SIGLE DU COURS : NYC	NOM DU CHARGÉ DE COURS :	Philippe Laporte
TITRE DU COURS : Ondes, Op	tiques et Physique Moderne - FORMA	ΓΙF
☐ EXAMEN INTRA ☐ EXAMEN FINAL ☐ EXAMEN DIFFÉRÉ ☑ EXAMEN FORMATIF	DATE	: 7 octobre 2024 DURÉE : 1h40 SALLE : D-306
DIRECTIVES PÉDAGOGIQUES	S :□ calculatrice programmable □ docu. permise (1 page recto-verso) ⊠ examen imprimé recto-verso	⊠ calc. non-prog. ⊠ docu. non-permis ⊠ feuille de formule
Nom :		
Prénom :		
Groupe: □1 □2	□ 3	
ll y a u	ts, a 18 questions et compte pour 20% d in total de 15 pages à l'examen. UESTIONS et choisissez la meilleure où plusieurs choix sont spécifiés.	
Votre démarche doit être transpa	uestion en utilisant les concepts et les for arente et claire. Tout manque de clarté s s doivent inclure les unités, le cas échéa	sera la responsa-
pouvez vous en servir dans n'im	nt contiennent des informations et form porte quel énoncé, sauf sous mention ex uelle formule vous utilisez et dans quel	oplicite contraire.
•	directement dans le document, dans les ne autre feuille, en indiquant clairement	•
d'utilisation de matériel non exp	ortir durant l'examen. Toute forme de co plicitement permis sera considérée com iques et disciplinaires pertinentes.	

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne - FORMATIF

1 Questions à Développement (4 Questions)

- 1. Considérons un système bloc-ressort. Supposons que le bloc ait une masse de 40 kg et que le ressort (sans masse) ait une constante de rappel de 10 N/m. À un certain moment, le bloc est tiré de l'origine et amené à la position x=10 cm, avant d'être relâché. Si à l'instant t=1 seconde, le bloc est à la position x=5 cm et a une vitesse négative, déterminez :
 - (a) (1 Point) De quel type de mouvement il s'agit;
 - (b) (1 Point) L'amplitude de ce mouvement;
 - (c) (2 Points) La fréquence angulaire de ce mouvement;
 - (d) (2 Points) La période de ce mouvement;
 - (e) (2 Points) La fréquence de ce mouvement;
 - (f) (4 Points) La constante de phase de ce mouvement;
 - (g) (1 Point) L'équation globale pour la position de ce mouvement;
 - (h) (1 Point) L'équation globale pour la vitesse de ce mouvement;
 - (i) (1 Point) L'équation globale pour l'accélération de ce mouvement;
 - (j) (2 Points) La relation entre la position et l'accélération (*Indice* : vérifiez que cela satisfasse l'équation différentielle appropriée);
 - (k) (3 Points) La position et l'accélération à t=10s. Que pouvez-vous conclure à l'aide de la partie (j)?
 - (l) (2 Points Boni) Déterminez d'autres équations pour les équations trouvées en (g) et en (i) et faite la même vérification qu'en (j).

Indice: Pensez au minitest #2!

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne - FORMATIF

2. Les chauve-souris se déplacent par écho-location. Elles utilisent des fréquences sonores pour se localiser dans l'espace. Le son émis se propage dans l'espace et se rend jusqu'à un obstacle avant de revenir. La chauve-souris peut estimer la position de l'objet avec le son qui lui revient.

Une chauve-souris moyenne émet des fréquences de 100 kHz. Considérons un insecte volant à une vitesse de 5 m/s. Supposez que la vitesse du son est 340 m/s.

Note : Pour chacune des questions suivantes, la réponse seule ne vaudra rien. Vous devez justifier votre démarche. *Caveat Calculator*!

- (a) (2 Points) Faites un schéma illustrant la situation où l'insecte s'enfuit de la chauve-souris, si celle-ci est immobile, pendue à un plafond.
- (b) (2 Points) Faites un schéma illustrant la situation où l'insecte s'approche de la chauve-souris, si celle-ci est immobile, pendue à un plafond.
- (c) (5 Points) Déterminez la fréquence du son se rendant à l'insecte si celui-ci s'enfuit de la chauve-souris qui est pendue immobile à un plafond.
- (d) (5 Points) Déterminez la fréquence du son revenant à la chauve-souris si l'insecte s'enfuit de la chauve-souris qui est pendue immobile à un plafond.
- (e) (5 Points) Déterminez la fréquence du son se rendant à l'insecte si celui-ci vole vers la chauve-souris qui est pendue immobile à un plafond.
- (f) (5 Points) Déterminez la fréquence du son revenant à la chauve-souris si l'insecte vole vers la chauve-souris qui est pendue immobile à un plafond.
- (g) (1 Point) Donnez une hypothèse quant à la capacité de la chauve-souris de connaître la direction du mouvement de l'insecte.

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

FIGURE 1 – Une onde transversale. L'axe des x représente la position, en mètres, et l'axe des y est le déplacement perpendiculaire à la direction de propagation, en mètres. Cette image/photo est prise à l'instant t=0.

- 3. Considérez l'onde progressive sinusoïdale présentée à la figure 1. Supposons que la période de cette onde soit de 4 secondes et qu'elle se déplace vers la droite (les x positifs).
 - (a) (2 Points) Déterminez l'amplitude de cette onde;
 - (b) (2 Points) Déterminez la longueur d'onde de cette onde;
 - (c) (2 Points) Déterminez le nombre d'onde de cette onde;
 - (d) (1 Point) Déterminez la fréquence angulaire de cette onde;
 - (e) (1 Point) Déterminez la fréquence de cette onde;
 - (f) (2 Points) Déterminez la vitesse de propagation de cette onde;
 - (g) (2 Points) Déterminez la constante de phase de cette onde;
 - (h) (2 Points) Déterminez l'équation globale de cette onde.

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne - FORMATIF

4. Considérez un tuyau ouvert rempli d'air dont la longueur est de 1 m. Pour cette question, nous supposerons que le tuyau ne subisse pas de dilatation ou expansion thermique.

- (a) (2 Points) Déterminez la longueur d'onde de l'harmonique fondamentale (première harmonique) si la température de l'air est de 10 °C.
- (b) (4 Points) Déterminez la fréquence de l'harmonique fondamentale (première harmonique) si la température de l'air est de 10 °C.
- (c) (2 Points) Déterminez la longueur d'onde de l'harmonique fondamentale (première harmonique) si la température de l'air est de 20 °C.
- (d) (4 Points) Déterminez la fréquence de l'harmonique fondamentale (première harmonique) si la température de l'air est de 20 °C.
- (e) (2 Points) Comparez les réponses de (a) et (c). Que remarquez-vous? Pourquoi est-ce le cas?
- (f) (2 Points) Comparez les réponses de (b) et (d), comparativement à celle de (a) et (c). Que remarquez-vous? Pourquoi est-ce le cas?
- (g) (5 Points) Quelle température faudrait-il pour que la deuxième harmonique ait la même fréquence que la première à 20 °C?

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne - FORMATIF

2 Choix de Réponse (11 Questions)

		réponse (10 points). Choisissez la réponse qui est la plus exacte. vez pas besoin de justifier votre réponse.
5.	(1 Point)	N'importe quel mouvement périodique est un mouvement harmonique simple.
		Vrai;
		Faux.
6.	aura un e	Si une source sonore est en mouvement et un observateur immobile, il y effet Doppler.
		Vrai;
		Faux.
7.	,	Toute onde peut être modélisée comme une vague sur une corde 1D. Vrai;
		Faux.
8.	(1 Point)	Le son peut se propager dans le vide.
		Vrai;
		Faux.
9.	(1 Point)	Le son est une onde transversale.
		Vrai;
		Faux.
10.		Les fréquences harmoniques des tuyaux sont les mêmes pour les tuyaux t les tuyaux fermés.
		Vrai;
		Faux.
11.	,	Les fréquences harmoniques sont les mêmes pour les tuyaux ouverts et les tachées aux deux extrémités.
		Vrai;
		Faux.

SIGLE DU COURS : NYC

NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne - FORMATIF 12. (1 Point) Si la tension dans une corde est de 100 N et que la vitesse de propagation d'une onde sur cette même corde est de 5 m/s, quelle est la masse linéique de la corde? \square 2 kg/m; \square 3 kg/m; \Box 4 kg/m. \square Il manque des informations. 13. (1 Point) Si une corde mesure 1 mètre, quelle est la longueur d'onde de la première harmonique? \square 1 m; \square 2 m; \square 3 m; □ Il mangue des informations. 14. (1 Point) Si une corde mesure 1 mètre, quelle est la fréquence de la première harmonique? □ 1 Hz; □ 2 Hz; □ 3 Hz; □ Il manque des informations. 15. (1 Point Bonus) Toute onde a besoin d'un médium pour se propager. □ Vrai: □ Faux.

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne - FORMATIF

3 Questions à Court Développement (3 Questions)

16. (5 Points) Expliquez brièvement la différence entre une onde **transversale** et une onde **longitudinale**.

Donnez un exemple de chacune.

17. (5 Points) Décrivez brièvement le phénomène de résonance pour les ondes et donnez un exemple.

18. (3 Points Boni) Décrivez pourquoi une surface, réfléchissant un son, peut agir comme une source.

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne - FORMATIF

4 Équations Pertinentes

1.a	Mouvement Harmonique Simple	Position	$x(t) = A\sin(\omega t + \phi)$
1.b	Mouvement Harmonique Simple	Vitesse	$v(t) = A\omega\cos(\omega t + \phi)$
1.c	Mouvement Harmonique Simple	Accélération	$a(t) = -A\omega^2 \sin(\omega t + \phi)$
1.d	Mouvement Harmonique Simple	Équation Différentielle	$\frac{d^2x}{dt^2} = -\omega^2 x$
2.	Période		$T = \frac{2\pi}{\omega}$
3.	Fréquence		$f=\frac{1}{T}$
4.a	Fréquence Angulaire	Masse-Ressort	$\omega = \sqrt{\frac{k}{m}}$
4.b	Fréquence Angulaire	Pendule	$\omega = \sqrt{rac{g}{L}}$
5	Onde progressive sinusoïdale		$y(x,t) = A\sin(kx \mp \omega t + \phi)$
6	Vitess de Propagation		$\omega = \sqrt{\frac{F}{\mu}}$
7.a	Densité	Linéique	$\mu = \frac{m}{L}$
7.b	Densité	Surfacique	$\sigma = \frac{m}{A}$
7.c	Densité	Volumique	$\mu=rac{m}{V}$
8	Vitess de Propagation		$V = \frac{\lambda}{T} = \frac{\omega}{k} = \lambda f$
9	Fréquence Angulaire		$\omega = \frac{2\pi}{T}$
10	Nombre d'Onde		$k = \frac{2\pi}{\lambda}$
11	Onde Stationnaire		$y(x, t) = A\sin(kx)\cos(\omega t)$
12.a	Onde Résonante	Longueur d'onde	$\lambda_n = \frac{2L}{n}, n \in \{1, 2, 3, \ldots\}$
12.b	Onde Résonante	Fréquence	$f_n = \frac{nv}{2L}, n \in \{1, 2, 3, \ldots\}$
13	Température		$T_K = T_C + 273.15$
14.a	Vitesse du Son	Air K	$v_{son} pprox 20\sqrt{T_K}$
14.b	Vitesse du Son	Air C	$v_{\rm son} \approx 331\sqrt{1+\frac{T_C}{273.15}}$
14.c	Vitesse du Son	Fluide	$v_{son} = \sqrt{\frac{\kappa}{\rho}}$
15.a	Intensité		$I = \frac{P}{A}$
15.b	Intensité		$I = \frac{P}{4\pi r^2}$
16	Décibels		$\beta = 10 \log \left(\frac{I}{I_0} \right)$

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

17.a	Onde Résonante	Tuyau Ouvert	$\lambda_n = \frac{2L}{n}, n \in \{1, 2, 3, \ldots\}$
17.b	Onde Résonante	Tuyau Ouvert	$f_n = \frac{nv}{2L}, n \in \{1, 2, 3, \ldots\}$
17.c	Onde Résonante	Tuyau Fermé	$\lambda_m = \frac{2L}{m}, m \in \{1, 3, 5, \ldots\}$
17.d	Onde Résonante	Tuyau Fermé	$f_m = \frac{mv}{4L}, m \in \{1, 3, 5, \ldots\}$
18	Fréquence de Battement		$f_{\text{bat}} = f_1 - f_2 $
19	Effet Doppler		$f' = \left(rac{v_{son} \pm v_{obs}}{v_{son} \mp v_{source}} ight) f$
20	Identités Trigonométriques	Déphasage	$\cos(A) = \sin(A + \pi/2)$
21			$\sin^2(A) + \cos^2(A) = 1$
22			$1 + \tan^2(A) = \sec^2(A)$
23			$1 + \cot^2(A) = \csc^2(A)$
24		Somme	$\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
25			$\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
26		Complémentarité	$\sin(\pi - A) = \sin(A)$
27			$\cos(2\pi - A) = \cos(A)$
28		Symétrie	$\cos(-A) = \cos(A)$
29		AntiSymétrie	$\sin(-A) = -\sin(A)$

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

Question	Points	Bonus Points	Score
1	20	2	
2	25	0	
3	14	0	
4	21	0	
5	1	0	
6	1	0	
7	1	0	
8	1	0	
9	1	0	
10	1	0	
11	1	0	
12	1	0	
13	1	0	
14	1	0	
15	0	1	
16	5	0	
17	5	0	
18	0	3	
Total:	100	6	

SIGNATURES:	LE CHARGÉ DE COURS	
	LE RÉPONDANT	