Практика №3 по курсу «Дискретная математика» «Решётки и то, что мы не успели обсудить до этого»

Группы ФТ-203

Оператором замыкания на множестве A называется любая функция $Cl: 2^A \mapsto 2^A$, удовлетворяющая следующим свойствам:

- экстенсивность $-X \subseteq Cl(X)$;
- монотонность $-X \subseteq Y \Rightarrow Cl(X) \subseteq Cl(Y)$;
- идемпотентность -Cl(X) = Cl(Cl(X));

Вопрос 1. Всегда ли верно утверждение, что для любой пары подмножеств $X,Y\subseteq A$ и произвольного оператора замыкания $Cl: 2^A\mapsto 2^A$, если $X\cap Y=\varnothing$, то $Cl(X)\cap Cl(y)=\varnothing$?

Задание 2. Рассмотрим оператор транзитивного замыкания $Cl_T: 2^A \mapsto 2^A$.

- Опишите свойства отношения $Cl_T(X) \cap Cl_T(Y)$ для произвольных $X, Y \subseteq A$;
- Опишите свойства отношения $Cl_T(X) \cup Cl_T(Y)$ для произвольных $X, Y \subseteq A$;
- Опишите свойства отношения $Cl_T(Cl_T(X) \cup Cl_T(Y))$ для произвольных $X,Y \subseteq A$.

Для произвольного ЧУМ-а $\langle A, \preceq \rangle$ и подмножества $B \subseteq A$ определим множества нижних и верхних граней:

- $Bottom(B) = \{a \in A \mid \forall b \in B : a \leq b\}$
- $Top(B) = \{a \in A \mid \forall b \in B : b \prec a\}$

Соответственно можно определить инфимум и супремум (inf, sup) как наибольший и наименьший элементы множества нижних и верхних граней соответственно.

Вопрос 3. Правда ли, что если для некоторой пары $a,b \in A$ существует $x \in A : a \leq x \land b \leq x$, то $sup(\{a,b\})$ существует?

ЧУМ $\langle A, \preceq \rangle$, в котором для любой пары элементов существует супремум, называется верхней полурешёткой (для инфимума — нижняя полурешётка).

Вопрос 4. Рассмотрим ЧУМ разбиений n-элементного множества A: $\langle M, \subseteq \rangle$, где $M \subset 2^{A \times A}$ — множество всех разбиений множества A (или иначе - множество всех отношений эквивалентности). Является ли данный ЧУМ верхней полурешёткой?

Вспомним операции для комбинации пары ЧУМ-ов:

- Объединение $\langle A_1 \cup A_2, \preceq \rangle = \langle A_1, \preceq_1 \rangle \cup \langle A_2, \preceq_2 \rangle$, где $a \preceq b \Leftrightarrow (a, b \in A_1 \land a \preceq_1 b) \lor (a, b \in A_2 \land a \preceq_2 b)$
- Сумма $\langle A_1 \cup A_2, \preceq \rangle = \langle A_1, \preceq_1 \rangle \oplus \langle A_2, \preceq_2 \rangle$, где $a \preceq b \Leftrightarrow (a, b \in A_1 \land a \preceq_1 b) \lor (a, b \in A_2 \land a \preceq_2 b) \lor (a \in A_1 \land b \in A_2)$
- Произведение $\langle A_1 \times A_2, \preceq \rangle = \langle A_1, \preceq_1 \rangle \times \langle A_2, \preceq_2 \rangle$, где $(a,b) \preceq (c,d) \Leftrightarrow a \preceq_1 c \land b \preceq_2 d$

Задание 5. Обозначим за **1** единственное частично упорядоченное множество из одного элемента. найдем множества, заданные следующими выражениями:

- $C_3 = \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$
- $C_n = \mathbf{1} \oplus \cdots \oplus \mathbf{1}$
- $(1 \cup 1) \oplus (1 \oplus 1)$

Задание 6. Верно ли утверждение, что для пары решёток X,Y производный ЧУМ $X \oplus Y$ — тоже решётка? Верно ли утверждение, что для X — нижней полурешётки и Y — верхней полурешётки, ЧУМ $X \oplus Y$ является решётка?

Задание 7. Будем считать, что во всех задачах ЧУМ $\langle A, \preceq \rangle$ задан матрицей отношения. Теперь попридумываем алгоритмы:

- 1. Опишите алгоритм построения линейного продолжения $L = \langle A, \leq \rangle$ ЧУМ-а $P = \langle A, \preceq \rangle$ такого, что для фиксированной пары несравнимых элементов x, y из P верно, что $x \leq y$ в L;
- 2. Опишите эффективный алгоритм нахождения супремума sup(X) для $X \subseteq A$ для некоторого ЧУМ-а $\langle A, \preceq \rangle$;
- 3. Опишите алгоритм проверки свойства верхней полурешётки для ЧУМ-а $\langle A, \preceq \rangle$.