In [1]:

```
# Import Python libraries for visualisation and data analysis
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns

# sns.set_theme() # Apply the default Seaborn theme
%matplotlib inline

# Suppress warnings to avoid potential confusion
import warnings

# Libraries for statistical and scientific computing
import statsmodels.api as sm
from scipy import stats

warnings.filterwarnings("ignore")
import ipywidgets as widgets
from IPython.display import display
```

In [2]:

```
d1=pd.read_csv('2020.csv')
# d1.set_index('date',inplace=True)
d2=pd.read_csv('2021.csv')
# d2.set_index('date',inplace=True)
d3=pd.read_csv('2022.csv')
# d3.set_index('date',inplace=True)
```

```
In [86]:
def subperiod mobility trends(data, start date, end date):
    Add your mobility data in `data`.
    This function selects a subperiod of the mobility data based on prespecified
start data and end date.
    subdata= data[
        data["date"].isin(pd.date range(start=start date, end=end date))
    return subdata
def rename mobility trends(data):
    This function renames the column headings of the six mobility categories.
    data = data.rename(
        columns={
            "retail and recreation percent change from baseline": "Retail Recrea
tion",
            "grocery and pharmacy percent change from baseline": "Grocery Pharma
cy",
            "parks percent change from baseline": "Parks",
            "transit stations percent change from baseline": "Transit stations",
            "workplaces percent change from baseline": "Workplaces",
            "residential percent change from baseline": "Residential",
        }
    return data
In [87]:
d1=rename mobility trends(d1)
d2=rename mobility trends(d2)
d3=rename mobility trends(d3)
In [88]:
```

```
d1['year']='2020'
d2['year']='2021'
d3['year']='2022'
```

In [89]:

```
data=d1.append(d2)
data=data.append(d3)
```

In [90]:

```
ALL = 'ALL'
def unique_sorted_values_plus_ALL(array):
    unique = array.unique().tolist()
    unique.sort()
    unique.insert(0, ALL)
    return unique
```

```
In [91]:
```

```
london_data=data.loc[data['sub_region_1'] == 'Greater London']
greater=london_data[london_data['sub_region_2'].isnull()]
london_regions=london_data.sub_region_2.unique()
london_regions=london_regions[1:]
variabl=["Retail_Recreation", "Grocery_Pharmacy", "Parks", "Transit_stations", "Work
places", "Residential"]
```

In [92]:

```
data_long = pd.melt(
    london_data,
    id_vars=["country_region", "sub_region_1", "sub_region_2", "date"],
    # The columns 'date' and 'sub_region_1' are not needed for the box
    # plots below but we will need the two variables in subsequent tasks.
    value_vars=data.columns[9:15],
).dropna()
```

In [93]:

```
def ld(data_long):
    first_lockdown_UK = data_long[
        (data_long["country_region"] == "United Kingdom")
        & (data_long["date"] >= "2020-03-24")
        & (data_long["date"] <= "2020-04-13")
]

second_lockdown_UK = data_long[
        (data_long["country_region"] == "United Kingdom")
        & (data_long["date"] >= "2020-11-05")
        & (data_long["date"] <= "2020-11-25")
]

third_lockdown_UK = data_long[
        (data_long["country_region"] == "United Kingdom")
        & (data_long["date"] >= "2021-01-06")
        & (data_long["date"] >= "2021-01-06")
        & (data_long["date"] <= "2021-01-26")
]
return [first_lockdown_UK, second_lockdown_UK, third_lockdown_UK]</pre>
```

In [94]:

```
first_lockdown_UK, second_lockdown_UK, third_lockdown_UK=ld(data_long)
lockdowns_dataframes = [first_lockdown_UK, second_lockdown_UK, third_lockdown_UK]

three_lockdowns_UK = pd.concat(
    lockdowns_dataframes,
    keys=["first_lockdown_UK", "second_lockdown_UK", "third_lockdown_UK"],
).reset_index()
```

third lockdown

In [38]:

```
sns.catplot(
    x="value",
    y="sub_region_2",
    col="variable",
    kind="violin",
    sharex=False,
    height=35,
    aspect=0.13,
    color="y",
    data=third_lockdown_UK,
);
```


In [12]:

```
third_lockdown_UK_mean = (
    third_lockdown_UK.groupby(["variable", "sub_region_2"])["value"]
    .mean()
    .reset_index()
)
```

In [14]:

```
third_lockdown_UK_mean_sorted = third_lockdown_UK_mean.sort_values(
    by=[
        "variable",
        "value",
    ],
    ascending=False,
)[["sub_region_2", "variable", "value"]]
third_lockdown_UK_mean_sorted
```

Out[14]:

	sub_region_2	variable	value
166	London Borough of Barking and Dagenham	Workplaces	-46.904762
174	London Borough of Enfield	Workplaces	-48.952381
180	London Borough of Hillingdon	Workplaces	-49.238095
179	London Borough of Havering	Workplaces	-49.523810
172	London Borough of Croydon	Workplaces	-49.904762
12	London Borough of Hammersmith and Fulham	Grocery_Pharmacy	-36.238095
27	London Borough of Tower Hamlets	Grocery_Pharmacy	-36.809524
7	London Borough of Camden	Grocery_Pharmacy	-48.285714
1	City of Westminster	Grocery_Pharmacy	-56.095238
0	City of London	Grocery_Pharmacy	-77.190476

197 rows × 3 columns

In [17]:

```
variabl=["Retail_Recreation", "Grocery_Pharmacy", "Parks", "Transit_stations", "Work
places", "Residential"]
```

In [18]:

```
for i in variabl:
    t_min=third_lockdown_UK_mean_sorted[third_lockdown_UK_mean_sorted['variable'
]==i].iloc[0]
    t_max=third_lockdown_UK_mean_sorted[third_lockdown_UK_mean_sorted['variable'
]==i].iloc[-1]

    print(f'min change is for {i} is {t_min.sub_region_2} with value of {t_min.v
alue}')
    print(f'max change is for {i} is {t_max.sub_region_2} with value of {t_max.v
alue}')
    print('\n')
```

min change is for Retail_Recreation is London Borough of Barking and Dagenham with value of -52.33333333333336 max change is for Retail_Recreation is City of London with value of -93.38095238095238

min change is for Grocery_Pharmacy is London Borough of Lewisham wit h value of -17.142857142857142

max change is for Grocery_Pharmacy is City of London with value of 77.19047619047619

min change is for Parks is London Borough of Newham with value of 6 9.42857142857143

max change is for Parks is City of London with value of -89.76190476 190476

min change is for Transit_stations is London Borough of Barking and Dagenham with value of -55.19047619047619

max change is for Transit_stations is City of London with value of 85.9047619047619

min change is for Workplaces is London Borough of Barking and Dagenh am with value of -46.904761904761905

max change is for Workplaces is City of London with value of -73.8

min change is for Residential is London Borough of Wandsworth with v alue of 27.857142857142858

max change is for Residential is London Borough of Barking and Dagen ham with value of 17.904761904761905

In [19]:

```
third_lockdown_UK_descriptive_stats = (
    third_lockdown_UK.groupby(["sub_region_2", "variable"])["value"]
    .agg([min, max, np.mean, np.median, np.std])
    .reset_index()
)
third_lockdown_UK_descriptive_stats
```

Out[19]:

	sub_region_2	variable	min	max	mean	median	std
0	City of London	Grocery_Pharmacy	-82.0	-62.0	-77.190476	-80.0	5.306779
1	City of London	Parks	-94.0	-85.0	-89.761905	-90.0	2.211442
2	City of London	Retail_Recreation	-95.0	-89.0	-93.380952	-94.0	1.532194
3	City of London	Transit_stations	-88.0	-83.0	-85.904762	-86.0	1.261141
4	City of London	Workplaces	-77.0	-70.0	-73.800000	-74.0	1.934647
192	Royal Borough of Kingston upon Thames	Parks	-5.0	95.0	34.916667	34.5	30.696338
193	Royal Borough of Kingston upon Thames	Residential	12.0	30.0	24.238095	27.0	6.032452
194	Royal Borough of Kingston upon Thames	Retail_Recreation	-81.0	-69.0	-72.857143	-72.0	3.539572
195	Royal Borough of Kingston upon Thames	Transit_stations	-71.0	-60.0	-67.619048	-69.0	2.635834
196	Royal Borough of Kingston upon Thames	Workplaces	-67.0	-39.0	-58.619048	-65.0	11.182469

197 rows × 7 columns

Second Lockdown

In [24]:

Out[24]:

	sub_region_2	variable	value
166	London Borough of Barking and Dagenham	Workplaces	-33.857143
174	London Borough of Enfield	Workplaces	-37.285714
180	London Borough of Hillingdon	Workplaces	-37.523810
178	London Borough of Harrow	Workplaces	-37.714286
172	London Borough of Croydon	Workplaces	-37.904762
27	London Borough of Tower Hamlets	Grocery_Pharmacy	-23.761905
12	London Borough of Hammersmith and Fulham	Grocery_Pharmacy	-27.095238
7	London Borough of Camden	Grocery_Pharmacy	-37.523810
1	City of Westminster	Grocery_Pharmacy	-46.761905
0	City of London	Grocery_Pharmacy	-70.238095

197 rows × 3 columns

In [25]:

```
for i in variabl:
    t_min=second_lockdown_UK_mean_sorted[second_lockdown_UK_mean_sorted['variabl
e']==i].iloc[0]
    t_max=second_lockdown_UK_mean_sorted[second_lockdown_UK_mean_sorted['variabl
e']==i].iloc[-1]

    print(f'min change is for {i} is {t_min.sub_region_2} with value of {t_min.v
alue}')
    print(f'max change is for {i} is {t_max.sub_region_2} with value of {t_max.v
alue}')
    print('\n')
```

min change is for Retail_Recreation is London Borough of Barking and Dagenham with value of -38.857142857142854 max change is for Retail_Recreation is City of London with value of -89.80952380952381

min change is for $Grocery_Pharmacy$ is London Borough of Lewisham with value of -3.9523809523809526

max change is for Grocery_Pharmacy is City of London with value of 70.23809523809524

min change is for Parks is London Borough of Newham with value of 11 7.0952380952381

max change is for Parks is City of London with value of -84.80952380 952381

min change is for $Transit_stations$ is London Borough of Barking and Dagenham with value of -37.57142857142857

max change is for Transit_stations is City of London with value of 78.80952380952381

min change is for Workplaces is London Borough of Barking and Dagenh am with value of -33.857142857142854

max change is for Workplaces is City of London with value of -66.133 33333333334

min change is for Residential is London Borough of Islington with value of 23.80952380952381

max change is for Residential is London Borough of Barking and Dagen ham with value of 12.761904761904763

In [26]:

```
second_lockdown_UK_descriptive_stats = (
    second_lockdown_UK.groupby(["sub_region_2", "variable"])["value"]
    .agg([min, max, np.mean, np.median, np.std])
    .reset_index()
)
second_lockdown_UK_descriptive_stats
```

Out[26]:

	sub_region_2	variable	min	max	mean	median	std
0	City of London	Grocery_Pharmacy	-75.0	-56.0	-70.238095	-72.0	5.347006
1	City of London	Parks	-89.0	-74.0	-84.809524	-85.0	3.444112
2	City of London	Retail_Recreation	-92.0	-85.0	-89.809524	-90.0	2.015417
3	City of London	Transit_stations	-81.0	-71.0	-78.809524	-80.0	2.522282
4	City of London	Workplaces	-69.0	-64.0	-66.133333	-66.0	1.302013
192	Royal Borough of Kingston upon Thames	Parks	-10.0	93.0	54.428571	55.0	33.069912
193	Royal Borough of Kingston upon Thames	Residential	11.0	23.0	19.523810	21.0	4.020187
194	Royal Borough of Kingston upon Thames	Retail_Recreation	-74.0	-57.0	-63.476190	-62.0	4.578417
195	Royal Borough of Kingston upon Thames	Transit_stations	-60.0	-44.0	-51.714286	-52.0	3.689754
196	Royal Borough of Kingston upon Thames	Workplaces	-53.0	-32.0	-47.809524	-52.0	7.040022

197 rows × 7 columns

first lockdown

In [27]:

```
first_lockdown_UK_mean = (
    first_lockdown_UK.groupby(["variable", "sub_region_2"])["value"]
    .mean()
    .reset_index()
)

first_lockdown_UK_mean_sorted = first_lockdown_UK_mean.sort_values(
    by=[
        "variable",
        "value",
    ],
    ascending=False,
)[["sub_region_2", "variable", "value"]]
```

In [28]:

```
for i in variabl:
    t_min=first_lockdown_UK_mean_sorted[first_lockdown_UK_mean_sorted['variable'
]==i].iloc[0]
    t_max=first_lockdown_UK_mean_sorted[first_lockdown_UK_mean_sorted['variable'
]==i].iloc[-1]

    print(f'min change is for {i} is {t_min.sub_region_2} with value of {t_min.v alue}')
        print(f'max change is for {i} is {t_max.sub_region_2} with value of {t_max.v alue}')
        print('\n')
```

min change is for Retail_Recreation is London Borough of Waltham For est with value of -66.61904761904762 max change is for Retail_Recreation is City of London with value of -96.0

min change is for Grocery_Pharmacy is London Borough of Lewisham wit h value of -26.19047619047619 max change is for Grocery Pharmacy is City of London with value of -

max change is for Grocery_Pharmacy is City of London with value of 81.9047619047619

min change is for Parks is London Borough of Croydon with value of 4 0.142857142857146

max change is for Parks is City of London with value of -90.90476190 47619

min change is for Transit_stations is London Borough of Barking and Dagenham with value of -61.904761904761905

max change is for Transit_stations is City of London with value of 92.3333333333333

min change is for Workplaces is London Borough of Barking and Dagenh am with value of -65.04761904761905

max change is for Workplaces is City of London with value of -84.428 57142857143

min change is for Residential is London Borough of Hammersmith and F ulham with value of 37.2666666666666

max change is for Residential is London Borough of Barking and Dagen ham with value of 25.571428571428573

In [29]:

```
first_lockdown_UK_descriptive_stats = (
    first_lockdown_UK.groupby(["sub_region_2", "variable"])["value"]
        .agg([min, max, np.mean, np.median, np.std])
        .reset_index()
)
first_lockdown_UK_descriptive_stats
```

Out[29]:

	sub_region_2	variable	min	max	mean	median	std
0	City of London	Grocery_Pharmacy	-91.0	-72.0	-81.904762	-83.0	4.773937
1	City of London	Parks	-96.0	-87.0	-90.904762	-91.0	2.188716
2	City of London	Retail_Recreation	-99.0	-93.0	-96.000000	-96.0	1.378405
3	City of London	Transit_stations	-97.0	-87.0	-92.333333	-93.0	2.033060
4	City of London	Workplaces	-89.0	-80.0	-84.428571	-85.0	2.563480
192	Royal Borough of Kingston upon Thames	Parks	-38.0	41.0	13.687500	18.0	23.508066
193	Royal Borough of Kingston upon Thames	Residential	22.0	37.0	32.222222	34.0	4.917622
194	Royal Borough of Kingston upon Thames	Retail_Recreation	-91.0	-77.0	-82.619048	-81.0	3.667100
195	Royal Borough of Kingston upon Thames	Transit_stations	-84.0	-71.0	-77.476190	-78.0	3.010300
196	Royal Borough of Kingston upon Thames	Workplaces	-88.0	-61.0	-74.666667	-78.0	7.945649

197 rows × 7 columns

corelation

In [30]:

Out[30]:

	Retail_Recreation	Grocery_Pharmacy	Parks	Transit_stations	Workplaces
sub_region_2					
City of London	-71.259259	-58.294723	-65.460746	-63.177522	-57.272727
City of Westminster	-61.560664	-31.286079	-35.431673	-56.229885	-48.742308
London Borough of Barking and Dagenham	-23.893997	-5.338442	54.286280	-34.256705	-36.652618
London Borough of Barnet	-29.389527	-7.459770	50.473615	-41.559387	-40.756066
London Borough of Bexley	-31.983397	-4.544061	36.230871	-43.371648	-37.819923
London Borough of Brent	-27.117497	-4.019157	67.255937	-38.916986	-38.439336
London Borough of Bromley	-29.655172	-3.939974	24.294889	-44.297573	-41.135377
London Borough of Camden	-59.791826	-30.435504	4.310567	-52.535121	-47.696154
London Borough of Croydon	-30.715198	-3.641124	43.848285	-44.825032	-36.247765
London Borough of Ealing	-26.604087	-5.389527	49.989446	-43.500639	-39.178799
London Borough of Enfield	-27.653895	-7.777778	25.773087	-42.277139	-35.895275
London Borough of Hackney	-42.409962	-5.667944	49.246702	-47.177522	-43.183908
London Borough of Hammersmith and Fulham	-47.515964	-19.461047	24.372032	-48.191571	-48.830769
London Borough of Haringey	-32.148148	-12.642401	32.320580	-43.575990	-46.706258
London Borough of Harrow	-28.797954	-2.694764	71.846358	-37.715198	-32.913155
London Borough of Havering	-29.049808	-6.095785	18.307388	-36.833972	-35.236271

	Retail_Recreation	Grocery_Pharmacy	Parks	Transit_stations	Workplaces
sub_region_2					
London Borough of Hillingdon	-30.960409	-8.284802	60.963061	-56.014049	-36.523627
London Borough of Hounslow	-26.613027	-5.236271	34.843008	-37.243934	-36.002554
London Borough of Islington	-55.355045	-19.494253	32.201847	-64.200511	-50.503846
London Borough of Lambeth	-44.544061	-11.353768	25.678385	-51.174968	-42.699872
London Borough of Lewisham	-24.535121	-0.340996	50.795515	-41.329502	-44.185185
London Borough of Merton	-35.519796	-11.674330	23.606860	-45.126437	-41.200511
London Borough of Newham	-36.200511	-8.685824	147.387054	-42.398467	-37.397190
London Borough of Redbridge	-29.342273	-6.408685	28.374670	-44.058748	-42.378033
London Borough of Richmond upon Thames	-33.135550	-4.287179	29.488220	-46.877395	-50.096525
London Borough of Southwark	-43.363985	-15.542784	0.535121	-49.826309	-42.186462
London Borough of Sutton	-28.873533	-8.725415	39.916887	-48.143040	-41.744872
London Borough of Tower Hamlets	-47.049808	-15.140485	-13.584930	-52.744572	-47.791826
London Borough of Waltham Forest	-20.342273	-6.747126	25.879947	-43.535121	-42.888889
London Borough of Wandsworth	-38.323116	-13.988506	29.126943	-45.245211	-44.556833
Royal Borough of Greenwich	-30.939974	-5.644955	13.830931	-36.293742	-43.113665
Royal Borough of Kensington and Chelsea	-51.969349	-8.543590	-4.650396	-55.075351	-47.325611

	Retail_Recreation	Grocery_Pharmacy	Parks	Transit_stations	Workplaces
sub_region_2					
Royal Borough of Kingston upon Thames	-36.174968	-13.084291	48.361635	-43.125160	-41.402564

city of Westminster

```
In [64]:
```

```
col=data[data['sub region 2']=='City of Westminster']
UK NADrop col= col.dropna(
    subset=[
        "country_region",
        "sub_region_1",
        "date",
        "Retail_Recreation",
        "Grocery_Pharmacy",
        "Parks",
        "Transit_stations",
        "Workplaces",
        "Residential",
    ]
)
# Number of rows and columns in the DataFrame without NaNs
UK NADrop col.shape
Out[64]:
(768, 15)
In [47]:
mobility trends UK corr = col.iloc[:, 9:15].corr()
mobility_trends_UK_corr
```

Out[47]:

	Retail_Recreation	Grocery_Pharmacy	Parks	Transit_stations	Workplac
Retail_Recreation	1.000000	0.917150	0.706955	0.969522	0.7257
Grocery_Pharmacy	0.917150	1.000000	0.764265	0.935028	0.6979
Parks	0.706955	0.764265	1.000000	0.675479	0.3891
Transit_stations	0.969522	0.935028	0.675479	1.000000	0.7886
Workplaces	0.725736	0.697965	0.389129	0.788607	1.0000
Residential	-0.794691	-0.792296	-0.587968	-0.834631	-0.9227

In [48]:

tower hamlets correlation

```
In [31]:
```

In [49]:

tower=data[data['sub_region_2']=='London Borough of Tower Hamlets']

In [50]:

```
mobility_trends_UK_corr = tower.iloc[:, 9:15].corr()
mobility_trends_UK_corr
```

Out[50]:

	Retail_Recreation	Grocery_Pharmacy	Parks	Transit_stations	Workplac
Retail_Recreation	1.000000	0.730188	0.430977	0.892447	0.7380
Grocery_Pharmacy	0.730188	1.000000	0.559293	0.684907	0.3437
Parks	0.430977	0.559293	1.000000	0.484571	0.2069
Transit_stations	0.892447	0.684907	0.484571	1.000000	0.8310
Workplaces	0.738090	0.343768	0.206967	0.831061	1.0000
Residential	-0.839647	-0.491185	-0.407533	-0.871011	-0.9269

In [51]:

Tower hamlets lockdown

In [34]:

```
bourgh=data_long.sub_region_2.unique()
```

In [35]:

```
tower=data_long[data_long["sub_region_2"] == "London Borough of Tower Hamlets"]
first_lockdown_UK,second_lockdown_UK,third_lockdown_UK=ld(tower)
```

In [36]:

```
lockdowns_dataframes = [first_lockdown_UK, second_lockdown_UK, third_lockdown_UK]

three_lockdowns_UK = pd.concat(
    lockdowns_dataframes,
    keys=["first_lockdown_UK", "second_lockdown_UK", "third_lockdown_UK"],
).reset_index()
```

In [37]:

```
# Display the three lockdowns as a catplot multi-plot
grid = sns.catplot(
    kind="bar",
    x="sub_region_2",
    y="value",
    hue="variable",
    col="level_0",
    data=three_lockdowns_UK,
)
grid.set_ylabels("Mean mobility change from baseline (%)")
```

Out[37]:

<seaborn.axisgrid.FacetGrid at 0x7fe5d5b5acd0>

In []:

tower hamlets regression

```
In [59]:
```

```
UK_NADrop_tower= tower.dropna(
    subset=[
        "country_region",
        "sub_region_1",
        "date",
        "Retail_Recreation",
        "Grocery_Pharmacy",
        "Parks",
        "Transit_stations",
        "Workplaces",
        "Residential",
    ]
)

# Number of rows and columns in the DataFrame without NaNs
UK_NADrop_tower.shape
```

```
Out[59]: (783, 15)
```

In [60]:

```
for i in range(len(variabl)):
    for j in range(i+1,len(variabl)):
        print(f'for {variabl[i]} and {variabl[j]} linear regression val is')
        model_outputs = stats.linregress(
        UK_NADrop_tower[variabl[i]], UK_NADrop_tower[variabl[j]])
        print(model_outputs)
        print('\n')
```

for Retail_Recreation and Grocery_Pharmacy linear regression val is LinregressResult(slope=0.4913752304796176, intercept=7.9786251479809 88, rvalue=0.7301884264302877, pvalue=2.489914731174765e-131, stderr=0.016452419982281415, intercept stderr=0.8504464571029303)

for Retail_Recreation and Parks linear regression val is LinregressResult(slope=0.5108280550466056, intercept=10.449432372818583, rvalue=0.4309774138359571, pvalue=9.360402205387711e-37, stderr=0.03827153271677052, intercept stderr=1.9783040696705485)

for Retail_Recreation and Transit_stations linear regression val is LinregressResult(slope=0.6863180602597102, intercept=-20.45343890170 1496, rvalue=0.8924467505711825, pvalue=3.4000461506203783e-272, std err=0.012414842089434682, intercept stderr=0.6417389345654179)

for Retail_Recreation and Workplaces linear regression val is LinregressResult(slope=0.7964393940704284, intercept=-10.31950539265 059, rvalue=0.7380902766664937, pvalue=1.3284859833233748e-135, stde rr=0.026051318474448738, intercept stderr=1.3466256953879945)

for Retail_Recreation and Residential linear regression val is LinregressResult(slope=-0.3927666400961281, intercept=-2.6520089669749183, rvalue=-0.8396471056109742, pvalue=3.1079164173223936e-209, stderr=0.00909113158631897, intercept stderr=0.46993212287116687)

for Grocery_Pharmacy and Parks linear regression val is LinregressResult(slope=0.9851028223828072, intercept=1.3300050566387 984, rvalue=0.5592933409626778, pvalue=1.2172083328854827e-65, stder r=0.05224624904916296, intercept stderr=1.0919063294984426)

for Grocery_Pharmacy and Transit_stations linear regression val is LinregressResult(slope=0.7827013724158757, intercept=-40.89409352491 672, rvalue=0.6849065129377235, pvalue=1.728495309583809e-109, stder r=0.0297952408297318, intercept_stderr=0.6226975647629924)

for Grocery_Pharmacy and Workplaces linear regression val is LinregressResult(slope=0.5512264026993599, intercept=-39.44599105491582, rvalue=0.3437677072268708, pvalue=3.8615155368446857e-23, stder r=0.05388033853352187, intercept_stderr=1.1260575400333726)

for Grocery_Pharmacy and Residential linear regression val is LinregressResult(slope=-0.3414321864121227, intercept=10.65813720317 2778, rvalue=-0.4911848649633377, pvalue=8.67435819290633e-49, stder r=0.02166604895256816, intercept stderr=0.4528037211680231)

for Parks and Transit_stations linear regression val is LinregressResult(slope=0.31439817557890154, intercept=-48.4734950272 8892, rvalue=0.4845706800290579, pvalue=2.4016722508394013e-47, stde rr=0.02030871134691612, intercept stderr=0.5845285023639575)

for Parks and Workplaces linear regression val is

LinregressResult(slope=0.1884190316644853, intercept=-45.23216699895897, rvalue=0.2069673069181005, pvalue=5.049224118335105e-09, stderr=0.03187064119920662, intercept stderr=0.9173057734350116)

for Parks and Residential linear regression val is LinregressResult(slope=-0.16083489853009653, intercept=13.6426554078 35713, rvalue=-0.4075329435194508, pvalue=1.0990431289872208e-32, st derr=0.01289595291394231, intercept stderr=0.371173331216186)

for Transit_stations and Workplaces linear regression val is LinregressResult(slope=1.1660932164260875, intercept=13.713261488098 325, rvalue=0.8310614445293381, pvalue=3.541367564242635e-201, stder r=0.02792482529041059, intercept stderr=1.54296554630431)

for Transit_stations and Residential linear regression val is LinregressResult(slope=-0.5298080007546805, intercept=-12.116910118987928, rvalue=-0.871011379210925, pvalue=2.700487871921114e-243, std err=0.010692594091016586, intercept stderr=0.5908113698645476)

for Workplaces and Residential linear regression val is LinregressResult(slope=-0.40181764721463786, intercept=-3.3760129967 036576, rvalue=-0.9269033615459982, pvalue=0.0, stderr=0.00582167158 3430434, intercept stderr=0.30902533361951584)

In [61]:

```
for i in range(len(variabl)):
    for j in range(i+1,len(variabl)):
        print(f'for {variabl[i]} and {variabl[j]} linear regression val is')
        X = sm.add_constant(UK_NADrop_tower[variabl[i]])
        Y = UK_NADrop_tower[variabl[j]]
        model = sm.OLS(Y, X)
        results = model.fit()

        print_model = results.summary()
        print(print_model)
        print('\n')
```

for Retail_Recreation and Grocery_Pharmacy linear regression val is OLS Regression Results

Dep. Variable: Grocery_Pharmacy R-squared:

0.533

Model: OLS Adj. R-squared:

0.533

Method: Least Squares F-statistic:

892.0

Date: Fri, 30 Sep 2022 Prob (F-statistic):

2.49e-131

Time: 06:16:33 Log-Likelihood:

-2901.6

No. Observations: 783 AIC:

5807.

Df Residuals: 781 BIC:

5816.

Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t|

=======

Omnibus: 34.164 Durbin-Watson:

1.032

Prob(Omnibus): 0.000 Jarque-Bera (JB):

44.725

Skew: -0.416 Prob(JB):

1.94e-10

Kurtosis: 3.823 Cond. No.

125.

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Retail_Recreation and Parks linear regression val is
OLS Regression Results

=======

Dep. Variable: Parks R-squared:

0.186

Model: OLS Adj. R-squared:

0.185

Method: Least Squares F-statistic:

178.2

Date: Fri, 30 Sep 2022 Prob (F-statistic):

9.36e-37

Time: 06:16:33 Log-Likelihood:

-3562.6

No. Observations: 783 AIC:

7129.

Df Residuals: 781 BIC:

7139.

Df Model: 1 Covariance Type: nonrobust

coef std err t P>|t|

[0.025 0.975]

10.4494 1.978 5.282 0.000 const

14.333 6.566

Retail Recreation 0.5108 0.038 13.347 0.000

0.586

Omnibus: 227.407 Durbin-Watson:

0.614

0.000 Jarque-Bera (JB): Prob(Omnibus):

837.526

Skew: 1.339 Prob(JB):

1.36e-182

7.301 Cond. No. Kurtosis:

125.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Retail Recreation and Transit stations linear regression val is OLS Regression Results

========

Dep. Variable: Transit stations R-squared:

0.796

Model: OLS Adj. R-squared:

0.796

Method: Least Squares F-statistic:

3056.

Date: Fri, 30 Sep 2022 Prob (F-statistic):

3.40e-272

Time: 06:16:33 Log-Likelihood:

-2681.1

No. Observations: 783 AIC:

5366.

Df Residuals: 781 BIC:

5376.

Df Model: 1 nonrobust Covariance Type:

coef std err t P>|t|

0.975] [0.025

-20.4534 0.642 -31.8720.000 -2const 1.713 -19.194 Retail Recreation 0.6863 0.012 55.282 0.000 0.662 0.711 _____ ======== Omnibus: 19.442 Durbin-Watson: 0.390 Prob(Omnibus): 0.000 Jarque-Bera (JB): 20.513 0.360 Prob(JB): Skew: 3.51e-05 Kurtosis: 3.333 Cond. No. 125. _____

=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Retail_Recreation and Workplaces linear regression val is
OLS Regression Results

OLS Regression Results					
=======================================		=======	========		:====
Dep. Variable: 0.545	Wo	rkplaces	R-squared:		
Model:		OLS	Adj. R-squa	red:	
0.544					
Method:	Least	Squares	F-statistic	:	
934.6 Date:	Fri 30	Sep 2022	Prob (F-stat	tistic).	
1.33e-135	111, 30	DCP 2022	1100 (1-500)		
Time:		06:16:33	Log-Likelih	ood:	
-3261.4					
No. Observations:		783	AIC:		
6527. Df Residuals:		781	BIC:		
6536.		701	Dic.		
Df Model:		1			
Covariance Type:		onrobust			
=======================================		=======	========	========	:=====
	coef	std err	t	P> t	
[0.025 0.975]			_	- 1-1	
const	10 3105	1 2/7	-7.663	0 000	-1
2.963 -7.676	-10.3193	1.547	-7.003	0.000	-1
	0.7964	0.026	30.572	0.000	
0.745 0.848					
=======================================		=======	========		:=====
Omnibus:		83.921	Durbin-Watso	on:	
1.262		03.721	Darbin water	511 .	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	
65.395		0.610	- 1 ()		
Skew: 6.30e-15		0.612	Prob(JB):		
0.306-13					

2.290

Cond. No.

Kurtosis:

125.

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Retail_Recreation and Residential linear regression val is OLS Regression Results

=======	=					
Dep. Varia	ble:	Resi	dential	R-squared:		
0.705						
Model:			OLS	Adj. R-square	ed:	
0.705						
Method:		Least	Squares	F-statistic:		
1867.						
Date:		Fri, 30 S	ep 2022	Prob (F-stati	istic):	
3.11e-209						
Time:		0	6:16:33	Log-Likelihoo	od:	
-2437.1						
No. Observ	ations:		783	AIC:		
4878.						
Df Residua	ıls:		781	BIC:		
4888.						
Df Model:			1			
Covariance	Type:	no	nrobust			
=======			=======			=====
=======	======	_			- 1.1	
	0.055	coei	std err	t	P> t	
[0.025	-					
const		2 6520	0 470	-5.643	0 000	
3.574	1 730	-2.0320	0.470	-3.043	0.000	_
		0 3028	0 009	-43.203	0 000	
0.411		-0.3920	0.009	-43.203	0.000	_
				=========		
========						
Omnibus:			92.453	Durbin-Watsor	n:	
1.186			22120		- -	
Prob(Omnib	ous):		0.000	Jarque-Bera ((JB):	
125.896	, -				(,-	
Skew:			-0.982	Prob(JB):		
				(/ -		
4.59e-28						

=======

Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.971 Cond. No.

for Grocery_Pharmacy and Parks linear regression val is OLS Regression Results

=======

Dep. Variable: Parks R-squared: 0.313 Model: OLS Adj. R-squared: 0.312 Method: Least Squares F-statistic: 355.5 Fri, 30 Sep 2022 Prob (F-statistic): Date: 1.22e-65 Time: 06:16:33 Log-Likelihood: -3496.2No. Observations: 783 AIC: 6996. Df Residuals: 781 BIC: 7006. Df Model: Covariance Type: nonrobust _____ ______ coef std err t P>|t| [0.025 0.975] _____ 1.3300 1.092 1.218 0.224 const 0.813 3.473 Grocery_Pharmacy 0.9851 0.052 18.855 0.000 1.088 ______ ======== Omnibus: 288.146 Durbin-Watson: 0.798 Prob(Omnibus): 0.000 Jarque-Bera (JB): 1632.067 Skew: 1.562 Prob(JB): 0.00 Kurtosis: 9.346 Cond. No. 30.4 ========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Grocery_Pharmacy and Transit_stations linear regression val is OLS Regression Results

=======

Dep. Variable: Transit_stations R-squared:

0.469

Model: OLS Adj. R-squared:

0.468

Method: Least Squares F-statistic:

690.1

Date: Fri, 30 Sep 2022 Prob (F-statistic):

1.73e-109

Time: 06:16:33 Log-Likelihood:

-3056.4

No. Observations: 783 AIC:

6117.

Df Residuals: 781 BIC:

6126.

Df Model: nonrobust Covariance Type:

P>|t| coef std err t [0.025 0.975]

const -40.8941 0.623 -65.672 0.000 -4

2.116 -39.672

Grocery_Pharmacy 0.7827 0.030 26.269 0.000

0.724 0.841

166.281 Durbin-Watson: Omnibus:

0.916

Prob(Omnibus): 0.000 Jarque-Bera (JB):

287.308

Skew: 1.315 Prob(JB):

4.09e-63

4.375 Cond. No. Kurtosis:

30.4

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Grocery Pharmacy and Workplaces linear regression val is OLS Regression Results

========

Dep. Variable: Workplaces R-squared:

0.118

Model: OLS Adj. R-squared:

0.117

Method: Least Squares F-statistic:

104.7

Fri, 30 Sep 2022 Prob (F-statistic): Date:

3.86e-23

Time: 06:16:33 Log-Likelihood:

-3520.3

No. Observations: 783 AIC:

7045.

Df Residuals: 781 BIC:

7054.

Df Model: Covariance Type: nonrobust

===========

coef std err t P>|t| [0.025 0.975]

_____ -39.4460 1.126 -35.030 0.000 const

1.656 -37.236

Grocery Pharmacy 0.5512 0.054 10.231 0.000

0.445 0.657

______ ======= Omnibus: 130.030 Durbin-Watson: 1.158

0.000 Jarque-Bera (JB): Prob(Omnibus):

109.354

Skew: 0.826 Prob(JB):

1.79e-24

2.211 Cond. No. Kurtosis:

30.4

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Grocery Pharmacy and Residential linear regression val is OLS Regression Results

_____ Residential R-squared: Dep. Variable: 0.241 Model: OLS Adj. R-squared:

0.240 Least Squares F-statistic: Method:

248.3

Fri, 30 Sep 2022 Prob (F-statistic): Date:

8.67e-49

Time: 06:16:34 Log-Likelihood:

-2807.0

No. Observations: 783 AIC:

5618.

Df Residuals: 781 BIC:

5627.

Df Model: Covariance Type: nonrobust

=========== coef std err t P>|t| [0.025 0.975]

10.6581 0.453 23.538 0.000 const 9.769 11.547 -0.3414 0.022 -15.759 0.000 Grocery Pharmacy

0.384 -0.299 ______

Omnibus:

54.111 Durbin-Watson:

1.099

Prob(Omnibus): 0.000 Jarque-Bera (JB):

44.361

Skew: -0.499 Prob(JB):

2.33e-10

Kurtosis: 2.397 Cond. No.

localhost:8888/nbconvert/html/Desktop/tower/Google mobility data/tw.ipynb?download=false

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Parks and Transit_stations linear regression val is OLS Regression Results

=========		======	=====	======			=======
========							
Dep. Variable	e:	Transit	stati	ions	R-squ	uared:	
0.235		•	_		_		
Model:				OLS	Adj.	R-squared:	
0.234						-	
Method:		Leas	t Squa	ares	F-sta	atistic:	
239.7			-				
Date:		Fri, 30	Sep 2	2022	Prob	(F-statistic):	
2.40e-47		•	-			,	
Time:			06:16	5:34	Log-I	Likelihood:	
-3199.5					-		
No. Observati	ions:			783	AIC:		
6403.							
Df Residuals:	:			781	BIC:		
6412.							
Df Model:				1			
Covariance Ty	ype:		nonrok	oust			
=========			=====				=======
=======							
	coef	std	err		t	P> t	[0.025
0.975]							
const	-48.4735	5 0	.585	-82	928	0.000	-49.621
-47.326							
Parks	0.3144	1 0	.020	15.	.481	0.000	0.275
0.354							
=========			=====				======
=======							
Omnibus:			70.	.433	Durb	in-Watson:	
0.409							
Prob(Omnibus)):		0.	.000	Jarqı	ıe-Bera (JB):	
94.147							
Skew:			0.	.712	Prob	(JB):	
3.60e-21							
Kurtosis:			3.	926	Cond	. No.	
32.7							
=========			=====		=====		======
=======							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Parks and Workplaces linear regression val is
OLS Regression Results

========

Dep. Variable: Workplaces R-squared:

0.043

Model: OLS Adj. R-squared:

0.042

Method: Least Squares F-statistic: 34.95 Date: Fri, 30 Sep 2022 Prob (F-statistic): 5.05e-09 Time: 06:16:34 Log-Likelihood: -3552.4 No. Observations: 783 AIC: 7109. Df Residuals: 781 BIC:

coef std err

7118.

Df Model: Covariance Type: nonrobust

t P>|t| [0.025

========

0.975] -45.2322 0.917 -49.310 0.000 -47.033 const -43.431 Parks 0.1884 0.032 5.912 0.000 0.126 0.251

========

70.618 Durbin-Watson: Omnibus:

0.904

0.000 Jarque-Bera (JB): Prob(Omnibus):

57.820

Skew: 0.579 Prob(JB):

2.78e-13

2.343 Cond. No. Kurtosis:

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Parks and Residential linear regression val is OLS Regression Results

========

Dep. Variable: Residential R-squared:

0.166

Model: OLS Adj. R-squared:

0.165

Method: Least Squares F-statistic:

155.5

Fri, 30 Sep 2022 Prob (F-statistic): Date:

1.10e-32

06:16:34 Log-Likelihood: Time:

-2844.0

No. Observations: 783 AIC:

5692.

Df Residuals: 781 BIC:

5701. Df Model: 1

Covariance Type: nonrobust ______

======== coef std err t P>|t| [0.025 0.9751 13.6427 0.371 36.755 0.000 12.914 const. 14.371 Parks -0.1608 0.013 -12.472 0.000-0.186 -0.136 ======== 39.213 Durbin-Watson: Omnibus: 0.744 0.000 Jarque-Bera (JB): Prob(Omnibus): 16.113 Skew: 0.035 Prob(JB): 0.000317 Kurtosis: 2.301 Cond. No. 32.7 ______

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Transit_stations and Workplaces linear regression val is
OLS Regression Results

Model: OLS Adj. R-squared: 0.690

Method: Least Squares F-statistic: 1744.

Date: Fri, 30 Sep 2022 Prob (F-statistic):

3.54e-201 Time: 06:16:34 Log-Likelihood:

-3110.2

No. Observations: 783 AIC:

6224.
Df Residuals: 781 BIC:

6234.
Df Model: 1

Covariance Type: nonrobust

=======

Omnibus: 66.502 Durbin-Watson: 1.253

Prob(Omnibus): 0.000 Jarque-Bera (JB): 82.572

Skew: 0.795 Prob(JB):

1.17e-18

Kurtosis: 3.055 Cond. No.

185.

=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Transit_stations and Residential linear regression val is OLS Regression Results

=======

Dep. Variable: Residential R-squared:

0.759

Model: OLS Adj. R-squared:

0.758

Method: Least Squares F-statistic:

2455.

Date: Fri, 30 Sep 2022 Prob (F-statistic):

2.70e-243

Time: 06:16:34 Log-Likelihood:

-2358.5

No. Observations: 783 AIC:

4721.

Df Residuals: 781 BIC:

4730.

Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t|

[0.025 0.975	5]				
const	-12.1169	0.591	-20.509	0.000	-1
3.277 -10.957	7				
Transit_stations	-0.5298	0.011	-49.549	0.000	_
0.551 -0.509)				

========

Omnibus: 26.381 Durbin-Watson:

0.984

Prob(Omnibus): 0.000 Jarque-Bera (JB):

28.156

Skew: -0.448 Prob(JB):

7.69e-07

Kurtosis: 3.249 Cond. No.

185.

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Workplaces and Residential linear regression val is
OLS Regression Results

					:========	
========						
Dep. Variable	2:	Residenti	ial	R-sau	ared:	
0.859						
Model:		(OLS	Adj.	R-squared:	
0.859				,	-	
Method:		Least Squar	ces	F-sta	atistic:	
4764.		-				
Date:	Fr	i, 30 Sep 20)22	Prob	(F-statistic):	
0.00						
Time:		06:16:	: 34	Log-I	Likelihood:	
-2147.7						
No. Observati	ions:	7	783	AIC:		
4299.						
Df Residuals:	:	7	781	BIC:		
4309.						
Df Model:			1			
Covariance Ty	pe:	nonrobu	ıst			
=========		========			========	======
=======	-				I. I	
0.055	coei	std err		t	P> t	[0.025
0.975]						
const	-3.3760	0 300	1.0	925	0.000	-3.983
-2.769	-3.3700	0.309	-10.	923	0.000	-3.903
Workplaces	_0 4018	0.006	-69	021	0.000	-0.413
-0.390	-0.4010	0.000	-05.	.021	0.000	-0.415
	-=======	=========	=====	=====	:========	=======
========						
Omnibus:		4.9	906	Durbi	n-Watson:	
0.552						
Prob(Omnibus)):	0.0	086	Jarqu	ue-Bera (JB):	
4.748				-	,	
Skew:		-0.1	181	Prob(JB):	
0.0931						
Kurtosis:		3.1	118	Cond.	No.	
122.						
=========		========			:========	=======
=======						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Tower hamlet regression against Southwark

```
In [79]:
```

```
tower=data[data['sub region 2']=='London Borough of Tower Hamlets']
UK_NADrop_tower= tower.dropna(
    subset=[
        "country region",
        "sub_region_1",
        "date",
        "Retail Recreation",
        "Grocery_Pharmacy",
        "Parks",
        "Transit_stations",
        "Workplaces",
        "Residential",
    ]
)
UK NADrop tower.set index('date',inplace=True)
# Number of rows and columns in the DataFrame without NaNs
UK NADrop tower.shape
Out[79]:
(783, 14)
In [80]:
Southwark=data[data['sub_region_2']=='London Borough of Southwark']
UK_NADrop_Southwark= Southwark.dropna(
    subset=[
        "country region",
        "sub region 1",
        "date",
        "Retail Recreation",
        "Grocery_Pharmacy",
        "Parks",
        "Transit stations",
        "Workplaces",
        "Residential",
    ]
UK NADrop Southwark.set index('date',inplace=True)
# Number of rows and columns in the DataFrame without NaNs
UK NADrop Southwark.shape
```

```
Out[80]:
```

(783, 14)

In [81]:

```
for i in range(len(variabl)):
    print(f'for {variabl[i]} linear regression val is')
    X = sm.add_constant(UK_NADrop_tower[variabl[i]])
    Y = UK_NADrop_Southwark[variabl[i]]
    model = sm.OLS(Y, X)
    results = model.fit()

    print_model = results.summary()
    print(print_model)
    print('\n')
```

========

Dep. Variable: Retail Recreation R-squared:

0.909

Model: OLS Adj. R-squared:

0.909

Method: Least Squares F-statistic:

7785.

Date: Fri, 30 Sep 2022 Prob (F-statistic):

0.00

Time: 06:30:47 Log-Likelihood:

-2535.7

No. Observations: 783 AIC:

5075.

Df Residuals: 781 BIC:

5085.

Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t|

=======

Omnibus: 20.017 Durbin-Watson:

0.784

Prob(Omnibus): 0.000 Jarque-Bera (JB):

11.102

Skew: 0.091 Prob(JB):

0.00388

Kurtosis: 2.446 Cond. No.

125.

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for $Grocery_Pharmacy\ linear\ regression\ val\ is$

OLS Regression Results

=======

Dep. Variable: Grocery Pharmacy R-squared:

0.780

Model: OLS Adj. R-squared:

0.779

Method: Least Squares F-statistic:

2765.

Date: Fri, 30 Sep 2022 Prob (F-statistic):

7.86e-259

Time: 06:30:47 Log-Likelihood:

-2460.9

No. Observations: 783 AIC:

4926.

Df Residuals: 781 BIC:

4935.

Df Model: 1 Covariance Type: nonrobust

coef std err t P>|t|

[0.025 0.975]

-4.4548 0.291 -15.306 0.000 const

5.026 -3.883

0.7323 0.014 52.587 Grocery Pharmacy 0.000

0.760

Omnibus: 33.240 Durbin-Watson:

1.378

0.000 Jarque-Bera (JB): Prob(Omnibus):

83.892

Skew: 0.155 Prob(JB):

6.07e-19

4.573 Cond. No. Kurtosis:

30.4

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Parks linear regression val is

OLS Regression Results

========

Dep. Variable: Parks R-squared:

0.853

Model: OLS Adj. R-squared:

0.853

Method: Least Squares F-statistic:

4534.

Date: Fri, 30 Sep 2022 Prob (F-statistic):

0.00

Time: 06:30:47 Log-Likelihood:

-2897.3

No. Observations: 783 AIC:

5799.

Df Residuals: 781 BIC:

5808.

Df Model: 1 Covariance Type: nonrobust

coef std err t P>|t| [0.025

0.9751

13.1630 0.397 33.129 0.000 12.383 const 13.943 Parks 0.9295 0.014 67.336 0.000 0.902 0.957 ______ 489.729 Durbin-Watson: Omnibus: 0.821 Prob(Omnibus): 0.000 Jarque-Bera (JB): 23725.153 Prob(JB): Skew: -2.1430.00 Kurtosis: 29.624 Cond. No. 32.7

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Transit_stations linear regression val is
OLS Regression Results

	OLS Regression Results						
======= Dep. Variable: 0.927	Transit_	stations	R-squared:				
Model:	OLS		Adj. R-squared:				
0.927 Method: 9894.	Least Squares		F-statistic:				
Date: 0.00	Fri, 30	Fri, 30 Sep 2022 Prob (F-statistic):					
Time:	06:30:47		Log-Likelihood:				
-2375.6 No. Observations:		783	AIC:				
Df Residuals:		781	BIC:				
Df Model:		1					
Covariance Type:	nonrobust						
=======================================							
[0.025 0.975]	coef	std err	t 	P> t			
const 6.323 8.694	7.5082	0.604	12.434	0.000			
Transit_stations	1.0870	0.011	99.467	0.000			

const	7.5082	0.604	12.434	0.000
6.323 8.694				
${ t Transit_stations}$	1.0870	0.011	99.467	0.000
1.066 1.108				
		======	========	
=======				
Omnibus:		12.228	Durbin-Watson:	}
0.605				
Prob(Omnibus):		0.002	Jarque-Bera (3	Љ):
18.295				
Skew:		0.118	Prob(JB):	
0.000106				
Kurtosis:		3.711	Cond. No.	

185.

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Workplaces linear regression val is

OLS Regression Results

Dep. Varia

Dep. Variable: Workplaces R-squared:

0.980

Model: OLS Adj. R-squared:

0.980

Method: Least Squares F-statistic:

3.864e+04

Date: Fri, 30 Sep 2022 Prob (F-statistic):

0.00

Time: 06:30:47 Log-Likelihood:

-2019.8

No. Observations: 783 AIC:

4044.

Df Residuals: 781 BIC:

4053.

Df Model:

Covariance Type: nonrobust

========

0.975]	coef	std err	t 	P> t	[0.025
 const 4.780	4.2652	0.262	16.250	0.000	3.750
Workplaces 0.982	0.9720	0.005	196.568	0.000	0.962

=======

Omnibus: 1.974 Durbin-Watson:

0.690

Prob(Omnibus): 0.373 Jarque-Bera (JB):

1.826

Skew: 0.033 Prob(JB):

0.401

Kurtosis: 2.773 Cond. No.

122

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Residential linear regression val is

OLS Regression Results

========

Dep. Variable: Residential R-squared: 0.991 Model: OLS Adj. R-squared: 0.991 Method: Least Squares F-statistic: 8.919e+04 Fri, 30 Sep 2022 Prob (F-statistic): Date: 0.00 Time: 06:30:47 Log-Likelihood: -1020.7No. Observations: 783 AIC: 2045. Df Residuals: 781 BIC: 2055. Df Model: Covariance Type: nonrobust ______ _____ coef std err t P>|t| [0.025] 0.9751 _____ 7.9e-05 0.060 0.001 0.999 -0.117 const 0.117 Residential 0.9509 0.003 298.642 0.000 0.945 ______ ======== Omnibus: 150.773 Durbin-Watson: 1.173 Prob(Omnibus): 0.000 Jarque-Bera (JB): 387.437 Skew: 0.993 Prob(JB): 7.40e-85 Kurtosis: 5.816 Cond. No. 35.1

Notes:

========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [97]:

#after lockdown improvements

In [101]:

```
def ld(data_long):
    first_lockdown_UK = data_long[
        (data_long["country_region"] == "United Kingdom")
        & (data_long["date"] >= "2020-04-13")
        & (data_long["date"] <= "2020-11-05")
]

second_lockdown_UK = data_long[
        (data_long["country_region"] == "United Kingdom")
        & (data_long["date"] >= "2020-11-25")
        & (data_long["date"] <= "2021-01-06")
]

third_lockdown_UK = data_long[
        (data_long["country_region"] == "United Kingdom")
        & (data_long["date"] >= "2021-01-26")

lreturn [first_lockdown_UK,second_lockdown_UK,third_lockdown_UK]
```

In [102]:

```
first_lockdown_UK,second_lockdown_UK,third_lockdown_UK=ld(data_long)
lockdowns_dataframes = [first_lockdown_UK, second_lockdown_UK, third_lockdown_UK
]
three_lockdowns_UK = pd.concat(
    lockdowns_dataframes,
    keys=["first_lockdown_UK", "second_lockdown_UK", "third_lockdown_UK"],
).reset_index()
```

In [103]:

```
third_lockdown_UK_mean = (
    third_lockdown_UK.groupby(["variable", "sub_region_2"])["value"]
    .mean()
    .reset_index()
)
```

In [104]:

```
third_lockdown_UK_mean_sorted = third_lockdown_UK_mean.sort_values(
    by=[
        "variable",
        "value",
    ],
    ascending=False,
)[["sub_region_2", "variable", "value"]]
third_lockdown_UK_mean_sorted
```

Out[104]:

	sub_region_2	variable	value
178	London Borough of Harrow	Workplaces	-25.940503
181	London Borough of Hounslow	Workplaces	-30.592677
179	London Borough of Havering	Workplaces	-30.807780
186	London Borough of Newham	Workplaces	-31.354691
172	London Borough of Croydon	Workplaces	-32.185355
12	London Borough of Hammersmith and Fulham	Grocery_Pharmacy	-14.139588
18	London Borough of Islington	Grocery_Pharmacy	-16.615561
1	City of Westminster	Grocery_Pharmacy	-21.757437
7	London Borough of Camden	Grocery_Pharmacy	-23.745995
0	City of London	Grocery_Pharmacy	-54.526316

197 rows × 3 columns

In [105]:

```
for i in variabl:
    t_min=third_lockdown_UK_mean_sorted[third_lockdown_UK_mean_sorted['variable'
]==i].iloc[0]
    t_max=third_lockdown_UK_mean_sorted[third_lockdown_UK_mean_sorted['variable'
]==i].iloc[-1]

    print(f'min change is for {i} is {t_min.sub_region_2} with value of {t_min.v alue}')
        print(f'max change is for {i} is {t_max.sub_region_2} with value of {t_max.v alue}')
        print('\n')
```

min change is for Retail_Recreation is London Borough of Waltham For est with value of -11.219679633867276 max change is for Retail_Recreation is City of London with value of -65.12356979405034

min change is for Grocery_Pharmacy is London Borough of Harrow with value of 5.780320366132723

max change is for Grocery_Pharmacy is City of London with value of 54.526315789473685

min change is for Parks is London Borough of Newham with value of 17 6.9862385321101

max change is for Parks is City of London with value of -61.57665903 89016

min change is for $Transit_stations$ is Royal Borough of Greenwich with value of -30.787185354691076

max change is for $Transit_stations$ is London Borough of Islington with value of -66.76201372997711

min change is for Workplaces is London Borough of Harrow with value of -25.94050343249428

max change is for Workplaces is City of London with value of -51.626 198083067095

min change is for Residential is London Borough of Islington with value of 13.933638443935926

max change is for Residential is London Borough of Barking and Dagen ham with value of 7.345537757437071

In [106]:

tower=data_long[data_long["sub_region_2"] == "London Borough of Tower Hamlets"]
first lockdown UK, second lockdown UK, third lockdown UK=ld(tower)

In [107]:

```
lockdowns_dataframes = [first_lockdown_UK, second_lockdown_UK, third_lockdown_UK
]
three_lockdowns_UK = pd.concat(
    lockdowns_dataframes,
    keys=["first_lockdown_UK", "second_lockdown_UK", "third_lockdown_UK"],
).reset_index()
```

In [108]:

```
# Display the three lockdowns as a catplot multi-plot
grid = sns.catplot(
    kind="bar",
    x="sub_region_2",
    y="value",
    hue="variable",
    col="level_0",
    data=three_lockdowns_UK,
)
grid.set_ylabels("Mean mobility change from baseline (%)")
```

Out[108]:

<seaborn.axisgrid.FacetGrid at 0x7fe5c4bea590>

In []: