

Introduction to Image Processing

Lecture 6A
Derivative and Edges

Learning Outcomes

IDENTIFY

- 1. Derivative Filters
- 2. Sharpening
- 3. What is Edge Detection?
- 4. Edge Detection using 1st Derivatives
- 5. Edge Detection using 2nd Derivatives
- 6. The Canny Operator

Derivative Filters

In 1 Dimension

Image features are often characterised by changes in intensity

ACK: Prof. Tony Pridmore, UNUK

1st Derivative

The 1st derivative of a function can be approximated by:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

The difference between neighbouring values and measures the rate of change of the function

1st Derivative

2nd Derivative

The formula for the 2nd derivative of a function is:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

- Simply takes into account the values of both before and after the current value
- Derived by estimating the 1st derivative at x + 0.5 and x 0.5 and computing the derivative of the resulting data

2nd Derivative

$$I''(1) = (I'(1.5) - I'(0.5))/1$$

 $I'(0.5) = (I(1) - I(0))/1$ and $I'(1.5) = (I(2) - I(1))/1$

$$\therefore$$
 I"(I) = 1.I(0) - 2.I(1) + 1.I(2)

2nd Derivative

Derivatives in 2 Dimension

- 2nd derivatives generalise to 2D quite easily, implementing a 1st derivative in 2D is a little more complex

For a function f(x,y) the gradient of f at coordinates (x,y) is given as a column vector:

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \overline{\partial x} \\ \underline{\partial f} \\ \overline{\partial y} \end{bmatrix}$$

10

REMEMBER

- Computation of the 1st derivative can't be done by convolution alone

ACK: Prof. Tony Pridmore, UNUK

1st Derivative Filtering

The magnitude of the 1st derivative vector is

$$\nabla f = mag(\nabla f)$$

$$= \left[G_x^2 + G_y^2\right]^{1/2}$$

$$= \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right]^{\frac{1}{2}}$$

which can be simplified to

$$\nabla f \approx \left| G_{x} \right| + \left| G_{y} \right|$$

1st Derivative Filters

Many 1st derivatives filters have been proposed

These operators are most commonly associated with edge detection

Image Sharpening

Edge Enhancement: Unsharp Masking

- Edges are important
- Sometimes we want to enhance them without (much) affecting the rest of the image

Unsharp Masking

Makes edges noticeable sharper

- Even if they are noise
- Sometimes too much

ACK: Prof. Tony Pridmore, UNUK

Derivative Filters

Unsharp filtering enhances edges by comparing the original with a smoothed image

- Relies on the smoothing effect of a Gaussian function introducing a difference between original and processed images
- Parameterised by σ
- Simple, but effect is hard to predict, so hard to parameterise

A more direct way to highlight edges and other features associated with high image gradients is to estimate derivatives...

Image Sharpening with Derivatives

The 2nd derivatives is more useful for image enhancement than the 1st derivative

- Stronger response to fine detail
- Simpler implementation

The most common sharpening filter is the Laplacian

- Isotropic
- One of the simplest sharpening filters
- Straightforward digital implementation via convolution

The Laplacian

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

The Laplacian

$$\nabla^{2} f = [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y+1) + f(x, y-1)]$$
$$-4f(x, y)$$

0	1	0
1	-4	1
0	1	0

The Laplacian

Highlights edges and other discontinuities

A Single Enhancement Operator

$$g(x, y) = f(x, y) - \nabla^2 f$$

$$= f(x, y) - [f(x+1, y) + f(x-1, y) + f(x, y+1) +$$

COMP 2005 Derivative and Edges

21

A Single Operator

Convolution with this operator performs image sharpening in a single step

 0
 -1
 0

 -1
 5
 -1

 0
 -1
 0

Sharpen

Input

A Single Operator

Let's take a CLOSER look

ACK: Prof. Tony Pridmore, UNUK

Variations on the Theme

What is Edge Detection?

Edge Detection

First Step In many image analysis and computer vision processes and applications

To mark points at which image intensity changes sharply - edges

- Sharp changes in image properties reflect events/changes in the world
- This is only an assumption, but it is usually true

ACK: Prof. Tony Pridmore, UNUK

The Theory

To detect edges find peaks in the 1st derivative or intensity or zerocrossings in the 2nd derivative

The Result

```
>> im = imread('cameraman.tif');
```

- >> edges = edge(im, 'Canny');
- >> imshowpair(im, edges, 'montage');

Edge Detection using 1st Derivative Filters

1st Derivative Filters

Applied separately and results combined to estimate magnitude

30

Detection & Thresholding

- Significant peaks in magnitude of 1st derivative are high
- Apply a threshold, all peaks higher than the threshold value are significant, all other are ignored

Too low

Too high

31

Edge Magnitude & Direction

The gradient direction, $\theta(x,y)$, gives the direction of steepest image gradient

 $g(x,y) \cong (\Delta x^2 + \Delta y^2)^{1/2}$

 $\theta(\mathsf{x},\mathsf{y}) \cong \mathsf{atan}(\Delta \mathsf{y}/\Delta \mathsf{x})$

This gives the direction of a line perpendicular to the edge

Roberts' Cross Operator

Very quick to compute – 4 pixels, only subtractions and additions, but is very sensitive to noise and only gives a strong response to very sharp edges

Original

Cross Operator

Thresholded

Sobel vs Roberts

- Both use a super-supplied threshold. Sobel is still in use. Roberts is less common, nowadays.
- Larger Sobel operators are more stable in noise

Original

Roberts

Sobel

Edge Detection using 2nd Derivative Filters

The Theory

To detect edges find peaks in the 1st derivative or intensity or zero-crossings in the 2nd derivative

2nd Derivatives: Marr-Hildreth

Biologically inspired

Gaussian smooth, compute Laplacian

OR

Convolve with the Laplacian of Gaussian

$$\nabla^2[f(x,y)*G(x,y)] = \nabla^2G(x,y)*f(x,y)$$

ACK: Prof. Tony Pridmore, UNUK

Laplacian of Gaussian (LoG)

Zero-Crossings

Difference of Gaussians

The **Laplacian of Gaussian** can be approximated by the difference between two Gaussian functions:

$$\nabla^2 G \approx G(x, y; \sigma_1) - G(x, y; \sigma_2)$$

Actual LoG

DoG Filtering

$$\nabla^2 G \approx G(x, y; \sigma_1) - G(x, y; \sigma_2)$$

Ratio (σ_1/σ_2) for best approximation is about 1.6. (Some people like $\sqrt{2}$.)

Marr-Hildreth

Choice of σ gives flexibility !

Input Image

$$\sigma = 3$$
 $\sigma = 4$

1st vs 2nd Derivative Methods

Peaks in 1st Derivative

- Strong response at edges, but also respond to noise
- Peak detection and threshold selection need care

Zero crossings in 2nd derivative

- Well-defined, easy to detect
- Must form smooth, connected contours
- Tend to round off corners

1st derivative methods are much more common in practical applications,—

VS

In part because of John Canny

The Canny Operator

What Canny Did

John Canny tried to find the optimal edge detector, assuming a perfect step edge in Gaussian noise

Canny used the Calculus of Variations: finds the function which best satisfies some functional

The Canny Operator

The optimal detector was a sum of 4 exponential terms, but is very closely approximated by the 1st derivative of a Gaussian

i.e., 1st derivative of a Gaussian smoothed image

- Gives a cleaner response to a noisy edge than square operators
- Most implementations are 2D Gaussian smoothing + Roberts style derivative

ACK: Prof. Tony Pridmore, UNUK

Non-Maximal Suppression

The Canny operator's response is cleaner than Sobel or Roberts, but it needs an explicit step to enforce Minimal Response

Canny operator

Non-Maximal Suppression

Thresholding raw operator response would leave thick lines

How to turn these thick regions of the gradient into curves?

Non-Maximal Suppression

- 1. Check if pixel is a local maximum along the gradient direction
- 2. Select a single maximum across the width of the edge

- Simple thresholding tests each pixel independently: edges aren't really independent, they make up lines
- The industry standard edge thresholding method
- Allows a band of variation, but assumes continuous edges
- User still selects parameters, but its easier, less precise

- The strong edges are really strong
- The weak edges aren't really weak

Hysteresis fills in most of the gaps

Problem: pixels along this edge didn't survive the thresholding

Low threshold

High threshold

Hysteresis

52

What Canny Did

Showed that 1st derivative of a Gaussian smoothed image is the optimal way to detect step edges in noise

Explained why 1st derivatives are a good idea

Designed the industry standard thresholding method

- Non-maximal suppression
- Thresholding with hysteresis

Effectively solved the edge detection problem

Summary

NEXT:

Hough Transform