Proof of Equivalence

Proof of Equivalence

- The two channel models are equivalent
 - Model 1: The channel is an LTI system with step response s(n) = k(1-aⁿ⁺¹)u(n) where 0 < a < 1</p>
 - Model 2: The channel has input x(n) and output y(n) determined by $y(n) = a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)$ where 0 < a < 1
- We can establish equivalence by showing that
 - Model 2 is LTI (linear and time invariant)
 - Model 2 has a response to a unit step given by s(n)

Fact 1: Model 2 is LTI

$$y(n) = a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)$$

- It is linear
 - Intuitively, the output is a linear function of the input and past outputs.
 - Formally, we will prove that it satisfies the two properties:
 - Homogeneity
 - Additivity
- It is time invariant
 - Intuitively, the parameters k and a do not change with n.
 - Formally, we prove that if we delay the input by d, the output is the same, just delayed by d.

Proof of Homogeneity

1. By the definition of model 2,

$$y(n) = a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)$$

2. Multiply left and right by c,

$$c \cdot y(n) = c \cdot [a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)]$$

3. Distributive law of multiplication,

$$[c \cdot y(n)] = a \cdot [c \cdot y(n-1)] + (1-a) \cdot k \cdot [c \cdot x(n)]$$

Proof of Additivity

1. By definition of model 2,

$$y_1(n) = a \cdot y_1(n-1) + (1-a) \cdot k \cdot x_1(n)$$

 $y_2(n) = a \cdot y_2(n-1) + (1-a) \cdot k \cdot x_2(n)$

2. Adding the two equations above,

$$[y_1(n) + y_2(n)] = a \cdot [y_1(n-1) + y_2(n-1)] + (1-a) \cdot k \cdot [x_1(n) + x_2(n)]$$

Fact 1: Model 2 is LTI

$$y(n) = a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)$$

- It is linear
 - Intuitively, the output is a linear function of the input and past outputs.
 - Formally, we will prove that it satisfies the two properties:
 - Homogeneity
 - Additivity
- It is time invariant
 - Intuitively, the parameters k and a do not change with n.
 - Formally, we prove that if we delay the input by d, the output is the same, just delayed by d.

Proof of Time Invariance

1. By the definition of model 2,

$$y(n) = a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)$$

2. Substitute n with n-d,

$$y(n-d) = a \cdot y(n-d-1) + (1-a) \cdot k \cdot x(n-d)$$

Fact 2: Same Step Response (example)

Assume: y(-1) = 0, $a = \frac{1}{2}$, k = 1

n	Model 1 s(n) = 1 - $(\frac{1}{2})^{n+1}$	Model 2 y(n) = $\frac{1}{2}$ y(n-1) + $\frac{1}{2}$
0	$s(0) = 1 - (\frac{1}{2})^1 = 1 - \frac{1}{2} = \frac{1}{2}$	$y(0) = \frac{1}{2}y(-1) + \frac{1}{2} = \frac{1}{2} \cdot 0 + \frac{1}{2} = \frac{1}{2}$
1	$s(1) = 1 - (\frac{1}{2})^2 = 1 - \frac{1}{4} = \frac{3}{4}$	$y(1) = \frac{1}{2}y(0) + \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} + \frac{2}{4} = \frac{3}{4}$
2	$s(2) = 1 - (\frac{1}{2})^3 = 1 - \frac{1}{8} = \frac{7}{8}$	$y(2) = \frac{1}{2}y(1) + \frac{1}{2} = \frac{1}{2} \cdot \frac{3}{4} + \frac{4}{8} = \frac{7}{8}$
3	$s(3) = 1 - (\frac{1}{2})^4 = 1 - \frac{1}{16} = \frac{15}{16}$	$y(3) = \frac{1}{2}y(2) + \frac{1}{2} = \frac{1}{2} \cdot \frac{7}{8} + \frac{8}{16} = \frac{15}{16}$
4	$s(4) = 1 - (\frac{1}{2})^5 = 1 - \frac{1}{32} = \frac{31}{32}$	$y(4) = \frac{1}{2}y(3) + \frac{1}{2} = \frac{1}{2} \cdot \frac{15}{16} + \frac{16}{32} = \frac{31}{32}$
5	$s(5) = 1 - (\frac{1}{2})^6 = 1 - \frac{1}{64} = \frac{63}{64}$	$y(5) = \frac{1}{2}y(4) + \frac{1}{2} = \frac{1}{2} \cdot \frac{31}{32} + \frac{32}{64} = \frac{63}{64}$

Summary

- The channel can be described (modeled) in two equivalent ways
 - Model 1:
 - > Channel is linear and time invariant
 - Channel has step response

$$s(n) = k(1-a^{n+1})u(n)$$

- Model 2:
 - If x(n) is the channel input and y(n) is the output $y(n) = a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)$