BIOINFORMATICS ANALYSIS OF WHOLE EXOME SEQUENCING DATA

Authors

Peter J. Ulintz, Weisheng Wu, and Chris M. Gates

Presented by

CONTENTS

- 1. Introduction
- 2. Pre-processing
- 3. Methodology (what and why)
 - a). Quality analysis
 - b). Trimming
 - c). Read alignment
 - d). Alignment analysis
 - e). Variant calling and filtering
 - f). Variant annotation

INTRODUCTION

Next generation sequencing.

- Next-generation sequencing (NGS) is a massively parallel sequencing technology that offers ultra-high throughput, scalability, and speed.
- The technology is used to determine the order of nucleotides in entire genomes or targeted regions of DNA or RNA.
- NGS facilitates comprehensive genetic analysis however sequencing the entire genome is costprohibitive.
- A more comprehensive analysis of selected regions is done by whole exome sequencing(WES)

(3) DNA library sequencing

(4) Alignment and data analysis

Created in BioRender.com bio

INTRODUCTION CONT'

Whole Exome Sequencing (WES)

- WES is a genomic technique for sequencing all of the protein-coding regions of genes in a genome.
- It utilizes a set of oligonucleotide hybridization probes that target known exon sequences.

Applications of WES.

- Somatic variant detection
- Characterization of new therapeutic targets
- Profiling of copy-number variations (CNVs) and the detection of structural variations.
- Mutational analysis: the detection of single-nucleotide variants (SNVs) or small insertions and deletions (Indels).

INTRODUCTION CONT'

Somatic Variant Detection

- This is performed using algorithms and software tools specialized for the task
- Can classify a variant in a cancer sample as either germline or somatic with a second measure of likelihood
- Mutect2 somatic variant caller workflow used, largely following the Broad GATK4 Somatic SNVs + Indels
 Best Practices workflow
- Also a supplementary workflow based on a second popular caller: VarScan Somatic

1. Setup

Files

Fastq files: 4 lines per read

Adapter files (TruSeq3-PE-2.fa)

GATK resource bundles (ref, dict, VCF files)

Folder setup

Created main and sub directories

Software setup

Atleast 16gb RAM and 4 cores

Create a new conda environment

Configure conda channels (r, bioconda, conda-forge)

conda install -c bioconda "tool-name"

@ERR5743893.1 1 length=59 ACCAACCAACTTTCGATCTCTTGACCTC +ERR5743893.1 1 length=59 @ERR5743893.2 2 length=54 ACCAACCAACTTTCGATCTCTTGTTTTTG +ERR5743893.2 2 length=54

An example of a fastq file.

2. Preprocessing A

Quality Checks

fastqc*

Checks the quality of our reads.

Trimming

Trimmomatic*, cutadapt, trim-galore, fastp

Chop 5' & 3' ends, removes adapters, poor quality,

and short reads.

Alignment

bwa mem*, bowtie

Map R1 & R2 reads to reference genome to generate sequence alignment map (SAM)

Per base sequence quality

A glimpse of a qc report file.

2. Preprocessing A

- Compress, sort, and index the alignment file.
- gatk-launch sortsam*
- Save space, arrange and tag the reads
- Mark duplicates
- gatk-launch MarkDuplicates*
- Mark reads with the same coordinates as duplicates and retain only the highest scoring read.
- Generate metrics and coverage data.
 - samtools flagstat & gatk-launch CollectHsMetrics

 Statistics on read counts, mapped, duplicates, and txt files with means and median targe coverages, % of off-bait reads and % of targets that achieve particular coverage depths. (20X, 50X, 100X)

```
27741507 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 secondary
0 + 0 supplementary
) + 0 duplicates
27741502 + 0 mapped (100.00% : N/A)
27741507 + 0 paired in sequencing
13903519 + 0 read1
13837988 + 0 read2
27090245 + 0 properly paired (97.65% : N/A)
27477329 + 0 with itself and mate mapped
264173 + 0 singletons (0.95% : N/A)
222345 + 0 with mate mapped to a different chr
222345 + 0 with mate mapped to a different chr (mapQ>=5)
genomics@Genomics:~$
```

Results of samtools flagstat

2. Preprocessing B

- Base Quality Score Recalibration (BQSR).
- gatk-launch BaseRecalibrator
- Correct systematic base scoring errors by first making a recalibration model and applying it to the bam file.
- Re-build a recalibration model on the recal_bam
- gatk-launch BaseRecalibrator*
- For comparison purposes.
- Compare the pre- and post BQSR tables.
 - gatk-launch AnalyzeCovariates
- For comparison purposes.

Weighing balance

3. Variant calling step 1

- Somatic algorithms.
- gatk-launch Mutect2*
- It's able to call variants as it compares the tumor and normal samples to the reference.
- It accommodates data from germline variant resources and an unmatched Panel of Normal datasets (PoN).
- Create a Panel of Normals
- gatk-launch Mutect2*

 gatk-launch CreateSomaticPanelOfNormals*
- Used to detect systematic experimental errors.
- Normal unrelated samples run on the same instrument NOT the normal tissue samples.

3. Variant calling step 2

- Perform variant calling.
- gatk-launch Mutect2
- It's able to call variants for the Tumor/Normal pair.
- It can also call variants on tumor samples in absence of a matching normal

3. Filtering variants

- Generating a contamination file.
- gatk-launch GetPileupSummaries*
- To generate pile information for samples at sites of known mutations for both T & N.
- Estimate contamination.
- gatk-launch CalculateContamination*
- To estimate the proportion of reads originating from other samples.
- Apply the main set of filters.
 - gatk-launch FilterMutectCalls
 - Passing variants will be labeled with PASS and those that fail shall be retained but with the 'FILTER' field populated with a list of filters of which the variant failed.
- Apply second pass filter to mark sequencing artifacts
 - gatk-launch FilterByOrientationBias
 - To remain with variants that passed all filters.

4. Variant Annotation

- Add flanking sequence information.
- fill-fs*
- Use VCFtools to add the flanking genomic sequence around the variant locus which are useful for orthogonal confirmation of variants, and sometimes for custom analysis.

```
egrep -m 1 '^[^#]' sample01.T_v_N.annotated.flanking_sequence.

vcf

chr1 14513 . G A ... FS=CAGGCAGACA[G/A]AAGTCCCCGC...
```

- Add basic annotations and impact predictions.
- snpEff*, Variant Effect Predictor (VEP), ANNOVAR, SVS/VarSeq**
- To predict the impact of a variant on the transcription or translation of a gene.
- SnpEff adds the following fields to the INFO field of each variant.
- ANN: Effect annotation always present
- LOF: Present only if the variant is predicted to cause loss of function.
- NMD: Present if the variant would result in Nonsense Mediated Decay

CRITIQUE

Strength

- The paper had strong relevance.
- The paper had a robust methodology.
- The paper had a clear research objective.
- The authors showed elements of innovation and originality.
- The authors demonstrated understanding of existing research in this field.

Weaknesses

- Absence of example data for the trial of the given methodology.
- Some of the provided links for accessing the code are not functional.

RECOMMENDATIONS

- The working group can achieve similar objectives with our own innovations and originality.
- We should look into having clear objectives and robust methodologies to answer research questions.
- We should share our resources openly with the cancer community to allow more contributions in the field.

