Problemas

Estos ejercicios us estau corregidos. No predo asegurar que esteu 100% bien 1 - 1175 S3 = L for (1=0;1≤50; i++) Vector A = So Vector B = S1 Vector C = S2 1f (a < 0)

c=-b;

```
move $53,$Zero
addi $\xi$\xi$\xi$\,$$Zero,50
```

(00p:

3le \$\frac{1}{2}, \frac{1}{3} \frac{5}{3}, \frac{1}{3} \frac{1}{6}, \frac{1}{3} \frac{1}{6} \frac{1}{6

(A)

SU \$\frac{1}{2}, \frac{1}{3} \frac{5}{3}, 2

add \frac{1}{3} \text{tz}, \frac{1}{3} \text{tz}, \frac{1}{3} \frac{5}{6}

Lu \frac{1}{3} \text{tz}, \frac{1}{3} \text{tz})

(B)

31 \$\frac{1}{2}, \frac{1}{3} \S_3, 2

add \frac{1}{3} \ta_2, \frac{1}{3} \ta_2, \frac{1}{3} \S_1

(w \frac{1}{3} \ta_4, \O (\frac{1}{3} \ta_2)

(c) $$t_2, $15_3, 2$$ add $$t_5, $1t_2, $15_2$$

sgt \$\dagger{\pmathbb{\tau}}\tau, \dagger{\pmathbb{\tau}}\tau, \dagger{\pmathbb{\tau}}\tau \text{Zero}, \text{else_if} \\ \pmathbb{\pmathbb{\tau}}\tau \dagger{\pmathbb{\tau}}\tau \text{\pmathbb{\tau}}\tau \dagger{\pmathbb{\tau}}\tau \dagger{\pmathbb{\tau

else_if

slt \$\dagger\$ \taz, \$\dagger\$ \taz, \$\dagger\$ \taz, \$\dagger\$ \tazero, \$\dazero, \$\dagger\$ \tazero, \$\dazero, \$\dazero, \$\dazero, \$\dazero, \$\dazero, \$\daze

<u>else</u>

j fin

3U \$ to, \$ ty, 3

Pin

addi \$153, \$153, 1 j 600p

fin_loop

Se dispone de ma memoria principal de 512 K × 8 y ma memoria asociativa por conjunto de 3 vías. Utiliza bloques de 4 palabras por bloque, pudiendo almacenar 12 K palabras de Mamoria Principal.

- a) Organización de la memoria coché.
- 6) Capacidad de la memoria caché.
- c) Representa la memoria caché despues de 3 l'teraciones.

Voctor A: 7BE34 (hex).

Vector B: 62 E 34 (hex).

int cout;

por Ciut i=0; 1<10; i++)

cout = A[i] + B[i];

etiqueta	fila	palabra			
7	10	2			

$$MC = files \times polabras$$
 $2^{12} = 2^{2} \times file$

$$file = 2^{10}$$

$$MP = etiq + palabras + filas$$

 $2^{19} = 10 + 2 + etiq$
 $etiq = 7$

	etiqueta	Po	Ps	P2	P3	81	ctiqueta	Po	Ps	刄	ይ	8 /	›	Pi	₽2	B	<u>BY</u>
000000000																	1
:						Ц											Ц
4440 0044 04	111 1011	1	23	ч	5	1	140 00 40	7	93	102	3	1					Ц
į						Ц											Ll
; }																	Ш
111 114 1111																	

Estado final de la memoria caché

División en signo-magnitud

"DSM m": Realiza la división con restauración en signo-magnitud del contenido del registro AQ entre el contenido de la posición de memoria "m" (que deberá colocarse en el registro B).

División en signo-magnitud

Dic	N. Op.	LCB	Bil
ADDR (FE TCH) +0	PC → MAR	000	
+4	PC+1 → PC ; H → GPR	000	
+2	GPR (OP) - OPR	010	
2666		Mon	vin
	GPR(AD) - MAR	000	'
+4	h - GPR	000	_
+2	A ÐB → Q ; 1-u →sc	000	_
£+	A+B+1> €A	000	
14	A+D -> EA ; A -> DUF	011	ADDR (FETCH)
+5	A+B → 6A ; O → Du F	000	_
+6	sul Eaq; sc-1-0sc	000	<u> </u>
+7	€A 4- A+B+1	100	ON +
+ 8	EA & A +B	100	+ 11
+ 9		001	+ 12
+ 10	A+B+1> A	<i>0</i> 00	-
+ 11	1 - Qu	000	_
+ 12		101	+6
+ 13		001	ADDR (FETCH).
		,	-