ADCME: Automatic Differentiation Library for Computational and Mathematical Engineering

https://github.com/kailaix/ADCME.jl

November 7, 2019

Inverse Modeling

- Inverse modeling identifies a certain set of parameters or functions with which the outputs of the forward analysis matches the desired result or measurement.
- Many real life engineering problems can be formulated as inverse modeling problems: shape optimization for improving the performance of structures, optimal control of fluid dynamic systems, etc.

Physics Based Machine Learning

- Traditional inverse modeling methods utilize efficient numerical schemes and incorporate physical knowledge (first principles); deep learning learns statistical relations from large amounts of training data.
- We combine the best of the two worlds and invent physics based machine learning.

Automatic Differentiation

 Deep learning and inverse modeling have the same computational model but are disguised under different terminologies.

Back-propagation = Automatic Differentiation = Discrete Adjoint State Method

AD Implementation in ADCME

- ADCME allows users to use high level script language Julia to implement numerical simulation codes, but obtain the powerful parallelism and scalability provided by TensorFlow and Julia itself.
- Gradients are computed automatically.

Challenges in AD

- ADCME aims to solve the nonlinear implicit operator case via custom operators.
- Another ongoing effort is automatic calculation of Jacobian (IGACS.jl).

Linear/Nonlinear	Explicit/Implicit	Expression
Linear	Explicit	y = Ax
Linear	Implicit	Ax = y
Nonlinear	Explicit	y = F(x)
Nonlinear	Implicit	F(x,y)=0

ADCME Solutions

Most inverse modeling problems can be classified into 4 categories.
For example, the PDE for describing physics is

$$\nabla \cdot (X \nabla u) = 0 \quad \mathcal{BC}(u) = 0 \tag{1}$$

We observe some quantities depending on the solution u and want to estimate X.

Expression	Description	ADCME Solution	Note
$\nabla \cdot (\boldsymbol{c} \nabla \boldsymbol{u}) = 0$	Parameter Inverse Problem	Discrete Adjoint State Method	Direct optimize the constant c
$\nabla \cdot (f(x)\nabla u) = 0$	Functional Inverse Problem	Neural Network Functional Approximator	$f(x) \approx f_{\theta}(x)$
$\nabla \cdot (f(u)\nabla u) = 0$	Relation Inverse Problem	Deep Learning for Indirect Data	$f(u) \approx f_{\theta}(u)$
$\nabla \cdot (\boldsymbol{\varpi} \nabla u) = 0$	Stochastic Inverse Problem	Adversarial Numerical Analysis	Generative Neural Nets for ϖ (unknown random processes)

Parameter Inverse Problem: Learning Hidden Geophysical Processes

Functional Inverse Problem: Calibrating Lévy Processes

$$\begin{split} & \phi(\pmb{\xi}) = \mathbb{E}[e^{\mathrm{i}\langle \pmb{\xi}, \pmb{\mathsf{X}}_t \rangle}] = \\ & \exp\left[t\left(\mathrm{i}\langle \pmb{b}, \pmb{\xi} \rangle - \frac{1}{2}\langle \pmb{\xi}, \pmb{A} \pmb{\xi} \rangle + \int_{\mathbb{R}^d} \left(e^{\mathrm{i}\langle \pmb{\xi}, \pmb{\mathsf{x}} \rangle} - 1 - \mathrm{i}\langle \pmb{\xi}, \pmb{\mathsf{x}} \rangle \pmb{1}_{\|\pmb{\mathsf{x}}\| \leq 1}\right) \nu(\pmb{d}\pmb{\mathsf{x}})\right)\right] \end{split}$$

Relation Inverse Problem: Learning Constitutive Relations

Equilibrium equation

$$\mathcal{P}(u(\mathbf{x}), \mathcal{M}(u(\mathbf{x}), \dot{u}(\mathbf{x}), \mathbf{x})) = \mathcal{F}(u(\mathbf{x}), \mathbf{x}, p)$$

• Neural Network Approximation:

$$\mathcal{M}_{\theta}(\mathbf{u}) \approx \mathcal{M}(u(\mathbf{x}), \dot{u}(\mathbf{x}), \mathbf{x})$$

$$\min_{\theta} \|\mathcal{P}(\mathbf{u}, \mathcal{M}_{\theta}(\mathbf{u})) - \mathcal{F}(\mathbf{u}, \mathbf{x}, p)\|_{2}^{2} \|$$

Probability Inverse Problem: Adversarial Numerical Analysis

$$\begin{cases} -\nabla \cdot (a(x)\nabla u(x)) = 1 & x \in (0,1) \\ u(0) = u(1) = 0 & \text{otherwise} \end{cases}$$
$$a(x) = 1 - 0.9 \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

A Cool Application: ADSeismic.jl (Coming soon)

- An Open Source High Performance Package for General Seismic Inversion Problems
- Problems include:
 - Full waveform inversion (FWI);
 - Rupture inversion;
 - Source-time inversion.
- Features:
 - (Multi-)GPU support;
 - Easy-to-use;
 - Easily extendable.

12 / 12