

并行算法设计与案例分析

谭光明 博士

tgm@ncic.ac.cn

中国科学院计算技术研究所 国家智能计算机研究开发中心 计算机体系结构国家重点实验室

- 并行算法的一般设计过程
- 并行数值算法
 - -矩阵乘法
 - -PDE

并行算法的一般设计过程

- 设计并行算法的四个阶段
 - 划分 Partitioning
 - ─ 通讯 Communication
 - 组合 Agglomeration
 - 映射 Mapping

PCAM设计方法学

- 划分:分解成小的任务,开拓并发性
- 通讯:确定诸任务间的数据交换,监测划分的合理性
- •组合:依据任务的局部性,组合成更大的任务
- · 映射: 将每个任务分配到处理器上, 提高算法的性能。

划分

- 方法描述
- 域分解
- 功能分解
- 划分判据

划分方法的描述

- 划分:原计算问题分割成一些小的计算任务,以充分揭示并行执行的机会
- 使数据集和计算集互补相交,力图避免数据和计算的复制。
- 划分阶段忽略处理器数目和目标机器的体系结构;
- 域分解: 集中数据的分解
- 功能分解: 计算功能的分解

域分解 (数据划分)

- 划分的对象是数据,可以是算法的输入数据、中间处理数据和输出数据;
- 将数据分解成大致相等的小数据片;
- 划分时考虑数据上的相应操作;
- 如果一个任务需要别的任务中的数据,则会产生任务间的通讯;

域分解

• 示例:三维网格的域分解,各格点上计算都是重复的。下图是三种分解方法:

域分解

• 不规则区域的分解示例:

功能分解(计算划分)

- 划分的对象是计算,将计算划分为不同的任务,其出发点不同于域分解;
- 划分后,研究不同任务所需的数据。如果这些数据不相交的,则划分是成功的;如果数据有相当的重叠,意味着要重新进行域分解和功能分解;
- 功能分解是一种更深层次的分解。

功能分解

• 气候模型

划分判据

- 划分是否具有灵活性?
- 划分是否避免了冗余计算和存储?
- 划分任务尺寸是否大致相当?
- 任务数与问题尺寸是否成比例?
- 功能分解是一种更深层次的分解, 是否合理?

PCAM设计方法学

- 划分:分解成小的任务,开拓升发性
- 通讯:确定诸任务间的数据交换,监测划分的合理性
- •组合:依据任务的局部性,组合成更大的任务
- · 映射: 将每个任务分配到处理器上, 提高算法的性能。

通讯

- 方法描述
- 四种通讯模式
- 通讯判据

通讯方法描述

- · 通讯是PCAM设计过程的重要阶段
- 划分产生的诸任务,一般不能完全独 立执行,需要在任务间进行数据交流; 从而产生了通讯;
- 功能分解确定了诸任务之间的数据流
- •诸任务是并发执行的,通讯则限制了这种并发性

四种通讯模式

- ·局部/全局通讯
- 结构化/非结构化通讯
- •静态/动态通讯
- •同步/异步通讯

局部通讯

• 通讯限制在一个邻域内

全局通讯

- 通讯非局部的
- 例如:
 - -All to All
 - -Master-Worker

结构化通讯

- 每个任务的通讯模式是相同的;
- 下面是否存在一个相同通讯模式?

非结构化通讯

- 没有一个统一的通讯模式
- 例如:无结构化 网格

通讯判据

- 所有任务是否执行大致相当的通讯?
- · 是否尽可能的局部通讯?
- 通讯操作是否能并行执行?
- 同步任务的计算能否并行执行?

PCAM设计方法学

- 划分:分解成小的任务,开拓升发性
- 通讯:确定诸任务间的数据交换,监测划分的合理性
- <u>组合</u>:依据任务的局部性,组合成更 大的任务
- · 映射: 将每个任务分配到处理器上, 提高算法的性能。

组合

- 方法描述
- 增加粒度
 - -表面-容积效应
 - -重复计算
- 组合判据

方法描述

- 组合是由抽象到具体的过程,是将组合的任务能在一类并行机上有效的执行
- 合并小尺寸任务,减少任务数。如果任务数恰好等于处理器数,则也完成了映射过程
- 通过增加任务的粒度和重复计算,可以减少通讯成本
- 保持映射和扩展的灵活性,降低软件工程成本

增加粒度

- 在设计过程的划分阶段,致力于定义尽可能多的任务以增大并行执行的机会。
- 大量的细粒度任务不一定能产生一个有效的并行算法。
- 大量细粒度任务有可能增加通信代价和任务创建代价

表面-容积效应

- 表面-容积效应:通讯量与任务子集的表面成正比,计算量与任务子集的体积成正比
 - 增大划分程度有可能减少通讯量
 - 增加重复计算有可能减少通讯量

ET中国科学作计算技术研究的 INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

重复计算

- 重复计算减少通讯量,但增加了计算量,应保持恰当的平衡;
- 重复计算的目标应减少算法的总运算时间

重复计算

• 示例:二叉树上N个处理器求N个数的 全和,要求每个处理器均保持全和。

二叉树上求和,共需2logN步

重复计算

示例:二叉树上N个处理器求N个数的全和, 要求每个处理器均保持全和。

蝶式结构求和,使用了重复计算,共需logN步

组合判据

- 增加粒度是否减少了通讯成本?
- 重复计算是否已权衡了其得益?
- 是否保持了灵活性和可扩放性?
- 组合的任务数是否与问题尺寸成比例?
- 是否保持了类似的计算和通讯?
- 有没有减少并行执行的机会?

PCAM设计方法学

- 划分:分解成小的任务,开拓升发性
- 通讯:确定诸任务间的数据交换,监测划分的合理性
- •组合:依据任务的局部性,组合成更大的任务
- · 映新: 将每个任务分配到处理器上, 提高算法的性能。

映射

- 方法描述
- 负载平衡算法
- 任务调度算法
- 映射判据

方法描述

- 每个任务要映射到具体的处理器,定位到 运行机器上;
- 任务数大于处理器数时,存在负载平衡和任务调度问题;
- 映射的目标: 减少算法的执行时间
 - 一并发的任务 > 不同的处理器
 - 一任务之间存在高通讯的 > 同一处理器
- · 映射实际是一种权衡,属于NP完全问题;

负载平衡算法

- 静态的: 事先确定;
- 概率的: 随机确定;
- 动态的: 执行期间动态负载;
- 基于域分解的:
 - 递归对剖
 - -局部算法
 - -概率方法
 - -循环映射

任务调度算法

任务放在集中的或分散的任务池中,使用任务调度算法将池中的任务分配给特定的处理器。下面是两种常用调度模式;

• 经理/雇员模式

• 非集中模式

映射判据

- 采用集中式负载平衡方案,是否 存在通讯瓶颈?
- 采用动态负载平衡方案,调度策略的成本如何?

PCAM

设计过程

- 划分: 域分解和功能分解
- 通讯:任务间的数据交换
- 组合:任务的合并 使得算法更有效
- · 映射: 将任务分配 到处理器, 并保持 负载平衡

矩阵的划分

- 矩阵运算是数值计算中最重要、最基本的一类运算。
- ·科学工程计算中,矩阵的阶都非常高。为了实现并行,需要将其划分,指派到不同的处理器上。
- 常见的两种划分方法:
 - 一带状划分和棋盘划分

矩阵的带状划分

• 16×16阶矩阵, p=4

	F	0			F	² 1]	P ₂			F	9	
:	•	•	•	•	•	•	•			•	•	•			•
:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
:	•	•	•		•	:	•			•	•	•	:	:	•
	1	•	•		•		•	•		1.0	11	1.0	10	1.4	1.
0	1	2	3	4	5	6	7	8	9	10	11	12 :	13	14	
:	•	•	•	•	•	•	•	: :	•	•	•	•	•	•	•
	•	•	•	•	•	•	•		•	•	•	•	•	•	•
	:	:	•	:	•	:	•	:	•	•	•	: :	•	•	•
											- /				

列	块	带	状戈	一分
---	---	---	----	----

	4	$\mathbf{p}_{\mathbf{o}}$
		P0
	5	D.
		P ₁
	6	Da
\forall		P ₂
	3	
		Da
		F3

行循环带状划分

矩阵的带状划分

• 示例: p=3, 27× 27矩阵的3种带 状划分

矩阵的棋盘划分

· 8×8阶矩阵, p=16

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)	(0, 6)	(0, 7)
	\mathbf{P}_0		\mathbf{P}_{1}		P_2		$\mathbf{P}_{\!3}$
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)	(1, 7)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)	(2, 7)
	$\mathbf{P}_{\!4}$		\mathbf{P}_{5}		P_6		P ₇
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)	(3, 7)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)	(4, 7)
	P_8		\mathbf{P}_{9}		\mathbf{P}_{10}		\mathbf{P}_{11}
(5, 0)	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)	(5, 7)
(6, 0)	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	(6, 7)
	\mathbf{P}_{12}		\mathbf{P}_{13}		\mathbf{P}_{14}		P_{15}
(7, 0)	(7, 1)	(7, 2)	(7, 3)	(7, 4)	(7, 5)	(7, 6)	(7, 7)

(0, 0)	(0, 4)	(0, 1)	(0, 5)	(0, 2)	(0, 6)	(0, 3)	(0, 7)
	\mathbf{P}_{0}		$\mathbf{P}_{\!\scriptscriptstyle 1}$		\mathbf{P}_{2}		$\mathbf{P}_{\!3}$
(4, 0)	(4, 4)	(4, 1)	(4, 5)	(4, 2)	(4, 6)	(4, 3)	(4, 7)
(1, 0)	(1, 4)	(1, 1)	(1, 5)	(1, 2)	(1, 6)	(1, 3)	(1, 7)
	$\mathbf{P}_{\!4}$		P ₅		P_6		P ₇
(5, 0)	(5, 4)	(5, 1)	(5, 5)	(5, 2)	(5, 6)	(5, 3)	(5, 7)
(2, 0)	(2, 4)	(2, 1)	(2, 5)	(2, 2)	(2, 6)	(2, 3)	(2, 7)
	\mathbf{P}_{8}		P ₉		\mathbf{P}_{10}		\mathbf{P}_{11}
(6, 0)	(6, 4)	(6, 1)	(6, 5)	(6, 2)	(6, 6)	(6, 3)	(6, 7)
(3, 0)	(3, 4)	(3, 1)	(3, 5)	(3, 2)	(3, 6)	(3, 3)	(3, 7)
	\mathbf{P}_{12}		\mathbf{P}_{13}		\mathbf{P}_{14}		\mathbf{P}_{15}
(7, 0)	(7, 4)	(7, 1)	(7, 5)	(7, 2)	(7, 6)	(7, 3)	(7, 7)

块棋盘划分

循环棋盘划分

矩阵的棋盘划分

• 示例: p=4, 16×16矩阵的3种棋盘 划分

Checkerboard mapping of a 16×16 matrix on $p = 2 \times 2$ processors.

矩阵乘法

- 行块分解的串行矩阵乘法
- 简单分块并行矩阵乘法
- · Cannon矩阵乘法(棋盘划分)

矩阵乘法符号及定义

$$c_{ij} = \sum_{k=0}^{m-1} a_{ik} b_{kj}$$

矩阵乘法符号及定义

基于行的迭代算法

```
Input: A_{l \times m}, B_{m \times n}
Output: C_{l \times n}
Begin
  for (i = 0; i < l-1; i++)
   for (j = 0; j < n-1; j++) {
       c_{ii} = 0;
       for (k = 0; k < m-1; k++)
              c_{ij} = c_{ij} + a_{ik} * b_{ki};
```

End

基于行的迭代算法

每次外层迭代都要读取B的所有元素。对Cache 而言,若B太大,后面读入的元素就会覆盖先前已经读入Cache中的元素。这样进行下一次的外层迭代时,需要将B全部重新读入。当矩阵规模达到某个阈值时,Cache命中率急剧下降,从而性能急剧下降。

基于行的迭代算法

Cache: 256K 双精度浮点数

Cache最多可放 下32,768(~ 181²)个数,当 n<=150时, cache命中率远 高于n>200时的 命中率

基于块的递归算法

• 假设A_{/*m}, B_{m*n}。 把A分成4个小矩阵:

$$A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix}$$

同 財 把 B 分 成 4 个 小 矩 阵 : $B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$

使得 A_{00} 和 A_{10} 的行数分别等于 B_{00} 和 B_{01} 的列数,那么矩阵的积为:

$$C = \begin{pmatrix} A_{00} * B_{00} + A_{01} * B_{10} & A_{00} * B_{01} + A_{01} * B_{11} \\ A_{10} * B_{00} + A_{11} * B_{10} & A_{10} * B_{01} + A_{11} * B_{11} \end{pmatrix}$$

基于块的递归算法

```
Input: A_{n\times n}, B_{n\times n}, 子块大小为 (n/q)\times(n/q)
Output: C_{n \times n}
Begin
  for (i = 0; i < q-1; i++)
   for (j = 0; j < q-1; j++) {
      C_{ii} = 0;
      for (k = 0; k < m-1; k++)
             C_{ij} = C_{ij} + A_{ik} * B_{kj};
```


基于块的递归算法

基于行迭代和块递归的比较

矩阵乘法

- 行块分解的串行矩阵乘法
- · 简单分块并行矩阵乘法
- · Cannon矩阵乘法(棋盘划分)

简单分块并行乘法

- 分块:A、B和C分成 $p = \sqrt{p} * \sqrt{p}$ 的方块阵 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$, 大小均为 $(n/\sqrt{p}) \times (n/\sqrt{p})$, p个处理器编号为 $(P_{0,0},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p-1}})$, $P_{i,j}$ 存放 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$
- 算法:
 - ①通讯:每行处理器进行A矩阵块的多到多播送(得到 $A_{i,k}$, $k=0\sim\sqrt{p-1}$)

每列处理器进行B矩阵块的多到多播送(得到 $B_{k,j}$, $k=0\sim\sqrt{p-1}$) $\sqrt{p-1}$

②乘-加运算: $P_{i,j}$ 做 $C_{ij} = \sum A_{ik} \cdot B_{kj}$

分块

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

A _{0.0}	A _{0,1}	A _{0,2}	A _{0,3}
		————	
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
A _{2.0}	A _{2,1}	A _{2,2}	A2,3
A _{3,0}	A _{3,1}	A _{3,2}	A3,3

P_{00} : $C_{00} = A_{00}B_{00} + A_{01}B_{10} + A_{02}B_{20} + A_{03}B_{30}$

通

讯

c _{0,0}	C _{0,1}	C _{0,2}	c _{0,3}
c _{1,0}	$c_{1,1}$	C _{1,2}	c _{1,3}
C _{2,0}	C _{2,1}	C _{2,2}	C _{2,3}
c _{3,0}	C _{3,1}	C _{3,2}	c _{3,3}

B _{0,0}	B _{0, i}	B _{0,2}	B _{0,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
B _{3.0}	B _{3,1}	B _{3,2}	B _{3,3}

简单并行分块乘法

- •简单并行分块乘法的缺点:
 - -存储要求过大
 - $-通信结束肘每个处理器拥有2√p个块,每块大小为<math>n^2/p$

矩阵乘法

- 行块分解的串行矩阵乘法
- · 简单分块并行矩阵乘法
- · Cannon矩阵乘法(棋盘划分)
- · Fox矩阵乘法
- ·Systolic矩阵乘法

Cannon乘法(基于棋盘分解)

- 算法简介:
 - -Cannon算法是一种存储有效的算法。
 - 一与并行分块乘法不同,阵列的各行和各列不是施行多到多的广播,而是有目的地在各行和各列实施循环移位,从而降低各处理器的存储量

• 分块: A、B和C分成 $p = \sqrt{p \times \sqrt{p}}$ 的方块阵 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$,大小均为 $(n/\sqrt{p})\times(n/\sqrt{p})$ p个处理器编号为 $(P_{0,0},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p}},P_{i,j}$ 存放 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$ (n >

	$0, \sqrt{p}$	⁻¹	$p-1, \sqrt{p-1}$	1,)	, – 1,	
> p)		P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	
	$\frac{n}{\sqrt{p}}$	P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	
	VI			P _{2,2}		
		/ /				

P3/1

- 算法原理(非形式描述)
 - - ②所有处理器P_{i,j}做执行A_{i,j}和B_{i,j}的乘-加运算;
 - ③A的每个块向左循环移动一步; B的每个块向上循环移动一步;
 - ④转②执行 $\sqrt{p-1}$ 次;

• 赤例: A_{4×4}, B_{4×4}, p=16

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
A3,0	A _{3,1}	A _{3,2}	A3,3
B3,0	B _{3,1}	B _{3,2}	B3,3

Initial alignment of A Initial alignment of B

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}

B _{0,0}	. B _{0,1}	. B _{0,2}	B _{0,3}	A _{0,0} B _{0,0}	A _{0,1} B _{1,1}	A _{0,2} B _{2,2}	A _{0,3} B _{3,3}
B _{1,0}	$\mathbf{B}_{1,1}$	B _{1,2}	B _{1,3}	A _{1,1} B _{1,0}	A _{1,2} B _{2,1}	A _{1,3} B _{3,2}	A _{1,0} B _{0,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}	A _{2,2} B _{2,0}	A _{2,3} B _{3,1}	A _{2,0} B _{0,2}	A _{2,1} B _{1,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}	A _{3,3} B _{3,0}	A _{3,0} B _{0,1}	A _{3,1} B _{1,2}	A _{3,2} B _{2,3}

After first shift

After second shift

After third shift

****			TTTT .
A _{0,1} B _{1,0}	A _{0,2} B _{2,1}	A _{0,3} B _{3,2}	A _{0,0} B _{0,3}
A _{1,2} B _{2,0}	A _{1,3} B _{3,1}	A _{1,0} B _{0,2}	A _{1,1} B _{1,3}
A _{2,3} B _{3,0}	A _{2,0} B _{0,1}	A _{2,1} B _{1,2}	A _{2,2} B _{2,3}
A _{3,0} B _{0,0}	A _{3,1} B _{3,1}	A _{3,2} B _{2,2}	A _{3,3} B _{3,3}

	****		THE PERSON NAMED IN		
Á	A _{0,2} B _{2,0}	A _{0,3} B _{3,1}	A _{0,0} B _{0,2}	A _{0,1} B _{1,3}	
	A _{1,3} B _{3,0}	A _{1,0} B _{0,1}	A _{1,1} B _{1,2}	A _{1,2} B _{2,3}	
1	A _{2,0} B _{0,0}	A _{2,1} B _{1,1}	A _{2,2} B _{2,2}	A _{2,3} B _{3,3}	
	A _{3,1} B _{1,0}	A _{3,2} B _{2,1}	A _{3,3} B _{3,2}	A _{3,0} B _{0,3}	

		······································		
A _{0,3} B _{3,0}	A _{0,0} B _{0,1}	A _{0,1} B _{1,2}	A _{0,2} B _{2,3}	
 A _{1,0} B _{0,0}	A _{1,1} B _{1,1}	A _{1,2} B _{2,2}	A _{1,3} B _{3,3}	
A _{2,1} B _{1,0}	A _{2,2} B _{2,1}	A _{2,3} B _{3,2}	A _{2,0} B _{0,3}	
A _{3,2} B _{2,0}	A _{3,3} B _{3,1}	A _{3,0} B _{0,2}	A _{3,1} B _{1,3}	

示例: P_{1,2}处理器计算C_{1,2}

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
A _{1,0}	A _{1,1} (B _{1,1}	A _{1,2}	A1,3
B _{1,0}		B _{1,2}	B _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

P_{1,2}的初始化分块

Cannon乘法: 第一步移位

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}
A _{1,1}	A _{1,2}	A _{1,3}	B _{0,3}
B _{1,0}	B _{2,1}	B _{3,2}	
A _{2,2}	A _{2,3}	A _{2,0}	A _{2,1}
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}
A _{3,3}	A _{3,0}	A _{3,1}	A _{3,2}
B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}

P_{1,2}计算: A_{1,3} × B_{3,2}

Cannon乘法: 第二步移位

P_{1,2}计算:

 $A_{1,0} \times B_{0,2}$

 $P_{1,2}$ 上的和: $A_{1,0} \times B_{0,2} + A_{1,3} \times B_{3,2}$

Cannon乘法: 第三步移位

P_{1.2}计算:

 $A_{1,1} \times B_{1,2}$

 $P_{1,2}$ 上的和: $A_{1,0} \times B_{0,2} + A_{1,1} \times B_{1,2} + A_{1,3} \times B_{3,2}$

Cannon乘法: 第四步移位

P_{1.2}计算:

 $A_{1,2} \times B_{2,2}$

 $P_{1,2}$ 上的和: $A_{1,0} \times B_{0,2} + A_{1,1} \times B_{1,2} + A_{1,2} \times B_{2,2} + A_{1,3} \times B_{3,2}$

- 每个进程负载计算大小为 $(n/\sqrt{p})\times(n/\sqrt{p})$ 的C矩阵的一块
- · 每次迭代,每个进程只与其相邻的进程进行点到点通信,不是多到多的广播,算法通信量较小
- 随着矩阵规模和处理器个数的增加, 算法的性能保持不变,具有很好的可 扩展性
- 计算和通信可以相互重叠

上机作业

• 实现并行矩阵乘法

The Mesh

- Each circle is a mesh point
- Difference equation evaluated at each point involves the four neighbors
- The red "plus" is called the method's *stencil*
- Good numerical algorithms form a matrix equation Au=f; solving this requires computing Bv, where B is a matrix derived from A. These evaluations involve computations with the neighbors on the mesh.

Rules for Life

- Matrix values A(i,j) initialized to 1 (live) or 0 (dead)
- In each iteration, A(i,j) is set to
 - 1 (live) if either
 - the sum of the values of its 8 neighbors is 3, or
 - the value was already 1 and the sum of its 8 neighbors is 2 or 3
 - 0 (dead) otherwise

Implementing Life

- For the non-parallel version, we:
 - Allocate a 2D matrix to hold state
 - Actually two matrices, and we will swap them between steps
 - Initialize the matrix
 - Force boundaries to be "dead"
 - Randomly generate states inside
 - At each time step:
 - Calculate each new cell state based on previous cell states (including neighbors)
 - Store new states in second matrix
 - Swap new and old matrices

Steps in Designing the Parallel Version

- Start with the "global" array as the main object
 - Natural for output result we're computing
- Describe decomposition in terms of global array
- Describe communication of data, still in terms of the global array
- Define the "local" arrays and the communication between them by referring to the global array

Step 1: Description of Decomposition

- By rows (1D or row-block)
 - Each process gets a group of adjacent rows
- Later we'll show a 2D decomposition

Step 2: Communication

• "Stencil" requires read access to data from neighbor cells

- We allocate extra space on each process to store neighbor cells
- Use send/recv or RMA to update prior to computation

Step 3: Define the Local Arrays

- Correspondence between the local and global array
- "Global" array is an abstraction; there is no one global array allocated anywhere
- Instead, we compute parts of it (the local arrays) on each process
- Provide ways to output the global array by combining the values on each process (parallel I/O!)

Boundary Regions

- In order to calculate next state of cells in edge rows, need data from adjacent rows
- Need to communicate these regions at each step
 - First cut: use isendand irecy
 - Revisit with RMA later

Life Point-to-Point Code Walkthrough

- Points to observe in the code:
 - Handling of command-line arguments
 - Allocation of local arrays
 - Use of a routine to implement halo exchange
 - Hides details of exchange

Allows us to use matrix[row][col] to address elements

Note: Parsing Arguments

- MPI standard does <u>not</u> guarantee that command line arguments will be passed to all processes.
 - Process arguments on rank 0
 - Broadcast options to others
 - Derived types allow one bcast to handle most args
 - Two ways to deal with strings
 - Big, fixed-size buffers
 - Two-step approach: size first, data second (what we do in the code)

Point-to-Point Exchange

- Duplicate communicator to ensure communications do not conflict
 - This is good practice when developing MPI codes, but is not required in this code
 - If this code were made into a component for use in other codes, the duplicate communicator would be required
- Non-blocking sends and receives allow implementation greater flexibility in passing messages

Describing Data

Need to save this region in the array

- Lots of rows, all the same size
 - Rows are all allocated as one big block

 - Second type gets memory offset right (allowing use of MPI_BOTTOM in MPI_File_write_all)

```
MPI_Type_hindexed(count = 1, len = 1, disp = &matrix[1][1], vectype, &type);
```


vpn

- 选择左边拦扳手图标按钮,打开网络配置,点击左下脚 +
- 选择创建vpn
- 10.1.151.2
- 用户名: rek
- 密码: testrek
- 高级
 - 去掉 EAP 勾
 - 勾上 MPPE

登陆命令:

- 1. ssh 111.207.107.2
- 2. mkdir yourname
- 3. ssh ga80 或者 ga81
- 4. mkdir yourname

拷贝文件命令:

1. 在你的虚拟机:

scp -r mlife 111.207.107.2:/home/chen/yourname/

2. 在远程机器的登陆节点

cd yourname

scp -r mlife ga80:/home/chen/yourname/

mpicc mlife-io-mpiio.c mlife-pt2pt.c -o mlife

mpirun –np 2 –-mca btl tcp,self ./mlife -x 1024 -y 4096

mpirun –np 2 --mca btl tcp,self ./psor

THANKS