Numerical Optimisation: Trust Region Methods Assignment Project Exam Help

Marta M. Betcke

https://poweoder.com

Add Department of Computer Science,
We Media Paging Town Coder
Centre for Inverse Problems,
University College London

Assignment 3

2D Subspace Method

Recall the constraint minimisation problem for the trust region

Assignment Project Exam Help $\min m(p) = f(x_k) + g^T p + \frac{1}{2} p^T B p$ s.t. $||p|| \le \Delta$

Let untripred the properties of $S = \operatorname{span}(g, B^{-1}g)$

We cantake a of honor al train to in power of this basis via:

$$p = Va$$

Now consider the minimisation problem in terms of this basis:

$$\min m_{v}(a) = f(x_k) + g_{v}^{\mathsf{T}} a + \frac{1}{2} a^{\mathsf{T}} B_{v} a \quad \text{s.t. } ||a|| \leq \Delta,$$

A system where f is specifically and g are not compared, if g is specifically g. Note that if $g = cB^{-1}g$ the problem becomes 1D.

https://powcoder.com
To solve the projected model m_v subject to $||p|| \le \Delta$ we make use of Theorem 4.1 Nocedal Wiright. From this theorem for m_v we have that a minimizes m_v s.t. $||a|| \le \Delta$ iff

have that a minimizes
$$m_{\nu}$$
 s.t. $||a|| \leq \Delta$ iff Add

$$\begin{array}{l}
\text{Add} & \text{WeChat powcoder} \\
B_{\nu} + \lambda I) a = -g_{\nu}, \quad \lambda \geq 0
\end{array}$$

$$\lambda(\Delta - ||a||) = 0, \quad (1)$$

$$(B_{\nu} + \lambda I) \text{ is s.p.d.}$$

This gives two cases:

• $\lambda = 0$ and $||a|| < \Delta$. The unconstraint solution is inside the trust region. Then the first equation becomes:

Assignment Project Exam Help

• $\lambda \ge 0$ and $||a|| = \Delta$. The constraint is active. Then we can solve the first equation:

https://powcoder.com

The additional equation is provided by the constraint:

Add WeChat powcoder

To solve this system we make use of eigendecomposition of B_v :

$$B_{v} = Q^{T}DQ$$
 with Q orthonormal

Then we have:

$$Qa = -(D + \lambda I)^{-1}Qg_{\nu}$$

and realise that $(Qa)^T(Qa) = a^TQ^TQa = a^Ta$. We denote $Assignment \ Project \ Exam Help$

$$Q_{a,i} = -rac{1}{(d_i + \lambda)}Q_{g,i},$$

with u_i the element in the diagonal element with u_i the lement in the diagonal element Q_a into $||Q_a||^2 = Q_{a,1}^2 + Q_{a,2}^2 = \Delta^2$ we obtain:

Add We Chate powcoder $(d_1 + \lambda)^2 h_{(d_2 + \lambda)^2}$

which we can transform to a 4th degree polynomial in λ assuming that $d_i + \lambda > 0$.

