Magnetismo

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

9 de Novembro de 2020

Prof. Flaviano W. Fernandes IFPR-Irati

Sumário

- Magnetismo
- Força magnética e a corrente elétrica
- 3 Aplicações do magnetismo
- 4 Apêndice

História do magnetismo

- As primeira observações de fenômenos magnéticos surgiram na região da Magnésia (Ásia menor), onde existia um tipo de âmbar constituída por óxido de ferro que era capaz de atrair pequenos pedaços de ferro.
- ✓ O âmbar formava quando a resina de uma árvore, na sua forma viscosa, se encontrava com óxido de ferro no solo. Com o passar dos anos, o óxido de ferro sofria ação do campo magnético da Terra e se alinhava preferencialmente em uma única direção, à medida que a resina ia endurecendo.

Foto de um âmbar.

O ímã

Similarmente a fenômenos elétricos, no ímã, polos magnéticos iguais se repelem e pólos magnéticos diferentes se atraem.

Repulsão e atração entre dois ímans.

Íman atraindo vários pregos.

Prof. Flaviano W. Fernandes IFPR-Irati

Linhas de indução e campo magnético

De maneira semelhante ao campo elétrico, podemos também representar o campo magnético por meio de linhas de força chamadas linhas de indução.

Representação de linhas de campo magnético de um iman.

Visualização das linhas de campo magnético usando limalhas de ferro.

Inseparabilidade dos pólos

Corollary

Não existem monopolos magnéticos!

Quando rompemos um íman o que teremos serão dois ímans com seus dois pólos norte e sul, pois não existem monopolos magnéticos.

O nascimento do eletromagnetismo

Um Físico chamado Hans Christian Oersted mostrou em 1820 que uma corrente que flui ao longo de um circuito é capaz de orientar uma bússola na direção perpendicular ao fio. Como se essa corrente fosse capaz de produzir efeitos magnéticos ao redor do fio. Essa experiência marca o início da teoria do eletromagnetismo, onde dois fenomenos distintos da física se influenciam mutuamente. Até o momento eles eram tratados como algo totalmente separados um do outro.

Experiência de Oersted usando uma bússola e um circuito elétrico simples.

A relação entre eletricidade e magnetismo

Corollary

Quando duas cargas elétricas estão em movimento, manifestam-se entre elas, além da força eletrostática, uma outra força, denominada força magnética.

Força magnética entre dois fios [3].

Corollary

A força magnética que atua nas cargas Q e q possui direção perpendicular ao movimento das cargas.

A força de Lorentz

No final do século XIX, Hendrik Lorentz verificou que o módulo da força magnética depende:

- ✓ Do valor da carga elétrica q;
- ✓ do módulo da velocidade \vec{v} ;
- ✓ do ângulo θ entre a velocidade de q e do campo magnético \vec{B} .

Força magnética \vec{F}_{mag} atuando em uma carga p em movimento no interior do campo \vec{B} .

Expressão matemática da força de Lorentz

Lorentz obteve as seguintes relações:

 $F\alpha q$

 $F\alpha v$.

 $F\alpha sen(\theta)$,

que pode ser representado numa única

relação de proporcionalidade,

$$F \alpha q v sen(\theta)$$
.

Foi definido que a constante de proporcionalidade é o valor do campo magnético *B*.

Força de Lorentz

A força magnética que atua numa carga q em movimento num campo magnético B é dado por

$$F = qvBsen(\theta)$$
.

Prof. Flaviano W. Fernandes IFPR-Irati

Direção e sentido da força magnética

Características da força magnética (força de Lorentz):

- ✓ Módulo: $F = qvBsen(\theta)$,
- ✓ Direção: \vec{F} é perpendicular a \vec{v} e \vec{B} ,
- ✓ Sentido: Dado pela regra da mão direita.

Regra da mão direita.

Corollary

Se a carga q for negativa, o sentido da força magnética será contrário àquele que será observado pela carga positiva.

Como obter o campo magnético?

- ✓ Utilizamos um aparato para obter a força elétrica e a partir da fórmula $\vec{F} = q\vec{E}$ obtemos o campo elétrico.
- ✓ Utilizamos um aparato para obter a força magnética e a partir do movimento circular obtemos o campo magnético.

Balança de torção. Usado para obter a força elétrica.

Cíclotron. Usado para obter o campo magnético.

Força magnética em um condutor

Considere um campo magnético entrando na tela, perpendicular a corrente elétrica que flui num condutor de comprimento L, a força de Lorentz é dada por

$$f = qvB$$
.

Se ao invés de uma carga, houver N cargas se movimentando com velocidade \vec{v} , a força total no fio será a soma das forças em cada carga,

$$F_{fio} = Nf,$$

 $F_{fio} = BNqv.$

Força \vec{t} atuando em cada carga elétrica em movimento que atravessa a seção reta do fio condutor.

Força magnética em um condutor

Mas pela definição de corrente, $i = \Delta q/\Delta t$,

$$Nq = \Delta q = i\Delta t$$
.

Sabendo que $v = \frac{L}{\Delta t}$ obtemos

$$F = B(i\Delta t) \frac{L}{\Delta t} = BiL.$$

Corollary

Se um fio retilíneo, de comprimento L, percorrido por uma corrente i, for colocado em um campo magnético B, sobre esse fio atuará uma força magnética F dada por

$$F = iBLsen(\theta)$$
.

Campo magnético geográfico da Terra

A Terra se comporta como um ímã gigante onde o polo norte magnético encontra-se próximo do sul geográfico e vice-versa.

As linhas de indução produzem um campo magnético ao redor da Terra, o que a protege contra radiações vindas do Sol.

As cargas elétricas ao encontrarem o campo magnético sofrem uma força de Lorentz que a deslocam para o polo norte da Terra, causando o fenômeno da aurora Boreal.

Linhas de campo magnético da Terra.

Motor de corrente contínua

Esquema de funcionamento de um motor elétrico.

Uma corrente elétrica circula em uma espira retangular e devido ao campo magnético produzido pelo ímã, uma força perpendicular surge na espira produzindo um torque, fazendo-a girar.

Foto de um rotor, componente usado em um motor elétrico.

A levitação magnética sem atrito (Maglev)

O trem levita através da repulsão magnética;

A repulsão magnética pode ser entre um íman e um supercondutor (Maglev Cobra[2]) ou através de eletroímans (Transrapid de Xangai, JR-Maglev);

Como o movimento do trem ocorre por levitação, o atrito é praticamente zero, dissipando o mínimo de energia elétrica.

Com a falta de atrito, o trem pode alcançar velocidades supersônicas (JR-Maglev: 603 km/h, Transrapid Xangai: 430 km/h).

Projeto Maglev Cobra da UFRJ [2].

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

$$1 \text{ mm} = 1 \times 10^{(-1) \times 2} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5~g=2,5\times 10^{(1)\times 3}~mg \rightarrow 2,5\times 10^3~mg$$

10
$$\mu$$
C = 10 × 10^[(-3)×1+(-1)×3] C \rightarrow 10 × 10⁻⁶ C

Prof. Flaviano W. Fernandes IFPR-Irati

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2.5 \text{ m}^2 = 2.5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2.5 \times 10^6 \text{ mm}^2$$

10
$$\mu$$
m² = 10 × 10^[(-6)×1+(-2)×3] m² \rightarrow 10 × 10⁻¹² m²

Prof. Flaviano W. Fernandes

Magnetismo

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

10
$$\mu \text{m}^3 = 10 \times 10^{[(-9) \times 1 + (-3) \times 3]} \text{ m}^3 \rightarrow 10 \times 10^{-18} \text{ m}^3$$

Alfabeto grego

Alfa α В Beta Gama Delta Δ **Epsílon** Ε ϵ, ε Zeta Eta Н Θ Teta lota K Capa ĸ Lambda Mi Μ μ

Ni Ν ν Csi ômicron 0 Ρi П π Rô Sigma σ Tau Ípsilon 7) Fi Φ ϕ, φ Qui χ Psi Ψ ψ Ômega Ω ω

Referências

- A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.3, 2.ed., São Paulo, Scipione (2016)¹
- www.maglevcobra.coppe.ufrj.br/
- https://pt.m.wikipedia.org/wiki/

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Todas as figuras ilustrativas não referenciadas no texto foram extraídas de Alvarenga et al[1]