mathshub

международная школа анализа данных и разработки

SQL Project

Анализ влияния внешних и внутренних факторов на уровень заработной платы в Data-профессиях

Varlamov Nikita

Data Science Salaries 2023

Для анализа данных был взят датасет с сайта Kaggle.com, содержащий информацию о заработной плате в различных областях Data-профессий на 2023 год.

Набор данных о зарплатах в сфере Data Science содержит 11 столбцов:

- work_year: год выплаты зарплаты;

- experience_level: уровень опыта работы на должности в течение года;

тип занятости на соответствующей должности; - employment_type:

- job_title: наименование должность;

общая сумма выплаченной заработной платы за год; - salary:

salary_currency: валюта выплачиваемой зарплаты в виде кода валюты ISO 4217;

- salaryinusd: заработная плата в долларах США;

- employee_residence: основная страна проживания сотрудника в течение рабочего года

в виде кода страны ISO 3166;

общий объем работы, выполненной удаленно; - remote_ratio:

страна головного офиса или филиала работодателя; - company_location:

среднее количество людей, работавших в компании в течение года. - company_size:

Alerts 5

Reproduction

Dataset statistics

Number of variables	11
Number of observations	2584
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	232.2 KiB
Average record size in memory	92.0 B

Variable types

Numeric	2
Categorical	6
Text	3

ЦЕЛЬ

Определение влияния внешних и внутренних факторов на уровень заработной платы в Data-профессиях

 .01
 .03
 .05

 Общий анализ
 Формат занятости
 Корреляция

 Определение состава выборки,
 Определение изменений в соотношении
 Определение статистической

 процентных соотношений групп датасета
 формата занятости (удаленной работы)
 взаимосвязи

 ▼
 ▼

.02

Изменение з/п

Анализ изменения заработной платы г/г, определение средней зарплаты по Dataпрофессиям

.04

Анализ заработной платы

Выявление зависимости заработной платы от различных факторов


```
# Основные
import numpy as np
import pandas as pd
from ydata_profiling import ProfileReport
import sqlite3
from sqlalchemy import create_engine
# Визуализация
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.figure_factory as ff
import plotly.graph_objects as go
import nltk
from wordcloud import WordCloud
# Статистика
from scipy import stats
from scipy.stats import norm
```


Библиотеки

Для работы с данными в основном использовался функционал pandas. Подключение к БД через sqlite3. Визуализация данных: matplotlib, seaborn, wordcloud. Статистика: scipy.

Формирование dataframe

Формирование датафрейм из формата csv.

Просмотр вида табличных данных,

определение формы таблицы и типа данных.

Null и дубликаты

Проверка данных на пустые значения и дубликаты. Пустых значений не выявлено, дубликаты строк в количестве 1171 удалены. Промежуточное значение shape 2584/11.

1

```
# Наименование столбцов соответствует naming convention.
# Уточнение наименования значений данных.
df['experience_level'] = df['experience_level'].replace({
    'EN': 'Junior',
    'MI': 'Middle',
    'SE': 'Senior',
    'EX': 'Executive',
df['employment_type'] = df['employment_type'].replace({
    'FL': 'Freelancer',
    'CT': 'Contractor',
    'FT' : 'Full-time',
    'PT' : 'Part-time'
df['company_size'] = df['company_size'].replace({
    'S': 'SMALL',
    'M': 'MEDIUM',
    'L' : 'LARGE',
df['remote ratio'] = df['remote ratio'].astype(str)
df['remote ratio'] = df['remote ratio'].replace({
    '0': 'Office',
    '50': 'Half-Remote',
    '100' : 'Full-Remote',
```

```
#Группировка профессий и удаление лишних колонок
   def assign_broader_category(job_title):
       data_analyst = ['Data Analyst', ...
       data_engineering = ['Analytics Engineer', ...
       data_scientist = ['Principal Data Scientist', ...
       machine learning = ['ML Engineer', ...
       data architecture = ['Data Architect', ...
       management = ['Data Analytics Manager', ...
       if job_title in data_analyst:
          return "Data Analyst"
       elif job_title in data_engineering:
           return "Data Engineering"
       elif job_title in data_scientist:
          return "Data Science"
       elif job title in machine learning:
          return "Machine Learning"
       elif job_title in data_architecture:
           return "Data Architecture"
       elif job_title in management:
          return "Management"
       else:
          return "Other"
   df['job_category'] = df['job_title'].apply(assign_broader_category)
   df.insert(loc=0, column='id', value=(np.arange(1, 1 + len(df))))
   df.drop(df[['salary','salary_currency']], axis = 1, inplace = True)
   df.shape
 ✓ 0.0s
(2584, 11)
```

Naming convention

Наименование столбцов таблицы соответствует Naming convention.

Однако значения данных в таблице требуют уточнения для более оперативного ориентирования в базе.

Добавление/удаление столбцов

Формирование итогового вида таблицы.

Удаление данных о зарплате в местной валюте и виде валюты. Добавление колонки id, а также группировка Data-профессий по направлениям.

Итоговой значение shape 2584/11.

```
# Загрзука в БД SQLite

database_path = r'C:\sqlite\ds_salary'
engine = create_engine(f'sqlite:///{database_path}')
connection = engine.connect()
table_name = 'ds_salary'
df.to_sql(table_name, engine, if_exists='replace', index=False)

✓ 0.0s

# Закрываем соединение
connection.close()

[363] ✓ 0.0s
```

Загрузка БД

Загрузка таблицы в базу данных.

В качестве СУБД используем SQLite.

4 5

1. ОБЩИЙ АНАЛИЗ

Распределение направлений Data-профессий

```
-- Процентное соотношение Data направлений по годам

SELECT

ds.work_year,
ds.job_category,
COUNT(ds.job_category) AS job_category_cnt,
COUNT(ds.job_category)*100/wyc.cnt AS percentage

FROM ds_salary ds
JOIN (SELECT

work_year,
count(work_year) AS cnt
FROM ds_salary ds
GROUP BY 1)
AS wyc

ON ds.work_year = wyc.work_year
GROUP BY 1,2
```

```
SELECT

ds.job_category,

cOUNT(ds.job_category) AS job_category_cnt,

cOUNT(ds.job_category)*100/cnt_all.cnt_all AS percentage

FROM ds_salary ds

JOIN (SELECT

COUNT(*) as cnt_all

FROM ds_salary ds)

AS cnt_all

GROUP BY 1
```


	123 work_year	pob_category Tob_category	123 job_category_cnt	•	123 percentage	•
1	2 020	Data Analyst		15		20
2	2 020	Data Engineering		19		25
3	2 020	Data Science		28		37
4	2 020	Machine Learning		7		9
5	2 020	Management		3		4
6	2 020	Other		3		4
7	2 021	Data Analyst		29		12
8	2 021	Data Architecture		5		2
9	2 021	Data Engineering		55		24
10	2 021	Data Science		68		29
11	2 021	Machine Learning		33		14
12	2 021	Management		19		8
13	2 021	Other		19		8
14	2 022	Data Analyst	2	206		18
15	2 022	Data Architecture		31		2
16	2 022	Data Engineering	3	348		30
17	2 022	Data Science	3	303		26
18	2 022	Machine Learning		142		12
19	2 022	Management		54		4
20	2 022	Other		41		3
21	2 023	Data Analyst	2	216		18
22	2 023	Data Architecture		32		2
23	2 023	Data Engineering	3	369		31
24	2 023	Data Science	2	299		25
25	2 023	Machine Learning		141		12
26	2 023	Management		55		4
27	2 023	Other		44		3

	pob_category ~	123 job_category_cnt	123 percentage
1	Data Analyst	466	18
2	Data Architecture	68	2
3	Data Engineering	791	30
4	Data Science	698	27
5	Machine Learning	323	12
6	Management	131	5
7	Other	107	4

1. ОБЩИЙ АНАЛИЗ

Процентное соотношение уровня градаций специалистов

```
-- Процентное соотношение уровня опыта по годам
CREATE VIEW proc_exp_year AS
SELECT
   ds.work_year,
   ds.experience_level,
   COUNT(ds.experience_level) AS count_exp_lvl,
   COUNT(ds.experience_level)*100/wyc.cnt AS percentage
FROM ds_salary ds
JOIN (
   SELECT
        work_year,
       COUNT(work_year) AS cnt
   FROM ds_salary ds
   GROUP BY 1)
    AS wyc
ON ds.work_year = wyc.work_year
GROUP BY 1,2
```

	¹²³ work_year	experience_level	123 count_exp_lvl	123 percentage
1	2 020	Executive	3	4
2	2 020	Junior	22	29
3	2 020	Middle	32	42
4	2 020	Senior	18	24
5	2 021	Executive	10	4
6	2 021	Junior	55	24
7	2 021	Middle	90	39
8	2 021	Senior	73	32
9	2 022	Executive	39	3
10	2 022	Junior	110	9
11	2 022	Middle	288	25
12	2 022	Senior	688	61
13	2 023	Executive	44	3
14	2 023	Junior	83	7
15	2 023	Middle	254	21
16	2 023	Senior	775	67

Тенденции в Data-профессиях

Top 15 Data-профессий

1. ОБЩИЙ АНАЛИЗ

Тенденции в Data-профессиях

1	Data Analyst		¹²³ avarage_salary	¹²³ y_y_changes_perc	¹²³ changes_perc
		2 020	54 047	[NULL]	0
2	Data Analyst	2 021	77 373	43,16	43,16
3	Data Analyst	2 022	99 906	29,12	84,85
4	Data Analyst	2 023	109 859	9,96	103,27
5	Data Architecture	2 021	169 941	[NULL]	0
6	Data Architecture	2 022	165 752	-2,46	-2,46
7	Data Architecture	2 023	165 245	-0,31	-2,76
8	Data Engineering	2 020	84 025	[NULL]	0
9	Data Engineering	2 021	93 439	11,2	11,2
10	Data Engineering	2 022	136 759	46,36	62,76
11	Data Engineering	2 023	152 024	11,16	80,93
12	Data Science	2 020	102 120	[NULL]	0
13	Data Science	2 021	88 230	-13,6	-13,6
14	Data Science	2 022	132 341	50	29,59
15	Data Science	2 023	154 841	17	51,63
16	Machine Learning	2 020	129 966	[NULL]	0
17	Machine Learning	2 021	102 898	-20,83	-20,83
18	Machine Learning	2 022	137 146	33,28	5,52
19	Machine Learning	2 023	164 676	20,07	26,71
20	Management	2 020	210 768	[NULL]	0
21	Management	2 021	149 744	-28,95	-28,95
22	Management	2 022	163 471	9,17	-22,44
23	Management	2 023	162 247	-0,75	-23,02
24	Other	2 020	64 299	[NULL]	0
25	Other	2 021	46 119	-28,27	-28,27
26	Other	2 022	115 514	150,47	79,65
27	Other	2 023	144 892	25,43	125,34

2. ИЗМЕНЕНИЕ 3/П

Определение средней зарплаты по Data-профессиям. Анализ изменения з/п год к году

```
-- Максимальные зарплаты в направлениях по годам

SELECT

ds.work_year,
ds.job_category,
ds.job_title,
MAX(salary_in_usd) AS max_s

FROM ds_salary ds

GROUP BY 1,2

ORDER BY 1,4
```

```
-- Средние зарплаты в направлениях по годам

SELECT

    ds.work_year,
    ds.job_category,
    ds.job_title,
    ROUND(AVG(salary_in_usd)) AS avg_s

FROM ds_salary ds

GROUP BY 1,2

ORDER BY 1,4
```

Диаграмма размаха з/п по категориям Data-профессий


```
-- Изменения з/п год к году по направлениям Data профессий
```

```
SELECT
```

```
ds.job_category,
ds.work_year,
ROUND(AVG(salary_in_usd)) AS avarage_salary,
ROUND((ROUND(AVG(salary_in_usd)) * 100 / lag(ROUND(AVG(salary_in_usd))) OVER (PARTITION BY job_category ORDER BY job_category) - 100), 2) AS y_y_changes_perc,
ROUND((ROUND(AVG(salary_in_usd))) * 100 / first_value(ROUND(AVG(salary_in_usd))) OVER (PARTITION BY job_category ORDER BY job_category) - 100), 2) AS changes_perc
FROM ds_salary ds
GROUP BY 1,2
```

3. ФОРМАТ ЗАНЯТОСТИ

Определение изменений в соотношении формата занятости

remote_ratio	123 work_year	123 remote_perc	¹²³ y_y_perc ▼
Full-Remote	2 020	50	[NULL]
Full-Remote	2 021	52	4
Full-Remote	2 022	55	5
Full-Remote	2 023	36	-35
Half-Remote	2 020	28	[NULL]
Half-Remote	2 021	32	14
Half-Remote	2 022	5	-85
Half-Remote	2 023	2	-60
Office	2 020	21	[NULL]
Office	2 021	14	-34
Office	2 022	38	171
Office	2 023	60	57


```
-- Как менялось процентное соотношение "удаленки"

SELECT
    ds.remote_ratio,
    ds.work_year,
    COUNT(ds.remote_ratio)*100/wyc.cnt AS remote_perc,
    (COUNT(ds.remote_ratio)*100/wyc.cnt) * 100 / lag(COUNT(ds.remote_ratio)*100/wyc.cnt) OVER (PARTITION BY ds.remote_ratio ORDER BY ds.work_year) - 100 AS y_y_perc

FROM ds_salary ds

JOIN (SELECT work_year, count(work_year) AS cnt FROM ds_salary ds GROUP BY 1) AS wyc

ON ds.work_year = wyc.work_year

GROUP BY 1,2
```

	psc job_category	asc company_size	123 min_s	123 avg_s	¹²³ max_s ▼
1	Data Analyst	LARGE	6 072	76 659	405 000
2	Data Analyst	MEDIUM	8 050	108 449	430 967
3	Data Analyst	SMALL	5 723	64 201	200 000
4	Data Architecture	LARGE	38 154	158 345	250 000
5	Data Architecture	MEDIUM	63 000	166 818	376 080
6	Data Engineering	LARGE	5 882	107 358	276 000
7	Data Engineering	MEDIUM	7 500	145 433	324 000
8	Data Engineering	SMALL	12 608	81 135	160 000
9	Data Science	LARGE	8 000	116 625	412 000
10	Data Science	MEDIUM	5 707	146 739	450 000
11	Data Science	SMALL	5 679	76 211	416 000
12	Machine Learning	LARGE	12 000	127 818	423 000
13	Machine Learning	MEDIUM	12 000	159 022	375 000
14	Machine Learning	SMALL	10 000	88 053	260 000
15	Management	LARGE	54 094	143 376	325 000
16	Management	MEDIUM	45 600	169 303	353 200
17	Management	SMALL	31 520	103 173	168 000
18	Other	LARGE	5 409	126 085	423 834
19	Other	MEDIUM	5 132	121 172	342 810
20	Other	SMALL	6 304	76 273	275 000

	remote_ratio	¹²³ work_year ▼	¹² min_s ▼	¹²₃ avg_s ▼	¹² max_s ▼	¹²³ y_y_perc ▼	123 y_y_changes_perc
1	Full-Remote	2 020	6 072	102 033	412 000	[NULL]	[NULL]
2	Full-Remote	2 021	5 679	105 021	416 000	2,93	0,3
3	Full-Remote	2 022	5 132	131 690	405 000	25,39	39,02
4	Full-Remote	2 023	15 806	142 135	376 080	7,93	12,92
5	Half-Remote	2 020	5 707	77 591	250 000	[NULL]	[NULL]
6	Half-Remote	2 021	5 409	75 909	423 000	-2,17	0,3
7	Half-Remote	2 022	7 500	85 127	375 000	12,14	39,02
8	Half-Remote	2 023	12 767	72 054	220 000	-15,36	12,92
9	Office	2 020	6 072	93 426	450 000	[NULL]	[NULL]
10	Office	2 021	5 882	92 900	276 000	-0,56	0,3
11	Office	2 022	6 304	134 294	430 967	44,56	39,02
12	Office	2 023	7 000	153 186	423 834	14,07	12,92

	experience_level	¹²³ work_year ▼	¹²³ min_s ▼	¹²³ avg_s ▼	123 max_s	¹²³ y_y_perc ▼	123 y_y_changes_perc
1	Executive	2 020	15 000	139 944	325 000	[NULL]	[NULL]
2	Executive	2 021	69 741	186 128	416 000	33	0,3
3	Executive	2 022	76 309	183 838	324 000	-1,23	39,02
4	Executive	2 023	100 000	202 107	353 200	9,94	12,92
5	Junior	2 020	5 707	59 512	250 000	[NULL]	[NULL]
6	Junior	2 021	5 409	54 905	225 000	-7,74	0,3
7	Junior	2 022	6 270	69 950	300 000	27,4	39,02
8	Junior	2 023	7 000	91 465	220 000	30,76	12,92
9	Middle	2 020	6 072	87 565	450 000	[NULL]	[NULL]
10	Middle	2 021	5 409	80 711	423 000	-7,83	0,3
11	Middle	2 022	5 132	99 579	430 967	23,38	39,02
12	Middle	2 023	16 414	113 660	340 000	14,14	12,92
13	Senior	2 020	33 511	137 241	412 000	[NULL]	[NULL]
14	Senior	2 021	18 907	126 085	276 000	-8,13	0,3
15	Senior	2 022	8 000	149 573	405 000	18,63	39,02
16	Senior	2 023	15 806	160 743	423 834	7,47	12,92

```
-- Зависимость уровня з/п по направлениям Data профессий от:
-- 1. размера компании
SELECT
    ds.job_category,
    ds.company_size,
    MIN(ds.salary_in_usd) AS min_s,
    ROUND(AVG(ds.salary_in_usd)) AS avg_s,
    MAX(ds.salary_in_usd) AS max_s
FROM ds_salary ds
GROUP BY 1,2
-- в отрыве от направлений профессий
SELECT
    ds.company_size,
    MIN(ds.salary_in_usd) AS min_s,
    ROUND(AVG(ds.salary_in_usd)) AS avg_s,
    MAX(ds.salary_in_usd) AS max_s
FROM ds_salary ds
GROUP BY 1
```

4. АНАЛИЗ 3/П

Выявление зависимости заработной платы от различных факторов

```
-- Зависимость уровня з/п по направлениям Data профессий от:
-- 2. от типа занятости
-- в отрыве от направлений профессий, но с учетом года
SELECT
    ds.remote ratio,
    ds.work_year,
   MIN(ds.salary_in_usd) AS min_s,
   ROUND(AVG(ds.salary_in_usd)) AS avg_s,
    MAX(ds.salary_in_usd) AS max_s,
   ROUND(((AVG(ds.salary_in_usd)) * 100 / lag(ROUND(AVG(ds.salary_in_usd)))
       OVER (PARTITION BY ds.remote_ratio ORDER BY ds.work_year) - 100), 2) AS y_y_perc,
    yy.y_y_changes_perc
FROM ds_salary ds
JOIN yy
ON yy.work_year = ds.work_year
GROUP BY 1,2
```

```
SELECT

ds.experience_level,
ds.work_year,
MIN(ds.salary_in_usd) as min_s,
ROUND(AVG(ds.salary_in_usd)) as avg_s,
MAX(ds.salary_in_usd) as max_s,
ROUND(((AVG(ds.salary_in_usd)) * 100 / lag(ROUND(AVG(ds.salary_in_usd)))

OVER (PARTITION BY ds.experience_level ORDER BY ds.work_year) - 100), 2) AS y_y_perc,
yy.y_y_changes_perc
FROM ds_salary ds
JOIN yy
ON yy.work_year = ds.work_year
GROUP BY 1,2
```

```
-- Зависимость уровня з/п по направлениям Data профессий от:
-- 4. от локации компании/резиденции
CREATE VIEW loc AS
SELECT
    ROW_NUMBER() OVER (ORDER BY ROUND(AVG(ds.salary_in_usd)) DESC) as loc_id,
   ds.company_location,
   MIN(ds.salary_in_usd) AS min_s,
   ROUND(AVG(ds.salary_in_usd)) AS avg_s,
   MAX(ds.salary_in_usd) AS max_s,
    count(ds.company_location) AS loc_cnt
FROM ds_salary ds
GROUP BY 2
LIMIT 7
CREATE VIEW res AS
SELECT
    ROW_NUMBER() OVER (ORDER BY ROUND(AVG(ds.salary_in_usd)) DESC) as res_id,
   ds.employee_residence,
   MIN(ds.salary_in_usd) AS min_s,
    ROUND(AVG(ds.salary_in_usd)) AS avg_s,
   MAX(ds.salary_in_usd) AS max_s,
    count(ds.employee_residence) AS res_cnt
FROM ds_salary ds
GROUP BY 2
LIMIT 7
SELECT *
FROM loc
JOIN res
ON loc.loc_id = res.res_id
```


	¹2₃ loc_id ▼	RBC company_location	123 min_s	¹² 3 avg_ € ▼	¹² 3 max_s ▼	¹² loc_cnt ▼	¹²₃ res_id ▼	employee_residence	¹² min_s ▼	¹²₃³ avg_s ▼	¹² 3 max_s ▼	¹²₃³ res_cnt ▼
1	1	IL	119 059	271 447	423 834	2	1	IL	423 834	423 834	423 834	1
2	2	PR	135 000	167 500	200 000	4	2	MY	200 000	200 000	200 000	1
3	3	US	5 679	152 375	450 000	1 929	3	PR	135 000	166 000	200 000	5
4	4	RU	85 000	140 333	230 000	3	4	US	24 000	153 972	450 000	1 893
5	5	CA	15 000	130 573	275 000	83	5	CA	10 000	130 860	275 000	81
6	6	NZ	125 000	125 000	125 000	1	6	CN	125 404	125 404	125 404	1
7	7	BA	120 000	120 000	120 000	1	7	NZ	125 000	125 000	125 000	1

Определение статистической взаимосвязи

ВЫВОДЫ

- Год к году по данной выборке соотношение смещается в сторону увеличения уровня опыта.
- Наиболее высокая зарплатная вилка у Менеджмента и Архитекторов данных.
- 3. Уровень удаленной формы работы стремительно уменьшается после 2021 года.
- 4. Значительный рост з/п Executive в 2021 году, на фоне снижения зарплаты у специалистов более низкого уровня. Vise versa в 2022 году.
- 5. Наиболее значительная сила корреляции с уровнем заработной платы наблюдается у уровня опыта Senior. Степень связи умеренная.

1.00 0.16 -0.29 -0.27 0.35 -0.02 -0.07 0.12 -0.10 -0.02 -0.22 0.11 -0.11 0.20 -0.19 -0.24 0.06 0.05 0.06 0.07 0.09 -0.07 1.00 0.16 1.00 -0.05 -0.09 -0.25 0.02 -0.01 0.00 -0.01 0.01 0.00 -0.01 -0.00 -0.00 0.01 -0.07 -0.01 0.07 -0.06 -0.05 0.20 -0.02 0.16 experience level Executive -0.29 -0.05 1.00 -0.16 -0.43 0.02 0.02 -0.14 0.18 0.01 0.21 -0.10 0.18 -0.25 0.18 0.06 -0.05 -0.04 -0.01 0.00 -0.05 0.11 -0.29 experience_level_Junior -0.27 -0.09 -0.16 1.00 -0.74 0.04 0.04 -0.03 -0.01 -0.02 0.10 -0.02 0.07 -0.10 0.06 0.08 -0.06 -0.02 -0.03 0.03 -0.02 0.00 -0.27 experience_level_Middle 0.35 -0.25 -0.43 -0.74 1.00 -0.05 -0.04 0.11 -0.10 0.01 -0.21 0.08 -0.17 0.24 -0.16 -0.08 0.09 0.02 0.06 -0.01 -0.02 -0.06 0.35 experience_level_Senior -0.02 0.02 0.02 0.04 -0.05 1.00 -0.00 **-0.52 -0.00 0.05 0.01 -0.05 0.01 -0.06 0.10 0.00 -0.01 -0.03 -0.01 0.05 -0.01 0.02 -0.02** employment_type_Contractor -0.07 -0.01 0.02 0.04 -0.04 -0.00 1.00 -0.52 -0.00 0.01 0.08 -0.04 -0.00 -0.05 0.10 -0.01 -0.01 -0.01 -0.02 0.05 -0.01 0.05 -0.01 0.05 -0.07 employment_type_Freelancer 0.12 0.00 -0.14 -0.03 0.11 -0.52 -0.52 1.00 -0.68 -0.04 -0.14 0.10 -0.04 0.13 -0.17 -0.02 0.02 0.04 0.03 -0.04 0.02 -0.11 0.12 employment_type_Full-time -0.10 -0.01 0.18 -0.01 -0.10 -0.00 -0.00 -0.00 -0.68 1.00 0.01 0.13 -0.07 0.05 -0.10 0.11 0.03 -0.01 -0.03 -0.02 -0.01 -0.01 0.10 -0.10 employment_type_Part-time -0.02 0.01 0.01 -0.02 0.01 0.05 0.01 -0.04 0.01 1.00 -0.20 -0.90 0.04 -0.07 0.07 0.01 0.08 -0.01 -0.01 -0.01 -0.00 -0.04 0.00 -0.02 remote_ratio_Full-Remote -0.22 0.00 0.21 0.10 -0.21 0.01 0.08 -0.14 0.13 -0.20 1.00 -0.24 0.33 -0.37 0.15 -0.02 -0.02 -0.09 0.04 0.05 0.02 0.07 -0.22 remote_ratio_Half-Remote 0.11 -0.01 -0.10 -0.02 0.08 -0.05 -0.04 0.10 -0.07 -0.90 -0.24 1.00 -0.18 0.23 -0.14 -0.00 -0.07 0.05 -0.01 -0.02 0.03 -0.03 0.11 -0.11 -0.00 0.18 0.07 -0.17 0.01 -0.00 -0.04 0.05 0.04 0.33 -0.18 1.00 -0.85 -0.08 -0.04 -0.01 -0.10 0.08 0.03 0.05 0.04 -0.11 company size LARGE 0.20 -0.00 -0.25 -0.10 0.24 -0.06 -0.05 0.13 -0.10 -0.07 -0.37 0.23 -0.85 1.00 -0.46 0.03 0.03 0.13 -0.07 -0.07 -0.03 -0.10 0.20 company_size_MEDIUM -0.19 0.01 0.18 0.06 -0.16 0.10 0.10 -0.17 0.11 0.07 0.15 -0.14 -0.08 -0.46 1.00 -0.00 -0.03 -0.08 -0.00 0.09 -0.02 0.12 -0.19 company_size_SMALL -0.24 -0.07 0.06 0.08 -0.08 0.00 -0.01 -0.02 0.03 0.01 -0.02 -0.00 -0.04 0.03 -0.00 1.00 -0.08 -0.33 -0.29 -0.16 -0.10 -0.08 -0.24 job_category_Data Analyst 0.06 -0.01 -0.05 -0.06 0.09 -0.01 -0.01 0.02 -0.01 0.08 -0.02 -0.07 -0.01 0.03 -0.03 -0.08 1.00 -0.12 -0.11 -0.06 -0.03 -0.03 0.06 job_category_Data Architecture 0.05 0.07 -0.04 -0.02 0.02 -0.03 -0.01 0.04 -0.03 -0.01 -0.09 0.05 -0.10 0.13 -0.08 -0.33 -0.12 1.00 -0.44 -0.25 -0.14 -0.13 0.05 job_category_Data Engineering 0.06 -0.06 -0.01 -0.03 0.06 -0.01 -0.02 0.03 -0.02 -0.01 0.04 -0.01 0.08 -0.07 -0.00 -0.29 -0.11 -0.44 1.00 -0.22 -0.13 -0.11 0.06 job_category_Data Science 0.07 -0.05 0.00 0.03 -0.01 0.05 0.05 -0.04 -0.01 -0.00 0.05 -0.02 0.03 -0.07 0.09 -0.16 -0.06 -0.25 -0.22 1.00 -0.07 -0.06 0.07 job_category_Machine Learning 0.09 0.20 -0.05 -0.02 -0.02 -0.01 -0.01 0.02 -0.01 -0.04 0.02 0.03 0.05 -0.03 -0.02 -0.10 -0.03 -0.14 -0.13 -0.07 1.00 -0.04 0.09 job_category_Management -0.07 -0.02 0.11 0.00 -0.06 0.02 0.05 -0.11 0.10 0.00 0.07 -0.03 0.04 -0.10 0.12 -0.08 -0.03 -0.13 -0.11 -0.06 -0.04 1.00 -0.07 1.00 0.16 -0.29 -0.27 0.35 -0.02 -0.07 0.12 -0.10 -0.02 -0.22 0.11 -0.11 0.20 -0.19 -0.24 0.06 0.05 0.06 0.07 0.09 -0.07 1.00

Корреляционная матрица

— 0.75 - 0.50 - 0.25 - 0.00 **-** −0.25 -0.50