ADVANCED COMPUTER ARCHITECTURES – 17CS72

ASSIGNMENT 1

- 1. Explain the evolution of computer architecture.
- 2. Explain Flynn's classification of computer architecture.
- 3. Explain with diagram the operational model of SIMD super computer.
- 4. Define data dependency. Explain different functions o data dependency with the help of dependency graph.
- 5. Explain the Bernstein's conditions for parallelism. Detect the parallelism in the following code using Bernstein's conditions. (Assume no pipeline)

6. A 4 MHz processor was used to execute a benchmark program with the following instruction mix and clock cycle counts.

Instruction type	Instruction count	Cycles/ instruction
Integer arithmetic	45000	1
Data transfer	32000	2
Floating point	15000	2
Control transfer	8000	2

Determine the effective CPI, MIPS rate and execution time for this program.

- 7. Explain the working of a Vector Super Computer?
- 8. Distinguish between typical RISC and CISC process architectures.
- 9. With a diagram, explain the models of a basic scalar computer system.
- 10. With a diagram, explain a typical superscalar RISC processor architecture consisting of an integer unit and a floating point unit.
- 11. Explain the architecture of VLIW processor and its pipeline operations.
- 12. With a diagram, explain the hierarchical memory technology.
- 13. Explain page replacement policies with the help of an example.

characteristics	 L		