一、选择题

(7-1) 1. 下列不是微分方程的是().

$$A. xy' - 3y = \sin x$$

B.
$$(x - y\cos x)dy + (y + x^2)dx = 0$$

C. $y = \sin x \cos y$

(7-1) 2. 下列每组函数中线性相关的是().

A.
$$x^2$$
. $x^2 + 1$

B.
$$e^x \cdot e^{3x}$$

C.
$$\sqrt{x}$$
, $\sqrt[3]{x^2}$

A. $x^2, x^2 + 1$ B. e^x, e^{3x} C. $\sqrt{x}, \sqrt[3]{x^2}$ D. $\ln x^3, 2 \ln x$

(7-1) 3. 下列函数可作为某个一阶微分方程的通解的是().

A.
$$y = C \tan x$$

B.
$$v = x^2 + 7$$

B.
$$y = x^2 + 7$$
 C. $y = C_1 x^2 + C_2 x$ D. $y = C_1 e^x + C_2 x$

D.
$$y = C_1 e^x + C_2 x$$

(7-1) 4. 微分方程 $y' + \frac{1}{x}y = \frac{1}{x(x^2+1)}$ 的通解是 y = (

A.
$$\arctan x + C$$

B.
$$\frac{1}{x}(\arctan x + C)$$
 C. $\frac{1}{x}\arctan x + C$ D. $\arctan x + \frac{1}{x} + C$

C.
$$\frac{1}{x} \arctan x + C$$

(7-1) 5. 下列函数中可以作为某二阶常微分方程的通解的是(

A.
$$y = C \sin x$$

B.
$$y = C_1 \sin 3x + C_2 \cos 3x$$

$$C. \quad y = \sin 3x + \cos 3x$$

D.
$$y = (C_1 + C_2)\cos x$$

(7-1) 6. 微分方程 xy'' - y' = 0 满足条件 $y'(1) = 1, y(1) = \frac{1}{2}$ 的特解是 y = ().

A.
$$\frac{x^2}{4} + \frac{1}{4}$$

B.
$$\frac{x^2}{2}$$

C.
$$x^2 - \frac{1}{2}$$

A.
$$\frac{x^2}{4} + \frac{1}{4}$$
 B. $\frac{x^2}{2}$ C. $x^2 - \frac{1}{2}$ D. $-x^2 + \frac{1}{2}$

(7-1) 7. 微分方程 $y'' - 2y'^2 \tan y = 0$ 满足条件 y(0) = 0, y'(0) = 1 的解是 x = (

A.
$$\frac{y}{2} + \frac{1}{4}\sin 2y$$
 B. $y - \frac{1}{4}\sin 2y$ C. $\frac{y}{2} - \frac{1}{4}\sin 2y$ D. $y + \frac{1}{2}\sin 2y$

$$B. \quad y - \frac{1}{4}\sin 2y$$

$$C. \frac{y}{2} - \frac{1}{4}\sin 2y$$

D.
$$y + \frac{1}{2}\sin 2y$$

(7-2) 8. 下列方程是可分离变量微分方程的是(

A.
$$(y')^2 + y = 0$$

$$B. \quad x + yy' + \sin xy = 0$$

$$C. \quad y' + xy = 0$$

D.
$$(y')^2 + xy' - \cos xy = 0$$

(7-2) 9. 微分方程 $3x^2 + 5x - 5y' = 0$ 的通解是 ().

A.
$$y = -\frac{1}{5}x^3 - \frac{1}{2}x^2 + C$$
 B. $y = \frac{1}{5}x^3 + \frac{1}{2}x^2 + C$

B.
$$y = \frac{1}{5}x^3 + \frac{1}{2}x^2 + C$$

C.
$$y = 5x^3 + 2x^2 + C$$

D.
$$y = -5x^3 - 2x^2 + C$$

(7-2) 10. 微分方程 $y'-xy'=a(y^2+y')$ 的通解是 ().

$$A. \quad y = a \ln |1 - a - x| + C$$

B.
$$y = \frac{1}{C + a \ln|1 - a - x|}$$

C.
$$y = -a \ln |1 - a - x| + C$$

C.
$$y = -a \ln |1 - a - x| + C$$
 D. $y = \frac{1}{-a \ln |1 - a - x| + C}$

(7-2) 11. 微分方程 $\frac{dy}{dx} = 10^{x+y}$ 的通解是 ().

A.
$$10^x - 10^y = C$$

B.
$$10^x + 10^y = C$$

C.
$$10^x - 10^{-y} = C$$

D.
$$10^x + 10^{-y} = C$$

(7-2) 12. 微分方程 $(e^{x+y}-e^x)dx+(e^{x+y}+e^y)dy=0$ 的通解是().

A.
$$(e^x + 1)(e^y + 1) = 0$$

B.
$$(e^x - 1)(e^y + 1) = C$$

C.
$$(e^x + 1)(e^y - 1) = C$$

D.
$$(e^x + 1)(e^y - 1) = 0$$

(7-2) 13. 微分方程 y'-y=1的通解是(

A.
$$y = e^x - 1$$

B.
$$v = e^x + C$$

C.
$$y = Ce^x - 1$$

D.
$$y = C(e^x - 1)$$

(7-4) 14. 下列方程中是一阶线性微分方程的是(

A.
$$\frac{dy}{dx} = \frac{y^2}{x} - e^x$$

B.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{x} - xy$$

C.
$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \sqrt{xy}$$

D.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \arcsin(xy) + 1$$

(7-5) 15. 求微分方程 $y' \sin x + x^4 y'' = y''$ 的通解时,可(

A. 设
$$y' = p$$
,则有 $y'' = p'$

B. 设
$$y' = p$$
,则有 $y'' = \frac{dp}{dv}$

C. 设
$$y' = p$$
,则有 $y'' = p \frac{dp}{dv}$

C. 设
$$y' = p$$
,则有 $y'' = p \frac{dp}{dy}$ D. 设 $y' = p$,则有 $y'' = p' \cdot \frac{dp}{dx}$

(7-5) 16. 下列选项中,可用代换 y' = p , $y'' = p \frac{dp}{dy}$ 将方程降为关于 p 的一阶微分方程的是(

$$A. \frac{d^2y}{dx^2} + xy' - x = 0$$

B.
$$\frac{d^2y}{dx^2} + yy' - y^2 = 0$$

C.
$$\frac{d^2y}{dx^2} + x^2y' - y^2x = 0$$

D.
$$\frac{d^2y}{dx^2} + y\frac{dy}{dx} + x = 0$$

(7-7) 17. 微分方程 y'' + 8y' + 16y = 0 的通解为 (

A.
$$y = C_1 e^{4x} + C_2 e^{-4x}$$

B.
$$y = (C_1 + C_2 x) e^{-4x}$$

C.
$$y = (C_1 + C_2 x)e^{4x}$$
 D. $y = C_1 e^{2x} + C_2 e^{8x}$

D.
$$y = C_1 e^{2x} + C_2 e^{8x}$$

(7-7) 18. 微分方程 y'' - 3y' + 2y = 0 的通解为 ().

A.
$$y = C_1 e^x + C_2 e^{2x}$$

B.
$$y = (C_1 + C_2 x)e^x$$

C.
$$y = e^x (C_1 \cos 2x + C_2 \sin 2x)$$
 D. $y = e^{2x} (C_1 \cos x + C_2 \sin x)$

D.
$$y = e^{2x} (C_1 \cos x + C_2 \sin x)$$

(7-7) 19. 微分方程 y'' - 2y' + 2y = 0 的通解为 (

A.
$$y = C_1 e^x + C_2 e^{2x}$$

B.
$$y = (C_1 + C_2 x)e^{2x}$$

C.
$$y = e^x (C_1 \cos x + C_2 \sin x)$$

C.
$$y = e^{x} (C_1 \cos x + C_2 \sin x)$$
 D. $y = e^{x} (C_1 \cos 2x + C_2 \sin 2x)$

(7-8) 20. 微分方程 $y'' + y' = xe^{-x}$ 的特解形式应设为 $y^* = ($).

A.
$$x(ax+b)e^{-x}$$

A.
$$x(ax+b)e^{-x}$$
 B. $x^{2}(ax+b)e^{-x}$ C. $(ax+b)e^{-x}$ D. $ax+b$

C.
$$(ax+b)e^{-x}$$

D.
$$ax + b$$

二、填空题

(7-2) 1. 已知曲线 y = y(x) 过点 $\left(0, -\frac{1}{2}\right)$, 且其上任意一点 (x,y) 处的切线斜率均为 $3x^2 + 1$, 则

(7-3) 2. 微分方程 $\frac{dy}{dr} = \frac{y}{r} - \sec \frac{y}{r}$ 的通解是 $y = \underline{\qquad}$.

(7-3) 3. 微分方程 $y' = \frac{y}{r} + \tan \frac{y}{r}$ 满足初始条件 $y|_{x=1} = \frac{\pi}{6}$ 的特解是 $y = \underline{\qquad}$.

(7-4) 4. 微分方程 $y' + \frac{y}{x} = 1$ 的通解是 $y = \underline{\qquad}$.

(7-4) 5. 微分方程 $y' - \frac{y}{r} = \frac{1}{r}$ 的通解是 $y = \underline{\qquad}$

(7-4) 6. 微分方程 $\frac{dy}{dx} + y = e^{-x}$ 的通解是 $y = _____.$

(7-4) 7. 微分方程 $xy' + y = x^2 + 3x + 2$ 的通解是 $y = _____$.

(7-4) 6. 微分方程 y' + 2xy - 2x = 0 满足初始条件 $y|_{x=0} = 2$ 的特解是 $y = \underline{\hspace{1cm}}$.

(7-4) 7. 微分方程 $y' + y \cos x = e^{-\sin x}$ 满足初始条件 $y|_{x=0} = -1$ 的特解是 $y = \underline{\hspace{1cm}}$.

- (7-5) 8. 微分方程 $y'' = x + \sin x$ 的通解是 y = .
- (7-5) 9. 微分方程 y'' = y' + x 的通解是 y =_______.
- (7-5) 10. 微分方程xy'' + y' = 0的通解是y =______.

解答题

(7-2) 11. 求微分方程 xy'-y ln y=0 的通解.

(7-2) 13. 求微分方程 $\sqrt{1-x^2}y' = \sqrt{1-y^2}$ 的通解.

(7-2) 14. 试确定可导函数 f(x), 使得 $\int_0^x t f(t) dt = x^2 + 2 + f(x)$ 成立.

(7-4) 15. 求微分方程 $x\frac{dy}{dx} + y - e^x = 0$ 在初始条件y(1) = e下的特解.

(7-4) 16. 若曲线 y = y(x) 通过点 (0,1),且在曲线上任一点 (x,y) 处的切线的斜率均为 $2y + e^x$,求这曲线的方程.

(7-4) 17. 设函数 y = f(x)可导,且 $\int_0^x [2f(t)-t]dt = f(x)-1$,求f(x).