UNIVERSIDADE FEDERAL DE SANTA MARIA CAMPUS CACHOEIRA DO SUL CURSO DE ENGENHARIA ELÉTRICA

SEE APP - APLICAÇÃO DE USO PEDAGÓGICO PARA DISCIPLINAS DE SUBESTAÇÕES DE ENERGIA ELÉTRICA

PROJETO DE TRABALHO DE CONCLUSÃO DE CURSO

Laís Brum Menezes

Cachoeira do Sul, RS, Brasil

SEE APP - APLICAÇÃO DE USO PEDAGÓGICO PARA DISCIPLINAS DE SUBESTAÇÕES DE ENERGIA ELÉTRICA

Laís Brum Menezes

Projeto apresentado ao componente curricular Trabalho de Conclusão de Curso I do Curso de Engenharia Elétrica da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para a obtenção do grau de

Bacharel em Engenharia Elétrica

Orientadora: Profa. Dr. Cristiane Cauduro Gastaldini

Brum Menezes, Laís

SEE App - Aplicação de uso pedagógico para disciplinas de Subestações de Energia Elétrica / por Laís Brum Menezes. — 2022.

29 f.: il.; 30 cm.

Orientadora: Cristiane Cauduro Gastaldini

Trabalho de Conclusão de Curso - Universidade Federal de Santa Maria, Campus Cachoeira do Sul, Trabalho de Conclusão de Curso I, RS, 2022.

1. Dissertação. 2. Modelo. 3. LaTeX. I. Cauduro Gastaldini, Cristiane. II. Título.

© 2022

Todos os direitos autorais reservados a Laís Brum Menezes. A reprodução de partes ou do todo deste trabalho só poderá ser feita mediante a citação da fonte.

E-mail: laisbrme@gmail.com

Universidade Federal de Santa Maria Campus Cachoeira do Sul Curso de Engenharia Elétrica

A Comissão Examinadora, abaixo assinada, aprova o Projeto de Trabalho de Conclusão de Curso

SEE APP - APLICAÇÃO DE USO PEDAGÓGICO PARA DISCIPLINAS DE SUBESTAÇÕES DE ENERGIA ELÉTRICA

elaborado por Laís Brum Menezes

como requisito parcial para obtenção do grau de **Bacharel em Engenharia Elétrica**

COMISSÃO EXAMINADORA:

Cristiane Cauduro Gastaldini, Dr. (Presidente/Orientadora)

Dion Lenon Prediger Feil, Dr. (UFSM)

linha 68 main Sobrenome2, Dr. (INPE)

Cachoeira do Sul, 07-11(linha72main) de Fevereiro de 2022.

A todos os professores que dedicam seu tempo e experiência, em especial os que foram meus docentes nesta jornada.

A Prof^a. Dr^a. Cristiane Cauduro Gastaldini, pela orientação, suporte e correções.

Aos colegas de curso, companheiros de trabalho e irmãos na amizade que fizeram parte da minha formação.

À minha família por todo suporte, por acreditarem em mim e por todo incentivo e compreensão nos dias ausentes.

À Mariana, meu amor, pelo seu apoio, carinho e companheirismos. Obrigada, por ser atensiosa e ter se desdobrado em esforços para me ajudar durante essa trajetória.

E a todos que direta ou indiretamente fizeram parte da minha formação, o meu muito obrigado.

RESUMO

Projeto de Trabalho de Conclusão de Curso Curso de Engenharia Elétrica Universidade Federal de Santa Maria

SEE APP - APLICAÇÃO DE USO PEDAGÓGICO PARA DISCIPLINAS DE SUBESTAÇÕES DE ENERGIA ELÉTRICA

AUTORA: LAÍS BRUM MENEZES ORIENTADORA: CRISTIANE CAUDURO GASTALDINI Local da Defesa e Data: Cachoeira do Sul, 07-11(linha72main) de Fevereiro de 2022.

Este é o resumo do trabalho ... Este é o resumo do trabalho ...

Palavras-chave: Dissertação. Modelo. LaTeX.

ABSTRACT

Undergraduate Final Work Post-Graduate Program in Informatics Federal University of Santa Maria

DISSERTATION TITLE

AUTHOR: LAÍS BRUM MENEZES

ADVISOR: CRISTIANE CAUDURO GASTALDINI

Defense Place and Date: Cachoeira do Sul, February 07-11(linha72main)st, 2022.

Abstract ... Abstr

Keywords: Keywords1. Keyword2.

LISTA DE FIGURAS

Figura 3.1 –	Proteção Barramento Simples	18
Figura 3.2 –	Proteção Barramento Simples com Barra de Transferência	19
Figura 3.3 –	Proteção Barramento Simples Com Seccionamento de Barra	20
Figura 3.4 –	Proteção Barramento Simples Com Geração Auxiliar	21
Figura 3.5 –	Proteção Barramento Duplo a Quatro Chaves	22
Figura 3.6 –	Proteção Barramento Disjuntor Duplo	23
Figura 3.7 –	Proteção Barramento Duplo e Disjuntor e Meio	24
Figura 3.8 –	Proteção Barramento Anel	25

LISTA DE ABREVIATURAS E SIGLAS

GUI Graphic User Interface

IDE Integrated Development Environment

GPL General Public License

OOP Object-Oriented Programming

SUMÁRIO

1 INTRODUÇÃO	12
1.1 Justificativa	
1.2 Objetivos	
1.2.1 Objetivo Geral	
1.2.2 Objetivo Específico	
1.3 Estrutura do Trabalho	
2 FUNDAMENTAÇÃO TEÓRICA	
2.1 Ferramentas Computacionais	
2.1.1 Ferramenta Didática de Subestações Elétricas SEUL	
2.1.2 FEUPowerTool: ferramanta pedagógica para manobras em subestações	
2.1.3 Simulador de uma subestação elétrica para ensino de princípios básicos de eletrici-	
dade	15
2.1.4 Aplicação Informática para Dimensionamento de Barramentos em Subestações	16
2.1.5 AUTOMAÇÃO DE MANOBRAS EM SUBESTAÇÕES DE TRANSMISSÃO DE	
ENERGIA ELÉTRICA	16
3 SUBESTAÇÕES DE ENERGIA ELÉTRICA	
3.1 Tipos de Elementos	
3.2 Tipos de Barramentos	17
3.2.1 Barramento Simples	. 17
3.2.2 Barramento Simples com Barra de Transferência	. 18
3.2.3 Barramento Simples Com Seccionamento de Barra	. 19
3.2.4 Barramento Simples com Geração Auxiliar	20
3.2.5 Barramento Duplo a Quatro Chaves	21
3.2.6 Barramento Disjuntor Duplo	. 22
3.2.7 Barramento Duplo e Disjuntor e Meio	
3.2.8 Barramento em Anel	. 24
3.3 Tipos de Manobras	. 25
4 METODOLOGIA	
4.1 Linguagem de Programação Python	26
4.1.1 Interface Gráfica	
5 CONCLUSÃO	. 27
5.1 APRIMORAMENTO DO PROJETO E TRABALHOS FURUTOS	. 27
REFERÊNCIAS	28

1 INTRODUÇÃO

Os cursos de Engenharia elétrica trabalham com os estudos e aplicações da eletricidade, eletromagnetismo e eletrônica, sendo divididas em várias subáreas, como: Sistemas de energia elétrica ou sistemas de potência; Sistemas de eletrônica de potência; Sistemas de controle e automação; Sistemas de eletrônica e instrumentação; Sistemas de microeletrônica; Sistemas de telecomunicações; Sistemas biomédicos.

Segundo Macedo et al. (2012), hoje em dia, a comunicação e a educação encontram-se interligadas no mundo digital. Por isso, professores e alunos devem utilizar, adequadamente, os recursos dessas novas tecnologias, explorando seu potencial pedagógico e utilizando, de forma positiva, esses novos ambientes de ensino e aprendizagem.

A preocupação com a formação acadêmica dos discentes da disciplina Subestações de Energia Elétrica foi a proposta principal deste trabalho. As aulas ministradas nos semestres anteriores, utilizando softwares de simulação não didáticos, como o MGA Power Simulator, ou não apropriados para a disciplina, como o CADe SIMU, trouxe a motivação para a implementação de uma ferramenta pedagógica que atendesse as necessidades básicas desta disciplina, pelo fato das tecnologias nesta área serem escassas e/ou não atenderem as necessidades da disciplina.

1.1 Justificativa

A proposta deste trabalho é utilizar um ambiente de desenvolvimento integrado (IDE - Integrated Development Environment) para executar a construção de uma aplicação com uma interface gráfica do usuário (GUI – Graphic User Interface), capaz de proporcionar ao usuário demonstrações de manobras na planta, apresentando os diferentes equipamentos que compõem um subestação, e seus arranjos físicos.

1.2 Objetivos

1.2.1 Objetivo Geral

O objetivo geral desse trabalho é o desenvolvimento de uma aplicação educacional que dê suporte à disciplina de Subestações de Energia Elétrica. Além disso, espera-se que esta facilite no processo de ensino-aprendizagem na UFSM, campus Cachoeira do Sul.

1.2.2 Objetivo Específico

Os objetivos específicos desse trabalho são:

- Estudo elaborado sobre subestações, seus arranjos e suas manobras, bem como uma consulta com relação as exigências que o algoritmo deveria atender.
- Definir as ferramentas utilizadas para a construção do projeto.
- Definir a estrutura da interface com o utilizador
- Testar a aplicação nas disciplinas de Subestações de Energia Elétrica e avaliar o interesse e aprendizado dos alunos o seu uso.

1.3 Estrutura do Trabalho

Este trabalho está dividido em XXX capítulos. O presente capítulo destina-se a uma breve introdução da necessidade de desenvolvimento de uma aplicação pedagógica para a didática de subestações de energia elétrica, a justificativa e motivação para sua realização e os objetivos almejados.

O capítulo 2 é dedicado aos

O capítulo 3 é integralmente dedicado a discussão

O capítulo 4 apresenta, brevemente, o modelo

No capítulo 5, abordam-se alguns estudos de caso

...

Por fim, o capítulo xxx apresenta as conclusões deste trabalho e sugestões para o desenvolvimento de trabalhos futuros.

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta uma breve revisão da literatura a respeito das ferramentas didáticas já existentes, sendo utilizadas na didática de Subestações de Energia Elétrica.

2.1 Ferramentas Computacionais

Segundo Córdova Júnior (2018), os softwares são categorizados em dois grandes grupos: os softwares básicos e os softwares aplicativos. Os softwares básicos são programas que gerenciam todo o funcionamento do computador, além de fornecer uma interface com o usuário. Os softwares aplicativos são programas com funções específicas, que nos auxiliam a desenvolver alguma tarefa, como editar um texto ou realizar um cálculo.

Segundo Tajra (2012), a utilização de um software está diretamente relacionada à capacidade de percepção do professor em relacionar a tecnologia à sua proposta educacional. Por meio dos softwares podemos ensinar, aprender, simular, estimular a curiosidade ou, simplesmente, produzir trabalhos com qualidade.

As ferramentas pedagógicas, de forma geral, servem para facilitar o processo de aprendizagem, e esse termo depende da intenção e da finalidade de quem o utiliza, e contribuir com a educação efetiva do aluno. Dito isto, serão apresentadas algumas ferramentas

2.1.1 Ferramenta Didática de Subestações Elétricas SEUL

Diante da importância do aprendizado, entendimento e da necessidade de executar um projeto de uma subestação foi criada a *Ferramenta Didática de Subestações Elétricas*, *SUEL* que tem como objetivo agregar, de forma prática e fácil, as informações relevantes quanto aos diferentes tipos de arranjos dessas plantas (HOLANDA, 2016).

Para o desenvolvimento da ferramenta didática foi utilizado o programa *Adobe Animate CC 2015* desenvolvido pela empresa norte-americana *Adobe Systems Incorporated* (HO-LANDA, 2016).

Segundo Holanda (2016) o *Adobe Animate CC* é uma plataforma de desenvolvimento baseado em linha de tempo, onde é possível criar animações vetoriais, conteúdo multimídia, aplicativos e jogos; possui um ambiente gráfico com ferramentas de desenho e ilustração, e um ambiente de programação, que permite adicionar interatividade e manipulação de dados ao

conteúdo desenvolvido.

2.1.2 FEUPowerTool: ferramanta pedagógica para manobras em subestações

Segundo Ramos (2010), a criação de uma aplicação didática para a simulação de manobras de subestações [...] nasce pelo fato das tecnologias de apoio e suporte à formação nesta área serem escassas e obsoletas.

Existiu a necessidade de criar uma ferramenta que permitisse maior liberdade tanto para o utilizador como para o programador (RAMOS et al., 2010). Sendo que esta "liberdade"só se consegue com um Ambiente de Desenvolvimento Integrado (IDE - Integrated Development Environment). Assim é possível desenvolver um ambiente gráfico que possibilita a criação de qualquer circuito, com a noção de seccionador, que distingue um seccionador de um disjuntor e detecta as manobras efetuadas durante a simulação (RAMOS et al., 2010).

Segundo Lazarus and Free Pascal Team (?), Lazarus é um IDE compatível com multiplataforma Delphi para Free Pascal. Free Pascal é um compilador de Licença Pública Geral (GLP - General Public License) projetado para ser capaz de entender e compilar a sintaxe Delphi, que é uma Programação Orientada a Objetos (OOP - Object-Oriented Programming). Foi este o programa escolhido, para o desenvolvimento da aplicação (RAMOS et al., 2010).

2.1.3 Simulador de uma subestação elétrica para ensino de princípios básicos de eletricidade

O trabalho de Silva (2017) propões o desenvolvimento de um simulador com base no sistema de transmissão de energia da Eletrobrás/Eletronorte, onde o aluno poderá através de uma tela simulada do SAGE (Sistema Aberto de Gerenciamento de Energia) fazr operações com os disjuntores, com abertura e fechamento de carga, integrando-o a uma plataforma Arduino, onde este irá interpretar os comandos da parte do *software* do simulador e convertê-los em sinais analógicos que acionarão o LED que representará a passagem de carga, em caso de ativado, ou não em caso de desativado para um determinado centro urbano.

A ferramenta utilizada para o desenvolvimento do projeto foi o ambiente 2D da plataforma Unity, que segundo Silva (2017) permite a criação de jogos e simuladores em 2D, apresentando uma interface muito simples e amigável, tendo como objetivo permitir a facilidade no desenvolvimento de jogos ou simuladores de diversos tipos e ainda outros sistema de visualização.

2.1.4 Aplicação Informática para Dimensionamento de Barramentos em Subestações

O trabalho de Tavares (2015) propõem a construção de uma aplicação informática, na qual efetuará automaticamente os cálculos necessários à validação dos barramentos escolhido pelo utilizador.

O *software* a ser utilizado para construção da aplicação de dimensionamento dos barramentos foi o *Microsoft Access* (TAVARES, 2015). Segundo Tavares (2015), esta escolha deveu-se ao fato de as características do *software* irem exatamente ao encontro dos objetivos propostos para a aplicação, pois trata-se de um *software* de criação e gestão de base de dados, amplamente utilizado no mercado, de fácil interação com o utilizador.

A configuração de formulários e programas de ações será realizada em linguagem *Visual Basic for Applications* (VBA) e *Structured Query Language* (SQL) (TAVARES, 2015).

2.1.5 AUTOMAÇÃO DE MANOBRAS EM SUBESTAÇÕES DE TRANSMISSÃO DE ENER-GIA ELÉTRICA

O trabalho de Dias (2017) propõem uma estratégia baseada na automação de etapas da tarefa para minimizar o erro durante a realização de manobras em um SEP, concretizada a partir do desenvolvimento de uma ferramenta de software.

Para o desenvolvimento das funcionalidades da interface foi utilizada a linguagem de programação de alto nível Python [www.python.org e Barry (2011)] que se fundamenta na abordagem orientada a objetos, sendo esta escolha motivada pela simplicidade dos códigos e por ser uma linguagem nativa do sistema operacional Linux, este utilizado como sistema de suporte ao supervisório SAGE (DIAS et al., 2017).

Tabela 2.1 – Tipo de licença das plataformas citadas

Plataforma	Licença
Adobe Animate CC	Comercial
Lazarus	Código aberto
Unity2D	Proprietário
Microsoft Access	Comercial
Python	Código Aberto

3 SUBESTAÇÕES DE ENERGIA ELÉTRICA

Todo sistema de potência é constituído de três diferentes segmentos: geração, transmissão e distribuição (MAMEDE FILHO, 2021). Para que a energia gerada no primeiro segmento chegue ao seu destino final, que é o consumidor que está ligado no sistema de distribuição, é necessário também que exista em cada um desses segmentos uma subestação que possa elevar e reduzir a tensão em diferentes níveis (MAMEDE FILHO, 2021).

Segundo Barros et al. (2009) a subestação primária compreende instalações elétricas e civis, e é destinada a alojar medição, proteção e transformação. Formada por um conjunto de equipamentos que devem atender às necessidades de fornecimento de energia elétrica das instalações por ela alimentadas, permitindo sempre a flexibilidade de manobras, a acessibilidade para manutenções, a confiabilidade quanto à proteção e à operação, e a segurança tanto para os equipamentos quanto para o pessoal envolvido.

Segundo Frontin (2013), uma subestação se desenvolve em várias etapas [...], com base em estudos específicos é definida a configuração de barra da futura subestação. Também são definidas as principais características dos equipamentos elétricos do pátio de manobras, bem como as características do sistema de proteção e controle.

3.1 Tipos de Elementos

3.2 Tipos de Barramentos

As subestações são dotadas de barramentos nos quais são conectados tanto os circuitos alimentadores como os circuitos de distribuição, incluindo os transformadores de potência (MAMEDE FILHO; MAMEDE, 2000). Existem vários tipos de arranjo de barramentos primários e secundários, que [...] deverá ser selecionado em função das características da carga, dos níveis de confiabilidade e continuidade desejados, do nível de flexibilidade de manobra e recomposição da subestação (MAMEDE FILHO; MAMEDE, 2000).

3.2.1 Barramento Simples

O arranjo do barramento simples no primário é o mais básico e econômico de uma subestação. Sendo utilizado para munir subestações com tensão de até 69 kV, de pequeno

porte. Sua confiabilidade é baixa, comparado aos demais, devido à perdas dos circuitos, quando ocorre incidentes na subtransmissão (Ver Figura 3.1).

Alimentador de alta tensão Chave de terra Chave seccionadora Disjuntor tensão superior seccionadora Transformador de potência TC S Chave seccionadora Disjuntor tensão inferior TP Chave 50/51-50/62BF 50N/51N-64 27/59/87B Barramento seccionadora tensão inferior Circuitos secundários

Figura 3.1 – Proteção Barramento Simples

Fonte: (MAMEDE FILHO; MAMEDE, 2000)

3.2.2 Barramento Simples com Barra de Transferência

O barramento simples com barra de transferência, apresentado na figura 3.2, é utilizada em subestações de média e alta tensão. As manobras são realizadas sem que haja desligamentos e somente pode ser liberado um disjuntor de cada vez (FRONTIN et al., 2013). Esta configuração apresenta certa flexibilidade para manutenção e reparos, mas sua flexibilidade operativa é limitada, pois opera somente um barramento que limita a sua disponibilidade para ocorrência de falhas na barra e seccionadoras (AZEVEDO, 2015).

Figura 3.2 – Proteção Barramento Simples com Barra de Transferência

3.2.3 Barramento Simples Com Seccionamento de Barra

O barramento simples com seccionamento de barra, apresentado na figura 3.3, é indicado para a condição de alimentação da subestação de dois ou mais circuitos de alta tensão e/ou quando há necessidade de se utilizar uma grande quantidade de circuitos de distribuição (MAMEDE FILHO; MAMEDE, 2000). A flexibilidade para a manutenção das secções de barras tem uma sensível melhora, mantendo-se a subestação parcialmente em operação (FRONTIN et al., 2013).

Figura 3.3 – Proteção Barramento Simples Com Seccionamento de Barra

3.2.4 Barramento Simples com Geração Auxiliar

O barramento simples com geração auxiliar é semelhante ao arranjo anterior, com a diferença da fonte de geração auxiliar estar conectada à um dos barramentos (Ver Figura 3.4). É indicado quando se necessita operar uma usina de geração termelétrica para funcionamento em emergência, na ponta de carga ou no controle da demanda por injeção de geração (MA-MEDE FILHO; MAMEDE, 2000).

Figura 3.4 – Proteção Barramento Simples Com Geração Auxiliar

3.2.5 Barramento Duplo a Quatro Chaves

O barramento duplo a quatro chaves, apresentado na figura 3.5, possui boa flexibilidade operativa e facilidades para a expansão, uma vez que se pode liberar temporariamente uma barra e não provocar desligamentos de circuitos do sistema (HOLANDA, 2016). Nesta configuração, acrescenta-se uma chave de *bypass* em cada *bay*, de forma que todo disjuntor possa ser liberado para manutenção e reparos sem que seja necessário desligar o circuito correspondente (FRONTIN et al., 2013).

Figura 3.5 – Proteção Barramento Duplo a Quatro Chaves

3.2.6 Barramento Disjuntor Duplo

O barramento disjuntor duplo, apresentado na figura 3.6, é caracterizado pela conexão dos circuitos de distribuição no ponto central entre os dois barramentos (MAMEDE FILHO; MAMEDE, 2000). Neste barramento a carga associada não é interrompida, caso ocorra um defeito em qualquer disjuntor dos circuitos secundários.

Figura 3.6 – Proteção Barramento Disjuntor Duplo

3.2.7 Barramento Duplo e Disjuntor e Meio

No barramento duplo e disjuntor e meio, apresentado na figura 3.7, cada circuito pode ser alimentado por qualquer um dos barramentos por meio de um disjuntor central, que pode ser compartilhado por dois circuitos (MAMEDE FILHO; MAMEDE, 2000).

Figura 3.7 – Proteção Barramento Duplo e Disjuntor e Meio

3.2.8 Barramento em Anel

Nesta configuração de barramento anel, embora econômica e flexível, tem o inconveniente de expor o sistema elétrico devido a falhas externas ao pátio em segundas contingências (FRONTIN et al., 2013). Segundo Holanda (2016), apresenta a vantagem de dividir as cargas e controle do nível de falhas. Por outro lado, requer maior área de pátio em relação ao esquema de barra simples equivalente e quando um disjuntor estiver em manutenção, a abertura do outro disjuntor não adjacente irá dividir o anel, podendo causar sérias perturbações no sistema.

Figura 3.8 – Proteção Barramento Anel

3.3 Tipos de Manobras

4 METODOLOGIA

- 4.1 Linguagem de Programação Python
- 4.1.1 Interface Gráfica

5 CONCLUSÃO

Está é a conclusão do trabalho

5.1 APRIMORAMENTO DO PROJETO E TRABALHOS FURUTOS

REFERÊNCIAS

AZEVEDO, M. P. Arranjos de Subestações de Alta Tensão., Belo Horizonte, 2015.

BARROS, B. F. d.; GEDRA, R. L. **Cabine primária**: subestações de alta tensão de consumidor. 4.ed. São Paulo: Érica, 2009.

CóRDOVA JUNIOR, R. S. Fundamentos computacionais. Porto Alegre: Sagah, 2018.

DIAS, S. E. C. et al. Automação de manobras em subestações de transmissão de energia elétrica. , Campina Grande, 2017.

FRONTIN, S. O. et al. Equipamentos de alta tensão—prospecção e hierarquização de inovações tecnológicas., Brasília, 2013.

HOLANDA, I. A. G. T. d. SUEL: ferramenta didática de subestações elétricas. , Campina Grande, 2016.

LAZARUS; TEAM]lazarus LAZARUS; TEAM, F. P. About Lazarus Project. [s.d.].

MACEDO, R. J.; DUARTE, M. d. A.; TEIXEIRA, N. G. Novas metodologias de ensino e aprendizagem aplicadas ao curso de Engenharia Elétrica: o foco do ensino no século xxi. **Artigo COBENGE**, Rio de Janeiro, 2012.

MAMEDE FILHO, J. Subestações de Alta Tensão. 1.ed. Rio de Janeiro: Grupo Gen-LTC, 2021.

MAMEDE FILHO, J.; MAMEDE, D. R. **Proteção de sistemas elétricos de potência**. 2.ed. Rio de Janeiro: Grupo Gen-LTC, 2000.

RAMOS, J. F. M. D. et al. FEUPowerTool: ferramanta pedagógica para manobras em subestações., Porto, 2010.

SILVA, H. A. B. d. et al. Simulador de uma subestação elétrica para ensino de princípios básicos de eletricidade. , Marabá, 2017.

TAJRA, S. F. **Informática na Educação**: novas ferramentas pedagógicas para o professor na atualidade. 9.ed. São Paulo: Érica, 2012.

TAVARES, F. A. M. Aplicação informática para dimensionamento de barramentos em subestações. 2015. Tese (Doutorado em Ciência da Computação) — Instituto Superior de Engenharia de Lisboa.