<u>←Back</u>

OpenGL Angles to Axes

- Axis Rotations
- Angles to Axes

The rotation angles directly affects the first 3 columns of OpenGL

GL_MODELVIEW matrix, precisely *left*, *up* and *forward* axis elements. For example, if a unit vector along X axis, (1, 0, 0) is multiplied by an arbitrary 3x3 rotation matrix, then the result of the vector after rotation is;

$$\begin{pmatrix} m_0 & m_3 & m_6 \\ m_1 & m_4 & m_7 \\ m_2 & m_5 & m_8 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} m_0 \\ m_1 \\ m_2 \end{pmatrix}$$

It means the first column (m_0, m_1, m_2) of the rotation matrix represents the coordinates of the *left* axis after rotated. Similarly, the second column is the *up* axis and the third column is the *forward* axis.

This article describes how to contruct GL_MODELVIEW matrix with rotation \checkmark +Z angles.

Axis Rotations

First, we look at a rotation around each axis; +X, +Y and +Z. We project three axes onto a plane in 3 different ways, so the axis that we want to rotate is facing toward you. The positive rotation direction becomes counter clockwise (right hand rule).

Rotation about Left(X) Axis (Pitch)

Initial value of up(Y) and forward(Z) axes are (0, 1, 0) and (0, 0, 1). If left(X) axis rotates A degree, then new up(Y') axis becomes $(0, \cos A, \sin A)$ and forward(Z') becomes $(0, -\sin A, \cos A)$. The new axes are inserted as column components of the 3x3 rotation matrix. Then, the rotation matrix becomes:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix}$$

Rotation about Left(X) Axis

Rotation about Up(Y) Axis (Yaw, Heading)

Now, we rotate around up vector, which is facing toward you, with B angle . Left(X) axis is transformed from (1, 0, 0) to X' (cosB, 0, -sinB). And forward(Z) axis is from (0, 0, 1) to Z' (sinB, 0, cosB).

$$\begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix}$$

Rotation about Up(Y) Axis

Rotation about Forward(Z) Axis (Roll)

If we rotate forward(Z) axis with angle C degree, the original left(X) (1, 0, 0) axis becomes X' (cosC, sinC, 0), and up(Y) (0, 1, 0) axis becomes Y' (-sinC, cosC, 0).

$$\begin{pmatrix}
\cos C & -\sin C & 0 \\
\sin C & \cos C & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Rotation about Forward(Z) Axis

Angles To Axes

We can combine these separate axis rotations into one matrix by multiplying above 3 matrices together. Note that multiplication of matrices is not commutative, so a different order of matrix multiplication results in a different outcome. There are 6 different combinations are possible; $R_xR_vR_z$, $R_xR_zR_v$, $R_vR_zR_x$, $R_vR_zR_x$, $R_zR_xR_v$, and $R_zR_vR_x$.

The left column of the combined rotation matrix is the *left* axis after rotated, the middle column is the *up* axis, and the right column is the *forward* axis.

$$\begin{split} R_X R_Y R_Z \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix} \begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix} \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos B & 0 & \sin B \\ \sin A \sin B & \cos A & -\sin A \cos B \\ -\cos A \sin B & \sin A & \cos A \cos B \end{pmatrix} \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos B \cos C & -\cos B \sin C & \sin B \\ \sin A \sin B \cos C + \cos A \sin C & -\sin A \sin B \sin C + \cos A \cos C & -\sin A \cos B \\ -\cos A \sin B \cos C + \sin A \sin C & \cos A \sin B \sin C + \sin A \cos C & \cos A \cos B \end{pmatrix} \end{split}$$

$$\begin{split} R_X R_Z R_Y \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix} \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix} \\ &= \begin{pmatrix} \cos C & -\sin C & 0 \\ \cos A \sin C & \cos A \cos C & -\sin A \\ \sin A \sin C & \sin A \cos C & \cos A \end{pmatrix} \begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix} \\ &= \begin{pmatrix} \cos C \cos B & -\sin C & \cos C \sin B \\ \cos A \sin C \cos B + \sin A \sin B & \cos A \cos C & \cos A \sin C \sin B - \sin A \cos B \\ \sin A \sin C \cos B - \cos A \sin B & \sin A \cos C & \sin A \sin C \sin B + \cos A \cos B \end{pmatrix} \end{split}$$

$$\begin{split} R_Y R_X R_Z \\ &= \begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix} \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos B & \sin B \sin A & \sin B \cos A \\ 0 & \cos A & -\sin A \\ -\sin B & \cos B \sin A & \cos B \cos A \end{pmatrix} \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos B \cos C + \sin B \sin A \sin C & -\cos B \sin C + \sin B \sin A \cos C & \sin B \cos A \\ \cos A \sin C & \cos A \cos C & -\sin A \\ -\sin B \cos C + \cos B \sin A \sin C & \sin B \sin C + \cos B \sin A \cos C & \cos B \cos A \end{pmatrix} \end{split}$$

$$\begin{split} R_Y R_Z R_X \\ &= \begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix} \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix} \\ &= \begin{pmatrix} \cos B \cos C & -\cos B \sin C & \sin B \\ \sin C & \cos C & 0 \\ -\sin B \cos C & \sin B \sin C & \cos B \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix} \\ &= \begin{pmatrix} \cos B \cos C & -\cos B \sin C \cos A + \sin B \sin A & \cos B \sin C \sin A + \sin B \cos A \\ \sin C & \cos C \cos A & -\cos C \sin A \\ -\sin B \cos C & \sin B \sin C \cos A + \cos B \sin A & -\sin B \sin C \sin A + \cos B \cos A \end{pmatrix} \end{split}$$

```
\begin{split} R_Z R_X R_Y \\ &= \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix} \begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix} \\ &= \begin{pmatrix} \cos C & -\sin C \cos A & \sin C \sin A \\ \sin C & \cos C \cos A & -\cos C \sin A \\ 0 & \sin A & \cos A \end{pmatrix} \begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix} \\ &= \begin{pmatrix} \cos C \cos B - \sin C \sin A \sin B & -\sin C \cos A & \cos C \sin B + \sin C \sin A \cos B \\ \sin C \cos B + \cos C \sin A \sin B & \cos C \cos A & \sin C \sin B - \cos C \sin A \cos B \\ -\cos A \sin B & \sin A & \cos A \cos B \end{pmatrix} \end{split}
```

$$\begin{split} R_Z R_Y R_X \\ &= \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix} \\ &= \begin{pmatrix} \cos C \cos B & -\sin C & \cos C \sin B \\ \sin C \cos B & \cos C & \sin C \sin B \\ -\sin B & 0 & \cos B \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix} \\ &= \begin{pmatrix} \cos C \cos B & -\sin C \cos A + \cos C \sin B \sin A & \sin C \sin A + \cos C \sin B \cos A \\ \sin C \cos B & \cos C \cos A + \sin C \sin B \sin A & -\cos C \sin A + \sin C \sin B \cos A \\ -\sin B & \cos B \sin A & \cos B \cos A \end{pmatrix} \end{split}$$

Here is a C++ example code for $R_x R_y R_z$ combination. It performs 3 rotations in order of R_z (roll), R_y (yaw) then R_x (pitch). The results of *left*, *up* and *forward* axis can be used to construct GL MODELVIEW matrix.

```
void anglesToAxes(const Vector3 angles, Vector3& left, Vector3& up, Vector3& forward)
{
    const float DEG2RAD = 3.141593f / 180;
    float sx, sy, sz, cx, cy, cz, theta;
    // rotation angle about X-axis (pitch)
theta = angles.x * DEG2RAD;
    sx = sinf(theta);
cx = cosf(theta);
    // rotation angle about Y-axis (yaw)
    theta = angles.y * DEG2RAD;
    sy = sinf(theta);
    cy = cosf(theta);
    // rotation angle about Z-axis (roll)
theta = angles.z * DEG2RAD;
    sz = sinf(theta);
    cz = cosf(theta);
     // determine left axis
    left.x = cy*cz;
left.y = sx*sy*cz + cx*sz;
    left.z = -cx*sy*cz + sx*sz;
    // determine up axis
    up.x = -cy*sz;
up.y = -sx*sy*sz + cx*cz;
    up.z = cx*sy*sz + sx*cz;
    // determine forward axis
    forward.x = sy;
forward.y = -sx*cy;
forward.z = cx*cy;
}
```

© 2008-2015 Song Ho Ahn (안성호)

<u>←Back</u>