Accelerated Ray Tracing Using BVH Tree and CUDA

Final Project – ECS275A

Ahmed H.Mahmoud EEC – UC Davis

Part A: BVH Tree

Construction:

- Group objects in tight bounding volumes (leaf node)
- Group nodes into larger bound volumes
- Build hierarchy of bounding volumes in a recursive fashion

• Traversal:

Part A: BVH Tree

Experiments:

Teapot (3K Triangles)

- BVH → 4.08 Sec
- No BVH → 476 Sec

Bunny (500 Triangles)

- BVH → 1.32 Sec
- No BVH \rightarrow 43 Sec

Spiral (260 Spheres)

- BVH → 1.71 Sec
- No BVH → 34.7 Sec

Part A: BVH Tree

Experiments:

- -Dividing each triangle into four triangles
- -Testing the performance with and without BVH

Part B: Path Tracing using CUDA

Big Picture:

- Divide the computation into multiple threads of execution
- Write the code for a thread such that each thread will run serially
- All thread run in parallel
- Care must be taken to avoid thread divergence and memory accesses

Part A: Path Tracing using CUDA

Experiments:

Cornell Box (9 Spheres) 1.489 Sec

Night Sky (12 Spheres) 1.4209 Sec

Vista (12 Spheres)
2.283 Sec