Digital Image Processing (2023) HW4

I. Image Restoration

A. Blur Process vs Original Image

▲input1 與其原圖

B. Blur Process vs Restoration Results (by applying wiener filter)

Before Process (image1)

After Process (image1) ~71db (Use PSNR defined in hw4)

Before Process (image2)

After Process (image2)

▲ Restoration by applying wiener filter

C. Number Identification

WYG 573	J1FH756	PHP2455	MKA 532	405 ZHU
MAV 794	AFV 2018	993 KCK	YUT207	7121AN8
YMX 644	MMG 604	MKM 239	378984K	JJS 269
V67 SFL	JJS 131	552 A0Y	2AA4510	RCA3412
992 KCM	9427A06	HPR 476	YUT042	HLFV44
81 A231	4144 AGW	YSE068	MHF 686	342 AE
YUT002	HHG 352	JGN 048	SAB3399	11H38

D. Algorithm

對於這次還原問題,主要是解決 motion blur 即可辨認出絕大多數車牌。因此首先須猜測 motion blur 的 PSF,也就是該 motion blur 的設定內容。經過嘗試後,發現其大致上接近逆時針 37 度方向,並延伸 25 格像數的距離。

當有了 motion blur 的 PSF 後,即可實作 Wiener filter。但因為該 filter 適合在 frequency domain 處理,因此需使用到 opencv (c++)的 cv::dft、cv::idft 作時頻轉換。

而 Wiener filter 大致是簡化成下列形式:

$$W(u, v) = \frac{H^*(u, v)}{|H(u, v)|^2 + K}$$

其中 H(u,v)是 motion blur PSF 的頻域轉換,而 K 則是估計的 SNR 比值,亦避免 Winer filter 發生值域爆炸。當 Wiener filter 與輸入圖片的 dft 結果做點積運算後,用 idft 換回時域,經過翻轉後即可得到還原結果。

E. Compile and Run process

由於使用到 opency,因此需要撰寫 CMakeList.txt,經過 cmake、make 後即可 compile 出 binary 執行檔(DIPHW4 檔案)。執行該檔案時,會將圖形讀進一個 vector,隨後將 3channel 複製到 3 個獨立的 cv::Mat type 裡。接著是估計 motion blur 的 PSF,隨後做 fft 運算與頻域的 wiener filter 處理。而由於頻域的資料型態會是 complex number,因此需要手刻相關的 Mult、Div 乘除處理,才好處理 complex number 以及共軛運算。之後換回時域。等到將 3 個 channel 都用 wiener filter 處理完,即可合併 3 channel,並翻轉成原始視角輸出。

II. Reference

1. 課堂講義