GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Mecánica de fluidos

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Quinto Semestre	110505	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al participante los conocimientos para comprender y resolver fenómenos relacionados con el comportamiento de los fluidos, así como su aplicación en procesos y sistemas industriales.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1. Unidades básicas.
- 1.2 Definición de sistema.
- 1.3 Propiedades en la que interviene la masa o el peso de fluido.
- 1.4 Propiedades que incluyen el flujo de calor.
- 1.5 Viscosidad.
- 1.6 Elasticidad.
- 1.7 Tensión superficial.
- 1.8 Presión de vapor.

2. Estática de fluidos

- 2.1 Presión.
- 2.2 Variación de la presión con respecto a la altura.
- 2.3 Mediciones de presión.
- 2.4 Fuerzas hidrostáticas sobre superficies planas.
- 2.5 Fuerzas hidrostáticas sobre superficies curvas.

3. Cinemática de fluidos

- 3.1 Velocidad del flujo.
- 3.2 Gasto o descarga.
- 3.3 Aceleración.
- 3.4 Concepto de volumen de control.
- 3.5 Ecuación de continuidad.
- 3.6 Rotación v vorticidad.

4. Variación de la presión en flujos de fluidos

- 4.1 Causas básicas de la variación de la presión en el flujo de fluidos.
- 4.2 Variación de la presión debido a la velocidad
- 4.3 Ecuación de Bernoulli
- 4.4 Aplicaciones de la ecuación de Bernoulli.

5. Principios de cantidad de movimiento

- 5.1 Ecuación de cantidad movimiento
- 5.2 Aplicaciones de la ecuación de la cantidad de movimiento
- 5.3 Ecuación de cantidad de movimiento angular

6. Principio de la energía

- 6.1 Derivación de la evacuación de la energía
- 6.2 Análisis de la ecuación de la energía.
- 6.3 Formas simplificada de la ecuación de la energía.
- 6.4 Aplicaciones combinadas de la ecuación de la energía, cantidad de movimiento y continuidad.
- 6.5 Conceptos de las líneas de gradiente hidráulico y gradiente de energía.
- 6.6 Distribución del esfuerzo cortante en la sección transversal de un tubo.

7. Turbomáguinas

- 7.1 Turbinas hidráulicas.
- 7.2 Bombas hidráulicas.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final equivalente al 50%, la suma de estos dos porcentajes dará la calificación final.

BIBLIOGRAFÍA

Libros Básicos

- 1. Mecánica de Fluidos, Arthur G. Hansen, , Ed . Limusa
- 2. Mecánica de Fluidos, Frank M. White, Mc Graw Hill
- 3. Introduction to the Mechanics of a Continuos Médium, Lawrence E. Malvern, Prentice Hall
- 4. Fundamentals of Fluid Mechanics, Munson, Bruce R., Young, Donald F. y Okiishi, Theodore H., Ed. John Wiley & Sons Ltd, USA, Fifth Edition, 2006.
- 5. *Mecánica de Fluidos*, Streeter, Víctor L., Wylie, E. Benjamín y Bedford, Keit W., McGraw Hill Interamricana S. A., Colombia, Novena Edición, 2003.

Libros de consulta

- 1. Mechanics of Fluids, Publisher: Routledge, Massey, Bernard F., Eighth Edition, 2006.
- 2. Applied Fluid Mechanics, Mott, Robert L., Ed. Prentice Hall Inc., Sixth Edition, 2005.
- 3. Mechanics of Fluids, Shames, Irving H., McGraw Hill Science, Fourth Edition, 2002

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero mecánico, Ing. Químico o área afín, con experiencia en la docencia y en todo tipo de modelado y aprovechamiento de fluidos, preferentemente con maestría.

