ECII/ECSI 3206:

Artificial Intelligence [and expert systems]
Topic 4: Logic and Truth Tables

By: Edgar Otieno

Introduction to Logic

Problem solving could be broadly subdivided into either **Search based techniques** or **Knowledge based techniques**

Knowledge based techniques can be further subdivided into either **knowledge representation** or **Knowledge manipulation**.

The schemes for knowledge representations may be either use of **Logic statements** or use of **Semantic networks**.

Problem Solving approaches

problem solving

search based techniques knowledge manipulation

1.Introduction to Logic/Logic statements

- **Logic**-It's a truth perceiving system of inference.
- **Proposition**-defines a statement that valuates to either true or false but not both .
- **Propositional Logic**-Defines rules of mathematical logic used to specify methods of reasoning.
- Which one is a proposition and which is not out of the statements below?
 - This is AI class
 - Today is Monday
 - B.Tech CN students are doing AI course
 - A is less than 14

Connectors and logic operators

- AND/CONJUNCTION [^]
- OR/DISCJUNCTION[V]
- EXCLUSIVE DISJUCTION/EXCLUSIVE OR [⊕] or [⊻]
- NOT/NEGATION[¬] or [~] or [!]
- IMPLICATION/CONDITIONAL IMPLICATION[→]
- BICONDITIONAL IMPLICATION[↔]

Propositional logic connectives Meaning summary

Name	Symbol	Connection	Meaning
AND (Conjunction)	^	PAQ	(P A Q) is true if both P and Q are true otherwise false.
OR (Disjunction)	~	PVQ	(P ∨ Q) is true if either P or Q is true (or both) otherwise false.
NOT (Negation)	_	-P	¬P is the opposite of P. If P is true, ¬P will be false and vice versa.
Exclusive OR	Φ	P⊕Q	Either P or Q but not both. If both are different, then P \oplus Q will be true otherwise false.
Implication	-	$P \rightarrow Q$	If P happens then Q happens.
Double Implication	↔	$P \leftrightarrow Q$	P happens if and only if Q happens.

Truth tables

• Truth tables-are diagrams used to show every possible

p	q	$p \wedge q$	$p \vee q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

Truth tables terminologies.

Compound truth tables-These are those truth tables that use multiple connectors e.g ((P V Q) ^R)

Tautology- It is a compound proposition that always evaluates to TRUE e.g $((P V \neg P)$

Contradiction-It is a compound proposition that always evaluates to FALSE e.g (($P \land \neg P$)

Contingency-any proposition that is neither a Contradiction or a Tautology

Cont...

- Well formed formulae-This is an sentense/expression that is constructed correctly according to the rules of propositional calculus
- Logical equivalence-two compound propositions are said to be logical equivalent iff P →Q is a tautology[always evaluates to TRUE]
 - e.g $\neg (P \land Q) \equiv (\neg P \lor \neg Q)$
 - $\neg (P V Q) \equiv (\neg P \land \neg Q)$

[The above two statements are Defined as De'morgans Laws]

English statements and their equivalent propositional representation

- It is raining in Nairobi: **R(N)//RAINING(NAIROBI)**
- It is raining in Nairobi and I'm either sick or very tired:
 R(N) \(\scalega(S(I)VT(I)) \)
- It is Not Raining in Nairobi:¬**R**(**N**)
- If it is Raining in Nairobi then I will get wet: $R(N) \rightarrow W(I)$

Predicate Logic/Predicate Calculus

- Some statements cannot be represented using propositional logic e.g X>3, all men die..etc
- **Predicate logic**-It is an expression of one or more Variables defined within some specific domain.

Structure of Predicate statements

- Consider the statement P(X,Y)
 - P is he predicate describing the relationship
 - X and Y are Variables/arguments that the relationship P applies upon

e.g.

Likes(edgar,chapati)

Father(sonko,saumu)

Mother(X,Y):-son(Y,X) V daughter(Y,X) \land female(X)

Quantifiers used in Predicate Logic

- These are symbols used to express the extent to which a predicate is True over a set of elements.
- They include:-
 - Universal/for all: ∀
 - Existential/for some: 3

Predicate Logic examples

- Everyone likes Chapati: $\forall (x) P(x) \rightarrow L(x,c)$
- There exists a person that likes Chapati : $\exists (x) L(x,c)$
- For everyone, there exist a Y where X loves Y: $\forall (x) \exists (y)$ L(x,y)
- Some persons in our class have visited Mombasa: $\exists(x)$ ($C(x) \land M(x)$)
- No one in our class is a musician?

Using De'morgan rules to evaluate statements

• Consider the expression for : Not everyone likes Chapati.

$$\neg \forall (x) (P(x) \rightarrow L(x,c))$$

- Using De'morgan rules, we can rewrite the statement as follows to eliminate implication symbol[\rightarrow].
- De'morgan rules:
 - $\neg (P \land Q) \equiv (\neg P \lor \neg Q)$
 - $\neg (P V Q) \equiv (\neg P \land \neg Q)$

Cont...

- $A \rightarrow B \equiv \neg A \lor B$ and also $\neg A \lor B \equiv \neg (A \land \neg B)$
- So let P(x) be represented by A and L(x,c) be represented by B
- Therefore form the first statement we can re write the part $(P(x) \rightarrow L(x,c))$ as follows: $\neg (P(x) \land \neg (L(x,c)))$
- The final expression evaluates to : $\neg \forall (x) \neg (P(x) \land \neg (L(x,c)))$

2. Semantic Networks(Semantic nets)

- **Semantic nets**-are structures used to represent knowledge as a set of interconnected nodes and arcs.
- Nodes-Represent Entities , attributes and Events
- Arcs-Represent the relationship between Nodes

Sample Semantic Net

Advantages of Semantic Nets

- Easy to understand
- We can identify relationships
- Easy categorization of knowledge
- Nodes and objects are represented only once

Disadvantages of Semantic Nets

- It has limited handling of quantifiers
- Cannot express connectives
- Difficult to represent some statements e.g how would we represent the statement "Khadija and Adannor really Caused trouble during the last school trip to Mombasa"