EE 305: Electromagnetic Waves Course Project Report Group 17

Project Overview

The project aimed to develop a MATLAB script and a graphical user interface (GUI) app to facilitate the design and analysis of a finite-length dipole strip antenna. The main deliverables of our project are:

- 1. MATLAB Script (main_script.m)
- 2. GUI app (DipoleAntennaDesigner.mlapp)

The main_script.m file contains the hard coded equations for the design of antenna and generation of plots. The DipoleAntennaDesigner.mlapp uses the logic provided in the main_script.m and provides an interactive interface for changing the parameters of the antenna and visualising the results.

Key Features of GUI App

Our Dipole Antenna Designer app has the following features:

It has three tabs:

- 1. Design Tab
- 2. Analysis-I tab
- 3. Analysis-II tab

The app enables users to input dipole antenna parameters namely

- Frequency
- Length
- Width
- Maximum current phasor

in the design tab and generates in the Analysis tabs:

- A 3D mesh representation of the antenna
- Impedance plot
- 3D Radiation pattern plot
- Current distribution plot
- Azimuthal plot and Elevation plot.

Plots are interactive, allowing users to examine and analyse antenna characteristics.

Technical Implementation

The following equations have been used to generate the required plots from length (l), width (w), frequency (f), maximum of current phasor (Im).

1. Equation for Current distribution:

$$I(z') = \begin{cases} I_0 \sin \left[\beta \left(\frac{l}{2} - z' \right) \right], & 0 \le z' \le l/2 \\ I_0 \sin \left[\beta \left(\frac{l}{2} + z' \right) \right], -l/2 \le z' \le 0. \end{cases}$$

2. Equation for Impedance plot:

$$R_{ ext{dipole}} = rac{\eta_0}{2\pi \sin^2\left(rac{1}{2}kL
ight)} igg\{ \, \gamma_e + \ln(kL) - ext{Ci}(kL) + rac{1}{2}\sin(kL) \left[\, + ext{Si}(2kL) - 2\, ext{Si}(kL) \,
ight] \ + rac{1}{2}\cos(kL) \left[\, + ext{Ci}(2kL) - 2\, ext{Ci}(kL) + \gamma_e + \ln\left(rac{1}{2}kL
ight) \,
ight] igg\} \,, \ X_{ ext{dipole}} = rac{\eta_0}{2\pi \sin^2\left(rac{1}{2}kL
ight)} igg\{ \, + ext{Si}(kL) + rac{1}{2}\cos(kL) \left[\, - ext{Si}(2kL) + 2\, ext{Si}(kL) \,
ight] \ + rac{1}{2}\sin(kL) \left[\, + ext{Ci}(2kL) - 2\, ext{Ci}(kL) + ext{Ci}\left(rac{2ka^2}{L}
ight) \,
ight] igg\} \,,$$

3. Equation for 3D Radiation plot:

$$F(\theta, \varphi) = \frac{\left[\cos\left(\frac{\beta l}{2}\cos\theta\right) - \cos\left(\frac{\beta l}{2}\right)\right]^2}{\sin^2\theta}.$$

4. Equations for Azimuthal and Elevation plots:

Azimuthal plot is obtained by putting theta = 0 in F(theta,Phi) in above equation. Elevation plot is obtained by putting phi = 0 in F(theta,Phi) in above equation.

Results:

We have attached here the results for the following parameters:

- Frequency (f) =100Mhz
- Length (l) = $4.311m(1.5 \lambda)$
- Width (w) = 0.05m
- Current (Imax) = 1A

Plots:

References:

- 1. Cheng, David Keun (2014). Field and Wave Electromagnetics (Second ed., Chapter 11: Antennas and Radiating Systems.)
- 2. https://www.ece.mcmaster.ca/faculty/nikolova/antenna_dload/current_lectures/L_09_Dipole.pdf

Project Members:

- 1. Abiroop Mohan 210002004
- 2. Siva Mallidi 210002051
- 3. Adla Sajan Swaroop Reddy 210002008
- 4. Subash Ganti 210002032
- 5. Sowreddy Madhusudhan Reddy 210002075
- 6. Bhukya Vamshi 210002022