An efficient kinetic modeling in hydrodynamics using the AWBS transport equation

Authors^{a,1}

^aCentre Lasers Intenses et Applications, Universite de Bordeaux-CNRS-CEA, UMR 5107, F-33405 Talence, France

Abstract

The AWBS Boltzmann transport equation for electrons equipped with a simplified e-e collision operator [1] provides an efficient, yet physically relevant, kinetic extension compared the classical Spitzer-Harm heat flux (SH) based on local approximation and flux-limiting. This classical approach is widely used in plasma kinetics models coupled to hydrodynamics. Even though SH reflects the electron-electron collision effect, the essential physical properties of the electron transport cannot be modeled with an explicitly local model. A simple form of the AWBS model opens a way to couple kinetics to hydrodynamic codes while describing the important physics correctly. Since the electron-electron collision effect becomes especially important in the case of low ion potential, we take a special in the case of low Z plasmas.

Keywords: kinetics; hydrodynamics; nonlocal electron transport; laser-heated plasmas.

1 Contents

2 1		AWBS-P1 modeling of laser heated plasmas		
3		1.1	Model equations	2
4		1.2	A consistent treatment of $\tilde{m{E}}$ field $\dots \dots \dots \dots \dots \dots$	Ş
5		1.3	AWBS model analysis	4
6	2	Simu	lation results	4

E-mail address: milan.holec@u-bordeaux.fr

^{*}Corresponding author.

1. AWBS-P1 modeling of laser heated plasmas

8 1.1. Model equations

The AWBS electron transport equation reads

$$v\boldsymbol{n}\cdot\nabla f + \tilde{\boldsymbol{E}}\cdot\boldsymbol{n}\frac{\partial f}{\partial v} + \frac{\tilde{\boldsymbol{E}}\cdot\boldsymbol{e}_{\phi} - v\tilde{\boldsymbol{B}}\cdot\boldsymbol{e}_{\theta}}{v}\frac{\partial f}{\partial \phi} = v\nu_{e}\frac{\partial}{\partial v}(f - f_{M}) + (\nu_{ei} + \nu_{e})(f_{0} - f),$$

where ν_e is the electron-electron collision frequency, ν_{ei} is the electron-ion collision frequency, and $\nu_{ei} = \bar{Z}\nu_e$.

In order to eliminate the dimensions of the above transport problem the first-two-moment model based on approximation

$$f = \frac{f_0}{4\pi} + \frac{3}{4\pi} \boldsymbol{n} \cdot \boldsymbol{f_1},$$

can be adopted and reads

$$\nu_{e}v\frac{\partial}{\partial v}\left(f_{0}-\tilde{f}_{M}\right) = v\nabla\cdot\boldsymbol{f_{1}}+\tilde{\boldsymbol{E}}\cdot\frac{\partial\boldsymbol{f_{1}}}{\partial v}+\frac{2}{v}\tilde{\boldsymbol{E}}\cdot\boldsymbol{f_{1}},$$

$$\nu_{e}v\frac{\partial}{\partial v}\boldsymbol{f_{1}}-\nu_{t}\boldsymbol{f_{1}} = v\nabla\cdot\left(\boldsymbol{A}f_{0}\right)+\tilde{\boldsymbol{E}}\cdot\frac{\partial\left(\boldsymbol{A}f_{0}\right)}{\partial v}+\tilde{\boldsymbol{B}}\times\boldsymbol{f_{1}},$$

where $\tilde{f}_M = 4\pi f_M$ and the closure matrix takes the form

$$\mathbf{A} = \frac{1}{3}\mathbf{I}.$$

Since in the laser heated plasmas the Knudsen number $Kn = \frac{v_{th}}{\nu_t(v_{th})L} \in$ (0,1), i.e. the collisionality in the kinetics of electrons plays always an important effect for thermal-like particles, the electron distribution function can be treated as out-of-equilibrium approximation

$$f = f_M + \delta f, \tag{1}$$

where the consequent AWBS model reads

$$v\boldsymbol{n}\cdot\nabla(f_{M}+\delta f)+\tilde{\boldsymbol{E}}\cdot\boldsymbol{n}\frac{\partial f_{M}}{\partial v}+\tilde{\boldsymbol{E}}\cdot\boldsymbol{n}\frac{\partial \delta f}{\partial v}+\frac{\tilde{\boldsymbol{E}}\cdot\boldsymbol{e}_{\phi}-v\tilde{\boldsymbol{B}}\cdot\boldsymbol{e}_{\theta}}{v}\frac{\partial \delta f}{\partial \phi}=$$

$$v\nu_{e}\frac{\partial \delta f}{\partial v}+(\nu_{ei}+\nu_{e})(f_{0}-f_{M}-\delta f), \quad (2)$$

or its P1 approximation equivalent

$$f = \frac{4\pi f_M + \delta f_0}{4\pi} + \frac{3}{4\pi} \boldsymbol{n} \cdot \boldsymbol{f_1}.$$
 (3)

 20 where the moment model reads

$$\nu_e v \frac{\partial \delta f_0}{\partial v} = v \nabla \cdot \boldsymbol{f_1} + \tilde{\boldsymbol{E}} \cdot \frac{\partial \boldsymbol{f_1}}{\partial v} + \frac{2}{v} \tilde{\boldsymbol{E}} \cdot \boldsymbol{f_1}, \tag{4}$$

$$\nu_{e}v\frac{\partial \mathbf{f_{1}}}{\partial v} - \nu_{t}\mathbf{f_{1}} = \frac{v}{3}\nabla\delta f_{0} + \frac{\tilde{\mathbf{E}}}{3}\frac{\partial\delta f_{0}}{\partial v} + \tilde{\mathbf{B}}\times\mathbf{f_{1}} + \frac{v}{3}\nabla\tilde{f}_{M} + \frac{\tilde{\mathbf{E}}}{3}\frac{\partial\tilde{f}_{M}}{\partial v}.$$
 (5)

21 1.2. A consistent treatment of $\tilde{m{E}}$ field

$$\boldsymbol{q}_c(\boldsymbol{x}) = \int_{v} v \boldsymbol{f_1}(\boldsymbol{x}) v^2 \, \mathrm{d}v,$$

 $_{22}$ from (5)

$$\boldsymbol{q}_{c} = \int_{v} \left(\frac{\nu_{e} v^{2}}{\nu_{t}} \frac{\partial \boldsymbol{f}_{1}}{\partial v} - \frac{v^{2}}{3\nu_{t}} \nabla \left(\tilde{f}_{M} + \delta f_{0} \right) - \frac{v}{3\nu_{t}} \frac{\partial \left(\tilde{f}_{M} + \delta f_{0} \right)}{\partial v} \tilde{\boldsymbol{E}} \right) v^{2} \, \mathrm{d}v, \quad (6)$$

$$a_0(\boldsymbol{x}) = \int_v \frac{v}{3\nu_t} \frac{\partial \left(\tilde{f}_M + \delta f_0\right)}{\partial v} (\boldsymbol{x}) v^2 dv,$$

$$\boldsymbol{b}_0(\boldsymbol{x}) = \int_v \left(\frac{v^2}{3\nu_t} \nabla \left(\tilde{f}_M(\boldsymbol{x}) + \delta f_0(\boldsymbol{x})\right) - \frac{\nu_e v^2}{\nu_t} \frac{\partial \boldsymbol{f_1}}{\partial v} (\boldsymbol{x})\right) v^2 dv,$$

$$\boldsymbol{q}_c(\boldsymbol{x}) = -\boldsymbol{b}_0(\boldsymbol{x}) - a_0(\boldsymbol{x})\tilde{\boldsymbol{E}}(\boldsymbol{x}),$$

$$\tilde{\boldsymbol{E}}(\boldsymbol{x}) = -\frac{\boldsymbol{b}_0(\boldsymbol{x})}{a_0(\boldsymbol{x})}.$$
 (7)

23 1.3. AWBS model analysis

$$\left(v\nu_{e} - \tilde{\boldsymbol{E}} \cdot \boldsymbol{n}\right) \frac{\partial \delta f}{\partial v} = v\boldsymbol{n} \cdot \nabla (f_{M} + \delta f) + \tilde{\boldsymbol{E}} \cdot \boldsymbol{n} \frac{\partial f_{M}}{\partial v} + (\nu_{ei} + \nu_{e})(f_{M} + \delta f - f_{0}),$$
(8)

$$\frac{\partial \delta f_0}{\partial v} = \frac{1}{\nu_e v} \left(v \nabla \cdot \boldsymbol{f_1} + \tilde{\boldsymbol{E}} \cdot \frac{\partial \boldsymbol{f_1}}{\partial v} \right),$$

$$\nu_e v \frac{\partial \boldsymbol{f_1}}{\partial v} - \nu_t \boldsymbol{f_1} = \frac{v}{3} \nabla \delta f_0 + \frac{\tilde{\boldsymbol{E}}}{3} \frac{\partial \delta f_0}{\partial v} + \frac{v}{3} \nabla \tilde{f}_M + \frac{\tilde{\boldsymbol{E}}}{3} \frac{\partial \tilde{f}_M}{\partial v},$$

$$\left(\nu_e v \mathbf{I} - \frac{\tilde{\boldsymbol{E}}\tilde{\boldsymbol{E}}}{3\nu_e v}\right) \cdot \frac{\partial \boldsymbol{f_1}}{\partial v} = \frac{v}{3} \nabla \delta f_0 + \frac{\tilde{\boldsymbol{E}}}{3\nu_e} \nabla \cdot \boldsymbol{f_1} + \frac{v}{3} \nabla \tilde{f}_M + \frac{\tilde{\boldsymbol{E}}}{3} \frac{\partial \tilde{f}_M}{\partial v} + \nu_t \boldsymbol{f_1},$$

$$\left(\nu_e v - \frac{\tilde{E}_z^2}{3\nu_e v}\right) \frac{\partial f_{1_z}}{\partial v} = \frac{v}{3} \frac{\partial \delta f_0}{\partial z} + \frac{\tilde{E}_z}{3\nu_e} \frac{\partial f_{1_z}}{\partial z} + \frac{v}{3} \frac{\partial \tilde{f}_M}{\partial z} + \frac{\tilde{E}_z}{3} \frac{\partial \tilde{f}_M}{\partial v} + \nu_t f_{1_z}.$$
(9)

24 2. Simulation results

- Two cases:
- constant $n_e = 5 \times 10^{20}$ [1/cm³], constant $\bar{Z} = 4$, T_e temperature profile taken from IMPACT simulation at 12 ps, see Figure 1
- n_e, T_e, \bar{Z} profiles taken from HYDRA simulation of Gadolinium hohlraum at 10 ps, see Figure 2 and Figure 3

Figure 1: Philippe's preferred test $\bar{Z}=4$ at 12 ps.

Figure 2:

Figure 3: Kinetics profiles for max(flux) point and 1605 microns point for the case of 10ps VFP temperature profile, ne and Z Hydra profiles.

Figure 4: KIPP (by Johnathan) vs AWBS using $\lambda_{ei}^* = \frac{\bar{Z} + 0.24}{\bar{Z} + 4.2} \lambda_{ei}, \bar{Z} = 1, v_{th} = \sqrt{\frac{k_B T_e}{m_e}}$ $f_1^{SH} = -\lambda_{ei}^*(v) \left(\frac{v^2}{2v_{th}^2} - 4\right) \frac{\boldsymbol{n} \cdot \nabla T_e}{T_e} f_M, \quad f_1^{KIPP} = -\lambda_{ei}^*(v) \left(\frac{3}{16} \frac{v^2}{v_{th}^2} - 1 - \frac{3}{2} \frac{v_{th}^2}{v^2}\right) \frac{\boldsymbol{n} \cdot \nabla T_e}{T_e} f_M.$

Figure 5: Decelerating (top) vs. accelerating (bottom) computations. Zeroth E field iteration, i.e. no E field effect, of the diffusion regime conditions.

[1] J. R. Albritton, E. A. Williams, I. B. Bernstein, Nonlocal electron heat transport by not quite maxwell-boltzmann distributions, Phys. Rev. Lett.
 57 (1986) 1887–1890.