

Réduction d'un oxyde de chrome en chrome métallique

Problème VIII-1

Problème VIII-1 : Etude thermodynamique de la réduction de l'oxyde en chrome métallique

Enoncé

- Ecrire le bilan de la réduction de Cr₂O_{3(s)} par H_{2(g)}. Préciser l'état physique des constituants à 400 K.
- 2) Donner l'expression de l'enthalpie standard de cette réaction à 400 K. Pourquoi est -elle indépendante de la température ?
- 3) La constante de l'équilibre est à 1200 K : K°(1200 K) = 2 . 10-11. Conclure. On charge un réacteur avec 100 kg d'oxyde de chrome Cr₂O₃.
 Quelle est la masse de H₂ à utiliser pour obtenir une réduction totale ?
- 4) La meilleure façon d'obtenir le chrome métallique est le procédé d'aluminothermie, c'est à dire la réduction de Cr₂O₃ par l'aluminium.
 - a- Ecrire l'équation-bilan correspondante en précisant l'état physique des constituants.
 - **b-** Calculer son enthalpie standard à 298 K.
 - **c-** Quelle est la température maximale atteinte, en supposant :
 - que les produits restent solides ;
 - que la réaction d'aluminothermie se déroule à pression constante, dans une enceinte adiabatique et que les réactifs sont en proportion stœchiométrique initialement ;
 - que l'enthalpie standard de la réaction est indépendante de la température.

Commenter votre résultat. Conclure sur la pureté du chrome obtenu.

Réduction d'un oxyde de chrome en chrome métallique

Problème VIII-1

Données à T = 298K:

• Constante des gaz parfaits : $R = 8.31 \text{ J.K}^{-1}.\text{mol}^{-1}$;

• Constante d'Avogadro : $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$

• Masse molaire:

 $O = 16 \text{ g.mol}^{-1}$; $H = 1 \text{ g.mol}^{-1}$;

• Numéro atomique : Cr : Z = 24

• Grandeurs caractéristiques des constituants :

Formule	Etat	$\Delta_{ m f} { m H}^{\circ}$	Cp°	Température de	Masse molaire
		kJ.mol-1	J.K ⁻¹ .mol ⁻¹	fusion	(g.mol ⁻¹)
				(sous 1 bar)	
Al	solide	0	24,3	660°C	27,0
Al ₂ O ₃	solide	- 1675,7	79,0	2015°C	
Cr	solide	0	23,4	1857°C	52
Cr ₂ O ₃	solide	- 1139,7	118,7	2435°C	
Fe	solide	0	25,1		55,8
Н2	gaz	0	28,8		2
Н2О	gaz	- 241,8	33,6		
O ₂	gaz	0	29,4		

Réduction d'un oxyde de chrome en chrome métallique

Problème VIII-1

Correction:

1)
$$\operatorname{Cr_2O_3(s)+} 3 \operatorname{H_2(g)} \stackrel{\rightarrow}{\leftarrow} 2 \operatorname{Cr(s)} + 3 \operatorname{H_2O(g)}$$

2)
$$\Delta_{r}H^{\circ}(298) = 2\Delta_{f}H^{\circ}(Cr) + 3\Delta_{f}H^{\circ}(H_{2}O) - \Delta_{f}H^{\circ}(Cr_{2}O_{3}) - 3\Delta_{f}H^{\circ}(H_{2}) = 414,3 \text{ kJ} \cdot \text{mol}^{-1}$$

 $\Delta_{r}C_{p}^{\circ} = \sum_{i} v_{i} C_{p_{i}}^{\circ} = -57,5 \text{ J.K}^{-1}.\text{mol}^{-1}.$

$$\Delta_{\rm r} \mathrm{H}^{\circ}(\mathrm{T}) = \Delta_{\rm r} \mathrm{H}^{\circ}(298) + \int_{298}^{\mathrm{T}} \Delta_{\rm r} \mathrm{C}_{\rm p}^{\circ} \, \mathrm{dT} \approx \Delta_{\rm r} \mathrm{H}^{\circ}(298)$$

3) La constante de l'équilibre est à 1200 K : K°(1200 K) = 2 . 10⁻¹¹. L'équilibre est très peu avancé sauf s'il y a un large excès de dihydrogène !

$$Cr_2O_{3(s)}+$$
 3 $H_2(g) \stackrel{?}{\leftarrow} 2 Cr(s) +$ 3 $H_2O(g)$

$$\frac{100 \cdot 10^3}{2 \cdot 52 + 3 \cdot 16} \quad n_{H_2}^{\text{excès}}$$

K°(T) étant très faible, il faudra un très large excès de dihydrogène.

D'après l'expression de K°(T) :

$$K^{\circ}(T) = \begin{pmatrix} p_{H_2O} \\ p_{P_2O} \\ p_{H_2} \\ p_{P_2O} \end{pmatrix}^3 = \begin{pmatrix} p_{H_2O} \\ p_{H_2O} \\ \end{pmatrix}^3 = \begin{pmatrix} n_{H_2O} \\ n_{H_2O} \\ \end{pmatrix}^3$$

car
$$p_{H_2} = n_{H_2} \cdot \frac{RT}{V}$$
 et $p_{H_2O} = n_{H_2O} \cdot \frac{RT}{V}$

avec
$$n_{\text{H}_2\text{O}} = 3 \cdot n_{\text{Cr}_2\text{O}_3}^{\text{initial}} = 1974 \text{ mol}$$

d'où
$$n_{H_2}^{res tan t} = 7.3 \cdot 10^6 \text{ mol et } n_{H_2}^{initial} = n_{H_2}^{res tan t} + n_{Cr_2O_3}^{initial} \approx 7.3 \cdot 10^6 \text{ mol}$$

donc $m_{H_2}^{initial}$ = 14,7 tonnes ; masse nécessaire en dihydrogène pour réduire 100 kg de Cr₂O_{3(S)}

4a-
$$\operatorname{Cr_2O_3(s)^+}$$
 2 $\operatorname{Al}(s) \stackrel{\rightarrow}{\leftarrow} \operatorname{Al_2O_3(s)^+}$ 2 $\operatorname{Cr}(s)$

b-
$$\Delta_r H^\circ(T) = -536 \text{ kJ} \cdot \text{mol}^{-1}$$

c-
$$\Delta T = \frac{-\Delta_r H^{\circ}(298)}{c_n^{\circ}(Al_2O_3) + 2 \cdot c_n^{\circ}(Cr)} = 4260 \text{ K} \text{ donc } T = 4660 \text{ K}.$$

A cette température, tout est à l'état liquide!