

Applied Machine Learning for Identifying Malicious Sensor Nodes

633 81555 21 Pawat Songkhopanit

Table of Content

- Introduction
 - Introduction to Network Nodes
 - What is Malicious Node?
 - Introduction to traditional malicious node detection
- Big data and Artificial Intelligence in Network Engineering
- Implementation and Method
- Model
 - Logistic Regression
 - Isolation Forest
 - DBSCAN
 - Support Vector Machine
- Conclusion

Network nodes

- Any point or device that can send, receive, or forward data packets

Malicious Node

- Device that intentionally acting harmful or disruptive in the systems
- Signs of the attack in the system
 - Lower Network Performance
 - Higher Packet Error Rate
 - Higher Packet Request and Send rate
 - Higher Power Usage
 - Etc.
- How can we detect malicious node?

Traditional Malicious Node Detection

- Intrusion Detection System (IDS)
 - monitors network traffic in real-time
- Intrusion Prevention System (IPS)
 - actively blocking or preventing detected threats in real-time
- Firewall
 - monitors and controls incoming and outgoing network traffic based on predetermined security rules

Problems with traditional methods

- Lots of false negatives and false positives
- Evolving threats
 - Rule-based Systems
 - People can bypass the rule!
- How can we use AI to help with these traditional system?

Big data and AI in Network engineering

- Combining IDS/IPS systems with an AI-based endpoint detection and response (EDR) system
- Highly effective approach to detecting and preventing threats.

Methods and Implementation

- Data Consolidation
- Data Loading
- Data Exploring
- Data Preprocessing
- Modeling
 - Linear Regression
 - Isolation Forests
 - DBSCAN (Density-Based Spatial Clustering of Application with Noise)
 - Support Vector Machine (SVM)

Data Consolidation

<u>SensorNetGuard: A Dataset for Identifying Malicious Sensor Nodes | IEEE DataPort (ieee-dataport.org)</u> <u>GitHub - kmkrphd/SensorNetGuard-A-Dataset-for-Identifying-Malicious-Sensor-Nodes</u>

Data Consolidation

Features

- General Metrics: Node ID, Timestamp, IP Address
- Network Traffic Metrics: Packet Rate, Packet Drop Rate, Packet Duplication rate,
 Data throughput
- Signal Metrics: Signal Strength, Signal-to-Noise Ratio (SNR)
- Power Usage Metrics: Battery Level, Energy Consumption Rate
- Routing Metrics: Number of Neighbors, Route Request Frequency, Route Reply Frequency
- Behavioral Metrics: Data Transmission Frequency, Data Reception Frequency, Error Rate
- Miscellaneous Metrics: CPU Usage, Memory Usage, Bandwidth
- Is_Malicious or not?

Data Exploring

- Relatively normal distribution

_

Data Exploring

 Clearly a distinction between Malicious and Non-Malicious Nodes

Models

- Logistics Regression
- Isolation Forests
- DBSCAN
- Support Vector Machine (SVM)

Logistics Regression

- modeling the probability of a discrete outcome given an input variable
- Malicious or not

Logistic Regression - Results

Isolation Forests

- an algorithm for data anomaly detection
- detects anomalies using binary trees

Isolation Forests - Results

DBSCAN

- Density-based spatial clustering of applications with noise
- marking as outliers points that lie alone in low-density regions

DBSCAN - Results

Classification	Report:			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	2854
1	1.00	1.00	1.00	146
				*100000000
accuracy			1.00	3000
macro avg	1.00	1.00	1.00	3000
weighted avg	1.00	1.00	1.00	3000

Support Vector Machine (SVM)

a supervised machine learning algorithm that classifies data by finding an optimal line or hyperplane

SVM - Results

Assumption and Suggestion

- DBSCAN and Logistic Regression have the best results
- DBSCAN might be better than Logistic Regression in the real world scenario
 - Logistic Regression might not detect multiple attackers
 - DBSCAN are better at detecting malicious node
- SVM might also be yield better results with more datasets

Conclusion

- Integrating Big Data and AI with Telecommunication field
- Using DBSCAN and SVM to help with malicious attacker detection and prevention
 - Use AI model to detect a suspicious activity
 - Use AI model to prevent a suspicious activity based on the network tuning parameter