Einfuehrung in die Theoretische Informatik

Kyriakos Schwarz, Roland Hediger

HS 2014

Contents

1	Erste Woche		
	1.1 Sprachen	1	
	1.2 Endliche Automaten DFA		
2	Zweite Woche	8	
	2.1 DFA, NFA	8	
3	Dritte Woche	14	
	3.1 NFA	14	
4	Vierte Woche	18	
	4.1 Abgeschlossenheit	18	
	4.2 RE	20	
5	Funfte Woche	23	
	5.1 Pumping Lemma	23	
6	Sechste Woche	27	
	6.1 Grammatiken	27	

1 Erste Woche

1.1 Sprachen

Alphabet Σ : nichtleere endliche Menge (von Zeichen)

Wort ueber Σ : endliche Folge von Zeichen aus Σ

Leeres Wort: ϵ (epsilon)

Menge aller Woerter ueber Σ : Σ^*

Konkatenation von Woertern x, y ueber Σ :

$$x = x_1 x_2 ... x_n$$
 $,x_i \in \Sigma$
 $y = y_1 y_2 ... y_n$ $,y_i \in \Sigma$

$$x \cdot y = xy = x_1 x_2 \dots x_n y_1 y_2 \dots y_n$$

Java: + ""
$$(\epsilon)$$
 Haskell: ++ "" (ϵ)

Monoid: Sei M eine Menge und

 $\circ: M \times M \to^{total} M$ eine Verknuepfung

Das Paar (M, \circ) heisst ein Monoid, falls gilt:

1)
$$a \circ (b \circ c) = (a \circ b) \circ c$$
 , $\forall a, b, c \in M$

2) Es gibt ein $e \in M$ mit $a \circ e = a = e \circ a$, $\forall a \in M$

Beispiel 1

$$M = \Sigma^*, \circ = \cdot$$

 (Σ^*,\cdot) ist ein Monoid mit ϵ als neutralem Element

Beispiel 2

$$\{\{x=5; y=6; \}z=7; \} \equiv \{x=5; \{y=6; z=7; \}\}$$

Komposition von Anweisungen assoziativ

Neutrales Element: ; (Java) skip, NOP (no operation)

$$(x = 2 * x; x = x + 1;) \not\equiv (x = x + 1; x = 2 * x)$$

Sprache ueber Σ :

Menge von Woerter ueber Σ

Beispiele

$$\begin{cases} \{\} & 0 \text{ Woerter} \\ \{0,1,01,10\} \text{ Sprache uber } \Sigma = \{0,1\} \\ \Sigma^* \\ \{\epsilon\} & 1 \text{ Wort} \\ \{\epsilon,0,00,000,\ldots\} \text{ uber } \Sigma = \{0\} \end{cases}$$

Bem

Sprache kann ∞ viele Woerter enthalten Jedes Wort ist aber endlich

Bem

 $\overline{\epsilon \in \Sigma^*}$

 Σ^* immer ∞ gross

Operationen auf Sprachen

Seien L_1 , L_2 Sprachen

 $L_1 \cup L_2$ Vereinigungsmenge

$$L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$$
 (Kreuzprodukt)

Sei (M, \circ) ein Monoid. Dann def.

$$a^0 = e$$
 , $a \in M$
 $a^n = a \circ a^{n-1}$, $n > 0$

$$L^0 = \{\epsilon\}$$

$$L^n = L \cdot L^{n-1} \qquad , n > 0$$

Kleen' scher Stern

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots$$
$$= \{x_1, x_2, \dots, x_k \mid k \geqslant 0, x_i \in L\}$$

Aufgabe

$$\Sigma = \{a, b, ..., z\}, L_1 = \{good, bad\}, L_2 = \{cat, dog\}$$

$$L_1 \cup L_2 = \{bad, cat, dog, good\}$$

$$L_1 \cdot L_2 = \{goodcat, gooddog, badcat, baddog\}$$

$$L_1^0 = \{\epsilon\}$$

$$L_1^1 = \{good, bad\} = L_1 \cdot L_1^0 = L_1$$

 $L_1^2 = \{goodgood, goodbad, badgood, badbad\}$

 $L_1^3 = \{goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, goodgood, badgoodgood, badgoodbad, badbadgood, badbadbad\}$

$$L_1^* = L_1^0 \cup L_1^1 \cup L_1^2 \cup L_1^3 \cup \dots$$

= $\{x_1, x_2, \dots, x_k \mid k \ge 0, x_i \in L_1\} = \{\epsilon, \dots\}$

 $L_1 \cdot L_2 = \{goodcat, gooddog, badcat, baddog\} \neq L_2 \cdot L_1$

|M| = Anzahl Elemente von M

1.2 Endliche Automaten DFA

deterministic finite automator

Statisch

Dynamisch

 $\underline{\text{Verarbeitung}} \qquad \text{Input: } \xrightarrow{1101}$

- 1. Start in q_1 Startzustand
- 2. Lese (1)101 , $q_1 \to q_2$
- 3. Lese 1 $\boxed{1}$ 01 , $q_2 \to q_2$
- 4. Lese 11①1 , $q_2 \to q_3$
- 5. Lese 110① , $q_3 \to q_2$
- 6. Fertig + akzeptiere, da q_2 akzeptierender Zustand ist und die Eingabe fertig gelesen ist.

Liefert accept oder fertig

Terminiert immer!

<u>Def DFA</u> : Ein DFA ist ein 5-Tupel $(Q, \Sigma, \delta, q_0, F)$ mit:

- 1. Q ist eine endliche nichtleere Menge von Zustaenden
- 2. Σ ist das Eingabealphabet (z.B. 1101)
- 3. $\delta: Q \times \Sigma \to^{total} Q$ Transitionsfunktion
- 4. q_0 Startzustand
- 5. $F \subseteq Q$ Menge der akzeptierende Zustaende

2 Zweite Woche

2.1 DFA, NFA

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\Sigma = \{0, 1\}$
- 3. $\delta: Q \times \Sigma \to Q$

$$\delta(q_1,0) = q_1, \, \delta(q_1,1) = q_2, \dots$$

- 4. q_1 Start
- 5. $F = \{q_2\}$

<u>Def Verarbeitung</u> (dynamisch)

Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein DFA

Sei $w=x_1x_2x_3...x_m$ ein Wort ueber Σ mit $x_i\in\Sigma,\ n\geqslant 0$ $[n=0\to w=\epsilon]$

M akzeptiert w, wenn eine Folge von Zustaenden existiert $r_0, r_1, r_2, ..., r_n$, mit:

- 1. $r_0 = q_0$
- 2. $r_i = \delta(r_{i-1}, x_i), i \in \{1...m\}$
- $3. r_n \in F$

Sonst wird w verworfen

accept / reject

M erkennt Sprache L falls

 $L = \{ w \in \Sigma^* \mid M \text{ akzeptiert } w \}$

Eine Sprache heisst regulaer, wenn ein

DFA existiert, der die Sprache erkennt

 $\begin{array}{c} \operatorname{Automat} \to \operatorname{\underline{akzeptiert}} / \operatorname{\underline{verwirft}} \operatorname{\underline{Wort}} \\ & \\ \underline{\operatorname{erkennt}} \operatorname{\underline{Sprache}} \\ & \\ \operatorname{recognise} \end{array}$

$$M_2: \qquad \Sigma = \{0, 1\}$$

akzeptiert kein Wort

erkennt \emptyset

$$M_3: \qquad \Sigma = \{0, 1\}$$

akzeptiert jedes Wort

erkennt Σ^*

Zwei DFA heissen <u>aequivalent</u>, wenn sie dieselbe Sprachen erkennen

NFA: nichtdeterministischer FA

$$N_1: \qquad \Sigma = \{0, 1\}$$

Eingabe: 010110

Verarbeitung:

$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$

 $\underline{\mathrm{Def}}\ \underline{\mathrm{DFA}}$: Ein NFA ist ein 5-Tupel (Q,Σ,δ,q_0,F) mit:

- 1. Q ist eine endliche nichtleere Menge von Zustaenden
- 2. Σ ist das Eingabealphabet (z.B. 1101)
- 3. $\delta: Q \times \Sigma_{\epsilon} \to^{total} P(Q)$ Transitionsfunktion
- 4. $q_0 \in Q$ Startzustand
- 5. $F \subseteq Q$ Menge der akzeptierende Zustaende

3 Dritte Woche

3.1 NFA

Berechnung NFA

Sei
$$N = (Q, \Sigma, \delta, q_0, F)$$
 ein NFA

Sei
$$w = y_1 y_2 ... y_m, y_i \in \Sigma \epsilon$$

Es existiere eine Folge von Zustaenden $r_0r_1r_2...r_m, r_i \in Q$ mit

- 1. $r_0 = q_0$
- $2. r_i \in \delta(r_{i-1}, y_i), 1 \leqslant i \leqslant m$
- $3. r_m \in F$

Dann akzeptiert N das Wort w, sonst verwirft es

Beispiel N_1 auf 010110 (unseres Beispiel)

1^{er} Weg

2^{er} Weg

Theorem: Jeder NFA hat einen aequivalenten DFA \Box

Beweis: Sei $N=(Q,\Sigma,\delta,q_0,F)$ ein NFA der L erkennt Wir konstruieren ein DFA $D=(Q',\Sigma',\delta',q_0',F')$, der ebenfalls L erkennt

1.
$$Q' = 2^Q = P(Q)$$

2.
$$\delta'(R,\alpha) = \bigcup_{r \in R} \delta(r,\alpha)$$

$$\uparrow$$

$$\in Q'$$

Sei $E(R) = \{q \in Q \mid q \text{ kann von } R \text{ aus durch } \epsilon\text{-Trans erreicht werden}\}$

3.
$$q'_0 = E(\{q_0\})$$

4.
$$F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}$$

Uebung

$$Q = \{q_1, q_2, q_3\}$$

$$\Sigma = \{\alpha, \beta\}$$

$$\delta = \{\delta(q_1, \beta) = q_2, \\
\delta(q_1, \epsilon) = q_3 \\
\delta(q_2, \alpha) = q_2 \\
\delta(q_2, \alpha) = q_3 \\
\delta(q_2, \beta) = q_3 \\
\delta(q_3, \alpha) = q_1\}$$

$$q_0 = q_1 \\
F = \{q_1\}$$

 \rightarrow DFA

1.
$$Q' = P(Q) = \{\{\}, \{q_1\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}, \{q_1, q_3\}, \{q_2, q_3\}, \{q_1, q_2, q_3\}\}\}$$

 $2. \delta'$:

2. 0.					
	α	β			
{}	{}	{}			
$\{q_1\}$	{}	$\{q_2\}$			
$\{q_2\}$	$\{q_2,q_3\}$	$\{q_3\}$			
$\{q_3\}$	$\{q_1,q_3\}$	{}			
$\{q_1,q_2\}$	$\{q_2,q_3\}$	$\{q_2,q_3\}$			
$\{q_1,q_3\}$	$\mid \{q_1,q_3\}$	$\{q_2\}$			
$\{q_2,q_3\}$	$ \{q_1,q_2,q_3\} $	$\{q_3\}$			
$\{q_1,q_2,q_3\}$	$ \{q_1,q_2,q_3\} $	$\{q_2,q_3\}$			

3.
$$q'_0 = E(\{q_0\}) = E(\{q_1\}) = \{q_1, q_3\}$$

4.
$$F' = \{\{q_1\}, \{q_1, q_2\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}\}$$

4 Vierte Woche

4.1 Abgeschlossenheit

Abgeschlossenheit

$$a, b \in \mathbb{N}, a + b \in \mathbb{N}$$

$$a - b \notin \mathbb{N}$$

$$\uparrow$$
im Allgemeinem

Def

Eine Menge M heisst <u>abgeschlossen</u> unter einer Operation \circ , wenn $a \circ b \in M$ fuer alle $a, b \in M$

Satz

Die Menge der <u>raeguleren</u> Sprachen ist abgeschlossen unter Vereinigung, Konkatenation und Kleenescher Stern

\bigcup Vereinigung

- 1. Schon gezeigt durch DFAs
- 2. Nun mit NFAs:

<skitze>

 N_1 erkennt L_1

 N_2 erkennt L_2

N erkennt $L_1 \cup L_2$

Konkatenation

 L_1, L_2 regulaer, dann $L_1 \cdot L_2$ regulaer

<skitze>

Kleen'scher Stern

Lregulaer, dann L^{\ast} regulaer

<skitze>

N erkennt L^*

4.2 RE

Raegulere Ausdruecke (RE)

REs: Spezifikation

DFA / NFAs: Implementation

Arithmetischer Ausdruck: "(5+3)*4" : String

32 : \mathbb{N}

Bedeutung von String ist \mathbb{N}

```
RE: "(0 \cup 1) \cdot 0^*": String {0} {1} {0} {0} {1} {0} {0} {00, 000, ...} {0, 00, 000, ...}
```

Bedeutung von String ist Sprache

Syntax und Semantik von REs

	RE Syntax	L(RE) Semantik
1.	$a \text{ fuer } a \in \Sigma$	$\{a\}$
2.	ϵ	$\{\epsilon\}$
3.	Ø	$ \emptyset $
4.	$(R_1 \cup R_2)$	$L(R_1) \cup L(R_2)$
5.	$(R_1 \circ R_2)$	$L(R_1) \cdot L(R_2)$
6.	(R^*)	$(L(R))^*$

6. (Hoch)
$$\xrightarrow{Praezidenzen}$$
 (Niedrig) 1.

z.B.:
$$a \cdot b \cup c$$

bedeutet

$$(a \cdot b) \cup c$$

und <u>nicht</u>

$$a\cdot (\overline{b\cup c})$$

Zucker (Es kann nichts neues)

$$R^+ = R \circ R^*$$

also

$$R^* = R^+ \cup \epsilon$$

$$\Sigma = c_1 \cup c_2 \cup ... \cup c_n \text{ mit } c_i \in \Sigma$$

Beispiele

a) " $(0 \cup 1)*01$ " bezeichnet alle Woerter, die mit 01 enden

5 Funfte Woche

5.1 Pumping Lemma

 $\{0^n 1^n | n \ge 0\}$ nicht Regulär

Pumping Lemma:

Sei L eine Reguläre Sprache über Σ Dann existiert eine Zahl $p \in N$ (Pumping Länge) mit: Jedes Wort $s \in L$ mit $|s| \geq p$ lässt sich schreiben als: s = xyz wobei $x, y, z \in \Sigma^*$ mit folgenden eigenschaften:

- 1. (Aufpumpen) $xy^iz \in L$ für alle $i \ge 0$
- $2. |y| \ge 1$
- $3. |xy| \leq p$

Für jedes Wort existiert eine Zerlegung. Logische Struktur : $\{\exists p | \forall s \in L | \exists x, y, z | 1)2)3\}$

Beweis:

Sei M ein DFA das L erkennt, $M = \{Q, \Sigma, \delta, q_0, F\}$

Sei p die Anzahl Zustände : p = |Q|

Sei
$$s = s_1 \dots s_n \in L$$
 mit $s_i \in \Sigma$ und $n \ge p$

Sei $r_1, r_2 \dots r_{n+1}$ die Folge der Zustände die M durchläuft um s zu akzeptieren.

$$s = s_1 \downarrow_{r_1} \ldots \downarrow_{r_n} s_n \downarrow_{r_{n+1} \in F}$$

Länge
$$n+1 \ge p+1$$
, d.h. $n+1 > p$

Da M p Zustände hat muss (mindestens) ein Zustand (mindestens) zweimal unter den ersten p+1 Zuständen vorkommen /durchgelaufen werden (Eigenschaften des DFA - jedes Zeichen des Alphabet muss durch jeder Zustand verarbeitet werden)

Pidgeonhole Prinzip:

Beziechne r_j das erste Auftreten eines solchen Zustandes (Zustände paarweise verschieden bis zum gewissen Punkt). r_l das zweite Auftreten des Zuständes l>j

(Diagram hier)

Aus dem Pidgeonholeprinzip folgt dass $l \leq p+1$:

- 1. M akzeptiert $xy^iz, i \ge 0$
- 2. (Zwischen r_j, r_l mind. 1 Zeichen) $l \neq j$, also $|y| \geq 1$
- 3. $|xy| = l 1 \le (p+1) 1 = p$

Beispiel:

$$\overline{\{0^n 1^n | n \ge 0\}} = L_1$$

Sei L_1 Regulär dann existiert ein p (Pumping Lemma).

Betrachte $s = 0^p 1^p \in L$:

Dann lässt sich sschreiben als s=xyzmit der Eigenschaft: $s=xyz, x, y^iz\in L, |y|\geq 1$

- 1. y besteht nur aus Nullen : $xyyz \notin L$
- 2. y besteht nur aus Einsen $xyyz \notin L$
- 3. y besteht aus Nullen und Einsen $\rightarrow xyyz$: (Riehenfolge ist

falsch)

Wiederspruch in jedem Fall $\to L_1$ nicht regulär

6 Sechste Woche

6.1 Grammatiken

```
while m \neq n do
    if m > n then
         m := m - n
    else
         n := n - m
    endif
endwhile
\Sigma = \{ \underline{while}, \underline{do}, ident, ... \}
cmd ::= AssiCmd
cmd ::= IfCmd
cmd ::= WhileCmd
WhileCmd ::= while expr do cmd endwhile
        ::= if expr then cmd else cmd endif
IfCmd
       ::= if expr then cmd endif
IfCmd
AssiCmd \quad ::= ident := expr
\exp r ::= ...
```

 $If Cmd ::= if \ expr \ then \ cmd \ opt Else \ end if$

optElse ::= ϵ

optElse ::= else cmd

IfCmd ::= if expr then cmd endif

Produktion

nicht-terminal Symbole

terminal Symbole

μ Deutsch

Satz ::= Subjekt Praedikat Objekt .

 $\underline{\text{Subjekt}} ::= \underline{\text{Vogel}}$

Subjekt ::= Katze

Objekt ::= Subjekt

 $\underline{\text{Praedikat}} ::= \underline{\text{frisst}}$