1 Normalization

RPKM is a very important normalization tool. not too sure about tpm, need to double check on that

2 Single Cell

Goals:

- 1. cells differentiates into sub-celltypes
- 2. unknown celltype discovery

2.1 Dimensionality reduction

Motivation:

- 1. high dim data often has lower dim representation w/o much reconstruction error
- 2. lower dim representation can often represent info about high dim pairwise dist.

Types of dim-red:

• Global methods

- 1. all pairwise dist equally impt
- 2. lower dim pairwise dist fit high-dim ones
- 3. often use magnitude or rank order

• Local methods

- 1. only local dist reliable in high dim
- 2. more weight on modelling local dist correctly

Methods:

• PCA

- finds directions with largest variance
- minimize squared reconstruction error
- equiv to liner autoencoders
- Steps of PCA
 - 1. \overline{X} : mean of all samples (usually rows), adjust $X \to X' = X \overline{X}$
 - 2. covar matrix $C = X'^T X'$
 - 3. find eigenvectors and eigenvalues of C, ie. all pair of \vec{v} , λ st. $C\vec{v} = \lambda \vec{v}$
 - 4. eigenvalues can be used to calculate percentage of total variance for each component

$$v_j = 100 \frac{\lambda_j}{total \quad eigenvalue}$$

This is non-parametric method, do not insist on a parametric encoding function

- Multi-Dimensional Scaling
 - arrange low dim points to minimize diff between pairwise distances in the high and low D space
 - a possible approach: start w a random vector, perform gradient decent
 - is there something to do with PCA? then we don't need iterative method

- Sammon (non-linear autoencoder)
 - with extra layers, much more powerful than PCA, but can be slow to converge, and can get stuck on local optima
 - Multi-Dimensional Scaling(MDS) can be made non-linear by giving higher weights to smaller distances, a popular formula is

$$cost = \sum_{ij} \left(\frac{|x_i - x_j| - |y_i - y_j|}{|x_i - x_j|} \right)^2$$

where x is high-dim dist, and y is low-dim dist

- still slow and get stuck on local optima

2.2 Graph-basd method

- address uniform circularity
- Isomap is a dim-red technique based on graphs
 - each datapoint is connected to k nearest neighbor in high-dim
 - edge weights = euclidean dist
 - approx of distance = shortest path in contracted graph
- Probabilistic local MDS
 - local distances are more impt than non-local ones
 - in this way all local distances are given equal importance
- stochastic neighbor embedding(SNE) has a probabilistic way to decide if a distance is local
 - convert global distances into probability of one datapoint picking another datapoint as its neighbor (what defines a neighbor tho) - still about isomaps?
 - each point in high-dim has a conditional probability of picking any other point as its neighbor
 - distribution (some sort of Gaussian) is over high-dim distances (if high-dim coords unavailable, a similarity / dissimilarity matrix may be used) $p_{j|i}$ is the prob. of picking j given starting at i in high-dim.

$$P_{j|i} = \frac{e^{-2d_{ij}^2/2\sigma_i^2}}{\sum_k e^{-d_{ik}^2/2\sigma_i^2}}$$

- having the probabilities potentially allow us to throw away the raw high-dimensional data
- evaluation done using pairwise distance in low dimensional map (shows how well the lower dim representation models high-dim data ig) $q_{i|i}$ is the prob of picking j given starting at i in low-dim
- compute the Kullback-Leibler divergence between prob. in the high-dim and low-dim spaces (why not just use dist in high dim?) more space / time efficient
- nearby pts in high-dim should be close in low-dim
- picking σ used to compute p the radius of the gaussian
 - different radius is needed in different parts of the space to keep the no. of neighbors constant
 - big radius \rightarrow high entropy for distribution over i's neighbors
 - small radius \rightarrow low entropy
- Symmetric SNE

- simpler than stochastic
- works best if different procedures are used for computing p's and q's.
- compromise: no longer guarantees that if using same dimension will produce optimal solution
- turn conditional prob into symmetric pairwise probabilities
- Optimization methods for SNE

2.3 Supervised dim-red: Neural networks

- last few layers have much fewer values than inputs
- use intermediate layers as lower-dim representations
- can easily add prior biological knowledge, such as protein interactions or transcription factors
- essentially, some nodes in the hidden layer are same as before, others are based on biological info

2.3.1 Additional NN architecture: Siamese

- supervised, but not trying to maximize training accuracy
- input: whether each pair is similar
- output: binary label of similar / not similar
- thus directly optimize dim-red layer for KNN

3 ChIP-Seq

4 cis-regulatory motif