

Politecnico di Milano Fisica Sperimentale I

a.a. 2012-2013 - Facoltà di Ingegneria dei Sistemi

III appello - 06/02/2014

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

- 1. Un libro di massa m = 800 g viene premuto contro una parete verticale con una forza F = 3 N. Il coefficiente di attrito statico fra parete e libro è $\mu_s = 0.4$. Calcolare:
 - la massima forza di attrito che libro e parete possono scambiarsi;
 - 1' accelerazione con cui il libro si muove assumendo un coefficiente di attrito dinamico tra parete e libro pari a $\mu_d = 0.35$.

Strisciando lungo la parete per una distanza pari a d = 1 m, il libro urta una molla ideale di costante elastica k = 20 N/m, rigidamente fissata al suolo e disposta come in figura. Si calcoli:

- il tempo t_f impiega dal libro per raggiungere la molla;
- la compressione massima Δl della molla. [F_{max} =1.2 N; a= -8.5 m/s²; t*= 0.48 s; Δl = 1.26 m]
- 2. Un disco uniforme di raggio R_1 =0.5 m e massa M_1 =1 kg, inizialmente fermo, rotola senza strisciare lungo un piano inclinato scabro di altezza h=1 m. Raggiunta l'estremità inferiore del piano inclinato, percorre un tratto orizzontale, anch'esso scabro, e urta un secondo disco, di raggio $R_2 = R_1$ e massa M_2 =0.5 kg. In seguito all'urto il centro di massa del secondo disco si muove con una velocità costante $V_{CM} = 5$ m/s ed il secondo disco entra poi in una zona piana liscia. Determinare:

R₁ M₁

- l'energia cinetica totale e la velocità angolare del disco di massa M₁ quando raggiunge l'estremità inferiore del piano inclinato;
- la velocità angolare di entrambi i dischi un istante dopo l'urto, assumendo che essi continuino a rotolare senza strisciare;
- cosa succede quando il secondo disco raggiunge la porzione di piano liscio. [$E_{tot} = 9.81 \text{ J}$; $\omega_2 = 10 \text{ rad/s}$, $\omega_{1F} = 2.22 \text{ rad/s}$]

 $\rho = 5000 \text{ kg/m}^3$. I due corpi sono collegati all'asta con due fili inestensibili e di massa trascurabile. Inizialmente il perno è bloccato e l'asta è immersa nel fluido per una lunghezza pari a x = 0.3 m. Calcolare:

- la massima densità del fluido ρ_f affinché il filo che sostiene la massa m_2 resti teso. Si supponga che $\rho_f = 789 \text{ kg/m}^3$ ed il perno sia sbloccato. Affinchè l'asta non ruoti calcolare:
- il valore della massa m_1 . $[\rho_f \le 5000 \text{ kg/m}^3; m_1 = 0.035 \text{ kg}]$
- **4.** Una macchina termica reversibile opera tra due sorgenti: la prima è costituita da una riserva di acqua, di volume costante V = 1 m³ alla temperatura iniziale T₁ = 100 °C, la seconda da un serbatoio ideale alla temperatura T₂ = 20 °C. Supponendo che la macchina operi sino al termine del suo funzionamento (cioè fino a quando le due sorgenti raggiungono la medesima temperatura), si calcoli:
 - la quantità di calore scambiata tra i due serbatoi;
 - la variazione di entropia delle sorgenti;
 - il lavoro prodotto ed il rendimento della macchina. [Q_1 = 334,8 kJ; Q_2 = -296 kJ; ΔS_1 = ΔS_2 = -1,01 kJ/K; W = 387.9 kJ; η = 0.11]

 $R_2 M_2$

u=0