Simulacija premikanja točke po Bezierjevi krivulji

Poročilo o projektni nalogi pri predmetu Matematično modeliranje

Nik Erzetič

29. september 2020

Kazalo

1	Ma	tematično ozadje	1
	1.1	Bézierjeve krivulje	1
		1.1.1 De Casteljaujev algoritem	2
		1.1.2 Odvod Bézierjeve krivulje	2
	1.2	Fleksijska ukrivljenost	2
2	Reš	evanje	3
	2.1	Splošna rešitev	3
		2.1.1 Implementacija	3
	2.2	Premikanje z enakomerno hitrostjo	3
		2.2.1 Ekvidistančna parametrizacija	3
		2.2.2 Aproksimacija drugega odvoda	3
		2.2.3 Implementacija	3
	2.3	Primerjava rešitve	3

1 Matematično ozadje

1.1 Bézierjeve krivulje

Bézierjeve krivulje so parametrične krivulje, določene z zaporedjem kontrolnih točk. Ime nosijo po Pierreu Bézierju, ki jih je v drugi polovici dvajsetega stoletja razvil kot orodje za oblikovanje karoserij Renaultjevih avtomobilov.

1.1.1 De Casteljaujev algoritem

Osnovno orodje za delo z Bézierjevimi krivulji je De Casteljaujev algoritem. Le ta vsaki vrednosti t iz intervala [0,1] (ali \mathbb{R}) priredi točko na krivulju. To stori z zaporednim deljenjem stranic in zveznic med v prejšnjem koraku izračunanimi delilnimi točkami, v razmerju določenim s t.

Algoritem 1: De Casteljaujev algoritem

Vhod: $b_0, b_1, \ldots, b_n \in \mathbb{R}^d$, $t \in [0, 1]$ (ali $t \in \mathbb{R}$)
Izhod: točka b_0^n na Bézierjevi krivulji
definiramo $b_j^0(t) = b_j$, $j = 0, 1, \ldots, n$ for $k = 2, 3, \ldots, n$ do

for $i = 0, 1, \ldots, n - k$ do $b_i^k = (1 - t) \cdot b_i^{k-1} + t \cdot b_{i+1}^{k-1}$

V Matlabu implementacije ne izgleda tako, a o tem bom več napisal v poznejšem razdelku.

1.1.2 Odvod Bézierjeve krivulje

Odvod Bézierjeve krivulje izračunamo po sledeči fomuli:

$$\frac{\mathrm{d}^r b^n}{\mathrm{d} t^r} = n(n-1)\dots(n-r+1)\sum_{j=0}^{n-r} \Delta^r b_j B_j^{n-r}(t),$$

kjer je $\Delta b_j = b_{j+1} - b_j$ in $\Delta^r b_j = \Delta(\Delta^{r-1} b_j)$.

1.2 Fleksijska ukrivljenost

Fleksijska ukrviljenost κ meri upognjenost krivulje v točki. Definirana je kot drugi odvod krajevnega vektorja pri naravni parametrizaciji in je enaka obratni vrednosti radija pritisnjene krožnice v tej točki. Za poljubno parametrizacijo r(t) jo izračunamo z naslednjo formulo:

$$\kappa(t) = \frac{\mid r'(t) \times r''(t) \mid}{\mid\mid r'(t) \mid\mid^3}.$$

2 Reševanje

- 2.1 Splošna rešitev
- 2.1.1 Implementacija
- 2.2 Premikanje z enakomerno hitrostjo
- 2.2.1 Ekvidistančna parametrizacija
- 2.2.2 Aproksimacija drugega odvoda
- 2.2.3 Implementacija
- 2.3 Primerjava rešitve