1. Kakšna je glavna delitev projekcije in po čem se najbolj razlikujejo?

- Vzporedne
 - aksonosimetrične
 - trimetrične
 - dimetrčne
 - izometrične

poševne

- kavalirska
- kabinetna
- Perspektivne
 - enobežna
 - dvobežna
 - o tribežna
- Ortogonalna (pravokotna)

2. Kakšen tip projekcije je kavalirska in kaj je za njo značilna?

- je tipa "Perspektivne projekcije"
- za njo je značilno, da ima kot med smerjo projekcije ter projekcijsko ravnino enak 45°

3. Katere koordinatne sisteme poznamo v procesu izdelave posnetka sintetičnega sveta?

Poznamo naslednje tipe koordinatnih sistemov:

- sveta
- predmeta
- pogleda

4. Kateri je najbolj inuitiven način podajanja koordinatnega sistema pogleda?

Pozicija očišča točke kamor gledamo.

5. Kje pri sprehodu skozi grafični cevovod preidemo iz homogenih v nehomogene koordinate?

Pri projekciji, katera pride takoj za osvetljevanjem.

6. Kakšne oblike je vidno polje prespektivne projekcije in kako ga parametriziramo?

Vidno polje ima oblike *prirezane piramide*, njeni parametri pa so:

- dolžine stranic
 - zgornja
 - spodnja
 - leva
 - desna
- · Razdalji med oščičem ter
 - bližnje ploskve (near clipping pane)
 - zadnje ploskve (far clipping pane)

7. Kakšna je celotna transformacijska veriga, ki se pred izrisom na ekran izvede na točki predmeta predstavljeni v koordinatnem sistemu predmeta?

- matrika modela
- matrika kamere
- projekcijska matrika
- matrika naprave

1. Katere oblike predstavitvene enačbe krivulje poznamo in kakšne so njihove lastnosti?

- eksplicitno
- implicitno
- parametrično

2. Kako geometrijsko podajamo krivulje in kaj je značilno za interpolacijo in kaj za aproksimacijo? Krivulje podamo s točkami in sicer poznamo dva načina:

- Interpolacija naštejemo vse točke na krivulji
- Aproksimacija naštejemo le nekaj točk, katere na krivuljo le vplivajo (krivulja ne gre skozi njih ampak se jim le približa)

3. Koliko koeficientov potrebujemo za podajanje polinomske krivulje n-te stopnje in kaj je njihova pomanjkljivost?

- koeficient določi obliko polinomske funkcije, prednost je, da lahko polinom hitro odvajamo
- za podajanje take krivulje potrebujemo n+1 koeficientov.
- pomankljivost je ta, da koeficienti nimajo intuitivnega vpliva na krivuljo, saj so samo koeficienti polinoma in si je težko predstavljati kako na krivuljo vplivajo.

4. Katere tri ekvivalentne predstavitve enačbe polinomske parametrične krivulje poznamo? Kako podamo hermitske krivulje?

- utežena vsota dveh točk
- polinom
- matrični zapis

5. Na čem temelji De casteljev algoritem konstrukcije Bezerove krivulje?

- Algoritem je rekurziven, kateri je zelo pomankljiv
- omogoča izračun vsake točke na krivulji
- temelji na linearni interpolaciji med kontrolnimi točkami

6. Kaj so bernsteinovi polinomi, kakšna je njihova enačba, značilnosti in kakšna je zveza z Bezierovimi krivuljami?

So posebne funkcije n-te stopnje, dajo nam n+1 funkcij, vsota teh funkcij pri poljubnem t-ju je enaka 1. Predstavljajo uteži, pri zapisu Bezierjevih krivulj v obliki utežene vsote.

Enačba = N/A

7.Razlika med ploskvijo in krivuljo.

- ploskev ima več parametrov (u,v)
- krivulja ima en parameter (t)

8. Kako geometrijsko podamo bikubične Bezierove krpe, kako izračunamo točko na njej in kako normalo v tej točki?

- za kubično krpo rabimo 4 kontrolne točke torej rabimo za bikubično 16 kontrolnih točk
 - o definiramo jih s 16 kontrolnimi točkami
- točke na vogalih (*kotne*) se interpolirajo, robne točke pa definirajo meje ploskve (*ki so spet Bezierove krivulje*)
- notranje 4 točke se aproksimirajo in definirajo obliko ploskve v sredini
- točke na vogalih se interpolirajo vse ostale se aproksimirajo

9. Kako so podane hermitske krivulje?

Krivulje so podane s 4 parametri:

- začetna in končna točka krivulje
- začetna in končna tangenta

10. Naštej glavne razlike med parametriziranimi ploskvami in krivuljami.

<pomankljivost>

1. Kaj določa barvo nekega predmeta? Kako je predmet osvetljen? Katero barvo odbija, absorbira? Vidni barvni spekter očesa.

Barvo nekega predmeta določa:

- vir svetlobe
- odbojnost in prepustnost
- zaznavanje svetlobe

2. Kaj je svetloba in kaj vidna svetloba?

- Svetloba je valovna dolžina (frekvenca), katero sestavlja skupek fotonov.
- Vidna svetloba je del elektromagnetnega valovanja, kateri je viden človeku

3. Lastnosti svetlobe?

valovna dolžina, ferkevenca, polarizacija, razpršenost, usmerjenost

Ali je svetloba monokromatska?

Svetloba je redko monokromatska, saj ima ponavadi drugačno valovanje

Kako opisujemo vir svetlobe?

z emisijskim spektrom?

Kakšna je jakost vidnega spektra?

od 400 do 790 tHz

4. Kako zaznavamo svetlobo in barvo?

- z očmi, preko roženice, čepnic, paličnic, vidni dražljaji potujejo v možgane
- čepnice zaznajo RGB (barva, katera je odvisna od emisijskega spektra)

5. Kaj je rumena pega in kaj slepa pega?

Rumena pega je neposredno nasproti leče, vsa svetloba je fokusirana v njo, je najbolj posejana s čepnicami. Slepa pega je tam kjer je vidni živec, oz tam kjer gre optični živec v možgan, tam ni paličnic in četnic, zato imamo tam nekako »luknjo«.

6. Kaj je trikromatska teorija in kaj je barvni prostor?

- Trikromatska teorija trdi da lahko katerikoli vir svetlobe predstavimo z monokromatsikmi viri svetlobe.
- Barvni prostor je koordinatni sistem barv.

7. Katere barvne modele ločimo in po čem se razlikujejo?

- Substraktivni imamo znan vir svetlobe
- Aditivni barve, ki jih generiramo z viri svetlobe

8. Kaj je namen barvnega prostora CIE RGB in kaj so kubimetrične funkcije?

CIE RGB je matematični zapis s katerim želimo nedvoumno zapisati barvni spekter - temelji na monokromatski teoriji.

9. Kaj so značilnosti kolometričnih funkcij barvnega prostora CIE XYZ?

Na točki x=y=z=1/3 predstavlja enako prisotnost vseh virov in sovpada z belo svetlobo.

10. Kaj je kromatrični diagram CIE xy in kaj prostor CIED xyY?

11. Kaj je barvni obseg, kako ga v kromatičnem diagramu CIE xy predstavimo?

Barvni obseg predstavlja vse barve, ki jih z napravo zajamemo. Predstavimo ga z trikotnikom - površina trikotnika predstavlja barvni obseg naprave.

12. Kaj sta poglavitni prednosti barvnega prostora CIE L*a*b pred ostalimi?

- Dizajniran je za aproksimacijo človeškega vida oz. veliko bolje oponaša način gledanja človeka
- Vsebuje veliko več barv kot jih lahko zazna človeško oko (imaginarne barve).

1. Katere osvetlitvene modele poznamo in po čem se ločijo?

- globalni upoštevajo gemoetrijo
- lokalni geometrije ne upoštevajo in tako predpostavljajo, da lahko svetloba pride do vsake točke

2. kje se v grafičnem cevovodu dogaja upodabljanje?

Upodabljanje se dogaja pri:

- osvetljevanju
- senčenju

3. Katere načine širjenja svetlobe upoštevajo lokalni modeli?

- zrcalni odboj
- razpršeno odsevanje
- posredna osvetlitev

4. Razložite parametre Blinnove osvetlitvene metode.

$$I = \sum_{t} I_{L_{t}} \left(R_{d} (\mathbf{l}_{t} \cdot \mathbf{n}) + R_{s} (\mathbf{h}_{t} \cdot \mathbf{n})^{s} \right) + I_{a} R_{a}$$

R - lastnost materiala, d-difuse(razpršena svetloba)

Rd - kolikšen delež svetlobe, ki se razpršuje naš material odbija

Rs - (specular)kolikšen delež svetlobe se bo odbil, neidealni odboj??

Ra - ad-hoc kompenzacija svetlobe, kjer svetloba prihaja iz drugod

5. Po čem se razlikuje od Phongovega osvetlitvenega modela?

<pomankljivo>

6. Katere vire svetlobe poznamo?

- usmerjeni
- točkovni
- reflektorski

7. Kaj vpliva na prejeto jakost svetlobe v primeru reflektorskega vira?

<pomankljivo>

8. Kaj je razlika med Gauradom in Phongom?

- gouradov model računa oglišča in interpolira barvo.
- phongov model interpolira na podlagi normale.

1. Katere globalne osvetlitvene modele poznamo?

- sledenje žarkov,
- fotonsko kartiranje

2. Kaj je bistvena razlika v pristopu, ki ga uporablja metoda sledenja žarkov glede na lokalne osvetlitvene metode?

<pomankljivo>

3. Kakšen je osnovni algoritem metode sledenja žarkov?

Spremlja žarke po prostoru, prvi žarek predstavlja barvo, ki je vidna vsem, tretji žarek gre skozi polprosojni material itd. <pomankljivo>

4. Kaj so to senčni, odbiti in lomljeni žarki?

- · Senčni -
- Odbiti ti žarki se odbijejo od površine pod istim kotom kot padejo nanjo
- Lomljeni ti žarki gredo skozi površino ampak se pri tem lomijo (primer vodne gladine)

5. Kaj je bistvena razlika v pristopu, ki ga uporablja sevalna metoda glede na metodo sledenja žarkov?

- sevalna metoda predvideva da je prostor zaprt, ko svetloba pade na predmet sosednji predmet "prejme" njegovo barvo.
- metoda sledenja žarkov predvideva da so materiali difuzni.

6. Kaj je največja prednost in kaj pomanjkljivost sevalne metode?

<pomankljivo>

7. Kaj je fotonsko kartiranje?

- napredna globalna osvetlitvena metoda, ki vsebuje tehnike sevalne metode in sledenja žarkov.
- treba je preračunavati, če se položaj predmeta spremeni in kako to vpliva na druge predmete.

8. Kaj je BSSRDF?

Je več dimenzijska funkcija, ki omogoča matematičen zapis nekega materiala. BSSRDF je kratica za: " *Bidirectional surface scattering reflectance distribution function*"