ENTITY-RELATIONSHIP MODEL

Overview of Database Design

□ Conceptual design:

- What are the entities and relationships in the enterprise?
- What information about these entities and relationships should we store in the database?
- What are the integrity constraints or business rules that hold?

Purpose of E/R Model

- The Entity/Relationship (E/R) model allows us to sketch database schema designs.
 - Includes some constraints
- Schema designs are pictures called entityrelationship diagrams.
- Later: convert E/R designs to relational DB designs.

Framework for E/R

- Design is a necessity.
- Management know they want a database, but they don't know what they want in it.
- Sketching the key components is an efficient way to develop a working database.

Entity Sets

- \Box *Entity* = "thing" or object.
- \square *Entity set* = collection of similar entities.
 - Similar to a class in object-oriented languages.
- Attribute = property of an entity set.
 - Attributes are simple values, e.g. integers or character strings, not structs, sets, etc.
 - Each attribute has a domain.

E/R Diagrams

- In an entity-relationship diagram:
 - Entity set = rectangle.
 - Attribute = oval, with a line to the rectangle representing its entity set.
 - Notation varies: some textbooks represents attributes within the (entity) rectangle

Example

- Entity set Beers has two attributes, name and manf (manufacturer).
- Each Beers entity has values for these two attributes,
 e.g. (Bud, Anheuser-Busch)

Relationships

- A relationship connects two or more entity sets.
- It is represented by a diamond, with lines to each of the entity sets involved.

Example: Relationships

Relationship Set

- The current "value" of an entity set is the set of entities that belong to it.
 - Example: the set of all bars in our database.
- The "value" of a relationship is a relationship set, a set of tuples with one component for each related entity set.

Example: Relationship Set

For the relationship Sells, we might have a relationship set like:

Bar	Beer
Joe's Bar	Bud
Joe's Bar	Miller
Sue's Bar	Bud
Sue's Bar	Pete's Ale
Sue's Bar	Bud Lite

Multiway Relationships

- Sometimes, we need a relationship that connects more than two entity sets.
- Suppose that drinkers will only drink certain beers at certain bars.
 - Our three binary relationships Likes, Sells, and Frequents do not allow us to make this distinction.
 - But a 3-way relationship would.

A Typical Relationship Set

Bar	Drinker	Beer
Joe's Bar Sue's Bar Joe's Bar Joe's Bar Joe's Bar Sue's Bar	Ann Ann Ann Bob Bob Cal Cal	Miller Bud Pete's Ale Bud Miller Miller Bud Lite

Many-Many Relationships

- Focus: binary relationships, such as Sells between Bars and Beers.
- □ In a many-many relationship, an entity of either set can be connected to many entities of the other set.
 - E.g., a bar sells many beers; a beer is sold by many bars.

In Pictures:

many-many

Note: each line is an instance of the binary relationship

Many-One Relationships

- Some binary relationships are many -one from one entity set to another.
- Each entity of the first set is connected to at most one entity of the second set.
- But an entity of the second set can be connected to zero, one, or many entities of the first set.

In Pictures:

(Partial) Function on entity set

Example: Many-One Relationship

□ Favourite, from Drinkers to Beers is many-one.

A drinker has at most one favourite beer.

But a beer can be the favorite of any number of drinkers, including zero.

Drinkers

Beers