浙工大《概率论与数理统计》试卷

2016/2017 学年第 2 学期

学院	班级	姓名	学号	得分	
任课教师_					
一、填空	题(每空2分	, 共 24 分)			
1. 设 <i>A</i> 、	B相互独立,	$P(A \bigcup B) = 0.6$	6, P(A) = 0.4,	则 $P(B) = $	<u></u> .
肝炎病毒的概 3. 把甲乙醇	率为 两种外观一样 为 0. 05,乙和	 、数量甲占 4/5、	、乙占 1/5 的两和	的血清,则混合血清。 中零件混在一起,若尽 中抽出一件是次品的村	甲种
4. 设随机	.变量 X ~ N(2,	A_1 , $\coprod P(X > a)$	$a) = \frac{1}{2}, \text{if } a = \frac{1}{2}$		
5. 设随机	变量 X 的概率	密度为 $f(x) = \begin{cases} 6x & \text{exp} \end{cases}$	Ax^{2} , $0 \le x \le 1$, 0, $x < 0, x > 1$	则常数 A =	
	,数 <u>'</u>	学期望 <i>E(X²)</i> 的	值为		
6. 设随机 数为	1.变量 <i>X</i> 与 <i>Y</i> 2	相互独立,且 <i>x</i>	<i>X~N</i> (3,4), <i>Y~N</i> (2,	9),则2X-3Y的密度	度函
7.设顾客7	生 生某银行窗口 [©]	等待服务的时间	 X(以分计)服从i	旨数分布,其概率密度	き为
f(x) =	$\begin{cases} \frac{1}{5}e^{-\frac{x}{5}}, & X > 0\\ 0, & X \le 0 \end{cases}$				
开的概率是			一个月要到银行	开,则他未等到服务ī 5次,以 Y 表示一个) 分布。	而离 月内
8. 设 <i>X</i> ₁ ,	X_2, \dots, X_n 是耳	双自总体 X 的一	组样本 , 为使 σ	$e^{2} = k \sum_{i=1}^{n-1} (X_{i+1} - X_{i})^{2}$	
是总体方差 σ^2	的无偏估计量	₫,则常数 k 的值	为		
9. 设 <i>X</i> ₁ , <i>X</i>	X ₂ ,X ₃ ,X ₄ 为来	自总体 X 的一/	个样本, $\hat{\mu} = \frac{1}{4}X_1$	$+aX_2 + \frac{1}{3}X_3 + \frac{1}{6}X_4$	为总

体均值的一个无偏估计量,则a=。

10. 设随机变量X服从标准正态分布N(0,1),由切比雪夫不等式估计 $P(|X|<2) \ge$

二、单选题(每小题 2 分,共 12 分)

1.设A、B 互不相容,且 $P(A) \neq 0$,则(

A,
$$P(B|A) = P(B)$$

$$\mathbf{B}, \qquad P(B|A) = 0$$

$$C$$
, $P(B|A) = P(A)$

D,
$$P(B|A)=1$$
.

2.某人向同一目标独立重复射击,每次射击命中目标的概率为 p(0<p<1), 则此人 第 4 次射击恰好是第 2 次命中目标的概率为(

A,
$$3p(1-p)^2$$

B,
$$6p(1-p)$$

A,
$$3p(1-p)^2$$
 B, $6p(1-p)^2$ C, $3p^2(1-p)^2$ D, $6p^2(1-p)^2$

D,
$$6p^2(1-p)^2$$

3. 设随机变量 $X \sim N(1, \sigma^2)$ 且 $P\{1 \le X \le 3\} = 0.3$,则 $P\{X \le -1\} = 0.3$)。

$$B_{\lambda} 0.2$$

$$D_{\lambda} 0.5$$

4.设两个随机变量相互独立且服从相同分布: $P\{X = -1\} = P\{Y = -1\} = 1/2$,

 $P{X = 1} = P{Y = 1} = 1/2$,则下列各式成立的是(

A,
$$P\{X = Y\} = 1/2$$
,

B,
$$P\{X = Y\} = 1$$

C,
$$P{X + Y = 0} = 1/4$$
, D, $P{XY = 1} = 1/4$,

D,
$$P\{XY=1\}=1/4$$

5.对于任意两个随机变量 X 和 Y ,若 E(XY) = E(X)E(Y),则必有()

A,
$$Var(X+Y) = Var(X) + Var(Y)$$
 B, $Var(XY) = Var(X)Var(Y)$

$$B \cdot Var(XY) = Var(X)Var(Y)$$

6. 设随机变量 X_1, X_2, \dots, X_n (n > 1) 独立同分布,且方差 $\sigma^2 > 0$. 令随机变量

$$Y = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 , 则 (

A.
$$Var(X_1 + Y) = \frac{n+2}{n}\sigma^2$$

A,
$$Var(X_1 + Y) = \frac{n+2}{n}\sigma^2$$
. B, $Var(X_1 - Y) = \frac{n+2}{n}\sigma^2$.

C,
$$Cov(X_1, Y) = \frac{\sigma^2}{n}$$
. D, $Cov(X_1, Y) = \sigma^2$.

$$D_{\gamma} \quad Cov(X_1, Y) = \sigma^2.$$

三.解答题(本大题每小题 12 分, 共 60 分)

- 1.(1)盒中有8片同型号的钥匙,其中有一片可打开箱锁,从中随机地取出钥匙开锁,已用过的钥匙不再重复.求开锁不超过三次而打开的概率.
- (2)对于随机变量 X 和 Y,已知概率 $P\{X \ge 0\} = P\{Y \ge 0\} = \frac{4}{7}, P\{X \ge 0, Y \ge 0\} = \frac{3}{7}$,求 $P\{\max[X,Y] \ge 0\}$ 。
 - 2. 设随机变量 X 的密度函数为 $f(x) = \begin{cases} \frac{2}{\pi(x^2+1)}, x > 0\\ 0, x \le 0 \end{cases}$
 - (1)求 X 的分布函数 F(x);(2)求 $Y = \ln X$ 的概率密度.
 - 3. 设二维随机变量(X,Y)的密度函数为 $f(x,y) = \begin{cases} 8xy, & 0 \le x \le y, 0 \le y \le 1, \\ 0, & \text{其他} \end{cases}$
 - (1) 求 X,Y 的边缘概率密度; (2) 判断 X,Y 是否相互独立; (3) 求 $P(X+Y \ge 1)$ 。
 - 4. 设总体 X 的概率密度为 $f(x,\beta) = \begin{cases} \frac{\beta}{x^{\beta+1}}, x > 1, \\ 0, x \le 1. \end{cases}$ 其中未知参数

 $\beta > 1, X_1, X_2, \dots, X_n$ 为来自总体 X 的简单随机样本, 求:

- (1) β 的矩估计量; (2) β 的最大似然估计量.
- 5.已知某炼铁厂在生产正常的情况下,铁水含碳量的均值为 7,方差为 0.03。现测了 9 炉铁水,测得其平均含碳量 \bar{x} = 6.97,样本方差 s^2 = 0.0375,设铁水含碳量服从正态分布.
- (1) 试求总体方差未知时铁水含碳量均值的置信度为95%的置信区间.
- (2) 试问生产铁水含碳量是否正常(α=0.05)?

四、(4 分)设两个随机变量 X 与 Y 相互独立且均服从正态分布 $N(0,\sigma^2)$, U = aX + bY , V = aX - bY , a , b 是常数. 求 U, V 的相关系数。

附表:

$$t_{0.025}(8) = 2.31$$
 $t_{0.95}(8) = 1.86$ $t_{0.05}(9) = 1.83$ $t_{0.025}(10) = 2.23$

$$\chi^{2}_{0.975}(8) = 2.180$$
 $\chi^{2}_{0.025}(8) = 17.5$ $\chi^{2}_{0.95}(8) = 2.73$ $\chi^{2}_{0.05}(8) = 15.5$