FÍSICA MECÂNICA 2016/17

Natércia Lima

UNIDADES...

- Esta placa quererá dizer o mesmo em todo o lado?
- Se fossem 30m/s...queria então dizer que poderíamos circular até 108 km/h!!!
- E em Inglaterra?
- o Importância do Contexto!
- As grandezas físicas podem ser descritas em vários sistemas, entre os quais, o SI (Sistema Internacional),o cgs (cm, grama, segundo) ou ainda o mk_ps(Sistema gravitatório, em que se utiliza os kgf).

UNIDADES...

Outros sistemas de Unidades

Grandezas Físicas

- o Caracterização de uma grandeza Física:
 - Valor numérico (nº de vezes que a grandeza cabe num padrão)
 - Unidades
- Excepção: grandezas adimensionais (coeficiente de atrito)
- o Sistemas de Unidades Internacional (desde 1983)

SISTEMAS DE UNIDADES

- Escolher um conjunto de grandezas como fundamentais:
 - Terão que ser independentes entre si
 - Para cada grandeza fundamental escolhe-se arbitrariamente uma unidade (unidades de base)
- Todas as outras grandezas serão derivadas
 - As respetivas unidades têm que se relacionar com as unidades de base.

SISTEMAS DE UNIDADES

Definem-se através de:

- Unidades Base ou Fundamentais (unidades independentes entre si)
- Unidades Derivadas (composições coerentes das primeiras)

SISTEMA DE UNIDADES

- Escolha das Grandezas Fundamentais
 - 3 só com a grandezas da área da Mecânica
 - 4 acrescentando as da área da Eletricidade
 - 7 para todas as grandezas físicas
- Sistemas de unidades mais importantes as grandezas definidas como fundamentais, tem definição simples, precisa e universal e materializadas por padrões invariáveis, de fácil reprodução e/ou verificação.

SISTEMA DE UNIDADES

Grandezas Fundamentais

No estudo da mecânica são necessárias apenas três grandezas fundamentais. Das muitas escolhas possíveis, mantiveram-se duas até à época actual:

1. Comprimento, massa e tempo

Sistemas absolutos

2. Comprimento, força e tempo

Sistemas gravitatórios

SI – Grandezas e Unidades Fundamentais

Grandezas e unidades fundamentais do Sistema Internacional (SI)

Grandeza Física	Unidade	Abreviatura	
comprimento	metro	m	
massa	quilograma	kg	
tempo	segundo	s	
Intensidade de corrente eléctrica	ampére	A	
temperatura	kelvin	K	
intensidade luminosa	candela	cd	
quantidade de substância	mole	mol	

Um sistema de unidades deve ser <u>"coerente"</u>, o que significa que uma unidade derivada se deve obter à custa das fundamentais por simples produto ou quociente, sem que apareçam factores numéricos.

Grandezas e Unidades de Base

Grandeza física de base (símbolo)	Unidade de base (símbolo)	Dimensão de base	Definição da unidade de base
comprimento (l)	metro (m)	L	1 m é o comprimento do trajecto da luz, no vazio, no tempo de 1/299792458 s (1983).
massa (m)	quilograma (kg)	M	1 kg é a massa do protótipo internacional do quilograma (1901).
tempo (t)	segundo (s)	T	1 s é a duração de 9192631770 períodos da radiação da transição entre 2 níveis hiperfinos do estado fundamental do ¹³³ Cs (1967).
intensidade de corrente eléctrica (<i>I</i>)	ampere (A)	I	1 A é a intensidade de uma corrente constante que mantida em 2 condutores paralelos, rectilíneos, de comprimento infinito, de secção circular desprezável e à distancia de 1 m no vazio produz uma força de 2x10-7 N/m (1948).
temperatura	kelvin (K)	θ	1 K é 1/273,16 da temperatura termodinâmica do ponto triplo da água (1967).
quantidade de matéria (n)	mole (mol)	N	a mole é a quantidade de matéria de um sistema contendo tantas entidades elementares quanto os átomos que existem em 0,012 kg de ¹² C (1971).
intensidade luminosa (I_v)	candela (cd)	J	1 cd é a intensidade luminosa numa dada direcção de fonte que emite radiação monocromática de frequência 540x1012 Hz e cuja intensidade nessa direcção é 1/683 W.sr-1 (1979).

SI – Grandezas e Unidades Derivadas

Grandeza física (símbolo)	Unidade SI (símbolo)	Equação de definição	
área (A)	metro quadrado (m²)	$l_1 \cdot l_2$	
volume (V)	metro cúbico (m³)	$1_1 \cdot 1_2 \cdot 1_3$	
período (T)	segundo (s)		
frequência (f)	hertz (Hz ou s ⁻¹)	F = 1/T	
velocidade angular (ω)	radiano por segundo (rad.s ⁻¹)	$\omega = d\theta/dt$	
aceleração angular (α)	radiano por segundo quadrado (rad.s-2)	$\alpha = d\omega/dt$	
velocidade (v)	metro por segundo (m.s ⁻¹)	v = dr/dt	
aceleração (a)	metro por segundo quadrado (m.s ⁻²)	a = dv/dt	
massa volúmica (ρ)	quilograma por metro cúbico (kg.m-3)	$\rho = m/V$	
força (F), peso (P)	newton (N)	F = ma	
momento de uma força (M)	newton metro (N.m)	$M = r \times F$	
momento linear (p)	quilograma metro por segundo (kg.m.s ⁻¹)	p = mv	
momento de inércia (I)	quilograma metro quadrado (kg.m²)	$I = \sum m_i r_i^2$	
trabalho (W), energia (E)	joule (J)	$dW = F \cdot dr$	
potência (P)	watt (W)	P = dE/dt	

Nomes e Símbolos de Unidades derivadas

Regra geral

Expressão matemática com as unidades fundamentais.

Exemplo: $u_v = m/s$

Excepções

Há casos em que a expressão matemática é substituída por **nomes especiais** (geralmente nomes de cientistas).

Exemplo: $u_F = N \equiv kg \times m / s^2$

Estes nomes especiais podem ser usados em expressões matemáticas para definir outros nomes e símbolos.

Exemplo: $u_M = N m \equiv kg \times m^2 / s^2$

Nomes e Símbolos de Unidades derivadas

- Todos os símbolos se escrevem com minúsculas, excepto se derivarem do nome de uma pessoa (a primeira letra é maiúscula).
- Os símbolos não têm plural.
- Os nomes admitem plural, quando o valor da grandeza for igual ou maior que 2.
- Todos os nomes se escrevem em minúsculas, sem excepções.

Exemplos: 1,45 m (1,45 metro); 2 A (2 amperes)

Múltiplos e Submúltiplos

• Por razões de ordem prática, utilizam-se múltiplos e submúltiplos das unidades fundamentais e derivadas na forma de potências de base 10.

Nome do prefixo	Símbolo do prefixo	Factor multiplicador
yotta	Y	10^{24}
zetta	Z	10^{21}
exa	Е	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10 ⁹
mega	M	10^{6}
quilo	k	10^{3}
hecto	h	10^{2}
deca	da	10 ¹

Múltiplos e Submúltiplos

Nome do prefixo	Símbolo do prefixo	Factor multiplicador
deci	d	10 ⁻¹
centi	c	10 ⁻²
mili	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	р	10 ⁻¹²
fento	f	10 ⁻¹⁵
ato	a	10 ⁻¹⁸
zepto	Z	10 ⁻²¹
yocto	у	10 ⁻²⁴

• Os símbolos dos prefixos são impressos em carateres romanos direitos sem espaço entre o símbolo do prefixo e o símbolo da unidade (5 nm)

Transformações entre Sistemas de Unidades

		cgs	→ ÷	SI	→ ÷	mk _p s	
Grandezas	Dimensões	cm g s	x ←	m kg s	x ←	m kgf s	Dimensões
Área $S = l^2$	L^2	cm ²	10^{4}	m^2	1	m^2	L^2
Volume $V = l^3$	L^3	cm ³	10^{6}	m^3	1	m^3	L^3
Velocidade $v = l/t$	LT ⁻¹	cm·s ⁻¹	10^2	m·s ⁻¹	1	m⋅s ⁻¹	LT ⁻¹
Aceleração $a = v/t$	LT ⁻²	cm·s ⁻²	10^2	m·s ⁻²	1	m⋅s ⁻²	LT^{-2}
Massa m	M	g	10^3	kg	9,8	umm	$L^{-1}FT^2$
Força $F = m \cdot a$ Peso $P = m \cdot g$	LMT ⁻²	dyn (dine)	10 ⁵	N (newton)	9,8	kgf	F
Trabalho $W = F x d$	L^2MT^{-2}	erg	10 ⁷	J (joule)	9,8	kgf∙m	LF
Potência $P = W/t$	L^2MT^{-3}	erg·s ⁻¹	10^{7}	W (watt)	9,8	kgf·m·s ⁻¹	LFT ⁻¹
Pressão $p = F/S$	L-1MT-2	bar (bária) (dyn · cm ⁻²)	10	Pa (pascal)	9,8	kgf⋅m ⁻²	L ⁻² F
Massa volúmica $\rho = m/V$	L ⁻³ M	g· cm ⁻³	10 ⁻³	kg·m ⁻³	9,8	umm·m ⁻³	$L^{-4}FT^2$
Peso volúmico $\pi = P/V$	L-2MT-2	dyn·cm ⁻³	10 ⁻¹	N⋅m ⁻³	9,8	kgf⋅m ⁻³	L ⁻³ F

GRANDEZAS...

