

GANs

- Neural Networks that learn to mimic any distribution of data
 - Can be used to generate images, speech, music etc.
- Comprised of two nets, pitting one against the other (thus the "adversarial")

Source: Zenva, youtube.com

GANs

Two Adversarial Networks

Discriminator

- Similar to networks you trained before
- Maps features to labels
- Learns the boundary between classes

Generator

- Can be seen as the opposite to discriminative algorithms
- Maps noise vectors to features
- Models the distribution of individual classes

GANs

Two-player minimax game

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$
 Discriminator output for real samples

- Train D to maximize the probability of assigning the correct label
- Train G to minimize log(1 D(G(z)))

GANs

Training the generator

Examples

MNIST

Examples

0

Iterations*

* might vary greatly

Examples

Iterations*
* might vary greatly

Examples

Iterations*
* might vary greatly

Examples

https://arxiv.org/abs/1703.10593 Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros

https://affinelayer.com/pixsrv/ By Christopher Hesse

Examples

https://arxiv.org/pdf/1812.04948.pdf By T. Karas et al.

Difficulties

- Balancing discriminator and generator
- Small changes in hyperparameters may have a large impact on training
- Loss values are difficult to interpret / unintuitive
- Might never converge

Tips for training

- Implement as a binary classification problem
- Train the discriminator before the generator
- Discriminator and generator should not differ too much in complexity
- If your solution for Exercise 2 does not converge after 20,000 iterations something may be wrong
- Best way to check if your setup works is to look at the generated examples

Exercise 2 - Task

Exercise 2 - Possible Solution

* Plot might look completely different in your experiment

Exercise 3 - HIGHLY RECOMMENDED

Exercise 3 - Possible Solution

