

Análise Experimental de Tensões

Laboratório de Mecânica dos **Sólidos**

 D_2

Nome:	RA:
tonic.	MA

Experimento 3 – Análise analítica, experimental e numérica de um eixo sujeito a torção pura.

> Visão geral do procedimento:

- Fixação da estrutura no dispositivo.
- Carregar a estrutura.
- Ler e registrar a deformação específica obtida experimentalmente.
- Calcular a deformação específica analiticamente e comparar o erro.
- Simular a deformação específica numericamente por elementos finitos e comparar o erro.

Parte 1 - Análise Experimental:

Eixo sob torção pura – Esquema de ¼ de ponte com 3 fios:

> Análise de deformações específicas

✓ Etapa 1: Procedimentos de aquisição de dados no laboratório

Análise Experimental de Tensões

Laboratório de Mecânica dos Sólidos

- Dados preliminares para coletar:

Estrutura:

Viga em balanço

Material da peça: Liga de Alumínio 6061-T6

Extensômetro (SG):

PA-XX-125CX-350 L.

Indicador de deformações:

P3 (Micro-Measurements).

Relógio comparador:

Mitutoyo centesimal

a	=	195	mm

$$D_I = \underline{\hspace{1cm}}$$

$$D_2 =$$

$$\ell_1$$
 =

- Adotar:

$$g = 9.81 \text{ m/s}^2$$
 $E = 69.000 \text{ N/mm}^2$ $v = 0.35$ $\sigma_{\lim} = \sigma_{esc} = 255 \text{ N/mm}^2$ $G = \frac{E}{2(1+V)}$

- ✓ Etapa 2: Procedimento de medição experimental
- A partir das massas m_1 , m_2 , e m_3 , calcular as cargas P_1 , P_2 e P_3 e os torques M_{t1} , M_{t2} e M_{t3} .
- Aplicar os torques M_{t1} , M_{t2} e M_{t3} e medir as deformações específicas ε_a (leitura à 45°)

$$M_t = 2 \cdot P \cdot a$$

Massa m [kg]	Carga P [N]	Torque Mt [N.mm]	Deformação \mathcal{E}_a [μ d]
$m_1 = 5,677$	P ₁ =	$M_{t1} =$	$\mathcal{E}_{a1} =$
$m_2 = 7,677$	P ₂ =	$M_{t2} =$	$\mathcal{E}_{a2} =$
$m_3 = 8,677$	P ₃ =	$M_{t3} =$	$\mathcal{E}_{a3} =$

- ✓ Etapa 3: Análise experimental a partir das leituras dos extensômetros:
 - \triangleright Cálculo da distorção angular γ_{xy} a partir da deformação específica ε_a :

$$\varepsilon_a = \gamma_{xy} \cdot \sin 45^\circ \cdot \cos 45^\circ = 0.5 \cdot \gamma_{xy}$$

Portanto:
$$\gamma_{xy} = 2 \cdot \varepsilon_a$$

Dist	orção γ _{xy} [μrad]
γ ₁ =	
γ ₂ =	
γ ₃ =	

ightharpoonup Cálculo da tensão de cisalhamento máxima au_{\max} a partir da Lei de Hooke para o cisalhamento: $au=G\cdot \gamma$

Tensão de Cisalhamento Experimental τ_{max} [MPa]
$\tau_{\text{max 1}} =$
$\tau_{\text{max}2} =$
$\tau_{\text{max}3} =$

Análise Experimental de Tensões

Laboratório de Mecânica dos Sólidos

Parte 2: Análise teórica a partir do torque M_t aplicado na seção A:

- \checkmark **Etapa 1**: Características geométricas da seção: Momento Polar de Inércia $I_p = \frac{\pi D^4}{32}$
- **Etapa 2**: Características geométricas da seção: Módulo de Resistência $W_t = \frac{l_p}{D/2} = \frac{\pi D^3}{16}$

Trecho do eixo	Momento Polar de Inércia I _p [mm ⁴]	Módulo de Resistência na Torção W _t [mm³]
AB	$I_{pAB} =$	$W_{tAB} =$
BC	$I_{pBC} =$	$W_{tBC} =$

 \checkmark **Etapa 3**: Tensão de cisalhamento máxima $τ_{max}$ na seção ℓ – posição do SG (*strain gage*).

Método Analítico de solução (Resistência dos Materiais):

$$\tau_{\text{max}} = \frac{M_t}{I_n} \cdot \frac{D}{2} = \frac{M_t}{W_t} = \frac{16 \cdot M_t}{\pi \cdot D^3}$$

Tensão de Cisalhamento Analítica AB τ_{max} [MPa]	Tensão de Cisalhamento Analítica BC τ_{max} [MPa]
$\tau_{\text{maxAB1}} =$	$\tau_{\text{maxBC1}} =$
$\tau_{\text{maxAB}2} =$	$\tau_{\text{maxBC2}} =$
$\tau_{\text{maxAB3}} =$	$\tau_{\text{maxBC3}} =$

Parte 3: Comparação dos resultados experimentais com os resultados analíticos

> Resultados dos erros calculados:

Tensão de Cisalhamento Experimental AB τ_{max} [MPa]	Tensão de Cisalhamento Analítica AB τ _{max} [MPa]	Erro [%]
$\tau_{\text{maxAB } 1} =$	$\tau_{\text{maxAB } 1} =$	
$\tau_{\text{maxAB}2} =$	$\tau_{\text{maxAB2}} =$	
$\tau_{\text{maxAB}3} =$	$\tau_{\text{maxAB}3} =$	

Parte 4: Comparação dos resultados numéricos (simulação MEF) com os resultados analíticos

Resultados dos erros calculados:

Tensão de Cisalhamento Numérica AB τ_{max} [MPa]	Tensão de Cisalhamento Numérica BC τ _{max} [MPa]	Erro AB [%]	Erro BC [%]
$\tau_{\text{maxAB} 1} =$	$\tau_{\text{maxBC1}} =$		
$\tau_{\text{maxAB2}} =$	$\tau_{\text{maxBC2}} =$		
$\tau_{\text{maxAB}3} =$	$\tau_{\text{maxBC3}} =$		