Bilgisayar Mühendisliğine Giriş -5. hafta Sayı Sistemleri

- Onluk, İkilik, Sekizlik ve Onaltılık sistemler
- Dönüşümler
- Tümleyen aritmetiği

Giriş

- Bilgisayar dış dünyadan verileri sayılar aracılığı ile kabul eder.
- Günümüz teknolojisinde bu işlem ikilik sayı sistemin ile gerçekleştirilir.
- İkilik sayı sistemindeki sayılarda 0 ve 1 olmak üzere iki farklı değerden oluştuğu için bilgisayar donanımında iki farklı gerilim seviyesi kullanılarak temsil edilir.
- İkilik sayı sisteminin yanında, sekizlik ve onaltılık gibi sayı sistemleri de programlamada kullanılmaktadır.

 Görüntüyü oluşturan pikseller kırmızı, yeşil ve mavi bilşenlerinden oluşur.
 Genelde her bir bileşen 8 bitlik çözünürlüğe sahiptir. Yani herbir bileşen 0-255 arası toplam 256 değer alır. Dolayısıyla bir pikseli saklamak için 24 bitlik alan gerekir.

Sayı sistemleri

Genel olarak bir S sayı sisteminin ifadesi:

$$S = d_n R^n + d_{n-1} R^{n-1} + \dots + d_2 R^2 + d_1 R^1 + d_0 R^0$$

Burada rakamlar *d*, taban *R* ile gösterilir.

Virgüllü sayı:

$$S = d_n R^n + d_{n-1} R^{n-1} + \dots + d_2 R^2 + d_1 R^1 + d_0 R^0, \ d_1 R^{-1} + d_2^{-2} + d_3 R^{-3} + \dots$$

Sayı sistemleri

Sık kullanılan bazı sayı sistemleri:

Onluk (Decimal) sistem

Genel ifade: digit: 0,1,2,3,4,5,6,7,8,9

$$Decimal = d_n 10^n + ... + d_3 10^3 + d_2 10^2 + d_1 10^1 + d_0 10^0,$$

$$d_{-1} 10^{-1} + d_{-2} 10^{-2} + d_{-2} 10^{-3} + ...$$

Onluk (Decimal) sistem

Örnek: 2017,2018

$$2017,2018 = 2 \times 10^{3} + 0 \times 10^{2} + 1 \times 10^{1} + 7 \times 10^{0}$$
$$+ 2 \times 10^{-1} + 0 \times 10^{-2} + 1 \times 10^{-3} + 8 \times 10^{-4}$$

Genel ifade:

$$Binary = d_n 2^n + \dots + d_3 2^3 + d_2 2^2 + d_1 2^1 + d_0 2^0,$$

$$d_{-1} 2^{-1} + d_{-2} 2^{-2} + d_{-2} 2^{-3} + \dots$$

10 tabanı	2 tabanı
0	0000000
1	0000001
2	0000010
3	0000011
• • •	• • •
65	01000001
66	01000010
67	01000011
• • •	• • •
254	11111110
255	1111111

10111010

MSB
En önemli bit
(Most Significant
Bit)

LSB
En önemsiz bit
(Most Significant
Bit)

Binary → **Decimal**

İkilik sistemden onluk sisteme dönüşüm

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $8 + 4 + 0 + 1$
= 13

Binary → Decimal

İkilik sistemden onluk sisteme dönüşüm

= 128 + 32 + 16 + 4 + 1

= 181

Örnek: $(10110101)_2 = ?$

$$(10110101)_2$$
= $1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

Binary → **Decimal**

İkilik sistemden onluk sisteme dönüşüm

Örnek: 8 bit ile ifade edilebilecek en büyük sayı nedir?

Binary → **Decimal**

İkilik sistemden onluk sisteme dönüşüm

Örnek: 8 bit ile ifade edilebilecek en büyük sayı nedir?

$$(111111111)_{2}$$

$$= 1 \times 2^{7} + 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1$$

$$= 255$$

Binary → **Decimal**

İkilik sistemden onluk sisteme dönüşüm

$$(101.101)_2 = (?)_{10}$$

$$(101.101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
$$= 4 + 1 + 1/2 + 1/8$$
$$= 5.75$$

Decimal → **Binary**

Onluk sistemden ikilik sisteme dönüşüm

$$(155)_{10} = (?)_2$$

<u>İşlem</u>	<u>Bölüm</u>	<u>Kalan</u>		
155/2	77	1	L.	SB
77/2	38	1		
38/2	19	0	١.	
19/2	9	1		$(10011011)_2$
9/2	4	1		
4/2	2	0		
2/2	1	0		
1	\rightarrow	1	M	ISB

Decimal → **Binary**

Onluk sistemden ikilik sisteme dönüşüm

$$(7.625)_{10} = (?)_2$$

İşlem	Bölüm	Kalan	İşlem	Çarpım	Tam kısım		
7/2	3	1	$0.625 \times$	2 = 1.25	1		MSB
3/2	1	1	0.25×2	= 0.50	0		
1	\rightarrow	1	0.50×2	= 1.0	1	-	LSB

$$(111.101)_2$$

Decimal → **Binary**

Onluk sistemden ikilik sisteme dönüşüm

Örnek:

$$(0.85)_{10} = (?)_2$$

İşlem	Çarpım	Tam kısım	
0.85×2	=1.70	1	
0.70×2	=1.40	1	
0.40×2	= 0.80	0	$(0.85)_{10} = (11011)_2$
0.80×2	=1.60	1	
0.60×2	=1.20	1	•

İşlemler devam ettirilebilir.

Toplama:

Çıkarma:

```
101
- 11
010
```

Çarpma

101

<u>x 11</u>

101

<u>+101</u>

1111

Bölme

$$D = d_n 8^n + \dots + d_3 8^3 + d_2 8^2 + d_1 8^1 + d_0 8^0,$$

$$d_{-1} 8^{-1} + d_{-2} 8^{-2} + d_{-2} 8^{-3} + \dots$$

- Sekizli sayı sistemi, ikili sayıları gösterimini basitleştirmek için kullanılır.
- Geçmiş yıllarda, 12-bit, 24-bit veya 36-bit gibi 3 ile bölünebilen kelime uzunluğuna sahip bilgisayarlarda kullanılmıştır.
- Günümüzde, 16 bit, 32 bit veya 64 bit gibi kelime uzunluğu sekize bölünen bilgisayarlarda yerini onaltılık sayı sistemine bırakmıştır.

Octal -> Decimal

Sekizlik sistemden onluk sisteme dönüşüm

•
$$(37246)_8 = (16038)_{10}$$

Decimal → Octal

Onluk sistemden sekizlik sisteme dönüşüm

$$\bullet$$
 (37)₁₀ = (45)₈

Decimal → Octal

Onluk sistemden sekizlik sisteme dönüşüm

$$\bullet$$
 (333)₁₀ =(515)₈

$$H = d_n 16^n + \dots + d_3 16^3 + d_2 16^2 + d_1 16^1 + d_0 16^0,$$

$$d_{-1} 16^{-1} + d_{-2} 16^{-2} + d_{-2} 16^{-3} + \dots$$

- Sekizli sayı sistemi gibi ikili sayıları gösterimini basitleştirmek için kullanılır.
- Günümüz bilgisayar sistemlerinde yaygın olarak kullanılır.
- Örnekler:
 - Görüntü renk kodları
 - Adres kodları
 - Makine kodları vb..

Onaltılık sistemde rakamlar:

• 0,1,2,3,4,5,6,7,8,9,A,B,C,D

Decimal	0	1	•••	9	10	11	12	13	14	15
Hexadecimal	0	1	• • •	9	A	В	C	D	E	F

Decimal → **Hexadecimal**

Onluk sistemden onaltılık sisteme dönüşüm

•••			
	rn	$\mathbf{\alpha}$	/•
U		C	N .

$$(333)_{10} = (?)_{16}$$

İşlem	Bölüm	Kalan	LSB
333/16	20	D	
20/16	1	4	$(14D)_{16}$
1	\rightarrow	1	MSB

Hexadecimal→Decimal

Onaltılık sistemden onluk sisteme dönüşüm

$$(14D)_{16} = (?)_{10}$$

$$(14D)_{16} = 1 \times 16^2 + 4 \times 16^1 + 13 \times 16^0$$

= $256 + 64 + 13$
= 333

Sistemler arası dönüşüm örnekleri

$$(111101)_2 = (?)_8$$

$$(11101)_2 = (29)_{10}$$

 $(29)_{10} = (35)_8$

Sistemler arası dönüşüm örnekleri

 $(11101)_2 = (?)_8$ $(11101)_2$ $(011)_2$ $(101)_2$

Sistemler arası dönüşüm örnekleri

Örnek: $(2574)_8 = (?)_2$

$$(2574)_{8}$$

$$(010 101 111 100)_{2}$$

Sistemler arası dönüşüm örnekleri

 $(101110111111101)_2 = (?)_{16}$ Örnek: $(0010 1110 1111 1101)_2$ $(2)_{16}$ $(E)_{16}$ $(F)_{16}$ $(D)_{16}$

 $(2EFD)_{16}$

Sistemler arası dönüşüm örnekleri

Ornek:
$$(2FA5)_{16} = (?)_2$$

$$(2FA5)_{16}$$

$$(0010 1111 1010 0101)_2$$

$$(00101111110100101)_2$$

Sistemler arası dönüşüm örnekleri

Örnek: $(F51A)_{16} = (?)_8$

$$(F51A)_{16} = (1111010100011010)_2$$

$$(001 | 111 | 010 | 100 | 011 | 010)_2$$

 $(172432)_8$

Tümleyen aritmetiği

• Bilgisayarlarda çıkarma işlemini gerçekleştirmek için tümleyen aritmetiği kullanılır. M iki tabanında bir sayı, N bu sayının basamak adedi olmak üzere M sayısının 1 ve 2 tümleyeni aşağıdaki gibi belirlenir:

• 1 tümleyen aritmetiği

$$r = 2^N - (M)_2 - 1$$

• 2 tümleyen aritmetiği

$$r = 2^N - (M)_2$$

Tümleyen aritmetiği

- •Örnek: 1010
- N=4
- 1 tümleyeni:
- •10000-1010-1=
- 1111-1010= 0101

(bitlerin terslenmiş hali)

Tümleyen aritmetiği

- •Örnek: 1010
- N=4
- 2 tümleyeni:

•

10000-1010=0110

• (1 tümleyeni+1)

1 tümleyeni

Sayı 1 tümleyeni
$$0 \rightarrow 1$$
 $1 \rightarrow 0$ $1111 \rightarrow 0000$ $1010 \rightarrow 0101$ $10100011 \rightarrow 01011100$

$$r = 10 - 0 - 1 = 1$$

Sayını her bir bitini tersleyerek 1 tümleyeni belirlenir

$$r = 100000000 - 101000111 - 1 = 101011100$$

2 tümleyeni

Pratikte 2 tümleyenini hesaplamak için 1 tümleyeni hesaplanır ve sonuca 1 eklenir.

2 tümleyeni ile çıkarma işlemi

- M-N işlemini gerçekleştirmek için
- N sayısının negatifi ile M sayısı toplanır.
- M-N=M+(-N)

Örnek:

2 tümleyeni ile çıkarma işlemi

- M-N işlemini gerçekleştirmek için
- N sayısının negatifi ile M sayısı toplanır.
- M-N=M+(-N)

Örnek:

En yüksek değerli bitin 1
olması sayının negatif
olduğunu gösterir.
Bu değerin ne olduğunu
öğrenmek için,
sayının tekrar 2 tümleyenini
alırsak 0110 olduğu görülür
venegatiftir
(-0110)

1010

Örnekler

İşaretli	Onluk
sayı	değeri
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

İşaretli	Onluk
sayı	değeri
1 000	-8
1 001	-7
1 010	-6
1 011	-5
1 100	-4
1 101	-3
1110	-2
1111	-1

Negatif (1 ile başlayan sayılarda) sayının değerini anlamak için 2 tümleyenini alınıp önüne — işareti yazarız. Örneğin: 1101 sayısı onluk 13 sayısına karşılık gelirken, eğer bu işaretli sayı ise -0011=-3 sayısına karşılık gelmektedir.

```
public static void main(String[] args) {
//örnek sayı tanımlamaları
int s1=1234;
System.out.println ("Decimal="+s1+"-> Binary="
        +Integer.toBinaryString(s1));
System.out.println ("Decimal="+s1+"-> Hexadecimal="
        +Integer. toHexString(s1));
//sayının değeri hexadecimal belirtilebilir
int s2=0xabc;
System.out.println ("s2="+s2);
//sayının değeri binary belirtilebilir
int s3=0b11111111;
 System.out.println ("s3="+s3);
```

```
System. out. println ("\n--- Toplama örneği ---");
int x=8;
int y=10;
int z=x+y;
System. out. printf("\t%7s\n", Integer. toBinaryString(x));
System. out. printf("\t%7s\n", Integer. toBinaryString(y));
System.out.printf("\t+----\n");
System. out. printf("\t%7s\n", Integer. toBinaryString(z));
```

```
Output - SayiSistemleri (run) X SayiSistemleri.java X
👘 Projects 🗓
     run:
     Onluk=1234-> İkilik=10011010010
     Onluk=1234-> Onaltilik=0x4d2
     s2=110235
     s3 = 255
          Toplama örneği ---
                     1000
                        11
                     1011
```

```
System.out.println ( --- Toplama örneği ---
int x=8; 1000
int y=-3; Sayıyı negatif yaparsak +-----
int z=x+y; 101
```

```
System.out.printf("\
System.out.printf("\
System.out.printf("\
```

int veri tipi 32bit olduğu için -3 sayısının karakter adedi 32 tane. Bitleri tersleyip sayıya 1 ekledikten sonra önüne negatif işaret konursa, sayının -3 olduğu görülür

```
1- (63)<sub>10</sub> sayısının ikilik sistemdeki karşılığı aşağıdakilerden hangisidir?
```

- a) (111101)₂
- b) (100001)₂
- c) $(1111111)_2$
- d) $(100000)_2$

2- (10101)₂ sayısının onluk sistemdeki karşılığı aşağıdakilerden hangisidir?

- a) $(11)_{10}$
- b) $(21)_{10}$
- c) $(25)_{10}$
- d) $(15)_{10}$

- 3- $(1011101101)_2$ sayısının onaltılık sistemdeki karşılığı aşağıdakilerden hangisidir?
- a) $(2AB)_{16}$
- b) (5AB)₁₆
- c) $(74B)_{16}$
- d) $(2EC)_{16}$

- 4- (A5F)₁₆ sayısının ikilik sistemdeki karşılığı aşağıdakilerden hangisidir?
- a) 101001011111
- b) 100001011111
- c) 100111011011
- d)110001011111

```
5- (010101)<sub>2</sub> sayısının 1 tümleyeni aşağıdakilerden hangisidir?
```

- a) (010101)₂
- b) $(101010)_2$
- c) $(000111)_2$
- d) $(110111)_2$

6-(010101)₂ sayısının 2 tümleyeni aşağıdakilerden hangisidir?

- a) (010101)₂
- b) (101010)₂
- c) $(001011)_2$
- d) $(101011)_2$

```
7- \frac{1010}{x \ 101} işleminin sonucu aşağıdakilerden hangisidir?
```

- a) (110010)₂
- b) (100010)₂
- c) $(101010)_2$
- d) $(10001)_2$

8- C=1010-0011 yanda verilen 4 bitlik iki sayı üzerinde gerçekleştirilen çıkarma işleminin 2 tümleyeni kullanılarak toplama işlemi cinsinden ifadesi aşağıdakilerden hangisidir

- a) C=1101+0011
- b) C=1010+1101
- c) C=1010+0111
- d) C=1010+1011