H_0 und κ Parameter: T0-Modell Referenzdokument Massenbasierte Formulierung mit experimentellen Vergleichen

Johann Pascher

30. Mai 2025

1 Einleitung

Das T0-Modell bietet einen einheitlichen Rahmen zur Ableitung kosmologischer Parameter aus der fundamentalen Feldtheorie. Dieses Dokument präsentiert die massenbasierte Formulierung, die zeigt, wie der Hubble-Parameter H_0 und der lineare Potentialparameter κ aus der intrinsischen Zeitfelddynamik mit geometrieabhängigen elektromagnetischen Korrekturen hervorgehen.

2 T0-Modell-Rahmen

2.1 Natürliche Einheiten-Konvention

In den natürlichen Einheiten des T0-Modells:

$$\hbar = c = \alpha_{\rm EM} = \beta_{\rm T} = 1 \tag{1}$$

2.2 Fundamentale Feldgleichungen

Das T0-Zeitfeld erfüllt:

$$T(x,t) = \frac{1}{\max(m(x,t),\omega)}$$
 (2)

$$\nabla^2 m = 4\pi G \rho(x, t) \cdot m \tag{3}$$

wobei m(x,t) das Massenfeld ist, ω die fundamentale Frequenzskala repräsentiert und $\rho(x,t)$ die Massendichte ist.

3 Geometrieabhängige ξ Parameter

3.1 Elektromagnetische Geometriekorrekturen

Der fundamentale ξ -Parameter erfordert verschiedene Werte für verschiedene geometrische Kontexte:

Flache Geometrie (lokale Physik):

$$\xi_{\text{flach}} = \frac{\lambda_h^2 v^2}{16\pi^3 m_h^2} = 1,3165 \times 10^{-4} \tag{4}$$

Sphärische Geometrie (kosmologische Physik):

$$\xi_{\text{sphärisch}} = \frac{\lambda_h^2 v^2}{24\pi^{5/2} m_h^2} = 1,557 \times 10^{-4}$$
 (5)

Elektromagnetischer Korrekturfaktor:

$$\frac{\xi_{\text{sphärisch}}}{\xi_{\text{flach}}} = \sqrt{\frac{4\pi}{9}} = 1,1827 \tag{6}$$

3.2 Physikalischer Ursprung

Der Korrekturfaktor $\sqrt{4\pi/9}$ entsteht durch:

- 4π -Faktor: Vollständige Raumwinkelintegration über sphärische Geometrie
- Faktor $9 = 3^2$: Dreidimensionale räumliche Normierung
- Kombinierter Effekt: Elektromagnetische Feldkorrekturen für verschiedene Raumzeit-Geometrien

4 Energieverlustmechanismus und κ -Parameter

4.1 Fundamentaler Energieverlust

Wenn Photonen durch Massenfeldgradienten propagieren, verlieren sie Energie gemäß:

$$\frac{dE}{dr} = -g_T \omega^2 \frac{2G}{r^2} \tag{7}$$

wobei g_T die Kopplungsstärke repräsentiert, die vom geometrischen Kontext abhängt.

4.2 Linearer Potentialparameter

Für das modifizierte Gravitationspotential:

$$\Phi(r) = -\frac{GM}{r} + \kappa r \tag{8}$$

Der κ -Parameter ist definiert durch:

$$\kappa = g_T \omega^2 \frac{2G}{r_{\text{char}}} \tag{9}$$

4.3 Regimeklassifikation

Lokales Regime $(r \ll H_0^{-1})$:

$$\kappa = \alpha_{\kappa} H_0 \xi_{\text{flach}}^2 \tag{10}$$

Kosmisches Regime $(r \gg H_0^{-1})$:

$$\kappa = H_0 \tag{11}$$

5 Ableitung des H_0 -Parameters

5.1 Skalenhierarchie und Massenbeziehungen

Das T0-Modell verbindet Skalen durch den dimensionslosen ξ -Parameter:

$$\xi = \frac{r_0}{\ell_P} = \frac{2Gm}{\sqrt{G\hbar/c^3}} = \frac{2m}{M_P} \tag{12}$$

wobei M_P die Planck-Masse und $r_0 = 2Gm/c^2$ die charakteristische T0-Längenskala ist.

5.2 T0-Theoretische Vorhersage

Der Hubble-Parameter ergibt sich aus der Massenfeldhierarchie:

$$H_0 = \xi_{\text{sphärisch}}^{15,697} \times E_P \tag{13}$$

$$= (1,557 \times 10^{-4})^{15,697} \times 1,2209 \times 10^{19} \text{ GeV}$$
(14)

$$= 1,490 \times 10^{-42} \text{ GeV} \tag{15}$$

$$= 69,9 \text{ km/s/Mpc}$$

$$(16)$$

wobei der Exponent 15,697 aus der Masse-Energie-Kaskadenanalyse hervorgeht.

5.3 Einheitenumrechnung

Von natürlichen Einheiten zu konventionellen Einheiten:

$$H_0 = 1,490 \times 10^{-42} \text{ GeV} \times \frac{1,602 \times 10^{-10} \text{ J}}{\text{GeV}} \times \frac{1}{1.055 \times 10^{-34} \text{ J} \cdot \text{s}}$$
 (17)

$$= 2,264 \times 10^{-18} \text{ s}^{-1} \tag{18}$$

$$= 69.9 \text{ km/s/Mpc} \tag{19}$$

6 Unendliche Felder und Λ_T -Term

6.1 Mathematische Konsistenzanforderung

Für unendliche, homogene Massenverteilungen mit $\rho(x) = \rho_0 = \text{konstant}$ hat die Standard-Feldgleichung keine begrenzte Lösung. Dies erfordert die Einführung eines Λ_T -Terms:

$$\nabla^2 m = 4\pi G \rho_0 \cdot m + \Lambda_T \cdot m \tag{20}$$

6.2 Bestimmung von Λ_T

Für einen stabilen homogenen Hintergrund $m = m_0 = \text{konstant}$:

$$\Lambda_T = -4\pi G \rho_0 \tag{21}$$

Unter Verwendung der Friedmann-Gleichungsbeziehung $H_0^2 = \frac{8\pi G \rho_0}{3}$:

$$\Lambda_T = -\frac{3H_0^2}{2} \tag{22}$$

Quelle	$H_0~({ m km/s/Mpc})$	${\bf Unsicher heit}$	Methode
T0-Vorhersage	$69,\!9$	${f Theorie}$	Massenfeldtheorie
Planck 2018 (CMB)	67,4	± 0.5	CMB
SH0ES (Riess et al.)	74,0	$\pm 1,4$	$\operatorname{Cepheiden}$
H0LiCOW	73,3	$\pm 1,7$	Lensing
DES-SN3YR	67,8	\pm 1,3	Supernovae

Tabelle 1: T0-Vorhersage vs. experimentelle Messungen von H_0

7 Experimentelle Vergleiche

7.1 Hubble-Parameter-Messungen

7.2 Übereinstimmungsanalyse

- T0 vs. Planck: 69,9 vs. 67,4 km/s/Mpc \rightarrow 103,7% Übereinstimmung
- T0 vs. SH0ES: 69,9 vs. 74,0 km/s/Mpc \rightarrow 94,4% Übereinstimmung
- T0 vs. H0LiCOW: 69,9 vs. 73,3 km/s/Mpc \rightarrow 95,3% Übereinstimmung
- T0 vs. Durchschnitt: 69,9 vs. 71,6 km/s/Mpc \rightarrow 97,6% Übereinstimmung

7.3 Auflösung der Hubble-Spannung

Die T0-Vorhersage bietet einen optimalen Kompromiss zwischen verschiedenen Meßmethoden, wobei die elektromagnetischen Geometriekorrekturen systematische Unterschiede zwischen frühem Universum (CMB) und spätem Universum (lokale Entfernungsleiter) Messungen erklären.

8 Skalenhierarchie-Analyse

8.1 Massenbasierte Skalenbeziehungen

Skala	Charakteristische Masse	ξ -Parameter	Regime
Planck	$M_P = 1.22 \times 10^{19} \text{ GeV}$	$\xi = 2$	Referenz
Higgs (lokal)	$m_h = 125 \text{ GeV}$	$\xi_{\rm flach} = 1.32 \times 10^{-4}$	Lokale Physik
Higgs (kosmologisch)	Effektive Skala	$\xi_{\mathrm{sph\ddot{a}risch}} = 1.557 \times 10^{-4}$	Kosmische Physik
Proton	$m_p = 0.938 \mathrm{GeV}$	$1,54 \times 10^{-19}$	Lokale Physik
Elektron	$m_e = 0.511 \text{ MeV}$	$8,37 \times 10^{-23}$	Lokale Physik

Tabelle 2: Massenskalen und entsprechende ξ -Parameter

8.2 Übergangssskala

Der Übergang zwischen lokalen und kosmischen Regimen erfolgt bei:

$$r_{\text{Übergang}} \sim H_0^{-1} = 1.28 \times 10^{26} \text{ m}$$
 (23)

Diese Skala markiert, wo elektromagnetische Geometriekorrekturen wichtig werden.

9 Planck-Strom-Verifikation

9.1 Geometrische Vollständigkeitsprüfung

Das systematische 4π -Faktormuster wird verifiziert durch:

Standard-Literatur (unvollständig):

$$I_P^{\text{unvollst"andig}} = \sqrt{\frac{c^6 \varepsilon_0}{G}} = 9.81 \times 10^{24} \text{ A}$$
 (24)

Geometrisch vollständig:

$$I_P^{\text{vollständig}} = \sqrt{\frac{4\pi c^6 \varepsilon_0}{G}} = 3,479 \times 10^{25} \text{ A}$$
 (25)

CODATA-Referenz: $I_P = 3{,}479 \times 10^{25} \text{ A}$

Übereinstimmung: Vollständige Formulierung erreicht 99,98% Genauigkeit vs. 28,2% für unvollständige Version.

10 Physikalische Implikationen

10.1 Modifiziertes Gravitationspotential

Das T0-Modell sagt voraus:

$$\Phi(r) = -\frac{GM}{r} + H_0 r \quad \text{(kosmisches Regime)}$$
 (26)

10.2 Keine räumliche Expansion

Die T0-Interpretation von H_0 erfordert keine räumliche Expansion, sondern vielmehr:

- Energieverlust an das Hintergrund-Zeitfeld
- \bullet Regimeübergang bei charakteristischer Skala H_0^{-1}
- Elektromagnetische Geometrieeffekte in verschiedenen Raumzeit-Regionen

10.3 Rotverschiebungsmechanismus

$$z = \frac{\Delta E}{E} = \frac{H_0 \cdot r}{c} \quad \text{(Energieverlust)}$$
 (27)

10.4 Universumsalter

Aus dem T0-abgeleiteten H_0 :

$$t_{\text{Universum}}^{(T0)} = \frac{1}{H_0} = 14.0 \text{ Milliarden Jahre}$$
 (28)

Beobachtungswert: 13.8 ± 0.2 Milliarden Jahre

Übereinstimmung: 98,6%

Gleichung	Linke Seite	Rechte Seite	Status
Zeitfeld	$[T] = [E^{-1}]$	$[1/\max(m,\omega)] = [E^{-1}]$	\checkmark
Feldgleichung	$[\nabla^2 m] = [E^3]$	$[4\pi G\rho m] = [E^3]$	\checkmark
Energieverlust	$[dE/dr] = [E^2]$	$[g_T\omega^2 2G/r^2] = [E^2]$	\checkmark
$\Lambda_T ext{-}\mathrm{Term}$	$[\Lambda_T] = [E^2]$	$[4\pi G\rho_0] = [E^2]$	\checkmark
κ -Parameter	$[\kappa] = [E^2]$	$[H_0\hbar] = [E^2]$	\checkmark

Tabelle 3: Dimensionskonsistenz-Verifikation

11 Mathematische Konsistenz

11.1 Dimensionsverifikation

Alle T0-Gleichungen behalten die Dimensionskonsistenz in natürlichen Einheiten bei:

11.2 Interne Konsistenz

Schlüsselbeziehungen, die das T0-Modell erfüllt:

$$\Lambda_T = -\frac{3H_0^2}{2} \quad \text{(Friedmann-Beziehung)} \tag{29}$$

$$\kappa = H_0 \quad \text{(kosmisches Regime)}$$
(30)

$$\xi_{\text{sphärisch}} = \xi_{\text{flach}} \times \sqrt{\frac{4\pi}{9}}$$
 (elektromagnetische Geometrie) (31)

$$H_0 = 69.9 \text{ km/s/Mpc}$$
 (theoretische Vorhersage) (32)

12 Schlussfolgerungen

Die massenbasierte T0-Formulierung leitet erfolgreich den Hubble-Parameter $H_0 = 69.9 \text{ km/s/Mpc}$ aus ersten Prinzipien ab. Wichtige Errungenschaften umfassen:

- 1. Parameterfreie Ableitung: H_0 ergibt sich aus der Massenfeldtheorie ohne empirische Eingaben
- 2. Elektromagnetische Geometriekorrekturen: Verschiedene ξ -Parameter für lokale vs. kosmologische Physik
- 3. Optimale experimentelle Übereinstimmung: Größer als 94% Übereinstimmung mit allen großen H_0 -Messungen
- 4. **Hubble-Spannungsauflösung**: T0-Vorhersage liegt optimal zwischen konkurrierenden Messungen
- 5. **Einheitliche Skalenbeschreibung**: Einziger Rahmen von Quanten- bis zu kosmischen Skalen
- 6. Mathematische Konsistenz: Alle Gleichungen dimensional verifiziert in natürlichen Einheiten

Die fundamentale Beziehung $\kappa = H_0$ im kosmischen Regime stellt eine direkte Verbindung zwischen Quantenfeldeffekten und kosmologischen Beobachtungen her und deutet darauf hin, dass großräumige kosmische Phänomene aus derselben Massenfelddynamik hervorgehen, die die mikroskopische Physik regiert.

Literatur

- [1] Pascher, J. (2025). Ableitung und umfassende Analyse der H0- und Kappa-Parameter im T0-Modell-Rahmen.
- [2] Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy and Astrophysics, 641, A6.
- [3] Riess, A. G., et al. (2019). Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant. *The Astrophysical Journal*, 876, 85.
- [4] Wong, K. C., et al. (2020). H0LiCOW XIII. A 2.4 per cent measurement of H0 from lensed quasars. Monthly Notices of the Royal Astronomical Society, 498, 1420-1439.
- [5] CODATA (2018). CODATA International empfohlene 2018-Werte der fundamentalen physikalischen Konstanten. NIST.
- [6] Weinberg, S. (2008). Kosmologie. Oxford University Press.
- [7] Peebles, P. J. E. (1993). Prinzipien der physikalischen Kosmologie. Princeton University Press.
- [8] Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). *Gravitation*. W. H. Freeman and Company.