EXERCICE 1.

Résoudre sur $\mathbb R$ l'équation

$$y' + th(t)y = sh(t).$$

EXERCICE 2.

Résoudre sur I =] $-\pi/2, \pi/2$ [l'équation

$$y' - \tan(t)y = \frac{1}{1 + \cos(t)}.$$

EXERCICE 3.

Résoudre sur] $-\infty$, 1[l'équation :

$$(1-x)^2y' = (2-x)y.$$

EXERCICE 4.

Résoudre sur \mathbb{R} l'équation :

$$z' + \operatorname{th}(t)z = t \operatorname{th}(t).$$

Trouver l'unique solution z_1 vérifiant la condition initiale $z_1(0) = 1$.

EXERCICE 5.

Soit (E) l'équation :

$$y' + \frac{\sin(x)}{2 - \cos(x)}y = 2\sin(x).$$

- 1. Résoudre (E_H).
- ${\bf 2.}$ Chercher une solution particulière de (E) sous la forme

$$x \mapsto a \cos(x) + b$$

avec a et b réel.

3. Résoudre (E) sur $\mathbb R$ et déterminer l'unique solution de (E), notée h, vérifiant la condition initiale h(0)=1.

EXERCICE 6.

Résoudre sur I =]0, π [l'équation différentielle

$$(\mathbf{E}) \ : \ \mathbf{y}' + \cot \mathbf{a}(\mathbf{t})\mathbf{y} = \cos^2(\mathbf{t}).$$

EXERCICE 7.

Résoudre sur \mathbb{R} les équations différentielles suivantes :

1.
$$y' - y = \arctan(e^x)$$

2.
$$y' + y = \arctan(e^x)$$

EXERCICE 8.

Résoudre sur \mathbb{R} les équations

1.
$$y' + 2y = te^{-t}$$

2.
$$y' + 2y = e^{-2t}$$

EXERCICE 9.

Résoudre sur \mathbb{R} l'équation

$$y' + y = t\cos(t).$$

EXERCICE 10.

Résoudre sur $\mathbb R$ l'équation

$$y'-y=e^t+e^{2t}.$$

EXERCICE 11.

On considère l'équation (**E**) : $y' - \ln(x)y = x^x$.

- 1. Calculer en intégrant par parties les primitives de $x \mapsto \ln(x)$ sur \mathbb{R}_+^* .
- **2.** Résoudre (**E**) sur \mathbb{R}_+^* .

EXERCICE 12.

Résoudre sur \mathbb{R} les équations suivantes :

- 1. $(\mathbf{E_1})$: $y' + 3y = \sin(x)$;
- **2.** (**E**₂) : $y' 3y = e^{-x}(1 x^3)$;
- **3.** $(\mathbf{E_3})$: y''' y'' = x.

EXERCICE 13.

Résoudre sur $\mathbb R$ l'équation $(\mathbf E): y'+xy=x^2+1$ sachant qu'elle admet une solution particulière polynomiale.

EXERCICE 14.

Résoudre les équations suivantes

1.
$$y' + y = x$$
;

2.
$$y' + y = e^{-x}$$
;

3.
$$y' + y = xe^{-x}$$
;

4.
$$y' + y = x^2 e^{-x}$$
;

5.
$$y' + y = e^{2x}$$

6.
$$y' + y = e^{-x} + e^{2x}$$
;
7. $y' + y = \sin(x)$;

7.
$$y' + y = \sin(x)$$
;

8.
$$y' + y = \cos(x)e^x$$
.

EXERCICE 15.

Résoudre les problèmes de Cauchy suivants

1.
$$y' + 2xy = e^{x-x^2}$$
, $y(0) = 0$;
2. $x^2y' + y = 0$, $y(0) = 1$;

3.
$$x^3y' - 2y = 0$$
, $y(1) = 1$.

2.
$$x^2y' + y = 0$$
, $y(0) = 1$;

EXERCICE 16.

Résoudre sur \mathbb{R}_{+}^{*} et \mathbb{R}_{-}^{*} l'équation

$$|x|y' + (x-1)y = x^2$$
.

EXERCICE 17.

Résoudre l'équation

$$|x(x-1)|y'+y=x^2$$

sur] $-\infty$, 0[,]0, 1[et]1, $+\infty$ [.

EXERCICE 18.

Résoudre l'équation différentielle :

$$(1+t^2)x'-x=1$$

EXERCICE 19.

Soit a et b deux fonction impaires continues sur R. Soit f une solution de l'équation différentielle y' + ay = b. Montrer que f est paire.

EXERCICE 20.

Soient $T \in \mathbb{R}_{+}^{*}$, a et b deux fonctions continues et T-périodiques sur \mathbb{R} et f une solution de l'équation différentielle (E) : y' + ay = b. Montrer que f est T-périodique si et seulement si f(0) = f(T).

EXERCICE 21.

Résoudre sur] $-\infty$, -1[,] -1, 1[puis]1, $+\infty$ [l'équation différentielle

$$(1-x^2)y'-xy=1$$

EXERCICE 22.

On considère l'équation différentielle suivante :

$$(x+1)y' + xy = x^2 - x + 1.$$

- 1. Trouver une solution polynomiale.
- **2.** En déduire l'ensemble des solutions sur \mathbb{R} .
- **3.** Déterminer la solution vérifiant la condition initiale y(1) = 1.

EXERCICE 23.

Calculer les solutions (réelles) des équations différentielles suivantes :

1.
$$y'' - 2y' - 3y = t^2e^t$$

2.
$$u'' + 4u' + 3u = te^{-2t}$$

3.
$$y'' + 4y' + 3y = \cos(3t)$$

4.
$$u'' + 3u' + 2u = \sin(t)$$

5.
$$y'' - 4y' + 4y = e^{-t}$$

6.
$$y'' - 2y' + y = \cos(2t)$$

7.
$$y'' + 5y' + 4y = te^{-x}$$

8.
$$y'' + y = \cos(t)$$

2.
$$y'' + 4y' + 3y = te^{-2t}$$

3. $y'' + 4y' + 3y = \cos(3t)$
4. $y'' + 3y' + 2y = \sin(t)$
3. $y'' + 4y' + 3y = \cos(3t)$
4. $y'' + 3y' + 2y = \sin(t)$
5. $y'' + 5y' + 4y = te^{-t}$
7. $y'' + 5y' + 4y = te^{-t}$
8. $y'' + y = \cos(t)$
9. $y'' - 6y' + 9y = (t+1)e^{-3t}$

10.
$$y'' - 2y' + 2y = e^{-t} \cos(t)$$

EXERCICE 24.

Deux problèmes de Cauchy.

1. Déterminer l'unique fonction f, deux fois dérivable sur \mathbb{R} , solution de

$$y'' + 4y' + 4y = e^{-3t}$$

pour la condition initiale f(0) = 0, f'(0) = 1.

2. Déterminer l'unique fonction q, deux fois dérivable sur \mathbb{R} , solution de

$$y'' + 5y' + 4y = e^{-t}$$

pour la condition initiale q(0) = 0, q'(0) = 1.

EXERCICE 25.

Résoudre sur \mathbb{R} l'équation

$$y'' + 4y' + 5y = e^{-2x} \sin(x).$$

EXERCICE 26.

Résoudre sur $\mathbb R$ l'équation différentielle

(E) :
$$y'' + 4y = \sin^2(t)$$
.

EXERCICE 27.

Déterminer les solutions à valeurs complexes des équations suivantes :

1.
$$y'' + y' + y = 0$$

3.
$$y'' - iy' + 2y = 0$$

2.
$$y'' - 2iy' - y = 0$$

4.
$$y'' + 4y' + 4y = 0$$

EXERCICE 28.

Résoudre sur $\mathbb R$ les problèmes de Cauchy suivants :

1.
$$y'' - 4y' + 4y = 0$$
, $y(0) = y'(0) = 0$

2.
$$y'' - 6y' + 9y = 0$$
, $y(0) = 0$, $y'(0) = 1$

3.
$$y'' - 3y' + 2y = x$$
, $y(0) = y'(0) = 1$

4.
$$y'' + y' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$

EXERCICE 29.

Résoudre l'équations suivante

$$y'' - 2y' + 2y = e^x \sin(x)$$
.

EXERCICE 30.

Résoudre les équations suivantes

1.
$$y'' - 3y' + 2y = x$$
;

2.
$$y'' - 3y' + 2y = e^{2x}$$
;

3.
$$y'' - 3y' + 2y = e^{2x}$$
;

4.
$$y'' - 3y' + 2y = xe^x$$
;

5.
$$y'' - 3y' + 2y = ch(x)$$
.

EXERCICE 31.

- 1. Résoudre l'équation différentielle y'' (1+i)y' 2(1+i)y = 0.
- **2.** Donner l'unique solution f vérifiant f(0) = f'(0) = 1.

EXERCICE 32.

Soit f une application de classe \mathcal{C}^2 de $\mathbb R$ dans $\mathbb R$ telle que $f+f''\geqslant 0.$ Montrer que

$$\forall x \in \mathbb{R}, f(x) + f(x + \pi) \ge 0$$

EXERCICE 33.

On considère l'équation différentielle dont on recherche les solutions à valeurs r'eelles

(E):
$$y'' - 4y' + 5y = e^{2x} \sin(x)$$

- 1. Résoudre l'équation différentielle homogène associée à (E).
- 2. Déterminer une solution particulière de (E).
- **3.** Résoudre l'équation (**E**).
- 4. Déterminer l'unique solution f de (\mathbf{E}) telle que f(0) = 1 et f'(0) = 2.

EXERCICE 34.

Soit $g: \mathbb{R} \to \mathbb{R}$ continue. Pour $x \in \mathbb{R}$, on pose $f(x) = \int_0^x \sin(x-t)g(t) dt$.

- 1. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et que pour tout $x\in\mathbb{R},$ $f'(x)=\int_0^x\cos(t-x)g(t)\,dt.$
- 2. Montrer que f est de classe \mathcal{C}^2 et que f est solution de l'équation différentielle $y\,''+y=g.$
- 3. En déduire toutes les solutions de l'équation différentielle y'' + y = g.

EXERCICE 35.

On souhaite résoudre l'équation

(E) :
$$x^2y'' + 3xy' + y = \frac{1}{x^2}$$

sur l'intervalle $I =]0, +\infty[$.

- 1. Soient $y: I \to \mathbb{R}$ deux fois dérivable et $Y: \mathbb{R} \to \mathbb{R}$ définie par $Y(t) = y(e^t)$.
 - a. Calculer les dérivées y, y' et y'' en fonction de Y, Y' et Y''.
 - **b.** En déduire que y est solution de (\mathbf{E}) si et seulement si Y est solution d'une équation différentielle linéaire du deuxième ordre à coefficients constants (\mathbf{E}') que l'on précisera.
- **2.** Résoudre (\mathbf{E}') sur \mathbb{R} .
- 3. En déduire les solutions de (E) sur I.
- 4. Montrer qu'il existe une unique solution y de (E) sur I telle que y(1) = y'(1) = 0.

EXERCICE 36.

Résoudre l'équation

$$y^2 + x^2 - 2yy' = 0$$

en effectuant le changement de fonction $z = y^2$.

EXERCICE 37.

Résoudre l'équation

$$y' = e^{x+y}$$

en posant $z = e^{-y}$.

EXERCICE 38.

Soit (E) l'équation $(x^2 + 1)y'' - 2y = 0$.

- 1. Etablir qu'une éventuelle solution polynomiale et non nulle de (\mathbf{E}) est nécessairement de degré deux.
- 2. Trouver une solution polynomiale et non nulle p de (E).
- **3.** Justifier qu'une fonction y deux fois dérivable de \mathbb{R} dans \mathbb{R} peut s'écrire sous la forme $y = p \times z$ où z est une fonction deux fois dérivable de \mathbb{R} dans \mathbb{R} .
- **4.** Montrer qu'une fonction $y : \mathbb{R} \longrightarrow \mathbb{R}$ deux fois dérivable est solution de (\mathbf{E}) si et seulement si la fonction $\mathsf{Z} = \mathsf{z}'$ (où z est définie comme à la question précédente) est solution d'une équation différentielle linéaire d'ordre un (\mathbf{E}') à préciser.
- 5. Résoudre (E).

EXERCICE 39.

Soient $I =]1, +\infty[$ et (E) l'équation

(E) :
$$-t^2y' + ty = y^2$$
.

- 1. Soit y une fonction ne s'annulant pas sur I. Prouver que y est solution de (\mathbf{E}) si et seulement si $z=\frac{1}{y}$ est solution sur I d'une équation différentielle (\mathbf{E}') linéaire d'ordre un.
- **2.** Résoudre (\mathbf{E}') sur I.
- 3. En déduire les solutions de (E) ne s'annulant pas sur l'intervalle I.

EXERCICE 40.

On s'intéresse à l'équation différentielle

(E):
$$x^2y'' - xy' - 3y = x^4$$

- **1. a.** Montrer que f est une solution de (E) sur \mathbb{R}_+^* si et seulement si g : $t \mapsto f(e^t)$ est solution sur \mathbb{R} d'une équation différentielle à coefficients constants à déterminer.
 - **b.** En déduire les solutions de (E) sur \mathbb{R}_+^* .
- **2. a.** Montrer que f est une solution de (E) sur \mathbb{R}_{-}^* si et seulement si $g: t \mapsto f(-e^t)$ est solution sur \mathbb{R} d'une équation différentielle à coefficients constants à déterminer.
 - **b.** En déduire les solutions de (E) sur \mathbb{R}_{-}^{*} .
- 3. Déterminer les solutions de (E) sur \mathbb{R} .

EXERCICE 41.

Soit $\alpha \in \mathbb{R}$. On cherche l'ensemble S_{α} des fonctions f de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^1 vérifiant $f'(x) = -f(\alpha - x)$ pour tout $x \in \mathbb{R}$.

- 1. Montrer qu'une telle fonction est de classe C^2 .
- 2. Montrer que les éléments de S_{α} sont solutions d'une équation différentielle linéaire d'ordre 2.
- **3.** Conclure.

EXERCICE 42.

Déterminer les fonctions f dérivables sur \mathbb{R} vérifiant

$$\forall x \in \mathbb{R}, f'(x) = f(-x)$$

EXERCICE 43.

Déterminer les fonctions f dérivables sur \mathbb{R} vérifiant

$$\forall x \in \mathbb{R}, \ f'(x) = -f(-x)$$

EXERCICE 44.

Déterminer les applications f dérivables de \mathbb{R} dans \mathbb{R} telles que :

$$\forall x \in \mathbb{R}, \ f'(x) + f(-x) = xe^{-x}$$

EXERCICE 45.

Déterminer les applications f de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^2 telles que

$$\forall x \in \mathbb{R}, \quad f(x) + \int_0^x (x - t)f(t)dt = 1.$$

EXERCICE 46.

Soient $\omega \in \mathbb{R}$, $\chi : \mathbb{R} \longrightarrow \mathbb{R}$ et $y : \mathbb{R} \longrightarrow \mathbb{R}$ dérivables telles que

$$\left\{ \begin{array}{lcl} x' & = & -y & + & \sin(\omega t) \\ y' & = & x & - & \cos(\omega t) \end{array} \right.$$

1. Soit $z: \mathbb{R} \longrightarrow \mathbb{C}$ définie par

$$t \longmapsto x(t) + iy(t)$$
.

Justifier la dérivabilité de z et montrer que z vérifie une équation différentielle linéaire du premier ordre à coefficients constants avec second membre.

2. Déterminer x et y.

EXERCICE 47.

Résoudre sur \mathbb{R} l'équation différentielle $x^2y' - y = 0$.

EXERCICE 48.

Résoudre sur \mathbb{R} l'équation différentielle $y' \sin x - y \cos x + 1 = 0$.

EXERCICE 49.

Résoudre sur \mathbb{R} l'équation différentielle xy' - y = x.

Exercice 50.

On considère l'équation différentielle (E): $xy'' - y' - x^3y = 0$.

- 1. Résoudre (E) sur \mathbb{R}_+^* en effectuant le changement de variable $t=x^2$.
- **2.** En déduire les solutions sur \mathbb{R}^* .
- **3.** Résoudre (E) sur \mathbb{R} .

EXERCICE 51.

Résoudre sur \mathbb{R} de l'équation différentielle (E) : $ty' + (1-t)y = e^{2t}$.

EXERCICE 52.

Résoudre $y'y^4 = \frac{1}{1+x^2}$.