

1- Al Khwarismi : [9ème siècle] Notion d'algorithme page 4

2-Ada Lovelace: [19ème siècle] Apparition des programmes page 7

3- Alan Turing: [mi 20ème siècle] Notion de machine de calcul page 11

4- Grace Hopper: [mi 20ème siècle] Notion de logiciel page 15

5- Claude Shannon : [mi 20ème siècle] Information et codage page 17

6-Rose Dieng: [fin 20ème siècle] Notion d'objets numériques page 20

Notre monde a changé...

Notre monde est devenu numérique, bouleversé par l'arrivée de l'informatique.

Il faut comprendre ce monde et non le subir, donc s'approprier les fondements de l'informatique, pas uniquement ses usages, bref :

«Il faut piger pourquoi on clique»

« Pour que nous, public, nous nous approprions cette science informatique qui a bouleversé notre monde et l'intégrions dans notre histoire, il faut qu'elle ait des racines, un passé, une histoire, et que nous racontions aussi son histoire, et la racontions comme une histoire. »

Abou-Jafar et les algorithmes

Il faut comprendre la différence entre penser et calculer.

Penser c'est la noblesse de l'esprit ce qui reste difficilement explicable.

Calculer est bien plus simple et systématique, et pour tout dire mécanisable...

Il s'agit de résoudre un problème précis, relatif à une application donnée, comme par exemple trier une liste d'objets, multiplier deux nombres, en utilisant un mode d'emploi particulier.

al Khuwārizmī. Dans cette Perse (Iran/Irak actuel) de la fin du 9ème siècle, cela fait déjà deux siècles que le Prophète et Messager, «le salut

soit sur lui», a fait de l'arabe la langue univer-

selle dans cette partie du monde, et de la recherche de la connais-

sance un des objectifs de la vie. Le monde arabe va alors, très sobrement, traduire, donc s'approprier, et comprendre, toutes

les connaissances scientifiques du monde d'alors.

Abou-Jafar est un traducteur, donc un transmetteur d'idées. Il va s'attacher à ce que ses contemporains puissent repro-

6219

17840 4VA9.

12345 57890

duire des mécanismes de calculs complexes, sans pour autant comprendre tous les détails, afin de trouver les solutions aux équations dont ils ont besoin. On lui doit l'invention de l'algèbre, du nom de son traité, c'est à dire des modèles de calculs où des lettres peuvent être remplacées par des nombres variables, et être utilisés pour des calculs similaires. On lui doit la systémisation des algorithmes, le mot est une simple déformation latine de son nom Al-Khuwārizmī.

On lui doit enfin le passage du zéro d'Inde en Occident, donc de ce qu'on appelle les «chiffres arabes» pilier de nos mathématiques

d'aujourd'hui. Ce zéro qui vient du mot zéphir, c'est à dire le vent.

Abou-Jafar

... et les programmes

Ada Lovelace est la première à avoir incarné des algorithmes dans un programme.

THE HELFT IN

« La machine analytique [ordinateur] n'a nullement la prétention de créer quelque chose par elle-même. Elle peut juste exécuter tout ce que nous saurons lui ordonner d'exécuter [...] Son rôle est de nous aider à effectuer ce que nous savons déjà dominer. [...] Des opérations numériques et aussi symboliques. » Ada, Lovelace

Ada Lovelace

Elle s'appelle Ada : **Augusta Ada King, comtesse Lovelace**, fille de Byron, fille naturelle, de ce gigantesque poète anglais que le bébé de six mois qu'elle fut ne reverra jamais.

Mathématicienne, elle publiera ses résultats mathématiques sous un nom masculin, dans ce monde qui se croit aussi civilisé qu'il est machiste et vivra sa vie de femme au mépris des conventions et au mépris des imbéciles.

En 1842 elle traduira du français les éléments mathématiques qui vont permettre à **Charles Babbage** de travailler à la construction d'un ordinateur mécanique qu'il appellera **machine analytique**, qu'il n'achèvera jamais, mais à partir de ces plans, une réplique a pu être reconstruite par le musée de la science de Londres en 1991 et fonctionne parfaitement.

Elle y ajoutera avec son Babbage les premiers programmes informatiques au monde, et inventera la « structure de boucle ».

Les uns diront que les programmes ont été écrits par Babbage lui-même, et qu'Ada a simplement été une traductrice, a trouvé l'erreur, et l'a fait corriger. La vérité est sûrement qu'ils ont fait ce que tous les scientifiques font : ils ont collaboré.

Et sa courte vie, d'être brisée à 36 ans par un cancer et une médecine encore bouchère, ruinée d'avoir tenté de donner à Babbage les moyens financiers de concrétiser son rêve.

Ada Lovelace

... et les programmes.

Un programme c'est quoi ?

C'est avant tout :

- des séquences d'instructions, exécutées pas à pas
- ...et pour tenir compte des changements.
- des tests qui permettent d'adapter les opérations
- ...et pour qu'un programme serve à plusieurs choses
- des variables dont on peut choisir la valeur
 ...et pour définir les opérations répétitives
- des boucles pour recommencer tant que c'est nécessaire.

Par exemple:

Ma machine à laver a un programme qui effectue la séquence des opérations de lavage, qui teste si l'eau est bien là avant de la chauffer, et dont la variable de température permet de laver toutes les sortes de linge; elle boucle jusqu'à ce que le linge soit bien essoré.

... et les machines

L'homme a d'abord fabriqué des outils, c'està-dire des objets avec un algorithme pour les utiliser. Puis sont venues les machines, des outils qui utilisent un moteur et qui exécutent de manière autonome certaines opérations.

La machine a été dotée d'un programme.

Mais ce qui manque encore et distingue
radicalement la machine de nos ordinateurs
c'est la possibilité pour la machine de pouvoir
modifier son propre programme, donc de
devenir une machine universelle.

Et alors la capacité de calcul de toutes les machines universelles programmables devient équivalente.

L'informatique s'incarne donc dans des machines...

Il s'appelle Alan, Alan Madison Turing.

C'est ce petit homme rêveur qui a écrit dès 1936 l'article fondateur de la science informatique, comprenant comment quelques opérations élémentaires de calcul étaient «universelles», c'est-à-dire pouvaient être combinées pour exécuter tous les algorithmes du monde, donnant le coup d'envoi à la création des calculateurs universels programmables, les ordinateurs.

De même que **Gutemberg** en inventant l'imprimerie, en permettant que les livres ne coûtent que quelques minutes d'imprimerie, a permis que la connaissance puisse se diffuser sans limite, et donc contribuer à faire basculer le moyen-âge dans les temps modernes ... **Alan Turing** a fait basculer le monde de l'ère industrielle à l'âge du numérique, en donnant un fondement théorique à l'informatique.

Turing aura une vie tragique, dans cette époque encore obscure, attiré par les hommes, la société le forcera à choisir entre la prison ou la camisole chimique et c'est en croquant une pomme empoisonnée à l'instar de Blanche-Neige qu'il tirera sa révérence.

... et les machines

Les premiers ordinateurs naissent modestement vers 1940 : le tout premier est à programme enregistré et logique binaire, le Z3 (électro-magnétique), construit en 1937 par Konrad Zuse, ingénieur allemand.

Il est suivi, par le Eniac, et en 1943 par celui de l'américain **Howard Aiken**.

En 1944, le physicien théoricien **John Von Neumann** décrit la première architecture dite de Von Neumann qui est celle de l'immense majorité des ordinateurs d'aujourd'hui.

... et les logiciels

À cette époque seuls d'étranges mathématiciens étaient assez forts pour programmer ces monstres électroniques.

Cette programmation s'effectuait en « langage machine » c'est-à-dire en spécifiant un à un chaque ouverture ou fermeture des circuits électroniques de la machine...Les 0 et les 1 qui définissaient le programme.

Mais...et si nous pouvions les programmer dans un langage certes mécanique... mais tout de même proche de notre langage ?

Grace Hopper...

Elle s'appelle, Grace : Madame le futur contre-amiral de marine **Grace Brewster Murray Hopper**.

La voilà qui se débarrasse de son 1er mari à la sortie de la 2ème guerre mondiale. Pas question de se laisser gâcher la vie par des machines non plus, elle qui se retrouve la 1ère à programmer le 1er gros ordinateur numérique entièrement automatique, crée avec IBM, aux États Unis : le Harvard Mark I.

Ces 1ers ordinateurs n'étaient quasiment pas utilisables à grande échelle. Grace fait sauter ce verrou et défend l'idée qu'un programme doit pouvoir être écrit dans un langage formel proche de l'anglais. Elle conçoit alors un compilateur c'est-à-dire un logiciel qui traduit en langage machine les éléments de l'algorithme écrit dans un langage compréhensible par tous les ingénieurs.

De cette idée naîtra un des premiers langages informatiques, le COBOL en 1959. Et grâce à Grace, le logiciel peut se développer et exploser dans notre société numérique.

A THE DEVILE FLATION FOR THE OR CONCENSION F

100000 PROCEDURE STAIRED

100200 DEBUT. 100200 DESPLAY " " LINE I PUSITION I ENASE 100400 BESPLAY "5002000 1" LINE IS POSITIO

Claude & Andreï et l'information

L'information est une matière abstraite qui se mesure. Un message, peu importe sa valeur réelle ou supposée, peu importe son sens exact ou erroné, contient une quantité précise d'information. L'atome d'information, c'est l'élément binaire, le bit comme oui/non, 0/1, vrai/faux.

Claude...

Il s'appelle Claude : **Claude Elwood Shannon**, c'est de lui l'idée géniale de quantifier le contenu moyen en information d'un ensemble de messages, lui qui créera le «bit» qui permettra de coder les objets numériques.

A la suite de ces travaux se créeront les algorithmes communs à tous les objets numériques, ceux qui permettent leur transmission, leur mémorisation, leur compression ou leur cryptage.

Puisque tous les objets se codent avec des bits... ces algorithmes généraux s'appliquent aux textes, images, sons, etc...

Claude travaillera aussi pendant la 2nd guerre mondiale, pour les services secrets de l'armée états-uniène, en cryptographie, chargé de localiser de manière automatique dans le code ennemi les parties signifiantes cachées au milieu du brouillage.

Il est un grand scientifique d'une famille de sciences nouvelles : les sciences de l'ingénieur, et des objets technologiques.

$$H_2(X) = -\sum_{i=1}^n P_i \log_2 P_i$$

Andreï ...

Un immense mathématicien russe, **Andreï Kolmogorov** changera en 1933 la vision du monde sur le hasard en précisant mathématiquement ce qu'est une mesure de probabilité, ouvrant la porte aux calculs statistiques modernes.

Claude utilisera ce socle pour définir l'information: montrant par exemple comment on peut diminiuer fortement la taille d'un message en gardant presque toute son information.

Kolmogorov, lui, définira autrement l'information de manière algorithmique, en disant qu'un message est d'autant moins compliqué en terme d'information qu'on peut le générer avec un programme de petite taille : une idée levier pour comprendre les liens entre information et informatique.

La valeur en information d'un programme sera définie par lui comme le temps de calcul du programme de plus petite taille fabriquant ce message.

Le temps de calcul devient une autre mesure essentielle.

Savoir de quelqu'un si c'est un homme ou une femme, un jeune ou un vieux, quelqu'un de grand ou petit, c'est très schématique mais cela nous donne déjà trois atomes d'informations sur lui, trois bits.

La taille en information de deux informations indépendantes s'additionnent, mais pas celle de deux informations redondantes :

Par exemple si nous ajoutons que ce quelqu'un est un humain, on ne gagne rien, s'il est homme ou femme, il est humain.

. . .et les objets numériques

Tous les objets : les images, les sons, les textes, les données ont un reflet numérique, un codage, qui permet de mémoriser de l'information, de la transmettre, de la reproduire à l'infini.

De la manipuler de manière spécifique aussi, grâce à des algorithmes.

Et d'ouvrir un monde nouveau de partage de l'information, qu'il reste à finir de construire tous ensemble.

Elle c'est Rose, **Rose Dieng-Kuntz**, cette collègue qui a aidé à construire le web sémantique, qui désigne un ensemble de technologies visant à rendre les informations du web accessibles et utilisables par les programmes logiciels, grâce à un système de métadonnées (utilisant notamment la famille de langages développés par le W3C). Cette Rose qui finira par râler après les journalistes contre le fait que tout le monde ait besoin de rappeler quelle est la première femme africaine admise à l'Ecole Polytechnique.

De la modélisation numérique des connaissances des experts humains dans un système de calcul symbolique, à la gestion des connaissances en entreprise, Rose sait qu'il faut associer au codage du texte, le codage de sa « sémantique » c'est-à-dire de son sens : un graphe où sont identifiés les symboles et les relations entre ces symboles.

...et les objets numériques

Oh, c'est tout simple à comprendre, le «web sémantique» quand c'est Rose qui nous l'explique :

«pour le moment, seuls les humains sont capables de comprendre le sens de tous les documents numériques : par exemple qu'un camion est un véhicule, une collision est un accident, etc...

L'idée du web sémantique est de structurer, classer, systématiser, schématiser, formaliser toutes ces ressources sous la forme de symboles que le système peut stocker et manipuler mécaniquement».

INSP

Et le web dans tout ça ?

Le Web est la plus grande application de l'Internet, ce réseau des réseaux qui relient entre eux tous les systèmes informatiques de la planète.

Inventé en 1989 par Timothy John «Tim» Berners-Lee, c'est initialement un ensemble de documents reliés entre eux par des liens dits «hyper-texte».

Depuis, à travers les réseaux sociaux et les applications informatiques déployées à travers le Web, notre quotidien a été bouleversé par cet outil planétaire.

Les données sont des biens non-rivaux : ils peuvent être consommés par chacun sans s' «user».

Hypermnésie du Web ; les données une fois en ligne, ne peuvent plus être "oubliées"... Ils ouvrent de vrais sujets techniques et sociétaux.

Le futur du Web sera sémantique, nos connaissances se structurant, pour être mécaniquement traitées.

Il sera ubiquitaire, l'intelligence mécanique s'incarnant dans les objets de notre quotidien : un futur technologique déjà à notre porte.

Notre monde numérique...

Coder des objets numériques c'est représenter des objets réels en les transformant en objets virtuels c'est à dire avec des «0» et des «1» décodables par un ordinateur...

Tous les objets, les images, les sons, les textes, les images ont un reflet numérique, qui permet de mémoriser l'information, de la transmettre, de la reproduire à l'infini et de la manipuler aussi de manière spécifique grâce à toutes sortes d'algorithme. On peut ainsi ouvrir un nouveau monde de partage de l'information qu'il reste à construire tous ensemble.

pour le meilleur . . .

Lorsque **Grace** s'est éteinte en 1992, les ordinateurs étaient entrés dans les foyers. Ils ne coûtaient plus le prix d'une maison ou d'une voiture, mais celui d'une télévision.

Ils ont fait «exploser» les communications au niveau mondial, surtout avec le "net". Ils nous ont toutes et tous fait basculer de l'ère industrielle à l'ère numérique.

... et pour le pire

Notre planète est devenue un fragile village humain où le Web est notre quotidien, l'invention la plus utile à l'humanité depuis sa pire invention : la bombe atomique.

Un milliard d'ordinateurs dans le monde : et plus d'objets numériques que d'humains !
Toute famille qui mange à sa faim à un "ordi"... et les autres ?

...le meilleur ou le pire ?

Saluer les avancées de l'ère numérique ? Certes. Non sans se poser des questions citoyennes sur ses usages :

- Les outils non électroniques de classement (fiches, etc...) n'étaient-ils pas déjà des mécanismes algorithmiques ?
- Avec les vieilles cartes routières, mieux qu'avec un GPS, ne développait-on pas plus le sens de l'orientation ?

- Nos livres de bibliothèque et nos lettres manuscriptes ne restent-ils pas des biens précieux et charmants?
- Qui contrôle vraiment cet océan d'informations et ...comment pourrions-nous être contrôlés dans un tel monde ?
- Le monde numérique nous facilite la vie ... mais ne la complique-t-il pas aussi ?
- Nous consommons plus d'énergie avec l'informatique qu'avec le transport aérien, quelle part de gâchis ?

 Comment préserver et enrichir les relations humaines que nous voulons dans ce monde numérique ?

Lexique des termes techniques :

Algorithme: voir page 6.

Bug informatique : un défaut de conception d'un programme qui peut avoir des conséquences énormes et qui ne peut pas en général être détecté automatiquement.

Calculer (intelligence mécanique) : désigne des opérations numériques (sur des nombres) ou symboliques (sur des mots ou des symboles) qui peuvent être effectuées automatiquement par un algorithme.

Compilateur: voir page 14.

Enigma : machine qui crypte (c'est-à-dire rend illisible) un message secret en mélangeant toutes les lettres avec des roues codeuses. Ayant permis aux nazis de communiquer entre eux, le secret fut "cassé" par Alan Turing, qui a pu mécaniser le calcul permettant de décoder.

Fichier Jpeg: fichier d'image numérique qui regroupe les pixels similaires, de façon à compresser l'image, les défauts étant pas ou peu visibles à l'oeil nu.

Fichier Mp3: fichier de son où le signal est compressé pour tenir moins de place, les défauts générés étant inaudibles à l'oreille humaine.

Information: voir page 18.

Internet: voir page 21.

Langage : système de signes identifiés permettant de structurer, représenter et communiquer de l'information.

Langage machine: voir page 13.

Machine: Mécanisme capable d'exécuter un algorithme qui opère sur des symboles ou interagit avec l'environnement.

Machine analytique: premier ordinateur conçu par Charles Babbage.

Machine universelle programmable : voir page 11.

Machine de Turing: machine abstraite qui est l'exemple fondateur de machine universelle programmable.

Ontologie: Ensemble structuré des termes et concepts représentant le sens d'une notion.

Programme: voir page 09.

Puce électronique : calculateur enfoui dans un objet du quotidien, il permet d'automatiser des opérations, de communiquer ou de localiser l'objet.

Théorie des Probabilités : Modèle mathématique du hasard (dû à A. Kolmogorov) qui permet de formaliser les événements incertains et surtout de calculer de manière fiable sur les données statistiques.

Web: voir page 21.

Web Sémantique: voir p 20

Scientifiques cités:

Howard Aiken: voir page 12.

Charles Babbage : ingénieur anglais ayant conçu au 19ème siècle, la 1ère machine très proche des ordinateurs modernes.

Tim Berners-Lee: inventeur du web, voir page 21.

Gérard Berry : informaticien français contemporain, académicien, nous lui devons entre autre la modélisation des calculs parallèles et des systèmes qui gèrent des évènements.

Jérôme Chailloux: informaticien français contemporain, créateur entre autre du langage Le-Lisp, actuellement directeur d'ERCIM qui crée du lien entre recherche fondamentale et appliquée européenne.

Rose Dieng: voir page 20.

Grace Hopper: voir page 14.

Joseph Marie Jacquard : inventeur d'un métier à tisser semi-automatique à carte perforée, première machine programmable.

Abou-Jafar al Khuwārizmī: voir page 5.

Andreï Kolmogorov: voir page 17.

Ada Lovelace: voir page 8.

Cécile Picard-Limpens : Docteure en informatique, synthèse sonore dans les environnements virtuels.

Anne-Charlotte Philippe: Doctorante, analyse et traitement de l'imagerie cérébrale.

John Von Neumann: voir page 12.

Claude Shannon: voir page 17.

Konrad Suze: voir page 12.

En tout cas, ce monde numérique, il faut le comprendre, pour en être créateur et pas seulement utilisateur...

...tandis que la recherche scientifique en Sciences du Numérique n'en est qu'au tout début de son aventure.

Une démarche, une volonté de partage et un régal intellectuel.

Ce documentaire-fiction permet de commencer à découvrir l'histoire de l'informatique à travers la rencontre d'un élève et de son professeur, avec sept des personnages qui incarnent les étapes clés de l'histoire des Sciences Informatiques et Sciences du Numérique.

Il cible un public jeune (milieu de collège à lycée) et permet d'éveiller le désir d'en savoir plus sur les sciences informatiques, que ce soit pour s'orienter vers les filières scientifiques ou pour maîtriser le monde numérique au quotidien.

L'originalité de la méthode repose sur un travail de double écriture entre une équipe de scientifiques et une société de production audiovisuelle.

Il est co-financé par le Conseil Régional et la DRRT PACA, avec l'INRIA, VSP et Dk-Motion et a été réalisé grâce à l'aide de nombreuses et nombreux collègues.

ACTEURS:

Gérard Berry - Le narrateur, Raphael Boyes - Le prof, Remy Venturelli - Le jeune Garçon, Christelle Gosse - La quide, Cédric Puleo - Abou-Jafar Al-Khuwārizmī, Julia Soyez - Ada Lovelace, Patrick Michel - Alan Turing, Nadine Chouteau - Grace Hopper, Pierre Bernhard - Claude Shannon, Konstantin Avrachenkov - Andreï Kolmogorov, Anne-Charlotte Philippe et Cécile Picard-Limpens

EQUIPE SCIENTIFIQUE:

Gérard Berry, Chercheur, Julia Soyez, Documentaliste, Marie Tonnelier, Ingénieure Thierry Viéville, Chercheur.

ÉQUIPE DE PRODUCTION:

Directeur de la photo Bruno Taïb, Ingénieur du son Jean Pourchier, Perchman/Ingénieur du son post-prod Christophe Cailliere, Assistant / clapman Cédric Puléo, Asssistante au maquillage / photographe de plateau Christelle Gosse, Assistant caméra Stéphane «Stuff» Piacentino, Script Carole Aigouy, Assistant plateau Alexandre Mège, Régisseur Laurent Hassid, Maquilleuse coiffeuse Delphine Cilia, Coiffeuse Laetitia Jemé, Compositeur / Bande Originale de Thierry Chaze.

> Réalisateur - motion designer : Mathieu Cailliere Metteur en scène - Co-scénariste - Directeur Artistique : Benoit Lamouche Directeur de Production - Co-scénariste : Philippe Aigouy

Autres Remerciements :

Gauthier Alavoine, Odile Carron, Rose-Marie Cornus, Gérard Giraudon, Jean-Christophe Lombardo, Nathalie Woodward, l'Université de Nice - Sophia Antipolis, et les éditeurs d'interstices.

