Computação Evolucionária e Algoritmos Genéticos

Sabedoria da natureza aplicada à computação

Eduardo J. Spinosa

Adaptado por Huei Diana Lee e Newton Spolaôr

Motivação

"...Se variações úteis para qualquer organismo devem ocorrer para que ele venha a existir, certamente indivíduos assim caracterizados terão a **melhor chance** de serem preservados na luta por sobrevivência; e do forte princípio de hereditariedade, eles tenderão a produzir gerações com características similares. Este princípio de preservação, eu batizei, para ser sucinto, de Seleção Natural."

Teoria da Evolução

1859 - Charles Darwin publica o livro "A Origem das Espécies":

Charles Darwin

"As espécies evoluem pelo princípio da seleção natural e sobrevivência do mais apto."

Teoria da Evolução

Gregor Mendel

- 1865- Gregor Mendel, "pai da genética", apresenta experimentos do cruzamento genético de ervilhas
 - Leis da hereditariedade

 A Teoria da Evolução começou a partir da conceituação integrada da Seleção Natural com a Genética

Algoritmos Genéticos – AG

- São técnicas de busca e otimização
- É a metáfora da Teoria da Evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin
- Desenvolvido por John Holland (1975) e seus alunos (Livro: Adaptation in Natural and Artificial Systems)
- Popularizado por David Goldberg (1989)

Otimização

- É a busca da melhor solução para um dado problema
 - Consiste em tentar várias soluções e usar a informação obtida para conseguir soluções cada vez melhores
- Exemplo de otimização:
 - Parâmetro que deve ser maximizado, buscando várias soluções alternativas até alcançar uma satisfatória

Otimização

- As técnicas de otimização, geralmente, apresentam:
 - Espaço de busca: onde estão todas as possíveis soluções do problema
 - Função objetivo: utilizada para avaliar as soluções produzidas, associando a cada uma delas uma "nota" ou "qualidade" da solução

Computação Evolucionária – CE

- Área da IA que engloba um conjunto de métodos computacionais inspirados na Teoria da Evolução das espécies:
 - Estratégias Evolucionárias
 - **...**
 - Algoritmos Genéticos
- Aplicação da Seleção Natural na computação: os indivíduos (possíveis soluções) mais adaptados ao meio (problema) têm maior chance de sobrevivência

Simplificações

Elementos Básicos de AG

- Definição de um problema
 - Restrições ao espaço de busca
 - Ambiente domínio do problema
- Indivíduo
 - Formas de representação
- População
- Função de Aptidão/Objetivo
 - Avaliação
 - Seleção
- Procriação
 - Herança genética

Aplicações

- Atividades
 - Otimização
 - Busca
- Áreas
 - Indústria (processos)
 - Planejamento (grade de horários, rota de veículos)
 - Mineração de dados (técnicas como redes neurais)
 - Processamento de imagem (médica, de satélite)
 - Processamento e reconhecimento de linguagem
 - Economia

Indivíduos

- Conjunto de atributos que formam uma possível solução
- Estrutura dos Indivíduos em AG:

10100<mark>10</mark>00111001101000100011

```
atributo \begin{cases} \text{gen\'otipo: } 10 \\ \text{fen\'otipo (ex: cliente satisfeito)} \end{cases}
```

alelos: 00, 01, 10, 11

Gene

Unidade básica do Ácido Desoxirribonucleico (ADN) 1 bit

Locus

Posição de um gene no ADN Posição do bit na palavra

Alelo

```
Configuração possível do(s) gene(s) 0, 1, 00, 01, 10, 11, 001, 010, ...
```

Genótipo

Conjunto de alelos que o indivíduo possui e que determinam atributos observáveis Seqüência de bits que determina um indivíduo

Fenótipo

Atributos observáveis em um indivíduo (cor, tamanho, forma...)

Significado do genótipo

Genoma

Indivíduo, representado por uma sequência completa de ADN *Indivíduo*

Cromossomo

Uma unidade do genoma que contém uma subsequência de ADN *Indivíduo*

População

- Conjunto de indivíduos
- Número de pontos de exploração no espaço de busca
- Tamanho da população é importante
 - Pequeno demais » Perda da diversidade
 - Grande demais » Custo computacional
- Representatividade

Visão Geral do Algoritmo

- Gerar uma população inicial aleatoriamente, em geral
- Enquanto não atingir o critério de término
 - Avaliar indivíduos
 - Selecionar indivíduos para serem pais
 - Produzir filhos
- Retornar uma solução

Nota: relação entre algoritmo e natureza

Visão Geral do Algoritmo

Criação da População Inicial

- Em AG, indivíduos têm o mesmo tamanho
- Restrições?
- Muito importante: Diversidade

Fase de Avaliação

- Estabelece quais indivíduos são adequados ao problema
- Bom? Ruim? » Adequado ao problema
- Cálculo do valor de aptidão de todos os indivíduos da população

Função de Aptidão (Fitness)

- Mede o grau de adaptação do indivíduo ao meio
- Função heurística que guia a busca
- Específica para cada problema
- Muito complexa » Custo computacional
- Estabelece uma forma de se diferenciar os melhores dos piores, servindo como a força mestre do processo evolutivo

(Gritz, M., 1993, "The Impact of Training on the Frequency and Duration of Employment," *Journal of Econometrics* 57, 21-51)

Fase de Seleção

- Método de Seleção
 - Ordem (Ranking)
 - Roleta
 - Torneio

Seleção por Ordem

- Indivíduos são ordenados de acordo com a aptidão
- Os melhores são escolhidos
- Simples demais
- Baixa diversidade

Nota: exemplo da otimização de parâmetro, partindo de população inicial aleatória

- Calcula-se R (tamanho da roleta): soma da aptidão de todos os indivíduos
- Cada indivíduo ocupa uma porção da roleta proporcional à sua aptidão
- Sorteia-se um valor de 1 a R
- O indivíduo que estiver na posição referente a esse valor é selecionado

 Ex: população com 5 indivíduos, aptidão igual à quantidade de bits com valor 1

Indivíduo	Aptidão	Aptidão %
10011101	5	
11111111	8	
10000001	2	
11101011	6	
10011010	4	
Total	25	

 Ex: população com 5 indivíduos, aptidão igual à quantidade de bits com valor 1

Indivíduo	Aptidão	Aptidão %
10011101	5	20
11111111	8	32
10000001	2	8
11101011	6	24
10011010	4	16
Total	25	100

A transformação dos valores de aptidão facilita a roleta

 Ex: população com 5 indivíduos, aptidão igual à quantidade de bits com valor 1

Indivíduo	Aptidão	Aptidão %
10011101	5	20
11111111	8	32
10000001	2	8
11101011	6	24
10011010	4	16
Total	25	100

- Escolha probabilística
 - Maior aptidão » Maior probabilidade de ser selecionado
- Competição sempre se dá entre **todos** os indivíduos da população » Custo
- Como seleção por ordem, a convergência pode ainda ser muito rápida
- Pouca diversidade

Seleção por Torneio

Seleção por Torneio

- T indivíduos selecionados randomicamente usando uma distribuição uniforme » Melhor diversidade
- O melhor dos T é selecionado
- Avaliação/competição apenas entre os indivíduos do sub-grupo » Menor custo
- Reflete melhor a seleção na natureza

Fase de Procriação

- Aplicação dos Operadores Genéticos
 - Cruzamento
 - Mutação
 - Reprodução

Cruzamento

- Recombina características de 2 pais, gerando 2 filhos
- Equivale à reprodução sexuada dos seres vivos

Cruzamento em AG

- Considerando
 - Pai 1: 10101010110101010111
 - Pai 2: 0000100101011110010
- Cruzamento em um ponto
 - Filho 1: 10101010110101110010
 - Filho 2: 0000100101010101111

Cruzamento em AG

- Considerando
 - Pai 1: 10101010110101010111
 - Pai 2: 0000100101011110010
- Cruzamento em um ponto
 - Filho 1: 10101010110101110010
 - Filho 2: 0000100101010101111
- Cruzamento multi-ponto
 - Filho 1: 10101001010101010010
 - Filho 2: 000010101101011110111

Mutação

- Substitui uma parte de 1 indivíduo por outra gerada aleatoriamente
- Cria novas características » Diversidade

Mutação em AG

- Considerando
 - Pai: 1010101011010101111
- Mutação
 - Filho: 101010101101111010111

Reprodução

- Cópia simples de um indivíduo para a próxima geração
- Preserva características

Estratégia Elitista

- Os E melhores indivíduos são sempre reproduzidos, i.e., copiados para a próxima geração
- Aumenta E » Diminui diversidade

Critério de Término

- Nível de aceitação de uma solução
 - Número máximo de gerações
 - Margem de erro
 - Detecção de Estado-estável
 (Steady-state) solução estabiliza e não
 muda mais

Parâmetros

- Controlam o algoritmo
- Impacto em
 - Probabilidade de Sucesso
 - Eficiência
 - Custo de Processamento
 - Custo de Memória
 - Qualidade da solução final
- Configurados de acordo com o problema

Parâmetros

Iniciação

Método de iniciação

Repetições

- Tamanho da população
- Número máximo de gerações

Avaliação

- Função de aptidão
- Limiar (Margem de erro)

Seleção

- Método de seleção
- Tamanho do torneio
- Tamanho da elite

Procriação

- Taxa de cruzamento
- Taxa de mutação
- Taxa de reprodução

Exemplo de AG - 1

Aprender regras para o problema "Playtennis":

Codificação dos Indivíduos:

- Indivíduos neste problema: regras de decisão, compostas por cabeça e corpo
- Árvore de decisão (conceito "Playtennis"): nem todos os atributos, inicialmente disponíveis, precisam ser usados para a concepção deste conceito

Codificação dos Indivíduos:

- Codificação mais completa: todos os atributos devem ser considerados
- Assim, indivíduos podem ser codificados usando:
 - uma string de bits
 - um bit para cada valor possível para cada atributo

	Outlook	(Hum	idity	₩i	nd	Ter	mperati	ure	Cla	ISS
Sunny	Overcast	Rain	High	High Normal		Weak	Hot	Mild	Cool	Yes	No
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

- Indivíduo: composto por 12 bits (10 bits corpo e 2 bits cabeça da regra):
 - Outlook: três bits (três valores possíveis)
 - Humidity: dois bits
 - Wind: dois bits
 - Temperature: três bits
 - Dois bits representam a cabeça da regra (Class "Play")
- O valor 1 representa "sim" para o valor do atributo correspondente e 0 caso contrário

- Tratamento de genótipos sem significado útil para atributos:
 - Se houver, por exemplo, uma seqüência 111 para os três bits do atributo *Temperature*, significa que esse atributo não importa naquele caso específico
 - Vide exemplo dessa sequência a seguir

IF Outlook=Sunny AND Humidity=Normal THEN Playtennis=Yes

	Outlook	, ,	Hum	iidity	₩i	nd	Ter	mperati	ure	Cla	ISS
Sunny	Overcast	Rain	High	Normal	Strong	Weak	Hot	Mild	Cool	Yes	No
1	0	0	0	1	1	1	1	1	1	1	0

IF Outlook=Sunny AND Humidity=Normal THEN Playtennis=Yes

Outlook			Hum	iidity	₩i	nd	Ter	mperati	ure		155
Sunny	Overcast	Rain	High	Normal	Strong	Weak	Hot	Mild	Cool	Yes	No
1	0	0	0	1	1	1	1	1	1	1	0

IF Outlook=Rain AND Wind=Strong THEN Playtennis=No

	Outlook		Hum	iidity	VVi	nd	Ter	mperati	ure	Class			
Sunny	Overcast	Rain	High	High Normal		Weak	Hot	Mild	Cool	Yes	No		
0	0	1	1	1	1	0	1	1	1	0	1		

Exemplo de AG - 2

Otimizar medida de importância de atributos (seleção de atributos)

Exemplo de AG - 3

Otimizar função (programação linear)

Problema de programação linear:

maximize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$

sujeito a $Ax \leq b$

e $x \ge 0$

Problema de programação linear:

```
maximize c^Tx
sujeito a Ax \le b
e x \ge 0
```

- c e b: vetores de coeficientes (já conhecidos)
- c⁻: vetor coluna transposto, i.e., vetor linha
- x: vetor de variáveis (a ser encontrado)
- A: matriz de coeficientes (já conhecidos)

Exemplo:

- Um fazendeiro tem uma área de L km² para plantar trigo, cevada ou uma combinação dessas culturas
- A área plantada (em km²) com trigo e com cevada corresponde a x1 e x2, respectivamente

Exemplo:

- Logo, há uma restrição: a soma das áreas plantadas de trigo (x1) e cevada (x2) deverá ser menor ou igual a L km²
- Mais duas restrições surgem porque, eventualmente, o fazendeiro não plantará nada em parte da área que possui, *i.e.*, x1 e x2 podem ser maiores ou iguais a zero

Exemplo:

- O fazendeiro tem uma quantidade limitada de fertilizante (F kg) e de inseticida (P kg) por km², definindo mais restrições
 - Cada km² do total de trigo (x1) necessita de F1 kg e P1 kg de fertilizante e inseticida, respectivamente
 - Cada km² do total de cevada (x²) precisa de F² kg e P² kg de fertilizante e inseticida fonte: https://en.wikipedia.org/wiki/Linear_programming

Exemplo:

- O preço de venda por km² do total de trigo (x1) e do total de cevada (x2) é de S1 e S2, respectivamente
- Nesse cenário, o objetivo do fazendeiro é maximizar o lucro (preço de venda) que combina trigo e cevada

Exemplo:

```
maximize S_1x_1 + S_2x_2 (maximize lucro - "função objetivo") sujeito a x_1 + x_2 \le L (limite da área total) F_1x_1 + F_2x_2 \le F (limite do fertilizante) P_1x_1 + P_2x_2 \le P (limite do inseticida) x_1 \ge 0, x_2 \ge 0 (não semear uma área negativa)
```

Codificação dos Indivíduos:

- Indivíduos neste problema: valores para x1 e x2 (áreas plantadas)
- Uma possível codificação:
 - Arredondar cada área para um número inteiro
 - Representar o valor inteiro como uma string de bits (valor decimal transformado para base binária)
 - Concatenar as duas strings

X1									X2										
0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

- Indivíduo: composto por 20 bits (10 bits por área, representando valor de 0 a 1023 km²):
 - Área de trigo (x1): bits 0 a 9
 - Área de cevada (x2): bits 10 a 19
- Para obter o valor aproximado da área, basta converter o valor binário para o valor decimal correspondente

 $x_1 = 10 \text{ km}^2 \text{ e } x_2 = 50 \text{ km}^2$

X1									X2										
0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1	0	0	1	0

 $x_1 = 30 \text{ km}^2 \text{ e } x_2 = 65 \text{ km}^2$

X1									X 2										
0	0	0	0	0	1	1	1	1	0	0	0	0	1	0	0	0	0	0	1

O Futuro?

fonte: www.geneticprogramming.org

Para saber mais...

Demonstrações

```
http://math.hws.edu/eck/js/genetic-
algorithm/GA.html
http://rednuht.org/genetic_walkers/
```

Introdução a AG com exemplo

Página de J. Holland http://www2.econ.iastate.edu/tesfatsi/holland.gaintro. htm

Para saber mais...

- Busca em Publicações
 - GP Bibliography
 http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
 - Google Acadêmico
 https://scholar.google.com
 - Citeseerhttp://citeseerx.ist.psu.edu

Para saber mais...

- Ferramentas AG
 - Weka

http://www.cs.waikato.ac.nz/ml/weka

Outras ferramentas

https://sci2s.ugr.es/keel/links.php

- Outros algoritmos evolucionários
 - GP Notebook http://www.geneticprogramming.com/
 - Livro de Sean Luke http://cs.gmu.edu/~sean/book/metaheuristics/