A_{∞} 増強の一意性

よの

2023年8月13日

概要

 A_∞ 増強の一意性について議論する. 特に断らない限りこの章では, A_∞ 圏は c-unital であり, A_∞ 関手と A_∞ 加群は c-unit を保つとする.

目次

1 三角圏の A_∞ 増強 1 2 A_∞ 増強の一意性 2

1 三角圏の A_{∞} 増強

定義 1.1 (A_{∞} 増強). 三角圏 $\mathcal T$ に対して, ある A_{∞} 圏 $\mathcal A$ が存在して三角圏同値

 $\mathcal{T}\simeq \mathrm{Tr}(\mathcal{A})$

が成立するとき, A_{∞} 圏 $\operatorname{Tw}(\mathcal{C})$ を \mathcal{T} の A_{∞} 増強 $(A_{\infty}$ -enhancement for $\mathcal{T})$ という. このとき, \mathcal{T} は A_{∞} 増強を持つという.

補題 1.2. 次の 2 つは同値である.

- 1. 三角圏は代数的である.
- 2. 三角圏は A_{∞} 増強を持つ.

Proof. A_{∞} -Yoneda の補題より、任意の A_{∞} 圏は \deg 圏と A_{∞} 擬同型である。三角圏が代数的であることと \deg 増強をもつことは同値である。 \deg 圏が A_{∞} 圏とみなせることより同値性は従う.

TwA と TrA の構成法より以下の命題が従う.

例えば、 $Tr A = H^0(TwA)$ は H(TwA) と同じだけの情報を持っている.

補題 1.3. 次の 2 つは同値である.

1. $Tr A = H^0(TwA)$ において、2 つの対象は同型である.

2. H(TwA) において、2 つの対象は同型である.

Proof. シフト関手 $S^{\sigma}: \mathrm{Tw}\mathcal{A} \to \mathrm{Tw}\mathcal{A}$ が A_{∞} 擬同型であることより従う.

補題 1.4. A を A_{∞} 圏とする. このとき, 三角圏同値

$$H^0(\mathrm{Tw}\mathrm{Tw}\mathcal{A}) \simeq \mathcal{H}^0(\mathrm{Tw}\mathcal{A})$$

が存在する.

Proof. TwA の構成法より従う.

2 A_{∞} 増強の一意性

三角圏 T が A_{∞} 増強 $\mathrm{Tw}A$ をもつとき, A_{∞} 増強は A_{∞} 擬同値を除いて一意であるかについて考える.

問題 **2.1.** A, \mathcal{B} を A_{∞} 圏, ϕ : $\mathrm{Tr}\mathcal{A} \to \mathrm{Tr}\mathcal{B}$ は三角圏同値であるとする. このとき, ある A_{∞} 擬同値 φ : $\mathrm{Tw}\mathcal{A} \to \mathrm{Tw}\mathcal{B}$ が存在して, 次の図式は可換となるか.

$$\begin{array}{ccc} \operatorname{Tw} \mathcal{A} & \stackrel{\tilde{\phi}}{----} & \operatorname{Tw} \mathcal{B} \\ H^0 & & \downarrow H^0 \\ \operatorname{Tr} \mathcal{A} & \stackrel{\phi}{\longrightarrow} & \operatorname{Tr} \mathcal{B} \end{array}$$

そのためにまず, A_{∞} 関手と三角関手に関する自然同型の概念を定義する.

定義 2.2 (リフト). $\varphi: \operatorname{Tw} \mathcal{A} \to \operatorname{Tw} \mathcal{B}$ を A_{∞} 関手, $H^0: \operatorname{Tw} \mathcal{A} \to \operatorname{Tw} \mathcal{A}, \operatorname{Tw} \mathcal{B} \to \operatorname{Tw} \mathcal{B}$ をコホモロジーをとる関手, $\phi: \operatorname{Tr} \mathcal{A} \to \operatorname{Tr} \mathcal{B}$ を三角関手とする.

$$\begin{array}{ccc} \operatorname{Tw} \mathcal{A} & \stackrel{\tilde{\phi}}{\longrightarrow} & \operatorname{Tw} \mathcal{B} \\ & \downarrow_{H^0} & & \downarrow_{H^0} \\ & \operatorname{Tr} \mathcal{A} & \stackrel{\phi}{\longrightarrow} & \operatorname{Tr} \mathcal{B} \end{array}$$

合成 $\phi \circ H^0$ と $H^0 \circ \tilde{\phi}$ が次の 2 つを満たすとき, $\phi \circ H^0$ と $H^0 \circ \tilde{\phi}$ は自然同型であるという.

- 任意の $Y \in \mathrm{ObTw}\mathcal{A}$ に対して, $\phi \circ H^0(Y)$ と $H^0 \circ \tilde{\phi}(Y)$ は $\mathrm{Tr}\mathcal{B}$ において同型である. $\mathrm{Tr}\mathcal{B}$ に おけるこの同型射を $\theta_Y: \phi \circ H^0(Y) \to H^0 \circ \tilde{\phi}(Y)$ と表す.
- ullet 任意の $\mu^1_{\mathrm{Tw}\mathcal{A}}$ で閉じている射 $a_1\in \mathrm{hom}^0_{\mathrm{Tw}\mathcal{A}}(Y_0,Y_1)$ に対して、次の図式は可換である.

$$\phi \circ H^0(Y_0) \xrightarrow{\phi \circ H^0(a_1)} \phi \circ H^0(Y_1)
\theta_{Y_0} \downarrow \qquad \qquad \downarrow \theta_{Y_1}
H^0 \circ \tilde{\phi}(Y_0) \xrightarrow{H^0 \circ \tilde{\phi}(a_1)} H^0 \circ \tilde{\phi}(Y_1)$$

このような $\tilde{\phi}$: Tw $\mathcal{A} \to \text{Tw}\mathcal{B}$ が存在するとき, $\tilde{\phi}$ を ϕ のリフト (lift) という.

一般にはリフトが存在するとは限らない.

注意 2.3. A, B を次のような極小 A_{∞} 圏とする.

- H(A) の H(B) のいずれにおいても、相異なる対象は同型でない。
- 三角圏同値 $\phi: \operatorname{Tr} \mathcal{A} \to \operatorname{Tr} \mathcal{B}$ は存在する.
- ullet 三角圏同値 ϕ の充満部分圏への制限 $H(\mathcal{A}) o H(\mathcal{B})$ は圏同型である.

このとき、 \mathcal{A} と \mathcal{B} が A_{∞} 同型でない限り、 ϕ のリフト $\tilde{\phi}$: $\operatorname{Tw}\mathcal{A} \to \operatorname{Tw}\mathcal{B}$ は存在しない.

Proof. 対偶を示す. ϕ のリフト $\tilde{\phi}$: $\operatorname{Tw} \mathcal{A} \to \operatorname{Tw} \mathcal{B}$ が存在するとする. このとき, それぞれを制限することで A_{∞} 擬同値 $\mathcal{A} \to \mathcal{B}$ が存在する. 条件より, この A_{∞} 擬同値は A_{∞} 擬同型である. つまり, \mathcal{A} と \mathcal{B} は A_{∞} 同型である.

 A_{∞} 増強が存在するとき、いつ $(A_{\infty}$ 擬同値をのぞいて) 一意であるかを考える.

定義 2.4 (形式的な A_{∞} 圏). A_{∞} 圏 A がコホモロジー圏 H(A) と A_{∞} 擬同型であるとき, A は形式的な A_{∞} 圏 (formal A_{∞} -category) であるという.

注意 **2.5.** A を形式的な A_∞ 圏とする. ??より, A に A_∞ 擬同型な極小 A_∞ 圏 $(\tilde{\mathcal{A}})$ が存在する. このとき, $\mu_{\tilde{\mathcal{A}}}$ の高次の A_∞ 構造 $\mu_{\tilde{\mathcal{A}}}^3, \mu_{\tilde{\mathcal{A}}}^4, \cdots$ は全て自明である. ??より, 三角圏同値

$$\operatorname{Tr} \mathcal{A} \simeq \operatorname{Tr}(H(\mathcal{A}))$$

が存在する. A が形式的な A_{∞} 圏であるとき, $\operatorname{Tr} A$ は H(A) のみから決定されることを示している.

コホモロジー圏における合成を 2 次の A_{∞} 構造とすると、極小 A_{∞} 圏を得ることができる.

定義 2.6 (A_{∞} 拡張). 次数付き線形圏 \mathcal{B} に対して, 極小 A_{∞} 圏 \mathcal{A} を次のように定義する.

(d=0) 対象の集まり $\mathrm{Ob}\mathcal{A}:=\mathrm{Ob}\mathcal{B}$

(d=1) 極小 A_{∞} 圏なので $\mu^1_{\mathcal{A}}:=0$

(d=2) μ_A^2 は次数付き線形圏の合成

A は B の A_{∞} 拡張 $(A_{\infty}$ -decoration of B) であるという.

定義 2.7 (自明な A_{∞} 拡張). 次数付き線形圏 \mathcal{B} の A_{∞} 拡張 \mathcal{A} が dg 圏となるとき, \mathcal{A} は \mathcal{B} の自明な A_{∞} 拡張 (trivial A_{∞} -decoration of \mathcal{B}) であるという.

例 2.8. 極小 A_∞ 圏 $\mathcal A$ のコホモロジー圏 $H(\mathcal A)$ を \deg 圏とみなす. $H(\mathcal A)$ は $H(\mathcal A)$ の自明な A_∞ 拡張である.

定義 2.9 (自明な A_∞ 拡張をもつ). 極小 A_∞ 圏 A のコホモロジー圏を H(A) とする. 次数付き線形

圏 $\mathcal B$ の任意の A_∞ 拡張が $H(\mathcal A)$ と A_∞ 擬同型であるとき, $\mathcal B$ は自明な A_∞ 拡張をもつ (have trivial A_∞ -decoration) という.

補題 2.10. 極小 A_∞ 圏 A のコホモロジー圏を H(A) とする. H(A) が自明な A_∞ 拡張をもつとき、A は形式的である.

Proof. 自明な A_{∞} 拡張をもつとき, A は H(A) と A_{∞} 擬同型である. よって, A は形式的な A_{∞} 圏である.

定理 2.11. A_∞ 圏 A の次数付き線形圏 H(A) は自明な A_∞ 拡張をもつとする. このとき, 三角圏 $\mathcal T$ の A_∞ 増強は存在すれば A_∞ 擬同値を除いて一意である.

Proof. 存在性より $\mathrm{Tw}\mathcal{A}$ は三角圏 \mathcal{T} の A_∞ 増強である. ある A_∞ 圏 \mathcal{B} が存在して $\mathrm{Tr}\mathcal{B}\simeq\mathcal{T}$ であるとする. つまり, 三角圏同値

$$\phi: \operatorname{Tr} \mathcal{A} \to H^0(\mathcal{B})$$

が存在するとする.このとき,次数付き圏として圏同値 $H(\mathrm{Tw}\mathcal{A})\simeq H(\mathcal{B})$ が存在する. $H(\mathrm{Tw}\mathcal{A})$ の 充満部分圏 $H(\mathcal{A})$ と圏同値となるような \mathcal{B} の充満部分 A_{∞} 圏 \mathcal{B}' をとる.

$$H(\mathcal{A}) \simeq H(\mathcal{B}')$$

補題 2.10 より, A_{∞} 圏として

$$\mathcal{A} \simeq H(\mathcal{A}) \simeq H(\mathcal{B}') \cong \mathcal{B}'$$

$$\tilde{\phi}: \mathrm{Tw}\mathcal{A} \to \mathrm{Tw}\mathcal{B}'$$

が存在する. $\operatorname{Tw} \mathcal{B}'$ は \mathcal{B}' の充満部分 A_∞ 圏なので、この埋め込みを $i:\operatorname{Tw} \mathcal{B}'\to \mathcal{B}$ と表す. このとき、次の図式は定義 2.2 の意味で可換である.

$$\begin{array}{cccc} \operatorname{Tw} \mathcal{A} & \stackrel{\tilde{\phi}}{\longrightarrow} & \operatorname{Tw} \mathcal{B}' & \stackrel{i}{\longleftarrow} & \mathcal{B} \\ \downarrow_{H^0} & & \downarrow_{H^0} & & _{H^0} \downarrow \\ \operatorname{Tr} \mathcal{A} & \xrightarrow[H^0(\tilde{\phi})]{} & \operatorname{Tr} \mathcal{B}' & \xrightarrow[H^0(i)]{} & H^0(\mathcal{B}) \end{array}$$

 $H^0(i)$ は忠実充満な三角関手なので, $H^0(i)\circ H^0(ilde{\phi})$ はリフト $i\circ ilde{\phi}$ をもつ.