Fraudulent Claim Detection Report

Submitted By - Yoshita Dhanwaria

1. Problem Statement & Business Objective

Global Insure processes thousands of insurance claims daily and seeks to identify potentially fraudulent claims before approval. The key objectives were:

- Analyze historical claims to uncover patterns indicative of fraud.
- Identify the most predictive features for fraudulent behaviour.
- Build and evaluate classification models to flag high-risk claims early.

2. Data Overview

- Source: insurance_claims.csv, containing policy details, incident information, customer demographics, claim amounts, and a binary target fraud_reported (Y/N).
- Training-Validation Split:
 - Training set: 699 × 0.75 ≈ 525 samples
 - Validation set: 699 × 0.25 ≈ 174 samples
- Class Balance:
 - Fraudulent: ~25%
 - Non-fraudulent: ~75%
 - Imbalance ratio ≈ 3 : 1 (majority : minority)

3. Data Preparation & Cleaning

- Missing Values
 - Identified and dropped columns with excessive missingness.
 - Imputed or removed rows for remaining nulls as appropriate.
 - authorities_contacted has None as one of the categories, but np.nan interprets
 None as null. Therefore, we will skip all rows where authorities_contacted is np.nan.
 - Empty columns: ['_c39']

- Redundant & Illogical Entries
 - Removed duplicate records.
 - Negative values in the dataset:

umbrella_limit 1

capital-loss 525

dtype: int64

Number of rows with negative values: 526

Dropping rows with negative values in numeric columns (excluding 'capital loss')

Dataset shape after removing rows with negative values: (999, 39)

- Dropped features with constant or near-constant values.
- Columns with their percentage of unique values:

policy_number: 1.0000 (999 / 999)

incident_location: 1.0000 (999 / 999)

insured_zip: 0.9950 (994 / 999)

policy_annual_premium: 0.9910 (990 / 999)

policy_bind_date: 0.9510 (950 / 999)

total_claim_amount: 0.7628 (762 / 999)

vehicle_claim: 0.7257 (725 / 999)

injury_claim: 0.6386 (638 / 999)

property_claim: 0.6256 (625 / 999)

months_as_customer: 0.3914 (391 / 999)

capital-loss: 0.3544 (354 / 999)

capital-gains: 0.3383 (338 / 999)

incident_date: 0.0601 (60 / 999)

age: 0.0460 (46 / 999)

auto_model: 0.0390 (39 / 999)

incident_hour_of_the_day: 0.0240 (24 / 999)

auto_year: 0.0210 (21 / 999)

insured_hobbies: 0.0200 (20 / 999)

insured_occupation: 0.0140 (14 / 999)

auto_make: 0.0140 (14 / 999)

umbrella_limit: 0.0100 (10 / 999)

insured_education_level: 0.0070 (7 / 999)

incident_state: 0.0070 (7 / 999)

incident_city: 0.0070 (7 / 999)

insured_relationship: 0.0060 (6 / 999)

incident_type: 0.0040 (4 / 999)

collision_type: 0.0040 (4 / 999)

incident_severity: 0.0040 (4 / 999)

authorities_contacted: 0.0040 (4 / 999)

number_of_vehicles_involved: 0.0040 (4 / 999)

witnesses: 0.0040 (4 / 999)

policy_state: 0.0030 (3 / 999)

policy_csl: 0.0030 (3 / 999)

policy_deductable: 0.0030 (3 / 999)

property_damage: 0.0030 (3 / 999)

bodily_injuries: 0.0030 (3 / 999)

police_report_available: 0.0030 (3 / 999)

insured_sex: 0.0020 (2 / 999)

fraud_reported: 0.0020 (2 / 999)

Columns with high cardinality (>80% unique values):

['policy_number', 'policy_bind_date', 'policy_annual_premium', 'insured_zip',

'incident_location']

Removing 5 columns with high cardinality

Dataset shape after removing high cardinality columns: (999, 34)

- Data Types
 - Converted date fields to datetime objects.
 - Updated data types for date columns: incident_date: datetime64[ns]
 - Cast categorical columns to category dtype.

4. Exploratory Data Analysis (EDA)

• Univariate Analysis

Observations from histogram plots:

months_as_customer:

- Mean: 202.57, Median: 199.00

- Skewness: 0.37

- Distribution appears approximately symmetric

age:

- Mean: 38.85, Median: 38.00

- Skewness: 0.51

- Distribution is positively skewed (right-tailed)

policy_deductable:

- Mean: 1150.21, Median: 1000.00

- Skewness: 0.45

- Distribution appears approximately symmetric

umbrella_limit:

- Mean: 1077253.22, Median: 0.00

- Skewness: 1.79

- Distribution is positively skewed (right-tailed)

capital-gains:

- Mean: 25506.01, Median: 0.00

- Skewness: 0.45

- Distribution appears approximately symmetric

capital-loss:

- Mean: -26458.37, Median: -20800.00

- Skewness: -0.41

- Distribution appears approximately symmetric incident_hour_of_the_day:

- Mean: 11.53, Median: 12.00

- Skewness: -0.01

Distribution appears approximately symmetric number_of_vehicles_involved:

- Mean: 1.83, Median: 1.00

- Skewness: 0.49

Distribution appears approximately symmetric bodily_injuries:

- Mean: 0.97, Median: 1.00

- Skewness: 0.06

- Distribution appears approximately symmetric witnesses:

- Mean: 1.46, Median: 1.00

- Skewness: 0.06

- Distribution appears approximately symmetric total_claim_amount:

- Mean: 52923.61, Median: 58300.00

- Skewness: -0.57

- Distribution is negatively skewed (left-tailed)

injury_claim:

- Mean: 7508.73, Median: 6780.00

- Skewness: 0.27

- Distribution appears approximately symmetric

property_claim:

- Mean: 7399.20, Median: 6780.00

- Skewness: 0.33

- Distribution appears approximately symmetric vehicle_claim:

- Mean: 38015.68, Median: 42420.00

- Skewness: -0.59

- Distribution is negatively skewed (left-tailed)

auto_year:

- Mean: 2004.96, Median: 2005.00

- Skewness: -0.00

- Distribution appears approximately symmetric

• Class Balance

Class imbalance analysis:

Majority class (N): 526 samples (75.25%)

Minority class (Y): 173 samples (24.75%)

Imbalance ratio (majority:minority): 3.04:1

The dataset shows significant class imbalance. This may affect model performance.

Consider using techniques such as:

- Resampling methods (oversampling minority class or undersampling majority class)
- 2. Using class weights during model training
- 3. Using algorithms that handle imbalanced data well
- 4. Using evaluation metrics appropriate for imbalanced datasets (e.g., precision, recall, F1-score, AUC-ROC)

Correlation Analysis

 Heatmaps indicated moderate correlations between certain numeric features (e.g., injuries_vehicles_interaction and total_claim_amount).

• Highly correlated feature pairs (|correlation| > 0.7):

age & months_as_customer: 0.920

injury_claim & total_claim_amount: 0.818

property_claim & total_claim_amount: 0.815

vehicle_claim & total_claim_amount: 0.984

vehicle_claim & injury_claim: 0.743

vehicle_claim & property_claim: 0.742

Bivariate Analysis

Feature importance based on variance in fraud rates:

incident_severity: 655.5417

insured_hobbies: 437.9118

auto_model: 138.9059

incident_type: 127.9124

collision_type: 97.4883

incident_state: 73.1274

property_damage: 39.8805

insured_occupation: 39.3522

auto_make: 27.8186

insured_relationship: 24.6759

authorities_contacted: 23.6709

incident_city: 14.4581

policy_csl: 6.0253

insured_education_level: 5.3411

police_report_available: 2.156

policy_state: 0.2506

insured_sex: 0.0773

5. Feature Engineering

• Resampling: explored SMOTE and under sampling to address imbalance.

Class distribution before resampling:

fraud_reported

N 526

Y 173

Name: count, dtype: int64

Class distribution after resampling:

fraud_reported

N 526

Y 526

Name: count, dtype: int64

Original training set shape: (699, 33)

Resampled training set shape: (1052, 33)

• Feature Creation:

- o Engineered interaction terms (e.g., time between policy inception and incident).
- o Grouped low-frequency categories into "Other" for stability.
- o Created date-based, claim ratio, time-of-day, interaction, age group, customer tenure features.

Training set shape after feature creation: (1052, 46)

Test set shape after feature creation: (300, 46)

New features:

o ['incident_day_of_week', 'incident_month', 'is_weekend',

'vehicle_age', 'injury_claim_ratio', 'property_claim_ratio',

'vehicle_claim_ratio', 'vehicles_witnesses_interaction',

'injuries_vehicles_interaction', 'high_claim_amount']

Handle Redundant Columns

o Found 3 highly correlated pairs (correlation > 0.85):

- age & months_as_customer: 0.9271
- vehicle_claim & total_claim_amount: 0.9803
- vehicle_age & auto_year: -1.0000

Dropping 'incident_date' as we've created derived features from it:

incident_day_of_week, incident_month, is_weekend

Dropping 'auto_year' as we've created derived features from it: vehicle_age

Dropping 'incident_hour_of_the_day' as we've created derived features from it: incident_time_of_day

Dropping 'vehicle_claim' due to high correlation (0.9803) with 'total_claim_amount'

Dropping 'months_as_customer' due to high correlation (0.9271) with 'age'

Removed 5 redundant columns: ['incident_hour_of_the_day','incident_date',

'vehicle_claim', 'months_as_customer', 'auto_year']

Training data shape after removing redundant columns: (1052, 41)

Testing data shape after removing redundant columns: (300, 41)

Combine values in Categorical Columns

o Found 20 categorical features to analyze for combining values and updated below column.

Column 'auto_model'

Total unique values: 39

Rare categories (< 2% of data): 11

Reduced categories from 39 to 29

Top 5 categories after combining: {'Other': 166, 'A5': 50, 'F150': 49, 'RAM': 43,

'A3': 43}

o Modified 2 categorical columns by combining rare categories

• incident_severity value distribution:

Major Damage: 41.3%

Minor Damage: 28.6%

Total Loss: 23.9%

Trivial Damage: 6.2%

• insured_hobbies value distribution:

chess: 9.6%

paintball: 6.9%

reading: 6.2%

bungie-jumping: 6.1%

exercise: 5.3%

skydiving: 5.2%

yachting: 5.0%

base-jumping: 5.0%

board-games: 4.8%

hiking: 4.8%

polo: 4.7%

cross-fit: 4.7%

video-games: 4.6%

movies: 4.5%

golf: 4.5%

kayaking: 4.4%

camping: 4.3%

sleeping: 3.9%

dancing: 3.7%

Other: 1.9%

■ incident_type value distribution:

Multi-vehicle Collision: 44.9%

Single Vehicle Collision: 41.2%

Parked Car: 7.7%

Vehicle Theft: 6.3%

auto_make value distribution:

Ford: 9.2%

Audi: 8.8%

Chevrolet: 8.7%

Saab: 8.2%

Dodge: 8.1%

Nissan: 7.9%

Suburu: 7.5%

BMW: 7.3%

Mercedes: 6.7%

Accura: 6.3%

Toyota: 5.8%

Jeep: 5.7%

Volkswagen: 5.4%

Honda: 4.4%

• insured_relationship value distribution:

other-relative: 18.3%

wife: 17.5%

not-in-family: 17.0%

unmarried: 16.3%

husband: 15.9%

own-child: 15.1%

• Encoding & Scaling:

o One-hot encoded ~20 categorical variables.

Cardinality of each categorical column:

policy_state: 3 unique values

policy_csl: 3 unique values

insured_sex: 2 unique values

insured_education_level: 7 unique values

insured_occupation: 14 unique values

insured_hobbies: 20 unique values

insured_relationship: 6 unique values

incident_type: 4 unique values

collision_type: 4 unique values

incident_severity: 4 unique values

authorities_contacted: 5 unique values

incident_state: 7 unique values

incident_city: 7 unique values

property_damage: 3 unique values

police_report_available: 3 unique values

auto_make: 14 unique values

auto_model: 29 unique values

incident_time_of_day: 4 unique values

age_group: 4 unique values

customer_tenure_group: 3 unique values

- Shape of X_train before creating dummy variables: (1052, 41)
- Shape of X_train after creating dummy variables: (1052, 147)
- Created dummy variables for dependent feature in training data {'Y': 1, 'N': 0}

o Standardized numeric features via Min-Max scaling.

Feature Selection:

o Logistic Regression + RFECV: Recursive elimination with cross-validation selected the top ~52 predictors.

Optimal number of features: 52 ['policy_csl_250/500', 'insured_education_level_JD', 'insured_education_level_MD', 'insured_education_level_PhD', 'insured_occupation_exec-managerial', 'insured_occupation_farming-fishing', 'insured_occupation_handlers-cleaners', 'insured_occupation_other-service', 'insured_occupation_priv-house-serv', 'insured_hobbies_camping', 'insured_hobbies_chess', 'insured_hobbies_cross-fit', 'insured_hobbies_dancing', 'insured_hobbies_golf', 'insured_hobbies_movies', 'insured_hobbies_sleeping', 'insured_hobbies_video-games', 'insured_relationship_not-in-family', 'insured_relationship_own-child', 'insured_relationship_unmarried', 'incident_type_Vehicle Theft', 'collision_type_Side Collision', 'collision_type_Unknown', 'incident_severity_Minor Damage', 'incident_severity_Total Loss', 'incident_severity_Trivial Damage', 'incident_state_NY', 'incident_state_OH', 'incident_state_PA', 'incident_state_WV', 'incident_city_Northbrook', 'property_damage_Unknown', 'property_damage_YES', 'auto_make_Audi', 'auto_make_BMW', 'auto_make_Chevrolet', 'auto_make_Nissan', 'auto_model_A5', 'auto_model_Camry', 'auto_model_Civic', 'auto_model_F150', 'auto_model_Fusion', 'auto_model_Grand Cherokee',

'auto_model_Legacy', 'auto_model_MDX', 'auto_model_Other',

'auto_model_Pathfinder', 'auto_model_Silverado', 'auto_model_Ultima', 'auto_model_Wrangler', 'auto_model_X5', 'age_group_Young'
]

o Random Forest: Feature importance thresholding (0.01) retained 28 variables. Hyper Parameter Tuning

Hyperparameter tuning

Fitting 5 folds for each of 972 candidates, totalling 4860 fits

Best Parameters:

Best ROC-AUC Score: 0.9342

6. Model Building & Evaluation

Model	Validation Accuracy	Sensitivity (TPR)	Specificity (TNR)	Precision	Recall	F1-Score
Logistic Regression Optimized cutoff (0.5282)	0.8000	0.6757	0.8407	0.5814	0.6757	0.6250
Random Forest (Hyperparameter Tuning)	0.7233	0.3378	0.8496	0.4237	0.3378	0.3759

Logistic Regression (Optimized cutoff at 0.5282)

• Validation Accuracy: 80.00%

• Sensitivity (Recall): 67.57% → Effectively captures true fraud cases

• **Specificity:** 84.07% → Accurately identifies non-fraud cases

• **Precision:** 58.14% → Moderate confidence in flagged frauds

• **F1-Score:** 62.50% → Balanced trade-off between precision and recall

Random Forest

• Validation Accuracy: 72.33%

• Sensitivity (Recall): 33.78% → Misses many fraudulent cases

• **Specificity:** 84.96% → Slightly higher than Logistic Regression

• **Precision:** 42.37% → Lower confidence in fraud predictions

• **F1-Score:** 37.59% → Poor balance between precision and recall

7. Conclusion & Recommendations

Best Model: Logistic Regression with Threshold Tuning

Outperforms Random Forest across key metrics:

o Sensitivity: 67.57% vs 33.78% → Captures nearly twice as many fraud cases

o Precision: 58.14% vs 42.37% → Greater confidence in flagged claims

o F1-Score: 62.50% vs 37.59% → Stronger balance of precision and recall

o Accuracy: 80.00% vs 72.33% → Better overall performance

Deployment Recommendation

- Use optimized threshold of 0.5282 to flag suspicious claims
- Integrate model into claims processing pipeline to trigger manual reviews
- Acceptable trade-off:
 - o 41.86% false positives among flagged cases
 - o But 67.57% of actual fraud cases successfully identified