3.
$$\bigcup_{n=1}^{\infty} \left(1 + \frac{1}{n}, 2 - \frac{1}{n}\right) = (1, 2)$$

Proof

Let
$$A = \bigcup_{n=1}^{\infty} \left(1 + \frac{1}{n}, 2 - \frac{1}{n}\right)$$
 and $B = (1, 2)$.

For any arbitrary x in B, we can always find n_0 such that x is also in $(1 + \frac{1}{n_0}, 2 - \frac{1}{n_0})$.

Just let
$$n_0 = \left[\frac{1}{\min \{x - 1, 2 - x\}} \right] + 1.$$

Therefore, x is in A and $B \subset A$.

$$\left(1+\frac{1}{n},2-\frac{1}{n}\right)\subset B \text{ for all } n\geq 1$$

Therefore, $A \subset B$.

Combine the fact $A \subset B$ and $B \subset A$, we know A = B.

4.
$$\bigcap_{n=1}^{\infty} \left(2 - \frac{1}{n}, 3 - \frac{1}{n} \right] = \{2\}$$

Proof

Let
$$A = \bigcap_{n=1}^{\infty} \left(2 - \frac{1}{n}, 3 - \frac{1}{n}\right].$$

$$2 - \frac{1}{n} < 2 \text{ and } 3 - \frac{1}{n} \ge 2 \text{ for all } n \ge 1$$

2 is in
$$\left(2 - \frac{1}{n}, 3 - \frac{1}{n}\right]$$
 for all $n \ge 1$

Therefore, $2 \in A$ and $\{2\} \subset A$.

For any positive ε , we can always find n_0 and n_1 such that $2 - \varepsilon$ is not in

$$\left(2 - \frac{1}{n_0}, 3 - \frac{1}{n_0}\right]$$
 and $2 + \varepsilon$ is not in $\left(2 - \frac{1}{n_1}, 3 - \frac{1}{n_1}\right]$.

Just let
$$n_0 = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$$
 and $n_1 = 1$.

Therefore, 2 is unique to A and $A = \{2\}$.

7.
$$M_1 = \inf(A \cup B)$$
, $M_2 = \min\{\inf A, \inf B\}$ $\vdash M_1 = M_2$
 $N_1 = \sup(A \cup B)$, $N_2 = \max\{\sup A, \sup B\}$ $\vdash N_1 = N_2$

Proof

Let $m_1 = \inf A$ and $m_2 = \inf B$. And suppose $m_1 \le m_2$.

$$\forall x \in A \ (m_1 \leq x)$$

$$\forall x \in B \ (m_2 \le x)$$

$$x \in A \Rightarrow m_1 \leq x$$

$$x \in B \Rightarrow m_1 \le m_2 < x$$

$$\forall x \in A \cup B \ (m_1 \le x) \tag{1}$$

$$\forall \varepsilon > 0 \,\exists x \in A \, (x < m_1 + \varepsilon) \tag{2}$$

Let $f(\varepsilon)$ be a skolem function for the existential quantifier in $\exists x \in A$ in (2).

Let
$$x_0 = f(\varepsilon)$$
.

$$x_0 \in A \cup B$$

$$\forall \varepsilon > 0 \,\exists x_{\varepsilon} \in A \cup B \ (x_{\varepsilon} < m_1 + \varepsilon) \tag{3}$$

Combine (2) and (3), we get $M_1 = \inf (A \cup B) = m_1 = \min \{\inf A, \inf B\} = M_2$.

Similarly, we can use the same approach to prove $N_1 = N_2$.

8.
$$M_1 = \inf(A \cap B)$$
, $M_2 = \max\{\inf A, \inf B\}$ $\vdash M_1 \ge M_2$
 $N_1 = \sup(A \cap B)$, $N_2 = \min\{\sup A, \sup B\}$ $\vdash N_1 \le N_2$

Proof

Let $m_1 = \inf A$ and $m_2 = \inf B$. And suppose $m_1 \le m_2$ and $M_1 < M_2$.

$$M_2 = \max\{m_1, m_2\} = m_2$$

$$\forall x \in A \ (m_1 \leq x)$$

$$\forall x \in B \ (m_2 \le x)$$

$$x \in A \land x \in B \Rightarrow m_1 \leq m_2 \leq x$$

$$\forall x \in A \cap B \ (m_1 \le m_2 < x)$$

 $M_2 = m_2$ is a lower bound for $A \cap B$.

$$\forall \varepsilon > 0 \ \exists x \in A \cap B \ \ (x < M_1 + \varepsilon < M_2 + \varepsilon)$$

 M_2 is a greatest lower bound for $A \cap B$.

 $M_1 = M_2$ because infimum is unique.

This contradicts with the supposition $M_1 < M_2$.

It is impossible for M_1 to be less than M_2 .

Let
$$A = (3, 5)$$
 and $B = (4, 6)$.

$$M_1 = M_2 = 4$$

Let
$$A = (3, 5) \cup (6, 7)$$
 and $B = [5, 8]$.

$$6 = M_1 > M_2 = 5$$

Therefore, $M_1 \ge M_2$.

Similarly, we can do the same thing for N_1 and N_2

10. $A, B \subset \mathbb{R}^+$, both sets are bounded.

$$P = \{ x \mid x = a + b, a \in A, b \in B \}$$

$$Q = \{ x \mid x = a - b, a \in A, b \in B \}$$

$$\sup P = \sup A + \sup B$$

 $\inf P = \inf A + \inf B$

$$\sup Q = \sup A - \sup B$$

$$\inf Q = \inf A - \inf B$$

Proof

Let $m_1 = \sup A$ and $m_2 = \sup B$ and $M = m_1 + m_2$.

$$\forall x_1 \in A \ \forall x_2 \in B \ (x_1 \le m_1 \land x_2 \le m_2)$$

$$\forall x_1 \in A \ \forall x_2 \in B \ (x_1 + x_2 \le m_1 + m_2)$$

$$\forall x \in P \ (x \le M = m_1 + m_2)$$

$$\forall \varepsilon > 0 \; \exists x_1 \in A, x_2 \in B \; \; (x_1 > m_1 - \varepsilon \wedge x_2 > m_2 - \varepsilon)$$

$$\forall \varepsilon > 0 \ \exists x_1 \in A, x_2 \in B \ (x_1 + x_2 > m_1 + m_2 - 2\varepsilon)$$

 ε is arbitrary, so we have

$$\forall \varepsilon > 0 \,\exists x \in P \ (x > M - \varepsilon = m_1 + m_2 - \varepsilon) \tag{2}$$

Combine (1) and (2), M is a least upper bound for P.

 $\sup P = \sup A + \sup B$ because supremum is unique.

Similarly, $\inf P = \inf A + \inf B$.

Let
$$A = (8, 9)$$
 and $B = (1, 2)$.

$$8 = \sup Q \neq \sup A - \sup B = 7$$

$$6 = \inf Q \neq \inf A - \inf B = 7$$

True

True

False

False

(1)