Sorting Algorithms

Sorting

- Given a sequence of n numbers $\langle a_1,...,a_n \rangle$, reorder it into $\langle b_1,...,b_n \rangle$ where $b_1 \leq ... \leq b_n$.
- ▶ Input: $\langle a_1,...,a_n \rangle$
- Output: $\langle b_1,...,b_n \rangle$
- ▶ Sample Input: ⟨0,3,5,7,1,2,1,2,1⟩
- ► Sample Output: ⟨0,1,1,1,2,2,3,5,7⟩

Sorting

Algorithm	Worst-case	Average-case
Insertion Sort	$\Theta(n^2)$	$\Theta(n^2)$
Merge Sort	Θ(nlogn)	Θ(nlogn)
Heap Sort	O(nlogn)	
Quick Sort	$\Theta(n^2)$	Θ(nlogn) (Expected)
Counting Sort	Θ(n+k)	Θ(n+k)
Radix Sort	$\Theta(d(n+k))$	$\Theta(d(n+k))$
Bucket Sort	$\Theta(n^2)$	$\Theta(n)$ (Expected)

Non-comparison sort

Comparison sort

Quick Sort

Sort A[1],...,A[n]

- ▶ Termination: It is sorted when n=1.
- Divide: Reorder A and find m such that
 - For i < m, $A[i] \le A[m]$.
 - For i>m, $A[i] \ge A[m]$.
- ▶ Conquer: Sort A[1..m−1] and A[m+1..n].
- Combine: No need.
- Time: $T(n)=T(m-1)+T(n-m)+\Theta(n)$

If A[P]<A[L]: swap(A[L],A[R]) R=R-1

If A[P]≥A[L]: L=L+1

If A[P]<A[L]: swap(A[L],A[R]) R=R-1

If A[P]<A[L]: swap(A[L],A[R]) R=R-1

If A[P]≥A[L]: L=L+1

If R<L: swap(A[P],A[R]) return R

Partition: Bad Case 1

Actually, this is the worst case. (Note: proof is needed.)

Partition: Bad Case 2

Actually, this is the worst, too. (Note: proof is needed.)

Partition: Bad Case 3

Actually, this is the worst, too. (Note: proof is needed.)

Modified Partition

Modified Partition

Modified Partition

If A[P]=A[L]: P=P+1 swap(A[P],A[L]) L=L+1

If A[P]<A[L]: swap(A[L],A[R]) R=R-1

qsort(A[1..R]) qsort(A[L..n])

Quick Sort

- Worst case:
 - $T(n)=\max_{1\leq m\leq n}(T(m-1)+T(n-m))+\Theta(n)$
 - T(n)=?
- Average case:
 - ▶ What is average? The input sequence is uniformly randomly sampled.
 - $T(n)=(2/n)(T(1)+...+T(n-1))+\Theta(n)$
 - T(n)=?

Worst-Case

```
► T(n) \ge T(n-1) + \Theta(n) \ge T(n-2) + \Theta(n-1+n)
 \geq T(1) + \Theta(2 + ... + n) = \Theta(n^2) .... T(n) = \Omega(n^2)
▶ Guess T(n)=O(n^2): Assume T(n) \le cn^2
T(n) \le c(\max_{1 \le m \le n} ((m-1)^2 + (n-m)^2)) + \Theta(n)
 \leq c(\max_{1\leq m\leq n}(2m^2-2m-2nm+n^2+1))+c'n
 =c(n-1)^2+c'n
 =c(n^2-2n+1)+c'n
 =cn^2-(2cn-c'n-c)\leq cn^2 ... take c\geq c', n\geq 1
► T(n)=O(n^2). Conclusion: T(n)=\Theta(n^2)
```

Average Case

It is sufficient to show that:

$$F(n)=(2/n)(F(1)+...+F(n-1))+n=\Theta(n\log n)$$

- $nF(n)=2F(1)+2F(2)+...+2F(n-1)+n^2$
- $(n-1)F(n-1)=2F(1)+...+2F(n-2)+n^2-2n+1$
- $\rightarrow nF(n)=(n+1)F(n-1)+2n-1$

$$F(n) = \frac{n+1}{n}F(n-1) + \Theta(1)$$

$$= \frac{n+1}{n}(\frac{n}{n-1}F(n-2) + \Theta(1)) + \Theta(1)$$

$$= \frac{n+1}{n-1}F(n-2) + (\frac{n+1}{n} + 1)\Theta(1)$$

$$= \frac{n+1}{n-3}F(n-3) + (\frac{n+1}{n-1} + \frac{n+1}{n} + 1)\Theta(1)$$

$$= (n+1)F(1) + \Theta(\sum_{k=1}^{n+1} \frac{n+1}{k}) - \Theta(\text{nlogn})$$

Note on Quick Sort

- ▶ This analysis works only for distinct keys
- The partition method and the complexity analysis in the textbook are different from the slides. At least not identical.
- ▶ Please read the textbook.

Comparison Sort: Lower Bound

- The output $\langle b_1,...,b_n \rangle$ of any sorting algorithm is sorted.
- ► Sorting algorithm: determine a one-to-one and onto mapping function $f:\{1,...,n\}$ $\rightarrow \{1,...,n\}$ such that $a_{f(i)}=b_i$.
- There are n! one-to-one and onto functions (permutations).
- At the beginning, every one is a possible candidate of the answer.

Comparison Sort: Lower Bound

- A comparison has 3 possible results:
 - \rightarrow <, =, and >.
- Suppose we need m comparisons to determine f. Then, we have n!/3^m≤1.
- ▶ $3^m \ge n!$ implies m = Ω(nlog n).
- o(nlogn)-time sort: Non-comparison sort

- Works only if there are not many kinds of values. (Non-comparison based sorting)
- Suppose there are k kinds of values.
 - \blacktriangleright values: $v_1 < v_2 < ... < v_k$ (sometimes simply $v_i = i$)
 - ▶ Prepare k queues Q₁, ..., Qk.
 - ▶ For each a_j of value v_i: enqueue a_j into Q_i.
 - ▶ For i=1 to k: Repeat dequeueing Q_i until empty. Append the dequeued value to the output.
- It can be stable!

0	1	2	3	4	5	6	7	8	9
							7	8	

0	1	2	3	4	5	6	7	8	9
		2					7	8	9

0	1	2	3	4	5	6	7	8	9
		2					7	8	9
							7	8	9

0	1	2	3	4	5	6	7	8	9
		2					7	8	9
		2					7	8	9

0	1	2	3	4	5	6	7	8	9
		2	3				7	8	9
		2					7	8	9

Time Complexity

- ▶ Both enqueue and dequeue take $\Theta(1)$.
- Each of $a_1,...,a_n$ is enqueued once and dequeued once. $\Theta(n)$ in total
- We have to check whether Q_i is empty for c_i+1 times if there are c_i number equal to v_i . $\Theta(n+k)$ in total
- We can conclude it takes $\Theta(n+k)$ time.

- Queue array takes a lot extra space.
- ▶ Let count[i] be the numbers of aj equal to vi.
- $\text{Let } c_{\text{umulated_count}}[i] = \sum_{i' \leq i} c_{\text{ount}}[i'].$
- ► For j=n downto 1

 If a_j = v_i $B[c_{umulated_count}[i]]$ = a_j $c_{umulated_count}[i]$ = $c_{umulated_count}[i]$ -1

38

Time Complexity

- ▶ Compute count and cumulated_count: ⊕(k)
- Each of $a_1,...,a_n$ can be put into correct position in $\Theta(1)$. $\Theta(n)$ in total
- We can conclude it takes $\Theta(n+k)$ time.
- ▶ Stable: Homework

MSD: Most Significant Digit

LSD: Least Significant Digit

- Suppose all keys are d digits number based on k.
- We can sort n numbers by d stable sorts
 - Sort them according to LSD
 - ▶ Sort them according to 2nd-LSD.
 - **)** ...
 - ▶ Sort them according to 2nd-MSD.
 - ▶ Sort them according to MSD.
- Note: Counting sort is stable.

0	1	2	3	4	5	6	7	8	9

LSD: Least Significant Digit

A

17 28 32 29 28 17 19 52 43

0	1	2	3	4	5	6	7	8	9
		32	43				17	28	29
		52					17	28	19

0	1	2	3	4	5	6	7	8	9

MSD: Most Significant Digit

A

17 28 32 29 28 17 19 52 43

32 52 43 17 17 28 28	29	19
----------------------	----	----

- 1								
		I	l	l		l	l	l .
		l	l	l		l	l	l
		I	l	l		l	l	l .
		I	l	l		l	l	l .
		I	l	l		l	l	l
		I	l	l		l	l	l
		I	l	l		l	l	l
		I	l	l		l	l	l
		I	I	I	I	I	I	I

0	1	2	3	4	5	6	7	8	9
	17	28	32	43	52				
	17	28							
	19	29							

32 | 52 | 43 | 17 | 17 | 28 | 28 | 29 | 19

17 | 17 | 19 | 28 | 28 | 29 | 32 | 43 | 52

0	1	2	3	4	5	6	7	8	9

Time Complexity

- ▶ Radix sort = d times counting sort
 - base-k
- $T(n)=d\Theta(n+k)=\Theta(d(n+k))$
- T(n)=O(n) if d=O(1) and k=O(1).
- Question 1: How to sort integers $a_1,...,a_n \in [0,n^{64})$ in O(n) time?
- Question 2: Is radix sort faster than quick sort?

```
Assume a₁,...,an∈[0,1) (Normalization)
Prepare n buckets (sorted list) B₁,...,Bn.
For i = 1 to n do
    j=[nai]+1
    insert ai into Bj
loop
Concatenate B₁,B₂,...,Bn into ⟨b₁,...,bn⟩
```


Time Complexity

- ▶ |B_i|: size of B_i (number of elements in B_i)
- $T(n) = \Theta(n) + \sum_{1 \le i \le n} \Theta(|B_i|^2) = \sum_{1 \le i \le n} \Theta(|B_i|^2)$
- Worst case: all numbers are in one bucket
 - $T(n)=\Theta(n^2)$
- Average case:
 - ▶ $a_1,...,a_n$ are independently uniformly randomly sampled from [0,1). $Pr[a_j \in B_i] = 1/n$
 - ► $T(n)=E[\Sigma_{1\leq i\leq n}\Theta(|B_i|^2)]$... Expectation! = $\Theta(E[\Sigma_{1\leq i\leq n}|B_i|^2])$

Average Case

- Goal: $E[\Sigma_{1 \le i \le n} |B_i|^2] = \Theta(n)$
- Let $X_{i,j}$ be the random variable indicating whether $a_j \in B_i$. I.e., $X_{i,j}=1$ if $a_j \in B_i$ and $X_{i,j}=0$ if $a_j \notin B_i$. $E[X_{i,j}]=Pr[a_j \in B_i]=1/n$
- $\mid B_i \mid = \sum_{1 \le j \le n} X_{i,j}$
- $|B_i|^2 = (\sum_{1 \le j \le n} X_{i,j})(\sum_{1 \le j \le n} X_{i,j})$
 - $= \sum_{1 \le j \le n} \sum_{1 \le k \le n} X_{i,j} X_{i,k}$
 - $= \sum_{1 \le j \le n} X_{i,j} X_{i,j} + 2 \sum_{1 \le k < j \le n} X_{i,j} X_{i,k}$
 - $= \sum_{1 \leq j \leq n} X_{i,j} + 2 \sum_{1 \leq k < j \leq n} X_{i,j} X_{i,k}$

Average Case

- $E[|B_i|^2] = E[\Sigma_{1 \le i \le n} X_{i,i}] + 2E[\Sigma_{1 \le k < i \le n} X_{i,i} X_{i,k}]$ $\rightarrow E[\Sigma_{1 \leq j \leq n} X_{i,j}] = n \times (1/n) = 1$ $=n(n-1)E[X_{i,j}X_{i,k}]....$ for k<j $\leq n^2 E[X_{i,i}] E[X_{i,k}] \dots X_{i,j} & X_{i,k} \text{ are independent}$ $=n^2(1/n)(1/n)=1$
- $\rightarrow 1 \le E[|B_i|^2] \le 2$
- $n \leq E[\Sigma_{1 \leq i \leq n} |B_i|^2] \leq 2n \dots T(n) = \Theta(n)$