Exam 1 Study Guide 115

Vinny

October 2025

I will test over the linear model so be prepared. You will need to make a prediction, calculate a residual, test the assumptions by looking at residual graphs, interpret the parameters, etc... If I bold something in the slides it means it's important. I will NOT test on the required readings nor R code. I will do my best to avoid the situation where it's a lot of "Using your answer to part A, do part B". Expect a mix of short answer, multiple choice & true/false, and questions on regressions. There will be graphs. I would advise against memorizing the formulas (see section 10 for my comments on the math you need to know) and focusing on the larger swarths

1 Introduction

- When looking at a data set you can identify....
 - 1. what are the observations
 - 2. what are the variables
- Populations vs Samples
 - An observation is a single thing from a sample, a sample is a collection of things from the population, the population is all of the things
- Parameters vs Statistics
- Types of variables
 - Numeric
 - * Continuous
 - * Discreet
 - Categorical
 - * Nominal
 - * Ordinal

2 Data Visualization

- Why do we graph data?
- How do we choose which type of graph to use?
 - Identify appropriate graphs for different types of data
- Association vs Independence
- Describe the distribution for...
 - One categorical variable
 - * Using a bar chart mention
 - · Proportion in each category
 - · Something qualitative (Eg largest category is roughly x2 as large as the next biggest category)
 - One numeric variable
 - * Using a histogram be comfortable identifying...
 - \cdot the number of modes
 - · symmetry vs skew
 - \cdot outliers
 - * Using a boxplot be comfortable identifying....
 - · Symmetry vs skew
 - \cdot Outliers
 - · Understanding a boxplot can't show modes
 - Two categorical variables
 - * Be comfortable reading the different types of bar charts
 - * Advantages and limitations of the different options
 - Two numeric variables
 - * Scatterplots
 - 1. Direction
 - 2. Strength
 - 3. Outliers
 - 4. Form
 - Numeric and Categorical
 - * Boxplots
 - · Identify the 5 number summary using a boxplot
 - · Building a boxplot from the 5 number summary
 - · Discussing relative sizes of IQR between categories/boxplots

3 Accessibility

- What is a very common pair of colors that colorblind people struggle with?
- \bullet What are the 4 main challenges color blindness presents
- Strategies to mitigate those problems
 - certain color pallettes do better
 - Redundant Coding
 - * Define
 - * Give examples of redundant coding
 - What advantage does looking at a graph you are building in grey scale give?
- Fonts
 - Don't use small fonts (ie Don't use small fonts)
 - Dyslexic friendly fonts
 - What are serfs in fonts? $\mathcal{H}\mathcal{I}\mathcal{I}\mathcal{I}$
- The competing interests of accessibility and aesthetics
- Alt Text
 - Why does it exist?
 - Be comfortable describing a graph like you are writing the alt text

4 ggplot2

• Understand coding best practices (eg save early, save often)

5 Numeric Summaries

- Drawbacks compared to data visualizations
- Moment Statistics
 - Mean
 - St. Dev. (formula not needed)
 - Assumptions (ie symmetric, no outliers in the distribution)
- Order Statistics
 - percentiles
 - 5 number summary
 - $IQR (Q_3 Q_1)$

- What "robust" to outliers means
- Relative advantages and disadvantages between moment stats and order stats
- In what situations is the mean larger/smaller than the median (heavily skewed right/left respectively, or outliers in those directions)
- When to choose one over the other
- What do I mean when I talk about "processed" data?
- Conditional statistics
 - It's just calculating a statistic(s) for a particular group
 - eg we find the distribution of income for only women

6 Correlation

- What does Pearson's correlation coefficient, r, measure?
 - What's the range of r?
 - What's the units of r?
 - How, if at all, does r change if we convert our measurement units (eg mpg to kpl)
 - Does a large r imply a linear fit?
 - Type of data r can be used with?
- What is Spearman's correlation?
 - What type of data can Spearman's cor. be applied to?
 - When do we choose Spearman's over Pearson's?
 - What does a "monotonic" relationship mean
- Rank graphs by how strong their (Pearson) correlations are
- Understand that correlation can be either positive negative or zero, and what does having a negative correlation mean? 0 correlation?
- Ecological Fallacy (group aggregated statistics don't apply on the individual level)
- Correlation vs Causation
- Lurking variable
 - Be prepared to give an example

7 Simple Linear Regression

- What are the two main goals of simple linear regression?
- Be comfortable talking about what an explanatory variable and response variable are
- Difference between the regression equation and an estimated regression equation
- Difference between \hat{y} and y; similar between $\hat{\beta}_1$ and β_1 and again $\hat{\beta}_0$ and β_0
- Use a best-fit-line to make a prediction
- Use said prediction and the actual value to calculate the residual
- Interpret your coefficients
- 4 Assumptions. Be comfortable checking the ones you can with a residual vs predicted plot
 - Homoskedasticity (constant spread)
 - Normality (roughly equal spread of points above and below the line, no patterns)
 - X and Y are linear related
 - Independence
 - Be prepared to give examples of when one assumption goes wrong
- Extrapolation and why that does not bring joy
- \bullet R^2
 - Interpretation
 - Relationship to Pearson's correlation coefficient r
 - Appreciation for the fact it boils down the entire scatterplot/linear regression to a single number

8 Transformations

- Why do we transform our data? What is the goal?
- Name a popular transformation
- Log() transformation and relationship to heteroskedasticity
- Identify whether two variables' relationship might benefit from a log transformation.
 - By looking at a scatterplot similar to the in-class notes
 - By looking at a lot of large outliers in both the x and y directions
 - By looking at a residual by predicted plot and seeing the spread of the data "balloon" out on the right hand side
- Back-transforming the log transformation

- Make a prediction using a log-log model
 - Need to put the prediction on the linear scale!!
- Drawback of using a transformed model

9 Regression with Categorical Predictors

- What's a good (best?) value for guessing a prediction for a group? (hint: it's the mean)
- Indicator variables
 - What are they?
 - Why do we use them?
 - How to make them
- Make a prediction using a model with a categorical predictor, and calculate a residual
- Interpretations of it's parameters (HINT: I'll only be using the format with β 's, the same as R)
 - What's a baseline category? (The default category associated with β_0 , and the category the other categories are compared to when estimating β_1 , β_2 , etc..)

10 Math You'll Need to be Comfortable With

- Taking a log of a number and back transforming it (eg $e^{log(x)}$)
- Using a linear model equation to make a prediction
- Given an actual observation and a prediction find a residual
- Calculating a five number summary
 - Min, Max are easy
 - Median is the middle number
 - Q_1 and Q_3 are the medians of the lower and upper halves of the data, respectively
- Calculating IQR given Q₁ and Q₃
- Going from r to R^2 and back again
 - Be careful on if we need a positive or negative square root
 - Decision is based on the direction of the graph