Пример. Найти корень нелинейного уравнения

$$x^3 - \frac{x^2 + x}{5} = 1,2$$

с помощью метода половинного деления на интервале [1; 1,5] с точностью $\varepsilon = \delta = 10^{-3}$.

Решение. Вначале определяется значение функции на одной из границ заданного интервала (в нашем случае это точка, являющаяся началом интервала a = 1)

$$f(1)=1^3-\frac{1^2+1}{5}-1,2=-0,6$$
.

Далее вычисляется координата середины заданного интервала

$$x_0 = \frac{1+1,5}{2} = 1,25$$

и значение функции во вновь найденной точке $f\left(1,25\right) = 1,25^3 - \frac{1,25^2 + 1,25}{5} - 1,2 = 0,190625 \ .$

Полученное значение функции в точке
$$x_0$$
 позволяет провести анализ смены знака функции и выбрать новый интервал, на

сти анализ смены знака функции и выбрать новый интервал, на котором функция меняет знак. В данном случае осуществляется

замена точки b на x_0 . В результате заданный первоначальный интервал сузился до [1; 1,25].

Для вновь определенного интервала проводится проверка достигнутой точности

$$|b-a| \le 2\varepsilon$$
 или $|1,25-1| = 0,25 < 0,002$.

Как видно новый интервал не удовлетворяет требуемому условию по точности, следовательно, процесс уточнения необходимо продолжить. Для этого проводится повторное вычисление координаты середины нового интервала

$$x_1 = \frac{1+1,25}{2} = 1,125$$

и значение функции в этой точке

$$f(1,125) = 1,125^3 - \frac{1,125^2 + 1,125}{5} - 1,2 = -0,254297$$
.

Проверяется условие достижения значением функции во вновь найденной точке заданной точности

$$|f(x_1)| < \delta$$
,
 $|-0,254297| < 0,001$.

Проведенное сравнение подтверждает необходимость продолжения процесса уточнения искомого решения.

Используя полученное значение функции в точке x_1 , определяется интервал, на котором функция меняет знак.

Таким образом, точка a заменяется на x_1 , а исследуемый интервал уменьшается до [1,125; 1,25] и процедура нахождения решения продолжается.

Механизм нахождения решения заданного нелинейного уравнения методом половинного деления целесообразно свести в таблицу.

Из табл. 7 видно, что после восьми приближений получено решение, удовлетворяющее заданной точности

$$|1,201172-1,199219| = 0,001953 < 0,002$$
.

Отметим, что значение функции, определенное после восьмой итерации также меньше δ .

Для справки, точным решением заданного нелинейного уравнения является $x^* = 1, 2$.

Ответ. Решением заданного нелинейного уравнения на рассматриваемом интервале является x = 1,200195, которое получено с требуемой точностью $\varepsilon = \delta = 0,001$.

Таблица 7 — Решение нелинейного уравнения методом дихотомии

-	k	a	f(a)	b	x	f(x)
	0	1	-0,6	1,5	1,25	0,190625
	1	1	-0,6	1,25	1,125	-0,254297
<u>.</u>	2	1,125	-0,2543	1,25	1,1875	-0,044971
	3	1,1875	-0,044971	1,25	1,21875	0,069452
	4	1,1875	-0,044971	1,21875	1,203125	0,011408
	5	1,1875	-0,044971	1,203125	1,195313	-0,016988
	6	1,195313	-0,016988	1,203125	1,199219	-0,002842
	7	1,199219	-0,002842	1,203125	1,201172	0,004270