Data Mining

Study Assignment Set #4

Prepared by: P V S Maruthi Rao | pvsmaruthirao@wilp.bits-pilani.ac.in

Reference Books:

Introduction to Data Mining by Tan P. N., Steinbach M and Kumar V. Pearson Education, 2006

Data Mining: Concepts and Techniques, Second Edition by Jiawei Han and Micheline Kamber

Morgan Kaufmann Publishers, 2006

Topic: Classification of Data, Decision Trees, Gini Index

Classification of Data, Decision Trees

Question 1

Learning objectives:

- Basics of statistical learning with Decision Trees.
- Decision Tree algorithm, and attribute selection methods.
- Attribute selection by 'Gini Index'
- CART (Classification and Regression Trees), a supervised learning algorithm uses attribute selection by **Gini Index** method.

Prerequisites:

- Study Assignment Set #1 (Conditional probability)
- Study Assignment Set #2 (Entropy, Information, Information Gain).
- Study Assignment Set #3 (Entropy, Information, Information Gain, Gain Ratio).

Basics of statistical learning learning with Decision Trees:

Some of the formulae are given as below.

Entropy

$$Info(D) = -\sum_{i=1}^{m} p_i log_2(p_i)$$

D: Training Data

m: Distinct values of the class label attribute.

 p_i : non-zero probability that an **attribute tuple** in D belongs to a **class Y**_i and is estimated by $|Y_i, D| / |D|$

**
$$P(Y_i | D) = P(Y_i, D) / P(D) = |Y_i, D| / |D| **$$

[Some use C_i for class.]

How much more information would we still need (after partitioning) to arrive at an exact classification? Measure $Info_A(D)$ for attribute A as below.

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

 $Info_A(D)$ is the expected information required to classify a tuple from D based on the partition by the attribute A. The smaller the information (still) required, the greater the purity of the partition.

$Gain (A) = Info (D) - Info_A(D)$

Gain (A) is an indication of how much would be gained by branching on A (attribute A).

** Branch on the attribute that gives highest gain **

Split Information

The C4.5 supervised learning algorithm applies a kind of **normalization to information gain** using a "**split information**" value defined as below.

$$SplitInfo_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times log_2 \frac{|D_j|}{|D|}$$

v is a set of possible partitions on split attribute A.

Gain Ratio

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo_A(D)}$$

A is an Attribute, D is a training data set.

** Select the attribute with highest 'Gain Ratio' **

If Split Info is approaching zero, the gain ratio is unstable. So a constraint is added to avoid this, whereby the information gain of the test selected must be large - at least as great as the average gain over all tests examined.

Note: When a calculation, system or subsystem behavior is tending towards unstable, then design a constraint to avoid such instability.

Gini Index

Gini index measures the impurity of D, a data partition or a set of training tuples as

$$Gini(D) = 1 - \sum_{j=1}^{m} p_i^2$$

where p_i is the probability of a tuple in D belongs to a class C_i (Y_i) and is estimated by $|C_i,D|$ / |D|

m: Class labels {1 ... m}

For example, m of Class label Y, buys_computer, is {yes, no}.

** The Gini Index considers a binary split for every attribute. **

How to split an attribute $A = \{a1, a2, a3 ... av\}$, where a1...av are discrete values of attribute A can assume.

So, there will be 2^v possible combination of subsets.

Excluding the power set and a null set, there are 2^v - 2 possible ways to form two partitions of the data, D, based on a binary split on A.

Let's take an example:

age = {youth, middle_aged, senior}

There are 8 possible ways to split on the attribute age.

	Subset S _A
1	{youth, middle_aged, senior} < known as Power set.
2	{youth}
3	{youth, middle_aged}
4	{middle_aged}
5	{middle_aged, senior}
6	{senior}
7	{youth, senior}
8	{} < known as null set

Discarding the Power Set and Null Set, we are left with 6 subsets.

Each subset, S_A , can be considered as a binary test for attribute A of the form "A $\in S_A$?"

In the above example, {youth, middle_aged} splits the D into 2 partitions namely D1 and D2. Compute a weighted sum of the impurity of each resulting partition.

$$Gini(D) = 1 - \sum_{j=1}^{m} p_i^2$$

$$Gini_A(D) = \frac{|D_1|}{|D|} Gini(D1) + \frac{|D_2|}{|D|} Gini(D2)$$

Finding Gini Index on every attribute (and possible binary splits) is required to determine the best split by considering the 'Lowest Gini Index'.

$$\Delta Gini(A) = Gini(D) - Gini_A(D)$$

Continue to the next question.

Classification of Data

Question 2

Learning objectives:

- Basics of statistical learning with Decision Trees.
- Decision Tree algorithm, and attribute selection methods.
- Attribute selection by 'Gini Index'
- CART (Classification and Regression Trees), a supervised learning algorithm uses attribute selection by Gini Index method.

Prerequisites:

- Study Assignment Set #1 (Conditional probability)
- Study Assignment Set #2 (Entropy, Information, Information Gain).
- Study Assignment Set #3 (Entropy, Information, Information Gain, Gain Ratio).
- Study Assignment Set #4 (Question 1).

An online computer store uses a Decision Tree classifier with '**Gini Index**' as a method of attribute selection method. Please see the Question #1 above for Gain Ratio.

Let X is a set of attributes of the registered user.

X = {id, age, income, student, credit_rating}

Let Y is the class variable

Y = buys_computer = {yes, no}

The **training dataset**. D. is as below

The training dataset, D, is as below.				
age	income	student	credit_rating	buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
	youth youth middle_aged senior senior senior	youth high youth high middle_aged high senior medium senior low senior low	youth high no youth high no middle_aged high no senior medium no senior low yes senior low yes	youth high no fair youth high no excellent middle_aged high no fair senior medium no fair senior low yes fair senior low yes excellent

	Ī	T		Ī	
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Let's find the Gini Index on age.

age = {youth, middle_aged, senior}

There are 8 possible ways to split on the attribute age.

	Subset S _A
1	{youth, middle_aged, senior} < known as Power set.
2	{youth}
3	{youth, middle_aged}
4	{middle_aged}
5	{middle_aged, senior}
6	{senior}
7	{youth, senior}
8	{} < known as null set

Discarding the Power Set and Null Set, we are left with 6 subsets.

Questions:

A	Find - Gini (D) for the class label attribute, Y = buys_computer = {yes, no}. m: {yes, no}
В	- Gini _{age ∈ {youth, middle_aged}} (D) It means the split is on the subset {youth, middle_aged} m: class label attribute, Y or C = buys_computer = {yes, no}.
С	- Gini _{age ∈ { youth, senior}} (D) It means the split is on the subset {youth, senior} m: class label attribute, Y or C = buys_computer = {yes, no}.

Answers:

A D has a total 14 tuples (training data).

m: Distinct values of the class label attribute = 2. buys_computer has two distinct value {yes, no}.

p(buys_computer = yes \mid D) = 9/14

p(buys_computer = no | D) = 5/14

$$Gini(D) = 1 - \sum_{j=1}^{m} p_i^2$$

B Let's select age as a splitting attribute.

D: Training data set.

Class label Y: buys_computer = {yes, no}.

A: age

v_{age}: {youth, middle_aged, senior}

From the data set D,

	age = youth	age = middle_aged	age = senior	
buys_computer = yes	2	4	3	SUM = 9
buys_computer = no	3	0	2	SUM = 5
	SUM = 5	SUM = 4	SUM = 5	

 $Gini_{age \in \{ youth, middle_aged \}} (D)$

It means the split is on the subset {youth, middle_aged} m: class label attribute, Y or C = buys_computer = {yes, no}.

D1 is the partition created by the attribute age with a subset {youth, middle_aged}. D2 is the partition created by the attribute age that are not in the subset {youth, middle_aged}.

Please note, it is a binary split.

$$Gini(D) = 1 - \sum_{j=1}^{m} p_i^2$$

Gini (D1) = 1 - (6/9)^2 - (3/9)^2 = 0.4444

Gini (D2) =
$$1 - (3/5)^2 - (2/5)^2 = 0.48$$

$$Gini_A(D) = \frac{|D_1|}{|D|}Gini(D1) + \frac{|D_2|}{|D|}Gini(D2)$$

 $Gini_{age \in \{youth, middle aged\}}(D) = (9/14)*(0.4444) + (5/14)*0.48 =$ **0.4571**

C Let's select age as a splitting attribute.

D: Training data set.

Class label Y: buys_computer = {yes, no}.

A: age

v_{age}: {youth, middle_aged, senior}

From the data set D,

	age = youth	age = senior	age = middle_aged	
buys_computer = yes	2	3	4	SUM = 9
buys_computer = no	3	2	0	SUM = 5
	SUM = 5	SUM = 5	SUM = 4	

 $Gini_{age \in \{ youth, senior \}} (D)$

It means the split is on the subset {youth, seir}

m: class label attribute, Y or C = buys_computer = {yes, no}.

D1 is the partition created by the attribute age with a subset {youth, senior}.

D2 is the partition created by the attribute age that are not in the subset {youth, senior}. Please note, it is a binary split.

$$Gini(D) = 1 - \sum_{j=1}^{m} p_i^2$$

$$Gini (D1) = 1 - (5/10)^2 - (5/10)^2 = 0.5$$

$$Gini (D2) = 1 - (4/4)^2 - 0 = 0$$

$$Gini_A(D) = \frac{|D_1|}{|D|}Gini(D1) + \frac{|D_2|}{|D|}Gini(D2)$$

$$Gini_{age \in \{youth, senior\}}(D) = (10/14)^*(0.5) + (4/14)^*0 = \mathbf{0.3571}$$

$$D \quad \text{Please practice the assignment.}$$