Algorithms, Design & Analysis Lecture 17: Single Source Shortest Path

Ifra Abdul Rauf & Mishaal Mustazhar

Information Technology University

March 25, 2025

About Your Fellows

- Hi there! We are Ifra and Mishaal.
- We are Associate Students at ITU.

Single Source Shortest Path

- For weighted, directed graphs.
- Goal: Find the shortest path from a single source node to all other nodes while considering edge weights.

Applications

Navigation Systems (e.g., Google Maps, GPS)

- Computes the fastest or shortest route from a given location to multiple destinations.
- Considers road distances, traffic conditions, and time.

Airline Route Optimization

- Determines the most efficient flight paths between airports.
- Reduces fuel costs and optimizes travel time based on available routes.

Example Graph

paths from S to T

Let's consider multiple paths from ${\bf S}$ to ${\bf T}$

Path 1

One possible path is:

Path: $S \rightarrow A \rightarrow B \rightarrow T$

Path 2

Another possible path is:

Path: $S \rightarrow A \rightarrow D \rightarrow C \rightarrow E \rightarrow F \rightarrow T$

Cost: 1+1+2+1+1+1=7.

Path Comparison

Comparison of paths

Path 1:

Cost: 1 + 8 + 8 = 17

Path 2:

Cost:
$$1+1+2+1+1+1=7$$

Observation: path 2 has more edges, but less cost.

How to Find the Shortest Path?

Naive Approach:

- List all possible paths from the source to the destination.
- Calculate the total weight for each path.
- Choose the one with the minimum weight.

Why Brute Force Doesn't Work?

What happens in graphs with **multiple decision points**? Consider the following example:

Decision Paths and Their Growth

Each node in the diagram has two possible paths leading to the next stage:

- Red edges (X paths) represent the upper route.
- Blue edges (Y paths) represent the lower route.
- Starting at S, each stage (Z_1, Z_2, Z_3) requires choosing either the X or Y path to continue forward.

Total Unique paths

Since there are **4 decision points** in the example graph, each with **2 choices**:

Total possible paths: $2^4 = 16$.

Complex graphs

- Imagine trying to find the **best path** in a complex graph.
- It seems manageable at first... but as the number of choices increase at each step, the total possibilities explode exponentially!

Exponential Growth in Dense Graphs

Why Brute Force Fails in Dense Graphs?

- If the graph has 100 decision points, the number of possible paths grows to 2^{100} .
- This is an astronomically large number. Even the fastest computers can't compute this in reasonable time!
- **Conclusion:** We need efficient algorithms instead of brute force.

Efficient Shortest Path Algorithm

How can we efficiently find the shortest path?

Bellman-Ford Algorithm

Instead of brute force, we use a well-known algorithm like **Bellman-Ford** algorithm.

It applies the concept of **edge relaxation** to find the shortest paths efficiently.

- \bullet Iteratively relaxes all edges V 1 times to compute the shortest paths.
- Time Complexity: O(VE)

Edge Relaxation

Relaxation:

We assign an estimate $\mathbf{d}[\mathbf{v}]$ for the shortest path from S to v.

- Updates the shortest known distance to a node if a shorter path is found.
- Helps refine estimates until the shortest path is determined.

Relaxation Pseudocode

```
Relax(u, v):
  if d[u] + w(u, v) < d[v] then
     d[v] \leftarrow d[u] + w(u, v)
```


initial value for d

What should be the initial value for *d*?

Initial value for d

Initial values:

To assign initial values, we start with the simplest possible assumption:

d[s] = 0 (The source reaches itself at zero cost)

 $d[x] = \infty$ (for all other nodes, unknown distance)

Value assignment for d

Later, we refine these values using edge relaxation.

Relaxing of an edge

Given a directed weighted graph with an edge (u, v) and weight w(u, v), the relaxation step checks if:

$$d[v] > d[u] + w(u, v)$$

If this condition is **True**, we update:

$$d[v] = d[u] + w(u, v)$$

Example walkthrough

Initial State:

Update d[u]

Relaxing Edge: $S \rightarrow U$

Relaxation Check:

$$0+3<\infty$$
 (True)

Update:
$$d[u] = 3$$

$$\widehat{\mathsf{v}} \ d[\mathsf{v}] = \infty$$

Update d[v]

Relaxing Edge: $U \rightarrow V$

Relaxation Check:

$$3+5<\infty$$
 (True)

Update:
$$d[v] = 8$$

$$d[v] = 8$$

Properties of Shortest Paths

Key properties:

- Optimal Substructure Property
- Edge Relaxation
- Handling Non-Reachable Nodes
- Convergence to True Shortest Path

Optimal Substructure Property

The **shortest path** from S to T is:

What can you say about path from v3 to v5?

EXAMPLE

Since the given graph is the **shortest path** from S to T, then the shortest path from $\mathbf{v3}$ to $\mathbf{v5}$ is:

All sub-paths of a shortest path are themselves shortest paths!

Notation: $\delta(s, v)$ represent the shortest path from s to v

Edge Relaxation Mechanism

Purpose: Refine distance estimates d[v] until they match the true shortest path $\delta(s, v)$.

Relaxation Step:

$$d[v] = \min(d[v], d[u] + w(u, v))$$

$$70 > 50 + 6 \implies d[v] = 56$$

$$d[u] = 50 d[v] = 70$$

$$w(u, v) = 6$$

Unreachable Nodes

What if we have nodes we cannot reach? How does it affect our path?

Example Graph

If node V is unreachable from S, then:

$$\delta(s,v)=\infty$$

Node P can't be reached from S. hence, no updates during relaxation.

$$\delta(S, P) = \infty$$

 $\delta(S, P)$ remains the same.

Perfect Estimate

When do we have a perfect estimate?

- When $d[u] = \delta(s, u)$, we have a perfect estimate for u
- Once perfect, the estimate never changes
- Estimates can either stay the same or decrease

S
$$\frac{\delta(s,u)}{u} \qquad w(u,v)$$

$$d[u] = \delta(s,u) \quad d[v] \ge \delta(s,v)$$

Convergence to True Values

If we relax all the edges in the correct order we get the shortest path

$$\underbrace{\delta(S, v1)}_{\text{v1}} \underbrace{\delta(v1, v2)}_{\text{v2}} \underbrace{\delta(v2, v3)}_{\text{v3}} \underbrace{\delta(v3, v4)}_{\text{v4}} \underbrace{\delta(v4, T)}_{\text{v4}} \underbrace{T}_{\text{v4}}$$

- Relax (S,v1): The shortest path from S to v1 is updated.
- Relax (v1,v2): Now that we know d[v1], we update d[v2].
- Relax (v2,v3): Using d[v2], we get a better estimate for d[v3].
- Continue this process... Each step updates the shortest known distance for the next node.

Final result: After sufficient relaxations, we get the shortest path:

$$d[v] = \delta(S, T).$$

sufficient relaxes

When will we have sufficient relaxes

- A shortest path has at most V-1 edges.
- Bellman-Ford relaxes all edges up to V-1 times.
- After V-1 relaxations, all shortest paths are computed.

Algorithm Overview

Bellman's approach:

for
$$i = 1$$
 to $V - 1$ edges (u, v) in G
Relax every edge (u, v)

Why V-1 iterations?

- ullet Longest possible path without cycles has V-1 edges
- Ensures relaxation propagates through the entire graph

Special Case: Directed Acyclic Graphs (DAG)

For DAGs:

- we assume that there are no negative edges
- Perform topological sort (O(V + E))
- Process nodes in topological order
- Relax all outgoing edges from each node

Complexity: O(V + E)

Topological Order

example walk through

First iteration

We relax all the edges going from ${f 1}$

- relax(1,2)
- relax(1,3)

Topological Order

example walk through

Second iteration

Now we relax all the edges going from 2

- relax(2,3)
- relax (2,4)

Topological Order

example walk through

Third iteration

Now we relax all the edges going from 3

• relax(3,4)

Topological Order

After n-1 iterations we have relaxed all the edges

Summary of Properties

Summary:

- **Optimal Substructure:** Shortest paths are built from shortest sub-paths.
- Initialization: $d[s] = 0, d[v] = \infty$ for others.
- Relaxation: Iteratively improves estimates using edges.
- Non-Reachable Nodes: Remain at ∞.
- Convergence: Guaranteed after |V|-1 relaxations in a graph without negative cycles.

Complexity Analysis

General Case:

• time complexity: O(VE)

For dense graph:

• time complexity: $O(V^3)$

Complexity in dense graph

Why $O(V^3)$ for Dense Graphs?

For dense graphs:

$$|E| \approx |V|^2$$

$$O(VE) = O(V \cdot V^2) = O(V^3)$$

Comparison

Comparison:

• Brute Force: $O(2^n)$ (exponential)

• Bellman-Ford: O(VE) (linear)

