Ricardo Pineda 20160164

Tarea #4

PROBLEMA 1

Metodo de Sustitucion

Demuestren que la solucion dada para cada recurrencia es la correcta utilizando el metodo de sustitutcion.

1. $T(n) = T(n-1) + n || Resp: O(n^2)$

Ricardo fineda
20160164

Problema 1

$$T(n) = T(n-1) + n$$

$$Resp = O(n^2)$$

$$T(n-1) + n \leq Cn^2$$

$$C = C$$

$$T(\frac{\eta_2}{2} - 1) + \frac{\eta_2}{2} \leq C(\frac{\eta_2^2}{4})$$

$$T(\eta) \leq 2\left[C(\frac{\eta_2^2}{4}) - \frac{\eta_2}{2} + 1\right]$$

$$T(\eta) \leq 2\left[C(\frac{\eta_2^2}{4}) - \frac{\eta_2}{2} + 1\right]$$

$$T(\eta) \leq C(\frac{\eta_2^2}{47} - \frac{\eta_2}{47} + 2)$$

$$T(\eta) \leq C(\frac{\eta_2^2}{47} - \frac{\eta_2}{47} + 2)$$

$$= C(\eta_2^2)$$

2. T(n) = T(n/2) + 1 || Resp: O(1g n)

Problema 2:
$$T(n) = T(2) + 1$$

Problema 2: $T(n) = T(2) + 1$

Problema 2: $T(n) = T(2) + 1$
 $T(2) + 1 \leq C(g(2))$
 $T(2) + 1 \leq C(g(2))$
 $T(n) \leq 4[C(g(2)) - 1]$
 $T(n) \leq 4C(g(n) - 4C(g(n)) - 4$
 $\leq O(g(n))$

PROBLEMA 2

Metodo de Arbol recursivo

Utilicen el metodo de arbol recursivo para encontrar un limite asintotico. Utilicen el metodo de sustitucion para comprobar.

1.
$$T(n) = 3T(n/2) + n$$

Comprobacion problema 2

(omprobation P#2:

$$t(n) \leq 3 \left[\frac{n}{2} \cdot lg(\frac{n}{2}) \right] + n$$

$$\leq \frac{3}{2} n \cdot lg(\frac{n}{2}) + n$$

$$\leq \frac{3}{2} n \cdot lgn - lgI + n$$

$$\leq \frac{3n}{2} \cdot lg(n) + n$$

$$\leq \left[cnlg n \right]$$

PROBLEMA 3

Metodo Maestro

Encuentren un limite asintotico para cada problema utilizando el metodo maestro.

1.
$$T(n) = 2T(n/4) + 1$$

2.
$$T(n) = 2T(n/4) + sqrt(n)$$

2)
$$T(n) = 2T(\frac{\eta}{4}) + \sqrt{n}$$

$$f(n) = \frac{1094^2}{100} = \sqrt{n}$$

3.
$$T(n) = 2T(n/4) + n$$

3)
$$T(n) = 2T(\frac{Ny}{4}) + \frac{N}{4n}$$
 $a \cdot + (\frac{1}{6}) \leq c+(n)$
 $2 \cdot \sqrt{\frac{1}{4}} \leq cn$
 $\sqrt{\frac{1}{4}} = 2(n\log n)$
 $\sqrt{\frac{1}} = 2(n\log n)$
 $\sqrt{\frac{1}} = 2(n\log n)$
 $\sqrt{\frac{1}} = 2(n\log n)$

4. $T(n) = 2T(n/4) + n^2$

4)
$$T(n) = 2T \left(\frac{n}{4}\right) + \frac{n^2}{4n!}$$
 $n \log_4 2 = 5n$
 $(n = n^2)$
 $2 \cdot 5n \le cn^2$
 $2 \cdot 5n \le cn^2$
 $3n \le cn^2$
 $3n$