

Statistics Driven Workload Modeling for the Cloud

Archana Ganapathi, Yanpei Chen Armando Fox, Randy Katz, David Patterson

SMDB 2010

Data analytics are moving to the cloud

Cloud computing → economy of scale

MapReduce for warehousing/analytics in the cloud

New challenges:

- Heterogeneous HW/SW/configuration/infrastructure
- Large variation in workload/software
- Ability to change resource consumption elastically

We present a partial solution

Brief MapReduce overview

Scheduling? Design trade-offs? Plan for the future?

Existing approaches:

- System simulation
- Benchmarks
- Trace replay
- Hardware/VM statistics

Our approach:

- 1. Predict performance on a fixed configuration
- 2. Workload synthesis & evaluation across configurations

Performance prediction via SML

Desirable properties:

- ✓ Predict job execution time and resource requirements in a single model
- ✓ Works equally well for SQL-like and traditional MapReduce jobs
- ✓ Generalizable across different hardware, software, configurations, etc.

We've done this before ...

A. Ganapathi, H. Kuno, U. Dayal, J. Wiener, A. Fox, M. Jordan, D. Patterson, **Predicting Multiple Performance Metrics for Queries: Better Decisions Enabled by Machine Learning**, ICDE 2009.

Silver bullet:

Kernel Canonical Correlation Analysis (KCCA)

High level description of KCCA

Prediction using KCCA model

Our particular experiment

Hadoop & Hive: open-source data analytics SQL interface

Production Hadoop Deployment at well-known social network

Multi-user environment

Nodes 1-300: 16 GB memory, 5 map slots, 5 reduce slots

Nodes 301-600: 8 GB memory, 5 map slots, 0 reduce slots

Training Set of 5000 Hive queries

Test Set of 1000 unseen Hive queries

SQL features predict poorly

Query plan features:

Count of

Create Table

Filter

Forward

Group By

Join

Move

Reduce Output

System behavior metrics:

Total Execution Time

Map Time

Reduce Time

Map Output Bytes

Local/HDFS Bytes Written

MapReduce features predict very well

Query plan features:

Job config parameters

Number of Maps Number of Reduces

Data characteristics

Map Input Bytes Local/HDFS Bytes Read

System behavior metrics:
Total Execution Time
Map Time
Reduce Time
Map Output Bytes
Local/HDFS Bytes Written

Generalize to other MapReduce jobs

Query plan features:

Job config parameters

Number of Maps Number of Reduces

Data characteristics

Map Input Bytes
Local/HDFS Bytes Read

System behavior metrics:

Total Execution Time

Map Time

Reduce Time

Map Output Bytes

Local/HDFS Bytes Written

E.g. Prediction for Extract-Transform-Load (ETL) jobs:

How do we use this tool?

- Given a particular setup, KCCA can predict performance
 - What if set up changes?
- Workload generator to ask "what-if" questions
 - Ideally, generalizes across hw/sw/config.
- KCCA identifies workload features that affect performance
 - Genesis for the MapReduce workload generator

Workload Generator Design

- 1. Collect statistics from real traces for these jobs features:
 - Inter-job arrival time
 - Per-job input data size
 - Per-job input:shuffle:output data ratio
- 2. Create synthetic workload that mimics real job stream
 - Compute approximate distributions
 - Sample from distribution to construct workload
- 3. Replay with low overhead

Workload Generator Design

- 1. Collect statistics from real traces for these jobs features:
 - Inter-job arrival time
 - Per-job input data size
 - Per-job input:shuffle:output data ratio
- 2. Create synthetic workload that mimics real job stream
 - Compute approximate distributions
 - Sample from distribution to construct workload
- 3. Replay with low overhead

Design trade-offs:

- Why not direct replay? Burdened with design defects in original system
- Why ignore locality & data skew? Test varied placement/data schemes
- Why ignore compute? IO is usually the bottleneck, confidentiality issues

We have been using our prototype!

MapReduce energy efficiency

MapReduce schedulers

Multi-tenant resource provisioning and capacity planning

Preliminary look at latest results

Comparisons between different energy efficiency mechanisms

Most of the improvement comes from batching Reverse existing design priorities – idle energy > active energy Are all traces like this?

Useful beyond MapReduce

Same approach works in systems other than MapReduce

- Bootstrap model with production traces
- Predictive framework to identify workload characteristics
- Workload description focused on application semantics
- Workload synthesis by directly sampling empirical traces

Only the workload and performance feature vectors are specific to MapReduce

Ongoing work: network storage, wind power, etc.

Lessons learned

- Performance predictions need to be multi-dimensional
- Effective prediction features focus on application semantics
- Workload characterization should also focus on application semantics
- Workload synthesis by sampling production traces is effective

Questions?

archanag@eecs.berkeley.edu ychen2@eecs.berkeley.edu