1. Potential theory for general Markov processes

1.1. **Functional framework.** Let (E,d) be a Polish space endowed with its Borel σ -algebra and a reference probability measure π . Denote by $L^2 = L^2(\pi)$ the space of square-integrable, real-valued functions defined in E. The norm of L^2 is represented by $\|\cdot\|$. Consider a Markov semigroup with generator $L: D(L) \to L^2(\pi)$, with domain $D(L) \subset L^2(\pi)$, see [1, Definition 1.8].

Denote by C a core for the generator L and assume that C is closed by multiplication. Denote by L^* the adjoint of L, and assume that C is also a core for L^* .

Denote by C(E, D(L)) the space of continuous functions $\xi : E \to D(L)$. For a function $\xi \in C(E, D(L))$, we represent $\xi(x) \in D(L)$, $x \in E$, by ξ_x and $\xi_x(y) \in E$, $y \in E$, by $\xi(x,y)$.

We assume some sort of sector condition: For each function $f \in D(L)$, there exists a finite constant C_f such that for all $\varphi \in C(E, D(L))$,

$$\left(\int \pi(dx) f(x) (L\varphi_x)(x)\right)^2 \le C_f \int \pi(dx) (L\varphi_x^2)(x). \tag{1.1}$$

If $\varphi(x,y) = g(y) - g(x)$, then this condition is nothing but the sector condition with $C_f = c_K D(f,f)$.

If $L = \Delta$ is the Laplacian on \mathbb{R}^d , then define $V(x) = (\nabla_y \varphi)(x, x)$. Then

$$V_{i}(x) = (\partial_{y_{i}}\varphi)(x, x)$$

$$\partial_{x_{i}}V_{i}(x) = (\partial_{x_{i}}\partial_{y_{i}}\varphi)(x, x) + (\partial_{y_{i}}\partial_{y_{i}}\varphi)(x, x)$$

$$\operatorname{div}(V)(x) = \sum_{i} \partial_{x_{i}}V_{i}(x) = (\Delta_{y}\varphi)(x, x) + \sum_{i} (\partial_{x_{i}}\partial_{y_{i}}\varphi)(x, x) = (L\varphi_{x})(x)$$

Then the sector-like condition is

$$\left(\int dx f(x) \operatorname{div}(V(x))\right)^2 \leq C_f \int dx \, 2V(x) \cdot V(x)$$

which holds since integrating by parts this is equivalent to

$$\left(\int dx \left(\nabla f\right)(x) V(x)\right)^2 \leq 2C_f \int dx V(x) \cdot V(x)$$

and therefore it is enough to take $C_f = D(f, f)$.

$$\Gamma(f,g) = L(fg) - fLg - gLf$$
$$D^{s}(f,g) = \int d\pi(x) \Gamma(g,f)$$

$$\Gamma(\varphi, \psi)(x) = L(\varphi_x \psi_x)(x)$$

Notice that $\Gamma(df, dg) = \Gamma(f, g)$ If $L = \Delta$, then $\Gamma(\varphi, \psi) = 2V_{\varphi} V_{\psi}$ If $Lf = b \cdot df$, then $\Gamma(f, g) = 0$. Then the condition

$$\left(\int \pi(dx) f(x) (L \varphi_x)(x)\right)^2 \leq C_f \int \pi(dx) (L \varphi_x^2)(x)$$

writes as

$$\left(\int \pi(dx) f(x) \left(\mathbf{L}\varphi\right)(x)\right)^2 \leq C_f \int \pi(dx) \Gamma(\varphi,\varphi)(x)$$

If we restrict to the case $\varphi = dg$ then the last condition becomes

$$\left(\int \pi(dx) f(x) (Lg)(x)\right)^2 \leq C_f \int \pi(dx) \Gamma(g,g)(x) = 2C_f D(g,g)$$

which is implied by the sector condition.

Let us try to prove

$$\left(\int \pi(dx) f(x) \left(\mathbf{L}\varphi\right)(x)\right)^{2} \leq C_{f} \int \pi(dx) \mathbf{\Gamma}(\varphi,\varphi)(x)$$

assuming L is self-adjoint in $L^2(d\pi)$. By self-adjointness

$$2\int \pi(dx) f(x) (\mathbf{L}\varphi)(x) = -\int d\pi(x) \mathbf{\Gamma}(df,\varphi) \leq \sqrt{\int d\pi(x) \mathbf{\Gamma}(df,df)} \sqrt{\int d\pi(x) \mathbf{\Gamma}(\varphi,\varphi)}$$

The first equality should follow as

$$\int \pi(dx) f(x) (\mathbf{L}\varphi)(x) = \int \pi(dx) \lim_{t \to 0} \mathbb{E}_x \varphi(X_t, X_0) f(X_0) / t = \lim_{t \to 0} \mathbb{E}_\pi \varphi(X_t, X_0) f(X_0) / t$$

By self-adjointness the last quantity also equals

$$\lim_{t \to 0} \mathbb{E}_{\pi} \varphi(X_0, X_t) f(X_t) / t = -\lim_{t \to 0} \mathbb{E}_{\pi} \varphi(X_t, X_0) f(X_t) / t = -\lim_{t \to 0} \frac{1}{2} \mathbb{E}_{\pi} \varphi(X_t, X_0) (f(X_t) - f(X_0) / t)$$
$$= -\frac{1}{2} \int \pi(dx) \Gamma(df, \varphi)(x)$$

Probably it is enough to do it for pure jump processes. Namely, is it true that

$$\left(\int \pi(dx)c(x,dy)f(x)\varphi(x,y)\right)^{2} \leq C_{f}\int \pi(dx)\,c(x,dy)\varphi(x,y)^{2}$$

if we know

$$\Big(\int \pi(dx)c(x,dy)f(x)(g(y)-g(x))\Big)^2 \leq c\,D(f,f)D(g,g)$$

Given a Markov process, for each $t \geq 0$ it is defined a measurable $p_t \colon E \to \mathcal{P}(E)$, which we denote $p_t(x, dy)$, given by

$$\int p_t(x, dy) f(y) = \mathbb{E}_x[f(X_t)]$$

Moreover

$$\int_{y \in E} p_t(x, dy) p_s(y, dz) = p_{t+s}(x, dz)$$

Given a Markov process, with transition probability p_t , one can weakly approximate it, with a pure jump process with generator $L_{\varepsilon}f = \varepsilon^{-1} \int_y p_{\varepsilon}(x, dy)(f(y) - f(x))$. Notice that if the original Markov process admits a generator L, then

$$Lf(x) = \lim_{t \to 0} \mathbb{E}_x [f(X_t) - f(X_0)]/t = \lim_{t \to 0} \int p_t(x, dy) (f(y) - f(x))/t = \lim_{\varepsilon \to 0} L_\varepsilon f(x)$$
Notice $c_\varepsilon(x, dy) = \varepsilon^{-1} p_\varepsilon(x, dy)$ has TV ε^{-1}

Puro salto: siano $k(dx,dy)=\pi(dx)c(x,dy)$ e $k^{\dagger}(dx,dy)=k(dy,dx),$ $k^{s}(dx,dy)=(k(dx,dy)+k^{\dagger}(dx,dy))/2$. In particolare $k\leq 2$ k^{s} . Sia

$$q(x,y) = \frac{k-k^\dagger}{k^s}(x,y) \in [-2,2]$$

$$(\int \pi(dx)c(x,dy)f(x)\varphi(x,y))^2 = (\int k(dx,dy)f(x)\varphi(x,y))^2$$

$$= (\frac{1}{2}\int k(dx,dy)f(x)\varphi(x,y) - k(dy,dx)f(y)\varphi(x,y))^2$$

$$= (\frac{1}{2}\int k^s(dx,dy)(f(x)-f(y))\varphi(x,y) - \frac{1}{2}\int (k(dx,dy)-k(dy,dx))f(x)\varphi(x,y))^2$$

$$\leq 2D(f,f)\mathbb{D}(\varphi,\varphi) + 4(\int k^s(dx,dy)q(x,y)f(x)\varphi(x,y))^2$$
 Esempio: $E = \mathbb{T}_N, \, k^s(dx,dy) = 1/(2N)(\delta_{y-1}(dy) + \delta_{y+1}(dy)), \, \delta$

Let \mathcal{U}_0 , \mathcal{A} be the set given by

$$\mathfrak{U}_0 = \left\{ \xi \in C(E, D(L)) : \xi_x(x) = 0 \ \forall x \in E \right\}.$$

$$\mathcal{A} \ = \ \left\{ \, \xi \in \mathcal{U}_0 : \xi_x(y) = -\, \xi_y(x) \ \forall \, x \in E, \, \xi_x \in \mathcal{C} \, \right\} \, .$$

Define the operator $\mathbb{L}: \mathcal{U}_0 \to L^2(\pi)$ by

$$(\mathbb{L}\xi)(x) = (L\xi_x)(x), \quad x \in E.$$

Denote by $\langle \langle \cdot, \cdot \rangle \rangle$ the scalar product on \mathcal{U}_0 defined by

$$\langle\!\langle \xi, \xi' \rangle\!\rangle := \frac{1}{2} \int \pi(dx) (\mathbb{L} \xi \xi') = \frac{1}{2} \int \pi(dx) (L \xi_x \xi_x')(x) .$$

Note that $\langle \langle \xi, \xi \rangle \rangle \geq 0$ because, since ξ vanish on the diagonal,

$$\langle\!\langle \xi, \xi \rangle\!\rangle = \lim_{t \downarrow 0} \frac{1}{2} \int \pi(dx) \frac{(P_t \xi_x^2)(x) - \xi_x^2(x)}{t}$$

= $\lim_{t \downarrow 0} \frac{1}{2} \int \pi(dx) \frac{(P_t \xi_x^2)(x)}{t} \ge 0$.

Denote by $\|\cdot\|$ the pre-norm associated to this scalar product and by \sim the equivalence relation in \mathcal{U}_0 given by $\xi \sim \xi'$ whenever $\|\xi - \xi'\| = 0$. Let \mathcal{U} , \mathcal{H} be the completions of \mathcal{U}_0 , \mathcal{A} , respectively, with respect to the scalar product $\langle \cdot, \cdot \rangle$: $\mathcal{U} = \overline{\mathcal{U}_0}|_{\infty}$, $\mathcal{H} = \overline{\mathcal{A}}|_{\infty}$.

For every function $f \in L^2(\pi)$, denote by $df : E \times E \to \mathbb{R}$ the function defined by [(df)(x)](y) = f(y) - f(x). Clearly, if $f \in D(L)$, then df belongs to \mathcal{A} . Note that $\mathbb{L}(df) = Lf$ and that for every g in D(L),

$$\langle\!\langle df, dg \rangle\!\rangle = \frac{1}{2} \int \pi(dx) \{ L f g - f L g - g L f \}(x) .$$

As π is the stationary state, $\int \pi(dx) (L f g)(x) = 0$ so that

$$\langle\!\langle df, dg \rangle\!\rangle = \frac{1}{2} \mathcal{D}(f, g) + \frac{1}{2} \mathcal{D}(g, f). \tag{1.2}$$

In the particular case where f = g,

$$\|df\|_{\mathcal{H}}^2 = -\int \pi(dx) f(x) (Lf)(x) = \mathcal{D}(f, f).$$
 (1.3)

1.2. **Markov Flows.** Denote by \mathcal{F} the dual of \mathcal{H} . We refer to \mathcal{F} as the space of flows.

For a function $f: E \to \mathbb{R}$, let $\Phi_f: \mathcal{H} \to \mathbb{R}$ be the linear functional defined by

$$\Phi_f(\chi) = -\int \pi(dx) f(x) (\mathbb{L}\chi)(x) = -\int \pi(dx) f(x) (L\chi_x)(x).$$

By (1.1), for each $f \in D(L)$, Φ_f is a bounded functional and therefore belongs to \mathcal{F} .

Notice that for every functions f, g in D(L),

$$\Phi_g(df) \ = \ - \ \int \pi(dx) \, g(x) \, (\mathbb{L} \, df)(x) \ = \ - \ \int \pi(dx) \, g(x) \, (L \, f)(x) \ = \ \mathcal{D}(f,g) \; . \tag{1.4} \ \boxed{\text{phig}}$$

For a function f in D(L). let Ψ_f the element of \mathcal{F} defined by

$$\Psi_f(\chi) = \langle \langle df, \chi \rangle \rangle, \quad \chi \in \mathcal{H}. \tag{1.5}$$

As df belongs to \mathcal{H} , Ψ_f is an element of \mathcal{F} and

$$\|\Psi_f\|_{\mathcal{F}}^2 = \|df\|_{\mathcal{H}}^2 = \mathcal{D}(f, f),$$
 (1.6)

where the last identity follows from (1.3). Indeed, by definition,

$$\|\Psi_f\|_{\mathcal{F}}^2 \,:=\, \sup_{\chi} \left\{\, 2\, \Psi_f(\chi) \,-\, \|\chi\|_{\mathcal{H}}^2 \,\right\} \,=\, \sup_{\chi \in \mathcal{H}} \left\{\, 2\, \langle\!\langle\, df \,,\, \chi\,\rangle\!\rangle \,-\, \|\chi\|_{\mathcal{H}}^2 \,\right\} \,,$$

and this expression is equal to $||df||_{\mathcal{H}}^2$. Moreover, for every function g in D(L),

$$\Psi_f(dg) = \langle \langle df, dg \rangle \rangle \tag{1.7}$$

Define the codifferential d^* on \mathcal{F} as the dual operator of d, namely

$$(d^*\Phi)(f) := -\Phi(df).$$

Fix two disjoint, non-empty subsets A, B of E: $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$. Let $C_{\alpha,\beta}$, α , $\beta \in \mathbb{R}$, be the subspace of real continuous functions given by

$$C_{\alpha,\beta} := \{ f \in C(E) : f(x) = \alpha \text{ for } x \in A \text{ and } f(y) = \beta \text{ for } y \in B, f \in D(\mathcal{D}^s) \}.$$

Let \mathcal{F}_{γ} , $\gamma \in \mathbb{R}$, be given by

$$\mathcal{F}_{\gamma} := \left\{ \Phi \in \mathcal{F} : d^*\Phi(f) = -\gamma \text{ for all } f \in C_{1,0} \right\}. \tag{1.8}$$

2. Capacity

A closed set $A \subset E$ is recurrent if for all $x \in E$, $\mathbb{P}_x(\tau_A < \infty) = 1$.

Definition 2.1. Two closed recurrent sets $A, B \subset E$ have finite capacity if the function $h(x) \equiv h_{A,B}(x) = \mathbb{P}_x(\tau_A < \tau_B)$ is in the domain of $\mathcal{D}(\cdot)$ or equivalently $dh \in \mathcal{H}$. In such a case we define

$$cap(A,B) = \mathcal{D}(h,h) \tag{2.1}$$

Lemma 2.2. Fix two disjoint, non-empty subsets A, B of E.

$$cap(A, B) = cap^{\dagger}(A, B)$$
.

Lemma 2.3. Fix two disjoint, non-empty subsets A, B of E. For each $\alpha, \gamma \in \mathbb{R}$, $f \in C_{\alpha,0}$ and $\Phi \in \mathcal{F}_{\gamma}$,

$$\left[\Phi_f - \Phi\right](dh_{A,B}) = \alpha \operatorname{cap}(A,B) - \gamma. \tag{2.2}$$

Proof. From (1.4), we have that

$$\Phi_f(dh) = -\int \pi(dx) f(x) (Lh)(x) .$$

Since LH vanishes on $\Omega = (A \cup B)^c$ and $f = \alpha, h \in A \cup B$, we may replace in the previous formula, f by αh to get that $\Phi_f(dh) = \alpha \mathcal{D}(h, h) = \alpha \operatorname{cap}(A, B)$.

On the other hand, by the definition (1.8) of \mathcal{F}_{γ} and since h belongs to $C_{1,0}$,

$$\Phi(dh) = \gamma.$$

This proves the lemma.

prop1

Proposition 2.4 (Dirichlet Principle). Fix two disjoint, non-empty subsets A, B of E. We have that

$$\operatorname{cap}(A.B) = \inf_{f \in C_1} \inf_{\Phi \in \mathcal{F}_0} \|\Phi_f - \Phi\|_{\mathcal{F}}^2.$$

Proof. Fix f in $C_{1,0}$ and Φ in \mathcal{F}_0 . By the previous lemma and by Schwarz inequality,

$$\operatorname{cap}(A,B)^{2} = \left\{ \left[\Phi_{f} - \Phi \right] (dh_{A,B}) \right\}^{2} \leq \left\| \Phi_{f} - \Phi \right\|_{\mathcal{F}}^{2} \left\| dh \right\|_{\mathcal{H}}^{2}$$

By (1.3) and (2.1), the last term is equal to $\operatorname{cap}(A, B)$, so that $\operatorname{cap}(A, B) \leq \|\Phi_f - \Phi\|_{\mathcal{F}}^2$ for every f in $C_{1,0}$ and Φ in \mathcal{F}_0 :

$$\operatorname{cap}(A, B) \leq \inf_{f \in C_{1,0}} \inf_{\Phi \in \mathcal{F}_0} \|\Phi_f - \Phi\|_{\mathcal{F}}^2.$$

Let $f_{\star} = (h + h^{\dagger})/2$ and $\Phi_{\star} = \Phi_{f_{\star}} - \Psi_{h}$ so that $\Phi_{f_{\star}} - \Phi_{\star} = \Psi_{h}$. By (2.1) and (1.6), $\operatorname{cap}(A, B) = \mathcal{D}(h, h) = \|\Psi_{h}\|_{\mathcal{F}}^{2} = \|\Phi_{f_{\star}} - \Phi_{\star}\|_{\mathcal{F}}^{2}$. Hence, to prove that

$$\inf_{f \in C_{1,0}} \inf_{\Phi \in \mathcal{F}_0} \|\Phi_f - \Phi\|_{\mathcal{F}}^2 \leq \operatorname{cap}(A, B) ,$$

it remains to check that f_{\star} belongs to $C_{1,0}$, and Φ_{\star} to \mathcal{F}_{0} .

Clearly, $f_{\star} = (h + h^{\dagger})/2 \in C_{1,0}$. To shows that $\Phi_{\star} \in \mathcal{F}_0$, fix g in $C_{1,0}$. By definition, $\Phi_{\star}(dg) = \Phi_{f_{\star}}(dg) - \Psi_h(dg)$. By definition of f_{\star} , (1.4), (1.2) and (1.7), this expression is equal to

$$\frac{1}{2} \left\{ \, \mathcal{D}(h \, , \, g) \, + \, \mathcal{D}(h^\dagger \, , \, g) \, - \, \, \mathcal{D}(h \, , \, g) \, - \, \, \mathcal{D}(g \, , \, h) \, \right\} \, = \, \frac{1}{2} \, \left\{ \, \mathcal{D}(h^\dagger \, , \, g) \, - \, \, \mathcal{D}(g \, , \, h) \, \right\} \, .$$

As g belongs to $C_{1,0}$, g coincides with h amd h^{\dagger} on $A \cup B$. Hence, as $Lh = L^{\dagger}h^{\dagger} = 0$ on Ω , the previous expression is equal to

$$\frac{1}{2} \left\{ \; - \; \langle L^{\dagger} h^{\dagger} \, , \, h^{\dagger} \rangle \; + \; \langle L h \, , \, h \rangle \; \right\} \; = \; \frac{1}{2} \left\{ \; \mathcal{D}(h^{\dagger} \, , \, h^{\dagger}) \; - \; \mathcal{D}(h \, , \, h) \; \right\} \; = \; 0$$

because both quantities are equal to cap(A, B).

prop2

Proposition 2.5 (Thomson Principle). Fix two disjoint, non-empty subsets A, B of E. We have that

$$\frac{1}{\operatorname{cap}(A.B)} = \inf_{\Phi \in \mathcal{F}_1} \inf_{f \in C_{0.0}} \|\Phi_f - \Phi\|_{\mathcal{F}}^2.$$

Proof. Fix f in $C_{0,0}$ and Φ in \mathcal{F}_1 . By the previous lemma and by Schwarz inequality,

$$1 = \left\{ \left[\Phi_f - \Phi \right] (dh_{A,B}) \right\}^2 \le \left\| \Phi_f - \Phi \right\|_{\mathcal{F}}^2 \left\| dh \right\|_{\mathcal{H}}^2.$$

By (1.3) and (2.1), the last term is equal to $\operatorname{cap}(A, B)$, so that $1/\operatorname{cap}(A, B) \le \|\Phi_f - \Phi\|_{\mathcal{F}}^2$ for every f in $C_{0,0}$ and Φ in \mathcal{F}_1 :

$$\frac{1}{\operatorname{cap}(A.B)} \leq \inf_{\Phi \in \mathcal{F}_1} \inf_{f \in C_{0,0}} \|\Phi_f - \Phi\|_{\mathcal{F}}^2.$$

To complete the proof of the theorem, it remains to find g in $C_{0,0}$ and Φ in \mathcal{F}_1 such that $\|\Phi_g - \Phi\|^2 = 1/\text{cap}(A,B)$. Let $g_\star = (h^\dagger - h)/2 \operatorname{cap}(A,B)$ and $\Psi_\star = \Phi_{g_\star} + \Psi_{h_0}$, where $h_0 = h/\text{cap}(A,B)$, so that $\Phi_{g_\star} - \Psi_\star = -\Psi_{h_0}$. By (2.1) and (1.6), $1/\text{cap}(A,B) = \mathcal{D}(h_0,h_0) = \|\Psi_{h_0}\|_{\mathcal{F}}^2 = \|\Phi_{g_\star} - \Psi_\star\|_{\xi}^2$. Hence, to prove that

$$\inf_{f \in C_{1,0}} \inf_{\Phi \in \mathcal{F}_0} \|\Phi_f - \Phi\|_{\mathcal{F}}^2 \le \operatorname{cap}(A.B) ,$$

it remains to check that g_{\star} belongs to $C_{0,0}$, and Ψ_{\star} to \mathcal{F}_{1} .

Clearly, $g_{\star} = (h^{\dagger} - h)/2 \operatorname{cap}(A, B) \in C_{0,0}$. To shows that $\Psi_{\star} \in \mathcal{F}_1$, fix f in $C_{1,0}$. By definition, $\Psi_{\star}(df) = \Phi_{g_{\star}}(df) + \Psi_{h_0}(df)$. By definition of g_{\star} , (1.4), (1.7) and (1.2), this expression is equal to

$$\begin{split} & \frac{1}{2 \operatorname{cap}(A, B)} \left\{ \, \mathcal{D}(f \, , \, h^\dagger) \, - \, \mathcal{D}(f, h) \, + \, \mathcal{D}(h \, , \, f) \, + \, \mathcal{D}(f \, , \, h) \, \right\} \\ & = \, \frac{1}{2 \operatorname{cap}(A, B)} \left\{ \, \mathcal{D}(f \, , \, h^\dagger) \, + \, \mathcal{D}(h \, , \, f) \, \right\} \, . \end{split}$$

As f belongs to $C_{1,0}$, f coincides with h and h^{\dagger} on $A \cup B$. Hence, as $Lh = L^{\dagger}h^{\dagger} = 0$ on Ω , the previous expression is equal to

$$\begin{split} &\frac{1}{2\operatorname{cap}(A,B)}\left\{\;-\;\left\langle L^{\dagger}h^{\dagger}\,,\,h^{\dagger}\right\rangle\;-\;\left\langle Lh\,,\,h\right\rangle\;\right\}\\ &=\;\frac{1}{2\operatorname{cap}(A,B)}\left\{\;\mathcal{D}(h^{\dagger}\,,\,h^{\dagger})\;+\;\mathcal{D}(h\,,\,h)\;\right\}\;=\;1 \end{split}$$

because both quantities are equal to cap(A, B).

3. Examples

Discrete spaces.

The operator $\mathbb{L}: \mathcal{A} \to E$ is given by

$$\begin{split} (\mathbb{L}\,\xi)(x) \; &=\; (L\,\xi_x)(x)\;, \quad x \in E \\ &=\; \sum_{y \in E} r(x,y) \left[\xi_x(y) - \xi_x(x) \right] \\ &=\; \sum_{y \in E} r(x,y) \, \xi(x,y) \;. \end{split}$$

The operator $L^{\eta}: D(L^{\eta}) \to B$ given by

$$(L^{\eta} f)(x) = \left[\mathbb{L} (e^{\eta} df) \right](x); = \sum_{y \in E} r(x, y) e^{\eta(x, y)} \left[f(y) - f(x) \right].$$

$$\begin{split} \langle\!\langle \, \xi \,, \, \xi' \, \rangle\!\rangle \; &:= \; \frac{1}{2} \, \int_{E \times E} \pi(dx) \, R(x,dy) \, \xi(x,y) \, \xi'(x,y) \; = \; \frac{1}{2} \, \int \pi(dx) \, (\mathbb{L} \xi \, \xi') \; . \\ \\ \langle \, \xi \,, \, \xi' \, \rangle \; &= \; \frac{1}{2} \, \sum_{x,y} \pi(x) r_s(x,y) \, \xi(x,y) \, \xi'(x,y) \; . \\ \\ \Phi_f(\chi) \; &= \; \int \pi(dx) \, f(x) \, (\mathbb{L} \, \chi)(x) \; . \end{split}$$

3.1. **Diffusions.** Fix $d \ge 1$, and denote by $\mathbb{T}^d = [0,1)^d$ the d-dimensional torus of length 1. Denote by a(x) a uniformly positive-definite matrix whose entries $a_{i,j}$ are smooth functions: There exist $c_0 > 0$ such that for all $x \in \mathbb{T}^d$, $y \in \mathbb{R}^d$,

$$y \cdot a(x) y \ge c_0 \|y\|^2$$
, (3.1)

where $y \cdot z$ represents the scalar product in \mathbb{R}^d .

Generator. Denote by \mathcal{L} the generator given by

$$\mathcal{L}f = \nabla \cdot (a\nabla f) + b \cdot \nabla f, \qquad (3.2) \quad \boxed{2-12}$$

where $b: \mathbb{T}^d \to \mathbb{R}^d$ is a smooth vector field. By modifying the drift b we could assume the matrix a to be symmetric. We will not assume this condition for reasons which will become below. There exists a unique Borel probability measure μ on \mathbb{T}^d such that $\mu \mathcal{L} = 0$. This measure is absolutely continuous, $\mu(dx) = m(x)dx$, where m is the unique solution to

$$\nabla \cdot (a^{\dagger} \nabla m) - \nabla \cdot (b m) = 0, \qquad (3.3) \quad \boxed{2-16}$$

where a^{\dagger} stands for the transpose of a. For existence, uniqueness and regularity conditions of solutions of elliptic equations, we refer to [?]. Let $V(x) = -\log m(x)$, so that $m(x) = e^{-V(x)}$.

We may rewrite the generator \mathcal{L} introduced in (3.2) as

$$\mathcal{L}f = e^{V} \nabla \cdot \left(e^{-V} a \nabla f \right) + c \cdot \nabla f ,$$

where $c = b + a^{\dagger} \nabla V$. It follows from (3.3) that

$$\nabla \cdot (e^{-V}c) = 0. ag{3.4}$$

This implies that the operator $c \cdot \nabla$ is skew-adjoint in $L_2(\mu)$: for any smooth functions $f, g : \mathbb{T}^d \to \mathbb{R}$,

$$\int f c \cdot \nabla g \, d\mu = - \int g c \cdot \nabla f \, d\mu \,. \tag{3.5}$$

In view of (3.5), the adjoint of \mathcal{L} in $L_2(\mu)$, represented by \mathcal{L}^* , is given by

$$\mathcal{L}^* f = e^V \nabla \cdot (e^{-V} a^{\dagger} \nabla f) - c \cdot \nabla f,$$

while the symmetric part, denoted by \mathcal{L}^s , $\mathcal{L}^s = (1/2)(\mathcal{L} + \mathcal{L}^*)$, takes the form

$$\mathcal{L}^s f = e^V \nabla \cdot (e^{-V} a_s \nabla f) . \tag{3.6}$$

where a_s stands for the symmetrization of the matrix a: $a_s = (1/2)[a + a^{\dagger}]$.

Recall from (??), (??), the definition of the spaces $C(\mathbb{T}^d, D(L))$, \mathcal{A} and the operator \mathbb{L} . In this context, for any smooth element φ of $C(\mathbb{T}^d, D(L))$,

$$\langle\!\langle \varphi, \varphi \rangle\!\rangle = \int_{\mathbb{T}^d} \mu(dx) \left(\nabla_y \varphi \right) (x, x) \cdot a(x) \left(\nabla_y \varphi \right) (x, x) . \tag{3.7}$$

Hence, as the matrix a is strictly elliptic, $\|\varphi\| = 0$ if and only if $(\nabla_y \varphi)(x, x) = 0$ for all $x \in \mathbb{T}^d$.

Consider a smooth, conservative vector field $\mathfrak{v}:\mathbb{T}^d\to\mathbb{R}^d$. Recall that conservative means that its line integral over closed paths vanishes or, equivalently, that its line integral is path independent. Denote by $\varphi_{\mathfrak{v}}:\mathbb{T}^d\times\mathbb{T}^d\to\mathbb{R}$ the function defined by

$$\varphi_{\mathfrak{v}}(x,y) = \int_{\gamma} \mathfrak{v}(\ell) d\ell$$
,

where γ is a path from x to y. The function $\varphi_{\mathfrak{v}}$ is well defined because \mathfrak{v} is conservative. The same property yields that $\varphi_{\mathfrak{v}}(x,y) = -\varphi_{\mathfrak{v}}(y,x)$ so that $\varphi_{\mathfrak{v}} \in \mathcal{A}$. Furthermore, $(\nabla_y \varphi_{\mathfrak{v}})(x,x) = \mathfrak{v}(x)$ so that, by (3.7),

$$\langle\!\langle \varphi_{\mathfrak{v}}, \varphi_{\mathfrak{v}} \rangle\!\rangle = \int_{\mathbb{T}^d} \mu(dx) \, \mathfrak{v}(x) \cdot a(x) \, \mathfrak{v}(x) . \tag{3.8}$$

Denote by \mathcal{V} the closure of this set in \mathcal{A} .

We claim that $\mathcal{H} = \mathcal{V}$. Indeed, since \mathcal{V} is contained in \mathcal{H} , it is enough to show that for any smooth φ in \mathcal{A} there exists a conservative vector field \mathfrak{v} such that $(\nabla_y \varphi)(x,x) = (\nabla_y \varphi_{\mathfrak{v}})(x,x)$ for all $x \in \mathbb{T}^d$. Fix such a smooth function φ in \mathcal{A} ,

define the vector field \mathfrak{v} by $\mathfrak{v}(x)=(\nabla_y\varphi)(x,x)$. It is clear that $(\nabla_y\varphi)(x,x)=(\nabla_y\varphi_{\mathfrak{v}})(x,x)$, which proves the claim. Thus, in the context of diffusions, the space $\mathcal H$ can be identified with the space of vector fields.

Jump processes.

Consider a family of jump rates $r_{\epsilon}(x, dy)$ on \mathbb{R}^d . Denote by $\pi_{\epsilon}(dx)$ the invariant measure. Let $\lambda_{\epsilon}(x) = r_{\epsilon}(x, \mathbb{R}^d) \in [0, \infty]$.

$$\langle\!\langle \xi, \xi' \rangle\!\rangle = \frac{1}{2} \int \pi(dx) \left(\mathbb{L}\xi \xi' \right) := \frac{1}{2} \int_{E \times E} \pi(dx) R(x, dy) \xi(x, y) \xi'(x, y) .$$

$$\operatorname{cap}(A, B) = \inf$$

$$\Phi_f(\xi) = \int \pi(dx) f(x) (\mathbb{L}\xi)(x)$$

$$= -\int \pi(dx) r(x, dy) f(x) \xi(x, y)$$

$$= \int \pi(dx) r_s(x, dy) \left(\frac{f(y) - f(x)}{2}\right) \xi(x, y)$$

$$-\int \pi(dx) r_a(x, dy) \left(\frac{f(y) + f(x)}{2}\right) \xi(x, y)$$

Now

$$r_a(x, dy) = \rho(x, y) r_s(x, dy)$$

last line

$$-\int \pi(dx) r_s(x, dy) \rho(x, y) \left(\frac{f(y) + f(x)}{2}\right) \xi(x, y)$$

$$(L_{\epsilon,\beta}f)(x) = \int \mu_{\epsilon}(x,dy) \frac{1}{2} [f(y) - f(x)] e^{-\beta q(x,y)},$$

where q(x,y) = V(y) - V(x) + c(x,y) and c is symmetric and $\mu_{\epsilon}(x,dy) = [\mu(x + \epsilon dy) + \mu(x - \epsilon dy)]/2$.

4. Remains

Let \mathcal{B} be the set given by

$$\mathcal{B} = \left\{ \eta \in C(E, D(L)) : e^{\eta} - 1 \in \mathcal{A} \right\}.$$

For $\eta \in \mathcal{B}$, define the operator $L^{\eta}: D(L^{\eta}) \to B$ given by

$$(L^{\eta} f)(x) = [\mathbb{L}(e^{\eta} df)](x).$$

$$\eta \sim \eta' \quad if \quad L^{\eta} = L^{\eta'}$$

References

MR92 [1] Zhi Ming Ma and Michael Röckner. Introduction to the theory of (nonsymmetric) Dirichlet forms. Universitext. Springer-Verlag, Berlin, 1992.