

Parallel & Distributed Computing CSE525

Assignment #1 - to be submitted to **Dr. Masroor Hussain**

CUDA based C code for Matrix Addition & Multiplication

Submitted by, **Quswar Mahmood Abid, CS2003**

CUDA Matrix Addition and Multiplication

Code kernels for matrix multiplication and addition

Attached files are cuda based C code for matrix multiplication and addition. Following shown are results for them. We see a matrix addition of two matrices of sizes 32x32, one with all filled with '0' and the other with '1'. The answer is as follow:

[u10hpc ~]\$ cd cuda																															
[1	11@h	pc	cud	la]\$	ls																										
a	out	h	ell	o.c	u	mat	add	l.cu	n	atm	ul.	$\mathbf{c}\mathbf{u}$	sa	хру	.cu	v	eca	dd.	$\mathbf{c}\mathbf{u}$												
[1	11@h	pc	cud	la]\$	na	no	mat	add	l.cu																						
[1	11@h	pc	cud	la]\$	nv	CC	mat	add	l. cu																						
[1	11@h	pc	cud	la]\$./	a.o	ut																								
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
[1	11@h	рc	cud	a]\$																											

Figure 1. 32x32 sized matrices addition with all '1' filled in one, and all '0' filled in other

This one shows the multiplication of two matrices of sizes 16x16 with all '2' filled in one and '1' filled in other.

S arenta research															
[u1	@hpc	cud	a]\$	nvcc	mat	mul.	cu								
[u1	@hpc	cud	a]\$./a.	out										
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
[u1	@hpc	cud	a]\$	nano	mat	mul.	cu								
[u1	@hpc	cud	a]\$												

Figure 2. multiplication of two matrices of sizes 16x16 with all '2' filled in one and '1' filled in other