

## **Group Theory**

## Homework Assignment 11

## Spring, 2020

Consider the permutation group  $S_4$ .

- 1. Consider some of the properties of  $S_4$ .
  - (a) What are the classes in  $S_4$ ?
  - (b) What are the inequivalent irreducible representations of  $S_4$ ?
  - (c) Write down all the Young tableaux in each irreducible representation of  $S_4$ . What is the dimension of each irreducible representation of  $S_4$ ?
- 2. Consider the Young operators in the irreducible representation [3,1] of  $S_4$ .
  - (a) Write down all the Young tableaux and the corresponding Young operators  $\mathcal{Y}_{\mu}^{[3,1]}$ 's in the irreducible representation [3, 1] of  $S_4$ .
  - (b) Argue that all the Young operators in the irreducible representation [3,1] of  $S_4$  are orthogonal.
- 3. Write down all the standard basis vectors in the irreducible representation [3, 1] of  $S_4$ .
- 4. Write down all the  $Q_{\nu k}$ 's in the irreducible representation [3,1] of  $S_4$ . Find all the  $\mathcal{Y}'$ 's using  $\mathcal{Y}' = Q_{\nu k} \mathcal{Y}_{\nu k} Q_{\nu k}^{-1}$ . Find all the  $\mathcal{Y}_{\mu}(S)$ 's in the irreducible representation [3,1] of  $S_4$  for  $S = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$  using  $\mathcal{Y}_{\mu}(S) = S\mathcal{Y}_{\mu}^{[3,1]}S^{-1}$ .
- 5. Construct the table for  $A^{\mu}_{\nu k}(S)$  for  $S=\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$  with  $\mathcal{Y}_{\mu}(S)$  labeling the columns and  $\sum_{k} \delta_{k} \mathcal{Y}_{\nu k}$  labeling the rows. Write down the representation matrix of  $S=\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ .