Methodology

In this project, we focused on **predicting agricultural yield** using weather and reservoir features, following a structured data science and machine learning workflow.

Below, we describe in detail the process, tools, and methods used from data preparation to model evaluation.

Data Collection & Understanding

- The primary dataset was provided by our mentor, containing **crop yield data for multiple crops**, daily weather variables (temperature, rainfall), and reservoir data (water level, FRL, live storage) across multiple states in India for several years.
- The data covered multiple crops (e.g., rice, wheat, gram, mustard, etc.) and included thousands of records per crop and state.

Data Preparation & Cleaning

- Cleaned column names and standardized formats.
- Converted date columns to datetime objects and extracted useful temporal features like **year** and **week number**.
- Removed rows with missing critical values to ensure model reliability.
- Merged all crop Datasets and then created separate DataFrames for states.

Feature Engineering

- Created additional features to enrich model inputs:
 - avg_temp: mean of yearly max and min temperatures.
 - Target encoding of crop_name: replacing categorical crop names with their mean yield in training data.
 - **Interaction features**: experimented with manually multiplying reservoir level and categorical features to capture relationships.
- Explored correlations to identify important features.

Model Selection & Rationale

We focused on classical ML models that are:

- Easy to interpret,
- Robust to nonlinear relationships,
- Require minimal data preprocessing.

Models used:

Linear Regression:

• Used as a baseline model to capture simple linear dependencies between yield and features.

Random Forest Regressor:

- Selected for its ability to handle non-linearities and feature interactions.
- Naturally robust to multicollinearity and outliers.

We trained models separately for each state to account for regional differences.

Data Splitting & Validation Strategy

- Sorted data chronologically by year to avoid data leakage.
- Split each state dataset into:
 - Training data: first 80% of years.
 - **Testing data:** remaining 20% of years.
- Avoided random shuffling to maintain temporal order, simulating real-world prediction where future data is unseen.

For additional realism:

- Built separate regressors (e.g., LinearRegression) to predict test set features (avg_temp, rainfall, etc.) only using year as input.
- Used these predicted features instead of true test features when predicting yield mimicking deployment where future weather data isn't known.

Model Training & Evaluation

- For Random Forest: tuned number of trees, fixed random state for reproducibility.
- Experimented with different combinations of feature set to get the best performing features.
- Evaluated models on both training and test data using:
 - RMSE (Root Mean Squared Error)
 - R² score (Coefficient of Determination)

This helped assess not only how well models fit the training data but also their generalization capability.

Tools & Libraries

- Python (Jupyter / Colab)
- pandas & numpy (data manipulation)
- sklearn (models and metrics)
- matplotlib & seaborn (visualizations)

Summary Flow-Chart

Data Analysis and Results

Missing values and Duplicates(Potato Dataset):

During data analysis, we checked for missing values across all columns. Most features had complete data except for Level and Current Live Storage, which had 382 missing entries each. This is likely due to occasional gaps in reservoir data reporting. Since these features are important for downstream modeling, appropriate imputation strategies (such as using mean, median, or model-based imputation) can be considered in future steps to handle these missing values effectively. No duplicate rows were found, ensuring data consistency.

```
→ Missing values per column:
 state name
                                  0
crop name
                                 0
apy item interval start
                                 0
temperature recorded date
                                 0
state temperature max val
                                 0
state_temperature_min_val
                                 0
state_rainfall_val
                                 0
yield
                                 0
FRL
                                 0
Live Cap FRL
                                 0
Level
                               382
Current Live Storage
                               382
dtype: int64
Number of duplicate rows: 0
```


Summary Statistics:

The dataset contains 47,848 records covering agricultural and climatic data from 2000 to 2022. Temperature values vary widely, with maximum temperatures ranging from about 11 °C to nearly 48 °C and minimum temperatures from -0.5 °C to around 29 °C, reflecting seasonal and regional diversity. Rainfall shows high skewness, with a median close to zero and a maximum value near 187 mm, indicating many dry days interspersed with occasional heavy rainfall. Yield values range from about 4 to 36, with a mean of roughly 16, suggesting moderate variability across crops and years. Reservoir features like FRL and Level also exhibit broad ranges, highlighting differences in storage capacity and water availability across states and years. Overall, the statistics reveal significant variability, which is essential context for model building and analysis.

	Summary	statistics o	f the dataset	:				
		apy_item_int	erval_start :	state_temperatur	re_max_va	al \		
₹	count	47	848.000000	4784	48.000000	9		
	mean	2	014.045645	3	33.566005	5		
	std		5.432290		5.031233	3		
	min	2	000.000000	1	11.110000	0		
	25%	25% 2010.000000 31.070000				9		
	50%	2	2015.000000 33.420000					
	75%	2	2019.000000 36.560000					
	max	2	022.000000	4	47.510000			
		state temnera	ture min val	state_rainfall	val	vield \		
	count		47848.000000	47848.000	_	-		
	mean		17.305670	3.262		16.346552		
	std		5.572399	6.542		8.407129		
	min		-0.500000	0.000		3.975090		
	25%		13.420000	0.000		8.409210		
	50%		18.490000			15.056890		
	75%		21.790000	3.776				
	max		28.920000	186.996	3000	35.916140		
		FRL	Live Cap FRL	Level	Current	Live Storage		
	count	47848.000000	47848.000000	47466.000000		47466.000000		
	mean	341.616405	1.515693	330.989787		0.752887		
	std	148.469866	0.867089	148.225816		0.628405		
	min	135.136667	0.198465	64.960000		0.000000		
	25%	183.210000	0.523000	177.213125		0.244333		
	50%	348.926000	1.539062	338.858500		0.576688		
	75%	461.933333	1.866600	421.389800		1.099721		
	max	597.731875	2.898000	824,960000		4.327000		

Trends:

The above plots illustrate key temporal trends in the dataset from 2000 to 2022.

- The top plot shows clear seasonal cycles in daily average maximum and minimum temperatures, highlighting regular annual fluctuations with higher max temperatures peaking around mid-year and lower min temperatures in cooler months.
- The middle plot displays daily average rainfall, which is highly variable with sharp spikes, capturing the sporadic and monsoon-driven nature of rainfall in India.
- The bottom plot presents daily average yield, aggregated across crops, which shows relatively smoother step-like trends over time, reflecting long-term changes in agricultural productivity. Together, these plots help in understanding the seasonality, variability, and potential factors influencing crop yield over the years.

The above chart shows the normalized trends (scaled between 0 and 1) of yield, rainfall, minimum temperature, and average reservoir level in Andhra Pradesh from 2012 We observe fluctuations in yield roughly aligning with changes in rainfall and temperature, while average reservoir levels show a declining trend initially and stabilize later. This visualization helps explore potential relationships and seasonal impacts of climatic and water storage variables on agricultural yield over the years.

Comparative analysis of models

Comparing performance of Linear Regression and Random Forest models tested using actual random test features.

State	LR Train RMSE	LR Train R²	LR Test RMSE	LR Test R ²	RF Train RMSE	RF Train R²	RF Test RMSE	RF Test R²
Uttarakhand	1.583138	0.887347	1.646568	0.883942	0.249097	0.997211	0.687708	0.979755
Uttar Pradesh	1.742486	0.963755	1.818623	0.962261	0.401013	0.998080	1.019810	0.988133
Chhattisgarh	0.460810	0.933399	0.466045	0.931195	0.083273	0.997825	0.224716	0.984003
West Bengal	1.771452	0.967269	1.775435	0.967109	0.419865	0.998161	1.078628	0.987860
Andhra Pradesh	1.672503	0.874421	1.698052	0.871731	0.271357	0.996694	0.628160	0.982447
Jharkhand	0.409126	0.969718	0.422939	0.968140	0.095489	0.998350	0.277078	0.986326
Karnataka	0.918453	0.972216	0.908613	0.973086	0.267703	0.997640	0.712759	0.983438
Telangana	1.408565	0.891958	1.447935	0.888519	0.252960	0.996515	0.644023	0.977945
Rajasthan	0.289818	0.919311	0.287629	0.921742	0.044570	0.998092	0.117705	0.986894
Madhya Pradesh	0.440958	0.726663	0.438265	0.730158	0.063497	0.994332	0.167924	0.960385
Gujarat	0.303580	0.851027	0.298526	0.857417	0.054341	0.995227	0.142135	0.967678
Maharashtra	0.167746	0.896734	0.167160	0.899790	0.034631	0.995599	0.091609	0.969903
Tamil Nadu	0.989472	0.989035	0.964188	0.989344	0.192415	0.999585	0.510851	0.997009
Odisha	0.060912	0.980900	0.061269	0.981614	0.010577	0.999424	0.026625	0.996528

Comparing performance of Linear Regression and Random Forest models tested using predicted test features predicted by simple linear regression models.

State	LR Train RMSE	LR Train R²	LR Test RMSE	LR Test R ²	RF Train RMSE	RF Train R²	RF Test RMSE	RF Test R ²
Uttarakhand	3.050504	0.871694	0.712182	0.958732	0.039830	0.998325	0.295978	0.982849
Chhattisgarh	0.121900	0.949905	0.618529	0.891795	0.002989	0.998771	0.677984	0.881394
West Bengal	3.699386	0.957748	0.878195	0.992971	0.162505	0.998144	1.763023	0.985888
Jharkhand	0.184052	0.971026	0.148013	0.928788	0.009374	0.998524	0.202175	0.902730
Karnataka	0.759944	0.971073	1.295533	0.970228	0.046510	0.998230	1.388033	0.968102
Rajasthan	0.056365	0.942937	0.129117	0.890229	0.000783	0.999208	0.060204	0.948816
Madhya Pradesh	0.152771	0.709419	0.547404	0.445695	0.002670	0.994921	0.192569	0.805003
Gujarat	0.052286	0.914362	0.221269	0.490499	0.001168	0.998087	0.200743	0.537764
Maharashtra	0.020882	0.915420	0.036566	0.882064	0.000723	0.997070	0.144693	0.533329
Tamil Nadu	1.101848	0.986548	0.544978	0.995123	0.034081	0.999584	0.598605	0.994644
Odisha	0.003076	0.987176	0.012952	0.301620	0.000092	0.999618	0.010285	0.445409

Actual test features vs Predicted test features of Rajasthan for 2021

	Actual Value	Predicted Value
avg_temp	28.140000	26.087362
state_rainfall_val	0.140000	1.931910
Level	279.644000	284.743750
FRL	287.252000	287.252000
Current Live Storage	0.451574	0.728505
crop_encoded	1.251720	1.251720

Actual yield vs Predicted yield

Crop-wise across states

Crop-wise across years

	Crop wise t	ici oss states				Crop wise across years				
	crop_name	State	yield	Predicted Yield		crop_name	year	yield	Predicted Yield	
0	gram	Chhattisgarh	0.693304	0.955106	0	gram	2004	0.626860	0.618480	
1	gram	Gujarat	1.691451	1.099751	1	gram	2018	1.008188	0.824798	
2	gram	Jharkhand	1.202375	0.998426	2	gram	2019	1.039189	0.900636	
3	gram	Karnataka	0.671894	0.598654	3	gram	2020	1.123991	0.920867	
4	gram	Madhya Pradesh	1.614275	1.151620	4	gram	2021	1.137153	0.926313	
5	gram	Maharashtra	1.030654	0.765881	5	gram	2022	1.108544	0.927649	
6	gram	Odisha	0.702796	0.618480	6	masoor	2004	0.397120	0.414680	
7	gram	Rajasthan	1.075413	0.907155	7	masoor	2018	0.819200	0.708152	
8	gram	Tamil Nadu	0.926280	0.824060	8	masoor	2019	0.816920	0.677634	
9	gram	Uttarakhand	0.787872	0.827735	9	masoor	2020	0.914734	0.735954	
10	gram	West Bengal	1.245962	1.033128	10	masoor	2021	0.910728	0.722406	
11	masoor	Chhattisgarh	0.710361	0.342319	11	masoor	2022	1.205086	0.715014	
12	masoor	Jharkhand	0.859635	0.736243	12	potato	2018	13.724845	13.361661	
13	masoor	Madhya Pradesh	1.057188	0.714615	13	potato	2019	15.525360	15.503793	
14	masoor	Odisha	0.470337	0.414680	14	potato	2020	16.351722	14.723173	
15	masoor	Rajasthan	1.317518	1.043778	15	potato	2021	17.109432	17.059317	
16	masoor	Uttarakhand	0.890343	0.719279	16	potato	2022	18.293028	17.433595	
17	masoor	West Bengal	0.865374	0.760473	17	rapeseed &mustard	2017	0.342920	0.345954	
18	potato	Chhattisgarh	6.718750	5.221069	18	rapeseed &mustard	2018	1.076504	0.865820	
19	potato	Jharkhand	7.305450	6.567597	19	rapeseed &mustard	2019	1.096448	0.960139	
20	potato	Karnataka	16.360702	14.811667	20	rapeseed &mustard	2020	1.157538	0.950945	
21	potato	Tamil Nadu	23.386947	22.737142	21	rapeseed &mustard	2021	1.100306	0.952986	
22	potato	Uttarakhand	12.218719	11.307472	22	rapeseed &mustard	2022	1.100691	0.945838	
23	potato	West Bengal	29.878287	31.324976	23	rice	2018	2.476320	2.524485	
24	rapeseed &mustard	Chhattisgarh	0.510415	0.494861	24	rice	2019	2.755020	2.517498	
25	rapeseed &mustard	Gujarat	1.933926	1.518604	25	rice	2020	2.245620	2.502406	
26	rapeseed &mustard	Jharkhand	0.811379	0.816629	26	rice	2021	2.558790	2.493603	
27	rapeseed &mustard	Madhya Pradesh	1.550358	1.229001	27	rice	2022	2.589446	1.998462	
28	rapeseed &mustard	Maharashtra	0.328988	0.346819	28	wheat	2018	2.157894	1.784618	
29	rapeseed &mustard	Rajasthan	1.628265	1.440817	29	wheat	2019	2.514777	2.165283	
30	rapeseed &mustard	Tamil Nadu	0.235114	0.241568	30	wheat	2020	2.680861	2.172770	
31	rapeseed &mustard	Uttarakhand	0.924425	0.815565	31	wheat	2021	2.601702	2.158983	
32	rapeseed &mustard	West Bengal	1.219520	0.938837	32	wheat	2022	2.624035	2.148369	
33	rice	Jharkhand	2.515670	1.501949						
34	rice	Karnataka	2.540047	2.506189						
35	wheat	Chhattisgarh	1.462655	1.398062						
36	wheat	Gujarat	3.195756	2.971460						
37	wheat	Jharkhand	2.135435	1.482597						
38	wheat	Karnataka	1.225168	0.847122						
39	wheat	Madhya Pradesh	3.526995	3.032108						
40	wheat	Maharashtra	1.767831	1.260650						
41	wheat	Rajasthan	3.892101	3.641733						
42	wheat	Uttarakhand	3.006383	2.334568						
43	wheat	West Bengal	2.964734	2.353336						

Conclusion

In this project, we explored the use of machine learning models—specifically **Random Forest** and **Linear Regression**—to predict crop yield based on features like average temperature, rainfall, reservoir level, and crop-specific encoding.

The dataset covered multiple Indian states over several years, enabling state-level models.

From our analysis:

- Random Forest and Linear Regression both showed strengths in different states:
 - For states like *Rajasthan*, *Odisha*, and *Tamil Nadu*, Random Forest achieved lower test RMSE and higher R², indicating better predictive performance.
 - In contrast, Linear Regression performed competitively and sometimes better in states like *Gujarat*, *West Bengal*, and *Jharkhand*, where simpler linear relationships between features and yield were more prominent.
- Overall, both models achieved reasonably high R² scores on training data (often >0.90), but test performance varied by state, likely due to differences in data distribution, crop diversity, and climatic variability.
- For some larger and more variable states (e.g., Uttar Pradesh, Andhra Pradesh, Telangana), the models struggled, likely due to higher data variability and complex crop-climate interactions.

We also observed:

- **Predicted test features** (using time-based regressions) were reasonably close to actual features, as seen in Rajasthan's comparison table.
- Target encoding of the crop name feature improved model performance by capturing cropspecific yield tendencies.
- The Random Forest model provided feature importance insights, helping identify reservoir variables like level, Current Live Storage had the most impact on yield predictions

Appendices

github.com/TheGiftedExplorer/yield-prediction