CSE208: Data Structures and Algorithms II Sessional

Online: Single source shortest path (B1/B2)

You are given a directed graph G=(V,E) on which each edge $(u,v) \in E$ has an an associated value r(u.v), which is a real number in the range $0 \le r(u,v) \le 1$ that represents the reliability of a communication channel from vertex u to vertex v. We interpret r(u,v) as the probability that the channel from u to v will not fail and we assume these probabilities are independent. Give an efficient algorithm to find the most reliable path between two given vertices.

Input: The first line of the input file will contain the number of vertices $n \leq 1000$ and the number of edges $m \leq 10000$ followed by m lines each containing origin u, end v and r(u,v) of an edge of the directed graph. The last line will contain a source vertex s and a destination vertex d.

Sample input and output:

7 12	Most reliable path score: 0.684
0 1 0.97	0 -> 3 -> 5 -> 6
0 2 0.98	
0 3 0.8	
1 3 0.5	
1 6 0.6	
2 4 0.7	
3 2 0.7	
3 5 0.9	
4 3 0.9	
5 6 0.95	
5 0 0.8	
6 2 0.9	
06	