微积分(I)期中模拟测试

时间: 90 分钟 满分: 100 分

- 一、选择题(每小题 4 分, 共 20 分):
- 1. 下列命题中,正确的有(A).
 - (1) 无界变量必为无穷大量; (2) 有限个无穷大量之和仍为无穷大量;
 - (3) 无穷大量必为无界变量; (4) 无穷大量与有界变量之积仍为无穷大量.
- A. 1个
- B. 2个
- C. 3个
- D. 4个

解析: 无穷大量必为无界变量,但无界变量未必是无穷大量。故(1)错误,(3)正确。有限个 无穷大量之和未必是无穷大量,如n+(-n)=0在 $n\to\infty$ 时不满足无穷大量的定义,故(2)

错误。无穷大量与有界变量之积未必是无穷大量,如 $\lim_{x\to 0} x \sin \frac{1}{x} = \lim_{x\to 0} x \cdot \frac{1}{x} = 1$,故(4)错误.

- 2. 设函数 f(x) 在 x = 0 处连续,下列命题中错误的是(D).
- A. 若 $\lim_{r\to 0} \frac{f(x)}{r}$ 存在,则 f(0) = 0 B. 若 $\lim_{x\to 0} \frac{f(x) + f(-x)}{r}$ 存在,则 f(0) = 0
- C. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则f'(0)存在 D. 若 $\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$ 存在,则f'(0)存在

解析: 因为函数 f(x) 在 x = 0 处连续, 故有 $f(0) = \lim_{x \to \infty} f(x)$.

对于 A, C 选项: $f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} x \cdot \frac{f(x)}{x} = \lim_{x \to 0} x \cdot \lim_{x \to 0} \frac{f(x)}{x} = 0$, $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x}, \text{ if } f'(0)$ 存在.

对于 B 选项:

 $2f(0) = \lim_{x \to 0} [f(x) + f(-x)] = \lim_{x \to 0} x \cdot \frac{f(x) + f(-x)}{x} = \lim_{x \to 0} x \cdot \lim_{x \to 0} \frac{f(x) + f(-x)}{x} = 0,$

故 B 正确.

取 f(x) = |x|, 则熟知 f'(0) 不存在,但 $\lim_{x\to 0} \frac{f(x) - f(-x)}{x} = \lim_{x\to 0} \frac{|x| - |-x|}{x} = 0$,故 D 错误.

- 3. 设对 $\forall x \in \mathbf{R}$, 总有 $\varphi(x) \le f(x) \le g(x)$, 且 $\lim_{x \to \infty} [g(x) \varphi(x)] = 0$, 则 $\lim_{x \to \infty} f(x)$ (D).
- A. 存在且等于 0 B. 存在但未必等于 0 C. 一定不存在 D. 不一定存在

解析: 当 $\lim g(x)$ 和 $\lim \varphi(x)$ 都存在时,据夹逼准则 $\lim f(x)$ 才一定存在.

再例如,取 $f(x) = 2e^{-|x|} + x$, $\varphi(x) = e^{-|x|} + x$, $g(x) = 3e^{-|x|} + x$,则 $\lim_{x \to \infty} f(x)$ 不存在.

4. 设 f(x) 二阶可导,且 f'(x) > 0 , f''(x) > 0 ,又 $\Delta y = f(x + \Delta x) - f(x)$,则当 $\Delta x < 0$ 时,有(D).

A.
$$\Delta y > dy > 0$$

B.
$$\Delta y < dy < 0$$

A.
$$\Delta y > dy > 0$$
 B. $\Delta y < dy < 0$ C. $dy > \Delta y > 0$ D. $dy < \Delta y < 0$

D.
$$dy < \Delta y < 0$$

解析: 由拉格朗日中值定理 $\Delta y = f(x + \Delta x) - f(x) = f'(\xi) \cdot \Delta x$, 其中 ξ 在 $x + \Delta x$ 和 x 之间.

由 $dy = f'(x)dx = f'(x)\Delta x$ 及 f''(x) > 0, 可知 $dy < \Delta y < 0$.

B. 5

C.
$$\frac{5}{2}$$

D. 10

解析:据导数定义,有:

$$\lim_{x \to 0} \frac{f(\sin^2 x + \cos x)}{x^2 + x \tan x} = \lim_{x \to 0} \frac{f(\sin^2 x + \cos x) - f(1)}{\sin^2 x + \cos x - 1} \cdot \frac{\sin^2 x + \cos x - 1}{x^2 + x \tan x}$$

$$= f'(1) \cdot \left[\lim_{x \to 0} \frac{\sin^2 x}{x^2 + x \tan x} + \lim_{x \to 0} \frac{\cos x - 1}{x^2 + x \tan x} \right]$$

$$= f'(1) \cdot \left[\lim_{x \to 0} \frac{x^2}{x^2 + x \tan x} - \frac{1}{2} \lim_{x \to 0} \frac{x^2}{x^2 + x \tan x} \right]$$

$$= f'(1) \cdot \left[\lim_{x \to 0} \frac{1}{1 + \frac{\tan x}{x}} - \frac{1}{2} \lim_{x \to 0} \frac{1}{1 + \frac{\tan x}{x}} \right] = f'(1) \cdot \frac{1}{4} = \frac{5}{2}.$$

二、填空题(每小题4分,共20分):

7. 函数
$$y = x^2 \ln x$$
 的 $n(n \ge 3)$ 阶导数为 $y^{(n)} = \frac{(-1)^{n-3} \cdot 2 \cdot (n-3)!}{x^{n-2}}$.

8. 函数
$$f(x) = \lim_{t \to x} \left(\frac{\sin t}{\sin x} \right)^{\frac{x}{\sin t - \sin x}}$$
 的所有间断点及其类型是 $x = 0$ 是第一类可去间断点,

 $x = k\pi (k \neq 0, k \in \mathbb{Z})$ 是第二类无穷间断点.

9. 曲线
$$y = x \sin \frac{1}{x}$$
 的渐近线有 $y = 1$.

10.
$$\Box \lim_{x \to 0} \frac{f(x)}{1 - \cos x} = 8$$
, $\lim_{x \to 0} \left[1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} = \underline{e^4}$.

三、求下列极限的值(共12分):

(1)
$$\lim_{x \to \infty} \frac{\left(4x^2 - 3\right)^{30} \left(3x - 2\right)^{40}}{\left(6x^2 + 7\right)^{50}} = \left(\frac{2}{3}\right)^{10}$$
 (2)
$$\lim_{x \to 0} \frac{\left(3 + 2\sin x\right)^x - 3^x}{\tan^2 x} = \frac{2}{3}$$

四、计算题(共16分):

(1) 已知
$$y = y(x)$$
 由方程 $\sqrt{x^2 + y^2} = e^{\arctan \frac{y}{x}}$ 所确定,求 $y'' = \frac{2(x^2 + y^2)}{(x - y)^3}$;

(2)
$$\[\exists y = y(x) \] = \begin{cases} x = t^2 + 2t, \\ t^2 - y + a \sin y = 1 \end{cases} \]$$
 $\[\[\exists y(0) = b, \] \] \[\[\] \frac{d^2y}{dx^2} \Big|_{t=0} = \frac{1}{2(1 - a \cos b)}. \]$

五、应用题(8分):

求星型线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 4^{\frac{2}{3}}$ 在点 $(\sqrt{2}, \sqrt{2})$ 处的切线 $x + y - 2\sqrt{2} = 0$ 与法线 x - y = 0 方程.

六、计算题(8分):

设函数
$$f(x) = \begin{cases} e^x, & x < 0 \\ ax^2 + bx + c, x \ge 0 \end{cases}$$
, 且 $f''(0)$ 存在,试确定 $a = \frac{1}{2}, b = 1, c = 1$ 的值.

七、证明题(8分):

设 $0 < x_1 < \sqrt{2}$, $x_n = \frac{2 + 2x_{n-1}}{2 + x_n}$, 试证明极限 $\lim_{n \to \infty} x_n = \sqrt{2}$ 存在,并求此极限.

提示: 因为
$$0 < \frac{2+2x_{n-1}}{2+x_{n-1}} = x_n = 2 - \frac{2}{2+x_{n-1}} < 2$$
,且

$$x_{n+1} - x_n = \frac{2}{2 + x_{n-1}} - \frac{2}{2 + x_n} = \frac{2(x_n - x_{n-1})}{(2 + x_n)(2 + x_{n-1})}$$

即 $x_{n+1}-x_n$ 和 x_n-x_{n-1} 同号,故数列要么单调增,要么单调减,单调有界证毕.

八、证明题(8分):

设函数 f(x) 在 [-1,1] 上有二阶导数, f'(x) 为偶函数,且 f(0) = 0 , f(1) = 1 ,证明:

(1) $\exists \xi \in (0,1)$,使得 $f'(\xi) = 1$; (2) $\exists \eta \in (-1,1)$,使得 $f'(\eta) + f''(\eta) = 1$.

提示: (1) 构造 g(x) = f(x) - x; (2) 构造 $h(x) = e^x g(x)$, 利用第一问.