

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KỸ THUẬT MÁY TÍNH

IT012 – TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH II

CHƯƠNG 2 BIỂU DIỄN THÔNG TIN TRONG MÁY TÍNH (tt)

- 1. BCD (Binary Coded Decimal)
- 2. Floating point (Dấu chấm động)
- 3. ASCII (American Standard Code for Information Interchange)
- 4. Câu hỏi và Bài tập

- 1. BCD (Binary Coded Decimal)
- 2. Floating point (Dấu chấm động)
- 3. ASCII (American Standard Code for Information Interchange)
- 4. Câu hỏi và Bài tập

1. BCD (1/3)

• BCD (Binary Coded Decimal): Sử dụng mỗi 4 bit để mã hóa duy nhất 1 ký số thập phân.

	0	1	2	3 -	4	5 -	6	7 -	- 8	9
(0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

- Công dụng: Hiến thị số thập phân trên các thiết bị máy tính
- Ex:

1. BCD (2/3)

Ciá tri	Biểu diễn	Biểu diễn		
Giá trị	nhị phân	BCD		
0	0000	0000		
1	0001	0001		
2	0010	0010		
3	0011	0011		
4	0100	0100		

Ciá tri	Biểu diễn	Biểu diễn			
Giá trị	nhị phân	BCD			
5	0101	0101			
6	0110	0110			
7	0111	0111			
8	1000	1000			
9	1001	1001			

1. BCD (3/3) – Ví dụ

Giá trị	Biểu diễn nhị phân	Biểu diễn BCD		
10	1010	0001_0000		
15	1010	0001_0101		
16	10001	0001_0110		

	Giá trị	Biểu diễn nhị phân	Biểu diễn BCD
	25	11001	0010_0101
	31	1 1111	0011_0001
	32	100000	0011_0010
	99	1100011	1001_1001
F	100 SCD sử dụng n	1100100 hiều bits hơn như	0001 0000 0000 ng việc chuyển đổi đơn

giản hơn

Quiz 1

- Nhược điểm của BCD so với nhị phân thông thường là gì?
- A. Dễ hiểu hơn cho con người
- B. Số bit cần sử dụng tăng nhanh hơn khi giá trị cần biểu diễn tăng
- C. Tính toán đơn giản hơn
- D. Cần 4 bit để biểu diễn giá trị 9

- 1. BCD (Binary Coded Decimal)
- 2. Floating point (Dấu chấm động)
- 3. ASCII (American Standard Code for Information Interchange)
- 4. Câu hỏi và Bài tập

Chuyển đổi Phân số thập phân -> nhị phân

• Số phân số thập phân => Số nhị phân

Ví dụ: 189.023₁₀ → Số nhị phân

```
189/2
         = 94 du' 1
                          0.023 \times 2 = 0.046 \, du' \, 0
94/2
                          0.046 \times 2 = 0.092 \, du' \, 0
         = 47 du' 0
47/2
        = 23 dư 1
                          0.092 \times 2 = 0.184 \, du' \, 0
                          0.184 \times 2 = 0.368 \, du' \, 0
23/2
        = 11 du' 1
11/2
        = 5 du'1
                        0.368 x 2 = 0.736 dư 0
5/2
        = 2 dư 1
                        0.736 x 2 = 1.472 du 1
2/2
        = 1 du'0
                        0.472 x 2 = 0.944 dư 0
1/2
              0 du 1
             189.023 = 10111101.0000010<sub>2</sub>
```

Ví dụ

• Thực hiện phép chuyển đổi giữa các hệ thống số

Decimal	Binary	Octal	Hexadecimal
29.8			
	110.1101		
		3.07	
			C.82

2. Floating Point (1/4)

- Làm sao để biểu diễn các giá trị thực? ±5.25?
 - $>\pm 5.25 = \pm (2^2 + 2^0 + 2^{-2}) \rightarrow \pm 101.01$
- Làm sao để biểu diễn dấu chấm (.)? 0 hay1?
 - Chuẩn hóa: Trước dấu chấm (.) chỉ được biểu diễn 1 ký số khác 0
 - $\geq \pm 101.01 = \pm 1.0101 \times 2^2$
 - ✓ Không cần phải biểu diễn bit trước dấu chấm vì chắc chắn là 1.
 - ✓ Phần sau dấu chấm? Bao nhiêu bit? Phương pháp biểu diễn?
 - ✓ Số mũ nhị phân? Là số nguyên! Bao nhiều bit? Phương pháp biểu diễn?
 - ✓Dấu? Có thể + hoặc -

2. Floating Point (2/4) – IEEE Std 754-1985

- Hai phiên bản:
 - ➤ Chính xác đơn: 32 bit
 - Chính xác kép: 64 bit
- Dấu:
 - \triangleright Âm: S = 1, KHÔNG âm: S = 0
- Mũ: Biểu diễn quá (excess)
 - ≻Đảm bảo E không âm
 - ➤ Chính xác đơn: bias = 127
 - ➤ Chính xác kép: bias = 1023

đơn: 8 bitsđơn: 23 bitskép: 11 bitskép: 52 bits

S E F

$$B = (-1)^S \times (1.F) \times 2^{(E - bias)}$$

- Chuẩn hóa:
 - ➤Không cần biểu diễn bit trước dấu chấm (mặc định là 1)
 - ➤Định trị là "1.F"

2. Floating Point (3/4) – Chính xác đơn (32 bit)

đơn: 8 bitsđơn: 23 bitskép: 11 bitskép: 52 bits

S E F

E	F	Biểu diễn
0	0	0
0	!0	Chưa chuẩn hóa
1-254	X	Dấu chấm động
255	0	Vô cùng lớn / Vô cùng bé
255	!0	NaN (Not a Number)

Quiz 2

- Tìm giá trị thực nhỏ nhất / lớn nhất mà biểu diễn dấu chấm động chính xác đơn có thể biểu diễn?
 - ➤ Gọi ý: E lớn nhất / E nhỏ nhất tương ứng với F lớn nhất / F nhỏ nhất

2. Floating Point (4/4) – Biểu diễn giá trị

- Bước 1: Chuyển giá trị cần biểu diễn sang nhị phân
- Bước 2: Chuẩn hóa
- Bước 3: Xác định dấu (S), định trị (1.F) và mũ quá 127 (E) ở dạng nhị phân
- Bước 4: Biểu diễn theo thứ tự: S|E|F

Ngược lại: Giá trị = $(-1)^S$ x (1.F) x $2^{(E-127)}$

Quiz 3

• Biểu diễn giá trị -0.75 bằng phương pháp biểu diễn dấu chấm động độ chính xác đơn (32 bit)?

• Dấu chấm động độ chính xác đơn bên dưới biểu diễn giá trị nào? 11000000101000...00

- 1. BCD (Binary Coded Decimal)
- 2. Floating point (Dấu chấm động)
- 3. ASCII (American Standard Code for Information Interchange)
- 4. Câu hỏi và Bài tập

3. ASCII

Phương pháp sử dụng 7 bit để biểu diễn mỗi ký tự.

|--|

$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	\mathbf{V}	f	\mathbf{v}
0111	BEL	ETB	4	7	G	\mathbf{W}	g	\mathbf{w}
1000	BS	CAN	(8	H	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	\mathbf{Z}	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	O	DEL

3. ASCII (2/2)

- Ví dụ:
 - ►IT012 có biểu diễn ASCII là:

100100110101000111000001100010110010

▶it006 có biểu diễn ASCII là:

11010011110100011000001100000110110

► 10011001001111110101101000101 biểu diễn LOVE

Quiz 4

• Biểu diễn MSSV bằng ASCII?

- 1. BCD (Binary Coded Decimal)
- 2. Floating point (Dấu chấm động)
- 3. ASCII (American Standard Code for Information Interchange)
- 4. Câu hỏi và Bài tập

4. Câu hỏi và Bài tập (1/2)

- Biểu diễn BCD các giá trị sau:
 - **≻**17
 - >358
 - >629
- Biểu diễn dấu chấm động các giá trị sau:
 - **>**0.00125
 - **≻**120.5
 - >-0.005
 - >-57.25

5. Câu hỏi và Bài tập (2/2)

- Biểu diễn ASCII các chuỗi sau:
 - ➤ Hello, How are you?
 - ➤I am fine, And you?
- 0x12345678 biểu diễn thông tin gì trong những ngữ cảnh sau đây:
 - ➤Dấu chấm động
 - ►Bù 2
 - >BCD
 - >ASCII
 - ➤ Nguyên Dương (không dấu)