Correction

- 1.a $2a+1=\sqrt{5}$ donc $4a^2+4a+1=5$ d'où a solution de l'équation $a^2+a-1=0$. On a alors $1/b^2+1/b-1=0$ d'où $b^2-b-1=0$.
- 1.b $b = \frac{1+\sqrt{5}}{2}$, ab = 1, $a+b = \sqrt{5}$, b-a = 1 et $a^2 + b^2 = 1 a + 1 + b = 3$.
- 2. Si M(x,y,z) alors le projeté H de M sur $(O;\vec{i})$ est le point de coordonnées (x,0,0). En effet ce point appartient à la droite $(O;\vec{i})$ et on vérifie que le vecteur $\overrightarrow{HM}(0,y,z)$ est orthogonale à la droite $(O;\vec{i})$. Par suite M' a pour coordonnées x',y',z' avec $\frac{x+x'}{2}=x,\frac{y+y'}{2}=0,\frac{z+z'}{2}=0$ et donc x'=x, y'=-y et z'=-z. Finalement M'(x,-y,-z). De même M''(-x,y,-z) et M'''(-x,-y,z).
- 3.a On a $JA^2=(a-1)^2+1+(b'-1)^2=JD^2$ donc $JA=JD=2a\Leftrightarrow (a-1)^2+1+(b'-1)^2=4a^2$ ce qui équivaut encore à $b'^2-2b'-(3a^2+2a-3)=0$ puis à $b'^2-2b'+a=0$ qui a pour solution $\frac{3-\sqrt{5}}{2}$ et $\frac{1+\sqrt{5}}{2}=b$. La seule qui soit strictement supérieure à 1 est b. Le problème posé ne possède donc qu'une solution obtenue pour b'=b.
- 3.b J(a,0,b), I(-a,0,b), J'(-a,0,-b) et I'(a,0,-b).
- 4. Par le demi-tour K(x,y,z), L(x,-y,-z). La relation $\overrightarrow{KL}=2a\overrightarrow{j}$ donne alors y=-a et z=0. La relation KB'=KD=2a donne alors $(x+1)^2+(a-1)^2+1=4a^2$ qui conduit comme ci-dessus à l'équation $x^2-2x+a=0$ et on conclut x=b sachant x>1. Ainsi K(b,-a,0), L(b,a,0), K'(-b,a,0) et L'(-b,-a,0). De même N(0,b,a), M(0,b,-a), N'(0,-b,-a) et M'(0,-b,a).
- 5.a $\overrightarrow{AJ}(a-1,0,b-1)$, $\overrightarrow{AD}(0,-1,0)$ et $(\overrightarrow{AJ} \wedge \overrightarrow{AD})(b-1,0,1-a)$. A,J,D ne sont pas alignés et l'équation du plan (AJD) est (b-1)x+(1-a)z=1. Or $(b-1)b=b^2-b=1$ donc $K \in (AJD)$ et de même $L \in (AJD)$.
- 5.b On procède de même, une équation du plan est ici (1-a)y + (b-1)z = 1.
- $5.c \qquad AJ^2 = (a-1)^2 + (b-1)^2 + 1 = (a^2 + b^2) 2(a+b) + 3 = 6 2\sqrt{5} \; .$ $JD^2 = (a-1)^2 + (b-1)^2 + 1 = 6 2\sqrt{5} \; , \; DK^2 = (b-1)^2 + (a-1)^2 + 1 = 6 2\sqrt{5} \; ,$ $KL^2 = (2a)^2 = (-1 + \sqrt{5})^2 = 6 2\sqrt{5} \; \text{ et } \; LA^2 = (b-1)^2 + (a-1)^2 + 1 = 6 2\sqrt{5} \; .$ Ainsi les distances AJ, JD, DK, KL et LA sont toutes égales à $d = \sqrt{6 2\sqrt{5}} = \sqrt{5} 1 \; .$
- 6.a $\Omega((a+2b+2)/5,0,(2+b)/5)$ avec $\frac{a+2b+2}{5} = \frac{5+3\sqrt{5}}{10}$ et $\frac{2+b}{5} = \frac{5+\sqrt{5}}{10}$.
- $$\begin{split} 6.\text{b} \qquad & \Omega A^2 = \left(\frac{-5+3\sqrt{5}}{10}\right)^2 + 1 + \left(\frac{-5+\sqrt{5}}{10}\right)^2 = \frac{10-2\sqrt{5}}{5} \;, \\ & \Omega J^2 = \left(\frac{10-2\sqrt{5}}{10}\right)^2 + 0^2 + \left(\frac{4\sqrt{5}}{10}\right)^2 = 2 \frac{2}{5}\sqrt{5} \;, \; \Omega D^2 = \Omega A^2 \;, \\ & \Omega K^2 = \left(\frac{2\sqrt{5}}{10}\right)^2 + \left(\frac{-5+5\sqrt{5}}{10}\right)^2 + \left(\frac{5+\sqrt{5}}{10}\right)^2 = 2 \frac{2}{5}\sqrt{5} = \Omega L^2 \;. \end{split}$$

Ainsi les distances $\Omega A, \Omega J, \Omega D, \Omega K, \Omega L$ sont toutes égales à $r = \sqrt{2 - \frac{2}{5}\sqrt{5}}$.

6.c $d^2 = 6 - 2\sqrt{5} \text{ et } \left(\frac{r}{2}\sqrt{10 - 2\sqrt{5}}\right)^2 = \left(\frac{5 - \sqrt{5}}{10}\right)(10 - 2\sqrt{5}) = \frac{60 - 20\sqrt{5}}{10} = 6 - 2\sqrt{5}.$