Matching Intro

INFO/STSCI/ILRST 3900: Causal Inference

9 Oct 2025

Learning goals for today

At the end of class, you will be able to:

- 1. Explain how matching can be used to estimate causal effects
- 2. Explain bias variance trade-off in various matching procedures

Logistics

- ▶ Quiz 3 Oct 16
- ► Peer review 3 due Oct 16
- ► Project Part 1 due Oct 20

Causal effect

What is the causal effect on income of a job training program?

Causal effect

What is the causal effect on income of a job training program?

► Average Treatment Effect (on everyone)

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0})$$

Causal effect

What is the causal effect on income of a job training program?

► Average Treatment Effect (on everyone)

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0})$$

► Average Treatment Effect on the Treated (ATT)

$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$

Goal:
$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$
 ATT

$$\mathsf{E}(Y^{a=1} \mid A=1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i=1} Y_i$$

Goal:
$$E(Y^{a=1} \mid A = 1) - E(Y^{a=0} \mid A = 1)$$
 ATT

$$\mathsf{E}(Y^{s=1} \mid A=1) pprox rac{1}{n_t} \sum_{i:A_i=1} Y_i^{s=1} = rac{1}{n_t} \sum_{i:A_i=1} Y_i$$

$$\mathsf{E}(Y^{a=0} \mid A=1) \approx \frac{1}{n_t} \sum_{i:A:=1} Y_i^{a=0} \not\approx \frac{1}{n_c} \sum_{i:A:=0} Y_i$$

Goal:
$$E(Y^{a=1} \mid A = 1) - E(Y^{a=0} \mid A = 1)$$
 ATT
$$E(Y^{a=1} \mid A = 1) \approx \frac{1}{n_t} \sum_{i:A_i = 1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i = 1} Y_i$$

$$E(Y^{a=0} \mid A = 1) \approx \frac{1}{n_t} \sum_{i:A_i = 1} Y_i^{a=0} \not\approx \frac{1}{n_c} \sum_{i:A_i = 0} Y_i$$

Problem: Control may be different than the treatment

Goal:
$$E(Y^{a=1} \mid A = 1) - E(Y^{a=0} \mid A = 1)$$
 ATT

$$E(Y^{a=1} \mid A = 1) \approx \frac{1}{n_t} \sum_{i:A_i = 1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i = 1} Y_i$$

$$E(Y^{a=0} \mid A = 1) \approx \frac{1}{n_t} \sum_{i:A_i = 1} Y_i^{a=0} \not\approx \frac{1}{n_c} \sum_{i:A_i = 0} Y_i$$

Problem: Control may be different than the treatment

Potential Solution: Create a sample of untreated individuals, \mathcal{M} , which are similar to the treated group

Goal:
$$E(Y^{a=1} \mid A = 1) - E(Y^{a=0} \mid A = 1)$$
 ATT

$$E(Y^{a=1} \mid A = 1) \approx \frac{1}{n_t} \sum_{i:A_i = 1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i = 1} Y_i$$

$$E(Y^{a=0} \mid A = 1) \approx \frac{1}{n_t} \sum_{i:A_i = 1} Y_i^{a=0} \not\approx \frac{1}{n_c} \sum_{i:A_i = 0} Y_i$$

Problem: Control may be different than the treatment

Potential Solution: Create a sample of untreated individuals, \mathcal{M} , which are similar to the treated group

$$\frac{1}{n_m} \sum_{i \in \mathcal{M}} Y_i = \frac{1}{n_m} \sum_{i \in \mathcal{M}} Y_i^{a=0} \approx \frac{1}{n_t} \sum_{i : A_i = 1} Y_i^{a=0}$$

Conditional exchangeability holds when conditioning on Age!

$$\mathsf{E}(Y^{a=0} \mid A = 1, \mathsf{Age} = \ell) = \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell)$$

Estimate

$$\mathsf{E}(Y^{\mathsf{a}=0} \mid A=1) = \underbrace{\sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid A=1) \mathsf{E}(Y^{\mathsf{a}=0} \mid A=1, \mathsf{Age} = \ell)}_{\mathsf{Weighted average of averages}}$$

► Conditional exchangeability holds when conditioning on Age!

$$E(Y^{a=0} \mid A = 1, Age = \ell) = E(Y^{a=0} \mid A = 0, Age = \ell)$$

Estimate

$$\mathsf{E}(Y^{s=0} \mid A=1) = \underbrace{\sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid A=1) \mathsf{E}(Y^{s=0} \mid A=1, \mathsf{Age} = \ell)}_{\mathsf{Weighted \ average} \ \mathsf{of \ averages}}$$

$$\mathsf{E}(Y^{\mathsf{a}=\mathsf{0}}\mid\mathcal{M}) = \sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell\mid\mathcal{M})\mathsf{E}(Y^{\mathsf{a}=\mathsf{0}}\mid A=\mathsf{0},\mathsf{Age} = \ell,\mathcal{M})$$

► Conditional exchangeability holds when conditioning on Age!

$$E(Y^{a=0} \mid A = 1, Age = \ell) = E(Y^{a=0} \mid A = 0, Age = \ell)$$

Estimate

$$\mathsf{E}(Y^{\mathsf{a}=0} \mid A=1) = \underbrace{\sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid A=1) \mathsf{E}(Y^{\mathsf{a}=0} \mid A=1, \mathsf{Age} = \ell)}_{\mathsf{Weighted average of averages}}$$

$$\begin{split} \mathsf{E}(Y^{a=0} \mid \mathcal{M}) &= \sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell, \mathcal{M}) \\ &= \sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell) \end{split}$$

► Conditional exchangeability holds when conditioning on Age!

$$E(Y^{a=0} \mid A = 1, Age = \ell) = E(Y^{a=0} \mid A = 0, Age = \ell)$$

Estimate

$$\mathsf{E}(\mathsf{Y}^{\mathsf{a}=0}\mid \mathsf{A}=1) = \underbrace{\sum_{\ell} \mathsf{Pr}(\mathsf{Age}=\ell\mid \mathsf{A}=1) \mathsf{E}(\mathsf{Y}^{\mathsf{a}=0}\mid \mathsf{A}=1,\mathsf{Age}=\ell)}_{\mathsf{Weighted average of averages}}$$

$$\begin{split} \mathsf{E}(Y^{a=0} \mid \mathcal{M}) &= \sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell, \mathcal{M}) \\ &= \sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell) \end{split}$$

▶ If we can make $Pr(Age = \ell \mid \mathcal{M}) \approx Pr(Age = \ell \mid A = 1)$, the two quantities should be the same

Goal: Sample Average Treatment Effect on the Treated

$$E(Y^{a=1} \mid A=1) - E(Y^{a=0} \mid A=1)$$

Potential Solution: Create a group of untreated individuals, \mathcal{M} , which have a **similar distribution of** L to the treated group

$$rac{1}{n_m}\sum_{i\in\mathcal{M}}Y_ipproxrac{1}{n_t}\sum_{i:A_i=1}Y_i^{a=0}pprox\mathsf{E}(Y^{a=0}\mid A=1)$$

Detail: How?

Job training						
	Ind	Age	YTrain	Y No Train		
	1	20	19	?		
	2	25	63	?		
	3	38	65	?		
	4	38	43	?		

${\sf Example}$

Job training

Ind	Age	YTrain	$Y^{NoTrain}$
1	20	19	?
2	25	63	?
3	38	65	?
4	38	43	?

No	No job training					
Ind	Age	YNoTrain				
1	19	82				
2	18	39				
3	20	49				
4	20	56				
5	24	33				
6	26	82				
7	26	35				
8	38	35				
9	28	83				
10	30	79				
11	24	63				
12	32	52				
13	34	58				
14	34	70				
15	35	47				
16	37	42				
17	37	83				
18	38	33				
19	39	37				
20	39	60				

You have a some treated units.

You go find some untreated units.

You find the closest matches along L

You find the closest matches along L

You find the closest matches along L

Treated
Untreated, Unmatched
Untreated, Matched

Compare the averages

Compare the averages

1. Completely transparent that Y_i^1 is observed

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - ► We had some treated units

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - ► We had some treated units
 - ► We found a set of control units which are comparable

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - ► We had some treated units
 - ► We found a set of control units which are comparable
 - ► We compared the means

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units
 - ▶ We found a set of control units which are comparable
 - ▶ We compared the means
- 3. Can assess quality of matches before we look at the outcome

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units
 - ▶ We found a set of control units which are comparable
 - ▶ We compared the means
- 3. Can assess quality of matches before we look at the outcome
- 4. Model-free*

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units
 - ► We found a set of control units which are comparable
 - ► We compared the means
- 3. Can assess quality of matches before we look at the outcome
- 4. Model-free*
 - ▶ * but you have to define what makes a match "good"

Bias vs variance

The idea of matching is straightforward, but the details matter!

Bias vs variance

The idea of matching is straightforward, but the details matter!

Matching in univariate settings: Algorithms

- ► Caliper or no caliper
- ▶ 1:1 vs k:1
- ► With replacement vs without replacement
- ▶ Greedy vs optimal

► Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius

► Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius

- ► Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius
- ► Feasible Sample Average Treatment Effect on the Treated (FSATT): Average among treated units for whom an acceptable match exists

Treated:

Untreated:

Treated:

Untreated:

Confounder \vec{L}

- ► Benefit of 2:1 matching
- ► Benefit of 1:1 matching

- ► Benefit of 2:1 matching
 - ► Lower variance. Averaging over more cases.
- ► Benefit of 1:1 matching

- ▶ Benefit of 2:1 matching
 - ► Lower variance. Averaging over more cases.
- ► Benefit of 1:1 matching
 - ► Lower bias. Only the best matches.

1:1 vs k:1 matching

- ► Benefit of 2:1 matching
 - ► Lower variance. Averaging over more cases.
- ► Benefit of 1:1 matching
 - ► Lower bias. Only the best matches.
- ▶ Greater $k \rightarrow$ lower variance, higher bias

- ► Benefit of matching without replacement
- \blacktriangleright Benefit of matching with replacement

- ► Benefit of matching without replacement
 - ► Lower variance. Averaging over more cases.
- ▶ Benefit of matching with replacement

- ► Benefit of matching without replacement
 - ► Lower variance. Averaging over more cases.
- ▶ Benefit of matching with replacement
 - ► Lower bias. Better matches.

¹Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Greedy Matching: Match sequentially Treated: Untreated: Confounder \vec{l}

¹Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

¹Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

¹Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Optimal Matching:
Consider the whole set of matches

Treated:

Untreated:

¹Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Optimal Matching: Consider the whole set of matches

Optimal is better. Just computationally harder.

¹Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Matching in univariate settings: Algorithms

- ► Caliper or no caliper
- ▶ 1:1 vs k:1
- ► With replacement vs without replacement
- ► Greedy vs optimal

Matching in univariate settings: Algorithms

- Caliper or no caliper
- ▶ 1:1 vs k:1
- ► With replacement vs without replacement
- ► Greedy vs optimal

Many reasonable choices, good choices depend on the data you have

Learning goals for today

At the end of class, you will be able to:

- 1. Explain how matching can be used to estimate causal effects
- 2. Explain bias variance trade-off in various matching procedures