Συναρτήσεις, Μονοτονία

Κωνσταντίνος. Λόλας

Μονοτονία Συναρτήσεων

Ορισμός

Μία συνάρτηση f είναι <u>γνησίως αύξουσα</u> σε ένα διάστημα Δ αν

για κάθε $x_1, x_2 \in \Delta$ με $x_1 < x_2 \implies f(x_1) < f(x_2)$

Μονοτονία Συναρτήσεων

Ορισμός

Μία συνάρτηση f είναι <u>γνησίως αύξουσα</u> σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) < f(x_2)$

Ορισμός

Μία συνάρτηση f είναι <u>γνησίως φθίνουσα</u> σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) > f(x_2)$

Ποιός δεν αναρωτιέται?

Ισχύει η συνεπαγωγή για έστω μια γνησίως αύξουσα

$$x_1 < x_2 \iff f(x_1) < f(x_2)$$

1

Ποιός δεν αναρωτιέται?

Ισχύει η συνεπαγωγή για έστω μια γνησίως αύξουσα

$$x_1 < x_2 \iff f(x_1) < f(x_2)$$

Φυσικά (?)

αύξουσα, σκέτο αύξουσα

Ορισμός

Μία συνάρτηση f είναι $\underline{\alpha}$ ύξουσ $\underline{\alpha}$ σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) \le f(x_2)$

αύξουσα, σκέτο αύξουσα

Ορισμός

Μία συνάρτηση f είναι $\underline{\alpha}$ ύξουσ $\underline{\alpha}$ σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) \le f(x_2)$

Ορισμός

Μία συνάρτηση f είναι φθίνουσα σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) \geq f(x_2)$

Συγκρατήσαμε τίποτα?

Παραδείγματα

•
$$f(x) = x^2$$

Συγκρατήσαμε τίποτα?

Παραδείγματα

- $f(x) = x^2$
- f(x) = 1/x

Γράψτε στο τετράδιο όσες γνησίως αύξουσες συναρτήσεις θυμάστε

Γράψτε στο τετράδιο όσες γνησίως αύξουσες συναρτήσεις θυμάστε

$$\bullet$$
 $ax + b$, $a > 0$

- $\bullet \ln x$
- x^2 , $x \ge 0$
- \bullet x^3

$$\bullet$$
 e^x , 2^x

•
$$\eta \mu x$$
, $0 < x < \pi/2$

$$\bullet$$
 $\varepsilon \varphi x$

Γράψτε στο τετράδιο όσες γνησίως αύξουσες συναρτήσεις θυμάστε

$$\bullet$$
 $ax + b$, $a > 0$

- $\bullet \ln x$
- x^2 , $x \ge 0$
- \bullet x^3

$$\bullet$$
 e^x , 2^x

•
$$\eta \mu x$$
, $0 < x < \pi/2$

$$\bullet \ \varepsilon \varphi x$$

Γράψτε στο τετράδιο όσες γνησίως φθίνουσες συναρτήσεις θυμάστε

Γράψτε στο τετράδιο όσες γνησίως αύξουσες συναρτήσεις θυμάστε

$$\bullet$$
 $ax + b$, $a > 0$

$$\bullet \ln x$$

•
$$x^2, x \ge 0$$

$$\bullet$$
 x^3

$$\bullet$$
 e^x , 2^x

•
$$\eta \mu x$$
, $0 < x < \pi/2$

$$\bullet \ \varepsilon \varphi x$$

Γράψτε στο τετράδιο όσες γνησίως φθίνουσες συναρτήσεις θυμάστε

•
$$ax + b$$
, $a < 0$

•
$$x^2$$
, $x \le 0$

$$-x^3$$

$$\bullet \ \left(\frac{1}{2}\right)^x$$
, e^{-x}

•
$$\sigma v \nu x$$
, $0 < x < \pi/2$

•
$$\frac{1}{x}$$
, $x < 0$

Μπρίκια κολάμε?

Θα ασχολούμαστε

- με κατασκευές
- ανισώσεις

Η συνάρτηση f του σχήματος είναι ορισμένη στους πραγματικούς αριθμούς.

- Να γράψετε τα διαστήματα μονοτονίας της
- Να συγκρίνετε τις τιμές
 - f(2) kal f(e)
 - f(3) kal $f(\pi)$

Δίνεται η συνάρτηση $f(x) = x^3 + 3x - 5$

Να μελετήσετε την συνάρτηση ως προς την μονοτονία

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- ightharpoonup Να συγκρίνετε τις τιμές f(2022) και f(2023)

Δίνεται η συνάρτηση $f(x) = e^x + \ln x - 1$

Να μελετήσετε την συνάρτηση ως προς την μονοτονία

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:
 - ① Aν x > 1, τότε $e^x + \ln x > e$

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:
 - **1** Αν x > 1, τότε $e^x + \ln x > e$
 - ② Αν α , $\beta>0$ και $\alpha<\beta$, τότε $\ln\frac{\alpha}{\beta}< e^{\beta}-e^{\alpha}$

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:
 - **1** Αν x > 1, τότε $e^x + \ln x > e$
 - 2 An α , $\beta>0$ kal $\alpha<\beta$, tóte $\ln\frac{\alpha}{\beta}< e^{\beta}-e^{\alpha}$
 - Για κάθε x>0, f(x+1)-f(x)>0

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:
 - **1** Αν x > 1, τότε $e^x + \ln x > e$
 - ② Αν α , $\beta>0$ και $\alpha<\beta$, τότε $\ln\frac{\alpha}{\beta}< e^{\beta}-e^{\alpha}$
 - 3 Για κάθε x > 0, f(x+1) f(x) > 0
 - 4 Για κάθε x > 0, f(x) < f(2x)

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:
 - **1** Αν x > 1, τότε $e^x + \ln x > e$
 - ② Αν α , $\beta>0$ και $\alpha<\beta$, τότε $\ln\frac{\alpha}{\beta}< e^{\beta}-e^{\alpha}$
 - **3** Για κάθε x > 0, f(x+1) f(x) > 0
 - 4 Για κάθε x > 0, f(x) < f(2x)
 - **5** Για κάθε x > 1, $f(x^2) > f(x)$

① Να βρείτε τις ρίζες και το πρόσημο της συνάρτησης $f(x) = e^x + 2x - 1$

- ① Να βρείτε τις ρίζες και το πρόσημο της συνάρτησης $f(x) = e^x + 2x 1$
- Να βρείτε το πεδίο ορισμού των συναρτήσεων:

- ① Να βρείτε τις ρίζες και το πρόσημο της συνάρτησης $f(x) = e^x + 2x 1$
- Να βρείτε το πεδίο ορισμού των συναρτήσεων:

 - $h(x) = \frac{1}{f(x)}$

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, η οποία είναι γνησίως φθίνουσα. Να λύσετε τις ανισώσεις:

- f(x) > f(3)
- f(2x+1) < 5, and f(3) = 5
- $f(x^2 3x) \ge f(2 4x)$
- f(f(3x-1)) < f(f(2x+3))

Δίνεται η συνάρτηση $f(x) = e^x + x - 1$

Να μελετήσετε την συνάρτηση ως προς την μονοτονία

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να λύσετε τις ανισώσεις:
 - **1** f(x) > 0

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να λύσετε τις ανισώσεις:
 - **1** f(x) > 0
 - $e^x + x < e + 1$

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- 2 Να λύσετε τις ανισώσεις:
 - **1** f(x) > 0
 - $e^x + x < e + 1$
 - $(e^x + x + 1) > 1 + e^2$

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- 2 Να λύσετε τις ανισώσεις:
 - **1** f(x) > 0
 - $e^x + x < e + 1$
 - $(e^x + x + 1) > 1 + e^2$
 - $e^{f(x)} + f(x) x > e^x$

$$x < \frac{2}{x^4 + 1}$$

2
$$x^4 - \frac{2}{x} > -1$$
, sto $(0, +\infty)$

- $1 \quad x < \frac{2}{x^4 + 1}$
- $2 \quad x^4 \tfrac{2}{x} > -1 \text{, sto } (0, +\infty)$

$$x < \frac{2}{x^4+1}$$

$$2 \quad x^4 - \tfrac{2}{x} > -1 \text{, sto } (0,+\infty)$$

$$(2x-1) + 2 > x^5 + x$$

Δίνεται η συνάρτηση $f(x) = x + \ln(x+1)$

① Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία

Δίνεται η συνάρτηση $f(x) = x + \ln(x+1)$

- ① Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία
- **2** Να λύσετε την ανίσωση $x^2 + \ln(x^2 + 1) > 0$

Δίνεται η συνάρτηση $f(x) = x + \ln(x+1)$

- ① Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία
- **2** Να λύσετε την ανίσωση $x^2 + \ln(x^2 + 1) > 0$
- $lackbox{0}$ Να λύσετε την ανίσωση $x^4-x^2<rac{x^2+1}{x^4+1}$

Να λύσετε τις ανισώσεις:

$$e^x + x^3 < 1$$

Να λύσετε τις ανισώσεις:

$$e^x + x^3 < 1$$

$$e^x - e^{x^2} > \ln x$$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση με f(0)=1 και $f\uparrow$. Να λύσετε τις ανισώσεις:

1
$$f(x) + e^x > 2$$

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση με f(0) = 1 και $f \uparrow$. Να λύσετε τις ανισώσεις:

- $f(x) + e^x > 2$
- **2** (x+1)f(x) < 1, $\sigma \tau o (-1, +\infty)$

Δίνονται οι συναρτήσεις $f(x)=e^x$, x>0 και $g(x)=\frac{e}{x}$, x>0.

f 0 Να βρείτε τα κοινά σημεία των C_f και C_g

Δίνονται οι συναρτήσεις $f(x)=e^x$, x>0 και $g(x)=\frac{e}{x}$, x>0.

- f 0 Να βρείτε τα κοινά σημεία των C_f και C_g
- ② Να βρείτε τη σχετική θέση των C_f και C_g

Έστω $g:(0,+\infty)\to\mathbb{R}$ μία γνησίως μονότονη συνάρτηση της οποίας η γραφική παράσταση διέρχεται από τα σημεία $\mathrm{A}(1,-2)$, $\mathrm{B}(2,-3)$ και η συνάρτηση $f(x)=\ln x-g(x)$, x>0.

1 Να δείξετε ότι η g είναι γνησίως φθίνουσα

Έστω $g:(0,+\infty)\to\mathbb{R}$ μία γνησίως μονότονη συνάρτηση της οποίας η γραφική παράσταση διέρχεται από τα σημεία $\mathrm{A}(1,-2)$, $\mathrm{B}(2,-3)$ και η συνάρτηση $f(x)=\ln x-g(x)$, x>0.

- **1** Να δείξετε ότι η g είναι γνησίως φθίνουσα
- Να δείξετε ότι η f είναι γνησίως αύξουσα

Έστω $g:(0,+\infty)\to\mathbb{R}$ μία γνησίως μονότονη συνάρτηση της οποίας η γραφική παράσταση διέρχεται από τα σημεία $\mathrm{A}(1,-2)$, $\mathrm{B}(2,-3)$ και η συνάρτηση $f(x)=\ln x-g(x)$, x>0.

- **1** Να δείξετε ότι η g είναι γνησίως φθίνουσα
- ② Να δείξετε ότι η f είναι γνησίως αύξουσα
- **3** Να λύσετε την ανίσωση $2 \ln x < 2 + g(x^2)$

Έστω $f,g:\mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις με $g\uparrow$ και

$$g(x)=f(x+1)-f(x)$$
, για κάθε $x\in\mathbb{R}$

- Να λύσετε τις ανισώσεις
 - **1** $f(\ln x + 1) > f(\ln x)$, and f(1) = f(2)

Έστω $f,g:\mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις με $g\uparrow$ και

$$g(x)=f(x+1)-f(x)$$
, για κάθε $x\in\mathbb{R}$

- Να λύσετε τις ανισώσεις
 - **1** $f(\ln x + 1) > f(\ln x)$, av f(1) = f(2)
 - 2 $f(\sqrt{x}+1)f(x+1) < f(\sqrt{x}) f(x)$

Έστω $f,g:\mathbb{R} o \mathbb{R}$ δύο συναρτήσεις με $g\uparrow$ και

$$g(x)=f(x+1)-f(x)$$
, για κάθε $x\in\mathbb{R}$

- Να λύσετε τις ανισώσεις
 - **1** $f(\ln x + 1) > f(\ln x)$, av f(1) = f(2)
 - 2 $f(\sqrt{x}+1)f(x+1) < f(\sqrt{x}) f(x)$
- Να αποδείξετε ότι

$$f(e^x+1)-f(\eta\mu x+1)>f(e^x)-f(\eta\mu x)$$
, για κάθε $x>0$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι γνησίως φθίνουσα

Να δείξετε ότι f(x)+f(7x)>f(3x)+f(10x), για κάθε x>0

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι γνησίως φθίνουσα

- Να δείξετε ότι f(x)+f(7x)>f(3x)+f(10x), για κάθε x>0
- Na lúsete thu exíswsh $f(x)+f(x^3)=f(x^2)+f(x^8)$, sto $(0,+\infty)$

① Έστω $f,g:\mathbb{R}\to\mathbb{R}$ δύο συναρτήσεις όπου $g\circ f\downarrow$ και $g\uparrow$. Να δείξετε ότι $f\downarrow$

- ① Έστω $f,g:\mathbb{R}\to\mathbb{R}$ δύο συναρτήσεις όπου $g\circ f\downarrow$ και $g\uparrow$. Να δείξετε ότι $f\downarrow$
- ② Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση για την οποία ισχύει:

$$f^3(x) + e^{f(x)} - e^{-x} - 1 = 0$$
, για κάθε $x \in \mathbb{R}$

Να εξετάσετε τη συνάρτηση f ως προς τη μονοτνία

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση