

- 12 -

Patent claims

- sent B*
- 5
1. Laminated safety glass, comprising
- a first and a second pane of glass, and also,
 - arranged between the first and the second pane of glass, an intermediate layer, where the intermediate layer comprises:
 - from 50 to 80% by weight of PVB (partially acetalized polyvinyl alcohol)
 - from 20 to 50% by weight of a plasticizer mixture, comprising
 - from 30 to 70% by weight - calculated as proportion of the plasticizer mixture - of one or more polyalkylene glycols selected from the group consisting of
 - polyalkylene glycols of the general formula $\text{HO-(R-O)}_n\text{-H}$, where R = alkylene and n > 5,
 - block copolymers of ethylene glycol and propylene glycol having the general formula $\text{HO-(CH}_2\text{-CH}_2\text{-O)}_n\text{-(CH}_2\text{-CH(CH}_3\text{)-O)}_m\text{-H}$, where n > 2, m > 3, and (n+m) < 25,
 - derivatives of block copolymers of ethylene glycol and propylene glycol having the general formula $\text{R}_1\text{O-(CH}_2\text{-CH}_2\text{-O)}_n\text{-(CH}_2\text{-CH(CH}_3\text{)-O)}_m\text{-H}$ or $\text{HO-(CH}_2\text{-CH}_2\text{-O)}_n\text{-(CH}_2\text{-CH(CH}_3\text{)-O)}_m\text{-R}_1$, where n > 2, m > 3, and (n+m) < 25 and R₁ as organic radical,
 - derivatives of polyalkylene glycols of the general formula $\text{R}_1\text{-O-(R}_2\text{-O)}_n\text{-H}$, where R₂ = alkylene and n ≥ 2, in which the hydrogen of one of the two terminal hydroxyl groups of the polyalkylene glycol has been replaced by an organic radical R₁,
 - derivatives of polyalkylene glycols of the general formula $\text{R}_1\text{-O-(R}_2\text{-O)}_n\text{-R}_3$, where R₂ = alkylene and n > 5, in which the

- 13 -

hydrogen of both terminal hydroxyl groups of the polyalkylene glycol has been replaced by an organic radical R_1 and, respectively, R_3 .

5

2. Laminated safety glass according to claim 1, characterized in that the polyalkylene glycols have been selected from the group consisting of
 - polyethylene glycol $\text{HO}-(\text{CH}_2-\text{CH}_2-\text{O})_n-\text{H}$, where $8 < n < 25$,
 - block copolymers of ethylene glycol and propylene glycol having the general formula $\text{HO}-(\text{CH}_2-\text{CH}_2-\text{O})_n-(\text{CH}_2-\text{CH}(\text{CH}_3)-\text{O})_m-\text{H}$, where $n > 3$, $m > 4$, and $(n+m) < 20$,
 - derivatives of block copolymers of ethylene glycol and propylene glycol having the general formula $R_1\text{O}-(\text{CH}_2-\text{CH}_2-\text{O})_n-(\text{CH}_2-\text{CH}(\text{CH}_3)-\text{O})_m-\text{H}$ or $\text{HO}-(\text{CH}_2-\text{CH}_2-\text{O})_n-(\text{CH}_2-\text{CH}(\text{CH}_3)-\text{O})_m-R_1$, where $n > 3$, $m > 4$, and $(n+m) < 20$ and R_1 as organic radical,
 - polybutylene glycol $\text{HO}-(\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{O})_n-\text{H}$, where $4 < n < 18$,
 - derivatives of the polyethylene glycol of the general formula $R_1\text{-O}-(\text{CH}_2-\text{CH}_2-\text{O})_n-\text{H}$, where $n \geq 2$ and R_1 is an organic radical,
 - derivatives of the polybutylene glycol of the general formula $R_1\text{-O}-(\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{O})_n-\text{H}$, where $n \geq 2$ and R_1 is an organic radical.

SvB A >

3. Laminated safety glass according to claim 1 or 2, characterized in that the proportion of the polyalkylene glycols in the total mixture for the intermediate layer is greater than 10% by weight and less than 25% by weight.
- 35 4. Laminated safety glass according to any of claims 1 to 3, characterized in that at least one plasticizer selected from the group consisting of
 - esters of polybasic aliphatic or aromatic acids,

- 14 -

- polyhydric aliphatic or aromatic alcohols or
 oligoether glycols having not more than four
 ether units with one or more unbranched or
 branched aliphatic or aromatic substituents,
 e.g. dialkyl adipate, dialkyl sebacate, esters
 of di-, tri- or tetraglycols with linear or
 branched aliphatic carboxylic acids
 is used as further plasticizer in the plasticizer
 mixture.

5

10

15

20

25

30

35

5. Laminated safety glass according to claim 4,
characterized in that at least one plasticizer
 selected from the group consisting of di-n-hexyl
 adipate (DHA) and triethylene glycol bis-
 n-heptanoate (3G7) is used as further plasticizer
 at a proportion > 10% by weight of the total
 mixture.

Sv^b
A₂ >

20. Laminated safety glass according to any of
 claims 1 to 5, **characterized in that** a polyvinyl
 butyral having from 19 to 22% by weight of vinyl
 alcohol radical and from 0.5 to 2.5% by weight of
 acetate radical is used as resin.

25. 7. Sound-insulation film for producing laminated
 safety glass, comprising:
 - from 50 to 80% by weight of PVB (partially
 acetalized polyvinyl alcohol),
 - from 20 to 50% by weight of a plasticizer
 mixture, comprising
 - from 30 to 70% by weight - calculated as
 proportion of the plasticizer mixture - of one
 or more polyalkylene glycols selected from the
 group consisting of
 - polyalkylene glycols of the general formula
 $\text{HO-}(\text{R-O})_n\text{-H}$, where R = alkylene and n > 5,
 - block copolymers of ethylene glycol and
 propylene glycol having the general

- 15 -

formula $\text{HO}-(\text{CH}_2-\text{CH}_2-\text{O})_n-(\text{CH}_2-\text{CH}(\text{CH}_3)-\text{O})_m-\text{H}$,
where $n > 2$, $m > 3$, and $(n+m) < 25$,

- derivatives of block copolymers of ethylene glycol and propylene glycol having the general formula $\text{R}_1\text{O}-(\text{CH}_2-\text{CH}_2-\text{O})_n-(\text{CH}_2-\text{CH}(\text{CH}_3)-\text{O})_m-\text{H}$ or $\text{HO}-(\text{CH}_2-\text{CH}_2-\text{O})_n-(\text{CH}_2-\text{CH}(\text{CH}_3)-\text{O})_m-\text{R}_1$, where $n > 2$, $m > 3$, and $(n+m) < 25$ and R_1 as organic radical,
- derivatives of polyalkylene glycols of the general formula $\text{R}_1\text{O}-(\text{R}_2\text{-O})_n\text{-H}$, where R_2 = alkylene and $n \geq 2$, in which the hydrogen of one of the two terminal hydroxyl groups of the polyalkylene glycol has been replaced by an organic radical R_1 ,
- derivatives of polyalkylene glycols of the general formula $\text{R}_1\text{O}-(\text{R}_2\text{-O})_n\text{-R}_3$, where R_2 = alkylene and $n > 5$, in which the hydrogen of both terminal hydroxyl groups of the polyalkylene glycol has been replaced by an organic radical R_1 and, respectively, R_3 .

8. Use of one or more polyalkylene glycols selected from the group consisting of
- polyalkylene glycols of the general formula $\text{HO}-(\text{R-O})_n\text{-H}$, where R = alkylene and $n > 5$,
 - block copolymers of ethylene glycol and propylene glycol having the general formula $\text{HO}-(\text{CH}_2-\text{CH}_2-\text{O})_n-(\text{CH}_2-\text{CH}(\text{CH}_3)-\text{O})_m-\text{H}$, where $n > 2$, $m > 3$, and $(n+m) < 25$,
 - derivatives of block copolymers of ethylene glycol and propylene glycol having the general formula $\text{R}_1\text{O}-(\text{CH}_2-\text{CH}_2-\text{O})_n-(\text{CH}_2-\text{CH}(\text{CH}_3)-\text{O})_m-\text{H}$ or $\text{HO}-(\text{CH}_2-\text{CH}_2-\text{O})_n-(\text{CH}_2-\text{CH}(\text{CH}_3)-\text{O})_m-\text{R}_1$, where $n > 2$, $m > 3$, and $(n+m) < 25$ and R_1 as organic radical,
 - derivatives of polyalkylene glycols of the general formula $\text{R}_1\text{O}-(\text{R}_2\text{-O})_n\text{-H}$, where

- 16 -

R_2 = alkylene and $n \geq 2$, in which the hydrogen of one of the two terminal hydroxyl groups of the polyalkylene glycol has been replaced by an organic radical R_1 ,

- 5 - derivatives of polyalkylene glycols of the general formula $R_1-O-(R_2-O)_n-R_3$, where R_2 = alkylene and $n > 5$, in which the hydrogen of both terminal hydroxyl groups of the polyalkylene glycol has been replaced by an 10 organic radical R_1 and, respectively, R_3 ,
as an additive improving sound insulation in films produced from plasticized PVB resin for laminated safety glass, where the sound insulation of the laminated safety glass is increased by the 15 addition of the polyalkylene glycols by at least 2 dB, measured to DIN EN ISO 717, in the coincidence frequency region from 1000 to 3500 Hz.