4 Лабораторная работа № 4. Эквивалентные преобразования контекстно-свободных грамматик

Цель: - закрепить понятия «эквивалентные грамматики», «приведенная КС-грамматика»;

- сформировать умения и навыки эквивалентных преобразований контекстно-свободных грамматик.

Основы теории

Определение 4.1. КС-грамматика называется приведенной, если она не имеет циклов, є-правил и бесполезных символов.

Рассмотрим основные алгоритмы приведения КС-грамматик.

Перед всеми другими исследованиями и преобразованиями КС-грамматик выполняется проверка существования языка грамматики.

Алгоритм 4.1. Проверка существования языка грамматики

Вход: КС-грамматика $G = (V_T, V_N, P, S)$.

Выход: заключение о существовании или отсутствии языка грамматики.

Определим множество нетерминалов, порождающих терминальные строки $N = \{Z \mid Z \in V_N, Z \Rightarrow *x, x \in V_T^*\}$.

Шаг 1. Положить N_0 =Ø.

Шаг 2. Вычислить $N_i = N_{i-1} \cup \{A \mid (A \to \alpha) \in P \text{ и } \alpha \in (N_{i-1} \cup V_T)^*\}.$

Шаг 3. Если $N_i \neq N_{i-1}$, то положить i=i+1 и перейти к пункту 2, иначе считать $N=N_i$.

Если $S \in N$, то выдать сообщение о том, что язык грамматики существует, иначе сообщить об отсутствии языка.

Пример 4.1. Дана грамматика $G = (\{0,1\}, \{S,A,B\}, P,S)$, где множество правил P: 1) $S \to AB; 2)$ $A \to 0A; 3)$ $A \to 0; 4)$ $B \to 1$. Построим последовательность приближений множества N:

 $N_0 = \emptyset;$ $N_1 = \{A, B\};$ $N_2 = \{S, A, B\};$

 $N_3 = \{S, A, B\}.$

Т.к. N_2 = N_3 , то N= $\{S, A, B\}$, следовательно, язык грамматики существует, потому что начальный символ $S \in N$.

Определение 4.2. Бесполезными символами грамматики называют:

а) нетерминалы, не порождающие терминальных строк, т.е. множество символов

$$\{X \mid X \in V_N, \neg \exists (X \Rightarrow *x), x \in V_T^*\};$$

б) недостижимые нетерминалы, порождающие терминальные строки, т.е. множество символов

$$\{X \mid X \in V_N, \neg \exists (S \Rightarrow *\alpha X \beta), \exists (X \Rightarrow *x); \alpha, \beta \in V^*; x \in V_T^*\};$$

в) недостижимые терминалы, т.е. множество символов

$$\{X \mid X \in V_T, \neg \exists (S \Rightarrow *\alpha X\beta); \alpha, \beta \in V^*\}.$$

Алгоритм 4.2. Устранение нетерминалов, не порождающих терминальных строк

Вход: КС-грамматика $G = (V_T, V_N, P, S)$.

Выход: КС-грамматика $G' = (V_T, V_N', P', S)$, такая, что L(G') = L(G) и для всех $Z \in V_N'$ существуют выводы $Z \Rightarrow *x$, где $x \in V_T^*$.

- Шаг 1. Определить множество нетерминалов, порождающих терминальные строки, с помощью алгоритма 4.1.
- Шаг 2. Вычислить $V_N' = V_N \cap N$, $N_E = V_N V_N'$, $P' = P P_E$, где $P_E \subseteq P$ это множество правил, содержащих бесполезные нетерминалы $X \in N_E$.

Пример 4.2. Дана грамматика $G = (\{a, b, c\}, \{S, A, B, C\}, P, S)$ с правилами P: 1) $S \to ab; 2)$ $S \to AC; 3)$ $A \to AB; 4)$ $B \to b; 5)$ $C \to cb$.

Преобразуем ее в эквивалентную грамматику G' по алгоритму 4.2:

 $N_0 = \emptyset$;

 $N_1 = \{S, B, C\};$

 $N_2 = \{S, B, C\}.$

Т.к. $N_1 = N_2$, то $N = \{S, B, C\}$. После удаления бесполезных нетерминалов и правил вывода, получим грамматику $G' = (\{a, b, c\}, \{S, B, C\}, P', S)$ с правилами P': 1) $S \to ab; 2$) $B \to b; 5$) $C \to cb$.

Алгоритм 4.3. Устранение недостижимых символов

Вход: КС-грамматика $G = (V_T, V_N, P, S)$.

Выход: КС-грамматика $G'=(V'_T,V'_N,P',S)$, такая, что L(G')=L(G) и для всех $Z\in V'$ существует вывод $S\Rightarrow *\alpha Z\beta$, где $\alpha,\beta\in (V')^*$.

Определим множество достижимых символов Z грамматики G, т.е. множество

$$W = \{Z \mid Z \in V, \exists (S \Rightarrow *\alpha Z\beta); \alpha, \beta \in V^*\}.$$

Шаг 1. Положить $W_0 = S$.

Шаг 2. Вычислить очередное приближение следующим образом:

$$W_i = W_{i-1} \cup \{X \mid X \in V, (A \to \alpha X \beta) \in P, A \in W_{i-1}; \alpha, \beta \in V^*\}.$$

Шаг 3. Если $W_i \neq W_{i-1}$, то положить $i{:=}i{+}1$ и перейти к шагу 2, иначе считать $W=W_i$.

Шаг 4. Вычислить $V_N' = V_N \cap W, V_T' = V_T \cap W, V_B = V - W, P' = P - P_B$, где $P_B \subseteq P$ - это множество правил, содержащих недостижимые символы $X \in V_B$.

Пример 4.3. Дана грамматика $G = (\{a, b, c\}, \{S, B, C\}, P, S)$ с правилами $P': 1) S \rightarrow ab; 2) B \rightarrow b; 5) C \rightarrow cb.$

Преобразуем ее в эквивалентную грамматику G' по алгоритму 4.3:

 $W_0 = \{S\};$

 $W_1 = \{S, a, b\};$

 $W_2 = \{S, a, b\}.$

Т.к. $W_1=W_2$, то $W=\{S, a, b\}$. Множество недостижимых символов $V_E=\{B,C,c\}$. Тогда после удаления недостижимых символов, получим грамматику $G'=(\{a,b\},\{S\},P,S)$ с правилом $P'\colon S\to ab$.

Алгоритм 4.4. Устранение ε-правил

Вход: КС-грамматика $G = (V_T, V_N, P, S)$.

Выход: Эквивалентная КС-грамматика $G' = (V_T, V_N', P', S')$ без ε -правил для всех нетерминальных символов, кроме начального, который не должен встречаться в правых частях правил грамматики.

- Шаг 1. В исходной грамматике G найти ε -порождающие нетерминальные символы $A \in V_N$, такие, что $A \Longrightarrow *\varepsilon$.
 - 1.1 Положить $N_0 = \{A \mid (A \to \varepsilon) \in P\}$.
 - 1.2 Вычислить $N_i = N_{i-1} \cup \{B \,|\, (B \to \alpha) \in P, \alpha \in N_{i-1}^*\}$.
- 1.3 Если $N_i \neq N_{i-1}$, то положить $i{:=}i{+}1$ и перейти к пункту 1.2, иначе считать $N=N_i$.
- Шаг 2. Из множества P правил исходной грамматики G перенести во множество P' все правила, за исключением ϵ -правил, т.е. $P' = P \{(A \to \varepsilon) \in P$ для всех $A \in V_N\}$.
- Шаг 3. Пополнить множество P' правилами, которые получаются из каждого правила этого множества путем исключения всевозможных комбинаций ε -порождающих нетерминалов в правой части. Полученные при этом ε -правила во множество P' не включать.
- Шаг 4. Если $S \in N$, то $P' = P \cup \{S' \to \varepsilon, S' \to S\}, V'_N = V_N \cup S'$, где $V \cap \{S'\} = \emptyset$; иначе $V'_N = V_N, S' = S$.

Пример 4.4. Дана грамматика $G = (\{0,1\}, \{S,A,B\}, P,S)$ с правилами $P: 1) S \to AB; 2) A \to 0A | \varepsilon; 3) B \to 1B | \varepsilon$. Преобразуем ее в эквивалентную грамматику по алгоритму 4.4.

IIIar 1.
$$N_0 = \{A, B\}$$
;
 $N_1 = \{S, A, B\}$;
 $N_2 = \{S, A, B\}$.

Т.к. $N_1 = N_2$, то искомое множество построено и $N = \{S, A, B\}$.

Шаг 2, 3. Множество P': 1) $S \to AB | A | B; 2$) $A \to 0A | 0; 3$) $B \to 1B | 1$.

Шаг 4. Т.к. $S \in N$, то введем новый нетерминал C и пополним множество P' правилом вида $C \to S \mid \varepsilon$. Результирующая грамматика будет иметь вид: $G' = (\{0,1\}, \{S,A,B,C\}, P,C)$ с правилами $P' \colon 1) C \to S \mid \varepsilon$; $2) S \to AB \mid A \mid B$; $3) A \to 0A \mid 0$; $4) B \to 1B \mid 1$.

Алгоритм 4.5. Устранение цепных правил

Вход: КС-грамматика $G = (V_T, V_N, P, S)$.

Выход: Эквивалентная КС-грамматика $G' = (V_T, V_N', P', S')$ без цепных правил, т.е. правил вида $A \to B$, где $A, B \in V_N$.

Шаг 1. Для каждого нетерминала A вычислить множество выводимых из него нетерминалов, т.е. множество $N^A = \{B \mid A \Longrightarrow *B, \ \text{где } B \in V_N\}.$

- 1.1 Положить $N_0^A = \{A\}$.
- 1.2 Вычислить $N_i^A = N_{i-1}^A \cup \{C \mid (B \to C) \in P, B \in N_{i-1}^A, C \in V_N\}.$
- 1.3 Если $N_i^A \neq N_{i-1}^A$, то положить $i{:=}i{+}1$ и перейти к пункту 1.2, иначе считать $N^A = N_i^A$.
- Шаг 2. Построить множество P' так: если $(B \to \alpha) \in P$ не является цепным правилом $(\alpha \notin V_N)$, то включить в P' правило $A \to \alpha$ для каждого A, такого, что $B \in N^A$.

Пример 4.5. Грамматика $G = (\{+, n\}, \{L, M, N\}, P, L)$ с правилами $P : 1) L \to M; 2) M \to N; 3) N \to N + |n|$. Преобразуем ее в эквивалентную грамматику G' по алгоритму 4.5.

Шаг 1.
$$N_0^L = \{L\};$$

$$N_1^L = \{L, M\};$$

$$N_2^L = \{L, M, N\};$$

$$N_3^L = \{L, M, N\}.$$
 Т.к. $N_2^L = N_3^L$, то $N^L = \{L, M, N\}.$
$$N_0^M = \{M\};$$

$$\begin{split} N_1^M &= \{M,N\};\\ N_2^M &= \{M,N\}.\\ \text{Т.к. } N_1^M &= N_2^M \text{ , to } N^M = \{M,N\}.\\ N_0^N &= \{N\};\\ N_1^N &= \{N\}.\\ \text{Т.к. } N_1^N &= N_0^N \text{ , to } N^N = \{N\}. \end{split}$$

Шаг 2. Преобразовав правила вывода грамматики, получим грамматику $G' = (\{+, n\}, \{L, M, N\}, P', L)$ с правилами P':

1)
$$L \to N + |n;$$
 2) $M \to N + |n;$ 3) $N \to N + |n|$

Алгоритм 4.6. Устранение левой факторизации правил

Вход: КС-грамматика $G = (V_T, V_N, P, S)$.

Выход: Эквивалентная КС-грамматика $G' = (V_T, V_N', P', S')$ без одинаковых префиксов в правых частях правил, определяющих нетерминалы.

- Шаг 1. Записать все правила для нетерминала X, имеющие одинаковые префиксы $\alpha \in V^*$, в виде одного правила с альтернативами: $X \to \alpha \beta_1 \, | \, \alpha \beta_2 \, | \, \ldots \, | \, \alpha \beta_n; \, \, \beta_1, \, \beta_2, \ldots, \beta_n \in V^*.$
- Шаг 2. Вынести за скобки влево префикс α в каждой строкеальтернативе: $X \to \alpha(\beta_1 \mid \beta_2 \mid \ldots \mid \beta_n)$.
- Шаг 3. Обозначить новым нетерминалом Y выражение, оставшееся в скобках: $X \to \alpha Y, Y \to \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$.
- Шаг 4. Пополнить множество нетерминалов новым нетерминалом Y и заменить правила, подвергшиеся факторизации, новыми правилами для X и Y.
- Шаг 5. Повторить шаги 1-4 для всех нетерминалов грамматики, для которых это возможно и необходимо.

Пример 4.6. Дана грамматика $G = (\{k, l, m, n\}, \{S\}, P, S)$ с правилами P: 1) $S \to kSl$; 2) $S \to kSm$; 3) $S \to n$. Преобразуем ее в эквивалентную грамматику G' по алгоритму 4.6:

Шаг 1. $S \rightarrow kSl \mid kSm \mid n$.

Шаг 2. $S \rightarrow kS(l|m)|n$.

Шаг 3,4. Пополнив множество нетерминалов новым нетерминалом C и заменив правила, подвергшиеся факторизации, получим грамматику $G' = (\{k, l, m, n\}, \{S, C\}, P', S)$ с правилами P' : 1) $S \to kSC; 2)$ $S \to n; 3)$ $C \to l;$ $A \to C \to m$.

Алгоритм 4.7. Устранение прямой левой рекурсии

Вход: КС-грамматика $G = (V_T, V_N, P, S)$.

Выход: Эквивалентная КС-грамматика $G' = (V_T, V_N', P', S')$ без прямой левой рекурсии, т.е. без правил вида $A \to A\alpha, A \in V_N, \alpha \in V^*$.

Шаг 1. Вывести из грамматики все правила для рекурсивного нетерминала X :

$$X \to X\alpha_1 \mid X\alpha_2 \mid \dots \mid X\alpha_m \quad (X \in V_N; \alpha_1, \alpha_2, \dots, \alpha_m \in V^*)$$

$$X \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_n \quad (\beta_1, \beta_2, \dots, \beta_n \in V^*).$$

Шаг 2. Внести новый нетерминал Y так, чтобы он описывал любой «хвост» строки, порождаемой рекурсивным нетерминалом X:

$$Y \rightarrow \alpha_1 Y \mid \alpha_2 Y \mid \dots \mid \alpha_m Y$$

$$Y \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_m$$
.

Шаг 3. Заменить в рекурсивном правиле для X правую часть, используя новый нетерминал и все нерекурсивные правила для X так, чтобы генерируемый язык не изменился:

$$X \to \beta_1 Y | \beta_2 Y | \dots | \beta_n Y$$

$$X \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

$$Y \rightarrow \alpha_1 Y | \alpha_2 Y | \dots | \alpha_m Y$$

$$Y \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_m$$
.

Шаг 4. Пополнить множество нетерминалов грамматики новым нетерминалом Y. Пополнить множество правил грамматики правилами, полученными на шаге 3.

Шаг 5. Повторить действия шагов 1-4 для всех рекурсивных нетерминалов грамматики, после чего полученные множества нетерминалов и правил принять в качестве V_N' и P'.

Пример 4.7. Дана грамматика $G = (\{a, b, c, d, z\}, \{S, A, B, C\}, P, S)$ с правилами $P: 1) S \to Aa; 2) A \to Bb; 3) B \to Cc | d; 4) C \to Ccbz | dbz$. После устранения прямой левой рекурсии получим эквивалентную грамматику $G' = (\{a, b, c, d, z\}, \{S, A, B, C, Z\}, P', S)$ с правилами P':

1)
$$S \rightarrow Aa$$
; 2) $A \rightarrow Bb$; 3) $B \rightarrow Cc \mid d$; 4) $C \rightarrow dbzZ \mid dbz$; 5) $Z \rightarrow cbzZ \mid cbz$.

Постановка задачи к лабораторной работе № 4

Разработать программное средство, автоматизирующее процесс эквивалентного преобразования КС-грамматик. Программное средство должно выполнять следующие функции:

- 1) организация ввода грамматики и проверка ее на принадлежность к классу КС-грамматик;
 - 2) проверка существования языка КС-грамматики;

- 3) реализация эквивалентных преобразований грамматики, направленных на удаление:
 - а) бесполезных символов;
 - б) недостижимых символов;
 - в) ε-правил;
 - г) цепных правил;
 - д) левой факторизации правил;
 - е) прямой левой рекурсии.

Варианты индивидуальных заданий представлены в таблице 4.1.

Вариант	Контекстно-свободная грамматика
1	$G=(\{S,A,B,D,E\},\{a,b,c,e\},P,S),$ где $P:$ 1) $S \rightarrow AB \mid \varepsilon$, 2) $A \rightarrow Aa \mid S \mid a$; 3) $B \rightarrow bD \mid bS \mid b$; 4) $D \rightarrow ccD$; 5) $E \rightarrow eE \mid e$.
2	$G=(\{E, T, F, G, H\}, \{+, -, *, /, n, m, h\}, P, E), $ где P : 1) $E \rightarrow T \mid E + T \mid E - T \mid \varepsilon$; 2) $T \rightarrow F \mid F * T \mid F / T \mid \varepsilon$; 3) $F \rightarrow G \mid F n \mid n$; 4) $G \rightarrow G m$; 5) $H \rightarrow H h \mid h$.
3	$G=(\{S, R, T, X, Y\}, \{a, b, p, g, y\}, P, S),$ где $P:$ 1) $S \to R \mid T;$ 2) $R \to pX \mid paR \mid paT \mid \varepsilon$ 3) $T \to Tg \mid g;$ 4) $X \to aXb;$ 5) $Y \to aYa \mid y.$
4	$G=(\{Q,A,B,C,D\},\{a,b,c,d\},P,Q)$, где P : 1) $Q \to acA \mid acB \mid \varepsilon$; 2) $B \to A \mid Cb \mid \varepsilon$; 3) $A \to Aa \mid Ab \mid a$; 4) $C \to dCc$ 5) $D \to dc$
5	$G=(\{R, T, F, G, K\}, \{m, i, j, k, ^, \sim, \bot\}, P, R),$ где $P:$ 1) $R \rightarrow R \sim T \bot \mid R \wedge T \bot \mid \varepsilon;$ 2) $T \rightarrow F \mid Fi \mid Fj \mid Gk \mid \varepsilon;$ 3) $G \rightarrow GkG;$ 4) $K \rightarrow Ki \mid Km \mid m.$
6	$G=(\{S, X, Y, Z, K\}, \{x, y, z, k, \#, \$\}, P, S),$ где P : 1) $S \rightarrow X \mid Y \mid Z$; 2) $X \rightarrow x \# X \mid x \# Y \mid \varepsilon$; 3) $Y \rightarrow Yy \$ \mid Yz \$ \mid \$ \mid \varepsilon$; 4) $Z \rightarrow Zz \$$; 5) $K \rightarrow Kk \$ \mid k \$$.
7	$G=(\{S, L, M, P, N\}, \{n, m, l, p, @, \bot\}, V, S),$ где V : 1) $S \rightarrow @nL \mid @mM \mid P$; 2) $L \rightarrow M \mid Ll\bot \mid Lm\bot \mid \varepsilon$; 3) $M \rightarrow L \mid Mm \mid mm$; 4) $N \rightarrow pN@ \mid @$; 5) $P \rightarrow nmP$.
8	$G=(\{X, Y, Z, K, L\}, \{a, b, l, =, <, >, \land, \lor, \neg\}, V, X),$ где V : 1) $X \rightarrow Y \mid Y = Y \mid Y < Y \mid Y > Y \mid K$; 2) $Y \rightarrow Y \land Z \mid Y \lor Z \mid \varepsilon$; 3) $Z \rightarrow \neg a \mid \neg b \mid \varepsilon$; 4) $K \rightarrow \neg K$; 5) $L \rightarrow l \mid a \mid b$.
9	$G=(\{Q,A,B,C,D\},\{0,1,-\},P,Q)$, где P : 1) $Q \rightarrow 01A \mid 01B \mid A; 2) A \rightarrow 0B1 \mid B \mid 1 \mid \epsilon; 3) B \rightarrow BA0 \mid B1 \mid C \mid \epsilon;$

Вариант	Контекстно-свободная грамматика
	4) $C \rightarrow 0C11$; 5) $D \rightarrow -D1 \mid -0 \mid -1$.
10	$G=(\{R, T, U, W, V\}, \{0, 1, +, -, *, /\}, P, R),$ где $P:$ 1) $R \rightarrow T1T \mid T1U \mid W \mid \varepsilon;$ 2) $T \rightarrow U \mid T01 \mid T10 \mid \varepsilon;$ 3) $U \rightarrow +U \mid +0 \mid +1$ 4) $W \rightarrow W - W \mid W + W;$ 5) $V \rightarrow *0 \mid /1.$
11	$G=(\{S, R, T, F, E\}, \{a, b, k, \{, [, \},], \bot\}, P, S),$ где P : 1) $S \rightarrow \{R \mid [R; 2] R \rightarrow Ra\} \mid Ra] \mid a \mid T \mid F \mid \varepsilon;$ 3) $F \rightarrow \{F\} \mid bb;$ 4) $T \rightarrow [T];$ 5) $E \rightarrow k \bot$.
12	$G=(\{Y, K, M, L, S\}, \{a, b, *, /, ^\}, P, Y),$ где P : 1) $Y \rightarrow KS \mid KM$; 2) $K \rightarrow K^* \mid K/\mid S$; 3) $S \rightarrow Sa/\mid Sb/\mid \varepsilon$; 4) $M \rightarrow *M^*$; 5) $L \rightarrow L^{\wedge}\mid ^a$.