Funções reais de uma variável real

Max Jauregui

15 de novembro de 2022

Conteúdo

1	Definições básicas	1
2	Funções lineares	2
3	Funções polinomiais	4
4	Funções racionais	7
5	Funções algébricas	9

1 Definições básicas

Uma função $f:A\to B$ é dita uma função real se $B\subset\mathbb{R}$. Se além disso $A\subset\mathbb{R}$, diz-se que f é uma função real de uma variável real. De aqui em diante qualquer função será uma função real de uma variável real a menos que se indique explícitamente outra coisa. Na prática, é comum definir uma função f simplesmente por uma equação da forma

f(x) = expressão envolvendo a variável x.

Nesse caso, assume-se que o domínio de f é o conjunto de todos os $x \in \mathbb{R}$ para os quais a expressão do lado direito retorna um número real. O contradomínio de f pode ser em princípio qualquer conjunto que contenha a imagem de f; por exemplo, o próprio conjunto \mathbb{R} .

Exemplo. A equação

$$f(x) = \frac{3}{x - 2}$$

define uma função f cujo domínio é o conjunto A formado por todos os $x \in \mathbb{R}$ tais que $x - 2 \neq 0$. Assim, $A = \mathbb{R} - \{2\}$.

Uma função $f: A \to \mathbb{R}$ pode ser representada graficamente localizando os pares ordenados (x, f(x)), com $x \in A$, no plano cartesiano. Tipicamente, esse processo gera uma curva, a qual é chamada de **gráfico** de f. Como para cada $x \in A$, existe um único par ordenado (x, f(x)), o gráfico de f pode ser intersetado por qualquer reta vertical em no máximo um ponto.

2 Funções lineares

Diz-se que uma função f é uma **função linear** se existem constantes $a, b \in \mathbb{R}$ tais que f(x) = ax + b. O domínio de qualquer função linear é \mathbb{R} . Se $a \neq 0$, a imagem da função linear f(x) = ax + b é \mathbb{R} ; caso contrário, a imagem de f é $\{b\}$. Nesse último caso, diz-se que f é uma **função constante**.

Exemplo. A figura 1 mostra os gráficos das funções lineares f(x) = 2x + 1, g(x) = -x + 2 e h(x) = 3. Notamos que em todos os casos, o gráfico é uma reta.

Figura 1: Gráficos das funções lineares f(x) = 2x + 1, g(x) = -x + 2 e h(x) = 3.

Se uma reta passa por dois pontos (x_1, y_1) e (x_2, y_2) , como mostrado na figura 2, define-se a inclinação dessa reta por

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \,.$$

Pode-se verificar que a inclinação da reta não depende da escolha dos pontos (x_1, y_1) e (x_2, y_2) , desde que eles pertençam à reta. Como o gráfico de uma função linear f(x) = ax + b é uma reta que passa pelos pontos (0, b) e (1, a + b), a inclinação dessa reta será

$$m = \frac{a+b-b}{1-0} = a.$$

Portanto, o gráfico da função linear f(x) = ax + b é uma reta com inclinação a que passa pelo ponto (0, b), ou seja, a reta corta o eixo y no valor y = b.

Figura 2: Inclinação de uma reta.

Exemplo. Vamos encontrar a função linear cujo gráfico é uma reta que passa pelos pontos (1,3) e (-2,1). Primeiro encontramos que a inclinação da reta é

$$m = \frac{3-1}{1-(-2)} = \frac{2}{3} \,.$$

Logo, a função linear que procuramos deve ter a forma $f(x) = \frac{2}{3}x + b$. Para determinar b usamos, por exemplo, o fato de que a reta passa pelo ponto (1,3), ou seja, f(1) = 3. Com isso, temos que

$$3 = \frac{2}{3}(1) + b \quad \Rightarrow \quad b = \frac{7}{3}.$$

Portanto, a função linear desejada é $f(x) = \frac{2}{3}x + \frac{7}{3}$.

Diz-se que uma função $f: A \to \mathbb{R}$ é **crescente** em um conjunto $E \subset A$ se, para quaisquer $x_1, x_2 \in E$ com $x_1 < x_2$, tem-se que $f(x_1) < f(x_2)$. Analogamente, diz-se que f é **decrescente** em um conjunto $E \subset A$ se, para quaisquer $x_1, x_2 \in E$ com $x_1 < x_2$, tem-se que $f(x_1) > f(x_2)$.

Exemplo. Uma função linear f(x) = ax + b é crescente em \mathbb{R} se a > 0, e é decrescente se a < 0.

3 Funções polinomiais

Diz-se que uma função f é uma função polinomial se existem constantes $a_0, a_1, \ldots, a_n \in \mathbb{R}$ tais que

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Os números a_0, a_1, \ldots, a_n são chamados de **coeficientes**; porém, especialmente o coeficiente a_0 é chamado de **termo independente**. Se $a_n \neq 0$, diz-se que f é uma função polinomial de **grau** n. O domínio de qualquer função polinomial é \mathbb{R} . Se o grau de uma função polinomial f é ímpar, a sua imagem também é \mathbb{R} . Por outro lado, se o grau de f é par, só uma das seguintes afirmações é verdadeira:

- 1. existe $x_0 \in \mathbb{R}$ tal que $f(x_0) \ge f(x)$ para todo $x \in \mathbb{R}$, ou seja, f atinge seu **máximo absoluto** em um ponto x_0 .
- 2. existe $x_0 \in \mathbb{R}$ tal que $f(x_0) \leq f(x)$ para todo $x \in \mathbb{R}$, ou seja, f atinge seu **mínimo absoluto** em um ponto x_0 .

No primeiro caso a imagem de f é o intervalo $(-\infty, f(x_0)]$. No segundo caso, a imagem de f é o intervalo $[f(x_0), \infty)$.

Exemplo. A figura 3 mostra o gráfico da função $f_n(x) = x^n$ para alguns valores inteiros n > 0. Dessa figura observamos o seguinte:

- 1. f_n é crescente em \mathbb{R} se n é impar; enquanto que f_n é decrescente em $(-\infty, 0]$ e crescente em $[0, \infty)$ se n é par.
- 2. O gráfico de f_n é simétrico em relação à origem se n é impar. Por outro lado, se n é par, o gráfico de f_n é simétrico em relação ao eixo y.
- 3. Se x > 1, então $f_{n+1}(x) > f_n(x)$, ou seja, $x^{n+1} > x_n$.
- 4. Se 0 < x < 1, então $f_{n+1}(x) < f_n(x)$, ou seja, $x^{n+1} < x_n$.

Exemplo. Uma função polinomial de grau 2 é chamada de uma função quadrática. Vamos encontrar a imagem da função quadrática

$$f(x) = 2x^2 - 3x + 2.$$

Para isso é conveniente escrevermos a expressão de f na forma

$$f(x) = 2\left[x^2 - \frac{3}{2}x\right] + 2.$$

Figura 3: Gráficos das funções $f_n(x) = x^n$ para alguns valores de n.

Agora vamos completar o quadrado dentro da expressão em colchetes:

$$f(x) = 2\left[x^2 - \frac{3}{2}x + \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^2\right] + 2$$
$$= 2\left[\left(x - \frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^2\right] + 2$$
$$= 2\left(x - \frac{3}{4}\right)^2 + \frac{7}{8}.$$

Como $(x-\frac{3}{4})^2 \ge 0$ para todo $x \in \mathbb{R}$, o mínimo absoluto de f será atingido quando x=3/4. Além disso, podemos verificar imediatamente que f(3/4)=7/8. Portanto, a imagem de f é o intervalo $[7/8,\infty)$. A figura 4 mostra o gráfico de f, que é uma curva chamada de **parábola**.

Figura 4: Gráfico da função quadrática $f(x) = 2x^2 - 3x + 2$.

Seja f uma função polinomial. Diz-se que um ponto $a \in \mathbb{R}$ é uma **raiz** de f se f(a) = 0. Geometricamente, as raízes de uma função polinomial são os valores de x nos quais o gráfico da função polinomial interseta com o eixo x. O seguinte resultado, que não provaremos aqui, é uma consequência do chamado **teorema fundamental da álgebra**:

Teorema. Toda função polinomial de grau n tem no máximo n raízes reais. As seguintes afirmações também podem ser úteis para determinar as raízes de uma função polinomial:

Teorema. Toda função polinomial de grau ímpar tem pelo menos uma raiz real.

Teorema. Seja a função polinomial

$$f(x) = a_n x^n + \dots + a_1 x + a_0,$$

em que $a_0, a_1, \ldots, a_n \in \mathbb{Z}, a_0 \neq 0$ e $a_n \neq 0$. O conjunto das possíveis raízes racionais de f é

$$\left\{\frac{p}{q}: p \text{ \'e um divisor de } a_0 \text{ e } q \text{ \'e um divisor de } a_n\right\}$$
 .

Demonstração. Sejam $p \in q \neq 0$ inteiros tais que p/q seja uma raiz de f. Logo, f(p/q) = 0, ou seja,

$$a_n \frac{p^n}{q^n} + a_{n-1} \frac{p^{n-1}}{q^{n-1}} + \dots + a_1 \frac{p}{q} + a_0 = 0$$
 (1)

Multiplicando essa equação por q^{n-1} , temos que

$$\frac{a_n p^n}{q} + a_{n-1} p^{n-1} + \dots + a_1 p q^{n-2} + a_0 q^{n-1} = 0.$$

Como $a_{n-1}p^{n-1},\ldots,a_1p^{n-2}$ e a_0q^{n-1} são inteiros, o número $\frac{a_np^n}{q}$ também deve ser inteiro para que a equação seja verdadeira. Logo, q deve ser um divisor de a_np^n . Segue daqui que q=1 ou q é um divisor de a_n , pois, se $q\neq 1$, podemos assumir que p e q não têm fatores em comum. Assim, em ambos os casos q é um divisor de a_n . Se agora multiplicamos a Eq. (1) por $\frac{q^n}{p}$ (devemos ter $p\neq 0$, senão a Eq. (1) seria falsa), temos que

$$a_n p^{n-1} + a_{n-1} p^{n-2} q + \dots + a_1 q^{n-1} + a_0 \frac{q^n}{p} = 0.$$

Daqui podemos concluir que p deve ser um divisor de a_0 .

Exemplo. Vamos encontrar as raízes da função

$$f(x) = x^3 - 5x^2 + 2x + 8.$$

Primeiramente observamos que o conjunto das possíveis raízes racionais de f é $\{\pm 1, \pm 2, \pm 4, \pm 8\}$. Usando os elementos desse conjunto, podemos verificar que -1 é uma raiz de f. Isso quer dizer que a divisão $\frac{f(x)}{x-(-1)}$ é exata. De fato, usando o método de Ruffini, temos que

Logo,

$$\frac{f(x)}{x+1} = x^2 - 6x + 8 \quad \Rightarrow \quad f(x) = (x+1)(x^2 - 6x + 8).$$

Para obter as raízes restantes, caso existam, devemos resolver a equação f(x) = 0 para a variável x. Assim, temos que

$$(x+1)(x^2 - 6x + 8) = 0.$$

Segue daqui que x+1=0 ou $x^2-6x+8=0$. Da primeira igualdade obtemos x=-1 (que é a raiz de f que já foi encontrada) e da segunda igualdade obtemos que

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(8)}}{2(1)},$$

de onde segue que x=2 ou x=4. Portanto, as raízes de f são -1,2 e 4. Consequentemente, o gráfico de f (ver figura 5) interseta o eixo x nos valores x=-1, x=2 e x=4.

4 Funções racionais

Diz-se que uma função f é uma função racional se existem funções polinomiais p e q tais que

$$f(x) = \frac{p(x)}{q(x)}.$$

O domínio de f é o conjunto $\{x \in \mathbb{R} : q(x) \neq 0\}$.

Figura 5: Gráfico da função $f(x) = x^3 - 5x^2 + 2x + 8$.

Exercício. Determine o domínio da função racional

$$f(x) = \frac{x^5 - 2x^3 + 4x^2 - 1}{3x^2 - 4x - 4}.$$

Exemplo. A figura 6 mostra o gráfico das funções f(x) = 1/x e $g(x) = 1/x^2$. Notamos que f(x) assume valores positivos grandes se consideramos valores de x positivos próximos de 0. Além disso, f(x) assume valores negativos grandes se consideramos valores de x negativos próximos de 0. Por outro lado, g(x) assume valores grandes positivos se consideramos valores de x próximos de 0 de qualquer sinal.

Figura 6: Gráficos das funções f(x) = 1/x e $g(x) = 1/x^2$.

5 Funções algébricas

Dado um inteiro n > 0, consideremos a função $f_n : [0, \infty) \to [0, \infty)$ definida por $f_n(x) = x^n$. Sabemos que essa função é sobrejetiva e é crescente no seu domínio (ver figura 3). Logo, ela também é injetiva e, por conseguinte, é uma bijeção. Assim, f_n tem uma inversa $f_n^{-1} : [0, \infty) \to [0, \infty)$ definida por

$$f_n^{-1}(x) = y \quad \Leftrightarrow \quad y^n = x \,.$$

A função f_n^{-1} é chamada de função ${\bf raiz}~n\text{-}{\bf\acute{e}sima}$ e escreve-se

$$f_n^{-1}(x) = \sqrt[n]{x}$$
 ou $f_n^{-1}(x) = x^{1/n}$.