Algorithm Foundations of Data Science and Engineering Lecture 9: Matrix Factorization

YANHAO WANG

DaSE @ ECNU (for course related communications) yhwang@dase.ecnu.edu.cn

Nov. 8, 2021

Outline

Motivation

Gradient Descent

Convex Functions
Gradient Descent

Matrix Factorization

Gradient Descent Algorithm Regularization Collaborative Filtering

Non-negative Matrix Factorization

Motivation

Motivation

For recommender systems: a group of users give ratings to some items.

User	Item	Rating
1	5	100
1	10	80
1	13	30
2	10	50
и	V	r

m, n: numbers of users and items

- m, n: numbers of users and items
- u, v: index for u_{th} user and v_{th} item

- m, n: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

- *m*, *n*: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

There are many missing values in the matrix, and many applications that can be modeled as the given matrix

Product adoption

- m, n: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

- Product adoption
- APP download

- *m*, *n*: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

- Product adoption
- APP download
- Music listening

- *m*, *n*: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

- *m*, *n*: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

- Product adoption
- APP download
- Music listening
- POI visiting

- *m*, *n*: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

- Product adoption
- APP download
- Music listening
- POI visiting
- Question addressing

- *m*, *n*: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

- Product adoption
- APP download
- Music listening
- POI visiting
- Question addressing
-

- m, n: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a $r_{u,v}$: $r_{u,v}$: $r_{u,v}$: $r_{u,v}$:

There are many missing values in the matrix, and many applications that can be modeled as the given matrix

- Product adoption
- APP download
- Music listening
- POI visiting
- Question addressing
- **...**

The given matrix can be used to model the online user behaviors.

• *k*: number of latent dimensions.

- k: number of latent dimensions.
- $\mathbf{r}_{u,v} = \mathbf{p}_u^T \mathbf{q}_v.$

- k: number of latent dimensions.
- $\mathbf{r}_{u,v} = \mathbf{p}_u^T \mathbf{q}_v.$
- $r_{2,2} = \mathbf{p}_2^T \mathbf{q}_2.$

- k: number of latent dimensions.
- $\mathbf{r}_{u,v} = \mathbf{p}_u^T \mathbf{q}_v.$
- $r_{2,2} = \mathbf{p}_2^T \mathbf{q}_2.$

The approach is called matrix factorization, i.e., $R_{n \times m} \approx P_{n \times k} \cdot Q_{k \times m}$

Much of supervised machine learning can be written as an optimization problem

$$\min_{\mathbf{x}} \sum_{i=1}^{N} f(\mathbf{x}; y_i)$$

where f is a loss function, y_i is the training examples.

Much of supervised machine learning can be written as an optimization problem

$$\min_{\mathbf{x}} \sum_{i=1}^{N} f(\mathbf{x}; y_i)$$

where f is a loss function, y_i is the training examples.

 Example loss functions: logistic regression, linear regression, principle component analysis, neural network loss;

Much of supervised machine learning can be written as an optimization problem

$$\min_{\mathbf{x}} \sum_{i=1}^{N} f(\mathbf{x}; y_i)$$

where f is a loss function, y_i is the training examples.

- Example loss functions: logistic regression, linear regression, principle component analysis, neural network loss;
- Types of Optimization
 - □ Convex optimization: the easy case;

Much of supervised machine learning can be written as an optimization problem

$$\min_{\mathbf{x}} \sum_{i=1}^{N} f(\mathbf{x}; y_i)$$

where f is a loss function, y_i is the training examples.

- Example loss functions: logistic regression, linear regression, principle component analysis, neural network loss;
- Types of Optimization
 - □ Convex optimization: the easy case;
 - Non-convex optimization: NP-hard in general, includes deep learning.

Outline

Motivation

Gradient Descent
Convex Functions

Gradient Descent

Matrix Factorization
Gradient Descent Algorithm
Regularization
Collaborative Filtering

Non-negative Matrix Factorization

Definition

Function f(x) is a convex function if $\forall \alpha \in [0,1]$,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Definition

Function f(x) is a convex function if $\forall \alpha \in [0, 1]$,

 $f(x) = e^x$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
.
Examples of convex functions

 $f(x) = x^2$;

Definition

Function f(x) is a convex function if $\forall \alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Examples of convex functions

$$f(x) = x^2$$
;

$$f(x)=|x|;$$

Definition

Function f(x) is a convex function if $\forall \alpha \in [0,1]$,

 $f(x) = e^x$

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y).$$

Examples of convex functions

$$f(x)=x^2;$$

$$f(x)=|x|;$$

$$f(x) = e^x$$
;

Definition

Function f(x) is a convex function if $\forall \alpha \in [0, 1]$,

$$f(x) = x^2$$

$$f(x) = e^x$$

functions

$$f(x)=|x|;$$

 $f(x) = x^2$;

Definition

Function f(x) is a convex function if $\forall \alpha \in [0, 1]$,

f(x) = |x|;

$$f(x) = e^x$$
;

Any line segment we draw between two points lies above the curve.

Definition

Function f(x) is a convex function if $\forall \alpha \in [0,1]$,

$$f(x) = |x|$$

$$f(x) = e^x$$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Examples of convex functions

$$f(x)=x^2;$$

$$f(x) = |x|;$$

$$f(x)=e^x;$$

Any line segment we draw between two points lies above the curve.

Every local minimum is a global minimum.

Properties of convex functions

Non-negative combinations of convex functions are convex

$$h(x) = a \cdot f(x) + b \cdot g(x);$$

Properties of convex functions

Non-negative combinations of convex functions are convex

$$h(x) = a \cdot f(x) + b \cdot g(x);$$

Affine scalings of convex functions are convex

$$h(x)=f(Ax+b);$$

Properties of convex functions

Non-negative combinations of convex functions are convex

$$h(x) = a \cdot f(x) + b \cdot g(x);$$

Affine scalings of convex functions are convex

$$h(x) = f(Ax + b);$$

 Compositions of convex functions are NOT generally convex, except for convex nondecreasing functions.

$$h(x) = f(g(x))$$
 (Neural nets are like this);

For example, if $f(x) = e^{-x}$ on $[0, \infty)$, then f is convex, but $f \circ f$ is concave.

Outline

Motivation

Gradient Descent

Convex Functions

Gradient Descent

Matrix Factorization
Gradient Descent Algorithm
Regularization
Collaborative Filtering

Non-negative Matrix Factorization

Problem formulation

Consider unconstrained, smooth convex optimization

$$\min_{\mathbf{x}} f(\mathbf{x})$$

i.e., f is convex and differentiable with $dom(f) = \mathbb{R}^n$.

Problem formulation

Consider unconstrained, smooth convex optimization

$$\min_{\mathbf{x}} f(\mathbf{x})$$

i.e., f is convex and differentiable with $dom(f) = \mathbb{R}^n$. Denote the optimal criterion value by $f^* = \min_{\mathbf{x}} f(\mathbf{x})$, and a solution by \mathbf{x}^* .

Problem formulation

Consider unconstrained, smooth convex optimization

$$\min_{\mathbf{x}} f(\mathbf{x})$$

i.e., f is convex and differentiable with $dom(f) = \mathbb{R}^n$. Denote the optimal criterion value by $f^* = \min_{\mathbf{x}} f(\mathbf{x})$, and a solution by \mathbf{x}^* .

Gradient descent algorithm

Problem formulation

Consider unconstrained, smooth convex optimization

$$\min_{\mathbf{x}} f(\mathbf{x})$$

i.e., f is convex and differentiable with $dom(f) = \mathbb{R}^n$. Denote the optimal criterion value by $f^* = \min_{\mathbf{x}} f(\mathbf{x})$, and a solution by \mathbf{x}^* .

Gradient descent algorithm

- 1: Pick a starting point $\mathbf{x}^{(0)} \in \mathbb{R}^n$;
- 2: For $k = 1, 2, \dots$;
- 3: $\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} \lambda \cdot \nabla f(\mathbf{x}^{(k-1)});$

where λ is the step size.

Consider function $f(\mathbf{x}) = (10x_1^2 + x_2^2)/2$,

Consider function $f(\mathbf{x}) = (10x_1^2 + x_2^2)/2$,

■ Simply take a large value of λ , it will slowly converge (after 8 iterations).

Consider function $f(\mathbf{x}) = (10x_1^2 + x_2^2)/2$,

- Simply take a large value of λ , it will slowly converge (after 8 iterations).
- It can also be slow if λ is to small (after 100 iterations).

(Refer to ^a)

Consider function $f(\mathbf{x}) = (10x_1^2 + x_2^2)/2$,

- Simply take a large value of λ , it will slowly converge (after 8 iterations).
- It can also be slow if λ is to small (after 100 iterations).
- When f is additionally Lipschitz continuous with constant L>0, the gradient descent has convergence rate O(1/k), i.e., to get $f(\mathbf{x}^{(k)}) f^* \leq \epsilon$, we need $O(\frac{1}{\epsilon})$ iterations.

 $[^]a https://www.cs.rochester.edu/u/jliu/CSC-576/class-note-10.pdf\\$

The problem with Gradient descent

In many machine learning task, the cost function can be written as

$$h(\mathbf{x}) = \sum_{i=1}^{N} f(\mathbf{x}; y_i),$$

where f is the loss function, y_i is a training example.

The problem with Gradient descent

In many machine learning task, the cost function can be written as

$$h(\mathbf{x}) = \sum_{i=1}^{N} f(\mathbf{x}; y_i),$$

where f is the loss function, y_i is a training example.

For large-scale optimization, computing the gradient takes O(N) time

$$\nabla h(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \nabla f(\mathbf{x}; y_i).$$

The problem with Gradient descent

In many machine learning task, the cost function can be written as

$$h(\mathbf{x}) = \sum_{i=1}^{N} f(\mathbf{x}; y_i),$$

where f is the loss function, y_i is a training example.

For large-scale optimization, computing the gradient takes O(N) time

$$\nabla h(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla f(\mathbf{x}; y_i).$$

If we want to scale up to huge datasets, so how can we do this? (Refer to a)

^ahttp://www.cs.cornell.edu/courses/cs6787/2017fa/Lecture1.pdf

Idea: rather than using the full gradient, just use one training example.

Idea: rather than using the full gradient, just use one training example.

Super fast to compute

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \lambda \bigtriangledown f(\mathbf{x}; y_{\tilde{i}_t}),$$

where $y_{\tilde{i}_t}$ is an example selected uniformly at random from the data set.

Idea: rather than using the full gradient, just use one training example.

Super fast to compute

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \lambda \bigtriangledown f(\mathbf{x}; y_{\tilde{i}_t}),$$

where $y_{\tilde{i}_t}$ is an example selected uniformly at random from the data set.

In expectation, it is just gradient descent

$$E(\mathbf{x}_{t+1}) = E(\mathbf{x}_t) - \lambda E(\nabla f(\mathbf{x}; y_{\tilde{i}_t})) = E(\mathbf{x}_t) - \alpha \frac{1}{N} \sum_{i=1}^{N} \nabla f(\mathbf{x}; y_i)$$

Idea: rather than using the full gradient, just use one training example.

Super fast to compute

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \lambda \bigtriangledown f(\mathbf{x}; y_{\tilde{i}_t}),$$

where $y_{\tilde{i}_t}$ is an example selected uniformly at random from the data set.

In expectation, it is just gradient descent

$$E(\mathbf{x}_{t+1}) = E(\mathbf{x}_t) - \lambda E(\nabla f(\mathbf{x}; y_{\tilde{i}_t})) = E(\mathbf{x}_t) - \alpha \frac{1}{N} \sum_{i=1}^{N} \nabla f(\mathbf{x}; y_i)$$

Can SGD converge using just one example to estimate the gradient?

 GD improves the value of the objective function at every step.

- GD improves the value of the objective function at every step.
- SGD improves the value but in a "noisy" way.

- GD improves the value of the objective function at every step.
- SGD improves the value but in a "noisy" way.
- GD takes fewer steps to converge but each step takes much longer to compute.

- GD improves the value of the objective function at every step.
- SGD improves the value but in a "noisy" way.
- GD takes fewer steps to converge but each step takes much longer to compute.
- In practice, SGD is much faster!

Motivation

How can one determine the factor matrices P and Q, so that the fully specified matrix R matches PQ^T as closely as possible?

Motivation

How can one determine the factor matrices P and Q, so that the fully specified matrix R matches PQ^T as closely as possible?

Formulate an optimization problem as:

$$\text{Minimize } J = \frac{1}{2} \|R - PQ^T\|_F^2$$

s.t. No constraints on P and Q

where $\|\cdot\|_F^2$ represents the squared Frobenius norm of the matrix.

Motivation

How can one determine the factor matrices P and Q, so that the fully specified matrix R matches PQ^T as closely as possible?

Formulate an optimization problem as:

$$\text{Minimize } J = \frac{1}{2} \|R - PQ^T\|_F^2$$

s.t. No constraints on P and Q

where $\|\cdot\|_F^2$ represents the squared Frobenius norm of the matrix.

■ Thus, the objective function is equal to the sum of the squares of the entries in the residual matrix $R - PQ^T$.

Motivation

How can one determine the factor matrices P and Q, so that the fully specified matrix R matches PQ^T as closely as possible?

Formulate an optimization problem as:

$$\text{Minimize } J = \frac{1}{2} \|R - PQ^T\|_F^2$$

s.t. No constraints on P and Q

where $\|\cdot\|_F^2$ represents the squared Frobenius norm of the matrix.

- Thus, the objective function is equal to the sum of the squares of the entries in the residual matrix $R PQ^T$.
- This objective function can be viewed as a quadratic loss function, which quantifies the loss of accuracy in estimating the _{17 / 33} matrix R with the use of low-rank factorization.

Definition

Given a set of users U, and a set of items D, let $R \in \mathbb{R}^{|U| \times |D|}$ be the rating matrix.

Definition

Given a set of users U, and a set of items D, let $R \in \mathbb{R}^{|U| \times |D|}$ be the rating matrix. The matrix factorization is to find two matrices $P \in \mathbb{R}^{|U| \times K}$ and $Q \in \mathbb{R}^{|D| \times K}$ such that $R \approx PQ^T =$

 \widehat{R} , where K denotes the dimensionality of latent features.

Definition

Given a set of users U, and a set of items D, let $R \in \mathbb{R}^{|U| \times |D|}$ be the rating matrix. The matrix factorization is to find two matrices $P \in \mathbb{R}^{|U| \times K}$ and $Q \in \mathbb{R}^{|D| \times K}$ such that $R \approx PQ^T = \widehat{R}$, where K denotes the dimensionality of latent features.

Each row of P would represent the strength of the associations between a user and the features.

Definition

Given a set of users U, and a set of items D, let $R \in \mathbb{R}^{|U| \times |D|}$ be the rating matrix. The matrix factorization is to find two matrices $P \in \mathbb{R}^{|U| \times K}$ and $Q \in \mathbb{R}^{|D| \times K}$ such that $R \approx PQ^T = \widehat{R}$, where K denotes the dimensionality of latent features.

- Each row of P would represent the strength of the associations between a user and the features.
- Each row of *Q* would represent the strength of the associations between an item and the features.

Definition

Given a set of users U, and a set of items D, let $R \in \mathbb{R}^{|U| \times |D|}$ be the rating matrix. The matrix factorization is to find two matrices $P \in \mathbb{R}^{|U| \times K}$ and $Q \in \mathbb{R}^{|D| \times K}$ such that $R \approx PQ^T = \widehat{R}$, where K denotes the dimensionality of latent features.

- Each row of P would represent the strength of the associations between a user and the features.
- Each row of *Q* would represent the strength of the associations between an item and the features.
- Now, we have to find a way to obtain *P* and *Q*.

Example

Example

Using P and Q, how to estimate the missing rating of user u for item i?

Example

Using P and Q, how to estimate the missing rating of user u for item i?

$$\widehat{r}_{ui} = \mathbf{q}_i^T \mathbf{P}_u = \sum_{i=1}^k p_{uj} q_{ji}.$$

Example

Using P and Q, how to estimate the missing rating of user u for item i?

$$\widehat{r}_{ui} = \mathbf{q}_i^T \mathbf{P}_u = \sum_{i=1}^k p_{uj} q_{ji}.$$

The estimating error can be

$$e_{ui} = r_{ui} - \hat{r}_{ui} = r_{ui} - \sum_{i=1}^{K} p_{uj} q_{ji}.$$

10 / 33

Problem formulation

Formal definition

$$J = \min_{P,Q} \frac{1}{2} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mathbf{p}_u^T \mathbf{q}_i)^2,$$

where r_{ui} is the known rating of user u for item i, $\hat{u}_{ui} = \mathbf{p}_{u}^{T} \mathbf{q}_{i}$ is the predicted rating given by user u for item i, and the set of all user-item pair (u, i), which are observed in R, be denoted by

 \mathcal{K} , i.e., $\mathcal{K} = \{(u, i) | r_{ui} \text{ is observed}\}.$

Problem formulation

Formal definition

$$J = \min_{P,Q} \frac{1}{2} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mathbf{p}_u^T \mathbf{q}_i)^2,$$

where r_{ui} is the known rating of user u for item i, $\widehat{u}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$ is the predicted rating given by user u for item i, and the set of all user-item pair (u, i), which are observed in R, be denoted by \mathcal{K} , i.e., $\mathcal{K} = \{(u, i) | r_{ui} \text{ is observed}\}$.

■ The error between the predicted rating and the real rating, can be calculated by the following equation for each user-item pair: $e_{ui} = r_{ui} - \hat{r}_{ui} = r_{ui} - \sum_{i=1}^{k} p_{uj}q_{ji}$.

Problem formulation

Formal definition

$$J = \min_{P,Q} \frac{1}{2} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mathbf{p}_u^T \mathbf{q}_i)^2,$$

where r_{ui} is the known rating of user u for item i, $\hat{u}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$ is the predicted rating given by user u for item i, and the set of all user-item pair (u, i), which are observed in R, be denoted by \mathcal{K} , i.e., $\mathcal{K} = \{(u, i) | r_{ui} \text{ is observed}\}.$

- The error between the predicted rating and the real rating, can be calculated by the following equation for each user-item pair: $e_{ui} = r_{ui} \hat{r}_{ui} = r_{ui} \sum_{i=1}^{k} p_{ui}q_{ji}$.
- Now, we have to find a way to obtain P and Q.

Outline

Motivation

Gradient Descent

Convex Functions

Gradient Descent

Matrix Factorization
Gradient Descent Algorithm
Regularization
Collaborative Filtering

Non-negative Matrix Factorization

Estimate parameters iteratively

Estimate parameters iteratively

$$\qquad \qquad \qquad \bullet \frac{\partial}{\partial p_{uj}} e_{ui}^2 = -(r_{ui} - \widehat{r}_{ui})q_{ji} \text{ and } \frac{\partial}{\partial q_{ji}} e_{ui}^2 = -(r_{ui} - \widehat{r}_{ui})p_{uj}.$$

Estimate parameters iteratively

- $\qquad \qquad \bullet \frac{\partial}{\partial p_{ui}} e_{ui}^2 = (r_{ui} \widehat{r}_{ui}) q_{ji} \text{ and } \frac{\partial}{\partial q_{ji}} e_{ui}^2 = (r_{ui} \widehat{r}_{ui}) p_{uj}.$
- Update rules:

$$\Box p_{uj}^{(t+1)} \leftarrow p_{uj}^{(t)} + \alpha \sum_{i:(u,i) \in \mathcal{K}} e_{ui}^{(t)} q_{ji}^{(t)}.$$

Estimate parameters iteratively

- $\quad \blacksquare \ \, \frac{\partial}{\partial p_{uj}} e^2_{ui} = -(r_{ui} \widehat{r}_{ui}) q_{ji} \ \, \text{and} \ \, \frac{\partial}{\partial q_{ji}} e^2_{ui} = -(r_{ui} \widehat{r}_{ui}) p_{uj}.$
- Update rules:
 - $\square p_{uj}^{(t+1)} \leftarrow p_{uj}^{(t)} + \alpha \sum_{i:(u,i) \in \mathcal{K}} e_{ui}^{(t)} q_{ji}^{(t)}.$
 - $\square \ q_{ji}^{(t+1)} \leftarrow q_{ji}^{(t)} + \alpha \sum_{u:(u,i) \in \mathcal{K}} e_{ui}^{(t)} p_{uj}^{(t)}.$
 - $\square \text{ Where } e_{ui}^{(t)} = r_{ui} p_u^{(t)} q_i^{(t)}$

Estimate parameters iteratively

Let's start at $P^{(0)}$ and $Q^{(0)}$.

■ Update rules:

$$\square p_{uj}^{(t+1)} \leftarrow p_{uj}^{(t)} + \alpha \sum_{i:(u,i) \in \mathcal{K}} e_{ui}^{(t)} q_{ji}^{(t)}.$$

$$\square q_{ji}^{(t+1)} \leftarrow q_{ji}^{(t)} + \alpha \sum_{u:(u,i) \in \mathcal{K}} e_{ui}^{(t)} p_{uj}^{(t)}.$$

$$\Box \text{ Where } e_{ui}^{(t)} = r_{ui} - p_u^{(t)} q_i^{(t)}$$

Subsequently, the updates can be computed as follows:

$$\Box P^{(t+1)} \leftarrow P^{(t)} + \alpha E^{(t)} Q^{(t)}$$

$$\square Q^{(t+1)} \leftarrow Q^{(t)} + \alpha E^{(t)} \dot{T} P^{(t)}$$

Outline

Motivation

Gradient Descent

Convex Functions

Gradient Descent

Matrix Factorization
Gradient Descent Algorithm
Regularization
Collaborative Filtering

Non-negative Matrix Factorization

Matrix factorization: regularization

Matrix factorization: regularization

The observed set K of ratings is small, which can cause overfitting (also common in classification problem).

Matrix factorization: regularization

- The observed set K of ratings is small, which can cause overfitting (also common in classification problem).
- Regularization is a common approach to address the problem.

Regularization

$$\min_{q^*,p^*} J = \frac{1}{2} \left[\sum_{(u,i) \in \mathcal{K}} (r_{ui} - q_i^T p_u)^2 + \lambda (\|Q\|^2 + \|P\|^2) \right],$$

Batch gradient descent

Batch gradient descent

■
$$p_{uj}^{(t+1)} \leftarrow p_{uj}^{(t)} + \alpha(\sum_{i:(u,i)\in\mathcal{K}} e_{ui}^{(t)} q_{ji}^{(t)} - \lambda p_{uj}^{(t)}).$$

$$q_{ji}^{(t+1)} \leftarrow q_{ji}^{(t)} + \alpha \left(\sum_{u:(u,i) \in \mathcal{K}} e_{ui}^{(t)} p_{uj}^{(t)} - \lambda q_{ji}^{(t)} \right),$$

where $e_{ui}^{(t)} = r_{ui} - \mathbf{p}_{u}^{(t)} \mathbf{q}_{i}^{(t)}$

Batch gradient descent

$$\mathbf{q}_{ji}^{(t+1)} \leftarrow q_{ji}^{(t)} + \alpha \left(\sum_{u:(u,i) \in \mathcal{K}} e_{ui}^{(t)} p_{uj}^{(t)} - \lambda q_{ji}^{(t)} \right),$$
 where $e_{ui}^{(t)} = r_{ui} - \mathbf{p}_{u}^{(t)}^{T} \mathbf{q}_{i}^{(t)}$

Stochastic gradient descent

$$p_{uj}^{(t+1)} \leftarrow p_{uj}^{(t)} + \alpha (e_{ui}^{(t)} q_{ji}^{(t)} - \lambda p_{uj}^{(t)}).$$

Batch gradient descent

■
$$q_{ji}^{(t+1)} \leftarrow q_{ji}^{(t)} + \alpha(\sum_{u:(u,i) \in \mathcal{K}} e_{ui}^{(t)} p_{uj}^{(t)} - \lambda q_{ji}^{(t)}),$$

where $e_{ui}^{(t)} = r_{ui} - \mathbf{p}_{u}^{(t)} \mathbf{q}_{i}^{(t)}$

Stochastic gradient descent

$$p_{uj}^{(t+1)} \leftarrow p_{uj}^{(t)} + \alpha (e_{ui}^{(t)} q_{ji}^{(t)} - \lambda p_{uj}^{(t)}).$$

$$q_{ji}^{(t+1)} \leftarrow q_{ji}^{(t)} + \alpha (e_{ui}^{(t)} p_{uj}^{(t)} - \lambda q_{ji}^{(t)}),$$

where
$$e_{ui}^{(t)} = r_{ui} - \mathbf{p}_u^{(t)}^T \mathbf{q}_i^{(t)}$$

Loss function

$$J = \frac{1}{2} \left[\sum_{i,j=1}^{n} (r_{ui} - b_i - b_u - q_i^T p_u)^2 + \lambda (\|Q\|^2 + \|P\|^2 + \|b_u\|^2 + \|b_i\|^2) \right]$$

Loss function

$$J = \frac{1}{2} \left[\sum_{(u,i) \in \mathcal{K}} (r_{ui} - b_i - b_u - q_i^\mathsf{T} p_u)^2 + \lambda (\|Q\|^2 + \|P\|^2 + \|b_u\|^2 + \|b_i\|^2) \right]$$

■ Instead of having separate bias variables b_u and b_i for users and items, we can increase the size of the factor matrices to incorporate these bias variables.

Loss function

$$J = \frac{1}{2} \left[\sum_{(u,i) \in \mathcal{K}} (r_{ui} - b_i - b_u - q_i^T p_u)^2 + \lambda (\|Q\|^2 + \|P\|^2 + \|b_u\|^2 + \|b_i\|^2) \right]$$

- Instead of having separate bias variables b_u and b_i for users and items, we can increase the size of the factor matrices to incorporate these bias variables.
 - $p_{u(k+1)} = b_u \text{ and } p_{u(k+2)} = 1, \forall u \in \{1, 2, \dots, n\}$
 - $q_{i(k+1)} = 1 \text{ and } p_{i(k+2)} = b_i, \forall i \in \{1, 2, \dots, m\}$

Loss function

$$J = \frac{1}{2} \left[\sum_{(u,i) \in \mathcal{K}} (r_{ui} - b_i - b_u - q_i^T p_u)^2 + \lambda (\|Q\|^2 + \|P\|^2 + \|b_u\|^2 + \|b_i\|^2) \right]$$

- Instead of having separate bias variables b_u and b_i for users and items, we can increase the size of the factor matrices to incorporate these bias variables.
 - $p_{u(k+1)} = b_u \text{ and } p_{u(k+2)} = 1, \forall u \in \{1, 2, \dots, n\}$
 - $q_{i(k+1)} = 1 \text{ and } p_{i(k+2)} = b_i, \forall i \in \{1, 2, \dots, m\}$

$$\min_{\boldsymbol{q}^*, \boldsymbol{p}^*} J = \frac{1}{2} \left[\sum_{(\boldsymbol{u}, \boldsymbol{i}) \in \mathcal{K}} (r_{\boldsymbol{u}\boldsymbol{i}} - \widetilde{\boldsymbol{q}}_{\boldsymbol{i}}^T \widetilde{\boldsymbol{p}}_{\boldsymbol{u}})^2 + \lambda (\|\widetilde{\boldsymbol{Q}}\|^2 + \|\widetilde{\boldsymbol{P}}\|^2) \right]$$

s.t.(k+2)th column of \widetilde{P} contains only 1s

(k+1)th column of \widetilde{Q} contains only 1s

Outline

Motivation

Gradient Descent

Convex Functions

Gradient Descent

Matrix Factorization

Gradient Descent Algorithm Regularization

Collaborative Filtering

Non-negative Matrix Factorization

Consider user U

- Find set S of other users whose ratings are "similar" to u's ratings.
- Estimate u's ratings based on ratings of users in S.

Consider user U

- Find set S of other users whose ratings are "similar" to u's ratings.
- Estimate u's ratings based on ratings of users in S.
- Question: how to evaluate whose ratings are "similar" to u's ratings.

MF for collaborative filtering

Problem formulation

$$J = \min_{P,Q} \frac{1}{2} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mathbf{p}_u^T \mathbf{q}_i)^2 + \frac{\gamma}{2} \sum_{(u,v) \in \mathcal{U}} s_{uv} \|\mathbf{p}_u - \mathbf{p}_v\|_2^2,$$

where r_{ui} is the known rating of user u for item i, $\hat{u}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$ is the predicted rating given by user u for item i, and s_{uv} is the preference similarity between users u and v.

MF for collaborative filtering

Problem formulation

$$J = \min_{P,Q} \frac{1}{2} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mathbf{p}_u^T \mathbf{q}_i)^2 + \frac{\gamma}{2} \sum_{(u,v) \in \mathcal{U}} s_{uv} \|\mathbf{p}_u - \mathbf{p}_v\|_2^2,$$

where r_{ui} is the known rating of user u for item i, $\hat{u}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$ is the predicted rating given by user u for item i, and s_{uv} is the preference similarity between users u and v.

Stochastic gradient descent

$$p_{uj}^{(t+1)} \leftarrow p_{uj}^{(t)} + \alpha \left(e_{ui}^{(t)} q_{ji}^{(t)} - \gamma s_{uv} (p_{uj}^{(t)} - p_{vj}^{(t)}) p_{uj}^{(t)} \right).$$

MF for collaborative filtering

Problem formulation

$$J = \min_{P,Q} \frac{1}{2} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mathbf{p}_u^T \mathbf{q}_i)^2 + \frac{\gamma}{2} \sum_{(u,v) \in \mathcal{U}} s_{uv} \|\mathbf{p}_u - \mathbf{p}_v\|_2^2,$$

where r_{ui} is the known rating of user u for item i, $\widehat{u}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$ is the predicted rating given by user u for item i, and s_{uv} is the preference similarity between users u and v.

Stochastic gradient descent

$$p_{uj}^{(t+1)} \leftarrow p_{uj}^{(t)} + \alpha (e_{ui}^{(t)} q_{ji}^{(t)} - \gamma s_{uv} (p_{uj}^{(t)} - p_{vj}^{(t)}) p_{uj}^{(t)}).$$

$$\mathbf{q}_{ji}^{(t+1)} \leftarrow q_{ji}^{(t)} + \alpha e_{ui}^{(t)} p_{uj}^{(t)},$$
where $e_{ui}^{(t)} = r_{ui} - \mathbf{p}_{u}^{(t)} \mathbf{q}_{j}^{(t)}$

Formulation

Minimize
$$J = \frac{1}{2} \|R - UV^T\|_F^2$$

 $s.t.U \ge 0$
 $V \ge 0$

Formulation

Define an optimization problem as:

$$\begin{aligned} \text{Minimize } J &= \frac{1}{2} \|R - UV^T\|_F^2 \\ s.t. &U \geq 0 \\ &V \geq 0 \end{aligned}$$

 Users specify a "like" for an item, but no mechanism to specify a "dislike", such as browsing or buy behaviors, Web-pages clicking, and Facebook liking, etc.

Formulation

$$\begin{aligned} \text{Minimize } J &= \frac{1}{2} \|R - UV^T\|_F^2 \\ s.t. &U \geq 0 \\ &V \geq 0 \end{aligned}$$

- Users specify a "like" for an item, but no mechanism to specify a "dislike", such as browsing or buy behaviors, Web-pages clicking, and Facebook liking, etc.
- Many attributes of entities are non-negative.
 - Pixels of an image

Formulation

Minimize
$$J = \frac{1}{2} \|R - UV^T\|_F^2$$
 $s.t.U \ge 0$ $V \ge 0$

- Users specify a "like" for an item, but no mechanism to specify a "dislike", such as browsing or buy behaviors, Web-pages clicking, and Facebook liking, etc.
- Many attributes of entities are non-negative.
 - Pixels of an image
 - □ Frequencies of words in a document

Formulation

Minimize
$$J = \frac{1}{2} ||R - UV^T||_F^2$$

 $s.t.U \ge 0$
 $V \ge 0$

- Users specify a "like" for an item, but no mechanism to specify a "dislike", such as browsing or buy behaviors, Web-pages clicking, and Facebook liking, etc.
- Many attributes of entities are non-negative.
 - □ Pixels of an image
 - ☐ Frequencies of words in a document
 - □ Prices of stocks

Iterative algorithm

■
$$u_{ij}^{(t+1)} \leftarrow \frac{(RV^{(t)})_{ij}u_{ij}^{(t)}}{(U^{(t)}V^{(t)^T}V^{(t)})_{ij}+\epsilon}, \ v_{ij}^{(t+1)} \leftarrow \frac{(R^TU^{(t)})_{ij}v_{ij}^{(t)}}{(V^{(t)}U^{(t)^T}U^{(t)})_{ij}+\epsilon}, \ \text{where } \epsilon \text{ is a small term, e.g., } 10^{-9}.$$

Iterative algorithm

Regularization

As in the case of other types of matrix factorization, regularization can be used to improve the quality of the underlying solution.

Iterative algorithm

Regularization

As in the case of other types of matrix factorization, regularization can be used to improve the quality of the underlying solution.

■ The basic idea is to add the penalties $\frac{\lambda_1 \|U\|^2}{2} + \frac{\lambda_2 \|V\|^2}{2}$ to the objective function.

Iterative algorithm

Regularization

As in the case of other types of matrix factorization, regularization can be used to improve the quality of the underlying solution.

- The basic idea is to add the penalties $\frac{\lambda_1 \|U\|^2}{2} + \frac{\lambda_2 \|V\|^2}{2}$ to the objective function.
- The update rules:

$$\Box \ u_{ij}^{(t+1)} \leftarrow \max \left\{ \left\lceil \frac{(RV^{(t)})_{ij} - \lambda_1 u_{ij}^{(t)}}{(U^{(t)}V^{(t)^T}V^{(t)})_{ij} + \epsilon} \right\rceil u_{ij}^{(t)}, 0 \right\}$$

$$\Box \ v_{ij}^{(t+1)} \leftarrow \max \left\{ \left\lceil \frac{(R^TU^{(t)})_{ij} - \lambda_2 v_{ij}^{(t)}}{(V^{(t)}U^{(t)^T}U^{(t)})_{ii} + \epsilon} \right\rceil v_{ij}^{(t)}, 0 \right\}$$

Take-home messages

- Motivation
- Gradient Descent
 - Convex Functions
 - □ Gradient Descent
- Matrix Factorization
 - □ Gradient Descent algorithm
 - □ Regularization
 - □ Collaboration Filtering
- Non-negative Matrix Factorization