(a) Microstructural Evolution Tool
(Writen in Python)

R1 $(\bar{\eta}, \mu, \sigma)$, R2 $(\bar{\eta}, \mu, \sigma)$, R3 $(\bar{\eta}, \mu, \sigma)$ R1 $(\bar{\eta}, \lambda, \sigma)$, R2 $(\bar{\eta}, \lambda, \sigma)$, R3 $(\bar{\eta}, \lambda, \sigma)$ R1 (η, r, σ)

Large Data ($\approx 10 \text{ TB}$) (Data compressed to hdf5 format)

- 1. ϵ_a , ϵ_v 2. (x_j, y_j, z_j) - $(x_i, y_i, z_i) \rightarrow \Delta$ 3. \bar{C}
- Generating Interpolated Data and Statistical Operations
- 1. Defining interpolation functions
- 2. Calculating instantaneous displacement
- 3. Obtaining microstructure evolution parameters
 - Plotting Functions
 - 1. Plotting instantaneous displacement
 - $2. \ \ Plotting \ mean \ number \ of \ contacts$
 - 3. Plotting zero or non-zero contacts

(b) Microstructure Evolution Parameters (For Interpolated Data)

Parameters $(\bar{C}, \bar{C}(\sigma), A_{ij}(\bar{C}(\sigma), c_n, \hat{C}, \bar{n}(u))$ (1) \bar{C} or $\bar{C}(\sigma)$ or $A_{ij}(\bar{C}(\sigma) \to \text{Based on mean number of contacts per particle}$

(2) $c_n \to \text{Number of particles with } n \text{ contacts}$ (3) \hat{C} or $\hat{C}(\sigma) \to \text{Based on normalized standard deviation of } \bar{C}$ over entire.

(1)-(2) Measure extent of similarity of microstructures(3)-(4) Measure extent of particle participation

(3) \hat{C} or $\hat{C}(\sigma) \to \text{Based}$ on normalized standard deviation of \bar{C} over entire ϵ_a

