2019 年夏季学期 程序设计训练 第一周大作业报告

魏彤

计 86 班 2018011417 2019 年 8 月 24 日

摘要

本次大作业基于 Qt 实现了数字微流控生物芯片的模拟界面。用户输入指令文件、设置参数后,程序能够以图形化界面展示液滴在芯片上运动的动态过程,并播放相应的仿真音效。除此之外,对于数字微流控生物芯片中的污染问题,程序实现了污染状况实时绘制和简易的清洗液滴路径算法设计,避免不同种类的液滴污染的情况发生。

1 图形界面设计

图形界面包括程序主界面、设置芯片参数和清洗液滴参数的界面和弹窗。主要使用 Qt Creator 进行设计,辅以代码进行调整和补充。*

1.1 程序主界面

程序主界面包括菜单栏 & 工具栏、芯片绘制区、指令显示区和时间显示区。

菜单栏和工具栏设置了所有指令的按钮,并设置了快捷键。指令显示区在输入指令文件后显示文件内容。时间显示区显示模拟时的时间。芯片绘制区根据当前状态绘制芯片,包括液滴出入口、液滴、污渍、清洗液出入口,在切换后可以显示每个电极的污染数,还可以通过鼠标右键点击设置清洗液障碍。

1.2 参数界面

设置芯片参数界面中,芯片的行数列数和出口位置由数字框输入,入口位置通过设置输入栏,用户可以添加删除条目。

^{*}界面图片见附录 A, 均为在 Mac 系统中显示效果。

表 1: 菜单栏工具栏指令

—————————————————————————————————————		
指令	功能	快捷键 (表中显示 Mac 键盘)
New Simulation	打开芯片参数设置界面	command + N
Washer	打开清洗液参数设置界面	command + W
Step Previous	向前步进一步	左
Step Next	向后步进一步	右
Play All	播放至最后	option + 右
Reset	重置	option + 左
Inspect Pollution	切换液滴界面/污染数界面	command + P

设置清洗液参数界面中,勾选框可以设置是否开启清洗功能,数字框中能够输入清洗液出入口的位置。

1.3 弹窗界面

利用 Qt 中内置的 QMessagebox 类进行代码实现,用于当出现错误时进行提示。

2 代码架构设计

大作业项目采用 OOP 的设计思路,除 main.cpp 文件外,共包含以下几个部分。

• MainWindow

主界面对应的类,为所有部件的父对象。负责主界面的显示和不同部件之间的通讯功能。

• chip

芯片绘制区对应的类,核心功能的实现区域。负责芯片状态的描述、绘制和 操作。

• fileManager

文件系统对应的类。负责文件的读入、指令的解析。

command

指令对应的类,负责描述基本操作的内容。

• Dialog

芯片参数设置界面对应的类。负责相应界面的交互和数据的传输。

washDialog

清洗液参数设置界面对应的类。负责相应界面的交互和数据的传输。

waterDrop

液滴对应的类,负责存储每个液滴对应的信息。

stainCommand

污渍更改指令对应的类,负责存储每一次污渍产生或修改的记录。

3 功能设计

针对需求,程序实现了以下七项基本功能。

3.1 基本的界面设置和显示

MainWindow 类继承自 QMainWindow,包含了菜单栏和工具栏。每个指令都通过 QAction 类进行内容、图标、快捷键、信号的设定,之后加入到 ui 的 menu 和 toolbar 中。

点击 New Simulation 按钮后,参数设置界面弹出。界面的每个输入部件都通过 connect 函数与 Dialog 类中相应的信号槽相连接,改变 Dialog 类中储存的相应信息。

Dialog 类对输入进行条件判断(包括行列数不同时小于 3,以及输入输出口在芯片边缘),如果不符合则报错,否则关闭界面并将数据以信号-信号槽的方式传给 chip 类,chip 类中的相应信息进行更新,并开始在画布上按照信息绘制芯片。

画布是一个白色背景的 QWidget,大小固定。根据行列数,确定每一格电极的大小。利用 Qt 中的 QPainter 类中的 drawRect() 函数绘制芯片和输入输出端口。

3.2 文件输入与指令处理

此功能在 fileManager 类中实现,利用 QFile 类中的 getOpenFileName() 函数选择文件,打开后将指令一行行读入至 QStringList 中。

遍历 QStringList 的指令,按照空格和逗号切分,得到指令的类型、时间和参数,推入 command 类的 multiset 中进行存储并传输给 chip 类。值得注意的是, command 类的小于号重载为时间关键字比较,故 multiset 可以将所有指令按照时间顺序排列好,为后续操作提供便利。

通过观察操作的特性和联系,将所有的指令都归为七种,时间为1单位的基本指令: Move、Input、Output、Split1(拉伸)、Split2(分离)、Merge1(合并)、Merge2(压缩),为后续操作的执行做基础。

3.3 模拟过程的双向实现

chip 类中的 operation() 和 operationReverse() 两个函数分别针对指令的类型实现对应的操作。chip 类中的 water 是一个存储液滴的 set,根据操作的参数,在其中找到

对应的液滴,根据操作内容生成新的液滴,然后在 set 中替换,从而完成操作。

注意到每个基本操作的逆操作都是另外一个基本操作。Move - Move; Input - Output; Split1 - Merge2; Split2 - Merge1。因此,通过每个逆向操作与对应的正向操作类似,从而更加易于实现。

利用 QTime 创造了一个计时器, 当 Play All 被点击时, 计时器被打开, 以 500ms 的间隔发射信号, 触发操作下一步指令的信号槽, 从而实现了播放的功能。计时器直到最后一个操作被执行或者 Reset 按钮被按下才会终止

Reset 按钮按下后信号触发函数,将所有 chip 中的成员均重置为初始化的值。

3.4 播放音效的实现

每个操作对应的音效利用 QSoundEffect 库进行实现。将所有的音频文件封装在.qrc 文件中, chip 类初始化时建立 QSoundEffect 指针, 在 operate() 函数中每个基本操作开始的地方进行调用和播放。

3.5 液滴移动的约束检查

A 图形界面图片

图 1: 菜单栏

图 2: 主界面

图 3: 芯片参数设置界面

图 4: 清洗液参数设置界面