一、若当标准型

1.1 广义特征向量 广义线性空间

1.1.1 核空间的性质

定理 1 设 $\sigma \in \mathcal{L}(V)$, 则有

- 1. $\{0\} = \ker \sigma^0 \subset \ker \sigma^1 \subset \ker \sigma^2 \subset \cdots \subset \ker \sigma^k \subset \ker \sigma^{k+1} \subset \cdots;$
- 2. 设 m 是满足 $\ker \sigma^m = \ker \sigma^{m+1}$ 的非负整数,则

$$\ker \sigma^m = \ker \sigma^{m+1} = \ker \sigma^{m+2} = \cdots;$$

3. 设 $n = \dim V$, 则 $\ker \sigma^n = \ker \sigma^{\{n+1\}} = \cdots$.

定理 2 设 $\sigma \in \mathcal{L}(V)$, $n = \dim V$, 则 $V = \ker \sigma^n \oplus \operatorname{im} \sigma^n$.

1.1.2 广义特征空间

定义 1 设 $\sigma \in \mathcal{L}(V)$, $\lambda \in \mathbf{F}$ 为 σ 的特征值, $n = \dim V$. 如果对于向量 $v \neq \mathbf{0}$ 存在正整数 j 使得 $(\sigma - \lambda I)^j v = \mathbf{0}$, 则称 v 为 σ 对应于 λ 的广义特征向量. σ 对应于 λ 的全体广义特征向量与零向量构成的集合称为 σ 对应于 λ 的广义特征空间 $G(\lambda, \sigma)$.

定理 3 设 $\sigma \in \mathcal{L}(V)$, $n = \dim V$, $\lambda_1, \dots, \lambda_m$ 为 σ 所有互异的特征值. 则

- 1. $(\sigma \lambda_j I)|_{G(\lambda_j, \sigma)}$ 都是幂零的.
- 2. 每个 $G(\lambda_i, \sigma)$ 都是 σ 的不变子空间.
- 3. 设 v_1, \dots, v_m 为任意对应于 $\lambda_1, \dots, \lambda_m$ 的广义特征向量, 则 v_1, \dots, v_m 线性无关.
- 4. $V = G(\lambda_1, \sigma) \oplus \cdots \oplus G(\lambda_m, \sigma)$.

1.2 多项式的进一步讨论

1.2.1 特征多项式 Hamilton-Cayley 定理

定理 4 设 V 是复向量空间, V_1, V_2, \cdots, V_m 都是 V 的非零子空间, 并且满足 $V = V_1 \oplus \cdots \oplus V_m$. 设 $\sigma \in \mathcal{L}(V)$, V_j 在 σ 下不变, 并且定义 f_j 为 $\sigma|_{V_i}$ 的特征多项式, 则 σ 的特征多项式 f 满足

$$f = f_1 \cdots f_m$$
.

推论 5 设 $\sigma \in \mathcal{L}(V)$, $\lambda_i \in \mathbf{F}$ 为 σ 的特征值, d_i 为 λ_i 的代数重数, 则 λ_i 对应的广义特征空间 $G(\lambda_i, \sigma)$ 的维数也是 d_i .

定义 2 设 $\sigma \in \mathcal{L}(V)$, 若 $p \in \mathbf{F}[x]$ 使得 $p(\sigma) = 0$, 则称 p 为 σ 的一个零**化多项式**.

定理 6 (Hamilton-Cayley 定理) 设 V 是复向量空间, $\sigma \in \mathcal{L}(V)$, q 为 σ 的特征多项式, 则 $q(\sigma) = 0$.

1.2.2 极小多项式

定义 3 设 $\sigma \in \mathcal{L}(V)$, σ 的**极小多项式** 是唯一一个满足 $p(\sigma) = 0$ 的次数最小的首一多项式.

定理 7 设 $\sigma \in \mathcal{L}(V)$, $p \in \sigma$ 的极小多项式.

- 1. 若 $q \in \mathbf{F}[x]$, 则 $q(\sigma) = 0$ 当且仅当 q 是 p 的多项式倍.
- 2. 若 F = C, 则 σ 的特征多项式 $f \neq p$ 的多项式倍.

定理 8 设 $\sigma \in \mathcal{L}(V)$, 则 σ 的极小多项式的零点均是 σ 的特征值.

定理 9 设 $\sigma \in \mathcal{L}(V)$, V 能分解为 σ 的一些非平凡的不变子空间的直和

$$V = U_1 \oplus \cdots \oplus U_m,$$

且 $\sigma|_{\{U_i\}}$ 的极小多项式为 p_i , 则 σ 的极小多项式为

$$p = \operatorname{lcm}(p_1, \dots, p_m).$$

其中 $lcm(p_1, \dots, p_m)$ 表示 p_1, \dots, p_m 的最小公倍式.

例 1 判断命题真伪: $T \in \mathcal{L}(V)$ 是非幂零算子, 满足 $\ker T^{n-1} \neq \ker T^{n-2}$. 则其极小多项式为

$$m(\lambda) = \lambda^{n-1}(\lambda - a) \quad 0 \neq a \in \mathbb{R}$$

1.3 若当标准型的求解

例 2 设 T 为复数域上 n 维线性空间 V 上的线性变换, T 在某组基下的对应矩阵是 $\begin{pmatrix} -6 & 2 & 3 \\ 2 & 0 & 1 \\ -12 & 4 & 6 \end{pmatrix}$,是 否存在线性变换 S 满足 $S^2=T$? 假如存在求 S,假如不存在,说明理由,并求 T 的极小多项式以及若当标准型.

二、内积空间上的算子

2.1 内积空间的同构 伴随

定义 4 设 V 和 U 是 F 上的内积空间, 线性映射 $\sigma: V \to U$ 满足 $\forall v_1, v_2 \in V, \langle \sigma v_1, \sigma v_2 \rangle_U = \langle v_1, v_2 \rangle_V$, 则称 σ 是一个保持内积的线性映射. 若 σ 是双射, 则称 σ 是一个保积同构.

定理 10 设 V 和 U 是 F 上的内积空间, $\dim V = \dim U = n$, 若 $\sigma: V \to U$ 是一个线性映射, 则以下条件等价:

- 1. σ 是一个保积同构:
- 2. σ 将 V 的任意一组标准正交基映射为 U 的一组标准正交基;
- 3. σ 将 V 的某一组标准正交基映射为 U 的一组标准正交基.

定义 5 设 $\sigma \in \mathcal{L}(V, W)$, σ 的伴随 $\sigma^* : W \to V$ 满足 $\forall v \in V, w \in W$,

$$\langle \sigma v, w \rangle_W = \langle v, \sigma^* w \rangle_V.$$

定理 11 设 $\sigma \in \mathcal{L}(V)$:

- 1. 若 $\lambda \in \mathbf{F}$, 则 $\lambda \in \sigma$ 的特征值当且仅当 $\bar{\lambda} \in \sigma^*$ 的特征值;
- 2. 若 $U \neq V$ 的子空间,则 $U \neq \sigma$ 的不变子空间当且仅当 $U^{\perp} \neq \sigma^*$ 的不变子空间.

定义 6 设 V 是 F 上的内积空间, $\sigma \in \mathcal{L}(V)$ 保持内积, 若 F = R 则称 σ 为正交变换, 若 F = C 则称 σ 为酉变换.

定理 12 设 V 是 F 上的内积空间, $\sigma \in \mathcal{L}(V)$ 是保积自同构等价于 σ 可逆, 并且 $\sigma^* = \sigma^{-1}$.

定理 13 设 σ 为保积自同构, λ 是 σ 的特征值, 则 $|\lambda| = 1$.

2.2 自伴算子

定理 14 设 $(e_1,e_2,...,e_n)$ 为复(实)内积空间 V 的一组标准正交基, $(f_1,f_2,...,f_n)$ 是 V 上的一组基, 记 $(e_1,e_2,...,e_n)$ 到 $(f_1,f_2,...,f_n)$ 的过渡矩阵为 P, 则 $(f_1,f_2,...,f_n)$ 是 V 的一组标准正交基当且仅当 P 是酉(正交)矩阵.

定义 7

- 1. **酉相似**: 复内积空间上, 若 $B = P^{-1}AP = P^{H}AP$, 则称矩阵 A 和 B 酉相似.
- 2. **正交相似**: 实内积空间上, 若 $B = P^{-1}AP = P^{T}AP$, 则称矩阵 A 和 B 正交相似.

定义 $8 \sigma \in \mathcal{L}(V)$ 满足 $\sigma^* = \sigma$, 则称 σ 为**自伴算子**.

定理 15 自伴算子的特征值都是实数.

定理 16 设 $\sigma \in \mathcal{L}(V)$ 是自伴算子, U 是 σ 的不变子空间, 则:

- 1. U^{\perp} 是 σ 的不变子空间;
- 2. $\sigma|_U \in \mathcal{L}(U)$ 是自伴算子;
- 3. $\sigma|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ 是自伴算子.

定理 17 (实谱定理) 设 $\sigma \in \mathcal{L}(V)$, F = R, 则以下条件等价:

- $1. \sigma$ 是自伴算子;
- 2. V 有一个由 σ 的特征向量构成的标准正交基;
- 3. σ 关于 V 的某组标准正交基具有对角矩阵.

2.3 正规算子

定义 $9 \sigma \in \mathcal{L}(V)$ 满足 $\sigma^* \sigma = \sigma \sigma^*$, 则称 σ 为正规算子.

定理 18 设 $\sigma \in \mathcal{L}(V)$ 是正规算子, $v \in V$ 是 σ 对应于 λ 的特征向量, 则 v 是 σ^* 对应于 $\bar{\lambda}$ 的 特征向量.

定理 19 设 $\sigma \in \mathcal{L}(V)$ 是正规算子, 则 σ 相应于不同特征值的特征向量是正交的.

2.3.1 复正规算子

定理 20 (复谱定理) 设 $\sigma \in \mathcal{L}(V)$, F = C, 则以下条件等价:

- 1. σ 是正规算子;
- 2. V 有一个由 σ 的特征向量构成的标准正交基;
- 3. σ 关于 V 的某组标准正交基具有对角矩阵.

定理 21 设 V 是复内积空间, $\sigma \in \mathcal{L}(V)$, 则以下条件等价:

- 1. σ 是西变换:
- 2. V 有一个由 σ 的特征向量构成的标准正交基, 且相应的特征值的绝对值均为 1.

2.3.2 实正规算子

定理 22 设 V 是二维的实内积空间, $\sigma \in \mathcal{L}(V)$, 则以下条件等价:

- 1. σ 是正规的但不是自伴的;
- 2. σ 关于 V 的每个标准正交基的矩阵都有 $\binom{a b}{b a}$ 的形式, 其中 $a, b \in \mathbf{R}$ 且 $b \neq 0$; 3. σ 关于 V 的某个标准正交基的矩阵有 $\binom{a b}{b a}$ 的形式, 其中 $a, b \in \mathbf{R}$ 且 b > 0.

定理 23 设 $\sigma \in \mathcal{L}(V)$ 是正规算子, U 是 σ 的不变子空间. 则:

- 1. U^{\perp} 在 σ 下不变;
- 2. U 在 σ^* 下不变;
- 3. $(\sigma|_{U})^* = \sigma^*|_{U}$;
- 4. $(\sigma|_U) \in \mathcal{L}(U)$ 和 $(\sigma|_{U^{\perp}}) \in \mathcal{L}(U^{\perp})$ 都是正规算子.

定理 24 设 V 是实内积空间, $\sigma \in \mathcal{L}(V)$, 则以下条件等价:

- 1. σ 是正规算子;
- 2. 存在 V 的一组标准正交基使得 σ 关于这组基具有分块对角矩阵, 对角线上的每个块要么 是1×1矩阵,要么是形如

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

的 2×2 矩阵, 其中 $a, b \in \mathbb{R}$ 且 b > 0.

定理 25 设 V 是实内积空间, $\sigma \in \mathcal{L}(V)$, 则以下条件等价:

- 1. σ 是正交变换;
- 2. 存在 V 的一组标准正交基使得 σ 关于这组基具有对角矩阵, 对角线上的每个元素要么是 1 或 -1 构成的 1×1 矩阵, 要么是形如

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

的 2×2 矩阵, 其中 $\theta \in (0, \pi)$.

例 3 设 S,T 是有限维内积空间上的等距变换, 证明 S 相似于 T 当且仅当它们有相同的特征多项式.

2.4 正算子

定义 $10 \ \sigma \in \mathcal{L}(V)$ 满足 $\sigma^* = \sigma$ 且 $\forall v \in V, \langle \sigma v, v \rangle_V \geqslant 0$,则称 σ 为正算子.

定义 11 设 $\sigma, \tau \in \mathcal{L}(V)$, 如果 $\tau^2 = \sigma$, 则称 τ 是 σ 的**平方根**.

定理 26 设 $\sigma \in \mathcal{L}(V)$, 则以下条件等价:

- 1. σ 是正算子;
- 2. σ 是自伴算子且 σ 的特征值都是非负实数;
- 3. σ 有正的平方根;
- 4. σ 有自伴的平方根;
- 5. 存在 $\tau \in \mathcal{L}(V)$, 使得 $\tau^* \tau = \sigma$.

2.5 奇异值分解

引理 27 设 $\sigma \in \mathcal{L}(V)$, 则

- 1. $\sigma^*\sigma$ 是正算子;
- 2. $\ker \sigma^* \sigma = \ker \sigma$;
- 3. $\operatorname{im} \sigma^* \sigma = \operatorname{im} \sigma^*$;
- 4. $\dim \operatorname{im} \sigma = \dim \operatorname{im} \sigma^* = \dim \operatorname{im} \sigma^* \sigma$.

定义 12 设 $\sigma \in \mathcal{L}(V, W)$, 则 $\sigma^* \sigma$ 的特征值的算术平方根 $\sqrt{\lambda}$ 称为 σ 的**奇异值**, 并且重复 $\dim E(\lambda, \sigma^* \sigma)$ 次.

定理 28 (奇异值分解) 设 $\sigma \in \mathcal{L}(V,W)$ 有正奇异值 $s_1,s_2,...,s_m$,则存在 V 的一组标准正交组 $(e_1,e_2,...,e_m)$ 和 W 的一组标准正交组 $(f_1,f_2,...,f_m)$ 使得 $\forall v \in V, \sigma v = s_1 \langle v,e_1 \rangle f_1 + s_2 \langle v,e_2 \rangle f_2 + \cdots + s_m \langle v,e_m \rangle f_m$.

定理 29 (极分解定理) 设 $\sigma \in \mathcal{L}(V)$, 则存在保积自同构 $\tau \in \mathcal{L}(V)$ 使得 $\sigma = \tau \sqrt{\sigma^* \sigma}$.

例 $4T \in \mathcal{L}(V)$ 有极分解 $T = S\sqrt{G}$, 其中 S 是等距同构, $G = T^*T$, 证明以下条件等价:

- 1. T 是正算子;
- 2. GS = SG;
- 3. G 的所有特征空间 $E(\lambda, G)$ 都是 S-不变的.
