Yasaswini.P

+1(631)-681-9036 | yashureddyy161@gmail.com | linkedin.com/in/yasaswini | github.com/yasaswini

EDUCATION

Stony Brook University

Masters in Computer Science

JSS Academy of Technical Education

Bachelor of Engineering in Computer Science, Secured an aggregate of 8.58 CGPA

Stony Brook, NY August 2024 - May 2026

Bangalore, India

August 2018 - July 2022

TECHNICAL SKILLS

Languages: Java, Python, Go, C, SQL (Postgres), JavaScript, HTML/CSS, R

Frameworks: React, Node.js, Flask, FastAPI, SpringBoot, Kubernetes, Docker, ReactJS, Jenkins, Bit-bucket.

Developer Tools: Git, VS Code, Visual Studio, PyCharm, IntelliJ, Eclipse

Cloud: Compute, Storage, Networking, Database, Security, CDN, GKE, Google Cloud Platform, Docker

Courses: Distributed Systems, Operating Systems, Computer Networks, Computer Organization, Cloud Computing, Analysis of Algorithms, Database Management Systems, Big Data Analytics, Artificial Intelligence and Machine Learning

EXPERIENCE

DataBahn, Inc. (Remote)

Plano, TX, USA

Software Engineer Intern

May 2025 - August 2025

- Automated AWS cost and usage reporting via API integrations, improving data accuracy by 30%.
- Developed **dynamic dashboards and scalable backend APIs** for cost and agent data ingestion and visualization, boosting monitoring efficiency and throughput by 25–40%.
- Aligned cloud cost metrics with product data to improve margin accuracy by 15%.
- Researched and integrated AI frameworks for anomaly detection and log summarization, reducing manual analysis time by 20%.
- Authored technical documentation, engaged in Agile workflows, and applied cloud cost optimization and FinOps principles, increasing team alignment by 35% and enabling 10% cost reduction

Accenture Bangalore, India

Associate Software Engineer (Google Cloud Tech)

December 2022 - July 2024

- Designed and implemented a scalable user login microservice using **gRPC technology**, achieving **50% faster communication** between services compared to REST-based alternatives.
- Utilized Docker for containerization, ensuring 100% consistent deployments and streamlined versioning across multiple environments, reducing deployment errors by 40%.
- Integrated Cloud SQL to store application metadata, ensuring 99.9% data consistency and reliability in a microservice architecture.
- Developed canary rollout functionality with automatic rollback on bad deployments, minimizing service downtime to less than 2 seconds during faulty updates.
- Created a sidecar proxy for rate-limiting, circuit-breaking, and observability, supporting **gRPC** and **GraphQL** with a latency overhead of **less than 5ms**, enhancing service reliability under high-load conditions.
- Optimized data pipelines for raw data transformation and seamless database updates, improving data integrity and accessibility by 30%.

Projects

Practical Byzantine Fault-Tolerant System | Python, Sockets, Multi-threading, Cryptography

- Implemented the MIT PBFT protocol, achieving 99.9% reliability with 2f+1 quorum validation, tolerating up to 33% server faults across 7 distributed servers.
- Optimized secure client-server communication with **2048-bit RSA signing**, enhancing security by **30%** and improving transaction throughput by **35%** with multi-threading and advanced socket techniques.
- Developed features like real-time transaction logging, server execution tracking, and a view-change mechanism, reducing leader election downtime by 40% and discrepancies by 50% under 500+ fault simulations.

Distributed Banking System with Paxos | Python, Asynchronous I/O

- Implemented a distributed system using Paxos protocol, achieving low-latency, fault tolerance, and strong consistency across 5 servers and 5 clients with 100% consensus accuracy.
- Implemented asynchronous consensus with multi-threaded execution and non-blocking I/O, enabling 40% higher throughput and seamless state transitions during concurrent transaction processing.
- Developed key features like real-time balance tracking, synchronized state replication, and consensus-driven updates, supporting 1,000+ transactions/second under stress scenarios.

Keyword Prediction for E-commerce using Sentiment Analysis | Python, Jupyter

- Developed a sentiment analysis-based recommendation system using Naïve Bayes, SVM, and RNN, achieving 96% accuracy on Kaggle datasets and simplifying product selection for e-commerce users.
- Implemented real-time web scraping with **BeautifulSoup** to retrieve product data and analyze **10,000+ user reviews**, generating **keyword-based product rankings** that improved user search efficiency by **70%** and streamlined decision-making.