

Ayudantía 2

18 de agosto de 2023

Profesor: Diego Arroyuelo

Ayudante: Tomás Vergara Browne

Pregunta 1 - Propiedades de la notación asintótica

a) Demuestre que si $f_1(n) \in \mathcal{O}(g_1(n))$ y $f_2(n) \in \mathcal{O}(g_2(n))$, entonces se tiene que

$$(f_1(n) + f_2(n)) \in \mathcal{O}(\max\{g_1(n), g_2(n)\})$$

b) Demuestre que si $f_1(n) \in \mathcal{O}(g_1(n))$ y $f_2(n) \in \mathcal{O}(g_2(n))$, entonces se tiene que

$$(f_1(n) \cdot f_2(n)) \in \mathcal{O}(g_1(n) \cdot g_2(n))$$

Pregunta 2 - Inducción Constructiva

Sea

$$T(n) = \begin{cases} e_1 & \text{si } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/3 \rceil) + 2n & \text{si } n > 1 \end{cases}$$

Demuestre usando inducción constructiva que $T(n) \in O(n)$.

Pregunta 3 - Inducción Constructiva

Sea

$$T(n) = \begin{cases} 1 & \text{si } n \le 2\\ nT(n-2) + T(n-1) + 1 & \text{si } n > 2 \end{cases}$$

Encuentre una función $f: \mathbb{N} \to \mathbb{N}$ tal que $T(n) \in O(f(n))$ y demuestre que cumple la propiedad.

Ejercicios propuestos - Teorema Maestro

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} c & \text{si } n = 0\\ a \cdot T(\lceil \frac{n}{b} \rceil) + f(n) & \text{si } n > 0 \end{cases}$$

Suponiendo que $T(n) \in \Theta(g(n))$ donde $g: \mathbb{N} \to \mathbb{N}$

- Encuentre g cuando a = 2, b = 2, f(n) = 2n y demuéstrelo.
- Encuentre g cuando a = 4, b = 3, $f(n) = \log(n)$ y demuéstrelo.
- Encuentre g cuando a = 4, b = 3, $f(n) = n^2$ y demuéstrelo.