Álgebra I Práctica 3 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

- Notas teóricas
- Ejercicios de la guía:

1.	5 .	9.	13.	17.	21.	25.	29.
2.	6.	10.	14.	18.	22.	26.	30.
3.	7.	11.	15.	19.	23.	27.	31.
4.	8.	12.	16.	20.	24.	28.	32.

• Ejercicios Extras

1.

Notas teóricas:

Ejercicios de la guía:

1. Dado el conjunto referencial $V = \{n \in \mathbb{N} : n \text{ es múltiplo de 15}\}$, determinar el cardinal del complemento del subconjunto A de V definido por $A = \{n \in V : n \geq 132\}$.

Se tiene que $A^c = \{n \in V : n \ngeq 132\} = \{n \in V : n < 132\}$. Así, $\#A^c = \text{todos los múltiplos de 15 menores a 132}$. Lo calculo sacando la parte entera de $\frac{132}{15}$, o sea:

$$\#A^c = \lfloor \frac{132}{15} \rfloor = \lfloor 8, 8 \rfloor = 8$$

2. ¿Cuántos números naturales hay menores o iguales que 1000 que no son ni múltiplos de 3 ni múltiplos de 5?

Defino un conjunto referencial $V = \{n \in \mathbb{N} : n \leq 1000\}$, y dos conjuntos $A = \{n \in V : n \text{ no es múltiplo de 3}\}$, $B = \{n \in V : n \text{ no es múltiplo de 5}\}$.

Búsco calcular $\#(A \cap B)$

Pero $\#(A \cap B) = \#[V - (A \cap B)^c] = \#(V - A^c \cup B^c) = \#V - \#(A^c \cup B^c) = \#V - [\#A^c + \#B^c - \#(A^c \cap B^c)]$ Donde $A^c = \{n \in V : n \text{ es múltiplo de } 3\}$, $B^c = \{n \in V\}$, $(A^c \cap B^c) = \{n \in V : n \text{ es múltiplo de } 15\}$

Calculo sus cardinales:

- $\#A^c = \lfloor \frac{1000}{3} \rfloor = 333$
- $\#B^c = \lfloor \frac{1000}{5} \rfloor = 200$
- $\#(A^c \cap B^c) = \lfloor \frac{1000}{15} \rfloor = 66$

Así, $\#(A \cap B) = \#V - [\#A^c + \#B^c - \#(A^c \cap B^c)] = 1000 - 333 - 200 + 66 = 533$

- 3. Hacer!
- 4. Hacer!
- ¿Errores? Mandanos tu solución, prolija, así lo arreglamos.

5. Hacer!

6. Hacer!

7. Hacer!

8. Hacer!

9. Si A es un conjunto con n elementos ¿Cuántas relaciones en A hay? ¿Cuántas de ellas son reflexivas? ¿Cuántas de ellas son reflexivas y simétricas?

Dado que para dos conjuntos $A = \{a, b, c\}$ y $B = \{1, 2\}$ la cantidad de relaciones que hay entre ellos es igual a la cantidad de subconjuntos de $\mathcal{P}(A \times B)$, entonces si $A = \{1, \dots, n\}$ el cardinal $\#\mathcal{P}(A \mathcal{R} A) = 2^{n^2}$

Las relaciones reflexivas son de la forma $a_i \mathcal{R} a_i$, por lo que solo será una relación por cada elemento del conjunto $\#(A \mathcal{R} A)_{ref} = n$. Voy a calcular la cantidad de elementos que tiene el conjunto $\mathcal{P}((A \mathcal{R} A)_{ref})$, porque estoy buscando todos los subconjuntos que puedo formar con los elementos de $(A \mathcal{R} A)_{ref}$, entonces $\#\mathcal{P}((A \mathcal{R} A)_{ref}) = 2^n$

Corroborar

Las relaciones simétricas serán aquellas que $a_i \mathcal{R} a_j \Rightarrow a_j \mathcal{R} a_i$. Pensando esto como los elementos de la diagonal para abajo de una matriz de $n \times n$ tengo $\sum_{i=1}^n i = \frac{n \cdot (n+1)}{2}$ elementos matriciales.

$$\sum_{k=0}^{n} {n \choose \frac{n \cdot (n+1)}{k}} = 2^{\frac{n \cdot (n+1)}{2}}$$
Corroborar

	a_1	a_2	a_3		a_{n-2}	a_{n-1}	a_n
a_1	R, S	•	•		•	•	•
a_2	S	R, S	•	• • •	•		•
a_3	S	S	R, S	• • •	•	•	•
:	:	•	:	•••	•		•
a_{n-2}	S	S	S	٠	R, S		•
a_{n-1}	S	S	S	• • • •	S	R, S	
a_n	S	S	S	• • •	S	S	R, S

10. Sean $A = \{1, 2, 3, 4, 5\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Sea \mathcal{F} el conjunto de todas las funciones $f: A \to B$.

- i) ¿Cuántos elementos tiene le conjunto ${\cal F}$
- ii) ¿Cuántos elementos tiene le conjunto $\{f \in \mathcal{F} : 10 \in \text{Im}(f)\}$
- iii) ¿Cuántos elementos tiene le conjunto $\{f \in \mathcal{F} : 10 \in \text{Im}(f)\}$
- iv) ¿Cuántos elementos tiene le conjunto $\{f \in \mathcal{F} : f(1) \in \{2,4,6\}\}$

Cuando se calcula la cantidad de funciones, haciendo el árbol se puede ver que va a haber $\#\operatorname{Im}(f)$ de funciones que provienen de un elemento del dominio. Por lo tanto si tengo un conjunto A_n y uno B_m , la cantidad de funciones $f:A\to B$ será de m^n

- i) $\#\mathcal{F} = 12^5$
- ii) $\#\mathcal{F} = 11^5$
- iii) Tengo una que va a parar al 10 y cuento que queda. Por ejemplo si f(2) = 10: $A = \{1, 2, 3, 4, 5\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Por lo tanto tengo $\#\mathcal{F} = 12^4 \cdot \underbrace{1}_{f(2)=10}$

Corroborar

- iv) Me dicen que $f(\{1\}) = \{2, 4, 6\}$, Si lo pienso como el anterior ahora tengo 3 veces más combinaciones, entonces $\#\mathcal{F} = 12^4 \cdot \underbrace{3}_{f(\{1\}) = \{2, 4, 6\}}$
- **11.** Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $\{8, 9, 10, 11, 12, 13, 14\}$.
 - i) ¿Cuántas funciones biyectivas $f: A \to B$ hay?
 - ii) ¿Cuántas funciones biyectivas $f: A \to B$ hay tales que $f(\{1, 2, 3\}) = \{12, 13, 14\}$?
- 🕢 ¿Errores? Mandanos tu solución, prolija, así lo arreglamos.

Cuando cuento funciones biyectivas, el ejercicio es como reordenar los elementos del conjunto de llegada de todas las formas posibles. Dado un conjunto Im(f), la cantidad de funciones biyectivas será #Im(f)

- i) Hay 7! funciones bivectivas.
- ii) Dado que hay 3 valores fijos, juego con los 4 valores restantes, por lo tanto habrá 4! funciones biyectivas
- 12. ¿Cuántos números de 5 cifras distintas se pueden armar usando los dígitos del 1 al 5? ¿ Y usando los dígitos del 1 al 7? ¿ Y usando los dígitos del 1 al 7 de manera que el dígito de las centenas no sea el 2?
 - 1) Hay que usar $\{1, 2, 3, 4, 5\}$ y reordenarlos de todas las formas posibles. 5!

 - 3) Parecido al anterior pero fijo el 2 en el dígito de las centenas:

$$\begin{cases} \#6 & \#5 & \#4 & \#1 & \#3 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \frac{1}{1} & \frac{1}{2} & \frac{2}{3} & \frac{2}{4} & \frac{1}{5} \end{cases} \to \text{Tengo } 6 \cdot 5 \cdot 4 \cdot 1 \cdot 3 = \frac{6!}{2!} \text{ interpretar?}$$

- **13.** Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
 - i) ¿Cuántas funciones inyectivas $f; A \to B$ hay?
 - ii) ¿Cuántas de ellas son tales que f(1) es par?
 - iii) ¿Y cuántas tales que f(1) y f(2) son pares?
 - i) Una pregunta equivalente a si tengo 10 pelotitas distintas y 7 cajitas cómo puedo ordenarlas.

$$\begin{cases} #10 & #9 & #8 & #7 & #6 & #5 & #4 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \end{cases} \rightarrow \frac{10!}{3!} = \frac{\#B}{\#B - \#A}$$

ii) Hay 5 números pares para elegir como imagen de f(1)

$$\begin{cases} #5 & #9 & #8 & #7 & #6 & #5 & #4 \\ \downarrow & \rightarrow 5 \cdot \frac{9!}{3!} \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \end{cases}$$

iii) Hay 5 números pares para elegir como imagen de f(1), luego habrá 4 números pares para f(2)

$$\begin{cases} #5 & #4 & #8 & #7 & #6 & #5 & #4 \\ \downarrow & \rightarrow 5 \cdot 4 \cdot \frac{8!}{3!} \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \end{cases} \rightarrow 5 \cdot 4 \cdot \frac{8!}{3!}$$

14. ¿Cuántas funciones biyectivas $f:\{1,2,3,4,5,6,7\} \to \{1,2,3,4,5,6,7\}$ tales que $f(\{1,2,3\}) \subseteq \{3,4,5,6,7\}$ hay?

Primero veo la condición $f(\{1,2,3\}) \subseteq \{3,4,5,6,7\}$, donde podría formar $\frac{5!}{(5-3)!} = 60$ combinaciones biyectivas. Para obtener la cantidad de funciones pedidas, tengo que usar todos los valores del $\{1,2,3,4,5,6,7\}$. Primero fijo la cantidad de valores que pueden tomar $f(\{1,2,3\}) \subseteq \{3,4,5,6,7\}$ luego lo que reste.

$$\begin{cases} #5 & #4 & #3 & #4 & #3 & #2 & #1 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \\ Condiciones pedidas & Loquer esta para completa \end{cases} \rightarrow 5 \cdot 4 \cdot 3 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = \frac{5!}{(5-3)!} \cdot 4!$$

15. Sea $A = \{f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8\}$ tal que f es una función inyectiva $\}$. Sea \mathcal{R} la relación de equivalencia en A definida por: $f \mathcal{R} g \iff f(1) + f(2) = g(1) + g(2)$. Sea $f \in A$ la función definida por f(n) = n + 2 ¿Cuántos elementos tiene su clase de equivalencia?

Hacer!

- **16.** Determinar cuántas funciones $f:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8,9,10,11,12\}$ satisfacen simultáneamente las condiciones:
 - f es inyectiva,

- f(5) + f(6) = 6,
- $f(1) \leq 6$.
- ullet f inyectiva hace que mi conjunto de llegada se reduzca en 1 con cada elección.
- ¿Errores? Mandanos tu solución, prolija, así lo arreglamos.

- Si f(5) + f(6) = 6 entonces $f: \{5,6\} \to \{1,2,4,5\}$. Una vez que f(5) tome un valor de los 4 posibles e.g. $f(5) = 1 \xrightarrow{\text{condiciona} \atop \text{única opción}} f(6) = 5$
- $f(1) \leq 6 \rightarrow f: \{1\} \rightarrow \{1,2,3,4,5,6\}$ donde cancelé el 1 y el 4, para sacar 2 números que sí o sí deben irse en la condición ¹ de f(5) + f(6) = 6. Por lo tanto f(1) puede tomar 4 valores. Por lo que sobrarían 9 elementos del conjunto de llegada para repartir en las f que no tienen condición.

$$\begin{cases} #4 & #9 & #8 & #7 & #4 & #1 & #6 & #5 \\ \downarrow & \downarrow \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) & f(8) \end{cases} \rightarrow 4 \cdot 9 \cdot 8 \cdot 7 \cdot 4 \cdot 1 \cdot 6 \cdot 5 = 4 \cdot 4 \cdot \frac{9!}{4!} = 241.920$$

Siento todo esto muy artesanal y poco justificable suficientemente mathy-snobby

$N\'umero\ combinatorio$

17.

- i) ¿Cuántos subconjuntos de 4 elementos tiene el conjunto $\{1,2,3,4,5,6,7\}$
- ii) ; Y si se pide que 1 pertenezca al subconjunto?
- iii) ¿ Y si se pide que 1 no pertenezca al subconjunto?
- iv) ¿ Y si se pide que 1 o 2 pertenezca al subconjunto, pero no simultáneamente los dos?

El problema de tomar k elementos de un conjunto de n elementos se calcula con $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- i) $\binom{7}{4} = \frac{7!}{4!(7-4)!} = \frac{7 \cdot \cancel{6} \cdot 5 \cdot \cancel{A}!}{\cancel{A}!(\cancel{A}!)} = 35$
- ii) $\binom{6}{3} = \frac{6!}{3! \cdot 3!} = 20.$
- iii) $\binom{6}{4} = \frac{6!}{4! \cdot 2!} = 15.$
- iv) $\binom{5}{3} \cdot 2 = \frac{5!}{3! \cdot 2!} \cdot 2 = 20$
- 18. Sea $A = \{n \in \mathbb{N} : n \leq 20\}$. Calcular la cantidad de subconjuntos $B \subseteq A$ que cumplen las siguientes condiciones:
 - i) B tiene 10 elementos y contiene exactamente 4 múltiplos de 3.
 - ii) B tiene 5 elementos y no hay dos elementos de B cuya suma sea impar.

 $^{^{1}}$ ¿Podría haber elegido el 1 y 2? Sí, cualquiera 2 números del conjunto $\{1,2,4,5\}$

El conjunto $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$

i) $\xrightarrow[\text{de } 3]{\text{multiplos}} C = \{3, 6, 9, 12, 15, 18\}$, agarro 4 elementos del conjunto C y luego 6 de los restantes del conjunto A sin contar el múltiplo de 3 que ya usé. $\left\{ \begin{array}{l} \binom{6}{4} \cdot \binom{9}{6} = \frac{\cancel{\text{gf}}}{\cancel{\text{4!2!}}} \cdot \frac{\cancel{\text{g!}}}{\cancel{\text{gf3!}}} \stackrel{\text{simplificando}}{\longrightarrow} 9 \cdot 4 \cdot 7 \cdot 5 = 1260 \\ Verificary preguntar por la justificacin. \end{array} \right.$

$$\begin{cases} \binom{6}{4} \cdot \binom{9}{6} = \frac{\cancel{\text{Mf}}}{4!2!} \cdot \frac{9!}{\cancel{\text{Mf3}}!} \xrightarrow{\text{simplificando}} 9 \cdot 4 \cdot 7 \cdot 5 = 1260 \\ Verificary preguntar por lajustificacin. \end{cases}$$

ii) La condición de que la suma no sea impar implica que todos los elementos deben ser par o todos impar.

$$\begin{cases}
\frac{1 \text{ todos}}{\text{pares}} & \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\} \xrightarrow{\text{10 elementos}} \binom{10}{5} = \frac{10!}{5! \cdot 5!} = 252 \\
\frac{1 \text{ todos}}{\text{impares}} & \{1, 3, 5, 9, 11, 13, 15, 17, 19\} \xrightarrow{\text{9 elementos}} \binom{9}{5} = \frac{9!}{5! \cdot 4!} = 126
\end{cases}$$

- 19. Dadas dos rectas paralelas en el plano, se marcan n puntos distintos sobre una y m puntos distintos sobre la otra. ¿Cuántos triángulos se pueden formar con vértices en esos puntos? Hacer!
- Determinar cuántas funciones $f:\{1,2,3,\ldots,11\} \to \{1,2,3,\ldots,16\}$ satisfacen simultáneamente 20. las condiciones:
 - f es inyectiva,

- Si n es par, f(n) es par, f(1) < f(3) < f(5) < f(7).
- ullet La función es inyectiva y cuando inyecto un conjunto de m elementos en uno de n elementos o $\frac{m!}{(m-n)!}$.
- \bullet Para cumplir la segunda condición el $\mathrm{Dom}(f)$ tengo 5 números par $\{2,4,6,8,10\}$ y en el codominio tengo 8 números par $\{2,4,6,8,10,12,14,16\}$ al *inyectar* obtengo $\frac{8!}{(8-5)!}$ permutaciones.
- La condición de las desigualdades se piensa con los elementos de la Im(f) restantes después de la inyección, que son 16-5=11. De esos 11 elementos quiero tomar 4. El cuántas formas distintas de tomar 4 elementos de un conjunto de 11 elementos se calcula con $\binom{11}{4}$, número de combinación que cumple las desigualdades, porque todos los números son distintos. Para la combinación no hay **órden**, elegir $\{16, 1, 15, 13\}$ es lo mismo ² que $\{1, 16, 13, 15\}$. Es por eso que con 4 elementos seleccionados solo hay una permutación que cumple las desigualdades; en este ejemplo sería {1, 13, 15, 16}

 $^{^{2}}$ Que sea lo mismo quiere decir que no lo cuenta nuevamente, el contador aumenta solo si cambian los elementos y $\underline{\text{no}}$ el lugar de los elementos

• Por último inyecto los número del dominio restantes $\{9,11\}$ en los 7 elementos de $\operatorname{Im}(f)$ que quedaron luego de la combinación de las desigualdades $\to \frac{7!}{(7-2)!}$

Concluyendo: Habrían $\frac{8!}{(8-5)!} \cdot \binom{11}{4} \cdot \frac{7!}{(7-2)!} = 93.139.200$ Corroborar

21. ¿Cuántos anagramas tienen las palabras estudio, elementos y combinatorio

El anagrama equivale a permutar los elementos. Si no hay letras repetidas es una biyección #(letras)! La palabra estudio tiene 7! anagramas.

Elementos tiene 3 letras <u>e</u>, por lo tanto los elementos no repetidos son 6 $\{l, m, n, t, o, s\}$; esto es una inyección $^3 \to \frac{9!}{(9-6)!} = \frac{9!}{3!}$.

También puedo pensar esto con combinatoria: Primero ubico a las 3 letras e en los lugares de las letras,

Combinatorio tiene repetidas las letras i (x2) y la o (x3). Tengo un conjunto de 7 elementos $\{c, m.b, n, a, t, r\}$ sin repetición. Puedo ubicar las letras con combinación en los 12 lugares o y luego las i en los 9 lugares restantes. Una vez hecho eso puedo inyectar (biyectar?) las letras no repetidas restantes:

$$\rightarrow {\binom{12}{3}} \cdot {\binom{9}{2}} \cdot 7! = \underbrace{\frac{12!}{3!2!}}_{\text{notar}^{4}} = \frac{\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{2}}{2} = 39.916.800$$

³Primero ubico lo que no está repetido. Luego agrego, en una dada posición, a eso 3 o más elementos repetidos. Esta última acción no altera la cantidad de permutaciones. Pensar en esto: lmntosEEE cuenta como lmntos____.

- 22. ¿Cuántas palabras se pueden formar permutando las letras de cuadros
 - i) con la condición de que todas las vocales estén juntas?
 - ii) con la condición de que las consonantes mantengan el orden relativo original?
 - iii) con la condición de que nunca haya dos (o más) consonantes juntas?

El conjunto de consonantes es $C = \{c, d, r, s\}$ y de vocales $V = \{u, a, o\}$

i) Para que las vocales estén juntas pienso a las 3 como un solo elemento, fusionadas las 3 letras, con sus permutaciones, es decir que tengo 3! cosas de la siguiente pinta:

$$\begin{cases}
 u & a & o \\
 u & o & a \\
 o & a & u \\
 o & u & a \\
 a & o & u \\
 a & u & o
\end{cases}$$

Los anagramas para que las letras estén juntas los formo combinando $\binom{5}{1} = 5$ poniendo los 3!=6 valores así en cada uno de los 5 lugares:

$$\begin{cases} uao & _ & _ & _ & _ \\ _ & uao & _ & _ & _ \\ _ & _ & _ & uao & _ \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline 1 & 2 & 3 & 4 & 5 \\ \end{cases}$$

Àhora puedo inyectar las 4 consonantese en los 4 lugares que quedan libres. Finalmente se pueden formar $\underbrace{4!}_{consonantes} \cdot \binom{5}{1} \cdot 3! = 720$ anagramas con la condición pedida.

ii) Supongo que el orden relativo es que aparezcan ordenadas así " $c \dots d \dots r \dots s$ ", quiere decir que tengo que combinar un grupo de 4 letras en 7 que serían los lugares de la letras teniendo un total de $\binom{7!}{4!}$ y luego tengo 1! permutaciones o, no permuto dicho de otra forma, dado que eso alteraría el orden y no quiero que pase eso. Obtengo cosas así:

$$\begin{cases} c & d & r & s & _ & _ & _ \\ _ & c & _ & d & _ & r & s \\ c & _ & _ & d & r & _ & s \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases} \rightarrow \text{lo cual deja 3 lugares libres para permutar con las 3 vocales, esa}$$

permutación es una biyección da 3!.

Por último se pueden formar $\underbrace{\binom{7!}{4!} \cdot 1!}_{consmantes} \cdot \underbrace{3!}_{vocales} = \frac{7!}{4!\cancel{3!}} \cdot \cancel{3!} = \frac{7 \cdot 6 \cdot 5 \cancel{4!}}{\cancel{4!}} = 210$

- iii) $C = \{c, d, r, s\}$ sin que estén juntas quiere decir que puedo ordenar de pocas formas, muy pocas porque solo hay 7 lugares. $\left\{ \begin{array}{c|c} c & d & r & s \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array} \right. \rightarrow$ esta combinación es única $\binom{7!}{7!} = 1$, lo único
- 🖸 ¿Errores? Mandanos tu solución, prolija, así lo arreglamos.

que resta hacer es permutar las consonantes en esos espacios. 4 espacios para 4 consonantes. Luego relleno inyectando las vocales, como antes. El total de anagramas será $\binom{7!}{7!} \cdot 4! \cdot \underbrace{3!}_{vocales} = 144$

- 23. Con la palabra polinomios,
 - i) ¿Cuántos anagramas pueden formarse en las que las 2 letras i no estén juntas?
 - ii) ¿Cuántos anagramas puede formarse en los que la letra n aparezca a la izquierda de la letra s y la letra s aparezca a la izquierda de la letra p (no necesariamente una al lado de la otra)?
 - i) Tengo 10 letras, $\{p, l, n, m, s, o, o, o, i, i\}$. Para que no hayan "ii" calculo $\binom{10}{3} = 120$, pensando que en un conjunto de 3, siempre puedo poner las letras " $\underline{i} \underline{i}$ ". Para cada uno de estas 120 configuraciones de la pinta: Está mal!

$$\begin{cases}
i & -i & ---- & ---- \\
--i & ---- & i & ---- \\
--i & ---- & i & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & i & ---- & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & i & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---- & ---- & ---- \\
---i & ---- & ---- & ---$$

Estoy contando de más. La cantidad para que las i no estén juntas es 36... salieron contando a mano 5 . Luego inyectando con las repeticiones de la "o": $36 \cdot \frac{8!}{3!} = 241.920$

Pensando en el complemento:

Las posiciones que pueden tomar las ii juntas, se calculan a mano enseguida. Habrían en total

$$\rightarrow \underbrace{\frac{10!}{3! \cdot 2!}}_{\mathcal{U}} - \underbrace{9 \cdot \frac{8!}{3!}}_{complemento} = 241.920$$

ii) Tengo 10 letras, $\{p, l, n, m, s, o, o, o, i, i\}$. Para que se forme " $n \dots s \dots p$ " calculo $\binom{10}{3} = 120$, pensando que en un conjunto de 3, siempre puedo poner las letras " $\underline{n} \dots \underline{s} \dots \underline{p}$ ". Para cada uno de estas 120 configuraciones de la pinta:

teniendo en cuenta las repeticiones de las "o" y de las "i": $\binom{10}{3} \cdot \frac{7!}{3!2!}$

24. Hacer!

$$^{5}\sum_{1}^{8}k = 36$$

- 25. Hacer!
- 26. Hacer!
- 27. Hacer!
- 28. En este ejercicio no hace falta usar inducción.
 - i) Probar que $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$. sug: ${n \choose k} = {n \choose n-k}$.
 - ii) Probar que $\sum_{k=0}^{n} (-1)^k {n \choose k} = 0$.
 - iii) Probar que $\sum_{k=0}^{2n} {2n \choose k} = 4^n$ y deducir que ${2n \choose n} < 4^n$.
 - iv) Calcular $\sum_{k=0}^{2n+1} {2n+1 \choose k}$ y deducir que $\sum_{k=0}^{n} {2n+1 \choose k}$.

Binomio de Newton: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^n y^{n-k}$

- i)
- $\text{ii) Binomio} \rightarrow \left\{ \begin{array}{l} x = 1 \\ y = -1 \end{array} \right\} \rightarrow 0^n = \sum\limits_{k=0}^n \binom{n}{k} 1^n (-1)^{n-k} = \sum\limits_{k=0}^n \binom{n}{k} (-1)^{n-k} = 0 \rightarrow \\ \\ \left\{ \begin{array}{l} \frac{\sin n \operatorname{es \, par}}{\operatorname{primer \, t\acute{e}rmino \, positivo}} \sum\limits_{k=0}^n (-1)^k \binom{n}{k} = \binom{n}{0} \binom{n}{1} + \dots + (-1)^{\frac{n}{2}} \binom{n}{\frac{n}{2}} + \dots \binom{n}{k-1} + \binom{n}{n} \rightarrow \\ \frac{\operatorname{uso \, sugerencia}}{\binom{n}{k} = \binom{n}{n-k}} 2 \cdot \binom{n}{0} 2 \cdot \binom{n}{1} + \dots + 2 \cdot (-1)^{\frac{n}{2}+1} \binom{n}{\frac{n}{2}+1} + (-1)^{\frac{n}{2}} \binom{n}{\frac{n}{2}} = 0 \\ \\ \frac{\sin n \operatorname{es \, impar}}{\operatorname{primer \, t\acute{e}rmino \, negativo}} \sum\limits_{k=0}^n (-1)^{k+1} \binom{n}{k} = -\binom{n}{0} + \binom{n}{1} \dots \binom{n}{k-1} + \binom{n}{n} \xrightarrow{\text{uso \, sugeerencia}}{\binom{n}{k} = \binom{n}{n-k}} \checkmark \right.$
- iii) Hacer!
- iv) Hacer!
- 🕢 ¿Errores? Mandanos tu solución, prolija, así lo arreglamos.

29. Sea $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$, y sea R la relación de orden en $\mathcal{P}(X)$ definida por: $A \mathcal{R} B \iff A - B = \emptyset$. ¿Cuántos conjuntos $A \in \mathcal{P}(X)$ cumplen simultáneamente $\#A \ge 2$ y $A \mathcal{R} \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$?

Hacer!

30. Sea $X = \left\{1, 2, 3, 4, 5, 5, 7, 8, 9, 10\right\}$, y sea R la relación de equivalencia en $\mathcal{P}(X)$ definida por: $A \mathcal{R} B \iff A \cap \{1, 2, 3\} = B \cap \{1, 2, 3\}$. ¿Cuántos conjuntos $B \in \mathcal{P}(X)$ de exactamente 5 elementos tiene la clase de equivalencia \overline{A} de $A = \{1, 3, 5\}$?

Como A tiene al 1 y al 3, los elementos B, conjuntos en este caso, pertenecientes a la clase \overline{A} deberían cumplir que si $B \subseteq \overline{A} \Rightarrow \left\{ \begin{array}{l} 1 \in B \\ 3 \in B \\ 2 \notin B \end{array} \right. \rightarrow \text{ si } 2 \in B \Rightarrow A\mathcal{K}B \right\}$.

Los conjuntos de 5 elementos serán de la forma:

Es solo eso o interpreto mal la \mathcal{R} u otra cosa?

31. Sean $X = \{n \in \mathbb{N} : n \leq 100\}$ y $A = \{1\}$ ¿Cuántos subconjuntos $B \subseteq X$ satisfacen que el conjunto $A \triangle B$ tiene a lo sumo 2 elementos?

 $a\ lo\ sumo = como\ mucho = como\ máximo$ $al\ menos = por\ poco = como\ mínimo$

La diferencia simétrica es la unión de los elementos no comunes a los conjuntos A y B. Si me piden que:

$$\#(A\triangle B) \leq 2 \Rightarrow B = \begin{cases} 1 \in B \rightarrow \#B \leq 3 & \frac{\text{Busco conjuntos}}{\text{de la forma}} \end{cases} \begin{cases} \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 2.}} & \binom{99}{2} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}} & \binom{99}{1} \\ \frac{1}{2} - \frac{\text{el 1 está usado}}{\text$$

32.

- i) Sea A un conjunto con 2n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?
- ii) Sea A un conjunto con 3n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?

Hacer!

Ejercicios extras:

11. Sea $\mathcal{R} \subset \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ la relación de equivalencia $\to X \mathcal{R} Y \iff X \triangle Y \subseteq \{4, 5, 6, 7, 8\}.$ ¿Cuántos conjuntos hay en la clase de equivalencia de $X = \{x \in \mathbb{N} : x > 6\}$?

- 1. La relación toma valores de $\mathcal{P}(\mathbb{N})$
- 2. Los elementos del conjunto $\mathcal{R} \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$
- 3. El conjunto $X = \{6, 7, 8, 9, 10, \ldots\}$ es simplemente un elemento de $\mathcal{P}(\mathbb{N})$. Los conjuntos $Y \in \mathcal{P}(\mathbb{N})$ tales que $X \mathcal{R} Y$ van a ser los conjuntos que junto a X formarán la clase de equivalencia. $\overline{X} = \{ Y \in \mathcal{P}\mathbb{N} : X \mathcal{R} Y \}$

Para tener una relación de equivalencia deben cumplirse:

- Reflexividad. $X \triangle X = \emptyset \subseteq \{4, 5, 6, 7, 8\}$
- Simetría. $X \triangle Y \stackrel{\checkmark}{=} Y \triangle X, \ \forall X, Y \in \mathcal{P}(\mathbb{N})$
- Transitividad.

Condiciones que debería cumplir un elemeto Y para pertenecer a la la clase de equivalencia, en otras palabras estar relacionado con X:

Los elementos
$$\rightarrow$$

Los elementos
$$\rightarrow$$

$$\begin{cases}
1, 2, 3 \text{ no deben pertenecer a } Y \xrightarrow{\text{por ejemplo}} \begin{cases}
X \triangle \{3, 8, 9, \ldots\} = \{3, 6, 7\} \cancel{\angle} \{4, 5, 6, 7, 8\} \\
X \triangle \{1, 2, 3\} = \{1, 2, 3, 6, 7, \ldots\} \cancel{\angle} \{4, 5, 6, 7, 8\} \\
\hline
4, 5, 6, 7, 8 \text{ pueden o no pertenecer a } Y \xrightarrow{\text{por ejemplo}} \begin{cases}
X \triangle \{4, 6, 8, 9, \ldots\} = \{4, 7\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
X \triangle \{9, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{9\} \cancel{\angle} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{9\} \cancel{\angle} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{6, 7, 8\} \\
\hline
X \triangle \{0, \ldots\} = \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{6, 7, 8\} \overset{\checkmark}{\subseteq} \{6, 7, 8\} \end{aligned}{}$$

Se concluye que la clase de equivalencia será el conjunto \overline{X} (notación inventada):

 $\overline{X} = \{Y_1 \cup \{9, 10, \ldots\}, Y_2 \cup \{9, 10, \ldots\}, \ldots, Y_{32} \cup \{9, 10, \ldots\}\} \text{ con } Y_i \in \mathcal{P}(\{4, 5, 6, 7, 8\}) \ i \in [1, 2^5] \text{ donde}$ $\#\overline{X}=2^5$