Отношение порядка

Опр: 1. Подмножество $R \subset X \times X$, где $X \neq \emptyset$, называется <u>отношением частичного порядка</u> на X, если выполняются:

- (1) $(x, x) \in R, \forall x \in X \Leftrightarrow x < x, \forall x \in X$;
- (2) Если $(x,y) \in R$ и $(y,x) \in R$, то $x=y \Leftrightarrow x \leq y \land y \leq x \Rightarrow x=y, \forall x,y \in X;$
- (3) Если $(x,y) \in R$ и $(y,z) \in Z$, то $(x,z) \in R \Leftrightarrow x \leq y \land y \leq z \Rightarrow x \leq z, \forall x,y,z \in X;$

Далее вместо $(x,y) \in R$ будем писать $x \leq y$.

Подмножества

A - множество, 2^A - множество всех подмножеств A.

Пример: $A = \{1, 2\} \Rightarrow 2^A = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\};$

 $A \leq B$, если $A \subset B$. Частичный порядок - ?

 $A \subset A, A \subset B \land B \subset A \Rightarrow A = B, A \subset B \land B \subset C \Rightarrow A = C \Rightarrow$ да, частичный порядок.

Но если множества не пересекаются, то их нельзя сравнить, поэтому частичный порядок.

Лексикографический порядок

<u>Лексикографический порядок</u> = порядок слов в словаре \Rightarrow это частичный порядок, но здесь любые два слова в словаре могут быть сравнимы \Rightarrow не совсем частичный.

Опр: 2. Если $\forall x, y \in X$ можно утверждать, что $x \leq y$ или $y \leq x$, то порядок называется <u>динейным</u>, а множество X - <u>динейно-упорядоченным</u>.

 $\mathbb{N}: n \leq m \Leftrightarrow n = m \vee m = n + k$, для некоторого $k \in \mathbb{N}$.

Строгие проверки можно посмотреть в книге Э. Ландау: основы анализа.

Утв. 1. (без доказательства) На \mathbb{N} $\exists !$ линейный порядок, при котором $n \leq n+1, n < m,$ если $n \neq m$ и $n \leq m.$

Rm: 1. Обычно строгие отношения не вводят, поскольку свойство (2) может перестать работать.

Полная математическая индукция

Пусть есть серия утверждений: A_1,A_2,A_3,\dots $\xrightarrow{\text{База:}} A_1$ - истина; $\xrightarrow{\text{Шаг:}} (A_1,\dots,A_n)\Rightarrow A_{n+1}$ \Rightarrow все A_n - истиные.

Пример

 $n \ge 6 \Rightarrow$ любой квадрат можно разрезать на n квадратиков.

2	3	
1	4	5
	6	7

Рис. 1: Разделение квадратов на n более маленьких квадратиков

 \square Пусть $\leq n$ - уже доказано \Rightarrow

Рис. 2: Разбиение квадрата на n+1 часть

По рисунку: для закрашенной части как n-2 уже доказано \Rightarrow разделили по индукции на n+1 часть.

Основная теорема арифметики

Теорема 1. Всякое натуральное число > 1 либо является простым, либо раскладывается в произведение простых, единственным образо с точностью до порядка множителей.

 \Box (существование) База: n=2 - доказано.

<u>Шаг</u>: пусть для $\leq n$ - доказано, докажем для n+1: n+1 - простое \Rightarrow ok, n+1 - составное $\Rightarrow n+1=n_1\cdot n_2, n+1>n_1>1, n+1>n_2>1 \Rightarrow n_1\leq n, n_2\leq n \Rightarrow$ по индукции, либо $n_1\cdot n_2$ - простые, либо раскладываются на простые множители \Rightarrow ok.

Утв. 2. Полная математическая индукция ⇔ обычная математическая индукция.

 \square обычная МИ \Rightarrow полная МИ: очевидно, ок. полная МИ: A_1 - истина, (A_1, \ldots, A_n) - истина \Rightarrow A_{n+1} - истина. Пусть $B_n = \{A_1, \ldots, A_n$ - все истины $\} \Rightarrow A_1$ - истина \Leftrightarrow B_1 - истина. $((A_1, \ldots, A_n) \Rightarrow A_{n+1}) \Leftrightarrow (B_n \Rightarrow B_{n+1})$, то есть к B_n применяем обычную индукцию и B_{n+1} - истина, получаем, что все B_n - истиные и все A_n - истиные \Rightarrow ок.

Запись полной индукции на языке теории множеств

Пусть $M \subset \mathbb{N}$. Если $1 \in M$ и $\{k : k \le n\} \subset M \Rightarrow n+1 \in M$, то $M = \mathbb{N}$. Далее используем это как аксиому индукции (АИ).

Теорема 2. Пусть множество \mathbb{N} удовлетворяет аксиомам Пеано (1)-(3) и на \mathbb{N} задано отношение линейного порядка, причем $n \leq n+1$. Тогда (АИ) равносильна существованию в каждом непустом подмножестве наименьшего элемента.

 \square (\Rightarrow) Пусть $B \subset \mathbb{N}$, $B \neq \emptyset$, предположим противное, что в B не существует такого элемента. $M = \mathbb{N} \setminus B \Rightarrow 1 \in M$, так как если $1 \in B \Rightarrow$ наименьшее, $\{k \colon k \leq n\} \subset M \Rightarrow n+1 \in M$, иначе оно - наименьшее в B, так как все остальное, что меньше в $M \Rightarrow$ по АИ $M = \mathbb{N} \Rightarrow$ поскольку $B \neq \emptyset$ получаем противоречие.

 (\Leftarrow) Пусть $M \subset \mathbb{N}$: $1 \in M$, $\{k : k \leq n\} \subset M \Rightarrow n+1 \in M$, хотим $M = \mathbb{N}$. Пусть $\mathbb{N} \setminus M \neq \emptyset$, $n \in \mathbb{N} \setminus M$, n - наименьшее. $n \neq 1$ так как $1 \in M \Rightarrow$ по АП n = m+1, $\{k : k \leq m\} \subset M \Rightarrow m+1 \in M$ по условию на M и поскольку n - наименьшее, все что меньше не лежат в $\mathbb{N} \setminus M \Rightarrow$ противоречие $\Rightarrow \mathbb{N} \setminus M = \emptyset \Rightarrow \mathbb{N} = M$.

Все переносится на \mathbb{Z} , после установки для \mathbb{N} , точно также они переносятся с \mathbb{Z} на \mathbb{Q} : $\frac{m}{n} \leq \frac{p}{q} \Leftrightarrow mq \leq np; \ n, q \in \mathbb{N}, \ m, p \in \mathbb{Z}.$

Операции со множествами

- (1) Объединение: $A \cup B = \{ x \mid x \in A \lor x \in B \};$
- (2) Пересечение: $A \cap B = \{ x \mid x \in A \land x \in B \};$
- (3) Объединение произвольного набора множеств: $\bigcup_{\alpha} A_{\alpha} = \{ x \mid \exists \alpha \colon x \in A_{\alpha} \};$
- (4) Пересечение произвольного набора множеств: $\bigcap_{\alpha} A_{\alpha} = \{ x \mid x \in A_{\alpha}, \forall \alpha \};$
- (5) Разность множеств: $A \setminus B = \{ x \mid x \in A \land x \notin B \};$

Множества удобно визуализировать с помощью диаграмм Эйлера.

Упр. 1. Доказать, что таких диаграмм нет для 4-ех и более множеств (кругов).

Рис. 3: Диаграммы Эйлера (круги Эйлера)

Свойства операций:

- (I) $A \cap B = B \cap A$, $A \cup B = B \cup A$;
- (II) $A \cap (B \cap C) = (A \cap B) \cap C$, $A \cup (B \cup C) = (A \cup B) \cup C$;
- (III) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$

- (IV) <u>Формулы Моргана</u>: $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$, $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$;
- (V) Формулы Моргана в общем случае: $C\setminus\bigcup_{\alpha}A_{\alpha}=\bigcap_{\alpha}(C\setminus A_{\alpha}),\ C\setminus\bigcap_{\alpha}A_{\alpha}=\bigcup_{\alpha}(C\setminus A_{\alpha});$

 \square (III) (Графический способ) - используем диаграмы Эйлера, чтобы убедиться в справедливости формул.

Рис. 4: Диаграммы Эйлера для свойства (III)

Формально: $x \in A \cup (B \cap C) \Leftrightarrow x \in A \lor x \in (B \cap C) \Leftrightarrow x \in A \lor (x \in B \land x \in C) \Leftrightarrow \Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C) \Leftrightarrow x \in (A \cup B) \land x \in (A \cup C) \Leftrightarrow x \in (A \cup B) \cap (A \cup C).$ (V): $x \in C \setminus \bigcup_{\alpha} A_{\alpha} \Leftrightarrow x \in C \land x \notin \bigcup_{\alpha} A_{\alpha} \Leftrightarrow x \in C \land (x \notin A_{\alpha}, \forall \alpha) \Leftrightarrow x \in C \setminus A_{\alpha}, \forall \alpha \Leftrightarrow x \in \bigcap_{\alpha} (C \setminus A_{\alpha}).$