DETEKCIA EFEKTU MULTIPATH V MERANIACH GNSS

Ing. Peter Špánik, Ing. Ľubomíra Gerhátová, PhD.¹

¹Katedra geodetických základov, Stavebná fakulta, Slovenská technická univerzita v Bratislave, email: peter.spanik@stuba.sk, lubomira.gerhatova@stuba.sk

Družicové metody v geodezii a katastru Fakulta stavební VUT v Brňe, 4. 2. 2016

1 / 16

Obsah prezentácie

- Popis multipath, teoretické východiská príspevku,
- Veličina MP a popis aplikácie MultipathAnalysis,
- Experimentálne meranie, konfigurácia stanoviska a výstupy merania,
- Postup simulácie odrazených signálov pomocou 3D modelu blízkeho okolia prijímača,
- Ukážka výsledkov simulácie a ich interpretácia,
- Záver, námety na vylepšenie, diskusia.

Multipath v meraniach GNSS

Multipath – pojem označujúci viaccestné šírenie družicového signálu

- jeden z najväčších rušivých faktorov meraní GNSS,
- vzniká v dôsledku odrazu družicového signálu od okolitých objektov (steny, strechy, stromy, autá, zem, povrch pod prijímačom, ...),
- ullet skreslenie kódových (1 5 m) aj fázových meraní (max. $\lambda/4$),
- potrebné rozlišovať medzi path delay (predĺženie dráhy signálu)
 a multipath (geometrický model vs. spracovanie prijímačom).

Znázornenie predĺženia dráhy signálu Δd (path delay)

Príjem odrazeného signálu z pohľadu prijímača (*multipath*)

4 D > 4 A > 4 E > 4 E > E 900

Popis veličiny MP

Veličinu MP (multipath observable) je možné vypočítať, ak sú dostupné merania na dvoch a viac frekvenciách (v rovnici i,j,k):

$$MP_{jk}^{i} + B = R_i - \Phi_j + \frac{\lambda_i^2 + \lambda_j^2}{\lambda_j^2 - \lambda_k^2} (\Phi_j - \Phi_k)$$

Vlastnosti MP:

- hodnota B je konštantná, pokiaľ nedôjde k sklzu v počítaní cyklov (cycle slip), kedy sa zmenia ambiguity nosných vĺn
- \bullet kvôli zaťaženiu ambiguitami nie je $M\!P$ kvantifikátor multipathu, posudzovaná je variabilita hodnôt $M\!P-E(M\!P)$

Vzhľad GUI aplikácie MultipathAnalysis

Experimentálne meranie

Cieľ: posúdiť vplyv materiálu odrazovej plochy a vzdialenosti prijímača od hlavnej odrazovej plochy na hodnoty veličiny MP.

Postup: vykonanie meraní v dvoch etapách vo vzdialenosti 3 a 10 m od steny, v druhej etape stena pokrytá Al fóliou.

Výsledky spracovania aplikáciou MultipathAnalysis ($d=3\ \mathrm{m}$)

Výsledky spracovania aplikáciou MultipathAnalysis (d=10 m)

Simulácia odrazených signálov s použitím 3D modelu

Simulované hodnoty predĺženia dráhy signálu Δd je možné využiť na korekciu meraných pseudovzdialeností pri určovaní polohy z kódových meraní (využiteľnosť pre jednofrekvenčné prijímače, navigáciu).

Vstupom na simuláciu hodnôt Δd je:

- georeferencovaný 3D model okolia prijímača v lokálnom systéme (množina vrcholov trojuholníkov $A,B,C \to$ výpočet vektora vonkajšej normály $\mathbf{n} = (C-B) \times (A-B)$),
- simulované/skutočné polohy družíc D definované jednotkovým smerovým vektorom $\hat{\mathbf{d}}$ v lokálnom systéme (rovnomerné rozloženie polôh \to použitie Reuterovho gridu),
- \bullet približná poloha prijímača P (relatívna vzhľadom na objekty okolo).

Simulácia na základe len jednoduchého zrkadlového odrazu (neuvážený viacnásobný odraz, vplyv ohybu, rozptylu signálu).

3D model v lokálnom systéme n, w, v po importe do MATLABu

Geometria zrkadlového odrazu od trojuholníka A,B,C

Postup výpočtu predĺženia dráhy signálu Δd

1. Výpočet vektora odrazu ${f r}$ od \triangle s normálovým vektorom $\hat{{f n}}$

$$\mathbf{r} = \hat{\mathbf{d}} + 2\left(\hat{\mathbf{d}}\cdot(-\hat{\mathbf{n}})\right)\hat{\mathbf{n}}$$

2. Výpočet parametrov s,t,u z maticovej rovnice:

$$\begin{bmatrix} A_n - B_n & C_n - B_w & r_n \\ A_w - B_w & C_w - B_w & r_w \\ A_v - B_v & C_v - B_v & r_v \end{bmatrix} \begin{bmatrix} s \\ t \\ u \end{bmatrix} = - \begin{bmatrix} B_n \\ B_w \\ B_v \end{bmatrix}$$

3. Určenie polohy odrazového bodu ${\cal R}$

$$\mathbf{R} = \mathbf{B} + s \cdot \mathbf{a} + t \cdot \mathbf{b}$$
 alebo $\mathbf{R} = \mathbf{P} - u \cdot \mathbf{r}$

4. Výpočet hodnoty Δd pre konkrétny Δ a simulovaný vektor $\hat{\mathbf{d}}$

$$\Delta d = (|D'R| + |RP|) - |D'P|$$

3D model s normálami a odrazovými bodmi v lokálnom systéme $n, w, v\,$

Skyplot so simulovanými hodnotami Δd pre d=3 m

Záver, zhodnotenie, námety na zlepšenie

Záver:

- ullet multipath závisí hlavne od vzdialenosti prijímača od odrazovej plochy (pre d=10 m nie je znateľný takmer žiadny vplyv),
- pre malé d je výrazný aj vplyv povrchu odrazovej plochy (v našom experimente nastal nárast hodnôt veličiny MP pri použití hliníkovej fólie pre d=3 m až o 60%.

Námety na zlepšenie:

- rozšíriť model odrazu na viacnásobný odraz, započítať ohybové javy, použiť koeficienty odrazivosti jednotlivých materiálov,
- využiť pri simulácii aj parametre prijímača (hlavne šírka korelátora), a tým simulovať hodnoty multipathu, nie hodnoty Δd (umožní to pre jednu simulovanú polohu družice $\hat{\mathbf{d}}$ zohľadniť aj odraz od viacerých plôch vernejšie modelovanie reality).