Disciplina INTRODUÇÃO À LÓGICA

03 Atividades sobre CIRCUITOS COMBINACIONAIS com DUAS (2) VARIÁVEIS – Parte 1 – Em SALA DE AULA

Disciplina: Introdução à Lógica – Análise e Desenvolvimento de Sistemas

Professor : Dr. Alex Sandro Romeo de Souza Poletto

Disponível: 11/05/2021

Aluno:	RA:

1) CONTROLE DE BOMBEAMENTO DE ÁGUA

O desenho a seguir mostra um processo simples para encher uma caixa d'água a partir do bombeamento da água de um rio próximo.

Os sensores de nível alto (H) e de nível baixo (L) são utilizados para determinar o acionamento da bomba (B) e do alarme (A). Os sensores funcionam da seguinte forma:

 $H = L = 0 \rightarrow$ sensor desacionado, ou seja, a água está abaixo dele.

 $H = L = 1 \rightarrow sensor acionado, ou seja, a água está sobre ou acima dele.$

A bomba deve ser acionada sempre que o nível da água da caixa estiver abaixo do sensor H. Se o nível da água ficar abaixo do nível do sensor L, o alarme deve ser acionado até que o nível da água suba acima de L.

Variáveis de entrada: H e L Variáveis de saída: B e A

Disciplina INTRODUÇÃO À LÓGICA

A partir das características acima, levantar:

- a) a tabela da verdade deste circuito lógico.
- **b**) as expressões da bomba e do alarme.
- c) o circuito da bomba e do alarme.
- d) Algoritmo

2) CONTROLE DE TEMPERATURA DE UMA ESTUFA

Uma estufa deve manter a temperatura interna sempre na faixa entre 15°C e 20°C controlada automaticamente por um sistema de controle digital. Para isso, foram instalados internamente dois sensores de temperatura que fornecem níveis lógicos 0 e 1 nas seguintes condições:

- T₁ = 1 para temperatura ≥ 15°C
- T₂ = 1 para temperatura ≥ 20°C

Projetar um circuito combinacional para fazer o controle da temperatura desta estufa por meio do acionamento de um aquecedor A sempre que a temperatura cair abaixo de 15°C ou de um resfriador R sempre que a temperatura subir acima de 20°C, conforme mostra o diagrama de blocos dado a seguir:

Pela análise do problema, percebe-se que, caso a temperatura interna da estufa esteja dentro da faixa desejada, os sistemas de aquecimento e resfriamento devem estar desligados, ou seja, A = 0 e R = 0.

Variáveis de entrada:

- T₁ = sensor para temperatura ≥ 15°C
- T₂ = sensor para temperatura ≥ 20°C

Variáveis de saída:

- A = sistema de aquecimento
- R = sistema de resfriamento

A partir das características dos sensores e dos sistemas de aquecimento e resfriamento, elaborar:

Disciplina INTRODUÇÃO À LÓGICA

- a) a tabela da verdade deste circuito lógico;
- b) as expressões do aquecedor e do resfriador;
- c) o circuito do aquecedor e do resfriador.
- d) algoritmo

3) CONTROLE PARA ABASTECIMENTO DE UM FILTRO DE ÁGUA

Elabore um circuito lógico que permita encher automaticamente um filtro de água de dois recipientes, um deles com uma vela, conforme a figura abaixo.

A eletroválvula estará aberta quando for aplicado nível 1 na saída do circuito, e será desligada quando aplicado nível 0.

As variáveis de controle do circuito são os sensores A e B, colocados nos recipientes **a** e **b** respectivamente.

Convencionar:

- Recipiente vazio, sensor correspondente em nível 0;
- Recipiente cheio, sensor correspondente em nível 1.

A partir das características dos sensores, elaborar:

- a) a tabela da verdade deste circuito lógico;
- **b**) as expressões do aquecedor e do resfriador;
- c) o circuito do aquecedor e do resfriador.
- d) algoritmo