Syntax Analysis

Comparison with Lexical Analysis

☐ The second phase of compilation

Phase	Input	Output
Lexer	string of characters	string of tokens
Parser	string of tokens	Parser tree/AST

What Parse Tree?

A parse tree represents the program structure of the input

Programming language constructs usually have recursive structures

 $\textbf{If-stmt} \equiv \textbf{if} \; (EXPR) \; \textbf{then Stmt else Stmt fi}$

 $\textbf{Stmt} \equiv \textbf{If-stmt} \mid \textbf{While-stmt} \mid ...$

A Parse Tree Example

- Code to be compiled:
 - \dots if x==y then \dots else \dots fi
- Lexer:
- Parser:
 - Input: sequence of tokens
 - ... IF ID==ID THEN ... ELSE ... FI
 - Desired output:

What Formalism to Use?

- How to represent the program structure?
 - ➤ Is it possible to use RE/FA? RE(Regular Expression) = FA(Finite Automata)
- RE/FA is not powerful enough

Example: matching parenthesis: # of "(" equals # of ")"

- ✓ (x+y)*z
- ✓ ((x+y)+y)*z
- ✓ (...(((x+y)+y)+y)...)

RE/FA is Not Powerful Enough

- \square Describe strings with pattern $[i]^i$ ($i \ge 1$)
 - "[", "[]" should be in different states
 - "[", "[[" should be in different states

- > "[[[..[" should be in a new state
- Since i can be any positive integer value, the number of states is infinite
- Contradiction: FA finite automata

Formalism for Syntax Analysis

- We need a more powerful formalism for describing language constructs
 - > CFL (context free language) concept
- Before discussing CFL, let us generalize language definition
 - Covers both RE and CFL
 - and more ...

From Grammar to Language

- Recall language definition
 - Language set of strings over alphabet

Alphabet: finite set of symbols

Null string: ε

Sentences: strings in the language

- Li is possible to describe a language using a grammar
 - Like define English using English grammars

An Example

Language L = { any string with "00" at the end }

- - where T = { 0, 1 }, N = { A, B }, s = A, and grammar rule set δ = { A \rightarrow 0A | 1A | 0B, B \rightarrow 0 }
- Derivation: from grammar to language
 - \rightarrow A \Rightarrow 0A \Rightarrow 00B \Rightarrow 000
 - ightharpoonup A \Rightarrow 1A \Rightarrow 10B \Rightarrow 100
 - $ightharpoonup A \Rightarrow 0A \Rightarrow 00A \Rightarrow 000B \Rightarrow 0000$
 - \rightarrow A \Rightarrow 0A \Rightarrow 01A \Rightarrow ...

Grammar

- \blacksquare A grammar consists of 4 components (T, N, s, δ)
 - > T set of **terminal** symbols
 - Essentially tokens those appear in the input string
 - N set of non-terminal symbols
 - Categories of strings impose hierarchical language structure
 - Useful for analysis example: declaration, statement, loop, ...
 - s a special non-terminal start symbol that denotes every sentence is derivable from it
 - $\rightarrow \delta$ a set of **production** rules
 - "LHS → RHS": left-hand-side produces right-hand-side

Production Rule and Derivation

- \square "LHS \rightarrow RHS"
 - to replace LHS with RHS
 - > it specifies how to transform one string to another
- $\beta \Rightarrow \alpha$: string β derives α

 - $\begin{array}{lll} \blacktriangleright & \beta \Rightarrow \alpha & & \text{1 step} \\ \blacktriangleright & \beta \Rightarrow *\alpha & & \text{0 or more steps} \end{array}$
 - $\Rightarrow \beta \stackrel{*}{\Longrightarrow} \alpha$ 0 or more steps
 - example:
 - $A \Rightarrow 0A \Rightarrow 00B \Rightarrow 000$
 - $A \stackrel{*}{\Longrightarrow} 000$
 - $A \stackrel{+}{\Longrightarrow} 000$

Noam Chomsky Grammars

- A classification of languages based on the form of grammar rules
 - Classify not based on how complex the language is
 - Classify based on how complex the grammar (the describe the language) is
- Four(4) types of grammars:

Type 0 — recursive grammar

Type 1 — context sensitive grammar

Type 2 — context free grammar

Type 3 — regular grammar

Type 0: Unrestricted/Recursive Grammar

- Type 0 grammar unrestricted or recursive grammar
 - Form of rules

$$\alpha \to \beta$$

where
$$\alpha \in (N \cup T)^+$$
, $\beta \in (N \cup T)^*$

- > No restrictions on form of grammar rules
- > Example:

$$\mathsf{A} \to \varepsilon$$

; empty rule is allowed

Type 1: Context Sensitive Grammar

- Type 1 grammar context sensitive grammar
 - Form of rules

$$\alpha A\beta \to \alpha \gamma \beta$$

where
$$A \in N^+$$
, $\alpha, \beta \in (N \cup T)^*$, $\gamma \in (N \cup T)^+$, $|A| \leq |\gamma|$

- ightharpoonup Replace A by γ only if found in the context of α and β
- No erase rule
- ➤ Example: aAB → aCB

Type 2: Context Free Grammar

- Type 2 grammar context free grammar
 - Form of rules

$$A \rightarrow \gamma$$

where
$$A \in N$$
, $\gamma \in (N \cup T)^+$

- ightharpoonup Can replace A by γ at any time
- > No erase rule
 - If there are rules deriving empty string, rewrite to remove empty rule
 - Sometimes loose this restriction to simplify representation
- Are programming languages (PLs) context free ?
 - Some PL constructs are context free: If-stmt, declaration
 - Many are not: def-before-use, matching formal/actual parameters, etc.

Type 3: Regular Grammar

- Type 3 grammar regular grammar
 - > Form of rules

$$A \rightarrow \alpha$$
, or $A \rightarrow \alpha B$

where
$$A, B \in N$$
, $\alpha \in T$

- Regular grammar defines RE
- Can be used to define tokens for lexical analysis
- Example:

$$A \rightarrow 1A \mid 0$$

Differentiate Type 2 and 3 Grammars

- - > Regular grammar

$$S \rightarrow [S \mid [T \mid T \rightarrow T \mid T]]$$

- - Context free grammar

$$S \rightarrow [\ S\]\ |\ [\]$$

Differentiate Type 1 and 2 Grammars

Type 2 grammar (context free)

```
\begin{array}{lll} S \rightarrow D \ U \\ D \rightarrow int \ x; & | & int \ y; \\ U \rightarrow x{=}1; & | & y{=}1; \end{array}
```

☐ Type 1 grammar (context sensitive)

```
S \rightarrow D U

D \rightarrow int x; | int y;

int x; U \rightarrow int x; x=1;

int y; U \rightarrow int y; y=1;
```

What Does a Programming Language Want?

- Language from type 2 grammar
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; y=1;$ $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$

- Language from type 1 grammar
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$
- PLs are context sensitive, why use CFG in parsing?

Language Classification

- \square However, $\mathsf{L}_{\mathsf{y}} \subset \mathsf{L}_{\mathsf{x}}$ where $\mathsf{L}_{\mathsf{x}} : [^i]^k$ —RG, $\mathsf{L}_{\mathsf{y}} : [^i]^i$ —CFG
 - > Is it a problem?

Context Free Grammars

Grammar and Syntax Analysis

- Grammar is used to derive string or construct parser
- A derivation is a sequence of applications of rules
 - Starting from the start symbol
 - ightharpoonup S \Rightarrow ... \Rightarrow ... \Rightarrow (sentence)
- Leftmost and Rightmost drivations
 - At each derivation step, leftmost derivation always replaces the leftmost non-terminal symbol
 - > Rightmost derivation always replaces the rightmost one

Examples

$$\mathsf{E} \to \mathsf{E} \,^*\,\mathsf{E} \,\mid\; \mathsf{E} + \mathsf{E} \,\mid\; (\mathsf{E}) \,\mid\; \mathsf{id}$$

leftmost derivation

$$E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow id * E + E \Rightarrow id * id + E \Rightarrow ...$$
$$\Rightarrow id * id + id * id$$

rightmost derivation

$$E \Rightarrow E * E \Rightarrow E * E + E \Rightarrow E * E + id \Rightarrow E * E + E + id \Rightarrow ...$$

\Rightarrow id * id + id * id

Parse Trees

- Parse tree can
 - filter out the order of replacement
 - describe hierarchy
- Parse tree
 - Internal nodes are non-terminals
 - Leaves are terminals
 - Same parse tree for the previous rightmost/leftmost derivations

Different Parse Trees

Consider the string
id * id + id * id
can draw 3 different trees

Ambiguity

- A grammar G is ambiguous if
 - ightharpoonup there exist a string $str \in L(G)$ such that
 - more than one parse trees derive str
- In practice, we prefer unambiguous grammars
- Ambiguity is the property of a grammar and not the language
 - > It is possible to rewrite the grammar to remove abmiguity

How to Remove Ambiguity?

- Method I: to specify precedence
 - > build precedence into grammar, have different non-terminal for each precedence level
 - Lowest level highest in the tree (lowest precedence)
 - Highest level lowest in the tree
 - Same level same precedence
- For the previous example, $E \rightarrow E * E \mid E + E \mid (E) \mid id$ rewrite it to $E \rightarrow E + T \mid E T \mid T$ $T \rightarrow T * F \mid T / F \mid F$ $F \rightarrow P \land F \mid P$ $P \rightarrow id \mid const \mid (E)$

How to Remove Ambiguity?

- Method II: to specify associativity
 - > when recursion is allowed, we need to specify associativity
- For the previous example,

```
\mathsf{E} \to \mathsf{E} \cdot \mathsf{E} \; .... \qquad \text{; allows both left and right associativity}
```

rewrite it to

```
E \rightarrow E + T \dots; only left associativity
```

 $\mathsf{F} \to \mathsf{P} \wedge \mathsf{F} \dots \qquad \text{; only right associativity}$

From Grammar to Syntax Analysis

- We discussed grammar from the point of view of derivation
- What is syntax analysis?
 - To process an input string for a given grammar, and compose the derivation if the string is in the language
 - Two subtasks
 - to determine if string in the language or not
 - to construct the parse tree

Is that possible to construct such a parser?

BNF and Parsing

- Backus Naur Form (BNF) is an extension of general CFG
 - ightharpoonup arepsilon is allowed usually for recursion can be eliminated
 - > use * to indicate recursion or structure

e.g. A
$$\rightarrow$$
 A * B C d

- use | for alternative rules
- use upper case letters (e.g. A, B) or <class> for non-terminals
- > use lower case leeters (e.g. a, b) for terminals

BNF Properties:

- > Any BNF grammar has a decidable parsing program
- It is decidable if a string is in the language or not
- ➤ It is **undecidable** if an arbitrary BNF grammar is ambiguous
- It is undecidable if two grammars generate the same language

Types of Parsers

- Universal parser
 - Can parse any BNF grammar e.g. Early's algorithm
 - Powerful but extremely inefficient
- Top-down parser
 - It is goal-directed, expands the start symbol to the given sentence
 - Only works for certain class of grammars
 - > To start from the root of the parse tree and reach leaves
 - > Find leftmost derivation
 - > Can be implemented efficiently by hand

Types of Parsers (cont.)

- Bottom-up parser
 - It tries to reduce input string to the start symbol
 - Works for wider class of grammars
 - Starts at leaves and build tree in bottom-up fashion
 - > Find reverse order of the rightmost derivation
 - Automated tool generates it automatically

What Output do We Want?

- The output of parsing is
 - > parse tree, or
 - abstract syntax tree
- An abstract syntax tree is
 - similar to a parse tree but ignore some details
 - internal nodes may contain terminal symbols

An Example

Consider the grammar

$$\mathsf{E} \ \to \ \mathsf{int} \ | \ (\,\mathsf{E}\,) \ | \ \mathsf{E} + \mathsf{E}$$
 and an input

$$5 + (2 + 3)$$

After lexical analysis, we have a sequence of tokens

Parse Tree of the Input

- □ A parse tree
 - Traces the operation of the parser
 - Does capture the nested structure
- but contains too much information
 - parentheses
 - > single-successor nodes

Abstract Syntax Tree

We prefer an Abstract Syntax Tree (AST) as follows

- > AST also captures the nested structure
- > AST abstracts from the concrete syntax
- > AST is more compact and easier to use
- > AST is an important data structure in a compiler

How to Construct AST?

- Introduce the concept of semantic actions
- We already use them in project 1
- To construct AST, we attach an **attribute** to each symbol X
 - X.ast the constructed AST for symbol X
- Enhance each production rule with semantic actions, i.e.

$$X \rightarrow Y_1Y_2...Y_n$$
 { actions }

actions may define or use X.ast, Y_i .ast $(1 \le i \le n)$

Example

For the previous example, we have

```
\begin{array}{lll} E & \rightarrow & \text{int} & \{ \text{ E.ast} = \text{mkleaf(int.lval)} \} \\ & \mid & \text{E1} + \text{E2} & \{ \text{ E.ast} = \text{mkplus(E1.ast, E2.ast)} \} \\ & \mid & \text{(E1)} & \{ \text{ E.ast} = \text{E1.ast} \} \end{array}
```

- Here, we use two pre-defined fuctions
 - ptr1=mkleaf(n) create a leave node and assign value "n"
 - → ptr2=mkplus(t1, t2) create a tree node and assign the root value "PLUS", and two subtrees as t1 and t2

AST Construction Steps

```
with input INT_5 '+' '(' INT_2 '+' INT_3 ')'
we build in a bottom-up fashion
E5.ast=mkplus(E1.ast, E4.ast)
                   PLUS
                 E4.ast=mkplus(E2.ast, E3.ast)
                                    PLUS
                 E1.ast=mkleaf(5) E2.ast=mkleaf(2) E3.ast=mkleaf(3)
```

Summary

- We specify the syntax structure using CFG
 - > the programming language itself is not context free
- A parser can
 - ightharpoonup ... answer if an input str \in L(G)
 - ... and build a parse tree
 - ... or build an AST instead
 - ... and pass it to the rest of compiler

Parsing

Parsing

- We will study two approaches
- - Easier to understand and implement manually
- Bottom-up
 - More powerful, can be implemented automatically

Example

Consider a CFG grammar G

$$S \rightarrow I$$

$$A \rightarrow aC$$

$$S \,\rightarrow\, A\,B \qquad A \,\rightarrow\, a\,C \qquad B \,\rightarrow\, b\,D$$

 $\mathsf{D}\,\to\,\mathsf{d}$ $\mathsf{C}\,\to\,\mathsf{c}$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

Rightmost Derivation:

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Top Down Parsers

- Recursive descent
 - Simple to implement, use backtracking
- Predictive parser
 - Predict the rule based on the 1st m symbols without backtracking
 - Restrictions on the grammar to avoid backtracking
- LL(k) predicative parser for LL(k) grammar
 - > Non recursive and only k symbol look ahead
 - Table driven efficient

Recursive Descent Example

input string: int * int start symbol: E

initial parse tree is E

Assume: when there are alternative rules, try right rule first

Parsing Sequence (using Backtracking)

Recursive Descent Parsing uses Backtracking

- Approach: for a non-terminal in the derivation, productions are tried in some order until
 - A production is found that generates a portion of the input, or
 - No production is found that generates a portion of the input, in which case backtrack to previous non-terminal
- Parsing fails if no production for the start symbol generates the entire input
- Terminals of the derivation are compared against input
 - Match advance input, continue parsing
 - Mismatch backtrack, or fail

Implementation

- Create a procedure for each non-terminal
 - Checks if input symbol matches a terminal symbol in the grammar rule
 - Calls other procedure when non-terminals are part of the rule
 - If end of procedure is reached, success is reported to the caller

Sample Code

(Rewrite the rule a bit, will discuss the reason)

```
E \rightarrow T\{+E\}
 T \rightarrow int \{ *T \} \mid (E)
fetchNext()
                                      void term()
                                         if (sym==IntNum) {
                                           fetchNext();
                                           if (sym==StarNum) {
void expr()
                                             fetchNext();
                                             term():
   term();
   if (sym==AddNum) {
     fetchNext();
                                         else if (sym==LeftParenNum) {
     expr();
                                           fetchNext():
                                           expr();
                                           fetchNext():
                                           if (sym!=RightParenNum)
                                             perror("error");
                                           fetchNext():
```

Left Recursion Problem

- The previous discussion does not work if grammar is left recursive
 - > Right recursive is okay
- Why left recursion is a problem?

$$A \to A \ b \ | \ c$$

We may have

$$A \Rightarrow A \ b \Rightarrow A \ b \ b \ ...$$

the sentential form keeps growing without consuming any input symbol

- Rewrite the grammar to represent the same language
 - What language does this grammar generate?

Remove Left Recursion

In general, we can eliminate all immediate left recursion

$$A \rightarrow A x \mid y$$

change to

$$A \rightarrow y A'$$

 $A' \rightarrow x A' \mid \varepsilon$

Not all left recursion is immediate may be hidden in multiple production rules

... see Section 4.3 for elimination of general left recursion

... (not required for this course)

Summary of Recursive Descent

- Recursive descent is a simple and general parsing strategy
 - Left-recursion must be eliminated first
 - Can be eliminated automatically
 - It is not popular because of its inefficiency
 - Backtracking re-parses the string
 - Undo semantic actions may be difficult !!!
- Techniques used in practice do no backtracking ... at the cost of restricting the class of grammar

Predicative Parsers

- To avoid backtracking: for a given input symbol and given non-terminal, choose the alternative **appropriately**
 - The first terminal of every alternative in a production is unique

parsing an input "abced" has no backtracking

Left factoring to enable predication

$$\mathbf{A}
ightarrow \alpha \beta \mid \alpha \gamma$$
 change to $\mathbf{A}
ightarrow \alpha \mathbf{A}'$ $\mathbf{A}'
ightarrow \beta \mid \gamma$

- For predicative parsers, must eliminate left recursion
 - > Recall our sample C code

LL(k) Parsers

- LL(k)
 - ➤ L left to right scan
 - ➤ L leftmost derivation
 - > k k symbols of lookahead
 - in practice, k = 1
- It is table-driven and efficient

Parser Structure

Syntax stack — hold right hand side (RHS) of grammar rules Parse table M[A,b] — an entry containing rule "A \rightarrow ..." or error Parser driver — next action based on (current token, stack top)

A Sample Parse Table

	int	*	+	()	\$
E	$E\toTX$			$E\toTX$		
X			$X \to +E$		X o arepsilon	X o arepsilon
T	$T \to int\;Y$			T o (E)		
Y		$Y \rightarrow *T$	$Y \rightarrow \varepsilon$		$Y \rightarrow \varepsilon$	$Y \rightarrow \varepsilon$

- Implementation with 2D parse table
 - > First column lists all non-terminals
 - > First row lists all possible terminals and \$
 - > A table entry contains one production
 - No backtracking
 - Fixed action for each (non-terminal, input symbol) combination

Algorithm for Parsing

- **X** symbol at the top of the syntax stack
- a current input symbol
- Parsing based on (X,a)
 - ➤ If X==a==\$, then
 - parser halts with "success"
 - If X==a!=\$, then
 - pop X from stack and advance input head
 - ➤ If X!=a, then
 - Case (a): if $X \in T$, then
 - parser halts with "failed", input rejected
 - Case (b): if $X \in N$, $M[X,a] = "X \rightarrow RHS"$
 - pop X and push RHS to stack in reverse order

Push RHS in Reverse Order

X — symbol at the top of the syntax stack

a — current input symbol

if
$$M[X,a] = "X \rightarrow B c D"$$

 \Rightarrow

Applicable Grammars

- As we discussed, remove left recursive and perform left factoring
- Given the grammar

- > No left recursion
- > But require left factoring
- After rewriting grammar, we have

Using the Parse Table

☐ To recognize "int * int"

Recognition Sequence

It is possible to write in a action list

Stack	Input	Action
E \$	int * int \$	$E{ o}TX$
T X \$	int * int \$	$T\rightarrow$ int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	Y→ * T
* T X \$	* int \$	terminal
T X \$	int \$	T→ int Y
int Y X \$	int \$	terminal
Y X \$	\$	$Y \rightarrow \varepsilon$
X \$	\$	$X \rightarrow \varepsilon$
\$	\$	halt and accept

How to Construct the Parse Table?

- Need to know 2 sets
 - For each symbol A, the set of terminals that can begin a string derived from A. This set is called the FIRST set of A
 - For each non-terminal A, the set of terminals that can appear after a string derived from A is called the FOLLOW set of A

$First(\alpha)$

- First(α) = set of terminals that start string of terminals derived from α .
- lacksquare Apply followsing rules until no terminal or arepsilon can be added
 - 1). If $t \in T$, then First(t)={t}. For example First(+)={+}.
 - 2). If $X \in \mathbb{N}$ and $X \to \varepsilon$ exists, then add ε to First(X). For example, First(Y) = $\{^*, \varepsilon\}$.
 - 3). If $X \in \mathbb{N}$ and $X \to Y_1 Y_2 Y_3 ... Y_m$, where $Y_1, Y_2, Y_3, ... Y_m$ are non-terminals, then
 - Add (First(Y_1) ε) to First(X).
 - If First(Y_1), ..., First(Y_{k-1}) all contain ε , then add $(\sum_{1 < i < k} First(Y_i) \varepsilon)$ to First(X).
 - If First(Y_1), ..., First(Y_m) all contain ε , then add ε to First(X).

$Follow(\alpha)$

- Follow(α) = $\{t | S \Rightarrow *\alpha t \beta\}$ Intuition: if X \rightarrow A B, then First(B) \subseteq Follow(A) little trickier because B may be ε i.e. B \Rightarrow * ε
- $lue{}$ Apply followsing rules until no terminal or arepsilon can be added
 - 1). $\$ \in \text{Follow}(S)$, where S is the start symbol. e.g. $\text{Follow}(E) = \{\$... \}$.
 - 2). Look at the occurrence of a non-terminal on the right hand side of a production which is followed by something If $A \to \alpha B\beta$, then First(β)-{ ε } \subseteq Follow(B)
 - 3). Look at N on the RHS that is not followed by anything, if $(A \to \alpha B)$ or $(A \to \alpha B\beta)$ and $\varepsilon \in \text{First}(\beta)$, then Follow(A) \subseteq Follow(B)

Intuitive Meaning of First and Follow

Informal Interpretation of First and Follow Sets

- First set of X
 - Terminal symbols
 - > X \rightarrow Y Z, then First(Y)
 - ightharpoonup X ightharpoonup ε
- Follow set of X
 - > \$
 - \rightarrow ... \rightarrow X Y, focus on X
 - $ightharpoonup Y \rightarrow X$, focus on X

For the example

For the first set

$$\begin{array}{cccc} \mathsf{E} & \to & \mathsf{T} \, \mathsf{X} \\ \mathsf{X} & \to & + \, \mathsf{E} \\ \mathsf{X} & \to & \varepsilon \\ \mathsf{T} & \to & \mathsf{int} \, \mathsf{Y} \\ \mathsf{T} & \to & (\, \mathsf{E} \,) \\ \mathsf{Y} & \to & * \, \mathsf{T} \\ \mathsf{Y} & \to & \varepsilon \end{array}$$

For the follow set

$$\begin{array}{ccc} \$ \\ E & \rightarrow & T \, X \\ T & \rightarrow & (E) \\ X & \rightarrow & + E \\ T & \rightarrow & int \, Y \\ Y & \rightarrow & * \, T \\ E & \rightarrow & T \end{array}$$

Example

Symbol	First
((
))
+	+
*	*
int	int
Υ	* , ε
Х	+ , ε
Т	(, int
Е	(, int

Symbol	Follow
Е	\$,)
Х	\$,)
Т	\$,),+
Υ	\$,),+

Construction of LL(1) Parse Table

- lacksquare To construct the parse table, we check each $A \rightarrow \alpha$
 - ightharpoonup For each terminal $a \in First(\alpha)$, then add $A \rightarrow \alpha$ to M[A,a].
 - ightharpoonup If ε ∈ First(α), then for each terminal b ∈ Follow(A), add A→ α to M[A,b].
 - ightharpoonup If $\varepsilon \in \mathsf{First}(\alpha)$ and $\$ \in \mathsf{Follow}(\mathsf{A})$, then add $\mathsf{A} \to \alpha$ to M[A,\$].

Example

Symbol	First
((
))
+	+
*	*
int	int
Υ	$^{*}, arepsilon$
Х	+ , ε
T	(, int
Е	(, int

Symbol	Follow
Е	\$,)
Х	\$,)
T	\$,),+
Υ	\$,),+

Table	int	*	+	()	\$
E	$E\toTX$			$E\toTX$		
X			$X \to +E$		X o arepsilon	X o arepsilon
T	$T \to int\;Y$			T o (E)		
Y		$Y \rightarrow *T$	Y o arepsilon		Y o arepsilon	Y o arepsilon

Determine if Grammar G is LL(1)

Observation

If a grammar is LL(1), then each of its LL(1) table entry contains at most one rule. Otherwise, it is not LL(1)

- **Two methods** to determine if a grammar is LL(1) or not
 - Construct LL(1) table, and check if there is a multi-rule entry or
 - (2). Checking each rule as if the table gets constructed. G is LL1(1) **iff** for a rule A $\rightarrow \alpha | \beta$
 - $ightharpoonup First(\alpha) \cap First(\beta) = \phi$
 - \triangleright at most one of α and β can derive ε
 - ightharpoonup If β derives ε , then First(α) \cap Follow(A) = ϕ

Ambiguous Grammars

```
Some grammars may need more than one lookahead (k)
However, some grammars are not LL regardless of how
    the grammar is changed
          S \rightarrow if C then S \mid if C then S else S \mid a (other statements)
          C \rightarrow b
    change to
          S \rightarrow if C then S X \mid a
          X \rightarrow else S \mid \varepsilon
          C \rightarrow b
     problem sentence: "if b then if b then a else a"
          "else" \in First(X)
          First(X)-\varepsilon \subseteq Follow(S)
          X \rightarrow else ... \mid \varepsilon
          "else" ∈ Follow(X)
```

Removing Ambiguity

- To remove ambiguity, it is possible to rewrite the grammar to remove ambiguity
- For the "if-then-else" example, how to rewrite?
- However, by changing the grammar,
 - it might make the other phases of the compiler more difficult
 - it becomes harder to determine semantics and generate code
 - > it is less appealing to programmers

LL(1) Summary

- LL(1) parsers operate in linear time and at most linear space relative to the length of input because
 - Time each input symbol is processed constant number of times
 - Why?
 - ightarrow Space stack is smaller than the input (in case we remove X ightarrow arepsilon)
 - Why?

Summary

- First and Follow sets are used to construct predictive parsing tables
- Intuitively, **First** and **Follow** sets guide the choice of rules
 - For non-terminal **a** and input **t**, use a production rule $\mathbf{A} \to \alpha$ where $\mathbf{t} \in \mathbf{First}(\alpha)$
 - For non terminal **A** and input **t**, if $\mathbf{A} \to \alpha$ and $\mathbf{t} \in \mathsf{Follow}$ (A), use the production $\mathbf{A} \to \alpha$ where $\varepsilon \in \mathsf{First}(\alpha)$

Questions

☐ What is LL(0)?

☐ Why LL(2) ... LL(k) are not widely used?