Tail-GNN: Tail-Node Graph Neural Networks

Zemin Liu, Trung-Kien Nguyen, Yuan Fang

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

Graph Representation Learning

- Graph embedding approaches
 - DeepWalk [1], node2vec [2], ...
- Graph neural networks (GNNs) [3,4,5]

$$\mathbf{h}_v^l = \mathcal{M}(\mathbf{h}_v^{l-1}, \{\mathbf{h}_i^{l-1} : i \in \mathcal{N}_v\}; \theta^l)$$

Message passing function

- [1] Perozzi B., et al. 2014. Deepwalk: Online learning of social representations. KDD.
- [2] Grover A., et al. 2014. node2vec: Scalable feature learning for networks. KDD.
- [3] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
- [4] Veličković, P., et al. 2018. Graph attention networks. ICLR.
- [5] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.

Problem: long-tailed node distribution

Long-tailed distribution

Node degree

• GNNs

- Depend on the abundance of structural information (head nodes vs. tail nodes)
- Do not pay special attention to tail nodes

- Robust tail node embedding with GNNs
- Definition for tail and head nodes

$$\mathcal{V}_{\text{tail}} = \{v : |\mathcal{N}_v| \leq K\}$$
 $\mathcal{V}_{\text{head}} = \{v : |\mathcal{N}_v| > K\}$

Long-tailed node distribution

Related Work

- Degree-specific models [1,2]
 - Distinguish nodes based on their degrees
 - Not specifically designed to enhance the embeddings of the tail nodes
- meta-tail2vec [3]
 - For tail node embedding
 - Main disadvantage: decoupled two-stage, not end-to-end

- [1] Wu J, et al. 2019. Demo-Net: Degree-specific graph neural networks for node and graph classification. KDD.
- [2] Tang X, et al. 2020. Investigating and Mitigating Degree-Related Biases in Graph Convoltuional Networks. CIKM.
- [3] Liu Z, et al. 2020. Towards locality-aware meta-learning of tail node embeddings on networks. CIKM.

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

Challenges

- Tail nodes
 - Small neighborhood
 - Potentially suffer from missing information

Challenges

C1: How to uncover the missing neighborhood information for tail nodes?

C2: How to localize the missing information for each tail node while maintaining the generality across nodes?

Tail node v_1 Head node v_0

Toy citation network

Insights: Tail-GNN

- Key idea
 - Neighborhood translation
- First challenge
 - predict the missing neighborhood information for tail nodes by exploiting a transferable neighborhood translation
- Second challenge
 - tailor the shared neighborhood translation to each target node w.r.t. its local context.

- (a) Toy network
- (b) Neighborhood translation for head nodes
- (c) Neighborhood translation for tail nodes

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

Concept: transferable neighborhood translation

Neighborhood translation

Translation vector $\mathbf{h}_v + \mathbf{r}_v \approx \mathbf{h}_{\mathcal{N}_v}$ Embedding vector Embedding of observed neighborhood

- Neighborhood of **head** nodes
- Observed neighborhood: complete and representative
- no missing information

$$\mathbf{m}_v = \mathbf{h}_{\mathcal{N}_v^*} - \mathbf{h}_{\mathcal{N}_v} = \mathbf{0}$$
 Missing information Embedding of ideal neighborhood observed neighborhood

- Neighborhood of tail nodes
 - Observed neighborhood: not representative enough
 - Imperative: uncover the missing information

Missing information
$$\longrightarrow m_{{\it v}} = h_{{\it N}_{\it v}^*} - h_{{\it N}_{\it v}}
eq 0$$

 $\begin{array}{ccc}
\mathbf{m}_{v} - \mathbf{n}_{v} & \mathbf{n}_{v} \neq \mathbf{0} \\
\text{Embedding of} & \text{Embedding of}
\end{array}$

gene, dna

 (v_6) gpt, bert, nlp

information?

(cell, cnn)

Ideal

neighborhood

Observed

neighborhood

observed neighborhood

ideal neighborhood observed Predicting missing information for tail node *v*

Predict embedding of ideal neighborhood for tail node *v*

$$\Rightarrow \mathbf{h}_{\mathcal{N}_v^*} = \mathbf{h}_v + \mathbf{r}_v$$

Predict missing information $\mathbf{m}_v = \mathbf{h}_v + \mathbf{r}_v - \mathbf{h}_{\mathcal{N}_v}$

Context

(bioinf)

protein,

cell, cnn

Tail-GNN: overall framework

Tail-GNN: realizing neighborhood translation (1)

- Contrastive strategy
 - Head nodes

$$\mathbf{m}_v^l = \mathbf{h}_v^l + \mathbf{r}_v^l - \mathbf{h}_{\mathcal{N}_v}^l \longrightarrow \mathbf{0}$$

Embedding of observed neighborhood

- Tail nodes
 - Forged tail nodes: randomly dropping some links from the head nodes, for contrast
 - Robust tail node embedding: uncover the missing neighborhood information

missing neighborhood
$$\mathbf{m}_v^l = \mathbf{h}_{\mathcal{N}_v^*}^l - \mathbf{h}_{\mathcal{N}_v}^l = \mathbf{h}_v^l + \mathbf{r}_v^l - \mathbf{h}_{\mathcal{N}_v}^l$$

Tail-GNN: realizing neighborhood translation (2)

- Localizing strategy
 - Local context of each node
 - Generality across the graph $\begin{array}{c}
 \text{Local context} \\
 \hline
 \mathbf{r}_{v}^{l} = \phi(\mathbf{h}_{v}^{l}, \mathbf{h}_{v}^{l}, \mathbf{r}_{v}^{l}; \theta_{\phi}^{l})
 \end{array}$

Scaling and shifting factors [1]

$$\mathbf{r}_{v}^{l} = \phi(\mathbf{h}_{v}^{l}, \mathbf{h}_{\mathcal{N}_{v}}^{l}, \mathbf{r}^{l}; \theta_{\phi}^{l}) = (\gamma_{v}^{l} + 1) \odot \mathbf{r}^{l} + \beta_{v}^{l}$$
Scaling vector Shifting vector

Tail-GNN: neighborhood aggregation

Neighborhood aggregation

Head nodes

Tail nodes

Message passing function

$$\mathbf{h}_{v}^{l+1} = \mathcal{M}(\mathbf{h}_{v}^{l}, \{\mathbf{h}_{i}^{l} : i \in \mathcal{N}_{v}\}; \theta^{l+1})$$

Tail-GNN: overall loss

Task loss

S Cross entropy
$$\mathcal{L}_t = \sum_{v \in \mathcal{V}_{tr}} \text{CrossEnt}(\mathbf{h}_v^{\ell}, \mathbf{y}_v) + \lambda_t \|\Theta\|_2^2$$

Loss for missing information constraint

$$\mathcal{L}_{m} = \sum_{v \in \mathcal{V}_{tr}} I_{v} \sum_{l=1}^{\ell} \|\mathbf{m}_{v}^{l-1}\|_{2}^{2} \longrightarrow \underset{\text{information}}{\text{Missing}}$$

• Loss for adversarial constraint [1]

$$\mathcal{L}_{d} = \sum_{v \in \mathcal{V}_{tr}} CROSSENT(I_{v}, D(\mathbf{h}_{v}^{\ell}; \theta_{d})) + \lambda_{d} \|\theta_{d}\|_{2}^{2}$$
Discriminator

Overall loss

$$\min_{\Theta} \max_{\theta_d} \mathcal{L}_t + \mu \mathcal{L}_m - \eta \mathcal{L}_d$$

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

Experimental setup

Datascus	Da	tas	ets
----------	----	-----	-----

	# Nodes	# Edges	# Features	# Classes	# Tail $(K = 5)$
Email	1,005	25,571	128	42	235
Squirrel	5,201	217,073	2,089	5	942
Actor	7,600	33,391	931	5	4,823
CoauthorCS	18,333	327,576	6,805	15	8,037
Amazon	937,349	12,455,925	100	44	248,125

Base GNN models

- GCN [1]
- GAT [2]
- GraphSAGE [3]

Baselines

- Conventional:
 - DeepWalk [4], GCN [1]
- Refinement:
 - Additive [5], a la carte [6], meta-tail2vec [7]
- Robust models:
 - SDNE [8], ARGA [9], DDGCN
- Degree-aware models:
 - Demo-Net [11], role2vec
- [1] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
- [2] Veličković, P., et al. 2018. Graph attention networks. ICLR.
- [3] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.
- [4] Perozzi B., et al. 2014. Deepwalk: Online learning of social representations. KDD.
- [5] Lazaridou A, et al. 2017. Multimodal word meaning induction from minimal exposure to natural text. Cognitive science.
- [6] Khodak M, et al. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. ACL.
- [7] Liu Z, et al. 2020. Towards locality-aware meta-learning of tail node embeddings on networks. CIKM.
- [8] Wang D, et al. 2016. Structural deep network embedding. KDD.
- [9] Pan S, et al. 2018. Adversarially regularized graph autoencoder for graph embedding. IJCAI.
- [10] Cai R, et al. 2020. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers. Bioinformatics.
- [11] Wu J, et al. 2019. Demo-Net: Degree-specific graph neural networks for node and graph classification. KDD.
- [12] Ahmed N, et al. 2020. Role-based graph embeddings. TKDE.

Node classification for tail nodes

GCN as base model

Table 2: Evaluation on tail node classification using GCN as the base model.

Henceforth, tabular results are in percent; the best result is bolded and the runner-up is underlined; a dash (-) denotes no result reported for failing to work on a large dataset.

Methods	Email		Squirrel		Actor		CoauthorCS		Amazon	
	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F
DeepWalk	54.4 ± 0.3	51.3 ± 0.3	28.8 ± 1.6	28.0 ± 2.3	21.8 ± 0.6	18.2 ± 0.9	84.1 ± 0.7	81.5 ± 0.7	83.7 ± 0.1	74.3 ± 0.6
GCN	57.9 ± 1.2	57.7 ± 1.3	24.8 ± 1.3	23.2 ± 1.8	29.7 ± 0.2	15.0 ± 0.9	88.4 ± 0.1	86.1 ± 0.1	82.3 ± 0.2	70.6 ± 0.1
Additive	55.4 ± 0.4	52.5 ± 0.2	27.0 ± 1.7	22.9 ± 1.6	28.1 ± 0.3	15.1 ± 1.3	89.5 ± 0.1	87.8 ± 0.1	84.2 ± 0.2	73.2 ± 0.6
a la carte	21.1 ± 0.4	17.9 ± 0.5	22.5 ± 1.1	22.5 ± 0.7	28.0 ± 0.5	14.8 ± 1.4	88.7 ± 0.2	86.7 ± 0.3	81.1 ± 0.1	69.7 ± 0.7
meta-tail2vec	57.1 ± 0.1	55.3 ± 0.2	25.1 ± 0.5	21.5 ± 0.3	29.7 ± 0.4	20.1 ± 0.7	89.3 ± 0.1	87.4 ± 0.1	81.9 ± 0.1	71.4 ± 0.4
SDNE	32.9 ± 0.6	29.8 ± 0.5	23.8 ± 3.2	16.6 ± 6.2	24.4 ± 0.8	12.6 ± 5.6	70.6 ± 0.9	64.5 ± 1.1	-	-
ARGA	45.1 ± 0.9	41.2 ± 1.0	22.4 ± 1.0	22.8 ± 1.9	25.9 ± 0.3	8.2 ± 0.6	74.6 ± 1.8	67.9 ± 2.5	-	-
DDGCN	39.8 ± 0.6	38.9 ± 0.7	26.3 ± 2.1	26.4 ± 3.3	24.0 ± 0.4	11.7 ± 0.7	73.6 ± 0.9	68.8 ± 1.0	-	-
DEMO-Net	56.9 ± 0.6	56.5 ± 0.7	28.3 ± 0.5	22.5 ± 2.2	28.4 ± 0.8	22.0 ± 1.3	90.8 ± 0.5	88.9 ± 0.6	83.1 ± 0.1	72.0 ± 0.4
role2vec	44.9 ± 1.6	43.8 ± 2.4	26.3 ± 0.8	27.5 ± 1.7	23.1 ± 0.1	18.3 ± 0.6	62.7 ± 0.3	56.3 ± 0.3	77.1 ± 0.2	61.5 ± 0.5
Tail-GCN	59.2 ± 0.8	58.5 ± 1.3	30.2 ± 1.1	31.1 ± 1.1	34.9 ± 0.5	25.2 ± 0.6	93.6 ± 0.1	92.7 ± 0.1	87.0 ± 0.1	78.2 ± 0.2

Other GNNs as the base model

Table 3: Evaluation on tail node classification using other GNNs as the base model.

Methods	En	nail	Squ	irrel	Ac	tor	Coaut	horCS	Ama	zon
Methods	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F
GAT	57.9 ± 0.4	57.3 ± 0.2	24.1 ± 2.4	23.1 ± 2.6	29.8 ± 0.6	13.2 ± 2.7	88.6 ± 0.2	86.2 ± 0.2	-	-
Tail-GAT	59.4 ± 0.9	58.2 ± 1.2	28.8 ± 2.1	30.4 ± 2.6	34.5 ± 1.3	24.7 ± 2.0	92.5 ± 0.1	90.8 ± 0.1	-	-
GraphSAGE	52.0 ± 1.6	51.3 ± 1.7	27.1 ± 2.7	26.4 ± 4.9	33.1 ± 1.1	23.2 ± 2.4	89.8 ± 2.4	87.7 ± 1.1	79.1 ± 0.4	628 ± 0.6
Tail-GraphSAGE	55.7 ± 0.6	54.9 ± 0.7	28.5 ± 1.6	$\textbf{28.2} \pm 2.4$	34.1 ± 1.7	26.8 ± 1.8	93.8 ± 0.7	92.4 ± 1.4	85.1 ± 0.2	75.5 ± 0.3

Ablation study and scalability study

Figure 4: Ablation study.

Figure 5: Scalability study.

Ablation study

- Random/no missing info impairs the performance
- Without localization: hurts the performance
- Discriminator contributes to the performance
- Without contrastive strategy: performance becomes worse

Scalability

Increase linearly w.r.t. graph size

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

Conclusions

Problem

- Tail node embedding in graph neural networks

Proposed model

- A new concept of transferable neighborhood translation
 - to capture the relational tie between a node and its neighboring nodes
- A novel model Tail-GNN
 - to narrow the gap between head and tail nodes for robust tail node embedding

Experiments

Thanks!

Paper, code, data... www.yfang.site

Tail-GNN: Tail-Node Graph Neural Networks

Zemin Liu, Trung-Kien Nguyen, Yuan Fang

In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-21) 14th -18th August, 2021