多项式朴素贝叶斯算法案例 --平滑下的计算方式

L先生AI课堂

回顾多项式朴素贝叶斯

• Multinomial Naive Bayes是指当特征属性服从多项分布(特征是离散的形式的时候),直接计算类别数目的占比作为先验概率和条件概率。

$$p(y_k) = \frac{N_{y_k}}{N} \qquad p(x_i | y_k) = \frac{N_{y_k, x_i}}{N_{y_k}}$$

- N是总样本个数,k是总的类别个数,N_{yk}是类别为yk的样本个数。
- N_{yk} 是类别为yk的样本个数, $N_{yk,xi}$ 为类别yk中第i维特征的值为xi的样本个数,

多项式朴素贝叶斯案例理解

• 对于下列训练数据, 使用多项式朴素贝叶斯方式对测试样本(2,M,L)做一个预测判断。

	1	2	3	4	5	6	7	8	9	10
x1	1	1	1	2	2	2	2	3	3	4
x2	S	M	S	L	S	S	L	L	L	S
x 3	L	Н	L	Н	L	Μ	Н	Μ	Н	М
У	-1	1	1	-1	-1	-1	1	1	1	1

	x1=1	x1=2	x1=3	x1=4	
y=1	2	1	2	1	6
y=-1	1	3	0	0	4
	3	4	2	1	10

	x2=S	x2=M	x2=L	
y=1	2	1	3	6
y=-1	3	0	1	4
	5	1	4	10

	x3=L	x3=M	x3=H	
y=1	1	2	3	6
y=-1	2	1	1	4
	3	3	4	10

训练阶段

• 先验概率:

$$p(y = 1) = 6/10 = 0.6$$
 $p(y = -1) = 4/10 = 0.4$

• 条件概率:

$$p(x_1 = 1|y = 1) = \frac{2}{6} \quad p(x_1 = 1|y = -1) = \frac{1}{4}$$

$$p(x_2 = S|y = 1) = \frac{2}{6} \quad p(x_2 = S|y = -1) = \frac{3}{4}$$

$$p(x_1 = 2|y = 1) = \frac{1}{6} \quad p(x_1 = 2|y = -1) = \frac{3}{4}$$

$$p(x_2 = M|y = 1) = \frac{1}{6} \quad p(x_2 = M|y = -1) = 0$$

$$p(x_1 = 3|y = 1) = \frac{2}{6} \quad p(x_1 = 3|y = -1) = 0$$

$$p(x_1 = 4|y = 1) = \frac{1}{6} \quad p(x_1 = 4|y = -1) = 0$$

$$p(x_2 = M|y = 1) = \frac{3}{6} \quad p(x_2 = M|y = -1) = \frac{1}{4}$$

预测阶段:

$$\hat{y} = \underset{y}{\operatorname{arg}} \max P(y) ? P(x_i \mid y)$$

样本(2,M,L)的预测概率:

$$p(y=1|x) \propto p(y=1)p(x_1=2|y=1)p(x_2=M|y=1)p(x_3=L|y=1) = \frac{6}{10} * \frac{1}{6} * \frac{1}{6} * \frac{1}{6} * \frac{1}{6} = \frac{1}{360}$$

$$p(y=-1|x) \propto p(y=-1)p(x_1=2|y=-1)p(x_2=M|y=-1)p(x_3=L|y=-1) = \frac{4}{10} * \frac{3}{4} * 0 * \frac{2}{4} = 0$$

$$\hat{y} = \arg\max \{p(y=1|x) | p(y=-1|x)\} = 1$$

多项式朴素贝叶斯——平滑

Multinomial Naive Bayes是指当特征属性服从多项分布(特征是离散的形式的时候),直接计算类别数目的占比作为先验概率和条件概率。

$$p(y_k) = \frac{N_{y_k} + \alpha}{N + k * \alpha} \qquad p(x_i | y_k) = \frac{N_{y_k, x_i} + \alpha}{N_{y_k} + n_{x_i} * \alpha}$$

- N是总样本个数,k是总的类别个数,N_{νκ}是类别为yk的样本个数,α为平滑值。
- N_{yk} 是类别为yk的样本个数, nx_i 为特征属性xi的不同取值数目, $N_{yk,xi}$ 为类别yk中第i维特征的值为xi的样本个数, α 为平滑值。
- 当 α =1时,称为Laplace平滑,当0< α <1时,称为Lidstone平滑, α =0时不做平滑;平滑的主要作用是可以克服条件概率为0的问题。

多项式朴素贝叶斯案例理解

• 对于下列训练数据, 使用多项式朴素贝叶斯方式对测试样本(2,M,L)做一个预测判断。

	1	2	3	4	5	6	7	8	9	10
x1	1	1	1	2	2	2	2	3	3	4
x2	S	M	S	L	S	S	L	L	L	S
x3	L	Н	L	Н	L	Μ	Н	Μ	Н	M
У	-1	1	1	-1	-1	-1	1	1	1	1

	x1=1	x1=2	x1=3	x1=4	
y=1	2	1	2	1	6
y=-1	1	3	0	0	4
	3	4	2	1	10

	x2=S	x2=M	x2=L	
y=1	2	1	3	6
y=-1	3	0	1	4
	5	1	4	10

N	=	1	0

$$k = 2 n_1 = 4$$

$$n_2 = 3 \ n_3 = 3$$

	x3=L	x3=M	x3=H	
y=1	1	2	3	6
y=-1	2	1	1	4
	3	3	4	10

训练阶段:
$$\alpha = 1$$

$$p(y_k) = \frac{N_{y_k} + \alpha}{N + k * \alpha}$$

$$p(x_i|y_k) = \frac{N_{y_k,x_i} + \alpha}{N_{y_k} + n_i * \alpha}$$

• 先验概率:

$$p(y = 1) = (6 + 1)/(10 + 2 * 1) = 7/12$$
 $p(y = -1) = 5/12$

• 条件概率:

$$p(x_1 = 1|y = 1) = \frac{2+1}{6+4*1} = \frac{3}{10}$$

$$p(x_1 = 1|y = -1) = \frac{2}{8}$$

$$p(x_1 = 2|y = 1) = \frac{2}{10}$$

$$p(x_1 = 2|y = -1) = \frac{4}{8}$$

$$p(x_1 = 3|y = 1) = \frac{3}{10}$$

$$p(x_1 = 3|y = -1) = \frac{1}{8}$$

$$p(x_1 = 4|y = 1) = \frac{2}{10}$$

$$p(x_1 = 4|y = -1) = \frac{1}{8}$$

$$p(x_1 = 1|y = -1) = \frac{2}{8} \quad p(x_2 = S|y = 1) = \frac{3}{9} \quad p(x_2 = S|y = -1) = \frac{4}{7}$$

$$p(x_1 = 2|y = -1) = \frac{4}{8} \quad p(x_2 = M|y = 1) = \frac{2}{9} \quad p(x_2 = M|y = -1) = \frac{1}{7}$$

$$p(x_1 = 3|y = -1) = \frac{1}{8} \quad p(x_2 = L|y = 1) = \frac{4}{9} \quad p(x_2 = L|y = -1) = \frac{2}{7}$$

$$p(x_1 = 4|y = -1) = \frac{1}{8}$$

训练阶段: $\alpha = 1$

• 条件概率:

$$p(x_3 = L | y = 1) = \frac{2}{9} \qquad p(x_3 = L | y = -1) = \frac{3}{7}$$

$$p(x_3 = M | y = 1) = \frac{3}{9} \qquad p(x_3 = M | y = -1) = \frac{2}{7}$$

$$p(x_3 = H | y = 1) = \frac{4}{9} \qquad p(x_3 = H | y = -1) = \frac{2}{7}$$

预测阶段:

样本(2,M,L)的预测概率概率: $\alpha=1$

$$p(y=1|x) \propto p(y=1)p(x_1=2|y=1)p(x_2=M|y=1)p(x_3=L|y=1) = \frac{7}{12} * \frac{2}{10} * \frac{2}{9} * \frac{2}{9} = \frac{7}{1215}$$

$$p(y=-1|x) \propto p(y=-1)p(x_1=2|y=-1)p(x_2=M|y=-1)p(x_3=L|y=-1) = \frac{5}{12} * \frac{4}{8} * \frac{1}{7} * \frac{3}{7} = \frac{5}{392}$$

$$\hat{y} = \arg\max_{y} \left\{ p(y=1|x) p(y=-1|x) \right\} = -1$$