Министерство образования Российской Федерации МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ.Н.Э.БАУМАНА

Факультет «Специальное машиностроение» Кафедра СМ1 «Космические аппараты и ракеты-носители»

ДОМАШНЯЯ РАБОТА ПО КУРСУ: «Динамика ракет»

ВАРИАНТ №3

Выполнил	
студент группы СМ1-81	Данченко А.А.
Проверил	
преполаватель	Гончаров Л. А.

Содержание

У словие	3
Домашнее задание №1	3
Домашнее задание №2	3
Решение ДЗ №1	5
1. Определение собственных частот упругих поперечных колебаний	5
2. Построение эпюр формы упругой линии и угла поворота сечений для каждого тона колебаний сечения	9
3. Построение эпюр изгибающих моментов и поперечных сил	10
4.1. Определение собственных частот для полностью заправленной ракеты и «сухой» рак	
4.2. Построение эпюр формы упругой линии и угла поворота сечений для каждого тона колебаний сечения	
4.3. Построение эпюр изгибающих моментов и поперечных сил	15
5. Вычисление значений приведенных масс для расчетных случаев	16
Решение ДЗ№2	18
1. Оценка устойчивости движения упругой ракеты по заданной траектории	18
2.1. Уточнение границ смежной неустойчивости	19
2.2. Задание требований к автомату стабилизации (АС)	23

Условие

Домашнее задание №1

- 1. Для заданного варианта определить две первых собственные частоты упругих поперечных колебаний корпуса ракеты.
- 2. Построить эпюры формы упругой линии и угла поворота сечений для каждого тона колебаний сечения.
- 3. Построить эпюры изгибающих моментов и поперечных сил.
- 4. Выполнить пункты №1 и №2 для полностью заправленной ракеты (момент старта) и «сухой» ракеты (момент выключения ДУ при стрельбе на максимальную дальность).
- 5. Вычислить значения приведенных масс для расчетных случаев.

Домашнее задание №2

При выполнении ДЗ №2 использовать результаты ДЗ №1.

- 1. Используя «универсальную диаграмму устойчивости» оценить устойчивость движения упругой ракеты по траектории.
- 2. Если полученный ответ отрицательный (движение неустойчиво), то:
 - уточнить границы смежной области неустойчивости
 - предъявить требования к АС.
- 3. Если полученный ответ положительный (движение устойчиво), то необходимо уточнить границы неустойчивости смежных областей.

При расчетах полагать, что $\varepsilon = 0.001$.

Градиент управляющей силы вычислить по формуле: $R_{yp} = k_p * M_0 * g_0$, где $M_0 -$ стартовая масса, $g_0 -$ ускорение свободного падения, $k_p -$ коэффициент, заданный в таблице.

Амплитуду АС для частоты большей, чем частота среза вычислять по

формуле: $A_{AC} = 0.5*exp(0.01*(\omega_0-\omega))$ $\phi_{AC} = -\pi(\omega_0-\omega)/(\omega_0-\omega_\pi)$ для $\omega_0 < \omega < \omega_\pi$;

 $\phi_{AC} = -\pi - \pi(\omega_{\pi^-}\omega)/(\omega_{\pi^-}\omega_{2\pi})$ для $\omega_{\pi} < \omega < \omega_{2\pi}$;

Схема №1

Nº		Координаты сечения [м]							П	араме	етры А	С	M ₁	M_2	J_0	Хгп	
В	X 1	X ₂	X 3	X 4	X 5	X 6	X 7	X 8	X 9	\mathbf{W}_0	\mathbf{W}_{p}	W_{2p}	k_p	[τ]	[T]	[TM ²	[w]
а]	
р																	
2	1.5	3	4	6	8	9	12	15	18	10	60	100	0.5	1.2	1.0	2.0	3.5

Схема №1

Рисунок - Схема №1 (исходные данные)

Решение ДЗ №1

1. Определение собственных частот упругих поперечных колебаний

Формы и частоты свободных упругих колебаний корпуса ракеты является основными параметрами при анализе динамических свойств упругих ракет как объектов автоматического регулирования. В силу относительной протяженности корпусов ракет они при расчетах низших (балочных) частот аппроксимируются прямыми стержнями с переменным распределением по длине масс и жесткостей. Жидкое топлива в баках считается как бы отвердевшим, или «замороженным», и его масса приплюсовывается к массе корпуса в соответствующих сечениях.

Существуют различные приближенные методы определения форм и частот неоднородного стержня, к таким относят методы Релея-Ритца, Бубнова-Галеркина, метод последовательных приближений, метод начальных параметров.

Воспользуемся методом начальных параметров. Рассмотрим распределения погонных масс и жесткостей для заданного случая. Сведем все данные распределения для заданного варианта в таблицу 2. Также распределим сосредоточенную массу в окрестности точки, в которой она сосредоточена, на расстояние 0.1 м в обе стороны по оси х.

No участка 1.4 1.5 1.16 14.9 15.1 χ_i , M EJ_i , $\frac{MH}{M^2}$

Таблица 2- Данные распределения погонных масс и жесткости для заданного варианта

Дифференциально уравнение поперечных колебаний для і-го участка будет иметь вид:

$$EJ_i \cdot f_i^{IV}(x) - \omega^2 \cdot m_i \cdot f_i(x) = 0 \ (i = 1, 2 \dots k)$$
 (1.1)

Введем коэффициент форм колебаний b_i :

$$b_i^4 = \frac{\omega^2 \cdot m_i}{EI_i} \tag{1.2}$$

Тогда уравнение примет вид:

$$f_i^{IV}(x) - b_i^4 \cdot f_i(x) = 0 (1.3)$$

Решение системы (3) должно удовлетворять граничным условиям и условиям сопряжения участков стержня. Как известно, данная задача разрешима только для тех значений ω , которые являются частотами свободных колебаний неоднородного стержня.

Решение каждого дифференциального уравнения (3) может быть представлено либо в виде комбинации тригонометрических и гиперболических функций, либо выражено через балочные функции Крылова:

Представим решение уравнения (3) в виде линейной комбинации балочных функций Крылова ([1] стр. 184):

$$f_i(x) = C_{1i} \cdot S(b_i x) + C_{2i} \cdot T(b_i x) + C_{3i} \cdot U(b_i x) + C_{4i} \cdot V(b_i x)$$
 (1.4)

Где балочные функции Крылова имеют вид:

$$S(b_{i}x) = 0.5 \cdot (ch(b_{i}x) + \cos(b_{i}x))$$

$$T(b_{i}x) = 0.5 \cdot (sh(vx) + \sin(b_{i}x))$$

$$U(b_{i}x) = 0.5 \cdot (ch(b_{i}x) - \cos(b_{i}x))$$

$$V(b_{i}x) = 0.5 \cdot (sh(b_{i}x) - \sin(b_{i}x))$$
(1.5)

Функции Крылова обладают свойствами, делающими их удобными для решения задач поперечных колебаний стержня:

1.
$$S(0) = 1$$
; $T(0) = U(0) = V(0) = 0$
2. $S'(b_i x) = b_i V(b_i x)$; $V'(b_i x) = b_i U(b_i x)$; $U'(b_i x) = b_i T(b_i x)$; $T'(b_i x) = b_i S(b_i x)$;

Введем вектор форма колебаний:

$$\bar{u}_{i}(x) = \begin{bmatrix} u_{1i}(x) \\ u_{2i}(x) \\ u_{3i}(x) \\ u_{4i}(x) \end{bmatrix}$$
 (1.6)

 $u_{1i}(x) = f_i(x)$ — форма перемещений;

 $u_{2i}(x) = f_i'(x) -$ форма угла поворота;

 $u_{3i}(x) = E J_i \cdot f_i''(x)$ — форма изгибающего момента;

 $u_{4i}(x) = EJ_i \cdot f_i^{\prime\prime\prime}(x)$ — форма поперечной силы.

Если на стыках участков имеется только изменение только погонных масс и жесткостей, то условие стыка примет вид:

$$\bar{u}_i(l_i) = \bar{u}_{i+1}(0) \tag{1.7}$$

Исходя из свойств функций Крылова, можно связать между собой вектор формы в любой точке участка с вектором формы в его начале ([1] стр.185)

Условие связи вектора формы в произвольной точке участка с вектором формы в начале участка будет иметь вид:

$$\bar{u}_i(x) = A_i(x) \cdot \bar{u}_i(0) \tag{1.8}$$

Где матрица А имеет вид:

$$A_{i}(x) = \begin{bmatrix} S(b_{i}x) & \frac{T(b_{i}x)}{b_{i}} & \frac{U(b_{i}x)}{EJ_{i} \cdot b_{i}^{2}} & \frac{V(b_{i}x)}{EJ_{i} \cdot b_{i}^{3}} \\ V(b_{i}x) \cdot b_{i} & S(b_{i}x) & \frac{T(b_{i}x)}{EJ_{i} \cdot b_{i}} & \frac{U(b_{i}x)}{EJ_{i} \cdot b_{i}^{2}} \\ EJ_{i} \cdot b_{i}^{2} \cdot U(b_{i}x) & V(b_{i}x) \cdot EJ_{i}b_{i} & S(b_{i}x) & \frac{T(b_{i}x)}{b_{i}} \\ EJ_{i} \cdot b_{i}^{3} \cdot V(b_{i}x) & EJ_{i} \cdot b_{i}^{2} \cdot U(b_{i}x) & V(b_{i}x) \cdot b_{i} & S(b_{i}x) \end{bmatrix}$$
(1.9)

Если $x_i = l_i$, то матрицу $A_i(l_i)$ называют матрицей перехода через i-й участок.

Для следующего (i+1) участка получим:

$$\bar{u}_{i+1}(x) = A_{i+1}(x) \cdot \bar{u}_{i+1}(0)$$

Поскольку по условию (1.7) $\bar{u}_{i+1}(0) = \bar{u}_i(l_i) = A_i(l_i) \cdot \bar{u}_i(0)$, то

$$\bar{u}_{i+1}(x) = A_{i+1}(x) * A_i(l_i) \cdot \bar{u}_i(0)$$

Решение для любого i-го участка можно, рассуждая аналогично, выразить через вектор формы на входе в 1-й участок:

$$\bar{u}_i(x) = A_i(x) \cdot (\prod_{j=1}^{i-1} A_j(l_j)) \cdot \bar{u}_1(0)$$
 (1.10)

Введем матрицу Р:

$$P = \prod_{j=1}^{\kappa} A_j(l_j) \tag{1.11}$$

С учетом выражения (1.11) формула (1.10) примет вид:

$$\bar{u}_i(L) = P \cdot \bar{u}_i(0) \tag{1.12}$$

Выражение (1.12) можно записать в скалярной форме:

$$u_r(l) = \sum_{s=1}^{4} p_{rs} u_s(0) \quad (r = 1, 2, 3, 4)$$
 (1.12*)

где p_{rs} — коэффициенты матрицы P, зависящие от частоты колебаний ω . Граничные условия на концах ракеты (по сути свободный конец стержня) будут иметь вид:

$$u_3(0) = 0; u_4(0) = 0; u_3(L) = 0; u_4(L) = 0$$
 (1.13)

Соотношение (1.12*) с учетом граничных условий будет иметь вид:

$$u_{1}(L) = p_{11}u_{1}(0) + p_{12}u_{2}(0)$$

$$u_{2}(L) = p_{21}u_{1}(0) + p_{22}u_{2}(0)$$

$$0 = p_{31}u_{1}(0) + p_{32}u_{2}(0)$$

$$0 = p_{41}u_{1}(0) + p_{42}u_{2}(0)$$
(1.14)

Согласно двум последним уравнениям системы (1.14) нетривиальное решение соответствует равенству:

$$p_{31} \cdot p_{42} - p_{32} \cdot p_{41} = 0 \tag{1.15}$$

Используя программный комплекс Mathcad, получаем частоты собственных колебаний (перебором):

$$\omega_1 = 21.776 \text{ рад/с}$$
 $\omega_2 = 65.446 \text{ рад/c}$

Рисунок 1.1- График для определения частот собственных колебаний

2. Построение эпюр формы упругой линии и угла поворота сечений для каждого тона колебаний сечения

Из 3ьего или 4ого уравнения системы (1.14) получим:

$$u_2(0) = -\frac{p_{31}(\omega_n)}{p_{32}(\omega_n)} \cdot u_1(0)$$
 (2.1)

Положим $u_1(0) = 0$, тогда вектор формы для начала 1ого участка с учетом выражения (2.1) и граничных условий будет иметь вид:

$$\bar{u}_1(0) = \begin{bmatrix} 1 \\ -\frac{p_{32}}{p_{31}} \\ 0 \\ 0 \end{bmatrix}$$

Форма собственных колебаний имеет вид:

$$f_n(x) = p_{11}(x)u_1(0) + p_{12}(x)u_2(0)$$

С учетом соотношения (2.1) форму колебаний можно записать следующим образом:

$$f_n(x) = p_{11}(x) - \frac{p_{31}(\omega_n)}{p_{32}(\omega_n)} \cdot p_{12}(x)$$
 (2.2)

где $p_{11}(x)$ и $p_{12}(x)$ — коэффициенты матрицы

$$P(\omega_n, x) = A_i(\omega_n, x) \prod_{j=i-1}^{1} A_j(\omega_n, l_j)$$

Причем коэффициенты $p_{11}(x)$ и $p_{12}(x)$ должны вычисляться для каждого участка стержня, собственные формы колебаний $f_n(x)$ строятся по уравнению (2.2) от начала стержня (корпуса ракеты) $x_1=0$ по участкам до конца $x_k=l_k$.

Форма угла поворота определяется уравнением:

$$u_2(x) = p_{21}(x) - \frac{p_{31}(\omega_n)}{p_{32}(\omega_n)} \cdot p_{22}(x)$$
 (2.3)

Используя программный комплекс Mathcad, получаем графики формы колебаний и формы угла поворота для заданного варианта для первых двух собственных частот.

Рисунок 2.1.- Форма колебаний заданного варианта ракеты

Рисунок 2.2- Форма угла поворота заданного варианта ракеты

3. Построение эпюр изгибающих моментов и поперечных сил

Форма изгибающего момента определяется уравнением ([1] стр.187):

$$u_3(x) = p_{31}(x) - \frac{p_{31}(\omega_n)}{p_{32}(\omega_n)} \cdot p_{32}(x)$$
 (3.1)

Форма поперечных сил определяется уравнением:

$$u_4(x) = p_{41}(x) - \frac{p_{31}(\omega_n)}{p_{32}(\omega_n)} \cdot p_{42}(x)$$
 (3.2)

Используя программный комплекс Mathcad, получаем графики формы изгибающего момента и формы поперечных сил для заданного варианта ракеты для первых двух собственных частот.

Рисунок 3.1 - Форма изгибающего момента заданного варианта ракеты

Рисунок 3.2 - Форма поперечных сил заданного варианта ракеты

4.1. Определение собственных частот для полностью заправленной ракеты и «сухой» ракеты

Рассмотрим распределения погонных масс и жесткостей для <u>полностью</u> заправленной и «сухой» ракет. В Таблице 3 представлены данные распределения погонных масс и жесткостей для заправленной ракеты. В таблице 4 представлены данные распределения погонных масс и жесткостей для «сухой» ракеты.

Таблица 3: Данные распределения погонных масс и жесткости для заправленной ракеты

№ участка	1	2	3	4	5	6	7	8	9	10	11	12	13
x_i , M	1.4	1.5	1.16	3	4	6	8	9	12	14.9	15	15.1	18
m_i , $\frac{\mathrm{K}\Gamma}{\mathrm{M}}$	30	6030	6060	60	40	3500	3500	50	2500	2500	7500	5050	50
$EJ_i, \frac{MH}{M^2}$	40	40	90	90	60	44	44	60	55	55	55	60	60

Таблица 4: Данные распределения погонных масс и жесткости для «сухой» ракеты

№ участка	1	2	3	4	5	6	7	8	9	10	11	12	13
x_i , M	1.4	1.5	1.16	3	4	6	8	9	12	14.9	15	15.1	18
$m_i, \frac{\mathrm{K}\Gamma}{\mathrm{M}}$	30	6030	6060	60	40	30	30	50	35	35	5050	5050	50
$EJ_i, \frac{MH}{M^2}$	40	40	90	90	60	44	44	60	55	55	55	60	60

Используя программный комплекс Mathcad, по ранее описанному алгоритму (см. пункт 1) получаем частоты собственных колебаний:

	Полностью заправленная	«Сухая» ракета
	ракета	
1ый тон	$\omega_1 = 18.88$ рад/с	$\omega_1 = 64.007$ рад/с
2ой тон	$\omega_2 = 43.686$ рад/с	$\omega_2 = 203.85$ рад/с

4.2. Построение эпюр формы упругой линии и угла поворота сечений для каждого тона колебаний сечения

Используя программный комплекс Mathcad и ранее описанный алгоритм определения форм колебаний и угла поворота (см. пункт 2), получаем графики

формы колебаний и формы угла поворота для вариантов полностью заполненной ракеты и «сухой» ракеты для первых двух собственных частот.

Рис.5: Форма колебаний полностью заполненной ракеты

Рис.6: Форма колебаний «сухой» ракеты

Рис. 7: Форма угла поворота полностью заполненной ракеты

Рис.8: Форма угла поворота «сухой» ракеты

4.3. Построение эпюр изгибающих моментов и поперечных сил

Используя программный комплекс Mathcad и алгоритм определения форм изгибающего момента и поперечных сил (см. пункт 3), получаем графики формы изгибающего момента и формы поперечных сил для вариантов полностью заполненной ракеты и «сухой» ракеты для первых двух собственных частот.

Рис.9: Форма изгибающего момента полностью заполненной ракеты

Рис.10: Форма изгибающего момента «сухой» ракеты

Рис.11: Форма поперечных сил полностью заполненной ракеты

Рис.12: Форма поперечных сил «сухой» ракеты

5. Вычисление значений приведенных масс для расчетных случаев Коэффициент приведенной массы определяется по формуле:

$$m_n = \int_0^L m(x) f_n^2 dx \tag{5.1}$$

где m(x) — погонная масса.

Используя программный комплекс Mathcad и формулу (5.1) определим коэффициенты приведенных масс и сведем в таблицу 5 все полученные значения.

Таблица 5: Коэффициенты приведенной массы

	Первый тон	Второй тон
Заданный вариант ракеты	1145	8447
Полностью заправленная ракета	1728	1870
«Сухая» ракета	1190	810.236

Решение ДЗ№2

1. Оценка устойчивости движения упругой ракеты по заданной траектории

Рис. 1: Универсальная диаграмма устойчивости

Для того, чтобы параметры объекта регулирования были расположены в области устойчивости, необходимо, чтобы выполнились следующие условия:

- 1. Для первого тона колебаний $f_n(x_p) \cdot f_n'(x_r) > 0$, для второго тона колебаний $f_n(x_p) \cdot f_n'(x_r) < 0$;
- 2. $\omega_0 < \omega_1 < \omega_{\pi}$, $\omega_{\pi} < \omega_2 < \omega_{2\pi}$

Проверим выполнение первого условия:

Для первого тона: $f_1(x_p) \cdot f_1'(x_r) < 0$, что означает невыполнение условия устойчивости.

Для второго тона: $f_2(x_p) \cdot f_2'(x_r) > 0$, что означает невыполнение условия устойчивости.

Первое условие не выполняется.

Проверим выполнение второго условия, используя исходные данные и полученные в первой части ДЗ результаты значений собственных частот:

$$\omega_1 = 8.091 \ {
m pag/c}$$
 $\omega_2 = 30.683 \ {
m pag/c}$
 $\omega_0 = 10 \ {
m pag/c}$
 $\omega_\pi = 70 \ {
m pag/c}$
 $\omega_{2\pi} = 120 \ {
m pag/c}$

Первое двойное неравенство $\omega_0 < \omega_1 < \omega_\pi$ примет вид:

Это неверно, неравенство не выполняется.

Второе двойное неравенство $\omega_{\pi} < \omega_{2} < \omega_{2\pi}$ примет вид:

Это неверно, неравенство не выполняется.

Следовательно, ракета не устойчива.

2.1. Уточнение границ смежной неустойчивости

Найдем собственные частоты первых двух тонов колебаний ракеты по мере ее опустошения (в начале опустошения рассматриваем каждый случай, когда бак опустошается на 10%, когда в баках остается по 30% от начального объёма топлива, начинаем рассматривать каждый случай уменьшения на 5%).

Рис. 2: Диаграмма устойчивости по мере опустошения ракеты

Заметим, что для первого тона собственных колебаний ракеты выполняется условие $\omega_0 < \omega_1 < \omega_\pi$ для случая «сухой» ракеты и ракеты, заполненной топливом на 5%, 10% и 15% от первоначального объема заполнения баков.

Для второго тона собственных колебаний выполняется одно из определяющих устойчивость ракеты неравенств $\omega_{\pi} < \omega_2 < \omega_{2\pi}$ для случая «сухой» ракеты и ракеты, заполненной топливом на 5% и 10% от первоначального объема заполнения баков.

Таким образом второе условие устойчивости выполняется только для сухой ракеты и ракеты, заполненной на 10% и меньше от начального объема топлива.

Выразим тогда координату зеркала жидкости в момент перехода от неустойчивой ракеты к устойчивой:

- для жидкости в баке окислителя

$$x_4 = x_3 + (x_5 - x_3) \cdot (1 - 0.1)$$

 $x_4 = 5 + (13 - 5) \cdot 0.9$
 $x_4 = 12.2$

- для жидкости в баке горючего

$$x_6 = x_5 + (x_7 - x_5) \cdot (1 - 0.1)$$

 $x_6 = 13 + (20 - 13) \cdot 0.9$
 $x_6 = 19.3$

При этом первое условие устойчивости не выполняется, по построенной диаграмме устойчивости (рис. 2) для первого тона $f_n(x_p) \cdot f'_n(x_r) < 0$, для второго тона колебаний $f_n(x_p) \cdot f'_n(x_r) > 0$, а должно быть полностью наоборот. Поэтому необходимо сменить положение гироскопической платформы.

Найдем куда следует переместить гироплатформу, для этого введем вспомогательную функцию $\varphi_n(x) = f_n(x_p) \cdot f'_n(x)$. Далее построим ее график для первых двух тонов колебания для сухой ракеты, и для заполненных на 10% баков.

Рис. 3: График функции $\varphi_n(x)$ для первого тона колебаний в случае заполненных на 10% баков

Рис. 4: График функции $\phi_n(x)$ для второго тона колебаний в случае заполненных на 10% баков

Рис. 5: График функции $\varphi_n(x)$ для первого тона колебаний в случае «сухой» ракеты

Рис. 6: График функции $\varphi_n(x)$ для второго тона колебаний в случае «сухой» ракеты Найдем корни уравнения $\varphi_n(x)=0$ для различных случаев, описанных выше, с помощью программы Mathcad.

Вариант заполнения	$X_{\Gamma\Pi \; min}$	$X_{\Gamma\Pi \ max}$
$\omega_{ extsf{1}}$, 10% заполнения баков	11.368	23
ω_2 , 10% заполнения баков	7.569	17.147
ω_1 , "сухая" ракета	11.302	23
ω_2 , "сухая" ракета	6.857	16.494

Таблица 1: Граничные значения возможной координаты гироплатформы Рассмотрим значения функции $\varphi_n(x)$ при условии того, что гироскопическую платформу разместим в межбаковом отсеке ($X_{\Gamma\Pi} = 13$).

$X_{\Gamma\Pi} = 13$	$\varphi_n(x)$
ω_1 , 10% заполнения баков	0.096
ω_2 , 10% заполнения баков	-1.184
ω_1 , "сухая" ракета	0.116
ω_2 , "сухая" ракета	-0.297

Таблица 2: Значения функции $\varphi_n(x)$ при постановке гироплатформы в межбаковый отсек, то есть при значении координаты $X_{\Gamma\Pi}=13$

То есть можно поставить гироплатформу в межбаковый отсек, так как в этом случае выполняется условие устойчивости 1:

Для первого тона колебаний $f_n(x_p) \cdot f_n'(x_r) > 0$, для второго тона колебаний $f_n(x_p) \cdot f_n'(x_r) < 0$.

2.2. Задание требований к автомату стабилизации (АС)

Чтоб выполнить ракету более устойчивой, необходимо уменьшить частоту среза ω_0 . Это достигается тем, что задаются особые требования к автомату стабилизации. Например, необходимо изменить коэффициент динамичности автомата стабилизации k.

Также следует сделать ракету конструктивно более устойчивой, чего можно достичь при добавлении силовых шпангоутов, создание гасителей колебаний в баках (как пример, УР-100).