Solutions to selected exercises from Chapter 23 of Wasserman — All of Statistics

(1) We have

$$\mathbb{P}(X_0 = 0, X_1 = 1, X_2 = 2) = \mathbb{P}(X_2 = 2|X_1 = 1)\mathbb{P}(X_1 = 1|X_0 = 0)\mathbb{P}(X_0 = 0)$$

and this is equal to $0 \cdot 0.2 \cdot 0.3 = 0$.

Similarly the second probability is

$$\mathbb{P}(X_2 = 1 | X_1 = 1) \mathbb{P}(X_1 = 1 | X_0 = 0) \mathbb{P}(X_0 = 0) = 0.1 \cdot 0.2 \cdot 0.3 = 0.006.$$

(2) If $Y_n > \max\{Y_1, \dots, Y_{n-1}\}$ then $X_n = Y_n$ and otherwise $X_n = X_{n-1} = \max\{Y_1, \dots, Y_{n-1}\}$. This shows that $\mathbb{P}(X_n = x | X_0, \dots, X_{n-1}) = \mathbb{P}(X_n = x | X_{n-1})$ and therefore X_0, X_1, \dots is a Markov chain.

If $X_n = x$ then $\mathbb{P}(X_{n+1} = x) = \sum_{y \le x} \mathbb{P}(Y = y)$ and for y > x, $\mathbb{P}(X_{n+1} = y) = \mathbb{P}(Y = y)$. Thus the transition matrix is

$$\begin{pmatrix}
0.1 & 0.3 & 0.2 & 0.4 \\
0 & 0.4 & 0.2 & 0.4 \\
0 & 0 & 0.6 & 0.4 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

- (3) The distribution $\pi = \frac{1}{a+b}(b,a)$ is a stationary distribution for **P**. By Theorem 23.25 (related to the Perron-Frobenius theorem), **P** has limiting distribution π , i.e. $\mathbf{P}^n \to \begin{pmatrix} \pi \\ \pi \end{pmatrix}$.
- (4) See the Jupyter Notebook 4.ipynb.
- (5) (a) We have

$$\mathbb{E}(X_{n+1}|X_n) = \mathbb{E}\left(Y_1^{(n)}\right) + \dots + \mathbb{E}\left(Y_{X_n}^{(n)}\right) = \mu X_n.$$

By the Rule of Iterated Expectations,

$$\mathbb{E}(X_{n+1}) = \mathbb{E}(\mathbb{E}(X_{n+1}|X_n)) = \mathbb{E}(\mu X_n) = \mu \mathbb{E}(X_n) = \mu M(n).$$

The Rule of Iterated Expectations for variance states that

$$\mathbb{V}(X_{n+1}) = \mathbb{E}(\mathbb{V}(X_{n+1}|X_n)) + \mathbb{V}(\mathbb{E}(X_{n+1}|X_n)).$$

By independence of the $Y_i^{(n)}$,

$$\mathbb{V}(X_{n+1}|X_n) = \mathbb{V}(Y_1^{(n)}) + \dots + \mathbb{V}(Y_{X_n}^{(n)}) = X_n \mathbb{V}(Y) = \sigma^2 X_n$$

The expected value of this quantity is $\sigma^2 M(n)$. By our previous computations,

$$\mathbb{V}(\mathbb{E}(X_{n+1}|X_n)) = \mu^2 \mathbb{V}(X_n) = \mu^2 V(n).$$

Adding these two terms yields $V(n+1) = \sigma^2 M(n) + \mu^2 V(n)$ as claimed.

(b) It follows by induction that $M(n) = \mu^n$. We have V(0) = 0 and $V(1) = \sigma^2$. Suppose for induction that $V(n) = \sigma^2 \mu^{n-1} (1 + \cdots + \mu^{n-1})$. Then

$$V(n+1) = \sigma^2 \mu^n + \sigma^2 \mu^{n+1} (1 + \dots + \mu^{n-1}) = \sigma^2 \mu^n (1 + (\mu + \dots + \mu^n))$$

which is the desired equation for V(n+1).

- (c) If $\mu \geq 1$ then $V(n) \to \infty$ as $n \to \infty$. If $\mu < 1$ then $1 + \mu + \cdots + \mu^{n-1}$ converges to a finite value c and $\mu^{n-1} \to 0$ so that $V(n) \to 0$.
- (d) If there are k children of the original parent then for each child, F(n-1) is the probability of all generations of their offspring eventually dying off by generation n-1. Hence $F(n-1)^k$ is the probability of all k lineages of children of the original parent dying off, assuming that the original parent had k children. The probability of k children is p_k . Adding up the probabilities over all possible numbers k of children yields

$$\sum_{k=0}^{\infty} p_k F(n-1)^k.$$

(e) There doesn't seem to be a nice closed form solution for F(n) here.

$$F(0) = 0$$
, $F(1) = \frac{1}{4}$, $F(2) = \frac{5^2}{2^6}$, $F(3) = \frac{89^2}{2^{14}}$, $F(4) = \frac{5^2 \cdot 4861^2}{2^{30}}$, ...

(6) The matrix \mathbf{P} is equal to

$$\frac{1}{20} \begin{pmatrix} 8 & 10 & 2\\ 1 & 14 & 5\\ 1 & 10 & 9 \end{pmatrix} = \frac{1}{20} \mathbf{M}$$

Setting $(x, y, z)\mathbf{M} = 20(x, y, z)$ yields

$$-12x + y + z = 0$$
$$10x - 6y + 10z = 0$$
$$2x + 5y - 11z = 0$$

Solving this system yields $\pi = (8, 65, 31)$ up to scalar multiples.

(7) We have

$$p_{jj}(n) = \sum_{k+l+m=n} p_{ij}(m)p_{ii}(l)p_{ji}(k).$$

Choose m and k such that $p_{ij}(m) = p > 0$ and $p_{ji}(k) = q > 0$. Then for any $n \ge m + k$

$$p_{jj}(n) \ge p_{ij}(m)p_{ii}(n-m-k)p_{ji}(k) = pqp_{ii}(n-m-k).$$

Thus,

$$\sum_{n=0}^{\infty} p_{jj}(n) \ge \sum_{n=m+k}^{\infty} p_{jj}(n) \ge pq \sum_{n=0}^{\infty} p_{ii}(n) = \infty.$$

(8) The equivalence classes under \leftrightarrow are $\{3,5\}, \{1\}, \{2\}, \{4\}, \{6\}$. The classes $\{3,5\}$ and $\{6\}$ are recurrent. I.e. $\mathbb{P}(X_2 = 5|X_0 = 5) = 1$, $\mathbb{P}(X_2 = 3|X_0 = 3) = 1$, and $\mathbb{P}(X_1 = 6|X_0 = 6) = 1$. We claim the other classes are transient. Note that $\{3,5\}$ and $\{6\}$ are closed sets. So if $X_0 = 1$, then with probability 2/3, $X_i \neq 1$ for i > 0 and otherwise $X_1 = 1$. Thus

$$\mathbb{P}(X_i = 1 \text{ for some } i > 0 | X_0 = 1) = 1/3.$$

This shows that 1 is transitive. If $X_0 = 2$ then with probability 3/4, $X_1 = 1$ or $X_1 = 3$. In these cases $X_i \neq 2$ for any i > 0. Reasoning similarly to before,

$$\mathbb{P}(X_i = 2 \text{ for some } i > 0 | X_0 = 2) = 1/4$$

so 2 is transitive. Finally,

$$\mathbb{P}(X_i = 4 \text{ for some } i > 0 | X_0 = 4) = 0$$

so 4 is also transitive.

- (9) $\pi = (1/2, 1/2)$ is clearly stationary. The resulting Markov chain does not converge since the powers of **P** alternate between **P** and the identity.
- (10) The limiting distribution is

$$\begin{pmatrix} \pi \\ \pi \\ \pi \\ \pi \\ \pi \end{pmatrix} \text{ where } \pi = \frac{1-p}{1-p^5} \begin{pmatrix} 1 & p & p^2 & p^3 & p^4 \end{pmatrix}.$$

For if \mathbf{P}^n converges to a matrix with all rows equal to π , then \mathbf{P}^{n+1} converges to $\pi \mathbf{P}$ and therefore $\pi \mathbf{P} = \pi$. Solving the system $\pi \mathbf{P} = \pi$ yields $\pi = \begin{pmatrix} 1 & p & p^2 & p^3 & p^4 \end{pmatrix}$ up to taking a scalar multiple.

(11) We check the items in the definition of a Poisson process.

For the first item, note that $\Lambda(0) = 0$ so $Y(0) = Y(\Lambda(0)) = X(0) = 0$.

For the second item, note that Λ is monotone increasing since $\lambda(t) \geq 0$. If $0 = s_0 < s_1 < \ldots < s_n$ then we can choose $t_i \in \Lambda^{-1}(s_i)$ for each i and necessarily $0 = t_0 < t_1 < \ldots < t_n$. Thus,

$$Y(s_1) - Y(s_0), \dots, Y(s_n) - Y(s_{n-1})$$

are equal to

$$X(t_1) - X(t_0), \dots, X(t_n) - X(t_{n-1}).$$

Since the latter random variables are independent, so are the former.

For the last item, assuming that λ is continuous, note that

$$\int_t^{t+h} \lambda(x) dx - \lambda(t) h = o(h) \text{ since } \lim_{h \to 0} \frac{\int_t^{t+h} \lambda(x) dx}{h} = \lambda(t).$$

Given s and k, choose t and h such that $\Lambda(t) = s$ and $\Lambda(t+h) = s+k$. Then $k = \Lambda(t+h) - \Lambda(t) = \int_t^{t+h} \lambda(x) dx = \lambda(t)h + o(h)$. Thus,

$$\frac{\mathbb{P}(Y(s+k) - Y(s) = 1) - k}{k} = \frac{\mathbb{P}(X(t+h) - X(t) = 1) - \int_{t}^{t+h} \lambda(x) dx}{k} = \frac{o(h)}{k} = \frac{o(h)/h}{k/h}.$$

As $k \to 0$, the numerator approaches 0 and the denominator approaches $\lambda(t)$. Thus $\frac{\mathbb{P}(Y(s+k)-Y(s)=1)-k}{k} \to 0$ so that $\mathbb{P}(Y(s+k)-Y(s)=1)=k+o(k)$. For the second part of the last item, choose s,k,t,h as before,

$$\frac{\mathbb{P}(Y(s+k) - Y(s) \ge 2)}{k} = \frac{\mathbb{P}(X(t+h) - X(t) \ge 2)}{k} = \frac{o(h)}{k}$$

and we showed this goes to zero above. Thus $\mathbb{P}(Y(s+k) - Y(s) \ge 2) = o(k)$.

(12) For $0 \le m \le n$, we have

$$\mathbb{P}(X(t) = m | X(t+s) = n) = \frac{\mathbb{P}(X(t) = m, X(t+s) = n)}{\mathbb{P}(X(t+s) = n)}$$

which is equal to

$$\frac{\mathbb{P}(X(t+s) - X(t) = n - m, X(t) = m)}{\mathbb{P}(X(t+s) = n)} = \frac{\mathbb{P}(X(t+s) - X(t) = n - m)\mathbb{P}(X(t) = m)}{\mathbb{P}(X(t+s) = n)}.$$

Using Theorem 23.33, this is equal to

$$\frac{e^{-m(s+t)+m(t)}e^{-m(t)}}{e^{-m(s+t)}}\frac{n!}{m!(n-m)!}\frac{((m(s+t)-m(t))^{n-m}m(t)^m}{m(s+t)^m}$$

which simplifies to

$$\binom{n}{m} \left(\frac{m(s+t) - m(t)}{m(s+t)} \right)^{n-m} \left(\frac{m(t)}{m(s+t)} \right)^{m}.$$

Thus, we recognize the distribution of X(t)|(X(t+s)=n) as a Binomial $\left(n,\frac{m(t)}{m(s+t)}\right)$ distribution.

(13) We have $X(t) \sim \text{Poisson}(\lambda)$ where $\lambda = m(t)$. Thus,

$$\mathbb{P}(X(t) \text{ is odd}) = e^{-\lambda} \left(\frac{\lambda}{1!} + \frac{\lambda^3}{3!} + \dots \right) = e^{-\lambda} \frac{1}{2} (e^{\lambda} + e^{-\lambda}) = \frac{1}{2} (1 + e^{-2\lambda}).$$

The probability is $(1 + e^{-m(t)})/2$.