

AGENDA

- Introduction
- The Market trend
- ■5G Requirements
- ■5G Architecture
- ■5G New Radio
- ■5G Core
- Conclusion

The Market trend

The data growth

- Q3 2019, mobile data traffic grew 68 percent year-onyear.
 - increase of mobile subscriptions
 - average data volume per subscription

The Internet of Thinks - IoT

- M2M Machine to machine communication the next growth segment
 - 29 billion connected devices₁ are forecast by 2022, of which around 18 billion will be related to IoT.
 - 1.5 billion IoT devices with cellular connections by 2022

Connected devices (billions)

- Short-range segment: devices connected by unlicensed radio with a typical range of up to around 100 meters, such as Wi-Fi, Bluetooth and ZigBee. This category also includes devices connected over fixed line local area connections.
- Wide-area category: devices using cellular connections (3GPP-based), as well as unlicensed low-power technologies, such as Sigfox, LoRa

The Technology evolution

- In 2025 2.6 billion 5G subscriptions
 - 29% of mobile subscriptions

5G -Worldwide

• 5G Launches and deployment: Status of most advanced operator 5G investments, by country

Where 5G Technology Has Been Deployed

Countries where 5G networks/technology have been deployed and where 5G investments have been made

5G -Worldwide

5G Market

- 2018 -5G launched in 2018 in Asia and the USA
- 2020 -5G launched in Europe the migration from 4G to 5G is expected to be fast :
- 2025 -1,7 billion mark will be passed (source DATE)
 - > Asia will account for more than half (58%, 950 million) of the subscriptions in 2025.
 - > With 274 million 5G subscriptions, Europe is expected to account for 17% of total 5G subscriptions in 2025 (and EU-28 for 11%).

Source: IDATE

5G - France

■ 5G Roll-out

Source: ARCEP 8

5G - France

	Bouygues Telecom	Free Mobile	Orange	SFR
Nombre de sites 5G	6730	13470	3035	4984
Progression des sites depuis le 30/09/2021	+1727	+1470	+562	+1824
dont sites équipés en bandes :				
700 & 800 MHz	0	13470	0	0
1800 & 2100 MHz	6468	0	471	2156
3500 MHz	2689	2384	2698	2828

AGENDA

- Introduction
- The market aspect
- The new usage
 - -The mobile usage
 - —The Internet of Things
- The technology evolution
 - 5G
 - -Network Function Virtualization
- Conclusion

ITU

- The International Telecommunication Union (ITU)
 - Defines the standardization for International Mobile Telecommunication IMT
 - > The base line for the mobile systems generation
 - > IMT-2000 for 3G
 - > IMT-Advanced for 4G
 - > IMT-2020 for 5G
 - In June 2015 ITU has established the overall roadmap for the development of 5G mobile
 - Development is expected within 5 years (compared to 9 years for IMT advanced and 15 years for IMT 2000)

3GPP

■ The 3GPP

Defines the technical solution to achieve the objective of the ITU

5G Preparation

The 5G mobile communication

- To prepare the network for the explosion of data bases services and Machine Type Communication (MTC)
- Commercial availability: by 2020
- Several forums ongoing: METIS in Europe
 - > NGNM, ATIS 5G in the US, Japan, China, Korea

Timeline

ASN = Abstract Syntax Notation One

Source: 3GPP

"drops"

- <u>"Early drop"</u> for Non-Standalone 5G
 - Addresses the most urgent deployment needs for eMBB
 - > Uses LTE anchor with 5G NR in Dual Connectivity configuration
 - Accelerated specification to ensure a single global ecosystem
- <u>"Main drop"</u> for Standalone 5G
 - Contains full standalone 5G support with 5G Core
- "Late drop" for accelerated migration
 - Contains specs for all potential migration options

Source: 3GPP

The 5G Usage

- The Usage of IMT2020/5G
 - From massive nember of devices, to high performance application

Source: Docomo WP

ENHANCED MOBILE BROADBAND

- Très haut débit Mobile (>1Gbit/s)
- Vidéos live en très haute définition (UHD)
- Vidéos immersives en 3D et à 360°
- · Accès mobile au cloud
- Jeux en ligne massivement multi-joueurs

ULTRA-RELIABLE AND LOW LATENCY COMMUNICATIONS

- · Réalité virtuelle et augmentée
- Automatisation industrielle
- Véhicules autonomes
- · Applications critiques et temps réel
- Chirurgie à distance
- Services de secours
- Vidéo pour bulle tactique & forces spéciales
- · Gestion du trafic des drônes

MASSIVE MACHINE TYPE COMMUNICATIONS

- Smart Cities
- Smart Home / Building
- · Smart Grid
- Capteurs IoT
 & contrôle à distance
- Robots agricoles
- · Essaims de drônes

The 5G Usage

■ The Usage of IMT2020/5G: 3 main types of communication

Massive machine communication: mMTC

 Massive IoT: Wire area coverage, large number of devices, low cost device, lowenergy operation, security

Critical Machine Type Communication: cMTC

- Critical IoT: monitoring and control; in real time → e2e latency requirements (at msec level) reliability and security
- Also referred as ultra-reliable low-latency communication (URLLC)

3. Extreme mobile broadband: eMBB

eMBB: high data rate and low latency communications

(Source: ETRI graphic, from ITU-R IMT 2020 requirements)

Source: Docomo WP 19

The 5G requirements

- The 5G requirements: a large diversity
 - 10 to 100 times higher user rate
 - 5 times reduced end to end latency
 - 10 to 100 times higher number of connected devices
 - 1000 times higher user data volume per area
 - 10 times longer battery life for low power devices
- A large consensus over all the actors that the next network work will have to support:
 - high data rates,
 - low latency,
 - a massive number of connected devices and of different types,
 - low energy consumption,
 - and high reliability.

[1 – 10 Gpps] [1 millisecond]

[Connection density]

[Connection density]

[Energy reduction]

The 5G requirements

4G and 5G comparison

	Performances/Generation	4G	5G
1.	Peak data rate (Gbit/s)	1	20
2.	User experience data rate (Mbit/s)	10	100
3.	Spectrum efficiency	1x	3x
4.	Speed (km/h)	350	500
5.	Latency (ms)	10	1
6.	Connection density (number of objects/km²)	10 ⁵	10 ⁶
7.	Network energy efficiency	1x	100x
8.	Area traffic capacity (Mbit/s/m²)	0.1	10

Source: ARCEP

The 5G requirements

■ The 5G requirements: the use cases

5G Core

New RAN

- The New RAN (Radio Access Network) for 5G provides both NR and E-UTRA ("LTE") radio access
- A NG-RAN node is either
- gNB ("5G base station", providing NR access) or
- ng-eNB ("enhanced 4G base station", providing E-UTRA access)

5G Core

3 access types

- L. New radio
 - 5G Ran
- 2. LTE, LTE-Advanced,
- LTE _Advanced pro

 eNB updated to support

 N2&N3 ref point → ng-eNB
- 3. WIFI access
 - Trusted
 - Untrusted

5G Core

Does not support

- 2G (GERAN), 3G (UTRAN)
- Circuit domain → no Circuit Voice

Support

Voice is VolP

24

Enabler for 5G

- Virtualisation
 - > The capability to run network functions "on the shelf" standard servers
 - The server resources can be shared by different application
- Cloud
 - Scale the virtualization
 - 2 families
 - > Saas : Software as a service
 - > Paas and IaaS: platform as a service, Infrastructure as a service
- Slicing
 - > The capability to run different virtual network on the same physical network
- Edge Computing
 - > Applications can be hosted at "Edge-side"
 - ->Low Latency compared with centralized manner

5G Roll out: 2 scenario

- Non –Standalone (NSA)
 - No 5GC needed
 - Provides new radio resources
 - > Data & customer increase
 - > 4G Tx adapted to NR

- Standalone (SA)
 - **5GC**
 - New 5G services
 - 4G eNB upgraded to ng-eNB to be connected to 5GC

- Non Standalone (NSA) Network
 - The <u>first wave</u> of networks and devices will be classed as Non-Standalone (NSA):
 - > the <u>5G networks will be supported by existing 4G infrastructure</u>.
 - 5G-enabled smartphones will connect to 5G frequencies for data-throughput improvements but will <u>still use 4G for non-data duties such as talking to the cell towers</u> and servers.

Standalone (SA) Network

- The 5G Standalone (SA) network and device standard is still under review and is expected to be signed-off by 3GPP this year.
- SA network and device will allow the development of new cellular use cases such as ultra-reliable low latency communications (URLLC).
- Once the SA standard is approved this year, the migration from 5G NSA to SA by operators should be invisible to the user.

Non Standalone (NSA) Network

- The initial roll-out of 5G cellular infrastructure will focus on enhanced mobile broadband (eMBB) to provide increased data-bandwidth and connection reliability via two new radio frequency ranges:
 - Frequency Range 1 overlaps and extends 4G LTE frequencies, operating from 450 MHz to 6,000 MHz. Bands are numbered from 1 to 255 and this is commonly referred to as New Radio (NR) or sub-6GHz.
 - > <u>Frequency Range 2</u> operates at a much higher 24,250 MHz (~24GHz) to 52,600 MHz (~52GHz). Bands are numbered from 257 to 511 and this is commonly referred to as <u>millimeter wave</u> (mmWave), even though strictly speaking the 'millimeter' <u>frequency length starts at 30 GHz</u>.
- Available frequency zones in these ranges differ between countries.

5G New Radio

5G NEW RADIO

Milimeter Waves

Massive MIMO

Full duplex

5G NEW RADIO

- The 5G spectrum: below 1 GHz to 100 GHz
 - To adress the traffic increase additional spectrum is required
 - this is the role of the 2015 WRC that will discuss the allocation below 6,5 Ghz
 - Additional spectrom from 10 GHz to 100 GHz is also considered and a candidate for the next WRC, the WRC-19: the mimimeter wave (mmW)

- The radio channel will have different propagation characteristics depending on the frequency band
- Different radio interface will be required
 - > OFDMA based acces up to ~10 GHz
 - > For higher frequency a new access design will be required to adress short-range communication and ultra-dense coverage

MIMO

Massive MIMO

- Use a large number of antennas: eg 128 antennas
 - > 2 mains use
 - Beamforming to focus the transmission towards narrow beans
 - Extented spatial multiplexing refered as massive-MIMO
 - A factor 5x to 10x of the spectral efficiency is expected (the number of bits/hertz)

Beamforming for coverage

- Photo: 160 antennas over 60x120 cm
- Network-MIMO tecnics that use the cooperation of antennas from different sites
 - > Research is on-going

MIMO

Massive MIMO

- Use with Time Division Duplexing TDD -
 - Uplink and dowling channels are using the same frequency band and share the time
 - ➤ The UL and DL physical channel have the same caracteristics
 - Precoding of the DL can be done by the base station based on the channel estimation of the UL
 - ➤ Make use of a "pilot"
- Use with Frequency Division Duplexing FDD -
 - Upling and dowlinh channels are using different frequency band
 - Channel estimation has to be done on both uplink channel and downling channel
 - Result must be send from the Terminal to the Base Station
 - Limit the MIMO to
 - > Low mobility
 - > Low frequency
- Massive MIMO is limited to TDD (at the time being)

5G NEW RADIO

Modulation

 Existing orthogonal access technics OFDMA with a larger set of modulation and coding shemes such as QAM256 (8bits/symbol)

■ Re-use of Orthogonal Frequency Division Multiplexing

Why OFDM:

- Spectral efficiency, adapted to MIMO
- Low complexity receiver
- Frequency localisazion with windowing technics, iln order to efficiently support multiplexing of 5G services, both in-band and out-of-band emissions must be kept to a minimum
- Low-Power consumption with SC OFDM for uplink
- Can co-exist with optimized waveforms and multiple access for wide area IoT

Scalable numerology:

- Fixed 15KHz SCS (subcarrier spacing)in LTE → Flexible SCS in NR
- To efficiently address diverse spectrum, deployments and services

Source: Qualcom WP

- Radio frame structure in the time domain
 - Downlink and uplink transmissions are organized into radio frames
 - Radio frame duration: 10ms
 - A radio frame is divided in 10 subframes
 - Subframes duration: 1 ms
 - The number of slot in a subframe depends of the subcarrier spacing

Slot

- Slot length gets different depending on different subcarrier spacing.
 - Slot length gets shorter as subcarrier spacing gets wider
 One subframe (1 ms)

- OFDM symbol
 - The number of symbols within a slot does not change with the numerology or subcarrier spacing.
 - The number of symbols per slot is 14 (in case of Normal CP)

Access technics

- > non-othogonal technics is also considered by allocation of the same radio resources to multiple users
 - Power domain NOMA: a Non-Orthogonal Multiple Access using power to domain to differentiate the users
 - Sparse Code Multiple Access (SCMA) a combination of OFDMA and CDMA.

Spectum flexibility

- > From licensed spectrum to unlicensed spectrum
 - Unlicensed to increase capacity
- More flexible TDD-FDD operation
- > Dynamic TDD
 - From a static split of the uplink and downlink to a dynamic one
 The network can use the spectrum resources for either the UL or
 the DL to cope with dynamic traffic variation
- > In-Band Full Duplex (IBFD)
 - to share the same time and frequency
 - Full Duplex will allow simultaneous Transmission and Reception
- Access and backhaul integration

The use of the same spectrum between the access and the backhaul remove the traditional division between access and backhaul

- > Same technology for access and backhaul
- > Same spectrum for access and backhaul

Flexible duplex

Access/backhaul integration

Same technology for access and backhaul Same spectrum for access and backhaul

Low latency

Some of the aspects to be considered to lower the latency

- Reduction of the time transmission interval where the resources are assiged to the terminal (TTI)
- > Immediate access instead of the request-grant phase prio to transmission
- > Direct device-to-device transmission
- > Service-aware TTI (different TTIs)

Device to Device communication - D2D

The existing split in the architecture of mobile networks between the infrastructure (the access nodes) and the terminal nodes (the mobile device) may not be applicable

A terminal/device with D2D can have a dual role:

- Acting as an inftrastucture node
- Or acting as a terminal

- Some key technoloy areas:
 - Lean design

In existing mobile network the control plan use resources on an always on basis (broadcast system information, pilot signal)

In a network where the number of devices is x100 transmission needs to be minimize when not related to user data

- > Communication when only user data is to exchanged
- > Limit the interference and the power
- > Enhance the energy consumption
- Massive number of devices characterized by:
 - Simplicity, low cost, low energy consumption
 - And small amount of data

5G Core 5GC

The Technology evolution

- The overall 5G Architecture:
 - A 5G radio access supporting different types of radio acces technologies (RAT)
 - A common core supporting
 - > The 5G access
 - > The legacy RAT
 - > The fixed access

5G Core

- Introduction to NGC
 - In order to support and enable all defined and future use cases the 3GPP has defined a new core network called:
 - 5G Next Generation Core : NG-Core or NGC or 5GC
- 5G Core Network consists of the entities that provide support for the network features and telecommunication services. This support includes:
 - User location information
 - Control of network features and services,
 - The transfer (<u>switching and transmission</u>) mechanisms for signaling and for user generated information.

5G Core

- Evolution of network architecture for the core
 - Virtualization and Network functions virtualization
 - A service based architecture
 - Control Plane (CP) and user plane (UP) split
 - Mobility management and session management function decoupling
- Network Slicing for supporting the new business domains referred as "verticals"
 - > The capability to run "logical" network on a common physical infrastructure

Architecture of 2G/3G/4G

Architecture of 4G

- Traffic detection functionality
- Packet Gateway P-GW: control (PCRF = Policy Charging Rule) + traffic
- Serving GW: control of mobilty

Separation between control and user plans

5G Core

3GPP Core Network Architecture & Interfaces

5G Core: NFs main tasks

- AMF (Access and Mobility management Function)
 - Access control (Authentication & Authorization)
 - Registration & Mobility management control
- SMF (Session Management Function)
 - Session Control (Session Establishment, modify and release)
 - UE IP address allocation and management;
 - Selection and control of UPF
- UPF (User Plane Function)
 - Handling User Data
 - Packet routing & forwarding and Packet inspection
 - QoS handling for user plane

5G Core: NFs main tasks

- NRF (Network Repository Functions)
 - Provides profiles of Network Function (NF) instances and their supported services within the network
- NEF (Network Exposure Function)
 - provides external exposure of the capabilities of the network functions
- NSSF (Network Slice Selection Function)
 - Selecting the set of Network Slice instances serving the UE
- UDM (Unified Data Management)
 - supports Data Storage
- PCF (Policy Control Function)
 - Provides policy rules to Control Plane function
- AUSF (Authentication Server Function)
 - Supports authentication vectors for 3GPP access and untrusted non-3GPP access

5G Core: Service Based Architecture

- Service Based Architecture (SBA) Release 15
 - The main evolution compared to previous generation based on point to point interface between network element
 - Network Functions provides "Services" to other Network function via a common service base interfaces (SBI) allow a network function to discover the services offered by other network functions
 - Network Repository Functions (NRF) allows every network functions to discover the other network functions

5G Core: Service Based Architecture

■ MEC-RAN: Multi-Access Edge Computing — Radio Access Network

5G NFVNetwork Function Virtualization

Network Function Virtualization

SDN and NFV

- 5G Network functions implemented as virtualized software instances running in data centers.
- Software Defined Networking/Network Functions Virtualization -SDN/NFV- simplifies scaling and management of network infrastructure.
- SDN is the separation of the network control traffic (control plane) and the user specific traffic (data plane). SDN is based on the centralization of configuration and control, while ensuring a simple data plane architecture.
- NFV is the virtualizing network functions (by implementing them in software) that can run on a range of standard hardware.

To

Network Function Virtualization

- Network Function Virtualization NFV
 - The objective: a network flexible, dynamic, and less dependent on hardware
 - —Telecom industry is going from proprietary hardware to "on the shelf" IT harware Such as server, data storage, switches
 - The networks functions are implemented by sofware using virtualisation from the IT industry

5GNetwork Slicing

Network Slicing

Network Slicing

 Allows for the definition of multiple virtuals networks (or slices) on top of the same physical infrastructure

58

Network Slicing

Example of slices

- Automotive slice
 - > A "connected" car will require high throughput for in-car entertainment, ultra reliability and low latency (URLLC) for autonomous driving, device to device communication, data gathering...
- Industry automation slice
 - > A factory may require URLLC slice for automation using edge data center
- Enterprise
 - > Eg a taxi company to dispatch and the manage the cars,
- Massive IoT
 - > Eg a transport traffic management to monitor and manage in real time
- Augmented Reality (AR)/Virtual Reality
 - 1. AR/VR slice will require multimedia broadcast services, high density computing and QoS requirements

Cloud RAN

Cloud RAN

CloudRAN/centralized-RAN: a new network architecture based on SDN

- The base stations signal processing units installed at the base station level are moved to the cloud and centralized.
- They communicate with the network radio heads, located closer to the antenna, over an optical fiber network (Radio over fibre technology).
- This centralization makes it possible to obtain a complete overview of all of the stations deployed and to coordinate signal processing and manage interference between cells and devices
- Allows for the separation of the radio unit with the base band functions that are centralized
- Baseband processing (including RAN L1, L2 and L3 protocol layers) is located at a central location that serves multiple distributed

61

Conclusion

- ■5G will not replace LTE, they will coexist / complement for a significant period
 - -LTE will still evolve

- ■The 5G challenge
 - —To confirm the usecase for the industry for the vertical networks using network slicing
 - –New frequency availability
 - —To confrim the 5G requirements
 - –Availability of terminals