Project Development

Delivery Of Sprint-1

Date	03 October 2022
Team ID	PNT2022TMID37447
Project Name	Project - Corporate Employee Attrition Analytics

CODING & SOLUTIONING

DATASET:

• Employee Attrition Analysis (Logistic Regression Model) Employee Attrition Analysis (Logistic Regression Model)

https://www.kaggle.com/vjchoudhary7/hr-analytics-case-study

DATA UNDERSTANDING:

The data received for the analysis can be divided into 4 broad categories -

- •General Data General data, acquired from HR
- •Employee Survey Data Data collected from yearly employee survey
- Manager Survey Data Data collected from yearly manager survey
- •Biometric Data Daily in and out times for each employee, collected using biometric attendance machines

UNDERSTANDING THE DATASET:

Let us try to understand each field of the data (general_data.csv)

Below are the values each column has. The column names are pretty self-explanatory.

- 1. AGE Numerical Value
- 2. ATTRITION Employee leaving the company (0=no, 1=yes)
- 3. BUSINESS TRAVEL (1=No Travel, 2=Travel Frequently, 3=Travel Rarely)
- 4. DEPARTMENT (1=HR, 2=R&D, 3=Sales)
- 5. DISTANCE FROM HOME Numerical Value THE DISTANCE FROM WORK TO HOME
- 6. EDUCATION Numerical Value. (1 'Below College' 2 'College' 3 'Bachelor' 4 'Master' 5 'Doctor')
- 7. EDUCATION FIELD (1=HR, 2=LIFE SCIENCES, 3=MARKETING, 4=MEDICAL SCIENCES, 5=OTHERS, 6= TECHNICAL)
- 8. EMPLOYEE COUNT Numerical Value
- 9. EMPLOYEE ID Numerical Value
- 10. GENDER (1=FEMALE, 2=MALE)
- 11. JOB LEVEL Numerical Value
- 12. JOB ROLE (1=HR REP, 2=HR, 3=LAB TECHNICIAN, 4=MANAGER, 5= MANAGING DIRECTOR, 6= RESEARCH DIRECTOR, 7= RESEARCH SCIENTIST, 8=SALES EXECUTIVE, 9= SALES REPRESENTATIVE)
- 13. MARITAL STATUS (1=DIVORCED, 2=MARRIED, 3=SINGLE)
- 14. MONTHLY INCOME Numerical Value MONTHLY SALARY
- 15. NUMCOMPANIES WORKED Numerical Value NO. OF COMPANIES WORKED AT
- 16. OVER 18 (1=YES, 2=NO)
- 17. PERCENT SALARY HIKE Numerical Value PERCENTAGE INCREASE IN SALARY
- 18. STANDARD HOURS Numerical Value STANDARD HOURS
- 19. STOCK OPTIONS LEVEL Numerical Value STOCK OPTIONS (Higher the number, the more stock option an employee has)
- 20. TOTAL WORKING YEARS Numerical Value TOTAL YEARS WORKED
- 21. TRAINING TIMES LAST YEAR Numerical Value HOURS SPENT TRAINING

- 22. YEARS AT COMPANY Numerical Value TOTAL NUMBER OF YEARS AT THE COMPANY
- 23. YEARS SINCE LAST PROMOTION Numerical Value LAST PROMOTION
- 24. YEARS WITH CURRENT MANAGER Numerical Value YEARS SPENT WITH CURRENT MANAGER
- b. Let us try to understand about each field of the data (employee_survey_data.csv)
 - 1. Employee ID
 - 2. Environment Satisfaction (1 'Low' 2 'Medium' 3 'High' 4 'Very High')
 - 3. Job Satisfaction (1 'Low' 2 'Medium' 3 'High' 4 'Very High')
 - 4. Work Life Balance (1 'Bad', 2 'Good', 3 'Better', 4 'Best')
- c. Let us try to understand about each field of the data (manager_survey_data.csv)
 - 1. Employee ID
 - 2. Job Involvement (1 'Low' 2 'Medium' 3 'High' 4 'Very High')
 - 3. Performance Rating (1 'Low', 2 'Good', 3 'Excellent', 4 'Outstanding')

SOLUTION REQUIRED:

- •To model the probability of attrition using a logistic regression
- Business Understanding
- Data Understanding sources of the data, meaning of the data
- Data preparation & EDA
- Model Building
- Model Evaluation
- Data Visualization charts
- Dashboard Creation

METHODOLOGY USED:

- Predictive modelling of attrition
- Recommending ways for company XYZ to decrease its level of attrition

TO MODEL THE PROBABILITY OF ATTRITION USING A LOGISTIC REGRESSION

BUSINESS UNDERSTANDING, IMPORTING PACKAGES, UNDERSTANDING THE DATA AND EDA

LIBRARIES USED FOR THIS CODE:


```
**Some corporate employee attrition analysis.ipynb 1/2

File Edit View Insert Runtime Tools Help Last saved at November 7

**Oode **Text**

**Connect ** | **Editing | **

**Import rungsy as np import pands as pt import south part pands as pt import pands as pt import sealorm as sns import cov

from sklearm.freature_extraction.text import CountVectorizer from sklearm.filmers_model import SOX lassifiler from sklearm.miner text import 1 Some_precision_score_preciall_score from sklearm.materizes import togstickegression from sklearm.materizes import south from sklearm.materizes import south from sklearm.materizes import and from sklearm.materizes import counts from sklearm.materizes import and from sklearm.materizes import counts from sklearm.materizes import counts from sklearm.materizes import accuracy score from sklearm.materizes.import counts from sklearm.materizes.import accuracy score from sklearm.materizes.import ac
```

import warnings

warnings.filterwarnings("ignore")

import re

import os

import datetime as dt

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import csv

from sklearn.feature extraction.text import CountVectorizer from sklearn.linear_model import SGDClassifier from sklearn import metrics from sklearn.metrics import f1 score, precision score, recall score from sklearn import sym from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.metrics import log loss, make scorer import math from sklearn.metrics import roc_auc_score from sklearn.metrics import auc from sklearn.metrics import accuracy score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import roc curve from sklearn.metrics.classification import accuracy_score, log_loss from sklearn.calibration import CalibratedClassifierCV from prettytable import PrettyTable

TO READ ALL THE CSV FILES:

from google.colab import drive
drive.mount('/content/drive')

#!ls "/content/drive/My Drive/Kaggle_dataset/HR_analytics/PA-I_Case_Study_HR_Analytics"

!cp "/content/drive/My Drive/Kaggle_dataset/HR_analytics/PAI Case Study HR Analytics/general data.csv" "general data.csv"

!cp "/content/drive/My Drive/Kaggle_dataset/HR_analytics/PA-I_Case_Study_HR_Analytics/employee_survey_data.csv" "employee_survey_data.csv"

!cp "/content/drive/My Drive/Kaggle_dataset/HR_analytics/PA-I_Case_Study_HR_Analytics/manager_survey_data.csv" "manager_survey_data.csv"

!cp "/content/drive/My Drive/Kaggle_dataset/HR_analytics/PA-I_Case_Study_HR_Analytics/in_time.csv" "in time.csv"

!cp "/content/drive/My Drive/Kaggle_dataset/HR_analytics/PA-I_Case_Study_HR_Analytics/out_time.csv" "out_time.csv"

OUTPUT:

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force remount=True).

CODING:

```
≜ ibm corporate employee attrition analysis.ipynb 

☆
                                                                                                                                                           Comment 🕌 Share 🌣
       File Edit View Insert Runtime Tools Help Last saved at November 7
     + Code + Text
                                                                                                                                                                 [ ] generalData_df = pd.read_csv("general_data.csv")
           employee_survey_df = pd.read_csv("employee_survey_data.csv")
           manager_survey_df = pd.read_csv("manager_survey_data.csv")
           intime df
                           = pd.read_csv("in_time.csv")
           outtime df
                               = pd.read_csv("out_time.csv")
[ ] print(generalData_df.shape , employee_survey_df.shape , manager_survey_df.shape)
           print(employee_survey_df.columns.tolist())
           print(manager_survey_df.columns.tolist())
           (4410, 24) (4410, 4) (4410, 3)
           ['EmployeeID', 'EnvironmentSatisfaction', 'JobSatisfaction', 'WorkLifeBalance']
['EmployeeID', 'JobInvolvement', 'PerformanceRating']
```

```
generalData_df = pd.read_csv("general_data.csv")
employee_survey_df = pd.read_csv("employee_survey_data.csv")
manager_survey_df = pd.read_csv("manager_survey_data.csv")
intime_df = pd.read_csv("in_time.csv")
outtime_df = pd.read_csv("out_time.csv")

print(generalData_df.shape, employee_survey_df.shape, manager_survey_df.shape)
print(employee_survey_df.columns.tolist())
print(manager_survey_df.columns.tolist())
```

OUTPUT:

```
(4410, 24) (4410, 4) (4410, 3)
['EmployeeID', 'EnvironmentSatisfaction', 'JobSatisfaction',
'WorkLifeBalance']
['EmployeeID', 'JobInvolvement', 'PerformanceRating']
```

MERGING OF DATA:


```
df1=pd.merge(generalData_df,employee_survey_df,on='EmployeeID') final_df=pd.merge(df1,manager_survey_df,on='EmployeeID')
```

```
if(len(final_df.columns.tolist()) == (len(generalData_df.columns.tolist()) + len(e
mployee_survey_df.columns.tolist()) + len(manager_survey_df.columns.tolist())
) - 2):
```

print("OK")

OUTPUT:

Age	Educat Marita Standa YearsA Environ	ducationField EmployeeCollaritalStatus MonthlyIncollandardHours StockOption			nt EmployeeID Gender e NumCompanies Worked			ears Trainin YearsWithCurrI		gTimesLastYear		
0	51	No	Travel	Rarely	Sales	6	2	Life Sci	iences	1	1	
Female 1			Healthcare Representat			tive	Married 131160			1.0	Υ	11
	8	0	1.0	6	1	0	0	3.0	4.0	2.0	3	3
1	31	Yes	Travel	Freque	ntly	Resear	ch & De	velonme	ent	10	1	Life
Sciences 1			2 Female 1				Research & Development Research Scientist Single			41890	0.0	Υ
Science	23	8	1	6.0	3	5	1	4	3.0	2.0	4.0	2
	4	Ü	-	0.0	J	3	•	7	3.0	2.0	4.0	_
2	32	No	Travel_Frequently			Research & Development				17	4	
_	Other	1	3	Male	4	Sales Executive Marrie				193280		Υ
	15	8	3	5.0	2	5	0	3	2.0	2.0	1.0	3
	3	Ū	J	3.0	_	J	Ū	J	2.0	2.0	1.0	J
3	38	No	Non-T	ravel	Resear	ch & De	velopment		2	5	Life	
		1	4	Male	3	Human Resources			– Marrie		83210	3.0
Science	Y	11	8	3	13.0	5	8	7	5	4.0	4.0	3.0
	2	3	O	J	15.0	5	Ü	,	3	4.0	4.0	5.0
4	32	No	Travel	Darah:	Dosser	Pacarch P. Davalanmant			10	1 Madical1		.11
4				_ ′		rch & Development			10	1 Medical1		
	5	Male	1		xecutive	•	23420		Y	12	8 2	
	9.0	2	6	0	4	4.0	1.0	3.0	3			

FINDING NULL'S:

CODING:

```
Sibm corporate employee attrition analysis.jpynb ☆

File Edit View Insert Runtime Tools Help Sazing...

+ Code + Text

Connect → / Editing ↑

Finding Null's

[] print("finding whether is there is any nulls in the final_df if yes how many ()".format(final_df.ismull().sum().sum()))

final_df.dronna(inplace=iroue)
print("finding whether is there is any nulls in after droping the final_df if yes how many ()".format(final_df.ismull().any().sum()))

finding whether is there is any nulls in the final_df if yes how many 111
finding whether is there is any nulls in after droping the final_df if yes how many 0

• Checking whether duplicates present in final_df

[] final_df.dupliactedkous=final_df[final_df.duplicated( keep=false)].shape[0]
if(final_df.dupliactedkous=0):
print("there is No duplicate elements in Final_df")
else:
print("there is duplicate elements in Final_df")
there is No duplicate elements in Final_df")
```

print("finding whether is there is any nulls in the final_df if yes how many {}".fo
rmat(final_df.isnull().sum().sum()))

final_df.dropna(inplace=True)

print("finding whether is there is any nulls in after droping the final_df if yes ho
w many {}".format(final_df.isnull().any().sum()))

OUTPUT:

finding whether is there is any nulls in the final_df if yes how many 111 finding whether is there is any nulls in after droping the final_df if yes how many 0

CHECKING WHETHER DUPLICATES PRESENT IN FINAL_DF

```
| Tomest | Stare | Comment | S
```

```
final_df_dupliactedRows=final_df[final_df.duplicated( keep=False)].shape[0]
if(final_df_dupliactedRows==0):
    print("there is No duplicate elements in Final_df")
else:
    print("there is duplicate elements in Final_df")
```

OUTPUT:

there is No duplicate elements in Final_df

EDA

We will cover how to visually analyse:

- Numerical variables with histograms,
- Categorical variables with count plots,
- Relationships between numerical variables with scatter plots, joint plots, and pair plots, and
- Relationships between numerical and categorical variables with box-andwhisker plots and complex conditional plots

UNIVARIANT ANALYSIS

FOR ALL COLUMNS PLOTTING COUNT PLOTS

CODING:

```
#For all columns doing countplots
fig = plt.figure(figsize=(26,30))
for idx,i in enumerate(final_df.columns.tolist()):
    ax=plt.subplot(8,4,idx+1)
    sns.countplot(x=i,data=final_df,ax=ax)
plt.show()
```


FOR NUMERICAL COLUMNS UNIVARIANT ANALYSIS IS DONE CODE

FOR NUMERICAL COLUMNS DOING UNIVARINAT ANALYSIS CODING:

#Divide into NumericalColumns

columns=final_df.columns.tolist()

num_col_eda=['Age','DistanceFromHome','PercentSalaryHike','MonthlyIncome',
'TotalWorkingYears','YearsAtCompany']

final_df[num_col_eda].hist(figsize=(10,10))
plt.show()

OUTPUT:

INFERENCES

Key Observation from Above Plot are

- Except Age most of the Columns are in Skew Distribution form
- Age Feature Distribution is almost Normal Distribution
- As logistic regression does not require independent variables to be normal distributed .so i am not changing distribution of features which are skewed into the normal Distribution

INSIGHTS

- Attrition: Whether the employee left in the previous year or not
- 1. Employee who left in the previous year are 14% of population (1375) i.e. 192 who believe Environment Satisfaction is High in org. in org.
- 2. Employee who left in the previous year are 15% of population (856) i.e. 129 who believe Environment Satisfaction is Medium in org.
- 3. Employee who left in the previous year are 13% of population (1334) i.e. 173 who believe Environment Satisfaction is Very High in org.
- 4. Employee who left in the previous year are 25% of population (845) i.e. 211 who believe Environment Satisfaction is Low in organization.

• People who left in the previous year & believe Environment Satisfaction is Low in org were 30% of population who left in the previous year. Second by People who left in the previous year & believe Environment Satisfaction is High in organization