Bank Churn Predictions

Shivendu Kishore , Ankit Tiwari, Ayush Singh, January 23, 2024

Churning in Bank Sector - Overview

CUSTOMER CHURN

Customer Churn in Banking

- Churn is defined as exiting of customer from the service and moving from one company to another.
- * The reasons can for example be:
 - Availability of latest technology
 - Customer-friendly bank staff
 - Low interest rates
 - Location
- Churn rate usually lies in the range from 10% up to 30%.

Why is this important for the bank?

- The cost of attracting new customers can be five to six times more than holding on to an existing customers
- Long term customers become less costly to serve, they generate higher profits, and they may also provide new referrals
- Losing a customer usually leads to loss in profit for the bank.

How to define a churner in a bank

- Customer who closes his account or has decreasing number of transactions over a specific period in time
- Focus on customers who have three or less products with the bank
- Active customer is a customer with two or more active products
- A churner can be defined as a customer who has not been active over a specific time

Churning Prediction Model Concept

Customer Churn Model

- Prediction models are used to identify customers who are likely to churn
- The model uses historical data on former churners and tries to find some similarity with existing customers
- * If some similarity is found those customers are classified as potential churners.

What needs to be considered when setting up a churn model?

- * How to define a churner in the bank
- Churn prediction variables to use in the model
- * Methods/techniques used to build the model

Data Source

- * Kaggle Churn Modelling Dataset
 - 165034 records
 - Demographic information
 - Banking information

Churn prediction variables

- **Customer demographics variables**
 - Age
 - Surname
 - Gender
 - Geographical data

Churn prediction variables

- ❖ Bank-Related Variables
 - Balance
 - Credit Score
 - Tenure with bank
 - Number Of Products of bank used by customer
 - Has Credit Card
 - Is Active Member
 - Estimated Salary

Churn Prediction Modelling

- ❖ Predict if a bank's customer will stay or leave the bank by taking insights from historical dataset
 - Exited -0 Not leave
 - Exited -1 Leave

Process Theory -Working

Steps for Prediction Model

- **❖** Loading Data
- **❖** Data Exploration
- ❖ Data Visualization
- Feature Preprocessing & Engineering
- **♦** Model Selection
- **❖** Validation
- Submission

ETL

ETL

Extract, Transform, Load

- **♦** Kaggle Dataset → Cleaning
- Removing features not needed for ML:
 - RowNumber
 - CustomerId
- Save it as the analytical base table (train mod, test mod)
- ♦ (train_mod, test_mod) → input to all modelling notebooks

Data Visualization-Insights from Data

Target Feature Distribution

0 138076 1 36958

Name: Exited, dtype: int64

Target label in Train Dataset

- ❖ Imbalanced dataset:
 - ➤ Stays 79%
 - ➤ Exits 21%
- * Handling imbalanced classes:
 - > StratifiedKFold

- **♦** More males than females
- ❖ France 50%; Spain, Germany 25% each

Churn Segmentation by Gender/Geography

- Leaving bank:
 - ➤ Females 28%
 - ➤ Males 16%
 - ➤ German customers 38%
- **♦** Germany: least num of customers → most churn

❖ Top Surnames in the dataset

Top Surnames Exited in the dataset

Customers with bank in years (Tenure) Exited in the dataset

Customers having credit card exited

❖ Active Member of bank

Active Member of bank Exited

❖ In Feature – Balance, there are lot of customers who were having bank balance – 0 so avoided visualization from this and getting bigger picture of balance column. Also there are much outliers present in this

Selecting Model for Predicting Churn in dataset

- Logistic Regression Model
- Tree Model Random Forest Model
- Boosting Method Xtreme
 Gradient Boosting Model

Logistic Regression Model

- Used for binary classification problems (predicting two outcomes)
- Advantages:
 - Simple and easy to understand
 - Fast training and prediction times for smaller datasets
- Disadvantages:
 - Assumes a linear relationship between features
 - Limited flexibility for capturing complex patterns in data

Random Forest Model

- Versatile for both classification and regression tasks
- Advantages:
 - Handles non-linear relationships well
 - Robust to overfitting, as it combines multiple decision trees
 - Can handle large datasets with many features
- Disadvantages:
 - Less interpretable compared to a single decision tree

Extreme Gradient Boosting

- Extremely powerful for classification and regression tasks.
- Advantages:
 - High predictive accuracy due to the boosting technique
 - Handles complex relationships and interactions in the data
 - Regularization techniques to prevent overfitting
 - Can handle missing data effectively
- Disadvantages:
 - Can be computationally intensive and require more resources.

Methods/techniques used to build a model – what to use for this dataset

Conclusion:

XGBoost is considered the best choice among these models for several reasons:

- It combines the strengths of both random forests and gradient boosting.
- It usually outperforms other models in terms of predictive accuracy.
- It handles complex relationships and large datasets well.
- Regularization techniques help prevent overfitting.

Model Training Steps

- * Model selection and training on train data
- Hyperparameters tuning:
 - ➤ parameters grid with Optuna
 - ➤ GridSearchCV
 - > StratifiedKfold
- ❖ Check ROC-AUC score
- Re-train model for best ROC-AUC score
- Save best model
- * Feature Importance
- ❖ Predict Exited value in Test data

Conclusions

- Huge difference with StratifiedKfold split
- Optuna resulted speed and better hyperparameter tuning
- Ways for improvement
 - ➤ More data points for target variable imbalance situation
 - > Feature engineering
 - ➤ Additional ML algorithms and imbalance handling techniques

Questions?