RLisbonaMSDS6306_Week4_BootstrapSampling

Randy Lisbona June 4, 2016

Create the normal and exponential sample datasets

Use rnorm and rexp to create some sample datasets

Print the datasets, inlcude the first 10 records from each dataset

```
## [1] 10.467260 10.808825 10.205415 9.419556 8.633051 10.397145 9.996729
## [8] 10.049278 10.869570 10.101158

## [1] 10.230742 8.969097 10.113847 9.929830 10.223464 12.640750 9.692279
## [8] 10.121155 10.613238 9.699977

## [1] 3.3686244 2.0671982 0.2060937 0.2934132 0.2291777 0.7628933 0.3188779
## [8] 0.3770723 0.6897965 0.4241370

## [1] 2.16463483 1.13422715 2.20406494 0.29421494 0.77443515 0.03714913
## [7] 1.27610055 0.22577942 0.30506875 3.53379319
```

Explore the data with Plot of the normal and exponential sample datasets

Use plot and hist to compare the datasets set x and y limits to make it easier to compare plots

Sort the records ascending and plot again. Include histograms

set x and y limits to make it easier to compare plots

Resample the datasets, compare original histogram to resampled histogram # notice that the resampled histograms closely resemble a normal distribution, illustrating the central limit theorem

[1] 9.933821

Original dataset

Bootstrap resampled

Normal Dist, n=30, mu=10, sd=1

Normal Dist

```
## [1] "Original dataset"
## vars n mean sd median trimmed mad min max range skew kurtosis
## 1 1 30 9.93 0.91 10 9.88 0.65 8.1 12.3 4.19 0.63 0.71 0.
## [1] "Resampled dataset"
```

vars n mean sd median trimmed mad min max range skew kurtosis ## 1 1 1000 9.93 0.16 9.92 9.92 0.16 9.51 10.49 0.98 0.26 -0.06 ## se ## 1 0.01

[1] 10.22344

Original dataset

Bootstrap resampled

Normal Dist, n=10, mu=10, sd=1

Normal Dist

```
## [1] "Original dataset"
                    sd median trimmed mad min max range skew kurtosis
    vars n mean
       1 10 10.22 0.96 10.12
                              10.08 0.45 8.97 12.64 3.67 1.36
##
     se
## 1 0.3
## [1] "Resampled dataset"
                    sd median trimmed mad min max range skew kurtosis
            n mean
## 1
       1 1000 10.21 0.27 10.19
                                  10.2 0.27 9.6 11.21 1.61 0.48
##
      se
## 1 0.01
## [1] 1.058215
```

Original dataset

Bootstrap resampled

Exponential, n=30, lambda = 1.0

Exponential

```
## [1] "Original dataset"
```

[1] "Resampled dataset"

vars n mean sd median trimmed mad min max range skew kurtosis ## 1 1 1000 1.06 0.22 1.04 1.05 0.23 0.52 1.82 1.31 0.44 -0.04

se

1 0.01

[1] 1.194947

Bootstrap resampled


```
## [1] "Original dataset"
                   sd median trimmed mad min max range skew kurtosis
##
     vars n mean
       1 10 1.19 1.13
                                1.05 1.03 0.04 3.53
                                                       3.5 0.75
## [1] "Resampled dataset"
            n mean
                     sd median trimmed mad min max range skew kurtosis
        1 1000 1.21 0.35
                          1.19
                                   1.2 0.35 0.26 2.51 2.26 0.29
##
       se
## 1 0.01
```

Conclusion

The bootstrap method can be used to create a sample distribution from small data sets that approximates a normal sample from the original population, demonstrating the central limit theorem.