Пороговая вероятность наличия триангуляции к-угольника в случайном графе

Вахрушев Степан Викторович

Санкт-Петербургский государственный университет, Московский физико-технический институт

vakhrushev.sv@phystech.edu

Соавторы: Жуковский Максим Евгеньевич

Секция: Теория чисел и дискретная математика

В 1991-ом году Бела Боллобаш и Алан Фриз нашли пороговую вероятность для нахождения копии трингуляции треугольника в случайном графе G(n,p) с точностью до логарифмического множителя. В нашей работе мы находим данную пороговую вероятность триангуляции k-угольника с точностью до константы. Для этого мы используем недавно разработанную технологию процесса фрагментации и q-spread леммы. Оказывается, что необходимое условие на соотношение количества вершин и рёбер в подграфе в случае планарной триангуляции эквивалентно тому, что любой простой цикл ограничивает небольшое количество вершин. Более точно, отношение длины цикла к количеству "внутренних" вершин не менее чем данное отношение для исходной границы k-угольника: $\frac{k}{n-k}$. Данное условие проверяется в работе для конкретной триангуляции, состоящей из вложенных друг в друга циклов.

- [1] B. Bollobás, A. M. Frieze, Spanning maximal planar subgraphs of random graphs, Random Structures & Algorithms, 2:2 (1991) 225-231.
- [2] A.E. Díaz, Y. Person, *Spanning F-cycles in random graphs*, Combinatorics, Probability and Computing, **32**:5 (2023) 833-850.
- [3] J. Kahn, B. Narayanan and J. Park, The threshold for the square of a Hamilton cycle, Proceedings of the American Mathematical Society 149 (2020), 3201-3208.
- [4] O. Riordan, Spanning subgraphs of random graphs, Combinatorics, Probability and Computing, 9:2 (2000), 125-148.