ICM-20948 (9 DOF IMU)

https://www.waveshare.com/wiki/10_DOF_IMU_Sensor_(C) + BMP280 센서 (고도 센서)

ICM20948 가속도, 자이로, 지자기 I2C+DMA+INT (HAL)

https://github.com/varofla/STM32F103_ICM20948_I2C_DMA/blob/main/src/app/app.c

ICM-20948 (3축 Gyro, 3축 Accel, 3축 Magnetic)

- 7-bit Address = 0b1101000 = 0x68 (Default)
 - I2C 통신 방식 (8-bit 주소) W/R (0/1)
 - 쓰기 (Write) → 0xD0 == (0x68 << 1 | 0)
 - 읽기 (Read) → 0xD1 == (0x68 << 1 | 1)
- FIFO Buffer 크기: 512 byte
- 자이로스코프 출력을 위한 16-bit ADC 3개 (6 byte)
 - 각속도(회전 속도) 측정
 - ±250, ±500, ±1000, ±2000dps (각속도 범위, 해상도)
 - **저 dps 범위** (±250 dps)는 느린 움직임을 **정밀하게 추적**할 때 유리
 - 고 dps 범위 (±2000dps)는 빠른 회전을 측정할 때 필요
- 가속도 계 출력을 위한 16-bit ADC 3개 (6 byte)
 - **선형 가속도** 측정
 - ±2g, ±4g, ±8g, ±16g (±2g일 때 해상도가 가장 높음)
- 온도 측정 16-bit ADC 1개 (2 byte)
- 지자 계 데이터 입력 (외부 센서 AK09916)
 - bit Address = 0b1101000 = 0x68
 - EXT_SLV_SENS_DATA_xx Data Registers
 - ∘ I2C_MST_xxx 센서를 I2C Master 역할을 부여
 - ∘ I2C_SLVx_xxx Slave 센서를 제어

사용 방법

- 1. 센서 내장 I2C Master를 활용해 ICM-20948이 직접 데이터를 읽음
 - → MCU 측에서 하나의 주소만 인식
- 2. 센서 자체 I2C 버스에 직결해 MCU 측에서 직접 제어
 - → MCU 측에서 두 개의 주소를 인식
- → DMA 사용 시 주소를 2개로 분할하면 DMA 호출을 2번 해야 함. 따라서, 1번 방식 채택

센서 Sampling 주기

1125/(1 + SMPLRT_DIV) Hz

- SMPLRT_DIV 레지스터
- 필요 Sampling 주기
 - 200Hz ~ 1000Hz (권장 값 : 500Hz)
 - 평균 필터 x4 average
- PID 제어 주기
 - 일반적인 값 : 100Hz ~ 500Hz (권장 값 250Hz)

▼ 이유

센서 데이터가 PID 루프보다 느릴 때 (125Hz < 250Hz)

- 센서 데이터 업데이트 속도(125Hz) < PID 제어 루프 속도(250Hz)
- 즉, PID 루프는 매번 새로운 센서 데이터를 받지 못할 수도 있음.
- 하지만! 추정(Interpolation) 또는 이전 값을 재사용하면 문제 없음!
 - 예를 들어, PID 루프가 두 번째 사이클(4ms)일 때, 이전 센서 데이터를 다시 사용하면 됨.
 - ∘ 대부분의 드론 컨트롤러(FC)는 이런 방식을 사용함.
 - 。 필요하면 보간(Extrapolation) 기법을 적용해서 데이터 간극을 보완 가능.

◆ 해결 방법:

- 1. 이전 값을 재사용 → 단순히 가장 최근 센서 값을 그대로 사용 (많은 드론에서 사용)
- 2. **보간(Interpolation) 적용** → 두 센서 데이터 간의 중간값을 계산하여 보정 가능
- 3. 예측(Extrapolation) 적용 → 센서 데이터를 기반으로 한 스텝 앞을 예측 가능

DLPF (Digital Low Pass Filter)

센서 데이터에서 고주파 신호를 차단하여 노이즈 제거

- CONFIG_1 레지스터 (GYRO_CONFIG_1, ACCEL_CONFIG)
- 3DB BW [Hz]
 - 필터가 신호의 전력을 절반(-3dB)으로 감소시키는 두 지점 사이의 주파수 범위
- NBW [Hz]
 - 특정 주파수 대역의 신호를 집중적으로 제거하는 노치 필터의 대역폭

센서	DLPF 설정 값	대역폭 BW	지연시간 Delay
자이로 Gyro	DLPF_CFG = 3	41Hz	5.9ms
가속도 Accel	DLPF_CFG =3	45.9Hz	5.8ms

▼ 이유

DLPF 3 (약 40Hz 설정 시, 고주파 진동을 효과적으로 제거하면서 응답 속도 충분히 빠름 DLPF (0, 1) 설정 \rightarrow 고주파 노이즈 문제 DLPF (6, 7) 설정 \rightarrow 필터링이 심해서 응답 속도가 낮아짐

I2C Configuration

- Master Features
 - Fast Mode = 400000Hz(=400kHz)
 - Fast Mode Duty Cycle = Tlow/Thigh = 2
- Slaver Features
 - Clock No Stretch Mode = Disable
 - Primary Address Length Selection = 7 bit
 - Dual Address Acknoledge = Disable
 - Primary slave address = 0
 - General Call address = Disable

Manual

센서 값 저장 레지스터 Address

→ **센서 데이터 읽기** (ACCEL_XOUT_H ~ GYRO_ZOUT_L)

Address	Name	Address	Name	Address	Name
0x33	Gyro_X_H	0x2D	Accel_X_H	0x39, 0x3A	Temp_H,L
0x34	Gyro_X_L	0x2E	Accel_X_L	0x3B, 0x3C	EXT_SLA0_xx
0x35	Gyro_Y_H	0x2F	Accel_Y_H	0x3D, 0x3E	EXT_SLA0_xx
0x36	Gyro_Y_L	0x30	Accel_Y_L	0x3F, 0x40	EXT_SLA0_xx
0x37	Gyro_Z_H	0x31	Accel_Z_H	0x41	ST2
0x38	Gyro_Z_L	0x32	Accel_Z_L		

ICM-20948 센서 Configuration

- 센서 Address
 - AD0 → 0x68
- BANK_SEL 설정 (Bank 0, Bank 1, Bank 2, Bank 3)
 - 。 REG_BANK_SEL → 0x7F, REG_BANK_SEL 는 모든 BANK가 공유
 - 0x00 : Select User Bank 0
 - 0x10 : Select User Bank 1
 - 0x20 : Select User Bank 2
 - 0x30 : Select User Bank 3
- Sleep 모드 해제 (Bank 0)
 - PWR_MGMT_1 \rightarrow 0x06 = 0x00
- 센서 데이터 읽는 주기 설정 (Bank O)
 - LP_CONFIG \rightarrow 0x05 = 0x00
- 샘플링 속도 설정 (Bank 2)
 - GYRO_SMPLRT_DIV \rightarrow 0x00 = 0x01
 - ∘ ACCEL_SMPLRT_DIV_1 \rightarrow 0x10 = 0x00
 - ∘ ACCEL_SMPLRT_DIV_2 \rightarrow 0x11 = 0x00
- Config 설정 (Bank 2)
 - GYRO_CONFIG_1 \rightarrow 0x01 = 0x1D
 - o GYRO_CONFIG_2 \rightarrow 0x02 = 0x02
 - ACCEL_CONFIG → 0x14 = 0x1D
 - ∘ ACCEL_CONFIG_2 \rightarrow 0x15 = 0x00

→ BANK SEL 레지스터에 따라 다른 BANK의 레지스터에 접근

Table 12 lists the user-accessible power modes for ICM-20948.

MODE	NAME	GYRO	ACCEL	MAGNETOMETER	DMP
1	Sleep Mode	Off	Off	Off	Off
2	Low-Power Accelerometer Mode	Off	Duty-Cycled	Off	On or Off
3	Low-Noise Accelerometer Mode	Off	On	Off	On or Off
4	Gyroscope Mode	On	Off	Off	On or Off
5	Magnetometer Mode	Off	Off	On	On or Off
6	Accel + Gyro Mode	On	On	Off	On or Off
7	Accel + Magnetometer Mode	Off	On	On	On or Off
8	9-Axis Mode	On	On	On	On or Off

+ AK09916 센서

ICM-20948 센서의 I2C Master 모드로 AK09916 센서의 레지스터를 Read/Write

- 7-bit Address = 0b0001100 = 0x0C
 - I2C 통신 방식 (8-bit 주소) W/R (0/1)
 - 쓰기 (Write) → 0xD0 == (0x0C << 1 | 0)
 - 읽기 (Read) → 0xD1 == (0x0C << 1 | 1)
- ICM-20948 (I2C_MST, BANK 3)
 - I2C_MST
 - I2C_MST_ODR_CONFIG → 0x00 = PA
 - I2C_MST_CTRL → 0x01 = 0x00
 - I2C_MST_DELAY_CTRL → 0x02 = FA
 - I2C_SLV
 - I2C_SLVO_ADDR → 0x03
 - oxec : Read / oxoc : Write
 - I2C_SLV0_REG → 0x04 = Slave Register Address
 - I2C_SLV0_CTRL → 0x05 = 0x89
 - I2C_SLV0_DO → 0x06 = data

▼ Gyroscope Spec

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A =25°C, unless otherwise noted.

NOTE: All specifications apply to Low-Power Mode and Low-Noise Mode, unless noted otherwise

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	GYROSCOPE SENSITIVITY					
Full-Scale Range	GYRO_FS_SEL=0		±250		dps	1
	GYRO_FS_SEL=1		±500		dps	1
	GYRO_FS_SEL=2		±1000		dps	1
	GYRO_FS_SEL=3		±2000		dps	1
Gyroscope ADC Word Length			16		bits	1
Sensitivity Scale Factor	GYRO_FS_SEL=0		131		LSB/(dps)	1
	GYRO_FS_SEL=1		65.5		LSB/(dps)	1
	GYRO_FS_SEL=2		32.8		LSB/(dps)	1
	GYRO_FS_SEL=3		16.4		LSB/(dps)	1
Sensitivity Scale Factor Tolerance	25°C		±1.5		%	2
Sensitivity Scale Factor Variation Over	-40°C to +85°C		±3		%	2
Temperature						
Nonlinearity	Best fit straight line; 25°C		±0.1		%	2, 3
Cross-Axis Sensitivity			±2		%	2, 3
	ZERO-RATE OUTPUT (ZRO)				
Initial ZRO Tolerance	25°C (Component-level)		±5		dps	2
ZRO Variation Over Temperature	-40°C to +85°C		±0.05		dps/°C	2
GY	ROSCOPE NOISE PERFORMANCE (GY	RO_FS_SEL=	0)			
Noise Spectral Density	Based on Noise Bandwidth =		0.015		dps/VHz	2
	10 Hz					
GYROSCOPE MECHANICAL FREQUENCIES		25	27	29	kHz	2
LOW PASS FILTER RESPONSE	Programmable Range	5.7		197	Hz	1, 3
GYROSCOPE START-UP TIME	From Full-Chip Sleep mode		35		ms	2, 3
	Low-Power Mode	4.4		562.5	Hz	
	Low-Noise Mode					
	GYRO_FCHOICE=1;	4.4		1.125k	Hz	
OUTPUT DATA RATE	GYRO_DLPFCFG=x					1
	Low-Noise Mode					
	GYRO_FCHOICE=0;			9k	Hz	
	GYRO_DLPFCFG=x					

▼ Accelerometer Spec

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

NOTES: All specifications apply to Low-Power Mode and Low-Noise Mode, unless noted otherwise

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
ACCELEROMETER SENSITIVITY							
Full-Scale Range	ACCEL_FS=0		±2		G	1	
	ACCEL_FS=1		±4		G	1	
	ACCEL_FS=2		±8		G	1	
	ACCEL_FS=3		±16		G	1	
ADC Word Length	Output in two's complement format		16		Bits	1	
	ACCEL_FS=0		16,384		LSB/g	1	
Sansitivity Sanla Factor	ACCEL_FS=1		8,192		LSB/g	1	
Sensitivity Scale Factor	ACCEL_FS=2		4,096		LSB/g	1	
	ACCEL_FS=3		2,048		LSB/g	1	
Initial Tolerance	Component-level		±0.5		%	2	
Sensitivity Change vs. Temperature	-40°C to +85°C ACCEL_FS=0		±0.026		%/ºC	2	
Nonlinearity	Best Fit Straight Line		±0.5		%	2, 3	
Cross-Axis Sensitivity			±2		%	2, 3	
	ZERO-G OUTPUT						
Initial Tolerance	Component-level, all axes		±25		m <i>g</i>	2	
Initial Tolerance	Board-level, all axes		±50		m <i>g</i>	2	
Zero-G Level Change vs. Temperature	0°C to +85°C		±0.80		mg/°C	2	
	ACCELEROMETER NOISE PERFORM	ANCE					
Noise Spectral Density	Based on Noise Bandwidth = 10 Hz		230		μg/VHz	2	
LOW PASS FILTER RESPONSE	Programmable Range	5.7		246	Hz	1, 3	
ACCELEROMETER STARTUP TIME	From Sleep mode		20		ms	2, 3	
ACCELEROWETER STARTOF TIME	From Cold Start, 1 ms V _{DD} ramp		30		ms	2, 3	
	Low-Power Mode	0.27		562.5	Hz		
	Low-Noise Mode						
	ACCEL_FCHOICE=1;	4.5		1.125k	Hz		
OUTPUT DATA RATE	ACCEL_DLPFCFG=x					1	
	Low-Noise Mode						
	ACCEL_FCHOICE=0;			4.5k	Hz		
	ACCEL_DLPFCFG=x						

▼ Magneometer Spec

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A =25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
MAGNETOMETER SENSITIVITY							
Full-Scale Range			±4900		μТ	1	
Output Resolution			16		bits	1	
Sensitivity Scale Factor			0.15		μT / LSB	1	
ZERO-FIELD OUTPUT							
Initial Calibration Tolerance		-2000		+2000	LSB	2	
OTHER							
Output Data Rate				100	Hz	1	

→ Register Map 7 Sector

ICM-20948 Datasheet

AK09916 Datasheet

<u>오차 보정 (Offset)</u>

<u>센서 테스트 코드</u>

Gyro & Accel Code

Mag Code

icm_20948.h

icm_20948.c