Rafay Aamir Bsee 19047 Numerical Assignment 03

$$\frac{Q_{s-1}}{Q_{s-1}} \qquad n = 10$$

$$Q_{s-1} \qquad y = Q_{s-1} + Q_{s} \times Q_{s-1}$$

$$Q_{s-1} = \frac{(n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i})}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$Q_{s-1} = \frac{(n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i})}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$Q_{s-1} = \frac{(n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i})}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$q_1 = (10 (911) - (95)(82))
 10 (1277) - (95)^2$$

$$[a_1 = 0.35246996]$$

$$\begin{array}{rcl}
\overleftarrow{b} - a_0 &= \overleftarrow{y} - a_1 \overleftarrow{x} \\
&= (8.2) - (0.35246996)(9.5) \\
\overleftarrow{a_0} &= 4.85153581
\end{array}$$

<u>©</u>	$r = (h \sum x_i y_i - (\sum x_i)(\sum y_i))$	
	$Y = \frac{\left(h \sum x_i y_i - \left(\sum x_i\right) \left(\sum y_i\right)\right)}{\left(\sqrt{n \sum x_i^2 - \left(\sum x_i\right)^2}\right)\left(\sqrt{n \sum y_i^2 - \left(\sum y_i\right)^2}}$	

$$Y = \frac{(10)(911) - (95)(82)}{(10(1277) - (95)^{2})(10(728) - (82)^{2})}$$

1	- 11,7/7 7849
1 v -	0.919 16/2011
11 -	0.9147672849

X	Y	X	Y	X.Y	e	e'
0	5	0	25	0	40.148	-1.90288
2	6	4	36	12	10.4435	-2.27698
4	7	16	49	28		-2.65108
6	6	36	36		-0.966	1.72302
9	9	18	81	0.	40.976	
11	8	121	64		-0.7287	1-97482
12	7	144	49	9	2.08	5.34892
15	10	225	100		-0.1385	
17	12	289	144	204	+4.456	-1.52158
19	12	361	(44	22B	40.4515	0.47842
Σ=	Σ=	Σ=	Σ=	Σ=		
95	82	1277	728	911		
₹ 11 q.5	Y 11 8.2					

y = 4.851535381 + 0.35246996x (by substituting 9. and 9.) y = 9.851535381 + 0.35246996x (by substituting 9. and 9.) y = 9.851535381 + 0.35246996x + 3 error = e = -(4.851535381 + 0.35246996x) + 3

Now by substituting x, y owe can find (e), e is being shown/written

By switching the values of x and y, 90 and 9, comes out
$$a_{i} = \frac{(n \sum y_{i} x_{i} - \sum y_{i} \sum x_{i})}{n \sum y_{i}^{2} - (\sum y_{i})^{2}} = 2.3741$$

$$a_{0} = \overline{x} - a_{1}\overline{y} = -9.96762$$

 $SC = Q_0 + Q_1 y + e'$, $e' = -(Q_0 + Q_1 y) + x$ e' is also listed in the previous tabvalue of (Y) will be same

- g regrasion with y versus x is must more better as the relative error as less wit x versus y
 - faulty measurement, as by substituting n=5 or y=15 in the equations (part e and part t) the error comes out to be very large-

Question# 2 Part (a)

Question# 2 Part (b)

