Stream Ciphers

Cryptography - CS 411 / CS 507

Erkay Savaş

Department of Computer Science and Engineering Sabancı University

October 4, 2019

Taxonomy of Cryptographic Algorithms

Stream ciphers

- Basic idea comes from One-Time-Pad cipher,
- Encryption:

$$c_i = m_i \oplus k_i$$
 $i = 1, 2, 3, \dots$

Decryption:

$$m_i = c_i \oplus k_i$$
 $i = 1, 2, 3, \dots$

- Drawback:
 - Key-stream should be as long as plain-text.
 - Key distribution & management difficult.
- Solution: Stream Ciphers
 - Key-stream is generated using a pseudo-random generator from a relatively short secret key

Stream ciphers

- Randomness: Closely related to unpredictability.
- <u>Pseudo-randomness</u>: Pseudo-random sequences appears random to a computationally bounded adversary.
- Stream ciphers can be modeled as finite-state machines.

Si: state at time t = i.

G: output function.

F: next-state function.

Initial state, output and next-state functions are controlled by the secret key.

Linear Feedback Shift Registers (LFSR)

$$C(x) = 1 + c_1 x + c_2 x^2 + \dots + c_L x^L$$

 \bullet If C(x) is chosen carefully the output of LFSR can have maximum period of 2^L-1

LFSR - Connection Polynomial

$$1+x$$

$$1 + x^2 + x^3$$

http://fchabaud.free.fr/English/

LFSR ciphers

- *m*-sequences have good statistical properties.
- However, they are predictable

Example: $1 + x + x^4$

Output of LFSR when initial state is (0001):

 $100011110101100 \qquad 100011110101100\dots$

LFSR ciphers

Linear Complexity of a Sequence

- <u>Definition</u>: The linear complexity of a binary sequence s^n , denoted $L(s^n)$, is the length of the shortest LFSR that generates this sequence.
- <u>Use</u>: It can be used as a tool to asses the randomness (or unpredictability) of a sequence.
 - NIST Special Publication 800-22 (Revision 1a): A
 Statistical Test Suite for Random and Pseudorandom Number
 Generators for Cryptographic Applications Revised:April 2010
 - https://nvlpubs.nist.gov/nistpubs/legacy/sp/ nistspecialpublication800-22r1a.pdf
- <u>Problem</u>: Is it easy to construct the LFSR for a given sequence?

Berlekamp-Massey Algorithm(BMA)

- BMA is an efficient algorithm for determining the linear complexity of a finite binary sequence.
 - Let s be an binary sequence of linear complexity L, and
 - let t be any subsequence of s of length at least 2L.
 - Then the BMA with input t determines an LFSR of length L which generates s.
- Expected linear complexity of a random sequence $E(L(s^n)) \approx n/2 + 2/9$.

Berlekamp-Massey Algorithm

Algorithm 1 Berlekamp-Massey Algorithm

```
Input: s^n = s_0, s_1, s_2, \dots, s_{n-1}
Output: L(s^n) and C(x)
1: C(x) = B(x) = 1, L = 0, m = -1 and i = 0
2: while i < n do
3:
       \Delta = (s_i + c_1 s_{i-1} + c_2 s_{i-2} + \ldots + c_L s_{i-L})
4:
       if \Delta = 1 then
5:
           T(x) = C(x) and C(x) = C(x) + B(x) \cdot x^{i-m}
6:
           if L < i/2 then
7:
               L=i+1-L, m=i and B(x)=T(x)
8:
           end if
9.
       end if
10:
        i = i + 1
11: end while
12: return L and C(x)
```

Example

 $s^{31} = 100001010111101100011111100110100$

C(x)	L	m	B(x)	i	Δ
1	0	-1	1	0	$\Delta = s_0 = 1$
1+x	1	0	1	1	$\Delta = s_1 + s_0 = 1$
1	1	0	1	2	$\Delta = s_2 = 0$
1	1	0	1	3	$\Delta = s_3 = 0$
1	1	0	1	4	$\Delta = s_4 = 0$
1	1	0	1	5	$\Delta = s_5 = 1$
$1 + x^5$	5	5	1	6	$\Delta = s_6 + s_1 = 0$
$1 + x^5$	5	5	1	7	$\Delta = s_7 + s_2 = 1$

Example

 $s^{31} = 100001010111101100011111100110100$

C(x)	L	m	B(x)	i	Δ
$1 + x^2 + x^5$	5	5	1	8	$\Delta = s_8 + s_6 + s_3 = 0$
$1 + x^2 + x^5$	5	5	1	9	$\Delta = s_9 + s_7 + s_4 = 0$
$1 + x^2 + x^5$	5	5	1	10	$\Delta = s_{10} + s_8 + s_5 = 0$
$1 + x^2 + x^5$	5	5	1	11	$\Delta = s_{11} + s_9 + s_6 = 0$
$1 + x^2 + x^5$	5	5	1	12	$\Delta = s_{12} + s_{10} + s_7 = 0$
$1 + x^2 + x^5$	5	5	1	13	$\Delta = s_{13} + s_{11} + s_8 = 0$
$1 + x^2 + x^5$	5	5	1	14	$\Delta = s_{14} + s_{12} + s_9 = 0$
$1 + x^2 + x^5$	5	5	1	15	$\Delta = s_{15} + s_{13} + s_{10} = 0$

Erkay Savaş

Stream Ciphers

Properties of Linear Complexity

- For any $n \ge 1$, the linear complexity of the sequence s^n satisfies $0 \le L(s^n) \le n$.
- 2 $L(s^n) = 0$ iff s^n is an all-zero sequence.
- **3** $L(s^n) = n$ iff $s^n = 0, 0, \dots, 0, 1$.
- If s is periodic with period N, then $L(s) \leq N$

Stream Ciphers Based on LFSRs

- Desirable properties of LFSR-based key-stream generators:
 - Large period
 - Good statistical properties

Nonlinear Combination Generator

Nonlinear Combination Generator

Combiner function must be

- balanced
- carefully selected so that there is no statistical dependence between any small subset of n LFSR sequences and the output sequence
- highly nonlinear (Nonlinearity of a function is given as the maximum of the order of the terms in function's algebraic normal form).

Example:

$$F(x_1, x_2, x_3, x_4, x_5) = 1 \oplus x_2 \oplus x_3 \oplus x_4x_5 \oplus x_1x_3x_4x_5$$
 has nonlinear order 4.

The Geffe Generator

- Utilizing the <u>algebraic normal form</u> of the combiner function we can compute the linear complexity of the output sequence.
- $F(x_1, x_2, x_3) = x_1 x_2 \oplus x_2 x_3 \oplus x_3$

Properties of the Geffe Generator

 If the lengths of the LFSRs are relatively prime and all connection polynomials are primitive, then

$$-L = L_1 \cdot L_2 + L_2 \cdot L_3 + L_3$$

- $T = (2^{L_1} - 1) \cdot (2^{L_2} - 1) \cdot (2^{L_3} - 1)$

• When we inspect the truth table of the combiner function we gain more insight about the security of Geffe generator.

Correlation in the Geffe Generator

x_1	x_2	x_3	$z = F(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- The combiner function is balanced
- However, the correlation of z to x_1 is $P(z=x_1)=\frac{3}{4}$

Correlation Attacks

The method

- requires a sufficiently long output sequence.
- We assumed that the connection polynomials of the LFSRs are known. (Recall Kerckhoffs' principle)
- We do not know the current or initial states of the LFSRs.
- Input sequences of the same length will be compared against the output sequence.
- the input sequence yielding a correlation that is matching to the predefined correlation will be taken.

Example: Correlation Attacks

Geffe Generator:

- $LFSR_1: 1 + x + x^4$ and Initial key 1: 0001
- $LFSR_2: 1 + x + x^3$ and Initial key 2: 010
- $LFSR_3: 1 + x^2 + x^5$ and Initial key 3: 10101

x_1	1	0	0	0	1	1	1	1	0	1	0	1	1	0	0
x_2	0	1	0	0	1	1	1	0	1	0	0	1	1	1	0
x_3	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1
z	1	0	1	0	1	1	1	0	0	1	0	1	1	0	1

Example: Correlated, Indeed

x_1	1	0	0	0	1	1	1	1	0	1	0	1	1	0	0	12/15
x_2	0	1	0	0	1	1	1	0	1	0	0	1	1	1	0	8/15
x_3	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	11/15
z	1	0	1	0	1	1	1	0	0	1	0	1	1	0	1	

Let us start with 0111 for $LFSR_1$ (real seed is 0001)

Example: Computing Correlation

z	1	0	1	0	1	1	1	0	0	1	0	1	1	0	1	
0111	1	1	1	0	1	0	1	1	0	0	1	0	0	0	1	8/15
1011	1	1	0	1	0	1	1	0	0	1	0	0	0	1	1	8/15
0101	1	0	1	0	1	1	0	0	1	0	0	0	1	1	1	10/15
1010	0	1	0	1	1	0	0	1	0	0	0	1	1	1	1	6/15
1101	1	0	1	1	0	0	1	0	0	0	1	1	1	1	0	8/15
0110	0	1	1	0	0	1	0	0	0	1	1	1	1	0	1	10/15
0011	1	1	0	0	1	0	0	0	1	1	1	1	0	1	0	6/15
1001	1	0	0	1	0	0	0	1	1	1	1	0	1	0	1	6/15
0100	0	0	1	0	0	0	1	1	1	1	0	1	0	1	1	8/15
0010	0	1	0	0	0	1	1	1	1	0	1	0	1	1	0	4/15
0001	1	0	0	0	1	1	1	1	0	1	0	1	1	0	0	12/15
1000	0	0	0	1	1	1	1	0	1	0	1	1	0	0	1	8/15

Example: Cost of the Attack

- Brute force attack: $15 \times 7 \times 31 = 3255$ trial
- Correlation attack: 15 + 7 + 31 = 53 trial.
- If we have n LFSRs, the key space ideally is $\prod_{i=1}^n 2^{L_i} 1$
- If there is correlation between the output and inputs, the *effective* key space can be reduced to $\sum_{i=1}^n 2^{L_i} 1$

Other Constructions

- An LFSR can be clocked by the output of another LFSR.
 - This introduces an irregularity in clocking of the first LFSR, hence increase the linear complexity of its output.
- Example: Shrinking Generator

GSM Cryptography

GSM Cryptography: A5/1

A5/1

- A5/2 is a weaker version of A5/1
 - Both A5/1 and A5/2 are weak ciphers.
- A5/3, a.k.a. KASUMI, is a block cipher.
 - In 2006, ciphertext-only attack against A5/3
 - Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication, by E. Barkan, E. Biham and N. Keller, July 2006
 - http://www.cs.technion.ac.il/users/wwwb/cgi-bin/ tr-get.cgi/2006/CS/CS-2006-07.pdf
 - O. Dunkelman, N. Keller, A. Shamir (2010-01-10). A Practical-Time Attack on the A5/3 Cryptosystem Used in Third Generation GSM Telephony

eSTREAM Competition - Trivium

- Trivium is a <u>synchronous</u> stream cipher designed to provide a flexible trade-off between speed and gate count in hardware, and reasonably efficient software implementation.
- Three shift registers: A, B, and C (93, 84, and 111 bits, respectively)

$$- a_i = c_{i-66} + c_{i-111} + c_{i-110}c_{i-109} + a_{i-69}$$

$$- b_i = a_{i-66} + a_{i-93} + a_{i-92}a_{i-91} + b_{i-78}$$

$$- c_i = b_{i-69} + b_{i-84} + b_{i-83}b_{i-82} + c_{i-87}$$

ullet The output bits $r_0 \dots r_{2^{64}-1}$ are then generated by

$$- r_i = c_{i-66} + c_{i-111} + a_{i-66} + a_{i-93} + b_{i-69} + b_{i-84}$$

Trivium

Trivium

• Given an 80-bit key $k_0 \dots k_{79}$ and an l-bit $IV \ v_0 \dots v_{l-1}$ (where $0 \le l \le 80$), Trivium is initialized as follows:

$$-(a_{-1245} \dots a_{-1153}) = (0, 0 \dots 0, k_0 \dots k_{79})$$
$$-(b_{-1236} \dots b_{-1153}) = (0, 0 \dots 0, v_0 \dots v_{l-1})$$
$$-(c_{-1263} \dots c_{-1153}) = (1, 1, 1, 0, 0 \dots 0)$$

• The large negative indices on the initial values reflect the 1152 steps that must take place before output is produced.

Performance

Design	Technology	Max. Frequency	Area	Throughput	bits/cycle
Trivium by	90nm	800 MHz	≈5645	51.2 Gpbs	64
Gaj et al.					
AES by Satoh	0.11μ m	145 MHz	12454	1.595 Gpbs	11
AES by	0.18μ m	606 MHz	473000	77.6 Gpbs	128
Hodjat					
AES by .	$0.25 \mu \mathrm{m}$	323 MHz	26000	41.3 Gpbs	127,86
Northpole					
Eng					

Synchronous Stream Ciphers

- Sender and receiver must be synchronized.
- Resynchronization is needed.
- Key-stream is independent of plaintext and ciphertext. (confusion)
- No error propagation.
- Active attacks can easily be detected (i.e. insertion, deletion, replay)

Asynchronous Stream Ciphers

• a.k.a. self-synchronizing stream ciphers

Asynchronous Stream Ciphers

- The key stream is generated as a function of a fixed number of previous ciphertext bits
- Limited error propagation (up to t bits).
- After at most t bits later than synchronization is lost, it resynchronizes itself
- It helps to diffuse plain-text statistics.

Salsa20 Stream Cipher Family

- A family of 256-bit stream cipher
- The internal state is made of sixteen 32-bit words
- Initial state: 8 words of key + 2 words of block number + 2 words of nonce + 4 fixed words
- Salsa20 generates the key stream in 64 B (512-bit) blocks XORed to message stream
- Each block is an independent function of the secret key, the nonce, and 64-bit block number