SEARCH: Smart Electronic Assistance and Retrieval Companion for Home

Joseph Yu (CEO), Nevin Thinagar (CMO), Charles Tang (CIO), Tarun Eswar (CTO) Advisor: Kevin Crowthers Ph.D.

PROBLEM STATEMENT

Dementia, ADHD, and various other cognitive impairments often cause forgetfulness in the elderly population, especially in **short-term memory function** and further cause a greater number of misplaced items.

REQUIREMENTS

#	Level	Requirement Type	Requirement Statement	Prototype #1 (Low Camera Mount)	Prototype #2 (Higher Camera Mount)	Prototype #3 (Final)
1	1	Functional	The device shall identify the locations of items within an area with at least 50% accuracy.	No	Yes	Yes
2	1	Functional	The device shall reduce the frequency of searching for lost items by at least 50%.	No	No	Yes
3	1	Functional	The device shall respond to client requests for misplaced items within 10 seconds.	Yes	Yes	Yes
4	1	Safety	The device shall not cause injury to the client(s).	Yes	Yes	Yes

PROJECT DESIGNS

Design #2

- Raspberry Pi-based rover with ArduPilot autopilot system for navigating a home environment
- **COCO** object detection classes (50 classes of common objects) for computer vision
 - MongoDB cloud storage system.

mongoDB. Relative home position 🌄 RaspberryPi Live video feed

- **Pascal VOC object detection** classes for detecting misplaced items
- **ROS2** robotic operating system rather than ArduPilot for more dynamic robotic control

Design #3 **:::**ROS2 Relative home position PASCAL2

- **Drone-based device** with onboard cameras and advanced image
- recognition algorithms Same algorithms as Design
- MySQL database for cloud functionalities

Design #4

- **CDR Design (Current** Design)
- Uses multiple technologies from Design #1 and Design
- Plan to utilize several novel navigation algorithms in conjunction with our realtime object detection and obstacle avoidance methods

ENGINEERING GOAL

The goal of our project is to develop a system or device that can address the problem of misplaced items in the elderly population and consequently increase independence in their day-to-day lives.

METHODS

Figure 1: Mobile application screenshots. Note. Mobile designs for speech recognition and interaction with Firebase.

Figure 2: 3D printed camera mount design. Note. Allows the rover camera to reach a height of greater than one meter.

DESIGN STUDIES

Study #1: ImageNet – We tested the efficacy of our object recognition model based on ImageNet with over 1000 object options. The water bottle had a confidence of 57.68% in a close, clear range.

Figure 3: Diagram of design study #1. Note. The water bottle is being detected.

Study #2: Mobile App – We tested the mobile app and measured the response times of various functions.

Figure 4: Diagram from

design study #2.

Table 1: Response time in different mobile application functionalities.

Test	Result	Response Time (in seconds)
Speech recognition	Functional	3.0 < t < 4.0
Item query	Functional	0.0 < t < 1.0
Item log menu	Functional	0.0 < t < 1.0
Image output	Functional	2.0 < t < 3.0
Delete items	Functional	0.0 < t < 1.0

Study #3: Rover Stability – We tested the rover's ability to withstand forces from various directions and its stability at various moving speeds.

Figure 5: Experiment image of design study #3.

Figure 6: Experiment image of design study #3.

CONCLUSION

- Creation of rover-software system that can communicate to find commonly misplaced objects
- Integration with ImageNet image classification to enable the rover to identify 1000+ objects
- Easily-accessible, fast mobile application with voice control
- Robust low-cost prototype hardware with easily interchangeable parts