## Задание 2. Удар и трение.

В 9 классе в курсе физики вы изучали две простейших модели удара: абсолютно упругий и абсолютно неупругий. В этом задании вам предстоит рассмотреть более сложные модели ударов, в ходе которых существенную роль играет сила трения, действующая во время удара.

## Часть 1. Равны ли угол падения и угол отражения?

**1.1** Упругий шарик, вращающийся с большой угловой скоростью вокруг горизонтальной оси, падает вертикально на горизонтальную упругую поверхность. Под каким углом к вертикали отпрыгнет обруч от поверхности? Коэффициент трения шарика о поверхность равен  $\mu$ . Считайте, что модуль вертикальной компоненты скорости шарика не изменился, вращение шарика после удара не прекратилось.



За счет какой энергии возросла скорость шарика в ходе удара?

**1.2** Упругий не вращающийся диск (шайба) плашмя падает на поверхность льда под углом  $\alpha=30^{\circ}$ . Под каким углом  $\beta$  отпрыгнет шайба? Считайте, что модуль вертикальной компоненты шайбы за время удара не изменился. Коэффициент трения шайбы о лед равен



 $\mu = 0.10$ . Действием силы тяжести за время удара можно пренебречь.

## Часть 2. Неупругий удар.

**2.1** «Реальная» не вращающаяся шайба плашмя падает на поверхность льда под углом  $\alpha=30^\circ$  со скоростью  $v_0=10\frac{M}{c}$  и продолжает скользить по поверхности льда. Считайте, что за время удара шайба от поверхности не отрывается (т.е. вертикальная компонента скорости полностью гасится за время удара). Коэффициент трения шайбы о лед равен  $\mu=0.10$ . Действие силы тяжести за время удара в этом случае следует учитывать! Через какой промежуток времени от момента касания шайба остановится?