

汇报人: 虾米 时间: 2019年2月

1 / 机器学习的发展

2/机器学习的概念

3/ 机器学习的Learning map

- 河狸筑水坝的能力是天生的
 - If "听到流水声",筑堤坝直到听不到流水声

- 河狸筑水坝的能力是天生的
 - If "听到流水声", 筑堤坝直到听不到流水声
- 生物学家
 - 用扬声器播放流水声
 - 把扬声器放在墙上,河狸就会用泥巴和树枝把扬声器盖住

- 河狸筑水坝的能力是天生的
 - If "听到流水声", 筑堤坝直到听不到流水声
- 生物学家
 - 用扬声器播放流水声
 - 把扬声器放在墙上,河狸就会用泥巴和树枝把扬声器盖住
 - 如果把扬声器放在地上,河狸就会把他们盖住

• E.g. You want to build a Chat-bot ...

- E.g. You want to build a Chat-bot ...
 - If there is "turn off" in the input, then "turn off the music" (hand-crafted rules)

- E.g. You want to build a Chat-bot ...
 - If there is "turn off" in the input, then "turn off the music" (hand-crafted rules)
 - You can say "Please turn off the music" or "Can you turn off the music?". Smart?
 - What if someone says "Please don't turn off the music"

- E.g. You want to build a Chat-bot ...
 - If there is "turn off" in the input, then "turn off the music" (hand-crafted rules)
 - You can say "Please turn off the music" or "Can you turn off the music?". Smart?
 - What if someone says "Please don't turn off the music"
- Weakness of hand-crafted rules

- E.g. You want to build a Chat-bot ...
 - If there is "turn off" in the input, then "turn off the music" (hand-crafted rules)
 - You can say "Please turn off the music" or "Can you turn off the music?". Smart?
 - What if someone says "Please don't turn off the music"
- Weakness of hand-crafted rules
 - Hard to consider all possibilities

- E.g. You want to build a Chat-bot ...
 - If there is "turn off" in the input, then "turn off the music" (hand-crafted rules)
 - You can say "Please turn off the music" or "Can you turn off the music?". Smart?
 - What if someone says "Please don't turn off the music"
- Weakness of hand-crafted rules
 - Hard to consider all possibilities
 - 永远无法超越创造者

- E.g. You want to build a Chat-bot ...
 - If there is "turn off" in the input, then "turn off the music" (hand-crafted rules)
 - You can say "Please turn off the music" or "Can you turn off the music?". Smart?
 - What if someone says "Please don't turn off the music"
- Weakness of hand-crafted rules
 - Hard to consider all possibilities
 - 永远无法超越创造者
 - Lots of human efforts (not suitable for small industry)

• A|?

• A|?

• A|?

http://www.commitstrip.com/en/201//06/0//ai-inside/

Shared on Yann LeCun's FB

• A|?

http://www.commitstrip.com/en/201//06/0//ai-inside/

Shared on Yann LeCun's FB

• AI?

```
/**
  * AI核心代码, 估值1个亿
 public class AiMain {
     public static void main(String[] args) {
         Scanner sc = new Scanner(System.in);
         String str;
         while (true) {
              str = sc.next();
              str = str.replace( target: "吗", replacement: "");
              str = str.replace( target: "?", replacement: "!");
              str = str.replace( target: "? ", replacement: "!");
              System.out.println(str);
  AiMain
          main()
                AiMain
__ AiMain
        __ AiMain
  在!
  你好
  能听懂汉语!
  真的!
```


Hi

Learning...

Learning...

monkey

Learning...

monkey

cat

You write the program for learning.

Learning...

You write the program for learning.

monkey

cat

dog

You write the program for learning.

A large amount of images

A large amount of images

A large amount of images

From Data

Speech recognition

From Data

From Data

Speech recognition

$$f($$
 $)=$ "How are you"

$$f($$
)= "Cat"

From Data

Speech recognition

$$f($$
)= "How are you"

Image recognition

Play Go

$$f(\bigcap f) = \text{"cat"}$$

$$f(\bigcap f) = \text{"cat"}$$

$$f_1, f_2 \cdots$$

$$f(\bigcap f) = \text{"cat"}$$

$$f_1, f_2 \cdots$$

$$f_1($$

$$)=$$
 "cat"

$$f_1($$

$$=$$
 "dog"

Image Recognition:

$$f($$
 $)=$ "cat"

A set of functions

$$f_1, f_2 \cdots$$

$$f_1($$

$$)=$$
 "cat"

$$($$
 $)=$ "money"

$$=$$
 "snake"

Image Recognition:

$$f(\bigcap_{i \in \mathcal{I}} f(i)) = \text{``cat''}$$

A set of functions

Model

$$f_1, f_2 \cdots$$

$$f_1($$

$$f_2($$

$$f_1$$

$$=$$
 "dog"

$$f_2($$

$$=$$
 "snake"

A set of functions

Model

$$f_1, f_2 \cdots$$

$$f(\bigcap_{i \in I} f(x_i)) = f(x_i)$$

$$f_1($$
 $)=$ "cat" $f_2($

$$f_2($$
 $)=$ "money $f_2($ $)=$ "snake"

Image Recognition:

$$f(\bigcap_{i \in I} f(x_i)) = f(x_i)$$

A set of functions

Model

$$f_1, f_2 \cdots$$

$$f_1$$

$$)=$$
 "money"

$$f_1$$

$$f_2$$

Function input:

Image Recognition:

$$f(\bigcap_{i=1}^{n})=$$
 "cat"

A set of functions

Model

$$f_1, f_2 \cdots$$

$$f_1($$

$$f_1($$

$$f_2$$

Function input:

"dog"

Image Recognition:

$$f($$
 $)=$ "cat"

A set of functions

Model

$$f_1, f_2 \cdots$$

$$f_1($$

$$f_2($$

$$f_1($$

Function input:

"dog"

"cat"

Image Recognition:

$$f(\bigcap_{i \in \mathcal{I}} f(i)) = \text{"cat"}$$

A set of functions

Model

 $f_1, f_2 \cdots$

$$f_1($$

$$f_2($$

$$f_1($$

Function input:

"dog"

"cat"

"monkey"

Image Recognition:

$$f(\bigcap_{i=1}^{n})=$$
 "cat"

$$f_1$$

$$f_1($$

$$f_2$$

)= "snake"

"dog"

"cat"

"monkey"

$$f(\bigcap_{i \in \mathcal{I}} f(i)) = \text{"cat"}$$

"cat"

"monkey"

$$f($$
 $)=$ "cat"

"monkey"

$$f(\bigcap f(\bigcap f(x))) = \text{``cat''}$$

$$f(\bigcap_{i \in I} f(x_i)) = f(x_i)$$

$$f(\bigcap f(\bigcap f(x))) = \text{``cat''}$$

$$f($$
 $)=$ "cat"

$$f(\bigcap_{i \in I} f(x_i)) = f(x_i)$$

怪兽学堂 2019

Image Recognition:

Framework

Machine learning is so simple ...

Step 1:
Define a set of function

Step 2: Goodness of function

Step 3: Pick the best function

就好像把大象装进冰箱……

Learning map

<u>Learning map</u>

Regression

The output of target function *f* is 'scalar'

预测 PM2.5

Training data

Input:

Input:

9/12 上午 PM2.5 = 30 9/13 上午 PM2.5 = 25

Output:

9/03 上午 PM2.5 = 100

Output:

9/14 上午 PM2.5 = 20

Learning map

Classification

Binary classification

Multi-class classification

Binary classification

Spam Filtering

Binary classification

Spam Filtering

training data

Multi-class classification

document classification

政治

财经

Multi-class classification

document classification

Training Data

Play Go

Next move Each position is one class (19x19)

Play Go

Next move Each position is one class (19x19)

Training data

一堆棋谱

进藤光VS春

黑: 5之五 → 白: 天元 → 黑: 五之5

Training data:
Input/output
Pair of target function

Regression Linear model SVM, KNN Deep Learning Classification Supervised learning

Hard to collect a large amount of labeled data

Training data:
Input/output
Pair of target function

Semi-supervised Regression learning Linear model SVM, KNN Deep Learning Classification Supervised learning

Hard to collect a large amount of labeled data

Training data:
Input/output
Pair of target function

Semi-supervised learning

For example, recognizing dogs and cats

Labeled data

Unlabeled data

Images of dogs and cats

Transfer learning

For example, recognizing dogs and cats

Labeled data

Transfer learning

For example, recognizing dogs and cats

Labeled data

Haruhi

Data not related to the task considered (either labelled or unlabelled)

Machine Reading: Machine learns the meaning of words from reading a lot of documents

Machine Reading: Machine learns the meaning of words from reading a lot of documents

Function

Machine Reading: Machine learns the meaning of words from reading a lot of documents

Machine Reading: Machine learns the meaning of words from reading a lot of documents

Training data is a lot of text

Draw Something

Draw Something

Draw Something

Machine Draw

Training data is a lot of images

Structured learning – beyond classification

Speech recognition

"Machine Learning"

Machine translation

人脸识别

長門

實玖瑠

Reinforcement learning

Supervised

Reinforcement

Supervised

Learning from teacher

Reinforcement

Supervised

Next move: **"**5-5"

Next move: "3-3"

Reinforcement

First move ____ many moves

Supervised

Next move: **"5-5"**

Next move: "3-3"

Reinforcement

First move ____ many moves

Alpha Go is supervised learning + reinforcement learning.

