

Test

Předmět	Matematický proseminář (verze 2019) Zima 2019 - Prezenční forma Matematický proseminář (verze 2019) Zima 2019 - Kombinovaná forma	Maximum za test: 100 bodů
Název testu	Závěrečný test	Celkem za test:
Jméno a příjmení		
Datum		Opravil(a):
Počet příloh		

Zadání - varianta 2

1. příklad

Množiny K, L, M znázorněte na číselné ose a určete $K \cup M$ a $L \cap K$.

1.
$$K = \langle -4 ; 5 \rangle, L = (-5 ; 3), M = (2 ; 6)$$

2.
$$K = \{x \in \mathbb{R} : -5 \le x \le -2\}, L = \{x \in \mathbb{R} : |x| < 1\}, M = \mathbb{R}_0^{+}$$

2. příklad

Vypočtěte:

3. 40% ze 7 je

$$4. -3^2 - 3^2 =$$

$$5. \ \frac{3}{8} - \frac{2}{3} + \frac{12}{72} =$$

Řešte rovnice (nezapomeňte na zkoušku):

1.
$$2(5x - 6) - 7 = 1$$

2.
$$\frac{5-x}{3} - \frac{6-4x}{5} = 0$$

3.
$$|x + 2| = 6$$

$$4.\ 2x^2 + 4x = 6$$

5.
$$x - \sqrt{x+1} = 5$$

Řešte soustavu rovnic (nezapomeňte na zkoušku a správný zápis výsledku):

$$2x + 3y = -8$$

$$3x - 2y = 27$$

5. příklad

Řešte nerovnice:

1.
$$5 + 2x \ge 5x - 4$$

$$2. \ 4x^2 - 12 > 0$$

$$3. x^2 - 3x - 4 < 0$$

Pro následující výrazy určete podmínky, je-li to nutné, a výrazy zjednodušte.

1.
$$(5a^4b^{-5}c^{-3}) \cdot (3a^{-4}b^2c^4) =$$

$$2. \frac{ax + ay - bx - by}{ax - ay - bx + by} =$$

$$3. \left(\frac{a}{a+1} + 1 \right) : \left(1 - \frac{3a^2}{1 - a^2} \right) =$$

7. příklad

Doplňte věty:

1. Součet velikostí vnitřních úhlů trojúh	helníku je stupňi	ů.
---	-------------------	----

2. Pro každý trojúhelník platí, že střed kružnice vepsané leží na průsečíku

3. Výška trojúhelníka je ______.

4. Obsah obdélníku o stranách *a* a *b* se vypočte ze vztahu ______ .

5. Určete počet všech průsečíků n navzájem různých přímek (tj. žádné dvě nejsou rovnoběžky).

6. Kolik os souměrnosti má kosočtverec? _____

7. Povrch krychle o hraně *a* vypočteme ze vztahu ______ .

8. Hranol s podstavou pravidelného osmiúhelníku má 2 podstavy a _____ bočních stěn.

9. Uveďte všechny možnosti pro vzájemnou polohu dvou přímek v prostoru (3D), pro každou možnost uveďte počet společných bodů.

Množina všech bodů roviny, které mají stejnou vzdálenost od dvou rovnoběžek je/jsou					
·					

Pro uvedené funkce určete definiční obor, obor hodnot, význačné body a načrtněte graf. (Význačné body má každá funkce jiné - jedná se například o průsečík(y) s osou x, průsečík s osou y, vrchol, střed, minima, maxima a podobně.)

- 1. $f_1 : y = 2x + 3$
- 2. $f_2: y = \frac{1}{x+2} 1$
- 3. $f_3: y = x^2 2$
- 4. f_{Δ} : y = |x + 1|
- 5. $f_5: y = \sin(x 1)$
- 6. $f_6: y = 2\cos x + 2$
- 7. f_7 : $y = e^X 4$
- 8. $f_8: y = \log_{10}(x 3)$
- 9. $f_9 : y = \text{tg}x$
- 10. f_{10} : $y = \cot gx$