电工与电子技术复习要点

- 一、电路的基本概念与定律
- 1. 电压、电流的参考方向。
- 2. 电路中功率平衡的概念及功率的计算。
- 3. 电路中电位的计算。
- 4. 元件开路和短路时是否有电压和电流。
- 5. 欧姆定律,基尔霍夫定律的应用。

- 1.4 一直流电源的电路模型如图题 1.4 所示,电源的额定电压 $U_{\rm N}$ = 220 V,额定功率 $P_{\rm N}$ = 10 kW,内阻 $R_{\rm S}$ = 0.6Ω,负载电阻 R = 10 Ω。试求:
 - (1) 电源的额定电流以及电源电压 U_s ;
 - (2) 电源带 1 个负载时, 电源的输出电流、端电压及输出功率;
 - (3) 电源带 5 个这样的负载时,电源的输出电流、端电压及功率。

图题 1.4

1.7 电路如图题 1.7 所示,试计算 A、B、C 各点的电位。

1.10 电路如图题 1.10 所示,欲使 U_1 等于 60 V, R 应选用多大的电阻? 并计算 R 两端的电压 U_2 以及流过 R 的电流 I_3 。

例:电路如下图所示,(1)零电位参考点在哪里?画电路图表示出来。(2)当电位器 R_P 的滑动触点向下滑动时,A、B两点的电位增高了还是降低了?

解: (1) 电路如左图, 零电位参考点为 +12V电源的"-"端与-12V电源的"+"端的联接处。

(2)
$$V_A = -IR_1 + 12$$

 $V_B = IR_2 - 12$

当电位器 R_P 的滑动触点向下滑动时,回路中的电流I减小,所以A电位增高、B点电位降低。

- 二、电路的分析方法
- 1. 电阻的串、并联及等效电路;分压公式与分流公式要牢记。
- 2. 两种电源的等效变换。
- 3. 支路电流法。

注意1: 列回路电压方程时要避开电流源支路。

注意1: 列结点电流方程时,方程数为n-1: 列回路电压方程时, 方程数为网孔数。

4. 结点电压法。

注意1: 列两个结点电压方程时, 电流源支路中的电阻相当短路。

5. 叠加原理。

注意1: 电压源不起作用时相当短路, 电流源不起作用时相当开路。

注意2: 电路中有三个电源时,将电源分成组,还是叠加两次。

6.戴维南定理。

电压源的电压等于有源一端口网络的开路电压,

电阻等于有源一端口网络对应的无源一端口网络的等效电阻。

电压源与电流源的等效变换

由图a:

$$U = E - IR_0$$

等效变换条件: $\begin{cases} E = I_S R_0 \\ E \end{cases}$

由图b:

$$U = I_{S}R_{0} - IR_{0}$$

例2.1:试用电压源与电流源等效变换的方法计算2Ω电阻中的电流。

例2.2: 试用支路电流法求各支路电流。

(1) 应用KCL列结点电流方程, 方程数为n-1

对结点 a: $I_1 + I_2 - I_3 = -7$

(2) 应用KVL列电压方程,方程数为网孔数

对回路1: $12I_1 - 6I_2 = 42$

对回路2: $6I_2 + U_X = 0$

对回路3: $-U_X + 3I_3 = 0$

(3) 联立解得: I_1 = 2A, I_2 = -3A, I_3 =6A

注意:

1.支路数*b*=4,但电流源支路的电流已知,源支路的电流已知,则未知数只有3个,只需列写3个方程。

2.因电流源两端的电压 未知,列KVL方程时要 避开电流源支路。 例2.2: 试用支路电流法求各支路电流。

(1) 应用KCL列结点电流方程

对结点 a: $I_1 + I_2 - I_3 = -7$

(2) 应用KVL列回路电压方程

对回路1: $12I_1 - 6I_2 = 42$

对回路2: $6I_2 + 3I_3 = 0$

(3) 联立解得: I_1 = 2A, I_2 = -3A, I_3 =6A

例2.3: 利用结点电压法求 U_{ab}

已知:
$$E_1$$
=50 V、 E_2 =30 V I_{S1} =7 A、 I_{S2} =2 A R_1 =2 Ω 、 R_2 =3 Ω 、 R_3 =5 Ω

解:

$$U_{ab} = \frac{\frac{E_1}{R_1} - \frac{E_2}{R_2} + I_{S1} - I_{S2}}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{\frac{50}{2} - \frac{30}{3} + 7 - 2}{\frac{1}{2} + \frac{1}{3}} \mathbf{V} = 24\mathbf{V}$$

注意: 电流源支路的电阻 R_3 不应出现在分母中。

2.1 电路如图题 2.1(a)、(b) 所示,求出 a、b 端口间的等效电阻 R_{ab}。

图题 2.1

- 2.7 已知电路如图题 2.7 所示。要求:
- (1) 能否快速计算出流过 1.8Ω 电阻和 10Ω 电阻的电流?
- (2) 用叠加原理计算电流 I;
- (3) 再用戴维宁定理计算电流 I。

图题 2.7

- 三、正弦交流电路的分析
- 1. 正弦量的相量法。

注意1: 熟练掌握相量公式及其转换。

注意2: 会用相量图求解正弦量。

2. 熟练掌握阻抗、感抗、容抗的概念与公式。

3. 理解电感、电容的工作性质。

4. 掌握交流电路的有功功率、无功功率、视在功率、功率因数的概念与计算公式

5. RLC串联、并联电路的分析(用相量图与相量式)

注意1:不论是用相量图还是用相量式求解,都要设参考相量。

注意2: 用相量图求解时,对于串联电路,应以电流为参考相量。

对于并联电路,应以电压为参考相量。

正弦量的相量表示法

$$F = a + jb = |F|(\cos\theta + j\sin\theta) = |F|e^{j\theta} = |F| \angle \theta$$
代数式
指数式
极坐标式

两组参数(相互关系)

$$\begin{cases} |F| = \sqrt{a^2 + b^2} & \text{取值由复数在复平} \\ \theta = \arctan \frac{b}{a} & (-\pi < \theta < \pi) \end{cases}$$
$$\begin{cases} a = |F| \cos \theta \\ b = |F| \sin \theta \end{cases}$$

单一参数正弦交流电路的分析计算小结

电路参数 R: u=iR

$$\dot{U} = R\dot{I} \stackrel{P}{\Longrightarrow} U$$

$$\stackrel{F}{\longrightarrow} U$$

电路参数
$$L: u = L \frac{di}{dt}$$
 $\dot{U} = jX_L \dot{I}$

$$\dot{U} = jX_{\rm L}\dot{I}$$

电路参数
$$C: i = C \frac{du}{dt}$$

电路参数
$$C: i = C \frac{du}{dt}$$
 $\dot{U} = -jX_C \dot{I}$

思考:下列各图中给定的电路电压、阻抗是否正确?

两个阻抗串联时,在什么情况下:

$$|Z| = |Z_1| + |Z_2|$$
 成立。

3.4 用相量图法求图题 3.4(a) 、(b) 中电压表 V 和电流表 A 的读数。

图题 3.4

例3.1: 下图电路中已知: I_1 =10A、 U_{AB} =100V,

求: 总电压表和总电流表的读数。

分析:已知电容支路的电流、电压和部分参数, 求总电流和电压

解题方法有两种: (1) 用相量(复数)计算;

(2) 利用相量图分析求解。

已知: I_1 = 10A、 U_{AR} =100V,

求: 电压表和电流表

的读数

解法1: 用相量计算

设: U_{AB} 为参考相量,即: $U_{AB} = 100 \angle 0^{\circ} V$

则:
$$F_2 = [100/(5+j5)]A = 10\sqrt{2}/-45^{\circ}A$$

$$I_1 = 10/90^{\circ} A = j10 A$$

$$F = F_1 + F_2 = 10 / 0^{\circ} A$$

所以A读数为 10安

因为
$$F = F_1 + F_2 = 10/0$$
° A
所以 $U_L = F(j10)V = j100$ V

$$U = U_L + U_{AB} = 100 + j100V$$

= $100 \sqrt{2} / 45^{\circ} V$

∴ V 读数为141V

已知: I_1 =10A、 U_{AB} =100V,

求: 电压表和电流表的读数

解法2: 利用相量图分析求解

设U_{AB}为参考相量,

$$I_1 = 10A$$
 I_1 超前 U_{AB} 90°

$$I_2 = \frac{100}{\sqrt{5^2 + 5^2}} = 10\sqrt{2}A$$
 I_2 滞后 U_{AB} 45°

由相量图可求得: I=10 A

画相量图如下:

已知: I_1 =10A、 U_{AB} =100V,

求: 电压表和电流表

的读数

设 U_{AB} 为参考相量,

$$U_L = I X_L = 100 V$$

U_L超前F 90°

由相量图可求得:

$$V = 141V$$

关于功率因数的提高

(1)提高功率因数的原则

必须保证原负载的工作状态不变。

即:加至负载上的电压和负载的有功功率不变。

(2) 提高功率因数的措施

在感性负载两端并电容

结论 并联电容C后

- (1) 电路的总电流 I , 电路总功率因数 $\cos \varphi$ 电路总视在功率 S
- (2) 原感性支路的工作状态不变:

(3) 电路总的有功功率不变 因为电路中电阻没有变, 所以消耗的功率也不变。

3.8 RC 移相电路如图题 3.8 所示。已知输入信号 u_1 的频率为 1000 Hz, C=1 μ F, u_2 在相位上滞后 u_1 60°。求电阻 R。

3.10 在图题 3.10 所示电路中,已知 $I_1=10\sqrt{2}\,\mathrm{A}$, $I_2=10\,\mathrm{A}$, $U=220\,\mathrm{V}$, $R=10\,\Omega$, $R_1=\omega L$ 。求 I 、 X_c 、 X_L 和 R_1 。

3.14 电路如图题 3.14 所示。已知交流电源电压 $u = 220\sqrt{2}\sin 314t$ V, 白炽灯和日光灯的功率均为 40 W, 日光灯的功率因数 $\cos \varphi_L = 0.5$ 。求:(1) 电路的功率因数 $\cos \varphi_{\sharp}(2)$ 电源发出的无功功率。

四、三相电路

- 1. 三相电源、三相负载。
- 2. 三相四线制电路的分析,三相三线制电路的分析(星形联结和 三角形联结)
- 3. 三相电路的功率计算。