Finite subgroups of derived automorphisms of generic K3 surfaces

Yu-Wei Fan (Tsinghua) Joint work with Kuan-Wen Lai (Bonn)

July 2023 1st International Congress of Basic Science

Let X be a Calabi–Yau manifold. It is expected that

$$D := D^b \operatorname{Coh}(X) \cong D^\pi \operatorname{Fuk}(X^\vee).$$

This triangulated category has autoequivalences arising from both complex geometry of X and symplectic geometry of X^{\vee} , for instance:

$$\operatorname{Aut}(X), \qquad L \otimes -; \qquad \operatorname{Symp}(X^{\vee}).$$

- there is no finite order autoequivalence arising from either $\operatorname{Aut}(X)$, $L\otimes -$, or $\operatorname{Symp}(X^{\vee})$;
- there are interesting finite order autoequivalences given by mixings of complex and symplectic geometric autoequivalences;
- we give full classification and counting of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[2]$ up to conjugations.

Let X be a Calabi–Yau manifold. It is expected that

$$D := D^b \operatorname{Coh}(X) \cong D^\pi \operatorname{Fuk}(X^\vee).$$

This triangulated category has autoequivalences arising from both complex geometry of X and symplectic geometry of X^{\vee} , for instance:

$$\operatorname{Aut}(X), \qquad L \otimes -; \qquad \operatorname{Symp}(X^{\vee}).$$

- there is no finite order autoequivalence arising from either Aut(X),
 L⊗ −, or Symp(X[∨]);
- there are interesting finite order autoequivalences given by mixings of complex and symplectic geometric autoequivalences;
- we give full classification and counting of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[2]$ up to conjugations.

Let X be a Calabi-Yau manifold. It is expected that

$$D := D^b \operatorname{Coh}(X) \cong D^\pi \operatorname{Fuk}(X^\vee).$$

This triangulated category has autoequivalences arising from both complex geometry of X and symplectic geometry of X^{\vee} , for instance:

$$\operatorname{Aut}(X)$$
, $L \otimes -$; $\operatorname{Symp}(X^{\vee})$.

- there is no finite order autoequivalence arising from either Aut(X),
 L⊗ −, or Symp(X[∨]);
- there are interesting finite order autoequivalences given by mixings of complex and symplectic geometric autoequivalences;
- we give full classification and counting of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[2]$ up to conjugations.

Let X be a Calabi-Yau manifold. It is expected that

$$D := D^b \operatorname{Coh}(X) \cong D^\pi \operatorname{Fuk}(X^\vee).$$

This triangulated category has autoequivalences arising from both complex geometry of X and symplectic geometry of X^{\vee} , for instance:

$$\operatorname{Aut}(X), \qquad L \otimes -; \qquad \operatorname{Symp}(X^{\vee}).$$

- there is no finite order autoequivalence arising from either Aut(X),
 L⊗ −, or Symp(X[∨]);
- there are interesting finite order autoequivalences given by mixings of complex and symplectic geometric autoequivalences;
- we give full classification and counting of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[2]$ up to conjugations.

Let X be a Calabi-Yau manifold. It is expected that

$$D := D^b \operatorname{Coh}(X) \cong D^\pi \operatorname{Fuk}(X^\vee).$$

This triangulated category has autoequivalences arising from both complex geometry of X and symplectic geometry of X^{\vee} , for instance:

$$\operatorname{Aut}(X)$$
, $L \otimes -$; $\operatorname{Symp}(X^{\vee})$.

- there is no finite order autoequivalence arising from either Aut(X),
 L⊗ −, or Symp(X[∨]);
- there are interesting finite order autoequivalences given by mixings of complex and symplectic geometric autoequivalences;
- we give full classification and counting of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[2]$ up to conjugations.

Let X be a Calabi-Yau manifold. It is expected that

$$D := D^b \operatorname{Coh}(X) \cong D^\pi \operatorname{Fuk}(X^\vee).$$

This triangulated category has autoequivalences arising from both complex geometry of X and symplectic geometry of X^{\vee} , for instance:

$$\operatorname{Aut}(X)$$
, $L \otimes -$; $\operatorname{Symp}(X^{\vee})$.

- there is no finite order autoequivalence arising from either Aut(X),
 L⊗ −, or Symp(X[∨]);
- there are interesting finite order autoequivalences given by mixings of complex and symplectic geometric autoequivalences;
- we give full classification and counting of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[2]$ up to conjugations.

Consider an one-parameter family of Calabi-Yau manifolds:

$$\{x_0^{n+1} + x_1^{n+1} + \dots + x_n^{n+1} + t \cdot x_0 x_1 \dots x_n = 0\} \subseteq \mathbb{CP}^n.$$

The monodromies correspond to autoequivalences of $D^b Coh(X)$:

- large complex structure limit point: $\mathcal{O}(1) \otimes -$;
- conifold point: $T_{\mathcal{O}_X}(-)$;
- Gepner point: $\Phi := T_{\mathcal{O}_X} \circ (- \otimes \mathcal{O}(1))$, where $\Phi^{n+1} = [2]$.

Consider an one-parameter family of Calabi-Yau manifolds:

$$\{x_0^{n+1} + x_1^{n+1} + \dots + x_n^{n+1} + t \cdot x_0 x_1 \dots x_n = 0\} \subseteq \mathbb{CP}^n.$$

The monodromies correspond to autoequivalences of $D^b Coh(X)$:

- large complex structure limit point: $\mathcal{O}(1) \otimes -$;
- conifold point: $T_{\mathcal{O}_X}(-)$;
- Gepner point: $\Phi := T_{\mathcal{O}_X} \circ (- \otimes \mathcal{O}(1))$, where $\Phi^{n+1} = [2]$.

Consider an one-parameter family of Calabi-Yau manifolds:

$$\{x_0^{n+1} + x_1^{n+1} + \dots + x_n^{n+1} + t \cdot x_0 x_1 \dots x_n = 0\} \subseteq \mathbb{CP}^n.$$

The monodromies correspond to autoequivalences of $D^b Coh(X)$:

- large complex structure limit point: $\mathcal{O}(1) \otimes -$;
- conifold point: $T_{\mathcal{O}_X}(-)$;
- Gepner point: $\Phi := T_{\mathcal{O}_X} \circ (- \otimes \mathcal{O}(1))$, where $\Phi^{n+1} = [2]$.

Consider an one-parameter family of Calabi-Yau manifolds:

$$\{x_0^{n+1} + x_1^{n+1} + \dots + x_n^{n+1} + t \cdot x_0 x_1 \dots x_n = 0\} \subseteq \mathbb{CP}^n.$$

The monodromies correspond to autoequivalences of $D^b Coh(X)$:

- large complex structure limit point: $\mathcal{O}(1) \otimes -$;
- conifold point: $T_{\mathcal{O}_X}(-)$;
- Gepner point: $\Phi := T_{\mathcal{O}_X} \circ (- \otimes \mathcal{O}(1))$, where $\Phi^{n+1} = [2]$.

Consider an one-parameter family of Calabi-Yau manifolds:

$$\{x_0^{n+1} + x_1^{n+1} + \dots + x_n^{n+1} + t \cdot x_0 x_1 \dots x_n = 0\} \subseteq \mathbb{CP}^n.$$

The monodromies correspond to autoequivalences of $D^b Coh(X)$:

- large complex structure limit point: $\mathcal{O}(1) \otimes -$;
- conifold point: $T_{\mathcal{O}_X}(-)$;
- Gepner point: $\Phi := T_{\mathcal{O}_X} \circ (- \otimes \mathcal{O}(1))$, where $\Phi^{n+1} = [2]$.

Consider an one-parameter family of Calabi-Yau manifolds:

$$\{x_0^{n+1} + x_1^{n+1} + \dots + x_n^{n+1} + t \cdot x_0 x_1 \dots x_n = 0\} \subseteq \mathbb{CP}^n.$$

The monodromies correspond to autoequivalences of $D^b Coh(X)$:

- large complex structure limit point: $\mathcal{O}(1) \otimes -$;
- conifold point: $T_{\mathcal{O}_X}(-)$;
- Gepner point: $\Phi := T_{\mathcal{O}_X} \circ (- \otimes \mathcal{O}(1))$, where $\Phi^{n+1} = [2]$.

As a warm-up, let us sketch the proof of the following result.

Theorem (Nikulin)

$$Aut(X) = \begin{cases} \{id\} & \text{if } H^2 > 2\\ \mathbb{Z}/2\mathbb{Z} & \text{if } H^2 = 2 \end{cases}$$

- There is an injective map $\operatorname{Aut}(X) \hookrightarrow \operatorname{O}(H^2(X,\mathbb{Z}))$.
- $f \in Aut(X)$ acts trivially on NS(X): pullback of H is still ample.
- f acts as $\pm id$ on $T(X) := NS(X)^{\perp}$: true for any odd Picard number.
- Its induced actions on the discriminant groups $T(X)^*/T(X)$ and $NS(X)^*/NS(X) \cong \mathbb{Z}/(H^2)\mathbb{Z}$ coincide $\implies f = \text{id}$ unless $H^2 = 2$.
- When $H^2 = 2$, X is a double cover over \mathbb{P}^2 and the covering involution gives the nontrivial automorphism.

As a warm-up, let us sketch the proof of the following result.

Theorem (Nikulin)

$$Aut(X) = \begin{cases} \{id\} & \text{if } H^2 > 2\\ \mathbb{Z}/2\mathbb{Z} & \text{if } H^2 = 2 \end{cases}$$

- There is an injective map $\operatorname{Aut}(X) \hookrightarrow \operatorname{O}\left(H^2(X,\mathbb{Z})\right)$.
- $f \in Aut(X)$ acts trivially on NS(X): pullback of H is still ample.
- f acts as $\pm \mathrm{id}$ on $T(X) := \mathsf{NS}(X)^{\perp}$: true for any odd Picard number.
- Its induced actions on the discriminant groups $T(X)^*/T(X)$ and $NS(X)^*/NS(X) \cong \mathbb{Z}/(H^2)\mathbb{Z}$ coincide $\implies f = \text{id}$ unless $H^2 = 2$.
- When $H^2 = 2$, X is a double cover over \mathbb{P}^2 and the covering involution gives the nontrivial automorphism.

As a warm-up, let us sketch the proof of the following result.

Theorem (Nikulin)

$$Aut(X) = \begin{cases} \{id\} & \text{if } H^2 > 2\\ \mathbb{Z}/2\mathbb{Z} & \text{if } H^2 = 2 \end{cases}$$

- There is an injective map $\operatorname{Aut}(X) \hookrightarrow \operatorname{O}(H^2(X,\mathbb{Z}))$.
- $f \in Aut(X)$ acts trivially on NS(X): pullback of H is still ample.
- f acts as $\pm \mathrm{id}$ on $T(X) := \mathsf{NS}(X)^{\perp}$: true for any odd Picard number.
- Its induced actions on the discriminant groups $T(X)^*/T(X)$ and $NS(X)^*/NS(X) \cong \mathbb{Z}/(H^2)\mathbb{Z}$ coincide $\implies f = \text{id}$ unless $H^2 = 2$.
- When $H^2 = 2$, X is a double cover over \mathbb{P}^2 and the covering involution gives the nontrivial automorphism.

As a warm-up, let us sketch the proof of the following result.

Theorem (Nikulin)

$$Aut(X) = \begin{cases} \{id\} & \text{if } H^2 > 2\\ \mathbb{Z}/2\mathbb{Z} & \text{if } H^2 = 2 \end{cases}$$

- There is an injective map $\operatorname{Aut}(X) \hookrightarrow \operatorname{O}(H^2(X,\mathbb{Z}))$.
- $f \in Aut(X)$ acts trivially on NS(X): pullback of H is still ample.
- f acts as $\pm \mathrm{id}$ on $T(X) := \mathsf{NS}(X)^{\perp}$: true for any odd Picard number.
- Its induced actions on the discriminant groups $T(X)^*/T(X)$ and $NS(X)^*/NS(X) \cong \mathbb{Z}/(H^2)\mathbb{Z}$ coincide $\implies f = \text{id}$ unless $H^2 = 2$.
- When $H^2 = 2$, X is a double cover over \mathbb{P}^2 and the covering involution gives the nontrivial automorphism.

As a warm-up, let us sketch the proof of the following result.

Theorem (Nikulin)

$$Aut(X) = \begin{cases} \{id\} & \text{if } H^2 > 2\\ \mathbb{Z}/2\mathbb{Z} & \text{if } H^2 = 2 \end{cases}$$

- There is an injective map $\operatorname{Aut}(X) \hookrightarrow \operatorname{O}(H^2(X,\mathbb{Z}))$.
- $f \in Aut(X)$ acts trivially on NS(X): pullback of H is still ample.
- f acts as $\pm \mathrm{id}$ on $T(X) := \mathsf{NS}(X)^{\perp}$: true for any odd Picard number.
- Its induced actions on the discriminant groups $T(X)^*/T(X)$ and $NS(X)^*/NS(X) \cong \mathbb{Z}/(H^2)\mathbb{Z}$ coincide $\implies f = \text{id}$ unless $H^2 = 2$.
- When $H^2 = 2$, X is a double cover over \mathbb{P}^2 and the covering involution gives the nontrivial automorphism.

As a warm-up, let us sketch the proof of the following result.

Theorem (Nikulin)

$$Aut(X) = \begin{cases} \{id\} & \text{if } H^2 > 2\\ \mathbb{Z}/2\mathbb{Z} & \text{if } H^2 = 2 \end{cases}$$

- There is an injective map $\operatorname{Aut}(X) \hookrightarrow \operatorname{O}(H^2(X,\mathbb{Z}))$.
- $f \in Aut(X)$ acts trivially on NS(X): pullback of H is still ample.
- f acts as $\pm \mathrm{id}$ on $T(X) := \mathsf{NS}(X)^{\perp}$: true for any odd Picard number.
- Its induced actions on the discriminant groups $T(X)^*/T(X)$ and $NS(X)^*/NS(X) \cong \mathbb{Z}/(H^2)\mathbb{Z}$ coincide $\implies f = \text{id}$ unless $H^2 = 2$.
- When $H^2 = 2$, X is a double cover over \mathbb{P}^2 and the covering involution gives the nontrivial automorphism.

As a warm-up, let us sketch the proof of the following result.

Theorem (Nikulin)

$$Aut(X) = \begin{cases} \{id\} & \text{if } H^2 > 2\\ \mathbb{Z}/2\mathbb{Z} & \text{if } H^2 = 2 \end{cases}$$

- There is an injective map $\operatorname{Aut}(X) \hookrightarrow \operatorname{O}(H^2(X,\mathbb{Z}))$.
- $f \in Aut(X)$ acts trivially on NS(X): pullback of H is still ample.
- f acts as $\pm \mathrm{id}$ on $T(X) := \mathsf{NS}(X)^{\perp}$: true for any odd Picard number.
- Its induced actions on the discriminant groups $T(X)^*/T(X)$ and $NS(X)^*/NS(X) \cong \mathbb{Z}/(H^2)\mathbb{Z}$ coincide $\implies f = \text{id}$ unless $H^2 = 2$.
- When $H^2 = 2$, X is a double cover over \mathbb{P}^2 and the covering involution gives the nontrivial automorphism.

• If $\Phi \in \operatorname{Aut}(D^b(X))$ is of finite order, then its induced actions on

$$\mathcal{T}(X)$$
 and $\mathcal{N}(X) = \mathcal{H}^0(X) \oplus \mathsf{NS}(X) \oplus \mathcal{H}^4(X) \cong \mathbb{Z}^3$

are of finite order.

• Φ still acts as $\pm \mathrm{id}$ on T(X); but its action on N(X) can be more complicated.

Strategy: We show that any finite order Φ fixes a Bridgeland stability condition on $D^b(X)$. In particular, it fixes a 2-plane in $N(X)_{\mathbb{R}}$ pointwisely, therefore the action of Φ on N(X) is either id or a reflection.

• If $\Phi \in \operatorname{Aut}(D^b(X))$ is of finite order, then its induced actions on

$$\mathcal{T}(X)$$
 and $\mathcal{N}(X) = \mathcal{H}^0(X) \oplus \mathsf{NS}(X) \oplus \mathcal{H}^4(X) \cong \mathbb{Z}^3$

are of finite order.

• Φ still acts as $\pm \mathrm{id}$ on T(X); but its action on N(X) can be more complicated.

Strategy: We show that any finite order Φ fixes a Bridgeland stability condition on $D^b(X)$. In particular, it fixes a 2-plane in $N(X)_{\mathbb{R}}$ pointwisely, therefore the action of Φ on N(X) is either id or a reflection.

• If $\Phi \in \operatorname{Aut}(D^b(X))$ is of finite order, then its induced actions on

$$\mathcal{T}(X)$$
 and $\mathcal{N}(X) = \mathcal{H}^0(X) \oplus \mathsf{NS}(X) \oplus \mathcal{H}^4(X) \cong \mathbb{Z}^3$

are of finite order.

• Φ still acts as $\pm \mathrm{id}$ on T(X); but its action on N(X) can be more complicated.

Strategy: We show that any finite order Φ fixes a Bridgeland stability condition on $D^b(X)$. In particular, it fixes a 2-plane in $N(X)_{\mathbb{R}}$ pointwisely, therefore the action of Φ on N(X) is either id or a reflection.

• If $\Phi \in \operatorname{Aut}(D^b(X))$ is of finite order, then its induced actions on

$$\mathcal{T}(X)$$
 and $\mathcal{N}(X) = \mathcal{H}^0(X) \oplus \mathsf{NS}(X) \oplus \mathcal{H}^4(X) \cong \mathbb{Z}^3$

are of finite order.

• Φ still acts as $\pm \mathrm{id}$ on T(X); but its action on N(X) can be more complicated.

Strategy: We show that any finite order Φ fixes a Bridgeland stability condition on $D^b(X)$. In particular, it fixes a 2-plane in $N(X)_{\mathbb{R}}$ pointwisely, therefore the action of Φ on N(X) is either id or a reflection.

• If $\Phi \in \operatorname{Aut}(D^b(X))$ is of finite order, then its induced actions on

$$\mathcal{T}(X)$$
 and $\mathcal{N}(X) = \mathcal{H}^0(X) \oplus \mathsf{NS}(X) \oplus \mathcal{H}^4(X) \cong \mathbb{Z}^3$

are of finite order.

• Φ still acts as $\pm \mathrm{id}$ on T(X); but its action on N(X) can be more complicated.

Strategy: We show that any finite order Φ fixes a Bridgeland stability condition on $D^b(X)$. In particular, it fixes a 2-plane in $N(X)_{\mathbb{R}}$ pointwisely, therefore the action of Φ on N(X) is either id or a reflection.

Bridgeland stability conditions

A Bridgeland stability condition on D is a pair $\sigma = (Z, P)$:

- $Z \colon \mathcal{N}(D) \to \mathbb{C}$ group homomorphism (central charge)
- $P = \{P(\phi)\}_{\phi \in \mathbb{R}}$ additive subcategories (semistable of phase ϕ)

satisfying several axioms, including the Harder-Narasimhan property:

• for any $E \in D$, there exists a unique sequence of exact triangles

where $A_i \in P(\phi_i)$ and $\phi_1 > \cdots > \phi_n$.

(Analogy in SG: $P\leftrightarrow$ special Lagrangian submanifolds, $Z\leftrightarrow\int_L\Omega$) (Analogy in AG: $P\leftrightarrow$ slope semistable sheaves, $Z\leftrightarrow-\deg+\sqrt{-1}\cdot {\rm rank}$) (Analogy in flat surface: $P\leftrightarrow$ straight lines, $\phi\leftrightarrow$ slope, $|Z|\leftrightarrow$ length)

Bridgeland stability conditions

A Bridgeland stability condition on D is a pair $\sigma = (Z, P)$:

- $Z: N(D) \to \mathbb{C}$ group homomorphism (central charge)
- $P = \{P(\phi)\}_{\phi \in \mathbb{R}}$ additive subcategories (semistable of phase ϕ) satisfying several axioms, including the Harder–Narasimhan property:
 - for any $E \in D$, there exists a unique sequence of exact triangles

where $A_i \in P(\phi_i)$ and $\phi_1 > \cdots > \phi_n$.

(Analogy in SG: $P \leftrightarrow$ special Lagrangian submanifolds, $Z \leftrightarrow \int_L \Omega$) (Analogy in AG: $P \leftrightarrow$ slope semistable sheaves, $Z \leftrightarrow -\text{deg} + \sqrt{-1} \cdot \text{rank}$) (Analogy in flat surface: $P \leftrightarrow$ straight lines, $\phi \leftrightarrow$ slope, $|Z| \leftrightarrow$ length)

A natural way of studying a group is via considering its actions on various spaces. The group of autoequivalences $\operatorname{Aut}(D)$ of a triangulated category admits a natural action on the space of its Bridgeland stability conditions.

This action $(\operatorname{Aut}(D) \curvearrowright \operatorname{Stab}(D))$ can be used to:

- define complexity (e.g. categorical entropy) of autoequivalences;
- provide classifications of autoequivalences (e.g. finite order, "reducible", "pseudo-Anosov", etc.);
- provide analogy with Teichmüller theory –

A natural way of studying a group is via considering its actions on various spaces. The group of autoequivalences $\operatorname{Aut}(D)$ of a triangulated category admits a natural action on the space of its Bridgeland stability conditions.

This action $(\operatorname{Aut}(D) \curvearrowright \operatorname{Stab}(D))$ can be used to:

- define complexity (e.g. categorical entropy) of autoequivalences;
- provide classifications of autoequivalences (e.g. finite order, "reducible", "pseudo-Anosov", etc.);
- provide analogy with Teichmüller theory –

A natural way of studying a group is via considering its actions on various spaces. The group of autoequivalences $\operatorname{Aut}(D)$ of a triangulated category admits a natural action on the space of its Bridgeland stability conditions.

This action $(\operatorname{Aut}(D) \curvearrowright \operatorname{Stab}(D))$ can be used to:

- define complexity (e.g. categorical entropy) of autoequivalences;
- provide classifications of autoequivalences (e.g. finite order, "reducible", "pseudo-Anosov", etc.);
- provide analogy with Teichmüller theory –

A natural way of studying a group is via considering its actions on various spaces. The group of autoequivalences $\operatorname{Aut}(D)$ of a triangulated category admits a natural action on the space of its Bridgeland stability conditions.

This action $(\operatorname{Aut}(D) \curvearrowright \operatorname{Stab}(D))$ can be used to:

- define complexity (e.g. categorical entropy) of autoequivalences;
- provide classifications of autoequivalences (e.g. finite order, "reducible", "pseudo-Anosov", etc.);
- provide analogy with Teichmüller theory –

A natural way of studying a group is via considering its actions on various spaces. The group of autoequivalences $\operatorname{Aut}(D)$ of a triangulated category admits a natural action on the space of its Bridgeland stability conditions.

This action $(\operatorname{Aut}(D) \curvearrowright \operatorname{Stab}(D))$ can be used to:

- define complexity (e.g. categorical entropy) of autoequivalences;
- provide classifications of autoequivalences (e.g. finite order, "reducible", "pseudo-Anosov", etc.);
- provide analogy with Teichmüller theory -

A dictionary of analogy

(after Gaiotto, Moore, Neitzke; Bridgeland, Smith; Dimitrov, Haiden, Katzarkov, Kontsevich, etc.)

Riemann surface Σ	Triangulated category ${\cal D}$
curve C	object <i>E</i>
$C_1 \cap C_2$	$\operatorname{Hom}(E_1, E_2)$
metric g	Bridgeland stability condition σ
geodesics	semistable objects
length $\ell_g(C)$	mass $m_{\sigma}(E)$
$\mathrm{MCG}(\Sigma)$	$\operatorname{Aut}(\mathcal{D})$
$\operatorname{Teich}(\Sigma)$	$\operatorname{Stab}(\mathcal{D})$

Many analogous statements in Teichmüller theory can be proved in the categorical setting for $\mathcal{D} = D^b \mathrm{Coh}(\text{elliptic curve})$. An interesting general question is whether some of these can be generalized to dim ≥ 2 .

A dictionary of analogy

(after Gaiotto, Moore, Neitzke; Bridgeland, Smith; Dimitrov, Haiden, Katzarkov, Kontsevich, etc.)

Riemann surface Σ	Triangulated category ${\cal D}$
curve C	object <i>E</i>
$C_1 \cap C_2$	$\operatorname{Hom}(E_1, E_2)$
metric g	Bridgeland stability condition σ
geodesics	semistable objects
length $\ell_g(C)$	mass $m_{\sigma}(E)$
$\mathrm{MCG}(\Sigma)$	$\mathrm{Aut}(\mathcal{D})$
$\operatorname{Teich}(\Sigma)$	$\operatorname{Stab}(\mathcal{D})$

Many analogous statements in Teichmüller theory can be proved in the categorical setting for $\mathcal{D} = D^b \mathrm{Coh}(\text{elliptic curve})$. An interesting general question is whether some of these can be generalized to dim ≥ 2 .

Nielsen realization problem

- Nielsen asked (1923): Let $G \subseteq \mathsf{MCG}(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq \mathsf{Diff}(\Sigma)$? (Recall that $\mathsf{MCG}(\Sigma) = \mathsf{Diff}(\Sigma)/\mathsf{isotopy}$).
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \operatorname{Isom}(\Sigma,g)$. Or equivalently, G fixes a point in $\operatorname{Teich}(\Sigma)$. (There is a natural action of $\operatorname{MCG}(\Sigma)$ on $\operatorname{Teich}(\Sigma)$, e.g. $\operatorname{MCG}(T^2) = \operatorname{SL}(2,\mathbb{Z})$ acts on $\operatorname{Teich}(T^2) = \mathbb{H}$.) (Rephrase: any finite subgroup of $\operatorname{MCG}(\Sigma)$ can be realized as symmetries with respect to a metric on Σ .)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.

Nielsen realization problem

- Nielsen asked (1923): Let $G \subseteq \mathsf{MCG}(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq \mathsf{Diff}(\Sigma)$? (Recall that $\mathsf{MCG}(\Sigma) = \mathsf{Diff}(\Sigma)/\mathsf{isotopy}$).
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \operatorname{Isom}(\Sigma,g)$. Or equivalently, G fixes a point in $\operatorname{Teich}(\Sigma)$. (There is a natural action of $\operatorname{MCG}(\Sigma)$ on $\operatorname{Teich}(\Sigma)$, e.g. $\operatorname{MCG}(T^2) = \operatorname{SL}(2,\mathbb{Z})$ acts on $\operatorname{Teich}(T^2) = \mathbb{H}$.) (Rephrase: any finite subgroup of $\operatorname{MCG}(\Sigma)$ can be realized as symmetries with respect to a metric on Σ .)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.

Nielsen realization problem

- Nielsen asked (1923): Let $G \subseteq \mathsf{MCG}(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq \mathsf{Diff}(\Sigma)$? (Recall that $\mathsf{MCG}(\Sigma) = \mathsf{Diff}(\Sigma)/\mathsf{isotopy}$).
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(\Sigma,g)$. Or equivalently, G fixes a point in $\text{Teich}(\Sigma)$. (There is a natural action of $\text{MCG}(\Sigma)$ on $\text{Teich}(\Sigma)$, e.g. $\text{MCG}(T^2) = \text{SL}(2,\mathbb{Z})$ acts on $\text{Teich}(T^2) = \mathbb{H}$.) (Rephrase: any finite subgroup of $\text{MCG}(\Sigma)$ can be realized as symmetries with respect to a metric on Σ .)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.

Nielsen realization problem

- Nielsen asked (1923): Let $G \subseteq \mathsf{MCG}(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq \mathsf{Diff}(\Sigma)$? (Recall that $\mathsf{MCG}(\Sigma) = \mathsf{Diff}(\Sigma)/\mathsf{isotopy}$).
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(\Sigma, g)$. Or equivalently, G fixes a point in $\text{Teich}(\Sigma)$. (There is a natural action of $\text{MCG}(\Sigma)$ on $\text{Teich}(\Sigma)$, e.g. $\text{MCG}(T^2) = \text{SL}(2, \mathbb{Z})$ acts on $\text{Teich}(T^2) = \mathbb{H}$.) (Rephrase: any finite subgroup of $\text{MCG}(\Sigma)$ can be realized as symmetries with respect to a metric on Σ .)
- Farb–Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(D)$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(D)$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$?

(Rephrase: any finite subgroup of Aut(D) can be realized as symmetries with respect to a stability condition on D.)

• When $D = D^b(X)$, stability conditions on D are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

- There are various examples of D where there are not many interesting finite order elements in $\operatorname{Aut}(D)$, but there are many interesting finite order elements in $\operatorname{Aut}(D)/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(D)$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(D)$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$? (Rephrase: any finite subgroup of $\operatorname{Aut}(D)$ can be realized as symmetries with respect to a stability condition on D.)

• When $D = D^b(X)$, stability conditions on D are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

- There are various examples of D where there are not many interesting finite order elements in $\operatorname{Aut}(D)$, but there are many interesting finite order elements in $\operatorname{Aut}(D)/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(D)$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(D)$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$? (Rephrase: any finite subgroup of $\operatorname{Aut}(D)$ can be realized as symmetries with respect to a stability condition on D.)

• When $D = D^b(X)$, stability conditions on D are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

- There are various examples of D where there are not many interesting finite order elements in $\operatorname{Aut}(D)$, but there are many interesting finite order elements in $\operatorname{Aut}(D)/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question.

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(D)$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(D)$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$? (Rephrase: any finite subgroup of $\operatorname{Aut}(D)$ can be realized as symmetries with respect to a stability condition on D.)

• When $D = D^b(X)$, stability conditions on D are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

- There are various examples of D where there are not many interesting finite order elements in $\operatorname{Aut}(D)$, but there are many interesting finite order elements in $\operatorname{Aut}(D)/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question.

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(D)$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(D)$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$? (Rephrase: any finite subgroup of $\operatorname{Aut}(D)$ can be realized as symmetries with respect to a stability condition on D.)

• When $D = D^b(X)$, stability conditions on D are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

Let $G \subseteq Aut(D)/[1]$ be a finite subgroup.

Does there exist $\sigma \in \operatorname{Stab}(D)/\mathbb{C}$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$?

- There are various examples of D where there are not many interesting finite order elements in $\operatorname{Aut}(D)$, but there are many interesting finite order elements in $\operatorname{Aut}(D)/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question.

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(D)$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(D)$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$? (Rephrase: any finite subgroup of $\operatorname{Aut}(D)$ can be realized as symmetries with respect to a stability condition on D.)

• When $D = D^b(X)$, stability conditions on D are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

Let $G \subseteq Aut(D)/[1]$ be a finite subgroup.

Does there exist $\sigma \in \operatorname{Stab}(D)/\mathbb{C}$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$?

- There are various examples of D where there are not many interesting finite order elements in $\operatorname{Aut}(D)$, but there are many interesting finite order elements in $\operatorname{Aut}(D)/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question.

• The answers to both problems are yes, for $D = D^b \operatorname{Coh}(X)$ where X is a curve, a (twisted) abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho = 1$.

For K3 surfaces of $\rho = 1$, we obtain:

- every finite subgroup of Aut(D) is of order 2, and is generated by an anti-symplectic involution;
- classification and counting formula of the conjugacy classes of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[1]$;
- one-to-one correspondence between {maximal finite subgroups of $\operatorname{Aut}(D)/[1]$ } and {elliptic points of $\operatorname{Stab}_{\operatorname{red}}^\dagger(D)/\mathbb{C}$ } (analogue: one-to-one correspondence between {maximal finite subgroups of $\operatorname{PSL}(2,\mathbb{Z})$ } and {elliptic points of \mathbb{H} })

• The answers to both problems are yes, for $D=D^b\mathrm{Coh}(X)$ where X is a curve, a (twisted) abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho=1$.

For K3 surfaces of $\rho = 1$, we obtain:

- every finite subgroup of Aut(D) is of order 2, and is generated by an anti-symplectic involution;
- classification and counting formula of the conjugacy classes of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[1]$;
- one-to-one correspondence between {maximal finite subgroups of $\operatorname{Aut}(D)/[1]$ } and {elliptic points of $\operatorname{Stab}_{\operatorname{red}}^\dagger(D)/\mathbb{C}$ } (analogue: one-to-one correspondence between {maximal finite subgroups of $\operatorname{PSL}(2,\mathbb{Z})$ } and {elliptic points of \mathbb{H} })

• The answers to both problems are yes, for $D = D^b \mathrm{Coh}(X)$ where X is a curve, a (twisted) abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho = 1$.

For K3 surfaces of $\rho = 1$, we obtain:

- every finite subgroup of Aut(D) is of order 2, and is generated by an anti-symplectic involution;
- classification and counting formula of the conjugacy classes of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[1]$;
- one-to-one correspondence between {maximal finite subgroups of $\operatorname{Aut}(D)/[1]$ } and {elliptic points of $\operatorname{Stab}_{\operatorname{red}}^\dagger(D)/\mathbb{C}$ } (analogue: one-to-one correspondence between {maximal finite subgroups of $\operatorname{PSL}(2,\mathbb{Z})$ } and {elliptic points of \mathbb{H} })

• The answers to both problems are yes, for $D = D^b \mathrm{Coh}(X)$ where X is a curve, a (twisted) abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho = 1$.

For K3 surfaces of $\rho = 1$, we obtain:

- every finite subgroup of Aut(D) is of order 2, and is generated by an anti-symplectic involution;
- classification and counting formula of the conjugacy classes of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[1]$;
- one-to-one correspondence between {maximal finite subgroups of $\operatorname{Aut}(D)/[1]$ } and {elliptic points of $\operatorname{Stab}_{\operatorname{red}}^\dagger(D)/\mathbb{C}$ } (analogue: one-to-one correspondence between {maximal finite subgroups of $\operatorname{PSL}(2,\mathbb{Z})$ } and {elliptic points of \mathbb{H} })

• The answers to both problems are yes, for $D=D^b\mathrm{Coh}(X)$ where X is a curve, a (twisted) abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho=1$.

For K3 surfaces of $\rho = 1$, we obtain:

- every finite subgroup of Aut(D) is of order 2, and is generated by an anti-symplectic involution;
- classification and counting formula of the conjugacy classes of finite subgroups of $\operatorname{Aut}(D)$ and $\operatorname{Aut}(D)/[1]$;
- one-to-one correspondence between $\{\text{maximal finite subgroups of } \operatorname{Aut}(D)/[1]\}$ and $\{\text{elliptic points of } \operatorname{Stab}_{\mathrm{red}}^{\dagger}(D)/\mathbb{C}\}$ (analogue: one-to-one correspondence between $\{\text{maximal finite subgroups of } \mathsf{PSL}(2,\mathbb{Z})\}$ and $\{\text{elliptic points of } \mathbb{H}\}$)

It is well-known that the rationality of a cubic fourfold Y is closely related to the existence of an associated K3 surface. For instance, Kuznetsov conjectured that Y is rational if and only if there exists a K3 surface X such that $\mathrm{Ku}(Y) \cong D^b(X)$.

On the other hand, not every K3 surface can be associated with a cubic fourfold: there is a functor on Ku(Y)

$$T_Y \colon E \mapsto j^*(E \otimes \mathcal{O}(1))$$

which satisfies $T_Y^3 = [2]$. It is asked by Huybrechts whether the existence of such order 3 element of $\operatorname{Aut}(D^b(X))/[2]$ characterizes K3 surfaces with associated cubic fourfolds.

It is well-known that the rationality of a cubic fourfold Y is closely related to the existence of an associated K3 surface. For instance, Kuznetsov conjectured that Y is rational if and only if there exists a K3 surface X such that $Ku(Y) \cong D^b(X)$.

On the other hand, not every K3 surface can be associated with a cubic fourfold: there is a functor on Ku(Y)

$$T_Y \colon E \mapsto j^*(E \otimes \mathcal{O}(1))$$

which satisfies $T_Y^3 = [2]$. It is asked by Huybrechts whether the existence of such order 3 element of $\operatorname{Aut}(D^b(X))/[2]$ characterizes K3 surfaces with associated cubic fourfolds.

It is well-known that the rationality of a cubic fourfold Y is closely related to the existence of an associated K3 surface. For instance, Kuznetsov conjectured that Y is rational if and only if there exists a K3 surface X such that $Ku(Y) \cong D^b(X)$.

On the other hand, not every K3 surface can be associated with a cubic fourfold: there is a functor on $\mathrm{Ku}(Y)$

$$T_Y \colon E \mapsto j^*(E \otimes \mathcal{O}(1))$$

which satisfies $T_Y^3 = [2]$. It is asked by Huybrechts whether the existence of such order 3 element of $\operatorname{Aut}(D^b(X))/[2]$ characterizes K3 surfaces with associated cubic fourfolds.

It is well-known that the rationality of a cubic fourfold Y is closely related to the existence of an associated K3 surface. For instance, Kuznetsov conjectured that Y is rational if and only if there exists a K3 surface X such that $Ku(Y) \cong D^b(X)$.

On the other hand, not every K3 surface can be associated with a cubic fourfold: there is a functor on Ku(Y)

$$T_Y \colon E \mapsto j^*(E \otimes \mathcal{O}(1))$$

which satisfies $\mathcal{T}_Y^3 = [2]$. It is asked by Huybrechts whether the existence of such order 3 element of $\operatorname{Aut}(D^b(X))/[2]$ characterizes K3 surfaces with associated cubic fourfolds.

It is well-known that the rationality of a cubic fourfold Y is closely related to the existence of an associated K3 surface. For instance, Kuznetsov conjectured that Y is rational if and only if there exists a K3 surface X such that $\operatorname{Ku}(Y) \cong D^b(X)$.

On the other hand, not every K3 surface can be associated with a cubic fourfold: there is a functor on Ku(Y)

$$T_Y \colon E \mapsto j^*(E \otimes \mathcal{O}(1))$$

which satisfies $\mathcal{T}_Y^3 = [2]$. It is asked by Huybrechts whether the existence of such order 3 element of $\operatorname{Aut}(D^b(X))/[2]$ characterizes K3 surfaces with associated cubic fourfolds.

It is well-known that the rationality of a cubic fourfold Y is closely related to the existence of an associated K3 surface. For instance, Kuznetsov conjectured that Y is rational if and only if there exists a K3 surface X such that $Ku(Y) \cong D^b(X)$.

On the other hand, not every K3 surface can be associated with a cubic fourfold: there is a functor on Ku(Y)

$$T_Y \colon E \mapsto j^*(E \otimes \mathcal{O}(1))$$

which satisfies $\mathcal{T}_Y^3 = [2]$. It is asked by Huybrechts whether the existence of such order 3 element of $\operatorname{Aut}(D^b(X))/[2]$ characterizes K3 surfaces with associated cubic fourfolds.

$\Phi \in \operatorname{Aut}(D)$ can be classified into (modulo quotienting certain subgroup):

- finite order up to shifts
- reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(D)$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
- hyperbolic: $\rho([\Phi]_{N(D)}) > 1$

- finite order if and only if $h_{\text{cat}} = h_{\text{poly}} = 0$
- reducible if and only if $h_{\rm cat}=0$ and $h_{\rm polv}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

$\Phi \in \operatorname{Aut}(D)$ can be classified into (modulo quotienting certain subgroup):

- finite order up to shifts
- reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(D)$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
- hyperbolic: $\rho([\Phi]_{N(D)}) > 1$

- finite order if and only if $h_{\text{cat}} = h_{\text{poly}} = 0$
- reducible if and only if $h_{\rm cat}=0$ and $h_{\rm polv}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

- $\Phi \in \operatorname{Aut}(D)$ can be classified into (modulo quotienting certain subgroup):
 - finite order up to shifts
 - reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(D)$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
 - hyperbolic: $\rho([\Phi]_{N(D)}) > 1$

- finite order if and only if $h_{\text{cat}} = h_{\text{poly}} = 0$
- ullet reducible if and only if $h_{
 m cat}=0$ and $h_{
 m poly}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

- $\Phi \in \operatorname{Aut}(D)$ can be classified into (modulo quotienting certain subgroup):
 - finite order up to shifts
 - reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(D)$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
 - hyperbolic: $\rho([\Phi]_{N(D)}) > 1$

- finite order if and only if $h_{\text{cat}} = h_{\text{poly}} = 0$
- reducible if and only if $h_{\rm cat}=0$ and $h_{\rm polv}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

- $\Phi \in \operatorname{Aut}(D)$ can be classified into (modulo quotienting certain subgroup):
 - finite order up to shifts
 - reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(D)$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
 - hyperbolic: $\rho([\Phi]_{N(D)}) > 1$

- finite order if and only if $h_{\text{cat}} = h_{\text{poly}} = 0$
- ullet reducible if and only if $h_{
 m cat}=0$ and $h_{
 m poly}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

 $\Phi \in \operatorname{Aut}(D)$ can be classified into (modulo quotienting certain subgroup):

- finite order up to shifts
- reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(D)$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
- hyperbolic: $\rho([\Phi]_{N(D)}) > 1$

- finite order if and only if $h_{\text{cat}} = h_{\text{poly}} = 0$
- ullet reducible if and only if $h_{
 m cat}=0$ and $h_{
 m poly}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an $\operatorname{Aut}(D)$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(D)/\mathbb{C} \xrightarrow{\pi} Q_0^+(D)$$

where
$$Q_0^+(D)=\{v\in\mathbb{P}(\mathit{N}(D)\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- \bullet For abelian surfaces, there is no spherical objects in D, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of Aut(D) fix a point in $Q_0^+(D)$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of Aut(D) need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(D)$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(D)/\mathbb{C} \xrightarrow{\pi} Q_0^+(D)$$

where
$$Q_0^+(D)=\{v\in\mathbb{P}(N(D)\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- For abelian surfaces, there is no spherical objects in *D*, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(D)$ fix a point in $Q_0^+(D)$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of Aut(D) need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an $\operatorname{Aut}(D)$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(D)/\mathbb{C} \xrightarrow{\pi} Q_0^+(D)$$

where
$$Q_0^+(D)=\{v\in\mathbb{P}(N(D)\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- For abelian surfaces, there is no spherical objects in *D*, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $\blacktriangleright \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(D)$ fix a point in $Q_0^+(D)$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of Aut(D) need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an $\operatorname{Aut}(D)$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(D)/\mathbb{C} \xrightarrow{\pi} Q_0^+(D)$$

where
$$Q_0^+(D)=\{v\in\mathbb{P}(N(D)\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- For abelian surfaces, there is no spherical objects in *D*, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of Aut(D) fix a point in $Q_0^+(D)$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - the fixed points of finite subgroups of $\operatorname{Aut}(D)$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an $\operatorname{Aut}(D)$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(D)/\mathbb{C} \xrightarrow{\pi} Q_0^+(D)$$

where
$$Q_0^+(D)=\{v\in\mathbb{P}(N(D)\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- For abelian surfaces, there is no spherical objects in *D*, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $\blacktriangleright \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(D)$ fix a point in $Q_0^+(D)$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of Aut(D) need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an $\operatorname{Aut}(D)$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(D)/\mathbb{C} \xrightarrow{\pi} Q_0^+(D)$$

where
$$Q_0^+(D)=\{v\in\mathbb{P}(N(D)\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- For abelian surfaces, there is no spherical objects in D, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(D)$ fix a point in $Q_0^+(D)$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of Aut(D) need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an $\operatorname{Aut}(D)$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(D)/\mathbb{C} \xrightarrow{\pi} Q_0^+(D)$$

where
$$Q_0^+(D)=\{v\in\mathbb{P}(\mathit{N}(D)\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- For abelian surfaces, there is no spherical objects in *D*, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $\blacktriangleright \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(D)$ fix a point in $Q_0^+(D)$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $\operatorname{Aut}(D)$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an $\operatorname{Aut}(D)$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(D)/\mathbb{C} \xrightarrow{\pi} Q_0^+(D)$$

where
$$Q_0^+(D)=\{v\in\mathbb{P}(\mathit{N}(D)\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in D, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(D)$ fix a point in $Q_0^+(D)$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $\operatorname{Aut}(D)$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an $\operatorname{Aut}(D)$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(D)/\mathbb{C} \xrightarrow{\pi} Q_0^+(D)$$

where
$$Q_0^+(D)=\{v\in\mathbb{P}(\mathit{N}(D)\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- For abelian surfaces, there is no spherical objects in *D*, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(D)$ fix a point in $Q_0^+(D)$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $\operatorname{Aut}(D)$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

Avoiding δ^{\perp}

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- We have $Q_0^+(D) \cong \mathbb{H} \setminus \text{``}(-2)$ -points''.
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(D)$ on $Q_0^+(D)$ factors through $\operatorname{Im}(\operatorname{Aut}(D) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right]^{-1/\sqrt{n}} \right] =: \omega_n \right\rangle$.

We showed that the following statements are equivalent

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Moreover, we showed that autoequivalences of the form $T_S\Psi$ must be of infinite order in $\operatorname{Aut}(D)/[1]$. This resolves the first issue.

Avoiding δ^{\perp}

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- ullet We have $Q_0^+(D)\cong \mathbb{H}ackslash$ "(-2)-points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(D)$ on $Q_0^+(D)$ factors through $\operatorname{Im}(\operatorname{Aut}(D) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \right\rangle =: \omega_n \right\rangle$.

We showed that the following statements are equivalent

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Moreover, we showed that autoequivalences of the form $T_S\Psi$ must be of infinite order in $\operatorname{Aut}(D)/[1]$. This resolves the first issue.

Suppose *X* is a K3 surface of $\rho = 1$ and degree 2*n*.

- We have $Q_0^+(D)\cong \mathbb{H}\setminus ``(-2)$ -points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(D)$ on $Q_0^+(D)$ factors through $\operatorname{Im}(\operatorname{Aut}(D) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \right\rangle =: \omega_n \right\rangle$.

We showed that the following statements are equivalent

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- We have $Q_0^+(D)\cong \mathbb{H}\setminus ``(-2)$ -points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(D)$ on $Q_0^+(D)$ factors through $\operatorname{Im}(\operatorname{Aut}(D) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \xrightarrow{-1/\sqrt{n}} \right] =: \omega_n \right\rangle$.

We showed that the following statements are equivalent:

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- ullet $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- We have $Q_0^+(D)\cong \mathbb{H}\setminus ``(-2)$ -points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(D)$ on $Q_0^+(D)$ factors through $\operatorname{Im}(\operatorname{Aut}(D) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \xrightarrow{-1/\sqrt{n}} \right] =: \omega_n \right\rangle$.

We showed that the following statements are equivalent:

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- We have $Q_0^+(D)\cong \mathbb{H}\setminus ``(-2)$ -points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(D)$ on $Q_0^+(D)$ factors through $\operatorname{Im}(\operatorname{Aut}(D) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \xrightarrow{-1/\sqrt{n}} \right] =: \omega_n \right\rangle$.

We showed that the following statements are equivalent:

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose *X* is a K3 surface of $\rho = 1$ and degree 2*n*.

- We have $Q_0^+(D) \cong \mathbb{H} \setminus \text{``}(-2)$ -points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(D)$ on $Q_0^+(D)$ factors through $\operatorname{Im}(\operatorname{Aut}(D) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \right\rangle =: \omega_n \right\rangle$.

We showed that the following statements are equivalent:

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

- Let $\Phi \in \operatorname{Aut}(D)/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(D)$.
- Kawatani (2019): $\pi_1(Q_0^+(D)) \cong \star_{\mathsf{free}} T_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(D)/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T_S^2$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\mathrm{red}}^\dagger(D)/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(D)/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(D)/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(D)/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(D)$.
- Kawatani (2019): $\pi_1(Q_0^+(D))\cong \star_{\mathsf{free}} T_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(D)/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T_S^2$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}^\dagger_{\operatorname{red}}(D)/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(D)/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(D)/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(D)/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(D)$.
- Kawatani (2019): $\pi_1(Q_0^+(D))\cong \star_{\mathsf{free}} T_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(D)/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T_S^2$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\rm red}^\dagger(D)/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(D)/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(D)/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(D)/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(D)$.
- Kawatani (2019): $\pi_1(Q_0^+(D))\cong \star_{\mathsf{free}} T_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(D)/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T^2_S$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\rm red}^\dagger(D)/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(D)/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(D)/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(D)/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(D)$.
- Kawatani (2019): $\pi_1(Q_0^+(D))\cong \star_{\mathsf{free}} T_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(D)/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T^2_S$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\mathsf{red}}^\dagger(D)/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(D)/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(D)/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(D)/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(D)$.
- Kawatani (2019): $\pi_1(Q_0^+(D)) \cong \star_{\mathsf{free}} T_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}_{\operatorname{red}}^{\dagger}(D)/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T^2_S$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\mathsf{red}}^\dagger(D)/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(D)/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(D)/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

A few further problems

- Find good representatives of 0-reducible autoequivalences.
- Do 0-reducible autoequivalences have zero entropy? $(h(\otimes \mathcal{O}(1)) = 0)$
- Generalize the realization results to:
 - general special cubic fourfolds Ku(Y)
 - ▶ K3 surfaces of Picard number $\rho \ge 2$
 - **▶** ...?

Thank you for your attention!

Reference: F.–Lai, *Nielsen realization problem for derived automorphisms of generic K3 surfaces*, arXiv:2302.12663