# 5. laboratorinis darbas. Duomenų srautų diagramos

#### I. Darbo užduotis

1. Detaliausio lygmens duomenų srautų diagramos kiekvienai posistemei.

#### II. Reikalavimai

- Detaliausio lygmens duomenų srautų diagramos kuriamos atskirai kiekvienai posistemei;
- Visy laboratoriniy metu pildomas tas pats dokumentas;
- Kiekvienas studentas darbą (Word formatu) talpina moodle.if.ktu.lt sistemoje (visi kelia tą patį dokumentą).

## III. Gynimui turi būti pateikta

• Detaliausio lygmens duomenų srautų diagrama.

### IV. Vertinimo kriterijai

- Duomenų srautų diagramų atitikimas kūrimo standartams;
- Atitikimas funkcijų hierarchijos diagramai;
- Atitikimas ER modeliui;
- Atitikimas panaudojimo atvejų diagramai;
- Schema dedama be jokių package, frame, ar kitokių nereikalingų elementų;
- Darbo dalių eiliškumas pagal pateiktą užduotį;
- Darbo kokybė, gramatika, kalbos kultūra;
- Išpildyti visi nurodyti reikalavimai;
- Studentai ginasi savo posistemę po vieną;
- Savalaikis atsiskaitymas.

#### V. Studentas turi mokėti

 Sudaryti duomenų srautų diagramą remiantis ER modeliu ir sistemos funkcijų hierarchijos diagrama.

# VI. Aprašymas

Duomenų srautų diagrama vaizduojami įeinantys bei išeinantys duomenų srautai tarp sistemos procesų, esybių bei duomenų šaltinių. Šiame darbe duomenų srautų diagramos kuriamos atskirai kiekvienai posistemei. Diagramas patogu kurti *MS Visio* įrankiu, pasirinkus *Data Flow Model Diagram* tipą. Toliau pateikiami pagrindiniai duomenų srautų diagramų kūrimo principai:

- 1. Kiekvienam procesui suteikiamas unikalus vardas;
- 2. Visi procesai privalo turėti įėjimą ir išėjimą, kurie atvaizduojami duomenų srauto žymėjimu (lanku), jungiančiu procesą su kitais diagramos elementais;
- 3. Duomenų srautas taip pat privalo turėti unikalų vardą, kuris užrašomas virš lanko;

- 4. Procesų vyksmą sukeliantys įvykiai, kurie neįeina į sistemą (yra išoriniai), parodomi šalia atitinkamo proceso trumpomis strėlėmis su užrašytu įvykio vardu;
- 5. Į sistemą neįeinančios esybės vaizduoja išorinius informacijos šaltinius arba gavėjus. Diagramoje nepateikiama informacija apie jų elgesį bei struktūrą, o įvardinami tik iš jų ateinantys arba į juos išeinantys duomenų srautai;
- 6. Duomenų saugyklos (esybės) tarnauja kaip "buferis" duomenims saugoti tuo metu, kai vienas procesas baigiasi, o kiti procesai tik po tam tikro laiko naudojasi jo vyksmo rezultatais išėjimo duomenimis;
- 7. Duomenų saugyklos turi unikalų vardą. Duomenų saugyklas jungti tarpusavyje betarpiškais ryšiais negalima;
- 8. Duomenų saugyklos tarnauja kaip procesų įėjimo duomenų šaltinis arba išėjimo duomenų saugykla;
- 9. Duomenų srautų diagramose turi būti pateiktos visos modeliuojamos posistemės terminalinės funkcijos;
- 10. Duomenų srautų diagramose turi būti pateiktos visos modeliuojamos posistemės esybės.

1 pav. pateikta teniso aikštynų rezervavimo sistemos mokėjimų valdymo posistemės duomenų srautų diagrama. Šioje posistemėje vykdomos trys funkcijos:

*Mokėjimo registravimas* – pagal buhalterio įvestą duomenų formą sistemoje užregistruojamas mokėjimas;

Mokėjimo atšaukimas – atšaukiamas mokėjimas formoje įvedus mokėjimo numerį;

Mokėjimo ataskaitos sudarymas – suformuojama klientų, nesumokėjusių už paslaugas ataskaita.



1 pav. Mokėjimų valdymo posistemio duomenų srautų diagrama