

PROGRAMA DE CURSO – Segundo Semestre 2018

Curso: Informática 1

Carrera: Ingeniería en Sistemas

Catedrático: Lic. Ernesto Rodriguez

No. de períodos a la

semana:	Horario:	Årea:	Requisito:	Requisito para:
6	Martes, Miercoles: 6:50 - 8:20	Ing. en Sistemas		Informática II
	Jueves: 8:30 - 10:00			

Objetivos:

- Mostrarle al estudiante de la forma más acertada e imparcial posible lo que son las ciencias de la computación.
- Introducir al estudiante a los lenguajes formales utilizados en las ciencias de la computación y matemática.
- Introducir al estudiante a varios de los campos de las ciencias de la computación con la intención de darle la oportunidad de decidir qué rumbo tomar.
- Familiarizar al estudiante con las matemáticas utilizadas en las ciencias de la computación.

Competencias esperadas en el Curso:

- Matemática discreta
- Programación
- Teoría de conjuntos
- Algebra booleana

Fecha	Objetivos comunes	Contenido	Actividad	Evaluación
Semana 1. 16 al 20 de Julio	Introducción a las ciencias de la computación. Familiarización con el control de versiones, Git y Github.	 Control de versiones Git Ciencias de la computación 	Catedrático: Clase magistral Alumno: Hoja de trabajo	● Hoja de trabajo #1

	1		1	1	
Semana 2 23 al 27 de Julio	Entender los números naturales y el principio de inducción ya que son los fundamentos a partir los cuales la computación está construida.	 Matemática discreta Principio de inducción Números naturales 	Catedrático:	• Hoja de trabajo #2	
Semana 3 30 de Julio al 3 de Agosto	Entender la relación que existe entre operadores matemáticos, funciones y conjuntos ya que constituyen la teoría matemática que definen la computación.	OperacionesFuncionesConjuntos	Catedrático:	● Hoja de trabajo #3	
Semana 4 6 al 10 de Agosto	Introducir al estudiante con el lenguaje de programación Haskell y mostrarle cual es la relación que existe entre la programación y la teoría de conjuntos.	 Funciones como objetos 	Catedrático:		
		PRIMERA EVALUACIÓ na de exámenes parciales se gosto última fecha de ingreso	impartirán las clases no		
Semana 5 13 al 17 de Agosto 15 FERIADO	Introducir los conjuntos definidos recursivamente ya que permiten representar una infinitud de objetos de manera finita. Mostrar cómo definir dichos conjuntos utilizando Elm.	 Definiciones inductivas Tipos de datos algebraicos 	Catedrático: Clase magistral Alumno: Hoja de trabajo	● Hoja de trabajo #4	
Semana 6 20 al 24 de Agosto	Familiarizar al estudiante con el desarrollo de programas utilizando tipos abstractos algebraicos.	TérminosConstructoresSustituciones	Catedrático:	● Hoja de trabajo #5	

			● Hoja de trabajo	
Semana 7 27 al 31 de Agosto.	Introducir el concepto de una "invariante" y mostrar al estudiante como aplicarlas para escribir pruebas unitarias mediante "elm-test".	InvariantesPruebas unitariasHUnit	Catedrático: Clase magistral Alumno: Hoja de trabajo	● Hoja de trabajo #6
Semana 8 3 al 7 de Septiembre	Mostrarle al estudiante un interpretador de términos para que el entienda a profundidad lo que significa el concepto de evaluación.	 Evaluación Orden Terminación Evaluación estricta Evaluación perezosa 	Catedrático:	
		SEGUNDA EVALUACIÓ na de exámenes parciales se tiembre última fecha de ingres	impartirán las clases no	
Semana 9 10 al 14 de Septiembre	Estudiar aplicaciones adicionales de la recursión para que el estudiante aprenda a utilizar la recursión y el razonamiento inductivo para solucionar problemas del mundo real.	RecursiónFibonacci	Catedrático:	● Hoja de trabajo #7
Semana 10 17 al 21 de Septiembre	Estudiar el significado de las cadenas de caracteres y aprender cómo codificar programas como cadenas.	Lenguajes formalesCadenasCaracteres	Catedrático: Clase magistral Alumno: Hoja trabajo	● Hoja de trabajo #8
Semana 11 24 al 28 de Septiembre	Estudiar cómo se le da significado a un lenguaje formal mediante la computabilidad.	Significado	Catedrático: Clase magistral Alumno: Hoja trabajo	● Hoja de trabajo #9

Universidad del Istmo Facultad de Ingeniería

Semana 12 1 al 5 de Octubre		 Lógica booleana TERCERA EVALUACIÓ ana de exámenes parciales se i Octubre última fecha de ingre 	mpartirán las clases nor	
Semana 13 8 al 12 de Octubre	Introducir al estudiante las funciones booleanas más comunes y mostrarle cómo estudiar la complejidad de dichas funciones.	Lógica booleanaComplejidadLímites asintóticos	Catedrático: Clase magistral Alumno: Hoja trabajo	● Hoja de trabajo #10
Semana 14 15 al 19 de Octubre	Mostrarle al estudiante algunas aplicaciones de la lógica booleana. En particular, métodos para resolver polinomios.	 Algoritmo de Quine-McCluskey Polinomio mínimo 	Catedrático: Clase magistral Alumno: Hoja trabajo	● Hoja de trabajo #11
Semana 15 22 al 26 de Octubre	Introducir al estudiante a la programación con efectos para poder escribir programas que respondan a las acciones de un humano.	Programación reactivaEntrada y salida	Catedrático: Clase magistral Alumno: Hoja de trabajo	● Hoja de trabajo #12
Semana 16 29 de Octubre al 2 de Noviembre 1 FERIADO	EXÁMENES FINALES 9 de Noviembre último día de ingreso de Notas al BB			

Evaluación:

- Para tener derecho a Examen Final se requiere zona mínima de 30 puntos y 80% de asistencia
- Nota mínima para aprobar el curso 61 puntos
- Examen de Recuperación es sobre 40 puntos (conserva la zona)

Artículo	Detalles	Valor unitario	Total
Hoja de trabajo semanal.	El estudiante trabajara en una hoja de trabajo semanal. Esta hoja ayudará al estudiante a repasar el contenido aprendido en clase. Durante el semestre habrán 12 hojas de trabajo, sin embargo solo las 10 mejores notas se tomarán en cuenta.	3%	30%
Examen parcial	El contenido aprendido en clase se evaluará mediante tres exámenes parciales.	10%	30%
Examen final	Todo el contenido aprendido en clase se evaluará mediante un examen final.	40%	40%

Bibliografía:

Kolhase M. General Computer Science I & II lecture notes.
 https://drive.google.com/file/d/1Ycsl9u2z2WeTkNucbnCUMP5Qv7vy0HXN/view?usp=sharing