Algebraic Geometry

Vanya Cheltsov

4th February 2019

Lecture 7: Sharygin triangles and elliptic curves

Steiner-Lehmus theorem

Theorem

Every triangle with two angle bisectors of equal lengths is isosceles.

Steiner-Lehmus theorem: the proof

Let ABC be a triangle in \mathbb{R}^2 .

- ▶ Denote by x the length of the side AC.
- ▶ Denote by *y* the length of the side *BC*.
- ightharpoonup Denote by z the length of the side AB.

Let AD be the bisector of the angle $\angle CAB$. Then

$$AD = \sqrt{xz - \frac{xzy^2}{(x+z)^2}}.$$

Let BE be the bisector of the angle $\angle ABC$. Then

$$BE = \sqrt{yz - \frac{yzx^2}{(y+z)^2}}.$$

Thus, if AD = BE, then

$$x(x+z)^{2}(y+z)^{2}-xy^{2}(y+z)^{2}-y(x+z)^{2}(y+z)^{2}+yx^{2}(x+z)^{2}=0.$$

Dividing this polynomial by x-y, we get

$$x^{3}y+2x^{2}y^{2}+4x^{2}yz+x^{2}z^{2}+xy^{3}+4xy^{2}z+5xyz^{2}+2xz^{3}+y^{2}z^{2}+2yz^{3}+z^{4}$$
.

Problems in Plane Geometry by Igor Sharygin

This book contains about 498 problems in Plane Geometry.

- ▶ 143 standard problems.
- ▶ 293 difficult problems.
- ▶ 62 additional problems.

Additional problem №58

Let ABC be a triangle in \mathbb{R}^2 .

Let AD, BE, CF be its angle bisectors.

Question

If DEF is isosceles triangle, can ABC be not non-isosceles?

Regular heptagon

Algebra versus Geometry

- ▶ Let ABC be a triangle in \mathbb{R}^2 .
- ▶ Let AD be the bisector of the angle $\angle CAB$.
- ▶ Let BE be the bisector of the angle $\angle ABC$.
- ▶ Let CF be the bisector of the angle $\angle ACB$.

Definition

ABC is Sharygin triangle if DEF is isosceles and ABC is not.

- ► Let x = AC. Let y = BC. Let z = AB. Let $f(x, y, z) = x^3 + x^2y + xy^2 + y^2 + z(y^2 + xy + x^2) z^2(x+y) z^3.$
- ▶ Then DF EF is equal to

$$(x-y)\frac{xyz}{(x+y)(x+z)^2(y+z)^2}f(x,y,z).$$

Corollary

ABC is Sharygin triangle \iff f(x, y, z) = 0 and $x \neq y$.

Here we assume that DEF is isosceles $\iff DF = EF$.

Weierstrass form

Let $\mathcal E$ be the cubic curve in $\mathbb P^2_{\mathbb C}$ that is given by

$$x^{3} + x^{2}y + xy^{2} + y^{2} + z(y^{2} + xy + x^{2}) - z^{2}(x + y) - z^{3} = 0.$$

Sharygin triangle are points $[x:y:z] \in \mathcal{E}(\mathbb{R})$ such that $x \neq y$ and

$$\begin{cases} 0 < x < y + z, \\ 0 < y < x + z, \\ 0 < z < y + z. \end{cases}$$

▶ If $[x : y : z] \in \mathcal{E}$ and x = y, then

$$[x:y:z] = [1 \pm \sqrt{17}:1 \pm \sqrt{17}:8]$$

or
$$[x:y:z] = [-1:-1:1]$$
.

- ▶ The point [1:-1:0] is an inflection point of the curve \mathcal{E} .
- ightharpoonup There is a projective transformation that maps ${\cal E}$ to

$$zy^2 = x^3 + 5x^2z + 32xz^2.$$

Plotting the cubic curve in Maple

- ▶ Let U_z be the subset in $\mathbb{P}^2_{\mathbb{C}}$ given by $z \neq 0$.
- ▶ Identify $U_z = \mathbb{C}^2$ with coordinates $\overline{x} = \frac{x}{z}$ and $\overline{y} = \frac{y}{z}$.

Then $\mathcal{E} \cap U_z$ in \mathbb{C}^2 is given by

$$\overline{x}^3 + \overline{x}^2 \overline{y} + \overline{x} \overline{y}^2 + \overline{y}^2 + \overline{y}^2 + \overline{x} \overline{y} + \overline{x}^2 - \overline{x} - \overline{y} - 1 = 0.$$

Integer Sharygin triangles

- We explicitly described all Sharygin triangles.
- ► The additional problem №58 is completely solved.

Question

Are there Sharygin triangles with integer sides?

Lemma

Yes.

Proof.

Computer search gives one Sharygin triangle with integer sides:

Question

How many Sharygin triangles with integer sides?

The answer to this question is too complicated for computer.

Group structure

▶ Let \mathcal{E} be the cubic curve in $\mathbb{P}^2_{\mathbb{C}}$ given by

$$x^3 + x^2y + xy^2 + y^2 + z(y^2 + xy + x^2) - z^2(x + y) - z^3 = 0.$$

▶ Equip $\mathcal{E}(\mathbb{Q})$ with + such that [1:-1:0] is zero.

The curve $\mathcal E$ contains [1:1:-1] and [1:0:-1].

- ightharpoonup 2[1:1:-1] = [1:-1:0].
- ightharpoonup 2[1:0:-1] = [0:1:1].
- ▶ 4[1:0:-1] = [25:-32:17].

Computing n[1:0:-1] and n[1:0:-1]+[1:1:-1], we get

$$9[1:0:-1] + [1:1:-1] = [1481089:18800081:19214131]$$

and 16[1:0:-1] is a Sharygin triangle with integer sides:

301361533449900458837600 :

: 49105016933436320224063 :

: 316629033253501281102807 .

Cubic curves over $\mathbb Q$

- ▶ Let \mathcal{E} be a smooth cubic curve in $\mathbb{P}^2_{\mathbb{C}}$.
- ▶ Suppose that \mathcal{E} is defined over \mathbb{Q} .
- ▶ Suppose that $\mathcal{E}(\mathbb{Q})$ contains a point O.

Equip $\mathcal{E}(\mathbb{Q})$ with + such that O is zero.

Theorem (Mordell, 1922)

The group $\mathcal{E}(\mathbb{Q})$ is a finitely generated abelian group.

Thus, we have

$$\mathcal{E}(\mathbb{Q}) \cong \mathbb{Z}^r \times \mathcal{E}(\mathbb{Q})_{tors},$$

where $\mathcal{E}(\mathbb{Q})_{tors}$ is a finite abelian group.

- ▶ The number r is known as the rank of the curve \mathcal{E} .
- ▶ A folklore conjecture says that *r* can be arbitrary large.

Theorem (Mazur, 1975)

The group $\mathcal{E}(\mathbb{Q})_{tors}$ is one of the following groups:

- $\triangleright \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ for $m \in \{2, 4, 6, 8\}$,
- $ightharpoonup \mathbb{Z}/n\mathbb{Z}$ for $n \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12\}$.

Infinitely many integer Sharygin triangles

▶ Let \mathcal{E} be the cubic curve in $\mathbb{P}^2_{\mathbb{C}}$ given by

$$x^3 + x^2y + xy^2 + y^2 + z(y^2 + xy + x^2) - z^2(x + y) - z^3 = 0.$$

▶ Equip $\mathcal{E}(\mathbb{Q})$ with + such that [1:-1:0] is zero.

Then 23[1:0:-1]+[1:1:-1] gives another Sharygin triangle:

: 10977567061067790219028579670634021321643021885103:

 $: 2785827533300873247044472741245488500914192648209 \Big]. \\$

The next two are 30[1:0:-1] and 37[1:0:-1]+[1:1:-1].

Theorem

The order of the point [1:0:-1] is infinite.

Corollary

There are infinitely many Sharygin triangles with integer sides.

▶ One can show that the group $\mathcal{E}(\mathbb{Q})$ is $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

MAGMA calculator

Using the following script:

```
P2<x,y,z>:=ProjectiveSpace(Rationals(),2);
C:=Curve(P2,x^3+x^2*y+x*y^2+y^3+x^2*z+
            x*y*z+y^2*z-x*z^2-y*z^2-z^3;
0 := C![1,-1,0]:
E:= EllipticCurve(C,0);
TorsionSubgroup(E), Rank(E);
we obtain
Abelian Group isomorphic to Z/2
Defined on 1 generator
Relations:
    2*\$.1 = 0
1 true
```

The table

0	[1:-1:0]
Q	[-1:-1:1]
Р	[1:0:-1]
P+Q	[1:-1:1]
2 <i>P</i>	[0:1:1]
2P+Q	[1:3:-5]
3 <i>P</i>	[1:5:-4]
3P+Q	[-9:7:5]
4 <i>P</i>	[25 : -32 : 17]
4P + Q	[49:11:-39]
5 <i>P</i>	[128 : 37 : -205]
5P + Q	[121 : -9 : 119]
6 <i>P</i>	[-1369 : 1425 : 1424]
6P + Q	[3:4067:-4147]
7 <i>P</i>	[16245 : 17536 : -16909]
7P + Q	[-48223 : 47311 : 1825]
8 <i>P</i>	[600608 : -622895 : 600153]
8P+Q	[1681691 : 1217 : -1650455]
9 <i>P</i>	[7659925 : 20017089 : -34783204]

Nagell-Lutz theorem

Let $\mathcal C$ be a smooth cubic in $\mathbb P^2_{\mathbb C}$ given by

$$zy^2 = x^3 + ax^2z + bxz^2 + cz^3,$$

where a, b and c are some integers. Let

$$D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2.$$

▶ Then D is said to be the discriminant of the curve C.

Equip $\mathcal C$ with a group structure with identity [0:1:0].

Theorem (Nagell, Lutz)

Let x and y be rational numbers such that

$$v^2 = x^3 + ax^2 + bx + c$$
.

Suppose that [x:y:1] is a point of finite order in C. Then

- both x and y are integer,
- if y = 0, then [x : 0 : 1] has order 2,
- if $v \neq 0$, then y^2 divides D.

The poster

Sharygin Triangles and Cubic Curves

Tom Adams, Kate Brady, Michael Cairney, Ivan Cheltsoy

A Bit of History

Igor Fedorovich Sharygin, a Russian mathematician, was best known for his contributions to education of geometry. Sharygin was a taketred problem writer and wrote exercises for high school students. However, in relation to his eponymous triangle, Sharygin's most relevant work is the book 'Problems In Geometry, Plane Geometry' [2]. In this book, Sharygin proposed the problem from which his famous triangle was born.

What is a Sharygin Triangle?

A Sharygin Triangle is a triangle that is itself scalene, but has an isoceles bisectral triangle [1]. An example of one such triangle is shown in Figure 1.

Figure 1:

Integer Solutions?

We can easily find integer solutions to (\bigstar) (see right hand side of poster), if these are not necessarily positive. The first few that we find are

 $\begin{aligned} &[1:-i:0,[1:i:-i],[i:0:-i],[0:1:i],\\ &[1:3:-0,[1:0:-i],[3:1:-0,[1:0:-i],]\\ &[-i:1:1,[0:-i],[0:-i:1],\\ &[-i:1:1,[0:-i],[0:-i],\\ &[-i:1:1,[0:-i],[0:-i],\\ &[-i:1:1,[0:-i],[0:-i],\\ &[-i:1:1,[0:-i],[0:-i],\\ &[-i:1:0:1],\\ &[-i:1$

Addition of Points on the Cubic Curve

Equip C (\bigstar) with an operation + such that O = [1 : -1 : 0] is the identity element [3]. Here is an example of this operation: Let P = [1 : 0 : -1]. Let us find 2P:

 The line tangent to C at P is y = 0. This line also crosses C at [1 : 0 : 1].

• The line that passes through O and [1:0:1] also crosses C at [0:1:1].

crosses C at [0:1:1]. Thus 2P = [0:1:1]. Here is the visualisation of this procedure: We can also add two distinct points: Let P=[1:0:-1] and Q=[1:1:-1]. Let us find

The line that passes through P and Q also crosses
 C at [−1:1:1].

The line that passes through O and [-1:1:1] also crosses C at [1:-1:1].
 Thus P + Q = [1:-1:1].
 Here is the visualisation of this procedure:

p o visualisation of this procedure

There are infinitely many rational points on the curve C. Let us show why:

We will first apply a projective transformation to C: $\begin{cases}
\mathbf{x} = -66x - 66y - 87z, \\
\mathbf{y} = 324y - 324x.
\end{cases}$

 $\begin{cases}
\mathbf{z} = -2x - 2y - z. \\
\text{This brings our curve to form} \\
\mathbf{y}^2z = \mathbf{z}^3 - 3267xz^2 + 45630z^3.
\end{cases}$

By the Nagell-Lutz Theorem [3] there are only two microal points of finite ceder on our transformed curve, and therefore on C. In new coordinates, these are O = [0:1:0] with order 1 and O = [0:0:1], with order 2 [3]. In all coordinates they are O = [0:1:0] and O = [0:1:1]. In separticely, Now we can deduce that, for example the point P = [1:0:1] has infinite order, and that O = [0:1:1] has infinite order, and that points P = [0:1:1] has infinite order, and that points P = [0:1:1] has infinite order, and that

| Description | Company |

Q + 9P is our first Sharygin triangle with integer coefficients. The next triangle 'happens' at 16P, then at Q + 23P [1]. The higher we go, the longer it takes to commute each one.

Relation to Cubic Curves

A Sharygin Triangle's sides satisfy the following cubic curve C in \mathbb{P}^2 [1]:

 $x^3 + x^2y + xy^2 + y^3 - z^3 +$

 $+z(x^2+xy+y^2)-z^2(x+y)=0$. (\bigstar) where x=AB,y=AC,z=BC are the lengths of the sides of the triangle. As we are in \mathbb{P}^2 , we can substitute z=1into (\bigstar), for cases where $z\neq 0$, to obtain the curve in \mathbb{R}^2 shown in Figure 2:

Due to the triangle inequality, we are looking for values of (x,y) above the red line. This graph also proves the existence of Sharygin triangles.

References

- I. Netay, A. Savvateev, Sharygin triangles and elliptic curves. Magadan volume, Bulletin of the Korean Mathematical Society 54 (2017) 1597-1617.
- [2] I. F. Sharygin, Problems in geometry, Nauka, Moscow, (1982).
- [3] J. Silverman, J. Tate, Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics, Springer, 2015.