John Waczak

Date: May 31, 2018

Problem 1

Introduce a metric on the projective plane $\mathbb{R}P^2$ so that the natural projection $\pi: S^2 \to \mathbb{R}P^2$ is a local isometry. What is the Gaussian curvature of such a metric?

Proof. Recall that the natural projection $\pi: S^2 \to \mathbb{R}P^2$ is defined such that $\forall p \in S^2$, $\pi(p) = [p] = \{p, A(p)\}$ where $A: S^2 \to S^2$ is the antipodal map. We want to choose a metric \langle , \rangle for $\mathbb{R}P^2$ such that π is an isometry. This mean that for $p \in S^2$ and $\forall x, y \in T_pS^2$ we need

$$\langle x, y \rangle_p = \langle d\pi(x), d\pi(y) \rangle_{\pi(p)}$$

Recall that $d\pi: T_pS^2 \to T_{\pi(p)}\mathbb{R}P^2$ is a linear transformation. We also showed in class that specific charts $X_i: U \subset \mathbb{R}^2 \to S^2$ induce an associated basis on the tangent space. Thus, let $p \in S^2$ such that $p = X_i(u, v)$ for some $u, v \in U$ and let $q \in \mathbb{R}P^2$ such that $q = \pi(p)$. Then $\forall a, b \in T_{\pi(p)}\mathbb{R}P^2$ and $\alpha, \beta, \gamma, \delta \in \mathbb{R}$, we can write

$$a = \alpha \Big(\pi \circ X_i(u, v)\Big)_u + \beta \Big(\pi \circ X_i(u, v)\Big)_v$$
$$b = \gamma \Big(\pi \circ X_i(u, v)\Big)_u + \delta \Big(\pi \circ X_i(u, v)\Big)_v$$

Where I have written $\pi(p)_u, \pi(p)_v$ to denote the associated basis for the tangent space. Now define $a', b' \in T_{p=X_i(u,v)}S^2$ such that

$$a' = \alpha \Big(X_i(u, v) \Big)_u + \beta \Big(X_i(u, v) \Big)_v$$
$$b' = \gamma \Big(X_i(u, v) \Big)_u + \delta \Big(X_i(u, v) \Big)_v$$

Where a', b' are the points in the tangent space associated with the scaling factors $\{\alpha, \beta, \gamma\delta\}$. From the linearity of $d\pi$ we can write

$$d\pi(a') = d\pi \left[\alpha \left(X_i(u, v) \right)_u + \beta \left(X_i(u, v) \right)_v \right]$$

= $\alpha d\pi \left(X_i(u, v) \right)_u + \beta d\pi \left(X_i(u, v) \right)_v$
= $\alpha \left(\pi \circ X_i(u, v) \right)_u + \beta \left(\pi \circ X_i(u, v) \right)_v = a$

So $d\pi(a') = a$ and repeating this process for b' gives $d\pi(b') = b$. Therefore, to induce an isometry, choose a metric \langle , \rangle such that

$$\langle a, b \rangle_{\pi(p)} \equiv \langle a', b' \rangle_p$$

Then $\forall x, y \in T_p S^2$ we have that

$$\langle x, y \rangle_p = \langle d\pi(x), d\pi(y) \rangle_{\pi(p)}$$

Because our choice of metric on $\mathbb{R}P^2$ induces an isometry with S^2 then the Gaussian curvature of S^2 is preserved by the isometry π . Thus the curvature of $\mathbb{R}P^2$ under our metric must be 1.

Problem 2 (The Infinite Mobius Strip)

Let $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ be a cylinder and $A : C \to C$ be the map (antipodal map) such that A(x, y, z) = (-x, -y, -z). Let M be the quotient of C by the equivalence relation $p \sim A(p)$ and let $\pi : C \to M$ be the map $\pi(p) = [p] = \{p, A(p)\}, p \in C$.

- (a) Show that M can be given a differentiable structure so that π is a local diffeomorphism (M is then called the infinite Mobius Strip)
- (b) Prove that M is non-orientable
- (c) Introduce a Riemannian metric on M so that π is a local isometry. What is the curvature of such a metric.
- (a). Recall that a **differentiable structure** is the family of open subsets of \mathbb{R}^2 denoted U_{α} together with coordinate charts on those open subsets that take $U_{\alpha} \to S$. These charts are denoted X_{α} and are referred to collectively as $\{U_{\alpha}, X_{\alpha}\}$.

We need to show that M can be given a differentiable structure $(U_{\alpha}, \pi \circ X_{\alpha})$ so that π is a local diffeomorphism. To be a local diffeomorphism we need the image $\pi \circ X_{\alpha}(U_{\alpha})$ to be open in M for all α and that $\pi \circ X_{\alpha}$ is a smooth bijection with smooth inverse. First, it is not hard to establish that the antipodal map A(p) is a bijection. The only operation is multiplying each coordinate by the scalar (-1) which is smooth. It's inverse also looks pretty much exactly the same.

I think I'm on to something but I'm really confused on how to proceed.

(b). I have no idea what to do for this part	
(c). repeat the construction from problem 1. If we make π an isometry, then it must prove curvature of the cylinder C which we know to be 0.	eserve the

Problem 3

- (a) Show that the projection π : S² → ℝP² from the sphere onto the projective plane has the following properties. (1) π is continuous and π(S²) = ℝP². (2) each point p ∈ ℝP² has a neighborhood U such that π⁻¹(U) = V₁ ∪ V₂ where V₁ and V₂ are disjoint upon subsets of S² and the restriction of π to each V_i, i = 1, 2 is a homeomorphism onto U. Thus π satisfies formally the conditions for a covering map with two sheets. Beacaus of this, we say that S² is an orientable double covering of ℝP².
- (b) Show that in this sense, the torus T is an orientable double covering of the Klein bottle K and that the cylinder is an orientable double covering of the infinite Mobius strip.

Problem 4

Extend the Gauss-Bonnet theorem to orientable Riemannian 2-manifolds and apply it to prove the following fact: There is no Riemannian metric on an abstract surface T