Isolated and Distributed BGP Attacks, and RPKI – From the Perspective of RouteViews

Kevin Conte

March 15, 2020

Outline

- Background
- Problem and Motivation
- Methodology
- Conclusions

Isolated and Distributed BGP Attacks, and RPKI - From the Perspective of RouteViews

Background

BGP (Border Gateway Protocol)

Protocol that allows Autonomous Systems to communicate.

- Protocol that allows Autonomous Systems to communicate.
- Consists of advertisements between AS's

- Protocol that allows Autonomous Systems to communicate.
- Consists of advertisements between AS's
- Peers advertise which prefixes they know how to get to, with the AS path to get there.

- Protocol that allows Autonomous Systems to communicate.
- Consists of advertisements between AS's
- Peers advertise which prefixes they know how to get to, with the AS path to get there.
 - This AS path is not necessarily the shortest routing path, but it is the shortest AS path.

- Protocol that allows Autonomous Systems to communicate.
- Consists of advertisements between AS's
- Peers advertise which prefixes they know how to get to, with the AS path to get there.
 - This AS path is not necessarily the shortest routing path, but it is the shortest AS path.
- Importantly, each advertisement includes an Origin AS.

- Protocol that allows Autonomous Systems to communicate.
- Consists of advertisements between AS's
- Peers advertise which prefixes they know how to get to, with the AS path to get there.
 - This AS path is not necessarily the shortest routing path, but it is the shortest AS path.
- Importantly, each advertisement includes an Origin AS.
 - That is, which AS is advertising that it owns a particular prefix

■ A BGP announcement consists of the following: Timestamp, Peer ASN, Peer IP, Prefix, AS_PATH, NEXT_HOP, Origin AS

- A BGP announcement consists of the following: Timestamp,
 Peer ASN, Peer IP, Prefix, AS_PATH, NEXT_HOP, Origin AS
- For the following example, assume the Timestamp is the same for both advertisements.

- A BGP announcement consists of the following: Timestamp, Peer ASN, Peer IP, Prefix, AS_PATH, NEXT_HOP, Origin AS
- For the following example, assume the Timestamp is the same for both advertisements.
- Also assume that the NEXT_HOP attribute is the same as the Peer IP

- A BGP announcement consists of the following: Timestamp,
 Peer ASN, Peer IP, Prefix, AS_PATH, NEXT_HOP, Origin AS
- For the following example, assume the Timestamp is the same for both advertisements.
- Also assume that the NEXT_HOP attribute is the same as the Peer IP
- Here, you can see that two different AS's are advertising that they own the same prefix. This is BAD.

```
Peer ASN, Peer IP, Prefix, AS_PATH, Origin AS 33437, 2001:4810::1, 2001::/32, 33437 ... 6939, 6939 3257, 2001:668:0:4::2, 2001::/32, 3257 ... 1101, 1101
```

BGP

Source: noction.com

Isolated and Distributed BGP Attacks, and RPKI - From the Perspective of RouteViews

■ Resource Public Key Infrastructure

- Resource Public Key Infrastructure
- Introduced in 2011 to add security to BGP

- Resource Public Key Infrastructure
- Introduced in 2011 to add security to BGP
- Developed by the IETF (Internet Engineering Task Force)

- Resource Public Key Infrastructure
- Introduced in 2011 to add security to BGP
- Developed by the IETF (Internet Engineering Task Force)
- Consists of Route Origin Authorizations (ROAs)
 - ASN, Prefix, Max Length, Not Before, Not After

- Resource Public Key Infrastructure
- Introduced in 2011 to add security to BGP
- Developed by the IETF (Internet Engineering Task Force)
- Consists of Route Origin Authorizations (ROAs)
 - ASN, Prefix, Max Length, Not Before, Not After
- Such objects, when validated, are called Validated ROA Payloads (VRPs).

- Resource Public Key Infrastructure
- Introduced in 2011 to add security to BGP
- Developed by the IETF (Internet Engineering Task Force)
- Consists of Route Origin Authorizations (ROAs)
 - ASN, Prefix, Max Length, Not Before, Not After
- Such objects, when validated, are called Validated ROA Payloads (VRPs).
- Example:

```
ASN, Prefix, Max Length, Not Before, Not After AS12345, 128.223.0.0/16, 16, 2011-01-21, 2014-02-28
```

Also consists of TALs, or Trust Anchor Locations

- Also consists of TALs, or Trust Anchor Locations
- RPKI is all based on trust

- Also consists of TALs, or Trust Anchor Locations
- RPKI is all based on trust
- Those validating route prefixes against ROAs are trusting the TALs to provide correct information.

- Also consists of TALs, or Trust Anchor Locations
- RPKI is all based on trust
- Those validating route prefixes against ROAs are trusting the TALs to provide correct information.
- Thus, there are only a handful of TALs:

- Also consists of TALs, or Trust Anchor Locations
- RPKI is all based on trust
- Those validating route prefixes against ROAs are trusting the TALs to provide correct information.
- Thus, there are only a handful of TALs:
 - IANA (Interent Assigned Numbers Authority).
 - The "root" of the Internet

- Also consists of TALs, or Trust Anchor Locations
- RPKI is all based on trust
- Those validating route prefixes against ROAs are trusting the TALs to provide correct information.
- Thus, there are only a handful of TALs:
 - IANA (Interent Assigned Numbers Authority).
 - The "root" of the Internet
 - ARIN (American Registry for Internet Numbers)

- Also consists of TALs, or Trust Anchor Locations
- RPKI is all based on trust
- Those validating route prefixes against ROAs are trusting the TALs to provide correct information.
- Thus, there are only a handful of TALs:
 - IANA (Interent Assigned Numbers Authority).
 - The "root" of the Internet
 - ARIN (American Registry for Internet Numbers)
 - APNIC (Asia-Pacific Network Information Centre)

- Also consists of TALs, or Trust Anchor Locations
- RPKI is all based on trust
- Those validating route prefixes against ROAs are trusting the TALs to provide correct information.
- Thus, there are only a handful of TALs:
 - IANA (Interent Assigned Numbers Authority).
 - The "root" of the Internet
 - ARIN (American Registry for Internet Numbers)
 - APNIC (Asia-Pacific Network Information Centre)
 - AFRINIC (African Network Information Centre)

- Also consists of TALs, or Trust Anchor Locations
- RPKI is all based on trust
- Those validating route prefixes against ROAs are trusting the TALs to provide correct information.
- Thus, there are only a handful of TALs:
 - IANA (Interent Assigned Numbers Authority).
 - The "root" of the Internet
 - ARIN (American Registry for Internet Numbers)
 - APNIC (Asia-Pacific Network Information Centre)
 - AFRINIC (African Network Information Centre)
 - RIPE NCC (Réseaux IP Européens Network Coordination Centre)

- Also consists of TALs, or Trust Anchor Locations
- RPKI is all based on trust
- Those validating route prefixes against ROAs are trusting the TALs to provide correct information.
- Thus, there are only a handful of TALs:
 - IANA (Interent Assigned Numbers Authority).
 - The "root" of the Internet
 - ARIN (American Registry for Internet Numbers)
 - APNIC (Asia-Pacific Network Information Centre)
 - AFRINIC (African Network Information Centre)
 - RIPE NCC (Réseaux IP Européens Network Coordination Centre)
 - LACNIC (Latin America and Caribbean Network Information Centre)

RPKI

Source: labs.ripe.net

RIRs

Source: ripe.net

Problem and Motivation

 Taejoong Chung, et. al, RPKI is Coming of Age: A Longitudinal Study of RPKI Deployment and Invalid Route Origins, 2019

Problem and Motivation

- Taejoong Chung, et. al, RPKI is Coming of Age: A Longitudinal Study of RPKI Deployment and Invalid Route Origins, 2019
- This paper shows a negative correlation between the increase in deployment of RPKI and the decrease in the number of invalid route origins.

Number of Invalid Origins

Figure 4: The percentage of invalid BGP announcements from Akamai, RIFE-RIS, and RouteViews datasets: for the first two years of its deployment, about 20.76% of the RPKI-covered BGP announcements are invalid.

Source: Chung, et. al

RPKI Deployment across the RIR's

Figure 2: The growth of RPKI in terms of the * of VRP IP prefixes, the % of ASes where some of their IPv4 addresses are covered by VRPs to all ASes managed by the RIR, the % of IPv4 addresses covered by VRPs to all assigned IPv4 addresses for the RIR.

Source: Chung, et. al

What I Wanted To Do

Distinguish between BGP Hijacks and BGP Misconfigurations

■ AIMS-KISMET 2020 – University of California, San Diego

- AIMS-KISMET 2020 University of California, San Diego
 - I had the opportunity to meet with several researchers about this topic

- AIMS-KISMET 2020 University of California, San Diego
 - I had the opportunity to meet with several researchers about this topic
 - Most notably, Teejay Chung, the primary author of the aforementioned paper

- AIMS-KISMET 2020 University of California, San Diego
 - I had the opportunity to meet with several researchers about this topic
 - Most notably, Teejay Chung, the primary author of the aforementioned paper
 - Researchers have been attempting to do this years

- AIMS-KISMET 2020 University of California, San Diego
 - I had the opportunity to meet with several researchers about this topic
 - Most notably, Teejay Chung, the primary author of the aforementioned paper
 - Researchers have been attempting to do this years
 - Best tool we have is CAIDA's BGPstream

Example of Impossibility

Peer AS, Peer IP, Prefix, AS PATH, Origin AS 123, 128.223.56.195, 193.56.78.0/24, 123 ... 456, 456 124, 193.57.223.16, 193.56.78.0/24, 124 ... 557, 557

Example of Impossibility

```
Peer AS, Peer IP, Prefix, AS PATH, Origin AS
123, 128.223.56.195, 193.56.78.0/24, 123 ... 456, 456
124, 193.57.223.16, 193.56.78.0/24, 124 ... 557, 557
125, 190.34.56.23, 193.56.78.0/24, 125 .. 12345, 12345
```

Isolated and Distributed BGP Attacks, and RPKI - From the Perspective of RouteViews

Analyzing the trend of both isolated and distributed BGP attacks

- Analyzing the trend of both isolated and distributed BGP attacks
- Correlating that trend to the deployment status of RPKI

- Analyzing the trend of both isolated and distributed BGP attacks
- Correlating that trend to the deployment status of RPKI
 - As of August 2019, RPKI now contains more than 100,000 VRPs.

- Analyzing the trend of both isolated and distributed BGP attacks
- Correlating that trend to the deployment status of RPKI
 - As of August 2019, RPKI now contains more than 100,000 VRPs
 - This is promising for future success of RPKI

Isolated and Distributed BGP Attacks, and RPKI - From the Perspective of RouteViews

Datasets

Datasets

- RouteViews
 - Courtesy of the University of Oregon
 - http://archive.routeviews.org

Datasets

- RouteViews
 - Courtesy of the University of Oregon
 - http://archive.routeviews.org
- Historical ROA data
 - Courtesy of RIPE
 - https://ftp.ripe.net/rpki

Isolated and Distributed BGP Attacks, and RPKI - From the Perspective of RouteViews

- For parsing BGP data:
 - bgpreader (https://bgpstream.caida.org/docs/tools/bgpreader)

- For parsing BGP data:
 - bgpreader (https://bgpstream.caida.org/docs/tools/bgpreader)
- For parsing Historical ROAs:
 - Ziggy (https://github.com/NLnetLabs/ziggy)
 - Routinator (https://github.com/NLnetLabs/routinator)

- For parsing BGP data:
 - bgpreader (https://bgpstream.caida.org/docs/tools/bgpreader)
- For parsing Historical ROAs:
 - Ziggy (https://github.com/NLnetLabs/ziggy)
 - Routinator (https://github.com/NLnetLabs/routinator)
- Also, a mixture of Python 3.8+ and POSIX-compliant shell scripts
 - Code to be uploaded to github soon...

 Define an isolated attack as two discrete AS's advertising ownership of the same prefix

- Define an isolated attack as two discrete AS's advertising ownership of the same prefix
- Define a distributed attack as greater than two discrete AS's advertising ownership of the same prefix

- Define an isolated attack as two discrete AS's advertising ownership of the same prefix
- Define a distributed attack as greater than two discrete AS's advertising ownership of the same prefix
- \blacksquare Samples taken every two days from 21 January 2011 \rightarrow 29 February 2020

- Define an isolated attack as two discrete AS's advertising ownership of the same prefix
- Define a distributed attack as greater than two discrete AS's advertising ownership of the same prefix
- \blacksquare Samples taken every two days from 21 January 2011 \rightarrow 29 February 2020
- Compare the trend of isolated and distributed attacks against the deployment status of RPKI

- Define an isolated attack as two discrete AS's advertising ownership of the same prefix
- Define a distributed attack as greater than two discrete AS's advertising ownership of the same prefix
- \blacksquare Samples taken every two days from 21 January 2011 \rightarrow 29 February 2020
- Compare the trend of isolated and distributed attacks against the deployment status of RPKI
- Step One is to look at deployment trend of RPKI

- Define an isolated attack as two discrete AS's advertising ownership of the same prefix
- Define a distributed attack as greater than two discrete AS's advertising ownership of the same prefix
- \blacksquare Samples taken every two days from 21 January 2011 \rightarrow 29 February 2020
- Compare the trend of isolated and distributed attacks against the deployment status of RPKI
- Step One is to look at deployment trend of RPKI
- Then, look at BGP Attack trends

RPKI Deployment

A Note about the Spike

This is caused by APNIC migrating to a new route management system.

A Note about the Spike

- This is caused by APNIC migrating to a new route management system.
- As a result, there was a bunch of incorrectly validated ROAs

A Note about the Spike

- This is caused by APNIC migrating to a new route management system.
- As a result, there was a bunch of incorrectly validated ROAs
- Clearly, it was fixed quickly

Distributed Attack Example

- Take the previouse BGP announcement example
- Timestamp is: 2011-01-01 12:00 +00:00
- Total of 7 AS's advertising ownership of the same prefix
- Good indicator that this is a distributed attack

```
Peer ASN, Peer IP, Prefix, AS_PATH, Origin AS 33437, 2001:4810::1, 2001::/32, 33437 ... 6939, 6939 3257, 2001:668:0:4::2, 2001::/32, 3257 ... 1101, 1101 7018, 2001:1890:111d::1, 2001::/32, 7018 ... 29259, 29259 ...
```

A note about the Results

- All results presented are preliminary
- Full results will be available in the report.

Results

Internet Protocol	Prefixes	Isolated	Distrubted
IPv4	13144978	273429	6335
IPv6	581418	6927	365

Table: Summary

IPv4 Unique Prefixes

IPv6 Unique Prefixes

IPv4 Isolated Attacks

IPv6 Isolated Attacks

IPv4 Distributed Attacks

IPv6 Distributed Attacks

Isolated and Distributed BGP Attacks, and RPKI - From the Perspective of RouteViews

Questions?