Painel / Meus cursos / SC26EL / 15-Observadores de Estado / Questionário sobre Observadores de Estados

Iniciado em	domingo, 16 mai 2021, 14:24
Estado	Finalizada
Concluída em	domingo, 16 mai 2021, 15:17
Tempo	53 minutos 18 segundos
empregado	
Notas	1,7/2,0
Avaliar	8,6 de um máximo de 10,0(86 %)

Questão **1**

Parcialmente correto

Atingiu 0,7 de 1,0

Dado o sistema abaixo, projete um observador de estados de forma que os autovalores do observador sejam \mu_{1,2}=-50.

 $y=\begin{bmatrix} 2 \& 1\\ \end{bmatrix} x_1\\ \end{bmatrix}$

A matriz de observabilidade tem a forma N=\begin{bmatrix} $n_{11} & n_{12}\n_{21} & n_{22}\n$, Assim, os elementos da matriz N são:

$$n_{11} = 2$$
 , $n_{12} = 1$, $n_{21} = -50$, $n_{22} = -13$

O posto da matriz de observabilidade é: 2

Portanto, o sistema é: Observável

O polinômio característico desejado para o observador é: 1 v s^2+ 100 v s+ 2500 v

Logo, os elementos da matriz \phi(A)=\begin{bmatrix} \varphi_{11} & \varphi_{12}\\ \varphi_{21} & \varphi_{22}\end{bmatrix} são:

Assim, o vetor de ganhos associado ao observador é K_e=\big[-95
✓ \big]^T.

A representação do observador em espaço de estados é dada por:

A matriz A_{obs}= $\beta_{11} & a_{11} & a_{21} \ a_{22} \ end{bmatrix} e seus elementos são:$

A matriz B_{obs}=\begin{bmatrix} b_{11} & b_{12}\b_{21} & b_{22}\end{bmatrix} e seus elementos são:

A matriz C_{obs}=\begin{bmatrix} $c_{11} & c_{12}\c {21} & c_{22}\end{bmatrix} e seus elementos são:$

$$c_{11} = 1$$
 \checkmark , $c_{12} = 0$ \checkmark , $c_{21} = 0$ \checkmark .

Dado o sistema abaixo, projete um observador de estados de forma que os autovalores do observador sejam \(\mu_{1,2,3}=-50\).

Os polos da planta são (do menor para o maior): $(s_{1}=\sqrt{-10}$ \checkmark , $(s_{2}=\sqrt{-5}$ \checkmark e $(s_{3}=\sqrt{-3})$

A matriz de observabilidade tem a forma $\n=11$ & n_{11} & $n_{$

O posto da matriz de observabilidade é: 3

Portanto, o sistema é: Observável 🗸 .

O polinômio característico desejado para o observador é: 1 \(\sigma\sqrt{\sqrt{s^3+\sqrt{150}}}\) \(\sqrt{\sqrt{s^2+\sqrt{7500}}}\) \(\sqrt{\sqrt{s+\sqrt{15000}}}\) \(\sqrt{\sqrt{s}}\) \(\sqrt{\sqrt{s}}\) \(\sqrt{s}\)

 $Logo, os elementos da matriz \(\phi(A) = \begin{bmatrix} \varphi_{11} & \varphi_{12} & \varphi_{21} & \varphi_{21} & \varphi_{21} & \varphi_{22} & \varphi_{22} & \varphi_{31} & \varphi_{32} & \varphi_{32} & \varphi_{33} & \varphi_{32} & \varphi_{33} & \varphi$

A representação do observador em espaço de estados é dada por:

A matriz \(A_{obs}=\begin{bmatrix} a_{11} & a_{12} & a_{13}\a_{21} & a_{22} & a_{31} & a_{32} & a_{33}\end{bmatrix}\) e seus elementos são:

4 of 5 16/05/2021 15:32

 $A\ matriz\ (B_{obs}=\begin{bmatrix} b_{11} \&\ b_{12} \land\ b_{21} \&\ b_{22} \land\ b_{31} \&\ b_{32} \land\ b_{32} \land$

A matriz \(C_{obs}=\begin{bmatrix} c_{11} & c_{12} & c_{13} \c_{21} & c_{22} & c_{31} & c_{32} & c_{33} \end{bmatrix}\) e seus elementos são:

→ Diagrama de Blocos Scilab/Xcos - Simulação

Seguir para...

Aula 16 - Projeto de Controlador com Observador de Estados - Parte 1 -