Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 0 & 0 & -1 & -1 \\ 1 & 3 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Standard M2.	Ма	rk:			
Determine if the matrix	$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$	3 3 6 3	$\begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}$	$\begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}$	is invertible.

Standard M3.

Find the inverse of the matrix $\begin{bmatrix} 1 & -4 & 5 \\ -5 & 24 & -28 \\ 1 & -5 & 6 \end{bmatrix}.$

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -5 & 2 & 0 \end{bmatrix}$.

Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 3 & -3 \\ 2 & 1 & -1 & 2 \end{bmatrix}$$

Standard M2.	Mark			
Determine if the matrix	$ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix} $	1 2 2	$\begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$	is invertible.

Find the inverse of the matrix $\begin{bmatrix} 2 & -1 & -3 \\ -14 & 9 & 24 \\ 3 & -2 & -5 \end{bmatrix}.$

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 9 & -3 & 2 \\ 23 & -8 & 5 \\ 2 & -1 & 1 \end{bmatrix}.$

Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}.$

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 0 & 0 & -1 & -1 \\ 1 & 3 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Standard M2.	Mar	k:		
Determine if the matrix	$\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$	-1 1 1	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	is invertible.

Find the inverse of the matrix $\begin{bmatrix} 3 & 1 & 3 \\ 2 & -1 & -6 \\ 1 & 1 & 4 \end{bmatrix}$.

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 9 & -3 & 2 \\ 23 & -8 & 5 \\ 2 & -1 & 1 \end{bmatrix}.$

Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}.$

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 1 & 3 & -1 & -1 \\ 0 & 0 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Mark: Standard M3.

Find the inverse of the matrix $\begin{bmatrix} 3 & 1 & 3 \\ 2 & -1 & -6 \\ 1 & 1 & 4 \end{bmatrix}.$

Standard G2.

Mark:

Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$. List the eigenvalues of A along with their algebraic multiplicities.

Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 0 & 7 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Standard M2.	Mark	:		
Determine if the matrix	$\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}$	1 2 2	$\begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$	is invertible.

Mark: Standard M3.

Find the inverse of the matrix $\begin{bmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

Standard G2.

Mark:

Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$. List the eigenvalues of A along with their algebraic multiplicities.

Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & -1 & 4 \\ 1 & 0 & 2 \end{bmatrix}$$

Standard M2.	Mark	:		
Determine if the matrix	$\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}$	1 2 2	$0 \\ -1 \\ 3$	is invertible.

Standard M3.

Find the inverse of the matrix $\begin{bmatrix} 4 & -1 & -8 \\ 2 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}.$

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 8 & -3 & -1 \\ 21 & -8 & -3 \\ -7 & 3 & 2 \end{bmatrix}$.

Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}.$