Computer Vision and Deep Learning

Lecture 9

Semantic segmentation metrics

Pixel accuracy

Number of pixels classified correctly by the network

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Image

Ground truth

Prediction ⊗

Semantic segmentation metrics

Intersection over Union

Mean IOU 47.5%

Prediction 😊

https://towards datascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2.

Semantic segmentation metrics

Dice Coefficient

Dice score 47.5%

Prediction 🕾

https://towards datascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2.

Semantic segmentation

Examples

Autonomous driving

Semantic segmentation

Examples

Real time hair colouring

Medical image segmentation https://arxiv.org/pdf/1810.05732.pdf

https://news.developer.nvidia.com/3d-real-time-video-hair-coloration/

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "**U-net: Convolutional networks for biomedical image segmentation.**" *International Conference on Medical image computing and computer-assisted intervention*. Springer, Cham, 2015.

Jégou, Simon, et al. "The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2017.

https://beyondminds.ai/a-simple-guide-to-semantic-segmentation/

Object localization

 What object is this image and where is this object located in the image?

Object localization

Object localization

C class scores
Softmax loss L_s

Object detection

- Determine the class (label) and the position of EACH object in the input image
- We can't use the same approach as for localization
 - Each image would require a different number of outputs
- Sliding window approach?

Object detection without proposals

Convolutional implementation of sliding windows

Convolutional implementation of sliding windows

Convolutional implementation of sliding windows

YOLO

You only look once

- Detection is modelled as a regression problem
 - image is divided into an S × S grid
 - for each grid cell predict:
 - B bounding boxes
 - confidence for those boxes,
 - C class probas

YOLO

Anchor boxes

 Allows the object detector to specialize better (detect "thinner" or "wider" objects)

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

For evaluating YOLO on PASCAL VOC, we use S = 7, B = 2. PASCAL VOC has 20 labelled classes so C = 20. Our final prediction is a $7 \times 7 \times 30$ tensor

Figure 2: The Model. Our system models detection as a regression problem. It divides the image into an $S \times S$ grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

YOLO Non maximum suppression

- Discard all predictions with proba <= threshold
- while there are any remaining boxes
 - Select the box with the largest proba (maxBB) as a prediction
 - Discard boxes with IoU >= 0.5 with maxBB

YOLO

Loss function

This is the loss function for yolo v1 paper.

Here each bounding box predicts an objectness score and a 4 coordinates, but the class predictions are per cell. Hence this:

$$\lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right]$$

$$+ \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\hat{h}_{i}} \right)^{2} \right]$$

$$+ \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_{i}(c) - \hat{p}_{i}(c))^{2}$$

$$(3)$$

where $\mathbb{1}_{i}^{\text{obj}}$ denotes if object appears in cell i and $\mathbb{1}_{ij}^{\text{obj}}$ denotes that the jth bounding box predictor in cell i is "responsible" for that prediction.

Proposal based object detection

Region-based Convolutional Network, 2014

- Idea:
 - Use an algorithm (or network) to find region of interests (ROIs) that are likely to contain an object
 - Localize (label + bounding box) localize the object in each in region

R-CNN: Regions with CNN features

Region-based Convolutional Network, 2014

Region-based Convolutional Network, 2014

Image source: https://towardsdatascience.com/r-cnn-fast-r-cnn-fast-r-cnn-fast-r-cnn-yolo-object-detection-algorithms-36d53571365e

R-CNN Region-based Convolutional Network, 2014

Region-based Convolutional Network, 2014

 Running time: "13s/image on a GPU or 53s/image on a CPU"

Fast RCNN

 <u>Idea:</u> feed to image only once to the CNN to extract a *feature map*, then crop and warp regions of this feature map

Fast R-CNN

Feed the ENTIRE image only once though the CONV net

Fast R-CNN

Extract the ROIs (proposed by selective search) at feature map level using RoI Pooling

Feed the ENTIRE image only once though the CONV net

Roi Pooling

Divide the $H \times W$ ROI window into an $h \times w$ grid of sub-windows of approximate size $H/h \times W/w$ and then max-pooling the values in each sub-window into the corresponding output grid cell.

4x6 Rol

3x3 Rol Pooling

Roi Pooling

$$W = 6, H = 4$$

 $w = 3, h = 3$
 $sz_w = 6/3=2, sz_h=4/3=1$

4x6 Rol

3x3 Rol Pooling

Roi Pooling

$$W = 6, H = 4$$

$$w = 3, h = 3$$

$$sz_w = 6/3 = 2$$
, $sz_h = 4/3 = 1$

Apply max pooling in each ROI

4x6 Rol

3x3 Rol Pooling

Roi Pooling

$$W = 6, H = 4$$

$$w = 3, h = 3$$

$$sz_w = 6/3 = 2$$
, $sz_h = 4/3 = 1$

Apply max pooling in each ROI

4x6 Rol

3x3 Rol Pooling

ROI Pooling example

4x6 Rol

0.1	0.2	0.3	0.4	0.5	0.6
1	0.7	0.2	0.6	0.1	0.9
0.9	0.8	0.7	0.3	0.5	0.2

3x3 Rol Pooling

https://

towardsdatascience.com/understanding-regio n-of-interest-part-2-roi-align-and-roi-warp-f795 196fc193

https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

Fast RCNN

What is the most time consuming part of Fast RCNN?

Faster-RCNN

Unified framework for object detection

The rest of the network is similar to Fast RCNN: use ROI pooling to crop feature maps and classify each region

Region proposal network: replaces selective search and predicts regions directly from feature maps

Region proposal network

 takes an image (of any size) as input and outputs a set of rectangular object proposals, each with an objectness score

An **anchor box** of fixed size at each point in the feature map

- For each anchor box predict if there is an object inside it
- For "positives" predict corrections for the bounding boxes

R-CNN Test-Time Speed

Faster RCNN

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$
(1)

Here, i is the index of an anchor in a mini-batch and p_i is the predicted probability of anchor i being an object. The ground-truth label p_i^* is 1 if the anchor is positive, and is 0 if the anchor is negative. t_i is a vector representing the 4 parameterized coordinates of the predicted bounding box, and t_i^* is that of the ground-truth box associated with a positive anchor. The classification loss L_{cls} is log loss over two classes (object vs. not object). For the regression loss, we use $L_{reg}(t_i, t_i^*) = R(t_i - t_i^*)$ where R is the robust loss function (smooth L_1) defined in [2]. The term $p_i^*L_{req}$ means the regression loss is activated only for positive anchors $(p_i^* = 1)$ and is disabled otherwise $(p_i^* = 0)$. The outputs of the *cls* and *reg* layers consist of $\{p_i\}$ and $\{t_i\}$ respectively.

(1)
$$L_{1;smooth} = \left\{ egin{array}{ll} |x| & ext{if } |x| > lpha; \ rac{1}{|lpha|} x^2 & ext{if } |x| \leq lpha \end{array}
ight.$$

$$\begin{split} t_{\rm x} &= (x-x_{\rm a})/w_{\rm a}, \quad t_{\rm y} = (y-y_{\rm a})/h_{\rm a}, \\ t_{\rm w} &= \log(w/w_{\rm a}), \quad t_{\rm h} = \log(h/h_{\rm a}), \\ t_{\rm x}^* &= (x^*-x_{\rm a})/w_{\rm a}, \quad t_{\rm y}^* = (y^*-y_{\rm a})/h_{\rm a}, \\ t_{\rm w}^* &= \log(w^*/w_{\rm a}), \quad t_{\rm h}^* = \log(h^*/h_{\rm a}), \end{split}$$

t* - ground truth t -prediction h_a, w_a - anchor box

bounding-box regression from an anchor box to a nearby ground-truth box.

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Object detectors

Object Detection in 20 Years: A Survey

Object detectors

GPU time (milliseconds) for each model, for image resolution of 300.

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [30]	2007	16.0	100
30Hz DPM [30]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [37]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[27]	2007+2012	73.2	7
Faster R-CNN ZF [27]	2007+2012	62.1	18

Evaluation metrics for object detection

Use IOU to determine is the object is a TP, FP, or a FN

Remember precision and recall?

If IoU threshold = 0.5

False Positive (FP)

IoU = ~0.3

True Positive (TP)

Evaluation metrics for object detection

$$IoU = \frac{\text{area of overlap}}{\text{area of union}}$$

Use **IOU** and a **threshold** to determine is the object is a TP, FP, or a FN

Remember precision and recall?

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Evaluation metrics for object detection AP

Average Precision (AP) is finding the area under the precision-recall curve.

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0	0.4
3	False	0.67	0.4
4	False	0.5	0.4
5	False	0.4	0.4
6	True	0.5	0.6
7	True	0.57	0.8
8	False	0.5	0.8
9	False	0.44	0.8
10	True	0.5	1.0

Evaluation metrics for object detection

Rank	Correct?	Precision	Recall	TP?
1	True	1.0	0.2	← FP?
2	True	1.0	0.4	FN?
3	False	0.67	0.4	Precis
4	False	0.5	0.4	Recall
5	False	0.4	0.4	riccan
6	True	0.5	0.6	
7	True	0.57	0.8	
8	False	0.5	0.8	
9	False	0.44	0.8	
10	True	0.5	1.0	

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$