Question number	Scheme	Marks
2 (a)(i)	$(\tan \alpha =)\frac{4}{3}$	B1
(a)(ii)	$(\tan \beta =) -\frac{1}{\sqrt{3}} \left(= -\frac{\sqrt{3}}{3} \right)$	B1 B1 (3)
(b)	$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $= \frac{\frac{4}{3} + \left(-\frac{1}{\sqrt{3}}\right)}{1 - \left(\frac{4}{3}\right)\left(-\frac{1}{\sqrt{3}}\right)}$	M1
	$ \frac{1 - \left(\frac{4}{3}\right)\left(-\frac{1}{\sqrt{3}}\right)}{\frac{4\sqrt{3} \pm 3}{3\sqrt{3}}} = \frac{\frac{12 + \left(-3\sqrt{3}\right)}{9}}{\frac{9 + 4\sqrt{3}}{9}} $ $ = \frac{4\sqrt{3} - 3}{3\sqrt{3} + 4} \text{or} \frac{\frac{12 + \left(-3\sqrt{3}\right)}{9}}{\frac{9 + 4\sqrt{3}}{9}} $ $ = \frac{4\sqrt{3} - 3}{3\sqrt{3} + 4} $	dM1 A1 cso (3)
Total 6 mark		

Part	Mark	Notes	
(a)(i)	B1	For $(\tan \alpha =) \frac{4}{3}$ accept 1.3 or 1.3' or 1.3 recurring	
(a)(ii)	B1	For $(\tan \beta =) \pm \frac{1}{\sqrt{3}}$ (i.e. 1st B mark allow + or – sign with the exact value shown	
	B2	$(\tan \beta =) -\frac{1}{\sqrt{3}}$ or $-\frac{\sqrt{3}}{3}$ oe (i.e. 2 B marks correct sign with correct exact value)	
	B marks are awarded independent of method, so award for the exact values stated oe		
(b)		For using the correct formula for $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$	
	M1	Note: The formula is given on page 2 of this paper and there must be correct substitution for their exact values obtained in part (a)	
		$\tan(\alpha + \beta) = \frac{\frac{4}{3} + \left(-\frac{1}{\sqrt{3}}\right)}{1 - \left(\frac{4}{3}\right)\left(-\frac{1}{\sqrt{3}}\right)}.$	
		For attempting to simplify their expression for $\tan(\alpha + \beta)$ as far as $\frac{a \pm b\sqrt{c}}{d\sqrt{c} \pm e}$ where a, b, c, d and e are integers.	
		Ft the correct substitution of their values and check the common denominators are correct for their values in both the numerator and denominator of $\tan(\alpha + \beta)$. The numerator and denominator must be of the form $p \pm q$ where q contains a surd.	
	dM1	If they use $\tan \beta = \pm \frac{1}{\sqrt{3}}$ they will get to: $\tan(\alpha + \beta) = \frac{\frac{4}{3} + \left(\pm \frac{1}{\sqrt{3}}\right)}{1 - \left(\frac{4}{3}\right)\left(\pm \frac{1}{\sqrt{3}}\right)} = \frac{\frac{4\sqrt{3} \pm 3}{3\sqrt{3}}}{\frac{3\sqrt{3} \mp 4}{3\sqrt{3}}} = \frac{4\sqrt{3} \pm 3}{3\sqrt{3} \mp 4}$	
		If they use $\tan \beta = -\frac{\sqrt{3}}{3}$ they will get to:	
		$\tan(\alpha + \beta) = \frac{\frac{4}{3} + \left(\pm \frac{\sqrt{3}}{3}\right)}{1 - \left(\frac{4}{3}\right)\left(\pm \frac{\sqrt{3}}{3}\right)} = \frac{\frac{4 + \left(\pm \sqrt{3}\right)}{3}}{\frac{9 \mp 4\sqrt{3}}{9}} \text{ or } \frac{\frac{12 + \left(\pm 3\sqrt{3}\right)}{9}}{\frac{9 \mp 4\sqrt{3}}{9}} = \frac{12 + \left(\pm 3\sqrt{3}\right)}{9 \mp 4\sqrt{3}}$	
		Note: This mark is dependent on the previous M mark.	
	A1	For simplifying to the correct final answer with no errors seen. $\tan(\alpha + \beta) = \frac{4\sqrt{3} - 3}{3\sqrt{3} + 4}$ o.e. for example $\frac{12\sqrt{3} - 9}{9\sqrt{3} + 12}$	
		Must be in the form $\frac{m\sqrt{3}-n}{n\sqrt{3}+m}$	