Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ if ad $bc \neq 0$, then A is invertable and $A' = \frac{1}{acl-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ if ad bc = 0, then A is not invertable

for a fine A kan ii k inverse as A'. $A' = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$ og sides $6.9 - 7.8 \neq 0$ kan ii finne A $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$ og sides $6.9 - 7.8 \neq 0$ kan ii finne A $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$ og sides $6.9 - 7.8 \neq 0$ kan ii finne A

2	12 13 14 12 13 14
	15 16 17 ~ 3 3 3 2 3 3 3 7 3 3 3 3 18 19 20 R2:R2-R1 6 6 6 R3:R3-R1 3 3 3
	18 19 20 RZ:RZ-RI 6 6 6 RZ-RZ-RI 3 3 3
	være tike som også betyr at denne matrisen er tik null
	være tike som også betyr at denne matriken
	er the null
-	
1	

		*
<u></u>		
3	[5 5 6 6 7]	
	40440	
	3 0 0 3 0	
	60020	
	867181	
·		
	1/5/5 6 7	
1	4040	
<u> </u>	(-1) · 2 (3 0 0 C)	
%	5 6 7 8	
1	(90)	
· ·\	15/17	
×	5 (6) 7	
-\	(-1)-3.2 0 19 0	
×	678	
\(\sigma_{		
	[·1) · 4·3·2 6 8 24 6 8	
	(1) . 4.3.2 6 8 24 6 8	
	L T	
1		
1		
)
1	24.(5.8-7.6)=24.(-2)=-48	
<u> </u>	21 (00) 10) 101	
1		
K		
		no Va

5	$ \begin{bmatrix} 1 & \chi_1 & \chi_2 \\ 1 & \chi_2 & \chi_2^2 \\ 1 & \chi_3 & \chi_3^2 \end{bmatrix} $ $ \begin{bmatrix} \zeta_6 & \chi_1 \\ \zeta_7 & \chi_2 \\ \zeta_7 & \chi_2 \\ \zeta_7 & \chi_3 \end{bmatrix} $
	$V \cdot \vec{e} = \vec{y}$
	og vi for en polynom for hver rad
a distance of the state of the	P(X1)= C0 + X1 (1 + X12 (2 = Y1
	P(X2) = (+ X2(+ X2(2 = y2
F	$O(\chi_3)^z \left(+ \chi_3 \left(+ \chi_3^2 \left(- \chi_3^2 \right) \right) \right)$
3	
-	

bruker en utvidet notrise $\begin{bmatrix}
1 & \chi_{1} & \chi_{1}^{2} & \chi_{1} \\
1 & \chi_{2} & \chi_{2}^{2} & \chi_{2}
\end{bmatrix}$ $\begin{bmatrix}
1 & \chi_{1} & \chi_{1}^{2} & \chi_{2} \\
1 & \chi_{2} & \chi_{3}^{2} & \chi_{3}
\end{bmatrix}$ $\begin{bmatrix}
1 & \chi_{1} & \chi_{1}^{2} & \chi_{2} \\
1 & \chi_{2} & \chi_{3}^{2} & \chi_{3}
\end{bmatrix}$ $\begin{bmatrix}
1 & \chi_{1} & \chi_{1}^{2} & \chi_{2} \\
1 & \chi_{2} & \chi_{3}^{2} & \chi_{3}
\end{bmatrix}$ 1001 1001 1001 1110 ~ 011-1 ~ 011-1 1243 0242 0024 1001 1001 2011-12010-3 0012 0012 da for vi fra y at Co=1, C,=-3, C3=2 Som gir 055 P(1):1-36 +262

7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Og siden vi bare har pivot i de to férste ratere er busisen for mengelen váres: $B = \{\vec{v}_i, \vec{v}_i\}$

Siden Sin & cost = Sin 26 kan u stryke sin t cost

ag busis & undercomet Un:

\$ = \{ \Sin \cup \, \Sin \, \Sin