NSR Search Results Page 1 of 3

Visit the **Isotope Explorer** home page!

17 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ -Ray Data Evaluation of Thermal-Neutron Capture for A = 1 ϑ 25

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n, γ),E=thermal; compiled, evaluated prompt γ -ray data.

Keynumber: 1994KI09

Reference: Nucl. Phys. A575, 72 (1994)

Authors: H.Kitazawa, M.Igashira, S.Shibata, K.Tanaka, H.Takakuwa, K.Masuda

Title: Retardation of Single-Particle E1 Transitions from the 622 keV Broad d-Wave Neutron

Resonance in ⁹Be

Keyword abstract: NUCLEAR REACTIONS 9 Be(n, γ),E=622 keV; measured σ (E,E γ) at θ =125 0 . 10 Be

deduced resonance, $\Gamma \gamma$. Natural target. Valence-capture model.

Keynumber: 1988RA10

Reference: J.Phys.(London) G14, Supplement S223 (1988)

Authors: S.Raman, S.Kahane, J.E.Lynn **Title:** Direct Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C, ²⁴, ²⁵, ²⁶Mg, ³², ³⁴, ³³S, ⁴⁰, ⁴⁴Ca

 (n,γ) , E=slow; calculated capture σ .

Keynumber: 1988MU05

Reference: J.Phys.(London) G14, Supplement S231 (1988)

Authors: S.F.Mughabghab

Title: Spin-Spin and Isospin Interactions from Capture Measurements

Keyword abstract: NUCLEAR REACTIONS 9 Be(n, γ),E not given; analyzed σ ; deduced spin-spin

potential parameter.

T7 1 10071

Keynumber: 1987LYZY

Reference: ORNL-6326, p.62 (1987) **Authors:** J.E.Lynn, S.Kahane, S.Raman

Title: Analysis of Slow Neutron Capture by ⁹Be, ¹²C, and ¹³C

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C, ⁹Be(n,γ),E=slow; analyzed data; deduced model

parameters, capture mechanism.

Keynumber: 1987LY01

Reference: Phys.Rev. C35, 26 (1987) **Authors:** J.E.Lynn, S.Kahane, S.Raman

Title: Analysis of Slow Neutron Capture by ⁹Be, ¹²C, and ¹³C

Keyword abstract: NUCLEAR REACTIONS 9 Be, 12 , 13 C(n, γ),E=thermal; calculated capture σ .

Optical model, Lane-Lynn-Raman method.

Keynumber: 1986KE14

NSR Search Results Page 2 of 3

Reference: Nucl.Instrum.Methods Phys.Res. A249, 366 (1986)

Authors: T.J.Kennett, W.V.Prestwich, J.S.Tsai

Title: The 14 N(n, γ) 15 N Reaction as both an Intensity and Energy Standard

Keyword abstract: NUCLEAR REACTIONS 14 N, 9 Be, 12 C(n,γ),E=reactor; measured γ-spectra following capture. 15 N levels deduced input,output Iγ,weighted difference. 10 Be levels deduced Iγ. Ge detector surrounded by quadrisected NaI(Tl) annulus.

Keynumber: 1986GO14

Reference: Radiat.Eff. 92, 139 (1986)

Authors: C.R.Gould, J.Dave, G.E.Mitchell, P.Ramakrishnan, G.F.Auchampaugh, R.C.Little,

S.A.Wender

Title: Photon Production Cross Section Measurements for Ta and Be

Keyword abstract: NUCLEAR REACTIONS Ta, 9 Be(n,γ),E=2-25 MeV; measured γ-ray production σ.

Keynumber: 1986CO14

Reference: Nucl.Instrum.Methods Phys.Res. A248, 416 (1986)

Authors: C.M.Conneely, W.V.Prestwich, T.J.Kennett **Title:** The Thermal Neutron Capture Cross Section of ⁹Be

Keyword abstract: NUCLEAR REACTIONS 9 Be(n,γ),E=thermal; measured Eγ,Iγ; deduced capture σ

relative to 14 N(n, γ). Pair spectrometer,NaI(Tl),Ge detectors.

Keynumber: 1985MU03

Reference: Phys.Rev.Lett. 54, 986 (1985)

Authors: S.F.Mughabghab

Title: Evidence for a Nucleon-Nucleus Spin-Spin Interaction in ⁹Be

Keyword abstract: NUCLEAR REACTIONS 9 Be(n, γ),E=thermal; analyzed E1 transitions following capture; deduced spin-spin potential parameters. 10 Be levels deduced spectroscopic amplitudes,phases.

Direct capture model.

Keynumber: 1983KE11

Reference: Nucl.Instrum.Methods 215, 159 (1983)

Authors: T.J.Kennett, W.V.Prestwich, R.J.Tervo, J.S.Tsai

Title: Evaluation of a Method for the Determination of Accurate Transition Energies in the (n, γ)

Reaction

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹⁴N, ²⁸, ²⁹Si(n,γ),E=0.5-11 MeV; measured Εγ,Ιγ. ¹⁰Be, ²⁹, ³⁰Si, ¹⁵N deduced neutron separation energy,level energies. High fidelity pulse height to energy transformation.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS 1 H, 9 Be, 14 N, 24 , 25 Mg, 27 Al, 28 , 29 Si, 32 S, 35 Cl, 40 , 44 Ca, 47 , 48 , 49 Ti, 50 , 52 , 53 Cr, 55 Mn, 54 , 56 , 57 Fe(n,γ),E=thermal; measured Eγ,Iγ. 2 H, 10 Be, 25 , 26 Mg, 28 Al, 29 , 30 Si, 33 S, 36 Cl, 41 , 45 Ca, 48 , 49 , 50 Ti, 51 , 53 , 54 Cr, 56 Mn, 55 , 57 , 58 Fe deduced Q,neutron

binding energy.

Keynumber: 1974JUZW

NSR Search Results Page 3 of 3

Reference: USNDC-11, p.149 (1974)

Authors: E.T.Jurney

Title: Weak Gamma Transitions from ${}^{9}\text{Be}(n,\gamma){}^{10}\text{Be}$ and Radiative Capture of Thermal Neutrons by ${}^{9}\text{Be}$ **Keyword abstract:** NUCLEAR REACTIONS ${}^{9}\text{Be}(n,\gamma)$,E=thermal; measured E γ ,I γ ; deduced σ . ${}^{10}\text{Be}$ deduced transitions.

acaacca transmon

Keynumber: 1969WE10

Reference: Phys.Rev. 186, 1292 (1969)

Authors: K.J.Wetzel

Title: Absence of Recoil Doppler Broadening of the 3367-keV Transition Following the Reaction ⁹Be

Keyword abstract: NUCLEAR REACTIONS 9 Be(n, γ), E = thermal; measured σ (E γ). 10 Be transition deduced no Doppler broadening.

Keynumber: 1968GRZY

Reference: Proc.Conf.Slow-Neutron-Capture Gamma-Ray Spectr., Argonne, Ill. (1966), F.E.Throw,

Ed., ANL-7282, p.303 (1968) **Authors:** R.C.Greenwood

Title: Precise Measurements of Primary Capture Gamma-Ray Energies Using a 'Bootstrap' Method **Keyword abstract:** NUCLEAR REACTIONS 9 Be, 14 N, 23 Na(n, γ), E = thermal; measured E γ ; deduced

Q. Ge(Li) detector.

Kevnumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal; measured Eγ; deduced Q. Natural targets.

Keynumber: 1967OR03 **Reference:** AD-649805 (1967)

Authors: V.J.Orphan, N.C.Rasmussen

Title: Study of Thermal Neutron Capture Gamma Rays Using a Lithium-Drifted Germanium

Spectrometer

Keyword abstract: NUCLEAR REACTIONS 9 Be, 45 Sc, Fe, Ge, Zr(n,γ), E= thermal; measured Eγ, Iγ; deduced Q. 10 Be, 46 Sc, 55 , 57 Fe, 71 , 73 , 74 Ge, 91 , 92 , 93 , 95 Zr deduced transitions. Ge(Li) detectors.
