

Universidade do Minho Escola de Ciências

 $O I = 4 \int_0^a \int_0^a xy \, dx \, dy$

Análise Matemática para Engenharia

Licenciatura em Engenharia Informática

Departamento de Ma	atemática		Те	ste 2 A :: 14 de maio	de 2024
Nome				Número 💮	
		I			
Em cada	uma das questões seguintes, assii			 ıção verdadeira; não	o deve
	Cada resposta certa vale 1 valor	[,] qualquer justif e cada resposta		ıta 0,25 valores.	
Questão 1.	Os pontos críticos da função $f(x,y)$	$= x^2 + 2xy + y^3$	são		
0	$(0,0) \in \left(-\frac{2}{3},\frac{2}{3}\right)$		$(0,0), \left(\frac{2}{3}, -\frac{2}{3}\right) \in \left(-\frac{2}{3}, \frac{2}{3}\right)$		
0	$(0,0) \in \left(\frac{2}{3}, -\frac{2}{3}\right)$	0	$(0,0), \left(\frac{2}{3},\frac{2}{3}\right)$	$e\left(-\frac{2}{3},-\frac{2}{3}\right)$	
Questão 2.	Considere a função $f(x, y) = \frac{3}{2}x^2 - \frac{3}{2}x^2$	$xy^2 + \frac{1}{2}y^2$. O por	nto $(0,0)$		
0	$\acute{ ext{e}}$ um minimizante local de f	0	é um ponto de	e sela de f	
0	$\acute{ ext{e}}$ um maximizante local de f	0	não é ponto ci	rítico de f	
	Considere a função $f(x, y) = x^2 + y^2$ rita ao conjunto C	- 5 <i>xy</i> e o conjul	$nto\ C = \{(x,y) \in$	$\equiv \mathbb{R}^2 : x^2 + y^2 = 1 \}.$	A função
O r	tem um valor máximo, mas não tem um valor ínimo		tem um valor máximo e tem um valor mínimo		
O r	não tem um valor máximo, mas tem um valor ínimo		não tem um valor máximo nem tem um valo mínimo		
	Sejam $f,g:\mathbb{R}^2 o\mathbb{R}$ funções de cla $g=0$ e que esse mínimo é atingido em				
	$\nabla f(P_0) = (3, -1)$ $\nabla g(P_0) = (-1, \frac{1}{3})$	$\nabla f(P_1) = (1,0)$ $\nabla g(P_1) = (0,1)$	$\nabla f(P_2) = 0$ $\nabla g(P_2) = 0$	2, 1) -1, -2)	
Poden	nos concluir que o mínimo de f é atir	igido em			
0	P_2 \bigcirc $P_0 \in P_2$	0	P_0	\bigcirc P_1 e P_2	
Questão 5.	Seja ${\cal D}$ o quadrado cujos vértices sã	$\circ \ (\pm a, \pm a), \ a > 0$	Se $I = \iint_{\mathcal{D}} xy$	d(x,y), então	
0	I = 0		$I = 2 \int_{0}^{a} \int_{0}^{a}$		
	f^a f^a	O	$I = I_0 I_0$	ny anay	

 $O I = 4a^2$

Questão 6. O integral $\int_0^1 \int_{-x^2}^x f(x,y) \, dy dx$ pode escrever-se como

$$\bigcirc \int_{-x^2}^x \int_0^1 f(x,y) \, dx dy$$

$$\bigcirc \int_{-1}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) \, dx dy$$

Questão 7. O ponto de coordenadas cilíndricas $(\rho, \theta, z) = \left(1, \frac{3\pi}{4}, 1\right)$ tem coordenadas esféricas (r, θ, ϕ)

$$\bigcirc \qquad \left(1, \frac{3\pi}{4}, \frac{\pi}{4}\right)$$

$$\bigcirc \qquad \left(1, \frac{3\pi}{4}, \frac{3\pi}{4}\right)$$

$$\bigcirc \quad \left(\sqrt{2}, \frac{3\pi}{4}, \frac{\pi}{4}\right)$$

$$\bigcirc \quad \left(1, \frac{3\pi}{4}, \frac{\pi}{4}\right) \qquad \bigcirc \quad \left(1, \frac{3\pi}{4}, \frac{3\pi}{4}\right) \qquad \bigcirc \quad \left(\sqrt{2}, \frac{3\pi}{4}, \frac{\pi}{4}\right) \qquad \bigcirc \quad \left(\sqrt{2}, \frac{3\pi}{4}, \frac{3\pi}{4}\right)$$

Questão 8. Seja $\mathcal{V} = \left\{ (x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \le z^2, \ 0 \le z \le 1 \right\}$ e $I = \iiint_{\mathcal{V}} \frac{z + \sqrt{x^2 + y^2}}{\sqrt{(x^2 + y^2 + z^2)^3}} \, d(x,y,z)$. Então I pode ser escrito em coordenadas esféricas como

$$\bigcirc \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\frac{1}{\cos\phi}} (\sin\phi\cos\phi + \cos^2\phi) \, dr d\phi d\theta \qquad \bigcirc \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\frac{1}{\cos\phi}} (\sin\phi\cos\phi + \sin^2\phi) \, dr d\phi d\theta$$

$$\bigcirc \int_0^{\frac{\pi}{4}} \int_0^{2\pi} \int_0^{\frac{1}{\cos\phi}} (\cos^2\phi \sin\phi + \sin^2\phi) \, dr d\theta d\phi \quad \bigcirc \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^{\frac{1}{\cos\phi}} (\sin\phi \cos\phi + \sin^2\phi) \, dr d\phi d\theta$$

П

Responda às seguintes questões nos espaços indicados, sem apresentar os seus cálculos.

[1 valor] Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função derivável cujas curvas de nível não vazias são circunferências centradas na origem e seja $S=\{1\}\times[-1,1]$. Sabendo que f(S)=[1,2], f(1,1)=2 e $\nabla f(1,y)\neq(0,0)$, $\forall y \in \mathbb{R}$, indique o máximo e o mínimo de $f_{|_S}$ e as coordenadas dos pontos onde são atingidos.

Apresente um esboço da região cuja área é dada pelo integral $\int_{\frac{\pi}{n}}^{\pi} \int_{0}^{2 \operatorname{sen} \theta} \rho \, d\rho d\theta$. Questão 2. [1.5 valores]

Questão 3. $[1.5 \text{ valores}]$ O volume do sólido cónico delimitado pelas superfícies $z^2=4$ e $z^2=y^2+x^2$ pode exprimir-se, em coordenadas cilíndricas, pela expressão integral
Questão 4. [2 valores] Considere a região R do espaço que se encontra no interior do cilindro $x^2 + y^2 = 1$ e e limitada pelos paraboloides $z = x^2 + y^2$ e $z = -(x^2 + y^2)$. Exprima o volume desta região:
a) usando integrais duplos
b) usando integrais triplos (coordenadas cilíndricas)
III

As respostas às questões deste grupo devem ser convenientemente justificadas.

Questão 1. [3 valores] Determine e classifique os pontos críticos da função $f(x, y) = 3xy - x^3 - y^3$.

Questão 2. [3 valores] Considere a região $\mathcal{D} = \left\{ (x,y) \in \mathbb{R}^2 : y \geq x^2 - 1, y \leq 1 - x, y \leq x + 1 \right\}.$

- a) Esboce a região ${\cal D}$
- b) Calcule a área de ${\cal D}$ usando integrais duplos.