MA0505 - Análisis I

Lección XV: Funciones Medibles

Pedro Méndez¹

¹ Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- Funciones Lebesgue Medibles
 - Definición y Propiedades
 - Álgebra de Funciones Medibles

Definición

Definición

Sea $f: E \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$. Decimos que f es medible si para todo $a \in \mathbb{R}$ vale que

$$\{x \in E : f(x) > a\} \in \mathcal{M}.$$

De ahora en adelante

$$\{f > a\} = \{x \in E : f(x) > a\}.$$

Note que

$$E = \bigcup_{k=1}^{\infty} \{f > -k\} \cup \{f = -\infty\}.$$

Entonces E es medible si y sólo si $\{f = -\infty\}$ es medible. Por el resto de esta sección asumimos que E es medible.

Ejemplos

- (I) Sea $f : \mathbb{R}^d \to \mathbb{R}$ continua. Entonces $\{f > a\}$ es abierto.
- (II) Si $f = \mathbf{1}_A$, entonces

$$\{f > a\} = \begin{cases} E & \text{si } a < 0 \\ A & \text{si } 0 \leqslant a < 1 \\ \emptyset & \text{si } a \geqslant 1 \end{cases}$$

Equivalencias

Teorema

Sea $f: E \to \mathbb{R}$ con E medible. Entonces f es medible si se cumple cualquiera de los siguientes postulados para todo $a \in \mathbb{R}$.

- (I) $\{f > a\}$ es medible.
- (II) $\{f < a\}$ es medible.
- (III) $\{f \leqslant a\}$ es medible.
- (IV) $\{ f \geqslant a \}$ es medible.

Prueba del Teorema

Note que

$$\{f > a\} = \bigcup_{n=1}^{\infty} \left\{ f \geqslant a + \frac{1}{n} \right\} = \{f \leqslant a\}^{c}$$
$$\{f \geqslant a\} = \bigcap_{n=1}^{\infty} \left\{ f > a - \frac{1}{n} \right\} = \{f < a\}^{c}$$

Si $f: E \to \mathbb{R}$ es medible, entonces los conjuntos

$$\{f > -\infty\} = \bigcup_{k=1}^{\infty} \{f > -k\}, \ \{f < \infty\} = \bigcup_{k=1}^{\infty} \{f \leqslant k\},$$
$$\{f = \infty\}, \ \{a \leqslant f \leqslant b\}, \ \{a \leqslant f < b\}$$

son medibles.

Funciones Borel Medibles

Definición

Diremos que $f: E \to \mathbb{R}$ es Borel medible si

- 1. $E \in \mathcal{B}$.
- 2. $\{f > a\} \in \mathcal{B}$ para $a \in \mathbb{R}$.

Esta definición nos será útil para realizar los ejercicios.

Teorema

Sea $f: E \to \mathbb{R}$. Entonces f es medible si y sólo si $f^{-1}(G)$ es medible para todo abierto G.

Prueba del Teorema

■ Supongamos que la imagen inversa de abiertos es medible. Entonces si $G =]a, \infty[$, tenemos que

$$f^{-1}(G) = \{ x \in E : f(x) > a \}.$$

■ Por otro lado, si G es un abierto en \mathbb{R} , entonces $G = \bigcup_{k=1}^{\infty}]a_k, b_k[$. De esta manera

$$f^{-1}(G) = \bigcup_{k=1}^{\infty} f^{-1}(]a_k, b_k[) = \bigcup_{k=1}^{\infty} \{ a_k < f < b_k \}.$$

Composición

Lema

Sea $f: E \to \mathbb{R}$ medible $y \phi: \mathbb{R} \to \mathbb{R}$ continua. Entonces $\phi \circ f$ es medible.

Si G es abierto, entonces

$$(\phi \circ f)^{-1}(G) = f^{-1}(\phi^{-1}(G)).$$

Como ϕ es continua, entonces $\phi^{-1}(G)$ es abierto y $f^{-1}(\phi^{-1}(G))$ es medible.

En particular si f es medible, |f|, $|f|^p$, e^{cf} , $f^+ = \max\{f, 0\}$ y $f^- = \min\{f, 0\}$ son medibles.

Casi Por Doquier

Definición

Diremos que una propiedad se cumple casi por doquier si se cumple excepto en un conjunto de medida cero.

Lema

Sean $f: E \to \mathbb{R}$, $g: E \to \mathbb{R}$. Si f es medible y g = f casi por doquier, entonces g es medible.

Prueba del Lema

Sea $a \in \mathbb{R}$, entonces

$$\{g > a\} = (\{g > a\} \cap \{f = g\}) \cup (\{g > a\} \cap \{f \neq g\}).$$

El conjunto $\{g > a\} \cap \{f = g\} = \{f > a\} \cap \{f = g\}$ es medible y $\{f \neq g\}$ tiene medida cero de manera tal que $\{g > a\}$ es la unión de medibles.

Una Variante

Tenemos una variante del lema 1 para funciones con valores infinitos.

Lema

Sea $f: E \to \overline{\mathbb{R}}$ medible con

$$m(f=\infty)=m(f=-\infty)=0.$$

Entonces $\phi \circ f$ es medible para ϕ continua.

Si llamamos $F = \{ x \in E : f \in \mathbb{R} \}$ y consideramos $f_1 = f$ cuando $x \in F$ y cero si no, entonces $\phi \circ f_1 = \phi \circ f$ c.p.d. Como $\phi \circ f_1$ es medible, entonces $\phi \circ f$ también lo es.

Espacio Vectorial de Funciones Medibles

Lema

Sean $f: E \to \mathbb{R}$, $g: E \to \mathbb{R}$ medibles. Entonces $\{f > g\}$ es medible.

Sea $\{q_n\}_{n=1}^{\infty}$ una enumeración de \mathbb{Q} . Entonces

$$\{f > g\} = \bigcup_{n=1}^{\infty} \{f > q_n > g\} = \bigcup_{n=1}^{\infty} \{f > q_n\} \cap \{q_n > g\}$$

es una unión de medibles.

Resumen

- La definición 1 de función medible y el teorema 1 que nos da condiciones equivalentes.
- La definición 2 de función Borel medible.
- La caracterización 2 de funciones medibles con abiertos.
- El lema 1 sobre la composición de funciones medibles con continuas.
- La definición 3 de propiedades que se dan casi por doquier junto con el lema 2.
- El lema 3 que es levemente diferente del lema 1.
- El lema 4 técnico necesario para hablar del álgebra de medibles.

Ejercicios

■ Lista 15

•

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.