

UNTRI-70717

NSRP-0047

Propulsion plant feasibility study report
subtask 3: economic analysis of selected
standards candidates.

M. Rosenblatt and Son, Inc.

Report Documentation Page			Form Approved OMB No. 0704-0188	
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.				
1. REPORT DATE 26 FEB 1975	2. REPORT TYPE N/A	3. DATES COVERED -		
4. TITLE AND SUBTITLE Ship Productivity Program Task S-1 Propulsion Plant Feasibility Study Report Subtask-3 Economic Analysis of Selected Standards Candidates				
6. AUTHOR(S)			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Surface Warfare Center CD Code 2230 - Design Integration Tools Building 192 Room 128-9500 MacArthur Blvd Bethesda, MD 20817-5700			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 215
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	19a. NAME OF RESPONSIBLE PERSON	

WESTERN DIVISION
657 MISSION STREET
SAN FRANCISCO 94105
(415) 397-3596

NSRP-SPC-SPG

WASHINGTON BRANCH
6525 BELCREST ROAD
HYATTSVILLE, MD. 20782
(301) 779-1510

M. ROSENBLATT & SON, INC.
NAVAL ARCHITECTS AND MARINE ENGINEERS
350 BROADWAY
NEW YORK, N.Y. 10013
(212) 431-6900

(c)

UMTRI

10717

SHIP PRODUCIBILITY PROGRAM
TASK S-1
PROPULSION PLANT
FEASIBILITY STUDY
REPORT
SUBTASK-3
ECONOMIC ANALYSIS
OF
SELECTED STANDARDS CANDIDATES

Prepared for
BATH IRON WORKS CORP.
BATH, MAINE

Contract No. 2650-C

DATE: February 26, 1975

SAN DIEGO

NEW YORK

SAN FRANCISCO

WASHINGTON, D.C.

TABLE OF CONTENTS

70917
Page

5.0 Economic Analysis	
5.1 Introduction	5-1
5.2 Methodology	5-1
5.2.1 Method of Analysis	5-1
5.2.2 Basic Guidelines	5-6
5.2.2.1 Definitions	5-6
5.2.2.2 General Assumptions	5-7
5.2.2.3 Criteria	5-8
5.2.3 Method of Generalization	5-10
5.2.3.1 Approach	5-11
5.2.3.2 Sample Generalization	5-11
5.2.3.3 Results of Generalization	5-12
5.2.4 Synthesis of Individual Savings into Construction	
Cost of One Ship	5-14
5.2.5 Prediction of Savings for Other Ships in the Forecast	5-20
5.3 Analysis of Total Plant Standards - Group I	5-22
5.3.1 General	5-22
5.3.1.1 Brief Description of Group I Standards	5-22
5.3.1.2 Candidates Selected for Economic Analysis	5-22
5.3.1.3 Limitations of Analyses	5-23
5.3.2 26,000 SHP Steam Turbine Propulsion Plan.	5-23
5.3.2.1 Definition of Existing Approach	5-25
5.3.2.2 Definition of Standards Approach	5-25
5.3.2.3 Cost Analysis	5-28

	Page
5.3.3 14,000 SHP Medium-speed Diesel Propulsion Plant	5-31
5.3.3.1 Definition of Existing Approach . . .	5-32
5.3.3.2 Definition of Standards Approach . . .	5-32
5.3.3.3 Cost Analysis	5-35
5.3.4 Generalization of REsults for Group 1 Standards.	5-38
5.3.4.1 For Steam Turbine Plants	5-38
5.3.4.2 For Diesel Plants.	5-41
5.4 Analysis of Module Standards - Group 11	5-42
5.4.1 General.	5-42
5.4.1.1 Brief Description of Group II Standards	5-42
5.4.1.2 Candidates Selected for Economic Analysis	5-42
5.4.1.3 Limitations of Analyses.	5-43
5.4.1.4 “Make-or-buy” decision	5-44
5.4.1.5 Definition of Existing Approach . . .	5-46
5.4.1.6 Definition of Standards Approach . . .	5-46
5.4.2 Cost Analyses	5-48
5.4.2.1 Fuel Oil Service System Module . . .	5-49
5.4.2.2 Main Feed Pump Module	5-50
5.4.2.3 Diesel Accessory Rack Module	5-51
5.4.3 Generalization of Results for Group II Standards	5-52

	<u>Page</u>
5.5 Analysis of Envelope Standards - Group III	5-55
5.5.1 General I.....	5-55
5.5.1.1 Brief Description of Group III Standards	5-55
5.5.1.2 Candidates Selected for Economic Analysis	5-55
5.5.1.3 Limitations of Analysis	5-56
5.5.1.4 Definition of Existing Approach.	5-57
5.5.1.5 Definition of Standards Approach	5 - 5 7
5.5.2 Cost Analyses.	5 - 5 9
5.5.2.1 Boiler Envelope	5-60
5.5.2.2 Lube Oil Purifier Envelope	5-61
5.5.2.3 Main Feed Pump Envelope	5-62
5.5.3 Generalization of Results for Group III Standards	5-63
5.6. Analysis of Individual Equipment Standards, Group IV	5-67
5.6.1 General	5-67
5.6.1.1 Brief Description of Group IV Standards	5-67
5.6.1.2 Candidates Selected for Economic Analysis	5-68
5.6.1.3 Limitations of Analyses	5-68
5.6.1.4 Definition of Existing Approach.	5-69
5.6.1.5 Definition of Standards Approach	5-71

	Page
5.6.2 Cost Analyses	5-74
5.6.2.1 Detailed Breakdown of Cost Items	5-75
5.6.2.2 Analysis of Condensate Pump	5-83
5.6.2.3 Analysis of Starting Air Compressor	5-86
5.6.2.4 Analysis of Main Boiler	5-89
5.6.3 Generalization of Results for Group IV Standards	5-92
5.7 Synthesis of Economic Analyses and Application of Savings to Forecast Ships	5-96
5.7.1 Percentage Savings for the Parent Ships	5-96
5.7.2 Predicted Savings for Other Ships in the Forecast	5-97
5.8 A Projection of Industry-Wide Benefits	5-100
5.8.1 For Each Year of the Forecast Period	5-101
5.8.2 For the total 10-year Period	5-102
5.9 Summary and Conclusions	5-108
5.9.1 General	5-108
5.9.2 Analysis of Results.	5-114
5..9.3 Conclusions	5-118

Appendices:

- C.1 Sample Standard Formats for Group 1, Total Propulsion Plants**
 - C.1.1 Steam Propulsion Plant Standard Format**
 - C.1.2 Diesel Propulsion Plant Standard Format**
- C.2 Sample Standard Format for Group 11, Modules**
- C.3 Sample Standard Format for Group III, Envelopes**
- C.4 Sample Standard Formats for Group IV, Individual Equipment/Components**
 - C.4.1 Data Standard Format**
 - C.4.2 Procurement Standard Format**
 - C.4.3 Hardware Standard Format**

SHIP PRODUCIBILITY PROGRAM
TASK S-I : PROPULSION PLANT STANDARDS FEASIBILITY
SUB-TASK 3: ECONOMIC ANALYSIS

5.0 ECONOMIC ANALYSIS OF SELECTED STANDARDS CANDIDATES

5.1 INTRODUCTION

Subtask 1 of this report resulted in a forecast for U.S. Shipbuilding programs for the period 1974 through 1975.

In Subtask 2, based on the results of this forecast, the probable power plants for the ships to be built during the period in question were classified and technically analyzed. As a result of the technical analyses and evaluations of these power plants, four groups of standards were proposed and several candidates from each group were selected for further economic analysis.

This sub-task reports the results of the economic analyses performed on these selected candidate standards. It also introduces a method of generalization for estimating advantages applicable to similar standards in each group which were not economically analyzed. The savings predicted by generalization for each of the standards candidates are then used in estimating the overall cost savings that are attainable when applied all together into the design and construction of a sample ship.

5.2 METHODOLOGY

5.2.1 Method of Analysis

In performing the economic analyses for selected standards candidates in all groups, the following approach was used:

1. A format was developed for each group of candidate standards describing the contents of the standard and listing the standardized parameters.

2. The "existing approach" -- that is, the method of production that is currently being used in U.S. Shipyards for completing the work necessary to produce the hardware and/or the services covered by the subject candidates -- was defined clearly since this establishes the basis of comparison.

3. General assumptions that had to be made for all economic analyses were established. These assumptions are listed in 5.2.2.2. Specific assumptions applicable only to the candidate being analyzed were listed in the beginning of the economic analysis for that candidate.

4. Based on the general assumptions, the "standards approach" -- that is, the method of production which would be used in U.S. Shipyards if the "standard" in question were implemented -- was also defined.

5. Cost items for each approach were subdivided to the level of detail required for significant cost resolution. Analyses were performed for each cost item to determine the direct labor and material cost required to perform the work described in the subject cost item.

6. In breaking down the cost items, for purposes of providing simplicity, costs which are the same for both the existing and standards approaches were identified but not quantitatively analyzed.

7. In addressing all the cost items shown on Table 5.1 which was suggested for use by Bath Iron Works Corporation, it was found that many of the items had inconsequential influence upon the total value and that the differences in these items between the "standards approach" and the "existing approach" were negligible. Therefore those cost items marked (X) were included in the analysis only when found to be sufficient to affect the outcome.

8. Total comparative direct labor man-hours and material costs required for the candidate in question were determined for each approach.

9. By deducting the totals for the Standards approach from the totals for the existing approach, savings in terms of direct labor man-hours and material costs were obtained for the candidate in question. These savings indicate the advantages which are available through the use of standards for that candidate only. The savings are estimated in terms of total cost reduction in dollars.

10. A method for generalization of economic analyses was developed, which is described in 5.2.3.

Economic Analysis of Method Alternatives

<u>Cost Variance</u>	<u>Back-up Data Ref.</u>	<u>Present Method</u>	<u>Proposed Method</u>
1. Material Direct			
2. Material Indirect			
3. Subcontract Cost <input checked="" type="checkbox"/>			
4. Direct Labor & Fringes			
5. Indirect Labor & Fringes <input type="checkbox"/>			
6. Engineering Labor & Fringes			
7. Supervision, Clerical & Fringes			
8. Supplies <input checked="" type="checkbox"/>			
9. Set-up <input type="checkbox"/>			
10. Scrap/Salvage <input checked="" type="checkbox"/>			
11. Warranty <input checked="" type="checkbox"/> <input type="checkbox"/>			
12. Inventory <input type="checkbox"/>			
13. Other <input checked="" type="checkbox"/>			
14. Overtime & Shift premium <input checked="" type="checkbox"/>			
15. Maintenance & Repairs			
16. Taxes & Insurance <input checked="" type="checkbox"/> <input type="checkbox"/>			
17. Utilities <input checked="" type="checkbox"/>			
18. Floor Space <input checked="" type="checkbox"/>			
*19. Depreciation <input checked="" type="checkbox"/>			
20. Subtotal <input type="checkbox"/> <input type="checkbox"/>			
21. Less Project Expense <input checked="" type="checkbox"/>			
22. Total			

* For capital investments only; describe schedule used.

TABLE 5-1

(X) Items which have negligible influence on the net savings for the cost analyses in question.

11. Using the "generalization method" the economic advantages obtained for those candidates on which analyses were performed were extrapolated to predict the advantages obtainable for other candidates in each group.

12. The results of analyses were tabulated in the form of a matrix listing overall savings for all candidates in each group.

13. Using the above-mentioned matrix, the savings in terms of overall cost reduction in dollars were synthesized for a ship to be fitted with a 26,000 SHP geared Steam Turbine Propulsion plant, as well as for a ship with 14,000 SHP diesel propulsion plant.

14. Based on the overall cost reduction in dollars for the ship in question, the probable savings in dollars were estimated for other ship types in the forecast. For this purpose, the percentage savings based on the total acquisition cost was assumed constant for all propulsion plants as discussed in 5.2.5.

15. Using the estimated savings for each type and size of ship, the overall savings available to the industry through implementation of standards, as delineated in Sub-task 2, for each year of the forecast period, as well as for the complete forecast period (for the total number of ships to be constructed within the period) were predicted.

16. It was recognized that there could be other advantages due to the adoption of Standards, such as elimination of delays in ship-yard approval of drawings and reductions in delivery periods of standard-sized equipment. These advantages are considered to be within the scope of latent cost savings. For a discussion of latent costs refer to 5.2.2.3.h.

5.2.2 Basic Guidelines

For the purposes of this sub-task, the definitions of the terms used, the general assumptions made and the criteria followed were established.

5.2.2.1 Definitions

The terms as used throughout this analysis are defined as follows:

Overhead	Fixed costs including building depreciation, maintenance, taxes, insurance, management salaries, utilities, etc.
Direct Material	That which becomes incorporated in the final product, including trim waste.
Indirect Material	That used to facilitate construction but does not become a permanent part of the final product, i.e. fixtures, tools, temporary guides, and shims, etc.
Direct Labor	That expended on changing the condition of and adding value to direct material.
Indirect Labor	That expended to facilitate producing the final 'product' but does not add value to the direct material, i.e. set-up, crane operation, and other material handling, etc.
Net Wage Reduction	Amount of net savings in wages only, in 1974 dollars, which can be expected if the Standard approach is used.
Percent Savings in Wages	"Net wage reduction" expressed as a percentage of total wages for the specific standard.
Net Material cost Reduction	Amount of net savings in material costs only, again in 1974 dollars, which can be expected if the standard approach is used.
Percent Savings in Material Costs	"Net Material Cost Reduction" expressed as a percentage of total material cost for the specific standard.
Percent Savings in Total Costs	The sum of "Net Wage Reduction" and "Net Material Cost Reduction" expressed as a percentage of the total cost for the specific standard.

5. 2..2.2. General Assumptions

The basic assumptions made to facilitate the economic analyses, and generally applicable to all candidates, are the following:

- a. For labor and material costs, constant 1974 dollars are used.
No costs are inflated past July 1974.
- b. All direct yard labor man-hours are valued at \$4.80 plus 25% for fringe benefits which adds up to a total of \$6.00 per hour.

The 25% fringe benefit allowance is made up as follows:

Vacation:	4.99%
Holidays:	3. 28%
Hospital ization,-Health & Life Insurance:	8.5%
Pension:	6.9%
Shift Bonus:	1. 02%
Death Days:	. 47%
<hr/>	
Total	25.10%
use:	25%

These figures are based on published data on fringe benefits paid by 25 yards.

- c. All indirect yard labor hours will also be valued at \$6.00 per hour including fringe benefits.
- d. All engineering and management services will be valued at \$9.00 per hour including fringe benefits.

5.2.2.3 Criteria

The following criteria, applicable to all standards candidates, were established for use and guidance in performing the economic analyses:

- a. Analyses were limited to items associated with the main propulsion plant and its ancillary equipment.
- b. Analyses were performed in such a manner that they will be universal and not dependent upon costs from a specific yard, owner, designer or vendor.
- c. Estimates for direct labor man-hours and schedule times used in the analysis is were based on any one of the following source data:
 - i. Historical Data: This often is the only data existing, but it is the most difficult source to use for comparison of method changes.
 - ii. Work Sampling: These data are established by calculating the Standard deviation and determining the level of confidence. When these data are available, judgment should be used in selecting the statistical accuracy desired.

III. Engineered Time. Data: Standard time data applicable to shipbuilding, when available, are an acceptable source in cases where new methods are to be compared.

The sources for all data used in the analyses were identified as to which of the above three types they are. Any sources which are confidential, or of a proprietary nature, were identified in general terms only: e.g. "shipyard source." If for any cost items none of the above sources were available, then costs were estimated using in-house pool of experience.

- d. Only those savings which are real and which can reasonably be achieved by appropriate management action were considered. Inflating the savings by using unrealistic or unsupportable claims was avoided.
- e. Overtime premium was not included in the cost analyses.
- f. Overhead, as will be remembered from *its* definition in 5.2.2.1, normally incorporates such items as property taxes, depreciation, insurance and other items which are not altered by incremental changes in the man-hour expenditures. Overhead savings, therefore, were not claimed in cost comparisons.
- g. The cost items were arranged to exhibit expenditures, and therefore cost savings when subjected to a comparison, at one point in time; as such, they did not adequately reflect the on-going impact of project expenses. For this reason, cost items were identified as recurring or non-recurring costs.

h. Latent savings are the second or third generation savings or earnings which are secondary results of a method or system change. They do not include the contribution of the original method or system change. They do include, however, the savings from putting a "freed resource" to a new use. Areas of prime concern for latent impact studies include those where a freed resource is made available either by a method change or by increased through-put. Latent savings were not included in the quantitative analysis since they would depend largely on the facilities available in a specific shipyard and as such would constitute a deviation from the objective of this study. Nevertheless, latent savings will exist, and they are a distinct advantage of the standards alternative.

5.2.3 Method of Generalization

In order to predict the labor and material savings for potential Standards on which economic analyses were not performed, a method for generalization of results obtained from the analyses performed on selected candidates was devised.

A brief description of the method and a sample application are given below. Individual generalizations for all standards are to be found at the end of analyses for each group.

5.2.3.1. Approach

- a. Identify each standard with the most nearly similar standard for which an economic analysis was performed.
- b. Assign a "size rating" in percentage to each standard as compared to the similar standard.
- c. Assign a "complexity rating" to each candidate in the same manner.
- d. For the selected "similar" standard estimate the contributions of its size and complexity to the overall savings.
- e. Multiply size rating from (b) by size contribution from (d) to get estimated % reduction in costs for the subject standard based on size comparison with the similar standard.
- f. In the same manner, calculate estimated (%) cost reduction based on complexity comparison.
- g. Add the two estimated % *cost* reductions to get the overall % *cost* reduction attainable for the subject standard.
- h. Multiply percentage obtained in (g) by the calculated total savings for the similar standard to get the estimated total savings for the subject standard.

5.2.3.2 Sample Generalization

- a. Candidate for Generalization: Main Condenser

Similar Candidate: Main Boiler

- b. For the Main Boiler: (From 5.6.2.4)

Total Savings = \$18,570 (for Hardware Standards)

Size Contribution for Boiler: Estimated 40% of total

Complexity Contribution for Boiler: Assume 60% of total

c. For the Main Condenser:

Estimate Size Rating: 30%

As compared to Main Boiler

Complexity Rating: 60%

d. Calculate Related Savings:

<u>Contribution</u>	<u>% for Candidate Std</u>	<u>% Similar Std</u>	<u>Estimated % Savings</u>
size	.30	.40	.12
Complexity	.60	.60	.36
Total			.48

Total Savings for Condenser: $.48 \times 18,570 = \$ 8,900$

5.2.3.3 Results of Generalization

The above process was repeated for all the Candidates in Groups I, II and III, and the predicted total savings for Candidates in each group were listed at the end of economic analysis for that group. (Refer to 5.4.3, 5.5.3 and 5.6.3).

Table 5-2 is a compilation of the data in above-mentioned sections as applicable to the propulsion Machinery Components of a 26,000 SHP Steam Turbine plant which may be installed on an 80,000 DWT Oil Tanker.

NAME OF CANDIDATE STANDARD	GROUP	TOTAL SAVINGS \$	SOURCE REF.
MAIN CONDENSER	IV-H	8,900	TABLE 5-26
MAIN TURBINE	IV-H	26,000	TABLE 5-26
FORCED DRAFT FAN	IV-H	6,500	TABLE 5-26
MAIN CIRCULATING PUMP	III	5,124	TABLE 5-21
LUBE OIL COOLER	IV-H	1,900	TABLE 5-26
FIRST STAGE HEATER	II	20,090	TABLE 5-16
DEAERATING FD. HTR.	III	5,175	TABLE 5-21
LUBE OIL SERVICE PUMP	IV-H	3,600	TABLE 5-26

TABLE : 5-2 "GENERALIZED" SAVINGS FOR COMPONENTS
OF A 26,000 SHP STEAM TURBINE PLANT

5.2.4 Synthesizing Savings from Individual Standards into
Overall Savings on the Total Construction Cost of a
"PARENT" Ship

After estimating the total cost savings for all standards in all groups, following the "method of generalization" described in 5.2.3, a method of incorporating these individual savings into the total construction cost of a sample ship was developed. The standard formats developed for a steam turbine and a medium-speed diesel propulsion plant (Group I -- total propulsion plant standards) were used as a basic reference.

As a "parent" ship for the steam turbine propulsion plant analysis, one that would use the 24-26,000 SHP plant was selected. Referring to Table O of the standard format, enclosed in Appendix C.1.I., the number of standards and the "group" each standard belongs to were selected as shown in Table 5.3, which is a filled-out copy of the above-mentioned Table D.

For the diesel propulsion plant analysis, a ship that would use the 14,000 SHP medium speed diesel installation was selected as the parent ship. Table A of the standard total diesel plant format in Appendix C.1.2 is filled out for the parent ship by assuming the use of specific groups and types of standards. Table 5-4 is the result of these assumptions.

LISTING OF PROPULSION PLANT COMPONENTSFOR A PARENT SHIPWITH 26,000 SHP STEAM PLANT

Equipment/Component	Quantity	Standard Group	Remarks.
Main Steam Boiler	2	III	
Main Turbine (Set)	1	IV	Hardware Std.
Main Condenser	1	IV	Hardware Std.
Reduction Gear (Set)	1		Non-Std.
Main Lube Oil Pump	2	IV	Hardware Std.
Forced Draft Fan	2	IV	Hardware Std.
Main Feed Pump	1	II	Main Feed Pump Module
Fuel Oil Service Pump	1	II	Fuel Oil Service Sys. Module
Main Circulating Pump	2	III	
Main Condensate Pump	2	IV	Hardware Std.
Fuel Oil Heater	1	II	F.O. Service Sys. Module
Lube Oil Cooler	2	IV	Hardware Std.
First-Stage Feed Heater	1	II	First Stg. Fd. Htr. Module
Gland Exhauster		II	First Stg. Fd. Htr. Module
Drain Cooler		II	First Stg. Fd. Htr. Module
De-aerating Feed Heater	1	III	
3rd Stage Heater			N.A.
4th Stage Heater			N.A.
Automation System	1		Non-Std.

TABLE 5 - 3

LISTING OF PROPULSION PLANT COMPONENTS
for a PARENT SHIP
with 14,000 SHP MEDIUM SPEED DIESEL PLANT

Equipment / Component	Standard Group	Quantity	Remarks
MAIN DIESEL ENGINE	IV	2	Hardware
AUTOMATION SYSTEM	-	1	Non-Std.
REDUCTION GEAR	-	1	Non-Std.
STARTING AIR COMPRESSOR	IV	2	Hardware
EXHAUST GAS BOILER	III	2	
FRESH WATER COOLERS	IV	3	Hardware
LUBE OIL COOLERS	-	-	Included in Accessory Pack
DIESEL ACCESSORY PACK	II	2	
FUEL OIL SERVICE SYSTEM	II	2	
FUEL OIL PURIFIER	IV	1	Hardware
LUBE OIL PURIFIER	IV	1	Hardware
LUBE OIL SERVICE PUMP	IV	4	Hardware
REDUCTION GEAR LUBE OIL BOOSTER PUMP	IV	1	Hardware

TABLE 5-4

For each of the standards used in the "parent" ship's propulsion plant, the predicted total unit savings in dollars were obtained from 5.4.3, 5.5.3, and 5.6.3, and listed in Tables 5 - 5 and 5 - 6. Multiplying the unit savings by the number of units of each standard to be installed on the ship, the total amount of savings attainable by using each standard was obtained. A summation of these savings resulted in the composite savings possible for the parent ships if the Group II, III and IV Standards, as indicated in Tables 5 - 3 and 5 - 4, are used. Referring to Table 5 - 5, the "composite" savings mentioned above is \$176,494 for the parent steam propelled ship. For the parent Diesel propelled ship, the savings is \$182,402 as read from Table 5 - 6. The savings possible due to implementation and use of Group I total plant Standards is additional to these amounts. These are as estimated in 5.3.2.3 and 5.3.3.3, for ships of the size and power ranges similar to the parent ships, savings are \$87,840 on total shipbuilding costs for the steam plants, and \$56,340 for the diesel plants.

Therefore, the overall savings attainable through the use of Groups II, III and IV Standards , for the parent ships become:

\$176,494 +87,840= \$264,334 for a steam plant of 26,000 SHP
and

\$182,402 +56,340= \$238,742 for a diesel plant of 14,000 SHP.

EQUIPMENT - COMPONENT	SELECTED STANDARD GROUP	UNIT SAVINGS FOR THE STANDARD \$	NUMBER OF UNITS	TOTAL SAVINGS	REFERENCE
MAIN BOILER	III	17,24	2	34,48	5.5.2.1
MAIN TURBINE	IV-H	26,000	1	26,000	5.6.3
MAIN CONDENSER	IV-H	8,900	1	8,900	5.6.3
L.O. PURIFIER	III	4,461	2	8,922	5.5.2.2
FORCED DRAFT FAN	IV-H	6,500	2	13,000	5.6.3
MAIN FEED PUMP	II	11,757	1	11,757	5.4.2.2
FUEL OIL SYSTEM	II	17,470	1	17,470	5.4.2.1
MAIN CIRC. PUMP	III	5,124	2	10,248	5.5.3
MAIN CONDENSATE PUMP	IV-H	4,842	2	9,684	5.6.2.2
L.O. COOLER	IV-H	1,900	2	3,800	5.6.3
L.O. SERVICE PUMP	IV-H	3,600	2	7,200	5.6.3
FIRST STAGE FEED HTR.	II	20,090	1	20,090	5.4.3
DEAERATING FEED HTR.	III	5,175	1	5,175	5.5.3
TOTAL SAVINGS - Groups II, III & IV				176,494	

TABLE: 5-5

EQUIPMENT - COMPONENT	SELECTED STANDARD GROUP	UNIT SAVINGS FOR THE STANDARD \$	NUMBER OF UNITS	TOTAL SAVINGS	REFERENCE
DIESEL ENGINE	IV-H	18,200	2	36,400	5.6.3
STARTING AIR COMPR.	IV-H	4,692	2	9,396	5.6.2.3
EXHAUST GAS BOILER	III	3,767	2	7,534	5.5.3
FRESH WATER COOLER	IV-H	1,857	3	5,571	5.6.3
ACCESSORY RACK	II	31,607	2	63,214	5.4.2.3
F.O. SERVICE SYST.	II	17,470	2	34,940	5.4.2.1
F.O. PURIFIER	IV-H	3,900	1	3,900	5.6.3
L.O. PURIFIER	IV-H	3,900	1	3,900	5.6.3
L.O. SERVICE PUMP	IV-H	3,600	4	14,400	5.6.3
REDUCTION GEAR L.O. BOOSTER PUMP	IV-H	3,147	1	3,147	5.6.3
TOTAL SAVINGS - GROUPS II, III & IV				182,402	

5.2.5 Prediction of Savings for Other Ships in the Forecast

In order to predict the probable savings (due to use of propulsion plant standards) in the construction cost of any ship without going through an extensive analysis of all the propulsion plant standards used on the vessel, the relative acquisition costs of the propulsion plants were utilized as a basis for comparison; and it was assumed that the savings attainable will be directly related to the acquisition cost for all plants of the same working medium. In other words, it is estimated that all steam turbine plants will yield a constant percentage of the total acquisition costs as savings due to standardization. Similarly all diesel plants will yield a savings which is a constant percentage of its total acquisition cost.

The percentage savings for steam and diesel plants were estimated using the previously estimated total savings for the respective sample plants (See 5.7). It is recognized that in order to obtain truly meaningful comparisons, the respective ships should be considered in much more extensive detail, including such characteristics as the propulsion shafting and propellers, non-propulsion machinery, deck machinery and other shipboard installations. However when all of these are considered, unless a specific ship design is at hand, the results obtained will not, in any sense, be exact. For purposes of this feasibility study, the specific ship designs are

naturally not available. . Yet the need foresee-the effects (benefits or penalties) the proposed standardization might have upon shipbuilding costs is a prerequisite of the program. Therefore, in order to predict not the exact magnitudes of the savings but the general trend for various applications, the following method of comparison is adopted:

Given the constant percentage savings, the approximate overall savings for any propulsion plant can be calculated by estimating the total acquisition cost of the plant and multiplying this cost by the percentage savings.

Example

For the "parent" ship with 26,000 SHP, 2 Boilers, 2 Stage feed heating, the percentage savings is: 3.82% (from 5.7.1).

For a sample ship with 30,000 SHP, 2 Boilers and 2 Stage feed heating, the total acquisition cost is estimated by the formula:

$$A = 42855.7 (\text{SHP})^{0.5}$$

and found to be $A = \$7,42 \times 10^6$

Therefore the savings is:

$$s = .0382 \times 7.42 \times 10^6 = \$283,000$$

Refer to Section 5.7.2 and Table 5-27 for estimation of savings for all other steam plants. Diesel plant savings are summarized in Section 5.7.2

5.3 ANALYSIS OF TOTAL PLANT STANDARDS - GROUP I

5.3.1 General

5.3.1.1 Brief Description of Group 1 Standards

The proposed total plant standards were described as to contents and extent in the standard formats developed in the course of Sub-task 2 efforts. More detailed copies of these formats are included in Appendix-C.

As established in Sub-task 2, Paragraph 4.5.4.1, the total plant standard is considered a “top level reference document which can be utilized in defining and designing the total propulsion plant”, and it contains the performance parameters and operating characteristics on which the design of major systems for the total plant is based.

5.1.2 Candidates Selected for Economic Analysis

The results of the forecast showed that within the forecast period, 239 ships with geared steam turbine propulsion plants would be contracted for. Ships with gas turbine propulsion plants were next with a number to be contracted of 119, and medium-speed diesel propelled ships followed with a predicted number of 90.

It appears reasonable and logical that economic analyses should be performed for each of these three propulsion plants. However, as discussed in Sub-task 2, paragraph 4.6.3, gas turbine propulsion plants have been essentially standardized at the total package level by the manufacturers in such a manner that there would be little if any difference between the existing approach and the standards approach. It was therefore deemed premature to attempt an economic analysis of the gas turbine propulsion plant.

--

The following two total plants were selected for quantitative analysis:

1. For Steam Plants: a 26,000 SHP Two Boiler two-stage feed heating cycle geared steam turbine installation.
2. For diesel plants: a 14,000 SHP medium-speed, geared diesel installation.

5.3.1.3 Limitations of Analyses

In performing the economic analyses, the basic guidelines" established in 5.2.2 were followed. As will be recalled, these guidelines consisted of certain assumptions and criteria. The accuracy of the analyses naturally depends largely on the validity of these guidelines. Additionally, the specific assumptions made in connection with each analysis and the actual numerical data used in estimating costs for cost items involved limit the accuracy of the results obtained. It can be concluded, therefore, that the precise amount of savings estimated - in terms of numerical evaluations - may be subject to some uncertainty. However, the comparative evaluations are useful and it can be deduced with confidence that if the standards in question are implemented, there will be a definite trend toward savings, and that it is feasible to initiate a program toward implementation of total plant standards.

5.3.2 26,000 SHP Steam Propulsion Plant Analysis

In the following pages analysis of the steam propulsion plant is presented. The selected standard's SHP range is 26,000. Group I format of Appendix C.I.I describes the possible contents of a total plant standard for this horsepower range as well as all other ratings.

The analyses, as described in greater detail in 5.3.2.1 and 5.3.2.2, are based on the assumption that a complete standard had been developed and implemented for use by shipyards, design agents, manufacturers, and owners, and that it contains, as a minimum, the extent of information outlined in the format.

5.3.2.1 Definition of Existing Approach

The economic analyses are based on a comparison of the existing method of production in the U.S. Shipbuilding Industry for the design of a total propulsion plant with the method of production that would be used if the proposed total plant standards were implemented and made available to the shipyards and ship designers.

The present method, or the "existing approach" is defined as follows.:

- a. The design of the propulsion plant is not available.
- b. Starting with the owner's requirements, a complete preliminary design is developed following normal procedures.
- c. Contract and detail designs are developed after finalizing the preliminary design parameters.

The breakdown of cost items for the existing approach will be as listed on the analysis formats in 5.3.2.3 and 5.3.3.3, for steam and diesel propulsion plants respectively*

5.3.2.2 Definition of Standards Approach

With the standards approach, the following specific assumptions apply:

- a. A formal "Total Plant Standard" for the SHP and type of propulsion plant in question is available to the shipyard and the ship designer;
- b. This standard document contains all the information, listed in the standard format of Appendix C.I.1;

c. For the shaft horsepower range in question, the standard heat balances contained in the formal document will be useable with little or no modifications for all possible ship types and variations.

The breakdown of cost items for the standards approach is as shown below. (This breakdown was the basis for the analysis forms used in 5.3.2.3.)

a. For Contract Design:

1. Study owner's requirements and decide on the type of power plant and drive system for the SHP range. Select a standard power plant from the available total plant standards which most nearly fulfills the requirements. Review the standard heat balances and generator sizing.
2. Review and finalize the standard pump and heat exchanger sizing calculations.
3. Review and finalize the standard electrical load analysis.
4. Review Standard schematic engine room arrangements and add ship-plant interface.
5. Review and finalize standard piping systems schematics.
6. Develop engine room arrangements.

7. Review and finalize standard piping diagrammatic arrangements.
8. Review standard line shaft and bearing arrangements and add interface with the ship.
9. Develop set of secondary contract drawings.
10. Amplify standard and compile information developed into a contract specifications.
11. Finalize conditional ABS and USCG approvals.

b. For Detail Design:

1. Prepare equipment and material specifications.
2. Perform bidding and procurement operations.
3. Produce final heat balance diagram.
4. Produce final electrical load analysis.
5. Finalize shafting & bearings calculations.
6. Perform piping system stress analysis
7. Finalize piping system diagrammatic arrangement drawings.
8. Develop complete set of detail working drawings.
9. Complete detail specifications for propulsion machinery.
10. Prepare test & trial memoranda
11. Obtain ABS, USCG and Owner's approvals.

\

5.3.2.3 Cost Analyses

Based on the breakdown of cost items for the existing and standards approaches for the 26,000 SHP steam turbine propulsion plant, the cost analyses were performed on analysis forms included in following pages.

The costs were estimated separately for the contract design and detail design phases. The source for labor manhours entered for the existing method is MR&S data compiled from previous experience. For the standards approach, the labor expenditures are estimated values.

The results can be summarized as follows:

Design Phase	Savings in Labor Manhours	Savings In \$	Schedule Time Savings Months
Contract Design	6740	\$60,660	4
Detail Design	3020	27,180	3
Total Savings	9760	87,840	7

Therefore a total savings of 9760 manhours is possible in labor expenditures and this may correspond to a scheduling time savings of up to seven months. The dollar value of the savings, based on the \$9/manhour rate, is \$87,840. As will be recalled from 5.2.2.2, the rate used here contains the fringe benefits but has not allowance for overhead. It follows that, depending on the overhead rate, the actual savings will probably be considerably greater than the \$87,840 estimated.

Group T - Economic Analysis

7.3.2.3

ZC, am SHP STEAM TURBINE PLANT

CONTRACT DESIGN

COST ITEMS		EXISTING APPROACH			STANDARDS APPROACH			NOTES	
NO.	DESCRIPTION	DIRECT LABOR MH	INDIRECT LABOR MH	LABOR COST %	SCHEDULE MONTHS	DIRECT LABOR MH	INDIRECT LABOR MH	LABOR COST %	SCHEDULE MONTHS
1	PREUM. Heat Balance	1200			3.0	40			.2
2	PUMP & HEAT XCHG. SIZING	2000			4.3	80			.5
3	PRELIM. ELECT. LENO. ANAL.	800			5.0	40			.6
4	SCHEM. E.R. ARRGT.	200			5.0	80			1.0
5	PREUM PIPING SchematicS	600			5.3	60			1.2
6	ENGINE ROOM ARRANGEMENTS	800			5.9	800			1.8
7	PIPING SYSTEMS								
8	DIAGRAMMATIC ARRGT'S	1500			6.0	40			1.8
9	LINESHAFT & BEARINGS DIAG. ARRGT. & CALCS.	400			6.0	80			1.8
10	SET OF STANDARDITY CONTRACT DUGGS.	500			6.0	200			2.0
11	CONTRACT SPECS	1000			6.0	1000			2.5
12	NAC & USCG APPROVALS	200			6.5	40			2.5
13									
14									
15									
16									
MRS-2650.C DEC. 74		TOTALS	9200	82,800	6.5	2460	22,140	2.5	
		(LESS STDS. APPR.)							
		SAVINGS	\$	60,660	4.0				

TABLE 5-7

GROUP I - Economic Analysis

S.3.2.3

26,000 SHP STEAM TURBINE PLANT

DETAIL DESIGN

COST ITEMS	NO.	EXISTING APPROACH				STANDARDS APPROACH				NOTES
		DIRECT LABOR MH	INDIRECT LABOR MH	LABOR COST	SCHEDULE MONTHS	DIRECT LABOR MH	INDIRECT LABOR MH	LABOR COST	SCHEDULE MONTHS	
1	SPECS. FOR EQUIP. & MTL.	1500			5	750				2
2	BIDDING & PROCUREMENT	600			7	300				4
3	FINAL HEAT BALANCE	300			8	40				3
4	FINAL ELEC. LOAD ANAL.	300			9	40				3
5	SHAFTING CALC'S.	500			9	400				7
6	PIPING STRESS ANAL.	1800			9	800				8
7	PIPING DIAG. KITS/ETS.	300			9	150				8
8	DETAIL WORKING DRAWINGS	10,000			14	10,000				12
9	DETAIL SPECS.	1,000			8	200				2
10	TEST & TRIAL MEMOS	600			15	600				12
11	APPROVALS	800			16	600				13
12										
13										
14										
15										
16										
MRES-2650.C DEC. 74	TOTALS	16,900	152,100	16	13,880	124,920	13			
	(LESS STD'S. APPR.)									
	SAVINGS									
		27,180	3							

TABLE 5-8

5.3.3 14,000 SHP Medium Speed Diesel Plant Analysis

In the following pages, analysis of the medium speed diesel propulsion plant is presented. The selected candidate's SHP range is 14,000. Group 1 format of Appendix C.1.2 describes the contents of a typical total plant standard for this horsepower range as well as all other ratings.

The analyses, as described in greater detail in 5.3.3.1 and 5.3.3.2, are based on the assumption that a complete standard had been developed and implemented for use by shipyards, design agents, manufacturers and owners, and that it contains, as a minimum, the extent of information outlined in the—format.

5.3.3.1 Definition of Existing Approach

The present, or the “existing” approach, in connection with diesel propulsion plants, is defined in the same manner as with the steam propulsion plant:

- a. A design for the plant is not available.
- b. Starting with the owner’s requirements, a complete preliminary design is developed following normal procedures.
- c. Contract and detail designs are developed after finalizing the preliminary design parameters.

The breakdown of cost items for the existing approach will be as shown on the analysis formats of 5.3.3.3.

5.3.3.2 Definition of Standards Approach

The following specific assumptions are applicable for the analysis of the standards approach:

- a. A formal “Total Plant Standard” for the SHP and type of propulsion plant desired is available to the shipyard and the ship designer.
- b. This standard document contains all the information listed in the standard format of Appendix C.1.2.

The breakdown of cost items for the standards approach is as shown below. (This breakdown was the basis for analysis forms used in 5.3.3.3)

a. For Contract Design:

1. Study owner's requirements and decide on the type of power plant and drive system for the SHP range. Select a standard power plant from the available total plant standards which most nearly fulfills the requirements.
2. Review and finalize the auxiliary and support systems for the main propulsion plant.
3. Review and finalize the standard sizing of equipment and materials.
4. Review and finalize standard piping system schematics.
5. Review and finalize the standard electrical load analysis.
6. Review standard lineshaft and bearing calculations and diagrammatic arrangements, finalize, and add interface with the ship.
7. Review standard schematic engine room arrangements and add ship-plant interface.
8. Develop engine room contract arrangement plans.
9. Develop contract diagrammatic arrangements for piping systems.
10. Develop set of secondary contract drawings.
11. Develop contract specifications.
12. Obtain standard ABS and USCG approvals.

b. For Detail Design:

1. Prepare technical and procurement specifications for equipment and materials for the total propulsion plant.
2. Conduct bidding and procurement operations.
3. Perform final shafting calculations, finalize shafting and bearings arrangements, obtain torsional vibration analysis for the engine and shafting system.
4. Finalize diagrammatic arrangement of propulsion piping systems, add interface with ship and other non-propulsion piping systems.
5. Conduct final electrical load analysis required for electrical one-line diagram.
6. Develop complete set of working drawings related to the main propulsion systems.
7. Perform stress analysis's for the piping systems.
8. Develop detail specifications for the main propulsion Systems .
9. Prepare test and trial memoranda.
10. Obtain USCG, ABS, Owner's, and U.S. Public Health Service approvals as required.

5.3.3.3 Cost Analysis

The contract design phase and the detail design phase were analyzed separately.

The labor manhour expenditures for both the existing and the standards approaches were estimated by MR&S since no engineered time data or work sampling data were available.

A summary of the results follows:

Design Phase	Savings in Manhours	Savings In \$	Schedule Time Savings - Months
Contract Design	4200	\$37,800 .	3.3
Detail Design	2060	18,540	3.0
Total. Savings	6260	56,340	6.3

A total savings of 6260 manhours can be realized in labor expenditures. This may correspond to a scheduling time savings of up to 6.3 months. The dollar value of the savings, based on the established \$9/Manhour rate (see 5.2.2.2), is \$56,340. Since the rate used does not contain overhead expenses, which depend on the actual overhead rate, the net total savings will probably be considerably more than the estimated value of \$56,340.

GROUP I - ECONOMIC ANALYSIS

5.3.3.314,000 SHP MEDIUM SPEED DIESEL PLANTCONTRACT DESIGN

COST ITEMS, No.	DESCRIPTION	EXISTING APPROACH				STANDARDS APPROACH				NOTES
		DIRECT LABOR M.H.	INDIRECT LABOR M.H.	LABOR COST	SCHEDULE MONTHS	DIRECT LABOR M.H.	INDIRECT LABOR M.H.	LABOR COST	SCHEDULE MONTHS	
1	PRELIMINARY DESIGN	400			1	40			2	
2	DESIGN OF AUXILIARY & SUPPORT SYSTEMS	1000			2	160			1.6	
3	SIZING OF EQUIPMENT & MAT'L'S.				3	80			1.2	
4	PIPING SCHEMATICS	200			3.5	120			1.5	
5	PRELIMINARY ELECT. LOAD ANALYSIS	=		14	80 ..				1.8	
6	LINESHAFT & BEARINGS DIAG. ARRGT. & CALC'S.	400		4.5	80				2.8	
7	ENGINE ROOM SCHEMATIC ARRGT.	200		4.7	40				2.1	
8	ENGINE ROOM - CONTRACT ARRANGEMENT DWGS.	600		5.3	600				2.4	
9	PIPING SYSTEMS - CONTRACT DIAG. ARRANGEMENTS	800		5.7	200				2.6	
10	SET OF SECONDARY CONTRACT DWGS.	1000		6.0	400				3.0	
11	CONTRACT SPECIFICATIONS	800		6.0	800				3.0	
12	ABS & USCG APPROVALS	200		6.5	40				3.2	
13										
14										
15				1						
16				1+						
MR&S-2550.C DEC. 74	TOTALS	6800	61,200	6.5	2600	23,400	3.2			
	(LESS STDS. APPR.)									
	SAVINGS	37,800		3.3						

TABLE 5-9

GROUP I - ECONOMIC ANALYSIS

14,000 SHP MEDIUM SPEED DIESEL PLANT

5.3.3.3

DETAIL DESIGN

COST ITEMS		EXISTING APPROACH				STANDARD APPROACH			
NO.	DESCRIPTION	DIRECT LABOR MH	INDIRECT LABOR MH	LABOR COST %	SCHEDULE MONTHS	DIRECT LABOR MH	INDIRECT LABOR MH	LABOR COST %	SCHEDULE MONTHS
1	EQUIPMENT & MATERIAL SPECS	1200			4	700			2
2	BIDDING & PROCUREMENT	500			5	250			2.5
3	FINAL SHAFTING CALC. & VIBRATION ANALYSIS	500			6	400			3
4	PIPING SYSTEMS DIAGRAMMATIC ASPECT	400			7	200	1	1	3
5	FINAL ELECTRICAL LOAD ANALYSIS	200			7	40			3
6	DETAIL WORKING DRAWINGS	6,400			11	3,400			9
7	PIPING SYSTEMS STRESS ANALYSIS	400			11	350			9.5
8	DETAIL SPECS	800		8	200				10
9	TEST & TRIAL MEMORANDA	600		12	600				10
10	APPROVALS	700		13	500				10
11									
12									
13									
14									
15									
16]									
MRS-2650.C Dec. 74	TOTALS	11,700	105,300			9,640	86,760	10	
	(LESS STD. APPR.)		86,760	10					
	1 SAVINGS	18,540	3						

TABLE 5-10

5.3.4 Generalization of Results for Group I Standards

5.3.4.1 For Steam Turbine Plants

The results of economic analysis for a 26,000 SHP Geared Steam Turbine Propulsion plant total package standard showed that the total savings that can be expected is \$87,840 in labor cost and seven months in scheduling time. It will be remembered that the steam plant in question was a "two boiler - two stage feed heating" , cycle.

In subtask-1 report, "Forecast for Propulsion Plant Standards," it was predicted that the ships to be contracted for during the forecast period would require, in addition to the "2 Boiler - 2 Heater" cycle plant mentioned above, the following different plant cycles:

- o Two boiler, 4 heater cycle
- o One boiler, 2 heater cycle
- o One boiler, 4 heater cycle
- o Reheat cycle.

Subjecting each one of these cycles to a comparison against the basic cycle of 2 boilers and 2 heaters, the probable total savings can be estimated by assuming that the savings will be a constant percentage of the total acquisition cost of the propulsion plant.

Table 5 - 11 Summarizes the results of calculations performed in this manner. The total acquisition costs shown in column A of this table are taken from Table 5-27 in Section 5.7.

The constant "percentage value applied in calculating savings for each cycle is derived as follows from the parent 26,000 SHP, 2 boiler, 2 heater cycle propulsion plant savings:

Savings for parent plant = \$87,840

Total acquisition cost of parent plant =

\$6.78 x 10⁶

Percentage Savings = $\frac{87,840}{67,800} \times 100 = 1.296\%$

The predicted savings listed in Column B for different cycle types are then obtained by multiplying this constant percentage value by the total acquisition costs in column A.

5.3.4.1

STEAM PLANT			(A) ACQUISITION COST \$.10 ⁶	(B) SAVINGS WITH GR.I STDS. \$
CYCLE	SHP	SYMBOL		
TWO BOILERS TWO HEATERS	16,000	A-16	5.42	70,243
" "	26,000	A-26	6.78	87,840
" "	30,000	A-30	7.42	96,163
TWO BOILERS FOUR HEATERS	37,000	B-37	8.48	109,900
" " "	44,000	B-44	9.24	119,750
" "	50,000	B-50	9.85	127,656
ONE BOILER TWO HEATERS	25,000	C-25	6.82	88,387
" "	30,000	C-30	7.19	97,070
ONE BOILER FOUR HEATERS	37,000	D-37	8.61	111,586
REHEAT CYCLE	44,000	E-44	9.48	122,861
" "	50,000	E-50	10.09	130,766

TABLE 5-11

5.3.4.2 For Diesel Plants

The savings due to implementation and use of total plant standards for the 14,000 SHP Medium-Speed Diesel Propulsion Plant was estimated in 5.3.3.3 and found to be \$56,340.

The forecast includes ships with medium-speed diesel engine propulsion plants of 7,000 and 28,000 SHP as well. Following the same logic as for the steam turbine plants, and assuming that the percentage savings on the basis of total acquisition cost is constant, the individual savings for each varying SHP range can be predicted as follows:

For the parent plant of 14,000 SHP, total acquisition cost, from 5.7, is 4.32×10^6 .

The percentage savings:

$$\frac{4.32 \times 10^6}{4.32 \times 10^6} \times 100 = 1.304\%$$

Applying this constant percentage value to other SHP ranges:

For 7,000 SHP Plant:

$$\text{Savings} = .01304 \times 2.78 \times 10^6 = \$36,251$$

For 28,000 SHP Plant:

$$\text{Savings} = .01304 \times 7.05 \times 10^6 = \$91,932$$

5.4 Analysis of Module Standards - Group II

5.4.1 General

5.4.1.1 Brief Description of Group II Standards

The module standards were defined in subtask-2 (4.5.3.2) as documents “which contain the technical data and information to define and describe a complete sub-system or group of like equipment” mounted together on a common base. A format was developed for this standard and is included in Appendix c.2.

An option is open to the shipyard with the module standards. to either purchase a vendor-assembled module (“BUY” decision) or to buy the individual equipment from Vendors and assemble them in accordance with the requirements of the Standard in the shipyard (“MAKE” decision).

5.4.1.2 Candidates Selected for Economic Analysis

As a representative sampling of potential candidates for module standards, the following were selected, as discussed in 4.6.2, for economic analysis in the present subtask:

1. Fuel Oil Service System Module
2. Main Feed Pump Module
3. Diesel Accessory Rack Module

5.4.1.3 Limitations of Analysis

In connection with each individual module, assumptions additional to those established in 5.2.2 were made regarding various cost items. In economically analyzing the module standards, it was recognized that the basic function involved was the assembling of individual equipment comprising the module on a common foundation and making necessary connections. As such, it was more readily adaptable to shipyard procedures, and it was therefore possible to follow the Bath Iron Works Corporation suggested "Cost Analysis Guide" of Table 5-1. As a result of this approach, however, the analyses were further dependent on the validity of estimates made for cost items such as crane time, set-up time, inventory, maintenance and repairs, etc. It is quite clear that these cost items will require differing expenditures in different shipyards. The estimates presented here, naturally are subjective in this sense. Nevertheless, they results in finite savings with standard modules over non-standard modules, be it shipyard-assembled or vendor-assembled. .

5.4.1.4 "Make-or-Buy" Decision

Once the module standards are developed and implemented, the shipyards will have a genuine opportunity *to* investigate the advantages and/or disadvantages of assembling the module **themselves**. If an economic gain is foreseen in shipyard-assembled modules and if the production work force of the shipyard necessary to do this assembling, without disrupting the normal ship construction and installation. work, is available, then the decision will be "make". If, however, the reverse happens, the only choice will be to "buy" the vendor-supplied module. There may be special cases when due to availability of slack work force, a "make" decision can be adopted despite the fact that buying the module may cost less.

In the analyses reported upon in 5.4.2, the "make-or-buy" decision, strictly in terms of dollar values, is apparent. The cost savings estimated for each of the three selected candidates show that Alternative 1, which assumes a vendor-supplied standard module, is economically advantageous over Alternative 2 which is the case for a shipyard-assembled standard module. An additional factor which is not accounted for in this report is the probable lower overhead rate of a module builder as compared to the shipyard. However, as pointed *out* above, the actual "make-or-buy" decision will have to be resolved by the individual shipyards for the time frame at hand. This decision may have to be made after considering some or all of the following factors:

- 1. Responsibility**
- 2. Proficiency of procurement**
- 3. Proficiency of assembly**
- 4. Quantity buys**
- 5. Profits or mark-ups**
- 6. Delays**
- 7. Delivery times**
- 8. Work for personnel at slack times**
- 9. Module design costs**
- 10. Module design control**
- 11. Overhead comparison**

5.4.1.5 Definition of Existing Approach

The existing or "Present" approach, which is assumed to be the method of production "used in U.S. Shipyards today, is defined as follows:

- a. Individual components of the module are purchased separately and arrive at the shipyard on separate foundations.
Shipyard must design the **module**.
- b. The shipyard must store and protect equipment until it is ready **for assembly**.
- c. The shipyard has no preformed pipe ready.
- d. Assembling of the non-standard module will **be done by the shipyard** prior to installation on the ship.

The breakdown of cost items for the *existing* approach will be as listed on the analysis formats in 5.4.2.

5.4.1.6 Definition of Standards Approach

The economic analyses of modules for the standards approach is performed for two distinctly different alternatives. The first alternative is the purchasing of a vendor-assembled standard module by the shipyard, and the second is the assembling of the standard module by the shipyard. Each of these alternatives will be traded off against the present method.

The breakdown of *cost* items for the standards approach is as shown below (This breakdown was used as the basis for analysis forms used in 5.4.2):

a. Procurement Phase

1. Technical department **direct labor**
2. Contracts department direct labor
3. Planning and estimating department direct labor
4. Bid and **response**
5. **Equipment costs.**

b. Installation Phase

1. Direct labor **in shop**
2. **Direct labor on ship**
3. **Crane time**
4. **Engineering interface**
5. **Set up time**
6. **Delays and spool pieces**
7. **Inventory**
8. **Maintenance and repairs**

c. Test and Check Out Phase:

These costs are assumed *to be equal for the Present*
and **Standards approaches.**

5.4.2 Cost Analysis

The cost analyses for the module standard were based on the breakdown of cost items for the existing and standards approaches as described in 5.4.1.5 and 5.4.1.6.

For the existing approach, engineered time data for various operations such as planning and estimating department direct labor, contract department direct labor and technical department direct labor were used as supplied by Bath Iron Works Corporation. All other cost items for which engineered time data or work sampling data were not available were estimated by MR&S.

Two different alternatives were investigated for the standards approach as can be seen in the analysis forms on the following pages. The first alternative is the "vendor supplied standard module", and the second is a "shipyard assembled standard module". For both of these alternatives, the method of production was carefully considered and cost items were estimated one by one. Since no precedent existed for a standards approach of the type in question, all cost values were necessarily estimated by MR&S.

In the analysis forms that follow, the recurring cost items are identified with the symbol (R). The savings for these cost items will repeat themselves even in the case of multiple ship orders.

The analyses show that for the candidate standards analyzed, the following savings are possible when using module standards compared to the non-standard module approach.

	Vendor Supplied Std. Module	Yard Assembled Std. Module
Fuel Oil Service System Module	\$17,470	\$12,835
Main Feed Pump Module	11,757	7,407
Diesel Accessory Rack	31,607	20,804

GROUP II ECONOMIC ANALYSIS

5.4.Z.1 FUEL OIL SERVICE SYSTEM MODULE

COST ITEM	EXISTING APPROACH SHIPYARD ASSEMBLED NON-STANDARD MODULE	STANDARDS APPROACH	
		ALT 1 VENDOR SUPPLIED STANDARD MODULE	ALT 2 SHIPYARD ASSEMBLED STANDARD MODULE
PROCUREMENT	TECH. DEPT. DIRECT LABOR	5,976	1,476
	CONTRACTS DEPT. DIR. LAB.	(R) 3,024	936
	P&E DEPT. DIR. LAB.	2,727	2,275
	BID & RESPONSE	1,620	450
	EQUIPMENT COST	(R) 1,310	568
	SUB-TOTAL	14,657	5,725
INSTALLATION	DIRECT LABOR - SHOP	(R) 2,832	1,134
	DIRECT LABOR - SHIP	(R) 1,230	318
	CRANE SERVICE	f=.. L= 240	96
	ENGINEERING INTERFACE	1,350	426
	SET-UP TIME	534	48
	DELAYS & SPOOL PIECE	(R) 4,800	1,200
	INVENTORY	(R) 702	114
	MAINT. & REPAIRS	(R) 246	60
	SUB-TOTAL	11,934	3,396
TEST & CHECK-OUT		(R) ~E	~E
TOTAL		26,591	9,121
SAVINGS		17,470	13,756

(R) RECURRING COST

TABLE 5-12

GROUP II ECONOMIC ANALYSIS

S 4.2.2 MAIN FEED PUMP MODULE

COST ITEM	EXISTING APPROACH SHIPYARD ASSEMBLED NON-STANDARD MODULE	STANDARDS APPROACH	
		ALT 1 VENDOR SUPPLIED STANDARD MODULE	ALT 2 SHIPYARD ASSEMBLED STANDARD MODULE
TECH. DEPT. DIRECT LABOR	5,994	1,818	1,989
CONTRACTS DEPT. DIR. LAB.	(R) 2,016	783	1,278
P&E DEPT. DIR. LAB.	2,052	1,269	3,780
BID & RESPONSE	1,080	540	432
EQUIPMENT COST	(R) 1,210	640	640
SUB-TOTAL	12,352	5,050	8,119
DIRECT LABOR - SHOP	(R) 1,494	726	978
DIRECT LABOR - SHIP	(R) 1,440	252	354
CRANE SERVICE	(R) 180	84	84
ENGINEERING INTERFACE	900	213	768
SET-UP TIME	480	66	54
DELAYS & SPOOL PIECE	(R) 2,040	1,200	1,296
INVENTORY	(R) 468	90	228
MAINT. & REPAIRS	(R) 114	30	120
SUB-TOTAL	7,116	2,66	3,882
TEST & CHECK-OUT	(R) ~E	~E	~E
TOTAL	19,468	7,711	12,001
SAVINGS		11,757	7,467

(R) RECURRING COST

TABLE 5-13

GROUP II ECONOMIC ANALYSIS

5.4.2.3 DIESEL ACCESSORY RACK MODULE

1-

COST ITEM	EXISTING APPROACH	STANDARDS APPROACH	
		ALT 1	ALT 2
SHIPYARD ASSEMBLED NON-STANDARD MODULE	SHIPYARD ASSEMBLED NON-STANDARD MODULE	VENDOR SUPPLIED STANDARD MODULE	SHIPYARD ASSEMBLED STANDARD MODULE
TECH-DEPT. DIRECT LABOR	7,200	2,088	1,746
CONTRACTS DEPT. DIR. LAB.	(R) 5,760	783	4,914
P&E DEPT. DIR. LAB.	2,736	1,260	3,300
BID & RESPONSE	2,880	540	1,728
EQUIPMENT COST	(R) 2,500	680	680
SUB-TOTAL	21,076	5,351	12,368
DIRECT LABOR - SHOP	(R) 5,208	2,328	3,072
DIRECT LABOR - SHIP	(R) 2,496	648	696
CRANE SERVICE	(R) 570	156	156
ENGINEERING INTERFACE	3,600	942	2,784.
SET-UP TIME	1,236	102	78
DELAYS & SPOOL PIECE	(R) 7,800	3,000	3,192
INVENTORY	(R) 1,872	114	912
MAINT. & REPAIRS	(R) 480	90	276
SUB-TOTAL	23,262	7,380	11,166
TEST & CHECK-OUT	(R) ~E	~E	~E
TOTAL	44,338	12,731	23,534
SAVINGS		31,607	20,804

(R) RECURRING COST

TABLE 5-14

5.4.3 Generalization of Results for Group II Standards

Table 5-15 is-a summary of results for the economic analyses performed in 5.4.2. Following the procedure outlined in 5.2.3, these results' can be used in estimating the "generalized" savings for all other possible standards in Group II. **Table 5-16** lists all the module standards considered in Subtask - 2, identifies each of these with a similar standard from **Table 5-15**, and calculates the predicted overall savings obtainable through its use.

The following size and complexity contributions are assumed for each of the economically analyzed module standards for use when adopting them for comparison as a similar standard:

Fuel Oil Service System Module: Size: 45%

Complexity: 55%

Main Feed Pump Module: Size: 35%

Complexity: 65%

Diesel Accessory Rack Module: Size: 40%

Complexity: .60%

STANDARD MODULE	OVERALL SAVINGS \$	REF.
FUEL OIL SERVICE SYSTEM	17,470	5.4.2.1
MAIN FEED PUMP	11,757	5.4.2.2
DIESEL ACCESSORY RACK	31,607	5.4.2.3

TABLE 5-15

t

GENERALIZED SAVINGS FOR GROUP II
MODULE STANDARDS

TABLE : 15 - 16

5.5 Analysis of Envelope Standards - Group III

5.5.1 General

5.5.1.1' Brief Description of Group III Standards

The envelope standard is a document which contains the technical data and information "required to define and describe the interface characteristics" of the equipment." As it" was discussed In 4.5.2.1 and 4.5.3.3, this standard concept is based on an imaginary cube envelope around the equipment. All mechanical connections are brought to the surfaces of this envelope, and the shipyard brings services to these surfaces.

It will. be remembered that space limitations may restrict the use of envelope standards, but that as a major advantage they effectively establish equipment standards without interfering with the independence of individual equipment manufacturers. In Appendix C.3. . a standard envelope format is included to indicate the content and extent of this standard concept.

5.5.1.2 Candidates Selected for Economic Analysis

Selected for economic analysis in Subtask-3 were the following envelope standards candidates:

- 1. Boiler Envelope**
- 2. Lube Oil Purifier Envelope**
- 3. Main Feed Pump Envelope**

Each of these envelopes will be economically analyzed for the existing method, and the standards approach and results will be compared to estimate the savings due to using envelope standards.

5.5.1.3 Limitations of Analyses

The accuracy of the results are dependent upon specific assumptions made in analyzing the cost items for each Candidate Standard. Especially such cost items as crane time, set-up time, inventory, maintenance and repairs, etc., may vary considerably from one shipyard to another. Therefore the estimates presented here are necessarily subjective in this sense. However, the overall effect obtained is realistic, and even though the absolute values of savings may be subject to variations, the direction of gains is firm and finite with envelope standards as compared to no standards.

A "make-or-buy" decision may be thought of in relation to the envelope standards. However, especially for smaller pieces of equipment which are likely candidates for envelope standards, the number and extent of external connections to the equipment are so few that little, if any, difference can be expected between the "make" or "buy" alternatives.

5.5.1.4 Definition of Existing Approach

The present or existing approach used in the U.S. Shipyards today for those equipment which are candidates for envelope standards can be summarized as follows:

- a. The equipment is purchased through normal channels and following usual procurement procedures.
- b. The equipment is stored and protected in the shipyard until it is ready for installation on board ship.
- c. All mechanical, electrical and other external connections to the equipment are made after installation.
- d. Foundations, if required, are manufactured by the shipyard after final approved drawings from the vendor are received.

The breakdown of cost items for the present approach will be the same as those for the module standards and as shown on analysis formats in 5.5.2.

5.5.1.5 Definition of Standards Approach

The standards approach for the case with envelope standards can be defined as follows:

- a. The equipment can be purchased directly from the manufacturers complete with its base and external connections to the interface points on the envelope surface.
- b. The shipyard will be able to manufacture preformed piping and prepare connections until the interface points on the envelope surface.

c. The envelope "includes the standard base and the shipyard can prepare ship's foundation to match using the drawings in the standard document without waiting for vendor's plans.

The breakdown of cost items are the same as for module standards as shown in 5.4.1. and on analysis formats as well.

5.5.2 Cost Analyses

The breakdown of *cost* items for the existing and standards approaches as described in 5.5.1.4 and 5.5.1.5 were used as a basis for the cost analyses of envelope standards.

For the existing approach, Bath Iron Works Corporation's engineered time data were used in establishing expenditures for various procurement operations such as planning and estimating department direct labor, contracts department direct labor and technical department direct labor. No engineered time data nor work sampling data were available for the remaining cost items, and accordingly the values used for these are MR&S estimates.

There was no precedent for a "Standards Approach" from which source data could be drawn. For this reason, all cost items for the standards approach were estimated by MR&S.

The recurring cost items are identified with the symbol (R) in the analysis forms that follow. The savings for these cost items will repeat themselves even if multiple ships are being built.

The results of the analyses indicate that for the candidate standards in question the following savings are attainable when using envelope standards as compared with the present approach:

Main Boiler Envelope = \$17,124

Lube Oil Purifier Envelope = \$ 4,461

Main Feed Pump Envelope = \$ 5,394

GROUP III - ECONOMIC ANALYSIS

5.5.2.1 MAIN BOILER ENVELOPE

COST ITEM		EXISTING APPROACH	STANDARDS APPROACH
PROCUREMENT PHASE	TECH. DEPT. DIRECT LABOR	4,356	1,800
	CONTRACTS DEPT. D. LABOR (R)	1,008	783
	P&E DEPT. D. LABOR	1,728	1,161
	BID & RESPONSE	1,620	270
	MATERIAL COSTS (R)	750	1,500
	SUB-TOTAL	9,462	5,511
INSTALLATION PHASE	DIRECT LABOR - SHOP (R)	10,200	9,408
	DIRECT LABOR - SHIP (R)	9,180	7,020
	CRANE TIME (R)	624	624
	ENGINEERING INTERFACE	2,280	432
	SET-UP TIME	1,440	720
	DELAYS & SPOOL PIECE (R)	7,200	240
TEST & CHECK-OUT PHASE	INVENTORY (R)	936	240
	MAINT. & REPAIRS (R)	288	288
	SUB-TOTAL	32,148	18,972
TEST & CHECK-OUT PHASE		(R) ~ E	~ E
TOTAL		41,610	24,486
SAVINGS			17,124

(R) RECURRING COST

TABLE 5-17

GROUP III - ECONOMIC ANALYSIS

5.5.2.2 LUBE OIL PURIFIER ENVELOPE

COST ITEM		EXISTING APPROACH	STANDARDS APPROACH
PROCUREMENT	TECH. DEPT. DIRECT LABOR	2,574	1,458
	CONTRACTS DEPT. D. LABOR	(R) 1,008	.657
	P&E DEPT. D. LABOR	702	810
	BID & RESPONSE	720	252
	MATERIAL COSTS	(R) 40	100
	SUB-TOTAL	5,044	3,277
INSTALLATION PHASE	DIRECT LABOR - SHOP	(R) 1,392	576
	DIRECT LABOR - SHIP	(R) 1,572	918
	CRANE TIME	(R) 156	156
	ENGINEERING INTERFACE	474	216
	SET-UP TIME	432	ZIG
	DELAYS & SPOOL PIECE	(R) 900	240
	INVENTORY	(R) 216	126
	MAINT. & REPAIRS	(R) 42	42
	SUB - TOTAL	5,184	2,490
TEST & CHECK-OUT PHASE		(R) ~ E	~ E
TOTAL		10,228	5.767
SAVINGS			4,461

(R) RECURRING COST

TABLE 5-18

GROUP III - ECONOMIC ANALYSIS

5.5.2. 3 MAIN FEED PUMP ENVELOPE

COST ITEM		EXISTING APPROACH	STANDARDS APPROACH
PROCUREMENT	TECH. DEPT. DIRECT LABOR	3,528	1,620
	CONTRACTS DEPT. D. LABOR	(R) 1,008	1,008
	P&E DEPT. D. LABOR	1,134	1,107
	BID & RESPONSE	540	252
	MATERIAL COSTS	(R) 225	450
	SUB-TOTAL	6,435	4,437
PHASE	DIRECT LABOR - SHOP	(R) 1,608	624
	DIRECT LABOR - SHIP	(R) 1,956	1,198
	CRANE TIME	(R) 156	156
	ENGINEERING INTERFACE	474	228
	SET-UP TIME	768	264
	DELAYS & SPOOL PIECE	(R) 960	240
INSTALLATION	INVENTORY	(R) 258	126
	MAINT. & REPAIRS	(R) 84	42
	SUB-TOTAL	6,264	2,868
	TEST & CHECK-OUT PHASE	(R) ~ E	~ E
	TOTAL	12,699	7,305
	SAVINGS		5,394

(R) RECURRING COST

TABLE 5-19
E-67

5.5.3 Generalization of Results for Group III Standards

Table 5-20 contains a summary of results of the economic analyses performed in 5.5.2. Following the procedure outlined in 5.2.3, these results can be used in estimating the "generalized" savings for all other standards in Group III. Table 5-21 lists all the envelope standards considered in Subtask 2, identifies each of these with a similar standard from Table 5-20, and calculates the predicted overall savings obtainable through its use.

The following size and complexity contributions are assumed for each of the economically analyzed envelope standards for use when adopting them for comparison as a similar standard:

Main Boiler Envelope:

Size : 40%

Complexity : 60%

Lube Oil Purifier Envelope:

Size : 60%

Complexity : 40%¹

Main Feed Pump Envelope :

Size : 50%

Complexity : 50%

STANDARD ENVELOPE	OVERALL SAVINGS \$	REF.
MAIN BOILER	17,124	5.5.z.1
LUBE OIL PURIFIER	4,461	5.5.z.2
MAIN FEED PUMP	5,394	5.5.z.3

TABLE 5-20

NAME OF CANDIDATE STANDARD	% RATINGS		NAME OF SIMILAR STANDARD	% REDUCTIONS			NET TOTAL SAVINGS \$
	SIZE	COMPLEX'		SIZE	COMPL.	TOTAL	
MAIN STEAM TURBINE ENVELOPE	80	140	BOILER ENVELOPE	32	84	116	19,864
MAIN CONDENSER ENVELOPE	40	50	BOILER ENVELOPE	16	30	46	7,877
MAIN DIESEL ENGINE ENVELOPE	80	100	BOILER ENVELOPE	32	60	92	15,754
MAIN REDUCTION GEAR ENVELOPE	50	70	BOILER ENVELOPE	20	42	62	10,617
MAIN CONDENSATE PUMP ENVELOPE	120	90	FEED PUMP ENVELOPE	60	45	105	5,664
MAIN CIRCULATING PUMP ENVELOPE	130	60	FEED PUMP ENVELOPE	65	30	95	5,124
LUBE OIL SERVICE PUMP ENVELOPE	60	60	FEED PUMP ENVELOPE	30	30	60	3,236
FUEL OIL SERVICE PUMP ENVELOPE	60	60	FEED PUMP ENVELOPE	30	30	60	3,236
DEAERATING FEED HEATER ENVELOPE	120	110	L.O. PURIF. ENV.	72	44	116	5,175
LOW PRESSURE FEED HEATER ENVELOPE	80	90	L.O. PURIF. ENV.	48	36	84	3,747
FUEL OIL HEATER ENVELOPE	70	90	L.O. PURIF. ENV.	42	36	78	3,480

5.6 ECONOMIC ANALYSIS OF-INDIVIDUAL EQUIPMENT STANDARDS - GROUP IV

5.6.1 General ,

5.6.1.1 Brief Description of Group IV Standards

The Group IV Standards should be implemented by means of a "phasing-in" process. The order of development of standards for individual equipment and/or components will be

- 1. Data Standards**
- 2. Procurements Standards**
- 3. Hardware Standards**

Detailed descriptions—of each one of these three different standard concepts, as well as sample formats, are to be found in Appendix C.4. The economic analyses reported upon in this section are based on the sample formats and as such assume that all information mentioned in the formats is available.

In general, the scope of Group IV Standards can be summarized as follows:

Data Standard: Includes technical information which is necessary for ship designers to perform propulsion plant designs at any level without requiring additional information from vendors.

Procurements Standard: Contains both the technical and the legal documentation to purchase vendor equipment.

Hardware Standard: Contains the technical information necessary to define and describe the hardware which is interchangeable among all vendors as to interface.

5.6.1.2 candidates selected for Economic Analysis

As a result of technical analyses performed in Subtask - 2, the following Group IV standards candidates were selected for economic analysis (See Section 4.6.2):

Main Condensate Pump

Starting Air Compressor

Main Boiler

Each of these candidates will be economically .

analyzed for each of the three different concepts of standards.

Analyses will be based on a comparison of the "present" approach (with no standard available) with the "standards" approach (where it will be assumed that standards are available). The "present" and "standards" approaches are more clearly developed in 5.6.1.4 and 5.6.1.5 respectively.

5.6.1.3 Limitations of Analyses

The analyses performed in 5.6.2.2, 5.6.2.3 and 5.6.2.4 are based on the general guidelines discussed in 5.2.2 which make certain assumptions and set certain criteria. Furthermore, in performing the individual analyses, certain additional specific assumptions were made due to a lack of concrete source information on many of the cost items involved. As a result, analyses are best estimates. However, they show a trend toward labor savings for individual equipment standards; so that even though they are limited . in absolute values of savings, they are instrumental in assessing the advantage of implementing Group IV Standards.

5.6.1.4. Definition of Existing Approach

A. For Data Standards

1. Shipyard has a catalog library which is not complete nor standardized.
2. Cost items not listed as variable are assumed constant for this study.
3. A certain amount of revision to the heat balance calculation, arrangement drawings, weight estimates, piping schematics and electrical load analysis will be necessary after Vendor's actual data on the component is received by the Shipyard.
4. It is assumed that a search of the in-house catalog library will enable the shipyard to select a sufficient number of manufacturers whose products will meet the basic design requirements.

B. For Procurement Standards

1. Shipyard has a catalog library which is not complete nor standardized.
2. Cost items not listed as variable are assumed constant for this study.
3. A certain amount of revision to the heat balance calculations, arrangement drawings, weight estimates, piping schematics and electrical load analysis will be necessary after Vendor's actual data on the component is received by the Shipyard.
4. it is assumed that a search of the in-house catalog library will enable the shipyard to select a sufficient number of manufacturers whose products will meet the basic design requirements.

C. For Hardware Standards

1. Shipyard has a catalog library which is not complete nor standardized.,
2. Cost items not listed as variable are assumed constant for this study.
3. A certain amount of revisionto the heat balance calculations, arrangement drawings, weight estimates, piping schematics and electrical load analysis will be necessary after Vendor's actual data on the component is received by the Shipyard.
4. It is assumed that a search of the in-house catalog library will enable the shipyard to select a sufficient number of manufacturers whose products will meet the basic design requirements.
5. It is assumed that a new design or a modification of an existing design will be required for the component in question, by the manufacturer.
6. As a source for man-hours required to develop purchase specs and carry out the planning and contract department operation, engineered time data supplied by Bath Iron Works Corporation is used. -

5.6.1.5 Definition of Standards Approach

A. For Data Standards

- 1. Shipyard has a “Data Standard” available for the subject component.**
- 2. Data Standard contains all technical information at the Vendor plan level.**
- 3. Data Standard does not contain any legal and sales information that can substitute-for a purchase specification.**
- 4. Technical info available in the data standard will reduce the procurement effort by ~ 25%.**
- 5. Due to more accurate data available in the standard in the initial stages of design, the revisions to various contract design work will be reduced by 25%.**

B. For Procurement Standards

- 1. The shipyard has a “procurement standard” available for the subject component.**
- 2. Procurement standard contains all technical and legal information needed to incorporate the subject component into the ship design and also to procure, install and test the same. As such, it will eliminate the need to write purchase specifications and it will reduce the procurement effort by ~ 50%.**
- 3. Revisions to contract design calculations and diagrams will be reduced by ~ 25%.**

C. For Hardware Standards

1. The shipyard has a "Hardware Standard" available for the subject component.
2. The Standard contains all technical and legal information, including:
 - a. Performance characteristics
 - b. Operating characteristics
 - c. Interface requirements
 - d. Packaging information
 - e. Installation drawings and procedure
 - f. Critical materials specifications
- g* Regulatory body approvals
- h. Test memoranda & quality control requirements
- i. Purchase specifications
3. It is assumed that based on the information available in the Standard, the Manufacturers will have developed complete machine designs for manufacture and set-up for manufacture on the component in question.
4. It is further assumed that with the completely accurate technical data available in the Standard, no revisions to the contract design calculations and diagrams will be necessary.

5. Additional savings-which may be possible to attain in the scheduling due to elimination of delays in arrangement drawings and due to reduced delivery time for the manufacture of "Standard" equipment are neglected in this study (since they are difficult to assess due to large variations).

5.6.2 Cost Analyses

The Group IV, Individual Equipment/Component Standards, were analyzed for each of the three different types of standards.

In the following pages, the basis of analyses are listed in the form of a detailed breakdown of cost items. The cost items for each type of standard, namely the data, the procurement and the hardware standard, are presented in an analysis form in the same sequence as the breakdowns in 5.6.2.1.2 through 5.6.2.1.4.

The engineered time data as furnished by Bath Iron Works Corporation are used for estimating the procurement phase cost items for the existing approach. The remaining cost items and the standards approach analysis figures were estimated by MR&S.

The recurring costs are identified in the analysis forms by a (+) sign under the proper column. As it was pointed out earlier, in connection with the module and envelope standards cost analyses, the savings for these cost items will repeat themselves even if a contract for multiple ships were awarded. All other cost items are non-recurring; and as such, they are applicable to the first ship of a type or class to be built in any one shipyard.

The analysis results indicate that the following over-all savings are attainable when using Group IV standards as compared to the present approach of no standards:

	Data Std	Procurement Std	Hardware Std
Main Condensate Pump	1,350	2,124	4,842
Starting Air Compressor	1,242	1,980	4.698
Main Boiler	3,510	6,300	18,570

5.6.2.1 Detailed Breakdown of Cost Items

5.6.2.1.1 Data Standard

Cost Item # 1: Establish Design Requirements

- a) Review preliminary heat balance & establish
 - Performance characteristics
 - Operational characteristics
- b) Review ship specs - determine space & weight relation if any.

cost Item #2: Review Industry Availability

- a) Use in-house catalogues/brochures or information files
 - 1 - Determine if any mfrs have products that fulfill requirements
 - 2 - Select a sufficient number of mfrs whose products general requirements
 - 3 - Write technical specs for the component endeavoring not to stifle competition.
- b) For the Standards Approach, use "Data Standard"
 - 1 - Select components from the data standard
 - 2 - Write technical specs for the components selected.

Cost Item # 3: Prepare Purchase Specs:

- a) Based on Technical specs of cost item #2, write procurement specs.
- b) Incorporate legal and sales information into the procurement specs.

Cost Item #4: Procure

Procure item following normal shipyard procedure.

Cost Item # 5: Incorporate Component into Ship Design

- a) For Existing Approach, obtain vendor's data from the mfr. and:
 - 1 - Revise heat balance to reflect changes in component data as compared to those assumed for preliminary heat balance.
 - 2 - Using size info., develop contract arrangement dwgs.
 - 3 - Use weight info. re ship's weight estimate.
 - 4 - Use piping & valve size info. to develop related piping system schematics.
 - 5 - Use prime mover power characteristics info. to revise preliminary electrical load analysis.
- b) For Standards Approach, use data std to do the same work as pr
 - (a) above.

5.2.1.2 Procurement Standard

Cost Item # 1: Establish Design Requirements

- a) Review preliminary heat balance & establish
 - Performance characteristics
 - Operational characteristics
- b) Review ship specs - determine space & weight relation if any.

Cost Item # 2: Review industry Availability

- a) Use in-house catalogues/brochures or information files
 - 1 - Determine if any mfrs have products that fulfill requirements
 - 2 - Select a sufficient number of mfrs whose products meet general requirements
 - 3 - Write technical specs for the component endeavoring not to stifle competition.
- b)
 - 1 - Select component from the "data" section of procurement standard
 - 2 - Select technical specs from the "specs" section of procurement standard.

Cost Item #3: Purchase Specs

- a) Prepare purchase specs & Legal & Sales info
- b) Select Std. Purchase Specs.

Cost Item #4: Procure

Following normal shipyard procedure (using std. procurement specs.)

Cost Item #5: Contract Design

- a) For Existing Approach, obtain vendor's data from the mfr. and:

- 1 - Revise heat balance to reflect changes in component data as compared to those assumed for preliminary heat balance.
- 2 - Using size info., develop contract arrangement dwgs.
- 3 - Use weight info. re ship's weight estimate
- 4 - Use piping & valve size info. to develop related piping system schematics.
- 5 - Use prime mover power characteristics info. to revise preliminary electrical load analysis. -

b) For Standards Approach, use data std to do the same work as pr

(a) above.
—

5.6.2.1.3 Hardware Standard

Cost Item #1: Establish Design Requirements

- a) Review preliminary heat balance & establish
 - Performance characteristics
 - Operational characteristics
- b) Review ship specs - determine space & weight relation if any.

Cost Item #2: Review Industry Availability

- a) Use in-house catalogues/brochures or information files to screen components available to industry:
 - 1 - Determine if any mfrs have products that fulfill requirements
 - 2 - Select a-sufficient number of mfrs whose products meet general requirements
 - 3 - Write technical specs for the component endeavoring not to stifel competition.
- b) For the Standards Approach, use "Hardware STandards"
 - Select standard hardware which most nearly fulfills requirements of design

Cost Item #3: Procurement

- a) Prepare Purchase Specs.
- b) Procure item following normal shipyard procedure (using tech. specs from 2.a or 2.b)
- c) Select STD Purchase Specs from hardware Std.
- d) Procure item following normal shipyard procedure (using procurement specs from hardware standard) - for the standards approach.

cost Item #4: Incorporate Component into Ship Design

For Existing Approach, obtain vendor's data from the mfr. and:

- a) Revise heat balance to reflect changes in component data as compared to those assumed for preliminary heat balance.
- b) Using size info., develop contract arrangement dwgs.
- c) Use piping & valve size info. to develop related piping system schematics.
- d) Use prime mover power characteristics info. to revise preliminary electrical load analysis.

NOTES :

1. For existing approach, preliminary calculation, diagrams, estimates and arrangement will have to be revised after obtaining vendor's data for the component. In the standards approach, all data needed to finalize the preliminary work is contained in the hardware standard - so that no revision is necessary.

Cost Item #5: Manufacture

- a) Prepare Design
- b) Set-up for Manufacture
- c) Production

NOTES :

1. With the standards approach, set-up for manufacture may require less time in the long run since changes from one set-up to another will have been established and therefore can be effected in a minimum of time.

2. With the standards approach,_the manufacturers will not have to develop repeated learning curves. The learning curve will be there except for the very first time a standard hardware is produced. Special machinery, tools, dies, molds, etc. will have been bought, manufactured or otherwise mad a part of the facility. "Since the materials will have been specified in the standards, the manufacturer will be in a better position to stock some critical materials.

Cost item #6: installation

1. Make mechanical (piping, etc.) Conn's.
2. Make electrical connections
3. Provide quality control

NOTES :

1. Since physical dimensions and bolting and/or other fastening requirements will be available in the hardware standard, these work items can be accomplished earlier in the construction schedule of the ship.
2. Since all pipe and valve/fitting sizes and specs will be contained in the hardware standard, it will be possible to prepare pre-formed piping sections and obtain time (& labor) savings in actual construction work.
3. Since shipyard quality control personnel will have become familiarized with Quality Assurance procedures, they will be in a position to provide more efficient control work and thereby effect considerable savings.

cost Item #7: Testing & Checkout

- a) In-place tests after installation

NOTES :

1. There may be some savings in this cost item 9 with the standards approach due to standardization of test procedures as delineated in the hardware Standard.
2. No savings can be expected in dock trials and sea trials since operation of all systems is very much inter-related.

GROUP IV - ECONOMIC ANALYSIS

5.6.Z.2 MAIN CONDENSATE PUMP

TYPE STANDARD : DATA

COST ITEM		RECURRING	EXISTING APPROACH		STANDARDS APPROACH		
			DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS	DIRECT LABOR MH	DIRECT LABOR \$
PROCUREMENT	ESTABLISH DESIGN REQ'MTS.		E		E	E	E
	REVIEW INDUSTRY AVAILABILITY		144		10	56	5
	PREPARE PURCHASE SPECIFICATIONS		E		E	E	E
	PROCURE	+	88		6	66	5
	INCORPORATE INTO SHIP DESIGN		172		12	132	9
MANUFACTURE	DESIGN						
	SET UP						
	PRODUCTION						
INSTALLATION							
TEST & CHECK-OUT							
TOTALS			404		28	254	19
SAVINGS					150	1,350	9

TABLE 5.22

GROUP IV - ECONOMIC ANALYSIS

5.6.2.2 MAIN CONDENSATE PUMP

TYPE STANDARD : PROCUREMENT

COST (ITEM)		RECURRING	EXISTING APPROACH			STANARDS APPROACH		
			DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS	DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS
PROCUREMENT	ESTABLISH DESIGN REQ'MTS.		E			E		E
	REVIEW INDUSTRY AVAILABILITY		144		10	22		2
	PREPARE PURCHASE specifications		48		3	8		1
	PROCURE	+	88		6	44		3
	INCORPORATE SHIP DESIGN		172		12	122		9
MANUFACTURE	DESIGN							
	SET UP							
	PRODUCTION							
INSTALLATION								
TEST & CHECK-OUT								
TOTALS			452		31	216		15
SAVING						236	z, 124	16

TABLE 5 - 22

SHEET 2 OF 3

GROUP IV - ECONOMIC ANALYSIS

5 . 6 . 2 . 2 MAIN CONDENSATE PUMP

T Y P E S T A N D A R D : H A R D W A R E

COST ITEM		RECURRING	EXISTING APPROACH			STANDARDS APPROACH		
			DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS	DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS
PROCUREMENT	ESTABLISH DESIGN REQ'MTS.		E		E	E		E
	REVIEW INDUSTRY AVAILABILITY		144	1,296	10	16	144	2
	PREPARE PURCHASE SPECIFICATIONS		48	432	5	8	72	1
	PROCURE	+	88	792	6	18	162	1
	INCORPORATE INTO SHIP DESIGN		172	1,548	12	-	-	-
MANUFACTURE	DESIGN		180	1,620	6	160	1,440	5
	SET UP	+	48	288	2	44	264	2
	PRODUCTION	+	840	5,040	26	760	4,560	25
INSTALLATION		+	248	1,488	10	194	1,164	7
TEST & CHECK-OUT		+	48	432	2	32	288	1
TOTALS			1,816	12,936	79	1,232	8,094	43
SAVINGS						584	4,342	36

TABLE 5 - 2 2

SWEET 3 o f 3

GROUP IV - ECONOMIC ANALYSIS

5.6.Z.3 STARTING AIR COMPRESSOR

TYPE STANDARD : DATA

COST ITEM		RECURRING	EXISTING APPROACH			STANDARDS APPROACH		
			DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS	DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS
PROCUREMENT	ESTABLISH DESIGN REQ'MTS.		E		E	E		E
	REVIEW INDUSTRY AVAILABILITY		120		9	48		4
	PREPARE PURCHASE SPECIFICATIONS		E		E	E		E
	PROCURE	+	88		6	66		5
	INCORPORATE INTO SHIP DESIGN		160		11	116		8
MANUFACTURE	DESIGN							
	SET UP							
	PRODUCTION							
INSTALLATION								
TEST & CHECK-OUT								
TOTALS			368		26	230		17
SAVINGS						138	1,242	9

TABLE 5-23

GROUP IV - ECONOMIC ANALYSIS

5.6.2.3 STARTING AIR COMPRESSOR

TYPE: STANDARD : PROCUREMENT

COST ITEM		RECURRING	EXISTING APPROACH			STANDARDS APPROACH		
			DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS	DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS
PROCUREMENT	ESTABLISH DESIGN REQ'MTS.		E		E	E		E
	REVIEW INDUSTRY AVAILABILITY		120		9	28		2
	PREPARE PURCHASE SPECIFICATIONS		48		3	8		1
	PROCURE	+	88		6	44		3
	INCORPORATE INTO SHIP DESIGN		160		11	116		8
MANUFACTURE	DESIGN							
	SET UP							
	PRODUCTION							
INSTALLATION								
TEST & CHECK-OUT								
TOTALS			416		29	196		14
SAVINGS						220	1,980	15

TABLE 5-23

Sheet 2 of 3

GROUP IV - ECONOMIC ANALYSIS

5.6.2.3 STARTING AIR COMPRESSOR

TYPE: STANDARD : HARDWARE

COST ITEM		RECURRING	EXISTING APPROACH			STANDARDS APPROACH		
			DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS	DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS
PROCUREMENT	ESTABLISH DESIGN REQ'MTS.		E		E	E		E
	REVIEW INDUSTRY AVAILABILITY		120	1,080	9	16	144	2
	PREPARE PURCHASE SPECIFICATIONS		48	432	3	8	72	1
	PROCURE	+	88	792	6	18	162	1
	INCORPORATE INTO SHIP DESIGN	-	160	1,440	11	-		-
MANUFACTURE	DESIGN		240	2,160	7	216	1,944	6
	SET UP	+	60	360	2	54	324	2
	PRODUCTION	+	960	5,760	26	864	5,184	24
INSTALLATION		+	248	1,488	10	194	1,164	7
TEST & CHECK-OUT		+	60	540	3	40	360	2
TOTALS			1,984	14,052	77	1,408	9,354	45
SAVINGS						576	4,698	32

TABLE 5-23

Sheet 3 of 3

GROUP IV - ECONOMIC ANALYSIS

MAIN BOILER

TYPE STANDARD: DATA

COST ITEM		RECURRING	EXISTING APPROACH			STANDARDS APPROACH		
			DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS	DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS
PROCUREMENT	ESTABLISH DESIGN REQ'MTS.		E			E	E	E
	REVIEW INDUSTRY AVAILABILITY		288		16	128		9
	PREPARE PURCHASE SPECIFICATIONS		E			E	E	E
	PROCURE	+	280		8	210		6
	INCORPORATE INTO SHIP DESIGN		624		38	464		28
MANUFACTURE	DESIGN							
	SET UP							
	PRODUCTION							
INSTALLATION								
TEST & CHECK-OUT								
TOTALS			1192		62	802		43
SAVINGS						390	3,510	19

TABLE 5-24

sheet 1 of 3

GROUP IV - ECONOMIC ANALYSIS

5.6.2.4 MAIN BOILER

TYPE: STANDARD : PROCUREMENT

COST ITEM		RECURRING	EXISTING APPROACH			STANDARDS APPROACH		
			DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS	DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS
PROCUREMENT	ESTABLISH DESIGN REQ'MTS.		E		E	E		E
	REVIEW INDUSTRY AVAILABILITY		288		16	32		2
	PREPARE PURCHASE SPECIFICATIONS		160		10	16		1
	PROCURE	+	280		15	140		8
	INCORPORATE INTO SHIP DESIGN		624		38	464		30
MANUFACTURE	DESIGN							
	SET UP							
	PRODUCTION							
INSTALLATION								
TEST & CHECK-OUT								
TOTALS			1352		79	652		41
SAVINGS						700	6,300	38

TABLE 5 - 2 4

Sheet 2 of 3

GROUP IV - ECONOMIC ANALYSIS

5.6.2.4 MAIN BOILER

TYPE: STANDARD : HARDWARE

COST ITEM		RECURRING	EXISTING APPROACH			STANDARDS APPROACH		
			DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS	DIRECT LABOR MH	DIRECT LABOR \$	SCH. DAYS
PROCUREMENT	ESTABLISH DESIGN REQ'MTS.		E		E	E		E
	REVIEW INDUSTRY AVAILABILITY		288	2,592	16	8	72	1
	PREPARE PURCHASE SPECIFICATIONS		160	1,440	10	16	144	1
	PROCURE	+	280	2,520	18	38	342	3
	INCORPORATE INTO SHIP DESIGN		624	5,616	38	-	-	-
MANUFACTURE	DESIGN		2400	21,600	56	2,160	19,440	50
	SET UP	+	400	2,400	8	360	2,160	7
	PRODUCTION	+	6,000	36,000	146	5,400	32,400	133
	INSTALLATION	+	1,020	6,120	60	920	5,520	54
	TEST & CHECK-OUT	+	400	3,600	15	360	3,240	14
	TOTALS		11,572	81,888	367	9,256	63,318	263
	SAVINGS					2,316	18,570	104

TABLE 5-24

Sheet 3 of 3

5.6.3 Generalization of Results for Group IV Standards

Table 5-25 is a summary of results for the economic analyses performed in 5.6.2. Following the procedure outlined in 5.2.3, these results can be used in estimating the "generalized" savings for all other possible standards candidates in Group IV.

Table 5-26 lists all of the individual equipment standards considered in Subtask 2, identifies each of these with a similar standard from Table 5-25, and calculates the predicted overall savings obtainable through its use.

The following size and complexity contributions are assumed for each of the economically analyzed standards for use when adopting them for comparison as a similar standard:

Main Condensate Pump:

Size : 50%

Complexity: 50%

Starting Air Compressors:

Size : 70%

Complexity: 30%

Main Boiler:

Size : 40%

Complexity: 60%

INDIVIDUAL EQUIPMENT	TYPE OF STANDARD	OVERALL SAVINGS \$	REF.
MAIN CONDENSATE PUMP	DATA	1,350	Table 5-22
	PROCUREMENT	2,124	"
	HARDWARE	4,842	"
STARTING AIR COMPRESSOR	DATA	1,242	Table 5-23
	PROCUREMENT	1,980	"
	HARDWARE	4,698	"
MAIN BOILER	DATA	3,510	Table 5-24
	PROCUREMENT	6,300	"
	HARDWARE	18,570	"

TABLE 5-25

NAME OF CANDIDATE STANDARD	% RATINGS		NAME OF SIMILAR STANDARD	% REDUCTIONS			NET TOTAL SAVINGS \$
	SIZE	COMPLEX		SIZE	COMPL.	TOTAL	
MAIN STEAM TURBINE	80	180	MAIN BOILER	32	108	140	26,000
MAIN DIESEL ENGINE	90	120	MAIN BOILER	36	72	98	18,200
MAIN CONDENSER	30	60	MAIN BOILER	12	36	48	8,900
BOILER CONTROLS	20	10	MAIN BOILER	8	66	74	13,700
ENGINE CONTROLS	15	90	MAIN BOILER	6	54	60	11,100
REDUCTION GEAR	40	60	MAIN BOILER	16	36	52	9,700
MAIN FEED PUMP	80	130	MAIN CONDENSATE PUMP	40	65	105	5,100
FORCED DRAFT FAN	120	150	MAIN CONDENSATE PUMP	60	75	135	6,500
FIRST STAGE FIELD HTR	10	0	MAIN BOILER	4	6	10	1,900
D.A. FEED HEATER	20	20	MAIN BOILER	8	12	20	3,700
F.O. SERVICE PUMP	60	70	MAIN CONDENSATE PUMP	30	35	65	3,100

NAME OF CANDIDATE STANDARD	% RATINGS		NAME OF SIMILAR STANDARD	% REDUCTIONS			NET TOTAL SAVINGS \$
	SIZE	COMPLEX		SIZE	COMPL.	TOTAL	
L.O. SERVICE PUMP	80	70	MAIN CONDENSATE PUMP	40	35	75	3,600
L.O. PURIFIER	90	80	STARTING AIR COMPRESSOR	27	56	83	3,900
F.O. PURIFIER	90	80	STARTING AIR COMPRESSOR	27	56	83	3,900
L.O. HEATER	8	10	MAIN BOILER	3	6	9	1,700
L.O. COOLER	10	10	MAIN BOILER	4	6	10	1,900
F.O. HEATER	8	10	MAIN BOILER	3	6	9	1,700
AIR EJECTOR	40	60	MAIN CONDENSATE PUMP	20	20	50	2,400
AIR PREHEATER	15	15	MAIN BOILER	6	9	15	2,800
THRUST BEARING	10	15	MAIN BOILER	4	9	13	2,400
F.V. COOLER	10	10	MAIN BOILER	4	6	10	1,857
REDUCTION GEAR L.O. BOOSTER PUMP	60	70	MAIN CONDENSATE PUMP	30	35	65	3,147

5.7 Synthesis of Economic Analyses and Application of Savings to Forecast-Ships

5.7.1 Percentage Savings for the Parent Ships

The total savings available through implementation of standards in all of the four groups (as shown in Table 5-3) for the parent steam-propelled ship was estimated to be approximately \$264,000 (see 5.2.4). It will be recalled that the parent ship had a steam turbine propulsion, plant of 26,000 SHP with 2 main boilers and 2 stage feed heating.

The machinery acquisition cost for this plant can be estimated by using the cost equations developed from Jose Femenia's paper "Economic comparison of various Marine power plants" (1) **by escalating** the constants to correspond to 1974 dollars. The equations were listed

that exist in the forecast.

1. Two Boiler, 2 Heater Cycle:

$$A = 42855.7 X (\text{SHP})^{0.5}$$

2. Two Boiler, 4 Heater Cycle:

$$A = 44067.6 (\text{SHP})^{0.5}$$

3. Single Boiler, 2 Heater Cycle:

$$A = 38589 (\text{SHP})^{0.511}$$

4. Single Boiler, 4 Heater Cycle:

$$A = 42936 (\text{SHP})^{0.504}$$

5. Reheat Cycle:

$$A = 51928 (\text{SHP})^{0.487}$$

(1) SNAME Transactions, Volume 81, 1973, page 79

For the parent ship, the applicable cost equation is 1. Therefore:

Acquisition Cost:

$$A = 42855.7 \times (26,000) ^{0.5} = \$6.91 \times 10^6$$

and Percentage Savings:

$$a = \frac{264,000}{6.91 \times 10^6} \times 100 = 3.82\%$$

For the parent diesel-propelled ship, the total savings available through implementation of standards in all four groups was predicted to be \$238,700 in 5.2.4.

The machinery acquisition costs for medium-speed diesel propulsion plants can be estimated by the equation:

$$A = 11,374 \times (\text{SHP})^{0.6222}$$

For the 14,000 SHP Parent plant:

$$\text{Acquisition Cost } A = 11,374 (14,000)^{0.6222} = \$4.31 \times 10^6$$

and percentage savings:

$$a = \frac{238,700}{4.31 \times 10^6} \times 100 = 5.538\%$$

5.7.2 Predicted Savings for Other Ships

It is assumed, for the purposes of this feasibility study, that for all steam plants of varying cycle types, the savings due to Standards as proposed will be a constant fraction of the total acquisition cost of the propulsion plant. It therefore becomes possible to predict the savings for any and all ships in the forecast if the propulsion plant costs can be estimated. Using Femenia's equations listed above in 5.7.1, the acquisition costs for each of the cycles are calculated; then the percentage savings calculated in 5.7.1 is applied to each of these total costs to get individual savings in terms of 1974 dollars. Table 5-27 lists all plants, and results of calculations.

The diesel propulsion plant savings as percentage of acquisition costs was estimated to be 5.538%. Applying this percentage factor to the acquisition costs of each diesel plant, the savings become:

For 7,000 SHP Diesel Plant:

$$11,374 \times (7,000)^{0.622} \times .05538 = \$155,209$$

For 14,000 SHP Diesel Plant:

$$\$238,700 \text{ (from 5.2.4)}$$

For 28,000 SHP Diesel Plant:

$$11,374 \times (28,000)^{0.622} \times .05538 = \$367,619$$

STEAM PROPULSION PLANT			TOTAL ACQUISITION COST $\$ \times 10^3$	TOTAL SAVINGS $\$ \times 10^3$
CYCLE	TYPE	SYMBOL		
TWO BOILER				
TWO HEATER	A-16	16	5.42	207
"	A-25	25	6.78	259
"	A-30	30	7.42	283
TWO BOILER				
FOUR HEATER	B-37	37	8.48	324
"	B-44	44	9.24	353
"	B-50	50	9.85	376
ONE BOILER				
TWO HEATER	C-25	25	6.82	261
"	C-30	30	7.49	286
ONE BOILER				
FOUR HEATER	D-37	37	8.61	329
REHEAT	E-44	44	9.48	362
"	E-50	50	10.09	385

TABLE : 5-27

5.8 A PROJECTION OF INDUSTRY-WIDE BENEFITS

The benefits to be expected from the implementation of proposed standards will be in the form of labor, material and scheduling time savings. The savings in labor and material costs, in the present analysis, were combined into one total and given the name "total savings."

The total savings were estimated:

- a. For several selected candidates in each group of standards, by economically analyzing the cost items in accordance with the methodology of 5.2 and comparing the present method of approach with the Standards approach.
- b. For remaining standards in each group, by extrapolating the results of analyzed standards following the method of generalization described in 5.2.3.
- c. For parent steam and diesel propulsion plants, by summing up savings from all standards incorporated into the parent plant, as described in 5.2.4.
- d. For other steam and diesel propulsion plants, and therefore for other ships that are included in the forecast, by assuming a constant percentage savings based on the total acquisition cost of the plant in question (5.2.5).

The scheduling time savings were also estimated wherever applicable and possible. But it is considered unrealistic to generalize on these. Therefore in investigating industry-wide benefits we will limit ourselves to labor and material savings only.

The results obtained are used to estimate the over-all industry-wide benefits which are to be expected for each year of the forecast period as well as for its total duration.

5.8.1 For Each Year of the Forecast Period

Referring to the Sub-task 1 Report, "Forecast for Propulsion Plant Standards," Table 3-4.2 lists steam plants by cycle type and shows quantities of ships, for each year of the forecast period, which will have propulsion plants of the type listed. Table 3-6 is a similar compilation for diesel plants.

Tables 5-28 and 5-29 list the total savings for each plant for each year of the forecast period for the total number of ships to be contracted for in that year with that propulsion plant. In estimating the total savings for the first year of implementation, 1975, it was assumed that each of the ships to be contracted would result in unit savings corresponding to the type of plant and the SHP range. For succeeding years of standards implementation, however, several of the ships were assumed to be part of a series construction and therefore they were assumed to provide no additional savings.

To clarify the approach, let us consider the following example:

In the year 1976, 10 ships will be contracted for with a B-37 propulsion plant. (The symbol B-37 corresponds to a "Two Boiler-Four Stage Feed Heating" cycle of 37,000 SHP power range.) It was assumed that 4 out of 10 of these ships will be part of a series construction belonging to the remaining six contracts. Therefore, out of a total number of 10 ships, only 6 are assumed to offer the unit savings.

In tables 5-28 and 5-29, the number of series ships and the number of ships which will provide savings are identified for each year.

5.8.2 For the Total Forecast Period

In order to estimate the total savings for the complete forecast period, the influence of escalation in labor and material costs would have to be taken into consideration. All costs and cost savings reported up to this point in this report are in constant 1974 dollars - as assumed in 5.2.2.2 for uniformity in economic analyses. None of the costs are inflated past July 1974. As an initial approach, these costs will be subjected to a 9% per year escalation rate and the total estimated savings will be determined.

Table 5-30 shows the result of escalating combined total savings attainable by using standard diesel and steam plants for each year reported in Tables 5-28 and 5-29 by an inflation rate of 9% per year. It is assumed that gas turbines will provide no additional savings for the purposes of this study.

The projected industry-wide benefits escalated as described above appear to be in the order of \$81,353,000 - for the total forecast period. The uninflated industry-wide benefits are approximately \$51.5 million. It must be remembered that the numerical results obtained here depend on the assumptions made and criteria adopted, and therefore their accuracy is limited to the extent discussed in 5.3.1.3, 5.4.1.3, 5.5.1.3 and 5.6.1.3,

STEAM PLANT SYMBOL	UNIT	1975 ^①		'76		'77		'78	
		SAVINGS $\$ \times 10^3$	No. of Plants	Total SAVINGS $\$ \times 10^3$	No. of Plants	Total SAVINGS $\$ \times 10^3$	No. of Plants	Total SAVINGS $\$ \times 10^3$	No. of Plants
A - 16	207	2	414	1-S	0	1-S ^② 1-N ^③	207	1-S	0
A - 25	259	7	1,813	3-S 5-N	1,295	3-S 4-N	1,036	3-S 5-N	1,295
A - 30	283	2	566	1-S 2-N	566	1-S 2-N	566	1-S 1-N	283
B - 37	324	14	4,536	4-S 6-N	1,944	3-S 6-N	1,944	3-S 5-N	1,620
B - 44	353	2	706	1-S 3-N	1,059	1-S 1-N	353	1-S 1-N	353
B - 50	376	1	376	1-S 1-N	376	-	-	1-S	0
C - 25	261	-	-	-	-	-	-	-	-
C - 30	286	-	-	-	-	-	-	-	-
D - 37	329	-	-	-	-	-	-	-	-
E - 44	362	-	-	-	-	-	-	-	-
E - 50	385	-	-	-	-	-	-	-	-

① FIRST YEAR OF
IMPLEMENTATION
 ② SERIES CONSTRUCTION
 ③ NEW CONTRACT

TABLE : 5-28
SHEET 1 OF 3

STEAM PLANT SYMBOL	UNIT SAVINGS $\$ \times 10^3$	1979		'80		'81		'82	
		No. of Plants	Total Savings $\$ \times 10^3$						
A - 16	207	-		1-N	207	-		1-S	0
A - 25	259	3-S C-N	1,554	2-S 4-N	1,036	2-S 4-N	1,036	1-S Z-N	518
A - 30	283	1-S 1-N	283	1-N	283	1-N	283	1-N	283
B - 37	324	2-S 4-N	1,296	2-S Z-N	648	2-S 4-N	1,296	2-S 4-N	1,296
B - 44	353	1-S	0	1-N	353	-		1-S	0
B - 50	376	1-N	376	-		1-S	0	-	
C - 25	261	-		1-N	261	1-S	0	1-S	0
C - 30	286	-		1-N	286	1-N	286	1-S	0
D - 37	329	-		1-N	329	1-S	0	1-N	329
E - 44	362	-		1-N	362	1-S	0	-	
E - 50	385	-		-	-	-		1-N	385
			3,509		2,239		2,901		2,811

TABLE : 5-28

MEDIUM SPEED DIESEL PLANT $\text{SHP} \times 10^3$	T S I N G S $\$/10^3$	1975		'76		'77		'78	
		No.	TOTAL SAVINGS $\$/10^3$	No.	TOTAL SAVINGS $\$/10^3$	No.	TOTAL SAVINGS $\$/10^3$	No.	TOTAL SAVINGS $\$/10^3$
7	155	2	310	I-S I-N	155	I-S I-N	155	I-S I-N	155
14	239	5	1195	Z-S 3-N	717	Z-S 3-N	717	Z-S 3-N	717
28	368	-	-	-	-	I-N	368	-	-
TOTAL SAVINGS FOR YEAR		1,505		872		762		394	
$\text{SHP} \times 10^3$ YEAR		'79		'80		'81		'82	
7	I-S I-N	155	I-S I-N	155	I-S I-N	155	I-S I-N	155	I-S I-N
14	Z-S Z-N	478	I-S 3-N	717	I-S 3-N	717	Z-S Z-N	478	Z-S Z-N
28	-	-	2	736	I-S I-N	368	I-S I-N	368	I-S I-N
TOTAL SAVINGS FOR YEAR		1,633		1,608		1,240		1,001	
$\text{SHP} \times 10^3$ YEAR		'83		'84		'85		S - SERIES N - NEW	
7	I-S I-N	155	I-S I-N	155	I-S I-N	155	I-S I-N	155	
14	Z-S Z-N	478	Z-S Z-N	478	I-S 3-N	717			
28	I-S I-N	368	I-S I-N	368	I-S I-N	368			
TOTAL SAVINGS FOR YEAR		1,001		1,001		1,240			

TABLE : 5-29

TABLE : 5 - 30

FORECAST YEAR	\$ SAVINGS . 10 ³			ESCALATION FACTOR	SAVINGS INFLATED @ 9 % PER YEAR \$ x 10 ⁶
	STEAM PLANTS	DIESEL PLANTS	COMBINED		
1975	8411	1505	9916	1.09	10,808
76	5,240	872	6,112	1.1881	7,262
77	4,106	762	4,868	1.295	6,304
78	3,551	394	3,945	1.4116	5.567
79	3,509	633	4,142	1.5386	6.373
1980	2,239	1,608	3,847	1.6771	6.452
81	2,701	1,240	4,141	1.828	7.570
82	2,811	1,001	3,812	1.9926	7.596
83	2,955	1,001	3,056	2.1719	6.637
84	2,394	1,001	3,395	2.3674	8.037
1985	2,149	1,240	3,389	2.5804	8.745
TOTAL FOR FORECAST PERIOD	40,266	11,257	51,523		81.353

5.9 Summary and Conclusions

5.9.1 General

The technical analysis, subtask-2, resulted in the selection of certain systems, sub-systems and components of different types of propulsion plants as potential candidates for which standards may be developed. The selection was based on technical feasibility, industry acceptance and a qualitative consideration of economic advantages.

Table 5-31 lists all the candidates under the four proposed primary standards groups.

In the course of subtask-3, economic analyses were performed of the potential candidates in order to determine the magnitude of cost and schedule savings of an installed propulsion plant. The method used was conducting specific detailed economic analyses on a representative sampling of potential candidates and then generalizing to obtain cost and schedule savings for all remaining potential standards.

As a representative sampling, the following candidate standards (from Table 5-31) were selected for quantitative treatment in the context of an economic analysis:

Group I - Total Plant Standards:

- 26,000 SHP Steam Turbine Propulsion Plant
- 14,000 SHP Medium-Speed Diesel Propulsion Plant

Group II - Module Standards

- Fuel Oil Service System Module
- Main Feed Pump Module
- Diesel Accessory Rack Module

POTENTIAL CANDIDATES FOR STANDARDS

FROM SUBTASK - 2

GROUP - TOTAL PLANT STANDARDS	GROUP II - MODULE STANDARDS
Steam Turbine Propulsion'Plants 15,000-17,500 SHP 24,000 - 26,000 SHP 28,500 - 32,000 SHP 36,000 - 40,00 SHP 43,000 - 45,000 SHP 50,000 + SHP	Main Condensate Pump Main Feed Pump Fuel Oil Service System High Pressure Feed Heater power Unit Lube Oil Purifier Lube Oil Service System Low Pressure Feed Heater Diesel Accessory Rack Diesel Air Starting Package
Diesel Propulsion Plants 7,000 SHP 14,000 SHP 28,000 SHP	GROUP IV - INDIVIDUAL EQUIPMENT/ COMPONENT STANDARDS
GROUP III - ENVELOPE STANDARDS	
Main Boiler Main Turbine Main Diesel Engine Main Condenser Main Reduction Gear Main Feed Pump Main Condensate Pump Main Circulating Pump Lube Oil Purifier Lube Oil Service Pump Fuel Oil Service Pump Deaerating Feed Heater Low Pressure Feed Heater Fuel Oil Heater Bridge Controls Engine Room Controls Air Preheater Economizer Air Ejector Exhaust Gas Boiler	Main Boiler Main Turbine Main Diesel Engine Main Condenser Main Reduction Gear Main Feed Pump Main Condensate Pump Lube Oil Service Pump First Stage Feed Heater Boiler Controls Engine Controls Forced Draft Fan Deaerating Feed Heater Fuel Oil Service Pump Lube Oil Purifier Fuel Oil Purifier Lube Oil Heater Lube Oil. Cooler Fuel Oil Heater Air Ejector Air Preheater Thrust Bearing Fresh Water Cooler Red. Gear L.O. Booster Pump

TABLE 5 - 31

- --
Group I I I - Envelope Standards

- Main Boiler Envelope
- Lube Oil Purifier Envelope
- Main Feed Pump Envelope

Group I V - Individual Component/Equipment Standards

- Main Condensate Pump
- Starting Air Compressor
- Main Boiler

Each candidate standard in each group was then economically analyzed and savings to be expected by the adoption of the subject standard as compared to the existing non-standard approach was estimated.

Table 5-32 summarizes the results of economic analyses.

TABLE 5 - 32: ANALYSIS OF SAVINGS

5-111

TABLE 5 - 32

GROUP OF STANDARD	TYPE OF STANDARD	NAME OF CANDIDATE STANDARD	LABOR + YARD MAT'L COST* \$ (1)	TOTAL COST \$ (2)	SAVINGS				REF.
					NET TOTAL \$ (3)	% OF YARD COST (4)	% OF TOTAL COST (5)	% OF MACH'Y ACQ. COST (6)	
I TOTAL PLANT	SOFTWARE	26,000 SHP STEAM	234,900	258,400	87,840	37.4	34.0	1.29	Note (7)
		14,000 SHP DIESEL	166,500	183,200	56,340	33.8	30.8	1.30	Note (8)
II MODULE	SOFTWARE	F.O. SERVICE SYST.	27,600	99,600	17,470	63.3	17.5	0.26	Note (9)
		MAIN FEED PUMP	20,700	108,700	11,757	56.8	10.8	0.17	
		DIESEL ACCES. RACK	46,900	144,900	31,607	67.4	21.8	0.73	
III ENVELOPE	SOFTWARE	MAIN BOILER	49,000	690,000	17,124	34.9	2.5	0.25	Note (10)
		L.O. PURIFIER	11,000	20,000	4,461	40.6	22.6	0.07	
		MAIN FEED PUMP	13,700	46,700	5,394	39.4	11.5	0.08	
IV INDIVID'L EQUIPMENT	DATA	MAIN CONDENSATE P.	7,800	21,000	1,350	17.3	6.4	0.02	Note (11)
		STARTING AIR COMP.	7,800	24,800	1,242	15.9	5.0	0.02	
		MAIN BOILER	42,500	682,000	3,510	8.3	0.5	0.05	
/COMPONENT	PROCUREMENT	MAIN COND. P.	7,800	21,000	2,124	27.2	10.1	0.03	
		ST. AIR COMP.	7,800	24,800	1,980	25.4	8.0	0.05	
		MAIN BOILER	42,500	682,000	6,300	14.8	0.9	0.09	
	HARDWARE	MAIN COND. P.	7,800	21,000	4,842	62.1	23.1	0.07	
		ST. AIR COMP.	7,800	24,800	4,698	60.2	18.9	0.11	
		MAIN BOILER	42,500	682,000	18,570	43.7	2.7	0.27	

* Enclosed numbers refer to notes.

Notes for Table 5-32

1. Under this column,, the costs of accomplishing the specified work" in the shipyard in connection with the Candidate equipment or services are listed. The costs for each group are estimated in different ways, and each is explained in Notes 7, 8, 9, 10 and 11 below. These represent the costs for existing approach.
2. Total cost is defined as the shipyard cost as listed in Column 1. plus the purchase price of the equipment(s) that may go into the Standard. These are also existing costs.
3. Net total savings are taken directly from analysis results of Tables 5-15, 5-20, and 5-25.
4. Savings as a percentage of yard cost is obtained simply by dividing numbers in column 3 by numbers in column 1.
5. The numbers under this column denote the savings attainable through the utilization of a candidate standard as a percentage of the total cost for the existing approach for the same quantity of equipment and/or components.
6. The numbers in this column indicate for each candidate standard the expected savings as a percentage of the total machinery acquisition cost. The acquisition costs for the 26,000 SHP steam and 14,000 SHP diesel plants are taken directly as calculated from section 5.7.1, and the percentage values are obtained by dividing column 3 by the acquisition cost for the propulsion plant into which the candidate standard in question belongs. For the diesel accessory rack and starting air compressor, the diesel plant acquisition cost is used and for all other standards, the steam plant acquisition cost is taken as a basis.

7. The total cost for Group I candidate standards is obtained by adding approximately 10% allowance-for indirect labor and material to the cost estimated in the analysis.
8. The total cost for modules are calculated separately by using source data for "individual components, when available, and by contacting some Manufacturers.
9. The total costs for envelopes are calculated separately by using available source data (Shipyard Source).
10. The total costs for hardware standards are obtained by adding purchase cost of the equipment in question to the "labor + yard material" cost estimated in column 1.

5.9.2 Analysis of Results

In Table 5-32, the savings are tabulated in four different ways:

a. Under the column "Net Total \$", the savings are reported, as the heading implies, in terms of net dollars to be gained when the standard in question is implemented and utilized. It is evident that greatest dollar savings are possible by utilizing the following standards:

1.	total Steam Plant Standard	\$87,840
2.	Total Diesel Plant Standard	\$56,340
3.	Diesel Accessory Module	\$31, 607
4.	Main Boiler Hardware Standard	\$18,570
5.	F.O. System Module Standard	\$17,470
6.	Main Boiler Envelope	\$17,124
7.	Main Feed Pump Module	\$11 , 757
8.	Main Boiler Procurement Standard	\$6 , 300
9.	Main Feed Pump Envelope	\$5 , 394
10.	Main Condensate Pump Hardware Standard	\$ 4 , 842
11.	Starting Air Compressor Hardware Standard	\$4 , 698

b. Under the column "% of Yard Cost," the savings are reported as a percentage of the shipyard expenses in connection with the subject equipment exclusive of its purchase cost. The candidates showing greatest promise of savings in this sense are:

1.	Diesel Accessory Module Standard	67.4%
2.	F.O. Service System Module	63.3%
3.	Main Condensate Pump Hardware Standard	62.1%
4.	Starting Air Compressor Hardware Standard	60.2%
5.	Main Feed Pump Module Standard	56.8%
6.	Main Boiler Hardware Standard	43.7%
7.	L.O. Purifier Envelope Standard	40.6%
8.	Main Feed Pump Envelope Standard	39.4%
9.	Total Steam Plant Standard	37.4%
10.	Main Boiler Envelope Standard	34.9%
11.	Total Diesel Plant Standard	33.8%

c. Under the column "% of total cost," the savings are reported as a percentage of the total costs relating to the subject equipment, including its purchase cost. The order of savings for this case is as follows:

1.	Total Steam Plant Standard	34.0%
2.	Total Diesel Plant Standard	30.8%
3.	Main Condensate Pump Hardware Standard	23.1%
4.	L.O. Purifier Envelope Standard	22.62
5.	Diesel Accessory Rack Module Standard	21.8%

6. Starting Air Compressor Hardware Standard	18.9%
7. F.O. Service System Module Standard	17.5%
8. Main Feed Pump Envelope Standard	11.5%
9. Main Feed Pump Module Standard	10.%%
10. Main Condensate Pump Procurement Standard	10I%
11. Starting Air Compressor Procurement Standard	8.0%

d. It is also possible to investigate what the savings are as a percentage of the total machinery acquisition cost of a ship's propulsion plant. The next column lists these percentages, and the order of savings is as shown below:

1. Total Diesel Plant Standard	1.30%
2. Total Steam Plant Standard	1. 29%
3. Diesel Accessory Module Standard	0.73%
4. Main Boiler Hardware Standard	0.27%
5. F.O. Service System Module Standard	0. 26%
6. Main Boiler Envelope Standard	0.25%
7. Main Feed Pump Module Standard	0. 17%
8. Starting Air Compressor Hardware Standard	0.11%
9. Main Boiler Procurement Standard	0.09%
10. Main Feed Pump Envelope Standard	0.08%
11. Main Condensate Pump Hardware Standard	0. 07%

It must be pointed-out here, that all of the above classifications are based on the net dollar savings estimated for each candidate standard as a result of the analyses performed, and therefore the magnitudes and priorities they indicate are accordingly dependent upon the accuracy of and the justification for the assumptions and criteria established during the analyses. As discussed earlier, however, in sections 5.3.1.3., 5.4.1.3, 5.5.1.3 and 5.6.1.3, the trend towards savings due to utilization of standards is definite. And it is possible to study these trends and arrive at the comparative benefits of any one group of standards over the others.

Again in connection with the estimated or predicted savings, the following should be remembered:

- a) The savings are calculated on the basis of a direct labor rate of 9 %/hr for engineering manhours and 6 \$/hr for yard labor manhours, including fringe benefits but excluding overhead. The actual savings will be greater than reported in proportion to the prevalent overhead rate.
- b) Additional savings may be attainable by using lower level standards in a higher level standard -- for example,.by using two main feed pump hardware standards in a standard main feed pump module.
- c) Additional savings will be attainable due to putting into a new use the resources freed through the utilization of standards (latent savings).
- d) The savings as reported here do not reflect the influence of the cost of developing and instituting the Standards. The net advantage of the standards program may be reduced when this factor is taken into account.

- e) All savings are reported in terms of 1974 dollars. No escalation is applied past July 1974.
- f) The savings as reported include effects of 'recurring as well as non-recurring costs.

5.9.3 Conclusions

The savings for total plant Standards occupy the first and second places in the priority classifications on the basis of net dollar savings, percentage total cost, and percentage acquisition costs. The net dollar savings of \$87,840, percentage total savings of 34% and percentage acquisition cost savings of 1.29% for the total steam plant are the highest savings obtainable among all candidates. The savings for total diesel plant are also high for the three different classifications. The reason for the low priority obtained with the total plant standards when classified on the basis of percentage yard cost is that the total plant standard basically covers the design efforts, and as such no important purchase costs are involved.

It is evident that, even within the limited extent of total plant standards as used in this analysis, the savings are tangible. When and if a more extensive total plant standard, including a greater portion of detail design and possibly all of contract design, is adopted and implemented, then the savings will be much greater. In the course of preliminary work for this subtask, MRGS had studied this possibility and found out that the savings for the total steam plant might be in the order of \$160,000, and this might correspond to a scheduling time savings of approximately 13 months; corresponding savings for the total diesel plant is in the vicinity of \$115,000, and 12.5 months of scheduling time.

Effectively, these standards would rank highest in cost effectiveness, and it is recommended that they be further investigated for utilization in the implementation of the standards program.

In terms of net dollar savings and also in terms of savings as a percentage of yard costs and acquisition costs, module standards and hardware standards offer very good possibilities. The diesel accessory rack module standard promises a net savings of \$31,607, and the Fuel Oil Service System Module Standard promises \$17,470. These correspond, respectively, to 67.4% and 63.3% of the yard costs for the subject equipment/components. The savings reported for Modules in Table 5-32 are those attainable with Alternative 1 Standard approach. This is to say that the shipyards would buy a Vendor-assembled standard module and simply install it on board. The respective savings for Alternative 2 standards approach, which calls for the standard modules to be assembled by the shipyard, would be \$20,804 and \$12,835 in net dollar values, and 44.4% afid 46.5% in percentage of yard costs.

It is evident from the four different priority classification that the module standards always enter the "best savings" listing. The three module standards that were economically analyzed, occupy 3rd, 5th and 7th places in the "net dollar savings"; 1st, 2nd and 5th places in the "percentage of yard cost" savings; 5th, 7th and 9th places in the 'percentage of total cost" savings; and 3rd, 5th and 7th places in the "percentage of acquisition cost" savings.

These results reinforce greatly the qualitative conclusions reached during Subtask-2 technical analysis efforts that modules are the most viable candidates to write standards for. It might be well to point out at this junction that the shipyards, almost invariably, indicated a desire to design their own standard modules to suit the space requirements in their specific ship constructions. However, it is believed strongly that when the "nationally developed module standards" are implemented and made available to designers, shipyards and vendors in the early stages of ship design and construction efforts, all concerned parties will be in a position to specify, install and manufacture these standard modules without any disadvantageous space problems, but with all the ensuing benefits in the form of savings.

As pointed out above, the hardware standards also offer very good savings possibilities. The three hardware standards, which were economically analyzed, occupy the following ranks in savings classifications.:

In Net Dollar Savings = 4th, 10th and 11th

In % Yard Costs = 3rd, 4th and 6th

In % Total Costs = 3rd and 6th

In % Acquisition Costs= 4th, 8th and 11th

The candidate which ranks 4th in Net Savings, 6th in % Yard costs and 4th in % acquisition costs is the Main Boiler Hardware Standard.

Even though the Main Boiler was selected as a candidate for economic analysis (of individual equipment standards), it is a well known fact that the boiler manufacturers, much like the gas turbine manufacturers, have already standardized their product lines quite extensively. In this sense, it is highly probable that very strong resistance will be met from Vendors when a different set of hardware standards are attempted. It follows that, from a practical standpoint, the main boiler should not be selected as a final candidate to write hardware standards for.

One may argue that the above reasoning would hold true for other equipment such as pumps, heat exchangers, compressors and the like. And it would, indeed, in most cases! However, the size and complexity of these equipment are small compared to the main boilers; and the number of qualified Vendors for them are many times that for boilers. It is therefore considered possible that the vendors of these equipments may yield to nationally implemented standards, since by doing so they also will eventually experience savings in their production costs.

A close study of the results reported in Table 5-32, and also in Table 5-25, shows that no important savings should be expected through the use of data standards and procurement standards for individual equipment. Even though one particular procurement standard shows up in the priority classification of net dollar savings in the 8th place (and 9th place in % acquisition cost classification), this happens to be the one for the main boiler again, and is subject to the same reasoning as for the boiler hardware standard. The two other procurement standards which appear in the listing for percentage total cost savings are those for the main condensate pump and the starting air compressor. The net savings

for these two are \$2,124 and \$1,980 respectively. The meager savings leads one into doubts as to the justification of writing procurement standards for these equipment. However, it will be recalled from 5.6. that the underlying thought. in investigating data and procurement standards was to provide a step-by-step approach to eventual hardware standards. In this context, the implementation of hardware standards being desirable, so are the data and procurement standards. One word of caution may be added here that for large equipment such as main turbines and main diesel engines for which manufacturers already have standardized product lines, the individual equipment standards may not be beneficial at this point in time.

The envelope standards seem to offer the least savings as a group. The priority classification is as follows:

In Net Dollars Savings	= 6th and 9th places
In % Yard costs	= 7th, 8th and 10th
in % Total costs	= 4th and 8th
In %Acqu'sition Costs	= 6th and 10th places

Again, the main arguments for envelope standards, as discussed in 5.5.1, should be borne in mind. It will be remembered that space requirements were a major factor in using envelopes. For this reason, it was concluded that larger equipment in congested areas of engine rooms would probably not lend themselves to economically feasible envelope applications. The main boiler envelope, for example, even though it promises the 6th ranking net dollar savings, of \$17,124, may not be feasible since it would require additional space in an area where space is already at a premium. If we exclude the main boiler envelope from the priority listings for this reason, we will be left with only the main feed pump envelope that makes the priority list with \$5,394 net savings and ranks 9th.

The main advantage of the envelope standard, of course, is the interchangeability of various manufacturers' equipment without interfering with their specific and different designs. In this sense, the smaller equipment like pumps, purifiers, heat exchangers, control consoles, etc., can be recommended for envelope standards. Furthermore, when the most of developing and instituting standards are considered, the envelope standards, as far as smaller equipment are concerned, "may prove to be more advantageous than the hardware Standards since the envelope standards would require no changes in the Manufacturers' product lines. The manufacturers would simply have to add a few connections and bring these to the interface points on the surface of the envelope. In addition to the advantage of lower development costs for the envelope standards, the resistance from the vendors against implementing these standards would be very small, if any, as compared to their understandable and already stated strong resistance against instituting hardware standards.

In summarizing the findings, it can be said that the order of priority for development of national standards for different groups and types of standards should be as follows:

1. Total Plant Standards
(For Steam and Diesel Plants)
2. Module Standards
3. Hardware Standards
(Starting with data and procurement standards)
4. Envelope Standards

. -

The savings to be expected when using a total plant standard is about 1.3% of the total plant acquisition cost. When using suitable Group II, III and IV standards in addition to the total plant standards, the cost savings approach 3.8% of the total plant acquisition cost for the steam plants and 5.5% for the diesel plants.

These are appreciable savings to be experienced for each new contract for a number of ships of the same design to be constructed in any one shipyard. It is believed that the savings 'reported are conservative and that the actual gains will be greater, so that even after amortizing the standards development costs, there will still be considerable savings to justify developing and instituting national standards for ship's propulsion plant design, systems, equipment and/or components.

Format for Group I Standards -

Title - Standard Total Propulsion Plant
No. - TP-SG-etc.

1. Definition: This standard is a document which contains the technical information in standard format which is necessary to define and describe a _____ to _____ SHP steam turbine _____ feed heater propulsion plant. Standards are available for each of the following propulsion plants.

15,000 - 17,500 SHP .(2 Feed Heaters)

24,000 - 26,000 SHP (2 Feed Heaters)

28,500 - 32,000 SHP (4 Feed Heaters)

36,000- 40,000 SHP (4 Feed Heaters)

43,000- 45,000 SHP (4 Feed Heaters)

50,000 SHP (4 Feed Heaters)

Standardized Parameters (for-Total Steam Plant)

Steam Conditions @ Boiler Superheater Outlet

P: psig

T: °F

Main Condenser Vacuum: _____ "HG

Sea Water Temperature: °F

Outside Air Temperature: °F

Outside Air Relative Humidity: %

Machinery Space Air Temperature: °F

Machinery Space Air Relative Humidity: %

M. ROSENBLATT & SON, INC. _____

2. System Block Diagrams. The total plant for purposes of this Standard will consist of the following elements:

2.1 The Main Piping systems as pertain to this standard contain the following systems:

2.1.1 The steam systems segment of the main piping systems are further subdivided into the following main and auxiliary steam systems.

2.2 The Auxiliary Systems-contain the following sub-systems which are required for operation of the propulsion system.

2.3 The main systems which are required for propulsion plants are contained in the following:

M. ROSENBLATT & SON, INC.

2.4 The Supporting Systems are those systems which are required for accomplishment of the ship's mission and which interface with and affect the propulsion system.

3. Propulsion Plant Block Diagram

M. ROSENBLATT & SON, INC.

4. Heat Balance Diagrams

Information required is compatible with that required for each system in paragraph 5, "System Diagrams." Heat Balance diagrams are prepared for the following conditions:

- . Maximum Continuous Service
- . Port Condition
- . Operational Missions

A typical heat balance diagram is shown in figure "A."

4.1 Required data for heat balance diagrams

Refer to SNAME Technical & Research Bulletin 3-11

Steam Conditions (Press, Temperature, Enthalpy, Flow)

Water Conditions (Press, Temperature, Enthalpy, Flow) at inlets
and outlets of all equipment in the propulsion plant loop

Condenser Vacuum

Ambient Air and Water Conditions (Press, Temperature, Humidity)

Boiler Efficiency

Boiler Fuel Rate

Turbine Steam Rate

Fuel Oil Conditions (Higher Heating Value)

Auxiliary Loads

Distilling Plant (Quantity and Efficiency)

Electric Load

Heating, Hot Water Loads

Air Conditioning Load

Equipment Operating Conditions (Working Pressures, Relief

Pressures, System Losses, etc.)

M. ROSENBLATT & SON INC.

Mission Requirements

Cargo Pump 1 (Quantity, Type, Pressure, Temperature)

Crane Requirements (Electric, Fuel, etc.)

Tank Cleaning Requirements (Steam, Electric)

M. ROSENBLATT & SON, INC.

5. Systems Diagrams

Generally systems diagrams will be prepared for the following listed systems. Typically, each diagram consists of a one-line piping diagram showing the subject piping system with symbolic representations of all relevant equipment, valves, fittings, flanges, and instrumentation. Diameters of piping and sizes of fittings, and valves are indicated on the diagram. Included are Tables which list materials and specifications, maximum allowable fluid velocities, and equipment (pump) types, sizes and capabilities. Tables "A", "B" and "C" are typical of information on a piping diagram. Typical piping diagrams are included for information in figures "B" through "l" inclusive.

5.1 Steam Systems

- . Main Steam (Figure B)
- . Auxiliary Steam (Figure C)
- . Auxiliary Exhaust (Figure D)
- . Steam Heating

5.2 Condensate System (Figure E)

5.3 Feed System (Figure E)

5.4 Drain Collecting System(s) (Figure E)

. H.P. drains

. L.P. drains

5.5 Auxiliary Systems - These include all auxiliaries required for operation of the propulsion plant.

. Fuel Oil Service System (Figure F)

. Fuel Oil Purifier System

. S.W. Circulating System (Figure G)

, Auxiliary Condenser & S.W. Service Systems (Figure G)

1 Lubricating Oil Service System(s) (Figure H)

5.6 Main systems - These include the systems for major equipment allied with the main propulsion plant which is required for operation of the ship.

. Shafting System

Dimensional Diagram

Material Requirements

Bearing Type & Locations

Thrust Bearing (may be with Red Gr.)

Weight & Force Diagram

M. ROSENBLATT & SON, Inc.

- . Reduction Gear System
- Type
- Load Factors
- K Factors
- Gear Diagram
- Automation System
- Type System
- System Block Diagram
- One-Line Diagram
- Service Requirements

5.7 Supporting Systems -- These *systems* requirements are those which are required for proper sizing of components In the propulsion plant.

- . Electric Generation
- Hotel Load
- Auxiliary Load
- Machinery Support Load
- . Distilling Plant
- Required Load
- Efficiency
- . Air Conditioning, Ventilation
- Required Load

M. ROSENBLATT & SON, Inc.

1 Hull Pumping Systems

Bilge Pumping Diagram (FIGURE)

(Interfaces with Propulsion Systems)

Ballast System Interface (FIGURE 1)

Fire - fighting System Interface

Cargo Pumping Requirements (if applicable) (FIGURES J & K)

. Fuel oil Transfer System (**Figure L**)

. Lubricating Oil Transfer System (FIGURE H)

6. A listing of available standards for equipment components and modules which may be used in the composition of this standard propulsion plant is included in Table D.

TABL

SYSTEM	IF
BUTTERWORTH SEA WATER SYSTEM	2" AB
	1-1/2" BE
BUTTERWORTH HOSE VALVES	2 1/2"
BOILER PRESS. DESUPERHEATED STEAM	2" AB
100 PSI DESJP- ERHEATED STEAM - SEE NOTE BELOW:	1-1/2" BE

MAXIMUM VELOCITIES

WATER:

SYMBOL	FLOW GPM	TEMP. °F	IPS	VELOCITY FT/MIN
A	852	77	6"	568
B	850	60	6"	566
C	451	77	6"	301
D	451	77	5"	434
E	852	77	6"	568
F	881	200	6"	587
G	101	140	2"	577
H	101	140	2 $\frac{1}{2}$ "	405

STEAM:

SYMBOL	FLOW LB/HR.	TEMP °F	IPS	VELOCITY FT/MIN
J	50,000	540	5"	4,081
K	50,000	440	8"	11,054

TABLE B

PUMP TABLE						
NO OF UNITS	DESCRIPTION	TYPE	DRIVE	CAPACITY GPM	SUCTION LIFT	TOTAL HEAD FT
1	FIRE & BUTTERWORTH PUMP (EXISTING).	HORIZ CENTRIF	STEAM TURB.	450	FLOODED	456
1	BUTTERWORTH PUMP (NEW).	HORIZ CENTRIF	MOTOR	450	FLOODED	450
1	GENERAL SERVICE & FIRE PUMP (EXIST.) LOCATED IN SHAFT ALLEY.	HORIZ CENTRIF	MOTOR	350	FLOODED	285

% 400 GPM AT 470 FT HEAD

FLOWS AND VELOCITIES			
SYMBOLS	IPS	VEL.	FLOW LB/SEC
A	960	111 93.6411 0.340014 ABS POWER DRUM TO SUPHTR	
B	620	111 118 111 93.640014 ABS POWER DSUPHTR OUTLET TO	
C	6	111 109 111 77.300014 ABS POWER SSTG JUNCTION OF SSTG	
D	870	111 123 111 64.822541 ABS POWER IN LINE STM. HEADER TO	
E	860	125 168225 ABS POWER H.P. TURB THROTTLE	
F	6	780 210 139360 ABS POWER TO ASTERN THROTTLE	
G	3	890 103 19000 ABS ASTERN SUPHTR OUTLET TO DESUPHTR VALVE	
H	3	873 710 13800 ONE SSTG AT RATING MAIN STEAM TO SSTG	

LEGEND OF SYMBOLS	
(D)	GLOBE STOP VALVE (MOTOR OPER)
(D)	GLOBE STOP VALVE
(D)	GLOBE STOP CHECK VALVE
(D)	SUPHTR SAFETY VALVE PILOT ACT
(P)	STM TEMP CONT V AIR PILOT ACT
(P)	ANGLE STOP-CHECK VALVE
(F)	RING & BLIND FLANGE
(R)	REMOTE READING THERMOMETER
(G)	PRESSURE GAGE
(T)	ORIFICE
(S)	THERMOMETER
(ST)	"T" TYPE STRAINER

NOTES

- ALL GAGES ARE TO BE FITTED WITH A VALVE AT THE MAIN AND ONE AT THE GAGE EXCEPT WHERE GAGE IS LOCATED ON MAIN, THEN ONE VALVE WILL BE USED.
- ALL PIPE SIZES SPECIFIED ARE NOMINAL, WITH 1.5" OUTSIDE DIAMETERS.
- ALL PIPING, VALVES AND FITTINGS TO MEET THE REQUIREMENTS OF THE USCG AND ABS.
- PIPING TO BE BENT TO A RADIUS OF .5 DIAMETERS
- PROVISION FOR EXPANSION TO BE MADE IN ALL PIPES WITHOUT THE USE OF SLIP JOINTS OR GREASED OR CORRODED PIPE BENDS
- CONTROL AND INSTRUMENT PIPING LED FROM SUPERHEATED STEAM LINES SMALL BE SO ARRANGED AS TO PRECLUDE CONDENSATE FROM ENTERING THE SUPERHEATED STEAM LINES IN ORDER TO GUARD AGAINST THE POSSIBILITY OF CRACKING DUE TO THERMAL SHOCK
- FLANGES FOR MAIN STEAM TO BE USED ONLY AS REQUIRED AND WHERE ATTACHED TO TURBINES AND EQUIPMENT. LINE JOINTS TO BE WELDED USING BACKING RINGS.
- OPERATING CONDITIONS AT THE BOILER SUPERHEATER OUTLET ARE 875 PSIG AT 930°F TOTAL TEMPERATURE
- ALL PIPE LINES ARE TO BE PROVIDED WITH DRAINS WHERE NECESSARY
- FOR EMERGENCY OPERATION

FLOWS AND VELOCITIES					
SYM	IPS	FLUID LEVEL FT	FLOW LB/SEC	CONDITION	SERVICE
A	4	773	45.7	20000 (MAXIMUM)	DESUPERHEATED STA.
B	2½	650	64.1	12000 (RATED)	1800/30 RED STA.
BB	2	130	91.6	12000 (RATED)	1800/30 RED STA.
C	2½	650	53.4	10000 (RATED)	1800/30 RED STA.
CC	4	185	42.0	4180 (FULL POWER)	1800/30 RED STA.
D	4	130	91.3	8500 (RATED)	CONTAMINATED STA.
DD	4	330	42.5	10000 (RATED)	RED TO CONTAMINATED STA.
E	1	850	47.2	15000 (RATED)	1800/30 RED STA.
F	2	140	57.0	15000 (RATED)	1800/30 RED STA.
G	1½	850	16.2	1260 (RATED)	1800/30 RED STA.
H	2	143	47.0	1260 (RATED)	1800/30 RED STA.
I	1½	143	47.6	970 (RATED)	1800/30 RED STA.
J	1½	143	41.0	480 (RATED)	MAIN AIR EJECTOR
K	1	143	28.9	2000 (RATED)	MAIN AIR EJECTOR
L	1½	143	42.4	650 (RATED)	AUX. AIR EJECTOR
M	2	850	202	20000 (RATED)	1800/30 RED STA.
N	4	70	1302	20000 (RATED)	UNLOADING VALVE
O	3	650	72.0	21000 (ASTERN)	1800/30 RED STA.
P	0	32	176	21000 (ASTERN)	1800/30 RED STA.
Q	1½	143	78.2	935 (RATED)	1800/30 RED STA.
R	1½	850	17.4	1333 (FULL POWER)	1800/30 RED STA.
S	2	143	50.3	1333 (FULL POWER)	1800/30 RED STA.
T	1½	143	35.1	420 (FULL POWER)	1800/30 RED STA.
U	2½	850	38.8	11000 (RATED)	1800/30 RED STA.
V	2½	205	101	4190 (RATED)	H.P. TURBINE BLEED

NOTES

- ALL PIPING, VALVES AND FITTINGS TO MEET REQUIREMENTS OF THE USCG AND ABS.
- PIPING ARRANGEMENTS SHALL BE DESIGNED WITH DUE REGARD FOR THERMAL EXPANSION AND ALLOWABLE LOADS ON PUMPS AND OTHER EQUIPMENT.
- FLANGES FOR AUXILIARY STEAM ARE TO BE USED ONLY WHERE ATTACHED TO VALVES, FITTINGS OR EQUIPMENT. LINE JOINTS ARE TO BE WELDED USING BACKING RINGS.
- PIPING TO BE BENT TO A RADIUS OF 5 DIAMETERS.
- ALL PIPE LINES ARE TO BE PROVIDED WITH DRAINS WHERE NECESSARY.
- ALL STEAM PIPING TO THE CONTAMINATED EVAPORATOR AND H.P. BLEED STEAM PIPING DOWNSTREAM OF, AND INCLUDING, THE CHECK VALVE AT THE H.P. TURBINE ARE DESIGNED FOR FULL DESUPERHEATED STEAM PRESSURE OF 965 PSIG.
- LOCATE ON MAIN CONSOLE.

Diagram of auxiliary and high-pressure bleed steam

FIGURE "C"

PIPING SYSTEMS

LEGEND OF SYMBOLS	
RELIEF VALVE (SPRING LOADED)	GLOBE STOP VALVE
T- TYPE STRAINER	GATE VALVE
BESUPERHEATER	SWING CHECK VALVE
PRESSURE GAGE	SWING CHECK VALVE (DASHPOT TYPE)
ORIFICE	UNLOADABLE VAV PILOT OPER.
EXPANSION JOINT	PRESSURE RELY AIR PILOT OPER.
TIHERMOMETER	SUPHTR SAFETY V PILOT ACT.
TIHERMOSTATIC CONTROL VALVE	GLOBE VALVE
VACUUM-PRESSURE GAGE	COND-EXH RELIEF & BACKPRESS REG V
REDUCER	BOILER SAFETY VALVE
SENTINEL VALVE	

FLOWS AND VELOCITIES						
SYN. NO.	PIPE SIZE	TYPE/FLUID				
A	3	39	78.2	1700	100% MAX. RATED	100% TO GALLEY, LAUN., & SHIP HEATING
B	6	67	203	22810	MAXIMUM	1 P TURBINE BLEED
C	6	67	267	13070	MAXIMUM	1 P BLEED TO EXH. MM.
D	9	67	124	9840	100% MAX.	2 BOILER AIR HEATERS
E	3½	67	123	4770	100% MAX.	1 BOILER AIR HEATER
F	12	114	180	16420	RATED	1 P TURBINE BLEED
G	8	114	180	7220	RATED	1 P TURBINE BLEED
H	10	114	171	12200	RATED	1 P TURBINE BLEED
J	4	35	418	13070	MAXIMUM	1 P BLEED TO EXH. MM.
K	6	35	130	11000	RATED	EX-1 MM. FD. PUMP
L	8	35	106	14230	100% MAX.	EX TO DFT
M	3	35	128	7220	RATED	EX TO DIST. PLANT
N	4	35	105	4300	STAND-BY	100% WADAS TO EXH. MM. (100% MAX.)
P	8	35	130	7220	ASTERN	100% WADAS TO EXH. MM. (100% MAX.)
R	3	35	92.2	2000	100% MAX.	100% TO GALLEY, LAUN., & SHIP HEATING
S	3	35	92.2	2000	100% MAX.	100% TO GALLEY, LAUN., & SHIP HEATING
T	1½	35	67.2	300	RATED	STM. TO M.W. HEATER

• PSIG EXCEPT AS NOTED

NOTES

- ALL PIPING, VALVES AND FITTINGS ARE TO MEET THE REQUIREMENTS OF THE U.S.C.G. AND ABS.
- ALL PIPE SIZES SPECIFIED ARE NOMINAL WITH IPS OUTSIDE DIAMETER.
- PIPING ARRANGEMENTS SHALL BE DESIGNED WITH DUE REGARD FOR THERMAL EXPANSION AND ALLOWABLE LOADS ON PUMPS AND OTHER EQUIPMENT.
- PIPING IS TO BE BENT TO A RADIUS OF 5 DIAMETERS.
- THE L.P. TURBINE BLEED STEAM SWING CHECK VALVE IS TO BE OPERABLE FROM THE FLAT AND SHALL BE FITTED WITH AN INDICATOR.
- THE GATE VALVE AT THE H.P. TURBINE I.P. BLEED SHALL BE ARRANGED TO PERMIT OPERATION FROM THE TURBINE OPERATING PLATFORM.

SCHEMATIC OF MISC. RELIEF VALVES TO ATMOS

Diagram for auxiliary exhaust, intermediate- and low-pressure bleed steam, and escape piping

FIGURE "D"

PIPING SYSTEMS

FLOWS AND VELOCITIES			
SIMI-	-CPT	1-18-75-7-7-1	SERVICE
A	8	432	2.00 INLET FEED PUMP COMBINED SUCTION
B	6	432	4.00 INLET FEED PUMP SUCTION
C	3	432	6.02 INLET FEED PUMP DISCHARGE
D	0	220	6.94 FEED PUMP TO EXCH. BOILER
E	0	320	2.03 INLET CONDENSATE PUMP SUCTION
F	0	320	8.84 INLET CONDENSATE PUMP DISCHARGE
G	3	385	9.84 INLET CONDENSATE
H	2/3	45	3.00 1816 CONDENSATE PUMP SUCTION
I	2	65	4.79 1816 CONDENSATE PUMP DISCHARGE
J	2	65	4.79 1816 CONDENSATE
K	3	475	8.60 CONDENSATE TO DTF
L	3	250	4.00 INLET TRANSFER PUMP SUCTION
M	3	250	10.00 INLET TRANSFER PUMP DISCHARGE

PUMP TABLE				
ITEM	SERVICE	TYPE	CAPACITY GAL. MIN.	TOTAL HP. PSI
2	LIQUID COMBUSTIBLE	VERT.-CENT. MOTOR DRIVEN	320	112.5
1	LISSTIC COMBUSTIBLE	VERT.-CENT. MOTOR DRIVEN	45	112.5
2	LIAZIF	HORIZ.-CENT. TURBO DRIVEN	450	100
1	PULP TRANSFER	HORIZ.-CENT. MOTOR DRIVEN	250	100

NOTES

1. ALL PIPING, VALVES AND FITTINGS ARE TO MEET THE REQUIREMENTS OF THE USCIG AND ABS.
2. ALL PIPE SIZES SPECIFIED ARE NOMINAL WITH IPS OUTSIDE DIAMETERS.
3. PIPING IS TO BE BENT TO A RADIUS OF 5 DIAMETERS.
4. ALL JOINTS SUBJECT TO CONDENSER VACUUM ARE TO BE GENERALLY FLANGED OR BRAZED. WHERE SCREWED JOINTS ARE USED, THESE JOINTS ARE TO BE TIGHTENED OR HEAVILY DODGED.
5. VALVES REFERRED TO THIS NOTE SHALL BE LOCATED ON OR OPERATED FROM THE MACHINERY PLAT.
6. THE MOTOR OPERATED VALVE AT THE MAIN FLOW PUMP SUCTION IS CONTROLLED FROM THE MAIN CONSOLE.
7. STOP VALVES SUBJECT TO VACUUM SHALL BE INSTALLED WITH THE LEVU UNDER THE VALVE SEAT.
8. EACH BACK FILLING CONNECTION SHALL BE FITTED WITH HOSE CONNECTORS AND PROVIDED WITH LOCK CAP AND CHAIN. EACH CONNECTION SHALL BE IDENTIFIED WITH AN ENGRAVED LABEL PLATE INDICATING THE SERVICE.
9. VENT PIPE THERMALS SHALL BE FITTED WITH DOUBLE SCREENS WHICH SHALL BE REMOVABLE FOR CLEANING. THE INNER SCREEN SHALL HAVE 1/32" SQUARE OPENINGS. THE OUTER SCREEN SHALL BE FITTED 1/2" FROM THE INNER SCREEN AND SHALL BE OF STAINLESS STEEL WIRE WITH 1/4" SQUARE OPENINGS.
10. CONTROL VALVE SWINGING LINES SHALL BE AS SHORT AS POSSIBLE.
11. LOCATE ON MAIN CONSOLE.
12. LOCATE GAGE TO BE READ AT COMBUSTION CONTROL CONVER-

LEGEND OF SYMBOLS

D10 GATE VALVE
 D10 STOP VALVE
 D10 BUTTERFLY VALVE
 D10 DIAPHRAGM CONTROL VALVE
 D10 STOP CHECK VALVE
 D10 STOP VALVE BLOCKED CLOSED
 D10 GATE VALVE MOTOR OPENED
 D10 HOSE VALVE
 D10 RELIEF VALVE
 D10 SIGHT GLASS
 D10 SALINITY CELL
 D10 THERMOSTAT
 D11 MULTIPLE ORIFICE
 D11 THERMOMETER
 D11 PRESSURE BASE
 D11 VACUUM BASE
 D11 VACUUM PRESSURE BASE
 D11 THERMOMETER - ARE NOT
 D12 NEEDLE VALVE
 D12 LIQUID CHECK VALVE
 D12 GATE VALVE BLOCKED CLOSED
 D12 GATE VALVE BLOCKED OPEN
 D13 SINGLE STOP VALVE
 D13 "T" STRAINER
 D13 STOP VALVE BLOCKED OPEN
 D13 STRAINER
 D14 BUTTERFLY VALVE (LED. OPEN)
 D14 STOP CV. VALVE BLOCKED SHUT
 D14 ANGLE STOP VALVE SHUT OPEN
 D14 BUTTERFLY VALVE SHUT SHUT
 D14 SWING CHECK VALVE
 D15 ORIFICE
 D16 FUNNEL

Diagram—feed, condensate, boiler blow, and boiler water sampling.

FIGURE "E"

LEGEND OF SYMBOLS	
DIN	GATE VALVE
DIN	ANGLE STOP VALVE
DIN	ANGLE STOP VALVE
DIN	ANGLE STOP CHECK VALVE
DIN	SWING CHECK VALVE
DIN	WEDGE GATE VALVE
DIN	DISC VALVE
DIN	SOLENOID VALVE
DIN	SWING CHECK & PRESSURE VALVE
DIN	CONTROL VALVE
DIN	PRESSURE REGULATING VALVE
DIN	ANGLE CHECK VALVE
DIN	PLUG CHECK VALVE - 2 INCH - 3 PORT
DIN	SWING CHECK "V" TYPE
DIN	SIMPLIFIED STREAMLINE
DIN	SWING CHECK VALVE
DIN	THE DRAINE TEE
DIN	PRESSURE GAUGE
DIN	VACUUM-PRESSURE GAUGE
DIN	DUPLEX PRESSURE GAUGE
DIN	TANK LEVEL GAUGE
DIN	HIGH LEVEL ALARM
DIN	LOW LEVEL ALARM
DIN	PRESSURE DRAFT
DIN	THE DRAINE TEE
DIN	ON-FLOW TRANSMITTER & METER, SPRING LOADED, PNEUMATICALLY OUT RATED

FLOW DATA				
CODE	SIZE	CONDITION	FLOW G.P.M.	SERVICE
A	4"	OPEN DRAINING	32	FUEL OIL SERVICE FUEL SUCTION
B	3"	OPEN DRAINING	32	FUEL OIL SERVICE FUEL SUCTION
C	3"	ADS POWER DRAINING	27	FUEL OIL SERVICE FUEL SUCTION
D	2"	ADS POWER DRAINING	27	FUEL OIL SERVICE FUEL SUCTION
E	1½"	ADS POWER DRAINING	12.5	FUEL OIL HEATER
F	¾"	OPEN DRAINING	2.0	COLD BOILER START PUMP SUCTION
G	¾"	OPEN DRAINING	2.0	COLD BOILER START PUMP SUCTION

PUMP TABLE				
QTY.	NAME	TYPE	G.P.M.	HEAD
2	FUEL OIL SERVICE TWO SPEED	ADJUSTABLE CENTRIFUGAL	150	150
1	COLD BOILER START	ADJUSTABLE CENTRIFUGAL	2	150

NOTES

- ALL PIPING, VALVES AND FITTINGS ARE TO MEET THE REQUIREMENTS OF THE U.S. COAST GUARD AND A.B.S.
- ALL PIPE SIZES SPECIFIED ARE NOMINAL WITH IPS OUTSIDE DIAMETERS.
- COAMINGS, DRAWDOWNS, ETC. SHALL BE FITTED UNDER FUEL OIL SERVICE PUMPS, HEATERS, ETC. WHERE NECESSARY TO PREVENT OIL DRAINAGE TO BULKHEADS.
- ALL FUEL OIL PIPING IS TO BE INSTALLED REMOTELY AS POSSIBLE FROM HIGH TEMPERATURE STEAM LINES.
- THE OIL DRAINS AND DRAWDOWNS SHALL BE CONTROLLED FROM THE AUXILIARY BOARD, ALSO THE PUMPS SHALL HAVE PROVISIONS OUTSIDE THE MACHINERY SPACE FOR EMERGENCY SHUT DOWN.
- THE MAIN SOLENOID VALVE IS TO CLOSE IN EVENT OF LOSS OF POWER TO THE FORCED DRAFT BLOWER, LOW WATER OR TOTAL FLAME FAILURE WITHIN THE BOILER. A MANUAL TRIP SHALL BE PROVIDED ON THE VALVE.
- INDIVIDUAL TEE'S SHALL TERMINATE 18" ABOVE TANK BOTTOM, LOW SUCTION PIPES SHALL TERMINATE AT THE LEVEL OF THE BOTTOM OF THE TANK IN A DRAIN WELL.
- FUEL OIL RECYCLING LINE IS TO ENTER NEAR TOP OF FUEL OIL SETTLING TANK AND TERMINATE NEAR THE BOTTOM OF TANK IN A "U" BEND.
- THE BURNER SOLENOID VALVE IS TO CLOSE IN EVENT OF BURNER FLAME FAILURE. A MANUAL TRIP SHALL BE PROVIDED ON THE VALVE.

Diagram of fuel-oil service system

FIGURE 11EII

PIPING SYSTEMS

FLOWS AND VELOCITIES						
SVM	SIZE IN.	FLOW GAL/MIN	VELOCITY FT/SEC	OPERATING CONDITION	WATER TEMPERATURE	SERVICE
A	20	17720	9.22	WATER-FOAM PUMPED	84°F S-W CIRC.PUMP SUCTION	
A-1	25	17720	10.7	FOAM PUMPED	84°F S-W CIRC.PUMP DISCHARGE	
B	34	33100	10.4	WATER COND. BATHTHS	84°F CONDENSER S-W WATER OVERFLOWS	
C	6	685	6.92	LD COOLER BATHTHS	84°F LD COOLERS S-W	
D	8	1850	6.73	PUMP BATHTHS	84°F PUMP COND. S-W	
E	10	1973	3.96	ANSI. COND.	84°F ANSI. CONDENSER S-W	
F	3	80	2.98	LD 6400 BTU/H	74°F LD 6400 COOLERS S-W	
G	2	30	2.51	LD 6400 BTU/H	74°F LD 6400 COOLERS S-W	
H	2½	50	2.82	LD COOLER BATHTHS	74°F LD COOLERS S-W	
I	12	2125	3.76	—	84°F S-W CIRC P TO OUR COND. 84°F LD CLR TANKS COND.	
J	10	1500	5.67	LD SERVICE PUMPING/RELEASING	84°F SERVICE PUMP SUCTION	
K	8	500	7.23	LD SERVICE PUMPING/RELEASING	84°F LD SERVICE PUMP SUCTION AND DISCHARGE	
L	3½	80	2.26	LD 6400 BTU/H	74°F LD 6400 COOLERS S-W	
M	6	1833	10.49	—	SUPPLY TO REPAIRS-EQUIP.	
N	3½	300	6.42	CONDENSER BATHTHS	CARDED REFFING COND. S-W.	
O	2½	93	5.22	CONDENSER BATHTHS	84°F REFFING CONDENSER S-W	
P	3½	340	9.95	CONDENSER BATHTHS	AC CONDENSER S-W.	
Q	6	190	4.22	BATHTHS	COND. INSPECTION TANK COOL COAL BATHTHS COND.	
R	1	10	2.91	2 COOLERS	78°F PUMP LD. COOLER	
R-1	4½	5	2.42	1 COOLER	78°F PUMP LD. COOLER	
S	1	35	7.20	BATHTHS	LEVER SHAFTS COOLING COAL/WATER RESE.	

PUMP TABLE				
OTVISERVICE	TYPE	CAPACITY	TOTAL NOF	
2	WATER CIRC SINGLE STG	17800	15	
1	WATER CIRC SINGLE STG	1850	22	
3	SEAWATER SINGLE STG	300	96	

NOTES

1. ALL PIPING, VALVES AND FITTINGS ARE TO MEET THE REQUIREMENTS OF THE USCG AND ABS
2. ALL MOTION OPERATED VALVES ARE TO HAVE CONTROLS ADDED TO UNIT AND ALSO AT THE ENGINE ROOM OPERATING CONSOLE.
3. CONDENSER HEAD VENTS SHALL SLOPE UP TO THE SEA CHEST VENT.
4. THE SEA CHEST VENT SMALL TERMINATE ON THE WEATHER DECK
5. SWING CHECK VALVES SHALL BE INSTALLED IN THE FORE AND AFT DIRECTION.
6. STRAMMERS ARE TO HAVE PERFORATIONS SMALLER THAN SEA WATER PASSAGES IN EQUIPMENT BEING SERVED UNLESS THAT EQUIPMENT IS SERVED BY ADDITIONAL STRAMMERS
7. ONE HOSE VALVE LOCATED MIDWAY IN SHAFT ALLEY, FOR EMERGENCY COOLING OF LINE SHAFT BEARINGS, SHALL BE PROVIDED WITH A HOSE OF SUFFICIENT LENGTH TO REACH THE MOST REMOTE BEARING.
8. PIPING IS TO BE BENT TO A RADIUS OF 3 DIAMETERS
9. ALL SEA CHEST CONNECTIONS SHALL BE INSTALLED ON THE SIDE OF THE SHIP'S HULL EXCEPT VENTS WHICH ARE MOUNTED ON THE TOP OF THE CHEST
10. NEEDLE VALVE MUST BE OPENED AND LEFT OPEN DURING THE GENERAL SERVICE PUMP IS IN OPERATION AND REGULATED SUCH THAT THE TEMPERATURE OF THE CONTAMINATED DRAW PUMP SUCTION RISES, NOT EXCEEDING 10° C

LEGEND OF SYMBOLS	
	ONE-STATE VALVE
	STOP VALVE
	CHECK VALVE
	BUTTERFLY VALVE
	TYPE C REGULATING VALVE
	STOP CHECK VALVE
	SHOCK ABSORPTION JOINT
	PRESSURE GAUGE
	THERMOMETER
	SWITCH, WATER FAILURE
	STRAINER, Y-TYPE
	STRAINER, DUPLEX
	SEACHEST SUCTION
	SEACHEST DISCHARGE
	GATE VALVE - MOTOR OPERATED
	GATE VALVE - HYDRAULICALLY OPERATED
	STRAINER, SIMPLE
	WEEBLE VALVE
	DOUBLE-ENDED BELL-SHAPED VALVE

Diagram of seawater systems in machinery space

FIGURE "G"

PIPING SYSTEMS

FLOW DATA			
CODE	SIZE	FLOW GPM	SERVICE
A	6"	500	L.O. SERVICE PUMP SUCTION
B	6"	500	L.O. SERVICE PUMP DISCHARGE
C	6"	500	L.O. H.R. TO B. FROM COOLER
D	4"	25	CONT. CH. TO STEAM SEAL REG.
E	6"	340 I	L.O. FROM GRAVITY TR. TO BAGS.
F	6"	151.0	GRAVITY TR. OVERFLOW TO SUMP
G	6"	340 I	MN. H.R. TO BEARINGS
H	6"	13.40	PONTEK PUMP IN PARALLEL WITH TRANSFER PUMP

NOTES

- ALL PIPING, VALVES AND FITTINGS ARE TO MEET THE REQUIREMENTS OF THE U.S. COAST GUARD AND ABS.
- ALL SIZES AND SIZES SPECIFIED ARE NOMINAL WITH IPS OUTSIDE DIAMETERS.
- ALL BRAINS AND SIZES SHALL TERMINATE BELOW WORKING LEVEL AND AS REMOTE FROM PUMP AS PRACTICABLE.
- KEEP ALL OIL PIPING AT SAFE DISTANCE FROM HOT SURFACES AND IN NO CASE CLOSER THAN 10" WHERE THE TEMPERATURE EXCEEDS 650°F IN ORDER TO MINIMIZE FIRE HAZARDS.
- THE MAIN TURBINE SUPPLY PIPING SHALL BE FITTED WITH A VARIABLE ORIFICE TO OBTAIN 10-15 PSIG PRESSURE AT THE REDUCTION GEAR HEADER INLET.
- SPECIAL CARE MUST BE TAKEN IN DESIGN AND INSTALLATION SO THAT THE LUBE OIL SYSTEM WILL BE ACCESSIBLE FOR THOROUGH CLEANING.
- ALL BEARING BRAINS MUST HAVE AN EASY FLOW PATH WITHOUT POCKETS, HORIZONTAL RUNS, OR SHARP BENDS.

Diagram of lubricating-oil system

FIGURE 11111

NOTES

1. ALL PIPING, VALVES AND FITTINGS ARE TO MEET THE REQUIREMENTS OF USCC AND ABS.
2. ALL PIPE SIZES SPECIFIED ARE NOMINAL, WITH IPS OUTSIDE DIAMETERS.
3. VACUUM SWITCH STARTS ONE PUMP WHEN THE VACUUM DROPS TO 15' HG, STARTS A SECOND PUMP WHEN IT REACHES 12' HG, AND STOPS THE PUMPS WHEN THE VACUUM REACHES 20' HG. THE SWITCH CONTAINS A MANUAL OPERATING FEATURE.
4. SPECTACLE FLANGE TO BE POSITIONED TO ALLOW ONLY THE BILGE SUCTION TO BE USED WHEN CARRYING DRY CARGO IN THE DEEP TANKS FORWARD.

Diagram of bilge, clean ballast, and priming system in machinery space

FIGURE I

PUMP TABLE		
QTY.	SERVICE	TYPE
3	CARGO OIL	PUMP
1	BALLAST	PUMP
1	BILGE	VAC. STRIPPER
		RATED TOTAL (CAP GPM HEADPS)
		40000 220
		40000 80
		1840 200

LIST OF SYMBOLS	
—(—)	GATE VALVE
—(—>)	STOP CHECK VALVE
—(—)	BUTTERFLY VALVE (INTR. OPERATED)
—(—)	BWING CHECK VALVE
—(—)	ANGLE RELIEF VALVE
—(—)	REGULATING VALVE
—(—)	BELLMOUTH
—(—)	STRAINER
O	VACUUM STRIPPER

Diagram of cargo-oil piping in pump room

FIGURE J

FIGURE K

PLAN VIEW - UPPER DECK
FWD

Fig. 19 Diagram of cargo-oil piping on deck

PLAN VIEW TANKS
FWD

Diagram of cargo-oil piping in tanks

FLOW DATA (1)						
SYMBOL	SERVICE	SIZE	VELOCITY FT/SEC	FLOW	PRESS. DROP	REMARKS
A	F.O. FILL	4"	5.5	2200 GALLS/MIN ⁽²⁾	50 PSI	TO NO. 1 O.S.T.
B	F.O. DISCH	4"	5.5	300 GPM	30 PSI	TO FILL COMM. DR.
C	F.O. TRANS	4"	5.5	300 GPM	30 PSI	FROM NO. 1 O.S.T.
D	BALLASTING	4"	4.5	100 GPM	25 PSI	TO NO. 1 B.E.P.T.
E	DEBALLASTING	4"	7.5	700 GPM	30 PSI	FROM NO. 1 B.E.P.T.

NOTES

1. FLOW DATA BASED ON FUEL OIL VISCOSITY 3000 SSU
2. TOTAL FLOW OF 2200 GALLS/MIN TO ALL TANKS INCLUDES FLOW OF 350 GALLS/MIN TO NO. 1 DOUBLE BOTTOM TANK
3. THE FUEL OIL TRANSFER PUMP IS A VERTICAL TWO-SPEED PUMP WHICH DEVELOPS A TOTAL HEAD OF 100 PSI AT 300 GPM.

Diagram of fuel-oil filling, transfer, city ballast, and overflows in machinery space

FIGURE L

M. ROSENBLATT & SON, INC.

Table D

Equipment/Component	Standard No.	Standard Group	Remarks
Main Steam Boiler			
Main Turbine (Set)			
Main Condenser			
Reduction Gear {Set)			
Main Lube Oil Pump			
Forced Draft Fan			
Main Feed Pump			
Fuel Oil Service Pump			
Main Circulating Pump			
Main Condensate Pump			
Fuel Oil Heater			
Lube Oil Cooler			
First-Stage Feed Heater			
Gland Exhauster			
Drain Cooler			
De-aerating Feed Heater			
3rd Stage Heater			
4th Stage Heater			
Automation System			

M. ROSENBLATT & SON, INC.

APPENDIX C-1.Z

Format for Group 1 Standards

Title: Standard Total Propulsion Plant

No. : TP-DG-etc.

1. Definition: This standard is a document which contains in a standard format, the technical information necessary to define and describe a _____ to _____ SHP medium-speed diesel engine propulsion plant. Standards are available for each of the following propulsion plants:

8,000- 10,000 SHP, Medium-Speed Diesel

12,000 - 14,000 SHP, Medium-Speed Diesel

24,000 - 28,000 SHP, Medium-Speed Diesel

Standardized Parameters (for Total Diesel Plant)

Medium Speed Diesel Engine Rating:

_____ BHP @ _____ ERPM (Maximum Continuous Rating)

_____ BHP @ _____ ERPM for _____ Hrs operation
(Maximum Intermittent Rating)

BMEP _____ psi

Maximum Fuel Rate #/BHP/HR

Sea Water Temperature _____ °F

Outside Air Temperature _____ °F

Outside Air Relative Humidity _____ %

Machinery Space Air Temperature _____ °F

Machinery Space Air Relative Humidity _____ %

Exhaust System maximum pressure drop _____ inches H₂O

inlet Air System maximum pressure drop _____ Inches H₂O

2. System Block Diagrams

The total plant will consist of the following **elements**:

2.1 The main engine and piping systems contain the following sub-systems:

2.2 The auxiliary systems contain the following sub-systems which are required for operation of the propulsion systems:

2.3 The supporting systems are those systems which are required for the accomplishment of the ship's mission and which interface with and affect the propulsion system.

2.4 The main systems which are required for propulsion plants are contained in the following:

3. Propulsion Plant Arrangement

The schematic arrangement of the main propulsion machinery will be as shown in Figure M.

4. Systems Diagrams

For the systems listed below, systems diagrams are included to provide guidelines for developing the actual systems for a vessel. Typically, each diagram consists of a one-line piping schematic showing the subject piping system with symbolic representations of all relevant equipment, valves, fittings, flanges and instrumentation.

Diameters of piping and sizes of fittings and valves are indicated on the diagrams. Also included in this group are tables which list materials and specifications. the maximum allowable fluid velocities, and pump tables which show pump types, sizes and capacities.

Under each of the systems shown below, those parameters are included which will be needed for the preparation of systems diagrams as defined above.

DIESEL SCHEMATIC ARRGT

FIG. M

M. ROSENBLATT & SON, Inc.

4.1 Main Engine

- Air intake system (Must be integrated with specific ship arrangement)
- Jacket Cooling Water System (Figure O)

4.2 Auxiliary Systems

- Fuel Oil Service System (Figure Q)
- Fuel Oil Purifying System
- Salt Water Circulating System (Figure O)
- Lube Oil Service System (Figure R)
- Exhaust System (Figure N)

4.3 Support Systems

- Fuel Oil Transfer System
- Lube Oil Transfer System
- Lube Oil Purifying
- Starting Air System (Figure P)

4.4 Main Systems

Included here are those systems for major equipment allied with the main propulsion plant and required for the operations of the ship.

4.4.1 Shafting System

Dimensional Diagram

Material Requirements

Bearing Type and Locations

Thrust Bearing Type and Location (May be included in Reduction Gear)

Weight and Force Diagram

DIESEL EXHAUST DIAGRAM

FIG. N

NOTES

- 1 TO BE INSTALLED ON ENGINE GAGE BOARD.
- 2 DRAINS TO BE INSTALLED IN LOWEST POINT IN JACKET WATER AND SEA WATER SYSTEMS. USE GATE VALVES.
- 3 EXPANSION TANK SHALL BE LOCATED IN THE SAME COMPARTMENT WITH ENGINE.
- 4 SEA WATER SUPPLY FOR GENERATOR AIR COOLERS WITH THROTTLING VALVE TO BE PROVIDED ONLY WHEN REQUIRED.
- 5 SEA WATER PUMP SUCTION PIPING TO BE OF SUFFICIENT SIZE, AND ARRANGED TO LIMIT VACUUM AT PUMP SUCTION TO 6" HG AT RATED RPM.
- 6 JACKET WATER BY-PASS ACROSS BOTH COOLERS SHALL BE PROVIDED WHEN REQUIRED TO OBTAIN SPECIFIED OPERATING TEMPERATURES.
- 7 TANK FOR INITIATING AND MAINTAINING JACKET WATER TREATMENT. CAPACITY TO BE 1/2 GALLONS FOR EACH 100 GALLONS IN ENGINE SYSTEM. TO USE, CLOSE VALVE "A" TO TANK AND OPEN VALVES "C", "B", "D" TO DRAIN TANK. CLOSE "D", FILL TANK WITH CORRECT AMOUNT OF SOLUTION. CLOSE "C", OPEN "A"; CIRCULATION OF JACKET WATER WILL FEED SOLUTION INTO SYSTEM. TEST SAMPLE FOR CORRECT CONCENTRATION.

Fig. C -Diagram of typical cooling water system

NOTE: Quick opening valve "D" to be opened only for starting engine.

Pipe No.	Pipe Size IPS
1	3/4
2	3/4
3	3/4
4	1-1/2
5	1-1/2
6	1-1/2
7	1/4

Letter	Name
A	Engine
B	Air Motor-on Eng.
C	Lubricator-on Eng.
D	Starting Valve
E	Strainer
F	Shut-off Valve-3/4 IPS
G	Relief Valve
J	Air Tank
K	Pressure Gage
L	Air Compressor
M	Pressure Reducing Valve
N	Drain Cock
P	Shut-off Valve 1-1/2 IPS
Q	Conn. to Eng. Sys. 1-1/2 IPS

Fig. P : STARTING AIR SYSTEM DIAGRAM

Fig. Q -Diagram of a typical fuel system

Fig. R - Lube Oil Service System Diagram

M. ROSENBLATT & SON, INC.

4.4.2 Reduction Gear

Type

Load Factors

K-Factors

Gear Diagram

4.4.3 Automation System

Type and Degree

System Block Diagram

One-Line Diagram

Service Requirements

5. Standards for Equipment/Components

A listing of available standards for equipment and/or Components which may be used in the composition of this standard propulsion plant is included in Table E -

Equipment/Component	Standard Group	Quantity	Remarks
Main Diesel Engine			
Automation System			
Reduction Gear			
Starting Air Compressor			
Exhaust Gas Boiler			
Fresh Water Cooler			
Lube Oil Cooler			
Diesel Accessory Rack			
Fuel Oil Service System			
Fuel Oil Purifier			
Lube Oil Purifier			
Lube Oil Service Pump			
Reduction Gear L.O. Booster Pump			

Table E - Equipment/Component Standards

Equipment/System Module Standard - Group II

Definition:

This standard is a document which contains the technical data and information required to define and describe a complete sub-system or group of like equipment which is mounted together on a common base. This module has defined and located interfaces and limiting size dimensions and weights, which make the modules (but not the components) interchangeable from all sources. The equipment which is included in the module may **or** may not be standard.

This standard affords the benefits of standard equipment without limitations being imposed on equipment vendors.

Standard Format:

In order to illustrate this standard, an example of a fuel oil service system module format follows:

Example: First Page

Title: Description of system or Equipment utilization.

Identification: Alpha-numerical standard identification with encoded type and size.

Application: General data with reference to the scope of this standard as to sizes, temperatures, pressures, and medium characteristics.

M. ROSENBLATT & SON, Inc.

Next Page(s)

Performance Data Matrix: Chart showing capacity, pressure, temperature and viscosity characteristics for each module.

Next Page(s)

Outline Drawings(s): Drawings plus dimension chart giving interface sizes and locations, mounting information and overall size and weight limitations for each module.

Next Page(s)

Design Characteristics: Contains listing of components required with technical data requirements of each component. Includes block and/or schematic diagram of system.

Approvals: Includes regulatory agency approvals of module designs.

Equipment Suppliers: Includes the following lists with approvals noted if applicable.

1. Module manufacturers
2. Individual component manufacturers

Other Documents: Reference to other standars and specifications which are applicable.

M. ROSENBLATT & SON, INC.

APPENDIX C.3

Equipment Envelopes Standard - Group III

Definition:

This standard is a document which contains the technical data and information in standard format which is required to define and describe the interface characteristics of equipment so that separate vendors equipment of like characteristics may be used interchangeably. The envelope standard concept limits overall size and weight of the envelope and determines interface and installation requirement sizes and locations for that particular equipment independent of vendor source. These data will be such that all eligible vendors will be able to meet the requirements of the standard by using a sub-base and adding interconnections between the equipment and the interface locations.

Standard Format:

An example of a format which may be utilized for this equipment envelope standard follows. More than one format may be needed to satisfy the requirements of the many different types of equipment which fall into this category. The example depicts that for a Condenser Circulating Pump.

M. ROSENBLATT & SON, INC.

Example:

First Page

Title: Description of equipment utilization. ,

Identification: Alpha-numerical standard identification with encoded type
and size.

Application: General data with reference to the scope of this standard as
to sizes, temperatures, pressures, and medium characteristics.

Next Page(s)

Performance Data Matrix: Chart showing capacity, pressure, temperature,
and viscosity characteristics for each envelope size.

Pump Selection Charts: Capacity, Total Dynamic Head and Horsepower and
model number of the vendor's available pumps for this service.

Next Page(s)

Pump Characteristic curves: for each model listed containing curves of
Capacity versus Head, Horsepower, and Suction pressure

Next Page(s)

Outline drawings: with key dimensions of each model. Included are all
interface dimensions, overall sizes, weights and bolting information for
each module size.

Approvals: Includes regulatory agency approvals of module designs.

M. ROSENBLATT & SON, INC.

Equipment Suppliers: Includes the following lists with approvals noted if applicable.

1. Envelope manufacturers
2. Individual component manufacturers

Other Documents: Reference to other standards and specifications which are applicable.

M. ROSENBLATT & SON, INC.

APPENDIX C.4.1

Data Standard Group IV

Definition: This standard is a document which contains technical information in standard format which pertains to vendor equipment required for propulsion machinery. The technical information included is that which is necessary for ship designers to perform propulsion plant designs at any level (preliminary design, contract design or detail design) without requiring additional information from vendors such as contract drawing and specification approval.

Standard Format: One standard format will be utilized for all like equipment. One example of a format which applies to pumps follows:

EXAMPLE: First Page

Title: Describes pump service and type of pump

Performance Chart: A matrix of comparative performance data of the available pumps by vendor which satisfy the service requirements. Information included in the chart is Standard identification number, Vendor Identity, Type of casing, capacity range, pressure range, required services, driving means, and a reference page number within the standard which contains the remaining data.

M. ROSENBLATT & SON, Inc.

Referenced Page

Vendor Identity, Address; and phone numbers:

Also included are contacts for standard data maintenance.

Standard Identification Number:

Specifications and Other Standards: which these pumps comply with

Next Page(s)

Pump Selection Charts:

Capacity, Total Dynamic Head and Horsepower and model number of the vendor's available pumps for this service,

Next Page(s)

Pump Characteristic curves: for each model listed containing curves of Capacity versus Head, Horsepower, and Suction pressure

Next Page(s)

Outline drawings: with key dimensions of each model. Included are all interface dimensions, overall sizes, weights and bolting information.

Next Page

Operating Data: Includes such items as temperature and pressure limitations of casings, bearings and seals

Materials: This contains a listing of the major components materials utilized in each model as required for compatibility with the intended utilization.

Approvals: Regulatory Agency approvals, if applicable to the particular hardware.

Next Page

Design Features and Specifications: This section contains general information regarding the design of the pump components which might be required by a ship designer. Included are items such as Casing description, Impeller data, maintenance features of bearings and seals, lubrication and alignment requirements, etc., and any special features which are desired.

M. ROSENBLATT & SON, Inc.

S.W. CIRCULATING PUMPS

Centrifugal Split Casing Types

Horizontal and Vertical

MANUFACTURER	CAPACITY GPM	PRESSURE FT H ₂ O	ELECTRIC LOAD	STANDARD NO.	PAGE NO.
Worthington	0-6000	0-300	1½-250 HP	TP-3C-W1	2
Weil	0-5000	0-400	1-300 HP	TP-3C-W2	15
Goulds	0-5500	0-550	1-350 HP	TP-3C-G	
Aurora	0-6000	0-350	1-250 HP	TP-3C-A	

Worthington Sales Company
270 Sheffield Street
Mountain side, New Jersey 07092

Tele. (201) 654-3300

Technical Contact: Mr. Kenneth C. Hill, Engineer
Marine & Government Department

Standard Identification No. TP-3C-WI

Applicable Standards:

pump Standard P-3C-WI-43 through P-3C-WI-57

Total Package Standard TP-2C-18 through TP-2C-36

Applicable Specifications:

Material specs _____

Screw Threads _____

WORTHINGTON PUMPS

types LR, LER, LRV

selection tables

TYPES LR-~~LER~~ PUMPS, 3500 R.P.M.

GPM	TOTAL HEAD FEET										600	650	700	750
	75	100	125	150	175	200	250	300	350	400				
50														
100														
150														
200														
250														
300														
350														
400														
500														
600														
700														
800														
900														
1000														
1100														
1200														

types LR, LLR, LRV

selection tables, cont'd.

PUMPS LR-LLR PUMPS, 1750-1150 R.P.M.

G.P.M.	TOTAL HEAD										160	200	225	250	275	300
	20	30	40	50	60	70	80	90	100	120						
20	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
30	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
40	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
50	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
60	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
80	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
100	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
120	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
150	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
200	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
250	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
300	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
350	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
400	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
450	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
500	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
600	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
800	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
1000	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
1200	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
1500	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
1800	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
2000	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
2500	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
3000	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
3500	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
4000	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
4500	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
5000	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP
6000	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP	1/2 HP

NOTES:
 Except as noted by asterisk, these selections require N.P.S.H. available of no more than 30 feet. For systems providing less than 30 feet N.P.S.H., check individual rating curves. Selections marked by asterisk require more than 30 feet N.P.S.H. and individual rating curves should be consulted.
 Horsepowers listed are nominal motor horsepower for thin open discharge motors required to move the pump at the conditions listed when pumping a liquid of 1.0 specific gravity and viscosity of 1 centipoise. Standard service factors of open discharge motors are used. If a different motor enclosure or viscosity is employed, refer to the individual rating curves.
 Pump selection within bold lines denotes 1150 R.P.M. Operation.

types LR, ~~L~~, LRV

composite coverage charts

COMPOSITE CHARTS FOR TYPE LR, ~~L~~, PUMPS 3500 RPM - 60 CYCLE

1750-1150 RPM - 60 CYCLE

types LR, LRV

rating curves

~~types LR, LRV~~

rating curves

4 LR-10

4 LR-10

4 LR-10

4 LR-11

4 LR-11

4 LR-12

YBES LR & LRV

rating curves

4 LR-12

41R-14

4 LR-14

5-18-10

5 LR-10

A-7384

types LR, LRV

rating curves

5 LR-15

6 LR-10

6 LR-10

6 LR-13

6 LR-16

6 LR-18

Types LR, LRD, LRV

Rating Curves

6 LR-18

8 LR-13

8 LR-13

10 LR-15

10 LR-15

Types LR, LR

dimensions

PUMP DIMENSIONS

pump size	suct.	disch.	S	X	Y	Z	CP	CM	YY	HD	HL	WT	base
1 1/2 LLR-7	2	1 1/2	3 1/2	6 1/2	9 1/2	4 1/2	26 1/2	3 1/2	6 1/2	12 1/2	4	200	1
1 1/2 LLR-10	3	1 1/2	4 1/2	8 1/2	10 1/2	5 1/2	26 1/2	4	8 1/2	13 1/2	4	360	1
2 LR-9	3	2	4 1/2	8	10 1/2	5	26 1/2	4 1/2	8 1/2	13 1/2	4	290	1
2 1/2 LR-10	3	2 1/2	5	8	10 1/2	6 1/2	23	1 1/2	8 1/2	15	6	220	1
2 1/2 LR-13	4	2 1/2	5 1/2	9 1/2	11 1/2	7 1/2	24 1/2	1 1/2	10	16	7	250	1
3 LR-9	4	3	5 1/2	7 1/2	12	5 1/2	26 1/2	—	9	15	6 1/2	220	1
3 LR-12	5	3	5 1/2	8 1/2	12	7 1/2	26 1/2	—	10 1/2	16	6 1/2	280	1
4 LR-10	5	4	5 1/2	9	12	6 1/2	26 1/2	—	11	16	6 1/2	280	1
4 LR-11	6	4	6 1/2	10	13	6 1/2	30	—	12 1/2	17 1/2	6	320	1
4 LR-12	6	4	6 1/2	9	12 1/2	7 1/2	27	—	11	17 1/2	6	400	2
4 LR-14	6	4	6 1/2	12	13	7 1/2	30	—	12 1/2	17 1/2	6	385	2
5 LR-10	6	5	6 1/2	9 1/2	12 1/2	7	27	—	13	17 1/2	6	370	2
5 LR-13	6	5	6 1/2	10 1/2	13	7 1/2	30	—	13	17 1/2	6	425	2
5 LR-15	6	5	6 1/2	13	14 1/2	7 1/2	34	—	13	17 1/2	6	600	1
6 LR-10	8	6	7 1/2	10	13	7 1/2	34	—	13 1/2	17 1/2	7 1/2	425	2
6 LR-13	8	6	7 1/2	11	14 1/2	9	28 1/2	—	14	20	6	610	1
6 LR-16	8	6	7 1/2	14	14 1/2	8 1/2	34	—	14	20	7 1/2	680	1
6 LR-18	10	6	9	12 1/2	14 1/2	10 1/2	39	—	15	20	7 1/2	1000	3
8 LR-13	10	8	8 1/2	11 1/2	17 1/2	10	34	—	17	24 1/2	7 1/2	780	1
10 LR-15	12	10	10 1/2	14	17 1/2	10 1/2	39	—	18	24 1/2	12	1185	3

BASE DIMENSIONS

nema frame motor	base 1			base 2			base 3		
	HA	HB	WT * pump & base	HA	HB	WT * pump & base	HA	HB	WT * pump & base
182 T	24	41 1/2	250	24	41 1/2	280	—	—	—
184 T	24	41 1/2	260	24	41 1/2	290	—	—	—
213 T	24	41 1/2	305	24	41 1/2	335	—	—	—
215 T	24	41 1/2	310	24	41 1/2	340	—	—	—
254 T	24	41 1/2	360	24	54 1/2	390	—	—	—
256 T	24	41 1/2	390	24	54 1/2	420	—	—	—
284 T	24	54 1/2	455	24	54 1/2	485	—	—	—
286 T	24	54 1/2	570	24	54 1/2	600	28	60	920
324 T	24	54 1/2	605	24	54 1/2	635	28	60	955
326 T	24	54 1/2	660	24	54 1/2	690	28	60	1010
364 T	24	54 1/2	790	24	54 1/2	820	28	60	1150
365 T	24	54 1/2	845	24	54 1/2	875	28	60	1210
404 T	24	64 1/2	1015	24	54 1/2	1045	32	66	1270
405 T	24	64 1/2	1095	24	64 1/2	1125	32	66	1440
444 T	24	64 1/2	1490	24	64 1/2	1490	32	66	1870
445 T	24	64 1/2	1655	24	64 1/2	1655	32	66	2030

*Approximate Weight Of Base And ODP Motor — Add 10% for TEFC or Ex Prl.

Type LRV

dimensions

PUMP DIMENSIONS

LRV												
pump	suct.	disch.	D	X	Y	CP	HA	HD	S	Z	WT	
3 LRV-9	4	3	10½	7½	9	27½	18	13	5½	5¾	395	
3 LRV-12	5	3	11½	8¾	10½	27½	18	13	5½	7½	455	
4 LRV-10	5	4	11½	9	11	27½	18	13	5½	6½	455	
4 LRV-11	6	4	13	10	12½	30½	18	13½	6¾	6½	495	
4 LRV-12	6	4	13	9	11	27½	18	13½	6¾	7½	565	
4 LRV-14	6	4	13	12	12½	30½	18	13½	6¾	7½	570	
5 LRV-10	6	5	13	9½	13	27½	18	13½	6½	7	545	
5 LRV-13	6	5	13	10½	13	30½	18	13½	6½	7½	610	
5 LRV-15	6	5	13	13	13½	34½	20	15½	6½	7½	780	
6 LRV-10	8	6	15½	10	14	29	18	13½	7½	7½	600	
6 LRV-13	8	6	15½	11	14	34½	20	15½	7½	9	790	
6 LRV-16	8	6	15½	14	15	34½	20	15½	7½	8½	900	
8 LRV-13	10	8	18	11½	17	35½	20	16	8½	10	1065	
10 LRV-15	12	10	21	14	18	39	25	18½	10½	10½	1510	

MOTOR DATA

Motor Frame	CM	L	WT
213 TP	20½	10½	165
215 TP	20½	10½	180
254 TP	24½	13	205
256 TP	24½	13	270
284 TP	25½	13	330
286 TP	25½	13	355
324 TP	27½	14½	400
326 TP	27½	14½	450
364 TP	29½	16½	520
365 TP	29½	16½	580
404 1P	38½	18½	890
405 TP	38½	18½	990
444 TP	44½	20½	1180
445 TP	44½	20½	1330

All dimensions are in inches -

WORTHINGTON P6-17

OPERATING DATA

MAXIMUM SUCTION PRESSURES

2-1/2" LR 75 psi
3" to 10" LRV 150 psi

TEMPERATURE RATINGS

STANDARD MECHANICAL SEALS 212°F
STANDARD PACKED STUFFING BOX 250°F

(SEALS AND PACKING AVAILABLE FOR HIGHER TEMPERATURES)

materials of construction

PART	STANDARD FITTED PUMP	ALL IRON PUMP	ALL BRONZE PUMPS
	MATERIALS	MATERIALS	MATERIALS
Casing	Cast Iron	Cast Iron	Bronze
Bearing Bracket	Cast Iron	Cast Iron	Cast Iron
Bearing Cover	Cast Iron	Cast Iron	Cast Iron
Impeller	Bronze	Cast Iron	Bronze
Casing Ring	Bronze	Cast Iron	Bronze
Shaft	11% Chrome Steel	11% Chrome Steel	Monel
Impeller Nut	Bronze	Steel	Bronze
Stuffing Box Bushing	Bronze	Steel	Bronze
Gland	Cast Iron	Cast Iron	Bronze
Seal Cages	Teflon®	Teflon	Teflon

Type LR, single stage, single suction
size 2 1/2"

PART	STANDARD FITTED PUMP	ALL IRON PUMP	ALL BRONZE PUMPS
	MATERIALS	MATERIALS	MATERIALS
Casing	Cast Iron	Cast Iron	Bronze
Bearing Bracket	Cast Iron	Cast Iron	Cast Iron
Bearing Cover	Cast Iron	Cast Iron	Cast Iron
Impeller	Bronze	Cast Iron	Bronze
Casing Ring	Bronze	Cast Iron	Bronze
Shaft Sleeve	Bronze	Steel	Bronze
Shaft	Steel	Steel	Steel
Shaft Nut	Bronze	Steel	Bronze
Stuffing Box Bushing	Bronze	Steel	Bronze
Gland	Cast Iron	Cast Iron	Bronze
Seal Cage	Teflon	Teflon	Teflon

Type LR, single stage, double suction
size 3" to 10"

PART	STANDARD FITTED PUMP	ALL IRON PUMP	ALL BRONZE PUMPS
	MATERIALS	MATERIALS	MATERIALS
Casing	Cast Iron	Cast Iron	Bronze
Bearing Bracket	Cast Iron	Cast Iron	Cast Iron
Bearing Cover	Cast Iron	Cast Iron	Cast Iron
Impeller	Bronze	Cast Iron	Bronze
Casing Ring	Bronze	Cast Iron	Bronze
Shaft Sleeve	Bronze	Steel	Bronze
Shaft	Steel	Steel	Steel
Shaft Nut	Bronze	Steel	Bronze
Stuffing Box Bushing	Bronze	Steel	Bronze
Gland	Cast Iron	Cast Iron	Bronze
Seal Cage	Teflon	Teflon	Teflon
Pump Base	Cast Iron	Cast Iron	Cast Iron
Motor Base	Fab. Steel	Fab. Steel	Fab. Steel

Type LRV, single stage, double suction,
vertically mounted sizes 3" to 10"

type LRV - single stage, double suction vertically mounted, sizes 3" to 10" construction features

Type LRV vertical pump

ratings: capacities to 6000 gpm,
heads to 300 ft.

services: general service,
water supply,
circulating pumps.

Typical section, type LRV

Incorporates all of the outstanding features of the LR pump plus the added advantage of being used in the space saving vertical position. Accurate motor alignment is achieved by precision machining. Fluid is blocked from the bottom bearing by a positive sealing device.

SPECIFICATIONS

Casing The casing is of the volute type and is designed to produce a smooth flow with gradual velocity changes. It is designed for vertical mounting with heavy-duty flanges for base and motor mounting brackets. It is split on the shaft centerline for ease of inspection or removal of interior parts. This may be done without disturbing piping connection or pump alignment. The casing halves are sealed by a pre-cut gasket. Casing halves are accurately located by the use of straight dowel pins. This eliminates the possibility of a mismatch between halves which would impair both hydraulic and mechanical performance.

Impeller The impeller is a double-suction enclosed type. It is hydraulically balanced by its inherent design. The impeller is firmly secured to the shaft by a key and by external shaft nuts.

Renewable case rings Renewable case rings are locked in place and protected against rotation by 2 Model pins.

Impeller rings. Securely held Impeller rings can be supplied as an option.

Stuffing box bushing A renewable stuffing box bushings provided which insures freedom from packing trouble.

Shaft sleeve Renewable shaft sleeves are provided which extend through the stuffing box. They are securely keyed and held in place with shaft nuts incorporating nylon inserts for locking purposes.

Shaft The shaft is of heat-treated steel, ground to accurate dimensions and polished to a smooth surface.

The shaft sleeves protect the shaft at the stuffing boxes. The sleeves are secured in lateral position by external shaft nuts. The impeller keys are extended into the hub of the shaft sleeve to prevent slippage between the shaft and the sleeves. Sealing to protect against leakage under the shaft sleeve is accomplished by the use of "O" ring type seals, located between the sleeve and the shaft. It is adequately sized and designed to minimize deflection. The maximum run-out of the shaft, at the stuffing box face, will not exceed .002".

Dearings The bearings are single-row, deep-groove type ball bearings. They are designed and sized for at least 100,000 hours minimum rated bearing life. Each bearing is capable of carrying both line and thrust type loads. They are securely held to the shaft by an easily installed snap ring. Special flinger, shaft sealing o-ring and labyrinth all protect lower bearing from water seepage.

Bearing Brackets The bearing brackets are separate from the pump casing and are accurately machined, and doweled to the casing. Perfect alignment between housing and casing results in accurate alignment between rotor and casing. Removal of dowels permits removal of complete rotor assembly without disturbing piping, base or motor.

Packing - mechanical seals As a standard, stuffing boxes will be packed with the best quality graphited asbestos packing. Die-moulded packing is supplied, as a standard, insuring both a perfect seal and an easy installation. Mechanical seals are available, if desired, and are easily interchangeable with packing.

WORTHINGTON P6-5

APPENDIX C-4.2

Procurement Standard Group IV

Definition: This standard is a document which contains the information in standard format which is required for a shipyard to purchase vendor equipment required for Propulsion machinery. This document contains both the technical documentation and the legal documentation (For the purpose of this study, only the technical requirements will be considered).

Standard Format:

For information the legal portion of this standard will contain standard statements of Warranty, Price Adjustments, Terms of payments, Liability Limitations, Loss Risks, Shipping, Delays, Changes, Drawing Approval Terms, Cancellation, and Taxes.

One standard technical format applicable to a pump purchase is described as follows:

EXAMPLE: First Page

Title: Brief Description of item by service

Identification: Standard identification number

Applicable Documents: Reference to requirements such as other standards, Regulatory agency specifications and requirements, etc.

Quantity of Purchase

Intended Service

Next Page(s)

Drawing Requirements: Included are information drawings, approval drawings and schedule of delivery

Instruction & Maintenance Manuals:

Physical Description: In chart form

Performance Data: In chart form

Materials Data: List

Weights

Spares

Inspection Requirements: Includes at vendors' sites and at delivery point requirements

Outline Drawing: This is an envelope or limit type drawing with information required for interface and to limit the vendor.

Performance Curves: Includes capacity versus head, horsepower and suction

Special Design Considerations: Contains any special considerations with which vendor must comply. Includes physical and chemical properties of recommended materials, special handling, heat treating, ambient conditions, etc.

Test Requirements: Specifies tests which must be performed by the vendor such as hydrostatic pressure tests and load run tests.

PAGE ... of ...

**TITLE: TANK WASHING CENTRIFUGAL PUMP
PROCUREMENT STANDARD**

STANDARD NO: P-TW-4 B

APPLICABLE DOCUMENTS:

Pump Standard HP-TW-4 B 63
Installation Drawing N 51-2362

TERMS OF PAYMENT

These are _____ standard terms of payment for domestic orders. If other terms are acceptable, or when export terms are required; they are listed elsewhere in this proposal.

On all orders under \$100,000 regardless of manufacturing schedule; and those orders over \$100,000 with a manufacturing schedule less than six (6) months:

Net cash within thirty (30) days after shipment, or after notification that _____ is ready to ship. These terms apply to partial as well as complete shipments

On orders over \$100,000 with a manufacturing schedule of six (6) months or longer:

10%—with Purchaser's Order, Letter of Intent, or written authorization, whichever bears the earliest date.

80%—in approximately equal payments every sixty (60) days, to commence sixty (60) days after date of Purchaser's order and to continue through the balance of the proposed manufacturing schedule, excepting that the last payment in this group shall become due upon shipment or notification that _____ is ready to ship.

10%—when shipment is made; or upon completion of erection and test, but not later than ninety (90) days after shipment or notification that _____ is ready to ship.

PRICE ADJUSTMENT

LEGAL
STD.

The following clauses are applicable to the extent they are referred to elsewhere in this proposal: Selection of price adjustment clause is based upon the proposed shipping date for the equipment offered. Any purchased material whose price will be adjusted to reflect the vendors' price in effect at time of shipment is listed as an exception.

Clause 9 The prices named herein for _____ equipment will be adjusted to the prices in effect at the time of shipment, such adjustment, if any, not to exceed 10% of the contract price.

Clause 10 The prices named herein for _____ equipment are not subject to any change from the prices in effect on the date the order is accepted.

Clause 11 The prices named herein for _____ equipment will be adjusted to the prices in effect at the time of shipment, such adjustment, if any, not to exceed 15% of the contract price.

Clause 12 The prices named herein for _____ equipment will be adjusted to the prices in effect at the time of shipment, such adjustment, if any, not to exceed 20% of the contract price.

1. Warranty, Remedy, Disclaimer

____ warrants for a period of one year from the date of shipment the equipment of the own manufacture to be delivered hereunder against defects in material and workmanship, under normal use and service when used and maintained in accordance with instructions supplied by _____. This is _____ sole and exclusive warranty. It applies only to equipment manufactured by _____ and specifically excludes equipment manufactured by others. Such other equipment is warranted only by its manufacturer. If such a defect

appears within one year from the date of shipment and Purchaser has given _____ immediate written notice of same, _____ will repair the part, or at its option replace the part, by shipping a similar part F.O.B. shipping point, or at its option refund an equitable portion of the purchase price.

_____ may require the return of the defective part, transportation prepaid, to establish the claim. No allowance will be made for repairs without _____ written consent or approval. Any descriptions of the equipment, any specifications, and any samples, models, bulletins, or similar material, used in connection with this sale are for the sole

AT THE TIME OF DELIVERY, EXCEPT AS OTHERWISE IMPLIED; AND ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED BY WORTHINGTON AND EXCLUDED FROM THESE TERMS OF SALE. The Purchaser's sole and exclusive remedy, whether based upon warranty, contract or tort, including negligence, will be to proceed under this warranty. All liability of _____ shall terminate one year from the date of shipment of the equipment. All references to one year in this paragraph shall be limited to thirty (30) days for mounted demolition tools and parts and ninety (90) days for hand held contractor's tools, crawler drills and parts.

2. Limitation of Liability

_____ shall not in any event be liable for special, indirect, incidental or consequential damages. _____ liability on any claim of any kind, including negligence, for any loss or damage arising out of, connected with, or resulting from this contract, or the performance or breach thereof, or the design, manufacture, sale, delivery, resale, installation, technical direction of installation, inspection, repair, operation or use of any equipment covered by or furnished under this contract shall in no case exceed the price paid by the Purchaser for the equipment. _____ also disclaims all liability, whether in contract, tort, warranty, or otherwise, to any party other than Purchaser.

3. Shipping Duties

The time for shipment given herein is approximate and is estimated from the date of receipt of order with complete manufacturing information and approval of drawings as may be necessary. _____ shall not be liable for any loss or damage for delay or non-delivery due to the acts of civil or military authority, acts of the Purchaser or by reason of 'force majeure', which shall be deemed to mean all causes whatsoever not reasonably within the control of _____ including, but not limited to acts of God, war, riot or insurrection, blockades, embargoes, sabotage, epidemics, fires, strikes, lockouts, or other industrial disturbances, delays of carriers, and inability to secure materials, labor or manufacturing facilities.

4. Payments

The prices specified are in U.S. currency, payable in New York exchange free of all expense to _____ for collection charges. Pro rata payments shall be made for partial shipments. If delivery is prevented or postponed at the Purchaser's request, or by reason of any other cause set forth specifically or by implication in paragraph 3 above, then all dates of payment related to delivery shall relate instead to the date of completion of manufacture. Letters of credit or other credit instruments established to provide payment for the equipment specified in this proposal shall make provision for payment as set forth above where delivery is prevented or postponed under such circumstances. Storage of such equipment will be at the Purchaser's expense and risk. When in the opinion of _____

5. Changes and Drawings

_____ reserves the right to change or modify the design and construction of equipment and to substitute other suitable material. If drawings are furnished, they are submitted to show general style and arrangement of the equipment offered.

6. Cancellation

The Purchaser may cancel his order only upon written notice and payment to _____ of reasonable cancellation charges specified by _____.

7. Suspension

If _____ performance of the work is delayed for a period of more than six (6) months either by reason of the request or acts of the Purchaser, acts of civil or military authority, or by reason of "force majeure", upon removal of the cause of any such delay performance shall be resumed, delivery will be rescheduled, and the purchase price shall be adjusted to that in effect at the time of resumption of performance subject to such price adjustment clause as may then be applicable or notified by _____ to Purchaser. If Purchaser is unwilling to accept the adjustment price and projected delivery date, he may cancel his order by giving written notice thereof to _____ at any time within thirty (30) days after he has been informed of _____ adjusted price and projected delivery date and upon payment of reasonable cancellation charges specified by _____.

LEGAL
STD

8. Risk of Loss, Security

The Purchaser shall bear all risk of loss of or damage to the equipment after delivery to transportation facility at shipping point. Purchaser agrees that _____ shall retain a security interest in the equipment only until the purchase price has been paid and Purchaser agrees to perform all acts necessary to perfect and assure _____ security interest.

9. Taxes

The Purchaser shall pay to _____ in addition to the purchase price, the amount of all Sales, Use, Privilege, Occupation, Excise, or other taxes, Federal, state, local or foreign which _____ may be required to pay in connection with furnishing goods or services to the Purchaser.

10. Freight

Purchaser shall pay to _____ in addition to the purchase price, any amount by which transportation charges may be increased, by reason of increased transportation rates, between the dates of this proposal and the time of shipment.

11. Seller

For purposes of this proposal, _____ shall mean the _____ Corporation subsidiary which delivers and invoices the equipment.

12. Service Supervisor (Marine-Government)

a. The machinery shall be installed and put in operation by and at the expense of the Purchaser. Upon request of the Purchaser, _____ will furnish the services of a Service Supervisor to advise and assist the Purchaser in the installation of the machinery. Purchaser shall furnish safe and proper working conditions, and safe storage for any special tools. The Purchaser shall furnish all necessary help, labor, cranes, cribbing, oil, supplies, station operating force, steam, electricity, water and other material and supplies required to install and operate the machinery and shall furnish free available crane and switching service and the services of operators and other employees that may be necessary in connection therewith.

b. _____ shall not be responsible for materials furnished by the Purchaser or for acts or failures to act of personnel furnished by the Purchaser, nor shall _____ be responsible for the construction of foundations or in the case of land installation, for the nature of the soil upon which they are built.

c. Unless otherwise stipulated, the Purchaser shall pay for these services at the following rates:

(1) All services except shipboard trial trips:

- (i) At the rate of \$ ____ for each normal eight hour day worked or spent in travel to and from the job site, plus all travel expenses of the Service Supervisor from the time of leaving base location until return and all shipping charges for any special tools and materials at actual cost.
- (ii) Hours worked in excess of the normal eight hour day, Monday through Friday and hours worked on Saturday, Sunday and Holidays, will be billed at the rate of \$ ____ per hour.
- (iii) The minimum billing for less than four hours worked or spent in travel will be 50% of the daily rate. The minimum billing for more than four hours but less than eight hours worked or spent in travel will be the full daily rate.
- (iv) The time when the Supervisor is ready, willing and able to work at the job site even though his services are not in fact utilized shall be considered to be time worked for the purposes of this paragraph.

(2) Shipboard trial trips only:

- (i) At the rate of \$ ____ for each twenty-four hour period or part thereof, on shipboard during a normal work week.
- (ii) At the rate of \$ ____ for each twenty-four hour period or part thereof on shipboard on Saturday, Sunday and Holidays.
- (iii) Travel time from the time of leaving base location until return will be charged at the rate in 12c (1) above; all travel expenses will be charged at actual cost from time of leaving base location until return.

(3) The rates specified in the 12c (1) and (2) above are not subject to change provided the Supervisor begins to perform these services within 90 days after the equipment is shipped.

d. _____ shall not in any event be held liable for any special, indirect or consequential damages.

LEGAL
STD

PUMPS PER SHIP:	1	SERVICE:	Tank Washing
DESCRIPTION		PERFORMANCE	
SIZE	3x2x13 N-1011	CAPACITY-GPM	450
TYPE/STAGES	Centrifugal/Single	TDH-Ft.	471
MOUNTING	Horizontal	LIQUID PUMPED	Sea Water
CASING SPLIT	Radial (Back Full Cut)	SP. GR/TEMP./VISC.	1.03
SUCTION SIZE	3" 150# P.F. Flange	SUCTION CONDITIONS	Flooded
DISCHARGE SIZE	2" 150# P.F. Flange	NPSH RLD/AVAIL.	20'/Advice
ROTATION	CCW (Suction End)	EFFICIENCY-%	69
ELEVATION	H-16056R-6	NPW	01
SECTION	-	PUMP SPEED-RPM	3550
CURVE	A-12968	DRIVER HP (RECOMMENDED)	100
MATERIALS		SPARE PARTS	
CASING	Worthite 20	THRUST BEARING	
CASE WEAR RING	-	LINER BEARING	
IMPELLER	Worthite 20	CASE WEAR RINGS	
IMPELLER WEAR RING	-	IMPELLER WEAR RINGS	
SHAFT	Worthite 20	SHAFT SLEEVES	
SHAFT SLEEVE	-	IMPELLER	
UFFING BOX	Packed (Blue asbestos)	PACKING & GASKETS	TECH
HRUST BEARING	Bell		STD
LINE BEARING	Bell		
BEARING HOUSING	Cast Iron		
PUMP BASE	Chromal Steel		
Coupling	Felt T Spacor		
WEIGHTS		WEIGHT	
PUMP, BASE, COUPLING	495#	100 HP @ 3600, 3760/LW, 1600 F45, Marine	
DRIVER (IF FURNISHED)	650#	OHP, 365T Frame	
TOTAL	1145#		
SHIPMENT OF THE ABOVE DESCRIBED UNIT CAN BE MADE IN <u>42 weeks</u> AFTER APPROVAL OF DRAWINGS AND RELEASE TO MANUFACTURE.			
DRAWINGS FOR APPROVAL CAN BE SUBMITTED WITHIN <u>4-6 weeks</u> AFTER RECEIPT OF ORDER WITH ENGINEERING DETAILS.			
COMMENTS:			

WPE D-1011 & D-1012

TECH STD

ERANIE 3

$$\begin{array}{ll} 6 \times 4 \times 10 & 3 \times 2 \times 13 \\ 6 \times 4 \times 11 & 4 \times 3 \times 13 \\ 3 \times 1\frac{1}{2} \times 13 & 6 \times 4 \times 13 \end{array}$$

FOR USE WITH CHANNEL STEEL. CHANNEL STEEL W/DRIP RIM. OR CAST IRON BASEPLATES

MOTOR DATA TYPE _____ FRAME _____ H.P. _____
R.P.M. _____ PHASE _____ CYCLES _____ VOLTS _____

CLOSED IMPELLER
3 x 2 x 13 FRAME SELECTION

IMPELLER DIAMETER	MAXIMUM SPECIFIC GRAVITY			
	3550 RPM		1770 RPM	
	FRAME 2	FRAME 3	FRAME 2	FRAME 3
12.6		N/R	.71	2.00
12.1			.76	2.00
11.6		N/R	.86	2.00
11.1			.97	2.00
10.6			1.12	2.00

N/R - Not Recommended.

Item No.	Name of Part
1	Casing
2	Impeller
6	Shaft (an integral part of the motor)
x 7	Ring, Casing
11	Cover, Stuffing Box
11B	Cap, Cooling
o 13	Packing
o 14	Sleeve, Shaft
o 17	Gland, Packing
o 17A	Gland, Mechanical Seal
x 24A	lockwasher, Impeller
x 26	Screw, Impeller
x 27	Ring, Adapter and cover
o 28	Gasket, Impeller Screw

Item No.	Name of Part
o 29	Ring, Lantern
o 30	Gasket, Impeller Lockwasher
o 32	key, Impeller
o 38	Gasket, Sleeve (Outer)
o 38A	Ring 'O', Shaft Sleeve
o 65	Seal (Mechanical Seal)
o 71	Adapter
o 73	Gasket, Casing
o 73A	Gasket, Stuffing Box Cover
o 73B	Ring 'O', Cooling Cap (Outer)
o 73C	Ring 'O', Cooling Cap (Inner)
o 73E	Gasket, Gland H.S.
o 80	Rotor, Mechanical Seal
o 83	Stud, Gland
o 211	Ring, Retaining (Mech. Seal Rotor)

o These parts recommended as spare parts to be carried by user.
 x Spare parts in addition to above—for export only.

1 ECH-10-D

PART NO.	AMOUNT	UNITS IN ONE	GP NO.	CLASS AND DESCRIPTION	MATERIAL	TO	ORDER NO.	PC
							ITEM	
Model D-1C21				Casing	M-3171	(W-20)		A-296
				Casing Gasket	As'b.			
				Impeller	M-3171	(W-20)		A-295
				Impeller Key	M-3171	(W-20)		A-295
				Shaft (In Motor)	M-4171	(C-20)		B-173
				Shaft Sleeve	M-171	(C-20)		B-173
				Mach. Seal (B-NOM)	GARDEN VALVE GARDEN ACCESS			
				Gland	M-3265	(316)		A-296 G-242,C
				Flapton Cover Ring	M-3171			A-296
				Casing Cap Screws	M-4171			B-173
				Clean, Cap Screws	M-4270	(Bar)		A-172
				Hanger, Motor Bracket	M-3125			A-335
				Impeller (Cap) Screw	M-4171	(C-20 Bar)		B-173
				Impeller Screw Washer	Mylite			
				Impeller Screw Lockwash	M-3171			A-273
				Lockwasher Gasket	As'b.			A-295
				Storage Box Cover	M-3171	(W-20)		B-173

ORDER NO.

all 10 = MATERIAL

6. TEST REPORT

The vendor shall furnish 3 copies of the report specified in ASTM A-479. The report shall show the date, purchase order number, specification number (M-4270), heat number and name of vendor.

Materials

					mpy
Nickel-Chromium-High Molybdenum Alloys		Nil			
Titanium		Nil			
{ Stainless Steels	Type 316 + CF-8M	Nil	<1		
	Type 304 + CF-8	Nil	<1		
Nickel-Chromium Alloys		Nil	<1		
Nickel-Copper Alloy 400		Nil	<1		
Nickel		Nil	<1		
70/30 Copper-Nickel Alloy (S Fe)		Nil	?		
Carbon Steel	30	>	>	>	300
Nickel-Aluminum Bronze		<10 mpy		300	
Nickel-Aluminum-Manganese Bronze		<10 mpy		300+	
G Bronze		<10 mpy		400	
Austenitic Nickel Cast Iron		<10 mpy		300+	
Manganese Bronze		Bezuidies			
70/30 Copper-Nickel Alloy (0.5 Fe)		<10 mpy		500+	
	(6)	20	50	70	120 140
		Pump and Valve Body			Hydrofoils
		Mean Range of Velocities Typical of Item—ft per Sec.			

SEAWATER VELOCITY (PUMP TO HYDROFOIL RANGES)

APPENDIX C.4.3

Hardware Standard Group IV

Definition: This standard is a document which contains the technical information in standard format which is necessary to define and describe hardware which is interchangeable from all vendors as to interface.

Interchangeable, as applicable to this standard, means like equipment of a given capacity will have identical -- within limits -- performance characteristics, interface dimensions, size limitations, weight, mounting dimensions, and compatibility of materials.

Standard Format:

An example of a format which would serve as a pump standard follows: It is obvious that several formats are required for the various types of equipment utilized in propulsion plants. For example, the format for a heat exchanger would of necessity be quite different in the required technical data area than a pump.

EXAMPLE: First Page

Title: Describes pump by Type and service

Standard Identification: Alpha-numerical identification with encoded indicators

Applicable Documents: Other standards, specifications, and regulatory agency requirements which apply either partially or wholly or which this standard is in compliance with

Approvals: Regulatory agency applicable approvals of the standard

Next Page(s)

Description of Application: Design requirements which include liquids handled and their descriptive conditions. Pump ratings are included in chart form with identification number, capacity, pressure, required services, prime mover type and size.

Next Page(s)

Pump Characteristic Curves: Curves indicating pump capacity, discharge head, horsepower, suction head and speed.

Pump Selection Chart: Gives capacity, head, horsepower and applicable standard number.

Next Page(s)

Outline Drawings: These include dimensional charts showing key installation and overall dimensions, limiting envelope, weights and space required for service of units.

Next Page(s)

Operating Data: Includes important design factors such as limits applicable to bearings, seals, casing, shafting, etc.

Materials: Includes a listing of allowable materials for the major components for compatibility with the intended utilization.

Maintenance Requirements: Includes design information required for planning ships installation and system design.

J.W. ROSENBLATT & SON, INC.

List of Suppliers: A current list of those manufacturers known to be satisfactory suppliers of the standard pump

Spare Parts Recommendations:

Test: Required tests at vendor

PUMPS, CENTRIFUGAL, CLOSE-COUPLED,

STANDARD

Standard Industrial Classification - C2-A

1. SCOPE

1.1 This specification covers electric motor driven standard close-coupled, single stage, centrifugal pumps. It is the intention of this Standard that pumps of a given capacity in gallons per minute (g.p.m.) and total dynamic head in feet and type of electrical voltage, from all sources of supply, be interchangeable as to mounting dimensions, size and location of piping connections, ~~shaft extension, shaft sleeve, and flanges as outlined in this specification, and outlet line dimensions.~~

2. APPLICABLE DOCUMENTS

2.1 The following documents of the issue in effect on date of invitation for bids or request for proposal, form a part of the Standard to the extent specified herein.

Screw thread standards
bearing standards

2.2 Other publications. - The following documents form a part of this specification to the extent specified herein. Unless otherwise indicated, the issue in effect on date of invitation for bids or request for proposal shall apply.

HYDRAULIC INSTITUTE

Test Code of Standards - Centrifugal Pump Section

(Application for copies should be addressed to the Hydraulic Institute, 122 East 42nd Street, New York 17, N.Y.)

NATIONAL BUREAU OF STANDARDS

: Handbook H28 - Screw-Thread Standards for Federal Services

(Application for copies should be addressed to the Superintendent of Documents, Government Printing Office, Washington 25, D.C.)

OFFICIAL CLASSIFICATION COMMITTEE

Uniform Freight Classification Rules.

(Application for copies should be addressed to the Official Classification Committee, 1 Park Avenue at 33rd Street, New York 16, N.Y.)

3. REQUIREMENTS

3.1 Materials. - For the materials of construction of major parts of pumps covered by this specification see table I, of section 6. This table lists a number of materials which are considered adequate for the applications, and the table should be followed; however, this Specification is not intended to be restrictive, provided proposed alternate materials will give equal or better service, and such other materials may be substituted upon mutual agreement in response to invitations.

3.2 Design. -

3.2.1 General design. -

3.2.1.1 The principle of reliability is paramount and no compromise of this principle shall be made with any other basic requirements of design. Pumps shall be designed to operate over a long period of

years with a minimum of servicing. Where wear or erosion is unavoidable, the parts subjected to such wear or erosion shall be of the best materials available for the purpose intended in order to reduce these detrimental effects to a minimum. The design and construction of all pumps shall be consistent with the following requirements:

- (a) Reliability.
- (b) Accessibility for repair.
- (c) Resistance to wear or corrosion.
- (d) Economy.
- (e) Satisfactory operation when inclined as follows:
 - (1) Up to 15 degrees from the normal horizontal position in any direction (permanently inclined).
 - (2) With the ship rolling up to 45 degrees from the vertical to either side.
 - (3) With the ship pitching 10 degrees up and down from the normal horizontal plane.

3.2.1.2 The design of the pump units shall be such as to permit handling, shipment and installation of the units onboard ship without disturbing alignment; and such that the normal distortion, weaving or vibration of the supporting structures onboard ships cannot cause fracture or appreciable distortion.

3.2.1.3 Pumps for a specific application shall be selected and specified from rating chart figure 1 for alternating current (a.c.) motors, or from rating chart figure 2 for direct current (d.c.) motors. Bidders shall quote on the standardized pump size and with the horsepower (hp.) and speed motor as indicated on rating chart for the application.

3.2.1.4 All pumps for all services shall have constantly rising head-capacity curves from maximum or wide-open capacity to zero or shut-off capacity.

3.2.1.5 All pumps shall be designed for satisfactory operation at a minimum dynamic suction lift of 15 feet of water at 85°F.

3.2.1.6 All pump units shall have nonoverloading hp. characteristics.

3.2.1.7 All pumps shall be right hand rotation (clockwise when viewed from motor end of unit) only.

3.2.1.8 Casing wearing rings shall be fitted in all pumps.

3.2.1.9 Pump casing joints shall be made up using compressed asbestos sheet gaskets.

3.2.1.10 Mounting.-

3.2.1.10.1 Installation.- All pumps will be normally installed to operate in horizontal position; however, all pumps shall be capable of operation in a vertical position with the motor above the pump. Pumps shall be suitable for installation either fore and aft or athwartship.

3.2.1.10.2 Dimensions.- All pumps shall have mounting dimensions and location of piping connections as shown on figure 3.

3.2.1.10.3 Mounting brackets.- Mounting brackets shall contain a drip pocket for the collection of leakage from the stuffing box. Size of the tapped holes shall be as shown on figure 3. Mounting brackets shall be separate from the casings and shall not include pump stuffing box as any portion of the casing in contact with water.

3.2.1.10.4 Pumps and motors shall be assembled at the pump manufacturers plant.

3.2.2 Casings.-

3.2.2.1 The design of casings shall be sufficiently rugged to withstand without fracture or appreciable distortion the strains to which they may be subjected.

3.2.2.2 Casings shall be so designed as to permit the inspection and replacement of wearing parts. Suction covers shall be removable to permit removal of the impeller and other wearing parts of the pump without dismounting the unit.

3.2.2.3 All pumps shall have casings arranged so that the discharge can be located in any of the three positions shown on figure 3.

3.2.2.4 All casings shall be provided with the necessary tapped vent, drain, priming, and gauge connections for the three positions of discharge.

3.2.2.5 All casings shall be provided with vent cocks in the proper location for the position of discharge.

3.2.2.6 Casings shall be designed to withstand the applicable hydrostatic pressures specified in figure 3 (see 4.4).

3.2.2.7 Suction and discharge connections. - Suction and discharge connections shall be flanged. Diameter, thickness and drilling shall be in accordance with ~~ASME~~. Bolt holes shall straddle the vertical centerline at the top of the flange.

3.2.3 Impellers and shafts.

3.2.3.1 Impellers shall be of the single inlet closed type. Outside and inside surfaces of impellers shall be smooth finished. All impellers shall be dynamically balanced.

3.2.3.2 Shall flingers shall be provided adjacent to stuffing boxes for all pumps. For pumps with packing, the flingers shall be in accordance with figure 5. For pumps fitted with mechanical seals suitable flingers shall be provided.

3.2.4 Stuffing boxes and packing.

3.2.4.1 Stuffing boxes shall be of adequate depth and design to reduce leakage to a minimum under all operating conditions. ~~A minimum of four square inches required for each stuffing box.~~ Stuffing boxes shall be equally adaptable for packing and mechanical seals.

3.2.4.2 The design shall be such as to insure that leakage from the glands cannot reach the bearings or be thrown over the driving units. Ample drip pockets and drains shall be provided. Sufficient space shall be provided to permit easy removal of packing.

3.2.4.3 Mechanical shaft seals shall be provided in lieu of conventional packing when specified (see 6.1).

3.2.5 Rotating assembly.

3.2.5.1 All rotors shall be dynamically balanced with all rotating parts connected thereto. This requires dynamic balance with the rotating elements of the driving unit in place; however, rotating parts may be balanced individually provided that when assembled the unbalance shall not exceed the limits specified in STD-167.

3.2.6 Threaded parts.

3.2.6.1 Threaded parts such as bolts, studs and nuts shall conform to Handbook H20. ~~Dimensions, types, bolts, nuts, etc., to be determined by the designer, except where otherwise specified in the drawings.~~

3.2.6.2 Studs and bolts shall fully engage the nuts with not more than three threads extending beyond the outer face of the nut. Where the material into which the stud is engaged is as hard or harder than the stud, the engagement shall be equal to at least the stud diameter. In other materials, engagement shall be sufficient to carry the maximum designed stud load.

3.2.7 Motors.

3.2.7.1 The standardized frame numbers for the various ratings of close-coupled pump motors shall be as specified in tables III and IV. Frame Range and shaft extension dimensions shall be as shown on figures 6 and 7 as applicable.

Table III - A.C. motors

50°C. ambient, class B insulation (or class H insulation,
class B temperature limits where advantageous (see 3.2.9).

Frame No.	Constant speed		
	3500 r.p.m.	1750 r.p.m.	1150 r.p.m.
	hp.	hp.	hp.
17NC		1/3	
18NC	1/2, 3/4	1/2	
182CN	1, 1-1/2, 2	3/4, 1	
184CN	3	2	
213CN	5	3	
215CN	7-1/2	5	
254CN	10	7-1/2	5
256CN	15	10	7-1/2
284CN		15	10
286CN	20	15, 20, 25	15, 20, 25
304CN1			

Table IV - D.C. motors

50°C. ambient, class B insulation (see 3.2.10).

Frame No.	Constant speed			
	3500 r.p.m.	2800 r.p.m.	1750 r.p.m.	1150 r.p.m.
	hp.	hp.	hp.	hp.
17NC	1/3		1/3	
18NC	1/2, 3/4		1/2	
186CN	1		3/4	
187CN	1-1/2		1	
216CN	2			
218CN	3		2	
254CN	5		3	
256CN	7-1/2		5	
284CN	10		7-1/2	
286CN	15		10	5
324CN				7-1/2
326CN		20	15	10
365CN1			15, 20	
366CN1			25	15
405CN1				20
441CN1				25

3.2.8 Alternating current motors.

3.2.8.1 Alternating current motors shall be in accordance with ~~IEC~~ ^{IEEE} STD M-176-64 for integral hp., or ~~IEC~~ ^{IEEE} STD M-176-66 for fractional hp., except as otherwise specified herein, and shall conform to the following classification requirements:

Service	A.
Ambient temperature	50°C.
Duty	Continuous.
Classification	Squirrel cage induction.
Sub-classification	Design B for integral horsepower motors.
Bearings	Ball (see figures 6 and 7).
Insulation	Class B or H with class B limits.
Number of phases	Three.
Frequency	60 cycles.
Voltage	410 volts.
Enclosure	Totally enclosed, or totally enclosed fan cooled.

3.2.9A Direct current motors.

IEE STD

3.2.9A.1 Direct current motors shall be in accordance with ~~IEE STD~~ for integral hp., ~~17556~~ for fractional hp., except as otherwise specified herein, and shall conform to the following classification requirements:

Service	A.
Ambient temperature	50°C.
Duty	Continuous.
Voltage	115 or 230 volts as specified (see 6.1).
Winding	Shunt.
Bearings	Ball (see figures 6 and 7).
Insulation	Class B.
Enclosure	Totally enclosed or totally enclosed fan cooled.

3.2.9A.2 Speed tolerance. The full load speed of d.c. constant speed motors at operating temperature shall be not less than 95 percent nor more than 103 percent of the specified speed for integral hp. motors, and not less than 97 percent nor more than 108 percent of the specified speed for fractional hp. motors.

3.3 Painting. All external unmachined surfaces of ferrous metal parts, except stainless steel, shall be thoroughly cleaned and coated with paint.

3.4 Identification plates.

3.4.1 Identification plates shall be furnished on each pump.

3.4.2 Pump identification plates shall contain data as follows:

- (a) Manufacturer's name.
- (b) Manufacturer's model or type and size.
- (c) Service application.
- (d) Manufacturer's serial number.
- (e) Salient design characteristics:
 - (1) Capacity in g.p.m.
 - (2) Total head in pounds per square inch.
 - (3) Speed of shaft in revolutions per minute.
 - (4) Brake horsepower.
 - (5) Test pressure.
 - (6) Special data vital to the unit:
 - a. Suction pressure.
 - b. Submergence.
 - c. Impeller diameter.
- (f) Contract or order number (and item number for multiple unit orders).
- (g) ~~Supplier's stamp~~.
- (h) Section for inspector's stamp.
- (i) ~~Standard pump number.~~

3.8.4 Each driving unit and each accessory unit shall have an identification plate ~~supplied by the manufacturer~~ with ~~the pump~~.

3.9 Workmanship. The equipment, including all parts and accessories shall be manufactured and finished with first class workmanship in all respects.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for inspection. Unless otherwise specified in the contract or purchase order, the supplier is responsible for the performance of all inspection requirements as specified herein. Except as otherwise specified, the supplier may utilize his own facilities or any commercial laboratory acceptable.

4.2 Quality control system. The contractor shall provide and maintain a quality control system ~~for the supplies covered by this specification. The system of quality control~~ ~~shall be developed with~~ ~~(Q-0550)~~ ~~in accordance with~~

4.2.1 Description of procedures. Procedures shall be assembled in manual form and shall indicate organization and responsibility for the control of quality.

4.2.2 Inspection during manufacture. - The contractor shall establish and maintain inspection at appropriately located points in the manufacturing process, beginning with the receipt of raw materials and subcontracted parts through trial testing and preparation for shipment of completed units, to assure continuous control of quality of parts, components and assemblies.

4.2.3 Measuring and testing equipment. - The contractor shall provide and maintain gauges, instruments and other measuring and testing devices necessary to assure that supplies conform to contract requirements. These devices shall be calibrated against measurement standards or designated measuring equipment at established periods to assure confirmed accuracy. The contractor shall prepare and maintain a written schedule for the maintenance and calibration of such equipment based on the type, purpose and degree of usage.

4.2.3.1 All instruments used in performance tests shall be calibrated before and after tests.

4.3 Inspection of material.

4.3.1 Materials used in the pumps and accessories and identified on approved drawings listed in table I or elsewhere in this specification, shall be subjected to inspection requirements of the applicable specification by which identified.

4.3.2 Materials used in the pumps and accessories which are identified on approved drawings by Industry and Technical Society specifications or standards shall be subjected to inspection requirements of the applicable specification or standard by which identified.

4.3.3 The contractor shall establish a system of inspection and identification to insure that specified and approved materials are used in accordance with approved drawings.

4.3.3.1 Upon request of the ~~contractor~~ inspector, the contractor shall furnish samples of materials and available information concerning their quality and use. When the identity or quality of an item is in doubt, and in the absence of valid and acceptable test data, the contractor shall conduct such tests as are necessary to determine or verify its identity or quality.

4.4 Hydrostatic tests.

4.4.1 All pump casings shall be tested hydrostatically to pressures indicated in figure 3. Hydrostatic test pressures shall be maintained for at least 15 minutes, or longer as necessary for inspection of the entire casing.

4.5 Operating test of each pump. - Each pump assembled with its driving motor shall be tested at its rated operating speed and rated load by a continuous nonstop run of at least 30 minutes, to check operation and smoothness of running.

4.6 Performance tests.

4.6.1 Performance tests shall be conducted and reported in accordance with the Test Code of Standards of the Hydraulic Institute, Centrifugal Pump Section, for tests classed as "Factory tests at the pump manufacturer's plant".

4.6.2 Driving units shall be tested as required by the applicable motor specifications (see 6.1).

4.6.3 Performance tests shall adequately demonstrate the ability of the pump to handle its rated capacity of specified liquid at the maximum temperature and minimum suction head, or maximum suction lift or vacuum, as applicable.

4.6.4 Sufficient data shall be taken during the tests to prepare pump characteristic curves as specified in 4.6.5. In all cases the test data shall be corrected to the specified operating conditions as to voltage, frequency, temperatures, specific gravity, suction head or lift, and vacuum, as set forth in the contract or order; such conditions shall be clearly shown on the data sheets. The data sheets shall state the actual finished diameter of the pump impellers installed on test. Test data and curves shall be complete over the entire range of capacities from shut-off to as near free delivery as possible.

4.6.5 The following test curves shall be supplied for the rated speed conditions of the motor:

- (a) Capacity versus total head.
- (b) Capacity versus pump efficiency.
- (c) Capacity versus brake hp.
- (d) Capacity versus electrical hp. input.

4.6.7 Complete test reports, including test data on both pumps and driving units, shall be assembled and distributed ~~and~~.

4.8 Inspection of pump repair parts. - The pump repair parts required by 3.7 shall be inspected to assure interchangeability with the similar parts in the assembled pumps. Ordinarily material analyses and physical test specimens will not be required but such procedures shall be employed as will assure the delivery of parts made of the same materials and by the same processes as for the assembled pumps.

5. PREPARATION FOR DELIVERY

5.1 Domestic shipment and early equipment installation and for storage of onboard repair parts.

5.1.1 Basic equipment or items.

5.1.1.1 Preservation and packaging. - Preservation and packaging shall be sufficient to afford adequate protection against corrosion, deterioration and physical damage during shipment from the supply source to the using activity and until early installation and may conform to the supplier's commercial practice when such meets these requirements.

5.1.1.2 Packing. - Packing shall be accomplished in a manner which will insure acceptance by common carrier at the lowest rate and will afford protection against physical or mechanical damage during direct shipment from the supply source to the using activity for early installation. The shipping containers or method of packing shall conform to the Uniform Freight Classification Rules and Regulations or other carrier regulations as applicable to the mode of transportation and may conform to the supplier's commercial practice when such meets these requirements.

5.1.1.3 Marking. - Shipment marking information shall be provided on interior packages and exterior shipping containers in accordance with the contractor's commercial practice. The information shall include nomenclature, ~~Federal stock number~~ or manufacturer's part number, contract or order number, contractor's name and destination.

6. NOTES

6.1 Ordering data. - Procurement documents should specify the following:

- (a) Title, number and date of this specification.
- (b) Grade number (see figure 1).
- (c) Rated capacity.
- (d) Rated total head.
- (e) Liquid handled.
- (f) Specific gravity of liquid handled.
- (g) Liquid temperature.
- (h) Suction head.
- (i) Whether mechanical seals are required (~~see 3.7.1.1.2~~).
- (j) Voltage for direct current motors (~~see 3.7.1.1.2~~).
- (k) Motor and controller specifications and electrical characteristics (as required by the applicable motor and controller specifications).
- (l) ~~Technical drawing required~~ (~~see 3.7.1.1.2~~).
- (m) Whether manholes are required, and quantity ~~4 per ship~~.
- (n) The number of pumps per ship on which quantity of onboard repair parts is to be based
~~3-5 (including 3.7.1.1.2)~~.
- (o) ~~Method of packing for onboard repair parts~~ (~~see 3.7.1.1.2~~).
- (p) Cleaning, preservation, packaging and marking requirements.
~~See 3.7.1.1.2~~.

6.2 Table 1 offers a wide range of acceptable materials for various pump parts (see 3.1).

Table I - Materials for pumps.

Application	Material	Specification	Applicable document ^{3/4/5/}
Casings	Gun metal Valve bronze Copper-nickel alloy (70-30) Nickel-copper alloy ^{1/} Steel, highly alloyed ^{2/}		ASTM B143, Alloy 1A or 1B ASTM B143, Alloy 2A - B61-52 ACI CN-7M
Studs, bolts nuts	Nickel-copper alloy, rolled, class A or B Naval brass Manganese bronze, class A or B		ASTM B164, Class A or B ASTM B124, Alloy 3-B21-54, Alloy A ASTM B138, Alloy A or B - B124-55, Alloy 4
Impellers	Gun metal Nickel-copper alloy ^{1/} Copper-nickel alloy (70-30) Steel, highly alloyed		ASTM B143, Alloy 1A or 1B ACI CN-7M
Impeller and casing wearing rings ^{2/}	Nickel-copper alloy ^{1/} Gun metal Bearing bronze, grade II or III Valve bronze Steel, highly alloyed Iron, class A (ductile Ni-resist)		ASTM B143, Alloy 1A or 1B ASTM B143, Alloy 2A - B61-52 ACI CN-7M
Shafts	Nickel-copper alloy, rolled, class A or B Nickel-copper-aluminum alloy		ASTM B164, Class A or B
Shaft sleeves	Nickel-copper-aluminum alloy, minimum hardness 265 Brinell Steel, highly alloyed		ACI CN-7M
Flinger	Gun metal Valve bronze		ASTM B143, Alloy 1A or 1B ASTM B143, Alloy 2A - B61-52
Lantern rings, glands and throat bushings	Gun metal Valve bronze		ASTM B143, Alloy 1A or 1B ASTM B143, Alloy 2A
Mounting brackets	Gun metal Valve bronze Copper-nickel alloy (70-30)		ASTM B143, Alloy 1A or 1B ASTM B143, Alloy 2A - B61-52
Impeller nuts	Gun metal Nickel-copper alloy		ASTM B143, Alloy 1A or 1B ASTM B164, class A or B
Stuffing box packing	Plastic metallic, lead base Flexible metallic		
Casing gaskets	Asbestos, sheet, compressed		

^{1/} For service in which total head is 224 feet or more.^{2/} A wearing ring and its opposing surface shall be of dissimilar material.^{3/} "ASTM" denotes standard specifications of the American Society for Testing and Materials. (Application for copies should be addressed to the American Society for Testing and Materials, 1916 Race Street, Philadelphia 3, Pa.).^{4/} "ACI" denotes standard specifications of the Alloy Casting Institute. (Application for copies should be addressed to the Alloy Casting Institute, 1001 Franklin Avenue, Garden City, New York.)

Technical society and technical association specifications and standards are generally available for reference from libraries. They are also distributed among technical groups and using Federal agencies.

^{5/} Materials used may be in accordance with either Government specifications or ASTM specifications, or equivalent material to any other recognized industry standard specification, such as the Society of Automotive Engineers (SAE) and the American Iron and Steel Institute (AISI), at the pump manufacturer's option.^{6/} Detail drawings and lists of material shall reference the specifications actually followed in each case, and shall include the class, type or grade of material used in each case, as applicable (see 3.1 and 3.5.5-1).

275 300 350 400 450 500 600 700 800 900 1000 1250 1500 1750 2000 2250 2500 3000

R MINUTE

- Rating chart for a.c. motors.

Figure 1. - 1

10

***Supporting text part of volatile casting or casting.**

Figure 3. - Outline dimensions for

close-coupled pumps.

**STANDARD FRAME DIMENSIONS AND BEARING SIZES FOR
FRACTIONAL HORSEPOWER CLOSE-COUPLED MOTORS**
DIMENSIONS IN INCHES

Figure 6. + Standard dimensions of fractional hp. close-coupled motors.

NOTES:

1. RADIUS SHALL BE SMOOTH AND CENTER LOCUS CONCENTRIC WITH SHAFT AXIS.
2. SEALING SURFACE SHALL BE SMOOTH AND PERPENDICULAR TO SHAFT AXIS.
3. DIAMETER TO BE CONCENTRIC WITH SHAFT AT IMPELLER LOCATION WITHIN 0.004 INCH TOTAL INDICATOR READING
4. FACE OF FLANGE TO BE SQUARE WITH SHAFT WITHIN 0.004 INCH TOTAL INDICATOR READING.
5. RUNOUT OF SHAFT 0.002 INCH MAXIMUM TOTAL INDICATOR READING.
6. TOTAL AXIAL END-PLAY OF SHAFT IN ASSEMBLED MOTOR AT NO-LOAD SHALL NOT EXCEED 0.010 INCH

NOTE 5 •

- 1 RADIUS SHALL BE SMOOTH AND CENTER LOCUS CONCENTRIC WITH SHAFT AXIS.
- 2 SEALING SURFACE SHALL BE SMOOTH AND PERPENDICULAR TO SHAFT AXIS.
3. DIAMETER TO BE COCENTRIC WITH SHAFT AT "U" DIMENSION WITHIN 0.004 INCH TOTAL INDICATOR READING.
4. FACE OF FLANGE TO BE SQUARE WITH SHAFT WITHIN 0.004 INCH TOTAL INDICATOR READING.
- 5 THE SHAFT RUNOUT SHALL BE AS FOLLOWS:

SHAFT SIZE	SHAFT RUNOUT (INCH)
112 THRU 246	.0007 INCH MAX.
324 THRU 444	.0003 INCH MAX.
- 6 TOTAL AXIAL END-PLAY OF SHAFT IN ASSEMBLED MOTOR AT NO-LOAD SHALL NOT EXCEED .0010 INCH FOR 310 OR SMALLER BEARINGS AND .0015 INCH FOR BEARINGS LARGER THAN 310.

**STANDARD FRAME FLANGE AND SHAFT EXTENSION DIMENSIONS AND
BEARING SIZES FOR INTEGRAL HORSEPOWER CLOSE-COUPLED MOTORS**

Figure 7. Standard errors of estimated hydrologic model parameters.