PLSC 504 – Fall 2020 Causal Inference with Observational Data

September 23, 2020

What We're On About

Potential Confounding

Here:

- Y is the outcome of interest,
- W is the primary predictor / covariate ("treatment") of interest,
- T_i is the "treatment indicator" for observation i,
- ullet We're interested in estimating au, the "treatment effect" of W on Y,
- X are observed confounders,
- **U** are unobserved confounders.

Things We Can Do

Randomize

```
(or...)
```

- Instrumental Variables Approaches
- Selection on Observables:
 - · Regression / Weighting
 - Matching (propensity scores, multivariate/minimum-distance, genetic, etc.)
- Regression Discontinuity Designs ("RDD")
- Differences-In-Differences ("DiD")*
- Synthetic Controls*
- Others...

^{*} We'll discuss these approaches in a couple weeks, as models for panel/time-series cross-sectional data.

Under Randomization

Note:

- Randomized assignment of W "balances" covariate values both observed and unobserved – on average...
- That is, under randomization of *W*:

$$E(X_i, U_i | W_i = 0) = E(X_i, U_i | W_i = 1)$$

or, more demandingly,

$$E[f(X, U) | W_i = 0] = E[f(X, U) | W_i = 1]$$

• Can yield imbalance by random chance...

Covariate Balance / Imbalance

Covariate Imbalance Under Randomization

Why seek balance when randomizing?

- More accurate estimates of treatment effects
- Higher statistical power

Possible Approaches:

- 1. Force balance by design:
 - Stratification / blocking
 - Matching / paired randomization (see below)
 - Rerandomization approaches (e.g., Morgan and Rubin 2012)
- 2. Post-randomization analysis:
 - Pre- vs. post-treatment Y values / "gain scores"
 - (Post-treatment) stratification by X
 - (Pre-treatment) covariate adjustment via weighting / regression

Nonrandom Assignment of W_i

Valid causal inference requires $Y_{0i}, Y_{1i} \perp W_i | \mathbf{X}_i, \mathbf{U}_i$

• That is, treatment assignment W_i is conditionally ignorable

"What if I have unmeasured confounders?"

- In general, that's a bad thing.
- ullet One approach: obtain *bounds* on possible values of au
 - Assume you have one or more unmeasured confounders
 - Undertake one of the methods described below to get $\hat{ au}$
 - Calculate the range of values for $\hat{\tau}$ that could occur, depending on the degree and direction of confounding bias
 - Or ask: How strong would the effect of the **U**s have to be to make $\hat{\tau} \rightarrow 0$?
- Some useful cites:
 - · Rosenbaum and Rubin (1983)
 - · Rosenbaum (2002)
 - · DiPrete and Gangl (2004)
 - Liu et al. (2013)
 - Ding and VanderWeele (2016)

Digression: Instrumental Variables

As in the more general regression case where we have $Cov(\mathbf{X}, \epsilon) \neq 0$, instrumental variables <u>can</u> be used to address confounding in causal analyses.

Instrumental Variables (continued)

Considerations:

- Requires:
 - 1. $Cov(U, W) \neq 0$
 - 2. U has no independent effect on Y, except through W
 - 3. *U* is exogenous [i.e., $Cov(U, \epsilon) = 0$]
- Arguably most useful when treatment compliance is uncertain / driven by unmeasured factors ("intent to treat" analyses)
- Mostly, they're not that useful at all...
 - · Bound et al. (1995): Weak instruments are worse than endogeneity bias
 - Young (2020): Inferences in published IV work (in economics) are wrong and terrible
 - Shalizi (2020, chapters 20-21): Gathers all the issues together, sometimes hilariously
- Other useful references:
 - Imbens et al. (1996) (the overly-cited one)
 - · Hernan and Robins (2006) (making sense of things)
 - · Lousdal (2018) (a good intuitive introduction)

Nonrandom Assignment of W_i (continued)

So...

- Causal inference with observational data typically requires that $\mathbf{U} = \emptyset$...
- This typically requires a <u>strong</u> theoretical motivation in order to assume that the observed X exhausts the list of possible confounders.
- **Even if** this assumption is reasonable, there are two (related) important concerns:
 - · Lack of covariate balance (as above)
 - Lack of overlap among observations with $W_i = 0$ vs. $W_i = 1$
 - The latter is related to positivity, the requirement that each observation's probability of receiving (or not receiving) the treatment is greater than zero

Overlap

Overlap and Balance

In general:

- Ensuring <u>overlap</u> allows us to make counterfactual statements from observational data
 - Requires that we have comparable $W_i = 0$ and $W_i = 1$ units
 - It's necessary no overlap means any counterfactual statements are based on assumption
 - Think of this as an aspect of model identification (Crump et al. 2009)
 - Most often handled via matching
- Ensuring covariate balance corrects potential bias in $\hat{\tau}$ due to (observed) confounding
 - This can be done a number of different ways: stratification, weighting, regression...
 - Key: Adjusting for (observable) differences across groups defined by values of $\ensuremath{\mathcal{W}}$
- In general, we usually address overlap first, then balance...

Matching

Matching is a way of dealing with one of both of covariate overlap and (im)balance.

The process, generally:

- 1. Choose the **X** on which the observations will be matched, and the matching procedure;
- 2. Match the observations with $W_i = 0$ and $W_i = 1$;
- 3. Check for balance in X_i ; and
- 4. Estimate $\hat{\tau}$ using the matched pairs.

Variants / considerations:

- 1:1 vs. 1:k matching
- "Greedy" vs. "Optimal" matching (see Gu and Rosenbaum 1993)
- Distances, calipers, and "common support"
- Post-matching: Balance checking...

Flavors of Matching

- Simplest: Exact Matching
 - For each of the n observations i with W=1, find a corresponding observation j with W=0 that has identical values of ${\bf X}$
 - Calculate $\hat{\tau} = \frac{1}{n} \sum (Y_i Y_j)$
 - · Generally not practical, especially for high-dimensional X
 - · Variants: "coarsened" exact matching (e.g., lacus et al. 2011)
- Multivariate Matching
 - Match each observation i which has W=1 with a corresponding observation j with W=0, and whose values on \mathbf{X}_j are the most similar to \mathbf{X}_i
 - One example: Mahalanobis distance matching, based on the distance:

$$d_M(\mathbf{X}_i, \mathbf{X}_j) = \sqrt{(\mathbf{X}_i - \mathbf{X}_j)' \mathbf{S}^{-1} (\mathbf{X}_i - \mathbf{X}_j)}.$$

Flavors of Matching (continued)

- Propensity Score Matching
 - Match observation i which has W=1 with observation j having W=0 based on the closeness of their propensity score
 - The <u>propensity score</u> is, $Pr(W_i = 1 | \mathbf{X}_i)$, typically calculated as the predicted value of T_i (the treatment indicator) from a logistic (or other) regression of T on \mathbf{X} .
 - The assumptions about matching [that Y is orthogonal to $W|\mathbf{X}$ and that $\Pr(W_i=1|\mathbf{X}_i)\in(0,1)$] mean that $Y\perp W|\Pr(T|\mathbf{X})$.
 - In practice: read this...
- Other variants: Genetic matching (Diamond and Sekhon 2013), etc.¹

¹Shalizi (2016) notes that "(A)pproximate matching is implicitly doing nonparametric regression by a nearest-neighbor method," and that "(M)aybe it is easier to get doctors and economists to swallow "matching" than "nonparametric nearest neighbor regression"; this is not much of a reason to present the subject as though nonparametric smoothing did not exist, or had nothing to teach us about causal inference."

Matching Software

Interestingly, quite a few of the good matching programs written for R have been written by political scientists...

- the Match package (does propensity score, M-distance, and genetic matching, plus balance checking and other diagnostics)
- the MatchIt package (for pre-analysis matching; also has nice options for checking balance)
- the optmatch package (suite for 1:1 and 1:k matching via propensity scores, M-distance, and optimum balancing)
- matching (in the arm package)

Regression Discontinuity Designs

"RDD":

- Treatment changes abruptly [usually at some threshold(s)] according to the value(s) of some measured, continuous, pre-treatment variable(s)
 - This is known as the "assignment" or "forcing variable(s)," sometimes denoted $\boldsymbol{\mathsf{A}}$
 - · Formally:

$$T_i = \begin{cases} 0 \text{ if } A_i \le c \\ 1 \text{ if } A_i > c \end{cases}$$

- Intuition: Observations near but on either side of the threshold(s) are highly comparable, and can be used to (locally) identify τ
- This is because variation in T_i near the threshold is effectively random (a "local randomized experiment")
- E.g. Carpenter and Dobkin (2011) (on the relationship between the legal drinking age and public health outcomes like accidental deaths)

RDD (continued)

Pluses:

 Can be estimated straightforwardly, as:

$$Y_i = \beta_0 + \beta_1 A_i + \tau T_i + \gamma A_i T_i + \epsilon_i$$

 Generally requires fewer assumptions than IV or DiD (and those assumptions are easier to observe and test)

Minuses:

- Provides only an estimate of a <u>local</u> treatment effect
- Fails if (say) subjects can manipulate
 A in the vicinity of c
- Lee and Lemieux (2010) is an excellent (if fanboi-ish) review
- R packages: rddtools, rdd, rdrobust, rdpower, rdmulti

Software Matters

- R
- Packages for matching are listed above (Matching, Matching, etc.)
- · Similarly for RDD (rddtools, rdd, etc.)
- IV regression: ivreg (in AER), tsls (in sem), others
- See generally the Econometrics and SocialSciences CRAN Task Views
- Stata also has a large suite of routines for attempting causal inference with observational data
- And there's a pretty good NumPy/SciPy-dependent package for Python, called (creatively) Causalinference

Example: Sports and Grades in High School

<u>Question</u>: Does participation in high school varsity sports help or hinder academic achievement (i.e., grades)?

Data: "High School And Beyond" survey (1983 wave) (N = 1375)

Variables:

- grades: As=4, As & Bs=3.5, etc.
- sports: 1 if participated in varsity sports, 0 otherwise
- fincome: Family income (7-point scale)
- ses: Socioeconomic Status: 1=low, 2-middle, 3=high
- · workage: Age at which started working
- hmwktime: Time spent on homework (7-point scale)*
- female: 1 = female student, 0 = male student
- academic: 1 if the student is on an academic track, 0 else
- remedial: 1 if the student took ≥ 1 remedial course
- advanced: 1 if the student took ≥1 advanced course

^{*} Likely post-treatment, so we'll omit in the examples below.

Summary Statistics

> summary(sports)

		J . I	-					
	gra	ades	sports		fincome		ses	
	Min.	:0.0	Min.	:0.00	Min.	:1.0	Min.	:1.00
	1st Qu.	:2.5	1st Qu.	:0.00	1st Qu	.:3.0	1st Qu.	:1.00
	Median	:3.0	Median	:0.00	Median	:5.0	Median	:2.00
	Mean	:2.9	Mean	:0.37	Mean	:4.4	Mean	:1.96
	3rd Qu.	:3.5	3rd Qu.	:1.00	3rd Qu	.:6.0	3rd Qu.	:2.00
	Max.	:4.0	Max.	:1.00	Max.	:7.0	Max.	:3.00
	workage		hmwktime		female		academic	
	Min.	:11.0	Min.	:1.0	Min.	:0.00	Min.	:0.00
	1st Qu.	:13.0	1st Qu	.:4.0	1st Qu	.:0.00	1st Qu	.:0.00
	Median	:15.0	Median	:4.0	Median	:1.00	Median	:0.00
	Mean	:14.6	Mean	:4.5	Mean	:0.52	Mean	:0.41
	3rd Qu.	:16.0	3rd Qu	.:6.0	3rd Qu	.:1.00	3rd Qu	.:1.00
	Max.	:21.0	Max.	:7.0	Max.	:1.00	Max.	:1.00
remedial		edial	advanced					
	Min.	:0.00	Min.	:0.00				
	1st Qu.	:0.00	1st Qu	.:0.00				
	Median	:0.00	Median	:0.00				
	Mean	:0.36	Mean	:0.37				
	3rd Qu.	:1.00	3rd Qu	.:1.00				
	Max.	:1.00	Max.	:1.00				

Correlation Plot

Simple *t*-test & Regression

```
> with(sports, t.test(grades~sports))
Welch Two Sample t-test
data: grades by sports
t = -2, df = 1064, p-value = 0.02
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.183 -0.014
sample estimates:
mean in group 0 mean in group 1
           2.9
                         3.0
> summary(lm(Model,data=sports))
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.71145
                     0.13397
                              20.24 < 2e-16 ***
sports
          0.10119 0.03969 2.55 0.011 *
          0.00435 0.01378 0.32 0.753
fincome
        0.02216 0.03487 0.64 0.525
ses
workage -0.01879 0.00794 -2.37 0.018 *
female
        0.30062 0.03881 7.75 1.8e-14 ***
academic 0.29063 0.04099 7.09 2.1e-12 ***
remedial
        -0.23215 0.03919
                              -5.92 4.0e-09 ***
advanced
         0.44435
                     0.04004
                              11.10 < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.68 on 1366 degrees of freedom
Multiple R-squared: 0.231, Adjusted R-squared: 0.226
F-statistic: 51.2 on 8 and 1366 DF, p-value: <2e-16
```

Balance Tests (Pre-Matching)

These are P-values associated with t-tests (for binary predictors) or Kolmogorov-Smirnov tests (for continuous predictors) for balance between sports = 0 and sports = 1.

Exact Matching

```
> M.exact <- matchit(sports~fincome+ses+workage+female+academic+
                    remedial+advanced, data=sports, method="exact")
> M.exact
Call:
matchit(formula = sports ~ fincome + ses + workage + female +
   academic + remedial + advanced, data = sports, method = "exact")
Exact Subclasses: 166
Sample sizes:
         Control Treated
All
                     511
             864
Matched
         287
                     239
Unmatched 577
                     272
> # Output matched data:
> sports.exact <- match.data(M.exact,group="all")
> dim(sports.exact)
[1] 526 12
```

Exact Matching: Balance

These are P-values associated with t-tests (for binary predictors) or Kolmogorov-Smirnov tests (for continuous predictors) for balance between sports = 0 and sports = 1. Black dots are pre-matching; green triangles are after exact matching.

Propensity Score Matching

Propensity Score Matching

```
> M.prop<-matchit(sports~fincome+ses+workage+female+academic+
                       remedial+advanced, data=sports,
                       method="nearest")
> summary(M.prop)
Percent Balance Improvement:
         Mean Diff. eQQ Med eQQ Mean eQQ Max
distance
                 80
                         83
                                  80
                                           63
fincome
                 29
                          0
                                  30
                                            0
                 34
                                  35
                                            0
ses
workage
                 71
                                  68
                                           25
female
                 96
                                  96
                                            0
academic
                 41
                                  41
remedial
                -88
                                -100
advanced
                 19
                          0
                                  19
Sample sizes:
          Control Treated
A11
              864
                      511
Matched
              511
                      511
```

Unmatched

Discarded

353

0

0

Propensity Score Matching: Balance

These are P-values associated with t-tests (for binary predictors) or Kolmogorov-Smirnov tests (for continuous predictors) for balance between $\mathtt{sports} = 0$ and $\mathtt{sports} = 1$. Black dots are pre-matching; green triangles are after exact matching; red squares are after propensity score matching.

Differences in Means

```
> with(sports, t.test(grades~sports))$statistic # No matching
     t.
-2.286
> with(sports.exact, t.test(grades~sports))$statistic # Exact
     t.
-1.395
> with(sports.prop, t.test(grades~sports,paired=TRUE))$statistic # PS
    t.
-2.98
> with(sports.genetic, t.test(grades~sports))$statistic # Genetic
     t
-1.367
```

Regression Results

	No Matching	Exact	Propensity Score	Genetic
(Intercept)	2.71*	3.05*	2.84*	2.75*
	(0.13)	(0.23)	(0.16)	(0.17)
sports	0.10*	0.12*	0.09*	0.08
	(0.04)	(0.06)	(0.04)	(0.05)
fincome	0.00	0.05	-0.00	0.01
	(0.01)	(0.03)	(0.02)	(0.02)
ses	0.02	-0.14	0.05	0.03
	(0.03)	(0.07)	(0.04)	(0.05)
workage	-0.02*	-0.03*	-0.03*	-0.02*
	(0.01)	(0.01)	(0.01)	(0.01)
female	0.30*	0.34*	0.31*	0.29*
	(0.04)	(0.06)	(0.05)	(0.05)
academic	0.29*	0.24*	0.31*	0.31*
	(0.04)	(80.0)	(0.05)	(0.05)
remedial	-0.23*	-0.28*	-0.28*	-0.21*
	(0.04)	(0.06)	(0.05)	(0.05)
advanced	0.44*	0.51*	0.43*	0.40*
	(0.04)	(80.0)	(0.05)	(0.05)
R ²	0.23	0.29	0.26	0.22
Adj. R ²	0.23	0.28	0.25	0.21
N	1375	526	1022	939
* n < 0.05				

^{*}p < 0.05

Some Questions...

- What if anything can the general robustness of our results tell us about the relationship between varsity athletics and grades?
- What can they tell us about our model?
- What mechanism(s) / circumstances might allow us to investigate the relationship between varsity athletic participation and grades using an RDD?
- What circumstances if any might allow us to investigate this relationship using instrumental variables?
- What sort(s) of experiments natural or otherwise might allow us to investigate this same relationship?

Resources

- Good references:
 - Freedman (2012)*
 - · Morgan and Winship (2014)
 - Pearl et al. (2016)
 - · Peters et al. (2017)
- Courses / syllabi (a sampling):
 - · Frey (2019)
 - · Imai (2019)
 - · Sekhon (2015)
 - · Simpson (2019)
 - · Xu (2018)
 - · Yamamoto (2018)
- Other useful things:
 - · The Causal Inference Book
 - · Some useful notes

^{*} I really like this one.