In the claims:

1. (original): An optical recording medium comprising a substrate, a recording layer and optionally one or more reflecting layers, wherein the recording layer comprises a compound of formula

M denotes 2 hydrogen atoms or a 2- to 4-valent metal which can optionally be coordinated or bonded to 1 or 2 additional ligands;

each A independently of the others is an unsaturated divalent radical which may be unsubstituted or mono- or poly-substituted by Y and/or by $SO_2N(R_3)NR_1R_2$ and together with the two carbon atoms of the fused-on porphyrazine moiety forms an aromatic homo- or N-hetero-cyclic ring system; each Y independently of all others is halogen, R_4 , OH, OR_4 , SR_4 , NO_2 , NR_4R_5 , $O-CO-R_4$, NR_4-CO-R_5 , CN, $COOR_4$, $CONHR_4$, $CONR_4R_5$, $CO-R_4$, SO_2R_4 , SO_2NH_2 , SO_2NHR_4 , $SO_2NR_4R_5$, $P(=O)R_4R_5$, $PO(R_4)OR_5$, $PO(OR_4)OR_5$, or C_1-C_{12} alkyl, C_3-C_{12} cycloalkyl, C_2-C_{12} alkenyl or C_3-C_{12} cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 , or C_6-C_{14} aryl, C_4-C_{12} heteroaryl, C_7-C_{18} aralkyl or C_5-C_{16} heteroaralkyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_7 ;

 R_1 is hydrogen, COOR₄, CONHR₄, CONR₄R₅, CO-R₄, SO₂R₄, P(=O)R₄R₅, PO(R₄)OR₅, PO(OR₄)OR₅, or C₁-C₁₂alkyl, C₃-C₁₂cycloalkyl, C₂-C₁₂alkenyl or C₃-C₁₂cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R₆, or C₆-C₁₄aryl, C₄-C₁₂heteroaryl, C₇-C₁₈aralkyl or C₅-C₁₆heteroaralkyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R₇;

R₂ and R₃ are each independently of the other hydrogen or R₈;

 R_4 , R_5 and R_8 are each independently of the others C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_2 - C_{12} alkenyl or C_3 - C_{12} cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 , or C_6 - C_{14} aryl, C_4 - C_{12} heteroaryl, C_7 - C_{18} aralkyl or C_5 - C_{16} heteroaralkyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_7 ;

 R_6 is halogen, hydroxy, O- R_9 , O-CO- R_9 , S- R_9 , CO- R_9 , cyano, carboxy, carbamoyl, COO- R_9 , CONH- R_9 , CONR₉R₁₀, SO₂R₉ or SO₃R₉;

 R_7 is halogen, nitro, cyano, hydroxy, R_{11} , $C(R_{12})$ = $CR_{13}R_{14}$, O-CO- R_{15} , formyl, $NR_{15}R_{16}$, $CONH_2$, $CONH_{15}$, $CONH_{15}R_{16}$, SO_2R_{15} , SO_2NH_2 , SO_2NHR_{15} , $SO_2NR_{15}R_{16}$, COOH, $COOR_{15}$, $OCOOR_{15}$, $NHCOR_{15}$, $NR_{15}COR_{17}$, $NHCOOR_{15}$, $NR_{15}COOR_{17}$, $P(=O)R_{15}R_{17}$, $P(=O)R_{15}OR_{17}$, $P(=O)OR_{15}OR_{17}$, or C_1 - C_1 2alkyl, C_3 - C_1 2cycloalkyl, C_2 - C_1 2alkenyl, C_3 - C_1 2cycloalkenyl, C_1 - C_1 2alkylthio, C_3 - C_1 2cycloalkenylthio, C_3 - C_1 2cycloalkenylthio, C_3 - C_1 2cycloalkenylthio, C_3 - C_1 2cycloalkenylthio, C_3 - C_1 2cycloalkenyloxy or C_3 - C_1 2cycloalkenyloxy each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 ;

 R_9 and R_{10} are each independently of the other C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_2 - C_{12} alkenyl, C_3 - C_{12} cycloalkenyl, C_6 - C_{14} aryl, C_4 - C_{12} heteroaryl, C_7 - C_{18} aralkyl or C_5 - C_{16} heteroaralkyl; or R_9 and R_{10} together with the common N are pyrrolidine, piperidine, piperazine or morpholine each unsubstituted or mono- to tetra-substituted by C_1 - C_4 alkyl;

 R_{11} is C_6 - C_{14} aryl, C_4 - C_{12} heteroaryl, C_7 - C_{18} aralkyl or C_5 - C_{16} heteroaralkyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_{18} ;

 R_{12} is hydrogen, cyano, halogen, nitro, or C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_2 - C_{12} alkenyl or C_3 - C_{12} cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy, C_1 - C_{12} alkoxy or C_3 - C_{12} cycloalkoxy radicals, or C_6 - C_{14} aryl, C_4 - C_{12} heteroaryl, C_7 - C_{18} aralkyl or C_5 - C_{16} heteroaralkyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 and/or by nitro;

 R_{13} and R_{14} are each independently of the other $NR_{15}R_{16}$, CN, $CONH_2$, $CONH_{15}$, $CONR_{15}R_{16}$ or $COOR_{16}$;

 R_{15} , R_{16} and R_{17} are each independently of the others R_{11} , or C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_2 - C_{12} alkenyl or C_3 - C_{12} cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy, C_1 - C_{12} alkoxy or C_3 - C_{12} cycloalkoxy radicals; or R_{15} and R_{16} together with the common N are pyrrolidine, piperidine, piperazine or morpholine each unsubstituted or mono- to tetra-substituted by C_1 - C_4 alkyl; or carbazole, phenoxazine or phenothiazine each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_{18} ;

 R_{18} is nitro, SO_2NHR_9 , $SO_2NR_9R_{10}$, or C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_1 - C_{12} alkylthio, C_3 - C_{12} cycloalkylthio, C_1 - C_{12} alkoxy or C_3 - C_{12} cycloalkoxy each substituted by one or more, where applicable identical or different, radicals R_6 ; and

- is a number from 1 to 8, preferably from 2 to 4, and y is a number from 0 to 15, the sum x + y being a number from 1 to 16; wherein from 2 to 10 identical or different radicals of formula (I) can be bonded to one another by one or more additional bonds between two or more identical or different R_1 , R_2 , R_3 or Y, so that dimers, trimers or oligomers having from 4 to 10 phthalocyanine units are formed.
- 2. (original): An optical recording medium according to claim 1, wherein in formula (I)
 - A is 1,4-butadienylene;
 - M denotes 2 hydrogen atoms, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Pd, Sn, Hf,
 Pt or Pb, optionally coordinated or bonded to 1 or 2 additional ligands, depending upon valency;
 - Y is hydrogen, bromine, iodine, OR₄, NO₂, CN, unsubstituted C₁-C₁₂alkyl, C₃-C₁₂cycloalkyl or C₂-C₁₂alkenyl, or C₆-C₁₀aryl or C₇-C₁₂aralkyl each unsubstituted or substituted by one or more,
 where applicable identical or different, radicals R₇;
 - R₁ is COOR₄, CONHR₄, CONR₄R₅, CO-R₄, SO₂R₄, or C₆-C₁₀aryl, C₄-C₈heteroaryl or C₇-C₁₂aralkyl each unsubstituted or substituted by R₇;
 - R₂ and R₃ are each independently of the other hydrogen or R₈;
 - R₄, R₅ and R₈ are each independently of the others C₃-C₈alkyl, C₃-C₈cycloalkyl or C₃-C₈alkenyl each unsubstituted or substituted by R₆, or C₆-C₁₀aryl or C₇-C₁₂aralkyl each unsubstituted or substituted by R₇;
 - R₆ is halogen, hydroxy, O-R₉, O-CO-R₉, CO-R₉, cyano or SO₂R₉;

- R₇ is halogen, nitro, cyano, O-CO-R₁₅, NR₁₅R₁₆, CONHR₁₅, CONR₁₅R₁₆, SO₂R₁₅, SO₂NH₂, SO₂NHR₁₅, SO₂NR₁₅R₁₆, COOH, COOR₁₅, NHCOR₁₅, NR₁₅COR₁₇, or unsubstituted or substituted C₁-C₁₂alkyl, C₃-C₁₂cycloalkyl, C₁-C₁₂alkoxy or C₃-C₁₂cycloalkoxy;
- R₉ and R₁₀ are each independently of the other C₁-C₈alkyl, C₃-C₆cycloalkyl, C₂-C₈alkenyl,
 C₃-C₆cycloalkenyl or phenyl;
- R₉ and R₁₀ together with the common N are pyrrolidine, piperidine, piperazine or morpholine
 each unsubstituted or mono- to tetra-substituted by C₁-C₄alkyl;
- R₁₅, R₁₆ and R₁₇ are each independently of the others C₁-C₈alkyl, C₅-C₆cycloalkyl, C₂-C₈alkenyl or C₅-C₆cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy or C₁-C₄alkoxy radicals, or phenyl or benzyl each unsubstituted or substituted by one or more, where applicable identical or different, halogen, nitro, C₁-C₈alkyl or C₁-C₄alkoxy radicals;
- R₁₅ and R₁₆ together with the common N are pyrrolidine, piperazine or morpholine each unsubstituted or mono- to tetra-substituted by C₁-C₄alkyl; and/or
- x is a number from 1 to 4, and y is a number from 0 to 4,
- wherein from 2 to 5 identical or different radicals of formula (I) can be bonded to one another by one or more additional bonds between two or more identical or different R₁, R₂, R₃ or Y, so that dimers, trimers or oligomers having 4 or 5 phthalocyanine units are formed.
- 3. (currently amended): An optical recording medium according to claim 1-or-2, wherein in formula (I)
 - M is Co(II), Ni(II), Cu(II), Zn(II), Sn(II) or Pb(II); especially Cu(II);
 - Y is hydrogen, bromine or OR₄, very especially hydrogen;
 - R₁ is COOR₄, CONHR₄, CONR₄R₅, CO-R₄, SO₂R₄, or unsubstituted or substituted phenyl or C₇-C₁₂aralkyl, very especially CO-R₄, SO₂R₄ or unsubstituted or substituted phenyl or C₇-C₁₂aralkyl;
 - R₂ and R₃ are each independently of the other hydrogen or C₁-C₁₂alkyl;
 - R₄, R₅ and R₈ are each independently of the others C₃-C₈alkyl unsubstituted or substituted by R₆, or phenyl unsubstituted or substituted by R₇;
 - R₆ is halogen, hydroxy, O-R₉, O-CO-R₉, CO-R₉, cyano or SO₂R₉;
 - R₇ is halogen, nitro, cyano, O-CO-R₁₅, NR₁₅R₁₆, or C₁-C₁₂alkyl, C₃-C₁₂cycloalkyl, C₁-C₁₂alkoxy or C₃-C₁₂cycloalkoxy each unsubstituted or substituted by R₆;
 - R₉ and R₁₀ are each independently of the other C₁-C₄alkyl or phenyl;

- R₉ and R₁₀ together with the common N are piperidine or morpholine each unsubstituted or mono- to tetra-substituted by C₁-C₂alkyl;
- R₁₅, R₁₆ and R₁₇ are each independently of the others C₁-C₄alkyl unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy or C₁-C₄alkoxy radicals; and/or
- R₁₅ and R₁₆ together with the common N are piperidine or morpholine each unsubstituted or mono- to tetra-substituted by C₁-C₄alkyl.
- 4. (currently amended): An optical recording medium according to claim 1, 2 or 3, wherein the recording layer contains from 1 to 100 % by weight, preferably from 20 to 100 % by weight, especially from 50 to 100 % by weight, of the compound of formula (I) or of a mixture of compounds of formula (I).
- 5. **(currently amended):** An optical recording medium according to claim 1, 2, 3, 4 or 5, wherein substrate, recording layer, reflector layer and, if present, covering layer are arranged in that order.
- 6. (currently amended): An optical recording medium according to claim 1, 2, 3, 4 or 5, additionally comprising a covering layer, wherein substrate, reflector layer, recording layer and covering layer are arranged in that order.
- 7. (currently amended): An optical recording medium according to claim 1, 2, 3 or 4, wherein the recording layer has marks of different lengths, the shortest of which are almost circular and the longest of which are of a length corresponding to approximately four times the width.
- 8. (currently amended): A method of recording or playing back data, wherein the data on an optical recording medium according to claim 1, 2, 3, 4, 5, 6 or 7 are recorded or played back at a wavelength of from 300 to 500 nm.
- 9. (original): A method according to claim 8, wherein the recording takes place at a linear speed v of at least 4.8 m·s⁻¹ and an output P of at most $[v/0.1\text{m·s}^{-1}]^{\frac{1}{2}}$ mW.
- 10. (cancelled)

- 11. **(original):** An optical recording medium comprising a substrate having depressions, a recording layer and optionally one or more reflecting layers, wherein the recording layer has a thickness of from 30 to 80 nm in the depressions and a thickness of from 20 to 70 nm next to the depressions, the difference between the layer thickness in the depressions and the layer thickness next to the depressions being a maximum of 20 nm, preferably a maximum of 10 nm.
 - 12. (currently amended): An optical recording medium according to claim 11, wherein the recording layer comprises a compound of formula (I) according to claim 1., 2 or 3.
 - 13. (currently amended): A method of recording or playing back data, wherein marks of different reflectivity are created or read on an optical recording medium according to claim 11 or 12 using a laser beam.
 - 14. (original): A method according to claim 13, wherein the marks are of lower reflectivity.
 - 15. (currently amended): A method according to claim 13-or-14, wherein the laser beam is directed through the substrate into the depressions of the recording layer.
 - 16. (currently amended): A method according to claim 13, 14 or 15, wherein the laser beam has a wavelength of from 300 to 500 nm.
 - 17. (new): An optical recording medium according to claim 2, wherein in formula (I)
 - M is Co(II), Ni(II), Cu(II), Zn(II), Sn(II) or Pb(II);
 - Y is hydrogen, bromine or OR₄, very especially hydrogen;
 - R₁ is COOR₄, CONHR₄, CONR₄R₅, CO-R₄, SO₂R₄, or unsubstituted or substituted phenyl or C₇-C₁₂aralkyl, very especially CO-R₄, SO₂R₄ or unsubstituted or substituted phenyl or C₇-C₁₂aralkyl;
 - R₂ and R₃ are each independently of the other hydrogen or C₁-C₁₂alkyl;
 - R₄, R₅ and R₈ are each independently of the others C₃-C₈alkyl unsubstituted or substituted by R₆, or phenyl unsubstituted or substituted by R₇;
 - R₆ is halogen, hydroxy, O-R₉, O-CO-R₉, CO-R₉, cyano or SO₂R₉;
 - R₇ is halogen, nitro, cyano, O-CO-R₁₅, NR₁₅R₁₆, or C₁-C₁₂alkyl, C₃-C₁₂cycloalkyl, C₁-C₁₂alkoxy or C₃-C₁₂cycloalkoxy each unsubstituted or substituted by R₆;

- R₉ and R₁₀ are each independently of the other C₁-C₄alkyl or phenyl;
- R₉ and R₁₀ together with the common N are piperidine or morpholine each unsubstituted or mono- to tetra-substituted by C₁-C₂alkyl;
- R₁₅, R₁₆ and R₁₇ are each independently of the others C₁-C₄alkyl unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy or C₁-C₄alkoxy radicals; and/or
- R₁₅ and R₁₆ together with the common N are piperidine or morpholine each unsubstituted or mono- to tetra-substituted by C₁-C₄alkyl.
- 18. (new): An optical recording medium according to claim 3, wherein in formula (I) M is Cu(II).
- 19. (new): An optical recording medium according to claim 17, wherein in formula (I) M is Cu(II).
- 20. (new): An optical recording medium according to claim 1, wherein the recording layer contains from 20 to 100 % by weight of the compound of formula (I) or of a mixture of compounds of formula (I).