Observational Cosmology - astro845

Degree - M.Sc. in Astrophysics (PO von 2014)

\overline{Module}	Elective Advanced Lectures: Observational Astronomy
Module No.	astro840

\overline{Course}	Observational Cosmology
Course No.	astro845

		Teachi	Teaching		
Category	Type	Language hours	\mathbf{CP}	Semester	
Elective	Lecture with exercises	English 2+1	4	ST	

Requirements for Participation:

Preparation:

Form of Testing and Examination: Requirements for the examination (written or oral): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: Students with B.Sc. in Physics will be introduced to past and current experiments in cosmology, with some bias toward radio- and submillimeter astronomy

Contents of the Course: Brief history of cosmology and its initial discoveries: cosmic expansion, cosmic microwave background. Overview of modern cosmological experiments, their major aims and technology. Aims: constraints on Big Bang and dark energy, CMB power spectrum and polarization, Sunyaev-Zeldovich effect, Supernova Ia distance measures, structure /cluster /galaxy formation, epoch of reionization, high-redshift galaxies and quasars. Experiments: APEX, LOFAR, Planck, Herschel, ALMA, SKA. Techniques: bolometer, HEMT

Recommended Literature:

- B. F. Burke; F. Graham-Smith, An Introduction to Radio Astronomy (Cambridge University Press 2002)
- J. A. Peacock; Cosmological Physics (Cambridge University Press 1998)

Contemporary Review Articles