§3. Необходимые условия существования экстремума. Критические точки

Понятие экстремума функции введено в $\S1$ предыдущей главы. Пусть функция f(x) дифференцируема на интервале (a, b), за исключением, быть может, конечного числа точек, в которых она непрерывна.

Теорема 3.1 (необходимые условия существования экстремума). Если функция f(x) имеет в точке x_0 из интервала (a,b) экстремум, то либо $f'(x_0) = 0$, либо $f'(x_0) = \infty$, либо $f'(x_0)$ не существует.

▶Пусть x_0 — точка экстремума функции f(x). Возможны только два случая: либо $f'(x_0)$ существует, либо не существует. Если $f'(x_0)$ существует, то также возможны только два случая: либо $f'(x_0)$ конечна, либо $f'(x_0) = \infty$. Если $f'(x_0)$ конечна, то по теореме Ферма из §1 $f'(x_0) = 0$. ◀

Определение 3.1. Точки из области определения функции f(x), в которых её производная равна нулю, бесконечности, или не существует, называются *критическими точками* данной функции (иначе *точками*, *подозрительными* на экстремум). Точки, где производная f'(x) равна нулю, называют также *стационарными точками*.

Пример 3.1. Найти критические точки функции f(x) = x |x+1|.

►
$$D(f) = \mathbf{R}, \ f(x) = \begin{cases} -(x^2 + x), x < -1, \\ x^2 + x, \quad x \ge -1, \end{cases}$$
 $f'(x) = \begin{cases} -2x - 1, x < -1, \\ 2x + 1, x > -1, \end{cases}$

f'(x) = 0 при x = -1/2 и f'(x) не существует при x = -1 (пример 1.2, глава 1). Таким образом, точки x = -1/2 и x = -1 – критические для данной функции, а точка x = -1/2 является также стационарной точкой. ◀

Пример 3.2. Найти критические точки функции $f(x) = \sqrt[3]{(x-1)^2}$.

►
$$D(f)=R$$
, $f'(x)=((x-1)^{2/3})'=\frac{2}{3}(x-1)^{-1/3}=\frac{2}{3\sqrt[3]{x-1}}$, $f'(x)$ не обращается

в нуль на D(f), но $f'(1) = \infty$. Точка x = 1 – критическая точка f(x).

Определение 3.2. Экстремум функции f(x), достигаемый в стационарной точке, называется *гладким экстремумом*. Если в точке экстремума не существует f'(x), но существуют неравные между собой односторонние производные,

то такой экстремум называется угловым. Если в точке экстремума производная бесконечна, то он называется острым.

Например, функция f(x) = x |x+1| в точке x = -1/2 имеет гладкий минимум, а в точке x = -1 – угловой максимум (рис. 2.2 главы 1). Функция $f(x) = \sqrt[3]{(x-1)^2}$ имеет в точке x = 1 острый минимум (рис. 2.4 главы 1).

Замечание 3.1. Характер экстремума определяет положение касательной к графику функции в точке экстремума. В точке гладкого экстремума функции f(x) касательная к её графику Γ параллельна оси Ox. В точке

углового экстремума график Γ имеет различные односторонние касательные, а в точке острого экстремума — вертикальную касательную. Например, график функции f(x) = x | x + 1 | в точке гладкого минимума (-1/2, -1/4) имеет горизонтальную касательную, а в точке углового максимума (-1, 0) — односторонние касательные (рис. 3.1). График функции $f(x) = \sqrt[3]{(x-1)^2}$ в точке (1, 0) острого экстремума имеет вертикальную касательную (рис. 2.4 главы 1).

Замечание 3.2. Необходимые условия существования экстремума (теорема 3.1) не являются достаточными, ибо не в любой критической точке функция имеет экстремум. Например, для функций $y = x^2$ и $y = x^3$ точка x = 0 является критической ($(x^2)' = 2x = 0$ и $(x^3)' = 3x^2 = 0$ при x = 0), однако первая из них

Рис. 3.1. График функции f(x) = x |x+1|

Рис. 3.2. График функции $f(x) = x^2$

Рис. 3.3. График функции $f(x) = x^3$

имеет в этой точке экстремум (гладкий минимум), а вторая функция не имеет экстремума в этой точке (рис. 3.2, 3.3). Для функций $y = \sqrt[3]{x-1}$ и $y = \sqrt[3]{(x-1)^2}$ точка x = 1 является критической ($y'(1) = \infty$), при этом первая функция не имеет в ней экстремума, а вторая имеет острый минимум (рис. 2.3, 2.4 главы 1).