CSC418 Assignment 2 - PartA

Yifei Yang 999590526

Question 1.

(a) Let points x = (2,3), y = (1,2), z = (3, -1) and x' = (10, 8), y' = (8, -4), z' = (2, 0)

Then, let
$$A = [x, y, z] = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
, $A' = \begin{bmatrix} 10 & 8 & 2 \\ 8 & -4 & 0 \\ 1 & 1 & 1 \end{bmatrix}$,

Suppose affined transformation $M = \begin{bmatrix} a & c & e \\ b & d & f \\ 0 & 0 & 1 \end{bmatrix}$, Then

MA = A' =>

$$\begin{bmatrix} a & c & e \\ b & d & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 3 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2a + 3c + e & a + 2c + e & 3a - c + e \\ 2b + 3b + f & b + 2d + f & 3b - d + f \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 8 & 2 \\ 8 & -4 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\therefore M = \begin{bmatrix} 0 & 2 & 4 \\ 8 & 4 & -20 \\ 0 & 0 & 1 \end{bmatrix}$$

(b) 3 points required for a general 2D Homography2 points required for a regid 2D transform.

(c) Centroid preserved.

Suppose
$$\mathbf{M} = \begin{bmatrix} a & c & e \\ b & d & f \\ 0 & 0 & 1 \end{bmatrix}$$
 is affine transformation,

triangle has verteces $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ Then:

centroid C =
$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

after transform , three points are $(ax_1 + cy_1 + e, bx_1 + dy_1 + f)$

,
$$(ax_2 + cy_2 + e, bx_2 + dy_2 + f)$$
, $(ax_3 + cy_3 + e, bx_3 + dy_3 + f)$

∴ centroid preserved.

Ortho-center does not preserved.

Suppose triangle ABC, where A=(0, 0), B=(0, 1), C=(1, 0), ortho-center is A

$$M = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ is affine transformation}$$

then after transformation, A'=(0, 0), B' = (1, 1), C' = (1, 0), ortho-center is C, while MA = A' \neq C

: Ortho-center does not preserved.

Question 2.

(a) In real camera, the function of lens is to reflect light and converge it to the image. And it can also help to produce a sharp image with finite opening.

Focal length affects the size of image and the depth of field.

The aperture affect the image's brightness and depth of field.

(b)
$$w = -\frac{(-1,2,1)-(2,1,3)}{\left||(-1,2,1)-(2,1,3)\right||} = (-\frac{3\sqrt{14}}{14}, -\frac{\sqrt{14}}{14}, -\frac{2\sqrt{14}}{14}), let t = (0,1,0)$$

$$\mathbf{u} = \frac{\mathbf{t} \times \mathbf{w}}{||\mathbf{t} \times \mathbf{w}||} = \frac{\left(-\frac{2\sqrt{14}}{14}, 0, \frac{3\sqrt{14}}{14}\right)}{||(-\frac{2\sqrt{14}}{14}, 0, \frac{3\sqrt{14}}{14})||} = (-\frac{2\sqrt{13}}{13}, 0, \frac{3\sqrt{13}}{13})$$

$$v = \frac{w \times u}{||w \times u||} = (\frac{\sqrt{5}}{10}, \frac{13\sqrt{5}}{30}, \frac{\sqrt{5}}{15})$$

$$\therefore \mathbf{M}_{wc} = \begin{bmatrix} u^T \\ v^T \\ w^T \end{bmatrix} = \begin{bmatrix} -\frac{2\sqrt{13}}{13} & 0 & \frac{3\sqrt{13}}{13} \\ \frac{\sqrt{5}}{10} & \frac{13\sqrt{5}}{30} & \frac{\sqrt{5}}{15} \\ -\frac{3\sqrt{14}}{14} & \frac{\sqrt{14}}{14} & -\frac{2\sqrt{14}}{14} \end{bmatrix}$$

Projection matrix from world to camera is:

$$\begin{bmatrix} M_{wc} & -e \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{2\sqrt{13}}{13} & 0 & \frac{3\sqrt{13}}{13} & -2 \\ \frac{\sqrt{5}}{10} & \frac{13\sqrt{5}}{30} & \frac{\sqrt{5}}{15} & -1 \\ -\frac{3\sqrt{14}}{14} & \frac{\sqrt{14}}{14} & -\frac{2\sqrt{14}}{14} & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(c)
$$w = (0, 0, -1), u = (-1, 0, 0), v = (0, 1, 0)$$

$$\therefore M_{wc} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$p_{c} = M_{wc}p = \left(-p_{x}, p_{y}, -p_{z}\right)$$

$$\because \frac{1}{f} = \frac{1}{p_z - d} + \frac{1}{d}$$

$$\therefore \text{ focal length } f = \frac{(p_z - d)d}{p_z}$$

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{bmatrix} \begin{pmatrix} -p_x \\ p_y \\ -p_z \end{pmatrix} = \begin{pmatrix} \frac{\mathbf{p_x f}}{p_z}, -\frac{\mathbf{p_y f}}{p_z}, f, 1 \end{pmatrix}$$

=> 2D point on image =
$$\left(\frac{p_x f}{p_z}, -\frac{p_y f}{p_z}\right) = \left(\frac{p_x (p_z - d)d}{p_z^2}, -\frac{p_y (p_z - d)d}{p_z^2}\right)$$

(d) If view direction is orthogonal to direction vector b =(bx, by, bz), then these two lines would still parallel in image. Otherwise, they would not be parallel in image. They would converge at "vanishing point"

If two lines are parallel:

Direction vector (bx, by, bz) is orthogonal to view direction (0, 0, 1)

$$\Rightarrow$$
 0 bx + 0 by + 1 bz = 0;

$$\Rightarrow$$
 bz = 0

If two lines are not parallel:

They would converge on "vanishing point", which is a point on line f(x) = (x, 0, d).

Question 3.

(a) normal vector = $\nabla f(x, y, z)$

$$=(2x-\frac{2xR}{\sqrt{x^2+y^2}},2y-\frac{2yR}{\sqrt{x^2+y^2}},2z)$$

(b) Let p = (x', y', z'), then:

tangent plane at p is:

$$\nabla f(x', y', z') \cdot (x - x', y - y', z - z') = 0$$

Where
$$\nabla f(x', y', z') = (2x' - \frac{2x'R}{\sqrt{x'^2 + y'^2}}, 2y' - \frac{2y'R}{\sqrt{x'^2 + y'^2}}, 2z')$$

$$= > \left(2x' - \frac{2x'R}{\sqrt{x'^2 + y'^2}}\right)(x - x') + \left(2y' - \frac{2y'R}{\sqrt{x'^2 + y'^2}}\right)(y - y') + 2z'(z - z') = 0$$

(c) Apply $q(\lambda)$ into f(x, y, z):

$$f(q(\lambda)) = (R - \sqrt{R\cos\lambda^2 + R\sin\lambda^2})^2 + r^2 - r^2 = 0$$

 \therefore q(λ)lies on the surface

- (d) Tangent vector = $\frac{\mathrm{dq}(\lambda)}{d\lambda}$ = $(-\mathrm{Rsin}\lambda,\mathrm{Rcos}\lambda,0)$
- (e) normal vector at $q(\lambda) = \nabla f(q(\lambda) = (0, 0, 2r)$

normal vector at $q(\lambda) \perp$ Tangent plane

- : (normal vector at $q(\lambda)$) · (Tangent vector at $q(\lambda)$) = $(-R\sin\lambda, R\cos\lambda, 0) \cdot (0, 0, 2r) = 0$
- \therefore (normal vector at $q(\lambda)$) \perp (Tangent vector at $q(\lambda)$)
- $: q(\lambda)$ lies in tangent plane
- \therefore Tangent vector at $q(\lambda)$ lies in tangent plane

Question 4.

(a) Yes

a would be excluded since it is blocked by h

f would be excluded since it is blocked by h d would be excluded since it is blocked by c e would be excluded since it is blocked by g I would be excluded since it is blocked by g

(b)

The BST is:

(c)
$$c_1 \rightarrow h_1 \rightarrow a \rightarrow f \rightarrow h_3 \rightarrow b \rightarrow d \rightarrow e \rightarrow c_2 \rightarrow i \rightarrow g \rightarrow h_2$$