Theory of Computation '24 Quiz 4 Time: 40 minutes

Name: Roll: Marks:

Problem 1. Consider the following classes numbered (1)-(2) as follows

(1) Decidable (2) Recognizable (3) Non-recognizable

For each of the following languages specify the lowest-numbered class to which it surely belongs. For example, for a recognizable language L that is decidable, the right number is 1 but if L is not decidable but recognizable, the right number is 2. (No explanation needed)

- a. $L_1 = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is finite } \}$ (3) Done in tutorial
- b. $L_2 = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is countable } \}$ (1) This is the trivially the set of all Turing machines since every language is countable
- c. $L_3 = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } \varepsilon \in L(M_1) \cap L(M_2)\}$ (2) It is easy to see the language is recognizable since you can build a new TM which runs the two TMs in parallel and accepts when both accepts.

We can show this is undecidable by a mapping reduction from $HALT_{TM}$. Given an instance $\langle M, w \rangle$ of $HALT_{TM}$, construct a single TM M': "On input x, ignore x and run M on w. Accept if M halts ". Output $\langle M', M' \rangle$.

Check the rest of the proof by yourself.

- d. $L_4 = \{\langle M \rangle \mid \exists x, y \in \Sigma^* \text{ such that either } x \in L(M) \text{ or } y \notin L(M)\}$ (1) Again, this the language of all Turing machines trivially and hence decidable.
- e. $L_5 = \{\langle M \rangle \mid \text{ both } L(M), L(M) \text{ are infinite } \}$ (3) This is the only tricky one. You can do this by a mapping reduction from $\overline{A_{TM}}$ as follows. Given an instance $\langle M, w \rangle$, construct a new TM M' which works as follows: "On input x, if |x| is odd, accept. Else if |x| is even, simulate $\langle M \rangle$ on w, accept if M accepts w."

Let us prove the correctness of the above. Suppose $\langle M, w \rangle \in \overline{A_{TM}}$. This means that M does not accept w and hence this means M' accepts only odd length string. Thus L(M) is infinite (all odd length strings) and $\overline{L(M)}$ is also infinite (all even length strings). Thus $M' \in L_4$

- On the other hand, suppose $\langle M, w \rangle \notin \overline{A_{TM}}$: This means M will accept w. Hence M' will accept all strings and thus L(M) is infinite. But $\overline{L(M)} = \emptyset$ is finite. Hence $M' \notin L_4$.
- f. $L_6 = \{\langle M \rangle \mid M \text{ is a TM and there exists an input on which M halts in less than } |\langle M \rangle | \text{ steps} \}$ (1). Here is a decider Turing machine for the language L_6 : "On input $\langle M \rangle$: Simulate M on all possible strings of length at most $|\langle M \rangle|$ for at most $|\langle M \rangle|$ steps. Accept if M accepts on any of the strings." Convince yourself that this works.

Problem 2. State True/False(**T/F**) for each of the following statements (No explanation needed)

a. Any decidable language is mapping reducible to 0^*1^* **T**. In fact, any decidable language is mapping reducible to any language L as long as L is neither \emptyset nor Σ^* . Languages Σ^* and \emptyset will map to only "YES" and "NO" instances respectively, which are definitely present in 0^*1^* .

- b. There exists some non-trivial decidable subset of every non-empty recognizable language. (A subset is non-trivial if there is some element in the subset and some element not in the subset.)

 F The fact is untrue for a language that contains just one string.
- c. Every subset of any language in P is decidable. **F** Consider the language Σ^* . This language is clearly in P since the TM for this language simply accepts all strings. But clearly there are subsets of Σ^* which are undecidable.
- d. Let $L = \{0^k 1^k \mid k \ge 0\}$. Define another language $L' = \{\langle M \rangle \mid L(M) = L\}$. L' is decidable. F The point is the language L itself is decidable (as we have seen several times). But, testing whether a TM accepts this language is still undecidable. The easiest way to see this is to observe that this is a non-trivial property of a TM and hence you can just apply Rice Theorem (those who did not attend tuts can read up Rice Theorem in their own time).
- e. Recall the polynomial time reduction from 3SAT to CLIQUE done in the lectures. The reduction works just the same for SAT. **T**
- f. If $A \leq_p B$ and B is in NP, then A is also in NP **T**