Math 156: Machine Learning

Instructions. Please submit a pdf with neatly written solutions. See the syllabus for instructions on coding problems.

- 1. Book Exercise 1.1
- 2. Suppose that we are performing linear regression for sampled data points $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), ..., (\mathbf{x}_N, t_N)$ and that while sampling, along with the data point (\mathbf{x}_i, t_i) , we are given the scalar value $r_i > 0$ which represents how certain we are about the target value t_i associated to \mathbf{x}_i . We can alter the least-squares error function to use this information as

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} r_n \{t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n)\}^2.$$

Show that the solution \mathbf{w}^* which minimizes this error function is

$$\mathbf{w}^* = \left(\sum_{n=1}^N r_n \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T\right)^{-1} \left(\sum_{n=1}^N r_n \phi(\mathbf{x}_n) t_n\right).$$

3. Recall the polynomial curve fitting model which fits data with functions of the form $y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + ... + w_M x^M$. Assume that the target t associated to x is distributed as $t \sim \mathcal{N}(y(x, \mathbf{w}), \beta^{-1})$, and that there is i.i.d. training data $x_1, x_2, ..., x_N$ with targets $t_1, t_2, ..., t_N$. We now introduce a prior distribution over the polynomial coefficients \mathbf{w} :

$$p(\mathbf{w} \mid \alpha) = \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1}\mathbf{I}\right) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

Show that the maximum of the posterior is given by the minimum of

$$\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y\left(x_{n}, \mathbf{w}\right) - t_{n} \right\}^{2} + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}.$$

What does this tell us about the MAP vs MLE approach in this case?

- 4. Linear Regression on Wine Dataset:
 - (a) Download the ".csv" file for the red wines in the "Wine Quality" dataset.
 - (b) Split the dataset into train, validation, and test sets. You can use scikit-learn's train_test_split function.
 - (c) Write a program for training a simple linear regression model with sum-of-squares error function using the closed-form solution (do not use a built-in function).
 - (d) For the train data, generate a plot of the actual target values vs predicted target values. How do we interpret this plot?
 - (e) Report the root-mean-square on the train and test sets.

- (f) Implement the least-mean-squares (LMS) algorithm for linear regression with random initialization of $\mathbf{w}^{(0)}$ and stepsize(s) of your choice (you can experiment with that).
- (g) Report the root-mean-square on the train and test sets.

Suggested problems (not for submission)

- 1. Show that (3.28) is the minimizer of (3.27) in section 3.1.4 of the book.
- 2. Book Exercises 3.2, 3.4.
- 3. (Extra) Read section 3.3 on Bayesian Linear Regression. Book Exercises 3.8, 3.11.