Advanced Analytics: Machine Learning with R and Python

Dr. Ash Pahwa

California Institute of Technology Center for Technology and Management Education 1200 East California Blvd., Mail Code 121-79 Pasadena, California 91125 Phone: 626.395.4042

Advanced Analytics: Machine Learning with R and Python

Lesson 1.0: Machine Learning and Predicted Analytics

Lesson 1.3
Machine Learning Techniques

Outline

- CRISP/DM Model
- Classifying Modeling Methods
 - Response Variable:
 - Numerical or Categorical
 - Supervised or Unsupervised
 - Strategy:
 - Error Based
 - Information Based
 - Similarity Based
 - Probability Based
 - Mimicking the Human Brain (Neural networks)

CRISP/DM Process for Modeling

- www.crisp-dm.org
- CRoss Industry Standard Process for Data Mining

The word Data Mining can be interchanged with Predictive Analytics.

CRISP-DM Process Model

- Step #1
 - Start with business understanding of what you want to do with data mining
- Step #2
 - Data understanding
 - Interactions between business understanding and data understanding
- Step #3
 - Data preparation
 - Interactions between data preparation and modeling
- Step #4
 - Modeling + Assessment (Evaluation)
 - Interactions between model evaluation and business understanding
- Step #5
 - Deployment of Model
- Step #6
 - Results achieved from PA should be compared with the business understanding

Modeling – CRISP-DM Step 4

Common Modeling Methods

Modeling Methods

#	Modeling Methods
1	Linear & Polynomial Regression
2	Logistic Regression
3	Discriminant Analysis
4	K Nearest Neighbor
5	Decision and Regression Trees
6	Naïve Bayes
7	Neural Networks
8	Clustering
9	Principal Component Analysis
10	Support Vector Machines
11	ARIMA: Time Series

Which ML Technique is the Best?

- Why do we consider many different techniques?
- Which one is the best?
- No one technique is the best.
- All depends upon the data.
- Some techniques will work better on certain data.

Goals of Machine Learning Application: Estimation or Classification

- Estimation Regression modeling technique is used
 - Output is a number
 - House price
 - Product sales for next quarter
 - GNP growth for the next quarter
 - Employment
- Classification Naïve Bayes, Decision Trees etc. modeling techniques are used
 - Output is a categorical variable
 - Sports team will win or lose
 - Email is junk or not
 - Which grade student will get
 - Tweet is positive or negative

Classification of Modeling Methods

Classification of Modeling Methods

- Response Variable
 - Numerical or Categorical
- Supervised or unsupervised
- Strategy
 - Error based learning
 - Similarity Based Learning
 - Information Based Learning
 - Probability Based Learning
 - Mimicking the Human Brain

Response Variable

Response Variable

#	Modeling Methods	Response Variable: Numerical /Categorical
1	Linear & Polynomial Regression	Numerical
2	Logistic Regression	Categorical (Binary)
3	Discriminant Analysis	Categorical
4	K Nearest Neighbor	Categorical
5	Decision and Regression Trees	Categorical + Numerical
6	Naïve Bayes	Categorical
7	Neural Networks	Numerical + Categorical
8	Clustering	
9	Principal Component Analysis	
10	Support Vector Machines	Categorical
11	ARIMA : Time Series	Numerical

Supervised vs Unsupervised Learning

Supervised vs. Unsupervised Learning in PA

- Supervisor learning is the most common learning type where there is a target/output variable (which is also called supervisor)
 - Supervisor (target variable) teaches the algorithm how to build/learn the pattern model
 - In PA, supervised learning ≈ predictive modeling
- Unsupervised learning has NO target variable
 - No supervisor to teach → algorithm has to learn by itself
 - In PA, unsupervised learning ≈ descriptive modeling

Supervised Learning Model Development and Deployment

- Single split model assessment methodology
- The model is tested on hold-out sample
 - Only the hold-out sample accuracy is reported

Modeling Methods

#	Modeling Methods	Supervised or Unsupervised
1	Linear & Polynomial Regression	Supervised
2	Logistic Regression	Supervised
3	Discriminant Analysis	Supervised
4	K Nearest Neighbor	Supervised
5	Decision and Regression Trees	Supervised
6	Naïve Bayes	Supervised
7	Neural Networks	Supervised
8	Clustering	Unsupervised
9	Principal Component Analysis	Unsupervised
10	Support Vector Machines	Supervised
11	ARIMA : Time Series	Supervised

Classifying Based on Strategy to Build a Model

Classifying Based on Strategy to Build a Model

- Error based learning
 - Regression
 - Support Vector Machine
- Similarity Based Learning
 - K Nearest Neighbor
- Information Based Learning
 - Decision Trees
- Probability Based Learning
 - Naïve Bayes
- Mimicking the Human Brain
 - Neural networks

Error Based Learning

Linear Multi Variable Regression Support Vector Machines

Error Based Learning

- In error-based machine learning
 - We perform a search for a set of parameters for a parameterized model
 - That minimizes the total error across the predictions made by the model
 - With respect to a set of training instances (training data)

Error Based Learning

- All humans learn using this technique
- Most natural form of learning

"Mistake is the Best Teacher"

Learn from the mistakes of others. You can't live long enough to make them all yourself.

(Eleanor Roosevelt)

izquotes.com

Error Based Machine Learning Techniques

- Linear Multi Variable Regression
- Support Vector Machine

Similarity Based Learning

k Nearest Neighbor

Similarity Based Learning

Similarity Based Learning k Nearest Neighbor

Compute the distance matrices between objects

Euclidean Distance =
$$d = \sqrt{\sum_{i=1}^{N} (Xi - Yi)^2}$$

Information Based Learning

Decision Trees

Information Based Learning

- Learn by Asking Questions
- The Socratic approach to questioning is based on the practice of disciplined, thoughtful dialogue.
- Socrates, the early Greek philosopher/teacher, believed that disciplined practice of thoughtful questioning enabled the student to examine ideas logically and to determine the validity of those ideas.

Socrates: Greek Philosopher

In 300 BC, he engaged his learners by asking questions (know as the Socratic or dialectic method).

He often insisted that he really knew nothing, but his questioning skills allowed others to learn by selfgenerated understanding.

What is Decision Tree?

 Identical to 20 questions game for kids

Learning by Asking Questions

Decision Tree

	Gender	Car Ownership	Travel Cost	Income Level	Transportat ion Mode
1	Male	0	Cheap	Low	Bus
2	Male	1	Cheap	Medium	Bus
3	Female	1	Cheap	Medium	Train
4	Female	0	Cheap	Low	Bus
5	Male	1	Cheap	Medium	Bus
6	Male	0	Standard	Medium	Train
7	Female	1	Standard	Medium	Train
8	Female	1	Expensive	High	Car
9	Male	2	Expensive	Medium	Car
10	Female	2	Expensive	High	Car

Information Based Machine Learning Techniques

- Decision Trees
- Regression Trees
- Split of decision trees are based on the entropy of the tables

Probability Based Learning

Naïve Bayes

Thomas Bayes

- **Thomas Bayes** (1701 1761) was an
 - English statistician,
 - Philosopher and
 - Presbyterian minister
- Known for having formulated a specific case of the theorem that bears his name:
 - Bayes' theorem

Mathematically, Bayes' theorem gives the relationship between the probabilities of A and B, P(A) and P(B), and the conditional probabilities of A given B and B given A, P(A|B) and P(B|A). In its most common form, it is:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

The meaning of this statement depends on the interpretation of probability ascribed to the terms:

J Bayes.

Bayes Rule

- Provides a way to compute <u>reverse</u> probability
- Given P(B|A)
 - We can compute P(A|B)

$$P(A \mid B) = \frac{P(B \mid A).P(A)}{P(B)}$$

Naïve Assumption Assuming Variable Independence

- What is the probability that a person will respond
 - Given that customer is urban AND a golfer

```
P(response = Y \mid urban \text{ and golfer}) = \\ = \frac{P(response = Y) * P(urban \& golfer) \mid response = Y)}{P(urban \& golfer)}
* Naive Assumption : If 'urban' and 'golfer' are independent variables
P(response = Y \mid urban \text{ and golfer}) = \\ = \frac{P(response = Y) * P(urban \mid response = Y) * P(golfer \mid response = Y)}{P(urban \& golfer)}
```

Mimicking the Human Brain

Neural Networks

Inspiration for Neural Networks Biological Neuron

Human Brains have 86 billion neurons

Neural Networks

- Neural Networks behave similar to human brain
- Central Idea
 - Extract linear combinations of the inputs
 - Model the target as the non-linear functions of these features

Deep Learning

 Complex set of Neural Networks with many layers of processing

Main Applications of Deep Learning Neural Networks

- Image Recognition
 - Convolution Neural Networks
- Image Classification
 - Convolution Neural Networks
- Hand Writing Identification
- Speech Recognition
 - Long Short-Term Memory Networks

Modeling Methods

#	Modeling Methods	Strategy
1	Linear & Polynomial Regression	Error Based Minimizing Error
2	Logistic Regression Maximizing Likelihood	
3	Discriminant Analysis	
4	K Nearest Neighbor	Similarity Based
5	Decision and Regression Trees Information Based	
6	Naïve Bayes	Probability Based
7	Neural Networks Mimicking Human Brain	
8	Clustering	
9	Principal Component Analysis	
10	Support Vector Machines	Error Based
11	ARIMA: Time Series	Auto Regression & Moving Average

Summary

#	Modeling Methods	Response Variable: Numerical /Categorical	Supervised or Unsupervised	Strategy
1	Linear & Polynomial Regression	Numerical	Supervised	Error Based Minimizing Error
2	Logistic Regression	Categorical (Binary)	Supervised	Maximizing Likelihood
3	Discriminant Analysis	Categorical	Supervised	
4	K Nearest Neighbor	Categorical	Supervised	Similarity Based
5	Decision and Regression Trees	Categorical + Numerical	Supervised	Information Based
6	Naïve Bayes	Categorical	Supervised	Probability Based
7	Neural Networks	Numerical + Categorical	Supervised	Mimicking Human Brain
8	Clustering		Unsupervised	
9	Principal Component Analysis		Unsupervised	
10	Support Vector Machines	Categorical	Supervised	Error Based
11	ARIMA: Time Series	Numerical	Supervised	Auto Regression & Moving Average

Summary

- CRISP/DM Model
- Classifying Modeling Methods
 - Response Variable:
 - Numerical or Categorical
 - Supervised or Unsupervised
 - Strategy:
 - Error Based
 - Information Based
 - Similarity Based
 - Probability Based
 - Mimicking the Human Brain (Neural networks)