36^{th} United States of America Mathematical Olympiad

Day I 12:30 PM - 5 PM EDT

April 24, 2007

- 1. Let n be a positive integer. Define a sequence by setting $a_1 = n$ and, for each k > 1, letting a_k be the unique integer in the range $0 \le a_k \le k 1$ for which $a_1 + a_2 + \cdots + a_k$ is divisible by k. For instance, when n = 9 the obtained sequence is $9, 1, 2, 0, 3, 3, 3, \ldots$. Prove that for any n the sequence a_1, a_2, a_3, \ldots eventually becomes constant.
- 2. A square grid on the Euclidean plane consists of all points (m, n), where m and n are integers. Is it possible to cover all grid points by an infinite family of discs with non-overlapping interiors if each disc in the family has radius at least 5?
- 3. Let S be a set containing $n^2 + n 1$ elements, for some positive integer n. Suppose that the n-element subsets of S are partitioned into two classes. Prove that there are at least n pairwise disjoint sets in the same class.

36^{th} United States of America Mathematical Olympiad

Day II 12:30 PM - 5 PM EDT

April 25, 2007

4. An animal with n cells is a connected figure consisting of n equal-sized square cells.¹ The figure below shows an 8-cell animal.

A *dinosaur* is an animal with at least 2007 cells. It is said to be *primitive* if its cells cannot be partitioned into two or more dinosaurs. Find with proof the maximum number of cells in a primitive dinosaur.

- 5. Prove that for every nonnegative integer n, the number $7^{7^n} + 1$ is the product of at least 2n + 3 (not necessarily distinct) primes.
- 6. Let ABC be an acute triangle with ω, Ω , and R being its incircle, circumcircle, and circumradius, respectively. Circle ω_A is tangent internally to Ω at A and tangent externally to ω . Circle Ω_A is tangent internally to Ω at A and tangent internally to ω . Let P_A and Q_A denote the centers of ω_A and Ω_A , respectively. Define points P_B, Q_B, P_C, Q_C analogously. Prove that

$$8P_AQ_A \cdot P_BQ_B \cdot P_CQ_C \le R^3$$
,

with equality if and only if triangle ABC is equilateral.

Copyright © Committee on the American Mathematics Competitions, Mathematical Association of America

¹Animals are also called *polyominoes*. They can be defined inductively. Two cells are *adjacent* if they share a complete edge. A single cell is an animal, and given an animal with n-cells, one with n + 1 cells is obtained by adjoining a new cell by making it adjacent to one or more existing cells.