PRACTICE FINAL

Notations: In this exam, for a generic random variable y_t , $\mathbb{E}(y_t)$ and $\text{var}(y_t)$ stand for expected value and variance of y_t , respectively. Moreover $\text{cov}(y_t, y_{t-k})$ stands for covariance between y_t and y_{t-k} .

1. Consider the following AR process:

$$y_t = 0.5 + (1 - \phi_1 - \phi_2)t + \phi_1 y_{t-1} + \phi_2 y_{t-2} + u_t$$
, where $u_t \sim iid(0, 1)$.

- (a) Suppose that $\phi_1 = \phi_2 = 0.5$. Show that the process has a unit root.
- (b) Now suppose that $\phi_1 = \phi_2 = 0.1$. Show that the process is weakly trend stationary. Find $\mathbb{E}[y_t]$ and $\text{var}(y_t)$.
- (c) Given your answers to part 1a and 1b, discuss the difference between a weakly trend stationary process and a unit root process.
- (d) Explain the steps required to perform an Augmented Dickey-Fuller test to examine the null hypothesis that a process has a unit root vs. the alternative hypothesis that the process is trend stationary.

- 2. Let $y_t = 1 + 0.5y_{t-1} + u_t 0.5u_{t-1}$ where u_t are identically independently distributed with mean zero and variance one. Let $y_{t+\tau|t}^f$ be the optimal forecast of $y_{t+\tau}$ given the information available at time t, denoted by I_t .
 - (a) Show that the process for y_t is weakly stationary.
 - (b) Show that $y_{t+1|t}^f = 1 + 0.5y_t 0.5u_t$.
 - (c) Let $e_{t+1|t}^f = y_{t+1} y_{t+1|t}^f$. Show that var $\left(e_{t+1|t}^f\right) = 1$.
 - (d) What is $y_{t+\tau|t}^f$ as $\tau \to \infty$.
 - (e) What is var $\left(e_{t+\tau|t}^f\right)$ as $\tau \to \infty$.