读花成 86902131

台灣科技大學一百零八學年度下學期期末考

科目名稱:電路學(二) 開課系所:電子系 ET2104301 地點:國際大樓 IB306

考試時間:109年6月4日 下午13:20至15:10(可使用工程計算機)

1. (10%) Please sketch the magnitude characteristic of the Bode plot, labeling all critical slopes and points for the following function:

$$G(j\omega) = \frac{0.2(j\omega+1)}{j\omega[(j\omega/12)^2 + (j\omega/36) + (1/144)]} \qquad 24 2 = 36$$

2. (10%) Please find I_0 in the network in Fig. 1.

3. (20%) The circuit in Fig. 2 is operated at steady state before the switch open. (a)Please use the Laplace transforms to calculate the current i(t) for t>0.(10%) (b)Please determine the transfer function of V_o/V_i for t>0.(10%)

Fig. 3

4. (15%) Please use the Laplace transforms to calculate the current iL(t) in Fig. 3.

5. (10%) Please find Z parameters for the two-port network shown in Fig. 4 and determine the voltage gain of the entire circuit with a $4k\Omega$ load attached to the output.

6. (15%) Please modify the circuit in Fig. 5 to form a <u>high-pass notch filter</u>, and then determine the transfer function from the input voltage to the output voltage (V_o/V_{in}) , plot the magnitude of the transfer function v.s. angular frequency, and analyze the frequency responses including the notch frequency ω_n , resonant frequency ω_o , low-frequency gain and high-frequency gain.

- 7. (10%)A balanced Y-connected load and a balanced Δ -connected load are supplied by a three-phase 480-Vrms 50Hz generator. The branch impedances of the Y and Δ loads are $26\angle35^{\circ}\Omega$ and $34\angle-50^{\circ}\Omega$, respectively.
 - (a) Please determine the active and reactive powers drawn by Y and Δ -connected loads. (5%)
 - (b) Please determine the phasor voltage and phasor current for any one branch of each three-phase load, and substitute into the power equation for balanced three-phase loads. Given that the phase angle for Y system V_{AN} is 30° and the phase angle for Δ system V_{BA} is 180° . (5%)
- 8. (10%) Given the circuit in Fig. 6, please find the complex power supplied by the source, and the source power factor. If f = 50Hz, please find $V_s(t)$.

Fig. 6