Regression analysis on oceanographic dataset

Group members: Diana Gorshechnikova and Tatiana Parashina

The California Cooperative Oceanic Fisheries Investigations (CalCOFI) dataset

- Original dataset has 74 columns and 864863 observations;
- Response variable is water temperature;
- Increasing ocean temperatures severely affect marine species and ecosystems;
- Rising temperatures can contribute to coral bleaching and the loss of breeding grounds for marine fishes and mammals;
- Machine learning can be useful to predict what contributes to water temperature increase and to mitigate the rising temperatures in a timely fashion.

Minimum t	Maximum t	Mean t
1.44 C	31.14 C	10.8 C

The predictors are: salinity, oxygen, phosphate, silicate, nitrate and nitrite, chlorophyll, transmissometer, PAR, C14 primary productivity, phytoplankton biodiversity, zooplankton biomass, zooplankton biodiversity, etc.

- N = 1300
- P = 40

R-Squared of Train and Test

Train and Test Residuals

Importance of the parameters

Test R2 and time

	90% Test R2	Time (in sec)
Lasso	(0.85056 - 0.97669)	1.36
El-net	(0.8169 - 0.9473)	1.30
Ridge	(0.5393 - 0.7524)	1.48
RF	(0.99056 - 0.99206)	3.94

Concluding remarks

- In terms of time vs. efficiency Lasso gives the highest R2 and the fastest time which makes it the best model to predict water T;
- Ridge has the worst performance;
- Elastic net and lasso agree on most important features.