TASK -3

Design a chain of two input NAND gates for a minimum delay.

Objectives:

- 1. To find input capacitance of two input NAND gate.
- 2. Finding delay of stages of NAND gates using linear delay model.
- 3. Finding optimum number of stages for less delay through linear delay model.

Software Used: Cadence Virtuoso

Experimental Procedure:

Part a) To find input capacitance of NAND gate.

- 1. Create a symbol for two input NAND gate.
- 2. To find the input capacitance of the of the NAND gate, invoke the symbol you have created and connect a piece wise linear source to inputs of NAND gate and perform transient analysis..
- 3. Plot the input voltage(net) and input current(node).
- 4. Integrate the output plot i.e current plot from 0ns to time period the wave(10ns).
- 5. Find input capacitance using the formulae $C_{in} = \frac{\int i \, dt}{v_C(t)}$.
- 6. Find load capacitance = 64x(Cin).

Part b) To find number of stage of chain of nand gates that gives less delay.

- 1. Create a chain of NAND gates i.e 1 stage, 2 stage, 3 stage, 4 stage with load capacitance calculated in above part.
- 2. Do Sizing of pull up network and pull down network accordingly.
- 3. Find delay between input and output and check which stage has less delay.

Schematic circuit of NAND gate for symbol:

Schematic circuit to test the NAND gate:

Transient analysis results of NAND gate:

Schematic circuit to find input capacitance of two input NAND gate:

Output plot of input current vs input voltage:

Integration results of input current from 0 to 10ns:

Schematics of chain of NAND gates with B input as VDD.

Output of all stages.

Theoretical Calculations:

$$\begin{array}{rcl}
\exists & D = nf + p & F = \frac{1}{3} \times 64 \\
& = 95.33 + 2 & = 85.33 \\
& = 64.33
\end{array}$$

$$2 & D = 2(10.66) + 4 & F = (\frac{1}{3})^{3} \times 64 \\
& = 85.32 & = 113.77
\end{array}$$

$$3. & D = 3(2.33 + 6) & F = (\frac{1}{3})^{3} \times 64 \\
& = 22.22 & = 151.7
\end{array}$$

$$4. & D = 4 \times (3.77) + 8 & F = (\frac{1}{3})^{3} \times 64 \\
& = 23.08 & = 20.827$$

Results and Analysis:

- 1. Input capacitance has been calculated and Cin=1.237fF.
- 2. Load capacitance has been calculated and Cload=79fF.
- 3. Symbol of NAND gate has been tested and working properly.
- 4. Finding delays in Stages:

No of	Output	T(L-H)	T(H-L)	Tpdr (ns)	Tpdf (ns)	Tpd avg=
Stages	Signal	in ns	in ns			(Tpdr+tpdf)/2
	A	5.05	10.05			
1	Y1	5.3671	10.3963	0.3171	0.3463	0.3317
2	Y2	5.15879	10.155	0.10877	0.105	0.106885
3	Y3	5.13985	10.1471	0.08985	0.0971	0.093475
4	Y4	5.14479	10.1471	0.09474	0.09771	0.096225

From the above calculations we can clearly observe that three stages gives the minimum delay which matches theoretically.