## RGESolver

Generated by Doxygen 1.8.20

| 1 Class Index                                | 1  |
|----------------------------------------------|----|
| 1.1 Class List                               | 1  |
| 2 File Index                                 | 3  |
| 2.1 File List                                | 3  |
| 3 Class Documentation                        | 5  |
| 3.1 RGESolver Class Reference                | 5  |
| 3.1.1 Detailed Description                   | 15 |
| 3.1.2 Constructor & Destructor Documentation | 17 |
| 3.1.2.1 RGESolver()                          | 17 |
| 3.1.2.2 ~RGESolver()                         | 17 |
| 3.1.3 Member Function Documentation          | 18 |
| 3.1.3.1 epsabs()                             | 18 |
| 3.1.3.2 epsrel()                             | 18 |
| 3.1.3.3 Evolve()                             | 18 |
| 3.1.3.4 EvolveSMOnly()                       | 18 |
| 3.1.3.5 ExtractParametersFromCKM()           | 19 |
| 3.1.3.6 FromMassesToYukawas()                | 19 |
| 3.1.3.7 func()                               | 19 |
| 3.1.3.8 funcSMOnly()                         | 20 |
| 3.1.3.9 GenerateSMInitialConditions()        | 20 |
| 3.1.3.10 GetCoefficient() [1/3]              | 20 |
| 3.1.3.11 GetCoefficient() [2/3]              | 21 |
| 3.1.3.12 GetCoefficient() [3/3]              | 21 |
| 3.1.3.13 GetSMInputScale()                   | 22 |
| 3.1.3.14 GoToBasisSMOnly()                   | 22 |
| 3.1.3.15 Init()                              | 22 |
| 3.1.3.16 InitSMOnly()                        |    |
| 3.1.3.17 Print()                             |    |
| 3.1.3.18 Reset()                             | 23 |
| 3.1.3.19 SaveOutputFile()                    |    |
| 3.1.3.20 Set_epsabs()                        |    |
| 3.1.3.21 Set_epsrel()                        |    |
| 3.1.3.22 Set_step()                          |    |
| 3.1.3.23 SetCoefficient() [1/3]              |    |
| 3.1.3.24 SetCoefficient() [2/3]              |    |
| 3.1.3.25 SetCoefficient() [3/3]              |    |
| 3.1.3.26 SetSMInputScale()                   |    |
| 3.1.3.27 step()                              |    |
| 3.1.3.28 Update()                            |    |
| 3.1.3.29 UpdateCKM()                         |    |
| 3.1.3.30 UpdateSMOnly()                      |    |
| 0.110.00 openioriiy()                        | 20 |

| 3.1.3.31 WC1()                  | 26       |
|---------------------------------|----------|
| 3.1.3.32 WC1_set()              | 26       |
| 3.1.3.33 WC2I()                 | 26       |
| 3.1.3.34 WC2I_set()             | 27       |
| 3.1.3.35 WC2R()                 | 27       |
| 3.1.3.36 WC2R_set()             | 27       |
| 3.1.3.37 WC3()                  | 27       |
| 3.1.3.38 WC3_set()              | 27       |
| 3.1.3.39 WC5()                  | 28       |
| 3.1.3.40 WC5_set()              | 28       |
| 3.1.3.41 WC6I()                 | 28       |
| 3.1.3.42 WC6l_set()             | 28       |
| 3.1.3.43 WC6R()                 | 28       |
| 3.1.3.44 WC6R_set()             | 29       |
| 3.1.3.45 WC7I()                 | 29       |
| 3.1.3.46 WC7I_set()             | 29       |
| 3.1.3.47 WC7R()                 | 29       |
| 3.1.3.48 WC7R_set()             | 29       |
| 3.1.3.49 WC8I()                 | 30       |
| 3.1.3.50 WC8I_set()             | 30       |
| 3.1.3.51 WC8R()                 | 30       |
| 3.1.3.52 WC8R_set()             | 30       |
| 3.1.3.53 Yukawa()               | 30       |
| 3.1.3.54 Yukawa_set()           | 31       |
| 3.1.4 Member Data Documentation | 31       |
| 3.1.4.1 b01                     | 31       |
| 3.1.4.2 b02                     | 31       |
| 3.1.4.3 b03                     | 31       |
| 3.1.4.4 c12                     | 31       |
| 3.1.4.5 c13                     | 32       |
| 3.1.4.6 c23                     | 32       |
| 3.1.4.7 cA2                     | 32       |
| 3.1.4.8 cA3                     | 32       |
| 3.1.4.9 cdBl                    | 32       |
| 3.1.4.10 cdBR                   | 32       |
| 3.1.4.11 cddl                   | 33       |
| 3.1.4.12 cddR                   | 33       |
| 3.1.4.13 cdGl                   | 33       |
| 3.1.4.14 cdGR                   |          |
|                                 | 33       |
| 3.1.4.15 cdHl                   | 33<br>33 |
| 3.1.4.15 cdHI                   |          |

| 3.1.4.18 cdWR  |
|----------------|
| 3.1.4.19 ceBl  |
| 3.1.4.20 ceBR  |
| 3.1.4.21 cedl  |
| 3.1.4.22 cedR  |
| 3.1.4.23 ceel  |
| 3.1.4.24 ceeR  |
| 3.1.4.25 ceHI  |
| 3.1.4.26 ceHR  |
| 3.1.4.27 ceul  |
| 3.1.4.28 ceuR  |
| 3.1.4.29 ceWI  |
| 3.1.4.30 ceWR  |
| 3.1.4.31 cF2   |
| 3.1.4.32 cF3   |
| 3.1.4.33 cG    |
| 3.1.4.34 cGT   |
| 3.1.4.35 cH    |
| 3.1.4.36 cHB   |
| 3.1.4.37 cHBOX |
| 3.1.4.38 cHBT  |
| 3.1.4.39 cHD   |
| 3.1.4.40 cHdl  |
| 3.1.4.41 cHdR  |
| 3.1.4.42 cHel  |
| 3.1.4.43 cHeR  |
| 3.1.4.44 cHG   |
| 3.1.4.45 cHGT  |
| 3.1.4.46 cHi1I |
| 3.1.4.47 cHI1R |
| 3.1.4.48 cHi3i |
| 3.1.4.49 cHi3R |
| 3.1.4.50 cHq1I |
| 3.1.4.51 cHq1R |
| 3.1.4.52 cHq3l |
| 3.1.4.53 cHq3R |
| 3.1.4.54 cHudl |
| 3.1.4.55 cHudR |
| 3.1.4.56 cHul  |
| 3.1.4.57 cHuR  |
| 3.1.4.58 cHW   |
| 3.1.4.59 cHWB  |

| 3.1.4.60 cHWBT       |
|----------------------|
| 3.1.4.61 cHWT        |
| 3.1.4.62 CKM         |
| 3.1.4.63 CKM_delta   |
| 3.1.4.64 CKM_theta12 |
| 3.1.4.65 CKM_theta13 |
| 3.1.4.66 CKM_theta23 |
| 3.1.4.67 cldl        |
| 3.1.4.68 cldR        |
| 3.1.4.69 cledql      |
| 3.1.4.70 cledqR      |
| 3.1.4.71 clel        |
| 3.1.4.72 clequ1I     |
| 3.1.4.73 clequ1R     |
| 3.1.4.74 clequ3l     |
| 3.1.4.75 clequ3R     |
| 3.1.4.76 cleR        |
| 3.1.4.77 clll        |
| 3.1.4.78 cliR        |
| 3.1.4.79 clq1l       |
| 3.1.4.80 clq1R       |
| 3.1.4.81 clq3l       |
| 3.1.4.82 clq3R       |
| 3.1.4.83 clul        |
| 3.1.4.84 cluR        |
| 3.1.4.85 con         |
| 3.1.4.86 cqd1l       |
| 3.1.4.87 cqd1R       |
| 3.1.4.88 cqd8l       |
| 3.1.4.89 cqd8R       |
| 3.1.4.90 cqel        |
| 3.1.4.91 cqeR        |
| 3.1.4.92 cqq1l       |
| 3.1.4.93 cqq1R       |
| 3.1.4.94 cqq3I       |
| 3.1.4.95 cqq3R       |
| 3.1.4.96 cqu1l       |
| 3.1.4.97 cqu1R       |
| 3.1.4.98 cqu8l       |
| 3.1.4.99 cqu8R       |
| 3.1.4.100 cquqd1l    |
| 3.1.4.101 cquqd1R    |

| 3.1.4.102 cquqd8l      |
|------------------------|
| 3.1.4.103 cquqd8R      |
| 3.1.4.104 cuBl         |
| 3.1.4.105 cuBR         |
| 3.1.4.106 cud1l        |
| 3.1.4.107 cud1R        |
| 3.1.4.108 cud8l        |
| 3.1.4.109 cud8R        |
| 3.1.4.110 cuGl         |
| 3.1.4.111 cuGR         |
| 3.1.4.112 cuHl         |
| 3.1.4.113 cuHR         |
| 3.1.4.114 cuul         |
| 3.1.4.115 cuuR         |
| 3.1.4.116 cuWl         |
| 3.1.4.117 cuWR         |
| 3.1.4.118 cW           |
| 3.1.4.119 cWT          |
| 3.1.4.120 delta        |
| 3.1.4.121 DF           |
| 3.1.4.122 DFa          |
| 3.1.4.123 DFs          |
| 3.1.4.124 dim          |
| 3.1.4.125 DWC2I        |
| 3.1.4.126 DWC2R        |
| 3.1.4.127 DWC6I        |
| 3.1.4.128 DWC6R        |
| 3.1.4.129 DWC7I        |
| 3.1.4.130 DWC7R        |
| 3.1.4.131 DWC8I        |
| 3.1.4.132 DWC8R        |
| 3.1.4.133 E5           |
| 3.1.4.134 E6           |
| 3.1.4.135 E7           |
| 3.1.4.136 E8_LLLL      |
| 3.1.4.137 E8_LLRR      |
| 3.1.4.138 E8_LRLR      |
| 3.1.4.139 E8_LRRL      |
| 3.1.4.140 E8_RRRR      |
| 3.1.4.141 EIGHT_THIRDS |
| 3.1.4.142 epsabs       |
| 3.1.4.143 epsrel       |

| 3.1.4.186 s12          |
|------------------------|
| 3.1.4.187 s13          |
| 3.1.4.188 s23          |
| 3.1.4.189 s            |
| 3.1.4.190 Setter2F     |
| 3.1.4.191 Setter4F     |
| 3.1.4.192 step         |
| 3.1.4.193 sys          |
| 3.1.4.194 TEN_THIRDS   |
| 3.1.4.195 TWO_THIRDS   |
| 3.1.4.196 WC2I_indices |
| 3.1.4.197 WC2R_indices |
| 3.1.4.198 WC6I_indices |
| 3.1.4.199 WC6R_indices |
| 3.1.4.200 WC7I_indices |
| 3.1.4.201 WC7R_indices |
| 3.1.4.202 WC8I_indices |
| 3.1.4.203 WC8R_indices |
| 3.1.4.204 x            |
| 3.1.4.205 Yd           |
| 3.1.4.206 Yd2          |
| 3.1.4.207 ydl          |
| 3.1.4.208 ydR          |
| 3.1.4.209 YdYe         |
| 3.1.4.210 YdYl         |
| 3.1.4.211 YdYq         |
| 3.1.4.212 Ye           |
| 3.1.4.213 Ye2          |
| 3.1.4.214 yel          |
| 3.1.4.215 yeR          |
| 3.1.4.216 YeYI         |
| 3.1.4.217 YeYq         |
| 3.1.4.218 Yh           |
| 3.1.4.219 Yh2          |
| 3.1.4.220 YhYd         |
| 3.1.4.221 YhYe         |
| 3.1.4.222 YhYI         |
| 3.1.4.223 YhYq         |
| 3.1.4.224 YhYu         |
| 3.1.4.225 YI           |
| 3.1.4.226 YI2          |
| 3.1.4.227 YIYq         |

| Index                                   | 73   |
|-----------------------------------------|------|
| 4.5 StaticMembers.cc File Reference     | . 71 |
| 4.4 SettersAndGetters.cc File Reference | . 71 |
| 4.3 RGESolver.h File Reference          | . 71 |
| 4.2 RGESolver.cc File Reference         | . 71 |
| 4.1 BetaFunction.cc File Reference      | . 71 |
| 4 File Documentation                    | 71   |
| 3.1.4.237 YuYq                          | . 69 |
| 3.1.4.236 YuYl                          | . 69 |
| 3.1.4.235 YuYe                          | . 69 |
| 3.1.4.234 YuYd                          | . 69 |
| 3.1.4.233 yuR                           | . 69 |
| 3.1.4.232 yul                           | . 69 |
| 3.1.4.231 Yu2                           | . 68 |
| 3.1.4.230 Yu                            | . 68 |
| 3.1.4.229 Yq2                           | . 68 |
| 3.1.4.228 Yq                            | . 68 |

# **Chapter 1**

# **Class Index**

## 1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

## **RGESolver**

A class that performs renormalization group evolution in the context of the SMEFT . . . . . .

2 Class Index

# Chapter 2

# File Index

## 2.1 File List

Here is a list of all files with brief descriptions:

| BetaFunction.cc      |
|----------------------|
| RGESolver.cc         |
| RGESolver.h          |
| SettersAndGetters.cc |
| StaticMembers.cc     |

File Index

## **Chapter 3**

# **Class Documentation**

## 3.1 RGESolver Class Reference

A class that performs renormalization group evolution in the context of the SMEFT.

```
#include <RGESolver.h>
```

#### **Public Member Functions**

• RGESolver ()

The default constructor.

• ∼RGESolver ()

The default destructor.

• double epsrel ()

Getter for the relative error used in the numerical integration.

• double epsabs ()

Getter for the absolute error used in the numerical integration.

• double step ()

Getter for the step used in the numerical integration.

void Set\_epsrel (double epsrel)

Setter for the relative error used in the numerical integration.

void Set\_epsabs (double epsabs)

Setter for the absolute error used in the numerical integration.

void Set\_step (double step)

Setter for the step used in the numerical integration.

• void SetCoefficient (std::string name, double val)

Setter function for scalar/0F parameters (no flavour indices).

• void SetCoefficient (std::string name, double val, int i, int j)

Setter function for 2F parameters (2 flavour indices).

• void SetCoefficient (std::string name, double val, int i, int j, int k, int l)

Setter function for 4F parameters (4 flavour indices).

double GetCoefficient (std::string name)

Getter function for scalar/0F parameters (no flavour indices).

double GetCoefficient (std::string name, int i, int j)

Getter function for 2F parameters (2 flavour indices).

double GetCoefficient (std::string name, int i, int j, int k, int l)

Getter function for 4F parameters (4 flavour indices).

void Evolve (std::string method, double mul, double muF)

Command to perform the RGE evolution.

void GenerateSMInitialConditions (double mu, std::string basis, std::string method, bool inputCKM=true)

Generates the initial conditions for Standard Model's parameters (gauge couplings, Yukawa coupling, quartic coupling and Higgs' boson mass).

• void EvolveSMOnly (std::string method, double mul, double muF)

Same as Evolve(std::string method, double mul, double muF), but only for the SM parameters. The user should use this method instead of Evolve when interested in pure SM running.

void SetSMInputScale (double mu)

Setter method for the scale at which the method <code>GenerateSMInitialConditions</code> takes the input values for SM parameters.

double GetSMInputScale ()

Getter method for the scale at which the method <code>GenerateSMInitialConditions</code> takes the input values for SM parameters.

void SaveOutputFile (std::string filename, std::string format)

Saves the current values of parameters in a file.

· void Reset ()

Resets all the parameters to 0.

#### **Private Member Functions**

- void GoToBasisSMOnly (std::string basis)
- void ExtractParametersFromCKM ()
- void UpdateCKM ()
- void InitSMOnly ()
- void UpdateSMOnly ()
- void FromMassesToYukawas (std::string basis)
- void Init ()

Inserts the initial values of the parameters in the array  $\mathbf{x}$ .

void Update ()

Saves the evolved values of the coefficients from x.

## **Static Private Member Functions**

- static int funcSMOnly (double logmu, const double y[], double f[], void \*params)
- static int func (double logmu, const double y[], double f[], void \*params)

Computes the beta functions for the SMEFT.

### **Output file**

Stuff for output on file

• static void Print (double \*c, std::string name, std::string sym, std::string format, std::ofstream &f)

Prints on file the coefficient c.

## **Setters and Getters**

Setter and getter function for each symmetry class.

static void Yukawa\_set (double y[3][3], int i, int j, double val)

```
• static double Yukawa (double y[3][3], int i, int j)
        • static void WC1 set (double *c, int i, int j, double val)
        • static double WC1 (double *c, int i, int j)
        • static double WC2R (double *c, int i, int j)
        • static void WC2R set (double *c, int i, int j, double val)
        • static double WC2I (double *c, int i, int j)

    static void WC2I set (double *c, int i, int j, double val)

    static double WC3 (double *c, int i, int j)

    static void WC3 set (double *c, int i, int j, double val)

    static void WC5 set (double *c, int i, int j, int k, int l, double val)

        • static double WC5 (double *c, int i, int j, int k, int l)
       • static double WC6R (double *c, int i, int j, int k, int l)

    static void WC6R_set (double *c, int i, int j, int k, int l, double val)

       • static double WC6I (double *c, int i, int j, int k, int I)
        • static void WC6l_set (double *c, int i, int j, int k, int l, double val)
        • static void WC7R set (double *c, int i, int j, int k, int l, double val)
         static double WC7R (double *c, int i, int j, int k, int l)

    static double WC7I (double *c, int i, int j, int k, int I)

    static void WC7I set (double *c, int i, int i, int i, int l, double val)

    static double WC8R (double *c, int i, int j, int k, int l)

    static void WC8R_set (double *c, int i, int j, int k, int l, double val)

    static double WC8I (double *c, int i, int j, int k, int l)

    static void WC8I set (double *c, int i, int j, int k, int l, double val)

Private Attributes
    • gslpp::matrix< gslpp::complex > CKM = gslpp::matrix<gslpp::complex>(3, 3, 0.)
           The CKM matrix.
    • double InputScale SM = 91.
           the scale at which the method <code>GenerateSMInitialConditions</code> takes the input values for SM parameters.
           \theta_{12} of the CKM matrix (in radians). The default value is ???
```

```
 double CKM theta12 = 0.2

• double CKM theta13 = 0.1
• double CKM_theta23 = 0.3
• double CKM_delta = 3.14 / 4.
• double c12
      \cos \theta_{12}
• double s12
      \sin \theta_{12}
• double c13
      \cos \theta_{13}

 double s13

      \sin \theta_{13}
• double c23
      \cos\theta_{23}

 double s23

      \sin \theta_{23}
• double mu = 0.002
      m_u , the mass of up quark in GeV (default value ?????).
• double mc = 1.2
• double mt = 170.
• double md = 0.006
• double ms = 0.05
• double mb = 5.2

    double mel = 0.0005
```

```
    double mmu = 0.100
    double mtau = 1.2
```

#### **GSL Objects**

```
double epsrel_ = 0.0000000000000001

Relative error used in the integrator with its default value.
double epsabs_ = 0.0001

Absolute error used in the integrator with its default value.
double step_

Last step used in the integrator.
gsl_odeiv2_system sys_ = {func, NULL, 3}
gsl_odeiv2_step * s_
gsl_odeiv2_control * con_
gsl_odeiv2_evolve * evo_ = gsl_odeiv2_evolve_alloc(2558)
double x [2558]

1D array for the integration
```

#### Standard Model parameters

```
• double g1 g_1
• double g2 g_2
• double g3 g_3
• double mh2 = 126. * 126. m_h^2 (Higgs boson mass squared)
• double lambda = 0.2 \lambda (Higgs quartic coupling)
• double yuR [3][3]
• double yuR [3][3]
• double ydR [3][3]
• double ydR [3][3]
• double yeR [3][3]
```

## **SMEFT dimension-six operators**

By default, all SMEFT dimension-six operators' coefficients are set to 0. See <a href="https://arxiv.eorg/abs/1308.2627">https://arxiv.eorg/abs/1308.2627</a> tab. 1 for the full list of operators. Each member has a class from 1 to 8 depending on its field contents, as well as a flavour symmetry classification (WC1, WC2R, WC2I...).

```
• double cHD = 0.
       C_{HD} (class 3, scalar)
  double cHG = 0.
       C_{HG} (class 4, scalar)
• double cHGT = 0.
       C_{H\tilde{G}} (class 4, scalar)
• double \overline{cHW} = 0.
       C_{HW} (class 4, scalar)
• double cHWT = 0.
       C_{H\tilde{W}} (class 4, scalar)
• double cHB = 0.
       C_{HB} (class 4, scalar)
• double cHBT = 0.
       C_{H\tilde{B}} (class 4, scalar)
• double cHWB = 0.
       C_{HWB} (class 4, scalar)
• double cHWBT = 0.
       C_{H\tilde{W}B} (class 4, scalar)
  double ceHR [3 *3] = \{0.\}
       \Re \left[ C_{eH} \right] (class 5, WC1)
• double ceHI [3 *3] = \{0.\}
       \Im \left[ C_{eH} \right] (class 5, WC1)
• double cuHR [3 *3] = {0.}
       \Re\left[C_{uH}\right] (class 5, WC1)
• double cuHI [3 *3] = {0.}
       \Im\left[C_{uH}\right] (class 5, WC1)
• double cdHR [3 *3] = {0.}
       \Re\left[C_{dH}\right] (class 5, WC1)
• double cdHI [3 *3] = \{0.\}
       \Im\left[C_{dH}
ight] (class 5, WC1)
• double ceWR [3 *3] = {0.}
       \Re\left[C_{eW}\right] (class 6, WC1)
• double ceWI [3 *3] = {0.}
       \Im [C_{eW}] (class 6, WC1)
  double ceBR [3 *3] = \{0.\}
       \Re [C_{eB}] (class 6, WC1)
• double ceBl [3 *3] = {0.}
       \Im [C_{eB}] (class 6, WC1)
• double cuGR [3 *3] = {0.}
       \Re \left[ C_{uG} \right] (class 6, WC1)
• double cuGI[3 *3] = \{0.\}
       \Im [C_{uG}] (class 6, WC1)
• double cuWR [3 *3] = {0.}
       \Re\left[C_{uW}
ight] (class 6, WC1)
• double cuWI [3 *3] = {0.}
       \Im [C_{uW}] (class 6, WC1)
• double cuBR [3 *3] = {0.}
       \Re\left[C_{uB}\right] (class 6, WC1)
• double cuBl [3 *3] = {0.}
       \Im [C_{uB}] (class 6, WC1)
• double cdGR [3 *3] = {0.}
       \Re \left[ C_{dG} \right] (class 6, WC1)
• double cdGI [3 *3] = \{0.\}
       \Im [C_{dG}] (class 6, WC1)
• double cdWR [3 *3] = {0.}
       \Re\left[C_{dW}\right] (class 6, WC1)
• double cdWI [3 *3] = \{0.\}
       \Im [C_{dW}] (class 6, WC1)
```

• double cdBR [3 \*3] = {0.}

```
\Re [C_{dB}] (class 6, WC1)

    double cdBI [3 *3]

       \Im [C_{dW}] (class 6, WC1)
  double cHI1R [3 *3] = \{0.\}
       \Re \left[ C_{Hl1} \right] (class 7, WC2R)
• double cHI1I [3 *3] = \{0.\}
       \Im [C_{Hl1}] (class 7, WC2I)
• double cHI3R [3*3] = \{0.\}
       \Re \left[ C_{Hl3} \right] (class 7, WC2R)
• double cHI3I [3 *3] = {0.}
       \Im [C_{Hl3}] (class 7, WC2I)
• double cHeR [3 *3] = {0.}
       \Re \left[ C_{He} \right] (class 7, WC2R)
• double cHeI [3 *3] = \{0.\}
       \Im [C_{He}] (class 7, WC2I)

    double cHq1R [3 *3] = {0.}

       \Re \left[ C_{Hq1} \right] (class 7, WC2R)
• double cHq1I [3 *3] = \{0.\}
       \Im [C_{Ha1}] (class 7, WC2I)

    double cHq3R [3 *3] = {0.}

       \Re \left[ C_{Hq3} \right] (class 7, WC2R)
  double cHq3I [3 *3] = \{0.\}
       \Im [C_{Hq3}] (class 7, WC2I)
• double cHuR [3 *3] = {0.}
       \Re \left[ C_{Hu} \right] (class 7, WC2R)
• double cHul [3 *3] = {0.}
       \Im [C_{Hu}] (class 7, WC2I)

    double cHdR [3 *3] = {0.}

       \Re [C_{Hd}] (class 7, WC2R)
• double cHdI [3 *3] = \{0.\}
       \Im\left[C_{Hd}\right] (class 7, WC2I)
• double cHudR [3 *3] = {0.}
       \Re \left[ C_{Hud} \right] (class 7, WC1)
• double cHudl [3 *3] = {0.}
       \Im [C_{Hud}] (class 7, WC1)
• double cliR [3 *3 *3 *3] = \{0.\}
       \Re [C_{ll}] (class 8-[LL][LL], WC6R)
• double clll [3 *3 *3 *3] = {0.}
       \Im [C_{ll}] (class 8-[LL][LL], WC6I)
double cqq1R [3 *3 *3 *3] = {0.}
       \Re\left[C_{qq1}\right] (class 8-[LL][LL], WC6R)
• double cqq1I [3 *3 *3 *3] = \{0.\}
       \Im \left[ C_{qq1} \right] (class 8-[LL][LL], WC6I)
• double cqq3R [3*3*3*3] = \{0.\}
       \Re \left[ C_{qq3} \right] (class 8-[LL][LL], WC6R)
• double cqq3I [3*3*3*3] = \{0.\}
       \Im\left[C_{qq3}
ight] (class 8-[LL][LL], WC6I)
• double clq1R [3 *3 *3 *3] = \{0.\}
       \Re \left[ C_{lq1} \right] (class 8-[LL][LL], WC7R)
• double clq11 [3 *3 *3 *3] = \{0.\}
       \Im\left[C_{lq1}
ight] (class 8-[LL][LL], WC7I)
• double clq3R [3*3*3*3] = \{0.\}
       \Re \left[ C_{lq3} \right] (class 8-[LL][LL], WC7R)
• double clq3I [3*3*3*3] = \{0.\}
       \Im [C_{la3}] (class 8-[LL][LL], WC7I)

    double cuuR [3 *3 *3 *3] = {0.}

       \Re [C_{uu}] (class 8-[RR][RR], WC6R)
• double cuul [3 *3 *3 *3] = \{0.\}
       \Im [C_{uu}] (class 8-[RR][RR], WC6I)
```

```
double cddR [3 *3 *3 *3] = {0.}
       \Re \left[ C_{dd} \right] (class 8-[RR][RR], WC6R)
  double cddl [3 *3 *3 *3] = \{0.\}
       \Im [C_{dd}] (class 8-[RR][RR], WC6I)
• double ceeR [3*3*3*3] = \{0.\}
       \Re [C_{ee}] (class 8-[RR][RR], WC8R)
• double ceel [3 *3 *3 *3] = \{0.\}
       \Im [C_{ee}] (class 8-[RR][RR], WC8I)
double ceuR [3 *3 *3 *3] = {0.}
       \Re\left[C_{eu}
ight] (class 8-[RR][RR], WC7R)
• double ceul [3 *3 *3 *3] = \{0.\}
       \Im [C_{eu}] (class 8-[RR][RR], WC7I)
double cedR [3 *3 *3 *3] = {0.}
       \Re\left[C_{ed}
ight] (class 8-[RR][RR], WC7R)
• double cedl [3 *3 *3 *3] = \{0.\}
       \Im \left[ C_{ed} \right] (class 8-[RR][RR], WC7I)
• double cud1R[3*3*3*3] = \{0.\}
       \Re [C_{ud1}] (class 8-[RR][RR], WC7R)
• double cud11[3*3*3*3] = \{0.\}
       \Im [C_{ud1}] (class 8-[RR][RR], WC7I)
• double cud8R [3 *3 *3 *3] = \{0.\}
       \Re [C_{ud8}] (class 8-[RR][RR], WC7R)
• double cud8I [3 *3 *3 *3] = \{0.\}
       \Im \left[ C_{ud1} \right] (class 8-[RR][RR], WC7I)
double cleR [3 *3 *3 *3] = {0.}
       \Re \left[ C_{le} \right] (class 8-[LL][RR], WC7R)
• double clel [3 *3 *3 *3] = \{0.\}
       \Im [C_{le}] (class 8-[LL][RR], WC7I)
• double cluR [3 *3 *3 *3] = \{0.\}
       \Re [C_{lu}] (class 8-[LL][RR], WC7R)
• double clul [3 *3 *3 *3] = \{0.\}
       \Im [C_{lu}] (class 8-[LL][RR], WC7I)

    double cldR [3 *3 *3 *3] = {0.}

       \Re [C_{ld}] (class 8-[LL][RR], WC7R)
  double cldl [3 *3 *3 *3] = \{0.\}
       \Im [C_{ld}] (class 8-[LL][RR], WC7I)
• double cqeR [3*3*3*3] = \{0.\}
       \Re\left[C_{qe}\right] (class 8-[LL][RR], WC7R)
• double cqel [3*3*3*3] = \{0.\}
       \Im [C_{qe}] (class 8-[LL][RR], WC7I)
• double cqu1R [3 *3 *3 *3] = {0.}
       \Re [C_{qu1}] (class 8-[LL][RR], WC7R)
• double cqu11[3 *3 *3 *3] = \{0.\}
       \Im [C_{qu1}] (class 8-[LL][RR], WC7I)
• double cqu8R [3*3*3*3] = \{0.\}
       \Re\left[C_{qu8}
ight] (class 8-[LL][RR], WC7R)
double cqu8l [3 *3 *3 *3] = {0.}
       \Im\left[C_{qu8}
ight] (class 8-[LL][RR], WC7I)
• double cqd1R[3*3*3*3] = \{0.\}
       \Re \left[ C_{qd1} \right] (class 8-[LL][RR], WC7R)
• double cqd1I [3 *3 *3 *3] = \{0.\}
       \Im \left[ C_{qd1} \right] (class 8-[LL][RR], WC7I)
• double cqd8R [3*3*3*3] = \{0.\}
       \Re [C_{ad8}] (class 8-[LL][RR], WC7R)

    double cqd8l [3 *3 *3 *3] = {0.}

       \Im\left[C_{qd8}\right] (class 8-[LL][RR], WC7I)
• double cledqR [3 *3 *3 *3] = {0.}
       \Re \left[ C_{ledq} \right] (class 8-[LR][RL], WC5)

    double cledql [3 *3 *3 *3] = {0.}
```

```
\Im [C_{ledq}] (class 8-[LR][RL], WC5)

    double clequ1R [3 *3 *3 *3] = {0.}

      \Re \left[ C_{lequ1} \right] (class 8-[LR][LR], WC5)
 double clequ11 [3 *3 *3 *3] = \{0.\}
      \Im\left[C_{lequ1}
ight] (class 8-[LR][LR], WC5)
 double clequ3R [3*3*3*3] = \{0.\}
      \Re\left[C_{lequ3}\right] (class 8-[LR][LR], WC5)
double clequ3l [3 *3 *3 *3] = {0.}
      \Im [C_{legu3}] (class 8-[LR][LR], WC5)
• double cquqd1R [3 *3 *3 *3] = \{0.\}
       \Re\left[C_{quqd1}
ight] (class 8-[LR][LR], WC5)
• double cquqd11 [3 *3 *3 *3] = \{0.\}
       \Im [C_{quqd1}] (class 8-[LR][LR], WC5)
• double cquqd8R [3 *3 *3 *3] = {0.}
      \Re\left[C_{quqd8}
ight] (class 8-[LR][LR], WC5)
double cquqd8l [3 *3 *3 *3] = {0.}
      \Im [C_{quqd8}] (class 8-[LR][LR], WC5)
```

## Maps for I/O

Maps that connects the coefficients with the appropriate getter/setter functions (based on their symmetry properties)

```
    std::unordered_map< std::string, double * > Operators0F
    std::unordered_map< std::string, boost::function< void(int, int, double) > > Setter2F
    std::unordered_map< std::string, boost::function< double(int, int) > > Getter2F
    std::unordered_map< std::string, boost::function< void(int, int, int, double) > > Setter4F
    std::unordered_map< std::string, boost::function< double(int, int, int, int, int) > > Getter4F
```

#### **Static Private Attributes**

#### Independent entries

We follow https://arxiv.org/abs/2010.16341 tab. 15, 16 for the symmetry class of the operators.

Notice that operators in classes WC1 and WC5 have no restrictions for neither real nor imaginary part, each having  $N_G^2$  (for WC1) or  $N_G^4$  (for WC5).

• static const int DWC2R = 6

Number of independent entries of the real part of operators in symmetry class WC2.

static const int DWC2I = 3

Number of independent entries of the imaginary part of operators in symmetry class WC2.

• static const int DWC6R = 27

Number of independent entries of the real part of operators in symmetry class WC6.

static const int DWC6I = 18

Number of independent entries of the imaginary part of operators in symmetry class WC6.

static const int DWC7R = 45

Number of independent entries of the real part of operators in symmetry class WC7.

• static const int DWC7I = 36

Number of independent entries of the imaginary part of operators in symmetry class WC7.

static const int DWC8R = 21

Number of independent entries of the real part of operators in symmetry class WC8.

static const int DWC8I = 15

Number of independent entries of the imaginary part of operators in symmetry class WC8.

#### Indices chosen as independent entries

the element  $WCn\_indices[a][b]$  must be interpretated as: the b-th index (there are 4 in 4F operators and 2 in 2F) of the a-th independent entry for the WCn category, where n = 1,2R,2l...

- static const int WC2R\_indices [DWC2R][2]
  - Independent indices for WC2R.
- static const int WC2I\_indices [DWC2I][2]

Independent indices for WC2I.

- static const int WC6R\_indices [DWC6R][4]
  - Independent indices for WC6R.
- static const int WC6I indices [DWC6I][4]

Independent indices for WC6I.

- static const int WC7R\_indices [DWC7R][4]
  - Independent indices for WC7R.
- static const int WC7I\_indices [DWC7I][4]

Independent indices for WC7I.

- static const int WC8R\_indices [DWC8R][4]
  - Independent indices for WC8R.
- static const int WC8I\_indices [DWC8I][4]

Independent indices for WC8I.

#### Number of operators for each class

See <a href="https://arxiv.org/abs/1308.2627">https://arxiv.org/abs/1308.2627</a> tab. 1 for the full list of operators. There are 8 different classes, depending on the field content. This classification is different from the symmetry classification WC1, WC2R

For each class N is the number of operators and E the number of independent entries. When E is not explicitly defined is understood E=N (no flavour structure)

```
• static const int NG = 3
```

Number of fermion flavours.

static const int DF = 9

Dimension of matrices in flavour space.

static const int DFs = (NG\*NG + NG) / 2

Independent entries of a  $N_G \times N_G$  real symmetric matrix.

static const int DFa = (NG\*NG - NG) / 2

Independent entries of a  $N_G \times N_G$  real anti-symmetric matrix.

• static const int Ngauge = 3

Number of gauge couplings.

static const int Nh = 2

Number of Higgs' sector parameters.

• static const int Nyukawa = 3

Number of Yukawa matrices.

static const int Eyuk = (Nyukawa \* 2 \* DF)

Number of real parameters for each Yukawa matrix.

- static const int N1 = 4
- static const int N23 = 3
- static const int N4 = 8
- static const int N5 = 3
- static const int E5 = (N5 \* 2 \* DF)
- static const int N6 = 8
- static const int E6 = (N6 \* 2 \* DF)
- static const int N7 = 8
- static const int N7H = 7

Number of Hermitian operators in class 7.

• static const int N7NH = 1

Number of non-Hermitian operators in class 7.

- static const int E7 = (N7H\*(DWC2R + DWC2I) + N7NH \* 2 \* DF)
- static const int N8\_LLLL = 5
- static const int E8\_LLLL = 2 \* (DWC7R + DWC7I) + 3 \* (DWC6R + DWC6I)
- static const int N8 RRRR = 7
- static const int E8 RRRR = 4 \* (DWC7R + DWC7I) + 2 \* (DWC6R + DWC6I) + 1 \* (DWC8R + DWC8I)
- static const int N8\_LLRR = 8
- static const int E8 LLRR = 8 \* (DWC7R + DWC7I)

```
static const int N8_LRRL = 1
static const int E8_LRRL = 2 * NG*NG*NG*NG*N8_LRRL
static const int N8_LRLR = 4
static const int E8_LRLR = 2 * NG*NG*NG*NG*N8_LRLR
```

#### **Fractions**

Recurring fractions defined in order to increase efficiency

```
static const double TWO_THIRDS = (2. / 3.)
static const double FOUR_THIRDS = (4. / 3.)
static const double EIGHT_THIRDS = (8. / 3.)
static const double ONE_THIRD = (1. / 3.)
static const double ONE_SIXTH = (1. / 6.)
static const double TEN_THIRDS = (10. / 3.)
```

#### Miscellaneous parameters

```
• static const double delta [3][3]
      Kroenecker delta in flavour space.

    static const int dim = (Ngauge + Nh + Eyuk + N1 + N23 + N4 + E5 + E6 + E7 + E8_LLLL + E8_RRRR +

  E8 LLRR + E8 LRRL + E8 LRLR)
      Dimension of the system.

    static const double NC = 3.

      Number of colors.
• static const double NC2 = 9.
      Number of colors squared.

    static const double b01 = (-1. / 6. - 3. * 20. / 9.)

      Leading-order g_1 beta function ( with g_1 normalized as usual and not as in GUT theories)

    static const double b02 = (43. / 6. - 4. * 3. / 3.)

      Leading-order q_2 beta function.

    static const double b03 = (11. - 4. * 3. / 3.)

      Leading-order g_3 beta function.
• static const double cA2 = double(2.)
      SU(2) adjoint Casimir

    static const double cA3 = double(NC)

      SU(3) adjoint Casimir

    static const double cF2 = double(3. / 4.)

      \mathbf{SU}(\mathbf{2}) fundamental Casimir

    static const double cF3 = double(0.5 * (NC*NC - 1) / NC)

      SU(3) fundamental Casimir
```

## Hypercharges (and products of hypercharges)

We use  $Q=T_3+Y$ , being  $T_3$  the z-component of the weak isospin and Q the electric charge. The other possibility is  $Q=T_3+\frac{Y}{2}$  as in <a href="https://arxiv.org/abs/1308.2627">https://arxiv.org/abs/1308.2627</a>

```
static const double Yh = (0.5)
static const double Yh2 = Yh*Yh
static const double Yq = (1. / 6.)
static const double Yq2 = Yq*Yq
static const double Yl = (-0.5)
static const double Yl2 = Yl*Yl
static const double Yu = (2. / 3.)
static const double Yu2 = Yu*Yu
static const double Yd = (-1. / 3.)
static const double Yd2 = Yd*Yd
static const double Ye2 = Yd*Yd
static const double Ye2 = Ye*Ye
static const double YhYu = Yh*Yu
```

static const double YhYd = Yh\*Yd

- static const double YhYe = Yh\*Ye
- static const double YhYq = Yh\*Yq
- static const double YhYI = Yh\*YI
- static const double YuYd = Yu\*Yd
- static const double YuYe = Yu\*Ye
- static const double YuYq = Yu\*Yq
- static const double YuYl = Yu\*Yl
- static const double YdYe = Yd\*Ye
- static const double YdYq = Yd\*Yq
- static const double YdYI = Yd\*YI
- static const double YeYq = Ye\*Yq
- static const double YeYI = Ye\*YI
- static const double YIYq = YI\*Yq

## 3.1.1 Detailed Description

A class that performs renormalization group evolution in the context of the SMEFT.

The class solves the Renormalization Group Equations (RGEs) both numerically and in the leading-log approximations. Only operators up to dimension six that preserve lepton and baryon numbers are considered. The operator basis is the Warsaw basis, defined in <a href="https://arxiv.org/abs/1008.4884">https://arxiv.org/abs/1008.4884</a>.

The user must set separately real and imaginary part of each complex parameter.

In tables 3.1, 3.2, 3.3 and 3.4 are listed all the parameters, together with their name (that must be used to correctly invoke getter and setter functions).

The numerical integration is performed with an adaptive step-size routine (the Explicit embedded Runge-Kutta-← Fehlberg method), using the tools in the GNU Scientific Library.

See https://www.gnu.org/software/gsl/doc/html/ode-initval.html for all the details.

The accuracy level of the numerical integration can be tuned selecting the parameters  $\epsilon_{rel}$ ,  $\epsilon_{abs}$  and the integration step using the dedicated getter functions.

Author

**HEPfit Collaboration** 

Copyright

**GNU General Public License** 

| Coefficient              | Name   |
|--------------------------|--------|
| $g_1$                    | g1     |
| $g_2$                    | g2     |
| $g_3$                    | g3     |
| $\lambda$                | lambda |
| $m_h^2 \; [{\rm GeV^2}]$ | mh2    |
| $\Re(\mathcal{Y}_u)$     | YuR    |
| $\Im(\mathcal{Y}_u)$     | YuI    |
| $\Re(\mathcal{Y}_d)$     | YdR    |
| $\Im(\mathcal{Y}_d)$     | YdI    |
| $\Re(\mathcal{Y}_e)$     | YeR    |
| $\Im(\mathcal{Y}_e)$     | YeI    |

**Table 3.1 Standard Model parameters** 

| Classes 1-3    |         | CI                | Class 4   |  |  |
|----------------|---------|-------------------|-----------|--|--|
| Coefficient    | Name    | Coefficient       | Name      |  |  |
| $C_G$          | CG      | $C_{HG}$          | CHG       |  |  |
| $C_{	ilde{G}}$ | CGtilde | $C_{H\tilde{G}}$  | CHGtilde  |  |  |
| $C_W$          | CW      | $C_{HW}$          | CHW       |  |  |
| $C_{	ilde{W}}$ | CWtilde | $C_{H\tilde{W}}$  | CHWtilde  |  |  |
| $C_H$          | СН      | $C_{HB}$          | СНВ       |  |  |
| $C_{H\square}$ | CHbox   | $C_{H	ilde{B}}$   | CHBtilde  |  |  |
| $C_{HD}$       | CHD     | $C_{HWB}$         | СНШВ      |  |  |
|                |         | $C_{H\tilde{W}B}$ | CHWtildeB |  |  |

Table 3.2 Scalar (and real) SMEFT operators.

| Class 5       |      |          |               | Class 6 |          |                | Class 7 |          |
|---------------|------|----------|---------------|---------|----------|----------------|---------|----------|
| Coefficient   | Name | Symmetry | Coefficient   | Name    | Symmetry | Coefficient    | Name    | Symmetry |
| $\Re(C_{eH})$ | CeHR | WC1      | $\Re(C_{eW})$ | CeWR    | WC1      | $\Re(C_{Hl1})$ | CH11R   | WC2R     |
| $\Im(C_{eH})$ | CeHI | WC1      | $\Im(C_{eW})$ | CeWI    | WC1      | $\Im(C_{Hl1})$ | CH11I   | WC2I     |
| $\Re(C_{uH})$ | CuHR | WC1      | $\Re(C_{eB})$ | CeBR    | WC1      | $\Re(C_{Hl3})$ | CH13R   | WC2R     |
| $\Im(C_{uH})$ | CuHI | WC1      | $\Im(C_{eB})$ | CeBI    | WC1      | $\Im(C_{Hl3})$ | CH13I   | WC2I     |
| $\Re(C_{dH})$ | CdHR | WC1      | $\Re(C_{uG})$ | CuGR    | WC1      | $\Re(C_{He})$  | CHeR    | WC2R     |
| $\Im(C_{dH})$ | CdHI | WC1      | $\Im(C_{uG})$ | CuGI    | WC1      | $\Im(C_{He})$  | CHeI    | WC2I     |
|               |      |          | $\Re(C_{uW})$ | CuWR    | WC1      | $\Re(C_{Hq1})$ | CHq1R   | WC2R     |
|               |      |          | $\Im(C_{uW})$ | CuWI    | WC1      | $\Im(C_{Hq1})$ | CHq1I   | WC2I     |
|               |      |          | $\Re(C_{uB})$ | CuBR    | WC1      | $\Re(C_{Hq3})$ | CHq3R   | WC2R     |
|               |      |          | $\Im(C_{uB})$ | CuBI    | WC1      | $\Im(C_{Hq3})$ | CHq3I   | WC2I     |
|               |      |          | $\Re(C_{dG})$ | CdGR    | WC1      | $\Re(C_{Hu})$  | CHuR    | WC2R     |
|               |      |          | $\Im(C_{dG})$ | CdGI    | WC1      | $\Im(C_{Hu})$  | CHuI    | WC2I     |
|               |      |          | $\Re(C_{dW})$ | CdWR    | WC1      | $\Re(C_{Hd})$  | CHdR    | WC2R     |
|               |      |          | $\Im(C_{dW})$ | CdWI    | WC1      | $\Im(C_{Hd})$  | CHdI    | WC2I     |
|               |      |          | $\Re(C_{dB})$ | CdBR    | WC1      | $\Re(C_{Hud})$ | CHudR   | WC1      |
|               |      |          | $\Im(C_{dB})$ | CdBI    | WC1      | $\Im(C_{Hud})$ | CHudI   | WC1      |

**Table 3.3 2F SMEFT operators** 

| Class 8 $(ar{L}L)(ar{L}L)$ |                            |          | Clas            | ss 8 $(ar{R}R)(ar{R})$ | $ar{R}R)$     | Clas           | s 8 $(ar{L}L)(ar{L})$ | $ar{R}R)$ |
|----------------------------|----------------------------|----------|-----------------|------------------------|---------------|----------------|-----------------------|-----------|
| Coefficient                | Name                       | Symmetry | Coefficient     | Name                   | Symmetry      | Coefficient    | Name                  | Symmetry  |
| $\Re(C_{ll})$              | CllR                       | WC6R     | $\Re(C_{ee})$   | CeeR                   | WC8R          | $\Re(C_{le})$  | CleR                  | WC7R      |
| $\Im(C_{ll})$              | CllI                       | WC6I     | $\Im(C_{ee})$   | CeeI                   | WC8I          | $\Im(C_{le})$  | CleI                  | WC7I      |
| $\Re(C_{qq1})$             | Cqq1R                      | WC6R     | $\Re(C_{uu})$   | CuuR                   | WC6R          | $\Re(C_{lu})$  | CluR                  | WC7R      |
| $\Im(C_{qq1})$             | CqqlI                      | WC6I     | $\Im(C_{uu})$   | CuuI                   | WC6I          | $\Im(C_{lu})$  | CluI                  | WC7I      |
| $\Re(C_{qq3})$             | Cqq3R                      | WC6R     | $\Re(C_{dd})$   | CddR                   | WC6R          | $\Re(C_{ld})$  | CldR                  | WC7R      |
| $\Im(C_{qq3})$             | Cqq3I                      | WC6I     | $\Im(C_{dd})$   | CddI                   | WC6I          | $\Im(C_{ld})$  | CldI                  | WC7I      |
| $\Re(C_{lq1})$             | Clq1R                      | WC7R     | $\Re(C_{eu})$   | CeuR                   | WC7R          | $\Re(C_{qe})$  | CqeR                  | WC7R      |
| $\Im(C_{lq1})$             | Clq1I                      | WC7I     | $\Im(C_{eu})$   | CeuI                   | WC7I          | $\Im(C_{qe})$  | CqeI                  | WC7I      |
| $\Re(C_{lq3})$             | Clq3R                      | WC7R     | $\Re(C_{ed})$   | CedR                   | WC7R          | $\Re(C_{qu1})$ | Cqu1R                 | WC7R      |
| $\Im(C_{lq3})$             | Clq3I                      | WC7I     | $\Im(C_{ed})$   | CedI                   | WC7I          | $\Im(C_{qu1})$ | CqulI                 | WC7I      |
| Cla                        | Class 8 $(ar{L}R)(ar{L}R)$ |          | $\Re(C_{ud1})$  | Cud1R                  | WC7R          | $\Re(C_{qu8})$ | Cqu8R                 | WC7R      |
| Coefficient                | Name                       | Symmetry | $\Im(C_{ud1})$  | Cud1I                  | WC7I          | $\Im(C_{qu8})$ | Cqu8I                 | WC7I      |
| $\Re(C_{quqd1})$           | Cquqd1R                    | WC5      | $\Re(C_{ud8})$  | Cud8R                  | WC7R          | $\Re(C_{qd1})$ | Cqd1R                 | WC7R      |
| $\Im(C_{quqd1})$           | Cquqd1I                    | WC5      | $\Im(C_{ud8})$  | Cud8I                  | WC7I          | $\Im(C_{qd1})$ | Cqd1I                 | WC7I      |
| $\Re(C_{quqd8})$           | Cquqd8R                    | WC5      | Cla             | ss 8 $(ar{L}R)(ar{R})$ | $ar{ar{R}}L)$ | $\Re(C_{qd8})$ | Cqd8R                 | WC7R      |
| $\Im(C_{quqd8})$           | Cquqs8I                    | WC5      | Coefficient     | Name                   | Symmetry      | $\Im(C_{qd8})$ | Cqd8I                 | WC7I      |
| $\Re(C_{lequ1})$           | Clequ1R                    | WC5      | $\Re(C_{ledq})$ | CledqR                 | WC5           |                |                       |           |
| $\Im(C_{lequ1})$           | Clequ1I                    | WC5      | $\Im(C_{ledq})$ | CledqI                 | WC5           |                |                       |           |
| $\Re(C_{lequ3})$           | Clequ3R                    | WC5      |                 |                        |               |                |                       |           |
| $\Im(C_{lequ3})$           | Clequ3I                    | WC5      |                 |                        |               |                |                       |           |

**Table 3.4 4F SMEFT Operators.** 

## 3.1.2 Constructor & Destructor Documentation

## 3.1.2.1 RGESolver()

RGESolver::RGESolver ( )

The default constructor.

## 3.1.2.2 $\sim$ RGESolver()

RGESolver:: $\sim$ RGESolver ( ) [inline]

The default destructor.

## 3.1.3 Member Function Documentation

## 3.1.3.1 epsabs()

```
double RGESolver::epsabs ( ) [inline]
```

Getter for the absolute error used in the numerical integration.

## 3.1.3.2 epsrel()

```
double RGESolver::epsrel ( ) [inline]
```

Getter for the relative error used in the numerical integration.

#### 3.1.3.3 Evolve()

```
void RGESolver::Evolve (
          std::string method,
          double muI,
          double muF)
```

Command to perform the RGE evolution.

RGEs are solved with the chosen method from muI to muF. Currently, the available methods are "Numeric" and "Leading-Log".

The evolutor takes as initial values the current values of the parameters, set with the SetCoefficient(...) function. After completing the evolution the values of the parameters are updated and are accessible with the GetCoefficient(...) function.

#### **Parameters**

| method | resolution method    |
|--------|----------------------|
| mul    | initial energy scale |
| muF    | final energy scale   |

#### 3.1.3.4 EvolveSMOnly()

```
double muI,
double muF )
```

Same as Evolve(std::string method, double mul, double muF), but only for the SM parameters. The user should use this method instead of Evolve when interested in pure SM running.

#### **Parameters**

| method |  |
|--------|--|
| mul    |  |
| muF    |  |

## 3.1.3.5 ExtractParametersFromCKM()

```
void RGESolver::ExtractParametersFromCKM ( ) [private]
```

## 3.1.3.6 FromMassesToYukawas()

#### 3.1.3.7 func()

Computes the beta functions for the SMEFT.

#### **Parameters**

| logmu  | value of the logarithm of the energy scale at which the beta functions are computed |
|--------|-------------------------------------------------------------------------------------|
| У      | 1D array in which are stored the current values of the parameters                   |
| f      | 1D array in which the beta functions for each parameters are saved                  |
| params | eventual additional parameters (not used)                                           |

## Returns

```
GSL_SUCCESS
```

## 3.1.3.8 funcSMOnly()

```
static int RGESolver::funcSMOnly (  \mbox{double } logmu, \\ \mbox{const double } y[\ ], \\ \mbox{double } f[\ ], \\ \mbox{void } * params \ ) \ \ [static], \ [private]
```

## 3.1.3.9 GenerateSMInitialConditions()

Generates the initial conditions for Standard Model's parameters (gauge couplings, Yukawa coupling, quartic coupling and Higgs' boson mass).

#### **Parameters**

| mu       | Scale (in GeV) at which the initial conditions are generated. If mu is different from the scale at which the input is given, RGESolver will use the pure SM RGEs to run the parameters to the scale mu. |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| basis    | Flavour basis ( "UP"or "DOWN")                                                                                                                                                                          |  |  |
| method   | Method used by RGESolver to run the SM parameters to the scale mu                                                                                                                                       |  |  |
|          | ("Numeric" or "Leading-Log")                                                                                                                                                                            |  |  |
| inputCKM | If set to true (default), the input for the Yukawa matrices will                                                                                                                                        |  |  |
|          | be generated from the current value of the CKM matrix and the                                                                                                                                           |  |  |
|          | masses of the fermions (default).                                                                                                                                                                       |  |  |
|          |                                                                                                                                                                                                         |  |  |

## 3.1.3.10 GetCoefficient() [1/3]

```
double RGESolver::GetCoefficient (
     std::string name )
```

Getter function for scalar/0F parameters (no flavour indices).

If the parameter name does not match with any of the parameters, an error message is printed and the value 0 is returned.

#### **Parameters**

| name name of the p | arameter |
|--------------------|----------|
|--------------------|----------|

#### Returns

the requested parameter (if it exists), otherwise returns 0.

## 3.1.3.11 GetCoefficient() [2/3]

```
double RGESolver::GetCoefficient (  std::string \ name, \\ int \ i, \\ int \ j \ )
```

Getter function for 2F parameters (2 flavour indices).

If the parameter name does not match with any of the parameters or if at least one of the inserted indices is outside the [0:2] range,

an error message is printed and the value 0 is returned.

#### Parameters

| name | name of the parameter |
|------|-----------------------|
| i    | first flavour index   |
| j    | second flavour index  |

### Returns

the requested parameter (if it exists), otherwise returns 0.

## 3.1.3.12 GetCoefficient() [3/3]

```
double RGESolver::GetCoefficient (
    std::string name,
    int i,
    int j,
    int k,
    int l)
```

Getter function for 4F parameters (4 flavour indices).

If the parameter name does not match with any of the parameters or if at least one of the inserted indices is outside the [0:2] range,

an error message is printed and the value  ${\bf 0}$  is returned.

#### **Parameters**

| name | name of the parameter |
|------|-----------------------|
| i    | first flavour index   |
| j    | second flavour index  |
| k    | third flavour index   |
| 1    | fourth flavour index  |

Generated by Doxygen

#### Returns

the requested parameter (if it exists), otherwise returns 0.

## 3.1.3.13 GetSMInputScale()

```
double RGESolver::GetSMInputScale ( ) [inline]
```

Getter method for the scale at which the method <code>GenerateSMInitialConditions</code> takes the input values for SM parameters.

## 3.1.3.14 GoToBasisSMOnly()

## 3.1.3.15 Init()

```
void RGESolver::Init ( ) [private]
```

Inserts the initial values of the parameters in the array  $\boldsymbol{x}$ .

Only used in Evolve

## 3.1.3.16 InitSMOnly()

```
void RGESolver::InitSMOnly ( ) [private]
```

## 3.1.3.17 Print()

Prints on file the coefficient  ${\tt C}.$ 

This function is used only in the function SaveOutputFile. Currently only "SLHA" printing for WC1,WC2R/I, WC5,WC6R/I,WC7R/I,WC8R/I is implemented.

#### **Parameters**

| С      | coefficient                       |
|--------|-----------------------------------|
| name   | printed name                      |
| sym    | symmetry category of the operator |
| format | chosen format                     |
| f      | pointer to file                   |

## 3.1.3.18 Reset()

```
void RGESolver::Reset ( )
```

Resets all the parameters to 0.

## 3.1.3.19 SaveOutputFile()

Saves the current values of parameters in a file.

Currently, only "SLHA" format is implemented

#### **Parameters**

|   | filename | Name of the output file   |  |  |
|---|----------|---------------------------|--|--|
| ſ | format   | Format of the output file |  |  |

### 3.1.3.20 Set\_epsabs()

Setter for the absolute error used in the numerical integration.

## 3.1.3.21 Set\_epsrel()

Setter for the relative error used in the numerical integration.

## 3.1.3.22 Set\_step()

Setter for the step used in the numerical integration.

## 3.1.3.23 SetCoefficient() [1/3]

Setter function for scalar/0F parameters (no flavour indices).

If the parameter name does not match with any of the parameters, an error message is printed and no assignation is performed.

#### **Parameters**

| name | name of the parameter |
|------|-----------------------|
| val  | its value             |

## 3.1.3.24 SetCoefficient() [2/3]

```
void RGESolver::SetCoefficient (
    std::string name,
    double val,
    int i,
    int j)
```

Setter function for 2F parameters (2 flavour indices).

If the parameter name does not match with any of the parameters or if at least one of the inserted indices is outside the [0:2] range,

#### **Parameters**

| name | name of the parameter |
|------|-----------------------|
| val  | its value             |
| i    | first flavour index   |
| j    | second flavour index  |

## 3.1.3.25 SetCoefficient() [3/3]

```
void RGESolver::SetCoefficient (
    std::string name,
    double val,
    int i,
    int j,
    int k,
    int l)
```

Setter function for 4F parameters (4 flavour indices).

If the parameter name does not match with any of the parameters or if at least one of the inserted indices is outside the [0:2] range, an error message is printed and no assignation is performed.

#### **Parameters**

| name | name of the parameter |
|------|-----------------------|
| val  | its value             |
| i    | first flavour index   |
| j    | second flavour index  |
| k    | third flavour index   |
| 1    | fourth flavour index  |

## 3.1.3.26 SetSMInputScale()

Setter method for the scale at which the method GenerateSMInitialConditions takes the input values for SM parameters.

#### **Parameters**



## 3.1.3.27 step()

```
double RGESolver::step ( ) [inline]
```

Getter for the step used in the numerical integration.

## 3.1.3.28 Update()

```
void RGESolver::Update ( ) [private]
```

Saves the evolved values of the coefficients from x.

Only used in Evolve

## 3.1.3.29 UpdateCKM()

```
void RGESolver::UpdateCKM ( ) [private]
```

## 3.1.3.30 UpdateSMOnly()

```
void RGESolver::UpdateSMOnly ( ) [private]
```

## 3.1.3.31 WC1()

## 3.1.3.32 WC1\_set()

## 3.1.3.33 WC2I()

# 3.1.3.34 WC2I\_set()

# 3.1.3.35 WC2R()

# 3.1.3.36 WC2R\_set()

# 3.1.3.37 WC3()

# 3.1.3.38 WC3\_set()

# 3.1.3.39 WC5()

# 3.1.3.40 WC5\_set()

# 3.1.3.41 WC6I()

# 3.1.3.42 WC6I set()

# 3.1.3.43 WC6R()

# 3.1.3.44 WC6R\_set()

# 3.1.3.45 WC7I()

```
double RGESolver::WC7I (
          double * c,
           int i,
           int j,
           int k,
           int l ) [inline], [static], [private]
```

# 3.1.3.46 WC7I\_set()

# 3.1.3.47 WC7R()

# 3.1.3.48 WC7R\_set()

# 3.1.3.49 WC8I()

# 3.1.3.50 WC8I\_set()

# 3.1.3.51 WC8R()

# 3.1.3.52 WC8R\_set()

# 3.1.3.53 Yukawa()

# 3.1.3.54 Yukawa\_set()

```
void RGESolver::Yukawa_set (
          double y[3][3],
          int i,
          int j,
          double val ) [inline], [static], [private]
```

#### 3.1.4 Member Data Documentation

#### 3.1.4.1 b01

```
const double RGESolver::b01 = (-1. / 6. - 3. * 20. / 9.) [static], [private]
```

Leading-order  $g_1$  beta function ( with  $g_1$  normalized as usual and not as in GUT theories)

#### 3.1.4.2 b02

```
const double RGESolver::b02 = (43. / 6. - 4. * 3. / 3.) [static], [private]
```

Leading-order  $g_2$  beta function.

#### 3.1.4.3 b03

```
const double RGESolver::b03 = (11. - 4. * 3. / 3.) [static], [private]
```

Leading-order  $g_3$  beta function.

# 3.1.4.4 c12

```
double RGESolver::c12 [private] \cos\theta_{12}
```

```
3.1.4.5 c13
```

```
double RGESolver::c13 [private] \cos\theta_{13}
```

# 3.1.4.6 c23

```
double RGESolver::c23 [private] \cos\theta_{23}
```

# 3.1.4.7 cA2

```
const double RGESolver::cA2 = double(2.) [static], [private] \mathbf{SU(2)} \ \text{adjoint Casimir}
```

# 3.1.4.8 cA3

```
const double RGESolver::cA3 = double(NC) [static], [private] \mathbf{SU(3)} \ \text{adjoint Casimir}
```

# 3.1.4.9 cdBI

```
double RGESolver::cdBI[3 *3] [private] \Im \left[ C_{dW} \right] \mbox{ (class 6, WC1)}
```

# 3.1.4.10 cdBR

```
double RGESolver::cdBR[3 *3] = {0.} [private] \Re \left[ C_{dB} \right] \text{ (class 6, WC1)}
```

# 3.1.4.11 cddl

```
double RGESolver::cddI[3 *3 *3 *3] = {0.} [private] \Im\left[C_{dd}\right] \text{ (class 8-[RR][RR], WC6I)}
```

#### 3.1.4.12 cddR

```
double RGESolver::cddR[3 *3 *3 *3] = {0.} [private] \Re\left[C_{dd}\right] \text{ (class 8-[RR][RR], WC6R)}
```

# 3.1.4.13 cdGI

```
double RGESolver::cdGI[3 *3] = {0.} [private] \Im \left[ C_{dG} \right] \text{ (class 6, WC1)}
```

# 3.1.4.14 cdGR

```
double RGESolver::cdGR[3 *3] = {0.} [private] \Re \left[ C_{dG} \right] \text{ (class 6, WC1)}
```

# 3.1.4.15 cdHI

```
double RGESolver::cdHI[3 *3] = {0.} [private] \Im \left[ C_{dH} \right] \text{ (class 5, WC1)}
```

# 3.1.4.16 cdHR

```
double RGESolver::cdHR[3 *3] = {0.} [private] \Re \left[ C_{dH} \right] \text{ (class 5, WC1)}
```

# 3.1.4.17 cdWI

```
double RGESolver::cdWI[3 *3] = {0.} [private] \Im \left[ C_{dW} \right] \mbox{ (class 6, WC1)} \label{eq:cdwI}
```

#### 3.1.4.18 cdWR

```
double RGESolver::cdWR[3 *3] = {0.} [private] \Re \left[ C_{dW} \right] \mbox{ (class 6, WC1)} \label{eq:RGESolver:cdWR}
```

# 3.1.4.19 ceBI

```
double RGESolver::ceBI[3 *3] = {0.} [private] \Im \left[ C_{eB} \right] \mbox{ (class 6, WC1)} \label{eq:ceBI}
```

# 3.1.4.20 ceBR

```
double RGESolver::ceBR[3 *3] = {0.} [private] \Re \left[ C_{eB} \right] \mbox{ (class 6, WC1)}
```

# 3.1.4.21 cedl

```
double RGESolver::cedI[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{ed} \right] \text{ (class 8-[RR][RR], WC7I)}
```

# 3.1.4.22 cedR

```
double RGESolver::cedR[3 *3 *3 *3] = {0.} [private] \Re\left[C_{ed}\right] \text{ (class 8-[RR][RR], WC7R)}
```

# 3.1.4.23 ceel

```
double RGESolver::ceeI[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{ee} \right] \mbox{ (class 8-[RR][RR], WC8I)}
```

#### 3.1.4.24 ceeR

```
double RGESolver::ceeR[3 *3 *3 *3] = {0.} [private] \Re\left[C_{ee}\right] \text{ (class 8-[RR][RR], WC8R)}
```

# 3.1.4.25 ceHI

```
double RGESolver::ceHI[3 *3] = {0.} [private] \Im \left[ C_{eH} \right] \text{ (class 5, WC1)}
```

# 3.1.4.26 ceHR

```
double RGESolver::ceHR[3 *3] = {0.} [private] \Re \left[ C_{eH} \right] \mbox{ (class 5, WC1)} \label{eq:continuous}
```

# 3.1.4.27 ceul

```
double RGESolver::ceuI[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{eu} \right] \text{ (class 8-[RR][RR], WC7I)}
```

# 3.1.4.28 ceuR

```
double RGESolver::ceuR[3 *3 *3 *3] = {0.} [private] \Re\left[C_{eu}\right] \text{ (class 8-[RR][RR], WC7R)}
```

```
3.1.4.29 ceWI
```

```
double RGESolver::ceWI[3 *3] = {0.} [private] \Im \left[ C_{eW} \right] \mbox{ (class 6, WC1)} \label{eq:constraint}
```

#### 3.1.4.30 ceWR

```
double RGESolver::ceWR[3 *3] = {0.} [private] \Re \left[ C_{eW} \right] \mbox{ (class 6, WC1)}
```

# 3.1.4.31 cF2

```
const double RGESolver::cF2 = double(3. / 4.) [static], [private]
```

# $\mathbf{SU}(\mathbf{2})$ fundamental Casimir

# 3.1.4.32 cF3

```
const double RGESolver::cF3 = double(0.5 * (NC*NC - 1) / NC) [static], [private]
```

# $\mathbf{SU}(3)$ fundamental Casimir

# 3.1.4.33 cG

```
double RGESolver::cG = 0. [private]
```

# 3.1.4.34 cGT

 $C_G$  (class 1, scalar)

```
double RGESolver::cGT = 0. [private]
```

 $C_{\tilde{G}}$  (class 1, scalar)

# 3.1.4.35 cH

```
double RGESolver::cH = 0. [private] C_H (class 2, scalar)
```

# 3.1.4.36 cHB

```
double RGESolver::cHB = 0. [private] C_{HB} \; \mbox{(class 4, scalar)} \label{eq:chb}
```

# 3.1.4.37 cHBOX

```
double RGESolver::cHBOX = 0. [private] C_{H\square} \mbox{ (class 3, scalar)} \label{eq:chbox}
```

# 3.1.4.38 cHBT

```
double RGESolver::cHBT = 0. [private] C_{H\tilde{B}} \; \text{(class 4, scalar)} \label{eq:chbT}
```

# 3.1.4.39 cHD

```
double RGESolver::cHD = 0. [private] C_{HD} \mbox{ (class 3, scalar)} \label{eq:chd}
```

# 3.1.4.40 cHdI

```
double RGESolver::cHdI[3 *3] = {0.} [private] \Im \left[ C_{Hd} \right] \mbox{ (class 7, WC2I)}
```

# 3.1.4.41 cHdR

```
double RGESolver::cHdR[3 *3] = {0.} [private] \Re \left[ C_{Hd} \right] \text{ (class 7, WC2R)}
```

# 3.1.4.42 cHel

```
double RGESolver::cHeI[3 *3] = {0.} [private] \Im \left[ C_{He} \right] \mbox{ (class 7, WC2I)}
```

# 3.1.4.43 cHeR

```
double RGESolver::cHeR[3 *3] = {0.} [private] \Re \left[ C_{He} \right] \text{ (class 7, WC2R)}
```

# 3.1.4.44 cHG

```
double RGESolver::cHG = 0. [private] C_{HG} \mbox{ (class 4, scalar)} \label{eq:chg}
```

# 3.1.4.45 cHGT

```
double RGESolver::cHGT = 0. [private] C_{H\tilde{G}} \; \mbox{(class 4, scalar)} \label{eq:chgt}
```

# 3.1.4.46 cHI1I

```
double RGESolver::cHl1I[3 *3] = {0.} [private] \Im \left[ C_{Hl1} \right] \mbox{ (class 7, WC2I)}
```

# 3.1.4.47 cHI1R

```
double RGESolver::cHl1R[3 *3] = {0.} [private] \Re \left[ C_{Hl1} \right] \text{ (class 7, WC2R)}
```

#### 3.1.4.48 cHI3I

```
double RGESolver::cHl3I[3 *3] = {0.} [private] \Im \left[ C_{Hl3} \right] \mbox{ (class 7, WC2I)}
```

# 3.1.4.49 cHI3R

```
double RGESolver::cHl3R[3 *3] = {0.} [private] \Re \left[ C_{Hl3} \right] \text{ (class 7, WC2R)}
```

# 3.1.4.50 cHq1I

```
double RGESolver::cHq1I[3 *3] = {0.} [private] \Im \left[ C_{Hq1} \right] \mbox{ (class 7, WC2I)}
```

# 3.1.4.51 cHq1R

```
double RGESolver::cHq1R[3 *3] = {0.} [private] \Re \left[ C_{Hq1} \right] \text{ (class 7, WC2R)}
```

# 3.1.4.52 cHq3I

```
double RGESolver::cHq3I[3 *3] = {0.} [private] \Im \left[ C_{Hq3} \right] \mbox{ (class 7, WC2I)}
```

# 3.1.4.53 cHq3R

```
double RGESolver::cHq3R[3 *3] = {0.} [private] \Re \left[ C_{Hq3} \right] \mbox{ (class 7, WC2R)}
```

#### 3.1.4.54 cHudl

```
double RGESolver::cHudI[3 *3] = {0.} [private] \Im \left[ C_{Hud} \right] \mbox{ (class 7, WC1)}
```

# 3.1.4.55 cHudR

```
double RGESolver::cHudR[3 *3] = {0.} [private] \Re \left[ C_{Hud} \right] \text{ (class 7, WC1)}
```

# 3.1.4.56 cHul

```
double RGESolver::cHuI[3 *3] = {0.} [private] \Im \left[ C_{Hu} \right] \mbox{ (class 7, WC2I)}
```

# 3.1.4.57 cHuR

```
double RGESolver::cHuR[3 *3] = {0.} [private] \Re \left[ C_{Hu} \right] \text{ (class 7, WC2R)}
```

# 3.1.4.58 cHW

```
double RGESolver::cHW = 0. [private] C_{HW} \; \mbox{(class 4, scalar)} \label{eq:chw}
```

# 3.1.4.59 cHWB

```
double RGESolver::cHWB = 0. [private]
```

 $C_{HWB}$  (class 4, scalar)

# 3.1.4.60 cHWBT

```
double RGESolver::cHWBT = 0. [private]
```

 $C_{H\tilde{W}B}$  (class 4, scalar)

# 3.1.4.61 cHWT

```
double RGESolver::cHWT = 0. [private]
```

 $C_{H\tilde{W}}$  (class 4, scalar)

# 3.1.4.62 CKM

```
gslpp::matrix<gslpp::complex> RGESolver::CKM = gslpp::matrix<gslpp::complex>(3, 3, 0.) [private]
```

The CKM matrix.

# 3.1.4.63 CKM\_delta

```
double RGESolver::CKM_delta = 3.14 / 4. [private]
```

# 3.1.4.64 CKM\_theta12

```
double RGESolver::CKM_theta12 = 0.2 [private]
```

 $\theta_{12}$  of the CKM matrix (in radians). The default value is  $\ref{eq:thmodel}$ 

# 3.1.4.65 CKM\_theta13

```
double RGESolver::CKM_theta13 = 0.1 [private]
```

# 3.1.4.66 CKM\_theta23

```
double RGESolver::CKM_theta23 = 0.3 [private]
```

#### 3.1.4.67 cldl

```
double RGESolver::cldI[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{ld} \right] \mbox{ (class 8-[LL][RR], WC7I)}
```

# 3.1.4.68 cldR

```
double RGESolver::cldR[3 *3 *3 *3] = {0.} [private] \Re \left[ C_{ld} \right] \text{ (class 8-[LL][RR], WC7R)}
```

# 3.1.4.69 cledql

```
double RGESolver::cledqI[3 *3 *3 *3] = {0.} [private] \Im\left[C_{ledq}\right] \text{ (class 8-[LR][RL], WC5)}
```

# 3.1.4.70 cledqR

```
double RGESolver::cledqR[3 *3 *3 *3] = {0.} [private] \Re\left[C_{ledq}\right] \text{ (class 8-[LR][RL], WC5)}
```

# 3.1.4.71 clel

```
double RGESolver::cleI[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{le} \right] \mbox{ (class 8-[LL][RR], WC7I)}
```

# 3.1.4.72 clequ1I

```
double RGESolver::clequ1I[3 *3 *3 *3] = {0.} [private] \Im\left[C_{lequ1}\right] \text{ (class 8-[LR][LR], WC5)}
```

# 3.1.4.73 clequ1R

```
double RGESolver::clequ1R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{lequ1}\right] \text{ (class 8-[LR][LR], WC5)}
```

# 3.1.4.74 clequ3l

```
double RGESolver::clequ3I[3 *3 *3 *3] = {0.} [private] \Im \left[C_{lequ3}\right] \mbox{ (class 8-[LR][LR], WC5)}
```

# 3.1.4.75 clequ3R

```
double RGESolver::clequ3R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{lequ3}\right] \text{ (class 8-[LR][LR], WC5)}
```

# 3.1.4.76 cleR

```
double RGESolver::cleR[3 *3 *3 *3] = {0.} [private] \Re \left[ C_{le} \right] \text{ (class 8-[LL][RR], WC7R)}
```

# 3.1.4.77 clll

```
double RGESolver::cllI[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{ll} \right] \text{ (class 8-[LL][LL], WC6I)}
```

#### 3.1.4.78 clIR

```
double RGESolver::cllR[3 *3 *3 *3] = {0.} [private] \Re \left[ C_{ll} \right] \text{ (class 8-[LL][LL], WC6R)}
```

# 3.1.4.79 clq1l

```
double RGESolver::clq1I[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{lq1} \right] \mbox{ (class 8-[LL][LL], WC7I)}
```

# 3.1.4.80 clq1R

```
double RGESolver::clq1R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{lq1}\right] \text{ (class 8-[LL][LL], WC7R)}
```

# 3.1.4.81 clq3l

```
double RGESolver::clq3I[3 *3 *3 *3] = {0.} [private] \Im\left[C_{lq3}\right] \mbox{ (class 8-[LL][LL], WC7I)}
```

# 3.1.4.82 clq3R

```
double RGESolver::clq3R[3 *3 *3 *3] = {0.} [private] \Re \left[ C_{lq3} \right] \mbox{ (class 8-[LL][LL], WC7R)}
```

# 3.1.4.83 clul

```
double RGESolver::cluI[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{lu} \right] \text{ (class 8-[LL][RR], WC7I)}
```

#### 3.1.4.84 cluR

```
double RGESolver::cluR[3 *3 *3 *3] = {0.} [private] \Re\left[C_{lu}\right] \text{ (class 8-[LL][RR], WC7R)}
```

# 3.1.4.85 con\_

```
gsl_odeiv2_control* RGESolver::con_ [private]
```

# Initial value:

# 3.1.4.86 cqd1I

```
double RGESolver::cqd1I[3 *3 *3 *3] = {0.} [private] \Im\left[C_{qd1}\right] \text{ (class 8-[LL][RR], WC7I)}
```

#### 3.1.4.87 cqd1R

```
double RGESolver::cqd1R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{qd1}\right] \text{ (class 8-[LL][RR], WC7R)}
```

# 3.1.4.88 cqd8I

```
double RGESolver::cqd8I[3 *3 *3 *3] = {0.} [private] \Im\left[C_{qd8}\right] \text{ (class 8-[LL][RR], WC7I)}
```

# 3.1.4.89 cqd8R

```
double RGESolver::cqd8R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{qd8}\right] \text{ (class 8-[LL][RR], WC7R)}
```

# 3.1.4.90 cqel

```
double RGESolver::cqeI[3 *3 *3 *3] = {0.} [private] \Im\left[C_{qe}\right] \text{ (class 8-[LL][RR], WC7I)}
```

# 3.1.4.91 cqeR

```
double RGESolver::cqeR[3 *3 *3 *3] = {0.} [private] \Re\left[C_{qe}\right] \text{ (class 8-[LL][RR], WC7R)}
```

# 3.1.4.92 cqq1I

```
double RGESolver::cqq1I[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{qq1} \right] \mbox{ (class 8-[LL][LL], WC6I)}
```

# 3.1.4.93 cqq1R

```
double RGESolver::cqq1R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{qq1}\right] \text{ (class 8-[LL][LL], WC6R)}
```

# 3.1.4.94 cqq3I

```
double RGESolver::cqq3I[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{qq3} \right] \mbox{ (class 8-[LL][LL], WC6I)}
```

# 3.1.4.95 cqq3R

```
double RGESolver::cqq3R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{qq3}\right] \text{ (class 8-[LL][LL], WC6R)}
```

# 3.1.4.96 cqu1l

```
double RGESolver::cqu1I[3 *3 *3 *3] = {0.} [private] \Im\left[C_{qu1}\right] \text{ (class 8-[LL][RR], WC7I)}
```

# 3.1.4.97 cqu1R

```
double RGESolver::cqu1R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{qu1}\right] \text{ (class 8-[LL][RR], WC7R)}
```

# 3.1.4.98 cqu8l

```
double RGESolver::cqu8I[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{qu8} \right] \text{ (class 8-[LL][RR], WC7I)}
```

# 3.1.4.99 cqu8R

```
double RGESolver::cqu8R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{qu8}\right] \text{ (class 8-[LL][RR], WC7R)}
```

# 3.1.4.100 cquqd1l

```
double RGESolver::cquqd1I[3 *3 *3 *3] = {0.} [private] \Im\left[C_{quqd1}\right] \text{ (class 8-[LR][LR], WC5)}
```

# 3.1.4.101 cquqd1R

```
double RGESolver::cquqd1R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{quqd1}\right] \text{ (class 8-[LR][LR], WC5)}
```

# 3.1.4.102 cquqd8l

```
double RGESolver::cquqd8I[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{quqd8} \right] \mbox{ (class 8-[LR][LR], WC5)}
```

# 3.1.4.103 cquqd8R

```
double RGESolver::cquqd8R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{quqd8}\right] \text{ (class 8-[LR][LR], WC5)}
```

# 3.1.4.104 cuBl

```
double RGESolver::cuBI[3 *3] = {0.} [private] \Im \left[ C_{uB} \right] \mbox{ (class 6, WC1)}
```

# 3.1.4.105 cuBR

```
double RGESolver::cuBR[3 *3] = {0.} [private] \Re \left[ C_{uB} \right] \mbox{ (class 6, WC1)}
```

# 3.1.4.106 cud1l

```
double RGESolver::cud1I[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{ud1} \right] \text{ (class 8-[RR][RR], WC7I)}
```

# 3.1.4.107 cud1R

```
double RGESolver::cud1R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{ud1}\right] \text{ (class 8-[RR][RR], WC7R)}
```

#### 3.1.4.108 cud8l

```
double RGESolver::cud8I[3 *3 *3 *3] = {0.} [private] \Im\left[C_{ud1}\right] \text{ (class 8-[RR][RR], WC7I)}
```

# 3.1.4.109 cud8R

```
double RGESolver::cud8R[3 *3 *3 *3] = {0.} [private] \Re\left[C_{ud8}\right] \text{ (class 8-[RR][RR], WC7R)}
```

# 3.1.4.110 cuGI

```
double RGESolver::cuGI[3 *3] = {0.} [private] \Im \left[ C_{uG} \right] \mbox{ (class 6, WC1)}
```

# 3.1.4.111 cuGR

```
double RGESolver::cuGR[3 *3] = {0.} [private] \Re \left[ C_{uG} \right] \mbox{ (class 6, WC1)}
```

# 3.1.4.112 cuHl

```
double RGESolver::cuHI[3 *3] = {0.} [private] \Im \left[ C_{uH} \right] \mbox{ (class 5, WC1)}
```

# 3.1.4.113 cuHR

```
double RGESolver::cuHR[3 *3] = {0.} [private] \Re \left[ C_{uH} \right] \text{ (class 5, WC1)}
```

#### 3.1.4.114 cuul

```
double RGESolver::cuuI[3 *3 *3 *3] = {0.} [private] \Im \left[ C_{uu} \right] \text{ (class 8-[RR][RR], WC6I)}
```

# 3.1.4.115 cuuR

```
double RGESolver::cuuR[3 *3 *3 *3] = {0.} [private] \Re\left[C_{uu}\right] \text{ (class 8-[RR][RR], WC6R)}
```

# 3.1.4.116 cuWI

```
double RGESolver::cuWI[3 *3] = {0.} [private] \Im \left[ C_{uW} \right] \mbox{ (class 6, WC1)}
```

# 3.1.4.117 cuWR

```
double RGESolver::cuWR[3 *3] = {0.} [private] \Re \left[ C_{uW} \right] \mbox{ (class 6, WC1)}
```

# 3.1.4.118 cW

```
double RGESolver::cW = 0. [private] C_W \mbox{ (class 1, scalar)} \label{eq:cw}
```

# 3.1.4.119 cWT

```
double RGESolver::cWT = 0. [private] C_{\tilde{W}} \; \text{(class 1, scalar)} \label{eq:cwt}
```

# 3.1.4.120 delta

```
const double RGESolver::delta [static], [private]
```

```
Initial value:
= {
     {1., 0., 0.},
     { 0., 1., 0.},
     { 0., 0., 1.}
}
```

Kroenecker delta in flavour space.

# 3.1.4.121 DF

```
const int RGESolver::DF = 9 [static], [private]
```

Dimension of matrices in flavour space.

# 3.1.4.122 DFa

```
const int RGESolver::DFa = (NG*NG - NG) / 2 [static], [private]
```

Independent entries of a  $N_G \times N_G$  real anti-symmetric matrix.

# 3.1.4.123 DFs

```
const int RGESolver::DFs = (NG*NG + NG) / 2 [static], [private]
```

Independent entries of a  $N_G \times N_G$  real symmetric matrix.

#### 3.1.4.124 dim

```
const int RGESolver::dim = (Ngauge + Nh + Eyuk + N1 + N23 + N4 + E5 + E6 + E7 + E8_LLLL +
E8_RRRR + E8_LLRR + E8_LRRL + E8_LRLR) [static], [private]
```

Dimension of the system.

# 3.1.4.125 DWC2I

```
const int RGESolver::DWC2I = 3 [static], [private]
```

Number of independent entries of the imaginary part of operators in symmetry class WC2.

#### 3.1.4.126 DWC2R

```
const int RGESolver::DWC2R = 6 [static], [private]
```

Number of independent entries of the real part of operators in symmetry class WC2.

# 3.1.4.127 DWC6I

```
const int RGESolver::DWC6I = 18 [static], [private]
```

Number of independent entries of the imaginary part of operators in symmetry class WC6.

# 3.1.4.128 DWC6R

```
const int RGESolver::DWC6R = 27 [static], [private]
```

Number of independent entries of the real part of operators in symmetry class WC6.

#### 3.1.4.129 DWC7I

```
const int RGESolver::DWC7I = 36 [static], [private]
```

Number of independent entries of the imaginary part of operators in symmetry class WC7.

#### 3.1.4.130 DWC7R

```
const int RGESolver::DWC7R = 45 [static], [private]
```

Number of independent entries of the real part of operators in symmetry class WC7.

# 3.1.4.131 DWC8I

```
const int RGESolver::DWC8I = 15 [static], [private]
```

Number of independent entries of the imaginary part of operators in symmetry class WC8.

# 3.1.4.132 DWC8R

```
const int RGESolver::DWC8R = 21 [static], [private]
```

Number of independent entries of the real part of operators in symmetry class WC8.

# 3.1.4.133 E5

```
const int RGESolver::E5 = (N5 * 2 * DF) [static], [private]
```

# 3.1.4.134 E6

```
const int RGESolver::E6 = (N6 * 2 * DF) [static], [private]
```

# 3.1.4.135 E7

```
const int RGESolver::E7 = (N7H*(DWC2R + DWC2I) + N7NH * 2 * DF) [static], [private]
```

# 3.1.4.136 E8\_LLLL

# 3.1.4.137 E8\_LLRR

```
const int RGESolver::E8_LLRR = 8 * (DWC7R + DWC7I) [static], [private]
```

# 3.1.4.138 E8 LRLR

```
const int RGESolver::E8_LRLR = 2 * NG*NG*NG*NG*N8_LRLR [static], [private]
```

# 3.1.4.139 E8\_LRRL

```
const int RGESolver::E8_LRRL = 2 * NG*NG*NG*NG*N8_LRRL [static], [private]
```

# 3.1.4.140 E8\_RRRR

```
const int RGESolver::E8_RRRR = 4 * (DWC7R + DWC7I) + 2 * (DWC6R + DWC6I) + 1 * (DWC8R + DWC8I) [static], [private]
```

# 3.1.4.141 **EIGHT\_THIRDS**

```
const double RGESolver::EIGHT_THIRDS = (8. / 3.) [static], [private]
```

# 3.1.4.142 epsabs\_

```
double RGESolver::epsabs_ = 0.0001 [private]
```

Absolute error used in the integrator with its default value.

# 3.1.4.143 epsrel\_

```
double RGESolver::epsrel_ = 0.000000000000000 [private]
```

Relative error used in the integrator with its default value.

().

# 3.1.4.144 evo\_

```
gsl_odeiv2_evolve* RGESolver::evo_ = gsl_odeiv2_evolve_alloc(2558) [private]
```

# 3.1.4.145 Eyuk

```
const int RGESolver::Eyuk = (Nyukawa * 2 * DF) [static], [private]
```

Number of real parameters for each Yukawa matrix.

# 3.1.4.146 FOUR\_THIRDS

```
const double RGESolver::FOUR_THIRDS = (4. / 3.) [static], [private]
```

# 3.1.4.147 g1

```
double RGESolver::g1 [private]
```

 $g_1$ 

#### 3.1.4.148 g2

```
double RGESolver::g2 [private]
```

 $g_2$ 

# 3.1.4.149 g3

```
double RGESolver::g3 [private]
```

 $g_3$ 

# 3.1.4.150 Getter2F

std::unordered\_map<std::string, boost::function<double(int, int) > > RGESolver::Getter2F
[private]

#### 3.1.4.151 Getter4F

 $std::unordered\_map < std::string, boost::function < double(int, int, int, int) >> RGESolver:: \leftarrow Getter4F \ [private]$ 

# 3.1.4.152 InputScale\_SM

```
double RGESolver::InputScale_SM = 91. [private]
```

the scale at which the method  ${\tt GenerateSMInitialConditions}$  takes the input values for SM parameters.

#### 3.1.4.153 lambda

```
double RGESolver::lambda = 0.2 [private]
```

# $\lambda$ (Higgs quartic coupling)

See https://arxiv.org/pdf/1308.2627.pdf for the normalization

# 3.1.4.154 mb

```
double RGESolver::mb = 5.2 [private]
```

# 3.1.4.155 mc

```
double RGESolver::mc = 1.2 [private]
```

#### 3.1.4.156 md

double RGESolver::md = 0.006 [private]

# 3.1.4.157 mel

```
double RGESolver::mel = 0.0005 [private]
```

# 3.1.4.158 mh2

```
double RGESolver::mh2 = 126. * 126. [private] m_h^2 \mbox{ (Higgs boson mass squared)} \label{eq:mb2}
```

See https://arxiv.org/pdf/1308.2627.pdf for the normalization

#### 3.1.4.159 mmu

```
double RGESolver::mmu = 0.100 [private]
```

# 3.1.4.160 ms

```
double RGESolver::ms = 0.05 [private]
```

#### 3.1.4.161 mt

```
double RGESolver::mt = 170. [private]
```

# 3.1.4.162 mtau

```
double RGESolver::mtau = 1.2 [private]
```

# 3.1.4.163 mu

```
double RGESolver::mu = 0.002 [private]
```

 $m_{u}$  , the mass of up quark in  $\ensuremath{\operatorname{GeV}}$  (default value  $\ref{eq:constraint}$  ).

# 3.1.4.164 N1

```
const int RGESolver::N1 = 4 [static], [private]
```

# 3.1.4.165 N23

```
const int RGESolver::N23 = 3 [static], [private]
```

# 3.1.4.166 N4

```
const int RGESolver::N4 = 8 [static], [private]
```

# 3.1.4.167 N5

```
const int RGESolver::N5 = 3 [static], [private]
```

# 3.1.4.168 N6

```
const int RGESolver::N6 = 8 [static], [private]
```

# 3.1.4.169 N7

```
const int RGESolver::N7 = 8 [static], [private]
```

# 3.1.4.170 N7H

```
const int RGESolver::N7H = 7 [static], [private]
```

Number of Hermitian operators in class 7.

# 3.1.4.171 N7NH

```
const int RGESolver::N7NH = 1 [static], [private]
```

Number of non-Hermitian operators in class 7.

# 3.1.4.172 N8\_LLLL

```
const int RGESolver::N8_LLLL = 5 [static], [private]
```

# 3.1.4.173 N8\_LLRR

```
const int RGESolver::N8_LLRR = 8 [static], [private]
```

# 3.1.4.174 N8\_LRLR

```
const int RGESolver::N8_LRLR = 4 [static], [private]
```

# 3.1.4.175 N8\_LRRL

```
const int RGESolver::N8_LRRL = 1 [static], [private]
```

# 3.1.4.176 N8 RRRR

```
const int RGESolver::N8_RRRR = 7 [static], [private]
```

#### 3.1.4.177 NC

```
const double RGESolver::NC = 3. [static], [private]
```

Number of colors.

# 3.1.4.178 NC2

```
const double RGESolver::NC2 = 9. [static], [private]
```

Number of colors squared.

# 3.1.4.179 NG

```
const int RGESolver::NG = 3 [static], [private]
```

Number of fermion flavours.

# 3.1.4.180 Ngauge

```
const int RGESolver::Ngauge = 3 [static], [private]
```

Number of gauge couplings.

# 3.1.4.181 Nh

```
const int RGESolver::Nh = 2 [static], [private]
```

Number of Higgs' sector parameters.

# 3.1.4.182 Nyukawa

```
const int RGESolver::Nyukawa = 3 [static], [private]
```

Number of Yukawa matrices.

# 3.1.4.183 ONE\_SIXTH

```
const double RGESolver::ONE_SIXTH = (1. / 6.) [static], [private]
```

# 3.1.4.184 ONE\_THIRD

```
const double RGESolver::ONE_THIRD = (1. / 3.) [static], [private]
```

# 3.1.4.185 Operators0F

```
std::unordered_map<std::string, double*> RGESolver::OperatorsOF [private]
```

# 3.1.4.186 s12

```
double RGESolver::s12 [private] \sin\theta_{12}
```

# 3.1.4.187 s13

```
double RGESolver::s13 [private] \sin\theta_{13}
```

# 3.1.4.188 s23

```
double RGESolver::s23 [private] \sin\theta_{23}
```

# 3.1.4.189 s\_

```
gsl_odeiv2_step* RGESolver::s_ [private]
```

# Initial value:

# 3.1.4.190 Setter2F

```
\label{thm:condition} $$ std::unordered_map < std::string, boost::function < void(int, int, double) >> RGESolver:: \leftarrow Setter2F [private]
```

# 3.1.4.191 Setter4F

```
std::unordered_map<std::string, boost::function<void(int, int, int, int, double) >> RGE← Solver::Setter4F [private]
```

# 3.1.4.192 step\_

```
double RGESolver::step_ [private]
```

Last step used in the integrator.

# 3.1.4.193 sys\_

```
gsl_odeiv2_system RGESolver::sys_ = {func, NULL, 3} [private]
```

# 3.1.4.194 TEN\_THIRDS

```
const double RGESolver::TEN_THIRDS = (10. / 3.) [static], [private]
```

# 3.1.4.195 TWO\_THIRDS

```
const double RGESolver::TWO_THIRDS = (2. / 3.) [static], [private]
```

# 3.1.4.196 WC2I\_indices

```
const int RGESolver::WC2I_indices [static], [private]
```

#### Initial value:

Independent indices for WC2I.

# 3.1.4.197 WC2R\_indices

```
const int RGESolver::WC2R_indices [static], [private]
Initial value:
     {0, 0},
    {0, 1},
{0, 2},
{1, 1},
     {1, 2},
{2, 2}
```

Independent indices for WC2R.

### 3.1.4.198 WC6I indices

```
const int RGESolver::WC6I_indices [static], [private]
```

```
Initial value:
              {0, 0, 0, 2},
            {0, 0, 0, 2},

{0, 0, 1, 2},

{0, 1, 0, 1},

{0, 1, 0, 2},

{0, 1, 1, 1},

{0, 1, 1, 2},

{0, 1, 2, 0},

{0, 1, 2, 1},
             {0, 1, 2, 1},

{0, 1, 2, 2},

{0, 2, 0, 2},

{0, 2, 1, 1},

{0, 2, 1, 2},
              {0, 2, 2, 1},
{0, 2, 2, 1},
{0, 2, 2, 2},
              {1, 1, 1, 2},
{1, 2, 1, 2},
              {1, 2, 2, 2}
```

Independent indices for WC6I.

# 3.1.4.199 WC6R\_indices

```
const int RGESolver::WC6R_indices [static], [private]
```

### Initial value:

```
{0, 0, 0, 0},
{0, 0, 0, 1},
{0, 0, 0, 2},
{0, 0, 1, 1},
{0, 0, 1, 2}, 
{0, 0, 2, 2},
{0, 1, 0, 1},
{0, 1, 0, 2},
{0, 1, 1, 0},
{0, 1, 1, 1},
{0, 1, 2, 0},
{0, 1, 2, 1},
{0, 1, 2, 2},
{0, 2, 0, 2},
{0, 2, 1, 1},
```

```
{0, 2, 1, 2},

{0, 2, 2, 0},

{0, 2, 2, 1},

{0, 2, 2, 2},

{1, 1, 1, 1},

{1, 1, 2},

{1, 2, 2},

{1, 2, 2, 1},

{1, 2, 2, 2},

{2, 2, 2, 2}
```

Independent indices for WC6R.

# 3.1.4.200 WC7I\_indices

```
const int RGESolver::WC7I_indices [static], [private]
```

Independent indices for WC7I.

### 3.1.4.201 WC7R indices

```
const int RGESolver::WC7R_indices [static], [private]
```

Independent indices for WC7R.

# 3.1.4.202 WC8I\_indices

```
const int RGESolver::WC8I_indices [static], [private]
```

# Initial value:

Independent indices for WC8I.

# 3.1.4.203 WC8R\_indices

Independent indices for WC8R.

### 3.1.4.204 x

```
double RGESolver::x[2558] [private]
```

1D array for the integration

# 3.1.4.205 Yd

```
const double RGESolver::Yd = (- 1. / 3.) [static], [private]
```

# 3.1.4.206 Yd2

```
const double RGESolver::Yd2 = Yd*Yd [static], [private]
```

# 3.1.4.207 ydl

```
double RGESolver::ydI[3][3] [private]
```

# 3.1.4.208 ydR

```
double RGESolver::ydR[3][3] [private]
```

### 3.1.4.209 YdYe

```
const double RGESolver::YdYe = Yd*Ye [static], [private]
```

# 3.1.4.210 YdYI

```
const double RGESolver::YdYl = Yd*Yl [static], [private]
```

# 3.1.4.211 YdYq

```
const double RGESolver::YdYq = Yd*Yq [static], [private]
```

# 3.1.4.212 Ye

```
const double RGESolver::Ye = (- 1.) [static], [private]
```

# 3.1.4.213 Ye2

```
const double RGESolver::Ye2 = Ye*Ye [static], [private]
```

# 3.1.4.214 yel

```
double RGESolver::yeI[3][3] [private]
```

# 3.1.4.215 yeR

```
double RGESolver::yeR[3][3] [private]
```

# 3.1.4.216 YeYI

```
const double RGESolver::YeYl = Ye*Yl [static], [private]
```

# 3.1.4.217 YeYq

```
const double RGESolver::YeYq = Ye*Yq [static], [private]
```

# 3.1.4.218 Yh

```
const double RGESolver::Yh = (0.5) [static], [private]
```

### 3.1.4.219 Yh2

```
const double RGESolver::Yh2 = Yh*Yh [static], [private]
```

# 3.1.4.220 YhYd

```
const double RGESolver::YhYd = Yh*Yd [static], [private]
```

# 3.1.4.221 YhYe

```
const double RGESolver::YhYe = Yh*Ye [static], [private]
```

# 3.1.4.222 YhYl

```
const double RGESolver::YhYl = Yh*Yl [static], [private]
```

# 3.1.4.223 YhYq

```
const double RGESolver::YhYq = Yh*Yq [static], [private]
```

# 3.1.4.224 YhYu

```
const double RGESolver::YhYu = Yh*Yu [static], [private]
```

### 3.1.4.225 YI

```
const double RGESolver::Yl = (- 0.5) [static], [private]
```

# 3.1.4.226 YI2

```
const double RGESolver::Yl2 = Yl*Yl [static], [private]
```

# 3.1.4.227 YIYq

```
const double RGESolver::YlYq = Yl*Yq [static], [private]
```

# 3.1.4.228 Yq

```
const double RGESolver::Yq = (1. / 6.) [static], [private]
```

# 3.1.4.229 Yq2

```
const double RGESolver::Yq2 = Yq*Yq [static], [private]
```

# 3.1.4.230 Yu

```
const double RGESolver::Yu = (2. / 3.) [static], [private]
```

# 3.1.4.231 Yu2

```
const double RGESolver::Yu2 = Yu*Yu [static], [private]
```

# 3.1.4.232 yul

```
double RGESolver::yuI[3][3] [private]
```

# 3.1.4.233 yuR

```
double RGESolver::yuR[3][3] [private]
```

# 3.1.4.234 YuYd

```
const double RGESolver::YuYd = Yu*Yd [static], [private]
```

### 3.1.4.235 YuYe

```
const double RGESolver::YuYe = Yu*Ye [static], [private]
```

# 3.1.4.236 YuYl

```
const double RGESolver::YuYl = Yu*Yl [static], [private]
```

# 3.1.4.237 YuYq

```
const double RGESolver::YuYq = Yu*Yq [static], [private]
```

The documentation for this class was generated from the following files:

- RGESolver.h
- RGESolver.cc
- StaticMembers.cc
- BetaFunction.cc
- SettersAndGetters.cc

# **Chapter 4**

# **File Documentation**

# 4.1 BetaFunction.cc File Reference

# 4.2 RGESolver.cc File Reference

```
#include "RGESolver.h"
#include <boost/bind/bind.hpp>
#include "StaticMembers.cc"
#include "SettersAndGetters.cc"
#include "SMInput.cc"
#include "BetaFunction.cc"
```

# 4.3 RGESolver.h File Reference

```
#include <iostream>
#include <cmath>
#include <fstream>
#include <sstream>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv2.h>
#include <unordered_map>
#include <boost/function.hpp>
#include "src/gslpp.h"
```

#### **Classes**

· class RGESolver

A class that performs renormalization group evolution in the context of the SMEFT.

# 4.4 SettersAndGetters.cc File Reference

# 4.5 StaticMembers.cc File Reference

72 File Documentation

# Index

| RGESolver, 34         |
|-----------------------|
| ceeR                  |
| RGESolver, 35         |
| ceHI                  |
| RGESolver, 35         |
| ceHR                  |
| RGESolver, 35 ceul    |
| RGESolver, 35         |
| ceuR                  |
| RGESolver, 35         |
| ceWI                  |
| RGESolver, 35         |
| ceWR                  |
| RGESolver, 36         |
| cF2                   |
| RGESolver, 36         |
| cF3                   |
| RGESolver, 36         |
| CG PCESolver 26       |
| RGESolver, 36 cGT     |
| RGESolver, 36         |
| cH                    |
| RGESolver, 36         |
| cHB                   |
| RGESolver, 37         |
| cHBOX                 |
| RGESolver, 37         |
| cHBT                  |
| RGESolver, 37         |
| cHD                   |
| RGESolver, 37         |
| cHdl<br>RGESolver, 37 |
| cHdR                  |
| RGESolver, 37         |
| cHel                  |
| RGESolver, 38         |
| cHeR                  |
| RGESolver, 38         |
| cHG                   |
| RGESolver, 38         |
| cHGT                  |
| RGESolver, 38         |
| cHI1I                 |
| RGESolver, 38 cHI1R   |
| RGESolver 38          |
|                       |

| -11101                 | -III                   |
|------------------------|------------------------|
| cHl3I<br>RGESolver, 39 | clll<br>RGESolver, 43  |
| cHI3R                  | cliR                   |
| RGESolver, 39          | RGESolver, 44          |
| cHq1I                  | clq1l                  |
| RGESolver, 39          | RGESolver, 44          |
| cHq1R                  | clq1R                  |
| RGESolver, 39          | RGESolver, 44          |
| cHq3I                  | clq3I                  |
| RGESolver, 39          | RGESolver, 44          |
| cHq3R                  | clq3R                  |
| RGESolver, 39          | RGESolver, 44          |
| cHudl                  | clul                   |
| RGESolver, 40          | RGESolver, 44          |
| cHudR                  | cluR                   |
| RGESolver, 40          | RGESolver, 45          |
| cHul                   | con_                   |
| RGESolver, 40          | RGESolver, 45          |
| cHuR                   | cqd1l                  |
| RGESolver, 40<br>cHW   | RGESolver, 45          |
|                        | cqd1R<br>RGESolver, 45 |
| RGESolver, 40<br>cHWB  | cqd8l                  |
| RGESolver, 40          | RGESolver, 45          |
| cHWBT                  | cqd8R                  |
| RGESolver, 41          | RGESolver, 45          |
| cHWT                   | cqel                   |
| RGESolver, 41          | RGESolver, 46          |
| CKM                    | cqeR                   |
| RGESolver, 41          | RGESolver, 46          |
| CKM_delta              | cqq1l                  |
| RGESolver, 41          | RGESolver, 46          |
| CKM_theta12            | cqq1R                  |
| RGESolver, 41          | RGESolver, 46          |
| CKM_theta13            | cqq3I                  |
| RGESolver, 41          | RGESolver, 46          |
| CKM_theta23            | cqq3R                  |
| RGESolver, 42          | RGESolver, 46          |
| cldl                   | cqu1l                  |
| RGESolver, 42<br>cldR  | RGESolver, 47          |
| RGESolver, 42          | cqu1R<br>RGESolver, 47 |
| cledgl                 | cqu8l                  |
| RGESolver, 42          | RGESolver, 47          |
| cledqR                 | cqu8R                  |
| RGESolver, 42          | RGESolver, 47          |
| clel                   | cquqd1I                |
| RGESolver, 42          | RGESolver, 47          |
| clequ1I                | cquqd1R                |
| RGESolver, 43          | RGESolver, 47          |
| clequ1R                | cquqd8I                |
| RGESolver, 43          | RGESolver, 48          |
| clequ3I                | cquqd8R                |
| RGESolver, 43          | RGESolver, 48          |
| clequ3R                | cuBl                   |
| RGESolver, 43          | RGESolver, 48          |
| cleR                   | cuBR                   |
| RGESolver, 43          | RGESolver, 48          |

| cud1l                                                                                                                                                                                                                                                                                                                  | RGESolver, 53                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RGESolver, 48                                                                                                                                                                                                                                                                                                          | E7                                                                                                                                                                                                                                                                                                             |
| cud1R                                                                                                                                                                                                                                                                                                                  | RGESolver, 53                                                                                                                                                                                                                                                                                                  |
| RGESolver, 48                                                                                                                                                                                                                                                                                                          | E8_LLLL                                                                                                                                                                                                                                                                                                        |
| cud8I                                                                                                                                                                                                                                                                                                                  | RGESolver, 53                                                                                                                                                                                                                                                                                                  |
| RGESolver, 49                                                                                                                                                                                                                                                                                                          | E8_LLRR                                                                                                                                                                                                                                                                                                        |
| cud8R                                                                                                                                                                                                                                                                                                                  | RGESolver, 53                                                                                                                                                                                                                                                                                                  |
| RGESolver, 49                                                                                                                                                                                                                                                                                                          | E8_LRLR                                                                                                                                                                                                                                                                                                        |
| cuGI                                                                                                                                                                                                                                                                                                                   | RGESolver, 54                                                                                                                                                                                                                                                                                                  |
| RGESolver, 49                                                                                                                                                                                                                                                                                                          | E8_LRRL                                                                                                                                                                                                                                                                                                        |
| cuGR                                                                                                                                                                                                                                                                                                                   | RGESolver, 54                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                |
| RGESolver, 49                                                                                                                                                                                                                                                                                                          | E8_RRRR                                                                                                                                                                                                                                                                                                        |
| cuHI                                                                                                                                                                                                                                                                                                                   | RGESolver, 54                                                                                                                                                                                                                                                                                                  |
| RGESolver, 49                                                                                                                                                                                                                                                                                                          | EIGHT_THIRDS                                                                                                                                                                                                                                                                                                   |
| cuHR                                                                                                                                                                                                                                                                                                                   | RGESolver, 54                                                                                                                                                                                                                                                                                                  |
| RGESolver, 49                                                                                                                                                                                                                                                                                                          | epsabs                                                                                                                                                                                                                                                                                                         |
| cuul                                                                                                                                                                                                                                                                                                                   | RGESolver, 18                                                                                                                                                                                                                                                                                                  |
| RGESolver, 50                                                                                                                                                                                                                                                                                                          | epsabs_                                                                                                                                                                                                                                                                                                        |
| cuuR                                                                                                                                                                                                                                                                                                                   | RGESolver, 54                                                                                                                                                                                                                                                                                                  |
| RGESolver, 50                                                                                                                                                                                                                                                                                                          | epsrel                                                                                                                                                                                                                                                                                                         |
| cuWI                                                                                                                                                                                                                                                                                                                   | RGESolver, 18                                                                                                                                                                                                                                                                                                  |
| RGESolver, 50                                                                                                                                                                                                                                                                                                          | epsrel_                                                                                                                                                                                                                                                                                                        |
| cuWR                                                                                                                                                                                                                                                                                                                   | RGESolver, 54                                                                                                                                                                                                                                                                                                  |
| RGESolver, 50                                                                                                                                                                                                                                                                                                          | evo_                                                                                                                                                                                                                                                                                                           |
| cW                                                                                                                                                                                                                                                                                                                     | RGESolver, 54                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                |
| RGESolver, 50<br>cWT                                                                                                                                                                                                                                                                                                   | Evolve                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                        | RGESolver, 18                                                                                                                                                                                                                                                                                                  |
| RGESolver, 50                                                                                                                                                                                                                                                                                                          | EvolveSMOnly                                                                                                                                                                                                                                                                                                   |
| مامانم                                                                                                                                                                                                                                                                                                                 | RGESolver, 18                                                                                                                                                                                                                                                                                                  |
| delta                                                                                                                                                                                                                                                                                                                  | ExtractParametersFromCKM                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                |
| RGESolver, 51                                                                                                                                                                                                                                                                                                          | RGESolver, 19                                                                                                                                                                                                                                                                                                  |
| DF                                                                                                                                                                                                                                                                                                                     | RGESolver, 19<br>Eyuk                                                                                                                                                                                                                                                                                          |
| DF<br>RGESolver, 51                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                |
| DF                                                                                                                                                                                                                                                                                                                     | Eyuk                                                                                                                                                                                                                                                                                                           |
| DF<br>RGESolver, 51                                                                                                                                                                                                                                                                                                    | Eyuk                                                                                                                                                                                                                                                                                                           |
| DF<br>RGESolver, 51<br>DFa                                                                                                                                                                                                                                                                                             | Eyuk<br>RGESolver, 55                                                                                                                                                                                                                                                                                          |
| DF RGESolver, 51 DFa RGESolver, 51                                                                                                                                                                                                                                                                                     | Eyuk RGESolver, 55 FOUR_THIRDS                                                                                                                                                                                                                                                                                 |
| DF RGESolver, 51 DFa RGESolver, 51 DFs                                                                                                                                                                                                                                                                                 | Eyuk<br>RGESolver, 55<br>FOUR_THIRDS<br>RGESolver, 55                                                                                                                                                                                                                                                          |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim                                                                                                                                                                                                                                                               | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas                                                                                                                                                                                                                                             |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51                                                                                                                                                                                                                                                                   | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19 func                                                                                                                                                                                                                          |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I                                                                                                                                                                                                                                           | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19                                                                                                                                                                                                           |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC21 RGESolver, 52                                                                                                                                                                                                                             | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly                                                                                                                                                                                               |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R                                                                                                                                                                                                                       | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19                                                                                                                                                                                                           |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52                                                                                                                                                                                                         | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19                                                                                                                                                                                 |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I                                                                                                                                                                                                   | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19                                                                                                                                                                                 |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52                                                                                                                                                                                     | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55                                                                                                                                                               |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6I RGESolver, 52 DWC6R                                                                                                                                                           | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2                                                                                                                                                            |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52                                                                                                                                             | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55  g2 RGESolver, 55                                                                                                                                             |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I                                                                                                                   | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcsMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55                                                                                                                                              |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52                                                                                                     | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55                                                                                                                             |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7I RGESolver, 52 DWC7R                                                                                               | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions                                                                                                 |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7I RGESolver, 52 DWC7R RGESolver, 52                                                                                 | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions RGESolver, 20                                                                                   |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7I RGESolver, 52 DWC7R                                                                                               | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions RGESolver, 20 GetCoefficient                                                                    |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7I RGESolver, 52 DWC7R RGESolver, 52                                                                                 | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions RGESolver, 20 GetCoefficient RGESolver, 20, 21                                                  |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7R RGESolver, 52 DWC7R RGESolver, 52 DWC7R RGESolver, 52 DWC7R                                                       | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions RGESolver, 20 GetCoefficient RGESolver, 20, 21 GetSMInputScale                                  |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7R RGESolver, 52 DWC8I RGESolver, 53 | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions RGESolver, 20 GetCoefficient RGESolver, 20, 21                                                  |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7I RGESolver, 52 DWC7R RGESolver, 52 DWC7R RGESolver, 52 DWC8I RGESolver, 53 DWC8R                                   | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions RGESolver, 20 GetCoefficient RGESolver, 20, 21 GetSMInputScale                                  |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7I RGESolver, 52 DWC7R RGESolver, 52 DWC7R RGESolver, 52 DWC8I RGESolver, 53 DWC8R                                   | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions RGESolver, 20 GetCoefficient RGESolver, 20, 21 GetSMInputScale RGESolver, 22                    |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7R RGESolver, 52 DWC7R RGESolver, 52 DWC8I RGESolver, 53 DWC8R RGESolver, 53                                                             | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions RGESolver, 20 GetCoefficient RGESolver, 20 GetSMInputScale RGESolver, 22 Getter2F RGESolver, 55 |
| DF RGESolver, 51 DFa RGESolver, 51 DFs RGESolver, 51 dim RGESolver, 51 DWC2I RGESolver, 52 DWC2R RGESolver, 52 DWC6I RGESolver, 52 DWC6R RGESolver, 52 DWC6R RGESolver, 52 DWC7I RGESolver, 52 DWC7R RGESolver, 52 DWC7R RGESolver, 52 DWC8I RGESolver, 53 DWC8R RGESolver, 53                                         | Eyuk RGESolver, 55  FOUR_THIRDS RGESolver, 55  FromMassesToYukawas RGESolver, 19  func RGESolver, 19  funcSMOnly RGESolver, 19  g1 RGESolver, 55 g2 RGESolver, 55 g3 RGESolver, 55 GenerateSMInitialConditions RGESolver, 20 GetCoefficient RGESolver, 20, 21 GetSMInputScale RGESolver, 22 Getter2F           |

| GoToBasisSMOnly          | RGESolver, 59                          |
|--------------------------|----------------------------------------|
| RGESolver, 22            | NC                                     |
| Init                     | RGESolver, 59                          |
| RGESolver, 22            | NC2                                    |
| InitSMOnly               | RGESolver, 59<br>NG                    |
| RGESolver, 22            | RGESolver, 60                          |
| InputScale_SM            | Ngauge                                 |
| RGESolver, 56            | RGESolver, 60                          |
|                          | Nh                                     |
| lambda                   | RGESolver, 60                          |
| RGESolver, 56            | Nyukawa                                |
| mb                       | RGESolver, 60                          |
| RGESolver, 56            | ONE_SIXTH                              |
| mc                       | RGESolver, 60                          |
| RGESolver, 56            | ONE THIRD                              |
| md                       | RGESolver, 60                          |
| RGESolver, 56            | Operators0F                            |
| mel                      | RGESolver, 61                          |
| RGESolver, 56            |                                        |
| mh2                      | Print                                  |
| RGESolver, 57            | RGESolver, 22                          |
| mmu<br>RGESolver, 57     | Reset                                  |
| ms                       | RGESolver, 23                          |
| RGESolver, 57            | RGESolver, 5                           |
| mt                       | $\sim$ RGESolver, 17                   |
| RGESolver, 57            | b01, <mark>31</mark>                   |
| mtau                     | b02, 31                                |
| RGESolver, 57            | b03, <mark>31</mark>                   |
| mu                       | c12, 31                                |
| RGESolver, 57            | c13, 31                                |
| N1                       | c23, <mark>32</mark><br>cA2, <u>32</u> |
| RGESolver, 57            | cA3, 32                                |
| N23                      | cdBI, 32                               |
| RGESolver, 58            | cdBR, 32                               |
| N4                       | cddl, 32                               |
| RGESolver, 58            | cddR, 33                               |
| N5                       | cdGI, 33                               |
| RGESolver, 58            | cdGR, 33                               |
| N6<br>RGESolver, 58      | cdHI, 33<br>cdHR, 33                   |
| N7                       | cdWI, 33                               |
| RGESolver, 58            | cdWR, 34                               |
| N7H                      | ceBI, <mark>34</mark>                  |
| RGESolver, 58            | ceBR, 34                               |
| N7NH                     | cedl, 34                               |
| RGESolver, 58            | cedR, 34                               |
| N8_LLLL                  | ceel, 34                               |
| RGESolver, 59            | ceeR, 35                               |
| N8_LLRR<br>RGESolver, 59 | ceHI, 35<br>ceHR, 35                   |
| N8_LRLR                  | ceul, 35                               |
| RGESolver, 59            | ceuR, 35                               |
| N8_LRRL                  | ceWI, 35                               |
| RGESolver, 59            | ceWR, 36                               |
| N8_RRRR                  | cF2, <mark>36</mark>                   |
|                          |                                        |

| cF3, 36                                 | cqel, 46                 |
|-----------------------------------------|--------------------------|
| cG, <mark>36</mark>                     | cqeR, 46                 |
| cGT, 36                                 | cqq1l, 46                |
| cH, 36                                  | cqq1R, 46                |
| cHB, 37                                 | cqq31, 46                |
| cHBOX, 37                               | cqq3R, 46                |
|                                         |                          |
| cHBT, 37                                | cqu1l, 47                |
| cHD, 37                                 | cqu1R, 47                |
| cHdI, 37                                | cqu8I, 47                |
| cHdR, 37                                | cqu8R, 47                |
| cHeI, <mark>38</mark>                   | cquqd1I, 47              |
| cHeR, 38                                | cquqd1R, 47              |
| cHG, 38                                 | cquqd8I, <mark>48</mark> |
| cHGT, 38                                | cquqd8R, 48              |
| cHI1I, 38                               | cuBl, 48                 |
| cHI1R, 38                               | cuBR, 48                 |
| cHI3I, 39                               | cud1I, 48                |
| cHI3R, 39                               | cud1R, 48                |
|                                         |                          |
| cHq1l, 39                               | cud8I, 49                |
| cHq1R, 39                               | cud8R, 49                |
| cHq3I, 39                               | cuGI, 49                 |
| cHq3R, <mark>39</mark>                  | cuGR, 49                 |
| cHudl, 40                               | cuHI, 49                 |
| cHudR, 40                               | cuHR, 49                 |
| cHul, 40                                | cuul, 50                 |
| cHuR, 40                                | cuuR, <mark>50</mark>    |
| cHW, 40                                 | cuWI, 50                 |
| cHWB, 40                                | cuWR, 50                 |
| cHWBT, 41                               | cW, 50                   |
| cHWT, 41                                | cWT, 50                  |
| CKM, 41                                 | delta, 51                |
| CKM delta, 41                           |                          |
| — · · · · · · · · · · · · · · · · · · · | DF, 51                   |
| CKM_theta12, 41                         | DFa, 51                  |
| CKM_theta13, 41                         | DFs, 51                  |
| CKM_theta23, 42                         | dim, 51                  |
| cldl, 42                                | DWC2I, 52                |
| cldR, 42                                | DWC2R, 52                |
| cledql, 42                              | DWC6I, 52                |
| cledqR, 42                              | DWC6R, 52                |
| clel, 42                                | DWC7I, 52                |
| clequ1I, 43                             | DWC7R, 52                |
| clequ1R, 43                             | DWC8I, 53                |
| clequ3l, 43                             | DWC8R, 53                |
| clequ3R, 43                             | E5, 53                   |
| cleR, 43                                | E6, 53                   |
| clli, 43                                | E7, 53                   |
| cliR, 44                                | E8_LLLL, 53              |
| •                                       |                          |
| clq1l, 44                               | E8_LLRR, 53              |
| clq1R, 44                               | E8_LRLR, 54              |
| clq3I, 44                               | E8_LRRL, 54              |
| clq3R, 44                               | E8_RRRR, 54              |
| clul, 44                                | EIGHT_THIRDS, 54         |
| cluR, 45                                | epsabs, 18               |
| con_, 45                                | epsabs_, 54              |
| cqd1l, 45                               | epsrel, 18               |
| cqd1R, 45                               | epsrel_, 54              |
| cqd8I, 45                               | evo_, 54                 |
| cqd8R, 45                               | Evolve, 18               |
| 1 - , -                                 |                          |
|                                         |                          |

| EvolveSMOnly, 18                | s_, 61               |
|---------------------------------|----------------------|
| ExtractParametersFromCKM, 19    | SaveOutputFile, 23   |
| Eyuk, 55                        | Set_epsabs, 23       |
| FOUR_THIRDS, 55                 | Set_epsrel, 23       |
| FromMassesToYukawas, 19         | Set_step, 23         |
| func, 19                        | SetCoefficient, 24   |
| funcSMOnly, 19                  | SetSMInputScale, 25  |
| g1, 55                          | Setter2F, 61         |
| g2, 55                          | Setter4F, 62         |
| -                               | ,                    |
| g3, 55                          | step, 25             |
| GenerateSMInitialConditions, 20 | step_, 62            |
| GetCoefficient, 20, 21          | sys_, 62             |
| GetSMInputScale, 22             | TEN_THIRDS, 62       |
| Getter2F, 55                    | TWO_THIRDS, 62       |
| Getter4F, 56                    | Update, 25           |
| GoToBasisSMOnly, 22             | UpdateCKM, 26        |
| Init, 22                        | UpdateSMOnly, 26     |
| InitSMOnly, 22                  | WC1, 26              |
| InputScale_SM, 56               | WC1_set, 26          |
| lambda, 56                      | WC2I, 26             |
| mb, 56                          | WC2I_indices, 62     |
| mc, 56                          | WC2I_set, 26         |
| md, 56                          | WC2R, 27             |
| mel, 56                         | WC2R indices, 62     |
| mh2, 57                         | WC2R set, 27         |
| mmu, 57                         | WC3, 27              |
| ms, 57                          | WC3_set, 27          |
| mt, 57                          | WC5, 27              |
| mtau, 57                        | WC5_set, 28          |
| mu, 57                          | WC6I, 28             |
| N1, 57                          | WC6I indices, 63     |
| N23. 58                         | <del>-</del>         |
| ,                               | WC6P 28              |
| N4, 58                          | WC6R, 28             |
| N5, 58                          | WC6R_indices, 63     |
| N6, 58                          | WC6R_set, 28         |
| N7, 58                          | WC7I, 29             |
| N7H, 58                         | WC7I_indices, 64     |
| N7NH, 58                        | WC7I_set, 29         |
| N8_LLLL, 59                     | WC7R, 29             |
| N8_LLRR, 59                     | WC7R_indices, 64     |
| N8_LRLR, 59                     | WC7R_set, 29         |
| N8_LRRL, 59                     | WC8I, 29             |
| N8_RRRR, 59                     | WC8I_indices, 64     |
| NC, 59                          | WC8I_set, 30         |
| NC2, 59                         | WC8R, 30             |
| NG, 60                          | WC8R_indices, 64     |
| Ngauge, 60                      | WC8R_set, 30         |
| Nh, 60                          | x, 65                |
| Nyukawa, 60                     | Yd, 65               |
| ONE SIXTH, 60                   | Yd2, 65              |
| ONE THIRD, 60                   | ydl, <mark>65</mark> |
| Operators0F, 61                 | ydR, 65              |
| Print, 22                       | YdYe, 66             |
| Reset, 23                       | YdYI, 66             |
| RGESolver, 17                   | YdYq, 66             |
| s12, 61                         | Ye, 66               |
| s13, 61                         | Ye2, 66              |
| s23, 61                         | yel, 66              |
| 32U, UI                         | y 51, 00             |

| yeR, 66                         | RGESolver, 62               |
|---------------------------------|-----------------------------|
| YeYI, 66                        | TEN THIRDS                  |
| YeYq, 67                        | TEN_THIRDS<br>RGESolver, 62 |
| Yh, 67<br>Yh2, 67               | TWO_THIRDS                  |
| YhYd, 67                        | RGESolver, 62               |
| YhYe, 67                        |                             |
| YhYI, 67                        | Update                      |
| YhYq, 67                        | RGESolver, 25               |
| YhYu, 67                        | UpdateCKM                   |
| YI, 68                          | RGESolver, 26               |
| YI2, 68                         | UpdateSMOnly                |
| YIYq, 68                        | RGESolver, 26               |
| Yq, 68                          | WO                          |
| Yq2, 68                         | WC1                         |
| Yu, 68                          | RGESolver, 26               |
| Yu2, 68                         | WC1_set<br>RGESolver, 26    |
| yul, 68                         | WC2I                        |
| Yukawa, 30                      | RGESolver, 26               |
| Yukawa_set, 30                  | WC2I indices                |
| yuR, 69                         | RGESolver, 62               |
| YuYd, 69                        | WC2I_set                    |
| YuYe, 69<br>YuYI, 69            | RGESolver, 26               |
| YuYq, 69                        | WC2R                        |
| RGESolver.cc, 71                | RGESolver, 27               |
| RGESolver.h, 71                 | WC2R_indices                |
| 1102001101111, 71               | RGESolver, 62               |
| s12                             | WC2R_set                    |
| RGESolver, 61                   | RGESolver, 27               |
| s13                             | WC3                         |
| RGESolver, 61                   | RGESolver, 27               |
| \$23                            | WC3_set                     |
| RGESolver, 61                   | RGESolver, 27               |
| S_<br>DCFColver 61              | WC5                         |
| RGESolver, 61                   | RGESolver, 27<br>WC5_set    |
| SaveOutputFile<br>RGESolver, 23 | RGESolver, 28               |
| Set epsabs                      | WC6I                        |
| RGESolver, 23                   | RGESolver, 28               |
| Set_epsrel                      | WC6I indices                |
| RGESolver, 23                   | RGESolver, 63               |
| Set step                        | WC6I set                    |
| RGESolver, 23                   | RGESolver, 28               |
| SetCoefficient                  | WC6R                        |
| RGESolver, 24                   | RGESolver, 28               |
| SetSMInputScale                 | WC6R_indices                |
| RGESolver, 25                   | RGESolver, 63               |
| Setter2F                        | WC6R_set                    |
| RGESolver, 61                   | RGESolver, 28               |
| Setter4F                        | WC7I                        |
| RGESolver, 62                   | RGESolver, 29               |
| SettersAndGetters.cc, 71        | WC7I_indices                |
| StaticMembers.cc, 71            | RGESolver, 64               |
| step RGESolver, 25              | WC7I_set<br>RGESolver, 29   |
| Step_                           | WC7R                        |
| RGESolver, 62                   | RGESolver, 29               |
| Sys_                            | WC7R_indices                |
| -7                              | 2 · · · <u>_</u> 3.000      |

| RGESolver, 64<br>WC7R_set     | YI<br>RGESolver, 68      |
|-------------------------------|--------------------------|
| RGESolver, 29<br>WC8I         | YI2<br>RGESolver, 68     |
| RGESolver, 29<br>WC8I_indices | YIYq<br>RGESolver, 68    |
| RGESolver, 64<br>WC8I_set     | Yq<br>RGESolver, 68      |
| RGESolver, 30<br>WC8R         | Yq2<br>RGESolver, 68     |
| RGESolver, 30<br>WC8R indices | Yu<br>RGESolver, 68      |
| RGESolver, 64<br>WC8R_set     | Yu2<br>RGESolver, 68     |
| RGESolver, 30                 | yul                      |
| x<br>RGESolver, 65            | RGESolver, 68<br>Yukawa  |
| Yd                            | RGESolver, 30 Yukawa_set |
| RGESolver, 65                 | RGESolver, 30 yuR        |
| Yd2<br>RGESolver, 65          | RGESolver, 69<br>YuYd    |
| ydl<br>RGESolver, 65          | RGESolver, 69<br>YuYe    |
| ydR<br>RGESolver, 65          | RGESolver, 69<br>YuYl    |
| YdYe<br>RGESolver, 66         | RGESolver, 69<br>YuYq    |
| YdYl<br>RGESolver, 66         | RGESolver, 69            |
| YdYq<br>RGESolver, 66         |                          |
| Ye RGESolver, 66              |                          |
| Ye2<br>RGESolver, 66          |                          |
| yel<br>RGESolver, 66          |                          |
| yeR                           |                          |
| RGESolver, 66<br>YeYI         |                          |
| RGESolver, 66<br>YeYq         |                          |
| RGESolver, 67<br>Yh           |                          |
| RGESolver, 67<br>Yh2          |                          |
| RGESolver, 67<br>YhYd         |                          |
| RGESolver, 67<br>YhYe         |                          |
| RGESolver, 67<br>YhYl         |                          |
| RGESolver, 67<br>YhYq         |                          |
| RGESolver, 67<br>YhYu         |                          |
| RGESolver, 67                 |                          |