1. Correlations and Measures of Association

References

Heiman (2014). Chapters 2 and 7.

Healey (2013). Chapters 11 and 12.

1.1. Level (Scale) of Measurement

- Four levels (Stevens, 1951)
- Three properties for classifying data:
 - magnitude: whether the measured trait/attribute can be rank ordered in terms of its intensity

- equal intervals: whether each unit difference between two scale points reflects the same amount of trait/attribute difference
- absolute zero: whether "0" refers to the complete absence of the trait/attribute

1.1.1. Nominal Scale

- Data are classified into mutually exclusive categories
- Qualitative difference
- One-to-one transformation

1.1.2. Ordinal Scale

- Same as nominal, but the categories are rank-ordered
- Difference between categories has no numerical meaning
- Monotonic transformation

1.1.3. Interval Scale

- Same as ordinal, but difference between measurements is meaningful
- Arbitrary zero point
- Linear transformation

1.1.4. Ratio Scale

- Same as interval, but ratio between measurements is meaningful
- Absolute zero point
- Linear transformation through the origin (rescaling)

Scale	Mathem	natical Pro	Transformation		
Nominal	$= \neq$				one-to-one
Ordinal	$= \neq$	><			monotonic
Interval	$= \neq$	><	+ -		linear
Ratio	= \(\neq \)	><	+ -	×÷	rescaling
	,				

• Different scales require the use of different statistical techniques

1.2. Correlation Analysis

- Direction of influence:
 - 1. symmetric

$$X \leftrightarrow Y$$
 (X is correlated with Y)

2. asymmetric

$$X \to Y$$
 (X predicts Y)

3. reciprocal

(X and Y are mutually reinforcing)

- Level of measurement
- An adequate method should show us
 - direction
 - strength
 - nature of relationship

1.2.1. Scatter Plot and Indices

Example 1. A study about the relationship between job commitment (X) and job performance (Y) (data: example1_1.dat)

Ss	X	Y	$X - \overline{X}$	$Y - \overline{Y}$	Ss	X	Y	$X - \overline{X}$	$Y - \overline{Y}$
1	1	4	-3	-8	6	4	12	0	0
2	1	7	-3	-5	7	5	17	1	5
3	3	9	-1	-3	8	6	13	2	1
4	3	12	-1	0	9	6	18	2	6
5	4	11	0	-1	10	7	17	3	5

• Methods:

1. Scatter plot

2. Cross-product of raw scores, $\sum XY$

3. Cross-product of centered scores, $\sum (X - \overline{X})(Y - \overline{Y})$

4. Cross-product of Z scores, $\sum \frac{(X-\overline{X})}{S_x} \frac{(Y-\overline{Y})}{S_y}$

5. Average cross-product of Z scores, $\frac{1}{n-1}\sum \frac{(X-\overline{X})}{S_x} \frac{(Y-\overline{Y})}{S_y}$

1.2.2. Pearson Product-Moment Correlation Coefficient

$$r_{xy} = rac{1}{n-1} \sum_{i=1}^n z_{x_i} z_{y_i} = rac{\sum\limits_{i=1}^n X_i Y_i - n\overline{X}\,\overline{Y}}{\sqrt{\sum\limits_{i=1}^n X_i^2 - n\overline{X}^2} \sqrt{\sum\limits_{i=1}^n Y_i^2 - n\overline{Y}^2}}$$

- Symmetric
- Range: [-1, +1]
- Interval scale or above
- Linear relation
- Descriptive and inferential

1.2.3. Factors Affecting Correlation

• Range restriction

• Correlation corrected for range restriction (r_c) :

Assuming identical slopes for both restricted and unrestricted samples:

$$r_c = \frac{r}{\sqrt{r^2 + (1-r^2)\frac{s_x^2}{s_c^2}}} = \frac{0.43}{\sqrt{.43^2 + (1-.43^2)(0.31)}} = 0.65$$

r = correlation between X and Y on restricted sample

 s_x^2 = variance of X on restricted sample

 s_c^2 = variance of X on unrestricted sample

• Heterogeneous subsamples

• Outliers

1.2.4. Hypothesis Testing

• Case 1. Standard Test

$$H_0: \rho = 0$$

 $H_1: \rho \neq 0$ (2-tailed)
 $\rho > 0$ or $\rho < 0$ (1-tailed)

assumption: bivariate normal distribution

test statistic: $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim t_{(df=n-2)}$

decision: reject H_0 at α level of significance if

 $|\mathsf{t}| > t_{(n-2,\frac{\alpha}{2})} \tag{2-tailed}$

 $t > t_{(n-2,\alpha)}$ or $t < -t_{(n-2,\alpha)}$ (1-tailed)

drawback: can only test $\rho = 0$

• Example 1 (cont.): example1_1.R

```
# Example 1: Job Commitment and Performance
# set work directory
setwd("c:/users/wchan/google drive/stat6108/data")
# load library Hmisc
library(Hmisc)
# import data
mydata <- read.table("example1_1.dat", header=TRUE)</pre>
sink("example1 1.out", split=TRUE)
list(mydata)
# Scatter plot
attach(mydata)
plot(commitment, performance, main="Scatter plot of performance against commitment", xlab="job
commitment", ylab="job performance")
# Person correlation coefficient
cat("\n compute Pearson correlation and its test \n")
rcorr(as.matrix(mydata), type="pearson")
sink()
```

• Example 1 (cont.): example1_1.out

[[1		_
•	commitment	performance
1	1	4
2	1	7
3	3	9
4	3	12
5	4	11
6	4	12
7	5	17
8	6	13
9	6	18
10	7	17

compute Pearson correlation and its test

• • • • • • • • • • • • • • • • • • • •	~
COMMITMANT	performance

commitment	1.0	0.9
performance	0.9	1.0

n= 10

Ρ

commitment performance

3e-04 commitment

performance 3e-04

Scatter plot of performance against commitment

• Case 2. Testing Nonzero ρ

$$H_o: \rho = \rho_o$$

 $H_I: \rho \neq \rho_o$ (2-tailed)
 $\rho > \rho_o$ or $\rho < \rho_o$ (1-tailed)

define:
$$g(\rho) = \frac{1}{2} \ln(\frac{1+\rho}{1-\rho})$$
 Fisher transformation

assumptions: large sample size, bivariate normal distribution

test statistic:
$$z = \sqrt{n-3} (g(r) - g(\rho_0)) \sim N(0,1)$$

decision: reject H_o at α level of significance if

$$\begin{aligned} |z| &> Z_{(\frac{\alpha}{2})} & \text{(two-tailed)} \\ z &> Z_{\alpha} \quad \text{or} \quad z < -Z_{\alpha} & \text{(one-tailed)} \end{aligned}$$

• Example 2. The correlation between motivation and income for a sample of 30 females is 0.3.

Test:

$$H_0: \rho = 0$$

 $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$

Method 1:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

Conclusion?

Method 2:

$$z = \sqrt{n-3} \left(g(r) - g(0) \right)$$

Conclusion?

• Case 3. Comparing ρ from Two Independent Samples

$$H_o: \rho_1 = \rho_2$$

 $H_1: \rho_1 \neq \rho_2$ (two-tailed)
 $\rho_1 > \rho_2$ or $\rho_1 < \rho_2$ (one-tailed)

assumptions: large samples and normal distributions

test statistic:
$$z = \frac{(g(r_1) - g(r_2)) - (g(\rho_1) - g(\rho_2))}{\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}} \sim N(0, 1)$$

sample 1: $(r_1; n_1)$ sample 2: $(r_2; n_2)$

reject H_o at α level of significance if decision:

$$|z| > Z_{(\frac{\alpha}{2})}$$
 (two-tailed) $z > Z_{\alpha}$ or $z < -Z_{\alpha}$ (one-tailed)

• Example 2 (cont.). From a sample of 50 males, the correlation between motivation and income is 0.7. Is the difference in correlation between male and female significant?

Case 4. Testing Different Correlations within a Sample

• Example 3. Let I = income, J = job performance (extrinsic variables); K = motivation, L = job commitment (intrinsic variables).

Which pair of variables has a stronger relationship: ρ_{ij} or ρ_{kl} ?

$$H_o: \rho_{ij} = \rho_{kl}$$

 $H_1: \rho_{ij} \neq \rho_{kl}$

assumptions: large sample size, multivariate normal distribution

test statistic:
$$\frac{1}{\sigma}[(r_{ij}-r_{kl})-(\rho_{ij}-\rho_{kl})] \sim N(0,1)$$

• Formulas (Olkin & Finn, 1995; Psychological Bulletin):

$$\sigma^{2} = \text{var}(r_{ij} - r_{kl}) = \text{var}(r_{ij}) + \text{var}(r_{kl}) - 2\text{cov}(r_{ij}, r_{kl})$$

$$\text{var}(r_{ij}) = (1 - \rho_{ij}^{2})^{2}/n$$

$$\text{cov}(r_{ij}, r_{kl}) = \left[\frac{1}{2}\rho_{ij}\rho_{kl}(\rho_{ik}^{2} + \rho_{il}^{2} + \rho_{jk}^{2} + \rho_{jl}^{2}) + \rho_{ik}\rho_{jl} + \rho_{il}\rho_{jk} - (\rho_{ij}\rho_{ik}\rho_{il} + \rho_{ji}\rho_{jk}\rho_{jl} + \rho_{ki}\rho_{kj}\rho_{kl} + \rho_{li}\rho_{lj}\rho_{lk})\right]/n$$

• Cheung & Chan (2004; *ORM*) used SEM technique to test dependent correlations

1.2.5. Conditional Relationships

• Three intercorrelated variables X, Y, and Z with correlation matrix

$$\left(egin{array}{ccc} 1.00 & & & & \ r_{yx} & 1.00 & & \ r_{xz} & r_{yz} & 1.00 \end{array}
ight)$$

• Suppose Z has an effect that is in some sense prior to X and Y, so it influences both these variables but is not influenced by them

$$r_{yx} = r_{\text{due to } z} + r_{\text{unique } yx}$$

• Partial correlation $(r_{yx,z})$ measures the unique (linear) relationship between Y and X given the effect of Z has been removed from both Y and X. That is,

$$r_{yx.z} = rac{r_{yx} - r_{yz} r_{xz}}{\sqrt{1 - r_{yz}^2} \sqrt{1 - r_{xz}^2}}$$

• Example 4. Detecting spurious relationship

$$X = \text{income}$$
 $Y = \text{health}$ $Z = \text{age}$

$$Y = \text{health}$$

$$Z = age$$

$$r_{yx} = -.35$$

$$r_{xz} = .60$$

$$r_{yx} = -.35$$
 $r_{xz} = .60$ $r_{yz} = -.50$

$$r_{yx.z} =$$

• Example 5. Discovering hidden relationship

$$X = \text{income}$$
 $Y = \text{job satisfaction}$ $Z = \text{working hours}$

$$Z =$$
working hours

$$r_{yx} = .00$$

$$r_{xz} = .60$$

$$r_{yx} = .00$$
 $r_{xz} = .60$ $r_{yz} = -.50$

$$r_{yx.z} =$$

1.3. Other Measures and Tests of Association

	Interval/	Ordinal	Nominal
	Ratio		
Interval/	Pearson's r		
Ratio			
Ordinal		Spearman's rs	
		Gamma, G	
Nominal			Cramer's V
			Lambda, L

1.3.1. Spearman's Rank Order Correlation (ρ_s)

• When two variables (X and Y) are ordinal, we can use Spearman's rank-order correlation (ρ_s) to measure their relationship

X	Y	rank(X)	rank(Y)	d
1	1	1	1	0
2	4	2	2	0
3	9	3	3	0
4	16	4	4	0

• If there are no ties in ranks for both X and Y, the sample estimate of ρ_s is

$$r_{
m s}=1-rac{6\sum\limits_{i=1}^{n}d_{i}^{2}}{n(n^{2}-1)}$$

where $d_i = \text{rank}(x_i) - \text{rank}(y_i)$.

• r_s can be understood as the Pearson r for ranks

- When ties exist, the formula will *inflate* the value of $r_{\rm s}$
- Correction of ties:

$$r_{
m s} = rac{(n^3-n)-6\Sigma d^2-(T_x+T_y)/2}{\sqrt{(n^3-n)^2-(T_x+T_y)(n^3-n)+T_xT_y}}$$

such that $T_x = \sum_{i=1}^g (t_i^3 - t_i)$, g is the number of groupings of different tied ranks and t_i is the number of tied ranks in the ith grouping.

• Small effect of ties when g and/or t_i is small

1.3.2. Statistical Test

$$H_o: \rho_s = 0$$

 $H_I: \rho_s \neq 0$ (2-tailed)
 $\rho_s > 0$ or $\rho_s < 0$ (1-tailed)

test statistic:
$$t = r_s \sqrt{\frac{n-2}{1-r_s^2}} \sim t_{(df=n-2)}$$

decision: reject H_0 at α level of significance if

$$|t| > t_{(n-2,\frac{\alpha}{2})}$$
 (2-tailed)
 $t > t_{(n-2,\alpha)}$ (+ve association)
 $t < -t_{(n-2,\alpha)}$ (-ve association)

• Example 6. Motivation and Productivity (data: example1_6.dat)

	Motiv	vation	Productivity			
Subject	Data	Rank	Data	Rank	d_i	d_i^2
A	0	1.5	42	3	-1.5	2.25
В	0	1.5	46	4	-2.5	6.25
C	1	3.5	39	2	1.5	2.25
D	1	3.5	37	1	2.5	6.25
E	3	5	65	8	-3.0	9.00
F	4	6	88	11	-5.0	25.00
G	5	7	86	10	-3.0	9.00
H	6	8	56	6	2.0	4.00
I	7	9	62	7	2.0	4.00
J	8	10.5	92	12	-1.5	2.25
K	8	10.5	54	5	-5.5	30.25
L	12	12	81	9	3.0	9.00
					$\sum d_i^2 =$	109.50

• Example 6 (cont.): example1_6.R

```
# Example 6: Motivation and Productivity

# set work directory
setwd("c:/users/wchan/google drive/stat6108/data")

# load library Hmisc
library(Hmisc)

# import data
mydata <- read.table("example1_6.dat", header=TRUE)

sink("example1_6.out", split=TRUE)
list(mydata)
cat("\n compute Spearman correlation and its test \n")
rcorr(as.matrix(mydata), type="spearman")
sink()</pre>
```

• Example 6 (cont.): example1_6.out

	${\tt motivation}$	productivity
1	0	42
2	0	46
3	1	39
4	1	37
5	3	65
6	4	88
7	5	86
8	6	56
9	7	62
10	8	92
11	8	54
12	12	81

compute Spearman correlation and its test

motivation productivity

motivation 1.00 0.62 productivity 0.62 1.00

n= 12

Ρ

motivation productivity

motivation 0.0333

productivity 0.0333

1.3.3. Gamma (γ)

- Spearman's r_s becomes less and less useful when there are too many ties
- Example 7. Productivity and Company Image (data: example1_7.dat)

Productivity (X)	Company Image (Y)
low	low
<u>:</u>	:
low	moderate
:	:
low	high
:	:
moderate	low
:	:
moderate	moderate
;	:
moderate	high
:	:
high	low
:	:
high	moderate
ingn :	:
high	high
:	ingn :
•	•

Company Image

Productivity	Low	Moderate	High
Low	10	5	2
Moderate	8	9	7
High	2	6	8

- γ measures the relationship between the row variable (X) and the column variable (Y) in a contingency table when both of them are in ordinal scales.
- Sample estimate of γ is

$$G = \frac{\text{\# of concordant pairs } (C) - \text{\# of discordant pairs } (D)}{\text{\# of concordant pairs } (C) + \text{\# of discordant pairs } (D)}$$

•
$$G \in [-1, +1]$$

• How to count C and D?

В	FB	A	FA	No. of Pairs	В	FB	Д	FA	No. of Pairs
(L,L)	10	(M,M)	9	90	(L,H)	2	(M,L)	8	16
		(M,H)	7	70			(M,M)	9	18
		(H,M)	6	60			(H,L)	2	4
		(H,H)	8	80			(H,M)	6	12
(L,M)	5	(M,H)	7	35	(L,M)	5	(M,L)	8	40
		(H,H)	8	40			(H,L)	2	10
(M,L)	8	(H,M)	6	48	(M,H)	7	(H,L)	2	14
		(H,H)	8	64			(H,M)	6	42
(M,M)	9	(H,H)	8	72	(M,M)	9	(H,L)	2	18
				C=559					D=174

1.3.4. Statistical Test

$$H_o: \gamma = \gamma_o$$

 $H_1: \gamma \neq \gamma_o$ (2-tailed)
 $\gamma > \gamma_o$ or $\gamma < \gamma_o$ (1-tailed)

assumption: large sample size

test statistic:
$$z = \frac{G - \gamma_o}{\sqrt{\text{var}(G)}} \sim N(0, 1)$$

where var(G) is the asymptotic variance of G (Goodman & Kruskal, 1963)

decision: reject H_o at α level of significance if

$$|\mathbf{z}| > \mathbf{Z}_{(\frac{\alpha}{2})}$$
 $(H_1: \gamma \neq \gamma_0)$
 $\mathbf{z} > \mathbf{Z}_{\alpha}$ $(H_1: \gamma > \gamma_0)$
 $\mathbf{z} < -\mathbf{Z}_{\alpha}$ $(H_1: \gamma < \gamma_0)$

• Example 7 (cont.): example1_7.R

example1_7 - No	_	×		
File Edit Format	View Help			
productivity	image	count		^
1_Low	1_Low	10		
1_Low	2_Moderate	5		
1_Low	3_High	2		
2_Moderate	1_Low	8		
2_Moderate	2_Moderate	9		
2_Moderate	3_High	7		
3_High	1_Low	2		
3_High	2_Moderate	6		
3_High	3_High	8		
				V
<			>	.:

```
# Example 7: Productivity and Company Image
# set work directory
setwd("c:/users/wchan/google drive/stat6108/data")
# load library vcdExtra
library(vcdExtra)
# import data
mydata <- read.table("example1_7.dat", header=TRUE)</pre>
# How to create cross classification table?
# Method 1: From Raw Data set
table1 <- table(mydata$productivity, mydata$image)</pre>
# Method 2: From Data Set Weighted by Frequency
table2 <- xtabs(count ~ productivity+image, data=mydata)</pre>
# Method 3: Create a table directly
table3 <- matrix(c(10, 5, 2, 8, 9, 7, 2, 6, 8), nrow=3, ncol=3, byrow=TRUE)
colnames(table3) <- c("Low", "Moderate", "High")</pre>
rownames(table3) <- c("Low", "Moderate", "High")</pre>
table3 <- as.table(table3)</pre>
sink("example1_7.out", split=TRUE)
list(table1,table2,table3)
cat("\n Goodman and Kruskal gamma coefficient \n")
GKgamma(table2, level = 0.95)
sink()
```

• Example 7 (cont.): example1_7.out

[[1]]

	1_Low	2_Moderate	3_High
1_Low	1	1	1
2_Moderate	1	1	1
3_High	1	1	1
[[2]]			

[[2]]

image

productivity	T_rom	2_moderate	3_Hign
1_Low	10	5	2
2_Moderate	8	9	7
3 High	2	6	8

[[3]]

	Low	Moderate	High
Low	10	5	2
Moderate	8	9	7
High	2	6	8

Goodman and Kruskal gamma coefficient

gamma : 0.525 std. error : 0.137

CI : 0.257 0.794

1.3.5. Cramer's *V*

- ullet When two variables, S and T, are nominal, we use Cramer's V to measure the association between them
- Example 8. Soda Preference (data: example1_8.dat)

Soda Preference

Gender	Coke	Pepsi	Coke Light
Male	60	20	30
Female	10	10	70

•
$$V = \sqrt{\frac{X^2}{n(k-1)}}$$
 where $k = \min(r, c)$

$$X^2 = \sum_{\text{cells}} \frac{(f_o - f_e)^2}{f_e}$$
 where f_o =observed frequency f_e =expected frequency

•
$$V \in [0, 1]$$

1.3.6. Statistical Test

 H_o : S and T are independent

 H_1 : S and T are not independent

test statistic:

1. Pearson chi-square:

$$X^2 = \sum_{ ext{cells}} rac{(f_o - f_e)^2}{f_e} \sim \chi^2 (ext{df} = (r - 1)(c - 1))$$

2. Likelihood ratio G^2 :

$$G^2 = 2 \sum_{\text{cells}} f_o \ln(\frac{f_o}{f_e}) \sim \chi^2(\text{df}=(r-1)(c-1))$$

assumption: large sample size

decision: reject H_0 at α level of significance if

$$X^2 > \chi^2_{\alpha}(df)$$
 Pearson chi-sq. test $G^2 > \chi^2_{\alpha}(df)$ Likelihood ratio test

remarks: when n is large, $X^2 \simeq G^2$ require $f_e > 5$ for each cell

• Example 8 (cont.): example1_8.R

```
# Example 8: Soda Preference
# set work directory
setwd("c:/users/wchan/google drive/stat6108/data")
# load library vcdExtra
library(vcdExtra)
# Create a table directly
table <- matrix(c(60, 20, 30, 10, 10, 70), nrow=2, byrow=TRUE)
rownames(table) <- c("Male", "Female")</pre>
colnames(table) <- c("Coke", "Pepsi", "Coke Light")</pre>
table <- as.table(table)</pre>
sink("example1_8.out", split=TRUE)
writeLines("\n Print table \n")
table
writeLines("\n Row Totals \n")
margin.table(table,1)
writeLines("\n Column Totals \n")
margin.table(table,2)
writeLines("\n Cramer's V coefficient \n")
assocstats(table)
sink()
```

• Example 8 (cont.): example1_8.out

Print table

Coke Pepsi Coke Light Male 60 20 30 Female 10 10 70

Row Totals

Male Female 110 90

Column Totals

Coke Pepsi Coke Light 70 30 100

Cramer's V coefficient

X^2 df P(> X^2)
Likelihood Ratio 57.476 2 3.3062e-13
Pearson 53.583 2 2.3147e-12

Phi-Coefficient : NA
Contingency Coeff.: 0.46
Cramer's V : 0.518

1.3.7. Lambda (λ)

- An asymmetric type of association
- Data consist of antecedent-consequent pairs
- Example 9. Salary and Transportation (data: example1_9.dat)

Salary (X)

Transportation (Y)	decrease	no change	increase	Total
walking	10	1	4	15
bus	5	3	6	14
minibus	3	12	2	17
taxi	3	3	8	14
Total	21	19	20	60

• Treating Y as outcome, sample estimate of λ is

$$L_Y = \frac{\mathsf{E}_Y - \mathsf{E}_{Y \setminus X}}{\mathsf{E}_Y}$$

where
$$E_Y = \text{no. of errors in } Y$$

 $E_{Y \setminus X} = \text{no. of errors in } Y \text{ given } X$

• Treating X as outcome, sample estimate of λ is

$$L_X = \frac{\mathsf{E}_X - \mathsf{E}_{X \setminus Y}}{\mathsf{E}_X}$$

where
$$E_X = \text{no. of errors in } X$$

 $E_{X \setminus Y} = \text{no. of errors in } X \text{ given } Y$

• Use symmetric λ if one cannot identify the outcome variable,

$$L_{sym} = \frac{(E_Y + E_X) - (E_{Y \setminus X} + E_{X \setminus Y})}{E_Y + E_X}$$

• λ is a PRE (proportional reduction in error) measure

• Example 9 (cont.): example1_9.R

```
# Example 9: Salary and Transportation
# set work directory
setwd("c:/users/wchan/google drive/stat6108/data")
# load library DescTools
library(DescTools)
# import data
mydata <- read.table("example1 9.dat", header=TRUE)</pre>
# Create a table
mytable <- xtabs(count ~ transportation+salary, data=mydata)</pre>
rownames(mytable) <- c("walking", "bus", "minibus", "taxi")</pre>
colnames(mytable) <- c("decrease", "no change", "increase")</pre>
sink("example1 9.out", split=TRUE)
writeLines("\n Print Data Set \n")
mydata
writeLines("\n Print table \n")
mytable
writeLines("\n Lambda coefficient: Row variable (transportation) as outcome \n")
Lambda(mytable, direction="row", conf.level=.95)
writeLines("\n Lambda coefficient: Column variable (salary) as outcome \n")
Lambda(mytable, direction="column", conf.level=.95)
writeLines("\n Symmetric Lambda coefficient \n")
Lambda(mytable, direction="symmetric", conf.level=.95)
sink()
```

• Example 9 (cont.): example1_9.out

```
Print Data Set
   transportation salary count
1
                1
                             10
2
                              1
                              5
4
5
                              3
6
                       3
                              6
                       1
7
                3
                              3
                       2
8
                3
                            12
                       3
9
                3
                              2
10
                       1
11
12
 Print table
              salary
transportation decrease no change increase
       walking
                     10
       bus
                                 3
       minibus
                      3
                                12
                                          2
       taxi
                      3
                                 3
 Lambda coefficient: Row variable (transportation) as outcome
   lambda
             lwr.ci
                       upr.ci
0.3023256 0.1197385 0.4849126
Lambda coefficient: Column variable (salary) as outcome
   lambda
             lwr.ci
                       upr.ci
0.3846154 0.1448107 0.6244201
 Symmetric Lambda coefficient
   lambda
             lwr.ci
                       upr.ci
0.3414634 0.1576402 0.5252866
```