Internal Examiners or Heads of Department are requested to sign the declaration overleaf

Section B.

Answer this section in the answer book provided.

Question 1

(a) Define what is meant by saying that:

(i)
$$\lim_{n \to \infty} a_n = -\infty$$
; and (2)

(ii)
$$\lim_{n \to \infty} a_n = \infty$$
. (2)

(b) Show that if $\lim_{n\to\infty} a_n = -\infty$ and k is a constant such that k < 0, then :

(i)
$$\lim_{n\to\infty} (a_n + k) = -\infty$$
.

(ii)
$$\lim_{n \to \infty} k a_n = \infty.$$
 (6)

(c) Use your definitions in (a) to show that :

(i)
$$\lim_{n \to \infty} (3n - 2n^2) = -\infty.$$

(ii)
$$\lim_{n \to \infty} (2n^2 - \sin n) = \infty. \tag{7}$$

[17]

Question 2

(a) Provide the definitions for:

(i)
$$f(x) \to -\infty$$
 as $x \to c_-$; and

(ii)
$$f(x) \to \infty$$
 as $x \to c$. (2)

(b) State the definition of
$$f(x) \to \ell$$
 as $x \to a$.

(c) Use the appropriate definition to show that: 1

$$\lim_{x \to 2_{-}} \frac{1}{(x-2)} = -\infty. \tag{2}$$

(d) Use the appropriate definition to show that
$$\lim_{x \to -\infty} \frac{x \sin x}{x^2 + 1} = 0.$$
 (5)

(e) Let
$$f(x) \to L$$
 and $g(x) \to M$ as $x \to a$.
Use the precise definition of the limit to prove that $f(x) + g(x) \to L + M$ as $x \to a$.

[17]

Question 3

- (a) State the Test for Divergence for the series $\sum a_n$. (1)
- (b) State both parts of the Comparison Test for two given series $\sum a_n$ and $\sum b_n$ whose terms are positive. (3)
- (c) Suppose that $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=r$. Show that if r<1 then $\sum a_n$ is absolutely convergent. (6)
- (d) State whether each of the following series converges or diverges. Prove your answer, giving full reasoning in each case:

(i)
$$\sum \frac{n^2}{7n^3 - n - 4}$$
 (2)

(ii)
$$\sum \frac{n^3}{7n^3 - n - 4}$$
 (1)

(iii)
$$\sum \frac{n}{7n^3 - n - 4}.$$
 (2)

(iv)
$$\sum (-1)^n \frac{1}{n}$$
. (2)

$$(v) \sum \frac{n!}{2^n}$$
 (2)

$$(vi) \sum \frac{n^2}{2^n}.$$
 (2)

(e) Find the values of x for which the series $\sum \frac{(x-2)^n}{3n+1}$ is convergent. Show all working. (5)

Section B Total marks: [60]

Total marks: [90]