Definitions

- linear transformation $f: \mathbb{R}^n \to \mathbb{R}^m$
 - *f* is **injective/one-to-one**
 - ∘ *f* is **surjective/onto**
 - \circ f is an **isomorphism**
 - \circ **kernel** and **image/range** of f
- characteristic polynomial/equation corresponding to a square matrix A,
- algebraic and geometric multiplicities of eigenvalues
- eigenvector of a matrix (or linear transformation)
- similar matrices
- Markov matrix, and steady state vector

Knowledge:

- Understand the various interconnections between
 - o linear independence, rank, nullity, null space, shape of a matrix, rref, determinant, injectivity/surjectivity of the transformation $x \mapsto Ax$, consistency of Ax = b
 - the general solution of Ax = b, the null space of A, and any particular solution
- the composition of linear transformations
 - o result is another linear transformation
 - o how related to matrix multiplication
 - conditions insuring the composition is injective or surjective
- traits shared by similar matrices
- facts about Markov matrices

Tasks:

- Ability to show a transformation is (or is not)
 - o an isomorphism
 - o surjective
 - o injective
- Finding the matrix M_{B_1,B_2} of a transformation with respect to bases B_1 , B_2
- Finding the coordinate vector $[\mathbf{x}]_B$ of \mathbf{x} with respect to a ordered basis B, and the coordinate function $C_B \colon \mathbb{R}^n \to \mathbb{R}^n$ for which $C_B(\mathbf{x}) = [\mathbf{x}]_B$

- Ability to find zeros (both real and nonreal) of polynomial equations through factoring, graphing, and use of the quadratic formula
- Ability to write a ratio of complex numbers $\frac{a+bi}{c+di}$ as $\alpha + \beta i$.
- Ability to find eigenvalues λ of square **A**, and a basis for the corresponding eigenspace E_{λ}
- Ability to diagonalize a matrix A (not necessarily symmetric), or show it is not diagonalizable
 - o facts about eigenvalues/eigenvectors of a symmetric real A
 - o ability to orthogonally diagonalize a symmetric real A
- Ability to use the diagonalization of **A** to find powers \mathbf{A}^k