Streaming Algorithms for ℓ_p Flows and ℓ_p Regression

Amit Chakrabarti, Jeffrey Jiang

David P. Woodruff, Taisuke Yasuda

Dartmouth College

Carnegie Mellon University

Introduction and Problem Studied

Underdetermined linear systems. We wish to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ for an $n \times d$ matrix \mathbf{A} and an n-dimensional vector \mathbf{b} when $d \gg n$

- For unique solutions, consider the ℓ_p regression problem $\min \|\mathbf{x}\|_p^p \quad \text{s.t. } \mathbf{A}\mathbf{x} = \mathbf{b} \tag{P1}$
- Captures many well-studied problems
- p = 1: basis pursuit, sparse recovery
- p = 2: least squares solution to underdetermined systems
- ▶ p-norm flow problem: \mathbf{A} = incidence matrix of a graph and \mathbf{b} = vector of demands (when $p = \infty$: max flow)
- We study two types of guarantees
- \blacktriangleright Estimating the minimum cost of (P1) up to distortion κ
- \blacktriangleright Outputting a good solution $\hat{\mathbf{x}}$ with distortion κ

Streaming algorithms

- Motivation: very large d, so working memory holds only one or a few columns of \mathbf{A} at once
- Column-arrival streaming model. Algorithm receives the d columns of A and the vector b in an arbitrary order
- Focus: algorithms that make one pass over data stream
- \blacktriangleright If A = incidence matrix: edge insertion graph stream
- Primary goal: minimizing the space used by the algorithm

Question. What is the space complexity of underdetermined \mathcal{E}_p linear regression in the one-pass column-arrival streaming model?

Estimating the Minimum Cost

Results. Approximating the cost of ℓ_p regression

Setting	Distortion	Space Complexity (bits)
p = 2	1	$\tilde{O}(n^2)$ (folklore)
$p \in (2, \infty]$	$(1+\varepsilon)$	$\tilde{O}(\varepsilon^{-2}n^2)$
$p \in (1,2)$	$(1+\varepsilon)$	$\tilde{O}(\varepsilon^{-2}n^{q/2+1})$
p = 2	$(1+\varepsilon)$	$\Omega(n^2)$
p = 1	$o(n^{1/2})$	$n^{\omega(1)}$
p = 0	2	$\Omega(d)$

Note: q = p/(p-1), the Hölder conjugate exponent

Upper bound techniques

- We design streaming algorithms for constructing a **flow sparsifier**, i.e. a weighted subset of columns (edges) whose optimal value κ -approximates the optimal value of the original problem.
- \bullet First: reduce the problem to the construction of ℓ_q subspace embeddings via a duality lemma

Duality Lemma. If
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 is feasible, then
$$\min_{\mathbf{A}\mathbf{x} = \mathbf{b}} \|\mathbf{x}\|_p = \max_{\|\mathbf{A}^\mathsf{T}\mathbf{y}\|_q \le 1} \mathbf{y}^\mathsf{T}\mathbf{b}$$

• Next: apply known streaming algorithms for constructing ℓ_a subspace embeddings

Theorem. There is a column-arrival streaming algorithm that computes a weighted subset of columns **AS** of **A** such that

$$\|\mathbf{S}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{y}\|_{q} = (1 \pm \varepsilon) \|\mathbf{A}^{\mathsf{T}}\mathbf{y}\|_{q} \text{ for all } \mathbf{y} \in \mathbb{R}^{n},$$

using $\tilde{O}(\varepsilon^{-2}n^{\max\{1,q/2\}+1})$ bits of space.

• Key technique: online Lewis weight sampling [Cohen, Musco, Pachocki '16] [Woodruff, Yasuda '23]

Estimating the Minimum Cost (cont.)

Lower bound techniques (p = 1)

- Hard instance: the columns of **A** are n^D random vectors
- Two cases: **b** is a column of **A** or another random vector
- Deliver values for the two cases differ by factor of \sqrt{n}
- Reduce from INDEX problem (communication complexity): distinguishing the two cases requires $\Omega(n^D)$ bits of space

Outputting a Good Solution

Results. Outputting $\hat{\mathbf{x}}$ to approximately minimize ℓ_p -norm

Setting	Distortion	Space Complexity (bits)
$p \in (1,\infty]$	$(1+\varepsilon)$	$\Omega(d)$
$p \in (1,\infty]$	β	$\tilde{\Omega}(d/eta^{2q})$
$p \in (2, \infty]$	β	$n^2 \cdot \tilde{O}(d/\beta^q)$
$p \in (1,2)$	$n^{1/p-1/2}\beta$	$n^2 \cdot \tilde{O}(d/\beta^q)$
p = 1	$n^{1/2}$	$n^2 \cdot O(\text{poly log } d)$

Observations

- For p > 1, if we wish to output a $(1 + \varepsilon)$ -approximate solution, there are no algorithms using space sublinear in d.
- Reduce space by poly(d) factors, sacrificing poly(d) distortion
- For p=1, there is an algorithm with \sqrt{n} distortion using only $O(n^2 \cdot \operatorname{poly} \log d)$ bits of space

Upper bound techniques. Use streaming algorithms for constructing a well-conditioned subset of columns, which are essentially unweighted flow sparsifiers. Then a solution for the flow sparsifier is a valid solution to the original problem.

Lower bound techniques. Information theoretic argument: if \mathbf{A} is random, then a good approximation $\hat{\mathbf{x}}$ must have a high mutual information with \mathbf{A}