# Análise de MLP e CNN em Datasets Balanceados e Não Balanceados

José Cunha<sup>1</sup> e Marta Antunes<sup>2</sup>

Resumo Este trabalho investiga o desempenho de Perceptrons Multi-Camadas (MLPs) e Redes Neurais Convolucionais (CNNs) na classificação de imagens dermatológicas, em contextos com dados balanceados e desbalanceados. Os experimentos analisam o impacto do balanceamento, da função de perda e do otimizador no desempenho dos modelos. Observou-se que o desbalanceamento favorece classes majoritárias, enquanto o balanceamento melhora o equilíbrio. A combinação CrossEntropy com RMSprop foi a mais eficaz para CNNs, e CrossEntropy com Adam, para MLPs. No geral, as CNNs superaram os MLPs em desempenho.

**Keywords:** Perceptrons Multi-Camadas  $\cdot$  Redes Neurais Convolucionais  $\cdot$  Balanceamento de Dados  $\cdot$  Classificação de Imagens  $\cdot$  Aprendizado Profundo

# 1 Introdução

As Redes Neurais Convolucionais (CNNs) e os Perceptrons Multi-Camadas (MLPs) são arquiteturas fundamentais no processamento de imagens, com abordagens distintas. Enquanto as CNNs exploram a estrutura espacial através de convoluções e pooling, capturando características hierárquicas como bordas, texturas e padrões complexos diretamente da disposição dos pixels, os MLPs processam imagens convertidas em vetores unidimensionais, perdendo a informação topológica mas mantendo a capacidade de aprender relações não-lineares entre os dados, servindo assim como base para comparação de desempenho.

Neste projeto, comparamos o desempenho desses modelos na classificação de imagens dermatológicas, analisando o impacto do balanceamento de dados, as funções de perda e os otimizadores. Além da precisão, avaliamos a equilíbrio entre classes, essencial em cenários clínicos com distribuições desbalanceadas. O objetivo do nosso estudo é então esclarecer os benefícios e as restrições de cada arquitetura ao serem aplicadas a tarefas na área médica.

## 2 Fundamentação Teórica

## 2.1 Análise do Dataset

O conjunto de dados DermaMNIST apresenta um desbalanceamento significativo, com a classe "melanocytic nevi"dominando a maioria das amostras (aproximadamente 4700 no conjunto de treino). Em contraste, classes como "dermatofibroma" possuem apenas cerca de 100 amostras distribuídas entre os conjuntos de treino, validação e teste.



Figura 1. Distribuição das classes no conjunto de dados

<sup>&</sup>lt;sup>1</sup> uc2021223719@student.uc.pt

 $<sup>^2</sup>$  uc2021216180@student.uc.pt

Como mostra a Figura 1, esse desequilíbrio pode afetar negativamente o desempenho do modelo, gerando um viés em favor da classe majoritária e comprometendo a capacidade de classificação das classes com menos representatividade.

Em tarefas de classificação, esse tipo de desbalanceamento tende a direcionar as predições para as classes mais frequentes. Para reduzir esse problema, estratégias como o aumento de dados (data augmentation) podem ser empregadas com o objetivo de equilibrar a quantidade de amostras entre as classes.

## 2.2 Otimizadores e Funções de Perda

### – Otimizadores:

- Adam: Adapta as taxas de aprendizagem para cada parâmetro usando estimativas dos primeiros e segundos momentos dos gradientes. Combina as vantagens de AdaGrad e RMSProp.
- RMSprop: Mantém uma média móvel do quadrado dos gradientes para normalizar a atualização de pesos, sendo eficaz para problemas com dados esparsos.

## Funções de perda:

- CrossEntropy: Ideal para classificação multiclasse, mede a diferença entre distribuições de probabilidade preditas e reais.
- MultiMargin: Versão generalizada da margem máxima, útil quando se deseja enfatizar a separação entre classes.

# 3 Parte Experimental

## 3.1 Experimentos sem Balanceamento dos dados de Treino

**3.1.1** Número de Epochs Para determinar o número ideal de epochs, realizamos um treinamento inicial com hiperparâmetros estáticos.

No caso do MLP, utilizamos camadas fully connected com ativação ReLU, função de perda CrossEntropyLoss e otimizador Adam (com um learning rate inicial de 0.001 e weight decay de 1e-4). Usámos um scheduler que reduzia a learning rate a cada 20 épocas. O modelo foi treinado por 150 epochs, e observou-se que a loss e a accuracy de treinamento se estabilizaram por volta da epoch 130, indicando que treinar além disso não traria ganhos significativos.

Para a CNN, adotou-se uma arquitetura com três camadas convolucionais (32, 64 e 128 filtros) com batch normalization, ativação ReLU e max pooling 2x2, seguidas por camadas fully connected com dropout de 0.5. O treino foi feito por 120 epochs com o otimizador Adam (learning rate de 0.001). A estabilização das métricas ocorreu por volta da epoch 100, sendo este o valor que adotamos como padrão para os experimentos seguintes.

**3.1.2** Grid Search A grid search realizada teve como objetivo principal encontrar a combinação ideal de hiperparâmetros que maximizasse o desempenho dos modelos MLP e CNN no conjunto DermaMNIST, especialmente considerando o desafio do desbalanceamento de classes. A abordagem sistemática permitiu explorar metodicamente o espaço de parâmetros, mantendo uma estrutura flexível que se adapta às características específicas do dataset.

| Parâmetro                            | Valores Testados                                                                            |
|--------------------------------------|---------------------------------------------------------------------------------------------|
| Número de neurónios por hidden layer | [512, 256, 128], [256, 128, 64], [512, 256, 128, 64], [512, 512, 256], [64, 64, 64, 64, 64] |
| Taxa de aprendizagem                 | [0.001, 0.0001, 0.0005]                                                                     |
| Tamanho do batch                     | [64, 128, 256]                                                                              |
| Taxa de dropout                      | [0.05, 0.1]                                                                                 |

Tabela 1. Parâmetros testados na Grid Search do MLP

A Tabela 1 mostra que o espaço de busca teve 90 combinações possíveis  $(5 \times 3 \times 3 \times 2)$ . Para cada combinação, o modelo foi instanciado com a arquitetura Sequential, treinado com CrossEntropyLoss e o otimizador Adam, e avaliado no conjunto de validação usando o F1-score ponderado como critério principal. Os resultados foram registados num arquivo CSV para rastreamento e comparação.

As características da melhor configuração para o MLP encontrada foram:

- 4 hidden layers ([512, 256, 128, 64]): Camadas profundas permitem aprender características complexas, equilibrando a complexidade e a capacidade computacional.
- Taxa de aprendizagem moderada (0.0005): Proporciona uma convergência estável, evitando atualizações muito bruscas ou lentas.
- Batch size grande (256): Reduz a variância nas atualizações dos pesos e melhora a estabilidade do treinamento.
- Dropout reduzido (0.05): Regulariza o modelo sem perder muito da capacidade de aprendizado, ajudando a evitar overfitting.

| Parâmetro                        | Valores Testados       |
|----------------------------------|------------------------|
| Número de camadas convolucionais | [2, 3, 4]              |
| Número de filtros iniciais       | [32, 64, 128]          |
| Taxa de aprendizagem             | [0.005, 0.001, 0.0005] |
| Tamanho do batch                 | [64, 128, 256]         |

Tabela 2. Parâmetros testados na Grid Search da CNN

O espaço de busca totalizou 81 combinações possíveis  $(3 \times 3 \times 3 \times 3)$ . Para cada combinação de parâmetros, o modelo foi instanciado com a arquitetura FlexibleCNN e treinado com o otimizador Adam. A avaliação foi realizada no conjunto de validação utilizando como métricas principais a accuracy e o F1-score ponderado, sendo este último o critério prioritário para seleção. Todos os resultados foram armazenados com um ID único para permitir o rastreamento e comparação entre as diferentes configurações testadas.

As características da melhor configuração da CNN encontrada foram:

- Batch size grande (256): Proporcionou maior estabilidade durante o treino, reduzindo a variância nas atualizações dos pesos.
- 4 camadas convolucionais: Esta profundidade mostrou-se adequada para capturar características hierárquicas relevantes no conjunto de dados.
- Taxa de aprendizagem moderada (0.0005): Permitiu ajustes precisos nos pesos da rede, equilibrando velocidade de convergência e estabilidade do treinamento.
- 64 filtros iniciais: Esta configuração alcançou um bom equilíbrio entre capacidade computacional e poder de representação, extraindo features significativas sem excessiva complexidade.

**3.1.3** Desempenho da Melhor Configuração A melhor configuração no conjunto de validação do MLP obteve 76% de accuracy, com F1-score ponderado de 0.75. As classes majoritárias, como a classe 5 (F1=0.88), tiveram bom desempenho, enquanto as classes minoritárias, como a 3 (F1=0.24), apresentaram desempenho mais baixo. A MLP teve uma boa performance geral, mas o modelo ainda enfrenta desafios com classes minoritárias, evidenciados pela baixa performance de algumas categorias.



 ${\bf Figura~2.}$  Matriz de confusão no conjunto de validação do MLP

| Classe               | Precision | Recall | F1-score |
|----------------------|-----------|--------|----------|
| Actinic keratoses    | 0.45      | 0.45   | 0.45     |
| Basal cell carcinoma | 0.51      | 0.60   | 0.55     |
| Benign keratosis     | 0.51      | 0.43   | 0.47     |
| Dermatofibroma       | 0.40      | 0.17   | 0.24     |
| Melanoma             | 0.50      | 0.50   | 0.50     |
| Melanocytic nevi     | 0.87      | 0.90   | 0.88     |
| Vascular lesions     | 0.86      | 0.43   | 0.57     |
| Accuracy             |           | 0.76   |          |
| Macro avg            | 0.59      | 0.50   | 0.52     |
| Weighted avg         | 0.75      | 0.76   | 0.75     |

 ${\bf Figura\,3.}$ Relatório de classificação no conjunto de validação do MLP

A melhor configuração no conjunto de validação da CNN obteve 77% de accuracy, com F1-score ponderado de 0.77. As classes majoritárias, como a classe 5 (F1=0.89), tiveram bom desempenho, enquanto as minoritárias, como a classe 3 (F1=0.40), melhoraram moderadamente. A matriz de confusão indicou redução de falsos negativos em algumas classes. O treinamento mostrou estabilidade nas curvas de loss e accuracy, sem sinais de overfitting.



 ${\bf Figura~4.}$  Matriz de confusão no conjunto de validação da CNN

| Classe               | Precision | Recall | F1-score |
|----------------------|-----------|--------|----------|
| Actinic keratoses    | 0.44      | 0.42   | 0.43     |
| Basal cell carcinoma | 0.54      | 0.54   | 0.54     |
| Benign keratosis     | 0.57      | 0.50   | 0.53     |
| Dermatofibroma       | 0.58      | 0.53   | 0.40     |
| Melanoma             | 0.51      | 0.53   | 0.52     |
| Melanocytic nevi     | 0.88      | 0.90   | 0.89     |
| Vascular lesions     | 0.82      | 0.64   | 0.72     |
| Accuracy             |           | 0.77   |          |
| Macro avg            | 0.61      | 0.55   | 0.58     |
| Weighted avg         | 0.77      | 0.77   | 0.77     |

**Figura 5.** Relatório de classificação no conjunto de validação da CNN

**3.1.4** Testes com diferentes Funções de Perda e Otimizadores As combinações testadas consistem na combinação das funções de perda e otimizadores descritas na secção de fundamentação teórica.

**Tabela 3.** Resultados das combinações testadas (F1-score)

| Combinação             | MLP    | CNN    |
|------------------------|--------|--------|
| CrossEntropy + Adam    | 0.7314 | 0.7536 |
| CrossEntropy + RMSprop | 0.7131 | 0.7546 |
| MultiMargin + Adam     | 0.7225 | 0.7365 |
| MultiMargin + RMSprop  | 0.7055 | 0.7278 |

A combinação que apresentou o melhor desempenho para o MLP foi a utilização de  $\mathbf{CrossEntropy} + \mathbf{Adam}$ , alcançando um F1-score de 0.7314, enquanto que para a CNN a combinação  $\mathbf{CrossEntropy} + \mathbf{RMSprop}$  apresentou o melhor desempenho geral (F1=0.7546).

**3.1.5** Avaliação no Conjunto de Teste Submetemos o modelo com a melhor combinação de parâmetros da grid search e a melhor configuração de treino aos dados de teste não vistos durante o desenvolvimento.



Figura 6. Matriz de confusão no conjunto de teste do MLP

| Classe               | Precision | Recall | F1-score |
|----------------------|-----------|--------|----------|
| Actinic keratoses    | 0.40      | 0.41   | 0.40     |
| Basal cell carcinoma | 0.52      | 0.52   | 0.52     |
| Benign keratosis     | 0.48      | 0.41   | 0.45     |
| Dermatofibroma       | 0.43      | 0.13   | 0.20     |
| Melanoma             | 0.38      | 0.32   | 0.35     |
| Melanocytic nevi     | 0.84      | 0.89   | 0.86     |
| Vascular lesions     | 0.62      | 0.45   | 0.52     |
| Accuracy             |           | 0.73   |          |
| Macro avg            | 0.52      | 0.44   | 0.47     |
| Weighted avg         | 0.71      | 0.73   | 0.71     |

Figura 7. Relatório de classificação no conjunto de teste do MLP



| Classe               | Precision | Recall | F1-score |
|----------------------|-----------|--------|----------|
| Actinic keratoses    | 0.71      | 0.23   | 0.34     |
| Basal cell carcinoma | 0.42      | 0.41   | 0.41     |
| Benign keratosis     | 0.65      | 0.33   | 0.44     |
| Dermatofibroma       | 0.57      | 0.17   | 0.27     |
| Melanoma             | 0.53      | 0.26   | 0.35     |
| Melanocytic nevi     | 0.80      | 0.96   | 0.87     |
| Vascular lesions     | 0.59      | 0.69   | 0.63     |
| Accuracy             |           | 0.75   |          |
| Macro avg            | 0.61      | 0.44   | 0.47     |
| Weighted avg         | 0.72      | 0.75   | 0.71     |

Figura 8. Matriz de confusão no conjunto de teste da CNN

 ${\bf Figura\,9.}$ Relatório de classificação no conjunto de teste da CNN

- Accuracy: Em ambos os modelos, os valores obtidos foram coerentes com os da validação, indicando um baixo nível de overfitting.
- F1-score médio (weighted): 0.71 (impacto do desbalanceamento nas classes minoritárias).

#### Problemas Identificados:

- Viés para Classes Majoritárias: O modelo prioriza "melanocytic nevi", negligenciando classes críticas como melanoma e actinic keratoses.
- Confusão entre Lesões Benignas e Malignas: Algumas lesões malignas foram classificadas como benignas, o que representa um erro crítico em aplicações clínicas.
- Baixa Sensibilidade em Classes Raras: Classes com menos de 100 amostras (ex.: dermatofibroma) tiveram recall abaixo de 20%.
- **3.1.6 Conclusões** Nenhum dos modelos é confiável para detecção de cancro de pele (melanoma) e lesões précancerosas (actinic keratoses) devido à alta taxa de falsos negativos.

### 3.2 Experimentos com Balanceamento dos dados de Treino

O dataset DermaMNIST foi balanceado para garantir uma distribuição equilibrada entre as classes, utilizando as seguintes estratégias:

- Redução de Amostras: Para classes com mais de 1000 amostras, foi aplicada uma subamostragem aleatória, mantendo apenas 1000 exemplos por classe.
- Aumento de Dados (Data Augmentation): Para classes com menos de 1000 amostras, foram geradas novas imagens sintéticas através de transformações aleatórias, incluindo:
  - Rotação (até 15 graus)
  - Espelhamento horizontal (probabilidade de 50%)
  - Translação (até 10% da imagem)
  - Variação de brilho e contraste (20%)
  - Desfoque gaussiano (kernel de 3x3)
- Distribuição Final: Todas as classes foram balanceadas para conter exatamente 1000 amostras cada, resultando em um dataset homogêneo para treinamento.
- **3.2.1** Número de epochs Assim como no dataset desbalanceado, o número de épocas foi definido como 130 para o MLP e 100 para a CNN, após uma análise cuidadosa da estabilização da train loss, utilizando a mesma metodologia adotada anteriormente. O monitoramento contínuo da convergência do modelo garantiu que o treino fosse realizado até que a perda se estabilizasse num nível mínimo, sem sinais de overfitting significativo.

**3.2.2** Grid Search Semelhante ao que foi feito para o dataset desbalanceado, realizamos uma grid search com o objetivo de encontrar a combinação ideal de hiperparâmetros para maximizar o desempenho do MLP e da CNN. Utilizamos as mesmas arquiteturas definidas anteriormente, as mesmas combinações de teste e adotamos igualmente o F1-score ponderado como métrica de decisão.

As características da melhor configuração encontrada para o MLP foram:

- 4 hidden layers ([512, 256, 128, 64]): Camadas profundas permitem aprender características complexas, equilibrando a complexidade e a capacidade computacional.
- Taxa de aprendizagem moderada (0.0005): Proporciona uma convergência estável, evitando atualizações muito bruscas ou lentas.
- Batch size médio (128): Um tamanho de batch médio permite um bom equilíbrio entre a utilização de memória e a estabilidade na atualização dos pesos, contribuindo para uma aprendizagem mais eficiente.
- **Dropout moderado (0.1)**: O dropout ajuda a prevenir overfitting, desativando aleatoriamente 10% dos neurônios durante o treinamento, o que melhora a generalização do modelo.

As características da melhor configuração para a CNN encontrada foram as seguintes:

- Batch size grande (256): Proporcionou maior estabilidade durante o treino, reduzindo a variância nas atualizações dos pesos.
- 3 camadas convolucionais: Esta profundidade mostrou-se adequada para capturar características hierárquicas relevantes no conjunto de dados.
- Taxa de aprendizagem moderada (0.0005): Permitiu ajustes precisos nos pesos da rede, equilibrando velocidade de convergência e estabilidade do treinamento.
- 64 filtros iniciais: Esta configuração alcançou um bom equilíbrio entre capacidade computacional e poder de representação, extraindo features significativas sem excessiva complexidade.
- **3.2.3 Desempenho da Melhor Configuração** O modelo MLP apresentou desempenho desigual após o balanceamento dos dados, com uma accuracy geral de 65% (inicialmente, com o dataset desbalanceado encontrava-se a 76%). Apesar do ajuste no número de amostras por classe, algumas categorias continuam a apresentar dificuldades significativas, enquanto outras mostraram evolução positiva.



| Figura 10. | Matriz | de co | nfusão | no c | conjunto | de v | alidação | do |
|------------|--------|-------|--------|------|----------|------|----------|----|
| MLP        |        |       |        |      |          |      |          |    |

| Classe               | Precision | Recall | F1-score |
|----------------------|-----------|--------|----------|
| Actinic keratoses    | 0.37      | 0.33   | 0.35     |
| Basal cell carcinoma | 0.46      | 0.63   | 0.53     |
| Benign keratosis     | 0.37      | 0.51   | 0.43     |
| Dermatofibroma       | 0.62      | 0.42   | 0.50     |
| Melanoma             | 0.33      | 0.64   | 0.44     |
| Melanocytic nevi     | 0.93      | 0.70   | 0.80     |
| Vascular lesions     | 0.47      | 0.57   | 0.52     |
| Accuracy             |           | 0.65   |          |
| Macro avg            | 0.51      | 0.54   | 0.51     |
| Weighted avg         | 0.75      | 0.65   | 0.68     |

Figura 11. Relatório de classificação no conjunto de validação do MLP

#### Problemas Graves:

- Classe 0 mantém um desempenho fraco, o que indica que o modelo ainda falha a detetar muitos casos.
- Classe 4 apresenta uma precisão muito baixa (33%), o que sugere muitos falsos positivos.

## Pontos Positivos:

- Classe 1 (F1 = 0.53) apresenta um desempenho aceitável.
- Accuracy não se manteve estável após o balanceamento, tendo até diminuindo.

O modelo CNN apresenta desempenho desigual após balanceamento, com accuracy de 71%. A classe majoritária (5) domina com F1 = 0.85, enquanto classes minoritárias sofrem.



 ${\bf Figura~12.}$  Matriz de confusão no conjunto de validação da CNN

| Classe               | Precision | Recall | F1-score |
|----------------------|-----------|--------|----------|
| Actinic keratoses    | 0.30      | 0.18   | 0.23     |
| Basal cell carcinoma | 0.54      | 0.63   | 0.58     |
| Benign keratosis     | 0.50      | 0.42   | 0.46     |
| Dermatofibroma       | 0.45      | 0.42   | 0.43     |
| Melanoma             | 0.37      | 0.69   | 0.48     |
| Melanocytic nevi     | 0.91      | 0.80   | 0.85     |
| Vascular lesions     | 0.52      | 0.79   | 0.63     |
| Accuracy             |           | 0.71   |          |
| Macro avg            | 0.51      | 0.55   | 0.52     |
| Weighted avg         | 0.75      | 0.71   | 0.72     |

 ${\bf Figura~13.}$ Relatório de classificação no conjunto de validação da CNN

#### Problemas Graves:

- Classe 0 tem recall catastrófico (18%), indicando que 82% dos casos não são detectados.
- Classe 4 apresenta uma precisão muito baixa (37%), gerando muitos falsos positivos.

## Pontos Positivos:

- Classe 1 (F1 = 0.58) e Classe 6 (F1 = 0.63) apresentam desempenho aceitável.
- Accuracy mantém-se estável apesar do balanceamento.

O balanceamento aplicado não foi suficiente para resolver problemas críticos nas classes raras (0 e 3). A classe Actinic keratoses, em especial, manteve um desempenho insatisfatório, permanecendo inadequada para uso em contextos clínicos.

**3.2.4** Testes com diferentes Funções de Perda e Otimizadores Semalhante ao que foi feito anteriormente, foram testadas as 4 combinações de funções de perda e otimizadores. Podemos observar estas combinações na tabela abaixo, acompanhado dos respetivos resultados.

Tabela 4. Resultados das combinações testadas (F1-score)

| Combinação                          | MLP    | CNN    |
|-------------------------------------|--------|--------|
| CrossEntropy + Adam                 | 0.6814 | 0.6968 |
| CrossEntropy + RMSprop              | 0.6730 | 0.6881 |
| MultiMargin + Adam                  | 0.6623 | 0.6756 |
| ${\bf MultiMargin} + {\bf RMSprop}$ | 0.6640 | 0.6879 |

Em ambos os modelos a combinação  $\mathbf{CrossEntropy} + \mathbf{Adam}$  obteve o melhor desempenho geral. A diferença entre  $\mathbf{CrossEntropy} + \mathbf{Adam}$  e  $\mathbf{CrossEntropy} + \mathbf{RMSprop}$  foi marginal, o que sugere que o otimizador teve menos impacto que a função de perda. O baixo desempenho das combinações MultiMargin indica que esta função não foi adequada para este problema específico.

**3.2.5** Avaliação no Conjunto de Teste A MLP final utilizou a função de perda CrossEntropy, otimizador Adam (lr=0.0005), batch size de 128 e quatro camadas ocultas ([512, 256, 128, 64]) com dropout de 0.1, alcançando cerca de 68% no F1-score.

Apesar do treino com dados balanceados, o desempenho no teste ainda varia entre classes. A classe 5 (melanocytic nevi) domina os acertos (F1=0.79), contribuindo significativamente para a accuracy global (63%). Classes minoritárias, como "dermatofibroma" (F1=0.24), continuam com desempenho fraco.

A média macro de F1 (0.44) revela que o modelo ainda tem dificuldade em generalizar para classes menos representadas, indicando que estratégias adicionais podem ser necessárias.

Classe



| Classe               | 1 I CCISIOII | itccair | I I-SCOIC |
|----------------------|--------------|---------|-----------|
| Actinic keratoses    | 0.39         | 0.47    | 0.43      |
| Basal cell carcinoma | 0.43         | 0.56    | 0.49      |
| Benign keratosis     | 0.36         | 0.49    | 0.42      |
| Dermatofibroma       | 0.21         | 0.26    | 0.24      |
| Melanoma             | 0.30         | 0.57    | 0.40      |
| Melanocytic nevi     | 0.92         | 0.69    | 0.79      |
| Vascular lesions     | 0.27         | 0.45    | 0.33      |
| Accuracy             |              | 0.63    |           |
| Macro avg            | 0.41         | 0.50    | 0.44      |
| Weighted avg         | 0.73         | 0.63    | 0.66      |

Precision Recall F1-score

 ${\bf Figura~14.~Matriz~de~confusão~no~conjunto~de~teste~do~MLP}$ 

Figura 15. Relatório de classificação no conjunto de teste do MLP

A configuração final selecionada para a CNN após a otimização incluiu a função de perda CrossEntropy, o otimizador Adam com taxa de aprendizagem de 0.0005, tamanho do batch de 256, arquitetura de 3 camadas convolucionais e 64 filtros iniciais. Esta combinação demonstrou o melhor equilíbrio entre capacidade de generalização e eficiência computacional durante os experimentos.

O modelo, treinado com dados balanceados (1000 amostras por classe no treino), ainda apresenta disparidades significativas no conjunto de validação/teste (não balanceado). A classe 5 mantém bom desempenho (491 acertos, F1=0.82), mas classes minoritárias como 3 (0 acertos) e 6 (F1=0.58) continuam com dificuldades, indicando que o balanceamento não resolveu totalmente o problema.

O alto precision da classe 3 (0.86) com recall zero sugere que o modelo quase nunca a prevê, mas quando o faz, acerta. Já a classe 4 tem muitos falsos positivos (105), possivelmente por confusão com classes similares (ex: 2). A accuracy global (68%) é inflada pela classe 5 (majoritária), enquanto a média macro (F1=0.56) revela a fragilidade em classes menores.



 ${\bf Figura~16.~Matriz~de~confusão~no~conjunto~de~teste~da~CNN}$ 

| Classe               | Precision | Recall | F1-score |
|----------------------|-----------|--------|----------|
| Actinic keratoses    | 0.40      | 0.48   | 0.44     |
| Basal cell carcinoma | 0.48      | 0.62   | 0.54     |
| Benign keratosis     | 0.40      | 0.52   | 0.45     |
| Dermatofibroma       | 0.86      | 0.50   | 0.63     |
| Melanoma             | 0.35      | 0.66   | 0.46     |
| Melanocytic nevi     | 0.92      | 0.73   | 0.82     |
| Vascular lesions     | 0.70      | 0.50   | 0.58     |
| Accuracy             |           | 0.68   |          |
| Macro avg            | 0.59      | 0.57   | 0.56     |
| Weighted avg         | 0.76      | 0.68   | 0.71     |

 ${\bf Figura}\, {\bf 17.}$ Relatório de classificação no conjunto de teste da CNN

Embora o balanceamento artificial tenha equalizado a distribuição das classes durante o treino, a avaliação em dados reais (desbalanceados) revelou que o modelo mantém um viés significativo face a classes majoritárias. Isso sugere que estratégias como oversampling podem ser insuficientes para cenários clínicos, onde a detecção confiável de classes raras é crítica. A dificuldade em gerar imagens sintéticas realistas limita a eficácia do data augmentation, pois as variações criadas podem não capturar adequadamente a complexidade e diversidade dos cenários reais.

## 3.3 Outras Tentativas de Aprimoramento da CNN

Na busca por melhorar o desempenho do modelo, foram realizadas várias tentativas adicionais de otimização:

- Variação no Balanceamento de Dados: Testamos diferentes quantidades de amostras por classe (500, 1500 e 2000) durante o treinamento, mantendo o balanceamento artificial. No entanto, nenhuma dessas variações trouxe melhorias significativas nos resultados. Isso reforça que o simples aumento artificial de amostras não resolve o problema de representatividade quando as características intrínsecas das classes não são suficientemente distintas.
- Aumento de Neurônios e Profundidade: Adicionamos mais camadas e neurônios à arquitetura da CNN, visando capturar features mais complexas. Contudo, essa abordagem não melhorou o desempenho.

Estes resultados destacam dois desafios fundamentais:

- 1. A dificuldade inerente de trabalhar com datasets desbalanceados, onde o balanceamento artificial não garante melhoria automática no desempenho.
- 2. As limitações práticas na síntese de imagens, onde a criação de variações realistas e discriminativas se mostra complexa, especialmente para classes com poucos exemplos originais.

## 4 Conclusões e Trabalhos Futuros

Este estudo comparou o desempenho de MLPs e CNNs na classificação de imagens dermatológicas sob cenários balanceados e desbalanceados. Observou-se que o desbalanceamento favorece classes majoritárias, enquanto técnicas como subamostragem e aumento de dados ajudaram a mitigar esse viés — embora as classes minoritárias ainda apresentem desempenho inferior.

No geral , a combinação  $\mathbf{CrossEntropy} + \mathbf{Adam}$  foi a mais eficaz em ambos os classificadores. As CNNs superaram os MLPs, mostrando maior capacidade de extrair padrões espaciais relevantes.

Ainda assim, a classificação de classes raras permaneceu um desafio, indicando limitações do balanceamento artificial.

## Trabalhos futuros incluem:

- Uso de GANs para aumento de dados realista;
- Teste de arquiteturas avançadas (e.g., ResNet, EfficientNet);
- Aplicação de aprendizado por transferência;
- Inclusão de métricas mais robustas (e.g., AUC-ROC);
- Análise de viés e justiça nas predições.

O trabalho reforça a importância de abordagens mais sofisticadas para lidar com desbalanceamento em contextos clínicos sensíveis.

Nota: Durante o desenvolvimento deste trabalho, foram utilizadas ferramentas baseadas em Modelos de Linguagem de Grande Escala (LLMs) tanto na redação do texto quanto na elaboração e depuração do código, com o objetivo de melhorar a clareza, eficiência e qualidade geral da implementação.