

例1: 求微分方程 $y'' + y' = x^2$ 的通解。

解:
$$r^2 + r = 0$$
 $\Rightarrow r = 0, r = -1$

$$Y_1 = c_1 + c_2 e^{-x}$$
 $y^* = x(ax^2 + bx + c)$

$$y^* = 3ax^2 + 2bx + c$$
 $y^*'' = 6ax + 2b$

$$6ax + 2b + 3ax^2 + 2bx + c = x^2$$

$$\Rightarrow a = \frac{1}{3}, b = -1, c = 2$$

∴ 方程的通解为
$$y = \frac{1}{3}x^3 - x^2 + 2x + c_1 + c_2 e^{-x}$$

例2 求方程 $y'' - 3y' + 2y = xe^{2x}$ 的通解. 解 特征方程 $r^2 - 3r + 2 = 0$,

特征根
$$r_1 = 1$$
, $r_2 = 2$, 对应齐次方程通解 $Y = c_1 e^x + c_2 e^{2x}$, $\therefore \lambda = 2$ 是单根, 设 $y^* = x(Ax + B)e^{2x}$ 代入方程,得 $2Ax + B + 2A = x$ $\therefore \begin{cases} A = \frac{1}{2} \\ B = -1 \end{cases}$ 原方程通解为 $y = C_1 e^x + C_2 e^{2x} + x(\frac{1}{2}x - 1)e^{2x}$

例3 写出微分方程 $y'' - 4y' + 4y = 6x^2 + 8e^{2x}$ 的待定特解的形式.

解 设 $y'' - 4y' + 4y = 6x^2$ 的特解为 y_1 设 $y'' - 4y' + 4y = 8e^{2x}$ 的特解为 y_2^* 则所求特解为 $y^* = y_1^* + v_2^*$ $:: r^2 - 4r + 4 = 0$: 特征根 $r_{1,2} = 2$ ∴ $y_1^* = Ax^2 + Bx + C$ $y_2^* = Dx^2e^{2x}$ (重根) $y^* = y_1^* + y_2^* = Ax^2 + Bx + C + Dx^2e^{2x}$.

華東師紀大学 School of Computant Software En

例4求方程 $y'' + y = 4\sin x$ 的通解.

解 对应齐方通解 $Y = C_1 \cos x + C_2 \sin x$,

作辅助方程 $y'' + y = 4e^{jx}$,

 $\therefore \lambda = i$ 是单根, 故 $y^* = Axe^{ix}$,

代入上式 2Ai=4, $\therefore A=-2i$,

 $\therefore y^* = -2ixe^{jx} = 2x\sin x - (2x\cos x)i,$

所求非齐方程特解为 $y^* = -2x\cos x$, (取虚部) 原方程通解为 $y = C_1\cos x + C_2\sin x - 2x\cos x$.

華東師紀大學 (School of Computer and Software Eng

例5 求方程 $y'' + y = x \cos 2x$ 的通解.

解 对应齐方通解 $Y = C_1 \cos x + C_2 \sin x$,作辅助方程 $y'' + y = xe^{2ix}$,

 $\therefore \lambda = 2i$ 不是特征方程的根, $\partial y^* = (Ax + B)e^{2ix}$,代入辅助方程 $\begin{cases} 4Ai - 3B = 0 \\ -3A = 1 \end{cases} \therefore A = -\frac{1}{3}, B = -\frac{4}{9}i,$

$$\therefore y^* = (-\frac{1}{3}x - \frac{4}{9}i)e^{2ix},$$

$$= (-\frac{1}{3}x - \frac{4}{9}i)(\cos 2x + i\sin 2x)$$

$$= -\frac{1}{3}x\cos 2x + \frac{4}{9}\sin 2x - (\frac{4}{9}\cos 2x + \frac{1}{3}x\sin 2x)i,$$
所求非齐方程特解为 $y^* = -\frac{1}{3}x\cos 2x + \frac{4}{9}\sin 2x,$
(取实部)

注意 $Ae^{\lambda x}\cos\omega x, Ae^{\lambda x}\sin\omega x$

分别是 $Ae^{(\lambda+i\omega)x}$ 的实部和虚部.

例6 求方程 $y'' + y = \tan x$ 的通解.

解 对应齐方通解 $Y = C_1 \cos x + C_2 \sin x$,

用常数变易法求非齐方程通解

设 $y = c_1(x)\cos x + c_2(x)\sin x$,

$$w(x) = 1,$$

$$\begin{cases} c_1(x) = \sin x - \ln|\sec x + \tan x| + C_1 \\ c_2(x) = -\cos x + C_2 \end{cases},$$

原方程通解为

 $y = C_1 \cos x + C_2 \sin x - \cos x \cdot \ln |\sec x + \tan x|.$

華東師紀大学 School of and Software Softwar

例 求欧拉方程

$$x^3y''' + x^2y'' - 4xy' = 3x^2$$
 的通解.

解 作变量变换 $x = e^t$ 或 $t = \ln x$,

原方程化为

$$D(D-1)(D-2)y+D(D-1)y-4Dy=3e^{2t}$$

$$\mathbb{P} D^3y - 2D^2y - 3Dy = 3e^{2t},$$

或
$$\frac{d^3y}{dt^3} - 2\frac{d^2y}{dt^2} + 3\frac{dy}{dt} = 3e^{2t}.$$
 (1)

方程(1)所对应的齐次方程为

$$\frac{d^3y}{dt^3} - 2\frac{d^2y}{dt^2} + 3\frac{dy}{dt} = 0,$$

其特征方程
$$r^3 - 2r^2 - 3r = 0$$
,

征方程的根为 $r_1 = 0, r_2 = -1, r_3 = 3.$

所以齐次方程的通解为

$$Y = C_1 + C_2 e^{-t} C_3 e^{3t} = C_1 + \frac{C_2}{x} + C_3 x^3$$
.

设特解为 $y^* = be^{2t} = bx^2$,

代入原方程,得
$$b = -\frac{1}{2}$$
. 即 $y^* = -\frac{x^2}{2}$,

所给欧拉方程的通解为 $y = C_1 + \frac{C_2}{x} + C_3 x^3 - \frac{1}{2} x^2$.

