A Nonlinear PID-Incorporated Adaptive Stochastic Gradient Descent Algorithm for Latent Factor Analysis Supplementary File

Jinli Li, Ye Yuan, Member, IEEE, and Xin Luo, Senior Member, IEEE

I. INTRODUCTION

This is the supplementary file for the paper entitled "A Nonlinear PID-Incorporated Adaptive Stochastic Gradient Descent Algorithm for Latent Factor Analysis". It mainly contains the tables and figures of experimental results.

II. SUPPLEMENTARY TABLES

TABLE S(I).	SEARCHING RANGE	OF GAIN PARAMETER.

Parameter	K_{p1}	K_{p2}	K_{p3}
Range	[1, 4]	[0.125, 0.25]	[0.015, 0.125]
Parameter	K_{i1}	K_{i2}	K_{d1}
Range	[0, 0.001]	[0.007, 0.015]	[0, 0.001]
Parameter	K_{d2}	K_{d3}	K_{d4}
Range	[0, 0.001]	[0.003, 0.031]	[0.001, 0.002]

TABLE S(II). OPTIMAL VALUES OF GAIN PARAMETER FOR A MANUAL MODEL.

Dataset	K_{p1}, K_{p2}, K_{p3}	K_{i1}, K_{i2}	$K_{d1}, K_{d2}, K_{d3}, K_{d4}$
D1	2, 0.2, 0.2	0.0001, 0.01	0.001, 0.0008, 0.004, 0.001
D2	2.1, 0.2, 0.1	0.0002, 0.01	0.001, 0.001, 0.01, 0.001
D3	2.15, 0.2, 0.01	0.0001, 0.01	0.0005, 0.001, 0.01, 0.001
D4	2.3, 0.3, 0.03	0.0001, 0.02	0.0003, 0.001, 0.02, 0.001
D5	2.15, 0.2, 0.02	0.0001, 0.02	0.0001, 0.001, 0.02, 0.001
D6	2.0, 0.2, 0.02	0.0001, 0.02	0.0001, 0.001, 0.02, 0.001

 $\label{eq:table_simple} T \underline{ABLE\ S(III)}.\ Performance\ comparison\ between\ two\ models\ in\ RMSE.$

Dataset	Method	RMSE	Iterations	*Per	**Total	***Tune
D1	Manual	0.7953	49	1.010	49.4	17994.5
DI	ANPS	0.7906	6	8.466	50.4	
D2	Manual	0.7882	49	1.983	97.0	29886.1
	ANPS	0.7824	5	17.46	87.3	
D3	Manual	0.7290	55	1.989	109.4	33068.7
D3 _	ANPS	0.7243	5	15.52	77.6	
D4	Manual	1.0125	27	0.096	2.6	859.3
D4 _	ANPS	1.0050	3	0.910	2.7	
D5	Manual	1.0671	35	16.0	561.7	2730.5
DS	ANPS	1.0601	4	132.0	528.0	
D6	Manual	0.8203	58	0.889	51.6	1254.7
D0	ANPS	0.8131	5	9.954	49.7	

 $TABLE\ S(IV).\ PERFORMANCE\ COMPARISON\ BETWEEN\ TWO\ MODELS\ IN\ MAE.$

Dataset	Method	MAE	Iterations	*Per	**Total	***Tune
D1	Manual	0.6118	51	1.085	55.0	18122.7
וע	ANPS	0.6104	4	8.466	33.8	
D2	Manual	0.6026	53	1.933	102.4	37416.4
	ANPS	0.5981	4	17.46	69.8	
D3	Manual	0.5667	58	1.546	89.6	34693.1
D3	ANPS	0.5646	5	13.52	67.6	
D4	Manual	0.7848	29	0.090	2.6	928.7
D4	ANPS	0.7821	5	0.873	4.3	
D5	Manual	0.8165	41	16.29	668.0	33205.3
D3	ANPS	0.8119	4	145.3	581.2	
D6	Manual	0.6353	62	0.984	61.0	692.2
D0	ANPS	0.6258	6	9.477	56.8	

*Time per iteration (Secs). ***Total time (Secs). **** Tuning time (Secs).

TABLE S(V). Time cost (Secs), where \odot indicates that M1 is outperformed by the compared model.

	Case	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10
D1	RMSE-Time	50.4 _{±1.0}	$71.4_{\pm 1.5}$	79.7 _{±3.6}	134.4 _{±1.2}	615.5 _{±2.3}	3588.4 _{±3.8}	509.8 _{±2.4}	83.2 _{±3.6}	5712.2 _{±1.7}	5253.5 _{±2.6}
D1	MAE-Time	$33.8_{\pm 1.2}$	$64.7_{\pm 1.7}$	$86.5_{\pm 5.2}$	$139.0_{\pm 1.6}$	$665.6_{\pm 2.7}$	$3574.3_{\pm 3.5}$	$564.0_{\pm 2.6}$	88.8 _{±3.6}	5712.2 _{±1.7}	5253.5 _{±2.6}
D.0	RMSE-Time	$87.3_{\pm 1.3}$	$149.4_{\pm 1.8}$	$180.9_{\pm 2.5}$	$305.2_{\pm 1.5}$	1645.8 _{±3.2}	$6250.8_{\pm 3.9}$	$1265.6_{\pm 2.3}$	$174.2_{\pm 1.2}$	$1998.2_{\pm 3.1}$	$10002.2_{\pm 3.4}$
D2	MAE-Time	$69.8_{\pm 1.6}$	$120.8_{\pm 1.9}$	$188.0_{\pm 4.3}$	$314.5_{\pm 1.9}$	$1606.1_{\pm 3.6}$	$6236.2_{\pm 4.0}$	1357.3 _{±2.6}	$182.8_{\pm 2.5}$	$1998.2_{\pm 3.1}$	$10002.2_{\pm 3.4}$
D.4	RMSE-Time	$77.6_{\pm 1.8}$	150.1 _{±1.6}	167.5 ±2.0	$336.8_{\pm 1.3}$	1402.0 _{±3.13}	5812.2 _{±3.6}	1350.4 _{±2.3}	167.4 _{±3.1}	$7807.4_{\pm 1.0}$	$18190.6_{\pm 1.0}$
D3	MAE-Time	$67.7_{\pm 1.6}$	$135.6_{\pm 1.7}$	$180.9_{\pm 1.5}$	$343.2_{\pm 1.8}$	10182.2 _{±4.9}	$5663.5_{\pm 3.7}$	1304.8 _{±3.0}	$189.2_{\pm 2.5}$	$7807.4_{\pm 1.0}$	$18360.3_{\pm 2.2}$
D4	RMSE-Time	$2.7_{\pm 1.2}$	4.6 _{±0.7}	$6.5_{\pm 2.8}$	$8.0_{\pm 0.7}$	48.5 _{±2.9}	$241.0_{\pm 2.0}$	$44.5_{\pm 1.6}$	$6.0_{\pm 3.5}$	$27.8_{\pm 2.2}$	$173.4_{\pm 1.6}$
D4	MAE-Time	$4.3_{\pm 1.1}$	○ 4.0 _{±0.8}	$7.3_{\pm 2.7}$	$9.0_{\pm 0.6}$	54.7 _{±2.7}	$286.1_{\pm 2.6}$	$48.4_{\pm 1.7}$	$6.1_{\pm 2.1}$	$26.6_{\pm 2.2}$	173.3 _{±1.6}
D.5	RMSE-Time	$528.0_{\pm 1.6}$	0493.3 _{±2.1}	1003.8 _{±2.0}	1054.8 _{±1.3}	21654.3 _{±3.6}	41084.5 ±3.7	7007.4 _{±2.4}	1199.7 _{±2.6}	9680.8 _{±2.4}	$36148.8_{\pm 3.4}$
D5	MAE-Time	$581.2_{\pm 1.8}$	⊘ 578.6 _{±2.5}	1281.4 _{±2.8}	$1397.2_{\pm 1.2}$	$25702.0_{\pm 3.0}$	$48822.6_{\pm 3.4}$	7967.4 _{±2.7}	1369.5 _{±2.9}	$8921.6_{\pm 1.6}$	36148.8 _{±3.4}
D.	RMSE-Time	49.7 _{±1.3}	51.6 _{±0.4}	81.2 _{±3.3}	$100.5_{\pm 0.6}$	$211.6_{\pm 2.1}$	$3311.0_{\pm 3.8}$	160.1 _{±3.0}	90.4 _{±5.6}	633.2 _{±2.6}	$2940.0_{\pm 2.5}$
D6	MAE-Time	$56.8_{\pm 1.1}$	$58.5_{\pm 0.2}$	93.9 _{±2.7}	$99.8_{\pm 0.7}$	$216.5_{\pm 1.6}$	$3353.3_{\pm 3.0}$	$175.8_{\pm 2.8}$	$90.2_{\pm 4.1}$	$597.0_{\pm 3.0}$	2940.0 _{±2.5}
	Loss/Win	-	3/9	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12

TABLE S(VI). LOWEST RMSE/MAE, WHERE **O** INDICATES THAT M1 IS OUTPERFORMED BY THE COMPARED MODEL.

	Case	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10
	RMSE	0.7906 _{±5E-4}	0.7929 _{±3E-4}	0.7948 _{±3E-4}	0.7939 _{±5E-4}	0.8045 _{±6E-4}	0.8155 _{±6E-4}	0.8166 _{±6E-4}	0.7942 _{±3E-4}	$0.8755_{\pm 1E-4}$	0.7999 _{±3E-4}
D1	MAE	$0.6104_{\pm 8E\text{-}5}$	$0.6130_{\pm 4E\text{-}4}$	$0.6109_{\pm 3E\text{-}4}$	$0.6131_{\pm 5E\text{-}4}$	$0.6109_{\pm 6E\text{-}4}$	$0.6163_{\pm 6E\text{-}4}$	$0.6179_{\pm\!6E\text{-}4}$	00.6098 _{±5E-4}	$0.6821_{\pm 3E\text{-}4}$	$0.6136_{\pm 1E\text{-}4}$
	RMSE	0.7824 _{±5E-4}	0.7850 _{±5E-4}	$0.7882_{\pm 1E-4}$	0.7866 _{±5E-4}	0.7981 _{±5E-4}	0.8094 _{±6E-4}	0.8072 _{±6E-4}	0.7863 _{±4E-4}	0.9057 _{±4E-4}	0.8401 _{±3E-4}
D2	MAE	$0.5981_{\pm 5\text{E-4}}$	$0.6030_{\pm 5E\text{-}4}$	$0.5996_{\pm 1E\text{-}4}$	$0.6035_{\pm 5E\text{-}4}$	$0.6009_{\pm 5E\text{-}4}$	$0.6072_{\pm 6E\text{-}4}$	$0.6061_{\pm 6E\text{-}4}$	$0.5983_{\pm 3E\text{-}4}$	$0.7053_{\pm 2E\text{-}4}$	$0.6419_{\pm 4E\text{-}4}$
	RMSE	0.7243 _{±4E-4}	0.7252 _{±5E-4}	0.7290 _{±5E-4}	0.7257 ±5E-4	0.7390 _{±6E-4}	0.7446 _{±6E-4}	0.7452 _{±6E-4}	0.7281 _{±2E-4}	$0.7625_{\pm 1E-4}$	0.7423 _{±5E-4}
D3	MAE	$0.5646_{\pm4\mathrm{E-4}}$	$0.5671_{\pm 5E\text{-}4}$	$0.5648_{\pm 5E\text{-}4}$	$0.5663_{\pm 5E\text{-}4}$	$0.5705_{\pm 6E\text{-}4}$	$0.5746_{\pm 6E\text{-}4}$	$0.5738_{\pm 6E\text{-}4}$	$0.5692_{\pm 5E\text{-}4}$	$0.5872_{\pm 2E\text{-}4}$	$0.5695_{\pm 5E\text{-}4}$
	RMSE	1.0050 _{±5E-4}	1.0090 _{±5E-4}	1.0067 ±4E-4	1.0077 _{±4E-4}	1.0152 _{±5E-4}	1.0285 _{±6E-4}	1.0263 _{±6E-4}	1.0055 _{±3E-4}	1.2419 _{±5E-4}	1.0136 _{±4E-4}
D4	MAE	$0.7821_{\pm 5E\text{-}4}$	$0.7857_{\pm 6E\text{-}4}$	$0.7850_{\pm 3E\text{-}4}$	$0.7834_{\pm 4E-4}$	$00.7803_{\pm 5\mathrm{E-4}}$	$0.7829_{\pm 6E\text{-}4}$	© 0.7812 _{±6E-4}	$0.7841_{\pm 4E\text{-}4}$	$1.0216_{\pm 5E4}$	$0.7859_{\pm 1E\text{-}4}$
	RMSE	1.0601 _{±5E-4}	1.0670 _{±5E-4}	1.0702 _{±1E-4}	1.0640 _{±4E-4}	1.0604 _{±6E-4}	1.0615 _{±7E-4}	1.0617 _{±6E-4}	1.0687 _{±4E-4}	1.1701 _{±3E-4}	1.0884 _{±1E-4}
D5	MAE	$0.8119_{\pm 5E\text{-}4}$	$0.8179_{\pm 5E\text{-}4}$	$0.8132_{\pm 4E-4}$	$0.8188_{\pm 4E\text{-}4}$	$0.8092_{\pm 6E\text{-}4}$	$00.8079_{\pm 7\mathrm{E-4}}$	$0.8011_{\pm 6E\text{-}4}$	$0.8128_{\pm 5\text{E-4}}$	$0.9187_{\pm 2E\text{-}4}$	$0.8367_{\pm 3E\text{-}4}$
	RMSE	0.8131 _{±3E-4}	$0.8232_{\pm 4E-4}$	$0.8265_{\pm 3E\text{-}4}$	0.8157 _{±4E-4}	0.8232 _{±6E-4}	0.8135 _{±6E-4}	0.8342 _{±5E-4}	0.8251 _{±1E-4}	0.9386 _{±5E-4}	0.8141 _{±2E-4}
D6	MAE	$0.6258_{\pm 3E\text{-}4}$	$0.6397_{\pm 4E\text{-}4}$	$0.6399_{\pm 2E\text{-}4}$	$0.6363_{\pm 4E-4}$	$0.6415_{\pm 5E\text{-}4}$	$0.6309_{\pm 6E\text{-}4}$	$0.6357_{\pm 5E\text{-}4}$	$0.6395_{\pm 3\text{E-4}}$	$0.7671_{\pm 5E\text{-}4}$	$0.6265_{\pm 1E\text{-}4}$
L	oss/Win	-	0/12	0/12	0/12	1/11	1/11	1/11	0/12	0/12	0/12

TABLE S(VII). AVERAGE RANKS OF ALL COMPARED MODELS.

Rank	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10
Efficiency	1.3	1.6	3.5	4.9	7.5	9.0	6.1	3.5	7.9	9.3
Accuracy	1.5	4.8	5.2	4.6	5.0	6.0	6.4	4.3	10	6.8

III. SUPPLEMENTARY FIGURES

