

Sistemas Eletrónicos

Detetor de Proximidade

(2º trabalho de laboratório)

José Teixeira de Sousa, José Gerald, Marcelino Santos 18-02-2022

Revisto em 29/2/2024, Pedro Vítor

Instituto Superior Técnico

Departamento de Engenharia Eletrotécnica e de Computadores Área

Científica de Eletrónica

Introdução

O circuito a montar neste trabalho de laboratório realiza um detetor de proximidade, utilizando um emissor de infravermelhos (IV). O sinal emitido por um díodo de IV é refletido num obstáculo. A amplitude do sinal refletido permite estimar a distância entre o emissor e o obstáculo. O circuito baseia-se num princípio semelhante ao do circuito Park-Ald, que tem como objetivo auxiliar o estacionamento de veículos automóveis.

Figura 1 – Diagrama de blocos do circuito

No emissor, como se ilustra na Figura 1, existe um oscilador que permite modular o sinal de infravermelhos. O sinal refletido, cuja amplitude depende da distância ao obstáculo, é detetado por um foto-transístor, sendo em seguida filtrado e retificado. O valor da tensão na saída do retificador permite, por comparação com valores que correspondem a distâncias préestabelecidas, identificar diferentes distâncias. A indicação do grau de proximidade do obstáculo é realizada com a ajuda de vários LEDs.

Nas secções seguintes serão pedidas análises teóricas dos diferentes blocos, simulações Spice e resultados experimentais. Para todos os pontos, elabore um quadro comparativo dos resultados analíticos, de simulação e experimentais, incluindo uma coluna que explique as diferenças entre esses valores indicando não mais que 2 causas mais prováveis.

NOTA IMPORTANTE:

Atendendo a que no ponto número 5. É necessário verificar o funcionamento do circuito total recomenda-se que se vão montando os diversos circuitos no breadboard, mantendo estes circuitos até ao fim: Deve ser utilizando o mínimo de espaço possível da esquerda

para a direita como o exemplo da figura onde se deu maior espaço para o 2º e o 4º circuitos.

Sugestões:

- Utilizar as linhas horizontais de cima para +12V e de baixo para -12V e GND;
- Nas ligações internas utilizar fios curtos;
- Colocar os componentes (ex. resistências) de tal forma que se evitem curto-circuitos;
- Construir a montagem com o posicionamento dos componentes o mais próximo possível do esquema.

1. Emissor e andar de receção de infravermelhos (IV)

O emissor e andar de receção de IV está representado na Figura 2, que apresenta o oscilador realizado com um temporizador NE555. A figura inclui também o circuito de polarização do díodo e o andar de receção de IV, realizado com um foto-transístor.

Figura 2 – Emissor e andar de receção de IV

- 1.1. Utilizando o datasheet do NE555, esboce o andamento das tensões V(2) e VM em função do tempo. Determine a frequência de oscilação e o valor do ciclo de trabalho (duty-cycle). Modele o acoplamento ótico entre o foto-transístor e o foto-díodo através de uma relação linear entre as suas correntes, cuja constante de proporcionalidade depende da distância entre emissor e recetor. Determine a impedância de saída deste módulo.
- **1.2.** Obtenha experimentalmente os mesmos resultados e verifique se existe uma componente de ruído de aproximadamente 100Hz à saída do circuito, e que é devida às lâmpadas do laboratório.

2. Filtro passa-banda

Este módulo destina-se a eliminar componentes de ruído a frequências próximas que possam afetar a integridade do sinal. Utiliza-se para o efeito uma secção biquadrática de Rauch apresentada na Figura 3.

- 2.1. Determine analiticamente a tensão de saída em repouso (entrada constante) e a função de transferência do filtro e utilize os programas Octave ou Matlab para obter os diagramas de Bode do filtro. Mostre, usando os mesmos programas, como se altera a resposta do filtro ao ser ligado à saída do recetor cuja impedância foi calculada no ponto 1.1.
- **2.2.** Confirme por simulação usando o Spice.
- **2.3.** Confirme experimentalmente medindo a amplitude e fase da resposta às frequências 100, 200, 500, 1000, 2000, 5000, 10000 e 20000 Hz. Ignore a impedância do recetor.

Figura 3 – Secção biquadrática de Rauch

3. Retificador com conversão de nível DC de 1ª ordem (passa-alto) e filtro passa-baixo de 1ª ordem

Este circuito realiza a conversão para tensão DC da amplitude da onda filtrada de modo a dar uma indicação de proximidade. O circuito está mostrado na Figura 4.

- **3.1.** Esboce o andamento da tensão Vo em função do tempo para uma entrada sinusoidal de 1V/1KHz de amplitude/frequência.
- **3.2.** Simule o circuito e obtenho os mesmos gráficos e resultados.
- **3.3.** Obtenha experimentalmente os mesmos resultados.

Figura 4 – Retificação e filtragem

4. Conversão analógica-digital e mostrador de LEDs

Este circuito realiza a conversão analógica-digital do sinal retificado e utiliza a palavra digital resultante para controlar um mostrador em escala de termómetro realizado com díodos emissores de luz (LEDs). O circuito converte um sinal DC analógico de entrada num sinal digital que alimenta 4 LEDs que conforme vão acendendo vão dando indicação da proximidade do ponto de reflexão do feixe de IR. O circuito está mostrado na Figura 5.

- 4.1. Calcule as tensões nos nós C-F.
- **4.2.** Obtenha experimentalmente os valores de tensão Vi que fazem acender progressivamente cada um dos LEDs. Depois de realizado o ponto 5, obtenha experimentalmente as amplitudes da onda à saída do foto-transístor que fazem acender progressivamente cada um dos LEDs.

Figura 5 – Conversor A/D e indicador de proximidade em escala de termómetro realizado com LEDs

5. Operação do circuito final

Monte o circuito final de acordo com o diagrama de blocos da Figura 1 e verifique que funciona corretamente: os LEDs devem acender-se progressivamente com a proximidade de um obstáculo. Mostre o circuito em funcionamento ao docente.

De forma a obter uma medida mais rigorosa do ponto em que cada um dos LEDs acende, deverá ser usada uma superfície refletora e medida essa distância, apresentando o resultado em forma de tabela:

LED	D3	D4	D5	D6
Distância (cm)				

6. Lista de componentes

Oscilador, transmissor e recetor de infravermelhos			
R1	6.8k		
R2	1k		
R3	200		
R4a	10k		
R4	12k		
C1	220n		
C2	100u		
C3	220n		
Temporizador	NE555		
Foto-díodo	SIR333		
Foto-transístor	SFH309FA		

Filtro		
R5	18k	
R6	100k	
R7	560k	
R8	1k	
R9	1k	
C4	10n	
C5	270p	
C6	10u	
AMPOP	UA741	

Retificador		
Ri	100k	
Ro	10k	
Ci	10u	
Co	100u	
AMPOP	UA471	
DÍODO	1N4148	

Conversor AD e mostrador de LEDs		
R15	8.2k	
R16	2.7k	
R17	620	
R18	180	
R19	330	
R20	1k	
R21	1k	
R22	1k	
R23	1k	
D3	LED verde	
D4	LED amarelo	
D5	LED vermelho	
D6	LED vermelho	
Comparador quádruplo	LM324	