STA250 Probability and Statistics

Chapter 3 Notes

Probability

Asst. Prof. Abdullah YALÇINKAYA

Ankara University, Faculty of Science, Department of Statistics

TO SE

STA250 Probability and Statistics

Reference Book

This lecture notes are prepared according to the contents of

"PROBABILITY & STATISTICS FOR ENGINEERS & SCIENTISTS by Walpole, Myers, Myers and Ye"

- □ The <u>sample space</u> is the set consisting of all possible sample points. A sample space is represented by the symbol **S**.
 - Each outcome in a sample space is called a sample point.
 - The sample space S is a set, the domain of the probability function.
 - Each probability value, p, is a real number $0 \le p \le 1$.
- □ An event is a subset of a sample space $(E \subseteq S)$
 - Note that both S and \emptyset are events as well.
 - Note that the number of the events are 2ⁿ
- □ Sample spaces can be continuous or discrete.
 - A discrete sample space is one that contains either a finite or a countable number of distinct sample points.

- □ Example: Life in years of a component. S = ?
 - S = $\{t \mid t \ge 0\}$ => "all values of t such that $t \ge 0$ "
 - A = component fails before the end of the fifth year.
 - $A = \{t \mid t < 5\}.$
- Example: Flip a coin one times. S = ?
 - n(S)=2 (number of elements)
 - $S = \{H,T\}$, Head or Tail
- Events: the number of the events are $2^2 = 4$.
 - $A_1 = \{H\}$, The flip is Head.
 - $A_2 = \{T\}$, The flip is Tail.
 - $A_3 = \{\emptyset\}$, null set
 - $A_4 = \{H, T\}$, The flip is H or T, it is sample space.

Probability: Tossing a Die

- □ The number of points on the top face.
 - S1={1,2,3,4,5,6}
- □ The number of points on the top face is even or odd.
 - S2={even, odd}
- □ S1 provides more information than S2.
- □ More than one sample space can be used to describe the outcomes of an experiment. Which one we use?

Probability: Tree Diagram

- □ An experiment consists of flipping a coin and then flipping it a second time if a head (H) occurs.
- □ If a tail (T) occurs on the first flip, then a die is tossed once.
- □ T2: Coin Shows T and Die shows 2
- $S = \{HH, HT, T1, T2, T3, T4, T5, T6\}$

Example: a manufacturing process

- □ 3 items are selected at random.
- □ Each item is classified defective (D) or nondefective (N).
- □ DDD: All 3 items inspected are defective.
- \square $S = \{DDD, DDN, DND, DNN, NDD, NDN, NND, NNN\}.$

- □ Sample spaces with a large or infinite number of sample points are best described by a **statement** or **rule method**.
- □ If the possible outcomes of an experiment are the set of cities in the world with a population over one million, our sample space is written
 - $S = \{x \mid x \text{ is a city with a population over one million } \}$.
- \square *S* is the set of all *x* **such that** *x* is a city with a population over one million. The vertical line is read "**such that**".
- □ If S is the set of all points (x, y) on the boundary or the interior of a circle of radius 2 with center at the origin, we write the **rule**
 - $S = \{ (x, y) \mid x^2 + y^2 \le 4 \}.$

Probability Intro: Example

- Consider the manufacturing process again.
- \square Items are either D, defective, or N, nondefective.
- □ There are many important statistical procedures called sampling plans that determine whether or not a "lot" of items is considered satisfactory.
- □ One such plan involves sampling until *k* defectives are observed.
- □ Suppose the experiment is to sample items randomly until one defective item is observed.
- □ The sample space for this case is

$$S = \{D, ND, NND, NNND, \dots\}.$$

- Example: Flip a coin two times. S = ?
 - n(S)=4 (number of elements)
 - $S = \{TT, TH, HT, HH\}$
- **Events:** the number of the events are $2^4 = 16$.
 - $A_1 = \{HH\}$
 - $A_2 = \{TT\}$
 - $A_3 = \{TH\}$
 - $A_4 = \{HT\}$
 - $A_5 = \{TT, TH\}$
 - $A_6 = \{TT, HT\}$
 - goes on
- Example: Flip a coin three times. S = ?
 - n(S)=8 (number of elements)
 - S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
 - Number of events: $2^8 = 64$
- □ Event $A = 1^{st}$ flip is heads.
 - A = {HHH, HHT, HTH, HTT}

- Example: t is the life in years of a certain electronic component.
- □ The sample space is $S = \{t \mid t \ge 0\}$
- Then the event A that the component fails before the end of the fifth year is the subset $A = \{t \mid 0 \le t < 5\}$.

Example: if we let A be the event of detecting a microscopic organism by the naked eye in a biological experiment, then A is null set.

□ If $B = \{x \mid x \text{ is an even factor of } 7\}$, then B must be the null set, since the only possible factors of 7 are the odd numbers 1 and 7.

The **complement** of an event A is the subset of all elements of S **that are not** in A. We denote the complement of A by the symbol A'.

Consider an experiment where the smoking habits of the employees of a manufacturing firm are recorded.

- A possible sample space might classify an individual as a **nonsmoker**, a **light smoker**, a **moderate smoker**, or a **heavy smoker**.
- Let the subset of smokers be some event. Then **all the nonsmokers** correspond to a different event, also a subset of S, which is called the **complement of the set of smokers**.

Let R be the event that a red card is selected from an ordinary deck of 52 playing cards, and let S be the entire deck.

Then R' is the event that the card selected from the deck is not a red card but a black card.

Event/Set Operations

- □ The <u>complement</u> of an event A?
 - The set of all elements of S not in A. Denoted A'.
 - $A = 1^{st}$ flip is heads. A' =first flip is not heads.
- Example: Consider the sample space;
 - S={book, cell phone, mp3, paper, stationery, laptop}.
 - Let A={book, stationery, laptop, paper}.
 - Then the complement of A'={cell phone, mp3}.
- ☐ The intersection of two events A and B?
 - The set of all elements in both A <u>and</u> B. Denoted A \cap B.
- \square Example: Suppose that *A* and *B* are subsets of the same sample space *S*.
 - The tossing of a die: The sample space: $S = \{1, 2, 3, 4, 5, 6\}$.
 - *A* is the event that an even number occurs.
 - $A = \{2, 4, 6\}$
 - *B* shows the event that a number greater than 3.
 - $B = \{4, 5, 6\}$
 - A \cap B= {4,6} is the intersection of *A* and *B*.

Event/Set Operations

- □ Two events *A* and *B* are **mutually exclusive**, or **disjoint**, if *A* and *B* have no elements in common.
 - $A \cap B = \emptyset$
- **Example:** Let $V = \{a, e, i, o, u\}$ and $C = \{l, r, s, t\}$; then it follows that $V \cap C = \emptyset$
 - *V* and *C* have no elements in common and, therefore, cannot both simultaneously occur.
- □ The **union** of the two events *A* and *B* containing all the elements that belong to *A* or *B* or both.
 - It is represented by the symbol $A \cup B$.
- **Example:** Let $A = \{a, b, c\}$ and $B = \{b, c, d, e\}$
 - then $A \cup B = \{a, b, c, d, e\}$.
- □ If $M = \{x \mid 3 < x < 9\}$ and $N = \{y \mid 5 < y < 12\}$, then $M \cup N = \{z \mid 3 < z < 12\}$.

Venn Diagrams

- **Venn Diagrams** show various events graphically, and are sometimes helpful in understanding set theory problems.
- Standard set theory results hold:
 - $A \cap \emptyset = \emptyset$
 - $A \cup \emptyset = A$
 - $A \cap A' = \emptyset$
 - $A \cup A' = S$
 - $S' = \emptyset$
 - $\emptyset' = S$
 - $\bullet (A')' = A$
 - $(A \cap B)' = A' \cup B'$
 - $(A \cup B)' = A' \cap B'$

Venn Diagrams

$$\Box$$
 A \cap B = regions 1 and 2,

$$B \cap C = regions 1 and 3,$$

□ A ∪ C = regions 1, 2, 3, 4, 5, and 7,
$$B' \cap A$$
 = regions 4 and 7,

$$B' \cap A = regions 4 and 7$$

$$\square$$
 A \cap B \cap C = region 1,

□
$$A \cap B \cap C$$
 = region 1, (A U B) $\cap C'$ = regions 2, 6, and 7,

If an operation can be performed in n_1 ways, and if for each of these ways a second operation can be performed in n_2 ways, then the two operations can be performed together in n_1n_2 ways.

Example: How many sample points are there in the sample space when a pair of dice is thrown once?

Solution: The first die can land face-up in any one of $n_1 = 6$ ways. For each of these 6 ways, the second die can also land face-up in $n_2 = 6$ ways. Therefore, the pair of dice can land in $n_1n_2 = (6)(6) = 36$ possible ways.

Example: If a 22-member club needs to elect a chair and a treasurer, how many different ways can these two to be elected?

Solution: For the chair position, there are 22 total possibilities. For each of those 22 possibilities, there are 21 possibilities to elect the treasurer. Using the multiplication rule, we obtain $n_1 \times n_2 = 22 \times 21 = 462$ different ways.

If an operation can be performed in n_1 ways, and if for each of these a second operation can be performed in n_2 ways, and for each of the first two a third operation can be performed in n_3 ways, and so forth, then the sequence of k operations can be performed in $n_1 n_2 \cdots n_k$ ways.

Example: Sam is going to assemble a computer by himself. He has the choice of chips from two brands, a hard drive from four, memory from three, and an accessory bundle from five local stores.

How many different ways can Sam order the parts?

Solution: Since $n_1 = 2$, $n_2 = 4$, $n_3 = 3$, and $n_4 = 5$, there are $n_1 \times n_2 \times n_3 \times n_4 = 2 \times 4 \times 3 \times 5 = 120$

different ways to order the parts.

Example: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?

Solution:

Since the number must be even, we have only $n_1 = 3$ choices (0, 2, 6) for the units position. However, for a four-digit number the thousands position cannot be 0. Hence, we consider the units position in two parts, 0 or not 0.

If the units position is 0 (i.e., $n_1 = 1$), we have $n_2 = 5$ choices for the thousands position, $n_3 = 4$ for the hundreds position, and $n_4 = 3$ for the tens position. Therefore, in this case we have a total of

$$n_1 n_2 n_3 n_4 = (1)(5)(4)(3) = 60$$

even four-digit numbers.

On the other hand, if the units position is not 0 (i.e., $n_1 = 2$), we have $n_2 = 4$ choices for the thousands position, $n_3 = 4$ for the hundreds position, and $n_4 = 3$ for the tens position. In this situation, there are a total of

$$n_1 n_2 n_3 n_4 = (2)(4)(4)(3) = 96$$

even four-digit numbers.

Since the above two cases are mutually exclusive, the total number of even four-digit numbers can be calculated as 60 + 96 = 156.

A **permutation** is an arrangement of all or part of a set of objects

Example: Consider the three letters a, b, and c.

The possible permutations are abc, acb, bac, bca, cab, and cba.

There are 6 distinct arrangements.

We could arrive at the answer 6 without actually listing the different orders by the following arguments:

There are $n_1 = 3$ choices for the first position. No matter which letter is chosen, there are always $n_2 = 2$ choices for the second position. No matter which two letters are chosen for the first two positions, there is only $n_3 = 1$ choice for the last position, giving a total of

$$n_1 n_2 n_3 = (3)(2)(1) = 6$$

permutations.

In general, n distinct objects can be arranged in n(n-1)(n-2) ... (3)(2)(1) ways. There is a notation for such a number.

For any non-negative integer n, n!, called "n factorial", is defined as $n! = n(n-1) \cdots (2)(1)$ with special case 0! = 1.

The number of permutations of n objects is n!

The number of permutations of n distinct objects taken r at a time is

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

Example: In one year, three awards (research, teaching, and service) will be given to a class of 25 graduate students in a statistics department. If each student can receive at most one award, how many possible selections are there?

Solution: Since the awards are distinguishable, it is a permutation problem. The total number of sample points is

$$_{25}P_3 = \frac{25!}{(25-3)!} = \frac{25!}{22!} = (25)(24)(23) = 13800$$

The number of distinct permutations of n things of which n_1 are of one kind, n_2 of a second kind, ..., n_k of a kth kind is

$$\frac{n!}{n_1!n_2!\cdots n_k!}.$$

In a college football training session, the defensive coordinator needs to have 10 players standing in a row. Among these 10 players, there are 1 freshman, 2 sophomores, 4 juniors, and 3 seniors. How many different ways can they be arranged in a row if only their class level will be distinguished?

we find that the total number of arrangements is

$$\frac{10!}{1!\ 2!\ 4!\ 3!} = 12,600.$$

The number of ways of partitioning a set of n objects into r cells with n_1 elements in the first cell, n_2 elements in the second, and so forth, is

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!},$$

where $n_1 + n_2 + \dots + n_r = n$.

In how many ways can 7 graduate students be assigned to 1 triple and 2 double hotel rooms during a conference?

The total number of possible partitions would be

$$\binom{7}{3,2,2} = \frac{7!}{3!\ 2!\ 2!} = 210.$$

The number of combinations of n distinct objects taken r at a time is

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

A young boy asks his mother to get 5 Game-BoyTM cartridges from his collection of 10 arcade and 5 sports games. How many ways are there that his mother can get 3 arcade and 2 sports games?

$$\binom{10}{3} = \frac{10!}{3! (10-3)!} = 120.$$
 $\binom{5}{2} = \frac{5!}{2! \ 3!} = 10.$ $(120)(10) = 1200$ ways.

Probability of an Event

- □ For now, we only consider discrete sample spaces (contains a finite number of elements).
- □ Each point in a sample space is assigned a weight or probability value. The higher the probability, the more likely that outcome is to occur.
- □ To every point in the sample space, sum of all probabilities is 1.

The **probability** of an event A is the sum of the weights of all sample points in A. Therefore,

$$0 \le P(A) \le 1$$
, $P(\phi) = 0$, and $P(S) = 1$.

Furthermore, if A_1, A_2, A_3, \ldots is a sequence of mutually exclusive events, then

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$$

Probability of an Event

- Example: A coin is tossed twice. What is the probability that at least 1 head occurs?
 - **Solution:** The sample space is $S = \{HH, HT, TH, TT\}$.
 - If the coin is balanced, each of these outcomes is equally likely to occur. Therefore, each sample point is assigned a probability of w.
 - 4w=1 or w=1/4.
 - A=even of at least 1 head occurring.
 - $A = \{HH, HT, TH\}$ and P(A) = 1/4 + 1/4 + 1/4 = 3/4.
- If an experiment can result in any one of N different <u>equally likely</u> outcomes, and if exactly n of these outcomes correspond to event A, then the probability of event A is
 - $P(A) = \frac{n}{N}$
- **Example:** Since 25 of 53 students are majoring in industrial engineering, the probability of event A, selecting n industrial engineering major at random, is
 - $P(A) = \frac{25}{53}$

Additive Probability Rules

- ☐ If A and B are two events, then
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
 - Look at the Venn diagram, the sample points in $P(A \cap B)$ are double counted.
- ☐ If A and B are mutually exclusive, then
 - $P(A \cup B) = P(A) + P(B)$
 - $A \cap B = \emptyset$ so $P(A \cap B) = P(\emptyset) = 0$
- If three events A,B,C
 - $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ - $P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$
- ☐ If A and A' are complementary events, then
 - P(A') = 1 P(A) or,
 - P(A) + P(A')=1.

Conditional Probability

□ Conditional probability, written P(B|A), is the probability of "B, given A", the probability that B occurs, given that we know that A has occurred.

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
, provided $P(A) > 0$

Example: The data are given in Table.

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

$$P(M|E) = ? P(M|E) = \frac{P(M \cap E)}{P(E)} = \frac{460/900}{600/900} = \frac{23}{30}$$

M: a man is chosen, E: the one chosen is employed.

Conditional Probability Example

- □ The population is 900 people.
- If a person is selected at random from this group,

•
$$P(E) = ?$$
 $P(E)=600/900=2/3$
• $P(M) = ?$ $P(M)=500/900=5/9$
• $P(E \cap M) = ?$ $P(E \cap M) = 460/900=23/45$
• $P(E \mid M) = ?$ $P(E \mid M) = \frac{P(E \cap M)}{P(M)} = \frac{460/900}{500/900} = \frac{23}{25}$
• $P(M \mid E) = ?$ $P(M \mid E) = \frac{P(M \cap E)}{P(E)} = \frac{460/900}{600/900} = \frac{23}{30}$

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

M: a man is chosen, E: the one chosen is employed.

Independence and multiplicative rule

- □ Suppose P(B | A) = P(B).
 - Whether A occurs or not, the probability of B occurring doesn't change.
- □ If P(B | A) = P(B), then A and B are <u>independent</u>.
 - Can show that if P(B | A) = P(B) is true, then P(A | B) = P(A) is always also true.
- □ From the above, and the definition of conditional probability, if A and B are independent,
 - $P(A \cap B) = P(A) P(B)$
- Rearranging the conditional probability formula, if both A and B can occur, then
 - $P(A \cap B) = P(B \mid A) P(A)$
 - Or, the probability that both *A* and *B* occur is equal to the probability that *A* occurs multiplied by the conditional probability that *B* occurs, given that *A* occurs.
 - It is **multiplicative rule.**
- Note that it is also true that
 - $P(A \cap B) = P(A \mid B) P(B)$

Bayes Theorem

- □ Bayes Theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
 - If the events B_1, B_2, \dots, B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for $i = 1, 2, \dots, k$, then for any event A in S such that $P(A) \neq 0$,

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)} \quad \text{for} \quad r=1,2,...,k$$

Theorem of total probability

Bayes Theorem Example

Example:

A manufacturing firm employs three analytical plans for the design and development of a particular product. For cost reasons, all three are used at varying times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products, respectively. The defect rate is different for the three procedures as follows:

$$P(D|P_1) = 0.01,$$
 $P(D|P_2) = 0.03,$ $P(D|P_3) = 0.02,$

$$P(D|P_2) = 0.03$$

$$P(D|P_3) = 0.02,$$

where $P(D \mid P_i)$ is the probability of a defective product, given plan j. If random product was observed and found to be defective, which plan was most likely used and thus responsible?

Solution: From the statement of the problem

$$P(P_1) = 0.30,$$

$$P(P_1) = 0.30,$$
 $P(P_2) = 0.20,$ $P(P_3) = 0.50,$

$$P(P_3) = 0.50,$$

we must find $P(Pj \mid D)$ for j = 1, 2, 3. Bayes Theorem shows

Bayes Theorem Example

Example:

$$P(P_1|D) = \frac{P(P_1)P(D|P_1)}{P(P_1)P(D|P_1) + P(P_2)P(D|P_2) + P(P_3)P(D|P_3)}$$

$$= \frac{(0.30)(0.01)}{(0.30)(0.01) + (0.20)(0.03) + (0.50)(0.02)} = \frac{0.003}{0.019} = 0.158$$

Similarly,

$$P(P_2|D) = \frac{(0.03)(0.20)}{0.019} = 0.316$$

$$P(P_3|D) = \frac{(0.02)(0.50)}{0.019} = 0.526$$

□ The conditional probability of a defect given plan 3 is the largest of the three; thus a defective for a random product is most likely the result of the use of plan 3.

Next Lesson

Discrete Random Variables And Their Probability Distributions

See you@

