

64-040 Modul IP7: Rechnerstrukturen

http://tams.informatik.uni-hamburg.de/ lectures/2012ws/vorlesung/rs

Kapitel 1 –

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

卣

Wintersemester 2012/2013

Kapitel 1

Einführung

Informatik

Universität Hamburg

Brockhaus-Enzyklopädie: "Informatik"

Die Wissenschaft von der systematischen Verarbeitung von Informationen, besonders der automatischen Verarbeitung mit Hilfe von Digitalrechnern (\rightarrow Computer). . . .

Informatik

Brockhaus-Enzyklopädie: "Informatik"

Die Wissenschaft von der systematischen Verarbeitung von Informationen, besonders der automatischen Verarbeitung mit Hilfe von Digitalrechnern (\rightarrow Computer). . . .

Informatik

1 Einführung

Brockhaus-Enzyklopädie: "Informatik"

Die Wissenschaft von der systematischen Verarbeitung von Informationen, besonders der automatischen Verarbeitung mit Hilfe von Digitalrechnern (\rightarrow Computer). . . .

Thema in Rechnerstrukturen: Wie funktioniert ein Digitalrechner?

- ▶ Wie wird Information (Zahlen, Zeichen) repräsentiert / codiert
- technisches Grundverständnis der Funktionskomponenten

Inhalt und Lernziele

Kennenlernen der Themen

- ► Prinzip des von-Neumann-Rechners
- ► Zahldarstellung, Rechnerarithmetik, Codierung
- ► Abstraktionsebenen, Hardware/Software-Schnittstelle
- Befehlssätze und Maschinenprogrammierung (Assembler)
- Befehlsabarbeitung in Prozessoren, Pipelining
- Adressierungsarten, Speicherhierarchie und -verwaltung
- ⇒ Informatik Basiswissen
- ⇒ Bewertung von Trends und Perspektiven
- ⇒ Fähigkeit zum Einschätzen zukünftiger Entwicklungen
- ⇒ Chancen und Grenzen der Miniaturisierung

Motivation

Universität Hamburg

Wie funktioniert ein Digitalrechner?

Warum ist das überhaupt wichtig?

- ▶ Informatik ohne Digitalrechner undenkbar
- Grundverständnis der Interaktion von SW und HW
- zum Beispiel für "performante" Software
- ► Variantenvielfalt von Mikroprozessorsystemen
 - Supercomputer, Server, Workstations, PCs, . . .
 - Medienverarbeitung, Mobile Geräte, ...
 - RFID-Tags, Wegwerfcomputer, . . .

Fortschritt.

- 1. ständige technische Fortschritte in Mikro- und Optoelektronik mit einem weiterhin exponentiellen Wachstum (50 %... 100 % pro Jahr)
 - Rechenleistung von Prozessoren ("Performance")
 - Speicherkapazität Hauptspeicher (DRAM, SRAM, FLASH)
 - Speicherkapazität Langzeitspeicher (Festplatten, FLASH)
 - Bandbreite (Netzwerke)
- 2. neue Entwurfsparadigmen und -Werkzeuge
- Möglichkeiten und Anwendungsfelder
- ⇒ Produkte und Techniken

Fortschritt (cont.)

neue Anwendungsfelder

Beispiel: Apollo 11 (1969)

- www.bernd-leitenberger.de/computer-raumfahrt1.shtml
- www.hq.nasa.gov/office/pao/History/computers/Compspace.html
- en.wikipedia.org/wiki/Apollo_Guidance_Computer
- en.wikipedia.org/wiki/IBM_System/360

1 Einführung 64-040 Rechnerstrukturer

Beispiel: Apollo 11 (1969) (cont.)

1. Bordrechner: AGC (Apollo Guidance Computer)

- ▶ Dimension $61 \times 32 \times 15,0 \text{ cm}$ 31,7 kg $20 \times 20 \times 17.5$ cm 8,0 kg
- ► Taktfrequenz: 1,024 MHz
- Addition 20 μs
- ▶ 16-bit Worte, nur Festkomma
- Speicher ROM 36 KWorte 72 KByte RAM 2 KWorte 4 KByte

Zykluszeit 11,7 ms (85 Hz)

Beispiel: Apollo 11 (1969) (cont.)

2. mehrere Großrechner: IBM System/360 Model 75s

- je nach Ausstattung: Anzahl der "Schränke"
- ► Taktfrequenz: bis 5 MHz
- ▶ 32-bit Worte, 24-bit Adressraum (16 MByte)
- Speicherhierarchie: bis 1 MByte Hauptspeicher (1,3 MHz Zykluszeit)
- ▶ (eigene) Fließkomma Formate
- Rechenleistung: 0,7 Dhrystone MIPS
- ► Heute...

	CPU	Cores	[MIPS]	$F_{clk}[GHz]$
Smartphone	Qualcomm Krait	dual	9 900	1,5
Desktop PC	Core i7 3960X	hex	177 730	3,33

Konsequenzen

- wegen technischer Entwicklung: kein "stationärer Zustand"
- ▶ Perspektiven/Roadmaps derzeit bis über 2025 hinaus...
- ▶ Details zu Rechnerorganisation veralten schnell aber die Konzepte bleiben gültig (!)
- ► Schwerpunkt der Vorlesung auf dem "Warum" Ziel: ein Gefühl für Größenordnungen entwickeln
- ► Software entwickelt sich teilweise viel langsamer: LISP seit 1958, Prolog 1972, Smalltalk/OO 1972, usw.