HC ELIMINATING MEMBER

Patent Number:

JP7096183

Publication date:

1995-04-11

Inventor(s):

NAKA TAKAHIRO; others: 03

Applicant(s)::

HONDA MOTOR CO LTD

Requested Patent: F JP7096183

Application

Number:

JP19930240097 19930927

Priority Number(s):

IPC Classification: B01J20/28; B01D53/02; B01D53/72; B01D53/86; B01D53/94; B01J20/18;

B01J29/068

EC Classification:

Equivalents:

Abstract

PURPOSE:To provide an HC(hydrocarbon) eliminating member superior in durability. CONSTITUTION: The HC eliminating member 11 is composed of an adsorptiont layer 5 consisting essentially of zeolite, a porous HC oxidation layer 7 provided with Pd oxide whose catalytic performance is degraded due to contact with the zeolite under high temp, and a porous barrier layer 6 for preventing the Pd oxide from being brought into contact with the zeolite which is layered between the HC adsorptiont layer 5 and the HC oxidation layer 7.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-96183

(43)公開日 平成7年(1995)4月11日

(51) Int.Cl. ⁶ B 0 1 J 20/28 B 0 1 D 53/02 53/72	識別配号 庁内整理番号 ZAB A 7202-4G ZAB Z	FΙ	技術表示箇所	
		B 0 1 D	53/ 34 1 2 0 D	
			53/ 36 ZAB	
	審查請求	未請求 請求項	頁の数2 OL (全 5 頁) 最終頁に続く	
(21)出願番号	特願平5-240097	(71)出願人	000005326 本田技研工業株式会社	
(22)出願日	平成5年(1993)9月27日		東京都港区南青山二丁目1番1号	
		(72)発明者	(72)発明者 中 貴弘	
			埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内	
		(72)発明者	遠藤 哲雄	
			埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内	
		(72)発明者	清水 治彦	
			埼玉県和光市中央1丁目4番1号 株式会	
			社本田技術研究所内	
		(74)代理人	,, <u>, , , , , , , , , , , , , , , , , ,</u>	
			最終頁に続く	

(54) 【発明の名称】 HC浄化部材

(57)【要約】

【目的】 耐久性の優れたHC(炭化水素)浄化部材を提供する。

【構成】 HC浄化部材 1 1 は、ゼオライトを主成分とするHC吸着層 5 と、そのゼオライトとの高温下での接触により触媒能が劣化するPd酸化物を備えた多孔質HC酸化層 7 と、HC吸着層 5 およびHC酸化層 7 間に在ってPd酸化物のゼオライトとの接触を防止する多孔質パリヤ層 6 とより構成される。

1

【特許請求の範囲】

【請求項1】 HC吸菪層(5)と、そのHC吸菪層 (5) との接触により触媒能が劣化する触媒素子を備え た多孔質HC酸化層(7)と、前記HC吸着層(5)お よびHC酸化層(7)間に在って前記触媒素子の前記H C吸着層(5)との接触を防止する多孔質パリヤ層 (6) とより構成したことを特徴とするHC浄化部材。

【請求項2】 前記HC吸着層(5)はゼオライトを主 成分とし、また前記触媒素子はPd酸化物であり、さら に前記パリヤ層(6)はA12O3粒子を主成分とす 10 のようにパリヤ層6を設けると、Pd酸化物とゼオライ る、請求項1記載のHC浄化部材。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、排気ガス中のHC(炭 化水素)を浄化するために用いられるHC浄化部材に関 する。

[0002]

【従来の技術】従来、HC浄化部材として、ハニカム に、ゼオライトを主成分とするHC吸着層と、そのHC 吸着層から離脱したHCを酸化すべく、触媒素子である 20 Pd酸化物を備えた多孔質HC酸化層とを順次積層した ものが知られている。

[0003]

【発明が解決しようとする課題】しかしながら、Pd酸 化物は高温下でゼオライトに接触すると、その触媒能が 劣化するため従来部材は耐久性に乏しいという問題があ

【0004】本発明は前記に鑑み、触媒素子とHC吸着 層との接触を防止して耐久性を向上させることができる ようにした前記HC浄化部材を提供することを目的とす 30 オライトスラリを調製し、次いでゼオライトスラリに、 る。

[0005]

【課題を解決するための手段】本発明に係るHC浄化部 材は、HC吸着層と、そのHC吸着層との接触により触 媒能が劣化する触媒素子を備えた多孔質HC酸化層と、 前記HC吸着層およびHC酸化層間に在って前記触媒素 子の前記HC吸着層との接触を防止する多孔質パリヤ層 とより構成されることを特徴とする。

[0006]

【作用】前記構成において、触媒素子とHC吸着層との 40 接触はパリヤ層により防止される。またパリヤ層は多孔 質であるからHC吸着層によるHCの吸着およびそのH C吸着層から離脱したHCのHC酸化層による浄化を妨 げることはない。

[0007]

【実施例】図1,2において、実施例に係るHC浄化部 材11 は、コージェライト製ハニカム2と、そのハニカ ム2の各セル3内面に形成されたHC浄化用積層体41 とからなる。その積層体4」は、セル3内面に接合され リヤ暦6と、パリヤ暦6に接合された多孔質HC酸化層 7とからなる。

【0008】HC吸着圏5はゼオライトを主成分とし、 またパリヤ層 6 はAlz Os 粒子、CeOz 粒子等の耐 熱性無機質粒子を主成分とし、さらにHC酸化層7は触 媒素子としてPd酸化物を含有する。

【0009】このPd酸化物は、HC吸着層5のゼオラ イトと高温化において接触すると、Pd単体を生じるた めその触媒能が劣化する、という性質を有するが、前記 トとの接触を防止して、HC浄化部材 11 の耐久性を向 上させることができる。

【0010】一般にPd酸化物はAl2O; 粒子に担持 されているので、パリヤ層6の孔径は、Pd酸化物担持 All O: 粒子の粒径よりも小に設定される。このよう なパリヤ層6を得るためには、Pd担持Al2O:粒子 の平均粒径が15~25 µmであるとき、耐熱性無機質 粒子として平均粒径が5~15μmのものを用いてそれ らを最密充填させればよい。

【0011】HC浄化部材11によるHCの浄化は次の ように行われる。即ち、排気ガス低温時においては、H CがHC吸着層5により吸着され、排気ガスの昇温に伴 いHCがHC吸着層5より離脱し、その離脱HCがHC 酸化層7により酸化されてCO2とH2Oに転化され

【0012】HC浄化部材11の製造に当っては、 (a) ゼオライトとしての2SM-5ゼオライト (Si O2 /Al2 O2 モル比40) 100gと、水100g と、シリカゾル50gとを混合して、HC吸着層5用ゼ ハニカム2を浸漬して、そのハニカム2にゼオライトス ラリを担持させ、その後乾燥する、(b) A 12 O3 粒 子100gと、水100gと、シリカゾル50gとを混 合して、パリヤ層6用A12 O3 スラリを闘製し、次い でAl2 Os スラリに前記ハニカム2を浸漬して、その ゼオライト層上にAla Oa スラリを担持させ、その後 乾燥する、(c)硝酸パラジウム29gと、水100g と、A 12 O1 粒子60gと、硝酸10gと、シリカゾ ル45gとを混合して、HC酸化層7用Pdスラリを調 製し、次いでPdスラリに前記ハニカム2を浸漬して、 そのAlı O; 層上にPdスラリを担持させ、その後乾 燥する、(d) 前記ハニカム2に300℃、3時間の1 次焼成処理および600℃、1時間の2次焼成処理を施 す、といった方法を採用した。これらの焼成処理によっ て、PdよりPd酸化物が生成され、そのPd酸化物は Al₂O₃ 粒子に担持される。

【0013】図3は、比較例1に係るHC浄化部材1, を示し、それは、コージェライト製ハニカム2と、その ハニカム2の各セル3内面に形成されたHC浄化用積層 たHC吸着層 5 と、HC吸着層 5 に接合された多孔質パ 50 体 4 』とからなる。その積層体 4 』は、セル 3 内面に接 合されたHC吸着層5と、HC吸着層5に接合された多 孔質HC酸化層7とからなる。

【0014】HC吸着部材1: の製造に当っては、(a i)前記(a)で述べたゼオライトスラリにハニカム2を浸漬して、そのハニカム2にゼオライトスラリを担持させ、次いで乾燥する、(b i)前記(c)で述べたP dスラリに前記ハニカム2を浸渍して、そのゼオライト層上にPdスラリを担持させ、次いで乾燥する、

(c:)前記(d)で述べたと同様の1次、2次焼成処理を行う、といった方法を採用した。Pdの酸化および 10 Al2 O: 粒子によるPd酸化物の担持については前記と同じである。

【0015】図4は、比較例2に係るHC浄化部材1、を示し、それは、コージェライト製ハニカム2と、そのハニカム2の各セル3内面に形成されたHC浄化層8とからなる。

【0016】HC浄化部材1:の製造に当っては、(a 2)硝酸パラジウム29gと、水100gと、Al:O 3粒子60gと、硝酸10gとを混合し、次いで乾燥し、その後600℃、1時間の焼成処理を行ってPd酸 20化物を担持したAl:O3粒子を得る、(b2)Pd酸化物担持Al:O3粒子35gと、水100gと、前記ゼオライト60gと、シリカゾル50gとを混合してスラリを鯛製し、次いで、スラリにハニカム2を浸漬し*

*て、そのハニカム2にスラリを担持させ、その後乾燥する、(c.) 前記(d)で述べたと同様の1次、2次焼成処理を行う、といった方法を採用した。

【0017】HC浄化テストを行うため、テスト用ガスとして、体積比率で、10%H2O、400ppmC3H6、0.5%CO、500ppmNO、0.17%H2、14%CO2、0.5%O2 および残部N2よりなるガスを調製した。

[0018] そして、テスト用ガスを、各HC净化部材 1:~1:のハニカム2内に流量25000ml/minの 条件で流通させると共にガス温度を20℃/minで上昇 させ、HCを50%浄化する温度、即ちライトオフ温度 T50を測定した。

【0019】また、各HC浄化部材1: \sim 1, を、体積 比率で、10%H: O、1%O: および残部N: からな るガス中に、750℃で20時間保持する熱劣化処理お よび900℃で20時間保持する熱劣化処理を行い、そ の後前記同様のHC浄化テストを行って同様にライトオ フ温度T50を測定した。

【0020】表1は各HC浄化部材の各ライトオフ温度 T50を示す。

[0021]

【表1】

H C 浄化部材	ライトオフ温度T50(℃)			
II O (3 In abit)	無加熱	750℃ 20 հ	900℃、20 h	
実 施 例	232	2 4 5	2 4 9	
比較例1	2 3 5	250	260	
比較例 2	2 2 5	2 4 7	299	

【0022】図5は表1をグラフ化したものである。表1、図5より、実施例に係るHC浄化部材1:は、900℃、20時間の熱劣化処理によっても比較例1,2のHC浄化部材1:、1:に比べてライトオフ温度T50の上昇度合が小さい。これは、パリヤ層6によりPd酸化物の触媒能低下が抑制されていることに起因するもので、実施例に係るHC浄化部材1:は優れた耐久性を有する。

【0023】また X線回折の結果、Pd酸化物の X線反射強度が、無加熱の場合を100%とすると、900 [6で、20時間の熱劣化処理後では、実施例に係るHC浄化部材1:で75%、比較例1のHC浄化部材1:で75%。

【0022】図5は表1をグラフ化したものである。表 0%、比較例2のHC浄化部材1,で35%であり、し1、図5より、実施例に係るHC浄化部材1,は、90 40 たがって実施例におけるPd酸化物残存率が最も高いこ0℃、20時間の熱劣化処理によっても比較例1,2の とが判明した。

[0024]

【発明の効果】本発明によれば、HC吸着層とHC酸化層との間にパリヤ層を設けることによって、HC酸化層の触媒素子と、それの機能を劣化させるHC吸着層との接触を防止し、これにより耐久性の優れたHC吸着部材を提供することができる。

【図面の簡単な説明】

【図1】実施例に係るHC吸着部材の要部断面図である。

(4)

特簡平7-96183

5

【図2】図1、2矢示部の拡大図である。

【図3】比較例1に係るHC吸着部材の要部断面図であ

る。

【図4】比較例2に係るHC吸着部材の要部断面図であ

る.

【図5】加熱温度とライトオフ温度との関係を示すグラ

フである.

【符号の説明】

11 HC浄化部材

5 HC吸着層

6 パリヤ層

7 HC酸化層

【図1】

[図2]

[図3]

[図4]

【図5】

フロントページの続き

(51) Int. Cl. 5

識別記号 庁内整理番号

FΙ

技術表示箇所

B 0 1 D 53/86

ZAB

53/94

B 0 1 J 20/18

ZAB Z 7202-4G

29/068

ZAB A 9343-4G

B 0 1 D 53/36

104 Z

(72)発明者 藤澤 義和

埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内

.