Label Switching Optimization

- · Remember:
- VPI: Particular VP
- VCI: Particular VC within the chosen VP
- · A lot of computing power spent in the switches to find the output line from the VPI/VCI for each cell
- · Route only on the VPI field and not on the VCI field
- Except at the final hop (switch host)
- So, between two switches only the virtual path information is used
- The VPI/VCI example we have seen applies here as well, but only the VPI is used

Label Switching Optimization Advantages

- Once a VP is established from a source to a destination all other VCs along that path can just follow the existing path
- No new routing decisions
- · Routing of individual cells becomes easier:
- Instead of looking at a 24-bit number (VPI/VCI), simply look at a 8-bit number (VPI)
- * Indexing into a table of 2^8 instead of indexing into a table of 2^24
- Rerouting requires less operations:
- Basing routing on VPs makes it easier to change entire groups of VCs with a single operation
- ATM VPNs (virtual private networks):
- A carrier can setup permanent virtual paths connecting a customer's locations
- VCs within these VPs can be setup later on demand
- No calls from outside can use these VPs and come in the ATM VPN
- No calls from inside can leave it (except via specially configured gateways)

B-ISDN/ATM: Reference Model (1/3) Management Plane Control Higher Lavers ATM Adaptation Layer (AAL) Convergence Sublayer (CS) ATM Layer Physical Layer

B-ISDN/ATM Reference Model (2/3)

- Different from OSI and TCP/IP
- Physical layer: Deals with the physical medium (voltages, bit timing, etc.)
- ATM cells may be packaged in the payload of other carrier systems (i.e. physical layer independency)
- ATM layer:
- Cell layout
- Cell header extraction/generation
- Cell transport
- Establishment and release of VCPs (switched or permanent)
- ATM adaptation layer (AAL): Higher interface to the ATM layer for convenience
- Allows sending/receiving of packets larger than ATM cells
- Convergence Sublayer (CS): Provides different services for ATM networks build for different purposes
- entirerent purposes
 * E.g.: File transfer and video on demand have different requirements from
 error handling, timing, etc.
 Segmentation And Reassembly (SAR) sublayer: Segments these packets to cells,
 transmits them and reassembles them on the receiving end

B-ISDN/ATM Reference Model (3/3)

- Unlike OSI and TCP/IP, defined as being threedimensional
- <u>User plane</u>: Data transport, flow control, error correction and other user (application) functions
- Control plane: Connection management (call setup, call control, etc.)
- Management plane:
- Resource management
- Interlayer coordination
- Operation, administration, maintenance

ATM Connection Setup

- Not part of the ATM layer:
- Handled by the control plane
- A *separate* VC for signaling is required before data can be exchanged
- PVCs: Pre-configured
- SVCs: Established dynamically

6

SVC Connection Establishment

Message	Meaning (sent by host)	Meaning (sent by network)	
SETUP	Please establish a VC	C Incoming call	
CALL_PROCEEDING	I saw the incoming call	Your call request will be attempted	
CONNECT	I accept the incoming call	Your call request was accepted	
CONNECT_ACK	Thanks for accepting	Thanks for making the call	
RELEASE	Please terminate the call	The other end wants to terminate the call	
RELEASE_COMPLETE	Call termination acknowledgment	Call termination acknowledgement	

7

ATM Multicast VCs

- · ATM allows the creation of multicast VCs
- One sender and more than one receiver
- A connection is created to one of the destinations (chosen in random, or in an application specific way) in the usual way
- New message type: ADD_PARTY
- Sent to attach a second destination to the VC established in the previous step
- Additional ADD_PARTY messages can be sent later to increase the size of the multicast group

ATM Addressing

- · End hosts identified by ATM addresses
- Three different formats are supported
- 1st byte indicates which of them is used
- 1st format (20 bytes long):
- 2nd and 3rd specify the country
- 4th: Format of the rest of the message
 - * 3-byte authority
 - * 3-byte domain
 - * 2-byte area
 - * 6-byte address
- * 2 remaining bytes for future use
- · 2nd format:
- Same as the 1st, but bytes 2 and 4 specify an int'l. organization
- · 3rd format:
- 15-digit decimal telephone numbers

ATM Service Categories

- CBR (Constant Bit Rate):
 Bits are put on one end, come off the other end
 No processing (error checking, flow control, etc.)
 Smooth transition from POTS to B-ISDN

- * Telephone system, i.e. interactive real-time audio streams

 VBR (Variable Bit Rate):

 Real-time (RT-VBR): Strict RT requirements, e.g. video-conferencing, no delays

- Real-time (RT-VBB): Strict RT requirements, e.g. video-conferencing, no delays
 NRT-VBR: Timely deliver important, but a certain amount of delay can be tolerated, e.g.
 multimedia applications that store data to the local disk before use
 ABR (Available Bit Rase):
 No commitment to a fixed bandwidth
 E.g.: Bandwidth between two points must always be at least 5 Mbps, but might have peaks up to
 10
- 5 Mbps are guaranteed, the carrier will do its best to provide 10, but with no promises

- Symposia or guaranteer, the carrier win to us destro provide 10, but with no promises 10 LBR (Unspecified Bit Rate):
 No promises of bandwidth or delivery
 Suitable for IP traffic since, as we will see, IP also makes no promises about delivery
- For applications that make their own error and flow control (file transfer, email, etc.)

10

ATM Service Categories Summary

Characteristic	CBR	RT-VBR	NRT-VBR	ABR	UBR
Bandwidth guarantee	Yes	Yes	Yes	Only to a minimum	No
Suitable for real-time traffic	Yes	Yes	No	No	No
Suitable for "bursty" traffic	No	No	Yes	Yes	Yes
Congestion feedback	No	No	No	Yes	No

11

B-ISDN/ATM Summary

- Backwards compatible with N-ISDN
- Provides a way of linking a wide range of devices (from telephones to
- Combines packet and circuit switching ideas
- It can use any kind of physical media (copper, fiber)
- Wide range of transmission speed
- Allows QOS (quality of service) parameters (real-time voice, video,
- Supports any type of traffic
- Allows sources of different bit rates
- Uses fixed size packets called cells
- No error correction or flow control on hop-by-hop basis
- Operates in connection-oriented mode
- Supports connectionless mode

12

ATM Disadvantages

- $\underline{Expense} : ATM \ switches \ orders \ of \ magnitude \ more \ expensive \ than \ Ethernet \ switches \ (same \ for \ NICs)$
- Connection setup latency: In small applications the time to setup the connection may be longer than the time using it
- Header "tax": ~10% header overhead (Ethernet: ~1% header overhead)
- Service requirements: Must be specified on connection establishment, too weak or too strong may cause problems
- No efficient hardware broadcast/multicast: Simulation by arranging copies of data to be passed to each end point in the
- <u>Homogeneity assumption</u>: Designed to be a single, universal system; minimal provision for interoperating with other networking technologies

B-ISDN/ATM History

- 1980: N-ISDN adopted
 Early 80s: A lot of research on fast switching
 1985: B-ISDN study group formed, mainly by telecommunications companies of the U.S.
 1986: ATM chosen as the underlying transfer technology of B-ISDN
 1987: First ATM standardization document

- 1989: Cell size of 53 (5 + 48) bytes chosen 1991: ATM Forum formed
- 1992: Second version of ATM standard
- 1993: First generation ATM switches 1995: Service categories finalized

- 1996: Second generation ATM switches 1999: Third generation ATM switches October 1999: AAL and its sublayers finalized
- Currently still used in the Internet backbone ATM killer: Gigabit Ethernet
- Old Ethernet hardware can be upgraded rather than replaced with the more expensive ATM hardware