МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Изучение принципов построения микроконтроллерных систем на примере микроконтроллера AT89S8252

Отчет по лабораторной работе № 1 дисциплины «Системы автоматизированного проектирования»

Выполнил студент группы ИВТ-42	/Рзаев А. Э./
Выполнил студент группы ИВТ-42	/Кодачигов А. А./
Выполнил студент группы ИВТ-42	/Бессолицын А. А./
Выполнил студент группы ИВТ-42	/Микрюков А. А./
Проверил доцент кафедры ЭВМ	/Скворцов A.A./

1 Задание на лабораторную работу

Ввод: клавиатура для ввода номера программы и периода смены состояния. Вывод: Ж/К дисплей для вывода номера и названия текущей программы и текущего периода. Светодиоды всех цветов.

Структурная схема лабораторной установки представлена на рисунке 1.

Рисунок 1 – Структурная схема лабораторной установки

1.1 Описание задачи

При включении питания на индикаторе отображаются записанные в энергонезависимой памяти номер программы и текущий период. Светодиоды должны включаться и выключаться в соответствии с текущей программой и периодом. При нажатии цифровой клавиши на клавиатуре устанавливается (и запоминается в EEPROM) текущая программа. Если программы с данным номером не существует, не должно быть никакой реакции. Клавиши "#" и "↓" модифицируют период. Допустимые значения периода: 0,1 − 1,0 с. Шаг изменения − 0,1 с. При изменении текущий период записывается в EEPROM.

Программы показаны в таблице 1.

Таблица 1 – Программы

Таблица I — Программы	Полятом
Название	Порядок включения светодиодов
	(единица обозначает, что светодиод
	включен).
0. Случайный выбор	Через каждые несколько периодов
	случайно выбирается программа 1 - 8
1. Бегущая единица	1000
	0100
	0010
	0001
2. Бегущая единица (обр.)	0001
	0010
	0100
	1000
3. Чередование	0101
	1010
4. Волна	0000
	1000
	1100
	1110
	1111
	1110
	1100
	1000
5. Волна (обр.)	0000
•	0001
	0011
	0111
	1111
	0111
	0011
	0001
6. (Определяется самостоятельно)	1001
- (-1	0110
7. (Определяется самостоятельно)	1100
(appearance sumocroniculatio)	0011
8. (Определяется самостоятельно)	1100
o. (onpodesington camperontential)	0110
	0011
	0011

2 Модель управляющего автомата

Структурная схема системы управления представлена на рисунке 2.

Рисунок 2 – Структурная схема системы управления

Переходы состояний и выходные сигналы представлены в таблице 2.

Таблица 2 – Переходы состояний и выходные сигналы

	1	r 1		r 1					
state	ПО	П1	П2	П 3	П 4	П 5	П 6	П7	П8
ПО	ПО	S_1/Z_2	S_2/Z_2	S ₃ /Z ₂	S_4/Z_2	S_5/Z_2	S_6/Z_2	S ₇ /Z ₂	S ₈ /Z ₂
П1	S_0/Z_2	П1	S ₂ /Z ₂	S_3/Z_2	S ₄ /Z ₂	S ₅ /Z ₂	S ₆ /Z ₂	S ₇ /Z ₂	S ₈ /Z ₂
П 2	S_0/Z_2	S_1/Z_2	П2	S_3/Z_2	S ₄ /Z ₂	S ₅ /Z ₂	S ₆ /Z ₂	S ₇ /Z ₂	S ₈ /Z ₂
П 3	S ₀ /Z ₂	S_1/Z_2	S_2/Z_2	П 3	S ₄ /Z ₂	S ₅ /Z ₂	S_6/Z_2	S ₇ /Z ₂	S_8/Z_2
П 4	S ₀ /Z ₂	S_1/Z_2	S_2/Z_2	S_3/Z_2	П 4	S ₅ /Z ₂	S ₆ /Z ₂	S ₇ /Z ₂	S ₈ /Z ₂
П 5	S_0/Z_2	S_1/Z_2	S_2/Z_2	S ₃ /Z ₂	S_4/Z_2	П 5	S_6/Z_2	S ₇ /Z ₂	S ₈ /Z ₂
П 6	S ₀ /Z ₂	S_1/Z_2	S ₂ /Z ₂	S ₃ /Z ₂	S ₄ /Z ₂	S ₅ /Z ₂	П 6	S ₇ /Z ₂	S ₈ /Z ₂
П 7	S ₀ /Z ₂	S_1/Z_2	S_2/Z_2	S ₃ /Z ₂	S ₄ /Z ₂	S ₅ /Z ₂	S ₆ /Z ₂	П7	S ₈ /Z ₂
П 8	S ₀ /Z ₂	S_1/Z_2	S_2/Z_2	S ₃ /Z ₂	S_4/Z_2	S ₅ /Z ₂	S_6/Z_2	S ₇ /Z ₂	П8

Принципиальная схема лабораторной установки представлена на рисунке 3.

Рисунок 3 – Принципиальная схема лабораторной установки

Рисунок 4 – Схема печатной платы

Рисунок 5 – Корпус устройства

Выволы

В результате лабораторной работы:

- а) изучены принципы построения микроконтроллерных систем на примере микроконтроллера AT89S8252;
 - б) разработана модель автомата, управляющего гирляндой на 4 цвета;
- в) на базе этой модели разработана программа управления гирляндой на 4 цвета на языке С в среде разработки Micro C Pro for 8051;
- г) программа успешно скомпилирована, отлажена в симуляторе среды разработки и на лабораторной установке;
- д) изучены схемы, принцип работы и программирование микроконтроллера и периферийных устройств: клавиатура, светодиодная линейка, ЖК индикатор.

Проблемы, возникшие в результате работы, и их решения представлены в таблице 3.

Таблица 3 – Проблемы, возникшие в результате работы, и их решения

Проб	лема	Решение
Размер превышает ошибка «Den	2 кбайт,	Уменьшить количество состояний. Теперь в программе всего 9 состояний, каждое из которых обозначает одну из программ.
Не хватает памяти		Записать программы в виде двоичных кодов.

Приложение А Листинг программы

```
#include "drv.h"
#define D1 P0 0 bit
#define D2 P0_1_bit
#define D3 P0_2_bit
#define D4 P0 3 bit
#define p0s0 0
#define p1s0 1
#define p2s0 2
#define p3s0 3
#define p4s0 4
#define p5s0 5
#define p6s0 6
#define p7s0 7
#define p8s0 8
#define key up 13
#define key_down '#'
char ms = 0;
char state = 1;
char key = 0;
char t = 0;
unsigned int speed = 1000;
char T_FLAG = 0;
char zero_flag = 0;
char* prog1[] = { 8, 4, 2, 1 };
char* prog2[] = { 1, 2, 4, 8 };
char* prog3[] = { 5, 10 };
char* prog4[] = { 0, 8, 12, 14, 15, 14, 12, 8 };
char* prog5[] = { 0, 1, 3, 7, 15, 7, 3, 1 };
char* prog6[] = { 9, 6 };
char* prog7[] = { 12, 3 };
char* prog8[] = { 12, 6, 3 };
void DelayMs(unsigned int m) {
  unsigned char a;
  for (ms = 0; ms != m; ms++) {
    for (a = 0; a != 120; a++);
    WMCON.WDTRST = 1;
  }
}
int getRandProg() {
  return 1;
}
void changeProgram(unsigned char key) {
  if (key == 0) return;
  switch (key) {
  case '0':
    t = 2;
    zero_flag = 1;
```

```
break;
  case '1':
    state = p1s0;
    zero_flag = 0;
    break;
  case '2':
    state = 2;
    zero flag = 0;
    break;
  case '3':
    state = 3;
    zero_flag = 0;
    break;
  case '4':
    state = 4;
    zero_flag = 0;
    break;
  case '5':
    state = 5;
    zero_flag = 0;
    break;
  case '6':
    state = 6;
    zero_flag = 0;
    break;
  case '7':
    state = 7;
    zero_flag = 0;
    break;
  case '8':
    state = 8;
    zero_flag = 0;
    break;
  }
void show(char* str[], int len, char speed) {
  char i = 0;
  char j = 8;
  char c = 0;
  while (i < len) {
    c = str[i];
    j = 8;
    while (j > 0) {
      if (j & c) {
        if (j == 1) D1 = 0;
        if (j == 2) D2 = 0;
        if (j == 4) D3 = 0;
        if (j == 8) D4 = 0;
      }
      else {
        if (j == 1) D1 = 1;
        if (j == 2) D2 = 1;
        if (j == 4) D3 = 1;
        if (j == 8) D4 = 1;
      j >>= 1;
```

```
delayMs(speed);
    i++;
  }
}
void main() {
  init();
  clear_lcd();
  while (1) {
    outd(state + '0');
    {
      int i;
      for (i = 1; i < 32; ++i) {
        outd(' ');
      }
    }
    key = ScanKbd();
    switch (state) {
    case p1s0:
      show(prog1, 4, speed);
      changeProgram(key);
      if (t > 0) t--;
      if ((t == 0) && (zero_flag)) {
        t = 2;
        state = getRandProg();
      }
      break;
    case p2s0:
      show(prog2, 4, speed);
      changeProgram(key);
      if (t > 0) t--;
      if ((t == 0) && (zero_flag)) {
        t = 2;
        state = getRandProg();
      }
      break;
    case p3s0:
      show(prog3, 2, speed);
      changeProgram(key);
      if (t > 0) t--;
      if ((t == 0) && (zero_flag)) {
        t = 2;
        state = getRandProg();
      }
      break;
    case p4s0:
      show(prog4, 8, speed);
      changeProgram(key);
      if (t > 0) t--;
      if ((t == 0) && (zero_flag)) {
        t = 2;
        state = getRandProg();
      }
      break;
    case p5s0:
      show(prog5, 8, speed);
```

```
changeProgram(key);
    if (t > 0) t--;
    if ((t == 0) && (zero_flag)) {
     t = 2;
      state = getRandProg();
    }
    break;
  case p6s0:
    show(prog6, 2, speed);
    changeProgram(key);
    if (t > 0) t--;
    if ((t == 0) && (zero_flag)) {
     t = 2;
      state = getRandProg();
    }
    break;
  case p7s0:
    show(prog7, 2, speed);
    changeProgram(key);
    if (t > 0) t--;
    if ((t == 0) && (zero_flag)) {
      t = 2;
      state = getRandProg();
    }
    break;
  case p8s0:
    show(prog8, 3, speed);
    changeProgram(key);
    if (t > 0) t--;
    if ((t == 0) && (zero_flag)) {
     t = 2;
      state = getRandProg();
    }
    break;
 if ((key == key_up) && (speed > 100)) {
    speed -= 100;
  if ((key == key_down) && (speed < 1000)) {
    speed += 100;
  }
  delayMs(speed);
}
```

}