Textbook sections: 4.1, 4.4

Examples of 2nd Order LDEs (4.1)

Spring-Mass Systems

- 1. Spring of natural length l_0 attached to horizontal surface
- 2. Mass m, attached to spring, spring length in equilibrium position is $L + l_0$
- 3. Same as (2), but external force extended length of spring

Three cases:

- (a) Spring of natural length l_0 attached to horizontal surface
- (b) Mass m, attached to spring, spring length in equilibrium position is $L+l_0$
- (c) Same as (b) except an external force has extended length of spring

For case (2),

$$F_g - F_s = 0$$

 $mg - kL = 0$

For case (3),

if external force is f(t), then

$$egin{aligned} ma &= F_g - F_s + F \ my'' &= mg - k(L+y) + F \ my'' &= -ky + F \end{aligned}$$

Forces

forces	equation
gravitational	mg
spring	kL
external	f(t)
damping	$\gamma y'$

Mechanical Vibrations (4.4)

Undamped Motion

Consider a vertical spring with undamped motion:

$$mg - kx = ma$$

or

$$ma + kx = 0$$
$$mx'' + kx = 0$$

Solve the equation, draw a component plot, and characterize the motion in terms of amplitude, frequency, and phase.

Solving

Then, $x=e^{\lambda t}$, where $m\lambda^2+k=0.$ Then, $\lambda=\pm i\sqrt{rac{k}{m}}$

Thus, the complete solution is $x=c_1\cos\left(\sqrt{\frac{k}{m}}t\right)+c_2\sin\left(\sqrt{\frac{k}{m}}t\right)$.

Characterization

Let $c_1=R\cos\delta$, $c_2=R\sin\delta$.

Then,

$$egin{aligned} x &= c_1 \cos \left(\sqrt{rac{k}{m}} t
ight) + c_2 \sin \left(\sqrt{rac{k}{m}} t
ight) \ &= R \cos \delta \cos \left(\sqrt{rac{k}{m}} t
ight) + R \sin \delta \sin \left(\sqrt{rac{k}{m}} t
ight) \ &= R \cos \left(\sqrt{rac{k}{m}} t - \delta
ight) \end{aligned}$$

$$R$$
 = amplitude $\sqrt{\frac{k}{m}}$ = frequency

Damped Motion

Adding damping to the equation:

$$my'' + \gamma y' + ky = 0$$

Determine an expression for the roots of the characteristic equation as a function of k, m, γ .

Characteristic equation is $m\lambda^2+\gamma\lambda+k=0.$ Then,

$$\lambda = -rac{\gamma}{2m} \pm rac{\sqrt{\gamma^2 - 4mk}}{2m}$$

motion	occurs when	motion
no damping	$\gamma = 0$	underdamped, with $lpha=0$
underdamped	$\gamma-4mk<0$	$e^{lpha t}\cos(eta t),e^{lpha t}\sin(eta t)$ where $\lambda=lpha+ieta$
critically damped	$\gamma-4mk=0$	$e^{\lambda t}, te^{\lambda t}$
overdamped	$\gamma-4mk>0$	$e^{\lambda_1 t}, e^{\lambda_2 t}$