SAGUI RABO-LONGO VLIW

JORGE LUCAS VICILLI JABCZENSKI

VISÃO GERAL

Memória de Instruções

Como as memórias no Logisim não podem ser lidas em mais de um endereço diferente simultaneamente, a Memória de Instruções agora possui 32 bits de largura ao invés dos 8.

MEMÓRIAS DE INSTRUÇÕES + BANCO DE REGISTRADORES

UNIDADES FUNCIONAIS

PC

Unidade Lógica e Aritmética

Foram feitas duas alterações comparando com a ULA utilizada no projeto anterior:

- O sinal R[ra] == 0 foi retirado pois não é mais necessário
- A entrada 8 da ULA agora devolve 0 ao invés de R[ra] pois a instrução "Move Register" foi removida da ISA

UNIDADE LÓGICA E ARITMÉTICA

Banco de Registradores

Para conseguir realizar várias leituras e escritas simultâneas, foram adicionados DEMUX e portas OR no Banco de Registradores utilizado no projeto passado do Sagui, além da adição de 6 outros MUX de leitura.

BANCO DE REGISTRADORES

TABELA DE CONTROLE - UF DE BRANCHES E JUMPS

INSTRUÇÃO			BR_REG	BR_IMM	JR	JI
0	0000	BRZR	1	0	0	0
1	0001	BRZI	0	1	0	0
2	0010	JR	0	0	1	0
3	0011	JI	0	0	0	1

TABELA DE CONTROLE - UF DE ST/LD/MOV

INSTRUÇÃO			RW	M_TO REG	M_RD	M_WR	MOVHL	MOVH	MOVL
4	0100	LD	1	1	1	0	0	0	0
5	0101	ST	0	0	0	1	0	0	0
6	0110	MOVH	1	0	0	0	1	1	0
7	0111	MOVL	1	0	0	0	1	0	1

Tabelas de Controle

Como seriam utilizadas 4 memórias de controle usando 4 memórias grandes a maioria dos seus espaços seria inutilizado. Então foi decidido por usar 4 memórias pequenas de apenas 4 endereços, uma para cada UF (no final foram necessárias apenas 2, uma para BR/JMP e uma para LD/ST/MOV). Para fazer isso, são enviados apenas os dois bits menos significativos dos OPCODES.

Também foram adicionadas portas AND para zerar todos os sinais de controle caso a instrução passada para aquela Unidade Funcional for um NOP.

MEMÓRIAS DE CONTROLE

Controle da ULA

controle das ULAs é feita de forma diferente das demais Unidades Funcionais. Foram utilizados os 3 bits menos significativos do OPCODE diretamente na seleção de operação da ULA, pois estes correspondiam exatamente a qual operação deveria ser realizada, o que evitou o uso de outras duas memórias de controle.

INSTRUÇÃO					
1000	ADD				
1001	SUB				
1010	AND				
1011	OR				
1100	NOT				
1101	SLR				
1110	SRR				

