第六章 线性方程组的解法 /* Method for Solving Linear Systems */

• 引 言/* Introdction */

线性代数方程组出现在工程与科学的许多领域中, 而且很多数值求解问题最后也是导致于求解某些线性 代数方程组,例如电学中的网络问题,船体数学放样 中建立三次样条函数问题,用最小二乘法求实验数据 的曲线拟合问题,解非线性方程组问题,用差分法或 者有限元方法解常微分方程、偏微分方程边值问题等。 众多的事实表明,解线性代数方程组的有效方法在计 算数学和科学计算中具有特殊的重要性。

- >线性方程组的两种数值解法
- •直接解法/* Direct Methods */ 经过有限步算术运算,可求得方程组精确解的方 法(若计算过程中没有舍入误差)。

•特点

直接法是解低阶稠密方程组的有效方法。

•迭代法/* Iterative Methods */

用某种极限过程去逐步逼近线性方程组精确解的方法。

•特点

迭代法是解大型稀疏方程组(尤其是由微分方程离散 后得到的大型方程组)的重要方法。

- § 1 向量与矩阵范数*Norms of Vectors and Matrices *\
 - ➤ 向量范数/* Vector norms */

我们用R'表示n 维实向量的空间。

定义 如果向量 $X \in \mathbb{R}^n$ 的某个实值函数 N(X) = ||X|| 满足条件

1. $||X|| \ge 0(||X|| = 0$ 当且仅当X = 0)

(正定性/* positive definite */)

 $2. \quad \|\alpha X\| = |\alpha| \|X\|, \forall \alpha \in R$

(齐次性 /* homogeneous */)

3. $||X + Y|| \le ||X|| + ||Y||$ (三角不等式 /* triangle inequality */)

则称 N(X) 是向量 X 的范数。

% 几种常用的向量范数

2- 1—范数
$$\|X\|_1 = \sum_{i=1}^n |x_i|$$

3- 2—范数(长度)
$$\|X\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

4- p—范数
$$\|X\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$$

例 计算向量 $X = \begin{pmatrix} 1 & -2 & 3 \end{pmatrix}^T$ 的各种范数

$$||X||_1 = |1| + |-2| + |3| = 6$$

$$||X||_{\infty} = \max(|1|, |-2|, |3|) = 3$$

$$||X||_2 = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{14}$$

定义 向量序列 $\{X^{(k)}\}$ 收敛于向量 X^* 是指对每一个 $1 \le i \le n$ 都 有 $\lim_{k \to \infty} x_i^{(k)} = x_i^*$ 。 可以理解为 $\|X_{\setminus}^{(k)} - X^*\|_{\infty} \to 0$

定义 若存在常数C > 0 使得对任意 $\forall \in \mathbb{R}^n \uparrow |X||_A \leq C ||X||_B$,则 称范数 $||\cdot||_A$ 比范数 $||\cdot||_B$ 强。

定义 若范数 $\|\cdot\|_A$ 比 $\|\cdot\|_B$ 强,同时 $\|$ 在常数 C_1 、 $C_2 > 0$ 使得 C_1 $\|X\|_B \le \|X\|_A \le \|A\| \cdot \|_B$ 等价。

也比||·||_A强,即存 ||_B,则称||·||_A

定理

 R^n 上一切范数都等价。

可以理解为对任何向量范数都成立。

$$\lim_{k\to\infty}X^{(k)} = X^* \Leftrightarrow ||X^{(k)} - X^*|| \to 0 (k \to \infty)$$

证 显然, $\lim_{k\to\infty} X^{(k)} = X^* \Leftrightarrow \|X^{(k)} - X^*\|_{\infty} \to 0 \ (k\to\infty)$, 而对于 \mathbb{R}^n

上任一种范数 $\|\bullet\|$,由范数的等价性,存在常数 $C_1,C_2>0$

使

$$C_1 \Big\| \boldsymbol{X}^{(k)} - \boldsymbol{X}^* \Big\|_{\infty} \leq \Big\| \boldsymbol{X}^{(k)} - \boldsymbol{X}^* \Big\| \leq C_2 \Big\| \boldsymbol{X}^{(k)} - \boldsymbol{X}^* \Big\|_{\infty}$$

于是又有

$$\left\|X^{(k)} - X^*\right\|_{\infty} \to 0 \Leftrightarrow \left\|X^{(k)} - X^*\right\| \to 0 \quad (k \to 0)$$

> 矩阵范数 /* matrix norms */

定义 $R^{m \times n}$ 空间的矩阵范数 $\|\cdot\|$ 对任意 $A, B \in R^{m \times n}$ 满足:

- (1) $||A|| \ge 0$; $||A|| = 0 \Leftrightarrow A = 0$ (正定性/* positive definite */)
- $\|\alpha A\| = |\alpha| \cdot \|A\|$ 对任意 $\alpha \in C$ (齐次性 /* homogeneous */)
- (3) $||A+B|| \le ||A|| + ||B||$ (三角不等式 /* triangle inequality */)
- $(4)* ||AB|| \le ||A|| \cdot ||B||$ (相容 /* consistent */ 当 m = n 时)

When you have to analyze the error bound of AB – imagine you doing it without a consistent matrix norm...

常用矩阵范数:

对方阵 $A \in \mathbb{R}^{n \times n}$ 以及 $\bar{x} \in \mathbb{R}^n$ 有 $||A\bar{x}||_2 \le ||A||_F \cdot ||\bar{x}||_2$

算子范数 /* operator norm */

称矩阵范数与向量范数的 相容性/* consistent */

由向量范数 ||·||,导出关于矩阵 Cauc Ry 不良 $|\vec{x} \cdot \vec{y}| \leq ||\vec{x}||_2 \cdot ||\vec{y}||_2$ $||A||_{p} = \max_{\vec{x} \neq \vec{0}} \frac{||A\vec{x}||_{p}}{||\vec{x}||}$ $|A\overline{x}||_{p} \leq ||A||_{p} ||\overline{x}||_{p}$ 矩阵ATA 的最大 特征根 /* eigenvalue */ 特别有 (列和范数) $1 \le j \le n$ $\lambda_{\max}^{\prime}(A^TA)$ (谱范数 /* spectral norm */)

- 罗 我们只关心有相容 生的范数,算子范数总是相容的。
- 即使A中元素全为 I^* eigenvector I^* 仍可能成复数模均成立。

数, 其特征根和相应特征向量 数。将前述定义中绝对值换

例:求矩阵A的各种常用范数。

$$A^{T}A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 2 & 1 \\ 0 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 0 \\ -1 & 2 & -1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 9 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

特征方程为:
$$\det(\lambda I - A^T A) = \begin{pmatrix} \lambda - 2 & 0 & -1 \\ 0 & \lambda - 9 & 1 \\ -1 & 1 & \lambda - 2 \end{pmatrix} = 0$$
特征值为:

$$\lambda_1 = 9.1428, \lambda_2 = 2.9211, \lambda_3 = 0.9361$$

$$\lambda_{max}(A^T A) = 9.1428 - \|A\|_2 = \sqrt{\lambda_{max}(A^T A)} = 3.0237$$

 $\left\|A\right\|_{l}, \left\|A\right\|_{\infty}$ 计算简单

||A||,计算较复杂,对矩阵元 素的变化比较敏感,性质 较好,使用最广泛。

定理

对任意算子范数 || ·|| 有ρ(A)≤||A||

证明:由算子范数的相容性,得到 $||A\bar{x}|| \le ||A|| \cdot ||\bar{x}||$ 将任意一个特征根 λ 所对应的特征向量 \bar{u} 代入 $|\lambda| \cdot ||\bar{u}|| = ||\lambda\bar{u}|| = ||A\bar{u}|| \le ||A|| \cdot ||\bar{u}||$

定理

若A对称,则有 $||A||_2 = \rho(A)$

 A^2

证明: $||A||_2 = \sqrt{\lambda_{\max}(A^T A)} = \sqrt{\lambda}$

若λ是A的一个特征相

则 λ^2 必是 A^2 的特征根。

A对称

 $\Rightarrow \lambda_{\max}(A^2) = \lambda^2(A)$

k个A的特征根λ成立

又: 对称矩阵的吐气

型 λ²(A) 为非负

所以2-范数亦称为 实数,故 谱范数。

定理 若矩阵 B 对某个算子范数满足 ||B|| < 1,则必有

①
$$I \pm B$$
 可逆; ② $||(I \pm B)^{-1}|| \le \frac{1}{1-||B||}$

证明: ① 若不然,则 $(I \pm B)\bar{x} = \bar{0}$ 有非零解,

向量
$$\bar{x}_0$$
 使得 $\pm B\bar{x}_0 = -\bar{x}_0 \Rightarrow \frac{\|B\bar{x}_0\|}{\|\bar{x}_0\|} = 1 \Rightarrow \|B\| \ge 1$

$$(I \pm B)^{-1} \pm B(I \pm B)^{-1} = (I \pm B)(I \pm B)^{-1} = I$$

$$\Rightarrow (I \pm B)^{-1} = I \mp B(I \pm B)^{-1}$$

HW: p.202 #1, #2, #3

$$\Rightarrow ||(I \pm B)^{-1}|| \le 1 + ||B|| \cdot ||(I \pm B)^{-1}||$$

§ 2 高斯消元法 /* Gaussian Elimination */

求解 $A\bar{x} = \bar{b}$

> 高斯消元法:

思 首先将A化为上三角阵 /* upper-triangular matrix */, 路 再回代求解 /* backward substitution */。

例:用消去法解方程组

$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ 4x_2 - x_3 = 5 \\ 2x_1 - 2x_2 + x_3 = 1 \end{cases}$$
 (1)

解 第一步,将方程(1)乘上**-2** 加到方程(3)上去,消去(3)中的未知数 x_1 ,得到

$$-4x_2 - x_3 = -11 \tag{4}$$

第二步,将方程(2)加到方程(4)上去,消去方程(4)中的未知数 x₂,得到与原方程组等价的三角形方程组

显然此方程组是容易求解的。

$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ 4x_2 - x_3 = 5 \end{cases} \qquad x^* = (1, 2, 3)^T \\ -2x_3 = -6$$

上述过程相当于

$$(A \mid b) = \begin{bmatrix} 1 & 1 & 1 & \vdots & 6 \\ 0 & 4 & -1 & \vdots & 5 \\ 2 & -2 & 1 & \vdots & 1 \end{bmatrix} \xrightarrow{(-2) \times r_1 + r_3} r_3 \begin{bmatrix} 1 & 1 & 1 & \vdots & 6 \\ 0 & 4 & -1 & \vdots & 5 \\ 0 & -4 & -1 & \vdots & -11 \end{bmatrix}$$

一般解n 阶方程组的Guass消去法

设有线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

或改写为矩阵形式 AX = b, 其中

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
为非奇异阵, $X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

$$\vec{b} : \vec{b} : A^{(1)} = A = (a_{ij}^{(1)})_{n \times n}, \ \vec{b}^{(1)} = \vec{b} = \begin{bmatrix} b_1^{(1)} \\ \vdots \\ b_n^{(1)} \end{bmatrix}$$

Step 1: 设 $a_{11}^{(1)} \neq 0$, 计算因子 $l_{i1} = a_{i1}^{(1)} / a_{11}^{(1)}$ (i = 2, ..., n)

将增广矩阵/* augmented matrix */ 第 i 行 $-l_{ii} \times$ 第1行,

類
$$egin{align*} egin{align*} egin{alig$$

其中
$$\begin{cases}
a_{ij}^{(2)} = a_{ij}^{(1)} - l_{i1}a_{1j}^{(1)} \\
b_i^{(2)} = b_i^{(1)} - l_{i1}b_1^{(1)}
\end{cases}$$

$$(i, j = 2, ..., n)$$

Step k: 设 $a_{kk}^{(k)} \neq 0$, 计算因子 $l_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$ (i = k + 1, ..., n)

$$\begin{cases} a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik} a_{kj}^{(k)} \\ b_i^{(k+1)} = b_i^{(k)} - l_{ik} b_k^{(k)} \end{cases}$$
$$(i, j = k + 1, ..., n)$$

共进行 n-1步

$$x_n = b_n^{(n)} / a_{nn}^{(n)}$$

$$x_{i} = \frac{b_{i}^{(i)} - \sum_{j=i+1}^{n} a_{ij}^{(i)} x_{j}}{a_{ii}^{(i)}} \qquad (i = n-1, ..., 1)$$

例:用 Gauss 消去法解方程组

$$\begin{cases} 2x_1 + x_2 + x_3 = 4 \\ 3x_1 + x_2 + 2x_3 = 6 \\ x_1 + 2x_2 + 2x_3 = 5 \end{cases}$$

解: 对增广矩阵

$$\begin{bmatrix} A^{(1)} \mid b^{(1)} \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 4 \\ 3 & 1 & 2 & 6 \\ 1 & 2 & 2 & 5 \end{bmatrix}$$

用 r_i 表示第i个方程,及增广矩阵的第i行,用 $r_i + ar_j \rightarrow r_i$ 表示第i个方程(行)乘数a加至第j个方程(行)。

对
$$[A^{(1)}|b^{(1)}]$$
执行行初等变换 $r_2 - \frac{3}{2}r_1 \rightarrow r_2, r_3 - \frac{1}{2}r_1 \rightarrow r_3$

得到

$$\begin{bmatrix} A^{(1)} | b^{(1)} \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 4 \\ 0 & -1/2 & 1/2 & 0 \\ 0 & 3/2 & 3/2 & 3 \end{bmatrix}$$

再进行行初等变换 $r_3 + 3r_2 \rightarrow r_3$ 得

$$[A^{(3)} | b^{(3)}] = \begin{bmatrix} 2 & 1 & 1 & 4 \\ 0 & -1/2 & 1/2 & 0 \\ 0 & 0 & 3 & 3 \end{bmatrix}$$

这样就产生了三角形方程组

$$\begin{cases} 2x_1 + x_2 + x_3 = 4 \\ -\frac{1}{2}x_2 + \frac{1}{2}x_3 = 0 \\ 3x_3 = 3 \end{cases} \qquad \begin{bmatrix} x_1 = 1 \\ x_2 = 1 \\ x_3 = 1 \end{bmatrix}$$

消去过程完结,然后实现回代过程,得出方程组的解。

定理 如果 A为n 阶非奇异矩阵,则可通过高斯消去法(及交换两行的初等变换)将方程组化为三角形方程组。

引理一對化的發生了了。

是矩阵A的顺序主子式 $D_i \neq 0$ (i=1,2,...,k) 即 $D_1 = a_{11} \neq 0$

$$D_{i} = \begin{bmatrix} a_{1i} & \cdots & a_{1i} \\ No & unique \\ solution exists i = 2.35, \cdots, k \end{bmatrix}$$

证明:首先利用归纳法证明引理的充分性,显然,当k=1时引理的充分性是成立的,现假设引理对k-1是成立的,求证引理对k亦成立,由归纳法设有 $a_{ii}^{(i)} \neq 0$ $(i=1,2,\cdots,k-1)$ 于是可用高斯消去法将 $A^{(1)} = A$ 约化到 $A^{(k)}$ 中,即

§ 2 Gaussian Elimination – The Method

$$A^{(1)} \rightarrow A^{(k)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ & a_{22}^{(2)} & \cdots & & a_{2n}^{(2)} \\ & \ddots & & & \vdots \\ & & a_{kk}^{(k)} & \cdots & a_{kn}^{(k)} \\ & & \vdots & & \vdots \\ & & a_{nk}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix}$$

且有
$$D_2 = \begin{vmatrix} a_{11}^{(1)} & a_{12}^{(1)} \\ 0 & a_{22}^{(2)} \end{vmatrix} = a_{11}^{(1)} a_{22}^{(2)}; D_3 = a_{11}^{(1)} a_{22}^{(2)} a_{33}^{(3)}$$

$$D_k = \begin{vmatrix} a_{11}^{(1)} & \cdots & a_{1k}^{(1)} \\ & \ddots & \vdots \\ & & a_{kk}^{(k)} \end{vmatrix} = a_{11}^{(1)} a_{22}^{(2)} \cdots a_{kk}^{(k)}$$

由设 $D_i \neq 0$ $(i = 1, 2, \dots, k)$ 及上式,则有 $a_{kk}^{(k)} \neq 0$,即引理的充分性对 k 成立。

必要性成立是显然的,由假设 $a_{ii}^{(i)} \neq 0 (i = 1,2,\dots,k)$ 利用上式亦可推出 $D_i \neq 0 (i = 1,2,\dots,k)$.

推论 如果A的顺序主子式 $D_k \neq 0 \ (k = 1, 2, \dots, n-1)$

$$\begin{cases} a_{11}^{(1)} = D_1 \\ a_{kk}^{(k)} = D_k / D_{k-1} \end{cases}$$

定理 若A的所有顺序主子式 /* determinant of leading

principal submatrices */ 均下为0,则高斯消元无需换行即可进行到底,得到唯一解。

Guass法的问题:在消元过程中可能出现 $a_{kk}^{(k)}=0$ 的情况,这时消去法将无法进行;即使生元素 $a_{kk}^{(k)}\neq0$ 但很小时,用其做除数,会导致其他元素数量级的严重增长和舍入误差的扩散,最后也使得计算解不可靠。 a_{i1} … a_{ii}

▶ § 3 选主元消去法 /* Pivoting Strategies */

例: 单精度解方程组
$$\begin{cases} 10^{-9}x_1 + x_2 = 1 \\ x_1 + x_2 = 2 \end{cases}$$

/* 精确解为
$$x_1^* = \frac{1}{1-10^{-9}} = 1.00...0100...$$
和 $x_2^* = 2-x_1 = 0.99...9899...*/$

算法1: 用Gaussian Elimination计算:

$$l_{21} = a_{21}/a_{11} = 10^9$$

$$a_{22} = 1 - l_{21} \times 1 = 0.0 \dots 01 \times 10^9 - 10^9 = -10^9$$

$$b_2 = 2 - l_{21} \times 1 \doteq -10^9$$

$$\Rightarrow \begin{bmatrix} 10^{-9} & 1 & 1 \\ 0 & -10^9 & -10^9 \end{bmatrix}$$

$$l_{21} = a_{21}/a_{11} = 0.0$$
 8个 0.1×10^{1} 。做减法时,两减数的指数先 $a_{22} = 1 - l_{21} \times 1 = 0.0 \dots 01 \times 10^{9} - 10^{9} = -10^{9}$ 向大指数对齐,再将浮点部分相减。 $b_{2} = 2 - l_{21} \times 1 = -10^{9}$ 即1= $0.0000000001 \times 10^{10}$,取单精度

在计算机内, 109存0.1×1010, 1存为

 $-0.10000000 \times 10^{10} = -0.10000000 \times 10^{10}$

时就成为1-109= 0.00000000 × 1010

$$\Rightarrow x_2 = 1, x_1 \neq 0$$

小主元 /* Small pivot element */可能导致计算失败。

$$\begin{bmatrix} 10^{-9} & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 10^{-9} & 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$
$$\Rightarrow x_2 = 1, \quad x_1 = 1 \checkmark$$

》原因分析: 用 x_1 , x_2 表示某个算法得到的计算解,并令 $\varepsilon_1 = x_1 - x_1^*$, $\varepsilon_2 = x_2 - x_3^*$

在这里对于两种算法 ε_2 相同, ε_1 却不相同。

当用算法1时,有

$$10^{-9}x_1^* + x_2^* = 1$$

$$10^{-9}x_1 + x_2 \approx 1$$

$$10^{-9}\varepsilon_1 + \varepsilon_2 \approx 0$$

所以 $|\varepsilon_1| \approx 10^9 |\varepsilon_2|$

当用算法2时,同理可知有 $|\varepsilon_1|$ ≈ $|\varepsilon_2|$

➤ 列主元消去法 /* Partial Pivoting, or maximal column pivoting */ 设方程组的增广矩阵为

$$B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \end{bmatrix}$$

首先在A的第一列中选取绝对值最大的元素作为主元素,例如

$$|a_{i_1,1}| = \max_{1 \le i \le n} |a_{i1}| \ne 0$$

然后交换 B 的第 1 行与第 i 行,经第 1 次消元计算得

$$(A | b) \rightarrow (A^{(2)} | b^{(2)})$$

重复上述过程,设已完成第 k $^{-1}$ 步的选主元素,交换两行及消元计算, $^{(A|b)}$ 约化为

$$(A^{(k)} | b^{(k)}) = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} & b_1 \\ & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} & b_2 \\ & & \ddots & \vdots & \vdots & \vdots & \vdots \\ & & & a_{kk} & \cdots & a_{kn} & b_k \\ & & \vdots & & \vdots & \vdots & \vdots \\ & & & & a_{nk} & \cdots & a_{nn} & b_n \end{bmatrix}$$

其中 $A^{(k)}$ 的元素仍记为 a_{ii} , $b^{(k)}$ 的元素仍记为 b_{iv}

第k 步选主元素(在 $A^{(k)}$ 右下角方阵的第 1 列内选),即确定 i_k ,使

$$|a_{i_k,k}| = \max_{k \le i \le n} |a_{ik}| \neq 0$$

交换 $(A^{(k)}|b^{(k)})$ 第k行与 i_k 行的元素,再进行消元计算,最后将原方程组化为

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

回代求解,得

$$\begin{cases} x_n = b_n / a_{nn} \\ x_i = (b_i - \sum_{j=i+1}^n a_{ij} x_j) / a_{ii} \end{cases}$$
 $(i = n-1, \dots 2, 1)$

• 例 用列主元消去法解方程组

解: 进行行交换 $r_1 \leftrightarrow r_2$,再消元得

第二次的主元为

$$a_{32} = -2.5$$

$$\begin{cases}
5x_1 + 4x_2 + 10x_3 = 0 \\
1.2x_2 + x_3 = 1 \\
-2.5x_2 - 5x_3 = 2
\end{cases}$$

进行行交换 $r_2 \leftrightarrow r_3$,再消元后得

$$\begin{cases} 5x_1 + 4x_2 + 10x_3 = 0 \\ -2.5x_2 - 5x_3 = 2 \\ -1.4x_3 = 1.96 \end{cases}$$
 回代求解 $x_3 = -1.4$, $x_2 = 2$, $x_1 = 1.2$

例:解线性方程组(用8位十进制尾数的浮点数计算)

$$\begin{pmatrix} 10^{-8} & 2 & 3 \\ -1 & 3.712 & 4.623 \\ -2 & 1.072 & 5.643 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

解:这个方程组和前例一样,若用Gauss消去法计算会有小数作 除数的现象,若采用换行的技巧,则可避免。

$$\overline{A} = (A,b) = \begin{pmatrix} 10^{-8} & 2 & 3 & 1 \\ -1 & 3.712 & 4.623 & 2 \\ -2 & 1.072 & 5.643 & 3 \end{pmatrix}$$

绝对值最大 交换1,3行

$$\begin{array}{c} \xrightarrow{r_1 \Leftrightarrow r_3} \\ & \xrightarrow{-1} \\ & 10^{-8} \\ & 2 \\ & 3 \\ & 1 \\ \end{array} \begin{array}{c} \xrightarrow{-1} \\ & 3.712 \\ & 4.623 \\ 2 \\ & 10^{-8} \\ & 2 \\ \end{array} \begin{array}{c} \xrightarrow{1} \\ & 2 \\ & 3 \\ & 1 \\ \end{array} \begin{array}{c} = (A^{(1)}) \\ & \text{both times of times of$$

 $=(A^{(3)},b^{(3)})$

经过回代后可得

$$x_3 = \frac{b_3^{(3)}}{a_{33}^{(3)}} = 0.367 \ 257 \ 39$$

$$x_2 = \frac{b_2^{(2)} - a_{23}^{(2)} x_3}{a_{22}^{(2)}} = \frac{0.5 - 0.18015 \times 10 \times x_3}{0.3176 \times 10} = -0.05088607$$

HW: p.202 #6, #7, # 8

$$x_{1} = \frac{b_{1}^{(1)} - a_{12}^{(1)} x_{2} - a_{13}^{(1)} x_{3}}{a_{11}^{(1)}} = -0.49105820$$

事实上,方程组的准确解为

 $x^* = (-0.491058227, -0.050886075, 0.367257384)^T$

> 运算量 /* Amount of Computation */

由于计算机中乘除 /* multiplications / divisions */ 运算的时间远远超过加减 /* additions / subtractions */ 运算的时间,故估计某种算法的运算量时,往往只估计乘除的次数,而且通常以乘除次数的最高次幂为运算量的数量级。

