Computação Gráfica

Aula 27: Recorte

Vicente Helano Feitosa Batista Sobrinho Faculdade Paraíso do Ceará Sistemas de Informação 1o. semestre de 2011

Posicionamento no pipeline

Pipeline gráfico (básico) de renderização por rasterização

Posicionamento no pipeline

Pipeline gráfico (básico) de renderização por rasterização

Por que o interesse em recortes?

 Rasterizar primitivas sem o devido cuidado pode levar a resultados indesejados

Por que o interesse em recortes?

 Rasterizar primitivas sem o devido cuidado pode levar a resultados indesejados

Por que o interesse em recortes?

 Rasterizar primitivas sem o devido cuidado pode levar a resultados indesejados

Espaços de recorte

O recorte pode ser implementado em dois espaços diferentes:

Volume de visão pré-projeção

Volume de visão normalizado (coordenadas homogêneas)

Espaços de recorte

O recorte pode ser implementado em dois espaços diferentes:

Volume de visão pré-projeção

onde seções transversais definidas pelo usuário são calculadas com OpenGL

Volume de visão normalizado (coordenadas homogêneas)

Quem precisa ser recortado?

 Recortamos apenas primitivas parcialmente dentro do volume de visão

Outras utilidades para o recorte

- Seleção de objetos com auxílio do mouse
- Operações Booleanas em CSG (Construtive Solid Geometry)
- Sobreposição de janelas
- Anti-serrilhado

Definição geral do problema de recorte

Entrada.

- Objeto a ser recortado: ponto, segmento de reta, polígono, curva, etc.
- *'Ferramenta'' de recorte:* retângulo, polígono arbitrário, tronco de pirâmide ou paralepípedo (6 planos)

Saída.

Depende do objeto de entrada:

- Ponto ⇒ sim ou não?
- Segmento de reta ⇒ coleção de segmentos
- Polígono ⇒ coleção de polígonos
- Curva ⇒ coleção de curvas
- etc.

Recorte de segmentos de reta

Problema clássico em computação gráfica: recorte de segmento de reta contra retângulo alinhado com os eixos

Recorte de segmentos de reta

Problema clássico em computação gráfica: recorte de segmento de reta contra retângulo alinhado com os eixos

Retângulo define região de interesse. As partes dos segmentos localizadas fora dessa região são removidas

Recorte de segmentos de reta

Problema clássico em computação gráfica: recorte de segmento de reta contra retângulo alinhado com os eixos

Retângulo define região de interesse. As partes dos segmentos localizadas fora dessa região são removidas

Os principais algoritmos são: Cohen-Sutherland, Liang-Barsky, Cyrus-Beck e Nicholl-Lee-Nicholl

 Decompõe o espaço em 9 regiões, das quais apenas uma é visível

 Decompõe o espaço em 9 regiões, das quais apenas uma é visível

- Decompõe o espaço em 9 regiões, das quais apenas uma é visível
- ullet Classifica os vértices do segmento (p,q) com relação a cada um dos 4 semi-planos que definem a região de interesse

- Decompõe o espaço em 9 regiões, das quais apenas uma é visível
- ullet Classifica os vértices do segmento (p,q) com relação a cada um dos 4 semi-planos que definem a região de interesse

- Decompõe o espaço em 9 regiões, das quais apenas uma é visível
- ullet Classifica os vértices do segmento (p,q) com relação a cada um dos 4 semi-planos que definem a região de interesse

- Decompõe o espaço em 9 regiões, das quais apenas uma é visível
- ullet Classifica os vértices do segmento (p,q) com relação a cada um dos 4 semi-planos que definem a região de interesse

- Decompõe o espaço em 9 regiões, das quais apenas uma é visível
- ullet Classifica os vértices do segmento (p,q) com relação a cada um dos 4 semi-planos que definem a região de interesse

- Decompõe o espaço em 9 regiões, das quais apenas uma é visível
- ullet Classifica os vértices do segmento (p,q) com relação a cada um dos 4 semi-planos que definem a região de interesse
- Para cada semi-plano, haverá 3 situações:
 - 1. Ambos os vértices estão fora: segmento não-visível
 - 2. Um vértice *dentro* e o outro *fora*: substituir o vértice *fora* pelo ponto de interseção; testar próximo semi-plano
 - 3. Ambos os vértices estão dentro: segmento visível

Dado um ponto p, utilizamos um código binário $W(p) = b_0 b_1 b_2 b_3$ para classificá-lo segundo sua região

Dado um ponto p, utilizamos um código binário $W(p) = b_0 b_1 b_2 b_3$ para classificá-lo segundo sua região

$$b_0 = \begin{cases} 1 & \text{se } p_y > y_{max} \\ 0 & \text{caso contrário} \end{cases}$$

$$b_1 = \begin{cases} 1 & \text{se } p_y < y_{min} \\ 0 & \text{caso contrário} \end{cases}$$

$$b_2 = \begin{cases} 1 & \text{se } p_x > x_{max} \\ 0 & \text{caso contrário} \end{cases}$$

$$b_3 = \begin{cases} 1 & \text{se } p_x < x_{min} \\ 0 & \text{caso contrário} \end{cases}$$

Dado um ponto p, utilizamos um código binário $W(p) = b_0 b_1 b_2 b_3$ para classificá-lo segundo sua região

$$b_0 = \begin{cases} 1 & \text{se } p_y > y_{max} \\ 0 & \text{caso contrário} \end{cases}$$

$$b_1 = \begin{cases} 1 & \text{se } p_y < y_{min} \\ 0 & \text{caso contrário} \end{cases}$$

$$b_2 = \begin{cases} 1 & \text{se } p_x > x_{max} \\ 0 & \text{caso contrário} \end{cases}$$

$$b_3 = \begin{cases} 1 & \text{se } p_x < x_{min} \\ 0 & \text{caso contrário} \end{cases}$$

1001	1000	1010
0001	0000	0010
0101	0100	0110

Observe que: $\begin{cases} 1 & \text{significa } fora \\ 0 & \text{significa } dentro \end{cases}$

Dado um ponto p, utilizamos um código binário $W(p) = b_0 b_1 b_2 b_3$ para classificá-lo segundo sua região

Para um segmento (p,q), teremos:

1001	1000	1010
0001	0000	0010
0101	0100	0110

Observe que:
$$\begin{cases} 1 & \text{significa } fora \\ 0 & \text{significa } dentro \end{cases}$$

Dado um ponto p, utilizamos um código binário $W(p) = b_0 b_1 b_2 b_3$ para classificá-lo segundo sua região

Para um segmento (p,q), teremos:

• Rejeição trivial: W(p) AND $W(q) \neq 0$

1001	1000	1010
0001	0000	0010
0101	0100	0110

Observe que:
$$\begin{cases} 1 & \text{significa } fora \\ 0 & \text{significa } dentro \end{cases}$$

Dado um ponto p, utilizamos um código binário $W(p) = b_0 b_1 b_2 b_3$ para classificá-lo segundo sua região

Para um segmento (p,q), teremos:

- Rejeição trivial: W(p) AND $W(q) \neq 0$
- Aceitação trivial: W(p) OR W(q) = 0

1001	1000	1010
0001	0000	0010
0101	0100	0110

Observe que:
$$\begin{cases} 1 & \text{significa } fora \\ 0 & \text{significa } dentro \end{cases}$$

Dado um ponto p, utilizamos um código binário $W(p) = b_0 b_1 b_2 b_3$ para classificá-lo segundo sua região

Para um segmento (p,q), teremos:

- Rejeição trivial: W(p) AND $W(q) \neq 0$
- Aceitação trivial: $W(p) \ {\rm OR} \ W(q) = 0$
- Caso contrário, p (ou q) está fora de um semi-plano; substituí-lo pela interseção e reiniciar o algoritmo

1001	1000	1010
0001	0000	0010
0101	0100	0110

Observe que: $\begin{cases} 1 & \text{significa } \textit{fora} \\ 0 & \text{significa } \textit{dentro} \end{cases}$

Resultado final:

O cálculo excessivo de interseções pode tornar o algoritmo de Cohen-Sutherland ineficiente para algumas instâncias

O cálculo excessivo de interseções pode tornar o algoritmo de Cohen-Sutherland ineficiente para algumas instâncias

Exemplo de configuração com nsegmentos

O cálculo excessivo de interseções pode tornar o algoritmo de Cohen-Sutherland ineficiente para algumas instâncias

 Realiza testes para evitar ao máximo o cálculo de interseções sem utilidade (evitar divisões em pt. flutuante)

- Realiza testes para evitar ao máximo o cálculo de interseções sem utilidade (evitar divisões em pt. flutuante)
- Utiliza a equação paramétrica da reta para representar os segmentos

$$f(t) = (1-t)P_1 + t P_2$$
, onde $t \in \mathbb{R}$

- Realiza testes para evitar ao máximo o cálculo de interseções sem utilidade (evitar divisões em pt. flutuante)
- Utiliza a equação paramétrica da reta para representar os segmentos

$$f(t) = (1-t)P_1 + t P_2$$
, onde $t \in \mathbb{R}$

Separando as coordenadas:

$$x(t) = (1 - t)x_1 + tx_2 = x_1 + t\Delta x$$
$$y(t) = (1 - t)y_1 + ty_2 = y_1 + t\Delta y$$

Condições para um ponto estar contido no interior do retângulo:

$$x_{min} \le x_1 + t\Delta x \le x_{max}$$

$$y_{min} \le y_1 + t\Delta y \le y_{max}$$

Essas duas desigualdades podem ser desmembradas em 4 novas desigualdades do tipo:

$$tp_k \le q_k, \quad k = 1, 2, 3, 4$$

onde:

$$p_1 = -\Delta x,$$
 $q_1 = x_1 - x_{\min}$ $p_2 = \Delta x,$ $q_2 = x_{\max} - x_1$ $p_3 = -\Delta y,$ $q_3 = y_1 - y_{\min}$ $p_4 = \Delta y,$ $q_4 = y_{\max} - y_1$

- ullet Se $p_k=0$ para algum k, então o segmento é paralelo ao k-ésimo semi-plano
 - Se $q_k < 0$, então o segmento não é visível
 - Senão, o segmento deve ser recortado na direção perpendicular ao k-ésimo semi-plano

- Se $p_k=0$ para algum k, então o segmento é paralelo ao k-ésimo semi-plano
 - Se $q_k < 0$, então o segmento não é visível
 - Senão, o segmento deve ser recortado na direção perpendicular ao k-ésimo semi-plano
- ullet Se $p_k < 0$, o segmento está "vindo de fora para dentro", com relação ao k-ésimo semi-plano. Caso contrário, o sentido é "de dentro para fora"

- ullet Se $p_k=0$ para algum k, então o segmento é paralelo ao k-ésimo semi-plano
 - Se $q_k < 0$, então o segmento não é visível
 - Senão, o segmento deve ser recortado na direção perpendicular ao k-ésimo semi-plano
- Se $p_k < 0$, o segmento está "vindo de fora para dentro", com relação ao k-ésimo semi-plano. Caso contrário, o sentido é "de dentro para fora"
- Para k=1,2,3,4, calcular $t_k=q_k/p_k$

- Se $p_k=0$ para algum k, então o segmento é paralelo ao k-ésimo semi-plano
 - Se $q_k < 0$, então o segmento não é visível
 - Senão, o segmento deve ser recortado na direção perpendicular ao k-ésimo semi-plano
- Se $p_k < 0$, o segmento está "vindo de fora para dentro", com relação ao k-ésimo semi-plano. Caso contrário, o sentido é "de dentro para fora"
- Para k=1,2,3,4, calcular $t_k=q_k/p_k$
- Os vértices do segmento recortado são obtidos por:
 - $-t_{\min} = \max\{0, t_i\}, \ \forall i \in \{k : p_k < 0\}$
 - $-t_{\max} = \min\{1, t_i\}, \ \forall i \in \{k : p_k > 0\}$

- ullet Se $p_k=0$ para algum k, então o segmento é paralelo ao k-ésimo semi-plano
 - Se $q_k < 0$, então o segmento não é visível
 - Senão, o segmento deve ser recortado na direção perpendicular ao k-ésimo semi-plano
- Se $p_k < 0$, o segmento está "vindo de fora para dentro", com relação ao k-ésimo semi-plano. Caso contrário, o sentido é "de dentro para fora"
- Para k=1,2,3,4, calcular $t_k=q_k/p_k$
- Os vértices do segmento recortado são obtidos por:
 - $-t_{\min} = \max\{0, t_i\}, \ \forall i \in \{k : p_k < 0\}$
 - $-t_{\max} = \min\{1, t_i\}, \ \forall i \in \{k : p_k > 0\}$
- ullet Se $t_{
 m min} > t_{
 m max}$, então o segmento não é visível

- $p_1 < 0$ e $p_3 < 0$
- $p_2 > 0$ e $p_4 > 0$

•
$$p_2 > 0$$
 e $p_4 > 0$

Ilustração do algoritmo

Observe que:

- $p_1 < 0$ e $p_3 < 0$
- $p_2 > 0$ e $p_4 > 0$

Então:

- $t_{\min} = \max\{0, t_1, t_3\} = t_1$
- $t_{\text{max}} = \min\{1, t_2, t_4\} = 1$

 (x_1,y_1)

Pode gerar um único polígono convexo, múltiplos polígonos não-conexos ou um polígono côncavo

Pode gerar um único polígono convexo, múltiplos polígonos não-conexos ou um polígono côncavo

Se a região de recorte tiver forma arbitrária, então obteremos também uma ferramenta para realizar operações boolianas entre polígonos

Pode gerar um único polígono convexo, múltiplos polígonos não-conexos ou um polígono côncavo

Se a região de recorte tiver forma arbitrária, então obteremos também uma ferramenta para realizar operações boolianas entre polígonos

Principais algoritmos: Sutherland-Hodgman, Weiler-Atherton

Algoritmo de Sutherland-Hodgman

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

 Recortar o polígono com cada semi-plano definido pela região de recorte

Algoritmo de Sutherland-Hodgman

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

 Recortar o polígono com cada semi-plano definido pela região de recorte

Algoritmo de Sutherland-Hodgman

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

• Recortar o polígono com cada semi-plano definido pela

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

Recortar o polígono com cada semi-plano definido pela

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

• Recortar o polígono com cada semi-plano definido pela

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

• Recortar o polígono com cada semi-plano definido pela

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

Recortar o polígono com cada semi-plano definido pela

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

 Recortar o polígono com cada semi-plano definido pela região de recorte

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

 Recortar o polígono com cada semi-plano definido pela região de recorte

Emprega a mesma ideia do algoritmo de Cohen-Sutherland

 Recortar o polígono com cada semi-plano definido pela região de recorte

Existem quatro casos a serem tratados:

Resulta em arestas "fantasmas": não é crítico para rasterização

Resulta em arestas "fantasmas": não é crítico para rasterização

Resulta em arestas "fantasmas": não é crítico para rasterização

 Permite recortar polígonos arbitrários contra regiões de recorte arbitrárias

- Permite recortar polígonos arbitrários contra regiões de recorte arbitrárias
- Pode ser utilizado para realizar operações boolianas entre polígonos arbitrários

- Permite recortar polígonos arbitrários contra regiões de recorte arbitrárias
- Pode ser utilizado para realizar operações boolianas entre polígonos arbitrários
- As arestas dos polígonos são duplicadas (interior \implies sentido anti-horário, exterior \implies sentido horário)

- Permite recortar polígonos arbitrários contra regiões de recorte arbitrárias
- Pode ser utilizado para realizar operações boolianas entre polígonos arbitrários
- As arestas dos polígonos são duplicadas (interior \implies sentido anti-horário, exterior \implies sentido horário)
- Ausência de arestas fantasmas

Classificamos os vértices de A (resp. B) como dentro ou fora de B (resp. A)

Cálculo dos pontos de interseção entre A e B

Inserção de pontos de interseção nas listas de vértices de A e B

Classificação das novas regiões

 Em OpenGL, polígonos são representados por um conjunto de triângulos

- Em OpenGL, polígonos são representados por um conjunto de triângulos
- Recorte é realizado após projeção, mas antes da divisão perspectiva

- Em OpenGL, polígonos são representados por um conjunto de triângulos
- Recorte é realizado após projeção, mas antes da divisão perspectiva
- Logo, precisamos saber recortar triângulos contra os seis planos do volume de visão canônico $[-1,1]^3$

- Em OpenGL, polígonos são representados por um conjunto de triângulos
- Recorte é realizado após projeção, mas antes da divisão perspectiva
- Logo, precisamos saber recortar triângulos contra os seis planos do volume de visão canônico $[-1,1]^3$
- O resultado deverá ser um polígono, mas definido por sua triangulação

- Em OpenGL, polígonos são representados por um conjunto de triângulos
- Recorte é realizado após projeção, mas antes da divisão perspectiva
- Logo, precisamos saber recortar triângulos contra os seis planos do volume de visão canônico $[-1,1]^3$
- O resultado deverá ser um polígono, mas definido por sua triangulação
- ullet Os algoritmos de Sutherland-Hodgman e Liang-Barsky podem ser extendidos ao \mathbb{R}^3

Para cada um dos 6 planos do cubo canônico, temos 4 casos:

Observação.

A interseção de um plano com um triângulo sempre resulta em um quadrilátero \implies dois triângulos

Para cada um dos 6 planos do cubo canônico, temos 4 casos:

Observação.

A interseção de um plano com um triângulo sempre resulta em um quadrilátero \implies dois triângulos

Para cada um dos 6 planos do cubo canônico, temos 4 casos:

Observação.

A interseção de um plano com um triângulo sempre resulta em um quadrilátero \implies dois triângulos

