Trigonometry

Contents

1.	Introduction - General Angles	2
2.	General Angles – Special Angles	2
3.	General Angles – Ratios of Any angle (signs)	3
4.	Exercise - General Angles	4
5.	Equations and Identities	5
а	. Exercise – One Trigonometric Ratios	5
b	. Exercise – 1 Trigonometric Ratios + Rewriting to tan x	6
C	. Exercise – Compound Angle + 1 Revolution	6
d	. Exercise – Compound Angle + Modify Number of Revolution	6
е	. Exercise – 2 Trigonometric Ratios	7
6.	Identities	7
a	. Exercise – 2 Trigonometric Ratios + Identities	8
7.	Graphs of Trigonometric Functions	8
8.	Additions Formulae	9
a	. Exercise – Additions Formulae – Trigonometric Ratios	9
b	. Exercise – Additions Formulae – Solving Trigonometric Equations	10
C	. Exercise – Additions Formulae – Proving Trigonometric Identities	10
9.	Double Angle Formulae	11
a	. Exercise – Double Angle Formulae – Trigonometric Ratios	12
b	. Exercise – Double Angle Formulae – Solving Trigonometric Equations	12
C	. Exercise – Double Angle Formulae – Proving Trigonometric Identities	13
10.	R Formulae	14
a	. Exercise – R Formulae – Trigonometric Ratios	14
b	. Exercise – R Formulae – Solving Trigonometric Equations	14
C	. Exercise – R Formulae – Max and min value of R Formulae	15
11.	Factor Formulae	15
a	. Exercise – Factor Formulae – Trigonometric Ratios	15
b	Exercise – Factor Formulae – Solving Trigonometric Equations	15
C	. Exercise – Factor Formulae – Proving Trigonometric Identities	16
12.	Sine Rule	16
13.	Cosine Rule	16
14.	Area of Triangle	16

1. Introduction - General Angles

2 nd Quadrant: Obtuse Angle	1 st Quadrant Acute Angle
$ heta ightarrow 90^{\circ}$ to 180°	$ heta ightarrow 0^{\circ}$ to 90°
$ heta ightarrow -270^{\circ} to -180^{\circ}$	$ heta ightarrow -360^{\circ}$ to -270°
3 rd Quadrant: Reflex Angle	4 th Quadrant Reflex Angle
$ heta ightarrow 180^{\circ}$ to 270°	$\theta \rightarrow 270^{\circ} to 360^{\circ}$
$\theta \rightarrow -180^{\circ} to - 90^{\circ}$	$ heta ightarrow -90^{\circ}$ to 0°

$$\sin \theta = \frac{opposite}{hypotenuse} = \frac{o}{h}$$

$$\cos\theta = \frac{adjacent}{hypotenuse} = \frac{a}{h}$$

$$\tan \theta = \frac{opposite}{adjacent} = \frac{o}{a}$$

2. General Angles – Special Angles

θ	0°	30°	45°	60°	90°
$180^{\circ} = \pi$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin θ	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2} \approx 0.707$	$\frac{\sqrt{3}}{2} \approx 0.866$	1
cosθ	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2} \approx 0.707$	$\frac{1}{2}$	0
$\tan \theta = \frac{\sin \theta}{\cos \theta}$	0	$\frac{\sqrt{3}}{3} = 0.577$	1	$\sqrt{3} \approx 1.732$	∞

3. General Angles – Ratios of Any angle (signs)

ASTC

2 nd Quadrant sine positive	1 st Quadrant <i>All sign positive</i>
180° – θ	θ
$\sin(180^{\circ} - \theta) = \sin\theta$	$\sin \theta = \sin \theta$
$\cos(180^{\circ} - \theta) = -\cos\theta$	$\sin(90^{\circ} - y) = \cos\theta = \cos\theta$
$\tan(180^{\circ} - \theta) = -\tan\theta$	$\tan \theta = \tan \theta$
3 rd Quadrant <i>tan positive</i>	4 th Quadrant <i>cos positive</i>
180° + θ	$360^{\circ} - \theta \ or - \theta$
$\sin(180^{\circ} + \theta) = -\sin\theta$	$\sin(360^{\circ} - \theta) = \sin(-\theta) = -\sin\theta$
$\cos(180^{\circ} + \theta) = -\cos\theta$	$\cos(360^{\circ} - \theta) = \cos(-\theta) = \cos\theta$
$\tan(180^{\circ} + \theta) = \tan\theta$	$\tan(360^{\circ} - \theta) = \tan(-\theta) = -\tan\theta$

SECANT	$\frac{1}{\cos \theta}$, $\cos \theta \neq 0$
COSECANT	$\frac{1}{\sin \theta}$, $\sin \theta \neq 0$
COTANGENT	$\frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}, \tan \theta \neq 0$
TANGENT	$\frac{\sin\theta}{\cos\theta}, \tan\theta \neq 0$

4. Exercise - General Angles

1	$1 \sin \theta$		
	Given that θ is acute and that $\sin \theta = \frac{1}{\sqrt{3}}$, express $\frac{\sin \theta}{\cos \theta - \sin \theta}$ in the for $a + \sqrt{b}$		
	$\sin \theta = \frac{1}{\sqrt{3}} = \frac{o}{h}$		
	1.9		
	By pyhthagoras thm $\rightarrow a^2 = (\sqrt{3})^2 - (1)^2 = \sqrt{2}$		
	$\cos \theta = \frac{\sqrt{2}}{\sqrt{2}}$		
	$\cos \Theta = \frac{1}{\sqrt{3}}$		
	$\frac{1}{\sqrt{2}}$ 1 $\sqrt{2} \pm 1$ $\sqrt{2} \pm 1$		
	$\frac{\sqrt{3}}{\sqrt{2} - \frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1} = \frac{\sqrt{2} + 1}{(2) + \sqrt{2} - \sqrt{2} - 1} = \frac{\sqrt{2} + 1}{1} = 1 + \sqrt{2}$		
	$\frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \sqrt{2} - 1 = \sqrt{2} + 1 = (2) + \sqrt{2} - \sqrt{2} - 1 = 1$		
2	Given that $90^{\circ} < y < 360^{\circ}$ and that $\tan y = \frac{5}{12}$, find $\sin y$ and $\cos y$		
	tan $y > 0$, in 3rd quadrant		
	$\tan y = \frac{o}{a} = \frac{5}{12}, \qquad h^2 = 5^2 + 12^2 \to h = 13$		
	$\tan y = \frac{1}{a} = \frac{1}{12}, \qquad h^2 = 5^2 + 12^2 \to h = 13$		
	E 12		
	$\sin y = -\frac{5}{13}, \cos y = -\frac{12}{13}$		
13 13			
3	Given that $tan y = p$, and y is acute find $sin y$ and $cos y$ in terms of p		
	$tan y is acute, in 1st quadrant o p 2 2 2 \sqrt{\frac{1}{2}}$		
$\tan y = \frac{o}{a} = \frac{p}{1}, \qquad h^2 = p^2 + 1^2 \to h = \sqrt{p^2 + 1}$			
	$\sin y = \frac{p}{\sqrt{n^2 + 1}}, \qquad \cos y = \frac{1}{\sqrt{n^2 + 1}}$		
	$\sqrt{p^2+1}$ $\sqrt{p^2+1}$		
4	Given that $\sin y = p$, and y is acute find $\tan y$, $\sin(90^{\circ} - y)$, $\sin(180^{\circ} + y)$ in terms of p		
	$\sin y$ is acute, in 1st quadrant		
	$\sin y = \frac{o}{h} = \frac{p}{1}, \qquad a^2 = 1^2 - p^2 \to a = \sqrt{1 - p^2}$		
	$\iota\iota$		
	$\tan y = \frac{p}{\sqrt{1 - p^2}}$		
	$\sin(90^{\circ} - y) = \cos y = \sqrt{1 - p^2}$		
$\sin(30^\circ + y) = \cos y - \sqrt{1} - p$ $\sin(180^\circ + y) = -\sin \theta = -p$			
5	Given that $\tan y = p$, and y is acute find $\tan(-y)$, $\tan(\pi - y)$, $\tan(\frac{\pi}{2} - y)$ in terms of p		
	tan y is acute, in 1st quadrant		
	$\tan y = \frac{o}{a} = \frac{p}{1}, \qquad h^2 = p^2 + 1 \to h = \sqrt{p^2 + 1}$		
	$ \begin{array}{ccc} a & 1 \\ & \tan(-y) = -p \end{array} $		
	$\tan(\pi - y) = -p$		
	$\tan\left(\frac{\pi}{2} - y\right) = -\sin\theta = -p$		

5. Equations and Identities

- 1. Get to the statement $\sin x = k$, k is a value
- 2. Decide which quadrant x is in
- 3. Find the basic angle with $\sin x = |k|$
- 4. Write down x

a. Exercise – One Trigonometric Ratios

1	Solve the equation $\sin \theta = \frac{1}{2} for 0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	I ACTUCATE TO A TOTAL TO A TOTAL ACTUAL ACTU		
	In ASTC, 1st and 2nd quadrant is positive where $\sin \theta > 0$		
	therefore there is 2 answers		
	$\alpha = \sin^{-1} \left \frac{1}{2} \right = 30^{\circ}$		
	$ \overline{2} = 30$		
	$\theta = \alpha$, $180^{\circ} - \alpha$		
	$\theta = \alpha,$ $180^{\circ} - \alpha$ $\theta = 30^{\circ},$ $\theta = 150^{\circ}$		
2	Solve the equation $\tan x = 1$ for $0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	tan x > 0, 1st & 3rd quad.		
	$x = \tan^{-1} 1 = 45^{\circ}$		
	$\theta = x$, $180^{\circ} + x$		
	$\theta = 45^{\circ}$, $\theta = 225^{\circ}$		
3	$\theta = x, 180^{\circ} + x$ $\theta = 45^{\circ}, \theta = 225^{\circ}$ $Solve the equation \cos x = -\frac{\sqrt{3}}{2} for \ 0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	Solve the equation $\cos x = -\frac{70}{2}$ for $0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	$\cos x < 0$, $3rd & 4th quad$.		
•			
	$x = \cos^{-1} \left -\frac{\sqrt{3}}{2} \right = 30^{\circ}$		
	$\theta = 180^{\circ} - x$, $180^{\circ} + x$		
	$0 - 100 - \lambda, \qquad 100 + \lambda$ $0 - 150^{\circ} \qquad 0 - 210^{\circ}$		
4	$\theta = 150^{\circ}, \theta = 210^{\circ}$ Solve the equation $\sec x = 5$ for $0^{\circ} < \theta^{\circ} < 360^{\circ}$		
-	$1 \qquad \qquad 1$		
	$\frac{1}{\cos x} = 5 \to \cos x = \frac{1}{5}$		
	$\cos x \qquad \qquad 5 \\ \cos x > 0, \qquad 1st \& 4th \ quad.$		
	$x = \cos^{-1}\left \frac{1}{5}\right = 78.5^{\circ}$		
	[5]		
	$\theta = x$, $360^{\circ} - x$		
	$\theta = x$, $360 - x$ $\theta = 78.5^{\circ}$, $\theta = 281.5^{\circ}$		
	$0 = 70.3 , \qquad 0 = 201.3$		

b. Exercise – 1 Trigonometric Ratios + Rewriting to tan x

1	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$	
	$3\cos x + 2\sin x = 0$	
	$2\sin x = -3\cos x$	
	$\sin x$ 3	
	$\frac{\cos x}{\cos x} = -\frac{1}{2} = \tan x$	
	$\tan x < 0$, $2nd \& 4th quad$.	
	$\alpha = \tan^{-1} \left -\frac{3}{2} \right = 56.3^{\circ}$	
	$\theta = 180 - \alpha$, $360^{\circ} - \alpha$	
	$\theta = 123.7^{\circ}, \qquad \theta = 303.7^{\circ}$	

c. Exercise – Compound Angle + 1 Revolution

1	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	$\cos(x+30^{\circ}) = -0.3$		
	$30^{\circ} < x + 30^{\circ} < 390^{\circ}$, $2nd \& 3rd quad$.		
	$\alpha = \cos^{-1} -0.3 = 72.5^{\circ}$		
	$x + = 180 - \alpha$, $180^{\circ} + \alpha$		
	$x = 77.5^{\circ}, x = 222.5^{\circ}$		
2	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	$\tan(x-50^{\circ})=-\frac{3}{4}$		
	$-50^{\circ} < x - 50^{\circ} < 310^{\circ}$, $2nd \& 4th quad$.		
	. 1 31		
	$\alpha = \tan^{-1} \left -\frac{3}{4} \right = 36.9^{\circ}$		
	$x - 50^{\circ} = 180 - \alpha, \qquad -\alpha$		
	$x - 50^{\circ} = 143.1, -36.9$		
	$x = 193.1^{\circ}, x = 13.1^{\circ}$		

d. Exercise – Compound Angle + Modify Number of Revolution

1	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	$\tan 2y = \sqrt{3}$		
	$0^{\circ} < 2y < 720^{\circ}$, $1st \& 3rd quad$.		
	$\alpha = \tan^{-1} \sqrt{3} = 60^{\circ}$		
	$2y = \alpha$, $180^{\circ} + \alpha$, $\alpha + 360^{\circ}$, $180^{\circ} + \alpha + 360^{\circ}$		
	$2y = 60^{\circ}, 240^{\circ}, 420^{\circ}, 600^{\circ}$		
	y = 30°, 120°, 210°, 300°		
2	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	į		
	$2\sin(2x - 10^{\circ}) = \sqrt{3} \rightarrow \sin(2x - 10^{\circ}) = \frac{\sqrt{3}}{2}$		
	$-10^{\circ} < 2x - 10^{\circ} < 710^{\circ}$, 1st & 2nd quad.		
	$\alpha = \sin^{-1} \left \frac{\sqrt{3}}{2} \right = 60^{\circ}$		
	$2x - 10^{\circ} = \alpha$, $180^{\circ} - \alpha$, $\alpha + 360^{\circ}$, $180^{\circ} - \alpha + 360^{\circ}$		
	$2x - 10^{\circ} = 60^{\circ}$, 120° , 420° , 480°		
	$x = 35^{\circ}$, 65° , 215° , 245°		

e. Exercise – 2 Trigonometric Ratios

1	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	$2\sin x\cos x = \sin x$		
	$2\sin x\cos x - \sin x = 0$		
	$\sin x$ (2 cos	(x-1)=0	
	,	,	
	$\sin x = 0, \qquad 1st \& 2nd \ quad,$ $\alpha = \sin^{-1} 0 = 0^{\circ},$	$\cos x = \frac{1}{2} > 0, \qquad 1st \& 4th \ quad$	
	$x = \alpha$, $180^{\circ} - \alpha$ $x = 0^{\circ}$, 180° , 360°	$\alpha = \cos^{-1} \left \frac{1}{2} \right = 60^{\circ}$	
	, ,	$x = \alpha$, $360^{\circ} - \alpha$	
		$x = 60^{\circ}, 300^{\circ}$	
2	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$		
	$\cos^2 y - \cos y = 2$		
	$\cos^2 y - \cos y - 2 = 0$		
	$(\cos y - 2)(\cos y + 1) = 0$		
	$\cos y = 2$, (nA)	$\cos y = -1 < 0, \qquad 2nd \& 3rd \ quad$	
		$\alpha = \cos^{-1} -1 = 180^{\circ}$	
	$y = \alpha$, $360^{\circ} - \alpha$		
	$y = 180^{\circ}$		

6. Identities

$\sin^2 \theta + \cos^2 \theta = 1$ $\sin^2 \theta = 1 - \cos^2 \theta$ $\cos^2 \theta = 1 - \sin^2 \theta$	Prove: $LHS \rightarrow \left(\frac{o}{h}\right)^{2} + \left(\frac{a}{h}\right)^{2} = \frac{o^{2}}{h^{2}} + \frac{a^{2}}{h^{2}} = \frac{o^{2} + a^{2}}{h^{2}}$ $By Pythagoras thm \rightarrow \frac{o^{2} + a^{2}}{h^{2}} = \frac{h^{2}}{h^{2}} = 1$
$1 + \tan^2 \theta = \sec^2 \theta$ $\tan^2 \theta = \sec^2 \theta - 1$	Prove: $LHS \to 1 + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta}{\cos^2 \theta} + \frac{\sin^2 \theta}{\cos^2 \theta}$ $\frac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} = \sec^2 \theta$
$1 + \cot^2 \theta = \csc^2 \theta$ $\cot^2 \theta = \csc^2 \theta - 1$	Prove: $LHS \to 1 + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta}$ $\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta} = \csc^2 \theta$

a. Exercise – 2 Trigonometric Ratios + Identities

Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$ $2\cos^{2} y - 1 = \sin y$ $2(1 - \sin^{2} y) - 1 = \sin y$ $2 - 2\sin^{2} y - 1 - \sin y = 0$ $2\sin^2 y + \sin y - 1 = 0$ $(2\sin y - 1)(\sin y + 1) = 0$ $\sin y = \frac{1}{2},$ $\sin y = -1$ $\sin y = \frac{1}{2},$ $\sin y = -1 < 0$, 3rd & 4th quad 1st & 2nd quad, $\alpha = \sin y^{-1}|-1| = 90^{\circ}$

$$\sin y = \frac{1}{2}, \qquad 1st \& 2nd \ quad,$$

$$\alpha = \sin^{-1} \left| \frac{1}{2} \right| = 30^{\circ},$$

$$x = \alpha, \qquad 180^{\circ} - \alpha$$

$$x = 30^{\circ}, \qquad 150^{\circ}$$

$$\sin y = -1 < 0,$$
 $3rd \& 4th \ quad$
 $\alpha = \sin y^{-1} | -1 | = 90^{\circ}$
 $x = 180^{\circ} + \alpha,$ $360^{\circ} - \alpha$
 $x = 270^{\circ}$

7. Graphs of Trigonometric Functions

sin x $\sin x + c$ $2\sin x$

8. Additions Formulae

$\sin(A+B)$	$\sin A \cos B + \sin B \cos A$
sin(A - B)	$\sin A \cos B - \sin B \cos A$
cos(A+B)	$\cos A \cos B - \sin A \sin B$
$\cos(A-B)$	$\cos A \cos B + \sin A \sin B$
tan(A+B)	$\tan A + \tan B$
	$\overline{1 - \tan A \tan B}$
tan(A-B)	$\tan A - \tan B$
	$\overline{1 + \tan A \tan B}$

a. Exercise – Additions Formulae – Trigonometric Ratios

1	Evalute sin 75°	
	$\sin 75^{\circ} = \sin(30^{\circ} + 45^{\circ})$	
	$\sin(30^{\circ} + 45^{\circ}) = \sin 30^{\circ} \cos 45^{\circ} + \sin 45^{\circ} \cos 30^{\circ}$	
	$\frac{1}{2}\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2} = \frac{1}{4}(\sqrt{2} + \sqrt{6})$	
	$\frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} = \frac{1}{4} (\sqrt{2} + \sqrt{6})$	
2	Evalute cos 15°	
	$\cos 15^{\circ} = \cos(45^{\circ} - 30^{\circ})$	
	$\cos(45^{\circ} - 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$	
	$\sqrt{2}\sqrt{3}$ $\sqrt{2}$ 1 $\sqrt{6}$ $\sqrt{2}$ 1 $\sqrt{6}$	
	$= \frac{\sqrt{2}\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{1}{4}(\sqrt{2} + \sqrt{6})$	
3		
	Given that $tan(A + B) = 5$, $tan B = \frac{1}{2}$, Find A	
	$\tan A + \tan R = \tan A + \frac{1}{\pi}$	
	$\tan(A+B) = \frac{\tan A + \tan B}{1} \rightarrow \frac{\tan A + 2}{1} = 5$	
	$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \to \frac{\tan A + \frac{1}{2}}{1 - \tan A \frac{1}{2}} = 5$	
	. 1 _ 5 .	
	$\tan A + \frac{1}{2} = 5 - \frac{5}{2} \tan A$	
	7	
	$\frac{1}{2}\tan A = \frac{1}{2}$	
	ton 4 = 92 = 18 = 9	
	$\tan A = \frac{1}{27} = \frac{1}{14} = \frac{1}{7}$	

b. Exercise – Additions Formulae – Solving Trigonometric Equations

	b. Exercise – Additions Formulae – Solving Trigonometric Equations	
1	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$	
	$2\cos(x + 20^{\circ}) = 4\sin x$	
	$3\cos(x+30^\circ) = 4\sin x$	
	$\cos(x+30^\circ) = \frac{4}{3}\sin x$	
	$\cos x \cos 30^\circ - \sin x \sin 30^\circ = \frac{4}{3} \sin x$	
	$\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = \frac{4}{3}\sin x$	
	<u> </u>	
	$\frac{\sqrt{3}}{2}\cos x = \frac{11}{6}\sin x$	
	2 6	
	$6\sqrt{3}$ $3\sqrt{3}$	
	$\tan x = \frac{6}{11} \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{11}$, $\tan x > 0$, 1st & 3rd quad	
	$a = \tan^{-1} \left 3\sqrt{3} \right = 25.2^{\circ}$	
	$\alpha = \tan^{-1} \left \frac{3\sqrt{3}}{11} \right = 25.3^{\circ}$	
	$x + 30^{\circ} = \alpha, \qquad 180^{\circ} + \alpha$	
	$x = 25.3^{\circ}, 205.3^{\circ}$	
2	Find all an also between 0 and 2 π	
2	Find all angles between 0 and 2π	
	$3\cos x = 4\sin(x-2)$	
	$3\cos x = 4(\sin x \cos 2 - \sin 2 \cos x)$ $3\cos x = 4\sin x \cos 2 - 4\sin 2 \cos x$	
	$3\cos x = 4\sin x \cos 2 - 4\sin 2 \cos x$ $3\cos x + 4\sin 2 \cos x = 4\sin x \cos 2$	
	$3\cos x + 4\sin 2\cos x = 4\sin x\cos 2$ $(3 + 4\sin 2)\cos x = 4\sin x\cos 2$	
	$(3 + 4\sin 2)\cos x - 4\sin x \cos 2$ $(3 + 4\sin 2) \sin x$	
	$\frac{(\sigma + r \sin 2)}{4 \cos 2} = \frac{\sin x}{\cos x}$	
	$(3+4\sin 2)$	
	$\frac{(3+4\sin 2)}{4\cos 2} = \frac{\sin x}{\cos x}$ $\tan x = \frac{(3+4\sin 2)}{4\cos 2} = -3.987, 2nd \& 4th \ quad$	
	$\alpha = \tan^{-1} -3.987 = 1.325$	
	$x = \pi - \alpha, \qquad 2\pi - \alpha$	
	$x = h \cdot u, \qquad 2h \cdot u$ $x = 1.82, \qquad 4.96$	

c. Exercise – Additions Formulae – Proving Trigonometric Identities

1	Prove that $tan(A + 45^{\circ}) tan(A - 45^{\circ}) = -1$
	$LHS \rightarrow \frac{\tan A + \tan 45^{\circ}}{1 - \tan A \tan 45^{\circ}} \frac{\tan A - \tan 45^{\circ}}{1 + \tan A \tan 45^{\circ}}$
	$= \frac{\tan A + 1}{1 - \tan A} \frac{\tan A - 1}{1 + \tan A} = 1$
	$= \frac{\tan A^2 + \tan A - \tan A - 1}{1 + \tan A - \tan A^2}$
	$= \frac{\tan A^2 - 1}{1 - \tan A^2} = -1$

$$Prove\ that\ \frac{\sin(A+B) - \sin(A-B)}{\cos(A+B) - \cos(A-B)} = -\cot A$$

$$LHS \to \frac{\sin(A+B) - \sin(A-B)}{\cos(A+B) - \cos(A-B)} = \frac{\sin A \cos B + \sin B \cos A - (\sin A \cos B - \sin B \cos A)}{\cos A \cos B - \sin A \sin B - (\cos A \cos B + \sin A \sin B)}$$

$$= \frac{\sin A \cos B + \sin B \cos A - \sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B}$$

$$= \frac{2 \sin B \cos A}{-2 \sin A \sin B} = \frac{\cos A}{-\sin A} = -\cot A$$

9. Double Angle Formulae

$\sin 2A =$	Prove:
2 sin A cos A	$\sin(A+A) = \sin A \cos A + \sin A \cos A$
	$= 2 \sin A \cos A$
$\cos 2A =$	Prove:
$\cos^2 A - \sin^2 A$ $2\cos^2 A - 1$ $1 - 2\sin^2 A$	$\cos(A + A) = \cos A \cos A - \sin A \sin A$ $= \cos^2 A - \sin^2 A$ $= \cos^2 A - (1 - \cos^2 A) = 2\cos^2 A - 1$ $1 - \sin^2 A - \sin^2 A = 1 - 2\sin^2 A$
tan2A =	Prove:
$\frac{2\tan A}{1-\tan^2 A}$	$\frac{\tan A + \tan A}{1 - \tan A \tan A} = \frac{2 \tan A}{1 - \tan^2 A}$

a. Exercise – Double Angle Formulae – Trigonometric Ratios

1	$\sin A = \frac{3}{4}, Find \cos 2A, \cos 4A$
	$\cos 2A = 1 - 2\sin^2 A = 1 - 2\left(\frac{9}{16}\right)$
	$=1-\frac{18}{16}=\frac{1}{8}$
	$\cos 4A = 2\cos^2 2A - 1$
	$\cos 4A = 2\left(\frac{1}{8}\right)^2 - 1 = \frac{1}{32} - 1 = -\frac{31}{32}$

b. Exercise – Double Angle Formulae – Solving Trigonometric Equations

	b. Exercise - Double Aligie Formulae - Solving T	
1	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$	
	$\sin 2x + \sin x = 0$	
	$2\sin x\cos x + \sin x = 0$	
	$\sin x (2\cos x + 1) = 0$	
	$\sin r = 0$	
	$\alpha = \sin^{-1} 0 = 0$	$\cos x = -\frac{1}{2}$
	x = 0,180,360	$\alpha = \cos^{-1} \left -\frac{1}{2} \right = 60$
		$x = 180 - \alpha, 180 + \alpha$
		x = 120,240
2	Find all angles	$0^{\circ} < \theta^{\circ} < 360^{\circ}$
	$3\sin x$ co	$\cos x = 1$
	$\frac{3}{-\sin 2}$	2r-1
	$\frac{3}{2}\sin 2x = 1$	
	sin 2:	$x = \frac{Z}{A}$
	$\sin 2x = \frac{2}{3}$	
	$\alpha = \sin^{-1} \left \frac{2}{3} \right = 41.8$	
	$2x = \alpha$, $180 - \alpha$, $\alpha + 360$, $180 - \alpha + 360$	
	2x = 41.8, 138.2 , 401.8 , 408.2	
	x = 20.9, 69.1, 200.9, 249.1	
	$\chi = 20.9, \qquad 09.1,$	200.5, 245.1
3	Find all angles $0^{\circ} < \theta^{\circ} < 360^{\circ}$	
3	9	
	$2\cos 2x - 3\sin x = 1$	
	$2(1 - 2\sin^2 x) - 3\sin x = 1$	
	$2 - 4\sin^2 x - 3\sin x = 1$	
	$4\sin^2 x + 3\sin x - 1 = 0$	
	$(4\sin x - 1)(\sin x + 1) = 0$	
	$\sin x = \frac{1}{4} \qquad \qquad \sin x = -1 \\ \alpha = \cos^{-1} -1 = 90$	
	$\alpha = \sin^{-1} \left \frac{1}{4} \right = 14.5$ $x = 180 + \alpha, 360 + \alpha$	
	x = 14.5, 165.5	x = 270
	λ – 14.5, 105.5	

Find all angles
$$0^{\circ} < 0^{\circ} < 360^{\circ}$$

$$\tan 2x \tan x = 5$$

$$\frac{2 \tan x}{1 - \tan^{2} x} \tan x = 5$$

$$2 \tan^{2} x = 5 - 5 \tan^{2} x$$

$$7 \tan^{2} x = 5$$

$$\tan x = \pm \sqrt{\frac{5}{7}} \text{ all quad}$$

$$\alpha = \tan^{-1} \left| \sqrt{\frac{5}{7}} \right| = 40.2$$

$$x = 40.2, \quad 139.8, \quad 220.2, \quad 319.8$$

c. Exercise – Double Angle Formulae – Proving Trigonometric Identities

1 Prove
$$\sin 3A = 3 \sin A - 4 \sin^3 A$$
 (Hint: write $3A$ to $2A + A$)

$$= \sin 2A \cos A + \sin A \cos 2A$$

$$= (2 \sin A \cos A) \cos A + \sin A (1 - 2 \sin^2 A)$$

$$= 2 \sin A \cos^2 A + \sin A - 2 \sin^3 A$$

$$= 2 \sin A (1 - \sin^2 A) + \sin A - 2 \sin^3 A$$

$$= 2 \sin A - 2 \sin^3 A + \sin A - 2 \sin^3 A$$

$$= 3 \sin A - 4 \sin^3 A$$
2 Prove $\frac{\tan 2x}{2} = \frac{1}{\cot x - \tan x}$

$$LHS \rightarrow \frac{\tan 2x}{2} = \frac{1}{2 \tan x} = \frac{\tan x}{1 - \tan^2 x}$$

$$= \frac{\tan x}{1 - \tan^2 x} \frac{\frac{1}{\tan x}}{\frac{1}{\tan x}} = \frac{1}{\frac{1}{\tan x} - \tan x} = \frac{1}{\cot x - \tan x}$$

10. R Formulae

- Enables us to rewrite $\sin x$ and $\cos x$ in a same equation

$$a \sin \theta + b \cos \theta = R \sin(\theta + \alpha)$$

$$a \sin \theta - b \cos \theta = R \sin(\theta - \alpha)$$

$$a \cos \theta + b \sin \theta = R \cos(\theta - \alpha)$$

$$a \cos \theta - b \sin \theta = R \cos(\theta + \alpha)$$

$$where R = \sqrt{a^2 + b^2}$$
,

$$\alpha = \tan^{-1}\left(\frac{b}{a}\right)$$
, $0^{\circ} < \alpha < 90^{\circ}$

a. Exercise – R Formulae – Trigonometric Ratios

1	$4\sin x + 3\cos x = \sqrt{4^2 + 3^2}\sin(x + \tan^{-1}\left(\frac{3}{4}\right))$
	$=5\sin(x+36.9)$
2	$3\cos x + 4\sin x = \sqrt{3^2 + 4^2}\cos(x - \tan^{-1}\left(\frac{4}{3}\right))$
	$=5\sin(x+53.1)$
3	$\sqrt{3}\sin x - \cos x = \sqrt{\sqrt{3}^2 + 1^2}\sin\left(x - tan^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)$
	$=2\sin(x+30)$

b. Exercise – R Formulae – Solving Trigonometric Equations

Find all angles
$$0^{\circ} < \theta^{\circ} < 360^{\circ}$$

$$2 \cos x - 5 \sin x = 3.1$$

$$\Rightarrow \sqrt{2^{2} + 5^{2}} \cos \left(x + tan^{-1} \left(\frac{5}{2}\right)\right) = 3.1$$

$$\sqrt{29} \cos(x + 68.2) = 3.1$$

$$\cos(x + 68.2) = \frac{3.1}{\sqrt{29}}$$

$$\alpha = \cos^{-1} \left| \frac{3.1}{\sqrt{29}} \right| = 54.9, \cos x > 0, \quad 1st, 4th \ quad$$

$$68.2^{\circ} < x + 68.2 < 428.2^{\circ}$$

$$x + 68.2 = \alpha + 360, \quad 360 - \alpha$$

$$x + 68.2 = 54.9 + 360, \quad 305.1$$

$$x = 346.7, \quad 236.9$$

c. Exercise – R Formulae – Max and min value of R Formulae

1	$R\sin(\theta \pm \alpha)$	
	$\rightarrow Max \ value = R$	
	$\rightarrow when \sin(\theta \pm \alpha) = 1 \rightarrow \theta \pm \alpha = 90$	
	\rightarrow Min value = $-R$	
	$\rightarrow when \sin(\theta \pm \alpha) = -1 \rightarrow \theta \pm \alpha = 270$	
2	$P_{\text{con}}(0 + x)$	
	$R\cos(\theta \pm \alpha)$	
	$\rightarrow Max \ value = R$	
	$\rightarrow when \sin(\theta \pm \alpha) = 1 \rightarrow \theta - \alpha = 90, \theta + \alpha = 360$	
	\rightarrow Min value = $-R$	
	$\rightarrow when \sin(\theta \pm \alpha) = -1 \rightarrow \theta \pm \alpha = 180$	
	when $\sin(0 \pm u) = 1 \times 0 \pm u = 100$	

11. Factor Formulae

$\sin P + \sin Q$	$2\sin\frac{P+Q}{2}\cos\frac{P-Q}{2}$
$\sin P - \sin Q$	$2\cos\frac{P+Q}{2}\sin\frac{P-Q}{2}$
$\cos P + \cos Q$	$2\cos\frac{P+Q}{2}\cos\frac{P-Q}{2}$
$\cos P - \cos Q$	$-2\sin\frac{P+Q}{2}\sin\frac{P-Q}{2}$

a. Exercise – Factor Formulae – Trigonometric Ratios

	<u> </u>	
1	Evaluate $\cos 75 + \cos 15$	
	75 + 15 $75 - 15$	
	$\cos 75 + \cos 15 = 2 \cos \frac{75 + 15}{2} \cos \frac{75 - 15}{2}$	
	$= 2\cos 45\cos 30$	
	$\sqrt{2}\sqrt{3}$ $\sqrt{6}$	
	$=2{2}{2}={2}$	

b. Exercise – Factor Formulae – Solving Trigonometric Equations

c. Exercise - Factor Formulae - Proving Trigonometric Identities

$$\frac{\sin 6x - \sin 2x}{\cos 6x - \cos 2x} = -\cot 4x$$

$$LHS \rightarrow \frac{\sin 6x - \sin 2x}{\cos 6x - \cos 2x} = \frac{2\cos\frac{6x + 2x}{2}\sin\frac{6x - 2x}{2}}{-2\sin\frac{6x + 2x}{2}\sin\frac{6x - 2x}{2}} = \frac{2\cos 4x\sin 2x}{-2\sin 4x\sin 2x}$$

$$\frac{\cos 4x}{\cos 4x} = -\cot 4x$$

12. Sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

13. Cosine Rule

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

14. Area of Triangle

$$\frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C$$