NE334 Assignment 3 Due December 3, 2024

Question 1.

Calculate the equilibrium constant K_p for the gaseous reaction

$$2HI(g) \implies H_2(g) + I_2(g)$$

using the following spectroscopic data (from Herzberg and Huber):

molecule	$\mathrm{H}_2(^1\Sigma_g^+)$	${ m I}_2(^1\Sigma_g^+)$	$\mathrm{HI}(^1\Sigma^+)$
B_e / cm^{-1}	60.853	0.0373	6.4264
$\overline{\nu}_{\rm osc}/{\rm cm}^{-1}$	4401.21	214.50	2309.01
$D_0/{ m eV}$	4.47813	1.54238	3.0541

Plot $K_p(T)$ as a function of temperature for temperatures varying from 300 K to 3000 K. In particular compare your calculated values with those given by Taylor and Crist [J. Amer. Chem. Soc. 63, 1377 (1941)].

Question 2.

Consider a box into which particles can be placed in a set of 10 single- particle states. For simplicity, assume that each state has energy 0.

- (a) What is the value for the molecular partition function if the box contains only a single particle?
- (b) What values do you obtain for the partition function if the box contains one of: two distinguishable particles, two identical bosons, two identical fermions?
- (c) What value does the canonical partition function $Z_N = \frac{z^N}{N!}$ take?
- (d) What are the probabilities for finding both particles in the same single-particle state in each of the three cases (i.e. distinguishable particles, bosons, fermions)?