08/07/2019 - COGNOME e NOME:

MATR.

1 - DINAMICA - CINEMATICA

Un oggetto di massa m viene lanciato con velocità iniziale v₀=8.0 m/s dal punto A alla base di un piano inclinato (vedi figura) lungo il quale il coefficiente di attrito dinamico vale $\mu_d=0.2$. La lunghezza del lato AC è 1.5 m. Si assuma che l'accelerazione di gravità locale sia $g = 9.80 \text{ ms}^{-2}$. Calcolare:

a) (4 pt) la velocità v_B nel punto B

$$E_{B} = E_{A} + L_{ATT} \implies mv_{B}^{2} + mg_{B}C = mv_{5}^{2} - \mu dF_{N}AB$$

$$mv_{B}^{2} + mg_{A}C = mv_{5}^{2} = 0.2 \text{ mg}v_{2} \text{ AC}v_{3}$$

$$v_{B}^{2} = v_{5}^{2} - 3g_{5}^{2} - 0.6g_{5} \implies v_{B}^{2} = 5.36 \text{ m/S}$$

b) (3 pt) la massima altezza h_{max} raggiunta dal corpo rispetto al suolo (definito dalla linea AC) Dops it distances $V_y = V_B \sin(45^\circ) - g t$; the dops in the large $t^* = (V_B \cdot V_B \cdot V_B)/g$ (quanto $V_y = g$) $t^* = 0.3875$; human = BC + $V_B \cdot V_B \cdot V_B$

c) (3 pt) a quale distanza dal punto C atterrerà il corpo.

y=BC+VBy+-g/2+2; x=VBx+=D+=x/VBx equinding=BC+x-g(XZ) (poiche VBy=VBx); povendo y=Ostrovo X= 4.03 m. S. provouche risolvere trovoudo t= V2hmax/g e poi X= VBX (t*+t+)

2 - SENSORE DI FORZA

La figura rappresenta un semplice schema per trasdurre una forza F applicata al punto P in una d.d.p. fra i punti A e B, $V \equiv V_A - V_B$. Il cursore, solidale con un estremo della molla, crea un contatto fra il punto A e un punto variabile della resistenza r, avente sezione e resistività costanti per tutta la sua lunghezza &=5cm. Sia x (in metri) la variazione di lunghezza della molla, assunta positiva in trazione e negativa in compressione. Per x=0, il cursore si trova nel punto medio di r.

a) (3 pt) Ricavare la funzione $V_A(x)$.

$$V_A(x) = 5 + X \cdot 5 = 5 + 200 \times$$

in Jotti quando x=0 $V_A=5V$ e insette per X=0.025 $V_A=10V$ e per X=-0.025 $V_A=0$ V

b) (2 pt) usando il risultato del punto a), ricavare la funzione
$$V(x) = V_A(x) - V_B$$
. $\bigvee = \bigvee A(x) - S = 200 \times$

c) (3 pt) Scrivere finalmente l'equazione caratteristica del sensore V(F) (che fornisce l'output V in

d) (2 pt) Qual è la risoluzione ΔF nella misura di forza se V viene amplificata per 2 e digitalizzata da un dispositivo a 12 bit che accetta in ingresso d.d.p. fra -10 e +10 Volt (portata=20 Volt)?

$$\Delta F = \frac{\text{code width}}{(\text{dV/dF})} = \frac{20}{2 \cdot 2^{12}} \cdot \frac{1}{5 \times 10^{-2}} = 0.049 \text{ N}$$

3 - EFFETTO HALL

Una striscia di materiale semiconduttore di spessore t =0.1 mm e densità di elettroni liberi pari a $n=1.0\cdot 10^{22}$ m^{-3} è percorsa da una corrente I=200 mA. La striscia è posta nel piano xy mentre il campo magnetico \vec{B} è nel piano yz. Tra i terminali 2 e 1, connessi ai lati della striscia come in figura, si misura una d.d.p. $\mathcal{E}_H = V_2 - V_1 = 15$

a) (3 pt) Calcolare la componente B_z di \overrightarrow{B} 1/49t = 6.25EM = K = D B= EM = 17 mT positivo (si pensi BI deguo dello Forza

b) (2 pt) successivamente si ruota la striscia in senso antiorario attorno all'asse x (vedi figura) per portarla nel piano xz. Si misura in questo caso una d.d.p. $\mathcal{E}_H = V_2 - V_1 = 5.0$ mV. Calcolare la componente B_y di \vec{B}

c) (2 pt) Quale angolo deve formare il piano della striscia col piano xy affinché si abbia $\mathcal{E}_H=0$? Le striscie deve giocere in un pierre contenente le direzione del corripor (\$3) = \$\$\frac{1}{2}\$ \(\beta = \frac{1}{2} \langle \beta \bet

d) (3 pt) Un elettrone libero viene immesso nella regione di \vec{B} con velocità iniziale $v=(3.0\cdot 10^4)\hat{z}$ m/s. Calcolare il raggio R della sua traiettoria proiettata su un piano perpendicolare a \vec{B} .

m VI dove VI e-le comp. della velocite iniz 9B perpendicolore e B VB27+By2 = 12.65 m T VI = V 5050 = 0.947 m/Sxli B= 4.26 x 10 m= 4.26 mm