Cours de thermodynamique

Julien FAUCHER

27 octobre 2014

Sommaire

1	Le s	second principe de la thermodynamique]
	1.1	Définitions	
	1.2	Définition de l'entropie	
	1.3	Énoncé du second principe de la thermodynamique	
	1.4	Causes possibles de l'irréversibilité	
		1.4.1 Forces de frottement	
		1.4.2 Échanges thermiques	
		1.4.3 Mélange de deux gaz	
	1.5	Exemple : détente de Joule-Gay-Lussac	

4 SOMMAIRE

Chapitre 1

Le second principe de la thermodynamique

1.1 Définitions

Source de chaleur Une source de chaleur est un système fermé n'échangeant de l'énergie que par transfert thermique.

Thermostat Un thermostat est une source de chaleur dont la température est constante $(Q \longrightarrow +\infty)$

1.2 Définition de l'entropie

On rappelle que le premier principe de la thermodynamique donne

$$dU = \delta Q + \delta W$$

Dans le cas d'une transformation réversible (Avec $-PdV = \delta W$). Si on considère une transformation réversible on peut définir le transfert thermique par :

$$\delta Q = TdS$$

Où S est une fonction d'état, extensive et non additive, nommée entropie. L'entropie est donnée en $J.K^{-1}$.

1.3 Énoncé du second principe de la thermodynamique

Pour tout système fermé en contact avec une ou plusieurs sources de chaleur, on peut définir une fonction d'état extensive et non additive S telle que

$$dS = \delta S_e + \delta S_c$$

où δS_e est l'entropie échangée avec la ou les sources de chaleur avec lesquelles le système est en contact. On pourra la définir par

$$\delta S_e = \frac{\delta Q_e}{T_e}$$

Οù

— δQ_e est le transfert thermique reçu par le système.

— T_e est la température de la source de chaleur.

Et où δS_c est l'entropie créée avec

$$\delta S_c \ge 0$$

telle que $\delta S_c = 0$ pour une transformation réversible et $\delta S_c > 0$ si la transformation est irréversible.

On peut donner une formule intégrée du second principe :

$$\Delta S = S_e - S_c = S_f - S_i$$

Avec

$$S_e = \int_A^B \delta S_e = \int_A^B \frac{\delta Q}{T_e}$$

1.4 Causes possibles de l'irréversibilité

1.4.1 Forces de frottement

loi de fourrier Lors d'un frottement, l'énergie mécanique du système n'est pas conservée. Il y a donc irréversibilité.

1.4.2 Échanges thermiques

Lors du processus de diffusion thermique, le courant de diffusion thermique est irréversible (loi de Fourrier)

1.4.3 Mélange de deux gaz

Lors du mélange de deux gaz, il y a diffusion selon la loi de Fick. Ce qui induit, de la même façon que pour la loi de Fourrier, une irréversibilité.

1.5 Exemple : détente de Joule-Gay-Lussac

On travaille avec des parois adiabatiques et rigides. On a donc W=0 et Q=0 donc $\Delta U=0$.

Pour ce qui est de l'entropie, on a $\Delta S = S_e + S_c$ or, les parois sont adiabatiques ¹ donc $S_e = 0$. Par ailleurs, $S_c > 0$ car on travaille sur une réaction irréversible.

On va pouvoir calculer ΔS indépendamment en considérant que c'est une fonction d'état, donc en considérant qu'il existe un chemin réversible amenant au même état final.

Dans ce cas, on a $dS = \frac{\delta Q_{reversible}}{T}$ or, on a aussi $\delta Q_{rev} = -\delta W = PdV$ car $\Delta U = 0$. Or on travaille sur un gaz parfait, donc $P = \frac{nRT}{V}$ et $PdV = nrt \frac{dV}{V}$ donc $dS = nR \frac{dV}{V}$ et on a :

$$\Delta S = \int dS = nR \int_{V_i}^{V_f} \frac{dV}{V} = nR \ln \frac{V_f}{V_i}$$

Remarque : Dans le cas d'une détente, on a toujours $V_f > V_i$ donc $\ln \frac{V_f}{V_i} > 0$ et donc $\Delta S > 0$

^{1.} Les parois ou le système?

Table des figures