Анализ

Галкина

05.09.2022

Оглавление

1	Идеи и номера с практики			5
	1.1	Знако	постоянные несобственные интегралы	5
	1.2	Знако	переменные несобственные интегралы	6
2	Несобственный интеграл			13
2.1 Основные определения		Основ	вные определения	13
		2.1.1	Критерии сходимости несобственного интеграла	13
		2.1.2	Признаки сравнения в предельной форме	14
		2.1.3	Несобственные интегралы, зависящие от параметра	18

OГЛAВЛEНUЕ

Глава 1

Идеи и номера с практики

Идеи Тимура, достойные того, чтобы быть запечатленными. Те места, которые на слух отмечаются словами типа «финт ушами», будут отмечаться знаком «опасный поворот» В стиле Бурбаки (а не то, что вы подумали).

1.1 Знакопостоянные несобственные интегралы

Для знакопеременных интегралов можно использовать признак сравнения. Обычно сравнение происходит с обобщенной степенной функцией. При этом имеется два различных типа особых точек: на бесконечности и с уходом на бесконечность в точке. Разберем подробнее.

Пример 1. Интеграл

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx$$

сходится при $\alpha>1$ и расходится при $\alpha\leqslant 1.$

Пример 2. Интеграл

$$\int_{a}^{b} \frac{1}{(x-a)^{\alpha}} dx$$

сходится при $\alpha < 1$ и расходится при $\alpha \geqslant 1$.

Пример. Интеграл $\int\limits_{1}^{\infty} \frac{x^2 dx}{x^4 - x^2 + 1}$ сходится, поскольку подынтегральная функция эквивалентна $\frac{1}{x^2}$ - сходящейся штуке.

Пример (№2374). Исследуем на сходимость в зависимости от параметров интеграл

$$\int_{1}^{\infty} \frac{1}{x^p \ln^q x} dx$$

Имеем 2 особые точки: 1 и ∞ , поэтому разобъем область исследования на две части и будет исследовать интеграл $\int\limits_{10}^{\infty}$.

Нам поторебуется следующий признак сравнения: для $\varepsilon>0$

$$\frac{1}{r^{\varepsilon}} < \ln^{\alpha}(x) < x^{\varepsilon}, \ x > \delta(\alpha, \varepsilon)$$

(доказательство через правило Лопиталя: действительно, $\lim_{n\to\infty} \frac{\ln^{\alpha}(x)}{x^{\varepsilon}} = 0$). Значит, имеем

$$\frac{1}{x^{p+\varepsilon}} \leqslant \frac{1}{x^p \ln^q x} \leqslant \frac{1}{x^{p-\varepsilon}}$$

Итак, интеграл сходится при $p > 1 + \varepsilon$ и расходится при $p < 1 - \varepsilon$. Так как ε вообще-то произвольный, то и условие сходимости не должно зависеть от него; иначе говоря, интеграл сходится при p > 1 и расходится p < 1.

Рассмотрим случай, когда p = 1. Имеем

$$\int_{10}^{\infty} \frac{1}{x \ln^q x} dx = \begin{cases} \ln(x) = t \\ dt = \frac{dx}{x} \end{cases} = \int_{\ln 10}^{\infty} \frac{dt}{t^q}$$

Значит, этот интеграл сходится при q>1. Соберем ответ:

$$\begin{cases} 1. \ p > 1 - \text{сходится;} \\ 2. \ p < 1 - \text{расходится;} \\ 3. \ p = 1, q > 1 - \text{сходится;} \\ 4. \ p = 1, q \leqslant 1 - \text{расходится.} \end{cases}$$

1.2 Знакопеременные несобственные интегралы

Напомним, что для применения признаков Абеля и Дирихле в интеграле $\int\limits_a^\infty f(x)g(x)dx$, необходимо, чтобы f(x) и g'(x) были непрерывными функциями.

Пример.

$$\int_{1}^{\infty} \frac{\sin(x)}{x^{\alpha}}$$

Интеграл имеет одну особую точку: $+\infty$.

Сначала расмотрим абсолютную сходимость: $\frac{|\sin(x)|}{x^{\alpha}} \leqslant \frac{1}{x^{\alpha}}$, откуда по признаку сравнения получаем, что интеграл сходится абсолютно при $\alpha > 1$. Рассмотрим обычную сходимость: интеграл удовлетворяет признаку Ди-

рихле, поскольку $\forall y>a: \int\limits_a^y \sin(x) dx = -\cos(y) + \cos(a) \leqslant 20$ и $\frac{1}{x^\alpha} \to 0$ монотонно. Значит, интеграл сходится при $\alpha>0$.

Теперь рассмотрим расходимость интерала. Докажем условную сходимость на (0,1]. Оценим снизу увадратом синуса:

$$\frac{|\sin(x)|}{x^{\alpha}} \geqslant \frac{\sin^2(x)}{x^{\alpha}} = \frac{1 - \cos(2x)}{2x^{\alpha}} = \frac{1}{2x^{\alpha}} - \frac{\cos(2x)}{2x^{\alpha}}$$

Вторая дробь сходится по Дирихле, откуда весь интеграл расходится абсолютно при $\alpha \leqslant 1$.

Осталось установить сходимость при $\alpha \leqslant 0$. Вспомним определение **пре**дела по Гейне:

$$\forall \{y_n\} \to 0: \lim_{n \to \infty} \int_{a}^{y_n} f(x)dx \to const$$

Тогда интеграл можно предстваить в виде $\sum_{n=1}^{\infty} \int_{y_n}^{y_{n+1}} f(x) dx$. Найдем какуюнибудь последовательность, на которой будет расходимость. Итак, пусть $y_n = \pi n$.

Теперь нам потребуется следующая

Теорема 1 (о среднем)

Eсли f(x) непрерывна и g(x) знакопостоянна, тогда

$$\int_{a}^{b} = f(\xi) \cdot \int_{a}^{b} g(x)dx, \ \xi \in (a,b)$$

Из теоремы получаем, что

$$\int_{\pi n}^{\pi n + \pi} \frac{\sin(x)}{x^{\alpha}} dx = \frac{1}{\xi_n^{\alpha}} \int_{\pi n}^{\pi n + \pi} \sin(x) dx = \frac{2 \cdot (-1)^n}{\xi_n^{\alpha}}$$

Тогда интеграл равен

$$\sum_{n=1}^{\infty} \frac{2 \cdot (-1)^n}{\xi_n^{\alpha}}$$

Ряд расходится по необходимому признаку, поэтому интеграл расходится по опредлению Гейне.

Можно доказать то же самое по критерию Коши. Именно, при $\alpha \leqslant 0$:

$$\exists \varepsilon > 0 \ \forall \delta \ \exists y_1, y_2 > \delta : \left| \int_{y_1}^{y_2} \frac{\sin(x)}{x^{\alpha}} \right| > \varepsilon$$

Чтобы убить модули, выберем такие пределы интегрирования, на которых синус знакопостоянен. Имеем

$$\int_{2\pi n}^{2\pi n+n} \frac{\sin(x)}{x^{\alpha}} dx = \frac{1}{\xi_n^{\alpha}} \cdot 2, \ 2\pi n \leqslant \xi_n \leqslant 2\pi n + \pi$$

Подставив худший вариант, получаем $\frac{2}{(2\pi n)^{\alpha}} \geqslant 2$, то есть расходимость. Соберем ответ:

$$\begin{cases} 1. \ \alpha > 1 - \text{сходится абсолютно;} \\ 2. \ 0 < \alpha \leqslant 1 - \text{сходится условно;} \\ 3. \ \alpha \leqslant 0 - \text{расходится.} \end{cases}$$

Поговорим про суммы. Более-менее очевидно, что если $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ сходятся, то и $\int_a^b (f(x)+g(x))dx$ сходится. Так же и для абсолютной сходимости. Так, $f(x)=\frac{\sin(x)}{x},\ g(x)=-\frac{\sin(x)}{x}$ - сходятся условно, но их сумма сходится абсолютно.

Пример (№2380в). $\int\limits_0^\infty x^2\cos(e^x)dx$. Одна особая точка - ∞ . Невероятно, но он сходится, так как пики косинуса становятся всё тоньше и тоньше.

Идея: чтобы проинтегрировать, надо добавить что-то такое, что можно внести под дифференциал. Домножим и разделим подынтегральную функцию на экспоненту, получим $\frac{x^2e^x\cos(e^x)}{e^x}$, и проинтегрируем $\frac{\cos(e^x)}{e^x}$, а остальное выкинем из интеграла по теореме о среднем

Оценим монотонность: $(x^2e^{-x})' = 2xe^{-x} - x^2e^{-x}$. При x > 2 производная отрицательна, значит, стремеление к нулю монотонно. Значит, по Дирихле он сходится, так как первообразная косинуса ограниченна. Рассмотрим абсолютную сходимость:

$$|x^2\cos(e^x)| \ge x^2\cos^2(e^x) = \frac{x^2}{2} + \frac{x^22\cos(2e^x)}{2}$$

Здесь первая дробь расходится, вторая сходится аналогично самому интегралу, то есть интеграл не сходится абсолютно.

Пример. Построим пример положительной функции, которая неограниченна, но интеграл от неё сходится. Будем строить штуки с площадью $\frac{1}{2^n}$ интервалах (n,n+1). Суммировав площади, получим, что интеграл сходится.

Но по определению Гейне мы должны показать сходимость при любом выборе последовательности! (а в данном случае мы взяли $x_n=n$). На самом деле, для знакоположительных функций при выборе любой последовательности пределы частичных

сумм
$$\sum_{n=1}^{k} \int_{n}^{n+1} f(x)dx$$
 одинаковы!

Действительно, любую частичную сумму последовательности можно зажать между членами x_n и x_{n+1} последовательности $x_n=n$, а её предел одинаков.

Если мы возьмем знакопеременную функцию, то если она сходится при самой «плохой» последовательности, то она сходится при любой другой последовательности. Причем самая плохая последовательность состоит из тех точек, где функция меняет знак. Имеет место следующая

Теорема 2 Если f(x) - знакопеременная функция и $\{x_n\}$ - последовательность, состоящая из точек, где функция меняет знак, то из сходимости $\sum_{n=1}^{\infty} \int\limits_{x_n}^{x_{n+1}} f(x) dx$ следует сходимость $\int\limits_{1}^{\infty} f(x) dx$

Геометрический смысл: при данном выборе последовательности отрицательные и положительные члены имеют наибольший возможный размер.

Пример (№2380a) $\int_{0}^{\infty} x^{p} \sin(x^{q}) dx$, $q \neq 0$. Две особые точки: 0 и ∞ . Рассмотрим сначала на бесконечности.

1. Если q < 1, то интеграл знакопостоянный:

$$x^p \sin(x^q) \sim x^{p+q}$$

Значит, интеграл сходится при p + q < -1.

2. Применим идею идею из предыдущего номера: домножить сверху и снизу на какую-нибудь штуку, в данном случае qx^{q-1} . Получим

$$\frac{x^{p}\sin(x^{q})\cdot qx^{q-1}}{qx^{q-1}} = -\frac{x^{p-q+1}}{q}\cdot (\cos(x^{q}))'$$

Эта штука сходится по Дирихле при p-q+1<0, так как $-\frac{1}{q}x^{p-q+1}$ монотонно стремится к нулю.

3. Рассомтрим абсолютную сходимость:

$$|x^p \sin(x^q)| \leqslant x^p$$

Сходится абсолютно при p < -1.

4. Рассмотрим ситуацию, когда $-1\leqslant p\leqslant -1+q$. Абсолютная сходимость:

$$|x^p \sin(x^q)| \geqslant x^p \sin^2(x^q) = \frac{x^p}{2} - \frac{x^p \cos(2x^q)}{2}$$

Первая дробь расходится, вторая дробь сходится при p-q+1<0 по аналогии с самим интегралом.

5. Докажем, что интеграл расходится при $p \ge -1 + q$. Рассмоторим последовательность, из точек, где синус меняет знак, и, согласно теореме,

оценим интеграл рядом $\sum_{n=1}^{\infty} \int_{(\pi n)^{\frac{1}{q}}}^{(\pi n+\pi)^{\frac{1}{q}}} x^p \sin(x) dx$. Заметим, что $(\pi n)^{\frac{1}{q}} \to \infty$.

Снова домножим на qx^{q-1} . Тогда

$$\frac{1}{q}\xi_n^{p-q+1} \int_{(\pi n)^{\frac{1}{q}}}^{(\pi n+\pi)^{\frac{1}{q}}} \sin(x^q) q x^{q-1} dx = \frac{1}{q}\xi_n^{p-q+1} \left(-\cos(x^q)\right) \Big|_{(\pi n)^{\frac{1}{q}}}^{(\pi n+\pi)^{\frac{1}{q}}} = \frac{2(-1)^{n+1}}{q}\xi_n^{p-q+1}$$

Значит, ряд $\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{q} \xi_n^{p-q+1}$ расходится по необходимому признаку, так как $\xi_n^{p-q+1} \geqslant (\pi n)^{\frac{p-q+1}{q}} \to \infty$.

Теперь рассмотрим интеграл в нуле.

$$\int_{0}^{1} x^{p} \sin(x^{q}) dx = \begin{cases} t = \frac{1}{x} \\ dt = -\frac{dx}{x^{2}} \\ 0 \mapsto \infty \end{cases} = \int_{1}^{\infty} \frac{1}{t^{p+2}} \sin\left(\frac{1}{t^{q}}\right) dt$$

$$1 \mapsto 1$$

Получили ситуацию один в один, только к p надо прибавить 2.

Пример (№2373). $\int\limits_0^\infty \frac{\sin(\ln(x))}{\sqrt{x}} dx$. Сначала исследуем в нуле:

$$\left| \frac{\sin \ln(x)}{\sqrt{x}} \right| \leqslant \frac{1}{\sqrt{x}}$$

значит, сходится абсолютно.

Теперь исследуем на сходимость на бесконечности. Так как $(\cos \ln(x))' = -\frac{\sin \ln(x)}{x}$, представим функцию в виде $\frac{\sin \ln(x)}{x} \cdot \sqrt{x}$ и возьмем худшую последовательность $x_n = e^{\pi n}$:

$$\int_{e^{\pi n}}^{e^{\pi n+\pi}} \frac{\sin \ln(x)}{x} \cdot \sqrt{x} dx = \sqrt{\xi_n} \cdot \int_{e^{\pi n}}^{e^{\pi n+\pi}} \frac{\sin \ln(x)}{x} dx = \sqrt{\xi_n} \cdot (\cos \ln(x)) \Big|_{e^{\pi n}}^{e^{\pi n+\pi}} = \sqrt{\xi_n} (-1)^{-1} \cdot 2 \to \infty$$

- интеграл расходится.

Глава 2

Несобственный интеграл

2.1 Основные определения

Определение 1 Пусть функция f интегрируема на отрезке [a,b] для b > a. Тогда несобственный интеграл первого рода (c одной особой точкой) - предел

$$\int_{a}^{\infty} f(x)dx := \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

Если таковой предел существует, то интеграл сходится; если предел равен бесконечности или не существует, то интеграл расходится. Аналогично определяется и интеграл с нижним пределом $-\infty$.

Пример.
$$\int\limits_0^1 \ln x dx = \lim_{\varepsilon \to +0} \left(\int\limits_\varepsilon^1 \ln x dx \right) = \lim_{\varepsilon \to +0} \left(x \ln x \Big|_\varepsilon^1 - \int\limits_\varepsilon^1 dx \right) = \lim_{\varepsilon \to +0} \frac{-\varepsilon^2}{1/\varepsilon} - 1 = -1$$
 - интеграл сходится.

Рассмотрим случай конечного числа особых точек.

2.1.1 Критерии сходимости несобственного интеграла

Теорема 3 (критерий Коши) Пусть $\forall b \geqslant a$ функция интегрируема на [a,b]. Тогда $\int_a^{\infty} f(x)dx$ сходится $\Leftrightarrow \forall \varepsilon > 0$ $\exists b_0(\varepsilon) > 0$ $\forall b_1, b_2 > b_0$: $\left| \int_{b_1}^{b_2} f(x)dx \right| < \varepsilon$

Доказательство. По условию, существует предел $\lim_{b\to +\infty} F(b) = A \in \mathbb{R}$, где $F(b) = \int_a^b f(x) dx$. Зафиксируем $\varepsilon > 0$. Тогда из существования предела следует для $\frac{\varepsilon}{2}$: $\exists b_o(\varepsilon) > a : |F(b) - A| < \frac{\varepsilon}{2}$. Пусть $b_1 > b_0$, $b_2 > b_0$.

Тогда $|F(b_2) - F(b_1)| = |F(b_2) - A| + |F(b_1) - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Достаточность. Докажем существование предела $\lim_{b \to \infty} F(b)$ из определения предела по Гейне. Пусть $b_n \to \infty$, тогда $\forall b_0 > a \; \exists n_0(\varepsilon) \in \mathbb{N} \; \forall n > n_0$ Покажем, что предел не зависит от выбора последовательности b_n . Выберем другую последовательность b_n^* . Обозначим предел $\lim_{n \to \infty} F(b_n^*) = B$. Составим последовательность $b_1, b_1^*, b_2, b_2^*, \dots \to \infty$. Тогда предел F от этой последовательности обозначим как C. Так как пределы подпоследовательностей сходятся к пределу последовательности, то A = B = C. Значит, выполняется условие определения предела по Гейне, значит, интеграл сходится. \square

Пример. $\int_1^\infty \frac{\sin x}{x^\alpha} dx$ сходится при $\alpha > 0$, расходится при $\alpha \leqslant 0$. Докажем это.

1.
$$\alpha > 0$$
. Поехали: $\forall \varepsilon > o \; \exists b_0(\varepsilon) > 1 \; \forall b_1 > b_0, b_2 > b_0 : \left| \int_{b_1}^{b_2} \frac{\sin x}{x^{\alpha}} dx \right| < \varepsilon$. Доказываем: $\left| \int_{b_1}^{b_2} \frac{\sin x}{x^{\alpha}} dx \right| = \left| \int_{b_1}^{b_2} \frac{1}{x^{\alpha}} d\cos x \right| = \left| \frac{\cos x}{x^{\alpha}} \right|_{b_1}^{b_2} - \int_{b_1}^{b_2} \cos x d(\frac{1}{x^{\alpha}}) \leqslant \ldots \leqslant \frac{4}{b_0^{\alpha}}$. Значит, $b_0 > (\frac{4}{\varepsilon})^{\frac{1}{\alpha}}$.

2. $\alpha \leqslant 0$. Синус теперь принимает разные знаки. Пусть $b_k = 2\pi k$. Тогда по критерию Коши интеграл расходится.

Теорема 4 (критерий сходимости через остаток) Пусть $\int_a^{\infty} = \int_a^b + \int_b^{\infty}$, (b > 0).

- 1. Если интеграл сходится, то и любой из его остатков сходится.
- 2. Если хотя бы один из остатков сходится, то интеграл сходится.

Доказательство. 🗆

Теорема 5 (критерий сходимости несобственного интеграла от несобственной функции)

Пусть $\forall b > a$ функция интегрируема на [a,b] и неотрицательная . Тогда $\int_a^\infty f(x) dx$ сходится \Leftrightarrow первообразная F(b) < M ограниченна.

Доказательство. F(b) неубывает и имеет конечный предел. Значит, интеграл сходится. Обратно, пусть существует конечный предел $\lim_{b\to\infty} F(b)$, то F(b) ограниченна в некоторой окрестности. \square

2.1.2 Признаки сравнения в предельной форме

Теорема 6 (признак сравнения)

Пусть f(x) > g(x) > 0 начиная с некоторого x > a, и для любого b > a функции интегрируемы на [a,b]. Тогда

- 1. Если $\int f(x)$ сходится, то и $\int g(x)$ сходится.
- 2. Если $\int g(x)$ расходится, то и $\int f(x)$ расходится.

Доказательство. По свойству определенного интеграла (транзитивность числовых неравенств), $F(b) \leq M$. Тогда по критерию 3 интеграл сходится. 2. Погодите, это реально?

Теорема 7 (второй признак сравнения)

Eсли $\frac{f(x)}{g(x)}=k, \ \infty \neq k \neq 0, \ mo \ ux \ интегралы <math>cxodsmcs$ или pacxodsmcsодновременно.

Доказательство.

□

Теорема 8 (о непрерывности интеграла) Если функция определена и непрерывна,

Доказательство. \square

Теорема 9 (о дифференцируемости собственного интеграла, зависящего от параметра/ правило Лейбница)

 $\Pi y cm b f(x,y)$

- 1. непрерывна на $P = [a, b] \times [c, d];$
- 2. $\frac{\partial f}{\partial y}(x,y)$ непрерывна на P; Тогда:

1.
$$F(y) = \int_a^b f(x,y) dx$$
 дифференцируема на $[c,d]$; 2. $F'(y) = \int_a^b \frac{\partial f}{\partial y}(x,y) dx$

Доказательство. Пусть $y \in [c,d], \ y+h \in [c,d].$ Рассмотрим F(y+1) $h) - F(y) = \int_{a}^{b} (f(x, y + h) - f(x, y)) dx$, значит, по теореме Лагранжа это равно $\int\limits_a^b \frac{\partial f}{\partial y}(x,y+\theta h)h\,dx$, где $\theta\in(0,1)$. Дифференцируем: F'(y)= $\lim_{h\to 0} rac{F(y+h)-F(y)}{h} = \lim_{h\to 0} \int\limits_a^b rac{\partial f}{\partial y}(x,y+\theta h) dx$. При $h\to 0$ делаем замену u= $y+\theta h,\ u o y.$ Тогда предел $\lim_{h o 0}\int\limits_a^b rac{\partial f}{\partial y}(x,u)dx=$ по теореме о предельном переходе!!!!!!!! □

Следующая теорема обощает правило Лейбница:

Теорема 10 (обобщенное правило Лейбница)

Пусть f(x,y) непрерывна на $D = \{(x,y) \mid a(y) \leqslant x \leqslant b(y), c \leqslant y \leqslant d\}$, $\frac{\partial f}{\partial x}(x,y)$ непрерывна на D и a'(y),b'(y) непрерывны на [c,d]. Тогда $F(y) = \int\limits_{a(y)}^{b(y)} f(x,y) dx$ дифференцируема на $y \in [c,d]$, причем $F'(y) = \int\limits_{a(y)}^{b(y)} \frac{\partial f}{\partial y}(x,y) dx + f(b(y),y) \cdot b'(y) - f(a(y),y) \cdot a'(y)$.

Доказательство. F(y) = F(y, a(y), b(y)). По правилу производной сложной функции $\frac{dF}{dy} = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial a} \cdot \frac{\partial a}{\partial y} \frac{\partial F}{\partial b} \cdot \frac{\partial b}{\partial y} = \int\limits_{a(y)}^{b(y)} \frac{\partial F}{\partial y}(x, y) dx + f(b(y), y) \cdot b'(y) - f(a(y), y) \cdot a'(y)$

Заметим, что по правилу Лейбница, $\frac{\partial F}{\partial y} = \int\limits_{a(y)}^{b(y)} \frac{\partial f}{\partial y}(x,y) dx$, $\frac{\partial F}{\partial b} f(b(y),y)$,

$$\frac{\partial F}{\partial a} = \left(-\int_{b(y)}^{a(y)} f(x,y)dx\right)'_a = -f(a(y),y)$$

Пример. Посчитаем $F(a) = \int\limits_0^{\frac{\pi}{2}} \frac{\ln(1+a^2\sin^2(x))}{\sin(x)}$. тут я отрубился

Теорема 11 (об интегрировании интеграла, зависящего от параметра)

Пусть f(x,y) непрерывна на $P = [a,b] \times [c,d]$. Тогда

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y)dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy$$

Доказательство. Введем функции $G(t) = \int\limits_{c}^{d} dy \int\limits_{a}^{t} f(x,y) dy, \ H(t) = \int\limits_{a}^{t} dx \int\limits_{c}^{d} f(x,y) dy.$ Докажем, что G(b) = H(b) (что доказывает требуемое утверждение). Введем функцию $g(t,y) = \int\limits_{a}^{t} f(x,y) dx,$ тогда $G(t) = \int\limits_{c}^{d} g(t,y)$ - применима теорема о дифференцировании сложной функции: $\frac{\partial g}{\partial t} = \left(\int\limits_{a}^{t} f(x,y) dx\right)_{t}' = f(t,y)$ - непрерывна на P по условию. Теперь докажем, что g(t,y) непрерывна на P, для этого покажем, что $\lim\limits_{\Delta t \to 0, \Delta y \to 0} \Delta g = \lim\limits_{\Delta t \to 0, \Delta y \to 0} \Delta g = \lim\limits_{\Delta t \to 0, \Delta y \to 0} \Delta g$

0. Имеем
$$\Delta g = g(t + \Delta t, y + \Delta y) - g(t, y) = \int_a^{t+\Delta t} f(x, y + \Delta y) dx - \int_a^t f(x, y) dx = \int_a^t (f(x, y + \Delta y) - f(x, y)) dx + \int_t^{t+\Delta t} f(x, y + \Delta y) dx$$
. Так как $f(x, y)$ непрерывна на компакте P , то она равномерно непрерывна на P и ограниченна константой M . Зафиксируем $\varepsilon > 0$. Из равномерной непрерывности для

$$\frac{\varepsilon}{2(b-a)} > 0 \,\exists \delta_1 > 0 \,\forall (x_1, y_1) \in P \,\forall (x_2, y_2) \in P : \sqrt{(x_1 - x_2)^2 - (y_1 - y_2)^2} < \delta_1$$

$$\implies |f(x_1, y_1) - f(x_2, y_2)| < \frac{\varepsilon}{2(b-a)}$$

Если $|\Delta y|<\delta$, то $|f(x,y+\Delta y)-f(x,y)|<\frac{\varepsilon}{2(b-a)};$ тогда можно оценить интеграл:

$$\left| \int_{a}^{t} (f(x, y + \Delta y) - f(x, y)) dx \right| < \frac{\varepsilon}{2} \cdot \frac{t - a}{b - a} \leqslant \frac{\varepsilon}{2}$$

Если $|\Delta t| < \frac{\varepsilon}{2M}$, то

$$\left| \int_{t}^{t+\Delta t} f(x, y + \Delta y) dx \right| \leqslant \left| \int_{t}^{t+\Delta t} |f(x, y + \Delta y)| dx \right| \leqslant M \cdot \frac{\varepsilon}{2M} = \frac{\varepsilon}{2}$$

Пусть $\delta = \min\{\delta, \frac{\varepsilon}{2M}\}$, тогда

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall |\Delta t| < \delta \ \forall |\Delta y| < \delta : |\Delta g| < \varepsilon$$

Это означает, что $\lim_{\substack{\Delta t \to 0 \\ \Delta y \to 0}} \Delta g = 0$. Заметим, что g(t,y) непрерывна на P.

Применим теорему о дифференцировании к функции G(t):

$$G'(t) = \int_{c}^{d} \frac{\partial g}{\partial t}(t, y) dy = \int_{c}^{d} f(t, y) dy$$

С другой стороны,

$$H'(t) = \frac{\partial}{\partial t} \left(\int_{a}^{t} dx \int_{c}^{d} f(x, y) dy \right) = \int_{c}^{d} f(t, y) dy$$

Итак, мы получили, что $G'(t) = H'(t), \ G(a) = H(a) = 0,$ откуда $G(t) = H(t) \implies G(b) = H(b).$ \square

Пример. $\int_0^1 \frac{x^b - x^a}{\ln(x)} dx$, 0 < a < b. Имеем $\int_a^b x^y dy = \frac{x^b - x^a}{\ln(x)}$, подынтегральная функция непрерывна на бруске $[0,1] \times [a,b]$, тогда интеграл равен $\int_0^1 dx \int_a^b x^y dy = \int_a^b \frac{dy}{y+1} = \ln(b+1) - \ln(a+1)$.

Пример 2. Вычислить $\int_0^1 \sin(\ln(\frac{1}{x})) \frac{x^b - x^a}{\ln(x)} = \int_0^1 dx \int_a^b \sin(\ln(\frac{1}{x})) x^y dy$. Функция $f(x,y) = \sin(\ln(\frac{1}{x})) x^y$ непрерывна на $[0,1] \times [a,b], \ f(0,y) = 0$. Тогда $\int = \int_a^b dy \int_0^1 \sin(\ln(\frac{1}{x})) x^y dx = \begin{cases} t = \ln(\frac{1}{x}) = -\ln(x) \\ dx = -e^{-t} dt \end{cases} = \int_a^b dy \int_0^\infty \sin(t) e^{-ty} e^{-t} dt.$

Внутренний интеграл возьмем по частям: $I=\int\limits_0^\infty \sin(t)e^{-t(y+1)}dt=-\cos(t)e^{-t(y+1)}\big|_0^\infty-(y+1)\int\limits_0^\infty \cos(t)e^{-t(y+1)}dt,\ \ I=1-(y+1)^2I.$ Значит, искомый интеграл

равен $\int_{a}^{b} \frac{dy}{(y+1)+1} = arctg\left(\frac{a-b}{1+ab}\right)$ Домашка: тоже самое для косинуса.

2.1.3 Несобственные интегралы, зависящие от параметра

Рассмотрим семейство функций $f(x,y), x \in X, y \in Y$. Пусть $M \subset Y$ - множество сходимости.

Определение 2 f(x,y) сходится поточечно $\kappa \varphi(x)$ на M при $x \to x_0$, если

$$\forall y \in M \ \forall \varepsilon > 0 \ \exists \delta(\varepsilon, y) \ \forall x \in X \cap U_{\delta}^{\circ}(x_0) : |f(x, y) - \varphi(y)| < \varepsilon$$

Определение предела:

$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0 \,\exists \delta(\varepsilon) \,\forall x \in X : 0 < |x - x_0| < \delta \implies |f(x) - A| < \varepsilon$$

Определение 3 f(x,y) сходится равномерно $\kappa \varphi(x)$ на E при $x \to x_0$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall x \in X \cap U_{\delta}^{\circ}(x_0) \ \forall y \in E : |f(x,y) - \varphi(x)| < \varepsilon$$

Пример. $f(x,y) = \sin(y^x)$ - непрерывен (??)

Определение 4 $\int\limits_a^\infty f(x,y)dx$ сходится поточечно к F(y) на M, если

$$\forall y \in M \ \forall \varepsilon > 0 \ \exists b_0(\varepsilon, y) > a \ \forall b > b_0 : \left| \int\limits_b^\infty f(x, y) dx \right| < \varepsilon$$

Обозначим $F(b,y) = \int\limits_a^b f(x,y) dx$. Тогда $|F(b,y) - F(y)| = \left|\int\limits_b^\infty f(x,y) dx\right|$. F(b,y) сходится к F(y) поточечно на M при $b \to \infty$. Обозначим остаток интеграла $R(b,y) = \int\limits_b^\infty f(x,y) dx$. Остаток сходится поточечно $R(b,y) \to 0 \ \forall y \in N$ при $b \to \infty$.

Определение 5 Интеграл сходится равномерно $\kappa F(y)$ на E, если

$$\forall \varepsilon > 0 \ \exists b_0(\varepsilon) \ \forall b > b_0 \ \forall y \in E : \left| \int_b^\infty f(x, y) dx \right| < \varepsilon$$

Как и с рядями, есть супремум-критерий.

Теорема 12 (супремум-критерий)

Несобственный интеграл $\int_{a}^{\infty} f(x,y)dx$, зависящий от параметра, сходится равномерно на E тогда и только тогда, когда

$$\lim_{b \to \infty} \sup_{y \in E} \left| \int_{b}^{\infty} f(x, y) dx \right| = 0$$

Доказательство. Самостоятельно

Теорема 13 . (метод оценки остатка)

Пусть интеграл $\int_{a}^{\infty} f(x,y)dx$ сходится на E, и r(b) - какая-то оценка остатка. Тогда если $|R(b,y)| \leqslant r(b) \ \forall y \in E$ и $r(b) \to 0$ при $b \to \infty$, тогда \int_{a}^{∞} , то интеграл сходится равномерно на E. Если же существует такая функция y(b), что $R(b,y(b)) \to s \neq 0$, то интеграл не сходится равномерно на X.

Пример. $F(y) = \int\limits_0^\infty y e^{-xy} dx$. Доказать, что сходимость равномерная при $[y_0,\infty),\ y_0\geqslant 0$, но на $(0,\infty)$ нет равномерной сходимости. Решение: пусть остаток $R(b,y)=\int\limits_b^\infty y e^{-xy} dx=e^{-by}$. По методу оценки остатка при оценке $r(b)=e^{-by_0}$ имеем равномерную сходимость. Если мы возьмем $y=\frac{1}{b}$, то и $R(b,\frac{1}{b})=e^{-1}\neq 0$, поэтому нет равномерной сходимости.