

《线性代数》期末模拟试卷

专业班级 _	
姓 名	_
学 号	
开课系室	应用数学系
考试日期	2013年11月30日

页 号		1	111	四	五.	总分
本页满分	30	16	16	24	14	
本页得分						
阅卷人						

注意事项:

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚, 保持卷面清洁;
- 3. 本试卷共五道大题,满分100分;试卷本请勿撕开,否则作废;

一. 填空题(共5小题,每小题3分,共计15分)

1. 矩阵
$$A = \begin{bmatrix} 0 & -1 & 3 \\ 2 & -4 & 1 \\ 4 & 5 & 7 \end{bmatrix}$$
, 则 $R(A) =$ ______.

- 2. 设 3 阶矩阵 A 的特征值为 1, 2, 3, 则 $A^2 + E$ 的特征值为 .
- 3. 若四阶方阵 A 的秩等于 2,则 $R(A^*) =$.
- 4. 二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 2x_1x_2 + 4x_2x_3$ 的矩阵为______.
- 5. 从 R^2 的基 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 到基 $\beta_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 的过渡矩阵为_
- 二. 选择题(共5小题,每小题3分,共计15分)
- 1. 已知 2n 阶行列式 D 的某一列元素及其余子式都等于 a ,则 D=().

- B. a^2 ; C. $-a^2$; D. na^2 .
- 2. 已知三阶方阵 A 和 B 满足 |A| = |B| = 2 ,则 |2AB| = () .
- A. 2^2 ; B. 2^3 ; C. 2^4 ; D. 2^5 .
- 3. 已知 A 和 B 均为 5 阶方阵,且 R(A) = 4, R(B) = 5,则 R(AB) = ().

- B. 2; C. 3; D. 4.
- 4. 设A 是n 阶方阵,|A|=2, A^* 是A 的伴随矩阵,则行列式 $|A^*|=($).

- B. 2^n ; C. 2^{n-1} ; D. 前面选项都不对.
- 5. 若向量组 α , β , γ 线性无关, α , β , δ 线性相关,则().

 - A. α 必可由 β , γ , δ 线性表示; B. β 必可由 α , γ , δ 线性表示;

 - C. δ 必可由 α , β , γ 线性表示; D. δ 必不可由 α , β , γ 线性表示.

三. 计算下列各题(共4小题,每小题8分,共计32分)

1. 计算行列式
$$D =$$
 $\begin{vmatrix} 103 & 100 & 204 \\ 199 & 200 & 395 \\ 301 & 300 & 600 \end{vmatrix}$

2. 求
$$A$$
 的逆矩阵,其中矩阵 $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ -2 & 0 & 0 \end{bmatrix}$.

3. 验证
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 是 R^3 的基,并求

$$\alpha = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}$$
 在这组基下的坐标.

4. 求解方程组

$$\begin{cases} x_1 + x_2 - 3x_3 - x_4 = 1, \\ 3x_1 - x_2 - 3x_3 + 4x_4 = 4, \\ x_1 + 5x_2 - 9x_3 - 8x_4 = 0. \end{cases}$$

四. 求解下列各题(共3小题,每小题8分,共计24分)

1. 设矩阵 A 满足 $A^2 - 3A - 2E = 0$, 证明 A 可逆, 并求 A^{-1} .

2. 设 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\beta_1 = \alpha_1 - \alpha_2 + 2\alpha_3$, $\beta_2 = \alpha_2 - \alpha_3$, $\beta_3 = 2\alpha_1 - \alpha_2 + 3\alpha_3$,讨论向量组 $\beta_1, \beta_2, \beta_3$ 的线性相关性.

3. 证明
$$n$$
 阶行列式 $D_n = \begin{vmatrix} x & a & L & a \\ a & x & L & a \\ M & M & M \\ a & a & L & x \end{vmatrix} = [x + (n-1)a](x-a)^{n-1}.$

五、(14分)

求一个正交变换,将二次型 $f(x_1,x_2,x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_2x_3$ 化为标准形.