High Performance Computer Architecture (CS60003)

Tutorial 1 Solutions

Indian Institute of Technology Kharagpur

Probable Solutions

- 1. Let us denote
 - (a) CPI_{xM_1} average CPI of a class X instruction on M_1 .
 - (b) CPI_{yM_1} average CPI of a class Y instruction on M_1 .
 - (c) CPI_{xM_2} average CPI of a class X instruction on M_2 .
 - (d) CPI_{yM_2} average CPI of a class Y instruction on M_2 .

Assume there are n instructions of class X and class Y each.

Average cycles required to execute a single instruction (CPI) of both M_1 and M_2 for B_1 is $\frac{1GHz}{100MIPS} = \frac{1 \times 10^9}{100 \times 10^6} = 10$.

Average CPI on M_1 for B_1 can be expressed as:

$$\frac{n \times CPI_{xM_1} + n \times CPI_{yM_1}}{2n} = 10 \tag{1}$$

Average CPI on M_2 for B_1 can be expressed as:

$$\frac{n \times CPI_{xM_2} + n \times CPI_{yM_2}}{2n} = 10 \tag{2}$$

Equation (1) and (2) can be simplified to

$$CPI_{xM_1} + CPI_{uM_1} = 20$$
 (3)

$$CPI_{xM_2} + CPI_{uM_2} = 20 (4)$$

After replacing half of the class X instructions with class Y instructions (suite B_2), average CPI on M_1 can be expressed as

$$\frac{\left(\frac{n}{2} \times CPI_{xM_1} + \frac{n}{2} \times CPI_{yM_1}\right) + n \times CPI_{yM_1}}{2 \times n} \tag{5}$$

and average CPI on M_2 can be expressed as

$$\frac{\left(\frac{n}{2} \times CPI_{xM_2} + \frac{n}{2} \times CPI_{yM_2}\right) + n \times CPI_{yM_2}}{2 \times n} \tag{6}$$

It is given that M_1 's running time is 80% of M_2 . Therefore, we can relate these two average CPIs as

$$\frac{\left(\frac{n}{2} \times CPI_{xM_1} + \frac{n}{2} \times CPI_{yM_1}\right) + n \times CPI_{yM_1}}{2 \times n} = 0.8 \times \frac{\left(\frac{n}{2} \times CPI_{xM_2} + \frac{n}{2} \times CPI_{yM_2}\right) + n \times CPI_{yM_2}}{2 \times n} \tag{7}$$

This can be simplified to

$$CPI_{xM_1} + 3 \times CPI_{yM_1} = 0.8 \times CPI_{xM_2} + 2.4 \times CPI_{yM_2}$$
 (8)

Similarly, for suite B_3 , average CPI on M_1 can be expressed as

$$\frac{n \times CPI_{xM_1} + (\frac{n}{2} \times CPI_{xM_1} + \frac{n}{2} \times CPI_{yM_1})}{2 \times n} \tag{9}$$

and average CPI on M_2 can be expressed as

$$\frac{n \times CPI_{xM_2} + (\frac{n}{2} \times CPI_{xM_2} + \frac{n}{2} \times CPI_{yM_2})}{2 \times n} \tag{10}$$

It is given that M_1 's running time is 1.4 times of M_2 . Therefore, we can relate these two quantities as

$$\frac{n \times CPI_{xM_1} + \left(\frac{n}{2} \times CPI_{xM_1} + \frac{n}{2} \times CPI_{yM_1}\right)}{2 \times n} = 1.4 \times \frac{n \times CPI_{xM_2} + \left(\frac{n}{2} \times CPI_{xM_2} + \frac{n}{2} \times CPI_{yM_2}\right)}{2 \times n} \tag{11}$$

This can be simplified to

$$3 \times CPI_{xM_1} + CPI_{yM_1} = 4.2 \times CPI_{xM_2} + 1.4 \times CPI_{yM_2} \tag{12}$$

Solve the 4-variable system of equations formed by Equations (3), (4), (8) and (12). This gives the required CPIs

- (a) $CPI_{xM_1} = 8.66$
- (b) $CPI_{yM_1} = 11.33$
- (c) $CPI_{xM_2} = 3.33$
- (d) $CPI_{yM_2} = 16.66$
- 2. (a) Here, 70% of the computation time can be used by the floating-point processor. Hence, $F_{enh} = 0.7$. The speedup of the floating-point processor is 30% faster. Hence, $S_{enh} = 1.3$. Thus, according to Amdahl's Law,

Overall Speedup =
$$\frac{1}{(1 - F_{enh}) + \frac{F_{enh}}{S_{enh}}}$$

$$= \frac{1}{(1 - 0.7) + \frac{0.7}{1.3}}$$

$$= \frac{1}{0.3 + 0.538}$$

$$= 1.19$$

(b) Take **Cost/Speedup** ratio to quantitatively compare between the two options. We will select the Option having lower value of this ratio.

Option 1: Here, 80% of the computation time can be used by the floating-point processor. Hence, $F_{enh} = 0.8$. $S_{enh} = 1.3$ as before. Thus, according to Amdahl's Law,

Overall Speedup =
$$\frac{1}{(1 - F_{enh}) + \frac{F_{enh}}{S_{enh}}}$$

$$= \frac{1}{(1 - 0.8) + \frac{0.8}{1.3}}$$

$$= \frac{1}{0.2 + 0.615}$$

$$= 1.22$$

Cost/Speedup = 50/1.22 = 40.98

Option 2: Here, 60% of the computation time can be used by the floating-point processor. Hence, $F_{enh}=0.6$. The speedup of the floating-point processor, in this case, is 100% faster. Hence, $S_{enh}=2$. Thus, according to Amdahl's Law,

Overall Speedup =
$$\frac{1}{(1 - F_{enh}) + \frac{F_{enh}}{S_{enh}}}$$

= $\frac{1}{(1 - 0.6) + \frac{0.6}{2}}$
= $\frac{1}{0.4 + 0.3}$
= 1.42

Cost/Speedup = 60/1.42 = 42.25

Therefore, Option 1 is better because it has a smaller Cost/Speedup ratio.

3. The code after register renaming is as follows:

4. The instruction status table at the end of two loops:

Instruction	Issue	Execute	Write
LD	1	2	10
MULTD	2	11	15
SD	3	16	17
LD	6	10	11
MULTD	7	15	19
SD	8	20	21