Graph Machine Learning for Financial Crime Analysis

KDD Finance Day Aug 26, 2024

Kubilay Atasu Associate Professor, Data Intensive Systems Software Technology Department

Enabling AI in Financial Transaction Processing

You probably used IBM Z today!

© Copyright IBM Corporation

AI Toolkit for IBM Z and LinuxOne

Detecting Financial Crime in Real Time!

Credits(2019-2023)

SNSF Project 172610: Hardware-accelerated recursive programs (PI: K. Atasu)

PhD thesis by J. Blanusa, "Acceleration of graph pattern mining and applications to financial crime", Aug. 2023.

Publications in VLDB 2020, SPAA 2022, TOPC 2023, NeurIPS 2023

- Winner of the 2023 Fritz Kutter Award: Best Industry Related Doctoral Thesis in Computer Science in Switzerland
- IBM Outstanding Accomplishment Award for Contributions to System Z AI Offerings (Real-time AML & Fraud Detection)

Trends in Financial Crime Analysis

Trends

Legacy rule-based systems are being replaced by agile AI-based systems Know your customer (KYC) and customer due diligence (CDD) mechanisms Follow the data instead of following the money, knowledge graphs and AI! Convergence between AML and other financial fraud detection solutions

Challenges

Detecting constantly evolving crime patterns in real-time Criminal networks crossing bank & national boundaries Building cost-efficient and sustainable AI technologies Regulatory Compliance, Trustworthy and Secure AI

Example: Money Laundering

UN estimates that 2—5% of the global GDP is laundered each year.

Example: Money Laundering

UN estimates that 2—5% of the global GDP is laundered each year.

Known Suspicious Financial Transaction Patterns

How Does Graph Machine Learning Help?

Tabular representation of financial transactions

Trans. ID	Timestamp	Source bank ID	Source Account	Target bank ID	Target Account	Amount	Currency	Payment type
0	3 MAY 2019 12:45	1	Α	1	С	1400	USD	Cheque
1	15 MAY 2019 07:34	2	В	1	С	710	EUR	ACH
2	18 MAY 2019 16:55	3	E	1	С	950	USD	Credit card
3	1 JUN 2019 10:06	1	С	3	D	1200	CHF	Wire
4	27 JUN 2019 13:18	2	F	3	D	2300	EUR	Credit card
5	7 JUL 2019 11:14	3	D	1	Α	1100	USD	Credit card

New Transaction

7 JUL 2019

Pattern Discovery

Accuracy: $9\% \rightarrow 0.73\%$

Dataset size: 100 M transactions. Illicit rate: 0.3%. Model: LightGBM. Metric: minority (illicit) class F1-score.

AML Accuracy Improvements using Graph ML

Synthetic AML dataset with 100M transactions

True Positive Rate (TPR) vs False Positive Rate (FPR)

raw features [%]

TPR	FPR	F1
60	94.7	9.7
70	95.8	7.9
80	96.7	6.4
90	97.4	5.0

graph features [%]

TPR	FPR	F1
60	15.6	70.2
70	23.5	73.1
80	40.6	68.2
90	72.3	42.4

Why does accuracy matter?

- Higher TPR → less regulatory risk!
- Lower FPR → more cost savings!

Explaining The Predictions of Graph ML

Graph Machine Learning in IBM AI Toolkit for Z

Can Graph Neural Networks Help?

Why Graph Neural Networks?

Automation No feature engineering

No (less) domain knowledge required

Can detect "unestablished" patterns

Differentiable – connect with LLMs

Provably Powerful GNNs for Directed Multigraphs

Theorem: Combination of reverse MP, ego IDs, and ports enables detection of any directed subgraph pattern.

AML and Ethereum Phishing Fraud Detection Results

Model	AML Small HI	AML Small LI	AML Medium HI	AML Medium LI	ETH	
LightGBM+GFs (Altman et al. 2023) XGBoost+GFs (Altman et al. 2023)	$62.86 \pm 0.25 \\ 63.23 \pm 0.17$	$20.83 \pm 1.50 \\ 27.30 \pm 0.33$	$59.48 \pm 0.15 \ 65.70 \pm 0.26$	$20.85 \pm 0.38 \ 28.16 \pm 0.14$	53.20 ± 0.60 49.40 ± 0.54	
Using IBM's Graph Feature Preprocessor [1]						
Multi-GIN+EU	64.79 ± 1.22	26.88 ± 6.63	58.92 ± 1.83	16.30 ± 4.73	48.37 ± 6.62	

Our Multi-GNN Models (Without Graph Features) [2]

Multi-GNNs achieve 5-15% higher accuracy without any feature engineering! Multi-GNNs can automatically discover discriminative graph features!

What's Next?

Relational Multimodal Learning

Image Source: https://plaid.com/resources/banking/what-is-kyc/

Modality: Text

This is a partnership between..., which owns properties in... Its main customers are

Technology: Transformers

Modality: Table

Customer ID	Туре	Function	Bank Acct.	Credit Card

Technology: Tabular Transformers

Technology: Graph Neural Networks

Transformers + GNNs for Financial Fraud Detection?

Foundation Models for AML & Financial Fraud Detection?

Fig. Source: On the Opportunities and Risks of Foundation Models: https://arxiv.org/abs/2108.07258

Graph Machine Learning for Financial Crime Analysis

KDD Finance Day Aug 26, 2024

Kubilay Atasu Associate Professor, Data Intensive Systems Software Technology Department

