02 | 日志系统:一条SQL更新语句是如何执行的?

♀ time.geekbang.org/column/article/68633

前面我们系统了解了一个查询语句的执行流程,并介绍了执行过程中涉及的处理模块。相信你还记得,一条查询语句的执行过程一般是经过连接器、分析器、优化器、执行器等功能模块,最后到达存储引擎。

那么,一条更新语句的执行流程又是怎样的呢?

之前你可能经常听 DBA 同事说,MySQL 可以恢复到半个月内任意一秒的状态,惊叹的同时,你是不是心中也会不免会好奇,这是怎样做到的呢?

我们还是从一个表的一条更新语句说起,下面是这个表的创建语句,这个表有一个主键 ID 和一个整型字段 c:

mysql> create table T(ID int primary key, c int);

如果要将 ID=2 这一行的值加 1, SQL 语句就会这么写:

mysql> update T set c=c+1 where ID=2;

前面我有跟你介绍过 SQL 语句基本的执行链路,这里我再把那张图拿过来,你也可以先简单看看这个图回顾下。首先,可以确定的说,查询语句的那一套流程,更新语句也是同样会走一遍。

MySQL 的逻辑架构图

你执行语句前要先连接数据库,这是连接器的工作。

前面我们说过,在一个表上有更新的时候,跟这个表有关的查询缓存会失效,所以这条语句就 会把表 T 上所有缓存结果都清空。这也就是我们一般不建议使用查询缓存的原因。

接下来,分析器会通过词法和语法解析知道这是一条更新语句。优化器决定要使用 ID 这个索引。然后,执行器负责具体执行,找到这一行,然后更新。

与查询流程不一样的是,更新流程还涉及两个重要的日志模块,它们正是我们今天要讨论的主角:redo log(重做日志)和 binlog(归档日志)。如果接触 MySQL,那这两个词肯定是绕不过的,我后面的内容里也会不断地和你强调。不过话说回来,redo log 和 binlog 在设计上有很多有意思的地方,这些设计思路也可以用到你自己的程序里。

重要的日志模块:redo log

不知道你还记不记得《孔乙己》这篇文章,酒店掌柜有一个粉板,专门用来记录客人的赊账记录。如果赊账的人不多,那么他可以把顾客名和账目写在板上。但如果赊账的人多了,粉板总会有记不下的时候,这个时候掌柜一定还有一个专门记录赊账的账本。

如果有人要赊账或者还账的话,掌柜一般有两种做法:

一种做法是直接把账本翻出来,把这次赊的账加上去或者扣除掉;

另一种做法是先在粉板上记下这次的账,等打烊以后再把账本翻出来核算。

在生意红火柜台很忙时,掌柜一定会选择后者,因为前者操作实在是太麻烦了。首先,你得找 到这个人的赊账总额那条记录。你想想,密密麻麻几十页,掌柜要找到那个名字,可能还得带 上老花镜慢慢找,找到之后再拿出算盘计算,最后再将结果写回到账本上。

这整个过程想想都麻烦。相比之下,还是先在粉板上记一下方便。你想想,如果掌柜没有粉板 的帮助,每次记账都得翻账本,效率是不是低得让人难以忍受?

同样,在 MySQL 里也有这个问题,如果每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程 IO 成本、查找成本都很高。为了解决这个问题,MySQL 的设计者就用了类似酒店掌柜粉板的思路来提升更新效率。

而粉板和账本配合的整个过程,其实就是 MySQL 里经常说到的 WAL 技术,WAL 的全称是 Write-Ahead Logging,它的关键点就是先写日志,再写磁盘,也就是先写粉板,等不忙的时候再写账本。

具体来说,当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log(粉板)里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面,而这个更新往往是在系统比较空闲的时候做,这就像打烊以后掌柜做的事。

如果今天赊账的不多,掌柜可以等打烊后再整理。但如果某天赊账的特别多,粉板写满了,又 怎么办呢?这个时候掌柜只好放下手中的活儿,把粉板中的一部分赊账记录更新到账本中,然 后把这些记录从粉板上擦掉,为记新账腾出空间。

与此类似,InnoDB 的 redo log 是固定大小的,比如可以配置为一组 4 个文件,每个文件的大小是 1GB,那么这块"粉板"总共就可以记录 4GB 的操作。从头开始写,写到末尾就又回到开头循环写,如下面这个图所示。

write pos 是当前记录的位置,一边写一边后移,写到第 3 号文件末尾后就回到 0 号文件开头。checkpoint 是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。

write pos 和 checkpoint 之间的是"粉板"上还空着的部分,可以用来记录新的操作。如果 write pos 追上 checkpoint,表示"粉板"满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把 checkpoint 推进一下。

有了 redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失, 这个能力称为 crash-safe。

要理解 crash-safe 这个概念,可以想想我们前面赊账记录的例子。只要赊账记录记在了粉板上或写在了账本上,之后即使掌柜忘记了,比如突然停业几天,恢复生意后依然可以通过账本和粉板上的数据明确赊账账目。

重要的日志模块:binlog

前面我们讲过,MySQL 整体来看,其实就有两块:一块是 Server 层,它主要做的是 MySQL 功能层面的事情;还有一块是引擎层,负责存储相关的具体事宜。上面我们聊到的粉板 redo log 是 InnoDB 引擎特有的日志,而 Server 层也有自己的日志,称为 binlog(归档日志)。

我想你肯定会问,为什么会有两份日志呢?

因为最开始 MySQL 里并没有 InnoDB 引擎。MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog 日志只能用于归档。而 InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统——也就是 redo log 来实现 crash-safe 能力。

这两种日志有以下三点不同。

redo log 是 InnoDB 引擎特有的;binlog 是 MySQL 的 Server 层实现的,所有引擎都可以使用。

redo log 是物理日志,记录的是"在某个数据页上做了什么修改";binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如"给 ID=2 这一行的 c 字段加 1 "。

redo log 是循环写的,空间固定会用完;binlog 是可以追加写入的。"追加写"是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

有了对这两个日志的概念性理解,我们再来看执行器和 InnoDB 引擎在执行这个简单的 update 语句时的内部流程。

执行器先找引擎取 ID=2 这一行。ID 是主键,引擎直接用树搜索找到这一行。如果 ID=2 这一行所在的数据页本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回。

执行器拿到引擎给的行数据,把这个值加上 1,比如原来是 N,现在就是 N+1,得到新的一行数据,再调用引擎接口写入这行新数据。

引擎将这行新数据更新到内存中,同时将这个更新操作记录到 redo log 里面,此时 redo log 处于 prepare 状态。然后告知执行器执行完成了,随时可以提交事务。

执行器生成这个操作的 binlog, 并把 binlog 写入磁盘。

执行器调用引擎的提交事务接口,引擎把刚刚写入的 redo log 改成提交(commit)状态,更新完成。

这里我给出这个 update 语句的执行流程图,图中浅色框表示是在 InnoDB 内部执行的,深色框表示是在执行器中执行的。

update 语句执行流程

你可能注意到了,最后三步看上去有点"绕",将 redo log 的写入拆成了两个步骤:prepare 和 commit,这就是"两阶段提交"。

两阶段提交

为什么必须有"两阶段提交"呢?这是为了让两份日志之间的逻辑一致。要说明这个问题,我们 得从文章开头的那个问题说起:怎样让数据库恢复到半个月内任意一秒的状态?

前面我们说过了,binlog 会记录所有的逻辑操作,并且是采用"追加写"的形式。如果你的 DBA 承诺说半个月内可以恢复,那么备份系统中一定会保存最近半个月的所有 binlog,同时系统会 定期做整库备份。这里的"定期"取决于系统的重要性,可以是一天一备,也可以是一周一备。

当需要恢复到指定的某一秒时,比如某天下午两点发现中午十二点有一次误删表,需要找回数据,那你可以这么做:

首先,找到最近的一次全量备份,如果你运气好,可能就是昨天晚上的一个备份,从这个备份 恢复到临时库;

然后,从备份的时间点开始,将备份的 binlog 依次取出来,重放到中午误删表之前的那个时刻。

这样你的临时库就跟误删之前的线上库一样了,然后你可以把表数据从临时库取出来,按需要恢复到线上库去。

好了,说完了数据恢复过程,我们回来说说,为什么日志需要"两阶段提交"。这里不妨用反证 法来进行解释。

由于 redo log 和 binlog 是两个独立的逻辑,如果不用两阶段提交,要么就是先写完 redo log 再写 binlog,或者采用反过来的顺序。我们看看这两种方式会有什么问题。

仍然用前面的 update 语句来做例子。假设当前 ID=2 的行,字段 c 的值是 0,再假设执行 update 语句过程中在写完第一个日志后,第二个日志还没有写完期间发生了 crash,会出现什 么情况呢?

先写 redo log 后写 binlog。假设在 redo log 写完,binlog 还没有写完的时候,MySQL 进程 异常重启。由于我们前面说过的,redo log 写完之后,系统即使崩溃,仍然能够把数据恢复回来,所以恢复后这一行 c 的值是 1。

但是由于 binlog 没写完就 crash 了,这时候 binlog 里面就没有记录这个语句。因此,之后备份日志的时候,存起来的 binlog 里面就没有这条语句。

然后你会发现,如果需要用这个 binlog 来恢复临时库的话,由于这个语句的 binlog 丢失,这个临时库就会少了这一次更新,恢复出来的这一行 c 的值就是 0,与原库的值不同。

先写 binlog 后写 redo log。如果在 binlog 写完之后 crash,由于 redo log 还没写,崩溃恢复以后这个事务无效,所以这一行 c 的值是 0。但是 binlog 里面已经记录了"把 c 从 0 改成 1"这个日志。所以,在之后用 binlog 来恢复的时候就多了一个事务出来,恢复出来的这一行 c 的值就是 1,与原库的值不同。

可以看到,如果不使用"两阶段提交",那么数据库的状态就有可能和用它的日志恢复出来的库 的状态不一致。

你可能会说,这个概率是不是很低,平时也没有什么动不动就需要恢复临时库的场景呀?

其实不是的,不只是误操作后需要用这个过程来恢复数据。当你需要扩容的时候,也就是需要再多搭建一些备库来增加系统的读能力的时候,现在常见的做法也是用全量备份加上应用binlog 来实现的,这个"不一致"就会导致你的线上出现主从数据库不一致的情况。

简单说,redo log 和 binlog 都可以用于表示事务的提交状态,而两阶段提交就是让这两个状态保持逻辑上的一致。

小结

今天,我介绍了 MySQL 里面最重要的两个日志,即物理日志 redo log 和逻辑日志 binlog。

redo log 用于保证 crash-safe 能力。innodb_flush_log_at_trx_commit 这个参数设置成 1 的时候,表示每次事务的 redo log 都直接持久化到磁盘。这个参数我建议你设置成 1,这样可以保证 MySQL 异常重启之后数据不丢失。

sync_binlog 这个参数设置成 1 的时候,表示每次事务的 binlog 都持久化到磁盘。这个参数我也建议你设置成 1,这样可以保证 MySQL 异常重启之后 binlog 不丢失。

我还跟你介绍了与 MySQL 日志系统密切相关的"两阶段提交"。两阶段提交是跨系统维持数据逻辑一致性时常用的一个方案,即使你不做数据库内核开发,日常开发中也有可能会用到。

文章的最后,我给你留一个思考题吧。前面我说到定期全量备份的周期"取决于系统重要性,有的是一天一备,有的是一周一备"。那么在什么场景下,一天一备会比一周一备更有优势呢?或者说,它影响了这个数据库系统的哪个指标?

你可以把你的思考和观点写在留言区里,我会在下一篇文章的末尾给出我的答案。

感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。