TEAM ID:PNT2022TMID46648

1.DOWNLOAD THE DATA SET:

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import sklearn

2.LOAD THE DATASET:

data = pd.read_csv(r"file:///C:\Users\Christo\Downloads\Churn_Modelling.csv")

3. VISUALIZATIONS:

sns.histplot(data["CreditScore"]) sns.distplot(data["Age"]) sns.boxplot(data['Age']) (ii) BI-VARIATE ANALYSIS:

sns.lineplot(x=data.CreditScore, y=data.EstimatedSalary)
sns.barplot(x=data.CreditScore, y=data.Age)
plt.figure(figsize=(15,15)) sns.barplot(x=data.Age ,
y=data.CreditScore) sns.scatterplot((data['Age'],
data['Tenure'])) (iii) MULTI-VARIATE ANALYSIS:

sns.pairplot(data) data.corr()
sns.heatmap(data.corr(), annot =
True)

4. DESCRIPTIVE STATISTICS:

data.mean()
data.median()
data.mode()
data.var()
data.std()
data.describe()

```
5.HANDLE THE MISSING VALUES:
data.isnull().any()
data.isnull().sum()

6. FINDING OUTLIERS AND REPLACING THEM:
sns.boxplot(x=data['EstimatedSalary'])
Q1= data['EstimatedSalary'].quantile(0.25)
Q2=data['EstimatedSalary'].quantile(0.75)
print(Q1,Q2)
IQR=Q2-Q1
```

upper_limit =Q2 + 1.5*IQR lower_limit =Q1 -

1.5*IQR upper_limit lower_limit

data=data[data['EstimatedSalary']<upper_limit]

data=data[data['EstimatedSalary']>lower_limit]

sns.boxplot(x=data['EstimatedSalary']) p99=

data['EstimatedSalary'].quantile(0.99) p99

data = data[data['EstimatedSalary']<=p99]

sns.boxplot(x=data['EstimatedSalary']) data['EstimatedSalary'] =

 $np. where (data ['Estimated Salary'] > upper_limit, 652, data ['Estimated Salary']) \\$

data.shape

IQRv

NameError

Traceback (most recent call last)

<ipython-input-7-047ed65ff157> in <module>

----> 1 data.shape

NameError: name 'data' is not defined

7. CHECK FOR CATERGORICAL COLUMNS AND PERFORM ENCODING:

from sklearn.preprocessing import LabelEncoder,
OneHotEncoder le = LabelEncoder() oneh = OneHotEncoder()
data['Gender'] = le.fit_transform(data['Gender'])

NameError Traceback (most recent call last) <ipython-input-6-cdac9c1b5bfa> in <module>

2 le = LabelEncoder()

3 oneh = OneHotEncoder()

----> 4 data['Gender'] = le.fit_transform(data['Gender'])

NameError: name 'data' is not defined

data.head()

SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLE

```
X=data.drop(columns=['EstimatedSalary'],axis=1)
X.head()
Y=data['EstimatedSalary']
Y
```

9. SCALE THE INDEPENDENT VARIABLES:

from sklearn.preprocessing import scale
X=data.drop(columns=['Surname','Geography','Gender'],axis=1)
X.head()
X_scaled=pd.DataFrame(scale(X),columns=X.columns)
X_scaled.head()

10. SPLIT THE DATA INTO TRAINING AND TEST DATA:

from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X_scaled, Y, test_size = 0.3, random_state = 0)

X_train

X_train.shape

Y_train.shape

X_test

X_test.shape

Y_test

Y_test.shape