Importante: Recuerde justificar las respuestas.

Duración del examen: 2 horas. Recuerde distribuir su tiempo para contestar los problemas de cada parte de la asignatura. No se permite el use de ningún tipo de material ni calculadora.

Parte A. Variable compleja.

- 1.- (1,75 puntos) Consideremos la semirrecta real negativa como corte de ramificacion, y sean f_i las distintas ramas de la raíz quinta dado ese corte.
- a) Describir y dibujar la imagen del plano complejo bajo cada f_i (es decir, $f_i(\mathbb{C})$).
- b) Describir y dibujar la imagen de una de las regiones del primer apartado bajo la función

$$f(z) = i \operatorname{Log}(z),$$

donde Log es la rama principal del logaritmo complejo.

(Obs: dibujar las distintas regiones del apartado a) en un sólo dibujo)

2.- (1,75 puntos) Deducir las condiciones de Cauchy-Riemann en coordenadas polares a partir de las condiciones de Cauchy-Riemann en coordenadas cartesianas. Calcular una función holomorfa (no en todo el plano complejo) f(z) tal que

$$Re f(z) = \ln(|z|^3).$$

Determinar un dominio "máximo" en que f puede ser holomorfa.

Parte B. Ecuaciones diferenciales.

3.- (2 puntos) Determinar qué condiciones deben cumplir $a,b,c\in\mathbb{R}$ para que la ecuación diferencial

$$x' = ax^2 + bx + c, \ a \neq 0,$$

tenga un único punto crítico. Bajo esas condiciones, ¿qué condiciones adicionales deben verificar a, b, c para que el punto crítico sea estable? Poner un ejemplo de valores a, b, c para los que se cumpla todo lo anterior, representar esquemáticamente las soluciones para esa elección (no es necesario resolverla).

4.- (2 puntos) Resolver la ecuación

$$3xy^2 - 4y + (3x - 4x^2y)y' = 0$$

sabiendo que admite un factor integrante del tipo $x^ny^m, m, n \in \mathbb{Z}$.

5.- (2,5 puntos) Determinar una solución general en forma de desarrollo en serie de potencias en torno de x=0 de la ecuación

$$(1+x^2)y'' - y' + y = 0.$$

Importante: Recuerde justificar las respuestas.

Duración del examen: 2 horas. Recuerde distribuir su tiempo para contestar los problemas de cada parte de la asignatura. No se permite el use de ningún tipo de material ni calculadora.

Parte A. Variable compleja.

1.- (1,75 puntos)

Demostrar que, si $z_0 \in \{z, 2 \le |z| \le 3\}$, entonces

$$\left| \frac{z_0^2 - 2}{z_0^2 + 5z_0 + 4} \right| < 11.$$

Calcular y dibujar $\{z, e^{2z} \in A\}$.

Parte B. Ecuaciones diferenciales.

3.-(2,25 puntos)

Resolver la ecuación diferencial

$$t^3 \frac{dx}{dt} + 3t^2 x = t$$
, $x(2) = 0$.

4.- (1,75 puntos)

- a) Decir cómo es una ecuación diferencial exacta.
- b) Decir qué es el wronskiano de una familia de funciones $\{f_i(x), i = 1, ..., n\}$ y para qué se usa.

5.- (2,5 puntos)

a) Determinar la solución general del sistema de ecuaciones diferenciales

$$\begin{cases} x_1' = x_1 + 3x_2 \\ x_2' = 2x_1 - 4x_2 \end{cases}$$

b) Hacer un dibujo aproximado del diagrama de fases del sistema, y clasificar el tipo de punto crítico que es el punto (0,0).

Importante: Recuerde justificar las respuestas.

Duración del examen: 2 horas. Recuerde distribuir su tiempo para contestar los problemas de cada parte de la asignatura. No se permite el use de ningún tipo de material ni calculadora.

Parte A. Variable compleja.

1.- (1,75 puntos)

Si denotamos por f(z) a la funcion raíz cuadrada principal, determinar en qué regiones del plano complejo son ciertas cada una de las siguientes igualdades:

- a) $f(z^2) = z$,
- b) f(iz) = f(i)f(z).
- 2.- (1,75 puntos)

Demostrar que si una función compleja g(z) es derivable es un punto entonces necesariamente ha de verificar las condiciones de Cauchy-Riemann en ese punto.

Poner un ejemplo de función compleja que no sea derivable en ningún punto del plano complejo.

Parte B. Ecuaciones diferenciales.

3.- (2 puntos)

Encontrar la solución general de la ecuación

$$y'' - y = x + e^{-x}$$
.

4.- (1.5 puntos)

Usando los contenidos teóricos del curso, ¿para qué valores iniciales (x_0, y_0) podemos asegurar que la ecuación

$$\frac{1}{3}y' = 4y^3x^2 + \sqrt[5]{y^2} + 2xy$$

tiene una única solución y(x).

5.-(2.5 puntos)

Dado el sistema de ecuaciones diferenciales

$$\begin{cases} x' = -5x/2 - \sqrt{3}y/2 \\ y' = -\sqrt{3}x/2 - 3y/2 \end{cases},$$

determinar su solución general.

Representar el diagrama de fases del sistema, y clasificar la estabilidad de sus puntos críticos.