Practice questions for WSN

Branch: CCE and CSE

Semester:7th

Year: 2024

- 1. For a wireless sensor network (WSN) that keep track on movement of terrorist behind the wall then suggest the design specifications in terms of
 - (a) Discuss the type of application for the given WSN.
 - (b) The sensors used for the measurement.
 - (c) The input data used among RSS, CSI, ToF.
 - (d) Type of modulation technique and detection mechanism.
 - (e) Preferred network architecture such as centralized or distributed.
 - (f) Suggest the most suitable type of function to be used among different types of in-network processing functions.
 - (g) Find the approximate energy overhead required by considering the data transmission rate of R bits/sec and a coding rate of R_{code} to transmit n-bits from transmitter to receiver.
 - (h) Suggest whether the network requires improved lifetime not.
 - (i) Suggest whether sensor based or sensor less approach is essential for this WSN.
 - (j) Discuss the type of mobility for the given network.
 - (k) Suggest about the programming paradigm for the network.
 - (l) Is this network following cross-layer optimization, if yes then justify how the cross-layer optimization is achieved.
 - (m) Frame the event as a database and provide the query to retrieve event data.

- 2. For a WSN that keep monitoring the air quality of an indoor seminar hall. Suggest the design specifications in terms of
 - (a) Discuss the type of application for the given WSN.
 - (b) The sensors used for the measurement.
 - (c) Type of modulation technique.
 - (d) Preferred network architecture such as centralized or distributed.
 - (e) Suggest the most suitable type of function to be used among different types of in-network processing functions.
 - (f) Find the approximate energy overhead required by considering the data transmission rate of R bits/sec and a coding rate of R_{code} to transmit n-bits from transmitter to receiver.
 - (g) Suggest whether the network requires improved lifetime not.
 - (h) Discuss the type of mobility for the given network.
 - (i) Suggest about the programming paradigm for the network.
 - (j) Is this network following cross-layer optimization, if yes then justify how the cross-layer optimization is achieved.
 - (k) Frame the event as a database and provide the query to retrieve event data.
 - (l) Construct a component timer and clock for such network with possible interfaces.
- 3. For a WSN used for flood monitoring system
 - (a) Discuss the type of application for the given WSN.
 - (b) The sensors used for the measurement.
 - (c) Whether the data requires periodic monitoring, or an efficient MAC protocol is required for heavy data burst.
 - (d) Preferred network architecture such as centralized or distributed.
 - (e) Suggest the most suitable type of function to be used among different types of in-network processing functions.

- (f) Find the approximate energy overhead required by considering the data transmission rate of R bits/sec and a coding rate of R_{code} to transmit n-bits from transmitter to receiver.
- (g) Suggest whether the network requires improved lifetime not.
- (h) Discuss the type of mobility for the given network.
- (i) Frame the event as a database and provide the query to retrieve event data.
- 4. For a WSN that identify the number of chairs for sitting arrangement in a park. Considering very few seats are available in the large geographic area of the park.
 - (a) Discuss the type of application for the given WSN.
 - (b) The input data used among RSS, CSI, AoA, ToF.
 - (c) Which MAC protocol is suitable for this application?
 - (d) Whether a radio or non- radio wireless communication is preferred.
 - (e) Preferred network architecture such as centralized or distributed.
 - (f) Suggest whether the network requires improved lifetime not.
 - (g) Discuss the type of mobility for the given network.
 - (h) Suggest whether sensor based or sensor less approach is essential for detecting the seats.
- 5. For a WSN that identify the number enemy aircraft entering in certain space for border applications.
 - (a) Discuss the type of application for the given WSN.
 - (b) The input data used among RSS, CSI, AoA, ToF.
 - (c) Type of modulation technique.
 - (d) Preferred network architecture such as centralized or distributed.

- (e) Suggest whether the network requires improved lifetime not.
- (f) Whether the data requires periodic monitoring, or an efficient MAC protocol is required for heavy data burst.
- (g) Suggest whether sensor based or sensor less approach is essential for detecting these aircrafts.
- (h) Suggest about the number of sensors required (more or less).
- 6. Discuss about the following for WSN.
 - a. Network lifetime
 - b. Energy scavenging
 - c. Event mobility
 - d. Adaptive fidelity
 - e. Function approximation and edge detection
 - f. Frequency stability
 - g. Dynamic voltage scaling
 - h. Carrier sense multiple access
 - i. Wakeup radio
 - j. Event-based programming
 - k. Split-phase programming
 - 1. Agent-based networking
 - m. WSN tunnelling
 - n. Communication vs computation
 - o. Timer interface
 - p. Component based programming
 - q. Centralized vs distributed network paradigm
 - r. Overlay networks
 - s. Scalability in WSN
 - t. Robustness of WSN
 - u. Aggregation in in-network processing

- v. Data-centric vs address-centric paradigm
- w. Gateway in WSN
- x. Wave propagation phenomenon (diffraction, scattering, and doppler fading)
- y. Flat fading vs fast fading
- z. Co-channel vs adjacent channel interference
- aa. Rayleigh vs Rice fading
- bb. DSSS vs FHSS
- cc. Carrier and frame synchronization
- dd. Equalization techniques
- ee. Dynamic modulation scaling
- ff. Pure vs Slotted ALOHA
- gg. Hidden vs Exposed terminal problem in CSMA
- hh. Idle listening vs Collision problem for MAC
- ii. Schedule-based vs Contention-based MAC protocols
- jj. FEC vs ARQ techniques
- kk. Non persistent vs Persistent CSMA
- 11. Periodic wakeup vs Wakeup radio
- mm. STEM-B vs STEM-T