Generalized Linear Models. Uncertainty estimation Lecture 2c 1101010100

Moving beyond typical distributions

- We know how to model
 - Normally distributed targets -> linear regression
 - Bernoulli and Multinomial targets → logistic regression
 - What if target distribution is more complex?

Example 1: Daily Stock prices NASDAQ

- Open
- High (within day)

Does it seem that the error is normal here?

Example 2: Number of calls to bank

- Y=Number of calls
- X= time

Endless amount of classes → multinomial does not work... (Poisson)

732A99/TDDE01

Exponential family

- More advanced error distributions are sometimes needed!
- Many distributions belong to exponential family:
 - Normal, Exponential, Gamma, Beta, Chi-squared...
 - Bernoulli, Multinoulli, Poisson...

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta})e^{(\boldsymbol{\eta}^T u(\mathbf{x}))}$$

- Easy to find MLE and MAP
- Non-exponential family distributions: uniform, Student t

Example: Bernoulli

Generalized linear models

- Assume Y from the exponential family
- Model is $Y \sim EF(\mu, ...)$, $f(\mu) = \mathbf{w}^T \mathbf{x}$
 - $\operatorname{Alt} \mu = f^{-1}(\mathbf{w}^T \mathbf{x})$
 - $-f^{-1}$ is activation function
 - -f is link function (in principle, arbitrary)
- Arbitrary f will lead to (s dispersion parameter)

$$p(y|w,s) = h(y,s)g(w,x)e^{\frac{b(w,x)y}{s}}$$

• If f is a canonical link, then

$$p(y|w,s) = h(y,s)g(w,x)e^{\frac{(w^Tx)y}{s}}$$

Generalized linear models

- Canonical links are normally used
 - MLE computations simplify
 - MLE $\widehat{w} = F(X^TY)$ → computations do not depend on all data but rather a summary (sufficient statistics) → computations speed up

Example: Poisson regression

$$f^{-1}(\mu) = e^{\mu}$$
, $Y \sim Poisson(e^{w^T x})$

Generalized linear model: software

• Use glm(formula, family, data) in R

Example: Daily Stock prices NASDAQ

- Open
- High (within day)
- Try to fit usual linear regression, study histogram of residuals

Gamma distribution: Wikipedia

Least absolute deviation regression

- Model $Y \sim Laplace(w^T X, b)$
 - Member of exponential family
- Equivalent to minimizing sum of absolute deviations
- Properties
 - Robust to outliers
 - Sensitive to changes in data
 - Multiple solutions possible

Probabilistic models

- Why it is beneficial to assume a probabilistic model?
- A common approach to modelling in CS and engineering:

$$y = f(x, w)$$

- f is known, w is unknown
- Fit model to data with least squares, optimization or ad hoc
 find w

Probabilistic models

Arguments against deterministic models:

- The model does not really describe actual data (error is not explained)
 - No difference between modelling data A (Poisson) and B (Normal)
 - Estimation strategy for A is not good for B
- The model typically gives a deterministic answer, no information about uncertainty
 - "...The exchange rate tomorrow will be 8.22 ..."

Probabilistic models

Probabilistic model

 $Y \sim Distribution(f(x, w), \theta)$

- Data is fully explained (error as well)
- Automatic principle for finding parameters: MLE, MAP or Bayes theorem
- Automatic principle for finding uncertainty (conf. limits)
 - Bootstrap
 - Posterior probability
- Possibility to generate new data of the same type
 - Further testing of the model

Uncertainty estimation

- Given estimator $\hat{f} = \hat{f}(x, D)$ (or $\hat{\alpha} = \delta(D)$), how to estimate the uncertainty?
- Answer 1: if the distribution for data D is given, compute analytically the distribution for the estimator → derive confidence limits
 - Often difficult
 - Example: In simple linear regression, $\widehat{\alpha}$ follows t distribution
- Answer 2: Use bootstrap

The bootstrap: general principle

We want to determine uncertainty of $\hat{f}(D, X)$

- 1. Generate many different D_i from their distribution
- 2. Use histogram of $\hat{f}(D_i, X)$ to determine confidence limits \rightarrow unfortunately can not be done (distr of D is often unknown)

Instead: Generate many different D_i^* from the empirical distribution (histogram)

732A99/TDDE01

Nonparametric bootstrap

Observed data

Sampling with replacement

Resampled data

$$\bar{x}_{1}^{*}, \bar{x}_{2}^{*}, ..., \bar{x}_{N}^{*}$$

Nonparametric bootstrap

Given estimator $\widehat{w} = \widehat{f}(D)$ Assume $X \sim F(X, w)$, F and w are unknown

- 1. Estimate \widehat{w} from data $\mathbf{D} = (X_1, ..., X_n)$
- 2. Generate $D_1 = (X_1^*, ..., X_n^*)$ by sampling with replacement
- 3. Repeat step 2B times
- 4. The distribution of w is given by $\hat{f}(D_1)$, ... $\hat{f}(D_B)$

Nonparametric bootstrap can be applied to any deterministic estimator, distribution-free

Parametric bootstrap

Given estimator $\widehat{w} = \widehat{f}(D)$

Assume $X \sim F(X, w)$, F is known and w is unknown

- 1. Estimate \widehat{w} from data $\mathbf{D} = (X_1, ..., X_n)$
- 2. Generate $\mathbf{D_1} = (X_1^*, ..., X_n^*)$ by generating from $F(X, \widehat{w})$
- 3. Repeat step 2 *B* times
- 4. The distribution of w is given by $\hat{f}(D_1)$, ... $\hat{f}(D_B)$

Parametric bootstrap is **more** precise if the distribution form is correct

Uncertainty estimation

- 1. Get D_1 , ... D_R by bootstrap
- 2. Use $\hat{f}(D_1)$, ... $\hat{f}(D_B)$ to estimate the uncertainty
 - Boostrap percentile
 - Bootstrap Bca
 - _ ...
- Bootstrap works for all distribution types
- Can be bad accuracy for small data sets n < 40 (empirical is far from true)
- Parametric bootstrap works even for small samples

Bootstrap confidence intervals

• To estimate $100(1-\alpha)$ confidence interval for w

Bootstrap percentile method

- 1. Using bootstrap, compute $\hat{f}(D_1)$, ... $\hat{f}(D_B)$, sort in ascending order, get $w_1 \dots w_B$
- 2. Define A_1 =ceil(B α /2), A_2 =floor(B-B α /2)
- 3. Confidence interval is given by

$$\left(w_{A_1}, w_{A_2}\right)$$

Look at the plot...

Bootstrap: regression context

- Model $Y \sim F(X, w)$
- Data D = $\{(Y_i, X_i), i = 1, ..., n\}$
- Idea: produce several bootstrap sets that are similar to D

Nonparametric bootstrap:

- 1. Using observation set \mathbf{D} , sample $\mathbf{pairs}~(X_i,Y_i)$ with replacement and get bootstrap sample $\mathbf{D_1}$
- 2. Repeat step 1 B times \rightarrow get $D_{1,...}$ D_{B}

Uncertainty estimation

Example: Albuquerque dataset:

Y=Price of House

X=Area (sqft)

We sample data index, from {1...N}

Bootstrap: regression context

Parametric bootstrap

- 1. Fit a model to D \rightarrow get $\widehat{w}(D)$.
- 2. Set $X_i^* = X_i$, generate $Y_i^* \sim F(X_i, \widehat{w})$.
- 3. $D_i = \{(X_i^*, Y_i^*), i = 1, ..., n\}$
- 4. Repeat step 2 *B* times

Confindence intervals in regression

- Given $Y \sim Distribution(y|x, w), EY|X = \mu|x = f(x, w)$
 - Example: $Y \sim N(w^T x, \sigma^2)$, $\mu | x = f(x, w) = w^T x$
- Estimate intervals for $\mu|x=f(x,w)$ for many X, combine in a confidence band
- What is estimator?

$$-\mu|x=f(x,w)$$

Confindence intervals in regression

Estimation

- 1. Compute D_1 , ... D_B using a bootstrap
- 2. Fit model to $D_1, \dots D_B \rightarrow$ estimate $\widehat{w}_1, \dots \widehat{w}_B$
- 3. For a given X, compute $f(X, \widehat{w}_1), ... f(X, \widehat{w}_B)$ and estimate confidence interval by (percentile method)
- 4. Combine confidence intervals in a band

Bootstrap: R

- Package boot
 - Functions:
 - boot()
 - boot.ci() 1 parameter
 - envelope() many parameters
- Random random generation for parametic bootstrap:
 - Rnorm()
 - Runif()
 - **–** ...

boot(data, statistic, R, sim = "ordinary",
ran.gen = function(d, p) d, mle = NULL,...)

Bootstrap: R

Nonparametric bootstrap:

 Write a function statistic that depends on dataframe and index and returns the estimator

```
library(boot)
data2=data[order(data$Area),]#reordering data according to Area

# computing bootstrap samples
f=function(data, ind){
   data1=data[ind,]# extract bootstrap sample
   res=lm(Price~Area, data=data1) #fit linear model
   #predict values for all Area values from the original data
   priceP=predict(res,newdata=data2)
   return(priceP)
}
res=boot(data2, f, R=1000) #make bootstrap
```

Bootstrap: R

Parametric bootstrap:

- Compute value mle that estimates model parameters from the data
- Write function ran.gen that depends on data and mle and which generates new data
- Write function statistic that depend on data which will be generated by ran.gen and should return the estimator

Bootstrap

```
mle=lm(Price~Area, data=data2)
rng=function(data, mle) {
  data1=data.frame(Price=data$Price, Area=data$Area)
  n=length(data$Price)
#generate new Price
  data1$Price=rnorm(n,predict(mle, newdata=data1),sd(mle$residuals))
  return(data1)
f1=function(data1){
  res=lm(Price~Area, data=data1) #fit linear model
  #predict values for all Area values from the original data
  priceP=predict(res,newdata=data2)
  return(priceP)
res=boot(data2, statistic=f1, R=1000, mle=mle,ran.gen=rng, sim="parametric")
```

Uncertainty estimation: R

Bootstrap cofidence bands for linear model

```
e=envelope(res) #compute confidence bands
```

```
fit=lm(Price~Area, data=data2)
priceP=predict(fit)
```

plot(Area, Price, pch=21, bg="orange") points(data2\$Area,priceP,type="I") #plot fitted line

#plot cofidence bands
points(data2\$Area,e\$point[2,], type="I", col="blue")
points(data2\$Area,e\$point[1,], type="I", col="blue")

Prediction bands

- Confidence interval for Y $\mid X = \text{interval for mean } EY \mid X$
- Prediction interval for $Y \mid X = \text{interval for } Y \mid X$

 $Y \sim Distribution(x, w)$

Prediction band for parametric bootstrap

- 1. Run parametric bootstrap and get D_1 , ... D_B
- 2. Fit the model to the data and get $\widehat{w}(D_1)$, ... $\widehat{w}(D_B)$
- 3. For each X, generate from $Distribution(X, \widehat{w}(D_1))$, ... $Distribution(X, \widehat{w}(D_B))$ and apply percentile method
- Connect the intervals → get the band

Estimation of the model quality

Example: parametric bootstrap

```
mle=lm(Price~Area, data=data2)
f1=function(data1){
  res=lm(Price~Area, data=data1) #fit
linear model
  #predict values for all Area values
from the original data
  priceP=predict(res,newdata=data2)
  n=length(data2$Price)
  predictedP=rnorm(n,priceP,
sd(mle$residuals))
  return(predictedP)
res=boot(data2, statistic=f1, R=10000,
mle=mle,ran.gen=rng, sim="parametric")
```


Why wider band?