	Time-Domain	Frequency Domain
Linearity	$a_1s_1\left(t\right) + a_2s_2\left(t\right)$	$a_1S_1(f) + a_2S_2(f)$
Conjugate Symmetry	$s\left(t\right)\in\mathbb{R}$	$S(f) = S(-f)^*$
Even Symmetry	$s\left(t\right) = s\left(-t\right)$	$S\left(f\right) = S\left(-f\right)$
Odd Symmetry	$s\left(t\right) = -\left(s\left(-t\right)\right)$	S(f) = -(S(-f))
Scale Change	$s\left(at\right)$	$\frac{1}{ a }S\left(\frac{f}{a}\right)$
Time Delay	$s\left(t- au ight)$	$e^{-(j2\pi f\tau)}S\left(f\right)$
Complex Modulation	$e^{j2\pi f_0 t}s\left(t\right)$	$S\left(f-f_0\right)$
Amplitude Modulation by Cosine	$s\left(t\right)\cos\left(2\pi f_{0}t\right)$	$\frac{S(f-f_0)+S(f+f_0)}{2}$
Amplitude Modulation by Sine	$s\left(t\right)sin\left(2\pi f_{0}t\right)$	$\frac{S(f-f_0)-S(f+f_0)}{2j}$
Differentiation	$\frac{d}{dt}s(t)$	$j2\pi fS\left(f\right)$
Multiplication by t	$\int_{-\infty}^{t} s\left(\alpha\right) d\alpha$	$\frac{1}{j2\pi f}S\left(f\right)\ if\ S\left(0\right)=0$
Area	$ts\left(t\right)$	$\frac{1}{-\left(j2\pi\right)}\frac{d}{df}S\left(f\right)$
Value at Origin	$\int_{-\infty}^{\infty} s\left(t\right)dt$	$S\left(0\right)$
Parseval"s Theorem	$\int_{-\infty}^{\infty} (s(t))^2 dt$	$\int_{-\infty}^{\infty} (S(f))^2 df$

Table 4.2 Fourier Transform Properties

Example 4.5

In communications, a very important operation on a signal s (t) is to **amplitude modulate** it. Using this operation more as an example rather than elaborating the communications aspects here, we want to compute the Fourier transform the spectrum of

$$(1+s(t))cos(2\pi f_c t)$$

Thus,
$$(1+s(t))cos(2\pi f_ct) = cos(2\pi f_ct) + s(t)cos(2\pi f_ct)$$