# Database Concepts

Lecture 1

# Learning Outcomes

- In this chapter, you will learn:
  - What is data and information?
  - What is a database?
  - What is a file system?
  - Main components of database system
  - What is a database management system (DBMS)



### Introduction

- Good decisions require good information derived from <u>raw</u> facts
- Data can be managed most efficiently when stored in a database.

# Why Databases?

- Databases solve many of the problems encountered in data management
  - Business
  - Research
  - Administration
- E.g.,



Computer-based training materials



Knowledge Assessment Systems



Analysis of market's behaviour

### Data vs. Information

- Data are raw facts
- Information is the result of processing raw data to reveal meaning
- Raw data must be formatted for storage, processing, and presentation
- Data are the foundation of information, which is the bedrock of knowledge.

# Data vs. Information (cont'd.)

- Information is:
  - produced by processing data
  - used to reveal meaning in data
- Information is meant for helping in decision making.

## Introducing the Database

- Database: <u>shared</u> and <u>integrated</u> computer structure that stores a collection of:
  - End-user data: raw facts
  - Metadata: data about data
    - Provides description of data characteristics and relationships in data

# Role and Advantages of the DBMS

- Database management system (DBMS): collection of programs that manages structure and control access to data
- DBMS enables data to be shared and integrates many users' views of the data



# FIGURE 1.2

#### The DBMS manages the interaction between the end user and the database



## Role and Advantages of the DBMS (cont'd.)

- Advantages of a DBMS:
  - Improved data sharing
  - Improved data security
  - Better data integration
  - Minimized data inconsistency
  - Improved data access



## Types of Databases

- Databases can be classified according to:
  - Number of users
  - Database location(s)
  - Expected type and extent of use
- Single-user database supports only one user at a time
  - Desktop database: <u>single-user</u>; runs on PC
- Multiuser database supports multiple users at the same time
  - Workgroup and enterprise databases

# Types of Databases (cont'd.)

- Centralized database: data located at a single site
- Distributed database: data distributed across several different sites
- Operational database: supports a company's day-to-day operations
  - Transactional or production database
- Data warehouse: stores data used for strategic decisions

## Types of Data

- Unstructured data exist in their original state
- Structured data result from formatting
  - Structure applied based on type of processing to be performed
- Semi-structured data have been processed to some extent

# Why Is Database Design Important?

- Well-designed database:
  - Facilitates data management
  - Generates accurate and valuable information
- Poorly designed database:
  - Causes difficult-to-trace errors

# File Systems

- Collection of application programs that perform services for the end users (e.g. reports).
- Each program defines and manages its own data.
  - E.g. each department control and store its own data.



# File Systems

#### Hostel Application Program & File System



TABLE 1.2

### **Basic File Terminology**

| TERM   | DEFINITION                                                                                                                                                                                                                                                        |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Data   | Raw facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD) sales value. Data have little meaning unless they have been organized in some logical manner.                                                                      |  |  |  |  |  |
| Field  | A character or group of characters (alphabetic or numeric) that has a specific meaning. A fiel used to define and store data.                                                                                                                                     |  |  |  |  |  |
| Record | A logically connected set of one or more fields that describes a person, place, or thing. For example, the fields that constitute a customer record might consist of the customer's name, address, phone number, date of birth, credit limit, and unpaid balance. |  |  |  |  |  |
| File   | A collection of related records. For example, a file might contain data about the students currently enrolled at Gigantic University.                                                                                                                             |  |  |  |  |  |

#### Limitations

### Separation and isolation of data

- Each program maintains its own set of data.
- Users of one program may be unaware of potentially useful data held by other programs.

### Duplication of data

- Same data is held by different programs.
- Wasted space and potentially different values and/or different formats for the same item.

#### Limitations

### Data dependence

File structure is defined in the program code.

### Incompatible file formats

 Programs are written in different languages, and so cannot easily access each other's files.

# Problems with File System

- File system limitations:
  - Requires extensive programming
  - Cannot perform ad hoc queries
  - System administration is complex and difficult
  - Difficult to make changes to existing structures
  - Lack of security and limited data sharing

# Structural and Data Dependence

- Structural dependence: access to a file is dependent on its own <u>structure</u>
  - All file system programs must be modified to conform to a new file structure
- Structural independence: change file structure without affecting the application's ability to access data
- Data dependence: data access changes when <u>data</u> storage characteristics change
- Data independence: data storage characteristics do not affect data access

# Data Redundancy

- Data redundancy: same data stored unnecessarily in different places
  - Data stored in different locations is difficult to update consistently
- Data inconsistency: different and conflicting versions of same data occur at different places

### Data Anomalies

- Data anomalies: abnormalities when all changes in redundant data are not made correctly
  - Update anomalies
  - Insertion anomalies
  - Deletion anomalies

## Lack of Design and Data-Modeling Skills

- Most users lack the skill to properly design databases, despite multiple personal productivity tools being available
- Data-modeling skills are vital in the data design process
- Good data modeling facilitates communication between the designer, user and developer

# Database Systems

- Database system consists of logically related data stored in a single logical data repository
  - User may view data repository as a single unit although they may be physically distributed among multiple storage locations
  - DBMS eliminates most of file system's problems
    - Data inconsistency
    - Data redundancy
    - Data/structural dependency

# Database Systems



#### Contrasting database and file systems



# The Database System Environment

- Five major parts of a database system:
  - Hardware
  - Software
  - People
  - Procedures
  - Data

#### The database system environment



## The Database System Environment (cont'd.)

- Hardware: all the system's physical devices
- *Software*: three types of software required:
  - Operating system software
  - DBMS software
  - Application programs and utility software

## The Database System Environment (cont'd.)

- People: all users of the database system
  - System and database administrators
  - Database designers
  - Systems analysts and programmers
  - End users
- Procedures: instructions and rules that govern the design and use of the database system
- **Data**: the collection of facts stored in the database

## The Database System Environment (cont'd.)

- Database systems are created and managed at different levels of complexity (eg., insurance claims system and restaurant booking system)
- Database solutions must be cost-effective as well as tactically and strategically effective
- Database technology already in use affects selection of a database system

### **DBMS** Functions

- Data dictionary management
- Data storage management
- Data transformation and presentation
- Security management
- Multiuser access control
- Backup and recovery management
- Data integrity management
- Database access languages and application programming interfaces
- Data communication interfaces

### **DBMS** Functions

### Data dictionary management

- Data dictionary contains metadata (data about data)
  - Contains all the attribute names and characteristics for each table in the system
- Any changes made are automatically recorded in the data dictionary without making changes to program structure

**TABLE 3.6** 

#### **A Sample Data Dictionary**

| TABLE NAME | ATTRIBUTE NAME | CONTENTS                 | ТҮРЕ        | FORMAT       | RANGE       | REQUIRED | PK<br>OR<br>FK | FK<br>REFERENCED<br>TABLE |
|------------|----------------|--------------------------|-------------|--------------|-------------|----------|----------------|---------------------------|
| CUSTOMER   | CUS_CODE       | Customer account code    | CHAR(5)     | 99999        | 10000-99999 | Y        | PK             |                           |
|            | CUS_LNAME      | Customer last name       | VARCHAR(20) | Xxxxxxxx     |             | Y        |                |                           |
|            | CUS_FNAME      | Customer first name      | VARCHAR(20) | Xxxxxxxx     |             | Y        |                |                           |
|            | CUS_INITIAL    | Customer initial         | CHAR(1)     | X            |             |          |                |                           |
|            | CUS_RENEW_DATE | Customer insurance       | DATE        | dd-mmm-yyyy  |             |          |                |                           |
|            | AGENT_CODE     | renewal date Agent code  | CHAR(3)     | 999          |             |          | FK             | AGENT_CODE                |
| AGENT      | AGENT_CODE     | Agent code               | CHAR(3)     | 999          |             | Υ        | PK             |                           |
|            | AGENT_AREACODE | Agent area code          | CHAR(3)     | 999          |             | Υ        |                |                           |
|            | AGENT_PHONE    | Agent telephone number   | CHAR(8)     | 999-9999     |             | Y        |                |                           |
|            | AGENT_LNAME    | Agent last name          | VARCHAR(20) | Xxxxxxxx     |             | Y        |                |                           |
|            | AGENT_YTD_SLS  | Agent year-to-date sales | NUMBER(9,2) | 9,999,999.99 |             | Y        |                |                           |

FK = Foreign key PK = Primary key

CHAR = Fixed character length data (1–255 characters)
VARCHAR = Variable character length data (1–2,000 characters)

NUMBER = Numeric data (NUMBER(9,2)) are used to specify numbers with two decimal places and up to nine digits, including the decimal places.

Some RDBMSs permit the use of a MONEY or CURRENCY data type.

Note: Telephone area codes are always composed of digits 0–9. Because area codes are not used arithmetically, they are most efficiently stored as character data. Also, the area codes are always composed of three digits. Therefore, the area code data type is defined as CHAR(3). On the other hand, names do not conform to some standard length. Therefore, the customer first names are defined as VARCHAR(20), thus indicating that up to 20 characters may be used to store the names. Character data are shown as left-justified.

#### Illustrating metadata with Microsoft SQL Server Express



- Data storage management
  - DBMS creates and manages complex structures required for data storage
    - Also stores related data entry forms, screen definitions, report definitions, etc.
  - DBMS stores the database in multiple physical data files

### Data transformation and presentation

- DBMS transforms data entered to conform to required data structures
- DBMS transforms physically retrieved data to conform to user's logical expectations

### Security management

- DBMS creates a security system that enforces user security and data privacy
- Security rules determine which users can access the database, which items can be accessed, etc.

#### Multiuser access control

 DBMS uses sophisticated algorithms to ensure concurrent access does not affect integrity

### Backup and recovery management

- DBMS provides backup and data recovery to ensure data safety and integrity
- Recovery management deals with recovery of database after a failure
  - Critical to preserving databases integrity

- Data integrity management
  - DBMS promotes and enforces integrity rules
    - Minimizes redundancy
    - Maximizes consistency

- Database access languages and application programming interfaces
  - Structured Query Language (SQL) is the de facto query language
    - Standard supported by majority of DBMS vendors

- Database communication interfaces
  - Current DBMSs accept end-user requests via multiple different network environments
  - Communications accomplished in several ways:
    - Through Web browser
    - Automatically publishes predefined reports on a Web site
    - Connects to third-party systems to distribute information via e-mail

# Disadvantages of Database Systems

- Increased costs
- Management complexity
- Vendor dependence
- Frequent upgrade/replacement cycles