HS Emden/Leer, Fachbereich Technik Prof. Dr. C. Koch Elektrotechnik und Informatik

E-Mail: carsten.koch@hs-emden-leer.de

Probeklausur Hardwarenahe Programmierung SS2015

02.06.2015

Probeklausur

1 1000Kiddsd1			
Name:			
Vorname:			
Matrikelnummer:		Semester:	
Studiengang:			
Hilfsmittel:			
 Schreibzeug 			
• ein Taschenrechner	r, nicht programn	nierbar	
 keine Bücher, Skrij 	ote, etc.		
Hinweise:			
 Für jede Aufgabe i 	st ein neues Blat	t zu verwenden.	
 Jedes Blatt ist mit 	Name und Seite	nzahl zu beschriften.	
 Verwenden Sie bitt 	e keinen Bleistift	t und keinen roten Stift.	
 Endergebnisse bitte 	e doppelt unterst	creichen.	
 Endergebnisse ohn 	e nachvollziehbar	ren Lösungsweg werden nicht bewert	tet.
Die Bearbeitungsze	eit für die Klausu	ır beträgt 90 Minuten.	
Bewertung:	Punkte =	%	
Note, Prüfer, Dat	um		
Klausureinsicht:			
Studentln, Datum			

Aufgabe	I Daten im Computer	12
1. Was ist	ein WORD, was ist ein NIBBLE?	4
2. Wandelı	n Sie folgende Dualzahl in eine Dezimalzahl um: 1001	2
3. Wandelı	n Sie folgende Dualzahl in eine hexadezimale Zahl um: 100)11001 2
4. Wandelı um: -4	n Sie folgende Dezimalzahl in eine Dualzahl (Zweierkomplen	nent, 8-Bit)
Aufgabe	2 Mikrocomputersysteme	24
1. Mit wel	cher Bitbreite arbeitet der Datenbus des 8086-Prozessors?	2
2. Was sin Prozesso	nd Register? Benennen und beschreiben Sie fünf Register ors.	eines 8086-
3. Benenne	en und beschreiben Sie vier Flags eines 8086-Prozessors.	4
4. Was ist Beispiel	unter der Intel-Konvention zu verstehen? Erläutern Sie die	es an einem
FETCH	n sei die Befehlsabarbeitung einer CPU mit den Phasen I/DECODE/READ/EXECUTE/WRITE. Aufgaben hat hierbei jeweils das Steuerwerk?	8
Aufgabe	· · ·	16
Gegeben sei d	der folgende Auszug eines Assemblerprogramms:	
org 100h cpu 8086		
START: COUNT:	<pre>mov bx,EXTEXT ; BX initialisieren mov al, [bx]</pre>	
	out 00h, al ; LEDs ansteuern	
	inc bx jmp COUNT ; Endlosschleife	
EXTEXT DATVAL	db 'TecPro-1'; Adresse = 010Bh dw 1034	
DAIVAL	dw 01FFh	
LEDOUT	db 04h	
1. Welchen	n Wert beinhaltet BX nach 10 Iterationen?	4
2. Welcher	Wert liegt am genutzten Ausgangsport nach 10 Iteratione	en an? 4
3. Welchen	n Wert beinhaltet BX nach 100.000 Iterationen?	8

- 1. Wozu dient in einem C-Programm das Schlüsselwort extern?
- 2. Stellen Sie dem folgenden C-Konstrukt

```
/* Variable a und b jeweils mit der Größe 8 Bit */
do{
   a--;
   b=a;
} while (a!=10);
```

ein funktionstüchtiges Programmfragment in Assembler gegenüber.

3. Erklären Sie Zusammenhang und Unterschied der Begriffe **Adresse** und **Zeiger**. Welche Rolle spielen Zeiger als Funktionsargumente?

Aufgabe 5 Basiskonzepte

12

- 1. Erklären Sie die Begriffe HW-Interrupt, Exception und SW-Interrupt sowie deren Bedeutung jeweils anhand eines Beispiels.
- 2. Erläutern Sie stichwortartig die Vor- und Nachteile der Datenspeicherung auf dem STACK und dem HEAP.

Aufgabe 6 Programmierwerkzeuge

20

4

- 1. Stellen Sie den Werdegang eines C-Programms anhand aller erforderlichen Programmierwerkzeuge dar und ordnen Sie diesen alle (auch die nur zeitweilig existierenden) Input- sowie Output-Dateien zu.
- 2. Compiler: Was ist ein Cross-Compiler?
- 3. Beschreiben Sie den Zweck als auch den Aufbau eines Makefile.
- 4. Debugger: Wodurch unterscheidet sich eine ausführbare Datei in der Debugvon einer Release-Version?

Anmerkung: Summe aller Klausuraufgaben = 100 Punkte $\hat{=}$ 100%.