

SEQUENCE LISTING

RECEIVED 16 2003

TECH CENTER 1600/29CO

<110> BOYLE, WILLIAM

<120> OSTEOPROTEGERIN BINDING PROTEINS AND RECEPTORS

<130> A-451K REV 09-10-03 54SEQ

<140> US 09,721,212

<141> 2000-11-21

<150> US 09/052,521

<151> 1998-03-30

<150> US 08'880,855

<151> 1997-06-23

<150> US 08/842,842

<151> 1997-04-16

<160> 54

<170> Patentin version 3.1

<210> 1

<211> 2295

<212> DNA

2013> Mus muscullus

<223>

<400:	> 1	at co	cacta	actco	g acc	ccaco	gagt	ccg	gcca	gga (actet	tgtga	aa co	ggto	cgggg	60
															aacga	120
taga										atq	cac		gcc	agc	cga	175
gac Asp	tac q Tyr (Gly	aag Lys ' 10	tac Tyr	ctg (Leu ,	cgc Arg	agc Ser	tcg Ser 15	gag Glu	gag Glu	atg Met	ggc & Gly !	agc (Ser (20	ggc Gly	ccc Pro	223
ggc ggc	Val	cca Pro 25	cac His	gag Glu	ggt Gly	PIO	ctg Leu 30	cac His	ccc Pro	gcg Ala	cct Pro	tct (Ser / 35	gca Ala	ccg Pro	gct Ala	271
ccg Pro	gcg Ala 40	ccg Pro	cca Pro	ccc Pro	gcc Ala	gcc Ala 45	tcc Ser	cgc Arg	tcc Ser	atg Met	ttc Phe 50	ctg Leu	gcc Ala	ctc Leu	ctg Leu	319
ggg Gly 55	ctg Leu	gga Gly	ctg Leu	ggc Gly	cag Gln 60	gtg Val	gtc Val	tgc Cys	agc Ser	atc Ile 65	gct Ala	ctg Leu	ttc Phe	ctg Leu	tac Tyr 70	367
ttt Phe	cga Arg	gcg Ala	cag Gln	atg Met 75	gat Asp	cct Pro	aac Asn	aga Arg	ata Ile 80	tca Ser	gaa Glu	gac Asp	agc Ser	act Thr 85	cac His	415
tgc Cys	ttt Phe	tat Tyr	aga Arg 90	atc Ile	ctg Leu	aga Arg	ctc Leu	cat His 95	gaa Glu	aac Asn	gca Ala	ggt Gly	ttg Leu 100	cag Gln	gac Asp	463
tcg Ser	act Thr	ctg Leu 105	gag Glu	agt Ser	gaa Glu	gac Asp	aca Thr 110	Leu	cct Pro	gac Asp	tcc Ser	tgc Cys 115	agg Arg	agg Arg	atg Met	511
aaa Lys	caa Gln 120	gcc Ala	ttt Phe	cag Gln	G1A aaa	gcc Ala 125	gtg Val	cag Gln	aag Lys	gaa Glu	ctg Leu 130	caa Gln	cac His	att Ile	gtg Val	559
ggg Gly 135	Pro	cag Gln	các Arg	:tc Ph.e	tca Ser 140	Gir	gci Alá	cca Pro	gct Ala	atg Met 145		gaa Glu	gly	tca Ser	tga Trp 150	607
ttg Leu	gat Asp	gtg Val	gcc Ala	cag Gln 155	Arg	ggc Gly	aaq Lys	g cct s Pro	gag Glu 160	1 1110	cag Gln	cca Pro	ttt Phe	gca Ala 165	cac His	655
ctc 	acc	ato	: aat	gat Ala	geo Ala	agc Ser	ato - 110	a ada	tog Se:	r Gly	t too 7 Ser	cat.	aaa Lys	gto Val	act Thr	703

almorths and coast oda mass the act off survives out office that the The The Theorem See Archally Typ Tell Archall Ash (Dh. Arg. 41) Tell Typ Typ Typ

ctg tac gcc aac att tgc ttt cgg cat cat gaa aca tcg gga agc gt Leu Tyr Ala Asn Ile Cys Phe Arg His His Glu Thr Ser Gly Ser Va 215 220 225 23	. 4
cct aca gac tat ctt cag ctg atg gtg tat gtc gtt aaa acc agc at Pro Thr Asp Tyr Leu Gln Leu Met Val Tyr Val Val Lys Thr Ser Il 235 240 245	.c 895 .e
aaa atc cca agt tct cat aac ctg atg aaa gga ggg agc acg aaa aa Lys Ile Pro Ser Ser His Asn Leu Met Lys Gly Gly Ser Thr Lys As 250 255 260	ac 943 sn
tgg tcg ggc aat tct gaa ttc cac ttt tat tcc ata aat gtt ggg gg Trp Ser Gly Asn Ser Glu Phe His Phe Tyr Ser Ile Asn Val Gly Gl 265 270 275	ga 991 -Y
ttt ttc aag ctc cga gct ggt gaa gaa att agc att cag gtg tcc aa Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile Ser Ile Gln Val Scr As 280 285 290	ac 1039 on
cct tcc ctg ctg gat ccg gat caa gat gcg acg tac ttt ggg gct t Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala Thr Tyr Phe Gly Ala Pl 295 300 305	1087 ne 10
aaa gtt cag gac ata gac tgagactcat ttegtggaac attagcatgg Lys Val Gln Asp Ile Asp 315	1135
atgtoctaga tgtttggaaa ottottaaaa aatggatgat gtotatacat gtgtaa	gact 1195
actaagagac atggcccacg gtgtatgaaa ctcacagccc tctctcttga gcctgt	
gttgtgtata tgtaaagtcc ataggtgatg ttagattcat ggtgattaca caacgg	
acaattttgt aatgatttcc tagaattgaa ccagattggg agaggtattc cgatgc	
gaaaaactta cacgtgaget atggaagggg gtcacagtet etgggtetaa eeeetg	
tgtgccactg agaaccttga aattaagagg atgccatgtc attgcaaaga aatgat	
tgaagggtta agttettttg aattgttaca ttgegetggg acctgeaaat aagtte	
ttttaaiga ggagagaaaa alataigiat tittatalaa tatciaaadi jahaij	
gtgtäärdt: stetusucaa agtittidiaa attäiäirid tgeläiaula hitdai	
äätätttaaa äätyteteäe tyytyäeatä tytäätetti taaatetaea eateta	
actggtgdad titgtaatid oddigaaggt actogtagdt aagggggdag aatadt	
ctggrgacca catgtagttt atttetttat tetttttaae ttaatagagt etteag	
gtcaāaacja igcaagcaaa ataaathaat aaāaatāaaa igaataccit gaataa	

and data and district and the tradential descriptions of the tradential section of the contract of the contrac

aaataaattt gtacgaaaac ctgaaaaaaa aaaaaaaaa aaaaaaaagg gcggccgctc 2275 tagagggccc tattctatag 2295

<210> 2

< 111> 316

<112> PRT

<213> Mus musculus

<400> 2

Met Arg Arg Ala Ser Arg Asp Tyr Gly Lys Tyr Leu Arg Ser Ser Glu 1 5 10

Glu Met Gly Ser Gly Pro Gly Val Pro His Glu Gly Pro Leu His Pro 20 25 30

Ala Pro Ser Ala Pro Ala Pro Ala Pro Pro Pro Ala Ala Ser Arg Ser 35 40 45

Met Phe Leu Ala Leu Leu Gly Leu Gly Leu Gly Gln Val Cys Ser 50 60

Ile Ala Leu Phe Leu Tyr Phe Arg Ala Gln Met Asp Pro Asn Arg Ile 65 70 75 80

Ser Glu Asp Ser Thr His Cys Phe Tyr Arg Ile Leu Arg Leu His Glu 85 90 95

Ash Ala Gly Leu Gln Asp Ser Thr Leu Glu Ser Glu Asp Thr Leu Pro 100 100

Asp Ser Cys Ard Ard Met Lys Gln Ala Phe Gln diy Ala Val Gln Lyn 115

Glu Leu Gln His Ile Val Gly Pro Gln Arg Phe Ser Gly Ala Pro Ala 130 140

with war only only Ser Tro Lett Asp Mal Ala Glo Ard Gly Lys Pro Glu

Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val Asn 195 200 205

Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His His 210 220

Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val Tyr 225 230 235

Val Val Lys Thr Ser Ile Lys Ile Pro Ser Scr His Asn Leu Met Lys 245 250 255

Gly Gly Ser Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe Tyr 260 265 270

Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile 275 280 285

Ser Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala 290 295 300

Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp 305 315

<210> 3

<211> 2271

<212> DNA

<213> Homo sapiens

5.120 DES

<221> CDS

<222> (185)..(1135)

<223>

. ...

gag Glu	gag Glu	atg Met	ggc Gly	ggc Gly 20	ggc Gly	ccc Pro	gga Gly	gcc Ala	ccg Pro 25	cac His	gag Glu	GjA Gac	ecc Pro	ctg Leu 30	cac His	277	
gcc Ala	ccg Pro	ccg Pro	ccg Pro 35	cct Pro	gcg Ala	ccg Pro	cac His	cag Gln 40	ccc Pro	ccc Pro	gcc Ala	gcc Ala	tcc Ser 45	ege Arg	tcc Ser	325	
atg Met	ttc Phe	gtg Val 50	gcc Ala	ctc Leu	ctg Leu	ggg ggg	ctg Leu 55	Gly ggg	ctg Leu	ggc	cag Gln	gtt Val 60	gtc Val	tgc Cys	agc Ser	373	,
gtc Val	gcc Ala 65	ctg Leu	ttc Phe	ttc Phe	tat Tyr	ttc Phe 70	aga Arg	gcg Ala	cag Gln	atg Met	gat Asp 75	cct Pro	aat Asn	aga Arg	ata Ile	421	=
t.ca Ser 80	gaa Glu	qat Asp	ggc Gly	act Thr	cac His 85	tgc Cys	att Ile	tat Tyr	aga Arg	att ile 90	ttg Leu	aga Àry	ctc Leu	cat His	gaa Glu 95	469)
aat Asn	gca Ala	gat Asp	ttt Phe	caa Gln 100	gac Asp	aca Thr	act Thr	ctg Leu	gag Glu 105	agt Ser	caa Gln	gat Asp	aca Thr	aaa Lys 110	tta Leu	517	
ata Ile	cct Pro	gat Asp	tca Ser 115	tgt Cys	agg Arg	aga Arg	att Ile	aaa Lys 120	cag Gln	gcc Ala	ttt Phe	caa Gln	gga Gly 125	gct Ala	gtg Val	565	
caa Gln	aag Lys	gaa Glu 130	tta Leu	caa Gln	cat His	atc Ile	gtt Val 135	gga Gly	tca Ser	cag Gln	cac His	atc Ile 140	1119	gca Ala	gag Glu	613	
Lys	Ala 145	Met	Val	Asp	Gly	Ser 150	Trp) Leu	Asp	, пеа	155	. шуз	. Arg	501	aag Lys	66	
Leu 160	Glu	Ala	. Gln	. Pro	Phe 165	Ala	HIS	s Leu	. Thi	170)	I AIC		115	atc Ile 175	70	
Pro	Ser	Gly	. Ser	180	n LYS	. Vai	. 54,1	1165	181)	1 10 1	, , , ,		1.90		75	
gar Gly	tại Trp	n dek S Ala	· aA(i bys 195	3 1.4	· · gw e Sei	nat As:	i At. I Mes	: Ast : Thr 200		agr • Set	: Aa: Ay:	(1618 (1618)	: aa: : Ly: :20'		i Ata iliu	8(
Va:	. Asr	ı Glr 210	n Asp	o Gl;	y Ph€	э Ту:	21	r Let 5	ı vy:	r Ale	a Mbi	22	е су. О	<i>J</i> 1	c cga e Arg	85	
cat u:	cat His	gaa a Gir	a act	t taa r Se:	a gga r Gly	a gad , As	a at p Le	a gct n Ala	t ace a Th	a gag r Gl	g ta u Ty	t et r Le	t da u Gl:	a cta n Les	a atg u Met	90):

and assumes the service of the control of the contr

ttt tat too ata aac gtt ggt gga ttt ttl aag lla cgg tot gga gag Phe Tyr Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ser Gly Glu 275 280 285	1045
gaa atc agc atc gag gtc tcc aac ccc tcc tta ctg gat ccg gat cag Glu Ile Ser Ile Glu Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln 290 295 300	1093
gat gca aca tac ttt ggg gct ttt aaa gtt cga gat ata gat Asp Ala Thr Tyr Phe Gly Ala Phe Lys Val Arg Asp Ile Asp 305 310	1135
tgagccccag tttttggagt yllätgtatt teetggatgt ttggaaacat fttttaaaac	1195
aagccaagaa agatgtatat aggtgtgtga gactactaag aggcatggcc ccaacggtac	1255
acgactcagt atccatgctc ttgaccttgt agagaacacg cgtatttaca gccagtggga	1315
gatgttagac tcatggtgig ilacacaatg gtttttagat tttgtaatga affoctagaa	1375
ttaaaccaga ttggagcaat tacgggttga cettatgaga aactgcatgt gggctatggg	1435
aggggttggt ccctggtcat gtgccccttc gcagctgaag tggagagggt gtcatctagc	1495
gcaattgaag gatcatctga aggggcaaat tettttgaat tgttacatca tgetggaace	1555
tgcaaaaaat actttttcta atgaggagag aaaatatatg tatttttata taatatctaa	1615
agttatattt cagatgtaat gttttctttg caaagtattg taaattatat ttgtgctata	1675
gtatttgatt caaaatattt aaaaatgtct tgctgttgac atatttaatg ttttaaatgt	1735
acagacatat ttaactggtg cactttgtaa attccctggg gaaaacttgc agctaaggag	1795
gggaaaaaaa tgttgtttcc taatatcaaa tgcagtatat ttcttcgttc tttttaagtt	1855
aatagatttt ttcagacttg tcaagcctgt gcaaaaaaat taaaatggat gccttgaata	1915
ataagcagga tgttggccac caggtgcctt tcaaatttag aaactaattg actttagaaa	1975
gctgacattg ccaaaaagga tacataatgg gccactgaaa tctgtcaaga gtagttatat	2035
eatigitgaa caggiquitt tocacaagig coqcaaatig tacciititt triftticaa	2095
aatagaaaag itättägigg ritaicagca aaaaagtoca attitaatti agtaaatgit	2155
atottataot gtácaatááa aacattgoot (tgaatgota attititiggi acaaaaátaa	2215
atttatatga aaaaaaaaaa aaaagggcgg ccgctctaga gggccctatt ctatag	2271

<210> 4

<211> 317

0 - 1

Met Arg Arg Ala Ser Arg Asp Tyr Thr Lys Tyr Leu Arg Gly Ser Glu 1 5 10

Glu Met Gly Gly Gly Pro Gly Ala Pro His Glu Gly Pro Leu His Ala 20 25 30

Pro Pro Pro Pro Ala Pro His Gln Pro Pro Ala Ala Ser Arg Ser Met

Phe Val Ala Leu Leu Gly Leu Gly Leu Gly Gln Val Val Cys Ser Val 50 60

Ala Leu Phe Phe Tyr Phe Arg Ala Gln Met Asp Pro Asn Arg Ile Ser

Glu Asp Gly Thr His Cys Ile Tyr Arg Ile Leu Arg Leu His Glu Asn 85 90 95

Ala Asp Phe Gln Asp Thr Thr Leu Glu Ser Gln Asp Thr Lys Leu Ile 100 105 110

Pro Asp Ser Cys Arg Arg Ile Lys Gln Ala Phe Gln Gly Ala Val Gln 115 120 125

Lys Glu Leu Gln His Ile Val Gly Ser Gln His Ile Arg Ala Glu Lys 130 135 140

Ala Met Val Asp Gly Ser Trp Leu Asp Leu Ala Lys Arg Ser Lys Leu 145 150 155

Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Thr Asp Ile Pro 165 170 175

Ser Gly Ser His Lys Tal Ser Lêu Ser Ser Trp Tyr His Asp Arg Gly 180

Trp Ala Lys Ile Ser Asn Met Thr Phe Ser Asn Gly Lys feu Ile Val 195 200 205

Asn Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His 210 220 Lys Gly Gly Ser Thr Lys Tyr Trp Ser Gly Asn Ser Glu Phe His Phe 265 Tyr Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ser Gly Glu Glu 285 Ile Ser Ile Glu Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp 295 300 Ala Thr Tyr Phe Gly Ala Phe Lys Val Arg Asp Ile Asp 310 <210> 5 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide 52 gttctcctca tatggatcca aaccgtattt ctgaagacag cactcactgc tt <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <:220> <223: Synthetic Oligonucleotide 37 tacgcacted geggttagte tatgteetga actitiga < 210 > 7

1.7

<211> 51

<2.13>	Synthetic Oligonucleotide	
<4000> atttgat	7 ttot agaaggagga ataacatatg catgaaaacg caggtotgca g	51
<210>	8	
<211>	42	
<::12>	DNA	
<213>	Artificial Sequence	
<.120>		
<223>	Synthetic Oligonucleotide	
<400> tatccg	8 orgga teetegagtt agtetatgte etgaaetttg aa	42
<210>	9	
<211>	54	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide	
<400> atttg	9 attot agaaggagga ataacatatg totgaagaca ototgoogga otoo	54
. 210>	10	
-211>	42	
<212>	DNA	
-213>	Artificial Sequence	
220		
· c o s ·	. ppppiparja Olidonuoleotide	

<212>	ጉሂዱ	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide	
<400> attga	11 ttct agaaggagga ataacatatg aaacaagctt ttcagggg	48
< 110>	12	
<211>	42	
<1112>	AHD	
<::13>	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide	
<.100>	12 gegga teetegagtt agtetatgte etgaaetttg aa	42
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
<210>	13	
<211>	51	
<212>		
<213>	Artificial Sequence	
× 220×		
-2235	Synthetic Oligonucleotide	
.400> ttg	- 13 pattot agaaggagga atäädatsig assifaaniso agoacatist d	51
<210>	- 14	
<2011	- 40	
	- TORIA	

Super-Lybraeck - Lightness Sub-

<400> tatccgc	14 egga tectegagit agicialyte elgaaciltg aa	42
< 710>	15	
<211>	51	
< 12>	DNA	
<213>	Artificial Sequence	
<1.20>		
<223>	Synthetic Oligonucleotide	
<400> atttga	15 ttot agaaggagga ataacatatg cagoguliot otggtgotoo a	51
<210>	16	
<311>		
<212>		
	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide	
< 400>	16	42
tatoog	gegga teetegagtt agtetatgte etgaaetttg aa	
<210>	17	
-311>	:0	
-212>	DNA	
· 213>	Artificial Seguence	
<220>		
-:223>-	Synthetic Oligonucleotide	
∴∩₫.		:

....

<213>	Artificial Sequence	
<220>		
<2:23>	Synthetic Oligonucleotide	
<400> täcgcad	18 otoc geggttagte tatgteetga actitga	37
<210>	19	
<1:11>	44	
<212>	DNA	
<.113>	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide	
<400> gttctc	19 cetca tatgegtggt aaacetgaag eteaaceatt tgea	44
<210>	20	
<211>	37	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
. 23>	Synthetic Oligonucleotide	
- 400> - 4000	- 20 actor segon nagro nagarodnja sominja	٥,
<210>	21	
<211>		
4212Þ		
0.3	Contributat Secretor	

.

<210>	22	
<2111>	37	
<212>	DNA	
<:113>	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide	
<400> tangna	22 otoc goggttagto tatgtootga actitga	37
<.:10>	23	
<211>	65	
<212>	DNA	
<213>	Artificial Sequence	
< 320>		
< 223>	Synthetic Oligonucleotide	
<400>	23 cetea tatgeattta actattaaeg etgeatetat eccategggt teccataaag	60
react		65
Carr		
-210>	2.4	
- 2115		
. ::?>	DITA	
.713>	Artificial Sequence	
<220>		
C223.	- Synthetic Olicenucleotide	
: 00-	. 24	ς.

<2:13>	Artificial Sequence	
<220>		
<2.23>	Synthetic Oligonucleotide	
<400> gttctc	25 ctda tatgactatt aacgetgeat etateedate gggtteedat aaagteact	59
<210>	26	
<211>	37	
<212>	NIA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide	
<400> tacgca	26 actcc gcggttagtc tatgtcctga actttga	37
< 1:10>	27	
<111>	30	
<212>	DNA	
<213>	Artificial Sequence	
<∴20>		
· .123>	Synthetic Oligonucleotide	
- :00> - :: c::	2T aggcc turacrittes ascgcasars	3.0
<210>	28	
<211>	32	
<212>	DNA	
·) * 3 >	Artificial Sequence	

<710>	29	
<211>	46	
<212>	DNA	
<113>	Artificial Sequence	
< 0.20>		
<223>	Synthetic Oligonucleotide	
<400>	29 tega grggacaace cagaageetg aggeecagee atttge	46
<.210>	30	
<211>	32	
<312>	DHA	
<.213>	Artificial Sequence	
< 220>		
<223>	Synthetic Oligonucleotide	
<400> cotate	30 gegge egegtetatg teetgaaett tg	32
- 210>	31	
<211>	56	
- 212>	DNA	
- 213>	Artificial Sequence	
-:220>		
<223>	Synthetic Oligonucleotide	
<400≥ agctt	3: ccacc atgaacaagt ggctgtgctg cacactoctg didetected acatea	5.6

ing the opening the problem

<220>

<223> Synthetic Oligonucleotide

<400> 32

togatgatgt ccaggagcac caggagtgcg cagcacagcc acttgttcat ggtgga

56

<210> 33

<111> 27

<!!12> PRT

<::13> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide

<400> 33

Asn Ala Ala Ser Ile Pro Ser Gly Ser His Lys Val Thr Leu Ser Ser

Trp Tyr His Asp Arg Gly Trp Ala Lys Ile Ser 20 25

<210> 34

<211> 28

<212> PRT

<213> Artificial Sequence

- 320>

3223> Synthetic Oligonacieotide

<400> 34

Asn Ala Ala Ser Ile Pro Ser Gly Ser His Lys Val Thr Leu Ser Ser 1 5 10 15

Tri Tur His Asp Ard Gly Trp Ala Lys Ile Ser Cys

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide
<400> 35
Val Tyr Val Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Met
<210> 36
<211> 18
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide
 <400> 36
 Val Tyr Val Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu
 Met Cys
 <210> 37
 <311> 31
 <212> DNA
 <213> Artificial Sequence
 . 220>
 anga. Sumbbetic Oligopucleotide
```

. . . .

<212>	ANG	
<1113>	Artificial Sequence	
<220>		
<:123>	Synthetic Oligonucleotide	
<400> tataag	38 cggc cgcgtaagcc tgggcctcat tgggtg	36
< .110>	39	
<.111>	72	
<212>	DIJA	
<.:13>	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide	
<:00>	39 accat gaacaagtgg etgtgetgeg eacteetggt geteetggae ateattgaat	60
ggacaa	accca ga	72
7105	40	
<.310>		
<211>		
<212>	DNA Artificial Sequence	
<.313>	Artificial boddenes	
لانان <u>:</u> دانان:		
. 223>		
agett	40 ctggg tigiccatic aatgatgice aggagcacca ggagtgegea gcacagccac	60
ttgtt	catgg tg	72
. 41.15		

<220>															
<223>	Synthetic Oligonucleotide														
<400>	41														
Met As 1	p Pro		Arg (5	Gln A	sp I	le A	Asp								
<210>	42														
<211>	2071														
<212>	AND														
<213>	Artificial Sequence														
<220>															
<223>	Synt	hetic	Oli	gonu	cleo	tide									
<220>															
<221>	CDS														
<222>	(36)	(19	10)												
<223>															
<400> actcg	42 accca	cgcgt	ccgc	c cg	ıcccg	cacc	g geg	jcc a M 1	iec r	jac c Asp F	eg c Pro A	gc g Arg A		gg rg	53
cgg c Arg A	gc cgo rg Aro	c cag g Gln 10	ctg Leu	ccc Pro	gcg Ala	ccg Pro	ctg Leu 15	ctg Leu	gcg Ala	ctc Leu	tgc Cys	gtg Val 20	ctg Leu	ctc Leu	101
çitt c Mal P	ca cto ro Le 25	j cag i Gln	gtg Val	act Thr	cto Leu	cad Gln 30	gtc Val	act Thr	cct Pro	cca Pro	tac Cys 35	acc Thr	cad Gln	gaq Glu	149
Arg H	at ta lis Ty	t gağ r Glu	cāt His	ctc Leu	gga Gly 45	cgg Arg	.g: Cys	t.gc Cys	agc Ser	aga Arg 50	cys Cys	gaa Glu	cca Pro	gga Gly	197
Hag t Dys 7	ac ct Yr Le	g taa u Ser	t.ct Ser	aag Lys 60	tgc Cys	act Thr	cct Pro	acc Thr	tcc Ser 65	gac Asp	agt Ser	gtg Val	tgt Cys	ctg Leu 70	245
-															

أخم المحادث والمحادث والمحادث

Asp	Pro	Gly 105	Asn	His	Thr	Ala	Pro 110	Arg	Arg	Cys	Ala	Cys 115	Thr	Ala	Gly	
tac Tyr	cac His 120	tgg Trp	aac Asn	tca Ser	gāc Asp	tgc Cys 125	gag Glu	tgc Cys	tgc Cys	cgc Arg	agg Arg 130	aac Asn	acg Thr	gag Glu	tgt Cys	437
gca Ala 135	cct Pro	ggc Gly	ttc Phe	gga Gly	gct Ala 140	cag Gln	cat Hís	ccc Pro	ttg Leu	cag Gln 145	ctc Leu	aac Asn	aag Lys	gat Asp	acg Thr 150	485
gtg Val	tgc Cys	aca Thr	ccc Pro	tgc Cys 155	ctc Leu	ctg Leu	ggc Gly	t.tc Phe	ttc Phe 160	tca Ser	gat Asp	gtc Val	ttt Phe	teg Ser 155	tec Ser	533
aca Thr	gac Asp	aaa Lys	tgc Cys 170	aaa Lys	cct Pro	tgg Trp	acc Thr	aac Asn 175	tgc Cys	acc Thr	ctc Leu	ctt Leu	gga Gly 180	aag Lys	cta Leu	581
gaa Glu	gca Ala	cac His 185	cag Gln	Gly ggg	aca Thr	acg Thr	gaa Glu 190	tca Ser	gat Asp	gig Val	ytc Val	tgc Cys 195	agc Ser	tot Ser	tod Ser	629
atg Met	aca Thr 200	Leu	agg Arg	aga Arg	cca Pro	ccc Pro 205	aag Lys	gag Glu	gcc Ala	cag Gln	gct Ala 210	- 1 -	ctg Leu	ccc Pro	agt Ser	677
ctc Leu 215	Ile	gtt Val	ctg Leu	ctc Leu	ctc Leu 220	ttc Fhe	atc Ile	tct Ser	gtg Val	gta Val 225	VUI	gtg Val	gct Ala	gcc Ala	atc Ile 230	725
atc Ile	ttc Phe	ggc Gly	gtt Val	tac Tyr 235	Tyr	agg Arg	aag Lys	gga Gly	ggg Gly 240	L K	gcg Ala	ctg Leu	aca Thr	gct Ala 245		773
t t ç Lev	ı tgg ı Trp	aat Asr	tgg Trp 250) Val	: aat . Asn	gat Asp	gat Ala	tgc Cys 255	261	agt Ser	cta Leu	a agt 1 Ser	gga Gly 260		aag Lys	821
gaç Glu	g tad 1 Ser	tea Ser 265	: Gly	gac Asp	c cgt Arg	tgt J Cys	gct Ala 270	r ath	tac Sei	cac His	tcg Ser	g gca Ala 275		t toc Ser	agt Ser	869
Cay	; Cai : Gl: ::28:	; G.	r gtt I Val		Ger G	. gg: : gly :/81		r its h Ler	r 617 Ligher	a Alg i Met	7 aC. Th:		a Gir	r fåg i fli	r aad : Lys	gh ,
at Me 29	t Va.	t odd I Pro	a gad o Glu	a gad u Asj	o gg: p Gl: 30	λ var∈	dd a Gl	a diy y Val	: tg: L Cy:	: 400 s Gl; 30	4	· d·d o Va	l Cyr	s Ala	e dca Ala 310	965
gg G:	t gg y Gl	g de y Pr	d tgg o Try	g gc p Al- 31	či (τ.	a gto : Va	ad L Ar	a gar g Asi	t td p Se 32		g ac g Th	g tt r Ph	c aca e Th	a cto r Les bli	g gtc : Val	1013

Leu	Il≎ 360	Gln	Gln	Gly	Ser	Lvs : 365	Ser	Ile 1	Pro	Pro	Phe 370	Gln	Glu	Pro	Leu	
gaa Glu 375	gtg Val	gly ggg	gag Glu	aac Asn	gac Asp 380	agt Ser i	tta Leu	agc (Ser (cag Gln	tgt Cys 385	ttc Phe	acc Thr	ggg Gly	act Thr	gaa Glu 390	1205
	acg Thr	gtg Val	gat Asp	tct Ser 395	gag Glu	ggc Gly	tgt Cys	gac Asp	ttc Phe 400	act Thr	gag Glu	cct Pro	ccg Pro	agc Ser 405	aga Arg	1253
act Thr	gac Asp	tct Ser	atg Met 410	ccc Pro	gtg Val	tcc Ser	cct Pro	gaa Glu 415	aag Lys	cac His	ctg Leu	aca Thr	aaa Lys 420	gaa Glu	ata Ile	1301
gaa Glu	ggt Gly	gac Asp 425	agt Ser	tgc Cys	ctc Leu	ccc Pro	tgg Trp 430	gtg Val	gtc Val	agc Ser	tcc Ser	aac Asn 435	tca Ser	aca Thr	gat Asp	1349
ggc Gly	tac Tyr 440	aca Thr	ggc Gly	agt Ser	Gly ggg	aac Asn 445	act Thr	cct Pro	ggg Gly	yaÿ Glu	gac Asp 450	cat His	gaa Glu	ccc Pro	ttt Phe	1397
cca Pro 455	ggg	tcc Ser	ctg Leu	aaa Lys	tgt Cys 460	gga Gly	cca Pro	ttg Leu	ccc Pro	cag Gln 465	· 1	gcc Ala	tac Tyr	agc Ser	atg Met 470	1445
		ccc Pro	agt Ser	gaa Glu 475	. Ala	gca Ala	gcc Ala	agc Ser	atg Met 480		gag Glu	g gcg 1 Ala	gga Gly	gta Val 485	cgg Arg	1493
cco Pro	caç Glr	gac Asp	agg Arg 490	l VI9	gat Asp	gag Glu	agg Arg	gga Gly 495	1110	tca Ser	ggg Gly	g tcc 7 Ser	ggg Gly 500	g ago , Ser)	tcc Ser	1541
cco Pro	c agt o Sei	gad Asp 505	c cas		a cct D Pro	gcc Ala	tct Ser 51(_ GIY	aac Asr	gtg n Val	g act L Thi	t gga r Gly 515	a aac / Asr	agt n Sei	aac Asn	1589
tc Se	c acg r Th: 52	g tto r Pho		c tat e Sei	t ago r Sei	ggg Gly 525	GII	g gtg n Val	ato Me	g aad t Asi	e tito n Pho 53	_	g ggt s Gly	t gad y Asj	c atc p Ile	1637
at :1 53	c gt e Ya		g ta l Ty	t gte r Va	c agr 1 Se 54	r Gii	g aco n Th	c tco r Sei	c Gl	g ga n Gl 54		a ga y Pr	o Gl. a da	t to y Se	c gca r Ala 550	1685
		c ja o Gl	g tc u Se	g ga r Gl 55	u Pr	e gu o Va	g gg 1 Gl	q cg(y Arg	e ec g Pr 56		g ra 1 Gl	a ga n Gl	g ga u Gl	g ac u Th 56	q ata r Leu 5	1733
gc A l	a ca .a Hi	c ag s Ar	ra ga rg As 57	c tc p Se		t go e Al	g gg a Gl	c ac y Th 57	1 1 1 1	g cc a Pr	g cg o Ar	gc tt rg Ph	c cc le Pr 58	c ga o As	c gtc p Val	1781
			5 1	5												.000

and the second of the second o

Leu His Thr Gln Gly Ser Gly Gln Cys Ala Glu 615 620 625

geoctgggtg eagggeacea gtgeetttee aaaaacatgg tgtagetage eaetgtgeae 1990 etecteactg gtgeaggetg etggeatggt gatggageee aceteteaet teeteeagtg 2050 eeeeteteet etgeeteeta e 2071

<210> 43

<211> 625

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide

<400> 43

Met Asp Pro Arg Ala Arg Arg Arg Gln Leu Pro Ala Pro Leu Leu 1 5 10 15

Ala Leu Cys Val Leu Leu Val Pro Leu Gln Val Thr Leu Gln Val Thr

Pro Pro Cys Thr Gln Glu Arg His Tyr Glu His Leu Gly Arg Cys Cys 35 40 45

Ser Arg Cys Glu Pro Gly Lys Tyr Leu Ser Ser Lys Cys Thr Pro Thr 50 55

Ser Asp Ser Val Cys Leu Pro Cys Gly Pro Asp Glu Tyr Leu Asp Thr

Trp Ash Glu Glu Asp Lys Cys Leu Leu His Lys Val Cys Asp Ala Dy 85 95

Lys Ala Leu Val Ala Val Asp Pro Gly Asn His Thr Ala Pro Arg Arg 100 105

dus Ala Cys Thr Ala Gly Tyr His Trp Ash Ser Asp Cys Glu Cys Cys

the color Ameliya Acquire the the type in the Type Two is a by the tipe

Ser Asp Val Phe Ser Ser Thr Asp Lys Cys Lys Pro Trp Thr Asn Cys 165

Thr Leu Leu Gly Lys Leu Glu Ala His Gln Gly Thr Thr Glu Ser Asp 180 185

Val Val Cys Ser Ser Ser Met Thr Leu Arg Arg Pro Pro Lys Glu Ala

Gln Ala Tyr Leu Pro Ser Leu Ile Val Leu Leu Leu Phe Ile Ser Val 210 215 220

Val Val Val Ala Ala Ile Ile Phe Gly Val Tyr Tyr Arg Lys Gly Gly 225 230 235

Lys Ala Leu Thr Ala Asn Leu Trp Asn Trp Val Asn Asp Ala Cys Ser 245 250 255

Ser Leu Ser Gly Asn Lys Glu Ser Ser Gly Asp Arg Cys Ala Gly Ser 260 265 270

His Ser Ala Thr Ser Ser Gln Gln Glu Val Cys Glu Gly Ile Leu Leu 275 280 285

Met Thr Arg Glu Glu Lys Met Val Pro Glu Asp Gly Ala Gly Val Cys 290 295 300

Gly Pro Val Cys Ala Ala Gly Gly Pro Trp Ala Glu Val Arg Asp Ser 305 310 315

Arg Thr Phe Thr Leu Val Ser Glu Mal Glu Thr Gln Gly Asp Leu Ser 325

Arg Lys lle Pro Thr Glu Asp Glu Tyr Thr Asp Arg Pro Ser Glm Pro 345

Ser Thr Gly Ser Leu Leu Leu Ile Gln Gln Gly Ser Lys Ser Ile Pro 355

pro Pho die d'u pro les Glu Val Gly Glu Ash Asp Ser Leu Ser Gln

esson, no 18 non Armini Aig Der Dit Institut Jen In High 178

His Leu Thr Lys Glu Ile Glu Gly Asp Ser Cys Leu Pro Trp Val Val 420 425 430

Ser Ser Asn Ser Thr Asp Gly Tyr Thr Gly Ser Gly Asn Thr Fro Gly 435

Glu Asp His Glu Pro Phe Pro Gly Ser Leu Lys Cys Gly Pro Leu Pro
450 460

Gln Cys Ala Tyr Ser Met Gly Phe Pro Ser Glu Ala Ala Ala Ser Met 465 470 480

Ala Glu Ala Gly Val Arg Pro Gln Asp Arg Ala Asp Glu Arg Gly Ala
485
490

Ser Gly Ser Gly Ser Pro Ser Asp Gln Pro Pro Ala Ser Gly Asn 500 505

Val Thr Gly Asn Ser Asn Ser Thr Phe Ile Ser Ser Gly Gln Val Met 515 520

Asn Phe Lys Gly Asp Ile Ile Val Val Tyr Val Ser Gln Thr Ser Gln
530
540

Glu Gly Pro Gly Ser Ala Glu Pro Glu Ser Glu Pro Val Gly Arg Pro 545 550 560

Val Glu Glu Thr Leu Ala His Arg Asp Ser Phe Ala Gly Thr Ala 565 570 575

Pro Arg Phe Pro Asp Val Cys Ala Thr Gly Ala Gly Leu Gln Glu Gln 580 580

Gly Ala Pro Arg Gln Lys Asp Gly Thr Ser Arg Pro Val Gln 500 Gln 595

Gly Gly Ala Gln Thr Ser Leu His Thr Gln Gly Ser Gly Gln Cys Ala 610 620

-

. 14.1

```
<113> Artificial Sequence
```

<220>

<223> Synthetic Oligonucleotide

<:00> 44

Met His Glu Asn Ala Gly Gln Asp Ile Asp 1 1 1 1 1 1 1 1

<110> 45

<.11> 10

<.:12> PRT

<213> Artificial Sequence

<220>

<.23> Synthetic Oligonucleotide

<400> 45

Met Ser Glu Asp Thr Leu Gln Asp Ile Asp 1 5

<310> 46

<211> 10

<2112> PRT

<213> Artificial Sequence

· 320>

+2232 Synthetic Cligorocleotide

.400> 46

Met Lys Gln Ala Phe Gln Gln Asp Ile Asp 10

<?:(0> 4")

```
<120>
```

<.:23> Synthetic Oligonucleotide

<100> 47

Met Lys Glu Leu Gln His Gln Asp Ile Asp 10

<210> 48

<211> 10

<:'12> PRT

<213> Artificial Sequence

<120>

<223> Synthetic Oligonucleotide

<400> 48

Met Gln Arg Phe Ser Gly Gln Asp Ile Asp 1 5 10

<110> 49

<211> 9

<212> PRT

<213> Artificial Sequence

< 220>

.323> Synthetic Oligonucleotide

.400> 49

Net Glu Gly Ser Trp Gln Asp lle Asp

<210> 50

. 211> 9

4212> PPT

. .

The Symmetric Librarians

<400> 50

Met Arg Gly Lys Pro Gln Asp Ile Asp 1

<210> 51

<211> 9

<2112> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide

<400> 51

Met Lys Pro Glu Ala Gln Asp Ile Asp 1

<210> 52

<::11> 9

<2112> PRT

<213> Artificial Sequence

< 220>

<223> Synthetic Oligonucleotide

<400> 52

Mot His Lew Thr Ile Glm Asp Ile Asp

· 210 - 53

<1111> 9

<212> PRT

<213> Artificial Sequence

<210> 54

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide

<100> 54

Lys Leu Val Thr Leu Gln Val Thr Pro $\hat{1}$