Decodificador

A B	L	D_0	D_1	D_2	$D_{:}$
0 0	†	1	0	0	0
0 1	ı	0	1	0	0
1 0	ŀ	0	0	1	0
1 1	1	0	0	0	1

	Eı	nable	= ()	
\overline{A}	В	D_0	D_1	D_2	D_3
0	0	0	0	0	0
0	1	0	0	0.	0
1	0 -	0	0	0	0
1.	1	0	0	0	0

$$D_0 = \overline{A} \overline{B}$$

$$D_{\Gamma} = \overline{A} B$$
 $D_2 = A \overline{B}$ $D_3 = A B$

$$D_2 = A \overline{B}$$

$$D_3 = A E$$

Multiplexador

A	В	F
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

$$F = \overline{A} \overline{B} D_0 + \overline{A} B D_1 + A \overline{B} D_2 + A B D_3$$

MULTIplexador

De-multiplexador

$$F_0 = D\overline{A}\overline{B}$$
 $F_2 = DA\overline{B}$
 $F_1 = D\overline{A}B$ $F_3 = DAB$

D	A	В	F_0	F_1	F_2	F_3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	. 0	0	0	1

Fig. 3.19 (a) A tabela verdade para o somador completo. (b) O circuito de um somador completo.

Fig. 3.20 Uma ALU de 1 bit.

Somador Completo de 4 bits com propagação de "vai-um"

