gene_annotations_small)
HSMM <- new("CellDataSet", exprs = as.matrix(fpkm_matrix_small), phenoData = pd, featureData
## End(Not run)</pre>
```

orderCells	Orders cells according to progress through a learned biological process.

Description

Orders cells according to progress through a learned biological process.

Usage

```
orderCells(cds, num_paths = 1, reverse = FALSE)
```

Arguments

cds the CellDataSet upon which to perform this operation

num_paths the number of end-point cell states to allow in the biological process.

reverse whether to reverse the beginning and end points of the learned biological pro-

cess.

Value

an updated CellDataSet object, in which phenoData contains values for State and Pseudotime for each cell

```
plot_genes_in_pseudotime
```

Plots expression for one or more genes as a function of pseudotime

Description

Plots expression for one or more genes as a function of pseudotime

Usage

```
plot_genes_in_pseudotime(cds_subset, min_expr = 0.1, cell_size = 0.75,
    nrow = NULL, ncol = 1, panel_order = NULL, color_by = "State")
```

Arguments

cds_subset	CellDataSet for the experiment
min_expr	the minimum (untransformed) expression level to use in plotted the genes.
cell_size	the size (in points) of each cell used in the plot
nrow	the number of rows used when laying out the panels for each gene's expression
ncol	the number of columns used when laying out the panels for each gene's expres-
	sion
panel_order	the order in which genes should be layed out (left-to-right, top-to-bottom)
color_by	the cell attribute (e.g. the column of pData(cds)) to be used to color each cell

plot_genes_jitter 11

Value

```
a ggplot2 plot object
```

Examples

```
## Not run:
data(HSMM)
my_genes <- row.names(subset(fData(HSMM), gene_short_name %in% c("CDK1", "MEF2C", "MYH3")))
cds_subset <- HSMM[my_genes,]
plot_genes_in_pseudotime(cds_subset, color_by="Time")
## End(Not run)</pre>
```

plot_genes_jitter Plots expression for one or more genes as a jittered, grouped points

Description

Plots expression for one or more genes as a jittered, grouped points

Usage

```
plot_genes_jitter(cds_subset, grouping = "State", min_expr = 0.1,
    cell_size = 0.75, nrow = NULL, ncol = 1, panel_order = NULL,
    color_by = NULL, plot_trend = F)
```

Arguments

cds_subset	CellDataSet for the experiment
grouping	the cell attribute (e.g. the column of $pData(cds)$) to group cells by on the horizontal axis
min_expr	the minimum (untransformed) expression level to use in plotted the genes.
cell_size	the size (in points) of each cell used in the plot
nrow	the number of rows used when laying out the panels for each gene's expression
ncol	the number of columns used when laying out the panels for each gene's expression
panel_order	the order in which genes should be layed out (left-to-right, top-to-bottom)
color_by	the cell attribute (e.g. the column of pData(cds)) to be used to color each cell
plot_trend	whether to plot a trendline tracking the average expression across the horizontal axis.

Value

```
a ggplot2 plot object
```

12 plot_spanning_tree

Examples

```
## Not run:
data(HSMM)
MYOG_ID1 <- HSMM[row.names(subset(fData(HSMM), gene_short_name %in% c("MYOG", "ID1"))),]
plot_genes_jitter(MYOG_ID1, grouping="Media", ncol=2)
## End(Not run)</pre>
## End(Not run)
```

plot_spanning_tree Plots the minimum spanning tree on cells.

Description

Plots the minimum spanning tree on cells.

Usage

```
plot_spanning_tree(cds, x = 1, y = 2, color_by = "State", show_tree = T,
    show_backbone = T, backbone_color = "black", marker = NULL)
```

Arguments

cds	CellDataSet for the experiment
X	the column of reducedDimS(cds) to plot on the horizontal axis
У	the column of reducedDimS(cds) to plot on the vertical axis
color_by	the cell attribute (e.g. the column of pData(cds)) to map to each cell's color
show_tree	whether to show the links between cells connected in the minimum spanning
	tree
show_backbon	e
	whether to show the diameter path of the MST used to order the cells
backbone_col	or
	the color used to render the backbone.
marker	a gene name or gene id to use for setting the size of each cell in the plot

Value

a ggplot2 plot object

Examples

```
## Not run:
data(HSMM)
plot_spanning_tree(HSMM)
plot_spanning_tree(HSMM, color_by="Pseudotime", show_backbone=F)
plot_spanning_tree(HSMM, marker="MYH3")
## End(Not run)
```

reducedDimA 13

reducedDimA	Retrieves the weights that transform the cells' coordinates in the reduced dimension space back to the full (whitened) space.
	aucea aimension space back to the juit (whitehea) space.

Description

Retrieves the weights that transform the cells' coordinates in the reduced dimension space back to the full (whitened) space.

Usage

```
reducedDimA(cds)
```

Arguments

cds

A CellDataSet object.

Value

A matrix that when multiplied by a reduced-dimension set of coordinates for the CellDataSet, recovers a matrix in the full (whitened) space

Examples

```
data(HSMM)
A <- reducedDimA(HSMM)</pre>
```

reducedDimA<-

Sets the weights transform the cells' coordinates in the reduced dimension space back to the full (whitened) space.

Description

Sets the weights transform the cells' coordinates in the reduced dimension space back to the full (whitened) space.

Usage

```
reducedDimA(cds) <- value</pre>
```

Arguments

cds A CellDataSet object.

value A whitened expression data matrix

Value

An updated CellDataSet object

14 reducedDimS<-

reducedDimS	Retrieves the coordinates of each cell in the reduced-dimensionality space generated by calls to reduceDimension.
	space generated by eaths to reduce Dimension.

Description

Retrieves the coordinates of each cell in the reduced-dimensionality space generated by calls to reduceDimension.

Usage

```
reducedDimS(cds)
```

Arguments

cds

A CellDataSet object.

Value

A matrix, where rows are cell coordinates and columns correspond to dimensions of the reduced space.

Examples

```
data(HSMM)
S <- reducedDimS(HSMM)</pre>
```

reducedDimS<-

Sets the coordinates of each cell in the reduced-dimensionality space. Not intended to be called directly.

Description

Sets the coordinates of each cell in the reduced-dimensionality space. Not intended to be called directly.

Usage

```
reducedDimS(cds) <- value
```

Arguments

cds A CellDataSet object.

value A matrix of coordinates specifying each cell's position in the reduced-dimensionality

space.

reducedDimW 15

Value

An update CellDataSet object

reducedDimW

Retrieves the expression values for each cell (as a matrix) after whitening during independent component analysis.

Description

Retrieves the expression values for each cell (as a matrix) after whitening during independent component analysis.

Usage

```
reducedDimW(cds)
```

Arguments

cds

A CellDataSet object.

Value

A matrix, where each row is a set of whitened expression values for a feature and columns are cells.

Examples

```
data(HSMM)
W <- reducedDimW(HSMM)</pre>
```

reducedDimW<-

Sets the whitened expression values for each cell prior to independent component analysis. Not intended to be called directly.

Description

Sets the whitened expression values for each cell prior to independent component analysis. Not intended to be called directly.

Usage

```
reducedDimW(cds) <- value</pre>
```

Arguments

cds A CellDataSet object.

value A whitened expression data matrix

16 responseMatrix

Value

An updated CellDataSet object

reduceDimension

Computes a projection of a CellDataSet object into a lower dimensional space

Description

Computes a projection of a CellDataSet object into a lower dimensional space

Usage

```
reduceDimension(cds, max_components = 2, use_irlba = TRUE)
```

Arguments

the CellDataSet upon which to perform this operation

max_components

the dimensionality of the reduced space

use_irlba Whether to use the IRLBA package for ICA reduction.

Details

Currently, Monocle supports dimensionality reduction with Independent Component Analysis (ICA).

Value

an updated CellDataSet object

responseMatrix

Response values

Description

Generates a matrix of response values for a set of fitted models

Usage

```
responseMatrix (models)
```

Arguments

models

a list of models, e.g. as returned by fitModels()

setOrderingFilter 17

Value

a matrix where each row is a vector of response values for a particular feature's model, and columns are cells.

```
\begin{tabular}{ll} \textbf{Sets the features (e.g. genes) to be used for ordering cells in pseudo-time.} \end{tabular}
```

Description

Sets the features (e.g. genes) to be used for ordering cells in pseudotime.

Usage

```
setOrderingFilter(cds, ordering_genes)
```

Arguments

```
cds the CellDataSet upon which to perform this operation ordering_genes
a vector of feature ids (from the CellDataSet's featureData) used for ordering cells
```

Value

an updated CellDataSet object

Index

```
*Topic data
   HSMM, 7
*Topic package
   monocle-package, 2
CellDataSet, 3
CellDataSet-class (CellDataSet), 3
cellPairwiseDistances, 3
cellPairwiseDistances<-,4
compareModels, 5
detectGenes, 5
differentialGeneTest, 6
fitModel, 7
HSMM, 7
minSpanningTree, 8
minSpanningTree<-,8
monocle (monocle-package), 2
monocle-package, 2
newCellDataSet, 9
orderCells, 10
plot_genes_in_pseudotime, 10
plot_genes_jitter, 11
plot_spanning_tree, 12
reducedDimA, 13
reducedDimA<-,13
reducedDimS, 14
reducedDimS<-,14
reducedDimW, 15
reducedDimW<-,15
reduceDimension, 16
responseMatrix, 16
setOrderingFilter, 17
```