

C Language 기초 - 2일차

- 1. 함수
- 2. 형 변환
- 3. 배열

기초 이론

scanf 사용


```
#define CRT SECURE NO WARNINGS
#include <stdio.h>
lint main(void)
{
    return 0;
}
```

#include <stdio.h> 앞에 #define _CRT_SECURE_NO_WARNINGS 를 적어주어 scanf_s가 아닌 scanf 를 사용

아스키코드

- 아스키코드
 - 아스키코드는 숫자로 문자를 표현하기 위한 약속
 - 특수문자, 숫자, 문자에 번호를 부여하여 컴퓨터에서 처리하기 쉽게 만드는 것이다.
 - 아스키코드는 미국표준협회(ANSI)에서 지정한 표준부호이다.

+) Dec: 정수 표현

Hex: 16진수 표현

(*/3//Y • MA\		MODOI		JI OKI GAI		VIE IEAW					
Dec	Hex	문자	Dec	Hex	문자	Dec	Hex	문자	Dec	Hex	문자
0	0x00	NUL	32	0x20	SP	64	0x40	@	96	0x60	- 3
1	0x01	SOH	33	0x21	1	65	0x41	Α	97	0x61	а
2	0x02	STX	34	0x22		66	0x42	В	98	0x62	b
3	0x03	ETX	35	0x23	#	67	0x43	С	99	0x63	С
4	0x04	EOT	36	0x24	\$	68	0x44	D	100	0x64	d
5	0x05	ENQ	37	0x25	%	69	0x45	E	101	0x65	е
6	0x06	ACK	38	0x26	&	70	0x46	F	102	0x66	f
7	0x07	BEL	39	0x27	1	71	0x47	G	103	0x67	g
8	0x08	BS	40	0x28	(72	0x48	Н	104	0x68	h
9	0x09	HT	41	0x29)	73	0x49	1	105	0x69	i
10	0x0a	LF	42	0x2a	*	74	0x4a	J	106	0x6a	j
11	0x0b	VT	43	0x2b	+	75	0x4b	K	107	0x6b	k
12	0x0c	FF	44	0x2c		76	0x4c	L	108	0x6c	1
13	0x0d	CR	45	0x2d	82	77	0x4d	М	109	0x6d	m
14	0x0e	SO	46	0x2e		78	0x4e	N	110	0x6e	n
15	0x0f	SI	47	0x2f	/	79	0x4f	0	111	0x6f	0
16	0x10	DLE	48	0x30	0	80	0x50	Р	112	0x70	р
17	0x11	DC1	49	0x31	1	81	0x51	Q	113	0x71	q
18	0x12	DC2	50	0x32	2	82	0x52	R	114	0x72	r
19	0x13	DC3	51	0x33	3	83	0x53	S	115	0x73	s
20	0x14	DC4	52	0x34	4	84	0x54	T	116	0x74	t
21	0x15	NAK	53	0x35	5	85	0x55	U	117	0x75	u
22	0x16	SYN	54	0x36	6	86	0x56	V	118	0x76	v
23	0x17	ETB	55	0x37	7	87	0x57	W	119	0x77	w
24	0x18	CAN	56	0x38	8	88	0x58	X	120	0x78	×
25	0x19	EM	57	0x39	9	89	0x59	Υ	121	0x79	у
26	0x1a	SUB	58	0x3a	•	90	0x5a	Z	122	0x7a	Z
27	0x1b	ESC	59	0x3b	;	91	0x5b]	123	0x7b	{
28	0x1c	FS	60	0x3c	<	92	0x5c	\	124	0x7c	1
29	0x1d	GS	61	0x3d	=	93	0x5d	1	125	0x7d	}
30	0x1e	RS	62	0x3e	>	94	0х5е	٨	126	0x7e	~
31	0x1f	US	63	0x3f	?	95	0x5f	_	127	0x7f	DEL

함수

함수

• 함수

특정 작업을 수행하는 코드의 모임에 이름을 붙인 것이다. 함수는 필요한 데이터를 전달받을 수 있고, 작업의 결과를 호출자에게 반환할 수 있다. 함수는 반드시 호출에 의해서 함수 안의 작업 내용이 실행된다.

- 함수의 장점
 - 1. 코드의 재활용 가능 (효율적)
 - 2. 가독성 증가
 - 3. 유지관리

함수 선언

함수 정의

함수


```
#include <stdio.h>
int add(int x, int y);
                                                함수 선언
void main()
    int a = 5;
    int b = 3:
    int answer = 0;
                                                함수 호출
    answer = add(a,b);
int add(int x, int y)
                                                함수 정의
    int result = 0;
    result = x + y;
    return result;
```

함수 예제1

```
03 int SumTwo(int a, int b);
                           // 함수 선언
04
05 int main(void)
06 {
    int x = 10, y = 5;
07
80
    int value;
09
10
    value = SumTwo(x, y);
                           // 함수 호출
11
    printf("두 수의 합 : %d₩n", value);
13
14
    return 0;
15}
16
17 int SumTwo(int a, int b)
                              // 함수 정의
18 {
19
    int result;
20
    result = a + b;
    return result;
21
22}
```


E	∝ "C:₩Program Files₩Microsoft Visual Studio₩MyProjects₩ss₩Debug₩ 🗖 🗖 🗙
ſ	두 수의 합: 15
ı	
ı	
J.	

함수 예제2

```
03 float Average(float x, float y);
                                 // 함수 선언
04
05 int main(void)
06 {
    float num1, num2, result;
    printf("실수 2개를 입력하세요:");
80
    scanf_s("%f %f", &num1, &num2);
09
10
    result = Average(num1, num2);
11
                                       // 함수 호출
     printf("두 실수의 평균 : %f₩n", result);
15
    return 0;
16 }
17
18 float Average(float x, float y) // 함수 정의
19 {
20
    float z:
    z = (x + y) / 2;
22
    return z;
23 }
```


ⓒ "C:₩Program Files₩Microsoft Visual Studio₩MyProjects₩ss₩Debug₩... 및 □ ▼ 실수 2개를 입력하세요: 20.5 40.5 두 실수의 평균: 30.500000

재귀함수

- 재귀호출(recursion)
 - 함수가 자기 자신을 다시 호출하는 것
 - 데이터 N개로 이뤄진 문제가 N-1개 문제를 해결하면 간단하게 해결될 때 사용

• N! 수식 표현

```
N! = N * (N-1) * (N-2) * (N-3) * ······ 1

N! = N * (N-1)!

(N-1)! = (N-1) * (N-2)!

:
```



```
03 int factorial(int n);
04 int main(void)
05 {
06
     int fact_num;
07
     fact_num = factorial(10);
80
09
     printf("10 팩토리얼 : %d₩n", fact_num);
10
11
     return 0;
12 }
13
14 int factorial(int n)
15 {
     if(n <= 1)
16
       return(1);
17
18
     else
       return(n * factorial(n-1));
19
20 }
```

C:₩Program Files₩Microsoft Visual Studio₩MyProjects₩ss₩Debug₩... 및 □ 🗶 10 팩토리얼: 3628800

지역 변수와 전역변수

- 지역 변수 (local variable)
 - 함수 또는 블록 안에서 정의되는 변수
 - 지역 변수는 해당블록이나 함수 안에서만 사용이 가능하다.

- 전역 변수 (global variable)
 - 함수의 외부에서 선언되는 변수
 - 전역 변수는 소스파일의 어느 곳에서도 사용이 가능하다.

전역변수 사용법


```
#include <stdio.h>
int A;
void main() {
  printf("%d ₩n",A);
  A = 10;
  printf("%d ₩n",A);
  return 0;
```

전역변수는 자동으로 0으로 초기화 된다

실행결과

0 10

전역변수 사용법


```
#include <stdio.h>
int A;
void main() {
  printf("%d ₩n",A);
  A = 10;
  printf("%d ₩n",A);
  return 0;
```

전역변수는 자동으로 0으로 초기화 된다

실행결과

0 10

전역변수 사용법

실행결과

10

- 전역 변수와 지역 변수가 같은 이름을 사용하고 있는 경우, 지역 변수가 전역 변수에 비해 우선권을 가진다.

	자료	E형	설명	바이트 수	범위
		short	short형 정수	2	-2^15 ~ (2^15)-1
	부호 있음	int	정수	4	-2^31 ~ (2^31)-1
저人성		long	long형 정수	4	-2^31 ~ (2^31)-1
정수형	부호 없음	unsigned short	부호 없는 short형 정수	2	0 ~ (2^16)-1
		unsigned int	부호 없는 정수	4	0~ (2^32)-1
		unsigned long	부호 없는 long형 정수	4	0~ (2^32)-1
ㅁ᠇ᅜ	부호 있음	char	문자 및 정수	1	-2^7 ~ (2^7)-1
문자형	부호 없음	unsigned char	문자 및 부호 없는 정수	1	0 ~ (2^8)-1
부동 소수점형		float	단일 정밀도 부동 소수점	4	1.2E-38 ~ 3.4E38
		double	두배 정밀도 부동 소수점	8	2.2E-308 ~ 1.8E308


```
#include <stdio.h>
void main() {
  int a;
  double b;
  b = 2.4;
  a = b;
  printf("%d", a);
```

warning C4244: '=' : conversion from 'double' to 'int', possible loss of data


```
#include <stdio.h>
void main() {
  int a;
  double b;
  b = 2.4;
  a = (int)b;
  printf("%d", a);
```

```
C:\WINDOWS\system32\cmd.exe

2Press any key to continue . . .
```

(바꾸려는 자료형) 변수 이름

형 변환_예제

```
#include <stdio.h>
int main() {
  int a,b;
  float c, d;
  printf("두 숫자 입력 : ");
  scanf("%d %d", &a, &b);
  c = a/b;
  d = (float)a/b;
  printf("두 수의 비율 : %f %f", c , d);
```


두 숫자 입력 : 5 2 <u>두 수의 비율 : 2.000000 2.500000</u>

배열(Array)

배열(Array)

• 배열이란 무엇인가? 동일한 타입의 데이터가 여러 개 저장 되어 있는 데이터 저장 장소

- 배열은 왜 필요한가
 - 1. 프로그램의 가독성
 - 2. 효율적인 메모리 관리
 - 3. 유지보수가 쉽다.

배열(Array)


```
int student1 = 60;
int student2 = 54;
int student3 = 99;
                           int student[100];
int student4 = 100;
int student99 = 4;
```

배열 선언

자료형

int student[100];

배열의 크기

배열 이름

- 자료형: 배열 원소들이 int형이라는 것을 의미
- 배열의 이름 : 배열을 사용할 때 사용하는 이름
- 배열의 크기 : 배열 원소의 개수를 지정해준다.
- index는 항상 0부터 시작한다.

배열 사용시 주의사항


```
Index가 배열의 크기를 벗어나지 않는다.
```

```
int i=0;
int student[3] = {0,};
```

```
student[0] = 30;
student[1] = 80;
student[2] = 50;
```

```
student[3] = 10;
```

Index 값은 0과 양의 정수로 이루어진다.

```
int i=0;
int student[3] = {0,};
```

```
student[0] = 30;
student[1] = 80;
student[2] = 50;
```

배열 사용


```
int i=0;
int student[5] = {0, };

student[0] = 20;
student[1] = 40;
student[2] = 70;
student[3] = 40;
student[4] = 15;

for(i=0;i<5;i++)
{
    printf("grade[%d] : %d\n",i,student[i]);
}</pre>
```

```
grade[0] : 20
grade[1] : 40
grade[2] : 70
grade[3] : 40
grade[4] : 15
계속하려면 아무 키나 누르십시오 . . .
```

문자열

• 문자열은 배열의 한 종류

```
char str[6] = "Hello";
str[0] = 'H';
str[1] = 'e';
str[2] = 'l';
str[3] = 'l';
str[4] = 'l';
str[5] = NULL;
```


데이터 탐색

```
#include <stdio.h>
void main()
   int i=0;
   int key=0;
    int list[8] = {1,2,3,4,5,6,7,8};
   printf("탐색할 값을 적으시오 : ");
   scanf("%d", &key);
   for( i=0; i<8; i++)
        if(list[i] == key)
           printf("Find!! list[%d]\n",i,list[i]);
           break:
   printf("end\n");
```



```
탐색할 값을 적으시오 : 5
Find!! Tist[4]
end
계속하려면 아무 키나 누르십시오 . . .
```


과제

과제 관련 주의사항

1. 제출 기한 : 다음 날 수업 전까지

2. 제출 형식 : 프로젝트 파일, 보고서(PDF) 를 (로빛_18기_수습단원_이름) 으로 압축 후 kwrobit2023@gmail.com 으로 제출 (보고서는 코드 설명과 실행 화면 첨부, 메일 제목은 C언어_n일차_이름)

3. 채점 기준 :

- 1) 프로그램의 실행가능 여부
- 2) 교육하지 않은 C언어 개념 사용 시 감점
- 3) 예외처리
- 4) 효율적인 코드 작성
- 5) 제출 형식

과제1

*	*	* * * * * * * * * * *	* * * * * * * * * *
종류1	종류2	종류3	종류4

입력 받은 종류와 숫자를 이용하여 별을 출력하는 프로그램 (조건 : 함수를 이용하여 작성하시오)

입력1 : 길이 입력2 : 종류

```
사이즈와 종류를 입력하시오.5 1
*
**
***
***
**
```

과제 2 _선택정렬

선택 정렬

- 정렬이 안된 숫자들 중에서 최대값을 선택하여 배열의 마지막 값과 교환하는 방식

과제 2 _선택정렬

임의의 수를 입력받아 배열에 저장하고, 저장된 배열 안의 수를 정렬하는 프로그램을 작성하시오. (입력은 정수 8개로 제한, 정렬이 되는 중간 과정 출력)

H	_	i
0	:	14
1	:	2
2	:	10
3	:	5
4	:	1
5	:	3
6	:	17
7	:	7

이려

14	2	10	5	1	3	17	7
14	2	10	5	1	3	7	17
7	2	10	5	1	3	14	17
7	2	3	5	1	10	14	17
1	2	3	5	7	10	14	17
(sorting 이 되는 중간 과정을 출력)							

출 력							
0	:	1					
1	:	2					
2	:	3					
3	:	5					
4	:	7					
5	:	10					
6	:	14					
7	:	17					

과제 3 _음계

다장조는 c d e f g a b C, 총 8개 음으로 이루어져 있다.

c부터 C까지 차례대로 연주한다면 ascending, C부터 c까지 차례대로 연주한다면 descending, 둘 다 아니라면 mixed 이다.

연주한 순서가 주어졌을 때, ascending, descending, mixed를 판별하는 프로그램을 작성하시오. (조건 : 반환 함수를 사용 하여 반환 값에 따른 switch문을 이용)

음 입력 cdefgabC 결과 : ascending

과제 4 _문자열에서 문자열 찾기


```
최대 99개 문자 입력 <inputStr> : gewsgwghwb
찾는 문자열 <subStr> : gh
gh의 위치 : 7계속하려면 아무 키나 누르십시오 . . .
```

임의의 문자를 입력하고, 찾는 문자열을 입력하여, 입력 문자에서의 위치를 출력하는 프로그램을 작성하시오.

(입력 문자 안에 찾는 문자가 여러 개 있는 경우는 위치를 모두 찾아 출력)

과제 5

1부터 N까지 자연수 N개로 이루어진 수열 A가 있다. 각 자연수는 수열에서 한 번씩만 등장한다. A의 부분 수열은 A의 앞과 뒤에서 숫자를 제거해서 만들 수 있다. 길이가 홀수이면서 중앙값이 B인 A의 부분 수열의 개수를 구하는 프로그램을 작성하시오. 중앙값이란 크기 순으로 수열을 정렬했을 때, 가운데에 있는 숫자이다. 예를 들어, {5, 1, 3}의 중앙값은 3이다.

예제 입출력