Thermochemistry

Dr. Md. Mahbub Alam Department of Chemistry BUET, Dhaka-1000

The contents of this presentation is prepared to provide a brief idea about the topics, details will be discussed in the classes.

Contents have been collected from multiple textbooks and internet.

Thermochemistry

 'Thermochemistry is the branch of physical chemistry which deals with the thermal or heat changes caused by chemical reactions.'

Heat of Reaction or Enthalpy of Reaction

- The enthalpy of reaction is ordinarily defined as the amount of heat evolved or absorbed when the reaction has taken place at constant pressure.
- It is also defined as the difference in enthalpy or heat contents between the products and the reactants.
- If heat is evolved, the reaction is said to be exothermic; if heat is absorbed the reaction is said to be endothermic.
- $\Delta H = H_{products} H_{reactants}$

$$C(s) + O_2(g) \longrightarrow CO_2(g);$$
 $\Delta H^0 = -393.5 \text{ kJ}$
 $2C(s) + 2H_2(g) \longrightarrow C_2H_4(g);$ $\Delta H^0 = +52.5 \text{ kJ}$

- Heat is an important form of energy, capable of raising the temperature of an object.
- Temperature gives a feeling of how hot or how cold an object is.

It also determines the tendency of an object either to lose or gain heat.

 Heat flows from a system of higher temperature to a system of lower temperature.

 Heat can be partially converted to work; other forms of energies can be completely converted to heat.

- The unit of heat is calorie (cal).
- A calorie is defined as the quantity of heat required to raise the temperature of 1.0 g of water through 1.0 °C.
- The SI unit of heat is Joule (J).

```
1 \ cal = 4.184 \ J
1 \ J = 0.239 \ cal
```

1 KJ = 1000 J

Energy of a system is defined as 'its capacity to do work'.

 There are various forms of energies, and conversion of one form to another is possible.

- Broadly, energy can be classified into two types -
- 1. Kinetic Energy Energy possessed by a system by virtue of its mass and speed; its measured by the amount of work an object can do.

2. Potential Energy - Energy possessed by virtue of its position in a force field. An atom above the surface is under gravitational force; an atom bonded in a molecule is under the influence of binding force.

- Internal Energy in thermodynamics, the total energy possessed by a system is termed as it's internal energy (U).
- It's the sum of all possible forms of energy contained in a body.
- It is impossible to determine the absolute value of the internal energy of a system. However, the change of the internal energy (ΔU) can be determined.
- Absorption or release of heat during a physical or chemical changes are manifestations of the change in internal energy.

- Work is the energy required to move an object against a force.
- Work, w is said to be done when an object is moved a distance ΔI by an applied force F.

$$w = F \times \Delta I$$

 If the object moves by a infinitesimal distance dl by the application of force F, then the infinitesimal work dw is given by-

$$dw = F \times dI$$

surroundings

Work done on system by surroundings

• The unit of work is erg; erg is the work done when a force of 1 dyne acts and causes a displacement of 1 cm.

$$1 erg = 1 dyne \times 1 cm$$

Since an erg of work is a small quantity, a large unit, joule is often used.

1 joule =
$$10^7$$
 erg.

Laws of Thermochemistry

Hess's Law

- 'If a chemical reaction or physical change can be brought about in more than one ways, the overall enthalpy change is the same provided the initial and final states are the same.'
- For example,

C (graphite) +
$$O_2$$
 (g) \longrightarrow CO_2 (g); Enthalpy change = ΔH_1
C (graphite) + $\frac{1}{2}$ O_2 (g) \longrightarrow CO (g); Enthalpy change = ΔH_2
 CO (g) + $\frac{1}{2}$ O_2 (g) \longrightarrow CO_2 (g); Enthalpy change = ΔH_3

Therefore, according to Hess's law,

$$\Delta H_1 = \Delta H_2 + \Delta H_3$$

Heat of Formation

- 'The change in enthalpy that takes place when one mole of the compound is formed from its elements is known as the Heat of Formation.'
- 'The change in enthalpy that takes place when one mole of a compound is formed from its elements, all substances being in their standard states (298 K and 1 atm pressure) is known as the Standard Heat of Formation'.

C (graphite) +
$$O_2$$
 (g) \longrightarrow CO_2 (g); $\Delta H_f^o = -393.5 \text{ kJ}$

• The heats of formation data are very useful in calculating enthalpy changes of reactions which are difficult to measure directly.

$$\Delta H^{o}_{reaction} = \sum \Delta H_{f}^{o})_{products} - \sum \Delta H_{f}^{o})_{reactants}$$

Heat of Reaction from Heat of Formation

• Problem: Use the heats of formation data for compounds to calculate the enthalpy of combustion of n-butane.

$$C_4H_{10}(g) + 6 \frac{1}{2} O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(g);$$

□ Heat of formation of the reactants,
=
$$(-124.7 + 6\frac{1}{2} \times 0) = -124.7 \text{ kJ}$$

Heat of formation of the products, = $4 \times (-393.5) + 5 \times (-285.9) = -3003.5 \text{ kJ}$

Heat of combustion of n-butane,

$$\Delta H^{o}_{reaction} = \sum \Delta H_{f}^{o})_{products} - \sum \Delta H_{f}^{o})_{reactants}$$

$$= -3003.5 - (-124.7) \text{ kJ}$$

$$= -2878.8 \text{ kJ}$$

Table 6.3 Heat of formation of some compounds at 25°C in kJ mol-1

Substance	ΔH°_{F}	Substance	ΔH° _F
$H_2O(g)$	- 241.8	AgBr(s)	- 99.5
$H_2O(l)$	- 285.9	NaCl(s)	-411.0
HF(g)	- 269.9	CH ₄ (g)	- 74.9
HCl(g)	- 92.3	$C_2H_6(g)$	- 84.7
HBr(g)	- 36.2	$C_3H_8(g)$	- 104.1
HI(g)	+ 25.9	$n-C_4H_{10}(g)$	- 124.7
$H_2S(g)$	- 20.2	$iso-C_4H_{10}(g)$	- 131.6
$SO_2(g)$	- 297.5	$n-C_5H_{12}(g)$	- 148.4
$SO_3(g)$	- 395.2	$n-C_6H_{14}(g)$	- 167.2
$C_2H_4(g)$	+51.9	$C_2H_2(g)$	+ 227.0
$NH_3(g)$	- 46.2	$C_6H_6(g)$	+ 82.9
CO(g)	- 110.5	$C_6H_6(l)$	+ 49.0
$CO_2(g)$	- 393.5	CH₃OH(l)	- 238.6
$Fe_2O_3(s)$	- 824.2	$C_2H_5OH(l)$	- 277.7
$A1_2O_3(s)$	- 1669.8	HCOOH(1)	- 409.2
AgCl(s)	- 127.0	CH3COOH(1)	- 487.0

Heat of Combustion

• 'The change in enthalpy of a system when one mole of the substance is completely burnt in excess of air or oxygen is known as the Heat of Combustion (ΔH_c).'

$$CH_4(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(g);$$
 $\Delta H_c = -87.78 \text{ kJ}$

• Problem: Calculate the standard heat of formation of propane (C_3H_8) if its heat of combustion is – 2220.2 kJ mol⁻¹. The heats of formation of $CO_2(g)$ and $H_2O(I)$ are – 393.5 and – 285.8 kJ mol⁻¹ respectively.

Solution:

Heat of Solution

 The heat of solution is the change in enthalpy when one mole of a substance is dissolved in a solvent so that further dilution does not give any change in enthalpy.

$$KCI(s) + H_2O(g) \longrightarrow KCI(aq);$$
 $\Delta H = -4.4 \text{ kcal}$
 $MgSO_4(s) + H_2O(g) \longrightarrow MgSO_4(aq);$ $\Delta H = -20.28 \text{ kcal}$

Heat of Neutralization

 The change in heat content (enthalpy) of the system when one gram equivalent of an acid is neutralised by one gram equivalent of a base or vice versa in dilute solution.

$$HNO_3$$
 (aq) + NaOH (aq) \longrightarrow NaNO₃ (aq) + H_2O (I); $\Delta H = -13.69$ kcal HCI (aq) + NaOH (aq) \longrightarrow NaCl (aq) + H_2O (I); $\Delta H = -13.68$ kcal

Thee heat of formation of an acid and a base is merely the heat of formation of water from hydrogen and hydroxyl ions. © Department of Chemistry, BUET

The First Law of Thermodynamics

Also known as the law of conservation of energy. May be stated in different forms -

- Energy can neither be created nor destroyed; it can only be converted from one form into another.
- The total energy of an isolated system is constant.
- It is impossible to construct a perpetual motion machine which will create energy out of nothing.
- The sum of all of the energy changes for all systems participating in a process must be zero.
- If work is produced during a cyclic process, an equivalent amount of heat must also be consumed.

Second Law of Thermodynamics

- Whenever a spontaneous process takes place, it is accompanied by an increase in the total energy of the universe. In other words: the entropy of the system is constantly increasing.
- It is impossible to construct a machine functioning in cycles which can convert heat completely into equivalent amount of work without producing changes elsewhere.
- Heat cannot pass from a colder to a hotter body without some other change occurring at the same time.

Molar Heat Capacities

- By heat capacity of a system, we mean the capacity to absorb heat and store energy.
- It is a common experience that the temperature of a substance (a system) increases when heat is supplied to it.
- 'The heat capacity of a system is defined as the amount of heat required to raise the temperature of the system by one degree.'

$$C = q/\Delta T$$

Where q is a amount of heat absorbed by the system, producing a difference in temperature ΔT (= T_f - T_i).

Molar Heat Capacities

Two terms related to heat capacity -

1. Specific heat capacity

$$C_s = C/m = JK^{-1}g^{-1}$$

2. Molar heat capacity $C_m = C/n = JK^{-1}m^{-1}$

Again, heat energy can be supplied at constant volume as well as constant pressure.

The heat capacities are distinguished as C_v , heat capacity at constant volume, and C_p , heat capacity at constant pressure.

Thermodynamic definition of C_v and C_p

From first law of thermodynamics,

$$dU = q - PdV$$

$$Or q = dU + PdV$$

Dividing both sides by dT,

$$\frac{q}{dT} = \frac{dU + PdV}{dT} = \frac{dU}{dT} + \frac{PdV}{dT} --- (a)$$

At constant volume, dV = 0

Then (a) will be,
$$\frac{q}{dT} = C_v = \frac{dU}{dT}$$

Therefore, the heat capacity at constant volume is 'the rate of change of internal energy with temperature at constant volume.

Thermodynamic definition of C_v and C_p

Equation (a) -

$$C = \frac{dU}{dT} + \frac{PdV}{dT}$$

At constant pressure,

$$C_P = (\frac{dU}{dT})_P + P(\frac{dV}{dT})_P ----- (b)$$

We know, H = U + PV

Differentiating this equation with respect to T at constant pressure,

Comparing (b) and (c),

$$C_P = \left(\frac{dH}{dT}\right)_P$$

Therefore, the heat capacity at constant volume is 'the rate of change of enthalpy with temperature at constant pressure.

Relation between of C_{v} and C_{p}

We know,
$$C_P = \frac{dH}{dT}$$

And $C_V = \frac{dU}{dT}$

Now, enthalpy,
$$H = U + PV$$

= $U + nRT$
= $U + RT$ (for 1 mole)

Differentiating with respect to temperature,

$$\frac{dH}{dT} = \frac{dU}{dT} + R$$
or,
$$C_P = C_V + R$$
or,
$$C_P - C_V = R$$

Thus, C_P is greater than C_V by gas constant, R.

Thank You