DEVIN MAYA 11/10/23

Math 117 Homework 5

3.1.1 Prove Lemma 3.1.16. Suppose that V is finite-dimensional. Let $x \in V$ be a vector. If $\omega(x) = 0$ for all $\omega \in V^*$, then x = 0.

Solution. Suppose V is an n dimensional vector space over a field F, and let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V. The dual space V^* consists of all linear functionals mapping V to F. observe

the function δ_{ij} is defined as follows: $\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$ This function is used to describe the

action of the dual basis on the original basis so for each basis vector v_i there is a unique dual vector $\omega_i \in V^*$ such that $\omega_i(v_j) = \delta_{ij}$. This means $\omega_i(v_i) = 1$ and $\omega_i(v_j) = 0$ for all $j \neq i$. consider a vector $x \in V$ such that $x \neq 0$ observe since $\{v_1, v_2, \ldots, v_n\}$ spans V then it can be expressed x uniquely as a linear combination of the basis vectors $x = a_1v_1 + a_2v_2 + \cdots + a_nv_n$, where the coefficients a_i are elements of F and at least one coefficient a_k is non zero. Now the definition of the dual basis the dual vector ω_k corresponding to v_k acts on x as

$$\omega_k(x) = \omega_k(a_1v_1 + a_2v_2 + \dots + a_nv_n) = a_1\omega_k(v_1) + a_2\omega_k(v_2) + \dots + a_k\omega_k(v_k) + \dots + a_n\omega_k(v_n) = a_1 \cdot 0 + a_2 \cdot 0 + \dots + a_k \cdot 1 + \dots + a_n \cdot 0 = a_k.$$

from the assumption $a_k \neq 0$ then $\omega_k(x) \neq 0$ which is a contradiction because we were given that $\omega(x) = 0$ for all $\omega \in V^*$.

The contradiction is from the shown false assumption that $x \neq 0$. Therefore it must be that x = 0 therefore if $\omega(x) = 0$ for all $\omega \in V^*$, then x must be the zero vector in V.

3.1.2 Recall that the real part of a complex number z = a + bi is defined to be $\Re(z) = a$. Given $w \in \mathbb{C}$, consider the -linear map

$$\omega_w : \mathbb{C} \to \mathbb{R}$$

$$\omega_w(z) = \Re(wz).$$

Show that every \mathbb{R} -linear map $\omega : \mathbb{C} \to \mathbb{R}$ is of the form ω_w for some $w \in \mathbb{C}$.(This gives an isomorphism $C^* \cong C$ as real vector spaces.)

Solution. Consider an arbitrary \mathbb{R} linear map $\omega:\mathbb{C}\to\mathbb{R}$. By the definition of linearity for any complex numbers $z,z_1,z_2\in\mathbb{C}$ and any real number $r\in\mathbb{R}$ the map ω satisfies the following requirements $\omega(z_1+z_2)=\omega(z_1)+\omega(z_2)$ and $\omega(rz)=r\omega(z)$. The objective is to find a complex number $w\in\mathbb{C}$ such that ω can be expressed as $\omega(z)=\Re(wz)$ for all $z\in\mathbb{C}$. Now the standard basis for \mathbb{C} is as a two dimensional real vector space by $\{1,i\}$, the complex number w as $w=\omega(1)-i\omega(i)$. Here this w satisfies the property that $\omega(z)=\Re(wz)$ for all $z\in\mathbb{C}$. To verify let z=a+bi be any mathbbC. The action of ω on z using its \mathbb{R} -linearity is $\omega(z)=\omega(a+bi)=a\omega(1)+b\omega(i)$. now the product wz $wz=(\omega(1)-i\omega(i))(a+bi)=(a\omega(1)+b\omega(i))+i(b\omega(1)-a\omega(i))$.

The real part of this product is precisely the real part of z scaled by $\omega(1)$ and the imaginary part of z scaled by $-\omega(i)$ so $\Re(wz) = a\omega(1) + b\omega(i)$.

Thus $\omega(z) = \Re(wz)$, here the map ω can be represented by the real part of the multiplication by w, and hence every \mathbb{R} linear map from \mathbb{C} to \mathbb{R} can be expressed as ω_w for some $w \in \mathbb{C}$.

Now ω and w have been shown to correspond thus showing that there is an isomorphism between the dual space \mathbb{C}^* and \mathbb{C} itself when these are regarded as real vector spaces.

3.2.1 Let $x \in F^n$ and $y \in F^m$. The emphouter product of x and y is the matrix

$$x \otimes y = yx^{\top} \in F^{m \times n}.$$

- 1. Prove that $x \otimes y$ has rank at most 1.
- 2. Prove that if $A \in F^{m \times n}$ has rank at most 1, then there exist $x \in F^n$ and $y \in F^n$ such that $A = x \otimes y$.

(Hint: A has rank at most 1 if and only if Col(A) is spanned by a single vector.)

Solution. To prove that $x \otimes y$ has rank at most 1 the objective is to show that every column of $x \otimes y$ is a scalar multiple of y.

Given $x \in F^n$ and $y \in F^m$ the outer product $x \otimes y$ is the matrix yx^{\top} here the j column of $x \otimes y$ is given by $x_j y$ where x_j is the j entry of x. Then every column of $x \otimes y$ is a scalar multiple of y so all the columns are in the span of y. the columns of $x \otimes y$ are linearly dependent then the rank of $x \otimes y$ is at most 1. Now $A \in F^{m \times n}$ has rank at most 1. From the use of the hint then the column space of A so Col(A) is spanned by a single vector $y \in F^m$.

Let a_1 be the first non zero column of A since Col(A) is spanned by y then a_1 as $a_1 = c_1 y$ for some non zero scalar $c_1 \in F$. Now $x \in F^n$ such that its first entry is c_1 and all other entries are determined by the corresponding columns of A then $a_j = c_j y$ for $j = 1, \ldots, n$ where c_j is the scalar multiple of y that gives the jcolumn a_j of A.

Thus A can be written as $x \otimes y$ because A and $x \otimes y$ have the same columns scalar multiples of y. Therefore any matrix A with rank at most 1 there exist vectors $x \in F^n$ and $y \in F^m$ such that $A = x \otimes y$.

3.2.2 Consider the bilinear form on $_2[x]$ defined by

$$f(p,q) = \int_{-1}^{2} p(x)q(x)dx.$$

Find the matrix [f] of this form with respect to the standard basis of $R_2[x]$.

Solution. observe that the standard basis for $\mathbb{R}_2[x]$ is $\{1, x, x^2\}$. The matrix [f] is determined by evaluating f on all pairs of these basis vectors. the entry $[f]_{ij}$ is given by $f(b_i, b_j)$ where $b_1 = 1$, $b_2 = x$, and $b_3 = x^2$. $[f]_{11} = f(1, 1) = \int_{-1}^2 1 \cdot 1 \, \mathrm{d}x = 3$, $[f]_{12} = f(1, x) = \int_{-1}^2 x \, \mathrm{d}x = 0$, $[f]_{13} = f(1, x^2) = \int_{-1}^2 x^2 \, \mathrm{d}x = \frac{9}{5}$, $[f]_{21} = f(x, 1) = \int_{-1}^2 x \, \mathrm{d}x = 0$, $[f]_{22} = f(x, x) = \int_{-1}^2 x^2 \, \mathrm{d}x = \frac{4}{3}$, $[f]_{23} = f(x, x^2) = \int_{-1}^2 x^3 \, \mathrm{d}x = 0$, $[f]_{31} = f(x^2, 1) = \int_{-1}^2 x^2 \, \mathrm{d}x = \frac{9}{5}$, $[f]_{32} = f(x^2, x) = \int_{-1}^2 x^3 \, \mathrm{d}x = 0$, $[f]_{31} = f(x^2, 1) = \int_{-1}^2 x^2 \, \mathrm{d}x = \frac{9}{5}$, $[f]_{32} = f(x^2, x) = \int_{-1}^2 x^3 \, \mathrm{d}x = 0$, $[f]_{31} = f(x^2, 1) = \int_{-1}^2 x^2 \, \mathrm{d}x = \frac{9}{5}$, $[f]_{32} = f(x^2, x) = \int_{-1}^2 x^3 \, \mathrm{d}x = 0$, $[f]_{31} = f(x^2, 1) = \int_{-1}^2 x^2 \, \mathrm{d}x = \frac{9}{5}$, $[f]_{32} = f(x^2, x) = 0$

 $\int_{-1}^{2} x^{3} dx = 0, [f]_{33} = f(x^{2}, x^{2}) = \int_{-1}^{2} x^{4} dx = \frac{33}{5}.$ therefore the matrix [f] with respect to the standard basis $\{1, x, x^{2}\}$ is

$$[f] = \begin{pmatrix} 3 & 0 & \frac{9}{5} \\ 0 & \frac{4}{3} & 0 \\ \frac{9}{5} & 0 & \frac{33}{5} \end{pmatrix}.$$