$^{\prime}$ תורת החישוביות (236343) – מועד א $^{\prime}$ חורף תשע $^{\prime\prime}$ ח

מרצים: פרופ' אלי בן ששון (אחראי), פרופ' יובל ישי.

מתרגלים: אוהד טלמון (אחראי), סתיו פרלה, מיכל דורי, אבי קפלן.

הנחיות:

- הבחינה היא עם חומר סגור. חל איסור מפורש על החזקת אמצעי תקשורת נייד, דוגמת טלפון סלולרי, ברשות הנבחן בעת הבחינה.
- משך הבחינה שלוש שעות. השתדלו לא להתעכב יתר על המידה על סעיף מסוים, כדי לצבור את מרב הנקודות בזמן העומד לרשותרם
 - לשימושכם מצורף למחברת זו דף עזר (בעמוד האחרון).
 - אפשר להשתמש בכל כלי כתיבה, אולם אם הוא יהיה חלש מכדי להיקלט בסורק לא תהיה אפשרות לערער על הבדיקה.
- בשאלות בהן יש לתאר מכונת טיורינג, ניתן להסתפק בתיאור מילולי משכנע של אופן פעולת המכונה, ואין צורך להגדיר את פונקציית מעברים.
- מותר להשתמש בכל טענה שהוכחה בהרצאה או בתרגול, בתנאי שמצטטים אותה באופן מדויק, אלא אם נדרשתם במפורש להוכיחה.
 - ."לא יודע". פיתן לקבל בכל שאלה 20% מהניקוד עבור כתיבת "לא יודע". •

בהצלחה!

1 שאלה 1, 17 נק' (ש"ב)

עבור כל אחת מהטענות הבאות קבעו האם היא נכונה, לא נכונה או שקולה לפתרון בעיה פתוחה, והוכיחו תשובתכם.

(נק') 5) . $\overline{VC} \notin ext{NPSPACE}$.1

נ, אס קיימת ל-SAT מ"ט הרצה בזמן $n^{O(\log n)}$ אז לכל $n^{O(\log n)}$ אז הרצה בזמן מ"ט הרצה ל-

7) . G הארוך ביותר ב-	וה לגודל המעגל הפשוט ו	על G שוי M של	כך ש־ $\left f_{M}\left(G ight) ight $ (אורך M	3. לא קיימת מ"ט פולינומית ! נק')

2 שאלה 2, 20 נק'

נק') (ו**תרגול)** (ווווות בי אם M היא מ"ט א"ד, אז $L\left(M\right)\in RE$ הוכיחו כי אם M היא מ"ט א"ד, אז

נאמר שמחרוזת s לא ריקה ניתנת לייצור ע"י מ"ט M, אם קיים $n\in\mathbb{N}$ וקיימים או כך מתנת לייצור ע"י מ"ט s

$$f_M(x_1) f_M(x_2) \dots f_M(x_n) = s$$

. $L = \{\langle M \rangle\,, s \mid M$ ניתנת לייצור ע"י שרשור של פלטים של המכונה M. נגדיר את השפה השפה s ניתנת לייצור ע"י שרשור של פלטים של המכונה s הוכיחו/הפריכו את הטענות הבאות:

נק') גו $L \in RE$.2

3 שאלה 3, 19 נק'

.REב היא ביא והאם היא קבעו קבעו הבאות מהשפות לכל לכל הבאות קבעו הבאות הבאות לכל היא

(ט נק') או בריצתה על הקלט וברת במצב אוברת ϵ נק') נק" בריצתה על בריצתה אוברת $M\}$.1

(6) נק"ט (בי"ט מצב אר פ"ט מבקרת מבקרת (בי"ט מצב אר ש"ט מבקרת (בי"ט מצב אר מבקרת מבקרת מבקרת מבקרת (בי"ט מצב אר מבקרת מ

(7 נק') אונים $L_3 = \{\langle M \rangle\,, k|$ מבקרת בריצתה על כל קלט לפחות ב־ k מצבים אונים לכל בריצתה על כל $M\}$

4 שאלה 4, 24 נק'

עבור גרף G החתך של G הוא חלוקה של צמתי G ל־k קבוצות S_1,\dots,S_k זרות בזוגות ולא ריקות שאיחודן הוא N. נאמר שקשת $v\in S_j$ חוצה את החתך אם קיימים $1\leq i\neq j\leq k$ כך ש־ $i\in S_j$ מר בהנחה ש־ $i\in S_j$ לכל שפה, קבעו האם היא ב־ $i\in S_j$ או שהיא $i\in S_j$ או שהיא $i\in S_j$ לכל שפה, קבעו האם היא ב־ $i\in S_j$ או שהיא שלמה.

(8 נק') איס ל-Gרחתך כך שכל הקשתות ב-Gר חוצות את החתך ל-ער פל-ל-מעל (פ"ל איס ל-ל"ל פ"ל-ל"ל (פ"ל הקשתות ב-ל"ל הקשתות ב-ל"ל (פ"ל הקשתות ב-ל"ל הקשתות ב-ל"ל (פ"ל הקשתות ב-ל"ל הקשתות ב-ל"ל (פ"ל הקשת ב-ל"ל (פ"ל הקשת ב-ל"ל (פ"ל הקשת ב-ל"ל (פ"ל הקשת

5 שאלה 5, 20 נק'

 M_L אם קיימת RP המחלקה שייכת שייכת אותה ראינו בהרצאות והתרגולים. נאמר ששפה R שייכת למחלקה הסתברותית אותה ראינו בהרצאות והתרגולים. נאמר ששפה למחלקה פולינומית כך שמתקיים:

- $x \in L$ אם ullet
- $x \notin L$ אם •
- נק'). RP השלימו את הגדרת המחלקה 1.
- 2. הציגו אלגוריתם RP אשר בהינתן שני פולינומים P_1,P_2 במשתנה אחד הנתונים כקופסאות שחורות (כלומר יש מכונה שעל פולינומים P_1,P_2 במשתנה אחד הנתונים כקופסאות שדה סופי שגודלו P_1,P_2 עניהם ממעלה P_1,P_2 שניהם ממעלה P_1,P_2 שניהם טופי שגודלו שדה סופי שגודלו P_1,P_2 מכריע האם הם לא שווים זהותית. (5 נק')

נגדיר את מחלקת השפות ZPP. נאמר ששפה L שייכת למחלקה ZPP אם קיימת החלקת נגדיר את נאמר ששפה בייכת שייכת למחלקה עם שייכת למחלקה או להגיד שהיא לא יודעת את התשובה, כך שמתקיים: M_L יכולה לקבל, לדחות או להגיד שהיא לא יודעת את התשובה, כך שמתקיים:

- אף פעם לא טועה א M_L ,x לכל •
- . $\Pr\left[M_L\left(x
 ight)=rej
 ight]=0$ אז $x\in L$ אם -

.
$$\Pr\left[M_L\left(x
ight)=acc
ight]=0$$
 או $x
otin L$ אם -

. $\Pr\left[M_L\left(x
ight)=dont-know
ight]\leq rac{1}{2}$ כלומר לחצי, כלומר קטנה או בהסת' קטנה בהסת' מחזירה M_L איירה M_L אווה לחצי, לכל איירה אודעת"

הוכיחו את הטענות הבאות:

נ, אם $L \in \mathrm{RP}$ אז $L \in \mathrm{ZPP}$ 3.

נק נק') . $L\in {
m ZPP}$ אז $\overline{L}\in {
m RP}$ אם .4