Билет № 9. Теорема о единственном частичном пределе.

 $\forall \{x_n\}$ числовая последовательность, $A \in \overline{\mathbb{R}}$. Следующие условия эквивалентны:

$$1) \exists \lim_{n \to \infty} x_n = A$$

2) множество частичных пределов последовательности равно $\{A\}$

3)
$$\overline{\lim}_{n\to\infty} x_n = \underline{\lim}_{n\to\infty} x_n = A$$

Доказательство:

 $\mathbf{1}\Rightarrow\mathbf{2}$ Пусть $\{x_{n_k}\}$ — произвольная подпоследовательность.

 $\exists \lim x_n = A \Rightarrow \forall \varepsilon > 0 \ \exists N \colon \forall n \ge N \Rightarrow |x_n - A| < \varepsilon.$

Тогда для $\{x_{n_k}\}$ $\exists K : \forall k \geq K \Rightarrow n_k \geq N$, и значит $|x_{n_k} - A| < \varepsilon$.

Следовательно, $x_{n_k} \to A$.

 $\mathbf{2}\Rightarrow\mathbf{3}$ Верхний предел = $\sup\{\mathsf{Ч\Pi}\}=A$. Нижний предел = $\inf\{\mathsf{Ч\Pi}\}=A$.

 $3 \Rightarrow 1$

Случай 1: $A \in \mathbb{R}$

$$\underline{\lim}_{n \to \infty} x_n = \sup_n \inf_{k \ge n} x_k$$

$$\overline{\lim_{n \to \infty}} x_n = \inf_n \sup_{k \ge n} x_k$$

$$y_n = \sup_{k \ge n} x_k \in \mathbb{R} \ (\forall n \in \mathbb{N})$$

$$z_n = \inf_{k \ge n} x_k \in \mathbb{R} \ (\forall n \in \mathbb{N})$$

 $\Rightarrow \{y_n\},\,\{z_n\}$ - числовые последовательности, $\lim y_n=\lim z_n=A.$

 $z_n \le x_n \le y_n$, по теореме о двух миллиционерах $\exists \lim x_n = A$.

Замечание: $z_n = \inf_{k > n} x_k \in \mathbb{R} \ (\forall n \in \mathbb{N})$

 \mathbf{z}_n монотонно возрастает, т.к. при переходе от z_n к z_{n+1} мы удаляем элемент из множества, по которому берётся inf, что может только увеличить точную нижнюю грань.

Пример: $\{x_n\} = \{3, 1, 4, 1, 5, 9, \dots\}$ $z_1 = \inf\{3, 1, 4, 1, 5, 9, \dots\} = 1$ $z_2 = \inf\{1, 4, 1, 5, 9, \dots\} = 1$ $z_3 = \inf\{4, 1, 5, 9, \dots\} = 1$ $z_4 = \inf\{1, 5, 9, \dots\} = 1$ $z_5 = \inf\{5, 9, \dots\} = 5$ $z_6 = \inf\{9, \dots\} = 9$

Видно, что z_n не убывает: $1 \le 1 \le 1 \le 1 \le 5 \le 9 \le \dots$

Аналогично, $y_n = \sup_{k \geq n} x_k \in \mathbb{R} \ (\forall n \in \mathbb{N})$ монотонно убывает, поскольку при переходе к следующему "хвосту"мы удаляем элемент, и супремум может только уменьшиться (или остаться прежним).

Случай 2: $A = +\infty$

$$\underline{\lim}_{n\to\infty} x_n = +\infty \Rightarrow \sup_n z_n = +\infty$$
, где $z_n = \inf_{k\geq n} x_k$

 z_n монотонно возрастает \Rightarrow по теореме Вейерштрасса $\exists \lim z_n = +\infty$.

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n \ge N(\varepsilon) \Rightarrow z_n > \frac{1}{\varepsilon}$$

Вспоминаем, что $z_n=infx_k: k>=n$ По определению инфимума: $x_k>\frac{1}{\varepsilon}$ $\forall k\geq n$

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall k \ge N(\varepsilon) \Rightarrow x_k > \frac{1}{\varepsilon}$$

 $\Rightarrow \lim x_n = +\infty.$

Случай 3: $A = -\infty$ — аналогично.