PIANI DI CAMPIONAMENTO PER VARIABILI

$$n = \left(\frac{Z_{\alpha} + Z_{\beta}}{Z_{AQL} + Z_{LTPD}}\right)^{2} \left(1 + \frac{K^{2}}{2}\right)$$

$$K = \frac{-\left(Z_{\alpha}Z_{LPTD} + Z_{\beta}Z_{AQL}\right)}{Z_{\alpha} + z_{\beta}}$$

$$Z_{LSI} = \frac{\overline{x} - LSI}{\sigma}$$

$$P_{a} = \phi\left(\frac{\sqrt{n}(K + Z_{p})}{\sqrt{1 + \frac{k^{2}}{2}}}\right)$$

Metodo K

$$Z_{LSI} \geq K$$

Metodo M

$$\begin{aligned} Q_{LSI} &= Z_{LSI} \sqrt{\frac{n}{n-1}} \\ \widehat{p} &= \phi \left(-Q_{LSI} \right) \\ M &= \phi \left(-K \sqrt{\frac{n}{n-1}} \right) \\ \widehat{p} &< M \end{aligned}$$

PIANI DI CAMPIONAMENTO PER ATTRIBUTI

 α Rischio del fornitore

 β Rischio del committente

AQL Valore limite di difettositá al di sopra del quale il fornitore è disposto a vedersi rifiutare il lotto con rischio α

LTPD Valore limite di difettosità al di sotto del quale il commit-

tente accetta il lotto con rischio β

AOQ difettositá media in uscita

AOQL difettositá massima in uscita

 $ATI\quad$ Average Total Inspection, numero medio di controlli totali

$$\begin{cases} 1 - \alpha = \sum_{i=0}^{c} {n \choose i} AQL^{i} (1 - AQL)^{n-i} \\ \beta = \sum_{i=0}^{c} {n \choose i} LTPD^{i} (1 - LTPD)^{n-i} \end{cases}$$

$$P_{a} = \sum_{i=1}^{c} {n \choose i} p^{i} (1 - p)^{n-i}$$

Piano Singolo

Г		sostituzione	no sostituzione
Г	ATI	$P_a n + (1 - P_a) N$	
	AOQ	$\frac{P_a p(N-n)}{N}$	$\frac{P_a p(N-n)}{N - p(ATI)}$
	AOQL	$\frac{\partial AOQ}{\partial p} = 0 \rightarrow \text{calcolato con } p_{mo}$	

Piano Doppio

		sostituzione	no sostituzione
Ī	ATI	$n_1P_I + (n_1 + n_2)P_I$	$I + N(1 - P_I - P_{II})$
ĺ	AOQ	$\frac{P_I p(N-n_1) + P_{II} p(N-n_1-n_2)}{N}$	N-p(ATI)
	AOQL	$\frac{\partial AOQ}{\partial p} = 0 \rightarrow \text{calcolato con } p_{max}$	
ſ	ASN	$n_1P_I + (n_1 + n_2)(1 - P_I)$	

Piano A Catena

P(0,n) – Probabilitá di avere 1 difettoso

P(1,n) Probabilitá di avere 0 difettosi

$$P_a = P(0,n) + P(1,n)P(0,n)^i$$

Errori di ispezione

$$\begin{aligned} p_e &= (1-p)e_1 + p(1-e_2) \\ p_a(p_e) &= p_{eA} - ATI' = \\ &= \sum_i \left[n + (1-p_{eA})(N-n) \right] p_{eA}^i = \\ &= \frac{n + (1-p_{eA})(N-n)}{1-p_{eA}} \end{aligned}$$

TN	=	$6\sigma_{\tau}$

 $\textbf{Carta}~\mathbf{X} - \mathbf{R}$

$$\sigma_P = \frac{\overline{R}}{\overline{d}_2}$$

$$\mu_P = \overline{\overline{X}}$$

$$\sigma_X = \frac{\sigma_P}{\sqrt{n}}$$

$$\mu_X = \mu_P$$

$$\sigma_R = \sigma_P d_3$$

$$\mu_R = \overline{R}$$

$$LC_X = \mu_X \pm L\sigma_X$$

$$LC_R = \mu_R \pm L\sigma_R$$

 $\textbf{Carta}~\mathbf{X} - \mathbf{S}$

$$\sigma_P = \frac{S}{c_4}$$

$$\mu_P = \overline{\overline{X}}$$

$$\sigma_X = \frac{\sigma_P}{\sqrt{n}}$$

$$\mu_X = \mu_P$$

$$\sigma_S = \sqrt{1 - c_4^2} \sigma_P$$

$$\mu_S = \overline{S}$$

$$LC_X = \mu_X \pm L\sigma_X$$

$$LC_S = \mu_S \pm L\sigma_S$$

Carta $X - R_{mobile}$

$$\sigma_P = \frac{\overline{R}}{\overline{d_2}}$$

$$\mu_P = \overline{\overline{X}}$$

$$\sigma_X = \frac{\sigma_P}{\sqrt{n}}$$

$$\mu_X = \mu_P$$

$$\sigma_R = \sigma_P d_3$$

$$\mu_R = \overline{R}$$

$$LC_X = \mu_X \pm L\sigma_X$$

$$LC_R = \mu_R \pm L\sigma_R$$

 β — Probabilitá di non identificare la deriva al campionamento successivo

 $ARL = \frac{1}{1-\beta}$ numero medio di campioni prima di rilevare un fuori controllo

 ARL_0 $\frac{1}{\alpha}$ ogni quanti campioni mi aspetto un falso fuori controllo $ARL \times h$ tempo che passa prima del verificarsi di un fuori controllo

Carta p

$$\begin{split} LC &= \overline{p} \pm L \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \\ \widehat{p} &= \frac{difettosi}{n} \\ \overline{p} &= \frac{\sum \widehat{p}}{k} \end{split}$$

Carta np

$$LC = n\overline{p} \pm L\sqrt{n\overline{p}(1-\overline{p})}$$

 $\textbf{Carta} \ \mathbf{c}$

$$\begin{split} LC &= \overline{c} \pm L\sqrt{\overline{c}} \\ \overline{c} &= \frac{\sum Difetti}{k} \end{split}$$

 $\textbf{Carta} \ \mathbf{u}$

$$LC = \overline{u} \pm L \sqrt{\frac{\overline{u}}{n}}$$

$$\widehat{u} = \frac{difetti}{n}$$

$$\overline{u} = \frac{\sum \widehat{u}}{k}$$

$$\overline{x} = \frac{\sum_{i} x_i}{n}$$

 σ nota - Test Normale

 $H_0 : \mu = \mu_0$

$$z_{sp} = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

$$-z_{1-\frac{\alpha}{2}} \le z_{sp} \le z_{1-\frac{\alpha}{2}}$$

 $H_0 : \mu_1 = \mu_2$

$$z_{sp} = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$-z_{1-\frac{\alpha}{2}} \le z_{sp} \le z_{1-\frac{\alpha}{2}}$$

 σ non nota, stimata da ${f S}$ - Test t di student

 $\mathbf{H_0}: \boldsymbol{\mu} = \boldsymbol{\mu_0}$

$$S = \sqrt{\frac{(x_i - x)^2}{n - 1}}$$

$$T_{sp} = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}}$$

$$-t_{n-1,1-\frac{\alpha}{2}} \le T_{sp} \le t_{n-1,1-\frac{\alpha}{2}}$$

 $\mathbf{H_0}: \mu_{\mathbf{1}} = \mu_{\mathbf{2}}$ ipotesi $\mathbf{S_1} = \mathbf{S_2}$

$$S_{pool} = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$
$$T_{sp} = \frac{\overline{x_1} - \overline{x_2}}{\frac{S_{pool}}{\sqrt{n_1 + n_2}}}$$

$$-t_{n_1+n_2-2,1-\frac{\alpha}{2}} \le T_{sp} \le t_{n_1+n_2-2,1-\frac{\alpha}{2}}$$

 $\mathbf{H_0}: \mu_{\mathbf{1}} = \mu_{\mathbf{2}}$ ipotesi $\mathbf{S_1} \neq \mathbf{S_2}$

$$\overline{n} = \frac{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}{\frac{(S_1^2)^2}{n_1 - 1} + \frac{(S_2^2)^2}{n_2 - 1}}$$

$$T_{sp} = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

$$-t_{n_1+n_2-2,1-\frac{\alpha}{2}} \le T_{sp} \le t_{n_1+n_2-2,1-\frac{\alpha}{2}}$$

Test
$$\chi^2$$

$$\mathbf{H_0}: \sigma^{\mathbf{2}} = \sigma^{\mathbf{2}}_{\mathbf{0}}$$

$$\chi_{sp}^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

$$\chi^2_{n-1;\frac{\alpha}{2}} \leq \chi^2_{sp} \leq \chi^2_{n-1;1-\frac{\alpha}{2}}$$

Test Fisher

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$F_{sp} = \frac{S_1^2}{S_2^2}$$

$$F_{n_1-1;n_2-1;\frac{\alpha}{2}} \leq F_{sp} \leq F_{n_1-1;n_2-1;1-\frac{\alpha}{2}}$$

$$F_{A;B;1-\alpha} = \frac{1}{F_{B;A;\alpha}}$$

DIFETTOSITÁ REALE E APPARENTE

$$\begin{split} p_{reale} &= p_{apparente} - \text{falsi difettosi} + \text{falsi buoni} \\ &= p_{apparente} - (1 - p_{reale})\alpha + p_{reale}\beta \end{split}$$

METODI DI VOTO

	α	β	γ	ρ
produzione I_1	360	362	359	358
difetti I_2	35	32	36	40
difettositá I_3	4%	5.5%	4.5%	5%

Metodo Best of the best

$$I_1 = \gamma > \beta > \alpha > \rho$$

$$I_2 = \beta > \alpha > \gamma > \rho$$

$$I_3 = \alpha > \gamma > \rho > \beta$$

Metodo Borda

bottom to top: $\alpha > \beta > \gamma > \rho$

Metodo Condorcet

top to bottom: $\beta > \alpha > \gamma \sim \rho$

SCALE

TRASFORMAZIONI	TIPOLOGIA	ESEMPI
$\phi(x) = x$	Assoluta	conteggi
Similitudine $\phi(x) = \alpha x$	Rapporto	massa, temperatura in kelvin, tempo, suono, lucen- tezza
Lineare $\phi(x) = \alpha x + \beta$	Intervallo	temperatura, calendario
$x \ge y \Leftrightarrow \phi(x) \ge \phi(y)$	Ordinale	classifiche, qualitá dell'aria, durezza
Qualsiasi a uno a uno	Nominale	maglie giocatori, colore occhi

Compensazione

$$\begin{split} OEE &= A \times B \times C \rightarrow \\ \rightarrow A &= \frac{OEE}{B \times C} \rightarrow \\ \rightarrow \frac{\partial A}{\partial B} &= \frac{OEE}{B^2 \times C} \rightarrow \\ \rightarrow \partial A &= \frac{A \times B \times C}{B_T^{\frac{1}{2}} \times C} \rightarrow \\ \rightarrow \Delta A &= -A \frac{\Delta B}{B} \rightarrow \end{split}$$

Compensazione

$$\frac{\partial I}{\partial A} \ge 0$$

GEOMETRIA

Trigonometria

$a=c\sin(\alpha)$
$a=c\cos\beta$
$b=c\sin\beta$
$b = a \cos \alpha$

Grandezze

Circonferenza:	$2\pi r$
Cerchio:	πr^2
Superficie sfera:	$4\pi r^2$
Volume sfera:	$\frac{4}{3}\pi r^3$

ELETTROTECNICA

Parallelo

Serie

$$R_{eq} = R_1 + R_2$$

Partitore di Corrente

$$i_{R_1} = i \frac{R_2}{R_1 + R_2}$$

$$i_{R_2} = i \frac{R_1}{R_1 + R_2}$$

Partitore di Tensione

$$V_{R_1} = V \frac{R_1}{R_1 + R_2}$$

$$V_{R_2} = V \frac{R_2}{R_1 + R_2}$$