Reconstruction Accuracy in Neural Decoding Models

Team: Motorized Marmots 物物

Members: Harmandeep Singh Khera & Boyin Feng

Pod: Gazpacho 🚳

Mentors: Ahmad Samara, Amy Kuceyeski, Javier Guaje

Introduction

- Decoding models relate regional brain activity (e.g., voxel-wise BOLD response) to the stimulus:
- In human vision research, decoding models are evaluated for their ability to use fMRI responses to an image for predicting:
 - its stimulus class ('classification')
 - recognise it among distractors ('identification'),
 - or reconstruct the original image
- However....
 - The "one pixel attack"

Introduction (contd.)

There are multiple metrics for quantifying model performance on image reconstruction — leading to:

- ad-hoc choices
- less comparability among decoding models

Study	Metrics Used	
Bashivan et al., 2019	Distance in pixel-spaceEuclidean distance	
Miyawaki et al., 2008	Spatial correlationImage identification	
Naselaris et al., 2009	 Spatial similarity (Brooks and Pappas, 2006) Semantic similarity, at 4 different levels of specificity 	

 We propose that human judgement should serve as the golden standard; we, therefore, compared 2 metrics of reconstruction accuracy against 2 human judgement tasks

Methods

Human judgment:

- Participants (N = 6, 3F, 3M; Age range: 23-27)
- 2 Dimensions: accuracy; perceived similarity

Conventional measures:

- Metrics: RMSE (Root Mean Squared Error) and FSIM (Feature Similarity Index)
- Implemented in Python using the image_similarity_metrics package (Müller et al., 2020)

Materials:

- 10 colored pairs (Nishimoto et al., 2011) in 3 min;
- 9 grayscale pairs (K. Seeliger et al., 2018) in 2 min

Results

Interesting results

- In general, females matched the reconstructed images with the original ones more accurately and more quickly
- Males perform better with grayscale images
- Mean similarity ratings were lower for males than females

Accuracy by Gender

Perceived Similarity by Gender (correct trials only)

Discussion

- Our results suggest that human judgements may help improve comparability among decoding models
- Future empirical surveys should investigate:
 - Differences b/w category of objects (e.g. faces vs tools)
 - Graded judgements of similarity (e.g. shape vs taxonomic class)
 - The metrics for human judgment need further examination as well

	Matching Accuracy	Similarity Score
RMSE	ρ = -0.12, p > 0.63	ρ = -0.44*, p > 0.055
FSIM	ρ = -0.14, p > 0.55	ρ = -0.58**, p < 0.01

Human Matching Accuracy

^{*}Almost significant at p < 0.05

^{**}Significant at p < 0.01