Théorème 18.13 - CS pour l'existence d'un point critique

Soit f une fonction définie au voisinage d'un réel x_0 . Si f est dérivable en x_0 et admet un extremum local en x_0 , alors $f'(x_0) = 0$.

Théorème 18.30 - caractérisation du caractère lipschitzien par la dérivée

Soit f une fonction dérivable sur un intervalle I. f est lipschitzienne sur I si et seulement si f' est bornée sur I.

Le cas échéant, si $k \in \mathbb{R}$ est un majorant de |f'| sur I, alors f est k-lipschitzienne.

Théorème 18.39 - de la limite de la dérivée

Soit I un intervalle de \mathbb{R} , $x_0 \in I$ et f définie et continue sur I, dérivable sur $I \setminus \{x_0\}$. Si $\lim_{\substack{x \to x_0 \\ x \neq x_0}} f'(x)$ existe dans $\overline{\mathbb{R}}$, alors :

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} f'(x) = \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

Théorème 18.42 - de prolongement par la classe C^n

Soit I un intervalle et $x_0 \in I$. Soit $f \in \mathcal{C}^n(I \setminus \{x_0\})$. Si $\lim_{x \to x_0} f^{(n)}(x) \in \mathbb{R}$, alors f est prolongeable en une fonction de classe \mathcal{C}^n sur I.

Si de plus pour tout $k \in [0, n]$, $\lim_{x \to x_0} f^{(k)}(x) \in \mathbb{R}$, alors f peut être prolongée sur I en une fonction \tilde{f} de classe C^n sur I vérifiant alors :

$$\forall k \in [0, n], \tilde{f}^{(k)}(x_0) = \lim_{x \to x_0} f^{(k)}(x)$$