4. **Fall2008.** Let V be a finitely generated F-vector space. Show that V has a basis and that two bases for V have the same number of elements.

Let $\{v_1, ..., v_n\}$ generate V. If all the v_i are LI then we are done. If not, then we have

where at least one C_i term is nonzero. Assume WLOG that $C_n \neq 0$. Then

$$V_{n} = -\frac{\sum_{i=1}^{n-1} C_{i} V_{i}}{C_{n}}$$

and we have a smaller spanning set $\{v_1, \dots, v_{n-1}\}$. Continue like this until we find a LI set and thus a basis. Note this will always happen because $\{v_i\}$ is LI.

Claim. For any LI set L and spanning set &, |L| \(\)

Proof. Let $|\mathcal{L}| = n$, $|\mathcal{R}| = m$. Assume m < n for contradiction.

Since & spans, for $U_i \in \mathcal{L}$ we can write write $U_i = \sum_{j=1}^{n} a_{ij} V_j$. Let A be the matrix with entries given by a_{ij} .

As $M \in A$ (A is tall), the equation $A^T \times = 0$ has a solution $b \neq 0$ (A^T is vide and has nontrivial nullspace). Then

$$\sum_{i=1}^{n} b_{i} u_{i} = \sum_{i=1}^{n} \sum_{j=1}^{m} b_{i} a_{ij} v_{j} = \sum_{j=1}^{m} (A^{T}b)_{j} v_{j} = 0 \quad \text{(2)}$$

Let \mathcal{B}_{l} and \mathcal{B}_{z} be two bases of V. As each is LT and spans, we can apply the previous claim to see $|\mathcal{B}_{l}| \leq |\mathcal{B}_{z}|$ and $|\mathcal{B}_{z}| \leq |\mathcal{B}_{l}|$, and thus $|\mathcal{B}_{l}| = |\mathcal{B}_{z}|$