IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

(Case No. 98,162)

•		(00.00 110.00,102)			
}	In re Application	on of:)))		
	Stefar	n DeGendt, <i>et al.</i>			
	Serial No.: Filed:	To be Assigned To be Assigned) Group Art Unit: To be Assigned) Examiner: To be Assigned)		
	For: Asst. Commis	Method For Removing Organic Contaminants From a Semiconductor Surface sioner for Patents)))		
	BOX PATENT Washington, D	APPLICATION D.C. 20231			
	Sir:	TRANSMITTAL LET	ER		
	1. We ar	e transmitting herewith the attached papers for the	above identified new patent application:		
		x Patent Specification (36 pages, including	g claims, abstract)		
		x Drawings (8 sheets)			
		x Certificate of Express Mailing			
		x Return Postcard			
		Other			
	2. <u>x</u> A	check in the amount of \$ <u>1428.00</u> is enclosed for	the Filing Fee.		
		ease charge the total filing fee of \$ to our duplicate copy of this sheet is enclosed.	Deposit Account No. 13-2490.		
		charge any additional fees or credit overpayme e copy of this sheet is enclosed.	nt to Deposit Account No. 13-2490 . A		
	hereby o are bein Post Off Patent A	ICATE OF MAILING BY "EXPRESS MAIL" UNDECERTIFIES that this Transmittal Letter and the paper, and deposited with the United States Postal Service volume to Addressee" in an envelope addressed to: As Application, Washington, D.C. 20231 on this 13th EM415826915US.	s described in paragraph 1 hereinabove, vith sufficient postage as "Express Mail est. Commissioner for Patents, Box		
		By Amir N.	Penn Penn		

Reg. No. 40,767

CERTIFICATE OF MAILING

(PATENT)

Express Mail No. EM415826915US Deposited February 13, 1998

I hereby certify that the attached correspondence, identified below, is being deposited with the United States Postal Service as "Express Mail Post Office to Addressee" under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, DC 20231.

By: _______

Patent Application of: Stefan DeGendt, et. al

Title: METHOD FOR REMOVING ORGANIC CONTAMINANTS FROM A SEMICONDUCTOR SURFACE

- x Patent Application (44 pages, including claims and abstract and 8 sheets of drawings)
- _ Signed Declaration and Power of Attorney
- x Return Receipt Postcard
- x Transmittal Letter
- \underline{x} Check in the Amount of \$1428.00
- Information Disclosure Statement
- _ Small Entity Form
- Preliminary Amendment

Case No: 98,162

5

APPLICATION FOR UNITED STATES LETTERS PATENT

SPECIFICATION

(Case No. 98,162)

10	Title:	METHOD FOR REMOVING ORGANIC CONTAMINANTS FROM A SEMICONDUCTOR SURFACE
15	Inventors:	Stefan DeGendt, a citizen of the Belgium and a resident of Wijnegem, Belgium, residing at Ridder Gustaaf van Havre Laan 10, B-2110 Wijnegem, Belgium;
20		Peter Snee, a citizen of the Belgium and a resident of Veltem-Beisem, Belgium, residing at Nekwinkelstraat 21/2. B-3001 Veltem-

Marc Heyns, a citizen of the Belgium and a resident of Linden, Belgium, residing at Merelnest 14, B-3210 Linden, Belgium;

Kapeldreff 75

Beisem, Belgium;

3001 Leuven, Belgium

25

30

35

Reference to Related Applications

This application claims priority benefits under 35 U.S.C. §119(e) to United States provisional application Serial No. 60/040,309, filed on February 14, 1997, to United States provisional application Serial No. 60/042,389, filed on March 25, 1997, and to United States provisional application Serial No. 60/066,261, filed on November 20, 1997.

10 Background of the invention

A. Field of the Invention

The present invention is related to a method for removing organic contaminants from a semiconductor surface.

The present invention is also related to the use of this method for specific applications such as VIA etching.

B. Description of Related Art

The semiconductor surface preparation prior to various processing steps such as oxidation, deposition or growth processes, has become one of the most critical in semiconductor technology. With the rapid approach of sub halfmicron design rules, very small particles and low levels of contamination or material impurities ($\sim 10^{10}$ atoms/cm² and lower) can have a drastic effect on process yields. The contaminants that are to be removed from a semiconductor surface include metallic impurities, particles and organic material. A commonly used technique to reduce foreign particulate contamination level on semiconductor surfaces, immersion of wafers in chemical solutions.

Organic material is one of the contaminants that has to be removed from the semiconductor wafer surface. In a pre-clean stage, absorbed organic molecules prevent cleaning chemicals from contacting with the wafer surface, thus leading to non-uniform etching and cleaning on the wafer surface. In order to realize contamination

10

15

20

25

30

free wafer surfaces, organic impurities have to be removed before other wafer cleaning processes. Traditional wet cleaning processes involve the use of sulfuric peroxide mixtures (SPM) to remove organic molecules. However, SPM uses expensive chemicals and requires high processing temperatures, and causes problems in terms of chemical waste treatment.

Other sources of organic contamination also arise during a standard IC process flow. Such sources can be photoresist layers or fluorocarbon polymer residues that are deposited on a substrate.

The fluorocarbon residues originate from the of semiconductor (silicon) substrates oxide etch chemistries. In conventional oxide etching with fluorocarbon gases, an amount of polymer is intentionally generated in order to achieve a vertical sidewall profile and better etch selectivity to the photoresist mask and underlying film. Etch selectivity in a SiO2-Si system can be achieved under certain process conditions through the formation of fluorocarbon based polymers. polymerisation reaction occurs preferably on Si, forming a protective coating and etch selectivity between Si and SiO2. After selective etching, both resist polymer-like residue must be removed from the surface. If the polymer not completely removed prior to is subsequent metal deposition, the polymer will mix with sputtered metal atoms to form a high resistance material resulting in reliability concerns. Methods of removal depend on the plasma etch chemistry, plasma source and the composition of the film stack. However, for dry processes, the application of O2 or H2 containing gases have been applied to remove the fluorocarbon polymers. For cleaning techniques an amine based solvent (U.S. Patent No. 5,279,771 and U.S. Patent No. 5,308,745, which are hereby incorporated by reference) is frequently applied. Organic photoresist removal generally involves wet or dry oxidative chemistries (i.e. O2 plasma, SPM) or dissolution processes based on solvent strippers. These

15

20

25

30

35

processes are both expensive and environmentally harmful in terms of waste treatment.

In an attempt to find alternative efficient cleans for the removal of organic contamination (including photoresist and etch residues) from Si surfaces, the use of ozonated chemistries has been investigated. Ozone has been used extensively in the field of waste water treatment and drinking water sterilisation, because of its strong oxidising power. An additional benefit of ozone is its harmless residue after decomposition and/or reaction (H_2O, CO_2, O_2) . It is generally presumed that oxidative action of ozone towards organic contamination involves two different oxidation pathways, either direct oxidation or advanced oxidation. Direct oxidation orozonolysis involves molecular ozone as the prime oxidant. predominantly occurs at carbon-carbon double bonds. This type of oxidation is favored in the low pH region of the waste water. Advanced oxidation involves secondary oxidants as the prime oxidant (e.g. OH radicals). type of oxidation is more reactive, but less sensitive and predominant at conditions that favor radical formation, such as high pH, elevated temperature, addition enhancers (e.g. H_2O_2), UV radiation. In real situations, one often deals with a mixture of contaminants having a different reactivity towards ozone. However, both oxidation pathways are concurrent and conditions favor advanced oxidation pathways will occur at the expense of the efficiency of eliminating contamination with higher reactivity towards molecular ozone. In order to optimize the organic removal efficiency of ozonated chemistries, it is critical to identify the parameters that influence both oxidation pathways.

In recent years, ozone was introduced in the microelectronics industry because of its strong oxidizing capabilities. When ozone gas is dissolved into water, its self-decomposition time gets shorter compared to the gaseous phase. During self-decomposition, ozone generates OH radicals as a reaction by-product, which is according

to G.Alder and R.Hill in J.Am.Chem.Soc. 1950, 72 (1984), hereby incorporated by reference, believed to be the reason for decomposition of organic material.

U.S. Patent No. 5,464,480, which is hereby 5 incorporated by reference, describes a process removing organic material from semi-conductor wafers. wafers are contacted with a solution of ozone and water at a temperature between 1° and 15°C. Wafers are placed into a tank containing deionized water, while diffusing ozone 10 into the (sub-ambient) deionized water for sufficient to oxidize the organic material from the wafer, while maintaining the deionized water at a temperature of about 1° to about 15°C, and thereafter rinsing the wafers with deionized water. The purpose of lowering temperature of the solution to a range between 1° and 15° C is to enable sufficiently high ozone concentrations into water to oxidize all of the organic material onto the wafer into insoluble gases.

European Patent Application EP-A-0508596 20 describes spray-tool process, whereby during cleaning process, various liquid chemicals, ultra-pure or a mixed phase fluid comprising an containing gas and ultra pure water are sprayed onto substrates or semiconductor wafers in a treating chamber 25 filled with ozone gas. Rotation is necessary to constantly renew thin films of treating solution and promoting removal of undesired materials by means of centrifugal force.

U.S. Patent No. 5,181,985, which is hereby 30 incorporated by reference, describes a process for the wet-chemical surface treatment of semiconductor wafers in which aqueous phases containing one or more chemically active substances in solution act on the wafer surface, consisting of spraying a water mist over the wafer surface 35 and then introducing chemically active substance in the gaseous state that so these qaseous substances are combined with the water in mist order interaction of the gas phase and the liquid phase taking

15

20

25

30

place on the surface of the semiconductor wafers. The chemical active substance are selected from the group consisting of gases of ammonia, hydrogen chloride, hydrogen fluoride, ozone, ozonized oxygen, chlorine and bromine. The water is introduced into the system at a temperature of 10°C to 90°C.

U.S. Patent No. 5,503,708, which is hereby incorporated by reference, describes a method and an apparatus for removing an organic film wherein a mixed gas including an alcohol and one of ozone gas and an ozone-containing gas is supplied into the processing chamber at least for a period before that the semiconductor wafer is placed in said processing chamber, so that the mixed gas will act on the organic film formed on the surface of the semiconductor wafer.

Document JP-A-61004232 is describing cleaning method of semiconductor substrates. The method is presented as an alternative for traditional acid-hydrogen peroxide cleans, which in the prior art are used for heavy metal reduction on silicon wafers. Substrates are dipped in a solution of an undiluted organic acid, e.g. formic acid or acetic acid filled into a cleaning tank wherein ozone or oxygen is supplied from the bottom of the tank so as to bubble into the solution, said solution being heated to a temperature comprised between 100°C to 150°C. Organic waste matter is oxidized by means of the ozone and can be dissolved and removed. In other words, this Japanese cleaning publication describes of heavy semiconductor wafers through formation of metal formate or metal acetate compounds and of dissolving the organic waste matter from semiconductor wafers by means of ozone.

Aims of the present invention

The present invention aims to suggest an improved method for the removal of organic contaminants from a semiconductor substrate.

More particularly, the present invention aims to suggest a method of removal of organic contamination

such as photoresist, photoresidue, dry etched residue which can occur in any process step of the fabrication of semiconductor substrate.

15

Summary of the present invention

As a first aspect, the present invention is related to a method of removing organic contaminants from a substrate comprising the steps of holding said substrate in a tank, filling said tank with a gas mixture comprising water vapor, ozone and an additive acting as a scavenger.

As a second aspect, the present invention is related to a method for removing organic contaminants from a substrate, comprising the steps of:

holding said substrate in a tank;

filling said tank with a liquid comprising water, ozone and an additive acting as a scavenger; and

maintaining said liquid at a temperature less than the boiling point of said liquid.

As a third aspect, the present invention is related to a method for removing organic contaminants from a substrate comprising the steps of:

holding said substrate in tank;

filling said tank with a fluid comprising water, ozone and an additive acting as a scavenger, and wherein the proportion of said additive in said fluid is less than 1% molar weight of said fluid.

By scavenger, it is meant a substance added 25 to a mixture or any other systems such as liquid, gas, solution in order to counteract the unwanted effects of other constituents of the mixture or system.

Said additive should preferably act as radical scavengers. A radical is an uncharged species 30 (i.e. an atom or a di-atomic or poly-atomic molecule) which possesses at least one unpaired electron. Examples of scavengers can be carboxylic or phosphonic acid or salts acetic acid such as (CH,COOH), and (CH3COO⁻) as well as carbonate $(H_xCO_3^{-(2-x)})$ phosphate (H_xPO4^-) (3-x)). 35

The invention can be used in the fabrication of silicon wafers for Integrated Circuits. The invention can also be used in related fields, like the fabrication of flat panel displays, solar cells, or in micro-machining applications or in other fields wherein organic contaminants have to be removed from substrates.

Brief description of the drawings

10

20

- Figure 1 is a schematic representation of a deep VIA etch structure.
- Figure 2 is a schematic representation of an Al overetched VIA structure.
- 15 **Figure 3** is a representation of the experimental set-up used in the gas phase processing.
 - Figure 4 is representing an SEM micrograph of a VIA structure prior to any cleaning treatment.
 - Figure 5 represents an SEM micrograph of a VIA structure after 45 minutes O2 dry strip.
 - Figure 6 represents an SEM micrograph of a deep VIA as represented in figure 1 after 10 minutes exposure to a preferred embodiment of the method of the present invention.
- 25 Figure 7 represents an SEM micrograph of Al overetched via according to figure 2 after 10 minutes exposure to a preferred embodiment of the method of the present invention.
- Figure 8 is representing the experimental set-up of the liquid phase processing.
 - Figure 9 represents the resist removal process efficiency number for positive and negative resist removal as a function of the acetic acid concentration.
- Figures 10 & 11 represent the main parameter effects on resist removal rate and resist removal process efficiency number for positive resist removal.

- Figure 12 represents the resist removal efficiency as a function of the temperature and the ozone concentration in a static system.
- Figure 13 represents the resist removal efficiency as a function of the temperature and ozone concentration in bubble or moist gasphase processing.
- 10 **Figure 15** represents the effect of OH radical scavenging on ozone concentration in an overflow tank.

<u>Detailed description of several embodiments of the present invention</u>

The purpose of the present invention is related to a method for removing organic contamination from a substrate. Said substrate can be a semiconductor surface.

Said method can be applied for the removal of photoresist and organic post-etch residues from silicon surfaces. Said organic contamination can be a confined layer covering at least part of said substrate. Said confined layer can have a thickness in a range of submonolayer coverage to 1 μ m. Said method is applicable for either gasphase or liquid processes.

In the following specification, a first preferred embodiment of the invention for gas phase processing and a second preferred embodiment for liquid phase processing are described.

<u>Description</u> of a first preferred embodiment for gasphase processing

In said gasphase process, said substrates are placed in a tank such that said substrates are in contact with a gas mixture containing water vapor, ozone and an additive acting as a scavenger.

15

20

25

30

5

15

20

25

Said scavenger is a substance added to said mixture to counteract the unwanted effects of other constituents. Said scavenger typically acts as an OH radical scavenger. Said additive can be a carboxylic or a phosphonic acid or salts thereof. More preferably, said additive is acetic acid.

The proportion of said additive in said gas mixture is preferably less than 10% molar weight of said gas mixture. The proportion of said additive in said gas mixture is more preferably less than 1% molar weight of said gas mixture. Even more preferably, the proportion of said additive in said gas mixture is less than 0.5% molar weight of said gas mixture. Even more preferably, the proportion of said additive in said gas mixture is less than 0.1% molar weight of said gas mixture.

Said gas mixture can also contain oxygen, any other inert argon or gas. The concentration of said gas mixture is typically below 10% molar weight. The water vapor is typically saturated at the operational temperature of said mixture. operational temperature of said mixture is below 150°C and preferably higher than the temperature of said substrate.

Said method also comprises a step of rinsing said substrate with a solution. Said rinsing solution comprises preferably de-ionized water. Said rinsing solution can further comprise HCl and/or HF and/or HNO3 and/or CO2 and/or O3. Said rinsing solution can also be subjected to megasone agitation.

According to a preferred embodiment, method can also comprise the step of filling said tank with 30 a liquid comprising essentially water and said additive, the liquid level in said tank remaining below the substrate and wherein said liquid is heated. Said tank is then filled with a saturated water vapor containing said additive. Said 35 tank is further filled with ozone. According to preferred embodiment, the ozone can be bubbled through said Preferably, said liquid is heated in a range between 16°C and 99°C and even more preferably between 20°C

and 90°C. Even more preferably, the liquid is heated between 60°C and 80°C.

According to the best mode of the embodiment, the set-up denoted as moist ozone gasphase process uses a quartz container filled with only a minute amount of liquid, sufficient to fully immerse an O, diffuser. The liquid is DI water, spiked with an additive, such as acetic acid. A lid is put on the quartz container. The liquid is heated to 80°C. Wafers are placed directly above the liquid interface but are not immersed. The ozone diffusor is fabricated from fused silica, and the ozone generator (Sorbius) is operated with an oxygen flow which maximizes the ozone content in the gas flow. In the best mode embodiment, a flow of 3 $1/\min O_2$ is used. At all time the ozone is bubbled directly into the liquid (no bubble reduction) throughout the experiment. Heating of the liquid in a sealed container and continuous O, bubbling through the liquid exposes the wafers to a moist O3 ambient. In the gasphase experiment, operational temperature was 80°C, while the DI water is acidified (1/100 volume ratio) with 20 acetic acid. Wafers are to be processed sufficiently long and a rinse step follows the moist gas phase treatment. In an embodiment, wafers are processed for 10 minutes, and subsequently rinsed in DI water for 10 minutes.

Description of a second preferred embodiment for liquid processing

In said liquid process, said substrates are placed in a tank such that said substrates are in contact with a liquid mixture comprising water, ozone and an additive acting as a scavenger. Said scavenger substance added to said mixture to counteract the unwanted effects of other constituents. Said scavenger typically acts as an OH radical scavenger.

additive can be 35 Said a carboxylic phosphonic acid or salts thereof, preferably said additive is acetic acid. The proportion of said additive in said liquid is less than 1% molar weight of said liquid.

25

30

10

15

Preferably, the proportion of said additive in said liquid less than 0.5 molar weight of said liquid. preferably, the proportion of said additive in said liquid is less than 0.1% molar weight of said liquid.

Said liquid can also be subjected to megasone 5 agitation.

According to a preferred embodiment, method also comprises a step of maintaining said liquid at a temperature less than the boiling point of said liquid. 10 Preferably, the temperature of said liquid is lower than 100°C. More preferably, the temperature of said liquid is comprised between 16°C and 99°C. More preferably, the temperature of said liquid is comprised between 20°C and 90°C. Even more preferably, the temperature of said liquid is comprised between 60°C and 80°C. 15

Preferably, the ozone is bubbled through said liquid which allows a contact of the bubbles of ozone with the substrates.

According to a preferred embodiment, 20 method also comprises a step of rinsing said substrate with a rinsing solution. Preferably, said rinsing solution comprises de-ionized water. More preferably, said rinsing solution further comprises HCl and/or HF and/or HNO3 and/or CO2 and/or O3. Said rinsing solution can also be subjected 25 to megasone agitation.

According to the best mode of the embodiment of the invention, the following set-up is used: set-up (immersion based), denoted as bubble experiment, consists of a quartz container holding 7 litres of a liquid and an ozone diffuser located at the bottom of the tank. The liquid can be heated. Operational temperature is 45°C. The ozone diffusor is fabricated from fused silica, and the ozone generator (Sorbius) is operated with an oxygen flow which maximizes the ozone content in the gas flow. In the 35 best mode embodiment, a flow of 3 $1/\min O_2$ is used. At all time the ozone is bubbled directly into the quartz tank (no bubble reduction) throughout the experiment. The substrates are positioned directly above the ozone diffuser,

25

35

immersed in the liquid. As such O_2/O_3 bubbles contact the surface. The substrates are exposed to an ozone treatment with varying acetic acid concentrations in the bubble setup. The substrates are exposed to an ozone clean between 0-11,5 mol/l (0, 0.1ml (0.46mmol/l), 1.0ml (2.3mmol/l) and 5.0ml (11.5mmol/l)) of acetic acid added to the 7 liter of DI water.

The present invention is also related to specific applications of the method as described in the two 10 preferred embodiments of the present invention.

Application 1: VIA CLEANING

The method of the present invention can be applied for wafer cleaning technologies after etching processes especially into submicron processes. Dry etching of silicon and its compounds is based on the reaction with fluorine, with resulting fluorocarbon polymer contamination. The fluorocarbon residues originate from the exposure of semiconductor (silicon) substrates to dry oxide In conventional oxide etching with chemistries. fluorocarbon gases, an amount of polymer is intentionally generated in order to achieve a vertical sidewall profile and better etch selectivity to the photoresist mask and underlying film. Etch selectivity in a SiO2-Si system can be achieved under certain process conditions through the formation of fluorocarbon based polymers.

The polymerisation reaction occurs preferably thus forming a protective coating Si. selectivity between Si and SiO2. After selective etching, both resist and polymer-like residue must be removed from the surface. If the polymer is not completely removed prior to the subsequent metal deposition, the polymer will mix with sputtered metal atoms to form a high resistance material resulting in reliability concerns. Methods of polymer removal depend on the plasma etch chemistry, plasma source and the composition of the film stack. However, for dry processes, O2 or H2 containing gases have been applied to remove the fluorocarbon polymers. For wet cleaning

10

15

20

techniques an amine based solvent U.S. Patent No. 5,279,771 and U.S. Patent No. 5,308,745 is frequently applied. These processes are frequently both expensive and environmentally harmful in terms of waste treatment.

Figures 1 and 2 shows different VIA test structures prepared on p-type wafers. The first structure consists of 500 nm oxide, 30/80 nm Ti/TiN, 700 nm AlSiCu, 20/60 nm Ti/TiN, 250 nm oxide, 400 nm SOG and 500 nm oxide (starting from the silicon substrate). The second structure contains the following layers; 500 nm oxide, Ti/TiN, 700 nm AlSiCu, 20/60 nm Ti/TiN and 500 nm oxide (also starting from the silicon substrate). Subsequently, these structures are coated with I-line resist and exposed through a mask set with contact holes ranging from 0.4 μm till 0.8 μ m in diameter. VIA's were etched in a CF4/CHF3 plasma. For the first set of wafers VIA's are etched through the 500 nm oxide / 400 nm SOG / 250 nm oxide, stopping on TiTiN/Al, for the second set of wafers, VIA's are overetched through the 500 nm oxide layer into the TiTiN/Al layers. Wafers are exposed to the ozone clean directly (i.e. with resist layer and sidewall polymers on the wafer).

The set-up used for this application represented in Figure 3. The set-up denoted as moist ozone 25 gasphase process uses a quartz container filled with only a minute amount of liquid, sufficient to fully immerse an O3 diffuser. The liquid is DI water, spiked with an additive, such as acetic acid. A lid is put on the quartz container. The liquid is heated to 80°C. Wafers are placed directly above the liquid interface but are not immersed. The ozone 30 diffusor is fabricated from fused silica, and the Sorbius generator is operated with a flow of 3 $1/\min O_2$ flow. At all time the ozone is bubbled directly into the quartz tank (no bubble reduction) throughout the experiment. Heating of the liquid in a sealed container and continuous O3 bubbling 35 through the liquid exposes the wafers to a moist ambient. In the gasphase experiment, operational temperature was 80°C, while the DI water is acidified

30

(1/100 volume ratio) with acetic acid. In all cases, wafers are processed for 10 minutes, and subsequently rinsed in DI water for 10 minutes.

Quarter wafers are used, as such, the exact wafer is used for all treatments; facilitating 5 same relative comparison of the cleaning efficiencies of either Cleaning efficiency is evaluated from SEM measurements (on 0.6μm VIA's). For reference, wafers were also dry stripped for 45 minutes during an O2 plasma treatment (i.e. leaving sidewall polymers on the wafer). 10

Figure 4 shows SEM micrograph of VIA structures (Figure 1) prior to exposure to any cleaning treatment, i.e. with resist and side-wall polymers present. Figure 5 is a SEM micrograph of VIA structure in Figure 1 after 45 minutes 02 dry strip. SEM micrographs for both structures in Figure 1 and 2, after 10 minutes exposure to the optimized moist ozone gasphase process with acetic acid addition, are shown in Figure 6 and 7 respectively.

It can be seen immediately that after 45 minutes 02 dry strip treatment, side wall polymers are still clearly visible. However, if we consider the gasphase experiment, we do observe an excellent cleaning efficiency (Figure 6 and 7). Note that identical wafers and process times were used for all ozone experiments, making the effect even more significant. In the gasphase experiment, resist coating as well as sidewall post-etch polymer residues are no longer observed on the surface.

Moist ozone gasphase treatment with acetic acid spiking has been demonstrated to be efficient in removing both resist layers and sidewall polymer residues from VIA-etched wafers. This is due to both physical and chemical enhancement of the ozone efficiency for removal of organic contamination.

35 Application 2: Resist removal

As claimed hereabove, chemical additives such as acetic acid can have impact on the removal efficiency of organic contamination by means of ozonated chemistries. For

15

20

25

this purpose, wafers coated with a resist layer are exposed to various ozonated DI water mixtures. The resist removal efficiency is evaluated. Wafers are coated with positive (IX500el from JSR electronics) and negative (UVNF from Shipley) resist. The resist covered wafers are given a DUV bake treatment to harden the resist prior to use. Also implanted wafers (5e13at/cm2 P) with positive resist are processed. Resist thickness is monitored ellipsometrically before and after the process.

O, reference set-up (immersion based) The used for another specific application denoted as bubble experiment is represented in Figure 8, consists of a quartz container holding 7 litres of a liquid and an ozone diffuser located at the bottom of the tank. The liquid can be heated. Operational temperature is 45°C. The ozone diffusor is fabricated from fused silica, and the Sorbius generator is operated with a flow of 3 1/min O2 flow. At all time the ozone is bubbled directly into the quartz tank (no bubble reduction) throughout the experiment. are positioned directly above the ozone diffuser, immersed in the liquid. As such O_2/O_3 bubbles contact the surface, the wafers are exposed to an ozone treatment with varying acetic acid concentrations in the bubble set-up shown in Figure 7. The unimplanted resist wafers are exposed to an ozone clean with 0, 0.1ml (0.46mmol/l), 1.0ml (2.3mmol/l) and 5.0ml (11.5mmol/l) of acetic acid added to the 7 liter of DI water. The implanted wafers are exposed to cleans with either 0 or 11.5 mmol/l of acetic acid added.

For implanted resist, removal efficiency is increased by about 50% (60nm/min versus 90nm/min) upon addition of the indicated quantity of acetic acid. Results for unimplanted resist are presented in Figure 9. A process efficiency number is defined, i.e. the resist removal efficiency normalized versus ozone concentration, and expressed as a removal rate per unit of process time. The as such defined process efficiency number increases from 0.8 till 1.2 nm/(min*ppm) for negative resist and from 4.5

till 8.5 nm/(min*ppm) for positive resist. Despite the order of magnitude difference for positive and negative resist removal, general trends are identical. It can be seen that a positive effect on the process efficiency number is generated from acetic acid addition.

Application 3: Resist removal

Based on the above, experimentally designed trials are done. Effect under study is the resist removal 10 efficiency by means of ozonated chemistries, with the use chemical additives. Both positive and negative postbaked resist are studied. The O, reference set-up (immersion based), denoted as bubble experiment presented in Figure 8 is used. In order to have a better assessment of the effect of the individual variables under evaluation, wafers were not exposed directly to the ozone bubbles. This lower ozone availability (no bubble or gas is reflected in the lower removal contact) process efficiency number compared to application 2. Variables 20 under consideration are acetic hydrogenperoxide and ozone (by varying the oxygen flow) concentration, as well as temperature and pH of solution. The effect of pH (varied between 2 and 5, HNO3 addition) is included to determine whether or not the impact of acetic acid is not induced by the changing pH. 25 Hydrogenperoxide is added as it is a known OH radical generator. Quantities added are 0, 0.1 or 0.2 ml (Ashland, Acetic acid (Baker, reagent grade, addition is either 0, 0.5 or 1 ml in 7 liter of DI water. 30 Temperature was varied between 21 and 40°C, concentration was controlled from the O2 flow through the generator. Low flow is 3 1/min, high flow is 5 1/min. Both for positive and negative resist removal, results are expressed as resist removal rate per unit of time. 35 Experimental results are presented in Table I. RS/Discover is used to analyse the experimental results. This is done using a stepwise multiple regression according to a least

squares method and a quadratic model. This model accounts

for about 90% of the variation observed in the experimental results.

Only results for positive resist presented in Figures 10 and 11, the statistics for negative 5 resist removal are identical. The main effects on all of the responses is shown in Figure 10. Notice that the largest positive effect on resist removal is due to the change in acetic acid concentration (going from 0 till 715µl HAc addition), with pH being of far less importance. Also, the resist removal rate is reduced by the addition of 10 hydrogenperoxide (going from 0 till 200µl). From this graph it could be concluded that the temperature is of little importance. However, the ozone concentration is strongly dependent on the temperature (solubility and stability relate inversely with temperature), which biases 15 results. Therefore, a process efficiency number is defined; i.e. the resist removal efficiency normalized versus ozone concentration and expressed as a removal rate per unit of time and per unit of ozone (i.e. nm / (min * ppm)). The as such obtained process efficiency number varies between 0.2 20 and 4nm/(min * ppm) for positive resist and 0.03 and 0.4 nm/(min * ppm) for negative resist. The outcome of the impact of the various parameters on the process efficiency number is plotted in Figure 11 for positive resist removal. 25 Despite the order of magnitude difference between positive and negative resist removal, general trends are identical. It can be seen that a positive effect on the process efficiency number is generated from acetic acid addition, ozone concentration and temperature enhancement.

30

35

Application 4: Resist removal

In a further study of the method of the present invention, another experiment is described hereunder, wherein no acetic acid is added to the solution.

The main requirement for the ozonated chemistries is fast and complete removal of organic contaminants (e.g. clean room air components, photoresist or side-wall polymers). Critical parameters influencing the

15

20

removal efficiency are to be identified. It was assessed above that acetic acid spiking influenced results, however also other parameters such as ozone concentration and temperature are likely important. Therefore, the impact of 5 O, concentration and operational temperature for positive resist removal efficiency was evaluated experimentally. Wafers coated with a 5 nm thick photoresist coating were prepared and immersed in a static bath containing DI water (set-up as in Figure 8, but ozone bubbling off during immersion). Ozone concentration was varied between 0 and 12 ppm, and temperature between 20, 45 and 70°C. Purposely, 1 min cleans are done in static conditions (i.e. gas flow off, after O₃ saturation of DI), to assess the parameter impact. Principal results are shown in Fig. 12, where cleaning efficiency is plotted versus O, concentration for the three different temperature ranges. Removal is only 50% due to the small processing time and static conditions (limited ozone availability). It can be seen that cleaning efficiency per unit of ozone, is more performing elevated temperatures, while total removal in the time frame studied is more performing higher at concentration. However, O, solubility decreases with temperature, while process performance increases with temperature.

25 Ozone concentration in solution, and thus oxidizing capabilities and cleaning performance can be physical aspects. One maximized relying on process, described previously in U.S. Patent No. 5,464,480 operates the water at reduced temperature (chilled), in order to 30 increase ozone solubility. Disadvantages are the lowered reactivity and longer process times due to reaction kinetics. Another possibility to improve the concentration is using more efficient ozone generators and/or ozone diffusor systems to transfer ozone into the DI 35 water. From the above observations however, it is believed that any optimized process should aim at maximizing the O, concentration at operating temperatures. This assumption is demonstrated with the set-ups shown in Figs. 2 and 8,

where both traditional immersion with bubble contact (at subambient, ambient and elevated temperatures) and a moist gasphase process (at elevated temperature) are presented. Description of both set-ups is given above. Positive resist 5 wafers (1.2nm) are exposed for 10 min. at various temperatures (bubble), or at 80°C (gasphase). Results are shown in Figure 13. Dissolved O3 concentration for bubble experiment (bar graph) and cleaning efficiency (line graph and cross) is shown. The cleaning behavior for the bubble 10 experiment is understood from a process limited by kinetic in the low temperature range and by ozone factors solubility in the higher temperature range. The latter for the moist is reduced ozone limitation ambient experiment. By exposing the wafer to a moist atmosphere, a thin condensation layer is formed on the wafer. The O, gas ambient maintains a continuous high supply of O, (wt% O, in gas, ppm in solution). Also, the thin condensation layer reduces the diffusion limitation and allows the shortliving wafer reactive O, components to reach the resulting in near 100% removal. Important to note is the fact that the gasphase process, in the absence of moist is unsuccessful.

Alternate embodiments and explication

25

15

20

Ozone chemistry consideration

According to another plausible explanation of obtained by using the present result involving ozone in aqueous solution is explained. decomposition in aqueous solutions is base catalyzed a radical (A) or ionic following either mechanism (B).

(A)
$$O_3 + OH^- -----> *O_2^- + *HO_2$$
 (1)

35

with
$$^{*}HO_{2} <===> H^{+} + ^{*}O_{2}^{-}$$
 (2)

(B)
$$O_3 + OH^{-} -----> HO_2^{-} + O_2$$
 (3)

with
$$H_2O_2 <===> HO_2^- + O_2$$
 (4)

and
$$O_3 + HO_2^- -----> ^*OH + ^*O_2^- + O_2$$
 (5)

Further ozone decomposition occurs along reactions (6) and (7), independent of either type of initiation reaction. It can also be seen that despite the initiation mechanism, either ionic or radical, at least three ozone molecules decompose per unit of hydroxyl ions.

$$O_3 + {}^*O_2^- -----> {}^*O_3^- + O_2$$
 (6)

$*O_3$
 + H_2O -----> *OH + OH + O_2 (7)

15

In addition to the above described ozone decomposition pathways, also the OH radicals (as formed in reaction (5) and (7)), initiate further ozone decomposition according to reaction pathway (8). Also, a chain type reaction is initiated if the reaction products are combined with reaction (2), (6) and (7).

$$^{*}OH + O_{3} -----> ^{*}HO_{2} + O_{2}$$
 (8)

These decomposition mechanisms are a good model to explain the observed ozone depletion in neutral or caustic aqueous environment. However, in acid environment, the observed decomposition rate of ozone is faster than can be expected from the hydroxyl concentration, given reactions (1-4). Therefore, an additional decomposition mechanism is required. This initiation mechanism is presented in equations (9-11), in combination with the earlier described reactions (2), (6) and (7).

$$O_3 <===> O + O_2$$
 (9)

$$O + H_2O -----> 2 OH$$
 (10)

Reactions (1-10) describe the depletion of ozone in aqueous environment. However, in the presence of oxidizable components the situation becomes even more complex, and an overall picture is graphically presented in Figure 14. Transfer of ozone into aqueous solution is limited by the solubility, thus resulting in ozone loss through purging. The primary reaction is the consumption of ozone by solutes M that become oxidized. Among these reactions is also the oxidation of water hydrogenperoxide (with resulting equilibrium $H_2O_2 < ==>HO_2^- +$ 10 H^{\dagger}). This primary reaction is often slow, therefore ozone is likely to decompose via alternative reaction pathways. As such, reaction between initiators I (OH, HO2, ...) and ozone results in the formation of primary radicals which may either become scavenged or react further with 15 ozone to yield more free radicals or take part in the advanced oxidation pathway of solutes M. Referring to reactions (1-10) and Figure 14, it is anticipated that the ozone chemistry can also be controlled chemically, i.e. 20 from selective addition of additives.

The influence of additives on the ozone chemistry as derived from the above, is demonstrated for an overflow bath whereby ozone/water mixtures are prepared in a Gore ozone module (membrane based type mixer) to reduce 25 the presence of O_2/O_3 gas bubbles in the overflow bath. Water flow in the overflow bath (20 1/min), O₂ flow (2 1/min) through the ozone generator and pressure in the ozone module (1 bar) determine the achievable O3 levels in These variables are kept constant at indicated values for the experiments presented here. At all 30 times the ozone level in DI water is allowed to saturate prior to the addition of any chemical. All chemicals used are Ashland GB grade apart acetic acid (99%) which is Baker reagent grade. To eliminate the influence of reaction kinetics, all 35 experiments are performed at temperature. An Orbisphere labs MOCA electrochemical ozone sensor is used for all ozone measurements.

As represented in Figure 15, the behavior of acetic acid on the ozone concentration in DI water in an overflow tank is considered by adding 10 ml acetic acid (99w%) to the DI water after saturation of the ozone level. Almost immediately, the ozone level starts to increase.

Influence of acetic acid on the resist removal efficiency of ozonated chemistries.

Advanced oxidation processes rely presence of OH radicals which are the chain propagating 10 radical in O3 decomposition (K. Sehested, H. Corfitzen, J. Holcman, E.Hart, J.Phys.Chem., 1992, 96, 1005-9, which is hereby incorporated by reference). According to G.Alder and R.Hill in J.Am.Chem.Soc. 1950, 72, (1984), which is hereby incorporated by reference, OH radicals are the main 15 reason for decomposition of organic material. Commonly applied procedures in waste water treatment processes involve UV radiation, e.g. рН oraddition of hydrogenperoxide. As such enhancement of OH radical 20 formation is achieved.

Three different experiments using first a hydrogen peroxide, hydrogen peroxide added to acetic acid, and finally acetic acid alone are performed.

The effect of hydrogen peroxide spiking into 25 the ozonated DI water on the removal efficiency of positive resist from silicon wafers can be seen in Table II. It should be noted that the concentration of hydrogen peroxide spiked is in the order of the actual ozone concentration in the DI water. It can be observed that spiking of a $50\mu l$ 30 (Ashland GB, 30%) of H_2O_2 into an 7.5 l tank (0.08 mmol/l) has a strong effect. The measured resist removal rate decreases by a factor of four. Further addition of H2O2 reduces the resist removal efficiency even further, until removal process becomes practically unexisting nm/min removal rate). This is contrary to the effects seen for waste water treatment, where enhanced OH availability results in improved removal rates for organic contamination. The organics to be removed in wastewater

treatment are dispersed in the solution (as is ozone and OH while radicals), for our purposes, the contamination is confined in a layer covering at least part of the substrate. It is likely that for our purposes, not the total amount of 'ozone and ozone based components' that is available in the solution, but rather the chemical activity that emerges in the vicinity of the confined layer of organic material near the wafer surface of importance.

10 Therefore, in this application, the OH radical catalyzed ozone decomposition mechanism is controlled through scavenging of the OH radicals formed. A scavenger is a substance added to a mixture or other system to counteract the unwanted effects of other constituents. Acetic acid or acetate is a stabilizer of aqueous ozone 15 solutions. In Figure 16, the combined effect of acetic acid and repeated hydrogenperoxide spiking (OH radical enhancer) on ozone concentration is demonstrated. Despite the spiking of H_2O_2 at time t=0 (0.17mmol/1), the ozone concentration does increase slightly further in case the DI water 20 stabilized with only 0.23mmol/l of acetic acid. Even after several H_2O_2 additions (each time 0.17mmol/1), the ozone level did not drop below the initial starting level. This confirms the robustness of the acetic acid in quenching the OH radical initiated chain decomposition of ozone. 25

Table III contains the experimental results for resist removal of a 10-minute process with ozonated DI water when minor amounts of acetic acid are added to the solution. The resist removal is recalculated for the 10 min process time and is expressed as a removal rate (in nm/min). It is worth noting that due to the experimental set-up, the measured ozone concentrations are purely qualitative (separation between ozone sensor and O2/O3 gas flow is not always reproducible). Adding between 0.02 mmol/l and 0.24 mmol/l of acetic acid to ozonated DI water, improves the resist removal efficiency by almost 50% compared to the unspiked reference process. The combined effect of acetic acid and hydrogen peroxide spiking is

15

20

25

30

35

evaluated for resist removal purposes and shown in Table IV. In these runs, the DI water is initially spiked with 0.02 mmol/l of acetic acid, after ozone saturation, a variable concentration of hydrogen peroxide is added, and the effect on resist removal efficiency is evaluated. Adding of hydrogen peroxide in the presence of the acetic acid reduces the resist removal rate, though with far less strong consequences compared to the effect as seen in Table II. Also, it can be seen that the stabilizing effect induced from adding the acetic acid is stronger then observed for acidifying the solution (Table II, with HNO₃).

Higher ozone concentrations are achieved in DI water from the addition of acetic acid. However, the improvement in resist removal efficiency can not solely be explained from the increased ozone concentration upon addition of acetic acid. Figure 9 plotted impact of acetic acid addition on the resist removal process efficiency number, which is normalized for the ozone concentration. The process efficiency was seen to increse upon acetic acid addition. Therefore some other unknown mechanism is coming into play.

The organic material is confined in a layer at the silicon surface, rather than homogeneously dispersed in the solution as is the case for e.g. waste water treatment. Given the small lifetime of dissolved ozone (t1/2 = 20 min at room temperature) and reactive ozone species, transfer of waste water ozone knowledge is not feasable for our applications. For good organic removal, sufficient chemical activity (reactive O3 availability) in the vicinity of the confined layer of organic material near the wafer surface is required. It has been seen that the removal efficiency of organic contamination on silicon wafers strongly influenced by temperature, ozone is concentration and addition of acetic acid. Temperature and ozone concentration requirements are met in the moist ozone gas phase experiment described above. By exposing the wafer to a moist atmosphere, a thin condensation layer is formed on the wafer surface. Due to the ozone gas phase ambient, a

continuous supply of ozone compounds through the thin condensation layer, towards the organic contamination at the silicon surface, is maintained. Also in the bubble experiment, ozone containing bubbles continuously contact the confined layer of organic contamination.

However, the critical parameter as far as ozone concentration is concerned, is not solely the total that is available in the solution. It amount of 'ozone' rather is the chemical activity that emerges vicinity of the confined layer of organic material near the 10 wafer surface. In order for any ozone oxidation process to be successful, one should not necessary maximize the amount ozone, but improve the transfer efficiency availability) of the ozone (molecular and radical) towards the organic contamination to be removed. The latter is likely achieved additionally from acetic acid addition.

Scavenging of OH radicals in oxygenated acetic acid solution leads to the formation of H_2O_2 via reactions described hereunder [K.Sehested Environ.Sci.Technol. 25, 1589, 1991, which is 20 hereby incorporated by reference].

$*$
OH + CH₃COOH -----> * CH₂COOH + H₂O (11)

$*$
CH₂COOH + O₂ ----> * OOCH₂COOH (12)

2
$*$
OOCH₂COOH ----> 0.7 H₂O₂ + products (13)

The other products formed in reaction (13) are formaldehyde, glyoxylic acid, glycolic acid and organic 30 peroxides.

reaction of the acetic free (reaction (11)), with the resist surface, might make the latter more reactive towards ozone. This could involve abstraction of an hydrogen atom, and formation of 35 unsaturated bond. This unsaturated bond would then be available for reaction with molecular ozone. Secondly, scavenging of free OH radicals very close to the resist

surface. The resulting decomposition of acetic acid according to reactions (11-13) results in the formation of e.g. $\rm H_2O_2$. Which in its turn could initiate the formation of controlled and localized 'advanced oxidation power' (OH radicals) very near to the resist surface.

From the foregoing detailed description, it will be appreciated that numerous changes and modifications can be made to the aspects of the invention without departure from the true spirit and scope of the invention.

This true spirit and scope of the invention is defined by the appended claims, to be interpreted in light of the foregoing specification.

Table I: Designed experiment settings and results.

HAC	H ₂ O ₂	nu nu	T_		D	T	
	1	рH	02	Temp.	Pos_er	Neg_er	[03] av
ml	ml	 	flow		nm/min	nm/min	ppm
1	0	5	hi	40	51.2	7.36	18.2
1	0.2	2	10	21	34.8	3.11	54.6
1	0.1	5	hi	40	40.1	5.97	17.2
1	0	5	10	21	36.9	2.60	52.6
0	0.2	2	10	40	19.3	0.02	14.5
1	0	2	hi	21	36.1	2.73	44.8
0	0.2	5	10	21	3.4	0.39	14.7
0.5	0	5	hi	40	36.3	5.91	17.1
0	0.2	5	hi	40	4.6	1.32	5.7
1	0.2	5	10	40	31.9	5.98	17.9
0	0	2	10	21	33.1	1.46	47.6
0	0.2	2	hi	21	26.8	1.96	37.9
0	0	5	hi	21	27.0	2.58	39.8
0	0.1	2	hi	40	20.7	2.62	11.4
0	0	2	hi	40	31.6	3.34	15.6
1	0.2	5	hi	21	31.4	2.85	44.7
1	0.2	2	hi	40	55.9	3.78	15.9
1	0	2	10	40	41.8	3.96	17.7
0.5	0.1	5	hi	21	36.6	3.26	42.4
0.5	0.2	5	10	40	37.0	2.93	15.1
0.5	0.2	2	hi	40	47.3	3.22	14.4
0	0	5	10	40	11.9	1.24	13.6
1	0.1	2	lo	21	34.4	1.89	49.9

Table II: Effect of hydrogenperoxide on resist removal efficiency.

[O ₃] average w-ppm	H ₂ O ₂ added (m1)	HNO3 added (ml)	Resist removal (nm/min)
48.0	0	0	38.4
37.0	0.05	5.5	11.3
30.9	0.05	0	9.3
24.7	0.1	0	7.7
4.5	0.5	0	2.1

Table III: Effect of acetic acid on resist removal efficiency

[O₃] average w-ppm	H ₂ O ₂ added (ml)	HAc added (ml)	Resist removal (nm/min)
48.0	0	0	38.4
49.5	0	0.1	47.1
50.0	0	1.1	51.1
54.3	1	1.1	34.2

10 Table IV: Effect of acetic acid and hydrogen peroxide on resist removal efficiency.

[O ₃] average w-ppm	H ₂ O ₂ added (ml)	HAc added (ml)	Resist removal (nm/min)
49.5	0	0.1	47.1
45.6	0.1	0.1	21.9
38.6	0.2	0.1	18.1
46.0	1.5	0.1	22.3

CLAIMS

We claim:

A method for removing organic contaminants from a substrate comprising the steps:

holding said substrate in tank; and

filling said tank with a gas mixture comprising water vapor, ozone and an additive acting as a scavenger.

- 10 2. A method as recited in claim 1, further comprising the step of adding oxygen or nitrogen or argon to said mixture.
- 3. A method as recited in claim 1, wherein the organic contaminant is a confined layer covering at least part of said substrate.
 - 4. A method as recited in claim 3, wherein said confined layer has a thickness in the range of submonolayer coverage and $1\mu\mathrm{m}$.
- 5. A method according to claim 1, wherein said 20 gas mixture is in contact with said substrate.
 - A method as recited in claim 1, wherein said additive is acting as OH radical scavenger.
 - 7. A method as recited in claim 1, wherein said additive is comprised of one of the following: a carboxylic acid, a phosphonic acid, or salts thereof.
 - A method as recited in claim 7, wherein said additive is acetic acid.
- 9. A method according to claim 1, wherein the proportion of said additive in said gas mixture is less 30 than 10% molar weight of said gas mixture.
 - 10. A method according to claim 9, wherein the proportion of said additive in said gas mixture is less than 1% molar weight of said mixture.
 - 11. A method according to claim 10, wherein the

proportion of said additive in said gas mixture is less than 0.5% molar weight of said gas mixture.

- 12. A method according to claim 11, wherein the proportion of said additive in said gas mixture is less than 0.1% molar weight of said gas mixture.
 - 13. A method according to claim 1, further comprising the step of rinsing said substrate with a solution.
- 14. A method as recited in claim 13, wherein the 10 rinsing solution comprises de-ionised water.
 - 15. A method as recited in claim 14, wherein said solution further comprises one of the following: HCl, HF, HNO_3 , CO_2 or O_3 .
- 16. A method as recited in claim 14, wherein said solution is subjected to megasone agitation.
 - 17. A method as recited in claim 1, further comprising the steps of:

filling said tank with a liquid comprising water and said additive, the liquid level in said tank 20 remaining below said substrate; and

heating said liquid.

- 18. A method as recited in claim 17, wherein the filling of said tank is with ozone.
- 19. A method as recited in claim 18, wherein the 25 ozone is bubbled through the liquid.
 - 20. A method as recited in claim 17, wherein the temperature of said liquid is between 16°C and 99°C.
 - 21. A method as recited in claim 20, wherein the temperature of said liquid is between 20°C and 90°C.
- A method as recited in claim 21, wherein the temperature of said liquid is between 60°C and 80°C.
 - 23. A method as recited in claim 1, wherein the water vapor is a saturated water vapor.
 - 24. A method as recited in claim 1, wherein the

ozone concentration in the mixture is less than 10% molar weight of said mixture.

- 25. A method as recited in claim 1, wherein the temperature of said mixture is below 150°C but higher than the temperature of said substrate.
 - 26. A method as recited in claim 1, wherein said substrate is a silicon wafer.
 - A method for removing organic contaminants from a substrate, comprising the steps of:
- immersing said substrate in a liquid comprising water, ozone and an additive acting as a scavenger; and

maintaining said liquid at a temperature less than the boiling point of said liquid.

- 15 **28.** A method as recited in claim 27, wherein said temperature is lower than 100°C.
 - 29. A method as recited in claim 27, wherein a liquid is sprayed over said substrate.
- 30. A method as recited in claim 27, wherein said 20 temperature is between 16°C and 99°C.
 - 31. A method according as recited in claim 30, wherein the temperature of said liquid is between 20°C and 90°C .
- 32. A method according as recited in claim 31, wherein the temperature of said liquid is between 60°C and 80°C.
 - 33. A method as recited in claim 27, wherein said liquid is subjected to megasone agitation.
- 34. A method as recited in claim 27, wherein the 30 ozone is bubbled through the liquid.
 - 35. A method as recited in claim 27, wherein the organic contamination is a confined layer covering at least part of said substrate.

- 36. A method as recited in claim 35, wherein said confined layer has a thickness in a range of submonolayer coverage and 1 μm .
- 37. A method as recited in claim 27, wherein said additive is acting as OH radical scavenger.
 - A method as recited in claim 27, said additive is comprised of one of the following: a carboxylic acid, a phosphonic acid or salts thereof.
- 39. A method as recited in claim 38, wherein said 10 additive is acetic acid.
 - 40. A method according to claim 27, wherein the proportion of said additive in said liquid is less than 1% molar weight of said liquid.
- 41. A method according to claim 40, wherein the proportion of said additive in said liquid is less than 0.5% molar weight of said liquid.
 - A method according to claim 41, wherein the proportion of said additive in said liquid is less than 0.1% molar weight of said liquid.
- 20 **43.** A method as recited in claim 27, wherein the ozone bubbles are contacting said organic contaminants.
 - 44. A method as recited in claim 27, further comprising the step of rinsing said substrate with a solution.
- 25 **45.** A method as recited in claim 44, wherein said solution comprises de-ionised water.
 - 46. A method as recited in claim 45, wherein said solution further comprises one of the following: HCl, HF, HNO_3 , CO_2 or O_3 .
- A method as recited in claim 44, wherein said solution is subjected to megasone agitation.
 - 48. A method as recited in claim 27, wherein said substrate is a silicon wafer.

A method for removing organic contaminants from a substrate comprising the steps of:

holding said substrate in tank; and

filling said tank with a fluid comprising 5 water, ozone and an additive acting as a scavenger, and wherein the proportion of said additive in said fluid is less than 1% molar weight of said fluid.

Abstract

10

15

A method for removing organic contaminants from a semiconductor surface whereby the semiconductor is held in a tank and the tank is filled with a fluid such as a liquid or a gas. Organic contaminants, such as photoresist, photoresidue, and dry etched residue, occur in process steps of semiconductor fabrication and at times, require removal. The organic contaminants are removed from the semiconductor surface by holding the semiconductor inside a tank. The method may be practiced using gas phase processing or liquid phase processing. The tank is filled with a gas mixture, a liquid, and/or a fluid, such as water, water vapor, ozone and/or an additive acting as a scavenger (a substance which counteracts the unwanted effects of other constituents of the system).

deep VIA etch

Figure 1: Schematic representation of deep via etch structure (not to scale)

Al-Overetched

Figure 2: Schematic representation of Al overetched via structure (not to scale)

Gasphase set-up

Figure 3: Moist gas-phase experimental set-up

Figure 4: SEM micrograph of via structure prior to any cleaning treatment.

Figure 5: SEM micrograph after 45' O2 dry strip

Bubble set-up

Figure 8: Ozone bubble immersion experimental set-up

Figure 9: Resist removal process efficiency number (nm removal / process time * ozone concentration) for positive and negative resist removal as a function of acetic acid concentration.

Figure 10: Main parameter effects on resist removal rate (nm removal / process time) for positive resist removal (with 95% confidence levels).

nulreg occursibentures, model occurs_132_AUTO_FERO Main Effects on Transformed Response FOS_RE_FER_01 (with 5% Confidence Intervals)

Figure 11: Main parameter effects on resist removal process efficiency number (nm removal / process time * ozone concentration) for positive resist removal (with 95% confidence levels).

Figure 12: Resist removal efficiency as a function of temperature and ozone concentration for a static system.

Figure 13 Resist removal efficiency as a function of temperature and ozone concentration for bubble and moist gasphase set-up.

figure 14: Scheme of reactions of aqueous ozone.

Figure 15: effect of OH radical scavenging on ozone concentration in a overflow tank.

Figure 16: effect of repeated addition of H_2O_2 (0.17mmol/l at t = 0, 13, 20, 24 min) to a DI water solution spiked with 0.23mmol/l of acetic acid.

United States Patent & Trademark Office

Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

1	Application papers are not suitable for scanning and are not in compliance with 37 CFR 1.52
	because
	All sheets must be the same size and either A4 (21 cm x 29.7 cm) or 8-1/2"x 11"
	Pages do not meet these requirements.
	Papers are not flexible, strong, smooth, non-shiny, durable, and white.
	Papers are not typewritten or mechanically printed in permanent ink on one side.
	Papers contain improper margins. Each sheet must have a left margin of at least
	2.5 cm (1") and top, bottom and right margins of at least 2.0 cm (3/4").
	☐ Papers contain hand lettering.
2	Drawings are not in compliance and were not scanned because: The drawings or copy of drawings are not suitable for electronic reproduction. All drawings sheets are not the same size. Pages must be either A4 (21 cm x 29.7 cm)
	or 8-1/2" x 11" Each sheet must include a top and left margin of at least 2.5 cm (1"), a right margin of at least 1.5 cm (9/16") and a bottom margin of at least 1.0 cm (3/8").
3	Page(s) Fig. 67 are not of sufficient clarity, contrast and quality for electronic reproduction
4	Page(s) are missing.
5	Page(s)are missing. OTHER_NO_DECLARATION