Теоретические домашние задания

Теория типов, ИТМО, совместно М3232-М3239 и М3332-М3339, весна 2024 года

Домашнее задание N1: лямбда исчисление — бестиповое и простотипизированное

1. Бесконечное количество комбинаторов неподвижной точки. Дадим следующие определения

$$\begin{split} L := \lambda abcdefghijklmnopqstuvwxyzr.r(this is a fixed point combinator) \\ R := LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL \end{split}$$

В данном определении терм R является комбинатором неподвижной точки: каков бы ни был терм F, выполнено R $F =_{\beta} F$ (R F).

- (а) Докажите, что данный комбинатор действительно комбинатор неподвижной точки.
- (b) Пусть в качестве имён переменных разрешены русские буквы. Постройте аналогичное выражение по-русски: с 33 параметрами и осмысленной русской фразой в терме L; покажите, что оно является комбинатором неподвижной точки.
- 2. Найдите необитаемый тип в просто-типизированном лямбда-исчислении (напомним: тип τ называется необитаемым, если ни для какого P не выполнено $\vdash P : \tau$).
- 3. Напомним определение: комбинатор лямбда-выражение без свободных переменных. Также напомним:

$$S := \lambda x. \lambda y. \lambda z. x \ z \ (y \ z)$$

$$K := \lambda x. \lambda y. x$$

$$I := \lambda x. x$$

Известна теорема о том, что для любого комбинатора X можно найти выражение P (состоящее только из скобок, пробелов и комбинаторов S и K), что $X =_{\beta} P$. Будем говорить, что комбинатор P выражает комбинатор X в базисе SK.

Косвенным аргументом (пояснением, но не доказательством!) в пользу этой теоремы являются два следующих соображения:

- теорема о замкнутости ИфИИВ: если $\vdash \varphi$, то $\vdash_{\rightarrow} \varphi$, значит, если выражение имеет тип, то этот тип можно получить с помощью доказательства в стиле Гильберта;
- ullet типы комбинаторов S и K это, соответственно, вторая и первая схемы аксиом.

Докажите тип следующих выражений как логическое высказывание с помощью гильбертового вывода и, пользуясь этим доказательством как источником вдохновения, выразите комбинаторы в базисе SK:

- (a) $\lambda x.\lambda y.\lambda z.y$
- (b) $\lambda x.\lambda y.\lambda z.yxz$
- (c) $\overline{1}$
- (d) Not
- (e) Xor
- (f) InR
- 4. Покажите на основании следующего преобразования полноту комбинаторного базиса SKI (проведите полное рассуждение по индукции, из которого будет следовать отсутствие в результате других термов, кроме SKI, бета-эквивалентность и определённость результата для всех комбинаторов σ):

$$[\sigma] = \left\{ \begin{array}{ll} x, & \sigma = x \\ [\varphi] \ [\psi], & \sigma = \varphi \ \psi \\ K \ [\varphi], & \sigma = \lambda x.\varphi, \quad x \notin FV(\varphi) \\ I, & \sigma = \lambda x.x \\ [\lambda x. \ [\lambda y.\varphi]], & \sigma = \lambda x.\lambda y.\varphi, \quad x \in FV(\varphi), x \neq y \\ S \ [\lambda x.\varphi] \ [\lambda x.\psi], & \sigma = \lambda x.\varphi \ \psi, \quad x \in FV(\varphi) \cup FV(\psi) \end{array} \right.$$

Заметим, что данные равенства объясняют смысл названий комбинаторов:

- S verSchmelzung, «сплавление»
- K Konstanz
- I Identität
- 5. Покажите, что следующая система комбинаторов образует полный базис в бестиповом лямбдаисчислении, но соответствующая им система аксиом в исчислении гильбертового типа не образует полного базиса для импликативного фрагмента:

$$I := \lambda x.x$$

$$K := \lambda x.\lambda y.x$$

$$S' := \lambda i.\lambda x.\lambda y.\lambda z.i \ (i \ ((x \ (i \ z)) \ (i \ (y \ (i \ z)))))$$

Указание: покажите невыводимость $(\varphi \to \varphi \to \psi) \to (\varphi \to \psi)$.

6. Напомним определение аппликативного порядка редукции: редуцируется самый левый из самых вложенных редексов. Например, в случае выражения $(\lambda x.I\ I)\ (\lambda y.I\ I)$ самые вложенные редексы — применения $I\ I$:

$$(\lambda x.\underline{I}\underline{I}) (\lambda y.\underline{I}\underline{I})$$

и надо выбрать самый левый из них:

$$(\lambda x.I\ I)\ (\lambda y.I\ I)$$

- (а) Проведите аппликативную редукцию выражения 2 2.
- (b) Докажите или опровергните, что параллельная бета-редукция из теоремы Чёрча-Россера не медленнее (в смысле количества операций для приведения выражения к нормальной форме), чем нормальный порядок редукции с мемоизацией.
- (с) Найдите лямбда-выражение, которое редуцируется медленнее при нормальном порядке редукции, чем при аппликативном, даже при наличии мемоизации.
- 7. Напомним определение бета-редукции. $A \to_{\beta} B$, если:
 - $A \equiv (\lambda x.P) \ Q, \ B \equiv P \ [x := Q]$, при условии свободы для подстановки;
 - $A\equiv (P\ Q),\, B\equiv (P'\ Q'),$ при этом $P\to_{\beta} P'$ и Q=Q', либо P=P' и $Q\to_{\beta} Q';$
 - $A \equiv (\lambda x.P), B \equiv (\lambda x.P'), \text{ if } P \rightarrow_{\beta} P'.$
 - (a) Найдите лямбда-выражение, бета-редукция которого не может быть произведена из-за нарушения правила свободы для подстановки (для продолжения редукции потребуется производить переименование связанных переменных). Поясните, какое ожидаемое ценное свойство будет нарушено, если ограничение правила проигнорировать.
 - (b) Покажите, что недостаточно наложить требования на исходное выражение, и свобода для подстановки может быть нарушена уже в процессе редукции исходно полностью корректного лямбда-выражения.
- 8. Будем говорить, что выражение A находится в слабой заголовочной нормальной форме (WHNF), если оно не имеет вид $A \equiv (\lambda x.P) \ Q$ (то есть, самый верхний терм его не является редексом). Выражение находится в заголовочной нормальной форме (HNF), когда его верхний терм не редекс и не лямбда-абстракция с бета-редексами в теле.
 - (а) Приведите нормальным порядком редукции выражение 2 2 в СЗНФ.
 - (b) Приведите нормальным порядком редукции выражение $Y(\lambda f.\lambda x.(IsZero\ x)\ 1\ (x\cdot f(x-1)))\ 3$ в СЗНФ.
 - (c) Верно ли, что «нормальность» формы выражения может в процессе редукции только усиливаться (никакая слабая заголовочная Н.Ф. заголовочная Н.Ф. нормальная форма)?
- 9. Как мы уже разбирали, $\forall x \; x : \tau$ в силу дополнительных ограничений правила

$$\overline{\Gamma,x:\tau \vdash x:\tau} \ x \not\in FV(\Gamma)$$

Найдите лямбда-выражение N, что $\not\vdash N: \tau$ в силу ограничений правила

$$\frac{\Gamma, x : \sigma \vdash N : \tau}{\Gamma \vdash \lambda x. N : \sigma \rightarrow \tau} \ x \not\in FV(\Gamma)$$

Домашнее задание №2: задачи типизации лямбда исчисления

1. Рассмотрим подробнее отличия исчисления по Чёрчу и по Карри. Определим точно бета-редукцию в исчислении по Чёрчу: $A \to_{\beta} B$, если

$$\begin{array}{ll} A=(\lambda x^{\sigma}.P)\ Q, & B=P[x:=Q] \\ A=P\ Q, & B=P\ Q'\ \text{или } B=P'\ Q\ \text{при } P\to_{\beta} P'\ \text{и } Q\to_{\beta} Q' \\ A=\lambda x^{\sigma}.P, & B=\lambda x^{\sigma}.P'\ \text{при } P\to_{\beta} P' \end{array}$$

- (a) Покажите, что в исчислении по Карри не выполняется даже «ограниченное» свойство распространения типизации (subject expansion): если $\vdash_{\kappa} M : \sigma, M \twoheadrightarrow_{\beta} N$ и $\vdash_{\kappa} N : \tau$, то необязательно, что $\sigma = \tau$.
- (b) Покажите, что в исчислении по Чёрчу «полное» свойство распространения типизации также не выполняется:

найдутся такие
$$M, N, \sigma$$
, что $\vdash_{\mathsf{q}} N : \sigma, M \rightarrow_{\beta} N$, но $\not\vdash_{\mathsf{q}} M : \sigma$.

Но при этом в исчислении по Чёрчу выполнено «ограниченное» свойство распространения типизации:

если
$$\vdash_{\kappa} M : \sigma, M \twoheadrightarrow_{\beta} N$$
 и $\vdash_{\kappa} N : \tau$, то тогда $\sigma = \tau$.

- 2. Покажите, что никакие связки в ИИВ не выражаются друг через друга: то есть, нет такой формулы $\varphi(A,B)$ из языка интуиционистской логики, не использующей связку \star , что $\vdash A \star B \to \varphi(A,B)$ и $\vdash \varphi(A,B) \to A \star B$. Покажите это для каждой связки в отдельности:
 - (а) конъюнкция;
 - (b) дизъюнкция;
 - (с) импликация;
 - (d) отрицание.
- 3. Рассмотрим алгоритм построения системы уравнений, а именно случай, когда рассматривается два разных вхождения одинакового по тексту применения. Например, $(x\ x)\ (x\ x)$ имеет два разных вхождения одной и той же аппликации $x\ x$. Всегда ли для корректной работы алгоритма достаточно одной типовой переменной β_{xx} для этих двух вхождений, или нужны две разные β_{xx}^L и β_{xx}^R ? Примечание: при одной переменной для обоих аппликаций система в данном случае, очевидно, несовместна: $\beta_{xx} \neq \beta_{xx} \to \sigma$. Но контрпримером это не является, поскольку типа у данного выражения всё равно нет.
- 4. Предложим альтернативные аксиомы для конъюнкции:

$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \beta}{\Gamma \vdash \alpha \& \beta} \text{ Введ. } \& \qquad \frac{\Gamma \vdash \alpha \& \beta \quad \Gamma, \alpha, \beta \vdash \gamma}{\Gamma \vdash \gamma} \text{ Удал. } \&$$

- (a) Предложите лямбда-выражения, соответствующие данным аксиомам; поясните, как данные выражения абстрагируют понятие «упорядоченной пары».
- (b) Выразите изложенные в лекции аксиомы конъюнкции через приведённые в условии.
- (с) Выразите приведённые в условии аксиомы конъюнкции через изложенные в лекции.
- 5. Постройте систему уравнений для Y-комбинатора и примените к ней алгоритм унификации (ожидается, что система окажется несовместной).

Домашнее задание №3: сильная нормализуемость λ_{\rightarrow} , система F

- 1. Найдите $\llbracket \alpha \to \alpha \rrbracket$.
- 2. Найдите $\llbracket (\alpha \to \alpha) \to \alpha \rrbracket$.
- 3. Покажите, что SN насыщенное (постройте полноценное рассуждение по индукции для п.2 определения).
- 4. Покажите, что если A и B насыщены, то $A \to B$ насыщенное.
- 5. Покажите, что построенная на лекции простая модель для ИИП второго порядка неполна.

- 6. Напомним, что мы можем задать $\exists p.\varphi$ как $\forall q.(\forall p.\varphi \to q) \to q$ (где q некоторая свежая переменная). Покажите, что правила для квантора существования могут быть выведены из такого определения.
- 7. Требуется ли свобода для подстановки в правилах с квантором?

$$\frac{\Gamma \vdash \varphi[p := \theta]}{\Gamma \vdash \exists p.\varphi} \qquad \frac{\Gamma \vdash \forall p.\phi}{\Gamma \vdash \phi[p := \theta]}$$

Если да — приведите пример доказуемой при отсутствии свободы для подстановки, но некорректной формулы. Если нет — предложите доказательство корректности правил при любых подстановках.

- 8. Пусть $\Gamma \vdash \varphi$. Всегда ли можно перестроить доказательство φ , добавив ещё одну гипотезу: $\Gamma, \psi \vdash \varphi$? Если нет, каковы могли бы быть ограничения на ψ ?
- 9. Пусть $\Gamma \vdash \forall x.\varphi$. Верно ли тогда, что $\Gamma \vdash \forall y.\varphi[x:=y]$? Если это неверно в общем случае, возможно, это верно при каких-то ограничениях? В случае наличия ограничений приведите надлежащие контрпримеры.
- 10. Перенесите в систему F из бестипового лямбда-исчисления следующие функции иными словами, постройте их обобщение для системы F (приведите обобщённое выражение, укажите его тип и докажите его). Например, можно рассмотреть $I = \Lambda \pi.\lambda p^{\pi}.p \to p$.
 - (a) S, K.
 - (b) инъекции и *case* (операции с алгебраическим типом);
 - (с) истина, ложь, исключающее или;
 - (d) черчёвский нумерал (он должен иметь тип $\forall \alpha.(\alpha \to \alpha) \to (\alpha \to \alpha)$) и инкремент;
 - (e) возведение в степень: $\lambda m. \lambda n. n \ m;$
 - (f) вычитание единицы (трюк зуба мудрости) и вычитание.