ELECTROCHEMICAL MACHINING

Dr. G. TAKYI

Instructional Objectives

- Identify electro-chemical machining (ECM) as a particular type of non-tradition processes
- Describe the basic working principle of ECM process
- Draw schematically the basics of ECM
- Draw the tool potential drop
- Describe material removal mechanism in ECM

Instructional Objective

- Identify the process parameters in ECM
- Develop models for material removal rate in ECM
- Analyse the dynamics of ECM process
- Identify different modules of ECM equipment
- List four application of ECM
- Draw schematics of four such ECM applications

CLASSIFICATIONS OF NTM PROCESSES

Mechanical Processes

- Abrasive Jet Machining (AJM)
- Ultrasonic Machining (USM)
- Water Jet Machining (WJM)
- Abrasive Water Jet Machining (AWJM)

Electrochemical Processes

- Electrochemical Machining (ECM)
- Electro Chemical Grinding (ECG)
- Electro Jet Drilling (EJD)

Electro Chemical Machining - Process

- Opposite of electro-chemical deposition
- Controlled anodic dissolution
- Tool and work piece conductive
- Tool cathode
- Work piece anode
- Low potential
- High current
- Machining gap to maintained
- Electrolyte

Electro Chemical Machining - Process

- Opposite of electro-chemical deposition
- Controlled anodic dissolution
- Tool and work piece conductive
- Tool cathode
- Work piece anode
- Low potential
- High current
- Machining gap to maintained
- Electrolyte

Nall

Process Parameters

- Power Supply
 - Type
 - Voltage
 - Current
 - Current density
- Working gap
- Overcut
- Feed rate
- Electrode material ,
- Ra

direct current

2 to 35 V

50 to 40,000 A

0.1 A/mm² to 5 A/mm²

0.1 mm to 2 mm

0.2 mm to 3 mm

0.5 to 15 mm/min

Copper, brass, bronze

0.2 to 1.5 μm

Process Parameters

Electrolyte

Material NaCl and NaNO₃

Temperature 20°C – 50°C

Flow rate
 20 lpm per 100 A current

Pressure 0.5 to 20 bar

Dilution 100 g/l to 500 g/l

Characteristics of ECM

- Tool and Work Material electrically conductive
- Atomic level dissolution
- Surface finish excellent
- Almost stress free machined surface
- No thermal damage.

Modelling of MRR in ECM

- Material removal due to atomic dissolution of work material
- Electrochemical dissolution is governed by Faraday's laws
- Amount of electrochemical dissolution or deposition proportional to amount of charge
- Amount of material deposited or dissolved depends on Electrochemical Equivalence (ECE)
 ECE – ratio of atomic weight and valency

ELECTRO CHEMICAL MACHINING - PROCESS

- Opposite of electro-chemical deposition
- Controlled anodic dissolution
- Tool and work piece conductive
- Tool Cathode
- Work piece anode
- Low potential
- High current
- Machining gap to maintained
- electrolyte

PROCESS PARAMETERS

- Power Supply
 - Type Direct Current
 - Voltage2 to 35 V
 - -Current 50 to 40,000 A
 - -Current density $0.1 A/mm^2$
- Working gap
 0.1 mm to 2 mm
- Overcut 0.2 mm to 3 mm
- Feed rate
 0.5 mm to 15 mm/min
- Electrode material Copper, brass, bronze
- Ra 0.2 to 1.5 μm

CHARACTERISTICS OF ECG

Tool and work Material – electrically conductive

Atomic level dissolution

Surface finish excellent

Almost stress free machined surface

No thermal damage

MODELING OF MMR IN ECG

- Material removal due to atomic dissolution of work material
- Electrochemical dissolution is governed by Faraday's laws
- Amount of electrochemical dissolution or deposition proportional to amount of change
- Amount of material deposited or dissolved depends on Electrochemical Equivalence (ECE)
- ECE ratio of atomic weight and valency

MODELING OF MMR IN ECM

m
$$\alpha$$
 Q m α ECE $\alpha \frac{A}{v}$ m $\alpha \frac{QA}{v} \alpha \frac{ItA}{v}$

$$m = \frac{ItA}{Fv}$$
 F= Faraday's Law

= 96500 Coulomb

$$MRR = \frac{m}{t\rho} = \frac{ItA}{Fvt\rho} = \frac{IA}{Fv\rho}$$

四

Modelling of MRR for Alloys in ECM

Atomic Wt. - A

Valency - vi

Wt fraction – α_i

For passing current of 'l' for time 't', Γ_a volume of alloy gets dissolved

$$m_i = \Gamma_a \rho \alpha_i$$

$$m_i = \frac{Q_i A_i}{F v_i}$$

$$\Rightarrow Q_i = \frac{Fm_i v_i}{A_i} = \frac{F(\Gamma_a \rho \alpha)_i v_i}{A_i}$$

$$MRR = \frac{m}{t\rho} = \frac{ItA}{Fvt\rho} = \frac{IA}{F\rho v}$$

$$Q_T = It = \sum Q_i = F\Gamma_B \rho \sum \left(\frac{\alpha_i v_i}{A_i} \right)$$

$$MRR = \frac{\Gamma_a}{t} = \frac{I}{F\rho} \cdot \frac{1}{\sum \frac{\alpha_i v_i}{A_i}}$$

Dynamics of ECM - No Feed Condition

'I' is passed for time 'dt' & electrochemical dissolution of the material of amount 'dh' over an area of S takes place

$$I = \frac{V}{R} = \frac{V}{\frac{rh}{s}} = \frac{Vs}{rh}$$

$$MRR = \frac{IA}{F\rho v} = \frac{dh}{dt}s$$

$$\frac{dh}{dt} = \frac{A_{x}}{F\rho v_{x}} \begin{pmatrix} Vs & 1 \\ rh & s \end{pmatrix} = \frac{A_{x}}{F\rho v_{x}} \frac{V}{rh}$$

$$\frac{dh}{dt} = \frac{A_x V}{F \rho v_x r} \frac{1}{h} = \frac{c}{h}$$

$$c = \frac{A_x V}{F \rho v_x r}$$

$$c = \frac{V}{\sum \frac{\alpha_i v_i}{A_i^{\prime}}}$$

Dynamics of ECM - No Feed Condition

$$\frac{dh}{dt} = \frac{c}{h}$$

$$\int_{h_0}^{h_1} h dh = c \int_0^t dt$$

$$h_0^2 - h_0^2 = 2ct$$

Dynamics of ECM - Feed Condition

Generally in ECM a feed (f) is given to the tool

$$\frac{dh}{dt} = \frac{c}{h} - f$$

Under steady state condition the gap is uniform i.e. the approach of the tool is compensated by dissolution of the work material.

$$\frac{dh}{dt} = 0 = \frac{c}{h} = f$$

$$f = \frac{c}{h}$$

$$h^*$$
 = steady state gap = $\frac{c}{f}$

$$\underline{\underline{W}}$$

Is it possible to $h_0 = h^*$?

$$\frac{dh}{dt} = \frac{c}{h} - f$$

$$h' = \frac{h}{h^*} = \frac{hf}{c}$$

$$t' = \frac{ft}{h^*} = \frac{f^2t}{c}$$

$$\frac{dh'}{dt'} = \frac{f/c}{f^2/c} \frac{dh}{dt} = \frac{1}{f} \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{c}{h} - f$$

$$f\frac{dh'}{dt'} = \frac{c}{h'h^*} - f = \frac{cf}{h'c} - f$$

$$f\frac{dh'}{dt'} = f\left(\frac{1-h'}{h'}\right)$$

$$\frac{dh'}{dt'} = \frac{1-h'}{h'}$$

$$dt' = \frac{h'}{1-h'}dh'$$

Simulation for ho'= 0, 0.5, 1 - 5

$$\int_{0}^{t'} dt' = \int_{h_{0}}^{h_{1}'} \frac{h'}{1-h'} dh' \quad t' = \int_{h_{0}'}^{h_{1}'} -$$

$$t' = \int_{h_0'}^{h_1'} -\frac{d(1-h')}{(1-h')} + \int_{h_0'}^{h_1'} d(1-h')$$

Thus irrespective of initial gap, h' = 1

$$h' = \begin{pmatrix} h \\ h \\ h \end{pmatrix} \begin{pmatrix} hf \\ c \end{pmatrix}$$

$$f = \frac{c}{h} = \frac{A_x V}{F \rho v_x r} \cdot \frac{1}{h}$$

Cynamics of ECM - No Feed Condition da=Idt

neien meanace or reomiology milaragear

Thus irrespective of initial gap, h' = 1

$$h' = \frac{h}{h^*} = \frac{hf}{c} = 1$$

$$f = \frac{c}{h} = \frac{A_x V}{F \rho v_x r} \cdot \frac{1}{h}$$

$$f = \frac{A_X}{F\rho v_X} \cdot \frac{V}{rh} = \frac{A_X}{F\rho v_X} \cdot \frac{I}{s}$$

as
$$I = \frac{V}{R} = \frac{V}{rh} = \frac{Vs}{rh}$$

$$f = \frac{A_x}{F(\rho v_x)} = \frac{MRR}{s} in \underline{mm/s}$$

DYNAMICS of ECM – FEED CONDITION

Generally in ECM a feed (f) is given to the fool

•
$$\frac{dh}{dt} = \frac{c}{h} = f$$

 Under steady state condition the gap is uniform i.e the approach of the tool is compensated by dissolution of the work material

$$\frac{dh}{dt} = 0 = \frac{c}{h} = f$$

$$f = \frac{c}{h}$$

$$h^* = steady state gap = \frac{c}{h}$$

APPLICATIONS - ECM

- Ore sinking
- Profiting and contouring
- Trepanning
- Grinding
- Drifting
- Micro-machining

Applications

Application - Drilling

Application - Trepanning

QUIZ

- 1. For ECM of steel which is used as the electrolyte
 - Kerosene
 - NaCl
 - Deionised water
 - $-HNO_3$
- 2. MRR in ECM depends on
 - Hardness
 - Atomic weight
 - Thermal conductivity
 - ductility

3. ECM cannot be undertaken for

- steel
- Nickel based superalloy
- Al₂O₃
- Titanium alloy
- 4. Commercial ECM is carried out at a combination of
 - low voltage high current
 - low current low voltage
 - high current high voltage
 - low current low voltage

示

Solved Problem - 1

 In electrochemical machining of pure iron a material removal rate of 600 mm³/min is required. Estimate current requirement.

MRR =
$$m = \frac{m}{t} = \frac{AI}{Fv}$$

MRR = $\Gamma = \frac{m}{\rho t} = \frac{AI}{F\rho v}$
MRR = 600 mm³/min = 600/60 mm³/s
= 10 mm³/s = 10x10⁻³cc/s
10x10⁻³ = $\frac{56xI}{96500x7.8x2}$

Solved Problem - 1

 In electrochemical machining of pure iron a material removal rate of 600 mm³/min is required. Estimate current requirement.

MRR =
$$m = \frac{m}{t} = \frac{Al}{Fv}$$

MRR = $\Gamma = \frac{m}{\rho t} = \frac{Al}{F\rho v}$
MRR = 600 mm³/min = 600/60 mm³/s
= 10 mm³/s = 10x10⁻³cc/s
 $10x10^{-3} = \frac{56xl}{96500x7.8x2}$

As
$$A_{fe} = 56$$

 $v_{fe} = 2$
 $F = 96500 \text{ coulomb}$
 $\rho = 7.8 \text{ gm/cc}$
 $= \frac{96500 \times 10 \times 10^{-3} \times 7.8 \times 2}{56}$
 $= \frac{56}{4} = 268.8 \text{ A}$ Answer

Solved Problem - 2

Composition of a Nickel superalloy is as follows: Ni = 70.0%, Cr = 20.0%, Fe = 5.0% and rest Ti. Calculate rate of dissolution if the area of the tool is 1500 mm² and a current of 1000 A is being passed through the cell. Assume dissolution to take place at lowest valency of the elements:

$$A_{Ni} = 58.71$$

 $A_{Cr} = 51.99$
 $A_{Fe} = 55.85$
 $A_{Ti} = 47.9$

$$ho^{Ni} = 8.9 \qquad v^{Ni} = 2$$
 $ho^{Cr} = 7.19 \qquad v^{Cr} = 2$
 $ho^{Fe} = 7.86 \qquad v^{Fe} = 2$
 $ho^{Ti} = 4.51 \qquad v^{Ti} = 3$

ECM_GT_ASU_gt_march - Microsoft PowerPoint (Product Activation Failed)

Ni 58.71 ρ 8.9 v 2 Cr 51.99 ρ 7.19 v 2 Fe 55.85 ρ 7.86 v 2 Ti 47.9 ρ 4.51 v 3

$$MRR = \frac{m}{\rho!} = \frac{1}{F \rho \sum \frac{\alpha_i v_i}{A_i}}$$

 $\frac{1}{100} = \frac{1}{100}$ Ni 70.0%, Cr 20.0%, Fe 5.0% & rest Ti

$$= \frac{1}{\frac{\alpha_{Na}}{\rho_{Na}} + \frac{\alpha_{Cr}}{\rho_{Cr}} + \frac{\alpha_{Fe}}{\rho_{Fe}} + \frac{\alpha_{Ti}}{\rho_{Ti}}}$$

$$= \frac{1}{\frac{0.7}{8.9} + \frac{0.2}{7.19} + \frac{0.05}{7.86} + \frac{0.05}{4.51}} = 8.07 \text{ gm/cc}$$

$$\frac{1000}{96500 \times 8.07 \times \left\{ \frac{0.75 \times 2}{58.71} + \frac{0.2 \times 2}{51.99} + \frac{0.05 \times 2}{55.85} + \frac{0.05 \times 3}{47.9} \right\}}$$

= 0.0356 cc/sec

= 2.14 cc/min

= 2140 mm³/min

Solve Problem – 3 In ECM operation of iron pure an equilibrium gap of 2 mm is to be kept. Determine supply voltage, if the total over-voltage is 2.5 V. The resistivity of the electrolyte is 50 Ω -mm and the set feed rate is 0.25 mm/min.

7