DILLAN MARROQUIN MATH 331.1001 SCRIBING WEEK 6 Due. 4 October 2021

Lecture 13

Classifying Cyclic Groups

Goal: To show that every cyclic group is isomorphic to either \mathbb{Z} or \mathbb{Z}/n (for a particular n).

Question: Given a group *G*, can we determine if *G* is cyclic?

Answer: This is hard to answer in general.

Theorem (13.1). If |G| = p for p prime, then G is cyclic. In particular, $\forall a \in G - \{e\}$, $G = \langle a \rangle$.

Abstract Properties of Cyclic Groups

<u>Idea:</u> If *G* does NOT have all of these following properties, then *G* cannot be cyclic. (Note that the converse is M E G A false!)

Proposition (13.2). Every cyclic group is abelian.

Theorem (13.3). Every proper subgroup of a cyclic group is cyclic.

Remark (13.4). The converse of Theorem 13.3 is false.

Lecture 14

The converse of Theorem 13.3 from last lecture is NOT true: If every proper subgroup G is cyclic, it is not guaranteed that G is cyclic. Here are two counter-examples:

- 1. Consider $S_3 := \{\text{bijections from } \{1,2,3\} \rightarrow \{1,2,3\} \}$. The order of S_3 is 6, so by Lagrange's Theorem any proper subgroup of S_3 has order 1,2, or 3. For a subgroup $H \le S_3$ with |H| = 1, then $H = \{e\} = \langle e \rangle$ and is cyclic. By Theorem 13.1, if |H| = 2 or 3, H is cyclic. Therefore every proper subgroup is cyclic, but obviously S_3 is not cyclic since it is not abelian.
- 2. Now consider $G = \mathbb{Z}/3 \times \mathbb{Z}/3$ with $([a_1], [b_1]) + ([a_2], [b_2]) = ([a_1 + a_2], [b_1 + b_2])$. Then |G| = 9. The same argument as above implies that every proper subgroup is cyclic because it must have order 1 or 3. Note G is abelian. We can check by hand that every element of G has order 1 or 3, NOT 9. Therefore G is not cyclic. For example, 3([a], [b]) = (3[a], 3[b]) = ([0], [0]).

Corollary (14.1).

- 1. Let $H \leq \mathbb{Z} = \langle 1 \rangle$ be a subgroup. Then $\exists m > 0$ such that $H = \langle m \rangle = m\mathbb{Z}$.
- 2. If $H \leq \mathbb{Z}/m$ is a subgroup, then $\exists [m] \in \mathbb{Z}/n$ such that $H = \langle [m] \rangle = \{[0], [m], [2m], \ldots \}$.

Finding the Order of a Subgroup of a Cyclic Group

Theorem (14.2). Let $G = \langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$ be a finite cyclic group of order n. Let $a^k \in G$. Then $|a^k| = \frac{n}{\gcd(n,k)}$.

Lemma (14.3). If $G = \langle a \rangle$ has order n and $l \in \mathbb{Z}$, l > 0 such that $a^l = e$, then n | l.

Lemma (14.4). Given $k, n \in \mathbb{Z} \setminus \{0\}$, let m_k, m_n be unique integers such that $k = dm_k$ and $n = dm_n$, where $d = \gcd(n, k)$. Then $\gcd(m_k, m_n) = 1$.

Lecture 15

Converse to Lagrange's Theorem for Cyclic Groups

Corollary (15.1). If $G = \langle a \rangle$ is a cyclic group of order n and l is a positive divisor of n, then there exists a subgroup $H \leq G$ with |H| = l.

Classification of Cyclic Groups

Recall: Let G, H be groups. A function $\Phi : G \to H$ is a group homomorphism iff $\forall x, y \in G, \Phi(xy) = \Phi(x)\Phi(y)$. Also, Φ is an isomorphism iff it is bijective and a homomorphism.

Remark. " \cong " gives an equivalence relation on the "set" of group implies $G \cong H$ iff $H \cong G$.

Theorem (15.2). If $G = \langle a \rangle$ is a cyclic group of infinite order, then $G \cong \mathbb{Z}$.

Proof. By the above Remark, it suffices to construct a group isomorphism $\Phi: \mathbb{Z} \to G$. Observe that $G = \{a^k | k \in \mathbb{Z}\}$. Define $\Phi(k) := a^k$. To show Φ is a group homomorphism, let $k, l \in \mathbb{Z}$. Then $\Phi(k+l) = a^{k+l} = a^k a^l = \Phi(k)\Phi(l)$. To show Φ is a bijection, we first prove surjectivity. Consider the image of $\Phi: \Phi(\mathbb{Z}) = \{\Phi(k) | k \in \mathbb{Z}\} = \{a^k | k \in \mathbb{Z}\}$. But $\{a^k | k \in \mathbb{Z}\} = G$, so Φ is surjective.

To show Φ is injective, suppose $\Phi(k) = \Phi(l)$. Then $a^k = a^l$ in G which implies $a^k a^l = e$ and thus $a^{k-l} = e$. Since a has infinite order, $a^{k-l} = e$ iff k-l = 0. Therefore k = l and Φ is injective.

Theorem (15.3). If $G = \langle a \rangle$ is cyclic order n, then $G \cong \mathbb{Z}/n$.

Looking Ahead: Getting Subgroups from Group Homomorphisms

Definition (15.4). Let $\Phi: G \to H$ be a group homomorphism.

- 1. The **image** of Φ is the subset of H where $\operatorname{im}\Phi = {\Phi(x)|x \in G}$.
- 2. The **kernel** of Φ is the subset of G where $\ker \Phi = \{x \in G | \Phi(x) = e_H \}$.