Rappel

карре і				
Fonction	f(x)	Dérivable sur	f'(x)	
constante				
identité				
affine				
carrée				
cube				
inverse				
racine carrée				

Rappels: Soient u et v deux fonctions définies et dérivables sur un intervalle I. Alors:

$$(uv)' = \underline{\hspace{1cm}}$$

$$(\frac{1}{u})' = \underline{\hspace{1cm}}$$

Propriété : Soient u et v deux fonctions définies et dérivables sur un intervalle I tel que v ne s'annulle pas sur I. Alors $\frac{u}{v}$ est dérivable sur I et on a :

$$\left(rac{u}{v}
ight)' = rac{u'v - uv'}{v^2}$$

E2 Considérons la fonction f définie sur]-3 ; $+\infty[$ par $f(x)=rac{x^2-3x+1}{x+3}$.

- 1. Posons $u(x) = x^2 3x + 1$ et v(x) = x + 3. Calculez u'(x) et v'(x).
- 2. En déduire f'(x).

E3 Calculez la dérivée de chaque fonction

$$f(x)=rac{2x^3-7x}{x^2+1}$$
 sur $\mathbb R$ $g(x)=rac{6x+2}{\sqrt{x}}$ sur $]0;+\infty$

suivante : $f(x)=\frac{2x^3-7x}{x^2+1} \text{ sur } \mathbb{R} \qquad g(x)=\frac{6x+2}{\sqrt{x}} \text{ sur }]0;+\infty[$ E4 Soit f la fonction définie sur $]\frac{2}{3};+\infty[$ par $f(x)=\frac{(3x-5)(x-2)}{2-3x}$.

a. Notons $u_1(x) = 3x - 5$, $u_2(x) = x - 2$, u(x) = (3x-5)(x-2) et v(x) = 2-3x.

Calculez $u'_1(x)$, $u'_2(x)$, u'(x) et v'(x).

- **b.** En déduire f'(x).
- c. Montrez que $f(x)=-x+3+rac{4}{2-3x}$.
- **d.** En déduire une autre manière de calculer f'(x).

Rappel: Soit f une fonction définie et dérivable sur un intervalle I. L'équation de sa tangente au point d'abscisse a est donnée par :

Pour chaque fonction suivante, déterminez l'équation de la tangente au point d'abscisse -1

$$f(x)=rac{2x^2-3x+1}{x+3}$$

$$g(x)=rac{6x+2}{x^3-8}$$

Tracez la tangente en -1 à la courbe représentative de la fonction f ci-dessous.

Rappel: Soit $f(x) = ax^2 + bx + c$ une fonction polynômiale du second degré. Si elles possède deux racines réelles x_1 et x_2 , alors :

$$\Delta = \underline{\hspace{1cm}}$$

$$x_1 = \underline{\hspace{1cm}}$$

$$x_2 =$$

E6 Pour chaque fonction suivante, déterminez sa variation sur son ensemble de définition. $f(x)=rac{4x+2}{5x-3}$ $g(x)=rac{3x^2-2x+1}{x^2+1}$

Repasse en bleu la courbe de fonction f et en rouge la courbe de q.

Propriété : Si g est une fonction dérivable sur un intervalle I et si J est un intervalle tel que pour tout réel x de J, ax+bappartient à I, alors la fonction f définie sur J par f(x)=g(ax+b) est dérivable sur J. De plus, pour tout x de J, $f'(x) = a \times g'(ax + b)$.

Pour chaque fonction suivante, déterminez sa dérivée :

$$f(x)=\sqrt{3x+1}$$
 pour $g(x)=(2x-5)^3$ pour $x>-rac{1}{2}.$ tout réel $x.$

$$g(x)=(2x-5)^3$$
 pour tout réel x .

Propriété : Soit n un entier relatif non nul. La fonction f définie par $f(x)=x^n$ est dérivable et pour tout réel x, $f'(x)=nx^{n-1}$.

- Si n>0 alors f est définie et dérivable sur $\mathbb R$.
- Si n<0 alors f est définie et dérivable sur $]-\infty;0[$ et sur $]0;+\infty[$.

Pour chaque fonction suivante, déterminez sa dérivée :

 $f(x)=x^4$ pour tout $g(x)=rac{1}{x^2}$ pour x
eq 0 . réel x .