# Praktikum 1 : DGL

## Oliver Steenbuck, Karolina Bernat

## 31.10.2012

## Inhaltsverzeichnis

| 1 | Stei         | fe Differentialgleichungen 2 |
|---|--------------|------------------------------|
|   | 1.1          | Gleichung                    |
|   | 1.2          | Iterationslgeichungen        |
|   |              | 1.2.1 Euler, explizit        |
|   |              | 1.2.2 Euler, implizit        |
|   |              | 1.2.3 Runge Kutta 2. Ordnung |
| 2 | Van          | der Pol DGL                  |
|   | 2.1          | Gleichung                    |
|   | 2.2          | Gleichung als DGL 1. Ordnung |
|   | 2.3          | Euler Verfahren              |
|   | 2.4          | Runge Kutta 2. Ordnung       |
|   | 2.5          | Ergebnisse                   |
|   |              | 2.5.1 h=0.001                |
|   |              | 2.5.2 h=0.02                 |
|   | 2.6          | Matlab Programme             |
| ^ | <b>LL:</b> I |                              |
| A | DDII         | dungsverzeichnis             |
|   | 1            | Van Der Pol DGL Y1 h=0.001   |
|   | 2            | Van Der Pol DGL Y2 h=0.001   |
|   | 3            | Van Der Pol DGL Y1 h=0.02    |
|   | 4            | Van Der Pol DGL Y2 h=0.02    |
| L | istir        | ngs                          |
|   |              |                              |
|   | 1            | VanDerPol GDL                |

| MT, Pareigis                     | 1 Steife Differentialgleichungen                                                   | Praktikum 1 |  |  |
|----------------------------------|------------------------------------------------------------------------------------|-------------|--|--|
| 2 VanDerPol .                    |                                                                                    | 4           |  |  |
| 1 Steife Differentialgleichungen |                                                                                    |             |  |  |
| 1.1 Gleichung                    |                                                                                    |             |  |  |
|                                  | $y(0) = 1$<br>$y' = 10 - 500 \cdot y + 5000 \cdot x$                               | (1)<br>(2)  |  |  |
| 1.2 Iterationslgeichungen        |                                                                                    |             |  |  |
| 1.2.1 Euler, explizit            |                                                                                    |             |  |  |
|                                  | y(0) = 1<br>$y_{j+1} = y_j + h \cdot (10 - 500 \cdot y_j + 5000 \cdot x_j)$        | (3)<br>(4)  |  |  |
| 1.2.2 Euler, implizit            |                                                                                    |             |  |  |
|                                  | $f(0) = 1$ $f_{j+1} = y_j + h \cdot (10 - 500 \cdot y_{j+1} + 5000 \cdot x_{j+1})$ | (5)<br>(6)  |  |  |

Wobei hier  $y_{j+1}$ mit dem Newton Verfahren Approximiert wird.

#### 1.2.3 Runge Kutta 2. Ordnung

Es gelte  $f(x) = 10 - 500 \cdot y + 5000 \cdot x$ 

$$y(0) = 1 \tag{7}$$

$$y_{j+1} = y_j + \frac{h}{2} \cdot (f(x_{j+1}, y_j) + f(x_{j+1}, h \cdot f(x_j, y_j)))$$
(8)

Generiert am: 27. Oktober 2012

Karolina Bernat, Oliver Steenbuck

2/6

#### 2 Van der Pol DGL

#### 2.1 Gleichung

$$y(0) = 0 (9)$$

$$\dot{y}(0) = 1 \tag{10}$$

$$\ddot{y} = 6 \cdot (1 - y^2) \cdot \dot{y} - y \tag{11}$$

#### 2.2 Gleichung als DGL 1. Ordnung

$$\dot{z} = 6 \cdot (1 - y^2) \cdot z - y \tag{12}$$

$$\dot{y} = z \tag{13}$$

#### 2.3 Euler Verfahren

$$z_{1_{n+1}} = z_{1_n} + h \cdot (6 \cdot (1 - z_{2_n}^2) \cdot z_{1_n} - z_{2_n})$$
(14)

$$z_{2_{n+1}} = z_{2_n} + h * z_{1_n} (15)$$

#### 2.4 Runge Kutta 2. Ordnung

Es gelte

$$g(t,y) = z \tag{16}$$

$$f(y,z) = 6 \cdot (1 - y^2) \cdot z - y \tag{17}$$

Dann können wir durch einsetzen von (16) und (17) in Runge Kutta 2. Ordnung die Iterationsgleichungen erstellen:

$$y_{j+1} = y_j + \frac{h}{2} \cdot [g(t_j, y_j) + g(t_{j+1}, y_i h \cdot g(t_j, y_j))]$$
(18)

$$z_{j+1} = z_j + \frac{h}{2} \cdot [f(y_j, z_j) + f(y_{j+1}, z_j + h \cdot f(y_j, z_j))]$$
(19)

#### 2.5 Ergebnisse

#### 2.5.1 h=0.001

Bei einer Schrittweite h von 0.001 ist zu erkennen das beide Approximationsverfahren (Expliziter Euler und Runge Kutta 2. Ordnung) mit der aus Simulink extrahierten

Generiert am: 27. Oktober 2012

Karolina Bernat, Oliver Steenbuck

3/6

Approximation (Dormand-Prince, Variable Step Size) übereinstimmen.

#### 2.5.2 h=0.02

Bei einer Schrittweite h von 0.02 ist zu erkennen das das simplere Approximationsverfahren (Expliziter Euler) deutlich von der aus Simulink extrahierten Approximation (Dormand-Prince, Variable Step Size) abweicht während das komplexere Verfahren (Runge Kutta 2. Ordnung) auch hier noch sehr dicht an Simulink liegt.

#### 2.6 Matlab Programme

#### Listing 1: VanDerPol GDL

```
function [ res ] = vdp( x, y )
2 % Van-Der-Pol-Gleichung zu Aufgabe 2
res = [y(2); 6 * (1 - y(1)^2) * y(2) - y(1)];
6 end
```

#### Listing 2: VanDerPol

```
2
3
5
 %hold on;
  plot (121);
  9
12
13
14
  figure
plot(122);
15
  16
17
18
19
20
end
21
```



Abbildung 1: Van Der Pol DGL Y1 h=0.001



Abbildung 2: Van Der Pol DGL Y2 h=0.001



Abbildung 3: Van Der Pol DGL Y1 h=0.02



Abbildung 4: Van Der Pol DGL Y2 h=0.02