Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg p \rightarrow \neg q) \land r$
- (ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$
- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A V $(\neg A \rightarrow B)$
- b. A V B
- c. A \vee (A \rightarrow B)
- d. A \rightarrow B

Q 1.3: How many different assignments can there be to $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee ... \vee (x_n \wedge y_n)$

- A. 2
- B. 2ⁿ
- C. 2^{2n}
- D. 2n

Q 2.1: What is the CNF for $(\neg p \land \neg (p \Rightarrow q))$

- A. $(\neg p \land \neg (p \Rightarrow q))$
- B. (¬p) ∧ (¬p ∨ ¬q)
- C. (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (p ∨ q)
- D. $(\neg p \lor \neg q) \land (\neg p \lor q) \land (p \lor \neg q) \land (p \lor q)$

Q 2.2: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends