

a) Estimate **Historical Volatility** σ

CALCULATE RETURN

$$\frac{S_{t+1} - S_t}{S_t}$$

VALUE OF STANDARD DEVIATION

$$S^2 = \frac{\Sigma (x_i - \bar{x})^2}{n - 1}.$$

VOLATILITY

$$\sqrt{S^2}$$
 = **35.586%**

CALCULATE LOG RETURN

$$\operatorname{Ln}\left(\frac{S_{t+1}}{S_t}\right)$$

HISTORICAL VOLATILITY

$$\sqrt{S^2} = 35.5889\%$$

AMAN Closing Prices

Time Series Analysis

Looks like WN

ADF test p-value: 0.01 --> stationary

ARCH and GARCH Model

• ARCH model (autoregressive conditional heteroskedasticity) - equation for variance σ_t^2 :

$$\sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \dots \alpha_q u_{t-q}^2$$

- Constraints on parameters:
 - variance has to be positive:

$$\omega > 0, \alpha_1, \ldots, \alpha_{q-1} \ge 0, \alpha_q > 0$$

stationarity:

$$\alpha_1 + \ldots + \alpha_q < 1$$

We tried ARCH(1), ARCH(2), ARCH(3) and ARCH(4), but the residuals are not white noise;

AIC and BIC test:

we got ARCH(5)

Information Criterion Statistics:

AIC BIC SIC HQIC -5.028436 -4.930117 -5.029936 -4.988870

ARCH(5) Model

Implied volatility forecast: 0.03056744

GRCH(1,1) Model

$$\sigma_n^2 = \gamma v_L + \alpha u_{n-1}^2 + \beta \sigma_{n-1}^2$$

Implied volatility forecast: 0.03452849

$$u = e^{\sigma\sqrt{t}}$$
 $d = e^{-\sigma\sqrt{t}} = \frac{1}{u}$ σ : Stock Volatility

b) American Call Option Price -Binomial Tree Approach

Maturity Date: July 1^{st} (from April 1^{st} , T = 0.25)

Number of Steps: N = 2,000

$$r_0 = 0.03, S_0 = \$1640, K = \$1750$$

Price of American Call Option: \$77.3925

c) Convergence Rate of Binomial Tree Approach

Binomial Model provide a discrete time approximation to the continuous process underlying the Black-Scholes model

a clear sawtooth pattern and

periodic humps

Plot Error against n, the graph has

The Binomial model value converges on the Black-Scholes formula value as the number of steps increases.

The rate of convergence of Binomial Tree approach is 1 (linear convergence).

d) **European Call Option Price** - Binomial Tree Approach

$$r_0 = 0.03, S_0 = \$1640, K = \$1750$$

Price of European Call Option: \$77.3925

SAME as part b)!

Reasoning: The option has no dividend, so the buyers of this American call option will not exercise until the maturity date.

European Call Option Price

\$77.4034

Corresponding Put Option Price

\$174.3275

Vega

334.23612

Impact of a change in volatility

Delta

0.40761

Impact of a change in stock price

Gamma

0.0013987

Impact of a change of Delta

$$u = S\phi(d1)\sqrt{t}$$

$$where:\phi(d1)=rac{e^{-rac{d1^2}{2}}}{\sqrt{2\pi}};$$

$$d1 = rac{lnig(rac{S}{K}ig) + ig(r + rac{\sigma^2}{2}ig)t}{\sigma\sqrt{t}}$$

 $Call\ delta = e^{-qt} * N(d_1)$

$$Gamma = \frac{e^{-qt}}{S_0 \, \sigma \sqrt{t}} * \frac{1}{\sqrt{2\pi}} * e^{\frac{-d_1^2}{2}}$$

f) European Call Option Price – **Simple Monte Carlo Method**

Method	od European Call Option Price		
Simple Monte Carlo	\$77.9116		
Black-Scholes	\$77.4034		
Binomial Tree	\$77.3925		

When N = 1500, the value derived from the Binomial Tree method is more accurate than the one derived from the Simple Monte Carlo method

g) European Call Option Price

Monte Carlo with Antithetic Variates

European Call Option price: \$77.9056

Standard deviation: 158.875

h) European Call Option Price

Monte Carlo with Control Variates

European Call Option price: \$77.8381

Standard deviation: 108.117

h)

Method	European Call Option Price	Standard Deviation
Simple Monte Carlo	\$77.9116	161.326
Antithetic Variates	\$77.9056	158.875
Control Variates	\$77.8381	135.117

Pricewise, no big discrepancy

Variance: Simple Monte Carlo > Control Variates > Antithetic Variates

h) Convergence of Monte Carlo Method

Method	# of time steps =10, paths=1000	100	1000	10,000
Simple	\$87.80 (abs err = 9.8884)	76.77 (1.1416)	79.25 (1.3384)	77.37 (0.5416)
Monte Carlo	Sd = 176.88	158.40	165.49	165.326
Antithetic	\$77.53 (0.3816)	73.9655 (3.9461)	78.23 (0.3184)	77.91 (0.0016)
Variates	Sd = 162.8674	155.798	160.77	156.875
Control	\$72.92 (4.9916)	74.47 (3.4416)	77.43 (0.4816)	77.25 (0.6616)
Variates	Sd = 148.35	149.36	144.85	143.117
Method	# of time paths =10, steps=1000	100	1000	10,000
Simple Monte	\$6.54 (71.3716	94.37 (16.4584)	78.51 (0.5984)	77.92 (0.0084)
Carlo	Sd = 19.63	187.83	160.05	161.326
Antithetic	\$114.83 (36.9184)	80.01 (2.0984)	77.32 (0.5916)	77.82 (0.0916)
Variates	Sd = 178.21	158.04	158.30	158.875
Control	\$170.62 (92.7084)	98.13 (20.2104)	77.51 (0.4016)	77.97 (0.0584)
Variates	Sd = 213.6	175.32	131.08	128.117

i) Estimate Implied Volatility

K = \$1750

AMZN Call Option Price on April 3rd: \$158.7

Stock price: $S_0 = 1820.7

Maturity Date: July-19-2019

Time until Maturity: T = 110/365 = 0.301

Backward Solving

B-S Formula

Implied Volatility = **0.2832146**

Different from the Implied Volatility on Yahoo Finance: 0.3021

Reasoning: Estimate r = 0.0068

For
$$T = \frac{110}{365}$$
, Annual $r = 0.0226$

FED r = 0.025

1) Historical Volatility (HV) vs. Implied Volatility (IV)

HV: annualized standard deviation of past stock price movement

IV: derived from an option's price and shows what the market implies about the stock's volatility in the future

