

Design of Coupled Line Bandpass Filters

Design of a Coupled Line BPF

TX line ABCD Matrix

$$\begin{array}{ccc}
& & & & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

☐ A single coupled line is approximated as:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \cos \theta & j Z_0 \sin \theta \\ \frac{j \sin \theta}{Z_0} & \cos \theta \end{bmatrix} \begin{bmatrix} 0 & -\frac{j}{J} \\ -jJ & 0 \end{bmatrix} \begin{bmatrix} \cos \theta & j Z_0 \sin \theta \\ \frac{j \sin \theta}{Z_0} & \cos \theta \end{bmatrix}$$

Transmission line

Admittance inverter: A quarter – wave length of transmission of characteristic impedance, $\frac{1}{I} = Z_0$

Design of a Coupled Line BPF

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \left(JZ_0 + \frac{1}{JZ_0}\right)\sin\theta\cos\theta & j\left(JZ_0^2\sin^2\theta - \frac{\cos^2\theta}{J}\right) \\ j\left(\frac{1}{JZ_0^2}\sin^2\theta - J\cos^2\theta\right) & \left(JZ_0 + \frac{1}{JZ_0}\right)\sin\theta\cos\theta \end{bmatrix}. \tag{8.104}$$

The image impedance Z_i at the center frequency $(\theta = \frac{\pi}{2})$

The propagation constant:

$$\cos \beta = A = \text{cos } \beta = A = \text{from } e^{\gamma} = \sqrt{AD} - \sqrt{BC})$$

Now consider a BPF composed of a cascade of N+1 coupled line sections:

Equivalent Ckts:

An admittance inverter will transform a shunt LC circuit to a series LC circuit

From here we can use the lumped element Lowpass prototype to determine values.

$$L'_1 = \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$L_2' = \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$C_1' = \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$C_2' = \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

where
$$\Delta = \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

(i.e. fractional bandwidth)

General Formulas are:

$$z_{0}J_{1} = \sqrt{\frac{\pi\Delta}{2g_{1}}}$$

$$z_{0}J_{n} = \frac{\pi\Delta}{2\sqrt{g_{n-1}g_{n}}}$$

$$z_{0}J_{N+1} = \sqrt{\frac{\pi\Delta}{2g_{N}g_{N+1}}}$$

$$z_{0_{e}} = z_{0}[1 + Jz_{0} + (Jz_{0})^{2}]$$

 $z_{0_0} = z_0[1 - Jz_0 + (Jz_0)^2]$

TABLE 84

TABLE 8.4 Element Values for Equal-Ripple Low-Pass Filter Prototypes ($g_0=1,\,\omega_c=1,\,N=1$ to 10, 0.5 dB and 3.0 dB ripple)

0.5 dB Ripple											
N	g_1	g_2	g_3	g_4	g_5	g_6	g 7	g_8	g 9	g_{10}	g_{11}
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841								
3	1.5963	1.0967	1.5963	1.0000							
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000					
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000			
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000	
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.9841

X) Design a coupled line BPF with N=3 and 0.5 dB equal response. The center frequency is 2.0 GHz, the bandwidth is 10 % and $Z_o = 50 \Omega$. $\Delta = 0.1 \text{ (given)}$

TABLE 8.4 Element Values for Equal-Ripple Low-Pass Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, N = 1 to 10, 0.5 dB and 3.0 dB ripple)

0.5 dB Ripple											
N	g_1	g_2	g_3	g_4	g 5	g_6	g 7	<i>g</i> ₈	g 9	g_{10}	g_{11}
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841								
3	1.5963	1.0967	1.5963	1.0000							
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000					
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000			
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000	
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.9841

Ex) Design a coupled line BPF with N=3 and 0.5 dB equal response. The center frequency is 2.0 GHz, the bandwidth is 10 % and $Z_o = 50 \Omega$. $\Delta = 0.1 \text{ (given)}$

What is the attenuation at 1.8 GHz?

Attenuation versus normalized frequency for equal-ripple Then the value on the horizontal scale of Figure 8.27a is (a) 0.5 dB ripple level.

$$\left| \frac{\omega}{\omega_c} \right| - 1 = |-2.11| - 1 = 1.11,$$

which indicates an attenuation of about 20 dB for N=3.

Design of Stepped Impedance Low Pass Filters

So the series induc-

tors of a low-pass prototype can be replaced with high-impedance line sections ($Z_0 = Z_h$), and the shunt capacitors can be replaced with low-impedance line sections ($Z_0 = Z_\ell$).

Design of a Coupled Line BPF

Stepped Impedance Low Pass Filters

- -Alternating sections of very high and very low characteristic impedances.
- Hi z, Low z filters
- -Easy to design when compared to stubs
- -Takes up less space

-Limited to applications where sharp cutoff is not required. (rejecting out – of – band mixer products)

How to design

- Choose the highest & lowest impedances that are practical.
 Series inductor → high impedance line
 Shunt capacitor → low impedance line
- 2. Solve for electrical lengths

$$\beta l = \frac{LR_0}{Z_h}$$
$$\beta l = \frac{CZ_L}{R_0}$$

L and C: g values from prototype

$$R_0$$
 = filter impedance > 50Ω

- 3. Solve for widths (material, ϵ_r , thickness, Impedance)
- 4. Solve for $l = \frac{2\pi}{\lambda_a}/\beta$

EXAMPLE 8.6 STEPPED-IMPEDANCE FILTER DESIGN

Design a stepped-impedance low-pass filter having a maximally flat response and a cutoff frequency of 2.5 GHz. It is desired to have more than 20 dB insertion loss at 4 GHz. The filter impedance is 50 Ω ; the highest practical line impedance is 120 Ω , and the lowest is 20 Ω . Consider the effect of losses when this filter is implemented with a microstrip substrate having d = 0.158 cm, $\epsilon_r = 4.2$, $\tan \delta = 0.02$, and copper conductors of 0.5 mil thickness.

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, N = 1 to 10)

N	g_1	g_2	g_3	g_4	g_5	g_6	g 7	g_8	g_9	g_{10}	g_{11}
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

Lab 6

☐ Using the filter design in Example 8.6, obtain the S11 and S21 using Sonnet.

> Use "Rectangle" function shown below to create the geometry

➤ Use the Box setting simulate to the figure below

> Run the simulation between 0.1 to 5.0 GHz

Stepped-Impedance Low-Pass Filter (Due April 13th Midnight Online Submission)

☐ Name:

☐ Geometry

☐ Simulation Results (S11 and S21)

Discuss the simulation results

- 3.