# Walmart Stores Sales Forecasting

MSDS 596 - Regression & Time Series Analysis Group D - Shourya Thatha Ravi, Rahul Rajesh Singh, Raviteja Arava, and Nish Patel December 8, 2022

# **AGENDA**

| 01 | Introduction              |
|----|---------------------------|
| 02 | Exploratory Data Analysis |
| 03 | Modeling Methodology      |
| 04 | Univariate Modeling       |
| 05 | Multivariate Modeling     |
| 06 | Conclusions               |

# **INTRODUCTION**

## INTRODUCTION

**Objective**: Predict weekly sales at Walmart using historical data provided for 45 stores and 81 departments

**Importance**: Through the prediction of future weekly sales across various stores, the company can manage their supply chain more efficiently, optimize inventory levels, accommodate higher volume of products, handle traffic, and provide markdowns accordingly.

**Motivation**: Forecasting sales is also a common task for data scientists so it can provide a good opportunity for the group to learn techniques and experiment with real-world data.

**Dataset:** Dataset was provided by Walmart for a recruiting competition on Kaggle.



## **DATASET**

#### stores.csv

This file contains anonymized information about the 45 stores

- Store the store number
- Type the store type (A, B, C)
- Size the size of the store

#### train.csv

This file contains the historical sales information by store and department

- Store the store number
- Dept the department number
- Date the week
- Weekly\_Sales sales for the given department in the given store
- IsHoliday whether the week is a special holiday week



## **DATASET**

#### features.csv

This file contains information on additional factors that may impact weekly sales (such as promotional markdowns)

- Store the store number
- Date the week
- Temperature average temperature in the region
- Fuel\_Price cost of fuel in the region
- MarkDown1-5 anonymized data related to promotional markdowns that Walmart is running. MarkDown data is only available after Nov 2011, and is not available for all stores all the time. Any missing value is marked with an NA.
- CPI the consumer price index
- Unemployment the unemployment rate
- IsHoliday whether the week is a special holiday week



| Variable     | # of nulls |  |
|--------------|------------|--|
| Store        | 0          |  |
| Date         | 0          |  |
| Temperature  | 0          |  |
| Fuel_Price   | 0          |  |
| MarkDown1    | 4158       |  |
| MarkDown2    | 5269       |  |
| MarkDown3    | 4577       |  |
| MarkDown4    | 4726       |  |
| MarkDown5    | 4140       |  |
| СРІ          | 585        |  |
| Unemployment | 585        |  |
| IsHoliday    | 0          |  |





Seasonality in the dataset shows spikes in weekly sales with holidays (Christmas and Thanksgiving especially).





Some of the markdowns (namely 1, 4, & 5) show multicollinearity





Pairwise plots clearly show multicollinearity between Markdown 1 and 4



Markdowns 1, 4, and 5 were combined into one variable by summing them. This removed the multicollinearity issue.



IsHoliday

isHoliday is correlated with Markdown2 and Markdown3 from the correlation heat map. When checking the flag vs Markdown2 and Markdown3, it is almost always true when these markdowns are active so we have dropped the isHoliday column.



Stores 20 and 4 have the highest weekly sales

# **MODELING METHODOLOGY**

## MODELING METHODOLOGY

- Attempt to use time-series modeling (univariate and multivariate) to predict Walmart weekly sales
- Focus on store-level predictions for the top 2 stores with the highest weekly sales (stores 20 and 4)
- Utilize 75% of data as the training set and the remaining 25% as the test set
- Use Mean Absolute Percentage Error (MAPE) as the evaluation metric to determine the best model
  - MAPE is selected because it is expressed as a percentage which makes it scale-independent which is useful because the magnitude of weekly\_sales varies across time and across stores.
  - The formula for MAPE is below where A<sub>t</sub> is the actual value, F<sub>t</sub> is the forecasted value, and n is the sample size

$$\mathrm{M} = rac{1}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t} 
ight|$$

# **UNIVARIATE MODELING**

## **Line Plot of the Data**



- No upward/downward trend in general
- Seasonality observed (attributed to holidays)
- Additive seasonality
- Somewhat constant variance
- No outliers observed

# **Seasonal Decomposition**



- An upward trend is noticed in the second graph
- The upward trend can be mitigated with differencing
- Seasonality is confirmed through the repeated peaks near the Thanksgiving and Christmas holidays in the third graph
- A few outliers are observed in the residual plot at the beginning and end of the dataset

# **Stationarity - Augmented Dickey Fuller (ADF)**

 $\mathbf{H_0}$ : Data is non-stationary  $\mathbf{H_A}$ : Data is stationary

#### **ADF Test Results**

Weekly\_Sales - Store 20

# Results of Dickey-Fuller Test: Test Statistic -4.719934 p-value 0.000077 #Lags Used 4.000000 Number of Observations Used 102.000000 Critical Value (1%) -3.496149 Critical Value (5%) -2.890321 Critical Value (10%) -2.582122

#### **ADF Test Results**

Weekly\_Sales - Store 4

| Results of Dickey-Fuller Tes | t:         |
|------------------------------|------------|
| Test Statistic               | -3.509825  |
| p-value                      | 0.007738   |
| #Lags Used                   | 4.000000   |
| Number of Observations Used  | 102.000000 |
| Critical Value (1%)          | -3.496149  |
| Critical Value (5%)          | -2.890321  |
| Critical Value (10%)         | -2.582122  |
|                              |            |

The p-value for the ADF test for both stores is below 0.05 and the Test Statistic is less than the critical value at 5% so we can reject the null hypothesis, confirming that Weekly\_Sales is stationary for these stores.

## **ACF & PACF Plot**

### Store 20





The ACF Plot reduces gradually, with lag up to 2 being significant

The PACF Plot is irregular with a single, significant lag of 1, before decreasing besides some lags spiking here and there

A lag of 1 for store 20 and lag of 4 for store 4 are chosen to begin modeling due to the PACF plots.

## Store 4





# Auto Regression(AR)

Store 20

AR with lag 1



Store 4

AR with lag 4



MAPE: 4.4% MAPE: 3.3%

AR was chosen as the first model for univariate testing based on the ACF and PACF plots.

The forecast was mainly just the average of the testing dataset for all weeks, which is not correct and yields poor results.

## **Auto ARIMA**



ARIMA(0,0,5)



#### Store 4

ARIMA(2,1,3)



MAPE: 4.6% MAPE: 3.3%

Auto ARIMA was selected next to search for the best ARIMA coefficients to improve the forecast.

The forecast is slightly better than the AR model, but the forecast is still mainly just the average of the testing set which yields poor results.

## **SARIMA**

Hyperparameters: (p, d, q)(P,D,Q)seasonality

Store 20

SARIMA(0,1,1)(0,1,1,52)



SARIMA(0,1,1)(0,1,1,52)





MAPE: 3.9% MAPE: 3.0%

Since the data has a clear seasonality component, SARIMA was chosen next to try to capture more than just the mean of the testing set.

The results are much better now that seasonality is considered.

# **Exponential Smoothing**

Store 20

## **Exponential Smoothing**



MAPE: 4.4%

# Store 4 Exponential Smoothing



MAPE: 2.6%

Similar to SARIMA, seasonality and trend are accounted for in exponential smoothing, so the results are much better compared to AR and ARIMA.

# **MULTIVARIATE MODELING**

# **Multivariate Modeling**

- Attempt to see if markdowns (discount data) have an effect on Weekly\_Sales through multivariate modeling
- Utilize Date, Store, Weekly\_Sales, Markdown\_145, Markdown2, and Markdown3 to forecast Weekly\_Sales in the test dataset





## $\mathbf{H_0}$ : Data is non-stationary $\mathbf{H_A}$ : Data is stationary

# **Stationarity - Augmented Dicky Fuller (ADF)**

Markdown2

#### **ADF Test Results**

#### Store 20

#### Markdown\_145

| 5.870487  | Test Statistic                                               | -1.871161e+01                                                                                                          |
|-----------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1.000000  | p-value                                                      | 2.034595e-30                                                                                                           |
| 13.000000 | # Lags                                                       | 1.300000e+01                                                                                                           |
| 93.000000 | # Observations                                               | 9.300000e+01                                                                                                           |
| -3.502705 | Critical Value (1%)                                          | -3.502705e+00                                                                                                          |
| -2.893158 | Critical Value (5%)                                          | -2.893158e+00                                                                                                          |
| -2.583637 | Critical Value (10%)                                         | -2.583637e+00                                                                                                          |
|           | 1.000000<br>13.000000<br>93.000000<br>-3.502705<br>-2.893158 | 1.000000 p-value 13.000000 # Lags 93.000000 # Observations -3.502705 Critical Value (1%) -2.893158 Critical Value (5%) |

#### Markdown3

| Test Statistic       | -8.036739e+00 |
|----------------------|---------------|
| p-value              | 1.893846e-12  |
| # Lags               | 0.000000e+00  |
| # Observations       | 1.060000e+02  |
| Critical Value (1%)  | -3.493602e+00 |
| Critical Value (5%)  | -2.889217e+00 |
| Critical Value (10%) | -2.581533e+00 |

The p-value is greater than 0.05 and Test Statistic is greater than the Critical Value at 5% for Markdown\_145 for both stores which fails to reject the null hypothesis indicating that Markdown\_145 is non-stationary.

#### **ADF Test Results**

#### Store 4

#### Markdown\_145

| Test Statistic       | 5.752318  |
|----------------------|-----------|
| p-value              | 1.000000  |
| # Lags               | 13.000000 |
| # Observations       | 93.000000 |
| Critical Value (1%)  | -3.502705 |
| Critical Value (5%)  | -2.893158 |
| Critical Value (10%) | -2.583637 |

#### Markdown2

| Tes | st Sta | tistic |       | -5.968594e+00 |
|-----|--------|--------|-------|---------------|
| p-\ | alue   |        |       | 1.960655e-07  |
| # L | ags    |        |       | 1.300000e+01  |
| # ( | bserv  | ations |       | 9.300000e+01  |
| Cri | itical | Value  | (1%)  | -3.502705e+00 |
| Cri | itical | Value  | (5%)  | -2.893158e+00 |
| Cri | itical | Value  | (10%) | -2.583637e+00 |
| Cri | itical | Value  | (10%) | -2.583637e+00 |

Markdown2 and
Markdown3 have p-values
less than 0.05 and Test
Statistics lower than the
Critical Value at 5% for
both stores so we can
reject the null hypothesis
and conclude that these
variables are stationary.

#### Markdown3

| Test Statistic      | -9.982978e+00    |
|---------------------|------------------|
| p-value             | 2.090912e-17     |
| # Lags              | 0.000000e+00     |
| # Observations      | 1.060000e+02     |
| Critical Value (1%) | -3.493602e+00    |
| Critical Value (5%) | -2.889217e+00    |
| Critical Value (109 | 6) -2.581533e+00 |

## Markdown\_145 - Stationary Transformation

- Attempt to transform Markdown\_145 to a stationary variable using:
  - Simple Moving Average
  - Cumulative Moving Average
  - Exponential Moving Average
  - Differencing
- This variable was still failing the ADF test for all of these methods so it was dropped from the dataset
- Date, Store, Weekly\_Sales, Markdown2, and Markdown3 were ultimately used in the multivariate time series modeling

## **VAR**



A grid search (with AIC as the metric) was conducted to determine the best value of max\_lags for VAR modeling. The grid search resulted in an optimal max\_lags value of 6.

Similar to the start of univariate modeling, the forecast accuracy is good but it is not capturing the patterns correctly

## **VARMA**



Auto ARIMA was used to obtain optimal p and q values to use in VARMA.

The forecast is better than VAR with some of the patterns being captured but there is an increase in MAPE. Although, univariate models had consistently better results.

Forecast

2012-09

2012-05

# **CONCLUSIONS**

# **Granger Causality**

## **Granger Causality Test Results**

Store 20

#### Markdown2

```
Granger Causality
number of lags (no zero) 3
ssr based F test: F=1.2810 , p=0.3946 , df_denom=4, df_num=3
```

#### Markdown3

```
Granger Causality
number of lags (no zero) 3
ssr based F test: F=2.2592 , p=0.2237 , df_denom=4, df_num=3
```

## **Hypotheses**

H<sub>0</sub>: Markdown2/3 does not Granger cause SalesH<sub>A</sub>: Markdown2/3 does Granger cause Sales

## **Granger Causality Test Results**

Store 4

#### Markdown2

```
Granger Causality
number of lags (no zero) 3
ssr based F test: F=2.0898 , p=0.2443 , df_denom=4, df_num=3
```

#### Markdown3

```
Granger Causality
number of lags (no zero) 3
ssr based F test: F=0.8110 , p=0.5505 , df_denom=4, df_num=3
```

Based on the F test (due to smaller sample, F test is preferable) granger causality tests, we fail to reject the null hypotheses that Markdown2/Markdown3 do not Granger cause Weekly Sales.

## **Results Comparison**

| Model Type            | Store 20 MAPE | Store 4 MAPE | Average MAPE |
|-----------------------|---------------|--------------|--------------|
| AR                    | 4.4           | 3.3          | 3.85         |
| ARIMA                 | 4.6           | 3.3          | 3.95         |
| SARIMA                | 3.9           | 3            | 3.45         |
| Exponential Smoothing | 4.4           | 2.6          | 3.5          |
| VAR                   | 4.5           | 3.8          | 4.15         |
| VARMA                 | 5.6           | 4            | 4.5          |



Based on MAPE and the Granger Causality test, univariate modeling seems to model the data better than multivariate. Within univariate, SARIMA and Exponential Smoothing perform the best.

## **Final Model Selection**

- SARIMA is more difficult to test across stores as the parameters can vary by store.
   Performing a grid search for all stores is resource intensive and would take more time than is allocated to the project.
- SARIMA was run for all stores with a constant set of parameters since it was not feasible to optimize for all parameters for each store.
- When testing Exponential Smoothing across stores, it resulted in an average MAPE of 5.0 and a median MAPE of 5.0.
- Even without optimizing for parameters, SARIMA performed better with an average MAPE of 4.8 and median MAPE of 4.0 across stores.



# **QUESTIONS?**