# Advanced Probabilistic Machine Learning and Applications

Caterina De Bacco and Martina Contisciani

## 1 Tutorial 9: Bethe approximation and BP

#### Exercise 1: representing models using factor graphs

Write the following problems (i) in terms of a probability distribution and (ii) in terms of a graphical model by drawing an example of the corresponding factor graph.

#### (a) p-spin model

One model that is commonly studied in physics is the so-called Ising 3-spin model. The Hamiltonian of this model is written as

$$H(\mathbf{s}) = -\sum_{(ijk)\in E} J_{ijk} s_i s_j s_k - \sum_{i=1}^N h_i s_i$$
(1)

where E is a given set of (unordered) triplets  $i \neq j \neq k$ ,  $J_{ijk}$  is the interaction strength for the triplet  $(ijk) \in E$ , and  $h_i$  is a magnetic field on spin i. The spins are Ising, which in physics means  $s_i \in \{+1, -1\}$ .

#### (b) Independent set problem

Independent set is a problem defined and studied in combinatorics and graph theory. Given a (unweighted, undirected) graph G(V, E), an independent set  $S \subseteq V$  is defined as a subset of nodes such that if  $i \in S$  then for all  $j \in \partial i$  we have  $j \notin S$ . In other words in for all  $(ij) \in E$  only i or j can belong to the independent set.

For example, suppose we have the following graph:



Draw the corresponding factor graph.

(iii) Write a probability distribution that is uniform over all independent sets on a given graph. (iv) Write a probability distribution that gives a larger weight to larger independent sets, where the size of an independent set is simply |S|.

## 2 Tutorial 9: Bethe approximation and BP

### Exercise 2: graph coloring problem and BP

Coloring is another classical problem of graph theory. Given a (unweighted, undirected) graph G(V, E) a coloring  $M \subseteq E$  is an assignment of labels, called colors, to the vertices of a graph such that no two adjacent vertices share the same color.

- (a) Write a probability distribution for the coloring problem.
- (b) Consider a "soft" constraint instead which relaxes the "hard" one and write the corresponding interaction function of the factor node. Hint: the soft constraint allows two neighboring nodes to have the same color, but penalized this a lot.
- (c) Draw a factor graph corresponding to it.
- (d) Using BP to model marginals of the coloring assignment, denote as:
  - $v_s^{(ij) \to i}$  the messages from function node (ij) to variable node i.
  - $\chi_{s_i}^{i \to (ij)}$  the message from variable node *i* to function node (*ij*).

Note that they are both functions of the state  $s_i$  of variable node i. Write BP equations for this model.

- (e) Find a fix point of these equations. Hint: what would a random guess do? PS: recall that there might be more than one fixed point.
- (f) Write the equation for the one-point marginal  $P(s_i)$  and the two-point marginal  $P(s_i, s_j)$  obtained from BP.