

EUROPEAN BACCALAUREATE 2009

CHEMISTRY

DATE: 10 JUNE 2009

DURATION OF THE EXAM:

3 hours (180 minutes)

PERMITTED MATERIAL:

Calculator (not graphical and not programmable)

INSTRUCTIONS:

- Answer two A questions and two B questions.
- Indicate which four questions you have answered by putting crosses in the appropriate place on the sheet supplied.
- Use a separate answer sheet for each of the four main questions.

Question A1			
Pag	ge 1/2 Marks		
a) When fish is kept at too high a temperature a characteristic smell is produced after a short while. This is due to the degradation of nitrog containing compounds in the fish. The degradation products formed compounds such as ammonia, NH ₃ , and trimethylamine, (CH ₃) ₃ N.	jen-		
i. Give the structural formula of trimethylamine.	1 mark		
ii. Explain why trimethylamine is a Brønsted base by referring to its structure.	2 marks		
iii. Write the equations for the reactions of ammonia and trimethylam with water.	nine 2 marks		
iv. Identify the three acid-base couples involved in these reactions.	3 marks		
v. Give the expression for the base dissociation constant, $K_{\rm b}$, of trimethylamine.	1 mark		
vi. By referring to structures of the molecules, state and explain whether ammonia or a secondary amine is the strongest base.			
b) The extent of degradation can be determined by a measure of the to volatile nitrogen content (known as a TVN analysis) based on the vonitrogen compounds in the fish. Figure 1. shows the experimental story this analysis.	olatile		
Figure 1.			
steam → 4.00 pH T B fish meat in alkaline solution			
dilute hydrochloric acid			

Question A1				
			Page 2/2	Marks
The beaker contains 100 cm ³ of dilute hydrochloric acid solution. The pH of this solution is kept constant at 4.00.				
	ate the amount (in mol) of oxonium in contained in the beaker.	ons, H ₃ O ⁺ (aq), pre	esent in the	2 marks
	H meter is available for the titration so the list below that could be used inste		dicator	1 mark
	Indicator	pH rang	е	
	thymol blue	1.2 – 2.8	3	
	bromophenol blue	3.0 – 4.6	6	
	phenolphthalein	8.3 – 9.8	3	
volatile nitrogen compounds react with the hydrochloric acid in the beaker. The pH of the solution is maintained throughout at 4.00 by the addition of further hydrochloric acid. i. Give the equation for the reaction between one of the nitrogen compounds and the oxonium ions.			2 marks	
ii. Explain why it is necessary to add hydrochloric acid to the beaker in order to maintain the pH of the solution at 4.00.			1 mark	
During the distillation of all the volatile nitrogen compounds it was necessary to add 26.8 cm ³ of 5.00 x 10 ⁻² mol dm ⁻³ hydrochloric acid solution. The volatile nitrogen compounds are all monoprotic bases and contain one atom of nitrogen per molecule.				
iii. Calculate the total amount of acid (in mol) that reacted.		2 marks		
iv. Calculate the total volatile nitrogen content (TVN) expressed in mg of nitrogen contained in 100 g of fish.		5 marks		
Given: M	lolar atomic mass (in g mol ⁻¹): N: ´	14.0		

Question A2		
	Page 1/2	Marks
a) Where necessary, use the standard electrode potential data below to answer the questions that follow.	in the table	
	E [⊖] / V	
$Zn^{2+}(aq) + 2e^- = Zn(s)$	- 0.76	
$V^{3+}(aq) + e^{-} = V^{2+}(aq)$	- 0.26	
$SO_4^{2-}(aq) + 2H^+(aq) + 2e^- = SO_3^{2-}(aq) + H_2O(l)$	+ 0.17	
$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \Rightarrow V^{3+}(aq) + H_2O(I)$	+ 0.34	
$Fe^{3+}(aq) + e^{-} \Rightarrow Fe^{2+}(aq)$	+ 0.77	
$VO_2^+(aq) + 2H^+(aq) + e^- \Rightarrow VO^{2+}(aq) + H_2O(l)$ $Cl_2(aq) + 2e^- \Rightarrow 2Cl^-(aq)$	+ 1.00 + 1.36	
i. Define the term <i>reducing agent</i> in terms of electrons.		1 mark
From the table above select the species which is the most reducing agent. Explain your answer.	oowerful	2 marks
iii. Choose a species from the table that in acid solution can re VO ₂ ⁺ (aq) to VO ²⁺ (aq) but will not reduce VO ²⁺ (aq) to V ³⁺ (ac why you selected this species.		2 marks
iv. Choose a species from the table that in acid solution can on VO ²⁺ (aq) to VO ₂ ⁺ (aq). Explain why you selected this species		2 marks
b) A mercury battery is a non-rechargeable electrochemical ce diagram below is a representation of this type of battery.	II. The	
Zn(s) KOH(aq) Membrane HgO(s)		
Given: Standard electrode potentials $Zn^{2+}(aq) / Zn(s) \qquad E^{\Theta} = -0.7$ $HgO(s) + H_2O(l) / Hg(l) + 2OH^{-}(aq) \qquad E^{\Theta} = +0.7$	6 V 9 V	

Question A2		
	Page 2/2	Marks
 Give the half-equations for the reactions taking place in the deduce the overall redox equation. 	battery and	3 marks
ii. State which is the positive and which is the negative electro	de.	1 mark
iii. State the direction of the flow of electrons in the external circ the battery is operating.	cuit when	1 mark
iv. Calculate the e.m.f. of the battery operating under standard	conditions.	1 mark
v. The solution of potassium hydroxide, KOH(aq), acts as an e With reference to the electrodes show the direction of flow of and OH ⁻ (aq) ions.	_	1 mark
vi. Calculate the theoretical time (in years) a watch could run if mercury battery containing 1.60 g of mercury(II) oxide, HgO produces a current of 2.50 x 10 ⁻⁵ A. Assume that the zinc is present in excess.		4 marks
Given: 1 Faraday = $9.65 \times 10^4 \text{ C mol}^{-1}$ Molar atomic masses (in g mol ⁻¹): Hg: 201 O: 16.0		
c) Mercury is a toxic heavy metal. The amount of mercury absorbindividual can be estimated by titrating the Hg ⁺ (aq) ions present This analysis is based upon the oxidation of Hg ⁺ (aq) ions to ions by acidified potassium permanganate solution, KMnO ₄ the reaction the permanganate ions, MnO ₄ (aq) are reduced manganese(II) ions, Mn ²⁺ (aq)	ent in urine. Hg ²⁺ (aq) (aq). During	
i. Give the balanced equation for the redox reaction taking pla	ice.	3 marks
A 200 cm ³ sample of urine was titrated with 1.00 x 10 ⁻⁶ mol potassium permanganate solution. The titration required 15 potassium permanganate solution.		
 ii. Calculate the concentration by mass of mercury in the urine result in micrograms per dm³ (1 microgram = 1μg = 1.00 x 1 		4 marks

	Question A3			
		Page 1/3	Marks	
a) Chlorine, Cl ₂ (aq), is used in swimming pools as a disinfectant but can also act as an irritant. The optimum level of chlorine lies between the values of 1.00 x 10 ⁻³ and 3.00 x 10 ⁻³ g dm ⁻³ . The following method was used to determine the amount of chlorine in the water.				
	Excess potassium iodide, KI(s), was added to a 500 cm 3 same taken from the swimming pool. This converted all the chlorine the water to chloride ions, CI $^-$ (aq). At the same time the iodide were converted into iodine, I $_2$ (aq).	present in		
	In a second reaction the iodine produced was titrated with 5.00 mol dm $^{-3}$ sodium thiosulphate solution, Na ₂ S ₂ O ₃ (aq), to conveiodide ions. The end-point of the titration occurred when 17.0 coolium thiosulphate solution had been added.	rt it into		
i.	Describe how the end-point is determined in this titration.		2 marks	
 Use the half-equations below to give the two balanced redox equations for the reactions taking place in the procedure used. 		equations	2 marks	
	$Cl_{2}(aq) + 2e^{-} = 2Cl^{-}(aq)$ $E^{\Theta} = + e^{-}$ $l_{2}(aq) + 2e^{-} = 2l^{-}(aq)$ $E^{\Theta} = + e^{-}$ $S_{4}O_{6}^{2-}(aq) + 2e^{-} = 2S_{2}O_{3}^{2-}(aq)$ $E^{\Theta} = + e^{-}$	0.62 V		
iii.	Explain why the two reactions are spontaneous.		2 marks	
iv. Calculate the concentration (in mol dm ⁻³) of chlorine in the swimming pool water.		4 marks		
V.	Calculate the concentration by mass of chlorine in g dm ⁻³ an on the quality of the swimming pool water in terms of the lev chlorine contained in it.		2 marks	
	Given: Molar atomic mass (in g mol ⁻¹): CI: 35.5			

Question A3		
Pa	age 2/3	Marks
b) For physiological reasons the ideal pH for swimming pools lies betw 7.4 and 7.6.	veen	
 After a first measurement the pH was found to be 6.9. Choose two substances from the list below that could be added to the swimmin water to increase the pH. Explain how you arrived at your choice. 		3 marks
NaCl, NaOH, HCl, NaHSO ₄ , Na ₂ CO ₃		
Given: $pK_a (HCO_3^-) = 10.3$ $pK_a (HSO_4^-) = 1.92$		
ii. After a second measurement it was found that the pH stabilised at Choose two other substances from the list that could be added to t swimming pool water to lower the pH.		2 marks
c) Another method of disinfecting swimming pool water involves electron of the water after adding sodium chloride, NaCl(s).	olysis	
 i. The concentration of NaCl must be 7.50 x 10⁻² mol dm⁻³. Calculate mass of NaCl(s) that must be added to a swimming pool containing 60.0 m³ of water. 		3 marks
Given: Molar atomic masses (in g mol ⁻¹): Na: 23.0 Cl: 35.5		
ii. The disinfectant produced during the electrolysis is the hypochlorite CIO ⁻ (aq).	e ion,	1 mark
Complete and balance the following half-equation.		
$Cl^{-}(aq) + OH^{-}(aq) \rightarrow ClO^{-}(aq) + H_2O(l)$		
iii. The hypochlorite ion can also function as a Brønsted base. Give th equation for its reaction with water (protolyses).	e	2 marks

Question A3				
			Page 3/3	Marks
electrode du is actually o	ue to the presence of the bserved is the evolution	$a(s)$, would be formed at the sodium ions, $Na^{+}(aq)$, where of hydrogen gas, $H_{2}(g)$.	eas what	2 marks
	corresponding half-equa		()	
	ctrode potentials, <i>E</i> ^e , und = 7.00):	der the conditions of electroly	ysis	
	Couple	<i>E</i> [⊖] / V (at pH = 7.00)		
	$H_3O^+(aq) / H_2(g)$	- 0.42		
	H ₂ O(I) / H ₂ (g)	- 1.25		
	Na ⁺ (aq) / Na(s)	- 2.71		

Question B1			
	Page 1/2	Marks	
a) Compound A contains 52.1% carbon, 13.2% hydrogen and 34 oxygen by mass.	4.7%		
The diagram below shows a series of different reactions starti compound A .	ng with		
C (alkene)			
In the presence of H ₂ SO ₄ (catalyst) at a temperature > 170 °C			
$\mathbf{B} \longleftarrow \mathbf{A} \xrightarrow{\operatorname{Cr}_2\operatorname{O}_7^{2-}/\operatorname{H}^+} \mathbf{D} \xrightarrow{\operatorname{Cr}_2\operatorname{O}_7^{2-}/\operatorname{H}^+} \mathbf{E} \text{ (et}$	hanoic acid)		
HBr HCOOH / H ⁺	Cl_2		
G F (C	H CICH₂COOH)		
Given: Molar atomic masses (in g mol ⁻¹): H: 1.01			
i. Calculate the empirical formula of compound A .		2 marks	
ii. Give the structural formula and the IUPAC name of compou	nd A .	2 marks	
iii. Give the simplified structural formulas of products C , D and	E.	3 marks	
iv. Give the IUPAC names for the organic products B , F and G .		3 marks	
v. Describe the reaction mechanism to explain how product G i	s formed.	3 marks	
vi. State whether E or H has the lowest p K_a value. Explain your	answer.	2 marks	
vii. The boiling point of compound A is 78 °C, that of compound –103.7 °C. Explain why these values are different.	C is	2 marks	

Question B1		
	Page 2/2	Marks
viii. Give the balanced equation for the reaction of a solution of with calcium carbonate, CaCO ₃ (s).	compound E	2 marks
ix. Compare the solubility of compound E in water with that of cacid, C ₁₇ H ₃₅ COOH(s). Explain your answer.	octadecanoic	2 marks
b) Methanal, HCHO(aq), and methanoic acid, HCOOH(aq), can lin the laboratory by oxidising methanol, CH ₃ OH(l), with a dilute solution of potassium dichromate, K ₂ Cr ₂ O ₇ (aq).		
Describe the different experimental conditions needed to obtative different expe	tain these	2 marks
The two oxidation products can be distinguished by testing with Fehling's solution.	า	
ii. State which of the two products gives a positive test with Fel solution and give the balanced equation for the correspondir	•	2 marks

Question B2		
Question b2	Page 1/2	Marks
a) Consider the following compounds which contain an am group.	ine functional	
CH ₃ —N—H CH ₃ —CH ₂ —N—CH ₂ —CH ₃ C	₆ H ₅ —N—C ₆ H ₅ H	
А В	С	
	OH OH NH ₂ osamine creat arthritis)	
From the compounds listed above identify a secondar tertiary amine.	ry amine and a	2 marks
ii. Give the IUPAC name for compound A .		1 mark
iii. Give the balanced equation for the reaction between of water.	glucosamine and	2 marks
iv. Write the equilibrium expression for K_{b} of glucosamin	e.	1 mark
v. Explain why glucosamine is very soluble in water.		2 marks
vi. Given the following p K_b values: 3.07, 3.36 and 9.60. these values to the amines A , B and C . Explain your	•	4 marks
vii. Phenylamine (aniline), C ₆ H ₅ -NH ₂ , is often used in the azo dyes. Explain at the molecular level why azo dye		3 marks

Question B2		
	Page 2/2	Marks
b) A molecule of acetyl glucosamine is represented below. It is a rewhich can form the polymer chitin, $(C_8H_{13}NO_5)_n$, present in the exoskeleton of shellfish and insects. Acetyl glucosamine is formed by the reaction of glucosamine with oxygen-containing organic compound. CH ₂ OH HN-C-CH ₃		
acetyl glucosamine		
Give the balanced equation for the formation of acetyl gluco glucosamine.	samine from	2 marks
ii. State the term used to describe this type of reaction.		1 mark
iii. Identify the type of bond formed during the formation of acetyl glucosamine.		1 mark
iv. The average molar molecular mass of chitin is 8.84 x 10 ⁵ g m Calculate the number of monomers that make up a chain of		2 marks
Given: molar atomic masses (in g mol ⁻¹):		
H: 1.01 C: 12.0 N: 14.0 O: 16.0		
c) High quality nylon can be made from the reaction between 1,5-diaminopentane and decane-1,10-dioic acid.		
 i. Give the simplified structural formulas of 1,5-diaminopentane decane-1,10-dioic acid. 	e and	2 marks
ii. Give the formula of the repeating unit in nylon synthesised from 1,5-diaminopentane and decane-1,10-dioic acid.	om	2 marks

Question B3		
	Page 1/2	Marks
a) Chemical raising agents used in baking contain a mixture of s hydrogencarbonate, NaHCO ₃ (s) and an acidic compound A , hydrogentartrate, C ₄ H ₅ O ₆ K(s), or HOOC-CH(OH)-CH(OH)-CW When these two compounds react with each other a gas is for gas causes the raising action.	potassium OOK(s).	
i. Give the equation for the reaction between these two substances in aqueous solution using simplified structural formulas for the organic compounds.		2 marks
ii. Identify the gas which causes the raising action.		1 mark
b) When compound A reacts with hydrochloric acid, HCl(aq) it for compound B . A molecule of compound B contains two carbox functional groups.		
 Give the equation for the reaction of A with HCl(aq) using sir structural formulas. 	mplified	2 marks
ii. Give the IUPAC name for the organic product obtained.		1 mark
iii. Give the structural formula of compound B and identify the p the asymmetric carbon atom(s).	osition of	2 marks
iv. Describe the characteristic physical property of enantiomers.		2 marks
v. With reference to their structures compare the acidity of comwith butanedioic acid.	pound B	2 marks

Question B3			
Page 2/2			Marks
c) Compound B can react with methanol, CH ₃ OH(I), in the presence of concentrated sulphuric acid, H ₂ SO ₄ (I) to give two different esters.			
•	ion for the reaction occurring between one maganic reactants.	olecule of	2 marks
incorporating a Give a detailed	 ii. The mechanism for this esterification reaction can be elucidated by incorporating an ¹⁸O isotope in one of the reactant molecules. Give a detailed account of this reaction mechanism showing how the use of ¹⁸O enables the mechanism to be elucidated. 		3 marks
•	fied structural formula of the organic product cule of compound B reacts with two molecule		1 mark
iv. State the name of one other type of reaction, apart from esterification, that can also take place with same reactants under different conditions.			1 mark
d) Natural fats are formed from propan-1,2,3-triol (glycerol) and different fatty acids. The formulas and common names of several fatty acids are given in the table below.			
Common name of fatty acid	Simplified structural formula		
stearic acid	CH ₃ -(CH ₂) ₁₆ -COOH		
linoleic acid	CH ₃ -(CH ₂) ₄ -CH=CH-CH ₂ -CH=CH-(CH ₂) ₇ -COOH		
linolenic acid	CH ₃ -CH ₂ -CH=CH-CH ₂ -CH=CH-CH ₂ -CH=CH-(C	H ₂) ₇ -COOH	
 Give the structural formula of a fat formed between one molecule of glycerol and one molecule each of stearic acid, linoleic acid and linolenic acid. 			4 marks
ii. Give the equation	on for the complete combustion of stearic acid	l.	2 marks

MARKS	QUESTION A 1	PAGE: 1/1
1 mark	a) i. N or H ₃ C—N—CH ₃ H ₃ C CH ₃ CH ₃ CH ₃	
2 marks	ii. The N atom contains a non-bonding pair of electric accept a proton [1].	ctrons [1] that can
2 marks	iii. $NH_3(aq) + H_2O(I) = NH_4^+(aq) + OH^-(aq)$ $C_3H_9N(aq) + H_2O(I) = C_3H_9NH^+(aq) + OH^-(aq)$	aq)
3 marks	iv. Acid H ₂ O, conjugate base OH- [1] Acid NH ₄ ⁺ , conjugate base NH ₃ [1] Acid C ₃ H ₉ NH ⁺ , conjugate base C ₃ H ₉ N [1]	
1 mark	v. $K_b = [C_3H_9NH^+] \times [OH^-]$ [C ₃ H ₉ N]	
3 marks	vi. A secondary amine is the stronger base [1] due inductive effect of the two methyl groups [1] increlectron density on the N atom which increases to proton. [1]	easing the
2 marks	b) i. $[H_3O^+] = 10^{-4} = 1.00 \times 10^{-4} \text{ mol dm}^{-3}$ [1] Amount of H_3O^+ in 100 cm ³ = 1.00 x 10 ⁻⁵ mol [1]
1 mark	ii. bromophenol blue	
2 marks	c) i. Either $NH_3(aq) + H_3O^+(aq) \rightarrow NH_4^+(aq) +$ or $C_3H_9N(aq) + H_3O^+(aq) \rightarrow C_3H_9NH^+(aq)$	
1 mark	ii. Base will be carried over in the steam distillation otherwise increase the pH. [1]	on which would
2 marks	iii. Amount of HCl = $\frac{26.8}{1000}$ x 5.00 x 10 ⁻² = 1.34 x 10) ⁻³ mol
5 marks	iv. The ratio of acid to nitrogen is 1:1 as it is a more Amount of N = 1.34 x 10^{-3} mol [1] Mass of N in 25.0g of fish = 1.34 x 10^{-3} x 14.0 = 1.876 x 10^{-2} g [1] TVN = 1.876×10^{-2} x $100 = 7.50 \times 10^{-2}$ g [1] 25.0 = 75.0 mg N/100 g	

MARKS	QUESTION A 2 PAGE: 1/2
1 mark	a) i. Reducing agents donate one or more electrons.
2 marks	ii. Zn(s) [1]Zn has the most negative redox potential so loses electrons most readily. [1]
2 marks	iii. Fe^{2^+} [1] Fe^{3^+} / Fe^{2^+} has a less positive E^{θ} value than $VO_2^{+^+}$ / VO^{2^+} but a more positive value than VO^{2^+} / V^{3^+} . [1]
2 marks	 iv. Cl₂(aq) [1] Cl₂ / 2Cl⁻ has the most positive E^θ value and thus is the strongest oxidizing agent.
3 marks	b) i. $Zn(s) = Zn^{2+}(aq) + 2e^{-}$ [1] $HgO(s) + H_2O(l) + 2e^{-} = Hg(l) + 2OH^{-}(aq)$ [1]
	Overall: $Zn(s) + HgO(s) + H_2O(l) = Zn^{2+}(aq) + Hg(l) + 2OH^{-}(aq)$ [1]
1 mark	ii. Positive: HgO(s); negative: Zn(s)
1 mark	iii. From the Zn to the HgO
1 mark	iv. E.m.f. = 0.79 – (-0.76) = 1.55 Volts
1 mark	v. K ⁺ (aq) ions move towards the HgO and the OH ⁻ (aq) ions move towards the zinc.
4 marks	vi. Amount of HgO = $\frac{1.60}{217}$ = 7.373 x 10 ⁻³ mol [1]
	HgO(s) + H ₂ O(l) + 2e ⁻ \Rightarrow Hg(l) + 2OH ⁻ (aq) Charge produced = 2 x 9.65 x 10 ⁴ x 7.373 x 10 ⁻³ = 1423 C [1] Charge = current x time Hence time = $\frac{1423}{2.50 \times 10^{-5}}$ = 5.692 x 10 ⁷ s [1]
	= 5.692×10^7 = 1.80 years [1] 60 x 60 x 24 x 365

MARKS	QUESTION A2	PAGE: 2/2
3 marks	c) i. $MnO_4^-(aq) + 8H^+(aq) + 5e^- = Mn^{2+}(aq) + 4$ $Hg^+(aq) = Hg^{2+}(aq) + e^-$ [1]	H ₂ O(I) [1]
	Overall: $5Hg^{+}(aq) + MnO_{4}^{-} + 8H^{+}(aq) = Mn^{2+}(aq) + 5Hg^{2+}(aq)$	q) + 4H ₂ O(I) [1]
4 marks	ii. Amount of MnO_4^- in 15.0 cm ³ = 15.0/1000 x 1.00 x 10 ⁻⁶ = 1.50 x 10 ⁻⁶ Amount of Hg^+ in 200 cm ³ of urine = 5 x 1.50 x = 7.50 x 10 ⁻⁸ Amount of Hg^+ in 1 dm ³ = 1000/200 x 7.50 x 10 ⁻⁷ = 3 Concentration (by mass) of Hg^+ = 3.75 x 10 ⁻⁶ x 201 =	10 ⁻⁸ mol
	Concentration (by mass) of Hg ⁺ = $3.75 \times 10^{-6} \times 201 = 75.4 \mu g dm^{-3}$ [1]	= 7.54 x 10 ⁻⁵ g dm ⁻³

MARKS	QUESTION A 3	PAGE: 1/1
2 marks	a) i. Starch is used as an indicator. [1] The end point is taken when one drop causes the blue colour to just disappear. [1]	
2 marks	ii. (1): $2l^{-}(aq) + Cl_{2}(aq) \Rightarrow 2Cl^{-}(aq) + l_{2}(aq)$ [1] (2): $l_{2}(aq) + 2S_{2}O_{3}^{2-} \Rightarrow 2l^{-}(aq) + S_{4}O_{6}^{2-}(aq)$ [1]	
2 marks	iii. Reaction 1: E^{θ}_{total} = +1.36 - (+0.62) = + 0.74 V Reaction 2: E^{θ}_{total} =+ 0.62 - (+0.09) = + 0.53 V [1] As both have a positive value for E^{θ}_{total} they are spontaneous. [1]	
4 marks	iv. Amount of thiosulphate added = $17.0/1000 \times 5$ = 8.50×10^{-5} mo Amount of I ₂ reacting = $\frac{1}{2} \times 8.50 \times 10^{-5}$ mol [1] Amount of CI ₂ in 500 cm ³ = $\frac{1}{2} \times 8.50 \times 10^{-5}$ = 4 [CI ₂] = $\frac{1000}{500} \times 4.25 \times 10^{-5}$ = 8.50 x 10 ⁻⁵ mol dm	l [1] l.25 x 10 ⁻⁵ mol [1]
2 marks	v. Mass of Cl_2 per dm ³ = 8.50 x 10 ⁻⁵ x 71.0 = 6.0 so it contains more chlorine than the optimum	
3 marks	b) i. NaOH [1] and Na ₂ CO ₃ [1] These are the only basic substances or NaCl NaHSO ₄ and HCl are acidic. [1]	is neutral and
2 marks	ii. NaHSO₄ [1] HCl [1]	
3 marks	c) i. M_r NaCl = 23.0 + 35.5 = 58.5 [1] 1 dm ³ contains 58.5 x 0.075 = 4.3875 g [1] 60 m ³ contains 60 x 10 ³ x 4.3875 = 263250 g =	263 kg [1]
1 mark	ii. $Cl^{-}(aq) + 2OH^{-}(aq) = ClO^{-}(aq) + H_2O(l) + 2$	e ⁻
2 marks	iii. $ClO^{-}(aq) + H_2O(l) \Rightarrow HClO(aq) + OH^{-}(aq)$	
2 marks	 iv. Hydrogen has a less negative E^θ value than so gain electrons at the negative electrode more re 2H₂O(I) + 2e⁻ → 2H₂(g)+ 2OH⁻(aq) or H₃O⁺(aq) + 2e⁻ → H₂(g) + 2H₂O(I) 	

MARKS	QUESTION B 1	PAGE: 1/2
2 marks	Simplest ratio a) i. $C = 52.1/12.0 = 4.34$ 2 H = 13.2/1.01 = 13.1 6 O = 34.7/16.0 = 2.17 1 [1] Empirical formula = C_2H_6O . [1]	
2 marks	H H	ol [1]
3 marks	iii. C : H ₂ C=CH ₂ [1] D : H ₃ CCHO [1] E : H ₃ CCO	ОН [1]
3 marks	iv. B: sodium ethoxide [1] F: ethyl methanoateG: bromoethane [1]	[1]
3 marks	v. H H H H H H Br H C	;—C—OI + Br
	H H H C C - Br + H ₂ O	
	Curly arrow from O to H of H-Br [1] Intermediate showing positive charge on oxyge Curly arrow from Br ⁻ to the carbon atom [1]	n atom [1]

MARKS	QUESTION B 1	PAGE: 2/2
2 marks	vi. Compound H CICH₂COOH will have the lower The electron withdrawing Cl atom results in the more readily losing a proton (or it stabilises the	carboxyl group
2 marks	vii. Ethanol (A) has hydrogen bonding between m This is stronger than the van der Waals attraction polar molecules of ethene (C). [1]	
2 marks	viii. $CaCO_3(s) + 2CH_3COOH(aq)$ $\rightarrow 2CH_3COO^{-}(aq) + Ca^{2+}(aq) + Ca^{2+}(aq)$	CO ₂ (g) + H ₂ O(l)
2 marks	ix. E will be much more soluble in water as octaded a long non-polar hydrocarbon chain [1] which si the amount of hydrogen bonding that can occur group on the acid and water.[1]	ignificantly reduces
2 marks	b) i. The aldehyde must be distilled as it is being for cannot be further oxidized to the carboxylic ac To form the carboxylic acid the mixture is reflu product is obtained. [1]	id. [1]
2 marks	ii. Methanal gives a positive test [1] HCHO(aq) + 2Cu ²⁺ (aq) + 5OH ⁻ (aq) → HCOO ⁻ (aq) + Cu ₂ O(s)	+ 3H ₂ O(I) [1]

MARKS	QUESTION B 2	PAGE: 1/2
2 marks	a) i. B or C [1] D [1]	
1 mark	ii. Methylamine or aminomethane	
2 marks	iii. $C_6H_{13}NO_5(aq) + H_2O(I) = C_6H_{14}NO_5^+(aq) + OH_{14}O_5^+(aq) + OH_{14}O_5^$	¯(aq)
1 mark	iv. $K_b = \underline{[C_6H_{14}NO_5^+] \times [OH]}$ $[C_6H_{13}NO_5]$	
2 marks	v. Glucosamine is soluble in water as it ionises to a salt.[1] It also contains several polar –OH gr	
4 marks	vi. B (diethylamine) has a p K_b of 3.07 as the position of the ethyl groups increases the electron densithus increasing the attraction of a proton by the	sity on the N atom
	A (methylamine) has a p K_b of 3.36 as it only haproviding a positive inductive effect. [1]	
	C (diphenylamine) has a pK _b of 9.60 as the two withdraw electrons away from the N atom due to This means the non bonding electron pair on the weaker attraction to protons. [1]	to delocalisation [1]
3 marks	 vii. Azo dyes are coloured as the –N=N- group incomposition between the two aromatic groups [1] so the excitation of pi electrons occurs[1] at a lower frequency and takes place in the visit 	1]

MARKS	QUESTION B 2	PAGE: 2/2
2 marks	b) i CH ₂ OH H H H H H H H H H H H H	CI) →
1 mark	ii. condensation reaction	
1 mark	iii. peptide bond or amide	
2 marks	iv. The molar mass of the repeating unit is: $[(8 \times 12,0) + (13 \times 1,01) + (5 \times 16,0) + (1 \times 14,0)]$ Number of repeating units = $8.84 \times 10^5 = 4355$] = 203 g mol ⁻¹ [1] [1]
2 marks	c) i. 1,5-diaminopentane: H ₂ N-(CH ₂) ₅ -NH ₂ [1]	
	decane-1,10-dioic acid: HOOC-(CH ₂) ₈ -COOH [1	1
2 marks	ii[HN-(CH ₂) ₅ -NH-OC-(CH ₂) ₈ -CO] _n -	

MARKS	QUESTION B 3	PAGE: 1/2
2 marks	a) i. HO_2C - $CH(OH)$ - $CH(OH)$ - $CO_2K(aq)$ + $NaHCO_3(aq)$ + NaO_2C - $CH(OH)$ - $CH(OH)$ - $CO_2K(aq)$ + $CO_2(g)$	
1 mark	ii. Carbon dioxide.	
2 marks	b) i. HO ₂ C-CH(OH)-CH(OH)-CO ₂ K (aq) + HCl(aq) — HOOC-CH(OH)-CH(OH)-COOH(aq) + KC	
1 mark	ii. 2,3-dihydroxybutanedioic acid	
2 marks	iii. O H OH O C-*C-*C-C HO H OH	
2 marks	iv. They rotate the plane of plane-polarised light [1] amount in opposite directions.[1]	by the same
2 marks	v. Compound B is more acidic. [1] The two electron-withdrawing –OH groups incre –COOH groups to lose a proton (or help to state Carboxylate ion formed) [1]	

MARKS	QUESTION B 3	PAGE: 2/2
2 marks	c) i. HO_2C -CH(OH)-CH(OH)-CO ₂ H + CH ₃ OH = HO_2C -CH(OH)-CH(OH)-CO-OCH ₃ +	H ₂ O
3 marks	 ii. The =O on the -COOH acid group is protonated by H⁺ from the concentrated sulfuric acid. [1] The ¹⁸O in the alcohol reacts as a nucleophile with the C atom bonded to the =OH⁺, a proton is transferred to the -OH and water is eliminated. [1] The H⁺ is removed by HSO₄⁻ and the ¹⁸O remains in the ester. [1] 	
1 mark	iii. CH ₃ O-CO-CH(OH)-CH(OH)-CO-OCH ₃	
1 mark	iv. Dehydration or the formation of an ether. Acceptology	ot the formation of
4 marks	d) i.	
	H ₂ C-O-CO-(CH ₂) ₁₆ -CH ₃	
	HC-O-CO-(CH ₂) ₇ -CH=CH-CH ₂ -CH=CH-(CH ₂) ₄ -CH ₃	
	H ₂ C-O-CO-(CH ₂) ₇ -CH=CH-CH ₂ -CH=CH-CH ₂ -CH	H=CH-CH ₂ -CH ₃
2 marks	ii. $C_{18}H_{36}O_2(s) + 26O_2(g) \rightarrow 18CO_2(g) + 18H_2$	O(I)