

Neural Spectrum and Gradient Similarity

Dmitry Kopitkov and Vadim Indelman Technion – Israel Institute of Technology

October 2019

Introduction

- Expressiveness and generalization of deep models during a GD optimization was recently addressed via Neural Tangent Kernel (NTK) [1]
- In most works this kernel is considered to be time-invariant [1,2], defined entirely by NN architecture and independent of the learning task.
- In contrast, we show empirically that **top** eigenfunctions of NTK align toward the target function learned by NN, and also serve as basis functions for NN output - a function represented by NN is spanned almost completely by them for the entire optimization process. Further, since the learning along top eigenfunctions is typically fast, their alignment with the target function improves the overall optimization performance.

Notations

- Consider a NN $f_{\theta}(X) \colon \mathbb{R}^d \to \mathbb{R}$, training dataset $D = \{ \mathbf{X} = \{X^i \in \mathbb{R}^d \}_{i=1}^N, \mathbf{Y} = \{Y^i \in \mathbb{R}\}_{i=1}^N \}$ and loss: $L(\theta, D) = \frac{1}{N} \sum_{i=1}^{N} l \left[X^{i}, Y^{i}, f_{\theta}(X^{i}) \right], \quad \nabla_{\theta} L(\theta, D) = \frac{1}{N} \sum_{i=1}^{N} l' \left[X^{i}, Y^{i}, f_{\theta}(X^{i}) \right] \cdot \nabla_{\theta} f_{\theta}(X^{i})$
- Define gradient-similarity kernel (NTK) $g_t(X, X') \equiv \nabla_{\theta} f_{\theta_t}(X)^T \cdot \nabla_{\theta} f_{\theta_t}(X')$ and its $N \times N$ Gramian $G_t \equiv g_t(\mathbf{X}, \mathbf{X})$, labels vector $\overline{\mathcal{Y}}$, NN outputs vector $\overline{f_t}$ with entries $f_t(i) = f_{\theta_t}(X^i)$ and a functional derivative vector \overline{m}_t with entries $\overline{m}_t(i) = \ell' \lceil X^i, Y^i, f_{\theta_t}(X^i) \rceil$
- Denote eigenvalues and eigenvectors of G_t by $\{\lambda_i^t\}_{i=1}^N$ and $\{\overline{\mathcal{U}}_i^t\}_{i=1}^N$, with $\lambda_{max}^t \equiv \lambda_1^t$ and $\lambda_{min}^t \equiv \lambda_N^t$.
- GD update: $d\theta_t \equiv \theta_{t+1} \theta_t = -\delta \cdot \nabla_{\theta} L(\theta_t, D)$
- First-order Dynamics:

$$df_{\theta_{t}}(X) \equiv f_{\theta_{t+1}}(X) - f_{\theta_{t}}(X) \approx -\frac{\delta}{N} \sum_{i=1}^{N} g_{t}(X, X^{i}) \cdot \ell' \Big[X^{i}, Y^{i}, f_{\theta_{t}}(X^{i}) \Big]$$

$$d\overline{f}_{t} \equiv \overline{f}_{t+1} - \overline{f}_{t} \approx -\frac{\delta}{N} \cdot G_{t} \cdot \overline{m}_{t}$$

L2 Loss Dynamics and a Constant Gramian

- Functional derivative is the residual: $\overline{m}_t = f_t \overline{y}$
- First-order Dynamics when G_{t} is constant:

$$\overline{f}_{t} = \overline{f}_{0} - \sum_{i=1}^{N} \left[1 - \left[1 - \frac{\delta}{N} \lambda_{i} \right]^{t} \right] < \overline{\upsilon}_{i}, \overline{m}_{0} > \overline{\upsilon}_{i}$$

$$\overline{m}_{t} = \sum_{i=1}^{N} \left[1 - \frac{\delta}{N} \lambda_{i} \right]^{t} < \overline{\upsilon}_{i}, \overline{m}_{0} > \overline{\upsilon}_{i}$$

- Insights under this setting:
 - $ightharpoonup \overline{m}_{t}$ is reduced and f_{t} is increased along each $\overline{\mathcal{U}}_{i}$ by the same amount
 - \succ Conceptually, information flows from \overline{m}_{t} to \overline{f}_{t} during optimization
 - For $\delta < \frac{2N}{\lambda_{max}}$ and $\lambda_{min} > 0$, global convergence $\overline{f}_{\infty} = \overline{y}$ at $t \to \infty$ $> s_i = 1 |1 \frac{\delta}{N} \lambda_i| \text{ governs flow speed along every } \overline{\upsilon}_i$

 - \triangleright Decay of $\{\lambda_i\}_{i=1}^N$ is typically fast
 - \succ In general, for large λ_i the flow speed is high
 - For small λ_i , the flow is slow, sometimes even <u>neglectable</u>
 - \succ For faster convergence <u>we want</u> many eigenvalues close to λ_{max}
 - \succ Alternatively, <u>we want</u> **top** eigenvectors $\{\overline{\upsilon}_i\}_i$ to span $\overline{m}_0=f_0-\overline{y}$

Results

For an arbitrary vector $\overline{\phi}$ define $\cos\left[\alpha_{t}(\overline{\phi},k)\right] \equiv \sqrt{\frac{\sum_{i=1}^{\infty} \langle \phi, \upsilon_{i} \rangle}{\left\|\overline{\phi}\right\|_{2}^{2}}}$, where $\alpha_{t}(\overline{\phi},k)$ is an angle between $\overline{\phi}$ and its projection onto $\operatorname{span}\left(\left\{\overline{\upsilon}_{i}^{t}\right\}_{i=1}^{k}\right)$

- Setup: L2 regression, N = 10000, X^i sampled uniformly in $[0,1]^2$, $Y^i = y(X^i)$
- Depth increases alignment, alignment improves performance:

First **top** eigenvectors for NN with 6 layers at t = 20000:

NN outputs \overline{f}_{t} and its projection to first k eigenvectors $\{\overline{\nu}_{i}^{t}\}_{i=1}^{k}$:

• f_t is in a subspace spanned by **top** eigenvectors, for all t:

Conclusions

- Higher <u>alignment</u> between **top** eigenvectors and the target function improves optimization performance
- In actual NNs, top spectrum of G_t , and hence also of $g_t(X,X')$, aligns towards target function y
- Deeper NNs have higher alignment, which also explains their performance superiority
- Top eigenvectors/eigenfunctions are basis functions of NN, spanning it almost completely
- Beyond GD and L2 loss, similar behavior was also observed for SGD, Adam and unsupervised learning losses in [3]
- More trends of G_t dynamics can be found in:

https://arxiv.org/abs/1910.08720

References

[1] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in Neural Information Processing Systems (NIPS), pages 8571--8580, 2018.

[2] Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent. arXiv preprint arXiv:1902.06720, 2019.

[3] Dmitry Kopitkov and Vadim Indelman. General Probabilistic Surface Optimization and Log Density Estimation. arXiv preprint arXiv:1903.10567, 2019.