第4章 词法分析

第1题:

构造下列正规式相应的 DFA.

- (1) 1(0|1) *101
- (2) 1 (1010*|1(010)*1) *0
- (3) a((a|b)*|ab*a)*b
- (4) b((ab)*|bb)*ab

答案:

(1) 先构造 NFA:

用子集法将 NFA 确定化

	0	1
X		A
A	A	AB
AB	AC	AB
AC	A	ABY
ABY	AC	AB

除 X, A 外,重新命名其他状态,令 AB 为 B、AC 为 C、ABY 为 D,因为 D 含有 Y (NFA 的终态),所以 D 为终态。

	0	1
X		A
A	A	В
В	C	В
С	A	D
D	C	В

DFA 的状态图::

(2) 先构造 NFA:

用子集法将 NFA 确定化

	3	0	1
X	X		1
$T_0=X$	71		A
A	ABFL		TA .
$T_1 = ABFL$	ADIL	Y	CG
Y	Y	1	CO
CG	CGJ		
	CGJ		
T ₂ = Y		DII	17
T ₃ = CGJ	DII	DH	K
DH	DH		
K	ABFKL		
$T_4 = DH$			EI
EI	ABEFIL		
$T_5 = ABFKL$		Y	CG
$T_6 = ABEFIL$		EJY	CG
EJY	ABEFGJLY		
$T_7 = ABEFGJLY$		EHY	CGK
EHY	ABEFHLY		
CGK	ABCFGJKL		
T ₈ = ABEFHLY		EY	CGI
EY	ABEFLY		
CGI	CGJI		
T ₉ = ABCFGJKL		DHY	CGK
DHY	DHY		
T ₁₀ = ABEFLY		EY	CG
$T_{11} = CGJI$		DHJ	K
DHJ	DHJ		
T ₁₂ = DHY			EI
T_{13} = DHJ			EIK
EIK	ABEFIKL		
T ₁₄ = ABEFIKL		EJY	CG

将 T_0 、 T_1 、 T_2 、 T_3 、 T_4 、 T_5 、 T_6 、 T_7 、 T_8 、 T_9 、 T_{10} 、 T_{11} 、 T_{12} 、 T_{13} 、 $T_{14</sub>重新命名,分别用 <math>0$ 、1、2、3、4、5、6、7、8、9、10、11、12、13、14 表示。因为 2、7、8、10、12 中含有Y,所以它们都为终态。

	0	1
0		1
1	2	3
2		
3	4	5
4		6
5	2	3
6	7	3
7	8	9
8	10	11
9	12	9
10	10	3
11	13	5
12		6
13		14
14	7	3

(3) 先构造 NFA:

用子集法将 NFA 确定化

	ε	a	b
X	X		
$T_0=X$		A	
A	ABCD		
T_1 =ABCD		BE	BY
BE	ABCDE		
BY	ABCDY		
T ₂ =ABCDE		BEF	BEY
BEF	ABCDEF		
BEY	ABCDEY		
T ₃ =ABCDY		BE	BY
T ₄ =ABCDEF		BEF	BEY
T ₅ =ABCDEY		BEF	BEY

将 T_0 、 T_1 、 T_2 、 T_3 、 T_4 、 T_5 重新命名,分别用0、1、2、3、4、5 表示。因为3、5 中含有Y,所以它们都为终态。

	a	b
0	1	
1	2	3
2	4	5
3	2	3
4	4	5
5		5

(4) 先构造 NFA:

用子集法将 NFA 确定化:

111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	161		
	3	a	b
X	X		
$T_0=X$			A
A	ABDEF		
T ₁ =ABDEF		CI	G
CI	CI		
G	G		
T ₂ =CI			DY
DY	ABDEFY		
$T_3=G$			Н
Н	ABEFH		
T ₄ =ABDEFY		CI	G
T ₅ =ABEFH		CI	G

将 T_0 、 T_1 、 T_2 、 T_3 、 T_4 、 T_5 重新命名,分别用0、1、2、3、4、5 表示。因为4 中含有Y,所以它为终态。

	a	b
0		1
1	2	3
2		4
3		5
4	2	3
5	2	3

DFA 的状态图:

第2题:请描述下面正规式定义的串. 字母表 {0,1}.

- a) 0*(10+)*0*
- b) (0|1)*(00|11) (0|1)*
- c) 1(0|1)*0

答案:

- a) 每个 1 至少有一个 0 跟在后边的串
- b) 所有含两个相继的0或两个相继的1的串
- c) 必须以 1 开头和0结尾的串

第3题: 己知 NFA = ({ x,y,z }, { 0,1 }, M, { x }, { z }), 其中: $M(x,0)=\{z\}$, $M(y,0)=\{x,y\}$, $M(z,0)=\{x,z\}$,

 $M(x,1)=\{x\}$, $M(y,1)=\phi$, $M(z,1)=\{y\}$,构造相应的DFA。

答案: 先构造其矩阵

	0	1
X	Z	X
у	x,y	
z	x,z	у

用子集法将 NFA 确定化:

	0	1
X	Z	X
Z	XZ	у
XZ	XZ	ху
у	xy	
xy	xyz	X
xyz	xyz	xy

将 x、z、xz、y、xy、xyz 重新命名,分别用 A、B、C、D、E、F表示。因为 B、C、F中含有 z,所以它为终态。

	0	1
A	В	A
В	С	D
С	С	Е
D	Е	
Е	F	A
F	F	Е

DFA 的状态图:

第4题:将下图确定化:

答案:

用子集法将 NFA 确定化:

	0	1
S	V	Q
V	V	Q
Q	V	QU
V	Z	Z
V	Z	
QU	V	QU
Z	Z	Z

重新命名状态子集,令 VQ 为 A、QU 为 B、VZ 为 C、V 为 D、QUZ 为 E、Z 为 F。

	0	1
S	A	В
A	C	В
В	D	Е
С	F	F
D	F	
E	C	Е
F	F	F

DFA 的状态图:

第5题: 将下图的(a)和(b)分别确定化和最小化:

答案:

初始分划得

Π0: 终态组{0}, 非终态组{1,2,3,4,5}

对非终态组进行审查:

 $\{1,2,3,4,5\}$ a $\subset \{0,1,3,5\}$

而{0,1,3,5}既不属于{0},也不属于{1,2,3,4,5}

∵{4} a ⊂{0}, 所以得到新分划

 $\Pi 1: \{0\}, \{4\}, \{1,2,3,5\}$

对{1,2,3,5}进行审查:

:{1,5} b \subset {4}

{2,3} b ⊂{1,2,3,5}, 故得到新分划

 $\Pi 2: \{0\}, \{4\}, \{1,5\}, \{2,3\}$

 $\{1,5\}$ a $\subset \{1,5\}$

{2,3} a ⊂{1,3}, 故状态 2 和状态 3 不等价, 得到新分划

 $\Pi 3: \{0\}, \{2\}, \{3\}, \{4\}, \{1,5\}$

这是最后分划了

最小 DFA:

第6题:

构造一个 DFA,它接收 Σ ={0,1}上所有满足如下条件的字符串:每个 1 都有 0 直接跟在右边。并给出该语言的正规式。

答案:

按题意相应的正规表达式是(0*10)*0*, 或 0*(0 | 10)*0* 构造相应的 DFA, 首先构造 NFA 为

用子集法确定化:

I	I	I
{X,0,1,3,	{0,1,3, Y}	{
Y}	Y}	2
{0,1,3,	{0,1,3,	}
Y}	Y}	{
	(1.2	2.

重新命名状态集:

S	0	1
1	2	3
2	2	3
3	4	
4	4	3

DFA 的状态图:

可将该 DFA 最小化:

终态组为 $\{1,2,4\}$,非终态组为 $\{3\}$, $\{1,2,4\}$ 0 $\{1,2,4\}$, $\{1,2,4\}$ 1 $\{3\}$,所以 1,2,4 为等价状态,可合并。

第 7 题:给文法 G[S]: S→aA|bQ A→aA|bB|b B→bD|aQ Q→aQ|bD|b D→bB|aA E→aB|bF F→bD|aE|b

构造相应的最小的 DFA。

答案: 先构造其 NFA:

用子集法将 NFA 确定化:

7,4 7,1112,14 7,172,123		1 _e
	a	b
S	A	Q
A	A	BZ
Q	Q	DZ
BZ	Q	D
DZ	A	В
D	A	В
В	Q	D

将 S、A、Q、BZ、DZ、D、B 重新命名,分别用 0、1、2、3、4、5、6 表示。因为 3、4 中含有 z, 所以它们为终态。

0	h h
a	U

0	1	2
1	1	3
2	2	4
3	2	5
4	1	6
5	1	6
6	2	5

DFA 的状态图:

令P₀= ({0,1,2,5,6}, {3,4}) 用b进行分割:

P₁= ({0,5,6}, {1,2}, {3,4}) 再用b进行分割:

 P_2 =($\{0\}$, $\{5,6\}$, $\{1,2\}$, $\{3,4\}$)再用a、b 进行分割,仍不变。再令 $\{0\}$ 为 A, $\{1,2\}$ 为 B, $\{3,4\}$ 为 C, $\{5,6\}$ 为 D。 最小化为:

第8题:给出下述文法所对应的正规式:

 $S \rightarrow aA|bB$

 $A \rightarrow bS|b$

 $B\rightarrow aS|a$

答案:

解方程组 S 的解:

S=aA|bB

A=bS|b

B=aS|a

将A、B产生式的右部代入S中

S=abS|ab|baS|ba= (ab|ba) S| (ab|ba)

所以: S= (ab|ba)*(ab|ba)

第9题: 考虑正规表达式 r = a*b(a|b) ,构造可以生成语言 L(r) 的一个正规文法。

答案:

$$S \rightarrow a*b(a \mid b)$$

变换为 $S \rightarrow aA, S \rightarrow b(a|b), A \rightarrow aA, A \rightarrow b(a|b)$

变换为 $S \rightarrow aA, S \rightarrow bB, B \rightarrow (a \mid b), A \rightarrow aA, A \rightarrow bC, C \rightarrow (a \mid b)$

变换为 $S \rightarrow aA, S \rightarrow bB, B \rightarrow a, B \rightarrow b, A \rightarrow aA, A \rightarrow bC, C \rightarrow a, C \rightarrow b$

所以,一个可能的正规文法为 G[S]:

 $S \to aA, S \to bB, B \to a, B \to b \ , A \to aA \ , A \to bC, C \to a, C \to b$ 或表示为:

 $S \rightarrow aA \mid bB, B \rightarrow a \mid b, A \rightarrow aA \mid bC, C \rightarrow a \mid b$

(适当等价变换也可以,但要作说明,即要有步骤)