Chapter 8 Logistic Regression I: Dichotomous Response

8.1 Introduction

- This chapter focuses on statistical models. Statistical modeling allows you to address questions about association in terms of hypotheses concerning model parameters.
- If sampling assumptions are plausible, statistical models can be used to make inferences from study population to larger target population.

- Logistic regression is a form of statistical modeling often appropriate for categorical outcome variables: describes relationship between categorical response and set of explanatory variables.
- Response variable can be dichotomous or polytomous:

Chapter 8: Dichotomous response.

Chapter 9: Polytomous response (nominal or ordered).

- Explanatory variables can be categorical or continuous.
- Logistic regression has applications in fields such as medical research, epidemiology, social research, banking, and market research. One advantage is model interpretation through odds ratios.

• Procedures used to perform logistic regression:

LOGISTIC: designed for logistic regression, provides odds ratio estimates and model diagnostics

GENMOD: procedure for analyzing generalized linear models, of which logistic regression is a simple case.

Logistic Regression for relationship between dichotomous response and one quantitative predictor:

$$y = \begin{cases} 1 \text{ if target attribute} \\ 0 \text{ if else} \end{cases}$$
 $x = \text{quantitative predictor}$

Pr
$$\{y = 1\} = II(x) = \exp(\alpha + \beta x) / (1 + \exp(\alpha + \beta x))$$

Population for predictor	$\Pr\{y=1\}$	$\Pr\{y=0\}$	$\frac{\Pr\{y=1\}}{\Pr\{y=0\}}$		
(x+1)	$\frac{\exp(\alpha+\beta(x+1))}{1+\exp(\alpha+\beta(x+1))}$	$\frac{1}{\{1+\exp(\alpha+\beta(x+1))\}}$	$\left \exp(\alpha + \beta(x+1)) \right $		
X	$\frac{\exp(\alpha + \beta x)}{\{1 + \exp(\alpha + \beta x)\}}$	$\frac{1}{\{1+\exp(\alpha+\beta x)\}}$	$\exp(\alpha + \beta x)$		
(x+1)=1	$\frac{\exp(\alpha+\beta)}{\{1+\exp(\alpha+\beta)\}}$	$\frac{1}{\{1+\exp(\alpha+\beta)\}}$	$\exp(\alpha + \beta)$		
x = 0	$\frac{\exp(\alpha)}{\{1+\exp(\alpha)\}}$	$\frac{1}{\{1+\exp(\alpha)\}}$	$\exp(\alpha)$		
$\left[\frac{\Pr\{y=1\big (x+1)\}}{\Pr\{y=0\big (x+1)\}}\right] / \left[\frac{\Pr\{y=1\big x\}}{\Pr\{y=0\big x\}}\right] \exp(\beta)$					

8.2 Dichotomous Explanatory Variables

8.2.1 Logistic Model

• Following table displays coronary artery disease data from Chapter 3, where Mantel-Haenszel methods were used to analyze the data. There, we found ECG to be clearly associated with disease status, adjusted for gender.

Gender	ECG	Disease	No Disease	Total
Female	< 0.1 ST segment depression	4	11	15
Female	\geq 0.1 ST segment depression	8	10	18
Male	< 0.1 ST segment depression	9	9	18
Male	\geq 0.1 ST segment depression	21	6	27

 Assume the data arise from a stratified simple random sample so that presence of coronary artery disease is distributed binomially for each GENDER
 ECG combination:

$$\Pr\{n_{hij}\} = \prod_{h=1}^{2} \prod_{i=1}^{2} \frac{n_{hi+}!}{n_{hi1}! n_{hi2}!} \theta_{hi}^{n_{hi1}} (1 - \theta_{hi})^{n_{hi2}},$$

where θ_{hi} is probability that person of hth gender with ith ECG status has coronary artery disease, and n_{hi1} and n_{hi2} are numbers of persons of hth gender and ith ECG with and without coronary artery disease, respectively. A logistic model can then be applied to describe variation among the $\{\theta_{hi}\}$

• θ_{hi} can be expressed in the following forms:

$$\theta_{hi} = \frac{1}{1 + \exp\left\{-\left(\alpha + \sum_{k=1}^{t} \beta_k x_{hik}\right)\right\}}$$

$$= \frac{\exp\left\{\alpha + \sum_{k=1}^{t} \beta_k x_{hik}\right\}}{1 + \exp\left\{\alpha + \sum_{k=1}^{t} \beta_k x_{hik}\right\}},$$

where α is intercept parameter, $\{x_{hik}\}$ are t explanatory variables for hth gender and ith ECG; k = 1, ..., t; and $\{\beta_k\}$ are t regression parameters

Matrix form of equation:

$$\theta_{hi} = \frac{\exp(\mathbf{x'}_{hi}\,\boldsymbol{\beta})}{1 + \exp(\mathbf{x'}_{hi}\,\boldsymbol{\beta})}$$

• Odds of CA disease for *hi*th group is expressed as:

$$\frac{\theta_{hi}}{1-\theta_{hi}} = \exp\left\{\alpha + \sum_{k=1}^{t} \beta_k x_{hik}\right\}$$

• Taking log of both sides produces linear model for *logit*:

$$\log\left\{\frac{\theta_{hi}}{1-\theta_{hi}}\right\} = \alpha + \sum_{k=1}^{t} \beta_k x_{hik}$$

- Model is for the log odds of coronary artery disease vs. no coronary artery disease for the *hi*th group
- Model-predicted odds ratios are obtained by exponentiating the model parameter estimates
- Maximum likelihood methods are used to estimate α and β . LOGISTIC uses the Fisher scoring method (equivalent to iteratively weighted least squares), while GENMOD uses Newton-Raphson algorithms
- Note that estimated coefficients are approximately normal, and that estimated standard errors are provided

• Marginal tables for each main effect (all counts ≥ 5)

Gender

	Disease	No Disease	Total
Female	12	21	33
Male	30	15	45
Total	42	36	78

ECG

	Disease	No Disease	Total
ECG < 0.1	13	20	33
$ECG \ge 0.1$	29	16	45
Total	42	36	78

8.2.2 Model Fitting

• First consider model for coronary disease data with main effects for gender and ECG:

$$\begin{bmatrix} \operatorname{logit}(\theta_{11}) \\ \operatorname{logit}(\theta_{12}) \\ \operatorname{logit}(\theta_{21}) \\ \operatorname{logit}(\theta_{22}) \end{bmatrix} = \begin{bmatrix} \alpha \\ \alpha \\ \alpha \\ \alpha \\ +\beta_1 \\ \alpha \\ +\beta_1 \\ +\beta_2 \end{bmatrix} = \begin{bmatrix} 100 \\ 101 \\ 110 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

where $\alpha = \log$ odds of coronary artery disease for females with ECG < 0.1

 β_1 = increment in log odds for males

 β_2 = increment in log odds for ECG ≥ 0.1

• Formulas for cell probabilities and odds predicted by model:

Gender	ECG	Pr {CA Disease} = θ_{hi}	Odds of CA Disease
Female	< 0.1	$e^{\alpha}/(1+e^{\alpha})$	e^{α}
Female	≥ 0.1	$e^{\alpha+\beta_2}/(1+e^{\alpha+\beta_2})$	$e^{lpha+eta_2}$
Male	< 0.1	$e^{\alpha+\beta_1}/(1+e^{\alpha+\beta_1})$	$e^{lpha+eta_1}$
Male	≥ 0.1	$e^{\alpha+\beta_1+\beta_2}/(1+e^{\alpha+\beta_1+\beta_2})$	$e^{\alpha+eta_1+eta_2}$

 Odds ratio for males vs. females for either low or high ECG is:

$$\frac{e^{\alpha+\beta_{1}}}{e^{a}} = e^{\beta_{1}} \text{ or } \frac{e^{\alpha+\beta_{1}+\beta_{2}}}{e^{\alpha+\beta_{2}}} = e^{\beta_{1}}$$

• Similarly, odds ratio for high ECG vs. low ECG is determined by forming ratio of odds of CA disease for either gender:

$$\frac{e^{\alpha+\beta_1+\beta_2}}{e^{a+\beta_1}} = e^{\beta_2} \text{ or } \frac{e^{\alpha+\beta_2}}{e^{\alpha}} = e^{\beta_2}$$

• Unlike odds ratios calculated from individual 2 × 2 tables, these odds ratios have been adjusted for all other explanatory variables in model

Logistic Regression for relationship between dichotomous response and two quantitative predictors

$$\Pr\{y=1 \middle| x_1, x_2\} = \Pi(x_1, x_2) = \frac{\exp(\alpha + \beta_1 x_1 + \beta_2 x_2)}{1 + \exp(\alpha + \beta_1 x_1 + \beta_2 x_2)}$$

$$\frac{\Pr\{y=1 \middle| x_1, x_2\}}{\Pr\{y=0 \middle| x_1, x_2\}} = \phi(x_1, x_2) = \exp(\alpha + \beta_1 x_1 + \beta_2 x_2)$$

$$\frac{\phi(x_1+1, x_2)}{\phi(x_1, x_2)} = \frac{\exp(\alpha + \beta_1 (x_1+1) + \beta_2 x_2)}{\exp(\alpha + \beta_1 x_1 + \beta_2 x_2)} = \exp(\beta_1)$$

$$\frac{\phi(x_1, x_2+1)}{\phi(x_1, x_2)} = \frac{\exp(\alpha + \beta_1 x_1 + \beta_2 (x_2+1))}{\exp(\alpha + \beta_1 x_1 + \beta_2 x_2)} = \exp(\beta_2)$$

$$\frac{\phi(x_1+1, x_2+1)}{\phi(x_1, x_2)} = \exp(\beta_1 + \beta_2)$$

$$\frac{\phi(x_1+1, x_2+1)}{\phi(x_1, x_2+1)} = \exp(\beta_1)$$

$$\frac{\phi(x_1+1, x_2+1)}{\phi(x_1+1, x_2+1)} = \exp(\beta_2)$$

Note that dichotomous predictors have $x_1 = x_2 = 0$ here as reference population

8.2.3 Goodness of Fit:

- Need to assess how close model-predicted values are to corresponding observed values
- Test statistics to assess fit of model in this manner are known as *goodness of fit (GOF) statistics*
- GOF statistics have approximate chi-square distributions. If they are larger than a tolerable value, then model is oversimplified and we need to identify other factors
- Two traditional goodness-of-fit tests are Pearson chi-square, $Q_{\rm P}$, and likelihood ratio chi-square, $Q_{\rm L}$, also known as *deviance*:

$$Q_{P} = \sum_{h=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \left(n_{hij} - m_{hij} \right)^{2} / m_{hij}$$

$$Q_{L} = \sum_{h=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} 2n_{hij} \log \left(\frac{n_{hij}}{m_{hij}}\right),$$

where m_{hij} are model-predicted counts defined as:

$$m_{hij} = \begin{cases} n_{hi+} \hat{\theta}_{hi} & \text{for } j = 1\\ n_{hi+} (1 - \hat{\theta}_{hi}) & \text{for } j = 2 \end{cases}$$

- If model fits, both $Q_{\rm P}$ and $Q_{\rm L}$ are distributed as χ^2 with d.f. equal to number of rows in table minus number of parameters
- Sample size guidelines for these statistics to be approximately chi-square include:
 - 1. At least 10 subjects in each group $(n_{hi+} \ge 10)$
 - 2. 80% of predicted counts (m_{hij}) are ≥ 5
 - 3. All other expected counts > 2, with no 0 counts

8.2.4 Using PROC LOGISTIC

- Specify response variable and explanatory variables in the MODEL statement
- LOGISTIC fits model via maximum likelihood estimation. Parameter estimates, standard errors, and statistics to assess model fit are produced
- Provides several model selection methods, puts predicted values and other statistics into output data sets, includes a number of options for controlling model-fitting process
- Example of analysis data set:

• CA is response variable: 1 if CA disease is present, 0 otherwise

Response variable is ordered alphanumerically, which means that logistic models $Pr \{CA = 0\}$. Because modeling $Pr \{CA = 1\}$ is most likely of interest, can alter default by using EVENT='1' or DESCENDING option. Difference in models is that sign of parameter estimates is changed

- SEX (0 for females, 1 for males) and ECG (0 for lower ST segment depression, 1 for higher) are explanatory variables, and provide values for model matrix
- When data are in count form, use FREQ statement
- SCALE = NONE and AGGREGATE are used to request goodness of fit statistics

```
proc logistic data=coronary;
freq count;
    model ca(event='1') = sex ecg / scale = none aggregate;
run;
```

Response Profile

Respor	nse Prof	ile	
Ordered Value	CA	Count	
1	0	36	
2 Probability	1 / modele	42 d is ca=1.	

Goodness of Fit Statistics

Devian	ice and Pears	son Goodnes	s-of-Fit Sta	tistics
Criterion	DF	Value	Value/DF	Pr > Chi-Square
Deviance	1	0.2141	0.2141	0.6436
Pearson	1	0.2155	0.2155	0.6425
	Number of un	ique profi	les: 4	

Testing Joint Significance of the Explanatory Variables

Me	odel Fit Statist	ics	
		Inte	rcept
	Intercept	aı	nd
Criterion	Only	Covar	iates
AIC	109.669	10	1.900
SC	112.026	108	3.970
-2 Log L	107.669	9	5.900
Testing Glo	obal Null Hypoth	esis: BE ⁻	ΓA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	11.7694	2	0.0028
Score	11.2410	2	0.0036
Wald	10.0644	2	0.0065

Main Effects Model: ANOVA Table

	Analy	sis of Maxir	mum likelih	nood Estimates	<u> </u>
	rarary	oro or maxin	nam Eineil	TOOU LOCIMACO	
			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-1.1747	0.4854	5.8571	0.0155
sex	1	1.2770	0.4980	6.5750	0.0103
ecg	1	1.0545	0.4980	4.4844	0.0342
Odds Ratio Estimates					
		Poin	t	95% Wald	
	Effect	Estimate	e Con	fidence Limits	S
	sex	3.586	6 1.C	351 9.5 [.]	16
	ecg	2.87	1 1.0	082 7.6°	18

8.2.5 Interpretation of Main Effects Model

- In a strict sense, results apply only to population consisting of those persons who visited this medical clinic and required catheterization
- Wald statistics take form of squared ratio of estimate to its standard error. They are easy to compute and based on normal theory. Statistical properties of likelihood ratio statistics are more optimal for small samples
- Model equation can be written as:

$$logit(\theta_{hi}) = -1.1747 + 1.2770 \text{ SEX} + 1.0545 \text{ ECG}$$

• Interpretation of parameters:

Parameter	Estimate (SE)	Interpretation
α	-1.1747 (0.485)	Log odds of coronary disease for females with low ECG
eta_1	1.2770 (0.498)	Increment to log odds for males
eta_2	1.0545 (0.498)	Increment to log odds for high ECG

• Odds ratio of CA disease for males vs. females:

$$e^{\hat{\beta}_1} = e^{1.2770} = 3.586$$

Odds ratio of CA disease for high ECG vs. low ECG:

$$e^{\hat{\beta}_2} = e^{1.0545} = 2.871$$

• Predicted values can be produced with the following additional code:

```
proc logistic data=coronary descending;
    freq count;
    model ca = sex ecg;
    output out=predict pred=prob;
run;
proc print data=predict;
run;
```

Predicted Values Output Data Set

0bs	sex	ecg	ca	count	_LEVEL_	prob	
1	0	0	0	11	1	0.23601	
2	0	0	1	4	1	0.23601	
3	0	1	0	10	1	0.46999	
4	0	1	1	8	1	0.46999	
5	1	0	0	9	1	0.52555	
6	1	0	1	9	1	0.52555	
7	1	1	0	6	1	0.76075	
8	1	1	1	21	1	0.76075	

Model-predicted logits and odds of CA disease

Sex	ECG	Logit	Odds of CA disease
		$\hat{\alpha} = -1.1747$	$e^{\hat{\alpha}} = e^{-1.1747} = 0.3089$
Female	\geq 0.1	$\hat{\alpha} + \hat{\beta}_2 = -0.1202$	$e^{\hat{\alpha}+\hat{\beta}_2}=e^{-0.1202}=0.8867$
Male	< 0.1	$\hat{\alpha} + \hat{\beta}_1 = 0.1023$	$e^{\hat{\alpha}+\hat{\beta}_1}=e^{0.1023}=1.1077$
Male	≥0.1	$\hat{\alpha} + \hat{\beta}_1 + \hat{\beta}_2 = 1.1568$	$e^{\hat{\alpha}+\hat{\beta}_1+\hat{\beta}_2}=e^{1.1568}=3.1797$

Model-predicted probabilities of CA disease:

Sex	ECG	Probability of CA disease
Female	< 0.1	$\frac{e^{\hat{\alpha}}}{1+e^{\hat{\alpha}}} = \frac{e^{-1.1747}}{1+e^{-1.1747}} = 0.236$
Female	≥ 0.1	$\frac{e^{\hat{\alpha}+\hat{\beta}_2}}{1+e^{\hat{\alpha}+\hat{\beta}_2}} = \frac{e^{-0.1202}}{1+e^{-0.1202}} = 0.470$
Male	< 0.1	$\frac{e^{\hat{\alpha}+\hat{\beta}_{l}}}{1+e^{\hat{\alpha}+\hat{\beta}_{l}}} = \frac{e^{0.1023}}{1+e^{0.1023}} = 0.526$
Male	≥ 0.1	$\frac{e^{\hat{\alpha}+\hat{\beta}_1+\hat{\beta}_2}}{1+e^{\hat{\alpha}+\hat{\beta}_1+\hat{\beta}_2}} = \frac{e^{1.1568}}{1+e^{1.1568}} = 0.761$

• To use the CLASS statement to replicate this analysis:

```
proc logistic data=coronary descending;
    freq count;
    class sex(ref=0) ecg(ref=0) / param=ref;
    model ca = sex ecg;
run;
```

Class Level Information

Design
Variables

Class	Value	1
sex	0 1	0 1
ecg	0 1	0

Analysis of Maximum Likelihood Estimates

Parame ⁻	ter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Interc	ept	1	-1.1747	0.4854	5.8571	0.0155
sex	1	1	1.2770	0.4980	6.5750	0.0103
ecg	1	1	1.0545	0.4980	4.4844	0.0342

Odds Ratio Estimates

	Point	95% Wa	ld
Effect	Estimate	Confidence	Limits
sex 1 vs 0	3.586	1.351	9.516
ecg 1 vs 0	2.871	1.082	7.618

8.2.6 Alternative Methods of Assessing Goodness of Fit

- Other strategies are based on fitting an appropriate expanded model, and testing whether contribution of additional terms is nonsignificant. If so, then original model has adequate fit
- Compute likelihood ratio tests for significance of additional terms by taking difference in −2 LOG L's of reduced and expanded models. Difference is ≈ chi-square with df equal to the difference in the number of parameters in the two models
- Can also examine Wald statistic for additional parameters in order to assess goodness of fit
- Expanded model contains main effects for sex and ECG, and their interaction. Likelihood ratio statistic tests significance of interaction term and serves as goodness-of-fit test

• Saturated model can be written as:

$$\begin{bmatrix}
\log it(\theta_{11}) \\
\log it(\theta_{12}) \\
\log it(\theta_{21}) \\
\log it(\theta_{22})
\end{bmatrix} = \begin{bmatrix}
\alpha \\
\alpha \\
\alpha + \beta_1 \\
\alpha + \beta_1 \\
\alpha + \beta_1 + \beta_2 + \beta_3
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix} \begin{bmatrix}
\alpha \\
\beta_1 \\
\beta_2 \\
\beta_3
\end{bmatrix}$$

• An interaction between sex and ecg can be added by specifying sex*ecg:

```
ods select FitStatistics ParameterEstimates;
proc logistic data=coronary descending;
    freq count;
    class sex(ref=0) ecg(ref=0) / param=ref;
    model ca = sex ecg sex*ecg;
run;
```

• –2 LOG L for saturated model: 95.686

−2 LOG L for main effects model: 95.900

Difference is 0.214 with 1 df, adequacy of model is supported

- Can always compute likelihood ratio test in this manner for contribution of a particular model term or set of model terms
- Note likelihood ratio test value is same as deviance reported for main effects model
- Note value of Wald statistic is 0.215 for interaction

Results for Saturated Model

	Model Fit Statistics		
Criterion	Intercept Only	Intercept and Covariates	
AIC SC -2 Log L	109.669 112.026 107.669	103.686 113.112 95.686	

Analysis of Maximum Likelihood Estimates						
				Standard	Wald	
Parameter	•	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept		1	-1.0116	0.5839	3.0018	0.0832
sex	1	1	1.0116	0.7504	1.8172	0.1776
ecg	1	1	0.7885	0.7523	1.0985	0.2946
sex*ecg	1	1 1	0.4643	1.0012	0.2151	0.6428

For dichotomous predictors with $x_1 = x_2 = 0$ as the reference population

Population
$$\Pr\{y=1 \mid x_1, x_2\}$$
 $\phi(x_1, x_2)$ $x_1 \quad x_2$ $0 \quad 0 \quad e^{\alpha} / (1+e^{\alpha})$ e^{α} $0 \quad 1 \quad e^{\alpha+\beta_2} / (1+e^{\alpha+\beta_2})$ $e^{\alpha+\beta_2}$ $e^{\alpha+\beta_2}$ $e^{\alpha+\beta_2}$ $e^{\alpha+\beta_2}$ $e^{\alpha+\beta_1}$ $e^{\alpha+\beta_1} / (1+e^{\alpha+\beta_1})$ $e^{\alpha+\beta_1+\beta_2+\beta_3}$ $e^{\alpha+\beta_1+\beta_2+\beta_2+\beta_3}$ $e^{\alpha+\beta_1+\beta_2+\beta_2+\beta_3}$ $e^{\alpha+\beta_1+\beta_2+\beta_2+\beta_3}$ $e^{\alpha+\beta_1+\beta_2+\beta_2+\beta_3}$ $e^{\alpha+\beta_1+\beta_$

Logistic Regression for relationship between dichotomous response and two quantitative predictors and their interaction

$$\Pr\{y=1 \mid x_{1}, x_{2}\} = \prod(x_{1}, x_{2}) = \frac{\exp(\alpha + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{1}x_{2})}{\{1 + \exp(\alpha + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{1}x_{2})\}}$$

$$\frac{\Pr\{y=1 \mid x_{1}, x_{2}\}}{\Pr\{y=0 \mid x_{1}, x_{2}\}} = \phi(x_{1}, x_{2}) = \exp(\alpha + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{1}x_{2})$$

$$\frac{\phi(x_{1}+1, x_{2})}{\phi(x_{1}, x_{2})} = \frac{\exp(\alpha + \beta_{1}(x_{1}+1) + \beta_{2}x_{2} + \beta_{3}(x_{1}+1)x_{2})}{\exp(\alpha + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{1}x_{2})} = \exp(\beta_{1} + \beta_{3}x_{2})$$

$$\frac{\phi(x_{1}+1, x_{2}+1)}{\phi(x_{1}, x_{2})} = \frac{\exp(\alpha + \beta_{1}x_{1} + \beta_{2}(x_{2}+1) + \beta_{3}x_{1}(x_{2}+1))}{\exp(\alpha + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{1}x_{2})} = \exp(\beta_{2} + \beta_{3}x_{1})$$

$$\frac{\phi(x_{1}+1, x_{2}+1)}{\phi(x_{1}, x_{2})} = \exp(\beta_{1} + \beta_{2} + \beta_{3}(x_{1} + x_{2} + 1))$$

$$\frac{\phi(x_{1}+1, x_{2}+1)}{\phi(x_{1}, x_{2}+1)} = \exp(\beta_{1} + \beta_{3}(x_{2} + 1))$$

$$\frac{\phi(x_{1}+1, x_{2}+1)}{\phi(x_{1}+1, x_{2}+1)} = \exp(\beta_{2} + \beta_{3}(x_{1} + 1))$$

8.4 Qualitative Explanatory Variables

- Previous examples have dealt with dichotomous outcomes when explanatory variables were also dichotomous
- Logistic regression allows for combinations of dichotomous, nominal, ordinal or continuous explanatory variables
- This section is concerned with handling explanatory variables that are qualitative and contain three or more levels
- Following data come from study on urinary tract infections (Koch, Imrey, *et al*) Investigators were interested in whether the pattern of treatment differences are the same across diagnoses, i.e., is there a treatment × diagnosis interaction?

Diagnosis	Treatment	Cured	Not Cured	Prop. Cured
Complicated	A	78	28	0.736
Complicated	В	101	11	0.902
Complicated	C	68	46	0.596
Uncomplicated	A	40	5	0.889
Uncomplicated	В	54	5	0.915
Uncomplicated	C	34	6	0.850

• Assume data arose from stratified simple random sample so that response is distributed binomially for each diagnosis × treatment combination:

$$\Pr\{n_{hij}\} = \prod_{h=1}^{2} \prod_{i=1}^{3} \frac{n_{hi+}!}{n_{hi1}! n_{hi2}!} \theta_{hi}^{n_{hi1}} (1 - \theta_{hi})^{n_{hi2}},$$

where θ_{hi} is probability that person with hth diagnosis receiving ith treatment is cured. n_{hi1} and n_{hi2} are number of patients of hth diagnosis and ith treatment who were and were not cured, respectively

8.4.1 <u>Model Fitting</u>

• Since there is interest in interaction term, preliminary model includes main effects and their interaction. Parameter α is intercept, β_1 is incremental for complicated diagnosis, β_2 is incremental effect for treatment A, β_3 is incremental effect for treatment B, and β_4 and β_5 represent interaction terms

$$\begin{bmatrix} \log it(\theta_{11}) \\ \log it(\theta_{12}) \\ \log it(\theta_{13}) \\ \log it(\theta_{21}) \\ \log it(\theta_{22}) \\ \log it(\theta_{23}) \end{bmatrix} = \begin{bmatrix} \alpha + \beta_1 + \beta_2 & + \beta_4 \\ \alpha + \beta_1 & + \beta_3 & + \beta_5 \\ \alpha & + \beta_2 & & \\ \alpha & + \beta_3 & & \\ \alpha & & + \beta_3 & & \\ \alpha & & & \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{bmatrix}$$

8.4.2 PROC LOGISTIC for Nominal Effects

```
data uti;
     input diagnosis: $13. treatment $ response $ count @@;
     cards;
complicated
                             78
                                   complicated
                Α
                     cured
                                                         not
                                                                28
complicated
                             101
                                   complicated
                                                                11
                     cured
                                                         not
complicated
                                   complicated
                             68
                                                         not
                                                                46
                     cured
                                   uncomplicated
uncomplicated
                             40
                                                                5
                     cured
                                                         not
uncomplicated
                                   uncomplicated
                     cured
                             54
                                                         not
                                                                5
                                   uncomplicated
uncomplicated
                             34
                                                         not
                                                                6
                     cured
```

• Example of reference cell coding using the CLASS statement:

```
proc logistic data=uti;
   freq count;
   class diagnosis treatment / param=ref;
   model response = diagnosis treatment;
run;
```

	Class Level 1	Des	n sign iables	
Class	Value	1	2	
diagnos	is complicated uncomplicated	1 d 0		
treatme	nt A B C	1 0 0	0 1 0	

Type III Analysis of Effects						
			Wald			
Effect		DF Chi-	Square	Pr > ChiSq		
diagnosi	S	1 1	0.2885	0.0013		
treatmen	t	2 2	4.6219	<.0001		
Analys	is of	Maximum Li	kelihood E	stimates		
			Standard			
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq	
Intercept	1	1.4184	0.2987	22.5505	<.0001	
diagnosis complicated	1	-0.9616	0.2998	10.2885	0.0013	
treatment A	1	0.5847	0.2641	4.9020	0.0268	
treatment B	1	1.5608	0.3160	24.4010	<.0001	

• Odds ratios for TREATMENT indicate the odds of being cured with treatment A are 1.8 times as high as those with treatment C, and the odds of being cured with treatment B are 4.8 times as high as those with treatment C

Odds Ratio Esti	mates		
	Point	95% Wa	
Effect	Estimate	Confidence	e Limits
diagnosis complicated vs uncomplicated treatment A vs C treatment B vs C	0.382 1.795 4.762	0.212 1.069 2.564	0.688 3.011 8.847

• Model-predicted probabilities and odds from main effects model:

Diagnosis	Trt	Pr {Cured}= θ_{hi}	Odds of Cured
Complicated	A	$e^{\alpha+\beta_1+\beta_2}/(1+e^{\alpha+\beta_1+\beta_2})$	$e^{lpha+eta_1+eta_2}$
Complicated	В	$e^{\alpha+\beta_1+\beta_3}/(1+e^{\alpha+\beta_1+\beta_3})$	$e^{lpha+eta_1+eta_3}$
Complicated	$\mid C \mid$	$e^{\alpha+eta_1}/(1+e^{\alpha+eta_1})$	$e^{lpha+eta_{ m l}}$
Uncomplicated	A	$e^{\alpha+eta_2}/(1+e^{\alpha+eta_2})$	$e^{lpha+eta_2}$
Uncomplicated	В	$e^{\alpha+\beta_3}/(1+e^{\alpha+\beta_3})$	$e^{lpha+eta_3}$
Uncomplicated	C	$e^{\alpha}/(1+e^{\alpha})$	e^{lpha}

- By default, SAS uses the last level of a CLASS variable as its reference. If we wish to have a user-specified reference population, we can do so without any recoding.
- For example, if we wanted to have those on Treatment A with a complicated diagnosis as the reference population, we could invoke the following code:

```
proc logistic data=uti;
    freq count;
    class diagnosis(ref='complicated') treatment(ref='A')
    / param=ref;
    model response = diagnosis treatment;
run;
```

Cla	ass Level Informat	ion		
		Des Varia	ign bles	
Class	Value	1	2	
diagnosis	complicated uncomplicated	0 1		
treatment	A B C	0 1 0	0 0 1	

• Alternatively, we could use the REF=FIRST syntax to indicate that we would like the first ordered value to be the reference.

```
proc logistic data=uti;
    freq count;
    class diagnosis(ref=first) treatment(ref=first)
    / param=ref;
    model response = diagnosis treatment;
run;
```

Using the CLASS Statement in PROC LOGISTIC

- Using the CLASS statement in PROC LOGISTIC allows you to specify reference cell coding. However, the default coding scheme is effect, or deviation from the mean, coding.
- Example of effect coding using data set from 8.4:

```
proc logistic data=uti;
    freq count;
    class diagnosis treatment;
    model response = diagnosis treatment;
run;
```

Cla	ss Level Informat	ion		
		Des Varia	ign bles	
Class	Value	1	2	
diagnosis	complicated uncomplicated	1 - 1		
treatment	A B C	1 0 -1	0 1 -1	

• The CLASS statement also allows for convenient specification of interaction terms:

Type III Analysis of Effects

Effect	DF	Wald	Do > Chica
ETTECT	DF	Chi-Square	Pr > ChiSq
diagnosis	1	7.9448	0.0048
treatment	2	11.0731	0.0039
diagnosis*treatment	2	2.6384	0.2674

Analysis of Maximum Likelihood Estimates

					Standard	
Parameter			DF	Estimate	Error	Chi-Square
Intercept			1	1.6376	0.1514	116.9795
diagnosis	complicated		1	-0.4268	0.1514	7.9448
treatment	Α		1	-0.0856	0.2138	0.1604
treatment	В		1	0.6605	0.2225	8.8082
diagnosis*treatment	complicated	Α	1	-0.1007	0.2138	0.2217
diagnosis*treatment	complicated	В	1	0.3458	0.2225	2.4141

Analysis of Maximum Likelihood Estimates

Parameter			Pr > ChiSq
Intercept			<.0001
diagnosis	complicated		0.0048
treatment	Α		0.6888
treatment	В		0.0030
diagnosis*treatment	complicated	Α	0.6377
diagnosis*treatment	complicated	В	0.1202

 To determine if interaction is meaningful, fit full and reduced model and take difference in likelihoods

```
Full: model response = diagnosis treatment diagnosis*treatment;  (-2 \ log \ L = 447.56)  Reduced: model response = diagnosis treatment;  (-2 \ log \ L = 450.07)
```

• Difference in number of parameters in models is 2, so compare difference in likelihoods to chi-square distribution with 2 df. This indicates that interaction term is not significant, and goodness-of-fit of main effects model (reduced model) is supported

• Differential effect main effects model is written as:

$$\begin{bmatrix} \log it(\theta_{11}) \\ \log it(\theta_{12}) \\ \log it(\theta_{13}) \\ \log it(\theta_{21}) \\ \log it(\theta_{22}) \\ \log it(\theta_{23}) \end{bmatrix} = \begin{bmatrix} \alpha + \beta_1 + \beta_2 \\ \alpha + \beta_1 - \beta_2 - \beta_3 \\ \alpha - \beta_1 + \beta_2 \\ \alpha - \beta_1 + \beta_3 \\ \alpha - \beta_1 - \beta_2 - \beta_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & -1 & -1 \end{bmatrix}$$

 α = average log odds of cure

 β_1 = differential change in log odds for complicated diagnosis

 β_2 = differential change in log odds for treatment A

 β_3 = differential change in log odds for treatment B

• Formulas for model-predicted probabilities and odds:

Diagnosis	Treatment	Pr{Cured}	Odds of Cured
Complicated	A	$e^{\alpha+\beta_1+\beta_2}/(1+e^{\alpha+\beta_1+\beta_2})$	$e^{lpha+eta_{ m l}+eta_{ m 2}}$
Complicated	В	$e^{\alpha+\beta_{1}+\beta_{3}}/(1+e^{\alpha+\beta_{1}+\beta_{3}})$	$e^{\alpha+eta_1+eta_3}$
Complicated	C	$e^{\alpha+\beta_1-\beta_2-\beta_3}/(1+e^{\alpha+\beta_1-\beta_2-\beta_3})$	$e^{lpha+eta_1-eta_2-eta_3}$
Uncomplicated	A	$e^{\alpha-eta_1+eta_2}$ /(1+ $e^{\alpha-eta_1+eta_2}$)	$e^{lpha-eta_{_{\! 1}}+eta_{_{\! 2}}}$
Uncomplicated	В	$e^{\alpha-\beta_1+\beta_3}/(1+e^{\alpha-\beta_1+\beta_3})$	$e^{lpha-eta_{ m l}+eta_3}$
Uncomplicated	C	$e^{\alpha-\beta_{1}-\beta_{2}-\beta_{3}}/(1+e^{\alpha-\beta_{1}-\beta_{2}-\beta_{3}})$	$e^{lpha-eta_1-eta_2-eta_3}$

• Odds of being cured for complicated diagnosis vs. uncomplicated diagnosis (using Treatment A) is:

$$\frac{e^{\alpha+\beta_1+\beta_2}}{e^{\alpha-\beta_1+\beta_2}} = e^{2\beta_1}$$

• Odds of being cured for Treatment A vs. Treatment B (using complicated diagnosis) is:

$$\frac{e^{\alpha+\beta_1+\beta_2}}{e^{\alpha+\beta_1+\beta_3}} = e^{\beta_2-\beta_3}$$

• Odds of being cured for Treatment A vs. Treatment C (using complicated diagnosis) is:

$$\frac{e^{\alpha+\beta_1+\beta_2}}{e^{\alpha+\beta_1-\beta_2-\beta_3}} = e^{2\beta_2+\beta_3}$$

• Odds of being cured for Treatment B vs. Treatment C (using complicated diagnosis) is:

$$\frac{e^{\alpha+\beta_1+\beta_3}}{e^{\alpha+\beta_1-\beta_2-\beta_3}} = e^{\beta_2+2\beta_3}$$

Type III Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq diagnosis 10.2885 0.0013 2 treatment 24.6219 <.0001 Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Chi-Square Pr > ChiSq Error 0.1557 <.0001 Intercept 1.6528 112.7189 diagnosis complicated -0.4808 0.1499 10.2885 0.0013 treatment A -0.1304 0.1696 0.5914 0.4419 0.1970 treatment B 0.8456 18.4336 <.0001

- Plot odds ratio and predicted probabilities using PLOTS option
- Use ODDSRATIO statement with CL=BOTH option to obtain Wald and profile likelihood confidence intervals for the ORs

The LOGISTIC Procedure

Odds Ratio Estimates and Wald Confidence Intervals

Label	Estimate	95% Confider	nce Limits
treatment A vs B	0.377	0.197	0.721
treatment A vs C	1.795	1.069	3.011
treatment B vs C	4.762	2.564	8.847
Diagnosis complicated vs uncomplicated	0.382	0.212	0.688

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals

Label	Estimate	95% Confidence	Limits
treatment A vs B	0.377	0.193	0.711
treatment A vs C	1.795	1.074	3.031
treatment B vs C	4.762	2.615	9.085
Diagnosis complicated vs uncomplicated	0.382	0.206	0.672

8.4.3 Testing Hypotheses about the Parameters

- In previous analysis, both effects for treatment were significant. Can generate overall effect for treatment by computing likelihood ratio test for main effects model compared to model with diagnosis effect only, and compute difference (2 df test)
- May be interested in comparing treatment A vs B, or treatment B vs C. Can generate these tests using CONTRAST statements in LOGISTIC
- Create linear combinations of parameters and test if they are significantly different from zero:

$$\mathbf{H}_0$$
: $\boldsymbol{L}\boldsymbol{\beta} = \mathbf{0}$

Wald statistic for given linear combination L is computed as:

$$Q_{w} = (\boldsymbol{L}\hat{\boldsymbol{\beta}})'(\boldsymbol{L}\boldsymbol{V}(\hat{\boldsymbol{\beta}})\boldsymbol{L}')^{-1}(\boldsymbol{L}\hat{\boldsymbol{\beta}})$$

where Q_W follows chi-square distribution with df = number of linearly independent rows of L

- Test for A vs. B: H_0 : $\beta_2 \beta_3 = 0$ Test for A vs. C: H_0 : $\beta_2 = 0$
- Joint test of equality of treatments A, B and C:

$$H_0$$
: $\beta_2 = \beta_3 = 0$

• To implement hypothesis tests in PROC LOGISTIC:

• Results of main effects model contrasts

	С	ontrast Test	Results	
			Wald	
	Contrast	DF CI	ni-Square	Pr > ChiSq
	A vs B	1	8.6919	0.0032
	Α	1	4.9020	0.0268
	joint test	2	24.6219	<.0001
	Contrast Estima	ation and Te	sting Result	s by Row
		Standa	ard	Lower Upper
Contrast	Type Row Es	timate Eri	ror Alpha	
A vs B	EXP 1	0.3768 0.12	247 0.05	0.1969 0.7210
	Contrast Estima	ation and Te	sting Result	s by Row
			Wald	
	Contrast Ty	pe Row (Chi-Square	Pr > ChiSq

8.4.4 Additional Graphics

• The PLOTS= option in the PROC LOGISTIC statement provides a number of graphs, including an EFFECT plot to summarize the results of the analysis

• Persons with uncomplicated diagnosis do better than those with complicated diagnosis for all treatments. Persons who receive treatment B did best, and persons receiving treatment A did better than C

8.5 Continuous and Ordinal Explanatory Variables

8.5.1 Goodness of Fit

- Logistic regression analysis can involve continuous variables. Analysis strategies are same as previously described, except evaluating goodness of fit
- Following data are from study on coronary artery disease; AGE is a continuous explanatory variable, ECG is ordinal (0,1,2):

```
data coronary;
    input sex ecg age ca @@;
    cards;
    0 0 28 0     1 0 42 1     0 1 46 0     1 1 45 0
    0 0 34 0     1 0 44 1     0 1 48 1     1 1 45 1
    0 0 38 0     1 0 45 0     0 1 49 0     1 1 46 1
    0 0 41 1     1 0 46 0     0 1 49 0     1 1 48 1
    :
    ;
run;
```

- SEX by ECG by AGE cross-classification produces 68 unique groups from the 78 observations. Therefore sample size requirements for Pearson χ^2 and likelihood ratio goodness-of-fit tests (each predicted cell count \geq 5) not met
- Alternative 1: Fit desired model. Fit expanded model with additional explanatory variables. Evaluate difference in log likelihood ratio statistics. Difference is distributed χ^2 with df equal to difference in df in the two models
- Alternative 2: Fit desired model, including SELECTION = FORWARD to potentially add variables to model. Examine residual score statistic Q_{RS} that assesses joint contribution of remaining effects not yet incorporated in model. If there is an association, these variables should also be included in model
- Alternative 3: Fit desired model, specifying LACKFIT option in MODEL statement. This produces Hosmer and Lemeshow goodness-of-fit statistic which is compared to χ^2 distribution with t df (t is number of decile groups minus 2)

8.5.2 Fitting a Main Effects Model

- Main effects model includes: SEX, ECG and AGE
- To determine number of factors to include in expanded model: Need ≥ 5 observations for the rarer outcome level per parameter. Therefore, since 37 observations have no coronary artery disease, and 41 observations have coronary artery disease: model can only support 37/5 = 7 or 8 parameters
- Expanded model includes: main effects, squared terms for ECG and AGE, and all pairwise interactions
- To fit main effects model and compute score test:

```
proc logistic descending;
    model ca = sex ecg age
        ecg*ecg age*age sex*ecg sex*age ecg*age /
        selection=forward include=3 details lackfit;
run;
```

• Residual Chi-Square $Q_{RS} = 2.3277$ with df = 5 (since difference between number of parameters of models is 9 - 4 = 5). p-value = 0.8022, supporting goodness of fit of the main effects model

Assessing Fit

Residual Chi-Square Test									
	Chi-Square DF Pr > ChiSq								
	2.3277	5	0.8022						
Analysis of Effects Not in the Model									
	Score								
Eff	ect DF	Chi-Square	Pr > ChiSq						
ecg	*ecg 1	0.3766	0.5394						
age	*age 1	0.7712	0.3798						
sex	*ecg 1	0.0352	0.8513						
sex	*age 1	0.0290	0.8647						
ecg	*age 1	0.8825	0.3475						

The likelihood ratio test could be formulated by comparing the –2 Log Likelihood from each model:

Model with quadratic and interaction terms: 84.379 Main effects model: 86.811

The difference is 2.432 with df = 5, producing p = 0.787, which agrees closely with the residual score test.

- DETAILS option causes printing of "Analysis of Variables Not in the Model". Each test is not significant, indicating adequate fit of the model without these factors
- Hosmer and Lemeshow statistic has value of 4.7766 with 8 df and p-value = 0.7812. This measure also supports adequacy of main effects model (Hosmer and Lemeshow statistic can also be used when all explanatory variables are qualitative)

• Estimated equation for log odds from main effects model:

$$\log it(\theta_{hi}) = -5.6418 + 1.3564SEX + 0.8732ECG + 0.0929AGE$$

- Coronary artery disease is positively associated with age and ST segment depression, and is more likely for males in this population
- Odds ratio for AGE is 1.097: extent to which odds increase each year. More desirable statistic is extent to which odds increase per 10 years of age: $e^{10\times0.0929} = 2.53$. Can compute this using UNITS statement:

```
proc logistic descending;
    model ca = sex ecg age;
    units age = 10;
run;
```

Adjusted Odds Ratios				
Effect	Unit	Estimate		
age	10.0000	2.531		

8.4.5 Fitting Models with Interactions

- Example: Examining association between occupational environment and prevalence of respiratory ailments associated with the disease byssinosis
- See page 226 for SAS data input

Workplace	Years		Complaints	
Condition	Employment	Smoking	Yes	No
Dusty	< 10	Yes	30	203
Dusty	< 10	No	7	119
Dusty	≥ 10	Yes	57	161
Dusty	≥ 10	No	11	81
Not Dusty	< 10	Yes	14	1340
Not Dusty	< 10	No	12	1004
Not Dusty	≥ 10	Yes	24	1360
Not Dusty	≥ 10	No	10	986

```
proc logistic data=byss;
  freq count;
  class work years(ref=first) smoke(ref=first) /param=ref;
  model status(event=last) = work|years|smoke@2 /
       scale=none aggregate;
run;
```

Response Profile									
	Ordered Total Value status Frequency								
	1 2	no yes	5254 165						
Deviano	Deviance and Pearson Goodness-of-Fit Statistics								
Criterion	Value	DF	Value/DF	Pr > ChiSq					
Deviance Pearson	0.6943 0.6905	1 1	0.6943 0.6905	0.4047 0.4060					

Type 3 Analysis of Effects						
		Wald				
Effect	DF	Chi-Square	Pr > ChiSq			
work	1	23.9781	<.0001			
years	1	0.0085	0.9267			
work*years	1	2.3264	0.1272			
smoke	1	0.0100	0.9202			
work*smoke	1	3.2242	0.0726			
years*smoke	1	0.9101	0.3401			
-						

YEARS*SMOKE interaction can be removed

Devianc	e and Pearson	Goodnes	s-of-Fit Stati	stics
Criterion	Value	DF	Value/DF	Pr > ChiSq
Deviance Pearson	1.6016 1.6027	2 2	0.8008 0.8013	0.4490 0.4487

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-4.6446	0.2598	319.6394	<.0001
work	dusty	1	1.7936	0.3833	21.9032	<.0001
years	>=10	1	0.2651	0.2622	1.0221	0.3120
smoke	yes	1	0.2387	0.2696	0.7843	0.3758
work*years	dusty >=10	1	0.6014	0.3444	3.0491	0.0808
work*smoke	dusty yes	1	0.7047	0.3857	3.3387	0.0677

- Pairwise interactions indicate that one variable's effect depends on the level of a second variable
- Changes interpretations of the main effects

• The y-axis is the log odds of byssinosis symptoms. Lack of parallel lines indicates the effect of the interaction terms.

Ode	lds Ratio Estimates and Wal	d Confidence	Intervals	
Label		Estimate	95% Confidence	Limits
work dusty vs no work dusty vs no	ot at years=<10 smoke=no ot at years=<10 smoke=yes ot at years=>=10 smoke=no ot at years=>=10 smoke=yes	6.011 12.163 10.968 22.192	2.836 6.926 5.430 13.652	12.741 21.359 22.156 36.073

PROC LOGISTIC: Plot Options

- o plots(only)=
 - Suppresses default plots and only outputs requested plots
- o plots=(effect(clband yrange=(.5,1) x=treatment*diagnosis))
 - Produces an effect plot with confidence limit bands
 - yrange=(.5,1) specifies range of y-axis. Default is (0,1).
 - x=treatment*diagnosis requests an effect be plotted (on the x-axis) for every combination of treatment and diagnosis
- o plots=(effect(x=treatment sliceby=diagnsosis clbar connect))
 - Produces an effect plot with error bars
 - x=treatment specifies the x-axis
 - sliceby=diagnosis requests plots at each level of diagnosis
 - connect requests plotted estimates to be connect by lines

PROC LOGISTIC: Plot Options

- o plots=(oddsratio(logbase2))
 - Plots odds ratios with 95% Wald confidence intervals
 - Creates log base 2 scale for the x-axis
- effectplot interaction (x=work) / at(smoke=all years=all) link noobs;
 - Creates effect plots displaying effects of interactions, with workplace as x-axis
 - link option requests y-axis to be on scale of linear predictor (log odds)

Appendix A Statistical Methodology for Dichotomous Logistic Regression

- Consideration of relationship between dichotomous outcome variable and set of explanatory variables arises from:
 - i) clinical trials where explanatory variables are treatment, stratification variables, and background covariables
 - ii) observational studies where explanatory variables represent factors for evaluation and background variables

• Assume the data arise from a stratified simple random sample so that a dichotomous outcome for the respective strata has a product binomial distribution:

$$\Pr\{n_{ij}\} = \prod_{i=1}^{s} \frac{n_{i+}!}{n_{i1}!n_{i2}!} \theta_i^{n_{i1}} \left(1 - \theta_i\right)^{n_{i2}}$$

where θ_i is the probability that a randomly selected subject from the i-th stratum has outcome j=1, and n_{i1} and n_{i2} are the numbers of subjects from the ith stratum with the j=1 and j=2 outcomes, $n_{i+1}=(n_{i1}+n_{i2})$ and $i=1,2,\ldots,s$.

• Model for θ specified as:

$$\theta = \frac{\exp\left(\alpha + \sum_{k=1}^{t} \beta_k x_k\right)}{1 + \exp\left(\alpha + \sum_{k=1}^{t} \beta_k x_k\right)}$$

where $x_i, ..., x_t$ are explanatory variables

• Odds are written as:

$$\frac{\theta}{1-\theta} = \exp\left(\alpha + \sum_{k=1}^{t} \beta_k x_k\right)$$

• Model for logit is linear:

$$\log\left(\frac{\theta}{1-\theta}\right) = \alpha + \sum_{k=1}^{t} \beta_k x_k$$

• $\exp(\beta_k)$ = odds ratios for unit changes in x_k

•exp(
$$\alpha$$
) = odds when $x_1 = ... = x_t = 0$

• When data are from sampling process equivalent to stratified simple random sampling from subpopulations according to explanatory variables so that a product of binomial distributions applies, maximum likelihood estimates are obtained by solving:

$$\sum_{i=1}^{s} n_{i+} \hat{\theta}_i(1, x_{i1}, ..., x_{it}) = \sum_{i=1}^{s} n_{i1}(1, x_{i1}, ..., x_{it})$$

• Model-predicted value for θ_i :

$$\hat{\theta}_i = \frac{\exp\left(\hat{\alpha} + \sum_{k=1}^t \hat{\beta}_k x_k\right)}{1 + \exp\left(\hat{\alpha} + \sum_{k=1}^t \hat{\beta}_k x_k\right)},$$

where $\hat{\alpha}$ and $\hat{\beta}_k$ have approximate multivariate normal distributions

- The estimated covariance matrix for $\hat{\boldsymbol{\beta}}$ is $(\boldsymbol{X}_A'\boldsymbol{D}_v\boldsymbol{X}_A)^{-1}$ where $\boldsymbol{D}_v = Diag\{n_{i+}\hat{\theta}_i(1-\hat{\theta}_i)\}$ and $\boldsymbol{X}_A = [\mathbf{1}, \boldsymbol{X}]$
- Goodness of fit can be assessed with Pearson chi-square statistics when sample sizes are adequate (80% of $\{n_{i1}\}$ and $\{n_i n_{i1}\}$ are ≥ 5 and all others are ≥ 2):

$$Q_{P} = \sum_{i=1}^{s} \frac{(n_{i1} - n_{i+} \hat{\theta}_{i})^{2}}{n_{i+} \hat{\theta}_{i} (1 - \hat{\theta}_{i})},$$

which is $\approx \chi^2(s-1-t)$

- Can also use log-likelihood ratio statistic (deviance) to evaluate goodness of fit
- In situations with continuous explanatory variables,

 Q_P is not appropriate. Instead, we need to fit
 expanded and reduced models. Let the original model
 matrix X have rank t, and expanded model [X, W]
 have rank t + w. Evaluate significance of W by taking
 difference of log-likelihood statistics:

$$Q_{LR} = \sum_{i=1}^{s} \sum_{j=1}^{2} 2n_{ij} \log\left(\frac{m_{ij,w}}{m_{ij}}\right),$$

which is $\approx \chi^2(w)$; here $m_{i1} = n_{i+}\hat{\theta}_i$ and $m_{i2} = (n_{i+} - m_{i1})$ and similarly for $m_{ij,w}$. • Another approach to goodness of fit that does not involve fitting expanded model is the score statistic to assess the association of residuals with *W*:

$$Q_{S} = g'\{W'[D_{v} - D_{v}X_{A}(X'_{A}D_{v}X_{A})^{-1}X'_{A}D_{v}]W\}^{-1}g,$$

where the residuals $g = W'(n_{*_1} - m_{*_1})$

$$Q_S \approx \chi^2(w)$$

here,
$$\mathbf{D}_{v} = Diag\left\{n_{i}\hat{\theta}_{i}(1-\hat{\theta}_{i})\right\}$$
 and $\mathbf{X}_{A} = [\mathbf{1}, \mathbf{X}]$

8.8 Using GENMOD Procedure for Logistic Regression

Generalized Linear Models

- GENMOD fits generalized linear models: including not only classical linear models but logistic and probit (binary data), loglinear models (multinomial data) and Poisson regression (Poisson data)
- Generalized linear model has three components:
 - i) response variable $\{y_i\}$ with probability distribution
 - ii) set of explanatory variables x_i and parameters β
 - iii) monotonic link function g that describes how expected value of y_i (denoted μ_i) is related to $x_i^*\beta$:

$$g(\mu_i) = \mathbf{x}_i' \boldsymbol{\beta}$$

• Generalized linear model is constructed by choosing appropriate link function and response probability distribution

	Probability	
Model	Distribution	Link Function
Classical linear	Normal	$g(\mu) = \mu$
Logistic	Binomial	$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$
Poisson	Poisson	$g(\mu) = \log(\mu)$

Fitting Logistic Regression Models with PROC GENMOD

- An attractive feature for using GENMOD is ease in handling qualitative variables with CLASS statement
- Reference cell (or incremental effects) coding is used (similar to LOGISTIC with CLASS statement and PARAM=REF or PARAM=GLM)
- GENMOD allows specification of a single response variable (using FREQ statement if data contain frequency counts) or outcome in *events/trials* form.

• Ex: Use urinary tract data in events/trial form to perform logistic regression in PROC GENMOD

• To assess whether any treatments are similar, test linear combinations of parameters:

$$H_0$$
: $L\beta = 0$

- Likelihood ratio test is computed by default, Wald test can be produced by request
- Test for whether treatment A is equivalent to treatment B:

$$H_0$$
: $\beta_A = \beta_B$

• Test for whether treatment A is equivalent to treatment C:

$$H_0$$
: $\beta_A = \beta_C$

• Tests are requested with CONTRAST statement:

• The ESTIMATE statement may be used to request an estimate and confidence interval for $\exp(L\beta)$.

Goodness of Fit

Class	Levels	Values	
DIAGNO TREATM		complicated A B C	uncomplicated
Criteria For Criterion	Assessing DF	Goodness Of Value	Fit Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)	·)	2.5147 2.5147 2.7574 2.7574 -225.0355 -13.4690 34.9379 35.0228 51.5996	1.2573 1.2573 1.3787 1.3787

Parameter Estimates

_						
	Anal	lysis Of	Parameter	Estimates		
Parameter		DF	Estimate	Std Err	ChiSquare	Pr>Chi
INTERCEPT		1	1.4184	0.2987	22.5505	0.0001
DIAGNOSIS	complicated	1	-0.9616	0.2998	10.2885	0.0013
DIAGNOSIS	uncomplicated	0	0.0000	0.0000		
TREATMENT	Α	1	0.5847	0.2641	4.9020	0.0268
TREATMENT	В	1	1.5608	0.3160	24.4010	0.0001
TREATMENT	С	0	0.0000	0.0000		
SCALE		0	1.0000	0.0000		
	LR Sta	tistics	For Type 3	3 Analysis		
	Source	D	F ChiSqua	are Pr>Chi		
	DIAGNOS	IS	1 11.	72 0.0006		
	TREATME	NT :	2 28.	11 0.0001		

Contrasts

CONTRAST Statement Results					
Contrast	DF	ChiSquare	Pr>Chi	Туре	
treatment A-B	2 1	28.1137 9.2218		LR LR	
A-C	1	4.9883	0.0255	LR	

8.6 A Note on Diagnostics

Pearson Residuals:
$$r_i = \frac{y_i - n_i \hat{\theta}_i}{\sqrt{n_i \hat{\theta}_i (1 - \hat{\theta}_i)}}$$

- Used to compare differences between observed counts and their predicted values, scaled by the observed count's standard deviation.
- You can examine the r_i 's to determine how well the model fits the invidual groups.
- Residual values exceeding 2 are considered to be indicative of lack of fit.
- The sums of the squares of the r_i 's is Q_P

Deviance Residuals:

$$d_i = \operatorname{sgn}(y_i - \hat{y}_i) \left[2y_i \log \left(\frac{y_i}{\hat{y}_i} \right) + 2(n_i - y_i) \log \left(\frac{n_i - y_i}{n_i - \hat{y}_i} \right) \right]^{\frac{1}{2}}$$
where $\hat{y}_i = n\hat{\theta}_i$

- Both Pearson and deviance residuals can be standardized to have approximately unit variances
- The likelihood residual is another option, and is a weighted combination of the standardized Pearson and deviance residuals
- Standardized deviance residuals and likelihood residuals are recommended as they rank extreme observations well and are reasonably well approximated by a standard normal distribution when the numbers in each group are large enough

- Residuals can be examined in an index plot, in which residuals are plotted against the corresponding observation number.
- The INFLUENCE option requests that PROC LOGISTIC provide regression diagnostics.
- Data must be in *events/trial* form. Otherwise, when you compute residuals, they are calculated using a group size of 1.

```
data uti2;
  input diagnosis: $13. treatment $ response trials;
datalines;
  complicated
                A 78
                        106
                B 101
  complicated
                        112
  complicated
                C 68
                        114
  uncomplicated A 40
                        45
  uncomplicated B 54
                        59
  uncomplicated C
                   34
                         40
run;
```

```
ods graphics on;
proc logistic data=uti2 plots(label)=influence(unpack stdres);
  class diagnosis treatment / param=ref;
  model response/trials = diagnosis treatment;
run;
ods graphics off;
```


Byssinosis Example – Main Effects Model

The following code can be used to create a main effects model for the byssinosis data in event/trials syntax, wherein some of the pairwise interactions had previously been found to be important.

```
data byss2;
  input work $ years $ smoke $ count trials @@;
  datalines;
dusty <10 yes 30 233  dusty <10 no 7 126  dusty >=10 yes 57 218  dusty >=10 no 11 92
not <10 yes 14 1354 not <10 no 12 1016 not >=10 yes 24 1384 not >=10 no 10 996
  ;
run;

ods graphics on;
proc logistic data=byss2 plots(label)=influence(unpack stdres);
  class work years(ref=first) smoke(ref=first) / param=ref;
  model count/trials = work years smoke work*years work*smoke years*smoke
  / selection=forward include=3 details scale=none aggregate;
run;
ods graphics off;
```

Byssinosis Example – Main Effects Model (continued)

Residual Chi-Square Test				
Chi-Square DF Pr > ChiSq				
7.9772	3	0.0465		

Analysis of Effects Eligible for Entry

Effect	DF	Score Chi-Square	Pr > ChiSq
work*years	1	3.1737	0.0748
work*smoke	1	3.4847	0.0619
years*smoke	1	1.2449	0.2645

Byssinosis Example – Main Effects Model (continued)

8.7.1 Examples of Non-Convergence

• Consider following table:

Factor	Response = Yes	Response = No
Factor 1	15	0
Factor 2	0	34

Computing odds ratio results in: $\frac{15\times34}{0\times0}$, which is infinite. Since odds ratio is e^{β} , then β is also infinite Warning message for complete separation is produced in output, ML estimate does not exist

- If convergence is not attained within 8 iterations, PROC LOGISTIC computes *Pr*(allocation each observation to correct response group):
 - i) if prob = 1 for all observations, there is *complete* separation of data points and process is halted
 - ii) if prob = 1 for nearly all observations, there is *quasicomplete separation* and process is halted iii) if neither of these exists, there is *overlapping* → ML estimates exist and are unique

- Problems of complete and quasi-complete separation generally occur for small sample sizes; usually quasicomplete does not occur if you have continuous explanatory variables; complete can always occur
- Following example has several zero frequencies for response distribution within groups:

Treatment Group	Yes	No
Control	0	0
Treatment A	8	$\mid 0 \mid$
Treatment B	0	2
Treatment A + B	21	6

```
proc logistic;
    freq count;
    model response = treatA treatB;
run;
```

Warning message for quasicomplete separation is produced in output, ML estimate may not exist

Log:

WARNING: There is possibly a quasi-complete separation of data points. The

maximum likelihood estimate may not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning.

Results shown are based on the last maximum likelihood iteration.

Validity of the model fit is questionable.

Output:

Model Convergence Status

Quasi-complete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning.

Results shown are based on the last maximum likelihood

iteration.

Validity of the model fit is questionable.

• Following example includes two dichotomous explanatory variables and zero counts resulting in complete separation:

Gender	Region	Yes	No
Female	I	0	5
Female	II	1	0
Male	I	0	175
Male	II	53	0

```
proc logistic;
    model response = gender region;
run;
```

Warning message for complete separation is produced in output, ML estimate does not exist

Exact Methods in Logistic Regression

- It is now possible to compute parameter estimates, confidence intervals, and *p*-values using methodology based on exact distributions
- SAS provides this methodology beginning in version 8.1; exact estimates and confidence intervals are also available using LogXact from CYTEL Software Corporation
- Exact methods are particularly useful when there is nonconvergence (or non-availability) for estimates from approximate methods.

Exact methods for the examples of non-convergence:

Factor	Response = Yes	Response = No
Factor 1	15	0
Factor 2	0	34

Model Convergence Status

Complete separation of data points detected.

WARNING: The maximum likelihood estimate does not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning.

Results shown are based on the last maximum likelihood iteration.

Validity of the model fit is questionable.

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	60.3568	1	<.0001	
Score	49.0000	1	<.0001	
Wald	0.2720	1	0.6020	

Note the conflicting nature of the *p*-values. None is trustworthy.

WARNING: The validity of the model fit is questionable.							
Analysis of Maximum Likelihood Estimates							
Standard							
Parameter	٦	DF	Estimate	Er	ror (Chi-Square	Pr > ChiSq
Intercept	t	1	-9.4177	19.0	251	0.2450	0.6206
factor	1	1	18.9980	36.4	303	0.2720	0.6020
Odds Ratio Estimates							
			I	Point		95% Wald	
	Effect			Estimate		idence Limi	ts
	fact	or 1 v	s 2 >999	9.999	<0.0	01 >999.	999

Note the almost impossibly large estimates for the log odds ratio and its standard error. Neither is trustworthy.

Exact Results

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---

Effect Test Statistic Exact Mid

factor Score 48.0000 <.0001 <.0001

Probability 6.35E-13 <.0001 <.0001

Exact Odds Ratios

95% Confidence

Parameter Estimate Limits p-Value

factor 1 613.522* 62.864 Infinity <.0001

NOTE: * indicates a median unbiased estimate.

```
data quasi;
   input treatA treatB response count @@;
   datalines;
   0 0 0 0 0 0 1 0
   0 1 0 2 0 1 1 0
   1 0 0 0 1 0 1 8
1 1 0 6 1 1 1 21
proc logistic descending;
   freq count;
   model response= TreatA TreatB;
   exact TreatA TreatB / estimate=both;
run;
```

Model Convergence Status

Quasi-complete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning.

Results shown are based on the last maximum likelihood iteration.

Validity of the model fit is questionable.

Testing Gl	obal Null Hypoth	esis: BET	TA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	10.0294	2	0.0066
Score	9.4626	2	0.0088
Wald	0.0089	2	0.9956

	Analysis	of Maximum	Likelihood I	Estimates	
Danamatan	D.E.	Fatimata	Standard	Ohi Ommana	Du > ObiOn
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-1.9635	367.8	0.0000	0.9957
treatA	1	13.6453	347.1	0.0015	0.9686
treatB	1	-10.4290	121.7	0.0073	0.9317

Exact Results

Exact Conditional Analysis

Conditional Exact Tests

			p-Va	alue
Effect	Test	Statistic	Exact	Mid
treatA	Score	5.4444	0.0690	0.0345
croacre	Probability	0.0690	0.0690	0.0345
treatB	Score	2.0843	0.2994	0.2082
	Probability	0.1824	0.2994	0.2082

Exact Odds Ratios

Parameter	Estimate		nfidence mits	p-Value
treatA	7.062*	0.522	Infinity	0.1379
treatB	0.352*	0	2.850	0.3647

NOTE: * indicates a median unbiased estimate.

Gender	Region	Yes	No
Female	I	0	5
Female	II	1	0
Male	I	0	175
Male	II	53	0

```
data complete;
   input gender region count response @@;
  datalines;
  0 0 0 1 0 0 5 0
  0 1 1 1 0 1 0 0
  1 0 0 1 1 0 175 0
   1 1 53 1 1 1 0 0
proc logistic descending;
  freq count;
  model response = gender region;
  exact gender region / estimate=both;
run;
```

Model Convergence Status

Complete separation of data points detected.

WARNING: The maximum likelihood estimate does not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning.

Results shown are based on the last maximum likelihood iteration.

Validity of the model fit is questionable.

Testing Glo	Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	252.7878	2	<.0001		
Score	234.0000	2	<.0001		
Wald	0.6762	2	0.7131		

Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq 0.0339 Intercept -9.6290 52.3141 0.8540 gender -1E-14 52.9721 0.0000 1.0000 region 19.8262 24.1158 0.6759 0.4110 WARNING: The validity of the model fit is questionable. Odds Ratio Estimates Point 95% Wald Effect Estimate **Confidence Limits** gender 1.000 <0.001 >999.999 region >999.999 <0.001 >999.999

Even though the exact methods are appropriate for these data, SAS is unable to perform the necessary computation due to the large cell count of 175, and no exact results are provided.

Log:

WARNING: There is a complete separation of data points. The maximum

likelihood estimate does not exist.

WARNING: The LOGISTIC procedure continues in spite of the above

warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is

questionable.

WARNING: The permutation distribution contains frequencies larger

than 9.0071993E15; accuracy was lost.

• Example: the following data are from a study on liver function outcomes for high risk overdose patients in which antidote and historical control groups are compared

Time to	Antidote		dote Control	
Hospital	Severe Not Severe		Severe	Not Severe
Early	6	12	6	2
Delayed	3	4	3	0
Late	5	1	6	0

• These data do not present a complete or quasicomplete separation problem. However, due to the small cell counts, exact logistic regression is the appropriate method.

```
data liver;
     input time $ group $ status $ count @@;
  datalines;
  early antidote severe 6 early antidote not 12
  early control severe 6 early
                                   control not 2
  delayed antidote severe 3 delayed antidote not 4
  delayed control severe 3 delayed control not 0
  late antidote severe 5 late
                                   antidote not 1
  late control severe 6 late control not 0
  run;
proc logistic descending;
  freq count;
  class time (ref='early') group(ref='control') / param=ref;
  model status = time group / clparm=wald;
run;
```

Global Fit Statistics

Testing G	lobal Null Hypot	hesis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	16.3913	3	0.0009
Score	13.4256	3	0.0038
Wald	10.2488	3	0.0166

MLE Estimates

	Analysis of Maximum Likelihood Estimates					
Paramo	eter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
T at and	0 (01	Di	Locimaco	21101	one oquare	11 7 011104
Inter	cept	1	1.4132	0.7970	3.1439	0.0762
time	delayed	1	0.7024	0.8344	0.7087	0.3999
time	late	1	2.5533	1.1667	4.7893	0.0286
group	antidote	1	-2.2170	0.8799	6.3480	0.0118

Odds Ratio Estimates

	Odds	Ratio Estim	nates		
Effect		Point Estimate		s Wald nce Limits	
time time group	delayed vs early late vs early antidote vs control	2.019 12.849 0.109	0.393 1.305 0.019	10.359 126.471 0.611	

- However, we would not report the maximum likelihood estimates and corresponding odds ratios due to sample size concerns.
- The following statements request an exact analysis:

```
proc logistic descending;
  freq count;
  class time (ref='early') group(ref='control') / param=ref;
  model status = time group / scale=none aggregate clparm=wald;
  exact 'Model 1' intercept time group / estimate=both;
  exact 'Joint Test' time group / joint;
run;
```

Exact Results

Exact	Conditional	Analysis
-------	-------------	----------

Exact Conditional Tests for Model 1

			p-V	alue
Effect	Test	Statistic	Exact	Mid
Intercept	Score	3.4724	0.1150	0.0922
	Probability	0.0457	0.1150	0.0922
time	Score	6.0734	0.0442	0.0418
	Probability	0.00471	0.0442	0.0418
group	Score	7.1656	0.0085	0.0050
	Probability	0.00698	0.0085	0.0050

Exact Conditional Tests for Joint Test

			p-Va	alue
Effect	Test	Statistic	Exact	Mid
Joint	Score	13.1459	0.0027	0.0027
	Probability	0.000015	0.0015	0.0015
time	Score	6.0734	0.0442	0.0418
	Probability	0.00471	0.0442	0.0418
group	Score	7.1656	0.0085	0.0050
	Probability	0.00698	0.0085	0.0050

Exact Parameter Estimates for Model 1						
Parame	ter	Estimate	Standard Error	ç Confidenc	95% ce Limits	Two-Sided p-value
Interc time time group	ept delayed late antidote	1.3695 0.6675 2.4388 -2.0992	0.7903 0.8141 1.1425 0.8590	-0.2361 -1.2071 0.1364 -4.5225	3.6386 2.6444 6.4078 -0.3121	0.1140 0.6667 0.0331 0.0154

	Exact	Odds Ratios f	or Model 1		
Parameter		Estimate	95% Con Lim		p-Value
Intercept time time group	delayed late antidote	3.934 1.949 11.460 0.123	0.790 0.299 1.146 0.011	38.037 14.075 606.546 0.732	0.1140 0.6667 0.0331 0.0154

Firth Bias Reduction Method

- An alternative strategy to exact methods is Firth's penalized likelihood method. This is a bias reduction method that adds a term to the usual log-likelihood function. When the resulting penalized likelihood method is maximized, it shrinks the estimates towards zero.
- Firth's method is especially useful when you are dealing with continuous explanatory variables and exact methods may not be applicable. It always produces parameter estimates when the issue is complete or quasi-complete separation.
- Request Firth's method using the FIRTH option in the MODEL statement of PROC LOGISTIC
 - Should always use CLPARM=PL option with Firth's method since the profile likelihood based confidence limits will be based on the penalized likelihood

```
proc logistic data=liver;
  freq count;
  class time (ref='early') group(ref='control') / param=ref;
  model status = time group / firth clparm=pl;
run;
```

Parameter Estimat	es and Profile-L	ikelihood Confidenc	e Intervals
Parameter	Estimate	95% Confidence	Limits
time la	1.2077 elayed 0.6374 ate 2.1543 atidote -1.9526	-0.9007 2 0.4031 4	.8718 .2523 .5421 .5053

In general, exact tests are recommended for small sample situations, but the Firth penalized likelihood approach is a useful alternative, especially when exact methods are computationally infeasible

Firth's method applied to previous example of completely separated data:

Gender	Region	Yes	No
Female	I	0	5
Female	II	1	0
Male	I	0	175
Male	II	53	0

```
proc logistic data=complete descending;
  freq count;
  model response = gender region / firth clparm=pl
  exact gender region;
run;
```

The exact results were non-conclusive because the computations ran into a degenerate distribution. The Firth method, however, does produce estimates.

Penalized Parameter Estimates

	Analysis	of Penalized	Maximum Lik	elihood Estimat	tes
			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-2.4001	1.6189	2.1978	0.1382
gender	1	-3.4599	2.1523	2.5843	0.1079
Region	1	10.5320	2.0164	27.2817	<.0001

Parameter Estimates	and Profile	-Likelihood Co	nfidence Intervals	
Parameter	Estimate	95% Confide	nce Limits	
Intercept	-2.4001		-0.2218	
gender	-3.4599	-8.7265		
region	10.5320	7.5460	16.2653	

These estimates should be used cautiously. However, the confidence interval for region conveys the impression that region is an important effect.

One way to evaluate the parameter estimates is to collapse the two tables into one 2×2 table and add 0.5 to each of the counts. Collapsing over gender is justified since gender appears to have no effect:

Region	Yes	No
I	0.5	180.5
II	54.5	0.5

If you compute the odds ratio for this table, you obtain (0.5)(0.5)/(54.5)(180.5) = 0.00003, which is about the same as the exponentiated parameter for region. Thus, these estimates appear to be reasonable.

8.7.4 Exact Confidence Limits for Common Odds Ratios for 2x2 Tables

When you have multiple 2×2 tables, you may be interested in computing exact confidence limits for the average odds ratio among the set.

To do so, formulate the analysis as a regression where the column variable is the response variable and the row and stratification variables are the explanatory variables.

Then, condition on the stratification variable and estimate the odds ratio for the row variable. This odds ratio will be an average odds ratio.

Example: Association of office exercise program and test results, stratified by location.

Cardiovascular Test Outcomes

Location	Program	Good	Not Good	Total
Downtown Downtown	Office Home	12 3	5 5	17 8
	Total	15	10	26
Satellite Satellite	Office Home	6 1	1 3	7 4
	Total	7	4	11

See page 250 for SAS code to input data

```
proc logistic;
   freq count;
   class location program(ref=first) / param=ref;
   model outcome = location program;
   exact program / estimate=both;
run;
```

Exact Test Results

Exact Conditional Tests				
Effect	Test	Statistic	p-va Exact	alue Mid
program	Score Probability	5.5739 0.0183	0.0307 0.0307	0.0215 0.0215

Exact Odds Ratio

Parameter		Estimate	ç Confidenc	95% ce Limits	Two-Sided p-value	
program	office	5.413	1.049	33.312	0.0424	

Asymptotic Odds Ratio

Effect	Point Estimate	95% Wald Confidence Limits
program office vs home	6.111	1.331 28.062

Using the exact method provides a more accurate picture in this example than the inappropriate asymptotic method.