Contents

Lis	st of	${f Abbre}$	viations	kvii
\mathbf{Pr}	eface	9		xix
Ai	d Sh	eet of	Verilog HDL Design and Simulation xx	kvii
Ι		ndam rilog 1	entals of IC Design and Simulation with HDL	1
1	Intr 1.1	History 1.1.1 1.1.2 1.1.3	on to IC Design y and Road Map of IC Design A brief history of IC design Today's IC industry and technology Beyond Moore's law	3 3 4 6
	1.2	1.1.4 Introdu 1.2.1 1.2.2 1.2.3 1.2.4	Preview	8 8 8 9 10 11
	1.3	FPGA 1.3.1 1.3.2	and ASIC Design FPGA and ASIC implementations Comparison of FPGA and ASIC ASIC development: MPW vs. Fullset FPGA development and applications	15 15 17 19 20
	1.4	Fundar 1.4.1 1.4.2 1.4.3 Attribu	mentals of Verilog HDL Design Multi-level description with Verilog HDL Fundamentals of combinational circuits Fundamentals of sequential circuits ites of Verilog HDL Design	20 20 24 27 30
		1.5.1 1.5.2 1.5.3 1.5.4	Key attributes of hardware description	30 31 32 35

viii Contents

2	IC 1	Design Flow	38
	2.1	Design Specification	38
	2.2	RTL Design in IP Level	40
		2.2.1 IP-level design	40
		2.2.2 Hardware design considerations	41
		2.2.3 Code editors	43
	2.3	RTL Verification in IP Level	43
		2.3.1 Simulation testbench with Verilog HDL	44
		2.3.2 Verification methods and methodologies	45
		2.3.3 EDA tools for simulation	47
	2.4	SoC Integration	48
	2.5	SoC Verification	49
	2.6	FPGA Netlist	50
		2.6.1 FPGA development and assessment	50
		2.6.2 MOF and timing constraints	50
		2.6.3 EDA tools for FPGA demonstration	52
	2.7	2.6.1 FPGA development and assessment 2.6.2 MOF and timing constraints 2.6.3 EDA tools for FPGA demonstration FPGA Verification 2.7.1 Importance of FPGA verification 2.7.2 Challenges of FPGA verification	52
		2.7.1 Importance of FPGA verification	52
		2.7.2 Challenges of FPGA verification	53
	2.8	ASIC Synthesis	54
		2.8.1 ASIC synthesis and script file	54
		2.8.2 Gate-level netlist and synthesis report	55
		2.8.3 EDA tools for ASIC synthesis	57
	2.9	Pre-simulation and static timing analysis	57
		2.9.1 Pre-simulation vs. static timing analysis	57
		2.9.2 Pre-simulation example	58
		2.9.3 Static timing analysis and timing failures	59
	2.10	Layout	60
		2.10.1 What is layout?	60
		2.10.2 Pad-limited and core-limited chip size	62
	2.11	Post-Simulation and Post-STA	62
		2.11.1 Post-simulation	63
		2.11.2 Post-STA	63
		DRC and LVS	64
	2.13	Tape-Out	65
		2.13.1 Chip tape-out procedure	65
		2.13.2 MPW/shuttle and full-set	67
	2.14	Chip Prob and Design for Test	68
		2.14.1 Chip prob and tester	68
		2.14.2 DFT and ATPG	68
		Packaging and Testing	69
	2.16	An Example of IC Design Flow	70
		2.16.1 Front-end phase	70
		2.16.2 Back-end phase	72
	2.17	Basic Qualifications Needed For IC Design and Simulation .	73

Contents ix

			RTL design and simulation	73
		2.17.2	Functional verification (simulation) and FPGA	
			verification	74
		2.17.3	Industry design rules and design standards	75
		2.17.4	Book introduction	75
3	Intr	oducti	on to Verilog HDL	77
	3.1		round of Verilog HDL	77
	3.2		erview of Verilog HDL	78
		3.2.1	Starting with a Verilog design example	78
		3.2.2	Basic Verilog design syntax	80
		3.2.3	Recommended coding format	80
	3.3	Verilog	g Data Types	82
		3.3.1	y Data Types	82
		3.3.2	Verilog data types: wire and reg	83
		3.3.3	Hardware results for declared data types	83
		3.3.4	Mismatched data width	85
	3.4	Basic '	Hardware results for declared data types	86
		3.4.1	Equality and inequality	86
		3.4.2	Bit-wise logic operators	88
		3.4.3	Reduction on multi-bit signals	89
		3.4.4	Relational operators	93
		3.4.5	Concatenation	94
		3.4.6	Logical shift	97
		3.4.7	Logical shift	98
	3.5	Behavi	ioral Verilog Blocks: initial, assign, and always	98
		3.5.1	Synthesizable block – assign	99
		3.5.2	Synthesizable block – always	102
		3.5.3	Unsynthesizable block – initial	108
	Exer	cises .		108
	PBL	1: ANI	D-OR Combinational Circuit	111
			D-MUX Combinational Circuit	111
	PBL	3: ANI	D-OR-Tri Combinational Circuit	112
4	RTI	Desig	gn with Verilog HDL	114
	4.1		Statements: if-else, case, for/while/repeat/forever loop	114
		4.1.1	if-else statement	114
			case statement	119
		4.1.3	Loop statements: for, while, repeat, and forever	123
	4.2	Blocki	ng and Non-Blocking	127
		4.2.1	Examples of blocking designs	128
		4.2.2	Examples of non-blocking designs	130
	4.3		hronous and Synchronous Reset	131
		4.3.1	Verilog design examples of asynchronous and	
			synchronous reset	131

x Contents

		4.3.2	Simulation and synthesis of asynchronous and	
			synchronous reset	133
	4.4	Hierar	chical Design and Instantiation	134
		4.4.1	Verilog design example of hierarchical design	134
		4.4.2	Verilog testbench example of instantiation	137
	4.5	RTL I	Design Rules with Verilog HDL	138
	Exer	rcises		140
	PBI	4: AN	D-OR-Latch Sequential Circuit	143
			D-OR-REG Sequential Circuit	144
5	Des	ign Siı	mulation with Verilog HDL	146
	5.1	System	m Tasks	146
		5.1.1	\$display, \$monitor, and \$fwrite	146
		5.1.2	\$time	148
		5.1.3	Stinish and Sston	148
		5.1.4	\$dumpfile and \$dumpvars	149
		5.1.5	\$readmemh and \$readmemb	149
		5.1.6	\$dumpfile and \$dumpvars	150
		5.1.7	A testbench example using system tasks	151
	5.2	Comp	iler Directives	155
		5.2.1	iler Directives	155
		5.2.2	`ifdef-`else/`elsif-`endif	156
		5.2.3	`include	158
		5.2.4	`timescale	159
	5.3	Functi	ions and Tasks	160
		5.3.1	Functions	161
		5.3.2	1asks	165
	5.4	Verilo	g Delay Control	169
		5.4.1	Delay expression	170
		5.4.2	Event expression	170
	5.5	Auton	nated Simulation Environment and Verilog Testbench .	171
		5.5.1	1 0	172
		5.5.2	Automated simulation testbench utilizing BFM and	
			monitor	175
		5.5.3	Verilog design on automated simulation testbench	176
	5.6		lines for RTL Simulation and Verification	181
			ur-Bit Full-Adder Design and Simulation	183
			mbinational Circuit Design and Simulation	184
			uential Circuit Design and Simulation	184
	PBI	9: Seq	uential Circuit Instantiation and Simulation	185
6	•		Matching Verilog HDL with Basic Combinational	
		_	ential Circuits	186
	6.1		luction to Synthesis	186
		6.1.1	What is synthesis?	186

Contents xi

		6.1.2	Mismatches between simulation and synthesis	187
		6.1.3	Synthesizable Verilog HDL	188
	6.2	Synth	esis of Combinational Logic	190
		6.2.1	Fundamental combinational logic	190
		6.2.2	Uni-directional and bi-directional buses	192
		6.2.3	Multiplexer	192
	6.3	Synth	esis of sequential latches	195
		6.3.1	Intentional latches design with Verilog	195
		6.3.2	Accidental latches with Verilog	197
	6.4	Synth	esis of Sequential Registers	201
		6.4.1	Single-bit register with asynchronous and synchronous	
			reset	201
		6.4.2	Multi-bit register with asynchronous and synchronous	
			reset	202
		6.4.3	Shift register	203
	6.5	Synth	Shift register	205
		6.5.1	Counter 0-f	205
		0.5.4	1 IIII ei u-i	207
	Exer	rcises		211
	PBL	10: Fo	our-Bit Full-Adder with Tri-State Buffer	213
	PBL	11: Fo	our-Bit Full-Adder with Latch	214
	PBL	12: Fo	our-Bit Full-Adder with Register	214
	PBL	13: Co	ounter 0–9	214
	PBL	14: Ti	imer 0–9	216
	PBL	15: Ti	iming Interface	217
	PBL	16: Ti	iming Controller	218
7	ECI	A Desi	iren 10°	221
1	7.1		ling FSM	221
	1.1	7.1.1	Introduction to FSM	221
		7.1.1	FSM design template with Verilog HDL	222
	7.2		and Moore FSMs with Verilog HDL	223
	1.4	7.2.1		223
		7.2.1	Mealy machine	224
		7.2.3	Moore machine	$\frac{224}{230}$
	7.3		n Example: Sequence Detector	233
	1.5	7.3.1	Introduction to sequence detector	$\frac{233}{234}$
		7.3.1	Mealy FSM: 0101 sequence detector	234 235
		7.3.2	Moore FSM: 0101 sequence detector	$\frac{239}{239}$
	7.4		n Example: Odd/Even Number of 1s Checker	$\frac{239}{244}$
	1.4	7.4.1	Introduction to odd/even number of 1s checker	$\frac{244}{244}$
		7.4.1 $7.4.2$	State graph of odd/even 1s checker	$\frac{244}{244}$
		7.4.2 $7.4.3$	- · · · · · · · · · · · · · · · · · · ·	
			State and transition tables of odd/even 1s checker	$\frac{245}{246}$
		7.4.4	Verilog HDL design of odd/even 1s checker	240

xii Contents

		7.4.5	Simulation and synthesis analysis of odd/even 1s	~
		ъ.	checker	247
	7.5	_	Example: Data Package Receiver	248
		7.5.1	Introduction to data package receiver	248
		7.5.2	State graph of data package receiver	249
		7.5.3	State and transition tables of data package receiver	250
		7.5.4	Verilog HDL design of data package receiver	251
		7.5.5	Simulation and synthesis analysis of data package	054
	-		receiver	254
		cises .		255
	PBL	17: Sec	quence Detector	256
8	FSI	/LData	apath Design and Bus Communication	258
G	8.1		Datapath and Bus Communication	258
	0.1	8.1.1	FSMD construction	$\frac{258}{258}$
		8.1.2	Pus communications	250 259
	8.2		Bus communications	260
	0.2	8.2.1	Deady valid protocol	260
		8.2.2	Ready-valid protocol	262
		8.2.3	Decrease ground arbitration	263
	8.3		Request-grant arbitration.	$\frac{203}{264}$
	0.0	o o 1	Example: I2C Write	264
		8.3.2		269
		8.3.3	An FSMD design example: I2C write operations	$\frac{209}{270}$
			Datapath design	$\frac{270}{272}$
		8.3.4		
	0.4	8.3.5	I2C Master design with verilog HDL	273
	8.4	_	Example: MSBUS Communication	277
		8.4.1	MSBUS Protocol	277
		8.4.2	An FSMD design example: MSBUS master and slave .	281 283
		8.4.3 8.4.4	MSBUS master design with Verilog HDL	$\frac{263}{287}$
				292
	E	8.4.5	MSBUS master-slave circuit analysis	
		cises .	Add Mad Cale Design smith ECMD	293
			Add-Mul-Sub Design with FSMD	$\frac{295}{298}$
			Add-Mul-Sub Design with Pipeline FP Operators	
			peline FP Add-Mul-Sub Design	298
	PBL	21: Pa	rallel and Pipeline FP Add-Mul-Sub Design	300
Η	\mathbf{A}	dvanc	ed IC Design and Integration	303
9	Nur	nerical	Hardware Design and Integration	305
_	9.1		Template for Numerical Hardware	305
	9.2	_	er Files	307
	0.2	9.2.1	RTL design on register files	307
			Single-nort register file	308

Contents xiii

		9.2.3	Dual-port register file	313
		9.2.4	Ping-pong buffer	316
	9.3	Design	Example: FP Matrix-Matrix Adder	319
		9.3.1	Design structure of FP matrix-matrix adder	319
		9.3.2	Timing diagram of FP matrix-matrix adder	321
		9.3.3	Verilog code for FP matrix-matrix adder	323
	9.4	Design	Example: FP AXPY Calculation	326
		9.4.1	Design structure of FP AXPY calculation	326
		9.4.2	Timing diagram of FP AXPY calculation	327
		9.4.3	Verilog code for FP AXPY calculation	329
	9.5	Design	Example: Basic Design on FP DDOT	332
		9.5.1	Design structure of basic design on FP DDOT	333
		9.5.2	Timing diagram of basic design on FP DDOT	
			calculation	334
		9.5.3	Verilog code for basic design on FP DDOT	335
	PBL	22: Des	sign Simulation on Single-Port Register File	339
	PBL	23: Des	sign Simulation on Dual-Port Register File	339
	PBL	24: FP	Matrix-Matrix Subtractor	339
	PBL	25: FP	Matrix-Matrix Subtractor	340
	PBL	26: FP	Matrix-Matrix Multiplier	341
	PBL	27: Pov	wer of FP Matrix	341
10	C.			0.40
10			and Iterative Design on Numerical Hardware	343
	10.1		ing and Iterative Design and Integration	343
			Streaming and iterative designs	343
		10.1.2	Multi-controller design with pipelined and parallel	0.4.4
	10.0	C)	framework	344
	10.2			346
			Design structure of streaming design on DDOT	346
			Timing diagram of streaming design on DDOT	347
			Timing controller of streaming design on DDOT	348
	10.0		Verilog code for streaming design on DDOT	352
	10.3		ve design with streaming width four	354
			Iterative design structure with streaming width four .	354
		10.3.2	Timing diagram of iterative design with streaming	055
		10.0.0	width four	355
		10.3.3	Timing controller of iterative design with streaming	250
		10.0.4	width four	356
		10.3.4	Verilog code for iterative design with streaming width	250
	10.4	T4 4.	four	358
	10.4		ve Design with Streaming Width Two	362
			Iterative design structure with streaming width two.	362
		10.4.2	Timing diagram of iterative design with streaming width two	363
			WIGED EWO	-303

xiv Contents

		10.4.3	Timing controller of iterative design with streaming width two	364
		10.4.4	Verilog code for iterative design with streaming width	001
			two	366
			erative Design on DDOT with Streaming Width One .	369
			reaming Design on $DFT2$	371
	PBL	30: Str	reaming Design on $DFT4$	373
11	Tim	ing Co	onstraints and High-Speed RTL Design	375
	11.1	Critica	al Path and True/False Path	375
		11.1.1	True/false path for AND/NAND and OR/NOR gates	376
			True/false path for combinational circuits	376
		11.1.3	Propagation/contamination delay and critical path	379
	11.2		g Information	380
		11.2.1	Timing constraints	380
			Propagation/contamination delay examples	382
	11.3	Maxim	num Delay Constraints	384
		11.3.1	Maximum delay constraint and setup time violation .	384
		11.3.2	Maximum operational frequency	385
		11.3.3	Setup time slack	385
			Design Example #1: binary counter MOF	386
			Design example #2: sequential circuit MOF	387
			Design example $\#3$: pipeline design MOF and latency	389
	11.4		um Delay Constraints	391
			Minimum delay constraint and hold time violation	391
		11.4.2	Design example $#1$: hold timing analysis of binary	
			counter	392
		11.4.3	Design example $\#2$: hold timing constraint of sequential	
			circuit	392
	11.5		Skew	393
			Maximum delay constraints with clock skew	393
			Minimum delay constraints with clock skew	394
		11.5.3	Design Example #1: clock skew analysis of binary	
			counter	394
		11.5.4	Design Example $\#2$: clock skew analysis of sequential	005
	11.0	C1 1	circuit	395
	11.6		Domain Crossing	395
		11.6.1	Request-grant handshaking	396
		11.6.2	Design specification of request-grant handshaking cross-	207
		11 6 9	ing asynchronous clock domains	397
			Design on request-grant handshaking	399
			Synchronizer design	401
		11.0.5	System integration for request-grant handshaking and	403
	Exer	aigag	CDC	403
	Taxel	CIDES .		404

Contents xv

	PBL 31: MOF Assessment of FP Numerical Hardware	405
	PBL 32: Request-Grant Handshaking and CDC	406
	PBL 33: Synchronous FIFO	406
	PBL 34: High-Speed Design on FP Matrix-Matrix Adder	408
	PBL 35: High-Speed Design on FP AXPY Calculation	409
	PBL 36: High-Speed Design on FP DDOT	409
	PBL 37: High-Speed Design on FP Matrix-Matrix Multiplier	409
	PBL 38: High-Speed Streaming Design on DDOT	410
	PBL 39: High-Speed Iterative Design with Streaming Width Four	410
		410
	PBL 40: High-Speed Streaming Design on DFT2	410
	PBL 41: High-Speed Streaming Design on DFT4	411
19	SoC Design and Integration	412
14		412
	12.1 SoC Bus Architecture	413
	12.1.1 AMDA AVI shamala	413
	12.1.1 AMBA AXI bus architecture	
	12.1.3 AMBA AXI bus valid-ready nandsnaking	414
	12.1.4 AMBA AXI write and read operations	416
	12.1.5 AMBA AXI burst length and burst size	419
	12.1.6 AMBA AXI burst types	419
	12.1.7 AMBA AXI address alignment	423
	12.2 Direct Memory Access (DMA)	424
	12.2.1 DMA design architecture	425
	12.2.2 DMA arbiter design	426
	12.2.3 DMA Command and address mapping	428
	12.3 RGB-to-Grayscale Converter	431
	12.3.1 Floating-point design	431
	12.3.2 Floating-to-integer conversion and approximate designs	433
	12.3.3 Hardware utilization vs. speed estimation	437
	12.4 Neural Networks	438
	12.4.1 Single-layer perceptron neural network	438
	12.4.2 Streaming design on SLP neural network	439
	12.4.3 Iterative design on SLP neural network	442
	12.4.4 Hardware utilization vs. latency estimation	448
	Exercises	449
	PBL 42: DMA Arbiter Design	452
	PBL 43: FP RGB-to-Grayscale Converter	453
	PBL 44: High-Speed Design on FP RGB-to-Grayscale Converter .	453
	PBL 45: Integer Designs on RGB-to-Grayscale Converter	453
	PBL 46: Streaming Design on Sigmoid Neuron	455
		455
	PBL 47: High-Speed Streaming Design on Sigmoid Neuron	400
	PBL 48: Iterative Design on Sigmoid Neuron with Streaming Width	450
	Eight	456
	PBL 49: Iterative Design on Sigmoid Neuron with Streaming Width	455
	Four	457

xvi	Contents

PBL 50: High-Speed Iterative Designs Streaming Width Eight and Four	e e e e e e e e e e e e e e e e e e e	457
Bibliography		459
Index		461

List of Abbreviations

ABV Assertion-Based Verification

AHB Advanced High-Performance Bus

AMBA Advanced Microcontroller Bus Architecture

APR Automated Placement and Routing

ATPG Auto Test Pattern Generation

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

BFM Bus Functional Model

CDC Clock Domain Crossing

CDV Coverage-Driven Verification

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide-Semiconductor

CRV Constrained-Random Verification

DFT Design for Test

DRC Design Rule Check

DUT Design-Under-Test

DMA Direct Memory Access

ECO Engineering Change Order

EDA Electronic Design Automation

FPGA Field-Programmable Gate Array

GDS Graphic Data System

HDL Hardware Description Language

HCL Hardware Construction Language

HLS High Level Synthesis

IC Integrated Circuit

IDM Integrated Device Manufacturer

IO Input and Output

IP Intellectual Property

LVS Layout Versus Schematic

LUT Look-Up Table

LSB/MSB Least-/Most-Significant Bit

MPW Multi Project Wafer, or Shuttle

MOF Maximum Operational Frequency

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistors

NRE Non-Recurring Engineering

OOP Object-Oriented Programming

Pre/Post-Sim Pre-/Post-Layout Simulation

Post-STA Post-Layout Static Timing Analysis

PCB Printed Circuit Board

RAM Random Access Memory

ROM Read-Only Memory

RTL Register-Transfer Level

SDF Standard Delay Format

SPF Standard Parasitic Format

STA Static Timing Analysis

UVM Universal Verification Methodology

VMM Verification Methodology Manual

WNS Worst Negative Slack