Filtreleme

Filtering

1D - Ortalama filtre (uniform/nonuniform)

Tekdüze (uniform) ağırlıklarla ortalama [1 1 1 1 1] / 5

Tekdüze olmayan (non-uniform) ağırlıklarla ortalama [1 4 6 4 1] / 16

Sonuç: Tekdüze olmayan daha yumuşak geçişlere sahip. Tekdüze sonucunda sert geçişler var.

1D - Ortalama filtre

2b gürültülü bir görüntü elde et

```
>> noise = randn(size(im)).*sigma;
>> output = im + noise;
```

Gürültü şiddetini sigma ile ayarla

Gri renk = 0

```
noise = randn(size(im)).*sigma
Sigma = 2
                    Sigma = 8
Sigma = 32
                   Sigma = 64
```

```
% Apply Gaussian noise to an image
img = imread('saturn.png');
imshow(img);

noise = randn(size(img)) .* 100;
output = img + noise;
imshow(output);
```

2D - Ortalama filtre (correlation filter)

F(x,y)									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G(x,y)								
	0	10	20	30	30	30	20	10
	0	20	40	60	60	60	40	20
	0	30	60	90	90	90	60	30
	0	30	50	80	80	90	60	30
	0	30	50	80	80	90	60	30
	0	20	30	50	50	60	40	20
	10	20	30	30	30	30	20	10
	10	10	10	0	0	0	0	0

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

k: kayan pencere boyutu

2D - Ortalama filtre (correlation filter)

	1	2	1
$\frac{1}{16}$ ×	2	4	2
	1	2	1

FIGURE 3.33 (a) Original image, of size 500×500 pixels. (b)–(f) Results of smoothing with square averaging filter masks of sizes m=3,5,9,15, and 35, respectively. The black squares at the top are of sizes 3,5,9,15,25,35,45, and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100% black in increments of 20%. The background of the image is 10% black. The noisy rectangles are of size 50×120 pixels.

Tekdüze olmayan ağırlık kullanılırsa

Cross Correlation olarak bilinir: $G = H \otimes F$ olarak gösterilir

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

H fonksiyonu Gauss olabilir:

$$h(u,v) = \frac{1}{2\pi\sigma^2} \exp(-\frac{x^2 + y^2}{2\sigma^2})$$

Gauss Fonksiyonu

Tek boyutlu Gaussian Fonksiyonu:

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

İki boyutlu Gaussian Fonksiyonu:

$$G(x,y) = \frac{1}{2\pi\sigma_x\sigma_y}e^{-\left[\frac{(x-\mu_x)^2}{2\sigma_x^2} + \frac{(y-\mu_y)^2}{2\sigma_y^2}\right]}$$

Özellikleri

- En genel doğal model
- Yumuşatma fonksiyonu
- Sonsuz türeve sahip
- Fourier'i yine bir Gauss
- Convolüsyonu yine bir Gauss
- İnsan gözünde Gauss filter yapan hücreler var

Eğrinin %99.7 hacmi $\mp 3\sigma$ arasında kalmaktadır.

Matlab örneği

```
hsize = 31;
sigma = 5;
h = fspecial('gaussian', hsize, sigma);
surf(h);
imagesc(h);
                              im
                                                outim
outim = imfilter(im, h);
imshow(outim);
```

Matlab örneği - sigma etkisi

```
for sigma=1:3:10
h = fspecial('gaussian',
 fsize, sigma);
 out = imfilter(im, h);
 imshow(out);
 pause;
end
             20
                               20
```

Yumuşatılmış kenar

Yumuşatılmış kenar

Yumuşatılmış kenarda sigma nın etkisi

Smaller values: finer features detected Larger values: larger scale edges detected