Homework-1

Engineering Mechanics (ME1020)

Instructions:

- 1. Copying is strictly not allowed and will lead to negative marks
- 2. Late submission will lead to zero marks
- 3. Prepare answer scripts using "word or latex", handwritten scripts are not allowed
- 4. The filename should be in the following format "Roll No_HW1"
- 5. The file should be in PDF format

Q.1) Consider the real-life problem of the platform shown in figure 1a. The model of the problem is given in figure 1b. The platform is fixed at point A and attached to a string with tension T at point C. The weight of the platform is represented by the point load acting at its center of gravity, G.

Fig: 1a Fig: 1b

- a) Draw the free body diagram of the platform. (1 marks)
- b) Resolve the tension T in two mutually perpendicular forces. (0.5 marks)
- c) Write the equations of force equilibrium, $\sum F_x = 0$, $\sum F_y = 0$. (1 marks)
- d) Take the moment about point A (1 marks)
- e) Find the value of T by using force equilibrium equation $\sum M_A = 0$ (0.5 marks)
- f) Calculate the reaction forces at point A. (1 marks)

$\mbox{\bf Q.2)}$ Consider the mass string system shown in figure 2.

Fig: 2

(1 marks)	Draw the free body diagram of the system.	a)
(0.5 marks)	Resolve the tension T_1 in two mutually perpendicular forces.	b)
(0.5 marks)	Write the equations of force equilibrium for the mass m_1 system.	c)
(1 marks)	Calculate the value of T_1 and T_2 using the equation from part (c).	d)
(0.5 marks)	Resolve the tension T_3 in two mutually perpendicular forces.	e)
(0.5 marks)	Write the equations of force equilibrium for the mass m_2 system.	f)
(1 marks)	Calculate the value of T_1 and T_2 using the equation from part (f).	g)

Hint: 1. For analysis, do not consider the fixed support attached to the string. 2. For Q.2, Split the problem in two parts for mass m_1 and m_2 . Both parts will have same tension T_2