EXTENSIONS OF LIPSCHITZ MAPPINGS INTO A HILBERT SPACE

William B. Johnson and Joram Lindenstrauss 2

INTRODUCTION

In this note we consider the following extension problem for Lipschitz functions: Given a metric space X and n = 2, 3, 4, ..., estimate the smallest constant L = L(X, n) so that every mapping f from every n-element subset of X into ℓ_2 extends to a mapping f from X into ℓ_2 with

$$\|\tilde{f}\|_{\ell ip} \leq L \|f\|_{\ell ip}$$
.

(Here $\|g\|_{\ell ip}$ is the Lipschitz constant of the function g.) A classical result of Kirszbraun's [14, p. 48] states that $L(\ell_2, n) = 1$ for all n, but it is easy to see that $L(X, n) \to \infty$ as $n \to \infty$ for many metric spaces X.

Marcus and Pisier [10] initiated the study of L(X, n) for $X = L_p$. (For brevity, we will use hereafter the notation L(p, n) for $L(L_p(0,1), n)$.) They prove that for each 1 there is a constant <math>C(p) so that for $n = 2, 3, 4, \ldots, n$

$$L(p, n) \le C(p) (Log n)^{1/p} - 1/2$$
.

The main result of this note is a verification of their conjecture that for some constant C and all n = 2, 3, 4, ...,

$$L(X, n) \leq C(Log n)^{1/2}$$

for all metric spaces X. While our proof is completely different from that of Marcus and Pisier, there is a common theme: Probabilistic techniques developed for linear theory are combined with Kirszbraun's theorem to yield extension theorems.

The main tool for proving Theorem 1 is a simply stated elementary geometric lemma, which we now describe: Given n points in Euclidean space, what

© 1984 American Mathematical Society 0271-4132/84 \$1.00 + \$.25 per page

Supported in part by NSF MCS-7903042.

Supported in part by NSF MCS-8102714.

is the smallest k = k(n) so that these points can be moved into k-dimensional Euclidean space via a transformation which expands or contracts all pairwise distances by a factor of at most $1 + \epsilon$? The answer, that $k \le C(\epsilon)$ Log n, is a simple consequence of the isoperimetric inequality for the n-sphere in the form studied in [2].

It seems likely that the Marcus-Pisier result and Theorem 1 give the right order of growth for L(p, n). While we cannot verify this, in Theorem 3 we get the estimate

$$L(p, n) \ge \delta \left(\frac{Log n}{Log Log n}\right)^{1/p - 1/2} \quad (1 \le p < 2)$$

for some absolute constant $\delta>0$. (Throughout this paper we use the convention that Log x denotes the maximum of 1 and the natural logarithm of x.) This of course gives a lower estimate of

$$\delta \left(\frac{\text{Log n}}{\text{Log Log n}} \right)^{1/2}$$

for $L(\infty, n)$. That our approach cannot give a lower bound of $\delta(\log n)^{1/p-1/2}$ for L(p, n) is shown by Theorem 2, which is an extension theorem for mappings into ℓ_2 whose domains are ϵ -separated.

The minimal notation we use is introduced as needed. Here we note only that $B_Y(y,\,\epsilon)$ (respectively, $b_Y(y,\,\epsilon)$) is the closed (respectively, open) ball in Y about y of radius ϵ . If y=0, we use $B_Y(\epsilon)$ and $b_Y(\epsilon)$, and we drop the subscript Y when there is no ambiguity. S(Y) is the unit sphere of the normed space Y. For isomorphic normed spaces X and Y, we let

$$d(X,Y) = \inf ||T|| ||T^{-1}||,$$

where the inf is over all invertible linear operators from X onto Y. Given a bounded Banach space valued function f on a set K, we set

$$\|f\|_{\infty} = \sup_{\mathbf{x} \in K} \|f(\mathbf{x})\|.$$

THE EXTENSION THEOREMS

We begin with the geometrical lemma mentioned in the introduction.

LEMMA 1. For each $1 > \tau > 0$ there is a constant $K = K(\tau) > 0$ so that if $A \subset \ell_2^n$, A = n for some $n = 2, 3, \ldots$, then there is a mapping f from A onto a subset of ℓ_2^k ($k = [K \log n]$) which satisfies

$$\|\mathbf{f}\|_{\ell i p} \|\mathbf{f}^{-1}\|_{\ell i p} \le \frac{1+\tau}{1-\tau}$$
.

PROOF. The proof will show that if one chooses at random a rank k orthogonal projection on ℓ_2^n , then, with positive probability (which can be made arbitrarily close to one by adjusting k), the projection restricted to A will satisfy the condition on f. To make this precise, we let Q be the projection onto the first k coordinates of ℓ_2^n and let σ be normalized Haar measure on O(n), the orthogonal group on ℓ_2^n . Then the random variable

f:
$$(0(n), \sigma) \rightarrow L(\ell_2^n)$$

defined by

$$f(u) = U * QU$$

determines the notion of "random rank k projection." The applications of Levy's inequality in the first few self-contained pages of [2] make it easy to check that f(u) has the desired property. For the convenience of the reader, we follow the notation of [2].

Let $|\cdot|\cdot|\cdot|$ denote the usual Euclidean norm on \mathbb{R}^n and for $1 \le k \le n$ and $x \in \mathbb{R}^n$ set

$$r(x) = r_k(x) = \sqrt{n} \begin{pmatrix} k \\ \Sigma \\ i = 1 \end{pmatrix}^{1/2}$$
,

which is equal to

$$\sqrt{n}$$
 |||Qx|||

for our eventual choice of $k = [K \log n]$. Thus $r(\cdot)$ is a semi-norm on ℓ_2^n which satisfies

$$r(x) \leq \sqrt{n} ||x||| (x \in \ell_2^n).$$

Setting

$$B = \left\{ \frac{x - y}{\prod |x - y| |} : x, y \in A; x \neq y \right\} \subset S^{n-1},$$

we want to select $U \in O(n)$ so that for some constant M,

$$M(1-\tau) \leq r(Ux) \leq M(1+\tau) \quad (x \in B) .$$

Let M_r be the median of $r(\cdot)$ on S^{n-1} , so that

$$\mu_{n-1}[x \in S^{n-1} : r(x) \ge M_r] \ge 1/2$$

and

$$\mu_{n-1}[x \in S^{n-1} : r(x) \le M_r] \le 1/2$$

where μ_{n-1} is normalized rotationally invariant measure on s^{n-1} . We have from page 58 of [2] that for each $y \in s^{n-1}$ and $\epsilon > 0$,

$$\sigma[U \in O(n) : M_r - \sqrt{n} \epsilon \le r(Uy) \le M_r + \sqrt{n} \epsilon] \ge 1 - 4 \exp\left(\frac{-n\epsilon^2}{2}\right).$$

Hence

(1.1)
$$\sigma[U \in O(n) : M_r - \sqrt{n} \epsilon \le r(Uy)) \le M_r + \sqrt{n} \epsilon \text{ for all } y \in B] \ge 1 - 2n(n+1) \exp \left(\frac{-n\epsilon^2}{2}\right).$$

By Lemma 1.7 of [2], there is a constant

$$C \le 4 \sum_{m=1}^{\infty} (m+1) e^{-m^2/2}$$

so that

(1.2)
$$|\int_{S_{n-1}} r(x) d\mu_{n-1}(x) - M_r| < C.$$

We now repeat a known argument for estimating $\int r(x) \ d\mu_{n-1}(x)$ which uses only Khintchine's inequality.

For $1 \le k \le n$ we have:

Setting

$$\alpha_n = \int_{S^{n-1}} |\langle x, \delta_1 \rangle| d\mu_{n-1}(x)$$
,

we have from Khintchine's inequality that for each $1 \le k \le n$,

$$\sqrt{nk} \alpha_n \le \int_{S^{n-1}} r_k(x) d\mu_{n-1}(x) \le \sqrt{2nk} \alpha_n$$
.

(We plugged in the exact constant of $\sqrt{2}$ in Khintchine's inequality calculated in [5] and [13], but of course any constant would serve as well.) Since obviously $r_n(x) = \sqrt{n}$, we conclude that for $1 \le k \le n$

(1.3)
$$\sqrt{k/2} \leq \int_{S^{n-1}} r_k(x) d\mu_{n-1}(x) \leq \sqrt{k}$$
.

Specializing now to the case $k = [K \log n]$, we have from (1.2) and (1.3) that

$$\sqrt{k/3} \leq M_r$$

at least for K log n sufficiently large. Thus if we define

$$\varepsilon = \tau \sqrt{k/3n}$$

we get from (1.1) that

$$\begin{split} & \sigma \; [\, \mathtt{U} \in \mathtt{O}(\mathtt{n}) \; : \; (1 \, - \, \tau) \, \mathtt{M}_{\mathtt{r}} \; \leq \, \mathtt{r}(\mathtt{U}\mathtt{y}) \; \leq \; (1 \, + \, \tau) \, \mathtt{M}_{\mathtt{r}} \quad \text{for all} \quad \mathtt{y} \; \in \; \mathtt{B} \,] \\ & \geq \, 1 \, - \, 2 \mathtt{n}(\mathtt{n} \, + \, 1) \; \exp \; \left(- \, \frac{\tau^2 \; \mathtt{k}}{18} \right) \\ & \geq \, 1 \, - \, 2 \mathtt{n}(\mathtt{n} \, + \, 1) \; \exp \; \left(- \, \frac{\tau^2 \; \mathtt{k} \; \log \; \mathtt{n}}{18} \right) \end{split}$$

which is positive if, say,

$$K \ge (10/\tau)^2$$
.

It is easily seen that the estimate K log n in Lemma 1 cannot be improved. Indeed, in a ball of radius 2 in ℓ_2^k there are at most 4^k vectors $\{\mathbf{x_i}\}$ so that $\|\mathbf{x_i} - \mathbf{x_j}\| \geq 1$ for every $i \neq j$ (see the proof of Lemma 3 below). Hence for τ sufficiently small there is no map F which maps an orthonormal set with more than 4^k vectors into a k-dimensional subspace of ℓ_2 with

$$\|\mathbf{F}\|_{\ell_{\mathbf{ip}}} \|\mathbf{F}^{-1}\|_{\ell_{\mathbf{ip}}} \leq \frac{1+\tau}{1-\tau}$$
.

We can now verify the conjecture of Marcus and Pisier [10].

THEOREM 1. Sup $(\log n)^{-1/2}L(\infty, n) < \infty$. In other words: there is a $n = 2, 3, \ldots$ constant K so that for all metric spaces X and all finite subsets M of X (card M = n, say) every function f from M into ℓ_2 has a Lipschitz extension f: $X \rightarrow \ell_2$ which satisfies

$$\|\mathbf{f}\|_{\ell \mathbf{ip}} \leq \kappa \sqrt{\log n} \|\mathbf{f}\|_{\ell \mathbf{ip}}.$$

PROOF. Given X, M \subset X with card M = n, and f : M \rightarrow ℓ_2 , set A = f [M]. We apply Lemma 1 with τ = 1/2 to get a one-to-one function g^{-1} from A onto a subset $g^{-1}[A]$ of ℓ_2^k (where $k \leq K \log n$) which satisfies

$$\|g^{-1}\|_{\ell ip} \le 1; \|g\|_{\ell ip} \le 3.$$

By Kirszbraun's theorem, we can extend g to a function $\tilde{g}:\ell_2^k \to \ell_2$ in such a way that

$$\|\mathbf{g}\|_{\ell_{\mathbf{ip}}} \leq 3$$
.

Let I : $\ell_2^k \to \ell_\infty^k$ denote the formal identity map, so that

$$\|\mathbf{I}\| = 1$$
, $\|\mathbf{I}^{-1}\| = \sqrt{k}$.

Then

$$h = Ig^{-1}f$$
, $h : M \rightarrow \ell_{\infty}^{k}$

has Lipschitz norm at most $\|f\|_{\ell ip}$, so by the non-linear Hahn-Banach theorem (see, e.g., p. 48 of [14]), h can be extended to a mapping

$$\tilde{h}: X \to \ell_{\infty}^{k}$$

which satisfies

$$\|\hat{h}\|_{\ell_{\mathbf{i}\mathbf{p}}} \le \|f\|_{\ell_{\mathbf{i}\mathbf{p}}}$$
.

Then

$$\tilde{f} = \tilde{g} I^{-1} \tilde{h}; \quad \tilde{f} : X \rightarrow \ell_2$$

is an extension of f and satisfies

$$\|\mathbf{f}\|_{\ell \mathbf{i} \mathbf{p}} \le 3 \sqrt{\mathbf{k}} \|\mathbf{f}\|_{\ell \mathbf{i} \mathbf{p}} \le 3K \sqrt{\log n} \|\mathbf{f}\|_{\ell \mathbf{i} \mathbf{p}}.$$

Next we outline our approach to the problem of obtaining a lower bound for $L(\infty,n)$. Take for f the inclusion mapping from an ϵ -net for S^{N-1} into ℓ_2^N , and consider ℓ_2^N isometrically embedded into L_∞ . A Lipschitz extension of f to a mapping $\tilde{f}: L_\infty \to \ell_2$ should act like the identity ℓ_2^N , so the techniques of [8] should yield a linear projection from L_∞ onto ℓ_2^N whose norm is of order $\|f\|_{\ell_1p}$. Since ℓ_2^N is complemented in L_∞ only of order \sqrt{N} and there are ϵ -nets for S^{N-1} of cardinality $n \equiv [4/\epsilon]^N$, we should get that

$$L(^{\infty}, n) \geq \sqrt{N} \geq \delta \left(\frac{Log \ n}{-Log \ \epsilon}\right)^{1/2}$$
.

In Theorem 2 we make this approach work when ϵ is of order N^{-2} , so we get

$$L(\infty,n) \ge \delta! \left(\frac{\text{Log } n}{\text{Log Log } n}\right)^{1/2}$$
.

That the difficulties we incur with the outlined approach for larger values of ϵ are not purely technical is the gist of the following extension result.

(*) THEOREM 2. Suppose that X is a metric space, $A \subseteq X$, $f: A \to \ell_2$ is Lipschitz and $d(x,y) \ge \varepsilon > 0$ for all $x \ne y \in A$. Then there is an extension $f: X \to \ell_2$ of f so that

$$\|\mathbf{f}\|_{\ell_{\mathbf{ip}}} \leq \frac{6D}{\varepsilon} \|\mathbf{f}\|_{\ell_{\mathbf{ip}}}$$
,

where D is the diameter of A.

PROOF. We can assume by translating f that there is a point $0 \in A$ so that f (0) = 0. Set $B = A \sim \{0\}$ and define

$$F: A \to \ell_1^B \quad \text{by}$$

$$F(b) = \begin{cases} \delta_b, & b \neq 0 \\ 0, & b = 0 \end{cases}.$$

Define

$$G: \ell_1^B \rightarrow \ell_2$$

by

$$G(\sum_{b \in B} \alpha_b \delta_b) = \sum_{b \in B} \alpha_b f (b) .$$

^(*) See the appendix for a generalization of Theorem 2 proved by Yoav Benyamini.

Then

$$\|G\| \le D \|f\|_{\ell_{\mathbf{ip}}}$$
, and $\|F\|_{\ell_{\mathbf{ip}}} \le 2/\epsilon$.

A weakened form of Grothendieck's inequality (see section 2.6 in [9]) yields that G (as any bounded linear operator from an L_1 space into a Hilbert space) factors through an $\ell_\infty(\mathcal{H})$ space:

$$G = H J, ||J|| = 1, ||H|| \le 3 ||G||,$$

$$J: \ell_1^B \to \ell_\infty(\mathcal{H}), \quad H: \ell_\infty(\mathcal{H}) \to \ell_2.$$

By the non-linear Hahn-Banach Theorem the mapping J F has an extension

$$E: X \to \ell_{\infty}(K)$$
 which satisfies

$$\|\mathbf{E}\|_{lip} \leq \|\mathbf{J} \mathbf{F}\|_{lip} \leq 2/\epsilon$$
.

Then
$$f = H E$$
 extends f and $||f|| \le \frac{6D}{\varepsilon} ||f||_{\ell_{1D}}$, as desired.

For the proof of Theorem 3, we need three well known facts which we state as lemmas.

LEMMA 2. Suppose that Y, X are normed spaces and $f: S(Y) \to X$ is Lipschitz with f(0) = 0. Then the positively homogeneous extension of f, defined for $y \in Y$ by

$$\tilde{f}$$
 (y) = $\|y\| f(\frac{y}{\|y\|})$, (y \neq 0); \tilde{f} (0) = 0

is Lipschitz and

$$\|\mathbf{f}\|_{\ell \mathbf{ip}} \leq 2 \|\mathbf{f}\|_{\ell \mathbf{ip}} + \|\mathbf{f}\|_{\infty}.$$

PROOF. Given y_1 , $y_2 \in Y$ with $0 < \|y_1\| \le \|y_2\|$,

$$\begin{split} \|\widetilde{\mathbf{f}}(\mathbf{y}_{1}) - \widetilde{\mathbf{f}}(\mathbf{y}_{2})\| &\leq \| \| \|\mathbf{y}_{1}\| \| \|\mathbf{f}\left(\frac{\mathbf{y}_{1}}{\|\mathbf{y}_{1}\|}\right) - \|\mathbf{y}_{2}\| \|\mathbf{f}\left(\frac{\mathbf{y}_{1}}{\|\mathbf{y}_{1}\|}\right) \| \| \|\mathbf{f}\left(\frac{\mathbf{y}_{1}}{\|\mathbf{y}_{1}\|}\right) \| \|\mathbf{f}\left(\frac{\mathbf{y}_{1}}{\|\mathbf{y}_{1}\|}\right) \| \|\mathbf{f}\left(\frac{\mathbf{y}_{1}}{\|\mathbf{y}_{1}\|}\right) \| \|\mathbf{f}\left(\frac{\mathbf{y}_{1}}{\|\mathbf{y}_{1}\|}\right) \| \|\mathbf{f}\left(\frac{\mathbf{y}_{1}}{\|\mathbf{y}_{1}\|}\right) \| \|\mathbf{f}\left(\frac{\mathbf{y}_{1}}{\|\mathbf{y}_{1}\|}\right) \| \|\mathbf{f}\|\|_{\ell_{1}p} \| \|\mathbf{f}\|\|_{\ell_{1}p} \| \|\mathbf{f}\|\|_{\mathbf{y}_{1}} \| \|\mathbf{f}\|\|_{\mathbf{y}_{2}} \| \|\mathbf{f}\|\|_{\ell_{2}p} \| \|\mathbf{f}\|\|_{\ell_{2$$

EXTENSIONS OF LIPSCHITZ MAPPINGS

$$\leq \| \mathbf{f} \|_{\infty} \| \mathbf{y}_{1} - \mathbf{y}_{2} \| + \| \mathbf{f} \|_{\ell \mathbf{ip}} \quad \left[\left(\frac{\| \mathbf{y}_{2} \|}{\| \mathbf{y}_{1} \|} - 1 \right) \| \mathbf{y}_{1} \| + \| \mathbf{y}_{1} - \mathbf{y}_{2} \| \right]$$

$$\leq \left(\|\mathbf{f}\|_{\infty} + 2 \|\mathbf{f}\|_{\ell \mathbf{ip}} \right) \|\mathbf{y}_{1} - \mathbf{y}_{2}\|.$$

LEMMA 3. If Y is an n-dimensional Banach space and $0 < \epsilon$, then S(Y) admits an ϵ -net of cardinality at most $(1 + 4/\epsilon)^n$.

PROOF. Let M be a subset of S(Y) maximal with respect to " $\|x-y\| \ge \varepsilon$ for all $x \ne y \in M$ ".

Then the sets

$$b(y, \epsilon/2) \cap S(Y)$$
, $(y \in M)$

are pairwise disjoint hence so are the sets

$$b(y, \varepsilon/4), (y \in M).$$

Since these last sets are all contained in $b(1 + \epsilon/4)$, we have that

card M • vol
$$b(\epsilon/4) \le vol b(1 + \epsilon/4)$$

so that

card
$$M \le \left[\frac{4}{\epsilon} (1 + \epsilon/4)\right]^n$$
.

LEMMA 4. There is a constant $\delta > 0$ so that for each $1 \le p < 2$ and each $N = 1, 2, \ldots, L_p$ contains a subspace E such that

$$d(E, \ell_2^N) \leq 2$$

and every projection from L_p onto E has norm at least $\frac{1}{8}$ N $\frac{1}{p}$ - $\frac{1}{2}$.

PROOF. Given a finite dimensional Banach space X and $1 \le p < \infty$, let

$$\gamma_p(x) = \inf \{ \|T\| \ \|S\| : T : X \rightarrow L_p, \quad S:L_p \rightarrow X, \quad S \ T = I_X \}.$$

So $\gamma_{\infty}(X)$ is the projection constant of X, hence by [4], [12]

$$\gamma_1(\ell_2^N) = \gamma_{\infty}(\ell_2^N) = \sqrt{2n/\pi}$$
.

This gives the p = 1 case.

For 1 we reduce to the case <math>p = 1 by using Example 3.1 of [2], which asserts that there is a constant $C < \infty$ so that for $1 \le p < 2$ ℓ^{CN}_p contains a subspace E with $d(E, \ell^N_2) \le 2$. Since, obviously,

$$d(\ell_p^{CN}, \ell_1^{CN}) \leq (CN)^{1-1/p}$$

we get that if E is K-complemented in ℓ_{p}^{CN} , then

$$\pi^{-1/2} (2n)^{1/2} = \gamma_1(\ell_2^N) \le d(E, \ell_2^N) d(\ell_p^{CN}, \ell_1^{CN}) K$$

$$\le 2 (CN)^{1 - 1/p} K$$

The next piece of background information we need for Theorem 3 is a linearization result which is an easy consequence of the results in [8].

PROPOSITION 1. Suppose X \subseteq Y and Z are Banach spaces, f: Y \rightarrow Z is Lipschitz, and U: X \rightarrow Z is bounded, linear. Then there is a linear operator G: Z* \rightarrow Y* so that $||G|| \le ||f||_{\ell_{1P}}$ and

$$\|R_2 G - U*\| \le \|f|_X - U\|_{\ell_{ip}}$$

REMARK. Note that if Z is reflexive, the mapping $F \equiv G^*|_Y : Y \to Z$ satisfies $||F|| \le ||f||_{\ell_{1D}}$ and $||F||_X - U|| \le ||f||_X - U||_{\ell_{1D}}$.

PROOF. We first recall some notation from [8]. If Y is a Banach space, Y denotes the Banach space of all scalar valued Lipschitz functions $y^{\#}$ from Y for which $y^{\#}(0) = 0$, with the norm $\|y^{\#}\|_{\ell \text{ip}}$. There is an obvious isometric inclusion from Y into Y for a Lipschitz mapping $f: Y \to Z$, Z a normed space, we can define a linear mapping

$$f^{\#}: Z^{*} \to Y^{\#}$$
 by $f^{\#}z^{*} = z^{*}f$.

Given Banach spaces $X \subseteq Y$, Theorem 2 of [8] asserts that there are norm one linear projections

$$P_{v} : Y^{\#} \to Y^{*}, P_{v} : X^{\#} \to X^{*}$$

so that

$$P_X R_1 = R_2 P_Y$$

where R_1 is the restriction mapping from $Y^\#$ onto $X^\#$. Thus if $X\subset Y$, f, U, Z are as in the hypothesis of Proposition 1, the linear mapping P_V f $^\#$ satisfies

$$\|P_{Y} f^{\#}\| \le \|f\|_{\ell_{1D}}, R_{2} P_{Y} f^{\#} = P_{X} R_{1} f^{\#}.$$

Since U: $X \rightarrow Z$ is linear,

$$U^* = P_v U^{\#}$$

so

$$\|R_{2} P_{Y} f^{\#} - U^{*}\| = \|P_{X}(R_{1}f^{\#} - U^{\#})\|$$

$$\leq \|R_{1} f^{\#} - U^{\#}\| = \sup_{z^{*} \in S(Z^{*})} \|R_{1} f^{\#} z^{*} - U^{\#} z^{*}\|$$

$$= \sup_{z^{*} \in S(Z^{*})} \|(z^{*} f)|_{X} - z^{*} U\| \leq \|f|_{X} - U\|_{\ell i p}.$$

The final lemma we use in the proof of Theorem 3 is a smoothing result for homogeneous Lipschitz functions.

LEMMA 5. Suppose X C Y and Z are Banach spaces with dim X = k < ∞ , F: Y \rightarrow Z is Lipschitz with F positively homogeneous (i.e. F(λ y) = λ F(y) for $\lambda \geq 0$, y \in Y) and U : X \rightarrow Z is linear. Then there is a positively homogeneous Lipschitz mapping

$$\tilde{F}$$
: Y \rightarrow Z which satisfies

(1)
$$\|\tilde{F}_{|X} - U\|_{\ell_{1p}} \le (8k + 2) \|F_{|S(X)} - U_{|S(X)}\|_{\infty}$$

(2)
$$\|\widetilde{\mathbf{F}}\|_{\ell_{1p}} \leq 4 \|\mathbf{F}\|_{\ell_{1p}}$$
.

PROOF. For $y \in S(Y)$ define

$$\hat{F}y = \int_{B_{\mathbf{Y}}(1)} F(y+x) d\mu(x)$$

where $\mu(\cdot)$ is Haar measure on X (= \mathbb{R}^k) normalized so that

$$\mu(B_{X}(1)) = 1.$$

For $y_1, y_2 \in S(Y)$ we have

$$\begin{split} \| \hat{\mathbf{F}} \mathbf{y}_{1} - \hat{\mathbf{F}} \mathbf{y}_{2} \| &\leq \int_{\mathbf{B}_{X}(1)} \| \mathbf{F}(\mathbf{y}_{1} + \mathbf{x}) - \mathbf{F}(\mathbf{y}_{2} + \mathbf{x}) \| d\mu(\mathbf{x}) \\ &\leq \| \mathbf{F} \|_{\ell \mathbf{1} \mathbf{p}} \| \mathbf{y}_{1} - \mathbf{y}_{2} \| \end{split}$$

so

$$\|\hat{\mathbf{f}}\|_{\ell ip} \leq \|\mathbf{f}\|_{\ell ip}$$
.

For x_1 , $x_2 \in S(X)$ with $\|x_1 - x_2\| = \delta > 0$ we have, since U is linear, that

$$\|(\hat{\mathbf{F}} - \mathbf{U})\mathbf{x}_1 - (\hat{\mathbf{F}} - \mathbf{U})\mathbf{x}_2\| =$$

$$\| \int_{B_X(1)} F(x_1 + x) d\mu(x) - \int_{B_X(1)} U(x_1 + x) d\mu(x) - \int_{B_X(1)} F(x_2 + x) d\mu(x) + \frac{1}{2} \int_{B_X(1)} F(x_1 + x) d\mu(x) + \frac{1}{2} \int_{B_X(1)} F(x_1 + x) d\mu(x) - \frac{1}{2} \int_{B_X(1)} F(x_1 + x) d\mu(x) + \frac{1}{2} \int_{B_X(1)} F(x_1 + x) d\mu(x) - \frac{1}{2} \int_{B_X(1)} F(x_1 + x) d\mu(x) + \frac{1}{2} \int_{B_X$$

$$\int_{B_{\mathbf{X}}(1)} \mathbf{U}(\mathbf{x}_2 + \mathbf{x}) \ d\mu(\mathbf{x}) \| \le$$

$$\leq \int_{B_{X}(x_{1}; 1)} \|Fx - Ux\| d\mu(x) \leq$$

$$\leq \sup_{\mathbf{X}} \| \mathbf{F} \mathbf{x} - \mathbf{U} \mathbf{x} \| \ \mu \ [\mathbf{B}_{\mathbf{X}}(\mathbf{x}_1; \ 1) \ \Delta \ \mathbf{B}_{\mathbf{X}}(\mathbf{x}_2; \ 1)]$$

$$= 2 \sup_{\mathbf{X} \in B_{\mathbf{X}}(1)} \| \operatorname{Fx} - \operatorname{Ux} \| \mu [B_{\mathbf{X}}(\mathbf{x}_1; 1) \Delta B_{\mathbf{X}}(\mathbf{x}_2; 1)]$$
 since F is positively homogeneous

Since

$$\mathtt{B}_{\mathtt{X}}(\mathtt{x}_{1};\ 1)\ \vartriangle\ \mathtt{B}_{\mathtt{X}}(\mathtt{x}_{2};\ 1)\ \subset\ [\mathtt{B}_{\mathtt{X}}(\mathtt{x}_{1};\ 1)\ \sim\ \mathtt{B}_{\mathtt{X}}(\mathtt{x}_{1};\ 1-\delta)\,]\ \cup\ [\mathtt{B}_{\mathtt{X}}(\mathtt{x}_{2};\ 1)\ \sim\ \mathtt{B}_{\mathtt{X}}(\mathtt{x}_{2};\ 1-\delta)\,]$$

we have if $\delta \leq 1$ that

$$\mu[B_{\chi}(x_2; 1) \triangle B_{\chi}(x_2; 1)] \le 2[1 - (1-\delta)^k]$$

$$\le 2 k \delta$$

and hence for all $x_1, x_2 \in S(X)$ that

$$\|(\hat{F} - U) \times_1 - (\hat{F} - U) \times_2\| \le 4k \|F_{|S(X)} - U_{|S(X)}\| \|x_1 - x_2\|$$

whence

$$\|\hat{\mathbf{f}}\|_{S(X)} - \mathbf{U}\|_{S(X)}\|_{\ell_{\mathbf{ip}}} \le 4k \|\mathbf{F}\|_{S(X)} - \mathbf{U}\|_{S(X)}\|_{\infty}.$$

Finally, note that the positive homogeniety of F implies that

$$\|\hat{\mathbf{f}}\|_{\infty} \le 2 \|\mathbf{F}\|_{\ell ip} \quad \text{and} \quad \|\hat{\mathbf{f}}\|_{S(X)} - \mathbf{U}\|_{S(X)} \le 2 \|\mathbf{F}\|_{S(X)} - \mathbf{U}\|_{S(X)} \|_{\infty}.$$

It now follows from Lemma 2 that the positively homogeneous extension \tilde{F} of \hat{F} satisfies the conclusions of Lemma 5.

THEOREM 3. There is a constant $\tau > 0$ so that for all $n = 2, 3, 4, \ldots$ and all $1 \le p < 2$,

$$L(p,n) \geq \tau \left(\frac{\text{Log } n}{\text{Log Log } n}\right)^{1/p - 1/2}.$$

REMARK. Since $L(\infty,n) \ge L(1,n)$, we get the lower estimate for $L(\infty,n)$ mentioned in the introduction.

PROOF. Given p and n, for a certain value of N = N(n) to be specified later choose a subspace E of L with d(E, ℓ_2^N) \leq 2 and E only δ N^{1/p - 1/2}-complemented in L (Lemma 4). For a value ϵ = ϵ (n) > 0 to be specified later, let A be a minimal ϵ -net of S(E), so, by Lemma 3,

card
$$A \leq (1 + 4/\epsilon)^{N}$$
.

One relation among n, N, ϵ we need is

$$(1.4) (1 + 4/\varepsilon)^{N} + 1 \le n.$$

Let $f:A\cup\{0\}\to E$ be the identify map. Since $d(E,\ell_2^N)\le 2$, we can by Lemma 2 get a positively homogeneous extension $\tilde{f}:L_p\to E$ of f so that

$$\|\tilde{\mathbf{f}}\|_{\ell,n} \leq 6 \ L(p,n).$$

Since $\tilde{f}(a) = f(a) = a$ for $a \in A$ and A is an ϵ -net for S(E), we get that for $x \in S(E)$,

$$\|\mathbf{f}(\mathbf{x}) - \mathbf{x}\| \le (6 L(\mathbf{p}, \mathbf{n}) + 1) \varepsilon.$$

Therefore, from Lemma 5 we get a Lipschitz mapping $\hat{f}: L_p \to E$ which satisfies

$$\|\hat{\mathbf{f}}\|_{\ell_{\mathbf{i}\mathbf{p}}} \leq 24 \ L(\mathbf{p},\mathbf{n})$$

(1.5)
$$\|\hat{f}_{|E} - I_{E}\| \le (8N + 2)(6 L(p,n) + 1)\epsilon.$$

Note that if

$$(1.6) (8N + 2)(6 L(p,n) + 1)\varepsilon \le 1/2,$$

(1.5) implies that there is a linear projection from L_p onto E with norm at most $48 \ L(p,n)$, so we can conclude that

$$L(p,n) > \delta/48 N^{1/p} - 1/2$$
.

Finally, we just need to observe that (1.4) and (1.6) are satisfied (at least for sufficiently large n) if we set

$$\varepsilon = \text{Log}^{-2} \text{ n}, \quad N = \frac{\text{Log n}}{2 \text{ Log Log n}}.$$

2. OPEN PROBLEMS.

Besides the obvious question left open by the preceding discussion (i.e. whether the estimate for $L(\infty,n)$ given in Theorem 1 is indeed the best possible), there are several other problems which arise naturally in the present context. We mention here only some of them.

PROBLEM 1. Is it true that for $1 , every subset X of L (0,1), and every Lipschitz map f from X into <math>\ell_2^k$ there is an extension f of f from L (0,1) into ℓ_2^k with

(2.1)
$$\|\tilde{f}\|_{\ell ip} \le C(p) \|f\|_{\ell ip} k^{1/p} - 1/2$$

where C(p) depends only on p?

A positive answer to problem 1 combined with Lemma 1 above will of course provide an alternative proof to the result of Marcus and Pisier [10] mentioned in the introduction. The linear version of problem 1 (where X is a subspace and f a linear operator) is known to be true (cf. [7] and [3]).

PROBLEM 2. What happens in the Marcus-Pisier theorem if $2 ? Is the Lipschitz analogue of Maurey's extension theorem [11] (cf. also [3]) true? In other words, is it true that for <math>2 there is a c(p) such that for every Lipschitz map f from a subset X of L_p(0,1) into <math>\ell_2$ there is a Lipschitz extension f from L_p(0,1) into ℓ_2 with

$$\|\tilde{\mathbf{f}}\|_{\ell_{\mathbf{i}\mathbf{p}}} \le c(\mathbf{p})\|\mathbf{f}\|_{\ell_{\mathbf{i}\mathbf{p}}}$$
?

PROBLEM 3. What are the analogues of Lemma 1 in the setting of Banach spaces different from Hilbert spaces? The most interesting special case seems to be concerning the spaces ℓ_{∞}^n . It is well known that every finite metric space $X = \{x_i\}_{i=1}^n$ embeds isometrically into ℓ_{∞}^n (the point x_i is mapped to the n-tuple $\{d(x_1, x_i), d(x_2, x_i), \ldots, d(x_n, x_i)\}$ in ℓ_{∞}^n). Hence in view of Lemma 1 it is quite natural to ask the following. Does there exist for all $\epsilon > 0$ (or alternatively for some $\epsilon > 0$) a constant $K(\epsilon)$ so that for every metric space X with cardinality n there is a Banach space Y with dim $Y \leq K(\epsilon) \log n$ and a map f from X into Y so that

A weaker version of Problem 3 is

PROBLEM 4. It is true that for every metric space X with cardinality n there is a subset \tilde{X} in ℓ_2 and a Lipschitz map F from X onto \tilde{X} so that (2.2) $\|F\|_{\ell \text{ip}} \|F^{-1}\|_{\ell \text{ip}} \leq K \sqrt{\log n}$

for some absolute constant K?

Since for every Banach space Y with dim Y = k we have $d(Y, \ell_2^k) \le \sqrt{k}$ (cf. [6]) it is clear that a positive answer to problem 3 implies a positive answer to problem 4. V. Milman pointed out to us that it follows easily from an inequality of Enflo (cf. [1]) that (2.2), if true, gives the best possible estimate. (In the notation of [1], observe that the "m-cube"

$$\mathbf{x}_{\theta} = (\theta_1, \theta_2, \dots, \theta_m) (\theta \in \{-1, 1\}^m)$$

in $\ell_1^{\rm m}$ has all "diagonals" of length 2m and all "edges" of length 2, so that if F is any Lipschitz mapping from these $2^{\rm m}$ points in $\ell_1^{\rm m}$ into a Hilbert space, the corollary in [1] implies that

$$\|F\|_{\ell ip} \|F^{-1}\|_{\ell ip} \ge m^{1/2}$$
.)

3. APPENDIX.

After this note was written, Yoav Benyamini discovered that Theorem 2 remains valid if ℓ_2 is replaced with any Banach space. He kindly allowed us to reproduce here his proof. The main lemma Benyamini uses is:

LEMMA 6. Let Γ be an indexing set and let $\{e_{\gamma}^{\}}_{\gamma} \in \Gamma$ be the unit vector basis for $c_{0}(\Gamma)$. Set

$$A = \{\alpha \ e_{\gamma} : 0 \le \alpha \le 1; \ \gamma \in \Gamma\}$$

$$B = \overline{\text{conv}} \ A \ (= \text{ positive part of } B_{\ell_1}(\Gamma)).$$

Then

- (i) there is a retraction G from $\ell_{\infty}(\Gamma)$ onto B which satisfies $\|G\|_{\ell,i,D} \leq 2$
- (ii) there is a mapping H from $\ell_{\infty}(\Gamma)$ into A which satisfies $\|H\|_{\ell \text{ ip}} \leq 4$ and $He_{\gamma} = e_{\gamma}$ for all $\gamma \in \Gamma$.

PROOF. Since the mapping $x \to x^+$ is a contractive retraction from $\ell_{\infty}(\Gamma)$ onto its positive cone, $\ell_{\infty}(\Gamma)^+$; to prove (i) it is enough to define G only on $\ell_{\infty}(\Gamma)^+$.

For $y \in \ell_{\infty}(\Gamma)^+$, let

$$g(y) = \inf \{t : ||(y - te)^{+}||_{1} \le 1\}$$

where $e \in \ell_{\infty}(\Gamma)$ is the function identically equal to one and $\|\cdot\|_1$ is the usual norm in $\ell_1(\Gamma)$. Clearly the inf is actually a minimum and $0 \le g(y) \le \|y\|_{\infty}$. Note that

$$|g(y) - g(z)| \leq ||y-z||_{\infty}$$

Indeed, assume that $g(y) \ge g(z)$. Then

$$y - [g(z) + ||y-z||_{m} e] \le y - g(z)e + z - y \le z - g(z)e$$

and hence

$$\|(y-[g(z) + \|y-z\|_{\infty}]e)^{+}\|_{1} \le 1;$$

that is

$$g(y) \leq g(z) + ||y-z||_{m}.$$

Now set for $y \in \ell_{\infty}(\Gamma)^+$

$$G(y) = (y - g(y)e)^{+}.$$

To prove (ii), it is enough, in view of (i), to define H on B with $\|\mathbf{H}_{B}\|_{\ell ip} \leq 2$. For $\mathbf{y} \in \mathbf{B}$, $\mathbf{y} = \{\mathbf{y}(\gamma)\}_{\gamma \in \Gamma}$, defined Hy by

$$Hy(\gamma) = (2y(\gamma) - 1)^{+}.$$

For $y \in B$, there is at most one $\gamma \in \Gamma$ for which $y(\gamma) > \frac{1}{2}$, hence $HB \subset A$. Evidently $He_{\gamma} = e_{\gamma}$ for $\gamma \in \Gamma$ and $\|H_{B}\|_{\ell 1p} \leq 2$.

THEOREM 2 (Y. Benyamini). Suppose that X is a metric space, Y is a subset of X with $d(x,y) \ge \varepsilon > 0$ for all $x \ne y \in Y$, Z is a Banach space, and $f: Y \rightarrow Z$ is Lipschitz. Then there is an extension $f: X \rightarrow Z$ of f so that

$$\|\mathbf{f}\|_{\ell \mathbf{i} \mathbf{p}} \le (4D/\epsilon) \|\mathbf{f}\|_{\ell \mathbf{i} \mathbf{p}}$$

where D is the diameter of Y.

PROOF. Represent

$$Y = \{0\} \cup \{y_{\gamma} : \gamma \in \Gamma\}$$

and assume, by translating f, that f(0) = 0. We can factor f through the subset $C = \{0\} \cup \{e_{\gamma} : \gamma \in \Gamma\}$ of $\ell_{\infty}(\Gamma)$ by defining $g : Y \to C$, $h : C \to Z$ by

$$g(y_{\gamma}) = e_{\gamma}, g(0) = 0$$

 $h(e_{\gamma}) = f(y_{\gamma}), h(0) = 0.$

Evidently,

$$\|g\|_{\ell ip} \le 1/\epsilon$$
, $\|h\|_{\ell ip} \le D\|f\|_{\ell ip}$.

By the non-linear Hahn-Banach theorem, g has an extension to a function $\tilde{g}: X \to \ell_{\infty}(\Gamma)$ with $\|\tilde{g}\|_{\ell i p} = \|g\|_{\ell i p}$, so to complete the proof, it suffices to extend h to a function $\tilde{h}: B \to Z$ with $\|\tilde{h}\|_{\ell i p} = \|h\|_{\ell i p}$ and apply Lemma 6(ii).

Define for $0 \le t \le 1$ and $\gamma \in \Gamma$

$$h(te_{\gamma}) = th(e_{\gamma}).$$

If $1 \ge t \ge s \ge 0$ and $\gamma \ne \Delta \in \Gamma$ then

$$\begin{split} \| \overset{\circ}{h} (t e_{\gamma}) - \overset{\circ}{h} (s e_{\Delta}) \| & \leq (t - s) \| h(e_{\gamma}) \| + s \| h(e_{\Delta}) - h(e_{\gamma}) \| \\ & \leq (t - s) \| h \|_{\ell i p} + s \| h \|_{\ell i p} = \| h \|_{\ell i p} \| t e_{\gamma} - s e_{\Delta} \|_{\infty}, \end{split}$$

so
$$\|\hat{\mathbf{h}}\|_{\ell ip} = \|\mathbf{h}\|_{\ell ip}$$
.

REFERENCES

- 1. P. Enflo, On the non-existence of uniform homeomorphisms between L spaces, Arkiv for Matematik 8 (1969), 195-197.
- 2. T. Figiel, J. Lindenstrauss and V. Milman, The dimension of almost spherical sections of convex bodies, Acta. Math. 139 (1977), 53-94.
- 3. T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math 33 (1979), 155-171.
- D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite-dimensional Banach spaces, Israel J. Math <u>9</u> (1971), 346-361.
- 5. U. Haagerup, The best constant in the Khintchine inequality, Studia Math 70 (1982), 231-283.
- F. John, Extremum problems with inequalities as subsidiary conditions, <u>Courant anniversary volume</u>, Interscience N.Y. (1948), 187-204.
- 7. D. Lewis, Finite dimensional subspaces of L_p , Studia Math. <u>63</u> (1978), 207-212.
- 8. J. Lindenstrauss, On non-linear projections in Banach spaces, Mich. Math. J. $\underline{11}$ (1964), 263-287.
- 9. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces Vol. I sequence spaces, Ergebnisse n. <u>92</u>, Springer Verlag, 1977.
- 10. M. B. Marcus and G. Pisier, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, to appear.
- B. Maurey, Un theoreme de prolongment, C. R. Acad. Paris <u>279</u> (1974), 329-332.
- 12. D. Rutovitz, some parameters associated with finite dimensional Banach spaces, J. London Math. Soc. 40 (1965), 241-255.
- 13. S. J. Szarek, On the best constant in the Khintchine inequality, Studia Math. 58 (1978), 197-208.
- 14. J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Ergebnisse n. <u>84</u> Springer Verlag 1975.

William B. Johnson The Ohio State University and Texas A & M University

Joram Lindenstrauss The Hebrew University of Jerusalem, Texas A & M University, and The Ohio State University