Euler's Phi Function

An arithmetic function is any function defined on the set of positive integers.

Definition. An arithmetic function f is called *multiplicative* if f(mn) = f(m)f(n) whenever m, n are relatively prime.

Theorem. If f is a multiplicative function and if $n = p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s}$ is its prime-power factorization, then $f(n) = f(p_1^{a_1}) f(p_2^{a_2}) \cdots f(p_s^{a_s})$.

Proof. (By induction on the length, s, of the prime-power factorization.) If $n = p_1^{a_1}$ then there is nothing to prove, as $f(n) = f(p_1^{a_1})$ is clear. If $n = p_1^{a_1}p_2^{a_2}$ then $f(n) = f(p_1^{a_1})f(p_2^{a_2})$ since $\gcd(p_1^{a_1}, p_2^{a_2}) = 1$, so the result holds for all numbers with prime-power factorization of length 2.

Assuming as the inductive hypothesis that the result holds for all numbers with prime-power factorization of length s, we consider a number $n = p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s} p_{s+1}^{a_{s+1}}$ with prime-power factorization of length s+1. Then we have

$$f(n) = f(p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s}) f(p_{s+1}^{a_{s+1}})$$

since $\gcd(p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s},p_{s+1}^{a_{s+1}})=1$. Thus by the inductive hypothesis we get $f(n)=f(p_1^{a_1})f(p_2^{a_2})\cdots f(p_s^{a_s})\cdot f(p_{s+1}^{a_{s+1}})$.

Now we apply this to the Euler phi function. Recall that $\varphi(n)$ is, by definition, the number of congruence classes in the set $(\mathbb{Z}/n\mathbb{Z})^{\times}$ of *invertible* congruence classes modulo n.

Theorem. Euler's phi function φ is multiplicative. In other words, if gcd(m, n) = 1 then $\varphi(mn) = \varphi(m)\varphi(n)$.

To prove this, we make a rectangular table of the numbers 1 to mn with m rows and n columns, as follows:

The numbers in the rth row of this table are of the form km + r as k runs from 0 to m - 1.

Let $d = \gcd(r, m)$. If d > 1 then no number in the rth row of the table is relatively prime to mn, since $d \mid (km+r)$ for all k. So to count the residues relatively prime to mn we need only to look at the rows indexed by values of r such that $\gcd(r, m) = 1$, and there are $\varphi(m)$ such rows.

If $\gcd(r,m)=1$ then every entry in the rth row is relatively prime to m, since $\gcd(km+r,m)=1$ by the Euclidean algorithm. It follows from Theorem 4.7 of Rosen that the entries in such a row form a complete residue system modulo n. Thus, exactly $\varphi(n)$ of them will be relatively prime to n, and thus relatively prime to mn.

We have shown that there are $\varphi(m)$ rows in the table which contain numbers relatively prime to mn, and each of those contain exactly $\varphi(n)$ such numbers. So there are, in total, $\varphi(m)\varphi(n)$ numbers in the table which are relatively prime to mn. This proves the theorem.

Theorem. For any prime
$$p$$
 we have that $\varphi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1) = p^a(1-\frac{1}{p})$.

The proof is an easy exercise. Just make a list of the numbers from 1 to p^a and count how many numbers in the list are not relatively prime to p^a . You will find that you are just counting the multiples of p, and there are p^{a-1} such multiples.

Theorem. For any integer n > 1, if $n = p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s}$ is the prime-power factorization, then

$$\varphi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\cdots(1 - \frac{1}{p_s})$$

= $p_1^{a_1 - 1}p_2^{a_2 - 1}\cdots p_s^{a_s - 1}(p_1 - 1)(p_2 - 1)\cdots(p_s - 1).$

This is proved by simply putting together all the results of this lecture. Since φ is multiplicative, we get

$$\varphi(n) = \varphi(p_1^{a_1})\varphi(p_2^{a_2})\cdots\varphi(p_s^{a_s})$$

= $p_1^{a_1}(1-\frac{1}{p_1})p_2^{a_2}(1-\frac{1}{p_2})\cdots p_s^{a_s}(1-\frac{1}{p_s})$

and the result follows after rearranging the order of the factors.

Comment. The result of the preceding theorem can be written as $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p})$, where it must be understood that in the product, p ranges over the *prime* divisors of n.

Example. Since $1000=10^3=2^35^3$ we have $\varphi(1000)=1000(1-\frac{1}{2})(1-\frac{1}{5})=1000\cdot\frac{1}{2}\cdot\frac{4}{5}=400.$

In other words, there are exactly 400 congruence classes in the group $(\mathbb{Z}/1000\mathbb{Z})^{\times}$ of multiplicative units.

By Euler's theorem, it follows that if gcd(a, 1000) = 1 then

$$a^{400} \equiv 1 \pmod{1000}$$
.

Equivalently, $[a]^{400} = [1]$ in $\mathbb{Z}/1000\mathbb{Z}$ whenever $\gcd(a, 1000) = 1$.