FCC TEST REPORT(Bluetooth)

for

MC MOBILE E.U.

GSM Mobile Phone

Model Number: 700

FCC ID: 2AACK700

Prepared for : MC MOBILE E.U.

Address : CRA 112F# 72C-03 TO1 APT 301

Prepared by : Keyway Testing Technology Co., Ltd.

Address : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

Tel: 86-769-8718 2258 Fax: 86-769-8718 1058

Report No. : 14KWE03122502F Date of Test : Mar. 16~25, 2014 Date of Report : Mar. 26, 2014

TABLE OF CONTENTS

Test Report Declaration						
1. GENERAL PRODUCT INFORMATION	4					
1.1. Product Function	5					
1.2. Description of Device (EUT)						
1.3. Difference between Model Numbers						
1.4. Independent Operation Modes						
2. TEST SUMMARY	4					
3. TEST SITES	7					
3.1. Test Facilities						
3.2. List of Test and Measurement Instruments						
4. TEST SET-UP AND OPERATION MODES						
4.1. Principle of Configuration Selection						
4.2. Block Diagram of Test Set-up						
4.3. Test Operation Mode and Test Software						
4.5. Countermeasures to Achieve EMC Compliance						
5. EMISSION TEST RESULTS						
5.1. Conducted Emission at the Mains Terminals Test						
5.2. Radiated Emission Test						
6. 20DB OCCUPY BANDWIDTH	18					
6.1. Limits	18					
6.2. Test setup						
7. FREQUENCY SEPARATION	22					
7.1. Limits						
7.2. Test setup						
8. MAXIMUM PEAK OUTPUT POWER						
8.1. Limits						
8.2. Test setup						
9.1. Limits						
10. DWELL TIME						
10.1. Limits						
10.2. Test setup						
11. BAND EDGE COMPLIANCE TEST						
11.1. Limits						
11.2. Test setup						
12. ANTENNA REQUIREMENTS	34					
12.1. Limits						
12.2. Result	34					
13. PHOTOGRAPHS OF TEST SET-UP	35					
13.1. Set-up for Conducted Emission Test	35					
13.2. Set-up for Radiated Emission Test	36					
14. PHOTOGRAPHS OF THE EUT	36					

FCC ID: 2AACK700

Keyway Testing Technology Co., Ltd.

Applicant: MC MOBILE E.U.

Address: CRA 112F# 72C-03 TO1 APT 301

Manufacturer: Shenzhen Leed Electronic Co.,LTD

Address: Room 29A1, Block A, Zhonghangbeiyuan Building, Zhenhua

Road, Futian District Shenzhen China

E.U.T: GSM Mobile Phone

Model Number: 700

Trade Name: MC MOBILE Serial No.: -----

Date of Receipt: Mar. 15, 2014 **Date of Test:** Mar. 16~25, 2014

Test Specification: FCC Part 15, Subpart C Section 15.249: Oct. 1, 2013

ANSI C63.4:2009

Test Result: The equipment under test was found to be compliance with the

requirements of the standards applied.

Issue Date: Mar. 26, 2014

Tested by:

Reviewed by:

Approved by:

Andy Gao / Engineer

Jade Yang/ Supervisor

Chris Du / Manager

Other Aspects:

None.

Abbreviations: OK/P=passed

fail/F=failed

n.a/N=not applicable

E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Keyway Testing Technology Co., Ltd.

1. TEST SUMMARY

Test Items	Test Requirement	Result
Conducted Emissions	15.207	PASS
Radiated Emissions	15.209 15.249(a)(d)	PASS
20dB Bandwidth	15.249	PASS
Emissions from out of band	15.249(d)	PASS
Antenna Requirement	15.203	PASS

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	GSM Mobile Phone				
Model No.:	700				
	Bluetooth:2402~2480MHz				
	GSM 850MHz:				
	Tx: 824.20 - 848.80MHz (at intervals of 200kHz);				
Operation Frequency:	Rx: 869.20 - 893.80MHz (at intervals of 200kHz)				
	GSM 1900MHz:				
	Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz);				
	Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)				
Channel numbers:	Bluetooth:79 Channels				
Channel separation:	Bluetooth:1M				
Modulation technology:	Bluetooth: FHSS(GFSK 1Mbps)				
	GSM/GPRS Mode with GMSK Modulation				
Antenna Type:	Integral Antenna				
Antenna gain:	1dBi (BT),1.2dBi (GSM)				
	DC 5.2V from adapter				
Power supply:	Rechargeable lithium-ion battery 3.7V				
Multislot Class:	12				
EGPRS Class:	12				

2.3. Difference between Model Numbers

None.

2.4. Independent Operation Modes

The basic operation modes are:

2.4.1. EUT work continues TX mode and frequency as below:

Modulation	Channel	Frequency
GFSK	Low	2402MHz
	Middle	2441MHz
	High	2480MHz

Note: Bluetooth signal has 3 packages DH1, DH3, DH5, DH5 package is largest; we are testing DH5 in the report.

2.5. Test Supporting System

AC Adapter:

Shenzhen Leed Electronic Co.,LTD Provide:

M/N: 700 FCC VOC FCC Approve:

3. TEST SITES

3.1. Test Facilities

Lab Qualifications: 944 Shielded Room built by ETS-Lindgren, USA

Date of completion: March 28, 2011

966 Chamber built by ETS-Lindgren, USA

Date of completion: March 28, 2011

Certificated by TUV Rheinland, Germany.

Registration No.: UA 50207153 Date of registration: July 13, 2011

Certificated by UL, USA Registration No.: 100567-237

Date of registration: September 1, 2011

Certificated by Intertek

Registration No.: 2011-RTL-L1-31 Date of registration: October 11, 2011

Certificated by Industry Canada

Registration No.: 9868A

Date of registration: December 8, 2011

Certificated by FCC, USA Registration No.: 370994

Date of registration: February 21, 2012

Certificated by CNAS China Registration No.: CNAS L5783 Date of registration: August 8, 2012

Name of Firm : Keyway Testing Technology Co., Ltd.

Site Location : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

Page 6 of 28

3.2. List of Test and Measurement Instruments

3.2.1. For conducted emission at the mains terminals test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	May 9,13	May 9,14
Artificial Mains Network	Rohde&Schwarz	ENV216	101315	May 9,13	May 9,14
Artificial Mains Network (AUX)	Rohde&Schwarz	ENV216	101314	May 9,13	May 9,14
RF Cable	FUJIKURA	3D-2W	944 Cable	May 9,13	May 9,14

3.2.2. For radiated emission test

F	B.4	NA. L.I.NI.	0.1.1.1.	1	N. (O.)
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver Rohde&Schwarz		ESCI	101156	May 9,13	May 9,14
System Simulator	Agilent	E5515C	GB43130245	May 9,13	May 9,14
Power Splitter	Weinschel	1506A	NW425	May 9,13	May 9,14
Bilog Antenna	ETS-LINDGREEN	3142D	135452	May 20,13	May 20,14
Spectrum Analyzer	Agilent	E4411B	MY4511304	May 9,13	May 9,14
3m Semi-anechoic Chamber	ETS-LINDGREEN	966	KW01	May 9,13	May 9,14
Signal Amplifier	SONOMA	310	187016	May 9,13	May 9,14
Signal Amplifier	Agilent	8449B	3008A00251	May 9,13	May 9,14
RF Cable	IMRO	IMRO-400	966 Cable 1#	N/A	N/A
MULTI-DEVICE Controller	ETS-LINDGREEN	2090	126913	N/A	N/A
Horn Antenna	DAZE	ZN30701	11003	May 11,13	May. 11,14
Horn Antenna	SCHWARZBECK	BBHA9170	9170-068	May.11,13	May. 11,14
Spectrum Analyzer	Agilent	8593E	3911A04271	May 9,13	May 9,14
Spectrum Analyzer	Agilent	E4408B	MY44211125	May 9,13	May 9,14
Signal Amplifier	DAZE	ZN3380C	11001	May 9,13	May 9,14
High Pass filter	Micro	HPM50111	324216	May 9,13	May 9,14
Filter	COM-MW	ZBSF-C836.5-25-X	KW032	May 9,13	May 9,14
Filter	COM-MW	ZBSF-C1747.5-75-X2	KW035	May 9,13	May 9,14
Filter	COM-MW	ZBSF-C1880-60-X2	KW037	May 9,13	May 9,14
DC Power Supply	LongWoi		010964729	May 9,13	May 9,14
Constant temperature and humidity box	GF	GTH-800-40-1P	MAA9906-005	May 9,13	May 9,14
Universal radio		CMU200	3215420	May. 9,2013	May. 9,2014
Splitter	Agilent	11636B	0025164	May. 9,2013	May. 9,2014

4. TEST SET-UP AND OPERATION MODES

4.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

4.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

- 4.3. Test Operation Mode and Test Software None.
- 4.4. Special Accessories and Auxiliary Equipment None.
- 4.5. Countermeasures to Achieve EMC Compliance None.

Page 8 of 28

5. EMISSION TEST RESULTS

5.1. Conducted Emission at the Mains Terminals Test

5.1.1. Limit 15.209 limits

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)			
	Quasi-peak	Average		
0.15-0.5 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50		

5.1.2. Test Setup

The EUT was put on a wooden table which was 0.8 m high above the ground and connected to the AC mains through the Artificial Mains Network (AMN). Where the mains cable supplied by the manufacture was longer than 0.8 m, the excess was folded back and forth parallel to the cable at the centre so as to form a bundle no longer than 0.4 m.

The EUT was kept 0.4 m from any other earthed conducting surface. Both sides of AC line were checked to find out the maximum conducted emission levels according to the test procedure during the conducted emission test.

The frequency range from 150 kHz to 30 MHz was investigated.

The bandwidth of the test receiver was set at 9 kHz.

Pretest for all mode, The test data of the worst case condition(s) was reported on the following page.

5.1.3. Test Mode

Set EUT in TX mode.

Test Data

Line

	Freq	Level	Limit Line	63 85 85	Remark
· ·	MHz	dBuV	dBuV	dB	
1	0.160	19.56	55.47	-35.91	Average
2	0.160	33.06	65.47	-32.41	QP
3	0.325	22.09	49.57	-27.48	Average
4	0.325	31.40	59.57	-28.17	QP
5	1.689	23.44	46.00	-22.56	Average
6	1.689	33.12	56.00	-22.88	OP

Neutral

5.2. Radiated Emission Test

5.2.1. Limit 15.209 limits

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT			
MHz	Meters	$\mu V/m$	dB(μV)/m		
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3	200	46.0		
960 ~ 1000	3	500	54.0		
Above 1000	3	74.0 dB(μV)/m (Peak)			
		$54.0 \text{ dB}(\mu\text{V})/\text{m} \text{ (Average)}$			

5.2.2. Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

5.2.3. Test setup

The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The EUT was tested in the Chamber Site. It was pre-scanned with a Peak detector from the spectrum, and all the final readings from the test receiver were measured with the Quasi-Peak detector.

The bandwidth of the EMI test receiver is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure above 1GHz.

The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Notes: 1. Emission Level = Antenna Factor + Cable Loss + Meter Reading-Preamp Factor.

- 2. Measurement Uncertainty: ±3.2 dB at a level of confidence of 95%.
- 3. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.
- 4. For emissions below 1GHz, pretest for all mode, The test data of the worst case condition(s) was reported on the following pages.
- 6:Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Below 1GHz

BT Mode Horizontal polarizations

BT Mode Vertical polarizations

3

4

			Preamp	Read	Cablei	Antenna		Limit	Over	
		Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	13	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	,7
1	!	31.94	31.40	50.13	0.56	17.66	36.95	40.00	-3.05	QP
2	!	41.64	31.38	56.51	0.56	12.23	37.92	40.00	-2.08	QP
3		293.84	30.93	47.64	1.87	13.60	32.18	46.00	-13.82	QP
4		306.45	30.92	48.68	1.94	13.98	33.68	46.00	-12.32	QP
5		321.00	30.84	53.04	2.02	14.39	38.61	46.00	-7.39	QP
6		406.36	30.63	45.69	2.37	16.50	33.93	46.00	-12.07	QP

Above 1GHz GFSK 2402MHz

Horizontal polarizations

	Preamp		Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	2402.00	26.32	81.38	7.34	28.72	91.12	94.00	-2.88	Average
2	2402.00	26.32	96.66	7.34	28.72	106.40	114.00	-7.60	Peak
3	4804.00	27.49	34.95	11.96	32.94	52.36	74.00	-21.64	Peak
4	7715.00	28.04	16.52	16.64	36.97	42.09	74.00	-31.91	Peak
5	12084.00	29.02	16.41	17.44	39.42	44.25	74.00	-29.75	Peak
6	15331.00	29.60	13.18	20.21	38.43	42.22	74.00	-31.78	Peak

GFSK 2402MHz Vertical polarizations

Freq	Preamp Factor	300	95	188		Limit Line	Over Limit	Remark
MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	,
2402.00	26.32	81.34	7.34	28.72	91.08	94.00	-2.92	Average
2402.00	26.32	92.84	7.34	28.72	102.58	114.00	-11.42	Peak
4804.00	27.49	35.22	11.96	32.94	52.63	74.00	-21.37	Peak
8361.00	28.21	17.21	16.74	36.69	42.43	74.00	-31.57	Peak
12934.00	29.19	15.62	18.15	40.54	45.12			Ec. 105
	MHz 2402.00 2402.00 4804.00 8361.00	Freq Factor MHz dB 2402.00 26.32 2402.00 26.32 4804.00 27.49 8361.00 28.21 12934.00 29.19	Freq Factor Level MHz dB dBuV 2402.00 26.32 81.34 2402.00 26.32 92.84 4804.00 27.49 35.22 8361.00 28.21 17.21 12934.00 29.19 15.62	Freq Factor Level Loss MHz dB dBuV dB 2402.00 26.32 81.34 7.34 2402.00 26.32 92.84 7.34 4804.00 27.49 35.22 11.96 8361.00 28.21 17.21 16.74 12934.00 29.19 15.62 18.15	Freq Factor Level Loss Factor MHz dB dBuV dB dB/m 2402.00 26.32 81.34 7.34 28.72 2402.00 26.32 92.84 7.34 28.72 4804.00 27.49 35.22 11.96 32.94 8361.00 28.21 17.21 16.74 36.69 12934.00 29.19 15.62 18.15 40.54	Freq Factor Level Loss Factor Level MHz dB dBuV dB dB/m dBuV/m 2402.00 26.32 81.34 7.34 28.72 91.08 2402.00 26.32 92.84 7.34 28.72 102.58 4804.00 27.49 35.22 11.96 32.94 52.63 8361.00 28.21 17.21 16.74 36.69 42.43 12934.00 29.19 15.62 18.15 40.54 45.12	Freq Factor Level Loss Factor Level Line MHz dB dBuV dB dB/m dBuV/m dBuV/m 2402.00 26.32 81.34 7.34 28.72 91.08 94.00 2402.00 26.32 92.84 7.34 28.72 102.58 114.00 4804.00 27.49 35.22 11.96 32.94 52.63 74.00 8361.00 28.21 17.21 16.74 36.69 42.43 74.00 12934.00 29.19 15.62 18.15 40.54 45.12 74.00	Freq Factor Level Loss Factor Level Line Limit MHz dB dBuV dB dB/m dBuV/m dBuV/m dB 2402.00 26.32 81.34 7.34 28.72 91.08 94.00 -2.92 2402.00 26.32 92.84 7.34 28.72 102.58 114.00 -11.42 4804.00 27.49 35.22 11.96 32.94 52.63 74.00 -21.37 8361.00 28.21 17.21 16.74 36.69 42.43 74.00 -31.57 12934.00 29.19 15.62 18.15 40.54 45.12 74.00 -28.88

GFSK 2441MHz Horizontal polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	()
1	2441.00	26.33	80.41	7.48	28.76	90.32	94.00	-3.68	Average
2	2441.00	26.33	94.68	7.48	28.76	104.59	114.00	-9.41	Peak
3	4882.00	27.53	34.47	12.14	33.11	52.19	74.00	-21.81	Peak
4	8718.00	28.31	16.43	16.82	37.06	42.00	74.00	-32.00	Peak
5	12424.00	29.08	15.03	17.73	39.49	43.17	74.00	-30.83	Peak
6	15773.00	29.67	14.44	20.49	39.45	44.71	74.00	-29.29	Peak

GFSK 2441MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	· · · · · ·
1	2441.00	26.33	80.76	7.48	28.76	90.67	94.00	-3.33	Average
2	2441.00	26.33	93.55	7.48	28.76	103.46	114.00	-10.54	Peak
3	4882.00	27.53	34.47	12.14	33.11	52.19	74.00	-21.81	Peak
4	7579.00	28.02	16.66	16.63	37.23	42.50	74.00	-31.50	Peak
5	11914.00	28.99	18.77	17.35	39.49	46.62	74.00	-27.38	Peak
6	15841.00	29.68	15.91	20.54	39.71	46.48	74.00	-27.52	Peak

Page 15 of 28

GFSK 2480MHz Horizontal polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	(5 -
1	2480.00	26.34	80.25	7.57	28.79	90.27	94.00	-3.73	Average
2	2480.00	26.34	91.54	7.57	28.79	101.56	114.00	-12.44	Peak
3	4960.00	27.58	34.54	12.36	33.32	52.64	74.00	-21.36	Peak
4	7579.00	28.02	14.86	16.63	37.23	40.70	74.00	-33.30	Peak
5	12271.00	29.05	14.61	17.59	39.46	42.61	74.00	-31.39	Peak
6	15909.00	29.69	11.28	20.58	39.97	42.14	74.00	-31.86	Peak

GFSK 2480MHz Vertical polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	()
1	2480.00	26.34	80.34	7.57	28.79	90.36	94.00	-3.64	Average
2	2480.00	26.34	93.54	7.57	28.79	103.56	114.00	-10.44	Peak
3	4960.00	27.58	34.48	12.36	33.32	52.58	74.00	-21.42	Peak
4	7732.00	28.05	17.18	16.64	36.93	42.70	74.00	-31.30	Peak
5	11846.00	28.98	14.67	17.34	39.56	42.59	74.00	-31.41	Peak
6	15943.00	29.69	13.80	20.60	40.10	44.81	74.00	-29.19	Peak

6. 20DB OCCUPY BANDWIDTH

6.1. Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

6.2. Test setup

- 1. Set the RBW =30kHz.
- 2. Set the VBW = 100kHz
- 3. Span=2.5MHz
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Allow trace to fully stabilize, and view the plot.
- 7. Measure and record the result in the test report.

Test data:

	Channel Frequency	20dB Bandwidth	Result
	(MHz)	(MHz)	
	2402	0.832	Pass
GFSK	2441	0.838	Pass
	2480	0.839	Pass

Test plot as follows:

Page 17 of 28

GFSK

2441 MHz

2480 MHz

7. BAND EDGE COMPLIANCE TEST

7.1. Limits

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

7.2. Test setup

The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure.

Test plot as follows:

	Frequency (MHz)		Emission (dBuV/m)	Band edge Limit (dBuV/m)		Result
	(/	(H/V)	PK	PK	AV	Pass
	<2400	Н	50.21	74.00	54.00	Pass
Hopping	<2400	V	48.97	74.00	54.00	Pass
	>2483.5	Н	50.03	74.00	54.00	Pass
	>2483.5	V	49.61	74.00	54.00	Pass
Unhopping	<2400	Н	50.37	74.00	54.00	Pass
	<2400	V	49.61	74.00	54.00	Pass
	>2483.5	Н	49.82	74.00	54.00	Pass
	>2483.5	V	50.09	74.00	54.00	Pass

If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

FCC ID: 2AACK700

8. ANTENNA REQUIREMENTS

8.1. Limits

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.2. Result

The antennas used for this product are integral Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 1dBi.

9. PHOTOGRAPHS OF TEST SET-UP

Conducted Emission

10. PHOTOGRAPHS OF THE EUT

Page 23 of 28

----end-----