MVA – Probabilistic Graphical Models

Homework 3: Gibbs Sampling

Wilson Jallet*

December 19, 2019

- **Q1.** This operation puts all the data on the same scale this is especially useful because the prior on β assigns the same variance in each direction.
- **Q2.** If we supposed that ε_i had a variance of σ^2 , we could write $\varepsilon_i = \sigma \varepsilon_i'$ where $\varepsilon_i' \sim \mathcal{N}(0, 1)$, and we'd have

$$y_i = \operatorname{sgn}(\beta^T x_i + \varepsilon_i) = \operatorname{sgn}(\beta'^T x_i + \varepsilon_i')$$

where $\beta' = \beta/\sigma$.

- **Q3.** We define the following graphical model:
 - observed features $x_i \in \mathbb{R}^p$, $i \in \{1, \dots, n\}$
 - random variable $\beta \sim \mathcal{N}(0, \tau I_p)$
 - latent variables $z_i = \beta^T x_i + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0, 1)$
 - observed labels $y_i = \operatorname{sgn}(z_i) \in \{-1, 1\}$

This model has the following representation:

We want the posterior distribution of β given y. We will need the conditional posteriors to do Gibbs sampling. Evidently,

$$p(y_i|\beta) = \Phi(y_i\beta^T x_i)$$
$$p(z_i|\beta) \sim \mathcal{N}(\beta^T x_i, 1)$$
$$p(y_i, z_i|\beta) = \mathbb{1}_{\{y_i z_i > 0\}}$$

By Bayes' theorem we have the posteriors

$$p(\beta|z) \propto p(\beta)p(z|\beta) \propto \exp\left(-\frac{1}{2\tau} \|\beta\|^2 - \frac{1}{2} \sum_{i=1}^n (z_i - \beta^T x_i)^2\right)$$
$$= \exp\left(-\frac{1}{2\tau} \|\beta\|^2 - \frac{1}{2} \|z - X\beta\|^2\right)$$

^{*}wilson.jallet@polytechnique.org

and

$$p(z|\beta, y) \propto p(z|\beta)p(z, y|\beta) \propto \exp\left(-\frac{1}{2}||z - X\beta||^2\right) \prod_{i=1}^{n} \mathbb{1}_{\{y_i z_i > 0\}}$$

where $X = (x_1 | \dots | x_n)^T \in \mathbb{R}^{n \times p}$ is the design matrix. By identification $\beta | z \sim \mathcal{N}(\mu, \Sigma)$ where

$$\Sigma^{-1} = \frac{1}{\tau} I_p + X^T X, \quad \mu = \Sigma X^T z$$

and $z|\beta, y \sim T\mathcal{N}(X\beta, I_n; \mathcal{P}_y)$ where $T\mathcal{N}(\cdot; \mathcal{P}_y)$ is the truncated Gaussian with support in the polytope $\mathcal{P}_y = \{z \in \mathbb{R}^n : z_i y_i > 0, \ i = 1, \dots, n\}.$