

GROWTH OF INTERFACE CRACKS ON CONSECUTIVE FIBERS: ON THE SAME OR ON THE OPPOSITE SIDES?

L. Di Stasio^{1,2}, J. Varna¹, Z. Ayadi²

¹ Division of Materials Science, Luleå University of Technology, Luleå, Sweden
² EEIGM & IJL, Université de Lorraine, Nancy, France

12th International Conference on Composite Science and Technology (ICCST/12) Sorrento (IT), May 8-10, 2019

Outline

- Initiation of Transverse Cracks in FRPCs
- Modeling the Fiber-Matrix Interface Crack
- Debond Energy Release Rate
- Conclusions

Initiation of Transverse Cracks in FRPCs

Microscopic Observations

Left:

front view of $[0, 90_2]_S$, visual inspection.

Center:

edge view of [0, 90]_S, optical microscope.

Right:

edge view of $[0, 90]_S$, optical microscope.

Micromechanics of Initiation

Stage 1: isolated debonds

Micromechanics of Initiation

Stage 2: consecutive debonds

Micromechanics of Initiation

Stage 3: kinking

Micromechanics of Initiation

Stage 4: coalescence

Objective of the Study

Stage 2: consecutive debonds

- → Effect of debond-fiber interaction?
- → Effect of debond-debond interaction?
- → Effect of relative debond position on consecutive fibers: same or opposite sides?

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

MODELING THE FIBER-MATRIX INTERFACE CRACK

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Geometry

- L, W >> t
- \rightarrow L, $W \rightarrow \infty$
- → Square packing
- \rightarrow $L_d >> \Delta \theta_d$
- → 2D RVE

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion:
Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Representative Volume Elements

$$n \times k$$
 – coupling

 $n \times k$ – asymm

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions
Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Equivalent Boundary Conditions

$$u_z(x,h)=u_z^{\nu}$$

Anti-symmetric Coupling

$$u_z(x,h) - u_z(0,h) = -(u_z(-x,h) - u_z(0,h))$$

 $u_x(x,h) = -u_x(-x,h)$

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Assumptions

$$R_f = 1 \ [\mu m] \quad L = \frac{R_f}{2} \sqrt{\frac{\pi}{V_f}}$$

Material	E	ν
glass fiber	70.0	0.2
ероху	3.5	0.4

- → Linear elastic, homogeneous and isotropic materials
- Plane strain
- → Frictionless contact interaction
- → Symmetric w.r.t. x-axis
- → Coupling of x-displacements on left and right side (repeating unit cell)
- → Applied uniaxial tensile strain $\bar{\varepsilon}_x = 1\%$
- → $V_f = 60\%$

Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions

Solution

in Ω_f , Ω_m :

 $\frac{\partial^2 \varepsilon_{xx}}{\partial z^2} + \frac{\partial^2 \varepsilon_{zz}}{\partial x^2} = \frac{\partial^2 \gamma_{zx}}{\partial x \partial z} \quad \begin{array}{ll} \text{for } 0^\circ \leq \alpha \leq \Delta \theta : \\ (\overrightarrow{\eta}_m(R_{\varepsilon,\alpha}) - \overrightarrow{\eta}_{\varepsilon,\alpha}) \end{array}$ $(\overrightarrow{U}_m(R_f,\alpha) - \overrightarrow{U}_f(R_f,\alpha)) \cdot \overrightarrow{\Pi}_{\alpha} > 0$ $\varepsilon_V = \gamma_{XV} = \gamma_{VZ} = 0$ for $\Delta\theta < \alpha < 180^{\circ}$: $\frac{\partial \sigma_{XX}}{\partial x} + \frac{\partial \tau_{ZX}}{\partial z} = 0$ $\overrightarrow{U}_{m}(R_{f},\alpha) - \overrightarrow{U}_{f}(R_{f},\alpha) = 0$ $\sigma_{ii} = E_{iikl} \varepsilon_{kl}$ $\frac{\partial \tau_{ZX}}{\partial x} + \frac{\partial \sigma_{ZZ}}{\partial z} = 0$

+ BC

Oscillating singularity

$$\begin{split} \sigma &\sim r^{-\frac{1}{2}} \sin \left(\varepsilon \log r\right), \quad V_f \to 0 \\ \varepsilon &= \frac{1}{2\pi} \log \left(\frac{1-\beta}{1+\beta}\right) \\ \beta &= \frac{\mu_2 \left(\kappa_1 - 1\right) - \mu_1 \left(\kappa_2 - 1\right)}{\mu_2 \left(\kappa_1 + 1\right) + \mu_1 \left(\kappa_2 + 1\right)} \end{split}$$

- Finite Element Method (FEM) in AbaqusTM
- 2nd order shape functions
- 6-nodes triangles & 8-nodes quadrilaterals
- regular mesh of quadrilaterals at the crack tip:
 - AR ~ 1
 - $-\delta = 0.05^{\circ}$

 $\sigma_{VV} = \nu \left(\sigma_{XX} + \sigma_{ZZ} \right)$

≥ Debond Energy Release Rate

Strain Magnification

Strain Magnification

 $11\times 1-asymm$

Strain Magnification

.

Strain Magnification

_

.

Crack Shielding

Crack Shielding

_

Crack Shielding

.

-

Crack Shielding

-

Consecutive Debonds: Mode I

Consecutive Debonds: Mode II

Consecutive Debonds: Mode II

Consecutive Debonds: Mode II

Non-Consecutive Debonds

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions

iitiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion

Conclusions

- → Debond-debond interaction in the through-the-thickness direction is extremely localized: with only a couple of undamaged fibers in between, no effect can be seen!
- → For debonds on consecutive vertically-aligned fibers, G_l is higher and contact zone onset delayed if debonds are on the same side of their respective fiber.
- → No significant difference in G_{II} observed, except in the range $80^{\circ} 100^{\circ}$.
- → In the range $80^{\circ} 100^{\circ}$, G_{II} is higher when debonds are located on opposite sides of consecutive vertically-aligned fibers.

