Lecture Note: Mathematical Analysis – Bài Giảng: Giải Tích Toán Học

Nguyễn Quản Bá Hồng*

Ngày 4 tháng 5 năm 2025

Tóm tắt nội dung

This text is a part of the series Some Topics in Advanced STEM & Beyond: URL: https://nqbh.github.io/advanced_STEM/. Latest version:

• Lecture Note: Mathematical Analysis – Bài Giảng: Giải Tích Toán Học.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/lecture/NQBH_mathematical_analysis_lecture.pdf.

 $TeX: \verb|URL:| https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/lecture/NQBH_mathematical_analysis_lecture.tex.$

• Slide: Mathematical Analysis – Slide: Giải Tích Toán Học.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/slide/NQBH_mathematical_analysis_slide.pdf.

 $T_{\rm E}X: \ {\tt URL:https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/slide/NQBH_mathematical_analysis_slide.tex.}$

- Codes:
 - ${\tt o~C++:~https://github.com/NQBH/advanced_STEM_beyond/tree/main/analysis/C++.}$
 - Python: https://github.com/NQBH/advanced_STEM_beyond/tree/main/analysis/Python.

Mục lục

1	Basic Mathematical Analysis – Giải Tích Toán Học Cơ Bản	2
2	Sequence – Dãy Số 2.1 Definition of a sequence – Định nghĩa của dãy số 2.2 Convergent- & divergent sequences – Dãy số hội tụ & dãy số phân kỳ	
3	Function – Hàm Số	6
4	Continuity – Sự Liên Tục	7
5	Series – Chuỗi Số	7
6	Derivative & Differentiability – Đạo Hàm & Tính Khả Vi	7
7	Integral – Tích Phân 7.1 SymPy/integrals module 7.2 Leibniz integral rule – Quy tắc tích phân Leibniz	
8	Functional Equation – Phương Trình Hàm	11
9	Fourier transform – Biến đổi Fourier	
10	Miscellaneous 10.1 See also	
Tà	ii liệu	12

^{*}A Scientist & Creative Artist Wannabe. E-mail: nguyenquanbahong@gmail.com, hong.nguyenquanba@umt.edu.vn. Bến Tre City, Việt Nam.

1 Basic Mathematical Analysis – Giải Tích Toán Học Cơ Bản

Resources - Tài nguyên.

- 1. Đặng Đình Áng. Nhập Môn Giải Tích.
- 2. [Rud76]. Walter Rudin. Principles of Mathematical Analysis.
- 3. [Tao22a]. TERENCE TAO. Analysis I.
- 4. [Tao22b]. TERENCE TAO. Analysis II.

Question 1 (Definition of mathematical analysis). What is mathematical analysis? Cf. mathematical analysis with other types of analysis.

For answers, see, e.g., [Tao22a, Chap. 1, Sect. 1.1: What Is Analysis?, pp. 1–2], Wikipedia/mathematical analysis. For other types of analysis, see, e.g., Wikipedia/analysis.

Question 2 (Motivation of mathematical analysis). Why do mathematical analysis?

For answers, see, e.g., [Tao22a, Chap. 1, Sect. 1.2: Why Do Analysis?, pp. 2–10]

Example 1 (Division by zero & infinity). The cancellation law for multiplication $ac = bc \Rightarrow a = b$ does not work when c = 0 & $c = \pm \infty$. The cancellation law for addition $a + c = b + c \Rightarrow a = b$.

Example 2 (Cancellation properties).

See, e.g., Wikipedia/cancellation property.

Example 3 (Geometric series – Chuỗi hình học). When does the geometric series $G(a) := \sum_{i=0}^{\infty} \frac{1}{a^i}$ converge? When does G(a) diverge?

1.1 Numbers – Các loai số

Trong chương trình Toán phổ thông, học sinh đã được học: số tự nhiên ở chương trình Toán 6 [Thá+23a; Thá+23b], & số hữu tỷ & số thực ở chương trình Toán 7,

1.2 Notations & conventions – Ký hiệu & quy ước

Đặt tập hợp các đa thức (polynomial) 1 biến với hệ số nguyên, hệ số hữu tỷ, hệ số thực, hệ số phức lần lượt cho bởi:

$$\mathbb{Z}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{Z}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\},$$

$$\mathbb{Q}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{Q}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\},$$

$$\mathbb{R}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{R}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\},$$

$$\mathbb{C}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{C}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\}.$$

Ta có quan hệ hiển nhiên $\mathbb{N}[x] \subset \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x] \subset \mathbb{C}[x]$. Tổng quát, với \mathbb{F} là 1 trường bất kỳ, tập hợp các đa thức 1 biến với hệ số thuộc trường \mathbb{F} (e.g., $\mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}, \mathbb{R}, \mathbb{C}$) cho bởi:

$$\mathbb{F}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{F}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\}.$$

Tập xác định của đa thức có thể là toàn bộ trường số thực \mathbb{R} hoặc trường số phức \mathbb{C} , i.e., $D_P = \text{dom}(P) = \mathbb{R}$ or $D_P = \text{dom}(P) = \mathbb{C}$, tùy vào trường \mathbb{F} của các hệ số & mục đích sử dụng đa thức.

Problem 1 (Cf: Calculus vs. Mathematical Analysis). Distinguish & compare Calculus vs. Mathematical Analysis.

Analysis is more pure mathematics. Calculus is more applied mathematics.

Problem 2 (Examples & counterexamples in mathematical analysis – Ví dụ & phản ví dụ trong phân tích toán học). Find, from simple to advanced, examples & counterexamples to each mathematical concepts & mathematical results, including lemmas, propositions, theorems, & consequences.

- Tìm các ví dụ & phản ví dụ từ đơn giản đến nâng cao cho mỗi khái niệm toán học & kết quả toán học, bao gồm các bổ đề, mệnh đề, định lý, & hệ quả.

Problem 3 (Python SymPy). Study SymPy to support calculus & mathematical analysis.

Definition 1 (Neighborhood, [WS10], p. 6). The set of all points x s.t. $|x - a| < \delta$, where $\delta > 0$, is called a δ neighborhood of the point a. The set of all points x s.t. $0 < |x - a| < \delta$, in which x = a is excluded, is called a deleted δ neighborhood of a or an open ball of radius δ about a.

Theorem 1 (Bolzano-Weierstrass theorem). Every bounded infinite set has at least 1 limit point.

Definition 2 (Algebraic- & transcendental numbers – số đại số & số siêu việt). A number $x \in \mathbb{R}$ which is a solution to the polynomial equation

$$\sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0,$$
(1)

where $n \in \mathbb{N}^*$, called the degree of the equation, $a_i \in \mathbb{Z}$, $\forall i = 0, 1, ..., n$, $a_n \neq 0$, is called an algebraic number. A number which cannot be expressed as a solution of any polynomial equation with integer coefficients is called a transcendental number.

Theorem 2 (Common transcendental numbers). π , e are transcendental.

Theorem 3 (Countability of sets of algebraic- & transcendental numbers). (i) The set of algebraic numbers is a countably infinite set. (ii) The set of transcendental numbers is noncountably infinite.

2 Sequence – Dãy Số

• sequence [n] /'si:kwəns/ 1. [countable] sequence (of sth) a set of events, actions, numbers, etc. which have a particular order & which lead to a particular result; 2. [countable, uncountable] the order that events, actions, etc. happen in or should happen in; 3. [countable] a part of a film that deals with 1 subject or topic or consists of 1 scene. [v] 1. sequence sth (specialist) to arrange things into a sequence; 2. sequence sth (biology) to identify the order in which a set of genes or parts of molecules are arranged.

Resources - Tài nguyên.

- 1. [Rud76]. Walter Rudin. Principles of Mathematical Analysis. Chap. 3: Numerical Sequences & Series.
- 2. [Tao22a]. TERENCE TAO. Analysis I.
- 3. [Tao22b]. TERENCE TAO. Analysis II.
- 4. [WS10]. ROBERT WREDE, MURRAY R. SPIEGEL. Advanced Calculus. 3e. Schaum's Outline Series. Chap. 2: Sequences.

This section deals primarily with sequences of real- & complex numbers, sequences in Euclidean spaces, or even in metric spaces. – Phần này chủ yếu đề cập đến các dãy số thực & phức, các dãy trong không gian Euclid hoặc thậm chí trong không gian metric.

2.1 Definition of a sequence – Định nghĩa của dãy số

Definition 3 (Numerical sequence – dãy số, [WS10], p. 25). A sequence is a set of numbers u_1, u_2, \ldots in a definite order of arrangement (i.e., a correspondence with the natural numbers or a subset thereof) & formed according to a definite rule. Each number in the sequence is called a term; u_n is called the nth term. The sequence is called finite or infinite according as there are or are not a finite number of terms. The sequence u_1, u_2, \ldots is also designated briefly by $\{u_n\}$.

Có thể hiểu khái niệm dãy (sequence) ở đây 1 cách tổng quát hơn là 1 dãy các đối tượng Toán học hoặc Tin học, e.g., dãy số phức $\{a_n\}_{n=1}^{\infty}$ là 1 dãy gồm các số $a_n \in \mathbb{C}$, $\forall n=1,2,\ldots$, dãy các hàm số thực $\{f_n\}_{n=1}^{\infty}$ là 1 dãy gồm các hàm số $f_n: \mathbb{R} \to \mathbb{R}$, $\forall n=1,2,\ldots$, hay dãy các dãy $\{\{a_{m,n}\}_{n=1}^{\infty}\}_{m=1}^{\infty}$ tức 1 dãy gồm các phần tử của dãy lại là các dãy số $\{a_{m,n}\}_{n=1}^{\infty}$, $\forall m=1,2,\ldots$ Trước hết, ta tập trung là khái niệm dãy đơn giản nhất: dãy số – numerical sequence, trước khi đến với khái niệm hội tụ đều của dãy hàm (uniform convergence of sequences of functions).

2.2 Convergent- & divergent sequences – Dãy số hội tụ & dãy số phân kỳ

Definition 4 (Limit of a sequence, [WS10], p. 25). A number $l \in \mathbb{R}$ is called the limit of an infinite sequence u_1, u_2, \ldots if for any positive number ϵ we can find a positive number N depending on ϵ s.t. $|u_n - l| < \epsilon$, $\forall n \in \mathbb{N}$, n > N. In such case we write $\lim_{n \to +\infty} u_n = l$.

Definition 5 (Convergent sequences, [Rud76], Def. 3.1, p. 47). A sequence $\{p_n\}$ in a metric space X is said to converge if there is a point $p \in X$ with the following property: For every $\varepsilon > 0$ there is an integer N such that $n \ge N$ implies that $d(p_n, p) < \varepsilon$. (Here d denotes the distance in X.) In this case we also say that $\{p_n\}$ converges to p, or that p is the limit of $\{p_n\}$, $\mathscr E$ we write $p_n \to p$, or $p_n \to p$ as $n \to \infty$, or $\lim_{n \to +\infty} p_n = p$. If $\{p_n\}$ does not converge, it is said to diverge.

Remark 1. Dịnh nghĩa 5 về dãy hội tụ trong các không gian metric không chỉ phụ thuộc vào bản thân dãy $\{p_n\}$ mà còn vào chính không gian metric X. Nhân tiện, vì ở đây đang xét không gian metric mà mỗi phần tử của nó được coi là 1 điểm (point), nên thành phần của dãy số được ký hiệu là p_n để ám chỉ bản chất của mỗi phần tử của dãy là 1 điểm trong không gian metric tổng quát X. Nếu $X = \mathbb{R}$ hoặc $X = \mathbb{C}$ thì mỗi điểm trên trực số thực hoặc 1 số phức z = a + bi tương ứng với điểm (a,b) trên mặt phẳng phức \mathbb{R}^2 , khi đó ký hiệu p_n có thể được thay bởi các ký hiệu quen thuộc hơn cho số (numerals), e.g., a_n, x_n, \ldots

In cases of possible ambiguity, we can be more precise & specify "convergent in X" rather than "convergent".

- Trong trường hợp có thể có sự mơ hồ, chúng ta có thể chính xác hơn & cụ thể hơn "hội tụ trong X" thay vì "hội tụ".

Theorem 4 (Some important properties of convergent sequences in metric spaces, [Rud76], Thm. 3.2, p. 48). Let $\{p_n\}$ be a sequence in a metric space X.

- (a) $\{p_n\}$ converges to $p \in X$ iff every neighborhood of p contains all but finitely many of the terms of $\{p_n\}$.
- (b) (Uniqueness of limit) If $p \in X, p' \in X$, & if $\{p_n\}$ converges to p & to p', then p' = p.
- (c) If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- (d) If $E \subset X$ & if p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $p = \lim_{n \to +\infty} p_n$.

Bài toán 1 ([Rud76], p. 48, +1). (a) Prove that the sequence $\{\frac{1}{n}\}$ converges in $\mathbb{R} = \mathbb{R}^1$ (to 0), but fails to converge in the set of all positive real numbers, with d(x,y) := |x-y|, $\forall x,y \in X$. (b) Find similar or more advanced examples.

Bài toán 2 ([VMS23], 1.1, p. 30, HCMUT). Cho $f \in C^1(\mathbb{R}, \mathbb{R})$ thỏa f'(x) < 0, $\forall x \in \mathbb{R}$. Xét dãy số $\{a_n\}$:

$$\begin{cases} a_1 = 1, \\ a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

(a) $N\acute{e}u\ f(x) > 0$, $\forall x \in \mathbb{R}$, $tinh\ \lim_{n \to +\infty} a_n$. (b) $N\acute{e}u\ f(2023) = 0$ & $f \in C^2(\mathbb{R})$ thỏa f''(x) > 0, $\forall x \in \mathbb{R}$, $tinh\ \lim_{n \to +\infty} a_n$.

Bài toán 3 ([VMS23], 1.2, p. 30, VNUHCM UIT). Cho dãy số $\{u_n\}_{n=1}^{\infty}$ thỏa

$$\begin{cases} u_0 \ge -2, \\ u_n = \sqrt{2 + u_{n-1}}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

(a) Chứng minh $\{u_n\}$ có giới hạn hữu hạn. Tính $\lim_{n\to+\infty}u_n$. (b) Cho 2 dãy $\{v_n\}_{n=1}^{\infty},\{w_n\}_{n=1}^{\infty}$ đặt bởi

$$\begin{cases} v_n = 4^n |u_n - 2|, \\ w_n = \frac{u_1 u_2 \cdots u_n}{2^n}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

 $Tinh \lim_{n\to+\infty} v_n, \lim_{n\to+\infty} w_n.$

Bài toán 4 ([VMS23], 1.3, p. 30, ĐH Đồng Tháp). Xét dãy số $\{u_n\}_{n=1}^{\infty}$ đặt bởi

$$u_1 = \frac{3}{2}, \ u_n = 1 + \frac{1}{2} \arctan u_{n-1}, \ \forall n \in \mathbb{N}^\star.$$

Chứng minh $\{u_n\}_{n=1}^{\infty} \ h \hat{\wp}i \ tụ$.

Bài toán 5 ([VMS23], 1.4, p. 31, ĐH Đồng Tháp). Cho dãy số $\{a_n\}_{n=1}^{\infty}$ đặt bởi

$$a_1 = 1, \ a_{n+1} = \frac{n^2 - 1}{a_n} + 2, \ \forall n \in \mathbb{N}^*.$$

(a) Chứng minh $n \leq a_n \leq n+1$, $\forall n \in \mathbb{N}^*$. (b) Đặt $S_n^{(3)} \coloneqq \sum_{i=1}^n a_i^3$. Tính $\lim_{n \to +\infty} \frac{S_n^{(3)}}{n^4}$.

Bài toán 6 ([VMS23], 1.5, p. 31, ĐHGTVT). Cho dãy số $\{a_n\}_{n=1}^{\infty}$ đặt bởi

$$a_1 > 0, \ a_{n+1} = \frac{a_n^2}{a_n^2 - a_n + 1}, \ \forall n \in \mathbb{N}^*.$$

Chứng minh $\{a_n\}_{n=1}^{\infty}$ giảm & tính $\lim_{n\to+\infty} a_n$.

Bài toán 7 ([VMS23], 1.6, p. 31, DH Hùng Vương, Phú Thọ). Cho dãy số $\{u_n\}_{n=1}^{\infty}$ đặt bởi

$$\begin{cases} u_0 = 0, \ u_1 = \beta, \\ u_{n+1} = \frac{u_n + u_{n-1}}{2}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

(a) Tìm công thức số hạng tổng quát của $\{u_n\}_{n=1}^{\infty}$. (b) Tính $\lim_{n\to+\infty}u_n$.

Bài toán 8 ([VMS23], 1.7, p. 31, ĐHKH, Thái Nguyên). Cho dãy số $\{u_n\}_{n=1}^{\infty}$ đặt bởi

$$x_n = \sum_{i=1}^n \frac{i}{(i+1)!} = \frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!}, \ \forall n \in \mathbb{N}^*.$$

$$Tinh \lim_{n \to +\infty} \sqrt[n]{\sum_{i=1}^{2023} x_i^n} = \lim_{n \to +\infty} \sqrt[n]{x_1^n + x_2^n + \dots + x_{2023}^n}.$$

Bài toán 9 ([VMS23], 1.8, p. 31, ĐH Mỏ-Địa chất). Tính

$$\lim_{n \to +\infty} \frac{\left(\prod_{i=1}^n i^{i^{2021}}\right)^{\frac{1}{n^{2022}}}}{n^{\frac{1}{2022}}} = \lim_{n \to +\infty} \frac{\left(1^{1^{2021}} \cdot 2^{2^{2021}} \cdot \cdot \cdot n^{n^{2021}}\right)^{\frac{1}{n^{2022}}}}{n^{\frac{1}{2022}}}.$$

Bài toán 10 ([VMS23], 1.9, pp. 31–32, ĐHSPHN2). Cho dãy số $\{x_n\}_{n=1}^{\infty}$ đặt bởi

$$x_1 \in (0,1), \ x_{n+1} = \frac{1}{n} \sum_{i=1}^{n} \ln(1+x_i), \ \forall n \in \mathbb{N}^*.$$

(a) Chứng minh dãy $\{x_n\}_{n=1}^{\infty}$ có giới hạn hữu hạn. (b) Chứng minh $\lim_{n\to+\infty}\frac{n(x_n-x_{n+1})}{x_n^2}=\frac{1}{2}$.

Bài toán 11 ([VMS23], 1.10, p. 32, ĐH Trà Vinh). Cho dãy số $\{x_n\}_{n=1}^{\infty}$ đặt bởi

$$a_1 = a_2 = 1, \ a_{n+2} = \frac{1}{a_{n+1}} + a_n, \ \forall n \in \mathbb{N}^*.$$

 $Tinh \ x_{2022}$.

Bài toán 12 ([VMS23], 1.11, p. 32, ĐH Trà Vinh). Cho 2 dãy số $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ đặt bởi

$$x_1 = y_1 = \sqrt{3}, \ x_{n+1} = x_n + \sqrt{1 + x_n^2}, \ y_{n+1} = \frac{1}{1 + \sqrt{1 + y_n^2}}, \ \forall n \in \mathbb{N}^*.$$

Chứng minh $x_n y_n \in (2,3), \forall n \geq 2 \ \& \lim_{n \to +\infty} y_n = 0.$

Bài toán 13 ([VMS23], 1.11, p. 32, DH Vinh). Cho dãy số $\{x_n\}_{n=1}^{\infty}$ đặt bởi

$$x_n = \prod_{i=1}^n \left(1 + \frac{1}{2^i} \right) = \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2^2} \right) \cdots \left(1 + \frac{1}{2^n} \right), \ \forall n \in \mathbb{N}^*.$$

(a) Tìm tất cả $n \in \mathbb{N}^*$ thỏa $x_n > \frac{15}{8}$. (b) Chứng minh $\{x_n\}_{n=1}^{\infty}$ hội tụ.

Bài toán 14 ([VMS24], p. 32, 1.1, VNUHCM UIT). Cho $a,b \in \mathbb{R},\ a < b.$ Xét dãy số

$$\begin{cases} x_0 = a, \ x_1 = b, \\ x_{n+1} = x_n + \frac{1}{2} x_{n-1} \left(1 - \cos \frac{\pi}{n} \right). \end{cases}$$

Chứng minh $\{x_n\}$ hội tụ.

Bài toán 15 ([VMS24], p. 32, 1.2, ĐH Đồng Tháp). Cho dãy số $\{u_n\}_{n=1}^{\infty}$ đặt bởi

$$u_n = \sum_{i=1}^n \frac{i}{(i+1)!} = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!}, \ \forall n \in \mathbb{N}^*.$$

(a) Tìm $n \in \mathbb{N}$ lớn nhất để $u_n < \frac{2023}{2024}$. (b) Tính giới hạn $\lim_{n \to +\infty} \sqrt[n]{\sum_{i=1}^{2024} u_i^n} = \sqrt[n]{u_1^n + u_2^n + \dots + u_{2024}^n}$.

Bài toán 16 ([VMS24], p. 32, 1.3, DHGTVT). Cho dãy số $\{a_n\}_{n=1}^{\infty}$ thỏa $\frac{1}{2} < a_n < 1$, $\forall n \in \mathbb{N}^{\star}$. Dãy số $\{x_n\}$ đặt bởi

$$x_1=a_1,\ x_{n+1}=\frac{2(a_{n+1}+x_n)-1}{1+2a_{n+1}x_n},\ \forall n\in\mathbb{N}^\star.$$

(a) Chứng minh dãy số $\{x_n\}_{n=1}^{\infty}$ tăng & bị chặn trên. (b) Tìm $\lim_{n\to+\infty} x_n$.

Bài toán 17 ([VMS24], p. 33, 1.4, ĐH Vinh). Cho dãy số $\{x_n\}_{n=1}^{\infty}$ đặt bởi

$$\begin{cases} x_1 = 2024, \\ x_{n+1} = \frac{x_n^2}{3|x_n| + 4}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

(a) Chứng minh $x_8 < 1$. (b) Chứng minh $\{x_n\}_{n=1}^{\infty}$ hội tụ \mathscr{C} tìm giới hạn.

3 Function – Hàm Số

Bài toán 18 ([VMS23], 3.1, p. 33, HCMUT). (a) Chứng minh tồn tại hàm số $f \in C^2(\mathbb{R}, \mathbb{R})$ thỏa $xf''(x) + 2f'(x) = x^{2023}$, $\forall x \in \mathbb{R}$. (b) Giả sử $g \in C^2(\mathbb{R}, \mathbb{R})$ thỏa $xg''(x) + 2g'(x) \ge x^{2023}$, $\forall x \in \mathbb{R}$. Chứng minh $\int_{-1}^{1} x(g(x) + x^{2023}) dx \ge \frac{2}{2025}$.

Bài toán 19 ([VMS23], 3.2, p. 33, DH Đồng Tháp). Cho hàm $f(x)x = 2(x-1) - \arctan x$, $\forall x \in \mathbb{R}$. Chứng minh phương trình f(x) = 0 có nghiệm duy nhất là $a \in (1, \sqrt{3})$.

Proposition 1 (Luật bình phương nghịch đảo). Mỗi sự gia tăng khoảng cách từ nguồn cho ra kết quả giảm mức độ âm thanh theo tỷ lệ nghịch với bình phương của sự gia tăng khoảng cách.

Bài toán 20 ([VMS23], 3.3, pp. 33–34, ĐH Đồng Tháp). Sử dụng luật bình phương nghịch đảo, giải quyết bài toán: 1 người có 1 mảnh đất lớn có chiều dài mặt tiền là l m ở giữa 2 quán karaoke thường phát ra âm thanh có cường độ lần lượt là I_1, I_2 . Người này định xây 1 ngôi nhà nhỏ trên mảnh đất đó nhưng muốn tìm vị trí sao cho chịu ảnh hưởng của âm thanh từ 2 quán karaoke là ít nhất. Giúp người này nếu biết: (a) Cường độ âm thanh $I_1 = I_2$. (b) Cường độ âm thanh $I_1 = 8I_2$. (c) $I_1 = aI_2$ với $a \in (0, \infty)$ cho trước.

Bài toán 21 ([VMS23], 3.5, p. 34, DH Hùng Vương, Phú Thọ). Cho hàm

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} + \alpha x & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

(a) Tính f'(x) khi $x \neq 0$. (b) Tính f'(0). (c) Chứng minh hàm f(x) không đơn điệu trên mỗi khoảng mở chứa điểm 0.

Bài toán 22 ([VMS23], 3.6, p. 34, DH Hùng Vương, Phú Thọ). (a) Gia đình bác Nam muốn xây 1 cái bể hình hộp với đáy là hình vuông có thể tích $V=10~\text{m}^3$. Biết giá thành để xây mỗi m^2 mặt đấy là a=700000 đồng & 1 mặt bên là b=500000 đồng. Dể tổng chi phí xây dựng là nhỏ nhất thì bác Nam nên xây bể với kích thước như thế nào? (b) Giải bài toán với $a,b,V\in(0,\infty)$ bất kỳ.

Bài toán 23 ([VMS23], 3.7, pp. 34–35, ĐHKH Thái Nguyên). Tìm các hàm liên tục $f: \mathbb{R} \to \mathbb{R}, f \not\equiv 0$, thỏa

$$f(x+y) = 2023^y f(x) + 2023^x f(y), \ \forall x, y \in \mathbb{R}.$$

Từ đó tính

$$\lim_{x \to 0} \frac{e^{f(x)} - 1}{\sin f(x)}, \ \lim_{n \to +\infty} \frac{n}{f^{(n)}(0)}.$$

Bài toán 24 ([VMS23], 3.8, p. 35, ĐH Mỏ-Địa chất). *Tính*

$$\lim_{(x,y,z)\to (0,0,0)} \frac{\sin x^2 + \sin y^2 + \sin z^2}{x^2 + y^2 + z^2}.$$

Bài toán 25 ([VMS23], 3.9, p. 35, ĐH Mỏ-Địa chất). Gọi $y_1(x), y_2(x), y_3(x)$ là 3 nghiệm của phương trình vi phân y''' + a(x)y'' + b(x)y'c(x)y = 0 thỏa $y_1^2(x) + y_2^2(x) + y_3^2(x) = 1$, $\forall x \in \mathbb{R}$. Tim các hằng số α, β để hàm $z = (y_1'(x))^2 + (y_2'(x))^2 + (y_3'(x))^2$ là nghiệm của phương trình vi phân $z' + \alpha a(x)z + \beta c(x) = 0$.

Bài toán 26 ([VMS23], 3.10, p. 35, DH Mỏ-Địa chất). Trên hình ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, tìm tất cả các điểm $T = (x_0, y_0)$ thỏa: tam giác bị giới hạn bởi các đường thẳng x = 0, y = 0 & tiếp tuyến với ellipse tại điểm T có diện tích nhỏ nhất.

Bài toán 27 ([VMS23], 3.11, p. 35, FTU Hà Nội). Chứng minh đa thức $f(x) = \sum_{i=0}^{2022} (-1)^i \frac{x^i}{i!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{x^{2022}}{2022!}$ không có nghiệm thực.

Bài toán 28 ([VMS23], 3.12, p. 35, ĐHSPHN2). Cho $f \in C(\mathbb{R}, \mathbb{R})$, $a, b \in \mathbb{R}$, a < b. 1 điểm x được gọi là 1 điểm mù nếu tồn tại 1 điểm $y \in \mathbb{R}$ với y > x sao cho f(y) > f(x). Giả sử tất cả các điểm thuộc khoảng mở I = (a, b) là các điểm mù \mathcal{E} a, b không phải là 2 điểm mù. Chứng minh f(a) = f(b).

Bài toán 29 ([VMS23], 3.13, p. 36, ĐH Trà Vinh). Chứng minh hàm số $f(x) = x^{x^x}$ đồng biến trên $(0, \infty)$ & $\lim_{x\to 0^+} f(x) = 0$.

Bài toán 30 ([VMS23], 3.14, p. 36, ĐH Vinh). Cho hàm

$$f(x) = \begin{cases} \sqrt[3]{x^2} \sin \frac{1}{x^{2023}} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

(a) Chứng minh hàm số f liên tục tại x = 0. (b) Hàm số f có khả vi tại x = 0 hay không?

Bài toán 31 ([VMS23], 3.15, p. 36, DH Vinh). Cho hàm $f \in C([0,1], \mathbb{R})$, khả vi trên khoảng (0,1), thỏa f(0) = 0, & $|f'(x)| \le 2023|f(x)|$, $\forall x \in (0,1)$. Chứng minh f(x) = 0, $\forall x \in [0,1]$.

Bài toán 32 ([VMS23], 3.16, p. 36, ĐH Vinh). Giả sử hàm $f:(0,\infty)\to\mathbb{R}$ khả vi trên khoảng $(0,\infty)$ & thỏa 2 điều kiện: (i) $|f(x)|\leq 2023$, $\forall x\in(0,\infty)$; (ii) $f(x)f'(x)\geq 2022\cos x$, $\forall x\in(0,\infty)$. Có tồn tại $\lim_{x\to+\infty}f(x)$ không?

4 Continuity – Sự Liên Tục

Definition 6 ([Tao22a], Def. 6.1.1, p. 109: distance between 2 reals). Given $x, y \in \mathbb{R}$, their distance d(x, y) is defined to be $d(x, y) := |x - y| \in [0, \infty)$.

Definition 7 ([Tao22a], Def. 6.1.2, p. 109: ε -close reals). Let $\varepsilon > 0$ be a real number. $x, y \in \mathbb{R}$ is said to be ε -close iff $d(x, y) \leq \varepsilon$.

5 Series – Chuỗi Số

Bài toán 33 ([VMS23], 2.1, p. 32, VNUHCM UIT). Cho dãy số $\{x_n\}_{n=1}^{\infty} \subset (0,\infty)$ thỏa $\sum_{n=1}^{\infty} \frac{x_n}{(2n-1)^2} < 1$. Chứng minh $\sum_{k=1}^{k} \sum_{n=1}^{k} \frac{x_n}{k^3} < 2$.

Bài toán 34 ([VMS23], 2.2, p. 32, ĐHGTVT). Cho dãy số $\{a_n\}_{n=1}^{\infty} \subset (0,\infty)$ đặt bởi

$$a_1 > 0, \ a_{n+1} = \frac{a_n^2}{a_n^2 - a_n + 1}, \ \forall n \in \mathbb{N}^*.$$

 $Tinh \sum_{n=1}^{\infty} a_n$.

Bài toán 35 ([VMS23], 2.2, p. 32, ĐH Mỏ-Địa chất). Gọi S là dãy con của dãy điều hòa $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}=1,\frac{1}{2},\frac{1}{3}\dots,\frac{1}{n},\dots$ & có tổng hữu hạn. Gọi c(n) là số lượng các phần tử của S có số thứ tự trong dãy mẹ (điều hòa) ban đầu không vượt quá n. Chứng $minh \lim_{n\to+\infty}\frac{c(n)}{n}=0$.

Bài toán 36 ([VMS24], p. 33, 2.1, ĐHCNTT TpHCM). Khảo sát sự hội tụ của chuỗi số

$$\sum_{i=1}^{+\infty} \frac{\beta \sin^2 l\alpha}{1+\beta \sin^2 k\alpha}, \ \alpha \notin \{k\pi: k \in \mathbb{Z}\}, \ \beta > 0.$$

6 Derivative & Differentiability – Đao Hàm & Tính Khả Vi

Bài toán 37 ([VMS23], p. 36, 4.1, VNUHCM UIT). Cho hàm $f \in C^2(\mathbb{R})$ thỏa f(0) = 2, f'(0) = -2, f(1) = 1. Chứng minh tồn tại $c \in (0,1)$ thỏa f(c)f'(c) + f''(c) = 0.

Bài toán 38 ([VMS23], p. 37, 4.2, ĐH Đồng Tháp). Cho f khả vi trên (a, ∞) , $\forall a \in (0, \infty)$ & $\lim_{x \to +\infty} f'(x) = 0$. Chứng minh $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.

Bài toán 39 ([VMS23], p. 37, 4.3, ĐH Đồng Tháp). Cho f là hàm số có đạo hàm f' đồng biến trên [0,2] \mathcal{E} f(0)=-1, f(2)=1. Chứng minh tồn tại $a,b,c\in[0,2]$ thỏa f'(a)f'(b)f'(c)=1.

Bài toán 40 ([VMS23], p. 37, 4.4, DHGTVT). Cho $f \in C^{\infty}(\mathbb{R})$ thỏa $f^{(n)}(0) = 0$, $\forall n \in \mathbb{N}$ & $f^{(n)}(x)x \geq 0$, $\forall k \in \mathbb{N}^{\star}$, $\forall x \in (0, \infty)$. Chứng minh f(x) = 0, $\forall x \in (0, \infty)$.

Bài toán 41 ([VMS23], p. 37, 4.5, ĐH Hùng Vương, Phú Thọ). $Gi\mathring{a}$ sử hàm $f \in C([1,2023])$, $kh\mathring{a}$ vi trong khoảng (1,2023), \mathscr{E} f(2023) = 0. $Ch\acute{a}$ ng minh tồn tại $c \in (1,2023)$ thỏa

$$f'(c) = \frac{2024 - 2023c}{1 - c} f(c).$$

Bài toán 42 ([VMS23], p. 37, 4.6, DHKH Thái Nguyên). $Gi\mathring{a} \, s\mathring{u} \, f(x) \in C^{\infty}([-1,1]), \, f^{(n)}(0) = 0, \, \forall n \in \mathbb{N}, \, \& \, t \grave{o}n \, t \not{a}i \, \alpha \in (0,1)$ thỏa $\sup_{x \in [-1,1]} |f^{(n)}(x)| \leq \alpha^n n!, \, \forall n \in \mathbb{N}. \, Chứng \, minh \, f(x) \equiv 0 \, trên \, đoạn \, [-1,1].$

Bài toán 43 ([VMS23], p. 37, 4.7, DHSPHN2). Cho $f \in C([a,b])$ khả vi trên (a,b). Giả sử f'(x) > 0, $\forall x \in (a,b)$. Chứng minh $\forall x_1, x_2 \in \mathbb{R}$ thỏa $a \leq x_1 < x_2 \leq b$ & $f(x_1)f(x_2) > 0$ thì luôn tồn tại $c \in (x_1, x_2)$ thỏa

$$\frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)} = c - \frac{f(c)}{f'(c)}.$$

Bài toán 44 ([VMS24], p. 33, 3.1, VNUHCM UIT). Cho f là hàm số thực trên $(0,\infty)$. Giả sử

$$f(x^{\alpha}) = f(x)\sin^2\alpha + f(1)\cos^2\alpha, \ \forall x \in (0, \infty), \ \forall \alpha \in \mathbb{R}.$$

Chứng minh f khả vi tai 1.

Bài toán 45 ([VMS24], p. 34, 3.2, ĐH Đồng Tháp). (a) Chứng minh với mỗi $n \in \mathbb{N}^*$, phương trình $2x = \sqrt{x+n} + \sqrt{x+n+1}$ có nghiệm dương duy nhất, ký hiệu là x_n . (b) Tính $a \coloneqq \lim_{n \to +\infty} \frac{x_n}{\sqrt{n}}$, $b \coloneqq \lim_{n \to +\infty} x_n - a\sqrt{n}$.

Bài toán 46 ([VMS24], p. 34, 3.3, ĐH Đồng Tháp). Cho

$$f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right| & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Chứng minh f khả vi tại 0 nhưng f không khả vi tại các điểm $x_n \coloneqq \frac{2}{2n+1}$ với $n \in \mathbb{Z}$.

Bài toán 47 ([VMS24], p. 34, 3.4, DH Đồng Tháp). Giả sử f khả vi liên tục trên $(0, \infty)$, f(0) = 1. Chứng minh nếu $|f(x)| \le e^{-x}$, $\forall x \ge 0$ thì tồn tại $x_0 > 0$ để $f'(x_0) = -e^{-x_0}$.

Bài toán 48 ([VMS24], p. 34, 3.5, DHGTVT). Cho $a \in \mathbb{R}$, $b \in (0, \infty)$. Hàm f xác định trên [-1, 1], được cho bởi

$$f(x) = \begin{cases} x^a \sin x^{-b} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

(a) Tìm tất cả các giá trị của a để hàm f liên tục trên [-1,1]. (b) Tìm tất cả các giá trị của a để tồn tại f'(0). (c) Tìm điều kiện của a,b để tồn tại f''(0).

Bài toán 49 ([VMS24], p. 35, 3.7, HUS). Cho $f: \mathbb{R} \to \mathbb{R}$ là hàm số được xác định bởi công thức

$$f(x) = \begin{cases} x^2 + a & \text{if } x \le 0, \\ be^x + x & \text{if } x > 0, \end{cases}$$

 $v\acute{o}i\ a,b\in\mathbb{R}$: tham số. Xác định a,b để f có nguyên hàm trên \mathbb{R} .

Bài toán 50 ([VMS24], p. 35, 3.8, DH Vinh). Cho hàm $f \in C(\mathbb{R}, \mathbb{R})$ thỏa $f_{2024}(x) = x$, $\forall x \in \mathbb{R}$ với

$$\begin{cases} f_{n+1}(x) = f(f_n(x)), \ \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \\ f_1(x) = f(x), \ \forall x \in \mathbb{R} \end{cases}$$

Chứng minh $f_2(x) = x, \forall x \in \mathbb{R}$.

Bài toán 51 ([VMS24], p. 35, 3.9, DH Vinh). Cho hàm

$$f(x) = \left(\frac{2023^x + 2024^x}{2}\right)^{\frac{1}{x}}, \ x > 0.$$

(a) Tìm $\lim_{x\to 0^+} f(x)$. (b) Chứng minh f là hàm số đơn điệu tăng trên $(0,+\infty)$.

Bài toán 52 ([VMS24], p. 36, 4.1, HCMUT). (a) Cho $f \in C^3(\mathbb{R}, [0, +\infty))$ thỏa $\max_{x \in \mathbb{R}} |f'''(x)| \le 1$. Chứng minh

$$f''(x) \ge -\sqrt[3]{\frac{3}{2}f(x)}, \ \forall x \in \mathbb{R}.$$

(b) Tìm tất cả các hàm số f thỏa mãn điều kiện của (a) thỏa

$$f''(x) = -\sqrt[3]{\frac{3}{2}f(x)}, \ \forall x \in \mathbb{R}.$$

Bài toán 53 ([VMS24], p. 36, 4.2, VNUHCM UIT). Cho hàm số $f:[0,1]\to\mathbb{R}$) liên tục trên [0,1], khả vi trên (0,1) sao cho $\exists M>0,\ \exists c\in[0,1]$ thỏa f(c)=0 \mathcal{E}

$$|f'(x)| \le M|f(x)|, \ \forall x \in (0,1).$$

Chứng minh $f(x) = 0, \forall x \in [0, 1].$

Bài toán 54 ([VMS24], p. 36, 4.3, DH Đồng Tháp). Cho f khả vi trên \mathbb{R} & f' giảm ngặt trên \mathbb{R} . (a) Chứng minh

$$f(x+1) - f(x) < f'(x) < f(x) - f(x-1), \ \forall x \in \mathbb{R}.$$

(b) Chứng minh nếu tồn tại $\lim_{x\to +\infty} f(x) = L$ thì $\lim_{x\to +\infty} f'(x) = 0$. (c) Tìm hàm số g khả vi trên \mathbb{R} \mathscr{E} tồn tại $\lim_{x\to +\infty} g(x) = L$ nhưng $\lim_{x\to +\infty} g'(x) \neq 0$.

Bài toán 55 ([VMS24], p. 37, 4.4, ĐHGTVT). Giả sử V là tập hợp các hàm liên tục $f:[0,1] \to \mathbb{R}$ \mathscr{C} khả vi trên (0,1) thỏa f(0)=0, f(1)=1. Xác định các giá trị $\alpha \in \mathbb{R}$ để với mỗi $f \in V$, luôn tồn tại $\xi \in (0,1)$ thỏa $f(\xi)+\alpha=f'(\alpha)$.

Bài toán 56 ([VMS24], p. 37, 4.5, HUS). Cho $f:[0,3] \to \mathbb{R}$ là hàm liên tục trên [0,3] & khả vi trong (0,3). Chứng minh tồn tại $c \in (0,3)$ thỏa 2f'(c) = f(3) - f(2) + f(1) - f(0).

Bài toán 57 ([VMS24], p. 37, 4.6, ĐH Mỏ-Địa chất). Giả sử có chuỗi có 2 đầu hướng ra vô cực

$$\cdots + f''(x) + f'(x) + f(x) + \int_0^x f(t) dt + \int_0^x \int_0^t f(s) ds dt + \cdots$$

 \mathcal{E} hôi tu đều trên khoảng (-1,1). Chuỗi là biểu diễn của số nào?

Bài toán 58 ([VMS24], p. 37, 4.7, DH Vinh). Cho hàm $f \in C^2(\mathbb{R}, \mathbb{R})$ & thỏa $f(x) \leq 2024$, $\forall x \in \mathbb{R}$. Chứng minh tồn tại $x \in \mathbb{R}$ thỏa f''(x) = 0.

7 Integral – Tích Phân

Bài toán 59 ([VMS23], p. 38, 5.1, VNUHCM UIT). Cho hàm $f:(-1,1)\to\mathbb{R}$ khả vi đến cấp 2 thỏa f(0)=1 & $f''(x)+2f'(x)+f(x)\geq 1, \ \forall x\in(-1,1).$ Tìm GTNN của $\int_{-1}^{1}e^{x}f(x)\,\mathrm{d}x.$

Bài toán 60 ([VMS23], p. 38, 5.2, ĐH Đồng Tháp). Cho hàm $f:[0,2023] \to (0,\infty)$ khả tích & f(x)f(2023-x)=1, $\forall x \in [0,2023]$. Chứng minh $\int_0^{2023} f(x) \, \mathrm{d}x \geq 2023$.

Bài toán 61 ([VMS23], p. 38, 5.3, DHGTVT). Cho hàm $f \in C([0,1])$ thỏa $\int_0^1 f(x) \, \mathrm{d}x = \int_0^1 x f(x) \, \mathrm{d}x$. Chứng minh tồn tại $c \in (0,1)$ thỏa $cf(c) + 2023 \int_0^c f(x) \, \mathrm{d}x = 0$.

Bài toán 62 ([VMS23], p. 38, 5.4, DHGTVT). *Tính*

$$I := \int_{-\pi}^{\pi} \frac{\sin nx}{(1 + 2023^x)\sin x} \, \mathrm{d}x.$$

Bài toán 63 ([VMS23], p. 38, 5.5, DHGTVT). Cho hàm f dương, khả tích trên [a,b], $0 < m \le f(x) \le M$, $\forall x \in [a,b]$. Chứng minh

$$(b-a)^2 \le \int_a^b f(x) dx \int_a^b \frac{dx}{f(x)} \le \frac{(m+M)^2}{4mM} (b-a)^2.$$

Bài toán 64 ([VMS23], p. 39, 5.6, ĐHKH Thái Nguyên). Cho hàm $h \in C([0,1])$ thỏa $\int_0^1 x h(x) dx = \int_0^1 h(x) dx$. Chứng minh tồn tại $\beta \in (0,1)$ thỏa $\beta h(\beta^2) = \frac{2023}{2} \int_0^{\beta^2} h(x) dx$.

Bài toán 65 ([VMS23], p. 39, 5.7, DHKH Thái Nguyên). Cho $f \in C([0,\pi])$ thỏa f(0) > 0 & $\int_0^{\pi} f(x) dx < 2$. Chứng minh phương trình $f(x) = \sin x$ có ít nhất 1 nghiệm trong khoảng $(0,\pi)$.

Bài toán 66 ([VMS23], p. 39, 5.8, ĐH Mỏ-Địa chất). Cho $f \in C([0,1]), g \in C([0,1], (0,\infty))$ với f không giảm. Chứng minh

$$\left(\int_0^t f(x)g(x)\,\mathrm{d}x\right)\left(\int_0^1 g(x)\,\mathrm{d}x\right) \leq \left(\int_0^t g(x)\,\mathrm{d}x\right)\left(\int_0^1 f(x)g(x)\,\mathrm{d}x\right),\ \forall t\in[0,1].$$

Bài toán 67 ([VMS23], p. 39, 5.9, DH Mỏ-Địa chất). Cho $f \in C([0,1])$ thỏa $\int_0^1 f(x) dx = 0$. Chứng minh tồn tại điểm $c \in (0,1)$ thỏa $\int_0^c x f(x) dx = 0$.

Bài toán 68 ([VMS23], p. 39, 5.10, DHSPHN2). Gọi \mathcal{F} là lớp tất cả các hàm khả vi $f: \mathbb{R} \to (0, \infty)$ thỏa

$$|f'(x) - f'(y)| \le 2023|x - y|, \ \forall x, y \in \mathbb{R}.$$

Chứng minh

$$(f'(x))^2 < 4046 f(x), \ \forall x \in \mathbb{R}.$$

Bài toán 69 ([VMS23], p. 40, 5.11, ĐHSPHN2). $Gi\mathring{a}$ sử $f \in C^2([a,b])$ thỏa $f(a) \neq -f(b)$ & $\int_a^b f(x) \,\mathrm{d}x = 0$. Tìm GTNN $c\mathring{a}$

$$A := \frac{(b-a)^3}{(f(a)+f(b))^2} \int_a^b (f''(x))^2 dx.$$

Bài toán 70 ([VMS23], p. 40, 5.12, ĐH Trà Vinh). *Tính*

$$I \coloneqq \int_0^{2\pi} \ln(\sin x + \sqrt{1 + \sin^2 x}) \, \mathrm{d}x.$$

Bài toán 71 ([VMS23], p. 40, 5.12, ĐH Vinh). Cho $f \in C([0,1])$ thỏa $xf(y) + yf(x) \le 1$, $\forall x, y \in [0,1]$. Chứng minh: (a) $f(x) \le \frac{1}{2x}$, $\forall x \in (0,1]$. (b) $\int_0^1 f(x) \, \mathrm{d}x \le \frac{\pi}{4}$.

Bài toán 72 ([VMS24], p. 37, 5.1, VNUHCM UIT). Cho $\alpha \in (0, \infty)$ & $f \in C([0, 1])$ nghịch biến, $a \in (0, 1)$ thỏa

$$\int_0^a f(t) \, \mathrm{d}t < \frac{a}{2025}, \ f(0) = \beta > 0.$$

Chứng minh phương trình $f(x) = x^{2024}$ có nghiệm trong [0,1].

Bài toán 73 ([VMS24], p. 38, 5.2, ĐH Đồng Tháp). $Gi\mathring{a} s\mathring{u} f \in C^1([0,1]) thỏa f(0) = 0, \ 0 \le f'(x) \le 1, \ \forall x \in [0,1]. \ Xét hàm số f(0) = 0, \ 0 \le f'(x) \le 1, \ \forall x \in [0,1].$

$$F(t) = \left(\int_0^t f(x) \, \mathrm{d}x\right)^2 - \int_0^t (f(x))^3 \, \mathrm{d}x, \ \forall t \in [0, 1].$$

(a) Chứng minh F đồng biến trên [0,1]. (b) Chứng minh

$$\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 \ge \int_0^1 (f(x))^3 \, \mathrm{d}x.$$

Cho vài ví dụ về hàm f để đẳng thức xảy ra.

Bài toán 74 ([VMS24], p. 38, 5.3, DHGTVT). Cho $f:[0,1] \to (0,+\infty)$ là 1 hàm khả tích thỏa f(x)f(1-x) = 1, $\forall x \in [0,1]$. Chứng minh $\int_0^1 f(x) \, \mathrm{d}x \ge 1$.

Bài toán 75 ([VMS24], p. 38, 5.4, HUS). Cho $f:[0,1] \to \mathbb{R}$ là hàm khả tích trên [0,1] & liên tục trên (0,1). Chứng minh tồn tại $a,b \in (0,1)$ phân biệt sao cho

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{f(a) + f(b)}{2}.$$

Bài toán 76 ([VMS24], p. 38, 5.5, ĐH Mỏ-Địa chất). Tính tích phân

$$\iiint_{x^2+y^2+z^2+t^2 \le 1} e^{x^2+y^2-z^2-t^2} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}t.$$

Bài toán 77 ([VMS24], p. 38, 5.6, DH Vinh). Chứng minh

$$\frac{9}{8\pi} < \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\frac{\sin x}{x}\right)^2 \, \mathrm{d}x < \frac{3}{2\pi}.$$

7.1 SymPy/integrals module

See https://docs.sympy.org/latest/modules/integrals/integrals.html. The integrals module in SymPy implements methods to calculate definite & indefinite integrals of expressions. Principal method in this module is integrate():

- integrate(f, x) returns the indefinite integral $\int f dx$
- integrate(f, (x, a, v)) returns the definite integral $\int_a^b f dx$.

Problem 4 (Integration of elementary functions). Use SymPy to compute definite- & indefinite integrals of elementary functions as many as possible.

Problem 5 (Integration of nonelementary functions). Use SymPy to compute definite- & indefinite integrals of nonelementary functions as many as possible.

Example 4 (Integral of error function). The indefinite integral of the nonelementary function $e^{-x^2}\operatorname{erf}(x)$, where $\operatorname{erf}(x)$ is the error function, is given by

$$\int e^{-x^2} \operatorname{erf}(x) \, \mathrm{d}x = \frac{\sqrt{\pi}}{4} \operatorname{erf}(x).$$

Run the following Python code:

to obtain the following output:

$$sqrt(pi)*erf(x)**2/4$$

For more information about the error function, see, e.g., Wikipedia/error function.

7.2 Leibniz integral rule – Quy tắc tích phân Leibniz

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz.

Theorem 5 (Leibniz integral rule – Quy tắc tích phân Leibniz). For an integral of the form $\int_{a(x)}^{b(x)} f(t,x) dt$ where $a(x), b(x) \in \mathbb{R}$ \mathcal{E} the integrands are functions dependent on x, the derivative of this integral is expressible as

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)} f(t,x) dt\right) = f(b(x),x)\frac{d}{dx}b(x) - f(a(x),x)\frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \partial_x f(t,x) dt,$$
(Lintr)

where the partial derivative $\partial_x = \frac{\partial}{\partial x}$ indicates that inside the integral, only the variation of f(t,x) with x is considered in taking the derivative.

8 Functional Equation – Phương Trình Hàm

Bài toán 78 ([VMS23], 6.1, p. 40, VNUHCM UIT). Tìm tất cả các hàm số $f \in C^2(\mathbb{R}, (0, \infty))$ thỏa

$$f''(x)f(x) \ge 2(f'(x))^2, \ \forall x \in \mathbb{R}.$$

Bài toán 79 ([VMS23], 6.2, p. 40, ĐH Hùng Vương, Phú Thọ). Tìm tất cả các hàm số $f \in C(\mathbb{R})$ thỏa f(1) = 2023 & $f(x+y) = 2023^x f(y) + 2023^y f(x), \forall x,y \in \mathbb{R}$.

Bài toán 80 ([VMS23], 6.3, p. 40, ĐH Hùng Vương, Phú Thọ). Tìm tất cả các hàm số $f(x) \in C^1([0,1])$ có $f(1) = f(0 \otimes thỏa)$

$$\int_0^1 \left(\frac{f'(x)}{f(x)}\right)^2 dx \le 1.$$

Bài toán 81 ([VMS23], 6.4, p. 41, ĐH Mỏ-Địa chất). Cho $r, s \in \mathbb{Q}$. Tìm tất cả các hàm số $f : \mathbb{Q} \to \mathbb{Q}$ thỏa

$$f(x+f(y)) = f(x+r) + y + s, \ \forall x, y \in \mathbb{Q}.$$

Bài toán 82 ([VMS23], 6.5, p. 41, FTU Hà Nội). Tìm tất cả các hàm số thực $f:(0,\infty)\to(0,\infty)$ thỏa

$$f(x+f(y)) = xf\left(1+f\left(\frac{y}{x}\right)\right), \ \forall x,y \in (0,\infty).$$

Bài toán 83 ([VMS23], 6.6, p. 41, ĐH Trà Vinh). Tìm tất cả các hàm số f(x) thỏa

$$f\left(\frac{x+1}{x-1}\right) = 2f(x) + \frac{3}{x-1}, \ \forall x \neq 1.$$

Bài toán 84 ([VMS23], 6.7, p. 41, DH Trà Vinh). Tìm tất cả các hàm số $f(x) \in C^1([0,1])$ thỏa f(1) = ef(0) &

$$\int_0^1 \left(\frac{f'(x)}{f(x)}\right)^2 dx \le 1.$$

Bài toán 85 ([VMS24], p. 38, 6.1, HUS). Cho $f:(0,1)\to\mathbb{R}$ là 1 hàm khả vi thỏa $(f'(x))^2-3f'(x)+2=0$, $\forall x\in(0,1)$. Tìm f. (b) Mở rộng bài toán cho dạng phương trình hàm phức tạp hơn.

9 Fourier transform – Biến đổi Fourier

Resources - Tài nguyên.

1. [Tao12]. Terence Tao. Higher Order Fourier Analysis.

9.1 Discrete Fourier transform – Biến đổi Fourier rời rạc

See, e.g., Wikipedia/discrete Fourier transform. In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence.

Definition 8 (Discrete Fourier transform). The discrete Fourier transform transforms a sequence of N complex numbers $\mathbf{x} = \{x_n\}_{n=0}^{N-1} \coloneqq x_0, x_1, \dots, x_{N-1} \text{ into another sequence of complex numbers, } \mathbf{X} = \{X_n\}_{n=0}^{N-1} \coloneqq X_0, X_1, \dots, X_{N-1} \text{ defined by }$

$$X_k := \sum_{n=0}^{N-1} x_n e^{-i2\pi \frac{k}{N}n}.$$
 (dFt)

The transform is sometimes denoted by the symbol \mathcal{F} , as in $\mathbf{X} = \mathcal{F}\{\mathbf{x}\}$ or $\mathcal{F}(\mathbf{x})$ or $\mathcal{F}\mathbf{x}$.

10 Miscellaneous

10.1 See also

- 1. [Str20]. Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe.
- 2. [Str24]. Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe Sức Mạnh Vô Hạn: Giải Tích Toán Khám Phá Bí Mật Của Vũ Trụ Như Thế Nào?.

Nhận xét. 1 quyển sách hay về thường thức về lịch sử phát triển của Giải tích Toán học & các ý tưởng cơ bản nhất của Giải tích. Khuyến khích đọc thử, cũng như các tác phẩm thường thức Khoa học Tự nhiên nói chung & Toán học nói riêng khác của tác giả STEVEN STROGATZ.

- 3. TS. HUYNH QUANG Vũ. Các Bài Giảng Giải Tích. https://sites.google.com/view/hqvu/teaching.
 - Bộ Môn Giải Tích, Khoa Toán Tin học, Faculty of Mathematics & Computer Science, HCMUS. Giáo Trình Vi Tích Phân
 1.
 - Bộ Môn Giải Tích, Khoa Toán Tin học, Faculty of Mathematics & Computer Science, HCMUS. Giáo Trình Vi Tích Phân
 2.
- 4. Vietnamese Mathematical Olympiad for High School- & College Students (VMC) Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc.

PDF: url: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.pdf.

TFX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.tex.

- Codes:
 - \circ C++ code: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/C++.
 - Python code: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/Python.
- Resource: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/resource.
- Figures: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/figure.
- 5. Olympic Tin Học Sinh Viên OLP & ICPC.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/NQBH_OLP_ICPC.pdf.

TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/NQBH_OLP_ICPC.tex.

- Codes:
 - C: https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/C.
 - C++: https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/C++.
 - Python: https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/Python.

Tài liêu

- [Rud76] Walter Rudin. *Principles of mathematical analysis*. Third. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976, pp. x+342.
- [Str20] Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe. Mariner Books, 2020, p. 400.
- [Str24] Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe Sức Mạnh Vô Hạn: Giải Tích Toán Khám Phá Bí Mật Của Vũ Trụ Như Thế Nào? Phạm Văn Thiều dịch. Nhà Xuất Bản Trẻ, 2024, p. 486.
- [Tao12] Terence Tao. Higher order Fourier analysis. Vol. 142. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012, pp. x+187. ISBN: 978-0-8218-8986-2. DOI: 10.1090/gsm/142. URL: https://doi.org/10.1090/gsm/142.
- [Tao22a] Terence Tao. Analysis I. Vol. 37. Texts and Readings in Mathematics. Fourth edition [of 2195040]. Hindustan Book Agency, New Delhi, [2022] ©2022, pp. xvi+355. ISBN: 978-81-951961-9-7.
- [Tao22b] Terence Tao. Analysis II. Vol. 38. Texts and Readings in Mathematics. Fourth edition [of 2195041]. Springer, Singapore; Hindustan Book Agency, New Delhi, [2022] ©2022, pp. xvii+195. ISBN: 978-9-81197-284-3. DOI: 10.1007/978-981-19-7284-3.
- [Thá+23a] Đỗ Đức Thái, Đỗ Tiến Đạt, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Đức Quang. Toán 6 Tập 1. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, 2023, p. 128.
- [Thá+23b] Đỗ Đức Thái, Đỗ Tiến Đạt, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Đức Quang. Toán 6 Tập 2. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, 2023, p. 108.
- [VMS23] Hội Toán Học Việt Nam VMS. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên–Học Sinh Lần Thứ 29. Huế 2–8/4/2023. VMS, 2023, p. 141.

- [VMS24] Hội Toán Học Việt Nam VMS. $K\mathring{y}$ Yếu $K\mathring{y}$ Thi Olympic Toán Học Sinh Viên–Học Sinh Lần Thứ 30. Đà Nẵng 8-13/4/2024. VMS, 2024, p. 112.
- [WS10] Robert Wrede and Murray R. Spiegel. *Advanced Calculus*. 3rd edition. Schaum's Outline Series. McGraw Hill, 2010, p. 456. ISBN: 978-0071623667.