Applications

Freinage d'Airbus

David Violeau

Savoirs et compétences :

Système de freinage de l'A318

D'après ressources UPSTI – David Violeau.

Présentation du système

Le freinage est une des fonctions vitales d'un avion, au même titre que la propulsion ou la sustentation. C'est grâce à lui que l'avion peut s'immobiliser après l'atterrissage, circuler au sol en toute sécurité mais également s'arrêter en cas d'urgence lors d'une interruption de décollage alors que l'avion est à pleine charge de carburant et lancé à la vitesse de décollage (même si le risque est de l'ordre de 1 pour 1 million de décollages).

Modélisation du système de freinage

On souhaite définir un modèle pour l'asservissement en décélération. Pour cela, on propose de déterminer une fonction de transfert pour tous les constituants.

Modélisation de la servovalve

Une servovalve électrohydraulique est un appareil qui convertit une grandeur électrique (courant ou tension) en une grandeur hydraulique proportionnelle (débit ou pression).

On donne ci-dessous la caractéristique reliant l'inten-

1 Que peut-on dire de cette caractéristique sur tout le domaine de variation de i(t)? Sachant que θ est très petit (varie autour de 0), on utilise la relation suivante $\theta(t) = K_1 i(t)$. Déterminer la valeur de K_1 à partir de la courbe.

On admet que, pour le système buse-palette, la rotation d'angle θ de la palette se traduit par un accroissement ou diminution de la distance buse-palette. Les sections de fuite sont alors augmentées ou diminuées, ce qui entraîne une augmentation ou diminution des pressions P_A et P_B proportionnelle à ΔS .

On peut alors définir les relations suivantes :

$$\Delta S(t) = K_2 \theta(t)$$

$$\Delta P(t) = K_3 \Delta S(t)$$

Cette pression différentielle permet de mettre en mouvement le tiroir de la servovalve.

En situation repos, lorsque $P_A = P_B = P_0$, le tiroir est en position milieu, z = 0 (cf figure ci-dessous).

Tiroir en position repos

En position travail, la pression différentielle se répersité i(t) du moteur à l'angle $\theta(t)$ dont bascule l'armature. cute aux extrémités du tiroir et provoque son déplacement.

Tiroir en position travail

On utilise les notations suivantes :

- m_t : masse du tiroir;
- S_t : section du tiroir à ses extrémités;
- F_A et F_B: efforts exercés par les deux ressorts de coefficient de raideur k_t montés de part et d'autre du
 tiroir du distributeur;
- *c_t* : coefficient de frottement visqueux entre tiroir et cylindre.

Le principe fondamental de la dynamique appliqué au tiroir donne la relation suivante :

$$m_t \frac{d^2 z(t)}{dt^2} = -2k_t z(t) + 2S_t \Delta P(t) - c_t \frac{dz(t)}{dt}$$

Question 2 Calculer la fonction de transfert $H_t(p) = \frac{Z(p)}{\Delta P(p)}$ où Z(p) et $\Delta P(p)$ sont les transformées de Laplace de z(t) et $\Delta P(t)$ en précisant l'hypothèse retenue.

Question 3 *Mettre cette fonction de transfert sous forme canonique et donner son ordre.*

On admet pour finir que la pression d'utilisation $P_h(t)$ du fluide est proportionnelle au déplacement z(t) du tiroir : $P_h(t) = K_4 z(t)$.

Question 4 À partir de toutes les informations précédentes (modélisation armature, buse/palette, tiroir...), recopier et compléter le schéma-bloc de la servovalve donné ci-dessous, en précisant les fonctions de transfert de chaque bloc (utiliser les notations algébriques).

Question 5 En déduire la fonction de transfert $S_v(p) = \frac{P_h(p)}{I(p)}$ de la servovalve.

Question 6 Montrer qu'elle peut se mettre sous la forme d'un système du second ordre :

$$S_{\nu}(p) = \frac{P_{h}(p)}{I(p)} = \frac{K_{sv}}{1 + \frac{2\xi p}{\omega_{0}} + \frac{p^{2}}{\omega_{0}^{2}}}$$

où on donnera les expressions littérales de K_{sv} , ξ et ω_0 .

On souhaite que la réponse à une entrée i(t) de type échelon de valeur i_0 soit la plus rapide possible sans toutefois produire de dépassement.

Question 7 A quelle valeur de ξ correspond cette spécification?

Question 8 Démontrer que cette condition ne peut être satisfaite que si $k_t = \frac{c_t^2}{8m_t}$.

Question 9 *Montrer alors que la fonction de transfert de la servovalve peut se mettre sous la forme :*

$$S_{v}(p) = \frac{P_{h}(p)}{I(p)} = \frac{K_{sv}}{(1 + T_{sv}p)^{2}}$$

on donnera l'expression littérale de T_{sv} .

Question 10 Déterminer la réponse indicielle $P_h(t)$ pour une entrée échelon de valeur $i(t) = i_0 u(t)$.

On rappelle que
$$\mathcal{L}(te^{-at}u(t)) = \frac{1}{(p+a)^2}$$
.

Modélisation de l'accéléromètre

La centrale inertielle contient des accéléromètres qui permettent de mesurer les accélérations suivant les trois directions x_a , y_a , z_a d'un repère lié à l'avion.

L'accéléromètre renvoie au BSCU un signal électrique $u_a(t)$ image de l'accélération a(t) suivant la direction x_a . La tension $u_a(t)$ est convertie en grandeur numérique a_m par un convertisseur analogique-numérique et rangée dans la mémoire du BSCU.

Principe de l'accéléromètre

Un accéléromètre (voir figure ci-dessous) est constitué de deux solides S_1 et S_2 :

- S_1 , le corps, est lié à l'avion,
- S_2 est lié à S_1 par l'intermédiaire d'un ressort de raideur k_a et d'un frottement visqueux de valeur c_a .

Accéléromètre en position repos

On considère (voir figure ci-dessus) deux points M_1 et M_2 appartenant respectivement à S_1 et S_2 . On note $x_1(t)$ et $x_2(t)$ leurs coordonnées dans un repère $\left(O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$.

On considère nulles les conditions initiales. En particulier, à l'état repos, M_1 et M_2 sont confondus. Quand S_1 est animé d'un mouvement de translation suivant x_0 , on note:

$$\varepsilon(t) = x_1(t) - x_2(t) \tag{1}$$

$$a(t) = \frac{d^2x_1(t)}{dt^2} \operatorname{acc\'{e}laration} \operatorname{de} S_1$$
 (2)

Accéléromètre en action

D'autre part, par application du principe fondamental de la dynamique, on a :

$$m_a \frac{d^2 x_2(t)}{dt^2} = c_a \left(\frac{dx_1(t)}{dt} - \frac{dx_2(t)}{dt} \right) + k_a (x_1(t) - x_2(t))$$
(3)

avec m_a, c_a, k_a constantes.

Le solide S_2 est relié à un potentiomètre qui renvoie une tension u_a proportionnelle au déplacement ε du solide S_2 par rapport à S_1 . On note :

$$u_a(t) = K_p \varepsilon(t) \tag{4}$$

Finalement, le CAN (convertisseur analogique numérique) fournit la valeur a_m telle que :

$$a_m(t) = K_{CAN} u_a(t) \tag{5}$$

Question 11 Déterminer les transformées de Laplace des expressions (1) à (5).

Question 12 En déduire les transmittances G_i du schéma bloc ci-après.

Question 13 En déduire la fonction de transfert $\frac{A_m(p)}{A(p)}$ et montrer quelle peut se mettre sous la forme :

$$\frac{A_m(p)}{A(p)} = \frac{K_{acc}}{1 + 2\frac{\xi_a p}{\omega_a} + \frac{p^2}{\omega_a^2}}$$

Donner les expressions de K_{acc} , ξ_a et ω_a .

Question 14 La figure ci-dessous donne la réponse indicielle (entrée unitaire) de l'accéléromètre. Identifier les valeurs des constantes K_{acc} , ξ_a et ω_a (On pourra utiliser les abaques donnés en annexe).

Étude de l'asservissement global

La boucle d'asservissement en décélération est donnée ci-après :

$$\frac{(1+T_{sv}p)^2}{1+\frac{2\xi_a}{\omega_a}p+\frac{p^2}{\omega_a^2}}, H_f(p)=K_f, H_{BSCU}(p)=K_c.$$

Question 15 Exprimer sous forme canonique la fonction de transfert en boucle ouverte. En déduire l'ordre, la classe et le gain de la FTBO(p).

Question 16 Exprimer l'écart $\varepsilon(p)$ en fonction de $a_c(p)$ et de la FTBO(p).

Question 17 En déduire l'écart en régime permanent à une entrée de type échelon d'accélération $a_c(t) = a_c u(t)$. Que peut on dire de la performance de précision pour ce correcteur?

Question 18 On utilise un correcteur (correcteur PI) plus évolué de fonction de transfert $H_{BSCU}(p) = K_i \frac{1+T_i p}{p}$, déterminer à nouveau l'écart en régime permanent et conclure sur ce choix de correcteur.

