Bilevel - GAMS Model Explanation

Sets

- region: {NorthAmerica, EU, Russia, OPEC, FarEast}
- leader \subseteq region: {OPEC}
- follower ⊆ region: {NorthAmerica, EU, Russia, FarEast}

Parameters

model horizon is 1 day

Base Utility for Each Consumer Dollar/M Barrel $U^c_{\mathbf{base}}$

- $U_{\text{base}}^{\text{NorthAmerica}} = 10$
- $U_{\mathrm{base}}^{\mathrm{EU}} = 10$
- $U_{\text{base}}^{\text{Russia}} = 10$
- $U_{\text{base}}^{\text{OPEC}} = 10$
- $U_{\text{base}}^{\text{FarEast}} = 10$

Maximum Consumption for Each Consumer M Barrel C^c_{\max}

- $C_{\text{max}}^{\text{NorthAmerica}} = 20$
- $C_{\max}^{\mathrm{EU}} = 20$
- $C_{\text{max}}^{\text{Russia}} = 20$
- $C_{\text{max}}^{\text{OPEC}} = 20$
- $C_{\text{max}}^{\text{FarEast}} = 20$

Production Capacity for Each Supplier M Barrel P_{\max}^s

- $P_{\text{max}}^{\text{NorthAmerica}} = 19.25$
- $P_{\text{max}}^{\text{EU}} = 3.75$
- $P_{\text{max}}^{\text{Russia}} = 11.7$
- $P_{\text{max}}^{\text{OPEC}} = 33.87$
- $P_{\text{max}}^{\text{FarEast}} = 3.9691$

Interception Point of the Inverse Demand Function for Each Consumer Dollar per M Barrel I_c

- $I_{\text{NorthAmerica}} = 0.190556$
- $I_{\rm EU} = 2.21038$
- $I_{\text{Russia}} = 0.24444$
- $I_{\text{OPEC}} = 0.23766$
- $I_{\text{FarEast}} = 2.77584$

Slope of the Inverse Demand Function for Each Consumer Dollar Per M $\,{\rm Barrel}^2S_c$

- $S_{\text{NorthAmerica}} = -0.00008$
- $S_{\rm EU} = -0.00016$
- $S_{\text{Russia}} = -0.00005$
- $S_{OPEC} = -0.00002$
- $S_{\text{FarEast}} = -0.00014$

Linear Cost Factor in the Cost Function of Each Supplier Dollar per M Barrel ${\rm Cost}_s$

- $Cost_{NorthAmerica} = 22.85$
- $Cost_{EU} = 29.09$
- $Cost_{Russia} = 19.21$
- $Cost_{OPEC} = 9.39$
- $Cost_{FarEast} = 29.9$

Transportation Cost from Supplier s to Consumer c $T_{\mathbf{cost}}^{s,c}$ Dollar M Barrel

	NorthAmerica	${ m EU}$	Russia	OPEC	FarEast
NorthAmerica	0	91.63	91.63	126.48	126.48
EU	91.63	0	7.33	57.17	152.46
Russia	91.63	7.33	0	57.17	152.46
OPEC	126.48	57.17	57.17	0	95.29
FarEast	126.48	152.46	152.46	95.29	0

Transportation Capacity from Supplier s to Consumer $c\,T_{\rm max}^{s,c}$ M Barrel

	NorthAmerica	EU	Russia	OPEC	FarEast
NorthAmerica	35	35	35	35	35
EU	35	35	35	35	35
Russia	35	35	35	35	35
OPEC	35	35	35	35	35
FarEast	35	35	35	35	35

Total Cost per Unit of Oil from Supplier s to Consumer c cost c

Dollar per M Barrel

$$cost^{s,c} = Cost_s + T_{cost}^{s,c}$$

Variables

- $\bullet~\Pi_{\mathrm{leader}} :$ Negative Profit of the leader
- p_c : Regional marginal price for each consumer c
- Π_{follower}^f : Profit of each follower f
- d_c : Demand for each consumer c
- $q_{f,c}$: Quantity sold by follower f to consumer c
- $q_{l,c}$: Quantity sold by leader to consumer c
- $q_{\text{sold},c}$: Sum of quantities sold to consumer c

Positive Variables (Duals denoted by μ)

- $\mu_{d,\min}^c$: Lower limit dual of d_c
- $\mu_{d,\text{max}}^c$: Upper limit dual of d_c
- $\mu_{qf,\min}^{f,c}$: Lower limit dual of q_{fc}
- $\mu_{qf,\max}^{f,c}$: Upper limit dual of q_{fc}
- $\mu_{ql,\min}^{l,c}$: Lower limit dual of q_{lc}
- $\mu_{ql,\max}^{l,c}$: Upper limit dual of q_{lc}

Binary Variables (denoted by ψ)

- $\psi_{d,\min}^c$
- $\psi_{d,\max}^c$
- $\psi_{af,\min}^{f,c}$
- $\psi_{qf,\max}^{f,c}$
- $\psi_{ql,\min}^{l,c}$
- $\psi_{ql,\max}^{l,c}$

Scalars

- Big Ms:
$$M_{1,\min}^d$$
, $M_{1,\max}^d$, $M_{1,\min}^{qf}$, $M_{1,\max}^{qf}$, $M_{1,\min}^{ql}$, $M_{1,\min}^{ql}$, $M_{1,\max}^{ql}$ - Big Ms: $M_{2,\min}^d$, $M_{2,\min}^d$, $M_{2,\min}^q$, $M_{2,\max}^{qf}$, $M_{2,\min}^{qf}$, $M_{2,\max}^{ql}$, $M_{2,\max}^{ql}$

Equations

Objective Functions

Non-Linear Original Objective Function

of:
$$\Pi_{\text{leader}} = \sum_{(l,c)} \left(\cos t^{l,c} \cdot q_{l,c} - p_c \cdot q_{l,c} \right)$$

Linear Objective Function

of:
$$\Pi_{\text{leader}} = \sum_{c} \left(-\sum_{l} q_{l,c} \cdot \cot^{l,c} - \sum_{f} q_{f,c} \cdot \cot^{f,c} - \sum_{f} T_{\text{max}}^{f,c} \cdot q f_{\text{max}}^{f,c} \right) + \sum_{c} U_{\text{base}}^{c} \cdot d_{c} - \sum_{c} C_{\text{max}}^{c} \cdot d_{\text{max}}^{c}$$

Upper Level Constraints

Production Capacity for Leader

$$production_cap_l(l): \quad \sum_{c} q_{l,c} \leq P_{\max}^{l}$$

Production Capacity for Follower

production_cap_f(f):
$$\sum_{c} q_{f,c} \leq P_{\max}^f$$

Lagrangian Equilibrium Equations for Followers and Consumers

Leader's Equilibrium

$$\label{eq:leaderEqu} \text{leaderEqu}(l,c): \quad \cot^{l,c} - p_c - \mu_{ql,\min}^{l,c} + \mu_{ql,\max}^{l,c} = 0$$

Follower's Equilibrium

$$\text{followerEqu}(f,c): \quad \cos t^{f,c} - p_c - \mu_{qf,\min}^{f,c} + \mu_{qf,\max}^{f,c} = 0$$

Consumer's Equilibrium

consumerEqu(c):
$$p_c - U_{\text{base}}^c + \mu_{d,\text{max}}^c - \mu_{d,\text{min}}^c = 0$$

Overall Balance

balance
Equ(c) :
$$d_c - \sum_l q_{l,c} - \sum_f q_{f,c} = 0$$

Price Equation

$$\operatorname{price}(c): \quad p_c = I_c + S_c \cdot d_c$$

Constraints

Primals

Minimum Demand

eq1_d_min(c):
$$d_c \leq \psi_{d,min}^c \cdot M_{1,min}^d$$

Maximum Demand

eq1_d_max(c):
$$C_{\text{max}}^c - d_c \le \psi_{d,\text{max}}^c \cdot M_{1,\text{max}}^d$$

Minimum Quantity Sold by Follower

$$\operatorname{eq1_qf_min}(f,c): \quad q_{f,c} \leq \psi_{qf,\min}^{f,c} \cdot M_{1,\min}^{qf}$$

Maximum Quantity Sold by Follower

eq1_qf_max(f,c):
$$T_{\max}^{f,c} - q_{f,c} \leq \psi_{qf,\max}^{f,c} \cdot M_{1,\max}^{qf}$$

Minimum Quantity Sold by Leader

eq1_ql_min
$$(l,c): q_{l,c} \leq \psi_{ql,\min}^{l,c} \cdot M_{1,\min}^{ql}$$

Maximum Quantity Sold by Leader

$$\mathrm{eq1_ql_max}(l,c): \quad T_{\mathrm{max}}^{l,c} - q_{l,c} \leq \psi_{ql,\mathrm{max}}^{l,c} \cdot M_{1,\mathrm{max}}^{ql}$$

Duals

Dual Minimum Demand

eq2_d_min
$$(c)$$
: $\mu_{d,\min}^c \le (1 - \psi_{d,\min}^c) \cdot M_{2,\min}^d$

Dual Maximum Demand

eq2_d_max(c):
$$\mu_{d,\text{max}}^c \leq (1 - \psi_{d,\text{max}}^c) \cdot M_{2,\text{max}}^d$$

Dual Minimum Quantity Sold by Follower

$$\mathrm{eq2_qf_min}(f,c): \quad \mu_{qf,\mathrm{min}}^{f,c} \leq (1-\psi_{qf,\mathrm{min}}^{f,c}) \cdot M_{2,\mathrm{min}}^{qf}$$

Dual Maximum Quantity Sold by Follower

$$\text{eq2_qf_max}(f,c): \quad \mu_{qf,\max}^{f,c} \leq (1-\psi_{qf,\max}^{f,c}) \cdot M_{2,\max}^{qf}$$

Dual Minimum Quantity Sold by Leader

$$\text{eq2_ql_min}(l,c): \quad \mu_{ql,\min}^{l,c} \leq (1-\psi_{ql,\min}^{l,c}) \cdot M_{2,\min}^{ql}$$

Dual Maximum Quantity Sold by Leader

$$\mathrm{eq2_ql_max}(l,c): \quad \mu_{ql,\mathrm{max}}^{l,c} \leq (1-\psi_{ql,\mathrm{max}}^{l,c}) \cdot M_{2,\mathrm{max}}^{ql}$$

Model and Solution

Model stckl /all/; solve stckl using minlp (or mip) minimizing Π_{leader} ; display p.l, ql.l, qf.l, d.l, ;