Poglavje 8.1

smp11d

Moberl 3000_amws

Procesiranje in format podatkov

 Oznaka:
 3000/2011

 Verzija:
 3000.0.2

Pripadnost: Moberl_3000_amws

Copyright: Andreja Kolenc, Bojan Černač

Datum nastanka: Okt 2009
Datum zadnje spremembe 01.04.2012
Projekt: BOBER

Arĥiv: smp11d_processing.doc

SLEDENJE SPREMEMBAM

VSEBINA

PROCESIRANJE PODATKOV IN FORMAT PRENOSNIH DATOTEK NABOR MERJENIH VELIČIN	5 6 6 7
1.1 Zapis časa in definicija intervala vzorčenja	5 6 6 7
1.2 Sinhronizacija časa 2. OBDELAVE PODATKOV 6 2.1 Obdelave trenutnih podatkov in linearizacija 2.1.1 Interval vzorčenja trenutnih podatkov - sampling time (Ts) 2.1.2 Linearizacija 2.1.3 Avtomatske kontrole trenutnih podatkov	5 6 6 7
OBDELAVE PODATKOV	6 6 7
2.1 Obdelave trenutnih podatkov in linearizacija	6 7 10
2.1.1 Interval vzorčenja trenutnih podatkov - sampling time (Ts) 2.1.2 Linearizacija 2.1.3 Avtomatske kontrole trenutnih podatkov	6 7 10
2.1.2 Linearizacija	6 7
2.1.3 Avtomatske kontrole trenutnih podatkov	7 10
	10
2.1.7 vicanusti kunstant za preverjanje trendtini pudatkuv	
Ipc validacija	
2.1.4.1 Definicija IPC validacijske datoteke	10
2.1.4.2 Vsebina IPC validacijske datoteke	
2.2 Intervalne obdelave podatkov	11
2.2.1 Standardne obdelave zveznih merjenih veličin	11
2.2.1.1 Interval procesiranja – processing time (Tp)	13
2.2.1.2 Statistične obdelave podatkov zajetih v intervalu procesiranja	
2.2.2 Intervalne obdelave diskretnih merjenih veličin	
2.2.2.1 Interval processiranja – processing time (Tp)	
2.2.2.2 Obdelave za določitev minutnega statusa sonca (minStatus)	18
2.2.2.3 Število minut s soncem v prvih in drugih 5min intervala Tp (N1st5minStatus,	
N2nd5minStatus)	
2.2.2.4 Število minut s soncem v Tp (NTpminStatus)	
2.2.2.5 Število minut s soncem od zadnjega reseta (N24hminStatus)	
2.2.2.6 Število decimalnih ur s soncem od zadnjega reseta (H24hhStatus)	
2.2.2.7 Aquisition ratio	
2.2.3 Avtomatske kontrole intervalnih podatkov	23
3. VELJAVNOSTI PODATKOV, STATUS MERILNIKOV	
3.1 Opis veljavnosti podatkov	27
4. PRENOSNE DATOTEKE	20
4.1 Ime prenosne datoteke	
4.2 Format izpisa trenutne (ta) in intervalne prenosne datoteke (pa)	
4.2.1.1 Zapis podatkov v primeru napake "comm fail"	
4.2.1.1 Zapis podatkov v primeru napake comm_taii 4.2.1.2 Izključevanje posameznih polj v izpisih	
4.2.1 Trenutna datoteka	
4.2.3 Intervalna datoteka	
4.2.4 Format sistemskega parametra	
4.2.5 P43 globalno sončno obsevanje (global_solar_radiation)	
4.2.5 P44 difuzno soncho obsevanje (diffuse_solar_radiation)	22
4.2.7 P67 trajanje sončnega obsevanja (sunshine_duration)	3∂
5. PRILOGE 36	⊅+
5.1 Dokumentacija ARSO	36
5.2 Dokumentacija merilne opreme	

Nabor merjenih veličin

Senzorski programski vmesnik smp11d zajema in obdeluje podatke za naslednje merilne veličine:

	Senzor	Description	kanal	Koda kanala	Pxxx
1	SMP11	global_solar_radiation	ch00	016@0043.12.01.06.008	P1043
2	SMP11	smp11_body_temperature	ch01	016@0043.12.03.06.008	Pxxx
3	SMP11	smp11_supply_voltage	ch02	016@0043.12.04.06.008	Pxxx
4	SMP11	smp11_status	ch03	016@0043.12.05.06.008	S1043

Vsaka merjena vrednost je povezana z merilnim kanalom **chxx**. Število merilnih kanalov sovpada s številom fizikalnih veličin, ki jih spremljamo.

Vsaki merilni veličini pripada merilni kanal s kodo parametra (cpcode). Kodo parametra določa šifrirna tabela senzord.xls, ki za vsako merilno veličino nekega senzorja določa/vsebuje naslednje parametre:

- PP Fizikalna veličina (physical propertie) (napr. 0120: precipitation_group),
- INTF Komunikacijski vmesnik (interface) (napr. 12: RS485),
 - o Komunikacijski vmesnik /način priključitve senzorja na merilno postajo
- MPP Merilni princip (measured physical propertie) (napr. 01: precipitation_duration),
- *ASMB* Način montaže namestitve (assembling) (napr. **01**: mast)
 - Pove kje oz. na kakšen način je izvedena instalacija senzorja (kontejner, reka, piezometer, drog)
- ST Tip senzorja (sensor type) (napr. 001: PM)

Sistemska xml konfiguracija sysem.h.xml, *cp* kodi posamezne merilne veličine, pripiše še *station_type* (napr. 016), ki določa

- *Tip postaje:*
 - o decimalna koda, ki predstavlja tip oz. kombinacijo tipov postaj (napr. **016**: amws) na kateri je senzor trenutno ali trajno instaliran.

Station_type			cj	o cod	е			Pxxx	PP	INTF	MPP	ASMB	ST
016 @	0043	11		01		06	. 003	P43	solar_radiation_group	rs485	global_solar_radiation	mast_200cm	SMP11
016 @	0043	11		02		06	. 003	P44	solar_radiation_group	rs485	diffuse_solar_radiation	mast_200cm	SMP11
016 @	0043	11		08		06	. 003	P67	solar radiation group	rs485	sunshine duration	mast 200cm	SMP11

1.1 Zapis časa in definicija intervala vzorčenja

Čas je zapisan po srednje-evropskem času (CET oz. UTC+1), brez sprememb ob prehodu na poletni/zimski čas.

- časi se zapišejo v urah in minutah (brez sekund): uu:mm
- minute v intervalu štejemo od 1 naprej
- s časom ekstremov označimo meritve izvedene v predhodni minuti

Primer 10 minutnega intervala od 7:00 do 7:10:

- možni časi v tem intervalu so: 7:01 .. 7:10; čas 7:00 je napačen
- meritev v 1. sekundi: 7:00:01, zapis časa 7:01
- meritev v 60. sekundi: 7:01:00, zapis časa 7:01
- meritev v 61. sekundi: 7:01:01, zapis časa 7:02
- meritev v 541. sekundi: 7:09:01, zapis časa 7:10

• meritev v 600. sekundi: 7:10:00, zapis časa 7:10

Primer 10 minutnega intervala od 7:50 do 8:00:

- možni časi v tem intervalu so: 7:51 .. 8:00; čas 7:50 je napačen
- meritev v 1. sekundi: 7:50:01, zapis časa 7:51
- meritev v 600. sekundi: 8:00:00, zapis časa 8:00
- 1. interval v uri se vedno prične ob hh:00:01 pri čemer je »hh« ura dneva. Primer 10 minutnega procesiranja:
 - 1. Interval 00:00:01 (zapis časa 00:01) do 00:10:00 (zapis časa 00:10
 - 2. interval 00:10:01 (zapis časa 00:11) do 00:20:00 (zapis časa 00:20)
 - 3. interval 00:20:01 (zapis časa 00:21) do 00:30:00 (zapis časa 00:30)
 - 4. interval 00:30:01 (zapis časa 00:31) do 00:40:00 (zapis časa 00:40)
 - 5. interval 00:40:01 (zapis časa 00:41) do 00:50:00 (zapis časa 00:50)
 - 6. interval 00:50:01 (zapis časa 00:51) do 01:00:00 (zapis časa 01:00)

1.2 Sinhronizacija časa

Avtomatski merilni sistem na vgnezdenem računalniku z Linux platformo 2.6.x omogoča avtomatsko nastavljanje časa preko oddaljenega NTP strežnika **ntp.gov.si** (IP adress 192.168.236.100)

Nastavljanje časa se izvaja periodično na 10minut, ob ugotovljenem **odstopanju časa za >1min** UC-8410/8416/8418 ima vgrajenega NTP (Network Time Protocol) clienta, za inicializacijo časa na zahtevo preko oddaljenega NTP strežnika.

Za posodobitev časa na Linux vgrajenem računalniku (UC-8410/8416/8418) se uporablja:. # ntpdate ntp.gov.si

2. Obdelave podatkov

2.1 Obdelave trenutnih podatkov in linearizacija

Program za zajem, kontrolo veljavnosti in obdelave podatkov je del programske opreme samodejnega merilnega sistema mober, ki teče na vgnezdenem računalniku (embedded computerju) na Linux 2.6.x

Poglavje 8.1: processing stran:5

platformi in je izveden kot posamezni senzorski modul **sensord**. S tem programom se kontrolirajo **trenutni** (10s) podatki zajeti iz lokalnih merilnih sistemov (senzorjev) in intervalni podatki.

Iz senzorjev in senzorskih vmesnikov avtomatski merilni sistem zajema surove vrednosti *rval*.

Podatki se obdelujejo na štirih nivojih:

- α) linearizacija: skaliranje surovih vrednosti (analogni senzorji)
- *β)* avtomatske kontrole in validacija trenutnih podatkov
- x) statistične obdelave podatkov zajetih v intervalu procesiranja Tp
- δ) avtomatske kontrole in validacija procesiranih podatkov Tp

2.1.1 Interval vzorčenja trenutnih podatkov - sampling time (Ts)

Trenutni podatki se iz senzorjev in merilnikov zajemajo v enakomernih časovnih intervalih, ki so nastavljivi preko **Ts** – **sampling time** in **Period** – **perioda** v konfiguracijskem **pluvio2d.h..xml** Ts nastavljamo za vse veličine – merilne kanale istočasno.

Za vsak merilni kanal (veličino) je interval vzorčenja dodatno nastavljiv preko faktorja Sampling Period="1", ki določa večkratnik nastavljenega Ts.

```
[ Period ] : perioda (-) <Sampling Period="1"/> (napr. Ts="10000", Period ="3", pomeni čas vzorčenja 30s)
```

2.1.2 Linearizacija

Zajema nastavitev parametrov polinoma 3. stopnje (PAR_3, PAR_2, PAR_1, PAR_0) posameznega merilnega vhoda preko katerega se izvede korekcija nelinearnosti surovih vrednosti, ki jih dobimo iz merilnika

Za vsak merilni kanal so parametri linearizacije nastavljivi preko cli vmesnika senzorskega programskega modula (smp11d(64004)>), cli vmesnika jmd oz. preko xml smp11d.h.

Na osnovi nastavitev parametrov linearizacije iz surove vrednosti merilnika dobimo procesirano/skalirano vrednost *pval*, ki je vhodna spremenljivka v »proces« trenutnih obdelav (avtomatske kontrole veljavnosti trenutnih vrednosti).

```
1. Parameter polinomaPAR\_0+PAR\_02. Parameter polinomaPAR\_1 * x + PAR\_13. Parameter polinomaPAR\_2 * x^2 + PAR\_24. Parameter polinomaPAR\_3 * x^3 + PAR\_3
```

Tabela privzetih vrednosti za parametre polinoma:

Channel		PAR_3	PAR_2	PAR_1	PAR_0
016@0043.11.01.02.003	P43	0	0	1	0
016@0043.11.02.02.003	P44	0	0	1	0
016@0043.11.08.02.003	P67	0	0	1	0

2.1.3 Avtomatske kontrole trenutnih podatkov

Avtomatske *kontrole trenutnih podatkov* (**_X0..._X15**), ki se izvršijo nad trenutnimi (že kalibriranimi) vrednostmi *pval*, preverjajo smiselnost izmerjenih podatkov in formirajo trenutne veljavnosti, *validity*. Kontrole se izvršujejo v rednih časovnih presledkih, določenih s časom zajema podatkov posameznega parametra, časom vzorčenja (**Ts**).

Avtomatske kontrole trenutnih podatkov so nastavljive preko xml konfiguracijske datoteke *smp11d.h.xml* in jih po potrebi lahko vključimo ali izključimo (Enable="true"/ Enable="false"). Lahko jim določimo tip »warning« ali »error«.

Tabela 1: Opis kontrol za preverjanje veljavnosti trenutnih podatkov

Kontrola	Bit	Value	OPIS VELJAVNOSTI
X0	D0	V0	Primerja posamezne trenutne vrednosti z nastavljeno spodnjo alarmno mejo: _pval < V0 V primeru, če je vrednost pod nastavljeno X0 kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše:
			Če kontrola X0 ugotovi napako se izpiše: "low_value"
			Kontrola je uporabna za alarmiranje pri napr. Kritično nizkih vrednostih okoljskih parametrov (vodostaj, raztopljeni kisik v vodi, zunanje temperature)
X1	D1	V1	Primerja posamezne trenutne vrednosti z nastavljeno zgornjo alarmno mejo: _pval > V1 V primeru, če je vrednost nad X1kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše:
			Če kontrola K2 ugotovi napako se izpiše "high_value"
			Kontrola je uporabna za alarmiranje pri napr. Kritično visokih vrednostih okoljskih parametrov (vodostaj, vsebnosti onesnaževal v zraku, vodi)
X2	D2	Vmin Vmax	Ugotavlja ali je temperatura prostora (P314) znotraj nastavljenega območja: Vmin < T_pval < Vmax
			Če je T izven predvidenih mej se bit statusa postavi na 1 in pri dekodiranju se izpiše: "out_of_temp"
			Če ipc validacija ne dobi podatka iz senzorja T se bit D2 postavi na 1
Х3	D3	V3	nc
X4	D4	V4	nc
X5	D5	V5	Primerja posamezne trenutne vrednosti z nastavljeno spodnjo mejo merilnega območja: _pval < V5

Poglavje 8.1: processing	stran:7

Kontrola	Bit	Value	OPIS VELJAVNOSTI
			V primeru, če je vrednost pod nastavljeno X5 kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše: "sensor_range_min"
X6	D6	V6	_pval > V6
			Ugotavlja ali je trenuten podatek nad zgornjo mejo merilnega območja senzorja V primeru, ko je vrednost nad nastavljeno X6 kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše "sensor_range_max"
X7	D7	V7	_pval < V7
			Ugotavlja ali je trenuten podatek pod nastavljeno spodnjo logično mejo X7 V primeru, ko je vrednost pod nastavljeno X7 kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše:
			"logical_sensor_range_min"
X8	D8	V8	_pval > V8
			Ugotavlja ali je trenuten podatek nad zgornjo logično mejo. V primeru, ko je vrednost nad nastavljeno X8 kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše "logical_sensor_range_max"
X9	D9	V9	nc
X10	D10	V10	Preverja komunikacijo s senzorjem pri data pullingu
			Communication status
			Če senzorski modul iz merilnika ne pridobi podatka (napaka na thread pull-u programa, napaka na hardware-skem delu RS232, RS485, napaka na senzorju ali pull-u) postavi bit D10 na 1, pri dekodiranju se izpiše:
			"comm_fail"
			V datoteko se namesto podatka vpiše default vrednost predvidena v xml napr. »-9999«.
X11	D11	V11	Preverja eventualen status na merilniku/senzorju.
			Device status
			Če je se na merilniku ali senzorju pojavi status, ki pomeni, da je meritev posledično napačna. Kontrola X11 postavi bit D11 na 1, pri dekodiranju se izpiše:
			"device_status"
X12	D12	V12	Kontrola ugotavlja razliko med dvema zaporednima izmerkoma. Če
			razlika presega nastavljeno vrednost V12 se bit D12 postavi na 1.
			razlika presega nastavljeno vrednost V12 se bit D12 postavi na 1. $ pval(i) - pval(i-1) > V12$
			pval(i) - pval(i-1) > V12

Kontrola	Bit	Value	OPIS VELJAVNOSTI
			primeru, da bo naslednji izmerek spet pravilen izločila tudi tega, ker ga bo primerjala na predhodno izmerjenega - napačnega. Naslednji izmerek bo že primerjan z pravim podatkom (ki ima sicer neveljaven status) in bo zato le ta veljaven, ker bo razlika med njima manj kot določa kontrola »step value«.
X13	D13	V13	nc
X14	D14	V14	nc
X15	D15	V15	Preverja ali vključeno stikalo Servis. Servis Če je servisno stikalo vključeno kontrola X15 postavi bit D15 na 1, pri dekodiranju se izpiše: "servis"

Legenda:

kontrola	bit	Opis	tip
X0	D1	low_value	warning
X1	D1	high_value	warning
X2	D2	out_of_temp	warning
X3	D3	X3	warning
X4	D4	X4	warning
X5	D5	sensor_range_min	error
X6	D6	sensor_range_max	error
X7	D7	logical_sensor_range_min	error
X8	D8	logical_sensor_range_max	error
X9	D9	X9	error
X10	D10	comm_fail	error
X11	D11	device_status	error
X12	D12	step_value	error
X13	D13	X13	error
X14	D14	X14	error
X15	D15	servis	error

Podatek je neveljaven, če katerakoli od kontrol tipa »error« (X5...X15) v postopku preverjanja podatka postavi kontrolni bit na 1. Neveljavni podatki se izločijo iz nadaljnih statističnih izračunov v postopku **intervalnih** obdelav (glej 2.2.1.2.1 Vpliv veljavnosti podatkov).

2.1.4 Vrednosti konstant za preverjanje trenutnih podatkov

ch	P	V15	V14	V13	V12	V11	V10	V9	V8	V7	V6	V5	V4	V3	V2	V1	V0
ch00	P43	input	nc	nc	50	input	nc	nc	2000	0	2000	0	nc	nc	-20 70	2000	0
ch01	P44	input	nc	nc	50	input	nc	nc	2000	0	2000	0	nc	nc	-20 70	2000	0
ch02	P67	input	nc	nc	nc	input	nc	nc	1	0	1	0	nc	nc	-20 70	1	0

Ipc validacija

Na mober merilnem sistemu nekatere merjene veličine (validacijske merilne veličine) znotraj posameznega senzorskega modula vplivajo na validacijo merjenih veličin znotraj ostalih senzorskih modulov. Tak primer je napr. temperatura v merilni omarici (P314) ali stanje servisnega stikala (S001), ki ju procesira senzorski modul iomoduled.

stran:9

Drugi senzorski programski moduli te vrednosti nato pridobijo posredno preko ipc validacijske datoteke, kamor senzorski modul, ki validacijsko veličino meri, vpisuje podatke v časovnih intervalih Ts.

Izmenjava podatkov med Senzorskimi programskimi moduli poteka preko IPC validacijske datoteke, ki jo običajno nastavimo v Ram disku zaradi velike frekvence pisanja/branja - podatki se osvežujejo s periodo zajema podatkov Ts.

Za primer izgube podatkov Ram diska (reset naprave) hranimo backup datoteke v trajnem spominu (npr. CF kartici), ki pa se osvežuje z manjšo periodo - s periodo Intervalnega procesiranja Tp.

2.1.4.1 Definicija IPC validacijske datoteke

IPC validacijska datoteka je definirana v system.h.xml za vsak CPU posebej

kjer je:

```
path file lokacijo shranjevanja IPC validacijske datoteke (lokacija na RAM disku) ime datoteke stanje zapisovanja IPC validacijske datoteke v trajni spomin (delovni direktorij aplikacije) s periodo Tp R, RW, false} nadzor uporabe datoteke na nivoju CPU
```

2.1.4.2 Vsebina IPC validacijske datoteke

IPC validacijska datoteka

```
<ipcValidation cpuref="0">
  <n 0120.12.01.01.001>
    SensorModule Idx="8" Daemon="ptb330d-ip1"/>
    <Channel Idx="8" Enable="true" cpcode="0120.12.01.01.001" pcode="P125"</pre>
mpp="precipitation_duration"/>
    <Update>26/07/2011 11:13:00.1</Update>
    <Value Unit="n">0</Value>
  </n 0120.12.01.01.001>
  <n 0001.12.01.01.002>
    \stackrel{-}{<}SensorModule Idx="7" Daemon="ptb330d"/>
    <Channel Idx="16" Enable="true" cpcode="0001.12.01.01.002" pcode=" S01"</pre>
mpp="door_switch"/>
    <Update>26/07/2011 11:13:00.0
    <Value Unit="n">0</Value>
  </n 0001.12.01.01.002>
  <n_0010.12.01.03.009>
    SensorModule Idx="7" Daemon="ptb330d"/>
    <Channel Idx="12" Enable="true" cpcode="0010.12.01.03.009" pcode=" P19"</pre>
mpp="temp_air_(5cm)"/>
    <Update>26/07/2011 11:13:00.2</Update>
    <Value Unit="°C">23.000000</Value>
  </n 0010.12.01.03.009>
</ipcValidation>
```

2.2 Intervalne obdelave podatkov

2.2.1 Standardne obdelave zveznih merjenih veličin

Zvezne veličine so tiste, kjer se značilna veličina spreminja zvezno – brez skokov v vrednosti. Veličina lahko znotraj določenih meja zavzame katerokoli vrednost.

Intervalne obdelave zveznih veličin se zvršijo po koncu intervala procesiranja (**Tp**). Ker je čas procesiranja za vse zvezne veličine enak, se za razliko od trenutnih obdelav (možen različen Ts, Period), vse povprečne obdelave izvršijo ob istem času po preteku intervala Tp = 10min. Interval procesiranja se vedno začne z 1. minuto in konča po preteku zadnje minute nastavljenega intervala procesiranja.

```
smp11d
|--< ch00@CPU_1:64004: global_solar_radiation
|--< ch01@CPU_0:64004: diffuse_solar_radiation
`--<ch02@CPU 0:64004: sunshine duration</pre>
```


Zvezne veličine senzorja SMP11:

	Senzor	Description	kanal	Koda kanala	Pxxx
1	SMP11	global_solar_radiation	ch01	016@0043.11.01.02.003	P43
2	SMP11	diffuse solar radiation	ch02	016@0043.11.02.02.003	P44

Nad meritvami *pval* zajetimi v Ts časovnih intervalih (Ts = 10s) se izvedejo:

- statistične obdelave.
- avtomatske kontrole (Y0...Y15), ki določijo veljavnost intervalnega podatka in pripišejo kodo veljavnosti podaku.

Rezultat povprečnih obdelav so procesirane intervalne vrednosti *processed Tp values*, ki v obliki ASCII zapisa formirajo prenosno datoteko.

•	povprečna vrednost v intervalu procesiranja Tp	avg
•	maksimalna vrednost v intervalu procesiranja Tp	max
•	čas maksimuma	maxTime
•	minimalna vrednost v intervalu procesiranja Tp	min
•	čas minimuma	minTime
•	terminska vrednost	term
•	standardna deviacija	stdev
•	Odstotek dobrih podatkov	aqRatio
•	veljavnost podatkov	pValidity
•	status podatka	pStatus

2.2.1.1 Interval processing time (Tp)

[Tp]: interval procesiranja zajetih podatkov

Interval procesiranja je nastavljiv preko konfiguracijske xml datoteke *smp11d.h.xml*.

2.2.1.2 Statistične obdelave podatkov zajetih v intervalu procesiranja

2.2.1.2.1 Vpliv veljavnosti podatkov

V primeru, da je število veljavnih podatkov v intervalu aq_ratio ≥ V11, Y11_D11=0, se v intervalnih izračunih obdelajo le veljavni podatki. Iz izplena podatkov, vrednosti *aq_ratio* je razvidno kolikšen je bil dejanski odstotek dobrih podatkov. V tem primeru je intervalni podatek veljaven.

V primeru, da je odstotek veljavnih podatkov v intervalu manjši od nastavljene vrednosti V11 (aq_ratio < V11) in Y11_D11 = 1, se v statističnih izračunih (*avg, min, max, stdev, term*) upoštevajo vsi podatki. Izračunane vrednosti se vpišejo v »pa« datoteko iz veljavnosti podatkov pa je razvidno, katere napake (glede na kontrole Y0 – Y15) so se pojavile v intervalu.

Privzete vrednosti »-999«, ki jih vpišemo v primeru manjkajočega podatka, ko iz senzorja ni pridobljena vrednost (neuspešen pull) se v statističnih izračunih v nobenem primeru ne upoštevajo.

V primeru, da v celotnem intervalu iz naprave ni bila pridobljena nobena vrednost se za vse izračunane vrednosti vpiše privzeta vrednost »-999«, za čas min in max pa vrednost »99:99«.

V primeru, da v celotnem intervalu iz naprave ni bila pridobljena nobena vrednost se za vse izračunane vrednosti vpiše privzeta vrednost »-999«, za čas min in max pa vrednost »99:99«.

2.2.1.2.2 Povprečna vrednost

parametra je aritmetična sredina vseh veljavnih izmerjenih vrednosti znotraj intervala procesiranja. Veljavni podatki so podatki, ki jim ni pripisan noben od kontrolnih bitov v procesu kontrole veljavnosti trenutnih podatkov, ki so tipa »**error**« (X5 ... X15).

$$[X5 ... X15] = 0$$

$$U = \frac{\sum_{i=1}^{N} U_{i}}{N}$$

N je število izmerjenih vrednosti znotraj intervala procesiranja

 U_i trenutna vrednost

Opomba:

V primeru, da število veljavnih izmerkov ne doseže nastavljenega odstotka se v povprečnih izračunih obdelajo vsi izmerki, veljavni in neveljavni (Y11: V11 = 75).

2.2.1.2.3 Maksimalna vrednost

predstavlja največjo veljavno izmerjeno vrednost znotraj intervala procesiranja.

$$U_{\text{max}} = \max (U_i)_i^n$$

2.2.1.2.4 Minimalna vrednost

predstavlja najmanjšo veljavno izmerjeno vrednost znotraj intervala procesiranja.

$$U_{\min} = \min(U_i)_i^n$$

2.2.1.2.5 Standardna deviacija

Standardna deviacija predstavlja raztros meritev v intervalu procesiranja. Izračunamo jo iz veljavnih meritev po formuli:

$$\sigma = \sqrt{\frac{(U_i - U)^2}{N-1}}$$

N ...število vseh meritev v intervalu procesiranja

Ui ...izmerjena vrednost

 $U\ldots$ povprečna izmerjena vrednost

2.2.1.2.6 Aquisition ratio

predstavlja odstotek veljavnih podatkov zajetih v 10 min intervalu procesiranja. Veljavni podatki so podatki, ki jim ni pripisan noben od kontrolnih bitov v procesu kontrole veljavnosti trenutnih podatkov, ki so tipa »error« (X5 ... X15).

$$[X5 ... X15] = 0$$

$$aq_{ratio} = \frac{N_{val}}{N} \Box 100$$

N je število izmerjenih podatkov v intervalu procesiranja N_{val} število veljavnih podatkov izmerjenih v intervalu procesiranja

2.2.1.2.7 Terminska vrednost

Terminska vrednost (*term*) predstavlja povprečje veljavnih meritev zajetih v zadnji minuti intervala procesiranja. V primeru, da je Ts = 10s, se v izračunu upošteva zadnjih 6 zajetih podatkov v intervalu procesiranja.

2.2.1.2.7.1 Vpliv veljavnosti podatkov na zapis terminske vrednosti

V primeru, da so vsi podatki v zadnji minuti intervala neveljavni in je hkrati za interval v celoti izpolnjen kriterij **aq_ratio** > **V11**, **D11=0** za izplen podatkov, se kot terminska vrednost vpiše -999. V primeru 1 veljavnega podatka v zadnji minuti se ta vpiše kot terminska vrednost. (glej tudi term_value_processing.xls). Izvedeni podatki v tem intervalu so označeni kot *veljavni*. V primeru, da je izpolnjen kriterij **aq_ratio** < **V11**, **D11 = 1** se podatki (veljavni in neveljavni) zajeti v zadnji minuti obdelajo in se zapišejo kot terminska vrednost. Vsi podatki zajeti v tem intervalu so označeni kot *neveljavni*.

2.2.2 Intervalne obdelave diskretnih merjenih veličin

Diskretne veličine so tiste, ki se spreminjajo skokoma, pri tem pa lahko zavzamejo le vnaprej določene vrednosti (napr. 1 ali 0). Pri diskretnih veličinah ugotavljamo, katero od možnih vrednosti je zavzela opazovana veličina.

```
smp11d
|--< ch00@CPU_1:64004: global_solar_radiation
|--< ch01@CPU_0:64004: diffuse_solar_radiation
`--<ch02@CPU 0:64004: sunshine duration</pre>
```


Diskretne veličine, ki jih zajema in obdeluje smp11d senzorski vmesnik so:

	Senzor	Description	kanal	Koda kanala	Pxxx
1	SMP11	sunshine_duration	ch02	016@0043.11.08.02.003	P67

Nad meritvami *pval* zajetimi v Ts časovnih intervalih (Ts = 10s) se izvedejo:

- minutne obdelave.
- avtomatske kontrole (Y0...Y15), ki določijo veljavnost intervalnega podatka in pripišejo kodo veljavnosti podatku.

Rezultat intervalnih obdelav so procesirane intervalne vrednosti *processed Tp values*, ki v obliki ASCII zapisa formirajo prenosno datoteko.

•	minuten status sonca ($0 = ne, 1 = da$) v 10	minStatus
	minutnem intervalu	
•	število minut s soncem v prvih 5min intervala Tp	N1st5minStatus
•	število minut s soncem v drugih 5min intervalaTp	N2nd5minStatus
•	število minut s soncem v 10 min intervalu (min)	NTpminStatus
•	število minut s soncem v zadnjih 24 urah (min)	N24hminStatus

2.2.2.1

Interval processing ime (Tp)

[Tp]: interval procesiranja zajetih podatkov

Interval procesiranja je nastavljiv preko konfiguracijske xml datoteke *ptb330d.h.xml.*

Vzorčenje se izvaja vsakih 10 sekund. (Ts = 10000ms). V minutnih intervalih obdelujemo – agregiramo trenutne vrednosti.

2.2.2.2

Obdelave za določitev minutnega statusa sonca (minStatus)

Preverjamo ali je izpolnjen pogoj status sonca = 1

- → **0** = direktno sevanje pod mejno vrednostjo 120 W/m2, status = "NO" (sun NO)
- → 1 = izpolnjena mejna vrednost 120 W/m2, status = "YES" (sun YES)

Pri upoštevanju minStatus_Threshold ="50", kar v enominutnem intervalu pomeni, da potrebujemo ≥ 3 vzorce, ko je status sonca 1 (sun_YES), potem je enominutna zabeležena vrednost 1.

minStatus predstavlja binarni zapis minutnih statusov sonca v intervalu procesiranja (Tp).

min v Tp	1.min	2.min	3.min	4.min	5.min	6.min	7.min	8.min	9.min	10.min
Status sonca	YES	YES	YES	YES	NO	NO	NO	NO	NO	YES
zanis	1	1	1	1	0	0	0	0	0	1

2.2.2.2.1 Določitev minutnega procesiranja (Mp) digitalnih vhodov in dolžine zapisa glede na izbrani Tp

Interval minutnega procesiranja (Mp) diskretnih veličin je določen s spodnjo tabelo in se spreminja z dolžino izbranega Tp.

```
Dolzina zapisa = \frac{Tp}{Mp}
```

Tp [min]	1	5	10	15	30	60	120
minutno procesiranje diskretnih veličin Mp [min]	1	1	1	1	2	5	10
Dolžina zapisa (število karakterjev)	1	5	10	15	15	12	12

Primer:

Če je nastavljeni interval procesiranja Tp="10" in interval vzorčenja Ts="10000" bomo diskretne veličine zajemali s frekvenco 10s ter jih obdelovali (agregirali) na eno minutnem nivoju (Mp = 1). Za Tp = "10" je dolžina zapisa 10 mestna.

2.2.2.2. Nastavitev praga »treshold« in časa reseta kumulative

Preko konfiguracijskega xml nastavimo vrednosti minStatus Threshold in NxxhStatus ResetTime.

```
<Processing minStatus_Threshold="50" N24hStatus_ResetTime="00:00"/>
```

- minStatus_Threshold: predstavlja odstotek vzorcev z enako vrednostjo, ki mora biti dosežen, da minutna vrednost zavzame enako vrednost, kot večina zajetih vzorcev v tej minuti.
- N24hStatus_ResetTime: predstavlja absolutni čas (CET oz. UTC+1) reseta kumulative pri 24 urnem procesiranju

2.2.2.2.3 Aquisition ratio pri izračunu minutnih vrednosti (Mp)

minStatus AqRatio="65".

```
<Processing minStatus_AqRatio="65" minStatus_Threshold="50"
N24hminStatus_ResetTime="24:00"/>
```

Pri 10s vzorčenju (Sampling Ts="10000", Sampling Period="1") v minutnem intervalu procesiranja (**Mp**) pri 100% ag ratio zajamemo 6 vzorcev.

Primer:

- minStatus_AqRatio = 100% ➤ YES ➤ 6 veljavnih vzorcev ➤ obdelava veljavnih vzorcev z uporabo kriterija treshold (minStatus_Threshold="50")
 - o ▶ če imajo ≥ 3 vzorci vrednost "1" ▶ minutni status = "1"
 - o ► če imajo < 3 vzorci vrednost "1" ► minutni status = "0"
- minStatus_AqRatio ≥ 65% **vsaj 4 veljavni vzorci nadaljujemo z obdelavo veljavnih vzorcev z uporabo kriterija treshold (minStatus Threshold="50")**
 - če imata ≥ 2 vzorca vrednost "1" > minutni status = "1"
 če imata < 2 vzorca vrednost "1" > minutni status = "0"
- < 65% ► 3 ali manj veljavnih vzorcev ► vpišemo "-", podatek zavržemo oz. ga pri računanju št. minut z statusom "1" tretiramo kot "0"

Primer izračuna minutnih vrednosti:

Y11=0 (v Tp intervalu zajamemo zadostno število veljavnih podatkov) Neveljavne trenutne podatke upoštevamo enako kot manjkajoč podatek (comm error)

• 1.minuta

	1. vzorec	2. vzorec	3. vzorec	4. vzorec	5. vzorec	6. vzorec
Trenutni (10s) Status sonca	1	1	0	0	-	-
minStatus_AqRatio = "65"				▼ ≥ 65 % TES		
Trenutni (10s) Status sonca	1	1				
minStatus_Threshold="50"			•	2		
Minutni Status sonca				1		

• 2.minuta

	1. vzorec	2. vzorec	3. vzorec	4. vzorec	5. vzorec	6. vzorec
Trenutni (10s) Status sonca	1	1	0	-	-	-
minStatus_AqRatio = "65"				▼ ≤ 65 %		
Trenutni (10s) Status sonca				-	-	-
minStatus_Threshold="50" Minutni Status sonca				_		

• 3.minuta

Legenda:

2.2.2.2.4 Vpliv veljavnosti intervalnih podatkov na izračun minutnih statusov

V primeru, da je število veljavnih podatkov v intervalu aq_ratio ≥ V11, Y11_D11=0, se v intervalnih izračunih obdelajo le veljavni podatki. Iz izplena podatkov, vrednosti *aq_ratio* je razvidno kolikšen je bil dejanski odstotek dobrih podatkov. V tem primeru je intervalni podatek veljaven.

V primeru, da je odstotek veljavnih podatkov v intervalu manjši od nastavljene vrednosti V11 (aq_ratio < V11) in Y11_D11 = 1, se v izračunih (*minStatus*, *N1st5minStatus*, *N2nd5minStatus*, *N7pminStatus*, *N24hminStatus*) upoštevajo vsi pridobljeni podatki iz merilnika.Izračunane vrednosti se vpišejo v »pa« datoteko iz veljavnosti podatkov pa je razvidno, katere napake (glede na kontrole Y0 – Y15) so se pojavile v intervalu.

	Veljavnost vzorca	Aq_ratio	Proceiranje vzorca v Tp
			intervalu
Vzorec_i	<i>X_i_val=0</i>	$Y_11_val = 0$	YES
Vzorec_i	<i>X_i_val=0</i>	$Y_11_val = 1$	YES
Vzorec_i	X_i_val=1	$Y_11_val = 0$	NO
Vzorec_i	X_i_val=1	$Y_11_val = 1$	YES

Y11=0 (dovolj dobrih podatkov v Tp intervalu)

Neveljavne trenutne podatke upoštevamo enako kot manjkajoč podatek (comm error)

Y11=1 (premalo dobrih podatkov)

Neveljavne trenutne podatke v izračunu Intervalnih vrednosti upoštevamo enako kot veljavne podatke. Teh vzorcev v izračunih 12h in 24h vsot ne upoštevamo oz. jih upoštevamo enako kot manjkajoč podatek (comm error).

Različni formati zapisa minutnih podatkov v primeru napake oz. izpada meritev

Format zapisa v primeru premalo dobrih podatkov napake določimo preko xml konfiguracijske datoteke smp11d.h

2.2.2.3 Število minut s soncem v prvih in drugih 5min intervala Tp (N1st5minStatus, N2nd5minStatus)

Seštevek minut trajanja sončnega obsevanja v prvih oziroma drugih 5 minutah intervala (minute) od 1. do 5. minute intervala in od 6. do 10. minute 10 minutnega intervala. Seštevajo se le minute, ko je bil status sonca 1.

Primer:

> N1st5minStatus

min v Tp	1.min	2.min	3.min	4.min	5.min
Status sonca	YES	YES	YES	YES	NO
zapis	1	1	1	1	0
N1st5minStatus	4				

> N2nd5minStatus

min v Tp	6.min	7.min	8.min	9.min	10.min
Status sonca	NO	NO	NO	NO	YES
zapis	0	0	0	0	1
N2nd5minStatus	1				

Reset števca se izvede po preteku 5min (števec se postavi na vrednost 00).

2.2.2.4 Število minut s soncem v Tp (NTpminStatus)

Seštevek minut trajanja sončnega obsevanja v tekočem intervalu (minute) od 1 do 10 minute intervala. Seštevajo se le minute, ko je bil status sonca 1.

Reset števca se izvede ob koncu intervala procesiranja (števec se postavi na vrednost 00).

2.2.2.5 Število minut s soncem od zadnjega reseta (N24hminStatus)

Vsota minut trajanja sončnega obsevanja od 1. minute zadnjega reseta do konca tekočega intervala. (N24hStatus_ResetTime="23:59").

Upoštevajo se le minute, ko je bil status sonca 1.

Reset števca se izvede ob nastavljenem času reseta (napr. ob 23:59 za 24hStatus_ResetTime="00:00"). Števec se postavi na vrednost 00.

2.2.2.6 Število decimalnih ur s soncem od zadnjega reseta (H24hhStatus)

- Opuščeno: vrednosti v pa datoteki ne izpisujemo

Vsota minut trajanja sončnega obsevanja od 1. minute zadnjega reseta do konca tekočega intervala. (N24hStatus_ResetTime="00:00") dalje izražena v decimalnih urah. V izračunu se upoštevajo le minute, ko je bil status sonca 1.

$$H24hhStatus = \frac{N24hminStatus}{60}$$

2.2.2.7 Aquisition ratio

Predstavlja odstotek veljavnih podatkov zajetih v 10 min intervalu procesiranja. Veljavni podatki so podatki, ki jim ni pripisan noben od kontrolnih bitov v procesu kontrole veljavnosti trenutnih podatkov, ki so tipa »error« (X5 ... X15).

$$[X5 ... X15] = 0$$

$$aq_{ratio} = \frac{N_{val}}{N} \square 100$$

N je število izmerjenih podatkov v intervalu procesiranja N_{val} število veljavnih podatkov izmerjenih v intervalu procesiranja

2.2.3 Avtomatske kontrole intervalnih podatkov

Program za kontrolo veljavnosti podatkov je del programske opreme samodejnega merilnega sistema Linux embedded računalnika in je izveden kot posamezni senzorski modul **smp11d**. Avtomatske kontrole intervalnih podatkov preverjajo **izvedene** podatke (*avg, min, max, term, stdev*) zajete iz lokalnih merilnih sistemov v določenem intervalu pocesiranja.

Avtomatske kontrole procesiranih podatkov preverjajo smiselnost statistično obdelanih podatkov in formirajo veljavnosti glede na logične kriterije (Y0....Y15).

Ob koncu intervala procesiranja preverjamo ali so povprečne, minimalne in maksimalne vrednosti parametrov ter standardna deviacija znotraj sprejemljivih meja.

Avtomatske kontrole podatkov so nastavljive preko xml konfiguracijske datoteke *smp11d.h* in jih po potrebi lahko vključimo ali izključimo (Enable="true"/ Enable="false"). Lahko jim določimo tip »warning« ali »error«.

Tabela2: Opis kontrol za preverjanje veljavnosti intervalnih podatkov

Kontrola	Bit	Value	OPIS VELJAVNOSTI
Y0	D0	V0	Ugotavlja ali je povprečna vrednost intervala procesiranja pod nastavljeno
			spodnjo alarmno mejo:

Kontrola	Bit	Value	OPIS VELJAVNOSTI
			_avr@Tp <v0< td=""></v0<>
			V primeru, če je vrednost pod nastavljeno Y0 kontrola postavi bit D1 v 1 in pri dekodiranju se izpiše:
			"low_value"
Y1	D1	V1	Ugotavlja ali je povprečna vrednost intervala procesiranja nad nastavljeno zgornjo alarmno mejo:
			_avr@Tp >V1
			V primeru, če je vrednost nad Y1kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše:
			" high_value"
Y2	D2	Vmin Vmax	Ugotavlja ali je temperatura prostora (P314) znotraj nastavljenega območja:
			Vmin < temp_avg < Vmax
			Če je T izven predvidenih mej se bit statusa postavi na 1 in pri dekodiranju se izpiše: "out_of_temp"
Y3	D3	V3	nc
Y4	D4	V4	nc
Y5	D5	V5	Primerja minimalno vrednost v intervalu procesiranja z nastavljeno spodnjo mejo merilnega območja:
			_min@Tp < V5
			V primeru, če je min vrednost pod nastavljeno Y5 kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše: "sensor range min"
Y6	D 6	V6	Ugotavlja ali je maxsimalna vrednost v intervalu procesiranja nad zgornjo
			mejo merilnega območja senzorja _max@Tp > V6
			V primeru, če je max vrednost nad nastavljeno Y6 kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše:
			"sensor_range_max"
Y7	D 7	V7	Primerja minimalno vrednost v intervalu procesiranja z nastavljeno
			spodnjo logično mejo: _min@Tp < V7
			V primeru, če je min vrednost pod nastavljeno Y7 kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše: "logical sensor range min"

Kontrola	Bit	Value	OPIS VELJAVNOSTI
Y8	D8	V8	_max@Tp >V8 Ugotavlja ali je povprečna vrednost nad zgornjo logično mejo. V primeru, če je max vrednost nad nastavljeno Y8 kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše: "logical_sensor_range_max"
Y9	D9	V9	(_max@Tpavr@Tp >V9) V (_avr@Tpmin@Tp >V9) Ugotavlja ali razlika med max in povp vrednostjo v intervalu, ter razlika povpr - min večja od nastavljene vrednosati Y9. V primeru, da je ena od razlik manjša od nastavljene vrednosti kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše: "max_min_absolute_deviation" Primer:
Y10	D10	V10	(_max@Tp >_avr@Tp) V (_avr@Tp > _min@Tp) Ugotavlja ali je max intervala večji od povp in povp večje od min v intervalu. V primeru, da to ne velja kontrola postavi bit statusa v 1 in pri dekodiranju se izpiše: "max-avg-min"
YII	D11	V11	Preverja veljavnosti trenutnih podatkov. Trenutni podatek je neveljaven v primeru, da so biti trenutnih kontrol [-cX5cX15] postavljeni na 1. Če je odstotek veljavnih trenutnih podatkov nižji od nastavljenega (napr. 75%) kontrola –cY11 (DEF = 70) se bit statusa D11 postavi na 1. device_aq_ratio@Tp < V11 pri dekodiranju se izpiše.
Y12	D12	V12	Kontrola ugotavlja razliko med min in max vrednost v intervalu. Če je razlika presega nastavljeno vrednost Y12 se bit D12 postavi na 1. (_max@Tpmin@Tp) Pri dekodiranju se izpiše: "step_value"
Y13	D13	V13	nc
Y14	D14	V14	nc
Y15	D15	V15	Preverja ali vključeno stikalo Servis (odprta vrata).

Kontrola	Bit	Value	OPIS VELJAVNOSTI
			servis is on
			Če je odstotek veljavnih trenutnih podatkov (ko stikalo ni vključeno) nižji od nastavljenega (napr. 75%) kontrola –cY11 (DEF = 70) se bit statusa D15 postavi na 1, pri dekodiranju se izpiše: "servis"

Vrednosti konstant za preverjanje intervalnih podatkov:

ch	P	V15	V14	V13	V12	V11	V10	V9	V8	V7	V6	V5	V4	V3	V2	V1	V0
ch00	P43	input	nc	nc	50	input	nc	nc	2000	0	2000	0	nc	nc	-20 70	2000	10
ch01	P44		nc	nc	50	input	nc	nc	2000	0	2000	0	nc	nc	-20 70	2000	10
							nc	nc	1	0	1	0	nc	nc	-20 70	1	0

Legenda:

kontrola	bit	Opis	tip
Y0	D1	low_value	warning
Y1	D1	high_value	warning
Y2	D2	out_of_temp	warning
Y3	D3	X3	warning
Y4	D4	X4	warning
Y5	D5	sensor_range_min	error
Y6	D6	sensor_range_max	error
Y7	D7	logical_sensor_range_min	error
Y8	D8	logical_sensor_range_max	error
Y9	D9	max_min_absolute_deviation	error
Y10	D10	max-avg-min	error
Y11	D11	aq_ratio	error
Y12	D12	stepValue	error
Y13	D13	Y13	error
Y14	D14	Y14	error
Y15	D15	servis	error

3. Veljavnosti podatkov, status merilnikov

Kontrola podatkov se na samodejnem merilnem sistemu - amws izvrši na dveh nivojih:

- Na nivoju *merilnika* velja za merilnike ki imajo že integriran algoritem kontrole merilnega sistema in podatkov in poleg merilih vrednosti podajajo tudi statuse merilnika (informacija o stanju hardware-a merilnika in podatkov). Kodiranje statusov je lahko za različne merilnike/ senzorje različno.
- Na nivoju *vgrajenega računalnika* nad trenutnimi in nad intervalnimi izvedenimi podatki. Kontrola je kodirana binarno in zavzema dva byta (byte je osem bitov možno 16 različnih kontrol). Če kontrola ugotovi napako, postavi ustrezen bit na '1', drugače pa bit ostane na '0'. Zato je podatek veljaven le, če je kontrolna funkcija enaka 0. Izjema so biti D0 do D4, ki so alarmni (previsoka T v prostoru, presežene mejne vrednosti).

Kontrole so enotne za vse parametre, lahko pa jih omogočamo ali onemogočamo, spreminjamo lahko tudi mejne vrednosti in funkcije, ki jih posamezne kontrole preverjajo. Vse te spremenljivke so nastavljive preko xml konfiguracijske datoteke *smp11d.h*.

3.1 Opis veljavnosti podatkov

Program za kontrolo veljavnosti podatkov je del posameznega senzorskega modula (deamona). S tem programom se kontrolirajo **povprečni** (10 minutni) in **trenutni** podatki iz lokalnih merilnih sistemov.

Veljavnost podatka predstavlja kodo napake, ki jo določata status merilnika in avtomatski merilni sistem Linux embeded computer-ja v postopku kontrole veljavnosti podatkov.

Koda napake je heksadecimalni zapis 16 bitne besede (D0 do D15) sestavljene iz dveh 8 - bitnih bytov. Vsak bit določa svoj tip napake, torej je v veljavnosti lahko zakodiranih 16 različnih napak, ki jih določa 16 kontrol. Postopek kontrole postavi pripadajoči bit na 1, če podatek ne ustreza in na 0, če podatek ustreza zahtevam določene kontrole. Zato je podatek pravilen le, če je kontrolna funkcija enaka 0. Izjema so biti D0 do D4, ki so alarmni. Veljavnost podatka je 4 mestno heksadecimalno število, saj vsakemu bytu pripadata dva heksadecimalna znaka.

J								
0 _{hex}	=	0 _{dec}	Ξ	0 _{oct}	0	0	0	0
1 _{hex}	=	1_{dec}	=	1 _{oct}	0	0	0	1
2 _{hex}	=	$2_{\text{dec}} \\$	=	2 _{oct}	0	0	1	0
3 _{hex}	=	$3_{\rm dec}$	=	3 _{oct}	0	0	1	1
4 _{hex}	=	4 _{dec}	=	4 _{oct}	0	1	0	0
5 _{hex}	=	5 _{dec}	=	5 _{oct}	0	1	0	1
6 _{hex}	Ξ	6 _{dec}	=	6 _{oct}	0	1	1	0
7 _{hex}	=	7 _{dec}	=	7 _{oct}	0	1	1	1
8 _{hex}	=	8 _{dec}	=	10 _{oct}	1	0	0	0
9 _{hex}		9 _{dec}	=	11 _{oct}	1	0	0	1
A _{hex}	=	10 _{dec}	=	12 _{oct}	1	0	1	0
B_{hex}	=	11 _{dec}	=	13 _{oct}	1	0	1	1
	=	12 _{dec}	=	14 _{oct}	1	1	0	0
Chex								
D _{hex}		13 _{dec}	=	15 _{oct}	1	1	0	1
200	=	13 _{dec}			1	1	0	0

Črke imajo naslednjo desetiško vrednost: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15 Pretvorba v decimalni zapis:

Napr. $2AF3 = (2 \times 16^3) + (10 \times 16^2) + (15 \times 16^1) + (3 \times 16^0) = \text{decimalno } 10.995.$

Tabela 3: Heksadecimalno kodiranje 16 bitne veljavnosti

Kontrola veljavnosti podatkov se izvaja na nivoju trenutnih podatkov (glej 2.1.3 Avtomatske KONTrole trenutnih podatkov) in intervalnih (10min) podatkov (glej 2.2.3 Avtomatske kontrole intervalnih podatkov)

a) kontrole trenutnih podatkov

Kontrola	Bit	V	OPIS VELJAVNOSTI
X0	D0	V0	low value

X1	D1	V1	high_value
X2	D2	V2min V2max	out_of_temp
X3	D3	V3	warningX3
X4	D4	V4	warningX4
X5	D5	V5	sensor_range_min
X6	D6	V6	sensor_range_max
X7	D7	V7	logical_sensor_range_min
X8	D8	V8	logical_sensor_range_max
X9	D9	V9	errorX9
X10	D10	V10	errorX10
X11	D11	V11	device_status
X12	D12	V12	stepValue
X13	D13	V13	errorX13
X14	D14	V14	errorX13
X15	D15	V15	servis

b) kontrole intervalnih podatkov

Kontrola	Bit	V	OPIS VELJAVNOSTI
Y0	D0	V0	low_value
Y1	D1	V1	high_value
Y2	D2	V2min V2max	out_of_temp
Y3	D3	V3	warningX3
Y4	D4	V4	warningX4
Y5	D5	V5	sensor_range_min
Y6	D6	V6	sensor range max
Y7	D7	V7	logical_sensor_range_min
Y8	D8	V8	logical_sensor_range_max
Y9	D9	V9	max_min_absolute_deviation
Y10	D10	V10	max-avg-min
Y11	D11	V11	aq_ratio
Y12	D12	V12	stepValue
Y13	D13	V13	errorY13
Y14	D14	V14	errorY14
Y15	D15	V15	servis

Legenda:

WARNING	Podatek je veljaven
ERROR	Podatek je neveljaven
ERROR	Podatek je neveljaven

4. Prenosne datoteke

Obdelajo se trenutni podatki zajeti v **intervalu procesiranja** (**Tp = 10 min**). Podatki se v obliki prenosnih datotek po koncu intervala procesiranja preko komunikacijske linije (ADSL/MPLS, GPRS) prenašajo v računski center ARSO.

4.1 Ime prenosne datoteke

Za vsak interval procesiranja se za merilno postajo tvori posebna prenosna datoteka z imenom, ki ima sledečo obliko:

xLLLLMMDDuumm.y%%%

kjer oznake pomenijo:

```
[x]: Tip podatkov (Q)

[LLLL]: leto
[MM]: mesec
[DD]: dan intervala [MIN = 01], [MAX = 31], [DEF. = -]
[uu]: ura konca 10 minutnega intervala [MIN = 00], [MAX = 50], [DEF. = -]
[mm]: minuta konca intervala meritve [MIN = 00], [MAX = 30 min], [DEF. = -]
[y]: črkovni del oznake postaje (napr. M, H, K, E, R)

[%%%]: Številčni del oznake postaje
```

```
Postaja ime postaje Y%%% v prenosni datoteki
```

amws_ 0192_M500_Ljubljana_Bezigrad

M005

4.2 Format izpisa trenutne (ta) in intervalne prenosne datoteke (pa)

4.2.1 Formatiranje izpisov

Formatiranje posameznih polj v izpisu vrstice posameznega kanala se izvaja preko konfiguracijskega xml smp11d.h.xml :

4.2.1.1 Zapis podatkov v primeru napake "comm fail"

Preko konfiguracijskega xml je omogočeno formatiranje *ta* in *pa* izpisa vrednosti v primeru, ko senzorski modul ne pridobi podatka iz merilnika oz. v Tp intervalu ne pridobi nobenega podatka iz merilnika, napaka »comm_fail« (X10=1) (neuzpešen pull) napr. valueErr="-999"

4.2.1.2 Izključevanje posameznih polj v izpisih

Senzorski modul omogoča prilagajanje formata izpisa vrstice posameznega parametra. Izključitev polja (napr. min, max,...) izvedemo tako, da atributu, kot format vpišemo vrednost »%N«, napr. max = "%N"., v tem primeru se v pa formatu ne bo izpisovala povprečna vrednost.

4.2.2 Trenutna datoteka

Format trenutne »ta« datoteke določimo in spreminjamo preko sensord.h.xml:

```
<Reports>....
<get ta ReportFormat>
   <header date="%d/%m/%Y%t" time="%H:%M:%S.%1%t" cpuIdx="cpu %d:" port="%04d:"</pre>
sensorModule="%s"/>
   <dataHeader chIdx="ch%02d@" cpuIdx="cpu_%d:" port="%04d\t" stationType="%s@" cpcode="%s\t"</pre>
pcode="%s\t" validity="%04x\t"/>
  <dataDelimiter delimiter="\t"/>
   <dataTail mpp="%s"/>
</get ta ReportFormat>
<Channel Idx="00"...
<get ta ReportFormat>
   <dataFormat value="%d" valueErr="-999" unit="%s"/>
</get ta ReportFormat>
<get ta ch ReportFormat>
   <dataFormat value="%d" valueErr="-999" unit="%s"/>
</get ta ch ReportFormat>
```

```
smp1ld(64004)> get ta

01/11/2010 11:31:32.5 CPU_1:64004:smp1ld
ch00@CPU_1:64004 016@0043.11.01.02.003 P43 0000 851 w/m2 global_solar_radiation
ch01@CPU_1:64004 016@0043.11.02.02.003 P44 0000 800 w/m2 diffuse_solar_radiation
ch02@CPU_1:64004 016@0043.11.08.02.003 P67 0000 1 bit sunshine_duration6
```

Format trenutne datoteke

V »ta «datoteki so posamezni podatki ločeni s tabulatorjem (TAB).

4.2.3 Intervalna datoteka

Format intervalne »pa« datoteke določimo in spreminjamo preko xml konfiguracijske datoteke sensord.h.xml:

Format intervalne datoteke

V »pa«datoteki so posamezni podatki ločeni s tabulatorjem (TAB).

V nadaljevanju so prikazani formati posameznih merjenih veličin v polurnih datotekah.

4.2.4 Format sistemskega parametra

P0 SISTEMSKI PARAMETER

Zap.št	Podatki	Opis	Variables	Format
0	P0@CPU_1:64004	pcode@cpu:port	pcode@cpu_idx:port	%S
1	11:01	čas prenosa	sendTime	%H:%M
2	10/05/2002	datum prenosa	sendDate	%d/%m/%Y
3	00:00	čas zadnje nastavitve ure	setClockTime	%H:%M
4	17/07/01	datum zadnje nastavitve ure	setClockDate	%d/%m/%Y
5	11:00	čas intervala <mark>*</mark>	intervalTime	%H:%M
6	10/05/2002	datum intervala	intervalDate	%d/%m/%Y
7	11:00	čas zadnjega zagona (jmd/ sensord)	startTime	%H:%M
8	10/05/2002	datum zadnjega zagona (jmd/ sensord)	startDate	%d/%m/%Y
9	28.6	temperatura cpu	amsTemp	%.1f
10	12	napajalna napetost	amsUb	%.1f
11	192	lokacija postaje	locationCode	%s
12	M005	koda postaje	stationCode	%s
13	016	tip postaje	stationType	%s

čas intervala je čas zadnje minute intervala (primer: interval 14:51 – 15:00->> čas intervala = 15:00)

```
smp11d(64004)>
P0@CPU_1:64004 18:42 31/10/2010 11:47 19/10/2010 18:40 31/10/2010 11:47 19/10/2010 10.9 13.6 192 M005 016
```

stran:30 Poglavje 8.1: processing

4.2.5 P43 globalno sončno obsevanje (global_solar_radiation)

016@0043.11.01.02.003

P43 GLOBALNO SONČNO OBSEVANJE

SMP11

[W/m2]

OBMOČJE MERJENJA: [0 - 2000] W/m2 LOGIČNE MEJE: [10 - 2000] W/m2 INTERVAL VZORČENJA: [10] SEC

Trenutni podatki

Z.št.	Podatki	Opis	Variable	Format
0	ch00@CPU_0:64004	Indeks kanala@cpu:port	ch_idx@cpu_idx:port	%02d@%s:%05d
1	016@0043.11.01.02.003	Koda kanala	station_code@cpcode	%s@%s
2	P43	Koda parametra	pcode	%s
3	0000	veljavnost podatkov	Validity	%04x
4	251	Trenutna vrednost	value	%.0f
5	W/m2	enota	U	%s
6	global_solar_radiation	description	mpp	%s

```
smp11d(64004)> get ta

01/11/2010 11:31:32.5 CPU_1:64004:smp11d
ch00@CPU_1:64004 016@0043.11.01.02.003 P43 0000 851 w/m2 global_solar_radiation
```

get_ta_ReportFormat

```
smp11d(64004)> get ta ch00

ch00@CPU_1:64004 016@0043.11.01.02.003 P43 global_solar_radiation
0 01/11/2010 11:31:32.5 851 0000 w/m2
1 01/11/2010 11:31:32.5 851 0000 w/m2
```

get_ta_ch_ReportFormat

Intervalni podatki

Z.št.	Podatki	Opis	Variable	Format
0	ch00@CPU_0:4003	Indeks kanala@cpu:port	ch_idx@cpu:port	%02d@%s:%05d
1	016@0043.11.01.02.003	Koda kanala	station_code@cpcode	%s@%s
2	P43	Koda parametra	pcode	%s
3	100	Odstotek dobrih podatkov	aqRatio	%.0f
4	0000	veljavnost podatkov	pValidity	%04x
5	251	povprečna vrednost v intervalu procesiranja Tp	avg	%.0f
6	255	maksimalna vrednost v intervalu procesiranja Tp	max	%.0f
7	15:19	čas maksimuma	maxTime	%H:%M
8	243	minimalna vrednost v intervalu procesiranja Tp	min	%.0f
9	15:13	čas minimuma	minTime	%H:%M
10	243	terminska vrednost	term	%.0f
11	5	standardna deviacija	stdev	%.1f

get_**pa**_ReportFormat

```
smp11d(64004)> get pa ch00
ch00@CPU_1:64004 016@0043.11.01.02.003 P43 global_solar_radiation
```

Poglavje 8.1: processing stran:31

0 01/11/2010 11:30 851 855 15:19 843 15:13 855 5 100 0000

get pa ch ReportFormat

4.2.6 P44 difuzno sončno obsevanje (diffuse solar radiation)

016@0043.11.02.02.003 P44 DIFUZNO SONČNO OBSEVANJE

[W/m2]

OBMOČJE MERJENJA: [0 - 2000] W/m2 LOGIČNE MEJE: [10 - 2000] W/m2 INTERVAL VZORČENJA: [10] SEC SMP11

Trenutni podatki

	Trondom pounts	·-		
Z.št.	Podatki	Opis	Variable	Format
0	ch01@CPU_1:64004	Indeks kanala@cpu:port	ch_idx@cpu:port	%02d@%s:%05d
1	016@0043.11.02.02.003	Koda kanala	station_code@cpcode	%s@%s
2	P44	Koda parametra	pcode	%S
3	251	Trenutna vrednost	value	%.0f
	W/m2	enota	U	%s
4	0000	veljavnost podatkov	Validity	%04x
5	global_solar_radiation	description	mpp	%s

```
smp1ld(64004)> get ta

01/11/2010 11:31:32.5 CPU_1:64004:smp11d
ch01@CPU_1:64004 016@0043.11.02.02.003 P44 0000 800 w/m2 diffuse_solar_radiation
```

get_ta_ReportFormat

```
smp11d(64004)> get ta ch04

ch01@CPU_1:64004 016@0043.11.02.02.003 P44 diffuse_solar_radiation
0 01/11/2010 11:31:32.5 0000 800 w/m2
```

get_ta_ch_ReportFormat

• Intervalni podatki

Z.št.	Podatki	Opis	Variable	Format
0	ch01@CPU_1:64004	Indeks kanala@cpu:port	ch_idx@cpu:port	%02d@%s:%05d
1	016@0043.11.02.02.003	Koda kanala	station_code@cpcode	%s@%s
2	P44	Koda parametra	pcode	%S
3	100	Odstotek dobrih podatkov	aqRatio	%.0f
4	0000	status veljavnosti podatkov	pValidity	%04x
5	251	povprečna vrednost v intervalu procesiranja Tp	avg	%.0f
6	255	maksimalna vrednost v intervalu procesiranja Tp	max	%.0f
7	15:19	čas maksimuma	maxTime	%H:%M
8	243	minimalna vrednost v intervalu procesiranja Tp	min	%.0f
9	15:13	čas minimuma	minTime	%H:%M
10	243	terminska vrednost	term	%.0f
11	5	standardna deviacija	stdev	%.1f

get_pa_ReportFormat

stran:32 Poglavje 8.1: processing

```
ch01@CPU_1:64004 016@0043.11.02.02.003 P44 diffuse_solar_radiation
0 01/11/2010 11:30 100 0000 800 821 15:19 755 15:13 794 5
```

get_pa_ch_ReportFormat

4.2.7 P67 trajanje sončnega obsevanja (sunshine_duration)

016@0043.11.08.02.003 P67 TRAJANJE SONČNEGA OBSEVANJA [-]

OBMOČJE MERJENJA: [ON/OFF] LOGIČNE MEJE: [0 - 1]

INTERVAL VZORČENJA: [10] SEC

SMP11

Trenutni podatki

	Podatki	Opis	Variable	Format
0	ch00@CPU_0:4003	Indeks kanala@cpu:port	ch_idx@cpu:port	%02d@%s:%05d
1	016@0043.11.08.02.003	Koda kanala	station_code@cpcode	%s@%s
2	P67	Koda parametra	pcode	%S
3	0000	veljavnost podatkov	Validity	%04x
4	0b1	trenuten status sonca	value	%01b
5	bit	enota	U	%S
6	sunshine_duration	description	mpp	%S

```
smp11d(64004)> get ta

01/11/2010 11:31:32.5 CPU_1:64004:smp11d
ch02@CPU_1:64004 016@0043.11.08.02.003 P67 0000 1 bit sunshine_duration
```

get_ta_ReportFormat

get_ta_ch_ReportFormat

• Intervalni podatki

Z.št.	Podatki	Opis	Variable	Format
)	ch00@CPU_0:4003	Indeks kanala@cpu:port	ch_idx@cpu:port	%02d@%s:%05d
1	016@0043.11.08.02.003	Koda kanala@cp koda	station_code@cpcode	%s@%s
2	P67	Koda parametra	pcode	%s
3	100	odstotek veljavnih podatkov	aqRatio	%.0f
1	0000	veljavnost podatkov	pValidity	%04x
5	1111100001	minuten status sonca (0 = ne, 1 = da) v 10 minutnem intervalu	minStatus	%010b
5	5	število minut s soncem v prvih 5min intervala Tp	N1st5minStatus	%d
7	1	število minut s soncem v drugih 5min intervalaTp	N2nd5minStatus	%d
3	6	število minut s soncem v 10 min intervalu (min)	NTpminStatus	%d
)	330	število minut s soncem v zadnjih 24 urah (min)	N24hminStatus	%d
10	5.6 *	decimalno število ur v zadnjih 24 urah (h)	H24hhStatus	%.1f

* se ukine. Dogovor s T. Tihcem 19.10.2011

smp1ld(64004)> get pa

P0@CPU_1:64004 18:42 31/10/2010 11:47 19/10/2010 18:40 31/10/2010 11:47 19/10/2010 10.9 13.6 192 M005
 016
ch02@CPU_1:64004 016@0043.11.08.02.003 P67 100 0000 1111100001 5 1 6 330

Poglavje 8.1: processing stran:33

get_pa_ReportFormat

```
smp11d(64004)> get pa ch02
ch02@CPU_1:64004 016@0043.11.08.02.003 P67 sunshine_duration
0 01/11/2010 11:30 100 0000 1111100001 5 1 6 330
```

get_pa_ch_ReportFormat

5. Priloge

5.1 Dokumentacija ARSO

Tehnična dokumentacija:

- 1 Podatki format specifications
- 2 xml application configuration files
 - smp11d.xml
 - smp11d.h.xml
 - smp11d terminal users.h.xml
- 3 Sensor config files
 - <u>smp11.sh</u>

5.2 Dokumentacija merilne opreme

- 1 <u>smp11_UserGuide.pdf</u>
- 2