

What is claimed is:

1. A microscope adapted for viewing an object positioned on a slide, comprising:
 - (a) one and only one lens; and
 - (b) a structure adapted to support the lens and to position the object a specific distance from the lens, the structure containing substantially no openings between a viewer's eye and the object being viewed and at least partially enclosing the object being viewed when the microscope is in use in order to minimize the possibility of injury to the viewer's eye.
2. The microscope of claim 1, wherein the lens comprises an aperture optimized lens.
- 10 3. The microscope of claim 1, wherein the structure substantially encloses the object being viewed.
4. The microscope of claim 1, wherein the structure comprises a hinged box having four sides, a top, and a bottom, wherein the top is adapted to support the lens and the bottom adapted to support the object.
- 15 5. The microscope of claim 1, wherein the structure comprises (i) an upper portion defining an optimized aperture containing the lens and (ii) a lower portion defining a surface adapted to position the object.
6. The microscope of claim 1, further comprising
 - (i) an optimized aperture defining the lens; and
 - 20 (ii) a positionable slide holder;wherein the positionable slide holder positions the object for viewing substantially parallel to the optimized aperture.
7. The microscope of claim 1,
wherein the lens has an optical axis; and

1000
999
998
997
996
995
994
993
992
991
990
989
988
987
986
985
984
983
982
981
980
979
978
977
976
975
974
973
972
971
970
969
968
967
966
965
964
963
962
961
960
959
958
957
956
955
954
953
952
951
950
949
948
947
946
945
944
943
942
941
940
939
938
937
936
935
934
933
932
931
930
929
928
927
926
925
924
923
922
921
920
919
918
917
916
915
914
913
912
911
910
909
908
907
906
905
904
903
902
901
900
899
898
897
896
895
894
893
892
891
890
889
888
887
886
885
884
883
882
881
880
879
878
877
876
875
874
873
872
871
870
869
868
867
866
865
864
863
862
861
860
859
858
857
856
855
854
853
852
851
850
849
848
847
846
845
844
843
842
841
840
839
838
837
836
835
834
833
832
831
830
829
828
827
826
825
824
823
822
821
820
819
818
817
816
815
814
813
812
811
810
809
808
807
806
805
804
803
802
801
800
799
798
797
796
795
794
793
792
791
790
789
788
787
786
785
784
783
782
781
780
779
778
777
776
775
774
773
772
771
770
769
768
767
766
765
764
763
762
761
760
759
758
757
756
755
754
753
752
751
750
749
748
747
746
745
744
743
742
741
740
739
738
737
736
735
734
733
732
731
730
729
728
727
726
725
724
723
722
721
720
719
718
717
716
715
714
713
712
711
710
709
708
707
706
705
704
703
702
701
700
699
698
697
696
695
694
693
692
691
690
689
688
687
686
685
684
683
682
681
680
679
678
677
676
675
674
673
672
671
670
669
668
667
666
665
664
663
662
661
660
659
658
657
656
655
654
653
652
651
650
649
648
647
646
645
644
643
642
641
640
639
638
637
636
635
634
633
632
631
630
629
628
627
626
625
624
623
622
621
620
619
618
617
616
615
614
613
612
611
610
609
608
607
606
605
604
603
602
601
600
599
598
597
596
595
594
593
592
591
590
589
588
587
586
585
584
583
582
581
580
579
578
577
576
575
574
573
572
571
570
569
568
567
566
565
564
563
562
561
560
559
558
557
556
555
554
553
552
551
550
549
548
547
546
545
544
543
542
541
540
539
538
537
536
535
534
533
532
531
530
529
528
527
526
525
524
523
522
521
520
519
518
517
516
515
514
513
512
511
510
509
508
507
506
505
504
503
502
501
500
499
498
497
496
495
494
493
492
491
490
489
488
487
486
485
484
483
482
481
480
479
478
477
476
475
474
473
472
471
470
469
468
467
466
465
464
463
462
461
460
459
458
457
456
455
454
453
452
451
450
449
448
447
446
445
444
443
442
441
440
439
438
437
436
435
434
433
432
431
430
429
428
427
426
425
424
423
422
421
420
419
418
417
416
415
414
413
412
411
410
409
408
407
406
405
404
403
402
401
400
399
398
397
396
395
394
393
392
391
390
389
388
387
386
385
384
383
382
381
380
379
378
377
376
375
374
373
372
371
370
369
368
367
366
365
364
363
362
361
360
359
358
357
356
355
354
353
352
351
350
349
348
347
346
345
344
343
342
341
340
339
338
337
336
335
334
333
332
331
330
329
328
327
326
325
324
323
322
321
320
319
318
317
316
315
314
313
312
311
310
309
308
307
306
305
304
303
302
301
300
299
298
297
296
295
294
293
292
291
290
289
288
287
286
285
284
283
282
281
280
279
278
277
276
275
274
273
272
271
270
269
268
267
266
265
264
263
262
261
260
259
258
257
256
255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
240
239
238
237
236
235
234
233
232
231
230
229
228
227
226
225
224
223
222
221
220
219
218
217
216
215
214
213
212
211
210
209
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

13. The microscope of claim 7, wherein the positionable slide holder comprises:

- (i) a frame having a length and a width slightly larger than a microscope slide, the length and width forming a base adapted to receive a slide,
- (ii) the frame having one or more raised edges approximating the thickness of a microscope slide,
- (iii) the one or more raised edges having one or more catch surfaces adapted to engage upper surfaces of a microscope slide in order to retain the microscope slide in the positionable slide holder; and
- (iv) a handle extending from the frame for manipulating the position of the frame.

10 14. The microscope of claim 1, further comprising:

- (i) an object positioning device; and
- (ii) a locking apparatus adapted to lock and hold the object positioning device

in position relative to the structure.

15 15. The microscope of claim 14, wherein the locking apparatus comprises a clamp adapted to at least partially restrict translational motion or rotational motion or both of the object positioning device with respect to the structure.

16. The microscope of claim 14, wherein the locking apparatus is selected from the group consisting of magnets, wedges, screws, levers, ratchets, gears, clamps, and cams.

20 17. The microscope of claim 14, wherein the locking apparatus comprises

- (i) a cam structure; and
- (ii) a clamp,

wherein tightening of the cam causes the clamp to secure the object positioning device.

18. The microscope of claim 14, wherein the strength of the lock provided by the locking apparatus is adjustable.

19. The microscope of claim 1, further comprising a plurality of apertures on the structure, wherein the apertures may be maneuvered for various viewing effects.

5 20. The microscope of claim 19, wherein the apertures are on a carrier that is a rotatable disk or a sliding member.

21. The microscope of claim 19, wherein the plurality of apertures comprises apertures having features selected from the group consisting of various diameters, filters, colored filters, polarizing filters, Rheinberg illumination filter and stop assemblies, dark field

10 illumination stops, condenser lenses, illumination control elements, and any combination thereof.

22. The microscope of claim 1, further comprising an illumination controlling system.

23. The microscope of claim 22, wherein the illumination is provided by a natural light source or an artificial light source or both.

15 24. The microscope of claim 23, wherein the light source comprises a source selected from the group consisting of sunlight, firelight, incandescent light, fluorescent light, electrically activated phosphors, photographic flash, solid-state light production devices, LEDs, transmitted light, reflected light, and any combination thereof.

25. The microscope of claim 22, wherein the illumination controlling system

20 comprises one or more light admitting apertures in the structure.

26. The microscope of claim 25, wherein the structure comprises

- (i) a top cover supporting the lens; and
- (ii) a bottom cover providing the one or more light admitting apertures.

27. The microscope of claim 1, further comprising a device for capturing and reproducing an image of the object being viewed.

28. The microscope of claim 27, further comprising a multiplicity of illumination angles, provided either sequentially or simultaneously, to produce stereoscopic image pairs.

29. The microscope of claim 1, further comprising a focusing system adapted to focus an image of the object for a viewer by altering the spatial relation of the lens and the object being viewed with respect to one another.

30. The microscope of claim 29, wherein the focusing system comprises a mechanical connection selected from the group consisting of a focus ring, a screw-jack, a scissors jack, a rack and pinion, a cam and follower mechanism, a simple lever, a compound lever, a pantographic linkage, a four-bar linkage, one or more inflatable vessels or bladders, one or more pistons and cylinders, a cable and pulley arrangement, motor driven actuators, piezoelectric actuators, inchworm drives, an electromechanical mechanism, a pneumatic mechanism, a hydraulic mechanism, a piezoelectric mechanism, and any combination thereof.

31. The microscope of claim 29, wherein the focusing system comprises:

- (i) a stage adapted to display a slide, wherein the slide can be positioned on the stage without altering the position of the slide with respect to a focal plane of the lens; and
- (ii) a mechanical connection adapted to move the stage in relation to the lens.

32. The microscope of claim 31, wherein the structure further comprises a tension mechanism between the stage and the mechanical connection in order to provide contact between the stage and the mechanical connection.

P
R
O
T
E
C
T
U
R
E

33. The microscope of claim 32, wherein the tension mechanism provides stabilization to resist displacement of the stage in a plane substantially parallel to the focal plane of the lens.

34. The microscope of claim 29, wherein the focusing system prevents contact between the lens and the object being viewed.

5 35. The microscope of claim 29, wherein the focusing system comprises:

- (i) a focus ring to maneuver the object with respect to the lens; and
- (ii) an aperture selection device comprising a plurality of apertures adapted to allow varying amounts of light to enter the structure.

10 36. The microscope of claim 29, wherein the image is focused by moving the stage along the direction of the optic axis of the lens by a cam and follower mechanism.

37. The microscope of claim 36, wherein the structure comprises a top cover and a bottom cover,

wherein the stage is positioned between the top cover and the bottom cover and

15 further comprises an upper surface and a lower surface, the upper surface providing a surface for viewing and the lower surface comprising a plurality of cam follower elements,

wherein the focus mechanism is positioned between the stage and the bottom cover, and further comprises an upper surface and a lower surface, the upper surface

20 having a plurality of ramped cam surfaces corresponding to the plurality of cam follower elements,

wherein interaction between the cam follower elements and the ramped cam surfaces allows focusing and prevents rocking of the stage.

38. The microscope of claim 36, comprising three cam follower elements.

1129635 3

39. The microscope of claim 1, wherein the lens is selected from the group consisting of a ball lens, a glass ball lens, a double convex lens, a meniscus lens, an aspheric lens, a kino-form-corrected aspheric double convex lens, a kino-form-corrected aspheric meniscus, a flat-field apochromatic single-element simple microscope lens, a

5 plano/spheric convex lens, a plano/aspheric convex lens, a plano/diffractive lens, a plano/diffractive-spheric convex lens, a plano/diffractive-aspheric convex lens, a diffractive plano/spheric convex lens, a diffractive plano/aspheric convex lens, a double convex spheric/spheric lens, a double convex spheric/aspheric lens, a double convex aspheric/aspheric lens, a double convex diffractive-spheric/aspheric lens, a double convex

10 spheric/diffractive-aspheric lens, a double convex aspheric/diffractive-aspheric lens, a double convex diffractive-aspheric/diffractive-aspheric lens, a spheric/spheric meniscus lens, a spheric/aspheric meniscus lens, an aspheric/aspheric meniscus lens, a diffractive/diffractive meniscus lens, a diffractive-spheric/spheric meniscus lens, a diffractive-spheric/diffractive-spheric meniscus lens, a diffractive-spheric/aspheric

15 meniscus lens, a spheric/diffractive-aspheric meniscus lens, an aspheric/diffractive-aspheric meniscus lens, a diffractive-aspheric/diffractive-aspheric meniscus lens, and any combination thereof.

40. The microscope of claim 39, wherein the lens is fabricated from a gradient refractive or diffractive index material.

20 41. A microscope support structure, comprising:

- (a) one and only one aperture optimized lens;
- (b) a slide positioning mechanism; and
- (c) a focusing system adapted to focus an image of an object;

TOP SECRET

wherein the support structure defines a substantially enclosed space adapted to receive a slide for viewing.

42. The microscope support structure of claim 41, further comprising:

- (i) a top cover supporting the lens; and
- 5 (ii) a base adapted to support a microscope slide,

wherein the top cover and the base are at least partially separable from one another in order to allow access to a microscope slide.

43. The microscope support structure of claim 42, wherein the at least partial separability between the top cover and base is provided by a connection means selected 10 from the group consisting of the top cover and base being completely removable from one another, the top cover being adapted to slide off the base, and the top cover and base being hinged, and any combination thereof.

44. The microscope support structure of claim 42, wherein the top cover and base are hinged and wherein the top cover is separated from the base by rotation about the hinge.

15 45. The microscope support structure of claim 44, further comprising a coupling mechanism adapted to couple a non-hinged edge of the top cover to a non-hinged edge of the base to provide the substantially enclosed space.

46. The microscope support structure of claim 45, wherein the coupling mechanism is selected from the group consisting of a lock, a catch, a hook and lip mechanism, and 20 finger pressure catches.

47. An enclosed microscope, comprising:

- (a) a lens or a plurality of lenses carried by a top cover; and
- (b) a stage adapted to position a slide.

48. The microscope of claim 47, wherein the enclosed microscope is a hinged box comprising the top cover and a lower portion, the lower portion housing the stage, a focusing system, a slide holding mechanism, and a slide position locking apparatus.

49. A microscope of claim 47, comprising a plurality of lenses mounted on the top

5 cover, wherein the lenses may be re-positioned in use, with only one lens at a time being used for viewing.

50. The microscope of claim 49, wherein the plurality of lenses are mounted by a carrier comprising a rotatable disk or a sliding member.

51. The microscope of claim 50, further comprising detents on the carrier to provide a
10 positive stop for positioning the plurality of lenses.

52. The microscope of claim 49, wherein the plurality of lenses have different magnifying powers.

53. A pocket-sized microscope comprising a housing supporting a single lens, the microscope having no other lens, the housing adapted to retain and self-contain a
15 microscope slide for viewing and safety.

54. A single lens microscope for viewing objects, comprising:

(a) a structure maintaining an aperture optimized lens; and

(b) a base, comprising:

(i) a slide positioning device,

(ii) a focusing mechanism, and
 (iii) a light receiving controller.

wherein the structure and the base are opposable and adapted to at least partially enclose the object being viewed.

55. A microscope comprising an aperture optimized lens for producing a magnified image of a subject, the lens having two surfaces, each of which may be chosen from the group consisting of plano, spherical concave, spherical convex, aspheric concave, and aspheric convex.

5 56. A method for providing an optimized aperture of a single lens, comprising:

- (a) determining the geometrical optics resolution limits of the lens;
- (b) determining the diffractive resolution limits of the lens; and
- (c) determining a range in which the geometrical optics resolution limits and the diffractive resolution limits meet in order to provide an optimum aperture size.

10 57. The method of claim 56, wherein the optimizing an aperture of a single lens is performed using computer software.

58. The method of claim 56, wherein the diffractive resolution limit of the lens is the diffractive Rayleigh resolution limit.

15 59. The method of claim 56, wherein the determining the diffractive resolution limits of the lens comprises performing a Huygen's point spread function analysis to determine the Strehl ratio of the image.

60. The method of claim 59, wherein the range in which the geometrical optics resolution limits and the diffractive resolution limits are substantially equal comprises a Strehl ratio of about 0.8.

20 61. The method of claim 56, wherein the aperture of the single lens has an aperture size within the range provides a resolution limit within five percent of the optimal resolution limit of the lens.

62. A method for providing an optimized lens aperture, comprising:

5

- (a) providing a lens;
- (b) determining a first size range of an aperture wherein light entering or exiting the lens would provide optimized image resolution;
- (c) determining a second size range of the aperture wherein the refractive aberration of the lens is minimal in order to compensate for minor deviations in the lens; and
- (d) determining a third range within the first and second size ranges wherein a quality image is produced, the range defining an optimized lens aperture.

10 63. A process for optimizing the aperture of a single lens by minimizing the aggregate impairment of image resolution contributed by refractive aberrations and aperture diffraction, comprising:

- (a) selecting an initial aperture size to provide an apertured lens;
- (b) determining the numerical aperture of the apertured lens;
- (c) determining the diffractive resolution limits for the apertured lens;
- 15 (d) determining the geometrical optics resolution limits of the apertured lens;
- (e) if the diffractive resolution limit is smaller than the geometrical optics resolution limit, decreasing the size of the aperture and repeating (b)-(e);
- (f) if the geometrical optics resolution limit is smaller than the diffractive resolution limit, increase the size of the aperture and repeating (b)-(e);

20 wherein the aperture is optimized when the diffractive resolution limit and the geometrical optics resolution limit are substantially equal.

64. The process of claim 63, wherein the determining the diffractive resolution limit for the apertured lens comprises performing a Huygen's point spread function analysis to determine the Strehl ratio of the image.

65. The process of claim 64, wherein (e)-(f) further comprise:

- (e) if the Strehl ratio is less than 0.8 then (i) the lens aperture size is reduced,
 - (ii) the lens is optimized again to attain best focus, and (iii) the Huygen's point spread function analysis is repeated;
- 5 (f) if Strehl ratio is greater than 0.8 then (i) the lens aperture size is increased,
 - (ii) the lens is optimized to attain best focus, and (iii) the Huygen's point spread function analysis is repeated;

wherein the aperture is optimized when the Strehl ratio is equal to 0.8.

66. The process of claim 63, wherein there is an inverse relationship between the lens size and the optimized numerical aperture.

10 67. A single lens resolution optimization process, comprising:

- (a) choosing an initial aperture size;
- (b) creating an optical merit function;
- (c) setting the focal distance of the lens to be an optimized variable;
- 15 (d) bringing the lens to focus;
- (e) performing a near-field point spread function analysis to determine the Strehl ratio;
- (f) if the Strehl ratio is less than 0.8, reducing the lens aperture size and repeating (c)-(g);
- (g) if the Strehl ratio is greater than 0.8, increasing the lens aperture size and repeating (c)-(g);

20 wherein when the Strehl ratio equals 0.8, the aperture size has been optimized to attain a quality image resolution.

1129635 3

68. The single lens resolution optimization process of claim 67 performed with the aid of optical analysis computer software.

69. The single lens resolution optimization process of claim 67 where (e) is determined using Huygen's point spread function.

5 70. A process for designing decentration error tolerant aspheric lenses having lens surfaces, comprising:

- (a) entering initial lens design criteria into lens design computer software;
- (b) adding a coordinate break between the lens surfaces to model the decentration expected from manufacturing tolerance limits;

10 (c) creating a merit function that includes X and Y effective focal lengths with weighting factors sufficiently large to preserve their desired values;

- (d) stepwise optimizing the lens surfaces even asphere function coefficients; and

- (e) applying aperture optimization methods to attain best image resolution.

15 71. The process of claim 70 wherein the lens design computer software is Zemax.

72. The process of claim 70, further comprising:

- (f) optimizing the lens across all surface parameters simultaneously until no substantial improvement in performance is attained; and

- (g) again applying aperture optimization methods to attain best image resolution.

20 73. The process of claim 72, wherein the optimizing the lens across all surface parameters comprises using Hammer Optimization or Global Optimization or both.

74. The process of claim 70, wherein the aperture optimization methods comprise:

- (a) determining the geometrical optics resolution limits of the lens;

(b) determining the diffractive resolution limits of the lens; and
(c) determining a range in which the geometrical optics resolution limits and
the diffractive resolution limits are substantially equal in order to provide an
optimum aperture size.

5 75. The method of claim 70, further comprising optimizing diffractive surface
parameters.

76. A process for optimizing diffractive surface parameters of a lens, comprising:

(a) making focal distance variable;
(b) stepwise optimizing diffractive coefficients on a first surface, beginning
10 with the lowest order coefficient;
(c) if the period/mm of the diffractive surface does not exceed the tooling limit,
the process for the first surface is complete;
(d) if the period/mm of the first diffractive surface exceeds the tooling limit,
eliminate the highest order diffractive surface coefficient and optimize the
15 remaining diffractive surface coefficients;
(e) repeating (d) until the period/mm of the first diffractive surface does not
exceed the tooling limit.

77. The process of claim 76, further comprising performing (a)-(e) on a second
surface.

20