UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

JULIO CESAR GARCIA RIBEIRO WINNER ZAVOLSKI QUEIROZ

TRABALHO FINAL

VALIDAÇÃO EXPERIMENTAL DE PROJETO DE CONTROLADOR DIGITAL PARA UM CONVERSOR DC-DC DE ALTA FREQUÊNCIA

SUMÁRIO

1	INTRODUÇÃO	3
	RELEVÂNCIA DO TEMA	
3	RESULTADOS E DISCUSSÕES	7
4	CONSIDERAÇÕES FINAIS	15
RE	FERÊNCIAS	16

1 INTRODUÇÃO

O trabalho analisado teve como objetivo projetar um sistema de controle digital para atuar em um conversor DC-DC com chaveamento de alta frequência. O conversor utilizado deve seguir parâmetros de performance definidos pelo autor, que são atingidos utilizando um controlador digital projetado de duas maneiras diferentes.

O primeiro projeto, chamado de projeto por simulação, projetou um controlador no domínio contínuo, da maneira que um controlador analógico é projetado. Para este projeto, os efeitos associados ao conversor AD do sistema discreto, como atrasos computacionais foram descartados. Após projetado, este controlador foi convertido para o domínio discreto, usando o método de mapeamento de polos.

O segundo projeto, chamado de projeto direto, adiciona os efeitos ignorados no primeiro projeto, a fim de conseguir um controlador digital mais eficiente.

O conversor utilizado foi um conversor *Buck*, representado pela Figura 1, responsável por abaixar tensões CC [2]. Este conversor funciona em dois estados [3]: com chave fechada, onde existe fornecimento de tensão para a carga por meio do capacitor; e chave aberta, onde não existe o fornecimento de tensão para a carga.

O acionamento para abertura e fechamento da chave é realizado usando um sinal PWM [1]. A estrutura do conversor no projeto descrito no trabalho analisado pode ser observada com a Figura 2.

Analisando a Figura 2, é perceptível que o sinal de saída do conversor *Buck* é lido utilizando um sensor de tensão, que alimenta o microcontrolador DSP (dispositivo programável especializado em processar sinas em tempo real ou não [4]) por meio do canal ADC. Então, o valor da saída do conversor é comparado com um valor de referência e por meio desta comparação é gerado um sinal de controle para definir a relação entre o sinal ligado e desligado do PWM, que por sua vez controla a abertura e o fechamento da chave do conversor [1].

Como mencionado anteriormente, foram realizados dois projetos para o controlador. O diagrama de blocos simplificado do primeiro projeto pode ser observado com a Figura 3 e o diagrama para o segundo projeto é demonstrado na Figura 4.

Figura 3 – Diagrama de blocos do sistema no primeiro projeto do controlador

Figura 4 – Diagrama de blocos do sistema no primeiro projeto do controlador

Comparando as Figuras 3 e 4 se percebe que no segundo projeto do controlador são englobados blocos para os efeitos associados ao conversor AD.

A função de transferência do conversor *Buck* pode ser obtida a partir da seguinte equação.

$$G_p(s) = V_{in} \frac{sR_cC + 1}{s^2LC\left(1 + \frac{R_c}{R_L}\right) + s\left(R_cC + \frac{L}{R_L}\right) + 1}$$
(1)

Para os valores dos componentes $L=1\mu H$, $C=1620\mu H$, $R_C=0.04\Omega$ e $R_L=0.1\Omega$ e um valor de tensão de entrada de $V_{in}=5V$ se encontrou a seguinte expressão.

$$G_p(s) = \frac{3,24x10^{-5}s + 5}{1.685x10^{-9}s^2 + 1.648x10^{-5}s + 1}$$
(2)

Os controladores descritos no trabalho foram obtidos utilizando uma ferramenta do software matemático MATLAB chamada *sisotool*. As funções de transferência dos controladores obtidos de maneira simulada e direta são, respectivamente:

$$G_{c1}(s) = \frac{14,3s^2 + 6,514x10^5s + 7,2x10^9}{s(s+1,256x10^5)}$$
(3)

$$G_{c1}(z) = \frac{12,34 - 22.53z^{-1} + 10,28z^{-2}}{1 - 1,605z^{-1} + 0.6051z^{-2}}$$
(4)

$$G_{c2}(z) = \frac{14,87 - 26.19z^{-1} + 12,16z^{-2}}{1 - 1,473z^{-1} + 0.473z^{-2}}$$
(5)

Os resultados serão exibidos mais adiante neste trabalho.

2 RELEVÂNCIA DO TEMA

Controle digital de conversores está se tornando muito utilizado devido a relação entre os pontos positivos de se utilizar um controlador DSP e o seu custo associado [1].

Se podem citar como vantagens da utilização de controladores digitais a possibilidade de embarcar controladores flexíveis, que podem ser utilizados em mais de um tipo de planta e atender especificações mais abrangentes de clientes, menor susceptibilidade a variáveis ambientais e melhor imunidade a ruídos [1].

Como DSPs modernos de 32-bits possuem especificações atrativas, é possível construir projetos que permitem implementação em projetos que requerem altas larguras de banda ou chaveamento em alta frequência sem perder performance [1].

3 RESULTADOS E DISCUSSÕES

De forma semelhante ao *Application Report*, foi projetado os controladores através da ferramenta *sisotool* do Matlab. A figura abaixo apresenta o projeto para o primeiro controlador $G_{c1}(s)$, onde, buscou-se atingir resultados semelhantes ao apresentado no *Application Report*.

Fonte: Autoria Própria.

Obteve-se uma margem de fase de 71,5° a uma frequência de 24,1 kHz. Dessa forma, obteve-se a seguinte função de transferência:

$$G_{c1}(s) = \frac{13,79s^2 + 6.244 \times 10^5 s + 6.893 \times 10^9}{s^2 + 127900s}$$
 (6)

Obtendo a forma discretizada da equação (6), temos:

$$G_{c1}(z) = \frac{11,81 z^2 - 21,58 z + 9,857}{z^2 - 1.6 z + 0.5995}$$
(7)

Nota-se uma boa aproximação com as equações (3) e (4). Realizando a simulação via *simulink*, e tomando como base o circuito da Figura 2, tem-se o seguinte resultado.

1.5 0.5 1.5 2.5

Figura 6 - Saída do conversor buck com controlador $G_{c1}(z)$.

Fonte: Autoria Própria.

Figura 7 - Saída do conversor buck devido a uma perturbação na carga.

Fonte: Autoria Própria.

Considerando que existe um atraso para o processo de amostragem, será incluído para o processo ADC um tempo de atraso T_d para diferentes casos. Primeiramente, será feito a discretização da planta $G_p(s)$ considerando um tempo de atraso $T_d=0$.

A planta na forma discretizada fica sendo:

$$G_p(z) = \frac{0,04937 z - 0,0261}{z^2 - 1,952 z + 0,9616}$$
 (8)

Realizando o projeto para o controlador em resposta em frequência utilizando da equação (8), temos o seguinte resultado:

Fonte: Autoria Própria.

Assim, obteve-se um ganho de margem de 9,89 dB a uma frequência de 125 kHz, e uma margem de fase de 59,7° a uma frequência de 26,1 kHz e a seguinte FT para o controlador:

$$G_{c2}(z) = \frac{13,759 (z - 0.9354) (z - 0.8697)}{(z - 1) (z - 0.4997)}$$
(9)

Para a saída do conversor obteve-se a seguinte resposta:

2 1.5 0.5 0 3 $\times 10^{-4}$

Figura 9 - Saída do conversor buck com o controlador $G_{c2}(z)$.

Fonte: Autoria Própria.

Caso 1: Tempo de atraso $T_d = 0$, 5Ts

Incluindo o tempo de atraso $T_d = 0.5Ts$, a nova FT para a planta ficará:

$$G_{p2}(z) = \frac{0,02198 z^2 + 0,01708 z - 0,0158}{z(z^2 - 1,952 z + 0,9616)}$$
(10)

Avaliando a resposta em frequência considerando o controlador $G_{c2}(z)$, tem-se:

Figura 10 - Resposta em frequência $G_{p2}(z)G_{c2}(z)$

Fonte: Autoria Própria.

Observa-se que utilizando do controlador $G_{c2}(z)$ para a planta com atraso, há uma queda de 19,6 dB na margem de fase que é devido ao tempo de atraso incluído na planta.

Fonte: Autoria Própria.

Caso 2: Tempo de atraso $T_d = 2Ts$

Incluindo o tempo de atraso $T_d=2Ts$, a nova FT para a planta ficará:

$$G_{p3}(z) = \frac{0.04937 z - 0.0261}{z(z^2 - 1,952 z + 0,9616)}$$
(11)

De maneira semelhante ao caso anterior, avalia-se a resposta em frequência considerando o controlador $G_{c2}(z)$:

Bode Diagram 80 Magnitude (dB) 40 -20 Phase (deg) System: untitled1 Phase Margin (deg): -15.6 -360 Delay Margin (samples): -0.414 At frequency (rad/s): 1.64e+05 Closed loop stable? No 10⁰ 10¹ 10² 10⁴ 10⁵ 10⁶ 10³ Frequency (rad/s)

Figura 12 - Resposta em frequência $G_{p3}(z)G_{c2}(z)$

Fonte: Autoria Própria.

Nota-se que o sistema se torna instável com a utilização do controlador $G_{c2}(z)$. Em comparação ao caso anterior, para o tempo de atraso $T_d=2Ts$ houve uma redução de 75,3bB para a margem de fase.

Para contornar este problema, foi projetado um terceiro controlador a fim de sanar a instabilidade que o segundo controlador causou. Abaixo é apresentado o projeto realizado:

Nota-se que há um sistema estabilizado. Obteve-se a seguinte equação característica para o controlador:

$$G_{c3}(z) = \frac{13,392 (z - 0.9644) (z - 0.9312) (z - 0.2487)}{(z - 1) (z - 0.2238) (z - 0.04321)}$$
(12)

Avaliando a saída do conversor:

Figura 14 - Saída do conversor com o controlador $G_{c3}(z)$

Fonte: Autoria Própria.

Figura 15: Saída do conversor devido a uma perturbação na carga.

Fonte: Autoria Própria.

Dessa forma, obteve-se um controlador que para o tempo de atraso proposto convergiu para a estabilidade do sistema.

Nota-se, que os controladores projetados ficaram próximos ao resultado esperado do *Application Report*, o que torna a avaliação dos resultados mais fiel com o trabalho proposto.

4 CONSIDERAÇÕES FINAIS

O trabalho apresentado trouxe o projeto de controladores digitais por resposta em frequência tanto pelo método de emulação quanto na forma direta através do domínio z. Em comparação aos resultados apresentados pelo *Application Report* da Texas Instruments, nota-se que se obteve uma boa aproximação nos projetos dos controladores e nas respostas obtidas pelo circuito implementado via *simulink*.

Foi visto que o atraso considerado influencia o comportamento do sistema com o controlador, onde há uma redução na margem de fase até que o sistema se tornou instável e, por consequência, foi necessário o projeto de um novo controlador para suprir o atraso incluído na planta do conversor buck.

REFERÊNCIAS

- [1] CHOUDHURY, S. Designing a TMS320F280x Based Digitally Controlled DC-DC Switching Power Supply. Texas Instruments, Julho, 2005.
- [2] GUDINO, M. **Types of Switching DC to DC Converters**. 2017. Disponível em: https://www.arrow.com/en/research-and-events/articles/types-of-switching-dc-dc-converters#:~:text=A%20DC%2FDC%20converter%20is,DC%20converters%3A%20linear%20and%20switched.. Acesso em: 21 ago. 2021.
- [3] RICARDO, C. E. N. **Conversor Buck Aspectos ideais e não ideais**. 2019. Disponível em: https://www.embarcados.com.br/conversor-buck/. Acesso em: 21 ago. 2021.
- [4] NUNES, R. A. A.; ALBUQUERQUE, M. P. **PROCESSADOR DIGITAL DE SINAIS - DSP**. 2012. Disponível em: http://www.cbpf.br/~rastuto/. Acesso em: 21 ago. 2021.