Модель системы массового обслуживания (Задание 1)

Многоканальная СМО с накопителем конечной емкости

- 1) Интенсивность входящего потока заявок $\lambda = 8$ заяв./мин.
- 2) Емкость накопителя R=5
- 3) Число обслуживающих каналов M = 6
- 4) Интенсивность обслуживания заявки каналом $\mu=1$ заяв./мин.
- 5) Потери из-за простоя одного канала C1 = 100 руб/(канал*мин)
- 6) Потери из-за простоя одной заявки в очереди C2 = 5 руб/(заявка*мин).
- 7) Потери из-за ухода заявки вследствие отказа в обслуживании или нетерпеливых заявок C3 = 20 руб/заявка.
 - 8) Прибыль от каждой обслуженной заявки С4 = 20 руб/заявка.

№ состоя-	Число заявок в	Число занятых	Число свободных	Длина	Вероятности
кин	системе	каналов	каналов	очереди	состояний
k	n	Мз	Mc	r	p
0	0	0	6	0	
1	1	1	5	0	
2	2	2	4	0	
3	3	3	3	0	
4	4	4	2	0	
5	5	5	1	0	
6	6	6	0	0	
7	7	6	0	1	
8	8	6	0	2	
9	9	6	0	3	
10	10	6	0	4	
11	11	6	0	5	

Граф Марковского процесса

Вероятности состояний:

$$\rho = \frac{\lambda}{\mu}$$

$$p_1 = p_0 \rho;$$

$$p_2 = p_0 \rho^2 / 2;$$

$$p_3 = p_0 \rho^3 / (2 \cdot 3);$$

$$p_4 = p_0 \rho^4 / (2 \cdot 3 \cdot 4);$$

$$p_5 = p_0 \rho^5 / (2 \cdot 3 \cdot 4 \cdot 5);$$

$$p_{6} = p_{0}\rho^{6}/(2\cdot3\cdot4\cdot5\cdot6);$$

$$p_{7} = p_{0}\rho^{7}/(2\cdot3\cdot4\cdot5\cdot6^{2});$$

$$p_{8} = p_{0}\rho^{8}/(2\cdot3\cdot4\cdot5\cdot6^{3});$$

$$p_{9} = p_{0}\rho^{9}/(2\cdot3\cdot4\cdot5\cdot6^{4});$$

$$p_{10} = p_{0}\rho^{10}/(2\cdot3\cdot4\cdot5\cdot6^{5});$$

$$p_{11} = p_{0}\rho^{11}/(2\cdot3\cdot4\cdot5\cdot6^{6});$$

$$p_{0} = (1+\rho+\rho^{2}/2+\rho^{3}/(2\cdot3)+\rho^{4}/(2\cdot3\cdot4)+...+\rho^{11}/(2\cdot3\cdot4\cdot5\cdot6^{6}))^{-1}$$

Условие нормировки:

$$p_0 + p_1 + p_2 + ... + p_{11} = 1$$

Расчет средних характеристик для стационарного режима:

1) Число заявок в системе

$$\bar{n} = 0 \cdot P_0 + 1 \cdot P_1 + 2 \cdot P_2 + \dots + 11 \cdot P_{11}$$

2) Число простаивающих (свободных) каналов

$$\overline{\text{Mc}} = 6 \cdot p_0 + 5 \cdot p_1 + 4 \cdot p_2 + 3 \cdot p_3 + 2 \cdot p_4 + 1 \cdot p_5 + 0 \cdot (p_6 + \dots + p_{11})$$

3) Число занятых каналов

$$\overline{\text{M3}} = M - Mc$$

4) Длина очереди

$$\bar{r} = \bar{n} - \overline{M3} = 0 \cdot (p_0 + ... + p_6) + 1 \cdot p_7 + 2 \cdot p_8 + ... + 5 \cdot p_{11}$$

5) Вероятность отказа

$$P_{om\kappa} = p_{11}$$

Поток отказов

$$\lambda_{\text{OTK}} = \lambda \cdot P_{OMK}$$

6) Относительная пропускная способность

$$q = 1 - P_{om\kappa}$$

7) Абсолютная пропускная способность

$$A = q \cdot \lambda$$

8) Доля необслуженных заявок

$$D_{\text{Heoficil}} = \lambda_{OMK}/\lambda = P_{OMK}$$

9) Доля заявок, получивших отказ в обслуживании

$$D_{\text{OTK}} = \lambda_{OMK} / \lambda = P_{OMK}$$

10) Время пребывания заявки в системе

$$\overline{t_c} = \overline{n}/A$$

11) Время ожидания в очереди

$$t_{OHC} = r/A$$

12) Время обслуживания

$$t_{OOCL} = t_C - t_{OHC}$$

Средние затраты на функционирование системы в единицу времени

$$W = C_1 \cdot \overline{Mc} + C_2 \cdot \overline{r} + C_3 \cdot \lambda_{\text{otk}} - C_4 \cdot A$$

СМО с равномерной взаимопомощью между каналами

- 1) Интенсивность входящего потока заявок $\lambda = 8$ заяв./мин.
- 2) Емкость накопителя R=5
- 3) Число обслуживающих каналов M = 6
- 4) Интенсивность обслуживания заявки каналом $\mu = 1$ заяв./мин.
- 5) Потери из-за простоя одного канала C1 = 100 руб/(канал*мин)
- 6) Потери из-за простоя одной заявки в очереди C2 = 5 руб/(заявка*мин).
- 7) Потери из-за ухода заявки вследствие отказа в обслуживании или нетерпеливых заявок C3 = 20 руб/заявка.
 - 8) Прибыль от каждой обслуженной заявки С4 = 20 руб/заявка.

№ состоя-	Число заявок в	Число занятых	Число свободных	Длина	Вероятности
ния	системе	каналов	каналов	очереди	состояний
k	n	Мз	Mc	r	p
0	0	0	6	0	
1	1	6	0	0	
2	2	6	0	0	
3	3	6	0	0	
4	4	6	0	0	
5	5	6	0	0	
6	6	6	0	0	
7	7	6	0	1	
8	8	6	0	2	
9	9	6	0	3	
10	10	6	0	4	
11	11	6	0	5	

Граф Марковского процесса

Вероятности состояний для стационарного режима:

$$\rho = \frac{\lambda}{6\mu}$$

$$p_k = p_0 \rho^k;$$

 $p_0 = (1 + \rho + \rho^2 + \rho^3 + \rho^4 + \dots + \rho^{11})^{-1}$

Расчет средних характеристик (остальные, как для обычной СМО):

2) Число простаивающих (свободных) каналов

$$\overline{\text{Mc}} = 6 \cdot p_0 + 0 \cdot (p_1 + ... + p_{11})$$

4) Длина очереди

$$\bar{r} = 0 \cdot (p_0 + ... + p_6) + 1 \cdot p_7 + 2 \cdot p_8 + ... + 5 \cdot p_{11}$$

СМО с нетерпеливыми заявками

- 1) Интенсивность входящего потока заявок $\lambda = 8$ заяв./мин.
- 2) Емкость накопителя R=5
- 3) Число обслуживающих каналов M = 6
- 4) Интенсивность обслуживания заявки каналом $\mu = 1$ заяв./мин.
- 5) Интенсивность ухода из очереди нетерпеливых заявок v = 3 заяв./мин.
- 6) Потери из-за простоя одного канала C1 = 100 руб/(канал*мин)
- 7) Потери из-за простоя одной заявки в очереди C2 = 5 руб/(заявка*мин).
- 8) Потери из-за ухода заявки вследствие отказа в обслуживании или нетерпеливых заявок C3 = 20 руб/заявка.
 - 9) Прибыль от каждой обслуженной заявки С4 = 20 руб/заявка.

Таблица, как в обычной СМО.

Граф Марковского процесса

Вероятности состояний:

$$\rho = \frac{\lambda}{\mu}
p_1 = p_0 \rho;
p_2 = p_0 \rho^2 / 2;
p_3 = p_0 \rho^3 / (2 \cdot 3);
p_4 = p_0 \rho^4 / (2 \cdot 3 \cdot 4);
p_5 = p_0 \rho^5 / (2 \cdot 3 \cdot 4 \cdot 5);
p_6 = p_0 \rho^6 / (2 \cdot 3 \cdot 4 \cdot 5 \cdot 6);
p_7 = p_0 \lambda^7 / (2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \mu^6 \cdot (6\mu + \nu));$$

$$\begin{split} p_8 &= p_0 \lambda^8 / \left(2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \mu^6 \cdot (6\mu + \nu) \cdot (6\mu + 2\nu) \right); \\ p_9 &= p_0 \lambda^9 / \left(2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \mu^6 \cdot (6\mu + \nu) \cdot (6\mu + 2\nu) \cdot (6\mu + 3\nu) \right); \\ p_{10} &= p_0 \lambda^{10} / \left(2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \mu^6 \cdot (6\mu + \nu) \cdot (6\mu + 2\nu) \cdot (6\mu + 3\nu) \cdot (6\mu + 4\nu) \right); \\ p_{11} &= p_0 \lambda^{11} / \left(2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \mu^6 \cdot (6\mu + \nu) \cdot (6\mu + 2\nu) \cdot (6\mu + 3\nu) \cdot (6\mu + 4\nu) \cdot (6\mu + 5\nu) \right); \\ p_0 &= (1 + \rho + \rho^2 / 2 + \rho^3 / (2 \cdot 3) + \rho^4 / (2 \cdot 3 \cdot 4) + \dots + \\ &+ \lambda^{11} / \left(2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \mu^6 \cdot (6\mu + \nu) \cdot (6\mu + 2\nu) \cdot (6\mu + 3\nu) \cdot (6\mu + 4\nu) \cdot (6\mu + 5\nu) \right))^{-1} \end{split}$$

Расчет средних характеристик (остальные, как для обычной СМО):

5) Вероятность отказа

$$P_{om\kappa} = p_{11}$$

Поток отказов

$$\lambda_{\text{OTK}} = \lambda \cdot P_{OMK}$$

Поток нетерпеливых заявок

$$\lambda_{\textit{Hemepn}} = v \cdot p_7 + 2v \cdot p_8 + 3v \cdot p_9 + 4v \cdot p_{10} + 5v \cdot p_{11}$$

6) Абсолютная пропускная способность

$$A = \lambda - \lambda_{om\kappa} - \lambda_{hemepn}$$

7) Относительная пропускная способность

$$q = A/\lambda$$

8) Доля необслуженных заявок

$$D_{\text{необсл}} = (\lambda_{om\kappa} + \lambda_{nemepn})/\lambda$$

11) Время обслуживания

$$\overline{t_{o\delta cn}} = 1/\mu$$

12) Время ожидания в очереди

$$t_{osc} = t_c - t_{o\delta c\pi}$$

Средние затраты на функционирование системы в единицу времени

$$W = C_1 \cdot \overline{Mc} + C_2 \cdot \overline{r} + C_3 \cdot (\lambda_{\text{OTK}} + \lambda_{\text{HETEPH}}) - C_4 \cdot A$$

Залание 2

Программа для расчета характеристик

Написать компьютерную программу для расчета всех необходимых величин по заданию 1.

Текст программы в Matlab (пример для многоканальной СМО с накопителем конечной емкости):

```
Исходные данные:
```

```
1=8; % Интенсивность входящего потока заявок
R=5; % Емкость накопителя
М=6; % Число обслуживающих каналов
mu=1; % Интенсивность обслуживания заявки каналом
С1=100; % Потери из-за простоя одного канала
С2=5; % Потери из-за простоя одной заявки в очереди
С3=20; % Потери из-за ухода заявки вследствие отказа в обслуживании или
нетерпеливых заявок
С4=20; % Прибыль от каждой обслуженной заявки
Число состояний:
Ns=M+R+1;
Расчет вероятностей:
ro = 1/mu;
p=zeros(12,1); % вероятности состояний
p(1)=1; %p0;
s=1; % вспомогательная сумма
for i=2:M+1
    s=s*ro/(i-1);
    p(1)=p(1)+s;
end;
for i=M+2:Ns;
    s=s*ro/M;
   p(1)=p(1)+s;
end;
p(1)=1/p(1);
*вероятности состояний без очереди 1-6
for i=2:M+1
    p(i)=p(i-1)*ro/(i-1);
%вероятности состояний с очередью 6-11
for i=M+2:Ns
    p(i)=p(i-1)*ro/M;
end;
Пример вывода вероятностей:
disp('Вероятности');
for i=1:Ns
    fprintf('p(%d)=%f\r\n', i-1,p(i));
```

Расчет характеристик

end;

Число заявок в системе:

```
n=0;
for i=1:Ns
    n=n+(i-1)*p(i);
end;
fprintf('Число заявок в системе=%f\r\n', n);
Число простаивающих (свободных) каналов:
Ms=0;
for i=1:M
    Ms=Ms+(M-i+1)*p(i);
end:
fprintf('Число свободных каналов=%f\r\n', Ms);
Число занятых каналов:
Mz=M-Ms;
fprintf('Число занятых каналов=%f\r\n', Mz);
Длина очереди:
r=0;
for i=M+2:Ns
    r=r+(i-1-M)*p(i);
end;
fprintf('Длина очереди=%f\r\n', r);
Вероятность отказа:
Potk=p(Ns);
fprintf('Beposthoctb otkasa=%f\r\n', Potk);
Поток отказов:
lotk=l*Potk;
fprintf('Notok otkasob=%f\r\n', lotk);
Относительная пропускная способность:
q=1-Potk;
fprintf('Относительная пропускная способность=%f\r\n', q);
Абсолютная пропускная способность:
A=q*1;
fprintf('Абсолютная пропускная способность=%f\r\n', A);
Доля необслуженных заявок:
Dneobsl=lotk/1;
fprintf('Доля необслуженных заявок=%f\r\n', Dneobsl);
Доля заявок, получивших отказ в обслуживании:
Dotk=lotk/1;
fprintf('Доля заявок, получивших отказ в обслуживании=%f\r\n', Dotk);
Время пребывания заявки в системе:
fprintf('Время пребывания заявки в системе=%f\r\n', ts);
Время ожидания в очереди:
tog=r/A;
fprintf('Время ожидания в очереди=%f\r\n', tog);
```

Время обслуживания:

```
tobsl=ts-tog;
fprintf('Время обслуживания=%f\r\n', tobsl);

Затраты на функционирование системы:
W=C1*Ms+C2*r+C3*lotk-C4*A;
fprintf('Затраты на функционирование системы=%f\r\n', W);
```

Рекомендуется задать в качестве выходных параметров функции все рассчитанные характеристики СМО.

Результаты работы программы:

Вероятности

p(0)=0.000178

p(1)=0.001425

p(2)=0.005699

p(3)=0.015198

p(4)=0.030395

p(5)=0.048633

p(6)=0.064844

p(7)=0.086458

p(8)=0.115278

p(9)=0.153704

p(10)=0.204938

p(11)=0.273251

Число заявок в системе=8.778124

Число свободных каналов=0.186006

Число занятых каналов=5.813994

Длина очереди=2.964130

Вероятность отказа=0.273251

Поток отказов=2.186006

Относительная пропускная способность=0.726749

Абсолютная пропускная способность=5.813994

Доля необслуженных заявок=0.273251

Доля заявок, получивших отказ в обслуживании=0.273251

Время пребывания заявки в системе=1.509827

Время ожидания в очереди=0.509827

Время обслуживания=1.000000

Затраты на функционирование системы=-39.138498

Программа для оптимизации

Написать программу оптимизации системы по заданному параметру от 1 до 20 с шагом 1. Оптимизацию выполнить по критерию суммарных средних потерь при работе системы в единицу времени.

Построить график зависимости критерия оптимизации от варьируемых параметров.

Пример:

Рассматривается многоканальная СМО с накопителем конечной емкости. Варьировать будем интенсивность обслуживания µ от 1 до 20 с шагом 1.

```
Входные параметры функции: muMin- начальное значение \mu muMax- конечное значение \mu h- max
```

Выходные параметры функции:

ти - интенсивность обслуживания

W – затраты на функционирование системы

Заголовок функции:

```
function [mu,W]=SMO optim(muMin,muMax,h);
```

Исходные данные

```
1=8; % Интенсивность входящего потока заявок R=5; % Емкость накопителя M=6; % Число обслуживающих каналов C1=100; % Потери из-за простоя одного канала C2=5; % Потери из-за простоя одной заявки в очереди C3=20; % Потери из-за ухода заявки вследствие отказа в обслуживании или нетерпеливых заявок C4=20; % Прибыль от каждой обслуженной заявки
```

Интенсивность обслуживания заявки каналом:

```
mu=muMin:h:muMax;
D = size(mu); % Количество значений
```

Затраты на функционирование системы:

```
W=zeros(D(1),1);
```

Число состояний:

```
Ns=M+R+1;
```

Поиск минимума: рассчитываем в цикле все необходимые характеристики (обозначения, как в предыдущей программе) и определяем минимальные затраты. Wmin=0;

```
for k=muMin:h:muMax
Расчет вероятностей:
    ro = 1/mu(k);
    p=zeros(12,1);
    p(1)=1;
    s=1;
    for i=2:M+1
        s=s*ro/(i-1);
        p(1) = p(1) + s;
    end;
    for i=M+2:Ns;
        s=s*ro/M;
        p(1)=p(1)+s;
    end;
    p(1)=1/p(1);
    for i=2:M+1
        p(i) = p(i-1) * ro/(i-1);
    end;
    for i=M+2:Ns
       p(i) = p(i-1) * ro/M;
    end;
```

Расчет характеристик:

```
n=0;
for i=1:Ns
   n=n+(i-1)*p(i);
end;
Ms=0;
for i=1:M
   Ms=Ms+(M-i+1)*p(i);
end;
r=0;
for i=M+2:Ns
   r=r+(i-1-M)*p(i);
end;
Potk=p(Ns);
lotk=1*Potk;
q=1-Potk;
A=q*1;
W(k)=C1*Ms+C2*r+C3*lotk-C4*A;
fprintf('mu=%f W=%f\r\n', mu(k), W(k));
```

```
if ((k==1) || ((k~=1) && (W(k)<Wmin)))
       Wmin=W(k);
       kmin=k;
    end;
end;
Вывод результата:
fprintf('kmin=%d
                 Wmin=%f\r\n', kmin, Wmin);
plot(mu,W);
Результаты работы программы
>> [mu,W]=SMO_optim(1,20,1);
mu=1.000000 W=-39.138498
mu=2.000000 W=51.125610
mu=3.000000 W=173.915283
mu=4.000000 W=240.069948
mu=5.000000 W=280.014630
mu=6.000000 W=306.670940
mu=7.000000 W=325.715826
mu=8.000000 W=340.000640
mu=9.000000 W=351.111407
mu=10.000000 W=360.000148
mu=11.000000 W=367.272806
mu=12.000000 W=373.333378
mu=13.000000 W=378.461565
mu=14.000000 W=382.857159
mu=15.000000 W=386.666677
mu=16.000000 W=390.000007
mu=17.000000 W=392.941181
mu=18.000000 W=395.555559
mu=19.000000 W=397.894739
mu=20.000000 W=400.000001
```

kmin=1 Wmin=-39.138498

Задание 3

Система дифференциальных уравнений Колмогорова для многоканальной СМО с накопителем конечной емкости.

$$\frac{dP_0}{dt} = -\lambda P_0(t) + \mu P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_1}{dt} = \lambda P_0(t) - (\lambda + \mu) P_1(t) + 2\mu P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_2}{dt} = 0 \cdot P_0(t) + \lambda P_1(t) - (\lambda + 2\mu) \cdot P_2(t) + 3\mu P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_3}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + \lambda P_2(t) - (\lambda + 3\mu) P_3(t) + 4\mu P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_4}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + \lambda P_3(t) - (\lambda + 4\mu) P_4(t) + 5\mu P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_5}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + \lambda P_4(t) - (\lambda + 5\mu) P_5(t) + 6\mu P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_5}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + \lambda P_4(t) + \lambda P_5(t) - (\lambda + 6\mu) P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_7}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + \lambda P_5(t) - (\lambda + 6\mu) P_6(t) + 6\mu P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_7}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + \lambda P_6(t) - (\lambda + 6\mu) P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_7}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + \lambda P_6(t) - (\lambda + 6\mu) P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_7}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + \lambda P_7(t) - (\lambda + 6\mu) P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t)$$

$$\frac{dP_7}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) +$$

Подставим наши значения

$$\begin{split} & \frac{dP_0}{dt} = -8 \cdot P_0(t) + 1 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_1}{dt} = 8 \cdot P_0(t) - 9 \cdot P_1(t) + 2 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_2}{dt} = 0 \cdot P_0(t) + 8 \cdot P_1(t) - 10 \cdot P_2(t) + 3 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_3}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 8 \cdot P_2(t) - 11 \cdot P_3(t) + 4 \cdot P_4(t) + 0 \cdot P_3(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_4}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 10 \cdot P_3(t) - 12P_4(t) + 5 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_5}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 10 \cdot P_4(t) - 13 \cdot P_5(t) + 6 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_6}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 8 \cdot P_5(t) - 14 \cdot P_6(t) + 6 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_6}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 8 \cdot P_6(t) - 14 \cdot P_7(t) + 6 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_6}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 8 \cdot P_6(t) - 14 \cdot P_7(t) + 6 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_6}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 6 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_6}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t) + 0 \cdot P_5(t) + 0 \cdot P_6(t) + 0 \cdot P_7(t) + 0 \cdot P_8(t) + 0 \cdot P_9(t) + 0 \cdot P_{10}(t) + 0 \cdot P_{11}(t) \\ & \frac{dP_1}{dt} = 0 \cdot P_0(t) + 0 \cdot P_1(t) + 0 \cdot P_2(t) + 0 \cdot P_3(t) + 0 \cdot P_4(t$$

Программа численного решения системы уравнений. Стационарный режим установился, когда вероятноти перестают меняться во времени. Если T=400 недостаточно для установления стационарного режима, то время надо увеличить, например, до 1000.

```
function [ p ] = SMO Kolmogorov;
1=8; mu=1;
dt=0.01;
T=400;
Ns=12; %число состояний
Ed=eye(Ns);
Ap=[(-1)*1 mu 0 0 0 0 0 0 0 0 0;
1 (-1)*1-mu 2*mu 0 0 0 0 0 0 0 0;
 1 (-1)*1-2*mu 3*mu 0 0 0 0 0 0 0;
0 0 1 (-1)*1-3*mu 4*mu 0 0 0 0 0 0;
 0 0 1 (-1)*1-4*mu 5*mu 0 0 0 0 0;
  0 0 0 1 (-1)*1-5*mu 6*mu 0 0 0 0;
 0 0 0 0 1 (-1)*1-6*mu 6*mu 0 0 0 0;
 0 0 0 0 0 1 (-1)*1-6*mu 6*mu 0 0 0;
 0 0 0 0 0 0 1 (-1)*1-6*mu 6*mu 0 0;
 0 0 0 0 0 0 0 1 (-1)*1-6*mu 6*mu 0;
0 0 0 0 0 0 0 0 0 1 (-1)*1-6*mu 6*mu;
 0 0 0 0 0 0 0 0 0 1 (-1) *6*mu];
% sum(Ap) % должна быть равна 0. Эту строку можно расскомментировать для проверки
D=Ed+dt*Ap;
p=zeros(Ns,T);
p(:,1) = [1;0;0;0;0;0;0;0;0;0;0;0];
for t=2:T
  p(:,t)=D*p(:,t-1);
end;
t=1:T;
figure; gr=plot(t,p); title('Вероятности', 'FontName','Arial Unicode MS');
xlabel('t'); ylabel('P');
```

Запуск программы

```
>> [ p ] = SMO Kolmogorov;
```


По графику видно, что стационарный режим не установился. Увеличим Т до 1000.

При цветной печати график можно оставить в таком виде, при нецветной – сделать все линии разными стилями.

Программа для расчета основных характеристик системы массового обслуживания и построения графиков их зависимости от времени до установления стационарного режима:

```
function [ p, n, Ms, Mz, r, Potk, lotk, q, A, Dneobsl, Dotk, ts, tog, tobsl, W ] =
SMO Kolmogorov raschet;
% Исходные данные
1=8; % Интенсивность входящего потока заявок
R=5; % Емкость накопителя
М=6; % Число обслуживающих каналов
mu=1; % Интенсивность обслуживания заявки каналом
С1=100; % Потери из-за простоя одного канала
С2=5; % Потери из-за простоя одной заявки в очереди
С3=20; % Потери из-за ухода заявки вследствие отказа в обслуживании или
нетерпеливых заявок
С4=20; % Прибыль от каждой обслуженной заявки
dt=0.01;
T=1000;
Ns=12; %число состояний
Ed=eye(Ns);
Ap=[(-1)*1 mu 0 0 0 0 0 0 0 0 0;
1 (-1) *1-mu 2*mu 0 0 0 0 0 0 0 0;
0 l (-1)*1-2*mu 3*mu 0 0 0 0 0 0 0;
0 0 1 (-1)*1-3*mu 4*mu 0 0 0 0 0 0;
0 0 0 1 (-1) *1-4*mu 5*mu 0 0 0 0 0;
0 0 0 0 1 (-1)*1-5*mu 6*mu 0 0 0 0 0;
0 0 0 0 0 1 (-1)*1-6*mu 6*mu 0 0 0 0;
0 0 0 0 0 0 1 (-1)*1-6*mu 6*mu 0 0 0;
0 0 0 0 0 0 0 1 (-1)*1-6*mu 6*mu 0 0;
0 0 0 0 0 0 0 0 1 (-1)*1-6*mu 6*mu 0;
0 0 0 0 0 0 0 0 0 1 (-1)*1-6*mu 6*mu;
0 0 0 0 0 0 0 0 0 0 1 (-1) *6*mu];
% sum(Ap) % должна быть равна 1
D=Ed+dt*Ap;
p=zeros(Ns,T);
p(:,1) = [1;0;0;0;0;0;0;0;0;0;0;0;0];
for t=2:T
  p(:,t)=D*p(:,t-1);
end:
t=1:T;
n=zeros(T,1); Ms=zeros(T,1); Mz=zeros(T,1); r=zeros(T,1); Potk=zeros(T,1);
lotk=zeros(T,1); q=zeros(T,1); A=zeros(T,1); Dneobsl=zeros(T,1);
Dotk=zeros(T,1); ts=zeros(T,1); tog=zeros(T,1); tobsl=zeros(T,1);
W=zeros(T,1);
for t=1:T
    for i=1:Ns
        n(t,1)=n(t,1)+(i-1)*p(i,t);
    end:
    for i=1:M
        Ms(t,1) = Ms(t,1) + (M-i+1) *p(i,t);
    end:
    Mz(t,1)=M-Ms(t,1);
```

```
for i=M+2:Ns
        r(t,1)=r(t,1)+(i-1-M)*p(i,t);
    Potk(t,1) = p(Ns,t);
    lotk(t,1) = l*Potk(t,1);
    q(t,1) = 1 - Potk(t,1);
    A(t,1)=q(t,1)*1;
    Dneobsl(t,1) = lotk(t,1)/1;
    Dotk(t,1) = lotk(t,1)/1;
    ts(t,1)=n(t,1)/A(t,1);
    tog(t,1)=r(t,1)/A(t,1);
    tobsl(t,1)=ts(t,1)-tog(t,1);
    W(t,1) = C1*Ms(t,1) + C2*r(t,1) + C3*lotk(t,1) - C4*A(t,1);
end;
t=1:T;
%Построение графиков
figure; plot(t,n); title('Число заявок в системе'); xlabel('t'); ylabel('n');
figure; plot(t,Ms); title('Число свободных каналов'); xlabel('t'); ylabel('Ms');
figure; plot(t,Mz); title('Число занятых каналов'); xlabel('t'); ylabel('Mz');
figure; plot(t,r); title('Длина очереди'); xlabel('t'); ylabel('r');
figure; plot(t,Potk); title('Beposthoctb otkasa'); xlabel('t'); ylabel('Potk');
figure; plot(t,lotk); title('NOTOK OTKASOB'); xlabel('t'); ylabel('lotk');
figure; plot(t,q); title('Относительная пропускная способность'); xlabel('t');
ylabel('q');
figure; plot(t,A); title('Абсолютная пропускная способность'); xlabel('t');
ylabel('A');
figure; plot(t, Dneobsl); title('Доля необслуженных заявок'); xlabel('t');
ylabel('Dneobsl');
figure; plot(t,Dotk); title('Доля заявок, получивших отказ в обслуживании');
xlabel('t'); ylabel('Dotk');
figure; plot(t,ts); title('Время пребывания заявки в системе'); xlabel('t');
ylabel('ts');
figure; plot(t,tog); title('Время ожидания в очереди'); xlabel('t');
ylabel('tog');
figure; plot(t,tobsl); title('Время обслуживания'); xlabel('t'); ylabel('tobsl');
figure; plot(t,W); title('Затраты на функционирование системы'); xlabel('t');
ylabel('W');
end
Запуск программы
>> [ p, n, Ms, Mz, r, Potk, lotk, q, A, Dneobsl, Dotk, ts, tog, tobsl, W ] = SMO_Kolmogorov_raschet;
```

Данные (привести первые 40 значений)

Даг	данные (привести первые 40 значении)							
	_			_	Pотк,			
t	n	Мс	Мз	r	Dнеобсл,	λотк	q	\boldsymbol{A}
					Dотк			
1	0,00	6,00	0,00	0,00000000	0,0000000000	0,0000000000	1,00000	8,000000
2	0,08	5,92	0,08	0,00000000	0,0000000000	0,0000000000	1,00000	8,000000
3	0,16	5,84	0,16	0,00000000	0,0000000000	0,0000000000	1,00000	8,000000
4	0,24	5,76	0,24	0,00000000	0,0000000000	0,0000000000	1,00000	8,000000
5	0,32	5,68	0,32	0,00000000	0,0000000000	0,0000000000	1,00000	8,000000
6	0,39	5,61	0,39	0,00000000	0,0000000000	0,0000000000	1,00000	8,000000
7	0,47	5,53	0,47	0,00000000	0,0000000000	0,0000000000	1,00000	8,000000
8	0,54	5,46	0,54	0,00000002	0,0000000000	0,0000000000	1,00000	8,000000
9	0,62	5,38	0,62	0,00000015	0,0000000000	0,0000000000	1,00000	8,000000
10	0,69	5,31	0,69	0,00000062	0,0000000000	0,0000000000	1,00000	8,000000
11	0,76	5,24	0,76	0,00000188	0,0000000000	0,0000000000	1,00000	8,000000
12	0,84	5,16	0,84	0,00000470	0,0000000000	0,0000000000	1,00000	8,000000
13	0,91	5,09	0,91	0,00001025	0,0000000000	0,0000000001	1,00000	8,000000
14	0,98	5,02	0,98	0,00002022	0,0000000001	0,0000000004	1,00000	8,000000
15	1,05	4,95	1,05	0,00003686	0,0000000002	0,0000000017	1,00000	8,000000
16	1,12	4,88	1,12	0,00006305	0,0000000007	0,0000000058	1,00000	8,000000
17	1,19	4,81	1,19	0,00010234	0,0000000020	0,0000000163	1,00000	8,000000
18	1,26	4,74	1,26	0,00015897	0,0000000051	0,0000000411	1,00000	8,000000
19	1,32	4,68	1,32	0,00023792	0,0000000117	0,0000000938	1,00000	8,000000
20	1,39	4,61	1,39	0,00034482	0,0000000247	0,0000001980	1,00000	8,000000
21	1,46	4,54	1,46	0,00048600	0,0000000489	0,0000003913	1,00000	8,000000
22	1,52	4,48	1,52	0,00066840	0,0000000914	0,0000007312	1,00000	7,999999
23	1,59	4,41	1,59	0,00089956	0,0000001628	0,0000013023	1,00000	7,999999
24	1,65	4,35	1,65	0,00118754	0,0000002780	0,0000022243	1,00000	7,999998
25	1,71	4,29	1,71	0,00154086	0,0000004577	0,0000036619	1,00000	7,999996
26	1,78	4,22	1,78	0,00196844	0,0000007294	0,0000058352	1,00000	7,999994
27	1,84	4,16	1,84	0,00247951	0,0000011290	0,0000090317	1,00000	7,999991
28	1,90	4,10	1,90	0,00308356	0,0000017023	0,0000136187	1,00000	7,999986
29	1,96	4,04	1,96	0,00379025	0,0000025071	0,0000200566	1,00000	7,999980
30	2,02	3,98	2,02	0,00460933	0,0000036140	0,0000289123	1,00000	7,999971
31	2,08	3,92	2,08	0,00555061	0,0000051091	0,0000408727	0,99999	7,999959
32	2,14	3,86	2,14	0,00662385	0,0000070948	0,0000567585	0,99999	7,999943
33	2,20	3,81	2,19	0,00783871	0,0000096921	0,0000775368	0,99999	7,999922
34	2,26	3,75	2,25	0,00920472	0,0000130417	0,0001043335	0,99999	7,999896
35	2,32	3,69	2,31	0,01073119	0,0000173056	0,0001384446	0,99998	7,999862
36	2,37	3,64	2,36	0,01242717	0,0000226683	0,0001813462	0,99998	7,999819
37	2,43	3,58	2,42	0,01430141	0,0000293379	0,0002347029	0,99997	7,999765
38	2,49	3,53	2,47	0,01636234	0,0000375469	0,0003003756	0,99996	7,999700
39	2,54	3,48	2,52	0,01861800	0,0000475533	0,0003804260	0,99995	7,999620
40	2,60	3,43	2,57	0,02107604	0,0000596401	0,0004771210	0,99994	7,999523
	_,00	2,12	-,-,	5,52107001	5,0000000000000000000000000000000000000	5,000:771210	J, J J J J I	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

t	$\overline{t_c}$	$\overline{t_{\text{ож}}}$	$t_{\text{обсл}}$	W
1	0,00	0,0000000000	0,00	440,00
2	0,01	0,0000000000	0,01	432,00
3	0,02	0,0000000000	0,02	424,08
4	0,03	0,0000000000	0,03	416,24
5	0,04	0,0000000000	0,04	408,48
6	0,05	0,0000000000	0,05	400,79
7	0,06	0,0000000000	0,06	393,18
8	0,07	0,0000000026	0,07	385,65
9	0,08	0,0000000190	0,08	378,20
10	0,09	0,0000000776	0,09	370,81
11	0,10	0,0000002348	0,10	363,51
12	0,10	0,0000005869	0,10	356,27
13	0,11	0,0000012814	0,11	349,11
14	0,12	0,0000025280	0,12	342,02
15	0,13	0,0000046079	0,13	335,00
16	0,14	0,0000078811	0,14	328,05
17	0,15	0,0000127920	0,15	321,18
18	0,16	0,0000198718	0,16	314,37
19	0,17	0,0000297399	0,17	307,64
20	0,17	0,0000431025	0,17	300,97
21	0,18	0,0000607494	0,18	294,38
22	0,19	0,0000835496	0,19	287,85
23	0,20	0,0001124447	0,20	281,40
24	0,21	0,0001484423	0,21	275,01
25	0,21	0,0001926077	0,21	268,70
26	0,22	0,0002460553	0,22	262,46
27	0,23	0,0003099395	0,23	256,29
28	0,24	0,0003854459	0,24	250,19
29	0,25	0,0004737821	0,24	244,16
30	0,25	0,0005761685	0,25	238,21
31	0,26	0,0006938297	0,26	232,32
32	0,27	0,0008279867	0,27	226,51
33	0,28	0,0009798486	0,27	220,78
34	0,28	0,0011506055	0,28	215,12
35	0,29	0,0013414220	0,29	209,53
36	0,30	0,0015534311	0,30	204,01
37	0,30	0,0017877288	0,30	198,57
38	0,31	0,0020453693	0,31	193,21
39	0,32	0,0023273608	0,32	187,91
40	0,32	0,0026346620	0,32	182,70

Графики

