Section 1.2

Row Reduction and Echelon Forms

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix.

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in row echelon form if

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in row echelon form if

1. All zero rows are at the bottom.

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in row echelon form if

- 1. All zero rows are at the bottom.
- 2. Each leading nonzero entry of a row is to the *right* of the leading entry of the row above.

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in row echelon form if

- 1. All zero rows are at the bottom.
- Each leading nonzero entry of a row is to the *right* of the leading entry of the row above.
- 3. Below a leading entry of a row, all entries are zero.

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in row echelon form if

- 1. All zero rows are at the bottom.
- 2. Each leading nonzero entry of a row is to the *right* of the leading entry of the row above.
- 3. Below a leading entry of a row, all entries are zero.

Picture:

$$\begin{pmatrix} \star & \star & \star & \star & \star \\ 0 & \star & \star & \star & \star \\ 0 & 0 & 0 & \star & \star \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} \star = \text{any number} \\ \star = \text{any nonzero number} \\ \end{array}$$

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in row echelon form if

- 1. All zero rows are at the bottom.
- Each leading nonzero entry of a row is to the *right* of the leading entry of the row above.
- 3. Below a leading entry of a row, all entries are zero.

Picture:

$$\begin{pmatrix} \star & \star & \star & \star & \star \\ 0 & \star & \star & \star & \star \\ 0 & 0 & 0 & \star & \star \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \star = \text{any number}$$

Definition

A **pivot** \star is the first nonzero entry of a row of a matrix in row echelon form.

A matrix is in **reduced row echelon form** if it is in row echelon form, and in addition,

A matrix is in ${\bf reduced\ row\ echelon\ form\ }$ if it is in row echelon form, and in addition,

4. The pivot in each nonzero row is equal to 1.

A matrix is in **reduced row echelon form** if it is in row echelon form, and in addition,

- 4. The pivot in each nonzero row is equal to 1.
- 5. Each pivot is the only nonzero entry in its column.

A matrix is in ${\bf reduced\ row\ echelon\ form\ }$ if it is in row echelon form, and in addition,

- 4. The pivot in each nonzero row is equal to 1.
- 5. Each pivot is the only nonzero entry in its column.

Picture:

$$\begin{pmatrix} 1 & 0 & \star & 0 & \star \\ 0 & 1 & \star & 0 & \star \\ 0 & 0 & 0 & 1 & \star \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} \star = \text{any number} \\ 1 = \text{pivot} \\ \end{array}$$

A matrix is in ${\bf reduced\ row\ echelon\ form\ }$ if it is in row echelon form, and in addition,

- 4. The pivot in each nonzero row is equal to 1.
- 5. Each pivot is the only nonzero entry in its column.

Picture:

$$\begin{pmatrix} \mathbf{1} & 0 & \star & 0 & \star \\ 0 & \mathbf{1} & \star & 0 & \star \\ 0 & 0 & 0 & \mathbf{1} & \star \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} \star = \mathsf{any} \; \mathsf{number} \\ \mathbf{1} = \mathsf{pivot} \\ \end{pmatrix}$$

Note: Echelon forms do not care whether or not a column is augmented. Just ignore the vertical line.

A matrix is in **reduced row echelon form** if it is in row echelon form, and in addition,

- 4. The pivot in each nonzero row is equal to 1.
- 5. Each pivot is the only nonzero entry in its column.

Picture:

$$\begin{pmatrix} \mathbf{1} & 0 & \star & 0 & \star \\ 0 & \mathbf{1} & \star & 0 & \star \\ 0 & 0 & 0 & \mathbf{1} & \star \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} \star = \text{any number} \\ \mathbf{1} = \text{pivot} \\ \end{array}$$

Note: Echelon forms do not care whether or not a column is augmented. Just ignore the vertical line.

Question

Can every matrix be put into reduced row echelon form only using row operations?

A matrix is in **reduced row echelon form** if it is in row echelon form, and in addition,

- 4. The pivot in each nonzero row is equal to 1.
- 5. Each pivot is the only nonzero entry in its column.

Picture:

$$\begin{pmatrix} \mathbf{1} & 0 & \star & 0 & \star \\ 0 & \mathbf{1} & \star & 0 & \star \\ 0 & 0 & 0 & \mathbf{1} & \star \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} \star = \mathsf{any} \; \mathsf{number} \\ \mathbf{1} = \mathsf{pivot} \\ \end{pmatrix}$$

Note: Echelon forms do not care whether or not a column is augmented. Just ignore the vertical line.

Question

Can every matrix be put into reduced row echelon form only using row operations?

Answer: Yes! Stay tuned.

Why is this the "solved" version of the matrix?

Why is this the "solved" version of the matrix?

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 \\
0 & 1 & 0 & | & -2 \\
0 & 0 & 1 & | & 3
\end{pmatrix}$$

is in reduced row echelon form. It translates into

Why is this the "solved" version of the matrix?

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 \\
0 & 1 & 0 & | & -2 \\
0 & 0 & 1 & | & 3
\end{pmatrix}$$

is in reduced row echelon form. It translates into

which is clearly the solution.

Why is this the "solved" version of the matrix?

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 \\
0 & 1 & 0 & | & -2 \\
0 & 0 & 1 & | & 3
\end{pmatrix}$$

is in reduced row echelon form. It translates into

which is clearly the solution.

But what happens if there are fewer pivots than rows?

Why is this the "solved" version of the matrix?

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 \\
0 & 1 & 0 & | & -2 \\
0 & 0 & 1 & | & 3
\end{pmatrix}$$

is in reduced row echelon form. It translates into

which is clearly the solution.

But what happens if there are fewer pivots than rows? \dots parametrized solution set (later).

Poll

Which of the following matrices are in reduced row echelon form?

A.
$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 B. $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

C.
$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 D. $\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}$ E. $\begin{pmatrix} 0 & 1 & 8 & 0 \end{pmatrix}$

$$F. \ \begin{pmatrix} 1 & 17 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Theorem

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

Theorem

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

We'll give an algorithm, called **row reduction**, which demonstrates that every matrix is row equivalent to *at least one* matrix in reduced row echelon form.

Theorem

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

We'll give an algorithm, called **row reduction**, which demonstrates that every matrix is row equivalent to *at least one* matrix in reduced row echelon form.

Note: Like echelon forms, the row reduction algorithm does not care if a column is augmented: ignore the vertical line when row reducing.

Theorem

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

We'll give an algorithm, called **row reduction**, which demonstrates that every matrix is row equivalent to *at least one* matrix in reduced row echelon form.

Note: Like echelon forms, the row reduction algorithm does not care if a column is augmented: ignore the vertical line when row reducing.

The uniqueness statement is interesting—

Theorem

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

We'll give an algorithm, called **row reduction**, which demonstrates that every matrix is row equivalent to *at least one* matrix in reduced row echelon form.

Note: Like echelon forms, the row reduction algorithm does not care if a column is augmented: ignore the vertical line when row reducing.

The uniqueness statement is interesting—it means that, nomatter *how* you row reduce, you *always* get the same matrix in reduced row echelon form.

Theorem

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

We'll give an algorithm, called **row reduction**, which demonstrates that every matrix is row equivalent to *at least one* matrix in reduced row echelon form.

Note: Like echelon forms, the row reduction algorithm does not care if a column is augmented: ignore the vertical line when row reducing.

The uniqueness statement is interesting—it means that, nomatter *how* you row reduce, you *always* get the same matrix in reduced row echelon form. (Assuming you only do the three legal row operations.)

Theorem

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

We'll give an algorithm, called **row reduction**, which demonstrates that every matrix is row equivalent to *at least one* matrix in reduced row echelon form.

Note: Like echelon forms, the row reduction algorithm does not care if a column is augmented: ignore the vertical line when row reducing.

The uniqueness statement is interesting—it means that, nomatter *how* you row reduce, you *always* get the same matrix in reduced row echelon form. (Assuming you only do the three legal row operations.) (And you don't make any arithmetic errors.)

Theorem

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

We'll give an algorithm, called **row reduction**, which demonstrates that every matrix is row equivalent to *at least one* matrix in reduced row echelon form.

Note: Like echelon forms, the row reduction algorithm does not care if a column is augmented: ignore the vertical line when row reducing.

The uniqueness statement is interesting—it means that, nomatter *how* you row reduce, you *always* get the same matrix in reduced row echelon form. (Assuming you only do the three legal row operations.) (And you don't make any arithmetic errors.)

Maybe you can figure out why it's true!

Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st row (if necessary).

$$\begin{pmatrix}
0 & -7 & -4 & 2 \\
2 & 4 & 6 & 12 \\
3 & 1 & -1 & -2
\end{pmatrix}$$

Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st row (if necessary).

Step 1b Scale 1st row so that its leading entry is equal to 1.

$$\begin{pmatrix}
0 & -7 & -4 & 2 \\
2 & 4 & 6 & 12 \\
3 & 1 & -1 & -2
\end{pmatrix}$$

Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st row (if necessary).

Step 1b Scale 1st row so that its leading entry is equal to 1.

Step 1c Use row replacement so all entries above and below this 1 are 0.

$$\begin{pmatrix}
0 & -7 & -4 & 2 \\
2 & 4 & 6 & 12 \\
3 & 1 & -1 & -2
\end{pmatrix}$$

- Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st row (if necessary).
- Step 1b Scale 1st row so that its leading entry is equal to 1.
- Step 1c Use row replacement so all entries above and below this 1 are 0.
- Step 2a Cover the first row, swap the 2nd row with a lower one so that the leftmost nonzero (uncovered) entry is in 2nd row; uncover 1st row.

$$\begin{pmatrix}
0 & -7 & -4 & 2 \\
2 & 4 & 6 & 12 \\
3 & 1 & -1 & -2
\end{pmatrix}$$

- Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st row (if necessary).
- Step 1b Scale 1st row so that its leading entry is equal to 1.
- Step 1c Use row replacement so all entries above and below this 1 are 0.
- Step 2a Cover the first row, swap the 2nd row with a lower one so that the leftmost nonzero (uncovered) entry is in 2nd row; uncover 1st row.
- Step 2b Scale 2nd row so that its leading entry is equal to 1.

$$\begin{pmatrix}
0 & -7 & -4 & 2 \\
2 & 4 & 6 & 12 \\
3 & 1 & -1 & -2
\end{pmatrix}$$

- Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st row (if necessary).
- Step 1b Scale 1st row so that its leading entry is equal to 1.
- Step 1c Use row replacement so all entries above and below this 1 are 0.
- Step 2a Cover the first row, swap the 2nd row with a lower one so that the leftmost nonzero (uncovered) entry is in 2nd row; uncover 1st row.
- Step 2b Scale 2nd row so that its leading entry is equal to 1.
- Step 2c Use row replacement so all entries above and below this 1 are 0.

$$\begin{pmatrix}
0 & -7 & -4 & 2 \\
2 & 4 & 6 & 12 \\
3 & 1 & -1 & -2
\end{pmatrix}$$

Row Reduction Algorithm

- Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st row (if necessary).
- Step 1b Scale 1st row so that its leading entry is equal to 1.
- Step 1c Use row replacement so all entries above and below this 1 are 0.
- Step 2a Cover the first row, swap the 2nd row with a lower one so that the leftmost nonzero (uncovered) entry is in 2nd row; uncover 1st row.
- Step 2b Scale 2nd row so that its leading entry is equal to 1.
- Step 2c Use row replacement so all entries above and below this 1 are 0.
- Step 3a Cover the first two rows, swap the 3rd row with a lower one so that the leftmost nonzero (uncovered) entry is in 3rd row; uncover first two rows.

Example

$$\begin{pmatrix}
0 & -7 & -4 & 2 \\
2 & 4 & 6 & 12 \\
3 & 1 & -1 & -2
\end{pmatrix}$$

Row Reduction Algorithm

- Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st row (if necessary).
- Step 1b Scale 1st row so that its leading entry is equal to 1.
- Step 1c Use row replacement so all entries above and below this 1 are 0.
- Step 2a Cover the first row, swap the 2nd row with a lower one so that the leftmost nonzero (uncovered) entry is in 2nd row; uncover 1st row.
- Step 2b Scale 2nd row so that its leading entry is equal to 1.
- Step 2c Use row replacement so all entries above and below this 1 are 0.
- Step 3a Cover the first two rows, swap the 3rd row with a lower one so that the leftmost nonzero (uncovered) entry is in 3rd row; uncover first two rows.

etc.

Example

$$\begin{pmatrix}
0 & -7 & -4 & 2 \\
2 & 4 & 6 & 12 \\
3 & 1 & -1 & -2
\end{pmatrix}$$

Example

$$\left(\begin{array}{ccc|c}
0 & -7 & -4 & 2 \\
2 & 4 & 6 & 12 \\
3 & 1 & -1 & -2
\end{array}\right)$$

Example, continued

$$\begin{pmatrix}
1 & 2 & 3 & 6 \\
0 & -5 & -10 & -20 \\
0 & -7 & -4 & 2
\end{pmatrix}$$

Example, continued

$$\begin{pmatrix}
1 & 2 & 3 & 6 \\
0 & -5 & -10 & -20 \\
0 & -7 & -4 & 2
\end{pmatrix}$$

Note: Step 2 never messes up the first (nonzero) column of the matrix, because it looks like this:

"Active" row
$$\longrightarrow \begin{array}{c|cccc} 1 & \star & \star & \star \\ \hline 0 & \star & \star & \star \\ \hline 0 & \star & \star & \star \end{array}$$

Example, continued

$$\begin{pmatrix}
1 & 0 & -1 & | & -2 \\
0 & 1 & 2 & | & 4 \\
0 & 0 & 10 & | & 30
\end{pmatrix}$$

Example, continued

$$\begin{pmatrix}
1 & 0 & -1 & | & -2 \\
0 & 1 & 2 & | & 4 \\
0 & 0 & 10 & | & 30
\end{pmatrix}$$

Note: Step 3 never messes up the columns to the left.

Example, continued

$$\begin{pmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 2 & | & 4 \\ 0 & 0 & 10 & | & 30 \end{pmatrix}$$

Note: Step 3 never messes up the columns to the left.

Success! The reduced row echelon form is

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix} \qquad \Longrightarrow \qquad \begin{cases} x & & = & 1 \\ & y & = & -2 \\ & & z & = & 3 \end{cases}$$

Example, continued

$$\begin{pmatrix}
1 & 0 & -1 & | & -2 \\
0 & 1 & 2 & | & 4 \\
0 & 0 & 10 & | & 30
\end{pmatrix}$$

Note: Step 3 never messes up the columns to the left.

Success! The reduced row echelon form is

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix} \qquad \Longrightarrow \qquad \begin{cases} x & = 1 \\ & y & = -2 \\ & z = 3 \end{cases}$$

Step 4: profit?

Another example

$$2x + 10y = -1$$
$$3x + 15y = 2$$

gives rise to the matrix

Another example

The linear system

$$2x + 10y = -1$$
$$3x + 15y = 2$$

gives rise to the matrix

Let's row reduce it:

$$\begin{pmatrix}
2 & 10 & | & -1 \\
3 & 15 & | & 2
\end{pmatrix}$$

Another example

The linear system

$$2x + 10y = -1$$
$$3x + 15y = 2$$

gives rise to the matrix

Let's row reduce it:

$$\left(\begin{array}{cc|c}
2 & 10 & -1 \\
3 & 15 & 2
\end{array}\right)$$

The row reduced matrix

$$\begin{pmatrix}
1 & 5 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

corresponds to the inconsistent system

$$x + 5y = 0$$
$$0 = 1.$$

Inconsistent Matrices

Question

What does an augmented matrix in reduced row echelon form look like, if its system of linear equations is inconsistent?

Inconsistent Matrices

Question

What does an augmented matrix in reduced row echelon form look like, if its system of linear equations is inconsistent?

Answer:

$$\begin{pmatrix}
1 & 0 & * & * & 0 \\
0 & 1 & * & * & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Inconsistent Matrices

Question

What does an augmented matrix in reduced row echelon form look like, if its system of linear equations is inconsistent?

Answer:

$$\begin{pmatrix} 1 & 0 & * & * & 0 \\ 0 & 1 & * & * & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

An augmented matrix corresponds to an inconsistent system of equations if and only if *the last* (i.e., the augmented) *column is a pivot column*.

Another Example

The linear system

$$2x + y + 12z = 1$$
 gives rise to the matrix $\begin{pmatrix} 2 & 1 & 12 & 1 \\ 1 & 2 & 9 & -1 \end{pmatrix}$.

Another Example

The linear system

$$2x + y + 12z = 1$$

$$x + 2y + 9z = -1$$
 gives rise to the matrix
$$\begin{pmatrix} 2 & 1 & 12 & 1\\ 1 & 2 & 9 & -1 \end{pmatrix}.$$

Let's row reduce it:

$$\begin{pmatrix}
2 & 1 & 12 & | & 1 \\
1 & 2 & 9 & | & -1
\end{pmatrix}$$

$$\text{matrix} \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 12 & 1 \\ 2 & 9 & -1 \end{bmatrix}$$

Another Example

The linear system

$$2x + y + 12z = 1 \\ x + 2y + 9z = -1$$
 gives rise to the matrix
$$\begin{pmatrix} 2 & 1 & 12 & 1 \\ 1 & 2 & 9 & -1 \end{pmatrix}.$$

$$\begin{pmatrix}
2 & 1 & 12 & | & 1 \\
1 & 2 & 9 & | & -1
\end{pmatrix}$$

Let's row reduce it:

$$\left(\begin{array}{cc|c}
2 & 1 & 12 & 1 \\
1 & 2 & 9 & -1
\end{array}\right)$$

The row reduced matrix

$$\left(\begin{array}{cc|cc} 1 & 0 & 5 & 1 \\ 0 & 1 & 2 & -1 \end{array} \right)$$

corresponds to the linear system

$$\begin{cases} x + 5z = 1 \\ y + 2z = -1 \end{cases}$$

Another Example Continued

The system

$$x + 5z = 1$$
$$y + 2z = -1$$

comes from a matrix in reduced row echelon form.

Another Example Continued

The system

$$x + 5z = 1$$
$$y + 2z = -1$$

comes from a matrix in reduced row echelon form. Are we done? Is the system solved?

Another Example Continued

The system

$$x + 5z = 1$$
$$y + 2z = -1$$

comes from a matrix in reduced row echelon form. Are we done? Is the system solved?

Yes! Rewrite:

$$x = 1 - 5z$$
$$y = -1 - 2z$$

For any value of z, there is exactly one value of x and y that makes the equations true. But z can be anything we want!

Another Example Continued

The system

$$x + 5z = 1$$
$$y + 2z = -1$$

comes from a matrix in reduced row echelon form. Are we done? Is the system solved?

Yes! Rewrite:

$$x = 1 - 5z$$
$$y = -1 - 2z$$

For any value of z, there is exactly one value of x and y that makes the equations true. But z can be anything we want!

So we have found the solution set: it is all values x, y, z where

$$x = 1 - 5z$$

 $y = -1 - 2z$ for z any real number.
 $(z = z)$

Another Example Continued

The system

$$x + 5z = 1$$
$$y + 2z = -1$$

comes from a matrix in reduced row echelon form. Are we done? Is the system solved?

Yes! Rewrite:

$$x = 1 - 5z$$
$$y = -1 - 2z$$

For any value of z, there is exactly one value of x and y that makes the equations true. But z can be anything we want!

So we have found the solution set: it is all values x, y, z where

$$x = 1 - 5z$$

 $y = -1 - 2z$ for z any real number.
 $(z = z)$

This is called the **parametric form** for the solution.

Definition

Consider a *consistent* linear system of equations in the variables x_1, \ldots, x_n . Let A be a row echelon form of the matrix for this system.

Definition

Consider a *consistent* linear system of equations in the variables x_1, \ldots, x_n . Let A be a row echelon form of the matrix for this system.

We say that x_i is a **free variable** if its corresponding column in A is *not* a pivot column.

Definition

Consider a *consistent* linear system of equations in the variables x_1, \ldots, x_n . Let A be a row echelon form of the matrix for this system.

We say that x_i is a **free variable** if its corresponding column in A is *not* a pivot column.

Definition

Consider a *consistent* linear system of equations in the variables x_1, \ldots, x_n . Let A be a row echelon form of the matrix for this system.

We say that x_i is a **free variable** if its corresponding column in A is *not* a pivot column.

Important

- You can choose any value for the free variables in a (consistent) linear system.
- Free variables come from columns without pivots in a matrix in row echelon form.

Definition

Consider a *consistent* linear system of equations in the variables x_1, \ldots, x_n . Let A be a row echelon form of the matrix for this system.

We say that x_i is a **free variable** if its corresponding column in A is *not* a pivot column.

Important

- You can choose any value for the free variables in a (consistent) linear system.
- Free variables come from columns without pivots in a matrix in row echelon form.

In the previous example, z was free because the reduced row echelon form matrix was

$$\left(\begin{array}{cc|cc|c}
1 & 0 & 5 & 4 \\
0 & 1 & 2 & -1
\end{array}\right).$$

Definition

Consider a *consistent* linear system of equations in the variables x_1, \ldots, x_n . Let A be a row echelon form of the matrix for this system.

We say that x_i is a **free variable** if its corresponding column in A is *not* a pivot column.

Important

- You can choose any value for the free variables in a (consistent) linear system.
- Free variables come from columns without pivots in a matrix in row echelon form.

In the previous example, z was free because the reduced row echelon form matrix was

$$\left(\begin{array}{cc|c}
1 & 0 & 5 & 4 \\
0 & 1 & 2 & -1
\end{array}\right).$$

In this matrix:

$$\begin{pmatrix} 1 & \star & 0 & \star & \star \\ 0 & 0 & 1 & \star & \star \end{pmatrix}$$

the free variables are .

Definition

Consider a *consistent* linear system of equations in the variables x_1, \ldots, x_n . Let A be a row echelon form of the matrix for this system.

We say that x_i is a **free variable** if its corresponding column in A is *not* a pivot column.

Important

- You can choose any value for the free variables in a (consistent) linear system.
- Free variables come from columns without pivots in a matrix in row echelon form.

In the previous example, z was free because the reduced row echelon form matrix was

$$\begin{pmatrix} 1 & 0 & 5 & | & 4 \\ 0 & 1 & 2 & | & -1 \end{pmatrix}$$
.

In this matrix:

$$\begin{pmatrix} 1 & \star & 0 & \star & \star \\ 0 & 0 & 1 & \star & \star \end{pmatrix}$$

the free variables are x_2 and x_4 .

Definition

Consider a *consistent* linear system of equations in the variables x_1, \ldots, x_n . Let A be a row echelon form of the matrix for this system.

We say that x_i is a **free variable** if its corresponding column in A is *not* a pivot column.

Important

- You can choose any value for the free variables in a (consistent) linear system.
- 2. Free variables come from *columns without pivots* in a matrix in row echelon form

In the previous example, z was free because the reduced row echelon form matrix was

$$\begin{pmatrix} 1 & 0 & 5 & | & 4 \\ 0 & 1 & 2 & | & -1 \end{pmatrix}$$
.

In this matrix:

$$\begin{pmatrix} 1 & \star & 0 & \star & \star \\ 0 & 0 & 1 & \star & \star \end{pmatrix}$$

the free variables are x_2 and x_4 . (What about the last column?)

The reduced row echelon form of the matrix for a linear system in x_1, x_2, x_3, x_4 is

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & 4 & -1
\end{array}\right)$$

The reduced row echelon form of the matrix for a linear system in x_1, x_2, x_3, x_4 is

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & 4 & -1
\end{array}\right)$$

The free variables are _____:

The reduced row echelon form of the matrix for a linear system in x_1, x_2, x_3, x_4 is

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & 4 & -1
\end{array}\right)$$

The free variables are x_2 and x_4 : they are the ones whose columns are *not* pivot columns.

The reduced row echelon form of the matrix for a linear system in x_1, x_2, x_3, x_4 is

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & 4 & -1
\end{array}\right)$$

The free variables are x_2 and x_4 : they are the ones whose columns are *not* pivot columns.

This translates into the system of equations

$$\begin{cases} x_1 & +3x_4 = 2 \\ x_3 + x_4 = -1 \end{cases}$$

The reduced row echelon form of the matrix for a linear system in x_1, x_2, x_3, x_4 is

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & 4 & -1
\end{array}\right)$$

The free variables are x_2 and x_4 : they are the ones whose columns are *not* pivot columns.

This translates into the system of equations

$$\begin{cases} x_1 & +3x_4 = 2 \\ x_3 + x_4 = -1 \end{cases} \implies \begin{cases} x_1 = 2 - 3x_4 \\ x_3 = -1 - 4x_4 \end{cases}$$

The reduced row echelon form of the matrix for a linear system in x_1, x_2, x_3, x_4 is

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & 4 & -1
\end{array}\right)$$

The free variables are x_2 and x_4 : they are the ones whose columns are *not* pivot columns.

This translates into the system of equations

$$\begin{cases} x_1 & +3x_4 = 2 \\ x_3 + x_4 = -1 \end{cases} \implies \begin{cases} x_1 = 2 - 3x_4 \\ x_3 = -1 - 4x_4 \end{cases}$$

What happened to x_2 ? What is it allowed to be?

The reduced row echelon form of the matrix for a linear system in x_1, x_2, x_3, x_4 is

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & 4 & -1
\end{array}\right)$$

The free variables are x_2 and x_4 : they are the ones whose columns are *not* pivot columns.

This translates into the system of equations

$$\begin{cases} x_1 & +3x_4 = 2 \\ x_3 + x_4 = -1 \end{cases} \implies \begin{bmatrix} x_1 = 2 - 3x_4 \\ x_3 = -1 - 4x_4 \end{bmatrix}$$

What happened to x_2 ? What is it allowed to be? Anything! The general solution is

for any values of x_2 and x_4 .

The reduced row echelon form of the matrix for a linear system in x_1, x_2, x_3, x_4 is

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & 4 & -1
\end{array}\right)$$

The free variables are x_2 and x_4 : they are the ones whose columns are *not* pivot columns.

This translates into the system of equations

$$\begin{cases} x_1 & +3x_4 = 2 \\ x_3 + x_4 = -1 \end{cases} \implies \begin{cases} x_1 = 2 - 3x_4 \\ x_3 = -1 - 4x_4 \end{cases}$$

What happened to x_2 ? What is it allowed to be? Anything! The general solution is

for any values of x_2 and x_4 .

The boxed equation is called the **parametric form** of the general solution to the system of equations. It is obtained by moving all free variables to the right-hand side of the =.

Poll

Poll

Is it possible for a system of linear equations to have exactly two solutions?

There are *three possibilities* for the reduced row echelon form of the augmented matrix of a linear system.

There are *three possibilities* for the reduced row echelon form of the augmented matrix of a linear system.

1. The last column is a pivot column. In this case, the system is *inconsistent*.

There are *three possibilities* for the reduced row echelon form of the augmented matrix of a linear system.

1. The last column is a pivot column.

In this case, the system is *inconsistent*. There are *zero* solutions, i.e. the solution set is *empty*. Picture:

There are *three possibilities* for the reduced row echelon form of the augmented matrix of a linear system.

1. The last column is a pivot column.

In this case, the system is *inconsistent*. There are *zero* solutions, i.e. the solution set is *empty*. Picture:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

There are *three possibilities* for the reduced row echelon form of the augmented matrix of a linear system.

1. The last column is a pivot column.

In this case, the system is inconsistent. There are zero solutions, i.e. the solution set is empty. Picture:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

2. Every column except the last column is a pivot column. In this case, the system has a *unique solution*. Picture:

$$\begin{pmatrix}
1 & 0 & 0 & | & \star \\
0 & 1 & 0 & | & \star \\
0 & 0 & 1 & | & \star
\end{pmatrix}$$

There are *three possibilities* for the reduced row echelon form of the augmented matrix of a linear system.

The last column is a pivot column.
 In this case, the system is inconsistent. There are zero solutions, i.e. the solution set is empty. Picture:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

2. Every column except the last column is a pivot column. In this case, the system has a *unique solution*. Picture:

$$\begin{pmatrix}
1 & 0 & 0 & | & \star \\
0 & 1 & 0 & | & \star \\
0 & 0 & 1 & | & \star
\end{pmatrix}$$

3. The last column is not a pivot column, and some other column isn't either. In this case, the system has infinitely many solutions, corresponding to the infinitely many possible values of the free variable(s). Picture:

$$\begin{pmatrix} 1 & \star & 0 & \star & \star \\ 0 & 0 & 1 & \star & \star \end{pmatrix}$$