Applied Linear Algebra in Data Analaysis Orthogonality & Matrix Inverses Assignment

Marks: 23

1. Consider an orthonormal set of vectors,

$$V = {\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_r} \quad \mathbf{v}_i \in \mathbb{R}^n \quad \forall i \in {1, 2, \dots r}$$

If there is a vector $\mathbf{w} \in \mathbb{R}^n$ such that $\mathbf{v}_i^T \mathbf{w} = 0 \ \forall i \in \{1, 2, \dots r\}$. Prove that $\mathbf{w} \notin span(V)$. [Marks: 1]

- 2. For a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, prove that $C(\mathbf{A}) \perp N(\mathbf{A}^T)$ and $C(\mathbf{A}^T) \perp N(\mathbf{A})$. [Marks: 2]
- 3. If the columns of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ are orthonormal, prove that $\mathbf{A}^{-1} = \mathbf{A}^{T}$. What is $\mathbf{A}^{T}\mathbf{A}$ when \mathbf{A} is rectangular $(\mathbf{A} \in \mathbb{R}^{m \times n})$ with orthonormal columns? [Marks: 2]
- 4. What will happen when the Gram-Schmidt procedure is applied to: (a) orthonormal set of vectors; and (b) orthogonal set of vectors? If the set of vectors are columns of a matrix **A**, then what are the corresponding **Q** and **R** matrices for the orthonormal and orthogonal cases? [Marks: 2]
- 5. Prove that the rank of an orthogonal projection matrix $\mathbf{P}_S = \mathbf{U}\mathbf{U}^T$ onto a subspace \mathcal{S} is equal to the dim \mathcal{S} , where the columns of \mathbf{U} form an orthonormal basis of \mathcal{S} . [Marks: 1]
- 6. If the columns of $\mathbf{A} \in \mathbb{R}^{m \times n}$ represent a basis for the subspace $\mathcal{S} \subset \mathbb{R}^m$. Find the orthogonal projection matrix $\mathbf{P}_{\mathcal{S}}$ onto the subspace \mathcal{S} . Hint: Gram-Schmidt orthogonalization. [Marks: 1]
- 7. Consider two orthogonal matrices \mathbf{Q}_1 and \mathbf{Q}_2 . Is the $\mathbf{Q}_2^T\mathbf{Q}_1$ an orthogonal matrix? If yes, prove that it is so, else provide a counter-example showing $\mathbf{Q}_2^T\mathbf{Q}_1$ is not orthogonal. [Marks: 1]
- 8. Consider a 1 dimensional subspace spanned by the vector $\mathbf{u} \in \mathbb{R}^n$. What kind of a geometric operation does the matrix $\mathbf{I} 2\frac{\mathbf{u}\mathbf{u}^T}{\mathbf{u}^T\mathbf{u}}$ represent? [Marks: 1]
- 9. Prove that when a triangular matrix is orthogonal, it is diagonal. [Marks: 1]
- 10. When does the following diagnoal matrix have an inverse? [Marks: 1]

$$\mathbf{D} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

1

Write down an expression for \mathbf{D}^{-1} .

- 11. Consider a 2×2 block matrix, $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{D} & \mathbf{E} \end{bmatrix}$, where $\mathbf{A} \in \mathbb{R}^{m \times m}$. Find an expression for the inverse \mathbf{A}^{-1} interms of the block components and their inverses (if they exist) of \mathbf{A} . Hint: Consider $\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{P} & \mathbf{Q} \\ \mathbf{R} & \mathbf{S} \end{bmatrix}$, and solve $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$. [Marks: 1]
- 12. Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with linearly independent columns. Prove that the Gram matrix $\mathbf{A}^T \mathbf{A}$ is invertible. [Marks: 1]
- 13. Consider the scalar equation, ax = ay. Here we can cancel a from the equation when $a \neq 0$. When can we carry out similar cancellations for matrices? [Marks: 2]
 - (a) AX = AY. Prove that here X = Y only when A is left invertible.
 - (b) XA = YA. Prove that here X = Y only when A is right invertible.
- 14. Consider two non-singular matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$. Explain whether or not the following matrices are invertible. If they are, then provide an expression for it inverse. [Marks: 4]
 - (a) $\mathbf{C} = \mathbf{A} + \mathbf{B}$
 - (b) $C = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$
 - (c) $C = \begin{bmatrix} A & A + B \\ 0 & B \end{bmatrix}$
 - (d) $\mathbf{C} = \mathbf{A}\mathbf{B}\mathbf{A}$
- 15. For a square matrix **A** with non-signular I A, prove that, [Marks: 1]

$$\mathbf{A}\left(\mathbf{I} - \mathbf{A}\right)^{-1} = \left(\mathbf{I} - \mathbf{A}\right)^{-1} \mathbf{A}$$

16. Consider the non-singular matrices A, B and A + B. Prove that, [Marks: 1]

$$\mathbf{A}\left(\mathbf{A}+\mathbf{B}\right)^{-1}\mathbf{B} = \mathbf{B}\left(\mathbf{A}+\mathbf{B}\right)^{-1}\mathbf{A} = \left(\mathbf{A}^{-1}+\mathbf{B}^{-1}\right)^{-1}$$