Linear Algebra & Geometry - Notes

Dom Hutchinson

April 3, 2018

Contents

1	Euclidean Plane, Vectors, Cartesian Co-Ordinates & Complex Numbers 3					
	1.1	Vectors	3			
	1.2	Complex Numbers	4			
2	Euc	elidean Space, \mathbb{R}^n	6			
	2.1	Dot Product	6			
	2.2	Linear Subspaces	7			
3	Linear Equations & Matrices					
	3.1	Linear Equations	8			
	3.2	Matrices	8			
	3.3	Structure of Set of Solutions	9			
	3.4	Solving Systems of Linear Equations	10			
	3.5	Elementary Matrices & Inverting Matrices	11			
4	Lin	ear Independence, Bases & Dimensions	12			
	4.1	Linear Independence & Dependence	12			
	4.2	Bases & Dimensions	12			
	4.3	Orthogonal Bases	13			
5	Linear Maps					
	5.1	Abstract Properties of Linear Maps	13			
	5.2	Matrices	14			
	5.3	Rank & Nullity	14			
6	Determinants					
	6.1	Definition & Basic Properties	15			
	6.2	Computing Determinant	16			
	6.3	Applications of Determinant	16			
7	Vector Spaces					
	7.1	Groups & Fields	17			
	7.2	Vector Spaces	19			
	7.3	Subspace, Linear Combinations & Span	19			
	7.4	Direct Sums	20			
	7.5	Rank-Nullity Theorem	20			
	7.6	Projection	20			
	77	Isomorphisms	20			

8	Eigenvalues & Eigenvectors			
	8.1	Characteristic Polynomial	. 22	
	8.2	Roots of Characteristic Polynomial	. 24	
9	Inn	ner Product Spaces	25	
	9.1	Inner Product, Norm & Orthogonality	. 25	
	9.2	Construction of Orthonormal Basis	. 26	

1 Euclidean Plane, Vectors, Cartesian Co-Ordinates & Complex Numbers

1.1 Vectors

Definition 1.01 - *Vectors*

Ordered sets of real numbers.

Denoted by
$$\mathbf{v} = (v_1, v_2, v_3, ...) = \begin{pmatrix} x \\ y \end{pmatrix}$$

Definition 1.02 - Euclidean Plane

The set of two dimensional vectors, with real componenets, is called the Euclidean Plane. Denoted by \mathbb{R}^2

Definition 1.03 - Vector Addition

Let
$$\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$$
 such that $\boldsymbol{v} = (v_1, v_2)$ and $\boldsymbol{w} = (w_1, w_2)$.
Then $\boldsymbol{v} + \boldsymbol{w} = (v_1 + w_1, v_2 + w_2)$.

Definition 1.03 - Scalar Multiplication of Vectors

Let
$$\mathbf{v} \in \mathbb{R}^2$$
 and $\lambda \in \mathbb{R}$ such that $\mathbf{v} = (v_1, v_2)$.

Then
$$\lambda \mathbf{v} = (\lambda v_1, \lambda v_2)$$
.

Definition 1.04 - Norm of vectors

The norm of a vector is its length from the origin.

Denoted by
$$||\boldsymbol{v}|| = \sqrt{v_1^2 + v_2^2}$$
 for $\boldsymbol{v} \in \mathbb{R}^2$.

Theorem 1.05

Let
$$\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$$
 and $\lambda \in \mathbb{R}$ such that $\boldsymbol{v} = (v_1, v_2)$ and $\boldsymbol{w} = (w_1, w_2)$.
Then

$$\begin{aligned} ||\boldsymbol{v}|| &= 0 \text{ iff } \boldsymbol{v} = \boldsymbol{0} \\ ||\lambda \boldsymbol{v}|| &= \sqrt{\lambda^2 v_1^2 + \lambda^2 v_2^2} \\ &= |\lambda|.||\boldsymbol{v}|| \\ ||\boldsymbol{v} + \boldsymbol{w}|| &\leq ||\boldsymbol{v}|| + ||\boldsymbol{w}|| \end{aligned}$$

Definition 1.06 - *Unit Vector*

A vector can be described by its length & direction.

Let
$$\boldsymbol{v} \in \mathbb{R}^2 \setminus \{\boldsymbol{0}\}$$
.

Then
$$v = ||v||u$$
 where u is the unit vector, $u = \begin{pmatrix} cos\theta \\ sin\theta \end{pmatrix}$

Thus
$$\forall \ \pmb{v} \in \mathbb{R}^2 \ \pmb{v} = \begin{pmatrix} \lambda cos\theta \\ \lambda sin\theta \end{pmatrix}$$
 for some $\lambda \in \mathbb{R}$.

Definition 1.07 - *Dot Product*

Let
$$\boldsymbol{v} \in \mathbb{R}^2$$
 and $\lambda \in \mathbb{R}$ such that $\boldsymbol{v} = (v_1, v_2)$.

Then
$$\mathbf{v} \cdot \mathbf{w} = v_1.w_1 + v_2.w_2$$
.

Remark 1.08 - Positivity of Dot Product

Let
$$\boldsymbol{v} \in \mathbb{R}^2$$
.

Then
$$\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2 = v_1^2 + v_2^2 \ge 0.$$

 ${\bf Remark~1.09~-~} {\it Angle~between~vectors~in~Euclidean~Plane}$

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$.

Set θ to be the angle between $\boldsymbol{v} \ \& \ \boldsymbol{w}$.

Then

$$cos\theta = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{||\boldsymbol{v}|| \; ||\boldsymbol{w}||}$$

Theorem 1.10 - Cauchy-Schwarz Inequality

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$.

Then

$$|\boldsymbol{v} \cdot \boldsymbol{w}| \le ||\boldsymbol{v}|| \ ||\boldsymbol{w}||$$

Proof

$$\frac{v_1 w_1}{||\boldsymbol{v}|| \ ||\boldsymbol{w}||} + \frac{v_2 w_2}{||\boldsymbol{v}|| \ ||\boldsymbol{w}||} \le \frac{1}{2} \left(\frac{v_1^2}{||\boldsymbol{v}||^2} + \frac{w_1^2}{||\boldsymbol{w}||^2} \right) + \frac{1}{2} \left(\frac{v_2^2}{||\boldsymbol{v}||^2} + \frac{w_2^2}{||\boldsymbol{w}||^2} \right) \\
\le \frac{1}{2} \left(\frac{v_1^2 + v_2^2}{||\boldsymbol{v}||^2} + \frac{w_1^2 + w_2^2}{||\boldsymbol{w}||^2} \right) \\
\le \frac{1}{2} (1+1) \\
\le 1 \\
=> |v_1 w_1 + v_2 w_2| \le ||\boldsymbol{v}|| \ ||\boldsymbol{w}|| \\
||\boldsymbol{v} \cdot \boldsymbol{w}| \le ||\boldsymbol{v}|| \ ||\boldsymbol{w}||$$

1.2 Complex Numbers

Definition 1.11 - i

$$i^2 = -1$$
$$i = \sqrt{-1}$$

Definition 1.12 - Complex Number Set

The set of complex numbers contains all numbers with an imaginary part.

$$\mathbb{C} := \{x + iy; x, y \in \mathbb{R}\}\$$

Complex numbers are often denoted by

$$z = x + iy$$

and we say x is the real part of z and y the imaginary part.

 ${\bf Definition~1.13~-~} {\it Complex~Conjugate}$

Let $z \in \mathbb{C}$ st z = x + iy.

Then

$$\bar{z} := x - iy$$

Theorem 1.14 - Operations on Complex Numbers

Let $z_1, z_2 \in \mathbb{C}$ st $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$.

Then

$$z_1 + z_2 := (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1.z_2 := (x_1 + iy_1)(x_2 + iy_2)$$

$$:= x_1.x_2 - y_1.y_2 + i(x_1.y_2 + x_2.y_1)$$

N.B. When dividing by a complex number, multiply top and bottom by the complex conjugate.

Definition 1.15 - Modulus of Complex Numbers

The modulus of a complex number is the distance of the number, from the origin, on an Argand diagram. Let $z \in \mathbb{C}$ st z = x + iy.

Then

$$|z| := \sqrt{x^2 + y^2}$$
$$:= \sqrt{\overline{z}z}$$

N.B. Amplitude is an alternative name for the modulus

Definition 1.16 - Phase of Complex Numbers

The phase of a complex number is the angle between the positive real axis and the line subtended from the origin and the number, on an Argand digram.

$$z = |z|.(\cos\theta + i.\sin\theta), \quad \theta = \text{Phase}$$

N.B. Phase of $\bar{z} =$ - Phase of z

Theorem 1.17 - de Moivre's Formula

$$z^{n} = (\cos\theta + i.\sin\theta)^{n} = \cos(n\theta) + i.\sin(n\theta)$$

Theorem 1.18 - Euler's Formula

$$e^{i\theta} = \cos\theta + i.\sin\theta$$

Remark 1.19

Using Euler's formula we can express all complex numbers in terms of e. Thus many properties of the exponential remain true:

$$z = \lambda e^{i\theta}, \qquad \lambda \in \mathbb{R}, \theta \in [0, 2\pi)$$
$$= > z_1 + z_2 = \lambda_1 \cdot \lambda_2 \cdot e^{i(\theta_1 + \theta_2)}$$
$$\&, \frac{z_1}{z_2} = \frac{\lambda_1}{\lambda_2} \cdot e^{i(\theta_1 = \theta_2)}$$

2 Euclidean Space, \mathbb{R}^n

Definition 2.01 - Euclidean Space

Let $n \in \mathbb{N}$ then $\forall \mathbf{x} = (x_1, x_2, ..., x_n)$ with $x_1, x_2, ..., x_n \in \mathbb{R}$ we have that $\mathbf{x} \in \mathbb{R}^n$.

Theorem 2.02 - Operations in Euclidean Space

Let $(x), (y) \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then

$$(x) + (y) = (x_1 + y_1, ..., x_n + y_n)$$

And

$$(x) + \lambda \cdot (y) = (x_1 + \lambda \cdot y_1, ..., x_n + \lambda \cdot y_n)$$

Definition 2.03 - Cartesian Product

Let $A, B \in \mathbb{R}^n$ be non-empty sets.

Then

$$A \times B := \{(a, b); a \in A, b \in B\}$$

2.1 Dot Product

Definition 2.04 - Dot Product

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$. Then

$$\mathbf{v} \cdot \mathbf{w} := v_1.w_1 + \dots + v_n.w_n$$

$$:= \sum_{j=1}^n v_j.w_j$$

Theorem 2.05 - Properties of the Dot Product

Let $u, v, w \in \mathbb{R}^n$. Linearity:

$$(\boldsymbol{u} + \lambda \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u} \cdot \boldsymbol{w} + \lambda (\boldsymbol{v} \cdot \boldsymbol{w})$$

Symmetry:

$$v \cdot w = w \cdot v$$

Positivity:

$$\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 + \dots + v_n^2 \ge 0$$

Definition 2.06 - Orthogonality

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$.

It is said that (v), (w) are orthogonal to each other if $v \cdot w = 0$ N.B. Orthogonal vectors are perpendicular to each other.

Definition 2.07 - The Norm

Let $\boldsymbol{x} \in \mathbb{R}^n$.

Then

$$||oldsymbol{x}|| = \sqrt{oldsymbol{x} \cdot oldsymbol{x}} = \sqrt{\sum_{i=1}^n x_i^2}$$

Theorem 2.08 - Properties of the Norm

Let $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then

$$||\mathbf{x}|| \ge 0$$

$$||\mathbf{x}|| = 0 \text{ iff } \mathbf{x} = 0$$

$$||\lambda \mathbf{x}|| = |\lambda|||\mathbf{x}||$$

$$||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$$

Theorem 2.09 - Dot Product and Norm

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$.

$$|x \cdot y| \le ||x||||y||$$

N.B. $|x \cdot y| = ||x||||y||$ iff x & x are orthogonal.

Theorem 2.10 - Angle between Vectors

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$. Then

$$cos\theta = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{||\boldsymbol{x}||||\boldsymbol{y}||}$$

2.2 Linear Subspaces

Definition 2.11 - Linear Subspace

Let $V \subset \mathbb{R}^n$. V is a Linear Subspace if:

- i) $V \neq \emptyset$;
- ii) $\forall v, w \in V \text{ then } v + w \in V;$
- iii) $\forall \lambda \in \mathbb{R}, \boldsymbol{v} \in V \text{ then } \lambda \boldsymbol{v} \in V.$

Definition 2.12 - Span

Let $x_1, ..., x_k \in \mathbb{R}^n$; $k \in \mathbb{N}$. Then

$$span\{x_1, ..., x_k\} := \{\lambda_1 x_1 + ... + \lambda_k x_k; \lambda_i \in \mathbb{R}, 0 \le i \ge k\}$$

Definition 2.13 - Spans are Subspaces

Let $x_1, ..., x_k \in \mathbb{R}^n$; $k \in \mathbb{N}$. Then span $\{x_1, ..., x_k\}$ is a linear subspace of \mathbb{R}^n .

Theorem 2.14

$$W_{\boldsymbol{a}} := \{ \boldsymbol{x} \in \mathbb{R}^n; \boldsymbol{x} \cdot \boldsymbol{a} = 0 \}$$
 is a subspace.

Definition 2.15 - Orthogonal Complement

Let $V \subset \mathbb{R}^n$. Then,

$$V^{\perp} := \{ \boldsymbol{x} \in \mathbb{R}^n; \boldsymbol{x} \cdot \boldsymbol{y} \ \forall \ \boldsymbol{y} \in V \}$$

N.B. $V^{\perp} \subset \mathbb{R}^n$

Theorem 2.16 - Relationship of Subspaces

Let V, W be subspaces of \mathbb{R} . Then

 $V \cap W$ is a subspace.

$$V + W := \{ \boldsymbol{v} + \boldsymbol{w}; \boldsymbol{v} \in V, \boldsymbol{w} \in W \}$$
 is a subspace.

Definition 2.17 - Direct Sum

Let V_1, V_2, W be subspaces of \mathbb{R} . Then W is said to be a direct sum if

- i) $W = V_1 + V_2$;
- **ii)** $V_1 \cap V_2 = \emptyset$.

3 Linear Equations & Matrices

3.1 Linear Equations

Definition 3.01 - Multi-Variable Linear Equations

Linear equations produce a straight line and can have multiple variables.

Examples - x = 3, y = x + 3, z + 5x - 2y

Defintion 3.02 - Systems of Linear Equations

Let $\boldsymbol{a}, \boldsymbol{x} \in \mathbb{R}^n \ \& \ b \in \mathbb{R}$ such that $\boldsymbol{a} \cdot \boldsymbol{x} = b$.

 $\boldsymbol{a} \cdot \boldsymbol{x} = b$ is a linear equation in x with $S = \{\boldsymbol{x}; \boldsymbol{a} \cdot \boldsymbol{x} = b\}$ as the set of solutions.

N.B. If b = 0 then $S(\boldsymbol{a}, 0)$ is a subspace.

3.2 Matrices

Definition 3.03 - *Matrix*

Let $m, n \in \mathbb{N}$, then a $m \times n$ grid of numbers form an "m" by "n" matrix. Each element of the matrix can be reference by a_{ij} with i = 1, ..., m and j = 1, ..., n.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

N.B. m,i = rows, n,j = columns

Definition 3.04 - Sets of Matrices

 $M_{m,n}(\mathbb{R})$ is the set of m x n matrices containing only real numbers.

 $M_{m,n}(\mathbb{Z})$ is the set of m x n matrices containing only integers.

 $M_n(\mathbb{R})$ is the set square matrices, size n, containing only real numbers.

Definition 3.05 - Transpose Vectors

Let
$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 then $\boldsymbol{x}^t = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}$

Definition 3.06 - Vector-Matrix Multiplication

Let $A \in \mathbb{R}_{m,n}$ and $\boldsymbol{x} \in \mathbb{R}^n$ then

$$A\mathbf{x} := \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1^t \cdot \mathbf{x} \\ \mathbf{a}_2^t \cdot \mathbf{x} \\ \vdots \\ \mathbf{a}_m^t \cdot \mathbf{x} \end{pmatrix} \in \mathbb{R}^m$$

This can be simplified to

$$y = Ax$$
 with $y_i = \sum_{i=1}^n a_{ij}x_j$

Theorem 3.07 - Operations on Matrices with Vectors

i)
$$A(\boldsymbol{x} + \boldsymbol{y}) = A\boldsymbol{x} + A\boldsymbol{y}, \quad \forall \ \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

ii)
$$A(\lambda x) = \lambda(Ax), \quad \forall x \in \mathbb{R}^n, \lambda \in \mathbb{R}.$$

Theorem 3.08

Let $A=(a_{ij})\in M_{m,n}(\mathbb{R})$ and $B=(b_{ij})\in M_{l,m}(\mathbb{R})$. Then there exists a $C=(c_{ij})\in M_{l,n}(\mathbb{R})$ such that

$$C\boldsymbol{x} = B(A\boldsymbol{x}), \quad \forall \ \boldsymbol{x} \in \mathbb{R}^n$$

N.B.
$$c_{ij} = \sum_{k=1}^{m} b_{ik} a_{kj}$$

Theorem 3.09 - Operation between Matrices Let $A, B \in M_{m,n}$ and $C \in M_{l,m}$

- i) C(A+B) = CA + CB.
- ii) (A+B)C = AC + BC.
- iii) Let $D \in M_{m,n}, E \in M_{n,l} \& F \in M_{l,k}$ then

$$E(FG) = (EF)G$$

N.B. $AB \neq BA$

Definition 3.10 - Types of Matrix

Upper Triangle
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
, $a_{ij} = 0$ if $i > j$.
Lower Triangle $\begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$, $a_{ij} = 0$ if $i < j$.

Lower Triangle
$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$$
, $a_{ij} = 0$ if $i < j$

Symmetric Matrix
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$
, $a_{ij} = a_{ji}$.

Anti-Symmetric $\begin{pmatrix} 1 & -2 & -3 \\ 2 & 0 & -4 \\ 3 & 4 & -1 \end{pmatrix}$, $a_{ij} = -a_{ji}$.

Anti-Symmetric
$$\begin{pmatrix} 1 & -2 & -3 \\ 2 & 0 & -4 \\ 3 & 4 & -1 \end{pmatrix}$$
, $a_{ij} = -a_{ji}$

Definition 3.11 - Transposed Matrices

Let $A = (a_{ij}) \in M_{m,n}(\mathbb{R})$ then the transponse of A, A^t , is an element of $M_{n,m}(\mathbb{R})$.

$$A^t := (aji)$$

Theorem 3.12 - Transpose Matrix Multiplication

Let $A \in M_{m,n}(\mathbb{R}), \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{y} \in \mathbb{R}^m$. Then

$$\mathbf{y} \cdot A\mathbf{x} = (A_t \mathbf{y}) \cdot \mathbf{x}$$

Theorem 3.10 - Transposing Multiplied Matrices

$$(AB)^t = B^t A^t$$

3.3 Structure of Set of Solutions

Definition 3.13 - Set of Solutions

Let $A \in M_{m,n}(\mathbb{R})$ and $\boldsymbol{b} \in \mathbb{R}^m$. Then

$$S(A, \boldsymbol{b}) := \boldsymbol{x} \in \mathbb{R}^n; A\boldsymbol{x} = b$$

Definition 3.14 - Homogenous Solutions

The system of $S(A, \mathbf{0})$ is called said to be *homogenous*. All other systems are *inhomogenous*. N.B. - $S(A, \mathbf{0})$ is a linear subspace.

Theorem 3.15 - Using Homogenous Solutions

Let $A \in M_{m,n}(\mathbb{R})$ and $\boldsymbol{b} \in \mathbb{R}^n$. Let $\boldsymbol{x}_0 \in \mathbb{R}^n$ such that $A\boldsymbol{x}_0 = \boldsymbol{b}$, then

$$S(A, \boldsymbol{b}) = \boldsymbol{x}_0 + S(A, \boldsymbol{0})$$

Remark 3.16 - Systems of Linear Equations as Matrices

The system of linear equations 3x + z = 0, y - z = 1, 3x + y = 1 can be represented by a matrix and a vector.

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & -1 \\ 3 & 1 & 0 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

3.4 Solving Systems of Linear Equations

Systems of linear equations can be displayed as matrices which can be reduced and solved by a technique called *Gaussian Elimination*.

Theorem 3.17

There are certain operations that can be performed on a system of linear equations without changing the result:

- i) Multiply an equaion by a non-zero constant;
- ii) Add a multiple of any equation to another equation;
- iii) Swap any two equations.

Definition 3.18 - Augmented Matrices

Let Ax = b be a system of linear equations. The associated Augmented Matrix is

$$(A \mathbf{b}) \in M_{m,n+1}(\mathbb{R})$$

Theorem 3.19 - Elementary Row Operations

From *Theorem 3.17* we can deduce ceratin operations that can be performed on an *Augmented Matrix* which do not alter the solutions:

- i) Multiply a row by a non-zero constant, $row i \rightarrow \lambda(row i)$;
- ii) Add a multiple of any row to another row, row $i \to row \ i + \lambda(row \ j)$;
- iii) Swap two rows, $row i \leftrightarrow row j$.

Definition 3.20 - Row Echelon Form

A matrix is in Row Echelon Form if:

- i) The left-most non-zero value in each row is 1; And,
- ii) The leading 1 in each row is one place to the right of the leading 1 in the row below.

Example

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

Definition 3.20 - Reduced Row Echelon Form

A matrix is in Reduced Row Echelon Form if:

- i) The matrix is in row echelon form; And,
- ii) All values in a row, except the leading 1, are 0.

Example

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Theorem 3.21 - Gaussian Elimination

Gaussian Elimination is a technique used to solve systems of linear equations. Example Solve x + y + 2z = 9, 2x + 4y - 3z = 1, 3x + 6y - 5z = 0.

Augmented Matrix
$$-\begin{pmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{pmatrix}$$

By EROS $-\begin{pmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 0 & 3 & -11 & 27 \end{pmatrix}$

$$=\begin{pmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 0 & 1 & -4 & -10 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 0 & 1 & -4 & -10 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -4 & -10 \\ 0 & 2 & -7 & -17 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -4 & -10 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 0 & 6 & 19 \\ 0 & 1 & -4 & -10 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

Elementary Matrices & Inverting Matrices

Definition 3.22 - Invertible Matrices

A matrix, $A \in M_{m,n}(\mathbb{R})$, is said to be *Invertible* if there exists $A^{-1} \in M_{n,m}(\mathbb{R})$ such that

=>x=1, y=2, z=3

$$AA^{-1} = I$$

N.B. - If a matrix is not invertible then it is Singular.

Definition 3.23 - Elementary Matrices

A matrix, $E \in M_{m,n}(\mathbb{R})$, is said to be an *Elementary Matrix* if it can be obtained by performing Elementary Row Operations on a square identity matrix.

Examples
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & \lambda \\ \mu & 0 \end{pmatrix}$

Remark 3.24

3.5

All elementary matrices are invertible.

Remark 3.25

Let A be a matrix, and B be a matrix which can be obtained from A by elementary row operations. Then there exists an elementary matrix E such that

$$B = EA$$

Theorem 3.26 - Finding A^{-1}

Theorem 3.26 - Finding A

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Then by using EPOS to change $(A, I) \rightarrow (I, P)$. P is the inverse of A .

Then by using EROS to change $(A I) \rightarrow (I B)$, B is the inverse of A.

Theorem 3.27 - Inverse of a 2x2 Matrix

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Linear Independence, Bases & Dimensions 4

Linear Independence & Dependence 4.1

Definition 4.01 - Linear Independence & Dependence

Vectors, $x_1, ..., x_n \in \mathbb{R}^k$, are said to be *linearly dependent* if there exists non-zero real numbers, $\lambda_1, ..., \lambda_n$ such that

$$\lambda_1.\boldsymbol{x}_1 + ... + \lambda_n.\boldsymbol{x}_n = \boldsymbol{0}$$

<u>N.B.</u> - If this is only true if $\lambda_1 = ... = \lambda_n = 0$ then the vectors are said to be *linearly independent*.

Remark 4.02

Vectors are only linearly dependent if one of them lies in the span of the rest.

Bases & Dimensions

Definition 4.03 - Basis

A basis is a set of vectors, $v_1, ..., v_n \in V$ such that

- i) $V = \text{span}\{v_1,, v_n\};$
- ii) $v_1, ..., v_n$ are linearly independent.

Definition 4.04 - Standard Basis

The standard basis for a vector space is the set fewest unit vectors which span it. Example - $\{v_1, e_2, e_3\}$ are the standard basis for \mathbb{R}^3 .

Theorem 4.05 - Basis of a Linear Subspace

For all elements, v, of a linear subspace, $V \subset \mathbb{R}^n$, there exists a unique set of numbers, $\lambda_1, ..., \lambda_n$, such that

$$\boldsymbol{v} = \lambda_1.\boldsymbol{v}_1 + ... + \lambda_n.\boldsymbol{v}_n$$

Theorem 4.06 - Linear Independence and Bases

Let $V \subset \mathbb{R}^n$ be a linear subspace with basis $v_1, ..., v_n$. Suppose $w_1, ..., w_k \in V$ are linearly independent, then $k \leq n$.

Definition 4.07 - Dimension

Let $V \subset \mathbb{R}^n$ be a linear subspace then the *dimension* of V, dim(V), is the fewest number vectors required to form a basis for V.

4.3 Orthogonal Bases

Definition 4.08 - Orthogonal

Let $V \subset \mathbb{R}^n$ be a linear subspace with $\{v_1, ..., v_k\}$ as its basis. This basis is an *orthogonal basis* if it statisfies:

- i) $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ if $i \neq j$;
- ii) $v_i \cdot v_i = 1, i = 1, ..., k.$

<u>N.B.</u> - This can be generalised to $v_i \cdot v_k = \delta_{ij}$ with $\delta_{ij} := \begin{cases} 1, & i = j \\ 0, & \text{otherwise} \end{cases}$

Theorem 4.09

Let $V \subset \mathbb{R}^n$ be a linear subspace with an orthogonal basis $\{v_1, ..., v_k\}$. Then for all $u \in V$

$$\boldsymbol{u} = (\boldsymbol{v}_1 \cdot \boldsymbol{u}) \boldsymbol{v}_1, ..., (\boldsymbol{v}_k \cdot \boldsymbol{u}) \boldsymbol{v}_k$$

5 Linear Maps

Definition 5.01 - Linear Map

A map, $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map if

- i) $T(\boldsymbol{x} + \boldsymbol{y}) = T(\boldsymbol{x}) + T(\boldsymbol{y}), \quad \forall \ \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n;$
- ii) $T(\lambda x) = \lambda T(x), \quad \forall \ x \in \mathbb{R}^n, \lambda \in \mathbb{R}.$

N.B. - If m = n then T is referred to as a linear operator.

Theorem 5.02 - Properties of Linear Maps

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then $T(\mathbf{0}) = \mathbf{0}$.

Definiton 5.03 - Linear Maps as Matrices

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then the associated Matrix is defined as

$$M_T = (t_{ij}) \in M_{m,n}(\mathbb{R})$$

with the elements of M_T defined by

$$t_{ij} = \boldsymbol{e}_i \cdot T(\boldsymbol{e}_i)$$

Theorem 5.04 - Solutions to Linear Maps from Matrices

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and M_T be the associated matrix. Then

$$T(\boldsymbol{x}) = M_T \boldsymbol{x}, \quad \forall \ \boldsymbol{x} \in \mathbb{R}^n$$

5.1 Abstract Properties of Linear Maps

Theorem 5.05 - Relationship between Linear Maps

Let $S: \mathbb{R}^n \to \mathbb{R}^m$, $T: \mathbb{R}^n \to \mathbb{R}^m$ & $U: \mathbb{R}^m \to \mathbb{R}^k$ be a linear maps and $\lambda \in \mathbb{R}$. Then

i)
$$(\lambda T)(\boldsymbol{x}) := \lambda T(\boldsymbol{x});$$

ii)
$$(S+T)(x) = S(x) + T(x);$$

iii)
$$(U \circ S)(\boldsymbol{x}) = U(S(\boldsymbol{x})).$$

Definition 5.06 - Image & Kernel

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then

i) The image of T is defined to be

$$Im(T) := \{ \boldsymbol{y} \in \mathbb{R}^m : \exists \ \boldsymbol{x} \in \mathbb{R}^n st \ T(\boldsymbol{x}) = \boldsymbol{y} \}$$

ii) The kernel of T is defined to be

$$Ket(T) := \{ \boldsymbol{x} \in \mathbb{R}^n : T(\boldsymbol{x}) = \boldsymbol{0} \}$$

Theorem 5.07

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map then Im(T) is a linear subspace of \mathbb{R}^m and Ker(T) is a linear subspaces of \mathbb{R}^n

Remark 5.08

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then

- i) T is surjective if $Im(T) = \mathbb{R}^m$;
- ii) T is injective if $Ker(T) = \{0\}$.

5.2 Matrices

Definition 5.09 - Linear Maps as Matrices

Let $S: \mathbb{R}^n \to \mathbb{R}^m$, $T: \mathbb{R}^n \to \mathbb{R}^m$ & $U: \mathbb{R}^m \to \mathbb{R}^k$ be a linear maps and $\lambda \in \mathbb{R}$ with M_S, M_T & M_U as the corresponding matrices. Then

i)
$$M_{\lambda T} = \lambda M_T = (\lambda t_{ij});$$

ii)
$$M_{S+T} = (s_{ij} + t_{ij}) = M_S + M_T$$
;

iii)
$$M_{U \circ S} = (r_{ij})$$
 where $r_{ik} = \sum_{k=1}^{m} s_{ik} t_{jk}$.

5.3 Rank & Nullity

Defintion 5.10 - Rank & Nullity

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then we define Rank of T by

$$rank(T) := \dim(Im(T))$$

and we define Nullity of T by

$$nullity(T) := dim(Im(T))$$

<u>N.B.</u> - For all linear maps, $T: \mathbb{R}^n \to \mathbb{R}^m$,

$$nullity(T) + rank(T) = n$$

Remark 5.11

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Then T is invertible if

- i) rank(T) = n, or
- ii) nullity(T) = 0.

Theorem 5.12 - Relationship of Rank & Nullity between Linear Maps Let $S: \mathbb{R}^n \to \mathbb{R}^m$ & $T: \mathbb{R}^k \to \mathbb{R}^n$ be linear maps. Then

- i) $S \circ T = 0$ iff $Im(T) \subset Ker(S)$;
- ii) $rank(S \circ T) \leq rank(T)$ and $rank(S \circ T) \leq rank(S)$;
- iii) $nullity(S \circ T) \ge nullity(T)$ and $nullity(S \circ T) \ge nullity(S) + k n$;
- iv) S is invertible then $rank(S \circ T) = rank(T)$ and $nullity(S \circ T) = nullity(T)$.

6 Determinants

6.1 Definition & Basic Properties

Definition 6.01 - Determinant Function

A determinant function $d_n: \mathbb{R}^n \times ... \times \mathbb{R}^n \to \mathbb{R}$ is a function which statisfies three conditions:

- i) Multilinear $d_2(\lambda \boldsymbol{a}_1 + \mu \boldsymbol{b}, \boldsymbol{a}_2) = \lambda d_2(\boldsymbol{a}_1, \boldsymbol{a}_2) + \mu(\boldsymbol{b}, \boldsymbol{a}_2);$
- ii) Antisymmetric $d_2(a_1, a_2) = -d_2(a_2, a_1);$
- iii) Normalisation $d_2(\mathbf{e}_1, \mathbf{e}_2) = 1$.

N.B. - Determinant functions only exists for square matrices.

Theorem 6.02 - Properties of Determinant

- i) $det[..., a_i + \lambda a_i, ...] = det[..., a_i, ...] + \lambda det[..., a_i, ...];$
- ii) If A has two identical columns then det(A) = 0;
- iii) If A has an all zero column then det(A) = 0;
- iv) $det[...a_{i}...a_{j}...] = det[...(a_{i} + \lambda a_{j})...a_{j}...]$

Theorem 6.03

Let $f_n: \mathbb{R}^n \times ... \times \mathbb{R}^n \to \mathbb{R}$ be a function which is multilinear & Antisymmetric then

$$f_n(A) = C.det(A)$$

where C is a constant such that $C = f_n(e_1, ..., e_n)$.

Theorem 6.04 - Determinant of a Triangle Matrix

Let $A = (a_{ij}) \in M_n(\mathbb{R})$ be a upper triangle matrix, so $a_{ij} = 0$ if i > j. Then

$$det(A) = a_{11}.a_{22}.....a_{nn}$$

<u>N.B.</u> - The same is true for lower triangle matrices.

 ${\bf Theorem~6.05~-}~{\it Relationship~between~Determinants}$

Let $A, B \in M_n(\mathbb{R})$ then

$$det(AB) = det(A).det(B)$$

but usually

$$det(A + B) \neq det(A) + det(B)$$

Theorem 6.06 - Determinant & Inverses

If det(A) = 0 then A^{-1} does not exist.

Theorem 6.07 - Leibniz Formula

Let $A = (a_{ij}) \in M_n(\mathbb{R})$ then the Leibniz Formula states that

$$det(A) := \sum_{\sigma \in S_n} sign(\sigma) \prod_{j=1}^n a_{\sigma(j),j}$$

Where:

- S_n is the group of symmetries for a regular n-sided polygons;
- $sign(\sigma)$ is the sign function which returns +1 for even permutations and -1 for odd permutations.

A permutation is even if a even number of permutations (swaps) are required to change the identity permutation to the given permutation, σ .

Remark 6.08 - Determinant of Transpose

Let A be a square matrix, then

$$det(A) = det(A^t)$$

6.2 Computing Determinant

Theorem 6.09 - Laplace's Rule

Let $A \in M_n$ then

$$det(A) = \sum_{i=1}^{n} a_{ij}.(-1)^{i+j}.det(A_{ij})$$

where A_{ij} is the $(n-1) \times (n-1)$ matrix formed when row i and column j are removed from A.

Example Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 then $A_{11} = \begin{pmatrix} 4 \end{pmatrix}$ and $A_{12} = \begin{pmatrix} 2 \end{pmatrix}$

Definition 6.10 - Adjunct Matrices

Let $A, B \in M_n$ be defined such that $b_{ij} = (-1)^{i+j} . det(A_i j)$ then B is said to be adjunt to A. This means

$$AB = \begin{pmatrix} det(A) & 0 & \dots & 0 \\ 0 & det(A) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & det(A) \end{pmatrix} = det(A)I$$

Remark 6.11 - Determinant of Triangle Matrices

If A is an upper triangle matrix $(a_{ij} = 0 \text{ if } i > j)$ then

$$det(A) = a_{11} \times \cdots \times a_{nn}$$

If A is a lower triangle matrix $(a_{ij} = 0 \text{ if } i < j)$ then

$$det(A) = a_{11} \times \cdots \times a_{nn}$$

6.3 Applications of Determinant

Theorem 6.12 - Linear Equations as Matrices

A system of m linear equations, each with n variables, can be written as

$$A\boldsymbol{x} = \boldsymbol{b}, \quad A \in M_{mn}(\mathbb{R}), \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{b} \in \mathbb{R}^m$$

If $det(A) \neq 0$ then we can find an $A^{-1} \in M_{n,m}$ such that

$$\mathbf{x} = A^{-1}\mathbf{b}$$

Theorem 6.13

Let $A \in M_n(\mathbb{R})$ where $det(A) \neq 0$ then

$$A^{-1} = \frac{1}{\det(A)} adj \ A$$

Theorem 6.14 - Cramer's Rule

Consider Ax = b then

$$x_j = \frac{\det(A_j)}{\det(A)}$$

where A_j is the matrix A, but the j^{th} column has been replaced by **b**.

Definition 6.15 - Cross Product

Let $x, y \in \mathbb{R}^3$ be in the same plane then we define the cross product by

$$egin{aligned} oldsymbol{x} oldsymbol{x} oldsymbol{y} & oldsymbol{x} oldsymbol{x} oldsymbol{y} & oldsymbol{e}_1 & oldsymbol{e}_2 & oldsymbol{e}_3 \ oldsymbol{y}_1 & oldsymbol{y}_2 & oldsymbol{y}_3 \ \end{pmatrix} = egin{pmatrix} oldsymbol{x}_2 oldsymbol{y}_3 - oldsymbol{x}_3 oldsymbol{y}_1 - oldsymbol{x}_1 oldsymbol{y}_2 \ oldsymbol{x}_1 oldsymbol{y}_2 - oldsymbol{x}_2 oldsymbol{y}_1 \ \end{pmatrix}$$

Theorem 6.16 - Properties of Cross Product

i)
$$x \cdot (y \times z) = z \cdot (x \times y) = y \cdot (z \times x)$$

ii)
$$\boldsymbol{x} \times \boldsymbol{y} = -\boldsymbol{y} \times \boldsymbol{x}$$

iii)
$$\boldsymbol{x} \times \boldsymbol{x} = 0$$

iv)
$$(x + \lambda y) \times z = (x \times z) + (\lambda y \times z)$$

v)
$$||x \times y||^2 = ||x||^2 ||y||^2 - (x \cdot y)^2$$

Theorem 6.17 - Cross Product and Angle between vectors

Let θ be the angle between two vectors then

$$||\boldsymbol{x} \times \boldsymbol{y}||^2 = ||\boldsymbol{x}||^2 ||\boldsymbol{y}||^2 sin^2(\theta)$$

Theorem 6.18 - Cross Product with Matrices

Let $A \in M_n(\mathbb{R})$ where $det(A) \neq 0$ then

$$(A\boldsymbol{x}) \times (A\boldsymbol{y}) = [det(A)](A^t)^{-1}(\boldsymbol{x} \cdot \boldsymbol{y})$$

7 Vector Spaces

7.1 Groups & Fields

Definition 7.1 - *Group*

A group, G, is a combination of a set and a map from $G \times G \to G$. The map must obey the following rules:

- i) Associativity f * (g * h) = (f * g) * h
- ii) Identity Element $\exists e \in G \text{ st } \forall g \in G, eg = ge = g$

iii) Inverse - $\forall g \in G \exists g^{-1} \in G \text{ st } gg^{-1} = e = g^{-1}g$

Definition 7.2 - Matrix Groups

The General Linear Group, $GL(n, \mathbb{R})$, is a group defined by

$$GL(n,\mathbb{R}) = \{ A \in M_n(\mathbb{R}) : det(A) \neq 0 \}$$

The identity element is $I \in M_n$ and inverse is A^{-1} .

The Special Linear Group, $SL(n,\mathbb{R})$, is a group defined by

$$SL(n,\mathbb{R}) = \{A \in M_n(\mathbb{R}) : det(A) = 1\}$$

The Orthogonal Group, $O(n, \mathbb{R})$, is a group defined by

$$O(n, \mathbb{R}) = \{ A \in M_n(\mathbb{R}) : A^t = A^{-1} \}$$

The Special Orthogonal Group, $SO(n, \mathbb{R})$, is a group defined by

$$SO(n,\mathbb{R}) = \{A \in O(n,\mathbb{R}) : det(A) = \pm 1\}$$

The *Borel Matrix*, $B(n, \mathbb{R})$, is the group of upper triangle matrices with non-zero values on the main diagonal.

The *Permutations Group*, $S(n, \mathbb{R})$, is a group of permutations of $\{1, 2, ..., n\}$ defined my $n \times n$ matrix

e.g.
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

Theorem 7.3 - Abelian Groups

Let G be a group. If $\forall g, h \in G, gh = hg$ then G is commutative and is called an Abelian Group. N.B. e = 0 is the identity element of all Albelian groups.

Definition 7.4 - Direct/Cartesian Product of a Group

Let G, H be groups with the same map. Then $G \times H = \{(g, h) : g \in G, h \in H\}$.

Definition 7.5 - Fields, \mathbb{F}

A field, \mathbb{F} , is a set with two binary operations: addition & multiplication.

Theorem 7.6 - Properties of Fields

- i) F is an abelian group w.r.t addition;
- ii) $\mathbb{F}\setminus\{0\}$ is an abeelian group w.r.t multiplication;
- iii) (x + y).z = x.z + y.z;
- iv) A field always contains 0 & 1.

7.2 Vector Spaces

Definition 7.7 - Vector Space

 \mathbb{V} is a (linear) vector space over a field, \mathbb{F} if:

- i) V is an abelian group w.r.t addition;
- ii) $\forall v \in \mathbb{V} \& \lambda \in \mathbb{F}, \lambda v \in \mathbb{V};$
- iii) $\lambda(\boldsymbol{u} + \boldsymbol{v}) = \lambda \boldsymbol{u} + \lambda \boldsymbol{v};$
- iv) $\lambda(\mu \mathbf{v}) = (\lambda \mu) \mathbf{v}$;
- v) 1.v = v.

Theorem 7.8 - Vector Spaces over Fields

Let W be a vector space over a field, \mathbb{F} , and U be a set. Then define

$$F(U, W) := f : U \to W$$

Then F(U, W) is a vector space over \mathbb{F} .

This means F(U, W) is linear so for all $\lambda \in \mathbb{F} \& f, g \in F(U, W)$ then

$$(f+g)(u) = f(u) + g(u), \quad (\lambda f)(u) = \lambda f(u)$$

7.3 Subspace, Linear Combinations & Span

Definition 7.9 - Subspace

Let \mathbb{V} be a vector space over a field \mathbb{F} and $W \subset \mathbb{V}$, W is a subspace if it is a vector space for the operations inherited from \mathbb{V} .

Theorem 7.10 - Properties of Subspaces

Let \mathbb{V} be a vector space and $U \subset \mathbb{V}$ be a subspace, then U has the following properties:

- i) Not empty $U \neq \emptyset$;
- ii) Closed under addition $\forall u, v \in U; (u+v) \in U;$
- iii) Closed under multiplication $\forall \lambda \in \mathbb{F}, u \in U; \lambda u \in U.$

Theorem 7.11 - Subsets of Subspaces

Let \mathbb{V} be a vector space over \mathbb{F} and $U,W\subset\mathbb{V}$ be subspaces. Then $U\cap W$ is a subspace of \mathbb{V} .

Remark 7.12 - Linear Independence and Span

Let \mathbb{V} be a vector space over field, \mathbb{F} , and $S \subset \mathbb{V}$.

S is linearly dependent if there exists $v \in \mathbb{V}$ such that $span(S) = span(S \setminus \{v\})$.

Definition 7.13 - Finite Dimensional

Let V be a vector space over \mathbb{F} .

 \mathbb{V} is finitely dimensional if it is a span of a finite set, $S \subset \mathbb{V}$, of vectors.

N.B. - If a vector space is not finite dimensional, then it is infinitely dimensional.

Theorem 7.14

Let \mathbb{V} be a vector space over \mathbb{F} with $\mathbb{B}, U \subset \mathbb{V}$.

If \mathbb{B} is a basis for \mathbb{V} , with $|\mathbb{B}| < \infty$, and U is linearly independent then

$$|U| \leq |\mathbb{B}|$$

Theorem 7.15 - Linearly Independent Sets as Bases

Let \mathbb{V} be a vector space over \mathbb{F} with $U \subset \mathbb{V}$ as a linearly independent set.

Then U can be extended to form a basis of \mathbb{V} .

7.4 Direct Sums

Definition 7.16 - Direct Sum

Let \mathbb{V} be a vector space over \mathbb{F} and $U,W\subset V$ be subspaces with $U\cap W=\emptyset$ then

$$U \oplus W := U + W$$

This is the direct sum of U and W.

Theorem 7.17 - Dimension of Direct Sum

Let \mathbb{V} be a vector space over \mathbb{F} and $U,W\subset V$ be subspaces with $U\cap W=\emptyset$ then

$$dim(U \oplus W) = dim(U) + dim(W)$$

Theorem 7.18 - Complement

Let \mathbb{V} be a vector space over \mathbb{F} and $U,W\subset V$ be subspaces with $U\cap W=\emptyset$ if

$$U \oplus W = V$$

then W is said to be the complement of U in V.

7.5 Rank-Nullity Theorem

Definition 7.19 - Rank & Nullity

Let \mathbb{V}, \mathbb{W} be vector spaces over \mathbb{F} and $T : \mathbb{V} \to \mathbb{W}$ be a linear map. Then

$$rank(T) := Dim(Im(T)), \quad nullity(T) := Dim(Ker(T))$$

Theorem 7.20 - Rank-Nullity Theorem

Let \mathbb{V} , \mathbb{W} be vector spaces over \mathbb{F} and $T: \mathbb{V} \to \mathbb{W}$ be a linear map, with $\dim(\mathbb{V}) < \infty$ then

$$Rank(T) + Im(T) = Dim(V)$$

7.6 Projection

Defintion 7.21 - Projection

A linear map $P: V \to V$ is called a projection if $P^2 = P$.

Theorem 7.22 - Image of Projection

Let $P: V \to V$ be a projection then $v \in Im(P)$ iff P(v) = v.

Theorem 7.23 - Direct Sum of Projection

Let $P: V \to V$ be a projection then

$$V = Ker(P) \oplus Im(P)$$

7.7 Isomorphisms

Definition 7.24 - Isomorphisms

Let V, W be vector spaces over \mathbb{F} .

We say that the map $T: V \to W$ is an isomorphism between V & W if

- i) T is linear; and
- ii) T is bijective.

N.B. - If an isomorphism exists between V & W, then they are said to be isomorphic.

Theorem 7.25 - Dimension of Isomorphic Spaces

Let V be a finitely dimensional vector space over \mathbb{F} .

If W is isomorphic to V then

$$dim(V) = dim(W)$$

This definition can be extended to say

If two vector spaces have the same dimension, then they are isomorphic.

Proposition 7.26 - Multiple Bases

Let $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$ be different bases for V.

Define $T_A: \mathbb{F}^n \to V$ and $T_B: \mathbb{F}^n \to V$ such that

$$T_A(x_1,\ldots,x_n) = x_1.a_1 + \cdots + x_n.a_n; \quad T_B(x_1,\ldots,x_n) = x_1.b_1 + \cdots + x_n.b_n$$

Then for all $v \in V$ there are two ways of expressing v.

$$x_1.\boldsymbol{a}_1 + \cdots + x_n.\boldsymbol{a}_n = \boldsymbol{v} = x_1.\boldsymbol{b}_1 + \cdots + x_n.\boldsymbol{b}_n$$

Unless A = B then $x_i \neq y_i$ for at least one $i \in \mathbb{N}, i \leq n$.

Theorem 7.27 - Conversion Matrices

Let A, B be different bases for vector space V, with dim(V) = n.

Then an $n \times n$ matrix, C_{AB} can be used to convert elements given in basis A to now be givin in basis B.

Let $\mathbf{v} \in V$ and $\mathbf{x} = T_A(\mathbf{x}) \& \mathbf{u} = T_B(\mathbf{x})$ then

$$y = C_{AB}x$$

Theorem 7.28 - General Relationship between Bases

Let V be a vector space over \mathbb{F} , with dim(V) = n.

Let A, B be different bases for V with $A = \{a_1, \ldots, a_n\} \& B = \{b_1, \ldots, b_n\}$

Then for all $v \in V$ we have that

$$\boldsymbol{v} = \sum_{i=1}^{n} v_i.\boldsymbol{a}_i = \sum_{i=1}^{n} v_i.\boldsymbol{b}_i$$

Let $C_{AB} = (c_{ij})$ be the conversion matrix from A to B then

$$v_j = \sum_{i=1}^n c_{ij} \boldsymbol{b_i}$$

Theorem 7.29 - Properties of Transition Matrices

Let $A, B, C \subset V$ all be different bases for V then

- i) $C_{AA} = I$;
- ii) $C_{AB}C_{BA} = I$;
- iii) $C_{CA}C_{AB} = C_{CB}$.

Theorem 7.30 - Linear Maps between Vector Spaces as Matrices

Let V, W both be vector spaces over \mathbb{F} , with dim(V) = n and dim(W) = m, and $T: V \to W$ be a linear map.

Let $A = \{a_1, \dots, a_n\} \subset V$ and $B = \{b_1, \dots, b_n\} \subset W$ be bases for V & W respectively. Then we can define an $n \times m$ matrix

$$M_{AB}(T) = (m_{ij}) \in M_{n,m}(\mathbb{F})$$

Where m_{ij} are defined to satisfy

$$T(a_j) = \sum_{i=1}^{m} m_{ij} b_i$$

Then

$$\mathbf{w} = M_{AB}(T)\mathbf{v}$$

With $\boldsymbol{v} \in V, \boldsymbol{w} \in W$

Theorem 7.31 - Change Basis of Linear Map

Let V be a vector space over F and $U, W \subset V$ be different bases for V.

Define $T: V \to V$ be a linear map and C to be the transition matrix from basis $U \to W$.

Then C^{-1} is the transition matrix from $W \to U$.

Set A to be the matrix representation of T in basis U. Then

$$A' = C^{-1}AC$$

Where A' is the matrix representation of T in basis W.

8 Eigenvalues & Eigenvectors

8.1 Characteristic Polynomial

Definition 8.1 - Eigenvectors & Eigenvalues

Let $v \in V \setminus \{0\}$ and $T : V \to V$ be a linear operator.

 \boldsymbol{v} is called an eigenvector of T if

$$T(\mathbf{v}) = \lambda \mathbf{v}, \quad \lambda \in \mathbb{F}$$

This λ is the associatiated eigenvalue for v.

Definition 8.2 - Spectrum

The set of eigenvectors of a linear operator $T:V\to V$ is called the spectrum of T, generally denoted as

$$Spec(T) := \{ \boldsymbol{v} \in V : T(\boldsymbol{v}) = \lambda \boldsymbol{v}, \lambda \in \mathbb{F} \}$$

Defintion 8.3 - Diagonisable

A linear operator is *diagonisable* if there exists a basis of eigenvectors for it.

Remark 8.4 - Finding Eigenvalues

Let A be the matrix which represents a linear operator T, and X be a general eigenvector for T

$$T(x) = Ax = \lambda x = (A - \lambda I)x = 0$$

Then λ is an eigenvalue if it satisfies

$$det(A - \lambda . I) = 0$$

Definition 8.5 - Characteristic Polynomial

The polynomial which is equivalent to $det(A - \lambda I)$ is called the *characteristic polynomial* of A.

$$p_A(\lambda) := det(A - \lambda.I)$$

<u>N.B.</u> - λ is an eigenvalue for A if $p_A(\lambda) = 0$

Definition 8.6 - Eigenspace

let $\lambda \in \mathbb{F}$ be an eigenvalue of T, then the corresponding eigenspace is defined as

$$V_{\lambda} := ker(T - \lambda.I)$$

Remark 8.7 - Finding Eigenvectors

Once we have found all $\lambda_1, \ldots, \lambda_k$ that satisfy $p_A(\lambda_i) = 0$ then we can find the eigenvectors, \boldsymbol{x}_i , of A

$$(A - \lambda . I) \boldsymbol{x}_i = \boldsymbol{0}$$

A good way to start is to produce the linear equations

$$\sum_{j=1}^{n} (A - \lambda . I)_{ij} . x_j = 0$$

For all $i \leq n$. Then solve these, as a series of simultaneous equations, to find the values x_j which produce the eigenvector x.

Repeat this process for all $\lambda_1, \ldots, \lambda_k$ to find all eigenvectors for A.

Theorem 8.8 - Similar Characteristic Polynomial

Let C be an invertible matrix.

Define $A' = C^{-1}AV$ where A & A' are conjugate or similar.

Then $p_A(\lambda) = p_{A'}(\lambda)$.

Theorem 8.9 - Characteristic Polynomial & Basis

The characteristic polynomial for T is the same, regardless of the basis of T.

Definition 8.10 - Trace

Let $A \in M_n(\mathbb{F})$.

Then the trace of A is defined as

$$Tr(A) := \sum_{i=1}^{n} a_{ii}$$

N.B. - Trace is sometimes called Spur.

Remark 8.11

As the terms after the first term of the determinat of a matrix do not contribute to the powers of λ in the characteristic equation then we can ignore them. This means we can deduce that

$$p_T(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} (Tr(A)) + \dots + det(A)$$

Theorem 8.12 - Diagonalised Matrix

Let T be a diagonisable matrix with eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$.

Then T can be represented by

$$\Delta = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \dots & \dots & \lambda_n \end{pmatrix}$$

N.B. - T can also be represented in any basis with, C as the transition matrix, by $C^{-1}\Delta C$.

Theorem 8.13 - Relationship between Matrix and its Diagonalised Form Let T be a matrix and Δ be its diagonalised form, then

$$Det(T) = Det(\Delta) = \prod_{j=1}^{n} \lambda_j$$

And

$$Tr(T) = Tr(\Delta) = \sum_{j=1}^{n} \lambda_j$$

Theorem 8.14 - Distinct Eigenvectors and Diagonisability

Eigenvectors, which correspond to distinct eigen values, are linearly independent.

Thus if a matrix, A, has only distinct eigenvalues then it is diagonisable.

8.2 Roots of Characteristic Polynomial

Remark 8.15 - Degree of Characteristic Equation

Eigenvalues are roots of $p_A(\lambda) = 0$ where p_A is an equation of degree dim(A).

Remark 8.16 - Non-Distinct Roots of Characteristic Equation

If the roots of $P_A(\lambda)$ are not distinct then A may be diagonisable depending on how many eigenvectors are found.

Theorem 8.17 - Vieta's Theorem

If $\lambda_1, \ldots, \lambda_n$ are roots of the Polynomial

$$\lambda_n + a_1 \lambda^{n-1} + \dots + a_n = 0 \equiv p(\lambda) = 0$$

Then $p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$.

So $p(\lambda)$ factorises in the product $\prod_{i=1}^{n} (\lambda - \lambda_i)$ but the λ_i s are not necessarily distinct.

Definition 8.18 - Multiplicity of Roots

Let $\lambda_1 \in \mathbb{C}$ of characteristic polynomial, $p(\lambda)$.

 λ_1 has multiplicity $m_1 \in \mathbb{N}$ if

$$p(\lambda_1) = \frac{dp}{d\lambda}(\lambda_1) = \dots = \frac{d^{m_1 - 1}p}{d\lambda^{m_1 - 1}}(\lambda_1) = 0$$

This means that $(\lambda - \lambda_1)^{m_1}$ is a factor of $p(\lambda)$.

Definition 8.19 - Geometric & Algebraic Multiplicity

Let $\lambda \in spec(T)$ and V_{λ} be the corresponding eigenspace.

- i) λ has geometric multiplicity, $m_g(\lambda) \in \mathbb{N}$, if $dim(V_{\lambda}) = m_g(\lambda)$;
- ii) λ has algebraic multiplicity, $m_a(\lambda) \in \mathbb{N}$, if λ has multiplicity m_a of $p_T(\lambda)$

Theorem 8.20 - Relationship between Geometric & Algebraic Multiplicity Let $\lambda \in spec(T)$ then

$$m_g(\lambda) \le m_a(\lambda)$$

Theorem 8.21 -

Let T be a linear operator on an n dimensional space over \mathbb{C} or \mathbb{R} , with eigenvalues $\lambda_1, \ldots, \lambda_n$, which are not necessarily distinct. Then

$$det(T) = \prod_{i=1}^{n} \lambda_i \quad \& \quad tr(T) = \sum_{i=1}^{n} \lambda_i$$

9 Inner Product Spaces

9.1 Inner Product, Norm & Orthogonality

Definition 9.01 - *Inner Product (Complex)*

Let V be a vector space over \mathbb{C} .

An inner product on V is a map, $\langle V, V \rangle : V \times V \to \mathbb{C}$, with the following properties:

- i) $\langle v, v \rangle \geq 0$;
- ii) $\langle v, w \rangle = \overline{\langle v, w \rangle};$
- iii) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle;$
- iv) $\langle \lambda.u, v \rangle = \lambda \langle u, v \rangle$.

Where $u, v, w \in V$ and $\lambda \in \mathbb{C}$.

Definition 9.02 - Inner Product (Real)

Let V be a vector space over \mathbb{R} .

An inner product on V is a map, $\langle , \rangle : V \times V \to \mathbb{C}$, with the following properties:

- i) $\langle v, v \rangle \geq 0$;
- ii) $\langle v, w \rangle = \langle w, v \rangle;$
- iii) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$;
- iv) $\langle \lambda.u, v \rangle = \lambda \langle u, v \rangle$.

Where $u, v, w \in V$ and $\lambda \in \mathbb{C}$.

Definition 9.03 - Inner Product Space

A V be a vector space with \langle,\rangle as a defined inner product are called an *inner product space*, denoted by

$$(V,\langle,\rangle)$$

<u>N.B.</u> - If V is over $\mathbb C$ then this is called a *complex inner product space*. If V is over $\mathbb R$ then this is called a *real inner product space*.

Definition 9.04 - Norm

Let (V, \langle , \rangle) be an inner product space, then we define the associated norm as

$$||v|| := \sqrt{\langle v, v \rangle}, \quad v \in V$$

${\bf Definition} \ {\bf 9.05} \ {\bf -} \ {\it Orthogonal}$

Let (V, \langle, \rangle) be an inner product space, then

i) $v, w \in V$ are orthogonal, $v \perp w$, if $\langle v, w \rangle = 0$;

ii) $U, W \subset V$ are orthogonal, $U \perp W$, if $u \perp w \ \forall \ u \in U \ \& \ v \in V$.

Definition 9.06 - Orthogonal Complement

Let (V, \langle, \rangle) be an inner product space and $W \subset V$.

The *orthogonal complement* is defined as

$$W^{\perp} := \{ v \in V : v \perp w \ \forall \ w \in W \}$$

Theorem 9.07 - Norm of Orthogonal Elements

Let (V, \langle, \rangle) be an inner product space and $v, w \in V$ with $v \perp w$, then

$$||v + w||^2 = ||v||^2 + ||w||^2$$

Definition 9.08 - Orthonormal Basis

Let (V, \langle, \rangle) be an inner product space.

A basis, $\mathbb{B} = \{v_1, \dots, v_n\}$, is called an *orthonormal basis* if

$$\langle v_i, v_j \rangle = \delta_{ij} := \begin{cases} 1 & i = j; \\ 0 & i \neq j. \end{cases}$$

Theorem 9.09 - Properties of Orthogonal Basis

Let (V, \langle, \rangle) be an inner product space and $\mathbb{B} = \{v_1, \dots, v_n\}$ an orthonormal basis. Then $\forall v, w \in V$,

i)
$$v = \sum_{i=1}^{n} \langle v_i, v \rangle v_i;$$

ii)
$$\langle v, w \rangle = \sum_{i=1}^{n} \overline{\langle v_i, v \rangle} \langle v_i, w \rangle;$$

iii)
$$||v|| = \left[\sum_{i=1}^{n} |\langle v_i, v \rangle|^2\right]^{1/2}$$
.

9.2 Construction of Orthonormal Basis