D-708 L7 13/05/2020 19-Maximum liketimood learning of molirected am Willet's key algorithm for POGMS? @: EM - 10-708: see lots of algorithms; develop teste and moustanding - POGMS: POINTERENCE on mobserved; then apply completely observed tools - Better researches dig out foundations eg. Em as wordinate ascent algorithm (encadersing it this very conflow it in a class) Ex: see resignate behind algorithm Ex. use graphical models to pull together local structures MULTER BNS: (6) woks like worts/
empirical probability) (mover MB) (*) ONE to fectorisibility of OGM @: Does this exply to UGM? No permovirected GMS (x) NGM: Hamnesley-clifford nears he can define a NGM in termis of a Gibbs distribution and partition function $P(x_1, x_n) = \frac{1}{2} \prod_{i \in I} \psi_i(x_i)$ $\overline{z} = \overline{z} \prod_{i \in I} \psi_i(x_n)$ · 3 - partien for - normalsation constant of product of unormalised paterials 114c(3c) Ex suppose 4 untains middle parameters le.g. streigth of enfig in clique) give complete (potesticis) and you went to estimate , observations

@ an you compare	peremeters within	14?		u S te
	easily		Try to engine	The of
- @: No; you will no	re the following: -	1 1 4c/3c	, ?)	thought
200	ill appear anside of		-	
11 5 Helze	(4) on a	relogons ope	ation) -4	h(že) ARE
a poduct-sim	difficult for ML	est. whi an	- Not complete the	e parameters
(4) loupling is the	ousles	in the All	6) - ac 16	that the
(x) coupling is the	renown paranet	es; and hu	是一个	will be
, - 00				
Ex: some graphical m	odels studies an	n also be olise	in hear by th	<i>N</i> .
(x) usg-likelihood for	nams with tabula	elique potet	615.	
with the dede				a deta
- MCM (V.E): 11	eno. times unfig:	xia. X=x is	observed in	
Set 0= 23, , 70 N	3 can be represente	el as follows:		
Detuc	en) (total our	1) (1)		
· m(20) = 5 m(z) (clique co	n1) (1)		
- Total conts -no. of	time a unfigured	lien appears ,	n octoset	18.0
- lique courts - no. o	s in the actuser	a unfigurat	ian within a	cique
a f	A state			

(4) lique courts obtained by maginalising our total courts (2000) Assume discreteress Log-likelihood: - p(0/0) = I Im(zc) log 4c(zc) - Nlog Z (Dés): Week your dustand wow log-like is specified (quick) ex: log-like:- Sum owall possible unfigurations of z - nee outla freetian to dampthose values of x/x, (?) which are consisted with your observations of the data; count l'eastine you see it. -cornects log-likelihood with ms (i.e. courts) obtained from data (x) Do you industral now log-like and observations/sufficient statistics for vignis overelated? @ By refresh of usins! Q: when 5 0 (parenes?) (50 yourementer 13!) - we are compute scientists; not mathematicions - Do not mette to theoreticions (actually dealing with messiness) - You were close -> CPDS; but do rul obey congrants of prob. - An unanalised table of nos yelze) - ze associated with a no. e.g. d (x) privative of LL:-- Genderal contentus: 151 1en 21, m(3c) 24(3c) 4(2c) 2001 1erm: 68- Review this (quick) unditions on clique maginals - get optimal ye -> find it vanishes

- (4) At MI setting of personeters; for each olique; model maginals equal to observed maginals (empirical coints)
- Ex: only get magnal probability of a clique pince (30); we want the potential function (estimates of) of tach dique.
 - These are not the same in MGMS (V)
- (x) only provides condition that must be satisfied julin ce have Me paris, does not specify now to get ML perom

ex: seious work into doing this

MUE FOR VICMS

Ex: Pelvious iterations relied on these compts (aussian me style questions)

- triangulated
- characterists defined or maximal chares
- full tables or compact

2 norkhose algorithms (most insightful)

ros vehird

- · IPF (Heative proportional fitting) MRTs to but pot.
- · GIS (convaised iterative scaling) MRFs with fectures potential
- · EX: Kuy is how the differences in problem scopes yield to differences in algorithmic approach Algebraic tricles -> well problem easil (significantly)

IPF

· landity from U optimisation -) anti-dimedic - HOW to recover from this?

(*) Fram II:
$$\frac{\partial L}{\partial \psi(\mathcal{Z}_{\ell})} = \frac{M(\mathcal{Z}_{\ell})}{\psi(\mathcal{Z}_{\ell})} - N \frac{p(\mathcal{Z}_{\ell})}{\psi(\mathcal{Z}_{\ell})}$$

$$p^*_{MLE}(z_c) = \frac{M(z_c)}{N} = \hat{p}(z_c)$$

$$\frac{\tilde{\rho}(z_c)}{\psi(z_c)} = \frac{\tilde{\rho}(z_c)}{\psi(z_c)}$$

Turn ignity into afixed point equation (endow ightity with time component)

$$\psi(t^{(t)}) = \psi(t^{(t)}(z_{i})) \frac{\hat{\rho}(z_{i})}{\rho^{(t)}(z_{i})}$$

(#) uporete fn: \(\frac{p(z_c)}{p^{(1)}(z_c)}\) - proportion of empirical megical (contable from data)

over when the vesion of estimated megical; based on your model. (derivable from
$$y_c^{(4)}(z_c)$$
)

4) In ugm; un nith observed orate; have to do infernce

Actioned question: i) poes it convege etc?

paperties of 1PF upotetes:

IPFIS a fixed pant pagam are time; entallo ou potential functions

(x) 10 our potentials

(4) A co-ordinate usert algorithm; attaining an optima ma parti direction um otherizations fixed.

- convoerce comerhere. - (x) Also known as 1-projection (distrition one space to another more only and potatical is allowed

-our space of possible distributions to charge) (vier attained via max-chopy)

- via kel divegence view -) wees up in V.2/P.L (Jordan 11) (x) undestood KL divegence view - Me can be reframed as Klaingale - wordingte asout chance of IPF through Kl divegace (via miso theory) max ((3) min KL(p(x))/p(x/0) = \(\frac{p(x)}{2p(x)} \) 109 \(\frac{p(x)}{1/2} \). - Partition aguments of older noto:-Xc and Xc1 C1- complement of C - to cave out a peati. potential clique (x) combine & Kl with conditional chann rule @ 100: review IPF minimses Klainegera (x) changing to (cique potential) has no effect on e.d. (rod sen matketed) (*) KL(p(z) | |p(z) (z)) = KL(p(z)) | p(z(1))) + 5 p(z()) KL(p(z(1)z(1)p(z(1)z())) · i.e. setting plze) = p(xe) (6) 60: quillevill · IPF - start with random guess of paterial nos. 40 (36) multiply by a ratio place) (proportional) -concerty only qualifies whethe local or global (on this context)
- mitable redom no generator 100 times and un (to deal with converge (100 times)