KOMU POWINNIŚMY UDZIELIĆ KREDYTU?

Projekt nr 1 z przedmiotu "Wstęp do uczenia maszynowego" Anna Ostrowska, Dominika Gimzicka, Norbert Frydrysiak

Dane

I< <	(11 rows V)	> > 1000 rows >	« 85 columns							7	± Static Output 🙀
‡	INCOME ÷	SAVINGS ÷	DEBT ÷	R_SAVINGS_INCOME +	R_DEBT_INCOME ÷	R_DEBT_SAVINGS ÷	T_CLOTHING_12 ÷	T_CLOTHING_6 ÷	R_CLOTHING ÷	R_CLOTHING_INCOME ÷	* R_EXPENDITUR
0	33269	Θ	532304	0.0000	16.0000	1.2000	1889	945	0.5003	0.0568	
1	77158	91187	315648	1.1818	4.0909	3.4615	5818	111	0.0191	0.0754	
2	30917	21642	534864	0.7000	17.3000	24.7142	1157	860	0.7433	0.0374	
3	80657	64526	629125	0.8000	7.8000	9.7499	6857	3686	0.5376	0.0850	
4	149971	1172498	2399531	7.8182	16.0000	2.0465	1978	322	0.1628	0.0132	
• • • •											
995	328892	1465066	5501471	4.4546	16.7273	3.7551	16701	10132	0.6067	0.0508	
996	81404	88805	680837	1.0909	8.3637	7.6667	5400	1936	0.3585	0.0663	
997	0	42428	30760	3.2379	8.1889	0.7250	Θ	Θ	0.8779	0.0047	
998	36011	8002	604181	0.2222	16.7777	75.5037	1993	1271	0.6377	0.0553	
999	44266	309859	44266	6.9999	1.0000	0.1429	1574	1264	0.8030	0.0356	

- Głównie dane na temat na co ludzie wydawali pieniądze w ciągu ostatnich 12/6 miesięcy, przychody i oszczędności
- Ale też mniej oczywiste np. czy ktoś bawi się w hazard czy nie
- Dużo kolumn
- target = 'DEFAULT' (1 jeśli klient nie spłacił kredytu, 0 jeśli spłacił)

Cel Biznesowy

1.EDA

przeanalizowanie dostępnych danych

Części projektu

2. feature engineering

preprocessing danych, wstępne modelowanie

3. final

dodanie bardziej zaawansowanych modeli, kroswalidacja, strojenie hiperparametrów, metody wyjaśnialności

EDA

- 1. Podział zbioru na dane walidaycjne i testowe
- 2. Brak wartosci nullowych w zbiorze
- 3.1 zmienna kategoryczna (CAT_GAMBLING), zmapowana używając ordinal encodingu
- 4. Dużo kolumn, część należy usunąć (correlation matrix)
- 5. Brak zrównoważenia targetu (utrudnione zadanie)
- 6. Należy usunąć outliery i zrobić transformacje zmiennych na rozkład normalny

DEFAULT

450

1 178

Name: count, dtype: int64

Inżynieria cech

Zmienne kategoryczne

'CAT_GAMBLING'

Ordinal Encoding (No = 0, Low = 1, High=2)

Kolumny z duża korelacją

"T_CLOTHING_12","T_ENTERTAINMENT_12",
"T_GROCERIES_12", "T_GROCERIES_6", "T_HEALTH_12", "T_TAX_12",
"T_TAX_6", "T_TRAVEL_12", "T_TRAVEL_6","T_UTILITIES_12",
"T_UTILITIES_6", "T_EXPENDITURE_12", "T_EXPENDITURE_6"

Brak NULLów

Outliery

Automatyczna detekcja (PyOD) (zakładamy, że jest ich 4%)

Transformacja

Box-Cox + standaryzacja

Na jakie metryki patrzymy?

$$PRECISION = \frac{TP}{TP + FP} = \frac{TP}{\text{TOTAL PREDICTED POSITIVE}} \ RECALL = \frac{TP}{TP + FN}$$

Wstępne modele

Figure 10: Wyniki różnych metryk z drugiego modelowania dla różnych modeli dla zbioru potraktowanego transformacją Box Cox oraz z automatycznym usuwaniem outliernerów

Bardziej zaawansowane modele i techniki

- Bagging
- Hard Voting
- Soft Voting
- Soft Voting z różnymi wagami
- Stacking
- RandomForestClassifier
- AdaBoostClassifier
- GradientBoosting
- XGBClassifier
- TPOT
- AutoML

Figure 16: classification_report dla BaggingClassifier z parametrami: estimator=model6, n_estimators=10, random_state=0

	precision	recall	f1-score	support
0 1	0.83 0.32	0.30 0.85	0.44 0.47	99 39
accuracy macro avg weighted avg	0.58 0.69	0.57 0.46	0.46 0.46 0.45	138 138 138

Figure 13: classification report dla Soft Voting z wagami [1,1,1,5,1,1,25,15]

Strojenie hiperparametrów

- DecisionTreeClassifier
- GradientBoostingClassifier
- RandomForestClassifier
- GaussianNB
- QuadraticDiscriminantAnalysis

Best F1-9	score: 0.	485993 us	ing {'var_	_smoothing	': 1e-05}
	pre	cision	recall f	f1-score	support
	0	0.80	0.37	0.51	99
	1	0.33	0.77	0.46	39
accur	racy			0.49	138
macro	avg	0.57	0.57	0.48	138
weighted	avg	0.67	0.49	0.50	138

- GridSearch
- RandomizedSearch
- BayesSearch

Fitting 5 folds for each of 144 candidates, totalling 720 fits Best F1-score: 0.466625 using {'priors': [0.3, 0.7], 'reg_param': 0.3, 'store_covariance': True, 'tol': 0.001}										
5000 11 50010	precision		f1-score	support	og_para,	3.01.0_00741.141				
0	0.82	0.40	0.54	99						
1	0.34	0.77	0.47	39						
accuracy			0.51	138						
macro avg	0.58	0.59	0.50	138						
weighted avg	0.68	0.51	0.52	138						

GaussianNB

	precision	recall	f1-score	support
0 1	0.81 0.30	0.21 0.87	0.34 0.45	99 39
accuracy			0.40	138
macro avg	0.56	0.54	0.39	138
weighted avg	0.67	0.40	0.37	138
Best F1-score	0.906260	using {'va	nr_smoothin	g': 1e-12}

Crossvalidation

Następujące modele są bardzo niestabilne:

- LogisticRegression
 - XGBClassifier
- GradientBoostClassifier

Wybrany model

Metody wyjaśnialności - Partial Dependance Plots

-większość zmiennych ma marginalny wpływ na wynik modelu-jedyna zmienna o dużym wpływie to 'CAT_SAVINGS_ACCOUNT'

Czy osiągnięto Cel?

- sukces znaleźliśmy model, który maksymalizuje recall i to na niezłym poziomie w miarę stabilnie
 - wyłapujemy znaczną większość osób, które nie spłacają kredytu
- teraz możemy sprzedać ten klasyfikator jako bardzo bezpieczny klasyfikator dla finansów banku, szczególnie dla banku, który ma problemy finansowe i nie chce ryzykować.

Co byśmy zrobili bez walidatorów?

Nie wiemy!!

Sprawdźcie na zbiorze testowym tylko finalny wybrany model.	Tak
Fajny pomysł z wykresem porównującym wyniki indywidualne,	Tak
zwiększa czytelność :)	
Dla SVC, można użyć funkcji classification report, a wyniki	Tak
będą ładnie widoczne razem, ogólnie dla każdego modelu warto	1011
wywołać tę funkcję, to ładne i czytelne podsumowanie. Szczegól-	
nie w przypadku SVC, łatwo się pogubić w tym, co jest czym	

Dziękujemy za uwagę i pozdrawiamy Natalię oraz Karolinę jako fajnych walidatorów

link do projektu - https://github.com/fantasy2fry/credit-score-classification-ml

