

Escuela Rafael Díaz Serdán

Física 2

J. C. Melchor Pinto

2° de Secundaria

Repaso para el examen de la Unidad 2

Aprendizajes a evaluar

- Describe, representa y experimenta la fuerza como la interacción entre objetos y reconoce distintos tipos de fuerza.
- Identifica y describe la presencia de fuerzas en interacciones cotidianas (fricción, flotación, fuerzas en equilibrio).
- Analiza la gravitación y su papel en la explicación del movimiento de los planetas y en la caída de los cuerpos (atracción) en la superficie terrestre.
- Analiza la energía mecánica (cinética y potencial) y describe casos donde se conserva.

_ Puntua	ción
Pregunta	Punt

Pregunta	Puntos	Obtenidos
1	25	
2	25	
3	20	
4	25	
5	25	
6	25	
7	70	
8	0	
9	20	
Total	235	

Máquinas simples

Plano inclinado y palancas

$$F_1 \times d_1 = F_2 \times d_2$$

Torno

$$F_1 \times R = F_2 \times r$$

Polea

$$F \times L = R \times \left(\frac{L}{2}\right)$$

Ley de la Gravitación Universal

La fuerza ejercida entre dos cuerpos de masas m_1 y m_2 separados por una distancia d es igual al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir:

$$F = G \frac{m_1 m_2}{d^2}$$

donde $G=6.67384\times 10^{-11} \rm N~m^2~kg^{-2}$ es la constante gravitacional.

Vocabulario

 $signo \rightarrow característica + o - de una cantidad.$ $inercia \rightarrow estado de movimiento.$

Las leyes de Newton

1. Ley de la Inercia o Equilibrio Todo objeto permanece en reposo o movimiento constante, a menos que una fuerza lo cambie.

$$F = 0$$

2. Ley de cambio en la Inercia La fuerza es directamente proporcional al cambio de movimiento de un objeto, y su constante de proporcionalidad es la masa.

$$F = ma$$

3. Ley de acción y reacción Con toda acción ocurre siempre una reacción igual y contraria.

$$F - F_r = ma$$

Energía	
Energía cinética	
Energía potencial	
Energía mecánica	- 1

- 1 Con base en tu entendimiento de las fuerzas, contesta las siguientes preguntas argumentando tu respuesta.
 - (1a) [5 puntos] ¿Cómo identificas cuando un cuerpo cambia su estado de movimiento?
 - (1b) [5 puntos] ¿Qué origina que un cuerpo cambie el estado de movimiento del punto anterior?
 - 1c [5 puntos] ¿Por qué un mago (o cualquier persona) puede quitar el mantel de una mesa con platos, copas y cubiertos sin que ninguno se caiga?
 - (1d) [5 puntos] ¿Por qué las naves y sondas espaciales pueden mantener su movimiento?
 - 1e) [5 puntos] ¿Qué relación existe entre el plano inclinado y la cuña?
- 2 Resuelve los siguientes problemas sobre planos inclinados.
 - (2a) [5 puntos] ¿Qué fuerza tendrías que aplicar para subir un sillón de 25 N de peso a una altura de 4 m si utilizas un plano inclinado de 5 m?
 - (2b) [5 puntos] ¿De qué longitud tendrá que ser el plano inclinado por utilizar si deseas subir un peso de 200 N a una altura de 2 m, si tu máxima capacidad te permite aplicar una fuerza de 50 N?
 - (2c) [5 puntos] ¿A qué altura se subió un objeto de 50 N si se aplicó una fuerza de 25 N y se utilizó un plano inclinado de 10 m?
 - [5 puntos] ¿Qué fuerza se debe aplicar a una caja de 100 N de peso para subirla a un templete a una altura de 80 cm si se usa una rampa de 240 cm?
 - (2e) [5 puntos] Se necesita subir una carga de 500 kg (4900 N) a una altura de 1.5 m deslizándola sobre una rampa inclinada, ¿qué longitud debe tener la rampa si sólo se puede aplicar una fuerza de 1633.33 N?
- 3 Observa los camiones de la figura 1, responde y argumenta.
 - (3a) [5 puntos] ¿Cuál de ellos será más fácil poner en movimiento?
 - (3b) [5 puntos] ¿Cuál podría aumentar más rápido su velocidad?
 - (3c) [5 puntos] Si ambos se mueven a la misma velocidad, ¿a cuál le resultaría más difícil frenar?, ¿ambos podrían tomar una curva con la misma facilidad?
 - [5 puntos] Imagina que el camión cargado tira gradualmente parte de su cargamento, y que el conductor pisa el acelerador con la misma fuerza y mantiene el volante en la misma dirección. ¿Qué piensas que pasará con su rapidez?, ¿y si en vez de perder carga fuera recibiendo más?

Figura 1: Comparación de dos camiones con diferente masa.

	$\overline{}$												
((4)	Elige la	${\bf respuesta}$	para c	cada	pregunta,	a j	partir	de las	s imágenes	de la	a figura	2.

4a) [5 puntos] ¿Cuál de ellos será más fácil poner en movimiento?

- (A) El camión sin carga.
- B El camión cargado.
- C Los dos camiones requieren el mismo esfuerzo.

4b) [5 puntos] ¿Cuál podría aumentar más rápido su velocidad?

- A El camión sin carga.
- B El camión cargado.
- C Los dos camiones aumentan su velocidad con la misma rapidez.

Figura 2

- (4c) [5 puntos] Si ambos camiones se movieran a la misma velocidad, ¿a cuál de ellos le resultaría más difícil frenar?
 - (A) El camión sin carga.
 - B El camión cargado.
 - C Los dos camiones requieren el mismo esfuerzo.
- [5 puntos] ¿Cuál de los camiones podría tomar una curva con más facilidad si ambos se están moviendo a la misma velocidad?
 - (A) El camión sin carga.
 - B El camión cargado.
 - C Los dos camiones requieren el mismo esfuerzo.
- (4e) [5 puntos] Si el camión cargado va dejando gradualmente parte de su cargamento mientras el conductor pisa el acelerador con la misma fuerza y mantiene el camión en la misma dirección, ¿qué pasa con su rapidez?
 - (A) La rapidez del camión aumenta.
 - (B) La rapidez del camión disminuye.
 - C La rapidez del camión no cambia.

- 5 Elige la respuesta para cada pregunta, a partir de las imágenes de la figura 3.
 - 5a [5 puntos] ¿Cuál de ellos será más fácil poner en movimiento?
 - A El camión sin carga.
 - (B) Los dos camiones requieren el mismo esfuerzo.
 - C El camión cargado.

- (A) El camión sin carga.
- (B) Los dos camiones aumentan su velocidad con la misma rapidez.
- C El camión cargado.

- (A) El camión sin carga.
- B Los dos camiones requieren el mismo esfuerzo.
- C El camión cargado.
- [5 puntos] ¿Cuál de los camiones podría tomar una curva con más facilidad si ambos se están moviendo a la misma velocidad?
 - A El camión sin carga.

Figura 3

- B Los dos camiones requieren el mismo esfuerzo.
- C El camión cargado.
- (5e) [5 puntos] Si se reduce la carga de arena de tal manera que la masa del camión sea la mitad de su masa inicial, mientras el conductor pisa el acelerador con la misma fuerza y mantiene el camión en la misma dirección, ¿qué pasa con la acelaración del camión?
 - Aumenta al doble.
 - B Disminuye a la mitad.
 - C No cambia.

Elige la respuesta para cada pregunta, a partir de las imágenes de la figura 4.

Figura 4

- [5 puntos] ¿Cuál podría aumentar más rápido su velocidad?
 - El autobús con más niños.
 - El autobús con menos niños.
 - Los dos autobuses aumentan su velocidad con la misma rapidez.
- [5 puntos] Si ambos autobuses se mueven a la misma velocidad, ¿a cuál de ellos le resultaría más difícil frenar?
 - Los dos autobuses requieren el mismo esfuerzo.
 - El autobús con menos niños.
 - El autobús con más niños.
- [5 puntos] Si la masa del segundo autobús es la mitad del primero y ambos conductores pisan el acelerador con la misma fuerza y mantienen el autobús en la misma dirección, ¿qué pasa con su aceleración?
 - Se mantiene igual.
 - Es el doble que la del primero.
 - Es la mitad de la del primero.
- [5 puntos] Si el conductor del autobús baja a algunos niños, de tal manera que su masa sea sólo un cuarto de su masa inicial, cuando el conductor pisa el acelerador con la misma fuerza y mantiene el camión en la misma dirección, ¿qué pasa con su acelaración?
 - Aumenta cuatro veces.
 - Se mantiene igual.
 - Disminuye a la cuarta parte.
- [5 puntos] El conductor del autobús da vuelta hacia la derecha y los niños sienten una fuerza que los empuja. ¿En qué dirección sienten los niños esta fuerza?
 - Los niños sienten que son empujados hacia abajo.
 - Los niños sienten que son empujados hacia la derecha del autobús.
 - Los niños sienten que son empujados hacia la izquierda del autobús.
- Elige o para indicar si las siguientes afirmaciones son o aportaciones de Newton a la ciencia.
 - [5 puntos] Los objetos se mueven según su naturaleza.
 - No

(7b)	[5 puntos]	El estado rmal de los objetos, a excepción de los objetos celestes, es el de reposo.
	(A) Sí	B No
(7c)	[5 puntos]	Los objetos pesan porque son atraídos por la Tierra.
	A Sí	B No
(7d)		Cuando un objeto ejerce una fuerza de acción sobre otro, éste último ejerce una fuerza de reacción al empo, de igual magnitud y en dirección opuesta sobre el primero. (B) No
(7e)		Un objeto que está en su lugar propio se mueve, a mes que se le someta a una fuerza.
	(A) Sí	(B) No
7f		La aceleración que experimenta un objeto al recibir una fuerza es directamente proporcional a la de la fuerza aplicada e inversamente proporcional a su masa, y tiene la misma dirección que la fuerza
	A Sí	B No
$\overline{(7g)}$	[5 puntos]	La fuerza de gravedad es una propiedad que tienen los cuerpos con masa de atraerse mutuamente
	A Sí	B No
7h		Los cuerpos celestes se encuentran en el mundo etéreo o supralunar y se mueven en círculos, donde erfecto, inmutable, infinito y eter. B No
7i	[5 puntos] (A) Sí	Los cuerpos celestes siguen leyes del movimiento distintas a la de los cuerpos terrestres. B No
$\overline{(7j)}$	[5 puntos]	El movimiento de los objetos terrestres y celestes es regido por las mismas leyes.
	A Sí	B No
7k		La fuerza de gravedad que actúa entre dos cuerpos es siempre de atracción, es directamente proportoroducto de sus masas e inversamente proporcional al cuadrado de su distancia. B No
$\overline{7l}$	[5 puntos]	Un objeto cae con una velocidad proporcional a su peso.
	A Sí	B No
(7m)		Una flecha se mueve a causa de la brecha en el aire originada por su movimiento. La brecha en el aire efecto de apriete en la parte trasera de la flecha a medida que el aire regresa para evitar que se forme B No

(7n) [5 puntos] Todo cuerpo tiende a mantener su estado de reposo o de movimiento en línea recta con velocidad

constante, a mes que una fuerza que actúe sobre él le obligue a cambiar ese estado.

- 8 Elige a qué ley pertenece cada ejemplo.
 - (8a) La aceleración que experimenta un objeto al recibir una fuerza es directamente proporcional a la fuerza aplicada e inversamente proporcional a su masa, y tiene lugar en la dirección de ella.
 - A Primera ley de Newton
 - B Segunda ley de Newton
 - C Tercera ley de Newton
 - D Ley de la gravitación universal
 - 8b Todo objeto tiende a mantener su estado de reposo o movimiento en línea recta con velocidad constante, mientras una fuerza no actúe sobre él.
 - A Primera ley de Newton
 - B Segunda ley de Newton
 - C Tercera ley de Newton
 - D Ley de la gravitación universal
 - 8c Esta ley establece que la fuerza gravitacional entre dos objetos es directamente proporcional a sus masas e inversamente proporcional al cuadrado de la distancia que hay entre los dos.
 - (A) Primera ley de Newton
 - B Segunda ley de Newton
 - C Tercera ley de Newton
 - D Ley de la gravitación universal
 - 8d Cuando un objeto ejerce una acción sobre otro, este último ejerce una reacción de igual magnitud y en dirección opuesta.
 - A Primera ley de Newton
 - B Segunda ley de Newton
 - C Tercera ley de Newton

- (D) Ley de la gravitación universal
- Si la fuerza gravitacional, al actuar sobre cualquier objeto, es directamente proporcional a su masa.
 - A Primera ley de Newton
 - B Segunda ley de Newton
 - C Tercera ley de Newton
 - D Ley de la gravitación universal
- 8f Al empujar una caja que está sobre un suelo liso, ésta acelera.
 - A Primera ley de Newton
 - B Segunda ley de Newton
 - C Tercera ley de Newton
 - D Ley de la gravitación universal
- 8g Si la Luna no fuera afectada por la Tierra, seguiría una trayectoria en línea recta a velocidad constante. ¿Cuál de las leyes del movimiento de Newton se aplica a esta situación?
 - A Primera ley de Newton
 - B Segunda ley de Newton
 - C Tercera ley de Newton
 - D Ley de la gravitación universal
- 8h Un jet descarga un chorro de fluido hacia atrás a gran velocidad; sin embargo, la aeronave se mueve hacia adelante.
 - A Primera ley de Newton
 - B Segunda ley de Newton
 - C Tercera ley de Newton
 - (D) Ley de la gravitación universal

- 9 ¿Cuánto pesaría una persona de 70 kg de masa si estuviera sobre la superficie de otros cuerpos celestes? Escribe en cada recuadro el valor de acuerdo con cada cuerpo celeste.
 - 9a [5 puntos]

 $g = 0.05m/s^2$ _____ N

(9b) [5 puntos]

 $g = 9.81 m/s^2$ _____ N

(9c) [5 puntos]

 $g = 1.62m/s^2$ _____ N

9d) [5 puntos]

 $g = 24.79 m/s^2$ _____ N