Math 273a: Optimization Gradient descent

Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015

slides based on Chong-Zak, 4th Ed. online discussions on piazza.com

Main features of gradient methods

- The most popular methods (in continuous optimization)
- simple and intuitive
- work under very few assumptions
 (although they cannot directly handle nondifferentiable objectives and constraints, without applying smoothing techniques)
- work together with many other methods: duality, splitting, coordinate descent, alternating direction, stochastic, online, etc.
- suitable for large-scale problems, e.g., easy to parallelize for problems with many terms in the objective

Gradients

- We let $\nabla f(x_0)$ denote the gradient of f at point x_0 .
- $\nabla f(x_0) \perp$ tangent of the levelset curve of f passing x_0 , pointing outward (recall: level set $\mathcal{L}_f(c) := \{x : f(x) = c\}$)

• $\nabla f(x_0)$ is max-rate ascending direction of f at x_0 (for a small displacement), and $\|\nabla f(\boldsymbol{x}_0)\|$ is the rate.

If we set $d = \nabla f(x) / ||\nabla f(x)||$, then

Reason: pick any direction
$$oldsymbol{d}$$
 with $\|oldsymbol{d}\|=1.$ The rate of change at $oldsymbol{x}$ is

 $\langle \nabla f(\boldsymbol{x}), \boldsymbol{d} \rangle \leq \|\nabla f(\boldsymbol{x})\| \cdot \|\boldsymbol{d}\| = \|\nabla f(\boldsymbol{x})\|.$

 $\langle \nabla f(\boldsymbol{x}), \boldsymbol{d} \rangle = \| \nabla f(\boldsymbol{x}) \|.$

• Therefore, $-\nabla f(x)$ is the max-rate descending direction of f and a good search direction.

A negative gradient step can decrease the objective

- Let $x^{(0)}$ be any initial point.
- First-order Taylor expansion for candidate point ${\pmb x} = {\pmb x}^{(0)} \alpha \nabla f({\pmb x}^{(0)})$:

$$f(x) - f(x^{(0)}) = -\alpha \|\nabla f(x^{(0)})\|^2 + o(\alpha)$$

• Hence, if $\nabla f(x^{(0)}) \neq 0$ (the first-order necessary condition is not met) and α is sufficiently small, we have

$$f(\boldsymbol{x}) < f(\boldsymbol{x}^{(0)}).$$

• Therefore, for sufficiently small α , x is an improvement over $x^{(0)}$.

Gradient descent algorithm

• Given initial $x^{(0)}$, the gradient descent algorithm uses the following update to generate $x^{(1)}, x^{(2)}, \ldots$, until a stopping condition is met: from the current point $x^{(k)}$, generate the next point $x^{(k+1)}$ by

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \nabla f(\boldsymbol{x}^{(k)}),$$

• α_k is called the step size

Alternative interpretation:

notice that

$$\begin{aligned} \boldsymbol{x}^{(k+1)} &= \operatorname*{arg\,min}_{\boldsymbol{x}} \frac{1}{2\alpha_k} \left\| \boldsymbol{x} - \left(\boldsymbol{x}^{(k)} - \alpha_k \nabla f(\boldsymbol{x}^{(k)}) \right) \right\|^2 \\ &= \operatorname*{arg\,min}_{\boldsymbol{x}} f(\boldsymbol{x}^{(k)}) + \langle \nabla f(\boldsymbol{x}^{(k)}), \boldsymbol{x} - \boldsymbol{x}^{(k)} \rangle + \frac{1}{2\alpha_k} \| \boldsymbol{x} - \boldsymbol{x}^{(k)} \|^2 \end{aligned}$$

(2nd "=" follows from that adding constants and multiplying a positive constant do *not* change the set of minimizers or "arg min")

- Hence, $x^{(k+1)}$ is obtained by minimizing the <u>linearization</u> of f at $x^{(k)}$ and a proximal term that keeps x^{k+1} close to $x^{(k)}$.
- The reformulation is useful to develop the extensions of gradient descent:
 - projected gradient method
 - proximal-gradient method
 - accelerated gradient method
 -

When to stop the iteration

The first-order necessary condition $\|\nabla f(\boldsymbol{x}^{(k+1)})\| = 0$ is not practical.

Practical conditions:

- gradient condition $\|\nabla f(\boldsymbol{x}^{(k+1)})\| < \epsilon$
- successive objective condition $|f(x^{(k+1)}) f(x^{(k)})| < \epsilon$ or the relative one

$$\frac{|f(\boldsymbol{x}^{(k+1)}) - f(\boldsymbol{x}^{(k)})|}{|f(\boldsymbol{x}^{(k)})|} < \epsilon$$

• successive point difference $\|x^{(k+1)} - x^{(k)}\| < \epsilon$ or the relative one

$$\frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}\|}{\|\boldsymbol{x}^{(k)}\|} < \epsilon$$

• to avoid division by tiny numbers (unstable division), we can replace the denominators by $\max\{1,|f(\boldsymbol{x}^{(k)})|\}$ and $\max\{1,\|\boldsymbol{x}^{(k)}\|\}$, respectively

Small versus large step sizes α_k

Small step size:

- Pros: iterations are more likely converge, closely traces max-rate descends
- Cons: need more iterations and thus evaluations of abla f

Large step size:

- Pros: better use of each $abla f(x^{(k)})$, may reduce the total iterations
- \bullet Cons: can cause overshooting and zig-zags, too large \Rightarrow diverged iterations

Small versus large step sizes α_k

Small step size:

- Pros: iterations are more likely converge, closely traces max-rate descends
- Cons: need more iterations and thus evaluations of ∇f

Large step size:

- Pros: better use of each $\nabla f(x^{(k)})$, may reduce the total iterations
- \bullet Cons: can cause overshooting and zig-zags, too large \Rightarrow diverged iterations

In practice, step sizes are often chosen

- lacktriangleright as a fixed value if ∇f is Lipschitz (rate of change is bounded) with the constant known or an upper bound of it known
- by line search
- by a method called Barzilai-Borwein with nonmonotone line search

Steepest descent method (gradient descent with exact line search)

Step size α_k is determined by exact minimization

$$\alpha_k = \underset{\alpha>0}{\operatorname{arg \, min}} \ f(\boldsymbol{x}^{(k)} - \alpha \nabla f(\boldsymbol{x}^{(k)})).$$

It is used mostly for quadratic programs (with α_k in a closed form) and some problems with inexpensive evaluation values but expensive gradient evaluation; otherwise it is not worth the effort to solve this subproblem exactly.

Proposition 8.1 If $\{x^{(k)}\}_{k=0}^{\infty}$ is a steepest descent sequence for a given function $f: \mathbb{R}^n \to \mathbb{R}$, then for each k the vector $\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$ is orthogonal to the vector $\mathbf{x}^{(k+2)} - \mathbf{x}^{(k+1)}$.

Steepest descent for quadratic programming

Assume that Q is symmetric and positive definite $(x^TQx > 0 \text{ for any } x \neq 0)$. Consider the quadratic program

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$

with

$$\nabla f(\boldsymbol{x}) = \boldsymbol{Q}\boldsymbol{x} - \boldsymbol{b}.$$

Steepest descent iteration: start from any $x^{(0)}$, set

$$x^{(k+1)} = x^{(k)} - \alpha_k q^{(k)}, \quad k = 0, 1, 2, \dots$$

where $oldsymbol{g}^{(k)} :=
abla f(oldsymbol{x}^{(k)})$ and

$$\alpha_k = \underset{\alpha \ge 0}{\operatorname{arg \, min}} \ f(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)})$$
$$= \frac{\boldsymbol{g}^{(k)T} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)T} Q \boldsymbol{g}^{(k)}}.$$

Examples

Example 1: $f(x) = x_1^2 + x_2^2$. Steepest descent arrives at $x^* = 0$ in 1 iteration.

Example 1: $f(x) = \frac{1}{5}x_1^2 + x_2^2$. Steepest descent makes progress in a narrow valley

Performance of steepest descent

- Per-iteration cost: dominated by two matrix-vector multiplications:
 - $q^{(k)} = Qx^{(k)} b$
 - computing α_k involves $Qg^{(k)}$

but they can be easily reduced to one matrix-vector multiplication.

- Convergence speed: determined by the initial point and the spectral condition of Q. To analyze them, we
 - define solution error: $e^{(k)} = x^{(k)} x^*$ (not known, an analysis tool)
 - have property: $oldsymbol{g}^{(k)} = oldsymbol{Q} oldsymbol{x}^{(k)} oldsymbol{b} = oldsymbol{Q} oldsymbol{e}^{(k)}.$

Good cases:

ullet $e^{(k)}$ is an eigenvector of Q with eigenvalue λ

$$egin{aligned} e^{(k+1)} &= e_k - lpha_k oldsymbol{g}^{(k)} = e^{(k)} - rac{oldsymbol{g}^{(k)T} oldsymbol{g}^{(k)}}{oldsymbol{g}^{(k)T} oldsymbol{Q} oldsymbol{g}^{(k)}} (oldsymbol{Q} e^{(k)}) \ &= e^{(k)} + rac{oldsymbol{g}^{(k)T} oldsymbol{g}^{(k)}}{\lambda oldsymbol{g}^{(k)T} oldsymbol{g}^{(k)}} (-\lambda e^{(k)}) = 0. \end{aligned}$$

ullet Q has only one distinct eigenvalue (the level sets of Q are circles)

The general case: define $\|e\|_A:=\sqrt{e^TAe}$ and $\kappa:=\lambda_{\max}(Q)/\lambda_{\min}(Q)$, then we have

$$\|e^{(k)}\|_A \le \left(\frac{\kappa-1}{\kappa+1}\right)^k \|e^{(0)}\|_A.$$

A example from An Introduction to CG method by Shewchuk

Gradient descent with fixed step size

Iteration:

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha \boldsymbol{q}^{(k)}$$

- We assume that x^* exists
- Check distance to solution:

$$\begin{aligned} \|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\|^2 &= \|\boldsymbol{x}^{(k)} - \boldsymbol{x}^* - \alpha \boldsymbol{g}^{(k)}\|^2 \\ &= \|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^2 - 2\alpha \langle \boldsymbol{g}^{(k)}, \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \rangle + \alpha^2 \|\boldsymbol{g}^{(k)}\|^2. \end{aligned}$$

- Therefore, in order to have $\|x^{(k+1)} - x^*\| \leq \|x^{(k)} - x^*\|$, we must have

$$\frac{\alpha}{2} \| \boldsymbol{g}^{(k)} \|^2 \le \langle \boldsymbol{g}^{(k)}, \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \rangle.$$

Since ${m g}^* :=
abla f({m x}^*) = {m 0}$, the condition is equivalent to

$$\frac{\alpha}{2} \| m{g}^{(k)} - m{g}^* \|^2 \le \langle m{g}^{(k)} - m{g}^*, m{x}^{(k)} - m{x}^*
angle.$$

Special case: convex and Lipschitz differentiable f

- **Definition:** A function f is L-Lipschitz differentiable, $L \geq 0$, if $f \in \mathcal{C}^1$ and

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\| \le L\|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

(the maximum rate of change of ∇f is L)

■ Baillon-Haddad theorem: if $f \in C^1$ is a convex function, then it is L-Lipschitz differentiable if and only if

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\|^2 \le L\langle \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle.$$

(such ∇f is called 1/L-cocoercive)

• Theorem: Let $f \in \mathcal{C}^1$ be a convex function and L-Lipschitz differentiable. If $0 < \alpha \le 2/L$, then

$$\left\| \frac{lpha}{2} \| oldsymbol{g}^{(k)} - oldsymbol{g}^* \|^2 \leq \langle oldsymbol{g}^{(k)} - oldsymbol{g}^*, oldsymbol{x}^{(k)} - oldsymbol{x}^*
angle$$

and thus $\| {m x}^{(k+1)} - {m x}^* \| \leq \| {m x}^{(k)} - {m x}^* \|$ for $k=0,1\dots$ The iteration stays bounded.

- Theorem: Let $f \in \mathcal{C}^1$ be a convex function and L-Lipschitz differentiable. If $0 < \alpha < L/2$, then
 - both $f(\boldsymbol{x}^{(k)})$ and $\|\nabla f(\boldsymbol{x}^{(k)})\|$ are monotonically decreasing,
 - $f(x^{(k)}) f(x^{(*)}) = O(\frac{1}{k}),$
 - $\|\nabla f(\boldsymbol{x}^{(k)})\| = o(\frac{1}{k})$. (one often writes $\|\nabla f(\boldsymbol{x}^{(k)})\|^2 = o(\frac{1}{k^2})$ since $\|\nabla f(\boldsymbol{x}^{(k)})\|^2$ naturally appears in most analysis.)

Gradient descent with fixed step size for quadratic programming

Assume that Q is symmetric and positive definite $(x^TQx > 0 \text{ for any } x \neq 0)$.

Consider the quadratic program

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$

Theorem 8.3 For the fixed-step-size gradient algorithm, $x^{(k)} \to x^*$ for any $x^{(0)}$ if and only if

$$0 < \alpha < \frac{2}{\lambda_{\max}(\boldsymbol{Q})}.$$

Summary

- Negative gradient $-\nabla f(\boldsymbol{x}^{(k)})$ is the max-rate descending direction
- For some small α_k , $x^{(k+1)} = x^{(k)} \alpha_k \nabla f(x^{(k)})$ improves over $x^{(k)}$
- There are practical rules to determine when to stop the iteration
- Exact line search works for quadratic program with Q>0. Zig-zag occurs if $x^{(0)}-x^*$ is away from an eigenvector and spectrum of Q is spread
- $\, \bullet \,$ Fixed step gradient descent works for convex and Lipschitz-differentiable f
- To keep the discussion short and informative, we have omitted much other convergence analysis.