제3장 중선형회귀모형

3.1 중선형회귀모형

3.1.1 모집단 중회귀모형

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_{p-1} x_{i,p-1} + \epsilon_i$$
 $(i = 1, \dots, n)$ $\epsilon_i \sim i.i.d. \mathcal{N}(0, \sigma^2)$

3.1.2 선형모형과 비선형모형

회귀모형 $y = f(x, \beta) + \epsilon$

회귀식 $f(x,\beta)$ 이 모든 β_{i} 들에 대해 선형모형 \rightarrow '선형모형'

[예]
$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

$$y = \beta_0 + \beta_1 \log x_1 + \beta_2 \log x_2 + \epsilon$$

3.1.3 행렬을 이용한 모형식

행렬 표현: $y = X\beta + \epsilon$ 여기서 X: 디자인행렬(design matrix)

$$\begin{aligned} y_1 &= \beta_0 1 + \beta_1 x_{11} + \beta_2 x_{12} + \cdots + \beta_{p-1} x_{1,p-1} + \epsilon_1 \\ y_2 &= \beta_0 1 + \beta_1 x_{21} + \beta_2 x_{22} + \cdots + \beta_{p-1} x_{2,p-1} + \epsilon_2 \\ &\vdots \\ y_n &= \beta_0 1 + \beta_1 x_{n1} + \beta_2 x_{n2} + \cdots + \beta_{p-1} x_{n,p-1} + \epsilon_n \end{aligned}$$

$$y_{(n\times 1)} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \ X_{(n\times p)} = \begin{bmatrix} 1 & x_{11} & x_{12} \cdots x_{1,p-1} \\ 1 & x_{21} & x_{22} \cdots x_{2,p-1} \\ \vdots & & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} \cdots x_{n,p-1} \end{bmatrix}, \ \beta_{(p\times 1)} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix}, \ \epsilon_{(n\times 1)} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$y = X\beta + \epsilon$$
 $\epsilon \sim N_n(0, \sigma^2 I)$

3.2 회귀계수의 추정

3.2.1 최소제곱법

3.2.2 최소제곱추정량의 성질

1.
$$E(\hat{\beta}) = E[(X^t X)^{-1} X^t y] = (X^t X)^{-1} X^t E(y) = (X^t X)^{-1} X^t X \beta = \beta$$
 $\rightarrow \hat{\beta}$: β 의 불편추정량

2.
$$Cov(\hat{\beta}) = Cov[(X^t X)^{-1} X^t y] = (X^t X)^{-1} X^t Cov(y) X(X^t X)^{-1}$$

= $(X^t X)^{-1} X^t X(X^t X)^{-1} Cov(y) = (X^t X)^{-1} Cov(y) = (X^t X)^{-1} \sigma^2$

3. 잔차벡터
$$e = y - \hat{y} = y - Hy = (I - H)y$$
 $\hat{y} = X\hat{\beta} = X(X^tX)^{-1}X^ty = Hy$ 여기서, $H = X(X^tX)^{-1}X^t \to \text{projection[hat] matrix}$ $H^2 = X(X^tX)^{-1}X^t X(X^tX)^{-1}X^t = X(X^tX)^{-1}X^t = H$ $\to H$: 멱등행렬

- 4. 잔차벡터의 성질
- (1) $e = y \hat{y} = y Hy = (I H)y$ 여기서. I - H: 멱등행렬

(2)
$$\hat{y} \perp e$$

[증명]
$$\hat{y}^t e = (Hy)^t (I - H)y = y^t H (I - H)y = y^t (H - H^2)y = y^t (H - H)y = 0$$

(3)
$$X^t e = 0$$

$$[\tilde{\ominus} G] X^t (I - H) y = X^t [I - X(X^t X)^{-1} X^t] y = [X^t - X^t X(X^t X)^{-1} X^t] y = [X^t - X^t] y = 0$$

[정리 3.1] Gauss-Markov Theorem

회귀모형에서 $E[\epsilon]=0,~Cov(\epsilon)=I_n\sigma^2$ 일 때 최소제곱추정량 $\hat{\beta}$ 은 y_i 들의 선형함수로 주어지는 β 의 선형불편추정량들 중에서 가장 작은 분산을 갖는다. 즉, $\hat{\beta}$ 은 β 의 최량선형불편추정량(BLUE)이다.

[증명]

$$\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_{p-1})^t$$

$$\hat{\boldsymbol{\beta}}^* = \left(\hat{\boldsymbol{\beta}}_0^*, \hat{\boldsymbol{\beta}}_1^*, \; \cdots, \hat{\boldsymbol{\beta}}_{p-1}^*\right)^t$$
: $\boldsymbol{\beta}$ 의 선형불편추정량

$$Var(\hat{\boldsymbol{\beta}}_j) \leq Var(\hat{\boldsymbol{\beta}}_j^*) \qquad (j = 0, 1, \, \cdots, p-1)$$

$$\hat{\beta}^* = Ay = \left[(X^t X)^{-1} X^t + D \right] y$$

여기서, 적당한 $(p \times n)$ 상수행렬 D에 대해 $A = (X^t X)^{-1} X^t + D$

$$\hat{\beta}^*$$
: β 의 선형불편추정량 $\rightarrow \beta = E(\hat{\beta}^*) = E[\{(X^tX)^{-1}X^t + D\}y]$
$$= (X^tX)^{-1}X^tX\beta + DX\beta = \beta + DX\beta$$
$$\Rightarrow DX = 0$$

$$Cov(\hat{\beta}^*) = Cov[\{(X^t X)^{-1} X^t + D\}y] = \{(X^t X)^{-1} X^t + D\} Cov(y) \{X(X^t X)^{-1} + D^t\}$$

$$= \{(X^t X)^{-1} X^t + D\} \{X(X^t X)^{-1} + D^t\} Cov(y)$$

$$= [(X^t X)^{-1} X^t X(X^t X)^{-1} + (X^t X)^{-1} (DX)^t + DX(X^t X)^{-1} + DD^t] \sigma^2$$

$$= [(X^t X)^{-1} + DD^t] \sigma^2 = (X^t X)^{-1} \sigma^2 + DD^t \sigma^2$$

$$= Cov(\hat{\beta}) + DD^t \sigma^2$$

$$\Rightarrow \operatorname{Cov}(\hat{\boldsymbol{\beta}}^*) = \operatorname{Cov}(\hat{\boldsymbol{\beta}}) + DD^t \sigma^2$$

j번째 회귀계수추정량의 분산은 위 행렬의 j번째 대각원소이므로

$$Var(\hat{\boldsymbol{\beta}}_{j}^{*}) = Var(\hat{\boldsymbol{\beta}}_{j}) + \sigma^{2} \sum_{i=1}^{n} d_{ji}^{2}$$
 여기서, $\sum_{i=1}^{n} d_{ji}^{2}$: 항상 양수

 $\geq Var(\hat{\boldsymbol{\beta}}_j)$