

Real-time Multiattribute Bayesian Preference Elicitation with Pairwise Comparison Queries

Shengbo Guo & Scott Sanner

Dec. 12, 2009

NICTA is proudly supported by:

Australian Government

Department of Communications, Information Technology and the Arts

Australian Research Council

NICTA Members

recommendation!

Problem: PC Recommendation Example

ID	Manufacturer	CPU	Price	Large
1	Apple	PowerPC G3 300	799	Recommender System Query: PC1 or PC2? PC2
2	Dell	Intel Celeron 900	1119	
3	Fujitsu	Intel Pentium 600	989	
N	Toshiba	Intel Pentium 1000	1150	
After 10~20 queries, make				

Utility Representation & Bayesian Update

Additive utility representation factors across D attributes

$$u^*(\mathbf{x}) = \sum_{d=1}^{D} \mathbf{w}_{d,\#(\mathbf{x},d)}^*, \quad u(\mathbf{x}|\mathbf{w}) = \sum_{d=1}^{D} \mathbf{w}_{d,\#(\mathbf{x},d)}$$

Bayesian update

Query Strategies

Expected Loss

$$\widehat{\mathsf{EL}}(k,R) = \mathrm{E}_{P(\mathbf{w}|R)} \left[\max(0, u(k|\mathbf{w}) - u(i_R^*|\mu^R)) \right]$$

$$= (\mu_{i_R^*} - \mu_k)(1 - \Phi_{\mu_k,\sigma_k^2}(\mu_{i_R^*})) - \frac{\sigma_k}{\sqrt{2\pi}} \exp\left(-\frac{(\mu_{i_R^*} - \mu_k)^2}{2\sigma_k^2}\right)$$

Maximal Expected Loss

$$\mathbf{MEL}(R) = \max_{k} \widehat{\mathbf{EL}}(k, R)$$

Expected Value of Information (EVOI)

$$\begin{split} \mathsf{EVOI}(R,i,j) &= -\mathsf{MEL}(R) + \mathrm{E}_{P(\mathbf{w}|R)} \sum_{q_{ij}} \left[P(q_{ij}|\mathbf{w}) \mathsf{MEL}(R \cup \{q_{ij}\}) \right] \\ &= -\mathsf{MEL}(R) + \sum_{q_{ij}} \left[\mathrm{E}_{P(\mathbf{w}|R)} P(q_{ij}|\mathbf{w}) \right] \mathsf{MEL}(R \cup \{q_{ij}\}) \end{split}$$

Restricted EVOI: restrict item i to be the current best one... O(n²) → O(n)!

Experimental Results

PC Dataset - Gaussian Utility Distribution

