Syntactic parsing approaches

https://eduassistpro.github.io/

- Grammar-based approach with CKY decoding
 PCFA, SSIGNMENT PACOJECT EXEMBER Model
 - Assignation West and ne Lexicalization West and ne

 - https://eduassistpro.github.io/
- Transition-based approach: the shift ith preedy or beam echat edu_assist_pro

 Linear models with discrete features
 - ional Random fields
 - Non-linear (neural) models
- Thinking out of the box: a sequence-to-sequence approach to syntactic parsing

Learning PCFGs

https://eduassistpro.github.io/

Parameters in probabilistic context-piecta Exama Help estimated by relative frequency, as with HMMs:

Assignment Project Example Project Examp

https://eduassistpro.github.io/ $P(X \rightarrow \alpha) = \frac{}{}$ Add WeChat edu_assist_pro

E.g., the probability of the production NP \rightarrow DET NN is the corpus count of this production, divided by the count of the non-terminal NP. This applies to terminals as well.

Grammar Refinement

https://eduassistpro.github.io/ Assignment Project Exam Help

- Frammars extracted from treebanks de assist_pro
 TreeBank) are often sensitive to ambiguiti
 even with the w
- There are vartes://eduassistpro.github.io/ FG with more expressive productions
 - Parent ArddtiWeChat edu_assist_pro
 - Lexicalization

Parent annotation

https://eduassistpro.github.io/

Assignment Project Exam Help

Assign And the Chat edu_assist_pro

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Lexicalized CFGs

https://eduassistpro.github.io/

Assignment Project Exam Help

Assign And the Chat edu_assist_pro

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Discriminative approaches with discrete features

https://eduassistpro.github.io/

The scores for eac product of features and the project. Exam Help

Assignated types that redu_assist_pro

where the feat X, the right-h corindices (I, J, K), and the input \mathbf{w} .

- The basic feature $f(X, \alpha, (i, j, k))$ encodes only the identify of the production itself and is therefore as expressive as PCFG trained discriminatively.
- ▶ Other features include the words in the beginning and at the end of the span w_i , w_{j+1} , the word at the split point w_{k+1} , etc.

Perceptron training

- Perceptron trahttps://eduassistpro.github.io/ sequence labeling
- The feature signment Project Fax alternation to the sum of local features

https://eduassistpro.github.io/

Find the tree with the highest score based o model Add WeChat edu_assist_pro

$$\hat{ au} = \operatorname*{argmax} oldsymbol{ heta} \cdot oldsymbol{f}(au, oldsymbol{w}^{(i)})$$

Update the feature weights

$$oldsymbol{ heta} \leftarrow oldsymbol{f}(au^{(i)}, oldsymbol{w}^{(i)}) - oldsymbol{f}(\hat{ au}, oldsymbol{w}^{(i)})$$

CRF parsing

https://eduassistpro.github.io/

Assignment Project Exam Help

► The score of a derivation $\Psi(\tau)$ can be c probability by partial to the assist pro

https://eduassistpro.github.io/

the conditional log-likelihood of a labeled corpus.

CRF training

https://eduassistpro.github.io/

- Just as in logistic regression and the conditional random field over sequences the gradient by the conditional log-like lihood is the difference between the observed and ex each that it is the difference between the observed and ex each that it is the conditional random field over sequences the conditional random field over sequ
- The expectat (i) ming over all possible parattps://eduassistpro.github.ib/s of anchored pr
- In CRF sequence lawing, marginal pro assist pro bigrams are computed by the two-pass -backward algorithm. The analogue for context-free grammars is the inside-outside algorithm, in which marginal probabilities are computed from terms generated by an upward and downward pass over the parsing chart.

Neural context-free grammars

https://eduassistpro.github.io/

Neural network each span with and entence w can be associated with a Assign Active Ghat edu_assist_pro

 \boldsymbol{v}

 $_{k-1}$; \boldsymbol{u}_{W_k}]

The vector ca https://eduassistpro.github.io/

Add (,) eChat edu(assist_pro

▶ The score of a constituent can be computed with a weight matrix

$$\psi(X \to \alpha, (i, j, k)) = \tilde{v}_{(i, j, k)}^{\top} \Theta f(X \to \alpha)$$

Parsing with the Transformer-based encoder-decoder framework https://eduassistpro.github.io/

Assignment Project Exam Help

Assign And the Chat edu_assist_pro

► Using the cont

Transform https://eduassistpro.github.fe/
constituent ic tree

with the highest across with the edual assist pro

Score the candidate trees and search for the optimal one by the model https://eduassistpro.github.io/

Assignment Project Exam Help

Assign a real-valued score s(T) t ee hich decorates and real-valued score s(T) t ee hich decorates as s(T) t equal to s(T) t equal to s(T) the decorate s(T) that s(T) is s(T) that s(T) is s(T) and s(T) is s(T) that s(T) is s(T) and s(T) is s(T) that s(T) is s(T) and s(T) and s(T) is s(T) and s(T) and

https://eduassistpro.github.io/

where s(i, j, A) declarate and j with the label l en

Given the scores of constituent, the model-optimal tree can be found with the CKY algorithm.

Train the model with a max-margin objective https://eduassistpro.github.io/

► Given the Government, Preoriest i Etxained le saltisfy the margin constraints

Assign And the Glat edu_assist_pro

for all treeshttps://eduassistpro.github.io/

 $ightharpoonup \Delta$ is the Hamming loss on labeled spans, and the tree that violates the most constraints is selected for purposes of updating parameters.

Encoder

- https://eduassistpro.github.io/
 - A word-based portion that assigns a context-aware vector representation of the each sentence with Transformer p (self-attention followed by position-wi al network) Assign a word embedding
 - A charthttps://eduassistpro.github.iot/e the scores fo
 - Span score: WeChat edu_assist_pro $s(i,j,\cdot) = \Theta_2 \text{ReLU}$ $_1 + \textbf{\textit{b}}_1) + \textbf{\textit{b}}_2$
 - ▶ The input vector **v** combines the word-based vectors:

$$\mathbf{v} = [\overleftarrow{\mathbf{y}}_i - \overleftarrow{\mathbf{y}}_i; \overrightarrow{\mathbf{y}}_{i+1} - \overrightarrow{\mathbf{y}}_{i+1}]$$

where \overleftarrow{y}_t and \overrightarrow{y}_t are the first and second half of the y_t respectively

Parser evaluation

- Precision: the https://eduassistpro.github.io/
- Recall: the fraction of constituents in the reference parse that match a constituent in the system parse.
- labeled vs unlabeded precision and r precision signature for each co II, it is only requiretps://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

Assign And Project Exam Help

Assign

Transition-based syntactic parsing

https://eduassistpro.github.io/

Assignment Project Exam Help

Assignment We Ghat edu_assist_pro
Transition-based constituent parsing

- Transition- https://eduassistpro.github.io/
 Transition-based AMR parsing

Add WeChat edu_assist_pro

Transition-based Constituent Parsing

https://eduassistpro.github.io/

- A transition-bised 1990-stitue of the property of the purple $C = (S, T, s_0, S_t)$ where:
 - S is a set of parser states or con edu_assist_pro

 Assignment, Personal edu_assist_pro

 - \triangleright s_0 is an in ce into
 - $\sum_{S_{t} \in S}^{a \text{ un}} https://eduassistpro.github.io/$
- An action the Add We Chat edu_assist_prosthe current state into a new state
- ▶ A state $s \in S$ is defined as a tuple $s = (\alpha, \beta)$ where α is a stack that holds already constructed subtrees, and β is a queue which is used to store words that is yet to be processed.

Ass	ign neotVPe Gl	edu_assist_pro He ₁ eats ₂ noodles ₃ with ₄ chopsticks ₅
current state	https://eduas	sistpro.github.io/
new state	Add WeChar	eats ₂ noodles ₃ with ₄ chopsticks ₅

Assignment West edu_assist_pro

He1 eats2 noodles3 with4 chopsticks5

https://eduassistpro.github.io/

reduce

Add WeChat edu_assist_pro

Assignment Project Exam Help Assignment Project Exam Help

He₁

Assign And the Chatedu_assist_pro

https://eduassistpro.github.io/

Add WeChat edu_assist_pro with₄ chopsticks₅

NP eats₂ noodles₃

He₁

Assignment Vector edu_assist_pro

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

NP eats₂ NP with₄ chopsticks₅
He₁ noodles₃

Assignment/Peglant edu_assist_pro

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment/pegint edu_assist_pro

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

noodles₃

Assignment/Peglatedu_assist_pro

https://eduassistpro.github.io/

Add WeChat

NP VP with 4 chopsticks 5

He 1 eats 2 NP

noodles 3

NP VP with 1 chapticks hat edu_assist_pro

He_1 eats_2
no https://eduassistpro.github.io/

Add WeChat edu_assist_pro

NP VP with NP
He_1 eats_2 NP chopsticks_5

noodles₃

Shift-Redu https://eduassistpro.githuh.io/

Assignment Project Exam Help

Assignment/Pediat edu_assist_pro

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Shift-Reduhttps://eduassistpro.github.io/

Assignment Project Exam Help

Assignment/Pechat edu_assist_pro

https://eduassistpro.github.io/

NP AddrWeChat edu_assist_pro

VP PP

He1

eats2 NP with4 NP

chopsticks₅

noodles₃

Shift-Redu https://eduassistpro.github.io/ Assignment Project Exam Help Assignment Project Exa

chopsticks₅

noodles₃

"Oracle"

https://eduassistpro.github.io/ Assignment Project Exam Help

- The oracle is a Acquir Work after eduleads stst_pro parse of a sentence.
- When trainin https://eduassistpro.github.io^{t, map} a gold parse tre
- We can learn a model by comparing the orasist_pro action sequences and update the param

The Perceptron learning algorithm

https://eduassistpro.github.io/

Assignment Project Exam Help

```
1: Input: Training e es (x_i, y_i)

2: Initial exting: The Project edu_assist_pro

3: for t \leftarrow 1,

4: for i \leftarrow https://eduassistpro.github.io/

z_i \leftarrow z_i \leftarrow https://eduassistpro.github.io/

6: if z_i \neq y_i then edu_assist_pro

8: Output: Parameters \theta
```

Lexcialized transition-based parsing actions

- ► Each action t https://eduassistpro.githubsig/state into a new state.
 - SHIATS(Signmente Fire year) For pushes it onto the top of σ;
 - REDUCE-UNARY-X property assist processing and then

 The head of the new substance of the new
 - new subtrees // eduassistpro.github.io/
 REDU o subtrees
 from σ, combine them into a new tree w
 with X, therepush the new tuested baassist prodeft (L)
 and right (R) versions of the action indicate whether the head
 of the new subtree is inherited from its left or right child.
- A parsing state $s \in S$ is defined as a tuple $s = (\sigma, \beta)$, where σ is a stack that is maintained to hold the partial parsing structures that are already constructed and β is a queue used to store unprocessed input (typically word-POS tag pairs).

Updating feature weights

https://eduassistpro.github.io/

Assignment Project Exam Help

$$\nabla_{\theta} \left(\begin{bmatrix} p_{0}tc = N - NP \sim shift & 1 \\ Assignment Personal edu_assist \\ p_{0}wc = noodles & NP & shift \\ p_{0}wc = noodles & NP & shift \\ p_{0}wc = https://eduassistpro.github | 10 \\ p_{1}tc = V_{0} & V_{0} & V_{0} & V_{0} \\ p_{1}wc = eats - V \sim reduce \\ p_{1}wc = eats - V \sim reduce \\ \end{bmatrix} \right)$$

Notes: The feature $p_0tc = N - NP$ predicts a "shift" action when the oracle action should be "reduce".

Transition-based parsing features

Type https://eduassistpro.github.io/

unigramigrameter Projecto Et attithelp

q2wt, q3wt, p0,1wc, p0,rwc

Assignate Projecto Et attithelp

q2wt, q3wt, p0,1wc, p1,redu_assist_pro

bigra https://eduassistpro.github.io/

p1wq0w, p1w cq0t

Addpwie 2 hat edu_assistqopro

trigrams p0cp1cp2w, p0 1 0 0 1cq0t

p0cp1wq0t, p0cp1cq0w

Baseline features, where p_i represents the i_{th} subtree in the stack σ and q_i denotes the i_{th} item in the queue β . w refers to the head word, t refers to the head POS, and c refers to the constituent label. p_{il} and p_{ir} refer to the left and right child for a binary subtree p_i , and p_{iu} refers to the child of a unary subtree p_i .

Feature vector

https://eduassistpro.github.io/

ASSISTED	ngo IDt	ifeature xam Help	count
$p_0tc=N-NP$ shift	0	$p_0 tc = N-NP^* reduce$	1
$p_0wc = \text{noodles-NP} \tilde{s}$	Wa Ch	at edu_assist_pro	1
p ₁ tc=V-ASSIBNMENT	altoje		1
$p_1wc=$ eats- V^{\sim}		-V~reduce	1
$p_{0u}wc = noodle https://e$	duas	sistpro.gidleപ്പ് reduce	1
$q_0wt=$ with-P $$ shift	0	reduce	1
		edu_assistks-produce	1
		<u> </u>	• • •

Notes: Feature count for one configuration. The total count for a sentence will be a sum over all configurations in the derivation of the syntactic structure of the sentence

Beam Search

```
Input: A POS-tagged s https://eduassistpro.github.io/
Output: A constituent parse tree 1: beam<sub>0</sub> ← Signment Project Exam Helpalization
2: i \leftarrow 0
                                                        Assignated Westat edu_assist_pro
 3: loop
 4:
      while bea
 5:
          6:
          for all p
 7:
 8:
             Scored de We Chat edu_assist_pro
 9:
10:
             insert s_{new} into P
       beam_{i+1} \leftarrow k best states of P
11:
       s_{best} \leftarrow \text{best state in } beam_{i+1}
12:
      if s_{best} \in S_t then
13:
          return sbest
14:
       i \leftarrow i + 1
15:
```

CFG based parsing vs transition-based parsing

https://eduassistpro.github.io/

g

Assignment Project Exam Help

A transition-based parser scores the actions while a PCFG

based parsing model scores the rules du_assist_pro

Assignment Project edu_assist_pro

It's customary to use the beam search algorit

transition-b.

The transitio https://eduassistpro.github.io/

dependency parsing as well as graph-ba

Add WeChat edu_assist_pro

Learning for transition-based parsing basically any type of classifier, including neural network models