Du 28 Mai au 1 juin

Programme n°27

THERMODYNAMIQUE

TH2 Le premier principe de la thermodynamique

Cours et exercices

Annexe : premier principe gaz parfait (Polycopier distribué aux élèves)

Cours et exercices

TH3 Le second principe de la thermodynamique (Cours et exercices simples)

- Introduction Nécessité d'un second principe
 - Rappels \rightarrow Transformations réversibles
 - → Principales causes d'irréversibilité
- Le second principe de la thermodynamique Enoncé
 - Quelques cas Remarque
- Entropie d'un échantillon de corps pur
- Le gaz parfait
- Entropie d'un système diphasé
- Phase condensée incompressible
 Expression de l'entropie pour un système diphasé
- Entropie de changement d'état
- Exemples de bilans d'entropie
- Echanges thermique → Système de dimension fini
 - → Système de dimension fini avec une source
- Détente de Joules Gay Lussac
- Changement de phases

4. Deuxième principe. Bilans d'entropie	
Deuxième principe : fonction d'état entropie, entropie créée, entropie échangée.	Définir un système fermé et établir pour ce système un bilan entropique. Relier l'existence d'une
$\Delta S = S_{ech} + S_{créé}$ avec $S_{ech} = \Sigma Q_i/T_i$.	entropie créée à une ou plusieurs causes physiques de l'irréversibilité.
Variation d'entropie d'un système.	Utiliser l'expression fournie de la fonction d'état entropie.
	Exploiter l'extensivité de l'entropie.
Loi de Laplace.	Connaître la loi de Laplace et ses conditions d'application.
Cas particulier d'une transition de phase.	Connaître et utiliser la relation entre les variations d'entropie et d'enthalpie associées à une transition de phase : $\Delta h_{12}(T) = T \Delta s_{12}(T)$

TH4 Les machines thermiques (Cours uniquement)

- Inégalité de Clausius Carnot Système en contact avec un thermostat
 - Généralisation
- Machine monotherme
- Machines dithermes Notations et relations
 - Principe du moteur ditherme

5. Machines thermiques	
Application du premier principe et du deuxième principe aux machines thermiques cycliques dithermes : rendement, efficacité, théorème de Carnot.	Donner le sens des échanges énergétiques pour un moteur ou un récepteur thermique ditherme. Analyser un dispositif concret et le modéliser par une machine cyclique ditherme.
	Définir un rendement ou une efficacité et la relier aux énergies échangées au cours d'un cycle. Justifier et utiliser le théorème de Carnot.
	Citer quelques ordres de grandeur des rendements des machines thermiques réelles actuelles.

SOLUTIONS AQUEUSES AQ3 L'oxydoréduction

Cours et exercices

<u>TP</u>

Dosage des ions FeII par les ions CeIV dosage à la goutte et suivi potentiométrique Dosage des ions Ag⁺ par les ions Cl⁻ : potentiométrique et conductimétrique Spectrométrie - Loi de Beer-Lambert - Détermination du pK_A du BBT