Eigenvalue and Eigenvector

Len Fu

11.27.2024

Abstract

This is the note made by Len Fu during his learning progress in BIT. The main content is from $Linear\ Algebra$ $Done\ Right\ and\ Linear\ Algebra\ Allenby.$

Contents

1	Eigenvalue and Eigenvector of the Matrix	2
	1.1 Basis	2
	1.2 Algebraic Multiplicity and Geometric Multiplicity	3
2	Cincilentes of the Matrice	_
2	Similarity of the Matrix	5
	2.1 Basis	5
	2.2 Conditions of Similar Digonalizablity	5
3	Jordan Carnonical Form	7
4	Exercise	8

1 Eigenvalue and Eigenvector of the Matrix

1.1 Basis

Definition 1.1. Set A as a $n \times n$ square, if there exists a number λ and n-nonzero vector X, satisfying

$$AX = \lambda X$$
 or $(\lambda I - A)X = 0$

then we say that λ is an eigenvalue of A, and X is an eigenvector of A with eigenvalue λ .

Note.

- 1. Only squares have eigenvectors and eigenvalues.
- 2. Eigenvector must be nonvector and eigenvalue can be zero.

Definition 1.2. $(\lambda I - A)$ is the eigenmatrix of A. $|\lambda I - A|$ is the eigenpolynomial of A. $|\lambda I - A| = 0$ is the eigenequation of the matrix A.

Then the eigenvector of A with eigenvalue λ is the combination of the solution vectors of $(\lambda I - A)X = 0$.

Since $(\lambda I - A)X = 0$ and X is nonzero vector, then $\det(\lambda I - A)$ should be zero to ensure X is nonzero vector of the solution.

Consider the solution of $(\lambda I - A)X = 0$. The characteristic polynomial of A is

$$b_n\lambda^n + b_{n-1}\lambda^{n-1} + \dots + b_1\lambda + b_0.$$

To solve the polynomial,

$$\begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$
$$= b_n \lambda^n + b_{n-1} \lambda^{n-1} + \cdots + b_1 \lambda + b_0$$

Consider the expasion of the determinant, except for

$$(\lambda - a_{11})(\lambda - a_{22}) \cdots (\lambda - a_{nn})$$

other terms' highest order of λ is n-2. Then the coefficents

$$\begin{cases} b_n = 1 \\ b_{n-1} = -(a_{11} + a_{22} + \dots + a_{nn}) = tr() \end{cases}$$

And we divide the determinant into two parts and one is

$$\begin{vmatrix}
-a_{11} & -a_{12} & \cdots & -a_{1n} \\
-a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn}
\end{vmatrix}$$

the other one doesn't contribute to the b_0 , thus

$$b_0 = (-1)^n |A|.$$

From the polynomial theorem,

$$f(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n) = 0.$$

Then

$$b_0 = (-1)^n \lambda_1 \lambda_2 \cdots \lambda_n \ b_{n-1} = -(\lambda_1 + \lambda_2 + \cdots + \lambda_n)$$

And there are some properties of the **Eigenvalue and Eigenvector**.

Properties 1.1. $|A| = \lambda_1 \lambda_2 \cdots \lambda_n$.

- 2. $trA = \sum_{i=1}^{n} \lambda_i$
- 3. If X_1, X_2, \dots, X_s are eigenvectors of A that belong to eigenvalue λ_0 , then the linear combination of X_1, X_2, \dots, X_s is also an eigenvector of A that belongs to eigenvalue λ_0 . And all eigenvectors plus zero vector forms an **eigenspace** of A with eigenvalue λ_0 , denoted as V_{λ_0} and it's a solution space of $(\lambda_0 I A)X = 0$.

Properties 1.2. If λ is an eigenvalue of A with eigenvector X, then we have

- 1. $k\lambda$ is the eigenvalue of kA.
- 2. λ^m is the eigenvalue of $A^m (m \in N^*)$.
- 3. $f(\lambda)$ is the eigenvalue of f(A) if f is a polynomial transformation.
- 4. When A is invertible, λ^{-1} is the eigenvalue of A^{-1}

And X is the eigenvector of matrices above with corresponding eigenvalue.

Properties 1.3. The matrix A and A^T have the same spectrum.

1.2 Algebraic Multiplicity and Geometric Multiplicity

Definition 1.3 (Geometric Multiplicity). As for the eigenvalue λ_i of A, its all eigenvectors are the nonzero-solutions of the equation $(\lambda_i I - A)X = 0$. Thus the number of independent eigenvectors of A with eigenvalues λ_i is no more

than $n - rank(\lambda_i - A)$. The number is the dimension of the eigenspace V_{λ_i} and the number of the solution vectors of the fundamental system of solutions of A. We call this number as the **geometric multiplicity** of λ_i , equals to

$$q_i = n - rank(\lambda_i I - A), i = 1, 2, \dots, s.$$

Ι

Definition 1.4 (Algebraic Multiplicity). From the theorem of the polynomial, n-square A on $\mathbb C$ can be divided

$$f_A(\lambda) = (\lambda - \lambda_1)^{p_1} (\lambda - \lambda_2)^{p_2} \cdots (\lambda - \lambda_s)^{p_s}$$

where $\lambda_1, \lambda_2, \dots, \lambda_s$ are all distinct eigenvalues of A. We call p_i the **algebraic multiplicity** of λ_i .

Theorem 1.1. The geometric multiplicity of any eigenvalue λ_i of A is not larger than the algebraic multiplicity of λ_i .

Proof. Set

$$X_{i1}, X_{i2}, \cdots, X_{iq}$$

as a basis of the eigenspace V_{λ_i} , we extent it into a basis of \mathbb{C}^{\ltimes} :

$$X_{i1}, X_{i2}, \cdots, X_{iq_i}, Y_1, Y_2, \cdots, Y_{n-q_i},$$

then we have

$$A[X_{i1}, X_{i2}, \cdots, X_{iq_i}, Y_1, Y_2, \cdots, Y_{n-q_i}]$$

$$=[\lambda_i X_{i1}, \lambda_2 X_{i2}, \cdots, X_{iq_i}, AY_1, AY_2, \cdots, AY_{n-q_i}]$$

$$=[X_{i1}, X_{i2}, \cdots, X_{iq_i}, Y_1, Y_2, \cdots, Y_{n-q_i}] \begin{bmatrix} \lambda_i I_{q_i} & * \\ 0 & A_1 \end{bmatrix}$$

where A_1 is $n - q_i$ square. Now set

$$P = [X_{i1}, X_{i2}, \cdots, X_{iq_i}, Y_1, Y_2, \cdots, Y_{n-q_i}],$$

obviously P id invertible. Then

2 Similarity of the Matrix

2.1 Basis

Definition 2.1. Set $A, B \in C^{n \times n}$. If there exists an n-order invertible matrix P such that

$$P^{-1}AP = B$$

, we say that A and B are similar, denoted as $A \sim B$, and P is called the *similarity transformation* from A to B.

Properties 2.1 (Reflectivity). $A \sim A$.

Properties 2.2 (Symmetry). If $A \sim B$, then $B \sim A$.

Properties 2.3 (Transitivity). If $A \sim B$ and $B \sim C$, then $A \sim C$.

Properties 2.4. 1. $P^{-1}(A_1 + A_2 + \dots + A_n)P = P^{-1}A_1P + P^{-1}A_2P + \dots + P^{-1}A_nP = P^{-1}\sum_{i=1}^n P^{-1}A_iP$.

2.
$$P^{-1}(kA)P = kP^{-1}AP$$
.

2.2 Conditions of Similar Digonalizablity

Definition 2.2 (Digonalizable). If there exists an invertible matrix P such that

$$P^{-1}AP = D$$

where A is a square and D is a diagonal matrix. Then A is called diagonalizable.

Theorem 2.1 (NS Condition). A n-square A is similar diagonalizable if and only if A has n linear independent eigenvectors.

Proof.

$$P^{-1}AP = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$$

$$AP = Pdiag(\lambda_1, \lambda_2, \cdots, \lambda_n)$$

Now set $P = [X_1, X_2, \cdots, X_n]$, and

$$[AX_1, AX_2, \cdots, AX_n] = [\lambda_1 X_1, \lambda_2 X_2, \cdots, \lambda_n X_n]$$

then we have

$$(A - \lambda_i)X_i = 0$$
, for $i = 1, 2, \dots, n$.

Since P is invertible, we can find n linear irrelative vectors X_1, X_2, \dots, X_n . And X_1, X_2, \dots, X_n are n linear irrelative eigenvectors of A and $\lambda_1, \lambda_2, \dots, \lambda_n$ are eigenvalues of A.

Inversely, if A has n linear irrelative eigenvectors X_1, X_2, \dots, X_n with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, satisfying that

$$AX_i = \lambda_i X_i$$
, for $i = 1, 2, \dots, n$.

Set $P = [X_1, X_2, \cdots, X_n]$ and obviously P is invertible, and

$$P^{-1}AP = diag\lambda_1, \lambda_2, \cdots, \lambda_n$$

which reveals that A is similar diagonalizable.

Note.

- 1. The similar transformation matrix P is not unique.
- 2. The order of X_1, X_2, \dots, X_n changes as the order of $\lambda_1, \lambda_2, \dots, \lambda_n$ changes.

Theorem 2.2. The eigenvectors of A with different eigenvalues are linearly independent.

Proof. Set $\lambda_1, \lambda_2, \dots, \lambda_m$ are non-equal eigenvalues of A, X_1, X_2, \dots, X_n are eigenvectors of A with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_m$, then

$$AX_i = \lambda_i X_i \text{ for } i = 1, 2, \cdots, m.$$

Now I use the mathematical induction to prove the above statement.

Base Case:m=1 Since $X_1 \neq 0$, X_1 is linear independent.

Inductive Hypothesis: $\mathbf{m} = \mathbf{k} - \mathbf{1}$ Suppose the statement is true for m = k - 1.

Inductive Step:m=k Consider the condition that m = k,

$$k_1 X_1 + k_2 X_2 + \dots + k_m X_m = 0$$

Then we left multiply A, we get

$$k_1 A X_1 + k_2 A X_2 + \dots + k_m A X_m = 0.$$

Since $AX_i = \lambda_i X_i$, we get

$$k_1\lambda_1X_1 + k_2\lambda_2X_2 + \dots + k_m\lambda_mX_m = 0.$$

We multiply λ_m on the first equation and we get

$$k_1 \lambda_m X_1 + k_2 \lambda_2 X_2 + \dots + k_m \lambda_m X_m = 0.$$

Then

$$k_1(\lambda_1 - \lambda_m)X_1 + k_2(\lambda_2 - \lambda_m)X_2 + \dots + k_{m-1}(\lambda_{m-1} - \lambda_m)X_{m-1} = 0,$$

and since $\lambda_i \neq \lambda_j$ and X_1, X_2, \dots, X_{m-1} are linearly independent, then

$$k_i = 0 \ i = 1, 2, \cdots, m - 1.$$

Correspondingly, $k_m = 0$.

Thus $k_1, k_2, \dots, k_m = 0$, which reveals that X_1, X_2, \dots, X_m are linearly independent.

Corollary 2.2.1. If n-square A has n distinct eigenvalues, then A can be similar diagonalizable.

Theorem 2.3. Set $\lambda_1, \lambda_2, \dots, \lambda_n$ are distinct eigenvalues of $A, X_{i1}, X_{i2}, \dots, X_{il_i}$ are linear independent eigenvectors of A belonging to eigenvalue $\lambda_i, i = 1, 2, \dots, m$, then the vector set of $X_{11}, X_{12}, \dots, X_{1l_1}, \dots, X_{m1}, X_{m2}, \dots, X_{ml_l}$ is linear independent.

Theorem 2.4 (NS Condition). Set $\lambda_1, \lambda_2, \dots, \lambda_n$ are distinct eigenvalues of A, p_i and q_i are the algebraic multiplicity and geometric multiplicity of λ_i respectively. Then A can be similar diagonalizable if and only if

$$p_i = q_i \ i = 1, 2, \cdots, s.$$

3 Jordan Carnonical Form

4 Exercise

Exercise 4.1. The eigenvalues of A are 1, 2, 3, find the eigenvalues of $A^2 - 2I$.

Solution 4.1.1. We know that $A \sim diag(1,2,3)$ and then $A^2 \sim diag(1,4,9)$. Then $(A^2-2I) \sim (diag(1,4,9)-2I) = diag(-1,2,7)$, then the eigenvalues of A^2-2I are -1,2,7.

Exercise 4.2. Sovle the maxima of the

$$f(x_1, x_2) = 2x_1^2 + 2x_1x_2 + 2x_2^2$$

under the constraint $x_1^2 + x_2^2 = 1$ using **Lagrange Multipliers**.

Solution 4.2.1. Using Lagrange Multipliers,

$$L(x_1, x_2) = 2x_1^2 + 2x_1x_2 + 2x_2^2 - \lambda(x_1^2 + x_2^2 - 1)$$

and