ML Final Project - Hotel booking demand

Team Name: HTML5566

A. Feature Analysis and Pre-Processing

1. 首先必須確立 revenue 和 label 之間的 mapping 關係,從圖中可以看到當天 revenue 的總和和 label 幾乎是線性關係,因此我們初步模型預測時的 label prediction 為當日 revenue 總和再除以 10000,再對 label prediction 取 floor 得其 label。

2. 我們發現 ADR 只有不到十筆訂單的 ADR 數值超過 370, 為使模型不被 outlier 影響大部分表現, 我們對 ADR 數值做 -10 至 370 的 truncation。

- 3. 部分 category feature 種類非常多,尤其 agent、company、country,原轉換成 one-hot 後共有 872 維,但大多數的種類出現次數非常低,加上 train 和 test 的存在大量不會在交集的種類,我們將出現頻率低於 1% 或是沒有出現在 train 和 test 交集的種類都 filter 掉,可以將 872 維降至 443 維。
- 4. 我們發現部分 category feature 存在極高的 unknown 比例,然而有可能存在多筆異質性極高的資料同時 被歸類在同個 unknown 族群的情況,會對學習表現造成影響,因此我們去除 unknown 的選項,在資料遇 到 unknown 的情況時,將其指定為最頻繁出現的種類。
- 5. 我們模仿 RFR 的 random subset 機制,將 csv 原 table 的 28 種 attribute,**逐一拔掉觀察對指定模型訓練 後對 validation 的影響**,我們最好的 feature subset 版本拔除了「**arrival_date_year」**和「**ID」**。

B. Approach

我們在表現上最好的方法為 ADR prediction,我們主要 approach system 分為三個階段: ADR regression、cancel masking、label-level aggregation,最後將整天 revenue 總和除以 10000,得到 label prediction 後去掉小數部分。

1. adopted ADR regression methods overview:

ADR regressor 採用的學習算法分為三種,分別是 Random Forest Regressor(RFR)、Histogram Gradient Boosting Regressor(HGBR)、Deep Network Regressor(DNR),下述為各學習算法參數設定和簡介以及針對算法之間的統整比較:

(1) Random Forest Regressor

RFR 的運作原理是找到好的單一維度的 decision stump,整數數值大小不影響結果,意即將 category 的 feature 映射成 label 會和映射成 one-hot 效果相同,因此我們輸入 RFR 的 category feature 設為 label integer,能大幅降低原 one-hot feature 對於模型的運算量。

此外,基於 evaluation 採用的是 MAE,我們 criterion 採 MAE 而非 MSE,我們表現最好的模型在 n_estimators 上設為 200 ,其餘為 sklearn 的 default setting。

(2) Histogram Gradient Boosting Regressor

相較傳統 GB 僅使用一階微分並且無法平行化, extreme GB(XGB) 系列對泰勒二階展開做近似來減緩量 代次數和提高表現, 在改善過擬合問題上傳統 GBR 的做法為懲罰過大的 magnitude 項, 而 XGB 在損失函數內參 考子樹葉數以制定正規項。

在原本 XGBR 的方法中,若以排序的資料為 N 筆且 d 個維度,需要切 N 次,對每個維度都要切,複雜度為 O(Nd),而 sklearn 的 HGBR **在建樹前會先對每個維度每筆資料以 histogram 的方式分成 h 堆**,以其為切分點只需要切 h 次,而 h 為一常數,因此**可將複雜度降至 O(d) 獨立於資料的數量**,其表現與 XGBR 可比,但 efficiency 相較 XGBR 或是 GBR,有很大優勢,因此我們在 gradient boosting based 的算法採用 HGBR。

(3) Deep Network Regressor

DNR 架構圖如上,實驗結果來說,不同架構差異不大,超參數表格如下所示:

batch size	optimizer	learning rate	checkpoint mode
64	Adam	0.01	save best model

one-hot category feature 非常 sparse,為限制模型較能夠學到 category feature 提供正確資訊,第一層 linear layer 不設置 bias 項,使 one-hot feature 為 0 的數值不影響輸出。

此外,針對中間層激活函數做比較,ReLU 因沒有 zero-centered,得改善 gradient vanishing 問題,但對初始化或是學習率過於敏感,使部分神經元沒被激活,得不到 gradient flow;LeakyReLU/Swish 針對該問題做概念性調整,給予原本 ReLU 為 0 的部分一微小正斜率,使其 gradient flow 得以流通;Swish 相較 LeakyReLU 更具平滑性,我們針對 ReLU、LeakyReLU、Swish 三個激活函數為變因比較 board 上 public score 結果,表格如下:

ReLU	LeakyReLU	Swish
0.407895	0.381579	0.394737

因為看不到顯著差異,LeakyReLU 表現較高,之後 DNR 皆固定使用 LeakyReLU。

(4) Algorithm-wise Comparison

Popularity 因為採用的都是經典算法,對該評量比較有意義的定義為「遇到 final project 的問題類型,會偏好先嘗試哪一個?」:

因 final project 的資料類型為 concrete categorical feature,以個人經驗來說,算法輸入若為單筆資料不 考慮不同訂單的相依性的話,會優先嘗試 HGBR,而 RFR 或 DNR 優先序會依據HGBR 實驗結果決定。

Interpretability 我們定義為 「是否能依據模型的輸出或是預測行為來回饋人類可容易判讀的知識?」:

RFR 和 HGBR 為 tree-based 算法,在 categorical feature 的情況能從模型依屬性來判斷目標,將訓練資料依據目標進行「歸納」,以相似族群做平均預測,也許能從歸納的族群觀察人類的可識讀的共通點,而 RFR 在 sampling 的過程中亦能從 random selected subset 推估 feature 的重要性;而 DNR 為深度結構,直觀可視化的部分為第一層的權重大小。

我們對 reasoning 的排行為 RFR > HGBR > DNR,但現行 explainable AI 技術可將模型視為黑盒,利用對輸入的改動觀察輸出的變化,能做到的解釋性和上述無異,再者是人類針對模型的行為的解讀是否超譯無從判斷,而表現上的穩定度,可以體現在大量資料壓力測試的結果,至少這評量對我們選擇 recommended approaches 上不會是優先參考的標準。

Efficiency 我們針對各演算法的分別對空間和時間複雜度做討論:

RFR 的空間複雜度會隨資料量成長;HGBR、DNR 可自由定義模型架構和參數量,記憶體需求可視為固定常數,RFR 和 DNR 記憶體量分別為約略 1.09 GB、247 MB;關於時間複雜度,我們著重訓練過程,RFR 之於 HGBR 可平行訓練不同決策樹,然而 HGBR 的每一棵樹是基於上一次疊代的殘差項做樹展開,在每個維度將 N 筆資料依 histogram 分成 h 堆,需切從 N 降為常數 h,大幅降低時間複雜度,因此 HGBR 在我們訓練時間是遠小於 RFR 的;而 DNR 是矩陣運算,可平行化程度極高,雖然訓練時間僅取決於何時停止,實務上訓練一個已收斂且表現可接受的模型僅約略半小時內,其顯著缺點是對 GPU 平行設備的需求。在具備 GPU 條件下,對該 final project,我們認為 efficiency 的排行是 HGBR > DNR >> RFR。

Scalability 針對資料量級、維度、可適用問題和資料型態多寡進行比較:

RFR 複雜度會隨資料的維度和數量爆增,而 HGBR 和 DNR 的參數量和訓練時間不受限於此。此外,類神經網路的架構能依據資料的結構性「客制化」不同架構,譬如以天為單位的不同數量訂單資料作為 structural input,撇除人為設計 feature,tree-based 算法無法處理這類問題,反之類神經網路能利用 CNN、RNN 和 self-attention layer 處理這類結構性的資料,且其目標函數可以自由定義,我們對 scalability 排行是 DNR >> HGBR > RFR。

2. Cancel model masking

使用 Random Forest Classifier(RFC). 該步驟為將預測 cancel 的訂單設為 0。我們認為將沒有 cancel 的判為 cancel 的代價相對大很多,在 cost 的權重比例設為 1:50 且 criterion 設 entropy 時在表現 label MAE 表現最好。

3. Label-level Aggregation

有鑑於 validation 的 revenue 預測結果未必能反映 label MAE,我們以一天 revenue 總和得到的 label prediction(floating value) 作為 blending 的 feature, 第一部分為增加 hypothesis 的多樣性,我們採取了 re-samping scheme;第二部分為基於前述多種算法以及 re-sampling 的技巧,比較 linear blending 和 conditional blending 兩種 model aggregation 的策略:

(1) re-sampling scheme

單筆算法在 testing data 的 public score 上得到最好表現是 0.315789,有鑑於 validation 和 public score 的落差,加上 testing 為跨年分的資料,我們推測 training 和 testing 分佈有一定程度的差異,假設在 testing 上的 prediction 和真實 label 已經有足夠的相似度,那我們應該可以從 predition 回推和 testing data 的 label 分布較為相似的訓練資料,duplicate 分佈可能相似的訓練資料使 hypothesis 的預測更可能貼近 testing 的分布,我們嘗試 duplicate 兩部分和測試集 label histogram 較為相近的資料作出基於各學習算法作出兩個新模型,分別是 2016年的四月至八月份以及 2016年的六月至 2017年的三月,label histogram 如下圖所示,可以看到 train 和 prediction 的分佈是有偏差的,而兩種 re-sampling 的分布可以使該偏差問題減緩:

我們兩種 re-sampling 測試在單體 RFR 模型的結果如下表格:

	w/o res		w/i res2	
public	0.315789	0.315789	0.315789	
private 0.38961		0.363636	0.363636	

(2) linear blending strategy

不同模型權重為參考 validation 和 public score 的分數為來制定,權重總合為 1。

(3) conditional blending strategy

上圖為 ordinal label 的 confution matrix,我們透過 validation 的觀察發現 RFR 在部分 label 會有高估傾向,DNR 則較為輕緩,因為單體 RFR 模型在 public score 已經比 linear blending 高,在 RFR 的 public score 能夠反映真正表現的假設下,針對 RFR 容易犯錯部分用其他模型條件式的 refinement 為一較精準的策略,refinement 的策略有二,其一為拉高 revenue 總和映射成 label 的門檻,在原高於邊界的 label prediction 若低於門檻則會降一級;其二為鎖定在 RFR 預測常錯的 label,若 DNR 預測 label 小於 RFR 則會將兩模型在該條件的 label prediction 作 interpolation,結合兩種 refinement 做法,public score 從 0.315789 進步到 0.263158。

(4) Blending strategy comparison

model aggregation 包含所有單體算法在 efficiency 的缺點,但同時優點是能補足各模型表現上的缺點,linear blending 能被應用在任何問題上,相較 conditional blending 更具備 scalability 和 populatiry,而 conditional blending 為基於後天人們觀察制定,表現與否直接對應在 interpretability,因此 conditional blending 解釋性較高。

C. Performance Comparison

RFR	HGBR	DNR	lin blnd	cond blnd
0.315789	0.355263	0.381579	0.328947	0.263158
0.38961	0.350649	0.402597	0.350649	0.376623

上圖可以看到 RFR 在單體模型上和 HGBR 的表現是具可比性的,雖然 GBR 會針對模型多樣性進行抽樣,但其方法同時會對離群值敏感,如果選擇不恰當的損失函數,誤差會被放大,或是訓練和測試資料分佈差異過大優勢就不會太大。而 RFR 每一棵樹只會被局部小區域離群值影響,最後被多棵樹的取樣平均掉,在取捨之下從而使 RFR 和 HGBR 表現持平。

可以看到 linear blending 在 private 上的表現是高於 conditional blending 的,而使用 conditional blending 的時候,我們有兩點強烈假設,其一為主體 RFR 模型的 generalization 能力夠好,其二為 public score 的表現和 private score 相似,但這次提供的資料量級很低,結果隨機性偏高,相較之下 linear blending 的權重設置得當的話,則不會過於依賴單體模型的決策,每個模型決策錯誤的風險較容易分擔。

我們認為在一次 final project 中,單體模型除了 peformance 外,scalability 、 efficeincy 為選擇單體算法模型中很重要的選項,訓練快速能夠在短期內大量實驗,增加自己找到表現好的設定的機會,雖然 RFR 在效率上可能遠不如 HGBR,但其表現以及運算時間仍屬可接受範圍,因此在單體模型上, RFR 為我們的 best recommended approach;對於 aggregation model,我們認為在這個 final project 裡面,除了表現之外

generalization 的穩定度也相當重要,雖然最好的 conditional blending 在 public 和 private 的總體表現最高,但其因為測試資料量級太低,導致變異性非常高,反之 linear blending 的上傳結果非常穩定維持在一定水平,因此我們認為 linear blending 為 aggregation model 中的 best recommended approach。

D. Reference

https://www.csie.ntu.edu.tw/~htlin/course/ml20fall/

https://github.com/Microsoft/LightGBM

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoos

tingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor

https://arxiv.org/abs/1505.00853

https://arxiv.org/abs/1710.05941