<RO:BIT ROS2 - 4일차 과제1, 2 보고서>

작성자: 박기홍

직책: 19기 예비 단원

소속: RO:BIT 지능 팀

작성일: 2024년 11월 4일

목차

- 1. 요약
- 2. 관련 이론 및 개념
- 3. 참고 문헌

1. 요약

이 보고서는 OpenCV에 대한 보고서로, OpenCV 관련 함수와 기능, 원리에 대해 공부한 내용을 포함하고 있다.

2. 관련 이론 및 개념

2.1. ROS Parameter

ROS 파라미터는 노드 내부의 파라미터 서버를 통해 외부의 파라미터 클라이언트와 통신하여 다양한 파라미터를 설정할 수 있다. 각 노드는 고유한 파라미터 서버를 가지며, 이를 통해 노드의 내부 및 외부에서 손쉽게 파라미터를 지정하거나 변경할 수 있다.

2.1.1. 명령어 예시

```
      $ ros2 param list: 각 노드의 파라미터를 확인

      $ ros2 param get <노드명> <파라미터명>: 특정 파라미터 값을 불러옴

      $ ros2 param set <노드명> <파라미터명> <값>: 파라미터 값을 설정

      $ ros2 param dump <노드명> --output-dir <경로>: 파라미터 파일 저장
```

2.2.OpenCV 색상 형식

OpenCV는 다양한 이미지 색상 형식을 제공한다. 각 색상 형식에 따라 이미지의 표현 방식이 다르다.

- Grayscale: 각 픽셀이 0~255 사이의 값을 가지며, 흰색(255)과 검정색(0)을 표현
- Binary: 0과 255로만 구성된 흑백 이미지

[Binary Image]

- RGB: 각 픽셀이 RED, GREEN, BLUE 세 가지 값을 통해 컬러를 표현
- **HSV**: 색상(Hue), 채도(Saturation), 명도(Value)로 색을 표현하여 색 판단이 용이

2.3.OpenCV 이미지 처리 기능

이미지 전처리 및 후처리를 위해 다양한 OpenCV 기능을 사용할 수 있다.

- 가우시안 블러: 이미지의 노이즈를 줄이기 위해 가우시안 함수 적용
- 침식(Erode) 및 팽창(Dilate): 이미지의 특정 요소를 강조하거나 줄이기 위해 사용
- 관심영역(ROI): 이미지의 특정 영역을 마스크 처리하여 강조
- Canny: 이미지 엣지 감지

[Canny가 적용된 이미지]

• Houghline: 이미지에 직선을 표시하여 선 형태 감지

2.4 OpenCV 이미지 처리 원리

2.4.1. 가우시안 블러(cv::GaussianBlur)

가우시안 블러는 이미지의 노이즈를 제거하거나 부드럽게 만들기 위해 사용되는 필터링 기법이다. 가우시안 함수라는 수학적 모델을 이용하여 이미지의 중심에서 멀어질수록 픽셀 값의 영향이 줄어들게 만든다고 한다.

2.4.1.1. 원리

가우시안 분포 함수에 기반하여 주변 픽셀의 가중 평균을 계산한다. 이미지의 중앙 픽셀은 영향을 많이받고, 주변으로 갈수록 적게 받아 부드러운 블러링이 적용되는 원리다.

2.4.1.2. 구조

```
cv::GaussianBlur(src, dst, ksize, sigmaX, sigmaY);
```

- src: 입력된 이미지다.
- dst: 가우시안 블러가 적용된 결과 이미지다.
- **ksize**: 필터 커널 크기(예: cv::Size(3,3)). 홀수여야 하고, 크기가 클수록 블러 효과가 강해진다.
- **sigmaX**, **sigmaY**: X, Y 방향의 표준 편차. sigmaY를 0으로 설정하면 sigmaX와 동일하다.

2.4.1.3. 예제

```
cv::Mat input_image; // 입력 이미지
cv::Mat blurred_image;
cv::GaussianBlur(input_image, blurred_image, cv::Size(7, 7), 1.5);
```

2.4.2. 침식과 팽창 (cv::erode, cv::dilate)

erode와 dilate는 이미지의 경계를 줄이거나 확장하는 데 사용된다.

2.4.2.1. 원리

침식(Erosion): 커널이 적용될 때, 객체 영역이 줄어들도록 흰색 픽셀을 검정색으로 변경한다. 팽창(Dilation): 커널이 적용될 때, 객체 영역이 확장되도록 검정색 픽셀을 흰색으로 변경한다.

2.4.2.2. 구조

cv::erode(침식)

```
cv::erode(src, dst, kernel, anchor, iterations, borderType,
borderValue);
```

• src: 입력 이미지.

- dst: 침식이 적용된 결과 이미지.
- **kernel**: 구조 요소로 사용할 커널. 크기와 형태에 따라 침식 효과가 달라지며, cv::getStructuringElement로 생성할 수 있다.
- anchor: 커널의 기준점. 기본값은 (-1, -1)로 중앙을 의미한다.
- iterations: 침식 반복 횟수.
- borderType: 가장자리 픽셀 처리 방식.
- borderValue: 가장자리 픽셀 값.

cv::dilate(팽창)

```
cv::dilate(src, dst, kernel, anchor, iterations, borderType,
borderValue);
```

2.4.2.3. 예제

```
cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,
5));
cv::erode(input_image, eroded_image, kernel);
cv::dilate(eroded_image, dilated_image, kernel);
```

2.4.3. 관심영역 (cv::Rect roi)

관심영역은 이미지에서 특정 영역을 추출하기 위해 사용되는 사각형 객체이다. 관심영역(ROI)을 설정하여 해당 부분만 집중적으로 처리하거나 분석할 수 있다.

2.4.3.1. 원리

이미지의 특정 부분만 마스크 처리하여 관심 영역으로 설정한다. 관심영역 외부의 데이터는 무시되는 원리이다.

2.4.3.2. 구조

```
cv::Rect roi(x, y, width, height);
```

- cv::Rect: OpenCV에서 사각형을 지정하는 클래스
- roi: 객체 이름
- x, y: ROI의 왼쪽 상단 모서리 좌표.
- width, height: ROI의 너비와 높이.

2.4.3.3. 예제

```
cv::Rect roi(50, 50, 200, 200); // x, y 좌표와 width, height 설정 cv::Mat roi_image = input_image(roi); // input_image에서 지정된 ROI 영역을 잘라내어 roi_image에 저장
```

2.4.4. Canny 엣지 검출 (cv::Canny)

Canny는 이미지의 경계선을 감지하기 위한 엣지 검출 메서드이다. 이미지에서 중요한 윤곽선만을 추출하여 객체를 더욱 뚜렷하게 구분할 수 있다.

2.4.4.1. 원리

- 1. 노이즈 제거(가우시안 블러 사용)
- 2. 이미지 기울기 계산
- 3. 비최대 억제: 가장 강한 엣지만 유지
- 4. 이중 임계값을 통해 강한 엣지와 약한 엣지를 구분하여 엣지를 감지

2.4.4.2. 구조

cv::Canny(src, dst, threshold1, threshold2, apertureSize, L2gradient);

- src: 입력 이미지.
- dst: 엣지 검출 결과 이미지.
- threshold1, threshold2: 낮은 임계값과 높은 임계값으로, 엣지로 판단할 픽셀 경계를 설정한다.
- apertureSize: 소벨 연산에서 커널의 크기 (3, 5, 7 등 홀수여야 함). 기본값은 3이다.

• **L2gradient**: true로 설정하면 정확한 L2 norm을 사용해 경계를 계산한다. 기본값은 false이다.

2.4.4.3. 예제

cv::Canny(input_image, edges, 100, 200); // 임계값 100과 200을 설정

2.4.5. HoughLinesP(cv::HoughLinesP)

HoughLinesP는 이미지에서 직선을 검출하는 함수로, 특정 길이와 각도를 가진 직선만 검출할 수 있다.

2.4.5.1. 원리

이미지의 직선 후보를 매개변수 공간에서 투표 방식으로 검출한다. 확률적 허프 변환을 사용하여 계산속도를 높이고, 지정한 최소 길이와 최대 간격을 기준으로 선분을 찾는 원리이다.

2.4.5.2. 구조

cv::HoughLinesP(src, lines, rho, theta, threshold, minLineLength,
maxLineGap);

- src: 엣지 검출이 된 이미지.
- lines: 검출된 선을 저장할 벡터.
- rho: 매개변수의 거리 해상도(픽셀 단위).
- theta: 각도 해상도(라디안 단위).
- threshold: 선으로 간주될 최소 교차점 수.
- minLineLength: 검출할 직선의 최소 길이.
- maxLineGap: 직선으로 인식할 점 사이의 최대 거리.

2.4.5.3. 예제

cv::Mat edges; // 엣지 검출 결과를 저장할 행렬 생성

```
cv::Canny(input_image, edges, 100, 200); // Canny 엣지 검출 수행 (임계값 100과 200 설정)
std::vector<cv::Vec4i> lines; // 검출된 선분을 저장할 벡터 (각 선분은 시작점과 끝점의 좌표를 가진 Vec4i 형태)
cv::HoughLinesP(edges, lines, 1, CV_PI / 180, 50, 50, 10); // 확률적 하프 변환을 사용하여 선분을 검출
```

*cv::Vec4i는 OpenCV에서 사용하는 벡터 형식 중 하나이다. 4개의 정수를 저장할 수 있는 자료형이다. 선분의 시작점과 끝점 좌표를 저장하는 데 자주 사용된다. 시작점(x1, y1), 끝점(x2, y2)

3. 참고 문헌

- 버건디 팩토리. "[OpenCV] cv::Gaussian Blur 함수 사용하기".Tistory.
 https://nowtimeisthat.tistory.com/16
- OpenCV. "Image Filtering",
 https://docs.opencv.org/4.5.2/d4/d86/group imgproc filter.html#gaabe8c836
 e97159a9193fb0b11ac52cf1
- 김진혁, "6. OpenCV C++ 이미지 침식,팽창 (erode, dilate) 를 통해 노이즈 제거, 없는 부분 채우기", https://m.blog.naver.com/kristoper12/221860061025

•