PRÁCTICA: LARSON - SECCIÓN 7.7

Representación de funciones mediante series de potencias

Dra. Penélope Cordero

Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

¿Qué ejercicios de práctica debo hacer?

SECCIÓN 7.7 REPRESENTACIÓN DE FUNCIONES MEDIANTE SERIES DE POTENCIAS

✓ Ejercicios Propuestos:

• Pág. 485: 1 al 24 /// 31 al 34 /// 37 al 40.

✓ EN ESTE VIDEO:

- Ejercicio 10.
- Ejercicio 14.
- · Ejercicio 18.
- Ejercicio 32.
- Ejercicio 40.

EJERCICIO 10 PARA LA FUNCIÓN DADA ENCUENTRE UNA SERIE DE POTENCIAS CENTRADA EN c Y DETERMINE EL INTERVALO DE CONVERGENCIA.

$$f(x) = \frac{4}{3x+2}; c = 2.$$

Solución: Reescribimos f(x) llevando a la forma $\frac{a}{1-r}$ teniendo en cuenta que r debe contener al factor x-2:

$$f(x) = \frac{4}{3x+2} = \frac{4}{3x-6+6+2}$$

$$= \frac{4}{3(x-2)+8}$$

$$= \frac{4}{8+3(x-2)}$$

$$= \frac{\frac{4}{8}}{1+\frac{3}{8}(x-2)}$$

$$= \frac{\frac{1}{2}}{1-\left(-\frac{3}{8}(x-2)\right)}$$

sumamos y restamos 6 en el denominador

sacamos factor común 3 para obtener $\left(x-2\right)$

conmutamos en el denominador

dividimos numerador y denominador por $8\,$

reescribimos para obtener la forma $\frac{a}{1-r}$

Con lo cual obtenemos

$$f(x) = \frac{\frac{1}{2}}{1 - (-\frac{3}{9}(x - 2))}$$
 $a = \frac{1}{2}$ $r = -\frac{3}{8}(x - 2)$

Dado que

$$f(x) = \frac{4}{3x+2} = \frac{\frac{1}{2}}{1 - \left(-\frac{3}{8}(x-2)\right)} \qquad a = \frac{1}{2} \qquad r = -\frac{3}{8}(x-2)$$

la serie de potencias para f(x) es:

$$\frac{4}{3x+2} = \sum_{n=0}^{\infty} ar^n = \sum_{n=0}^{\infty} \frac{1}{2} \left[-\frac{3}{8}(x-2) \right]^n$$
$$= \frac{1}{2} \left(1 - \frac{3}{8}(x-2) + \frac{9}{64}(x-2)^2 - \frac{27}{512}(x-2)^3 + \dots \right)$$

Sabemos que la serie converge $\Leftrightarrow |r| < 1 \Leftrightarrow \left| -\frac{3}{8}(x-2) \right| < 1 \Leftrightarrow |x-2| < \frac{8}{3}$. Con lo cual, el radio de convergencia para la serie centrada en 2, es $R = \frac{8}{3}$. Veamos el intervalo de convergencia:

$$|x-2| < \frac{8}{3}$$
$$-\frac{8}{3} < x - 2 < \frac{8}{3}$$
$$-\frac{2}{3} < x < \frac{14}{3}$$

Por lo tanto, el intervalo de convergencia es $\left(-\frac{2}{3}, \frac{14}{3}\right)$.

EJERCICIO 14 PARA LA FUNCIÓN DADA ENCUENTRE UNA SERIE DE POTENCIAS CENTRADA EN c Y DETERMINE EL INTERVALO DE CONVERGENCIA.

$$f(x) = \frac{4}{4+x^2}; \ c = 0.$$

Solución: Reescribimos f(x) llevando a la forma $\frac{a}{1-r}$:

$$f(x) = \frac{4}{4+x^2} = \frac{1}{1+\frac{1}{4}x^2}$$
 dividimos numerador y denominador por 4
$$= \frac{1}{1-\left(-\frac{1}{4}x^2\right)}$$
 reescribimos para obtener la forma $\frac{a}{1-r}$

Con lo cual obtenemos
$$f(x) = \frac{1}{1 - \left(-\frac{1}{2}x^2\right)}$$
 $a = 1$ $r = -\frac{1}{4}x^2$.

Entonces una serie de potencias para f(x) es:

$$\frac{4}{4+x^2} = \sum_{n=0}^{\infty} ar^n = \sum_{n=0}^{\infty} 1 \left[-\frac{1}{4}x^2 \right]^n = \sum_{n=0}^{\infty} \left(-\frac{1}{4} \right)^n x^{2n}$$

La serie converge \Leftrightarrow |r|<1 \Leftrightarrow $\left|-\frac{1}{4}x^2\right|<1$ \Leftrightarrow $x^2<4$ \Leftrightarrow $|x|<\sqrt{4}=2$.

Con lo cual, el radio de convergencia para la serie es R=2 y el intervalo de convergencia es (-2,2).

Ejercicio 18 Use la serie de potencias $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$ para

DETERMINAR UNA SERIE DE POTENCIAS CENTRADA EN 0. ENCUENTRE EL INTERVALO DE CONVERGENCIA.

$$f(x) = \frac{2}{(x+1)^3} = \frac{d^2}{dx^2} \left[\frac{1}{1+x} \right].$$

Soluci'on: Utilizamos el Teorema 7.21 para funciones definidas como series de potencias:

$$f(x) = \frac{2}{(x+1)^3} = \frac{d^2}{dx^2} \left[\frac{1}{1+x} \right]$$

$$= \frac{d}{dx} \left[\frac{d}{dx} \left(\frac{1}{1+x} \right) \right]$$

$$= \frac{d}{dx} \left[\frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n x^n \right) \right]$$

$$= \frac{d}{dx} \left[\sum_{n=1}^{\infty} (-1)^n n x^{n-1} \right]$$

$$= \sum_{n=0}^{\infty} (-1)^n n (n-1) x^{n-2}$$

Si comenzamos la serie desde n = 0, sumamos 2 a n en la expresión de f(x):

$$f(x) = \frac{2}{(x+1)^3} = \sum_{n=2}^{\infty} (-1)^n n(n-1)x^{n-2}$$

$$= \sum_{n=0}^{\infty} (-1)^{n+2} (n+2)((n-1)+2)x^{(n-2)+2}$$

$$= \sum_{n=0}^{\infty} (-1)^n (n+2)(n+1)x^n \qquad [(-1)^{n+2} = (-1)^n (-1)^2 = (-1)^n]$$

Para la serie de potencias de $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$ el radio de convergencia es

R=1,entonces por el Teorema 7.21, $\frac{d^2}{dx^2}\left[\frac{1}{1+x}\right]$ tiene el mismo radio de convergencia.

Es decir, para $f(x) = \frac{2}{(x+1)^3} = \sum_{n=0}^{\infty} (-1)^n (n+2)(n+1)x^n$ el radio de convergencia es R=1.

Sabiendo que la serie converge si |x| < 1, analicemos los extremos para el intervalo de convergencia:

• Si x = 1, entonces

$$\sum_{n=0}^{\infty} (-1)^n (n+2)(n+1)1^n = \sum_{n=0}^{\infty} (-1)^n (n+2)(n+1)$$

diverge por el criterio del término n-ésimo para la divergencia $(\lim_{n\to\infty}(-1)^n(n+2)(n+1)$ no existe).

• Si x = -1, entonces

$$\sum_{n=0}^{\infty} (-1)^n (n+2)(n+1)(-1)^n = \sum_{n=0}^{\infty} (-1)^{2n} (n+2)(n+1) = \sum_{n=0}^{\infty} (n+2)(n+1)$$

también diverge por el criterio del término n-ésimo para la divergencia ($\lim_{n\to\infty}(n+2)(n+1)=\infty$)

En consecuencia, la serie diverge en x=1 y x=-1. Por lo tanto el intervalo de convergencia es (-1,1).

EJERCICIO 32 ENCUENTRE UN REPRESENTACIÓN MEDIANTE SERIES DE LA FUNCIÓN INDICADA Y DETERMINE SU INTERVALO DE CONVERGENCIA.

$$f(x) = \frac{x}{(1-x)^2}.$$

Solución: En primer lugar notar que

$$\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2}$$

Consideraremos la representación como serie de potencias de la función $\frac{1}{1-x}$ en el intervalo de convergencia (-1,1), para obtener una representación para $\frac{1}{(1-x)^2}$.

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad \text{si } |x| < 1$$

$$\frac{d}{dx} \left(\frac{1}{1-x}\right) = \sum_{n=1}^{\infty} nx^{n-1} \qquad \text{si } |x| < 1$$

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} \qquad \text{si } |x| < 1$$

Entonces, sabiendo que para $x\in (-1,1)$ se tiene que $\frac{1}{(1-x)^2}=\sum_{n=1}^\infty nx^{n-1}$, multiplicamos por x miembro a miembro, de modo que:

$$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n \qquad \text{si } |x| < 1$$

Es inmediato que el radio de convergencia es ${\cal R}=1.$ Analicemos el intervalo de convergencia:

- Si x=1, entonces la serie obtenida $\sum_{n=1}^{\infty} n 1^n = \sum_{n=1}^{\infty} n$ diverge por el criterio del término n-ésimo para la divergencia ($\lim_{n\to\infty} n=\infty$).
- Si x = -1, entonces la serie $\sum_{n=1}^{\infty} n(-1)^n$ también diverge por el criterio del término n-ésimo para la divergencia.

Por lo tanto, podemos concluir que el intervalo de convergencia es (-1,1).

Ejercicio 40 explique cómo usar la serie geométrica

$$g(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

PARA HALLAR UNA SERIE PARA LA FUNCIÓN: $f(x) = \ln(1-x)$.

Soluci'on: Sabiendo que $\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n$ en el intervalo (-1,1), integramos miembro a miembro:

$$-\ln(1-x) = \int \frac{1}{1-x} dx + C$$

$$\ln(1-x) = -\int \frac{1}{1-x} dx + C$$

$$= -\int \left(\sum_{n=0}^{\infty} x^n\right) dx + C \qquad \text{si } |x| < 1$$

$$= -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} + C \qquad \text{si } |x| < 1$$

Por lo tanto, integrando la función g(x), obtenemos que

$$\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \quad \text{si } |x| < 1.$$