

Classe: TSP

Date : Décembre 2020

DST **Mathématiques**

Durée: 1h 30min

Exercice 1:

Sur la figure ci-dessous, les droites (VX) et (NS) sont parallèles.

On donne $YV=5,4\,\mathrm{cm},\ YX=2,7\,\mathrm{cm},\ VX=6,5\,\mathrm{cm}$ et $NS=2,9\,\mathrm{cm}.$

Calculer YN et YS.

Sur la figure ci-dessous, les droites (FP) et (EX) sont parallèles.

On donne $RF=3.5\,\mathrm{cm},\ FP=6\,\mathrm{cm},\ RX=2.6\,\mathrm{cm}$ et $EX=3.7\,\mathrm{cm}.$

Calculer RP et RE.

Exercice 2:

 (d_1) est la droite représentative de la fonction u.

- ▶1. Donner l'image de 2,5 par la fonction u.
- ▶2. Donner un nombre qui a pour image 3,5 par la fonction u.
- ▶3. Tracer la droite représentative (d_2) de la fonction $f: x \longmapsto 4x + 1$.
- ▶4. Déterminer l'expression de la fonction g représentée ci-contre par la droite (d_3) .

Classe : TSP

Date : Décembre 2020

Exercice 3:

Les activités humaines produisent du dioxyde de carbone (CO_2) qui contribue au réchauffement climatique. Le graphique suivant représente l'évolution de la concentration atmosphérique moyenne en CO_2 (en ppm) en fonction du temps (en année).

Concentration de CO2 atmosphérique

- 1 ppm de CO_2 = 1 partie par million de CO_2 = 1 milligramme de CO_2 par kilogramme d'air.
- 1. Déterminer graphiquement la concentration de CO₂ en ppm en 1995 puis en 2005.
- **2.** On veut modéliser l'évolution de la concentration de CO_2 en fonction du temps à l'aide d'une fonction g où g(x) est la concentration de CO_2 en ppm en fonction de l'année x.
 - **a.** Expliquer pourquoi une fonction affine semble appropriée pour modéliser la concentration en CO₂ en fonction du temps entre 1995 et 2005.
 - **b.** Arnold et Billy proposent chacun une expression pour la fonction g: Arnold propose l'expression g(x) = 2x 3630; Billy propose l'expression g(x) = 2x 2000. Quelle expression modélise le mieux l'évolution de la concentration de CO_2 ? Justifier.
 - **c.** En utilisant la fonction que vous avez choisie à la question précédente, indiquer l'année pour laquelle la valeur de 450 ppm est atteinte.

Classe: TSP

Date : Décembre 2020

Exercice 4:

- ▶1. SJB est un triangle rectangle en S tel que : $SB = 2.8 \,\mathrm{cm}$ et $\widehat{SJB} = 64^{\circ}$. Calculer la longueur JB.
- ▶2. PNT est un triangle rectangle en T tel que : $TN = 9.6 \, \mathrm{cm}$ et $TP = 11.7 \, \mathrm{cm}$. Calculer la mesure de l'angle \widehat{TPN} .

Exercice 5:

Voici un programme de calcul

- Choisir un nombre
- Multiplier ce nombre par 4
- Ajouter 8
- Multiplier le résultat par 2
- 1. Vérifier que si on choisit le nombre −1, ce programme donne 8 comme résultat final.
- 2. Le programme donne 30 comme résultat final, quel est le nombre choisi au départ?

Dans la suite de l'exercice, on nomme x le nombre choisi au départ.

3. L'expression A = 2(4x+8) donne le résultat du programme de calcul précédent pour un nombre x donné.

On pose
$$B = (4 + x)^2 - x^2$$
.

Prouver que les expressions A et B sont égales pour toutes les valeurs de x.

- **4.** Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. On rappelle que les réponses doivent être justifiées.
 - Affirmation 1 : Ce programme donne un résultat positif pour toutes les valeurs de *x*.
 - Affirmation 2 : Si le nombre x choisi est un nombre entier, le résultat obtenu est un multiple de 8.