Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

Resolución de algunos ejercicios del Parcial 1

- Sea f(x) = 3x + 2 con Dom(f) = [-1, 2].
- a) Probar de forma analítica que f admite inversa.
- **b)** Sin usar la ley de f^{-1} , realizar las gráficas de f y de f^{-1} . Justificar cómo se obtienen estás gráficas (sin el uso de software).
 - c) Hallar el dominio de f^{-1} a partir de la gráfica realizada en el item anterior.
 - **d)** Determinar analíticamente el dominio de f^{-1} y la ley de f^{-1} .
 - e) Analizar la veracidad de los siguientes enunciados:

$$\begin{array}{l} \textbf{i)} \ (f^{-1}\circ f)(0)=2.\\ \textbf{ii)} \ Dom(f^{-1}\circ f)=[-1,8].\\ \textbf{iii)} \ (f\circ f^{-1})(7)=7. \end{array}$$

a) Para probar que f admite inversa debemos probar que f es invectiva. Veamos esto. Sean $x_1, x_2 \in Dom(f) = [-1, 2]$, luego:

$$f(x_1)=f(x_2) \implies 3x_1+2=3x_2+2 \stackrel{(1)}{\Longrightarrow} 3x_1=3x_2 \stackrel{(2)}{\Longrightarrow} x_1=x_2.$$
 (1) Propiedad cancelativa de la suma.

- (2) Propiedad cancelativa del producto.

Resulta f inyectiva y por lo tanto admite inversa.

b) Dado que f es una función lineal definida en Dom(f) = [-1, 2], su gráfica es un segmento que une los puntos (-1, f(-1)) = (-1, -1) y (2, f(2)) = (2, 8).

La gráfica de f^{-1} se obtiene reflejando respecto de la recta identidad y=x a la gráfica de f, es decir que es un segmento que une los puntos (-1, -1) y (8, 2).

c) A partir de la gráfica vemos que $Dom(f^{-1}) = Rec(f) = [-1, 8]$.

- **d)** Veamos en primer lugar que Rec(f) = [-1, 8].
- ⊆) Sea $y \in Rec(f)$. Luego $\exists x \in Dom(f) = [-1, 2]$ tal que f(x) = y. $-1 \le x \le 2 \implies -3 \le 3x \le 6 \implies -1 \le \underbrace{3x + 2}_{y} \le 8 \implies -1 \le y \le 8$.

Por lo tanto $Rec(f) \subseteq [-1, 8]$. (A)

■ \supseteq) Sea $y \in [-1,8]$. Sea $x = \frac{y-2}{3}$. Veamos que $x \in Dom(f) = [-1,2]$ y que f(x) = y. $-1 \le y \le 8 \implies -3 \le y - 2 \le 6 \implies -1 \le \underbrace{\frac{y-2}{3}}_{x} \le 2 \implies -1 \le x \le 2$.

$$f(x) = f\left(\underbrace{\frac{y-2}{3}}_{x}\right) = 3\frac{y-2}{3} + 2 = y - 2 + 2 = y.$$

Es decir que $\exists x \in Dom(f) = [-1, 2]$ tal que $f(x) = y \implies y \in Rec(f)$.

Por lo tanto $Rec(f) \supseteq [-1, 8]$. (B)

De (A) y (B) resulta
$$Rec(f) = [-1, 8] \implies Dom(f^{-1}) = Rec(f) = [-1, 8].$$

Ahora obtengamos la ley de f^{-1} . Recordemos que $f(x) = y \iff f^{-1}(y) = x$.

$$f(x) = 3x + 2 = y \iff 3x = y - 2 \iff x = \frac{y - 2}{3}.$$

$$\therefore f^{-1}(y) = \frac{y - 2}{3} \iff f^{-1}(x) = \frac{x - 2}{3}.$$

En definitiva resulta:

$$f^{-1}: [-1, 8] \to [-1, 2]$$

 $x \to f^{-1}(x) = \frac{x-2}{3}.$

- **e) i)** $(f^{-1} \circ f)(0) = 2$ es falso ya que $(f^{-1} \circ f)(x) = x \ \forall x \in Dom(f)$ por ser f^{-1} la inversa de f.
- ii) $Dom(f^{-1} \circ f) = [-1, 8]$ es falso ya que $Dom(f^{-1} \circ f) = Dom(f) = [-1, 2]$ puesto que $f^{-1} \circ f$ es la función identidad en Dom(f).
 - iii) $(f \circ f^{-1})(7) = 7$ es verdadero ya que $f \circ f^{-1}$ es la función identidad en $Dom(f^{-1}) = [-1, 8]$.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

a) Sea f la función definida por $f(x) = e^{-x} + \cos(x)$.

Analice la monotonía de la función f en el intervalo $[0, \pi]$.

Use la monotonía de la función exponencial y del coseno para justificar adecuadamente.

b) Sean f y g dos funciones crecientes en sus respectivos dominios.

Demuestre que la función $h = f \circ g$ también es creciente en su dominio.

a) Veamos que $f(x) = e^{-x} + \cos(x)$ es decreciente en el intervalo $[0, \pi]$.

• $g(x) = e^{-x}$ es decreciente en \mathbb{R} puesto que si $x_1, x_2 \in \mathbb{R}$:

$$x_1 < x_2 \implies -x_1 > -x_2 \stackrel{(1)}{\Longrightarrow} e^{-x_1} > e^{-x_2}.$$

(1) e^x función creciente en \mathbb{R} .

• $h(x) = \cos(x)$ es decreciente en el intervalo $[0, \pi]$:

Ahora veamos que f = g + h es decreciente en $[0, \pi]$. Sean $x_1, x_2 \in [0, \pi]$, luego:

$$x_1 < x_2 \stackrel{(2)}{\Longrightarrow} g(x_1) > g(x_2) \land h(x_1) > h(x_2) \stackrel{(3)}{\Longrightarrow} g(x_1) + h(x_1) > g(x_2) + h(x_2) \implies f(x_1) > f(x_2).$$

- (2) g y h funciones decrecientes en $[0,\pi]$.
- (3) Teorema 7-2 (unidad 1).

b) Sean f y g dos funciones crecientes en sus respectivos dominios. Veamos que la función $h=f\circ g$ también es creciente en su dominio. Para ello sean $x_1,x_2\in Dom(f\circ g)$, luego:

(5) f creciente en su dominio y $x_1, x_2 \in Dom(f \circ g) \implies g(x_1), g(x_2) \in Dom(f)$.

Sea [x] la parte entera de $x \in \mathbb{R}$. Considerar el conjunto de números reales:

$$B = \left\{ \frac{1}{[x]} + 4 : x \ge 1 \right\}.$$

- a) Demostrar que si $x \ge 1$ entonces $0 \le \frac{1}{|x|} \le 1$.
- **b)** Probar que *B* está acotado superiormente e inferiormente.
- c) En base a la respuesta del item anterior: &B tiene supremo? &B tiene ínfimo? Justificar adecuadamente las respuestas.
 - d) $\+iB$ tiene máximo? $\+iB$ tiene mínimo? Justificar adecuadamente las respuestas.
 - **a)** Sea $x \ge 1$. Queremos ver que $0 \le \frac{1}{|x|} \le 1$.

Por definición de parte entera, siendo $x \geq 1$ resulta $[x] \geq 1 > 0$.

Al ser $0 < 1 \le [x]$, por Teorema 7-10 (unidad 1) resulta $0 < \frac{1}{[x]} \le \frac{1}{1} \implies 0 < \frac{1}{[x]} \le 1 \implies 0 \le \frac{1}{[x]} \le 1$ como queríamos ver.

b) En el item anterior probamos que si $x \ge 1$, entonces $0 \le \frac{1}{|x|} \le 1 \implies 4 \le \frac{1}{|x|} + 4 \le 5$.

Siendo $B = \left\{ \frac{1}{[x]} + 4 : x \ge 1 \right\}$, resulta que 5 es una cota superior de B y 4 es una cota inferior de B y por lo tanto B está acotado superiormente e inferiormente.

- c) Siendo $B \neq \emptyset$ pues por ejemplo $\frac{1}{[1]} + 4 = \frac{1}{1} + 4 = 5 \in B$ y B acotado superiormente, resulta por Axioma 10 (axioma del supremo, unidad 1) que B tiene supremo. Por otro lado, nuevamente siendo $B \neq \emptyset$ y B acotado inferiormente, resulta por Teorema 12 (unidad 1) que B tiene ínfimo.
 - **d)** B tiene máximo y es max(B) = 5 puesto que satisface la definición de máximo:
 - $b \le 5 \ \forall b \in B$ por lo probado en el item b).
 - $5 \in B$ por lo visto en el item c).

Para ver que B no tiene mínimo, en primer lugar veamos que $\inf(B)=4$ ya que satisface la definición de ínfimo:

- $b \ge 4 \ \forall b \in B$ por lo probado en el item b).
- Si c > 4, entonces c no es una cota inferior de B puesto que:

$$c>4 \implies c-4>0 \stackrel{(1)}{\Longrightarrow} \exists n \in \mathbb{N} \text{ tal que } \frac{1}{n} < c-4 \implies \exists n \in \mathbb{N} \text{ tal que } \frac{1}{n} + 4 < c \stackrel{(2)}{\Longrightarrow} \exists n \in \mathbb{N} \text{ tal que } \frac{1}{[n]} + 4 < c \implies \exists b \in B \text{ tal que } b < c.$$

- (1) Corolario 5-iii (de la Propiedad Arquimediana, unidad 1).
- (2) $[n] = n \ \forall n \in \mathbb{N}.$

Por otro lado, $4 \notin B$ ya que por lo visto en el item a) si $x \ge 1$, entonces $\frac{1}{[x]} > 0 \implies \frac{1}{[x]} + 4 > 4$. Siendo inf(B) = 4 y $4 \notin B$ resulta que B no tiene mínimo.