Problemas - Limites

1. Para qual valor de δ é verdadeira a afirmação abaixo?

$$|x-1| < \delta \Rightarrow |f(x)-3| < 10^{-1}$$
, onde $f(x) = 4x - 1$.

- 2. A partir da definição por ε , δ , mostre que as expressões abaixo são verdadeiras (dica para a última: $\cos p - \cos q = 2 \operatorname{sen} \frac{p+q}{2} \operatorname{sen} \frac{q-p}{2}$ e assuma que vale $|\operatorname{sen} x| \leq |x|$
 - a) $\lim_{x \to 3} x + 6 = 9$.
- c) $\lim_{x \to p} \frac{1}{x} = \frac{1}{p}, p \neq 0.$
- e) $\lim_{x \to 3} x^3 = 27$.

b) $\lim_{x \to 1} \frac{1}{x} = 1$.

d) $\lim_{x \to 1} x^2 = 1$.

- 3. Escreva em palavras o que significa a expressão $\lim_{x\to 3} f(x) \neq 6$ e traduza para a linguagem de ε, δ .
- 4. Esboce o gráfico da função abaixo e determine os valores de a tais que $\lim_{x\to a} f(x)$ existe:

$$f(x) = \begin{cases} 2 - x, & \text{se } x < -1\\ x, & \text{se } -1 \le x < 1\\ (x - 1)^2, & \text{se } x \ge 1 \end{cases}$$

- 5. O que há de errado com a igualdade $\frac{x^2 + x 6}{x 2} = x + 3$? Porque a igualdade $\lim_{x \to 2} \frac{x^2 + x 6}{x 2} = x + 3$? $\lim_{x\to 2} x + 3$ é verdadeira?
- 6. Calcule os limites abaixo

a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x + 1}$$
.

e)
$$\lim_{x \to 0} \frac{(1+2x)^{10}-1}{x}$$
.

i)
$$\lim_{x \to 3} \frac{\sqrt[3]{x} - \sqrt[3]{3}}{x - 3}$$
.

b)
$$\lim_{x \to -1} \frac{(x+1)^3}{x^3+1}$$
.

f)
$$\lim_{x \to y} \frac{x^n - y^n}{x - y}$$
, $n \in \mathbb{N}$. j) $\lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{\sqrt{x^2 + 9} - 3}$.

j)
$$\lim_{x\to 0} \frac{\sqrt{x^2+4}-2}{\sqrt{x^2+9}-3}$$

c)
$$\lim_{h \to 0} \frac{(a+h)^3 - a^3}{h}$$
.

g)
$$\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}$$
, $m, n \in \mathbb{N}$. k) $\lim_{x \to 3} \frac{\sqrt{x^2 + 7} - 4}{x^2 - 5x + 6}$

1

k)
$$\lim_{x \to 3} \frac{\sqrt{x^2 + 7} - 4}{x^2 - 5x + 6}$$
.

$$d) \lim_{x \to a} \frac{x^3 - a^3}{x - a}.$$

h)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$
.

1)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$
.

7. Calcule os limites abaixo caso existam. Se não existir, justifique

a)
$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$$
, onde $f(x) = \begin{cases} x, & \text{se } x \ge 2\\ \frac{x^2}{2}, & \text{se } x < 2 \end{cases}$.

b)
$$\lim_{h\to 0} \frac{f(1+h)-f(1)}{h}$$
, onde $f(x) = \begin{cases} x^2+1, & \text{se } x \ge 1\\ 2x, & \text{se } x < 1 \end{cases}$.

8. Considerando a função abaixo, determine valores de a e b tais que $\lim_{x\to 2} f(x)$ e $\lim_{x\to 4} f(x)$ existam.

$$f(x) = \begin{cases} ax - 1, & \text{se } x < 2\\ x^2 - 2ax + 2a + b, & \text{se } 2 \le x < 4\\ b\sqrt{x} + a - 1, & \text{se } x \ge 4 \end{cases}$$

- 9. Calcule $\lim_{x\to 0} \frac{|2x-1|-|2x+1|}{x}$.
- 10. Encontre, caso existam, todos os números a para o limite abaixo existir

$$\lim_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x - 2}.$$

- 11. Encontre todos os números a e b tais que $\lim_{x\to 0} \frac{\sqrt{ax+b}-2}{x}=1$.
- 12. Seja a função $f(x) = \frac{x^2 1}{|x 1|}$ e faça o que se pede
 - a) Calcule os limites laterais $\lim_{x\to 1^-} f(x)$ e $\lim_{x\to 1^+} f(x)$.
 - b) Existe $\lim_{x\to 1} f(x)$?
 - c) Faça um esboço do gráfico de f.
- 13. Sabendo que $3x \le f(x) \le x^3 + 2$ para $0 \le x \le 2$, calcule $\lim_{x \to 1} f(x)$.
- 14. Sendo $x \in \mathbb{R}$, denote por $\lfloor x \rfloor$ o maior número inteiro que é menor ou igual à x. Calcule os limites abaixo caso existam. Caso não existam, justifique.

a)
$$\lim_{x \to \pi} \lfloor x \rfloor$$
.

d)
$$\lim_{x \to -2} \lfloor x \rfloor$$
.

g)
$$\lim_{x \to n^+} \lfloor x \rfloor$$
, $n \in \mathbb{Z}$.

b)
$$\lim_{x \to -2^+} \lfloor x \rfloor$$
.

e)
$$\lim_{x \to -2,4} \lfloor x \rfloor$$
.

h)
$$\lim_{x \to 0} \frac{\lfloor x \rfloor}{x}$$
.

c)
$$\lim_{x \to -2^-} \lfloor x \rfloor$$
.

f)
$$\lim_{x \to n^-} \lfloor x \rfloor$$
, $n \in \mathbb{Z}$.

i)
$$\lim_{x \to 0} x \left[\frac{1}{x} \right]$$
.

- 15. Para quais valores de $a \in \mathbb{R}$ o limite $\lim_{x \to a} \lfloor x \rfloor$ existe?
- 16. Sejam f, g funções definidas em \mathbb{R} com $g(x) \neq 0$ para todo $x \in \mathbb{R}$. Supondo que $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$, mostre que existe $\delta > 0$, tal que se $0 < |x a| < \delta$ então |f(x)| < |g(x)|.
- 17. Supondo que $\lim_{x\to a} f(x) = L$, mostre usando a definição por ε, δ que $\lim_{x\to a} |f(x)| = |L|$.
- 18. Defina uma função f tal que $\lim_{x\to a}|f(x)|$ existe mas $\lim_{x\to a}f(x)$ não existe.
- 19. Usando o Teorema do Confronto, mostre que se $\lim_{x\to a} |f(x)| = 0$, então $\lim_{x\to a} f(x) = 0$.
- 20. Responda as perguntas abaixo:
 - a) Se $\lim_{x \to a} f(x)$ e $\lim_{x \to a} g(x)$ não existem, os limites $\lim_{x \to a} (f(x) + g(x))$ e $\lim_{x \to a} f(x) \cdot g(x)$ não existem?
 - b) Se $\lim_{x\to a} f(x)$ existe e $\lim_{x\to a} (f(x)+g(x))$ existe, então $\lim_{x\to a} g(x)$ existe?
 - c) Se $\lim_{x\to a} f(x)$ existe e $\lim_{x\to a} g(x)$ não existe, então $\lim_{x\to a} (f(x)+g(x))$ pode existir?

- d) Se $\lim_{x\to a} f(x)$ existe e $\lim_{x\to a} f(x).g(x)$ existe, então $\lim_{x\to a} g(x)$ existe?
- 21. Mostre que $\lim_{x\to a} f(x) = \lim_{h\to 0} f(a+h)$, assumindo que um dos limites exista.
- 22. Faça o que se pede:
 - a) Mostre que $\lim_{x\to a} f(x) = L$ se, e somente se $\lim_{x\to a} f(x) L = 0$.
 - b) Mostre que $\lim_{x\to 0} f(x) = \lim_{x\to a} f(x-a)$.
 - c) Mostre que $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^3)$.
 - d) Dê um exemplo onde $\lim_{x\to 0} f(x^2)$ exista, mas $\lim_{x\to 0} f(x)$ não.
- 23. Faça o que se pede:
 - a) Suponha que $f(x) \leq g(x)$ para todo $x \in \mathbb{R}$. Mostre que $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.
 - b) A hipótese no item acima pode ser enfraquecida?
 - c) Se f(x) < g(x) para todo $x \in \mathbb{R}$ necessariamente temos $\lim_{x \to a} f(x) < \lim_{x \to a} g(x)$?
- 24. Faça o que se pede:
 - a) Mostre que se $\lim_{x\to 0} \frac{f(x)}{x} = L$ e $b \neq 0$ então $\lim_{x\to 0} \frac{f(bx)}{x} = bL$ (dica: escreva $\frac{f(bx)}{x} = b\frac{f(bx)}{bx}$).
 - b) O que ocorre se b = 0?
 - c) Sabendo que $\lim_{x\to 0} \frac{\text{sen}(x)}{x} = 1$, use o item a) para calcular $\lim_{x\to 0} \frac{\text{sen}(2x)}{x}$.
- 25. Sabendo que $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$, mostre que $\lim_{x\to a} \max(f(x),g(x)) = \max(L,M)$.
- 26. Mostre que $\lim_{x\to 0} \frac{1}{x}$ não existe. Isto é, $\lim_{x\to 0} \frac{1}{x} = L$ é falso para todo valor $L \in \mathbb{R}$.
- 27. Mostre que $\lim_{x\to 1} \frac{1}{x-1}$ não existe.
- 28. Sendo f(x) = 0 para x irracional e f(x) = 1 para x racional, mostre que $\lim_{x \to a} f(x)$ não existe para qualquer $a \in \mathbb{R}$.
- 29. Sendo f(x) = -x para x irracional e f(x) = x para x racional, mostre que $\lim_{x \to a} f(x)$ não existe para qualquer $a \in \mathbb{R}$, $a \neq 0$. E para a = 0?
- 30. Faça o que se pede:
 - a) Mostre que se $\lim_{x\to 0} g(x) = 0$ então $\lim_{x\to 0} g(x) \operatorname{sen}(1/x) = 0$.
 - b) Mostre que se $\lim_{x\to 0} g(x) = 0$ e $|h(x)| \le M$ para todo $x \in \mathbb{R}$, então $\lim_{x\to 0} g(x)h(x) = 0$.