TD: Bilan premier principe

Compressions successives

On envisage de comprimer une mole d'air d'un état initial caractérisé par une pression $P_1 = 1.0 \times 10^5 \,\mathrm{Pa}$, un volume V_1 et une température $T_1 = 290 \,\mathrm{K}$, à un état final caractérisé par une pression $P_2 = 5.0 \times 10^5 \,\mathrm{Pa}$, un volume V_2 et une température $T_1 = 290 \,\mathrm{K}$. L'air à comprimer est considéré comme un gaz parfait de rapport $\gamma = 1.4$. Les transformations étudiées sont supposées mécaniquement réversibles. On donne la constante des gaz parfaits $R = 8.3 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$.

Les échanges thermiques éventuels se font uniquement avec l'air ambiant considéré comme un thermostat de température T_1 .

1. On envisage d'abord la compression suivant un processus isotherme réversible. Exprimer le travail molaire W_m à fournir en fonction de T_1 , R, γ , P_1 et P_2 . Calculer W_{m0} .

La compression isotherme est difficilement réalisable. On propose les transformations suivantes :

- \bullet compression adiabatique réversible de l'état initial jusqu'à la pression P_2
- refroidissement isobare mécaniquement réversible jusqu'à l'état final

La première transformation amène le système à l'état d'équilibre caractérisé par la pression P_2 , un volume V_3 et une température T_3 . On note W_{m1} le travail molaire reçu par le système au cours de la compression adiabatique réversible et W_{m2} le travail molaire reçu au cours du refroidissement isobare.

- 2. Exprimer W_{m1} en fonction de R, γ , T_1 et T_3 .
- 3. Exprimer W_{m2} en fonction de R, T_1 et T_3 .
- 4. En déduire l'expression du travail molaire W_m reçu au cours de ces deux transformations en fonction de R, T_1 , P_1 , P_2 et γ . Calculer W_m et comparer à la valeur de W_{m0} .

On considère maintenant une compression en deux étapes :

- compression adiabatique réversible de l'état initial (P_1,T_1) jusqu'à une pression P telle que $P_1 < P < P_2$, puis un refroidissement isobare mécaniquement réversible jusqu'à la température T_1
- compression adiabatique réversible de (P,T_1) jusqu'à la pression P_2 , puis refroidissement isobare mécaniquement réversible jusqu'à la température T_1
- 5. Représenter ces transformations sur un diagramme de Clapeyron
- 6. Exprimer le travail molaire W'_m à fournir en fonction de P, P_1 , P_2 , T_1 , R et γ .
- 7. Montrer que le travail W'_m est minimal pour $P = \sqrt{P_1 P_2}$.
- 8. Exprimer la valeur minimale notée W'_{\min} de W'_m en fonction de P_1 , P_2 , T_1 , R et γ . Calculer numériquement W'_{\min} .

On considère maintenant une transformation constituée de N étapes du type compression adiabatique puis refroidissement isobare. Les pressions intermédiaires seront notées p_i , avec $p_0 = P_1$ et $p_N = P_2$.

9. Exprimer le travail molaire W''_m total à fournir au gaz en fonction de p_i , N, T_1 , R et γ .

- 10. En admettant que les conditions $\frac{\partial W_m''}{\partial p_i} = 0$ soient suffisantes pour rendre W_m'' minimal, donner la relation entre p_i, p_{i+1} et p_{i-1} pour que W_m'' soit minimal. Montrer qu'alors les pressions intermédiaires telles que $\frac{p_{i+1}}{p_i} = \left(\frac{p_N}{p_0}\right)^{1/N}$ rendent W_m'' minimal et donner cette valeur minimale notée W_{mN}'' en fonction de P_1, P_2, N, T_1, R et γ
- 11. Calculer la limite de W_{mN}'' pour $N \to \infty$. Pour cela, il sera utile d'utiliser le fait que $x^{\alpha} = \exp(\alpha \ln(x))$, puis d'effectuer un développement limité. Comparer cette limite à W_{m0} . Interpréter.