Manual for MQDT post process

Rui Jin

September 12, 2024

1 Theory background

Following the manual for MQDT solver, the discrete levels can be obtained by searching the cross point of

$$F(x_i, U_{i\alpha}, \mu_{\alpha}) = \det[U_{i\alpha} \sin \pi (x_i + \mu_{\alpha})] = 0, \tag{1a}$$

$$v_{y}(v_{x}) = \frac{q}{\left[I_{y} - I_{x} + q^{2}/v_{x}^{2}\right]^{1/2}}$$
(1b)

where,

$$x_i = \begin{cases} v_i & \text{for } i \in \text{closed channels,} \\ -\tau & \text{for } i \in \text{open channels,} \end{cases}$$

For the autoionization region, the center of resonances are at local maximum of the energy derivative of phase shift,

$$\frac{d\tau}{dE} = \frac{v_x^3}{2q^2} \frac{d\tau}{dv_x}.$$
 (2)

the local maximum can be found by searching for root of the derivative of expression (??).

$$\frac{d}{dv_x} \left(\frac{v_x^3}{2q^2} \frac{d\tau}{dv_x} \right) |_{v_{res}} = 0.$$
 (3)

2 Program structure

```
# global constants and parameters
 constants
                # user defined complex data structure for easier data communication
 type_def
               # frequently used numerical algorithms
 numerical
4 file_cmdl_io # file i/o and commandline parser
               # frequently used string operations and block output.
               # seting up machine-dependent systematic parameters (EPS, PI, Nan ...)
 envset
 interpolate # a set of interpolation functions, employed in root finding algorithms
  darray
                # dynamical array for easier data storage
  search_root
                # search levels and resonances and create readable and easy to plot
  files, if provide energy levels, generate a comparison file.
```

3 Numerical algorithms

- (i) discrete level finding
 - First roughly search for cross Scan x axis for v_x^f where the sign of the difference of $G(v_x) = F(x_i, U_{i\alpha}, \mu_{\alpha}) - v_y(v_x)$ flips.
 - Finer search Choose a suitable vicinity of v_x^f , find the root of the difference function $G(v_x)$. Where the actual value of $F(x_i, U_{i\alpha}, \mu_{\alpha})$ and $v_y(v_x)$ are calculated on-the-fly $(F(x_i, U_{i\alpha}, \mu_{\alpha}))$ is obtained by spline-interpolation).
- (ii) resonance finding
 - First rought search
 The Local peaks are $\frac{d}{dE}\tau(x_{i-1}) <= \frac{d}{dE}\tau(x_i) <= \frac{d}{dE}\tau(x_{i+1})$. There might be small fluctuations

of the derivative due to numerical operations(especially two-point interpolation is used). So we need to filter out some of them.

• Noise filter

noise filter threshold is automatically determined based on the widest resonance width max $\{\delta_{\alpha}\}$. The widths are estimated by the imaginary part of projected K_{cc} matrix. (J. M. Lecomte, J. Phys. B: At. Mol. Phys. 20 (1987) 3645-3662.)

Or you can manually specify one by adding option [-filter XXX] to the command line.

- Finer search Employ bisect searching algorithm to search for the derivative of $\frac{d}{dE}\tau$ function in a suitable vicinity. The function and it's derivative are Spline-interpolated on-the-fly.
- Eigenchannel sort

4 Program input

Required input files:

The major control file *mqdt.in* is the same as that for mqdt solver. You can add blank lines and # to comment. You can also use {} to wrap the data block, you can put them in one line or break the wrapper into multiple lines.

Table 1: Options in mqdt.in	
Z	target charge
nchan	number of physical channels (optional, program will determine it
	from S-matrix input file)
nop	number of open channels (optional, program will determine it from
	the energy region and the choice of x-axis threshold IPx.)
nip	number of ionization potentials (IP), (optional, program will deter-
	mine from the IP array block IP = $\{\}$).
IP_unit	optional unit for IP, cm-1, ryd, au, a.u., ev, Hartree are accepted
	(case-insensitive). It will be treated as cm-1 if not specified
IP	IP array block IP = $\{\}$, the $\{\}$ wrapper accept, and space to
	divide strings.
IP_seq	indices to assign IP to each physical channel.
IPy	threshold to present effective quantum defect/phase-shift. channels
	associated to threshold $IP \leq IP_y$ will be treated opened. You must
	specify it for bound-state calculation. It will be determined internally
	in continuum calculation.
IPx	threshold to present energy. channels associated to threshold $IP \ge$
	IP_x will be treated closed. You must specify it for bound-state cal-
	culation. It will be determined internally in continuum calculation.
xrange	optional v_x with respect to IP_x . You must either specify xrange or
	E_continuum.
E_continuum	optional continuum electron energy with respect to the first IP
	I_1 . You can specify unit for the energy range string e.g.
	E_continuum = {0.0:0.20_ryd}. Accepted energy units are IP,
	cm-1, ryd, au, a.u., ev, Hartree (case-insensitive). The unit is cm-1
	by default.
x_grid_type	Options: mu-eigen / mu-proj / uniform
y_grid_type	Options: adaptive / uniform
nx_flat	number of grid per X-grid segment for the flat region.
nx_spike	number of grid per X-grid segment for the sharp peaks.
ny_init_guess	number of grid per Y-grid segment in the initiative guess algorithm
ny_adapt	number of grid per Y-grid segment in the adaptive algorithm
x_fine	optional. Manually refine the X-grid. You can
	specify several sections by {} wrapper. For example
	$x_{fine} = \{2.19:2.21\%1000, 2.29:2.31\%1000\},$ where
	%1000 means you want to use 1000 times finer grid for this section.
y_fine	optional. Manually refine the Y-grid. Usage the same as x_fine.
eqnsolv_method	How to solve the MQDT equation. Options are: hyb, bisect, newton.
relax	optional. Relaxation coefficient to prevent oscillation. Default 1.0.
dmu	optional. Constant correction to μ_{α} . Specify it with {} wrapper:
	$dmu = \{0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \}$
au_peak_search_method	For postmqdt. Either search the steepest change of each collisional-
	channel phase shift or the total phase shift. Options: tot / chan.
k_mat_cofact	the column index for cofactor when solving the A-coefficients from
	the secular equations (asymptotic boundary condition). $\forall i \leq nchan$
	will work, this is only left for debugging purpose.
twoJ	Not used currently. 2j of the system, used to calculate Lande-g
	factor.