Deuxième Partie

Plan

Algèbre de BOOLE

Définition des variables et fonctions logiques Les opérateurs de base et les portes logiques Les lois fondamentales de l'algèbre de Boole

Logique combinatoire

Variables et fonctions booléennes

- □ <u>l'algèbre de BOOLE</u> est une structure mathématique qui traite l'ensemble des opérations formelles appliquées aux propositions du raisonnement logique qui seront représentés par des états logiques '0' ou '1'.
- □ <u>Une variable</u> est une grandeur (symbole) qui peut prendre que 0 ou 1.
- Une fonction logique est représentée par un groupe de variables logiques reliés par des opérations logiques.

Variables et fonctions booléennes

- Les machines numériques sont constituées d'un ensemble de circuits électroniques.
- Chaque circuit fournit une fonction logique bien déterminée (addition, comparaison,...).

La fonction F(A,B) peut être : la somme de A et B , ou le résultat de la comparaison de A et B ou autre fonction

Variables et fonctions booléennes

- Pour concevoir et réaliser ce circuit on doit avoir un modèle mathématique de la fonction réalisée par ce circuit.
- Ce modèle doit prendre en considération le système binaire.
- Le modèle mathématique utilisé est celui de Boole.
- □ George Boole est un mathématicien anglais (1815-1864).

Variables booléennes

- Définition:
- Il a fait des travaux dont les quels les fonctions (expressions) sont constitués par des variables qui peuvent prendre les valeurs 'OUI' ou 'NON'.
- Ces travaux ont été utilisés pour faire l'étude des systèmes qui possèdent deux états s'exclus mutuellement :
 - Le système peut être uniquement dans deux états E1 et E2 tel que E1 est l'opposé de E2.
 - Le système ne peut pas être dans l'état E1 et E2 en même temps
- Ces travaux sont bien adaptés au Système binaire (0 et 1).

Exemple de systèmes à deux états

- Un interrupteur est ouvert ou non ouvert (fermé)
- Une lampe est allumée ou non allumée (éteinte)
- Une porte est ouverte ou non ouverte (fermée)

Conclusion:

On peut utiliser les conventions suivantes :

```
OUI → VRAI (true)
NON → FAUX (false)

OUI → 1 (Niveau Haut)
NON → 0 (Niveau Bas)
```

Définitions

Niveau logique: Lorsque on fait l'étude d'un système logique il faut bien préciser le niveau du travail.

Niveau	Logique positive	Logique négative
H (Hight) haut	1	0
L (Low) bas	0	1

Exemple:

Logique positive:

lampe allumée : 1

lampe éteinte : 0

Logique négative

lampe allumée : 0

lampe éteinte : 1

Variable logique (booléenne)

- Une variable logique (booléenne) est une variable qui peut prendre soit la valeur 0 ou 1.
- □ Généralement elle est exprimée par un seul caractère alphabétique en majuscule (A , B, S , ...)
- Exemple:

```
• Une lampe : allumée L = 1 éteinte L = 0
```

Fonction logique

- C'est une fonction qui relie N variables logiques grâce à un ensemble d'opérateurs logiques de base.
- Dans l'Algèbre de Boole il existe trois opérateurs de base : ET , OU, NON .
- La valeur d'une fonction logique est égale à 1 ou 0 selon les valeurs des variables logiques.
- □ Si une fonction logique possède n variables logiques → 2ⁿ combinaisons → la fonction possède 2ⁿ valeurs.
- Les 2ⁿ combinaisons sont représentées dans une table qui s'appelle table de vérité (TV).

fonction logique

Exemple:

$$F(A, B, C) = A.B.C + A.B.C + A.B.C + A.B.C$$

La fonction F possède 3 variables \rightarrow 2³ combinaisons

$$F(0,0,0) = \overline{0.0.0} + \overline{0.0.0} + 0.\overline{0.0} + 0.0.0 = 0$$

$$F(0,0,1) = \overline{0.0.1} + \overline{0.0.1} + 0.\overline{0.1} + 0.0.1 = 1$$

$$F(0,1,0) = \overline{0.1.0} + \overline{0.1.0} + 0.\overline{1.0} + 0.1.0 = 0$$

$$F(0,1,1) = \overline{0.1.1} + \overline{0.1.1} + 0.\overline{1.1} + 0.1.1 = 1$$

$$F(1,0,0) = \overline{1.0.0} + \overline{1.0.0} + 1.\overline{0.0} + 1.0.0 = 0$$

$$F(1,0,1) = \overline{1.0.1} + \overline{1.0.1} + 1.\overline{0.1} + 1.0.1 = 1$$

$$F(1,1,0) = \bar{1}.\bar{1}.0 + \bar{1}.1.0 + 1.\bar{1}.0 + 1.1.0 = 0$$

$$F(1,1,1) = \overline{1}.\overline{1}.1 + \overline{1}.1.1 + 1.\overline{1}.1 + 1.1.1 = 1$$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Une table de vérité

NON (négation)

 NON: est un opérateur unaire (une seule variable) qui à pour rôle d'inverser la valeur d'une variable.

A	A
0	1
1	0

non

ET (AND)

Le ET est un opérateur binaire (deux variables), à pour rôle de réaliser le Produit logique entre deux variables booléennes.

- Le ET fait la conjonction entre deux variables.
- \square Le ET est défini par : F(A,B) = A . B

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

OU (OR)

- Le OU est un opérateur binaire (deux variables), à pour rôle de réaliser la somme logique entre deux variables logiques.
- Le OU fait la disjonction entre deux variables.
- Le OU est défini par F(A,B) = A + B (il ne faut pas confondre avec la somme arithmétique)

NB:

- Dans la définition des opérateurs ET, OU, nous avons juste donner la définition de base avec deux variables logiques.
- L'opérateur ET peut réaliser le produit de plusieurs variables logique (ex : A . B . C . D).
- □ L'opérateur OU peut aussi réaliser la somme logique de plusieurs variables logiques (ex: A + B + C +D).
- Dans une expression on peut aussi utiliser les parenthèses.

priorité des opérateurs

- □ Pour évaluer une expression logique (fonction logique):
 - on commence par évaluer les sous expressions entre les parenthèses.
 - puis le complément (NON),
 - en suite le produit logique (ET)
 - enfin la somme logique (OU)

Exemple:

$$F(A,B,C) = (\overline{A \cdot B}) \cdot (C+B) + A \cdot \overline{B} \cdot C$$

si on veut calculer F(0,1,1) alors:

$$F(0,1,1) = (\overline{0.1})(1+1) + 0.\overline{1.1}$$

$$F(0,1,1) = (\overline{0})(1) + 0.0.1$$

$$F(0,1,1) = 1.1 + 0.0.1$$

$$F(0,1,1) = 1 + 0$$

$$F(0,1,1)=1$$

Exercice:

Trouver la table de vérité de la fonction précédente ?

priorité des opérateurs

Pour trouver la table de vérité, il faut trouver la valeur de la fonction F pour chaque combinaisons des trois variables A, B, C

3 variables \rightarrow 2 ³ = 8 combinaisons

$$F(A,B,C) = (\overline{A \cdot B}) \cdot (C+B) + A \cdot \overline{B} \cdot C$$

$$F(0,0,0) = (\overline{0.0}).(0+0) + 0.\overline{0}.0 = 0$$

$$F(0,0,1) = (\overline{0.0}).(1+0)+0.\overline{0}.1 = 1$$

$$F(0,1,0) = (\overline{0.1}).(0+1) + 0.\overline{1}.0 = 1$$

$$F(0,1,1) = (\overline{0.1}).(1+1) + 0.\overline{1.1} = 1$$

$$F(1,0,0) = (\overline{1.0}).(0+0)+1.\overline{0}.0=0$$

$$F(1,0,1) = (\overline{1.0}).(1+0)+1.\overline{0}.1=1$$

$$F(1,1,0) = (\overline{1.1}).(0+1)+1.\overline{1.0} = 0$$

$$F(1,1,1) = (1.1).(1+1)+1.1.1 = 0$$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Lois fondamentales de l'Algèbre de Boole

L'opérateur NON

$$egin{aligned} \overline{\overline{A}} &= A \ \overline{\overline{A}} &+ A &= 1 \ \overline{\overline{A}} &= 0 \end{aligned}$$

L'opérateur ET

(A.B).C = A.(B.C) = A.B.C Associativité A.B = B.A Commutativité A.A = A Idempotence A.1 = A Elément neutre A.0 = 0 Elément absorbant

Lois fondamentales de l'Algèbre de Boole

L'opérateur OU

$$(A+B)+C=A+(B+C)=A+B+C$$
 Associativité

$$A + B = B + A$$
 Commutativité

$$A + A = A$$
 Idempotence

$$A + 0 = A$$
 Elément neutre

$$A+1=1$$
 Elément absorbant

Distributivité

$$A.(B+C) = (A.B) + (A.C)$$
 Distributivité du ET sur le OU

$$A + (B.C) = (A + B).(A + C)$$
 Distributivité du OU sur le ET

Lois fondamentales de l'Algèbre de Boole

L'opérateur OU

Autres relations utiles

$$A + (A . B) = A$$

 $A . (A + B) = A$
 $(A + B) . (A + \overline{B}) = A$
 $A + \overline{A} . B = A + B$

Dualité de l'algèbre de Boole

- Toute expression logique reste vraie si on remplace le ET par le OU, le OU par le ET, le 1 par 0, le 0 par 1.
- □ Exemple :

$$A+1=1 \rightarrow \overline{A}.0=0$$

$$A + A = 1 \rightarrow A \cdot A = 0$$

Théorème de DE MORGANE

 La somme logique complimentée de deux variables est égale au produit des compléments des deux variables.

$$A + B = A \cdot B$$

 Le produit logique complimenté de deux variables est égale à la somme logique des compléments des deux variables.

$$\overline{A.B} = \overline{A} + \overline{B}$$

Généralisation du Théorème de DE MORGANE à N variables

$$\overline{A.B.C....} = \overline{A} + \overline{B} + \overline{C} + \dots$$

$$\overline{A+B+C+....} = \overline{A.B.C}.\dots$$

Autres opérateurs logiques

OU exclusif (XOR)

$$F(A,B) = A \oplus B$$

$$A \oplus B = \overline{A}.B + A.\overline{B}$$

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Autres opérateurs logiques

NAND (NON ET)

$$F(A,B) = \overline{A \cdot B}$$
$$F(A,B) = A \uparrow B$$

A	В	A•B
0	0	1
0	1	1
1	0	1
1	1	0

Autres opérateurs logiques

□ NOR (NON OU)

$$F(A,B) = \overline{A+B}$$

$$F(A,B) = A \downarrow B$$

A	В	$\overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

Combinaison des opérateurs

En utilisant les NAND et les NOR on peut exprimer n'importe qu'elle expression (fonction logique).

 Pour cela , Il suffit d'exprimer les opérateurs de base (NON , ET , OU) avec des NAND et des NOR.

Réalisation des opérateurs de base avec des NOR

$$\overline{A} = \overline{A + A} = A \downarrow A$$

$$A + B = \overline{A + B} = \overline{A + B} = \overline{A} \downarrow B = (A \downarrow B) \downarrow (A \downarrow B)$$

$$A.B = \overline{A.B} = \overline{A + B} = \overline{A} \downarrow \overline{B} = (A \downarrow A) \downarrow (B \downarrow B)$$

Exercice

□ Exprimer le NON , ET , OU en utilisant des NAND ?

Propriétés des opérateurs NAND et NOR

$$A \uparrow 0 = 1$$

$$A \uparrow 1 = \overline{A}$$

$$A \uparrow B = B \uparrow A$$

$$(A \uparrow B) \uparrow C \neq A \uparrow (B \uparrow C)$$

$$A \downarrow 0 = \overline{A}$$

$$A \downarrow 1 = 0$$

$$A \downarrow B = B \downarrow A$$

$$(A \downarrow B) \downarrow C \neq A \downarrow (B \downarrow C)$$

Portes logiques

Une porte logique est un circuit électronique élémentaire qui Permet de réaliser la fonction d'un opérateur logique de base .

Portes logiques

Remarque:

- Les portes ET, OU, NAND, NOR peuvent avoir plus que deux entrées
- Il n'existe pas de OU exclusif à plus de deux entrées

Schéma d'un circuit logique (Logigramme)

C'est la traduction de la fonction logique en un schéma électronique.

Le principe consiste à remplacer chaque opérateur logique par la porte logique qui lui correspond.

Exemple 1

$$F(A, B, C) = A.B + \overline{B}.C$$

Schéma d'un circuit logique (Logigramme)

Exemple 2

$$F(A, B, C, D) = (A + B) \cdot (B + \overline{C} + D) \cdot A$$

Cours de Mr Mohamed CHAKRAOUI

Exercices

■ Exercice 1

Donner le logigramme des fonctions suivantes :

$$F(A,B) = \overline{A}.B + A.\overline{B}$$

$$F(A,B,C) = (A+B).(\overline{A}+C).(B+\overline{C})$$

$$F(A,B,C) = (\overline{A}.\overline{B}).(C+B) + A.\overline{B}.C$$

Exercices

□ **Exercice 2 :** Donner l'équation de F ?

Chapitre 2

- Définition textuelle d'une fonction logique ,
- □table de vérité,
- formes algébriques,
- simplification algébrique,
- □table de Karnaugh

Définition textuelle d'une fonction logique

- Généralement la définition du fonctionnement d'un système est donnée sous un format textuelle.
- Pour faire l'étude et la réalisation d'un tel système on doit avoir son modèle mathématique (fonction logique).
- Donc il faut tirer (déduire) la fonction logique a partir de la description textuelle.

définition textuelle du fonctionnement d'un système

- Une serrure de sécurité s'ouvre en fonction de trois clés. Le fonctionnement de la serrure est définie comme suit :
 - La serrure est ouverte si au moins deux clés sont utilisées.
 - La serrure reste fermée dans les autres cas.
- □ Donner le schéma du circuit qui permet de contrôler l'ouverture de la serrure ?

Étapes de conception et de réalisation d'un circuit numérique

Pour faire l'étude et la réalisation d'un circuit il faut suivre les étapes suivantes :

- 1. Il faut bien comprendre le fonctionnement du système.
- Il faut définir les variables d'entrée.
- 3. Il faut définir les variables de sortie.
- Etablir la table de vérité.
- 5. Ecrire les équations algébriques des sorties (à partir de la table de vérité).
- 6. Effectuer des simplifications (algébrique ou par Karnaugh).
- Faire le schéma avec un minimum de portes logiques.

Étapes de conception et de réalisation d'un circuit numérique

- □ Si on reprend l'exemple de la serrure :
 - Le système possède trois entrées : chaque entrée représente une clé.
 - □ On va correspondre à chaque clé une variable logique: clé 1 →
 A , la clé 2 →
 B , la clé 3 →
 - Si la clé 1 est utilisée alors la variable A=1 sinon A =0
 - Si la clé 2 est utilisée alors la variable B=1 sinon B =0
 - Si la clé 3 est utilisée alors la variable C=1 sinon C =0
 - Le système possède une seule sortie qui correspond à l'état de la serrure (ouverte ou fermé).
 - On va correspondre une variable S pour designer la sortie :
 - S=1 si la serrure est ouverte,
 - S=0 si elle est fermée

Étapes de conception et de réalisation d'un circuit numérique

$$S=F(A,B,C)$$

F(A,B,C)=1 si au mois deux clés sont introduites F(A,B,C)=0 si non .

Remarque:

Il est important de préciser aussi le niveau logique avec lequel on travail (logique positive ou négative).

Table de vérité

 □ Si une fonction logique possède N variables logiques → ? combinaisons → la fonction possède ? valeurs.

 □ Les 2ⁿ combinaisons sont représentées dans une table qui s'appelle table de vérité.

Table de vérité

Α	В	С	S			
0	0	0	0		A + B + C	: max terme
0	0	1	0		$A + B + \overline{C}$: max terme
0	1	0	0	→	$A + \overline{B} + C$: max terme
0	1	1	1		\overline{A} .B.C	: min terme
1	0	0	0	→	$\overline{A} + B + C$: max terme
1	0	1	1	→	$A.\overline{B}.C$: min terme
1	1	0	1	-	$A.B.\overline{C}$: min terme
1	1	1	1		A.B.C	: min terme

Extraction de la fonction logique à partir de la T.V

F = somme min termes

$$F(A,B,C) = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

F = produit des max termes

$$F(A, B, C) = (A + B + C) (A + B + \overline{C})(A + \overline{B} + C) (\overline{A} + B + C)$$

Forme canonique d'une fonction logique

- On appel forme canonique d'une fonction la forme ou chaque terme de la fonction comportent toutes les variables.
- □ Exemple :

$$F(A, B, C) = AB\overline{C} + A\overline{C}B + \overline{A}BC$$

Il existent plusieurs formes canoniques : les plus utilisées sont la première et la deuxième forme.

Première forme canonique

- Première forme canonique (forme disjonctive):
 somme de produits
- C'est la somme des min termes.
- Une disjonction de conjonctions.
- □ Exemple :

$$F(A,B,C) = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Cette forme est la forme la plus utilisée.

Deuxième forme canonique

- Deuxième forme canonique (conjonctive):
 produit de sommes
- Le produit des max termes
- Conjonction de disjonctions
- □ Exemple :

$$F(A, B, C) = (A + B + C) (A + B + \overline{C})(A + \overline{B} + C) (\overline{A} + B + C)$$

La première et la deuxième forme canonique sont équivalentes.

Remarque 1

- On peut toujours ramener n'importe qu'elle fonction logique à l'une des formes canoniques.
- Cela revient à rajouter les variables manquants dans les termes qui ne contiennent pas toutes les variables (les termes non canoniques).
- Cela est possible en utilisant les règles de l'algèbre de Boole :
 - Multiplier un terme avec une expression qui vaut 1
 - Additionner à un terme avec une expression qui vaut 0
 - Par la suite faire la distribution

Exemple

1.
$$F(A,B) = A + B$$

$$= A (B + \overline{B}) + B (A + \overline{A})$$

$$= AB + A\overline{B} + AB + \overline{AB}$$

$$= AB + A\overline{B} + \overline{AB}$$

$$2. F(A,B,C) = AB + C$$

$$= AB(C + \overline{C}) + C(A + \overline{A})$$

$$= ABC + AB\overline{C} + AC + \overline{A}C$$

$$= ABC + AB\overline{C} + AC(B + \overline{B}) + \overline{A}C(B + \overline{B})$$

$$= ABC + AB\overline{C} + ABC + \overline{A}BC + \overline{A}BC + \overline{A}BC$$

$$= ABC + AB\overline{C} + ABC + \overline{A}BC + \overline{A}BC + \overline{A}BC$$

Cours de Mr Mohamed CHAKRAOUI

- Remarque 2
- Il existe une autre représentation des formes canoniques d'une fonction, cette représentation est appelée forme numérique.
- R: pour indiquer la forme disjonctive
- □ P: pour indiquer la forme conjonctive.

Exemple: si on prend une fonction avec 3 variables

$$R(2,4,6) = \sum (2,4,6) = R(010,100,110) = \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$

$$P(0,1,3,5,7) = \prod (0,1,3,5,7) = P(000,001,011,101,111)$$
$$= (A+B+C)(A+B+\overline{C})(A+\overline{B}+\overline{C})(\overline{A}+B+\overline{C})(\overline{A}+B+\overline{C})$$

Α	В	С	F	Non(F)
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

F = A.B.C + A.B.C + A.B.C + A.B.C + A.B.C• Generator of the second control of the se

Exercices

□ Exercice 1

Déterminer la première , la deuxième forme canonique et la fonction inverse à partir de la Table de Vérité suivante ? Tracer le logigramme de la fonction ?

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Exercices

■ Exercice 2

Faire le même travail avec la Table de Vérité suivante :

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Cours de Mr Mohamed CHAKRAOUI

Exercices

Exercice 3

Un jury composé de 4 membres pose une question à un joueur, qui à son tour donne une réponse. Chaque membre du jury positionne son interrupteur à "1 "lorsqu'il estime que la réponse donnée par le joueur est juste (avis favorable) et à "0 " dans le cas contraire (avis défavorable). On traite la réponse de telle façon à positionner:

- Une variable succès (S=1) lorsque la décision de la majorité des membres de jury est favorable,
- une variable Échec (E=1) lorsque la décision de la majorité des membres de jury est défavorable
- et une variable Égalité (N=1) lorsqu'il y a autant d'avis favorables que d'avis défavorables.

Question:

- a./ Déduire une table de vérité pour le problème,
- **b.**/ Donner les équations de S, E,
- c./ En déduire l'équation de N,

Simplification des fonctions logiques

- L'objectif de la simplification des fonctions logiques est de :
 - réduire le nombre de termes dans une fonction
 - et de réduire le nombre de variables dans un terme
- Cela afin de réduire le nombre de portes logiques utilisées ->
 réduire le coût du circuit
- Plusieurs méthodes existent pour la simplification :
 - La Méthode algébrique
 - Les Méthodes graphiques : (ex : table de karnaugh)
 - Les méthodes programmables

Méthode algébrique

- Le principe consiste à appliquer les règles de l'algèbre de Boole afin d'éliminer des variables ou des termes.
- Mais il n'y a pas une démarche bien spécifique.
- □ Voici quelques règles les plus utilisées :

$$A \cdot B + \overline{A} \cdot B = B$$

$$A + A \cdot B = A$$

$$A + \overline{A} \cdot B = A + B$$

$$(A + B) (A + \overline{B}) = A$$

$$A \cdot (A + B) = A$$

$$A \cdot (\overline{A} + B) = A \cdot B$$

- Règles 1 : regrouper des termes à l'aide des règles précédentes
- Exemple

$$ABC + AB\overline{C} + A\overline{B}CD = AB (C + \overline{C}) + A\overline{B}CD$$

$$= AB + A\overline{B}CD$$

$$= A (B + \overline{B}(CD))$$

$$= A (B + CD)$$

$$= AB + ACD$$

- Règles 2 : Rajouter un terme déjà existant à une expression
- □ Exemple :

$$A B C + \overline{ABC} + A\overline{BC} + A\overline{BC} =$$
 $ABC + \overline{ABC} + ABC + A\overline{BC} + ABC + AB\overline{C} =$
 $BC + AC + AB$

- Règles 3 : il est possible de supprimer un terme superflu (un terme en plus), c'est-à-dire déjà inclus dans la réunion des autres termes.
- □ Exemple 1:

$$F(A,B,C) = A B + \overline{B}C + AC = AB + \overline{B}C + AC (B + \overline{B})$$

$$= AB + \overline{B}C + ACB + A\overline{B}C$$

$$= AB (1+C) + \overline{B}C (1+A)$$

$$= AB + \overline{B}C$$

Exemple 2 : il existe aussi la forme conjonctive du terme superflu

$$F(A,B,C) = (A+B) \cdot \overline{(B}+C) \cdot (A+C)$$

$$= (A+B) \cdot \overline{(B}+C) \cdot (A+C+B \cdot \overline{B})$$

$$= (A+B) \cdot \overline{(B}+C) \cdot (A+C+B) \cdot (A+C+\overline{B})$$

$$= (A+B) \cdot (A+C+B) \cdot \overline{(B}+C) \cdot (A+C+\overline{B})$$

$$= (A+B) \cdot \overline{(B}+C)$$

- Règles 4 : il est préférable de simplifier la forme canonique ayant le nombre de termes minimum.
- □ Exemple :

$$F(A, B, C) = R(2,3,4,5,6,7)$$

$$\overline{F(A, B, C)} = R(0,1) = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C$$

$$= \overline{A} \cdot \overline{B} \cdot \overline{C} + C)$$

$$= \overline{A} \cdot \overline{B} = \overline{A + B}$$

$$F(A, B, C) = \overline{F(A, B, C)} = \overline{A + B} = A + B$$

Exercice

Démontrer la proposition suivante :

$$A.B+B.C+A.C+A.\overline{B.C}+\overline{A.B.C}+\overline{A.B.C}+\overline{A.B.C}=A+B+C$$

Donner la forme simplifiée de la fonction suivante :

$$F(A, B, C, D) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

Simplification par la table de Karnaugh

Les termes adjacents

Examinons l'expression suivante:

$$A.B+A.B$$

- Les deux termes possèdent les même variables. La seule différence est l'état de la variable B qui change.
- ☐ Si on applique les règles de simplification on obtient :

$$AB + A\overline{B} = A(B + \overline{B}) = A$$

Ces termes sont dites adjacents.

Simplification par la table de Karnaugh

Exemple de termes adjacents

Ces termes sont adjacents

$$A.B + \overline{A.B} = B$$

$$A.B.C + A.B.C = A.C$$

$$A.B.C.D + A.B.C.D = A.B.D$$

Ces termes ne sont pas adjacents

$$A.B + \overline{A.B}$$

$$A.B.C + A.B.C$$

$$A.B.C.D + \overline{A.B.C.D}$$

Description de la table de karnaugh

- La méthode de Karnaugh se base sur la règle précédente.
- La méthode consiste a mettre en évidence par une méthode graphique (un tableaux) tous les termes qui sont adjacents (qui ne différent que par l'état d'une seule variable).
- La méthode peut s'appliquer aux fonctions logiques de 2,3,4,5 et 6 variables.
- Un tableau de Karnaugh comportent 2ⁿ cases (N est le nombre de variables).

Description de la table de karnaugh

	00	01	11	10
0				
1				

Tableau à 2 variables

Tableaux à 3 variables

Description de la table de karnaugh

Tableau à 5 variables

Dans un tableau de karnaugh , chaque case possède un certain nombre de cases adjacentes.

Les trois cases bleues sont des cases adjacentes à la case rouge

Passage de la table de vérité à la table de Karnaugh

- Pour chaque combinaisons qui représente un min terme lui correspond une case dans le tableau qui doit être mise à 1
- Pour chaque combinaisons qui représente un max terme lui correspond une case dans le tableau qui doit être mise à 0 .
- Lorsque on remplis le tableau, on doit soit prendre les min terme ou les max terme

Passage de la table de vérité à la table de Karnaugh

■ Exemple:

Passage de la table de vérité à la table de Karnaugh

Si la fonction logique est donnée sous la première forme canonique (disjonctive), alors sa représentation est directe : pour chaque terme lui correspond une seule case qui doit être mise à 1.

Si la fonction logique est donnée sous la deuxième forme canonique (conjonctive), alors sa représentation est directe : pour chaque terme lui correspond une seule case qui doit être mise à 0.

Passage de la table de vérité à la table de Karnaugh

Exemple

$$F1(A, B, C) = \sum (1,2,5,7)$$

	00	01	11	10
0		1		
1	1		1	1

$$F2(A, B, C) = \prod (0,2,3,6)$$

- L'idée de base est d'essayer de regrouper (faire des regroupements) les cases adjacentes qui comportent des 1 (rassembler les termes adjacents).
- Essayer de faire des regroupements avec le maximum de cases (16,8,4 ou 2)

- Puisque il existent encore des cases qui sont en dehors d'un regroupement on refait la même procédure : former des regroupements.
- Une case peut appartenir à plusieurs regroupements

- On s'arrête lorsque il y a plus de 1 en dehors des regroupements
- La fonction final est égale à la réunion (somme) des termes après simplification.

$$F(A, B, C) = AB + AC + BC$$

Donc, en résumé pour simplifier une fonction par la table de karnaugh il faut suivre les étapes suivantes :

- 1. Remplir le tableau à partir de la table de vérité ou à partir de la forme canonique.
- Faire des regroupements : des regroupements de 16,8,4,2,1 cases (Les même termes peuvent participer à plusieurs regroupements).
- 3. Dans un regroupement:
 - Qui contient un seule terme on peut pas éliminer de variables.
 - Qui contient deux termes on peut éliminer une variable (celle qui change d'état).
 - Qui contient 4 termes on peut éliminer 2 variables.
 - Qui contient 8 termes on peut éliminer 3 variables.
 - Qui contient 16 termes on peut éliminer 4 variables.
- L'expression logique finale est la réunion (la somme) des groupements après simplification et élimination des variables qui changent d'état.

■ Exemple 1 : 3 variables

Exemple 2:4 variables

F(A, B, C, D) = C.D + A.B.C + A.B.C.D

Exemple 3 : 4 variables

Trouver la forme simplifiée des fonctions à partir des deux tableaux ?

	00	01	11	10
0		1	1	1
1	1		1	1

	00	01	11	10
00	1		1	1
01				
11				
10	1	1	1	1

Examinons l'exemple suivant :

- Une serrure de sécurité s'ouvre en fonction de quatre clés A, B, C D.
 Le fonctionnement de la serrure est définie comme suite :
- \square S(A,B,C,D)= 1 si au moins deux clés sont utilisées
- $\square \qquad S(A,B,C,D) = 0 \text{ sinon}$
- Les clés A et D ne peuvent pas être utilisées en même temps.
- On remarque que si la clé A et D sont utilisées en même temps l'état du système n'est pas déterminé.
- Ces cas sont appelés cas impossibles ou interdites

 représenter ces cas dans la table de vérité?.

Pour les cas impossibles ou interdites

□ il faut mettre un X dans la T.V .

Les cas impossibles sont représentées

aussi par des X dans la table de karnaugh

	00	01	11	10
00			1	
01		1	X	X
11	1	1	X	X
10		1	1	1

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	X
1	0	1	0	1
1	0	1	1	X
1	1	0	0	1
1	1	0	1	X
1	1	1	0	1
1	1	1	1	X

- Il est possible d'utiliser les X dans des regroupements :
 - Soit les prendre comme étant des 1
 - Ou les prendre comme étant des 0
- □ Il ne faut pas former des regroupement qui contient uniquement des X

Cours de Mr Mohamed CHAKRAOUI

AB + CD + BD

AB + CD + BD + AC

AB+CD+BD+AC+BC

■ Exercice 1

Ś

Trouver la fonction logique simplifiée à partir de la table suivante

	00	01	11	10
00		1	X	
01	1	X		1
11	1		X	1
10	X		1	X

- La figure 1 représente un réservoir alimenté par deux vannes V1 et V2. On distingue trois niveaux : Sécurité, Moyen, Haut:
 - lorsque le niveau de liquide est inférieur ou égale à Sécurité, V1 et V2 sont ouvertes.
 - lorsque le niveau du liquide est inférieur ou égal à Moyen mais supérieur à Sécurité, seule V1 est ouverte.
 - lorsque le niveau du liquide est supérieur à Moyen mais inférieur à Haut, seule V2 est ouverte.
 - lorsque le niveau de liquide a atteint le niveau Haut, les deux vannes sont fermées.

Question: Donner les équations logiques de l'ouverture de V1 et V2 en fonction du niveau de liquide.

