ГЛЕЮЩИЙ РАЗРЯД

деляемой в 3 чения *s/p*, соответ рениые величины ЩТ илотности газа плотность газа и давление Более точный стоверными, **ИЗВестных** средшою илотность. Последняя может быть также вычислена известных значений теплопроводности газа и энергии, вы-яемой в темном пространстве [196]. соответственно ј H^{H}_{H} ј J^{H}_{H} при б Tak метод ϖ Темном KaKзаключается в измерении при большнх V, являются не совсем до-выделяющееся в газе тепло уменьшает нение оказывается поэтому завышенным. промежутке, pd для них мало (рис. 117). которого можно найраспределения Изме.

основе ных, потенциала которые \mathcal{B}_{\bullet} относящихся приведенной *Численные* экспериментальные ₹ 77 y нлоского металлического катода в различных резулынаты. В этом нункте приводятся \mathbb{X} выше случаю ые результаты и их обсуждение на теории. Табл. 26 солержит ряд дан-чаю нормального католного падения

Катодное падение потенциала 1" 8 60. хышах

Таблица

5

Стекло	ŢZ.	Fe	ΔH	Zn	Cu	Кагод
60	160 165	150	143 140	143	177	I-ic
1 68	140 152	125	121		<u>220</u> –	No.
1 6.4	130	511	19 !	<u></u>	130	Ar
() () () () () () () () () () () () () (337 170	<u>~</u>	214	1
	<u>19</u>		29 180	910	20S	
180	996 977	424 270	1930 (C)	280	375	Возлух
	975	305 305	340 245		450	25
1 1	$K - 80$ $Cs - 340$ $O_2 - 364$ $CL - 275$			() 3 3	$CO - 484$ $CO_s - 460$	Другие газы

(8.20) \(\hat{\Lambda}_{+0}\), IIO)) можно ожидать увеличения j_n при попизации в газе \bar{a}/p и вторичной пфп эмиссии. возрастании Физической HILH

Приведенные значения норм пльной j_n/p^2 в $10^{-6} \times a/cm^2$ -мм На Таблица il il 19, 188] тока

Cu Au Mg Al Fe, Ni Pt Crek.10	Катоя	
5 15 5	He	,
18 6	Ne	1
150		
25 1 64 25 25 1 64 26 25 25 1 64	1:5	
: 38 (5) 1 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
2550 330 330	Воздух	
	113	!
Kr — 43 Xe — 16	Другие газы	

ТЛЕЮЩИЙ

ယ

ятно, КЕТПО причиной на ралнальная внешнем конценграции крае комполента 30111 «нормального» свечения (см. электрического Toka выше). RETOIL является, возника. веро-

San San

Рис. 117. висимости Рис. разряда с Приве веденная ширяна темного просгранства dp в за-кагодчэго издечия потенцтата V_{c} атя глеющего железиым кагодом в разтичных газах $\{192\}_{c}$

оборот. коэффлинент вторичной убыванин как Нормальная 9T0Завис следует эмиссии, ннтенсивности нмость нолизац ишрина H3ин и, следовательно, малое d_n от материалы вос Tak, фэрмул (8.4) нонизации в газе например, Аг и N₂ темного пространства 4) и (8.22), в катода менее $\frac{3e}{2}$ и козффициента нмеют возрастает d_n 12. выражена. (табл. He йоныгой 28), ифп Ha-

аблица 28

Приведенная кидиш *Шемного* C.H. H.H . Ну [19, 188]

CTCKTO	Кагод	/ - -
1,35	He	-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-
	, , , , , , , , , , , , , , , , , , , ,	
0,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	_	
1 0,35	12	7
0.50 0.53	Bosnyx	[001 (2.1)
0.33	H.G.	
$O_2 = 0.25$ $O_2 = 0.25$ $O_2 = 0.31$ $X_0 = 0.25$	Пругис газы	

ности тока j/p^2 дения V, для ра на соответственно три Изменение возрастает C порядка. различных газов и железного на рис. 118 и 117. Из них катодного падения примерно Z произведения dpПри возрастании на порядок и железного 0T0 て ₩ величины катодного величины, €. зависимости гемное катода приводится видно, пространство что, Γ 0 меняется HJOTкогда na-

Рис. j/p^2 118. Зависимость аномального катодного надепогенциала V_c от приведенной плотности тока для разряда с железным катодом в различных газах [192].

_

и м сужается см. конец § 3, г]. г. Измерение п при дальнейшем примерно на одну возрастании четверть 7 своей остается нормальной неизменным -ифиш

щали эта деления плотности тока на катоде тлеющего пользуются визуальным или фотографическим свечением, площадь является одинаковой при наблюдении в катода, покрытой отрицательным если оно существует. При этом параметрэв катэднэго тлеющего свечением предполагается, падения. намерением разряда обычно 111,111 лучах света Для катодным опрепло-01h

Þ Энгель