

A Brief History of Sensor Networks

Muneeb Ali

Princeton University

Introduction: 2003

Mote maker: David Culler's "motes" monitor the environment and send reports wirelessly. (Photograph by Angela Wyant)

Image: MIT TechReview

Introduction: 2005

Image: Koen Langendoen

Introduction: 2008

Volume 38, Number 3 July 2008

Published by the Association for Computing Machinery Special Interest Group on Data Communication

An ACM SIGCOMM Publication

COMPUTER COMMUNICATION review

TABLE OF CONTENTS

Editor's Message

Reviewed Articles

Censor Networks: A Critique of "Sensor Networks" from a Systems Perspective B. Raman, K. Chebrolu (IIT Bombay)

Introduction

This talk:

- A brief history of the last 5 years of research (2003-2008)
- Important problems, solutions, and lessons
- Future directions

A Brief History

I am smiling because I was right!

Gordon Moore Intel Co-Founder

A Brief History

Image: Culler:2004

Network Stack

L4	Application Layer
L3	Network Layer
L2	Link Layer
L1	Physical Layer

- Memory: 10 KB

- Radio: CC2420 (250 Kbps)- Processor: MSP430 (16-bit)

	René 1999	Mica-2 2002	${ m Tmote~Sky} \ 2005$	$rac{ m Imote2}{2007}$	
CPU	ATMEL 8535	ATmega128L	TI MSP430	Intel PXA271	
	8-bit, 4 MHz	8-bit, 8 MHz	16-bit, 8 MHz	32-bit, 13-416 MHz	
	$36 \mu W$ sleep	$36 \mu \mathrm{W} \mathrm{sleep}$	$15 \mu \mathrm{W} \mathrm{sleep}$	$390 \mu W sleep$	
	60 mW active	$60\mathrm{mW}$ active	$5.4\mathrm{mW}$ active	$\geq 31\mathrm{mW}$ active	
Memory	512B RAM	4 KB RAM	$10\mathrm{KB}\;\mathrm{RAM}$	32 MB RAM	
	8 KB Flash	128 KB Flash	48 KB Flash	32 MB Flash	
Radio	RFM TR1000	CC1000	CC2420		
	10 Kbps	76 Kbps	250 Kbps		
	$2\mu\mathrm{W}$ sleep	$100 \mu\mathrm{W}$ sleep	$60 \mu \mathrm{W}$ sleep		
	$12\mathrm{mW}$ receive	$36\mathrm{mW}$ receive	63 mW receive		
	$36\mathrm{mW}$ xmit	$75\mathrm{mW}\ \mathrm{xmit}$	$57\mathrm{mW}$ xmit		
	$0.5\mathrm{ms}$ setup	$2\mathrm{ms}$ setup	$1 \mathrm{ms} \mathrm{setup}$		

Intel Imote 2

- 320/416/520MHz PXA271 XScale Processor
 - 32MB SDRAM on-board
 - 32MB Flash on-board
- [802.15.4] Radio (ChipCon CC2420)

Image courtesy

Sun Spot

- 32 bit ARM7 core
 - 256K RAM
 - 2M Flash
- [802.15.4] Radio (ChipCon CC2420)

Image courtesy Sun

Reference: Jan Beutel, Metrics for Sensor Network Platforms, ACM RealWSN June 2006

Network Stack

Application Layer L4 L3 Network Layer Link Layer L2 Physical Layer L1

[Berkeley, 2002]

[Vanderbilt, 2003]

[Princeton, 2004]

[Delft, 2006]

[Harvard, 2007]

Network Stack: Challenges

L4	Application Layer
L3	Network Layer
L2	Link Layer
L1	Physical Layer

Challenges: Energy

Image: Koen Langendoen

Signal propagation ranges

Image: Koen Langendoen

Reflections / Shadowing

Grey Area Effect

Link layer & multipath fading

CC2420 @ 2.4 GHz, power = -1dBm, 2am

[Robert Poor, Ember corp.]

Challenges: RAM

- Scalability
- Limited RAM is fundamental
- Effects power
- O(N) state infeasible

Challenges: Applications

Challenges: Summary

The Internet

VS.

Sensor-Nets

- Independent hosts
- End to end flows
- Infrastructure
- Wired (generally)
- Latency, throughput
- Bandwidth is relatively cheap

- Collaborative use
- Collect, disseminate, ...
- Ad-hoc
- Wireless
- Energy
- Bandwidth is expensive

Reference: Philip Lewis, ICSI Talk, May 2004

Research Problems

- Medium Access Control
- Routing
- Localization
- Operating Systems
- Security
- Programming Abstractions
- Query Processing

Network Stack

L4	Application Layer
L3	Network Layer
L2	Link Layer
L1	Physical Layer

L2: MAC

The MAC Alphabet Soup served in Wireless Sensor Networks

Acronym Full name

µ-MAC micro-MAC

AI-LMAC Adaptive Information-centric and Lightweight MAC

B-MAC Berkeley MAC

BitMAC BitMAC

BMA Bit-Map-Assisted CMAC Convergent MAC

Crankshaft Crankshaft

CSMA-MPS CSMA with Mimimum Preamble Sampling

CSMA/ARC Randomized CSMA with Adaptive Rate Control

DMAC Data gathering MAC E2-MAC Energy Efficiency-MAC

EMACs EYES MAC framelet-MAC

FLAMA FLow-Aware Medium Access

Funneling-MAC Funneling MAC

Contact person: Koen Langendoen

L2: MAC

Constant Active Time (SMAC)

sleep	active	sleep	active	sleep	active	sleep
-------	--------	-------	--------	-------	--------	-------

Traffic-Adaptive Variable Active Time (TMAC)

Constant active-time (SMAC) vs Traffic-Adaptive dynamic active time (TMAC)

Classic Paper: S-MAC (UCLA)

L2: MAC

Read: MAC Survey by Koen Langendoen

Network Stack

Application Layer L4 L3 Network Layer Link Layer L2 Physical Layer L1

L2/L3: Naming and Addressing

Read: 'Low-level Naming' paper (UCLA)

Network Stack

Application Layer L4 L3 Network Layer Link Layer L2 Physical Layer L1

L3: Traditional View

Sensornet Nodes

L3: Traditional View

L3: New View

L3: Routing

Sensornet Routing Protocols

L3: Routing - LEACH

L3: Routing - LEACH

L3: Routing - VRR

L3: Routing - VRR

Operating Systems

Contiki MANTIS SOS

Read: TinyOS book chapter by Phil Levis

Research Problems

- Medium Access Control
- Routing
- Localization
- Operating Systems
- Security
- Programming Abstractions
- Query Processing

What We Have Learned

Where Do We Go From Here

- RFID sensors (Moore's Law)
- Internet citizens (1st class)
- Urban Sensing
- Energy Management (Ember)
- Physical Sensing (Industry, Home)
- Startups

Further Information

Muneeb Ali http://muneeb.org

Thank You!