07-20-2021- shift-2

1

(July-2021)

(July-2021)

(July-2021)

d) $\frac{151}{63}$

EE24BTECH11010 - Balaji B

1) For the natural numbers m, n, if $(1-y)^m(1+y)^n = 1 + a_1y + a_2y^2 + + a_{m+n}y^{m+n}$ and

3) Let r_1 and r_2 be the radii of the largest and smallest circles, respectively, which pass through the point (-4, 1) and having their centres on the circumference of the circle

c) 5

d) 7

c) 100d) 80

 $a_1 = a_2 = 10$, then the value of (m + n) is equal to :

2) The value of $\tan \left(2 \tan^{-1} \left(\frac{3}{5}\right) + \sin^{-1} \left(\frac{5}{13}\right)\right)$ is equal to :

b) $\frac{220}{21}$ c) $\frac{-291}{76}$

 $x^2 + y^2 + 2x + 4y - 4 = 0$. If $\frac{r_1}{r_2} = a + b\sqrt{2}$, then a + b is equal to:

a) 88

b) 64

a) $\frac{-181}{69}$

a) 3

b) 11

4) Consider the following three statements:	:	
(A) If $3 + 3 = 7$ then $4 + 3 = 8$.		
(B) If $5 + 3 = 8$ then earth is flat.		
(C) If both (A) and (B) are true then 5	+ 6 = 17.	
Then, which of the following statements	s is correct?	(July-2021)
a) (A) is false, but (B) and (C) are true		
b) (A) and (C) are true while (B) is false	e	
c) (A) is true while (B) and (C) are false	e	
d) (A) and (B) are false while (C) is true	e	
5) The lines $x = ay - 1 = z - 2$ and $x = 3y$	$-2 = bz - 2$, $(ab \neq 0)$ are copla	nar, if
:	_	(July-2021)
a) $b = 1, a \in \mathbb{R} - \{0\}$	c) $a = 2, b = 2$	
b) $a = 1, b \in \mathbb{R} - \{0\}$	d) $a = 2, b = 3$	
6) If $[x]$ denotes the greatest integer less		value of the
integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [[x] - \sin x] dx$ is equal to :		(July-2021)
2		
a) $-\pi$	c) 0	
b) π	d) 1	

a) No such α e b) 5	exists	c) 8 d) 6		
9) If $f: \mathbb{R} \to \mathbb{R}$ i	s given by $f(x) = x + 1$, then the value of		
	$\lim_{n \to \infty} \frac{1}{n} \left[f(0) + f\left(\frac{5}{n}\right) + \right]$	$f\left(\frac{10}{n}\right) + \dots + f\left(\frac{5(n)}{n}\right)$	$\left(\frac{n-1}{n}\right)$,	
			(July-2021)	
a) $\frac{3}{2}$	b) $\frac{5}{2}$	c) $\frac{1}{2}$	d) $\frac{7}{2}$	
10) Let A, B and C be three events such that the probability that exactly one of A and B occurs is $(1, -k)$, the probability that exactly one of B and C occurs is $(1, -2k)$, the probability that exactly one of C and A occurs is $(1, -k)$ and the probability of all A, B and C occur simultaneously is k^2 , where $0 < k < 1$. Then the probability that at least one of A, B and C occur is: (July-2021)				
a) greater thanb) greater than	$\frac{1}{8}$ but less than $\frac{1}{4}$	c) greater than $\frac{1}{4}$ d) exactly equal to		
11) The sum of all the local minimum values of the twice differentiable function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 - 3x^2 - \frac{3f''(2)}{2}x + f''(1)$ is : (July-2021)				
a) -22 b) 5		c) -27 d) 0		
12) Let in a right angled triangle, the smallest angle be θ . If a triangle formed by taking the reciprocal of its sides is also a right angled, then $\sin \theta$ is equal to: (July-2021)				
a) $\frac{\sqrt{5}+1}{4}$	b) $\frac{\sqrt{5}-1}{2}$	c) $\frac{\sqrt{2}-1}{2}$	d) $\frac{\sqrt{5}-1}{4}$	
13) Let $y = y(x)$ satisfies the equation $\frac{dy}{dx} - A = 0$ for all $x > 0$, where $A = \begin{pmatrix} y & \sin x & 1 \\ 0 & -1 & 1 \\ 2 & 0 & \frac{1}{x} \end{pmatrix}$. If $y(\pi) = \pi + 2$, then the value of $y\left(\frac{\pi}{2}\right)$ is: (July-2021)				
$\mathbf{n} \ y(n) = n + 2.$, then the value of $y(\frac{\pi}{2})$	13.	(July-2021)	

7) If the real part of the complex number $(1 - \cos \theta + 2i \sin \theta)^{-1}$ is $\frac{1}{5} \theta \in (0, \pi)$, then the value of the integral $\int_0^\theta \sin x dx$ is equal to: (July-2021)

8) Let $f: \mathbb{R} - \{\frac{\alpha}{6}\} \to \mathbb{R}$ be defined by $f(x) = \frac{5x+3}{6x-\alpha}$. Then the value of α for which $(f \circ f)(x) = x$, for all $x = \mathbb{R} - \{\frac{\alpha}{6}\}$, is:

a) 1b) 2

c) -1

d) 0

٥)	π		4	
a)	3	+	Ξ	

b)
$$\frac{\pi}{2} - \frac{1}{2}$$

b)
$$\frac{\pi}{2} - \frac{1}{\pi}$$
 c) $\frac{3\pi}{2} - \frac{1}{\pi}$ d) $\frac{\pi}{2} - \frac{4}{\pi}$

d)
$$\frac{\pi}{2} - \frac{4}{7}$$

14) Consider the line L given by the equation $\frac{x-3}{2} = \frac{y-1}{1} = \frac{z-2}{1}$. Let Q be the mirror image of the point (2,3,-1) with respect to L. Let a plane P be such that it passes through Q, and the line L is perpendicular to P. Then which of the following points is on the plane P? (July-2021)

a)
$$(-1, 1, 2)$$

c) (1, 1, 2)

b) (1, 1, 1)

d) (1,2,2)

15) If the mean and variance of six observations 7, 10, 11, 15, a,b are 10 and $\frac{20}{3}$, respectively then the value of |a-b| is equal to: (July-2021)

c) 7

d) 1