

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ

по лабораторной работе № 4 по курсу «Методы вычислений» на тему: «Метод Ньютона» Вариант № 6

Студент	ИУ7-23М		Керимов А. Ш.
	(Группа)	(Подпись, дата)	(Фамилия И. О.)
Преподаватель			Власов П. А.
		(Подпись, дата)	(Фамилия И. О.)

Постановка задачи

Решить одномерную задачу оптимизации вида

$$\begin{cases} f(x) \to \min, \\ x \in [a, b], \end{cases}$$
 (1)

методом Ньютона с заданной точностью ε .

Входные данные

Заданная функция:

$$f(x) = \operatorname{ch}\left(\frac{3x^3 + 2x^2 - 4x + 5}{3}\right) + \operatorname{th}\left(\frac{x^3 - 3\sqrt{2}x - 2}{2x + \sqrt{2}}\right) - 2,5.$$
 (2)

Поиск точки минимума производится на отрезке [0,1]. При построении таблицы результатов в качестве точности ε были взяты следующие значения: $\{10^{-2}, 10^{-4}, 10^{-6}\}$.

Метод Ньютона

Схема метода Ньютона представлена на рисунке 1.

Рисунок 1 — Схема метода Ньютона

Результаты вычислений

Таблица 1 — Результаты вычислений методом Ньютона

№ п/п	ε	N	x^*	$f(x^*)$
1	10^{-2}	11	0,4774047325	-1,4738017976
2	10^{-4}	14	0,4823683107	-1,4738932752
3	10^{-6}	17	0,4824178114	-1,4738932844

Таблица 2 — Сводная таблица для сравнения методов, $\varepsilon = 10^{-6}$

№ п/п	Метод	N	x^*	$f(x^*)$
1	поразрядного поиска	50	0,4824180651	-1,4738932844
2	золотого сечения	31	0,4824184749	-1,4738932844
3	парабол	15	0,4824178751	-1,4738932844
4	Ньютона	17	0,4824178114	-1,4738932844
5	Функция fminbnd	10	0,4824181903	-1,4738932844

Текст программы

Π истинг 1-lab04.m

```
function lab04
      clc;
      debug = true;
      a = 0;
      b = 1;
      eps = 1e-6;
      dx = 1e-6;
      fplot(@(x) func(x), [a, b], 'b');
11
      hold on;
12
      global N;
13
      N = 0;
15
      manual = true;
16
      methods = ["Метод ньютона", "fminbnd"];
17
      if (manual)
           [x, f] = newton(a, b, eps, dx, debug);
20
           [x, f] = fminbnd(@func, a, b, optimset('Display', 'iter', 'TolX', eps));
21
22
      fprintf('Минимум функции: (x=%12.10f, f=%12.10f)\n', x, f);
23
      fprintf('N = %d\n', N);
24
      p = plot(x, f, 'rx', 'MarkerSize', 15);
25
      legend(p, methods(1 + ~manual), 'Location', 'northwest');
26
27
      hold off;
28
29 end
30
31 function y = func(x)
      global N;
32
33
      N = N + 1;
34
      x3 = power(x, 3);
35
      x2 = power(x, 2);
36
37
      sqrt2 = sqrt(2);
38
```

```
ch = cosh((3 * x3 + 2 * x2 - 4 * x + 5) / 3);
39
      th = tanh((x3 - 3 * sqrt2 * x - 2) / (2 * x + sqrt2));
40
41
      y = ch + th - 2.5;
42
43 end
44
  function [x, f] = newton(a, b, eps, dx, debug)
45
       [xl, xr] = goldenSectionBoundaries(a, b);
      x = (x1 + xr) / 2;
47
48
      run = true;
49
50
      iteration = 1;
      while (run)
           f_plus = func(x + dx);
52
           f = func(x);
53
           f_minus = func(x - dx);
54
55
56
           if (debug)
               fprintf('\mbox{MTepaqus} %d: [x=%12.10f, f=%12.10f]\n', iteration, x, f);
57
               plot(x, f, 'g.', 'MarkerSize', 15);
58
               iteration = iteration + 1;
59
60
           end
61
           x0 = x;
62
63
           f1 = (f_plus - f) / dx;
           f2 = (f_plus - 2 * f + f_minus) / (dx .^ 2);
65
           x = x - f1/f2;
66
67
           run = (abs(x - x0) > eps) || (abs(f1) > eps);
68
69
      end
70
71
      if (debug)
           fprintf('\mbox{Mrepaqus} %d: [x=%12.10f, f=%12.10f]\n', iteration, x, f);
72
           plot(x, f, 'g.', 'MarkerSize', 15);
73
74
       end
75
  end
76
  function [xl, xr] = goldenSectionBoundaries(a, b)
      [~, ~, xl, xr] = goldenSectionSearch(a, b, 0.25, false);
79
  end
80
function [x, f, x1, x2] = goldenSectionSearch(a, b, eps, debug)
      tau = (sqrt(5) - 1) / 2;
82
      delta = b - a;
84
      x1 = b - tau * delta;
85
      xr = a + tau * delta;
86
87
      fl = func(x1);
      fr = func(xr);
89
      iteration = 1;
90
      while (delta > 2 * eps)
91
92
           if (debug)
               fprintf('\mbox{WTepaqus \%d: } [a=\%12.10f, b=\%12.10f], (x1=\%12.10f, xr=\%12.10f) \n',
93
                   iteration, a, b, xl, xr);
               iteration = iteration + 1;
94
           end
95
           if (f1 > fr)
97
               a = x1;
98
```

```
delta = b - a;
99
                xl = xr;
100
                fl = fr;
101
102
                xr = a + tau * delta;
                fr = func(xr);
103
            else
104
                b = xr;
105
                delta = b - a;
107
                xr = x1;
                fr = fl;
108
                xl = b - tau * delta;
109
                fl = func(x1);
110
111
            end
       end
113
       if (debug)
114
            fprintf('\mbox{MTepaqus} %d: [a=%12.10f, b=%12.10f], (xl=%12.10f, xr=%12.10f)\n',
115
                iteration, a, b, xl, xr);
       end
116
117
       x = (a + b) / 2;
118
       f = func(x);
119
120
       x1 = a;
121
       x2 = b;
122
123 end
```