

49

AD AO 627

LIGHTWEIGHT HYDRAULIC SYSTEM EXTENDED ENDURANCE TEST

Rockwell International

Columbus Aircraft Division 4300 East Fifth Avenue PO Box 1259 Columbus, Ohio 43216

SEPTEMBER 1978

FINAL REPORT FOR PERIOD 24 DECEMBER 1977 - 21 SEPTEMBER 1978

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

PREPARED FOR

NAVAL AIR DEVELOPMENT CENTER

AIRCRAFT AND CREW SYSTEMS TECHNOLOGY DIRECTORATE (6061)

WARMINSTER, PA 18974

78 12 26 087

This technical report has been reviewed and is approved for publication.

APPROVED BY: Street DATE: 30 October 1978

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

SECUHITY SCASSIFICATION OF THIS PAGE (When Date Entered)			
(19) REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
NADCH77218-30	O. J. RECIPIENTS CATALOG NUMBER		
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED Final Report		
LIGHTWEIGHT HYDRAULIC SYSTEM	24 Dec 277 - 21 Sept 1078		
EXTENDED ENDURANCE TEST ,	NR78H-92		
AND FROM A CONTRACT C	8. CONTRACT OR GRANT NUMBER(s)		
Joseph N. Demarchi Robert K. Haning	N62269-78-C-0005		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Columbus Aircraft Division	AIRTASK NO.		
Rockwell International Corporation	A3400000/001C/8W0586-001		
4300 E. Fifth Ave., Columbus, Ohio 43216	WORK UNIT NO. WM 501		
11. CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT OATS		
Naval Air Development Center (6061)	(//) September 2978)		
Warminster, PA 18974	39		
14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)			
AIR-340C Naval Air Systems Command Department of the Navy (12) 42p.	Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE		
Washington, DC 20361	SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for Public Release; Distribution Unlimited W0586			
17. DISTRIBUTION STATEMENT (of the abetract entered in Black 20, If different from Report) (2) W0 586 611			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	or)		
Aircraft Hydraulic Systems			
Lightweight Hydraulic Systems	Aircraft Hydraulic Systems		
Very High Pressure Hydraulic Systems			
/ resoure mydradiic bystems			
20 JABSTRACT (Continue on reverse side if necessary and identify by block number			
A 100 hour endurance test completed in a prior project was extended to 200 hours. The evaluation was conducted at 8000 psi and +200°F on hydraulic components in a laboratory system designed to be representative of aircraft-type circuitry. The hardware cycled were: pump, relief valve, restrictors, solenoid valves, flow control valve, seals (22), hydraulic fluid (MIL-H-83282), tubing, fittings, and hoses. The test was completed satisfactorily.			

DD TORM 1473 1473 EDITION OF I NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SUMMARY

One hundred hours of endurance cycling were conducted at 8000 psi and $+200^{\circ}$ F on hydraulic components in a prior phase of the Lightweight Hydraulic System (LHS) program. The test was completed satisfactorily with no significant failures. Further evaluation was required to estimate the potential endurance life of the test hardware. Endurance cycling was therefore extended for 100 additional hours; the results are presented in this report. The components tested were:

- 1. Variable displacement pump
- 6. Seals: dynamic (8) static (14)

2. Relief valve

7. Hydraulic fluid (MIL-H-83282)

3. Restrictors (2)

- 8. Tubing (3 sizes)
- 4. Solenoid valves (2)
- 9. Fittings
- 5. Flow control valve
- 10. Hoses (2)

Component performance was measured before resumption of endurance cycling and at 150 and 200 hours. Testing was completed with no major problems. Significant observations made were as follows:

- Standard 0-rings and TFE backups can be used in static seal applications (diametral, face, boss)
- Off-the-shelf seals are satisfactory for dynamic applications (piston, rod)
- · Estimated potential life of the pump was 1000+ hours
- Restrictor and flow control valve performance was estimated to be satisfactory for the life of the aircraft

PREFACE

This report documents research conducted by the Columbus Aircraft Division of Rockwell International Corporation, Columbus, Ohio, under Contract N62269-78-C-0005 with the Naval Air Development Center, Warminster, Pennsylvania. Technical direction was administered by Mr. J. Ohlson, Program Engineer, Fluid Systems Section, Aircraft and Crew Systems Technology Directorate, Naval Air Development Center (6061), and Mr. N. Webb, Head, Fluid Systems Section, Mechanical Equipment Branch, Naval Air Systems Command (AIR-53031).

This report presents the results of an extended endurance test conducted on aircraft-type hardware designed for use in an 8000 psi hydraulic system. This work is related to tasks performed under Contracts NOw-65-0567-d, NOO019-68-C-0352, NOO156-70-C-1152, N62269-71-C-0147, N62269-72-C-0381, N62269-73-C-0700, and N62269-74-C-0511.

Appreciation is extended to the many individuals who provided helpful support and constructive criticism of the program; in particular, Mr. N. Webb of the Naval Air Systems Command, and Mr. J. Ohlson and Mr. J. Dever of the Naval Air Development Center.

NADC-77218-30

TABLE OF CONTENTS

SECTION	PAC
	SUMMARY
	CM CD ******************************
	LIST OF ILLUSTRATIONS
1.0	INTRODUCTION
	1.2 OBJECTIVES
	1.3 TECHNICAL APPROACH
2.0	RESULTS 8 2.1 SYSTEM 8 2.2 PUMP 11 2.3 RELIEF VALVE 14 2.4 RESTRICTORS 15 2.5 SOLENOID VALVES 15 2.6 FLOW CONTROL VALVE 16 2.7 SEALS 16 2.8 FLUID 20 2.9 TUBING, FITTINGS, AND HOSES 32
3.0	DISCUSSION
4.0	RECOMMENDATIONS
	REFERENCES
	LIST OF ABBREVIATIONS

NADC-77218-30

LIST OF ILLUSTRATIONS

FIGURE NO.		PAGE
1	ENDURANCE TEST SYSTEM	9
2	SPOOL AND SLEEVE AFTER ENDURANCE TEST	17
3	SEAL LOCATIONS IN TEST FIXTURE	18
4	GREENE, TWEED PISTON SEAL	24
5	SHAMBAN PISTON SEAL	24
6	BAL-SEAL ROD SEAL	25
7	GREENE, TWEED ROD SEAL	25
8	ROCKWELL/SHAMBAN ROD SEAL	26
9	SHAMBAN ROD SEAL	26
10	DIAMETRAL SEALS	27
11	FACE SEALS	28
12	BOSS SEALS	29

LIST OF TABLES

TABLE NO.		PAGE
I	PERFORMANCE SUMMARY	12
11	TEST SEAL CONFIGURATIONS	19
111	SEAL LEAKAGE SUMMARY	21
IV	VISUAL INSPECTION SUMMARY	22
V	SEAL TEST SUMMARY	30

1.0 INTRODUCTION

1.1 BACKGROUND INFORMATION

The development of a lightweight hydraulic system (LHS) for military aircraft has been a joint undertaking by the Navy and Rockwell International since 1966. The LHS concept involves the use of an 8000 psi pressure level to minimize the weight and space requirements of hydraulic components and lessen the severity of the weight and space restrictions present in high density, supersonic aircraft.

Prior phases of the program have examined many aspects of very high pressure hydraulic systems as applied to aircraft. The first phase was a theoretical study of pressure levels up to 20,000 psi, and concluded that operating pressures up to 9000 psi are feasible, Reference 1. The second phase consisted of: (1) a math model computer simulation to establish the dynamic response of two schematically simple hydraulic systems operating with pressures up to 12,000 psi; and (2) laboratory tests to confirm trends noted at lower pressures and gain operating experience with pressure levels up to 9000 psi, Reference 2. Phase III verified the math model dynamic response at 6000 and 9000 psi by means of laboratory tests conducted on a mass-loaded servo actuator powered by a very high pressure aircraft-type pump, Reference 3. The pump was designed and built by Abex Corporation in Oxnard, California, under the technical guidance of the Columbus Aircraft Division (CAD). The 9000 psi servo actuator was designed and fabricated by CAD and sized to simulate the RA-5C horizontal stabilizer flight control "muscle" actuator.

Phase IV involved hardware performance tests, selection of 8000 psi as the LHS operating pressure level, development of LHS design criteria, and use of these criteria in a study made to determine space and weight savings achieved if an 8000 psi hydraulic system were applied to the F-14 airplane, Reference 4. Phase V was an investigation of the detail performance characteristics of 8000 psi hardware including a variable delivery pump, three port solenoid valve, power servo actuator, and notched spool/sleeve type flow control valve -- all operating with MIL-H-83282 fluid, Reference 5. In addition, the computer simulation of Reference 3 was updated and compared to hardware performance, and an industry-wide survey was made to locate 8000 psi static and dynamic seals. Phase VI consisted of preparations for conducting an endurance test on aircraft-type hardware designed for use in an 8000 psi hydraulic system, Reference 6.

Phase VII was a 100 hour endurance test conducted at 8000 psi and +200°F on lightweight hardware in a laboratory hydraulic system designed to be representative of aircraft-type circuitry. The hardware cycled were: pump, relief valve, restrictors, solenoid valves, flow control valve, seals (22), hydraulic fluid (MIL-H-83282), tubing, fittings, and hoses. The test was completed with no major problems. This phase also included the design and fabrication of an 8000 psi aileron actuator for the T-2C airplane, Reference 7.

Phase VIII involved preparations for flight testing an 8000 psi hydraulic system. The major tasks were test installation design, heat rejection analysis, and laboratory compatibility tests of system components, Reference 8. An 8000 psi lateral control system was installed on a T-2C airplane in Phase IX, Reference 9. Four pilots evaluated the test installation, accumulating 11.5 flight hours. The 8000 psi system functioned exceptionally well.

The LHS Exploratory Development Program has shown that state-of-the-art advances are not required to operate at 8000 psi, and that significant advantages can be gained by using 8000 psi instead of the conventional 3000 psi pressure level.

1.2 OBJECTIVE

The objective of Phase X of the LHS Exploratory Development Program was to extend the 100 hour endurance test conducted in Phase VII to 200 hours.

1.3 TECHNICAL APPROACH

The 8000 psi hydraulic system evaluated in Phase VII satisfactorily completed 100 hours of laboratory endurance cycling. No major failures occurred, however a fatigue crack developed in the pump barrel after 66 hours of cycling. A second pump was used to complete the test. All hardware in the system was in excellent condition at 100 hours (including the second pump). Further testing was required to estimate endurance potentials and assure that changes to be made in the pump were satisfactory.

Technical consulting services were provided by the Columbus Aircraft Division to support NADC in procuring a modified 8000 psi pump. The modification was accomplished by the Aerospace Division of Abex Corporation in Oxnard, California.

The modified pump was installed in the existing 8000 psi hydraulic test system at CAD. The pump and system components were then subjected to 100 additional hours of endurance cycling. Test conditions were identical to those used in Reference 7. Fluid temperatures ranged from +200 to +260°F; fluid flow was varied by automatic cycling of solenoid valves, servo actuators, and seal test fixtures. Hardware performance was measured before resumption of endurance cycling, and after completion of 150 and 200 hours of testing. After final leakage checks were made, the seal test fixture was disassembled to inspect individual seals for wear and incipient failures.

2.0 RESULTS

2.1 SYSTEM

The test system, shown on Figure 1, is described in detail in Reference 7. Components in the system subjected to endurance cycling were:

Description	Manufacturer
* Variable displacement pump	Aerospace Division of Abex Corporation
* Hydraulic relief valve	Teledyne Republic
Hydraulic restrictors (2 ea.)	The Lee Company
3-Port solenoid valves (2 ea.)	Sterer Engineering and Manufacturing Co.
Flow control valve	Rockwell International (design only) Aircraft Nitriding Co.
Seals: Dynamic (8 ea.) Static (14 ea.)	Bal-Seal Engineering Co. Cook-Airtomic Division of Dover Corporation Greene, Tweed & Co. Parker Seal Co. Pressure Science, Inc. Rockwell International (design only) W. S. Shamban and Co. United Aircraft Products, Inc.
Hydraulic Fluid (MIL-H-83282)	Mobil Oil Corporation
21-6-9 CRES tubing	Trent Tube Division of Colt Industries
Fittings (Dynatube)	Resistoflex Corporation
Hoses (2 ea.)	Titeflex Division of Atlas Corporation Resistoflex Corporation

Items marked with an asterisk (*) differed from those tested in the first 100 hours of cycling, Reference 7. The pump was modified; this is discussed in Section 2.2. The relief valve was a different unit since the original valve (manufactured by PneuDraulics) was in a test installation on a T-2C airplane, Reference 11.

Component performance was measured at 100, 150, and 200 hours. Performance checks made were:

Pump	Discharge flow Heat rejection Case drain filter debris
Relief Valve	Internal leakage Cracking pressure
Restrictors (2)	Flow
Solenoid Valves (2)	Internal leakage
Flow control valve	Null leakage Flow gain
Seals (22)	Leakage
Hydraulic Fluid	Viscosity Contamination
Hoses (2)	External leakage
Fittings (12)	External leakage
Tubing	External leakage

The 100 hour endurance test was conducted over a period of 20 days; run time averaged 4 to 6 hours per day. The test temperature was $+200 \pm 10^{\circ} F$ fluid at the pump discharge port. Pump speed was 4000 rpm. Temperature stabilization was achieved by means of a controller and an oil-to-water heat exchanger. A summary of average temperatures maintained during cycling is given below:

Thermocouple Location	Temperature, °F
Pump inlet fluid	+186
Pump discharge fluid	+203
Pump case drain fluid	+254
System return fluid	+225
Spool/sleeve housing (on LHS actuator)	+210
Seal test fixture (cartridge housing)	+202
Enclosure air	+151

A performance summary covering 200 hours of endurance cycling is given on Table I; data for 0 and 50 hours were taken from Reference 7. Results of the final 100 hours of testing are given in the following sections. Component descriptions and test procedure details are discussed in Reference 7.

2.2 PUMP

The test pump was designed and fabricated by the Aerospace Division of Abex Corporation in Oxnard, California. The unit, identified as M/N AP6V-57, P/N 63022, is a pressure compensated, variable displacement, axial piston pump. Rated output at 4000 rpm and +240°F inlet fluid temperature is 14 gpm at 7850 psi; full displacement is 0.95 CIPR. Displacement was reduced approximately 50% to limit input horsepower requirements. This was done by inserting a spacer in the stroking piston bore.

The rotating barrel in the original LHS pumps, S/N 109421 and S/N 109422, was made of Mueller bronze 603. The maximum working stress level was approximately 13,000 psi, and fatigue strength was 30,000 psi. The barrel cracked in S/N 109421 after 65.8 hours of cycling in the endurance test reported by Reference 7; the remaining 34.2 hours of cycling were completed using S/N 109422. At this point the total operating time on S/N 109421 was 85.8 hours, and on S/N 109422 was 206.2 hours, Reference 7.

Both LHS pumps were shipped to the Aerospace Division of Abex Corporation for modification. The rotating barrel in each pump was changed to 4130 steel with an ultimate strength of 125,000 psi. The working stress level was estimated to be 24,000 psi. Sleeves made from Mueller brass 605 were swaged in the piston bores; sleeve wall thickness was 0.0625 inches. The barrel face was plated with shoe bronze (95% Cu - 5% Sn). No other parts in the pumps were modified. Pump S/N 109422 was used for the tests reported herein.

It should be noted that prior to modifying the AP6V-57 pumps, Abex fabricated an 8000 psi, 3 gpm pump with a steel barrel and Mueller bronze sleeves. This unit, designated as M/N AP1V-106, was used for the LHS and AFCAS flight test programs, References 9 and 11, and currently has 113 hours of satisfactory operation.

TABLE I PERFORMANCE SUMMARY

	COMPONENT TEST PARAMETER	* O HRS	*50 HRS	100 HRS	150 HRS	200 HR
	PUMP					
				- MODIFIE	D PUMP	
	DISCHARGE FLOW & 7500 PSI, GPM	5.97	5.19	6.52	6.50	5.45
	HEAT REJECTION @ 8000 PSI, BTU/MIN	574	722	592	571	549
	RELIEF VALVE					
	INTERNAL LEAKAGE, DPM	0	0	1	REPUBLIC VALVE	
	CRACKING PRESSURE, PSI	8550	8500	8600	NM NM	2
			0000	8000	NM	8600
	RESTRICTORS (2)					
	FLOW, GPM					
	LARGE RESTRICTOR	1.98	2.03			
	SMALL RESTRICTOR	.36	.37	1.95	1.96	1.96
				• • • • • • • • • • • • • • • • • • • •	.44	.45
	SEALS (22)	SEE TABLE	x			
	SOLENOID VALVES (2)					
	INTERNAL LEAKAGE (VALVE 'OFF')					
	VALVE S/N 1. DPM					
	VALVE S/N 2. DPM	7	7	•	17	24
			•	•	10	22
_	FLOW CONTROL VALVE					
	NULL LEAKAGE, CC/MIN	125	125	142	140	
	FLOW @ +.077 IN. SPOOL TRAVEL, SPM	3.52	3.44	3.64	3,45	187
				0.01	3.45	3.46
	HYDRAULIC FLUID (MIL-H-83282)	- BATCH	*186 (7.5 GAL)	- 1 GAL 01	F BATCH # 171 ADDES	
	VISCOSITY, CS	17.5	17.7	17.7/16.8	NM	16.9
	CONTAMINATION, COUNTS		A FILTER ELEMENTS	SH ELEM	ENT PUT IN CASE DE	
	15-25M RANGE	N M 6665	NM 11,985	95,146 462	39, 318	3637
	26-50µ RANGE	0	10	139	18	10
	HOSES (2)					1
	EXTERNAL LEAKAGE. DPM					
	-4 SIZE	0	0	0	0	
	-6 SIZE	0	0	0	0	0
	FITTINGS (12)					1
	EXTERNAL LEAKAGE, DPM	0	0	0	٥	0 -
	TUBING (21-6-9 CRES)					
	EXTERNAL LEAKAGE, DPM	0				
	, , , , , ,	•	0	•	0	0

^{*} DATA FROM REFERENCE 7 DPM = DROPS PER MINUTE NM = NOT MEASURED

Test Procedure

Compensator setting	8000 psig
Pump speed	4000 rpm
Pump displacement	0.45 CIPR (approx.)
Inlet pressure	30 psig
Fluid temperatures	Inlet °F (recorded) Discharge, +200°F Case Drain, °F (recorded)
Input torque	lb-in (recorded)
Flow	Discharge, gpm (recorded) Case drain, gpm (recorded)
Discharge pressure	4000 to 8000 psig
Case pressure	45 to 70 psig

Test Results

Performance of the modified pump is summarized below:

Endurance Test Check Point	Discharge Pressure, psig	Discharge Flow, gpm	Case Flow, gpm	Heat Rejection, BTU/min
100 Hours	7500 8000	6.52 0	1.42	500 592
150 Hours	7500 8000	6.50	1.42	477
200 Hours	7500	6.45	2.24 1.57	571 467
	8000	0	2.25	549

Overall efficiency is approximately 91% when the pump is operated at its full rated capacity of 14 gpm, Reference 5. Lowering maximum discharge flow to 6.5 gpm reduced efficiency to 72%. This was due to operating tare of the pump which was present regardless of the displacement setting. Heat rejection decreased 7% during the 100 hour test, indicating performance improved as the pump "wore in".

A normal quantity of wear particles was observed in the case drain filter during the 100, 150, and 200 hour checks. Pump wear was therefore considered to be satisfactory.

Total operating time on LHS pump S/N 109422 is currently 306 hours; time on the rotating steel barrel is 100 hours. Internal parts of the pump were examined prior to the extended endurance test; all parts subject to wear were observed to be in excellent condition. Based on the test data, pump life was estimated to be more than 1000 hours.

2.3 RELIEF VALVE

Relief valve, P/N 1108A, fabricated by PneuDraulics, Inc., was evaluated during the first 100 hours of endurance cycling, Reference 7. This valve was also used in the 8000 psi hydraulic system for the LHS and AFCAS flight test programs, References 9 and 11, and is currently installed in a T-2C airplane for a follow-on AFCAS flight test program. Valve P/N 1108A was therefore not available for the LHS extended endurance test reported herein. A prototype relief valve, P/N 2-2177-4, supplied by Teledyne Republic Manufacturing, Cleveland, Ohio, was used for the extended endurance test. This unit was similar to the PneuDraulics valve in both size and design.

Performance of valve P/N 2-2177-4 is summarized below:

Endurance Hours Completed	Cracking Pressure, psig	Internal Leakage at 8000 psi, dpm	
0	8600 (est.)	9	
100	8600 (est.)	2	

The valve did not have sharply defined cracking and re-seating characteristics. The above cracking pressures were estimates based on 0.2 gpm flow through the unit. With 9200 psig applied (the highest possible compensator setting on the LHS pump), maximum flow through the valve was only 1 gpm. This could easily be increased by a redesign. Internal leakage across the poppet was not affected by the 100 hour test; no external leakage was observed.

2.4 RESTRICTORS

Flow restrictors evaluated in the extended endurance test were P/N VDLX0484000A (small restrictor) and P/N JEFX0483000A (large restrictor) manufactured by The Lee Company. Flow through the restrictors with 8000 psig applied and +110°F MIL-H-83282 fluid is summarized below:

Small Restr	ictor	Large Restri	ictor	
Endurance Hours Flow, Completed gpm		Endurance Hours Completed	Flow,	
0	0.36	0	1.98	
50	0.37	16.7	2.03	
100	0.44	33.3	1.95	
150	0.44	50	1.96	
200	0.45	66.7	1.96	

Flow changes caused by endurance cycling were considered acceptable; the performance of both restrictors was therefore satisfactory. Projected life of the restrictors was estimated more than the life of the airframe.

2.5 SOLENOID VALVES

The solenoid valves, built by Sterer Engineering and Manufacturing Company, were identified as P/N 15390-1, S/N 001 and S/N 002. Internal leakage measurements were taken with the cylinder port capped, return port open, and 8000 psi applied to the pressure port. Leakage rates were as follows:

Endurance	Number of	Internal Leakage, drops/min						
Test Hours	Cycles	Valve	S/N 001	Valve S/N 002				
Completed	<u>Completed</u>	Off	On	Off	<u>On</u>			
0	0	4	2	7	4			
50	200	7	26	4	11			
100	400	9	13	4	12			
150	600	17	19	10	16			
200	800	24	31	22	40			

Each valve was subjected to a total of 1,760,000 pressure pulsations around the 8000 psi pressure level. Although the internal leakage of both valves was beginning to increase at the conclusion of testing, valve performance was satisfactory throughout the test. Valve S/N 002 had external leakage at the rate of 5 drops/minute when the unit was energized electrically. The leak emanated from a titanium gasket seal.

2.6 FLOW CONTROL VALVE

Spool/sleeve P/N 4212-03-11 was designed by the Columbus Aircraft Division and fabricated by Aircraft Nitriding Company. Valve endurance performance was based on null leakage and flow gain. Values of these parameters versus test time are shown below:

Endurance Test Hours Completed	Number of Spool Oscillations	Null Leakage,	Flow @ +0.077 in. Spool Displ., gpm
0	0	125	3.52
50	220,000	125	3.44
100	440,000	142	3.54
150	660,000	140	3.45
200	880,000	137	3.45

The above data indicate that no significant change in valve performance occurred. Erosion on the spool spindle after 880,000 oscillations was minor and had no effect on valve performance, Figure 2. Based on the test data and a visual examination for wear, the potential life of the valve was estimated to be more than the life of the airframe.

2.7 SEALS

Eighteen different seals were evaluated concurrently in a seal test fixture, P/N 4252-03, designed by the Columbus Aircraft Division and built by Lancaster Metal Products, Figure 3. Seal types and number () tested were: piston (2), rod (4), diametral (4), face (4), and boss (4). Four additional seals were evaluated in LHS actuator P/N 4212-01, designed and fabricated by CAD, Reference 3. Seals tested were: piston (1), rod (1), diametral (1), and boss (1). Details of the seals, including materials, anti-extrusion devices, surface finish, extrusion gap, etc., are given on Table II.

FIGURE 2 FLOW CONTROL VALVE AFTER ENDURANCE TEST

FIGURE 3 SEAL LOCATIONS IN TEST FIXTURE

TABLE II TEST SEAL CONFIGURATIONS

	LOCATION							SEALING		SEAL
SEAL	3		DESIGNER/	SEALING	ELEMENTS	ANTI-EXTR	USION DEVICES	SURFACE	EXTRUSION	CAVITY
TYPE	9	PART NO.	SUPPLIER	TYPE	MATERIAL	TYPE	MATERIAL	FINISH	GAP, IN.	DESIGN
PISTON	^	123DA - 2040	COOK AIRTOMIC	SPLIT RING (2)	440 C	HONE	NONE	0-10	.0017	NON-STD.
	14	/330MT-160-9009	GREENS, TWEED	'T' SECTION RING	MITRILE	L SPLIT RING (2) 2. SPLIT RING (2)	I. MOLY LOADED, GLASS FILLED TRE 2. 316 CRES	8-16	. 0022	REDUCED GA
	13	5 20860 - 550	SHAMBAN	I. CHANNEL SECTION	. GLASS & MOLY RE-	I. SPLIT RING (2)	I. POLYESTER	4-6	.0022	NON- STA
				2. 0-RING	2. FLUOROCARBON	E. SURGE SUFFER(Z) (SPLIT RING)	2. POLYESTER			
ROD	^	5P-4246-4-16E	COOK AIRTOMIC	SPLIT RING (Z)	440 C	NONE	NOME	8-16	.0050	NON-STD.
14	12	507-1.250 \$	BAL-SEAL	C SECTION RING,	GRAPHITE FILLED TPE	NONE	NONE	4.0	.0015	HON- STD., SPLIT GROOVE REG'D.
	•	72 IBFT- I60 - 9009	GREENE, TWEED	T' SECTION RING	NITRILE	I. SPLIT RING (2)	I MOLY LOADED, GLASS FILLED TFE 2. 316 CRES	8-16	.0015	STD. WITH REDUCED SAF
	,	513122-218-M NAS 1593-218	ROCKWELL/SHAMBAN	0-RIN6	FLUGROCARBON	SPLIT RING (2)	15% GLASS, 5% MOLY	8 - 16	.00-\$	MOD. STD.
	,	520865 - 218 NAS 1593-218		I. CHANNEL SECTION	I. GLASS & MOLY RE- INFORCED THE 2. FLUOROCARBON	I. SPLIT RING (2) 2. SURGE BUPFER (2)	I. POLYESTER	4-8	.00/5	MOD. STD. SPLIT GROOT
IAM ETRAL	10	505 - 2336	BAL-SEAL	'C' SECTION RING, SPRING LOADED	GRAPHITE FILLED THE	NONE	NONE	32	.000	NON- 6TD.
		NAS :593-255 MS 27595-255	ROCKWELL	0-RIN4	FLUOROCARSON	CONTINUOUS RING (2)	TFE	32	0010	MOD. STD.
	3	5 91120 - 4	SHAMBAN	'2' SECTION RING	TFE	CONTINUOUS RING (2)	BRASS	32	.0010	NON- STD.
	1	U-2410-03/26-5ED	UNITED AIRCRAFT	O-RING (SELF- ENERGIAED)	SZI CRES	NONE	NONE	32	.0010	NON- 578
	^	NAS 1893-116 MS 28774-116	ROCKWELL	D-RING	FLUOROCARBON	SPIRAL RING (Z)	TFE	52	.0018	MOD. 670.
FACE	•	5464-32400-160-0220	GREENE, TWEED	'L' SECTION RING	NITRILE	CONTINUOUS RING (1)	MOLY LOADED, GLASS	• • • • • • • • • • • • • • • • • • • •	-	
"	2	6444x-0034-1	PRESSURE SCIENCE	'E' SECTION RING	INCO 4-750, SILVER PLATED	NONE	NONE	63		
	"	4252-05-25 MAS 1593-227	ROCKWELL	O-RING	FLUOROCARBON	CONTINUOUS RING (I)	776	63		
	5	U-2410-02376-5ED	UNITED AIRCRAFT	0-RING (68LF-ENERGIPES)	321 CRES TPE COATED	NONE	NONE	43		
BOSS	17	NAS 1590-06	ROCKWELL	0-RIN6	FLUOROCARBON	HONE	NONE	32		STD.
	^	5 31121 - 6	SHAMBAN	'2' SECTION RING	TFE	CONTINUOUS	BRASS	32		HON- 670.
	15	U-7004/5-065	UNITED AIRCRAFT	O-RING (SELF-ENERGIZED)	304 CRES SILVER PLATED	NONE	NONE	32	•	STD.
	"	U-700413 -062	UNITED AIRCRAFT	O-RING (SELF-ENERGIZED)	304 CRES THE COATED	NONE	NONE	×		570.
	18	NAS 1593-012 (RF 9906-13)	ROSÁN/ PARKER	0- RING	FLUOROCARBON	HOME	NONE	32		HON- STB.

ABBREVIATIONS

TFE TETRAFLUORDETHYLENE

STD. STANDARD MOD. MODIFIED Static leakage measurements were taken at room temperature with 100 psi, then 8000 psi applied across the seals. Leakage was measured after waiting 3 minutes for the rate to stabilize, and was checked at 100, 150, and 200 hours. The dynamic seals were subjected to a total of 880,000 piston oscillations at the conclusion of testing; the static seals were exposed to a total of 1, 760,000 pressure oscillations. Test seal leakage at 0, 50, 100, 150, and 200 hours is listed on Table III. Results of visual inspections conducted after the completion of testing are given on Table IV.

A summary of conclusions made after analyzing the test data is presented on Table V. The number of satisfactory seals is given below:

Seal Type	Number of Satisfactory Seals	Number of Unsatisfactory Seals
Piston	1	2
Rod	3 (+1 undecided)	1
Diametral	4	1
Face	3	I
Boss	3	2
	14 (+1 undecided)	7

2.8 FLUID

A synthetic hydrocarbon base hydraulic fluid conforming to MIL-H-83282 was evaluated in the test system. System capacity was 7.3 gallons. During checkout tests prior to beginning the second 100 hours of endurance cycling, approximately 1 gallon of new MIL-H-83282 was added to restore the reservoir fluid level. The new fluid was from batch #171; the original fluid was from batch #186. (Both batches were manufactured by the Mobil Oil Company.)

Four external leaks occurred during the extended endurance test: 2 boss seals and 1 diametral seal leaked on the seal test fixture, and a static seal leaked on solenoid valve #2. This fluid was collected daily and returned to the reservoir. Component performance checks conducted at 100 and 150 hours required minor plumbing changes. Fluid released during these changes was collected and returned to the system. All replaced fluid was run through a 5 u filter before entering the reservoir.

		TAB	LE III	5	EA	L L	EAK	(AG	E 5	UMN	1AR	Y			
SEAL	OCATION	PART Nº	DESIGNER	•	- DATA	FROM RI	FEREN		KAGE	-	- EXT	ENDED	ENDURA	NCE TEST	
TYPE	00		SUPPLIER'	0 H	OURS	50 H	DURS	100 H	OURS	100 H	OURS	150 H	OURS	200 H	OURS
				100 PSI	8000 PSI	100 PSI	8000 PSI	100 PSI	8000 PSI	100 PSI	8000 PSI	100 PSI	8000 PSI	100 PSI	6000 PS
PISTON		12707 2010	COOK AIRTOMIC	4.001/14	22 44 /44	15 500 100	10.04.4	264cc/M	200/10	14 D/M	14 D/M	IND/M	16 D/M	10.00/00	5,5 CC/M
PISTON	14	123 DX - 2040 7330MT-160-9009	GREENE, TWEED	6.9 CC/M	1 D/2M	15.5CC/M	12 D/M	26.4CC/M	7	2 D/M	0 P	3 D/M	2 D/M	2 D/M	7 +
	13	S20860 - 330	SHAMBAN	I D/M	T+	+	T	32 CC/M		94D/M	T	50 CC/M	2 CC/M	Z7 CC/M	
	,3	NAS 1593-330	Shariban	10/1				32 00/11	14 2/-1	112/11		30 20/14	200/11	2700/11	
ROD	^	SP-4246-4-162	COOK AIRTOMIC	3 D/M	60/M	Τ*	2*D/M	2 D/M	3 D/M	3 D/M	+ D/M	9 D/M	7 D/M	4 D/M	5 D/M
	12	507 - 1.250 G	BAL-SEAL	0	0	0	0	т	Т	0	0	т	т	τ	τ
	6	7218 FT-160-9009	GREENE, TWEED	0	0	0	0	т*	ID/ZM	0	0	89 D/M	96 D/M	ID/M	₹*
••	1	513122 - 218 NAS 1593 - 218	ROCKWELL/	Т	۰	2 D/M	0	Т	I D/M	т	1 D/2M	6 D/M	SD/ZM	58 D/M	20 D/M
	7	520865 - 218 NAS 1593 - 218	SHAMBAN	0	0	0	0	0	Т	0	0	т•	0	1 D/3M	0
DIAMETRAL	10	505-2336	BAL- SEAL	т*	т	0	0	0	0	0	0	т	0	۵	T
"	9	NAS 1593 - 233 M5 27595 - 233	ROCKWELL	Т	0	0	0	т	2 D/M	0	0	0	0	0	۰
	3	\$ 31120-4	SHAMBAN	0	0	0	0	0	0	0	т	٣	7*	T	T*
	4	U-2410-05125-5ED	UNITED AIRCRAFT	т	т	ID/M	11.1 cc/M	7.2 CC/M	230cc/M	14 CC/M	580cc/M	47 CG/M	38 CC/M	19 CC/M	876 CC/
	A	MS 28774-116	ROCKWELL	LEAKA	SE NOT	MEASUR	ED **								
FACE	8	5484-32900-160-0220	GREENE, TWEED	т	0	0	0	т	т	0	т	т	τ.	τ.	1 D/6M
	2	664A9X-0034-1	PRESSURE SCIENCE	т	Т	0	0	т	7	0	т*	1 D/3 M	ID/M	4 D/M	4 D/M
	"	4252-03-25 NAS 1593-227	ROCKWELL	Т	0	0	0	Т	Т	0	т	т*	т.	т.	т
:	5	U-2410-02375-SED	UNITED AIRCRAFT	т	0	0	0	Т	1 D/2M	0	т	0	т	7*	т*
Boss	17	NAS 1596-06	ROCKWELL	0	0	0	0	0	0	0	٥	0	0	٥	٥
	A	531121-6	SHAMBAN	0	0	0	0	0	0	0	0	0	0	٥	0
	15	U-700413-062	UNITED AIRCRAFT	0	0	0	т	0	T*	0	Т	٥	2 D/HE	٥	3 D/HR
"	16	U-700413-065	UNITED AIRCRAFT	D	0	0	т*	0	1D/5M	0	Т	0	4 D/HR	0	6 D/HR
	18	NAS 1593-012 (RF 9906-13)	ROSÁN/PARKER	0	0	0	0	0	٥	٥	٥	0	٥	0	٥

ABBREVIATIONS

- A LHS ACTUATOR
- CC CUBIC CENTIMETER
- D DROP (FLUID)
- 1,2, ETC. SEAL LOCATION; SEE FIG. 3
- M MINUTE (TIME)
- S SATISFACTORY
- T TRACE
- T* LESS THAN ONE DROP
- U UNSATISFACTORY
- HR HOUR

- PRESSURE APPLIED TO -37 CYLINDER HEAD
 LEAKAGE MEASURED AT -39 CYLINDER HEAD
- * SEAL CONDITION SATISFACTORY AT 200 HOURS

NADC-77218-30

TABLE IV VISUAL INSPECTION SUMMARY

SEAL TYPE	LOCATION	PART NO.	DESIGNER/ SUPPLIER	COMMENTS	SEE FIGURE NO.
PISTON	14	7330MT-160-9009	CREENE, TWEED	1. THE SHAL IN EXCELLENT CONDITION; NO EVIDENCE OF NIBBLING OR EROSION 2. THE BACKUPS IN EXCELLENT CONDITION 3. CYLINDER BORE HAD NO SIGNIFICANT WEAR OR SCORING, JUST POLISHING	4
PISTON	13	\$20860-330 NAS 1593-330	SHAMBAN	1. O-RING SEVERELY CHEWED 2. POLYESTER BACKUP NEXT TO CAP (ON -39 SIDE) BROKEN IN SEVERAL PIECES. ALL OTHER BACKUPS IN EXCELLENT CONDITION 3. CAP SEAL WEARING SURFACE IN EXCELLENT CONDITION 4. CYLINDER BORE HAD NO SIGNIFICANT WEAR OR SCORING, JUST POLISHING 5. BUFFER RINGS IN EXCELLENT CONDITION 6. SIGNIFICANT NUMBER OF LARGE 3eCu PARTICLES FOUND INSIDE CYLINDER CHAMBEL. BeCu PISTON STOP DID NOT CONTACT -39 CYLINDER HEAD AS DESIGNED. INSTEAD, O.D. EDGE OF STOP CONTACTED AN EDGE INSIDE CYLINDER HEAD. FULL LOAD OF	5
				PISTON TAKEN BY THE TWO EDGES. O.D. EDGE ON PISTON STOP WAS THEREFORE FRAGMENTED DUE TO INSUFFICIENT BEARING AREA. 7. TOTAL EFFECT OF BeCU PARTICLES ON PISTON SEAL PERFORMANCE NOT KNOWN, HOWEVER, PARTICLES MAY HAVE CONTRIBUTED TO DEGRADED CONDITION OF SEAL. 8. SEAL LEAKAGE REPORTED ON TABLE III WAS WITH PRESSURE APPLIED TO -37 CYLINDER HEAD AND LEAKAGE WAS NOT CHECKED IN REVERSE DIRECTION.	
ROD	12	507-1.250G	BAL-SEAL	1. SEAL IN EXCELLENT CONDITION 2. ROD HAD NO WEAR OR SCORING; WEAR/POLISH AREA BARELY DISCERNIBLE. ROD SURFACE IN EXCELLENT CONDITION.	6
ROD	6	7218FT-160-9009	GREENE, TWEED	1. TEE SEAL SEVERELY WORN ON OUTER SEALING SURFACE; INNER SURFACE IN GOOD CONDITION. 2. OUTER TFE BACKUP SEVERELY WORN; INNER BACKUP IN GOOD CONDITION EXCEPT FOR SOME EDGE FEATHERING. 3. OUTER METAL BACKUP MISSING; SEVERAL SMALL PIECES FOUND IN RETURN CAVITIES; INNER BACKUP IN GOOD CONDITION. 4. ROD SURFACE HAD MINOR WEAR LINES; WEAR AREA MOSTLY POLISHED, NOT WORN. 5. SIGNIFICANT NUMBER OF LARGE BECU PARTICLES FOUND INSIDE CYLINDER CHAMBER. BECU PISTON STOP DID NOT CONTACT -39 CYLINDER HEAD AS DESIGNED. INSTEAD, O.D. EDGE OF STOP CONTACTED AN EDGE INSIDE CYLINDER HEAD. FULL LOAD OF PISTON TAKEN BY THE TWO EDGES. O.D. EDGE ON PISTON STOP WAS THEREFORE FRAGMENTED DUE TO INSUFFICIENT BEARING AREA. 6. TOTAL EFFECT OF BECU PARTICLES ON ROD SEAL PER- FORMANCE NOT KNOWN, HOWEVER PARTICLES MAY HAVE	7

LOCATION CODE

1, 2, etc. Seal in seal test fixture. Sae Figure 3.

A Seal in LHS actuator. See Figure 1.

NADC-77218-30

TABLE IV (CONTINUED)

TYPE TYPE	LOCATION	PART NO.	DESTONER/ SUPPLIER	COMMITS	SEE FIGURE NO.
ROD	1	813122-218-14 NAS 1393-218	BOCKMELL/ Shamban	1. O-RING SEVERELY WORN ON AREA FROM I.D. TO 120° OUTWARD; PRESSURE SIDE IN GOOD CONDITION. 2. OUTSIDE BACKUP WORN 0.010 IN. ON I.D.; I.D. FEATHERED HODERATELY. 3. INSIDE BACKUP IN EXCELLENT CONDITION. 4. ROD SURFACE HAD NINOR WEAR LINES; POLISHED AREAS WELL DEFINED; SURFACE IN EXCELLENT CONDITION.	•
•	7	\$20845-216 MAS 1993-216	SKAMBAM	1. O-BING HAD CONSIDERABLE EXTRUSION PINCHING ABOUND CIRCUMFERENCE 2. OUTER POLYESTER BACKUP CRACKED MIDWAY BETWEEN I.D. AND O.D. AROUND NEARLY 360° OF CIRCUMFERENCE. CAUSE OF CRACK DUE TO 45° X .030 CHANFER INAD- VERTENTLY PUT ON EDGE OF SEAL CAVITY; EDGE SHOULD MAYE HAD .003010 RADIUS.I.D. OF BACKUP THEREFORE MAD NO SUPPORT. THIS CONDITION UNDOUBTEDLY CON- TRIBUTED TO CRACK IN BACKUP RING AND O-RING PINCHING. 3. INNER POLYESTER BACKUP IN EXCELLENT CONDITION. 4. CAP SEAL WEARING SURFACE IN EXCELLENT CONDITION. 5. BUFFER RING IN EXCELLENT CONDITION. 6. ROD SURFACE HAD MINOR WEAR LINES; POLISHED AREAS WELL DEFINED; NO SIGNIFICANT WEAR.	•
DIAMETRAL	10	505-233G	BAL-SEAL	1. SEAL IN EXCELLENT CONDITION; NO EVIDENCE OF WEAR OR EXTRUSION.	10
DIAMETRAL	,	MAS 1593-233 MS 27595-233	BOCIONETT	O-RING AND TPE BACKUPS IN EXCELLENT CONDITION; BO ZVIDENCE OF WEAR OR EXTRUSION.	10
DIAPETRAL	3	\$31120-4	SHAPDAN	SEAL IN EXCELLENT CONDITION; NO EVIDENCE OF WEAR OR EXTRUSION.	10
DIAMETRAL	•	U-2410-03125-SED	UNITED AIRCRAFT	1. SEAL FAILED. METAL RING CRACKED AROUND 90° OF PERIPHERY.	10
DIAMETRAL	^	MAS 1593-116 MS 28774-116	ROCKI/ELL	(VALVE SLEEVE HAS 4 IDENTICAL DIAMETRAL SEALS) O-RING, ONE BACKUP) 1. ALL 4 O-RINGS IN EXCELLENT CONDITION. 2. ALL 4 TPE BACKUPS IN EXCELLENT CONDITION EXCEPT FOR NINOR FEATHERING ON OUTER EDGES.	2
TACE	•	3484-32900- 160-0220	GREENE, TWEED	SEAL AND BACKUP IN EXCELLENT CONDITION; NO EVIDENCE OF WEAR OR EXTRUSION.	11
PACE	2	664A9X-0034-1	PRESSURE SCIENCE	SEAL IN EXCELLENT CONDITION EXCEPT FOR .006 IN. SET IN LIPS.	11
PACE	11	4252-03-25 WAS 1593-227	ROCKWELL	1. O-RING AND BACKUP IN EXCELLENT CONDITION.	11
PACE	,	U2410-02375-SED	UNITED AIRCRAFT	SEAL APPEARS TO BE IN EXCELLENT CONDITION; CANNOT REMOVE SEAL FROM CROOVE WITHOUT DAMAGING IT.	11
9058	17	NAS 1596-06	ROCKVELL	1. O-RING IN GOOD CONDITION EXCEPT FOR EXTRUSION AROUND PERIPHERY.	12
BOSS		831121-6	SHAMBAN	1. SEAT. IN EXCELLENT CONDITION	12
9055	15	U-700413-063	UNITED AIRCRAFT	1. METAL O-RING HAS DISTORTIONS ON I.D. AND O.D.; SEAL CAVITY SHOOTH. CAUSE OF DISTORTIONS NOT APPARENT.	12
BOSS	16	U-700413-062	UNITED AIRCRAFT	1. METAL O-RING HAS DISTORTIONS ON I.D. AND O.D.; SEAL CAVITY SMOOTH. CAUSE OF DIS- TORTIONS NOT APPARENT. 2. THE COATING PEELING OFF.	12

P/N 7330MT-160-9009

FIGURE 4 GREENE, TWEED PISTON SEAL

P/N S20860-330

FIGURE 5 SHAMBAN PISTON SEAL

P/N 507-1.250G

FIGURE 6 BAL-SEAL ROD SEAL

P/N 7218FT-160-9009

FIGURE 7 GREENE, TWEED ROD SEAL

P/N NAS 1593-218

P/N S13122-218-14

FIGURE 8 ROCKWELL/SHAMBAN ROD SEAL

P/N S20865-218

FIGURE 9 SHAMBAN ROD SEAL

DIAMETRAL SEALS

FIGURE 10

FIGURE 11

FACE SEALS

P/N U-700413-062 UNITED AIRCRAFT

SHAMBAN

P/N S31121-6

P/N NAS 1596-06

PARKER

BOSS SEALS FIGURE 12

29

P/N U-700413-063 UNITED AIRCRAFT

TABLE V SEAL TEST SUMMARY

SEAL TYPE	LO: AT ION	PART NO.	DESIGNER/ SUPPLUER	SATISFACTORY	COMMENTS
PISTON	4	123DX-2040	COOK AIRTOMIC	NO	1. EXCESSIVE LEAKAGE AT 200 HOURS
PISTON	14	7330HT-160-9009	GREENE, TWEED	YES	EXCELLENT WEAR RESISTANCE FITS STANDARD CAVITY
PISTON	13	\$20860-330 MAS 1593-330	SHAMBAN	NO	BACKUP RING AND O-RING FAILED, HOWEVER CAUSE MAY HAVE BEEN DUE TO METALLIC PARTICLES GENERATED INSIDE SEAL TEST FIXTURE
					2. SPECIAL CAVITIES REQUIRED 3. COMPLEX SEAL (8 PARTS) 4. BACKUP RINGS BRITTLE AND DIFFICULT TO INSTALL
ROD	^	SP-4246-4-162	COOK AIRTOMIC	YES	1. EXPENSIVE SEAL 2. NON-STANDARD CAVITY 3. HIGH FRICTION
ROD	12	507-1.250G	BAL-SEAL	YES	1. EXCELLENT WEAR RESISTANCE 2. SPLIT CAVITY REQUIRED 3. LIGHTER DUTY SEAL SHOULD BE EVALUATED
ROD	6	7218FT-160-9009	greene, tweed	7	1. SEAL ON VERGE OF FAILURE AT 200 HOURS, CAUSE OF DETERIORATION MAY HAVE BEEN DUE TO METALLIC PARTICLES GENERATED INSIDE TEST FIXTURE 2. FITS STANDARD CAVITY 3. FURTHER TESTING REQUIRED FOR POSITIVE DETERMINATION
ROD	7	S20865-218 MAS 1593-218	SHAMBAN	YES	SEAL FUNCTIONED WELL IN SPITE OF DISCREPANCY IN CAVITY SHAPE SPLIT CAVITY REQUIRED BECAUSE OF BRITTLE BACKUP RINGS
ROD	1	\$13122-218-14 NAS 1593-218	ROCKWELL/ SHAMBAN	МО	1. O-RING WORN OUT AT 200 HOURS
DIAMETRAL	10	505-233G	BAL-SEAL	YES	1. EXCELLENT WEAR RESISTANCE
DIAMETRAL	9	NAS 1593-233 MS 27595-233	ROCKWELL	YES	2. STANDARD SEAL ELEMENTS IN MODIFIED STANDARD CAVITY
DIAMETRAL	3	531120-4	SHAMBAN	YES	EXPENSIVE SEAL Non-standard Cavity Required
DIAMETRAL	4	U-2410-03125-SED	UNITED AIRCRAFT	NO	1. SEAL FAILED (CRACK DEVELOPED)
DIAMETRAL	^	NAS 1593-116 MS 28774-116	ROCKWELL	YES	1. STANDARD SEAL ELEMENTS IN MODIFIED STANDARD CAVITY
PACE	8	5484-32900- 160-0220	GREENE, TWEED	YES	1. EXCELLENT WEAR RESISTANCE
PACE	2	664A9X-0034-1	PRESSURE SCIENCE	NO	1. EXCESSIVE LEAKAGE AT 200 HOURS
PACE	11	4252-03-25 NAS 1593-227	ROCKVELL	YES	1. STANDARD O-RING, SPECIAL SHAPED TPE BACKUP RING
PACE	5	U2410-02375-SED	UNITED AIRCRAFT	YES	1. HIGH PRELOAD REQUIRED
BOSS	17	NAS 1596-06	ROCKWELL	YES	1. STAMDARD CONFIGURATION
BOSS	^	\$31121-6	SHAMBAN	YES	EXPENSIVE SEAL NON-STANDARD CAVITY REQUIRED
Boss	15	U-700413-063	UNITED AIRCRAFT	NO	1. EXCESSIVE LEAKAGE
BOSS	16	U-700413-062	UNITED AIRCRAFT	NO	1. EXCESSIVE LEAKAGE
BOSS	18	NAS 1593-012 (RF9906-13)	ROSAN	YES	1. STANDARD ROSAN CONFIGURATION

LOCATION CODE

1, 2, etc. Seal in seal test fixture. See Figure 3.

A Seal in LHS actuator. See Figure 1. 30

During the first 100 hours of testing, Reference 7, a black residue was observed on filter elements in the system. Particles making up the residue were extremely small--less than one micron in size. The source and composition of the residue was not determined. Subsequently, information was obtained (Reference 12) which indicated the residue might be the result of fluid degradation caused by (1) oxidation, (2) thermal cracking, or (3) nitration, any of which could lead to the formation of insoluble deposits.

The reservoir was pressurized with nitrogen at 30 psig during the first 100 hours of endurance cycling. The second 100 hours of cycling were conducted with the reservoir pressurized by an inert gas--argon. This was done to minimize the possibility of oxidation/nitration reactions in the fluid.

High particle counts were observed in the 10-25 micron range based on fluid contamination checks made during the first 100 hours of cycling. All four filters in the system were rated for 10 microns (nominal). One filter element was changed for the second 100 hours of testing. The pump case drain element was replaced with a 5 micron absolute filter to lower the particle count in the 10-25 micron range. The three 10 micron (nominal) filter elements were cleaned ultrasonically prior to beginning the extended endurance test.

It should be noted that automatic particle counting equipment employed during the first 100 hours of testing was not capable of sensing contamination below 10-25 microns in size. The equipment has since been upgraded and currently counts particles in the 5 to 15 micron range.

Fluid viscosity and contamination were the parameters used to evaluate fluid performance. A decrease in viscosity would indicate poor shear stability: high particle counts in the 25 to 100 micron range would be evidence of poor lubricity and component wear. Viscosity and contamination of fluid samples taken during the test are listed below:

Endurance Hours Completed	Fluid Viscosity, Centistokes	Numbe	r of Part	ntamination icles per l Size Range		
		10-25	25-50	50-100	100+	
*0	17.48	6,665	0	0	0	
*50	17.70	11,985	10	0	0	
*100	17.71	49.265	20	0	0	
*Data from	Reference 7					
			Micron	Size Range		
		5-15	15-25	25-50	50-100	100+
100	16.85	95145	462	139	15	60
150		39318	315	18	1	0
200	16.88	3637	37	10	8	1

21400

1340

3130

210

430

28

87000

4600

Class 5 System

Class 1 System

System filter elements were visually examined at the 150 hour check point. There was no evidence of black residue on any of the four elements. The bowl on the pump case drain filter was remarkably clean. Small, visible wear particles which typically accumulate in case drain bowls were virtually absent.

The pressure drop across the pump case drain filter element began to increase noticeably at 60 hours and at 100 hours (end of the 200 hour test) reached approximately 60 psi during pump cut-off. The Δp was 10 psi at the start of the extended endurance test. The 5 micron element thus appeared to be loading up; this was anticipated.

The four filters in the system were visually examined at the conclusion of testing. All the elements contained a black residue, however the accumulation was not as heavy as that reported in Reference 7. Normal quantities of visible wear particles were observed in each of the filter bowls.

2.9 TUBING, FITTINGS, AND HOSES

The following components were evaluated:

Description, Size	Part Number	Manufacturer
Tubing, 3/16 x .020 1/4 x .025 3/8 x .038	21-6-9 CRES	Trent Tube Division of Colt Industries
Fitting, -3, -4, -6	R44101 R44272 R44273	Resistoflex Corporation
Fitting,	RF9906-13	Rosán, Incorporated
Hose, -4 x 20 in.	37000004	Titeflex Division of Atlas Corporation
Hose, -6 x 20 in.	R44598-0200	Resistoflex Corporation

The tubing, fittings, and hoses were subjected to a total of 1,760,000 pressure pulsations in the range of $8000 \, ^{+500}_{-2000}$ psig. Performance of all components was satisfactory.

3.0 DISCUSSION

The most critical components in an aircraft hydraulic system are pumps and seals--failure of either can result in serious circumstances. Testing conducted in the LHS program has demonstrated that current state-of-the-art hardware designed for use at 8000 psi performs well.

Pump performance in the extended endurance test was completely satisfactory. There were no malfunctions, discrepancies, or trends indicating possible problems. Pump wear was normal. Future LHS pumps will be new and original designs rather than modified existing designs, References 3 and 8. This will result in a more optimized unit.

Seal performance in the 200 hour endurance test was better than expected. Standard 0-rings and TFE backups were found to be satisfactory for use in static applications (diametral, face, and boss type seals). This was a major determination that will minimize costs and greatly simplify conversion from 3000 to 8000 psi systems. Off-the-shelf components performed well in dynamic seal applications. This, again, was an important finding since special piston and rod seals will not have to be developed for 8000 psi actuators.

A black residue was observed on the filter elements at the conclusion of testing; the residue was also noted during the first 100 hours of cycling, Reference 7. The tiny black particles (<1 micron in size) were suspected of being caused by fluid oxidation, thermal cracking, or nitration, Reference 12. In an attempt to impede formation of the particles, the system reservoir was pressurized with argon during the extended endurance test. (Nitrogen was used for the first 100 hours of testing, Reference 7.) Argon did not eliminate the residue, but did appear to reduce the quantity of particles developed.

A sample of the black residue was examined by the Rockwell International Science Center in Thousand Oaks, California. An Electron Spectroscope for Chemical Analysis (ESCA) was employed to determine constituents in the residue. The results were:

Carbon (as graphite)		95%	
Carbon bonded to oxygen (CO)		4%	
Sulphur	less	than 0.1% *	t
Silicon	less	than 0.1% *	t
Iron	less	than 0.1% *	t
Nitrogen	less	than 0.1% *	t
Fluorocarbons	less	than 0.1% *	t

^{*} Amount below instrument sensitivity

Although not positively established, the graphite particles may be the result of a breakdown in the hydraulic fluid hydrocarbon molecules. Effects of this on component/system performance were as follows:

Deterioration of fluid properties (viscosity and lubricity)

None

Fluid erosion on orifices and rubbing surfaces (due to microscopic graphite particles)

None

Loss of hydraulic fluid (due to molecular breakdown)

Not discernible

Fluid filtration

May be affected

4.0 RECOMMENDATIONS

Results of the 200 hour seal endurance test were encouraging. Of the 22 different seals evaluated, 14 (+1 undecided) were satisfactory. Factors other than wear resistance and sealing capability must be considered, however, in selecting seals for aircraft applications. These factors include envelope, simplicity, ease of assembly, cavity requirements, shelf life, friction, cost, and others. Based on the endurance test results and important secondary considerations, it is recommended that additional testing be conducted on seals similar to those listed below. These tests should be performed as an integral part of the LHS Advanced Development Program, Reference 10.

Seal Type	Part No.
Piston	Greene, Tweed P/N 7330MT-160-9009
Rod Rod Rod	Bal-Seal P/N 507-1.250 G Shamban P/N S20865-218 Greene, Tweed P/N 7218FT-160-9009
Diametral	Standard MS elements
Face	Standard MS elements
Boss	Standard MS elements

REFERENCES

REFERENCE NO.

- D. Deamer, S. Brigham, Theoretical Study of Very High Pressure Fluid Power Systems, NA66H-822, North American Aviation, Inc., Columbus Division, Contract NOw 65-0567-d, 15 October 1966, Unclassified. AD 803 870
- J. Stauffer, Dynamic Response of Very High Pressure Fluid Power Systems, NR69H-65, North American Rockwell Corporation, Columbus Division, Contract NO0019-68-C-0352, 16 April 1969, Unclassified. AD 854 142
- J. Demarchi, Dynamic Response Test of Very High Pressure Fluid Power Systems, NR70H-533, North American Rockwell Corporation, Columbus Division, Contract NO0156-70-C-1152, 9 December 1970, Unclassified. AD 891 214L
- J.N. Demarchi and R.K. Haning, Application of Very High Pressure Hydraulic Systems to Aircraft, NR72H-20, Columbus Aircraft Division, North American Rockwell Corporation, Contract N62269-71-C-0147, March 1972, Unclassified. AD 907 304L
- J.N. Demarchi and R.K. Haning, Lightweight Hydraulic System Development, NR73H-20, Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-72-C-0381, May 1973, Unclassified. AD 911 672L
- J.N. Demarchi and R.K. Haning, <u>Preparations for Lightweight</u>
 <u>Hydraulic System Hardware Endurance Testing</u>, NR73H-191,
 Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-73-C-0700, December 1973, Unclassified.
 AD B-001 857L
- J.N. Demarchi and R.K. Haning, <u>Lightweight Hydraulic System</u>
 <u>Hardware Endurance Test</u>, NR75H-22, Columbus Aircraft Division,
 Rockwell International Corporation, Contract N62269-74-C-0511,
 March 1975, Unclassified. AD A-013 244
- J.N. Demarchi and R.K. Haning, <u>Design and Test of an LHS</u>
 <u>Lateral Control System for a T-2C Airplane</u>, NR76H-14,
 Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-75-C-0422, May 1976, Unclassified.
 AD A-032 677

- J.N. Demarchi and R.K. Haning, <u>Flight Test of an 8000 psi</u>
 <u>Lightweight Hydraulic System</u>, NR77H-21, Columbus Aircraft
 Division, Rockwell International Corporation, Contract
 N62269-76-C-0254, April 1977, Unclassified. AD A-039 717/4GA
- Lightweight Hydraulic System Advanced Development Program,
 Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-78-C-0363.
- J.N. Demarchi and R.K. Haning, Flight Verification of the Advanced Flight Control Actuation System (AFCAS) in the T-2C Aircraft, NR78H-36, Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-76-C-0201, June 1978, Unclassified.
- R.S. Robertson and J.M. Allen, A Study of Oil Performance in Numerically Controlled Hydraulic Systems, Mobil Oil Corporation, Proceedings of the 30th National Conference on Fluid Power, Vol. 28, p. 435, November 1974.

LIST OF ABBREVIATIONS

AFCAS Advanced Flight Control Actuation System

approx. approximately

avg average

Be beryllium

BTU/min British Thermal Units per minute

CAD Columbus Aircraft Division

cc/min cubic centimeters per minute

CIPR cubic inches per revolution

CRES corrosion resistant

Cu copper

displ. displacement

ea. each

est. estimated

gpm gallons per minute

I.D. inside diameter

in. inch

lb-in pound-inch (torque)

LHS Lightweight Hydraulic System

max. maximum

ml milliliter

M/N model number

LIST OF ABBREVIATIONS - (CONT'D.)

NADC Naval Air Development Center

No. number

O.D. outside diameter

 $\triangle P$ differential pressure

P/N part number

psi pounds per square inch

psig pounds per square inch gage pressure

rpm revolutions per minute

S/N serial number

Sn tin

TFE tetrafluoroethylene

μ micron