02-on-images

January 14, 2020

1 We need to talk about images

1.1 Images are numbers organized in a grid

• Image is composed of pixels:

1.2 Number representations

1.2.1 There are 10 types of people: those who understand binary and those who dont.

1.2.2 1 Bit

```
0 -> 0
```

1 -> 1

1 bit: 0 or 1 (False or True) aka boolean

1.2.3 2 Bits

```
0 0 -> 0
```

0 1 -> 1

1 0 -> 2

1 1 -> 3

2 bits can encode 4 numbers

1.2.4 There are 10 types of people: those who understand binary and those who dont.

1.3 Common number representations for images

```
• float: -42.0 ... -2.4345 ... 3.4562 ...
```

```
• integer: -42 ... -2 ... 3 ...
```

• 8 bit integer

- signed: -128 to 127 aka int8

- unsigned: 0 to 255 aka uint8

• 16 bit integer

signed: -32768 to 32767 aka int16

- unsigned: 0 to 65535 aka uint16

1.4 Coordinate system

1.4.1 Image = Table

- numbers are organized in a grid
- like a table an image has *rows* and *columns*
- row and column indices start at 0
- origin is in the **top-left** corner

(puppy photo by Joe Caione on Unsplash)

1.4.2 What about x and y (and z)?

- using x and y to specify positions is very common, too (e.g. have a look at fiji).
- We'll use r and c throughout this course
- r corresponds to 'y"
- c corresponds to x

BEWARE: coordinates in x-y form are usually given in (x, y) order. In r-c coordinates, we use the (r, c) order.

1.5 Image Channels

- more than just a single value per pixel
- -> multiple images stacked on top of each other
- e.g. from multiple flurophores
- also from different modalities after alignment
- can be presented/viewed as different colors

1.5.1 RGB as a special case

- additive color model where colors are composed of primary colors red, green and blue
- each primary color stored in a separate channel, so 3 values per pixels are stored
- each value can be in the range of [0..255]
- software for viewing recognizes this and interprets the triplets to generate a color mixture

1.5.2 Exercise: Thinking about RGB colors

Suppose that we represent colors as triples (r, g, b), where each of r, g, and b is an integer in [0, 255]. What colors are represented by each of these triples?

- 1. (255, 0, 0)
- 2. (0, 255, 0)
- 3. (0, 0, 255)
- 4. (255, 255, 255)
- 5. (0, 0, 0)
- 6. (128, 128, 128)

1.6 Compression

1.6.1 Lossless Compression

- Algorithm that reorganizes the data in a more efficient way when saving
- When loading the image, the reverse of the algorithm has to be applied
- Reversing the compression process results in a file that is *identical* to the original

1.6.2 Lossy Compression

- Algorithm that throws away some detail of the data when saving
- Level of detail that is discared can be adjusted
- Original image can never be reconstructed again

1.7 Image formats

1.7.1 Components of an image file

- image data (numbers)
 - uncompressed/compressed
- dimensions
- data-type (optional)
- meta-data (optional)
 - pixel size (physical)
 - channel names

- calibration

- software-specific values

1.8 Image formats summary

	Format	Compression	n Metadata <i>A</i>	Advantage	es Disadvantages	
TIFF	None, lossy, or lossless	Yes	High quality or smaller file size		Not universally view ooo many flavors	able
PNG	lossless	yes	Universally vie	ewable, L	Large file sizes for na	atural images
JPEG	Lossy	Yes	Universally vie smaller file size		Detail may be lost	

TIFF: Tagged Image File Format
PNG: Portable Network Graphics
JPEG: Joint Photographic Experts Group