使能PLL4

PLL4用于给各种外设提供时钟,最先要使能PLL4; GPIO是低速设备·我们可以先不去设置PLL4的频率;仅仅使能即可

10.7.43 RCC PLL4 Control Register (RCC_PLL4CR)

Address offset: 0x894 Reset value: 0x0000 0000

This register is used to control the PLL4.

Bit 1 PLL4RDY: PLL4 clock ready flag

Set by hardware to indicate that the PLL4 is locked.

0: PLL4 unlocked (default after reset)
1: PLL4 locked

Bit 0 PLLON: PLL4 enable

Set and cleared by software to enable the PLL4.

Cleared by hardware when entering Stop, LP-Stop, LPLV-Stop, or Standby mode.

Note that DIVPEN, DIVQEN and DIVREN of PLL4 must be set to '0' before setting PLLON to '0'. refer to Section: PLL disabling procedure for details.

0: PLL4 OFF (default after reset)
1: PLL4 ON, and ref4_ck is provided to the PLL4

MPU、MCU共享GPIO模块

对于A7(MPU)、M4(MCU)而言·GPIO模块是公用的·寄存器的操作也是类似的

STM32MP1 IP 分配

在MPU上使能某个GPIO模块

10.7.157 RCC AHB4 Periph. Enable For MPU Set Register (RCC_MP_AHB4ENSETR)

Address offset: 0xA28 Reset value: 0x0000 0000

This register is used to set the peripheral clock enable bit of the corresponding peripheral to '1'. It shall be used to allocate a peripheral to the MPU. Writing '0' has no effect, reading will return the effective values of the corresponding bits. Writing a '1' sets the corresponding bit to '1'.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res.	Res.	GPIOKEN	GPIOJEN	GPIOIEN	GPIOHEN	GPIOGEN	GPIOFEN	GPIOEEN	GPIODEN	GPIOCEN	GPIOBEN	GPIOAEN
					rs										

在MCU上使能某个GPIO模块

10.7.158 RCC AHB4 Periph. Enable For MCU Set Register (RCC_MC_AHB4ENSETR)

Address offset: 0xAA8 Reset value: 0x0000 0000

This register is used to set the peripheral clock enable bit of the corresponding peripheral to '1'. It shall be used to allocate a peripheral to the MCU. Writing '0' has no effect, reading will return the effective values of the corresponding bits. Writing a '1' sets the corresponding bit to '1'.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res.	Res.	GPIOKEN	GPIOJEN	GPIOIEN	GPIOHEN	GPIOGEN	GPIOFEN	GPIOEEN	GPIODEN	GPIOCEN	GPIOBEN	GPIOAEN
					rs										

GPI0模块

Figure 119. Basic structure of an I/O port bit

设置引脚工作模式:GPIO模式

13.4.1 GPIO port mode register (GPIOx_MODER) (x = A to K, Z)

Address offset:0x00

Reset value: 0xFFFF FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODE	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODEF	R12[1:0]	MODER	R11[1:0]	MODE	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODER3[1:0]		MODER2[1:0]		MODER1[1:0]		MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **MODER[15:0][1:0]:** Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O mode.

00: Input mode

01: General purpose output mode

10: Alternate function mode

11: Analog mode

对于输出引脚:设置输出类型

13.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A to K, Z)

Address offset: 0x04
Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	ОТ9	ОТ8	OT7	ОТ6	OT5	OT4	ОТ3	OT2	OT1	OT0
0110	0114	0													

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OT[15:0]:** Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O output type.

0: Output push-pull (reset state)

1: Output open-drain

对于输出引脚:设置输出速度

13.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A to K, Z)

Address offset: 0x08 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EDR15 :0]		EDR14 :0]		EDR13 :0]		EDR12 :0]		EDR11 :0]		EDR10 :0]		EDR9 :0]		EDR8 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OSPE [1:	EDR7 :0]		EDR6 :0]	OSPE [1:	EDR5 :0]		EDR4 :0]	OSPEEDR3 [1:0]		OSPEEDR2 [1:0]		OSPEEDR1 [1:0]			EDR0 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **OSPEEDR[15:0][1:0]**: Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O output speed.

00: Low speed 01: Medium speed

10: High speed

11: Very high speed

Note: Refer to the product datasheets for the values of OSPEEDRy bits versus V_{DD} range and external load.

对于输入/输出引脚:设置上下拉电阻

13.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A to K, Z)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDE	R15[1:0]	PUPDF	R14[1:0]	PUPDF	13[1:0]	PUPDF	R12[1:0]	PUPDF	R11[1:0]	PUPDF	R10[1:0]	PUPD	R9[1:0]	PUPDI	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	ΓW
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPD	R7[1:0]	PUPD	R6[1:0]	PUPDI	R5[1:0]	PUPDI	R4[1:0]	PUPDI	R3[1:0]	PUPD	R2[1:0]	PUPD	R1[1:0]	PUPDI	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **PUPDR[15:0][1:0]:** Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up

10: Pull-down

11: Reserved

对于输入/输出引脚:读取引脚电平

13.4.5 GPIO port input data register (GPIOx_IDR) (x = A to K, Z)

Address offset: 0x10
Reset value: 0x0000 XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDR[15:0]:** Port x input data I/O pin y (y = 15 to 0)

These bits are read-only. They contain the input value of the corresponding $\ensuremath{\mathrm{I/O}}$ port.

对于输出引脚:设置引脚电平,方法1

13.4.6 GPIO port output data register (GPIOx_ODR) (x = A to K, Z)

Address offset: 0x14 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 ODR15		13 ODR13		11 ODR11	10 ODR10	9 ODR9	8 ODR8	7 ODR7	6 ODR6	5 ODR5	4 ODR4	3 ODR3	2 ODR2	1 ODR1	0 ODR0

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODR[15:0]:** Port output data I/O pin y (y = 15 to 0)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and/or reset by writing to the GPIOx_BSRR or GPIOx_BRR registers (x = A..F).

对于输出引脚:设置引脚电平,方法2

13.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A to K, Z)

Address offset: 0x18
Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	W	w	w	W	w	w	W	w	W	w	W	w	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BS15	14 BS14	13 BS13	12 BS12	11 BS11	10 BS10	9 BS9	8 BS8	7 BS7	6 BS6	5 BS5	BS4	3 BS3	2 BS2	1 BS1	0 BS0

Bits 31:16 BR[15:0]: Port x reset I/O pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.

- 0: No action on the corresponding ODRx bit
- 1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BS[15:0]**: Port x set I/O pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.

- 0: No action on the corresponding ODRx bit
- 1: Sets the corresponding ODRx bit