## Optimization Assignment

Brady Metherall

16 December 2019

**Problem 1.** The new system consist of

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \qquad i \in M_0, \tag{1}$$

$$\sum_{j}^{n} (a_{ik}a_{lj} - a_{lk}a_{ij})x_{j}, \le a_{ik}b_{l} - a_{lk}b_{i} \qquad (i,l) \in M_{+} \times M_{-}.$$
 (2)

The coefficient of  $x_k$  in (1) and (2) is 0 since  $i \in M_0$  and  $a_{ik}a_{lk} - a_{lk}a_{ik} = 0$ , respectively. Therefore,  $x_k$  is not in this new system.

## Problem 2.

i) If both systems had a solution, that would imply

$$\mathbf{0}^T = yA,$$

$$0 = (yA)x,$$

$$= y(Ax),$$

$$\leq yb,$$

$$< 0,$$

which is a contradiction. Thus, both systems cannot have solutions.

ii) There must exist a  $k_*$  such that  $d_{k_*} < 0$ , otherwise, our new system is in fact consistent.

## Problem 3.

i) Both  $y_t$  and  $z_t$  are binary variables. If production occurs within period t, then  $y_t = 1$ . Furthermore, if production is switched on within period t, then  $z_t = 1$ .

ii)

$$\begin{pmatrix} \mathbf{0}^T & \mathbf{1}^T \\ I - L & -I \\ -I & I \\ I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix} \le \begin{pmatrix} k \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix} \tag{3}$$

$$\begin{pmatrix} \mathbf{0} & I - L^T & -I \\ \mathbf{1} & -I & I \end{pmatrix} \tag{4}$$

## Problem 4.

i) The constraint matrix is the vertex-edge incidence matrix, A. Therefore, each column contains exactly two 1s. We can then choose the partitions to be  $M_1 = V_1$  and  $M_2 = V_2$ , and the constraint matrix is totally unimodular.

ii) The relaxation of the LP is

$$\max_{x} \sum_{e \in E} x_e,$$
s.t.  $Ax \le 1$ , (5)
$$x_e \ge 0.$$

The dual is then given by

$$\min_{y} \sum_{v \in V} y_{v},$$
s.t  $A^{T}y \ge 1$ , (6)
$$y_{v} \ge 0$$
.

Since  $A^T$  is still totally unimodular this solves the IP problem as well. Additionally, for the minimum cardinality node covering, we do not require  $y_v$  to be greater than one, and so  $y_v \in \{0,1\}$ .

- iii) We can find trivial feasible solutions to (5) and (6) is the empty matching and the full graph. Then by the Strong Duality Theorem and since A is totally unimodular, König's Theorem holds.
  - Problem 5.
  - Problem 6.
  - Problem 7.
  - Problem 8.
  - Problem 9.