SISTEM PENUNJANG KEPUTUSAN PEMILIHAN GURU TERBAIK DENGAN METODE TOPSIS (*TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY TO IDEAL SOLUTION*) STUDI KASUS : SDN BENDUNGAN HILIR 01 PAGI JAKARTA PUSAT

Hendri Ardiansyah

Teknik Informatika, Universitas Pamulang *email*: hendri ardiansyah@hotmail.com

ABSTRAK

Tugas utama guru adalah mendidik, mengajar, membimbing, mengarahkan, melatih, menilai, dan mengevaluasi peserta didiknya. Guru berprestasi adalah guru yang memiliki kemampuan melaksanakan tugas, keberhasilan dalam melaksanakan tugas, memiliki kepribadian yang sesuai dengan profesi guru dan memiliki wawasan kependidikan. Sistem pendukung keputusan atau Decision Support System (DSS) merupakan suatu sistem yang dapat membantu dalam pengambilan keputusan pada sebuah organisasi atau perusahaan dengan menerapkan metode yang sesuai dengan bidang keputusan yang diambil, Pengambilan keputusan secara manual tanpa bantuan SPK akan menghasilkan penilaian yang tidak objektif dan tidak tepat. Metode Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) merupakan salah satu metode pengambilan keputusan multi kriteria dengan menerapkan bobot nilai pada setiap kriterianya. Pemilihan metode TOPSIS ini dibandingkan dengan metode SPK yang lain yaitu metode ini menggunakan prinsip bahwa alternatif yang terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan jarak terjauh dari solusi ideal negatif. Sistem yang dibuat memungkinkan pihak sekolah untuk menentukan aspek penilaian berdasarkan kriteria sesuai dengan kebutuhan dari sekolah tersebut sehingga lebih fleksibel. Sistem pendukung keputusan dengan metode TOPSIS ini diharapkan dapat membantu dalam pemilihan guru terbaik.

Keyword: Guru, Sistem Penunjang Keputusan, TOPSIS.

1. PENDAHULUAN Latar Belakang

Dalam upaya meningkatkan mutu pendidikan untuk para siswa sebagai generasi bangsa dibutuhkan guru yang berkompeten dalam memberikan pendidikan kepada siswa, Tugas utama guru adalah mendidik, mengajar, membimbing, mengarahkan, melatih, menilai, dan mengevaluasi peserta didiknya Guru berprestasi adalah guru yang memiliki kemampuan melaksanakan tugas, keberhasilan dalam melaksanakan tugas, memiliki kepribadian yang sesuai dengan profesi guru dan memiliki wawasan kependidikan sehingga secara nyata mampu meningkatkan mutu proses dan hasil pembelajaran atau bimbingan melebihi yang dicapai oleh guru lain sehingga dapat dijadikan panutan siswa, rekan sejawat, maupun masyarakat sekitarnya. (Martaulina, 2015)

Sistem pendukung keputusan atau Decision Support System (DSS) merupakan suatu sistem yang dapat membantu dalam pengambilan keputusan pada sebuah organisasi atau perusahaan, di dunia pendidikan Penunjang Keputusan (SPK) dapat dipandang sebagai aset penting untuk menunjang kelancaran dan keakuratan dalam pencapaian suatu tujuan. Salah satunya adalah untuk menentukan atau penilaian guru terbaik, dengan menggunakan Sistem penunjang keputusan proses pemilihan guru terbaik akan semakin objektif dan tepat sasaran. Banyak metode yang digunakan dalam Sistem Penuniang keputusan seperti TOPSIS (metode Technique for Order Preference by Similarity to Ideal Solution), SAW(Simple Additive Weighting) dan AHP (Analytical Hierarchy Process). Salah satu metode yang banyak digunakan adalah Topsis karena merupakan salah satu metode pengambilan keputusan multi kriteria dengan menerapkan bobot nilai pada setiap kriterianya, metode ini menggunakan prinsip bahwa alternatif yang terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan jarak terjauh dari solusi ideal negatif. Artinva pilihan akan diurutkan berdasarkan nilai yang dihasilkan sehingga

alternatif yang memiliki jarak terpendek dengan solusi ideal positif adalah alternatif yang terbaik.

Tujuan penelitian

Tujuan dari penelitian ini adalah:

- 1. Untuk Membuat sistem pendukung keputusan pemilihan guru terbaik.
- Untuk menerapkan metode Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) pada sistem pendukung keputusan pemilihan guru terbaik.

2. METODE PENELITIAN

Metodelogi penelitian menggunakan metode TOPSIS (metode Technique for Order Preference by Similarity to Ideal Solution), dan metodelogi untuk Pembuatan sistem menggunkan metode waterfall.

TOPSIS merupakan metode pengambilan keputusan multikriteria menggunakan prinsip bahwa alternatif terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan jarak terpanjang (terjauh) dari solusi ideal negatif untuk menentukan kedekatan relatif dari sudut pandang geometris dengan menggunakan jarak Euclidean (jarak antara dua titik) untuk menentukan kedekatan relatif dari suatu alternatif dengan solusi optimal. Solusi ideal positif didefinisikan sebagai jumlah dari seluruh nilai terbaik yang dapat dicapai untuk setiap atribut, sedangkan solusi ideal negatif terdiri dari seluruh nilai terburuk yang dicapai untuk setiap atribut.

Tahapan TOPSIS

Membuat matriks keputusan yang ternormalisasi.

Dengan i = 1,2,...,m; dan j = 1,2,...,n; Dimana

rij = Elemen matriks ternormalisasi [i][j].

xij = Elemen matriks keputusan X.

Membuat matriks keputusan ternormalisasi terbobot.

Dengan i = 1,2,...,m dan j = 1,2,...,n;

Dimana

 y_{ij} = Elemen matriks ternormalisasi terbobot [i][j].

wi = Bobot [i].

3. Menentukan matriks solusi ideal positif dan matriks solusi ideal negatif.

$$A^+ = (y_1^+, y_2^+, \dots, y_n^+);$$

 $A^- = (y_1^-, y_2^-, \dots, y_n^-);$ (3)

Dimana

$$y_{j}^{+} = \begin{cases} \max y_{ij} ; j \text{ atribut keuntungan} \\ \min y_{ij} ; j \text{ atribut biaya} \end{cases}$$

$$y_{j}^{-} = \begin{cases} \min y_{ij} ; j \text{ atribut keuntungan} \\ \max y_{ij} ; j \text{ atribut biaya} \end{cases}$$

4. Menentukan jarak antara nilai setiap alternatif dengan matriks solusi ideal positif dan negatif.

Jarak antara alternatif ke-i dengan solusi ideal positif dirumuskan sebagai berikut:

Dimana

 D_i^+ = Jarak alternatif ke-i dengan solusi ideal positif.

 y_i^+ = Elemen solusi ideal positif [i].

 y_{ij} = Elemen matriks ternormalisasi terbobot [i][j].

Jarak antara alternatif ke-i dengan solusi ideal negatif dirumuskan sebagai berikut:

Dimana

 D_i^- = Jarak alternatif ke-i dengan solusi ideal negatif.

 y_i^- = Elemen solusi ideal negatif [i].

 y_{ij} = Elemen matriks ternormalisasi terbobot [i][j].

5. Menentukan nilai preferensi untuk setiap alternatif.

Nilai preferensi untuk setiap alternatif (Vi) diberikan sebagai berikut:

Dimana

 V_i = Kedekatan tiap alternatif terhadap solusi ideal.

 D_i^+ = Jarak alternatif ke-i dengan solusi ideal positif.

 D_i^- = Jarak alternatif ke-i dengan solusi ideal negatif.

Nilai V_i yang lebih besar menunjukan bahwa alternatif ke-i lebih dipilih.

Tahapan Waterfall

1. *System Engineering*. mempersiapkan segala hal yang diperlukan dalam pelaksanaan proyek.

2. Analysis.

menganalisis segala hal yang ada pada pembuatan atau pengembangan proyek perangkat lunak yang bertujuan untuk memahami sistem yang ada, mengidentifikasi masalah dan mencari solusinya.

3. Design.

Merupakan tahapan yang menerjemahkan keperluan atau data yang telah dianalisis ke dalam bentuk yang mudah dimengerti oleh pemakai (user).

4. Coding.

Merupakan tahapan yang menerjemahkan data yang dirancang ke dalam bahasa pemrograman yang telah ditentukan.

5. Testing.

Merupakan tahapan pengujuan terhadap sistem atau program yang telah selesai dibuat.

6. Maintenance.

Merupakan tahapan menerapkan sistem secara keseluruhan disertai pemeliharaan jika terjadi perubahan struktur, baik dari segi software maupun hardware.

Gambar 1 Tahapan Waterfall

3. HASIL DAN PEMBAHASAN Analisa Sistem Pendukung Keputusan dengan Metode TOPSIS

Kriteria dan Bobot

Tabel 11. Kriteria

	Tabel II. Ixilicila
Kriteria	Keterangan
C1	Absensi
C2	Pengembangan Kurikulum
C3	Kemampuan Memotivasi
C4	Tanggung Jawab
C5	Penguasaan Materi

Penentuan kriteria berdasarkan bilangan *fuzzy*, seperti ditunjukan gambar berikut :

Gambar 16. Bilangan *Fuzzy* untuk nilai kriteria Konversi nilai kriteria *Fuzzy* ke skor

Tabel 12. Skor Nilai Kriteria

Rentang Nilai	Skor	Keterangan
20<	1	Sangat Rendah
≥20	2	Rendah
≥40	3	Cukup
≥60	4	Baik
≥80	5	Sangat Baik

Tabel 13. Tabel Bobot

Skor	Keterangan
1	Sangat Rendah
2	Rendah
3	Cukup
4	Baik
5	Sangat Baik

Data Sampling diambil hanya 5 orang dari total jumlah guru sebanyak 40 orang.

Tabel 14. Data Sampling

Alt		ŀ	Kriteri	a	
ΑII	C1	C2	C3	C4	C5
A1	4	5	3	2	3
A2	4	3	5	5	3
A3	3	5	4	2	4
A4	5	3	3	4	4
A5	5	4	3	3	3
W	4	3	5	4	4

Hasil	Matriks	Ternormalisasi,
menggunakan	rumus:	

Tabel 15. Matriks ternomalisasi

0.044	0.060	0.044	0.034	0.051
0.044	0.036	0.074	0.086	0.051
0.033	0.060	0.059	0.034	0.068
0.055	0.036	0.044	0.069	0.068
0.055	0.048	0.044	0.052	0.051

Hasil Matriks Ternormalisasi terbobot menggunakan rumus :

Tabel 16. Matriks Ternormalisai Terbobot

0.176	0.179	0.221	0.138	0.203
0.176	0.107	0.368	0.345	0.203
0.132	0.179	0.294	0.138	0.271
0.220	0.107	0.221	0.276	0.271
0.220	0.143	0.221	0.207	0.203

Hasil perhitungan solusi ideal posistif menggunakan rumus :

$$A^{+} = (y_{1}^{+}, y_{2}^{+}, \dots, y_{n}^{+});$$

$$A^{-} = (y_{1}^{-}, y_{2}^{-}, \dots, y_{n}^{-});$$
 (9)

Tabel 17. Solusi ideal positif

	1
y_1^+	0.21978
y_2^+	0.17857
y_3^+	0.36765
y_4^+	0.34483
y_5^+	0.27119

Hasil Perhitungan solusi ideal negatif menggunakan rumus :

Tabel 18. Solusi ideal negatif

y_1^-	0.13187
y_2^-	0.10714
y_3^-	0.22059
y_4^-	0.13793
y_5^-	0.20339

Tabel 19. Jarak setiap alternatif terhadap solusi ideal positif

D_{1}	0.266385

$D_{2^{+}}$	0.107845
D_{3}^{+}	0.236519
$D_{4^{+}}$	0.177439
D_{r+}	0.215692

Tabel 20. Jarak setiap alternatif terhadap solusi ideal negatif

D_{1}^{-}	0.083870
D_{2}^{-}	0.257613
D_{3}^{-}	0.122902
D_{4^-}	0.177059
D_{r-}	0.117304

Tabel 21. Nilai Preferensi setiap alternatif

v_1	0.239454
v_2	0.704905
v_3	0.341945
v_4	0.499464
v_5	0.352269

Dari perhitungan nilai preferensi, di peroleh nilai seperti tabel di atas. Pada tabel tersebut

 v_2 merupakan nilai terbesar, sehingga v_2 adalah kandidat untuk guru terbaik.

Perancangan Sistem

2.Use Case Diagram

Gambar 3 Use Case Diagram Admin

3. Activity Diagram and Activity Diagram Kelola Data Guru Admin Masuk Halaman Admin Philh Menu Data Guru Menampilkan Halaman Cuta Guru Menampilkan Pesan Berhasit Menghapus Data Berhasit Menghapus Data Masukan Data Calon Konsumen Masukan Data Calon Konsumen Masukan Data Calon Konsumen Masukan Data Calon Konsumen

Gambar 4 Activity Diagram data Guru

Gambar 5. Activity Diagram penilaian

Gambar 6. Activity Diagram Laporan

Gambar 7. Sequence Diagram Data Guru

Gambar 8. Sequence Diagram Penilaian

Gambar 9. Class Diagram

User Interface

Gambar 10. Halaman Login

Gambar 11. Halaman Awal User

Gambar 13. Halaman data bobot

Gambar 14. Halaman Penilaian TOPSIS

Gambar 15. Halaman hasil penilaian TOPSIS

Pengujian

1. Penjujian Black Box

Pengujian *Blackbox* merupakan pengujian software berfokus pada persyaratan fungsionalnya. Pengujian Sistem Pemilihan Guru Terbaik ini menggunakan data uji berupa data Input dari User pada sistem yang telah dibangun.

Tabel 22. Pengujian Black Box

Item uji	Jenis pengujian
Login	Blackbox
Kelola Data Guru	Blackbox
Kelola Data Kriteria &	Blackbox
Bobot	
Kelola Data <i>Users</i>	Blackbox
Penilaian TOPSIS	Blackbox
Hasil Penilaian	Blackbox

Tabel 23. Pengujian Black Box Guru

	Kasus dan hasil uj	ji (data benar)	
Data yang dimasukan	Yang diharapkan	Pengamatan	Kesimpulan
Input data guru sesuai dengan form input yang tersedia pada form data guru, kemudian klik tombol Simpan.	Dapat memproses Menampilkan dan menyimpan data guru. Simpan Data dar menampilkan data pada tabel, sepert yang diharapkan.		(\forall Diterima
	Kasus dan hasil uji (d	lata salah)	
Field input data di- biarkan kosong lalu tekan tombol Simpan.	Tidak dapat memproses dan menyimpan data.	Menampilkan pesan field input harus diisi pada field yang kosong.	(√) Diterima () Ditolak

Tabel 24. Pengujian Black Box Penilaian

		Kasus dar	n hasil u	i (data be	nar)	
Data yang dimasukan		Yang diharapkan		Pengamatan		Kesimpulan
Inputdata penilaian tekan tombol Proses.		Dapat mer penilaian.	nproses	Menampilkan pesan Berhasil Simpan Data Pentlatan, seperti yang diharapkan.		(√) Diterima () Ditolak
		Kasus dan ha	sil uji (d	ata salah)		
Form penilaiandibiarkan	Input	Tidak memproses	dapat	Menamp pesanfor		(√) Diterima () Ditolak
kosong lalu tombolProses.	tekan	penilaian.		inputhan	ıs diisi.	

Tabel 25. Pengujian *Black Box* hasil penilaian

	Penn	uiuii			
	Kasus dan hasil u	ji (data benar)			
Data yang dimasukan	Yang diharapkan	Pengamatan	Kesimpulan		
Klik menu Hasil	Dapat menampilkan	Menampilkandata	(√) Diterima		
Penilaian.	hasil penilaian dan	penilaian pada	() Ditolak		
	angka-angka	tabel, seperti yang			
	penilaian.	diharapkan.			
Kasus dan hasil uji (data salah)					
Data Penilaian dibiarkan	Tidak dapat	Menampilkan	(√) Diterima		
kosong lalu tekan menu	memproses	ERROR, seperti	() Ditolak		
Hasil Penilaian.	perhitungan dan	yang diharapkan.			
	penilaian TOPSIS.				

2. Pengujian White Box

Pengujian Whitebox merupakan metode desain uji kasus yang menggunakan struktur control dari desain procedural untuk menghasilkan kasus-kasus uji. Pengujian Whitebox didesain untuk mengungkap kesalahan pada persyaratan fungsional tanpa mengabaikan kerja internal dari suatu software. Seperti yang terlihat pada tabel Whitebox testing di bawah ini:

Tabel 26. Pengujian white box login

	Pengujian	Test case	Keterangan
1)	<pre>if(isset(\$_POST['username'])) {</pre>	2 4	Melakukan validasi data <i>login user</i> .
2)	<pre>if (\$query->num_rows > 0) (\$row = \$query- >fetch assoc(); \$_SESSION('id'] = \$row['id']; \$_SESSION['nama']=\$row['nama']; \$_SESSION['username'] = \$row['username'] = \$row['username'];</pre>	6	
3)	<pre>stow(username), echn "kscripthalert('Berhasil Login');</pre> //scripth"; echn "kmeta http- equiv='refresh' content='0; url=on-admin'>";)		
	<pre>else { con "<script>alert('Username</td><td></td><td></td></tr><tr><td>6)</td><td><pre>\$connect->close(); exit();</pre></td><td></td><td></td></tr></tbody></table></script></pre>		

4. KESIMPULAN

Berdasarkan hasil perancangan, implementasi dan pengujian Sistem Pemilihan Guru Terbaik pada SDN Bendungan Hilir 01 Pagi Jakarta dengan menerapkan metode *Technique for Order Preference by Similarity to Ideal Solution* (TOPSIS) untuk melakukan pemilihan guru terbaik, maka dapat diambil kesimpulan sebagai berikut:

- Perancangan dan pembangunan Sistem Pemilihan Guru Terbaik terbukti dapat membantu dalam melakukan pemilihan guru terbaik.
- 2. Penerapan metode *Technique for Order Preference by Similarity to Ideal Solution* (TOPSIS) terbukti dapat membantu dalam pengambilan keputusan pemilihan guru terbaik sesuai dengan nilai yang telah ditentukan.

DAFTAR PUSTAKA

Arbelia & Paryanta, 2014. Penerapan Metode AHP dan TOPSIS Sebagai Sistem Penunjang Keputusan Dalam Menetukan Kenaikan Jabatan Bagi Karyawan. *GO INFOTECH*, 20(1), pp. 9-17.

Gunawan, S., 2015. Sistem Pendukung Keputusan Pemilihan Guru Terbaik Pada SMA Negeri 2 Kutacane dengan Menggunakan Metode Simple Additive Weighting (SAW). *Pelita Informatika Budi Darma, Volume: IX, Nomor:* 3, April 2015. ISSN: 2301-9425, pp. 143-148.

Kusumadewi, S. & Hartati, S., 2006. Fuzzy Multi Attribute Decision Making (Fuzzy-MADM). Yogyakarta: Penerbit Andi.

Mallu, S., 2015. Sistem Pendukung Keputusan Penentuan Karyawan Kontrak Menjadi Karyawan Tetap Menggunakan Metode TOPSIS. Jurnal Ilmiah Teknologi Informasi Terapan, Volume I, No. 2, 30 April 2015. ISSN: 2407-3911, pp. 36-42.

Martaulina, 2015. Sistem Pendukung Keputusan Seleksi Guru Berprestasi Untuk Memberikan Penghargaan degan Metode TOPSIS. *Jurnal Pelita Informatika Budi darma*, IX(1), pp. 119-124.

Shalahuddin, M. & Rosa, A. A., 2011. Modul Rekayasa Perangkat Lunak (Terstruktur dan Berorientasi Objek). Bandung: Modula.

Shalahuddin, M. & Rosa, A. A., 2014. *Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek*. Bandung: Informatika Bandung.

Turban, E., 2005. Sistem Penunjang Keputusan dan Kecerdasan Buatan. Yogyakarta: Andi offset.