

Verifikation und Validierung

Vorlesung Modellbildung und Simulation WS 2019 – 2020 Prof. Dr.-Ing. Kai Furmans

Hummeln

Mathematische Modelle

	determiniert (nach Plan)	stochastisch (zufällig)
kontinuierlich (stetig)	Schwingungen z.B. von Regalbediengeräten	 Belastungen eines Bauteils während des Betriebs Wasserstand in einem Stausee
Diskontinuierlich (diskret)	Sortierprozesse z.B. Gridsorter Neuronale Netze	z.B. radioaktive Zerfallsprozesse Genetische Algorithmen Ausfälle / Störungen von Maschinen

Modellbildung am Beispiel Regalbediengerät

Versuch

Phys. Modell

Math. Modell

Bilder: IFL, Messtec Drives Automation

Diskret / Quasi-stetig

Ziel der Vorlesung

- Wie kann ich mir sicher sein, dass ein Modell nützliche Aussagen liefert?
- Zwei Fragen sind dabei zu stellen:
 - Ist das konzeptionelle Modell richtig implementiert?
 - ⇒ Verifikation
 (gebildet aus lat. veritas ,Wahrheit' und facere ,machen')
 - Ist das Modell geeignet, nützliche Aussagen zu liefern?
 - ⇒ Validierung (in Anlehnung an das englische validity 'Gültigkeit')

Ziel der Verifikation

- Stimmt das konzeptionelle Modell mit der Implementierung überein?
- Nicht im wissenschaftstheoretischen Sinne (nämlich hier nicht möglich)
- Sondern im Sinne des Nachweises der richtigen Umsetzung eines Konzeptes.

Verifikation – mögliche Fehler (1/2)

- Was könnte dabei schief gegangen sein?
 - gewollt: $y[i] = \sum_{i=1}^{n} x^{i}$ $\forall i = 1 \cdots n$

code:

```
for i = 0 to n do {
    y[i] = y[i-1]*x
}
```

- Falsche Implementierung
- Falsche Initialisierung
- Fehler in der Datenübertragung

Verifikation – mögliche Fehler (2/2)

Was könnte dabei schief gegangen sein?

https://www.youtube.com/watch?v=gp_D8r-2hwk

Verifikation – mögliche Fehler (2/2)

- Was könnte dabei schief gegangen sein?
 - Falsche Datentypen
 - Nicht angepasste Schrittweite

Verifikation – mögliche Fehler (2/2)

- Was könnte dabei schief gegangen sein?
 - Falsche Datentypen
 - Nicht angepasste Schrittweite
 - Laufzeit zu kurz
 - Falscher Solver

Verifikation – Mögliche Methoden (1/2)

- Formaler Beweis Thema der Informatik,
 - Setzt formale Spezifikation voraus

- Bei ereignisdiskreten Systemen:
 - Im Debug-Modus nachverfolgen

- Bei kontinuierlichen Systemen:
 - Animation

Verifikation – Mögliche Methoden (2/2)

Mit bekannten Daten vergleichen

gewollt:
$$y[i] = \sum_{i=1}^{n} x^{i} \quad \forall i = 1 \cdots n$$

- Was passiert beim Einsetzen trivialer Werte?
- Was passiert bei einfachen Werten?
- Von Hand / mit einem anderen Tool nachrechnen
- Was passiert beim Einsetzen von Extremwerten?
- Mit Daten aus der Literatur vergleichen

Ziel der Validierung

- Liefert das Modell nützliche Antworten auf die gestellten Fragen?
- All models are wrong but some are useful (George E.P. Box)

- Nach Popper ist ein Beweis nicht möglich
 - ein Modell ist aber so lange gültig, so lange es nicht widerlegt ist.
 - Diesen Beweis selber zu führen versuchen!

Validierung: Was kann alles schief gegangen sein?

- Zu große Vereinfachung
 - Wesentliche Einflüsse auf das Ergebnis nicht berücksichtigt?

Relativistische Effekte bei der Satellitennavigation

- Wegen der Geschwindigkeit des Satelliten (~ 463 m/s) verläuft die Zeit im Satelliten pro Tag um 7,06 µs langsamer
 - wegen der Zeitdilatation im Schwerfeld der Erde scheint die Zeit im Satelliten pro Tag um 45,57µs schneller zu vergehen
 - Gesamteffekt: $7,06\mu s 45,57\mu s = -38,51 \mu s$
 - Abweichung pro Tag 11,4 km
 - (siehe http://www.quantenwelt.de/technik/GPS/relativitaet.html)

Karlsruher Institut für Technologie

Validierung: Was kann alles schief gegangen sein?

- Zu große Vereinfachung
 - Wesentliche Einflüsse auf das Ergebnis nicht berücksichtigt?
- Ungenaue Abbildung
 - Wesentliche Einflüsse sind nicht genau genug abgebildet

Validierung: Was kann alles schief gegangen sein?

- Zu große Vereinfachung
 - Wesentliche Einflüsse auf das Ergebnis nicht berücksichtigt?
- Ungenaue Abbildung
 - Wesentliche Einflüsse sind nicht genau genug abgebildet

Abtastrate falsch

Leistungsmessung mit verschiedenen Messraten (rot: 1 Hz, blau: 3,2 kHz) Quelle: IFL

Validierung: Was kann alles schief gegangen sein?

- Zu große Vereinfachung
 - Wesentliche Einflüsse auf das Ergebnis nicht berücksichtigt?
- Ungenaue Abbildung
 - Wesentliche Einflüsse sind nicht genau genug abgebildet
- Abtastrate falsch
- Vergleichsdaten schlecht
 - z.B. bei Kalibrierung

Validierung: Fragestellung klären

Welche Daten interessieren?

Wie genau muss das Ergebnis sein?

Welche Betriebszustände müssen abgebildet werden?

Anschließend: Validierungsplanung

Validierung: Methoden

- Charakteristische Werte nutzen
- Vergleich mit anderen Modellen
- Vergleich mit gemessenen Daten
- Sensitivitätsanalyse

Messabweichungen I

- Systematische Messabweichung
 - Absolut (+ 1.5 mm) oder relativ (+ 20 %)
 - Sind durch Wiederholung der Messungen unter gleichen Bedingungen nicht erkennbar
 - Wenn Messabweichung bekannt, Korrektur über Korrektion K möglich:

$$x_{korr} = x + K$$

Beispiel

- Bei Messungen von Maßabweichungen bei einem Walzring
 - Im Sommer systematische Abweichung durch generell h\u00f6here Temperatur

Messabweichungen II

- Stochastische Messabweichung
 - Absolut (+/- 1.5 mm) oder relativ (+/- 20 %)
 - Führen bei Wiederholung der Messungen unter gleichen Bedingungen zu Streuung der Messwerte
 - Kann mittels statistischer Methoden in der Auswertung berücksichtigt werden

Beispiel

- Bei Messungen von Maßabweichungen bei einem Walzring
 - stochastische Abweichung wetterabhängig
 (z.B. Temperaturschwankung, Sonneneinstrahlung)

Messabweichungen III

- Ursachen
 - Messumgebung
 - Temperatur
 - Licht
 - Feuchtigkeit
 - Druck
 - Reinheit
 - Strahlung
 - Geräusche
 - Prüfstandsaufbau
 - Vibrationen

- Messobjekt
 - Messungen nicht am selben Objekt
 - Materialqualität, -reinheit
 - Maßabweichungen
 - Abnutzung / Alterung
- Messgerät
 - Generelle Messungenauigkeit
 - Kalibrierung / Einstellung
 - Defektes Messgerät
- Systematische und zufällige Fehler können bei einer Messung auch gleichzeitig auftreten

Stochastische Messabweichungen

 Wiederholte Messungen am selben Objekt führen zu verschiedenen Ergebnissen

Auf welchen Wert können Sie sich berufen?

Statistische Auswertung: Parametertests I

- Ihr Mitbewohner in der WG hat seine Körpertemperatur gemessen.
- Er behauptet, 37,5°C Körpertemperatur und damit leicht erhöhte Temperatur zu haben, deshalb ist er der Meinung, er wäre krank und Sie müssten sein Tutorium an seiner Stelle halten.

Statistische Auswertung: Parametertests II

- Nullhypothese
 - Die Normale K\u00f6rpertemperatur betr\u00e4gt 37,2\u00aac.
- Zufallsstichprobe
 - Mehrere Messungen mit digitalem Thermometer
- Gegenhypothesen
 - GH I (Mitbewohner): "Ich habe mindestens 37,5°C Körpertemperatur."
 - GH II (Sie): "Deine K\u00f6rpertemperatur ist nicht h\u00f6her als 37,0\u00a8C."
 - GH III (Wikipedia): "Zwischen 36,3 und 37,4°C ist normal."
- Vorgabe eines Signifikanzniveaus
 - Irrtumswahrscheinlichkeit → Fehlerwahrscheinlichkeit bei der Stichprobe

In der beurteilenden Statistik gibt es niemals ein Beweis einer Behauptung, stattdessen:

- Entweder gibt es keinen Grund zur Ablehnung der Hypothese ("Freispruch aus Mangel an Beweisen") oder
- die Hypothese wird zugunsten der Gegenhypothese mit einer gegebenen Wahrscheinlichkeit abgelehnt (Hypothese ist wahrscheinlich falsch).

Zentraler Grenzwertsatz

- Ein Stichprobenmittelwert \bar{X} aus n unabhängigen Zufallsvariablen X_1, X_2, \dots, X_n , die aus der selben Grundgesamtheit stammen (und deshalb den gleichen Mittelwert und die gleiche Varianz besitzen) ist normalverteilt.
- Dichtefunktion:
 - $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}$, mit Mittelwert μ und Standardabweichung σ

Ansatz

- Wie groß ist die Wahrscheinlichkeit, dass ein gemessenes Stichprobenmittel (mit Varianz) einer Grundgesamtheit mit einem wahren Mittelwert µ zufällig
 - innerhalb
 - oberhalb
 - unterhalb

vorgegebener Grenzen liegt.

Statistische Auswertung: Parametertests III

Du bist gesund Einseitige Tests

- Ich bin krank
- Wikipedia(zwischen 36,3 und 37,4°C ist normal)Zweiseitiger Test

Quelle: www.ifad.de

Statistische Auswertung: Parametertests IV

- Was sagen die Daten?
- Mittelwert $\mu = 37,20659893$
- Varianz $\sigma = 0.010653995$
- Stichprobengröße = 200

Gegenhypothese: Die Wahrscheinlichkeit, dass der wahre Mittelwert der Stichprobe (der Körpertemperatur) ≥37,5°C ist, beträgt

$$\int_{37.5}^{\infty} f(x) = \int_{37.5}^{\infty} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} e^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)} = 0.0000 \dots$$

Karlsruher Institut für Technologie

Hummeln – was ist hier nun das Problem gewesen?

