F2018

Assignment 2

Question 1a)

Assumptions

STUDENT:

- Students must always have a department from their major.
- Departments must always have students.

DEPARTMENT:

- Department must always have a director.
- Professor must always a department to work with.

COURSE:

• Course number is a weak primary key since it is only unique for each department.

SECTION:

- Section number is a weak primary key since it is only unique within courses.
- Section must be and can be taken by many students.
- Students must take courses. Students can take more than one courses.

GRADE

• Numeric grade is derived from letter grade.

PROFESSOR

Professors can work in a building different from their department's building.

MENTOR

- Students must have a mentor.
- Professor does not require to have a mentee.

BUDDY

- Students can only have one buddy.
- A buddy can only have one student.

Question 1b)

Club: Departments can have a club that must be lead by students. This club must be advised by a professor. It is described by a club number and club name.

F2018

Assignment 2

Question 1a)

Assumptions

STUDENT:

- Students must always have a department from their major.
- Departments must always have students.

DEPARTMENT:

- Department must always have a director.
- Professor must always a department to work with.

COURSE:

• Course number is a weak primary key since it is only unique for each department.

SECTION:

- Section number is a weak primary key since it is only unique within courses.
- Section must be and can be taken by many students.
- Students must take courses. Students can take more than one courses.

GRADE

• Numeric grade is derived from letter grade.

PROFESSOR

Professors can work in a building different from their department's building.

MENTOR

- Students must have a mentor.
- Professor does not require to have a mentee.

BUDDY

- Students can only have one buddy.
- A buddy can only have one student.

Question 1b)

Club: Departments can have a club that must be lead by students. This club must be advised by a professor. It is described by a club number and club name.

Question 2a)

Assumptions

UNIVERSITY:

- All universities in this database must accept students at least in one country.
- Universities must offer at least one degree in the database.
- All universities must have at least one agent in this database.

DEGREE:

• There can be a degree that is not offered in all universities.

AGENTS:

• All agents in this database must be hired by at least one university.

COUNTRIES:

• All countries in this database send students in university.

Question 2b)

Recruit(uni id, country id, num students)

Uni Agents(uni id, agent id)

Country Agents(country id, agent id)

Degree(deg id deg type)

Uni deg(uni id, deg id)

Department(uni_id, dep_num,/dep_name, office, phone, director)

Univesity(uni id, uni name, city, state, url)

Country id, country name)

Agent(agent id, f_name, l_name, phone, email, city, commission,)

Question 3a)

b) 2NF – take out partial dependencies (non-prime attributes depend on a prime attribute)

In this case, every attribute that has partially dependencies on authorEmail and paperId has created new relations:

conference review (authorEmail, paperId, contactAuthor)

author (author Email, author fn, author ln)

paper (paperId, paperTitle, uploadedFileName, reviewerEmail, reviewer fn, affiliation, recommendation)

NON LOSS DECOMPOSITION because

- conference review INTERSECT author = authorEmail (key of both relations)
- conference review INTERSECT paper = paperId (key of both relations)

3NF - must be in 2NF and no transitive dependencies

In this case, every attribute that has transitive dependencies on reviewerEmail has created new relations:

conference review (authorEmail, paperId, contactAuthor)

author (author Email, author fn, author ln)

paper (paperId, paperTitle, uploadedFileName, reviewerEmail, recommendation)

reviewer(reviewerEmail, reviewer fn, affliation)

NON LOSS DECOMPOSITION because

reviewer INTERSECT paper = reviewerEmail (key of reviewer)

A relation is in BCNF if and only if every determinant is a Candidate key.

After normalizing conference_review to 3NF, the determinants of each relation are

conference review (authorEmail, paperId, contactAuthor)

- authorEmail,paperId -> contactAuthor
- authorEmail,paperId is a CANDIDATE KEY and no prime attributes depending on non-prime attributes.

author (authorEmail, author_fn, author_ln)

- authorEmail -> author fn, author ln
- authorEmail is a CANDIDATE KEY and no prime attributes depending on non-prime attributes.

paper (paperId, paperTitle, uploadedFileName, reviewerEmail, recommendation)

- paperId-> paperTitle, uploadedFileName, reviewerEmail, recommendation CANDIDATE KEY
- paperId is a CANDIDATE KEY and no prime attributes depending on non-prime attributes.

reviewer(reviewerEmail, reviewer_fn, affliation)

- reviewerEmail -> reviewer fn, affliation CANDIDATE KEY
- reviewerEmail is a CANDIDATE KEY and no prime attributes depending on non-prime attributes.

Result:

```
conference_review (<u>authorEmail</u>, <u>paperId</u>, contactAuthor)

author (<u>authorEmail</u>, <u>author_fn</u>, author_ln)

paper (<u>paperId</u>, paperTitle, uploadedFileName, reviewerEmail, recommendation)

reviewer(<u>reviewerEmail</u>, reviewer fn , affliation)
```

Therefore, BNCF in this case is the same as 3NF.

Question 4a)

patient_info (<u>Patient No, Drug No, Start Date</u>, OHIP_No, FName, LName, Bed_No, Ward_No, Ward_Name, Ward_Manager, Drug_Name, Description, Dosage, Method, Units_pday, Start_date, Finish_date)

Question 4b)

Patient_No, Drug_No, Start_Date -> OHIP_No, FName, LName, Bed_No, Ward_No, Ward_Name, Ward Manager, Drug Name, Description, Dosage, Method, Units pday, Finish date

Patient No -> OHIP No, FName, LName, Bed No, Ward No, Ward Name, Ward Manager

Drug No -> Drug Name, Description

Bed No -> Ward No, Ward Name, Ward Manager

Ward No -> Ward Name, Ward Manager

Assumptions: All beds in the hospital are unique.

Question 4c)

2NF – take out partial dependencies (non-prime attributes depend on a prime attribute)

In this case, every attribute that has partially dependencies on <u>Patient No</u> and <u>Drug_No</u> has created new relations:

patient info (Patient No, Drug No, Start date, Finish date, Units pday, Dosage, Method)

Patient_only(Patient_No, OHIP_No, FName, LName, Bed_No, Ward_No, Ward_Name, Ward_Manager)

Drug(Drug No, Drug Name, Description, Dosage, Method)

NON LOSS DECOMPOSITION because

- patient info INTERSECT Patient only = Patient No (key of both relations)
- patient info INTERSECT Drug= Drug No (key of both relations)

3NF - must be in 2NF and no transitive dependencies

In this case, every attribute that has transitive dependencies on Ward_No and Bed_No has created new relations:

patient info (Patient No, Drug No, Start date, Finish date, Units pday, Dosage, Method)

Patient_only(Patient No, OHIP_No, FName, LName, Bed_No)

Bed(Bed No, Ward No)

Ward(Ward_No, Ward_Name, Ward_Manager)

Drug(Drug No, Drug Name, Description,)

NON LOSS DECOMPOSITION because

- Patient only INTERSECT Bed = Bed No(key of Bed)
- Ward No INTERSECT Bed = WardNo(key of Ward)

Question 5a and 5b) on files