		TT	\mathbf{r}
L	· \ /	1/1	D
n		ν I	г

Кафедра ЭВМ

Тема: «Исследование работы регистров»

Выполнил:

студент группы 150501 Божко И.И.

Проверил:

к.т.н., доцент Селезнёв И.Л.

Минск

1 ЦЕЛЬ РАБОТЫ

Целью работы является изучение работы регистров: параллельного регистра и регистра сдвига

2 ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

- 1) Для выполнения работы используется лабораторный стенд, в состав которого входят:
 - базовый лабораторный стенд
 - лабораторный модуль dLab10 для изучения работы параллельного регистра
 - лабораторный модуль dLab11 для изучения работы регистра сдвига
- 2) Изучение работы регистров:
 - 2.1 Изучение работы параллельного регистра:
 - 2.1.1 Построение временных диаграмм и таблицы истинности регистра в режиме параллельной загрузки и хранения
 - 2.1.2 Построение временных диаграмм и таблицы истинности регистра в режиме управления выходом регистра
 - 2.1.3 Построение временных диаграмм и таблицы истинности регистра в динамическом режиме
 - 2.2 Изучение работы регистра сдвига:
 - 2.2.1 Построение временных диаграмм и таблицы истинности регистра в режиме сдвига вправо
 - 2.2.2 Построение временных диаграмм и таблицы истинности регистра в режиме сдвига влево
 - 2.2.3 Построение временных диаграмм и таблицы истинности регистра в режиме параллельной загрузки
 - 2.2.4 Построение временных диаграмм и таблицы истинности регистра в режиме хранения
 - 2.2.5 Построение временных диаграмм и таблицы истинности регистра в динамическом режиме

3 ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

3.1 Параллельный регистр

Параллельный регистр служит для запоминания многоразрядного двоичного кода. Количество триггеров, входящее в состав параллельного регистра определяет его разрядность. На рис. 3.1 приведена схема четырёхразрядного параллельного регистра.

Рисунок 3.1 – четырёхразрядный параллельный регистр

При записи информации в параллельный регистр все биты (двоичные разряды) должны быть записаны одновременно. Поэтому все тактовые входы триггеров, входящих в состав регистра, объединяются Промышленностью выпускаются четырёхразрядные и восьмиразрядные микросхемы параллельных регистров. Для построения восьмиразрядных обычно используются регистры микросхем co статическим синхронизации. Ha рисунке 3.2 представлено УГО 4-разрядного параллельного регистра К555ИР15

Рисунок 3.2 – УГО четырёхразрядного параллельного регистра

Микросхема имеет следующие выходы: тактовый C, информационные D0 – D3, управления загрузкой P1 и P2, сброса R и считывания выходных данных

Е1 и Е2. Регистр может работать в режимах: сброс, параллельная загрузка, хранение, запрет считывания (табл. 3.1)

T () 1		_		
Таблица 3.1 –	newiimli	nanati i	параппепьного	neructna
таолица Э.т	PCMMINIDI	paooibi		permerpa

Режим				Вход				Выход
работы	E1	<i>E2</i>	R	C	<i>P1</i>	P2	Dn	Qn
Сброс	0	0	1	X	X	X	X	0
Параллельная	0	0	0		0	0	0	0
загрузка	0	0	0		0	0	1	0
Хранение	0	0	0	X	1	0	X	q_n
	0	0	0	X	0	1	X	q_n
Запрет	1	0	X	X	X	X	X	Z
считывания	0	1	X	X	X	X	X	Z

Примечания: символ х означает безразличное состояние входа символ | означает фронт тактового сигнала

3.2 Регистр сдвига

Регистр сдвига (shift register) — это регистр, содержимое которого при подаче управляющего сигнала на тактовый вход С может сдвигаться в сторону старших или младших разрядов. Схема сдвигающего регистра из цепочки ЈКтриггеров приведена на рисунке 3.3.

Рисунок 3.3 - сдвигающий регистр из цепочки JK-триггеров УГО регистра сдвига представлено на рис. 3.4

Рисунок 3.4 – УГО регистра сдвига

Регистр может работать в режимах: сброс, сдвиг вправо, сдвиг влево, параллельная загрузка, хранение (табл. 3.2)

Таблица 3.2 – режимы работы регистра сдвига

								1	1	1	
Режим				Вход					Вы	ход	
работы	R	C	S1	SO	DR	DL	Dn	Qθ	Q 1	Q2	Q3
Сброс	0	X	X	X	X	X	X	0	0	0	0
Хранение	1	X	0	0	X	X	X	q_0	q_1	q_2	q_3
Сдвиг	1		1	0	X	0	X	q_1	q_2	q_3	0
влево	1		1	0	X	1	X	q_1	q_2	q_3	1
Сдвиг	1		0	1	0	X	X	0	q_0	q_1	q_2
вправо	1		0	1	1	X	X	1	q_0	q_1	q_2
Параллельная загрузка	1		1	1	X	X	d_n	d_0	d_1	d_2	d_3

Примечания: символ х означает безразличное состояние входа символ | означает фронт тактового сигнала

Следует отметить, что все регистры сдвига строятся на базе двухступенчатых триггеров или синхронизируемых фронтом синхроимпульса.

Регистры сдвига могут быть построены и на триггерах одноступенчатой структуры. В этом случае в каждом разряде регистра нужно использовать два триггера, которые управляются двумя сдвинутыми во времени тактовыми импульсами. Если бы в регистре были применены одноступенчатые триггеры по одному на разряд, то правило работы регистра было бы нарушено: при первом же импульсе сдвига информация, записавшись в первый разряд, перешла бы во второй, затем в третий и т.д.

Регистры сдвига широко используются для выполнения различных временных преобразований цифровой информации: последовательное

накопление последовательной цифровой информации с последующей одновременной выдачей (преобразование последовательной цифровой информации в параллельный код) или одновременный прием (параллельный прием) информации с последующей последовательной выдачей (преобразование параллельного кода в последовательный).

4 ВЫПОЛНЕНИЕ РАБОТЫ

4.1 Исследование работы параллельного регистра

4.1.1 Изучение работы регистра в режиме параллельной загрузки и хранения

Устанавливаем следующие значения сигналов: D0 = 0, D1 = 1, D2 = 1, D3 = 0, E1 = 0, E2 = 0. Изменяя состояния входов P1 и P2, заполняем диаграмму состояний (рис. 4.1) и таблицу истинности (рис. 4.2) регистра. На рис. 4.3 приведено изображение лицевой панели при работе.

Рисунок 4.1 – диаграмма состояний параллельного регистра в режиме параллельной загрузки и хранения

Таблица истинности параллельного регистра

	R	E2	E1	P2	P1	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	0	0	1	1	0	LF	0	1	1	0
Шаг 2	0	0	0	0	1	0	1	1	0	LГ	0	0	0	0
Шаг 3	0	0	0	1	0	0	1	1	0	LГ	0	0	0	0
Шаг 4	0	0	0	1	1	0	1	1	0	LГ	0	0	0	0

Рисунок 4.2 – таблица истинности параллельного регистра в режиме параллельной загрузки и хранения

Рисунок 4.3 – лицевая панель при изучении параллельного регистра в режиме параллельной загрузки и хранения

4.1.1 Изучение работы регистра в режиме управления выходом регистра Устанавливаем следующие значения сигналов: D0 = 0, D1 = 1, D2 = 1, D3 = 0, P1 = 0, P2 = 0. Изменяя состояния входов E1 и E2, заполняем диаграмму состояний (рис. 4.4) и таблицу истинности (рис. 4.5) регистра. На рис. 4.6 приведено изображение лицевой панели при работе.

Диаграмма состояний параллельного регистра

Рисунок 4.4 — диаграмма состояний параллельного регистра в режиме управления выходом регистра

Таблица истинности параллельного регистра

				_		_		_						
	R	E2	E1	P2	P1	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	0	0	1	1	0	LF	0	1	1	0
Шаг 2	0	1	0	0	0	0	1	1	0	LF	0	0	0	0
Шаг 3	0	0	1	0	0	0	1	1	0	LF	0	0	0	0
Шаг 4	0	1	1	0	0	0	1	1	0	LF	0	0	0	0

Рисунок 4.5 — таблица истинности параллельного регистра в режиме управления выходом регистра

Рисунок 4.6 – лицевая панель при изучении параллельного регистра в режиме управления выходом регистра

4.1.2 Изучение работы регистра в динамическом режиме

Для изучения работы регистра в динамическом режиме включаем генератор импульсов и, изменяя входные сигналы регистра, отражаем на диаграмме состояний (рис. 4.7) режимы работы регистра: режим параллельной загрузки, режим управления выходом, режим хранения, сброс. На рис. 4.8 приведено изображение лицевой панели при работе.

Диаграмма состояний параллельного регистра E1o E2-0 P1-0 Ó P2-Q D0-D1-D2-D3-C-0 o Q0-Q1-Q2-Q3-

Рисунок 4.7 – диаграмма состояний параллельного регистра в динамическом режиме

Рисунок 4.8 — лицевая панель при изучении параллельного регистра в динамическом режиме

4.2 Исследование работы регистра сдвига

4.2.1 Изучение работы регистра в режиме сдвига вправо

Устанавливаем следующие значения сигналов: S0 = 1, S1 = 0, R = 1. Изменяя состояния входов DR, C, заполняем диаграмму состояний (рис. 4.9) и таблицу истинности (рис. 4.10) регистра. На рис. 4.11 приведено изображение лицевой панели при работе.

Рисунок 4.9 – диаграмма состояний регистра сдвига в режиме сдвига вправо

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	0	1	1	0	0	0	0	0	LF	0	0	0	1
Шаг 2	1	0	1	0	0	0	0	0	0	LГ	0	0	1	0
Шаг 3	1	0	1	0	0	0	0	0	0	LГ	0	1	0	0
Шаг 4	1	0	1	0	0	0	0	0	0	LF	1	0	0	0

Рисунок 4.10 — таблица истинности регистра сдвига в режиме сдвига вправо

Рисунок 4.11 — лицевая панель при работе с регистром сдвига в режиме сдвига вправо

4.2.2 Изучение работы регистра в режиме сдвига влево

Устанавливаем следующие значения сигналов: S0 = 0, S1 = 1, R = 1. Изменяя состояния входов DR, C, заполняем диаграмму состояний (рис. 4.12) и таблицу истинности (рис. 4.13) регистра. На рис. 4.14 приведено изображение лицевой панели при работе.

Диаграмма состояний регистра сдвига

Рисунок 4.12 — диаграмма состояний регистра сдвига в режиме сдвига влево

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	1	0	0	1	0	0	0	0	LГ	1	0	0	0
Шаг 2	1	1	0	0	0	0	0	0	0	LГ	0	1	0	0
Шаг 3	1	1	0	0	0	0	0	0	0	LГ	0	0	1	0
Шаг 4	1	1	0	0	0	0	0	0	0	LГ	0	0	0	1

Рисунок 4.13 — диаграмма состояний регистра сдвига в режиме сдвига влево

Рисунок 4.14 — лицевая панель при работе с регистром сдвига в режиме сдвига влево

4.2.3 Изучение работы регистра в режиме параллельной загрузки Устанавливаем следующие значения сигналов: $S0=1,\ S1=1,\ R=1.$ Изменяя состояния входов D0-D3, заполняем диаграмму состояний (рис. 4.15) и таблицу истинности (рис. 4.16) регистра. На рис. 4.17 приведено изображение лицевой панели при работе.

Диаграмма состояний регистра сдвига

Рисунок 4.15 — диаграмма состояний регистра сдвига в режиме параллельной загрузки

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	1	1	0	0	0	1	0	1	LГ	0	1	0	1
Шаг 2	1	1	1	0	0	1	1	1	1	LF	1	1	1	1
Шаг 3	1	1	1	0	0	0	0	1	0	LГ	0	0	1	0
Шаг 4	1	1	1	0	0	0	0	1	0	LГ	0	0	1	0

Рисунок 4.16 – диаграмма состояний регистра сдвига в режиме параллельной загрузки

Рисунок 4.17 – лицевая панель при работе с регистром сдвига в режиме параллельной загрузки

4.2.4 Изучение работы регистра в режиме хранения

Устанавливаем следующие значения сигналов: S0 = 1, S1 = 0, R = 1, DR = 1, DL = 1. Изменяя состояния входов D0 - D3, заполняем диаграмму состояний (рис. 4.18) и таблицу истинности (рис. 4.19) регистра. На рис. 4.20 приведено изображение лицевой панели при работе.

Диаграмма состояний регистра сдвига

Рисунок 4.18 – диаграмма состояний регистра сдвига в режиме хранения

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	0	0	1	1	0	1	0	1	LF	1	0	1	0
Шаг 2	1	0	0	1	1	1	1	1	1	LF	1	0	1	0
Шаг 3	1	0	0	1	1	0	0	1	0	LГ	1	0	1	0
Шаг 4	1	0	0	1	1	0	0	1	0	LГ	1	0	1	0

Рисунок 4.19 – диаграмма состояний регистра сдвига в режиме хранения

Рисунок 4.20 — лицевая панель при работе с регистром сдвига в режиме параллельной загрузки

4.2.5 Изучение работы регистра в динамическом режиме

Для изучения работы регистра в динамическом режиме включаем генератор импульсов и, изменяя входные сигналы регистра, отражаем на диаграмме состояний (рис. 4.21) режимы работы регистра: режим параллельной загрузки, режим сдвига вправо, режим сдвига влево, сброс. На рис. 4.22 приведено изображение лицевой панели при работе.

Рисунок 4.21 — диаграмма состояний регистра сдвига в динамическом режиме

Рисунок 4.22 — лицевая панель при работе с регистром сдвига в динамическом режиме

По полученной диаграмме можно сделать вывод, что регистр меняет своё состояние по переднему фронту сигнала С (0 - 1)

5. ВЫВОДЫ

Требовалось изучить работу параллельного регистра и регистра сдвига.

Были изучены режимы работы параллельного регистра в статическом и динамическом режимах работы, получены диаграммы состояний и таблицы истинности регистра. Параллельный регистр имеет следующие режимы работы: сброс (при R=1), параллельная загрузка (при E1=0, E2=0, P1=0, P2=0) и хранение (при E1=0, E2=0, P1=1 или P2=1), управление выходом регистра (при D0=0, D1=1, D2=1, D3=0, P1=0, P2=0).

Были изучены режимы работы регистра сдвига в статическом и динамическом режимах работы, получены диаграммы состояний и таблицы истинности регистра. Регистр сдвига имеет следующие режимы работы: сброс (при R=0), хранение (при S0=1, S1=0, R=1, DR=1, DL=1), параллельная загрузка (при S0=1, S1=1, R=1), сдвиг вправо (при S0=1, S1=0, R=1), сдвиг влево (при S0=1, S1=1, S1=1).