

SEQUENCE LISTING

<110> FAGAN, RICHARD JOSEPH
PHELPS, CHRISTOPHER BENJAMIN
RODRIGUES, TANIA MARIA
POWER, CHRISTINE
DE TIANI, MARIASTELLA

<120> SPLICE VARIANT OF HUMAN PLACENTAL GROWTH HORMONE

<130> C&R-106

<140> US 10/539,962
<141> 2005-06-17

<150> PCT/GB03/05594
<151> 2003-12-19

<150> GB 0229850.3
<151> 2002-12-20

<160> 37

<170> SeqWin99, version 1.02

<210> 1
<211> 180
<212> DNA
<213> Homo sapiens

<400> 1
gtccccggac gtccctgctc ctggcttttg gcctgtctg cctgtcctgg cttcaagagg 60
gcagtgcctt cccaaccatt cccttatacca ggcttttga caacgctatg ctccgcgcgg 120
gtcgccgtta ccagctggca tatgacacct atcaggagg tgtaagctt tggtaatgg 180

<210> 2
<211> 60
<212> PRT
<213> Homo sapiens

<400> 2
Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Ser Trp
1 5 10 15

Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe
20 25 30

Asp Asn Ala Met Leu Arg Ala Arg Arg Leu Tyr Gln Leu Ala Tyr Asp
35 40 45

Thr Tyr Gln Glu Phe Val Ser Ser Trp Val Met Glu
50 55 60

<210> 3
<211> 47

<212> DNA
 <213> Homo sapiens

<400> 3
 agtctattcc aacaccttcc aacagggtga aaacgcagca gaaatct 47

<210> 4
 <211> 15
 <212> PRT
 <213> Homo sapiens

<400> 4
 Ser Ile Pro Thr Pro Ser Asn Arg Val Lys Thr Gln Gln Lys Ser
 1 5 10 15

<210> 5
 <211> 227
 <212> DNA
 <213> Homo sapiens

<400> 5
 gctccggac gtccctgctc ctggctttg gcctgtctg cctgtcctgg cttcaagagg 60
 gcagtgcctt cccaaccatt cccttatcca ggcttttgaa caacgcatacg ctccgcgcgg 120
 gtcgcctgta ccagctggca tatgacacct atcaggaaat ttgtaaatct tggtaatgg 180
 agtctattcc aacaccttcc aacagggtga aaacgcagca gaaatct 227

<210> 6
 <211> 75
 <212> PRT
 <213> Homo sapiens

<400> 6
 Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Ser Trp
 1 5 10 15

Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe
 20 25 30

Asp Asn Ala Met Leu Arg Ala Arg Arg Leu Tyr Gln Leu Ala Tyr Asp
 35 40 45

Thr Tyr Gln Glu Phe Val Ser Ser Trp Val Met Glu Ser Ile Pro Thr
 50 55 60

Pro Ser Asn Arg Val Lys Thr Gln Gln Lys Ser
 65 70 75

<210> 7
 <211> 600
 <212> DNA
 <213> Homo sapiens

<400> 7
 atggctgcag gctccggac gtccctgctc ctggctttg gcctgtctg cctgtcctgg 60
 cttcaagagg gcagtgcctt cccaaccatt cccttatcca ggcttttgaa caacgcatacg 120

ctccgcgcgcc gtcgctgtc ccagctggca tatgacacct atcaggagt tggtaatct
 tggtaatcg acgttatccc aacacccatcc aacagggtga aaacgcgaca gaaatcta
 ctatcgatgc cttcgatctc cttcgatgc atccgtcat ggctggagcc cgtcgagtc
 ctcaggagcg tcttcgcca cagcctggtg tatggcgcct cgacagacaa cgtctatcg
 cacctggaaagg accttaggaa aggcatccaa acgtcgatgt ggaggctggaa agatggc
 ccccgactg ggcagatctt caatcgatcc tacagcaagt ttgacacaaa atcgacaaac
 gatgacgcac tgctcaagaa ctacggctg ctctactgt tcaggaagg catggacaaag
 gtcgagacat tcctcgcat cgtcgatgc cgctctgtgg agggcagctg tggcttctag

<210> 8
 <211> 199
 <212> PRT
 <213> Homo sapiens

<400> 8
 Met Ala Ala Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
 1 5 10 15

Cys Leu Ser Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu
 20 25 30

Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala Arg Arg Leu Tyr Gln
 35 40 45

Leu Ala Tyr Asp Thr Tyr Gln Glu Phe Val Ser Ser Trp Val Met Glu
 50 55 60

Ser Ile Pro Thr Pro Ser Asn Arg Val Lys Thr Gln Gln Lys Ser Asn
 65 70 75 80

Leu Glu Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp Leu Glu
 85 90 95

Pro Val Gln Leu Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly
 100 105 110

Ala Ser Asp Ser Asn Val Tyr Arg His Leu Lys Asp Leu Glu Glu Gly
 115 120 125

Ile Gln Thr Leu Met Trp Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly
 130 135 140

Gln Ile Phe Asn Gln Ser Tyr Ser Lys Phe Asp Thr Lys Ser His Asn
 145 150 155 160

Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys
 165 170 175

Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser
 180 185 190

Val Glu Gly Ser Cys Gly Phe
 195

<210> 9

180
 240
 300
 360
 420
 480
 540
 600

<211> 522
<212> DNA
<213> Homo sapiens

<400> 9
ttcccaacca ttcccttatac caggctttt gacaacgcta tgctccgcgc ccgtcgcttg
taccagctgg catatgacac ctatcaggag ttgttaagct ctgggttaat ggagtctatt 60
ccaacacctt ccaacagggt gaaaacgcag cagaaaatcta accttagagct gtcccgcatc 120
tccctgtgc tcatccagtc atggctggag ccgtgcgc tcctcaggag cgtcttcgccc 180
aacagcctgg tgttatggcgc ctggcagcgc aacgtttatc gcccaccaa ggacctagag 240
gaaggcatcc aaacgctgtat gtggaggctg aaagatggca gccccggac tggcagatc 300
ttcaatcgtt cttacagcaa ttgttacaca aaatcgcaca acgtatgcgc actgtctcaag 360
aactacgggc tgctctactg cttcaggaa gacatggaca aggtcgagac attccgtgcgc 420
atcgctgcgtt ggcgtctgtt ggagggcgc ttttgttctt a 480
522

<210> 10
<211> 173
<212> PRT
<213> Homo sapiens

<400> 10
Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg
1 5 10 15

Ala Arg Arg Leu Tyr Gln Leu Ala Tyr Asp Thr Tyr Gln Glu Phe Val
20 25 30

Ser Ser Trp Val Met Glu Ser Ile Pro Thr Pro Ser Asn Arg Val Lys
35 40 45

Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu
50 55 60

Ile Gln Ser Trp Leu Glu Pro Val Gln Leu Leu Arg Ser Val Phe Ala
65 70 75 80

Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Arg His Leu
85 90 95

Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Trp Arg Leu Glu Asp
100 105 110

Gly Ser Pro Arg Thr Gly Gln Ile Phe Asn Gln Ser Tyr Ser Lys Phe
115 120 125

Asp Thr Lys Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu
130 135 140

Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg
145 150 155 160

Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe
165 170

<210> 11

<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer GCP Forward

<400> 11
ggggacaagt ttgtacaaaa aagcaggctt cgccacc 37

<210> 12
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer GCP Reverse

<400> 12
ggggaccact ttgtacaaga aagctgggtt tcaatggtga tggtgatgg g 51

<210> 13
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer INSP105-exon2F

<400> 13
gcaggcttcg ccaccatggc tgcaggctcc cggacgtccc tgctctcg 48

<210> 14
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer INSP105-exon2R

<400> 14
ggaaggtgtt ggaatagact ccattaccca agagctta 38

<210> 15
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer INSP105- exon3F

<400> 15
agctcttggg taatggagtc tattccaaca cttcc 36

<210> 16

<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer INSP105- exon3R

<400> 16
ggagcagctc taggttagat ttctgctgcg ttttca 36

<210> 17
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer INSP105- exon4F

<400> 17
aacgcagcag aaatctaacc tagagctgct ccgcata 37

<210> 18
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer INSP105- exon4R

<400> 18
tgccatcttc cagcctccac atcagcgttt ggatgc 36

<210> 19
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer INSP105- exon5F

<400> 19
ccaaacgctg atgtggaggc tggaagatgg cagccc 36

<210> 20
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer INSP105- exon5R

<400> 20
gtgatggta tggtggaagc cacagctgcc ctcca 35

<210> 21

<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer INSP105-5' end-R	
<400>	21	
ggtagattt ctgctgcgtt ttcaccctgt tg		32
<210>	22	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer INSP105-center-F	
<400>	22	
caacagggtg aaaacgcagc agaaatctaa cc		32
<210>	23	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer INSP105-center-R	
<400>	23	
ggctgccatc ttccagcctc ca		22
<210>	24	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer INSP105-3' end-F	
<400>	24	
gcatccaaac gctgatgtgg ag		22
<210>	25	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer pEAK12-F	
<400>	25	
ccagttgg cacttgatgt		20
<210>	26	

<211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer pEAK12-R

<400> 26
 gatggaggcg gacgtgtcag 20

<210> 27
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer M13F

<400> 27
 caggaaacag ctagacc 18

<210> 28
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer M13R

<400> 28
 tgtaaaacgca cgcccgat 18

<210> 29
 <211> 129
 <212> DNA
 <213> Homo sapiens

<400> 29
 tccctgtctgc tcatccagtc atggctggag cccgtgcagc tcctcaggag cgtcttcggc 60
 aacagcctgg tgtatggcgc ctggacagc aacgtctatc gccacctgaa ggacctagag 120
 gaaggcata 129

<210> 30
 <211> 217
 <212> PRT
 <213> Homo sapiens

<400> 30

Met Ala Ala Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu			
1	5	10	15
Cys Leu Ser Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu			
20	25	30	

Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala Arg Arg Leu Tyr Gln
 35 40 45

Leu Ala Tyr Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Leu Lys
 50 55 60

Glu Gin Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe
 65 70 75 80

Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Val Lys Thr Gln Gln Lys
 85 90 95

Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp
 100 105 110

Leu Glu Pro Val Gln Leu Leu Arg Ser Val Phe Ala Asn Ser Leu Val
 115 120 125

Tyr Gly Ala Ser Asp Ser Asn Val Tyr Arg His Leu Lys Asp Leu Glu
 130 135 140

Glu Gly Ile Gln Thr Leu Met Trp Arg Leu Glu Asp Gly Ser Pro Arg
 145 150 155 160

Thr Gly Gln Ile Phe Asn Gln Ser Tyr Ser Lys Phe Asp Thr Lys Ser
 165 170 175

His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe
 180 185 190

Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys
 195 200 205

Arg Ser Val Glu Gly Ser Cys Gly Phe
 210 215

<210> 31

<211> 597

<212> DNA

<213> Homo sapiens

<220>

<221> Exon

<222> (1)..(597)

<400> 31

atg gct gca ggc tcc cgg acg tcc ctg ctc ctg gct ttt ggc ctg ctc
 Met Ala Ala Gly Ser Arg Thr Ser Leu Leu Ala Phe Gly Leu Leu
 1 5 10 15

48

tgc ctg tcc tgg ctt caa gag ggc agt gcc ttc cca acc att ccc tta
 Cys Leu Ser Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu

96

20

25

30

tcc agg ctt ttt gac aac gct atg ctc cgc gcc cgt cgc ctg tac cag Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala Arg Arg Leu Tyr Gln 35	40	45	144
ctg gca tat gag acc tat cag gag ttt gta agc tct tgg gta atg gag Leu Ala Tyr Asp Thr Tyr Gln Glu Phe Val Ser Ser Trp Val Met Glu 50	55	60	192
tct att cca aca cct tcc aac agg gtg aaa acg cag cag aac tct aac Ser Ile Pro Ser Asn Arg Val Lys Thr Gln Gln Lys Ser Asn 65	70	75	240
cta gag ctg ctc cgc atc tcc ctg ctg ctc atc cag tca tgg ctg gag Leu Glu Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp Leu Glu 85	90	95	288
ccc gtg cag ctc ctc agg agc gtc ttc gcc aac agc ctg gtg tat ggc Pro Val Gln Leu Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly 100	105	110	336
gcc tcg gac agc aac gtc tat cgc cac ctg aag gac cta gag gaa ggc Ala Ser Asp Ser Asn Val Tyr Arg His Leu Lys Asp Leu Glu Glu Gly 115	120	125	384
atc caa acg ctg atg tgg agg ctg gaa gat ggc agc ccc egg act ggg Ile Gln Thr Leu Met Trp Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly 130	135	140	432
cag atc ttc aat cag tcc tac agc aag ttt gac aca aaa tcg cac aac Gln Ile Phe Asn Gln Ser Tyr Ser Lys Phe Asp Thr Lys Ser His Asn 145	150	155	480
gat gac gca ctg ctc aag aac tac ggg ctg ctc tac tgc ttc agg aag Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys 165	170	175	528
gac atg gac aag gtc gag aca ttc ctg cgc atc gtg cag tgc cgc tct Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser 180	185	190	576
gtg gag ggc agc tgt ggc ttc Val Glu Gly Ser Cys Gly Phe 195			597
<210> 32			
<211> 597			
<212> DNA			
<213> Homo sapiens			
<400> 32			
ctggctgcag gctcccgac gtccctgctc ctggcttttgc gcctgtctgc cctgtactgg			60

cttcaagagg	gcagtgcctt	ccaaaccatt	cccttatcca	ggcttttga	caacgctatg	120
ctccqcgccc	gtcgccctgta	ccagctggca	tatgacacct	atcaggagtt	tgtaaagctct	180
tgggtaatgg	agtcttatccc	aacacccccc	aacagggtga	aaacgcagca	gaardctcac	240
ctagagctgc	tcggcatctc	cctgctgctc	atcgagtcgt	ggctggagcc	cgtcgagttc	300
ctcaggagtg	tcttcgccaa	cagcctggtg	tacggcgcct	ctgacagcaa	cgtctatgac	360
ctccctaaagg	acctagagga	aggcatccaa	acgctgtatgt	ggaggcttgga	agatggcagc	420
ccccggactg	ggcagatctt	caagcagacc	tacagcaagt	ttgacacaaa	ctgcacaaac	480
catgacgcac	tgctcaagaa	ctacgggctg	ctccactgtc	ttaggaagga	catggacaag	540
gtcgagacat	tcctgcgtat	cgtcgagtgc	cgctctgtgg	agggcagctg	tggcttc	597

<210> 33
<211> 589
<212> DNA
<213> Homo sapiens

<400> 33	atggctccgg	acgtccctgc	tcctggcttt	tgccctgctc	tgccctgcct	ggcttcaaga	60
	gggcagtgcc	ttcccaacca	ttcccttata	caggcttttt	gacaacgcta	tgcctccgcgc	120
	ccatcgctcg	caccagctgg	cctttgacac	ctaccaggag	tttgcatagt	cttgggtaat	180
	ggagtttatt	ccaacacctt	ccaacagggt	gaaaccgcag	cagaatcta	accttagagct	240
	gctccgcata	tcctcgctgc	tcatccagtc	atggctggag	cccggtcagc	tcctcaggag	300
	cgtcttcgcc	aacagctgg	tgtatggcgc	ctcgacacgc	aacgtctatac	gcacacgtaa	360
	ggacctatag	aaaggcatcc	aaacgctgtat	gtggaggctg	gaagatggca	gccacatgac	420
	tgggcagacc	ctcaagcaga	cctacagcaa	gtttgcacaca	aactcgacaca	accatgacgc	480
	actgctcaag	aactacgggc	tgcctccactg	cttcaggaaag	gacatggaca	aggtcgagac	540
	atccctgcgc	atcgctgcgt	ggcgtctgtt	ggagggcagc	tgtggcttc		589

<210> 34
<211> 468
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> {8}..{8}

```

<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (12)..(12)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (28)..(28)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (51)..(51)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (55)..(55)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (77)..(77)
<223> n is a, c, g, or t

<400> 34
atggctgnag gntcccgac gtccctgntc ctggcttttg gcctggcttg nctgnccctgg      60
cttcaagagg gcagtgnctt cccaaccatt cccttatcca ggcttttga caacgcatacg      120
ctccgcgcgc gtcgcctgtta ccagctggca tatgacacct atcaggagtt tgtaagctct      180
tgggtaatgg agtcttatccc aacaccttcc aacagggtga aaacgcagca gaaatctaacc      240
ctagagctgc tccgcattcca aacgcgtatgg tggaggctgg aagatggcagcccccgact      300
gggcagatct tcaatcagtc ctacagcaag tttgacacaa aatcgcacaa cgatgacgca      360
ctgctcaaga actacgggt gctctactgc ttccaggaagg acatggacaa ggtagcagaca      420
ttcctgcgca tcgtgcagtg ccgcgtctgtg gagggcagct gtggcttc      468

<210> 35
<211> 677
<212> DNA
<213> Homo sapiens

<220>
<221> Exon
<222> (34)..(648)

```

<400> 35			
acaagtttgt acaaaaaaagc aggcttcgcc acc atg gct gca ggc tcc cgg acg			54
Met Ala Ala Gly Ser Arg Thr			
1 5			
tcc ctg ctc ctg gct ttt ggc ctg ctc tgc ctg tcc tgg ctt caa gag			102
Ser Leu Leu Ala Phe Gly Leu Leu Cys Leu Ser Trp Leu Gln Glu			
10 15 20			
ggc agt gcc ttc cca acc att ccc tta tcc agg ctt ttt gac aac gct			150
Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala			
25 30 35			
atg ctc cgc gcc cgt cgc ctg tac cag ctg gca tat gac acc tat cag			198
Met Leu Arg Ala Arg Arg Leu Tyr Gln Leu Ala Tyr Asp Thr Tyr Gln			
40 45 50 55			
gag ttt gta agc tct tgg gta atg gag tct att cca aca cct tcc aac			246
Glu Phe Val Ser Trp Val Met Glu Ser Ile Pro Thr Pro Ser Asn			
60 65 70			
agg gtg aaa acg cag cag aaa tct aac cta gag ctg ctc cgc atc tcc			294
Arg Val Lys Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser			
75 80 85			
ctg ctg ctc atc cag tca tgg ctg gag ccc gtg cag ctc ctc agg agc			342
Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Leu Leu Arg Ser			
90 95 100			
gtc ttc gcc aac agc ctg gtg tat ggc gcc tcc gac agc aac gtc tat			390
Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr			
105 110 115			
cgc cac ctg aag gac cta gag gaa ggc atc caa acg ctg atg tgg agg			438
Arg His Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Trp Arg			
120 125 130 135			
ctg gaa gat ggc agc ccc cgg act ggg cag atc ttc aat cag tcc tac			486
Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Asn Gln Ser Tyr			
140 145 150			
agc aag ttt gac aca aaa tcg cac aac gat gac gca ctg ctc aag aac			534
Ser Lys Phe Asp Thr Lys Ser His Asn Asp Asp Ala Leu Leu Lys Asn			
155 160 165			
tac ggg ctg ctc tac tgc ttc agg aag gac atg gac aag gtc gag aca			582
Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr			
170 175 180			
ttc ctg cgc atc gtg cag tgc cgc tct gtg gag ggc agc tgt ggc ttc			630
Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe			
185 190 195			

cac cat cac cat cac cat tgaaacccag ctttcttgta caaagtgg
His His His His His His
200 205

677

<210> 36
<211> 9
<212> DNA
<213> Artificial sequence

<220>
<223> Partial sequence of the Gateway attB1 site

<400> 36
gcaggctc

9

<210> 37
<211> 6
<212> DNA
<213> Artificial sequence

<220>
<223> Partial sequence of the Kozak sequence

<400> 37
gccacc

6