

Features

- 3rd Generation SiC MOSFET technology
- High blocking voltage with low on-resistance
- High speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Qrr)
- Halogen free, RoHS compliant

Benefits

- Higher system efficiency
- Reduced cooling requirements
- Increased power density
- Increased system switching frequency

Applications

- Solar inverters
- EV motor drive
- High voltage DC/DC converters
- Switched mode power supplies

Part Number	Package	Qty(PCS)
SCT3030KLHRC11	TO247(TO-247-3)	30

TO-247

Maximum Ratings (Tc = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note	
V_{DSmax}	Drain - Source Voltage	1200	V	V _{GS} = 0 V, I _D = 100 μA		
V_{GSmax}	Gate - Source Voltage (dynamic)	-8/+19	V	AC (f >1 Hz)	Note 1	
V_{GSop}	Gate - Source Voltage (static)	-4/+15	V	Static	Note 2	
		63	А	V _{GS} = 15 V, T _C = 25°C	Fig. 19	
I _D	Continuous Drain Current	48		V _{GS} = 15 V, T _C = 100°C		
I _{D(pulse)}	Pulsed Drain Current	120	А	Pulse width t _P limited by T _{jmax}		
P _D	Power Dissipation	283	W	T _c =25°C, T _J = 175 °C	Fig. 20	
T_{J} , T_{stg}	Operating Junction and Storage Temperature	-40 to +175	°C			
T _L	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s		
M _d	Mounting Torque	1 8.8	Nm lbf-in	M3 or 6-32 screw		

Note (1): When using MOSFET Body Diode $V_{\mbox{\tiny GSmax}}$ = -4V/+19V

Note (2): MOSFET can also safely operate at 0/+15 V

SCT3030KLHRC11

Electrical Characteristics (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	1200			V	V _{GS} = 0 V, I _D = 100 μA	
\/	Gate Threshold Voltage	1.8	2.5	3.6	V	$V_{DS} = V_{GS}, I_{D} = 11.5 \text{ mA}$	Fi., 44
$V_{GS(th)}$			2.0		V	$V_{DS} = V_{GS}$, $I_D = 11.5$ mA, $T_J = 175$ °C	Fig. 11
I _{DSS}	Zero Gate Voltage Drain Current		1	50	μA	V _{DS} = 1200 V, V _{GS} = 0 V	
I _{GSS}	Gate-Source Leakage Current		10	250	nA	V _{GS} = 15 V, V _{DS} = 0 V	
В		23	32	43	mΩ	V _{GS} = 15 V, I _D = 40 A	Fig. 4,
R _{DS(on)}	Drain-Source On-State Resistance		57.6		11177	V _{GS} = 15 V, I _D = 40 A, T _J = 175°C	5, 6
a	Transconductance		27		S	V _{DS} = 20 V, I _{DS} = 40 A	Fig. 7
g _{fs}	Transconductance		22			V _{DS} = 20 V, I _{DS} = 40 A, T _J = 175°C	Fig. 7
C _{iss}	Input Capacitance		3357				
Coss	Output Capacitance		129		$V_{GS} = 0 \text{ V}, V_{DS} = 1000 \text{ V}$ $V_{DS} = 1000 \text{ V}$ $V_{DS} = 1000 \text{ V}$		Fig. 17,
C_{rss}	Reverse Transfer Capacitance		8			Vac = 25 mV	
E _{oss}	C _{oss} Stored Energy		76		μJ		Fig. 16
Eon	Turn-On Switching Energy (SiC Diode FWD)		1.94		mJ	$V_{DS} = 800 \text{ V}, V_{GS} = -4 \text{ V}/+15 \text{ V}, I_{D} = 40\text{A},$	Fig. 26
E _{OFF}	Turn Off Switching Energy (SiC Diode FWD)		0.79		1110	$R_{G(ext)} = 5\Omega$, L= 157 µH, Tj = 175°C	
Eon	Turn-On Switching Energy (Body Diode FWD)		3.10		mJ	$V_{DS} = 800 \text{ V}, V_{GS} = -4 \text{ V}/+15 \text{ V}, I_{D} = 40\text{A},$	Fig. 26
E _{OFF}	Turn Off Switching Energy (Body Diode FWD)		0.72		mJ	$R_{G(ext)} = 5\Omega$, L= 157 µH, Tj = 175°C	
t _{d(on)}	Turn-On Delay Time		107				
t _r	Rise Time		22		$V_{DD} = 800 \text{ V, } V_{GS} = -4 \text{ V/15 V}$ $R_{G(ext)} = 5 \Omega, I_D = 40 \text{ A, } L = 157$ Timing relative to V_{DS} , Inductive load		Fig. 27
$t_{d(off)}$	Turn-Off Delay Time		39				
t _f	Fall Time		19		1		
R _{G(int)}	Internal Gate Resistance		1.7		Ω	f = 1 MHz, V _{AC} = 25 mV	
Q_{gs}	Gate to Source Charge		35		V _{DS} = 800 V, V _{GS} = -4 V/15 V		
Q_{gd}	Gate to Drain Charge 40 $I_D = 40 \text{ A}$			Fig. 12			
Qg	Total Gate Charge		114		Per IEC60747-8-4 pg 21		

Reverse Diode Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V	Diode Forward Voltage	4.6		V	V _{GS} = -4 V, I _{SD} = 20 A, T _J = 25 °C	Fig. 8,
$V_{\mathtt{SD}}$		4.2		V	V _{GS} = -4 V, I _{SD} = 20 A, T _J = 175 °C	9,10
Is	Continuous Diode Forward Current		62	А	V _{GS} = -4 V, T _C = 25°C	Note 1
I _{S, pulse}	Diode pulse Current		120	А	$V_{GS} = -4 \text{ V}$, pulse width t_P limited by T_{jmax}	Note 1
t _{rr}	Reverse Recover time	69		ns		
Q _{rr}	Reverse Recovery Charge	848		nC	V _{GS} = -4 V, I _{SD} = 40 A, V _R = 800 V dif/dt = 1500 A/µs, T _J = 175 °C	Note 1
I _{rrm}	Peak Reverse Recovery Current	19		А		

Thermal Characteristics

Sym	bol Parameter	Тур.	Unit	Test Conditions	Note
ReJ	Thermal Resistance from Junction to Case	0.45			F: 04
ReJ	A Thermal Resistance From Junction to Ambient	40	°C/W		Fig. 21

Typical Performance

Figure 1. Output Characteristics T_J = -40 °C

Figure 2. Output Characteristics T_J = 25 °C

2.0

Conditions:

Figure 3. Output Characteristics T_J = 175 °C

Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

Figure 7. Transfer Characteristic for Various Junction Temperatures

Figure 8. Body Diode Characteristic at -40 °C

Figure 9. Body Diode Characteristic at 25 °C

Figure 10. Body Diode Characteristic at 175 °C

Figure 11. Threshold Voltage vs. Temperature

Figure 12. Gate Charge Characteristics

Figure 15. 3rd Quadrant Characteristic at 175 °C

Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V)

Figure 14. 3rd Quadrant Characteristic at 25 °C

Figure 16. Output Capacitor Stored Energy

Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1200V)

Figure 19. Continuous Drain Current Derating vs.
Case Temperature

Figure 20. Maximum Power Dissipation Derating vs.

Case Temperature

Figure 21. Transient Thermal Impedance (Junction - Case)

Figure 22. Safe Operating Area

Figure 23. Clamped Inductive Switching Energy vs. Drain Current ($V_{DD} = 600V$)

Figure 24. Clamped Inductive Switching Energy vs. Drain Current ($V_{\rm DD}$ = 800V)

Figure 25. Clamped Inductive Switching Energy vs. $R_{\text{G(ext)}}$

Figure 27. Switching Times vs. $R_{\rm G(ext)}$

Figure 26. Clamped Inductive Switching Energy vs.
Temperature

Figure 28. Switching Times Definition

Test Circuit Schematic

Figure 29. Clamped Inductive Switching Waveform Test Circuit

Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.

Package Dimensions

Package TO247(TO-247-3)

Pinout Information:

- Pin 1 = Gate
- Pin 2, 4 = Drain
- Pin 3 = Source

D00	Inc	hes	Millimeters		
POS	Min	Max	Min	Max	
А	.190	.205	4.83	5.21	
A1	.090	.100	2.29	2.54	
A2	.075	.085	1.91	2.16	
b	.042	.052	1.07	1.33	
b1	.075	.095	1.91	2.41	
b2	.075	.085	1.91	2.16	
b3	.113	.133	2.87	3.38	
b4	.113	.123	2.87	3.13	
С	.022	.027	0.55	0.68	
D	.819	.831	20.80	21.10	
D1	.640	.695	16.25	17.65	
D2	.037	.049	0.95	1.25	
E	.620	.635	15.75	16.13	
E1	.516	.557	13.10	14.15	
E2	.145	.201	3.68	5.10	
E3	.039	.075	1.00	1.90	
E4	.487	.529	12.38	13.43	
е	.214	BSC	5.44 BSC		
N	3	3	3		
L	.780	.800	19.81	20.32	
L1	.161	.173	4.10	4.40	
ØP	.138	.144	3.51	3.65	
Q	.216	.236	5.49	6.00	
S	.238	.248	6.04	6.30	
Т	9°	11°	9°	11°	
U	9°	11°	9°	11°	
V	2°	8°	2°	8°	
W	2°	8°	2°	8°	

Recommended Solder Pad Layout

T0247-3L

SiC Power MOSFET N-Channel Enhancement Mode

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.

 When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.