First name:	 	 	 	
Last name:	 	 	 	
Student ID num <mark>b</mark> er:				

1st Midterm Exam

course name

INTRODUCTION TO MACHINE LEARNING AND DATA MINING

Instructions:

- Write your FIRST NAME, LAST NAME and STUDENT ID NO. on each piece of paper with solutions;
- This midterm is composed of **6 assignments** for the total amount of **100 points**;
- Solving time is **90 minutes**;
- Only a calculator and 1 piece of paper (A4 format) with written notes and formulas is allowed;
- All other literature, the use of Internet, laptops, mobile phones and other electronic devices is strictly forbidden!

I	D	D_d	E	F	G	С
100	2000.000		Т	В	4	Υ
101	2004.102		F	R	8	N
102	2011.454		Т	G	12	Υ
103	2005.666		F	R	9	Υ
104	2002.128		F	В	7	N
105	2014.775		Т	G	18	N
106	2020.000		Т	В	11	N
107	2018.245		F	R	3	Υ
108	2012.243		Т	G	19	N
109	2019.005		F	G	7	Υ
110	2009.506		Т	R	10	N

- I: Identifier [0, ∞)
- D: Date in KSP format
- E: Nominal value {T, F}
- F: Nominal value {R, G, B}
- G: Numeric value [0, 20]
- C: Class; nominal value {Y, N}

I	D (not KSP)	D_d	E	F	G	С _{NВ}	C _{DT}
200	12.2.2013		Т	R	11		
201	6.6.2017		Т	G	5		
202	17.5.2012		F	В	15		

- 1. Transform the values of attribute **D** for the examples with *I* = 200, 201 and 202 into the KSP format (leap year is **bolded**)! Round your results to 3 decimal places! (10 points)
- 2. Draw a boxplot that will represent the values of attribute **G** (take into consideration only examples with l = 100 110)! (10 points)
- 3. Discretize attribute **D** into 4 bins using the equal frequency discretization technique (take into consideration only examples with *I* = 100 110)! Denote the values of this new (discretized) attribute **D_d** as D1, D2, D3 and D4. Draw the histogram! (10 points)
- 4. Use the OneR algorithm to classify the examples with known class value (examples with *I* = 100 110)! Check just the attributes E and F. Sketch the (one level) decision tree! What is the error of this classifier? (15 points)
- 5. Use the **Naïve Bayes** classifier to classify the examples with unknown class value (examples with I = 200, 201 and 202)! Build the probability tables by using just the attributes **E** and **F**. Use the Laplace correction to calculate the probabilities! (25 points)
- 6. Build a one level decision tree (root node only) by using the TDIDT principle (ID3 algorithm). Check just attributes E, F and D_d (as potential candidates for the root node). Use the <u>Gini index</u> as the <u>wimpurity</u> measure« for ranking the attributes. Draw this <u>winder</u> partially constructed decision tree and use it to classify the examples with unknown class value (examples with *I* = 200, 201 and 202)! (30 points)