

STAMFORD UNIVERSITY BANGLADESH

Name : Abdullah Al Monayem

ID : CSE 071 08128

Subject: Algorithms (CSI - 231)

Batch : 71 - A

Email : almonayem2019@gmail.com

Contact No.: 01747-534818

Ans. the. Q. No: 1

The LCS 'OF " PAHMANI
and "JAHANGIR' in,

10 M. A. H. A. G. & = 1°

	· AJ	10	15 11			processor and the second	·			
t		F EXC	J	A	H	A	77	Ge	I	R
9.4	day.	0	0	0	0	0	0	0	0	0
	P	0	10	10	10	10	10	10	10	17
	Α	0	10	71	4	K1	1	1	1	11
	H	0		11		2	2	2	2	2
1	M	A	CONTRACTOR OF	11	S. C.	12	12	12	12	12
1	A	0	10	K T	12	K3	3	3	3	3
1	N	0	10	11	12	13	K4'	4	4	4
	I	0	10	11	12	13	14	14	75	5
										100

we can nee that the LCS in >>

lanna Enterpri

Ais. The G. North

Here,

we have two strings, Let, X = & R, A, H, M, A, N, I's Y = 2 J, A, H, A, N, Oz, I, R2 81 82 83 84 85 86 87 First compare 'I' and 'P'. 96 they matched, find the nubsequence in the remaining string and then append the 'I' with it 94 "I" OR, 27 + 38 (" P") Lip Remove 27 from x and find LCS from x1 to x7-1 and y1 to yg con no e that the 605 in->

THAHAM

(ii) Remove you from Y and bind LCS broom x1 to x7 and Y, to y8-1

In each step, we reduce the size of the problem into the subproblems of the optimal substructure.

It is a dynamic programming approach because it has optimal substructure.

Am. the. Q. No: 1

7 - Queen Problem -

Insert Queen in at row-1.

Insert a Queen at Row-2

Insert a queen into Row 5

when we insert a queen in row-5, we see we can't iment a queen into row-6.

Now,

1	2	3	4	5	6	7
Q					2	
		Q		0-		
		10		0		
	Q	Dà				
			-0-			
	100		QQQ	Q Q	Q Q Q	Q Q Q

Again backtnacking,

	~						
	John	2	3	9	5	6	7
1000	Q		inora,				202
2			Q				
3		51			Q		
4							a
5							THE
6							
1				100			

30, we insert a queen at pow-5

T. Carlot	1	2	3	4	5	6	7
1	Q						
2			Q		R		
3			8		a		11.6
4							a
5		2					
6				211			
71							

Again, innert a queen into row-6

	ı	2	3	4	5	6	. 7
1	Q						
2			Q				
3	ave A				Q		
9							Q
5		a					
6				0			
7							
1 *					The second secon		

And Finally,

1		ALAS A CONT		1		6	
	Q						
2			Q				
3			26)		a		18
4							Q
5		Q					
6				a			3
7						Q	
i of A		rer					

So, the Output: (1,3;5,7,2,4,6)

(Am.)

Ans. the. Q. No: 1

(0)

Step-1

3							1/2		8.8	
oi	P	a	R	5	7	10	V	W	×	1
P;	5	46	15	10	20	10	55	12.6	32	
W		10	2	2	3.6	1.2	5.6	7	9	0
μ= Pi ω;	5	4.6	7.5	5	5.6	8.3	2.8	1.8	8	1

1: 071. 6. out out

Step-2

				والراسل								
0%	V	U	X	R	T	P	9	10	w		1 1 -9	19
b.0	55	10	32	15	20	5	10	46	12.6			
wi	5.6	1.2	4	2	3.6	1	2	10	2		Total (apac
$u_1^\circ = \frac{P_1^\circ}{w_1^\circ}$	9.8	83	8	7.5	5.6	5	5	4.6	1.8		m=2	6
x; (1)	0	0	0	0	0	0	0	0	O		, Rest o	
74(2)	1	0	0	0	0	0	0	0	0	* P/ 6	JU = 20	
×9 (3)	T,	1	0	0	0	0	0	0	0		1 = 26	
x; (4)	1	1	1	0	0	0	0	0	0		>U = 20.	2-1
x; (5)	1	1	1	1	01	0	0	0	0		→U= 15	
29(6)	1	1	1	1	1	0	0	0	0		$\rightarrow U = 13$.2-3
x; (7)	1	1	1	1	1	1	0	0	0		→U=9·	6-1
24(8)	1	1	1	1	1	l	1	0	0		→U= 8.	6-2
24(9)	1	1	1	1	1	1	1	0.0	0		→U=6·1	6-(1
24(10)	1	1	1	1	1	1	ı	0.66	0		= 0	
- Style Cons	No. 1		-									

= 26

6 = 20.4

12=19.2

4=15.2

2=13-2

3.6=9.6

1 = 8.6

2 = 6.6

(10 × 6.6)

Maximum Profit = \le pi xi

$$= (55 \times 1) + (10 \times 1) + (32 \times 1) + (15 \times 1)$$

$$+ (20 \times 1) + (5 \times 1) + (10 \times 1) + (4.6 \times 1)$$

= 177:4 , moldong places mont

Total weight = \(\pi_{\pi_{\chi}} \chi_{\chi}^{\chi}

$$= (5.6 \times 1) + (1.2 \times 1) + (9 \times 1) + (2 \times 1) + (3.6 \times 1) + (1 \times 1) + (2 \times 1) + (10 \times 1) + (10 \times 1)$$

= 26 wolden at sulsa at

fraction taken of the items;

$$(\chi_{p}, \chi_{Q}, \chi_{p}, \chi_{S}, \chi_{T}, \chi_{U}, \chi_{V}, \chi_{W}, \chi_{X})$$

= $(1, 0.66, 1, 1, 1, 1, 1, 1, 0, 1)$

(Am.)

It we're not allowed to take breaction of an object, then it twom into dynamic problem nather than greedy problem. It is called #0-1" Knappack.

Then, we need to bind an optimal nubstructure to bind the global of optimal solution, rather than a greedy technique to solve the problem.

Am. the Q. No: 1

Backtnacking in a recursive approach to enumerate all possible solutions, whenever a dead-end in encountered, the algorithm backs up and systematically tries to bind a different solution.

that are guaranteed to find a tillerent solution. There are the globally optimal result, but there are also greedy algorithms which will only find suboptimal results.

Dynamic programming and Goreedy montly notives optimizations problem, better.

That's why some problems

that's why some problems like, N-queen problem, is much more efficient to solve with backtracking other than Coreedy OR DP.

to this of best working son that

Addition - Holleston - Francisco

tood theres, borritgo blodolo of

timple the one area

Subject:

Am. the. Q. NO:2

(a)

Griven,

Q = 25,000

R = 68000

5 = 3000

T = 13000

U = 1000

V = 76000

W = 15000,

X = 5000

Y = 90 18000

Z = 26000

Now, Let, U=1, 5=3, X=5,

T=13, W=15, Y=18, Q=25, Z=26,

R = 68 and V = 76

Step-1:

U:1

5:3

X:5 T:13 W:15

Y:18

Q:25 Z:26

R:68

N:76

Step-2:

X:5

T:13 W:15

Y: 18

Q:25 Z:26

R:68

V:76

Step-3:

Date:

Z: 26

R:68

V:76

Step-4%

Date:

Step-5:

Step-6:

9

DAR

Step-7:

00:15

[8:8] [1:0]

59

R:68

U:1

5%

T:13

Date:

D

Step-9:

Step-10:

The Huffman codes are: R = 10, V = 11, Z = 010, Q = 001 T = 0001, W = 0110, Y = 01111, X = 000001, Q = 000000 and Q = 000001

Am. the. Q. No!2

Divide and conquer

o partion the problem into independent subproblems, solve the subproblems recoverively, and then combine their solutions to solve the original problem

Example:

Merge sont

Dynamic approch:

(i) Applicable when the nubproblems not independent, that is, when are subproblems share subproblem.

just once and then naves

its answer in a table,

thereby avoiding the works of

recomputing the answer

every time the subpubproblem

is encountered.

Example:

Travelling salesperson

Problem

[0 2 3] 5 0 9 [6 13 0]

$$g(2, q) = c_{21} = 5$$

$$=(9+6)=15$$

$$g(3, \{2\}) = c_{32} + g(2, \{9\})$$

$$= \min\{(2+15), (3+18)\}$$

Path $_{\circ}$ $_{1}\rightarrow2\rightarrow3\rightarrow1$

cont: 17

(Am.)

Am.the. Q. No:2

Matrin - chain - OPDER (P)

n < length[P]-1

for i < 1 to n do

 $m[i,i] \neq 0$

bon l←2 to n do

bon i < 1 to m-1+1 do

1 ← 1+1-1

加しら、ゴフとの

bon K←1 +0 -3-4 do

q < m [i, k] +m [k+1,j] +
Pi-1 PK Pj

if q/m[i,j]then

mtijthen
soopood bres objid

 $m[i,j] \leftarrow q$

svisci, ij tk

retwon moand 5

contine. Indian policina

Ance ordina

realdong

: algaross

+ 1005 - 1000 M

Am.the.Q.No;2

Thin algorithm neareher bon the local optima and optimizes the local best solution to bind the global optima. It begins by nonting all the edges and then relects the edge with the minimum cont. 9+ confinuously nelector the best next choices given a condition that no loops are bonned. The complexity of the greedy algorithm in the o(N'log_N) and there is no

guarantee that a global optimum solution in bound.