Exercices de MATHF102

September 17, 2018

Contents

1	Fonctions	2
2	Trigonométrie	3
3	Nombres Complexes	4
4	Algorithme d'Euclide	6
5	Géométrie analytique	7
6	Systèmes d'équations linéaires homogènes	12
7	Systèmes d'équations linéaires non-homogènes	13
8	Correspondence entre application linéaires et matrices: base canonique	14
9	Espaces vectoriels	16
10	Sous-espaces vectoriels	17
11	Applications linéaires	19
12	Engendrer	20
13	Bases	22
1 4	Dimension de sous-espaces	25
15	Composition d'applications linéaires	25
16	Noyeau et rang	26
17	Changement de bases	27
18	Matrices et ses inverses	29
\mathbf{A}	Organisation des TP's	30

1 Fonctions

Exercice 1. On donne les fonctions f et g définies sur \mathbb{R} par f(x) = 2x et $g(x) = \sin x$ pour tout $x \in \mathbb{R}$.

- Calculer $f(\pi/2)$, $g(\pi/2)$, $(g \circ f)(\pi/2)$ et $(f \circ g)(\pi/2)$.
- Quelles sont les expressions algébriques de $f \circ g$ et $g \circ f$?

Exercice 2. Soit f la fonction définie par

$$f(x) := \begin{cases} \frac{1}{x} & \text{si } x < 0\\ x^2 & \text{si } 0 \le x \le 2\\ x + 2 & \text{si } x > 2. \end{cases}$$

- (a) Calculer f(-2), f(0), f(3/2), f(2) et f(3).
- (b) Esquisser le graphe de f.
- (c) Déterminer le domaine de définition et l'image de f.
- (d) Déterminer la fonction inverse (réciproque) si elle existe; si elle n'existe pas, expliquer pourquoi.

Exercice 3. Vrai ou faux? Expliquer. La fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) := x^2 + 3x + 2$ est

- (a) injective.
- (b) bijective.
- (c) inversible.
- (d) surjective.

Exercice 4. Pour chacune des fonctions suivantes, déterminer le domaine de définition et l'image. Donnez sa fonction inverse si elle existe (en considérant $f : \text{dom}(f) : \to \text{Im}(f)$ par défaut). Représenter la fonction et sa fonction inverse sur le même graphique.

- (a) $f(x) = \sqrt{x}$.
- (b) $f(x) = \sqrt{\frac{2x+1}{3(x-1)}}$.
- (c) $f: \mathbb{R}_{<0} \to \mathbb{R}_{>0}$ définie par $f(x) := x^2$, où $\mathbb{R}_{<0} := \{\alpha \in \mathbb{R} \mid \alpha < 0\}$ et $\mathbb{R}_{>0} := \{\alpha \in \mathbb{R} \mid \alpha > 0\}$.

Exercice 5. Soient X et Y deux ensembles. Démontrer les affirmations suivantes.

- (a) Une fonction $f: X \to Y$ est injective si et seulement s'il existe une fonction $g: Y \to X$ telle que $g \circ f = Id_X$.
- (b) Une fonction $f: X \to Y$ est surjective si et seulement s'il existe une fonction $g: Y \to X$ telle que $f \circ g = Id_Y$.
- (c) Une fonction $f: X \to Y$ est une bijection si et seulement si elle est inversible, c'est-à-dire si et seulement s'il existe la fonction inverse $f^{-1}: Y \to X$ telle que $f^{-1} \circ f = Id_X$ et $f \circ f^{-1} = Id_Y$.

2 Trigonométrie

Exercice 6. Représenter le graphe des fonctions réelles f et g définies par $f(x) = \sin(2x + \pi)$ et par $g(x) = \sin(2x) + \pi$ pour tout $x \in \mathbb{R}$.

Exercice 7. Résoudre les équations suivantes en trouvant toutes les valeurs possibles de $x \in \mathbb{R}$, sans utiliser la calculatrice:

(a) $\cos x = -\frac{1}{2}$.

(d) $\cos(3x) = \frac{\sqrt{2}}{2}$.

(b) $\sin x = \frac{1}{2}$.

(e) $\sin(5x - \pi) = \frac{\sqrt{3}}{2}$.

(c) $\tan x = 1$.

(f) $\tan(2x + \frac{\pi}{2}) = \frac{\sqrt{3}}{3}$.

Exercice 8. Démontrer les relations suivantes, en utilisant la formule d'Euler $e^{i\theta} = \cos(\theta) + i\sin(\theta)$: pour tout $a, b \in \mathbb{R}$,

- (a) $\sin(a-b) = \sin(a)\cos(b) \cos(a)\sin(b).$
- (b) $\cos(a b) = \cos(a)\cos(b) + \sin(a)\sin(b)$.
- (c) $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$.
- (d) $\cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$.
- (e) $\cos(2a) = \cos^2(a) \sin^2(a) = 2\cos^2(a) 1 = 1 2\sin^2(a)$.
- (f) $\sin(2a) = 2\sin(a)\cos(a)$.
- (g) $\cos(3a) = -3\cos(a) + 4\cos^3(a)$.
- (h) $\sin(3a) = 3\sin(a) 4\sin^3(a)$.

3 Nombres Complexes

Exercice 1. Donner une interprétation géométrique, dans le plan complexe,

- (a) de l'addition d'un complexe avec un complex a + ib (utiliser la forme cartésienne).
- (b) de la multiplication d'un complexe par le complexe $e^{i\theta}$ (utiliser la forme polaire).

Exercice 2. Mettre sous forme cartésienne les nombres suivants

(a)
$$1+i+3+4i$$
.

(e)
$$(3+7i)(3-7i)$$
.

(i)
$$\frac{1}{(\sqrt{7}-i)^2}$$
.

(b)
$$3+7i+(-3+4i)$$
.

(f)
$$(\frac{1}{6} + \frac{i}{3})(\frac{3}{5} - 2i)$$
.

(c)
$$\frac{4}{3} + \frac{2i}{5} - \left(-\frac{1}{7} + \frac{3i}{4}\right)$$
.

(g)
$$\frac{3-2i}{2-3i}$$
.

(d)
$$(1+i)(3+4i)$$
.

(h)
$$\frac{1}{5+7i}$$
.

(k)
$$\frac{(2+i)(5-2i)}{i}$$
.

(j) $\frac{\sqrt{3}+i}{\sqrt{3}-i} + \frac{\sqrt{3}-i}{\sqrt{3}+i}$.

Exercice 3. Effectuer les opérations suivantes après avoir mis tous facteurs sous forme polaire

(a)
$$(-1 + \sqrt{3}i)(\sqrt{3} + i)$$
.

(e)
$$\frac{4+4\sqrt{3}i}{\sqrt{3}+i}$$
.

(i)
$$\frac{(1-i\sqrt{3})^3}{(-2+2i)^4}$$
.

(b)
$$(\frac{\sqrt{3}}{2} + \frac{1}{2}i)\frac{1}{2}i$$
.

(f)
$$(1+i)^8$$
.

(j)
$$\frac{(1+i)(\sqrt{3}+i)^3}{(1-i)(\sqrt{3})^3}$$

(c)
$$\frac{-2}{-\sqrt{3}+i}$$
.

(g)
$$(1-i)^6$$
.

(d)
$$\frac{6i}{-3-3i}$$
.

(h)
$$(\frac{1}{2} - i\frac{\sqrt{3}}{2})^{20}$$
.

Exercice 4. Calculer en forme cartésienne et en forme polaire

- (a) les racines carrées de i.
- (b) les racines cubiques de 27i.
- (c) les racines sixièmes de -1.
- (d) les racines quatrièmes de $-8 8i\sqrt{3}$.
- (e) les racines cubiques de 1.

Exercice 5. Représenter les racines cubiques de 1 dans le plan complexe.

Exercice 6. (a) Montrer que si $x + iy \in \mathbb{C}$ est une racine carrée de $a + ib \in \mathbb{C}$, où x, y, a et b sont réels, alors x et y sont solutions du système

$$\begin{cases} x^2 - y^2 = a \\ 2xy = b \\ x^2 + y^2 = \sqrt{a^2 + b^2} \end{cases}.$$

(b) S'inspirer du point précédent pour déterminer les racines carrées de 4 + 3i.

Exercice 7. Dans C, résoudre les équations suivantes:

(a)
$$2z^2 - 2z + 1 = 0$$
.

(c)
$$(1-i)z^2 + 2z + 4 = 0$$
.

(b)
$$2z^2 - 3iz - 4 = 0$$
.

(d)
$$z^2 - (3+2i)z + 5 + i = 0$$
.

(e)
$$z^4 - 2iz^2 + 1 = 0$$
.

(g)
$$z^4 + (1-2i)z^2 - 2i = 0$$
.

(f)
$$iz^2 - (2+2i)z + 6 - 3i = 0$$
.

(h)
$$z^5 + 32 + \sum_{k=1}^{4} {5 \choose k} z^k 2^{5-k} = 1 + \sqrt{3}i$$

Remarque. La notation $\binom{n}{k} := \frac{n!}{k!(n-k)!}$ est le nombre de façons de choisir k éléments parmis n (coefficients binomiaux). L'identité suivante (Formule du binôme de Newton) peut vous être utile

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Exercice 8. Déterminer a et b réels tels que i-1 soit solution de l'équation

$$z^5 - a\overline{z}^3 + b|z| = Re\left(\frac{1}{z}\right).$$

Exercice 9. Déterminer l'équation du cercle de centre c et de rayon r > 0 dans le plan complexe (utiliser l'interprétation du module comme une distance et de la somme comme d'une translation).

Exercice 10. Représenter dans le plan complexe les ensembles suivants

(a)
$$U := \{ z \in \mathbb{C} \mid Re(z) \le Im(z) \}.$$

(b)
$$A := \{ z \in \mathbb{C} \mid |2 + 3i - z| < 2 \}.$$

(c)
$$B := \{ z \in \mathbb{C} \mid 1 \le |z| \le 4 \text{ et } \frac{\pi}{2} \le \arg z \le \pi \}.$$

(d)
$$C := \{ z \in \mathbb{C} \mid z^2 \in B \}.$$

(e)
$$D := \{ z \in \mathbb{C} \mid \frac{1}{z} \in B \}.$$

4 Algorithme d'Euclide

Exercice 1. En appliquant l'algorithme d'Euclide à a et b ci-dessous, calculer:

- le GCD(a, b),
- x et y tels que ax + by = GCD(a, b).

Les différentes valeurs de a et b sont:

- (a) a = 12, b = 34,
- (b) a = 13, b = 34,
- (c) a = 13, b = 31,
- (d) $a = x^3 + x^2 + x + 1, b = x^2 2x 3 \in \mathbb{C}[x],$
- (e) $a = x^3 + 1, b = x^2 1 \in \mathbb{C}[x],$
- (f) $a = x^5 + 2x^3, b = x^4 \in \mathbb{C}[x].$

Exercice 2. Trouver un entier x tel que le reste de la division de 50x par 71 donne 1.

Exercice 3. Trouver un entier x tel que le reste de la division de 50x par 71 donne 63.

Exercice 4. Trouver un entier x tel que le reste de la division de 43x par 64 donne 1.

Exercice 5. Trouver un polynôme P(x) tel que le reste de la division de $(x^2 - 5x + 6)P(x)$ par $x^3 - 9x$ donne 3x - 9.

Exercice 6. Trouver un polynôme P(x) tel que le reste de la division de $(x^2+2x+1)P(x)$ par x^3+4x^2+3X donne x+1.

5 Géométrie analytique

Exercice 1. Dans le plan, donner l'équation des droites suivantes:

- (a) l'axe ox;
- (b) l'axe oy;
- (c) la droite qui passe par les points (0,0) et (1,1);
- (d) la droite qui passe par les points (1,4) et (-1,2);
- (e) la droite parallèle à l'axe ox qui passe par (2, -4);
- (f) la droite parallèle à la droite d'équation x + 3y = -4 qui passe par le point (1, 2).

Exercice 2. Quelle est l'équation de la perpendiculaire à la droite d'équation 2x - 3y - 4 = 0, qui passe par le point (3, -2)?

Exercice 3. Soit le point p = (3,5) du plan euclidien. Quelles sont les coordonnées des points symétriques de p par rapport

- (a) à l'origine;
- (b) à l'axe ox;
- (c) à l'axe oy;
- (d) au point (7,-2);
- (e) à la premi ère bissectrice;
- (f) à la droite d'équation x + 2y = 3.

Exercice 4. Déterminer la valeur du paramètre réel k pour que dans le plan coordonné

- (a) la droite d'équation 3kx + 5y + k = 0 passe par le point (-1, 4);
- (b) la droite d'équation 4x ky 7 = 0 ait une pente 3;
- (c) la droite d'équation kx y = 3k 6 coupe l'axe des x au point d'absisse 5.

Exercice 5. Considérons dans le plan coordonné le triangle formé par les droites d'équations respectives x - y + 2 = 0, 2x + 3y + 9 = 0, et 4x + y - 7 = 0.

- (a) Déterminer les coordonnées des sommets de ce triangle.
- (b) Déterminer les coordonnées des milieux de ses côtés.
- (c) Ecrire les équations de ses médianes.

Exercice 6. Dans le plan coordonné, quelle est l'équation de la droite parallèle à la droite d'équation 2x+3y-5=0 et qui passe par le point d'intersection des droites d'équations 2x-5y+9=0 et 4x+7y-1=0?

Exercice 1. Dans \mathbb{R}^2 , quelle est l'équation de la droite commune aux deux faisceaux

$$\alpha_1(5x+3y-2) + \beta_1(3x-y-4) = 0,$$

$$\alpha_2(x-y+1) + \beta_2(2x-y-2) = 0$$
?

Exercice 2. Déterminer les équations des cercles tangents aux droites A et B d'équations x - 2y + 2 = 0 et 2x - y + 1 = 0, et dont le centre se trouve sur la droite d'équation 5x - y - 11 = 0.

Exercice 3. Déterminer le centre et le rayon du cercle d'équation $x^2 + y^2 - 3x + 5y - 14 = 0$.

Exercice 4. Ecrire les équations en coordonnées polaires des cercles d'équations:

- (a) $x^2 + y^2 = R^2$;
- (b) $(x-a)^2 + y^2 = R^2$;
- (c) $(x-a)^2 + (y-b)^2 = R^2$.

Exercice 5. Montrer que l'on a

$$\langle \overrightarrow{u}, \overrightarrow{v} \times \overrightarrow{w} \rangle = \langle \overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{w} \rangle$$

pour tout \overrightarrow{u} , \overrightarrow{v} , $\overrightarrow{w} \in \mathbb{R}^3$.

Exercice 6. On donne les deux points p = (7, 4, 6) et q = (1, 2, 3).

- (a) Ecrire une équation vectorielle de la droite pq.
- (b) Ecrire des équations paramétriques de cette droite.
- (c) Déterminer des équations statiques de cette droite.
- (d) La droite pq est-elle parallèle à la droite passant par les points (3, -1, 7) et (1, 3, 1)?
- (e) La droite pq est-elle parallèle à la droite passant par (-1, 8, -2) et (7, 12, -4)?
- (f) Ecrire des équations paramétriques et statiques de la droite passant par le point (-1, 3, -5) et qui est parallèle à la droite pq.
- (g) Pour quelle(s) valeur(s) de m et n les points p, q et (-2, m, n) sont-ils alignés?

Exercice 7. Soit p = (1, 2, 3), q = (2, -4, 3), r = (0, 3, 3) et $s = (4, -2, \lambda)$.

- (a) Quelle est la longueur du vecteur \overrightarrow{pr} ?
- (b) Que vaut l'angle entre les vecteurs \overrightarrow{pq} et \overrightarrow{pr} ?
- (c) Que vaut l'angle entre les droites pq et pr?
- (d) Pour quelle(s) valeur(s) de λ les droites pq et rs sont-elles orthogonales?
- (e) Quelle est l'équation statique du plan passant par q et perpendiculaire à la direction Op?

Exercice 8. On donne le point p = (2, 3, -1) et la droite

$$D: \left\{ \begin{array}{l} 2x - y + 5 = 0 \\ y + 3z - 1 = 0 \end{array} \right.$$

- (a) Ecrire une équation statique du plan contenant le point p et la droite D.
- (b) Ecrire une équation du plan contenant p et perpendiculaire à D.
- (c) Déterminer des équations de la droite qui passe par p et est parallèle à D.

Exercice 1. On donne:

- le plan A d'équation 2x + y + 6z + 8 = 0;
- le plan B d'équation 2x + 3y z + 1 = 0;
- la droite C d'équations

$$C: \left\{ \begin{array}{c} 4x + 3y - z = 2 \\ -2x + z = 3 \end{array} \right.$$

- (a) Que vaut l'angle entre les plans A et B?
- (b) Que vaut l'angle entre le plan B et la droite C?

Exercice 2. La droite par les points (2,3,5) et (3,1,-2) est-elle contenue dans le plan d'équation 8x - y + 3z - 4 = 0? Dans la négative, coupe-t-elle ce plan, et en quel point?

Exercice 3. Soit p = (1, 2, 3) un point.

- (a) Déterminer la projection orthogonale de p sur le plan π d'équation 2x + 3y + 4z = 0.
- (b) Quelle est la distance de p à Π ?
- (c) Plus généralement: quelle est la distance d'un point $p=(x_0,y_0,z_0)$ à un plan π d'équation ax+by+cz+d=0?

Exercice 4. On désigne par D la droite d'équations 2x = y = 4z, et par p le point de coordonnées (1,2,3).

- (a) Ecrire l'équation du plan Π passant par p et orthogonal à D.
- (b) Calculer la distance de $p \ge D$.

Exercice 5. Quelle est l'équation

- (a) de la sphère de centre (1, 2, -3) et de rayon 4?
- (b) de la sphère de centre (1, -2, -3) et tangente au plan x + 2y + 3z + 4 = 0?
- (c) de la sphère qui passe par les points (1,0,0), (0,1,0), (0,0,1), (1,1,1)?

Exercice 6. Considérons le plan Π d'équation x - 5y + 3z - 4 = 0, les points p = (1, 2, 3) et q = (2, 0, 3). Donner une équation du plan perpendiculaire à Π passant par p et q.

Exercice 7. (Examen de 2ème session 1991). On donne les droites D_1 et D_2 d'équations

$$D_1: \left\{ \begin{array}{c} x + 2y = 0 \\ y + z + 3 = 0 \end{array} \right.$$

et

$$D_2: \left\{ \begin{array}{c} x - y + z = 0 \\ 2x + 5y + z + 4 = 0 \end{array} \right..$$

Combien y a-t-il de droites orthogonales à D_1 et D_2 et coupant chacune de ces droites en un point? Donner des équations de cette(ces) droite(s).

Exercice 8. On émet du point p=(1,2,0) de l'espace euclidien \mathbb{R}^3 un rayon lumineux en direction du point (0,0,0). Ce rayon se réfléchit suivant les lois classiques de l'optique (angle d'incidence égal à l'angle de réflexion) sur un miroir plan d'équation x+y+z=0. Quelles sont les coordonnées du point q où le rayon réfléchi perce le plan d'équation z=4?

Exercice 9. Décrivez géométriquement les sous-ensembles de \mathbb{R}^3 suivants:

- (a) $\{(x, y, z) \in \mathbb{R}^3 : x^2 = y^2\};$
- (b) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\};$
- (c) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\};$
- (d) $\{(x, y, z) \in \mathbb{R}^3 : y = \sin(x)\};$
- (e) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 \text{ et } x = z\};$
- (f) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 1\};$
- (g) $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 < 1 \text{ et } z^2 < 1\};$
- (h) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < z^2 \text{ et } 0 \le z \le 1\};$
- (i) $\{(x, y, z) \in \mathbb{R}^3 : x^2 < 1 \text{ et } y^2 < 1 \text{ et } z^2 < 1\}.$

6 Systèmes d'équations linéaires homogènes

Exercice 1. Résoudre par la méthode de Gauss les systèmes d'équations linéaires suivants.

(a) Dans
$$\mathbb{R}^2$$
 $2x_1 + x_2 = 0$

(b) Dans
$$\mathbb{R}^3$$
 $2x_1 + x_2 = 0$

(c) Dans
$$\mathbb{R}^2$$

$$\begin{cases} \sqrt{\pi}x_1 - 3x_2 = 0 \\ \frac{7}{9}x_1 + x_2 = 0 \end{cases}$$

(d) Dans
$$\mathbb{R}^3$$

$$\begin{cases} 3x_1 + x_2 - x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

(d) Dans
$$\mathbb{R}^3$$

$$\begin{cases} 3x_1 + x_2 - x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$$
 (e) Dans \mathbb{R}^3
$$\begin{cases} 4x_1 - 5x_2 + x_3 = 0 \\ 2x_1 + x_2 + \pi x_3 = 0 \end{cases}$$

(f) Dans
$$\mathbb{R}^3$$

$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ x_1 - x_2 + x_3 = 0 \\ x_1 - x_2 - x_3 = 0 \end{cases}$$

(g) Dans
$$\mathbb{R}^3$$

$$\begin{cases} 3x_1 - 2x_2 + 2x_3 = 0 \\ 2x_1 + x_2 - 3x_3 = 0 \\ 5x_1 - 3x_2 - x_3 = 0 \\ 8x_1 - 5x_2 + x_3 = 0 \end{cases}$$

Exercice 2. Résoudre par la méthode de Gauss les systèmes d'équations linéaires suivants, en discutant d'après les valeurs du paramètre $\lambda \in \mathbb{R}$.

(a) Dans
$$\mathbb{R}^3$$

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \\ x_1 + x_2 + \lambda x_3 = 0 \end{cases}$$

(b) Dans
$$\mathbb{R}^4$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 = 0 \\ \lambda x_1 - x_3 - x_4 = 0 \end{cases}$$

7 Systèmes d'équations linéaires non-homogènes

Exercice 1. Résoudre par la méthode de Gauss les systèmes d'équations linéaires suivants.

(a) Dans
$$\mathbb{R}^2$$

$$\begin{cases} 2x_1 + 5x_2 = -8 \\ 3x_1 - 2x_2 = 26 \end{cases}$$

(b) Dans
$$\mathbb{R}^3$$

$$\begin{cases} 2x_1 + 5x_2 = -8 \\ 3x_1 - 2x_2 = 26 \end{cases}$$

(c) Dans
$$\mathbb{R}^3$$

$$\begin{cases} 5x_1 - 3x_2 + 7x_3 = 12\\ 15x_1 - 9x_2 + 8x_3 = 10 \end{cases}$$

(d) Dans
$$\mathbb{R}^3$$

$$\begin{cases} x_1 & +x_2 & +x_3 & = 0\\ 2x_1 & +x_2 & -x_3 & = -3\\ -x_1 & -2x_2 & -4x_3 & = -3\\ 2x_1 & -4x_3 & = -6 \end{cases}$$

(e) Dans
$$\mathbb{R}^n$$

$$\begin{cases} x_1 + x_2 + x_3 + \dots + x_n &= 1 \\ x_1 + 2x_2 + 2x_3 + \dots + 2x_n &= 2 \\ x_1 + 2x_2 + 3x_3 + \dots + 3x_n &= 3 \\ \vdots &\vdots &\vdots &\vdots \\ x_1 + 2x_2 + 3x_3 + \dots + nx_n &= n \end{cases}$$

Exercice 2. Résoudre par la méthode de Gauss les systèmes d'équations linéaires suivants, en discutant d'après les valeurs des paramètres $\lambda, \mu \in \mathbb{R}$.

(a) Dans
$$\mathbb{R}^2$$

$$\begin{cases} x_1 - 2x_2 &= 1\\ 2x_1 - x_2 &= -1\\ x_1 + x_2 &= \lambda \end{cases}$$

(b) Dans
$$\mathbb{R}^3$$

$$\begin{cases} 3x_1 - 4x_2 = 2 \\ 4x_1 + x_2 = 9 \\ \lambda x_1 + \mu x_2 = 1 \end{cases}$$

8 Correspondence entre application linéaires et matrices: base canonique

Exercice 1. Décrivez géométriquement les transformations linéaires de \mathbb{R}^2 associées aux matrices suivantes:

$$a_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad a_{2} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}, \quad a_{3} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad a_{4} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad a_{5} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$a_{6} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad a_{7} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}, \quad a_{8} = \begin{bmatrix} 0 & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

Quelle est l'image du point $(x,y) \in \mathbb{R}^2$ par chacune de ces transformations ? Calculez l'image par ces transformations de

- 1. la droite d'équation y = 1,
- 2. le cercle d'équation $x^2 + y^2 = 1$.

Exercice 2. Calculez les points fixes de la transformation linéaire de \mathbb{R}^2 associée à la matrice

$$b = \begin{bmatrix} 2 & 3 \\ 3 & 10 \end{bmatrix}.$$

Exercice 3. Si $A: \mathbb{R}^n \to \mathbb{R}^n$ est une transformation linéaire associée à une matrice a, le noyau de A est l'ensemble

$$Ker(A) = \{x \in \mathbb{R}^n \mid A(x) = 0\}.$$

Déterminez le noyau des transformations des exercices 1 et 2.

Exercice 4. Décrivez géométriquement les transformations linéaires de \mathbb{R}^3 associées aux matrices suivantes:

$$a_{1} = \begin{bmatrix} 19 & 0 & 0 \\ 0 & 19 & 0 \\ 0 & 0 & 19 \end{bmatrix}, \quad a_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad a_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad a_{4} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$a_{5} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad a_{6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad a_{7} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Quelle est l'image du point $(x, y, z) \in \mathbb{R}^3$ par chacune de ces transformations ? Décrivez géométriquement (sans faire de calculs !) l'image par ces transformations de

- 1. le plan d'équation z = 0,
- 2. la sphère d'équation $x^2 + y^2 + z^2 = 1$.

Exercice 5. Calculez les points fixes des applications de l'exercice 4. Déterminez celles qui sont bijectives.

Exercice 6. Calculez l'image inverse du point (1,2,4) par les applications associées aux matrices:

$$a_1 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 4 & 3 & 5 \end{bmatrix}.$$

Exercice 7. En discutant d'après les valeurs de $\alpha, \beta, \gamma \in \{-1, 1\}$, décrivez géométriquement la transformation associée à la matrice:

$$a = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{bmatrix}$$

9 Espaces vectoriels

Exercice 1. Parmi les ensembles suivants, quels sont ceux qui ont une structure naturelle d'espace vectoriel réel?

- (a) l'ensemble des points à coordonnées entières de \mathbb{R}^3
- (b) l'ensemble des vecteurs non nuls de \mathbb{R}^3
- (c) l'ensemble $\mathbb C$ des nombres complexes
- (d) l'ensemble $\mathbb Q$ des nombres rationnels
- (e) l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que f(0) = 0
- (f) l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que f(0) = 1.

Exercice 2. L'ensemble \mathbb{R}^2 est-il érigé en espace vectoriel réel si l'addition et la multiplication scalaire y sont définies comme suit, pour tout $\lambda, x, y, x', y' \in \mathbb{R}$:

(a)
$$(x,y) + (x',y') := (x+x',y+y')$$
 et $\lambda(x,y) := (\lambda^2 x, \lambda^2 y)$

(b)
$$(x,y) + (x',y') := (x+x',y+y')$$
 et $\lambda(x,y) := (\lambda x,0)$

(c)
$$(x, y) + (x', y') := (xx', yy')$$
 et $\lambda(x, y) := (\lambda x, \lambda y)$

(d)
$$(x, y) + (x', y') := (x + x', y + y')$$
 et $\lambda(x, y) := (\lambda x, \lambda y)$.

Exercice 3. L'ensemble $\mathbb{R}_{>0}$ des nombres réels strictement positifs devient-il un espace vectoriel réel si l'addition et la multiplication scalaire sont définies pour tout $\lambda \in \mathbb{R}$ et pour tout $x, y \in \mathbb{R}_{>0}$ par x + y := xy et $\lambda x := x^{\lambda}$?

Exercice 4. Parmi les ensembles suivants, quels sont ceux qui ont une structure naturelle d'espace vectoriel réel?

- (a) l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que f(1) = 0.
- (b) l'ensemble des fonctions de $\mathbb C$ dans $\mathbb C$
- (c) l'ensemble des fonctions de \mathbb{C} dans \mathbb{Q}
- (d) l'ensemble des fonctions de \mathbb{Q} dans \mathbb{C}

Exercice 5. Désignons par V_A l'ensemble des suites arithmétiques, c'est-à-dire des suites de nombres réels de la forme

$$a, a + r, a + 2r, a + 3r, \dots, a + nr, \dots,$$

avec $a, r \in \mathbb{R}$ fixés, et par V_G l'ensemble des suites géométriques, c'est-à-dire des suites de nombres réels de la forme

$$a, ar, ar^2, ar^3, \dots, ar^n, \dots,$$

avec $a, r \in \mathbb{R}$ fixés.

L'ensemble V_A possède-t-il une structure naturelle d'espace vectoriel réel? Même questions pour l'ensemble V_G .

10 Sous-espaces vectoriels

Exercice 1. Les esembles suivants sont-ils des sous-espaces de l'espace vectoriel réel \mathbb{R}^4 ?

- (a) $\{(x, x, x, x) \mid x \in \mathbb{R}\}$
- (b) $\{(x, y, z, t) \mid x, y, z, t \in \mathbb{Q}\}$
- (c) $\{(x, y, z, t) \mid x, y, z, t \in \mathbb{R} \text{ et } x \ge 0\}.$

Exercice 2. L'ensemble des fonctions f de \mathbb{R} dans \mathbb{R} satisfaisant une des conditions suivantes est-il un sous-espace de l'espace vectoriel réel $\mathbb{R}^{\mathbb{R}} := \{f : \mathbb{R} \to \mathbb{R} \text{ fonction}\}$?

- (a) 2f(0) = f(1)
- (b) f(1) = f(0) + 1
- (c) $f(x) \ge 0$ pour tout $x \in \mathbb{R}$
- (d) f(x) = f(1-x) pour tout $x \in \mathbb{R}$
- (e) $f(x^2) = (f(x))^2$ pour tout $x \in \mathbb{R}$
- (f) $f(x+2\pi) = f(x)$ pour tout $x \in \mathbb{R}$.

Exercice 3. Dans l'espace vectoriel $\mathbb{R}[x]$ des polynômes en x à coefficients réels, le sous-ensemble constitué des polynômes de degré 4 est-il un sous-espace?

Exercice 4. Les ensembles suivants sont-ils des sous-espaces de l'espace vectoriel réel $\mathbb{R}^{\mathbb{N}}$ des suites

$$(x_0, x_1, x_2, x_3, \dots)$$

de nombres réels?

- (a) l'ensemble des suites croissantes $(x_n \leq x_{n+1} \text{ pour tout } n \in \mathbb{N})$
- (b) l'ensemble des suites convergentes vers 1
- (c) l'ensemble des suites convergentes vers 0
- (d) l'ensemble des suites pour lesquelles $x_0 + x_1 = 0$.

Exercice 5. Vérifier que l'ensemble

$$V := \{ax^4 + bx^3 + cx^2 + dx + e \mid a, b, c, d, e \in \mathbb{R}\} \subset \mathbb{R}[x]$$

des polynômes à coefficients réels de degré ≤ 4 est un espace vectoriel réel. Les sous-ensembles W_1, W_2 et W_3 définis ci-dessous sont-ils des sous-espaces de V?

- (a) l'ensemble W_1 des polynômes de V ayant au moins une racine réelle
- (b) l'ensemble W_2 des polynômes de V admettant à la fois 2 et $\sqrt{5}$ comme racines
- (c) l'ensemble W_3 des polynômes dérivés des polynômes de V.

Exercice 6. L'ensemble des fonctions deux fois dérivables $y:\mathbb{R}\to\mathbb{R}$ qui sont solutions de l'équation différentielle

$$y''\cos x - y'e^{2x} + y = 0$$

est-il un sous-espace de $\mathbb{R}^{\mathbb{R}}$?

Exercice 7. L'ensemble des fonctions périodiques de \mathbb{R} dans \mathbb{R} est-il un sous-espace de $\mathbb{R}^{\mathbb{R}}$? Même question pour l'ensemble des fonctions périodiques de \mathbb{R} dans \mathbb{R} de période donnée $\tau \in \mathbb{R}$.

11 Applications linéaires

Exercice 1. Les fonctions suivantes sont-elles linéaires?

$$A: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (y,x)$$

$$B: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (x + 1, y + 1)$$

$$C: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (x,0)$$

$$D: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (0,0)$$

$$E: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (\sin x, 0)$$

$$F: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (\alpha x + \beta y, \gamma x + \delta y)$$
 avec $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ fixés

$$G: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x+y$$

$$H: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto xy$$

$$I: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (x,y,x)$$

$$J: \mathbb{R}^2 \to \mathbb{R}^3, (x+y) \mapsto (x+y, 2x-y, x-3y).$$

Exercice 2. Prouver que toute application linéaire de $\mathbb R$ dans $\mathbb R$ est une homotétie, c'est-à-dire est de la forme

$$A: \mathbb{R} \to \mathbb{R}, \ x \mapsto \alpha x \quad \text{pour tout } x \in \mathbb{R}$$

avec $\alpha \in \mathbb{R}$ fixé.

Exercice 3. L'application de \mathbb{R}^2 dans \mathbb{R} qui associe à tout point (x, y) sa distance à l'origine est-elle linéaire?

Exercice 4. Sachant qu'une transformation linéaire A de \mathbb{R}^2 dans \mathbb{R}^2 envoie (0,1) sur (1,3) et (1,0) sur (2,1), calculer A((x,y)) pour tout point $(x,y) \in \mathbb{R}^2$. Montrer que A est une fonction inversible, et calculer $A^{-1}((3,2))$. Quels sont les points de \mathbb{R}^2 fixés par A? Dessiner l'image par A du carré de sommets (1,1), (1,-1), (-1,1) et (-1,-1), et du cercle d'équation $x^2 + y^2 = 1$.

Exercice 5. Soit $A: V \to V'$ une application linéaire entre les espaces vectoriels réels V et V', et soit $W' \subseteq V'$ un sous-espace de V'. Prouver que $A^{-1}(W')$ est un sous-espace de V.

Exercice 6. Soit $A:V\to V$ une transformation linéaire de l'espace vectoriel réel V dans V. L'ensemble

$$\{v \in V \mid A(v) = v\}$$

des vecteurs de V fixés par A est-il toujours un sous-espace de V?

12 Engendrer

Exercice 7. Déterminer les sous-espaces de \mathbb{R}^2 engendrés par les parties suivantes:

- (a) \emptyset ,
- (b) $\{(1,2)\},$
- (c) $\{(1,2),(0,1)\},\$
- (d) le segment de droite $\{(x,0) \mid -1 \le x \le 17\}$.

Exercice 8. Déterminer les sous-espaces de \mathbb{R}^3 engendrés par les parties suivantes:

- (a) $\{(1,2,3)\},\$
- (b) $\{(1,2,3),(2,4,6)\},\$
- (c) le plan d'équation z = 1,
- (d) la sphère d'équation $x^2 + y^2 + z^2 = 1$.

Exercice 1. Si W est un sous-espace d'un espace vectoriel réel V, que vaut W+W?

Exercice 2. Dans l'espace vectoriel réel \mathbb{R}^3 , si W_1 et W_2 sont deux droites distinctes passant par l'origine, décrire géométriquement le sous-espace $W_1 + W_2$.

Exercice 3. Dans l'espace vectoriel réel \mathbb{R}^3 , déterminer $\langle X \rangle$ si X est

- (a) une droite passant par l'origine
- (b) une droite ne passant pas par l'origine
- (c) un plan passant par l'origine
- (d) un plan ne passant pas par l'origine
- (e) une sphère de centre l'origine
- (f) une sphère de centre $c \in \mathbb{R}^3 \setminus \{(0,0,0)\}$
- (g) la réunion de deux droites gauches.

Exercice 4. Si W_1 et W_2 sont deux sous-espaces d'un espace vectoriel réel V, prouver que $W_1 + W_2$ est le plus petit sous-espace de V contenant W_1 et W_2 , autrement dit que

$$W_1 + W_2 = \langle W_1 \cup W_2 \rangle.$$

Exercice 5. Le vecteur (0,1,5) de \mathbb{R}^3 appartient-il à $\langle X \rangle$ si

$$X := \{(1,3,-1),(2,5,0)\}$$
?

Exercice 6. Soit W_1 et W_2 les sous-espace de \mathbb{R}^3 définis par

$$W_1 := \{(x, y, 0) \mid x, y \in \mathbb{R}\} \text{ et } W_2 := \langle \{(0, 1, 1), (2, 0, 1)\} \rangle.$$

Décrire les vecteurs des sous-espaces $W_1 + W_2$ et $W_1 \cap W_2$.

Exercice 7. Dans l'espace vectoriel réel $\mathbb{R}[x]$ des polynômes en x à coefficients réels, le sous-espace engendré par $\{1, 1+x, x+x^2\}$ comprend-il tous les polynômes en x de degré ≤ 2 ?

Exercice 8. Prouver que $\{(1,1,1),(0,0,1),(0,1,-1),(1,1,0)\}$ est une partie génératrice de \mathbb{R}^3 . Est-elle minimale? Dans la négative, reste-t-elle génératrice si on lui enlève un quelconque élément?

Exercice 9. Dans l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$ des fonctions de \mathbb{R} dans \mathbb{R} , on considère les vecteurs $f_1, f_2, f_3, f_4, f_5, f_6, f_7$ définis pour tout $x \in \mathbb{R}$ par

$$f_1(x) = \sin x \qquad f_5(x) = \sin 2x$$

$$f_2(x) = \cos x \qquad f_6(x) = \cos 2x$$

$$f_3(x) = \sin^2 x \qquad f_7(x) = 1.$$

$$f_4(x) = \cos^2 x$$

Les vecteurs f_1, f_2, f_3, f_4 engendrent-ils le même sous-espace que les vecteurs f_5, f_6, f_7 ?

13 Bases

Exercice 1. Les parties suivantes de \mathbb{R}^4 sont-elles libres?

- (a) $\{(0,0,0,0)\}$
- (b) $\{(1,1,1,1)\}$
- (c) $\{(1,0,1,0),(0,1,0,1),(1,1,1,1)\}$
- (d) $\{(1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)\}$
- (e) $\{(2,5,0,3),(1,2,0,1),(0,4,0,1)\}$
- (f) $\{(1, \alpha, \alpha^2, \alpha^3), (\alpha, \alpha^2, \alpha^3, 1), (\alpha^2, \alpha^3, 1, \alpha), (\alpha^3, 1, \alpha, \alpha^2), (1, 1, 1, 1)\}$ avec $\alpha \in \mathbb{R}$.

Exercice 2. Si deux vecteurs d'un espace vectoriel réel V sont linéairement dépendants, prouver que l'un des deux est multiple de l'autre.

Exercice 3. Les fonctions f, g, h de \mathbb{R} dans \mathbb{R} définies ci-dessous sont-elles linéairement indépendantes?

- (a) $f(x) = \sin x$, $g(x) = \cos x$, h(x) = x pour tout $x \in \mathbb{R}$
- (b) $f(x) = \sin x$, $g(x) = \cos x$, h(x) = 1 pour tout $x \in \mathbb{R}$
- (c) $f(x) = \sin^2 x$, $g(x) = \cos^2 x$, $h(x) = \cos 2x$ pour tout $x \in \mathbb{R}$
- (d) $f(x) = \sin x$, $g(x) = \sin(x^2)$, $h(x) = \sin(x^3)$ pour tout $x \in \mathbb{R}$.

Exercice 4. Les fonctions f_1, f_2, \ldots, f_n de \mathbb{R} dans \mathbb{R} définies par $f_1(x) = \sin(x), f_2(x) = \sin(2x), \ldots, f_n(x) = \sin(nx)$ pour tout $x \in \mathbb{R}$ sont-elles linéairement indépendantes quel que soit $n \in \mathbb{N} \setminus \{0\}$?

Exercice 5. Les vecteurs e_1, e_2, e_3 forment-ils une base de \mathbb{R}^3 si

- (a) $e_1 = (1, 1, 1), e_2 = (-1, 1, 0), e_3 = (1, 0, -1)$
- (b) $e_1 = (0,0,0), e_2 = (1,-2,3), e_3 = (-1,0,1)$
- (c) $e_1 = (1, -1, 0), e_2 = (1, 0, 1), e_3 = (0, 2, 1)$
- (d) $e_1 = (1, -2, -1), e_2 = (1, -1, 0), e_3 = (2, 0, 2).$

Exercice 6. Soit E la base de \mathbb{R}^3 formée des vecteurs

$$e_1 = (1, 1, 0), e_2 = (1, -1, 0), e_3 = (0, 0, 1).$$

Trouver les coordonnées dans E des vecteurs (1,0,0), (0,1,0), (0,0,1), (-1,2,3), et (x,y,z) avec $x,y,z\in\mathbb{R}$.

Exercice 7. Dans l'espace vectoriel $\mathbb{R}[x]$ des polynômes en x à coefficients réels, pour tout $n \in \mathbb{N}$, on considère le sous-espace W_n des polynômes de degré $\leq n$. Les parties suivantes sont-elles des bases de W_n ?

- (a) $\{1, x, x^2, x^3, \dots, x^n\}$
- (b) $\{1, 1+x, 1+x+x^2, \dots, 1+x+x^2+\dots+x^n\}$

(c)
$$\{1+x, x+x^2, x^2+x^3, \dots, x^{n-1}+x^n\}$$

(d)
$$\{1, 1-x, (1-x)^2, \dots, (1-x)^n\}.$$

Lorsque n=3, calculer les coordonnées du polynôme

$$2x^3 - 7x^2 + 5x + 3$$

dans celle de ces parties qui sont des bases de W_3 .

Exercice 8. Quelle est la dimension

- (a) de \mathbb{C} considéré comme un espace vectoriel réel?
- (b) de \mathbb{C}^2 considéré comme un espace vectoriel réel?

Exercice 1. Déterminer la dimension du sous-espace W de \mathbb{R}^4 formé des vecteurs (x_1, x_2, x_3, x_4) tels que

$$x_1 + x_3 = x_2 - x_4 = 0.$$

Décrire explicitement une base de W.

Exercice 2. Dans l'espace vectoriel réel des polynômes en x à coefficients réels de degré ≤ 4 , l'ensemble W des polynômes p(x) tels que

$$p(0) = p(1) = p(2) = 0$$

est-il un sous-espace? Si oui, déterminer une base de W. Sinon, déterminer une base du sous-espace $\langle W \rangle$.

Exercice 3. Soit V un espace vectoriel réel de dimension 3. Si $\{e_1, e_2, e_3\}$ est une base de V, alors en est-il de même pour

- (a) $\{e_1 + e_2, e_2 + e_3, e_3 + e_1\}$?
- (b) $\{e_1 + e_2, e_1 e_2, e_1 e_2 + e_3\}$?
- (c) $\{e_1 + e_2, e_1 + e_2 + e_3, e_1 + e_2 e_3\}$?

Exercice 4. Prouver que l'espace des fonctions continues de \mathbb{R} dans \mathbb{R} est de dimension infinie.

Exercice 5. Dans l'espace vectoriel réel $\mathbb{R}^{\mathbb{N}}$ des suites de nombres réels, quelle est la dimension du sousespace des suites arithmétiques, c'est-à-dire des suites du type

$$a, a+r, a+2r, \ldots, a+nr, \ldots$$

où $a, r \in \mathbb{R}$ et $n \in \mathbb{N}$?

Exercice 6. Dans l'espace vectoriel réel $\mathbb{R}^{\mathbb{N}}$ des suites de nombres réels, les parties formées des vecteurs suivants sont-elles libres? Génératrices?

- (a) les suites dont tous les termes sont nuls, sauf un égal à 1
- (b) les suites dont les termes valent 1, pour un nombre fini d'indices, les autres termes étant nuls
- (c) les suites à termes positifs
- (d) les suites dont les termes valent 0 ou 1
- (e) les suites bornées.

Exercice 7. Soit V l'ensemble des fonctions deux fois dérivables $x : \mathbb{R} \to \mathbb{R}$, $t \mapsto x(t)$ pour tout $t \in \mathbb{R}$, vérifiant l'équation différentielle suivante

$$x''(t) + \omega^2 x(t) = 0$$
 où $\omega \in \mathbb{R}$

décrivant le mouvement d'un oscillateur harmonique.

- (a) Montrer que V est un espace vectoriel réel.
- (b) Montrer que les fonctions x_1 et x_2 définies par $x_1(t) := \sin(\omega t)$ et $x_2(t) := \cos(\omega t)$ pour tout $t \in \mathbb{R}$ constituent une partie libre de V.
- (c) Sachant que $\{x_1, x_2\}$ est une base de V, quelles sont les coordonnées de la fonction

$$x: \mathbb{R} \to \mathbb{R}, \qquad x(t) := 3\sin\left(\omega t + \frac{\pi}{3}\right) \quad \text{pour tout } t \in \mathbb{R}$$

dans cette base?

14 Dimension de sous-espaces

Exercice 1. Soient W_1 et W_2 deux sous-espaces d'un espace vectoriel réel V de dimension 24. Si $\dim_{\mathbb{R}} W_1 = 16$ et $\dim_{\mathbb{R}} W_2 = 19$, que peut-on dire de $\dim_{\mathbb{R}} (W_1 \cap W_2)$?

Exercice 2. Dans \mathbb{R}^3 , peut-on trouver deux sous-espaces de dimension 2 dont l'intersection est réduite au vecteur nul (0,0,0)? Qu'en est-il dans \mathbb{R}^4 ?

Exercice 3. Soient W_1 et W_2 les sous-espaces de \mathbb{R}^4 définis par

$$W_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 + x_3 + x_4 = 0\}$$

et

$$W_2 := \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = x_3 - x_4 = 0\}.$$

Calculer $\dim_{\mathbb{R}} W_1$, $\dim_{\mathbb{R}} W_2$, $\dim_{\mathbb{R}} (W_1 \cap W_2)$ et $\dim_{\mathbb{R}} (W_1 + W_2)$.

Exercice 4. Dans un espace vectoriel réel de dimension finie n, on considère deux sous-espaces de dimension respectives n_1 et n_2 . Déterminer les plus grandes et plus petites valeurs de $\dim_{\mathbb{R}}(W_1 \cap W_2)$ et $\dim_{\mathbb{R}}(W_1 + W_2)$ en fonction de n, n_1 et n_2 .

15 Composition d'applications linéaires

Exercice 5. Étant donnés les opérateurs linéaires

$$A: \mathbb{R}^2 \to \mathbb{R}^2, \ (x,y) \mapsto (x+y,2x)$$
 pour tout $(x,y) \in \mathbb{R}^2$

 et

$$B: \mathbb{R}^2 \to \mathbb{R}^2, \ (x,y) \mapsto (y-x,x+2y)$$
 pour tout $(x,y) \in \mathbb{R}^2$

calculer $A \circ B$, $B \circ A$, A + B et $(A + B)^2$.

Exercice 6. Soient U, V et W trois espaces vectoriels réels, et soient $A: U \to V$ et $B: V \to W$ deux transformations linéaires. Quelles sont, parmi les affirmations suivantes, celles qui sont toujours vraies?

- (a) $Ker(B \circ A) \subseteq Ker(A)$
- (b) $Ker(B \circ A) \supseteq Ker(A)$
- (c) $Ker(B \circ A) \subseteq Ker(B)$
- (d) $Ker(B \circ A) \supseteq Ker(B)$
- (e) $Im(B \circ A) \subseteq Im(A)$
- (f) $Im(B \circ A) \supseteq Im(A)$
- (g) $Im(B \circ A) \subseteq Im(B)$
- (h) $Im(B \circ A) \supseteq Im(B)$
- (i) $rang(B \circ A) \ge rang(A)$
- (j) $rang(B \circ A) \leq rang(A)$
- (k) $rang(B \circ A) \ge rang(B)$
- (1) $rang(B \circ A) \leq rang(B)$

16 Noyeau et rang

Exercice 1. Pour les applications linéaires suivantes, déterminer:

- (1) la dimension de leur noyau et leur rang;
- (2) celles qui sont inversibles.

$$A: \mathbb{R}^3 \to \mathbb{R}^2: (x, y, z) \mapsto (2x + y + z, x - y)$$
 pour tout $(x, y, z) \in \mathbb{R}^3$

$$B: \mathbb{R}^3 \to \mathbb{R}^2: (x, y, z) \mapsto (x - 2y + z, 0)$$
 pour tout $(x, y, z) \in \mathbb{R}^3$

$$C: \mathbb{R}^2 \to \mathbb{R}^3: (x,y) \mapsto (2x,3y+x,x)$$
 pour tout $(x,y) \in \mathbb{R}^2$

$$D: \mathbb{R}^2 \to \mathbb{R}^3: (x,y) \mapsto (x+y,2(x+y),3(x+y))$$
 pour tout $(x,y) \in \mathbb{R}^2$

$$E: \mathbb{R}^3 \to \mathbb{R}^3: (x, y, z) \mapsto (2x + y, y, x + y)$$
 pour tout $(x, y, z) \in \mathbb{R}^3$

$$F: \mathbb{R}^3 \to \mathbb{R}^3: (x,y,z) \mapsto (2x+y,y+z,x+z)$$
 pour tout $(x,y,z) \in \mathbb{R}^3$

Exercice 2. Soit V un espace vectoriel réel de dimension finie n, et soit A un opératuer linéaire sur V. "Si le noyau de A coïncide avec l'image de A, alors n est pair": prouver et donner un exemple d'un tel opérateur, ou réfuter avec un contre-exemple.

Exercice 3. Dans l'espace vectoriel réel \mathbb{R}^3 , existe-il des opérateurs linéaires A, B, C et D tels que

- (a) $Ker(A) \supseteq Im(A)$
- (b) $Ker(B) \subsetneq Im(B)$
- (c) Ker(C) = Im(C)
- (d) \mathbb{R}^3 est la somme directe de Ker(D) et Im(D)

Exercice 4. Soit V l'espace vectoriel réel des polynômes en X à coefficients réels de degré $\leq n$, et soit D l'opérateur linéaire sur V appliquant tout polynôme sur son polynôme dérivé. Déterminer le noyau, l'image et le rang de D.

Exercice 5. Existe-il une transformation linéaire $A : \mathbb{R}^3 \to \mathbb{R}^2$ telle que A((1, -1, 1)) = (1, 0) et A((1, 1, 1)) = (0, 1)?

Exercice 6. Existe-il un opérateur linéaire A sur \mathbb{R}^2 transformant (1,-1) en (1,0), (2,-1) en (0,1) et (-3,2) en (1,1)?

17 Changement de bases

Exercice 1. Décrire explicitement une transformation linéaire $A : \mathbb{R}^4 \to \mathbb{R}^3$ appliquant \mathbb{R}^4 sur le sous-espace engendré par (2,1,0) et (5,-1,2), et ayant pour noyau le plan déterminé par les équations x=y=z.

Exercice 2. Dans l'espace vectoriel \mathbb{R}^3 , on considère les vecteurs

$$e_1 = (1,0,0)$$
 $f_1 = (2,0,-5)$
 $e_2 = (0,1,0)$ $f_2 = (\sqrt{3},-\sqrt{2},5)$
 $e_3 = (0,0,1)$ $f_3 = (0,0,7)$

L'opérateur linéaire A qui transforme e_i en f_i pour tout i=1,2,3, est-il inversible? Calculer A((x,y,z)) pour tout $(x,y,z) \in \mathbb{R}^3$. Quelles sont les coordonnées

- (a) du vecteur (-3, 2, 4) dans la base $\{f_1, f_2, f_3\}$?
- (b) du vecteur A((-3,2,4)) dans la base $\{e_1,e_2,e_3\}$?
- (c) du vecteur A((-3,2,4)) dans la base $\{f_1, f_2, f_3\}$?

Exercice 3. Soient U, V et W trois espace vectoriel réels de dimension finie, et soient $A: U \to V$ et $B: V \to W$ deux transformations linéaires. Quel est le terme manquant dans l'égalité suivante:

$$\dim_{\mathbb{R}}(Im(A) \cap Ker(B)) = \dim_{\mathbb{R}}(Im(A)) - \dim_{\mathbb{R}}(?)$$

Justifiez soigneusement votre réponse.

Exercice 4. Si A est un opérateur linéaire sur un espace vectoriel réel V de dimension finie n et si $rang(A^2) = rang(A)$, que vaut $Ker(A) \cap Im(A)$?

Exercice 5. Donner une base de Ker(A), Ker(B), Im(A) et Im(B), où

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & -1 & 3 & 0 \\ 3 & 1 & 2 & 0 \end{bmatrix}, \quad \text{et} \quad B = \begin{bmatrix} 1 & 5 & 7 \\ 3 & -1 & 2 \\ -5 & 7 & 3 \\ 4 & 4 & 9 \end{bmatrix}.$$

Rappel Théorique

Soit $A: V \to W$ une application linéaire et $E: \{e_1, ..., e_n\}$ une base de V et $F:= \{f_1, ..., f_n\}$ deux bases de W.

Notation 1. $m_{F,E}(A)$ est la matrice dont la j-ième colonne sont les coordonnées de $A(e_i)$ dans la base F. Prenons maintenant V = W.

Définition. La matrice de changement de base b entre F et E a comme i, j-ième entrée le coefficient B_{ij} définit par la relation

$$f_j = \sum_{i=1}^n B_{ij} e_i.$$

Nous avons que

$$b = m_{E,F}(Id)$$
 $b^{-1} = m_{F,E}(Id)$

Nous avons des relations du type

$$m_{F,E}(Id)m_{E,E}(A)m_{E,F}(Id) = m_{F,F}(A)$$
 $b^{-1}m_{E,E}(A)b = m_{F,F}(A).$

$$\begin{array}{ccc} V_E & & \xrightarrow{m_{E,E}(A)} & V_E \\ \downarrow^{m_{E,F}(Id)} & & & \downarrow^{m_{E,F}(Id)} \\ V_F & & & & V_F \end{array}$$

Example. Prenons $E = \{(1,0),(0,1)\}$ et $F := \{(2,-1),(0,1)\}$ deux bases de \mathbb{R}^2 . Alors

$$m_{E,F}(Id) = \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}$$

car $Id(f_1) = f_1 = 2(1,0) + (-1)(0,1)...$ On a

$$m_{F,E}(Id) = \begin{bmatrix} \frac{1}{2} & 0\\ \frac{1}{2} & 1 \end{bmatrix}$$

car $Id(e_1) = f_1 = \frac{1}{2}(2, -1) + \frac{1}{2}(0, 1)...$

EXERCICES

Exercice 1. Soit $A: \mathbb{R}^2 \to \mathbb{R}^2$ l'opérateur linéaire défini par

$$A((1,0)) = (4,2)$$
 et $A((0,1)) = (-1,1)$.

Écrire la matrice de A dans les bases suivantes, ainsi que les matrices de changement de bases:

- (a) $E := \{(1,0), (0,1)\}$
- (b) $F := \{(1,2), (1,1)\}.$

Les calculs effectués permettent-ils de donner une représentation géométrique simple de l'opérateur A? A est-il un opérateur linéaire inversible de \mathbb{R}^2 ?

Exercice 2. On considère l'opérateur linéaire $A: \mathbb{R}^3 \to \mathbb{R}^3$ défini par

$$A((x, y, z)) := (x - y + 2z, 3x + 2y - z, 4x + y + z)$$
 pour tout $(x, y, z) \in \mathbb{R}^3$.

Écrire la matrice de A dans la base canonique et dans la base $F := \{f_1, f_2, f_3\}$, ainsi que les matrices de changement de bases, où $f_1 := (1, 1, 0), f_2 := (2, -3, 0), f_3 := (1, 2, 3).$

18 Matrices et ses inverses

Rappel Théorique

Inverse de matrice+ methode de Gauss.

EXERCICES

Exercice 3. Trouver deux matrices a et b à coefficients réels telles que

$$2a + b = \begin{bmatrix} 0 & 1 \\ -2 & 1 \end{bmatrix}$$
 et $3a - 5b = \begin{bmatrix} 4 & -1 \\ 0 & 0 \end{bmatrix}$.

Exercice 4. Trouver deux matrices $a, b \in M_{2\times 2}(\mathbb{R})$ telles que

- (a) $a \neq 0$, $b \neq 0$, $a \neq b$, $ab \neq 0$, $ba \neq 0$ et $ab \neq ba$;
- (b) $a \neq 0, b \neq 0, a \neq b, \text{ et } ab = ba \neq 0;$
- (c) $a \neq 0, b \neq 0, a \neq b, \text{ et } ab \neq 0 \text{ et } ba = 0;$
- (d) $a \neq 0, b \neq 0, a \neq b, \text{ et } ab = ba = 0.$

Exercice 5. La matrice réelle

est-elle inversible? Si oui, quelle est sa matrice inverse?

Exercice 6. Si une matrice $a \in M_{n \times n}(\mathbb{R})$ vérifie l'équation

$$a^2 + a + I = 0$$

où I est la matrice identité de taille $n \times n$, prouver que a est inversible. Que vaut a^{-1} ?

Exercice 7. Calculer l'inverse des matrices réelles suivantes en utilisant la méthode de Gauss:

$$\begin{bmatrix} 2 & 3 & -1 \\ 0 & -1 & -1 \\ 2 & 1 & 2 \end{bmatrix}, \quad \text{et} \quad \begin{bmatrix} 1 & -\alpha & \beta \\ \alpha & 1 & -1 \\ -\beta & 1 & 1 \end{bmatrix} \quad \text{où } \alpha, \beta \in \mathbb{R}.$$

A Organisation des TP's

$Premier\ Quadri$

Séance 1	$Fonctions + Trigonom\'etrie$
Séance 2	Nombres Complexes
Séance 3	Algorithme d'Euclide
Séance 4	Géométrie Analytique I
Séance 5	Géométrie Analytique II
Séance 6	Géométrie Analytique III
Séance 7	Systèmes d'équations linéaires homogènes
Séance 8	Systèmes d'équations linéaires non-homogènes
Séance 9	Correspondence entre application linéaires et matrices: base canonique
Séance 10	Espaces vectoriels
Séance 11	Sous-espaces vectoriels
Séance 12	Applications linéaires+ Engendrer I
Séance 13	Engendrer II
Séance 14	Bases I
Séance 15	Bases II
Séance 16	Dimension de sous-espaces+ Composition d'application linéaires
Séance 17	Noyeau et rang
Séance 18	Changement de bases I
	$Deuxi\`eme~Quadri$

Séance 19	Changement de bases II + Matrices et ses inverses
Séance 20	Espaces et bases duales
Séance 21	Transformations linéaires et matrices bis
Séance 22	Propriétés de matrices I
Séance 23	Propriétés de matrices $II + Permutations I$
Séance 24	Permutations II
Séance 25	Déterminants I
Séance 26	${ m D\'eterminants}\; { m II} + { m Corps}\; { m I}$
Séance 27	Corps II
Séance 28	Valeurs et vecteurs propres I
Séance 29	Valeurs et vecteurs propres II
Séance 30	Valeurs et vecteurs propres II
Séance 31	Sous-espaces généralisés et polynôme minimal
Séance 32	Forme canonique de Jordan
Séance 33	Espaces Euclidiens et Hermitiens
Séance 34	Matrices orthogonales
Séance 35	Théorème de Sylvester et formes quadratiques
Séance 36	Coniques et quadriques