Statistical Tables

The following pages are statistical tables for the normal, *t* and chi-squared distributions.

```
(From http://vgoulet.act.ulaval.ca/en/latex/#Tables.)
```

An alternative to tables is to use R.

```
For example to find the probability that a N(0,1) is less than 1.282 use pnorm(1.282)
```

```
> pnorm(1.282)
[1] 0.9000787
```

and to calculate the corresponding probability for a t_5 distribution

```
> pt(1.282, df = 5)

[1] 0.871967

and for a \chi_6^2 distribution

> pchisq(1.282, df = 6)

[1] 0.02735904
```

That is, the R functions pnorm(), pt(), pchisq() are the cdfs of these distributions. Of course for the t and χ^2 distributions the number of degrees of freedom need to be given using the df argument as above.

Quantiles can also be obtained using R.

For example to find the 0.99 quantile of N(0,1) use qnorm(0.99)

```
> qnorm(0.99)
[1] 2.326348
and to verify this is right
> pnorm(2.326)
[1] 0.9899907
```

Similarly to find the 0.99 quantile of the t_5 and χ_6^2 distributions

```
> qt(0.99, df = 5)
[1] 3.36493
> qchisq(0.99, df = 6)
[1] 16.81189
```

The normal distribution

$$\Pr[X \le x] = \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$$
$$\Phi(-x) = 1 - \Phi(x)$$

х	$\Phi(x)$	х	$\Phi(x)$	x	$\Phi(x)$
0.00	0.500	1.10	0.864	2.05	0.980
0.05	0.520	1.15	0.875	2.10	0.982
0.10	0.540	1.20	0.885	2.15	0.984
0.15	0.560	1.25	0.894	2.20	0.986
0.20	0.579	1.282	0.900	2.25	0.988
0.25	0.599	1.30	0.903	2.30	0.989
0.30	0.618	1.35	0.911	2.326	0.990
0.35	0.637	1.40	0.919	2.35	0.991
0.40	0.655	1.45	0.926	2.40	0.992
0.45	0.674	1.50	0.933	2.45	0.993
0.50	0.691	1.55	0.939	2.50	0.994
0.55	0.709	1.60	0.945	2.55	0.995
0.60	0.726	1.645	0.950	2.576	0.995
0.65	0.742	1.65	0.951	2.60	0.995
0.70	0.758	1.70	0.955	2.65	0.996
0.75	0.773	1.75	0.960	2.70	0.997
0.80	0.788	1.80	0.964	2.75	0.997
0.85	0.802	1.85	0.968	2.80	0.997
0.90	0.816	1.90	0.971	2.85	0.998
0.95	0.829	1.95	0.974	2.90	0.998
1.00	0.841	1.96	0.975	2.95	0.998
1.05	0.853	2.00	0.977	3.00	0.999

The t distribution

$$\Pr[T \le t] = \int_{-\infty}^{t} \frac{\Gamma((r+1)/2)}{\sqrt{\pi r} \Gamma(r/2)} \frac{1}{(1+x^2/r)^{(r+1)/2}} dx$$
$$\Pr[T \le -t] = 1 - \Pr[T \le t]$$

		$\Pr[T \le t]$					
r	0.90	0.95	0.975	0.99	0.995		
1	3.078	6.314	12.706	31.821	63.657		
2	1.886	2.920	4.303	6.965	9.925		
3	1.638	2.353	3.182	4.541	5.841		
4	1.533	2.132	2.776	3.747	4.604		
5	1.476	2.015	2.571	3.365	4.032		
6	1.440	1.943	2.447	3.143	3.707		
7	1.415	1.895	2.365	2.998	3.499		
8	1.397	1.860	2.306	2.896	3.355		
9	1.383	1.833	2.262	2.821	3.250		
10	1.372	1.812	2.228	2.764	3.169		
11	1.363	1.796	2.201	2.718	3.106		
12	1.356	1.782	2.179	2.681	3.055		
13	1.350	1.771	2.160	2.650	3.012		
14	1.345	1.761	2.145	2.624	2.977		
15	1.341	1.753	2.131	2.602	2.947		
16	1.337	1.746	2.120	2.583	2.921		
17	1.333	1.740	2.110	2.567	2.898		
18	1.330	1.734	2.101	2.552	2.878		
19	1.328	1.729	2.093	2.539	2.861		
20	1.325	1.725	2.086	2.528	2.845		
21	1.323	1.721	2.080	2.518	2.831		
22	1.321	1.717	2.074	2.508	2.819		
23	1.319	1.714	2.069	2.500	2.807		
24	1.318	1.711	2.064	2.492	2.797		
25	1.316	1.708	2.060	2.485	2.787		
26	1.315	1.706	2.056	2.479	2.779		
27	1.314	1.703	2.052	2.473	2.771		
28	1.313	1.701	2.048	2.467	2.763		
29	1.311	1.699	2.045	2.462	2.756		
30	1.310	1.697	2.042	2.457	2.750		

The chi-square distribution

$$\Pr[X \le x] = \int_0^x \frac{1}{\Gamma(r/2)2^{r/2}} y^{r/2 - 1} e^{-r/2} dx$$

		$\Pr[X \le x]$						
r	0.01	0.025	0.05	0.95	0.975	0.99		
1	0.000	0.001	0.004	3.841	5.024	6.635		
2	0.020	0.051	0.103	5.991	7.378	9.210		
3	0.115	0.216	0.352	7.815	9.348	11.345		
4	0.297	0.484	0.711	9.488	11.143	13.277		
5	0.554	0.831	1.145	11.070	12.833	15.086		
6	0.872	1.237	1.635	12.592	14.449	16.812		
7	1.239	1.690	2.167	14.067	16.013	18.475		
8	1.646	2.180	2.733	15.507	17.535	20.090		
9	2.088	2.700	3.325	16.919	19.023	21.666		
10	2.558	3.247	3.940	18.307	20.483	23.209		
11	3.053	3.816	4.575	19.675	21.920	24.725		
12	3.571	4.404	5.226	21.026	23.337	26.217		
13	4.107	5.009	5.892	22.362	24.736	27.688		
14	4.660	5.629	6.571	23.685	26.119	29.141		
15	5.229	6.262	7.261	24.996	27.488	30.578		
16	5.812	6.908	7.962	26.296	28.845	32.000		
17	6.408	7.564	8.672	27.587	30.191	33.409		
18	7.015	8.231	9.390	28.869	31.526	34.805		
19	7.633	8.907	10.117	30.144	32.852	36.191		
20	8.260	9.591	10.851	31.410	34.170	37.566		
21	8.897	10.283	11.591	32.671	35.479	38.932		
22	9.542	10.982	12.338	33.924	36.781	40.289		
23	10.196	11.689	13.091	35.172	38.076	41.638		
24	10.856	12.401	13.848	36.415	39.364	42.980		
25	11.524	13.120	14.611	37.652	40.646	44.314		
26	12.198	13.844	15.379	38.885	41.923	45.642		
27	12.879	14.573	16.151	40.113	43.195	46.963		
28	13.565	15.308	16.928	41.337	44.461	48.278		
29	14.256	16.047	17.708	42.557	45.722	49.588		
30	14.953	16.791	18.493	43.773	46.979	50.892		