Question number	Scheme	Marks
7 (a)	$(V =)x^{3} \qquad \left(\frac{dV}{dx} =\right)3x^{2} (at \ x = 2 \qquad \frac{dV}{dx} = 12)$ $\frac{dx}{dt} = 0.1$	M1
	dx dx	B1 (A1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.1$	on ePen)
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = "12" \times 0.1 \text{ oe}$	M1
	$\frac{dt}{1.2} \frac{dx}{m^3/s} \frac{dt}{cao}$ oe	Alcao
	112 111 / 10 440 00	(4)
(b)	(Surface Area =) $6x^2$ $\left(\frac{dA}{dx}\right) = 12x$ at $x = 6$	M1
	$\frac{dA}{dx} = 72$	
		A1
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 108 \qquad \frac{\mathrm{d}A}{\mathrm{d}t} = 0.05$	B1
	$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dA} \times \frac{dA}{dt} = "108" \times "\frac{1}{72}" \times 0.05$	M1
	$0.075 \text{ m}^3/\text{s}$	A1
	ALT	(5)
	A = $6x^2$ leading to an expression in A for V $V = \left(\frac{A}{6}\right)^{\frac{3}{2}}$	M1
	$\frac{\mathrm{d}V}{\mathrm{d}A} = \frac{1}{4} \left(\frac{A}{6}\right)^{\frac{1}{2}} \mathrm{oe}$	A1
	$\frac{dV}{dA} = \frac{3}{2}$ and $\frac{dA}{dt} = 0.05$ oe	B1
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}A} \times \frac{\mathrm{d}A}{\mathrm{d}t} = \frac{3}{2} \times 0.05$	M1
	$1.2 \text{ m}^3\text{/s}$ cao oe	A1cao [5] [9]

Part	Mark	Additional Guidance
(a)	M1	Correct expression for Volume, attempt at differentiation to ax^2 , a is an integer, $a > 1$.
	B1	$\frac{dx}{dt} = 0.1$, can be explicit or implicitly used in a chain rule.
	M1	For any correct chain rule , that would lead to a value for $\frac{dV}{dt}$ and
		substitution of 0.1 and their value for $\frac{dV}{dx}$. They must show an attempt to
		find $\frac{dV}{dx}$, need not be a correct attempt, this isn't a dependent mark.
	A1	cao oe
(b)	M1	Correct expression for Surface Area, attempt at differentiation to bx , b is an integer, $b > 1$.
	A1	$\frac{\mathrm{d}A}{\mathrm{d}x} = 72$
	B1	$\frac{dV}{dx} = 108 \& \frac{dA}{dt} = 0.05$ clearly stated, implicitly in chain rule or explicitly
	M1	For any correct chain rule , that would lead to a value for $\frac{dV}{dt}$ and
		substitution of 0.05 and their values for $\frac{dA}{dx}$ and $\frac{dV}{dx}$ They must show an
		attempt to find $\frac{dV}{dx}$, need not be a correct attempt, this isn't a dependent
	A 1	mark.
(b) ALT	A1 M1	Correct expression for area, attempt to rearrange, expression for <i>V</i> in terms of <i>A</i>
ALI	A1	oe oe
	B1	Both derivatives clearly stated, implicitly in a chain rule or explicitly
	M1	$\mathrm{d}V$
	1111	For any correct chain rule , that would lead to a value for $\frac{dt}{dt}$ and
		substitution of 0.05 and their value for $\frac{dV}{dA}$. $\frac{dV}{dA}$ doesn't need to come from
		correct working, but there must have been some attempt to find an
		expression for V in terms of A and $\frac{dV}{dA}$ presented somewhere in the
		working.
	A1	cao oe