University of Ljubljana
Faculty of Electrical Engineering

Seminarska naloga - Izziv

Namen in način izvajanja

Samostojno obravnavati in rešiti problem Robotskega vida(teorija + praksa), pridobivanje samozavesti

- Rešitev predstavite svojim kolegom
- Zaključiti nujno do konca semestra (22.5.2024 ob 8:00)
- Predstavitev rešitev in rezultatov RV izziva bo 29.5.2024 ob 7:15

Tematika primerna za izvedbo v okviru petih-sedmih tednov

- Na voljo izhodiščna literatura, zamisli in mentorji v času kontaktnih ur

Izziv se opravlja <mark>v parih</mark>

Izziv je prostovoljen (neobvezen)

Izziv: izhodiščna tema enaka za vse, vsi rešite osnovni problem, se medsebojno primerjate, nato rešite katerega od danih podproblemov

Tema izziva – Industrijsko sodelovanje

Motivacija: Detekcija ovir v prostoru za avtonomne mohilne sisteme/vozičke

- Avtonomni Mobilni Robot (AMR) je primarno opremljen z dvema 2D laserskima optičnima čitalnikoma, ki sta nameščena na nasprotujočih vogalih robota, 15 cm od tal in zagotavljata vidno polje 360 stopinj.
- Laserji se "izstreljujejo" iz rotirajočega laserja in pridejo nazaj v ponor/foto diodo. Glede na čas potovanja svetlobe se določi razdalja med optičnim čitalnikom do posamezne točke v 2D prostoru. Zbrani podatki se neprestano pošiljajo v osrednji računalnik, kjer se obdelujejo.
- Dodatni algoritmi na računalniku uporabijo te podatke za določanje položaja ovir ali prostih poti in za načrtovanje varne poti skozi 2D prostor. Slikaj spodaj, prikazuje tloris AMR-ja. Diagonalna postavitev laserjev omogoča 360. stopinjski pogled v 2D prostoru.

Tema izziva – Industrijsko sodelovanje

Motivacija: Detekcija ovir v prostoru za avtonomne mobilne sisteme/vozičke

- Dodatno še obstaja varnostni sistem (opozorilni zvoki in luči) pripeti na optične čitalnike, ki primarno opozarjajo ljudi na prisotnost in gibanje AMR-ja, in v skrajni sili popolno ustavitev sistema.
- Gibanje se primarno dogaja samo v ravnini, vendar naložen AMR lahko doseže višino dveh metrov in po pomoti zadene kakšno oviro v zraku, ki ni vidna laserjem. Prav tako lahko tudi izpusti oviro, ki je nižja of 15 cm.

Tema izziva – Industrijsko sodelovanje

Motivacija: Detekcija ovir v prostoru za avtonomne mobilne sisteme/vozičke

Ovire v prostoru je najbolj praktično prepoznavati s pomočjo mono ali stereo kamer in procesiranja njihovih podatkov na računalniku. V večini primerov so kamere postavljene v smeri vožnje AMR-ja. Preko kamer bi radi zaznavali naslednje primere:

- Zaznavanje ovir na cestišču
- Zaznavanje ovir v zraku
- Detekcija odprtosti industrijskih vrat za prehod skozi
- Detekcija odprtosti varnostnih vrat za prevzem tovora

Stranski ris AMR-ja prikazuje vodoravno ravnino LiDAR senzorja in vidni kot kamere nameščene v smeri vožnje.

Primeri problemov

Primer "plavajočih" ovir v zraku

Primeri problemov

Detekcija odprtosti industrijskih vrat za prehod AMR-ja med prostori

Občasno mora mobilna platforma zapustiti prostor skozi dvigalo in oditi v drugo nadstropje. V tem primeru je potrebna detekcija odprtosti vrat, preden AMR lahko vstopi v dvigalo.

Primeri problemov

Pri prevzemu tovora iz statičnega dela polnilnice nas zanima ali so zaščitna vrata odprta ali ne. V primeru zaprtih vrat na desni strani, AMR ne more prevzeti paketa.

- '6'1 '' 1.1

Lastnosti Kamere

Lastnosti kamere AMR je trenutno opremljen z **Intel RealSense Depth Camera D435**. Kamere so bile izbrane glede na kompromis cene in njihove kvalitete. Kamere ponujajo naslednje slikovne vsebine:

- RBG slike
- Globinske slike/Depth <u>Beginner's guide to depth</u>
- Point cloud slike PointCloud ROS Examples

Infrastruktura Vodenje AMR-ja v večini poteka preko ROS 2 ogrodja. Video vsebine lahko posnamemo in zapakiramo v Rosbag datoteke. Rosbag datoteke lahko naknadno poljubno obdelujemo na poljubnem računalniku, neodvisno od strojne opreme. K tej priponki prilagamo dva načina dostopanja do Rosbag datotek; preko ROS 2 okolja ali enostavnejše preko samo ene python knjižnice. **Več informacij se lahko najde v priloženem paketu ihs_image_tools_pkg.**

Začetna koda

Mejniki in pričakovani rezultati

Prvi paket podatkov (20.3.)

Metodologija (3.4.): preučite dani problem, identificirajte primerno rešitev, naredite načrt implementacije v Python

Govorilne ure no.1 (17.4): pripravite in prikažite delujoči rešitev za osnovni problem.

Govorilne ure no.2 - Vmesna rešitev (8.5.): predstavite delovno verzijo rešitve osnovnega problema.

Končna rešitev (22.5.): oddajte končno verzijo rešitve osnovnega problema za namen neodvisnega vrednotenja na testnih podatkih in ocenjevanje.

Javna predstavitev (29.5.): v terminu predavanj javno predstavite svojo rešitev

Izhodiščna tema (za 6)

1. Semantična segmentacija.

Semantična segmentacija je algoritem globokega učenja, ki poveže oznako ali kategorijo z vsako slikovno piko na sliki. Uporablja se za prepoznavanje zbirke slikovnih pik, ki tvorijo različne kategorije.

2. Prepoznavanje objektov na poti in določanje oddaljenosti.

Iz semantične segmentacije določite objekte na poti robota ter izračunajte evklidsko razdaljo do njih.

Semantična segmentacija

Napredne teme (za boljše ocene)

Kalibracija kamere.

Določanje višine objekta le iz RGB+D kamere.

Prepoznavanje ljudi in smer njihove hoje.

Mapiranje prostora in določitev trenutne lege glede na kamero.

Določanje stanja industrijskih vrat (odprto/zaprto)

•••

Prvi paket podatkov (20.3.)

Metodologija (3.4.): preučite dani problem, identificirajte primerno rešitev, naredite načrt implementacije v Python

Govorilne ure no.1 (17.4): pripravite in prikažite delujoči rešitev za osnovni problem.

Govorilne ure no.2 - Vmesna rešitev (8.5.): predstavite delovno verzijo rešitve osnovnega problema.

Končna rešitev (22.5.): oddajte končno verzijo rešitve osnovnega problema za namen neodvisnega vrednotenja na testnih podatkih in ocenjevanje.

Javna predstavitev (29.5.): v terminu predavanj javno predstavite svojo rešitev

Ocenjevanje

Oceni se pisno poročilo (razumevanje problema in rešitve) in kakovost rešitve (implementacija, strojna in programska izvirnost rešitve, kakovost vrednotenja, dodatne rešitve podproblemov)

Poročila morajo biti v formatu elektrotehniškega vestnika

Za pozitivno oceno nujna uspešna rešitev osnovnih problemov

Ocenijo se le poročila oddana v roku (22.5.2024, 8:00)

Pozitivno ocenjeno poročilo šteje kot ocena pisnega dela predmeta Robotski vid

- V primeru negativne ocene je potrebno opravljati pisni izpit

Poročila so gradivo za pripravo na ustni izpit