Inhaltsverzeichnis

0	Der Vektorraum \mathbb{R}^n	3
	0.1 Satz (Rechenregeln in \mathbb{R}^n)	4
	0.2 Definition	5
	0.3 Beispiele	5
	0.4 Satz	6
	0.5 Beispiel	7
	0.6 Definition	8
	0.7 Beispiel	9
	0.9 Definition	11
	0.10 Beispiel	11
	0.11 Satz	13
	0.12 Satz	14
	0.13 Definition	15
	0.14 Beispiel	15
	0.15 Satz	16
	0.16 Satz	17
	0.17 Definition	17
	0.18 Satz (Basisergänzungssatz)	17
	0.19 Korollar	17
	0.20 Definition	18
	0.21 Beispiele	18
1	Algebraische Strukturen	19
	1.1 Definition	19
	1.2 Beispiele	
	1.3 Definition	20
	1.4 Bermerkung	21
	1.5 Proposition	21
	1.6 Beispiel	22
	1.7 Satz	24
	1.8 Beisniel	25

1.10	Beispiel	26	
Abbildungsverzeichnis			
1	Ein Vektor dargestellt durch seinen Ortsvektor	4	
2	Vektoraddition durch Parallelogrammbildung	4	
3	Gerade dargestellt durch Vektoren	6	

Ende des SS 2015

0 Der Vektorraum \mathbb{R}^n

$$n \in \mathbb{N} \quad \mathbb{R}^n = \left\{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} : a_1 \in \mathbb{R} \right\}$$

Spaltenvektoren der Länge $n: \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = (a_1, \dots, a_n)^t$

 a_1, \ldots, a_n Komponente der Spaltenvektoren.

Wie bei Matrizen:

(Multiplikation entspricht der Matrix-
$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$
 (Multiplikation entspricht der Matrix-
multiplikation und ist nicht möglich
falls $n > 1$)

Multiplikation eines Spaltenvektors mit einer Zahl (Skalar)

$$a \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} aa_1 \\ \vdots \\ aa_n \end{pmatrix}$$

Addition+Abbildung: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

 \mathbb{R}^n mit Addition und Multiplikation mit Skalaren : \mathbb{R} -Vektorraum

Die Vektoren im \mathbb{R}^1 (= \mathbb{R}), \mathbb{R}^2 und \mathbb{R}^3 entsprechen Punkten auf der Zahlengerade, Ebene, dreidimensionalen Raums. Punkte des \mathbb{R}^2 , \mathbb{R}^3 lassen sich identifizieren mit, *Ortsvektoren* Pfeile mit Beginn in 0 (Komp = 0) und Ende im entsprechenden Punkt

Addition von Spaltenvektoren entspricht der Addition von Ortsvektoren entsprechend der Parallelogrammregel. Multiplikation mit Skalaren a:

Streckung (falls |a| > 1)

Stauchung (falls $0 \ge |a| \ge 1$)

Richtungspunkt, falls a < 0

Abbildung 1: Ein Vektor dargestellt durch seinen Ortsvektor

Abbildung 2: Vektoraddition durch Parallelogrammbildung

0.1 Satz (Rechenregeln in \mathbb{R}^n)

Seien $u, v, w \in \mathbb{R}^n$, $a, b \in \mathbb{R}$ Dann gilt:

0 Der Vektorraum \mathbb{R}^n

0.2 Definition

a)

(1.1)
$$u + (v + w) = (u + v) + w$$

(1.2)
$$v + 0 = 0 + v = v$$
, wobei 0 *Nullvektor*

$$(1.3) v + -v = 0$$

 \mathbb{R}^n kommutative

$$(1.4) u + v = v + u$$

Gruppe

$$(2.1) (a+b)v = av + bv$$

$$(2.2) a(u+v) = au + av$$

$$(a \cdot b)v = a(bv)$$

$$(2.4) 1 v = v$$

b)
$$0 \cdot v = 0 \text{ und } a \cdot 0 = 0$$

Beweis folgt aus entsprechenden Rechenregeln in 0

0.2 Definition

Eine nicht-leere Teilmenge $\mathcal{U} \supset \mathbb{R}^n$ heißt *Unterraum* (oder *Teilraum* von \mathbb{R}^n), falls gilt:

- (1) $\forall u_1, u_2 \in \mathcal{U} : u_1 + u_2 \in \mathcal{U}$ (Abgeschlossenheit bezüglich +)
- (2) $\forall u \in \mathcal{U} \forall a \in \mathbb{R} : au \in \mathcal{U}$ (Abgeschlossenheit bezüglich Mult. mit Skalaren)

 $\mathcal U$ enthält Nullvektor {0} Unterraum von $\mathbb R^n$ (Nullraum) $\mathbb R^n$ ist Unterraum von $\mathbb R$

0.3 Beispiele

$$(a_1v, a_2v \in G, (a_1 +$$

a) $0 \neq v \in \mathbb{R}^2$ $G = \{av : a \in \mathbb{R}\}$ ist Unterraum von $\mathbb{R}^n a_2 \} v \in G$ 2.1 in 0.2

$$av \in G, b \in \mathbb{R}(ba)v \in G$$

G = Ursprungsgerade durch $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ und v = $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ n = 2:

Abbildung 3: Gerade dargestellt durch Vektoren

b) $v, w \in \mathbb{R}^n$

 $E = \{av + bw : a, b \in \mathbb{R}\}$ ist Unterraum von \mathbb{R}^n

$$v = o, w = o : E = \{o\}$$

 $v \neq o \quad w \notin \{av : a \in \mathbb{R}\}$

$$E = \mathbb{R}^2$$
 $n = 3$: Ebene durch $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ und durch v, w

Ist $w \in \{av : a \in \mathbb{R}\}$, so ist E = G (aus a))

c) $v, w \neq o$

$$G' = \{ w + av : a \in \mathbb{R} \}$$

 $[v \in G' \Leftrightarrow \exists a \in \mathbb{R} : w + av \in o \Leftrightarrow \exists a \in \mathbb{R} : w = (-a)v \in G]$

0.4 Satz

Seien \mathcal{U}_1 , \mathcal{U}_2 Unterräume von \mathbb{R}^n

- a) $\mathcal{U}_1 \cap \mathcal{U}_2$ ist Unterraum von \mathbb{R}^n
- b) $\mathcal{U}_1 \cup \mathcal{U}_2$ ist im Allgemeinen KEIN Unterraum von \mathbb{R}^n
- c) $\mathcal{U}_1 + \mathcal{U}_2 := \{u_1 + u_2 : u_1 : \mathcal{U}_1, u_2 : \mathcal{U}_2\}$ (Summe von \mathcal{U}_1 und \mathcal{U}_2) ist Unterraum von \mathbb{R}^n .

d) $\mathcal{U}_1 \subseteq \mathcal{U}_1 + \mathcal{U}_2$ $\mathcal{U}_2 \subseteq \mathcal{U}_1 + \mathcal{U}_2$ und $\mathcal{U}_1 + \mathcal{U}_2$ ist der kleinste Unterraum von \mathbb{R}^n , der \mathcal{U}_1 und \mathcal{U}_2 enthält. (d.h ist w Unterraum von \mathbb{R}^n mit $\mathcal{U}_1, \mathcal{U}_2 \in w$, so $\mathcal{U}_1 + \mathcal{U}_2 \subseteq W$)

Beweis. a) √

b) c)
$$\Box$$

0.5 Beispiel

a) **??**b)
$$G_1 = \{av : a \in \mathbb{R}\}$$

 $G_2 = \{aw : a\}$
 $G_1 + G_2 = E$

b)
$$\mathbb{R}^3$$

$$E_1 = \left\{ r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \colon r, s \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} r \\ 0 \\ s \end{pmatrix} \colon r, s \in \mathbb{R} \right\}$$

$$E_2 = \left\{ t \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + u \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} u \\ t + u \\ u \end{pmatrix} \right\}$$

 $E_1 + E_2$ Unterräume von \mathbb{R}^3 (10.3.b)

$$E_1 \cap E_2 = ?$$

$$v \in E_1 \cap E_2 \iff v = \begin{pmatrix} r \\ 0 \\ s \end{pmatrix} = \begin{pmatrix} u \\ t+u \\ u \end{pmatrix} \iff r = u, t+u = 0, s = u$$

$$E_1 \cap E_2 = \left\{ \begin{pmatrix} u \\ 0 \\ u \end{pmatrix} : u \in \mathbb{R} \right\}$$

$$= \left\{ u \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} : u \in \mathbb{R} \right\}$$

$$E_1 + E_2 = ?$$

$$E_1 + E_2 = \mathbb{R}^3, \text{ denn } :$$
Es gilt sogar:
$$\mathbb{R}^3 = E_1 + G_2, \text{ wobei}$$

$$G_2 = \left\{ t \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} : t \in \mathbb{R} \right\} \subseteq E_{@}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} z \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + y \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (x - y) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (z - y) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + y \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

0.6 Definition

a) $v_1, \ldots, v_m \in \mathbb{R}^n, a_1, \ldots, a_m \in \mathbb{R}$

 $= \begin{pmatrix} x - y \\ 0 \\ z - y \end{pmatrix} + \begin{pmatrix} y \\ y \\ y \end{pmatrix}$

Dann heißt $a_1v_1 + \ldots + a_mv_m = \sum_{i=1}^m a_iv_i$

Linearkombination von $v_1, ..., v_m$ (mit Koeffizienten $a_1, ..., a_m$).

[Zwei formal verschiedene Linearkombinationen der gleichen v_1,\dots,v_m können den gleichen Vektor darstellen

$$1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \end{bmatrix}$$

b) Ist $M \subseteq \mathbb{R}^n$, so ist der von M *erzeugte* (oder *aufgespannte*) Unterraum $\langle M \rangle_{\mathbb{R}}$ (oder $\langle M \rangle$) die Menge aller (endlichen) Linearkombinationen, die man mit Vektoren aus M bilden kann.

$$\langle M \rangle_{\mathbb{R}} = \left\{ \sum_{i=1}^{n} a_i v_i : n \in \mathbb{N}, a_i \in \mathbb{R}, v_i \in M \right\} \text{ falls } M \neq \emptyset$$

$$\langle \varnothing \rangle_{\mathbb{R}} := \{\varnothing\}$$

 $M = \{v_1, \dots v_m\}, \text{ so }$

0.7 Beispiel

a)
$$e_i = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^n$$

$$\langle e_1, \dots e_n \rangle = \mathbb{R}^n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

b)
$$\mathscr{U} = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \right\rangle_{\mathbb{R}}$$
Ist $\mathscr{U} = \mathbb{R}^3$?

Für welche $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ gibt es geeignete Skalare $a, b, c \in \mathbb{R}$ mit $a \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + b \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + c \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$?

$$a +3b +2c = x$$

$$2a +2b +3c = y$$

$$3a +b +4c = z$$

LGS für die Unbekannten a, b, c mit variabler rechter Seite : Gauß

$$\begin{pmatrix} 1 & 3 & 2 & x \\ 2 & 2 & 3 & y \\ 3 & 1 & 4 & z \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 & x \\ 2 & -4 & -1 & y - 2x \\ 0 & -8 & -2 & z - 3x \end{pmatrix}$$

LGS ist lösbar $\Leftrightarrow x - 2y + z = 0$.

Dass heißt
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{U} \iff x - 2y = z = 0$$

$$\mathcal{U} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x - 2y + z = 0, x, y, z \in \mathbb{R} \right\}$$
$$= \left\{ \begin{pmatrix} x \\ y \\ -x + 2y \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \in \mathcal{U}$$

Lösungen des LGS: c frei wählen, b, a ergeben sich, (falls x-2y+z=0) z.B $c=0, b=\frac{1}{2}x-\frac{1}{4}y, a=x-3b=-\frac{1}{2}x+\frac{3}{4}y$

Ist x - 2y + z = 0, so ist

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \left(-\frac{1}{2}x + \frac{3}{4}y\right) \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \left(\frac{1}{2}x - \frac{1}{4}y\right) \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \frac{5}{4} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\mathcal{U} = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

$$6x^{2} -3xy + y^{3} = 5$$

$$7x^{3} +3x^{2}y^{2} -xy = 7$$

0.9 Definition

 $v_1, \ldots, v_n \in \mathbb{R}^n$ heißen *linear abhängig*. falls $a_1, \ldots, a_n \in \mathbb{R}$ existieren, *nicht alle* = 0, mit $a_1 v_1 + ... + a_n v_n = 0$.

Gibt es solche Skalare nicht, so hei
SSen v_1, \dots, v_m linear unabhängig (d.h. aus $a_1 v_1 \dots a_n v_n = 0 folgta_1 = \dots = a_n = 0$.

(Entsprechend $\{v_1 \dots v_n\}$ linear abhängig/linear unabhängig)

Per Definition: Ø is linear unabhängig.

0.10 Beispiel

a) $\sigma + v \in \mathbb{R}^n$ Dann ist v linear unabhängig:

Zu zeigen : Ist av = $\sigma \Rightarrow a = 0$

Sei
$$v \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
 Da $v \neq \sigma$,

existiert mindestens ein i mit $b_i \neq 0$.

Angenommen
$$\sigma v = \begin{pmatrix} 0b_1 \\ \vdots \\ 0b_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \sigma.$$

Dann $ab_i = 0$ Da $b_i \neq 0$, folgt a = 0.

 σ ist linear abhängig:

$$1 \cdot \sigma = \sigma$$

- b) $v_1 = \sigma. v_2..., v_m$ ist linear abhängig: $\sigma = 1 \cdot \sigma + 0 \cdot v_2 + \ldots + 0 \cdot v_m$
- c) $v, w \in \mathbb{R}^n$

- $\begin{array}{c}
 v \neq \sigma \neq w \\
 v,w \text{ sind linear} \\
 \text{abhängig}
 \end{array} \Leftrightarrow$
- $(2)v \in \langle w \rangle_{\mathbb{R}} \Leftrightarrow$
- $(3) w \in \langle v \rangle_{\mathbb{R}} \Leftrightarrow$
- $4\langle v \rangle_{\mathbb{R}} = \langle w \rangle_{\mathbb{R}}$

1

v,w linear abhängig $\to \exists a_1,a_2 \in \mathbb{R}$, nicht beide = 0, $a_1v+a_2w=\sigma$. Dann beide $(a_1,a_2)\neq 0$

$$a_1 v = -a_2 w \mid \frac{1}{a_1}$$

$$v = -\frac{a_2}{a_1} w \in \langle w \rangle_{\mathbb{R}}$$

2

 $v \in \langle w \rangle_{\mathbb{R}}$ dass heißt v = aw für ein $a \in \mathbb{R}$ Dann $a \neq 0$, da $v \neq \sigma$. $w = \frac{1}{a} \cdot v \in \langle v \rangle_{\mathbb{R}}$ (3)

3

w = bv für ein $b \in \mathbb{R}b \neq 0$, da $w \neq \sigma$.

$$aw \in \langle w \rangle_{\mathbb{R}} \Rightarrow aW = (ab)v \in \langle v \rangle_{\mathbb{R}}$$

$$\langle w \rangle_{\mathbb{R}} \subseteq \langle v \rangle_{\mathbb{R}}$$

 $w = \frac{1}{b}w$ Dann analog $\langle v \rangle \mathbb{R} \subseteq \langle w \rangle_{\mathbb{R}}$

Also
$$\langle v \rangle \mathbb{R} = \langle w \rangle_{\mathbb{R}}$$

(4)

 $v \in \langle v \rangle_{\mathbb{R}} = \langle w \rangle_{\mathbb{R}}$, dass heißt.

 $v = a \cdot w$ für ein $a \in \mathbb{R}$

 $a \cdot v + (-a)w = \sigma \Rightarrow v, w \text{ sind linear abhängig } \bigcirc$

$$\mathbf{d}) \ e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^n$$

 e_1, \ldots, e_n sind linear unabhängig.

$$\sigma = a_1 e_1 + \dots + a_n e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_2 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow a_1 = a_2 = \dots = a_n = 0$$

e)
$$\binom{1}{2}$$
, $\binom{-3}{1}$, $\binom{6}{2}$ sind linear abhängig \mathbb{R}^2 :

Gesucht sind alle
$$a_i, b_i \in \mathbb{R}$$
 mit $a \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + b \cdot \begin{pmatrix} -3 \\ 1 \end{pmatrix} + c \cdot \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Führt auf LGS für a,b,c:

$$\begin{pmatrix} 1 & -3 & 6 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 6 & 0 \\ 0 & 7 & -10 & 0 \end{pmatrix}$$

f)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ sind linear abhängig in \mathbb{R}^3 ,

10.8b):
$$\frac{5}{4} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

0.11 Satz

Seien $v_1, \ldots, v_n \in \mathbb{R}^n$

a)
$$v_1, \ldots, v_m$$
 sind linear abhängig ①

$$\Leftrightarrow \exists i \dots v_i = \sum_{\substack{j=1 \\ j \neq i}}^m b_j v_j ②$$

$$\Leftrightarrow \exists i : \langle v_1, \dots, v_m \rangle_{\mathbb{R}} = \langle v_1, \dots v_{i-1}, v_{i+1}, \dots, v_m \rangle_{\mathbb{R}} ③$$

$$\Leftrightarrow \exists i : \langle v_1, \dots, v_m \rangle_{\mathbb{R}} = \langle v_1, \dots v_{i-1}, v_{i+1}, \dots, v_m \rangle_{\mathbb{R}}$$

- b) v_1, \ldots, v_m sind linear unabhängig \Leftrightarrow Jedes $v \in \langle v_1, \ldots, v_m \rangle_{\mathbb{R}}$ lässt sich auf *genau eine* Weise als Linearkombination von v_1, \ldots, v_m schreiben.
- c) Sind $v_1, ..., v_m$ linear unabhängig und es existiert $v \in \mathbb{R}^n mit v \neq \langle v_1, ..., v_m \rangle_{\mathbb{R}}$ dann sind auch v_1, \ldots, v_m, v linear unabhängig

Beweis. a)
$$(1) \Rightarrow (2)$$

 $v_1, \dots v_m$ sind linear abhängig

$$\Rightarrow \exists a_1, \dots, a_m \text{ nicht alle} = 0,$$

$$a_a v_i + \ldots + a_m v_m = 0$$

Sei $a_i \neq 0$

$$a_{i}v_{i} = \sum_{\substack{j=1\\j\neq i\\j\neq i}}^{m} -a_{j}v_{j}$$

$$v_{i} = \sum_{\substack{j=1\\j\neq i\\j\neq i}}^{m} -\frac{a_{j}}{a_{i}}v_{j} ②$$

$$② \Rightarrow ③$$

 $Klar: \langle v_1, \dots v_{i-1}, v_{i+1}, v_m \rangle_{\mathbb{R}} \subseteq \langle v_1, \dots, v_m \rangle_{\mathbb{R}}$

Zeige
$$\supseteq v = \langle v_1, \dots, v_m \rangle_{\mathbb{R}}$$
, d.h

$$v = \sum_{j=1}^m a_j v_j = \sum_{\substack{j=1 \ j \neq i}}^m a_j v_j + a_i (\sum_{\substack{j=1 \ j \neq i}}^m b_j v_j) = \sum_{\substack{j=1 \ j \neq i}}^m (a_j + a_i b_j) v_j \in \langle v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_m \rangle_{\mathbb{R}}$$

 $v_i \in \langle v_1 \dots v_m \rangle_{\mathbb{R}} = \langle v_1 \dots v_{i-1}, v_{i+1}, \rangle_{\mathbb{R}}$, dass heißt es existiert $a_1, \dots a_{i-1}, a_{i+1}, \dots a_m \in \mathbb{R}$ mit

$$v_i = \sum_{\substack{j=1\\j\neq i}}^m a_j v_j$$

$$\Rightarrow \sigma = a_1 + v_1 + \ldots + a_{i-1}v_{i-1} + (-1)v_i + a_{i+1}v_{i+1} + \ldots + a_mv_m \qquad v_1 \ldots v_m \text{ linear abhängig}$$

0.12 Satz

Sind $v_i, \ldots, v_{n+1} \in \mathbb{R}^n$, so

 $\sin v_i, ..., v_{n+1}$ linear abhängig.

(Insbesondere ist m > n und $v_i, v_m \in \mathbb{R}^n$, so sind v_1, \dots, v_m linear abhängig)

Beweis. Such alle
$$a_1, \ldots, a_{n+1} \in \mathbb{R}$$
 mit $a_i v_1 + \ldots a_{n+1} v_{n+1} = \begin{pmatrix} 0 \\ \ldots \\ 0 \end{pmatrix}$

Führt zu LGS für a_1, \ldots, a_{n+1} mit Koeffizientenmatrix $(v_1, \ldots, v_2, \ldots, v_{n+1}) = A$

Frage: Hat
$$A \cdot \begin{pmatrix} a_i \\ \vdots \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n$$
 nicht triviale Lösung?

Gauß:

$$\left(\mathbf{A}_{0}^{\binom{0}{1}} \rightarrow\right)$$

0.13 Definition

Sei ${\mathscr U}$ ein Unterraum von ${\mathbin{\mathbb R}}^n$ $B \subseteq \mathcal{U}$ heißt Basis von \mathcal{U} falls:

- $(1) \ \langle B \rangle_{\mathbb{R}} = U$
- (2) B ist linear unabhängig

$$(\mathcal{U} = \{\sigma\}, B = \emptyset)$$

0.14 Beispiel

a) e_1, \ldots, e_n ist Basis von \mathbb{R}^n (kanonische Basis)

$$e_1 = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{pmatrix} \leftarrow i$$

$$\begin{pmatrix} a_i \\ \vdots \\ a_n \end{pmatrix} = \sum_{i=1}^n a_i e_i$$

b)
$$\binom{1}{2}$$
, $\binom{3}{2}$ ist Basis von R^2 :
Sei $\binom{x}{y} \in R^2$. Gesucht: $a, b \in \mathbb{R}$ mit $a \binom{1}{2} + b \binom{3}{2} = \binom{x}{y}$
LGS mit variabler rechter Seite

LGS mit variabler rechter Seite

$$1a + 3b = x$$

$$2a + 2b = y$$

Gauß:

$$\begin{pmatrix} 1 & 3 & x \\ 2 & 2 & y \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & x \\ 0 & -4 & y - 2x \end{pmatrix}$$
Eindeutige Lösung: $b = -\frac{1}{4}y + \frac{1}{2}x$ $a = x - 3b = x + \frac{3}{4}y - \frac{3}{2}x = -\frac{1}{2}x + \frac{3}{4}y$

$$z.B \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} 3 \\ 2 \end{pmatrix} \mathbb{R}^2 \langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \rangle$$

$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \text{ sind linear unabhängig nach 0.10c}$$

$$\begin{cases} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} + \frac{1}{4}\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\mathcal{U} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\mathcal{U} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} \text{ linear unabhängig (0.10c)}$$

$$\begin{cases} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} \text{ linear unabhängig (0.10c)}$$

$$\begin{cases} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \text{ Basis von } \mathcal{U}$$

0.15 Satz

Jeder Unterraum \mathcal{U} des \mathbb{R}^n besitzt eine Basis.

Beweis. Ist $\mathcal{U} = \{\sigma\}$, so $b = \emptyset$. Sei also $\mathcal{U} \neq \{\sigma\}$. v_1 ist linear unabhängig.

 $\langle v_1 \rangle_{\mathbb{R}} \subseteq \mathcal{U}$.

Ist $\mathcal{U} = \langle v_1 \rangle_{\mathbb{R}}$, so ist $\{v_1\}$ Basis von \mathcal{U}

Ist $\langle v_1 \rangle_{\mathbb{R}} \subsetneq \mathcal{U}$.

Sei $v_2 \in \mathcal{U} \setminus \langle v_1 \rangle_{\mathbb{R}}$.

Nach 0.11c) ist $\{v_1, v_2\}$ linear unabhängig. Ist $\langle v_1, v_2 \rangle = \mathcal{U}$, so ist $\{v_1, v_2\}$ Basis von \mathcal{U} .

Ist $\langle v_1, v_2 \rangle_{\mathbb{R}} \subseteq U$ so wähle v_3 usw.

Es existiert $m \neq n$ mit $\langle v_1, \dots v_m \rangle_{\mathbb{R}} = \mathcal{U}$ und v_1, \dots, v_m sind linear unabhängig. (Denn noch 0.12 gibt es im \mathbb{R}^n keine n+1 linear unabhängige Vektoren)

0.16 Satz

Je zwei Basen B_1, B_2 eines Unterraums \mathscr{U} des \mathbb{R}^n enthalten die gleiche Anzahl von Vektoren $|B_1| = |B_2|$.

Insbesondere:

Je zwei Basen des \mathbb{R}^n enthalten n Vektoren

0.17 Definition

Ist \mathscr{U} Unterraum von \mathbb{R}^n , B Basis von \mathscr{U} , |B| = m. Dann ist m die Dimension von \mathscr{U} , $\dim(u) = m$. $\dim(\mathbb{R}^n) = n$, $\dim(\mathscr{U}) \neq n$.

0.18 Satz (Basisergänzungssatz)

Sei $\mathcal U$ Unterraum der $\mathbb R^n$, $M\subseteq \mathcal U$ eine Menge m linear unabhängiger Vektoren. Dann lässt sich M zu einer Basis von $\mathcal U$ ergänzen.

Beweis. Analog zu 0.15

0.19 Korollar

Ist \mathscr{U} Unterraum des \mathbb{R}^n und dim $(\mathscr{U}) = n$, dann ist $\mathscr{U} = \mathbb{R}^n$

Beweis. Sei B Basis von \mathcal{U} , also |B| = n.

Nach 0.18 (dort mit $\mathcal{U} = \mathbb{R}^n$, M = B) lässt sich B zu Basis B' von \mathbb{R}^n ergänzen. $\dim(\mathbb{R}^n) = n \Rightarrow |B'| = n$.

Also B = B'

$$\mathbb{R}^n = \langle B' \rangle_{\mathbb{R}} = \langle B \rangle_{\mathbb{R}} = \mathscr{U}$$

0.20 Definition

Ist $\mathscr U$ Unterraum von $\mathbb R^n$, $B=(u_1...,u_m)$ eine geordnete Basis von $\mathscr U$. Nach 0.11b), lässt sich jeder Vektorraum $\mathscr U=\langle B\rangle_{\mathbb R}$ eindeutig als Linearkombination

$$\mathscr{U} = \sum_{i=1}^{m} a_i u_i \quad , a_i \in \mathbb{R}$$

schreiben.

 $(a_1...,a_m)$ heißen *Koordinaten* von u bzgl. der Basis B.

0.21 Beispiele

a) B(e_1 ..., e_m) kanonische Basis von \mathbb{R}^n .

Koordinaten von $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$ bzgl. B:

 $(a_1...,a_n)$ *kartesische* Koordinaten.

(Rene Descartes, 1596-1650)

Anfang des WS 2015/16

1 Algebraische Strukturen

13.10.2015

1.1 Definition

Sei $X \neq \emptyset$. Eine *Verknüpfung* auf X ist :

$$\begin{cases} X \times X & \longrightarrow X \\ (a, b) & \longrightarrow a \star b \end{cases}$$
 ('Produkt' von a und b)

★ ist Platzhalter für andere Verknüpfungssymbole, die in speziellen Beispielen auftreten können.

1.2 Beispiele

- a) Addition + und Multiplikation · sind Verknüpfungen auf \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} Multiplikation ist *keine* Verknüpfung auf der Menge der negativen ganzen Zahlen.
- b) Division ist keine Verknüpfung auf \mathbb{N} . Division ist Verknüpfung auf $\mathbb{Q}\setminus\{Q\}$, $\mathbb{R}\setminus\{0\}$, $\mathbb{C}\setminus\{0\}$

c)
$$\mathbb{Z}_n \coloneqq \{0, 1, \dots, n-1\}$$
 $(n \in \mathbb{N})$
 $a \oplus b \coloneqq (a+b) \mod n \in \mathbb{Z}_n$
 $a \circledcirc b \coloneqq (a \cdot b) \mod n \in \mathbb{Z}_n$
Verknüpfungen auf \mathbb{Z}_n
 $n = 7 \colon 5 \circledcirc 6 = 2$
 $5 \oplus 6 = 4$
 $n = 2 \colon \mathbb{Z}_n = \{0, 1\}$
 $0 \oplus 0 = 0, 1 \oplus 0 = 1, 0 \oplus 1 = 1, 1 \oplus 1 = 0$

d) M Menge, X = Menge aller Abbildungen $M \longrightarrow M$. Verknüpfung auf X: Hintereinanderausführung von Abbildungen: \circ

$$(f,g): M \longrightarrow M$$
, So $f \circ g: M \to M$
 $(f \circ g)(m) = f(g(m)) \in M, m \in M$
Im Allgemeinen ist $g \circ f \neq f \circ g$

e) $X = \{0, 1\}$

2-stellige Aussagen, Junktoren wie \land , \lor , XOR, \Rightarrow , \Leftrightarrow heißen Verknüpfungen auf X. 0 entspricht f, 1 entspricht w

$$0 \lor 0 = 0, 1 \lor 0 = 1, 0 \lor 1 = 1, 1 \lor 1 = 1$$

 $0 \land 0 = 0, 0 \land 1 = 0, 1 \land 0 = 0, 1 \land 1 = 1$ (= 'Multiplikation')
 $0 XOR 0 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 1 XOR 1 = 0$ (= Addition mod 2)

- f) $X = M_n(\mathbb{R}) = \text{Menge der } n \times n \text{Matrizen "uber } \mathbb{R}$. Matrizenaddition ist Verknüpfung auf X. Matrizenmultiplikation ist Verknüpfung auf X.
- g) *M* Menge, *X*, Menge aller endlichen Folgen von Elementen aus M ('Wörter' über M)

Verknüpfung: Hintereinanderausführung zweier Folgen (Konkatenation)

$$M = \{0, 1\} w_1 = 1101 w_2 = 001$$
$$w_1 w_2 = 110111$$
$$w_2 w_1 = 0011101$$

1.3 Definition

Sei $X \neq 0$ eine Menge mit Verknüpfung ★.

- a) X, genauer (X, \star) ist Halbgruppe, falls $(a \star b) \star c = a \star (b \star c)$ für alle $a, b, c \in X$. (Assoziativgesetz)
- b) (X, \star) heißt *Monoid*, falls (X, \star) Halbgruppe ist und ein $e \in X$ existiert mit $e \star a = a$ und $a \star e = a$ für alle $a \in X$. e heißt *neutrales Element* (später, e ist eindeutig bestimmt)
- c) Sei (X, \star) ein Monoid. Ein Element $a \in X$ heißt *invertierbar*, falls $b \in X$ existiert (abhängig von a) mit $a \star b = b \star a = e$. b heißt *inverses Element* (das *Inverse*) zu a. (später: wenn b existiert, so ist es eindeutig bestimmt)
- d) Monoid (X, \star) heißt *Gruppe*, falls jedes Element in X bezüglich \star invertierbar ist.

e) Halbgruppe, Monoid, Gruppe (X, \star) bezüglich kommutativ (oder *abelsch*) falls $a \star b = b \star a$ für alle $a, b \in X$ (Kommutativgesetz) (Nach: Abel, 1802-1829)

14.10.2015

1.4 Bermerkung

In Halbgruppe liefert jede sinnvolle Klammerung eines Produktes mit endlich vielen Faktoren das gleiche Element.

$$(n = 4)$$

$$(a \star (b \star c)) \star d = ((a \star b) \star c) \star d = (a \star b) \star (c \star d) = a \star (b(c \star d)) = a \star ((b \star c) \star d)$$

$$AG^{1}$$

$$AG^{1}$$

Klammern werden daher meist weggelassen

$$a^n = \underbrace{a \star \dots \star}_{n \in \mathbb{R}} a$$
 "Potenzen eindeutig definiert"

1.5 Proposition

- a) In einem Monoid (X, \star) ist das neutrale Element eindeutig bestimmt
- b) Ist (X, \star) Monoid und ist $a \in X$ invertierbar, so ist das Inverse zu a eindeutig bestimmt. Bezeichnung: a^{-1}
- c) Ist ()X, \star Monoid und wenn $a, b \in X$ invertierbar sind, so auch $a \star b$. $(a \star b)^{-1} = b^{-1} \star a^{-1}$
- d) Die Menge der invertierbaren Elemente in einem Monoid (X, \star) bilden bezüglich \star eine Gruppe.

Beweis. a) Angenommen: e_1 , e_2 sind neutrale Elemente. Dann:

$$e_1 = e_1 \star e_2 = e_1 \star e_2 = e_2$$

¹Assoziativgesetz

b) Angenommen a hat 2 inverse Elemente b_1 , b_2 also.

$$a \star b_1 = e, b_2 \star a = e$$

$$b_1 = e \star b_1 = (b_2 \star a) \star b_1 = b_2 \star (a \star b_1) = b_2 \star e = b_2 \qquad \text{?}$$

c)
$$(a \star b) \star (b^{-1} \star a^{-1}) = a \star (b \star b^{-1}) \star a^{-1} = a \star e \star a^{-1} = e$$

Analog: $(b^{-1} \star a^{-1}) \star (a \star b) = e$

Also: $(a \star b)^{-1} = b^{-1} \star a^{-1}$

d) \mathcal{I} = Menge der inversen Elemente in (X, \star) ,

 $e \in \mathcal{I}$, dann $e \star e = e$, dass heißt $e^{-1} = e, \star$ ist Verknüpfung auf \mathcal{I} . Zu zeigen: $a, b \in \mathcal{I} \Rightarrow a \star b \in \mathcal{I}$ Folgt aus c).

Assozativgesetz gilt in
$$\mathscr{I}$$
, $a \in \mathscr{I} \Rightarrow a^{-1} \in \mathscr{I}$, denn $(a^{-1})^{-1} = a$

Bemerkung: Multiplikation mit a^{-1} macht Multiplikation mit a (Verknüpfung) rückgängig.

1.6 Beispiel

a) $\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$ sind Halbgruppen bezüglich +

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind bezüglich + Monoide mit neutralen Element 0.

 $\mathbb{N} = \{1, 2, ...\}$ ist kein Monoid bezüglich +, aber \mathbb{N}_0 .

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind Gruppen bezüglich +. Inverses Element zu a : -a

 \mathbb{N} ist keine Gruppe bezüglich +, Inverse Elemente in \mathbb{N}_0 : $\{0\}$,

b) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind Monoide bezüglich · (neutrales Element 1). Keine Gruppen (in $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ ist 0 nicht invertierbar).

 $\mathbb{Q} \setminus \{0\}, \mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\}$ Gruppen.

Invertierbare Elemente in \mathbb{Z} :: $\{1,-1\}$ \leftarrow Gruppe bezüglich \cdot Eigenes Inverses

c) M Menge.

 $X = \text{Menge aller Abbildungen } M \longrightarrow M \text{ mit Hintereinanderausführung} \circ \text{als}$

Verknüpfung.

Monoid, neutrales Element. id_M

$$f \circ id_M = f = id_M \circ f$$

$$id_M(m) = m$$
 für alle $m \in M$.

Invertierbar sind genau die bijektiven Abbildungen $M \longrightarrow M$, Inverse = Umkehrabbildung.

$$f: M \longrightarrow M$$
 bijektiv
 $f \circ f^{-1} = f^{-1} \circ f = id_M$

'Proposition' on page 21 d): Die bijektive n Abbildung, $M \longrightarrow M$ bilden bezüglich • eine Gruppe

- d) $M = \text{Menge z.B } \{0,1\}$, x Menge aller endlichen Folgen über m.Halbgruppemit Verknüpfung Konkatenation. Nimmt man die leere Folge mit hinzu, ist es das neutrale Element. Dann: Monoid.
- e) $M_n(\mathbb{R})$ Menge der Matrizen über \mathbb{R} .

Addition: neutrales Element 0-Matrix, Inverse zu A ist -A. (M, Addition) ist Gruppe

Multiplikation: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ Halbgruppe mit neutralem Element I_m

f)
$$n \in \mathbb{N}$$
 $\mathbb{Z}_n = \{0, ..., n-1\}$ Verknüpfung \oplus $a \oplus b = a + b \mod n$ (\mathbb{Z}_n, \oplus) ist Gruppe.

Assoziativgesetz: $a, b, c \in \mathbb{Z}_n$

$$(a \oplus b) \oplus c = (a+b \mod n) \mod n$$

$$= ((a+b)+c) \mod n$$

$$= (a+(b+c)) \mod n$$

$$= (a+(b+c) \mod n) \mod n$$

$$= (a+(b\oplus c)) \mod n$$

$$= (a \oplus (b\oplus c))$$

0 ist neutrales Element bezüglich ⊕

0 ist sein eigenes Inverse.

$$1 \le i \le n$$
 $n-i \in \mathbb{Z}_n$ Inverses zu i $i \oplus (n-i)$

$$=(i+(n-i)) \mod n = n \mod n = 0$$

g) $n \in \mathbb{N}, \mathbb{Z}_0$ Verknüpfung $0 \quad n > 1$ $a \circ b = a \cdot b \mod n$ $(\mathbb{Z}_n \circ)$ ist Monoid

Assoziativgesetz wie bei ⊕.

1 ist neutrales Element bei ⊚ Keine Gruppe bezüglich ⊚, denn 0 hat kein Inverses

1.7 **Satz**

Sei $n \in \mathbb{N}$, n > 1

a) Die Elemente in (\mathbb{Z}_n, \odot) , die invertierbar bezüglich \odot sind, sind genau diejenigen $a \in \mathbb{Z}_n$ mit ggT(a, n) = 1.

Für solche a bestimmt man das Inverse folgendermaßen:

Bestimme $s, t \in \mathbb{Z}$ mit $s \cdot a + t \cdot n = 1$ (Erweiterter Euklidischer Algorithmus) Dann ist $a^{-1} = s \mod n$

- b) $\mathbb{Z}_n^* := \{ a \in \mathbb{Z}_n : \operatorname{ggT}(a, n) = 1 \}$ ist Gruppe bezüglich \otimes . $|\mathbb{Z}_n^*| =: \varphi(n)$ Euler'sche φ -Funktion (Leonard Euler 1707-1783)
- c) Ist p eine Primzahl so ist $(\mathbb{Z}_p \setminus 0, \odot)$ eine Gruppe. *Beweis* folgt aus b)

Beweis. a) Angenommen $a \in \mathbb{Z}_n$ invertierbar bezüglich \odot

D.h es existiert $b \in Z_n$ mit $a \odot b = 1$

 $a \cdot b \mod n = 1$, d.h es existiert $k \in \mathbb{Z}$ mit $a \cdot b = 1 + k \cdot n$, $1 = a \cdot b - k \cdot n$ Sei $d = \operatorname{ggT}(a.n)$:

$$d \mid a \qquad \Rightarrow d \mid a \cdot b$$

$$d \mid n \qquad \Rightarrow d \mid k \cdot n$$

$$\Rightarrow d \mid a \cdot b \qquad -k \cdot n = 1$$

 \Rightarrow d = 1 ggT(a, n) = 1.

Umgekehrt sei $a \in \mathbb{Z}_n$ mit ggT(a, n) = 1

EEA liefert $s, t \in \mathbb{Z}$ mit $s \cdot a + t \cdot n = 1$.

$$(s \mod n) \otimes a = ((s \mod n) \cdot a) \mod n$$

$$= (s \cdot a) \mod n = (1 - t \cdot n) \mod n$$

$$= (1 - \underbrace{(t \cdot n) \mod n}_{=0}) \mod n = 1 \mod n = 1$$
b) 'Proposition' on page 21 d)

1.8 Beispiel

n = 24, a = 7 ist invertierbar in (Z_{24}, \odot)

EEA:

$$1 = (-2) \cdot 24 + 7 \cdot 7$$
$$a^{-1} = 7 \mod 24 = 7 = a$$

1.9 Beispiel

Sei
$$M = \{1, ..., n\}$$

Die Menge der bijektiven Abbildungen auf M (Permutationen) bilden nach 1.6c) eine Gruppe bezüglich Hintereinanderausführung \circ .

Bezeichnung: S_n systematische Gruppe von Grad n

Es ist
$$|S_n| = n!$$
 (Mathe I)

$$z.B : \pi = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \in S_3$$

$$\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \pi$$

$$\varrho = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in S_3$$

$$\varrho^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$\varrho \circ \varrho^{-1} = id$$

$$\pi \circ \varrho = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$\varrho \circ \pi = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$\varrho \circ \pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
So into fine $g \in S$ with the help of (wight boundaries)

 S_n ist für $n \geq 3$ nicht abelsch (nicht kommutativ)

1.10 Satz (Gleichungslösen in Gruppen)

Sei (G, \cdot) eine Gruppe $a, b \in G$ (in allgemeinen Gruppen schreibt man Verknüpfungen oft als \cdot statt \star , oft auch ab statt $a \cdot b$)

- a) Es gibt genau ein $x \in G$ mit ax = b (nämlich $x = a^{-1}b$) ["Teilen durch" a von links = Multiplikation von links mit a^{-1}]
- b) Es gibt genau ein $y \in G$ mit ya = b (nämlich $y = ba^{-1}$)
- c) Ist ax = bx für ein $x \in G$, so ist a = bIst ya = yb für ein $y \in G$, so ist a = b

Beweis. a) Setze $x = a^{-1}b \in G$. $a \cdot (a^{-1} \cdot b) = (a \cdot a^{-1})b = a \cdot b = b$ Eindeutigkeit : Sei $x \in G$ mit ax = b Multiplikation beide Seiten mit a^{-1} , $x = (a^{-1}a)x = a^{-1}b$

- b) analog
- c) ax = bx Multiplikation mit x^{-1} Dann a = b

1.11 Beispiel

a) Suche Permutation $\xi \in S_3$ mit $\varrho \circ \xi = \pi$ (vgl. 1.9). 'Satz (Gleichungslösen in Gruppen)' on page 26a):

$$\xi = \varrho^{-1} \circ \pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

b) 1.10c) gilt in Monoiden, die keine Gruppen sind, im Allgemeinen nicht: Beispiel: (\mathbb{Z}_0, \odot)

$$2 \odot 3 - 0 = 3 \odot 3$$
, aber $2 \neq 4$

Index

Abbildung, 19

abelsch, 21

Assoziativgesetz, 20

Erweiterter Euklidischer Algorithmus,

24

Euler'sche φ -Funktion, 24

Gruppe, 20

Halbgruppe, 20

Inverse, 20

inverses Element, 20

invertierbar, 20

Kommutativgesetz, 21

Komponente, 3

Konkatenation, 20

Linearkombination, 8

Matrixmultiplikation, 3

Matrizenaddition, 20

Matrizenmultiplikation, 20

Monoid, 20

neutrales Element, 20

Nullraum, 5

Ortsvektoren, 3

Parallelogrammregel, 3

Permutationen, 25

Spaltenvektoren, 3

systematische Gruppe, 25

Unterraum, 5

Vektor, 4

Vektorraum, 3

Verknüpfung, 19

Verknüpfungssymbole, 19

Zahlengerade, 3