ReXNet: Diminishing Representational Bootleneck on Convolutional Neural Network

Dongyoon Han, Sangdoo Yun, Byeoungho Heo, YoungJoon Yoo Clova AI Research, NAVER Corp.

What is Representational Bottleneck?

- When we reduce the dimension of data, we lose some important representations.
- This leads our model to bad performance.
- Softmax layer also make representational bottleneck.

ConvNet Configuration										
A	A-LRN	В	C	D	E					
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers					
input (224 × 224 RGB image)										
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64					
	LRN	conv3-64	conv3-64	conv3-64	conv3-64					
maxpool										
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	conv3-128	conv3-128	conv3-128					
maxpool										
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
			conv1-256	conv3-256	conv3-256					
					conv3-256					
maxpool										
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
maxpool										
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
maxpool										
FC-4096										
FC-4096										
FC-1000										
soft-max										

Rep. Bottleneck can occur in every layer

 The layers with limited encoding capability of generating discriminative features can be considered as the representational bottleneck.

Contributions

- Investigation of representational bottleneck problem in a DNN.
- New design principles with improved network architectures.
- SOTA result on ImageNet dataset
- Prominent transfer learning result on COCO detection and other classifications.

Preliminary: Feature Encoding

- Given an L-depth network with N features are encoded from d_0 -dimensional input $X_0 \in \mathbb{R}^{d_0 \times N}$ features are represented as $X_L = \sigma(W_L(\dots f_1(W_1X_0)))$ with the weight matrix $W_i \in \mathbb{R}^{d_i \times d_{i-1}}$.
- We call the layer with $d_i > d_{i-1}$ an expend layer with $d_i < d_{i-1}$ an condense layer.
- Each of $f_i(\cdot)$ denotes i-th point-wise nonlinearity, such as a ReLU with a BN layer.
- $\sigma(\cdot)$ denotes Softmax Function.

Preliminary: Feature Encoding

- Let $W_i \hat{X}_{i-1}$ is convolution operation with weight $W_i \in \mathbb{R}^{d_i \times k_i^2 d_{i-1}}$ and $\hat{X}_{i-1} \in \mathbb{R}^{k_i^2 d_{i-1} \times whN}$.
- Each i-th layer's output X_i can be written as:

$$X_{i} = \begin{cases} f_{i}(W_{i}\hat{X}_{i-1}) & 1 \leq i < L, \\ \sigma(W_{L}\hat{X}_{L-1}) & i = L. \end{cases}$$

Softmax Bottleneck

- Output of cross-entropy loss is $\log \sigma(W_L X_{L-1})$, whose rank is bounded by the rank of $W_L X_{L-1}$, which is $\min(d_L, d_{L-1})$.
- As the input dimension d_{L-1} is smaller than the output dimension d_L , the encoded features can't fully represent the whole category due to rank deficiency.
- Then, what if we increase d_{L-1} closer to d_L ?

Layer-wise rank expansion

- We conjecture the layers that expand the channel size (i.e., expand layers) such as downsampling blocks would have a rank deficiency and may have the representational bottleneck.
- To mitigate the problem, we expand the rank of weight matrix W_i .
- Given the *i*-th feature generated by a layer, $X_i = f_i(W_iX_{i-1}) \in \mathbb{R}^{d_i \times whN}$, rank of X_i is bounded to $\min(d_i, d_{i-1})$.

Layer-wise rank expansion

- We represent $f(X) = X \circ g(X)$, where \circ denotes the pointwise multiplication with another pointwise function g.
- Following the inequality $\operatorname{rank}(f(X)) \leq \operatorname{rank}(X) \cdot \operatorname{rank}(g(X))$, the rank of X_i is bounded as, $\operatorname{rank}(X_i) \leq \operatorname{rank}(W_i X_{i-1}) \cdot \operatorname{rank}(g_i(W_i X_{i-1}))$.
- For nonlinear function g with larger rank, we can use Swish-1 or ELU.
- When d_i is fixed, if we adjust the d_{i-1} close to d_i , we can get possibility of the unbounded rank up to the feature dimension.

Layer-wise rank expansion

- From empirical studies, we observe properly selected nonlinear functions can largely expand the rank.
- And the normalized input channel size (d_{in}/d_{out}) is closely related to the rank of the feature.

New Principles to design good model

- 1. Enlarge the input channel size (dimension) of a layer.
- 2. Equip with a proper nonlinearity.
- 3. Design a network with many expand layers.

Improve Network Architecture

- Representational bottleneck occur in expand layers like:
- Downsampling blocks or layers,
- First layer in a bottleneck module, inverted bottleneck blocks
- And Penultimate layers.

Improve Network Architecture

- We can improve our model by:
- Expanding the input channel size of the conv layer.
- Replacing nonlinearity like ReLU, ReLU6.

ReXNets

• Introduce new CNN model Rank eXpansion Networks (ReXNets)

Table 8: **Specification of ReXNet-1.0x**. Bottleneck1 and bottleneck6 denote the 3×3 inverted bottleneck with the expansion ratio of 1 and 6, respectively. In each block, SE denotes whether Squeeze Excitation Module (SE-module) [14] is used. SW denotes Swish-1 [36] is used after the convolution, and SW/RE6 denotes Swish and ReLU6 is used after the first 1×1 convolution and the 3×3 depthwise convolution [13], respectively.

Input	Operator	# of channels	SE	Nonlinearity	Stride
$224^{2} \times 3$	conv 3×3	32	-	SW	2
$112^2 \times 32$	bottleneck1	16	-	SW/RE6	1
$112^2 \times 16$	bottleneck6	27	-	SW/RE6	2
$56^{2} \times 27$	bottleneck6	38	-	SW/RE6	1
$56^{2} \times 38$	bottleneck6	50	~	SW/RE6	2
$28^{2} \times 50$	bottleneck6	61	/	SW/RE6	1
$28^{2} \times 61$	bottleneck6	72	~	SW/RE6	2
$14^{2} \times 72$	bottleneck6	84	~	SW/RE6	1
$14^2 \times 84$	bottleneck6	95	~	SW/RE6	1
$14^{2} \times 95$	bottleneck6	106	~	SW/RE6	1
$14^2 \times 106$	bottleneck6	117	~	SW/RE6	1
$14^2 \times 117$	bottleneck6	128	/	SW/RE6	1
$14^2 \times 128$	bottleneck6	140	/	SW/RE6	2
$7^2 \times 140$	bottleneck6	151	/	SW/RE6	1
$7^2 \times 151$	bottleneck6	162	/	SW/RE6	1
$7^2 \times 162$	bottleneck6	174	~	SW/RE6	1
$7^2 \times 174$	bottleneck6	185	/	SW/RE6	1
$7^2 \times 185$	conv 1×1 , pool 7×7	1280	-	SW	1
$1^2 \times 1280$	fc	1000	-	-	1

Conclusion

- Representational bottleneck is big problem in CNNs.
- Matrix Rank is closely related to the bottleneck problem.
- Expand layers are likely to suffer from the preblem.
- So we propose a set of design principles to handle this.

ReXNet: Diminishing Representational Bootleneck on Convolutional Neural Network

Paper: https://arxiv.org/abs/2007.00992

Official PyTorch Implementation: https://github.com/clovaai/rexnet

Thank you for watching!