Mecânica e Campo Eletromagnético

DEPARTAMENTO DE FÍSICA TURMAS: TP1, TP2, TP3

Aula 6

6.1 Considere uma coroa esférica de raios interno r_1 e externo r_2 com uma densidade de carga $\rho = \frac{\alpha}{r_2}$.

- a) Determine o campo elétrico em qualquer ponto do espaço.
- b) Que tipo de distribuição poderia criar um campo uniforme no interior da coroa esférica?

Solução:

$$r_1 < r < r_2$$

$$\label{eq:energy} \text{E=0,} \qquad r_{\text{1}} < r < r_{\text{2}} \qquad \Rightarrow \qquad E = \frac{\alpha}{2\epsilon_{\text{0}} r^{2}} \Big(r^{2} - r_{\text{l}}^{2} \Big),$$

$$E = \frac{1}{2\epsilon_0 r^2} (r^2 + \frac{1}{2\epsilon_0 r^2})$$

$$r > r_2$$
 \Rightarrow

$$E = \frac{\alpha}{2\varepsilon_0 r^2} \left(r_2^2 - r_1^2 \right)$$

- **6.2** Considere um condensador plano com área A e distância entre as placas igual a d.
 - Se colocar uma placa metálica muito fina à distância d/3 de uma das placas, qual será a nova capacidade do condensador? Justifique o cálculo.
 - E se a placa tiver uma espessura d/6?

Solução:

a)
$$C' = \frac{\varepsilon_o A}{d} = C$$
 (F

a)
$$C' = \frac{\varepsilon_o A}{d} = C$$
 (F) b) $C'' = \frac{6}{5} \frac{\varepsilon_o A}{d} = \frac{6}{5} C$ (F)

- **6.3** Um condensador de placas paralelas de área S é preenchido por dois materiais A e B, caracterizados, respetivamente, por constantes dielétricas ε e 2ε . Os volumes dos dois materiais são iguais, como indica a figura.
 - Calcule a capacidade do condensador.
 - Obtenha a expressão para o campo elétrico, em cada um dos b) materiais.
 - Determine as densidades de carga (livre) nas placas do condensador. c)
 - Escreva a expressão da energia total armazenada no condensador e indique de que modo essa energia se distribui pelos dois dielétricos.

a)
$$C = \frac{3}{2} \frac{\varepsilon S}{I}$$
 (F)

b)
$$|\overrightarrow{E}| = \frac{V_o}{d}$$
 (V/m)

Solução: a)
$$C = \frac{3}{2} \frac{\varepsilon S}{d}$$
 (F) b) $|\vec{E}| = \frac{V_o}{d}$ (V/m) c) $\sigma_A = D_A = \frac{\varepsilon V_o}{d}$ (C/m²); $\sigma_B = D_B = \frac{2 \varepsilon V_o}{d}$

(C/m²) **d)**
$$W = \frac{3}{4} \frac{\varepsilon S}{d} V_o^2$$
; $W_A = \frac{1}{3} W$; $W_B = \frac{2}{3} W$ (J)