Elektronik Devreler LAB2 Rapor

MESUT ŞAFAK BILICI 17011086

a)

Thevenin devresini gerçekleyerek başlayalım,

$$R_{th} = RD_1||RD_2$$

$$R_{th} = \frac{RD_1RD_2}{RD_1 + RD_2}$$

$$V_B = E_{th} = \frac{RD_2}{RD_1 + RD} 15V$$

 ${\cal I}_B$ akımının formülünü KCL yaparak hesaplayalım.

$$V_B - R_{th}I_B - V_{BE} - I_E R_E = 0 \ [V_B = E_{th} \ , \ V_{BE} = 0.7 \ I_E = (\beta + 1)I_B...]$$

$$= V_B - R_{th}I_B - V_{BE} - (\beta + 1)I_E = 0$$

$$I_B = \frac{V_B - V_{BE}}{R_{th} + (\beta + 1)R_E}$$

Geriye I_E ve I_B 'yi bulmak gerekiyor. Bunun için ise β 'yı kullanacağız.

$$I_E = (\beta + 1)I_B$$

$$I_C = (\beta)I_B$$

Geriye ise I_{RD_1} ve I_{RD_2} kalıyor.

$$I_{RD_1} = \frac{15V - E_{th}}{RD_1}$$

$$I_{RD_2} = \frac{E_{th}}{RD_2}$$

Şimdi sırada değerleri hesaplamak kalıyor... Simülasyon sonucumuza göre $\beta\approx 27$. Yukarıda çıkardığımız formüllere değerlerimizi koyarsak sırasıyla istenen değerler bulunur:

$$R_{th} \approx 3428,6OHM$$

$$E_{th} = V_B \approx 6,43V$$

$$I_B = \frac{6,43-0.7}{3428,6+27\times1k} \approx 0,000182744A$$

$$I_C = \beta I_B = 27\times0,000182744\approx0,004934088A$$

$$I_E = (\beta+1)I_B \approx 0,005261903A$$

$$I_{RD_1} = \frac{15V-6,43}{8k} \approx 0,00107125A$$

$$I_{RD_2} = \frac{6,43}{6k} \approx 0,00080375A$$

$$V_{CE} = 15V - I_C R_C - I_E R_E \approx 15V - 0,004934088 \times 2k - 0,005261903 \times 1k$$

$$= -0,100079V$$

$$V_C = 15V - R_C I_C = 15V - 2000 *0,004934088 \approx 5,131824V$$

$$V_E = -V_{CE} + V_C = 0,100079 + 5,131824 \approx 5,231903V$$

b)

Figure 1: gerçeklenmiş devre.

c)

Figure 2: simülasyon devresi.

Devrede görüldüğü gibi $I_B=0.000182011$ ve $I_C=0.00492832$ O zaman simülasyona göre,

$$\beta = \frac{I_C}{I_B} = \frac{0.00492832}{0.000182011} \approx 27,077044794$$

 \mathbf{d}

İstenilen simülasyon sonuçları c şıkkında verilmiştir. Şimdi teorik sonuçlarımızla simülasyon sonuçlarımızı karışılaştıralım.