Data Preparation

CPE 232: Data Models

Dr. Sansiri Tarnpradab

Department of Computer Engineering, KMUTT

Review

2

Outline

- Data Science Workflow
- Significance of Data Preparation
- Roles in Data Processing
- Data Preprocessing
 - Data Cleaning
 - Data Integration
 - Data Transformation
 - Data Reduction

Data Science Workflow

Dirty Data: Some Indicating Factors

Incomplete

- Lacking attributes of interest
- Lacking attribute values
- Attributes contain only aggregate data

Noisy

- Contain errors or outliers
- Extreme values can severely affect the dataset's range.

Inconsistent

- contain discrepancies in codes or names
- "Name" column contains values other than alphabetical letters.
- Records do not start with a capital letter.

Dirty Data: Examples

Causes	Results
Data Entry Errors	Typos, misspellings, incorrect values, duplicates
Missing Values	Data fields left blank or not collected (incomplete data)
Inconsistent Formatting	Differences in units, date formats, or other data formats.
Outliers	Errors in measurement/recording due to unusual or extreme values
Data Integration	Mismatched/incompatible data types due to a merge from different sources
Data Storage & Transfer	Loss of data integrity due to corruption during storage/transfer
Data Aging	Data becoming outdated over time
Security Issues	Unauthorized access → compromised data integrity

Ref: https://devopedia.org/data-preparation

Data Preparation is <u>a broader process</u> that ensures data is clean and structured for analysis.

Data Preprocessing is a technical step within data preparation, specifically for machine learning tasks.

Different Roles

Data Cleaning

Data Integration

Data Preprocessing

Data Transformation

Data Reduction

Data Cleaning

Clean(ed) Data

- Accuracy
- Validity
- Reliability
- Timeliness
- Relevance
- Completeness
- Compliance

Ref: https://datasciencedojo.com/blog/data-science-memes/

Property	(Bad) Example	Issue
Accuracy (Incorrect Data)		
Validity (Violates Constraints or Formats)		
Reliability (Inconsistent Data Across Sources)		
Timeliness (Outdated Data)		

Property	(Bad) Example	Issue
Relevance (Irrelevant or Unnecessary Data)		
Completeness (Missing Critical Data)		
Compliance (Violates Regulations or Policies)	A COMOZIN SIOLES CISIOMEIS CIENII CZIO	Non-compuance can lean in

Data Cleaning

- A fundamental step in the data preparation process
- Contributes to data quality, accuracy, and the overall effectiveness of data-driven decision-making processes within organizations

Inspecting Data

- Aka visualizing data
- To develop a comprehensive understanding of the dataset
- To identify missing values, duplicates, and anomalies

E.g. pip install missingno

Ref: https://www.kaggle.com/code/residentmario/using-missingno-to-diagnose-data-sparsity

Ref: https://www.geeksforgeeks.org/python-visualize-missing-values-nan-values-using-missingno-library/

Handling Missing Values

- Identify if there is any and for which attribute
- Investigate why they are missing
- Select a proper method to address the issue
- Perform correction

Before cleaning!

Ask questions:

- What are the features?
 - Column names → self-explanatory
 - E.g. ZIP_CD, ST_NAME, OWNED, NUM_BEDROOMS
- What are the expected data types?
 - o int, float, string, boolean, etc.
 - ZIP_CD (int), ST_NAME (string),
 OWNED (boolean),
 NUM BEDROOMS (int)
- Any missing data detectable?

Let's see an example ⇒

Shape = (327346, 20)

flights

	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time	arr_delay	carrier	flight	tailnum	origin	dest	air_time	distance	hour	minute	time_hour
0	2013	1	1	517	515		830	819	11	UA	1545	N14228	EWR	IAH	227	1400	5	15	2013-01-01T05:00:002
1	2013	1	1	533	529	4.0	850	830	20	UA	1714	N24211	LGA	IAH	227	1416	5	29	2013-01-01T05:00:002
2	2013	1	1	542	540		923	850	33	AA	1141	N619AA	JFK	MIA	160	1089	5	40	2013-01-01T05:00:002
3	2013	1	1	544	545	-1.0	1004	1022	-18	B6	725	N804JB	JFK	BQN	183	1576	5	45	2013-01-01T05:00:002
4	2013	1	1	554	600	-6.0	812	837	-25	DL	461	N668DN	LGA	ATL	116	762	6	0	2013-01-01T06:00:002
5	2013	1	1	554	558	-4.0	740	728	12	UA	1696	N39463	EWR	ORD	150	719	5	58	2013-01-01T05:00:002
6	2013	1	1	555	600	-5.0	913	854	19	B6	507	N516JB	EWR	FLL	158	1065	6	0	2013-01-01T06:00:002
7	2013	1	1	557	600	-3.0	709	723	-14	EV	5708	N829AS	LGA	IAD	53	229	6	0	2013-01-01T06:00:002
8	2013	1	1	557	600	-3.0	838	846	-8	B6	79	N593JB	JFK	мсо	140	944	6	0	2013-01-01T06:00:002
9	2013	1	1	558	600	-2.0	753	745	8	AA	301	N3ALAA	LGA	ORD	138	733	6	0	2013-01-01T06:00:002
10	2013	1	1	558	600	-2.0	849	851	-2	B6	49	N793JB	JFK	PBI	149	1028	6	0	2013-01-01T06:00:002
11	2013	1	1	558	600	-2.0	853	856	-3	B6	71	N657JB	JFK	TPA	158	1005	6	0	2013-01-01T06:00:002
12	2013	1	1	558	600	-2.0	924	917	7	UA	194	N29129	JFK	LAX	345	2475	6	0	2013-01-01T06:00:002
13	2013	1	1	558	600	-2.0	923	937	-14	UA	1124	N53441	EWR	SFO	361	2565	6	0	2013-01-01T06:00:002
14	2013	1	1	559	600	-1.0	941	910	31	AA	707	N3DUAA	LGA	DFW	257	1389	6	0	2013-01-01T06:00:002
15	2013	1	1	559	559	0.0	702	706	-4	B6	1806	N708JB	JFK	BOS	44	187	5	59	2013-01-01T05:00:002
16	2013	1	1	559	600	-1.0	854	902	-8	UA	1187	N76515	EWR	LAS	337	2227	6	0	2013-01-01T06:00:002
17	2013	1	1	600	600	0.0	851	858	-7	B6	371	N595JB	LGA	FLL	152	1076	6	0	2013-01-01T06:00:002
18	2013	1	1	600	600	0.0	837	825	12	MQ	4650	N542MQ	LGA	ATL	134	762	6	0	2013-01-01T06:00:002
19	2013	1	1	601	600	1.0	844	850	-6	B6	343	N644JB	EWR	PBI	147	1023	6	0	2013-01-01T06:00:002
20	2013	1	1	602	610	-8.0	812	820	-8	DL	1919	N971DL	LGA	MSP	170	1020	6	10	2013-01-01T06:00:002
21	2013	1	1	602	605	-3.0	821	805	16	MQ	4401	N730MQ	LGA	DTW	105	502	6	5	2013-01-01T06:00:002
22	2013	1	1	606	610	-4.0	858	910	-12	AA	1895	N633AA	EWR	MIA	152	1085	6	10	2013-01-01T06:00:002
23	2013	1	1	606	610	-4.0	837	845	-8	DL	1743	N3739P	JFK	ATL	128	760	6	10	2013-01-01T06:00:002

- S. Tarnpradab -

```
[ ] # Read flight data
  flightData = pd.read_csv('
    flightData.info()
flightData.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 327346 entries, 0 to 327345
Data columns (total 20 columns):

Data	Cotumns (total	ZU CU CUI	11115/	
#	Column	Non-Nu	ll Count	Dtype
0	Unnamed: 0	327346	non-null	int64
1	year	327346	non-null	int64
2	month	327346	non-null	int64
3	day	327346	non-null	int64
4	dep_time	327346	non-null	int64
5	<pre>sched_dep_time</pre>	327346	non-null	int64
6	dep_delay	321132	non-null	float64
7	arr_time	327346	non-null	int64
8	sched_arr_time	327346	non-null	int64
9	arr_delay	327346	non-null	int64
10	carrier	327346	non-null	object
11	flight	327346	non-null	int64
12	tailnum	327346	non-null	object
13	origin	327346	non-null	object
14	dest	327346	non-null	object
15	air_time	327346	non-null	int64
16	distance	327346	non-null	int64
17	hour	327346	non-null	int64
18	minute	327346	non-null	int64
19	time_hour	327346	non-null	object
dtype	es: float64(1),	int64(14	4), object	(5)
memo	ry usage: 49.9+	MB		

Before cleaning!

Ask questions:

- What are the features?
- What are the expected data types?

- S. Tarnpradab -

Check if there's any missing data
flightData.isnull().any()

False Unnamed: 0 False year False month False day False dep time sched_dep_time False dep_delay True arr_time False sched_arr_time False arr_delay False carrier False flight False False tailnum origin False dest False False air_time False distance False hour minute False time hour False dtype: bool

Next question:

Any missing data detectable?

22

[] # Show rows with missing data print (flightData[flightData.dep_delay.isnull()])

	Unna	med:	0 ye	ar	month	day	dep_ti	ime	sche	d_dep_t:	ime den	_delay	1
0	011110			13	1	1		17	500		515	NaN	
2				13	1	1		42			540	NaN	
69		6		13	1	1		702			700	NaN	
73		7		13	1	1		715			713	NaN	
98		9		13	1	1		752			750	NaN	
		0.075											
326863		32686		13	9	30		357			355	NaN	
327005		32700		13	9	30		510			508	NaN	
327020		32700		13	9	30		521			519	NaN	
327065		32706		13	9	30		702			700	NaN	
327102		32710	2 20	13	9	30	17	731		1.	729	NaN	
	arr	time	sche	d ar	r_time	arr	_delay	car	rier	flight	tailnum	origin	\
0	u	830	Serie	u_u,	819	uii	11	cui	UA	1545	N14228	EWR	
2		923			850		33		AA	1141	N619AA	JFK	
69		1058			1014		44		B6	671	N779JB	JFK	
73		911			850		21		UA	544	N841UA	EWR	
98		1025			1029		-4		UA	477	N511UA	LGA	
											NOTION		
326863		1547			1615		-28		WN	246	N430WN	EWR	
327005		1729			1752		-23		B6	1105	N306JB	JFK	
327020		1856			1919		-23		B6	283	N632JB	JFK	
327065		1940			1921		19		DL	2042	N346NB	EWR	
327102		2008			2030		-22		UA	1692	N36472	EWR	
32/102		2000			2030		-22		UA	1092	N304/2	EWK	
	dest	air_	time	dis	tance	hour	minut	te		t:	ime_hour		
0	IAH	_	227		1400	5			2013-		5:00:00Z		
2	MIA		160		1089	5	4	10	2013-	01-01T05	5:00:00Z		
69	LAX		381		2475	7					7:00:00Z		
73	ORD		156		719	7			2013-	01-01T0	7:00:00Z		
98	DEN		249		1620	7					7:00:00Z		
326863	PHX		267		2133	13	5	55	2013-	09-30T13	3:00:00Z		
327005	ORD		111		740	16		8	2013-	09-30T16	5:00:00Z		
327020	MCO		129		944	16	1	19	2013-	09-30T16	5:00:00Z		
327065	ATL		99		746	17		0	2013-	09-30T1	7:00:00Z		
327102	SAN		302		2425	17	2	29	2013-	09-30T1	7:00:00Z		

Shape of all records of which dep_delay is null = (6214, 20)

Now what do we do?

- Remove rows
- Remove columns
- Fill with zeros
- Fill with some values (What values then?)

[6214 rows x 20 columns]

```
# index of missing data
 index_nan = flightData.dep_delay.index[flightData.dep_delay.isnull()]
 print (index_nan)
 Int64Index([
                          2,
                                 69,
                                          73,
                                                  98,
                                                         185,
                                                                 200,
                                                                         236,
                245,
                        325,
             326581, 326651, 326660, 326741, 326840, 326863, 327005, 327020,
             327065, 327102],
            dtype='int64', length=6214)
```

```
Get index of missing data
```

Shape = $(327346, 20) - (6214, 20) \rightarrow (321132, 20)$

```
flightData_1 = flightData.dropna(how ='any')
flightData_1.isnull().any()
```

```
False
Unnamed: 0
year
                  False
month
                  False
day
                  False
dep time
                  False
sched_dep_time
                  False
                  False
dep_delay
                  False
arr time
sched arr time
                  False
arr delav
                  False
carrier
                  False
flight
                  False
tailnum
                  False
                  False
origin
dest
                  False
air time
                  False
                  False
distance
hour
                  False
minute
                  False
time hour
                  False
dtype: bool
```

Drop them

Now what do we do?

- Remove rows
- Remove columns
- Fill with zeros
- Fill with some values (What values then?)

Data Imputation:

the process of replacing missing data with substituted values

```
# Compute mean
x = np.mean(flightData.dep_delay)
print("%1.1f"%x)
```

12.8

```
index_nan = flightData.dep_delay.index[flightData.dep_delay.isnull()]
print(flightData.fillna(value={'dep_delay':x}))
```

	Unnamed: 0	year	month	day	dep_time	sche	d_dep_ti	ime dep_	_delay	\
0	0	2013	1	1	517		5	515 12.	759401	
1	1	2013	1	1	533		5	529 4.0	000000	
1 2	2	2013	1	1	542		5	40 12.	759401	
3	3	2013	1	1	544		5	545 -1.0	000000	
4	4	2013	1	1	554		6	600 -6.0	000000	
327341	327341	2013	9	30	2240		22	245 -5.0	000000	
327342	327342	2013	9	30	2240		22	250 -10.0	000000	
327343	327343	2013	9	30	2241		22	246 -5.0	000000	
327344	327344	2013	9	30	2307		22	255 12.0	000000	
327345	327345	2013	9	30	2349		23	359 -10.0	000000	
	arr_time	sched_a	rr_time	arr	_delay ca	rrier	flight	tailnum	origin	\
0	arr_time 830	sched_a	rr_time 819	arr	_delay ca 11	rrier UA	flight 1545	tailnum N14228	origin EWR	\
		sched_a		arr						\
	830	sched_a	819	arr	11	UA	1545	N14228	EWR	\
0 1 2 3	830 850	sched_a	819 830	arr	11 20	UA UA	1545 1714	N14228 N24211	EWR LGA	\
	830 850 923	sched_a	819 830 850	arr	11 20 33	UA UA AA	1545 1714 1141	N14228 N24211 N619AA	EWR LGA JFK	\
1 2 3	830 850 923 1004	sched_a	819 830 850 1022	arr	11 20 33 –18	UA UA AA B6	1545 1714 1141 725	N14228 N24211 N619AA N804JB	EWR LGA JFK JFK	\
1 2 3 4	830 850 923 1004 812	sched_a	819 830 850 1022 837	arr	11 20 33 -18 -25	UA UA AA B6 DL	1545 1714 1141 725 461	N14228 N24211 N619AA N804JB N668DN	EWR LGA JFK JFK LGA	\
1 2 3 4	830 850 923 1004 812	sched_a	819 830 850 1022 837	arr	11 20 33 -18 -25	UA UA AA B6 DL	1545 1714 1141 725 461	N14228 N24211 N619AA N804JB N668DN	EWR LGA JFK JFK LGA	\
1 2 3 4 327341	830 850 923 1004 812 	sched_a	819 830 850 1022 837 2351	arr	11 20 33 -18 -25	UA UA AA B6 DL B6	1545 1714 1141 725 461 	N14228 N24211 N619AA N804JB N668DN N354JB	EWR LGA JFK JFK LGA 	\
1 2 3 4 327341 327342	830 850 923 1004 812 2334 2347	sched_a	819 830 850 1022 837 2351	arr	11 20 33 -18 -25 -17 -20	UA UA AA B6 DL B6 B6	1545 1714 1141 725 461 1816 2002	N14228 N24211 N619AA N804JB N668DN N354JB N281JB	EWR LGA JFK JFK LGA JFK JFK	\
1 2 3 4 327341 327342 327343	830 850 923 1004 812 2334 2347 2345	sched_a	819 830 850 1022 837 2351 7	arr	11 20 33 -18 -25 -17 -20 -16	UA UA AA B6 DL B6 B6 B6	1545 1714 1141 725 461 1816 2002 486	N14228 N24211 N619AA N804JB N668DN N354JB N281JB N346JB	EWR LGA JFK JFK LGA JFK JFK JFK	`

Handling Duplicates

- First, identify duplicates
- Remove them
 - Row-based: if the entire record is duplicated (straightforward)

```
df_no_duplicates = df.drop_duplicates()
```

Column-based: specify column to remove

```
df_no_duplicates = df.drop_duplicates(subset=['column1', 'column2'])
df['is duplicate'] = df.duplicated(subset=['column1', 'column2']) //flag
```

Handling Anomalies

What is Anomaly?

- An occurrence where a data point is exceptionally different from the main distribution
- May cause problems in visualization and modeling
- Can be detected by distribution plots

Ref: https://stackoverflow.com/questions/43499229/removing-outliers-from-boxplot-and-plotly

Ref: https://medium.com/analytics-vidhya/outlier-detection-in-machine-learning-382557c775aa27

Things could be more challenging

The data is not in a format that is easy to work with...

- Stored or presented in a way that is hard to process
- Need to convert it to computer-friendly format

Add two diced tomatoes, three cloves of garlic, and a pinch of salt in the mix.

Data Munging

Convert into computer-friendly format (manually, automatically, semi-automatically)

- Munging
- Manipulating
- Wrangling

Add two diced tomatoes, three cloves of garlic, and a pinch of salt in the mix.

Data Integration

Data Integration

- Gathering data from various sources
- Steps: (roughly)
 - Combine data from multiple sources into a coherent storage place (e.g. a single file/database)
 - Engage in schema integration
 - Detect and resolve data value conflicts
 - Address redundant data

Common Challenges:

- Inconsistencies
- Duplication
- Schema mismatches
- Scalability

Types of Data Integration

Manual

Collected and merged manually

E.g. Copying and pasting data from multiple spreadsheets into one.

Application-Based

Software applications connect and exchange data automatically.

E.g. CRM software syncing with an e-commerce platform.

Middleware-Based

A middleware system acts as a bridge between databases and applications.

E.g. Apache Kafka facilitating real-time data exchange between different platforms.

Uniform Data Access (UDA)

Data remains in original locations but is accessed through a unified interface.

E.g. A BI dashboard that queries multiple databases without merging them.

ETL & Data Warehousing

Data is extracted, transformed, and loaded (ETL) into a central repository.

E.g. A data warehouse like Amazon Redshift consolidating customer data.

API-Based

APIs enable seamless data exchange between systems.

E.g. Google Maps API integrating location data into a travel app.

SOURCE 3

SOURCE 2

TRANSFORM

Process Order:

Extract → Transform → Load

Transformation Location:

In a staging area before loading into the target system

Best for:

Traditional data warehouses where structured data is required

Flexibility:

Less flexible; predefined transformations are required

Process Order:

Extract → Load → Transform

Transformation Location:

Data is loaded into a data warehouse or data lake first, then transformed as needed.

Best for:

Big data and cloud-based data lakes where large amounts of raw data are stored.

TARGET

Flexibility:

More flexible; raw data can be transformed anytime.

Data Transformation

Data Transformation

Transformation → modifying or converting the structure of data to be more suitable for analysis or modeling.

For example:

Log Transformation

Feature Scaling

Binning

Pivoting

Data Splitting

Data Validation

Feature Engineering

Machine Learning

Log Transformation

```
import matplotlib.pyplot as plt

P plotting a histogram
plt.hist(df['n_tokens_content'], bins=100)
plt.show()
```


Before Log Transformation

```
df['n_tokens_content'] = np.log10(df['n_tokens_content']+1)
plt.hist(df['n_tokens_content'], bins=100)
plt.show()
```


After Log Transformation

Feature Scaling

Normalization

- Min-Max Scaling
- Ensuring that all variables have the same scale (e.g., [0, 1])

Standardization

$$z=rac{x-\mu}{\sigma}$$

- Z-score Scaling
- Standardize the data to have a mean of 0 and a standard deviation of 1

Binning

Converting numerical variables into discrete bins or categories

```
np.floor_divide(small, 10)

violet 0.5s

array([7, 1, 6, 0, 6, 9, 2, 4, 9, 1, 0, 3, 2, 9, 0, 6, 4, 7, 8, 7])
```

Feature Engineering

Generate new features through mathematical operations, aggregations, or combinations of existing features.

Detect Rumors Using Time Series of Social Context Information on Microblogging Websites

Jing Ma^{1,3} Wei Gao² Zhongyu Wei⁴ Yueming Lu¹ Kam-Fai Wong^{3,5}

¹Beijing University of Posts and Telecommunications, Beijing, China

²Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar

³Dept. of SEEM, The Chinese University of Hong Kong, Hong Kong

⁴Computer Science Department, The University of Texas at Dallas, Texas 75080, USA

⁵MoE Key Laboratory of High Confidence Software Technologies, China

{majing,kfwong}@se.cuhk.edu.hk, wgao@qf.org.qa, zywei@hlt.utdallas.edu, ymlu@bupt.edu.cn

Average sentiment score: Similar feature but not the same was used in [2, 10]. Given a sentiment lexicon and an emoticon lexicon, the average sentiment score of microblogs in a time span of event E_i is calculated as:

$$\frac{1}{|m_i|} \sum_{j=1}^{|m_i|} (|w_{pos}|_{ij} - |w_{neg}|_{ij} + |e_{pos}|_{ij} - |e_{neg}|_{ij})$$

Table 1: Description of features $f_{t,k}$ on microblogs from time 0 to time interval t of an event

from time 0 to time interval t of an event				
Content-based features				
LDA-based topic distribution of microblogs with 18 topics [10]				
Average length of microblogs [2]				
# of positive (negative) words in microblogs [2]				
Average sentiment score of microblogs [2, 10]				
% of microblogs with URL [2, 10, 11]				
% of microblogs with smiling (frowning) emotions [2]				
% of positive (negative) microblogs [2]				
% of microblogs with the first-person pronouns [2]				
% of microblogs with hashtags [2, 11]				
% of microblogs with $@$ mentions [2]				
% of microblogs with question marks [2]				
% of microblogs with exclamation marks [2]				
% of microblogs with multiple question/exclamation marks [2]				
$User-based\ features$				
% of users that provide personal description [2, 10, 11]				
% of users that provide personal picture in profile				
% of verified users [2, 10, 11]				
% of verified users of each type, e.g., celebrities [10, 11]				
% of male (female) users [10, 11]				
% of users located in large (small) cities				
Average $\#$ of friends of users $[2, 10, 11]$				
Average $\#$ of followers of users $[2, 10, 11]$				
Average # of posts of users [2, 10, 11]				
Average days users' accounts exist since registration [2, 10, 11]				
Average reputation score of users (i.e., followers/followees ratio)				
$Diffusion\hbox{-}based\ features$				
Average $\#$ of retweets $[2, 10, 11]$				
Average # of comments for Weibo posts [10, 11]				
# of microblogs [2]				

Ref: Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and Kam-Fai Wong. Detect rumors using time series of social context information on microblogging websites. In Proceedings of CIKM, 2015

Data Reduction

Data Reduction

A process in which a reduced representation of a dataset that produces the same or similar analytical results is obtained.

Two of the most common techniques:

- 1. Data Cube Aggregation
- 2. Dimensionality Reduction

Data Cube Aggregation

Organizing data in a multidimensional structure for faster querying and analysis

Year	Quarter	Month	Region	City	Category	Brand	Item	Sales Revenue
2024	Q1	Jan	West	LA	Laptop	Dell	XPS	50,000
2024	Q1	Jan	West	SF	Laptop	HP	Envy	40,000
2024	Q1	Feb	East	NY	Phone	Apple	iPhone	70,000
2024	Q1	Mar	East	DC	Phone	Samsung	Galaxy	60,000

Year	Quarter	Month	Region	City	Category	Brand	Item	Sales Revenue
2024	Q1	Jan	West	LA	Laptop	Dell	XPS	50,000
2024	Q1	Jan	West	SF	Laptop	HP	Envy	40,000
2024	Q1	Feb	East	NY	Phone	Apple	iPhone	70,000
2024	Q1	Mar	East	DC	Phone	Samsung	Galaxy	60,000

Aggregated by Quarter:

Summed all sales revenue within Q1 2024 across all locations and products

• 220,000

Aggregated by Region:

Summed sales for each region in Q1 2024

• West: 90,000

• East: 13,000

Aggregated by Category:

 Summed sales revenue for each product category in Q1 2024

• Laptop: 90,000

• Phone: 13,000

Dimensionality Reduction

- Reducing the number of features (dimensions) in a dataset while preserving essential information.
- Helps avoid the "curse of dimensionality"
- Techniques:
 - Principal Component Analysis (PCA)
 - Identifies the most significant dimensions.
 - t-SNE & UMAP
 - Used for visualization of high-dimensional data.
 - Feature Selection
 - Removes irrelevant or redundant features.

Ref images:

https://medium.com/towards-data-science/an-introduction-to-t-sne-with-python-example-5a3a293108d1
https://paperswithcode.com/dataset/mnist

In Summary

- Data Science Workflow
- Significance of Data Preparation
- Roles in Data Processing
- Data Preprocessing
 - Data Cleaning
 - Data Integration
 - Data Transformation
 - Data Reduction

UNFINISHED WORK

Q & A

- S. Tarnpradab -