लिटमस का रंग परिवर्तन नहीं करते। जैसे-NaCl, KCl, NaNO3, Na2SO4

(ii) अम्लीय लवण वियलन (Acidic Salt Solution)- प्रबल अम्ल एवं दुर्बल भस्म के लवण विलयन अम्लीय होते हैं। इसका pH मान 7 से कम होता है। ये लिटमस का लाल रंग नीला में परिवर्तित करते हैं। जैसे-NH4CI, (NH4)2SO4 ।

(iii) भरमीय लवण विलयन (Basic Salt Solution)- प्रबल भरम एवं दुर्बल अम्ल के लवण विलयन क्षारीय होते हैं। इनका pH मान 7 से अधिक होता है। औसे - Na2CO3, K3PO4 इत्यादि।

प्रश्न 18. लवण के सामान्य गुणों को लिखें।

उत्तर - लवण के गुण निम्नलिखित हैं-:

(i) प्रवल अंग्ल तथा प्रवल भरम से बने लवणों का जलीय विलयन उदासीन होता है तथा विलयन का pH मान 7 होता है। जैसे- KCI, NaCI, KNO3

(ii) प्रबल अम्ल तथा दुर्बल भस्म से बने लवणों का जलीय विलयन अम्लीय होता

है। जैसे - NH4CI, FeCI3, FeSO4 इत्यादि।

(iii) दुर्बल अम्ल तथा प्रबल भरम से बने लवणों का जलीय विलयन झारीय होता है तथा विलयन का pH मान, 7 से अधिक होता है। जैसे - Na₂CO₃, NaHCO3, CH3COONa इत्यादि।

प्रश्न 19. pH स्केल क्या है ? (SPL)

उत्तर -1909 ई. में सोरेन्सन ने H* आयन की सांद्रता को व्यक्त करने के लिए pH चिह्न का उपयोग किया। इसमें 0 से 14 तक की संख्याएँ होते हैं। इसे pH स्केल कहा जाता है।

प्रश्न 20. pH मान क्या है ? उत्तर -ग्राग अणु प्रति लीटर में व्यक्त हाइड्रोजन आयनों के सांद्रण के ऋणात्मक लघुगुणक को pH मान कहा जाता है।

 $pH = -\log [H^+] = \log \frac{1}{H}$ शुद्ध जल का pH मान 7 होता है।

प्रश्न 21. pH मान का क्या महत्व है ?

उत्तर — हमारे दैनिक जीवन में pH अत्यन्त महत्वपूर्ण स्थान रखता है। इसके महत्व

निम्नलिखित हैं-:

(i) जल का pH मान ज्ञात करके पता लगाया जाता है कि जल किस कार्य के लिए उपयुक्त है।

(ii) रक्त का pH मान ज्ञात करके पता लगाया जाता है कि रक्त शुद्ध है या

अश्ब ।

(iii) मिट्टी का pH मान ज्ञात करके पता लगाया जाता है कि इसमें कौन-सी फसल उगायी जा सकती है।

(iv) अनेक रसायनिक अभिक्रियायें pH द्वारा नियंत्रित की जाती हैं। जैसे-जल अपघटन अभिक्रिया, किण्वन इत्यादि।

(v) पाचन तंत्र के pH का पता लगाकर रोगों की जानकारी प्राप्त की जाती है। (1.0)

(vi) दाँतों के pH मान में परिवर्तन होने पर दाँत नष्ट होने लगते हैं। (5.5)

(vii) जल का pH एक निश्चित सीमा के अंदर रहने पर रहने वाले जलीय जीव जीवित रहते हैं।

प्रश्न 22. उदासीनीकरण अभिक्रिया से आप क्या समझते हैं ? उदाहरण द्वारा समझावें। उत्तर -अम्ल तथा क्षारक के अभिक्रिया के फलस्वरूप लवण तथा जल बनता है। उसे उदासीनीकरण अभिक्रिया कहते हैं।

NaOH + HCI --- NaCI + H2O

प्रश्न 23. नेटल पौधे (बूटी) की क्या विशेषता है ?

उत्तर -नेदल एकशाखीय पौधा है जो जंगलों में उपजता है। इसके पत्तियों में डंकनुमा बाल होते हैं। अगर गलती से छू लिया जाए तो डंक जैसा दर्द होता है। इन बालों में मेथेनोइक अम्ल का साव होने के कारण दर्द होता है। डंक मारने के स्थान पर डॉक पौधे की पत्ती रगड़ने पर इलाज हो जाता है। ये पौधे अधिकतर नेटल के पास पाये जाते हैं। डॉक पौधों से कुछ मस्म या क्षार निकलते हैं, जो अम्ल के प्रमाव को उदासीन कर देते हैं।

प्रश्न 24 अवहें फसल के लिए मिट्टी का pH मान 5.5 - 7.0 होना चाहिए। किसान

मिट्टी में चूना क्यों मिलाता है ?

उत्तर - मिट्टी का pH मान 5.5-7.0 के बीच रहने पर फसल अच्छे होते हैं। मिट्टी के अत्यधिक अम्लीय या क्षारीय होने पर पौधों की वृद्धि बाधित हो जाती है। मिट्टी के अधिक अम्लीय होने पर उसमें कली चूना, भखरा चूना या कैल्शियम कार्बो नेट डालकर उसका pH नियंत्रित किया जाता है। इन रासायनिक पदार्थों के भारिमक होने के कारण ये मिट्टी के अतिरिक्त अम्लीयता को कम कर देते हैं। अतः किसान चूना मिलाता है।

प्रश्न 25. क्षारों के महत्वपूर्ण रासायनिक मुणों को लिखें।

उत्तर - क्षारों के महत्वपूर्ण रासायनिक गुण निम्नलिखित हैं-: (i) घातुओं से क्रिया −क्षार कुछ घातुओं से क्रिया कर H₂ गैस उत्पन्न करते हैं।

 $Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2$ (सोडियम जिंकेट)

(ii) वायु से क्रिया – कुछ क्षार वायु में उपस्थित CO₂ से क्रिया करते हैं। 2NaOH + CO₂ --- Na₂CO₃

(iii) अम्लों से क्रिया -क्षार अम्लों से क्रिया करके लवण तैयार करते हैं।

NaOH + HCI --- NaCI + H2O

(iv) लवणों से क्रिया - ताँबा, लोहा, जिंक आदि के लवण क्षारों से क्रिया करते हैं, और अधुलनशील घात्विक हाइड्रॉक्साइड तैयार करते हैं।

 $ZnSO_4 + 2NaOH \longrightarrow Na_2SO_4 + Zn(OH)_2$

प्रश्न 26. हमारे दैनिक जीवन में अम्लों के चार उपयोग बतावें। उत्तर -हमारे दैनिक जीवन में अम्ल के उपयोग निम्नलिखित हैं-:

(i) सिरका हमारे मोजन को पकाने और उसकी सुरक्षा तथा आचार बनाने में

(ii) हमारे पेट में HCI हानिकारक जीवाणुओं को नष्ट कर देता है। जो भोजन के साथ पहुंच जाते हैं।

(111) टारटैरिक अम्ल बेकिंग पाउडर बनाने में काम आता है।

(iv) कार्वनिक अम्ल पेय पदार्थों में प्रयुक्त होता है।

प्रश्न 27. अंग्लों की हमारे जीवन में क्या हानियाँ हैं ? उत्तर -अम्लों से होनेवाली हानियाँ निम्नलिखित हैं-:

(i) ये सजीव कोशिकाओं को नष्ट करते हैं।

(ii) सांद्र अम्ल त्वचा और कोमल अंगों को गंभीर क्षति पहुंचाते हैं।

(iii) कुछ खाद्य पदार्थों को खराब कर देते हैं।

प्रश्न 28. सोडियम क्लोराइड (साघारण नमक) कैसे बनायाजाता है ? इसके दो मुख्य

रसायनिक गुण तथा उपयोग बतावें। उत्तर-गर्म सोडियम पर क्लोरीन गैस प्रवाहित करने पर सोडियम क्लोराइड बनता है। 2Na + Cl₂ --- 2NaCl

रासायनिक गुण-:

(i) यह एक आयनिक यौगिक है, जो अति घुलनशील है।

- (ii) यह एक श्वेत रवादार पदार्थ है। उपयोग —:
- (i) भोजन बनाने में I
- (ii)हाइड्रोजन क्लोराइड (HCI), बेकिंग पाउडर, सोडियम बाईकार्बोनेट, सोडियम हाइड्रॉक्साइड आदि के निर्माण में।

प्रश्न 29. साधारण नमक की प्राप्ति कहाँ कहीं होती है ? स्पष्ट करें। उत्तर – साधारण नमक निम्नलिखित स्रोतों से प्राप्त होता है-:

- (i) समुद्री जल समुद्र के खारे जल को बड़े बड़े गड्ढों में एकत्र कर सूर्य के प्रकाश में वाष्पित होने देते हैं। वाष्पन के बाद ठोस नमक के खे प्राप्त होते हैं।
- (ii) खनिज नमक (खानों या चट्टानों से) आस्ट्रेलिया में नमक खानों से निकाला जाता है। इसके लिए जमीन के अंदर एक पम्प घुसाते हैं, जिसमें तीन संकेन्द्री नालियाँ होती हैं। बाहर वाली नली से गर्म जल अंदर प्रवेश कराया जाता है, जिससे नमक का विलयन तैयार होता है। सबसे अंदर वाली नली से होकर उच्च दाब पर हवा का झोंका अंदर भेजा जाता है। नमक के विलयन को बीच वाली नली से होकर बाहर निकाल देता है। विलयन को छानकर वाष्ट्रित करने पर नमक प्राप्त होता है।
- (III) झीलों से राजस्थान की सांभर झील, अमेरिका की ग्रेट साल्ट लेंक, रूस की लेंक एल्टन से भी नमक तैंयार होता है। इसे जल के वाष्पीकरण से प्राप्त किया जाता है।

प्रश्न 30. साधारण नमक हवा में क्यों पसीजने लगता है?

उत्तर -साधारण नमक में अशुद्धि के रूप में मैगनीशियम क्लोराइड रहता है। MgCl₂ एक प्रस्वेदी पदार्थ है जो नमी सोखता है। इसी कारण साधारण नमक खुली हवा में रखने पर पसीजने लगता है।

प्रश्न 31.सोडियम हाइड्रॉक्साइड (NaOH) कैसे बनाया जाता है? इसके उपयोग बतावें। उत्तर—सोडियम हाइड्रॉक्साइड को क्लोर एल्कली विधि द्वारा बनाया जाता है। इसे कास्टिक सोडा भी कहते हैं। इसे विद्युत अपघटन विधि द्वारा बनाया जाता है। सोडियम क्लोराइड के जलीय विलयन में विद्युत घारा प्रवाहित करने पर यह अपघटित होकर सोडियम हाइड्रॉक्साइड, क्लोरीन तथा हाइड्रोजन बनाता है।

2NaCl + H₂O ---- 2NaOH + Cl₂ + H₂↑

उपयोग-ः

- (i) धातुओं के ग्रीज हटाने में।
- (ii) साबुन, अपमार्जक तथा कागज के निर्माण में।
- (iii) कृत्रिम फाइबर, कृत्रिम वस्त्र, रेशे आदि के निर्माण में।

प्रश्न 32. सोडियम बाईकाबॉनेट या खाने का सोडा कैसे बनाया जाता है ? इसके दो मुख्य रासायनिक गुण तथा उपयोग बतावें।

उत्तर -सोडियम बाईकाबॉनेट को अमोनिया सोडा विधि या साल्वे विधि द्वारा बनाया

जाता है। सोडियम कार्बोनेट के जलीय घोल में CO2 गैस प्रवाहित करने पर सोडियम बाईकार्बोनेट का अवक्षेप प्राप्त होता है।

Na₂CO₃ + H₂O + CO₂ --- 2NaHCO₃

रासायनिक गुण -:

(i) यह एक रवादार सफेंद ठोस पदार्थ है।

(ii) खाना पकाते समय जब यह गर्म होता है तो यह सोडियम कार्बीनेट, जल तथा कार्बन डाईऑक्साइड गैस देता है। अतः खाना को शीघता से पचाने के लिए इसका उपयोग किया जाता है।

2NaHCO₃ — Na₂CO₃ + H₂O + CO₂

उपयोग -

(i) इसका उपयोग अग्निशामक के रूप में होता है।

(॥)इसका उपयोग बेकिंग पाउडर के निर्माण में किया जाता है।

प्रश्न 33. सोडियम कार्बोनेट (धोने का सोडा) कैसे बनाया जाता है ? इसके दो मुख्य रासायनिक गुण तथा उपयोग बतावें।

उत्तर- इसका रासायनिक नाम सोडियम कार्बोनेट डेका हाइड्रेट है। जिसका सूत्र Na₂CO₃ . 10H₂O होता है।

बेकिंग सोडा को गरम करने पर सोडियम कार्बोनेट बनता है।

2NaHCO₃ --- Na₂CO₃ + H₂O + CO₂

प्राप्त सोडियम कार्बोनेट को जल से क्रिस्टलीकृत करने से घोवन सोडा

Na₂CO₃ + 10H₂O --- NaCO₃ . 10H₂O

रासायनिक गुण -:

(i) यह सफेद पारदर्शी रवादार पदार्थ होता है।

(ii) इसको गरम करने पर यह 10 अणु रवा जल के खो देता है। और निर्जलीय Na₂CO₃ बनाता है।

 Na_2CO_3 . $10H_2O\longrightarrow Na_2CO_3+10H_2O$ निर्जलीय Na_2CO_3 को सोडा क्षार या सोडा राख कहते हैं।