* Machine Learning *

@ Astificial Intelligence (AJ):-

Artificial + Intelligence

(Human / non-natural) (Ability to understand)

(made thing.)

study of how to train computers, so that comp can do things which humans can do.

Ladding human abilities to machines.

Machine Learning (ML):-

We explicitly programmed.

L'Appir of AI-provide system ability to automatically learn & improve from experience.

Learn from experience (F) w.r.t. some class of Task (T) & perpo performance (P), if learner's performance at the task as measured by P improves by experiences.

Artificial Intelligence	Machine Learning	
DAI first used in 1956, by John McCarthy, hosted AI first conference	O First used in 1952 by JBM comp scientist Arthur Samuel,	
apply knowledge.	a Acquisition of knowledge / skills.	
3 contains ML & DL as subsets.	3 AM ML is subset of AI.	
Aim - 1 chance of success, not accuracy.	4) 1 accuracy, not ease about success.	
5 Develop system able to perform complex tasks like decision-making.	6 construct m/c able to persform tasks trained to them.	
6 6001 - Simulate natural intelligence to solve the complex problem.	6 6001 - Learn from data on certain task to maximize performance.	
Develop systems that mimics humans to solve problems.	Thuolves creating self-learning algorithms.	
(3) Find optimal solution.	8 Find a solution, whether optimal or not.	

Artificial Intelligence Machine Learning 3 Broad categories of ML: (9) Broad categories of AI: supervised Learning PNarrow Intelligence La General Intelligence Unsupervised Learning Super Intelligence. Preinforcement Leaving. (10) AI work with structured, 10 ML works with the semi-structured & unstructure structured & semi-struc data. data only. 1 Uses of AI -(1) Uses of ML-Trangle search algo. Usivi, chatbots. Bank found analysi's TExpert Systems. I stock proice forecast. 4 Google Translate. 4 Humanoid Tobots like Fonline recommenda? system - e-commerce. sophia.

(12) Perform tasks like-

Recognize images.

making decisions

Inatural lang processing

Gesolve complex problems.

12 Train algos on data to-

4 maxe decisions

La Proedictions

La Recommendations.

Machine Learning:

PEnable computers to learn automatically from past data.

make predictions using historical data / info.

Speech recognition, speech recognition, email filtering, Facebook auto-tagging, recommendar systems.

Machine has ability to learn, if it can improve its performance by gaining more data.

· HOW ML WOOKS -

- OLEARN From historical data.
- 2 Build prediction models
- 3 Then receive a new data.
- 4) Preedict of for new data.

- Applications of Machine Learning: -
 - Dimage Recognition classify images between cat & Dog & evolve to Face Recognition and real world use cases like employee attendance.
 - 2) Speech Recognition smart systems like Alexa & siri, used for communication, convert voice instruct to text. Google speech searches by speaking.
- Brecommendation System Analyze uses persons

 preferences & search history => recommend content/

 service to them.

Ex. YouTube recommend videos. Netflix recommend movies & series.

- 4) Fraud Detection Detect fraud transaco & fraud activities.
- (5) <u>self Driving cars</u> cas drive without driver. Ex. Tesla cars.
 - B Medical Diagnosis Perform health-related tasks.

 Detect disease & cure for that diseases.

 Ex. Breast cacer classification, Parkinson's Disease classification & Pneumonia Detection.
 - (7) Stock Market Toading- Intelligent systems predict future proice trends & market values.

 The police trends on time series forecasting.

- O Limitations of Machine Learning! -
 - Data Quality Ensure data accurate, complete & representative of problem-domain.
 - 3 <u>Data Quantity</u>- Large data unavailability, esp complex problems, require large data.
 - 3 Bias & fairness somtimes bias & discrimina? in training > unfair outcomes (minorities).
 - Overfitting & underfitting
 Overfitting: Model too complex & fits training

 data verry well, poor result for new data.

 Underfitting: Model too simple & cannot capture

 all relevant patterns in data.
 - (5) <u>Privacy & Security</u>— Interact sensitive in for of people / organizar => Raise privacy & security concern.
 - 6 Interpretability some models like deep newsal n/w, difficult interpret & understand, challange for predictions & decisions.

Points	supervised	Unsupervised	Reinforcement
Input data	Calculate Outcom-	Discover patterns. Unlabelied.	Not pre- defined.
Problem	learn pattern in i/p & their labels.	Divide data into classes.	Find best veward beth start & end, state,
Solution	Find mapping eq on i/p data & its labels.	Find patterns in i/p & classify.	maximize result by results of actions.
Model Building	First, build Atrain, then test.		Train & test simultaneously.
Applications	crassification & Regression problems.	crustering & association problems.	peals with exploration & exploitation problems.
Algoritms used	· Linear Regran. · Decision tree. • K-nearest neighbors.	 k-means clustering. k-medoids clustering agglomerative clustering. 	· Q-Learning. • SARSA • Deep Q n/w.
Examples	 Jmg Detect. Population Growth Detect. 	 Cust segmentaⁿ, Feature elicitaⁿ. Target ed market. 	• Driver less car. • Self-navigating cleaners.

1) Supervised Learning:

Teach / toain mic using well-labelled data.

100 10 101

training data & produce correct outcome.

knowledge to test data.

· 2 categories of algo?

- ① classification Outcome variable is categorical.

 Ex. Red/Blue, Yes/No.
- Regression Dutput variable is a real value. Ex. Price, weight, population.

· Advantages -

- Optimize performance with experience.
- 3 classification & Regression tasks.
- 3 Estimate/map result to new sample.

Limitations -

- 1) Big data classifical challenge.
- 2 Labelled data toaining large time required.
- @ Require labelled data.
- (4) Cannot handle complex task.

· Algorithms -

- 1 Regression
- @ Logistic Regression
- 3 classification
- 1 Naive Bayes classifiers
- (5) K-NN (K neavest neighbors)
- 6 Decision Tree
- @ Support vector Machine (SVM)

2) Unsupervised Learning: -

4 Training mic using info not labelled / classified & allow act on them w/o guidance

Find underlying patterns in data without any prior training.

Mainly deal with unlabelled data.

· 2 categories -

- Octustering Discover inherent groups in data, like grouping customer by purchasing.
- 2 Association Describe rules that describe large data, ex if customer by buy x => also tend to buy 4.

· clustering -

- 1) Exclusive (partitioning)
- 3 Agglomerative
- 3 Overlapping
- 4 Probabilistic.

· Clustering Algos -

- 1 Hierarchical clustering
- @ K-means clustering
- 3 Principal Component Analysis
- 4 singular Value Decomposition
- (5) Independent component Analysis

· Advantages -

- 1 No training data lebelled.
- 2) Dimensionality reduction.
- 3) Find unknown patterns.
- Flexible Apply on wide range of problems cluster, anomaly detect & association.
- 5 Exploration Explore data & find patterns.
- 6 Low cost Less expensive, because unlabelled data.
 Label time & costly.

· Limitations -

- Deach measure accuracy.
- BNO predefined answers.
- 3 time to interpret & label classes in classifican.
- (4) Lack guidance No guidance 4
 feedback, difficult know patterns
 relevant & useful.
- Scalability-complex problems, computationally expensive.
- Osensitivity to data quality-Data include missing values, outliers & noise.