诚信应考,考试作弊将带来严重后果!

华南理工大学本科生期末考试

2017-2018 学年第二学期《概率论与数理统计》A 卷

注意事项: 1. 开考前请将密封线内各项信息填写清楚;

- 2. 所有答案请直接答在试卷上;
- 3. 考试形式: 闭卷;
- 4. 本试卷共八大题,满分100分,考试时间120分钟。

题 号	-	1	Ш	四	五	六	七	八	总分
得 分									

可能用到的表值:

$$\Phi(1.285) = 0.9$$
, $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$, $\Phi(2.33) = 0.99$

$$t_{0.025}(35) = 2.0301$$
, $t_{0.025}(36) = 2.0281$, $t_{0.05}(35) = 1.6896$, $t_{0.05}(36) = 1.6883$

一、 填空题 (每小题 3 分, 共 18 分)

- 1. 设袋中有红、白、黑球个1个,从中有放回地取球,每次取1个,直到三种颜色的求都取到时停止,则取球次数恰好为4的概率为
- 2. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} Ax^2 & 0 \le x \le 1 \\ 0 &$ 其它 \end{cases} ,则 A =_____.
- 3. 设 $X_1, X_2, ..., X_n$ 独立同分布, $X_1 \sim B(1, p)$,则 $P(\overline{X} = k/n) = _____$.
- 4. 设连续随机变量 X 的密度函数满足 f(x) = f(-x) , $P\left\{X \le x_a\right\} = a$,则

$$P(\mid X \mid > x_{a}) = \underline{\hspace{1cm}}_{\circ}$$

5. 设总体 $X \sim N\left(0, \sigma^2\right), X_1, X_2, \cdots, X_6$ 是来自 X 的简单随机样本,设

$$Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$$

则当
$$C = ____$$
时, $CY \sim \chi^2(2)$...

6. 设二维离散型随机变量(X,Y)的分布列为

$$(X,Y)$$
 (1,0) (1,1) (2,0) (2,1)
 P 0.4 0.2 a b

若E(XY) = 0.8, a =______。

1.
$$\frac{2}{9}$$
 2. 3 3. $C_n^k p^k (1-p)^{n-k}$ 4. $\begin{cases} 2(1-\alpha) & \alpha > \frac{1}{2} \\ 1 & 0 < \alpha \le \frac{1}{2} \end{cases}$ 5. $\frac{1}{3\sigma^2}$ 6. 0.1

二、单项选择题(每小题3分,共18分)

- 1. 设随机变量X的密度f(x)满足f(1-x) = f(1+x), $\int_{0}^{2} f(x)dx = 0.8$, 则 $P\{X < 0\} =$ ______.
- (A) 0.5
- (B) 0.2
- (C) 0.1
- (D) 0.4
- 2. 设 $X_1, X_2 \cdots X_n (n \ge 2)$ 为来自总体 $N(\mu, 1)$ 的简单随即样本,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则下列结论中不 正确的是

(A)
$$\sum_{i=1}^{n} (X_i - \mu)^2$$
 服从 χ^2 分布

(B)
$$2(X_n - X_1)^2$$
 服从 χ^2 分布

(C)
$$\sum_{i=1}^{n} (X_i - \bar{X})^2$$
 服从 χ^2 分布

(D)
$$n(\overline{X} - \mu)^2$$
 服从 χ^2 分布

- 3. 设随机变量 X 服从 $N(\mu, \sigma^2)(\sigma > 0)$, 记 $p = P\{X \le \mu + \sigma^2\}$.则()
- (A)p 随着 μ 增加而增加
- (B)p 随着 σ 增加而增加
- (C)p 随着 μ 增加而减少
- (D)p 随着 σ 增加而减少
- **4.** 随机试验 E 有三种两两不相容的结果 A_1, A_2, A_3 且三种结果发生的概率均为 $\frac{1}{2}$,将试验 E 独立

重复做两次,X 表示 2 次试验中结果 A_1 发生的次数,Y 表示两次试验中结果 A_5 发生的次数,则 X

与 Y 的相关系数为 (

$$(A)\frac{1}{3}$$
 $(B)-\frac{1}{3}$ $(C)-\frac{1}{2}$ $(D)\frac{1}{2}$

$$(B)-\frac{1}{3}$$

$$(C) - \frac{1}{2}$$

$$(D)^{\frac{1}{2}}$$

5. 设A, B为两个随机事件,且0 < P(A) < 1, 0 < P(B) < 1, 如果<math>P(A|B) = 1, 则

(A)
$$P(\overline{B} \mid \overline{A}) = 1$$

(B)
$$P(A | \overline{B}) = 0$$

(A)
$$P(\overline{B} \mid \overline{A}) = 1$$
 (B) $P(A \mid \overline{B}) = 0$ (C) $P(A \cup B) = 0$ (D) $P(B \mid A) = 1$

(D)
$$P(B|A) = 1$$

6. 设随机变量 ξ 的数学期望 $E\xi = \mu$,方差 $D\xi = \sigma^2$,则由车贝雪夫不等式

$$P(|\xi - \mu| \ge 3\sigma) \le$$

(A)
$$\frac{1}{3}$$

(A)
$$\frac{1}{3}$$
 (B) $\frac{1}{\sqrt{3}}$ (C) $\frac{1}{6}$ (D) $\frac{1}{9}$

(C)
$$\frac{1}{6}$$

(D)
$$\frac{1}{9}$$

1.C 2.B 3.B 4.C 5. A 6. D

- 三、(10分) 一个盒子中装有 4个白球、6个红球,现投掷一枚均匀的骰子,骰子投掷出 几点就从盒中无放回地取几个球。试求:
 - (1) 所取的全是白球的概率。
 - (2) 如果已知取出的都是白球、那么骰子所掷的点数恰为 3 的概率是多少?

解(1) $B_i = \{$ 骰子掷出第j点 $\}$ $A = \{$ 取出的球全是白球 $\}$ (1分)

$$P(B_{j}) = 1/6, \quad P(A \mid B_{j}) = \begin{cases} \frac{C_{4}^{j}}{C_{10}^{j}}, & j \le 4 \\ 0, & j > 4 \end{cases}$$

$$P(A) = \sum_{j} P(B_{j}) P(A \mid B_{j}) = 2/21 = 0.095$$
 (3 分)

(2)
$$P(B_3 \mid A) = \frac{P(B_3)P(A \mid B_3)}{P(A)} = \frac{7}{120} = 0.058$$
 (3 分)

- \mathbf{U} 、(10分)某工程师为了解一台天平的精度、用该天平对一物体的质量做 n 次测量、 该物体的质量 μ 是已知的,设 n 次测量结果 X_1, X_2, \ldots, X_n 相互独立且均服从正态分 $\pi N(\mu, \sigma^2)$ 。该工程师记录的是 n 次测量的绝对误差 $Z_i = |X_i - \mu|(i = 1, 2, \dots, n)$, 利用 Z_1 , $Z_2,...Z_n$ 估计 σ 。
 - (1) 求Z 的概率密度;
 - (2) 利用一阶矩求 σ 的矩估计量。

解 (1) 因为 $X_i \sim N(\mu, \sigma^2)$, 所以 $Y_i = X_i - \mu \sim N(0, \sigma^2)$, 对应的概率密度为 $f_Y(y) = \frac{1}{\sqrt{2 - \sigma^2}} e^{\frac{-y^2}{2\sigma^2}}$,设 Z_i 的分布函数为F(z),对应的概率密度为f(z)。

当
$$z < 0$$
时, $F(z) = 0$; (1分)

当
$$z \ge 0$$
 时, $F(z) = P\{Z_i \le z\} = P\{|Y_i| \le z\} = P\{-z \le Y_i \le z\} = \int_{-z}^{z} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{y^2}{2\sigma^2}} dy$; (3 分)

则
$$Z_i$$
 的概率密度为 $f(z) = F'(z) = \begin{cases} \frac{2}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}, & z > 0 \\ 0, & z \le 0 \end{cases}$; (1 分)

(2) 因为
$$EZ_i = \int_0^{+\infty} z \frac{2}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}} dz = \frac{2\sigma}{\sqrt{2\pi}}$$
, (3分)

所以
$$\sigma = \sqrt{\frac{\pi}{2}} EZ_i$$
, (1分)

从而
$$\sigma$$
 的矩估计量为 $\widehat{\sigma} = \sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^{n} Z_i$ (1分)

五、(12分)设随机变量 X的概率分布为 $P\{X=0\}=\frac{1}{3}$, $P\{X=1\}=\frac{2}{3}$, Y的概率分布为 $P\{Y=-1\}=P\{Y=0\}=P\{Y=1\}=\frac{1}{3}$, 且 $P\{X^2=Y^2\}=1$ 。

- (1) 求二维随机变量 (X,Y) 的概率分布。
- (2) 求 Z=XY 的概率分布。
- (3) 求 X 与 Y 的相关系数。

解:
$$P\{X^2 = Y^2\} = 1$$

 $\therefore P\{X^2 \neq Y^2\} = 0$ (2分)

X	-1	0	1	
0	0	1/3	0	1/3
1	1/3	0	1/3	2/3
	1/3	1/3	1/3	

(2分)

(2)
$$P\{XY=1\} = P\{X=1, Y=1\} = \frac{1}{3}$$
 (1分)
 $P\{XY=1\} = P\{X=1, Y=-1\} = \frac{1}{3}$ (1分)
 $P\{XY=0\} = \frac{1}{3}$ (1分)

Z	-1	0	1
P	1/3	1/3	1/3

(1分)

(3)
$$E(X) = \frac{2}{3}$$
, $E(Y) = 0$, $D(X) = \frac{2}{9}$, $D(Y) = \frac{2}{3}$, (2分) $E(XY) = 0$ (1分) $\rho_{XY} = 0$ (1分)

六、(10) 假设一条生产线生产的产品合格率是 0.8.要使一批产品的合格率达到在 76% 与 84%之间的概率不小于 90%,使用中心极限定理推断这批产品至少要生产多少件? $\Phi(3) = 0.9987$ $\Phi(1.25) = 0.894$ $\Phi(1.645) = 0.95$ $\Phi(1.33) = 0.908$

解: 设这批产品至少要生产 n 件。令

$$X_i = \begin{cases} 0 & \text{第i件产品是次品} \\ 1 & \text{第i件产品是合格品} \end{cases}$$
 (2 分)

$$\begin{split} &P\{76\% < \frac{1}{n} \sum_{i=1}^{n} X_i < 84\%\} = P\{-0.04 < \frac{1}{n} \sum_{i=1}^{n} X_i - 0.8 < 0.04\} \\ &= P\{\left|\frac{1}{n} \sum_{i=1}^{n} X_i - 0.8\right| < 0.04\} = P\left\{\frac{\left|\frac{1}{n} \sum_{i=1}^{n} X_i - 0.8\right|}{\sqrt{0.16/n}} < \frac{0.04}{\sqrt{0.16/n}}\right\} \\ &= 2\Phi\left(\frac{0.04}{\sqrt{0.16/n}}\right) - 1 \ge 0.9 \quad (6\%) \end{split}$$

$$\frac{0.04}{\sqrt{0.16/n}} \ge 1.645$$
, $n \ge 270.6025$ (2分)

这批产品至少要生产 271 件

七、(**10 分**) 设某次概率统计考试考生的成绩 $X \sim N(\mu, \sigma^2)$,从中随机地抽取 36 位考生的成绩,算得平均成绩为x = 66.5 分,修正方差为 $S^{*2} = 225$ 分.

(1)在置信度为 0.95 时,求出学生成绩数学期望 μ 的置信区间。

(2)在显著性水平 $\alpha = 0.05$ 下,检验是否可以认为这次考试的平均成绩为 70 分。

$$t_{0.975}(35) = 2.0301$$
, $t_{0.975}(36) = 2.0281$, $t_{0.95}(35) = 1.6896$, $t_{0.95}(36) = 1.6883$

解: (1)
$$\frac{\overline{X} - \mu}{\sqrt{\frac{S^{*2}}{n}}} \sim t(n-1)$$
, (2分)

$$\delta(\overline{x}) = \frac{S^*}{\sqrt{n}} t_{0.975} (35) = \frac{15}{6} \times 2.0301 = 5.07525$$
 (2 分)

学生成绩数学期望 μ 的置信区间: (61.42,71.58) (1分)

(2)
$$H_0: \mu = 70, \quad H_1: \mu \neq 70, \quad (1 \text{ } \text{β})$$

拒绝域:
$$A = \left\{ \frac{\overline{X} - 70}{\sqrt{\frac{S^{*2}}{n}}} \right\} \ge t_{0.975} (35)$$
, $\left| \frac{66.5 - 70}{\sqrt{\frac{15^2}{36}}} \right| = 1.4 < t_{0.975} (35) = 2.0301$ (3分)

不拒绝原假设。可以认为这次考试的平均成绩为 70 分。 (1分)

八、(12 分) 设总体 X 的密度函数是 $f(x;\theta) = \frac{1}{2\theta}e^{-\frac{|x|}{\theta}}$,其中 $\theta > 0$ 是参数。样本 $X_1, X_2, ..., X_n$ 来自总体 X 。

- (1) 求 θ 的最大似然估计 $\hat{\theta}_i$;
- (2) 证明 $\hat{\theta}_L$ 是 θ 的无偏估计,且 $\hat{\theta}_L$ 是 θ 的相合估计(一致估计)。

解: (1) 似然函数:
$$L = \prod_{i=1}^{n} \frac{1}{2\theta} e^{\frac{-|x_i|}{\theta}}$$
, $L = \frac{1}{(2\theta)^n} e^{-\sum_{i=1}^{n} \frac{|x_i|}{\theta}}$, (3分) $\ln L = -n\ln(2\theta) - \frac{1}{\theta} \sum_{i=1}^{n} |x_i|$ (1分)

$$\frac{d}{d\theta} \left(\ln L \right) = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n \left| x_i \right|, \quad \diamondsuit - \frac{n}{\hat{\theta}} + \frac{1}{\hat{\theta}^2} \sum_{i=1}^n \left| x_i \right| = 0, \quad (1)$$

得

(2)
$$E|X| = \int_0^{+\infty} \frac{1}{\theta} x e^{-\frac{x}{\theta}} dx = -\left(x e^{-\frac{x}{\theta}}\right)\Big|_0^{+\infty} + \int_0^{+\infty} e^{-\frac{x}{\theta}} dx = -\left(\theta e^{-\frac{x}{\theta}}\right)\Big|_0^{+\infty} = \theta$$
 (2 \(\frac{\frac{\sigma}}{\theta}\))

$$EX = \int_{-\infty}^{+\infty} \frac{1}{2\theta} x e^{\frac{-|x|}{\theta}} dx = 0,$$

$$EX^{2} = \int_{-\infty}^{+\infty} \frac{1}{2\theta} x^{2} e^{-\frac{|x|}{\theta}} dx = \int_{0}^{+\infty} \frac{1}{\theta} x^{2} e^{-\frac{x}{\theta}} dx$$

$$= -\left(x^2 e^{-\frac{x}{\theta}}\right)\Big|_0^{+\infty} + 2\int_0^{+\infty} x e^{-\frac{x}{\theta}} dx$$

$$=-2\left(x\theta e^{-\frac{x}{\theta}}\right)\Big|_{0}^{+\infty}+2\theta\int_{0}^{+\infty}e^{-\frac{x}{\theta}}dx=-2\left(\theta^{2}e^{-\frac{x}{\theta}}\right)\Big|_{0}^{+\infty}=2\theta^{2}$$

$$E\hat{\theta}_L = \frac{1}{n} \sum_{i=1}^n E |X_i| = E |X| = \theta$$
 , $\hat{\theta}_L$ 是 θ 的无偏估计,(1 分)

$$E|X|^2 = EX^2 = 2\theta^2,$$

$$D|X| = EX^2 - (E|X|)^2 = 2\theta^2 - \theta^2 = \theta^2$$
, $D\left(\frac{1}{n}\sum_{i=1}^n |X_i|\right) = \frac{D(X|)}{n} = \frac{\theta^2}{n}$

$$P\left\{\hat{\theta}_{L} - E\hat{\theta}_{L} \mid \geq \varepsilon\right\} \leq \frac{\theta^{2}}{n\varepsilon^{2}} \to 0$$
, $\hat{\theta}_{L}$ 是 θ 的相合估计 (3 分)