

Einführung Fachdidaktik Informatik

Peter Minor Sommersemester 2025

Inhaltsverzeichnis

1	Didaktische Dimensionen	2
2	Hintergrund und Modelle	2
3	Informatikdidaktik	3
4	Wissenschaftliche Perspektive	3
5	Normenproblem & Bildungsbegriff	4
6	Gestaltung von Unterricht	4
7	Lernumgebungen (Beispiele)	4
8	Zusammenfassung: Prüfungsrelevantes Wissen Teil A	4
9	Informatische Bildung	5
10	Orientierungen und Konzepte	5
11	Bildungsstandards und Schulstufen	6
12	Beruf und Wissenschaftspropädeutik	6
13	Internationale Perspektiven	7
14	Digitale Mündigkeit und aktuelle Entwicklungen	7
15	Zusammenfassung: Prüfungsrelevantes Wissen Teil B	7
16	Thema C: Was ist Informatik	8
17	Zusammenfassung: Prüfungsrelevantes Wissen Teil C	10
18	Elemente der Unterrichtsgestaltung	10
19	Elementarisierung und didaktische Reduktion	14
20	Lerntheorien	14
21	Unterichtsmethoden, -prinzipien und -konzente/Modelle	16

1 Didaktische Dimensionen

Die **Didaktik** fragt: Was, wie, warum, wann, wo, mit wem, womit und für wen gelehrt werden soll.

1.1 Definition: Didaktische Dimensionen

Didaktische Dimensionen sind grundlegende Perspektiven, unter denen Unterricht geplant und reflektiert wird:

- Inhalte, Ziele, Themen
- Methodik, Medien, Organisation des Lernens
- Bildung als übergeordnetes Ziel

1.2 Didaktik vs Methodik

Didaktik beschäftigt sich mit der Frage was, warum, für wen und mit welchem Ziel gelehrt werden soll.

Methodik hingegen fragt wie, mit welchen Mitteln und in welcher Form der Unterricht konkret umgesetzt wird.

Kurz: Didaktik = Inhalts- und Zielperspektive, Methodik = Umsetzungs- und Prozessperspektive.

2 Hintergrund und Modelle

2.1 Didactica Magna – Comenius (1657)

Ziel: "Die vollständige Kunst, alle Menschen alles zu lehren" Leitideen:

- Rasch, angenehm und gründlich lehren
- Wahrheiten mit Beispielen aus mechanischen Künsten
- Feste Reihenfolge nach Alter, Zeit, Entwicklung

2.2 Allgemeine Didaktik

Basierend auf Lerntheorien. Modelle u.a.:

- Bildungstheoretisch / kritisch-konstruktiv
- Lerntheoretisch (behavioristisch, kognitivistisch, konstruktivistisch)
- Informationstheoretisch-kybernetisch

Konzepte:

- Kontextorientierung
- Forschend-entwickelnder Unterricht
- Projektorientierung

Prinzipien:

- An Grundideen orientieren
- Beziehungen herstellen
- Adäquat visualisieren

3 Informatikdidaktik

3.1 Fachdidaktik ist keine Abbilddidaktik

Ziel ist nicht die reine Weitergabe der Fachwissenschaft, sondern:

- Entwicklung von Welt- und Selbstverständnis Jugendlicher fördern
- Kooperative Reflexion mit Allgemeiner Didaktik und Bildungstheorie
- Fachinhalte auf Lebenswelt und Bildungsziele beziehen

3.2 Bezugswissenschaften

- Fachwissenschaft Informatik
- Psychologie, Soziologie
- Allgemeine Didaktik, Bildungstheorie

4 Wissenschaftliche Perspektive

4.1 Forschungsdisziplin Didaktik der Informatik

- Inhaltliche, methodische, mediale Konzepte
- Ziel: Qualitätssicherung informatischer Bildung
- Veranstaltungen: INFOS, DeLFI, WiPSCE

5 Normenproblem & Bildungsbegriff

5.1 Normenproblem

Bildung ist wertgebunden und abhängig von gesellschaftlichen Idealen. Folge: Didaktische Forschung ist komplex und pluralistisch.

5.2 Bildung

Bildung = eigenständige, individuelle Repräsentation von Kultur Begriffe wie "Bildung" oder "Didaktik" schwer ins Englische übersetzbar, da sie geisteswissenschaftlich tief verwurzelt sind.

6 Gestaltung von Unterricht

6.1 Methoden in Vorlesungen (nach Weickert)

Starter: Kennenlernspiele, lebendige Statistik

Begleiter: Mitdenken anregen, Brainstorming, Lernstopp **Evaluierer:** Fragebogen, Blitzlicht, "Heute habe ich gelernt, ..."

7 Lernumgebungen (Beispiele)

- BlueJ: Objektorientiertes Programmieren visuell erleben
- Kara: Steuerung eines Marienkäfers über Programmierung
- \bullet $\mathbf{PuMa}:$ Puppenhaus-Automation als niederschwellige Einführung in Programmierlogik

8 Zusammenfassung: Prüfungsrelevantes Wissen Teil A

- Definition und Bedeutung didaktischer Dimensionen kennen
- Unterschied zwischen Allgemeiner Didaktik und Fachdidaktik verstehen
- Relevante Didaktik-Modelle benennen können
- Fachdidaktik Informatik als eigenständige Disziplin einordnen
- Bildungsbegriff und Normenproblem reflektieren
- Methodenvielfalt im Unterricht / in Vorlesungen erläutern
- Beispiele für Lernumgebungen im Informatikunterricht kennen

9 Informatische Bildung

9.1 Allgemeinbildung und Schule

- Bildungsauftrag der Schule nach Fend (1980): Qualifikation, Selektion, Sozialisation, Legitimation
- Allgemeinbildung als Vorbereitung auf Beruf, Studium und mündige Teilhabe an Gesellschaft
- Comenius: "Nur der gebildete Mensch ist Mensch"
- Klafki: **Epochaltypische Schlüsselprobleme** als Maßstab für relevante Bildungsinhalte

9.2 Beitrag der Informatik zur Allgemeinbildung

- IU als einziges Fach mit technisch-naturwissenschaftlichem Fokus (Modrow 2005)
- Vermittlung von Kernkonzepten der Informatik ist zentral (Hartmann/Nievergelt)
- IU leistet Beitrag zur digitalen Mündigkeit und zur Reflexion gesellschaftlicher Entwicklungen

9.3 Problem der Realisierung

- Zieltrias (Hartmann): Alltagsrelevanz, wissenschaftliches Verständnis, gesellschaftliche Reflexion
- Informatik gelingt diese Verknüpfung bislang unzureichend

10 Orientierungen und Konzepte

10.1 GI-Gesamtkonzept Informatische Bildung (2000)

- Bildung durch Erschließen von Grundlagen, Methoden, Anwendungen und gesellschaftlicher Bedeutung von IS
- Bewusstes Thematisieren von Informatik erforderlich keine bloße Techniknutzung
- Abgrenzung zur ITG (bedienorientiert) und Medienpädagogik

10.2 Vier Leitlinien (GI 2000)

- 1. Interaktion mit Informatiksystemen
- 2. Wirkprinzipien von IS
- 3. Informatische Modellierung
- 4. Wechselwirkungen: IS, Individuum, Gesellschaft

11 Bildungsstandards und Schulstufen

11.1 Schwerpunkte je Schulstufe

- **Primarstufe:** Werkzeuge, Grundkenntnisse, digitale Spaltung vermeiden
- Sek I: Handlungskompetenz, Systematisierung von Alltagserfahrungen
- Sek II: formale Methoden, informatisches Modellieren

11.2 Bildungsstandards (GI 2008 und KMK 2004)

- Ergebnisorientierung (Kompetenzmodell nach Weinert)
- Drei Niveaustufen: Mindest-, Regel-, Maximalstandards
- Intention: alle SuS sollen IT zum Nutzen bewältigen können

12 Beruf und Wissenschaftspropädeutik

12.1 IU und Berufswelt

- Förderung kreativen, algorithmischen Denkens, Transferfähigkeit, Teamarbeit
- Berufliche Orientierung durch technische Erfahrungen in der Schule

12.2 Wissenschaftspropädeutik

- Aneignung von Grundlagenwissen, Reflexionsfähigkeit, Lernstrategien
- Informatik als Zugang zu ingenieurwissenschaftlichem Denken

13 Internationale Perspektiven

13.1 UNESCO ICT Curriculum (2000)

- 1. ICT Literacy (Computer bedienen)
- 2. ICT in Fächern anwenden
- 3. ICT fachübergreifend integrieren
- 4. ICT-Spezialisierung

13.2 Being Fluent with IT (NRC 1999)

- Literacy (Fakten), Capabilities (Fähigkeiten), Concepts (Konzepte)
- Ziel: dauerhafte, tiefgreifende IT-Kompetenz, nicht nur Bedienung

14 Digitale Mündigkeit und aktuelle Entwicklungen

14.1 Digitale Mündigkeit

- Kritische Reflexion, Urteilskompetenz, gesellschaftliche Verantwortung
- Kompetenzrahmen: Problemlösen, Automatisierung, Algorithmisches Denken

14.2 Rahmen und Strategien (Auswahl)

- Medienkompetenzrahmen NRW (2018–)
- KMK-Strategie "Bildung in der digitalen Welt" (2016–)
- EU DigComp 2.2 (2022), UNESCO Framework (2018)

15 Zusammenfassung: Prüfungsrelevantes Wissen Teil B

- Begriff und Zielsetzung informatischer Bildung definieren können
- Beitrag der Informatik zur Allgemeinbildung (z.B. Klafki, digitale Mündigkeit) benennen
- Vier Leitlinien des GI-Gesamtkonzepts (2000) kennen und erläutern
- Unterschiede zwischen Informatik, ITG, Medienbildung und ICT Literacy verstehen

- Bildungspolitische Rahmenwerke kennen (KMK, UNESCO, Medienkompetenzrahmen NRW, EU DigComp)
- Struktur und Inhalte der Bildungsstandards Informatik (GI 2008, KMK) benennen
- Bedeutung von Wissenschaftspropädeutik und Berufsvorbereitung im Informatikunterricht reflektieren
- Internationale Curricula (z.B. UNESCO ICT, ACM K12, FIT-Konzept) einordnen können
- Herausforderungen und aktuelle Probleme des Informatikunterrichts (v.a. in NRW) benennen

16 Thema C: Was ist Informatik

16.1 Definition und Abgrenzung

- Informatik beschäftigt sich mit der Darstellung, Speicherung, Übertragung und Verarbeitung von Information.
- Die Fragestellungen und Inhalte der Fachwissenschaft Informatik unterscheiden sich von populären Vorstellungen (z.B. Office-Anwendungen, reine Mediennutzung oder Elektrotechnik zählen nicht zur Informatik).
- Informatik ist sowohl eine **Grundlagenwissenschaft** als auch eine **Ingenieurwissenschaft**.
- Informatik betrachtet Information aus verschiedenen Perspektiven: technisch, personal, organisationsbezogen und medial.

16.2 Was gehört (nicht) zur Informatik? Das ist Informatik Das ist keine Informatik Algorithmisches Denken Office-Handhabung Elektrotechnik Programmieren Hardware und Software Digitale Medienkunde Theoretische Informatik Internetanwendungen Wie baue ich einen PC Datenmanagement Netzwerke Homepage-Design Informationsverarbeitung Toaster Datensicherheit Informatik und Gesellschaft

16.3 Historische Entwicklung

- Charles Babbage: Difference Engine und Analytical Engine als erste Konzepte universeller Maschinen.
- Konrad Zuse: Erste programmierbare Rechner (Z1, Z3), Entwicklung des Plankalküls als früher Programmiersprache.
- Entwicklung von mechanischen und elektromechanischen Rechnern (z.B. MARK I, ENIAC) zur von-Neumann-Architektur und modernen Computern.
- Entdeckung des Transistors und Miniaturisierung ermöglichen Mikroprozessoren und heutige Computertechnik.
- Vernetzung von Rechnern (z.B. ARPANET, später Internet) und Entwicklung von Software prägen die Informatik maßgeblich.

16.4 Theoretische Grundlagen

- Formale Logik bildet die Grundlage der Informatik (von Aristoteles bis zur modernen Logik).
- Kalkül (Leibniz) und Algorithmus (Turing) als zentrale Konzepte:
 - Allgemeinheit, Endlichkeit, Determiniertheit, Terminierung, Determinismus
- Der Gödelsche Unvollständigkeitssatz zeigt die Grenzen formaler Systeme auf.
- Die **Turingmaschine** dient als Modell für Berechenbarkeit und Algorithmik

16.5 Informatik und Gesellschaft

- Informatik prägt Berufswelt, Kommunikation und gesellschaftliche Strukturen grundlegend.
- Digitale Mündigkeit und kritische Reflexion sind wichtige Ziele informatischer Bildung.
- Informatik ist interdisziplinär mit Psychologie, Soziologie und Didaktik verbunden.
- Das sogenannte **Normenproblem**: Bildung ist wertgebunden und von gesellschaftlichen Idealen geprägt, was die didaktische Forschung komplex und pluralistisch macht.

17 Zusammenfassung: Prüfungsrelevantes Wissen Teil C

- Definition und Abgrenzung der Informatik kennen und erläutern können
- Historische Entwicklungsschritte und zentrale Persönlichkeiten benennen
- Theoretische Grundlagen (Logik, Algorithmus, Turingmaschine) verstehen
- Wechselwirkungen zwischen Informatik, Gesellschaft und Bildung reflektieren können

18 Elemente der Unterrichtsgestaltung

18.1 Unterricht

- Gezielte, geplante Vermittlung von Wissen, Fähigkeiten und praktischem können
- Keine zufälligen Belehrungen oder Hinweise
- Kennzeichen von Unterricht an Schulen:
 - Pädagogische Gerichtetheit
 - Planmäßigkeit
 - Institutionalisierung
 - Verberuflichung

Unterricht ohne Ziel: Diffus

18.2 Lernziele

Lernzieldimensionen:

- Kognitive Lernziele
 - Wissen, Verstehen, Anwenden, Analysieren, Synthesieren, Bewerten
- Affektive Lernziele
 - Beobachten, Beantworten, Bewerten, ..., Weltanschauung
- Psychomotorische Lernziele
 - Imitatieren, Manipulieren, Präzisieren, ..., Verinnerlichung

18.3 AFBs

Allgemeine Fachliche Begriffe (AFBs) sind zentrale Begriffe der Informatik, die in der Schule vermittelt werden sollen. Sie dienen als Grundlage für die Entwicklung von Kompetenzen und Fähigkeiten im Umgang mit informatischen Systemen.

- AFB I: Wissen wiedergeben, Methoden anwenden (30-40%)
- AFB II: Probleme lösen, Konzepte verstehen (50-60%)
- AFB III: Systeme analysieren, kritisch reflektieren (10-20%)

18.4 Kompetenzmodell

- Fähigkeit, persönliches, berufliches und gesellschaftliches Leben zu führen
- Aufgeteilt in:
 - Sachkompetenz: Kentnisse und Einsichten
 - Sozialkompetenz: Fähigkeit, eigene Ziele im Einklang mti anderen Beteiligten zu verfolgen
 - Methodenkompetenz: Fähigkeit, eigenen Lernprozess zu gestalten
 - Personale Kompetenz: Einstellungen, Motivationen, die das Handeln beeinflussen(Selbstvertrauen)

18.5 Bildungsstandards

Kamen durch Pisa 2000, KMK wollte einheitl. Standards

- Kompetenzorientierung anstatt INPUT-Orientierung
- Mindeststandards für alle Schüler
- Regelstandards für die meisten Schüler
- Maximalstandards für die leistungsstärksten Schüler

Kompetenzorientierung theoretisch zwar gut, aber meist bleiben die Inhalte die selben

18.6 Gegenstand - Inhalt - Thema

Thema benennt einen Inhalt, der an einem Gegenstand vermittelt wird. Beispiele für Inhaltsbereiche aus der Informatik:

- DB und Informationssysteme
- Rechnerarchitektur

- Geschichte der Informatik
- Sprach- und Signalverarbeitung

Beispielprozess für Themenfindung:

Prozess zur Themenfindung	Beispiel
Idee: Thema wird grob formu-	Verarbeitung von Bildern mit In-
liert	formatiksystemen
Was soll mit dem Thema vermit-	
telt werden?	
Lernziele	Erfahren, dass die Verarbeitung
	von grafischen Daten zur Verän-
	derung der Informationen führen
	kann.
Lerninhalte	Flussdiagramm zur Notation von
	Algorithmen
Fächerverbindungen	Computerkunst, Optik
Wie können die Lerninhalte in-	
teressant vermittelt werden?	
Alltagsbezüge	Computergrafik
Medien	Paint
Struktur der Vermittlung	Anwendung -> Rechnerinterne
	Darstellung
Ableitung von Unterthemen für	
einzelne Stunden	

18.7 Planungszeiträume

Baum?

- (Halb-)Jahresplanung
 - Auf Schuljahr angepasst
 - Ausgangspunkt der SuS
 - Rahmenbedingungne durch das Fach
 - Einplanen von zeitlichen Reserven
- ullet Unterrichtsreihen
 - inhaltlich zusammenhängende Sequenz
 - ein paar Stunden
- \bullet Stundenentwurf
 - Vorgehen in der einzelnen Stunde
 - Sehr kleinschrittig
 - Lernziele, Methoden, Sozialformen, Medien

Unterrichtsstufen können sich an Vorgehensmodellen orientieren:

18.8 Modell von Roth

- 1. Stufe der Motivation
- 2. Stufe der Schwierigkeit
- 3. Stufe der Lösung
- 4. Stufe des Tuns und Ausführen
- 5. Stufe des Behaltens und Einübens
- 6. Stufe der Übertragung und Integration

18.9 Wasserfallmodell

Problem

Analyse

Entwurf

Implementierung

Wartung

18.10 Stoffauswahl

Stoffauswahl sollte sich orientieren an:

- Lernziele
- Erkenntnisse der Wissenschaft?
- Systematik, Planmäßigkeit
- Fasslichkeit
- Selbsttätigkeit der SuS
- Bezug zu anderen Fächern
- Comenius:
 - vom Bekannten zum Neuen
 - vom Nahen zum Fernen
 - $-\,$ vom Einfachen zum Schwierigen
 - vom Konkreten zum Abstrakten

SuS sollen das Elementare selber 'ausgraben'

19 Elementarisierung und didaktische Reduktion

19.1 Elementarisierung

- Fördern vom 'ausgraben'
- Erschließung der Umwelt (Grundbedürfnis der SuS)
- Lehrkraft bereitet Stoff auf, damit selber entweckt werden kann

19.2 Didaktische Reduktion

- Reduktion auf das Wesentliche, um Verständnis zu erleichtern
- Fachliche Richtigkeit, Ausbaufähigkeit und Angemessenheit muss gewahrt bleiben
- Beispiel: Algorithmus ohne Determinismusbegriff

Erweiterung davon: Didaktische Rekonstruktion

- Nicht nur Verständlich-Machen
- Inhalte werden bedeutsam und anschlussfähig gemacht
- Lernen wird ganzheitlich betrachtet

20 Lerntheorien

20.1 Behaviorismus

- Versuch, Psychologie Nachweisbarer zu Machen
- Beispiel: Pawlow/Watson
- Probleme:
 - Nur Beobachtbares wird behandelt
 - Subjektbezug fehlt
 - Lernen wird als Reiz-Reaktions-Schema gesehen
- Programmierte Unterweisung
- Ähnliches Verhältnis wie beim Programmieren

20.2 Kognitivismus

- Blick ins Innere des Menschen
- Keine direkte Beobachtung möglich

- Gehirn will Überforderung reduzieren bzw. verhindern
- Also passiert Äquilibration (Streben nach Gleichgewicht)
- Durch Assimilation:
 - Anpassen des aktuellen Modells an neue Informationen
 - Beispiel: Zuerst sind alle Vierbeiner Hunde
 - Dann wird Katze als Vierbeiner erkannt
 - $\Rightarrow Modell wird angepasst$
- Durch Akkomodation:
 - Einordnen neuer Informationen in bestehende Modelle
 - Beispiel: Wenn eine Kuh so bezeichnet wird, werden die Unterschiede zum Hund direkt ins Modell eingebettet
- Entwicklungsstadien erreichen erst ab 7 Jahren ein Stadium, bei dem Informatikunterricht sinnvoll ist

20.3 Bedeutungsvolles und Rezeptives Lernen

- Wichtigstes beim Lernen ist die Verbindung zum alten Wissen
- $\bullet \; \Rightarrow$ Lehren ist das finden von 'Ankern' aus dem alten Wissen, an denen neues Wissen angedockt werden kann
- Advance organizer: Strukturierte Hilfen helfen den Lernenden, das neue Wissen einzuordnen

In der Informatik:

• konkretes Programmablaufmodell erleichtert Verstehen von Programmierbefehlen

20.4 Entdeckendes Lernen

- Lerngegenstände können Lernenden in jeder Entwicklungsstufe gelehrt werden
- Lernen ist am Effektivsten, wenn Lernende selbstständig entdecken

20.5 Erkenntnisse aus kognitivistischer Perspektive

- $\bullet\,$ Lehrstoff in Zusammenhänge setzen
- Aneignung erleichtern durch Strukturierung
- Anknüpfung an Vorwissen

20.6 Konstruktivismus

- Aktive Beteiligung der Lernenden
- Handlungsorientierung
- Möglichst viel selber erschließen lassen
- Lehrkraft: Organisator und Berater
- Wirklichkeitsnah
- Verschiedene Perspektiven zum selben Stoff

20.7 Interaktionistischer Konstruktivismus

- Lernen passiert in Interaktion mit der Welt
 - Entdecken der Welt(Rekonstruieren)
 - Erfinden der Welt(Konstruieren)
 - Kritisieren der Welt(Dekonstruieren)
- Welt ist hier Kultur, Soziales etc.
- Methodenpool?

${\bf 21}\quad {\bf Unterichtsmethoden, -prinzipien\ und\ -konzepte/Modelle}$

21.1 Unterrichtsmethoden

- $\bullet\,$ Formen und Verfahren, mit denen Su
S und Lehrkräfte gemeinsam Lernen
- Das geschieht durch die auseinandersetzung mit der natürlichen und gesellschaftl. Realität

21.2 unterrichtsmethodische Reflexion

- Handlungssituationen
 - Zeitlich begrenzte Interaktionseinheiten, die bewusst gestaltet und mit Sinn und Bedeutung belegt sind
 - Beispiel: Frage stellen und antworden, Arbeitsauftrag formulieren, Schummeln
 - Informatik: Interaktionen mit Computer, UML-Diagramm zeichnen
- Arbeitsformen/Handlungsmuster

- Historische Formen der Wirklichkeitsaneignung
- Haben Anfang und Ende, sind Zielgerichtet
- Beispiel: Unterrichtsgespräch, Diskussion, Texterarbeitung
- Informatik: Projektorientiertes Arbeiten, Programmieren
- Vielfalt der Methoden ist wichtig
- Unterrichtsschritte
 - Siehe 18.7: Planungszeiträume
- Sozialformen
 - Genau 4!
 - Frontalunterricht
 - Partnerarbeit
 - Gruppenunterricht
 - Einzelarbeit
 - Informatik: Partner- bzw. Gruppenarbeit bevorzugt
 - Hochmotivierte SuS können Einzelarbeit bevorzugen
- Methodische Großformen
 - Feste, Bewährte Konzepte, für die Strukturierung größerer Lernvorhaben
 - Beispiel: Projektarbeit, Stationenlernen

21.3 Lernaufgaben

- Aufgabe, deren Lösung neues Wissen bzw. Können benötigt
- Lernerfolg ergibt sich aus der (korrekten und vollst.) Lösung der Aufgabe
- Erfolg der Bearbeitung kann vom Lernenden selbst erkannt werden
- Hat Bezug zu beruflichen Aufgaben bzw. Tätigkeiten

21.4 Gruppenarbeit

- Aufgaben dürfen nicht alleine lösbar sein
- mindestens teilweise gemeinsames Arbeiten notw.
- Gruppen sollen zusammengesetzt sein, sodass
 - unterschiedl. Vorraussetzungen und Kenntnisse von den Mitglie-

- dern erfüllt werden
- Treffen außerhalb des Unterrichts möglich ist
- Es sollen keine 'Außenseiter' existieren
- Beispiel: Gruppenpuzzle(=autonomes Lernen + Gruppenarbeit)

21.5 Unterrichts- und didaktische Prinzipien

- Regeln für Gestaltung und beurteilung von Unterricht
- Beruht auf normativen Überlegungen und praktischen (Unterrichts-) Erfahrungen
- Beispiele für Unterrichtsprinzipien, die auf der Lernpsychologie basieren:
 - Prinzip der Motivierung: Lernende sollen intrinsisch motiviert sein
 - Prinzip der Veranschaulichung: Lerninhalte sollen konkret und greifbar sein
 - Differenzierung: Unterricht soll auf individuelle Lernvoraussetzungen eingehen
 - Prinzip der Aktivierung: Lernende sollen aktiv am Lernprozess beteiligt sein
- Informatikdidaktische Prinzipien:
 - SuS sollen selbst tätig werden(insb. konkretes Tun, Umformen, Ausprobieren)
 - Lernstoff soll wiederholt, ggf. mit erhöhtem Niveau erweitert werden
 - Abstrakte Inhalte sollen durch Bilder, Modelle usw. begreifbar gemacht werden.
 - Lerninhalte soll an der Lebenswelt der SuS orientiert sein
 - Lerninhalte sollen vernetzt sein(untereinander oder mit anderen Fächern)
 - Lernprozesse sollen klare Ziele haben
 - Lernprozesse sollen so strukturiert sein, dass sie der natürlichen Entwicklung der Inhalte folgen

21.6 Fachsprache und Begriffsverständnis

Es gibt drei Ebenen von Sprache, die für (Informatik-)Lehrkräfte wichtig sind:

- Umgangssprache der SuS, z.B. 'Computer ist abgestürzt', 'der Kreis geht nicht mehr weg'
- Fachsprache(der Informatik), z.B. 'Algorithmus', 'Bedingung'
- Unterrichtssprache, hauptsächlich Verbindungsebene, durch Erklärungen, Analogien und Beispiele

Zum Heranführen an die Fachsprache: Stufenmodell zum Lernen von Begriffen:

- Intuitives Verständnis(aus der Umgangssprache)
- Inhaltliches Verständnis(der Begriff wird bewusst wahrgenommen und mit Beispielen verbunden)
- Integriertes Verständnis(Verbindung mit anderen Begriffen existiert)
- Strukturelles Verständnis(der Begriff wird benutzt, u.a. für Problemlösungen)
- Formales Verständnis(formale Definition, inklusive Beweise)

21.7 Abstraktion und Repräsentationsebenen

Abstraktion ist die Reduktion auf das wesentliche. In der Informatik:

- Reduktion aus der realen Welt in ein (informatisches) Modell
- Formalisierung
- Kapselung, Datenstrukturen

Repräsentationsebenen helfen bei der Abstraktion, indem sie schrittweise aufgbeaut wird. Die Repräsentationsebenen sind:

- Enaktiv: Lernen durch Handeln(sehr konkret in der Lebenswelt)
- Ikonisch: Lernen durch Bilder, Diagramme
- Symbolisch: Lernen durch abstrakte Sprache(z.B. Code)

21.8 Motivation und Aufmerksamkeit

Motivation ist die Bereitschaft, ein gewisses Verhalten zu zeigen

- Für Lehrkräfte bzw. Lernende: Lernmotivation und Leistungsmotivation
- Intrinsische Motivation: Interesse am Lernstoff selbst
- Extrinsische Motivation: Belohnung, Noten, Anerkennung

• Wechseln der Methodik hilft beim Aufrechterhalten der Motivation

Aufmerksamkeit ist die Fähigkeit, sich auf bestimmte Stimuli der Umwelz zu konzentrieren

- Abweichendes erhält mehr Aufmerksamkeit(Farben, Bewegungen, Geräusche)
- Aufmerksamkeit kann nur einem Inhalt gleichzeitig gelten
- Wechsel der Aufmerksamkeit ist anstrengend ⇒ schneller Wechsel von Inhalten führt zur Ermüdung

21.9 Lesen vor Schreiben

Im Sprachunterricht wird immer zuerst Lesen und dann Schreiben gelernt. In der Informatik Sinnvoll?

- Für das Lernen einer Programmiersprache sinnvoll
- Software(re)engineering sinnvoll, aber bisher wenig betrachtet
- Dekonstruktion von (fremd-)Software als Unterrichtsmethode

21.10 Freiraum für Kreativität in Informatikunterricht

- Entwicklung von Hard- und Software ist inhärent kreativ
- $\bullet \Rightarrow$ möglichst viel Freiraum in diesen Aufgaben lassen
- Optimierung von Verfahren, Modellen etc. ist auch kreativ
- Projektarbeit optimal für kreative Arbeit

21.11 Unterrichtskonzepte und -Modelle

Sind Orientierungen methodischen Handelns, beruht auf Unterrichtsprinzipien und anderen Theoretischen Grundlagen. In der Informatik:

- Entdeckendes Lernen
 - SuS lösen selbstständig Probleme
 - Lehrkraft als Lernimpuls oder -arragement
 - kein festes Schema, Lernprozess wird nur begleitet
- Projektorientiertes Lernen
 - Projektwoche
 - Projektunterricht
 - Lernstoff wird an einem Projekt erarbeitet oder verfestigt

- Handlungsorientiertes Lernen
 - Erprobung eines Handlungsprozesses
 - Anwendung der Kenntnisse und Verallgemeinerungen
 - auch Teil von Projektunterricht, Stationenlernen, Lernen durch Lehren etc.
- Erfahrungsbasiertes Lernen
 - Lernzyklus
 - * Beginnt mit konkteten Erfahrungen der SuS
 - * SuS reflektieren diese Erfahrungen
 - * SuS abstrahieren aus den Erfahrungen
 - * Su
S Experimentieren mit den abstrahierten Konzepten \Rightarrow neue Erfahrungen
 - Die Lernstile der SuS müssen berücksichtigt werden
 - * Divergierer
 - * Assimilierer
 - * Konvergierer
 - * Akkomodierer
- Problemorientiertes Lernen
 - Anspruchsvolles Lernen
 - Allgemein: Analyse des Problems, Entwickeln einer Lösestrategie, Anwenden der Strategie
 - Lernen findet hauptsächlich in der Entwicklungsphase statt \Rightarrow Probleme dürfen nicht routinemäßig gelöst werden können
- Genetisches Lernen(genetisches Prinzip)
 - 'Nachspielen' der Entwicklung der Lerninhalte
 - SuS sollen die Inhalte selbst entdecken
 - Ziel: Nachvollzug der Entwicklung des Fachs(in der Informatik)

21.12 Unterrichtsmedien

Medien können zu verschiedenen Zwecken eingesetzt werden:

- Informationsvermittlung
- Motivationshilfe(durch Aktivität, Anschauung, Ästhetik)
- Initiierung und Steuerung von Lernprozessen(u.A. für Differenzierung und Individualisierung sinnvoll)

• Akzentsetzung, Aufnahmeerleichterung

Typische Medien (im Informatikunterricht) sind:

• Wandtafel

- Erfordert aufwendige Planung von einem Tafelbild
- sollte korrekt, übersichtlich und verständlich sein
- 'Interaktive Tafel' als moderne Variante
 - * Erlaubt Einbindung von digitalen Medien
 - * Inhalte verschieben, kopieren, einfügen
 - * Interaktion mit Software an der Tafel
 - * SuS schreiben weniger
 - $* \Rightarrow$ sind sehr unterschiedlich von der 'herkömmlichen' Tafel und benötigen eigene Didaktik

Schulbücher

- soll mit den Rahmenplänen übereinstimmen
- soll an die SuS angepasst sein
- soll gute methodische Gestaltung haben
- soll ein gutes Didaktisches Konzept haben
- gutes Hilfemittel für die Unterrichtsplanung
- Tranzparente(Overheadprojektor)
 - Übelst veraltet wtf?!
 - Abdecktechnik, Markierungstechnik, Aufbautechnik, Ergänzungstechnik
- Mechanische Unterrichtsmittel
 - z.B. zum Veranschaulichen von Algorithmen
- Software
- Hardware
- Programmiersprachen
 - Die konktete Programmiersprache darf die Lernziele nicht überschatten
 - Syntax, Datenstrukturen usw. sollten nicht im Vordergrund Synthesieren
 - Aber das einzige Tool, was Algorithmen und Datenstrukturen gut darstellen und umsetzen kann
 - \Rightarrow Programmiersprache sollte nicht zu komplex sein