Univerza v Ljubljani Fakulteta za matematiko in fiziko

Finančni praktikum

Algoritem za reševenje dvostopenjskega problema nahrbtnika z dinamičnim programiranjem

Jakob Zarnik, Tin Markon

Mentorja: prof. dr. Sergia Cabello Justo, asist. dr. Janoš Vidali

Kazalo

1	Uvod	3
2	Formulacija in lastnosti problema	3
3	Načrt za nadalnje delo	5
Li	Literatura	

Povzetek

V nalogi bova obravnavala reševanje dvostopenjskega problema nahrbtnika z dinamičnim programiranjem. Za izdelavo algoritma bova uporabila programski jezik Python.

1 Uvod

Dvostopenjski programi omogočajo modeliranje situacij, kjer glavni odločevalec, v nadaljevanju poimenovan investitor, optimizira svoja sredstva s tem, da neposredno upošteva odziv posrednika na njegovo odločitev o višini vložka. V primeru dvostopenjskega problema nahrbtnika (Bilevel Knapsack Problem), v nadaljevanju BKP, investitor določi prostornino nahrbtnika z namenom maksimizacije dobička, med tem ko se posrednik sooča z 0-1 problemom nahrbtnika s prostornino določeno s strani investitorja. BKP je ustrezen za modeliranje problema »ustreznega financiranja«, kjer posameznik (tj. investitor), svoja sredstva razdeli med netvegano naložbo s fiksnim donosom (npr. varčevalni račun, državna obveznica) in bolj tvegano naložbo, preko posrednika kot je banka ali bančni posrednik (broker). Ta kupi delnice ali obveznice z namenom maksimizacije svojega dobička s tem, da upošteva omejitve finančnih sredstev (prostornina nahrbtnika) investitorja in ustvari donos z ustrezno izbiro investicij. Podobno uporabo modeliranja lahko opazimo na področju upravljanja s proizvodi, kjer se podjetje odloča koliko enot izdelkov naj proda samo in koliko preko posrednika.

BKP je mešan celoštevilski dvostopenjski problem predstavljen s strani Dempe in Richter, ki sta za rešitev predstavila "branch-and-bound"okvir (tj. razveji in omeji). V najini nalogi najprej razširiva potrebne in zadostne pogoje za obstoj optimalne rešitve. Nato predlagava enostaven in učinkovit algoritem dinamičnega programiranja za reševanje problema. V nasprotju s pristopom Dempe in Richter, kjer je beležen seznam nedominantnih rešitev, tukaj beležimo samo ciljne funkcijske vrednosti za oba, investitorja in posrednika, tekom dinamičnega procesa.

2 Formulacija in lastnosti problema

V narbtnik s prostornino oz kapaciteto y, ki jo določi investitor, vsakemu predmetu j določimo utež oz. volumen a_j , zaslužek posrednika c_j in zaslužek investitorja d_j . Ceno enote prostornine nahrbtnika označimo s t. Z danim y, posrednik izbere podmnožico predmetov, ki upošteva prostosrsko omejitev. To nam da dvostopenjski program

$$BKP = \begin{cases} \underset{y,x}{\text{Max}} f^1(y,x) = dx + ty \\ \text{s.t. } \underline{b} \le y \le \overline{b} \\ \underset{x}{\text{Max}} f^2(x) = cx \\ \text{s.t. } ax \le y \text{ and } x \in \{0,1\}^n \end{cases}$$

kjer so $a,\,c$ in dceloštevilske vrednosti in $a,\,c,\,d,\,\underline{b}$ in \overline{b} nenegativne. V najini nalogi so z

$$S = \{(x, y) \in \{0, 1\}^n \times \left[\underline{b}, \overline{b}\right] : ax \le y\}$$

označene omejitve, s

$$P(y) = \{x \in \text{Arg max}\{cx' : ax' \le y, x' \in \{0, 1\}^n\}\}\$$

označimo posrednikovo racionalno izbiro množice (za fiksen y) in z

$$IR = \{(x, y) | (x, y) \in S, x \in P(y) \}$$

induktiven del, preko katerega investitor optimizira svojo funkcijo.

Dvostopenjski program obstaja v dveh različicah. Optimističen primer, ko racionalna množica ni singelton (enolična), posrednik izbere tisto rešitev, ki maksimizira zaslužek investitorja. Dobljena rešitev se imenuje močna rešitev. V pesimističnem primeru pa investitor predvideva, da kadar ima posrednik več enakovrednih možnosti izbire množice, izbere tisto, ki minimizira investitorjev zaslužek. Tako dobimo šibko rešitev.

Trditev 1 (Dempe in Richter). Če je cena enote prostornine (enota t) nepozitivna, potem obstaja optimalna rešitev BKP.

Naslednja trditev povezuje ceno prostornine z investitorjevim razmerjem med zaslužkom in utežjo predmeta.

Trditev 2. Naj bo $\underline{b} = 0$ in t < 0. Če je $|t| > \max_{1 \le j \le n} (\frac{d_j}{a_j})$, potem je $(y^*, x^*) = (0, 0_n)$ optimalna rešitev.

Dokaz. Naj bo (x,y) možna rešitev za dan BKP. Najprej z razširitvijo pogoja $ax \leq y$ s t (t < 0) dobimo $(ta + d)x \geq ty + dx = f^1(y,x)$. Nato, ker je $ta_j + d_j < 0$ za $j = 1, \ldots, n$ in $x \in \{0,1\}^n$, sledi, da je $(ta + d)x \leq 0$, torej $f^1(y,x) \leq 0$. Vidimo, da ker je $(y^*,x^*) = (0,0_n)$ možna rešitev danega BKP, v katerem je $f^1(y,x) = 0$, je ta rešitev tudi optimalna.

Če je $\infty > \bar{b} \ge \sum_{i=1}^n a_i$ in t > 0, potem je optimalna rešitev trivialna: $x^* = (1, \ldots, 1)$ in $y^* = \bar{b}$. Če sta d in c kolinearna $(d = \alpha c, \text{ kjer } \alpha > 0)$ in $t \ge 0$, potem je reševanje BKP enako reševanju problema nahrbtnika s kapaciteto \bar{b} za posrednika.

Definicija 1. Diskreten dvostopenjski problem nahrbtnika (BKPd) je dvostopenjski problem nahrbtnika v katerem je spremenljivka, ki jo določi investitor diskretna.

Trditev 3. Če je $t \le 0$, potem je vsaka optimalna rešitev (y^*, x^*) za BKPd, tudi optimalna rešitev za BKP.

 $\check{C}e\ je\ t>0$ in $\check{c}e\ optimalna\ re\check{s}itev\ za\ BKP\ obstaja,\ potem\ je\ optimalna\ tudi\ za\ BKPd.$

Dokaz. $t \le 0$: Iz **Trditve 1** sledi, da optimalna rešitev (y^*, x^*) obstaja. Dodatno, IR (BKPd) ⊂ IR (BKP) in iz Dempe in Richter sledi, da je y^* celo število.

$$t > 0$$
: Direktno iz (ii) v Dempe in Richter.

Iz **Trditve 3** sledi, da je reševanje BKP ekvivalentno reševanju BKPd, ko je t negativen. Če je t pozitiven in optimalna rešitev obstaja (glej Izrek 4 v Dempe in Richter), je ta dosežena v točki (\bar{b}, x^*) , kjer je $x^* \in P(\bar{b})$. Pomni, da optimalna rešitev BKPd vedno obstaja. Torej, če BKP ima optimalno rešitev, to lako dobimo z reševanjem zaporedja problemov nahrbtnika, ki vsebuje binarne spremenljivke, eno za vsak možno vrednost y. Algoritem, opisan v naslednjem poglavju, uporabi to lastnost.

3 Načrt za nadalnje delo

V nadaljevanju bova s programskim jezikom Python napisala program, ki s pomočjo dinamičnega programiranja izračuna optimalno rešitev (y^*, x^*) glede na naključno generirane podatke. S pomočjo primerov iz dokumenta bova preverila tudi, da program deluje pravilno. S pomočjo algoritma lahko izračunamo rešitev v primeru optimističnega primera, kot tudi pesimističnega. V najslabšem scenariju ima časovno zahtevnost $\theta(n\bar{b})$. Iz **Trditve 3** je razvidno, da je reševanje problema BKP ekvivalentno reševanju posrednikovega problema nahrbtnika za vsako celo število iz intervala $[\underline{b}, \bar{b}]$. Algoritem v svojem teku jemlje obe ciljni funkciji. To dosežemo z dvema fazama, ki sta podrobneje opisani spodaj.

Forward phase

Prva faza je sestavljena iz dveh zank: zunanja zanka s koraki $k \in [1, ..., n]$ in notranja zakna vezana na celoštevilsko kapaciteto nahrbtnika $y \in [\underline{b}, \overline{b}]$. Med to fazo sta generirani dve tabeli. Prva vsebuje optimalne vrednosti sledilca

$$f_k^2(y) = \max \left\{ \sum_{j=1}^k c_j x_j : \sum_{j=1}^k a_j x_j \le y, x \in \{0, 1\}^k \right\}$$

druga pa optimalnevrednosti investitorja

$$\widetilde{f}_k^1(y) = \max \left\{ \sum_{j=1}^k d_j x_j : x \in P(y) \right\}$$

na vsakem koraku k in za vsako kapaciteto y. Za graditev teh tabel z dinamicnim programiranjem se rekurzija izvede za vse vrednosti y med 0 in \bar{b} , za vsak predmet. Opomniti je treba, da funkcija $\widetilde{f}_k^1(y)$ ne upošteva ceno prostornine nahrbtnika, in je torej $\widetilde{f}_k^1(y) = f_k^1(y) + ty$.

```
\begin{array}{l} \text{for } k = 2, \dots, n \text{ and } y = 0, \dots \bar{b} \text{ do} \\ \text{if } y < a_k \text{ then} \\ f_k^2(y) = f_{k-1}^2(y) \text{ and } \widetilde{f}_k^1(y) = \widetilde{f}_{k-1}^1(y) \\ \text{else} \\ f_k^2(y) = \max(f_{k-1}^2(y), f_{k-1}^2(y-a_k) + c_k) \\ \text{if } f_{k-1}^2(y) \neq f_{k-1}^2(y-a_k) + c_k \text{ then} \\ \widetilde{f}_k^1(y) = \widetilde{f}_{k-1}^1(y) \text{ if } f_k^2(y) = f_{k-1}^2(y) \\ \widetilde{f}_k^1(y) = \widetilde{f}_{k-1}^1(y-a_k) + d_k \text{ if } f_k^2(y) = f_{k-1}^2(y-a_k) + c_k \\ \text{else} \\ \widetilde{f}_k^1(y) = \max(\widetilde{f}_{k-1}^1(y), \widetilde{f}_{k-1}^1(y-a_k) + d_k) \text{ (Opt.)} \\ \widetilde{f}_k^1(y) = \max(\widetilde{f}_{k-1}^1(y), \widetilde{f}_{k-1}^1(y-a_k) + d_k) \text{ (Pes.)} \\ \text{end if} \\ \text{end for} \end{array}
```

V prvem koraku (tj. k=1) gledamo samo prvi predmet x_1 . Optimalna rešitev investitorja in sledilca, za vsako kapaciteto y, je izračunana na sledeč način:

$$f_1^2(y) = \begin{cases} 0 \text{ for } y = 0, \dots, a_1 - 1 \\ c_1 \text{ for } y = a_1, \dots, \overline{b} \end{cases}$$
$$\widetilde{f}_1^1(y) = \begin{cases} 0 \text{ for } y = 0, \dots, a_1 - 1 \\ d_1 \text{ for } y = a_1, \dots, \overline{b} \end{cases}$$

Backtracking phase

Druga faza je uporabljena za iskanje optimalne rešitve (y^*, x^*) , ki ustreza optimalni vrednosti določeni iz prejšnje faze. Optimalna kapaciteta y je generirana z n-tim stolpcem tabele investitiorja, kot je opisano v naslednji trditvi.

Trditev 4. Naj bo (x^*, y^*) optimalna rešitev BKPd.

- $\check{C}e \ je \ t \leq 0$, $potem \ \widetilde{f}_n^1(y^*) + ty^* = Max \left\{ \widetilde{f}_n^1(y^*) + ty : y \in \{\underline{b}, \underline{b} + 1, \dots, \overline{b}\} \right\}$
- Če je t > 0, sta možnosti dve: $(i)Max\left\{\widetilde{f}_n^1(y) + t(y+1)\right\} \leq \widetilde{f}_n^1(\overline{b}) + t\overline{b}$, je (\overline{b}, x^*) optimalna rešitev BKP, kjer je $x^* \in P(y^*)$ in $y^* = \overline{b}$; ali (ii) BKP nima optimalne rešitve.

Iz optimalne rešitve vodje y^* , backtracking phase uporabi rekurzijo dinamičnega programiranja povezano z investitorjevim in sledilčevim problemom. Postopek v obliki psevdokode za to fazo je predstavljen spodaj.

Če se vodja sooča z enakovrednimi odločitvami, lahko spremenljivka x_k^* lahko zavzame vrednost 0 ali 1. Vrednost x_1^* , ki ni odvisna od rekurzije,

```
\begin{aligned} y &\leftarrow y^* \\ &\text{for } f_{k-1}^2(y) \neq f_{k-1}^2(y-a_k) + c_k \text{ do} \\ &\text{if } y = 3 \text{ then} \\ &\text{if } f_k^2(y) = f_{k-1}^2(y) \text{ then} \\ &x_k^* = 0 \\ &\text{else} \\ &x_k^* = 1 \text{ and } y \leftarrow y - a_k \\ &\text{end if} \end{aligned} else &\text{if } \widetilde{f}_k^1(y) = \widetilde{f}_{k-1}^1(y) \text{ then} \\ &x_k^* = 0 \\ &\text{else} \\ &x_k^* = 1 \text{ and } y \leftarrow y - a_k \\ &\text{end if} \end{aligned} end if end for if f_1^2(y) = 0 then x_1^* = 0 else &x_1^* = 1 \\ &\text{end if} \end{aligned}
```

je nastavljena na 0, če je $f_1^2(y)=0$, in 1 v nasprotnem primeru. Če y^* ni enoličen, je za iskanje optimalne rešitve backtracking postopek uporabljen za vsak y^* .

Python koda za opisano fazo se nahaja v datoteki BKP.py, funkcija $backtracking_phase$. Vsebuje tudi komentarje za lažje raumenvanje funkcije.

Literatura

- [1] L. Brotcorne, S. Hanafi, R. Mansi (2009). A dynamic programming algorithm for the bilevel knapsack problem Elsevier: Operations Research Letters 37, 215–218.
- [2] S. Dempe, K. Richter (2000). Bilevel programming with Knapsack constraint European Newspaper of Operations Research 8, 93–107.