3-3 已知某 N 沟道结型场效应管的 $U_{GS(off)}=-5V$ 。下表给出四种状态下的 U_{GS} 和 U_{DS} 的值,判断各状态下的管子工作在什么区(a. 恒流区 b. 可变电阻区 c. 截止区)。

表 3-5 题 3-3 表

	1	2	3	4
U _{GS}	-1	-2	-2	-6
U_{DS}	3	4	2	10
工作区				

解: N沟道结型场效应管工作在夹断区(截止区)的条件: U_{GS}< U_{GS (off)}

工作在恒流区(饱和区)的条件: $U_{DS} \ge U_{GS} - U_{GS(off)}$

工作在可变电阻区的条件:

 $U_{GS~(off)}$ < U_{GS} <0,且 U_{DS} \leq U_{GS} $-U_{GS(off)}$ 或 U_{GD} > $U_{GS~(off)}$

1.当 UGS=-1V, UDS=3V 时 $U_{GS} > U_{GS(off)}$

$$U_{GS} - U_{GS(off)} = -1 + 5 = 4V > U_{DS}$$

管子工作在可变电阻区(b)。

2. 当 U_{GS}=-2V, U_{DS}=4V 时

$$U_{GS} > U_{GS(off)}$$

$$U_{GS} - U_{GS(off)} = -2 + 5 = 3V < U_{DS}$$

管子工作在恒流区(a)。

3. 当 U_{GS}=-2V, U_{DS}=2V 时

$$U_{GS} - U_{GS(off)} = -2 + 5 = 3V > U_{DS}$$

管子工作在可变电阻区(b)。

4. 当 U_{GS}=-6V, U_{DS}=10V 时

$$U_{GS} < U_{GS(off)}$$

管子工作在截止区(c)。

3-4 判断图 3-8 所示的电路能否正常放大 , 并说明原因。

图 3-8 题 3-4 图

a) 结型 N 沟道场效应管应该满足 U_{GS}<0。

但是在 a)中源极缺少电阻提供负偏压, $U_{GS}=0$ 。导致静态漏极电流过大,动态范围过小,所以不能正常放大。

- b) 绝缘栅型 N 沟道耗尽型场效应管组成的电路,因为没有漏极电阻,使交流输出信号到地短路, u_o 无法取出,所以不能正常放大。
- c) 绝缘栅型 N 沟道增强型场效应管组成的电路, 满足正常放大条件。
- d) 是一个自给偏压式共源放大电路,只适用于耗尽型和结型场效应管。图中是绝缘栅型 N 沟道增强型的场效应管,不能正常放大。

- 3-7 图 3-11 所示的电路中,已知 U_{GS}= -2V,场效应管的 I_{DSS}=2mA,U_{GS(off)}= -4V。
 - 1.计算 I_D和 R_{S1}的值。
 - 2.为了保证电路的正常放大,求电阻 Rs2 可能的最大值。
 - 3.计算电压增益 Au。

图 3-11 题 3-7 图

解:本题考察场效应管放大电路静态工作点的计算、工作在恒流区应满足的条件以及电压增益的分析。

1.计算 I_D和 R_{S1}的值

将 U_{ss}= -2V 代入电流方程,得到漏极电流

$$I_{DQ} = I_{DSS} (1 - \frac{U_{GSQ}}{U_{GS(off)}})^2 = 2 \times (1 - \frac{-2}{-4})^2 = 0.5 mA$$

因为
$$U_{GSQ} = U_{GQ} - U_{SQ} \approx -I_D R_{S1}$$

所以
$$R_{S1} = \frac{-U_{GSQ}}{I_D} = \frac{2V}{0.5mA} = 4K\Omega$$

2.为了保证场效应管工作在恒流区,必须满足:

$$U_{\rm DS} \geq U_{\rm GS} - U_{\rm GS(off)}$$

$$\mathbb{E} U_{DS \min} = (-2) - (-4) = 2V$$

$$I_D \times (R_{S1} + R_D + R_{S2 \, \text{max}}) = V_{DD} - U_{DS \, \text{min}}$$

$$R_{S2\,\text{max}} = \frac{V_{DD} - U_{DS\,\text{min}} - I_D \times (R_{S1} + R_D)}{I_D} = \frac{20 - 2 - 0.5 \times 14}{0.5} = 22K\Omega$$

3. 画出电路的微变等效电路如图 3-12 所示,

图 3-12 微变等效电路

场效应管的低频跨导为

$$g_{m} = -\frac{2I_{DSS}}{U_{GS(off)}}(1 - \frac{U_{GS}}{U_{GS(off)}}) = -\frac{2 \times 2}{-4}(1 - \frac{-2}{-4}) = 0.5ms$$

忽略 R_G的影响,放大电路的电压增益为

$$A_{u} = \dot{U}_{o} / \dot{U}_{i} = \frac{-g_{m} \dot{U}_{gs} R_{D}}{\dot{U}_{gs} + g_{m} \dot{U}_{gs} (R_{S1} + R_{S2})} = \frac{-g_{m} R_{D}}{1 + g_{m} (R_{S1} + R_{S2})} = \frac{-\frac{1}{2} \times 10}{1 + \frac{1}{2} \times 26} = -0.36$$

3-11: 如图 3-17 所示的源极输出电路中,已知 $g_m=1mS$ 。画出其微变等效电路,并计算 Au, Ri 和 Ro 的值。

图 3-17 题 3-11 图

解: 微变等效电路如图 3-17 所示

图 3-18 微变等效电路

电压增益
$$A_u = \dot{U}_o / \dot{U}_i = \frac{g_m \dot{U}_{gs} R_L'}{\dot{U}_{gs} + g_m \dot{U}_{gs} R_L'} \approx 0.857$$

$$R_L' = R_S // R_L$$

输入电阻
$$R_i=R_G+R_{G1}/\!/R_{G2}=2.075M\Omega$$

输出电阻
$$R_o = R_S // \frac{1}{g_m} \approx 0.92 K\Omega$$