

Financial Data Analysis of Insurance Sector

Course: Financial Data Science

Prof: Abdullah Karasan

Deekshitha Bhogathi

Introduction

Objective and Scope:The project aimed to analyze the financial performance of five insurance companies, using the S&P 500 Index as a market benchmark. over five years from 2019 to 2024. The analysis spans pre-pandemic. pandemic, and post-pandemic market conditions.

Data Collection and Preparation:Sto ck price data for the insurance companies and the S&P 500 Index were collected, followed by data cleaning to ensure accuracy and completeness for analysis.

Exploratory
Data Analysis
(EDA):EDA
techniques,
including time
series plots of
stock prices,
were used to
visualize
performance
trends over the
specified
period.

Statistical
Analysis for Indepth
Insights:Statistical measures like mean, standard deviation, Z-score, and confidence intervals were determined.

Main Financial Concepts:Finan cial concepts such as return, risk, covariance, correlation, and risk-return ratios were evaluated.

Capital Asset Pricing Model (CAPM) Analysis:Used CAPM to evaluate expected returns based on systematic risk, gaining insights into each company's market performance relative to overall market movements. Performance metrics calculators such as Sharpe and Treynor ratios were calculated.

Application of Modern Portfolio Theory (MPT):MPT principles quided the exploration of optimal investment strategies and portfolio construction. enhancing investment decisionmaking.

Time Series Analysis:The time series analysis focused on evaluating and forecasting insurance stock prices using methods like decomposition, stationarity testing, ARIMA, and Monte Carlo simulations to understand patterns and predict future trends

Motivation:

Resilience and Strategic Insights: To evaluate the financial performance and resilience of key insurance companies (AIG, MET, PRU, ALL, and TRV) by analyzing their stock price behavior and financial metrics over a five-year period (2019-2024), including prepandemic, pandemic, and post-pandemic phases.

Understanding Market Risk and Returns: To investigate how these companies navigate market dynamics using risk-return metrics such as Sharpe Ratios, Treynor Ratios, and Z-scores, highlighting differences in risk exposure and return potential. Application of Financial Models: To integrate advanced financial models like CAPM, ARIMA, Monte Carlo Simulations, and Modern Portfolio Theory to evaluate systematic risk, forecast future performance, and construct optimal investment portfolios.

Enhancing Investment
Decision-Making: To
provide actionable
insights for portfolio
allocation and risk
management, offering
lessons on strategic
adaptability in volatile
market conditions and
enhancing informed
decision-making.

Contribution to Financial Understanding: To bridge the gap between academic financial concepts and their practical application, helping stakeholders understand how these companies adapt to global economic disruptions.

Stock Analysis

Ticker	AIG	ALL	MET	PRU	TRV
count	1258.000000	1258.000000	1258.000000	1258.000000	1258.000000
mean	46.395299	104.744321	49.758135	77.814258	141.480792
std	10.928041	16.288956	12.003382	15.416472	25.389396
min	16.710825	64.940834	19.971468	30.819284	73.875793
25%	38.912795	90.250259	39.045776	68.732088	122.194801
50%	47.970390	105.734695	53.428793	78.793816	144.194618
75%	54.952633	118.973305	59.486722	90.134632	163.125618
max	66.815887	141.402298	72.154030	105.916809	187.869827

Moving Averages and Volatility:

Volatility and Returns:

Correlation and Covariance Matrix

Covariance matrix:												
Ticker	AIG	ALL	MET	PRU	TRV							
Ticker												
AIG	0.164312	0.072667	0.116441	0.128292	0.080377							
ALL	0.072667	0.082675	0.064033	0.070474	0.053700							
MET	0.116441	0.064033	0.121885	0.122996	0.065576							
PRU	0.128292	0.070474	0.122996	0.145239	0.072469							
TRV	0.080377	0.053700	0.065576	0.072469	0.080687							

Correlation matrix:												
	Ticker	AIG	ALL	MET	PRU	TRV						
	Ticker											
	AIG	1.000000	0.623471	0.822806	0.830470	0.698062						
	ALL	0.623471	1.000000	0.637883	0.643130	0.657478						
	MET	0.822806	0.637883	1.000000	0.924430	0.661249						
	PRU	0.830470	0.643130	0.924430	1.000000	0.669434						
	TRV	0.698062	0.657478	0.661249	0.669434	1.000000						

Correlation Matrix:

Risk-Return Plot:

Pair Wise Analysis:

Z-Scores:

Outlier Z-	Scores:					
Ticker		AIG	G ALI	L ME	F PRI	J TRV
Date						
2019-02-14	00:00:00+00:00	-3.572206	NaN	NaN	NaN	NaN
2019-08-01	00:00:00+00:00	NaN	NaN	NaN	-4.231672	NaN
2019-10-22	00:00:00+00:00	NaN	NaN	NaN	NaN	-4.668880
2020-03-02	00:00:00+00:00	NaN	3.855427	NaN	NaN	3.636551
2020-03-05	00:00:00+00:00	NaN	NaN	-3.365704	NaN	NaN
2020-03-09	00:00:00+00:00	-5.241779	-5.982077	-7.604017	-6.934316	-3.561067
2020-03-10	00:00:00+00:00	NaN	NaN	3.252669	3.284780	NaN
2020-03-11	00:00:00+00:00	NaN	-3.649536	NaN	-3.275758	-3.294824
2020-03-12	00:00:00+00:00	-8.200508	-5.378660	-6.864325	-8.409585	-5.209529
2020-03-13	00:00:00+00:00	4.834256	5.873680	5.800418	5.919839	NaN
2020-03-16	00:00:00+00:00	-7.250905	-4.676133	-7.342573	-7.563702	-11.664822
2020-03-17	00:00:00+00:00	NaN	NaN	NaN	3.259544	7.394397
2020-03-18	00:00:00+00:00	-6.143916	-7.819905	NaN	NaN	-8.571880
2020-03-19	00:00:00+00:00	3.762796	NaN	NaN	NaN	NaN
2020-03-20	00:00:00+00:00	NaN	NaN	-4.141785	NaN	NaN
2020-03-23	00:00:00+00:00	NaN	NaN	NaN	-3.025592	NaN
2020-03-24	00:00:00+00:00	7.334672	3.498955	7.853168	8.737520	3.368207
2020-03-25	00:00:00+00:00	4.732971	3.562489	3.474939	3.606236	NaN
2020-03-26	00:00:00+00:00	NaN	4.287032	4.233110	NaN	3.900356
2020-03-30	00:00:00+00:00	NaN	3.820265	NaN	NaN	NaN
2020-04-01	00:00:00+00:00	-4.299081	-3.247519	-4.007234	-4.135927	NaN
2020-04-06	00:00:00+00:00	NaN	4.819166	4.740992	NaN	NaN
2020-04-07	00:00:00+00:00	3.133745	NaN	NaN	NaN	NaN
2020-04-09	00:00:00+00:00	3.878923	NaN	NaN	NaN	NaN
2020-04-15	00:00:00+00:00	NaN	NaN	NaN	NaN	-3.063615
2020-04-17	00:00:00+00:00	NaN	NaN	3.066857	3.320629	NaN
2020-05-06	00:00:00+00:00	NaN	NaN	NaN	-3.312003	NaN
2020-05-07	00:00:00+00:00	3.680420	NaN	NaN	NaN	NaN
2020-05-08	00:00:00+00:00	3.235958	NaN	NaN	NaN	NaN
2020-05-13	00:00:00+00:00	NaN	-3.135332	NaN	NaN	NaN
2020-05-18	00:00:00+00:00	NaN	NaN	NaN	3.270712	3.053267
2020-05-26	00:00:00+00:00	NaN	NaN	3.731386	3.066944	NaN
2020-06-08	00:00:00+00:00	3.284698	NaN	NaN	3.282560	NaN
2020-06-11	00:00:00+00:00	-3.989611	-3.932333	-4.145492	-4.650579	-4.855781
2020-10-20	00:00:00+00:00	NaN	NaN	NaN	NaN	3.098446
2020-10-21	00:00:00+00:00	NaN	NaN	NaN	NaN	3.225550
2020-11-09	00:00:00+00:00	5.117254	NaN	4.977505	6.463596	3.168918
2021-11-04	00:00:00+00:00	NaN	-3.988397	NaN	NaN	NaN
2022-04-22	00:00:00+00:00	NaN	-3.583928	NaN	NaN	NaN
2022-10-20	00:00:00+00:00	NaN	-7.165449	NaN	NaN	NaN
2023-01-19	00:00:00+00:00	NaN	-3.287207	NaN	NaN	NaN
2023-03-13	00:00:00+00:00	NaN	NaN	NaN	-3.012542	NaN
2023-03-17	00:00:00+00:00	NaN	-3.482255	NaN	NaN	NaN
2023-04-19	00:00:00+00:00	NaN	NaN	NaN	NaN	3.399864
2023-05-04	00:00:00+00:00	NaN	NaN	-3.598323	NaN	NaN
2023-05-05	00:00:00+00:00	3.037097	NaN	NaN	NaN	NaN
2023-07-20	00:00:00+00:00	NaN	3.193385	NaN	NaN	NaN
2023-08-02	00:00:00+00:00	NaN	-3.224259	NaN	NaN	NaN
2023-10-13	00:00:00+00:00	NaN	3.033860	NaN	NaN	NaN

Z-Scores:

CAPM Analysis:

CAPM Results for PRU:							CAPM Results for MET:								
OLS Regression Results						OLS Regression Results									
Dep. Variable:	:	P	RU	R-squa	red:		0.554	Dep. Va	riable:		ME	T R-s	quared:		0.538
Model:		0	LS	Adj. R	l-squared:		0.554	Model:			OL	S Adj	. R-squared:		0.538
Method:		Least Squar	es	F-stat	istic:		1559.	Method:			Least Square	s F-s	tatistic:		1464.
Date:	Mo	on, 02 Dec 20	24	Prob (F-statistic)	:	2.58e-222	Date:		Me	on, 02 Dec 202	4 Pro	b (F-statistic)	:	5.86e-213
Time:		12:32:	98	Log-Li	kelihood:		3412.3	Time:			12:32:0	8 Log	-Likelihood:		3500.9
No. Observation	ons:	12	57	AIC:			-6821.	No. Obs	ervatio	ns:	125	7 AIC	:		-6998.
Df Residuals:		12	55	BIC:			-6810.	Df Resi	duals:		125	5 BIC	:		-6988.
Df Model:			1					Df Mode	1:			1			
Covariance Typ	oe:	nonrobu	st					Covaria	nce Type	e:	nonrobus	t			
	coef	std err		t	P> t	[0.025	0.975]			coef	std err	t	P> t	[0.025	0.975]
const	0.0564	0.001	38	.056	0.000	0.054	0.059	const		0.0511	0.001	36.986	0.000	0.048	0.054
^GSPC	1.3303	0.034	39	.486	0.000	1.264	1.396	^GSPC		1.2014	0.031	38.266	0.000	1.140	1.263
								======							
Omnibus:		227.1			-Watson:		2.068	Omnibus			119.53		bin-Watson:		1.948
Prob(Omnibus):	:	0.0			-Bera (JB):		3844.616	Prob(Om	nibus):		0.00	0 Jan	que-Bera (JB):		771.102
Skew:		0.2	85	Prob(J	B):		0.00	Skew:			0.10	8 Pro	b(JB):		3.61e-168
Kurtosis:		11.5	49	Cond.	No.		74.6	Kurtosi	s:		6.83	1 Con	d. No.		74.6

OLS Regression Results										
Dep. Variable:				quared:		0.538				
Model:				. R-squared:		0.538				
Method:		Least Square	s F-s	tatistic:		1464.				
Date:	Mon	, 02 Dec 202	4 Pro	b (F-statistic)):	5.86e-213				
Time:		12:32:0	8 Log	-Likelihood:		3500.9				
No. Observations	3:	125	7 AIC	:		-6998.				
Df Residuals:		125	5 BIC	:		-6988.				
Df Model:			1							
Covariance Type:		nonrobus	t							
	coef	std err	t	P> t	[0.025	0.975]				
const	0.0511	0.001	36.986	0.000	0.048	0.054				
^GSPC 1	.2014	0.031	38.266	0.000	1.140	1.263				
Omnibus:		119.53	4 Dur	bin-Watson:		1.948				
Prob(Omnibus):		0.00	0 Jar	que-Bera (JB):		771.102				
Skew:		0.10		b(JB):		3.61e-168				
Kurtosis:		6.83		d. No.		74.6				
Rui Cosis.		0.03	COII	u. 110.		74.0				

CAPM Results for MET:

CAPM Results f	or AIG:					
		OLS Reg	ression R	esults		
Dep. Variable:		Δ	IG R-sq	uared:		0.443
Model:		C	LS Adj.	R-squared:		0.443
Method:		Least Squar	es F-st	atistic:		998.1
Date:	Moi	n, 02 Dec 20	24 Prob	(F-statisti	:):	1.14e-161
Time:		12:32:	08 Log-	Likelihood:		3195.0
No. Observatio	ns:	12	57 AIC:			-6386.
Df Residuals:		12	55 BIC:			-6376.
Df Model:			1			
Covariance Typ	e:	nonrobu	ıst			
	coef	std err	t	P> t	[0.025	0.975]
const	0.0539	0.002	30.578	0.000	0.050	0.057
^GSPC	1.2652	0.040	31.593	0.000	1.187	1.344
Omnibus:		172.5	23 Durb	in-Watson:		1.938
Prob(Omnibus):		0.0	00 Jarq	ue-Bera (JB)		1977.238
Skew:		0.1	21 Prob	(JB):		0.00
Kurtosis:		9.1	39 Cond	No.		74.6

CAPM Analysis:

CAPM Results for ALL:

OLS Regression Results									
Dep. Variable:			ALL	R-sq	uared:		0.382		
Model:			OLS	Adj.	R-squared:		0.381		
Method:		Least	Squares	F-st	atistic:		774.3		
Date:	1	1on, 02 D	ec 2024	Prob	(F-statistic)	:	3.98e-133		
Time:		1	2:32:08	Log-	Likelihood:		3560.9		
No. Observatio	ns:		1257	AIC:			-7118.		
Df Residuals:			1255	BIC:			-7108.		
Df Model:			1						
Covariance Typ	e:	no	nrobust						
	coef	std e	rr	t	P> t	[0.025	0.975]		
const	0.0356	0.0	01	27.025	0.000	0.033	0.038		
^GSPC	0.8329	0.0	30	27.826	0.000	0.774	0.892		
Omnibus:			293.791	Durb	in-Watson:		1.974		
Prob(Omnibus):			0.000	Jarq	ue-Bera (JB):		3591.357		
Skew:			-0.718	Prob	(JB):		0.00		
Kurtosis:			11.155	Cond	. No.		74.6		

CAPM Results for TRV:

Dep. Variable:			ΓRV	R-sq	uared:		0.374
Model:			DLS	Adj.	R-squared:		0.373
Method:		Least Squar	res	F-st	atistic:		748.6
Date:	Mo	n, 02 Dec 20	324	Prob	(F-statistic):		1.19e-129
Time:		12:32	:08	Log-	Likelihood:		3568.2
No. Observation	ıs:	1:	257	AIC:			-7132.
Df Residuals:		1:	255	BIC:			-7122.
Df Model:			1				
Covariance Type	2:	nonrob	ıst				
	coef	std err		t	P> t	[0.025	0.975]
const	0 03/10	0 001	26	E4E	0.000	0 032	0.037
					0.000		0.873
	0.0143			. 501			0.873
Omnibus:		271.9	905	Durb	in-Watson:		2.165
Prob(Omnibus):			900		ue-Bera (JB):		4506.221
Skew:			524	Prob	, ,		0.00
Kurtosis:			216		. No.		74.6

OLS Regression Results

Betas for All Stocks:

AIG: Beta = 1.2652, Alpha = 0.0539 MET: Beta = 1.2014, Alpha = 0.0511 PRU: Beta = 1.3303, Alpha = 0.0564 ALL: Beta = 0.8329, Alpha = 0.0356 TRV: Beta = 0.8143, Alpha = 0.0348

Security Market Line:

Sharpe Ratios:

Ticker

AIG 0.435642

ALL 0.462150

MET 0.423877

PRU 0.334266

TRV 0.421423

dtype: float64

Treynor Ratios:

AIG 0.172685

ALL 0.209839

MET 0.158047

PRU 0.127254

TRV 0.198468

dtype: float64

Decomposition:

Seasonal Decomposition of AIG

Seasonal Decomposition of PRU

Seasonal Decomposition of MET

Decomposition:

Monte Carlo Simulation:

Monte Carlo Simulation:

Portfolio Optimization:

Optimal Portfolio Allocation

Efficient Frontier:

Conclusion:

Volatility and Risk Analysis

AIG and MET exhibited higher volatility, making them suitable for aggressive investment strategies, while TRV displayed lower volatility, ideal for risk-averse investors.

Volatility spikes during 2020 highlighted significant market sensitivity to macroeconomic shocks.

Impact of Economic Trends

All stocks experienced recovery trends post-2020 crash, with TRV and ALL demonstrating resilience. Long-term growth trajectories reflect alignment with industry benchmarks.

CAPM Analysis

AIG and MET are undervalued according to the SML, promising more than expected returns for their beta. TRV and PRU show overvaluation or inefficiencies in the market and should be invested in with care.

Risk-Adjusted Returns

Sharpe and Treynor ratios confirm ALL as the most efficient in risk-adjusted performance. High Sharpe ratios in AIG and MET indicate good returns in relation to their risks.

Portfolio Analysis Using Modern Portfolio Theory (MPT)

The efficient frontier analysis underlines the benefits of diversification by balancing high-beta stocks with stable performers.

Aggressive portfolio strategies are dominated by AIG and MET, while TRV and ALL provide the supporting defense.

Conclusion:

- AIG and MET are promising stocks to deliver higher risk-adjusted returns and could be used by investors seeking growth-oriented portfolios.
- TRV and ALL help balance portfolios due to lower volatility, hence offering stability during times of economic turmoil.
- Rebalancing: Periodically review and rebalance such portfolios in line with changeable market dynamics, especially for stocks with high beta.
- Correlation Management: Implement insights from correlation analysis to steer clear of overexposure to strongly correlated stocks to minimize systemic risk.
- Market Hedging: Utilize TRV and ALL as defensive investments, in particular during market downturns, to protect portfolio value.

Thank You!!