More Fun with Prime Numbers

Meek 5 Mystery of Prime Numbers: Past, Present, and Future

Tetsushi Ito

Department of Mathematics Kyoto University

Points on Elliptic Curves (1)

Elliptic curves

- > $Y^2 = X^3 + AX + B$ A, B are integers s.t. **4A**³ + **27B**² ≠ **0**.
- Mod P points play an important role in Elliptic Curve Cryptography (ECC).
- We are also interested in rational points (i.e., points whose coordinates are rational numbers).

Points on Elliptic Curves (2)

Rational Points

- > $Y^2 = X^3 X$ has only **4 rational points**: ∞ , (0,0), (1,0), (-1,0)
- $> Y^2 = X^3 + 1$ has only 6 rational points:

 $Y^2 = X^3 - X$

$$\infty$$
, (-1,0)
(0,1), (0,-1)
(2,3), (2,-3)

Points on Elliptic Curves (3)

Rational Points

- > $Y^2 = X^3 2$ has only **3 integral points**: ∞ , (3,5), (3,-5)
- > It has infinitely many rational points:

$$\left(\frac{129}{1000}, \pm \frac{383}{1000}\right), \left(\frac{164323}{29241}, \pm \frac{66234835}{5000211}\right), \left(\frac{2340922881}{58675600}, \pm \frac{113259286337279}{449455096000}\right), \dots$$

- Which elliptic curves have finitely/infinitely many rational points?
- > How can we find all integral/rational points?

Points on Elliptic Curves (4)

(Recall) Group Law

- From given points Q_1 and Q_2 , we can create a new point Q_3 .
- $> Q_3 = Q_1 \oplus Q_2$

Points on Elliptic Curves (5)

```
Q = (S, T)
> [-1]Q = (S, -T).
\triangleright [N]Q = Q \oplus \cdots \oplus Q (N-1 times)
> [-N]Q = [-1]([N]Q)
\rightarrow For integers N_1, \dots, N_M
                [N_1]Q_1 \oplus \cdots \oplus [N_M]Q_M
  is generated by Q_1, \dots, Q_M.
```