	Aerotrain Atmospheric	Aerotrain Vacuum tube	Hyperloop Alpha Atmospheric	Hyperloop Alpha Vacuum tube
Gas Constant	8314 R	8314	8314 R	8314
Gas Mol Wt (air)	28.97 M	28.97	28.97 M	28.97
Heat cap ratio (air)	1.4 k	1.4	1.4 k	1.4
Weight of train Kg	12,000	12,000	12,000	12,000
Bum and curve g-loading	1.50	1.50	3.00	3.00
Max loading Kg	18,000	18,000	36,000	36,000
Length of each cushions m	20	20	1.50	1.50
Width of each cushion m	1	1	0.90	0.90
Number of cushions	4	4	28.00	28
Gap height mm	25	25	1.00	1.00 1 mm slot is extremely small
Total area m2	80	80	37.80	37.80
% of cushion used for lifting	60%	60%	90%	90%
Pressure cushion relative Pa	3,679	3,679	10,381	10,381 Pressure above ambient
Total gap length m	168	168	134.4	134.4
Total gap area m2	4.2	4.2	0.1344	0.1344
Ambient pressure atmos Pa	101,000 P2	100	101,000 P2	100
Pressure of cushion Pa	104,679 P1	3,779	111,381 P1	10,481
Air temp K	298 T	298	400 T	400
Air density Kg/m2	1.224 Dn	0.044	0.970 Dn	0.091
Speed of sound m/s	346 Ss	346	401 Ss	401 Alpha higher due hig temp
Orifice flow coeff	0.8	0.8	0.8	0.8
Pressure increase/input	0.04	36.79	0.10	103.81
Is it Choked? Y or N	N	Υ	N	Y Choked above press ratio 2
Incompressible velocity m/s	62.02	326.45	117.03	381.49 Only valid at low speeds

Slot exit velocity m/s	62.02 C	346.02	117.03	400.89 Mach 1
Slot vol flow m3/s	260.50	1,453.29	15.73	53.88
Slot mass flow kg/s	318.86	64.21	15.26	4.92
Mass flow rate Kg/s	318.856	64.213	15.260	4.919
Inlet pressure Pa	101,000	100	101,000	100
Inlet temp K	292.0	292.0	292.0	292.0
Discharge pressure Pa	104,679	3,779	111,381	10,481
Polytropic Efficiency	0.810	0.810	0.810	0.810
Overall compression ratio	1.04	37.79	1.10	104.81
Polytropic exponent	1.54	1.54	1.54	1.54
density at inlet	1.20525	0.00119	1.20525	0.00119
Average compressibility=1	1.0000	1.0000	1.0000	1.0000
Discharge temp K	296	1,051	302	1,507
Discharge temp C	23	778	29	1,234
Polytropic head	3017	617850	8342	988343
Polytropic gas power W	1,187,639	48,980,245	157,159	6,002,415
Compressor power kW	1,188	48,980	157	6,002

Power ratio 41.2 Power ratio 38.2

Multiplier of power required in vacuum vs atmosperic

Alpha exit speed

Mass flow kg/s

Vol flow m3/s

Gap area m2

Exit speed m/s

0.2

2.19

0.1344

This is Alpha's flow

The purpose of this sheet is to show how much the compressor power must increase when an air cushion vehicle runs in a vacuum tube with 1/1000th of an atmoshere.

The first column is matching the achieved performance of the French Aerotrain

The cushion sizes are estimated, then the gap width is adjusted to get about 1,100 kW for the lift compressors

The gap is 90mm, this is required for stabilty and protection against skirt rubbing

The big gap allows the airflow, and cushion pressure to respond to ride height

The flow velocity is calculated using an incompressible orifice flow formula

The second column looks at the same configuration, but running in a partial vacuum of 100 Pa The compressor power increases by a factor of 43:1 to 46 mW

The third column is Hyperloop Alpha
The gap height of 1mm is used
When running in the vacuum tube, the power increase is a factor of 38:1, to 6 mW

All the compressor calcs were adapted from www.elsevierdirect.com 06_Compressors.xls Power-Centrifugal.

This compressor calculator matches Hyperloop Alpha's compressors. Polytropic efficiency may need to be adjusted.

Incompressible flow thru orifice, only applies for low pressure ratios Q= C A2(2(P1-P2)/Dn)^.5 but V=Q/A2 $V=C(2(P1-P2)/Dn)^{.5}$

Choked flow theory, state that for pressure ratios above about 2, the flow velocity will be Mach 1.

The Kantrowitz limit says that once Mach 1 is achieved, the speed will not increase regardless of lowering the outlet pressure.

The British Hovertrain had lift pads under the skirts

