Лабораторная работа №4.2.1

Кольца Ньютона

Цель работы

Познакомиться с явлением интерференции в тонких пленках на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

Теория

Найдем толщину зазора между пластинкой и линзой из теоремы Пифагора:

$$R^2 = r^2 + (R - d)^2 \Rightarrow d \approx \frac{r^2}{2R} \tag{1}$$

Разность хода между интерферирующими лучами равна

$$\Delta = 2d + \frac{\lambda}{2} = \frac{r^2}{R} + \frac{\lambda}{2} \tag{2}$$

Условие интерфернционных минимумов (темных колец):

$$\Delta = \left(m + \frac{1}{2}\right)\lambda \Rightarrow r = \sqrt{m\lambda R} \tag{3}$$

В этом уравнении при целых m наблюдаются темные кольца, при полуцелых - светлые.

Рис. 1: Схема для наблюдения колец Ньютона в отраженном свете

Рис. 2: Схема установки

Если входящий пучок состоит из 2 близких линий, то наблюдаются биения - размывание видности интерференционной картины. Условие биения - наложение максимума для одной длины волны на минимум для другой:

$$m\lambda_1 = \left(m + \frac{1}{2}\right)\lambda_2 \Rightarrow \Delta\lambda = \frac{\lambda}{2m}$$
 (4)

Измерения

Основная часть

Снимем зависимость радиуса темных и светлых колец от номера Построим график зависимости $r^2(m)$. Угловой

n	-8.0	-7.5	-7.0	-6.5	-6.0	-5.5	-5.0	-4.5	-4.0	-3.5
x, дел	0.87	0.96	1.06	1.17	1.23	1.31	1.4	1.51	1.63	1.74
r, MM	-0.228	-0.220	-0.211	-0.202	-0.196	-0.189	-0.181	-0.171	-0.160	-0.151
r^2 , mm^2	0.052	0.049	0.045	0.041	0.039	0.036	0.033	0.029	0.026	0.023
n	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5
\overline{n}	-3.0	-2.5	-2.0	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5
x, дел	1.86	2.01	2.17	2.34	2.51	2.84	3.42	4.02	4.31	4.52
r, mm	-0.140	-0.126	-0.112	-0.097	-0.082	-0.052	0.000	0.054	0.080	0.099
r^2 , mm^2	0.020	0.016	0.013	0.009	0.007	0.003	0.000	0.003	0.006	0.010
n	3.0	2.5	2.0	1.5	1.0	0.5	0.0	0.5	1.0	1.5
\overline{n}	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5
x, дел	4.71	4.91	5.05	5.18	5.29	5.39	5.49	5.61	5.69	5.79
r, MM	0.116	0.134	0.146	0.158	0.168	0.177	0.185	0.196	0.203	0.212
r^2 , mm ²	0.013	0.018	0.021	0.025	0.028	0.031	0.034	0.039	0.041	0.045
$\lfloor n \rfloor$	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5
\overline{n}	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5
x, дел	5.88	5.98	6.04	6.12	6.21	6.27	6.33	6.4	6.46	6.52
r, MM	0.220	0.229	0.235	0.242	0.250	0.255	0.261	0.267	0.272	0.278
r^2 , mm^2	0.049	0.053	0.055	0.059	0.062	0.065	0.068	0.071	0.074	0.077
$\underline{\hspace{1cm}}$	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5
n	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5
x, дел	6.61	6.68	6.75	6.82	6.91	6.95	7.02	7.08	7.14	7.18
r, MM	0.286	0.292	0.298	0.305	0.313	0.316	0.323	0.328	0.333	0.337
r^2 , MM^2	0.082	0.085	0.089	0.093	0.098	0.100	0.104	0.108	0.111	0.113
$\underline{\hspace{1cm}}$	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5
n	17.0	17.5	18.0	18.5	19.0	19.5	20.0			
x, дел	7.23	7.29	7.34	7.37	7.41	7.45	7.49			
r, MM	0.341	0.347	0.351	0.354	0.358	0.361	0.365			
r^2 , MM^2	0.117	0.120	0.123	0.125	0.128	0.130	0.133			
n	17.0	17.5	18.0	18.5	19.0	19.5	20.0			

Таблица 1: Зависимость радиуса кольца от его номера

коэффициент прямой $\alpha = (6.85 \pm 0.03) \cdot 10^{-3} \ \mathrm{mm}^2$. Найдем радиус кривизны линзы:

$$R = \frac{\alpha}{\lambda} = (11.8 \pm 0.1) \text{ mm} \tag{5}$$

Биения

Получим биения. Для этого направим на установку 2 линии — зеленого и желтого цвета с длинами волны $\lambda_1=546$ нм и $\lambda_2=577$ нм. Количество полос между наиболее четким и наиболее размытым кольцом $\Delta m=9\pm0.5$. Тогда по формуле (4) получаем $\Delta\lambda=(31\pm2)$ нм.

Рис. 3: График зависимости радиуса колец от их номера

Калибровка

0 деление шкалы видно при $x_1=0.17$ дел, 75 — при $x_2=8.54$ дел. Отсюда с учетом того, что у шкалы 100 дел =1 мм, получаем 1 дел =89.6 мкм.

Выводы

- Получена интерференционная картина колец Ньютона
- Измерена зависимость радиуса колец от их номеров
- ullet Вычислен радиус кривизны линзы $R = (11.8 \pm 0.1)$ мм
- Получена картина биений для двух близких длин волн, вычислена разность $\Delta \lambda = (31 \pm 2)$ нм. У ртутной лампы зеленая линия имеет длину волны $\lambda_1 = 546$ нм, желтая $-\lambda_2 = 577$ нм $\Rightarrow \lambda_2 \lambda_1 = 31$ нм. Таким образом полученные данные находятся в согласии с теорией.