App No.: Stress Proteins and Uses Therefor

Richard A. Young, et al.

App No.: be: Stress Proteins and Uses Thereforences: Richard A. Young, et al.

1, 10 MLRLPTVFRQMRPV	20 30 40 50 60 70	MLRLPTVFRQMRPVSRVLAPHLTRAYAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTVIIEQSWGS : :::::::::::::::::::::::::::::::::::	90 100 110 120 130 140	PKVTKDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLARSIAKEGFEKISKGANPVEI : :::::::::::::::::::::::::::::::::::	160 170 180 190 200 210	RRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDKEIGNIISDAMKKVGRKGVITVKDGKTLNDE :: :: :: :: :: :: :: :: :: :: :: :: ::	230 240 250 260 270 280	FDRGYISPYFINTSKGQKCEFQDAYVLLSEKKISSIQSIVPALEIANAHRKPLVIIAEDVDG ::::: ::::: ::::: : FDRGYLSPYFINKPETGAVELESPFILLADKKISNIRENLPVLEAVAKAGKPLLIIAEDVEG	300, 310, 320, 330, 340, 350	EALSTLVLNRLKVGLQVVAVKAPGFGDNRKNQLKDMAIATGGAVFGEEGLTLNLEDVQPHDLGKVGEVIV ::: : : : : : : : : : : : : : : : : :	370 380 390 400 410 420	TKDDAMĻLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVI,KVGGTSDVFVNFKKPP
	10 20	PTVFRQMRPVSRVLAPHLTI : MA	06 . 08	KDGVTVAKSIDLKDKYKNIC	150 160	RRGVMLAVDAVIAELKKQSKPVTT :: :: : : : : KRGIDKAVTAAVEELKALSVPCSD	220 230	FDRGYI ::::: FDRGYL	290 300	LVLNRLKVGLQVVAVKAPG : :::::: AVVNTIRGIVKVAAVKAPG	360 370	MĻLKGKGDKAQIEKRIQEI

App No.: 10/046,649 10046649 1002802

e: Stress Proteins and Uses Thereforentors: Richard A. Young, et al.

	421	430	440	450	460	470	480	490
HUMP1	VTL	DALNATRAA	VEEGIVLGGGC	VTDALNATRAAVEEGIVLGGGCALLRCI PALDSLTPANEDQKIGIEI IKRTLKI PAMTIAKNAGVEGSLI	PANEDQKIG	HEITKRTL	KIPAMTIAKNAG	VEGSLI
GROEL	VEL	: ::: :::: VEDALHATRAA	AVEEGVVAGGGVALIRVAS	VEDALHATRAAVEEGVVAGGGVALIRVASKLADLRGQNEDQNVVSSSL-RAMEAPLRQIVLNCGEEPSVV	:::: Gonedonvv	: 75SSL-RAM	EAPLRQIVLNCGEEP	: : EEPSVV
	491	500	510	520	530	540	550	260
HUMP1	VE	VEKIMQSSSEV	GYDAMAGDFVN	VGYDAMAGDFVNMVEKGI I DPTKVVRTALLDAAGVASLLTTAEVVVTEI PKEEKDPGMGA	RTALLDAAG	VASLLTTA	EVVVTEIPKEEKI	DPGMGA
GROEL	ANJ	rvkggdgny.	:: : GYNAATEEYGN	:: :: :: :: :: :: :: :: :: :: :: :: ::	: :: :: RSALQYAAS	SVAGLMITT	ECMVIDLPKND-1	AADLGA
	561	570						
HUMP1	MGC	MGGMGGGMGGGMF	GGMF					
GROEL	AGC	AGGMGGMGGMM-	GMM-					
Total 276		score = 4667, identities out	5 breaks t of 545 pos	5 breaks t of 545 possible matches		between residues		
25 rar	25 random runs	IJ	65,34 SD	Standard deviation =		18 94	меэп = 3429.48	

OUT 28 YOUR WEEK

App No.: 10/046,649 1004-664-9 102802

Tip Stress Proteins and Uses Therefor Incors: Richard A. Young, et al.

			10	20	30	40	50	. 09	7
HUMP1 ML65K		MLRLPT: : M	everomrpv	SRVLAPHLT	RAYAKDVKFG :: AKTIAYD	ADARALMLQG :: EEARRGLERG	VDLLADAVA ::::: LNSLADAVK	MLRLPTVFRQMRPVSRVLAPHLTRAYAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTVIIEQSWG: :	IEQSWG:: LEKKWG
	71		80	06	100	110	120	130	14
HUMP1 ML65K		PKVTKD:	GVTVAKSI :: :: GVSIAKEI	DLKDKYKNI : : : ELEDPYEKI	KDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTT ::: :: : : :: :: :: :: :: :: :: :: :: :	NTNEEAGDGT : :::: KTDDVAGDGT	TTATVLARS:::::::	PKVTKDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLARSIAKEGFEKISKGANPVE: :::::::::::::::::::::::::::::::::::	GANPVE: :::: GANPLG
-	141		150	160	170	180	190	. 200	21(
. HUMP1 ML65K		RGVML:: RGIEK	AVDAVIAE::::	LKKQSKPVT : : : LLKDAKEVE	TPEEIAQVAT	ISANGDKEIG	NIISDAMKK : ::: DLIAEAMDKY	RRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDKEIGNIISDAMKKVGRKGVITVKDGKTLNDI :: ::: :::: :::::::::::::::::::::::::	GKTLNDI : SNTFGL(
	211		220	230	240	250	260	270	28(
HUMP1 ML65K		LEIIEG :: :ELTEG	LEIIEGMKFDRGYI. :: :: :: LELTEGMRFDKGYI	SPYFINTSK : :: SGYFVTDAE	GQKCEFQDAY : RQEAVLEEPY:	VLLSEKKISS :: ::	IQSIVPALE: '::	LEIIEGMKFDRGYISPYFINTSKGQKCEFQDAYVLLSEKKISSIQSIVPALEIANAHRKPLVIIAEDVDC	IAEDVDC::::::
	281		290	300	310	320	330	340	35(
НОМР1 МL65К		EALSTL::::EALSTL	VLNRLKVG: : : vvnkirgti	LQVVAVKAP ::::: FKSVAVKAP	GFGDNRKNQLI ::::::: GFGDRRKAMLÇ	KDMAIATGGA ::::: QDMAILTGAQ	VFGEEGLTLN: : :: :: VISEE-VGL1	LVLNRLKVGLQVVAVKAPGFGDNRKNQLKDMAIATGGAVFGEEGLTLNLEDVQPHDLGKVGEVIV :::::::::::::::::::::::::::::::::::	KVGEVIV : : KARKVVÞ
	351		360	370	380	390	400	410	420
нимел		TKDDAM	LLKGKGDK	AQIEKRIQE	IIEQLDVTTSE	SYEKEKLNERI	, LAKLSDGVA\	MLLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDF	VNEKKDF
ML65K		TKDETT	: :: IVEGAGDTI	: DAIAGRVAQ:	: IRTEIENSDSI	YDREKLOER	LAKLAGGVAV	: : : : : : : : : : : : : : : : : : :	: : :

OIPE SOME SO

App No.: 10/046,649 10046649 102802

entors: Richard A. Young, et al.

490 I EDAVRNAKAAVEEGIVAGGGVTLLQAAPALDKLKLTGDEAT-GANIVKVALEAPLKQIAFNSGMEPGVV 560 VEKIMQSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLTTAEVVVTEIPKEEKDPGMGA VTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANEDQKIGIEIIKRTLKIPAMTIAKNAGVEGSLI AEKVRNLSVGHGLNAATGEYEDLLKAGVADPVKVTRSALQNAASIAGLFTT-EAVVADKPEKTAAPASDP 550 470 540 460 530 450 440 510 421 491 HUMPI ML65K **HUMP1** ML65K

identities out of 540 possible matches between residues 7 breaks score = 4552, Total

23.86 Standard deviation = 47.73 SD Alignment score 25 random runs

Mean = 3413.16

MGGMGGGMF

HUMP1

TGGMGG-MD---F

ML65K

App No.: 10/046,649 100466449 100466449 100466449 100466449 100466449 100466449 100466449 100466449 100466449 1

OTPE COLOR DE LA PROPERTIE DE LA PORTIE DE LA PROPERTIE DE LA PROPERTIE DE LA

MERLPTVFRQMRPVSRVLAPHLTRAYAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTVIIEQSWGS

TB65K

HUMP1

30

9

50

-AKTIAYDEEARRGLERGLNALADAVKVTLGPKGRNVVLEKKWGA

140	GANPVEI :::: GANPLGL	210 GKTLNDE SNTFGLQ	280 , IAEDVDG ::::::	350 KVGEVIV : : :	420	NEKKDR : : : KERKHR
130	AKEGFEKISK ::: RKEGLRNVAA	200 SRKGVITVKD	270 , NAHRKPLVI::::::	340 EDVQPHDLGF : :: ENADLSLLGF	410	KVGGTSDVEV
120	EAGDGTTTATVLARSI) :::::::: VAGDGTTTATVLAQALI	190 IIISDAMKKVC : ::::	260 OSIVPALEIP ::: KDLLPLEKV	330 , FGEEGLTLNL :::::	400	KEKLNERLAKLSDGVAVLKVGC ::::::::::::::::::::::::::::::::::::
110	TTNEEAGDGTJ ::::: :TDDVAGDGTJ	180 , SANGDKEIGN ::::::	250 , LLSEKKISSI :: : LLVSSKVSTV	320 DMAIATGGAV ::::::::	390	YEKEKLNERL : ::: ::: YDREKLQERL
100	PKVTKDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLARSIAKEGFEKISKGANPVEI : ::: :: :: :: :: :: :: :: :: :: :: ::	1 150 160 170 180 190 200 210, RRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDKEIGNIISDAMKKVGRKGVITVKDGKTLNDE :: : : : : : : : : : : : : : : : : : :	1 220 230 240 250 260 270 280, LEITEGMKFDRGYISPYFINTSKGQKCEFQDAYVLLSEKKISSIQSIVPALEIANAHRKPLVIIAEDVDG :: :: :: :: :: :: :: :: :: :: :: :: ::	1 290 300 310 320 330 340 350 350 340 350 350 340 350 350 340 350 350 340 350 350 340 350 350 340 350 350 340 350 350 340 350 350 350 350 350 350 350 350 350 35	380	TKDDAMLLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDR ::: :::::::::::::::::::::::::::::::::
06	DLKDKYKNIC : : : : : : : : : :	160 ; :::::::::::::::::::::::::::::::::::	230 SPYFINTSKG : :: SGYFVTDPER	300 LQVVAVKAPG ::::::	370	AQIEKRIQEI : :: DAIAGRVAQI
90	PKVTKDGVTVAKSI : :: :: :: PTITNDGVSIAKEI	150 , MLAVDAVIAE :::	220 FGMKFDRGYI :::::::	1 290 EALSTLVLNRLKVG ::::::::	360	AMLLKGKGDK : :: TTIVEGAGDT
71,	PKVT : : PTIT	141 , RRGV :: KRGI	211 , LEII :: LELT	281 FALS::::	351	TKDD,
	номр1	HUMP1 TB65K	HUMP1 TB65K	нимр1 Тв65к		HUMP1 TB65K

App No.: Stress Proteins and Uses Therefore .102802

entors: Richard A. Young, et al.

490 560 VTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANEDQKIGIEIIKRTLKIPAMTIAKNAGVEGSLI I EDAVRNAKAAVEEGIVAGGGV"LLQAAPTLDELK-LEGDEATGANIVKVALEAPLKQIAFNSGLEPGVV VEKIMQSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLTTAEVVVTEIPKEEKDPGMGA AEKVRNLPAGIIGLNAQTGVYEDLLAAGVADPVKVTRSALQNAASIAGLFLTTEAVVADKPEKEKASVPG-480 550 470 540 460 530 450 520 510 MGGMGGGMGGGMF 430 500 421 491 561 TB65K **TB65K** HUMP1 ., HUMP1 HUMP1

identities out of 540 possible matches between residues

score = 4560, 5 breaks

Total 257

---GGDMGGMDF

TB65K

App No.: 10/046,649 10046649 1002802

The Stress Proteins and Uses Therefor Richard A. Young, et al.

App No.: 10/046,649 100466449 100466449 100466449 100466449 100466449 100466449 100466449 100466449 100466449 1

PE STANT & TRATERY

App No.: 10/046,649 10046 10046 10028 Therefor Invers: Richard A. Young, et al.

