3º Caso:

Maximizar 'Z'

Múltiplas Soluções

Maximizar: $Z = 40x_1+40x_2$

Sujeito a:
$$S \begin{cases} 2X_1 + X_2 \le 70 \\ X_1 + X_2 \le 40 \\ X_1 + 3X_2 \le 90 \end{cases}$$

Os 3 primeiros passos são iguais ao 1º Caso.

1º Passo:

Inserir uma variável de folga em cada inequação, obtendo assim um novo sistema 'S1'.

2º Passo:

Jogar os coeficientes das restrições e da função 'Z' na tabela.

Obs.: Os coeficientes de 'Z' devem ter o sinal trocado na tabela.

3ºPasso: Encontrar a Matriz Identidade na tabela. Elas são as Variáveis Básicas(VB) e devem ter valor '0' na última linha.

4ºPasso:

}

Encontrar os novos valores de 'X' e 'Z'.

As Variáveis Não Básicas (VNB) possuem valor Zero. E as VB possuem o valor encontrado na coluna 'b'

	VB	VB			VB		
	X_1	X_2	X_3	X_4	X_5	b	Q
	1	0	1	- 1	0	30	
	0	1 —	- 1	2	0	- 10	
	0	0	2	- 5	1	- 30	
Z	0	0	0	40	0	1600	

$$(X_1, X_2, X_3, X_4, X_5) = 30, 10, 0, 0, 30)$$

$$Z = 40x_1 + 40x_2 = 40.30 + 40.10 = 1600$$

5º Passo: Inicio do Ciclo Simplex:

1º - Encontrar o maior número negativo em módulo. Se Não há número Negativo na ultima linha da tabela, mas há o *valor '0' em uma coluna de VNB*, então pode ser que haja múltiplas soluções. Para isso, abrir um novo Ciclo Simplex a partir do ponto encontrado.

	X_1	X_2	X_3	X_4	X_5	b	Q
	1	0	1	- 1	0	30	
	0	1	- 1	2	0	10	
	0	0	2	- 5	1	30	
Z	0	0	0	40	0	1600	

$2^{\rm o}$ - Dividir os valores de 'b' pela coluna selecionada no passo $1^{\rm o}.$ O resultado será a coluna 'Q'

Obs.: A linha que possui a função Z não é dividida. E caso tenha números negativos, também Não se faz a divisão.

X_1	X_2	X ₃	X_4	X_5	b	Q
1	0	1	- 1	0	30	30
0	1	- 1	2	0	10	
0	0	2	- 5	1	30	15
0	0	0	40	0	1600	

3^{o} – Encontrar o menor numero da coluna 'Q'

	X_1	X_2	X_3	X_4	X_5	b	Q
	1	0	1	- 1	0	30	30
	0	1	- 1	2	0	10	
	0	0	2	- 5	1	30	15
Z	0	0	0	40	0	1600	

4º - Encontrar o Pivo na intersecção do passo 1º com o passo 3º.

X_1	X_2	X ₃	X_4	X_5	b	Q
1	0	1	- 1	0	30	30
0	1	- 1	2	0	10	
0	0	2	- 5	1	30	15
0	0	0	40	0	1600	

 5° – Aplicar Operações Elementares de modo que o Pivo tenha o valor '1' e os demais itens da coluna tenham valor '0'

X_1	X_2	X_3	X_4	X_5	b	Q	
1	0	1	- 1	0	30	30	$E_{13} \left(-\frac{1}{2} \right)$
0	1	- 1	2	0	10		E ₁₂ (½)
0	0	2	- 5	1	30	15	E ₃ (½)
0	0	0	40	0	1600		

Fim do Ciclo Simplex.

Ao encontrar a nova tabela, encontrar as VB e verificar se elas tem o valor '0' na ultima linha. Encontrar os novos valores de 'x' e de 'Z'. Se o valor de Z for o mesmo que na tabela anterior, então é porque há Múltiplas Soluções.

VB	VB	VB					
X_1	X_2	X_3	X_4	X_5	b	Q	
1	0	0	3/2	- 1/2	15		
0	1	0	- 1/2	1/2	25		
0	0	1	- 5/2	1/2	15		
0	0	0	40	0	1600		

$$(X_1, X_2, X_3, X_4, X_5) = (15, 25, 15, 0, 0)$$

$$Z = 40x_1 + 40x_2 = 40.15 + 40.25 = 1600$$

Como nas duas tabelas há os valores '0' em uma VNB e o valor de Z são iguais em ambas, então é porque são Múltiplas Soluções.

A resposta está na restrição que aceitar os dois pontos encontrados na tabela:

$$\mathbf{S} = \begin{cases} 2X_1 + X_2 \le 70 & (1) \\ X_1 + X_2 \le 40 & (2) \\ X_1 + 3X_2 \le 90 & (3) \end{cases}$$

Pontos encontrados na tabela: (30, 10) e (15, 25)

(1)
$$2X_1 + X_2 = 70$$

 $2.30 + 10 = 70$ (OK)
 $2.15 + 25 = 70$ (Falso)

(2)
$$X_1 + X_2 = 40$$

 $30 + 10 = 40$ (OK)
 $15 + 25 = 40$ (OK)

(3)
$$X_1 + 3 X_2 = 90$$

 $30 + 3.10 = 90$ (Falso)
 $15 + 3.25 = 90$ (OK)

A única restrição que aceita os dois pontos é a (2). Portanto todos os pontos que passam pela reta $X_1 + X_2 = 40$, cujos extremos são (30,10) e (15,25) e tem Z=1600 são as soluções.