Prob/Stats Cheatsheet

Steve Young

ABSTRACT: Everything I know about prob/stats/maybe information theory too..

Contents

1	Con	ventions	1
2	Dist	ributions	2
	2.1	Gaussians	2
		2.1.1 Basics	2
		2.1.2 Differentiation moment trick	2
		2.1.3 Gaussian with Linear Term	3
		2.1.4 Multivariate Gaussians	3
	2.2	Bernoulli	3
	2.3	Exponential Family	4
3	Prob and stats		4
	3.1	The Rules of Probability	4
	3.2	Bayes' Rule	4
	3.3	Expectation and Variance	4
	3.4	(Weak) Law of Large Numbers (WLLN)	5
	3.5	Central Limit Theorem	5
	3.6	Statistical Tests of Hypotheses	5
		3.6.1 A/B Testing	5
	3.7	All About Regression	6
	3.8	Misc	6
		3.8.1 Expected Number of Trials (Geometric Distribution)	6
4	Information Theory		6
5	Bay	esian	6
6	TOI	OO: Remaining topics	6

1 Conventions

Math Notation

• \mathbb{Z}^+ : positive integers

2 Distributions

2.1 Gaussians

2.1.1 Basics

1. To start with, memorize that

$$\int_{-\infty}^{\infty} dx \, e^{-x^2} = \pi^{1/2} \tag{2.1}$$

2. Next, anything multiplying the x^2 in the integrand is present in inverse under the square root.

$$\int_{-\infty}^{\infty} dx \, e^{-\text{stuff} \, x^2} = \left(\frac{\pi}{\text{stuff}}\right)^{1/2} \tag{2.2}$$

so, for example:

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2} = \left(\frac{2\pi}{a}\right)^{1/2} \tag{2.3}$$

3. The traditional Gaussian pdf (or *Normal distribution*) has $a = 1/\sigma^2$, and is easily seen to be

$$\mathcal{N}(x|0,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2\sigma^2}x^2}$$
 (2.4)

• Normal distribution has 67% of pdf between mean ±1 std, 95% of pdf between mean ±2 std

2.1.2 Differentiation moment trick

By differentiating Eq. 2.3 wrt a, we obtain an expression for integrals of the form $\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\frac{1}{2}ax^2}$, with $n \in \mathbb{Z}^+$.

e.g. for n = 1:

$$-2\frac{d}{da}\int_{-\infty}^{\infty}dx\,e^{-\frac{1}{2}ax^2} = \int_{-\infty}^{\infty}dx\,x^2e^{-\frac{1}{2}ax^2} = -2\frac{d}{da}\left(\frac{2\pi}{a}\right)^{1/2} = \left(\frac{2\pi}{a}\right)^{1/2}\frac{1}{a} \tag{2.5}$$

For n = 2:

$$\left(-2\frac{d}{da}\right)^2 \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2} = \int_{-\infty}^{\infty} dx \, x^4 e^{-\frac{1}{2}ax^2} = \left(-2\frac{d}{da}\right)^2 \left(\frac{2\pi}{a}\right)^{1/2} = \left(\frac{2\pi}{a}\right)^{1/2} \frac{1}{a} \frac{3}{a} \tag{2.6}$$

Generally:

$$\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\frac{1}{2}ax^2} = \left(\frac{2\pi}{a}\right)^{1/2} \frac{1}{a^n} (2n-1)(2n-3) \cdots 5 \cdot 3 \cdot 1 \tag{2.7}$$

We thus obtain an expression for the expectation value of x^{2n} under the Gaussian distribution:

$$\langle x^{2n} \rangle = \frac{\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\frac{1}{2}ax^2}}{\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2}} = \frac{1}{a^n} (2n-1)(2n-3) \cdots 5 \cdot 3 \cdot 1 \tag{2.8}$$

2.1.3 Gaussian with Linear Term

To evaluate integrals of the form

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2 + Jx},\tag{2.9}$$

first complete the square in the exponent

$$-\frac{a}{2}x^2 + Jx = -\frac{a}{2}\left(x^2 - \frac{2Jx}{a}\right) = -\frac{a}{2}\left(x - \frac{J}{a}\right)^2 + \frac{J^2}{2a}$$
 (2.10)

which gives

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2 + Jx} = \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}a(x - J/a)} e^{J^2/2a} = \left(\frac{2\pi}{a}\right)^{1/2} e^{J^2/2a} \tag{2.11}$$

where the integral is done by shifting $x \to x + Ja$ (or noting that the infinite integral of a Gaussian is independent of its mean.)

By differentiating this expression wrt J repeatedly, and finally setting J = 0, we obtain another way of deriving the moments of the Gaussian, Eq. (2.8). This motivates the introduction of the **moment** generating function: given a pdf p(x), the moment generating function is

$$\psi_{x}(J) = \mathbb{E}_{x} \left[e^{Jx} \right] = \int_{-\infty}^{\infty} dx \, e^{Jx} p(x) \tag{2.12}$$

which satisfies

$$\langle x^n \rangle = \frac{d^n \psi_x(J)}{dJ^n} \bigg|_{J=0} \tag{2.13}$$

TODO: Finish. Figure out clear way to include normalization factor of pdf in exposition

2.1.4 Multivariate Gaussians

Promoting a to a real $N \times N$ symmetric matrix A, and x and J to a N-dim vectors \vec{x} and \vec{J} with components x_i and J_i , we have the multivariate Gaussian integral

$$\prod_{i=1}^{N} \left(\int_{-\infty}^{\infty} dx_i \right) e^{-\frac{1}{2}\vec{x}^T \mathbf{A} \vec{x} + \vec{J}^T \vec{x}} = \left(\frac{(2\pi)^{N/2}}{|\mathbf{A}|^{1/2}} \right) e^{\frac{1}{2}\vec{J}^T \mathbf{A}^{-1} \vec{J}}$$
(2.14)

TODO: finish —

A detailed workthrough of multivariate Gaussian integrals is in viXra:1404.0026.

2.2 Bernoulli

For $x \in \{0, 1\}$, Bernoulli dist parameterized by μ (prob of drawing x = 1 is μ).

$$p(x; \mu) = \mu^{x} (1 - \mu)^{1 - x}$$
(2.15)

2.3 Exponential Family

These are pdfs of the form

$$p(x;\theta) = h(x) \exp\left[\theta^T T(x) - A(\theta)\right]$$
 (2.16)

where

- θ is the *natural* or *canonical parameter*
- T(x) is the *sufficient statistic*
- $A(\theta)$ is the *log partition function*
- h(x) determines the distribution at $\theta = 0$

TODO: more detail about the above terms. e.g. the θ are the sources or external fields.

3 Prob and stats

3.1 The Rules of Probability

- **Product Rule**: p(x, y) = p(x|y)p(y) = p(y|x)p(x)
- Sum Rule: $p(x) = \sum_{y} p(x, y) = \sum_{y} p(x|y)p(y)$

3.2 Bayes' Rule

Using p(y|x)p(x) = p(x, y) = p(x|y)p(y), we have

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{y} p(x|y)p(y)}$$
(3.1)

3.3 Expectation and Variance

• Expectations of sum of variables add:

If X_1, \dots, X_n are random variables, and a_1, \dots, a_n are constants, then

$$\mathbb{E}\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i \,\mathbb{E}(X_i) \tag{3.2}$$

• Variances of sum of independent variables add:

If X_1, \ldots, X_n are *independent* random variables, and a_1, \ldots, a_n are constants, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i)$$
(3.3)

• Variances of sum of (dependent) variables:

If X and Y are random variables, then

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$
(3.4)

3.4 (Weak) Law of Large Numbers (WLLN)

- Let $X_1, ..., X_n$ be **iid**, each with mean μ and variance σ^2 . Defining the *sample mean* as $Y_n = \frac{1}{n}(X_1 + \cdots + X_n)$, the WLLN states that Y_n converges in probability to μ . The variance of Y_n goes to σ^2/n .
- The **practical application** of this is that we use the average of repeated samples of an **iid** variable to estimate the variable's **mean**.

3.5 Central Limit Theorem

Let $S_n = \sum_{i=1}^n X_i$, where each X_i is **iid** with mean μ and variance σ^2 . The **central limit theorem** says that as $n \to \infty$, the pdf of S_n approaches a normal distribution:

$$p(S_n = s) = \frac{1}{(2\pi n\sigma^2)^{1/2}} \exp\left[-\frac{(s - n\mu)^2}{2n\sigma^2}\right]$$
(3.5)

NB the factors of n in the pdf, which make the pdf mean/variance equal to n times the original mean/variance (i.e. means and variances of independent variables add; see section 3.3.)

Another interpretation¹: Compare to WLLN in section 3.4, where we had $Y_n = \frac{1}{n}(X_1 + \dots + X_n)$, with variance σ^2/n . Now consider the case where each X_i has mean 0, and instead form the sum $Z_n = \sqrt{n} \, Y_n = \frac{1}{\sqrt{n}} (X_1 + \dots + X_n)$. It follows that Z_n has mean 0 and variance σ^2 , and the central limit theorem says that Z_n in fact converges to $\mathcal{N}(0, \sigma^2)$ as $n \to \infty$.

3.6 Statistical Tests of Hypotheses

TODO: Write this section. about how to do a/b tests. Stuff from inferentialthinking.com

- total variation distance (between two categorical distributions):
- *p-value*: The p-value of a test is the chance, based on the model in the null hypothesis, that the test statistic will be equal to the observed value in the sample or even further in the direction that supports the alternative

3.6.1 A/B Testing

For comparing two random samples (see if two samples come from same underlying distribution). **TODO: write this section**

¹From MIT finance 18.S096 course, probability lecture

3.7 All About Regression

TODO: Write this section. All the relevant basics about linear regression (errors on fit coeffs, R^2 value, etc...)

3.8 Misc

3.8.1 Expected Number of Trials (Geometric Distribution)

For Benoulli var which is 1 with prob μ , what is expected number of independent draws to get first 1?

$$p(1 \text{ first occurs on } k \text{th draw}) = (1 - \mu)^{k-1} \mu$$

$$\mathbb{E}[k] = \sum_{k=1}^{\infty} k \cdot p(1 \text{ first occurs on } k \text{th draw}) = \sum_{k=1}^{\infty} k(1 - \mu)^{k-1} \mu = \frac{1}{\mu}$$
(3.6)

4 Information Theory

KL divergence:

$$KL[p(x)||q(x)] = \sum_{x_i} p(x_i) \log\left(\frac{p(x_i)}{q(x_i)}\right) = -\sum_{x_i} p(x_i) \log\left(\frac{q(x_i)}{p(x_i)}\right)$$

$$= -\sum_{x_i} p(x_i) \log q(x_i) + \sum_{x_i} p(x_i) \log p(x_i)$$

$$= H(p,q) - H(p)$$

$$(4.1)$$

where H(p, q) is the cross entropy, and H(p) is the entropy.

5 Bayesian

6 TODO: Remaining topics

- Probability change of variables (with examples)
- Optimal Stopping Theory