Knowledge Representation and Reasoning

Introduction

- Knowledge Representation (KR) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can utilize to solve complex tasks such as diagnosing a medical condition
- Examples of knowledge representation models include logic, semantic nets, frames, scripts, and ontologies.
- Automated reasoning engines include Inference engines, theorem provers, classifiers etc

What is knowledge?

- Data: Data is raw facts about the world or events
- Information: Result of processing raw data
- Knowledge: Information gained through experience, reasoning, or acquaintance
- Examples: Driving your car, placement process at VIT-AP, etc.

Wisdom

- The ability to distinguish or judge what is true, right, or lasting
- Knowledge can exist without wisdom, but not the other way around
- Knowledge is knowing how to kill opponents in battlefield; wisdom is knowing what to do with an unarmed opponent

Representation and Mapping

- Tommy is a dog
- Every dog has a tail

Tommy has a tail

Representation and Mapping

- Tommy is a dog dog(Tommy)
- Every dog has a tail

 $\forall x : dog(x) \rightarrow hastail(x)$

hastail(Tommy)

Tommy has a tail

Propositional Logic

Propositional logic

- Logical constants: true, false
- Propositional symbols: P, Q, S, ... (atomic sentences)
- Wrapping **parentheses**: (...)
- Sentences are combined by **connectives**:

```
    ↑ ...and [conjunction]
    ∨ ...or [disjunction]
    ⇒ ...implies [implication / conditional]
    ⇔ ...is equivalent [biconditional]
    ¬ ...not [negation]
```

• Literal: atomic sentence or negated atomic sentence

Examples of PL sentences

- P means "It is hot."
- Q means "It is humid."
- R means "It is raining."
- (P ∧ Q) → R
 "If it is hot and humid, then it is raining"
- Q → P

 "If it is humid, then it is hot"
- A better way:

```
Hot = "It is hot"
Humid = "It is humid"
```

Raining = "It is raining"

Propositional logic (PL)

- A simple language useful for showing key ideas and definitions
- User defines a set of propositional symbols, like P and Q.
- User defines the **semantics** of each propositional symbol:
 - P means "It is hot"
 - Q means "It is humid"
 - R means "It is raining"
- A sentence (well formed formula) is defined as follows:
 - A symbol is a sentence
 - If S is a sentence, then \neg S is a sentence
 - If S is a sentence, then (S) is a sentence
 - If S and T are sentences, then $(S \vee T)$, $(S \wedge T)$, $(S \to T)$, and $(S \leftrightarrow T)$ are sentences
 - A sentence results from a finite number of applications of the above rules

Some terms

- The meaning or **semantics** of a sentence determines its **interpretation**.
- Given the truth values of all symbols in a sentence, it can be "evaluated" to determine its **truth value** (True or False).
- A model for a KB is a "possible world" (assignment of truth values to propositional symbols) in which each sentence in the KB is True.

More terms

- A valid sentence or tautology is a sentence that is True under all interpretations, no matter what the world is actuallylike or how the semantics are defined. Example: "It's raining or it's not raining."
- An inconsistent sentence or contradiction is a sentence that is False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- Pentails Q, written P = Q, means that whenever P is True, so is Q. In other words, all models of P are also models of Q.

Truth tables

And			
p	q	$p \cdot q$	
T T F F	T F T F	T F F	

p	q	$p \lor q$
\overline{T}	T	T
T	F	T
F	T	T
F	F	F

р	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Not

р	$\sim p$
T	F
F	T

Truth tables II

The five logical connectives:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	Тrue	Тrue
False True	True False	True False	False False	True True	True False	False False
Тrие	Тrие	False	Тпие	Тпие	Тrие	Тrue

A complex sentence:

P	Н	$P \lor H$	$(P \vee H) \wedge \neg H$	$((P \lor H) \land \neg H) \Rightarrow P$
False	False	False	False	Тrue
False	Тпие	Тrие	False	Тrие
True	False	Тrue	Тrue	Тrие
True	Тпие	Тrие	False	Тrue

Models of complex sentences

Propositional logic is a weak language

- No notion of objects
- Hard to identify "individuals" (e.g., Mary, 3)
- No notion of relations among objects
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of information

FOL adds relations, variables, and quantifiers, e.g.,

- "Every elephant is gray": $\forall x \text{ (elephant(x)} \rightarrow \text{gray(x))}$
- "There is a white alligator": $\exists x (alligator(X) \land white(X))$

First-Order Logic

Outline

- First-order logic
 - Properties, relations, functions, quantifiers, ...
 - Terms, sentences, axioms, theories, proofs, ...
- Extensions to first-order logic

First-order logic

- First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - Properties of objects that distinguish them from other objects
 - Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"

• Examples:

- Objects: Students, lectures, companies, cars ...
- Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, Square-root, one-more-than ...

User provides

- Constant symbols, which represent individuals in the world
 - Mary
 - -3
 - Green
- Function symbols, which map individuals to individuals
 - father-of(Mary) = John
 - $-\operatorname{color-of}(\operatorname{Sky}) = \operatorname{Blue}$
- Predicate symbols, which map individuals to truth values
 - greater(5,3)
 - green(Grass)
 - color(Grass, Green)

FOL Provides

Variable symbols

-E.g., x, y, foo

Connectives

– Same as in PL: not (¬), and (∧), or (∨), implies (→), if and only if (biconditional \leftrightarrow)

Quantifiers

- Universal $\forall x$ or (Ax)
- Existential $\exists x \text{ or } (Ex)$

Sentences are built from terms and atoms

• A term (denoting a real-world individual) is a constant symbol, a variable symbol, or an n-place function of n terms.

x and $f(x_1, ..., x_n)$ are terms, where each x_i is a term.

A term with no variables is a **ground term**

- An atomic sentence (which has value true or false) is an n-place predicate of n terms
- A **complex sentence** is formed from atomic sentences connected by the logical connectives:
 - $\neg P$, $P \lor Q$, $P \land Q$, $P \rightarrow Q$, $P \leftrightarrow Q$ where P and Q are sentences
- A quantified sentence adds quantifiers \forall and \exists
- A well-formed formula (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.

 $(\forall x)P(x,y)$ has x bound as a universally quantified variable, but y is free.

Quantifiers

Universal quantification

- $-(\forall x)P(x)$ means that P holds for **all** values of x in the domain associated with that variable
- -E.g., $(\forall x)$ dolphin $(x) \rightarrow mammal(x)$

• Existential quantification

- $-(\exists x)P(x)$ means that P holds for **some** value of x in the domain associated with that variable
- E.g., $(\exists x)$ mammal $(x) \land lays-eggs(x)$
- Permits one to make a statement about some object without naming it

Quantifiers

- Universal quantifiers are often used with "implies" to form "rules": $(\forall x)$ student(x) \rightarrow smart(x) means "All students are smart"
- Universal quantification is *rarely* used to make blanket statements about every individual in the world:
 - $(\forall x)$ student(x) \land smart(x) means "Everyone in the world is a student and is smart"
- Existential quantifiers are usually used with "and" to specify a list of properties about an individual:
 - $(\exists x)$ student(x) \land smart(x) means "There is a student who is smart"
- A common mistake is to represent this English sentence as the FOL sentence:
 - $(\exists x) \text{ student}(x) \rightarrow \text{smart}(x)$
 - But what happens when there is a person who is *not* a student?

Quantifier Scope

- Switching the order of universal quantifiers *does not* change the meaning:
 - $-(\forall x)(\forall y)P(x,y) \leftrightarrow (\forall y)(\forall x) P(x,y)$
- Similarly, you can switch the order of existential quantifiers:
 - $-(\exists x)(\exists y)P(x,y) \leftrightarrow (\exists y)(\exists x) P(x,y)$
- Switching the order of universals and existentials *does* change meaning:
 - Everyone likes someone: $(\forall x)(\exists y)$ likes(x,y)
 - Someone is liked by everyone: $(\exists y)(\forall x)$ likes(x,y)
 - There is a person who loves everyone in the world: $\exists x \forall y \text{Loves}(x,y)$
 - Everyone in the world is loved by at least one person: $\forall y \exists x \text{ Loves}(x,y)$

Universal quantification

• $\forall < variables > < sentence >$

Everyone at VIT-AP is smart:

```
\forall x \text{ At}(x, \text{VIT-AP}) \Rightarrow \text{Smart}(x)
```

- $\forall x P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of *P*

```
At(KingJohn, VIT-AP) \Rightarrow Smart(KingJohn)
\wedge At(Richard, VIT-AP) \Rightarrow Smart(Richard)
\wedge At(VIT-AP, VIT-AP) \Rightarrow Smart(VIT-AP)
\wedge ...
```

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall :

```
\forall x \, At(x, VIT-AP) \wedge Smart(x)
```

means "Everyone is at VIT-AP and everyone is smart"

Existential quantification

- ∃<*variables*> <*sentence*>
- Someone at VIT-AP is smart:
- $\exists x \, At(x, \, VIT-AP) \land Smart(x)$
- $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of *P*

```
At(KingJohn, VIT-AP) ∧ Smart(KingJohn)
∨ At(Richard, VIT-AP) ∧ Smart(Richard)
∨ At(VIT-AP, VIT-AP) ∧ Smart(VIT-AP)
∨ ...
```

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :

•

$$\exists x \, At(x, \, VIT-AP) \Rightarrow Smart(x)$$

is true if there is anyone who is not at VIT-AP!

Connections between All and Exists

We can relate sentences involving \forall and \exists using De Morgan's laws:

$$(\forall x) \neg P(x) \leftrightarrow \neg(\exists x) P(x)$$
$$\neg(\forall x) P \leftrightarrow (\exists x) \neg P(x)$$
$$(\forall x) P(x) \leftrightarrow \neg(\exists x) \neg P(x)$$
$$(\exists x) P(x) \leftrightarrow \neg(\forall x) \neg P(x)$$

Quantified inference rules

- Universal instantiation
 - $\forall x P(x) :: P(A)$
- Universal generalization
 - $P(A) \wedge P(B) \dots \therefore \forall x P(x)$
- Existential instantiation
 - $-\exists x P(x) : P(F)$

 \leftarrow skolem constant F

- Existential generalization
 - $P(A) :: \exists x P(x)$

Translating English to FOL

Every gardener likes the sun.

```
\forall x \text{ gardener}(x) \rightarrow \text{likes}(x,Sun)
```

You can fool some of the people all of the time.

```
\exists x \ \forall t \ person(x) \land time(t) \rightarrow can-fool(x,t)
```

You can fool all of the people some of the time.

```
\forall x \; \exists t \; (person(x) \rightarrow time(t) \land can-fool(x,t)) Equivalent \forall x \; (person(x) \rightarrow \exists t \; (time(t) \land can-fool(x,t)))
```

All purple mushrooms are poisonous.

```
\forall x (mushroom(x) \land purple(x)) \rightarrow poisonous(x)
```

No purple mushroom is poisonous.

```
\neg \exists x \ purple(x) \land mushroom(x) \land poisonous(x) Equivalent \forall x \ (mushroom(x) \land purple(x)) \rightarrow \neg poisonous(x)
```

There are exactly two purple mushrooms.

```
\exists x \ \exists y \ mushroom(x) \land purple(x) \land mushroom(y) \land purple(y) \land \neg(x=y) \land \forall z \ (mushroom(z) \land purple(z)) \rightarrow ((x=z) \lor (y=z))
```

Clinton is not tall.

```
¬tall(Clinton)
```

X is above Y iff X is on directly on top of Y or there is a pile of one or more other objects directly on top of one another starting with X and ending with Y.

```
\forall x \ \forall y \ above(x,y) \leftrightarrow (on(x,y) \lor \exists z \ (on(x,z) \land above(z,y)))
```

More Examples

- Everyone who loves all animals is loved by someone
- Anyone who kills an animal is loved by no one
- Jack loves all animals.

```
\forall x [\forall y \text{ Animal}(y) \Rightarrow \text{Loves}(x, y)] \Rightarrow [\exists y \text{ Loves}(y, x)]

\forall x [\exists y \text{ Animal}(y) \land \text{Kills}(x,y)] \Rightarrow [\forall z \neg \text{Loves}(z,x)]

\forall x \text{ Animal}(x) \Rightarrow \text{Loves}(\text{Jack}, x)
```

More Examples

- "John has at least two umbrellas"
 there exists x: (there exists y: (Has(John, x) AND IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) AND NOT(x=y))
- "John has at most two umbrellas"

for all x, y, z: ((Has(John, x) AND IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) AND Has(John, z) AND IsUmbrella(z)) => (x=y OR x=z OR y=z))

More Examples

• "Duke's basketball team defeats any other basketball team"

```
for all x: ((IsBasketballTeam(x) AND NOT(x=BasketballTeamOf(Duke))) => Defeats(BasketballTeamOf(Duke), x))
```

• "Every team defeats some other team"

```
for all x: (IsTeam(x) => (there exists y: (IsTeam(y) AND NOT(x=y) AND Defeats(x,y)))
```

CLAUSAL FORM

- (1) LITERAL: A literal is either on ademic sentence or negation of our ademic sentence.

 P(a), -19(b)
- (2) A clausal sentence is either a leteral or a diejunction of literals

 P(b), P(a) V P(b)

 P(a), P(b),
- 3) A clause is a set of literals 2 P(a)7, & -P(b)7, & P(a), -P(b)9

Step 2!
$$\neg \neg P \equiv P$$

(Negations $\neg (P \land Q) \equiv \neg P \land \neg Q$
 $\neg (P \lor Q) \equiv \neg P \land \neg Q$
 $\neg (P \lor Q) \equiv \exists x \neg P(Q)$
 $\neg \exists x P(Q) \equiv \forall x \neg P(Q)$

Step3: Standarkize Saviables

4x P(x) V +x Q(x) -> +(x) P(x) V +yQ(y)

step 4: 3 = P(a) [Existentials Out] $\forall x (P(x) \land \exists z Q(x,4,z)) \Longrightarrow \equiv \forall x (P(x) \land Q(x,4,4,z))$ $\forall x (P(x) \land B(x,y,f(x,y)) \equiv P(x) \land B(x,y,f(x,y)) [Alls out]$ PV(QMR) = (PVQ) 1 (PVR) Step 6: Distribution. (PNQ)VR = (PVR) N (QVR) PV(P,V --- Pn) = (PVP,V --- Pn) (PIV....VPn) VP = (PIVP2V-VPn VP) PA(PIN: -- NPn) = (PNPIN -- · NPn) (PIN--- APR) NP = (PINP2--- APRNP) -Pin -- N Pn == Pi Pn Operators Out. P, V - ... VPn = { P, ... , Pn}

Example 1: $\exists y (g(y) \land \forall z (x(z) \rightarrow f(y,z)))$ - Steps (Implication, (I) Ty(9(8) 1 4z(-18(2) Vf(4,2))) - Step 2 (Negations In, N) 3y(g(y) 1 4z(7(8(2) V f(4,2))) - Step3 (Standardize, S) 3 y (g(y) 1 4z (- x(z) V f (4, z))) N g(greg) 1 Hz(¬r(z) V f(greg, z))) -step4(Existentials, E) g(greg) n(-(r(z) V f(greg, z)))-steps(Alls out, A) g(grag) 1 (-1 (7(2) V f(grag, 2)))-step 6 (Distribution, D) A - Step7 Operators Out, 0) 0 Sq (gra) } 2-18(2), f(greg, 2)))

Example ty (- 7(4) V 32(8(2) N - 7(4,2))) Yy (-1 g(y) V (8 (h(y)) N -1 f(y, h(y)))) - 9(y) V(8(h(y)) 1 - f(y, h(y))) (-199) V 8(h(4))) 1 (-19(4) V-f(4, h(4))) 8 -1 g(y), 8(h(y))4 g - 1 g(4) , + (4))}