Universidade do Minho Departamento de Matemática e Aplicações **MIECOM**

Análise Matemática B

— folha 2 — Funções Escalares — 2011'12 — 2011'12 —

1. Para cada uma das funções que se seguem, determine o seu domínio e o seu contradomínio:

- (a) $f(x,y) = \frac{1}{x^2 + y^2}$;
- (b) $f(x,y) = -y^2$;
- (c) $f(x,y) = -e^{-x^2-y^2}$;
- (d) $f(x,y) = x^3 \sin y$;
- (e) f(x,y) = |xy|;
- (f) $f(x,y) = \sin y$;
- (g) $f(x,y) = \cos(\sqrt{x^2 + y^2});$
- (h) $f(x,y) = \frac{\sin(x^2+y^2)}{x^2+y^2}$.

2. Sem recorrer a instrumentos eletrónicos, faça a correspondência de cada uma das funções do exercício anterior com os gráficos apresentados na última página.

3. Estude a existência dos seguintes limites:

$$\text{(a)} \ \lim_{(x,y)\to(0,0)} \ f(x,y) \,, \quad \text{com} \quad f(x,y) = \left\{ \begin{array}{ll} 1 & \text{se} \ y=x^2 \,, \\ 0 & \text{se} \ y \neq x^2 \,; \end{array} \right.$$

(b)
$$\lim_{(x,y)\to(0,0)} g(x,y)$$
, com $g(x,y) = \begin{cases} 2 & \text{se } x^2+y^2 \le 1, \\ 5 & \text{se } x^2+y^2 > 1; \end{cases}$

4. Calcule, caso exista (ou demonstre que não existe) cada um os seguintes limites:

(a)
$$\lim_{(x,y)\to(1,2)} \frac{xy}{x^2+y^2}$$
; (b) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$;

(c)
$$\lim_{(x,y)\to(0,0)} e^{-\frac{1}{x^2+y^2}}$$
; (d) $\lim_{(x,y,z)\to(2,0,1)} \frac{x^4z}{(x^4+y^2)^3}$;

(e)
$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{2x^2+4y^2}$$
; (f) $\lim_{(x,y)\to(1,-1)} \frac{x+y}{x-y}$;

(g)
$$\lim_{(x,y)\to(1,1)} \frac{x^2-y^2}{x-y}$$
; (h) $\lim_{(x,y)\to(0,0)} \frac{x^4y^4}{(x^4+y^2)^3}$;

(i)
$$\lim_{(x,y)\to(0,0)} \frac{-2x^2y^3}{2x^4+3y^6}$$
 (j) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$;

$$\text{(I)} \lim_{(x,y)\to(0,0)} \, \frac{y^2-2y}{x^4+y^2} \; ; \qquad \text{(m)} \lim_{(x,y)\to(0,0)} \, \frac{-2x^2+3y}{x^2+y^2} \; ;$$

(n)
$$\lim_{(x,y)\to(0,0)} \frac{2xy^3}{3x^2+4y^6}$$
; (o) $\lim_{(x,y)\to(0,1)} \frac{x^2(y-1)^2}{x^2+(y-1)^2}$;

5. Estude a continuidade de cada uma das funções $f,g:\mathbb{R}^2\to\mathbb{R}$ definidas por:

$$f(x,y) = \begin{cases} \frac{x^2 + 2xy^2 + y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$g(x,y) = \begin{cases} \frac{x^2 + 2xy^2 + y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 1, & (x,y) = (0,0) \end{cases}$$

6. Estude a continuidade das funções definidas por:

(a)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$
 (b) $f(x,y) = \begin{cases} 2 & \text{se } xy \neq 0, \\ 0 & \text{se } xy = 0; \end{cases}$

$$\text{(c)} \ \ f(x,y) = \left\{ \begin{array}{ll} \frac{x^3y}{x^6 + y^2} & \text{se} \ \ (x,y) \neq (0,0), \\ 0 & \text{se} \ \ (x,y) = (0,0); \end{array} \right.$$

$$\text{(d)} \ \ f(x,y) = \left\{ \begin{array}{ll} 0 & \text{se} \ \ 0 < y < x^2, \\ 1 & \text{caso contrário}; \end{array} \right.$$

(e)
$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^4 + y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$
 (f) $f(x,y) = \begin{cases} x & \text{se } x \geq y, \\ y & \text{se } x < y; \end{cases}$

$$(g) \ f(x,y) = \left\{ \begin{array}{ll} \frac{y^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{array} \right. \\ \left(\begin{array}{ll} \text{m)} \ f(x,y) = \left\{ \begin{array}{ll} \frac{x^4 y^4}{(x^4 + y^2)^3}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{array} \right. \\ \left(\begin{array}{ll} x^4 y^4 & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{array} \right. \\ \left(\begin{array}{ll} x^4 y^4 & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{array} \right)$$

7. Usando a definição, calcule a derivada direcional $\frac{\partial f}{\partial \vec{v}}(A)$ da função f no ponto A segundo o vector \vec{v} , para:

(a)
$$f(x,y) = xy$$
, $\vec{v} = \vec{e}_1 + \vec{e}_2$, $A = (1,0)$;

(b)
$$f(x,y) = e^{x^2+y^2}$$
, $\vec{v} = -\vec{e}_1 + \vec{e}_2$, $A = (1,1)$;

(c)
$$f(x,y) = 3x + y^2$$
, $\vec{v} = \vec{e}_1 + \vec{e}_2$, $A = (0,0)$;

(d)
$$f(x,y,z) = x^2 + xy + z^2$$
, $\vec{v} = \vec{e}_1 + 2\vec{e}_2 + \vec{e}_3$, $A = (1,2,-1)$;

8. Determine as funções derivadas parciais de primeira ordem das funções definidas por

(a)
$$f(x,y) = 5y^3 + 2xy - x^2$$
;

(b)
$$f(x,y) = ye^x + x\cos(x^2y)$$
;

(c)
$$f(x, y) = \log(\cos(xy))$$
;

(d)
$$f(x, y, z) = \sin x + \log x + e^{xz}$$
;

(e)
$$f(x, y, z) = \sqrt{x^2 y z^3}$$
.

9. Calcule $\frac{\partial f}{\partial \vec{v}}(0,0)$ para qualquer $\vec{v} \in \mathbb{R}^2 \setminus \{(0,0)\}$, onde:

(a)
$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(b)
$$f(x,y) = \frac{xy^3}{x^2 + y^6}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

10. Calcule as derivadas parciais de primeira ordem das funções definidas por

(a)
$$f(x,y) = 1$$
 se $x = 0$ ou $y = 0$ e $f(x,y) = 0$ se $xy \neq 0$;

(b)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(c)
$$f(x,y) = \frac{2xy^2}{x^2 + y^4}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(d)
$$f(x,y) = \frac{xy}{x+y}$$
 se $x+y \neq 0$ e $f(x,y) = x$ se $x+y = 0$;

11. Calcule as derivadas parciais de segunda ordem das funções definidas por

(a)
$$f(x,y) = e^{x^2-y^2}$$
;

(b)
$$f(x,y) = \log(1 + x^2 + y^2)$$
;

(c)
$$f(x, y, z) = \cos(xyz)$$
;

(d)
$$f(x, y, z) = y^2 \log x + xe^{xz}$$

12. Usando o teorema de Schwarz, mostre que não pode existir uma função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ cujas derivadas parciais de primeira ordem sejam:

(a)
$$\frac{\partial f}{\partial x}(x,y)=2x^3$$
 , $\frac{\partial f}{\partial y}(x,y)=yx^2+x$;

(b)
$$\frac{\partial f}{\partial x}(x,y) = x \operatorname{sen} y$$
, $\frac{\partial f}{\partial y}(x,y) = y \operatorname{sen} x$.

13. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \left\{ \begin{array}{ll} \dfrac{xy^3}{x^2+y^2} & \mathrm{se} \ (x,y) \neq (0,0), \\ 0 & \mathrm{se} \ (x,y) = (0,0). \end{array} \right.$

(a) Determine
$$\frac{\partial f}{\partial x}$$
 e $\frac{\partial f}{\partial y}$.

(b) Calcule
$$\frac{\partial^2 f}{\partial x \partial y}(0,0)$$
 e $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.

(c) Explique porque não há contradição com o teorema de Schwarz.

14. Considere a função definida por
$$f(x,y)=\left\{ egin{array}{cc} \dfrac{xy^2}{x+y} & {\rm se} \ x
eq -y, \\ 0 & {\rm se} \ x=-y. \end{array} \right.$$

(a) Calcule
$$\frac{\partial f}{\partial y}(x,0)$$
 e $\frac{\partial f}{\partial x}(0,y)$.

(b) Verifique que
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$$
 .

