活 推 考 試 周

HONG KONG EXAMINATIONS AUTHORITY

一九八六年香港中學自考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1986

> 附加數學(試卷二) ADDITIONAL MATHEMATICS II

> > 評 卷 等 考 MARKING SCHEME

湿的內部文件,及及知效自然的,不识以任何形式加闭。 This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

請在學校任教之關卷日特別留意

本还常露著並非標準答案,故極不 宜落於學生手中,以免引起誤會。

週有學生求取此文件時, 圆卷員應 嚴予拒絕。閱卷員在任何情況下披露 來評卷參灣內容, 均有遊閱卷員守則 及了一九七七年香港考試局法例」。

Special Note for Teacher Markers

It is highly undesirable that this marking scheme should tall into the hands of students. They are likely to regard it as a set of model answers, which it certainly is not.

Markers should therefore resist pleas from their students to have access to this document. Making it available would constitute misconduct on the part of the marker and is, moreover, in breach of the 1977 Hong Kong Examinations Authority Ordinace.

の序形等試制 保留販河 Hong Kong Examinations Authority All Rights Reserved 1986

. 26'I

SOLUTIONS SOLUTIONS	MARKS	REMARKS
		NES
-Witth $\alpha = 1$, $1.8. = \frac{1}{(1)(2)} = \frac{1}{2}$		to enquir
R.S. = $\frac{1}{1+1} = \frac{1}{2}$. 1	
\therefore the equality is true for $n = 1$		
Assume that the equality holds for some positive integer k , then for $n=k+1$,	1	
L.S. = $\frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$		
$= \frac{k}{(k+1)} + \frac{1}{(k+1)(k+2)}$	LA.	
$= \frac{k(k+2)+1}{(k+1)(k+2)}$	<u> </u>	
$= \frac{(k+1)^2}{(k+1)(k+2)}$		
$=\frac{k+1}{k+2}$	1 A	
By mathematical induction, the equality is true for any	1	Awarded only if above
positive integer n.	5	correct
n(n-1) 22	1.0	
Coefficient of 3rd term = ${}_{n}^{C} C_{2} \cdot 2^{2}$ or $\frac{n(n-1)}{2} \cdot 2^{2}$	IA LM	
$\frac{n(n-1)}{2} \cdot 4 = 40$		
$n^2 - n - 20 = 0 \dots \dots$. lA	
(n - 5)(n + 4) = 0		
n = 5	IA	
Coefficient of $x^4 = {}_5^{C_3} \cdot 2^3$		
= 80	1A 5	
for equal roots, $(-4 \cos \theta)^2 - 4(3)(2)\sin \theta = 0$	21	
$16 \cos^2 \theta - 24 \sin \theta = 0$		
$2(1 - \sin^2\theta) - 3 \sin \theta = 0$		
$2\sin^2\theta + 3\sin\theta - 2 = 0 \dots$	IA	
(2 $\sin \theta - 1)(\sin \theta + 2) = 0$ - where	1	
$\sin \theta = \frac{1}{2} \text{ or } -2$	A CONTRACTOR OF THE PROPERTY O	This may be omitted.
Rejecting $\sin \theta = -2$ $\sin \theta = \frac{1}{2}$	I A	
-		
4 is obtuse . / 5π \	1.4	
$\therefore 9 = 150^{\circ} \left(\text{or } \frac{5^{\circ}}{6} \right) \dots$	$\frac{1A}{5}$	
RESTRICTED 內部文	件	

SOLUTIONS	MARKS	REMARKS
$\sin 2\theta + \sin 4\theta = \cos \theta$ $2 \sin 3\theta \cos \theta = \cos \theta$ $\cos \theta = 0 \text{ or } \sin 3\theta = \frac{1}{2}$ $\theta = (2n + 1) \frac{\pi}{2} \text{ or } 3\theta = n\pi + (-1)^n \frac{\pi}{6}$ $[\text{or } \theta = 2n\pi \pm \frac{\pi}{2}]$ $\theta = \frac{n\pi}{2} + (-1)^n \frac{\pi}{13}$ (n is an integer)	1A 1A+1A 1A+1A	For answers with mixed units, pp-1
(a) $\frac{t+2}{s+1} = \frac{6-(-2)}{3-(-1)}$ $t=2s$ Alt. Solution: Area of \triangle ABP = 2(2s - t)	1A	Alt. Solution: Equation of AB: $\frac{y+2}{x+1} = \frac{6-(-2)}{3-(-1)}$
Alt. Solution: Height of $\triangle APC = \text{distance of } C \text{ from } AB$ $= \frac{10 + 3}{\sqrt{5}}$ $= \frac{13}{\sqrt{5}}$ $AP = \sqrt{(s - 3)^2 + (2s - 6)^2}$ $= \sqrt{5} s - 3 ,$ Area of $\triangle APC = \frac{1}{2} \frac{13}{\sqrt{5}} \cdot \sqrt{5} s - 3 $ $\frac{1}{2} \frac{13}{\sqrt{5}} \cdot \sqrt{5} (s - 3) = \pm \frac{13}{2}$ $s = 2 \text{ or } 4$	IA IM IA+IA	Accept (s-3) or (3-s)

LLD. MATHS II SOLUTION

SOLUTIONS	MARKS	REMARKS
$AB : \frac{\mathbf{v} - 2}{\mathbf{x} - 3} = \mathbf{m}$	IA	
y = mx + (2 - 3m)		
Sub. in $y = (x - 2)^2$		
$mx + (2 - 3m) = (x - 2)^2$	IM	
$x^2 - (m + 4)x + (3m + 2) = 0$	1 A	Alt. Solution:
$x_1 + x_2 = n + 4$		$x_1, x_2 = \frac{(m+4) \pm \sqrt{D}}{2}$
C is the mid-point, $\frac{m+4}{2}=3$	lM+1A	$x_1 + x_2 = m + 4$
m = 2	1	$\frac{m+4}{2}=3$ 1M+
		m = 2
	6_	
$\frac{\mathrm{d}y}{\mathrm{d}\theta} = \tan^2\theta \sec^2\theta - \sec^2\theta \dots$	1A	
$= \tan^2\theta (1 + \tan^2\theta) - (1 + \tan^2\theta)$		
$= \tan^4 \theta - 1$	IA	
$\tan^3 \theta = \frac{dy}{d\theta} - 1$,	
Integrating both sides		
$\int \tan^4 \theta \ d\theta = \int \left(\frac{dy}{d\theta} + I \right) \ d\theta \ \text{or} \int \frac{dy}{d\theta} d\theta = \int (\tan^4 \theta - I) d\theta$ $= \int \frac{dy}{d\theta} \ d\theta + \int d\theta \qquad$	1 \(\)	
$= y + \theta + C \qquad \dots$	1M	For $\frac{dy}{d\theta} d\theta = y$
$=\frac{\tan^3\theta}{3}-\tan\theta+\theta+C$	ŀ	-1 if C omitted.
3	6_	
Mt. Solution:		
∫ can ⁴ 0d0		
$= \int \tan^2 \theta (\sec^2 \theta - 1) d\theta$	IΑ	
$= \int \tan^2 \theta \sec^2 \theta d\theta - \int \tan^2 \theta d\theta$		
$= \int \tan^2 \theta d(\tan \theta) = \int (\sec^2 \theta - 1) d\theta \qquad \dots$	LM	For putting $u = \tan \theta$
$= \frac{\tan^3 \theta}{3} - \tan \theta + \theta + c$	2.1	-l if c omitted.

RESTRICTED 內部文件

SOLUTIONS	MARKS	REMARKS
(a) Pucting $a - x = t$,	11	
$d\mathbf{x} = -d\mathbf{t}$	11	
When $x = 0$, $t = a$) When $x = a$, $t = 0$)	1 A	
$\int_0^a f(x) dx$		
$= \int_{a}^{0} -f(a-t) dt$		÷• • • • •
$= \int_0^a f(a-t) dt \dots$	1	
$= \int_{0}^{a} f(a - x) dx$	4	
(b)(i) $\int_0^{\pi} \cos^{2n+1} x dx$		
$= \int_{0}^{\pi} \cos^{2n+1} (\pi - x) dx \dots$	1 A	
$= \left(\frac{\pi}{2} \left(-\cos \pi\right)^{2n+1} dx\right)$	ZA	
$=-\int_0^{\pi}\cos^{2n+1}x dx \qquad$	1A	
$\therefore 2 \int_0^{\pi} \cos^{2\pi + 1} x dx = 0$		
$\int_0^{\infty} \cos^{2n+1} x dx = 0 \qquad \dots$	IA	
$- (ii) \int_0^{\pi} x \sin^2 x dx$		
$= \int_{0}^{\pi} (\overline{\eta} - x) \sin^{2}(\overline{\eta} - x) dx \dots$	1A	
$= \int_{0}^{T} (\vec{H} - x) \sin^{2}x dx$		
$= \int_{0}^{\pi} \pi \sin^{2}x dx - \int_{0}^{\pi} x \sin^{2}x dx \qquad \dots$	IM	
$\int_{0}^{\pi} x \sin^{2}x dx = \frac{\pi}{2} \int_{0}^{\pi} \sin^{2}x dx \dots$	١٨	
$=\frac{1}{2}\int_{0}^{\pi}\frac{1-\cos 2x}{2}dx$	lM	For $\sin^2 x = \frac{1 - \cos 2x}{2}$
$= \frac{\pi}{4} \left\{ x - \frac{1}{2} \sin 2x \right\}_0^{\pi} \dots$	1.1	
$=\frac{\pi^2}{4}$	1A ··	

RESTRICTED 內部文件

	SOLUTIONS	MARKS	REMARKS
(b)(i1)			·
	Alt. Solution:		
	$\int_0^{\pi} x \sin^2 x dx = \int_0^{\pi} x \frac{1 - \cos 2x}{2} dx \dots$	IM	
	$\frac{1}{2} \int_{0}^{\pi} x - dx - \frac{1}{2} \int_{0}^{\pi} x \cos 2x dx$	IM	,
	$= \frac{1}{2} \left[\frac{x^2}{2} \right]_0^{\pi} - \frac{1}{2} \int_0^{\pi} x \cos 2x dx$		
	$\int_0^{\pi} x \cos 2x dx = \int_0^{\pi} (\pi - x) \cos 2(\pi - x) dx$	1A	
	$= \int_0^{\pi} (\pi - x) \cos 2x dx$		
	$= \pi \int_0^{\pi} \cos 2x dx - \int_0^{\pi} x \cos 2x dx$	×	
	$\int_{0}^{\pi} x \cos 2x dx = \frac{\pi}{2} \int_{0}^{\pi} \cos 2x dx \dots$	1A	
	$= \frac{\pi}{2} \left[\frac{1}{2} \sin 2x \right]_0^{\pi}$		
	= 0 ,	ĮĄ.	
	$\therefore \int_{0}^{\pi} x \sin^{2}x dx = \frac{\pi^{2}}{4} \dots$	1A	
	$\frac{\pi}{2} \frac{\sin x dx}{\sin x + \cos x} = \begin{cases} \frac{\pi}{2} & \sin \left(\frac{\pi}{2} - x\right) dx \\ 0 & \sin \left(\frac{\pi}{2} - x\right) + \cos \left(\frac{\pi}{2} - x\right) \end{cases}$	- 11	 '
(iii)	$0 \overline{\sin x + \cos x} = 0 \sin \left(\frac{\pi}{2} - x\right) + \cos \left(\frac{\pi}{2} - x\right)$		
-	$= \int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{\cos x + \sin x}$	1 A	
	$\int \frac{\pi}{2} \frac{\sin x dx}{\sin x + \cos x} = \frac{1}{2} \int \frac{\pi}{2} \frac{\sin x + \cos x}{\sin x + \cos x} dx \dots$	2.۸	
	$=\frac{1}{2}\int_{0}^{\frac{\pi}{2}} dx \qquad \dots$	I A	
	$=\frac{\sqrt{2}}{4}$	1A 16	
	•		

	COLUMNO	MARKS	REMARKS
	SOLUTIONS		Alt. Solution:
	slope of $L_1 = \frac{1}{2}$		slope of required line
a)(1)	slope of $\frac{3k+2}{1}$	1.A	$= \frac{3k+2}{2k-1}$
	slope of regd. line = $\frac{3k+2}{2k-1}$		= m
	$\frac{3k+2}{2k-1} - \frac{1}{2}$ + tan 45° (Accept no "±")	1M	$\frac{m - \frac{1}{2}}{1 + \frac{1}{2}m} = \pm \tan 45^{\circ}$ 1M
	$\frac{\frac{3k+2}{2k-1} - \frac{1}{2}}{1 + \frac{1}{2} \cdot \frac{3k+2}{2k-1}} = \pm \tan 45^{\circ} (Accept no "±")$		$m = 3 \text{ or } -\frac{1}{3}$.
	$\frac{2}{2} \times \frac{2}{1}$	1	$\frac{3k+2}{3k-1} = 3$ or $-\frac{1}{3}$
		1	4 X = 4
	$\frac{6k + 4 - 2k + 1}{4k - 2 + 3k + 2} = \pm 1$		$k = \frac{5}{3} \text{ or } -\frac{5}{11} 1A+1A$
	$4k + 5 = \pm (7k)$		3x - y - 4 = 0)
	$k = \frac{5}{3}$ or $-\frac{5}{11}$	1A+1A	3x - y - 4 = 0) 1A x + 3y - 18 = 0)
	_		x + 3y - 18 = 0
-	Equations of lines: $3x - y - 4 = 0$) $x + 3y - 18 = 0$)	1 1 1	
	x + 3y - 18 - 0)		
	Alt. Solution:		
	The family of lines pass through (3, 5).	° 2Λ	·
	Let slope of required line be m.	134	
	$\frac{m - \frac{1}{6}}{\frac{1}{4} \log m} = \pm \tan 45^{\circ} \qquad \dots$	IM I	
	$m = 3 \text{or} -\frac{1}{3}$		
	m = 3 or -3	l lA	
	Equations of lines: $\frac{y-5}{x-3} = 3$ or $-\frac{1}{3}$		
	3x - y - 4 = 0)	11	
	x + 3y - 18 = 0)		
	λ . 3)		
3+	$\frac{3k+2}{2k+1} = \frac{1}{2}$	IM	
~ (ii	ZK-1 Z		
	6k + 4 = 2k - 1		
	$k = -\frac{5}{4}$		
	••	1 /	
	L: $x - 2y + 7 = 0$	1 1 1 1	
	L_2 is of the form $x - 2y + c = 0$	111	
	Take (-7, 0) on L		
		IM	
	Distance from (-7, 0) to $L_1 = \left \frac{-7 + 4}{\sqrt{1^2 + 2^2}} \right $		no absolute sign.
	· · · · · · · · · · · · · · · · · · ·		
	Distance from (-7, 0) to $L_2 = \left \frac{-7 + 2}{\int 1^2 + 2^2} \right $	1 M	1.11
	$-7 + c = \pm 3$	I IM	Wooshe un
	c = 10 or 4 (rejected)		
	$L_2 : x - 2y + 10 = 0$	1A	. · · ·

	SOLUTIONS	MARKS	REMARKS
)	$x - Intercept = \frac{11 - k}{3k + 2}$		and the second of the second s
	$y = intercept = \frac{k - 11}{2k - 1}$	lÀ	San area
	Area S = $-\frac{1}{2} \frac{(k-11)^2}{(3k+2)(2k-1)}$	1M	For area = \(\frac{1}{2}\)(y-intercept)(y-intercept)
	$\frac{dS}{dk} = \frac{(3k+2)(2k-1)(-2)(k-11) + (k-11)^2(12k+1)}{4(3k+2)^2(2k-1)^2}$	-	
	$= \frac{(k-11)(-133k-7)}{4(3k+2)^2(2k-1)^2}$		
	= 0	1 M	
	$k = 11$ or $-\frac{1}{19}$	1 A	
	x-intercept and y-intercept are positive reject $k = 11$		
	$k = -\frac{1}{19}$ (or -0.0526)	1 1 1	
	Testing for minimum	1 <u>M</u> 7	:
c)	3x - 2y + 1 = 0	2A	
	>		

RESTRICTED 內部文件

SOLUTIONS	MARKS	REMARKS
$C_1 = C_2$	IM	
6x + 6y - 18 = 0 x + y - 3 = 0	11	
$(ii)x^2 + y^2 - 4x + 2y + 1 + k(x + y - 3) = 0$	IM+IA	
$x^{2} + y^{2} + (k - 4)x + (k + 2)y + (1 - 3k) = 0$	·	
$r^2 = \left[\frac{1}{2}(k-4)\right]^2 + \left[\frac{1}{2}(k+2)\right]^2 + 3k - 1$	IM+IA	
$=\frac{1}{2} k^2 + 2k + k$		
Area S = $T(\frac{1}{2}k^2 + 2k + 4)$		
$\frac{dS}{dk} = \pi(k+2) \text{or} \frac{d(r^2)}{dk} = (k+2)$		
= 0	1 M	
k = -2	1 A 1 A	
$x^2 + y^2 - 6x + 7 = 0$	9	
Alt. Solution (1):		
$x^2 + y^2 - 10x - 4y + 19 + k(x + y - 3) = 0$	LM+IA	
$x^2 + y^2 + (k - 10)x + (k - 4)y + (19 - 3k) = 0$		
$r^2 = (\frac{1}{2}(k-10))^2 - (\frac{1}{2}(k-4))^{2} + 3k - 19$	IM÷lA:	
$= \frac{1}{2} k^2 - 4k + 10$		
Area S = $\pi \left(\frac{1}{2} k^2 - 4k + 10 \right)$		
$\frac{dS}{dk} = \frac{1}{2}(k - 4)$		
= 0	1 M	
k = 4	I A	
$x^2 + y^2 - 6x + 7 = 0$	1A	
Alt. Solution (2):	134.14	
$x^{2} + y^{2} - 4x + 2y + 1 + k(x^{2} + y^{2} - 10x - 4y + 19) = 0$ $(1+k)x^{2} + (1+k)y^{2} + (-4-10k)x + (2-4k)y + 19k + 1 = 0$	1M+IA	
$r^{2} = \left(\frac{2+5k}{1+k}\right)^{2} + \left(\frac{2k-1}{1+k}\right)^{2} - \frac{19k+1}{1+k}$	IM+IA	
$r^{2} = \left(\frac{1+k}{1+k}\right)^{2} + \left(\frac{1+k}{1+k}\right)^{2} - \frac{1+k}{1+k}$ $= \frac{2(5k^{2} - 2k + 2)}{(1+k^{2})^{2}}$		1
$\frac{d(r^2)}{dk} = \frac{2(1+k)(12k-6)}{(1+k)^4}$		
= 0	lM.	
k = 1/2	1A	
$\frac{3}{2} x^2 + \frac{3}{2} x^2 - 9x + \frac{21}{2} = 0$		
$x^2 + y^2 - 6x + 7 = 0$	14	

	· SOLUTIONS	MARKS	REMARKS	
t	10.(a) (ii) Alt. Solution (3):			,
	Solving equation of AB with equation of C_1 or C_2	IM		
	Points of intersection: $(2, 1)$ and $(4, -1)$	1Λ+1Λ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
, .	For circle of minimum area, (2, 1) and (4, -1) are ends of a diameter.	2М	(2 03)	
	(x-2)(x-4) + (y-1)(y+1) = 0	1A	or centre: $(3, 0)$ radius = $\sqrt{2}$	1A
	$x^2 + y^2 - 6x + 7 = 0$	1A		
0.(b)	Centre of C_3 : $(2, -1)$	1A		
_	distance from $(2, -1)$ to AB			
	$= \frac{2-1-3}{\sqrt{1^2+1^2}} $ (Accept no absolute sign)	lM		
	$=\sqrt{2}$	11	,	
	$\frac{C_3}{c_1}$: $(x-2)^2 + (y+1)^2 = 2$	11		
	or $x^2 + y^2 - 4x + 2y + 3 = 0$	4		
	Alt. Solution:			
	Centre of C_3 : (2, -1)	14		
	$C_3: (x-2)^2 + (y+1)^2 = R^2$			
	Sub. $x + y - 3 = 0$ in equation of C_3			
	$2x^{2} - 12x + (20 - R^{2}) = 0 \dots$	IA IM		
	$(-12)^2 - 4(2)(20 - R^2) = 0$ $R^2 = 2$			
	$(x-2)^2 + (y+1)^2 = 2$	1.4		
(c)	Centre of $C_1 = (2, -1)$, centre of $C_2 = (5, 2)$			
	$\frac{\int (x-2)^2 + (y+1)^2}{\int (x-5)^2 + (y-2)^2} = \frac{1}{2}$	1M+1A		
	$\sqrt{(x-5)^2+(y-2)^2}$ = \sqrt{x}			
	$(k^2-1)x^2+(k^2-1)y^2+(10-4k^2)x+(4+2k^2)y+(5k^2-29) = 0$	1		
(i)	When k = 2,			
	$3x^{2} + 3y^{2} + 6x + 12y - 9 = 0$ $x^{2} + y^{2} - 2x + 4y - 3 = 0$	1A		
	a circle (with centre at (1, -2) and radius $2\sqrt{2}$).	LA		
(ii)	The locus represents a straight line,			
	$k^2 - i = 0$ $k = i$	1M 1A 7		

T1.(a)(4) Putting $x = 2 \sin \theta$, $dx = 2 \cos \theta d\theta$	700	SOLUTIONS	MARKS	REMARKS
Maken $x = 1$, $0 = \frac{\pi}{6}$ when $x = 2$, $\theta = \frac{\pi}{2}$ dx $ \begin{cases} \frac{7}{4} & \cos^2\theta & \frac{\pi}{2} \\ \frac{7}{4} & \cos^2\theta & \frac{\pi}{2} \end{cases} $ $ = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4 \cdot \frac{1}{2} (1 + \cos 2\theta) d\theta $ $ = 2f \theta + \frac{1}{2} \sin 2\theta \Big _{\frac{\pi}{2}}^{\frac{\pi}{2}} $ $ = 2f \frac{\pi}{3} - \frac{\sqrt{3}}{4} \int \text{ or } 1.23 $ (ii) $3 + 2x - x^2$ $ = 2^2 - (x - 1)^2 $ $ = \frac{1}{2} \sqrt{4 - (x - 1)^2} dx $ Putting $x - 1 = 2 \sin \theta$, $dx = 2 \cos \theta d\theta$ When $x = 0$, $\theta = -\frac{\pi}{6}$) When $x = 1$, $\theta = 0$ $ = \frac{1}{2} 4 \cos^2\theta d\theta $ $ = 2f \theta + \frac{1}{2} \sin 2\theta \Big _{\frac{\pi}{2}}^{\frac{\pi}{2}} $ 1A 1A 1A	11 (2)(1)	Putting $x = 2 \sin \theta$, $dx = 2 \cos \theta d\theta$	- i'A	and the second s
$= \begin{cases} \frac{\pi}{3} + \cos^2 \theta & 1\theta \\ = \frac{\pi}{3} + 4 \cdot \frac{1}{2} (1 + \cos 2\theta) & d\theta \\ = 2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_{\frac{\pi}{3}} & 1A \end{cases}$ $= 2 \left[\frac{\pi}{3} - \frac{\sqrt{3}}{4} \right] \text{ or } 1.23 \qquad 1A \qquad (1.228)$ $(11) 3 + 2x - x^2 \\ = 2^2 - (x - 1)^2 \qquad 1A \qquad (1.228)$ $= \frac{1}{3} \sqrt{4 - (x - 1)^2} dx$ $= \frac{1}{3} 4 - (x $	2. (41) (2)		tA	
$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4 \cdot \frac{1}{2} (1 + \cos 2\theta) d\theta$ $= 2[\theta + \frac{1}{2} \sin 2\theta]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ $= 2[\frac{\pi}{3} - \frac{\sqrt{3}}{4}] \text{ or } 1.23$ $= 2^{\frac{\pi}{3}} - \frac{\sqrt{3}}{4} \text{ or } 1.23$ $= 2^{\frac{\pi}{3}} - $		$\int_{1}^{2} \sqrt{4 - x^2} dx$		
$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4 \cdot \frac{1}{2} (1 + \cos 2\theta) d\theta$ $= 2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ $= 2 \left[\frac{\pi}{3} - \frac{\sqrt{3}}{4} \right] \text{ or } 1.23$ $= 2 \left[\frac{\pi}{3} - \frac{\sqrt{3}}{4} \right] \text{ or } 1.23$ $= 2^{2} - (x - 1)^{2}$ $= 2^{2} - (x - 1)^{2}$ $= \frac{1}{3} \int_{0}^{3} \sqrt{4 - (x - 1)^{2}} dx$ $= \int_{0}^{1} \int_{0}^{3} \sqrt{4 - (x - 1)^{2}} dx$ Putting $x - 1 = 2 \sin \theta$, $dx = 2 \cos \theta d\theta$ When $x = 0$, $\theta = -\frac{\pi}{6}$) When $x = 1$, $\theta = 0$) $= \int_{-\frac{\pi}{2}}^{3} 4 \cos^{2}\theta d\theta$ $= 2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$		= {	l A	
$= 2[\theta + \frac{1}{2}\sin 2\theta]_{\frac{1}{6}}^{\frac{1}{2}}$ $= 2[\frac{\pi}{3} - \frac{\sqrt{3}}{4}] \text{ or } 1.23$ $= 2^{2} - (x - 1)^{2}$ $= 2^{2} - (x - 1)^{2} - \frac{1}{2}$ $= \frac{1}{2} \sqrt{4 - (x - 1)^{2}} dx$ $= \frac{1}{2} \sqrt{4 - (x - 1)^{2}} dx$ Putting $x - 1 = 2\sin \theta$, $dx = 2\cos\theta d\theta$ When $x = 0$, $\theta = -\frac{\pi}{6}$) When $x = 1$, $\theta = 0$) $= \frac{1}{2} 4\cos^{2}\theta d\theta$ $= 2[\theta + \frac{1}{2}\sin 2\theta]_{\frac{1}{2}}^{\frac{1}{2}}$			1 M	For $\cos^2\theta = \frac{1 + \cos 2\theta}{2}$
$= 2\left[\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right] \text{ or } 1.23$ $= 2^{2} - (x - 1)^{2}$ $= 2^{2} - (x - 1)^{2}$ $= \left[\frac{1}{3} - \frac{\sqrt{3} + 2x - x^{2}}{4x}\right] + \left[\frac{\sqrt{3} + $	_	$= 2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_{\frac{\pi}{2}}$	1.A	
$= 2^{2} - (x - 1)^{2}$ $= \int_{0}^{1} \sqrt{3 + 2x - x^{2}} dx$ $= \int_{0}^{1} \sqrt{4 - (x - 1)^{2}} dx$ Putting $x - 1 = 2 \sin \theta$, $dx = 2 \cos \theta d\theta$ When $x = 0$, $\theta = -\frac{\pi}{6}$) $= \int_{-\pi}^{2} 4 \cos^{2}\theta d\theta$ $= 210 + \frac{1}{2} \sin 2\theta \Big _{0}^{2}$			1A	(1.228)
$= \int_{0}^{1} \sqrt{4 - (x - 1)^{2}} dx$ Putting $x - 1 = 2 \sin \theta$, $dx = 2 \cos \theta d\theta$ When $x = 0$, $\theta = -\frac{\pi}{6}$) When $x = 1$, $\theta = 0$) $= \int_{-\frac{\pi}{6}}^{2} 4 \cos^{2}\theta d\theta$ $= 210 + \frac{1}{2} \sin 2\theta$	(i:	·	1A	
Putting $x - 1 = 2 \sin \theta$, $dx = 2 \cos \theta d\theta$ When $x = 0$, $\theta = -\frac{\pi}{6}$) When $x = 1$, $\theta = 0$) $= \frac{1}{2} 4 \cos^2 \theta d\theta$ $= 210 + \frac{1}{2} \sin 2\theta \frac{1}{6}$		$\int_{0}^{\infty} \sqrt{3} + 2x - x^2 dx$		
When $x = 0$, $\theta = -\frac{\pi}{6}$) When $x = 1$, $\theta = 0$) $= \left(\frac{2}{16} + \frac{1}{2} \sin 2\theta\right) \frac{1}{2}$		$= \int_{0}^{1} \sqrt{4 - (x - 1)^{2}} dx$		
When $x = 1$, $\theta = 0$) $= \begin{cases} \frac{2}{15} & 4 \cos^2 \theta & d\theta \\ \frac{1}{2} & 4 \cos^2 \theta & d\theta \end{cases}$ $= 2 \left[\frac{1}{2} \sin^2 2\theta \right] \frac{1}{2}$		Putting $x - 1 = 2 \sin \theta$, $dx = 2 \cos \theta d\theta$	1 A	
$= \int_{-\pi}^{\pi} 4 \cos^2 \theta \ d\theta$ $= 2 [\theta + \frac{1}{2} \sin 2\theta] \frac{\pi}{\pi}$)	1A	
$= 210 + \frac{1}{2} \sin 201$	_	when $x = 1$, $\theta = 0$ = $\frac{1}{1-5}$ 4 $\cos^2\theta$ d θ	10	
$= \frac{\pi}{3} + \frac{\sqrt{3}}{2} \text{ or } 1.91 \qquad \qquad \boxed{\frac{1\Lambda}{11}} $ (1.913)				7
		$=\frac{\pi r}{3}+\frac{\sqrt{3}}{2}$ or 1.91	1A 11	(1.913)
•		•		
			1	

SOLUTIONS		MARKS	REMARKS
$-(b)(i)$ $y = -\int_0^1 -(x-1)^2 + \sqrt{3}$		IA	Alt. Solution (2):
(ii) Required area = $\Lambda_1 + \Lambda_2$		IM	
$A_{1} = \int_{0}^{1} \int_{0}^{\sqrt{3x}} - (-4-(\sqrt{4-(\sqrt{4-(\sqrt{4-(\sqrt{4-(\sqrt{4-(\sqrt{4-(\sqrt{4$	$\frac{1}{(x-1)^2} + \sqrt{3}$ dx	1M+1Λ	Area = $A_1 + A_2$ 1M $A_1 = \int_0^{3} (\sqrt{4-y^2} - \frac{y^2}{3}) dy$ $= \frac{2\pi}{3} + \frac{\sqrt{3}}{6} \cdot \dots \cdot 1A$ (or 2.383)
$= \left[\frac{\sqrt{3} \cdot 2x^{3/2}}{3} \right]_{0}^{1} + \left(\frac{\pi}{3} + \frac{\pi}{3} \right) $ $= \left(\frac{\sqrt{3}}{6} + \frac{\pi}{3} \right) $ or 1.336	$\frac{\sqrt{3}}{2}$) - $\sqrt{3}$ (Accept 1.34)) 1A	A_2 same as A_3 in Alt. solution (1).
$\Lambda_2 = \int_1^2 \left[\sqrt{4 - x^2} - (-\sqrt{4})^2 \right]$ $= 2 \left[\frac{7r}{3} - \frac{\sqrt{3}}{4} \right] + \int_1^2 \sqrt{4}$	$(x-1)^2 + \sqrt{3}$ dx	IM+1A	•
$= \frac{2\pi}{3} - \frac{3\sqrt{3}}{2} + \int_{-2}^{1} \sqrt{4} - \frac{2\pi}{3} - \frac{3\sqrt{3}}{2} + \int_{-2}^{1} \sqrt{\frac{\pi}{3}} + \frac{\sqrt{3}}{2}$	$\frac{(x-1)^2}{2} dx$		Accept 1.41
$= (\pi - \sqrt{3}) \text{ or } 1.410$ Area = $(\frac{4\pi}{3} - \frac{5\sqrt{3}}{6})$ or $\frac{3\pi}{6}$		1A 1A 9	Accept 1.71
Alt. Solution (1)	4.		
	$\Lambda rea = \Lambda_1 + \Lambda_2 + \Lambda_3$	IM	
Λ. Λ.	$\Lambda_{I} = \int_{0}^{1} \frac{1}{\sqrt{3x}} dx$ $= \frac{2\sqrt{3}}{2} \text{ or } 1.155$	LA LA	Accept 1.15
A ₃	$\Lambda_2 = \int_1^2 \sqrt{4 - x^2} dx$	11	
$\Lambda_2 = \left \int_0^2 (-\sqrt{4 - (x-1)^2} + \frac{1}{2})^2 \right $		228	Accept 1.23
or $2 \iint_{0}^{\frac{\pi}{2}} (-\sqrt{4 - (\pi - 1)^{2}})$ = $\left -2\left(\frac{\pi}{2} + \frac{\sqrt{3}}{2}\right) + 2 \right \sqrt{3}$		1 A	Accept no absolute sig
$=(\frac{2}{3}\pi - \sqrt{3})$ or 9.	3623		Accept 0.362
$A = (\frac{4\pi}{3} - \frac{5\sqrt{3}}{6}) \text{ or } 2.75$		1A	

SOLUTIONS	MARKS	REMARKS
$(2.(a)(i) \sin 108° = \sin (3 \times 36°)$		sin 108°
$= 3 \sin 36^{\circ} - 4 \sin^{3}36^{\circ} \dots$	1 A	= sin 72° = 2sin 36° cos 36° 14
sin 72° = 2 sin 36°cos 36°	· 1A	$= 2\sin 36^{\circ} \sqrt{1-\sin^2 36^{\circ}} 1.$
$3 \sin 36^{\circ} - 4 \sin^{3}36^{\circ} = 2 \sin 36^{\circ} \cos 36^{\circ}$		
$3 - 4 \sin^2 36^\circ = 2 \cos 36^\circ$		
$3 - 4(1 - \cos^2 36^\circ) = 2 \cos 36^\circ$		
$4 \cos^2 36^\circ - 2 \cos 36^\circ - 1 = 0$	1 A	
$\cos 36^\circ = \frac{1 \pm \sqrt{5}}{4} \qquad \dots$	1A	
cos 36° > 0		
$\therefore \cos 36^\circ = \frac{1 + \sqrt{5}}{4} \qquad \dots$	1	
(ii) $\cos 72^\circ = 2 \cos^2 36^\circ - 1$	1 /	
$= 2 \left(\frac{1 + \sqrt{5}}{4} \right)^2 - 1$		
<u> </u>	1A 7	
In : AOH, OH	lm	
$\frac{OH}{\sin \theta} = \frac{1}{\sin(180^{\circ} - 60^{\circ} - \theta)}$		
$OH = \frac{\sin \theta}{\sin(60^{\circ} + \theta)} \text{or} \frac{\sin \theta}{\sin(120^{\circ} - \theta)}$	11	
$= \frac{\sin \theta}{\sin 6\theta^{\circ} \cos \theta + \cos 6\theta^{\circ} \sin \theta}$		
or $\frac{\sin \emptyset}{\sin 120^{\circ} \cos \emptyset - \cos 120^{\circ} \sin \emptyset}$		
$= \frac{\tan \theta}{\frac{f3}{2} + \frac{1}{2} \tan \theta}$	2Л	
= 2 tan Ø 73 + tan Ø RESTRICTED 内部 7		

by DD: MATHS II SOLUTION

RESTRICTED 内部文件

SOLUTIONS	MARKS	REMARKS
2.(b)(1) cos L POK		
$=\frac{OK}{OP}$	11	
= OK		
= OH cos 60°	1 M	
$= \frac{2 \tan \theta}{\sqrt{3} + \tan \theta} \cdot \frac{1}{2}$		
tan ∅	10	
$=\frac{\tan \vartheta}{\sqrt{3} + \tan \vartheta}$	1A	
$(ii) (1) ON = \frac{1}{4}$		
4		
$BN = \int OB^2 - ON^2$	1	
$=\frac{\sqrt{15}}{4}$		
$=\frac{\sqrt{13}}{4}$	1A	•
$tan \emptyset = \frac{BN}{AN}$		
		?
$=\frac{\frac{\sqrt{15}}{4}}{\frac{5}{4}}$ $=\frac{\sqrt{15}}{5}$		· : :
=		
$\frac{4}{\sqrt{15}}$	1.4	
= \frac{\sqrt{2}}{5} \qquad \qqquad \qqqqq \qqqqq \qqqqqqqqqqqqqqqqqqqqqq	11	
$\sqrt{15}$		
(2) $\cos \angle POK = \frac{\sqrt{15}}{\sqrt{3} + \frac{\sqrt{15}}{5}}$	1 M	For substitution
_		i
$= \frac{(\sqrt{5})(\sqrt{3})}{5\sqrt{3} + (\sqrt{5})(\sqrt{3})}$		
.T.5		*
$=\frac{\sqrt{5}}{5+\sqrt{5}}$		
$=\frac{1}{1+\sqrt{5}}$		
$=\frac{\sqrt{5}-1}{4}$	· 1A	
Compared with (a)(ii)	IA	Do not award this mark
∠POK = 72°	4.41	if a candidate had not
		completed (a)(ii).
	13	
	•	

P.12

	SOLUTIONS	MARKS	REMARKS
11. (c)	If $x = 50$, $\frac{d\theta}{dx} = \frac{20(300 - 50^2)}{50^4 + 1000(50)^2 + 90000}$	1M	
	$= \frac{-44 000}{3 840 000}$ $= -0.0050 (correct to + 4.9.)$		Follow through for -0.005
-	1° = 0.0175 radians Since $\Delta x = \Delta \theta \frac{1}{\frac{d\theta}{dx}}$ (or $\Delta \theta = \frac{d\theta}{dx} \Delta x$),	. 1M	
	at x = 50, $\Delta \times = \frac{-0.0175}{-0.005}$ $= 3.5 \text{ (correct to the nearest } \frac{1}{10} \text{ m)}$	1M+1A 1A 6	20 m
	·	1	10 m

DECTRICTED 内立立 Provided by dse.life