高数基础班(15)

15 差分方程;微分方程举例(方程求解;综合题;应用题)

P115-PP122

主讲 武忠祥 教授

(五)差分方程(仅数三要求)

1.一阶常系数线性齐次差分方程

$$y_{t+1} + \underline{a}y_t = 0,$$

通解为
$$y_c(t) = C \cdot (-a)^t$$
,

2.一阶常系数线性非齐次差分方程

$$y_{t+1} + ay_t = f(t),$$

通解为
$$y_t = y_c(t) + y_t^*$$
.

1)
$$f(t) = P_m(t), \sqrt{\ }$$

(1) 若
$$a \neq -1$$
,

(1) 若
$$a \neq -1$$
, 令 $y_t^* = Q_m(t)$;

(2) 若
$$a = -1$$
,

(2) 若
$$a = -1$$
, 令 $y_t^* = tQ_m(t)$;

2)
$$f(t) = d^t \cdot P_m(t)$$
 $(d \neq 0)$

$$(d \neq 0)$$

(1) 若
$$a+d \neq 0$$
,

$$\diamondsuit y_t^* = d^t \cdot Q_m(t);$$

(2) 若
$$a+d=0$$
,

【例12】(1997)差分方程

$$y_c(t) = C \cdot 1^t = C$$

$$y_t^* = 2^t (at + b)$$

代入原方程得

$$2^{t+1}[a(t+1)+b)-2^{t}(at+b)=t2^{t}$$

解得

$$a = 1, b = -2,$$

原方程通解为

$$y_t = C + (t-2)2^t$$

【例13】(1998) 差分方程

$$2y_{t+1} + 10y_t - 5t = 0$$
 的通解为 _____

齐次差分方程为

$$y_{t+1} + 5y_t = 0$$
 $y_c(t) = C(-5)^t$.

其通解为

$$y_c(t) = C(-5)^t.$$

设原方程的特解为

$$y_t^* = at + b$$

代入原方程得

$$2a(t+1)+2b+10at+10b=5t$$

即

$$12at + 2a + 12b = 5t$$

比较系数知

$$a=\frac{5}{12},b=-\frac{5}{72}$$

$$y_t^* = \frac{5}{12} \left(t - \frac{1}{6} \right)$$

原差分方程的通解为
$$y_t = C(-5)^t + \frac{5}{12} \left(t - \frac{1}{6}\right)$$
.

【例14】(2001)某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元,若以 W_t 表示第 t年的工资总额(单位:百万元),则 W_t 满足的差分方程是 _______.

(解)
$$W_t = 1.2 \cdot W_{t-1} + 2$$

【例15】(2017) 差分方程 $y_{t+1} - 2y_t = 2^t$ 的通解为

$$y_c(t) = C \cdot 2^t$$

令

$$y_t^* = at2^t$$

代入原方程得

$$a(t+1)2^{t+1}-2at2^t=2^t$$

$$a=\frac{1}{2}$$

原方程通解为

$$y_t = C2^t + \frac{1}{2}t2^t$$

常考题型与典型例题

常考题型

- (一) 方程求解
 - (二) 综合题
 - (三) 应用题 ✓

(一) 方程求解 点点

【例16】(2014年1) 微分方程 $xy' + y(\ln x - \ln y) = 0$ 满足条件

$$y(1) = e^3$$
 的解为 $y = _____$.

【解】由
$$xy' + y(\ln x - \ln y) = 0$$
 得, $y' = \frac{y}{x} \ln \frac{y}{x} = \phi(\frac{y}{x})$

令
$$u = \frac{y}{x}$$
 代入上式得 $u' = \frac{u(\ln u - 1)}{x}$ $y' = u + xu' = u + u$

$$\frac{du}{u(\ln u - 1)} = \frac{dx}{x}$$

$$\ln|\ln u - 1| = \ln x + C,$$

由
$$y(1) = e^3$$
 得 $C = 2$, 则 $\ln \frac{y}{x} - 1 = 2x$, $y = xe^{2x+1}$.

$$y|_{x=1} = 1$$
 的解为 $y = ____.$

[解2]
$$(ydx+xdy]-3ydy = d(xy)-dy^3 = d(xy-y^3) = 0$$

 $ydx + (x-3y^2)dy = 0$ 满足条件

 $(y = \sqrt{x})$

有道考袖

【例18】(2017年1) 微分方程 y'' + 2y' + 3y = 0 的通解为

$$[e^{-x}(C_1\cos\sqrt{2}x + C_2\sin\sqrt{2}x)]$$

$$\int_{12}^{12} = \frac{-2 \pm \sqrt{4-12}}{2} = -1 \pm \sqrt{2} i$$

【例19】(2017年2) 微分方程 $y''-4y'+8y=e^{2x}(1+\cos 2x)$

的特解可设为
$$y^* = ($$
)

(A)
$$Ae^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$$
,

(B)
$$Axe^{2x} + e^{2x}(B\cos 2x + C\sin 2x),$$

(C)
$$Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$
,

(D)
$$Axe^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$
,

有道考礼

【例20】(2015年2,3) 设函数 y = y(x) 是微分方程 y'' + y' - 2y = 0

的解,且在 x=0 处取得极值 3、则 y=y(x)=______

【解】

$$\int_{1}^{2} \frac{1}{4} \int_{1}^{2} \frac{1}{4} \int_{1}^{2}$$

$$\int_{1}^{1} c_{1} + c_{2} = 0$$

【例21】(2015年1)设 $y = \frac{1}{2}e^{2x} + (x - \frac{1}{3})e^{x}$ 是二阶常系数非齐

次线性微分方程 $y'' + ay' + by = ce^x$ 的一个特解,则(')

(A)
$$a = -3, b = 2, c = -1$$
. (B) $a = 3, b = 2, c = -1$.

(C)
$$a = -3, b = 2, c = 1$$
. (D) $a = 3, b = 2, c = 1$.

【解】由
$$y = \frac{1}{2}e^{2x} + (x - \frac{1}{3})e^{x}$$
是方程 $y'' + ay' + by = ce^{x}$ 的一个特解可知, $y_1 = e^{2x}$, $y_2 = e^{x}$ 是齐次方程的两个线性无关的解

$$y^* = xe^x$$
 是非齐次方程的一个解.

齐次方程的特征方程为 (r-1)(r-2)=0

即
$$r^2-3r+2=0$$
 則 $a=-3,b=2$

将
$$y = xe^x$$
 代入方程 $y'' - 3y' + 2y = ce^x$

得
$$c=-1$$
. 故应选(A).

有道考神

【例22】(2009年1)若二阶常系数线性齐次微分方程

$$y'' + ay' + by = 0$$
 的通解为 $y = (C_1 + C_2 x)e^x$, 则非齐次方程

$$y'' + ay' + by = x$$
 满足条件 $y(0) = 2, y'(0) = 0$ 的解为 ______

【解】 由
$$y'' + ay' + by = 0$$
 的通解为 $y = (C_1 + C_2 x)e^x$ 知, $r = 1$

是齐次方程的特征方程的二重根,则齐次方程的特征方程为

设非齐次方程的特解为 $y^* = ax + b$, 代入方程得 a = 1, b = 2.

则其通解为
$$y = (C_1 + C_2 x)e^x + x + 2$$

由 $y(0) = 2, y'(0) = 0$ 知 $C_1 = 0, C_2 = -1$
故 $y = x(1 - e^x) + 2$

【例23】(2013年1,2) 已知 $y_1 = e^{3x} - xe^{2x}$, $y_2 = e^x - xe^{2x}$,

 $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的3个解,

则该方程的通解为
$$y = _____$$
.

$$(y = C_1 e^{3x} + C_2 e^x - x e^{2x})$$

(二) 综合题

【例24】(1994年3) 设 y = f(x) 是微分方程 $y'' - y' - e^{\sin x} = 0$

的解,且 $f'(x_0) = 0$,则 f(x) 在().

- (A) x_0 的某个邻域内单调增加
- (B) x_0 的某个邻域内单调减少
- (C) x_0 处取得极小值 \checkmark
- (D) x_0 处取得极大值

【解】

$$f'(x) - f'(x) - e^{4x} = 0$$

$$f''(x_0) - e^{\lambda x} x_0 = 0$$

有道考神

【例25】(2002年2)设 y = y(x) 是二阶常系数微分方程

$$y'' + py' + qy = e^{3x}$$
 满足初始条件 $y(0) = y'(0) = 0$ 的特解, 则当

$$x \to 0$$
 时, 函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限()

- (A) 不存在; (B) 等于1; (C) 等于2; (D) 等于3

【解】由 $y'' + py' + qy = e^{3x}$ 知 y''(x) 连续且 y''(0) = 1

$$\lim_{x\to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x\to 0} \frac{x^2}{y(x)}.$$

$$= \lim_{x \to 0} \frac{2x}{y'(x)} = \lim_{x \to 0} \frac{2}{y''(x)} = \frac{2}{y''(0)} = 2$$

故应选(C).

【例26】(2018年2, 3)设函数
$$f(x)$$
满足 $f(x+\Delta x)-f(x)=2xf(x)\Delta x+o(\Delta x)(\Delta x\to 0)$,

「解】由
$$f(x + \Delta x) - f(x) = 2xf(x)\Delta x + o(\Delta x) (\Delta x \to 0)$$

「い)
 $f(x + \Delta x) - f(x)$ $o(\Delta x)$

知
$$\frac{f(x+\Delta x)-f(x)}{\Delta x} = 2xf(x) + \frac{o(\Delta x)}{\Delta x}$$

$$f'(x) = 2xf(x)$$

$$f(x) = Ce^{x^2}$$

又
$$f(0) = 2$$
,则 $C = 2$, $f(x) = 2e^{x^2}$, $f(1) = 2e$.

$$f(x) \qquad \Delta y = A \Delta x + o(Ax)$$

$$[f(x)] \qquad dy = A dx$$

$$[f(x)] \qquad M(x) = A dx$$

$$dy = A dx$$

【例27】(1995年4) 已知连续函数 f(x) 满足条件

$$f(x) = \int_0^{3x} f\left(\frac{t}{3}\right) dt + e^{2x}, \, \text{\Re} f(x).$$

【解】等式 $f(x) = \int_0^{3x} f\left(\frac{t}{3}\right) dt + e^{2x}$ 两端对 x 求导数得

$$f'(x) = 3f(x) + 2e^{2x}$$

$$f'(x)-3f(x)=2e^{2x}$$
.

$$= \int \left(\int_{a}^{x} f(x) dt \right)^{2} = f(x)$$

$$f(x) = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx} dx + C \right] = e^{3x} \left[\int 2e^{2x} \cdot e^{-3x} dx + C \right]$$

$$=e^{3x}(2\int e^{-x}dx+C)=e^{3x}(C-2e^{-x})=Ce^{3x}-2e^{2x}.$$

由
$$f(0)=1$$
, 可得 $C=3$, 于是

$$f(x) = 3e^{3x} - 2e^{2x}$$
.

【例28】(2016年3)设函数 f(x) 连续,且满足

$$\int_{0}^{x} f(x-t)dt = \int_{0}^{x} (x-t)f(t)dt + e^{-x} - 1, \ \ \text{\vec{x} } f(x) \ \ \text{$\vec{0}$ b.}$$

【解】令
$$u = x - t$$
, 则 $\int_0^x f(x - t) dt = \int_0^x \underline{f(u)} du$

$$\int_0^x f(u)du = x \int_0^x f(t)dt - \int_0^x t f(t)dt + e^{-x} - 1$$

两端求导得
$$f(x) = \int_0^x f(t)dt - e^{-x}$$
 , 且 $f(0) = -1$.
$$(f'(x)) - f(x) = e^{-x}$$

$$f(x) = e^{\int dx} \left[\int e^{-x} e^{-\int dx} dx + C \right] = Ce^{x} - \frac{e^{-x}}{2}$$

由
$$f(0) = -1$$
, 得 $C = -\frac{1}{2}$, 所以 $f(x) = -\frac{e^x + e^{-x}}{2}$.

(三) 应用题

【例29】(2015年1,3)设函数 f(x) 在定义域 I上的导数大于零.)

若对于任意的 $x_0 \in I$, 曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线

与直线 $x = x_0$ 及 x 轴所围成区域的面积恒为 4, 且 f(0) = 2,

求 f(x) 的表达式.

【解】曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线方程为

$$y-f(x_0)=f'(x_0)(x-x_0)$$
, $\Leftrightarrow y=0$ $\Leftrightarrow x=x_0-\frac{f(x_0)}{f'(x_0)}$.

切线、直线 $x = x_0$ 及 x 轴所围区域的面积

$$S = \frac{1}{2} \left| \frac{f(x_0)}{f'(x_0)} \right| \cdot |f(x_0)| = 4$$

即
$$\frac{1}{2} \frac{f^2(x_0)}{f'(x_0)} = 4$$
, 记 $y = \underline{f(x_0)}$, 则 $\underline{\frac{1}{2}} y^2 = 4y'$

解方程得
$$-\frac{8}{y} = x + C$$
 由 $y(0) = 2$ 知, $C = -4$, 则 $y = \frac{8}{4 - x}$.

【例30】(2006年3) 在 xO_V 坐标平面上, 连续曲线 L 过点 M(1,0),

其上任意点 $P(x,y)(x \neq 0)$ 处的切线斜率与直线 OP 的斜率之

差等于 ax (常数 a > 0).

- (I) 求 L 的方程; $\sqrt{}$
- (II) 当 L 与直线 y=ax 所围成平面图形的面积为 $\frac{8}{2}$ 时,确定 a 的值.

【解】(1) 依题意得 $\underline{y}' - \frac{1}{v} \underline{y} = ax$, 求得其通解为

$$y = e^{\int_{-x}^{1} dx} \left(\int axe^{-\int_{-x}^{1} dx} dx + C \right) = ax^{2} + Cx.$$

将 x=1,y=0 代入上式得 C=-a, 从而 L 的方程为 $y=ax^2-ax$

(II) L 与直线 y = ax 的交点坐标为 (0,0) 和 (2,2a)

$$S(a) = \int_0^2 (ax - ax^2 + ax) dx = \int_0^2 (2ax - ax^2) dx = \frac{4}{3}a \qquad a = 2$$

【例31】(2009年2) 设非负函数 y = y(x) ($x \ge 0$) 满足微分方程 xy'' - y' + 2 = 0. 当曲线 y = y(x) 过原点时,其与直线 x = 1 及 y = 0 围成的平面区域 D 的面积为2,求 D 绕 y 轴旋转所得 旋转体的体积.

【解】记
$$y'=p$$
,则 $y''=p'$,代入微分方程得 $p'-\frac{1}{x}p'=-\frac{2}{x}$

$$y' = p = e^{\int_{-x}^{1} dx} \left(\int -\frac{1}{x} e^{\int -\frac{1}{x} dx} dx + C_1 \right) = x \left(\int -\frac{2}{x^2} dx + C_1 \right) = 2 + C_1 x.$$

$$y = 2x + \frac{1}{2}C_1x^2 + C_2$$
 $(x > 0).$

由已知 y(0) = 0, 有 $\lim_{x \to 0^+} y = 0$, 于是 $C_2 = 0$, $y = 2x + \frac{1}{2}C_1x^2$

由于
$$2 = \int_0^1 \left(2x + \frac{1}{2}C_1x^2\right) dx = 1 + \frac{1}{6}C_1$$

所以 $C_1 = 6$, 故 $y = 2x + 3x^2$.

有道考袖

故所求体积为

$$V = 2\pi \int_0^1 xy(x)dx = 2\pi \int_0^1 (2x^2 + 3x^3)dx = \frac{17\pi}{6}.$$

高数基础班 (15)

主讲 武忠祥 教授

