k-Means-Clustering mit Manhattan-Distanz

Einführung

In dieser Übung wirst du den k-Means-Clustering-Algorithmus anwenden, um eine Menge von Datenpunkten in Cluster zu gruppieren. Dabei verwendest du die **Manhattan-Distanz** zur Berechnung der Distanzen zwischen Punkten und Zentroiden.

Aufgabe

1. k-Means-Algorithmus durchführen:

- (a) Berechne die Manhattan-Distanzen zwischen jedem Datenpunkt und den Zentroiden.
- (b) Weise jeden Datenpunkt dem nächstgelegenen Zentroiden zu und markiere die Datenpunkte entsprechend ihrer Clusterzugehörigkeit, indem du sie mit einem Symbol umschließt:
 - O für Cluster 1
 - △ für Cluster 2
 - 🔲 für Cluster 3
- (c) Aktualisiere die Position der Zentroiden, indem du den Mittelwert der X- und Y-Koordinaten der zugewiesenen Punkte berechnest.
- (d) Wiederhole die Schritte a) bis c), bis sich die Clusterzuweisungen nicht mehr ändern.

Datenpunkte und initiale Zentroiden

Punkt	X	Y
a	2	10
b	2	5
c	8	4
d	5	8
e	7	5
f	6	4
g	1	2
h	4	9
i	6	2
j	3	3
k	5	6
l	9	7

- O Cluster 1, Zentroid Z_1 : a(2,10)
- \triangle Cluster 2, Zentroid Z_2 : d(5,8)
- \square Cluster 3, Zentroid Z_3 : g(1,2)

Punkt	$\mathbf{D}(Z_1)$	$\mathbf{D}(Z_2)$	$\mathbf{D}(Z_3)$	Cluster
a				
b				
С				
d				
e				
f				
g				
h				
i				
j				
k				
1				

Zentroiden Iteration 2

 $\bigcirc Z_1$:

 \triangle Z_2 :

 $\square Z_3$: