Report on WeatherAustralia dataset

Auto2Class

January 13, 2025

Contents

1		ploratory Data Analysis
	1.1	Non-Null Count, Dtype of features
	1.2	Descriptive Statistics
	1.3	Distribution of features
		1.3.1 Histograms of Numerical columns
		1.3.2 Bar Charts of Categorical columns
2	Eva	duation Metrics
	2.1	Accuracy
		F1 Score
	2.3	ROC AUC
3	Mo	del Optimization Results
	3.1	Optimization Results Tables
	3.2	Boxplots of accuracy, f1, roc_auc
	3.3	Barplots of maximum values of metrics achievied by model
4	Inte	erpretabilty of the best models
		The best YCRoost model Explanation

1 Exploratory Data Analysis

1.1 Non-Null Count, Dtype of features

Table 1: Dataset Columns Information

Index	Column	Non-Null Count	Dtype
0	Date	10000	object
1	Location	10000	object
2	MinTemp	9900	float64
3	MaxTemp	9912	float64
4	Rainfall	9772	float64
5	Evaporation	5686	float64
6	Sunshine	5152	float64
7	WindGustDir	9298	object
8	WindGustSpeed	9304	float64
9	WindDir9am	9276	object
10	WindDir3pm	9708	object
11	WindSpeed9am	9875	float64
12	WindSpeed3pm	9784	float64
13	Humidity9am	9818	float64
14	Humidity3pm	9686	float64
15	Pressure9am	8940	float64
16	Pressure3pm	8952	float64
17	Cloud9am	6182	float64
18	Cloud3pm	5960	float64
19	Temp9am	9877	float64
20	Temp3pm	9746	float64
21	RainToday	9772	object
22	RainTomorrow	9780	object

1.2 Descriptive Statistics

Table 2: Dataset Descriptive Statistics

Index	Column Name/Statistic	count	mean	std	min	25%	50%	75%	max
0	MinTemp	9900.0	12.26	6.44	-8.2	7.7	12.0	17.0	29.5
1	MaxTemp	9912.0	23.26	7.17	-1.9	17.9	22.7	28.4	46.4
2	Rainfall	9772.0	2.35	8.41	0.0	0.0	0.0	0.8	225.0
3	Evaporation	5686.0	5.4	3.92	0.0	2.6	4.8	7.2	82.4
4	Sunshine	5152.0	7.65	3.78	0.0	5.0	8.5	10.7	14.5
5	WindGustSpeed	9304.0	39.95	13.45	9.0	31.0	39.0	48.0	117.0
6	WindSpeed9am	9875.0	14.01	8.85	0.0	7.0	13.0	19.0	72.0
7	WindSpeed3pm	9784.0	18.6	8.8	0.0	13.0	17.0	24.0	87.0
8	Humidity9am	9818.0	68.89	18.88	4.0	57.0	70.0	83.0	100.0
9	Humidity3pm	9686.0	51.79	20.9	2.0	37.0	52.0	66.0	100.0
10	Pressure9am	8940.0	1017.68	7.08	982.2	1013.0	1017.6	1022.4	1040.4
11	Pressure3pm	8952.0	1015.29	7.03	980.2	1010.5	1015.3	1020.0	1038.9
12	Cloud9am	6182.0	4.44	2.88	0.0	1.0	5.0	7.0	8.0
13	Cloud3pm	5960.0	4.49	2.72	0.0	2.0	5.0	7.0	8.0
14	Temp9am	9877.0	17.03	6.51	-5.3	12.3	16.8	21.7	36.8
15	Temp3pm	9746.0	21.72	6.98	-2.9	16.6	21.2	26.5	44.5

1.3 Distribution of features

1.3.1 Histograms of Numerical columns

Figure 1: Histograms of Numerical columns

1.3.2 Bar Charts of Categorical columns

Figure 2: Bar Charts of Categorical columns

2 Evaluation Metrics

2.1 Accuracy

Accuracy is one of the simplest evaluation metrics for classification models. It is defined as the ratio of correctly predicted observations to the total number of observations:

$$\label{eq:accuracy} \text{Accuracy} = \frac{\text{Number of Correct Predictions}}{\text{Total Number of Predictions}}$$

While accuracy is intuitive and easy to understand, it may not be suitable for imbalanced datasets. For example, in a dataset where 95% of the samples belong to one class, predicting the majority class for every instance would result in high accuracy but poor performance on the minority class.

2.2 F1 Score

The **F1 Score** is the harmonic mean of Precision and Recall, providing a balance between the two. It is particularly useful when dealing with imbalanced datasets. Precision and Recall are defined as follows:

$$\begin{aligned} & \text{Precision} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \\ & \text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} \end{aligned}$$

The F1 Score combines these metrics:

$$F1\ Score = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

A high F1 Score indicates a good balance between Precision and Recall, making it a valuable metric in scenarios where false positives and false negatives have significant costs.

2.3 ROC AUC

The Receiver Operating Characteristic (ROC) curve plots the True Positive Rate (Recall) against the False Positive Rate at various threshold settings. The **Area Under the Curve (AUC) of the ROC curve** measures the overall ability of the model to distinguish between classes.

$$\mathrm{AUC} = \int_{\mathrm{FPR}=0}^{1} \mathrm{TPR}(\mathrm{FPR}) \, d(\mathrm{FPR})$$

Key points about ROC AUC:

- An AUC of 0.5 indicates random guessing.
- An AUC of 1.0 indicates perfect classification.
- It is a threshold-independent metric, providing an aggregate measure of performance across all classification thresholds.

ROC AUC is particularly useful for binary classification tasks and provides insights into the trade-off between sensitivity and specificity.

3 Model Optimization Results

3.1 Optimization Results Tables

Table 3: Random Forest Hyperparameters and achivied metrics

Index	Metric/Hyperp.\ Iteration	0	1	2	3	4	5	6	7
0	f1	0.9386	0.7892	0.9316	0.7389	0.7581	0.9506	0.735	0.8504
1	accuracy	0.9387	0.7892	0.9317	0.739	0.7581	0.9506	0.735	0.8504
2	roc_auc	0.988	0.8731	0.9867	0.8102	0.8435	0.9897	0.8108	0.9282
3	n_estimators	100	50	50	50	200	100	200	200
4	criterion	gini	gini	\log_{loss}	log_loss	gini	entropy	gini	log_loss
5	\max_depth	None	20	30	10	10	None	30	10
6	$min_samples_split$	2	2	2	10	10	2	10	10
7	$min_samples_leaf$	1	1	1	4	2	2	1	1
8	min_weight_fraction_leaf	0.0	0.01	0.0	0.1	0.05	0.0	0.1	0.0
9	max_features	sqrt	log2	None	None	sqrt	sqrt	None	log2
10	bootstrap	1	1	1	0	1	0	0	1

Table 4: Decision Tree Hyperparameters and achivied metrics

Index	Metric/Hyperp. \ Iteration	0	1	2	3	4	5	6	7
0	f1	0.8973	0.7176	0.8504	0.7304	0.5374	0.8137	0.8654	0.4482
1	accuracy	0.8979	0.7226	0.8508	0.7306	0.5835	0.8138	0.8658	0.4978
2	roc_auc	0.8979	0.7166	0.8991	0.7826	0.6173	0.8845	0.8951	0.4994
3	criterion	gini	log_loss	\log_{-loss}	gini	gini	entropy	entropy	entropy
4	splitter	best	best	best	best	random	best	random	best
5	\max_depth	None	None	40	10	40	10	40	40
6	$\min_{\text{samples}_{\text{split}}}$	2	10	2	10	5	5	5	5
7	$\min_{samples_leaf}$	1	2	4	4	1	1	1	4
8	max_features	None	None	sqrt	None	None	None	log2	log2
9	class_weight	None	None	None	None	balanced	balanced	balanced	balanced
10	min_impurity_decrease	0.0	0.1	0.0	0.01	0.05	0.0	0.0	0.1

Table 5: XGBoost Hyperparameters and achivied metrics

Index	Metric/Hyperp. \ Iteration	0	1
0	f1	0.9187	0.8807
1 1	accuracy	0.9188	0.8807
2	roc_auc	0.9674	0.9489
3	eval_metric	logloss	logloss
4	n_estimators	100	50
5	\max_depth	6	10
6	learning_rate	0.3	0.05
7	subsample	1.0	0.7
8	colsample_bytree	1.0	0.7
9	min_child_weight	1	1
10	gamma	0	0
11	reg_alpha	0	1
12	reg_lambda	1	1

3.2 Boxplots of accuracy, f1, roc_auc

Figure 3: Boxplots of accuracy, f1, roc_auc

3.3 Barplots of maximum values of metrics achievied by model

Figure 4: Barplots of maximum values of metrics achievied by model

4 Interpretabilty of the best models

Auto2class package defined the best model as the one that achievied the highest value of a metric, chosen by the user, or ROC AUC by default. In this case, the optimization process was aimed at maximizing **ROC AUC.**Do not forget, that after preprocessing, columns names have changed, because of transformations of categorical features.

4.1 The best XGBoost model Explanation

Figure 5: SHAP values for the best XGBoost model

Figure 6: Feature Importance for the best XGBoost model $\,$

Figure 7: Violin plot (SHAP) of impact on prediction for the best XGBoost model