Elettronica I – Amplificatore operazionale ideale; retroazione; stabilità

Valentino Liberali

Dipartimento di Tecnologie dell'Informazione Università di Milano, 26013 Crema

e-mail: liberali@dti.unimi.it

http://www.dti.unimi.it/~liberali

Elettronica I – Amplificatore operazionale ideale; retroazione; stabilità – p. 1

Amplificatore operazionale

È un elemento circuitale largamente utilizzato nei circuiti elettronici che elaborano grandezze analogiche.

Si tratta di un **generatore di tensione controllato in tensione**, che presenta un guadagno di tensione infinito:

$$V_{\rm out} = EV_{\rm d} = E(V^+ - V^-)$$
 con $E \to \infty$

Amplificatore operazionale ideale (1/2)

Nome	Simbolo	Valore
Guadagno di tensione	$E = \frac{V_{\text{out}}}{V_{\text{d}}}$	∞
Resistenza di uscita	$R_{\rm out}$	0
Resistenza di ingresso	Rin	∞
Banda passante	В	∞

Elettronica I - Amplificatore operazionale ideale; retroazione; stabilità - p. 3

Amplificatore operazionale ideale (2/2)

L'amplificatore operazionale amplifica la differenza dei due segnali di ingresso V^+ e V^- .

Il terminale di ingresso con il segno "+" è detto *"ingresso non invertente"*, mentre quello con il segno "-" è detto *"ingresso invertente"*.

Di solito è utilizzato in **configurazione retroazionata**: il segnale in uscita all'amplificatore è riportato all'ingresso mediante una **rete di retroazione** (*"feedback"*) costituita da elementi passivi (ad esempio, da resistori).

- Segnale di uscita riportato all'ingresso invertente da una rete passiva: retroazione negativa
- Segnale di uscita riportato all'ingresso non invertente da una rete passiva: retroazione positiva

Retroazione negativa (1/4)

Elettronica I – Amplificatore operazionale ideale; retroazione; stabilità – p. 5

Retroazione negativa (2/4)

L'ultima equazione del sistema

$$V_{\text{out}} = EV_{\text{d}} = -EV^{-}$$

è risolvibile solo se $V_{\rm d}=V^+-V^-=0$: in questo caso, il prodotto $EV_{\rm d}$ assume la forma indeterminata $\infty\cdot 0$, che può avere un valore finito.

Retroazione negativa (3/4)

$$V_{\rm d} = V^+ - V^- = 0$$

Principio della terra virtuale:

i due terminali di ingresso dell'amplificatore operazionale sono alla stessa tensione, benché la corrente di ingresso sia nulla.

Elettronica I – Amplificatore operazionale ideale; retroazione; stabilità – p. 7

Retroazione negativa (4/4)

Applicando il principio della terra virtuale: $V^- = 0$, $I_1 = I_2$, si ottiene la soluzione:

$$V_{\text{out}} = -\frac{R_2}{R_1} V_{\text{in}}$$

L'amplificatore retroazionato ha un guadagno che dipende solo dal rapporto tra le due resistenze.

Retroazione positiva (1/3)

È il circuito che si ottiene **scambiando i due terminali di ingresso** (+) e (-).

Elettronica I – Amplificatore operazionale ideale; retroazione; stabilità – p. 9

Retroazione positiva (2/3)

$$\begin{cases} V_{\text{in}} - V^{+} = R_{1}I_{1} \\ V^{+} - V_{\text{out}} = R_{2}I_{2} \end{cases}$$

$$I_{1} = I_{2}$$

$$V_{\text{out}} = EV_{d} = EV^{+}$$

Retroazione positiva (3/3)

Proviamo a risolvere il circuito applicando il principio della terra virtuale. Dalle equazioni $V^+ = 0$, $I_1 = I_2$, procedendo come nel caso precedente, si ottiene:

$$V_{\text{out}} = -\frac{R_2}{R_1} V_{\text{in}}$$

come per il circuito con retroazione negativa!

Elettronica I – Amplificatore operazionale ideale; retroazione; stabilità – p. 11

Stabilità del circuito con retroazione

Nella realtà i due circuiti si comportano in modo diverso:

- il circuito con retroazione negativa ha guadagno $-R_2/R_1$,
- il circuito con retroazione positiva È INSTABILE.

La differenza di comportamento non si nota dalla soluzione matematica e neppure dalla simulazione circuitale con SPICE.

Occorre un nuovo concetto: la **stabilità**. Paragone meccanico:

Studio della stabilità con i grafi (1/2)

È possibile riconoscere se un circuito è retroazionato oppure no, e ricavare immediatamente il segno della retroazione, utilizzando il metodo dei diagrammi di flusso (detti anche *grafi di Mason*). Occorre:

- individuare il numero minimo di variabili (dipendenti e indipendenti) del sistema; per questo esempio possiamo prendere: V_{in} (ingresso), V⁺, V⁻, V_d, e V_{out} (uscita). Le altre grandezze (I₁ e I₂) sono ricavabili da queste usando la legge di Ohm;
- 2. individuare le grandezze di ingresso, quelle di uscita e quelle intermedie;
- 3. scrivere un sistema di equazioni in cui tutte le grandezze di uscita e intermedie compaiono in forma esplicita in una (e una sola) equazione.

Elettronica I - Amplificatore operazionale ideale; retroazione; stabilità - p. 1

Studio della stabilità con i grafi (2/2)

Dal sistema di equazioni si disegna il diagramma di flusso:

- 4. ogni variabile corrisponde ad un nodo del grafo avente lo stesso nome;
- 5. per ogni equazione, si disegna un ramo orientato che parte dal nodo che compare a destra del segno uguale e arriva nel nodo a sinistra del segno uguale, e si associa al ramo un peso pari al coefficiente moltiplicativo. Se a destra del segno uguale c'è la somma di più addendi, si disegna un ramo per ogni addendo.

Grafo (retroazione negativa) (1/4)

Equazioni (in forma esplicita): $\begin{cases} V_{\rm out} = EV_{\rm d} \\ V_{\rm d} = V^+ - V^- \\ V^- = V_{\rm in} \frac{R_2}{R_1 + R_2} + V_{\rm out} \frac{R_1}{R_1 + R_2} \\ V^+ = 0 \end{cases}$

$$V_{\text{in}}$$
 V_{in} V_{out} V_{out} V_{out} V_{out} V_{out}

Elettronica I - Amplificatore operazionale ideale; retroazione; stabilità - p. 15

Grafo (retroazione negativa) (2/4)

Guadagno di andata:

$$A = -E\frac{R_2}{R_1 + R_2}$$

Grafo (retroazione negativa) (3/4)

Guadagno dell'anello di retroazione:

$$G_L = -E \frac{R_1}{R_1 + R_2}$$

La retroazione è **negativa** perché il guadagno di anello ha il segno –.

Elettronica I – Amplificatore operazionale ideale; retroazione; stabilità – p. 17

Grafo (retroazione negativa) (4/4)

Il **fattore di retroazione** è la parte di anello non compresa nel guadagno di andata:

$$B = \frac{R_1}{R_1 + R_2}$$

Retroazione **tensione-tensione** (da $V_{\rm out}$ a $\frac{R_1}{R_1+R_2}V_{\rm out}$)

Stabilità (1/2)

Si considera l'effetto di una piccola variazione (o "disturbo") Δv introdotta in uno dei nodi dell'anello di retroazione.

Esempio: variazione Δv^- positiva al nodo v^- (ingresso invertente).

 $\Delta v_d = -\Delta v^-$ (con segno negativo); anche Δv_{out} è negativa. Ma v^- dipende da v_{out} , quindi **la variazione positiva introdotta sul nodo** v^- **viene bilanciata da una variazione negativa** attraverso l'anello di retroazione. La soluzione trovata è **stabile**, perché il circuito tende spontaneamente a compensare ogni scostamento dal punto di lavoro.

Elettronica I - Amplificatore operazionale ideale; retroazione; stabilità - p. 19

Grafo (retroazione positiva) (1/2)

Grafo corrispondente al circuito con retroazione positiva:

Grafo (retroazione positiva) (2/2)

Guadagno dell'anello di retroazione:

$$G_L = +E\frac{R_1}{R_1 + R_2}$$

La retroazione è *positiva* perché il guadagno di anello ha il segno +.

Elettronica I - Amplificatore operazionale ideale; retroazione; stabilità - p. 21

Stabilità (2/2)

Si considera l'effetto di una piccola variazione (o "disturbo") Δv introdotta in uno dei nodi dell'anello di retroazione. Esempio: variazione Δv^+ positiva al nodo v^+ (ingresso non invertente).

 $\Delta v_d = +\Delta v^+$ (con segno positivo); anche Δv_{out} è positiva. Ma v^+ dipende da v_{out} , quindi **alla variazione positiva introdotta sul nodo** v^+ **si aggiunge una variazione positiva ancora maggiore**, perché il guadagno dell'anello di retroazione è positivo e maggiore di uno.

La soluzione trovata è **instabile**: se il circuito si discosta anche di poco dal punto di lavoro ideale, il suo modo di funzionamento cambia.

Amplificatori operazionali retroazionati

Riepilogo:

- ▶ Amplificatore operazionale ideale + retroazione negativa
 → il circuito è stabile, vale il principio di terra virtuale
- Amplificatore operazionale ideale + retroazione positiva con guadagno d'anello maggiore di uno → il circuito è INSTABILE, il principio di terra virtuale NON vale