Wenjun Wu

Ph.D Student

+1 (404) 838-8084 wenjunw@cs.washington.edu meredith-wenjunwu.github.io

Research Interest

I am a fifth-year Ph.D. student in the GRAIL lab at the University of Washington, Seattle, advised by Prof. Linda Shapiro. My research interests lies in learning interpretable and explainable machine learning models. In particular, I am interested in machine learning for computer-aided diagnostic systems.

Education	2017 - 2023 (expected)	University of Washington, Seattle, WA Ph.D., Biomedical Informatics Advisor: Linda Shapiro Overall GPA: 3.72/4.00
	2013 - 2017	Georgia Institute of Technology B.S. in Biomedical Engineering Advisor: May Wang, Ajit Yoganathan Overall GPA: 3.83/4.00
Publications	2023	VSGD-Net: Virtual Staining Guided Melanocyte Detection on Histopathological Images Liu K., Li B., Wu W. , Shapiro L., Elmore J., Knezevich S., Chang O., May C., Reisch L. IEEE Winter Conference on Applications of Computer Vision, 2023
	2022	Automated Analysis of Whole Slide Digital Skin Biopsy Images Nofallah S., Wu W. , Liu K., Ghezloo F., Elmore J., Shapiro L. Frontiers in Artificial Intelligence
	2022	End-to-End Diagnosis of Breast Biopsy Images with Transformers Mehta S., Lu. X, Wu. W , Weaver D., Hajishirzi H., Elmore J. G., Shapiro. L. G. <i>Medical Image Analysis, 79, 2022.</i>
	2022	Improving the Diagnosis of Skin Biopsies Using Tissue Segmentation Nofallah S., Li B., Mokhtari M., Wu W. , Knezevich S., May C. J., Chang O. H., Elmore J. G., Shapiro L. G. <i>Diagnostics, Vol. 12, 2022.</i>
	2022	Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net Nofallah S., Mokhtari M., Wu W. , Mehta S., Knezevich S., May C. J., Chang O. H., Lee A. C., Elmore J. G., Shapiro L. G. <i>Journal of Digital Imaging, April 2022.</i>
	2021	Scale-Aware Transformers for Diagnosing Skin Biopsy Images Wu W. , Mehta S., Nofallah S., Knezevich S., May C. J., Chang O., Elmore J. G., Shapiro L. G. <i>IEEE Access, vol. 9, pp. 163526-163541, 2021</i>
	2021	Applications of the ESPNet architecture in medical imaging in State of the Art of Neural Networks and their Applications

		Mehta S., Nuechterlein N., Mercan E., Li B., Nofallah S., W. Wu , Lu X., Caspi A., Rastegari M., Elmore J., Hajishirzi H., Shapiro. L. Academic Press, Vol. 1, 2021, pp. 117-131.
	2020	MLCD: A Unified Software Package for Cancer Diagnosis Wu W. , Li B., Ezgi M., Mehta S., Bartlett J., Weaver D., Elmore J., Shapiro L. JCO Clinical Cancer Informatics 4, 290-298, 2020 [website]
	2020	Comparison of Fontan Surgical Options for Patients with Apicocaval Juxtaposition Wei Z., Johnson C., Trusty P., Stephens M., Wu W., Sharon R., Srimurugan B., Kottayil B., Sunil G., Fogel M., Yoganathan A., Kappanayil M Pediatric Cardiology, 1-10, 2020
	2018	The advantages of viscous dissipation rate over simplified power loss as a Fontan hemodynamic metric Wei Z., Tree M., Trusty P., Wu W., Singh-Gryzbon S., Yoganathan A. 2018 Annals of biomedical engineering 46 (3), 404-416
	2017	11C-PIB PET image analysis for Alzheimer's diagnosis using weighted voting ensembles Wu W., Venugopalan J., Wang M. IEEE Engineering in Medicine and Biology Society (EMBC 2017)
Experience	2022 Fall	ML Engineering Intern , <i>Meta</i> , Business Integrity Team. Optimized video integrity models for back-compatibility to avoid constant retraining and declining performance.
	2022 Summer	Research Intern , <i>Microsoft Research</i> , BioML Group. Apply deep learning to detect Parkinson's Disease using whole slide images from different tissues. Communicate with pathologists to troubleshoot.
	2021 Summer	Vision Intern, Intuitive Surgical, Vision NPI Team Worked on simulated dataset and utilization of reinforcement learning (e.g.
		A2C, PPO and SAC) for accurate and fast alignment of viewers on Da Vinci surgical system.
	2018 Summer	A2C, PPO and SAC) for accurate and fast alignment of viewers on
Teaching	2018 Summer 2022 2022 2017 - 2023	A2C, PPO and SAC) for accurate and fast alignment of viewers on Da Vinci surgical system. ML Intern, Siemens, Product Design, Modeling and Simulation Team