Chapter 2.5 P2P Applications

07/06/2018 [Th]

2.5.1 Pure P2P Architecture

- There is no always-on server.
- End systems directly communicate with each other.
- Peers are intermittently connected and changes IP addresses often.
- Examples:
 - File distribution (BitTorrent)
 - Streaming (KanKan)
 - VoIP (Skype)

2.5.2 File Distribution Time

- How does P2P compare with client-server in terms of file distribution of a size F file from one server to N peers:
- Note that peer upload and download capacity is a *limited resource*.
- Note: u_s = server upload capacity.
- In the client-server architecture:
 - Server transmission must sequentially send N file copies.
 - The time to send one copy is F/u_s , so the time to send N copies is NF/u_s .
 - Client must download the file copies.
 - If d_{min} is the minimum client download rate, then the minimum client download time is F/d_{min} .
 - Thus, the time to distribute file F to N clients using the **client-server approach** is: $D_{c-s} \geq max\{NF/u_s, F/d_{min}\}$
- In the P2P architecture:
 - Server transmission must upload at least one copy, which has time F/u_s .
 - Clients must each download the file copy, which has min download time F/d_{min} .
 - Clients download a combined NF bits, meaning the max upload rate... (?)
- See example graph of client-server vs. P2P on slide 2-80.
- TODO: Finish notes