CS 580: Topics on AGT

Lec 2: Fair Division of Divisibles

Instructor: Ruta Mehta

Divisible goods

Goal: Find fair and efficient allocation

Model

- \blacksquare A: set of n agents
- *M*: set of *m* divisible goods (manna)

- Each agent *i* has
 - \square Concave valuation function $V_i: \mathbb{R}_+^m \to \mathbb{R}_+$ over bundles of items
 - □ Captures *decreasing marginal returns*.

Goal: Find fair and efficient allocation

Non-wasteful (Efficient)

Allocation: Bundle $X_i \in \mathbb{R}_+^m$ to agent i

Envy-free: No agent *envies* other's allocation over her own.

For each agent i, $V_i(X_i) \ge V_i(X_j), \forall j \in [n]$

Proportional: Each agent i gets value at least $\frac{V_i(M)}{n}$

For each agent $i, V_i(X_i) \ge \frac{V_i(M)}{n}$

Pareto-optimal: No other allocation is better for all.

There is no Y, s. t. $V_i(Y_i) \ge V_i(X_i), \forall i \in [n]$

Welfare Maximizing

 $(max: \sum_i V_i)$

Example: Half moon cookie

Non-wasteful (Efficient)

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Each agent

i gets value at least $\frac{V_i(M)}{n}$

[3, 2, 2] [0, 0, 0]

[20, 20, 30] [0, 0, 0]

Non-wasteful (Efficient)

Envy-free: No agent *envies* other's allocation over her own.

Pareto-optimal: No other allocation is better for all.

Proportional: Each agent i gets value at least $\frac{V_i(M)}{I}$

[3, 2, 2] $\sqrt[4]{2}$ [1/2, 1/2, 1/2]

Allocation
in red [20, 20, 30] [1/2, 1/2, 1/2]

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Each agent i gets value at least $\frac{V_i(M)}{}$

[3, 2, 2] [1, 1/2, 0]

Allocation in red

[20, 20, 30] [0, 1/2, 1]

Non-wasteful (Efficient)

Pareto-optimal: No other allocation is better for all.

Welfare Maximizing

 $(max: \sum_i V_i)$

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Each agent i gets value at least $\frac{V_i(M)}{m}$

 $[3, 2, 2]^{X}$ [0, 0, 0]

Allocation in red

[20, 20, 30] [1, 1, 1]

Non-wasteful (Efficient)

Pareto-optimal: No other allocation is better for all.

Welfare Maximizing

 $(max: \sum_i V_i)$

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Eac agent i gets value at least $\frac{V_i(M)}{n}$

[3, 2, 2] [1, 1/2, 0] [0, 0, 0]

Non-wasteful (Efficient)

Pareto-optimal: No other allocation is better for all.

(Nash) Welfare Maximizing $(\Pi_i V_i)$

Non-wasteful (Efficient)

Envy-free

Pareto-optimal

Proportional

(Nash) Welfare Maximizing

Competitive Equilibrium (with equal income)

Beginning of Competitive Equilibrium

Adam Smith (1776)

Invisible hand

"Economic concept that describes the unintended greater social benefits and public good brought about by individuals acting in their own self-interests. [1][2] The concept was first introduced by Adam Smith in *The Theory of Moral Sentiments*, written in 1759. According to Smith, it is literally divine providence, that is the hand of God, that works to make this happen."

Competitive (market) Equilibrium (CE)

Demand optimal bundle $argmax_{\{X \text{ affordable}\}}V_i(X)$

Competitive (market) Equilibrium (CE)

CE Example

CE Example

Agents have the same amount of money

CEEI: Properties

An agent can afford anyone else's bundle, but demands her own

⇒ Envy-free

1st welfare theorem

⇒ Pareto-optimal

Demand optimal bundle

Competitive Equilibrium:

Demand = Supply

CEEI: Properties

Demand optimal bundle

Competitive Equilibrium: Demand = Supply

Envy-free & "Demand=Supply" ⇒ Proportional

Proof.
$$X_{j} \in \mathbb{R}_{+}^{m}$$
Envyfree

$$\Rightarrow V_{i}(X_{i}) \geq V_{i}(X_{j}), \forall j \in [n] \quad X_{j} = \text{fort}$$

$$\Rightarrow nV_{i}(X_{i}) \geq \sum_{j \in [n]} V_{i}(X_{j}) \quad \text{A good } j$$
"Demand = Supply"
$$\Rightarrow \sum_{j \in [n]} V_{i}(X_{j}) \geq V_{i}(M) \text{ ($:$ V_{i} concave)}$$

$$\Rightarrow V_{i}(X_{i}) \geq \frac{V_{i}(M)}{n}$$

CE History

Adam Smith (1776)

Leon Walras (1880s)

Irving Fisher (1891)

Arrow-Debreu (1954)

(Nobel prize)

(Existence of CE in the exchange model w/ firms)

Computation of CE (w/ goods)

Algorithms

- Convex programming formulations
 - ☐ Eisenberg-Gale (1959): CEEI w/ 1-homogeneous valuations
 - □ Shmyrev (2009), DGV (2013), CDGJMVY (2017) ...
- (Strongly) Poly-time algorithms (linear valuations)
 - □ DPSV (2002), Orlin (2010), DM (2015), GV (2019) ...
- Simplex-like algorithms: Eaves (1976), GM.SV (2011), GM.V (2014), ...

Complexity

- PPAD: Papadimitrou'92, CDDT'09, VY'11, CPY'17, Rubinstein'18, ...
- FIXP: EY'09, GM.VY'17, F-RHHH'21 ...

Learning: RZ'12, BDM.UV'14, ..., FPR'22, ...

Matching/mechanisms: BLNPL'14, ..., KKT'15, ..., FGL'16, ..., AJT'17, ..., BGH'19, BNT-C'19, ...

*Alaei, Bei, Branzei, Chen, Cole, Daskalakis, Deng, Devanur, Duan, Dai, Etessami, Feldman, Fiat, Filos-Ratsikas, Garg, Gkatzelis, Hansen, Hogh, Hollender, Jain, Jalaly, Hoefer, Kleinberg, Lucier, Mai, Mehlhorn, Mehta, Mansour, Morgenstern, Nisan, Paes, Lee, Leme, Papadimitriou, Paparas, Parkes, Roth, Saberi, Sohoni, Talgam-Cohen, Tardos, Vazirani, Vegh, Yazdanbod, Yannakakis, Zhang,........

Simple Tatonnement Procedure (Algo)

Increase prices of the over demanded goods.

Theorem. Tatonnement process Converges to a CE if $V_i s$ are weak gross substitutes (WGS).

WGS: Increase in price of a good does not decrease demand of any other good.

Example: Linear $V_i s$

$$V_i(X_i) = \sum_{j \in [m]} V_{ij} X_{ij}$$

$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$

Optimal bundle: can spend at most one dollar.

Intuitition

spend wisely: on goods that gives maximum value-per-dollar $\frac{V_{ij}}{p_j}$

$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$

Optimal bundle: can spend at most one dollar.

$$\sum_{j \in M} V_{ij} X_{ij} = \sum_{j} \boxed{p_j \choose p_j} \binom{p_j X_{ij}}{p_j} \le \left(\max_{k \in G} \frac{V_{ik}}{p_k}\right) \sum_{j} p_j X_{ij} \le \left(\max_{k \in G} \frac{V_{ik}}{p_k}\right) 1$$
value per dollar spent
(\$ spent)
MBB
Maximum
bang-per-buck

$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$

Optimal bundle: can spend at most one dollar.

$$\sum_{j \in M} V_{ij} x_{ij} = \sum_{j} \boxed{p_j \choose p_j} (p_j X_{ij}) \le \left(\max_{k \in G} \frac{V_{ik}}{p_k}\right) \sum_{j} p_j x_{ij} \le \left(\max_{k \in G} \frac{V_{ik}}{p_k}\right) 1$$
value per dollar spent
(bang-per-buck)
MBB
Maximum
bang-per-buck

Buy only MBB goods.

$$X_{ij} > 0 \implies \frac{V_{ij}}{p_j} = MBB$$

$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$

Optimal bundle: can spend at most one dollar.

$$\sum_{j \in M} V_{ij} x_{ij} = \sum_{j} \boxed{p_j \choose p_j} (p_j X_{ij}) \le \left(\max_{k \in G} \frac{V_{ik}}{p_k}\right) \sum_{j} p_j x_{ij} \le \left(\max_{k \in G} \frac{V_{ik}}{p_k}\right) 1$$
value per dollar spent
(bang-per-buck)
Iff
MBB
Maximum
bang-per-buck

Buy only MBB goods.

$$X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = MBB$$

Spends all of 1 dollar.

$$\sum_{j} p_{j} X_{ij} = 1$$

$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$

Optimal bundle: can spend at most one dollars.

$$\sum_{j \in M} V_{ij} x_{ij} \leq \left(\max_{k \in G} \frac{V_{ik}}{p_k} \right) \mathbf{1}$$

iff

1. Buy only MBB goods.

$$X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = MBB$$

2. Spends all of 1 dollar.

$$\sum_{j} p_{j} X_{ij} = 1$$

Linear V_is : CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (X_1, ..., X_n)$ are at equilibrium iff

- Optimal bundle (OB): For each agent *i*
 - $\Box \sum_{j} p_{j} X_{ij} = 1$
 - $\square X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = \max_{k \in M} \frac{V_{ik}}{p_k}$, for all good j
- Market clears: For each good *j*,

$$\sum_{i} X_{ij} = 1.$$

Example

- 2 Buyers (②, ②), 2 Items (○), ⑥) with unit supply
- Each buyer has budget of \$3 and a linear utility function

- 2 Buyers (②, ②), 2 Items (④, ⑥) with unit supply
- Each buyer has budget of \$1 and a linear utility function

Not an Equilibrium!

M

Example

- 2 Buyers (②, ②), 2 Items (○), ⑥) with unit supply
- Each buyer has budget of \$1 and a linear utility function

Example

- 2 Buyers (②, ②), 2 Items (○), ⑥) with unit supply
- Each buyer has budget of \$1 and a linear utility function

Equilibrium!

CEEI Properties: Summary

CEEI allocation is

- Pareto optimal (PO)
- Envy-free
- Proportional

CEEI

CEEI Properties: Summary

CEEI allocation is

- Pareto optimal (PO)
- Envy-free
- Proportional

Next...

Nash welfare maximizing

CEEI

CEEI Allocation:

$$X_1 = \left(\frac{1}{4}, 1\right), X_2 = \left(\frac{3}{4}, 0\right)$$

$$V_1(X_1) = \frac{3}{2}, \ V_2(X_2) = \frac{9}{4} > 2 = \frac{1}{4}$$

$$V_1(X_2) = \frac{3}{2}, \ V_2(X_1) = \frac{7}{4}$$

M

Social Welfare

$$\sum_{i \in A} V_i(X_i)$$

Utilitarian

Issues: May assign 0 value to some agents. Not scale invariant!

re.

Max Nash Welfare

$$\mathbf{max:} \quad \prod_{i \in A} V_i(X_i)$$

s.t.
$$\sum_{i \in A} X_{ij} \le 1$$
, $\forall j \in G$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Feasible allocations

Max Nash Welfare (MNW)

$$\mathbf{max: log} \left(\prod_{i \in A} V_i(X_i) \right)$$

s.t.
$$\sum_{i \in A} X_{ij} \le 1$$
, $\forall j \in G$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Feasible allocations

Max Nash Welfare (MNW)

$$\mathbf{max:} \quad \sum_{i \in A} \log V_i(X_i)$$

s.t.
$$\sum_{i \in A} X_{ij} \le 1$$
, $\forall j \in G$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Feasible allocations

ŊΑ

Eisenberg-Gale Convex Program '59

$$\mathbf{max:} \quad \sum_{i \in A} \log V_i(X_i)$$

Dual var.

s.t.
$$\sum_{i \in A} X_{ij} \leq 1$$
, $\forall j \in G \longrightarrow \mathcal{P}_j$
 $X_{ij} \geq 0$, $\forall i, \forall j$

Theorem. Solutions of EG convex program are exactly the CEEI (p, X).

Proof.

Consequences: CEEI

- Exists
- Forms a convex set
- Can be *computed* in polynomial time
- Maximizes Nash Welfare

Theorem. Solutions of EG convex program are exactly the CEEI (p, X).

Proof. \Rightarrow (Using KKT)

Remember duality

Given a minimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to $h_i(x) \le 0, \quad i = 1, \dots m$

$$\ell_j(x) = 0, \quad j = 1, \dots r$$

we defined the Lagrangian:

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

and Lagrange dual function:

$$g(u,v) = \min_{x \in \mathbb{R}^n} L(x, u, v)$$

Karush-Kuhn-Tucker conditions

Given general problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to $h_i(x) \le 0, i = 1, \dots m$

$$\ell_j(x) = 0, j = 1, \dots r$$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

•
$$0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} v_j \partial \ell_j(x)$$
 (stationarity)

- $u_i \cdot h_i(x) = 0$ for all i (complementary slackness)
- $h_i(x) \le 0, \; \ell_j(x) = 0 \; \text{for all} \; i,j$ (primal feasibility)
- $u_i \ge 0$ for all i (dual feasibility)

Recall: CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (X_1, ..., X_n)$

- Optimal bundle: For each buyer i
 - $\square p \cdot X_i = 1$
 - $\square X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = \max_{k \in M} \frac{V_{ik}}{p_k}$, for all good j
- \blacksquare Market clears: For each good j,

$$\sum_{i} X_{ij} = 1.$$

Theorem. Solutions of EG convex program are exactly the CEE.

$$\begin{array}{c} \textit{Proof.} \Rightarrow (\textit{Using KKT}) \\ \forall j, \ p_j > 0 \Rightarrow \sum_i X_{ij} = 1 \\ \end{array} \qquad \begin{array}{c} \max: \sum_{i \in A} \log(V_i(X_i)) \xrightarrow{\sum_j V_{ij} X_{ij}} \\ \text{S.t.} \quad \sum_{i \in A} X_{ij} \leq 1, \ \forall j \in G \longrightarrow p_j \geq 0 \\ X_{ij} \geq 0, \quad \forall i, \forall j \end{array}$$

$$\text{Dual condition to } X_{ij}: \\ \frac{V_{ij}}{\sum_j V_{ij} X_{ij}} \leq p_i \Rightarrow \frac{V_{ij}}{\sum_j V_{ij} X_{ij}} = p_i \Rightarrow 0 \Rightarrow \text{market clears}$$

$$\frac{v_{ij}}{v_i(X_i)} \le p_j \Rightarrow \frac{v_{ij}}{p_j} \le V_i(X_i) \Rightarrow p_j > 0 \Rightarrow \text{market clears}$$

$$buy \text{ only MBB goods}$$

$$X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = V_i(X_i)$$

$$\sum_{j} V_{ij} X_{ij} = \left(\sum_{j} p_{j} X_{ij} \right) V_{i}(X_{i})$$

$$\Rightarrow \sum_{j} p_{j} X_{ij} = 1$$

⇒ optimal bundle

Efficient (Combinatorial) Algorithms

Polynomial time

- Flow based [DPSV'08]
 - ☐ General exchange model (barter system) [DM'16, DGM'17, CM'18]
- Scaling + Simplex-like path following [GM.SV'13]

Strongly polynomial time

- Scaling + flow [0'10, V'12]
 - □ Exchange model (barter system) [GV'19]

We will discuss some of these if there is interest.