

05.12.2023 Computer Vision Seminar 23/24

Agenda

- 1. Splot przypomnienie
- 2. Konwolucyjna sieć neuronowa (CNN)
- 3. Jak ocenić jakość klasyfikacji?

Szeliski rozdział 5.4: Convolutional Neural Networks

Na czym polega konwolucja (splot)?

- Działanie określone dla dwóch funkcji, dające w wyniku inną funkcję,
- Operacja
 podobna do
 korelacji
 wzajemnej

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

To convolve a kernel with an input signal: flip the signal, move to the desired time, and accumulate every interaction with the kernel

Padding (wypełnienie)

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Stride (krok)

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Perceptron wielowarstwowy (MLP) a CNN

MLP CNN

Perceptron wielowarstwowy (MLP) a CNN

Perceptron wielowarstwowy (MLP) a CNN

MLP	CNN
 Wraz z głębokością gwałtownie rośnie liczba parametrów Utracone zależności przestrzenne 	 Warstwy są częściowo połączone (nie w pełni, jak w MLP) Parametry są współdzielone Dobrze radzą sobie z wykrywaniem zależności przestrzennych Niezmienność względem translacji

Zbiór danych MNIST

LeNet-5 - wczesny CNN (1998)

https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

Podstawowe składniki CNN

- 1. Warstwy konwolucyjne
- 2. Pooling
- 3. Warstwy aktywacji
- 4. Dropout (opcjonalnie)
- 5. Warstwy głębokie

https://medium.com/@prathammodi001/convolutional-neural-networks-for-dummies-a-step-by-step-cnn-tutorial-e68f464d608f

Dropout

Wyłączanie losowych neuronów w czasie treningu

CNN

Zalety	Wady
 Ekstrakcja cech Niezmienność przestrzenna Odporne na szum Transfer learning Wydajność 	 Koszty obliczeniowe Nadmierne dopasowanie (overfitting) Black-box

<u>~~~</u>

ImageNet

Image Recognition

GHOST

Tablica/macierz pomyłek

		Klasa rzeczywista	
		pozytywna	negatywna
Klasa predykowana	pozytywna	Ludzie chorzy poprawnie zdiagnozowani jako chorzy	Ludzie zdrowi błędnie zdiagnozowani jako chorzy (błąd pierwszego rodzaju)
	negatywna	Ludzie chorzy błędnie zdiagnozowani jako zdrowi (błąd drugiego rodzaju)	Ludzie zdrowi poprawnie zdiagnozowani jako ludzie zdrowi

Materialy

• How to classify MNIST digits with different neural network architectures

https://medium.com/tebs-lab/how-to-classify-mnist-digits-with-different-neural-network-architectures-39c75a0f03e3

• Simple Introduction to Convolutional Neural Networks

https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

• Intuitively An Interactive Node-Link Visualization of Convolutional Neural Networks

https://adamharley.com/nn_vis/

Tutorial MNIST classification PyTorch

https://pytorch.org/tutorials/beginner/nn_tutorial.html?highlight=mnist