Teste, 10 questions

~	Parabéns! Você	foi aprovado!
----------	----------------	---------------

Próximo item

Não selecionado está correto

bias vectors $b^{[l]}$

size of the hidden layers $n^{[l]}$ y concepts on Deep Neural Networks Correto e, 10 questions	(100%)
number of iterations	
Correto	
learning rate $lpha$	
Correto	
weight matrices $W^{[l]}$	
Não selecionado está correto	
lacksquare number of layers L in the neural network	
Correto	
activation values $a^{[l]}$	
Não selecionado está correto	
1/1 pontos	
3. Which of the following statements is true?	
The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.	
Correto	
The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.	

4.

Vectorization allows you to compute forward propagation in an L-layer neural network without Key concepts in the Legisland points (100%) over the layers I=1, 2, ...,L. True/False10 points (100%)

	Ealc
Teste, 10 questions	True

Correto

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 pontos

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

Correto

Key concepts on Deep Neural Networks

Teste, 10 quest**6**ns

Consider the following neural network.

How many layers does this network have?

Correto

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers $\it L$ is 3. The number of hidden layers is 3.
The number of layers $\it L$ is 4. The number of hidden layers is 4.
The number of layers ${\cal L}$ is 5. The number of hidden layers is 4.

1/1 pontos

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correto

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

Key concepts on Deep Neural Networks

Teste, 10 quest**8**ns

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

oning a	deep fietwork circuit, you fieed only all exponentially smaller fietwork. True/r
0	True
Corre	to
	False

1/1 pontos

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $W^{[1]}$ will have shape (4, 4)

Correto

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

10/10 points (100%)

Key concepts on Deep Neural Networks

Teste, 10 question $\hat{\mathbf{y}}$ es. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

Não selecionado está correto		
	$W^{\left[1 ight]}$ will have shape (3, 4)	

 $b^{[1]}$ will have shape (3, 1)

Não selecionado está correto

 $igwedge W^{[2]}$ will have shape (3, 4)

Correto

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[2]}$ will have shape (1, 1)

Não selecionado está correto

 $oxed{ W^{[2]}}$ will have shape (3, 1)

Não selecionado está correto

 $b^{[2]}$ will have shape (3, 1)

Correto

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $oxed{ W}^{[3]}$ will have shape (3, 1)

Não selecionado está correto

 $igcup b^{[3]}$ will have shape (1, 1)

Correto

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

10/10 points (100%)

Key concepts on Deep Neural Networks

Teste, 10 questions es. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[3]}$ will have shape (3, 1)

Não selecionado está correto

1/1 pontos

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W $\{[l]\}$, the weight matrix associated with layer l?

- $igcup W^{[l]}$ has shape $(n^{[l]},n^{[l+1]})$
- $igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correto

True

 $igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$

