(19) BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift DE 3813083 A1

(5) Int. Cl. 4: B 60 Q 9/00

B 60 K 41/00 G 05 D 1/02 // G01S 15/93

DEUTSCHES PATENTAMT (21) Aktenzeichen:

P 38 13 083.1

② Anmeldetag:

19. 4.88

49 Offenlegungstag: 2.11.89

7 Anmelder:

Industrial Technology Research Institute, Chung Tung, Hsin Chu Hsien, TW

(74) Vertreter:

Moll, W., Dipl.-Phys. Dr.rer.nat., 8000 München; Delfs, K., Dipl.-Ing.; Mengdehl, U., Dipl.-Chem. Dr.rer.nat.; Niebuhr, H., Dipl.-Phys. Dr.phil.habil., 2000 Hamburg; Glawe, U., Dipl.-Phys. Dr.rer.nat., Pat.-Anwälte, 8000 München

② Erfinder:

Shyu, Jia-Ming; Chuang, Ching-Wang, Chu Tung, Hsin Chu Hsien, TW

Prüfungsantrag gem. § 44 PatG ist gestellt

M Automatische Einparkeinrichtung für Kraftfahrzeuge

Eine in ein Kraftfahrzeug einzubauende Einrichtung zum Erleichtern eines Einparkvorganges in paralleler oder rechtwinkliger Richtung, bestehend aus Bewegungssensoren 3 zum Messen der Bewegungsstrecke des Wagens, Hindernis-Sensoren 2 zum Ermitteln der Position der Hindernisse um einen Wagen herum, und einem Mikrocomputer, der in Übereinstimmung mit den Instruktionen des Fahrers und der von den vorstehend genannten Bewegungssensoren 3 und Hindernis-Sensoren 2 erhaltenen Daten zahlreiche Signale erzeugt, um den Fahrer anzuweisen, den Wagen vorzusetzen, zu stoppen, nach links oder rechts zu fahren oder zurückzusetzen, um den Wagen entlang einem speziellen Weg einzuparken; wobei der Mikrocomputer weiterhin ein Ausgangssignal erzeugen kann, um den Steuerungsmechanismus, die Gangschaltung, die Beschleunigungseinrichtung und das Bremssystem zu steuern, um den Wagen automatisch einzuparken.

BUNDESDRUCKEREI 09.89 908 844/147

38 13 083 OS

Beschreibung

Immer wenn ein Wagen in einen Raum mit begrenzter Breite und Länge, wie in eine Garage oder eine Parklücke auf der Straße zwischen zwei parkenden Wagen eingeparkt werden soll, muß der Wagen geschickt gefahren werden. Üblicherweise muß der Fahrer durch Abschätzen entscheiden, ob die Parklücke breit und lang genug ist, und den Wagen geschickt rückwärts fahren.

Für den Fall, daß die Abschätzung nicht richtig war, oder die Fahrkunst nicht groß genug ist, wird die Parkoperation Schwierigkeiten bereiten, oder der Wagen muß wiederholt vor- und zurückgefahren werden, wobei eine Menge Zeit vergeht, abgesehen davon, daß möglicherweise ein Zusammenstoßen mit anderen

Wagen oder Objekten und Verkratzen des Lackes das Ergebnis sein kann.

Die vorliegende Erfindung betrifft eine automatische Parkeinrichtung zum Einparken eines Wagens in eine Parklücke und insbesondere eine Einrichtung, die dem Fahrer beim Durchführen einer S-förmigen Einparkbewegung (wie beispielsweise ein Paralleleinparken entlang der Straße) behilflich ist, um die vorstehend beschrie-

benen Schwierigkeiten beim Einparken zu beseitigen.

Aufgabe der vorliegenden Erfindung ist es, eine automatische Einparkeinrichtung zum Rückwärtseinparken eines Wagens in eine Parklücke zu schaffen, bestehend aus einem Sensor zum Messen der relativen Position zwischen Karosserie und Parklücke; Übertragen der gemessenen Daten in einen Mikrocomputer und Erzeugen eines Signals zum Instruieren des Fahrers, oder Steuern des Kraftfahrzeugs, um den Wagen zeitgerecht und zweckmäßig nach rückwärts zu fahren, wobei Abstandssensoren zur Messung des seitlichen Abstandes zwischen dem Wagen und einem Hindernis verwendet werden; und gleichzeitig Bewegungssensoren verwendet werden, um den Bewegungsabstand des Wagens herauszufinden; wobei der Mikrocomputer den Rücksetzweg nach einem einfachen Verfahren berechnet und den Fahrvorgang gemäß dem kleinsten Wenderadius des Wagens auf einfache Art steuert.

Diese Aufgabe wird erfindungsgemäß durch eine Einparkeinrichtung gelöst, gekennzeichnet durch Bewegungssensoren, die im Radantriebssystem installiert sind, um den Bewegungsspielraum vor und hinter einem Wagen zu messen, Hindernissensoren bestehend aus mehreren Abstandsmeßeinrichtungen, die jeweils an geeigneten Positionen am Wagen angeordnet sind, um den Abstand zwischen gewissen Teilen des Wagens und Hindernissen zu messen, und einen Mikrocomputer, der die Daten der Bewegungssensoren und der Hindernissensoren in Übereinstimmung mit den Erfordernissen des Fahrers aufnimmt, um die relative Position zwischen Karosserie und den Hindernissen auf einem Fahrweg des Wagens zu bestimmen und abzuschätzen, ob eine Einparkstellung genügend Raum hat und die Steuerparameter für den rückwärts zu fahrenden Weg des Wagens zu berechnen, oder der Computer kann verschiedene Fahrmechanismen des Wagens direkt steuern, um einen genauen und rechtzeitigen Antrieb zu erzielen. Darüber hinaus basiert die Berechnung für die Wegsteuerung darauf, daß der Wagen Kurven mit einem vorbestimmten Radius und geradeaus fahren kann, um die Fahroperationen zu vereinfachen, wobei der vorbestimmte Radius der Radius des kleinsten Wendekreises des Wagens ist.

Ausführungsform der vorliegenden Erfindung werden anhand der folgenden Figuren im einzelnen beschrie-

ben. Es zeigt:

15

Fig. 1 ein Blockschaltbild der Hauptbauteile gemäß der vorliegenden Erfindung;

Fig. 2 eine Ausführungsform der Hindernis-Sensoren gemäß der vorliegenden Erfindung;

Fig. 3 eine schematische Darstellung der Arbeitsweise der Hindernis-Sensoren gemäß der vorliegenden Erfindung:

Fig. 4A, 4B, 4C und 4D zahlreiche Einparkarten eines Wagens;

Fig. 5 einen S-förmigen Weg, der von einem Mikrocomputer berechnet worden ist, und von einem Wagen

Fig. 6 einen L-förmigen Weg, der von einem Mikrocomputer berechnet worden ist, und von einem Wagen rückwärts gefahren wird; rückwärts gefahren wird;

Fig. 7 eine Ausführungsform einer Schalttafel zur Betätigung und Anzeige des Mikrocomputers; und

Fig. 8 ein Blockschaltbild der vorliegenden Erfindung mit Betätigungseinrichtungen für die Antriebsmechanis-

men eines Wagens.

Fig. 1 zeigt die vorliegende Erfindung, die im wesentlichen besteht aus einem Mikrocomputer 1 mit einem CPU 10, einem Zeitimpulsgenerator 11, einem ROM 12 und einem RAM 13. An einer für den Fahrer geeigneten Position ist ein Betätigungstastenfeld 14 installiert, so daß Instruktionssignale in den Mikrocomputer 1 eingegeben werden können, um vorgegebene Betriebsbedingungen auswählen zu können, sowie beispielsweise Starten des Motors, Parken auf der linken Seite, rechten Seite, Unterbrechen oder Stop. Die Ausgangssignale des Mikrocomputers 1 werden an einer Anzeigeeinrichtung 15 angezeigt, um den Fahrer mittels Ton-, Licht- oder Markierungssignalen zu instruieren; weiterhin können Steuersignale über Antriebssteuerungseinrichtungen 4 dazu verwendet werden, einen Wagen auf die gewünschte Art und Weise zu fahren. Der Mikrocomputer 1 arbeitet in Übereinstimmung mit den Daten, die von den Hindernis-Sensoren 2 und den Bewegungs-Sensoren 3 erzeugt werden.

Die Hindernis-Sensoren 2 bestehen aus mehreren Abstandsmeßeinrichtungen, wie beispielsweise den Ultraschall-Abstandsmeßeinrichtungen $t_1, t_2 \dots t_n$ die jeweils an einer geeigneten Position am Wagen montiert sind und in verschiedene Richtungen weisen, um die Abstände zwischen Hindernissen und dem Wagen zu messen. Die Abstandsdaten werden in den Mikrocomputer 1 übertragen, der diesen Daten in Übereinstimmung mit den Wagen-Bewegungsdaten verarbeitet, die von den Bewegungssensoren 3 ermittelt werden, damit der Mikrocomputer 1 die relativen Positionen zwischen den Hindernissen und dem Wagen entlang des Fahrweges des Wagens herausfindet; und dann können die Steuerungsparameter für das Rückwärtsfahren bestimmt werden. Die Einzel-

heiten der vorstehend beschriebenen Operation werden später gegeben.

Die Bewegungs-Sensoren 3 werden zum Feststellen der Bewegungsstrecke eines Wagens einschließlich der

Bewegung nach vorne, nach rückwärts und der Wendcbewegung verwendet. Die Bewegungsdaten werden durch Berechnen der Umdrehungen der Wagenräder erhalten. Der Weg eines Wagens kann aus den Umdrehungen der Wagenräder oder der Ausgangswelle des Motors erhalten werden, wenn die Kurvenbewegung eines Wagens nicht analysiert werden muß. Für das laufende Kraftfahrzeug, welches mit den Hinterrädern angetrieben wird, und mit den Vorderrädern gelenkt wird, kann ein Umdrehungszahlmesser an der Kardanwelle vor dem Differentialgetriebe zum Messen der Wagenbewegung angeordnet werden. (Tentspricht der Bewegungslänge des Mittelpunktes auf der Achse der beiden Hinterräder.) Wenn die Wendekurve eines Wagens analysiert werden muß, sollten die Hinterräder oder irgendwelche zwei Räder mit Umdrehungszahlmeßgeräten versehen sein, um die Bewegung dieser beiden Räder zu messen und den geometrischen Ort der Bewegung eines Wagens zu erhalten. Der Meßwert des Zählers der Bewegungssensoren 3 wird periodisch vom Mikrocomputer 1 aufgenommen und dann verarbeitet, um den geometrischen Ort der Bewegung des Wagens und die zugehörigen Positionen der verschiedenen Teile des Wagens zu einem bestimmten Zeitpunkt zu erhalten; dann werden die vorstehend genannten Daten zusammen mit den Daten der Hindernissensoren 2 verarbeitet. Die Berechnung des vorstehend genannten geometrischen Ortes liegt im Bereich der allgemeinen Geometrie, und es werden daher keine Einzelheiten erläutert.

15

Fig. 2 zeigt die Abstands-Meßeinrichtungen der Hindernissensoren 2, die an einem Wagen montiert sind, wobei an jeder der vier Ecken 51, 52, 53 und 54 des Kraftfahrzeuges 5 zwei Ultraschall-Abstandsmeßeinheiten installiert sind, die in Längs- und Querrichtung des Wagens ausgerichtet sind, d. h. die Übertragungs- und Aufnahmesätze t1, t2, t3, t4, t5, t6, t7 und t8 liegen den vorderen rückwärtigen, linken und rechten Richtungen des Wagens jeweils gegenüber, wobei jeder der Sätze ein Ultraschallsignal auf ein Objekt aussenden kann, und das am Objekt reflektierte Signal durch die Aufnahmesätze erhalten wird; dann wird der Abstand zwischen dem Wagen und dem Hindernis durch einen elektronischen Schaltkreis (nicht dargestellt) berechnet. Der Grund für die Montage von Sende/Aufnahmesätzen an den Ecken eines Wagens besteht darin, daß die Wagenecken während dem Wenden des Wagens vorzugsweise an ein Hindernis anstoßen, und daher wird der zwischen der Ecke eines Wagens und einem Hindernis ermittelte Abstand dazu verwendet, zu verhindern, daß der Wagen gegen das Hindernis fährt. Natürlich können an den anderen Teilen des Wagens auch andere Meßeinrichtungen, falls notwendig, installiert sein, um für den Wagen mehr Schutz zu bieten. Die Ultraschall-Abstandsmeßeinrichtung kann entsprechend der allgemein bekannten Technologie ausgebildet sein; und der Übertragungswinkel des Ultraschallsignals kann auf geeignete Art und Weise eingestellt sein.

Im allgemeinen werden die Meßeinheiten an den vorderen und rückwärtigen Ecken des Wagens dazu verwendet, eine direkte Kollision zu verhindern, und sollten einen großen Übertragungswinkel Θ_1 aufweisen, wogegen die Meßeinheiten an den linken und rechten Seiten des Wagens, die zum Erfassen von Hindernissen an beiden Seiten des Wagens verwendet werden, einen kleineren Übertragungswinkel Θ_2 haben können. Die verschiedenen Meßeinrichtungen müssen nicht gleichzeitig im Betrieb sein, d. h. es ist nur eine begrenzte Anzahl von Meßeinheiten erforderlich, die in einer vorgegebenen Situation betätigt werden müssen; beispielsweise wenn ein Wagen vorwärts fährt, um eine Parkposition an der linken oder rechten Seite zu suchen, müssen nur die Meßeinrichtungen auf der linken oder rechten Seite betätigt werden, d. h. die Einrichtungen t_2 , t_6 oder t_4 und t_8 . Wenn ein Wagen rückwärts fährt, um auf der rechten Seite einzuparken (S-förmiger Einparkweg), brauchen nur die Meßeinrichtungen t_3 , t_4 , t_7 und t_8 auf der rechten Seite des Wagens betätigt werden, um ein Zusammenstoßen mit einem Hindernis zu verhindern. Wenn ein Wagen nach rückwärts fährt, um auf der rechten Seite einzuparken (L-förmiges Einparken), brauchen nur die Meßeinrichtungen t_7 und t_8 an der Rückseite des Wagens betätigt werden. Die vorstehend genannte Operationswahl kann mit dem Mikrocomputer 1 in Übereinstimmung mit den Instruktionen für die jeweiligen unterschiedlichen Einparkarten kontrolliert werden.

Fig. 3 zeigt, wie ein Wagen 5 die Positionen von Hindernissen ermittelt. Wenn ein Wagen 5 in Pfeilrichtung H fährt, passiert er die Positionen, wie beispielsweise P_0 , P_1 , P_2 und P_3 ; wenn der Wagen in die Position P_0 gelangt, wird der Mikrocomputer 1 (siehe Fig. 1) angewiesen, eine Parklücke auf der rechten Seite des Wagens zu ermitteln. Von diesem Zeitpunkt an nimmt der Mikrocomputer 1 in regelmäßigen Zeitabständen die Abstandswerte von der Abstandsmeßeinrichtung t bis zu den Hindernissen a_1 , a_2 und a_3 auf der rechten Seite des Wagens auf (wie beispielsweise der Abstand Dp des Wagens in der Position P_0 , der Abstand Ds des Wagens in der Position P_1 ; und in der Position P_2 und der Abstand De in der Position D_3) und vergleicht diese Werte mit einem Sollwert D. Immer dann, wenn der gemessene Wert größer als D ist, wie dies nach der Position P_1 gemäß Fig. 3 ist, wird dann der Fahrweg nach vorne des Wagens mit dem Bewegungssensor 3 (Fig. 1) aufgezeichnet und aufaddiert.

Für den Fall, daß eine Reihe von Abstandswerten innerhalb eines Fahr-Sollwertes L fortlaufend größer als der-Sollwert D ist, heißt dies, daß die Parklücke auf der rechten Seite des Wagens für das Einparken groß genug ist, dann wird die Anzeigeeinrichtung 15 (Fig. 1) ein Signal aussenden, um eine mögliche Parkoperation anzuzeigen; ansonsten wird ein Signal angezeigt, das dem Fahrer angibt, daß der Raum für das Einparken nicht zur Verfügung steht, und der Mikrocomputer sucht weiter nach einer geeigneten Parklücke. Die Sollwerte D und L können durch den Mikrocomputer 1 in Übereinstimmung mit vorbestimmten Parametern oder einer Datenliste, die vorher vorbereitet worden ist, bestimmt oder ausgewählt werden, wobei jedoch unterschiedliche Einparkarten unterschiedliche Arten der Berechnung der Sollwerte erfordern, deren Einzelheiten später beschrieben werden. Um eine Parklücke zu messen, müssen an einer Seite des Wagens zwei Meßeinheiten zusammen verwendet werden (beispielsweise 4 und t_8 gemäß Fig. 2), um schnell die Gesamtlänge einer Parklücke zu messen.

Die Fig. 4A bis 4D zeigen vier Haupt-Einparkarten eines Wagens. Fig. 4A zeigt das Einparken an der rechten Seite einer Straße und parallel zu dieser. Fig. 4B zeigt ein rechtwinkliges Einparken nach rechts. Fig. 4C zeigt ein linksseitiges paralleles Einparken. Fig. 4D zeigt ein rechtwinkliges Einparken nach links. In den vorstehend genannten Figuren bezeichnet K_1 , K_2 , K_3 , K_4 die Parklücke, die jeweils ermittelt worden ist und eine Länge und

Tiefe, wie beispielsweise L_1 , D_1 : L_2 , D_2 ; L_3 , D_3 ; L_4 , D_4 aufweist, die auch genügend Freiraum für das Fahren des Wagens beinhaltet. Der Wagen 5 hält an einer geeigneten Position nach dem Vorbeifahren an der Parklücke in Pfeilrichtung F und dann wird der Wagen entlang einem geeigneten geometrischen Ort in eine Endposition 5' gefahren. Der Ausgangspunkt 50 und der Haltepunkt 50' in den vorstehend genannten Figuren geben jeweils den Mittelpunkt der Achse der beiden Hinterräder des Wagens 5 bzw. 5' an. (Im allgemeinen werden die Vorderräder eines Wagens zum Lenken verwendet und die Achse der Hinterräder ist der Drehmittelpunkt eines Vorderräder eines Wagens zum Lenken verwendet und die Achse der Fahrweg eines Wagens zu beschreiben.) In den Fig. 4A und 4C ähnelt der Fahrweg des Wagens einer "S-Form" und in den Fig. 4B und 4D einer "L-Form".

Berechnung und Steuerung zum Einparken eines Wagens auf der linken oder rechten Seite sind mit Ausnahme der Bezeichnung des Sensor-Vorganges und des Antriebes gleich. Daher werden nur die Berechnung und die Steuerungsvorgänge für das rechtzeitige Einparken in "S-Form" und "L-Form" in den Fig. 5 und 6 beschrieben.

Fig. 5 zeigt die Analyse der Berechnung und Steuerung eines Kraftfahrzeuges, das durch Rückwärtsfahren auf der rechten Seite einparkt, durch den Mikrocomputer 1. Der Wagen 5 fährt von einer Startposition Ps aus nach rückwärts in seine Endposition Pe, wobei der Fahrweg durch eine Kurve TQU angegeben ist, die im wesentlichen den geometrische Ort der Bewegung des Mittelpunktes der Hinterradachse des Wagens darstellt. T und Ufallen auf die Mittelpunkte der Startposition Ps und der Stopposition Pe. Die Kurve TQU besteht aus zwei Kreisbogenteilen TQ und QU, die jeweils einen Winkel β und einen Radius R aufweisen. Der Θ -Radius R ist der Radius des kleinsten Wendekreises des Wagens 5 vom Mittelpunkt der Hinterradachse aus gemessen; wobei das Steuerrad des Wagens 5 nach rechts bis zum Anschlag gedreht sein sollte, um die Rückfahrbewegung in der Startposition Ps zu beginnen und entlang eines Bogens im Winkel β um einen Mittelpunkt M zu fahren; dann muß das Steuerrad des Wagens nach links bis zum Anschlag gedreht werden, damit der Wagen nach rückwärts entlang einem Bogen im Winkel β um einen Mittelpunkt N fahren kann, bis der Wagen in seiner Endposition Pesteht. In diesem Fall sind die Berechnungen und Steuerungsvorgänge am einfachsten. Bevor der Wagen 5 die Startposition Ps erreicht, sollten die Vorgänge zum Feststellen der relativen Position des Wagens zu den Hindernissen (siehe Fig. 3) durchgeführt werden, d. h., um sicherzustellen, daß die Parklücke auf der rechten Seite zum Einparken des Wagens eine ausreichende Länge L_1 und einen ausreichenden Abstand D_1 zum Hindernis A aufweist; dann wird der Wagen in der Startposition Ps gestoppt, um für die Rückfahrbewegung bereit zu sein, ohne daß während dem Rückwärtsfahren das Hindernis berührt wird. Wenn der Wagen 5 in die Schlußposition Pe fährt, ist die äußere Kante der Karosserie zum Hindernis A ausgerichtet.

Bei der vorstehend beschriebenen Figur besteht der geometrische Ort der Bewegung der vorderen rechten Ecke des Wagens aus zwei Bogenabschnitten S_1 , S_2 und S_2 , S_3 . Der Bogen S_2 und S_3 und die Außenkante des Hindernisses A schneiden sich im Punkt B. Theoretisch würde der Abstand zwischen dem Punkt B und der rückwärtigen Kante des Wagens beim Erreichen der Endposition Pe die Mindestlänge der erforderlichen Parklücke bestimmen; wobei die Mindestbreite der Parklücke von der äußeren Kante des Hindernisses gleich der Wagenbreite ist. In der Praxis werden zusätzlich zu der gemessenen Mindestparklücke drei Abstände I_1 , I_2 und I_3 (siehe Fig. 5) addiert, um die Länge I_3 und die Breite I_4 der erforderlichen Parklücke zu bestimmen. Wenn davon ausgegangen wird, daß ein Wagen 5 in der Startposition I_4 einen Abstand I_4 zwischen seiner rechten Seite und dem Hindernis I_4 hat und eine Breite I_4 aufweist und der Abstand zwischen der Hinterradachse und der Vorderkante und der hinteren Kante des Wagens jeweils I_4 bzw. I_4 ist, dann kann die Länge I_4 und die Breite I_4 der erforderlichen Parklücke gemäß der folgenden Formel ermittelt werden:

$$L_1 = b + l_1 + l_2 + \sqrt{l^2 + 2R \cdot W}$$

Wenn der Stoppunkt für den vorwärts fahrenden Wagen 5 (d. h. die Startposition Ps für das Rücksetzen des Wagens) bestimmt ist, könnte die vordere Kante E des Hindernisses A an der Vorderkante der erforderlichen Parklücke liegen, wie dies in der Fig. 5 dargestellt ist, damit die Hinterradachse vor der vorderen Ecke E mit einem Abstand & liegt, was durch die folgende Gleichung erhalten wird:

$$l_0 = 2R \cdot \sin \beta - l_1 - \sqrt{P + 2R \cdot W}$$

oder die rückwärtige Ecke E des Hindernisses A könnte mit der rückwärtigen Kantenlinie der erforderlichen Parklücke zusammenfallen, damit die Hinterradachse zu dem vorderen Punkt E' einen Abstand h (siehe Fig. 5) hat; wobei der Wert für h durch die folgende Gleichung erzielt werden kann:

$$I'_0 = I_0 + L_1 = 2R \cdot \sin \beta + b + I_2$$

Der Winkel β in den beiden vorstehend geschriebenen Gleichungen kann, wie folgt, erhalten werden:

60
$$\beta = \cos^{-1}[(2R - C - W)/2R].$$

Der Rücksetzweg des Wagens wird durch den Mikrocomputer 1 in Übereinstimmung mit dem durch die Bewegungssensoren 3 ermittelten Wert gesteuert, um zu berechnen, ob der Wagen um den vorbestimmten Winkel β gewendet und zurückgesetzt hat.

Fig. 6 zeigt eine Weganalyse eines Wagens 5 beim rechtwinkligen Einparken nach rechts mittels der Steuerung eines Mikrocomputers gemäß der vorliegenden Erfindung. Der Wagen 5 fährt von der Startposition P_X rung einem Meg XY in eine Position P_Y und fährt dann entlang einem geraden Weg YZ nach rückwärts in die Endposition P_Z , wobei die Endkante des Wagens und das Hindernis B zueinander ausgerichtet sind. Der Punkt X

ist im wesentlichen der Mittelpunkt der Hinterradachse des Wagens 5 beim Anhalten des Wagens in der Ausgangsposition Px; der bogenförmige Weg XY ist im wesentlichen ein Bogen entsprechend einem Viertelkreis mit einem Radius R, der vom Mittelpunkt der Hinterradachse beim Rücksetzen des Wagens beschrieben wird; andes ausgedrückt, wenn der Wagen aus der Ausgangsposition Px seine Rücksetzbewegung startet, muß das Steuerrad nach rechts bis zum Anschlag gedreht werden, damit der Wagen entlang einem Kreisbogen mit einem Mittelpunkt O so lange zurücksetzt, bis er die Position Py erreicht hat; dann sollte das Steuerrad in seine mittlere Position gedreht werden, bevor der Wagen um einen Abstand Δd in die Position Pz gerade nach rückwärts gefahren wird. Bevor der Wagen 5 die Startposition Px erreicht, muß der Ermittlungsvorgang für die Parklücke durchgeführt werden, d. h., wenn der Wagen parallel der äußeren Kante des Hindernisses fährt, wird gemäß der vorliegenden Erfindung die Parklücke gemessen und berechnet und im Wagen eine Instruktion ausgegeben, damit dieser in einer korrekten Position angehalten wird (d. h. der Startposition Px für das Rücksetzen des Wagens). Bei dem vorstehend beschriebenen Vorgang sollte der Abstand Px zwischen dem Wagen 5 und der Außenkante des Hindernisses B größer als ein Mindestabstand Cmin sein, um wenigstens einen Abstand d1 zwischen dem Bogen G1 (geometrischer Ort der Bewegung der rechten Seite des Wagens) und der vorderen Ecke H1 der erforderlichen H2 zwischen dem Rücksetzen des Wagens aufrechtzuerhalten.

Wenn davon ausgegangen wird, daß ein Wagen 5 eine Breite \overline{W} , eine Länge l, einen Abstand b zwischen der Hinterradachse und dem hinteren Ende des Wagens hat und weiterhin davon ausgegangen wird, daß der Wagen auf der Mittellinie der erforderlichen Parklücken-Länge L_2 mit einem Abstand d_3 jeweils auf beiden Seiten und einem Abstand d_2 an der hinteren Seite parkt, werden die Werte für L_2 , die Tiefe D_2 (gemessen von der Karosserie aus) und der Mindestabstand Cmin entsprechend den folgenden Gleichungen erhalten:

15

20

25

40

$$L_2 = W + 2d_3;$$

 $D_2 = Cx + l + d_2;$
 $Cx \ge Cmin = R - W/2 + d_1 - \sqrt{(R - W/2)^2 - (R - L_2/2)^2}$

Die durch die vorstehenden Gleichungen erhaltenen Werte für L_2 und Cmin ermöglichen es, daß der Abstand Cx zwischen dem Wagen und der Außenkante des Hindernisses B während dem Rücksetzen des Wagens eingestellt wird und der Parkraum so gemessen wird, daß er den Anforderungen für Cx und Cmin entspricht; beispielsweise kann der Mikrocomputer ein Alarmsignal aussenden, um die Instruktion für eine Vergrößerung des Abstandes zu erhalten, oder um den Wagen direkt mit einem Steuersignal zu betätigen, um die notwendige Einstellung durchzuführen. Der nicht lineare geometrische Ort der Vorwärtsbewegung kann mit den Bewegungssensoren 3 detektiert werden und kann zum Einstellen der Werte verwendet werden, die durch die Hindernis-Sensoren 2 ermittelt werden, um die relative Position zwischen dem Hindernis B und dem Wagen 5 zu bestimmen. Wenn der Wagen 5 beim Ankommen in der Startposition Px gestoppt wird, wird der Abstand zwischen der Hinterradachse und der Mittellinie ML der Parklücke (d. h. der Mittellinie des Raums des Hindernisses B) festgestellt und ermittelt, ob er gleich dem Mindestradius R basierend auf dem Mittelpunkt der Hinterradachse ist. Beim Rücksetzen in die Position Py wird der Wagen 5 weiter geradeaus zurückgesetzt, bis er die Position Pz erreicht, wobei der vorstehend genannte Weg Δd des Wagens 5 durch die folgende Gleichung erhalten werden kann:

$$d = Cx + W/2 + I - R - b$$

Fig. 7 zeigt eine Ausführungsform einer Schalttafel zur Betätigung und Anzeige des Mikrocomputers 1 gemäß der vorliegenden Erfindung. Ein Teil der Schalttafel ist mit einem Betätigungstastenfeld 14 versehen, welches vier Druckknöpfe zum Wählen der Operation aufweist, d. h. die Betriebsarten links parallel Einparken, links rechtwinklig Einparken, rechts parallel Einparken und rechts rechtwinklig Einparken. Mittels der vorstehend genannten Druckknöpfe wird der Mikrocomputer 1 instruiert, daß er in dieser bestimmten Betriebsart arbeitet, wobei jeder Druckknopf weiterhin mit einer Lichtanzeige versehen sein kann, die beim Drücken aufleuchtet und die ausgeht, wenn der Einparkvorgang beendet worden ist. Der restliche Teil der Schalttafel ist mit einer Anzahl von Kontrollampen versehen, einer Lampenanordnung 150 für die Abstandsbedingungen, einer Lampenanordnung 151 für das Steuerrad, einer Lampenanordnung 152 für die Gangschaltung, eine Lampenanordnung 153 für eine Bohreinstellung und einen Lautsprecher 154. Die Anzeigelampenanordnungen werden zusammen dazu verwendet, dem Fahrer anzuzeigen, wie er den Wagen genau fahren soll. Die Anzeigelampenanordnung 150 für die Abstandsbedingungen besteht aus einer Anzeigelampe für "zu vergrößernden Zwischenraum", die dann aufleuchtet, wenn der Zwischenraum zwischen Karosserie und Hindernis ungenügend ist; einer Anzeigelampe für "ungenügenden Zwischenraum", die dann aufleuchtet, wenn der Raum zum Einparken des Wagens nicht ausreicht; einer Anzeigelampe für "möglicher Zusammenstoß", um vor einem Zusammenstoß zu warnen, wenn das Fahrzeug in Bewegung gesetzt wird. Die Lampenanordnung 151 für das Steuerrad wird hauptsächlich während dem Rücksetzen eines Wagens verwendet, um den Fahrer darüber zu instruieren, wie er das Steuerrad zu drehen hat; und hat eine Anzeigelampe für "Drehen bis zum Anschlag nach links", "mittlere Position" und "Anschlag rechts", die dann verwendet werden, wenn zahlreiche Einparkarten durchgeführt werden und die Lampen werden aufflackern, wenn der Wagen in einer geeigneten Position anhält, und werden dann ausgehen, jeweils wenn eine Rücksetzoperation beendet worden ist. Die Lampenanordnung 152 der Gangschaltung hat eine Lampe für "vorwärts" und "rückwärts", um den Fahrer darüber zu instruieren, ob er vorwärts oder rückwärts fahren soll; die Lampen werden während dem Schalten aufflackern und werden während dem Fahren des Wagens eingeschaltet bleiben und werden ausgehen, wenn das Fahrzeug seinen Weg beendet hat. Die Lampenanordnung 153 für die Voreinstellung hat eine Reihe von Bewegungsanzeigen, beispielsweise "Stop",

10 cm, 20 cm, 50 cm, 100 cm, 200 cm und "Fahren", um den Fahrer zu unterrichten, bis zu welchem Abstand der Wagen fahren kann. In der Tat repräsentiert, wenn ein Wagen nach vorne oder rückwärts gefahren wird, diese Lampenanordnung den verbleibenden, vom Mikrocomputer für den laufenden Fahrvorgang des Wagens berechneten Abstand, um den Fahrer zu instruieren, daß er die notwendigen Dinge tut. Wenn beispielsweise ein Wagen fährt, um eine Parklücke zu ermitteln, wird die Lampe "vorwärts" in der Lampenanordnung 152 für Gangschaltung aufleuchten, gleichzeitig wird die Lampe "Fahren" der Voreinstellungs-Lampenanordnung 153 aufleuchten; nachdem eine ausreichend große Parklücke gefunden worden ist und ein Ausgangspunkt für das Rücksetzen gefunden worden ist, wird die entsprechende Abstandslampe aufleuchten, und so werden die Lampen fortlaufend so lange umschalten, bis die Lampe "Stop" aufleuchtet; dann wird eine geeignete Lampe der Lampenanordnung 151 für das Steuerrad aufflackern; die Lampe für "rückwärts" wird ebenfalls aufflackern und nachdem der Fahrer die Operation am Steuerrad und an der Gangschaltung beendet hat und angefahren ist, geht die Anzeigelampe des Steuerrades aus, während die Lampe "rückwärts" leuchten bleibt. Eine Lampe der Lampenanordnung 153 für die Voreinstellung zur Anzeige des noch möglichen Bewegungsweges leuchtet auf und die restlichen entsprechenden Lampen werden nacheinander aufleuchten und ausgehen, wenn der Wagen gefahren wird. Die Lampen von "Fahren" bis "Stop" der Lampenanordnung 153 für Voreinstellung können mit unterschiedlichen Farben wie beispielsweise Grün, Gelb, Orange und Rot versehen sein, um das Warnergebnis zu verbessern.

Die vorstehend beschriebene Ausführungsform der Anzeigeschalttafel und ihre Operation ist so ausgebildet, damit ein Fahrer den Wagen in Übereinstimmung mit den Instruktionen des Mikrocomputers 1 fahren kann. In der Tat wird der Rückstoßweg eines Wagens gemäß der vorliegenden Erfindung entlang einer geraden Linie und entsprechend einem Mindestradius durchgeführt; daher kann die Fahroperation eines Wagens mit einer einfachen und zweckmäßigen Einrichtung, die direkt vom Mikrocomputer 1 gesteuert wird, auch automatisch durchgeführt werden. Der ganze Aufbau der vorstehend beschriebenen Einrichtung ist in der Fig. 8 in Form eines Blockschaltbildes gezeigt. Nach dem Erhalt der Betriebsinstruktion vom Operationstastenfeld 14, die von einem Fahrer eingegeben worden ist, wird der Mikrocomputer 1 die zugehörigen Schritte starten. Das Operationstastenfeld 14 kann zusätzlich zu den Druckknöpfen zum Wählen der Operation gemäß Fig. 7 weiter mehrere Steuerdruckknöpfe enthalten, beispielsweise "Nothalt", "Unterbrechen" und "Rückstellen", um den Betrieb der Steuereinrichtungen 4 für den Fahrmechanismus für den Fall, daß es notwendig ist, zu unterbrechen. Das Warnsignal des Mikrocomputers 1 wird als Ton- und Lichtsignal über die Anzeigeeinrichtung 15 ausgegeben. Die Warnsignal-Inhalte sind ähnlich denen wie in der Fig. 7 dargestellt, dienen jedoch zur Anzeige des bestehenden Fahrzustandes des Wagens für den Monitor des Fahrers und die entsprechenden Bezüge. Für den Fall, daß das System feststellt, daß möglicherweise ein Zusammenstoß stattfindet, wird die Antriebsoperation automatisch unterbrochen. Aufbau und Funktionsweise der Hindernis-Sensoren 2 und Bewegungs-Sensoren 3, die mit dem Mikrocomputer 1 gekoppelt sind, sind bereits vorstehend beschrieben, d. h. der Mikrocomputer 1 kann wahlweise gewisse Abstandsmeßeinrichtungen an den geeigneten Teilen des Wagens starten, um die Abstandsdaten aufzunehmen und nimmt den Wert auf, der von den Bewegungssensoren gezählt worden ist, um die Steuersignale für den Antriebsmechanismus der Steuerungseinrichtungen 4 zu bestimmen. Die Steuerungseinrichtungen 4 umfassen mehrere Betätigungselemente, d. h. ein Betätigungselement 41 für den Richtungsmechanismus, ein Betätigungselement 42 für die Gangschaltung; ein Betätigungselement 43 für die Kupplung, ein Betätigungselement 44 zum Beschleunigen und ein Betätigungselement 45 für die Bremse, um die Antriebsme-

Die Betätigungselemente arbeiten in Übereinstimmung mit den Steuersignalen, die vom Mikrocomputer 1 chanismen des Wagens zu steuern. abgegeben werden. Das Positionssignal der Betätigungselemente wird ebenfalls in den Mikrocomputer 1 zurückgeführt, um eine Regelung zu erreichen. Das Betätigungselement 41 für den Richtungsmechanismus kann wenigstens den Steuermechanismus des Wagens in die Anschlag-links-Position, Anschlag-rechts-Position und mittlere Position einstellen; wobei der Steuerungsmechanismus durch ein lineares Betätigungselement (wie beispielsweise einen hydraulischen oder pneumatischen Zylinder) oder ein drehendes Betätigungselement (wie beispielsweise einen Motor oder ein elektromagnetisches Ventil, welches zum Steuern der Hydraulikleitung eines Kraft-Steuer-Mechanismus verwendet wird) angetrieben werden. Das Betätigungselement 42 für die Gangschaltung und das Betätigungselement 43 für die Kupplung werden zusammen betätigt, um die Bewegung des Wagens zu steuern, wodurch die Gangschaltung wenigstens in einen niedrigeren Vorwärtsgang und einen Rückwärtsgang geschaltet werden kann. Eine speziell konstruierte automatische Gangschaltung hat üblicherweise eine automatische Kupplung; in diesem Fall kann das Betätigungselement 43 für die Kupplung weggelassen werden. Das Betätigungselement 44 für die Beschleunigung und das Betätigungselement 45 für die Bremse werden zum Steuern der Geschwindigkeit des Wagens verwendet. Der Mikrocomputer 1 kann die Leistung des Motors mit diesen Betätigungselementen in Übereinstimmung mit dem Unterschied zwischen der tatsächlichen Geschwindigkeit und der Sollgeschwindigkeit des Wagens auf geeignete Art und Weise steuern. Wenn der Wagen seine Geschwindigkeit verringern sollte oder anhalten sollte, der Motor jedoch in seinem geringsten Ausgangszustand gewesen ist, wird das Betätigungselement 45 für die Bremse betätigt, um den Wagen zu bremsen. Die Betriebszeit und der zugehörige Betrieb der Betätigungselemente erfolgt in Übereinstimmung mit der Software des Mikrocomputers 1. Die Konstruktionen der vorstehend beschriebenen Betätigungselemente können entsprechend herkömmlicher Techniken und Einrichtungen durchgeführt sein, und es wird daher auf eine detaillierte Beschreibung verzichtet.

Die automatische Einparkeinrichtung gemäß der vorliegenden Erfindung hat im wesentlichen Hindernis-Sensoren, die mit Bewegungssensoren gekoppelt sind, um auf sichere Art und Weise eine Parklücke und den einfachsten Rücksetzweg zum Einparken des Wagens mittels der Instruktion oder automatischen Steuerung eines Mikrocomputers zu finden.

Patentansprüche

1. Einparkhilfseinrichtung für ein Kraftfahrzeug, gekennzeichnet durch

Bewegungssensoren (3), die im Antriebssystem des Kraftfahrzeuges installiert sind, um die Bewegungsstrek-

ke des Wagens zu messen und diese Wegstrecke in ein elektronisches Signal umzuwandeln;

Hindernis-Sensoren mit mehreren Abstands-Meßeinheiten (t₁, t₂ ... t_k), die an geeigneten Teilen des Wagens montiert sind und in gewisse Richtungen weisen, um die Abstände zwischen der Karosserie und den Hindernissen in diesen Richtungen zu messen, und zum Verwandeln dieser Abstände in elektronische Signale; und einen Mikrocomputer zum Empfangen dieser elektronischen Signale von den Bewegungssensoren (3) und Hindernis-Sensoren (2), um eine Parklücke auf einer Seite des Wagens während der Vorwärtsfahrt des Kraftfahrzeugs zu ermitteln und zum Berechnen der Daten zur Steuerung der Rücksetzbewegung des Kraftfahrzeuges entlang einem geeigneten Weg, wobei der Mikrocomputer Signale abgibt, die an einer Anzeigeeinrichtung angezeigt werden, um dem Fahrer Instruktionen über die Art notwendiger Einparkbewegungen anzuzeigen.

wegungen anzuzeigen.

2. Einrichtung zum automatischen Einparken eines Kraftfahrzeuges, gekennzeichnet durch Bewegungssensoren (3), die im Antriebssystem des Kraftfahrzeugs installiert sind, um die Bewegungsstrecke des Kraftfahrzeugs zu messen, und zum Umwandeln dieser Wegstrecke in ein elektronisches Signal; Hindernis-Sensoren (2) mit mehreren Abstands-Meßeinheiten, die an geeigneten Teilen des Kraftfahrzeuges montiert sind und in gewisse Richtungen weisen, um die Abstände zwischen der Karosserie und den Hindernissen in diesen Richtungen zu messen und diese Abstände in elektronische Signale umzuwandeln; und einen Mikrocomputer zum Empfangen dieser elektronischen Signale von den Bewegungs-Sensoren und den Hindernis-Sensoren, um eine Parklücke auf einer Seite des Kraftfahrzeuges während der Vorwärtsfahrt zu ermitteln, und zum Berechnen der Daten zum Steuern der Rücksetzbewegung des Kraftfahrzeuges entlang einem geeigneten Weg, wobei der Mikrocomputer Signale abgibt, um die Antriebsmechanismen des Kraftfahrzeuges mittels Steuereinrichtungen zu steuern, um einen gewünschten Antrieb zu erzielen.

3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Bewegungssensoren (3) im wesentlichen Umdrehungszähler an der Radachse sind.

4. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Abstands-Meßeinheiten $(t_1, t_2 \dots t_n)$ der Hindernis-Sensoren an den Ecken des Kraftfahrzeugs jeweils so montiert sind, daß sie die Abstände vor,

hinter, links und rechts vom Kraftfahrzeug messen.

5. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Meßvorgänge der Parklücke mit dem Mikrocomputer so sind, daß der Mikrocomputer einen Sollwert (die Breite) und einen Bewegungs-Sollwert vorgibt, und wenn das Kraftfahrzeug einen Weg entsprechend der Länge dieses Bewegungs-Sollwertes abfährt, während dem die Abstände zum Hindernis größer als der Breite-Sollwert sind, dann wird das Finden einer Parklücke bestätigt.

6. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Daten zum Steuern des Rücksetzweges des Kraftfahrzeuges einen Stoppunkt enthalten, an dem das Kraftfahrzeug seine Vorwärtsfahrt

stoppt und sein Rücksetzen beginnt.

7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Rücksetzweg an dem Stoppunkt beginnt und einen S-förmigen Weg bildet, bis der Wagen einen Endpunkt erreicht, an dem er vollständig an paralleler Position geparkt ist, wobei der S-förmige Weg durch einen Bogen mit geeignetem Winkel(β) und Radius (R) und einen entgegengesetzten Bogen mit gleichem Winkel und Radius gebildet ist; die für den Weg erforderliche Parklücke mit einer Länge (L_1) und einer Breite (D_1) bestimmt ist; und der Stoppunkt der Vorwärtsfahrt in der Längsrichtung dieser erforderlichen Parklücke festgelegt ist, wobei dieser Stoppunkt mit dem Mittelpunkt der Hinterradachse angegeben ist und dieser Mittelpunkt zur Vorderkante der Länge der Parklücke einen Abstand (I_0) hat und bei Erreichen des Endpunktes die Karosserie und die Außenkante des Hindernisses zueinander ausgerichtet sind; wobei Winkel (β), Länge (L_1), Breite (D_1) und Abstand (I_0) durch die folgenden Gleichungen erhalten werden:

$$\beta = \cos^{-1}[(2R - C - W)/2R];$$

$$L_1 = b + l_1 + l_2 + \sqrt{P - 2R \cdot W}$$

$$D_1 = C + W + l_3;$$

$$l_0 = 2R \cdot \sin \beta - l_1 - \sqrt{P + 2R \cdot W}$$

mit C=der Abstand zwischen Karosserie und Außenkante (o) des Hindernisses auf der Einparkseite (des Wagens in der Stopposition); W= Wagenbreite; f= Abstand zwischen der Hinterradachse und der Vorderkante des Wagens; b= Abstand zwischen der Hinterradachse und der rückwärtigen Kante des Wagens; I_1 = vorderer Abstand des Wagens in der Parklücke (in der Endposition); I_2 = hinterer Abstand in der Parklücke; I_3 = seitlicher Abstand in der Parklücke; R Radius des kleinsten Wendekreises bezogen auf den Mittelpunkt der Hinterradachse.

8. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Rücksetzweg des Wagens während einem rechtwinkligen Einparken von einem Stoppunkt bis zu einem Endpunkt einen L-förmigen Weg aufweist; der besteht aus einem Viertelbogen eines Kreises mit einem Radius (R) und einer Gerade (Δd) , die tangential zum Endpunkt dieses Bogens liegt; wobei die erforderliche Parklücke eine Länge (L_2) und eine Breite (D_2) aufweist; der Stoppunkt an einem Punkt entlang der Mittellinie des Wagens bestimmt ist und wenigstens einen bestimmten Abstand zwischen Stoppunkt und der Außenkante eines Hindernisses aufrechterhält; wobei der Stoppunkt mit dem Mittelpunkt der Hinterradachse angegeben wird, und einen

60

25

30

35

45

50

38 13 083 OS

Abstand gleich dem vorstehend genannten Radius (R) zur Mittellinie der erforderlichen Parklücke aufweist, wobei ein Abstand zwischen der Karosserie und der Außenkante des Hindernisses wenigstens gleich einem Mindestabstand (Cmin) ist, und wenn der Wagen seine Endposition erreicht, sind die Außenkante der Karosserie und die Außenkante des Hindernisses zueinander ausgerichtet, wobei die Gerade (Δd), Länge (L_2) , Breite (D_2) und der Mindestabstand (Cmin) durch die folgenden Gleichungen bestimmt sind:

$$\Delta d = Cx + W/2 + I - R - b;$$

$$L_2 = W + 2d_3;$$

$$D_2 = Cx + I + d_2;$$

$$Cmin = R - W/2 + d_1 - \sqrt{(R - W/2)^2 - (R - L_2/2)^2}$$

mit (Cx)=Abstand zwischen Karosserie und Außenkante eines Hindernisses auf der Einparkseite (sollte Cmin sein),

W =Wagenbreite:

b =Abstand zwischen der Hinterradachse des Wagens und seiner Hinterkante;

 d_1 = Abstand an der Außenkante der erforderlichen Parklücke;

 d_2 = Abstand zwischen der Rückseite der Parklücke und der Hinterkante des eingeparkten Wagens;

 d_3 = jeweils der Abstand auf den beiden Seiten eines Wagens zu beiden Seiten der erforderlichen Parklük-

 $R \ge$ Radius des kleinsten Wendekreises bezogen auf den Mittelpunkt der Hinterradachse.

9. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Anzeigesignale des Mikrocomputers Signale für den Steuer-, Schalt-Vorgang, verbleibende Wegstrecke des Wagens und Abstandsbedingungen 25

10. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Steuersignale vom Mikrocomputer Signale zum Steuern der Betätigungseinrichtung für den Richtungsmechanismus, die Gangschaltung, die

Kupplung, die Einrichtung zum Beschleunigen und zum Bremsen aufweisen.

35

30

5

15

20

40

45

50

55

60

Nummer: Int. Cl.⁴: Anmeldetag: Offenlegungstag: 38 13 083 B 60 Q 9/00 19. April 1988 2. November 1989

34

3813083

FIG.1

908 844/147

F1G.2

F1G.3

F1G.4A

F1G.4B

F1G.4C

F1G.4D

BNSDOCID: <DE_____3813083A1_I_

F1G.8