Small Resource-Rich Economies and the Green Transition

Oliver Loertscher

McMaster University

September 2024

Big Picture

- (1) Almost every country has signalled or is actively pursuing Net-Zero status
 - Current policy or in law: 60% of countries
 - ▶ Proposed or pledged: 37% of countries
- (2) Prices of clean inputs are falling
- (3) Adoption of clean energy is increasing

Big Picture

- (1) Almost every country has signalled or is actively pursuing Net-Zero status
 - ► Current policy or in law: 60% of countries
 - ▶ Proposed or pledged: 37% of countries
- (2) Prices of clean inputs are falling
- (3) Adoption of clean energy is increasing

If these trends hold and the world reaches Net-Zero, what are the welfare implications in fossil-fuel producing economies?

Motivation

- ► Net-Zero Targets:
 - Large Economies: China (2060), Germany (2045), India (2070), Japan (2050), USA (2050)
 - ➤ Small Resource-Rich Economies: Australia (2050), Canada (2050), Nigeria (2070), Norway (2030)

Motivation

- ► Net-Zero Targets:
 - Large Economies: China (2060), Germany (2045), India (2070), Japan (2050), USA (2050)
 - ➤ Small Resource-Rich Economies: Australia (2050), Canada (2050), Nigeria (2070), Norway (2030)
- ► Fossil fuel extraction (coal, oil, gas) accounts for:
 - ► Australia: 7.4% of GDP, 35% of value of goods exported
 - ► Canada: 3%, 26%
 - ► Nigeria: 6%, 90%
 - Norway: 26%, 67%

Motivation

- Net-Zero Targets:
 - Large Economies: China (2060), Germany (2045), India (2070), Japan (2050), USA (2050)
 - ➤ Small Resource-Rich Economies: Australia (2050), Canada (2050), Nigeria (2070), Norway (2030)
- Fossil fuel extraction (coal, oil, gas) accounts for:
 - ► Australia: 7.4% of GDP, 35% of value of goods exported
 - ► Canada: 3%, 26%
 - ► Nigeria: 6%, 90%
 - Norway: 26%, 67%
- Little understanding of the welfare impacts of such a transition across households
 - Age cohorts vs wealth vs region

▶ I develop a SOE model to study welfare impact of green transition in resource-rich economies

- ► I develop a SOE model to study welfare impact of green transition in resource-rich economies
 - ► Two domestic regions: Fossil producing and Clean producing
 - Demand side: Heterogeneous households
 - Supply side: 5 sectors (Final good, Non-Energy, Energy, Fossil, Clean)

- ► I develop a SOE model to study welfare impact of green transition in resource-rich economies
 - ► Two domestic regions: Fossil producing and Clean producing
 - Demand side: Heterogeneous households
 - Supply side: 5 sectors (Final good, Non-Energy, Energy, Fossil, Clean)
- Model calibrated to Canadian data.
 - Given this context, "fossil" maps to "oil and gas"
 - "Fossil" region = Alberta, "Clean" region = BC, Ontario, Québec
 - Price of oil exogenous (hence "open" economy)

- ▶ I develop a SOE model to study welfare impact of green transition in resource-rich economies
 - ► Two domestic regions: Fossil producing and Clean producing
 - ► Demand side: Heterogeneous households
 - ► Supply side: 5 sectors (Final good, Non-Energy, Energy, Fossil, Clean)
- Model calibrated to Canadian data.
 - ► Given this context, "fossil" maps to "oil and gas"
 - ► "Fossil" region = Alberta, "Clean" region = BC, Ontario, Québec
 - Price of oil exogenous (hence "open" economy)
- ► Two quantitative exercises:
 - (1) How did the rise of oil prices from 1997-2020 affect welfare across households?
 - (2) How will a global green transition affect welfare across households?

Key Results: Oil price boom, 1997-2020

- ▶ Model is able to replicate several differences between regions along transition path
- ▶ 2000s oil price boom was welfare enhancing, impacts are heterogeneous:
 - ▶ Both regions benefited, but Fossil region (Alberta) welfare gains higher
 - Youngest workers at bottom of income distribution benefited the most

Key Results: Transition to Net-Zero 2050

- Modeled as a simultaneous boom in clean productivity and collapse in fossil demand
- Path to Net-Zero is welfare diminishing, but effects are heterogeneous
 - ► Fall in oil demand produces negative welfare effects
 - ▶ Magnitude depends on reduction targets (how much fossil demand declines by 2050)
 - Youngest workers at bottom of income distribution lose the most

Contribution

- ► Economics of the green transition
 - Acemoglu et al. (2016), Baldwin et al. (2020), Arkolakis and Walsh (2023), Besley and Persson (2023)
 - First paper to study welfare impacts of a clean energy transition across generations/regions/income

Contribution

- ► Economics of the green transition
 - Acemoglu et al. (2016), Baldwin et al. (2020), Arkolakis and Walsh (2023), Besley and Persson (2023)
 - ► First paper to study welfare impacts of a clean energy transition across generations/regions/income
- Macroeconomics and the environment/resource economics
 - Hassler et al. (2018), Fried (2022), Casey (2023), Jaimes (2023)
 - First paper to model regional energy production differences in small resource-rich countries

Contribution

- ► Economics of the green transition
 - Acemoglu et al. (2016), Baldwin et al. (2020), Arkolakis and Walsh (2023), Besley and Persson (2023)
 - ► First paper to study welfare impacts of a clean energy transition across generations/regions/income
- Macroeconomics and the environment/resource economics
 - Hassler et al. (2018), Fried (2022), Casey (2023), Jaimes (2023)
 - First paper to model regional energy production differences in small resource-rich countries
- Extraction booms and the economy
 - ► Hassler and Sinn (2016), Leach (2022), Loertscher and Pujolas (2024)
 - ► First paper to measure the distributional welfare impacts of the resource boom across generations/regions/income

Outline

- 1. Background
- 2. Model
- 3. Calibration
- 4. Validation
- 5. Oil Boom Transition
- 6. Net-Zero transition
- 7. Conclusion

Outline

- 1. Background
- 2. Model
- 3. Calibration
- 4. Validation
- 5. Oil Boom Transition
- 6. Net-Zero Transition
- 7. Conclusion

Background: Most of the world signalling/pursuing Net-Zero goals

Figure 1: Source: Energy and Climate Intelligence Unit, Data-Driven EnviroLab, NewClimate Institute, Oxford Net Zero - Net Zero Tracker (2023)

Background: Price of clean inputs falling

Figure 2: Source: International Renewable Energy Agency (2023)

Background: Adoption of clean energy rising

Figure 3: Source: Energy Institute - Statistical Review of World Energy (2024)

Takeaways

- ▶ (Nearly) every country is signalling Net-Zero as a target within the next 30-50 years
- Prices of clean energy sources are falling
- ► Adoption of clean energy is rising among main trading partners for resource-rich economies

Outline

- 1. Background
- 2. Model
- 3. Calibration
- 4. Validation
- 5. Oil Boom Transition
- 6. Net-Zero Transition
- 7. Conclusion

Model

I build a Small Open Economy multi-sector model

- 2 regions: One produces fossil inputs, one produces clean inputs
- ► Households: OLG, Heterogeneous Agent model à la Aiyagari (1994), Bewley (1977), Huggett (1993) and Imrohoroğlu (1989)
- ▶ Production: Final good, Energy, Clean, Fossil, Non-Energy as in Fried et al. (2022)
- Price of fossil good (oil) assumed to be exogenous
 - Trade balances every period (international demand reflected in price)

Household Demographics

- Continuum of households, distributed uniformly over two regions
- ightharpoonup Households can be of working age or retired, live for a max of J years
- Workers:
 - Idiosyncratic, stochastic ability
 - Supply labour inelastically, make savings decisions
 - ▶ Receive bequests and profits from Fossil or Clean sectors (depending on location)
- Retirees:
 - **Forced** retirement at age j_{ret}
 - Receive retirement benefits, bequests and profits
- All households face age specific probability of dying

Household Endowments

- Idiosyncratic productivity:
 - $\bullet \ \epsilon \in \{\epsilon_1, \ldots, \epsilon_N\}$
 - ► Follows AR(1) process with

$$\log \epsilon' =
ho_\epsilon \log \epsilon + e, \quad e \sim \mathcal{N}(0, 1)$$

- Age specific productivity θ_j for $j \in \{1, \dots, j_{\textit{ret}} 1\}$
- ► Initial capital endowment: bequest
- ▶ Time endowments ℓ_s , depending on region $s \in \{A, B\}$

Household Problem

$$V(j,a,\epsilon,s) = \max_{a',q} rac{q^{1-\sigma}}{1-\sigma} + \psi_j eta \mathbb{E}_{\epsilon'|\epsilon} V(j+1,a',\epsilon',s)$$

$$(1 + au_{q,s})q + a' = egin{cases} w_s \epsilon heta_j \ell_s + (1+r)(a+b) + \pi_s - T(y) & ext{if } j < j_{ret} \ ss + (1+r)(a+b) + \pi_s - T(y) & ext{if } j \geq j_{ret} \ q, a' \geq 0 \end{cases}$$

- $ightharpoonup (a,b,\epsilon,j)$: assets, accidental bequests, idiosyncratic productivity, age
- \blacktriangleright (θ_j, ψ_j) : age specific productivity and survival probability
- $\pi_s = \begin{cases} \pi_F & \text{if } s = A \\ \pi_C & \text{if } s = B \end{cases}$

Taxation

- \blacktriangleright Households pay region specific consumption taxes $\tau_{q,s}$ and progressive income taxes
- ► Income tax function

$$T(y) = y - \lambda y^{1-\tau_y}$$

where

$$y = \begin{cases} w_s \epsilon \theta_j \ell_s + (1+r)(a+b) + \pi_s & \text{if } j < j_{ret} \\ (1+r)(a+b) + \pi_s & \text{if } j \ge j_{ret} \end{cases}$$

Production Geography

- ► Each region produces a specific non-energy intermediate and energy intermediate
- ► Energy Intermediates:
 - ► Region A: produces fossil input
 - ► Region B: produces clean input

Production Structure

- ► Final Good is produced from *Energy* and *Non-Energy* inputs
 - ► **Energy** input is produced using **Fossil** inputs from Region A and **Clean** inputs from Region B
 - ▶ *Non-Energy* input is produced using differentiated, region specific inputs from each region

Production Overview

Fossil Producers in Region A

▶ Fossil energy good Y_F produced using capital K_F , labour L_F , and fossil intermediate $x_{F,F}$ in Region A

$$\max_{K_F, L_F, x_{F,F}} p_F Y_F - (r+\delta)K_F - w_A L_F - p_F x_{F,F}$$

$$Y_F = \min\{Z_F(K_F^{\gamma} L_F^{1-\gamma})^{\nu_F}, \mu_F x_{F,F}\}$$

$$\nu_F \in (0,1)$$

Clean Producers in Region B

▶ The clean energy good Y_C is produced using capital K_C and labour L_C in Region B

$$\max_{K_C,L_C} p_C Y_C - (r+\delta)K_C - w_B L_C$$

$$Y_C = Z_C (K_C^{\eta} L_C^{1-\eta})^{\nu_C}$$

$$\nu_C \in (0,1)$$

Energy Producers

► The final energy good Y_E is produced using clean and fossil intermediates $x_{C.E.}$, $x_{F.E}$

$$\max_{x_{C,E},x_{F,E}} p_E Y_E - p_C x_{C,E} - p_F x_{F,E}$$

$$Y_E = \left(x_{C,E}^{\rho_E} + x_{F,E}^{\rho_E}\right)^{\frac{1}{\rho_E}}$$

Non-Energy Producers

▶ Non-Energy intermediates Y_s (for $s \in \{A, B\}$) is produced using capital K_s and labour L_s

$$\max_{K_s,L_s} p_s Y_s - (r+\delta)K_s - w_s L_s$$

$$Y_s = Z(K_s^{\alpha} L_s^{1-\alpha})$$

Final Good Producers

► Final good is produced using non-energy intermediates $x_{A,Y}$, $x_{B,Y}$ and an energy intermediate $x_{E,Y}$

$$\max_{x_{A,Y},x_{B,Y},x_{E,Y}} Y - p_A x_{A,Y} - p_B x_{B,Y} - p_E x_{E,Y}$$

$$Y = \min\left\{\left(x_{A,Y}^{
ho_{y}} + x_{B,Y}^{
ho_{y}}\right)^{1/
ho_{y}}, \mu_{Y} x_{E,Y}
ight\}$$

Government

- ▶ The government consumes the final good, and pays social security transfers.
- Government budget balances each period so that

$$SS + G = au_{q,A}Q_A + au_{q,B}Q_B + \int T(y) \ d\Omega$$

- ► G = gY, $g \in (0,1)$
- ightharpoonup Ω: distribution across types (j, a, ϵ, s)

Closing the model

- ▶ An equilibrium follows the usual definition of a stationary, recursive equilibrium
- ▶ Key equation: *Trade balances every period so that*

$$(Y - Q_A - Q_B - I - G) + p_F(Y_F - x_{F,F} - x_{F,E}) = 0$$

Outline

- 1. Background
- 2. Model
- 3. Calibration
- 4. Validation
- 5. Oil Boom Transition
- 6. Net-Zero Transition
- 7. Conclusion

Calibration: Parametrization

A period corresponds to 4 years in the data

	Parameter	Description	Value
$\overline{\sigma}$	Risk Aversion	Standard	2
β	Discount factor	Annualized discount factor of 0.96	0.85
δ	Capital depreciation	Annualized depreciation of 0.05	0.19
$ ho_{\sf E}$	Elasticity of sub. in Energy prod.	Papageorgiou et al. (2017)	0.66
ρ_Y	Elasticity of sub. in Non-Energy prod.	Albrecht and Tombe (2016)	0.80

Calibration: Externally Calibrated Parameters

	Parameter	Description	Value
α	Capital share Non-Energy	Labour share	0.4
$ u_{\mathcal{C}}$	DRS parameter	profit-to-revenue ratio in Clean	0.72
η	Capital share Clean	Labour share in Clean	0.6
$ u_{F}$	DRS parameter	profit-to-revenue ratio in Oil	0.73
γ	Capital share Oil	Labour share in Oil & Gas	0.66
$\mu_{E,Y}$	Intermediate use of energy	I/O Table	38.26
$\mu_{F,F}$	Intermediate use of oil	I/O Table	6
$ au_{oldsymbol{q}, oldsymbol{A}}$	Consumption tax rate in AB	StatsCan tables	0.12
$ au_{q,B}$	Consumption tax rate in ROC	StatsCan tables	0.18
$ au_y$	Income Tax progressivity	StatsCan tables	0.1232
g	Government consumption	I/O Table	0.2
$\ell_{\mathcal{A}}$	Hours worked per capita, AB	StatsCan tables	0.1673
$Z_{A,1997}, Z_{B,1997}$	TFP in non-energy	StatsCan tables	0.11
$Z_{A,2020}, Z_{B,2020}$	TFP in non-energy	StatsCan tables	0.22
$p_{F,1997}$	Real price of oil	FRED data	0.19
$p_{F,2020}$	Real price of oil	FRED data	0.53
$ heta_j$	Age spec. productivity	GRID	Time Series
ψ_j	Age spec. survival probabilities	StatsCan tables	Time Series

Calibration: Internally Calibrated Parameters

Determined outside of equilibrium

Parameter	Parameter Target		Data	Model	Value
$ ho_\epsilon$	ACF 1 period log res. earnings	GRID	0.74	0.74	0.75
σ_{ϵ}^2	SD 1 period Δ log res. earnings	GRID	0.53	0.53	0.21

Determined in equilibrium

Parameter	Target	Source	Data	Model	Value
Z_F^{1997}	$\mathcal{K}_{\mathit{F}}/ar{\mathcal{K}}$ in 1997	StatsCan	0.10	0.10	1.66
Z_F^{2020}	$\mathcal{K}_{\mathit{F}}/ar{\mathcal{K}}$ in 2022	StatsCan	0.22	0.22	1.46
Z_{C}^{1997}	Pct. clean in 1997	OWID	0.37	0.37	0.32
Z_C^{2020}	Pct. clean in 2022	OWID	0.36	0.36	0.29

Outline

- 1. Background
- 2. Model
- 3. Calibration
- 4. Validation
- 5. Oil Boom Transition
- 6. Net-Zero Transition
- 7. Conclusion

Model Validation

- ▶ I compare model to data on a number of untargeted moments across the two regions:
 - ► Wage growth
 - Consumption growth
 - GDP growth
 - Capital growth
- To validate the main mechanism, I compare these moments in the benchmark calibration against a counterfactual world where p_F stays at the 1997 level

Model Validation: Untargeted moments

Mechanism Validation

Outline

- 1. Background
- 2. Model
- 3. Calibration
- 4. Validation
- 5. Oil Boom Transition
- 6. Net-Zero Transition
- 7. Conclusion

Oil boom transition

- ▶ I evaluate the welfare impact of the rise in oil prices between 1997 and 2020 along the transition path
- ▶ I compare the benchmark transition to a counterfactual transition where p_F stayed at 1997 level

Welfare results

	p_F const
CEV, Aggregate	-10.41%
CEV, Region A	-11.65%
CEV, Region B	-8.60%

- ▶ Absence of oil price boom leads to average CEV that is 10% lower
- ▶ Loss of welfare in counterfactual world strongest in Fossil producing region

Welfare results: Age groups and Region

	p_F const			
Age	Region A	Region B		
20-35	-13.18 %	-9.74 %		
36-51	-11.53 %	-8.37 %		
52-67	-9.12 %	-6.50 %		
68-83	-7.08 %	-5.09 %		
84-99	-7.44 %	-2.88 %		

- ▶ Youngest cohort experience highest welfare losses from absence of boom
- Lowest losses experienced by retirees
- ▶ Region A households lose the most across all age groups

Welfare results: Age, Income, Region

	Region A				
	Fourth Quintile	Fifth Quintile			
20-34	-13.61%	-10.72%	-9.70%	-9.27%	-9.07%
35-49	-13.51%	-10.82%	-9.31%	-8.64%	-8.27%
50-64	-11.29%	-8.99%	-7.74%	-7.36%	-7.29%
Region B					
20-34	-9.96%	-8.80%	-8.59%	-8.90%	-8.97%
35-49	-9.14%	-8.09%	-8.11%	-8.14%	-8.25%
50-64	-6.30%	-6.38%	-6.61%	-6.87%	-7.29%

► Absence of boom produced highest welfare losses for youngest, lowest income groups

Outline

- 1. Background
- 2. Model
- 3. Calibration
- 4. Validation
- 5. Oil Boom Transition
- 6. Net-Zero Transition
- 7. Conclusion

Net-Zero transition

- ▶ I evaluate welfare impact of a transtion to Net-Zero following International Energy Agency's roadmap:
 - ▶ Clean inputs account for 90% of domestic energy production by 2050
 - ► Fossil demand falls by 50%

Net-Zero transition

- ▶ I evaluate welfare impact of a transtion to Net-Zero following International Energy Agency's roadmap:
 - Clean inputs account for 90% of domestic energy production by 2050
 - ► Fossil demand falls by 50%
- I evaluate the welfare impact this benchmark and compare it to:
 - (1) A counterfactual world where fossil prices remain at 2020 level
 - (2) A counterfactual world where fossil demand falls by 90%

Net-Zero transition

- ► I evaluate welfare impact of a transtion to Net-Zero following International Energy Agency's roadmap:
 - ▶ Clean inputs account for 90% of domestic energy production by 2050
 - ► Fossil demand falls by 50%
- ▶ I evaluate the welfare impact this benchmark and compare it to:
 - (1) A counterfactual world where fossil prices remain at 2020 level
 - (2) A counterfactual world where fossil demand falls by 90%
- Main take away: transition to Net-Zero produces welfare losses, but scale of decline matters
 - ightharpoonup IEA roadmap (50% decline in fossil production) carries welfare losses of <1% across all types
 - Across all scenarios, youngest and poorest households experience greatest losses

Benchmark: Fossil production falls by 50%

		Region A				
		First Quintile	Second Quintile	Third Quintile	Fourth Quintile	Fifth Quintile
	20-34	0.81%	0.65%	0.58%	0.55%	0.54%
	35-49	0.77%	0.63%	0.55%	0.52%	0.50%
	50-64	0.63%	0.53%	0.47%	0.45%	0.44%
	Region B					
_	20-34	0.57%	0.49%	0.49%	0.49%	0.50%
	35-49	0.52%	0.47%	0.46%	0.46%	0.47%
	50-64	0.38%	0.37%	0.38%	0.39%	0.41%

- \blacktriangleright Absence of falling Fossil demand produces small welfare gains, ${<}1\%$ across all groups
- Largest gains are poorest, youngest in Region A

Counterfactual: Fossil demand falls by 90%

	Region A					
	First Quintile	Second Quintile	Third Quintile	Fourth Quintile	Fifth Quintile	
20-34	5.81%	4.56%	4.11%	3.90%	3.80%	
35-49	5.52%	4.44%	3.88%	3.63%	3.51%	
50-64	4.46%	3.74%	3.30%	3.13%	3.09%	
	Region B					
20-34	4.01%	3.50%	3.48%	3.49%	3.55%	
35-49	3.68%	3.30%	3.23%	3.25%	3.31%	
50-64	2.68%	2.63%	2.68%	2.77%	2.88%	

Outline

- 1. Background
- 2. Model
- 3. Calibration
- 4. Validation
- 5. Oil Boom Transition
- 6. Net-Zero Transition
- 7. Conclusion

Conclusion

- ▶ I develop a comprehensive model to analyze the welfare impacts of changes in global demand for fossil fuels in a resource-rich economy
- Oil price boom period was most beneficial for young, lowest income households in fossil region
- Transition to Net-Zero produces heterogeneous welfare losses
 - Youngest cohorts, lowest income groups experience largest losses
 - Magnitude of losses depend strongly on size of decline in fossil production
 - Losses smaller than gains from boom period
- ► Areas for future research: role of policy to compensate losers, local labour market responses, effects on trade in other industries

References

- Daron Acemoglu, Ufuk Akcigit, Douglas Hanley, and William Kerr. Transition to Clean Technology. *Journal of Political Economy*, 124(1):52–104, February 2016. ISSN 0022-3808. doi: 10.1086/684511. URL https://www.journals.uchicago.edu/doi/10.1086/684511. Publisher: The University of Chicago Press.
- S. Rao Aiyagari. Uninsured Idiosyncratic Risk and Aggregate Saving. *The Quarterly Journal of Economics*, 109(3):659–684, 1994. ISSN 0033-5533. doi: 10.2307/2118417. URL https://www.jstor.org/stable/2118417. Publisher: Oxford University Press.
- Lukas Albrecht and Trevor Tombe. Internal trade, productivity and interconnected industries: A quantitative analysis. *Canadian Journal of Economics/Revue canadienne d'économique*, 49(1):237–263, 2016. ISSN 1540-5982. doi: 10.1111/caje.12196. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/caje.12196. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/caje.12196.

- Costas Arkolakis and Conor Walsh. Clean Growth, August 2023. URL https://www.nber.org/papers/w31615.
- Elizabeth Baldwin, Yongyang Cai, and Karlygash Kuralbayeva. To build or not to build? Capital stocks and climate policy. *Journal of Environmental Economics and Management*, 100:102235, March 2020. ISSN 00950696. doi: 10.1016/j.jeem.2019.05.001. URL https://linkinghub.elsevier.com/retrieve/pii/S0095069617308173.
- Timothy Besley and Torsten Persson. The Political Economics of Green Transitions*. *The Quarterly Journal of Economics*, 138(3):1863–1906, August 2023. ISSN 0033-5533. doi: 10.1093/qje/qjad006. URL https://doi.org/10.1093/qje/qjad006.
- Truman Bewley. The permanent income hypothesis: A theoretical formulation. *Journal of Economic Theory*, 16(2):252–292, December 1977. ISSN 0022-0531. doi: 10.1016/0022-0531(77)90009-6. URL https://www.sciencedirect.com/science/article/pii/0022053177900096.

- Gregory Casey. Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation. *The Review of Economic Studies*, page rdad001, March 2023. ISSN 0034-6527. doi: 10.1093/restud/rdad001. URL https://doi.org/10.1093/restud/rdad001.
- Stephie Fried. Seawalls and Stilts: A Quantitative Macro Study of Climate Adaptation. *The Review of Economic Studies*, 89(6):3303–3344, November 2022. ISSN 0034-6527, 1467-937X. doi: 10.1093/restud/rdab099. URL https://academic.oup.com/restud/article/89/6/3303/6484653.
- Stephie Fried, Kevin Novan, and William B. Peterman. Climate policy transition risk and the macroeconomy. *European Economic Review*, 147:104174, August 2022. ISSN 00142921. doi: 10.1016/j.euroecorev.2022.104174. URL https://linkinghub.elsevier.com/retrieve/pii/S0014292122000988.

 $\label{lem:condition} \begin{tabular}{ll} \b$

Climate Sensitivity and Economic Sensitivity to the Climate. *Annual Review of Economics*, 10(1):189–205, 2018. doi: 10.1146/annurev-economics-080217-053229. URL https://doi.org/10.1146/annurev-economics-080217-053229. _eprint: https://doi.org/10.1146/annurev-economics-080217-053229.

John Hassler, Per Krusell, and Conny Olovsson. The Consequences of Uncertainty:

Mark Huggett. The risk-free rate in heterogeneous-agent incomplete-insurance economies. *Journal of Economic Dynamics and Control*, 17(5):953–969, September 1993. ISSN 0165-1889. doi: 10.1016/0165-1889(93)90024-M. URL https://www.sciencedirect.com/science/article/pii/016518899390024M.

Ayşe Imrohoroğlu. Cost of Business Cycles with Indivisibilities and Liquidity Constraints. Journal of Political Economy, 97(6):1364–1383, 1989. ISSN 0022-3808. URL https://www.jstor.org/stable/1833243. Publisher: University of Chicago Press.

https://www.jstor.org/stable/1833243. Publisher: University of Chicago Press.

Richard Jaimes. Optimal climate and fiscal policy in an OLG economy. *Journal of Public Economic Theory*, 25(4):727–752, 2023. ISSN 1467-9779. doi: 10.1111/jpet.12637. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/jpet.12637. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jpet.12637.

Andrew Leach. Canada's oil sands in a carbon-constrained world. Canadian Foreign Policy Journal, 28(3):285-304, September 2022. ISSN 1192-6422. doi: 10.1080/11926422.2022.2120508. URL

https://doi.org/10.1080/11926422.2022.2120508. Publisher: Routledge _eprint: https://doi.org/10.1080/11926422.2022.2120508.

Oliver Loertscher and Pau S. Pujolas. Canadian productivity growth: Stuck in the oil sands. Canadian Journal of Economics/Revue canadienne d'économique, 57(2): 478-501, 2024, ISSN 1540-5982, doi: 10.1111/caie.12707, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/caje.12707. eprint:

Chris Papageorgiou, Marianne Saam, and Patrick Schulte. Substitution between Clean and Dirty Energy Inputs: A Macroeconomic Perspective. The Review of Economics and Statistics, 99(2):281-290, May 2017. ISSN 0034-6535. doi:

10.1162/REST a 00592. URL https://doi.org/10.1162/REST_a 00592.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/caje.12707.

Equilibrium

- (1) Given prices, bequests, profits, tax policies and transfers, households maximize lifetime expected utility
- (2) Given prices and factor allocations, firms in each sector maximize profits
- (3) Markets clear (for Y_E , Y_C , capital and labour in each region)
- (4) Given tax rates and transfer policies, the government budget is balanced
- (5) Trade is balanced

$$(Y - Q_A - Q_B - I - G) + p_F(Y_F - x_{F,F} - x_{F,E}) = 0$$