Math 217 – Geometry and Physics – Lec02

UCLA, Fall 2014

Monday 6th October, 2014

1 More on manifolds

1.1 Remarks

- 1. Partition of unity: $M = \bigcup_{\alpha \in I} U_{\alpha}$ where U_{α} coordinate charts. There exists $\rho_{\alpha} : M \to \mathbb{R}$, $\rho_{\alpha} \geq 0$ smooth with supp $(\rho_{\alpha}) \subset U_{\alpha}$ and $\sum_{\alpha} \rho_{\alpha} = 1$. $\omega = \sum_{\alpha} \rho_{\alpha} \omega$, supp $(\rho_{\alpha} \omega) \subset U_{\alpha}$.
- 2. Sheaf theory. local \implies global (Cohomology)
- 3. Characteristic classes. local computations \implies global invariants.
- 4. $M(= \cup_{\alpha \in I} U_{\alpha}) \xrightarrow{f} N(= \cup_{\beta} V_{\beta})$ is smooth iff $\psi_{\beta} \circ f \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha}) \to \psi_{\beta}(V_{\beta})$ [is smooth?]. Where $\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$, $\psi_{\beta} : V_{\beta} \to \mathbb{R}^{n}$.
- 5. $\mathbb{CP}^n = \mathbb{C}^n \cup \mathbb{CP}^{n-1} = \cdots = \mathbb{C}^n \cup \mathbb{C}^{n-1} \cup \cdots \cup \mathbb{C} \cup \{\rho_+\} \text{ [rho sub what?]}$

Given a tangent bundle TM we have a vector field (smooth section) $X = \sum_i a_i \frac{\partial}{\partial x_i}$ and differential form $\omega = \sum_i a_i dx_i$, where $\langle dx_i, \frac{\partial}{\partial x_j} \rangle = \delta_{ij}$. Furthermore, a differential p-form $\eta = \sum_I a_I dx_I \in A^p(M)$, where $I = \{1 \le i_1 < \dots < i_p \le n\}$ and $1 \le p \le n$, is a section on $\Lambda^p T^*M$. $p = \deg \eta$.

The exterior product $\Lambda^p T^* M \xrightarrow{\pi} M$.

Define $A(M) = A^*(M) = \bigoplus_{p=0}^n A^p(M)$. Then $\eta \wedge \eta' = (-1)^{pq} \eta' \wedge \eta$.

M is orientable iff there exists a nowhere vanishing n-form ω on M^n .

$$d: A^p(M) \to A^{p+1}(M), d\eta = \sum_I da_I \wedge dx_I.$$

 $da_I = \sum_{j=1}^n \frac{\partial a_I}{\partial x_j} dx_j.$

1.2 Exercise

- 1. $d^2 = 0$. $A^p(M) \xrightarrow{d} A^{p+1}(M) \xrightarrow{d} A^{p+2}(M)$. $\eta = p$.
- 2. Leibniz rule: $d(\eta \wedge \eta') = d\eta \wedge \eta' + (-1)^p \eta \wedge d\eta'$.
- 3. $\int_{M} \omega = \sum_{\alpha \in I} \int_{U_{\alpha}} (\rho_{\alpha} \omega) = \int_{M} (\sum_{\alpha} \rho_{\alpha}) \omega.$ $\int_{U_{\alpha}} (\rho_{\alpha} \omega) = \int_{\varphi(U_{\alpha}) \subseteq \mathbb{R}^{n}} (\varphi_{\alpha}^{-1})^{*} (\rho_{\alpha} \omega)$

1.3 Stokes

 $\int_M d\eta = \int_{\partial M} \eta$ where $\eta \in A^{n-1}(M)$ implies that $\int_M d\eta = 0$ if M closed compact. Consider: $f: M \to M'$ a smooth map. Then the pullback $f^*\eta'$ of $\eta' = \sum_I b_I(y) dy_I \in$

A(M') is given by

$$f^*\eta'(x) = \sum_I b_I(f(x))df_I. \tag{1}$$

1.4 exercise

- 1. Chain rule: $f^* \circ d_{M'} = d_M f^*$
- 2. $f^*(\eta_1 \wedge \eta_2) = (f^*\eta_1) \wedge (f^*\eta_2)$

de Rham Cohomology 1.5

$$H_{\mathrm{dR}}^{p}(M,\mathbb{R}) = \frac{\mathrm{Ker}\,d}{\mathrm{Im}\,d}\Big|_{A^{p}(M)} \tag{2}$$

where of course $\operatorname{Im} d \subseteq \operatorname{Ker} d$. Then

$$0 \to A^0(M) \xrightarrow{d} A^1(M) \to \dots \xrightarrow{d} A^p(M) \xrightarrow{d} \dots \xrightarrow{d} A^n(M) \to 0$$
 (3)

Singular homology, Cohomology

Famous theorem of de Rham: $H^p_{dR}(M,\mathbb{R}) \cong H^p_{sing}(M,\mathbb{R})$ when M is a compact, closed manifold. We will also see later that it is $\cong \operatorname{Ker} \Delta_d$, where Δ_d is the elliptic operator.

Cohomology ring: $H_{\mathrm{dR}}^*(M) = \bigoplus_{p=0}^n H_{\mathrm{dR}}^p(M)$.

$$H^p_{\mathrm{dR}}(M)$$
 $\times H^q_{\mathrm{dR}}(M)$ $\to H^{p+q}_{\mathrm{dR}}(M)$ (4)
 $[\eta] = [\eta + d\alpha]$ $[\eta'] = [\eta + d\alpha']$ $\mapsto [\eta \wedge \eta']$ (5)

$$H_{\mathrm{dR}}^{p}(M)$$
 $\times H_{\mathrm{dR}}^{q}(M)$ $\to H_{\mathrm{dR}}^{p+q}(M)$ (4)
 $[\eta] = [\eta + d\alpha]$ $[\eta'] = [\eta + d\alpha']$ $\mapsto [\eta \wedge \eta']$ (5)

Poincare duality 1.7

$$f^*: H^*_{dR}(M') \to H^*_{dR}(M)$$
 (6)

$$[\eta'] \mapsto [f^*\eta'] \tag{7}$$

$$H^p_{\mathrm{dR}}(M) \qquad \qquad \times H^{n-p}_{\mathrm{dR}}(M) \qquad \qquad \to \mathbb{R}$$
 (8)

$$[\eta] = [\eta + d\alpha] \qquad \qquad [\eta'] = [\eta'] \qquad \qquad \mapsto \int_{\mathcal{M}} \eta \wedge \eta' \qquad (9)$$

Betti numbers 1.8

$$H^{n-}_{\mathrm{dR}}(M,\mathbb{R}) \cong H^p_{\mathrm{dR}}(M,\mathbb{R}) \cong H^p_{\mathrm{dR}}(M,\mathbb{R}) \implies b_p(M) = b_{n-p}(M)$$
 (10)

where

$$b_p(M) = \dim_{\mathbb{R}} H^p_{\mathrm{dR}}(M, \mathbb{R})$$
(11)

is the pth Betti number of M.

Euler number: $\chi(M) = \sum_{p=0}^{n} (-1)^p b_p(M) = \int_M^{2n} e(TM)$ by Gauss-Bonnet, where e(TM) is the Euler characteristic class.

Corollary: $\dim_{\mathbb{R}} M = \text{odd} \implies \chi(M) = 0$

Conjecture (Chern): Let M be an affine-flat compact closed manifold. Then $\chi(M)=0$.