Eco. 4004: Math. Econ. Statistics

Problem Set 7: Multivariate Normal Distribution

- 1. The pair of random variables X and Y is bivariate normally distributed with parameters $\mu_X = 3$, $\mu_Y = 4$, $\sigma_X^2 = 9$, $\sigma_Y^2 = 20$ and $\sigma_{XY} = 6$. Calculate each of the following:
- (1) E(Y | x = 3)
- (2) E(Y | x = 6)

- (4) V(Y | x = 6)
- (5) $P(Y \le 8 \mid x = 3)$ (6) $P(Y \le 8 \mid x = 6)$
- (7) $P(Y \le 8)$.
- 2. Let the random variables X and Y is bivariate normally distributed with parameters μ_V , μ_V , σ_V^2 , σ_V^2 and ρ . Set U = X + Y, V = X - Y. Then,
- (1) What is the joint distribution of U and V? How do you know it? Find the parameters of mean, variance and correlation coefficient of U and V.
- (2) What is the marginal distribution of U? And what is the marginal distribution of V?
- 3. Suppose that $Z \sim N(42, 2500)$, $W \sim N(0, 500)$ that Z and W are independent, and that X = Z + W. Calculate the conditional expectation function $E(Z \mid X)$. How do you know that the CEF is linear?
- 4. Suppose that $\underline{y} \sim N(\underline{\mu}, \Sigma)$ with $\underline{\mu} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\Sigma = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 5 & 1 \\ 1 & 1 & 3 \end{pmatrix}$.
- (1) Suppose $\underline{g}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $H_1 = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 0 \end{pmatrix}$, and assume $\underline{z} = \underline{g}_1 + \underline{H}_1 y$.

Find E(z), V(z).

(2) Suppose $\underline{g}_2 = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ and $H_2 = \begin{pmatrix} 2 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}$, and assume $\underline{w} = \underline{g}_2 + \underline{H}_2 y$.

Is w multinormally distributed? How do you decide?

Find E(w), V(w).

- (3) Find $Cov(\underline{z}, w)$.
- (4) Calculate $E(y_3 | y_1, y_2)$ and $V(y_3 | y_1, y_2)$.
- (5) Find the best prediction of y_3 given $y_1 = y_2 = 1$.