

Benders 102 - Acceleration techniques

Kevin Dalmeijer, Mathieu Tanneau October 7, 2021

Georgia Institute of Technology

Foreword

Ground rules

First make it work, then make it fast

No acceleration technique unless you have a working Benders!

- · Systematically benchmark your code on multiple, hard, instances
- Don't improve anything that's not the bottleneck

Outline

- Background on solving MIPs
- Pareto-optimal cuts
- Separating fractional points (Benders at the root)
- Stabilization techniques
- Cut aggregation
 - + demos on a basic Benders implementation We'll get a 100x speedup

Facility location problem (instance data)

Facility location problem (solution)

Background on MIPs

MIP basics

There are 2 sides to solving MIPs

	The primal side	The dual side
What?	Find an optimal solution	Prove it's optimal
How?	Heuristics, Branching (rare)	Cuts + B&B
When?	Root + nodes (periodically)	Root (a lot) + B&B
Rules?	None besides feasibility	Valid relaxations
% time?	Usually low	Usually high (close last ‰)

What's hard: finding good solutions (primal)? Or closing the gap (dual)? No free lunch \Longrightarrow it depends on the instance!

Textbook Benders: recap

- \cdot Solve the master problem \longrightarrow get an integer solution
- Solve the sub-problem \longrightarrow get a cut
- Repeat

Pareto-optimal cuts

Iter.	Ī	<u>Z</u>
0	$+\infty$	$-\infty$
1	4.00	0.00
2	1.50	0.00
3	1.50	0.00
4	1.25	0.50
5	1.00	1.00

Back to iteration 3...

- Solution: $\bar{y}_3 = 5$ and $\phi(\bar{y}_3) = 1.5$
- Cut: $\theta \ge 1.5 + 1.00 \times (y \bar{y}_3)$
- Other valid cuts

$$\theta \geq 1.5 + 0.25 \times (y - \bar{y}_3)$$

$$\theta \ge 1.5 + 0.75 \times (y - \bar{y}_3)$$

$$\theta \ge 1.5 + 1.75 \times (y - \bar{y}_3)$$

$$\theta \ge 1.5 + 2.50 \times (y - \bar{y}_3)$$

Pareto-optimal cuts [MW81]

Inputs

- Current master solution \bar{y}
- "Core point" $\hat{y} \in \text{relint}(\mathcal{Y})$

Recipe

- Solve sub-problem, get $\phi(\bar{y})$
- Fix SP objective to $\phi(\bar{y})$
- · Maximize cut violation at \hat{y}
- · Return the cut

Benders at the root

Textbook Benders: recap

- \cdot Solve the master problem \longrightarrow get an integer solution
- Solve the sub-problem \longrightarrow get a cut
- Repeat

Textbook Benders: Limitations

- · Solving the *integer* master takes time
- · Why solve an approximate model to optimality?
- The sub-problem remains an LP no matter the value of y!

We can compute cuts at fractional points!

Benders at the root

Phase I (root)

- \cdot Relax integrality constraints \longrightarrow master is LP
- Solve root relaxation with Benders

Phase II (branch)

- Re-instate integrality constraints
- · Only separate cuts at integer points

Stabilization techniques

Iter.	Ī	<u>Z</u>	
0	$+\infty$	$-\infty$	
1	3.80	0.00	
2	3.80	0.00	
3	1.50	0.00	
4	1.50	0.00	
5	0.50	0.00	
6	0.50	0.00	
7	0.50	0.25	
8	0.50	0.50	

Iter.		Ī	<u>Z</u>
	0	$+\infty$	$-\infty$
	1	3.80	0.00
	2	1.50	0.00
	3	0.50	0.00
	4	0.50	0.00
	5	0.50	0.50

Stabilization techniques

Why?

- · Avoid oscillating behaviors (exponentially bad in high dimension)
- · Generate better candidates for separation
- · Reach optimum faster

When?

Most useful at the root

How?

General idea: avoid large deviations from current solution

Stabilization techniques

Many different techniques (will add references)

- · Trust-region, Box-constraint
- · Quadratic penalty (a.k.a bundle methods)
- · Level method
- Interior-point stabilization [GGBM16]
- In-Out separation [FLS17, BST20]
- ...

Pick one you like and try it!

Dealing with many subproblems

Benders decomposition

$$\begin{array}{lll}
\min_{\mathbf{y},\mathbf{x}} & c^{T}\mathbf{y} + \sum_{i} d_{i}^{T}\mathbf{x}_{i} & \min_{\mathbf{y},\theta} & c^{T}\mathbf{y} + \sum_{i} \theta_{i} \\
\mathbf{y} \in \mathcal{Y} & \mathbf{y} \in \mathcal{Y} \\
& A_{1}\mathbf{y} + B_{1}\mathbf{x}_{1} = b_{1} & \longrightarrow & \theta_{1} \geq \phi_{1}(\mathbf{y}) \\
& \vdots & \vdots & \vdots \\
& A_{N}\mathbf{y} + B_{N}\mathbf{x}_{N} = b_{N} & \theta_{N} \geq \phi_{N}(\mathbf{y})
\end{array}$$

Each BD iteration adds (up to) N cuts \Rightarrow master becomes large!

Multi-cut

Cut aggregation

Single-cut

$$egin{array}{ll} \min & c^{\mathsf{T}}\mathbf{y} + \sum_{i} heta_{i} \ & \mathbf{y} \in \mathcal{Y} \ & heta_{1} \geq \phi_{1}(\mathbf{y}) \ & dots \ & heta_{N} \geq \phi_{N}(\mathbf{y}) \end{array}$$

$$\min_{\mathbf{y},\theta} \quad c^{\mathsf{T}}\mathbf{y} + \sum_{k} \theta_{k}$$

$$\mathbf{y} \in \mathcal{Y}$$
 $\theta_k \geq \sum_{i \in \mathcal{N}_k} \phi_i(\mathbf{y})$

$$\begin{aligned} \min_{\mathbf{y},\theta} \quad c^{\mathsf{T}}\mathbf{y} + \theta \\ \mathbf{y} \in \mathcal{Y} \\ \theta_1 \geq \phi_1(\mathbf{y}) + \dots + \phi_N(\mathbf{y}) \end{aligned}$$

where $\bigcup \mathcal{N}_k = \mathcal{N} = \{1, ..., N\}$ (sub-problems are *clustered*).

Pros and cons

	Multi-cut	Aggregated-cut	Single-cut
$- \theta $	Ν	К	1
#cuts in MP	many	medium	few
MP size	largest	medium	smallest
#SP/cut	1	$ \mathcal{N}_k $	Ν
cut strength	strongest	medium	weakest
Tail-off	lowest	medium	highest

How to cluster? Put similar sub-problems together.

Other strategies

When the number of sub-problems is large...

- · Solve them in parallel
- Partial cutting: don't solve all the sub-problems!
 - · Keeps the size of MP under control
 - · Typically adds much fewer cuts in total
 - Compatible with parallelization

References

- Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani, *Implementing automatic benders decomposition in a modern mip solver.*, IPCO, 2020, pp. 78–90.
- Matteo Fischetti, Ivana Ljubić, and Markus Sinnl, *Redesigning benders* decomposition for large-scale facility location, Management Science **63** (2017), no. 7, 2146–2162.
- Jacek Gondzio, Pablo González-Brevis, and Pedro Munari, *Large-scale optimization with the primal-dual column generation method*, Mathematical Programming Computation 8 (2016), no. 1, 47–82.
- Thomas L Magnanti and Richard T Wong, Accelerating benders decomposition: Algorithmic enhancement and model selection criteria, Operations research 29 (1981), no. 3, 464–484.

That's all folks!