

Fernstudiengang Elektrotechnik – SS2024

Prof. Dr. C. Jakob

University of Applied Sciences Darmstadt

fbeit

Serielle Schnittstelle

Fernstudiengang Elektrotechnik – SS2024

Prof. Dr. C. JakobUniversity of Applied Sciences Darmstadt

fbeit

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Abbildung 4-1 Serielle Datenkommunikation

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Baudrate	Bit-Zeit in μs	Byte-zeit (1/8/1/N) in ms
1200	833	8.33
2400	416	4.16
4800	208	2.08
9600	104	1.04
19200	52	0.52
38400	26	0.26
115200	8.6	0.086

Tabelle 4-1 Resultierende Bit- bzw. Bytezeiten für das (1/8/1) Format

- Die Baudrate gibt die Anzahl der Zustandswechsel des gesendeten Signals im Zeitraum einer Sekunde an und wird mitunter auch als Bit-Takt bezeichnet. Die Angabe der Baudrate erfolgt in der Einheit Baud.
- Die Bitrate wiederrum gibt die Anzahl der gesendeten Bits pro Sekunde an und wird meist bps (engl. Bits per second) angegeben.

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Gerade Parität (E, für engl.: even): Das Paritätsbit wird so gesetzt, dass die Summe aus gesetzten Datenbits und dem Paritätsbit eine gerade Zahl darstellt.

Beispiel 1: 8-bit Datenwort: 0b00101001 Paritätsbit: 1 Beispiel 2: 8-bit Datenwort: 0b10101001 Paritätsbit: 0

 Ungerade Parität (engl.: odd): Das Paritätsbit wird so gesetzt, dass die Summe aus der gesetzten Datenbits und dem Paritätsbit eine ungerade Zahl darstellt.

Beispiel 1: 8-bit Datenwort: 0b11101001 Paritätsbit: 0 Beispiel 2: 8-bit Datenwort: 0b10101010 Paritätsbit: 1

■ Keine Parität (engl.: no parity): Die Parität wird nicht berücksichtigt.

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Abbildung 4-2 USART Übertragung (1/7/1/2)

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Abbildung 4-3 USART Übertragung (1/8/1)

USART - Steuer- und Konfigurationsregister

Fernstudiengang Elektrotechnik – SS2024

Prof. Dr. C. Jakob

University of Applied Sciences Darmstadt

fbeit

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Die Konfiguration und Steuerung der Atmega328p internen USART Peripherie erfolgt im Wesentlichen über die Register:

•	UCSR0A	(USART Control and Status Register A)
•	UCSR0B	(USART Control and Status Register B)
•	UCSR0C	(USART Control and Status Register C)
•	UDR0	(USART Transmit and Receive Buffer)
•	UBRR0L	(USART Baud Rate Register Low)
•	UBRR0H	(USART Baud Rate Register High)

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Bit	7	6	5	4	3	2	1	0	_
(0xC0)	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	UCSR0A
Read/Write	R	R/W	R	R	R	R	R/W	R/W	-
Initial Value	0	0	1	0	0	0	0	0	

Abbildung 4-4 ATmega328p - USART – UCSR0A Steuerregister

■ Bit 7 – RXC0: USART Receive Complete

Ist dieses Bit gesetzt, so befinden sich zu lesende Daten im Empfangspuffer. Ist es hingegen nicht gesetzt, so ist der Empfangspuffer leer oder die Empfangseinheit ist ausgeschaltet. Dieses Bit kann zudem bei gegebener Konfiguration einen Interrupt auszulösen (siehe RXCIEO Bit in Register UCSROB).

■ **Bit 6 – TXC0:** USART Transmit Complete

Ist dieses Bit nicht gesetzt, so sind noch zu übertragende Bits im Senderegister vorhanden. Es kann folglich noch kein neues Zeichen gesendet werden. Dieses Bit ist hingegen gesetzt, wenn alle zu übertragenden Bits (d.h. der gesamte Übertragungsrahmen) ausgegeben wurden und keine neuen Daten im UDRO Sendepuffer vorliegen.

fbeitFACHBEREICH ELEKTROTECHNIK UND INFORMATIONSTECHNIK

© Prof. Dr. C. Jakob

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Bit	7	6	5	4	3	2	1	0	_
(0xC1)	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	UCSR0B
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Abbildung 4-5 ATmega328p - USART – UCSR0B Steuerregister

■ **Bit 7 – RXCIE0:** RX Complete Interrupt Enable

Ist dieses Bit gesetzt, so wird ein "USART RX Complete Interrupt" ausgelöst, wenn ein Zeichen vom USART empfangen wurde. Interrupts müssen in diesem Fall global freigeschaltet sein.

■ **Bit 6 – TXCIE0:** TX Complete Interrupt Enable

Ist dieses Bit gesetzt, so wird ein "USART TX Complete Interrupt" ausgelöst, wenn ein Zeichen vom USART empfangen wurde. Interrupts müssen in diesem Fall global freigeschaltet sein.

■ Bit 5 – UDRIE0: USART Data Register Empty Interrupt Enable

■ Bit 4 – RXEN0: Receiver Enable

Über das Setzen dieses Bits kann die USART-Empfangseinheit eingeschaltet werden. In diesem Fall ist der zugehörige Pin RxD als Eingang reserviert und steht für andere Aktionen nicht zur Verfügung.

■ Bit 3 – TXEN0: Transmitter Enable

Über das Setzen dieses Bits kann die USART-Sendeeinheit eingeschaltet werden. In diesem Fall ist der zugehörige Pin TxD als Eingang reserviert und steht für andere Aktionen nicht zur Verfügung.

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Bit	7	6	5	4	3	2	1	0	_
(0xC2)	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOL0	UCSR0C
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	1	1	0	

Abbildung 4-6 ATmega328p - USART – UCSR0C Steuerregister

■ Bit 7:6 – UMSEL01:0: USART Mode Select

Durch die Konfiguration dieser Bits wird die Art der Kommunikation für die USART Schnittstelle definiert. Hierfür existieren die nachfolgend aufgeführten Konfigurationsmöglichkeiten:

- 00: Asynchrone USART
- 01 Synchrone USART
- 10 Reserviert (ohne Funktion)
- 11 Master SPI

■ **Bit 5:4 – UPM01:0:** Parity Mode

Über dieses Bit wird ein mögliches Paritätsbit im Übertragungsrahmen definiert. Hierfür existieren folgende Konfigurationsmöglichkeiten:

•	00:	Keine Parität
•	01	Reserviert (ohne Funktion)
•	10	Ungerade Parität
•	11	Gerade Parität

■ Bit 3 – USBS0: Stop Bit Select

Über dieses Bit wird die Anzahl der Stoppbits im Übertragungsrahmen eingestellt. Ist dieses Bit gesetzt, so wird eine Übertragung mit zwei Stoppbits abgeschlossen. Andernfalls mit lediglich einem Stoppbit.

■ Bit 2:1 – UCSZ01:0: Character Size

Über die drei Bit UCSZO wird die Anzahl der zu übertragenden Datenbits festgelegt. Das Bit UCSZO2 befindet sich im Steuerregister UCSROB und wird lediglich für den Fall einer 9-bit Zeichengröße benötigt.

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Bit	15	14	13	12	11	10	9	8	_
(0xC5)	-		-	-	UBRR0[11:8]				UBRR0H
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	_
(0xC4)	UBRR0[7:0]								UBRR0L
Read/Write	R/W	R/W	RW	R/W	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	

Abbildung 4-7 ATmega328p - USART - UBRR0L/UBRR0H Steuerregister

Baudrate =
$$\frac{Systemtakt}{16(Teiler + 1)}$$
 Teiler = $\frac{Systemtakt}{16 Baudrate} - 1$

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

Abbildung 4-8 ATmega328p - USART - UDR0 Register

USART - Implementierung von Basistreibern

Fernstudiengang Elektrotechnik – SS2024

Prof. Dr. C. Jakob

University of Applied Sciences Darmstadt

fbeit

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

```
1. // USART Initialisierungsroutine, kein Rückgabewert, keine
2. // Übergabeparameter, Baudrate: wird über globales 'define' gesetzt
3. // 8-Datenbits, 1-Stoppbit, Gerade Parität, Asynchroner Modus
4. // Zielplattform: ATMEL ATmega328p, Arduino Uno R3 SMD Edition
5. // by Dr. C. Jakob, fbeit, h da, Januar 2015, christian.jakob@h-da.de
6.
7. void usart init(void) {
       // Baudrate einstellen
       UBRROH = (unsigned char) (BAUD PRESCALLER >> 8);
10.
       UBRROL = (unsigned char) (BAUD PRESCALLER);
       // asynchroner USART Modus
11.
12.
       UCSROC &= \sim ((1 << UMSEL01) | (1 << UMSEL00));
       // 8-Datenbits
13.
14.
       UCSROC \mid = (1 << UCSZOO) \mid (1 << UCSZOI);
15.
       // 1-Stoppbit
       UCSROC &= \sim (1 << USBSO);
16.
17.
       // USART Sende- und Empfangseinheiten aktivieren
18.
       UCSROB = (1 << RXENO) | (1 << TXENO);
19. }
```

Quellcode 4-1 ATMEL ATmega328p USART Initialisierungsroutine

fbeit FACHBEREICH ELEKTROTECHNIK UND INFORMATIONSTECHNIK © Prof. Dr. C. Jakob

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

```
1. // USART Empfangsroutine - 8-bit Rückgabewert, keine Übergabeparameter
2. // Zielplattform: ATMEL ATmega328p, Arduino Uno R3 SMD Edition
3. // by Dr. C. Jakob, fbeit, h_da, Januar 2015, christian.jakob@h-da.de
4.
5. unsigned char usart_receive(void) {
6. while((UCSR0A & (1 << RXC0)) == 0); // Daten verfügbar?
7. return UDR0;
8. }</pre>
```

Quellcode 4-2 ATMEL ATmega328p USART 8-bit Empfangsroutine

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

```
1. // USART Senderoutine - kein Rückgabewert, 8-bit Übergabeparameter
2. // Zielplattform: ATMEL ATmega328p, Arduino Uno R3 SMD Edition
3. // by Dr. C. Jakob, fbeit, h_da, Januar 2015, christian.jakob@h-da.de
4.
5. void usart_put_byte(unsigned char data) {
6. while((UCSR0A & (1 << UDRE0)) == 0); // Senderegister frei?
7. UDR0 = data;
8. }</pre>
```

Quellcode 4-3 ATMEL ATmeag328p USART ,put_byte 'Senderoutine

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

```
1. // USART Senderoutine - kein Rückgabewert, Pointer auf eine Variable
2. // vom Typ ,character' - Nullterminierung erforderlich
2. // Zielplattform: ATMEL ATmega328p, Arduino Uno R3 SMD Edition
3. // by Dr. C. Jakob, fbeit, h_da, Januar 2015, christian.jakob@h-da.de
4.
5. void usart_put_string(char* string_ptr){
6.     while(*string_ptr != 0x00){
7.         usart_put_byte(*string_ptr);
8.         string_ptr++;
9.     }
10. }
```

Quellcode 4-4 ATMEL ATmega328p USART 'put string' Senderoutine

Polling basierte USART Konfiguration

Fernstudiengang Elektrotechnik – SS2024

Prof. Dr. C. Jakob

University of Applied Sciences Darmstadt

fbeit

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

```
1. // ATmega328p USART Demo - Polling Modus
2. // Zielplattform: ATMEL ATmega328p, Arduino Uno R3 SMD Edition
3. // by Dr. C. Jakob, fbeit, h da, Januar 2015, christian.jakob@h-da.de
4.
   #define F CPU 1600000UL
6. #define BAUDRATE 9600
   #define BAUD PRESCALLER (((F CPU / (BAUDRATE * 16UL))) - 1)
   #define LINE FEED 10
10. #include <avr/io.h>
11. #include <util/delay.h>
12. #include 'usart.h'
13.
14. char my string[] = "Command received!";
15.
16. int main(void) {
17.
     unsigned char rec byte;
    // -- Konfiguration Status-LED --
18.
19. DDRB |= (1 << DDB5); // PIN PB5 als Ausgang konfigurieren
    PORTB &= ~(1 << PORTB5); // LED ausschalten
20.
      // -- Initialisierung USART Schnittstelle --
21.
22.
      usart init();
23.
```

fbeit FACHBEREICH ELEKTROTECHNIK UND INFORMATIONSTECHNIK © Prof. Dr. C. Jakob

h_da
....
HOCHSCHULE DARMSTADT
UNIVERSITY OF APPLIED SCIENCE

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

```
24.
       while(1){}
           rec byte = usart receive();
          if(rec byte == 'a') {
26.
27.
               PORTB ^= (1 << PORTB5);
28.
               usart put string(my string);
29.
               usart put byte(LINE FEED);
30.
31.
        else {
32.
                PORTB &= \sim (1 << PORTB5);
33.
           delay ms(500);
34.
35.
36.
       return 0;
37. }
```

Quellcode 4-5 ATmega328p USART Demo - Polling Modus

fbeit
FACHBEREICH ELEKTROTECHNIK
UND INFORMATIONSTECHNIK
© Prof. Dr. C. Jakob

IRQ basierte USART Konfiguration

Fernstudiengang Elektrotechnik – SS2024

Prof. Dr. C. Jakob

University of Applied Sciences Darmstadt

fbeit

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

```
1. // ATmega328p USART Demo - Interrupts Modus - Empfangsinterrupt
2. // Zielplattform: ATMEL ATmega328p, Arduino Uno R3 SMD Edition
3. // by Dr. C. Jakob, fbeit, h da, Januar 2015, christian.jakob@h-da.de
   #define F CPU 16000000UL
6. #define BAUDRATE 9600
   #define BAUD PRESCALLER (((F CPU / (BAUDRATE * 16UL))) - 1)
   #define LINE FEED 10
9.
10. #include <avr/io.h>
11. #include <util/delay.h>
12. #include 'usart.h'
13.
14. volatile unsigned char rec byte; // ISR Variable
15.
16. char my string[] = "Command received!";
17.
18. int main(void) {
     // -- Konfiguration Status-LED --
19.
     DDRB |= (1 << DDB5); // PIN PB5 als Ausgang konfigurieren
20.
21. PORTB &= \sim (1 << PORTB5); // LED ausschalten
     // -- Initialisierung USART Schnittstelle --
     usart init();
23.
     // -- Aktivierung des ,USART Receive' Interrupts -
24.
25.
      UCSROB \mid = (1 << RXCIEO);
```

fbeit

FACHBEREICH ELEKTROTECHNIK UND INFORMATIONSTECHNIK

© Prof. Dr. C. Jakob

h_da - fbeit - Fernstudiengang Elektrotechnik - SS2024

```
27.
       sei();
                                        // globale Interrupts aktivieren
28.
29.
       while(1){
           if(rec byte == 'a'){
30.
31.
               PORTB ^= (1 << PORTB5);
32.
               usart put string(my string);
33.
               usart put byte(LINE FEED);
               rec byte = 0;
34.
35.
36.
       else {
37.
                PORTB &= \sim (1 << PORTB5);
38.
39.
          delay ms(500);
40.
41.
        return 0;
42. }
43.
44. ISR (USART RXC vect) {
                                       // Empfangenes Byte auslesen ...
45.
       rec byte = UDR0;
46. }
```

Quellcode 4-6 ATMEL ATmega328p USART Demo - Interrupt Modus - Empfangsinterrupt

fbeit FACHBEREICH ELEKTROTECHNIK UND INFORMATIONSTECHNIK © Prof. Dr. C. Jakob

