WHAT IS CLAIMED:

15

1. A compound represented by formula I:

$$R^{1b}$$
 $(CR^{2}R^{3})_{d}$ -X- $(CR^{4}R^{5})_{e}$ -Y

 R^{1a}
 R^{1a}
 I

5 and the pharmaceutically acceptable salts, esters and solvates thereof wherein:

"a" is an integer selected from 1, 2 and 3; and b and c are each integers independently selected from 0, 1 and 2;

"A" represents a methylene or ethylene group;

each R^{1a} is independently selected from the group consisting of: -H, -F, -Cl, -Br,

10 -C₁₋₆alkyl, -CN, -OH, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkoxy, -N(Ra)₂, -C₁₋₆ alkylN(Ra)₂, -NHC(O)C₁₋₄alkyl, -C(O)NHC₁₋₄alkyl and -C(O)N(C₁₋₄alkyl)₂;

each R1b is independently selected from the group consisting of: -H, -F,

 $-C_{1-6} \ alkyl, \ -OH, \ -OC_{1-6} \ alkyl, \ -fluoroC_{1-6} alkyl, \ -fluoroC_{1-6} alkoxy, \ -N(R^a)_2 and \ -C_{1-6} alkylN(R^a), \ -N(R^a)_2 and \ -C_{1-6} alkylN(R^a)_2 and \ -C_{1-$

or one R1b group can represent oxo and the other is as previously defined;

R¹ represents -H or is selected from the group consisting of:

a) halo, -OH, -CO₂R^a, -C(O)NR^aR^b, -C(O)-Hetcy¹, -N(R^a)₂, -S(O)₂NR^aR^b, -NO₂, -SO₂NR^bC(O)R^a, -NR^bSO₂R^a, -NR^bC(O)R^a, -C(O)SO₂NR^aR^b, -NR^bC(O)NR^aR^b, -NR^bCO₂R^a, -OC(O)NR^aR^b, -C(O)NR^aR^b, -CN, -S(O)_nR^a and -OSO₂R^a.

b) -C₁₋₁₀alkyl, -C₂₋₁₀alkenyl, -C₂₋₁₀alkynyl, -OC₁₋₁₀alkyl, -OC₃₋₁₀alkenyl and
 20 -OC₃₋₁₀alkynyl, said groups being optionally substituted with: -OH, -CO₂R^a, -C(O)NR^aR^b, -C(O)N(R^a)C₁-6alkenyl, -C(O)N(R^a)C₁-6alkynyl, -C(O)-Hetcy¹, -N(R^a)₂, -S(O)₂NR^aR^b, -SO₂NR^bC(O)R^a, -NR^bC(O)R^a, -C(O)SO₂NR^aR^b, -NR^bC(O)NR^aR^b, -NR^bCO₂R^a, -OC(O)NR^aR^b, -C(O)NR^bNR^aR^b, -S(O)_pR^a, Aryl, HAR, -Hetcy¹, and up to 5 fluoro groups, wherein Hetcy¹ is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and γ-lactam;

c) Aryl or HAR optionally substituted with 1-2 members selected from the group consisting of: -F, -Cl, -Br, -C₁₋₆ alkyl, -CN, -OH, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -N(C₁₋₄ alkyl)₂, -C₁₋₆ alkylNH₂, -C₁₋₆ alkylNHC₁₋₄ alkyl, -C₁₋₆ alkylN(C₁₋₄ alkyl)₂, -C₁₋₆ alkyl-CN, -NHC(O)C₁₋₄ alkyl, -C(O)NHC₁₋₄ alkyl and -C(O)N(C₁₋₄ alkyl)₂;

"d" and "e" are each integers independently selected from 0, 1, 2 and 3, such that the sum of d plus e is 1-6;

each p independently represents an integer selected from 0, 1 and 2;

X represents a bond, or is selected from the group consisting of -O-, $-S(O)_p$ - and -NRa-; R^2 , R^3 , R^4 and R^5 are each independently selected from the group consisting of -H, $-C_{1-6}$

alkyl, -OC₁₋₆alkyl, -OH, -fluoro, -fluoroC₁₋₆alkyl, -fluoroC₁₋₆alkoxy, -N(Ra)₂, and

5

10

15

0-1 of CR²R³ and 0-1 of CR⁴R⁵ can represent a group selected from carbonyl, thiocarbonyl, C=NR^a and a 3-7 membered cycloalkyl ring,

provided that when X represents -S(O)_p-, and p is 1 or 2, the CR²R³ and CR⁴R⁵ groups adjacent to X represent moieties other than carbonyl, thiocarbonyl and C=NR^a and

further provided that when X is -O- or -NRa-, at least one of CR²R³ and CR⁴R⁵ adjacent to X represents a moiety other than carbonyl, thiocarbonyl and C=NRa;

Y is selected from the group consisting of Aryl, HAR and Hetcy, wherein each is optionally mono-substituted or di-substituted with R¹a;

each Ra is independently selected from the group consisting of -H and:

- 20 (b) -C₁₋₁₀alkyl, -C₃₋₁₀alkenyl, or -C₃₋₁₀alkynyl, optionally substituted with 1-3 fluoro groups or 1-2 members selected from the group consisting of: -OH, -OC₁₋₆alkyl, -CN, -NH₂, -NHC₁₋₄alkyl, and -N(C₁₋₄alkyl)₂;
 - (b) Aryl or Ar- C_{1-6} alkyl-, the aryl portions being optionally substituted with 1-2 of - C_{1-6} alkyl, -CN, -OH, - OC_{1-6} alkyl, -fluoro C_{1-6} alkyl, -fluoro C_{1-6} alkyl, -CN, - CI_{1-6} alkyl, - $CI_$
- -C₁₋₆alkylNHC₁₋₄alkyl, -C₁₋₆alkylN(C₁₋₄alkyl)₂, -NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -NHC(O)C₁₋₄alkyl,
 -C(O)NHC₁₋₄alkyl, -C(O)N(C₁₋₄alkyl)₂, -CO₂H and -CO₂C₁₋₆alkyl groups, and 1-3 -F, -Cl or -Br groups;
 and the alkyl portion of Ar-C₁₋₆alkyl- being optionally substituted with -OH,
 -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, and 1-3 fluoro groups;
- (c) Hetcy or Hetcy-C₁₋₆alkyl-, each being optionally substituted on carbon with 1-2 members selected from the group consisting of: -F, -OH, -CO₂H, -C₁₋₆alkyl, -CO₂C₁₋₆alkyl, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -NHC(O)C₁₋₄alkyl, oxo, -C(O)NHC₁₋₄alkyl and -C(O)N(C₁₋₄alkyl)₂; and optionally substituted on nitrogen when present with -C₁₋₆alkyl or -C₁₋₆acyl; and

the alkyl portion of Hetcy- C_{1-6} alkyl- being optionally substituted with 1-2 of: -F, -OH, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl and -N(C_{1-4} alkyl)₂;

(d) HAR or HAR-C₁₋₆alkyl-, said HAR and HAR portion of HAR-C₁₋₆alkyl- being substituted with 1-2 members selected from the group consisting of: -F, -Cl, -Br, -C₁₋₆ alkyl, -CN, -OH, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkoxy NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -NHC(O)C₁₋₄alkyl, -C(O)NHC₁₋₄alkyl, -C(O)N(C₁₋₄alkyl)₂, -CO₂H, -CO₂C₁₋₆alkyl; and

5

10

15

the alkyl portion of HAR- C_{1-6} alkyl- being optionally substituted with 1-2 of: -F, -OH, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl and -N(C_{1-4} alkyl)₂;

each R^b is independently selected from the group consisting of: -H, -NH₂, and -C₁₋₁₀alkyl optionally substituted with members selected from the group consisting of 1-3 fluoro groups and 1-2 of -OH, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl and -N(C₁₋₄alkyl)₂;

and when present in the same moiety, (a) R^a and R^b, (b) two R^a groups or (c) two R^b groups can be taken in combination with the atom or atoms to which they are attached and any intervening atoms and represent a 4-7 membered ring containing 0-3 heteroatoms selected from O, S(O)_p and N, and the 4-7 membered ring may be optionally substituted with a member selected from the group consisting of -C₁₋₆alkyl, -C₂₋₆acyl and oxo.

2. The compound of claim 1 having structural formula Ia:

and the pharmaceutically acceptable salts, esters and solvates thereof, wherein "a" is an integer selected from 1, 2 and 3; and b and c are each integers independently selected from 0, 1 and 2; provided that the sum of "a" + b + c is from 1 to 5.

- 3. The compound of claim 2 wherein "a" is an integer selected from 1 and 2; and one of b and c is 0 (zero) and the other is 1.
 - 4. The compound of claim 1 having structural formula Ib:

5

and the pharmaceutically acceptable salts, esters and solvates thereof wherein: "a" is an integer selected from 2 and 3; and b and c are integers independently selected from 0 and 1; provided that the sum of "a" + b + c is from 2 to 4.

- The compound of claim 4 wherein "a" is 2, and b and c are integers selected from 0 and 1.
 - 6. The compound of claim 5 wherein "a" is 2, b is 1 and c is 0 or 1.
- 7. The compound of claim 1 wherein three R^{1a} groups shown in the generic structural drawing of formula I, represent -H and one R^{1a} group is selected from the group consisting of: -F, -Cl, -C₁₋₆ alkyl, -CN, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkoxy, -N(R^a)₂, -C₁₋₆ alkylN(R^a)₂, -NHC(O)C₁₋₄alkyl, -C(O)NHC₁₋₄alkyl and -C(O)N(C₁₋₄alkyl)₂.
- 20 8. The compound of claim 1 wherein one R^{1b} represents -H and the other R^{1b} is selected from the group consisting of: -H, -F, -C₁₋₆alkyl, -OH, -OC₁₋₆alkyl, -fluoroC₁₋₆alkyl, -fluoroC₁₋₆alkyl, -fluoroC₁₋₆alkyl, -N(R^a)₂ and -C₁₋₆alkylN(R^a)₂ and oxo.

- 9. The compound of claim 8 wherein both R^{1b} groups represent -H.
- 10. The compound of claim 1 wherein R¹ represents a member selected from the group consisting of:
- 5 a) $-C(O)NR^aR^b$, $-C(O)-Hetcy^1$, $-N(R^a)_2$, $-S(O)_2NR^aR^b$, $-SO_2NR^bC(O)R^a$, $-NR^bSO_2R^a$, $-NR^bC(O)R^a$, -CN, $-S(O)_pR^a$ and $-OSO_2R^a$;
 - b) -C₁₋₁₀alkyl, -C₃₋₆alkenyl, -C₃₋₆alkynyl, -OC₁₋₁₀alkyl, -OC₃₋₆alkenyl and -OC₃₋₁₀alkynyl, said groups being optionally substituted with a member selected form the group consisting of: -CO₂R^a, -C(O)NR^aR^b, -C(O)N(Ra)C₁₋₆alkenyl, -C(O)N(Ra)C₁₋₆alkynyl, -C(O)-Hetcy¹, -N(Ra)₂, -S(O)₂NRa, -C(O)₂NRa, -C(O)₃₋₆alkynyl, -C(O)-Hetcyl, -N(Ra)₂, -S(O)₂NRa, -C(O)₃₋₆alkynyl, -C(O)-Hetcyl, -N(Ra)₂, -S(O)₃NRa, -C(O)₃₋₆alkynyl, -C(O)-Hetcyl, -N(Ra)₃₋₆alkynyl, -C(O)-Hetcyl, -N(Ra
- SO₂NR^bC(O)R^a, -NR^bSO₂R^a, NR^bC(O)R^a, -S(O)_pR^a, Aryl, HAR, -Hetcy¹, and up to 5 fluoro groups; and c) HAR optionally substituted with 1-2 members selected from the group consisting of:
 -F, -Cl, -Br, -C₁₋₆ alkyl, -CN, -OH, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkoxy, -NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -C₁₋₆alkylNH₂, -C₁₋₆alkyl-NHC₁₋₄alkyl, -C₁₋₆alkylN(C₁₋₄alkyl)₂, -C₁₋₆alkyl-CN,
 -NHC(O)C₁₋₄alkyl, -C(O)NHC₁₋₄alkyl and -C(O)N(C₁₋₄alkyl)₂.

15

- 11. The compound of claim 1 wherein d and e are integers independently selected from 0, 1, 2 and 3, provided that the sum of d plus e is 1-3.
 - 12. The compound of claim 1 wherein X represents a bond, -O- or -S(O) $_p$ -.

20

- 13. The compound of claim 1 wherein R^2 , R^3 , R^4 and R^5 are independently selected from the group consisting of -H, -C₁₋₆ alkyl, -OC₁₋₆alkyl, -OH, -fluoro, -fluoroC₁₋₆alkyl, -fluoroC₁₋₆alkoxy and -N(R^a)₂.
- 25 14. The compound of claim 1 wherein -(CR²R³)_d-X-C(R⁴R⁵)_e- represents a member selected from the group consisting of -O-CH₂- and -CH₂CH₂-.
 - 15. The compound of claim 1 wherein Y represents HAR.
- The compound of claim 15 wherein Y represents HAR selected from the group consisting of:

wherein Z represents O, S or NH; and Z^1 represents O or S.

17. The compound of claim 15 wherein Y is HAR selected from the group consisting

of:

- 18. The compound of claim 1 wherein each Ra is independently selected from the group consisting of -H and:
- (a) -C₁-4alkyl, C₃-6cycloalkyl, C₃-6alkenyl, C₃-6alkynyl, each optionally substituted with 1-3 fluoro groups or a member selected from the group consisting of: -OC₁-6alkyl, -CN, -NH₂, -NHC₁-4alkyl and -N(C₁-4alkyl)₂;

5

10

15

(b) Aryl or Ar-C₁₋₆alkyl-, the aryl portions being optionally substituted with a member selected from -F, -Cl, -C₁₋₄ alkyl, -CN, -OC₁₋₆ alkyl, -fluoroC₁₋₄ alkyl, -fluoroC₁₋₄alkoxy, -C₁₋₄alkylNHC₁₋₄ alkyl, -C₁₋₄ alkylN(C₁₋₄alkyl)₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -NHC(O)C₁₋₄alkyl, -C(O)NHC₁₋₄alkyl, -C(O)N(C₁₋₄alkyl)₂, -CO₂H, and -CO₂C₁₋₆alkyl;

and the alkyl portion of Ar-C₁₋₆alkyl- being optionally substituted with -F, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂;

(c) Hetcy or Hetcy- C_{1-6} alkyl-, each being optionally substituted on carbon with 1-2 members selected from the group consisting of: -F, -CO₂H, -C₁₋₆alkyl, -CO₂C₁₋₆alkyl, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -NHC(O)C₁₋₄alkyl, oxo, -C(O)NHC₁₋₄alkyl and -C(O)N(C₁₋₄alkyl)₂; and on nitrogen, when present, with -C₁₋₆alkyl or -C₁₋₆acyl; and

the alkyl portion of Hetcy- C_{1-6} alkyl- being optionally substituted with -F, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl and -N(C₁₋₄alkyl)₂;

(d) HAR or HAR-C₁₋₆alkyl-, said HAR and HAR portion of HAR-C₁₋₆alkyl20 optionally substituted with -F, -Cl, -Br, -C₁₋₆ alkyl, -CN, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkoxyNH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -NHC(O)C₁₋₄alkyl, -C(O)NHC₁₋₄alkyl, -C(O)N(C₁₋₄alkyl)₂, -CO₂H, -CO₂C₁₋₆alkyl; and

the alkyl portion of HAR-C₁₋₆alkyl- being optionally substituted with -F, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl and -N(C₁₋₄alkyl)₂.

- The compound of claim 1 wherein each Rb is selected from the group consisting
 of -H and -C₁₋₁₀alkyl optionally substituted with 1-3 fluoro groups.
 - 20. The compound of claim 1 wherein:

is selected from the group consisting of:

-(CR^2R^3)_d-X-(CR^4R^5)_e-Y-(R^{1a})₂ is selected from the group consisting of:

and R1 is selected from the group consisting of:

21. The compound of claim 1 having structural formula Ic:

wherein d is 0 (zero); e is 1; X is -O-; R4 and R5 are both -H; Y is selected from the group consisting of

wherein Z represents O, S or NH; and Z¹ represents O or S;

R¹ is selected from the group consisting of:

5

10

15

- a) -OC(O)NR^aR^b, and -C(O)NR^aR^b;
- b) C₁₋₃alkyl substituted with a member selected from: -C(O)-NRaRband -C(O)-Hetcy¹; and c) HAR optionally substituted with 1-2 members selected from the group consisting of: -F, -Cl, -C₁₋₆ alkyl, -CN, -OH, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkoxy, -NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -C₁₋₆alkylNH₂, -C₁₋₆alkyl-NHC₁₋₄alkyl, -C₁₋₆alkylN(C₁₋₄alkyl)₂, -C₁₋₆alkyl-CN, -NHC(O)C₁₋₄alkyl, -C(O)NHC₁₋₄alkyl and -C(O)N(C₁₋₄alkyl)₂.
 - 22. The compound of claim 21 wherein: Y is selected from the group consisting of

when R1 is HAR, HAR is selected from:

wherein R^6 is selected from -H, -C₁₋₃alkyl, -C₃₋₆cycloalkyl, -F and -Cl; R^a is selected from (a) -C₁₋₄-alkyl and C₃₋₆cycloalkyl, each optionally substituted with 1-3 fluoro groups or a member selected from the group consisting of: -OC₁₋₆alkyl, -CN, -NH₂, -NHC₁₋₄alkyl and -N(C₁₋₄alkyl)₂, (b) Hetcy¹ and (c) pyridinyl; and R^b is -H.

23. The compound of claim 1 selected from the group consisting of:

	<u>Y</u>	<u>R</u> 1 N-NH
a)	, se N	-§-NH
b)	7.75 N	
с)	is N	HN— - EX— CI
d)	J. N.	N=N CH3
e)	- Joseph N	CH ₃ Service CH ₃ N=N
f)	355 N	-§-O H N N N
g)	35 N	N-NH O S
h)	Set N	N CN
i)	- No Control of the C	-\{-0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
j)	- F-N-S	
k)	- Se	
1)		N=N

m)	- EN	CH ₃
n)		-§-CH ₂ H N √
0)	-}-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HN————————————————————————————————————
p)	- FOR S	

and the pharmaceutically acceptable salts and solvates thereof.

5

15

24. A pharmaceutical composition comprised of a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.

25. A method for preventing the synthesis, the action, or the release of leukotrienes in a patient which comprises administering to the patient an effective amount of a compound of claim 1.

- 26. A method for treating a leukotriene-mediated medical condition comprising administering a therapeutically effective amount of a compound of claim 1 to a patient in need of such treatment.
 - 27. A method for treating an inflammatory condition comprising administering a therapeutically effective amount of a compound of claim 1 to a patient in need of such treatment.
 - 28. A method for treating atherosclerosis comprising administering a therapeutically effective amount of a compound of claim 1 to a patient in need of such treatment.
- 29. The method of claim 28 for halting or slowing atherosclerotic plaque 20 progression.
 - 30. The method of claim 28 for effecting regression of atherosclerotic plaque.

31. The method of claim 28 for preventing or reducing the risk of atherosclerotic plaque rupture in a patient having atherosclerotic plaque.

- 5 32. A method of preventing or reducing the risk for a leukotriene-mediated medical condition comprising administering a prophylactically effective amount of a compound of claim 1 to a patient in need of such treatment.
- 33. A method for preventing or reducing the risk of developing atherosclerosis comprising administering a prophylactically effective amount of a compound of claim 1 to a patient at risk for developing atherosclerosis.

15

20

- 34. A method for preventing or reducing the risk of an atherosclerotic disease event comprising administering a prophylactically effective amount of a compound of claim 1 to a patient at risk for having an atherosclerotic disease event.
- 35. The method of treating atherosclerosis of claim 28 further comprising administering to the patient a compound selected from the group consisting of an HMG-CoA reductase inhibitor, cholesterol absorption inhibitor, CETP inhibitor, PPAR α agonist, PPAR α agonist, PPAR dual α/γ agonist, and combinations thereof.