Notes on the GSW code gsw_z_from_p for calculating height z from pressure p

Height z is measured positive upwards, so it is negative in the ocean. First, note that we use the following version of specific volume anomaly,

$$\delta = \hat{v}(S_{\Delta}, \Theta, p) - \hat{v}(S_{SO}, 0^{\circ}C, p). \tag{1}$$

That is, the reference Absolute salinity is the Absolute Salinity of the Standard Ocean, $S_{SO} = 35.165~04~{\rm g~km^{-1}}$, and the reference "temperature" is a fixed value of Conservative Temperature of zero degrees Celsius. Dynamic height anomaly is then defined by Eqn. (3.27.1) of IOC *et al.* (2010) as follows

$$\Psi = -\int_{P_0}^{P} \delta(p') dP', \qquad (2)$$

where $P_0 = 101325 \,\mathrm{Pa}$ is the standard atmosphere pressure.

The vertical integral of the hydrostatic equation ($P_z = -g \rho$) is

$$\int_{0}^{z} g(z') dz = -\int_{P_{0}}^{P} v(p') dP' = -\int_{P_{0}}^{P} \hat{v}(S_{SO}, 0^{\circ}C, p') dP' + \Psi$$

$$= -\hat{h}(S_{SO}, 0^{\circ}C, p) + \Psi.$$
(3)

We use the 25-term based expression (Eqn. A.30.6) for enthalpy, recognizing that because $\Theta = 0^{\circ}$ C many of the coefficients on pages 121-122 of the TEOS-10 Manual are zero, so the evaluation of Eqn. (A.30.6) is less computationally expensive than it may appear. Let us write the gravitational acceleration of Eqn. (D.3) of IOC *et al.* (2010) as

$$g = g(\phi, 0)(1 - \gamma z), \tag{4}$$

so that Eqn. (3) becomes

$$\hat{h}^{25}(S_{SO}, 0^{\circ}C, p) + g(\phi, 0)(z - \frac{1}{2}\gamma z^{2}) = \Psi.$$
 (5)

In the gsw_z_from_p code we ignore Ψ and solve this quadratic expression for the height z (using the standard quadratic solution equation, but for z^{-1} .) Note again that height z is negative in the ocean.

Notes on the GSW code gsw_p_from_z for calculating pressure *p* from height *z*

In the gsw_p_from_z code we evaluate pressure p using a modified Newton-Raphson iteration procedure so that the pressure so obtained is exactly consistent with the "forward" conversion of z from p via the function gsw_z_from_p.

A good starting point is the Saunders (1981) quadratic (note that the Saunders paper and the corresponding SeaWater code are for depth not height). So, given z we have a zeroth estimate of pressure, p_0 , from the Saunders (1981) quadratic expression. Now we want to solve

$$f(p) = 0$$
, where $f(p) = \hat{h}^{25}(S_{SO}, 0^{\circ}C, p) + g(\phi, 0)(z - \frac{1}{2}\gamma z^{2})$. (6)

The derivative of f(p) is

$$f'(p) = 10^4 \hat{v}^{25} (S_{SO}, 0^{\circ}C, p),$$
 (7)

and this is available from appendix K of the TEOS-10 Manual (and since $\Theta=0^{\circ}\text{C}$ $\hat{v}^{25}(S_{SO},0^{\circ}\text{C},p)$ is particularly simple to evaluate, having only 10 terms, not 25). The factor of 10^4 in Eqn. (7) is because we want to solve for pressure in dbar rather than in the natural SI unit for pressure of Pa . That is, Eqn. (7) is the derivative of f(p) with respect to pressure p in dbar.

Calculating f(p) is computationally expensive, but calculating f'(p) is cheap, so after finding p_0 we then evaluate $f(p_0) = \hat{h}^{25}(S_{SO}, 0^{\circ}C, p_0) + g(\phi, 0) \left(z - \frac{1}{2}\gamma z^2\right)$, then calculate $f'(p_0) = 10^4 \,\hat{v}^{25}(S_{SO}, 0^{\circ}C, p_0)$ and use these values of $f(p_0)$ and $f'(p_0)$ to form an intermediate pressure estimate p_1 as

$$p_1 = p_0 - f(p_0)/f'(p_0)$$
 (8)

Then we form $p_{\rm m}=0.5(p_0+p_1)$ and evaluate $f'(p_{\rm m})=10^4\,\hat{v}^{25}\big(S_{\rm SO},0^{\circ}{\rm C},p_{\rm m}\big)$ and use $f(p_0)$ and $f'(p_{\rm m})$ to get p_2 from

$$p_2 = p_0 - f(p_0)/f'(p_m) . (9)$$

This is one full step of the "modified Newton-Raphson" iteration procedure and this one modified step gives pressure to better than 1.6×10^{-10} dbar (which is essentially machine precision) down to a height z of -8000m. The gsw_p_from_z function performs this one full iteration of the modified Newton-Raphson iteration.