$12a_{0437} (K12a_{0437})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{74} - u^{73} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 74 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{74} - u^{73} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{9} + 2u^{7} - u^{5} - 2u^{3} + u \\ u^{17} - 3u^{9} + 4u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{17} - 4u^{15} + 7u^{13} - 4u^{11} - 3u^{9} + 6u^{7} - 2u^{5} + u \\ -u^{19} + 5u^{17} - 12u^{15} + 15u^{13} - 9u^{11} - u^{9} + 4u^{7} - 2u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{8} + 3u^{6} - 3u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{27} - 8u^{25} + \dots - 3u^{3} + 2u \\ u^{27} - 7u^{25} + \dots - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{46} + 13u^{44} + \dots + 2u^{2} + 1 \\ -u^{46} + 12u^{44} + \dots - 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{65} + 18u^{63} + \dots + 2u^{3} - 3u \\ -u^{65} + 17u^{63} + \dots + 8u^{5} - u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{73} 80u^{71} + \cdots 12u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{74} + 39u^{73} + \dots + 3u + 1$
c_{2}, c_{5}	$u^{74} + u^{73} + \dots - u + 1$
c_3,c_{10}	$u^{74} + u^{73} + \dots + u + 1$
c_4, c_7	$u^{74} - 7u^{73} + \dots - 39u + 5$
c_6, c_{12}	$u^{74} + 3u^{73} + \dots + 91u + 39$
c_8, c_9, c_{11}	$u^{74} - 19u^{73} + \dots - 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{74} - 7y^{73} + \dots - 3y + 1$
c_{2}, c_{5}	$y^{74} - 39y^{73} + \dots - 3y + 1$
c_3,c_{10}	$y^{74} - 19y^{73} + \dots - 3y + 1$
c_4, c_7	$y^{74} + 37y^{73} + \dots + 2209y + 25$
c_6, c_{12}	$y^{74} + 53y^{73} + \dots + 25961y + 1521$
c_8, c_9, c_{11}	$y^{74} + 73y^{73} + \dots + 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.835681 + 0.560605I	-2.03574 + 3.50542I	2.00000 - 4.07643I
u = -0.835681 - 0.560605I	-2.03574 - 3.50542I	2.00000 + 4.07643I
u = 0.832665 + 0.571463I	-1.51570 - 9.58110I	2.00000 + 8.95690I
u = 0.832665 - 0.571463I	-1.51570 + 9.58110I	2.00000 - 8.95690I
u = 0.791742 + 0.569661I	5.17088 - 5.15812I	8.32835 + 7.79457I
u = 0.791742 - 0.569661I	5.17088 + 5.15812I	8.32835 - 7.79457I
u = 1.028500 + 0.160985I	-6.85388 + 0.05460I	-5.85707 + 0.I
u = 1.028500 - 0.160985I	-6.85388 - 0.05460I	-5.85707 + 0.I
u = -1.038800 + 0.183643I	-6.59018 + 6.05194I	0
u = -1.038800 - 0.183643I	-6.59018 - 6.05194I	0
u = -0.771164 + 0.538007I	2.30346 + 2.17439I	2.29501 - 3.84413I
u = -0.771164 - 0.538007I	2.30346 - 2.17439I	2.29501 + 3.84413I
u = 0.745955 + 0.571289I	5.30206 + 0.62127I	9.02433 - 0.60864I
u = 0.745955 - 0.571289I	5.30206 - 0.62127I	9.02433 + 0.60864I
u = -0.878223 + 0.286781I	-0.13660 + 3.04210I	1.28348 - 9.03887I
u = -0.878223 - 0.286781I	-0.13660 - 3.04210I	1.28348 + 9.03887I
u = 0.694463 + 0.581556I	-1.12248 + 5.01071I	3.66328 - 2.35709I
u = 0.694463 - 0.581556I	-1.12248 - 5.01071I	3.66328 + 2.35709I
u = -0.685413 + 0.567131I	-1.61031 + 0.99347I	2.79378 - 2.74942I
u = -0.685413 - 0.567131I	-1.61031 - 0.99347I	2.79378 + 2.74942I
u = 0.847866 + 0.088742I	-1.39303 - 0.27331I	-6.60583 + 0.30491I
u = 0.847866 - 0.088742I	-1.39303 + 0.27331I	-6.60583 - 0.30491I
u = 0.173274 + 0.798587I	-4.67079 + 10.47000I	0.63032 - 6.91545I
u = 0.173274 - 0.798587I	-4.67079 - 10.47000I	0.63032 + 6.91545I
u = -1.125660 + 0.366050I	-0.67532 + 2.89635I	0
u = -1.125660 - 0.366050I	-0.67532 - 2.89635I	0
u = -0.166312 + 0.795857I	-5.18741 - 4.27377I	-0.40124 + 2.07461I
u = -0.166312 - 0.795857I	-5.18741 + 4.27377I	-0.40124 - 2.07461I
u = 0.188589 + 0.769066I	2.46946 + 6.12626I	6.02496 - 6.71747I
u = 0.188589 - 0.769066I	2.46946 - 6.12626I	6.02496 + 6.71747I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.110190 + 0.478729I	-5.42714 + 6.46328I	0
u = -1.110190 - 0.478729I	-5.42714 - 6.46328I	0
u = -0.005571 + 0.786467I	-9.15015 - 3.13723I	-3.27787 + 2.62981I
u = -0.005571 - 0.786467I	-9.15015 + 3.13723I	-3.27787 - 2.62981I
u = -1.174870 + 0.351936I	-1.57203 - 2.51139I	0
u = -1.174870 - 0.351936I	-1.57203 + 2.51139I	0
u = 1.120020 + 0.499746I	-5.15715 - 0.75516I	0
u = 1.120020 - 0.499746I	-5.15715 + 0.75516I	0
u = 1.169010 + 0.376170I	-3.98603 - 0.84644I	0
u = 1.169010 - 0.376170I	-3.98603 + 0.84644I	0
u = -0.166580 + 0.745150I	-0.14116 - 2.82982I	-0.06496 + 2.64345I
u = -0.166580 - 0.745150I	-0.14116 + 2.82982I	-0.06496 - 2.64345I
u = 1.169510 + 0.425972I	-5.43464 - 2.14338I	0
u = 1.169510 - 0.425972I	-5.43464 + 2.14338I	0
u = 0.210100 + 0.723982I	3.11981 + 0.43939I	8.03831 + 0.99678I
u = 0.210100 - 0.723982I	3.11981 - 0.43939I	8.03831 - 0.99678I
u = -1.201560 + 0.355229I	-8.81870 - 6.66835I	0
u = -1.201560 - 0.355229I	-8.81870 + 6.66835I	0
u = 1.201080 + 0.360636I	-9.29736 + 0.44713I	0
u = 1.201080 - 0.360636I	-9.29736 - 0.44713I	0
u = -1.165630 + 0.467482I	-5.13613 + 6.19077I	0
u = -1.165630 - 0.467482I	-5.13613 - 6.19077I	0
u = 1.153100 + 0.513557I	0.38073 - 5.11443I	0
u = 1.153100 - 0.513557I	0.38073 + 5.11443I	0
u = -1.168850 + 0.508704I	-3.05084 + 7.51931I	0
u = -1.168850 - 0.508704I	-3.05084 - 7.51931I	0
u = 1.170470 + 0.520288I	-0.40431 - 10.92870I	0
u = 1.170470 - 0.520288I	-0.40431 + 10.92870I	0
u = 0.275029 + 0.663064I	-2.70930 - 3.72938I	2.81438 + 3.00373I
u = 0.275029 - 0.663064I	-2.70930 + 3.72938I	2.81438 - 3.00373I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.204050 + 0.448056I	-12.69820 - 1.26903I	0
u = 1.204050 - 0.448056I	-12.69820 + 1.26903I	0
u = -1.203510 + 0.453057I	-12.6628 + 7.5767I	0
u = -1.203510 - 0.453057I	-12.6628 - 7.5767I	0
u = -1.184440 + 0.519711I	-8.18403 + 9.13195I	0
u = -1.184440 - 0.519711I	-8.18403 - 9.13195I	0
u = -0.054792 + 0.704044I	-2.00051 - 1.86805I	-1.34178 + 4.37957I
u = -0.054792 - 0.704044I	-2.00051 + 1.86805I	-1.34178 - 4.37957I
u = 1.183790 + 0.522761I	-7.6480 - 15.3506I	0
u = 1.183790 - 0.522761I	-7.6480 + 15.3506I	0
u = -0.281349 + 0.627967I	-3.03701 - 2.14947I	2.22194 + 2.48741I
u = -0.281349 - 0.627967I	-3.03701 + 2.14947I	2.22194 - 2.48741I
u = -0.440598 + 0.299753I	1.125240 - 0.112962I	9.20316 + 0.37924I
u = -0.440598 - 0.299753I	1.125240 + 0.112962I	9.20316 - 0.37924I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{74} + 39u^{73} + \dots + 3u + 1$
c_2,c_5	$u^{74} + u^{73} + \dots - u + 1$
c_3, c_{10}	$u^{74} + u^{73} + \dots + u + 1$
c_4, c_7	$u^{74} - 7u^{73} + \dots - 39u + 5$
c_6, c_{12}	$u^{74} + 3u^{73} + \dots + 91u + 39$
c_8, c_9, c_{11}	$u^{74} - 19u^{73} + \dots - 3u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{74} - 7y^{73} + \dots - 3y + 1$
c_2, c_5	$y^{74} - 39y^{73} + \dots - 3y + 1$
c_3,c_{10}	$y^{74} - 19y^{73} + \dots - 3y + 1$
c_4, c_7	$y^{74} + 37y^{73} + \dots + 2209y + 25$
c_6, c_{12}	$y^{74} + 53y^{73} + \dots + 25961y + 1521$
c_8, c_9, c_{11}	$y^{74} + 73y^{73} + \dots + 5y + 1$