Question 1

Let A be a nonsingular $n \times n$ matrix with real entries and $\overrightarrow{\mathbf{b}} \in \mathbb{R}^n$.

Let $A = P\Sigma Q^{\top}$ be the singular value decomposition (SVD) of A. Then, the system $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ can be written as:

Note that since A is a real nonsingular matrix, the matrices $P = \begin{pmatrix} | & | & | \\ \vec{\mathbf{p}}_1 & \cdots & \vec{\mathbf{p}}_n \\ | & | \end{pmatrix}$ and

 $Q = \begin{pmatrix} | & | & | \\ | & | & | \end{pmatrix}$ are orthogonal. Thus, $Q^{T}Q = QQ^{T} = I \iff Q^{T} = Q^{-1}$ and $P^{T}P = PP^{T} = I \iff P^{T} = P^{-1}$. As such, the solution can be written as:

$$\vec{\mathbf{x}} = Q\Sigma^{-1}P^{\top}\vec{\mathbf{b}}$$

$$= \begin{pmatrix} | & | \\ \vec{\mathbf{q}}_1 & \cdots & \vec{\mathbf{q}}_n \\ | & | \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ & \ddots \\ 0 & \sigma_n \end{pmatrix}^{-1} \begin{pmatrix} -\vec{\mathbf{p}}_1^{\top} - \\ \vdots \\ -\vec{\mathbf{p}}_n^{\top} - \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Here, we're basically solving for $\vec{\mathbf{x}}$ by computing the inverse of A with its SVD. Thus, it is crucial that A is nonsigular. Otherwise, A would be invertible. Additionally, note that the solution requires us to compute the inverse of Σ , which we note $\Sigma^{-1} = \operatorname{diag}(1/\sigma_1, \ldots, 1/\sigma_n)$. This means that all singular values of A, $\sigma_1, \ldots, \sigma_n$ must be all positive. If A is singular, then its determinant is zero, which means zero is a singular value of A, and thus Σ would also be invertible.

Question 2

From Question 1, we solved the system $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ by substituting the SVD of A and computing its inverse. Where $A = P\Sigma Q^{\top}$ is the SVD of A, the resulting expression is $\vec{\mathbf{x}} = Q\Sigma^{-1}P^{\top}\vec{\mathbf{b}}$. Thus, $A^{-1} = Q\Sigma^{-1}P^{\top}$ and as demonstrated in the previous question, the singular value of A^{-1} is simply the reciprocal of the singular values of A.

Question 3

Let A be a real-valued $m \times n$ matrix and let $||A|| = \sqrt{\sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}^2}$.

Part A

Let B be a $p \times r$ matrix and C be a $r \times p$ matrix. Then, BC is a $p \times p$ matrix and CB is an $r \times r$ matrix.

The trace of an $n \times n$ square matrix M is the sum of the entries on the main diagonal, that is $\operatorname{trace}(M) = \sum_{i=1}^{n} m_{ii}$. As such, $\operatorname{trace}(BC) = \sum_{i=1}^{p} \sum_{j=1}^{r} b_{ij} c_{ij}$ and $\operatorname{trace}(CB) = \sum_{i=1}^{r} \sum_{j=1}^{p} c_{ij} b_{ij}$. By commutativity, we can clearly see that $\operatorname{trace}(BC) = \operatorname{trace}(CB)$.

Part B

Similar to 3(a), we note that AA^{\top} is an $m \times m$ matrix and $A^{\top}A$ is an $n \times n$ matrix. As such, $\operatorname{trace}(AA^{\top}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} a_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2$ and $\operatorname{trace}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}^2$. Again by commutativity, we see that $\operatorname{trace}(AA^{\top}) = \operatorname{trace}(A^{\top}A) = ||A||^2$.

Part C

Let U be an $m \times m$ orthogonal matrix. Then, $U^{\top}U = I_m$. From 3(b), we note that $||A||^2 = \operatorname{trace}(A^{\top}A) = \operatorname{trace}(AA^{\top})$. Then,

$$||UA||^2 = \operatorname{trace}((UA)^{\top}(UA))$$
$$= \operatorname{trace}(A^{\top}U^{\top}UA)$$
$$= \operatorname{trace}(A^{\top}A)$$
$$= ||A||^2.$$

As such, it follows that ||UA|| = ||A||.

Part D

Let
$$A = P\Sigma Q^{\top}$$
 be the singular value decomposition SVD of A , where $P = \begin{pmatrix} & & & | \\ \vec{\mathbf{p}}_1 & \cdots & \vec{\mathbf{p}}_m \\ & & & | \end{pmatrix}$ and $Q = \begin{pmatrix} & & & | \\ \vec{\mathbf{q}}_1 & \cdots & \vec{\mathbf{q}}_n \\ & & & | \end{pmatrix}$ are orthogonal matrices. And $\Sigma = \begin{pmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_r \end{pmatrix}$ is the diago-

nal matrix where $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ are the signgular values of A. Then,

As such, it follows that $||A|| = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_r^2}$.

Question 4

Part A

Let A be an $m \times n$ real-valued matrix with rank r and let $A = P\Sigma Q^{\top}$ be its singular value decomposition. Again, let $P = \begin{pmatrix} & & & \\ \vec{\mathbf{p}}_1 & \cdots & \vec{\mathbf{p}}_r \\ & & & \end{pmatrix}$, $\Sigma = \begin{pmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_r \end{pmatrix}$, and

 $Q^{\top} = \begin{pmatrix} -\overrightarrow{\mathbf{q}}_1^{\top} - \\ \vdots \\ -\overrightarrow{\mathbf{q}}_r^{\top} - \end{pmatrix}$. As demonstrated in class, the SVD of A can be decomposed into the following:

$$A = P\Sigma Q^{\top}$$

= $\sigma_1 \vec{\mathbf{q}}_1^{\top} + \sigma_2 \vec{\mathbf{p}}_2 \vec{\mathbf{q}}_2^{\top} + \dots + \sigma_r \vec{\mathbf{p}}_r \vec{\mathbf{q}}_r^{\top},$

where each term is an $m \times n$ matrix of rank 1 and rank(A) is the minimum number of rank-1 matrices A_1, A_2, \ldots, A_r such that $A = A_1 + A_2 + \cdots + A_r$.

Part B

Let
$$A_k = P_k \Sigma_k Q_k^{\top} = \sigma_1 \vec{\mathbf{p}}_1 \vec{\mathbf{q}}_1^{\top} + \sigma_2 \vec{\mathbf{p}}_2 \vec{\mathbf{q}}_2^{\top} + \dots + \sigma_r \vec{\mathbf{p}}_r \vec{\mathbf{q}}_k^{\top}$$
. Then,

$$A - A_k = \sigma_{k+1} \vec{\mathbf{p}}_{k+1} \vec{\mathbf{q}}_{k+1}^{\top} + \sigma_{k+2} \vec{\mathbf{p}}_{k+2} \vec{\mathbf{q}}_{k+2}^{\top} + \dots + \sigma_r \vec{\mathbf{p}}_r \vec{\mathbf{q}}_r^{\top}$$

As such, the $\Sigma_k = \operatorname{diag}(\sigma_{k+1}, \sigma_{k+2}, \dots, \sigma_r)$. Thus, from 3(d) we have that

$$||A_k|| = \sqrt{\operatorname{trace}(\Sigma_k^2)} = \sqrt{\sigma_{k+1}^2 + \sigma_{k+2}^2 + \dots + \sigma_r^2}.$$

Question 5

Refer to Section %% Question 5 in the math425hw7.m file for the relevant code.