Examenul de bacalaureat national 2013 Proba E. d)

Fizică

Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

 Timpul de lucru efectiv este de 3 ore. D. OPTICA MODEL

Se consideră viteza luminii în vid $c = 3.10^8$ m/s.

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia care are unitatea de măsură a energiei este:

a. $h \cdot v$

b. $U_{\rm S}$

c. $h \cdot v^{-1}$

d. $c \cdot v^{-1}$

(3p)

2. Energia cinetică maximă a electronilor extrași prin efect fotoelectric extern depinde de frecvența radiației incidente conform graficului din figura alăturată. În aceste condiții, valoarea frecvenței de prag este:

a. 3.3 · 10¹⁴ Hz

b. $2,2 \cdot 10^{15}$ Hz

c. 1.5 · 10¹⁵Hz

d. 1,0 · 10¹⁵ Hz 3. Un sistem acolat este format din două lentile având convergențele C_1 și C_2 . Convergența C sistemului

poate fi calculată cu relația:

a. $C = C_1 + C_2$

b. $C = C_1 - C_2$ **c.** $C = C_1C_2$

d. $C = \frac{C_1}{C_2}$

(3p)

4. Efectul fotoelectric constă în:

- a. emisia de electroni de către o placă metalică urmare a încălzirii ei
- **b.** emisia de electroni de către un filament parcurs de curent electric
- c. emisia de electroni de către o placă metalică sub actiunea unei radiații electromagnetice
- d. bombardarea unei plăci metalice de către un flux de electroni

(qE)

5. Un copil se apropie cu distanta de 0,5 m, de o oglindă plană verticală. Distanta dintre copil și imaginea sa în oglindă se micşorează cu:

a. 0,25 m

b. 0,5 m

c. 0,75 m

d. 1m

(3p)

(15 puncte)

II. Rezolvati următoarea problemă:

O lentilă biconvexă simetrică având distanța focală de 8 cm constituie obiectivul unui aparat fotografic. Distanța dintre lentilă și filmul fotografic este de 9 cm. Determinati:

a. convergența lentilei;

- b. distanța la care se găsește un obiect față de lentilă, pentru a se forma imaginea clară a obiectului pe filmul fotografic;
- c. mărimea imaginii obiectului pe filmul fotografic, dacă obiectul aflat la 72 cm în fața lentilei are mărimea de 16 cm;
- d. razele de curbură ale lentilei dacă aceasta este construită dintr-un material având indicele de refracție n = 1,6.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O sursă punctiformă de lumină, S, se află într-un bloc de sticlă $(n_{sticla} = 1,41 = \sqrt{2})$. O rază de lumină provenită de la sursă cade pe suprafața de separare sticlă-aer, considerată perfect plană, sub un unghi de incidență $i = 30^{\circ}$. Pe suprafața de separare sticlă-aer are loc atât fenomenul de reflexie, cât și cel de refractie.

- a. Calculați viteza de propagare a luminii în sticlă.
- **b.** Reprezentați, printr-un desen, mersul razei de lumină prin cele două medii.
- **c.** Calculați unghiul dintre raza reflectată și cea refractată știind că $n_{aer} = 1$.
- d. Calculați unghiul de incidență sub care trebuie să cadă raza de lumină astfel încât, după refracție, raza să se propage de-a lungul suprafetei de separare sticlă-aer.