Proximity and Role-based Graph Representation Learning

Prof. O-Joun Lee

Dept. of Artificial Intelligence, The Catholic University of Korea ojlee@catholic.ac.kr

Contents

- > From Random Walk to Proximity
- Proximity-based methods:
 - ➤ LINE: Large-scale Information Network Embedding
 - Asymmetric Transitivity Preserving Graph Embedding
 - > APP: Scalable Graph Embedding for Asymmetric Proximity
- > Role-based methods:
 - Struc2vec: Learning Node Representations from Structural Identity
 - Role-Based Graph Embeddings

Remind the Node Embeddings

➤ Goal: Encode nodes → similarity in embedding space (dot product) ≈ similarity in the original graph

$$\begin{array}{l} \text{similarity}(u, v) \approx \mathbf{z}_{v}^{T} \mathbf{z}_{u} \\ \text{in the original network} \end{array}$$
 Similarity of the embedding

We need to define: ENC(u)

ENC(u) Similarity(u, v)

original network

embedding space

- ➤ Given a graph and a starting point, we select a neighbour of it at random, and move to this neighbour
- > Then, we select a neighbor of this point at random, and move to it,...
- > The random sequence of nodes visited this way is a random walk on the graph

Random Walk Embeddings

- Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R
- > Optimize embeddings to encode these random walk statistics

> Employ random walks on the graph to discover the structure

$$v_4 \rightarrow v_3 \rightarrow v_1 \rightarrow v_5 \rightarrow v_1 \rightarrow v_{46}$$

Random walks in Network

Sentences in NLP

Node sequence as the input of word2vec models

$$\Phi \colon v \in V \mapsto \mathbb{R}^{|V| \times d}$$

1. Run random walks to obtain co-occurrence statistics.

DeepWalk: Optimization using Stochastic Gradient Descent

> Goal: Optimize

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

> (Stochastic) Gradient Descent: a simple way to minimize L

- > SGD Algorithm: evaluate it for each individual training example
 - \triangleright Initialize z_u at some randomized value for all nodes u
 - Iterative until L converges:
 - > Sample a node u, for all v calculate the derivative $\frac{\partial \mathcal{L}^{(u)}}{\partial z_v}$
 - > For all v, update:

$$z_v \leftarrow z_v - \eta \frac{\partial \mathcal{L}^{(u)}}{\partial z_v}$$
Learning rate

Biased random walks

p: controls the walk revisiting a node

q: controls the walk revisiting anode's one-hop neighborhood

p increase \Rightarrow DFS

q increase \Rightarrow BFS

> Problem with DeepWalk Random Walk Optimization: Expensive in summing

over nodes $(O(|V|^2)$

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(\frac{\exp(\mathbf{z}_u^T \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^T \mathbf{z}_n)})$$
sum over all sum over nodes v predicted probability of u and v co-occurring on walks starting from u random walk

➤ Solution: Negative Sampling (Softmax → Sigmoid)

$$\log(\frac{\exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})}{\sum_{n \in V} \exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n})}) \approx \log(\sigma(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})) - \sum_{i=1}^{k} \log(\sigma(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n_{i}})), n_{i} \sim P_{V}$$
Sigmoid function

Random distribution over nodes

 \triangleright Sample k negative nodes n_i each with probability proportional to its degree

LINE: Large-scale Information Network Embedding

> Motivation:

- Preserving network proximities: LINE seeks to preserve both the first-order proximity (direct connections between nodes) and second-order proximity (shared neighborhood structures) in the learned embeddings
- Scalable objective functions:
 - Consider first-order and second-order proximities separately
 - > Different network types: directed, undirected, weighted or unweighted
- An edge-sampling algorithm is proposed to help stochastic gradient descent on weighted edges

LINE: First-order Proximity and Preserving the First-order Proximity

- > First-order proximity: local pairwise proximity between two connected nodes.
- \succ For each node pair (v_i, v_j)
 - ightharpoonup If $(v_i, v_j) \in E$, the first-order proximity between v_i and v_j is w_{ij}
 - \triangleright Otherwise, the first-order proximity between v_i and v_j is 0
- \triangleright Given an undirected edge (v_i, v_j) , the joint probability of v_i and v_j :

$$p_1(v_i, v_j) = \frac{1}{1 + \exp(-\vec{u}_i^T \cdot \vec{u}_j)}$$
 \vec{u}_i :Embedding of node v_i

$$\hat{p}_1(v_i, v_j) = \frac{w_{ij}}{\sum_{(i',j')} w_{i'j'}}$$

Objective:

First-order: node 6 and 7

LINE: Second-order Proximity

- Second-order proximity captures the 2-step relations between each pair of nodes
- \succ For each node pair (v_i, v_j)
 - > determining by the number of common neighbours shared by the two nodes

$$\hat{p}_u = (w_{u1}, w_{u2}, \dots, w_{u|V|})$$

$$\hat{p}_v = (w_{v1}, w_{v2}, \dots, w_{v|V|})$$

Second-order: node 5 and 6

$$\hat{p}_5 = (1,1,1,1,0,0,0,0,0,0)$$

$$\hat{p}_6 = (1,1,1,1,0,0,5,0,0,0)$$

LINE: Preserving the Second-order Proximity

 \triangleright Given an undirected edge (v_i, v_j) , the joint probability of v_i and v_j :

$$p_2(v_j|v_i) = rac{\exp(ec{u}_j'^T \cdot ec{u}_i)}{\sum_{k=1}^{|V|} \exp(ec{u}_k'^T \cdot ec{u}_i)}, \;\; rac{ec{u}_i : ext{Embedding of node } v_i \; ext{when i is a source node}}{\sum_{k=1}^{|V|} \exp(ec{u}_k'^T \cdot ec{u}_i)}, \;\; rac{ec{u}_i : ext{Embedding of node } v_i \; ext{when i is a target node}}{ec{v}_i : ext{Embedding of node } v_i \; ext{when i is a target node}}$$

Objective:

$$\lambda_i$$
: Prestige of node in the network $\lambda_i = \sum_j w_{ij}$ $O_2 = \sum_{i \in V} \lambda_i d(\hat{p}_2(\cdot|v_i), p_2(\cdot|v_i)),$ $\propto -\sum_{(i,j) \in E} w_{ij} \log p_2(v_j|v_i).$

LINE: Preserving both the Proximity

> Concatenate the embeddings individually learned by the two proximity:

First-order:

Second-order:

LINE: Optimization

- Stochastic Gradient Descent + Negative Sampling
 - > Randomly sample an edge and multiple negative edges
- > The gradient w.r.t the embedding with edge (i,j)

$$rac{\partial O_2}{\partial ec{u}_i} = w_{ij} \cdot rac{\partial \log p_2(v_j|v_i)}{\partial ec{u}_i}$$
 Multiplied by the weight of the edge w_{ij}

- Problematic when the weights of the edges diverge
 - > The scale of the gradients with different edges diverges
- > Solution: Edge sampling
 - > Sample the edges according to their weights and treat the edges as binary
- ightharpoonup Complexity: $\Theta(dK|E|)$
 - Linear to the dimension d, number of negative samples K, and number of edges E

LINE: Algorithm

- > Initialization: Initialize the embedding vectors for all nodes randomly
- > Edge Sampling: Sample edges from the network based on their weights
- > Gradient Descent: For each sampled edge, update the embedding vectors using SGD
- Negative Sampling: For each positive edge, sample negative edges and update the embedding vectors to maximize the difference between positive and negative samples
- Iteration: Repeat the edge sampling and gradient descent steps until convergence

Same as DeepWalk, Node2Vec, and Node2Vec+ but consider the preservation of proximity and directed edge sampling

Sample code: Edge Sampling

```
# Import library
import networkx as nx
import numpy as np
from vose sampler import VoseAlias
import matplotlib.pyplot as plt
import collections
from tqdm import tqdm
from tqdm import trange
# Create an Erdős-Rényi graph with 100 nodes and probability 0.1
G erdos = nx.erdos renyi graph(100, 0.1)
# Get the edge list of the graph
edge list = G erdos.edges
# Create a dictionary to store the edge list with weights and total weightsum
edgedistdict = collections.defaultdict(int)
weightsum = 0
# For each edge in the edge list, assign a random weight between 1 and 100.
for edge in edge list:
   weight = np.random.uniform(1, 100)
   edgedistdict[(edge[0], edge[1])] = weight
   weightsum += weight
for edge, weight in edgedistdict.items():
   edgedistdict[edge] = weight / weightsum
# Print the normalized edge list with weights
print(edgedistdict)
defaultdict(<class 'int'>, {(0, 12): 0.0022917282387984626, (0, 25): 0.001658375
# Edge sampling using alias table
edgesaliassampler = VoseAlias(edgedistdict)
batchrange = int(len(edgedistdict) / 5)
for b in trange(batchrange):
 print(edgesaliassampler.sample n(size=5))
                                                                            [(59, 62), (20, 27), (3, 84), (79, 81), (40, 63)]
```

```
[(3, 8), (37, 93), (21, 63), (67, 94), (42, 79)]
[(22, 31), (50, 57), (12, 71), (44, 66), (27, 70)]
[(45, 71), (50, 55), (10, 74), (2, 22), (15, 71)]
[(4, 26), (21, 53), (22, 23), (5, 41), (11, 24)]
[(29, 64), (17, 51), (31, 69), (12, 22), (35, 63)]
[(17, 18), (59, 75), (15, 95), (43, 76), (0, 66)]
[(3, 22), (45, 71), (75, 93), (7, 75), (21, 98)]
[(11, 80), (1, 62), (31, 61), (0, 68), (12, 19)]
[(90, 95), (0, 60), (17, 18), (12, 20), (52, 99)]
[(38, 46), (27, 88), (22, 73), (24, 54), (0, 93)]
[(52, 74), (52, 99), (13, 70), (11, 47), (20, 45)]
[(15, 71), (12, 22), (0, 66), (5, 11), (64, 89)]
[(10, 74), (7, 97), (69, 74), (58, 90), (48, 89)]
[(38, 44), (4, 39), (50, 57), (7, 75), (14, 97)]
[(7, 15), (13, 18), (25, 50), (25, 54), (38, 44)]
[(0, 81), (90, 95), (15, 64), (32, 55), (21, 98)]
[(11, 18), (2, 47), (22, 83), (13, 26), (9, 78)]
[(22, 73), (62, 63), (38, 44), (35, 81), (6, 27)]
[(47, 75), (21, 53), (7, 15), (51, 92), (13, 84)]
[(11, 47), (2, 96), (43, 45), (29, 30), (18, 78)]
[(94, 99), (33, 61), (45, 85), (41, 46), (15, 95)]
[(69, 82), (79, 82), (9, 56), (21, 63), (18, 40)]
[(23, 94), (69, 80), (69, 82), (33, 66), (69, 74)]
```


Remind the Adjacency-based Approaches

- > One of the simplest and most intuitive approaches to defining similarity:
 - > Adjacency between two nodes v and u
- Similarity: Two nodes are adjacent to one another within the structure of the graph

$$\mathbf{z}_{v}^{T}\mathbf{z}_{u} = A_{u,v} \text{ or } \mathbf{Z}^{T}\mathbf{Z} = A$$

> Encoding: Find the embedding matrix **Z** that minimizes the loss function **L**

- > Solution:
 - Option 1: Use stochastic gradient descent (SGD) as a general optimization method
 - Option 2: Solve matrix decomposition solvers (e.g., SVD or QR decomposition routines)
 - Matrix Factorization-based

> Let A be an m × n adjacency matrix. The factorization of A takes the form

$$A = USV^T$$

where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and S is a $m \times n$ diagonal matrix

- ➤ Factorize to low-rank approximations based on minimizing the sum-squared distance using Singular Value Decomposition
- > To decompose:
 - \triangleright Evaluate the n eigenvectors v_i and eigenvalues λ_i of A^TA
 - \triangleright Make a matrix V from the normalized vectors v_i
 - ➤ Make a diagonal matrix S from the square roots of the eigenvalues

$$\sigma_i = \sqrt{\lambda_i}$$
 and $\sigma_1 \ge \sigma_2 \ge \sigma_3 \dots$

ightharpoonup Find U: $A = USV^T \Rightarrow US = AV \Rightarrow U = AVS^{-1}$

Asymmetric Transitivity Preserving Graph Embedding

- ➤ Idea: Critical property in directed graph Asymmetric Transitivity
- > Transitivity is Asymmetric in directed graph
- > Challenge: Incorporate asymmetric transitivity in graph embedding
- > Problem: Metric space is symmetric

Asymmetric Transitivity Preserving Graph Embedding

- ➤ High-order Proximity with asymmetric transitivity:
 - > Asymmetry: not symmetric in directed graph
 - > Transitivity:
 - More directed paths, larger similarity
 - Shorter paths, larger similarity

Compare A -> C similarity: Katz Index

$$\mathbf{S}^{Katz} = \sum_{l=1}^{+\infty} (\beta \cdot A)^{l}$$

Asymmetric Transitivity Preserving Graph Embedding

- > Preserve high-order proximity embedding:
 - Katz Index modified:

$$\mathbf{S}^{Katz} = \sum_{l=1}^{+\infty} (\beta \cdot A)^l = (I - \beta \cdot A)^{-1} \cdot (\beta \cdot A)$$

Objective:

$$\min_{U_S,U_t} ||\mathbf{S} - U_S \cdot U_t^T||_F^2$$
$$\mathbf{S} = M_g^{-1} \cdot M_l$$

where M_g , M_l are polynomial of adjacency matrix or proximity measurements: Katz, Adamic Adar, PageRank, Common Neighbors

- > Solving by **Generalized Singular Value Decomposition**: decompose *S* without calculating it
 - Linear complexity w.r.t. the volume of data (i.e. edge number)

Generalized Singular Value Decomposition

Objective:

$$\min_{U_S, U_t} \|\mathbf{S} - U_S \cdot U_t^T\|_F^2$$
$$\mathbf{S} = M_g^{-1} \cdot M_l$$

> If we have the singular value decomposition of the general formulation:

 \triangleright There exists a nonsingular matrix X and two diagonal matrices, i.e. \sum^{I} and \sum^{g} , satisfying

$$\mathbf{V}^{s\top}\mathbf{M}_{a}^{\top}\mathbf{X} = \Sigma^{g}$$

 $\mathbf{V}^{t^{\top}} \mathbf{M}_{l}^{\top} \mathbf{X} = \Sigma^{l}$

 \triangleright Linear complexity w.r.t. the volume of data (i.e. edge number) $O(K^2I, m)$

 $O(K^2L \cdot m)$ Embedding Dimension Iteration Edge number (constant)

where
$$\Sigma^l = diag(\sigma_1^l, \sigma_2^l, \cdots, \sigma_N^l)$$
 $\Sigma^g = diag(\sigma_1^g, \sigma_2^g, \cdots, \sigma_N^g)$ dge $\sigma_1^l \geq \sigma_2^l \geq \cdots \geq \sigma_K^l \geq 0$ $0 \leq \sigma_1^g \leq \sigma_2^g \leq \cdots \leq \sigma_K^g$ $\forall i$ $\sigma_i^{l^2} + \sigma_i^{g^2} = 1$ where $\sigma_i = \frac{\sigma_i^l}{\sigma_g^g}$

HOPE Algorithm

Algorithm 1 High-order Proximity preserved Embedding

Require: adjacency matrix \mathbf{A} , embedding dimension K, parameters of high-order proximity measurement θ .

Ensure: embedding source vectors \mathbf{U}^s and target vectors \mathbf{U}^t .

- 1: calculate \mathbf{M}_g and \mathbf{M}_l .
- 2: perform JDGSVD with \mathbf{M}_g and \mathbf{M}_l , and obtain the generalized singular values $\{\sigma_1^l, \dots, \sigma_K^l\}$ and $\{\sigma_1^g, \dots, \sigma_K^g\}$, and the corresponding singular vectors, $\{\mathbf{v}_1^s, \dots, \mathbf{v}_K^s\}$ and $\{\mathbf{v}_1^t, \dots, \mathbf{v}_K^t\}$.
- 3: calculate singular values $\{\sigma_1, \dots, \sigma_K\}$ according to Equation (21).
- 4: calculate embedding matrices \mathbf{U}^s and \mathbf{U}^t according to Equation (19) and (20).

JDGSVD: Iteration of Jacobi-Davidson Generalized Singular Value Decomposition

No need Stochastic Gradient Descent optimization

Focus on solving matrix factorization

Sample code: SVD on Katz index of Karate Graph

```
import networkx as nx
import numpy as np
from scipy.sparse.linalg import svds
from scipy.sparse import csr matrix
 # Load the karate club network
G = nx.karate_club_graph()
# Define the Katz index similarity
def katz_index(G, alpha=0.5, max_iter=100, tol=1e-3):
     n = len(G.nodes())
     A = nx.adjacency_matrix(G).todense()
    I = np.eye(n)
     X = I
     converged = False
     for i in range(max iter):
                                                                                0.33091154 -0.31235123
          X prev = X
                                                                                [ 0.33411655 -0.30175117
         X = alpha * A.dot(X) + (1 - alpha) * I
         if np.linalg.norm(X - X_prev) < tol:</pre>
               converged = True
               break
                                                                                [-0.02345542 -0.05020307
     return X
 # Compute the Katz index similarity matrix
X = katz_index(G)
                                                                                [-0.05895455 -0.04889692
# Perform singular value decomposition on the adjacency matrix
U, s, Vh = svds(X, k=2)
                                                                                -0.09815528 -0.08100556
# Print the singular values
print(s)
                                                                                [-0.08436143 -0.15831325
# Print the left singular vectors
print(U)
                                                                                0.18797699 -0.05775017 -0.05189329 0.20018482 -0.05997669 -0.03472371
                                                                                 0.07575835 -0.01988671 -0.12292961 0.04664735 -0.37814548 -0.05137177
# Print the right singular vectors
                                                                                 0.20501379  0.33504652  0.31253281  0.14576309  0.03485069  0.02443477
                                                                                 -0.1227842 -0.13729933 0.03702881 -0.28451102 0.00194154 -0.01871236
                                                                                 -0.31041159 0.16264699 0.07591105 0.05179984 0.02405201 0.27974509
print(Vh)
                                                                                 -0.17606471   0.00428549   -0.05424557   -0.33020121]
```


APP: Scalable Graph Embedding for Asymmetric Proximity

- ➤ Motivation: Conventional methods, i.e., DeepWalk, LINE, Node2Vec can only preserve symmetric proximities between nodes
 - Insufficient for many applications where asymmetric relationships exist, even in undirected graphs
- Solution: treats each path as a directed sequence and only observes positive node pairs along the forward direction of the path
 - Conventional methods have utilized random walk to sample path as an undirected sequence

(b) Undirected

- Random Walk with Restart Sampling Algorithm: Simulate the asymmetric transition probabilities between nodes
 - \triangleright Perform a random walk starting from node v, with a restart probability α at each step
 - ➤ The walk terminates when a restart occurs, and the last visited node u is returned as the endpoint
 - ➤ This sampling procedure approximates the Rooted PageRank score between v and u
- Stochastic Gradient Descent Algorithm: For each sampled path p = v→ u
 - > Treat this as an observed positive pair (v, u) in the forward direction only
 - > Optimize the following Skip-gram style objective with negative sampling

APP: Algorithm

- ➤ Path Sharing Optimization: Propose extracting multiple node pairs from a single sampled path, by treating all suffix sub-paths or prefix sub-paths as valid sampled paths as well
- Combine Skip-gram and SGD from DeepWalk with Negative sampling from Node2vec
- Different is proposing random walk with restart sampling algorithm and treating as directed path sequence

Node Representations and Structural Identity

- Network embedding: map network nodes into Euclidean space
- Structural Identity:
 - Nodes in networks have specific roles
 - E.g., individuals, web pages, proteins, etc
 - Structural identity: identification of nodes based on network structure (no other attribute)
 - often related to role played by node
 - > Automorphism: strong structural equivalence

Red, Green: Automorphism

Purple, Brown: Structurally similar

preserve distances

find cliques

preserve degrees

struc2vec: Learning Node Representations from Structural Identity

- ➤ Idea: Based on structural identity
- > Structural similarity does not depend on hop distance
 - > Neighbour nodes can be different, far away nodes can be similar
- > Structural identity as a hierarchical concept
 - Depth of similarity varies
- > Flexible four step procedure
 - Operational aspect of steps are flexible

struc2vec: Step 1 - Structural Similarity

- \triangleright g(D₁,D₂): distance between two ordered sequences
 - Cost of pairwise alignment: max(a, b) / min(a, b) 1
 - Optimal alignment by Dynamic Time Warping (DTW) in our framework

$$s(R_0(u)) = 4$$
 $s(R_1(u)) = 1,3,4,4$ $s(R_2(u)) = 2,2,2,2$
 $s(R_0(v)) = 3$ $s(R_1(v)) = 4,4,4$ $s(R_2(v)) = 1,2,2,2,2$
 $g(.,.) = 0.33$ $g(.,.) = 3.33$ $g(.,.) = 1$

> f_k(u,v): Structural distance between nodes u and v considering first k rings

$$Fightharpoonup f_k(u,v) = f_{k-1}(u,v) + g(s(R_k(u)), s(R_k(v)))$$

$$f_0(u,v) = 0.33$$
 $f_1(u,v) = 3.66$ $f_2(u,v) = 4.66$

struc2vec: Step 2 - Multi-layer Graph

> Encodes structural similarity between all node

pairs

- > Each layer is weighted complete graph
 - Correspond to similarity hierarchies
- > Edge weights in layer k
 - \rightarrow $w_k(u, v) = exp{-f_k(u, v)}$
- Connect corresponding nodes in adjacent layers

Layer 4

struc2vec: Step 3 - Generate Context

- Context generated by biased random walk (same as Node2vec)
 - Walk on multi-layer graph
- Walk in current layer with probability p
 - Choose neighbour according to edge weight
 - > RW prefers more similar nodes
- Change layer with probability 1-p
 - Choose up/down according to edge weight
 - > RW prefer layer with less similar neighbours

struc2vec: Step 4 – Learn Representation

- ➤ For each node, generate set of independent and relative short random walks
 - Context for node; sentences of a language

- Train a neural network to learn latent representation for nodes
 - Maximize probability of nodes within context
 - > Skip-gram (Hierarchical Softmax) adopted

struc2vec: Optimization

- > Reduce time to generate/store multi-layer graph and context for nodes:
 - > Option 1: Reduce length of degree sequences
 - Use pairs (degree, number of occurrences)
 - Option 2: Reduce number of edges in multi-layer graph
 - Only log n neighbours per node
 - Option 3: Reduce number of layers in multi-layer graph
 - Fixed (small) number of layers
 - Scales quasi-linearly
 - Over 1 million nodes

role2vec: Learning Role-based Graph Embeddings

- ➤ Ideas: struc2vec and conventional methods (DeepWalk, Node2vec) learn in node representation
 - > Role2Vec learns embeddings for "node types/roles" determined by node attributes/features
- Solution: "attributed random walks"
 - Map nodes to node types/roles using node attributes like motif counts, degrees, etc.
 - > Generate attributed random walks over the node types instead of node IDs
 - Finally, it learns embeddings for the node types rather than individual nodes.

- > Given a network, most of the time, some subgraphs are "overrepresented"
- A connected graph that has many occurrences in a network is called a motif of the network
- \triangleright Assume set of occurrences G' in G is $occ_G(H)$
 - \triangleright Cardinality of $occ_G(H)$ in G is frequent
 - \triangleright How to know if G' is frequent in G?

Compute the probability that $occ_N(G') \ge occ_G(G')$ for a random network N

G' is said to be frequent in G if this probability is small enough

To compute this probability, we need to have a distribution over networks

role2vec: Algorithms

- > Input: Graph G, node attribute matrix X, embedding dimension D, number of walks per node R, walk length L, context window size ω
- ➤ If X is not available, extract structural features like motif counts from the graph structure itself and use those as node attributes in X.
- \triangleright Apply logarithmic binning to the node attribute values in X. Map nodes to node types/roles using a function $\phi(x)$ that takes the node attribute vector x as input
 - \triangleright Two types of ϕ functions:
 - Simple functions like concatenation of attribute values
 - Low-rank matrix factorization of X
- \triangleright Precompute random walk transition probabilities π . Generate R attributed random walks of length L for each node, using the node type mapping ϕ instead of node IDs
- ➤ Learn embeddings using stochastic gradient descent on the attributed random walks, optimizing the probability of observing the context node types in the walks
- ➤ Output: Learned embeddings for each node type $w \in W$, where W is the set of node types found by ϕ

role2vec: Different from Previous Methods

Mostly same as Node2Vec, except their work are considered in terms of node attribute, not node representation

- > There are many advantage from node attributed embedding:
 - Embeddings generalize to new nodes/graphs (inductive learning)
 - Better captures structural node roles
 - Space-efficient as it learns fewer embeddings for node types instead of all nodes
 - Supports attributed graphs

