Introduction to Algebraic Information Theory for Quantitative Finance Homework 5

August 30, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Proving the Fundamental Theorem of Galois Theory

Theorem: Let L be a Galois extension of a field K, with finite degree n. (1) For all subfields E of L containing K, and for all subgroups H of Gal(L:K),

$$\Phi(\Gamma(E)) = E \qquad \& \qquad \Gamma(\Phi(H)) = H. \tag{1}$$

(2) Also,

$$|\Gamma(E)| = [L:E]$$
 & $|Gal(L:K)|/|\Gamma(E)| = [E:K].$ (2)

(3) Finally, A subfield E is a normal extension of K iff $\Gamma(E) \triangleleft Gal(L:K)$. (4) If E is a normal extension, then $Gal(E:K) \simeq Gal(L:K)/\Gamma(E)$.

Prove the following in order - it proves the whole theorem:

- 1. Show that $|\Gamma(E)| = [L : E]$ (2.1). How does this prove (1)?
- 2. Use Theorem 3.3 and Corollary 7.29 in Howie to show (2.2), $|Gal(L:K)|/|\Gamma(E)| = [E:K]$.
- 3. Prove that $\Gamma(E) \triangleleft Gal(L:K)$.
- 4. Use FHT to show (4), that $Gal(E:K) \simeq Gal(L:K)/\Gamma(E)$ if E is a normal extension.

Solvability of Groups

- 1. Show that S_4 is solvable.
- 2. Show that the alternating group, A_5 , is simple. Why does that make S_5 not solvable? (Link to a reference for A_5 : https://groupprops.subwiki.org/wiki/Alternating_group:A5).

3. Show that the Galois group of any monic irreducible polynomial of degree 5 is isomorphic to S_5 . (Hint: pick arbitrary coefficients that make the polynomial irreducible. Don't torture yourself with abstraction - if it holds for one polynomial of degree 5, it holds for the general case.)

What's It All About?

- 1. In class, we said that the core idea of Galois Theory to someone with a math background was that Φ and Γ are mutually inverse if L is a Galois Extension of K. What happens if it isn't?
- 2. Are there any theorems about quotient groups that make (2), (3), and (4) easier to understand from finite group theory?
- 3. Why do we care about the set equality in (1)? I.e., how does that tie the idea of Gal(f) back to Gal(L:K), as well as solvability of f?
- 4. When we say that Galois theory proves the insolvability of the general quintic equation by S_5 being a non-solvable group, we really mean that since S_5 isn't solvable, the Galois group of a degree 5 monic irreducible polynomial isn't solvable. How do we generalize this idea of polynomial solvability from Gal(f) to $Gal(L:K) \simeq S_n$?
- 5. If someone were to ask you, "why should I learn abstract algebra?", what would your answer be? What have you learned in this course so far? What did you / didn't you expect? Please be detailed here, it will help me teach better in the future.
- 6. Do you have any course feedback? Also, are you okay with me posting your answer to this question as a reference for the course?