プログラムの最適化手法を用いた Erasure Coding の最適化

上里 友弥 @ Cyber Agent

2024 / 02 / 11 @ 筑波大学

		10					え	かなりナゲェ行列		
14	$\begin{bmatrix} x_{1,1} \\ x_{2,1} \\ \vdots \\ x_{12,1} \end{bmatrix}$	· · · · · · · · · · · · · · · · · · ·	$x_{1, 10}$ $x_{2, 10}$ \vdots $x_{12, 10}$	10 ×	$\begin{bmatrix} y_{1,1} \\ y_{2,1} \\ \vdots \\ y_{10,1} \end{bmatrix}$	$y_{1,2} \\ y_{2,2} \\ \vdots \\ y_{10,2}$	· · · · · · · · · · · · · · · · · · ·	y_1 , 1000000 y_2 , 1000000 \vdots y_{10} , 1000000	···	$y_{1,\ 4}$ 百万 $y_{2,\ 4}$ 百万 \vdots
	$\begin{bmatrix} x_{13,1} \\ x_{14,1} \end{bmatrix}$		$x_{13, 10}$ $x_{14, 10}$	l	L910,1	910,2		910, 1000000		<i>y</i> _{10,4} 百万┛

10 かなりナゲェ行列 $x_{1,10}$ $x_{1,1}$ $y_{1,1}$ $y_{1,2}$ $y_{1, 1000000}$. . . $y_{1, 4}$ 百万 $y_{2,1}$ y_2 , 1000000 $y_{2,4}$ 百万 14 $x_{12, 1}$ $x_{12, 10}$ $y_{10,1}$ $y_{10,2}$ y_{10} , 1000000 y_{10,4}百万】 $x_{13, 10}$ $x_{13,1}$ $x_{14,1}$ $x_{14,10}$

→ 速度がユーザー体験に<u>直結</u>する状況から来た問題; コマケェこた後述

10 かなりナゲェ行列 $x_{1,10}$ $x_{1,1}$ $y_{1,1}$ $y_{1,2}$ y_{1,4}百万 y_1 , 1000000 $y_{2,1}$ y_2 , 1000000 $y_{2,4}$ 百万 14 $x_{12,1}$ $x_{12, 10}$ $y_{10,1}$ $y_{10,2}$ y_{10} , 1000000 y_{10,4} 百万】 $x_{13,1} \cdots x_{13,10}$ $x_{14,1}$ $x_{14.10}$

- → 速度がユーザー体験に直結する状況から来た問題; コマケェこた後述
- \rightarrow ただし x や y は $\mathbb{F}[2^8]$ という 有限体 の要素 有理数体 \mathbb{Q} , 実数体 \mathbb{R} , 複素数体 \mathbb{C} ではない
- ightarrow $\mathbb{F}[2^8]$ の積の実行 $\mathbb{F}[2^8] \ni x, y \mapsto x \cdot y$ は「マジ遅い」

10 かなりナゲェ行列 $x_{1,10}$ $x_{1,1}$ $y_{1,1}$ $y_{1,2}$ y_{1,4}百万 y_1 , 1000000 $y_{2,1}$ $y_{2,2}$ y_2 , 1000000 $y_{2,4}$ 百万 14 $x_{12,1}$ $x_{12, 10}$ $y_{10,1}$ $y_{10.2}$ y_{10} , 1000000 y_{10,4} 百万】 $x_{13,10}$ $x_{13, 1}$ $x_{14,1}$ $x_{14.10}$

- → 速度がユーザー体験に直結する状況から来た問題; コマケェこた後述
- → ただし x や y は $\mathbb{F}[2^8]$ という 有限体 の要素 有理数体 \mathbb{Q} , 実数体 \mathbb{R} , 複素数体 \mathbb{C} ではない
- \rightarrow $\mathbb{F}[2^8]$ の積の実行 $\mathbb{F}[2^8] \ni x, y \mapsto x \cdot y$ は「マジ遅い」
- → 「マジ遅い」演算を (10・4 百万)・14 回実行してたら終わる

10 かなりナゲェ行列 $x_{1,10}$ $x_{1,1}$ $y_{1.1}$ $y_{1,2}$ y_{1,4}百万 y_1 , 1000000 $x_{2,10}$ $y_{2,1}$ $y_{2,2}$ y_2 , 1000000 $y_{2,4}$ 百万 14 $x_{12,1}$ $x_{12,10}$ $y_{10,1}$ $y_{10.2}$ y_{10} , 1000000 $y_{10, 4}$ 百万」 $x_{13, 1}$ $x_{13,10}$ $x_{14,1}$ $x_{14.10}$

- → 速度がユーザー体験に<u>直結</u>する状況から来た問題; コマケェこた後述
- \rightarrow ただし x や y は $\mathbb{F}[2^8]$ という 有限体 の要素 有理数体 \mathbb{Q} , 実数体 \mathbb{R} , 複素数体 \mathbb{C} ではない
- \rightarrow $\mathbb{F}[2^8]$ の積の実行 $\mathbb{F}[2^8] \ni x, y \mapsto x \cdot y$ は「マジ遅い」
- → 「マジ遅い」演算を (10·4 百万)·14 回実行してたら終わる

なんとかする。プログラム理論のプロとして─ (有限体のプロでも、行列のプロでもないんで ♥)

Accelerating XOR-Based Erasure Coding using Program Optimization Techniques

Yuya Uezato Dwango, Co., Ltd. Japan yuuya_uezato@dwango.co.jp

ABSTRACT

Erasure coding (EC) affords data redundancy for large-scale systems. XOR-based EC is an easy-to-implement method for optimizing EC. This paper addresses a significant performance gap between the state-of-the-art XOR-based EC approach (~4.9 GB/s coding throughput) and Intel's high-performance EC library based on another approach (~6.7 GB/s). We propose a novel approach based on our observation that XOR-based EC virtually generates programs of a Domain Specific Language for XORing byte arrays. We formalize such programs as straight-line programs (SLPs) of compiler construction and optimize SLPs using various program optimization techniques. Our optimization flow is three-fold: 1) reducing the number of XORs using grammar compression algorithms; 2) reducing memory accesses using deforestation, a functional program optimization method; and 3) reducing cache misses using the (red-blue) pebble game of program analysis. We provide an experimental library, which outperforms Intel's library with an ~8.92 GB/s throughout.

CCS CONCEPTS

Software and its engineering → Compilers; Context specific languages; • Mathematics of computing → Coding theory;

can store 10-times more objects than through replication; however, we cannot recover data if five nodes are down. Another distributed system Ceph [24] offers RS(n, p) for any n and p. On Linux, we can use RAID-6, a codec similar to RS(n, 2) [11, 82]. Using EC instead of replication degrades the system performance since the encoding and decoding of EC are heavy computation and are required for each storing to and loading from a system. It is often stated that EC is suitable only for archiving cold frarely accessed data [29, 49, 93].

We clarify the pros and cons of EC by observing how RS works. To encode data using matrix multiplication (hereafter we use the acronym MM), RS adopts matrices over \mathbb{F}_{2^n} , the finite field with $2^n = 256$ elements. Since each element of \mathbb{F}_{2^n} is coded by one byte (8 bits), we can identify an N-bytes data as an N-elements array of \mathbb{F}_{2^n} . RS(n, p) encodes an N-bytes data D using an $(n + p) \times n$ Vandermonde matrix $V \in \mathbb{F}^{(n+p)\times n}_{n}$, which is crucial for decoding as we will see below, as follows:

$$\begin{array}{c|c}
 & n \\
 & \uparrow \\
 & \uparrow \\
 & p
\end{array}$$
 $\begin{array}{c|c}
 & \vec{d}_1 \\
 & \vec{b}_n
\end{array}$
 $\begin{array}{c|c}
 & \vec{b}_1 \\
 & \vec{b}_n \\
 & \vec{b}_{n+p}
\end{array}$

where \mathbb{F}_{2^8} is the MM over \mathbb{F}_{2^8} ; $\vec{d_i}$ is i-th $\frac{N}{n}$ -bytes block of

Accelerating XOR-Based Erasure Coding using Program Optimization Techniques Yuya Uezato DWANGO, Co., Ltd.

Optimizing matrix multiplication over two finite fields:

- (for Standard EC) $A \times B$ over $\mathbb{F}[2^8]$, (for XOR-based EC) $C \times D$ over $\mathbb{F}[2]$.
- ▶ Byte Finite Field $\mathbb{F}[2^8]$ is a field with 256 elements.
- lacktriangleright $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits.

Optimizing

What we need to know about $\mathbb{F}[2^8]$ and $\mathbb{F}[2]$.

 $\mathbb{F}[2^8]$ is a field with $2^8=256$ elements.

- ★ 1-byte (8-bits) data can be seen as an element of $\mathbb{F}[2^8]$.
- ► The definition is complex.
- ► Byte I (We will see it in the later page).
- ▶ Bit Fi

Optimizing

What we need to know about $\mathbb{F}[2^8]$ and $\mathbb{F}[2]$.

 $\mathbb{F}[2^8]$ is a field with $2^8=256$ elements.

- ★ 1-byte (8-bits) data can be seen as an element of $\mathbb{F}[2^8]$.
- The definition is complex.
 - (We will see it in the later page).

► Bit Fi

Byte

- $\mathbb{F}[2] = \{0,1\}$ is a field of bits.
 - ► Its addition is XOR ⊕.
 - Its multiplication is AND &.
 - ▶ 0 and 1 satisfy the following:

$$x \oplus 0 = 0 \oplus x = x$$
, $y \& 1 = 1 \& y = y$.

Optimizing matrix multiplication over two finite fields:

(for Standard EC)
$$A \times B$$
 over $\mathbb{F}[2^8]$, (for XOR-based EC) $C \times D$ over $\mathbb{F}[2]$.

- ▶ Byte Finite Field $\mathbb{F}[2^8]$ is a field with 256 elements.
- ightharpoonup Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits. A is small. B is large.

Optimizing matrix multiplication over two finite fields:

(for Standard EC)
$$A \times B$$
 over $\mathbb{F}[2^8]$, (for XOR-based EC) $C \times D$ over $\mathbb{F}[2]$.

- ▶ Byte Finite Field $\mathbb{F}[2^8]$ is a field with 256 elements.
- lacktriangleright Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits.

A is small. B is large. In this talk, as an example, we consider:

Optimizing matrix multiplication over two finite fields:

(for Standard EC)
$$A \times B$$
 over $\mathbb{F}[2^8]$, (for XOR-based EC) $C \times D$ over $\mathbb{F}[2]$.

- **Byte** Finite Field $\mathbb{F}[2^8]$ is a field with 256 elements.
- lacktriangleright Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits.

 ${\cal A}$ is small. ${\cal B}$ is large. In this talk, as an example, we consider:

10
 $\times_{\mathbb{F}[2^8]}$ 10 B

This setting comes from *erasure coding*.

What are Erasure Coding (EC) and XOR-Based EC

問題設定: 14台のマシンでストレージサーバを作れ

※ 一台の容量は 20TB;

問題設定: 14台のマシンでストレージサーバを作れ 読み込める?

※ 一台の容量は 20TB;

問題設定: 14台のマシンでストレージサーバを作れ 1 2 3 4 5

読み込める?

- ⊗ 四台壊れてても データ復元しる! (五台壊れてたら諦める)

問題設定: 14台のマシンでストレージサーバを作れ

読み込める?

- ❸ 四台壊れてても データ復元しる! (五台壊れてたら諦める)

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes ≤ 4 are down.
- 3. The total capacity of our server = 200TB.
 - $\blacktriangleright~14\cdot20-200=80\text{TB}$ can be used for data redundancy.

試しに RAID を使ってみる

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes ≤ 4 are down.
- 3. The total capacity of our server = 200TB.
 - ▶ $14 \cdot 20 200 = 80$ TB can be used for data redundancy.

試しに RAID を使ってみる

RAID-1 別名 Replication: ユーザからの入力を全台にコピーする。

- ▶ 冗長性最強: 13台壊れても大丈夫
- ▶ 空間効率悪し: 結局一台分なので今回は 20TB しかない

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes ≤ 4 are down.
- 3. The total capacity of our server = 200TB.
 - ▶ $14 \cdot 20 200 = 80$ TB can be used for data redundancy.

試しに RAID を使ってみる

RAID-1 別名 Replication: ユーザからの入力を全台にコピーする。

- ▶ 冗長性最強: 13 台壊れても大丈夫
- ▶ 空間効率悪し: 結局一台分なので今回は 20TB しかない

RAID-5 データを13分割し、parityと呼ばれるものを1つ作る。

- ▶ 冗長性は一応ある: 1台だけなら壊れても大丈夫
- ▶ 空間効率: 13 × 20TB = 260TB の総容量

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes ≤ 4 are down.
- 3. The total capacity of our server = 200TB.
 - ▶ $14 \cdot 20 200 = 80$ TB can be used for data redundancy.

試しに RAID を使ってみる

RAID-1 別名 Replication: ユーザからの入力を全台にコピーする。

- ▶ 冗長性最強: 13 台壊れても大丈夫
- ▶ 空間効率悪し: 結局一台分なので今回は 20TB しかない

RAID-5 データを13分割し、parityと呼ばれるものを1つ作る。

- ▶ 冗長性は一応ある: 1台だけなら壊れても大丈夫
- ▶ 空間効率: 13 × 20TB = 260TB の総容量

RAID-6 データを 12 分割し、parity を 2 つ作る。

- ▶ 冗長性はやや良い: 2台なら壊れても大丈夫
- ▶ 空間効率: 12 × 20TB = 240TB の総容量

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes ≤ 4 are down.
- 3. The total capacity of our server = 200TB.
 - $\blacktriangleright~14\cdot20-200=80{\rm TB}$ can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC $\mathbf{RS}(d=10,p=4)$.

- ▶ d: we can assume d-nodes are living. (d = 14 p = 10).
- ▶ p: we can permit nodes $\leq p$ go down. (p = 4).

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes < 4 are down.
- 3. The total capacity of our server = 200TB.
 - $\blacktriangleright~14\cdot20-200=80{\rm TB}$ can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC $\mathbf{RS}(d=10,p=4)$.

- ightharpoonup d: we can assume d-nodes are living. (d = 14 p = 10).
- ▶ p: we can permit nodes $\leq p$ go down. (p = 4).

IV-bytes	_	10	10	10	
D	encode	f_1	f_2	 f_{14} $\mathring{9}$	put f_i to node n_i .

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes < 4 are down.
- 3. The total capacity of our server = 200TB.
 - ▶ $14 \cdot 20 200 = 80$ TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC $\mathbf{RS}(d=10,p=4)$.

- ightharpoonup d: we can assume d-nodes are living. (d = 14 p = 10).
- ▶ p: we can permit nodes $\leq p$ go down. (p = 4).

$$\text{collect } 10 \, \boxed{f_i} \, \mathring{\varsigma} \quad \boxed{f_{i_1}} \, \boxed{f_{i_2}} \, \cdots \, \boxed{f_{i_{10}}} \overset{\frac{N}{10}}{=} \overset{\text{decode}}{=} \boxed{D}$$

V: Vandermonde matrix

$$\begin{array}{c|c}
\hline
N-\text{bytes} & \text{split} & \frac{N}{10} & \frac{N}{10} & \frac{N}{10} \\
\hline
D & & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & \\
D & & & & & \\
\hline
D & & & & & \\
D & & & & \\
D & & & & \\
D & & & & & \\$$

小さい行列で計算してみる

$$\begin{bmatrix}
\vec{x}_1 \\
\vec{x}_2 \\
\vec{x}_3 \\
\vec{x}_4 \\
\vec{x}_5
\end{bmatrix} \times \begin{bmatrix}
\vec{x}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 & \cdots & \vec{x}_1 \otimes \vec{y}_n \\
\vec{x}_2 \otimes \vec{y}_1 & \cdots & \vec{x}_2 \otimes \vec{y}_n \\
\vec{x}_3 \otimes \vec{y}_1 & \cdots & \vec{x}_3 \otimes \vec{y}_n \\
\vec{x}_4 \otimes \vec{y}_1 & \cdots & \vec{x}_4 \otimes \vec{y}_n
\end{bmatrix} = \begin{pmatrix}
\vec{x}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 & \cdots & \vec{x}_1 \otimes \vec{y}_n \\
\vec{x}_2 \otimes \vec{y}_1 \otimes \vec{y}_1 & \cdots & \vec{x}_3 \otimes \vec{y}_n \\
\vec{x}_4 \otimes \vec{y}_1 \otimes \vec{y}_1 & \cdots & \vec{x}_4 \otimes \vec{y}_n \\
\vec{x}_5 \otimes \vec{y}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 \otimes \vec{y}_1
\end{bmatrix} data lost \begin{pmatrix}
\vec{x}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 & \cdots & \vec{y}_1 \otimes \vec{y}_n \\
\vec{x}_2 \otimes \vec{y}_1 \otimes \vec{y}_1 \otimes \vec{y}_2 \otimes \vec{y}_n & \cdots & \vec{y}_n \otimes \vec{y}_n \\
\vec{x}_4 \otimes \vec{y}_1 \otimes \vec{y}_1
\end{pmatrix} data lost \begin{pmatrix}
\vec{x}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 \otimes \vec{y}_1 & \cdots & \vec{y}_n \otimes \vec{y}_n \\
\vec{x}_4 \otimes \vec{y}_1 \otimes \vec{y}_1
\end{pmatrix} data lost \begin{pmatrix}
\vec{x}_1 \otimes \vec{y}_1 \otimes \vec{y}$$

サーバ 2,5 が応答せず、データが欠けて、実際に集まったのが M という状況

小さい行列で計算してみる

$$\begin{bmatrix}
\vec{x}_1 \\
\vec{x}_2 \\
\vec{x}_3 \\
\vec{x}_4 \\
\vec{x}_5
\end{bmatrix} \times \begin{bmatrix}
\vec{r} - \cancel{\beta} \uparrow \cancel{y} \mid \mathcal{D} \\
\vec{r} - \cancel{\beta} \uparrow \cancel{y} \mid \mathcal{D} \\
\vec{x}_1 \circ y_1^{\downarrow} & \cdots & \vec{x}_1 \circ y_n^{\downarrow} \\
\vec{x}_2 \circ y_1^{\downarrow} & \cdots & \vec{x}_2 \circ y_n^{\downarrow} \\
\vec{x}_3 \circ y_1^{\downarrow} & \cdots & \vec{x}_3 \circ y_n^{\downarrow} \\
\vec{x}_4 \circ y_1^{\downarrow} & \cdots & \vec{x}_4 \circ y_n^{\downarrow}
\end{bmatrix} \xrightarrow{\text{data lost}} \begin{bmatrix}
\vec{x}_1 \circ y_1^{\downarrow} \cdots \vec{x}_1 \circ y_n^{\downarrow} \\
\vec{x}_2 \circ y_1^{\downarrow} \cdots \vec{x}_2 \circ y_n^{\downarrow} \\
\vec{x}_3 \circ y_1^{\downarrow} \cdots \vec{x}_3 \circ y_n^{\downarrow} \\
\vec{x}_4 \circ y_1^{\downarrow} & \cdots & \vec{x}_5 \circ y_n^{\downarrow}
\end{bmatrix}$$

生成行列から2行目と5行目を削除した行列 $\mathcal G$ をかけても同じ:

サーバ 2.5 が応答せず、データが欠けて、実際に集まったのが M という状況

小さい行列で計算してみる

生成行列
$$\begin{pmatrix}
\vec{x}_1 \\
\vec{x}_2 \\
\vec{x}_3 \\
\vec{x}_4 \\
\vec{x}_5
\end{pmatrix}
\times
\begin{pmatrix}
\vec{y}_1 & \vec{y}_2 & \cdots & \vec{y}_n \\
\vec{y}_1 & \vec{y}_2 & \cdots & \vec{y}_n \\
\end{pmatrix} = \begin{pmatrix}
\vec{x}_1 \odot y_1^{\downarrow} & \cdots & \vec{x}_1 \odot y_n^{\downarrow} \\
\vec{x}_2 \odot y_1^{\downarrow} & \cdots & \vec{x}_2 \odot y_n^{\downarrow} \\
\vec{x}_3 \odot y_1^{\downarrow} & \cdots & \vec{x}_3 \odot y_n^{\downarrow} \\
\vec{x}_4 \odot y_1^{\downarrow} & \cdots & \vec{x}_4 \odot y_n^{\downarrow} \\
\vec{x}_5 \odot y_1^{\downarrow} & \cdots & \vec{x}_5 \odot y_n^{\downarrow}
\end{pmatrix}$$
data lost
$$\begin{pmatrix}
\vec{x}_1 \odot y_1^{\downarrow} \cdots \vec{x}_1 \odot y_n^{\downarrow} \\
\vec{x}_2 \odot y_1^{\downarrow} \cdots \vec{x}_2 \odot y_n^{\downarrow} \\
\vec{x}_3 \odot y_1^{\downarrow} \cdots \vec{x}_3 \odot y_n^{\downarrow} \\
\vec{x}_4 \odot y_1^{\downarrow} \cdots \vec{x}_4 \odot y_n^{\downarrow} \\
\vec{x}_5 \odot y_1^{\downarrow} \cdots \vec{x}_5 \odot y_n^{\downarrow}
\end{pmatrix}$$

生成行列から2行目と5行目を削除した行列 $\mathcal G$ をかけても同じ:

サーバ 2.5 が応答せず、データが欠けて、実際に集まったのが M という状況

よって、逆行列があれば、 $\mathcal{G}^{-1} \times \mathcal{M} = \mathcal{G}^{-1} \times (\mathcal{G} \times \mathcal{D}) = \mathcal{D}$ で元データ \mathcal{D} が復元

How large is N in a real application?

In my company, D is a short video whose size is 10MB–40MB:

- ▶ The size of 10 secs videos of 1080p & 30fps $\sim 12 \mathrm{MB}$.
- ▶ The size of 5 secs videos of 4K & 30fps $\sim 35 \mathrm{MB}$.

- $ightharpoonup \mathcal{W}$: square submatrix of \mathcal{V}
- We have W^{-1} since V is a Vandermonde matrix.

 $\frac{\frac{N}{10}}{f_{i_2}} \cdots f_{i_{11}}$

自己紹介

▶ 筑波大学の SCORE 研出身の博士です。博論はオートマトンのお話。

前職がドワンゴです dwango

いう 分散オブジェクトストレージを

作っていて・改良していて・基礎研究しています。

https://github.com/frugalos/frugalos

自己紹介

いま何してる人**? ※** 2023 年 4 月~

の AI Lab. の Algorithms チーム (リサーチャー)

- 🌟 2023年9月~ NII(国立情報学研究所)で特別研究員
- ☀ 2023年~東工大で非常勤講師

自己紹介

いま何してる人?

の AI Lab. の Algorithms チーム (リサーチャー)

- ★ 2023 年 9 月~ NII (国立情報学研究所)で特別研究員
- * 2023 年~ 東工大で非常勤講師

筑波大学との関わりは?

- 🌟 2008 年に情報学群情報科学類に入学しました
- 🌟 2018 年に博士(工学)で卒業しました
- 🌟 いまはもうない「記号計算研究室(SCORE 研)」の出身です
- 🌟 学部 1 年の時に 15 単位かなんかしら取らなくて留年してます
- 🌟 WORD 編集部という、極めて良い組織、に所属していました

Optimizing $\mathcal{V} imes_{\mathbb{F}[2^8]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}[2^8]} D$?

A. Multiplication of $\mathbb{F}[2^8]$:

Optimizing $\mathcal{V} imes_{\mathbb{F}[2^8]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}[2^8]} D$?

A. Multiplication of $\mathbb{F}[2^8]$:

▶ Internally, $p \in \mathbb{F}[2^8]$ is a 7-degree polynomial over $\mathbb{F}[2]$:

$$b_7 x^7 + b_6 x^6 + \dots + b_1 x + b_0$$
 where $b_i \in \mathbb{F}[2]$.

Optimizing $\mathcal{V} \times_{\mathbb{F}[2^8]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}^{[2^8]}} D$?

- A. Multiplication of $\mathbb{F}[2^8]$:
 - ▶ Internally, $p \in \mathbb{F}[2^8]$ is a 7-degree polynomial over $\mathbb{F}[2]$:

$$b_7x^7 + b_6x^6 + \dots + b_1x + b_0$$
 where $b_i \in \mathbb{F}[2]$.

 $p_1 + p_2$ of $\mathbb{F}[2^8]$ is the polynomial addition. Easy because just componentwise XOR:

$$(b_7 \oplus b_7')x^7 + (b_6 \oplus b_6')x^6 + \dots + (b_0 \oplus b_0').$$

Optimizing $\mathcal{V} imes_{\mathbb{F}[2^8]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}[2^8]} D$?

- A. Multiplication of $\mathbb{F}[2^8]$:
 - ▶ Internally, $p \in \mathbb{F}[2^8]$ is a 7-degree polynomial over $\mathbb{F}[2]$:

$$b_7x^7 + b_6x^6 + \dots + b_1x + b_0$$
 where $b_i \in \mathbb{F}[2]$.

▶ $p_1 + p_2$ of $\mathbb{F}[2^8]$ is the polynomial addition. Easy because just componentwise XOR:

$$(b_7 \oplus b_7')x^7 + (b_6 \oplus b_6')x^6 + \dots + (b_0 \oplus b_0').$$

- ▶ On the other hand, $p_1 \cdot p_2$ of $\mathbb{F}[2^8]$ is CPU-heavy and slow:
 - 1. We do the 7-degree polynomial multiplication $p_1 \times p_2$.
 - 2. We take the modulo by a special polynomial $(p_1 \times p_2) \mod p$.

Optimizing $\mathcal{V} \times_{\mathbb{F}[2^8]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}[2^8]} D$?

- A. Multiplication of $\mathbb{F}[2^8]$:
 - ▶ Internally, $p \in \mathbb{F}[2^8]$ is a 7-degree polynomial over $\mathbb{F}[2]$:

$$b_7 x^7 + b_6 x^6 + \dots + b_1 x + b_0$$
 where $b_i \in \mathbb{F}[2]$.

▶ $p_1 + p_2$ of $\mathbb{F}[2^8]$ is the polynomial addition. Easy because just componentwise XOR:

$$(b_7 \oplus b_7')x^7 + (b_6 \oplus b_6')x^6 + \dots + (b_0 \oplus b_0').$$

- ▶ On the other hand, $p_1 \cdot p_2$ of $\mathbb{F}[2^8]$ is CPU-heavy and slow:
 - 1. We do the 7-degree polynomial multiplication $p_1 \times p_2$.
 - 2. We take the modulo by a special polynomial $(p_1 \times p_2) \mod p$.

XOR-based EC is one way to vanish \cdot of $\mathbb{F}[2^8]$.

まず簡単なところから。素数 p について F[p] を構成するには?

まず簡単なところから。素数 p について F[p] を構成するには?

▶ 足し算は $x+y \pmod{p}$ とすれば良い。加算逆元 -x も簡単。

まず簡単なところから。素数 p について F[p] を構成するには?

- ▶ 足し算は $x+y \pmod{p}$ とすれば良い。加算逆元 -x も簡単。
- ▶ 掛け算も $x \cdot y \pmod{p}$ としたい。乗算逆元 x^{-1} の保証は?

まず簡単なところから。素数 p について F[p] を構成するには?

- ▶ 足し算は $x+y \pmod{p}$ とすれば良い。加算逆元 -x も簡単。
- ▶ 掛け算も $x \cdot y \pmod{p}$ としたい。乗算逆元 x^{-1} の保証は?
- ▶ 次の性質を使います:

$$\forall x. ! \exists y. x \cdot y = 1 \pmod{p}$$

証明は?

まず簡単なところから。素数 p について F[p] を構成するには?

- ▶ 足し算は $x+y \pmod{p}$ とすれば良い。加算逆元 -x も簡単。
- ▶ 掛け算も $x \cdot y \pmod{p}$ としたい。乗算逆元 x^{-1} の保証は?
- ▶ 次の性質を使います:

$$\forall x. ! \exists y. x \cdot y = 1 \pmod{p}$$

証明は? 背理法で

1. yが存在しないまたは複数存在すると

まず簡単なところから。素数 p について F[p] を構成するには?

- ▶ 足し算は $x+y \pmod{p}$ とすれば良い。加算逆元 -x も簡単。
- ▶ 掛け算も $x \cdot y \pmod{p}$ としたい。乗算逆元 x^{-1} の保証は?
- ▶ 次の性質を使います:

$$\forall x. ! \exists y. x \cdot y = 1 \pmod{p}$$

- 1. y が存在しないまたは複数存在すると
- 2. $x \cdot z = x \cdot z' \pmod{p}$ なる相異なる数 z < z' が鳩の巣原理から存在

まず簡単なところから。素数 p について F[p] を構成するには?

- ▶ 足し算は $x+y \pmod{p}$ とすれば良い。加算逆元 -x も簡単。
- ▶ 掛け算も $x \cdot y \pmod{p}$ としたい。乗算逆元 x^{-1} の保証は?
- ▶ 次の性質を使います:

$$\forall x. \, ! \exists y. \, x \cdot y = 1 \pmod{p}$$

- 1. y が存在しないまたは複数存在すると
- 2. $x \cdot z = x \cdot z' \pmod{p}$ なる相異なる数 z < z' が鳩の巣原理から存在
- 3. $x \cdot (z'-z) = 0 \pmod{p}$ なので x か z'-z が p の倍数

まず簡単なところから。素数 p について F[p] を構成するには?

- ▶ 足し算は $x+y \pmod{p}$ とすれば良い。加算逆元 -x も簡単。
- ▶ 掛け算も $x \cdot y \pmod{p}$ としたい。乗算逆元 x^{-1} の保証は?
- ▶ 次の性質を使います:

$$\forall x. \, ! \exists y. \, x \cdot y = 1 \pmod{p}$$

- 1. yが存在しないまたは複数存在すると
- 2. $x \cdot z = x \cdot z' \pmod{p}$ なる相異なる数 z < z' が鳩の巣原理から存在
- 3. $x \cdot (z'-z) = 0 \pmod{p}$ なので x か z'-z が p の倍数
- 4. しかしxもz'-zもp未満である。よって矛盾。

まず簡単なところから。素数 p について F[p] を構成するには?

- ▶ 足し算は $x + y \pmod{p}$ とすれば良い。加算逆元 -x も簡単。
- ▶ 掛け算も $x \cdot y \pmod{p}$ としたい。乗算逆元 x^{-1} の保証は?
- ▶ 次の性質を使います:

$$\forall x. \, ! \exists y. \, x \cdot y = 1 \pmod{p}$$

- 1. yが存在しないまたは複数存在すると
- 2. $x \cdot z = x \cdot z' \pmod{p}$ なる相異なる数 z < z' が鳩の巣原理から存在
- 3. $x \cdot (z'-z) = 0 \pmod{p}$ なので x か z'-z が p の倍数
- 4. しかしx も z'-z も p 未満である。よって矛盾。
- ▶ もちろんフェルマーの小定理を用いても良いです:

$$\forall a. (a \bmod p \neq 0) \implies a^{p-1} = 1 \pmod p$$

要素数が素数 p の場合は簡単

加算 $x \oplus y$ の定義 = 普通に足して剰余とる $(x+y) \bmod p$ 乗算 $x \otimes y$ の定義 = 普通に掛けて剰余とる $(x \cdot y) \bmod p$

要素数が素数 p の場合は簡単

加算
$$x \oplus y$$
 の定義 = 普通に足して剰余とる $(x + y) \mod p$ 乗算 $x \otimes y$ の定義 = 普通に掛けて剰余とる $(x \cdot y) \mod p$

演算表

$$\begin{array}{c|c} 0 & 1 \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

要素数が素数 p の場合は簡単

加算 $x \oplus y$ の定義 = 普通に足して剰余とる $(x+y) \bmod p$ 乗算 $x \otimes y$ の定義 = 普通に掛けて剰余とる $(x \cdot y) \bmod p$

演算表

要素数が素数 p の場合は簡単

加算
$$x \oplus y$$
 の定義 = 普通に足して剰余とる $(x + y) \mod p$ 乗算 $x \otimes y$ の定義 = 普通に掛けて剰余とる $(x \cdot y) \mod p$

演算表

チェック項目:

① 加算逆元はある? x に対して -x があるか?

要素数が素数 p の場合は簡単

加算
$$x \oplus y$$
 の定義 = 普通に足して剰余とる $(x + y) \mod p$ 乗算 $x \otimes y$ の定義 = 普通に掛けて剰余とる $(x \cdot y) \mod p$

演算表

⊕
$$\begin{vmatrix} 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$
 これって、bit XOR やん!! (そうです) $\frac{\otimes |0|}{0}$ 0 0 これって、bit AND やん!! (そうです) 1 0 1

チェック項目:

① 加算逆元はある? x に対して -x があるか? **ある** $x \oplus x = 0$

要素数が素数 p の場合は簡単

加算 $x \oplus y$ の定義 = 普通に足して剰余とる $(x + y) \mod p$ 乗算 $x \otimes y$ の定義 = 普通に掛けて剰余とる $(x \cdot y) \mod p$

演算表

チェック項目:

① 加算逆元はある? x に対して -x があるか? **ある** $x \oplus x = 0$ ② 積逆元はある? $x \neq 0$ に対して $\frac{1}{x}$ があるか?

要素数が素数 p の場合は簡単

加算 $x \oplus y$ の定義 = 普通に足して剰余とる $(x + y) \mod p$ 乗算 $x \otimes y$ の定義 = 普通に掛けて剰余とる $(x \cdot y) \mod p$

演算表

チェック項目:

① 加算逆元はある? x に対して -x があるか? **ある** $x \oplus x = 0$ ② 積逆元はある? $x \neq 0$ に対して $\frac{1}{x}$ があるか? **ある** $1 \otimes 1 = 1$

練習問題: 『[7] = {0,1,2,3,4,5,6} を構成しよう 足し算 $x \oplus y$ は普通の足し算をして 7 で割る: $(x+y) \mod 7$

足し昇
$$x \oplus y$$
 は普通の足し昇をしてすで割る: $(x+y) \mod 7$ 全ての数 i に加算逆元 x_i (つまり $-i$) は存在するか調べよ:

 $0 \oplus x_0 = 0$, $1 \oplus x_1 = 0$, $2 \oplus x_2 = 0$, $3 \oplus x_3 = 0$, $4 \oplus x_4 = 0$, $5 \oplus x_5 = 0$,

$$0 \oplus x_0 = 0, \quad 1 \oplus x_1 = 0, \quad 2 \oplus x_2 = 0$$

 $3 \oplus x_3 = 0, \quad 4 \oplus x_4 = 0, \quad 5 \oplus x_5 = 0$
 $6 \oplus x_6 = 0,$

足し算 $x \oplus y$ は普通の足し算をして 7 で割る: $(x + y) \mod 7$ 全ての数 i に加算逆元 x_i (つまり -i)は存在するか調べよ:

$$0 \oplus x_0 = 0, \quad 1 \oplus x_1 = 0, \quad 2 \oplus x_2 = 0, 3 \oplus x_3 = 0, \quad 4 \oplus x_4 = 0, \quad 5 \oplus x_5 = 0, 6 \oplus x_6 = 0,$$

 $6 \oplus x_6 = 0,$ 掛け算 $x \otimes y$ は普通の掛け算をして 7 で割る: $(x \times y) \bmod 7$

全ての非零数 i に積逆元 x_i (つまり $\frac{1}{i}$) が存在するか調べよ: $1 \otimes x_1 = 1, \quad 2 \otimes x_2 = 1, \\ 3 \otimes x_3 = 1, \quad 4 \otimes x_4 = 1, \quad 5 \otimes x_5 = 1, \\ 6 \otimes x_6 = 1,$

足し算 $x \oplus y$ は普通の足し算をして 7 で割る: $(x+y) \mod 7$ 全ての数 i に加算逆元 x_i (つまり -i) は存在するか調べよ:

$$0 \oplus x_0 = 0, \quad 1 \oplus x_1 = 0, \quad 2 \oplus x_2 = 0, 3 \oplus x_3 = 0, \quad 4 \oplus x_4 = 0, \quad 5 \oplus x_5 = 0, 6 \oplus x_6 = 0,$$

掛け算 $x \otimes y$ は普通の掛け算をして 7 で割る: $(x \times y) \mod 7$ 全ての非零数 i に積逆元 x_i (つまり $\frac{1}{i}$)が存在するか調べよ:

$$1 \otimes x_1 = 1, \quad 2 \otimes x_2 = 1, 3 \otimes x_3 = 1, \quad 4 \otimes x_4 = 1, \quad 5 \otimes x_5 = 1, 6 \otimes x_6 = 1,$$

次を満たす数 α を(積の)生成元と呼ぶ。これを求めよ α α^2 α^3 α^4 α^5 α^6 が全て異なる

足し算 $x \oplus y$ は普通の足し算をして 7 で割る: $(x+y) \mod 7$ 全ての数 i に加算逆元 x_i (つまり -i) は存在するか調べよ:

答え

$$0 \oplus 0 = 0, \ 1 \oplus 6 = 0, \ 2 \oplus 5 = 0,$$

 $3 \oplus 4 = 0, \ 4 \oplus 3 = 0, \ 5 \oplus 2 = 0, \ 6 \oplus 1 = 0$
つまり $-1 = 6, \ -2 = 5, \ -3 = 4, \ -4 = 3, \ -5 = 2, \ -6 = 1$

掛け算 $x \otimes y$ は普通の掛け算をして 7 で割る: $(x \times y) \mod 7$ 全ての非零数 i に積逆元 x_i (つまり $\frac{1}{i}$) が存在するか調べよ:

$$1 \otimes x_1 = 1, \quad 2 \otimes x_2 = 1, 3 \otimes x_3 = 1, \quad 4 \otimes x_4 = 1, \quad 5 \otimes x_5 = 1, 6 \otimes x_6 = 1,$$

次を満たす数 α を(積の)生成元と呼ぶ。これを求めよ

$$\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6$$
 が全て異なる

足し算 $x \oplus y$ は普通の足し算をして 7 で割る: $(x+y) \mod 7$ 全ての数 i に加算逆元 x_i (つまり -i) は存在するか調べよ:

答え $0 \oplus 0 = 0, \ 1 \oplus 6 = 0, \ 2 \oplus 5 = 0, \ 3 \oplus 4 = 0, \ 4 \oplus 3 = 0, \ 5 \oplus 2 = 0, \ 6 \oplus 1 = 0$ つまり $-1 = 6, \ -2 = 5, \ -3 = 4, \ -4 = 3, \ -5 = 2, \ -6 = 1$

掛け算 $x \otimes y$ は普通の掛け算をして 7 で割る: $(x \times y) \mod 7$ 全ての非零数 i に積逆元 x_i (つまり $\frac{1}{2}$) が存在するか調べよ:

1
$$\otimes$$
 1 = 1, 2 \otimes 4 = 1, 3 \otimes 5 = 1,
4 \otimes 2 = 1, 5 \otimes 3 = 1, 6 \otimes 6 = 1
つまり $\frac{1}{1}$ = 1, $\frac{1}{2}$ = 4, $\frac{1}{3}$ = 5, $\frac{1}{4}$ = 2, $\frac{1}{5}$ = 3, $\frac{1}{6}$ = 6

次を満たす数 α を(積の)生成元と呼ぶ。これを求めよ

$$\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6$$
 が全て異なる

足し算 $x \oplus y$ は普通の足し算をして 7 で割る: $(x + y) \mod 7$ 全ての数 i に加算逆元 x_i (つまり -i) は存在するか調べよ:

答え

$$0 \oplus 0 = 0, \ 1 \oplus 6 = 0, \ 2 \oplus 5 = 0, 3 \oplus 4 = 0, \ 4 \oplus 3 = 0, \ 5 \oplus 2 = 0, \ 6 \oplus 1 = 0$$

つまり
$$-1=6$$
, $-2=5$, $-3=4$, $-4=3$, $-5=2$, $-6=1$

掛け算 $x \otimes y$ は普通の掛け算をして 7 で割る: $(x \times y) \mod 7$ 全ての非零数 i に積逆元 x_i (つまり $\frac{1}{2}$) が存在するか調べよ:

答え

$$\begin{array}{c} 1\otimes 1=1,\ 2\otimes 4=1,\ 3\otimes 5=1,\\ 4\otimes 2=1,\ 5\otimes 3=1,\ 6\otimes 6=1\\ \circlearrowleft\sharp \ 0\ \frac{1}{1}=1,\ \frac{1}{2}=4,\ \frac{1}{2}=5,\ \frac{1}{4}=2,\ \frac{1}{5}=3,\ \frac{1}{6}=6 \end{array}$$

次を満たす数 α を(積の)生成元と呼ぶ。これを求めよ

答え:
$$\alpha = 3$$
; $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$ ($\alpha = 5$ も解)

- p=2 の場合について確認: $\mathbb{F}[2] = \{0,1\}$ です。
 - ▶ 加算は $x + y \pmod{2}$ で、これは実質 bit-XOR
 - ▶ 乗算は $x \cdot y \pmod{2}$ で、これは実質 bit-AND

 $\mathbb{F}[2^8] = \{0, 1, 2, \dots, 255\}$ の場合はどうか?

- p=2 の場合について確認: $\mathbb{F}[2] = \{0,1\}$ です。
 - ▶ 加算は $x + y \pmod{2}$ で、これは実質 bit-XOR
 - ▶ 乗算は $x \cdot y \pmod{2}$ で、これは実質 bit-AND
- $\mathbb{F}[2^8] = \{0, 1, 2, \dots, 255\}$ の場合はどうか?
 - $ightharpoonup x \cdot y \pmod{256}$ で乗算を定義すると、一般に逆元が存在しないです。
 - ▶ 例: $2 \cdot y = 1 \pmod{256}$ とする y がない(2 の積逆元がない)。

p=2 の場合について確認: $\mathbb{F}[2]=\{0,1\}$ です。

- ▶ 加算は $x + y \pmod{2}$ で、これは実質 bit-XOR
- ▶ 乗算は $x \cdot y \pmod{2}$ で、これは実質 bit-AND

 $\mathbb{F}[2^8] = \{0, 1, 2, \dots, 255\}$ の場合はどうか?

- $ightharpoonup x \cdot y \pmod{256}$ で乗算を定義すると、一般に逆元が存在しないです。
- ▶ 例: $2 \cdot y = 1 \pmod{256}$ とする y がない(2 の積逆元がない)。

この問題を克服するために

$$k_7x^7 + k_6x^6 + \dots + k_1x + k_0 \quad (k_i \in \mathbb{F}[2])$$

という多項式全体(濃度は28)を使えるというのが大きいです。

p=2 の場合について確認: $\mathbb{F}[2]=\{0,1\}$ です。

- ▶ 加算は $x + y \pmod{2}$ で、これは実質 bit-XOR
- ▶ 乗算は $x \cdot y \pmod{2}$ で、これは実質 bit-AND

 $\mathbb{F}[2^8] = \{0, 1, 2, \dots, 255\}$ の場合はどうか?

- $ightharpoonup x \cdot y \pmod{256}$ で乗算を定義すると、一般に逆元が存在しないです。
- ▶ 例: $2 \cdot y = 1 \pmod{256}$ とする y がない(2 の積逆元がない)。

この問題を克服するために

$$k_7x^7 + k_6x^6 + \dots + k_1x + k_0 \quad (k_i \in \mathbb{F}[2])$$

という多項式全体(濃度は2⁸)を使えるというのが大きいです。 7次多項式の積は7次を超えてしまうので、 素数っぽい振る舞いをする8次多項式(=既約多項式)で割ります。 原始多項式というフェルマーの小定理っぽいのを満たすものもあります。

XOR-based EC: From $\mathbb{F}[2^8]$ to BitMatrix ($\mathbb{F}[2]$ -Matrix)

▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in \mathbb{F}[2]$.

XOR-based EC: From $\mathbb{F}[2^8]$ to BitMatrix ($\mathbb{F}[2]$ -Matrix)

- ▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in \mathbb{F}[2]$.
- ▶ There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}[2^8] \to \mathbf{8}$ $\mathbb{F}[2]$ I.e.,

XOR-based EC: From $\mathbb{F}[2^8]$ to BitMatrix ($\mathbb{F}[2]$ -Matrix)

- ▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in \mathbb{F}[2]$.
- ▶ There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}[2^8] \to 8$ $\mathbb{F}[2]$ I.e.,

$$\forall x, y \in \mathbb{F}[2^8]. \begin{cases} x + y = \mathcal{B}^{-1}(\mathcal{B}(x) + \mathcal{B}(y)), \\ x \cdot y = \mathcal{B}^{-1}(\mathcal{B}(x) \times \mathcal{B}(y)) \end{cases}$$

XOR-based EC: From $\mathbb{F}[2^8]$ to BitMatrix ($\mathbb{F}[2]$ -Matrix)

- ▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in \mathbb{F}[2]$.
- ▶ There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}[2^8] \to 8$ $\mathbb{F}[2]$ I.e.,

$$\forall x, y \in \mathbb{F}[2^8]. \begin{cases} x + y = \mathcal{B}^{-1}(\mathcal{B}(x) + \mathcal{B}(y)), \\ x \cdot y = \mathcal{B}^{-1}(\mathcal{B}(x) \times \mathcal{B}(y)) \end{cases}$$

Prop: Emulate $\mathcal{W}^{-1} \times (\mathcal{W} \times D) = D$ in the $\mathbb{F}[2]$ world

$$\mathcal{B}(\mathcal{W}^{-1}) \overset{\mathbb{F}[2]}{\times} (\mathcal{B}(\mathcal{W}) \overset{\mathbb{F}[2]}{\times} \widetilde{D}) = \mathcal{B}(\mathcal{W}^{-1} \times \mathcal{W}) \times \widetilde{D} = \widetilde{D}.$$

XOR-based EC: From $\mathbb{F}[2^8]$ to BitMatrix ($\mathbb{F}[2]$ -Matrix)

- ▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in 8|\mathbb{F}[2]|$.
- ▶ There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}[2^8] o 8$ $\boxed{\mathbb{F}[2]}$

$$\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \times_{\mathbb{F}[2^8]} \begin{pmatrix} d_1 & \cdots \\ d_2 & \cdots \end{pmatrix} = \begin{pmatrix} x_1 \cdot d_1 + x_2 \cdot d_2 & \cdots \\ x_3 \cdot d_1 + x_4 \cdot d_4 & \cdots \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 0 & 1 & \cdots \\
0 & 0 & 1 & 1 & \cdots \\
0 & 1 & 1 & 0 & \cdots \\
1 & 0 & 0 & 1 & \cdots
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & \cdots \\ 0 & 0 & 1 & 1 & \cdots \\ 0 & 1 & 1 & 0 & \cdots \\ 1 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} \vec{x}_1 \\ \vec{x}_2 \\ \vec{x}_3 \\ \vec{x}_4 \\ \vdots \end{pmatrix} = \begin{pmatrix} \vec{x}_1 \oplus \vec{x}_2 \oplus \vec{x}_4 \oplus \cdots \\ \vec{x}_3 \oplus \vec{x}_4 \oplus \cdots \\ \vec{x}_2 \oplus \vec{x}_3 \oplus \cdots \\ \vec{x}_1 \oplus \vec{x}_4 \oplus \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 \oplus is byte-array XOR.

1-byte and 8-bits

XOR-based EC: 演算の種類が一種類になった! しかもバイト列のXORするだけ これは SIMD化 が効きそう!

There is an injecti

$$\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \times_{\mathbb{F}[2^8]} \begin{pmatrix} d_1 & \cdots \\ d_2 & \cdots \end{pmatrix} = \begin{pmatrix} x_1 \cdot d_1 + x_2 \overline{\cdot d_2} & \cdots \\ x_3 \cdot d_1 + x_4 \cdot d_4 & \cdots \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & \cdots \\ 0 & 0 & 1 & 1 & \cdots \\ 0 & 1 & 1 & 0 & \cdots \\ 1 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} \vec{x}_1 \\ \vec{x}_2 \\ \vec{x}_3 \\ \vec{x}_4 \\ \vdots \end{pmatrix} = \begin{pmatrix} \vec{x}_1 \oplus \vec{x}_2 \oplus \vec{x}_4 \oplus \cdots \\ \vec{x}_3 \oplus \vec{x}_4 \oplus \cdots \\ \vec{x}_1 \oplus \vec{x}_4 \oplus \cdots \\ \vec{x}_1 \oplus \vec{x}_4 \oplus \cdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

 \oplus is byte-array XOR.

Comparing MM over $\mathbb{F}[2^8]$ and MM over $\mathbb{F}[2]$ for Encoding

Trade-off in Matrix Multiplication	$\mathbf{RS}(10,4)$ by $\mathbb{F}[2^8]$	$oxed{\mathbf{RS}(10,4)}$ by $\mathbb{F}[2]$
Number of Core Operation	\mathcal{V} : 14 $\boxed{\mathbb{F}[2^8]}$	$\mathcal{B}(\mathcal{V})$: 112 $\boxed{\mathbb{F}[2]}$
Speed of Core Operation	$+$ of $\mathbb{F}[2^8]$ is fast \cdot of $\mathbb{F}[2^8]$ is slow	bytevec-XOR ⊕ is fast (SIMDable)

Comparing MM over $\mathbb{F}[2^8]$ and MM over $\mathbb{F}[2]$ for Encoding

Trade-off in Matrix Multiplication	$\mathbf{RS}(10,4)$ by $\mathbb{F}[2^8]$	$oxed{\mathbf{RS}(10,4)}$ by $\mathbb{F}[2]$
Number of Core Operation	\mathcal{V} : 14 $\boxed{\mathbb{F}[2^8]}$	$\mathcal{B}(\mathcal{V})$: 112 $\boxed{\mathbb{F}[2]}$
Speed of Core Operation	$+$ of $\mathbb{F}[2^8]$ is fast \cdot of $\mathbb{F}[2^8]$ is slow	bytevec-XOR \oplus is fast (SIMDable)

Encoding Throughput Comparison (on Intel CPU):

, ,	$ ISA ext{-}L^{\clubsuit}\ \mathbb{F}[2^8]$	State-of-the-art \blacksquare $\mathbb{F}[2]$	
RS(10, 4)	6.79	4.94	
RS(10, 3)	6.78	6.15	
RS(10, 4) RS(10, 3) RS(9, 3)	7.31	6.17	

- ISA-L: Intel's EC library https://github.com/intel/isa-1
- ♠ T. Zhou & C. Tian. 2020. Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques.

Comparing MM over $\mathbb{F}[2^8]$ and MM over $\mathbb{F}[2]$ for Encoding

Trade-off in Matrix Multiplication	$ ightharpoonup \mathbf{RS}(10,4)$ by $\mathbb{F}[2^8]$	$oxed{\mathbf{RS}(10,4)}$ by $\mathbb{F}[2]$
Number of Core Operation	\mathcal{V} : 14 $\boxed{\mathbb{F}[2^8]}$	$\mathcal{B}(\mathcal{V})$: 112 $\boxed{\mathbb{F}[2]}$
Speed of Core Operation	$+$ of $\mathbb{F}[2^8]$ is fast \cdot of $\mathbb{F}[2^8]$ is slow	bytevec-XOR ⊕ is fast (SIMDable)

Encoding Throughput Comparison (on Intel CPU):

GB/s	$ ISA\text{-}L^{\clubsuit} \mathbb{F}[2^8]$	State-of-the-art \bullet $\mathbb{F}[2]$	$Ours(New!) \mathbb{F}[2] \big $
RS(10, 4)	6.79	4.94	8.92
RS(10, 3)	6.78	6.15	11.78
RS(9, 3)	7.31	6.17	11.97

- ISA-L: Intel's EC library https://github.com/intel/isa-l
- ♠ T. Zhou & C. Tian. 2020. Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques.

Our Contribution:

Optimizing Bitmatrix Multiplication

as

Program Optimization Problem

We identify bitmatrix multiplication as straight line program (SLP):

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} a \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{pmatrix}$$

$$P(a, b, c, d)$$

$$v_1 \leftarrow a \oplus b;$$

$$v_2 \leftarrow a \oplus b \oplus c;$$

$$v_3 \leftarrow b \oplus c \oplus d;$$

 $return(v_1, v_2, v_3)$

 $return(v_1, v_2, v_3)$

We identify bitmatrix multiplication as straight line program (SLP):

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{pmatrix} = \begin{pmatrix} \vec{a} \oplus \vec{b} \\ \vec{a} \oplus \vec{b} \oplus \vec{c} \\ \vec{b} \oplus \vec{c} \oplus \vec{d} \end{pmatrix}$$

We identify bitmatrix multiplication as straight line program (SLP):

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{pmatrix}
\times_{\mathbb{F}[2]} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{pmatrix} = \begin{pmatrix} \vec{a} \oplus \vec{b} \\ \vec{a} \oplus \vec{b} \oplus \vec{c} \\ \vec{b} \oplus \vec{c} \oplus \vec{d} \end{pmatrix}$$

$$\frac{P(a, b, c, d)}{v_1 \leftarrow a \oplus b;} \qquad [P] = \operatorname{return}(v_1, v_2, v_3)$$

$$v_2 \leftarrow a \oplus b \oplus c;$$

$$v_3 \leftarrow b \oplus c \oplus d;$$

$$v_3 \leftarrow b \oplus c \oplus d;$$

$$v_3 \leftarrow b \oplus c \oplus d;$$

★ "Bitmatrix as SLP" is not a new idea (See. Boyar+ 2008)

 $return(v_1, v_2, v_3)$

We identify bitmatrix multiplication as straight line program (SLP):

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{pmatrix} = \begin{pmatrix} \vec{a} \oplus \vec{b} \\ \vec{a} \oplus \vec{b} \oplus \vec{c} \\ \vec{b} \oplus \vec{c} \oplus \vec{d} \end{pmatrix}$$

$$\frac{P(a, b, c, d)}{v_1 \leftarrow a \oplus b;} \qquad [P] = \operatorname{return}(v_1, v_2, v_3)$$

$$= \langle a \oplus b, \\ v_2 \leftarrow a \oplus b \oplus c; \qquad a \oplus b \oplus c,$$

$$v_1 \leftarrow a \oplus b;$$

$$v_2 \leftarrow a \oplus b \oplus c;$$

$$v_3 \leftarrow b \oplus c \oplus d;$$

$$\mathsf{return}(v_1, v_2, v_3)$$

 $b \oplus c \oplus d \rangle$

- ★ "Bitmatrix as SLP" is not a new idea (See. Boyar+ 2008) \triangleright SLP only allow assignments with one kind *binary* operator \oplus .
- ► SLP do not have functions, if-branchings, and while-loop, etc.

SLP (=上から下に実行するだけ言語)の最適化の例

プログラムの意味を変えず、演算回数を減らす:

$$x_1 \leftarrow a \oplus b \oplus c \oplus d \oplus x;$$

 $x_2 \leftarrow b \oplus c \oplus a \oplus d \oplus y;$
 $x_3 \leftarrow a \oplus c \oplus z \oplus b;$
 $\mathbf{return}(x_1, x_2, x_3); \# 11 \ \mathbb{B}$

SLP (=上から下に実行するだけ言語)の最適化の例

プログラムの意味を変えず、演算回数を減らす:

$$x_1 \leftarrow a \oplus b \oplus c \oplus d \oplus x;$$

 $x_2 \leftarrow b \oplus c \oplus a \oplus d \oplus y;$
 $x_3 \leftarrow a \oplus c \oplus z \oplus b;$
 $\mathbf{return}(x_1, x_2, x_3); \# 11 \ \mathbb{G}$

変数は追加して良い:

$$t_1 \leftarrow a \oplus b \oplus c;$$

 $x_1 \leftarrow t_1 \oplus d \oplus x;$
 $x_2 \leftarrow t_1 \oplus d \oplus y;$
 $x_3 \leftarrow t_1 \oplus z;$
 $\mathbf{return}(x_1, x_2, x_3); \# 7 個$

SLP (=上から下に実行するだけ言語)の最適化の例

プログラムの意味を変えず、演算回数を減らす:

$$x_1 \leftarrow a \oplus b \oplus c \oplus d \oplus x;$$

 $x_2 \leftarrow b \oplus c \oplus a \oplus d \oplus y;$
 $x_3 \leftarrow a \oplus c \oplus z \oplus b;$
 $\mathbf{return}(x_1, x_2, x_3); \# 11$ 個

変数は追加して良い:

 $t_1 \leftarrow a \oplus b \oplus c;$ $x_1 \leftarrow t_1 \oplus d \oplus x;$ $x_2 \leftarrow t_1 \oplus d \oplus y;$ $x_3 \leftarrow t_1 \oplus z;$ $\mathbf{return}(x_1, x_2, x_3); \# 7 個$

まだ削れる:

$$t_1 \leftarrow a \oplus b \oplus c;$$

 $t_2 \leftarrow t_1 \oplus d;$
 $x_1 \leftarrow t_2 \oplus x;$
 $x_2 \leftarrow t_2 \oplus y;$
 $x_3 \leftarrow t_1 \oplus z;$
return $(x_1, x_2, x_3); \# 6$ 個

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \end{array} \Longrightarrow \\ \\ \operatorname{return}(v_1, v_2, v_3, v_4) \end{array}$$

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \end{array} \Longrightarrow \\ \\ \operatorname{return}(v_1, v_2, v_3, v_4) \end{array}$$

$$\frac{P \quad \#_{\oplus} = 8}{v_1 \leftarrow a \oplus b;} \qquad \qquad \frac{Q}{v_1 \leftarrow a \oplus b;} \\
v_2 \leftarrow a \oplus b \oplus c; \\
v_3 \leftarrow a \oplus b \oplus c \oplus d; \\
v_4 \leftarrow b \oplus c \oplus d;$$

$$return(v_1, v_2, v_3, v_4)$$

$$\frac{P \quad \#_{\oplus} = 8}{v_1 \leftarrow a \oplus b;} \qquad \qquad \frac{Q}{v_1 \leftarrow a \oplus b;} \\
v_2 \leftarrow a \oplus b \oplus c; \qquad \qquad v_2 \leftarrow v_1 \oplus c; \\
v_3 \leftarrow a \oplus b \oplus c \oplus d; \qquad \qquad \qquad v_3 \leftarrow v_2 \oplus d; \\
v_4 \leftarrow b \oplus c \oplus d; \qquad \qquad \qquad return(v_1, v_2, v_3, v_4)$$

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ \hline v_4 \leftarrow b \oplus c \oplus d; \\ \end{array} \implies \begin{array}{c} Q \quad \#_{\oplus} = 4 \\ \hline v_1 \leftarrow a \oplus b; \\ \hline v_2 \leftarrow v_1 \oplus c; \\ \hline v_3 \leftarrow v_2 \oplus d; \\ \hline v_4 \leftarrow v_3 \oplus a; \\ \hline \vdots \quad (a \oplus b \oplus c \oplus d) \oplus a = b \oplus c \oplus d. \\ \hline \text{return}(v_1, v_2, v_3, v_4) \\ \end{array}$$

- ightharpoonup P and Q are equivalent: $[\![P]\!] = [\![Q]\!].$
- ▶ Intuitively, Q ($\#_{\oplus}(Q) = 4$) runs faster than P ($\#_{\oplus}(P) = 8$).

- ightharpoonup P and Q are equivalent: $[\![P]\!] = [\![Q]\!].$
- Intuitively, Q ($\#_{\oplus}(Q) = 4$) runs faster than P ($\#_{\oplus}(P) = 8$). Question. For a given SLP P, can we quickly find the most efficient equivalent SLP Q?

Optimization Metric $\#_{\oplus}(_)$: the number of XORs.

- ▶ P and Q are equivalent: $\llbracket P \rrbracket = \llbracket Q \rrbracket$.
- ▶ Intuitively, Q ($\#_{\oplus}(Q) = 4$) runs faster than P ($\#_{\oplus}(P) = 8$).

Theorem (Boyar+ 2013)

Unless $\mathbf{P} = \mathbf{NP}$, for a given SLP P, in polynomial time, we cannot find Q such that $[\![P]\!] = [\![Q]\!]$ and minimizes $\#_{\oplus}(Q)$.

XOR最適化のNP完全性についてもうちょっと

Vertex Cover Problem という古典的な NP 完全問題を使います。

XOR最適化のNP完全性についてもうちょっと

Vertex Cover Problem という古典的な NP 完全問題を使います。

このグラフ G については、

- ▶ 頂点セット $\{B,C\}$ で、全ての辺をカバーできます
- ▶ 他の頂点セット $\{B,D\}$ でも、カバーできます

XOR最適化のNP完全性についてもうちょっと

$$G: egin{array}{c|c} A & \stackrel{e_1}{ & & } B \\ & & & & & \\ C & \stackrel{e_2}{ & & } D \end{array}$$

グラフGから、次のSLP P_G を作ります:

$$P_{\mathcal{G}}: \begin{array}{l} e_1 \leftarrow p \oplus A \oplus B; \\ e_2 \leftarrow p \oplus C \oplus D; \\ e_3 \leftarrow p \oplus B \oplus D; \\ e_4 \leftarrow p \oplus B \oplus C; \end{array}$$

これを XOR 最適化すると、最小頂点セットが実は現れます。

XOR 最適化の NP 完全性についてもうちょっと

$$G: \begin{array}{c|c} A & \xrightarrow{e_1} & B \\ & & & \\ & e_4 & & \\ & & & \\ C & \xrightarrow{e_2} & D \end{array}$$

グラフGから、次のSLP P_G を作ります:

$$P_{\mathcal{G}}: \begin{array}{c} p_{B} \leftarrow p \oplus B; \\ e_{1} \leftarrow p \oplus A \oplus B; \\ e_{2} \leftarrow p \oplus C \oplus D; \\ e_{3} \leftarrow p \oplus B \oplus D; \\ e_{4} \leftarrow p \oplus B \oplus C; \end{array} \Rightarrow \begin{array}{c} p_{B} \leftarrow p \oplus B; \\ e_{1} \leftarrow p_{B} \oplus A; \\ e_{3} \leftarrow p_{B} \oplus D; \\ e_{4} \leftarrow p_{B} \oplus C; \\ p_{C} \leftarrow p \oplus C; \\ e_{2} \leftarrow p_{C} \oplus D; \end{array}$$

これを XOR 最適化すると、最小頂点セットが実は現れます。

XOR 最適化の NP 完全性についてもうちょっと

グラフGから、次のSLP P_G を作ります:

$$P_{\mathcal{G}}: \begin{array}{l} e_{1} \leftarrow p \oplus A \oplus B; \\ e_{2} \leftarrow p \oplus C \oplus D; \\ e_{3} \leftarrow p \oplus B \oplus D; \\ e_{4} \leftarrow p \oplus B \oplus C; \end{array} \mapsto \begin{array}{l} e_{1} \leftarrow p_{B} \oplus A; \\ e_{3} \leftarrow p_{B} \oplus D; \\ e_{4} \leftarrow p_{B} \oplus C; \\ p_{C} \leftarrow p \oplus C; \\ e_{2} \leftarrow p_{C} \oplus D; \end{array}$$

 $p_B \leftarrow p \oplus B$;

これを XOR 最適化すると、最小頂点セットが実は現れます。 実際に示しているのは、いつでも右のような形にできる、という正規化補題です。

Our Heuristic: Grammar Compression Algorithm REPAIR

Originally, RePair is an algorithm to compress context-free grammars.

We use it identifying SLPs as commutative CFGs.

- Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

Our Heuristic: Grammar Compression Algorithm RePAIR

Originally, $\operatorname{Re}\!\operatorname{PAIR}$ is an algorithm to compress context-free grammars.

We use it identifying SLPs as commutative CFGs.

- Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

REPAIR = **Repeat** PAIR. The key operation is PAIR:

$$v_{1} \leftarrow a \oplus b;$$

$$v_{2} \leftarrow \overset{\bullet}{a} \oplus b \oplus c;$$

$$v_{3} \leftarrow \overset{\bullet}{a} \oplus b \oplus c \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

$$\#_{\oplus} = 8$$

$$p_{AIR}(\overset{\bullet}{a}, \overset{\bullet}{c})$$

$$v_{1} \leftarrow \overset{\bullet}{a} \oplus c;$$

$$v_{1} \leftarrow a \oplus b;$$

$$v_{2} \leftarrow t_{1} \oplus b;$$

$$v_{3} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

Our Heuristic: Grammar Compression Algorithm REPAIR

Originally, RePAIR is an algorithm to compress context-free grammars.

We use it identifying SLPs as commutative CFGs.

- Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair =**Repeat** Pair. The key operation is Pair:

$$v_{1} \leftarrow a \oplus b;$$

$$v_{2} \leftarrow a \oplus b \oplus c;$$

$$v_{3} \leftarrow a \oplus b \oplus c \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

$$\#_{\oplus} = 8$$

$$\xrightarrow{PAIR(\mathbf{a}, \mathbf{c})} \underbrace{v_{1} \leftarrow a \oplus b;}_{v_{1} \leftarrow a \oplus b;}$$

$$v_{2} \leftarrow t_{1} \oplus b;$$

$$v_{3} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

How do we choose a pair of terms to do pairing?

Our Heuristic: Grammar Compression Algorithm RePAIR

Originally, RePair is an algorithm to compress context-free grammars.

We use it identifying SLPs as commutative CFGs.

- ▶ Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair =**Repeat** Pair. The key operation is Pair:

$$v_{1} \leftarrow a \oplus b;$$

$$v_{2} \leftarrow a \oplus b \oplus c;$$

$$v_{3} \leftarrow a \oplus b \oplus c \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

$$\#_{\oplus} = 8$$

$$v_{1} \leftarrow a \oplus c;$$

$$v_{1} \leftarrow a \oplus b;$$

$$v_{1} \leftarrow a \oplus b;$$

$$v_{2} \leftarrow t_{1} \oplus b;$$

$$w_{2} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{3} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

How do we choose a pair of terms to do pairing? Greedy.

$$v_{1} \leftarrow \overset{\boldsymbol{a}}{\boldsymbol{a}} \oplus b; v_{2} \leftarrow \overset{\boldsymbol{a}}{\boldsymbol{a}} \oplus b \oplus c; v_{3} \leftarrow \overset{\boldsymbol{a}}{\boldsymbol{a}} \oplus b \oplus c \oplus d; v_{4} \leftarrow b \oplus c \oplus d;$$

$$\xrightarrow{\text{PAIR}(\overset{\boldsymbol{a}}{\boldsymbol{a}}, \overset{\boldsymbol{b}}{\boldsymbol{b}})} \xrightarrow{\begin{array}{c} t_{1} \leftarrow \overset{\boldsymbol{a}}{\boldsymbol{a}} \oplus b; \\ v_{2} \leftarrow t_{1} \oplus c; \\ v_{3} \leftarrow t_{1} \oplus c \oplus d; \end{array}} \#_{\oplus} = 6$$

Our Heuristic: Grammar Compression Algorithm REPAIR

 $t_1 \leftarrow a \oplus c$;

Originally, RePAIR is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair =**Repeat** Pair. The key operation is Pair:

 $v_1 \leftarrow a \oplus b$:

$$v_{2} \leftarrow a \oplus b \oplus c;$$

$$v_{3} \leftarrow a \oplus b \oplus c \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

$$v_{2} \leftarrow t_{1} \oplus b;$$

$$\psi_{3} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{3} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

Our Heuristic: Grammar Compression Algorithm RePAIR

Originally, $\operatorname{Re}\!\operatorname{PAIR}$ is an algorithm to compress context-free grammars.

We use it identifying SLPs as commutative CFGs.

- ▶ Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair =**Repeat** Pair. The key operation is Pair:

$$v_{1} \leftarrow a \oplus b;$$

$$v_{2} \leftarrow a \oplus b \oplus c;$$

$$v_{3} \leftarrow a \oplus b \oplus c \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

$$\#_{\oplus} = 8$$

$$v_{1} \leftarrow a \oplus c;$$

$$v_{1} \leftarrow a \oplus b;$$

$$v_{1} \leftarrow a \oplus b;$$

$$v_{2} \leftarrow t_{1} \oplus b;$$

$$w_{2} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{3} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

The commutative version of REPAIR accommodates

Commutativity:
$$x \oplus y = y \oplus x$$
, Associativity: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$.

In the paper, we extend it to XORREPAIR by accommodating Cancellativity: $x \oplus x \oplus y = y$.

文法圧縮との出会い▷ Tozawa & Minamide, FOSSACS'07.

https://link.springer.com/chapter/10.1007%2F978-3-540-71389-0_25

Complexity Results on Balanced Context-Free Languages

Akihiko Tozawa¹ and Yasuhiko Minamide²

 IBM Research,
 Tokyo Research Laboratory, IBM Japan, ltd.
 Department of Computer Science University of Tsukuba

Abstract. Some decision problems related to balanced context-free languages are important for their application to the static analysis of programs generating XML strings. One such problem is the balancedness problem which decides whether or not the language of a given context-free grammar (CFG) over a paired alphabet is balanced. Another important problem is the validation problem which decides whether or not the language of a CFG is contained by that of a regular hedge grammar (RHG). This paper gives two new results; (1) the balancedness problem is nPTIME; and (2) the CFG-RHG containment problem is 2EXPTIME-complete.

文法圧縮との出会い▷ Tozawa & Minamide, FOSSACS'07.

https://link.springer.com/chapter/10.1007%2F978-3-540-71389-0_25

Complexity Results on Balanced Context-Free Languages

Akihiko Tozawa¹ and Yasuhiko Minamide²

¹ IBM Research,
 Tokyo Research Laboratory, IBM Japan, ltd.
 ² Department of Computer Science
 University of Tsukuba

Abstract. Some decision problems related to balanced context-free languages are important for their application to the static analysis of programs generating XML strings. One such problem is the balancedness problem which decides whether or not the language of a given context-free grammar (CFG) over a paired alphabet is balanced. Another important problem is the validation problem which decides whether or not the language of a CFG is contained by that of a regular hedge grammar (RHG). This paper gives two new results; (1) the balancedness problem is nPTIME; and (2) the CFG-RHG containment problem is 2EXPTIME-complete.

論文の前半では:

- ▶ CFG $G \subseteq_?$ Dyck を解く
- ▶ ただ解くだけでなく PTIME で解 くために文法圧縮の技を使って いる

文法圧縮との出会い > Tozawa & Minamide, FOSSACS'07.

https://link.springer.com/chapter/10.1007%2F978-3-540-71389-0_25

Complexity Results on Balanced Context-Free Languages 論文

Akihiko Tozawa¹ and Yasuhiko Minamide²

 IBM Research,
 Tokyo Research Laboratory, IBM Japan, ltd.
 Department of Computer Science University of Tsukuba

Abstract. Some decision problems related to balanced context-free languages are important for their application to the static analysis of programs generating XML strings. One such problem is the balancedness problem which decides whether or not the language of a given context-free grammar (CPG) over a paired alphabet is balanced. Another important problem is the validation problem which decides whether or not the language of a CPG is contained by that of a regular hedge grammar (RHG). This paper gives two new results; (1) the balancedness problem is in PTIME; and (2) the CFG-RHG containment problem is 2EXPTIME-complete.

論文の前半では:

- ▶ CFG $G \subseteq_?$ Dyck を解く
- ▶ ただ解くだけでなく PTIME で解 くために文法圧縮の技を使って いる

論文の後半: CFG C? RHG

文法圧縮との出会い > Tozawa & Minamide, FOSSACS'07.

https://link.springer.com/chapter/10.1007%2F978-3-540-71389-0_25

Complexity Results on Balanced Context-Free Languages

Akihiko Tozawa¹ and Yasuhiko Minamide²

 IBM Research,
 Tokyo Research Laboratory, IBM Japan, ltd.
 Department of Computer Science University of Tsukuba

Abstract. Some decision problems related to balanced context-free languages are important for their application to the static analysis of programs generating XML strings. One such problem is the balancedness problem which decides whether or not the language of a given context-free grammar (CPG) over a paired alphabet is balanced. Another important problem is the validation problem which decides whether or not the language of a CPG is contained by that of a regular hedge grammar (RHG). This paper gives two new results; (1) the balancedness problem is in PTIME; and (2) the CFG-RHG containment problem is 2EXPTIME-complete.

論文の前半では:

- ▶ CFG $G \subseteq_?$ Dyck を解く
- ▶ ただ解くだけでなく PTIME で解 くために文法圧縮の技を使って いる

論文の後半: CFG ⊆? RHG Uezato & Minamide DLT'16 で CFG ⊆? Superdeterministic PDA に 拡張済み

文法圧縮との出会い▷ Tozawa & Minamide, FOSSACS'07.

https://link.springer.com/chapter/10.1007%2F978-3-540-71389-0_25

Complexity Results on Balanced Context-Free Languages

Akihiko Tozawa¹ and Yasuhiko Minamide²

¹ IBM Research.

Tokyo Research Laboratory, IBM Japan, ltd.

² Department of Computer Science
University of Tsukuba

Abstract. Some decision problems related to balanced context-free languages are important for their application to the static analysis of programs generating XML strings. One such problem is the balancedness problem which decides whether or not the language of a given context-free grammar (CFG) over a paired alphabet is balanced. Another important problem is the validation problem which decides whether or not the language of a CFG is contained by that of a regular hedge grammar (RHG). This paper gives two new results; (1) the balancedness problem is in PTIME; and (2) the CFG-RHG containment problem is 2EXPTIME-complete.

論文の前半では:

- ▶ CFG $G \subseteq_?$ Dyck を解く
- ▶ ただ解くだけでなく PTIME で解 くために文法圧縮の技を使って いる

論文の後半: CFG ⊆? RHG Uezato & Minamide DLT'16 で CFG ⊆? Superdeterministic PDA に 拡張済み

文法圧縮そのものについては次がオススメ:

The smallest grammar problem, Charikar+, 2005

https://ieeexplore.ieee.org/document/1459058

Optimization Metric: $\#_{mem}(_{-}) =$ the number of memory access.

Quiz: How many times will this program access memory?

$$\#_{\mathsf{mem}} \left(v \leftarrow A \oplus B \oplus C \oplus D \right) = ?$$

Optimization Metric: $\#_{mem}(_{-})$ = the number of memory access.

Quiz: How many times will this program access memory?

$$\#_{\mathsf{mem}} \left(v \leftarrow A \oplus B \oplus C \oplus D \right) = 9$$

because each \oplus issues two read and one write:

$$t_1 \leftarrow A \oplus B; \quad t_2 \leftarrow t_1 \oplus C; \quad v \leftarrow t_2 \oplus D;$$

Optimization Metric: $\#_{mem}(_)$ = the number of memory access.

Quiz: How many times will this program access memory?

$$\#_{\mathsf{mem}} \left(v \leftarrow A \oplus B \oplus C \oplus D \right) = 9$$

because each \oplus issues two read and one write:

$$t_1 \leftarrow A \oplus B; \quad t_2 \leftarrow t_1 \oplus C; \quad v \leftarrow t_2 \oplus D;$$

 t_1 and t_2 are wasteful: they are released immediately after allocated.

To reduce such wastefulness, we extend SLP to Multi SLP, which allows n-arity XORs.

Optimization Metric: $\#_{mem}(_{-})$ = the number of memory access.

Quiz: How many times will this program access memory?

$$\#_{\mathsf{mem}} \left(v \leftarrow A \oplus B \oplus C \oplus D \right) = 9$$

because each \oplus issues two read and one write:

$$t_1 \leftarrow A \oplus B; \quad t_2 \leftarrow t_1 \oplus C; \quad v \leftarrow t_2 \oplus D;$$

On MultiSLP, we can

$$v \leftarrow \bigoplus_4 (A, B, C, D);$$

Thus, we have $\#_{mem} = 5$.

New Metric and Memory Optimization Problem

From a given P, can we quickly (= in polynomial time) find an equivalent and most memory efficient Q w.r.t. $\#_{mem}$?

$$P: \begin{array}{c} v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \\ v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; \\ \#_{\mathsf{mem}}(P) = 24 \end{array}$$

New Metric and Memory Optimization Problem

From a given P, can we quickly (= in polynomial time) find an equivalent and most memory efficient Q w.r.t. $\#_{mem}$?

$$P: \begin{array}{c} v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \\ v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; \\ \#_{\mathsf{mem}}(P) = 24 \end{array} \implies \begin{array}{c} t \leftarrow \oplus_4(a,b,c,d); \\ v_1 \leftarrow t \oplus e; \\ v_2 \leftarrow t \oplus f; \\ \#_{\mathsf{mem}}(Q) = 11 \end{array}$$

New Metric and Memory Optimization Problem

From a given P, can we quickly (= in polynomial time) find an equivalent and most memory efficient Q w.r.t. $\#_{mem}$?

$$P: \begin{array}{c} v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \\ v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; \\ \#_{\mathsf{mem}}(P) = 24 \end{array} \implies \begin{array}{c} t \leftarrow \oplus_4(a,b,c,d); \\ v_1 \leftarrow t \oplus e; \\ v_2 \leftarrow t \oplus f; \\ \#_{\mathsf{mem}}(Q) = 11 \end{array}$$

Unfortunately, we showed the following intractability result:

Theorem (Our NEW theoretical result)

Unless $\mathbf{P} = \mathbf{NP}$, for a given SLP P, in polynomial time, we cannot find Q that $[\![P]\!] = [\![Q]\!]$ and minimizes $\#_{mem}(Q)$.

メモ: Deforestation

P		P'		Q
		$t \leftarrow a \oplus b \oplus c \oplus d;$		$t \leftarrow \oplus_4(a,b,c,d);$
$v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e;$	\Longrightarrow	$v_1 \leftarrow t \oplus e;$	\Longrightarrow	$v_1 \leftarrow t \oplus e;$
$v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f;$		$v_2 \leftarrow t \oplus f;$		$v_2 \leftarrow t \oplus f;$
$\#_{mem}(P) = 24$		$\#_{mem}(P) = 15$		$\#_{mem}(Q) = 11$
$P' \longrightarrow O$ でやっている会成による最適化 (由間データの削除) は				

 $P' \Longrightarrow Q$ でやっている合成による最適化 (中間データの削除) は 関数プログラミングでは「Deforestation」と呼ばれる。

メモ: Deforestation

DEFORESTATION: TRANSFORMING PROGRAMS TO ELIMINATE TREES *

Philip WADLER

Department of Computer Science, University of Glasgov, Glasgow G128QQ, UK

Abstract. An algorithm that transforms programs to eliminate intermediate trees is presented. The algorithm applies to any term containing only functions with definitions in a given syntactic form, and is suitable for incorporation in an optimizing compiler.

メモ: Deforestation

```
t \leftarrow a \oplus b \oplus c \oplus d; \qquad t \leftarrow \oplus_4(a, b, c, d);
 v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \implies v_1 \leftarrow t \oplus e; \implies v_1 \leftarrow t \oplus e;
 v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; v_2 \leftarrow t \oplus f; v_2 \leftarrow t \oplus f;
           \#_{mem}(P) = 24 \#_{mem}(P) = 15 \#_{mem}(Q) = 11
P' \Longrightarrow Qでやっている合成による最適化 (中間データの削除) は
関数プログラミングでは「Deforestation」と呼ばれる。
                  sum (map (\x. x * x) (upto 1 n)) \Longrightarrow
                  h01n
                  where
                  hamn = ifm > n
                                 then a
                                 else h(a + square m)(m + 1)n.
```

```
\begin{array}{ll} \alpha \leftarrow \oplus(x_1,\ldots,x_n); \\ \vdots \\ \beta \leftarrow \oplus(y_1,\ldots,\alpha,\ldots,y_m) \end{array} \xrightarrow{\text{fuse}} \beta \leftarrow \oplus(y_1,\ldots,x_1,\ldots,x_n,\ldots,y_m) \\ \stackrel{\star}{\nearrow} \alpha \text{ appears once in the program} \end{array}
```

$$\begin{array}{ll} \alpha \leftarrow \oplus(x_1,\ldots,x_n); \\ \vdots \\ \beta \leftarrow \oplus(y_1,\ldots,\alpha,\ldots,y_m) & \xrightarrow{\mathsf{fuse}} \beta \leftarrow \oplus(y_1,\ldots,x_1,\ldots,x_n,\ldots,y_m) \\ & \alpha \text{ appears once in the program} \end{array}$$

$$\begin{array}{c} \mathsf{Example}. \\ v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \\ v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; \\ \#_{\mathsf{mem}}(24) \end{array} \xrightarrow{\mathsf{REPAIR}} \begin{array}{c} t_1 \leftarrow a \oplus b; \\ t_2 \leftarrow t_1 \oplus c; \\ t_3 \leftarrow t_2 \oplus d; \\ v_1 \leftarrow t_3 \oplus e; \\ v_2 \leftarrow t_3 \oplus f; \\ \#_{\mathsf{mem}}(15) \end{array} \xrightarrow{\mathsf{fuse}(t_1)} \begin{array}{c} t_2 \leftarrow \oplus_3(a,b,c); \\ t_3 \leftarrow t_2 \oplus d; \\ v_1 \leftarrow t_3 \oplus e; \\ v_2 \leftarrow t_3 \oplus f; \\ \#_{\mathsf{mem}}(13) \end{array}$$

$$\begin{array}{l} \alpha \leftarrow \oplus(x_1,\ldots,x_n); \\ \vdots \\ \beta \leftarrow \oplus(y_1,\ldots,\underset{\alpha}{\alpha},\ldots,y_m) \end{array} \xrightarrow{\text{fuse}} \beta \leftarrow \oplus(y_1,\ldots,x_1,\ldots,x_n,\ldots,y_m) \\ \stackrel{}{\not\sim} \alpha \text{ appears once in the program} \end{array}$$

```
Example.
                                                                                                t_1 \leftarrow a \oplus b:
                                                                                                                                                                 t_2 \leftarrow \oplus_3(a,b,c);
                                                                                                t_2 \leftarrow t_1 \oplus c:
v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \qquad t_2 \leftarrow t_1 \oplus c, 
v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; \xrightarrow{\text{REPAIR}} t_3 \leftarrow t_2 \oplus d; \xrightarrow{\text{fuse}(t_1)} v_1 \leftarrow t_3 \oplus e;
                                                                                           v_1 \leftarrow t_3 \oplus e;
                                                                                                                                                                v_2 \leftarrow t_3 \oplus f;
                                       \#_{mem}(24)
                                                                                                v_2 \leftarrow t_3 \oplus f;
                                                                                                                                                                                  \#_{mem}(13)
                                                                                                        \#_{mem}(15)
                                    t_3 \leftarrow \bigoplus_4 (a, b, c, d);
            \xrightarrow{\text{fuse}(t_2)} \begin{array}{c} v_1 \leftarrow t_3 \oplus e; \\ v_2 \leftarrow t_3 \oplus f; \end{array}
```

$$\begin{array}{l} \alpha \leftarrow \oplus(x_1,\ldots,x_n); \\ \vdots \\ \beta \leftarrow \oplus(y_1,\ldots,\underset{\alpha}{\alpha},\ldots,y_m) \end{array} \xrightarrow{\text{fuse}} \beta \leftarrow \oplus(y_1,\ldots,x_1,\ldots,x_n,\ldots,y_m) \\ \stackrel{}{\not\simeq} \alpha \text{ appears once in the program} \end{array}$$

```
Example.
                                                                                               t_1 \leftarrow a \oplus b:
                                                                                                                                                               t_2 \leftarrow \oplus_3(a,b,c);
                                                                                               t_2 \leftarrow t_1 \oplus c:
                                                                                                                                  \xrightarrow{\text{fuse}(t_1)} \begin{array}{c} t_3 \leftarrow t_2 \oplus d; \\ \xrightarrow{} v_1 \leftarrow t_3 \oplus e; \end{array}
v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e;
v_1 \leftarrow a \oplus b \oplus c \oplus a \oplus e;

v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; REPAIR t_3 \leftarrow t_2 \oplus d;
                                                                                           v_1 \leftarrow t_3 \oplus e:
                                                                                                                                                             v_2 \leftarrow t_3 \oplus f;
                                       \#_{mem}(24)
                                                                                               v_2 \leftarrow t_3 \oplus f;
                                                                                                                                                                                 \#_{mem}(13)
                                                                                                       \#_{mem}(15)
                                   t_3 \leftarrow \bigoplus_4 (a, b, c, d);
                                                                                                                                          v_1 \leftarrow \oplus_5(a,b,c,d,e);
                                                                                          \xrightarrow{\mathsf{NOT}\;\mathsf{fuse}(t_3)\;\mathsf{by}\; \overleftrightarrow{\bowtie}} \quad \overset{v_1}{v_2} \leftarrow \oplus_5(a,b,c,d,f);
            \xrightarrow{\text{fuse}(t_2)} \begin{array}{c} v_1 \leftarrow t_3 \oplus e; \\ v_2 \leftarrow t_3 \oplus f; \end{array}
                                                                                                                                                                          \#_{mem}(12)
                                                            \#_{mem}(11)
```

Metric $\#_{\mathrm{I/O}}(K, \ _)$: the total number of I/O transfers between memory andf cache of K-capacity.

We have three kinds of operations for cache:

- $ightharpoonup \mathcal{H}(x)$: Cache Hit for an element x. $\#_{\mathsf{I/O}} = 0$.
- $ightharpoonup \mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- \blacktriangleright $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Metric $\#_{I/O}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

- $ightharpoonup \mathcal{H}(x)$: Cache Hit for an element x. $\#_{I/O} = 0$.
- $ightharpoonup \mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- $ightharpoonup \mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

$$v_1 \leftarrow A \oplus B;$$
 $*_1 *_2 *_3 *_4$ $v_2 \leftarrow \oplus (E, D, A);$ $v_3 \leftarrow v_1 \oplus E;$ $v_4 \leftarrow v_1 \oplus C;$

 $return(v_2, v_3, v_4);$

Metric $\#_{\text{I/O}}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

- $ightharpoonup \mathcal{H}(x)$: Cache Hit for an element $x. \#_{\mathsf{I/O}} = 0.$
- $ightharpoonup \mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- $ightharpoonup \mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}}=1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

$$v_1 \leftarrow A \oplus B;$$
 $*_1 *_2 *_3 *_4 \xrightarrow{\mathcal{R}(A)} *_2 *_3 *_4 A$
 $v_2 \leftarrow \oplus (E, D, A);$
 $v_3 \leftarrow v_1 \oplus E;$

$$v_4 \leftarrow v_1 \oplus C;$$

 $\mathsf{return}(v_2, v_3, v_4);$

Metric $\#_{\text{I/O}}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

- $ightharpoonup \mathcal{H}(x)$: Cache Hit for an element x. $\#_{I/O} = 0$.
- $ightharpoonup \mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- $ightharpoonup \mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

$$v_1 \leftarrow A \oplus B;$$
 $*_1 *_2 *_3 *_4 \xrightarrow{\mathcal{R}(A)} *_2 *_3 *_4 A \xrightarrow{\mathcal{R}(B)} *_3 *_4 AB$

$$v_2 \leftarrow \oplus (E, D, A);$$

$$v_3 \leftarrow v_1 \oplus E;$$

$$v_4 \leftarrow v_1 \oplus C;$$

 $\mathsf{return}(v_2, v_3, v_4);$

Metric $\#_{I/O}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

 $return(v_2, v_3, v_4);$

- $ightharpoonup \mathcal{H}(x)$: Cache Hit for an element x. $\#_{\mathsf{I/O}} = 0$.
- $ightharpoonup \mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- $ightharpoonup \mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

$$\begin{array}{lll}
\mathbf{v_1} \leftarrow A \oplus B; & *_1 *_2 *_3 *_4 & \frac{\mathcal{R}(A)}{2} & *_2 *_3 *_4 A & \frac{\mathcal{R}(B)}{2} & *_3 *_4 A B & \frac{\mathcal{W}(\mathbf{v_1})}{1} \\
v_2 \leftarrow \oplus (E, D, A); & *_4 A B v_1 \\
v_3 \leftarrow v_1 \oplus E; \\
v_4 \leftarrow v_1 \oplus C;
\end{array}$$

Metric $\#_{I/O}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

- $ightharpoonup \mathcal{H}(x)$: Cache Hit for an element x. $\#_{1/Q} = 0$.
- $\triangleright \mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{L}/\mathsf{O}} = 2$.
- \blacktriangleright $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

$$\begin{array}{lll} v_1 \leftarrow A \oplus B; & *_1 *_2 *_3 *_4 & \frac{\mathcal{R}(A)}{2} & *_2 *_3 *_4 A & \frac{\mathcal{R}(B)}{2} & *_3 *_4 A B & \frac{\mathcal{W}(v_1)}{1} \\ v_2 \leftarrow \oplus (E,D,A); & *_4 A B v_1 & \frac{\mathcal{R}(E)}{2} & A B v_1 E & \frac{\mathcal{R}(D)}{2} & B v_1 E D & \frac{\mathcal{R}(A)}{2} & v_1 E D A & \frac{\mathcal{W}(v_2)}{1} \\ v_3 \leftarrow v_1 \oplus E; & E D A v_2 & \frac{\mathcal{R}(v_1)}{2} & D A v_2 v_1 & \frac{\mathcal{R}(E)}{2} & A v_2 v_1 E & \frac{\mathcal{W}(v_3)}{1} \\ v_4 \leftarrow v_1 \oplus C; & v_2 v_1 E v_3 & \frac{\mathcal{H}(v_1)}{0} & v_2 E v_3 v_1 & \frac{\mathcal{R}(C)}{2} & E v_3 v_1 C & \frac{\mathcal{W}(v_4)}{1} \\ & \text{return}(v_2, v_3, v_4); & v_3 v_1 C v_4 \Longrightarrow \#_{\text{I/O}}(4, P) = 20. \end{array}$$

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and thus may reduce $\#_{\rm I/O}.$

We do Recycling variables by Register assignment.

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and thus may reduce $\#_{I/O}$.

We do Recycling variables by Register assignment.

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and thus may reduce $\#_{\rm I/O}$.

We do Recycling variables by Register assignment.

It works, but the effect is so limited.

Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

Using Pebble Game, we can integrate $\begin{cases} \text{Recycling Variables and} \\ \text{Reordering} \end{cases}$

★ R. Sethi, 1975, Complete register allocation problems.

Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

Using *Pebble Game*, we can integrate $\left\{\right.$

- ★ R. Sethi, 1975, Complete register allocation problems.
- We play the pebble game on DAGs or abstract syntax graphs.
- ▶ We aim to put pebbles in return nodes.

 ${\it Playing} \ {\sf Pebble} \ {\sf Game} = {\sf Deciding} \ {\sf Evaluation} \ {\sf Order} + {\sf Variable} \ {\sf Recycling}$

 ${\it Playing} \ {\sf Pebble} \ {\sf Game} = {\sf Deciding} \ {\sf Evaluation} \ {\sf Order} + {\sf Variable} \ {\sf Recycling}$

Example: Evaluating strategy based on Depth-first-search

1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.

 $\textit{Playing} \ \mathsf{Pebble} \ \mathsf{Game} = \mathsf{Deciding} \ \mathsf{Evaluation} \ \mathsf{Order} + \mathsf{Variable} \ \mathsf{Recycling}$

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.

 $\textit{Playing} \ \mathsf{Pebble} \ \mathsf{Game} = \mathsf{Deciding} \ \mathsf{Evaluation} \ \mathsf{Order} + \mathsf{Variable} \ \mathsf{Recycling}$

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote v_2 is visited.

 $\textit{Playing} \ \mathsf{Pebble} \ \mathsf{Game} = \mathsf{Deciding} \ \mathsf{Evaluation} \ \mathsf{Order} + \mathsf{Variable} \ \mathsf{Recycling}$

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote v_2 is visited.
- 4. Choose v_3 from 2 unvisited roots, and first visit E.

 ${\it Playing} \ {\sf Pebble} \ {\sf Game} = {\sf Deciding} \ {\sf Evaluation} \ {\sf Order} + {\sf Variable} \ {\sf Recycling}$

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote v_2 is visited.
- 4. Choose v_3 from 2 unvisited roots, and first visit E.
- 5. Visit the unvisited child v_1 of v_3 , evaluate, and pebble p_2

 $\textit{Playing} \ \mathsf{Pebble} \ \mathsf{Game} = \mathsf{Deciding} \ \mathsf{Evaluation} \ \mathsf{Order} + \mathsf{Variable} \ \mathsf{Recycling}$

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote v_2 is visited.
- 4. Choose v_3 from 2 unvisited roots, and first visit E.
- 5. Visit the unvisited child v_1 of v_3 , evaluate, and pebble p_2
- 6. Back to v_3 and pebble p_3

Pebble Game & Intractability of Optimization Problem

 $\textit{Playing} \ \mathsf{Pebble} \ \mathsf{Game} = \mathsf{Deciding} \ \mathsf{Evaluation} \ \mathsf{Order} + \mathsf{Variable} \ \mathsf{Recycling}$

Example: Evaluating strategy based on Depth-first-search

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote v_2 is visited.
- 4. Choose v_3 from 2 unvisited roots, and first visit E.
- 5. Visit the unvisited child v_1 of v_3 , evaluate, and pebble p_2
- 6. Back to v_3 and pebble p_3
- 7. Finally, we compute v_4 with moving/recycling pebble p_2 .

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order + Variable Recycling

			#/ I/O
v_3 v_4	v_2 :	$p_1 \leftarrow \oplus (A, D, E);$	[7]
v_2	v_1 :	$p_2 \leftarrow A \oplus B;$	[3]
p_1 v_1	v_3 :	$p_3 \leftarrow E \oplus p_2;$	[3]
71/14	v_4 :	$p_2 \leftarrow C \oplus p_2;$	[2]
D E A B C		$return(p_1, p_3, p_2);$	15

Example: Evaluating strategy based on Depth-first-search

Can we find the best reordering and pebbling in polynomial time?

Theorem (Sethi 1975, Papp & Wattenhofer 2020)

Unless $\mathbf{P} = \mathbf{NP}$, for a given P, in polynomial time, we cannot find a Q that $[\![P]\!] = [\![Q]\!]$ and minimizes $\#_{I/O}(Q)$.

We use DFS-based strategy as above in our evaluation.

1975年に出版された
Complete Register Allocation Problems, Ravi Sethi
がオススメです。https://epubs.siam.org/doi/abs/10.1137/0204020

こんな感じに図を書いて、3-SAT を pebble game 化します:

- O direct descendants of final node (not shown)
- ▲ direct descendants of initial node (not shown)

Fig. 6. The subdag that checks if clause j is true

1975年に出版された
Complete Register Allocation Problems, Ravi Sethi
がオススメです。https://epubs.siam.org/doi/abs/10.1137/0204020

これを I/O を考えるために拡張したのが I/O complexity: The red-blue pebble game, Jia-Wei & Kung, STOC'81 https://dl.acm.org/doi/10.1145/800076.802486

1975年に出版された
Complete Register Allocation Problems, Ravi Sethi
がオススメです。https://epubs.siam.org/doi/abs/10.1137/0204020

これを I/O を考えるために拡張したのが I/O complexity: The red-blue pebble game, Jia-Wei & Kung, STOC'81 https://dl.acm.org/doi/10.1145/800076.802486

よりモダンな Red-blue pebble game の話は

- ► On the Hardness of Red-Blue Pebble Games Papp & Wattenhofer, SPAA'20
- ► Red-blue pebbling revisited: near optimal parallel matrix-matrix multip. Kwasniewski+, SC'19

1975年に出版された

Complete Register Allocation Problems, Ravi Sethi がオススメです。https://epubs.siam.org/doi/abs/10.1137/0204020

これを I/O を考えるために拡張したのが I/O complexity: The red-blue pebble game, Jia-Wei & Kung, STOC'81 https://dl.acm.org/doi/10.1145/800076.802486

よりモダンな Red-blue pebble game の話は

- On the Hardness of Red-Blue Pebble Games
 Papp & Wattenhofer, SPAA'20
- ► Red-blue pebbling revisited: near optimal parallel matrix-matrix multip. Kwasniewski+, SC'19

教科書なら Models Of Computation, J. E. Savage http://cs.brown.edu/people/jsavage/book/

Evaluation

Data Set & Evaluation Environment

We consider RS(10, 4) as an example data set.

- ▶ We have 1-encoding SLP P_{enc} .
- We have $\binom{14}{4} = 1001$ decoding SLPs.

We used two environments in my paper:

name	CPU	Clock	Core	RAM
intel	i7-7567U	4.0GHz	2	DDR3-2133 16GB
amd	Ryzen 2600	3.9GHz	6	DDR4-2666 48GB

In a distributed computation, our test environments correspond to single nodes.

L1 cache specification:
$$\frac{\text{Size}}{32\text{KB/core}}$$
 Associativity Line Size $\frac{\text{Size}}{32\text{KB/core}}$ 8-way 64 bytes

8 1 1		, , , , , , , , , , , , , , , , , , , ,		
Metric	Base P_{enc}	RePair	RePair + Fuse	RePair + Fuse + Pebbling
# _⊕	755	 		
#mem	2265	 		

Metric	Base P_{enc}	 RePair	RePair + Fuse	RePair + Fuse + Pebbling
#⊕	755	 		
#mem	2265	 		
$\mathcal{B} = 512$: $\#_{I/O}(K = 64)$	570	 		
$\mathcal{B} = 1 \text{K} : \ ^{\#_{\text{I/O}}(K = 32)}$	1262	 		
$\mathcal{B} = 2K$: $\#_{I/O}(K = 16)$	1598	 		

Metric		Dase	RePair	RePair +	RePair + Fuse +
		P_{enc}	! 	Fuse	Pebbling
	#_	755	' 		
	#mem	2265	 		
$\mathcal{B}=519$.	$\#_{I/O}(K=64)$	570	 		
D = 012.	Throughput (GB/s)	3.10	 		
$\mathcal{B} = 1 K$:	$\#_{I/O}(K=32)$	1262	 		
	Throughput (GB/s)	4.03	I I I		
$\mathcal{B} = 2K$.	$\#_{I/O}(K=16)$	1598	 		
	Throughput (GB/s)	4.45	 		

Metric	Base	RePair RePair + RePair + Fuse +
Wethe	P_{enc}	Why smaller blocks are slower
$\#_{\oplus}$	755	than the large one?
#mem	2265	Pros: Smaller blocks,
$\mathcal{B} = 512$: $\#_{I/O}(K = 64)$	4) 570	More cache-able blocks $\frac{32K}{\mathcal{B}}$.
Throughput (G		Cons: Smaller blocks,
$\mathcal{B} = 1 K : \#_{I/O}(K = 32)$	2) 1262	► Due to cache conflicts,
Throughput (G		using cache identically is more difficult.
$\mathcal{B} = 2K$: $\#_{I/O}(K = 10)$	5) 1598	Latency penalty becomes
Throughput (G		totally large.

	Metric	Base P_{enc}	 RePair	RePair + Fuse	RePair + Fuse + Pebbling
	#⊕	755	385		
	#mem	2265	1155		
$\mathcal{B} = 519$	$\#_{I/O}(K=64)$	570	 		
$\mathcal{D}=512$.	Throughput (GB/s)	3.10	 		
$\mathcal{B}=1K$:	$\#_{I/O}(K=32)$	1262	' 		
$\mathcal{D} = 1$ K.	Throughput (GB/s)	4.03	I I I		
$\mathcal{B} = 2\mathbf{K}$.	$\#_{I/O}(K=16)$	1598	 		
$\mathcal{D} = 210$.	Throughput (GB/s)	4.45	 		

	Metric	P_{enc}	¦ RePair	RePair + Fuse	RePair + Fuse + Pebbling
	#_	755	385		
	#mem	2265	1155		
$\mathcal{B} = 519$.	$\#_{I/O}(K=64)$	570	1231		
$\mathcal{D}=312$.	Throughput (GB/s)	3.10	 		
$\mathcal{B}=1K$.	$\#_{I/O}(K=32)$	1262	1465		
$\mathcal{D} = IK$.	Throughput (GB/s)	4.03	I I I		
$\mathcal{B} = 9K$.	$\#_{I/O}(K=16)$	1598	1599		
<i>D</i> − 21€.	Throughput (GB/s)	4.45	 		

	Metric	P_{enc}	¦ RePair	RePair + Fuse	RePair + Fuse + Pebbling
	#	755	385		
	#mem	2265	1155		
$\mathcal{B} = 519$.	$\#_{I/O}(K=64)$	570	1231		
$\mathcal{D}=312$.	Throughput (GB/s)	3.10	4.18		
$\mathcal{B}=1K$.	$\#_{I/O}(K=32)$	1262	1465		
$\mathcal{D} = IK$.	Throughput (GB/s)	4.03	4.36		
$\mathcal{B} = 9K$.	$\#_{I/O}(K=16)$	1598	1599		
<i>L</i> − 21€.	Throughput (GB/s)	4.45	4.86		

	Metric	Base P_{enc}	RePair	RePair + Fuse	RePair + Fuse + Pebbling
	#⊕	755	385	N/A	
	$\#_{mem}$	2265	1155	677	
$\mathcal{B} = 519$.	$\#_{I/O}(K=64)$	570	1231		
$\mathcal{B} = 512$:	Throughput (GB/s)	3.10	4.18		
$\mathcal{B} = 1 K \cdot$	$\#_{I/O}(K=32)$	1262	1465		
$\mathcal{D} = I \mathcal{R}$.	Throughput (GB/s)	4.03	4.36		
$\mathcal{B} = 2\mathbf{k}$.	$\#_{I/O}(K=16)$	1598	1599		
$\mathcal{D} = 2\mathbb{N}$.	Throughput (GB/s)	4.45	4.86		

Pebbling

I hroughput is Avg. of 1000-runs for 1000 randomly generated data					
	Metric	Base P_{enc}	RePair	RePair + Fuse	RePair + Fuse + Pebbling
	#_	755	385	N/A	
	#mem	2265	1155	677	
$\mathcal{B} = 519$	$\#_{I/O}(K=64)$	570	1231	936	
<i>D</i> = 512.	Throughput (GB/s)	3.10	4.18	6.98	
$\mathcal{B}=1K$.	$\#_{I/O}(K=32)$	1262	1465	1086	
$\mathcal{D} = IK$.	Throughput (GB/s)	4.03	4.36	7.50	
$\mathcal{B} = 2K$	$\#_{I/O}(K=16)$	1598	1599	1144	
<i>∠</i> − 21€.	Throughput (GB/s)	4.45	4.86	7.12	

improvements by hearistics for the encoding 3L1 on litter i C	
Throughput is Avg. of 1000-runs for 10MB randomly generated data	

	Throughput is Avg. of 1000-runs for 10MB randomly generated data							
	Metric	Base P_{enc}	RePair	RePair + Fuse	RePair + Fuse + Pebbling			
	#⊕	755	385	N/A				
	#mem	2265	1155	677				
$\mathcal{B} = 512$	$\mathcal{B} = 512$: $\#_{I/O}(K = 64)$	570	1231	936	636			
	D = 512. Throughput (GB/s)	3.10	4.18	6.98	7.24			

1262

4.03

1598

4.45

1465

4.36

1599

4.86

1086

7.50

1144

7.12

779

8.92

845

8.55

 $\mathcal{B} = 1 \text{K} : \#_{\text{I/O}}(K = 32)$

 $\mathcal{B} = 2K$: $\#_{I/O}(K = 16)$

Throughput (GB/s)

Throughput (GB/s)

nprovements	by ł	neuristics	for th	ie end	coding	SLP	on	Intel	PC
Throughput is	Avg	. of 1000-ru	ıns for	10MB	randomly	genera	ated (data	

Throughput Comparison (Intel + 1K-Blocking)

Enc $ \#_{mem} \#_{I/O}$		Ours	ISA-L v2.30	Zhou & Tian	
RS(8,4)	543	585	$8.86~\mathrm{GB/s}$	$7.18~\mathrm{GB/s}$	$4.94~\mathrm{GB/s}$
RS(9,4)	611	671	8.83	6.91	N/A in their paper
RS(10, 4)	677	779	8.92	6.79	4.94

Throughput Comparison (Intel + 1K-Blocking)

Enc	$\#_{mem}$	#ı/o	Ours	ISA-L v2.30	Zhou & Tian	
RS(8,4)	543	585	$8.86~\mathrm{GB/s}$	$7.18~\mathrm{GB/s}$	$4.94~\mathrm{GB/s}$	
RS(9,4)	611	671	8.83	6.91	N/A in their paper	
RS(10,4)	677	779	8.92	6.79	4.94	

Dec	$\#_{mem}$	# _{I/O}	Ours	ISA-L v2.30	Zhou & Tian
RS(8,4)	747	811	$6.78~\mathrm{GB/s}$	$7.04~\mathrm{GB/s}$	$4.50~\mathrm{GB/s}$
RS(9,4)	829	968	6.71	6.58	N/A
RS(10,4)	923	1077	6.67	4.88	4.71

Other Throughput Scores) Conclusion (-ISA-L v 2.30 intel 1K Zhou & Tian (GB/sec) Enc Dec Enc Dec Enc Dec RS(8,3)12.32 8.82 9.25 6.08 5.57 9.09 RS(9,3)11.97 8.27 7.92 6.17 7.31 5.66 RS(10,3)11.78 8.89 6.78 7.93 6.15_{S} 5.90 **RS**(8, 2) 18.7914.59 12.99 13.34 8.13_{E} 8.07_{E} RS(9,2)18.9314.2711.8512.03 8.34_{E} 8.04 RS(10, 2)18.98 $14.66 \mid 12.12 \mid 12.61 \mid 8.40_E \mid 8.22_E$

Conclusion

- ▶ We identified bitmatrix multiplication as straight line programs (SLP).
- ▶ We optimized XOR-based EC by optimizing SLPs using various program optimization techniques.
- ► Each of our techniques is not difficult; however, it suffices to match Intel's high performance library ISAL.
- As future work on cache optimization, I plan to accommodate multi-layer cache L1, L2, and L3 cache.

オススメの教科書: コンパイラ編

Aho & Ullman, Principles of Compiler Design

Aho & Sethi & Ullman, Principles of Compiler Design

オススメの教科書: オートマトン & 計算量理論 (NP やらなんやら) 編

Hopcroft & Ullman,

Introduction to automata theory languages, and computation

Sipser, Introduction to the Theory of Computation

オススメの教科書:有限体(ガロア体)と符号理論

工学的に良いのは知らないのですが、代数一般の視座からなら

第3章 体論の基本

3.1 体の拡大

3.2 代数閉包の存在

3.3 分離拡大

3.4 正規拡大

3.5 有限体

3.6 無限体上の多項式

3.7 単拡大

第4章 ガロア理論

4.1 ガロア拡大とガロアの基本定理

注: ガロア理論と有限体(ガロア体)は別物です

レポート課題: 上里担当分

レポート課題というより、演習問題を大問で4つ出します。全部解く想定です。 各問でセクションを区切り、合計4つのセクションからなる PDF ファイルを提出してください。

問1は、問2の準備です。 ℙ[11] を構成してもらいます。

問 2 では、 $\mathbb{F}[11]$ を要素とする Vandermonde 行列を作り、本当に逆行列が存在するかを手計算で確認してもらいます。これで、簡易的な erasure coding ができたことになります。

問3は、演算数最適化を行なってください。

問 4 は、キャッシュ最適化を抽象化した pebble game に挑戦してください。

課題 1: 『[11] の構成

要素数が 11 の有限体 $\mathbb{F}[11] = \{0,1,\ldots,9,10\}$ を構成したい。

足し算 $x \oplus y$ は普通の足し算をして 11 で割る: $(x + y) \mod 11$ 掛け算 $x \otimes y$ は普通の掛け算をして 11 で割る: $(x \times y) \mod 11$

- (1) まず足し算の逆元が必ず存在することを確認せよ 全てのx に対して、-x に相当するものを書け
- (2) 同様に、掛け算の逆元が存在することを確認せよ 全ての非零xに対して、 $\frac{1}{x}$ に相当する要素を全て書け
- (3) 積の生成元 α で **最大のもの** を求めよ。積の生成元とは

$$\alpha, \alpha^2, \cdots, \alpha^9, \alpha^{10}$$

が全て異なるもの。 α を掛けていくだけで、0 以外の全ての数を得られるので生成元と呼ぶ。

課題 2: 一般化 Vandermonde Matrix

高さm 横幅n 一般化 Vandermonde Matrix $V_{m,n}$ は 次で作れる:

$$V_{m,n} = m \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & (\alpha^2) & (\alpha^2)^2 & \cdots & (\alpha^2)^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & (\alpha^m) & (\alpha^m)^2 & \cdots & (\alpha^m)^{n-1} \end{bmatrix}$$

ただし、 $\alpha, \alpha^2, \alpha^3, \dots, \alpha^m$ は全て異なるとする。 (なので α としては積の生成元をとっておくと安心)

- (1) $\mathbb{F}[11]$ を使う。課題 1 の (3) で求めた α を用いて
- 高さ (m) 4, 横幅 (n) 2 の Vandermonde matrix $V_{4,2}$ を生成し、それを記せ
- (2) 好きな2行を削って 2×2 の正方行列を作り、それが逆行列を持つことを確かめよ(これは課題ではないが、どの2行の組み合わせ($_4C_2=6$ 通り)で2行を削除をしても得られる 2×2 正方行列が正則となる。プログラムに計算させて確かめよ。また $V_{3,5}$ の行列を作り、どの2行削って得られる 3×3 行列も正則であることを確かめよ。)

課題3:速度最適化1

以下のプログラムを ⊕ の個数が最小になるように最適化せよ。 変数は幾つ追加しても良い。変数の個数は重要ではない。 とにかく字面に現れる ⊕ の個数を減らせれば良い。

$$x_{1} \leftarrow a \oplus b \oplus c \oplus w \oplus x;$$

$$x_{2} \leftarrow a \oplus z \oplus b \oplus c \oplus y;$$

$$x_{3} \leftarrow c \oplus a \oplus b \oplus y \oplus w;$$

$$x_{4} \leftarrow b \oplus a \oplus c \oplus x \oplus z;$$

$$x_{5} \leftarrow b \oplus c \oplus a \oplus w \oplus z;$$

$$\mathbf{return}(x_{1}, x_{2}, x_{3}, x_{4}, x_{5});$$

ヒント 1: 可換則 $x \oplus y = y \oplus x$, 結合則 $x \oplus (y \oplus z) = (x \oplus y) \oplus z$ は勿論使うが, XOR のキャンセル性質 $x \oplus x \oplus y = y$ は使わなくて良い。

ヒント 2: まず変数を一つ追加して $\bullet \leftarrow \bullet \oplus \bullet \oplus \bullet$ だけの形にしよう。

課題 4: 速度最適化 2 Pebble Game

なるべく少ない pebble で解く=①に pebble を置く プレイ列を(良い感じに)記せ。

(課題のための簡易版) ゲームのルール

- ★ 最初は全ての pebble が手元にある
- * 葉(入力辺がないノード)には いつでも pebble が置ける
- * 内点(入力辺があるノード)には その全ての直接の子が pebble を 持っている時に限り
 - □ 手元から置ける; または
 - □ どれかの子の pebble を移動させて良い
- ★ 1 つのノードにおける pebble は一つまで
- ★ Pebble の回収には制約はない