RANCANG BANGUN SISTEM MONITORING KETINGGIAN AIR DAN KEKERUHAN AIR DI SUNGAI SILUNGGONGGO

MENGGUNAKAN IOT BERBASIS APLIKASI ANDROID

DESIGN OF MONITORING SYSTEM OF WATER LEVEL AND WATER turbidity in SILUNGGONGGO RIVER

USING THE ANDROID APPLICATION BASED IOT

PRA PROPOSAL PROYEK AKHIR

Disusun sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

Oleh:

NOVITA SINDY AYU ANGGRAININGSIH

6705180035

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2021

Latar Belakang

Indonesia merupakan negara dengan curah hujan yang sangat tinggi, musim penghujan dapat berlangsung selama empat bulan dalam kurun waktu satu tahun. Dengan meningkatnya pembangunan di wilayah perkotaan, menyebabkan semakin sedikitnya daerah penyerapan air. Serta kebiasaan masyarakat membuang sampah sembarangan di sungai, juga merupakan faktor terjadinya banjir dan menyebabkan kekeruhan air pada sungai tersebut. Itu sangat tidak baik untuk kesehatan warga sekitar yang tinggal di pinggir sungai silunggonggo.

Selain dapat menimbulkan kerugian harta benda, banjir juga dapat menimbulkan korban jiwa. Dibutuhkan sebuah system monitoring dan peringatan, agar menghindari terjadinya korban jiwa dan meminimalisir kerugian material yang terjadi akibat banjir. Dengan system monitoring ketinggian air dibuat agar dapat mudah diakses kapan saja dan dimana saja.

Tujuan yang dicapai dalam penyusunan Proyek akhir ini adalah mempermudah alat berbasis mikrokontroler dan iot dalam kata lain system monitoring ketinggian air dan kekeruhan sungai silunggonggo yang mampu menjadi suatu alat untuk membantu masyarakat di sekitar sungai agar terhindar kerugian material dan korban jiwa dan terhubung dengan aplikasi smartphone sebagai notifikasi ketinggian air menaik dan kekeruhan air dengan cara mengirimkan notifikasi kepada pengguna aplikasi tersebut.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literatur terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian/Karya Ilmiah	Tahun	Keterangan
1	Rancang Bangun Monitoring Ketinggian Air dan Sistem Kontrol pada Pintu Air Berbasis Arduino dan SMS Gateway	2018	Pada penelitian ini penulis menggunkan indicator pengisisan SMS Gateway berbasis Arduino uno untuk mengirimkan notifikasi peringatan dini banjir
2	Sistem Monitoring dan Peringatan Ketinggian air berbasis Web dan SMS Gateway	2015	Pada Penelitian ini penulis menggunakan Web dan SMS Gateway Di rancang untuk memantau ketinggian air secara real time melalui web dan mendapatkan peringatan dini banjir melalui sms singkat
3	Rancang Bangun Sistem Monitoring Volume dan Pengisian Air Menggunakan Sensor Ultrasonik Berbasis Mikrokontroler AVR ATMEGA8	2015	Pada Penelitian ini penulis menggunakan mikrokontroler untuk mengetahui ketinggian air secara otomatis. System akan melakukan pengukuran ketinggian air secara kontinyu.
4.	Perancangan Sistem Monitoring Ketinggian Air Sebagai Pendeteksi Banjir berbasis IOT menggunakan Sensor Ultrasonik	2020	Pada Penelitian ini penulis menggunakan sensor ultrasonic untuk mengetahui data jarak permukaan air secara realtime. System ini dapat menyimpan semua data jarak ke dalam database
5.	Sistem Monitoring Tingkat Ketinggian Air Bendungan Berbasis Mikrokontroler	2011	Pada Penelitian ini penulis menggunakan mikrokontroler ATMega 8535, program interface yang digunakan terdiri dari program untuk deteksi sensor, program untuk pengolahan sinyal dan program untuk menghasilkan informasi yang di tampilkan pada LCD dan LED
6	Rancang Bangun Sistem Monitoring Ketinggian Permukaan Air menggunakan Mikrokontroler Atmega 328p Berbasis Web Service	2015	Pada Penelitian ini penulis menggunakan mikrokontroler ATmega328P dan sensor ultrasonik berbasis web service. Hasil pengukuran dapat diakses secara online dan realtime pada sebuah halaman web yang ditampilkan dalam bentuk grafik dan tabel.
7	Sistem Monitoring Ketinggian Air Berbasis Internet Of Things menggunakan Google Firebase	2017	Pada Penelitian ini penulis menggunakan IOT dan google firebase untuk memantau aliran air yang bisa menyebabkan terjadinya banjir. Alat monitoring terdapat tiga status level air yang siaga dan bahaya. Jika jarak ketinggian air lebih dari batas yang ditentukan, maka android akan memunculkan notifikasi "bahaya ketinggian air melebihi batas!"

	Prototipe Sistem Pendeteksi Kekeruhan Air dengan Pengisian air otomatis pada bak mandi berbasis arduino	2015	Pada Penelitian ini penulis menggunakan aplikasi android untuk memonitoring dan pengontrolan pada jarak jauh. Pada system pendeteksi kekeruhan yang menggunakan sensor potodioda dan cahaya inframerah untuk mengukur intensitas cahaya dengan mengukur perubahan tegangan yang dihasilkan
--	--	------	--

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai bagaimana cara perancangan system monitoring ketinggian air ini dapat bekerja menggunakan data real time, sensor ultrasonik, dan esp8266. Secara umum system kerja dari ketinggian air dapat di gambarkan melalui model system monitoring yang telah dibuat seperti ini:

Rancangan blok diagram dari system monitoring ketinggian air dan kekeruahan air berbasis aplikasi android. Masukkan dari system ini yaitu sensor potodioda yang mendeteksi kekeruhan air, untuk menentukan ketinggian air, dan sensor jarak ultrasonic sebagai pengontrol ketinggian air dapat menggunakan masukan yang dapat diproses dengan Arduino agar keluarannya sesuai apa yang diinginkan dan juga smartphone dapat memonitoring secara jarak jauh yang di hubungkan ke modul wifi eps8266 sebagai perantara dengan smartphone.

Daftar Pustaka

- [1] Syahputra, S. s. (2018). RANCANG BANGUN MONITORING KETINGGIAN AIR BERBASIS ARDUINO DAN SMS GATEWAY. *jurnal teknik sipil vol. 7*, 77-91.
- [2] dkk, A. T. (2015). SISTEM MONITORING KETINGGIAN AIR BERBASIS WEB DAN SMS GATEWAY. *Jurnal sistem informasi dan teknik informatika vol. 5 No 2*, 119-129.
- [3] Rismawan, T. (2015). RANCANG BANGUN SISTEM MONITORING VOLUME DAN PENGISIAN AIR MENGGUNAKAN SENSOR ULTRASONIK BERBASIS MIKROKONTROLER. *Jurnal komputer dan aplikasi vol. 3 no 2*.
- [4] dkk, n. p. (2020). PERANCANGAN SISTEM MONITORING KETINGGIAN AIR SEBAGAI PENDETEKSI BANJIR BERBASIS IOT MENGGUNAKAN SENSOR ULTRASONIK . *Jurnal media informatika budidarma vol. 4 no 1*.
- [5] Budiarso, Z. (2011). Sistem Monitoring Tingkat Ketinggian Air Bendungan Berbasis Mikrokontroler . *Jurnal teknik informasi*
- [6] Fikri, R. (2015). RANCANG BANGUN SISTEM MONITORING KETINGGIAN PERMUKAAN MENGGUNAKAN MIKROKONTROLER ATMEGA 328P BERBASIS WEB SERVICE. *Jurnal FMIPA* .
- [7] Lewi, E. B. (2017). SISTEM MONITORING KETINGGIAN AIR BERBASIS INTERNET OF THINGS MENGGUNAKAN GOOGLE FIREBASE. *Jurnal D3 Teknik Telekomunikasi vol. 3 no. 2*.
- [8] Pratama, R. A. (2015). PROTOTIPE SISTEM PENDETEKSI KEKERUHAN AIR DENGAN PENGISIAN AIR OTOMATIS PADA BAK MANDI BERBASIS ARDUINO. *Jurnal Teknik Elektro Fakultas Teknik UNJ*.

Form Kesediaan Membimbing Proyek Akhir

PROYEK AKHIR SEMESTER GANJIL | GENAP* TA 2021/2022

Tangga: 1 Juni 2021

l

Kami yang bertanda tangan dibawah in i: CALON PEMBIMBING

1

Kode : IDI

Nama : Indrarini Dyah Irawati, S.T.,M.T.

CALON PEMBIMBING

2

Kode: TND

Nama : Tri Nopiani Damayanti, S.T., M.T.

Menyatakan bersedia menjadi dosen p embimbing Proyek Akhir bagi mahasiswa berikut,

NIM : 6705180035

Nama : Novita Sindy Ayu Anggrainingsih

Prodi / Peminatan : TT

: Rancang Bangun Sistem Monitoring Ketinggian dan Kekeruhan Air di Sungai

Calon Judul PA Silunggonggo Menggunakan IOT berbasis Aplikasi Android

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

(Indrarini Dyah Irawati, S.T., M.T)

(Tri Nopiani Damayanti, S.T., M.T)

Calon Pembimbing 2

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University

Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257

Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor

Induk

670518003 Mahasiswa)

Dosen Wali

: RMT / ROHMAT TULLOH

: D3 Teknologi

Program Studi Telekomunikasi

Nama

. NOVITA SINDY AYU ANGGRAININGSI H

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	AB
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	В
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	ВС
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	AB
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	ВС
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	В
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	АВ
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	ВС
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	AB
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	В
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	AB
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	AB
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	В
2	DMH1A2	OLAH RAGA	SPORT	2	AB

2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	ВС
Jumlah SKS					3.05

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	AB
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	AB
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	AB
4	DTH2l3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	В
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	В
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	С
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	АВ
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	ВС
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES	2	В
5	UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	AB
5	UWI3E1	HEI	HEI	1	А
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	С
5	VTI3C3	TEKNIK ANTENNA & PROPAGASI	ANTENNA AND PROPAGATION TECHNIQUES	3	В
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	ВС
		Jumlah SKS		96	3.05

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
----------	------------------	-------------	--------------------------------	-----	-------

Jumlah SKS	16	

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
6	VPI3GC	MAGANG	APPRENTICE	12	
6	VTI3F4	PROYE K AKHIR	FINAL PROJECT	4	
	Jumlah S	16			

Mata Kuliah yang Diulang

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	E
	Ju	3			

 Tingkat I
 : 41 SKS
 Belum Lulus
 IPK : 3.07

 Tingkat II
 : 85 SKS
 Belum Lulus
 IPK : 3.08

 Tingkat III
 : 96 SKS
 Belum Lulus
 IPK : 3.05

 Jumlah SKS
 : 96 SKS
 IPK : 3.05

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 01 Juni 2021 12:59:05 oleh NOVITA SINDY AYU ANGGRAININGSIH