

FCC PART 15, SUBPART C ISED RSS-247, ISSUE 1, MAY 2015

TEST AND MEASUREMENT REPORT

For

Afero, Inc.

4970 El Camino Real, Suite 100,

Los Altos, CA 94022, USA

FCC ID: 2AGLL-ASR-2KL IC: 20929-ASR2KL

Report Type:
Original Report

Xiao Lin

Prepared By: Test Engineer

Report Number: R1612055-247 DTS

Report Date: 2017-02-17

Bo Li

Reviewed By: RF Lead

Bay Area Compliance Laboratories Corp.

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732-9164

^{*} This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1 G	eneral Descriptioneneral Description	
1.1	Product Description for Equipment Under Test (EUT)	
1.2	Mechanical Description of EUT	5
1.3	Objective	
1.4	Related Submittal(s)/Grant(s)	5
1.5	Test Methodology	
1.6	Measurement Uncertainty	6
1.7	Test Facility Registrations	6
1.8	Test Facility Accreditations	7
2 Sy	stem Test Configuration	9
2.1	Justification	
2.2	EUT Exercise Software	
2.3	Duty Cycle Correction Factor	10
2.4	Equipment Modifications	
2.5	Local Support Equipment	12
2.6	Support Equipment	12
2.7	Interface Ports and Cabling	
	ımmary of Test Results	
4 F(CC §15.203 & ISED RSS-Gen §8.3 - Antenna Requirements	
4.1	Applicable Standards	
4.2	Antenna Description	
	CC §15.247(i) & ISED RSS-102 - RF Exposure	
5.1	Applicable Standards	
5.2	MPE Prediction	
5.3	MPE Results	
5.4	RF exposure evaluation exemption for IC	
6 F(CC §15.207 & ISED RSS-Gen §8.8 - AC Line Conducted Emissions	
6.1	Applicable Standards	
6.2	Test Setup	
6.3	Test Procedure	
6.4	Corrected Amplitude & Margin Calculation	
6.5	Test Setup Block Diagram	
6.6	Test Equipment List and Details	
6.7	Test Environmental Conditions	
6.8	Summary of Test Results	
6.9	Conducted Emissions Test Plots and Data	
	CC §15.209, §15.247(d) & ISED RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emission	
7.1	Applicable Standards	
7.2	Test Setup	
7.3	Test Procedure	
7.4	Corrected Amplitude & Margin Calculation	
7.5	Test Equipment List and Details	
7.6	Test Environmental Conditions	
7.7	Summary of Test Results	
7.8	Radiated Emissions Test Results	
	CC §15.247(a) (2) & ISED RSS-247 §5.2 -Emission Bandwidth	
8.1	Applicable Standards	
8.2	Measurement Procedure	
8.3	Test Equipment List and Details	39

8.4	Test Environmental Conditions	39
8.5	Test Results	
9 FC	CC §15.247(b) (3) & ISED RSS-247 §5.4 (4) - Output Power Measurement	45
9.1	Applicable Standards	
9.2	Measurement Procedure	
9.3	Test Equipment List and Details	45
9.4	Test Environmental Conditions	45
9.5	Test Results	
10 FC	CC §15.247(d) & ISED RSS-247 §5.5 - 100 kHz Bandwidth of Band Edges	48
10.1	Applicable Standards	
10.2	Measurement Procedure	48
10.3	Test Equipment List and Details	48
10.4	Test Environmental Conditions	
10.5	Test Results	
11 FC	CC §15.247(e) & ISED RSS-247 §5.2(2) - Power Spectral Density	
11.1	Applicable Standards	
11.2	Measurement Procedure	
11.3	Test Equipment List and Details	
11.4	Test Environmental Conditions	51
11.5	Test Results	
	CC §15.247(d) & ISED RSS-247 §5.5 & ISED RSS-GEN §8.9 - Spurious Emissions at Antenna	
12.1	Applicable Standards	
12.2	Test Procedure	
12.3	Test Equipment List and Details	
12.4	Test Environmental Conditions	
12.5	Test Results	
	nnex A (Informative) - A2LA Electrical Testing Certificate	
	nnex B (Normative) - FCC & ISED Equipment Labeling Requirements	
14.1	FCC ID Label Requirements	
14.2	ISED Label Requirements	
14.3	FCC ID & ISED Label Contents and Location	
	nnex C (Normative) - Test Setup Photographs	
15.1	Radiated Emission below 1 GHz Front View	
15.2	Radiated Emission below 1 GHz Rear View	
15.3	Radiated Emission above 1 GHz Front View	
15.4	Radiated Emission above 1 GHz Rear View	
15.5	AC Conducted Emissions Front View	
15.6	AC Conducted Emissions Side View	
	nnex D (Normative) - EUT Photographs	
16.1	EUT Top View	
16.2	EUT Bottom View	
16.3	Support Equipment - AC/DC Adaptor View	
16.4	EUT without shielding View	73

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision
0	R1612055-247	Initial	2017-02-17

1 General Description

1.1 Product Description for Equipment Under Test (EUT)

This test and measurement report was prepared on behalf of *Afero Inc.*, and their product model: *ASR-2KL*, FCC ID: 2AGLL-ASR-2KL, IC: 20929-ASR2KL or the "EUT" as referred to in this report. It is a communications module with Wi-Fi and BLE functions. It operates in the 2.4 GHz band.

1.2 Mechanical Description of EUT

The EUT measures approximately 48 mm (L) x 32 mm (W) x 4.5 mm (H) without power port, 48 mm (L) x 32 mm (W) x 10 mm (H) with power port.

The test data gathered are from typical production sample, serial number: 0123-E5F7-3573-5DE8 and 0123-FD11-E3DA-3644 assigned by Afero Inc.

1.3 Objective

This report is prepared on behalf of *Afero, Inc.*, in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commission's rules and ISED RSS-247 Issue 1, May 2015.

The objective is to determine compliance with FCC Part 15.247 and ISED RSS-247 rules for Output Power, Antenna Requirements, 6 dB Bandwidth, Power Spectral Density, 100 kHz Bandwidth of Band Edges Measurement, Conducted and Radiated Spurious Emissions.

1.4 Related Submittal(s)/Grant(s)

No related Submittals.

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC KDB 558074 D01 DTS Meas Guidance v03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

Page 5 of 73

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Parameter	Measurement uncertainty	
Occupied Channel Bandwidth	±5 %	
RF output power, conducted	±0.57 dB	
Power Spectral Density, conducted	±1.48dB	
Unwanted Emissions, conducted	±1.57dB	
All emissions, radiated	±4.0 dB	
AC power line Conducted Emission	±2.0 dB	
Temperature	±2 ° C	
Humidity	±5 %	
DC and low frequency voltages	±1.0 %	
Time	±2 %	
Duty Cycle	±3 %	

1.7 Test Facility Registrations

BACLs test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3297.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.03) to certify

- For the USA (Federal Communications Commission):
 - All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4; 1-
 - 2-All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
 - 3-All Telephone Terminal Equipment within FCC Scope C.
- For the Canada (Industry Canada):
 - All Scope 1-Licence-Exempt Radio Frequency Devices;
 - 2 All Scope 2-Licensed Personal Mobile Radio Services;
 - 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
 - 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
 - 5 All Scope 5-Licensed Fixed Microwave Radio Services
 - All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.
- For Singapore (Info-Communications Development Authority (IDA)):
 - All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment 1 Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
 - 2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2
- For the Hong Kong Special Administrative Region:
 - All Radio Equipment, per KHCA 10XX-series Specifications; 1
 - 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
 - 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.
- For Japan:
 - MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 Terminal Equipment for the Purpose of Calls;
 - All Scope A2 Other Terminal Equipment
 - Radio Law (Radio Equipment): 2
 - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

- C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:
 - 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
 - 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
 - Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
 - 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
 - Other
 - For Water Coolers (ver. 3.0)
- D. A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:
 - Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I;
 - Canada: (Innovation, Science and Economic development Canada ISEDC) Foreign Certification Body -FCB - APEC Tel MRA - Phase I & Phase II;
 - Chinese Taipei (Republic of China Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
 - European Union:
 - o Radio & Teleterminal Equipment (R&TTE) Directive 1995/5/EC US -EU EMC & Telecom MRA CAB
 - Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA) APEC Tel MRA -Phase I & Phase II
 - Israel US-Israel MRA Phase I
 - Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA -Phase I
 - Singapore: (Infocomm Development Authority IDA) APEC Tel MRA -Phase I & Phase II;
 - Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
 - USA:
 - ENERGY STAR Recognized Test Laboratory US EPA
 - Telecommunications Certification Body (TCB) US FCC;
 - Vietnam: APEC Tel MRA -Phase I;

Report Number: R1612055-247 DTS

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.10-2013 and FCC KDB 558074 D01 DTS Meas Guidance v03r05.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

The worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the average power, peak power and PPSD across all data rates bandwidths, and modulations.

2.2 EUT Exercise Software

The test firmware used was ATWILC3000_ChcGUI.exe and firmware files provided by *Afero, Inc.*, the software is comply with the standard requirements being tested against.

Worst Case Power Setting:

Mode Operating Frequency (MHz)		Power Setting
	2412	15/18/-14
	2417	15/18/-14
	2422	15/18/-14
	2427	15/18/-14
	2432	15/18/-14
b	2437	15/18/-14
	2442	15/18/-14
	2447	15/18/-14
	2452	15/18/-14
	2457	15/18/-14
	2462	15/18/-14
	2412	15/18/-10
	2417	15/18/-10
	2422	15/18/-5
	2427	15/18/-3
	2432	15/18/-3
g	2437	15/18/-3
	2442	15/18/-3
	2447	15/18/-3
	2452	15/18/-4
	2457	15/18/-10
	2462	15/18/-10

Mode	Operating Frequency (MHz)	Power Setting
	2412	15/18/-13
	2417	15/18/-13
	2422	15/18/-5
	2427	15/18/-3
	2432	15/18/-3
n20	2437	15/18/-3
	2442	15/18/-3
	2447	15/18/-3
	2452	15/18/-4
	2457	15/18/-10
	2462	15/18/-10

2.3 Duty Cycle Correction Factor

According to KDB 558074 D01 DTS Meas Guidance v03r05 section 6.0:

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be utilized to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data is being acquired (i.e., no transmitter off-time is to be considered).

Radio Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
802.11b	8.375	8.675	96.54	0.15
802.11g	1.39	1.68	82.74	0.82
802.11n20	1.3	1.595	81.5	0.89
BLE	0.39	0.6233	62.57	2.04

Duty Cycle = On Time (ms)/ Period (ms)

Duty Cycle Correction Factor (dB) = 10*log(1/Duty Cycle)

Please refer to the following plots.

Copyright 2000-2012 Agilent Tech

802.11b mode # Agilent Freq/Channel Center Freq 2.41200000 GHz Ref 30.5 dBm #Peak Atten 30 dB 0.04 dE Start Freq 2.41200000 GHz Stop Freq 2.41200000 GHz **CF Step** 8.000000000 MHz <u>Auto</u> Man Center 2.412 000 GHz Res BW 8 MHz Span 0 H: Freq Offset 0.00000000 Hz #VBW 50 MHz Sweep 15 ms (601 pts) Signal Track

BLE

2.4 Equipment Modifications

N/A

2.5 Local Support Equipment

Manufacturer/Product Type	Description	Model No.	Serial No.
НР	Laptop	11-d010nr	5CD5243W2F
HON-KWANG	AC/DC Adaptor	D12-10-1000	-

2.6 Support Equipment

There was no support equipment included, or intended for use with EUT during these tests.

2.7 Interface Ports and Cabling

Cable Description	Length (m)	То	From
USB/SPI Cable	< 1 m	EUT	Laptop
USB A->B cable	< 1 m	Aardvark USB to I2C/SPI Interface	Laptop
Aardvark USB to I2C/SPI Interface	< 1 m	EUT	USB A->B cable
RF Cable	< 1 m	PSA	EUT

3 Summary of Test Results

Results reported relate only to the product tested.

FCC & ISED Rules	Description of Test	Results
FCC §15.203 ISED RSS-Gen §8.3	Antenna Requirement	Compliant
FCC §15.207 ISED RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §2.1091, §15.247(i) ISED RSS-102	RF Exposure	Compliant
FCC §2.1051, §15.247 (d) ISED RSS-247 §5.5	Spurious Emissions at Antenna Port	Compliant
FCC §2.1053, §15.205, §15.209, §15.247 (d) ISED RSS-247 §5.5 ISED RSS-Gen §8.9 & §8.10	Radiated Spurious Emissions	Compliant
FCC §15.247(a)(2) ISED RSS-247 §5.2 (1)	6 dB & 99% Emission Bandwidth	Compliant
FCC §15.247(b)(3) ISED RSS-247 §5.4 (4)	Maximum Peak Output Power	Compliant
FCC §15.247(d) ISED RSS-247 §5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
FCC §15.247(e) ISED RSS-247 §5.2 (2)	Power Spectral Density	Compliant

4 FCC §15.203 & ISED RSS-Gen §8.3 - Antenna Requirements

4.1 Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to ISED RSS-Gen §8.3: Transmitter Antenna

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the license-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

License-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the license-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of license-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. 9 When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

4.2 Antenna Description

Report Number: R1612055-247 DTS

The antennas used by the EUT are permanent attached antennas.

Antenna Type Frequency Range (MHz)		Maximum Antenna Gain (dBi)
PCB	2400-2500	2.8

30

30

5 FCC §15.247(i) & ISED RSS-102 - RF Exposure

5.1 Applicable Standards

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
Limits for General Population/Uncontrolled Exposure						
0.3-1.34	614	1.63	* (100)	30		
1.34-30	824/f	2.19/f	* (180/f ²)	30		
30-300	27.5	0.073	0.2	30		

f/1500

1.0

Limits for General Population/Uncontrolled Exposure

300-1500

1500-100.000

Before equipment certification is granted, the procedure of IC RSS-102 must be followed concerning the exposure of humans to RF field

According to ISED RSS-102 Issue 5:

2.5.2 Exemption Limits for Routine Evaluation – RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 4.49/f^{0.5} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

f = frequency in MHz

^{* =} Plane-wave equivalent power density

5.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

5.3 MPE Results

Maximum peak output power at antenna input terminal (dBm): 20.1

Maximum peak output power at antenna input terminal (mW): 102.329

Prediction distance (cm): 20 Prediction frequency (MHz): 2437

Maximum Antenna Gain, typical (dBi): 2.8

Maximum Antenna Gain (numeric): 1.905

Power density of prediction frequency at 20.0 cm (mW/cm²): 0.0388

FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is 0.0388 mW/cm². Limit is 1.0 mW/cm².

5.4 RF exposure evaluation exemption for IC

 $20.1 + 2.8 \text{ dBi} = 22.9 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 2.7053 \text{ W} = 34.322 \text{ dBm}$

Therefore the RF exposure is not required.

Report Number: R1612055-247 DTS

6 FCC §15.207 & ISED RSS-Gen §8.8 - AC Line Conducted Emissions

6.1 Applicable Standards

As per FCC §15.207 and ISED RSS-Gen §8.8 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56 Note1	56 to 46 Note2		
0.5-5	56	46		
5-30	60	50		

Note1: Decreases with the logarithm of the frequency.

Note2: A linear average detector is required

6.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.10-2013 measurement procedure. The specification used were FCC §15.207 and ISED RSS-Gen §8.8 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120 V / 60 Hz AC power.

6.3 Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-1 and the power cords of support equipment were connected to LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data were recorded in the peak, quasi-peak, and average detection mode. Quasi-Peak readings are distinguished with a "QP." Average readings are distinguished with an "Ave".

6.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Cable Loss (CL), the Attenuator Factor (Atten) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + CL + Atten$$

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Cable Loss (3.7 dB) + Attenuator (10 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude – Limit

6.5 Test Setup Block Diagram

6.6 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde & Schwarz	Receiver, EMI Test	ESCI 1166.5950K03	100338	2016-02-04	2 years
Rohde & Schwarz	Impulse Limiter	ESH3-Z2	101964	2016-07-22	1 year
Solar Electronics Company	High Pass Filter	Type 7930-100	7930150204	2016-03-09	1 Year
Suirong	30 ft conductive emission cable	LMR 400	-	2016-03-05	1 year
FCC	LISN	FCC-LISN-50-25-2- 10-CISPR16	160131	2016-04-25	1 year
Vasona	Test software	V6.0 build 11	10400213	N/R	N/R

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

6.7 Test Environmental Conditions

Temperature:	22° C	
Relative Humidity:	42 %	
ATM Pressure:	102 kPa	

The testing was performed by Xiao Lin on 2016-12-21 in Conducted site.

6.8 Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC 15C and ISED RSS-Gen standard's</u> conducted emissions limits, with the margin reading of:

2.4 GHz Wi-Fi

Connection: AC/DC adapter connected to 120 V/60 Hz, AC					
Margin Frequency Conductor Mode Range (dB) (MHz) (Line/Neutral) (MHz)					
-22.29	0.4902	Line	0.15-30		

BLE

Connection: AC/DC adapter connected to 120 V/60 Hz, AC					
Margin Frequency Conductor Mode Range (dB) (MHz) (Line/Neutral) (MHz)					
-29.97	0.51428	Line	0.15-30		

6.9 Conducted Emissions Test Plots and Data

2.4 GHz Wi-Fi

120 V, 60 Hz - Line

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.469775	34.22	Line	56.52	-22.3	QP
0.4902	33.88	Line	56.16	-22.29	QP
0.417231	34.76	Line	57.5	-22.75	QP
0.34959	35.15	Line	58.97	-23.82	QP
0.150083	41.82	Line	66	-24.17	QP
0.55197	32.39	Line	56	-23.61	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.469775	6.45	Line	46.52	-40.07	Ave.
0.4902	6.17	Line	46.16	-39.99	Ave.
0.417231	6.82	Line	47.5	-40.68	Ave.
0.34959	7.67	Line	48.97	-41.31	Ave.
0.150083	16.59	Line	56	-39.4	Ave.
0.55197	5.15	Line	46	-40.85	Ave.

120 V, 60 Hz – Neutral

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.432552	34.35	Neutral	57.2	-22.85	QP
0.439623	34.36	Neutral	57.07	-22.71	QP
0.388332	34.71	Neutral	58.1	-23.39	QP
0.617477	31.25	Neutral	56	-24.75	QP
0.632492	30.67	Neutral	56	-25.33	QP
0.163092	40.05	Neutral	65.3	-25.25	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.432552	6.25	뚪뚖蒖뚖뚖蒖1	47.2	-40.95	Ave.
0.439623	6.26	Neutral	47.07	-40.81	Ave.
0.388332	6.65	Neutral	48.1	-41.45	Ave.
0.617477	3.69	Neutral	46	-42.31	Ave.
0.632492	3.45	Neutral	46	-42.55	Ave.
0.163092	13.67	Neutral	55.3	-41.63	Ave.

BLE 120 V, 60 Hz – Line

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.431976	26.43	Line	57.21	-30.78	QP
0.336476	27.05	Line	59.29	-32.24	QP
0.289494	29.49	Line	60.54	-31.04	QP
0.51428	26.03	Line	56	-29.97	QP
0.239517	30.65	Line	62.11	-31.46	QP
0.978366	21.01	Line	56	-34.99	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.431976	2.32	Line	47.21	-44.9	Ave.
0.336476	3.57	Line	49.29	-45.72	Ave.
0.289494	17.65	Line	50.54	-32.89	Ave.
0.51428	2.07	Line	46	-43.93	Ave.
0.239517	5.77	Line	52.11	-46.34	Ave.
0.978366	0.13	Line	46	-45.87	Ave.

120 V, 60 Hz – Neutral

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.52374	23.8	Neutral	56	-32.2	QP
0.373134	25.44	Neutral	58.43	-32.99	QP
0.864518	19.95	Neutral	56	-36.05	QP
0.924387	21.24	Neutral	56	-34.76	QP
0.259317	29.04	Neutral	61.45	-32.41	QP
0.15031	32.95	Neutral	65.98	-33.04	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.52374	0.96	Neutral	46	-45.04	Ave.
0.373134	2.16	Neutral	48.43	-46.27	Ave.
0.864518	0.75	Neutral	46	-45.25	Ave.
0.924387	-0.23	Neutral	46	-46.23	Ave.
0.259317	4.63	Neutral	51.45	-46.82	Ave.
0.15031	14.97	Neutral	55.98	-41.01	Ave.

7 FCC §15.209, §15.247(d) & ISED RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emissions

7.1 Applicable Standards

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As Per FCC §15.205(a) and RSS-Gen except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$\begin{array}{c} 0.090 - 0.110 \\ 0.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 - 12.52025 \\ 12.57675 - 12.57725 \\ 13.36 - 13.41 \end{array}$	16.42 - 16.423 $16.69475 - 16.69525$ $25.5 - 25.67$ $37.5 - 38.25$ $73 - 74.6$ $74.8 - 75.2$ $108 - 121.94$ $123 - 138$ $149.9 - 150.05$ $156.52475 - 156.52525$ $156.7 - 156.9$ $162.0125 - 167.17$ $167.72 - 173.2$ $240 - 285$ $322 - 335.4$ $399.9 - 410$ $608 - 614$	960 – 1240 1300 – 1427 1435 – 1626.5 1645.5 – 1646.5 1660 – 1710 1718.8 – 1722.2 2200 – 2300 2310 – 2390 2483.5 – 2500 2690 – 2900 3260 – 3267 3.332 – 3.339 3 3458 – 3 358 3.600 – 4.400	4. 5 – 5. 15 5. 35 – 5. 46 7.25 – 7.75 8.025 – 8.5 9.0 – 9.2 9.3 – 9.5 10.6 – 12.7 13.25 – 13.4 14.47 – 14.5 15.35 – 16.2 17.7 – 21.4 22.01 – 23.12 23.6 – 24.0 31.2 – 31.8 36.43 – 36.5 Above 38.6

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz.

However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

As per ISED RSS-Gen 8.9,

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 or Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

Table 4 – General Field Strength Limits for Licence-Exempt Transmitters at Frequencies Above 30 MHz

Frequency (MHz)	Field Strength (μν/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960*	500

^{*} Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for license-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

As per ISED RSS-247 §5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC 15 Subpart C and ISED RSS-247 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

7.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT was set 3 meter away from the testing antenna, which was varied from 1-4 meter, and the EUT was placed on a turntable, which was 0.8 meter and 1.5 meter above the ground plane for below and above 1000 MHz measurements, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna's polarity should be changed between horizontal and vertical.

The spectrum analyzer or receiver was set as:

Below 1000 MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

7.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

Report Number: R1612055-247 DTS

7.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde & Schwarz	Receiver, EMI Test	ESCI 1166.5950K03	100338	2016-02-04	2 year
Agilent	Analyzer, Spectrum	E4440A	US45303156	2016-01-19	1 year
Sunol Science Corp	System Controller	SC99V	011003-1	N/R	N/R
Sunol Sciences	Antenna, Biconi-Log	JB3	A020106-2	2015-07-11	2 Years
EMCO	Antenna, Horn	3115	9511-4627	2016-01-28	2 years
НР	Amplifier, Pre	8449B	3147A00400	2016-03-30	1 year
IW	Armored High Frequency Cable	DC 1531	KPS- 1501A3960KPS	2016-08-05	1 Year
-	SMA cable	-	C0002	Each time ¹	N/A
-	N-Type Cable	-	C00013	2016-04-28	1 year
-	N-Type Cable	-	C00014	2016-05-28	1 year
НР	Pre-Amplifier	8447D	2443A04374	2016-06-28	1 year
Wisewave	Antenna, Horn	ARH-4223-02	10555-01	2015-10-22	2 years
Wisewave	Amplifier, Low Noise	ALN-22093530-01	12263-01	2016-05-16	1 year
Vasona	Test software	V6.0 build 11	10400213	N/R	N/R

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. *Statement of Traceability: BACL* attests that all calibrations have been performed per the A2LA requirements, traceable to NIST.

7.6 Test Environmental Conditions

Temperature:	20-22 °C
Relative Humidity:	42-46 %
ATM Pressure:	102 kPa

The testing was performed by Xiao Lin from 2016-12-19 to 2016-12-20 in 5m chamber 3.

7.7 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with FCC Title 47, Part 15C and ISED RSS-247</u> standard's radiated emissions limits, and had the worst margin of:

2.4 GHz Wi-Fi

Mode: Transmitting			
Margin (dB)	2		Mode, channel
-0.92	2483.5	Vertical	g mode, channel 9

BLE

Mode: Transmitting			
Margin Frequency (dB) (MHz)		Polarization (Horizontal/Vertical)	channel
-4.45	2483.5	Horizontal	High channel

Please refer to the following table and plots for specific test result details

7.8 Radiated Emissions Test Results

1) 30 MHz – 1 GHz Worst Case, Measured at 3 meters

2.4 GHz Wi-Fi

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Comment
31.14	25.53	138	V	194	40	-14.47	QP
67.6245	32.35	233	V	224	40	-7.65	QP
36.5125	27.2	108	V	111	40	-12.8	QP
111.844	19.55	207	Н	183	43.5	-23.95	QP
997.6938	24.62	212	V	46	54	-29.38	QP

Note: the other emissions were 20 dB below the limit.

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Comment
30.01748	25.1	228	V	216	40	-14.9	QP
65.87425	28.9	164	V	348	40	-11.1	QP
36.057	27.05	130	V	195	40	-12.95	QP
39.766	22.65	109	V	0	40	-17.35	QP
90.38775	24.13	129	V	316	43.5	-19.37	QP
985.0158	24.53	291	V	249	54	-29.47	QP

2) 1–25 GHz Measured at 3 meters

802.11b mode

Frequency	S.A.	Turntable	Т	est Anteni	na	Cable	Pre-	Cord.	FC	CC/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
Low Channel 2412 MHz											
2412	70.22	184	100	Н	29.04	5.19	0	104.45	-	-	PK
2412	63.11	184	100	Н	29.04	5.19	0	97.34	-	-	AV
2412	72.67	127	100	V	29.04	5.19	0	106.90	-	-	PK
2412	65.36	127	100	V	29.04	5.19	0	99.59	-	-	AV
2390	28.10	184	100	Н	29.04	5.19	0	62.33	74.00	-11.67	PK
2390	16.63	184	100	Н	29.04	5.19	0	50.86	54.00	-3.14	AV
2390	27.90	127	100	V	29.04	5.19	0	62.13	74.00	-11.87	PK
2390	16.79	127	100	V	29.04	5.19	0	51.02	54.00	-2.98	AV
4824	47.93	0	100	V	32.47	9.37	38.56	51.21	74.00	-22.79	PK
4824	35.77	0	100	V	32.47	9.37	38.56	39.05	54.00	-14.95	AV
7236	47.05	0	100	V	36.69	11.48	37.9	57.32	74.00	-16.68	PK
7236	34.50	0	100	V	36.39	11.48	37.9	44.47	54.00	-9.53	AV
9648	46.55	0	100	V	37.77	13.82	38.29	59.85	74.00	-14.15	PK
9648	35.32	0	100	V	37.77	13.82	38.29	48.62	54.00	-5.38	AV
				N	Iiddle Cha	nnel 2437	7 MHz				
2437	69.05	157	230	Н	29.04	5.19	0.00	103.28	-	-	PK
2437	64.69	157	230	Н	29.04	5.19	0.00	98.92	-	-	AV
2437	70.17	106	155	V	29.04	5.19	0.00	104.40	-	-	PK
2437	64.55	106	155	V	29.04	5.19	0.00	98.78	-	-	AV
4874	46.23	0	100	V	32.64	9.37	38.54	49.70	74.00	-24.30	PK
4874	34.77	0	100	V	32.64	9.37	38.54	38.24	54.00	-15.76	AV
7311	45.88	0	100	V	37.15	12.01	37.90	57.14	74.00	-16.86	PK
7311	33.51	0	100	V	37.15	12.01	37.90	44.77	54.00	-9.23	AV
9748	46.42	0	100	V	37.92	13.70	38.29	59.75	74.00	-14.25	PK
9748	34.53	0	100	V	37.92	13.70	38.29	47.86	54.00	-6.14	AV

Frequency	S.A.	Turntable	Test Antenna		Cable	Pre-	Cord.	FC	CC/IC			
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments	
	High Channel 2462 MHz											
2462	68.07	169	280	Н	29.41	5.19	0.00	102.67	-	-	PK	
2462	63.14	169	280	Н	29.41	5.19	0.00	97.74	-	-	AV	
2462	71.22	107	153	V	29.41	5.19	0.00	105.82	-	-	PK	
2462	64.15	107	153	V	29.41	5.19	0.00	98.75	-	-	AV	
2483.5	27.88	169	280	Н	29.41	5.19	0.00	62.48	74.00	-11.52	PK	
2483.5	15.95	169	280	Н	29.41	5.19	0.00	50.55	54.00	-3.45	AV	
2483.5	27.42	107	153	V	29.41	5.19	0.00	62.02	74.00	-11.98	PK	
2483.5	15.97	107	153	V	29.41	5.19	0.00	50.57	54.00	-3.43	AV	
4924	46.56	0	100	V	32.64	8.70	38.54	49.36	74.00	-24.64	PK	
4924	33.90	0	100	V	32.64	8.70	38.54	36.70	54.00	-17.30	AV	
7386	46.02	0	100	V	37.14	11.96	37.89	57.23	74.00	-16.77	PK	
7386	33.32	0	100	V	37.14	11.96	37.89	44.53	54.00	-9.47	AV	
9848	47.15	0	100	V	37.99	14.31	38.33	61.12	74.00	-12.88	PK	
9848	34.10	0	100	V	37.99	14.31	38.33	48.07	54.00	-5.93	AV	

802.11g mode

Frequency	S.A.	Turntable	Test Antenna			Cable	Pre-	Cord.	FCC/IC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
Low Channel 2412 MHz											
2412	70.58	172	141	Н	29.04	5.19	0	104.81	_	_	PK
2412	60.51	172	141	Н	29.04	5.19	0	94.74		<u> </u>	AV
2412	67.78	157	167	V	29.04	5.19	0	102.01	_		PK
2412	60.20	157	167	V	29.04	5.19	0	94.43	_	_	AV
2390	38.10	172	141	Н	29.04	5.19	0	72.33	74.00	-1.67	PK
2390	17.10	172	141	Н	29.04	5.19	0	51.33	54.00	-2.67	AV
2390	36.23	157	167	V	29.04	5.19	0	70.46	74.00	-3.54	PK
2390	16.31	157	167	V	29.04	5.19	0	50.54	54.00	-3.46	AV
4824	47.02	0	100	Н	32.47	9.37	38.56	50.30	74.00	-23.70	PK
4824	34.86	0	100	Н	32.47	9.37	38.56	38.14	54.00	-15.86	AV
7236	46.90	0	100	Н	36.69	11.48	37.9	57.17	74.00	-16.83	PK
7236	34.53	0	100	Н	36.39	11.48	37.9	44.50	54.00	-9.50	AV
9648	47.37	0	100	Н	37.77	13.82	38.29	60.67	74.00	-13.33	PK
9648	34.76	0	100	Н	37.77	13.82	38.29	48.06	54.00	-5.94	AV
				N	Iiddle Cha	nnel 2422	2 MHz				
2390	38.14	196	159	V	29.04	4.90	0	72.08	74.00	-1.92	PK
2390	16.29	196	159	V	29.04	4.90	0	50.23	54.00	-3.77	AV
				N	Iiddle Cha	nnel 243	7 MHz				
2437	75.58	148	100	Н	29.04	5.19	0.00	109.81	-	-	PK
2437	66.91	148	100	Н	29.04	5.19	0.00	101.14	-	-	AV
2437	78.28	143	101	V	29.04	5.19	0.00	112.51	-	-	PK
2437	69.10	143	101	V	29.04	5.19	0.00	103.33	-	-	AV
4874	49.11	146	148	V	32.64	9.37	38.54	52.58	74.00	-21.42	PK
4874	34.98	146	148	V	32.64	9.37	38.54	38.45	54.00	-15.55	AV
7311	46.63	0	100	V	37.15	12.01	37.90	57.89	74.00	-16.11	PK
7311	34.71	0	100	V	37.15	12.01	37.90	45.97	54.00	-8.03	AV
9748	47.22	0	100	V	37.92	13.70	38.29	60.55	74.00	-13.45	PK
9748	34.65	0	100	V	37.92	13.70	38.29	47.98	54.00	-6.02	AV
Middle Channel 2452 MHz											
2483.5	38.66	153	175	V	29.41	5.01	0.00	73.08	74.00	-0.92	PK
2483.5	16.36	153	175	V	29.41	5.01	0.00	50.78	54.00	-3.22	AV

Fraguency	S.A. Reading (dBµV)	Turntable Azimuth (degrees)	Test Antenna			Cable	Pre-	Cord.	FCC/IC		
Frequency (MHz)			Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
High Channel 2462 MHz											
2462	68.07	172	100	Н	29.41	5.19	0.00	102.67	-	-	PK
2462	58.53	172	100	Н	29.41	5.19	0.00	93.13	-	-	AV
2462	67.80	153	110	V	29.41	5.19	0.00	102.40	-	-	PK
2462	58.38	153	110	V	29.41	5.19	0.00	92.98	-	-	AV
2483.5	32.94	172	100	Н	29.41	5.19	0.00	67.54	74.00	-6.46	PK
2483.5	15.05	172	100	Н	29.41	5.19	0.00	49.65	54.00	-4.35	AV
2483.5	30.78	153	110	V	29.41	5.19	0.00	65.38	74.00	-8.62	PK
2483.5	14.87	153	110	V	29.41	5.19	0.00	49.47	54.00	-4.53	AV
4924	48.08	0	100	Н	32.64	8.70	38.54	50.88	74.00	-23.12	PK
4924	35.48	0	100	Н	32.64	8.70	38.54	38.28	54.00	-15.72	AV
7386	46.66	0	100	Н	37.14	11.96	37.89	57.87	74.00	-16.13	PK
7386	33.85	0	100	Н	37.14	11.96	37.89	45.06	54.00	-8.94	AV
9848	46.99	0	100	Н	37.99	14.31	38.33	60.96	74.00	-13.04	PK
9848	34.32	0	100	Н	37.99	14.31	38.33	48.29	54.00	-5.71	AV

802.11n20 mode

Enganonav	S.A. Reading (dBµV)	Turntable Azimuth (degrees)	Test Antenna			Cable	Pre-	Cord.	FCC/IC		
Frequency (MHz)			Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
Low Channel 2412 MHz											
2412	71.99	153	113	Н	29.04	5.19	0	106.22	-	-	PK
2412	61.30	153	113	Н	29.04	5.19	0	95.53	-	-	AV
2412	72.52	145	100	V	29.04	5.19	0	106.75	-	-	PK
2412	62.10	145	100	V	29.04	5.19	0	96.33	-	-	AV
2390	36.51	153	113	Н	29.04	5.19	0	70.74	74.00	-3.26	PK
2390	16.45	153	113	Н	29.04	5.19	0	50.68	54.00	-3.32	AV
2390	36.70	145	100	V	29.04	5.19	0	70.93	74.00	-3.07	PK
2390	16.65	145	100	V	29.04	5.19	0	50.88	54.00	-3.12	AV
4824	47.75	0	100	V	32.47	9.37	38.56	51.03	74.00	-22.97	PK
4824	35.39	0	100	V	32.47	9.37	38.56	38.67	54.00	-15.33	AV
7236	47.36	0	100	V	36.69	11.48	37.9	57.63	74.00	-16.37	PK
7236	35.26	0	100	V	36.39	11.48	37.9	45.23	54.00	-8.77	AV
9648	47.58	0	100	V	37.77	13.82	38.29	60.88	74.00	-13.12	PK
9648	36.06	0	100	V	37.77	13.82	38.29	49.36	54.00	-4.64	AV
				N	Iiddle Cha	nnel 2422	2 MHz				
2390	38.25	198	163	V	29.04	5.19	0	72.48	74.00	-1.52	PK
2390	17.17	198	163	V	29.04	5.19	0	51.40	54.00	-2.60	AV
				N	Iiddle Cha	nnel 243	7 MHz				
2437	77.07	148	108	Н	29.04	5.19	0.00	111.30	-	-	PK
2437	67.08	148	108	Н	29.04	5.19	0.00	101.31	-	-	AV
2437	78.85	145	145	V	29.04	5.19	0.00	113.08	-	-	PK
2437	68.25	145	145	V	29.04	5.19	0.00	102.48	-	-	AV
4874	48.05	203	118	V	32.64	9.37	38.54	51.52	74.00	-22.48	PK
4874	35.55	203	118	V	32.64	9.37	38.54	39.02	54.00	-14.98	AV
7311	46.13	0	100	V	37.15	12.01	37.90	57.39	74.00	-16.61	PK
7311	33.91	0	100	V	37.15	12.01	37.90	45.17	54.00	-8.83	AV
9748	47.26	0	100	V	37.92	13.70	38.29	60.59	74.00	-13.41	PK
9748	34.68	0	100	V	37.92	13.70	38.29	48.01	54.00	-5.99	AV
Middle Channel 2452 MHz											
2483.5	38.30	157	171	V	29.41	5.01	0.00	72.72	74.00	-1.28	PK
2483.5	16.95	157	171	V	29.41	5.01	0.00	51.37	54.00	-2.63	AV

Frequency	S.A.	S.A. Turntable	Test Antenna		Cable	Pre-	Cord.	FC	CC/IC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
	High Channel 2462 MHz										
2462	67.78	170	100	Н	29.41	5.19	0.00	102.38	-	-	PK
2462	56.74	170	100	Н	29.41	5.19	0.00	91.34	-	-	AV
2462	66.53	137	100	V	29.41	5.19	0.00	101.13	-	-	PK
2462	55.57	137	100	V	29.41	5.19	0.00	90.17	-	-	AV
2483.5	27.43	170	100	Н	29.41	5.19	0.00	62.03	74.00	-11.97	PK
2483.5	15.03	170	100	Н	29.41	5.19	0.00	49.63	54.00	-4.37	AV
2483.5	27.03	137	100	V	29.41	5.19	0.00	61.63	74.00	-12.37	PK
2483.5	14.90	137	100	V	29.41	5.19	0.00	49.50	54.00	-4.50	AV
4924	47.60	0	100	Н	32.64	8.70	38.54	50.40	74.00	-23.60	PK
4924	35.29	0	100	Н	32.64	8.70	38.54	38.09	54.00	-15.91	AV
7386	46.65	0	100	Н	37.14	11.96	37.89	57.86	74.00	-16.14	PK
7386	34.10	0	100	Н	37.14	11.96	37.89	45.31	54.00	-8.69	AV
9848	46.31	0	100	Н	37.99	14.31	38.33	60.28	74.00	-13.72	PK
9848	34.22	0	100	Н	37.99	14.31	38.33	48.19	54.00	-5.81	AV

BLE

Frequency	S.A.	Turntable	Test Antenna		Cable	Pre-	Cord.	FC	CC/IC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
					Low Chan	nel 2402	MHz				
2402	62.70	185	143	Н	29.04	5.19	0	96.93	-	-	PK
2402	60.10	185	143	Н	29.04	5.19	0	94.33	-	-	AV
2402	63.95	133	154	V	29.04	5.19	0	98.18	-	-	PK
2402	60.93	133	154	V	29.04	5.19	0	95.16	-	-	AV
2390	26.89	185	143	Н	29.04	5.19	0	61.12	74.00	-12.88	PK
2390	14.45	185	143	Н	29.04	5.19	0	48.68	54.00	-5.32	AV
2390	27.02	133	154	V	29.04	5.19	0	61.25	74.00	-12.75	PK
2390	14.47	133	154	V	29.04	5.19	0	48.70	54.00	-5.30	AV
4804	46.22	0	100	V	32.47	8.83	38.56	48.96	74.00	-25.04	PK
4804	34.17	0	100	V	32.47	8.83	38.56	36.91	54.00	-17.09	AV
7206	47.15	0	100	V	36.69	11.60	37.9	57.54	74.00	-16.46	PK
7206	34.46	0	100	V	36.39	11.60	37.9	44.55	54.00	-9.45	AV
9608	47.26	0	100	V	37.77	13.70	38.29	60.44	74.00	-13.56	PK
9608	34.75	0	100	V	37.77	13.70	38.29	47.93	54.00	-6.07	AV
				N	/Iiddle Cha	nnel 2440	O MHz				
2440	60.33	245	285	Н	29.04	5.19	0.00	94.56	-	-	PK
2440	57.40	245	285	Н	29.04	5.19	0.00	91.63	-	-	AV
2440	62.90	247	133	V	29.04	5.19	0.00	97.13	-	-	PK
2440	60.02	247	133	V	29.04	5.19	0.00	94.25	-	-	AV
4880	47.29	0	100	Н	32.64	8.83	38.54	50.22	74.00	-23.78	PK
4880	34.98	0	100	Н	32.64	8.83	38.54	37.91	54.00	-16.09	AV
7320	47.06	0	100	Н	37.15	12.01	37.90	58.32	74.00	-15.68	PK
7320	34.82	0	100	Н	37.15	12.01	37.90	46.08	54.00	-7.92	AV
9760	47.10	0	100	Н	37.92	13.70	38.29	60.43	74.00	-13.57	PK
9760	35.05	0	100	Н	37.92	13.70	38.29	48.38	54.00	-5.62	AV
					High Char	nel 2480	MHz				
2480	60.14	239	113	Н	29.41	5.19	0.00	94.74	-	-	PK
2480	57.49	239	113	Н	29.41	5.19	0.00	92.09	-	-	AV
2480	62.73	153	164	V	29.41	5.19	0.00	97.33	-	-	PK
2480	59.88	153	164	V	29.41	5.19	0.00	94.48	-	-	AV
2483.5	28.82	239	113	Н	29.41	5.19	0.00	63.42	74.00	-10.58	PK
2483.5	14.95	239	113	Н	29.41	5.19	0.00	49.55	54.00	-4.45	AV
2483.5	26.70	153	164	V	29.41	5.19	0.00	61.30	74.00	-12.70	PK
2483.5	14.55	153	164	V	29.41	5.19	0.00	49.15	54.00	-4.85	AV
4960	46.65	0	100	V	32.64	8.83	38.54	49.58	74.00	-24.42	PK
4960	34.07	0	100	V	32.64	8.83	38.54	37.00	54.00	-17.00	AV
7440	46.77	0	100	V	37.14	12.01	37.89	58.03	74.00	-15.97	PK
7440	34.56	0	100	V	37.14	12.01	37.89	45.82	54.00	-8.18	AV
9920	46.98	0	100	V	37.99	14.05	38.33	60.69	74.00	-13.31	PK
9920	34.96	0	100	V	37.99	14.05	38.33	48.67	54.00	-5.33	AV

8 FCC §15.247(a) (2) & ISED RSS-247 §5.2 -Emission Bandwidth

8.1 Applicable Standards

According to FCC §15.247(a) (2) and ISED RSS-247 §5.2, systems using digital modulation techniques may operate in the 902~928 MHz, 2400~2483.5 MHz, and 5725~5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

8.2 Measurement Procedure

The measurements are based on FCC KDB 558074 D01 DTS Meas Guidance v03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 8: DTS bandwidth

8.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4440A	US45303156	2016-01-19	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10 dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. *Statement of Traceability: BACL Corp.* attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

8.4 Test Environmental Conditions

Temperature:	23° C		
Relative Humidity:	42 %		
ATM Pressure:	102.5 KPa		

The testing was performed by Xiao Lin on 2016-12-20 in RF site.

8.5 Test Results

Channel	Frequency (MHz)	99% OBW (kHz)	6 dB OBW (kHz)	6 dB OBW limit (kHz)				
	802.11b mode							
Low	2412	13871.9	11173	500				
Middle	2437	13865.5	11137	500				
High	2462	13770.8	11192	500				
		802.11g mode						
Low	2412	16503.7	16472	500				
Middle	2437	19486.3	16571	500				
High	2462	16442.8	16504	500				
		802.11n-HT20 mode	e					
Low	2412	17615	17719	500				
Middle	2437	18528.5	17753	500				
High	2462	17645.6	17785	500				
	BLE							
Low	2402	1048.8	637.452	500				
Middle	2440	1046.4	636.012	500				
High	2480	1048.1	635.958	500				

Please refer to the following plots for detailed test results.

802.11b mode

Low Channel 2412 MHz

Agilent Freq/Channel Center Freq 2.41200000 GHz Ch Freq 2.412 GHz Trig Free Occupied Bandwidth Start Freq 2.39700000 GHz Ref 20.5 dBm #Peak #Atten 20 dB Stop Freq 2.42700000 GHz CF Step 3.000000000 MHz Auto Man Freq Offset 0.00000000 Hz enter 2.412 00 GHz Span 30 MHz VBW 300 kHz Signal Track Occupied Bandwidth 99.00 % -6.00 dB Occ BW % Pwr x dB 13.8719 MHz -64.534 kHz 11.173 MHz Transmit Freq Error x dB Bandwidth Copyright 2000-2012 Agilent Technologies

Middle Channel 2437 MHz

802.11g mode

Low Channel 2412 MHz

Agilent Freq/Channel Center Freq 2.41200000 GHz Ch Freq 2.412 GHz Trig Free Occupied Bandwidth Start Freq 2.39700000 GHz Ref 20.5 dBm #Peak #Atten 20 dB Stop Freq 2.42700000 GHz **CF Step** 3.000000000 MHz Auto Man Freq Offset 0.00000000 Hz Span 30 MHz Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % -6.00 dB 16.5037 MHz x dB –42.721 kHz 16.472 MHz Transmit Freq Error x dB Bandwidth Copyright 2000-2012 Agilent Technologie

Middle Channel 2437 MHz

802.11n20 mode

Low Channel 2412 MHz

Middle Channel 2437 MHz

BLE

Low Channel 2402 MHz

Middle Channel 2440 MHz

9 FCC §15.247(b) (3) & ISED RSS-247 §5.4 (4) - Output Power Measurement

9.1 Applicable Standards

According to FCC \$15.247(b) (3) and ISED RSS-247 \$5.4 (4) for systems using digital modulation in the $902\sim928$ MHz, $2400\sim2483.5$ MHz, and $5725\sim5850$ MHz bands: 1 Watt.

9.2 Measurement Procedure

The measurements are based on FCC KDB 558074 D01 DTS Meas Guidance v03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 9: Fundamental emission output power

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4440A	US45303156	2016-01-19	1 year
ETS- Lingerin	Power Sensor	7002-006	160097	2016-12-05	2 years
-	RF Cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. *Statement of Traceability: BACL Corp.* attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	23° C		
Relative Humidity:	42 %		
ATM Pressure:	102.5 KPa		

The testing was performed by Xiao Lin on 2016-12-20 in RF site.

9.5 Test Results

Average Output Power

Channel	Frequency (MHz)	Conducted Average Output Power (dBm)	Limit (dBm)				
802.11b mode							
1	1 2412 18.26						
6	2437	17.71	30				
11	2462	16.74	30				
	802.11g mode						
1	2412	15.49	30				
6	2437	20.10	30				
11	2462	15.22	30				
	802.11n-	-HT20 mode					
1	2412	15.02	30				
6	2437	20.07	30				
11	2462	13.79	30				

Note: Duty Cycle correction factor has already been added to the measurement.

Peak Output Power

Channel Frequency (MHz)		Conducted Peak Output Power (dBm)	Limit (dBm)	
Low	2402	5.61	30	
Middle	2440	5.74	30	
High	2480	5.29	30	

Please refer to the following plots for detailed test results.

BLE

Low Channel 2402 MHz

Middle Channel 2440 MHz

10 FCC §15.247(d) & ISED RSS-247 §5.5 - 100 kHz Bandwidth of Band Edges

10.1 Applicable Standards

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c).

According to ISED RSS-247 §5.5.In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

10.2 Measurement Procedure

The measurements are based on FCC KDB 558074 D01 DTS Meas Guidance v03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 13: Bandedge measurements

10.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4440A	US45303156	2016-01-19	1 year
-	RF Cable	-	-	Each time ¹	N/A
-	10 dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. *Statement of Traceability: BACL Corp.* attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Report Number: R1612055-247 DTS

Temperature:	23° C		
Relative Humidity:	42 %		
ATM Pressure:	102.5 KPa		

The testing was performed by Xiao Lin on 2016-12-20 in RF site.

10.5 Test Results

802.11b mode

Low Channel 2412 MHz

High Channel 2462 MHz

802.11g mode

Low Channel 2412 MHz

802.11n20 mode

Low Channel 2412 MHz

High Channel 2462 MHz

BLE

Low Channel 2402 MHz

11 FCC §15.247(e) & ISED RSS-247 §5.2(2) - Power Spectral Density

11.1 Applicable Standards

According to FCC §15.247(e) and RSS-247 §5.2 (2), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

11.2 Measurement Procedure

The measurements are based on FCC KDB 558074 D01 DTS Meas Guidance v03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10: Maximum power spectral density level in the fundamental emission.

11.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4440A	US45303156	2016-01-19	1 year
-	RF Cable	-	-	Each time ¹	N/A
-	10 dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. *Statement of Traceability: BACL Corp.* attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

11.4 Test Environmental Conditions

Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	102.5 KPa

The testing was performed by Xiao Lin on 2016-12-20 in RF site.

11.5 Test Results

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)			
802.11b mode						
Low	2412 -11.22		8			
Middle	2437	-11.93	8			
High	2462	-13.14	8			
802.11g mode						
Low	2412	-8.86	8			
Middle	2437	-5.36	8			
High	2462	-10.53	8			
802.11n-HT20 mode						
Low	2412	-10.6	8			
Middle	2437	-5.37	8			
High	2462	-11.1	8			
BLE						
Low	2402	-8.73	8			
Middle	2440	-8.62	8			
High	2480	-8.95	8			

Please refer to the following plots for detailed test results

802.11b mode

Low Channel 2412 MHz

Middle Channel 2437 MHz

Agilent

⊭Res BW 3 kHz

Copyright 2000-2012 Agilent Technologies

802.11g mode

Low Channel 2412 MHz

Freq/Channel Mkr1 2.417 00 GH: -8.86 dBm

VBW 9.1 kHz

Middle Channel 2437 MHz

802.11n20 mode

Low Channel 2412 MHz

Copyright 2000-2012 Agilent Technologies

Middle Channel 2437 MHz

BLE

Low Channel 2402 MHz

Middle Channel 2440 MHz

12 FCC §15.247(d) & ISED RSS-247 §5.5 & ISED RSS-GEN §8.9 - Spurious Emissions at Antenna Terminals

12.1 Applicable Standards

For FCC §15.247(d) in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

As per ISED RSS-247 §5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

12.2 Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

12.3 Test Equipment List and Details

Report Number: R1612055-247 DTS

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4440A	US45303156	2016-01-19	1 year
-	RF Cable	-	-	Each time ¹	N/A
-	10 dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. *Statement of Traceability: BACL Corp.* attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

12.4 Test Environmental Conditions

Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	102.5 KPa

The testing was performed by Xiao Lin on 2016-12-20 in RF site.

12.5 Test Results

Please refer to following plots.

802.11b mode

Low Channel 30MHz – 3 GHz

Low Channel 3 GHz - 26 GHz

Middle Channel 30 MHz - 3 GHz

Middle Channel 3 GHz – 26 GHz

High Channel 30 MHz – 3 GHz

High Channel 3 GHz – 26 GHz

802.11g mode

Low Channel 30 MHz – 3 GHz

Low Channel 3 GHz – 26 GHz

Middle Channel 30 MHz – 3 GHz

Middle Channel 3 GHz – 26 GHz

High Channel 30 MHz – 3 GHz

High Channel 3 GHz – 26 GHz

802.11n20 mode

Low Channel 30 MHz – 3 GHz

Low Channel 3 GHz – 26 GHz

Middle Channel 30 MHz – 3 GHz

Middle Channel 3 GHz – 26 GHz

High Channel 30 MHz – 3 GHz

High Channel 3 GHz – 26 GHz

BLE

Low Channel 30 MHz – 1 GHz

Low Channel 1 GHz – 26 GHz

Middle Channel 30 MHz – 1 GHz

Middle Channel 1 GHz – 26 GHz

High Channel 30 MHz – 1 GHz

High Channel 1 GHz – 26 GHz

13 Annex A (Informative) - A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of A2LA R222 - Specific Requirements - EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 30th day of August 2016.

Senior Director of Quality & Communications For the Accreditation Council Certificate Number 3297.02

Valid to September 30, 2018

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.