

Kaci BOURGUA

Data Analytics, March 2023

Context & Business Case

Personal interest in environmental topics and sustainability-oriented innovations

Private companies

Public policy makers and city administrations

How is our cities' climate going to change in the future?

Planning

Get the right data from Copernicus & extract it

Data cleaning, preparation & exploratory data analysis

Database creation, ERD & queries on MySQL

Testing supervised ML models with time series analysis

Demo with the best model and comparison with forecast data

Data Sources

- European Union's Earth Observation Program
- Satellite missions & ground-based monitoring systems for climate data
- Global bioclimatic indicators from 1950 to 2100 derived from climate projection
- RCP8.5 scenario

GeoNames

- Geographical Database
- Dataset of all the cities around the world with more than 1000 inhabitants
- Features: city name, country name, population and latitude/longitude
- Used to extract the data for my analysis

40°°

Features

Variable Name	Unit	Description	
Annual mean	K	Annual mean of the daily mean temperature at 2 m above the surface. This	
temperature (BIO01)	(Converted to	indicator corresponds to the official BIOCLIM variable BIO01 that is used in	
	°C)	ecological niche modelling.	
Mean temperature of	K	The mean of monthly mean temperature during the warmest quarter, defined as	
warmest quarter	(Converted to	the quarter with the highest monthly mean (of the daily mean) temperature using	
(BIO10)	°C)	a moving average of 3 consecutive months. This indicator corresponds to the	
		official BIOCLIM variable BIO10.	
Mean temperature of	an temperature of K The mean of monthly mean temperature during the coldest quarter, define		
coldest quarter	(Converted to	the quarter with the lowest monthly mean (of the daily mean) temperature using	
(BIO11)	°C)	a moving average of 3 consecutive months. This indicator corresponds to the	
		official BIOCLIM variable BIO11.	
Annual precipitation	m s-1	Annual mean of the daily mean precipitation rate (both liquid and solid phases).	
(BIO12)		This indicator corresponds to the official BIOCLIM variable BIO12. To compute	
		the total precipitation sum over the year, a conversion factor should be applied of	
		3600x24x365x1000 (mm year-1).	
Precipitation of	m s-1	Maximum of the monthly precipitation rate. To compute the total precipitation	
wettest month		sum over the month, a conversion factor should be applied of 3600x24x30.4	
(BIO13)		(average number of days per month)x1000. This indicator corresponds to the	
		official BIOCLIM variable BIO13.	
Precipitation of	m s-1	Minimum of the monthly precipitation rate. To compute the total precipitation sum	
driest month		over the month, a conversion factor should be applied of 3600x24x30.4 (aver	
(BIO14)		number of days per month)x1000. This indicator corresponds to the official	
		BIOCLIM variable BIO14.	

Data Cleaning (cities dataset)

```
df_city.columns = df_city.columns.str.lower()
df_city.columns = df_city.columns.str.replace(' ','_')
Python
```

```
df_city[['latitude', 'longitude']] = df_city['Coordinates'].str.split(',', 1, expand=True)
```

```
df_city.drop(['alternate_names', 'country_code_2', 'admin2_code', 'admin3_code', 'admin4_code'
Python
```

```
df.drop(columns=['Unnamed: 0', 'ascii_name', 'feature_class', 'feature_code', 'admin1_code',
```

Python

Data Extraction

Extraction of the values of one indicator for 100 cities, from NetCDF files

```
import netCDF4
import pandas as pd
import numpy as np
import glob
# Record all the years of the netCDF files into a Python list
data = netCDF4.Dataset('dataset-sis-biodiversity/BIO14_ipsl-cm5a-lr_rcp85_r1i1p1_1950-2100_v1.
TIME = data.variables["time"]
LAT=data.variables["latitude"][:]
LON=data.variables["longitude"][:]
INDICATOR=data.variables["BI014"]
# Creating an empty Pandas DataFrame covering the whole range of data
starting_date = '1950'
ending date = '2100'
date_range = pd.date_range(start=starting_date, end=ending_date, freq='AS')
dt = np.arange(0, data.variables["time"].size)
df = pd.DataFrame(columns=['year', 'geoname_id', 'precipitation_driest_month'], index=date_range)
dt = np.arange(0, data.variables["time"].size)
```


Data Extraction

```
# Defining the location, lat, lon based on the csv data
cities = pd.read_csv('top_100_cities.csv')
for index, row in cities.iterrows():
    location = row['name']
    location latitude = row['latitude']
    location_longitude = row['longitude']
    city_id=row['geoname_id']
    # Squared difference between the specified lat, lon and the lat, lon of the netCDF
    sq diff lat = (LAT - location latitude)**2
    sq_diff_lon = (LON - location_longitude)**2
    # Identify the index of the min value for lat and lon
   min index lat = sq diff lat.argmin()
   min_index_lon = sq_diff_lon.argmin()
    for time index in dt:
        df.iloc[time_index] = [df.index[time_index], city_id,INDICATOR[time_index, min_index_l
    print('Recording the value for '+ location)
    df.to_csv(fr"6.precipitation_driest_month/{location}.csv")
```


Data Extraction

```
final_df6 = pd.concat(map(pd.read_csv, glob.glob(fr'6.precipitation_driest_month/*.csv')))
final_df6.drop('Unnamed: 0', axis=1, inplace=True)
final_df6['year']=final_df6['year'].str.split('-').str[0]
final_df6.to_csv('6.precipitation_driest_month.csv', index=None)
```


Data Cleaning (bioclimatic indicators)

```
#Converting kelvin to celcius
df['annual_mean_temperature']=df['annual_mean_temperature'].apply(lambda x:x-273,15)
df['mean_temperature_coldest_quarter']=df['mean_temperature_coldest_quarter'].apply(lambda x:x
df['mean_temperature_warmest_quarter']=df['mean_temperature_warmest_quarter'].apply(lambda x:x
Python
```


Liveability Index

Annual Mean Temperature

Mean Temperature Coldest
Quarter

Mean Temperature Warmest
Quarter

Annual Mean Precipitation

Mean Precipitation Wettest Month

Mean Precipitation Driest Month

- Indexbetween0 & 1
- The lower, the better

Index creation

```
from sklearn.preprocessing import MinMaxScaler
# Define the weights for each climate score variable
climate_weights = {
    'annual mean temperature': 0.2,
    'mean_precipitation': 0.1,
    'mean_temperature_coldest_quarter': 0.3,
    'mean_temperature_warmest_quarter': 0.3,
    'precipitation_driest_month': 0.05,
    'precipitation_wettest month': 0.05
# Load the data into a pandas dataframe
dfx = pd.read csv('full data top 100 cities celcius rcp8.5.csv')
# Normalize the climate score variables using MinMaxScaler
scaler = MinMaxScaler()
dfx[list(climate weights.keys())] = scaler.fit transform(dfx[list(climate weights.keys())])
# Multiply each climate score variable by its corresponding weight
weighted_scores = dfx[list(climate_weights.keys())].multiply(list(climate_weights.values()))
# Sum up the weighted scores to get the weighted index for the climate score
dfx['climate_score_weighted'] = weighted_scores.sum(axis=1)
dfx
```

Scale the data

Assign a weight

Exploratory Data Analysis

The RCP 8.5 forecast shows a steep increase in average annual temperature for the 100 cities

2060

2080

2100

For precipitation, the trend is less clear, and seems to follow a cyclic pattern. However, we see more extreme values

Exploratory Data Analysis

Temperature & Precipitation Scatter Plot

* average values for 100 cities, for 2018

The top 100 most populated cities are cities with warm climate on average, that receive precipitation

22M

→indicates that humans have their preferences for climate, and for cities to thrive

Average of Annual Mean Temperature vs. average of Mean Precipitation. Color shows average of Population. Size shows average of Population. Details are shown for Name. The data is filtered on Year, which ranges from 2018 to 2018.

Annual Mean Temperature moy.

Exploratory Data Analysis

Liveability Index for 2018

Map based on Longitude (generated) and Latitude (generated). Color shows average of Climate Liveability Index. Details are shown for Name and Country Name En. The data is filtered on Year, which ranges from 2018 to 2018.

Avg. Climate Li.. 0,1282 0,6517

Liveability Index for 2100

Map based on Longitude (generated) and Latitude (generated). Color shows average of Climate Liveability Index. Details are shown for Name and Country Name En. The data is filtered on Year, which ranges from 2100 to 2100.

Exploratory Data Analysis

Database creation

I have created my database using the Python library sqlAlchemy with the code bellow

```
from sqlalchemy import create_engine
import pymysql.cursors
import os
import getpass
pw = getpass.getpass()
connection_string = 'mysql+pymysql://root:' + pw + '@localhost:3306/'
engine = create_engine(connection_string)

#Create each table from my pandas dataframes
df_cities.to_sql('cities', engine, 'climate_fproject', if_exists='replace', index = False)
annual_mean_temp_df.to_sql('an_mean_temp', engine, 'climate_fproject', if_exists='replace', index = False)
mean_temp_warmest_quarter_df.to_sql('men_temp_warm_q', engine, 'climate_fproject', if_exists='replace', index = False)
mean_temp_coldest_quarter_df.to_sql('men_temp_cold_q', engine, 'climate_fproject', if_exists='replace', index = False)
annual_mean_precipitation_df.to_sql('an_mean_prec', engine, 'climate_fproject', if_exists='replace', index = False)
precipitation_wettest_month_df.to_sql('prec_wet_mon', engine, 'climate_fproject', if_exists='replace', index = False)
precipitation_driest_month_df.to_sql('prec_dri_mon', engine, 'climate_fproject', if_exists='replace', index = False)
```


Entity Relationship Diagram

SQL Queries

-- Query 2 : Top 50 cities in the World, by population
select name, population, country_name_en
from cities
order by population desc
limit 50;

	name	population	country_name_en
•	Shanghai	22315474	China
	Beijing	18960744	China
	Shenzhen	17494398	China
	Guangzhou	16096724	China
	Lagos	15388000	Nigeria
	Istanbul	14804116	Turkey
	Chengdu	13568357	China
	Mumbai	12691836	India
	Mexico City	12294193	Mexico
	10 11	*******	n ! · ·

-- Query 4 : Average mean temperature (with convertion in Celcius) for the top 30 cities in the World from 1950 to 2100 select amt.geoname_id, c.name, amt.annual_mean_temperature, round((amt.annual_mean_temperature - 273.15), 2) as temperature in celcius, amt.year

from cities c

right join an_mean_temp amt
on c.geoname_id=amt.geoname_id
order by name asc, year asc;

	geoname_id	name	annual_mean_temperature	temperature_in_celcius	year
١	2293538	Abidjan	298.82852	25.68	1950
	2293538	Abidjan	298,45282	25.3	1951
	2293538	Abidjan	298, 19434	25.04	1952
	2293538	Abidjan	298.4637	25.31	1953
	2293538	Abidjan	298.43268	25.28	1954
	2293538	Abidjan	298.13373	24.98	1955
	2293538	Abidjan	298.47598	25.33	1956
	2293538	Abidjan	298.37076	25.22	1957
	2293538	Abidjan	297.90564	24.76	1958
	2202522	A1 - 1-	202 424 45	05.00	****

Perimeter of the Analysis

Worked directly on the NetCDF files

World average temperature

World average precipitation

Process

Data preparation

Univariate time series analysis: MA, ARIMA & SARIMA

Multivariate time series analysis : VAR & SARIMAX

Demo with the best performing model

COUNTY OF THE PARTY OF THE PART

Data Preparation

```
# Load the netCDF file for Mean Temperature
d1 = xr.open dataset('Worst senario rcp8.5/dataset-sis-biodiversity/BIO01 ipsl-cm5a-lr rcp
# Extract the annual mean temperature data
annual mean temp = d1['BIO01'].mean(dim=['latitude', 'longitude'])
# Convert the data to a pandas DataFrame
temp = annual_mean_temp.to_dataframe(name='temperature')
# Reset the index to make 'time' a column
temp = temp.reset_index()
# Convert the 'time' column to a pandas datetime object
temp['time'] = pd.to_datetime(temp['time'])
# Set the 'time' column as the index
temp = temp.set index('time')
# Split the data into training and test sets
temp_train = temp.loc['1950-01-01':'2000-01-01', 'temperature']
temp test = temp.loc['2001-01-01':'2018-01-01', 'temperature']
```


Univariate time series model comparison

Temperatures

Moving Average

RMSE: 0.21 **R2**: 0.21253

MAPE: 0.0611975

AIC: -39.4627950

Precipitation

RMSE: 0.00 **R2**: 0.31253

MAPE: 0.861147645

AIC: -394.94749450

Autoregressive integrated moving average model (ARIMA)

model (MA)

RMSE: 0.24

R2: 0.27838662

MAPE: 0.06765037

AIC: -14.4371690

RMSE: 0.00

R2: 0.421592446

MAPE: 1.0961944

AIC: -1058.2390

Seasonal ARIMA model (SARIMA)

RMSE: 0.629466873

R2: 0.00629996268

MAPE: 0.199555

AIC: -50.2901

RMSE: 3.823029e-10

R2: 0.12914789

MAPE: 1.056691480

AIC: -50.29013

40°°

Univariate Time Series Model Comparison

Autoregressive integrated moving average model (ARIMA)

Precipitation prediction

Seasonal ARIMA model (SARIMA)

Multivariate time series model comparison

Temperatures

autoregressive

RMSE: 0.35914250

R2: 0.1320513

MAPE: 432.89421

AIC: 326.47307

Precipitation

RMSE: 4.1649868e-10

R2: 0.1140740

MAPE: 326.47307

AIC: 326.47307

SARIMA model with exogenous factor (SARIMAX)

vector

model (VAR)

RMSE: 0.157808

R2: 0.5395002

MAPE: 0.04484432

AIC: -3.893976871

RMSE: 2.0745384e-10

R2: 0.52012773

MAPE: 0.615481841

AIC: -730.7987485

Multivariate Time Series Model Comparison

Temperature prediction

Precipitation prediction

vector autoregressive model (VAR)

SARIMA model with exogenous factor (SARIMAX)

40°°

Demo: 2050 prediction using SARIMAX

Demo: 2050 prediction using SARIMAX

40°°

Real Climate Forecasting

Carbone 4: Explanation of a General Circulation Model

Highlights

Challenges:

- Handling gridded data
- Managing expectations

Learnings:

- Tool : Spyder
- Data format & extraction : NC files & NetCDF4 library
- Working in iterations

Improvements:

- With more time: check the forecast for specific cities and compare them to the official forecast
- Used a daily time series data

