Design and Analysis of Algorithms

G. Philip & Samir Dutta

Contents

1	Lecture 1		2
	1.1	What are algorithms	2
	1.2	Properties of Algorithm	2
	1.3	Euclidean Division	2
	1.4	Exercises	2

1 Lecture 1

Read the moodle page of this course for list of TAs, book recommendations and other stuffs.

1.1 What are algorithms

A series of steps which takes inputs from some well defined sources and gives an output which has some relation with the input

1.2 Properties of Algorithm

- 1. Input: Zero or more objects from a well-defined set.
- 2. Output: One or more objects from a well-defined set must have a specifies relation to inputs.
- 3. *Finiteness:* Runs in a finite amount of time.
- 4. **Definiteness:** Each step is well-defined (no ambiguity).
- 5. *Effectiveness:* Each steps is sufficiently well-defined that it in principle can be executed in pen and paper.

Example which has (4) but not (5): If Reimann Hypothesis is true return yes else no

1.3 Euclidean Division

Input: Non-negative integer x, positive integer y - Both given as binary number

Output: The quotient q and remainder r when x is divided by y

```
x = (q \times y) + r

Divide(x,y):

if x = 0:

return (0,0)

z = x // 2

(q,r) = Divide(z,y)

q = 2 * q

r = 2 * r

if x is odd:

r = r + 1

if r >= y:

r = r - y

q = q + 1

return (q,r)
```

Base Case: x = 0

Inductive Assumption: Diviede(x,y) returns the correct value of q & r when $x \le k$ for some $k \ge 0$

Inductuve Stp Assuming the above hypothesis prove that Divide(x,y) returns correct values for x = k+1 [Exercise]

1.4 Exercises

- 1. Proof the above algorithm with induction on the number of bits of x
- 2. Write pseudocode for a recursive function OddOrEven(x) which takes a positive integer x as argument and returns whether x is even or odd.
- 3. Consider the following set of operations to compute a number x:
 - 1. Initialization x = 1
 - 2. Do either one of the following steps, a finite number of times.

```
2.1. x = x \times 2
```

1.4 Exercises 1 LECTURE 1

2.2.
$$x = x + 3$$

These steps can be interleaved. You can choose (2.1) in one steo, (2.2) in the next step Write the pseudo code for a recursive function IsValid(y) that takes a positive integer y as argument and returns

- True if y can be by some finite sequence of these steps, starting from x = 1
- False otherwise

Prove using induction that your function is correct.