1 NOTATION

We will denote the class of ordinals by On. For X,Y sets we denote by XY the set of all functions from X to Y. For an infinite cardinal κ , we let H_{κ} be the set of sets X such that the cardinality of the transitive closure of X is $<\kappa$. ZF^- will denote ZF with the Collection scheme but without the Power Set axiom, following the results of [?]. We write GBC for Gödel-Bernays class theory with the Axiom of Choice, and GB for GBC without the Axiom of Choice. The symbol $\mspace{1mu}$ will denote a contradiction and $\mathscr{P}(X)$ denotes the power set of X. We will sometimes denote elementary embeddings $\pi\colon (\mathcal{M},\in)\to (\mathcal{N},\in)$ by simply $\pi\colon \mathcal{M}\to\mathcal{N}$. Generally, α,β,γ will denote ordinals and $\kappa,\lambda,\theta,\delta$ cardinals.