Constructor University Bremen

Lab Report 2: The Fourier Series and The Fourier Transform

Fall Semester 2024

Author: Idriz Pelaj

Experiment Conducted By: Mr. Idriz Pelaj, Mr. Getuar Rexhepi

Conducted on: October 11th, 2023

1. Prelab

1.1 Problem 1: Decibels

- 1. Given $x(t) = 5\cos(2\pi 1000t)$
 - What is the amplitude and the V_{pp} of the signal? The amplitude of the signal is 5V and the V_{pp} is $2 \cdot 5V = 10V$.
 - What is the V_{rms} of the signal? The V_{rms} of a sinusoidal signal is given by

$$V_{rms} = \frac{V_A}{2\sqrt{2}} = \frac{5V}{\sqrt{2}} = 3.535V \tag{1.1}$$

• What is the amplitude of the spectral peak in dBVrms? The amplitude of the spectral peak in dBVrms is given by the following relation:

$$A_{dBV_{rms}} = 20 \log_{10} (V_{rms}) = 20 \log_{10} (3.535V) = 10.9 dBV_{rms}$$
(1.2)

- 2. Given a square wave of $1V_{pp}$ the voltage changes between -0.5V to 0.5V
 - What is the signal amplitude in V_{rms} ? To find the RMS value of a square wave, the following relation is used:

$$V_{rms} = \sqrt{\frac{1}{T} \left[\int_0^T f(t)^2 dt \right]}$$
 (1.3)

The square wave can be specified as a piecewise function:

$$f(t) = \begin{cases} -0.5 & \text{if } 0 \le t \le \frac{T}{2} \\ 0.5 & \text{if } \frac{T}{2} \le t \le T \end{cases}$$
 (1.4)

Performing the integral over the function,

$$V_{rms} = \sqrt{\frac{1}{T} \left[\int_0^{T/2} (-0.5)^2 dt + \int_{T/2}^T (0.5)^2 dt \right]}$$

$$= \sqrt{0.25 \cdot \frac{1}{T} \left(\frac{T}{2} + T - \frac{T}{2} \right)}$$

$$= \sqrt{0.25}V$$

$$= 0.5V$$
(1.5)

• What is the amplitude in dBVrms?

$$V_{dB_{rms}} = 20 \log_{10} (V_{rms}) = 20 \log_{10} (0.5V) = -6.02 dB V_{rms}$$
 (1.6)

1.2 Problem 2: Determination of Fourier Series Coefficients

1. Determine the Fourier series coefficients up to the 5th harmonic of the function $f(t) = 4t^2$

To determine the fourier series coefficients, first recognize that the function is an even function by the very fact that it is a polynomial of an even degree. Knowing this, the relations used to compute the fourier series coefficients are:

$$a_n = \frac{4}{T} \int_{-T}^{T} t^2 \cos(n\omega_0 t) dt$$

$$a_0 = \frac{1}{T} \int_{0}^{T} t^2 dt$$

$$b_n = 0$$

$$(1.7)$$

Where it is known that T=1 due to the interval being given as [-0.5, 0.5]. Furthermore, $\omega_0 = \frac{2\pi}{T} = 2\pi$. By using the help of an integration table, the integral for a_n is

$$a_n = 4 \cdot \left[\frac{2t \cos(n\omega_0 t)}{4\pi^2 n^2} + \frac{n^2 4\pi^2 - 2}{8\pi^3 n^3} sin(n\omega_0 t) \right]_{-T}^T$$
 (1.8)

Evaluating this integral:

$$a_n = 4 \cdot \left(\frac{4 \cdot (-1)^n}{4\pi^2 n^2}\right) = \frac{4 \cdot (-1)^n}{\pi^2 n^2}$$
 (1.9)

For a_0 , the integral is straightforward:

$$a_0 = \frac{1}{T} \int_0^T t^2 dt = \left[\frac{t^3}{3}\right]_0^T = \frac{1}{3}$$
 (1.10)

So the first five coefficients are:

$$a_n = \left\{ \frac{-4}{\pi^2}, \frac{4}{16\pi^2}, \frac{-4}{36\pi^2}, \frac{4}{64\pi^2}, \frac{-4}{100\pi^2} \right\}$$
 (1.11)

2. Use MATLAB to plot the original function and the inverse Fourier transform. Put both graphs into the same diagram.

Figure 1.1: The plot of the original function, its inverse fourier transform, the fourier series representation up to the fifth harmonic, and the representation's inverse fourier transform

The code used:

```
t = -0.5:0.01:0.5;
f = 4*t.^2;
f_fs = 1/3;
% Fourier series representation of the function
for i=1:5
    % w_0 = 2pi
    % T = 1
    a_i = (4*(-1)^i)/(pi^2*i^2);
    f_fs = f_fs + (a_i .* cos(i.*2.*pi.*t));
end
hold on
plot(t, f, "blue");
plot(t, f_fs, "black");
xlim([-0.5, 0.5]);
plot(t, abs(ifft(f)), "red");
plot(t, abs(ifft(f_fs)), "green");
legend({"Original Function", ...
    "Fourier Series Representation", ...
    "IFFT", ...
    "IFFT of Fourier Series" ...
    }, "Location", "southwest")
```

1.3 Problem 3: FFT of a Rectangular Wave

Figure 1.2: A figure showing the different rectangular waves based on their duty cycles. Plotted using MATLAB.

Figure 1.3: A figure showing the different rectangular waves' spectra based on their duty cycles. Plotted using MATLAB.

The code used to plot the figures:

```
%% Time plots
[t_fifty, signal_fifty, f_fifty, y_fifty] = get_square(50);
[t_thirty, signal_thirty, f_thirty, y_thirty] = get_square(30);
[t_twenty, signal_twenty, f_twenty, y_twenty] = get_square(20);
subplot(3, 1, 1);
plot(t_fifty, signal_fifty, "blue", "LineWidth", 2);
title("Duty Cycle: 50%");
subplot(3, 1, 2);
plot(t_thirty, signal_thirty, "blue", "LineWidth", 2);
title("Duty Cycle: 30%");
subplot(3, 1, 3);
plot(t_twenty, signal_twenty, "blue", "LineWidth", 2);
title("Duty Cycle: 20%");
%% Frequency plots
subplot(3, 1, 1);
plot(f_fifty, y_fifty, "blue", "LineWidth", 1);
title("FT: Duty Cycle: 50%");
subplot(3, 1, 2);
plot(f_thirty, y_thirty, "blue", "LineWidth", 1);
title("FT: Duty Cycle: 30%");
subplot(3, 1, 3);
plot(f_twenty, y_twenty, "blue", "LineWidth", 1);
title("FT: Duty Cycle: 20%");
```

Where the function get_square is defined as:

```
function [t, signal, f, y_single_db] = get_square(duty_cycle)
   period = 1e-3;
   Fs = 200e3;
   frequency = 1/period;
   Vpp = 2;
   duration = period * 4;
   % The signal
   t = 0:1/Fs:duration;
   signal = Vpp*square((2*pi*frequency)*t, duty_cycle);
   plot(t, signal, "blue", "LineWidth", 2);
   % The fourier transform of the signal
   rms_value = sqrt(mean(signal.^2));
   N = length(signal); % The length of the signal
   y = fft(signal, N);
   y_mag = 2*(abs(y)/N); % Magnitudes of y
   y_single = y_mag(1:floor(N/2)) * 2;
   f_nyquist = Fs / 2;
   y_single_db = 20*log10(y_single / rms_value);
   f = linspace(0, f_nyquist, length(y_single));
end
```

2. Introduction

3. Execution

4. Evaluation

5. Conclusion

6. References

7. Appendix