Lead Scoring Case Study

Group Members -

- 1. Viswanath Venkatraj
- 2. Vaishnavi Sampath
- 3. Vivek Patil

Problem Statement

- X Education sells online courses to industry professionals.
- X Education gets a lot of leads, its lead conversion rate is very poor. For example, if, say, they acquire 100 leads in a day, only about 30 of them are converted.
- To make this process more efficient, the company wishes to identify the most potential leads, also known as 'Hot Leads'.
- If they successfully identify this set of leads, the lead conversion rate should go up as the sales team will now be focusing more on communicating with the potential leads rather than making calls to everyone.

Business Objective:

- X education wants to know most promising leads.
- For that they want to build a Model which identifies the hot leads.
- Deployment of the model for the future use.

Solution Methodology

- Data cleaning and data manipulation.
 - 1. Check and handle duplicate data.
 - 2. Check and handle NA values and missing values.
 - 3. Drop columns, if it contains large number of missing values and not useful for the analysis.
 - 4. Imputation of the values, if necessary.
 - 5. Check and handle outliers in data.
- EDA
 - 1. Univariate data analysis: value count, distribution of variable etc.
 - 2. Bivariate data analysis: correlation coefficients and pattern between the variables etc.
- Feature Scaling & Dummy Variables and encoding of the data.
- Classification technique: logistic regression used for the model making and prediction.
- Validation of the model.
- Model presentation.
- Conclusions and recommendations.

Data Manipulation

- ► Total Number of Rows =9240, Total Number of Columns =37.
- ➤ Single value features like "Magazine", "Receive More Updates About Our Courses", "Update me on Supply", "Chain Content", "Get updates on DM Content", "I agree to pay the amount through cheque" etc. have been dropped.
- Removing the "Prospect ID" and "Lead Number" which is not necessary for the analysis.
- After checking for the value counts for some of the categorical variables, we find some of the features which has not enough variance, which we have dropped, the features are: "Do Not Call", "What matters most to you in choosing course", "Search", "Newspaper Article", "X Education Forums", "Newspaper", "Digital Advertisement" etc.
- ▶ Dropping the columns having more than 40% as missing value such as 'How did you hear about X Education' and 'Lead Profile', 'Lead Quality'.

EDA

Ratio of data imbalance

Bivariate Analysis

Data Conversion

- Numerical Variables are Normalised
- Dummy Variables are created for categorical variables
- ► Total Rows for Analysis: 9240
- ► Total Columns for Analysis: 88

Model Building

- The first basic step for regression is to perform a train-test split, we have chosen 70:30
- Running RFE with 15 variables as output
- Building models by removing the variables whose p-value is greater than 0.05 and VIF value is greater than 5
- Predictions on test data
- Overall accuracy of 91%

Generalized Linear Model Regression Results							
		6468		bservations:	No. O	Converted	Dep. Variable:
		6457		of Residuals:	C	GLM	Model:
		10 1.0000		Df Model:		Binomial	Model Family:
				Scale:		Logit	Link Function:
		887.2	-13	-Likelihood:	Log	IRLS	Method:
		74.4	27	Deviance:		Sun, 14 Jan 2024	Date:
		e+03	7.57	earson chi2:	Po	20:08:53	Time:
		5964	0.	R-squ. (CS):	Pseudo	8	No. Iterations:
						nonrobust	Covariance Type:
P> z [0.025 0.9	z P> z		std err	coef			
0.000 -4.828 -4.	.750 0.000	-28	0.157	-4.5198	const		
0.000 3.434 4.	.385 0.000	18	0.209	3.8438) Website	Total Time Spent or	
0.000 0.874 2.	.513 0.000	4	0.342	1.5445	Add Form	Lead Origin_Lead A	
0.007 0.814 5.	.721 0.007	2	1.069	2.9097	(Website	ad Source_Welingal	Le
0.000 -1.946 -1.	.737 0.000	-6	0.224	-1.5074	Email_Yes	Do Not	
0.000 -2.828 -2.	.042 0.000	-19	0.135	-2.5641	provided	ent occupation_not	What is your curr
0.000 3.227 4.	.480 0.000	15	0.239	3.6945	ags_Busy	1	
0.000 6.425 9.	.701 0.000	10	0.735	7.8659	Horizzon	Tags_Closed by	
0.000 7.008 9.	.850 0.000	13	0.589	8.1630	t to EINS	Tags_Los	
0.000 6.461 7.	.826 0.000	32	0.209	6.8715	the email	revert after reading	Tags_Will ı
0.000 4.080 4.	.607 0.000	24	0.180	4.4336	provided	Tags_not	

Final model summary

ROC Curve

- ▶ Finding Optimal Cut off Point →
- Optimal cut off probability is that probability where we get balanced sensitivity and specificity.
- ▶ From the second graph it is visible that the optimal cut off is at 0.35.

Conclusion

- While we have checked both Sensitivity-Specificity as well as Precision and Recall Metrics(87% and 91% respectively), we have considered the optimal cut off(0.35) based on Sensitivity and Specificity for calculating the final prediction.
- Accuracy, Sensitivity and Specificity values of test set are around 91%, 91% and 91% which are approximately closer to the respective values calculated using trained set.
- Also, the lead score calculated in the trained set of data shows the conversion rate on the final predicted model is around 91% Hence overall this model seems to be good.