Tecnológico Nacional de México campus Huixquilucan Ingeniería Mecatrónica - Métodos Numéricos AEC-1046 Semestre septiembre 2024 - febrero 2025

Resolver el siguiente ejercicio contestando únicamente en las hojas. Enviar un sólo archivo en formato PDF a través de la plataforma MS Teams. Valor de la actividad: 100 puntos.

Nombre del estudiante	
Fecha de la actividad	
Calificación	

Evaluación del desempeño

Pregunta:	1	2	3	4	5	Total
Puntos:	20	20	20	20	20	100
Calificación:						

Ejercicio 11: Método de Secante

Supongamos que deseamos aproximar la solución de f(x) = 0 y también supongamos que tenemos una aproximación inicial a esta solución que se encuentra entre dos valores x_0 y x_1 . Esta aproximación inicial no es buena probablemente, de hecho podría ser una corazonada rápida, por lo que es mejor encontrar una mejor aproximación. Para esto realicemos el siguiente algoritmo.

- 1. Reescribir la función en la forma f(x) = 0.
- 2. Establecer una estimación de x_0 y x_1 como una estimación inicial.
- 3. Para el caso de $n=1,2,3,\ldots$

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

- 4. Si x_{n+1} esta muy cerca de cierto criterio, por ejemplo de un cierto número de decimales, entonces x_{n+1} es la mejor aproximación de la raíz de la función f(x).
- 5. En caso contrario, Se regresa al paso 3, y se recalcula x_{n+1} .

Use el método de la secante para aproximar la raíz de las siguientes funciones.

1. (20 puntos) $x^3 - 5x + 1 = 0$ cuya solución se encuentra en el intervalo [0,1]

n	x_n	$f(x_n)$
0	0.000000	
1	1.000000	
2		
3		
4		
5		

2. (20 puntos) Usted trabaja para una compañia que diseña flotadores para tazas de baño. El flotador que esta diseñando tiene una gravedad específica de 0.6 y un radio de 5.5cm. La ecuación que da la profundidad x en metros del flotador sumergido bajo del agua esta dado por la ecuación $x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$. Use el método de la secante para encontrar la distancia en que el flotador se sumegirá cuando este flotando en el agua.

n	x_n	$f(x_n)$
0	0.020000	
1	0.050000	
2		
3		
4		
5		

3. (20 puntos) $x^3 - x - 1$ cuya solución se encuentra en el intervalo [1,2]

n	x_n	$f(x_n)$
0	1.000000	
1	2.000000	
2		
3		
4		0.053881
5		
6		
7	1.324718	0.000000

4. (20 puntos) $x^2e^{-x/2}=1$ cuya solución se encuentra en el intervalo [0,2]

n	x_n	$f(x_n)$
0	0.000000	
1	2.000000	
2		
3		
4		
5		

5. (20 puntos) $\cos(x) + 2\sin(x) + x^2$ cuya solución se encuentra en el intervalo [0, -0.1]

n	x_n	$f(x_n)$
0	0.000000	
1	-0.100000	
2		
3		
4	-0.651797	
5		
6		0.000004
7		