Diffusion Process and Take-off Conditions of the Online Platform

Ryo Suzuki

The University of Tokyo

Outline

- 1. Motivation
- 2. The Model
- 3. The Data
- 4. Conclusion

Motivation - Introduction

Online Platforms

Place where people gather and share their contents in the Internet

Wikipedia
YouTube
Twitter

YouTube
Facebook

This paper studies diffusion process of online platforms

Motivation - Related Literature : Diffusion Theory

Rogers (1962): Sociology

Bass (1969): Marketing

Ellison and Fudenberg (1995): Word-of-mouth social learning

Morris (2000): Contagion thresholds in networks

Young (2009): Contagion, social influence, and social learning

Anthey and Ellison (2012): Diffusion dynamics of open source software

Motivation - Limitation of the Existing Model

e.g.) MySpace - SNS (Social Networking Service) since 2003

Existing models cannot explain failure to take-off

Motivation - Hypothesis

Young⁹s network externality

User ↑ ⇒ User ↑

Hypothesis: Another network externality

Motivation - Main Results

1. If there exists another type of network externality, failed to launch occur.

Explain the phenomenon such as failure of MySpace and success of Facebook

2. Whether take-off or not depends on three factors.

Initial condition of quality, content per capita, and rate of decline

3. Simulation of the model can explain the real data

Can explain dynamics of active users and contents of platforms

Outline

- 1. Motivation
- 2. The Model
- 3. The Data
- 4. Conclusion

The Model - Model Settings

The Model - Thresholds

The Model - Mass

The Model - Quality

1. Quality depends on uploaded contents

e.g.) The quality of YouTube depends on videos uploaded by users

2. Quality diminish over time

e.g.) If nobody uploaded videos, the reputation of YouTube would decrease

3. Quality affects users9 thresholds distribution

e.g.) The more YouTube has videos, the more users try to use it

The Model - Dynamics of Mass and Quality

If $q^9 > q$, then q^9 has first order stochastic dominance over q.

The Model - Diffusion Process and Take-off Conditions I

Thresholds Distribution : N (μ/q , σ^2)

The Model - Diffusion Process and Take-off Conditions II

The Model - Diffusion Process and Take-off Conditions III

q₀=0.2 (Failed to Take-off)

 $q_0=0.22$ (Take-off)

The Model - Critical Value of Quality

Definition

Critical value of quality is defined as the level of quality \bar{q} such that if $q_0 \in [0, \bar{q})$ then $\lim_{t\to\infty} m_t = 0$ and if $q_0 \in (\bar{q}, \infty)$ then $\lim_{t\to\infty} m_t = m^*$ ($m^* > 0$)

The Model - Proposition

Proposition

Thresholds distribution is given by $U(\alpha/q_t - 1, \alpha/q_t)$. If $c/\beta > \alpha$ and $\lambda(c/\beta - \alpha)^2 \ge c\alpha$ hold, then there exists critical value of quality $\bar{q} \in [\alpha, c/\beta]$

Outline

- 1. Motivation
- 2. The Model
- 3. The Data
- 4. Conclusion

The Data - Music Platform App on iPhone

Populi - Social Music App

Released in June

The Data - Detail of the App

The Data - Simulation and the Data

Outline

- 1. Motivation
- 2. The Model
- 3. The Data
- 4. Conclusion

Conclusion - Intuitions of Diffusion Process

If quality depends on uploaded contents and also affects users decision, then there exists critical value of quality.

Intuitions

Platforms is affected by another type of network externality

Conclusion - Intuitions of Take-off Conditions

Whether take-off or not depends on q₀ (initial quality), c (content per capita), β (decline rate)

Thank you for your attention