

Bootcamp IGTI: Analista de Machine Learning

Desafio

Módulo 3 Seleção de Modelos de Aprendizado de Máquina	ĭ		iquina	o de Má	dizad	Aprer	los de	Mode	io de	Sele	Módulo 3	

Objetivos

Exercitar os seguintes conceitos trabalhados no Módulo:

- ✓ Nesse desafio, vamos trabalhar os conceitos vistos sobre métricas de desempenho, técnicas de validação e sintonia de hiperparâmetros.
- ✓ Também vamos olhar para o fluxo completo de seleção de um modelo de aprendizado.

Enunciado

Neste desafio, vamos fazer um apanhado geral de tudo que foi visto no módulo. Vamos usar a tarefa de classificação para validar um modelo, otimizar os hiperparâmetros desse modelo e avaliar o resultado encontrado de acordo com algumas métricas de desempenho vistas durante o módulo.

Atividades

Os alunos deverão desempenhar as seguintes atividades:

- Baixar o arquivo com os dados no link https://www.openml.org/d/1480. O formato do arquivo deve ser CSV.
- 2. Obter informações relativas a número de features e amostras.
- 3. Verificar a necessidade de tratamento de dados categóricos e valores faltantes.

- 4. Modelar o SVC e o Random Forest Classifier, com Random Search para sintonia de hiperparâmetros e validação cruzada estratificada, usando as parametrizações abaixo.
- 5. Parametrização SVC
 - a. Bibliotecas para importação

```
i. from sklearn.ensemble import RandomForestClassifier
```

```
ii. from sklearn.svm import SVC
```

```
iii. from sklearn.model selection import StratifiedKFold
```

```
iv. from sklearn.model_selection import RandomizedSearchCV
```

```
v. from scipy.stats import uniform
```

```
vi. from scipy.stats import randint
```

```
vii. from sklearn.metrics import fl_score, make_scorer
```

- b. Kfold estratificado com 10 conjuntos.
- c. Métrica de avaliação f1

```
i. f1 = make scorer(f1 score)
```

- d. Parâmetro de kernel:
 - i. Sigmoidal, polinomial e RBF.
- e. Parâmetro de regularização C:
 - i. Distribuição uniforme variando entre 1 e 10
- f. Random_state = 54
- g. Número de iterações = 5.
- 6. Avaliar o resultado da modelagem usando as métricas:

```
a. best_score_
```

b. best_params_

c. best_estimator_

7.	Repetir o	processo	usando d	Random	Forest:

a.	Faça	a instanc	iação do	Random	Forest fixando	o random_	$_{\text{state}} = 54$
----	------	-----------	----------	--------	----------------	-----------	------------------------

```
i. RandomForestClassifier(random_state = 54)
```

- b. Kfold estratificado com 10 conjuntos.
- c. Métrica de avaliação f1

```
i. f1 = make_scorer(f1_score)
```

- d. Parâmetro do número de árvores:
 - i. Distribuição aleatória inteira de valores entre 10 e 1000
- e. Parâmetro Bootstrap:
 - i. Verdadeiro e Falso
- f. Parâmetro Criterion:
 - i. Gini e Entropy
- g. Random_state = 54
- h. Número de iterações = 5.
- 8. Avaliar o resultado da modelagem usando as métricas:

b. best params

c. best_estimator_

Respostas Finais

Os alunos deverão desenvolver a prática e, depois, responder às questões objetivas.