Образование звездной системы из газопылевого облака

- Работу выполнили: Ягодкин Ярослав, Пашко Никита, Шелестун Денис
- Научный руководитель: Царьков Максим Владимирович

Введение

Долгое время астрономов мира интересовал вопрос о том, как была образована Солнечная Система. В 1755 году Иммануил Кант выдвинул "Небулярную гипотезу", которая по сей день считается наиболее правдоподобной. Данная теория предполагает, что Солнечная система была образована из массивного газопылевого облака

Цели

• Смоделировать процесс взаимного притяжения частиц под действием закона всемирного тяготения.

Задачи

- Выучить базовый синтаксис языка Python 3
- Изучить библиотеки для численного решения дифференциальных уравнений, построения графиков и других целей (scipy, matplotlib, numpy, random)

Постановка дифференциальной задачи

$$\frac{d\vec{v}}{dt} = \vec{a} = \frac{\vec{F}}{m}; F = G\frac{m_1 m_2}{r^2} \implies \frac{dv}{dt} = a = G\frac{m_2 m}{r^2 m} = G\frac{m_2}{r^2}$$

$$\frac{dy}{dt} = v_y$$

$$\frac{dx}{dt} = v_x$$

Начальные условия

"Коэффициент скорости"	Радиус тел (меньше максимальных координат в раз)	Масса тел, кг	Время, с	Количество колец
2.2*10 ⁻¹⁵	80	0,2	2.8*10 ¹⁵	3

Начальные условия

Кольцо	Nº1	Nº2	Nº3
Количество частиц	30	55	60
Минимальное расстояние до Центра, м	О	7,000	5,000,000
Максимальное расстояние до Центра, м	7000	5,000,000	6,000,000

Результаты Моделирования

В конечном итоге, пользователь получает анимированный график движения частиц, которые образуют системы крупных тел. На симуляции показано взаимодействие частиц друг с другом. Данные тела притягиваются друг к другу, объединяются в небольшие "кластеры" и продолжают взаимодействовать друг с другом.

Заключение

Таким образом в ходе работы были достигнуты основные ее цели, а именно:

- В работе проведено исследование по моделированию образования звёздной системы из газопылевого облака.
- Смоделирован процесс притяжения частиц под действием ЗВТ. Результат демонстрирует образование новой звёздной системы.

В дальнейшем мы планируем развивать свой проект и добиться высокого уровня познания в сфере моделирования астрономических явлений.

Данная работа опубликована в открытом источнике <u>astromodel.ru</u>

