François Le Grand

Séances des 24/31 et 27 Octobre/3 Novembre 2006

legrand@pse.ens.fr

Cours de Macroéconomie 4 (Prof. Daniel Cohen)

http://www.pse.ens.fr/junior/legrand/cours.html

TD 6

Taxation and debt

References

Aiyagari, Rao, Albert Marcet, Thomas J. Sargent, and Juha Seppälä (2002) "Optimal Taxation without State–Contingent Debt." *Journal of Politcal Economy*

Points techniques du TD:

- Taxation optimale,
- Dépenses gouvernementales stochastiques.

A. Introduction

Dans ce TD, on s'intéresse à l'impact de la dette sur la taxation optimale. Le gouvernement doit financer un flux de dépenses stochastiques avec une taxe distorsive et de la dette sans risque. On cherche à savoir si l'on retrouve le résultat de Barro selon lequel les taxes sont constantes à l'état stationnaire et plus précisément que le taux de taxe optimal est une martingale.

B. Présentation de l'économie

L'économie est peuplée d'un ménage représentatif, d'un gouvernement bénévole et d'une firme.

Le gouvernement

Les dépenses à la date t du gouvernement g_t sont stochastiques et sont supposées suivre un processus de Markov. On suppose que les dépenses sont inclues dans le support $[g_{min}; g_{max}]$.

Le gouvernement peut se financer en levant des taxes τ (distorsives) sur le travail et en émettant de la dette b réelle à une période. La dette b_t est achetée à la date t au prix p_t et verse b_t à la date t+1.

Le ménage

À chaque date t, le ménage consomme un bien agrégé c et profite du loisir x. À la date 0, le ménage maximise son utilité espérée (β représente le discount temporel privé):

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \, u(c_t, x_t)$$

L'utilité u est croissante concave en consommation et en loisir. L'opérateur \mathbb{E}_s désigne l'espérance conditionnelle à l'information disponible à la date s.

La firme

La firme produit à l'aide d'une technologie linéaire y=l des biens à partir du travail l=1-x. Ces biens peuvent être consommés indifféremment par le ménage ou par le gouvernement.

Le timing

Les décisions du gouvernement et des ménages à la date t sont des fonctions de l'historique des dépenses gouvernementales $g^t = (g_t, g_{t-1}, \dots, g_0)$ et de la dette initiale b_{-1} .

- 1. Calculer le salaire réel et le profit des firmes.
- 2. Écrire la contrainte budgétaire du ménage à la période t.
- 3. Écrire le programme de l'agent. En déduire le niveau de taxe τ_t à la date t et montrer que le prix de la dette vérifie :

$$p_t = \beta \, \mathbb{E}_t \frac{u_{c,t+1}}{u_{c,t}}$$

- 4. Écrire la contrainte de ressource de l'économie. Exprimer le surplus primaire s_t du gouvernement à la date t en fonction de c_t et g_t .
- 5. On suppose que $\beta^T u_{c,t+T} b_{t+T-1} \to_{p.s.} 0$. En déduire qu'à chaque date t, on a la relation suivante :

$$b_{t-1} = \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j \, \frac{u_{c,t+j}}{u_{c,t}} \, s_{t+j}$$

Pourquoi n'est-il pas possible de réduire toutes les contraintes en une contrainte unique en 0 ?

- 6. On suppose qu'il existe deux bornes exogènes \overline{M} et \underline{M} pour la dette b. A chaque date, la dette doit vérifier $\underline{M} \leq b_t \leq \overline{M}$. Écrire le programme de Ramsey du gouvernement et le Lagrangien intertemporel associé. On notera λ_t le multiplicateur de Lagrange associé à la contrainte budgétaire et $\mu_{1,t}$ et $\mu_{2,t}$ les multiplicateurs associés aux bornes sur la dette. Exceptionnellement, λ_t sera homogène à l'opposé d'un prix de la période t.
 - 7. Montrer que le Lagrangien s'écrit sous la forme suivante :

$$\mathcal{L} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ u(c_t, 1 - c_t - g_t) - \psi_t u_{c,t} s_t + u_{c,t} \left(\mu_{1,t} \overline{M} - \mu_{2,t} \underline{M} + \lambda_t b_{t-1} \right) \right\}$$

où
$$\psi_t = \psi_{t-1} + \mu_{1,t} - \mu_{2,t} + \lambda_t$$
 et $\psi_{-1} = 0$.

8. Écrire les contraintes du premier ordre du programme précédent. Montrer notamment que l'on a :

$$u_{c,t} - u_{x,t} - \psi_t \kappa_t + (u_{cc,t} - u_{cx,t}) (\mu_{1,t} \overline{M} - \mu_{2,t} \underline{M} + \lambda_t b_{t-1}) = 0$$

$$\kappa_t = (u_{cc,t} - u_{cx,t}) s_t + u_{c,t} s_{c,t}$$

- 9. Le cas de marchés complets : on cherche à retrouver certains résultats de Lucas et Stokey (1983).
 - a. Montrer que dans ce cas le taux de taxe est uniquement déterminé par :

$$u_{c,t} - u_{x,t} = \lambda_0 \, \kappa_t$$

En déduire que seule la valeur courante de g affecte τ .

- b. Toujours dans le cadre de marché complet, on suppose de plus que l'utilité est quadratique. En déduire que l'expression de c et τ en fonction de g. Dans un souci de simplicté analytique, on supposera simplement que $u(c,x)=c-\frac{1}{2}(1-x)^2$. NB : le résultat reste vrai pour une expression quelconque de l'utilité quadratique.
- 10. Dans le cadre de marchés incomplets, on étudie un cas particulier où l'on suppose que u(c,x) = c + H(x). H est croissante concave et vérifie en plus H'''(x)(1-x) > 2H''(x) pour $x \in [0; 1]$. On cherche à montrer qu'à l'état stationnaire les taxes sont constantes et ainsi retrouver le résultat de Barro.
 - a. Montrer que l'on a les égalités suivantes :

$$p_t = \beta$$

$$H'(x_t) = 1 - \tau_t$$

- b. Montrer que les revenus R du gouvernement s'écrivent R(x) = (1 H'(x))(1-x). Montrer qu'il existe deux niveaux de loisir x_1 et x_2 tels que R est positive et strictement croissante sur $[x_1; x_2]$. En déduire les limites de dette en fonction de g_{min} et g_{max} .
 - c. Montrer que l'on a les deux relations suivantes :

$$\tau_t = -\psi_t R'(x_t)$$

$$\mathbb{E}_{t-1}\psi_t > \psi_{t-1} \tag{1}$$

En déduire que le niveau de taxes est constant.

On admettra que (1) implique que (Théorème de convergence des sous martingales) ψ_t converge p.s. vers une variable aléatoire négative ou nulle.

d. On se place dans le cadre de marché complet. Montrer qu'il y a une contrainte d'implémentabilité unique vérifiant : $b_{-1} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t (R_t - g_t)$. Montrer également que le taux de taxe est défini par :

$$\tau_t = 1 - H'(x_t) = -\lambda_0 R'(x_t)$$

En déduire alors que le taux de taxe est constant dans le cadre de marchés complets.

11. On retourne maintenant au cas général : u quelconque et marchés incomplets. Montrer que l'on peut écrire ψ comme une martingale ajustée pour le risque dans le cas où les contraintes sur \overline{M} et \underline{M} ne mordent pas :

$$\psi_t = \mathbb{E}_t \left[\frac{u_{c,t+1}}{\mathbb{E}_t u_{c,t+1}} \, \psi_{t+1} \right]$$

On admettra que dans le cas général ψ n'admet pas de limite. Monter qu'alors, l'équilibre avec dette sans risque ne converge pas vers l'équilibre avec dette contingente.

- 12. Retour sur le résultat de non-convergence de ψ .
 - a. On définit θ_t de la façon suivante :

$$\theta_t = \prod_{\tau=1}^t \frac{u_{c,\tau}}{\mathbb{E}_{\tau-1} u_{c,\tau}}$$

Montrer que $\{\psi_t \, \theta_t\}$ est une martingale et en déduire que le processus converge p.s. vers $\overline{\theta \psi}$.

b. Montrer que $\{\theta_t\}$ est une martingale positive et qu'elle converge p.s. vers $\overline{\theta}$. On fixe une réalisation ω . Montrer que si $\theta_t(\omega) \to \overline{\theta}(\omega) > 0$ alors $u_{c,t}(\omega)/\mathbb{E}_{t-1}u_{c,t}(\omega) \to 1$.

c. En déduire que si l'équilibre de Ramsey dans le cadre de marchés complets conduit à $u_{c,t}(\omega)/\mathbb{E}_{t-1}u_{c,t}(\omega)\neq 1$, alors $\theta_t\to 0$. Dans ce cas, on n'a plus aucun résultat de convergence sur ψ . Le résultat de Barro ne tient plus. (en fait, il faut aller un peu plus loin pour montrer que l'on a bien absence de convergence. On sait juste que l'approche martingale échoue).

NB : À la question 10), u était linéaire en c, donc $u_{c,t} = \mathbb{E}_{t-1}u_{c,t} = 1$.