Rectifiable Sets

Thomas Cohn

11/5/18

Recall from Friday that if $S^{\text{bdd}} \subset \mathbb{R}^n$ and $f: S \to \mathbb{R}$ is a bounded function, then we say f is integrable over S if and only if $\int_S f = \int_O f_S$ is defined for some/all $Q^{\text{box}} \supset S$.

Some rules:

(a) f, g integrable over S implies that $\int\limits_S af + bg = a\int\limits_S f + b\int\limits_S g$

(b) f,g integrable over S, and $f \leq g$ on S implies that $\int\limits_S f \leq \int\limits_S g$

(b') f integrable over S implies that |f| is integrable over S.

Also, $\left| \int_{S} f \right| = \max \left\{ \int_{S} f, -\int_{S} f \right\} \le \int_{S} |f|$

(c) $T \subseteq S$, $f \ge 0$ integrable on T, S implies that $\int_T f \le \int_S f$

(d) f integrable over S_1 and S_2 implies that f is integrable over $S_1 \cup S_2$ and $S_1 \cap S_2$, and $\int_{S_1 \cup S_2} f = \int_{S_1} f + \int_{S_2} f - \int_{S_1 \cap S_2} f$

Proof (a): Let $A = \{(x,y) \in \mathbb{R}^2 : x = 0 \lor y = 0 \lor x = y\}$. Define $\varphi : A \to \mathbb{R}$ by $(x,0) \mapsto x$, $(0,y) \mapsto y$, and $(x,x) \mapsto x$.

Exercise 1: Show that φ is continuous.

Exercise 2: Show that $\varphi \circ (f_{S_1}, f_{S_2}) = f_{S_1 \cup S_2}$. This tells us that $f_{S_1 \cup S_2}$ is continuous at points where f_{S_1} and f_{S_2} are continuous. Hence, $f_{S_1 \cup S_2}$ is continuous.

1

Now, use $f_{S_1 \cup S_2} + f_{S_1 \cap S_2} = f_{S_1} + f_{S_2}$.

Ex: $S = \{(x_1, x_2, x_3) : x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_1 + x_2 + x_3 \le 1\}$. Let $Q = [0, 1] \times [0, 1] \times [0, 1]$.

Check that $\int_S 1$ exists (use study exercise)

$$\int_{S} 1 = \int_{Q} \mathbb{1}_{S} = \int_{0 \le x_{1} \le 1} \left(\int_{0 \le x_{2} \le 1} \left(\int_{0 \le x_{3} \le 1} \mathbb{1}_{S} \right) \right) \\
= \int_{0 \le x_{1} \le 1} \left(\int_{0 \le x_{2} \le 1} \max \left\{ 1 - x_{1} - x_{2}, 0 \right\} \right) \\
= \int_{0 \le x_{1} \le 1} \left(\int_{0 \le x_{2} \le 1 - x_{1}} 1 - x_{1} - x_{2} \right) \\
= \int_{0 \le x_{1} \le 1} \left[(1 - x_{1})x_{2} - \frac{x_{2}^{2}}{2} \right]_{x_{2} = 0}^{x_{2} = 1 - x_{1}} \\
= \int_{0 \le x_{1} \le 1} \frac{(1 - x_{1})^{2}}{2} \\
= \left[-\frac{(1 - x_{1})^{3}}{6} \right]_{x_{1} = 0}^{x_{1} = 1} \\
= \frac{1}{6}$$

Thm: Given $S^{\text{bdd}} \subset \mathbb{R}^n$, $f: S \to \mathbb{R}$ bounded and continuous, $E \stackrel{\text{def}}{=} \left\{ \vec{x_0} \in \text{Bd } S : \text{it is false that } \lim_{\vec{x} \to \vec{x_0}} \int_{(\vec{x} \in S)} f(\vec{x}) = 0 \right\}$, and $m^*(E) = 0$, then f is integrable on S. Proof: $\mathscr{D}f_S \subset E$. \square

Cor: Given S^{bdd} , $f: S \to \mathbb{R}$ bounded and continuous, and $m^*(\text{Bd }S) = 0$, then f is integrable over S.

Let's further study the condition that $m^*(\operatorname{Bd} S) = 0$:

Defn: S is rectifiable

 $\Leftrightarrow m^*(\operatorname{Bd} S) = 0 \xrightarrow{\operatorname{Cor}}$ all bounded $f \in C(S, \mathbb{R})$ are integrable over S

 $\Leftrightarrow m^{*,J}(\operatorname{Bd}S) = 0$

For S rectifiable, we define $v(S) = \int_S 1$

S rectifiable, $A = \operatorname{Int} S \Rightarrow \operatorname{Bd} A \subset \operatorname{Bd} S$, $m^*(\operatorname{Bd} A) \leq m^*(\operatorname{Bd} S) = 0$. This implies that $\mathbb{1}_S$, $\mathbb{1}_A$ are integrable. So $\mathbb{1}_{S\setminus A} = \mathbb{1}_S - \mathbb{1}_A$ is integrable (on Q). Thus, $S\setminus A$ is rectifiable, and $\operatorname{Int}(S\setminus A) = \emptyset$.

All
$$L(\mathbb{1}_{S\backslash A}, P) = 0$$
, so $\int_{\overline{Q}} \mathbb{1}_{S\backslash A} = 0$. Thus, $\int \mathbb{1}_A = \int \mathbb{1}_S \Rightarrow v(A) = v(S)$.

But what if S and or f are not bounded? Improper Integrals

Munkres starts to focus on integrals over open sets. Start with $f \geq 0$.

Defn: The extended integral of f over set A, ext $\int_A f \stackrel{\text{def}}{=} \sup \left\{ \int_E f : E \text{ cpt, rect} \right\}$