3	WIND WELL	m
Teacher's	Physics Rodoral a	
Sign / Remarks	Fundamental physical constants:	
	1) Speed of light = 3x08m/s //Unit = m/s	7///
	2) Gravitational Constant (G1): 6.674×10-11N-11/1892	
	Unit: - mt Newton m2/Kg2	711
	3) Planck's Constant (4): 6.626×10-34 J.s	3///
	Unit: - Joules seconde	
	4) Flementary Charge (c):-1:60 2 x 10-19 C	
	Unit :- (0 ulombs (c)	
	5) Boltzmann Constant (K):- 1.38×10-23 J/K-	11111
	Onit: Joules Kelvin 6) Avagadios Number: - 6.022×1023	
	6) Avandrés Number: - 6.022×1023	
	7) Graz Constant (R): - 8.314 J/mock) 8) Electron Volt (eV): - Conversion 1ev= 1.60 2x10-19J	
	8) Electron Volt (eV):- Conversion 1ev=1.602x10-19J	
	Units: - sould	
	Important Units allows sof 6000 word	
	Force = Newton (IN=1 kg. m/s2)	
	Goodlook - Bula [IT-INM]	
	2) Energy/work = Toule [1]=1Nm	
	3) Power = Watt(w) [IW=1 Jb]	
	4) Electric charge = Coulomb [c=charge of 6.24211018el.	
	6) Carrent = Ampere (A) [IA = IC6]	
	13 x:/6 = Giga 10-2-(cuti) = 10-6= mic 80	
	= 10 - Mars = 1012 - Texa = 1 = 0.01 = 101 = Maho	
	(i) Resistance = chm(2) [12 = 1V/A] => 103 > Kilo => 109 = Giga => 10-2 = Centi => 10-9 = Nano => 106 > Mega => 1012 = Tera => 100 = mili => 10-12 = Pico => 10-3 = mili => 10-12 = Pico	

The steelan tow states that the energy is the stadon con to T?

directly proportional to T? E= 0-79 (3) Wien's law: The convellength Im of Sodialism corresponding to maximum intensity is inversely proportional to the temperature T of the emitting body Am d = > Am T = Constant (1) =) Wein also explained mazimum enoungy Em of peop => Wein also escapained much be sen power of the emission is directly propostional to 5th power of the abolite temperature Em LT5 => Em T == Constant (V) E, d) = (, x = (2/AT d) - (3) Draw backl:-It hade good for smaller values of wavelength but doesn't let the experimental curved for higher value of x. show yours (

The main of 1. Energy is a discreate quanta 2. Each au the free

where h
= 6.625

3. An osi
aborbs
where
where
the as
absorpti

 $\Rightarrow \lambda = \frac{h}{F}$ Let a P = MV, $\Rightarrow \text{Assume}$ $\Rightarrow \text{F}$

The main paralates of plank's law: 1. Energy is absorbed or emitted by a blackbody in a discreate manner, in the form of small packets called 2. Each quantum has energy that depends only on the frequency of the radiation and is given by tiation E=h v --- (5) Where h is a constant known as plank's constant. ritting = 6.625 × 10-34 J-sec. 3. An ascillates may gain of lose energy when it Peap aborbs of emits radiation of frequency v given by of the V = DE/4 --- (6) Where Where DE is the difference in energies of the oscillates before & after emission or absorption De-Broglie Wavelength (x):-#5 =) \ = = = h let a particle has mass in moving with velocity in P=MV, wavelength can be calculated Assume particle & wave nature: E=mc2 70 E=hV->0 (Einstoy) (Planks Caw)

Compare O & D hadrando 21 (B) millo do momo al momo do (= V (0) --- v d=3 () = b + 10 = 0 = 21 d storks of pla oscillates may sain or the versu when where is emits rediction? & Grado Wester DE 12 He de 79 the excilated before Edick emisson observation (2) - 1.

	= 0.0378 × 15-17 J
0,0	$E = (6.625 \times 10^{-34} \times 3 \times 10^{8})$
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(= 3×108 m/s	
	of the the W
3. Calculate H	Creen light has a wavelength of 525mm Determine
Date	

