Bitamin 4주차 복습 세션

2주차, 3주차 복습

심층신경망의학습 review

활성화 함수, 손실 함수, 옵티마이저와 좋은 학습을 위한 방법들

10기 4조

노지예 임청수 한세림

심층 신경망 (DNN)

입력층과 출력층 사이에 여러 개의 은닉층으로 이루어진 인공신경망

활성화 함수 (Activation Function)

- 입력 신호의 총합을 출력 신호의 총합으로 변환해주는 비선형 함수 (선형함수일 경우 신경망의 층을 쌓는 의미가 없어짐.)

ex. Sigmoid, tanh, ReLU 함수

- (1) Sigmoid Gradient Vanishing, not zerocentered
- (2) tanh Gradient Vanishing 발생
- (3) ReLU 가장 많이 사용함. not zerocentered

가중치 업데이트

손실 함수 (Loss Function)

학습 알고리즘이 얼마나 정답과 다른 지 알려주는 지표 ex. MSE, RMSE, MAE, Cross Entropy 등.

옵티마이저 (Optimizer)

Loss function의 최솟값에 가까워지도록 모델의 가중치와 편향을 변화시키는 최적화 함수. ex. SGD, Momentum, AdaGrad, Adam 등

경사하강법 (Gradient Descent)

손실함수의 기울기를 구하여 기울기가 낮은 쪽 으로 이동시키는 방법

학습률: 손실함수의 기울기 값을 경사하강법에 적용하는 정도.

- 학습률이 너무 작을 경우 학습 속도가 느리다
- 학습률이 너무 큰 경우 발산하여 최소값에 도 달하지 못할 수 있다.

Why Normalize?

데이터 값 간의 범위 차이가 클 경우, 비효율적인 최적화 과정을 거치게 됨 (지그재그 모양으로 그래프가 수렴함)

-> 데이터를 'Batch' 단위로 정규화

배치 정규화 (Batch Normalization)

배치 정규화의 장점:

- (1) 빠른 학습 진행
- (2) 초깃값 의존도 감소
- (3) 오버피팅 억제

배치 정규화와 경사하강법

(1) Batch Gradient Descent

전체 데이터의 gradient의 평균을 구해 수렴함. 부드럽게 수렴하지만 속도가 느림.

(2) Stochastic Gradient Descent

데이터를 한 개씩 추출해서 가중치를 갱신함. 속도는 빠르지만 오차율이 커서 제대로수렴하지 않을 수 있음.

(3) Mini-Batch Gradient Descent

전체 데이터를 배치 크기로 나누어 경사하강 법을 진행함. 둘의 절충안.

과소적합과 과대적합

과소적합 (Underfitting)

Train set을 제대로 학습하지 못한 경우.

- 학습 횟수가 충분하지 못할 때
- 데이터의 특성에 비해 모델이 너무 단순할 때
 - 데이터의 양이 충분하지 않을 때

과대적합 (Overfitting)

Train set을 과도하게 학습한 경우.

- 데이터의 특성에 비해 모델이 너무 복잡할 때
 - 데이터의 양이 충분하지 않을 때

Validation Set

- 검증 데이터셋 (validation set)을 이용하여 underfitting, overfitting 정도를 확인하기
- Early Stopping: Overfitting이 되기 전에 학습을 멈춤.

모델 성능 향상을 위한 방법들

드롭아웃 (Dropout)

- 0부터 1 사이의 확률로 랜덤하게 신경망의 뉴런 부분을 제거하는 방법.
 - Overfitting을 방지하기 위해 사용함.

스케줄러 (Scheduler)

- 학습 과정에서 학습률을 조정하는 장치 ex. LambdaLR, MultiplicativeLR, StepLR, CyclicLR 등

Weight Initializer

- 가중치의 초기값을 지정해주는 함수 ex. 모두 0 또는 1로 설정하기, Xavier initialization, He initialization 등

Bitamin 4주차 복습 세션

2주차, 3주차 복습 _____

Thank You OICHAICNNES