HLMA101 - Partie A : Généralités

Chapitre 5
Applications

Simon Modeste

Faculté des Sciences - Université de Montpellier

2019-2020

Sommaire

- 1. Définition, vocabulaire, exemples
- 2. Restrictions et prolongement
- 3. Image et image réciproque
- 4. Composition
- 5. Réciproque
- 6. Injectivité, surjectivité, bijectivité

Exemples

a) $\{\text{\'etudiants de l'amphi}\} \rightarrow [0;20]$

étudiant⋅e \rightarrow note à l'examen sur 20

b) $\{\text{\'etudiants de l'amphi}\} \rightarrow [0; 10]$

étudiant∙e → note à l'examen sur 10

c) $f: \mathbb{R} \to \mathbb{R}$ $g: \mathbb{R}_+ \to \mathbb{R}$ $x \mapsto x^2$ $x \mapsto x^2$ $h: \mathbb{R}_+ \to \mathbb{R}_+$ $x \mapsto x^2$

d) L'**identité** $Id_E: E \rightarrow E$

e) $\gamma: \mathbb{R}_+ \rightarrow \mathbb{R}^3$ $t \text{ (instant)} \mapsto \text{ coordonn\'ees d'un point mobile}$

f) $\lambda: \mathbb{R} \to \mathbb{N}$ $x \mapsto \text{ nombre de 1 dans la partie entière de } x \text{ (en base 10)}$

Représentation en diagramme

On représente parfois une application à l'aide de diagrammes ensemblistes et de flèches entre les éléments :

- 1. Définition, vocabulaire, exemples
- 2. Restrictions et prolongement
- 3. Image et image réciproque
- 4. Composition
- 5. Réciproque
- 6. Injectivité, surjectivité, bijectivité

Définition (intuitive)

Une application f est la donnée de trois informations :

- \diamond Un ensemble dit « de départ » ou « source » E
- ♦ Un ensemble dit « d'arrivée » ou « but » F
- \diamond Une règle qui permet d'attribuer à tout élément x de E un et un seul élément de F (noté f(x)).

Notation

Pour une application f de E dans F on note :

 $\begin{array}{ccc} E & \rightarrow & F \\ x & \mapsto & f(x) \end{array}$

Remarques

- $\diamond~$ Une application n'est pas toujours donnée par une formule
- Quand on définit une application, l'ensemble de départ et l'ensemble d'arrivée sont importants : s'ils changent, on parle d'une autre application
- ♦ Usage des flèches :

 $\ll \to \gg$ entre les ensembles de départ et d'arrivée, $\ll \to \gg$ pour décrire le lien entre un élément de l'ensemble de départ et l'élément de l'ensemble d'arrivée qui lui est associé.

Définition (fonction)

Soit E et F deux ensembles, et D une partie de E. Une application de D dans F est appelée une fonction de E dans F.

D est appelé le domaine de définition de la fonction, noté \mathscr{D}_f .

Commentaires

Cela permet de parler d'"applications" dont certains éléments n'ont pas d'image.

Exemples

La fonction $x \mapsto \sqrt{x}$. Définie sur \mathbb{R}_+ .

La fonction logarithme népérien $x \mapsto \ln(x)$. Définie sur \mathbb{R}_+^* .

Dans le suite, on ne s'intéresse qu'aux applications, mais tous les résultats s'étendent aux foncions, à condition de considérer le bon domaine de définition.

Graphe

Soit une application $f: E \to F$.

On appelle graphe de f la partie de $E \times F$ des couples de la forme (x, f(x)).

Autrement dit, c'est l'ensemble $\{(x,y) \in E \times F / f(x) = y\}$

Exemple

Restriction

On appelle restriction d'une application $f: E \to F$ à $A \subset E$ l'application :

$$f_{|A}: A \rightarrow F$$

 $x \mapsto f(x)$

Remarque

On peut toujours restreindre l'ensemble de départ, mais pas toujours l'ensemble d'arrivée.

Sommaire

- 1. Définition, vocabulaire, exemples
- 2 Restrictions et prolongement
- 3. Image et image réciproque
- 4. Composition
- 5. Réciproque
- 6. Injectivité, surjectivité, bijectivité

Sommaire

- 1. Définition, vocabulaire, exemple
- 2. Restrictions et prolongement
- 3. Image et image réciproque
- 4. Composition
- 5. Réciproque
- 6. Injectivité, surjectivité, bijectivit

Prolongement

Soient $f:A\to B$ une application, et soit $g:E\to F$ telle que $A\subset E$ et $B\subset F$. On dit que g est un prolongement de f si l'application $h:A\to B$ est égale à f. $x\mapsto g_{|A}(x)$

Image

Soit $f: E \to F$ une application.

- ♦ On appelle image d'un élément $x \in E$, l'élément f(x).
- \diamond On appelle image d'une partie $A \subset E$, le sous ensemble de F formé de toutes les images d'éléments de A par f

$$f(A) = \{y \in F / \exists x \in A, y = f(x)\} = \{f(x) / x \in A\}$$

 \diamond L'image de l'application f est f(E).

Image réciproque

Soit $f: E \to F$ une application, et soit $B \subset F$.

L'image réciproque de B est la partie de E formé des éléments qui sont envoyés dans B par f.

$$f^{-1}(B) = \{x \in E / f(x) \in B\}$$

Remarques

L'image réciproque . . .

- \diamond est une partie de E
- \diamond s'applique à une partie de F

Attention à la notation f^{-1} !

Les éléments x tels que f(x) = y sont appelés antécédents de y.

Exemple

Soit l'application $f: \mathbb{R} \to \mathbb{R}$.

$$\phi f([-1,1]) = [0,1]$$

$$f(\mathbb{R}) = \mathbb{R}_+$$

$$\diamond \ f^{-1}\big(\big[1,9\big[\big)=\big]-3,-1\big]\cup\big[1,3\big[$$

$$\phi f^{-1}(]-4,4[)=]-2,2[$$

$$\diamond f^{-1}(\{16\}) = \{-4, 4\}$$

$$\diamond f^{-1}(]-\infty,-1])=\emptyset$$

Exercice

Soit
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^2 + 2x - 1$

$$x \mapsto x^2 + 2x - 1$$

Déterminer f([0,2]), f([-2,2]) et $f^{-1}([-1,2])$.

Sommaire

- 4. Composition

Plus généralement

Si $f: E \to F_1$ et $g: F_2 \to G$, avec F_1 et F_2 distincts, on peut définir $g \circ f(x)$ pour tout x de E tel que $f(x) \in F_2$. On peut alors définir :

$$g \circ f: \{x \in E/f(x) \in F_2\} \rightarrow G$$

$$x \mapsto g(f(x))$$

Domaine de définition $\mathcal{D}_{g \circ f} = \{x \in \mathcal{D}_f / f(x) \in \mathcal{D}_g\}$

Composition

Soit $f: E \to F$ et $g: F \to G$ deux applications. La composée de g et f est l'application :

$$g \circ f : E \to G$$

 $x \mapsto g(f(x))$

Remarque : Pour évaluer $(g \circ f)(x)$ on applique d'abord f à x, puis $g \grave{a} f(x)$.

Exemples

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2 -$$

$$g: \mathbb{R}_+^* \to \mathbb{R}$$

$$x \mapsto \frac{1}{\sqrt{2}}$$

Déterminer $g \circ f$ et $f \circ g$.

Sommaire

- 5. Réciproque

Application réciproque

Soit $f: E \rightarrow F$ une application.

On dit qu'une application $g: F \to E$ est réciproque de f si $f \circ g = Id_F$ et $g \circ f = Id_E$.

Remarque: Ça n'existe pas toujours:

Unicité de la réciproque (si elle existe)

Soit $f: E \to F$. Si $g_1: F \to E$ et $g_2: F \to E$ sont des réciproques de f, alors $g_1 = g_2$.

Preuve.

Technique classique de preuve d'unicité : on introduit deux éléments x et x' ayant la propriété et on montre que x = x'.

Lorsqu'une application f admet une réciproque, on la note f^{-1} .

 ${f Note}: {f Attention}$ à la notation $f^{-1}: {f On}$ peut toujours écrire l'**ensemble** $f^{-1}(B)$ où B est une partie de l'ensemble d'arrivée (image réciproque), mais l'application f^{-1} n'existe pas toujours.

Par contre, si f^{-1} existe, $f^{-1}(B)$ est aussi l'image de B par f^{-1} (cohérent). Preuve en exercice

Définitions

Soit $f: E \to F$ une application.

- ♦ On dit que f est **injective** si $\forall (x,x') \in E^2$, $f(x) = f(x') \implies x = x'$.
- ♦ On dit que f est **surjective** si $\forall y \in F$, $\exists x \in E$, f(x) = y.
- ♦ On dit que f est **bijective** si elle est injective et surjective.

Illustration

Bijective

Exemples

- ni surjective, ni injective.
- $g: \mathbb{R}_+$ injective, non surjective.
- \diamond $h: \mathbb{R} \to \mathbb{R}_+$ surjective, non injective.
- \diamond γ : \mathbb{R}_+ \rightarrow \mathbb{R}_+ bijective.
- \diamond λ : \mathbb{R}_{-} \rightarrow \mathbb{R}_{+} bijective.

Théorème

Soit $f: E \to F$ une application.

On a équivalence entre :

- (i) f a une réciproque
- (ii) f est bijective

Preuve.

Exercice

Exprimer les réciproques de

$$\gamma: \mathbb{R}_{+} \to \mathbb{R}_{+}$$
 et $\lambda: \mathbb{R}_{-} \to \mathbb{R}_{+}$
 $x \mapsto x^{2}$ $x \mapsto x^{2}$

Sommaire

- 6. Injectivité, surjectivité, bijectivité

Intuition

- ♦ Injective : deux éléments qui ont la même image sont
 - Ou : deux éléments distincts ont des images distinctes.
- ♦ Surjective : tout élément de l'ensemble d'arrivée a au moins un antécédent

Illustration

Exercice : Écrire les négations d'être injective, surjective, bijective.

Théorème

Soient $f: E \to F$ et $g: F \to G$ deux applications. Alors :

- (1) Si $g \circ f$ est injective, alors f est injective.
- (2) Si $g \circ f$ est surjective, alors g est surjective.
- (3) Si f et g sont injectives, alors $g \circ f$ est injective.
- (4) Si f et g sont surjectives, alors $g \circ f$ est surjective.
- (5) Si f et g sont bijectives, alors $g \circ f$ est bijective.

Preuve

Très bon exercice!

Preuves de (1) et (3).

Théorème

Soient $f: E \to F$ et $g: F \to G$ des applications bijectives. Alors $g \circ f$ est bijective de réciproque $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Preuve.

D'après un théorème précédent, $g \circ f : E \to F$ est bijective si et seulement si elle admet une réciproque. Montrons que $f^{-1} \circ g^{-1}$ convient :

⋄ Montrons que
$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = Id_E$$

Soit $x \in E$.
 $(f^{-1} \circ g^{-1}) \circ (g \circ f)(x) = f^{-1}(g^{-1}(g(f(x))))$
 $= f^{-1}(f(x)) = x$

Donc $g \circ f$ est bien bijective de réciproque $f^{-1} \circ g^{-1}$.