Prova 1 Valor total: 26 pontos

ID: 0 (favor explicitar esse valor no cabeçalho da resolução)

Questão 1 (baseado em Winston, pág. 63)

A *Leary Chemical* fabrica três produtos químicos: A, B e C. Esses produtos químicos são produzidos por meio de dois processos de produção: 1 e 2. Executar o processo 1 por uma hora custa \$ 4 e rende 3 unidades de A, 1 de B e 1 de C. Executar o processo 2 por uma hora custa \$ 1 e produz 1 unidade de A e 1 de B. Para atender às demandas do cliente, pelo menos 10 unidades de A, 5 de B e 3 de C devem ser produzidas diariamente.

2,0

8,0

a) Formule um modelo de PL que pode ser usado para determinar um plano de produção diário que minimize o custo de atender às demandas diárias da *Leary Chemical*.

```
Minimizar f = 4x1 + 1x2
s.a.
A) 3x1 + 1x2 >= 10
B) 1x1 + 1x2 >= 5
C) 1x1 >= 3
```

b) Resolva graficamente o modelo, descrevendo depois a solução obtida (quantas horas de cada processo, custo total e quantas de unidades de cada produto que serão produzidos).

Solução ótima: $x^* = (3; 2)$. $f^* = 14$.

Executar o Processo 1 por 3h e o Processo 2 por 2h, a um custo mínimo de \$14. Serão fabricadas 11 unidades do produto A, 5 unidades de B e 3 unidades de C.

Questão 2 (baseado em Winston, pág. 98)

Uma empresa produz seis produtos na seguinte forma. Cada unidade de matéria-prima adquirida rende quatro unidades do produto 1, duas unidades do produto 2 e uma unidade do produto 3. Cada unidade do produto 1 pode ser vendido ou processado posteriormente. Cada unidade do produto 1 que é processado produz uma unidade do produto 4. Até 1.200 unidades do produto 1 podem ser vendidas. Cada unidade do produto 2 pode ser vendido ou processado posteriormente. Cada unidade do produto 2 que é processado ainda rende 0,8 unidade de produto 5 e 0,3 unidade do produto 6. Até 300 unidades do produto 2 podem ser vendidas. A demanda pelos produtos 3 e 4 é ilimitada. Até 1.000 unidades do produto 5 pode ser vendido e até 800 unidades do produto 6 podem ser vendidas. Até 3.000 unidades de matéria-prima podem ser adquiridas por US \$ 6 por unidade. Fora o custo de compra da matéria-prima, o preço de venda por unidade e os custos de produção para cada produto são mostrados na tabela abaixo.

Produto	Preço de Venda (\$)	Custo de Produção (\$)		
1	7	4		
2	6	4		
3	4	2		
4	3	1		
5	20	5		
6	35	5		

a) Formule um modelo de PL cuja solução determinará a estratégia de produção da empresa de modo a maximizar o lucro total (soma das receitas menos a soma dos custos).

```
Max = 7*X1v - 4*(X1v + X1p) + 6*X2v - 4*(X2v + X2p) + (4 - 2)*X3 + (3 - 1)*X4 + (20 - 5)*X5 + (35 - 5)*X6 - 6*Xmp

4*Xmp = (X1v + X1p)

2*Xmp = (X2v + X2p)

Xmp = X3

X1v <= 1200

X2v <= 300

X1p = X4

0.8*X2p = X5

0.3*X2p = X6

X5 <= 1000

X6 <= 800

Xmp <= 3000
```

4,0

2,0

b) Resolva o modelo usando <u>preferencialmente</u> o LINGO. Se não tiver o LINGO instalado, use outro software apropriado. Copie abaixo a solução obtida. Caso tenha usado um dos sites sugeridos no Moodle, copie apenas a tabela ótima do Simplex.

Objective value:	19750.00	
Variable	Value	Reduced Cost
X1V	1200.000	0.000000
X1P	1300.000	0.000000
X2V	0.00000	4.000000
X2P	1250.000	0.000000
X3	625.0000	0.000000
X4	1300.000	0.000000
X5	1000.000	0.000000
X6	375.0000	0.000000
XMP	625.0000	0.000000
Row	Slack or Surplus	Dual Price
2	0.00000	2.000000
3	0.00000	-6.000000
4	0.00000	-2.000000
5	0.00000	5.000000
6	300.0000	0.000000
7	0.00000	-2.000000
8	0.00000	-1.250000
9	0.00000	-30.00000
10	0.00000	13.75000
11	425.0000	0.000000
12	2375.000	0.000000

c) Preencha a tabela abaixo com a solução obtida.

2	Λ	
_	()	

2,0

Produto:	1	2	3	4	5	6
Unidades produzidas para Venda :	1200	0	625	1300	1000	375
Unidades produzidas para Processamento :	1300	1250				
Lucro total máximo obtido:	\$ 19.750,00					

d) A solução ótima obtida é única? Justifique sua resposta com base no resultado obtido na letra (b).

Sim, porque não há nenhuma VNB com custo reduzido ou preço dual igual a zero.

e) Todos as variáveis de decisão foram usadas na Base? Caso alguma não tenha sido usada, qual a condição necessária para que seja(m) usada(s)? Como você obteve o(s) valor(es) usado(s) na sua resposta?

3,0

3,0

- Não. A variável X2v ficou fora da Base, com custo reduzido igual a 4. Isso significa que seu coeficiente na F.O. precisa melhorar em 4 para que ela possa entrar na Base. Como o coeficiente atual é (6 4), temos que esse valor (2) precisa ser aumentado em 4, o que pode ser feito aumentando seu preço de venda e/ou reduzindo seu custo de produção.
- f) Se você pudesse alterar o limite de venda de algum dos produtos, qual deles causaria o maior impacto no resultado, beneficiando a empresa? Justifique numericamente sua resposta.
 - O limite de X5 é o que apresenta o maior valor de preço dual (13). Portanto, esse é o produto que valeria mais a pena aumentar o limite máximo de venda.