Kapittel 17: Abstraksjon med ekvivalenser og partisjoner

Nettkurs

Boka

Ekvivalensklasse

- Anta at \sim er en ekvivalensrelasjon på en mengde M.
- ullet Vi sier at **ekvivalensklassen** (equivalence class) til et element $x \in M$ er mengden

$$[x] = \{ y \in M \mid y \sim x \}.$$

- Vi skriver [x] for ekvivalensklassen til x.
- Vi skriver M/\sim for mengden av alle ekvivalensklassene.
- ullet Denne mengden kalles **kvotientmengden** (quotient set) av M under \sim .

Heltall modulo n

• La n være et positivt heltall. Vi definerer en ekvivalensrelasjon \equiv på mengden av heltall ved å si at $x\equiv y$ holder når x og y har samme rest når vi deler på n, eller sagt på en annen måte, at x-y er delelig med n. En skrivemåte for dette er $x\equiv y \pmod n$, og vi sier at "x er lik y modulo y".

$$\begin{aligned} [0] &= \{..., -5, 0, 5, 10, 15, ...\} \\ [1] &= \{..., -4, 1, 6, 11, 16, ...\} \\ [2] &= \{..., -3, 2, 7, 12, 17, ...\} \\ [3] &= \{..., -2, 3, 8, 13, 18, ...\} \\ [4] &= \{..., -1, 4, 9, 14, 19, ...\} \end{aligned}$$

- Slike mengder kalles restklasser (residue classes) og kongruensklasser (congruence classes).
- Mengden av dem, \mathbb{Z}/\equiv , kalles **heltallene modulo** n (integers modulo n) og betegnes med \mathbb{Z}/n og $\mathbb{Z}/n\mathbb{Z}$.

Partisjon

- En partisjon (partition) av en mengde S er en mengde X av ikke-tomme delmengder av S slik at følgende betingelser holder:
 - \circ Unionen av alle mengdene i X er lik S.
 - \circ Snittet fra to forskjellige mengder i X er tomt.
- Det første kravet er at "mengdene dekker hele S".
- Det andre kravet er at mengdene er disjunkte eller gjensidig utelukkende.

Forfining av partisjon

- La X og Y være partisjoner av en mengde M.
- Hvis ethvert element i X er en delmengde av et element i Y, skriver vi $X \leqslant Y$ og sier at X er en **forfining** (*refinement*) av Y og er **finere** (*finer*) enn Y.

Sammenhengen mellom ekvivalensklasser og partisjoner

- Hvis vi tar mengden av alle ekvivalensklasser for en gitt ekvivalensrelasjon, får vi en partisjon.
- En ekvivalensrelasjon deler altså en mengde opp i ekvivalensklasser som utgjør en partisjon.