

COLÉGIO ESTADUAL CÍVICO MILITAR MONTEIRO LOBATO ENSINO FUNDAMENTAL E MÉDIO

1° ATIVIDADE DE FÍSICA – 3° TRIMESTE

Nome: NNOME		No: NNUM
Série: SSERIE ° E.M.	Turma: TTURMA	Data: 01/10/2025

Para resolver as questões a seguir, considere os seguintes dados:

Aceleração da gravidade: $g=10~\mathrm{m/s^2}$. Densidade da água: $\rho_{\mathrm{água}}=1000~\mathrm{kg/m^3}$. Área do círculo: $A=\pi R^2$ $\pi\approx 3$ $\sqrt{2}\approx 1.4$

Questão

Uma prensa hidráulica possui pistões com diâmetros 10 cm e 20 cm. Se uma força de 120 N atua sobre o pistão menor, pode-se afirmar que essa prensa estará em equilíbrio quando sobre o pistão maior atuar uma força de:

- () 30 N
- () 60 N
- () 480 N
- () 240 N
- () 120 N

Questão 2

Uma prensa hidráulica sofre uma força de 450 N em seu pistão maior. Sabendo que é aplicada uma força de 125 N no seu pistão menor com área de 5 m^2 , determine a área do pistão maior.

- $() 15 \text{ m}^2.$
- () 18 m².
- () 20 m^2 .
- () 24 m².
- () 32 m².

Questão

Uma força F_1 de 1000 N é aplicada sobre uma área A_1 de 2 m² resultando em uma pressão p_1 . Depois é aplicada uma força F_2 de 2500 N sobre uma área A_2 . Em vista disso, calcule a área A_2 , sabendo que a pressão p_1 é igual a p_2 .

- () 3 m^2 .
- () 4 m².
- $() 5 m^2.$
- $() 6 m^2.$
- () 7 m^2 .

Questão 4

Qual a variação de pressão sobre um mergulhador que está a uma profundidade de 100 metros, considerando que densidade da água é 1000 kg/m^3 ?

- $(7,2\times10^5 \text{ Pa.})$
- () 8.6×10^5 Pa.
- () 9.2×10^5 Pa.
- () 9.8×10^5 Pa.
- () 10×10^5 Pa.

Questão :

Um béquer possui 800 cm^3 de mercúrio. Calcule a massa de mercúrio, em gramas, sabendo que a sua densidade é de $13,6 \text{ g/cm}^3$.

- () 10 880.
- () 1088.
- () 108,8.
- () 10,88.
- () 1,088.

Questão

6

Qual o volume de água deslocado por um bloco de 5 kg, sabendo que a força de empuxo e a força peso sobre ele estão em equilíbrio? Considere a densidade da água como 1000 kg/m^3 ?

- $() 0.003 \text{ m}^3.$
- $() 0.004 \text{ m}^3.$
- $() 0,005 \text{ m}^3.$
- $() 0,006 \text{ m}^3.$
- $() 0,007 \text{ m}^3.$

Questão

Para preparar um remédio, um farmacêutico necessita de 32 g de uma solução líquida. Como sua balança está avariada, ele verifica em uma tabela que a densidade da solução é $0.8~\rm g/cm^3$ e, recorrendo a um simples cálculo, conclui que os 32 g da solução poderiam ser obtidos medindo-se um volume de:

- $() 16 \text{ cm}^3.$
- $() 4 cm^3.$
- () 32 cm^3 .
- () 8 cm^3 .
- () 40 cm³.

Questão

Um balão de hidrogênio de peso igual a 600 N está preso a um fio em equilíbrio estático vertical. Seu volume é igual a 80 m³. Densidade do ar: $d_{\rm ar}=1,25~{\rm kg/m}^3$.

a) Use a figura abaixo para determinar o diagrama de forças;

b) Determine a densidade do balão;

c) Determine o empuxo exercido pelo ar sobre o balão;

d) Determine a tração no fio que sustenta o balão.