

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ				
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ (ИУ5)				

ОТЧЕТ

по лабораторной работе

по	дисци	плине:	<u>Технологии</u>	маши	инного_	обучения	
на	тему:	<u>Линейн</u>	<u>ые модели,</u>	SVM	и дере	вья решений.	
							_
							_
Сту,	дент	<u>ИУ5-62Б</u> (Группа)	_			одпись, дата)	А.Д. Карягин (И.О.Фамилия)
Рук	оводител					одпись, дата)	Ю.Е. Гапанюк (И.О.Фамилия)
					(11	одинсь, дага)	(MILLIANIA (MILLIANIA)

Линейные модели, SVM и деревья решений

Цель лабораторной работы

Изучение линейных моделей, SVM и деревьев решений.

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие

модели: одну из линейных моделей; SVM; дерево решений.

5. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.

Дополнительные задания

Проведите эксперименты с важностью признаков в дереве решений. Визуализируйте дерево решений.

Ход выполнения лабораторной работы

```
import pandas as as import seaborn as sns import numpy as np
from typing import Tuple, Dict
import matplotlib.pyplot as plt from operator import itemgetter
from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression
from sklearn.metrics import f1_score, r2_score, mean_squared_error, mean_absolute_error, accur acy_score,
from sklearn.svm import LinearSVR, SVR
from sklearn.tree import DecisionTreeRegressor, plot_tree
% matplotlib inline sns.set(style="ticks")
```

'Pelvic_tilt', 'Lumbar_lordosis_angle', 'Sacral_slope', 'Pelvic_radius', 'Degree_spondylolisthesis', 'Direct_tilt', 'Thoracic_slope', 'Cervical_tilt', 'Sacrum_angle', 'Scoliosis_slope', 'Class_att', 'To_drodata = pd.read_csv('data/Dataset_spine.csv', names=col_list, header=1, sep=",") data.drop('Total data = pd.read_csv')

In [207]: data.head()

Out[207]:

	Pelvic_incidence	Pelvic_tilt	Lumbar_lordosis_angle	Sacral_slope	Pelvic_radius	Degree_spondy
0	39.056951	10.060991	25.015378	28.995960	114.405425	
1	68.832021	22.218482	50.092194	46.613539	105.985135	
2	69.297008	24.652878	44.311238	44.644130	101.868495	
3	49.712859	9.652075	28.317406	40.060784	108.168725	
4	40.250200	13.921907	25.124950	26.328293	130.327871	

```
In [208]: data.isnull().sum()
```

```
Out[208]: Pelvic_incidence
                                     0
              Pelvic_tilt
              Lumbar_lordosis_angle
              Sacral_slope
              Pelvic_radius
              Degree_spondylolisthesis 0
              Pelvic_slope
                                   0
              Direct_tilt
              Thoracic_slope
                                    0
              Cervical_tilt
              Sacrum_angle
                                    0
              Scoliosis_slope
                                    0
              Class_att
                                  0
              dtype: int64
```

Пропуски данных отсутствуют.

```
In [209]: data['Class_att'] = data['Class_att'].map({'Abnormal': 1, 'Normal': 0})
```

Разделим выборку на обучающую и тестовую:

```
In [210]: # Разделим данные на целевой столбец и признаки X = data.drop("Class_att", axis=1) Y = data["Class_att"]
```

Out[211]: ((231, 12), (78, 12), (231,), (78,))

Линейная модель

#Постраим₂корреляционную матрицу sns.set(style="white")

corr = data.corr(method='pearson')

 $mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True f, ax = plt.subplots(figsize=np.bool) mask[np.triu_indices_from(mask)] = True f, ax = plt.$ cmap = sns.diverging_palette(220, 10, as_cmap=**True**)

g=sns.heatmap(corr, mask=mask, cmap=cmap, center=0, annot=**True**, fmt='.3f', square=**True**, linewidths=.5,

In [213]: fig, ax = plt.subplots(figsize=(5,5)) sns.scatterplot(ax=ax, x='Pelvic_incidence', y='Sacral_slope', data=data)

Out [213]: <matplotlib.axes._subplots.AxesSubplot at 0x5d88a30>

In [214]: x_array = data['Pelvic_incidence'].values y_array = data['Sacral_slope'].values

In [215] # Аналитическое вычисление коэффициентов регрессии def analytic_regr_coef(x_array : np.ndarray, y_array : np.ndarray) -> Tuple[float, float]: x_mean = np.mean(x_array) y_mean = np.mean(y_array) var1 = np.sum([(x-x_mean)**2 for x in x_array]) cov1 = np.sum([(x-x_mean)*(y-x_mean) for x, y in zip(x_array, y_array)]) b1 = cov1 / var1 b0 = y_mean - b1*x_mean return b0, b1

In [216]: b0, b1 = analytic_regr_coef(x_array, y_array) b0, b1

Out[216]: (4.565546113493063, 0.6347707526286969)

def y regr(x array: np.ndarray, b0: float, b1: float) -> np.ndarray: res = [b1*x+b0 for x in x array]

```
In [218]: y_array_regr = y_regr(x_array, b0, b1)

In [219]: # Простейшая реализация градиентного спуска def gradient_descent(x_array : np.ndarray, y_array : np.ndarray, b0_0 : float, b1_0 : float, epochs : int, learning_rate : float = 0.001
) -> Tuple[float, float]:
# Значения для коэффициентов по умолчанию b0, b1 = b0_0, b1_0
k = float(len(x array))
```

In $[2^{\#}$ \mathcal{A} ычисление значений у на основе х для регрессии

for i **in** range(epochs):

return res

```
# Вычисление новых предсказанных значений # используется векторизованное умножение и сложение для вектора и константы y_pred = b1 * x_array + b0 # Расчет градиентов # np.multiply - поэлементное умножение векторов dL_db1 = (-2/k) * np.sum(np.multiply(x_array, (y_array - y_pred))) dL_db0 = (-2/k) * np.sum(y_# Изменение значений коэффициентов: b1 = b1 - learning_rate * dL_db1 b0 = b0 - learning_rate * dL_db0 # Результирующие значения y_pred = b1 * x_array + b0 return b0, b1, y_pred
```

def shew_gradient_descent(epochs, b0_0, b1_0):

grad_b0, grad_b1, grad_y_pred = gradient_descent(x_array, y_array, b0_0, b1_0, epochs) print('<mark>b0 = {} - (τeορε</mark> plt.plot(x_array, y_array_regr, 'b', linewidth=2.0) plt.plot(x_array, grad_y_pred, 'r', linewidth=2.0) plt.show()

In [221]: # Примеры использования градиентного спуска show gradient descent(0, 1, 1)

b0 = 4.565546113493063 - (теоретический), 1 - (градиентный спуск) b1 = 0.6347707526286969 - (теоретический), 1 - (градиентный спуск) MSE = 382.8630387134672

7707526286969 - (теоретический), 0.7 - (градиентный спуск) MSE =

Обубим линейную резрессию и сравним коэффициенты с рассчитанными ранее reg1 ⇒3LinearRegression().fit(x_array.reshape(-1, 1), y_array.reshape(-1, 1)) (b1, reg1.coef_), (b0, reg1.intercept_ 4

```
Out[224]: <matplotlib.axes._subplots.AxesSubplot at 0xf20d730>
     Out[223]:
     ((0.6347707
     526286969,
     array([[0.634
               120
     77075]])),
             (4.
             56 <sub>100</sub>
             55
             46
             11
                80
             34
             93
                60
             06
             3,
             arr
                40
             ay
             ([4
.5
65
                20
ax.plot(x_array, y_array, 'b.') ax.plot(x_array, y_pred, 'ro') plt.show()
```

S V M

In [224]: fig, ax = plt.subplots(figsize=(5,5)) sns.scatterplot(ax=ax, x=x_array, y=y_array)

<bound method BaseEstimator.__repr__ of LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True, intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=100000,</p>

In [227]: plot_regr(SVR(kernel='rbf', gamma=0.2, C=1.0))

Дерево решений

In [228]: # Обучим дерево на всех признаках tree = DecisionTreeRegressor(random_state=1) tree.fit(X_train, Y_train)

Out[228]: DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=1, splitter='best')

In [229]: # Важность признаков list(zip(X_train.columns.values, tree.feature_importances_))

```
Out[229]: [('Pelvic_incidence', 0.03881985535831688),
                    ('Pelvic_tilt', 0.0648640652612829),
                    ('Lumbar lordosis angle', 0.06149200087661627),
                    ('Sacral_slope', 0.08263904265020883),
                    ('Pelvic radius', 0.181238439623055),
                    ('Degree_spondylolisthesis', 0.41411903317709764),
                    ('Pelvic_slope', 0.023065828402366866),
                    ('Direct_tilt', 0.01842735042735041),
                    ('Thoracic slope', 0.07000532439464523),
                    ('Cervical_tilt', 0.007145299145299295),
                    ('Sacrum_angle', 0.038183760683760684),
                    ('Scoliosis_slope', 0.0)]
      In [230]: # Важность признаков в сумме дает единицу
                  sum(tree.feature importances )
      Out[230]: 1.0
def draw_feature_importances(tree_model, X_dataset, figsize=(10,5)):
Вывод важности признаков в виде графика
# Сортировка значений важности признаков по убыванию
list_to_sort = list(zip(X_dataset.columns.values, tree_model.feature_importances_))    sorted_list = sorted(list_to_so
# Названия признаков
labels = [x for x,_ in sorted_list]
# Важности признаков
data = [x for ,x in sorted list]
# Вывод графика
fig, ax = plt.subplots(figsize=figsize) ind = np.arange(len(labels)) plt.bar(ind, data)
plt.xticks(ind, labels, rotation='vertical')
# Вывод значений
for a,b in zip(ind, data):
plt.text(a-0.05, b+0.01, str(round(b,3))) plt.show()
return labels, data
      In [232]: tree_fl, tree_fd = draw_feature_importances(tree, X_train)
```


In [233]: # Список признаков, отсортированный на основе важности, и значения важности tree_fl, tree_fd

```
Out[233]: (['Degree_spondylolisthesis',
               'Pelvic_radius',
               'Sacral_slope',
               'Thoracic_slope',
               'Pelvic_tilt',
               'Lumbar_lordosis_angle',
               'Pelvic_incidence',
               'Sacrum_angle',
               'Pelvic_slope',
               'Direct_tilt',
               'Cervical_tilt',
               'Scoliosis_slope'],
               [0.41411903317709764,
               0.181238439623055,
               0.08263904265020883,
               0.07000532439464523,
               0.0648640652612829,
               0.06149200087661627,
               0.03881985535831688,
               0.038183760683760684,
               0.023065828402366866,
               0.01842735042735041,
               0.007145299145299295,
               0.0])
```

In [234]: X_train.head()

Out[234]:

Pelvic_incidence Pelvic_tilt Lumbar_lordosis_angle Sacral_slope Pelvic_radius Degree_spon

17	38.697912	13.444749	31.000000	25.253163	123.159251
110	84.998956	29.610098	83.352194	55.388858	126.912990
228	43.436451	10.095743	36.032224	33.340707	137.439694
125	70.676898	21.704402	59.181161	48.972496	103.008355

#пПересортируем признаки на основе важности X_train_sorted = X_train[tree_fl] X_train_sorted.head()

Out[235]:

	Degree_spondylolisthesis	Pelvic_radius	Sacral_slope	Thoracic_slope	Pelvic_tilt	Lumbar_lor
291	-0.460894	127.139850	32.124998	11.2762	2.631740	
17	1.429186	123.159251	25.253163	17.9575	13.444749	
110	71.321175	126.912990	55.388858	9.0119	29.610098	
228	-3.114451	137.439694	33.340707	11.0132	10.095743	
125	27.810148	103.008355	48.972496	14.8568	21.704402	

In [236]: Y_test_predict = tree.predict(X_test)

In [237]: mean_absolute_error(Y_test, Y_test_predict)

Out[237]: 0.11538461538461539

Обучим дерево и предскажем результаты на пяти лучших признаках tree_2 = DecisionTreeRegressor(random_state=1).fit(X_train[tree_fl[0:5]], Y_train) Y_test_predict_2 = tree_2.prec

In [239]: mean_absolute_error(Y_test, Y_test_predict_2)

Out[239]: 0.1666666666666666

In $[240]^{\#}$ Исследуем, как изменяется ошибка при добавлении признаков в порядке значимости $X_{range} = list(range(1, len(X_{train.columns}) + 1)) X_{range}$

Out[240]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

 $\mathsf{mae_list}_{\mathsf{n}} = [241]:$ $\mathsf{for} \ \mathsf{i} \ \mathsf{in} \ \mathsf{X_range}:$

Обучим дерево и предскажем результаты на заданном количестве признаков tree_3 = DecisionTreeRegro temp mae = mean absolute error(Y test, Y test predict 3) mae list.append(temp mae)

Оценка качества моделей

Дерево решений

print("r͡ʔᠠᢩsɛ̞૭̪̪ᠩ̞ṣ̞ːˈˈ̞ːˌr2_score(Y_test, tree.predict(X_test))) print(<mark>"mean_squared_error</mark>:", mean_squared_error(Y_test

r2_score: 0.4701886792452832

mean_squared_error: 0.11538461538461539

Линейная регрессия

In [244]: pred = reg1.predict(x_array.reshape(-1, 1)) print("r2_score:", r2_score(y_array, pred))
 print("mean_squared_error", mean_squared_error(y_array, pred))

r2_score: 0.664423352506976 mean_squared_error 60.45739674813066

Метод опорных векторов

r2_score: 0.5993410854165501 mean_squared_error 0.08725724224573822

Последние две модели являются приемлемыми, т.к. коэффициент детерминации для всех трех моделей больше 50%.

Если учитывать показатели обеих метрик, наилучший результат показал метод опорных векторов.