THÉORIE DE LA COULEUR

Lorsqu'un objet est illuminé, la couleur qu'il réfléchit peut être

- chromatique: présence de certaines longueurs d'ondes prépondérantes (émission non-uniforme)
 - → perception d'une "couleur"
- ou achromatique: émission de longueurs d'ondes en quantité uniforme, variant du noir au blanc en passsant par les gris
 - → perception d'un "niveau de gris"

LES 2 NATURES DE LA COULEURS

physique

- La lumière visible peut être considérée comme une distribution d'ondes électromagnétiques de longueur comprise entre 400 nm $< \lambda < 770$ nm
- Une lumière est monochromatique si la largeur de son spectre est inférieure à 1 nm.

• psychophysiologique

- Le signal est interprété par le couple "œil-cerveau" comme les différentes couleurs de l'arc en ciel: violet, indigo, bleu, vert, jaune, orange, et rouge (il existe d'autres couleurs visibles)
- Différentes distributions peuvent être associées à la même sensation de couleur: ce sont des *métamères*

L'ŒIL

2 types de senseurs

• Les cônes

- De 6 à 7 millions concentrés au centre de l'œil et assurent la vision diurne Chaque cône est relié à un unique nerf, autorisant ainsi une vision fine
- L'œil "normal" possède exactement 3 types de cônes sensibles plutôt dans les bleus, les verts et les rouges respectivement.

• Les batonnets

- De l'ordre de 75 à 150 millions, répartis sur la surface de l'œil
- Ils sont actifs en vision diurne et ne distinguent pas les différentes couleurs
- Plusieurs batonnets sont reliés à un même nerf (résolution inférieure à celle des cônes)

PERFORMANCES DE L'ŒIL

Courbes d'efficacité lumineuse

- 1. de jour (globalement pour l'œil)
- 2. de nuit (globalement pour l'œil)
- 3. de chacun des 3 types de cônes

La discrimination des couleurs dépend de la longueur d'ondes (l'œil est plus sensible aux variations autour de 480nm qu'autour de 530nm)

FONCTION DES CÔNES

- en entrée
 - $-E(\lambda)$ la répartition d'énergie de la lumière
 - $-\sigma_1(\lambda), \ \sigma_2(\lambda)$ et $\sigma_3(\lambda)$ respectivement les fonctions de distribution de chacun des trois types de cônes suivant la longueur d'onde λ
- ullet en sortie le triplet (c_1, c_2, c_3)

$$c_i(E) = \int_{\lambda_1}^{\lambda_2} E(\lambda)\sigma_i(\lambda)d\lambda, \quad 1 \le i \le 3$$

En simplifiant, l'œil affectue une transformation linéaire

- de l'espace vectoriel des spectres d'énergie de dimension infinie
- dans l'espace vectoriel des couleurs perçues par l'homme de dimension 3

$$E(\lambda) \rightarrow (c_1, c_2, c_3)$$

LE SYSTÈME RGB

L'idée est d'exprimer une base (de l'espace vectoriel) des couleurs visibles en choisissant 3 spectres de lumières dont les couleurs sont linéairement indépendantes (trois couleurs "primaires")

- On fixe 3 couleurs monochromatiques de référence, R, G, B de longueur d'onde 700 nm, 546 nm et 436 nm (plutôt rouge, vert et bleu respectivement)
- Pour chaque couleur pure C de longueur d'onde λ , on détermine la quantité $\overline{b}(\lambda), \ \overline{g}(\lambda), \ \overline{r}(\lambda)$ de bleu, vert et rouge nécessaire à l'obtention de C

LES COURBES DE DISTRIBUTION DANS LE SYSTÈME RGB

• Alors chaque spectre d'énergie $E(\lambda)$ réalise, pour un observateur, la même couleur C(E) que la combinaison

$$c_b B + c_q G + c_r R$$

où

$$c_b = k \int_{\lambda_1}^{\lambda_2} E(\lambda) \overline{b}(\lambda) d\lambda, c_g = k \int_{\lambda_1}^{\lambda_2} E(\lambda) \overline{g}(\lambda) d\lambda, c_r = k \int_{\lambda_1}^{\lambda_2} E(\lambda) \overline{r}(\lambda) d\lambda$$

On écrit

$$C(E) = c_b B + c_q G + c_r R$$

- Inconvénients
 - Pour certaines couleurs C entre 440 et 540 nm, la contribution de la composante "rouge" c_r est négative: $C-c_rR$ peut être obtenue comme combinaison linéaire et positive de G et de B
 - Certaines couleurs ne peuvent être obtenues par combinaisons linéaires des couleurs de base: ce sont les couleurs qui n'apparaissent pas dans l'arc en ciel

LE SYSTÈME XYZ

L'idée est de changer de couleurs primaires de telle sorte que les composantes d'une couleur soient toutes *positives*

- La Commission Internationale de l'Eclairage (CIE) a remplacé en 1931 les trois lumières monochromatiques par 3 (pseudo-) "couleurs" X, Y, Z déterminées par 3 fonctions de distribution toujours positives $\overline{x}(\lambda), \overline{y}(\lambda), \overline{z}(\lambda)$.
- La primaire Y a été choisie égale à la fonction d'efficacité lumineuse de l'œil

LES COURBES DE DISTRIBUTION DANS LE SYSTÈME XYZ

REPRÉSENTATION SPATIALE DES COULEURS VISIBLES DANS LE SYSTÈME XYZ

COMPOSANTES D'UNE COULEUR

 \bullet Si $E(\lambda)$ est un spectre, alors les composantes associées sont

$$X = X(E) = k \int_{\lambda_1}^{\lambda_2} E(\lambda) \overline{x}(\lambda) d\lambda$$
$$Y = Y(E) = k \int_{\lambda_1}^{\lambda_2} E(\lambda) \overline{y}(\lambda) d\lambda$$
$$Z = Z(E) = k \int_{\lambda_1}^{\lambda_2} E(\lambda) \overline{z}(\lambda) d\lambda$$

où le coefficient k est fixé de telle sorte que la valeur Y = 100 pour la lumière blanche

$$C(E) = XX + YY + ZZ$$

• Pour tenir compte de la couleur indépendemment de la quantité d'énergie lumineuse, on normalise en projetant l'espace des couleurs d'abord sur le plan d'équation X+Y+Z=1

$$x = \frac{X}{X + Y + Z}, y = \frac{Y}{X + Y + Z}, z = \frac{Z}{X + Y + Z}$$

puis en projetant sur le plan XY: on obtient ainsi le diagramme de chromaticité de la CIE

- $\bullet \ (x,y,Y)$ sont les composantes trichromatiques de la couleur
- \bullet Inversement on passe des coordonnées xyY aux coordonnées XYZ

$$X=x\frac{Y}{y}, Y=Y, Z=(1-x-y)\frac{Y}{y}$$

LE DIAGRAMME DE CHROMATICITÉ DE LA CIE

• La frontière du diagramme: elle est constitutée des longueurs d'ondes de couleurs pures (le *lieu spectral*) et du segment de droite des "pourpres" (couleurs non spectrales absentes de l'arc en ciel)

- Une couleur C est définie par un point avec ses coordonnées chromatiques dans le diagramme. On peut résoudre plusieurs problèmes
 - 1. longueur d'onde dominante: elle est déterminée par le point d'intersection P de la demi-droite issue de W (représentant le blanc) vers C avec le lieu spectral
 - 2. pureté: exprimée par le rapport (de longueurs)

 $\frac{\text{WC}}{\text{WP}}$

- 3. couleur complémentaire (C est est une couleur pure): tracer la droite CW. Son point d'intersection avec le lieu spectral définit la couleur complémentaire.
- Mélange des couleurs: par addition de 3 couleurs A, B, C quelconques du diagramme, dans des proportions arbitraires, on obtient un point intérieur du triangle ABC. C'est la gamme (gamut) de couleurs associée aux "primaires" A, B, C

MÉLANGE DE COULEURS

• Loi de Grassman

Si (X_1, Y_1, Z_1) et (X_2, Y_2, Z_2) sont les composantes de 2 couleurs, alors leur mélange définit la couleur (X, Y, Z) dont les composantes sont

$$X = X_1 + X_2, Y = Y_1 + Y_2, Z = Z_1 + Z_2,$$

- Application
 - $-(x_1,y_1,Y_1)$ et (x_2,y_2,Y_2) les composantes de chromaticité de deux couleurs
 - On pose

$$T_1 = \frac{Y_1}{y_1}, T_2 = \frac{Y_2}{y_2}$$

- Alors

$$x = \frac{x_1 T_1 + x_2 T_2}{T_1 + T_2}, y = \frac{y_1 T_1 + y_2 T_2}{T_1 + T_2}, Y = Y_1 + Y_2$$

MODÈLES DE LA COULEUR

Il existe essentiellement deux types de modèles de la couleur

- Le premier permet de spécifier des couleurs pour le matériel
 - primaires additifs. C'est le cas par exemple des écrans couleur (système RGB), le codage des couleurs pour la télétransmission (système américain YIQ)
 - primaires soustractifs CMY. C'est le cas par exemple imprimantes. Les primaires agissent comme des filtres: une couche d'encre de couleur cyan empêche la réflexion de lumière rouge d'une surface
- Le second offre à l'utilisateur les moyens de définir ses couleurs comme un peintre (le modèle HSL)

LE MODÈLE RGB (red-green-blue)

- Il permet de définir une couleur comme combinaison positive des couleurs des trois phosphores d'un écran donné: l'idée est de dire ce qui est *ajouté* au noir
- Il ne permet pas d'obtenir toutes les couleurs visibles

- Il nécessite le "calibrage" des couleurs, c'est-à-dire la transcription d'un système de couleurs d'un écran dans un autre
 - Pour i = 1, 2, soit M_i la matrice qui permet de passer des coordonnées (r_i, g_i, b_i) à celles du système X, Y, Z

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

– Le passage des coordonnées (r_1,g_1,b_1) aux coordonnées (r_2,g_2,b_2) d'une même couleur s'exprime par la matrice $M_2^{-1}M_1$

LE MODÈLE CMY (cyan-magenta-yellow)

L'idée est de dire ce qui est retranché du blanc

MODÈLES ORIENTÉS UTILISATEUR

- Il repose sur une description intuitive de la couleur (employée par les artistes)
- La couleur est décrite par trois grandeurs
 - la teinte (Hue): la "couleur" proprement dite est l'angle h de la rotation autour de l'axe vertical
 - $-\operatorname{la}$ $\operatorname{saturation}$ $(\operatorname{Saturation})$: proportion de blanc $\operatorname{\frac{OP_1}{OP_2}}$

– la luminance (Value): notion achromatique d'intensité d'excitation $\frac{\mathrm{OP_1}}{\mathrm{OP}}$

CONVERSION RGB – HSV

ullet entrée: les coordonnées (r,g,b)

ullet sortie: les coordonnées (s,h,l)

CALCUL DE LA LUMINANCE

 $max = \max\{r, g, b\}, \quad min = \min\{r, g, b\}$

$$v = \frac{\mathbf{OP}}{\mathbf{OP}_1} = max$$

CALCUL DE LA SATURATION ET DE LA TEINTE

$$h$$
 (en fraction de 60^0) = $JL = \frac{max - r}{max - min}$

INTERPOLATION

Nécessaire par exemple pour l'interpolation de Gouraud ou en interacif avec le passage en "dégradé" d'une scène à une autre

- Il n'y a pas de problème d'interpolation linéaire entre les modèles RGB, CMY, CIE
- Le passge du modèm RGB vers HSV (ou inversement) peut être erroné. Par exemple

couleur	RGB	HSV
rouge	(1, 0, 0)	$(1,0^0,1)$
magenta	(0, 1, 1)	$(1, 180^0, 1)$
"milieu"	(0.5, 0.5, 0.5)	$(1,90^0,1)$

Or l'image de (0.5, 0.5, 0.5) est (1, indéfini, 0.5)

SPÉCIFICATION INTERACTIVE DES COULEURS

- 1. par "noms" (Color Naming Systems) cf. cours de X11
- 2. coordonnées numériques dans l'espace RGB ou HSV
- 3. par l'intermédiaire de "tableaux de bord"
 - 3 curseurs pour chacune des valeurs possibles

• par l'intermédiaire d'un bouton (pour la teinte) et d'un position dans le cône (pour la saturation et l'illuminance)

TERMINOLOGIE

français	anglais
luminosité, phanie	brightness
leucie	lightness
saturation	saturation
tonalité chromatiqe	hue
teinte	tint
ton	tone
ombre	shade
efficacité lumineuse	luminous efficiency