Standardabweichung berechnen

Table of contents

Werte als Objekt speichern	2
Bestimme N	2
Mittelwert berechnen	2
Mittelwert von jedem Wert subtrahieren	3
Diese Werte quadrieren	4
Summe der quadrierten Werte	5
Dividieren durch N-1	5
Berechne die Quadratwurzel	6
Prüfen mit sd() Funktion	6

Die Standardabweichung (σ) ist gleich der Quadratwurzel (\surd) der quadrierten $(^2)$ Summe (\sum) der Differenz zwischen jedem Wert (x_i) und dem Mittelwert $(x_{1...n}-\mu)$, geteilt durch die Anzahl der Werte minus 1 (N-1):

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N - 1}} \tag{1}$$

Versuchen wir, dies Schritt für Schritt zu tun:

- 1. Werte als Objekt speichern
- 2. Bestimme N
- 3. berechne den Mittelwert (μ)

- 4. die Differenz zwischen jedem Wert und dem Mittelwert berechnen (Mittelwert von jedem Wert subtrahieren; $x_{1...n} \mu$)
- 5. diese Werte quadrieren (2)
- 6. Summe der quadrierten Werte (\sum)
- 7. teile diesen Wert durch N-1
- 8. Berechne die Quadratwurzel $(\sqrt{\ })$

Werte als Objekt speichern

werte <- c(13, 0, 2000, 5, 19)

Werte ausgeben

werte

[1] 13 0 2000 5 19

Bestimme N

* Von Hand: Werte ausdrucken und zählen, wie viele es sind

werte

[1] 13 0 2000 5 19

* Oder verwenden Sie die Funktion length()

length(werte)

[1] 5

Mittelwert berechnen

Der Mittelwert (μ) ist die Summe (\sum) der Werte (x) geteilt durch die Anzahl der Werte (N):

$$\mu = \frac{\sum x}{N}$$

* Von Hand

Tippen Sie alle Werte ab:

```
(13 + 0 + 2000 + 5 + 19)/5
```

[1] 407.4

* Oder mit Hilfe der Funktionen sum() und length()

```
sum(werte)/length(werte)
```

- [1] 407.4
- * Oder indem man einfach die Funktion mean()

```
mean(werte)
```

[1] 407.4

Mittelwert von jedem Wert subtrahieren

Dies kann auch auf verschiedene Weise geschehen

* Von Hand (mühsam und anfällig für menschliche Fehler)

```
(13 - 407.4)
```

[1] -394.4

$$(0 - 407.4)$$

[1] -407.4

$$(2000 - 407.4)$$

[1] 1592.6

```
(5 - 407.4)
[1] -402.4
(19 - 407.4)
[1] -388.4
* Oder unter Verwendung des Objektnamens
werte - mean(werte)
[1] -394.4 -407.4 1592.6 -402.4 -388.4
Diese Werte quadrieren
* Von Hand
(13 - 407.4)^2
[1] 155551.4
(0 - 407.4)^2
[1] 165974.8
(2000 - 407.4)^2
[1] 2536375
(5 - 407.4)^2
```

[1] 161925.8

```
(19 - 407.4)^2
```

- [1] 150854.6
- * Oder durch Verwendung von ^2 mit dem Variablennamen

```
(werte - mean(werte))^2
```

```
[1] 155551.4 165974.8 2536374.8 161925.8 150854.6
```

Summe der quadrierten Werte

* Von Hand

```
(13 - 407.4)^2 +
(0 - 407.4)^2 +
(2000 - 407.4)^2 +
(5 - 407.4)^2 +
(19 - 407.4)^2
```

- [1] 3170681
- * Oder mit dem Objektnamen und einigen Funktionen

```
sum((werte - mean(werte)) ^ 2)
```

[1] 3170681

Dividieren durch N-1

* Von Hand

```
((13 - 407.4) ^ 2 + (0 - 407.4) ^ 2 + (2000 - 407.4) ^ 2 + (5 - 407.4) ^ 2 + (19 - 407.4) ^ 2)/(5-1)
```

[1] 792670.3

* Oder mit dem Objektnamen und einigen Funktionen

```
sum((werte - mean(werte)) ^ 2) / (length(werte) - 1)
```

[1] 792670.3

Berechne die Quadratwurzel

* Von Hand

```
sqrt(((13 - 407.4)^2 +
(0 - 407.4)^2 +
(2000 - 407.4)^2 +
(5 - 407.4)^2 +
(19 - 407.4)^2)/(5-1))
```

[1] 890.3203

* Oder mit dem Objektnamen und einigen Funktionen

```
sqrt(sum((werte - mean(werte)) ^ 2) / (length(werte) - 1))
```

[1] 890.3203

Prüfen mit sd() Funktion

```
sd(werte)
```

[1] 890.3203