

Supplement

to the Proceedings of the 42nd Annual Symposium on Frequency Control 1988

Subject and Author Index
for the Proceedings
of the 10th to 42nd
Symposia on Frequency Control
and

Symposium Historical Information

1946 - 1988

C April 1-

TABLE OF CONTENTS '

Background and Early Sessions of the Frequency Control Symposium	1
Symposium Chairmen, 1956 - 1988	3
Symposium Awards, 1966 - 1988	5
Index to the Proceedings of the Frequency Control Symposium	8
Subject Index	9
1. Fundamental Properties of Natural and Synthetic Piezoelectric Crystals	9
2. Theory and Design of Piezoelectric Resonators,	14
3. (Radiation Effects on Resonators and Oscillators,	23
4. Resonator Processing Techniques and Aging	25
5. Filters, Surface and Shallow Bulk Acoustic Wave Devices, Other Nonquantum-electronic Microwave Resonators, and Non-Piezoelectric Acoustic Resonators	31
6. Quartz Crystal Oscillators and Frequency Control Circuitry	39
7. Quantum Electronic Frequency Standards (Microwave Frequencies)	46
8. Quantum Electronic Frequency Standards (Visible and Infrared Frequencies)	56
9. Frequency and Time Coordination and Distribution,	58
10. Applications of Frequency Control Devices	62
11. Measurements and Specifications	64
12. Frequency Stability and Phase Noise (other than "measurement of")	69
13. Sensors and Transducers . A	71
14 / Other Topics /	72
Author/Index	74
and to	THE
By Distribution/	

Distribution/
Availability Codes
Avail and/or
Dist Special

Background and Early Sessions of the Frequency Control Symposium

Willie L. Doxey, retired*

The commitment of the Chief Signal Officer in early 1940 to equip the Army Combat Forces with radio communications using piezoelectric quartz crystals for frequency control was indeed a bold, yet sound, decision. The initial engineering development, prototype models, and field testing proved conclusively that the quartz crystal was essential to assure the military of reliable communications under combat conditions. However, adequate information was not available at that time to properly expose the astronomical problems of expanding and modernizing an industry capable of producing the number and variety of quartz crystal units to meet mobilization schedules for communications equipments required by the Armed Forces. Cursory inventory of the total production of quartz crystals (of all types) the Armed in the years of 1939 and 1940 turned out to be, at most, only a few thousand compared to the several million required at the beginning of 1942. During a special review of this critical production problem, a suggestion was made by the Senior Field Commander of the Armored Forces (on maneuvers at the time) to return to the old model radio without the use of quartz crystals. At this remark, General James D. O'Connel stated, with some authority: "Yes, we can give you those radios; but with quartz crystals we can give you communications."

During the war years of 1942-45, the crystal manufacturers, with unstructured support of the three services (Army, Navy, and Air Force), sponsored "production forums" which met monthly, in conveniently located cities, for discussions of those problems related to the production, testing, packaging, etc., of crystals for the military services. These meetings provided a valuable communications network and, more important, provided a platform for exchanges of technical information and production problems in this narrow field of new technology. After the war, however, only a relatively few of the crystal companies remained active. Military requirements for production (of existing types) were simply nonexistent.

During the last years of war (1944-45), the three services (Army, Navy, and Air Force), and the National Bureau of Standards, along with the Bell Telephone Laboratories, and universities (among others), had become more keenly aware of the lack of scientific knowledge of the properties of the quartz crystal. Interest and support expanded rapidly in the military services to provide resources for research and development, as well as refined techniques and

equipment for the production of piezoelectric devices. All three services expanded their fiscal capabilities to include sizeable research and development of internal and contractual programs to meet their projected, new and improved crystal requirements. The Army program, keynoted by positive direction of General James D. O'Connel to wit, "We must never again be caught, as we were in 1941-42, without a superior base of technology, trained engineers, and upgraded facilities to accomplish the Army's mission in communication on a timely basis."

With the support and direction of General O'Connel (who subsequently became Chief Signal Officer of the Army), several actions were made possible:

- 1. Funding for frequency-control programs for research and development contracts was increased substantially, exact figures are not available. However, if we suggest a figure of one and one half million dollars, as an initial start (with the buying power of 1946 dollars), this was considered a very worthwhile effort.
- 2. The Fort Monmouth Frequency Control Activity, at the close of World War II, retained its identity, thus surviving serious reductions in personnel, particularly engineers and technicians.
- 3. The Army's Frequency Control activities (internal and external) have survived a number of command reorganizations (or restructurings), and maintain a very healthy "Laboratory" identity.

Throughout the World War II years of 1941 through 1945, production of war support materiel was of the highest priority. Engineers and technicians were totally engaged in production support. The quartz crystal production program was among the 10 highest priority items in the total Army program. Engineers in the crystal industry (and in the government) identified problems in design, production, and performance of crystal units (as well as test and measurement equipment), which required research and development efforts. As a result, when the war ended, there was an abundance of proposed tasks and projects requiring development work, engineering design (redesign), and research investigations. Unsolicited proposals were being received by R&D activities of all three services (Army, Navy, and Air Force), and in many instances the same proposal found its way into each of the services for support. Although coordination among the three services was very good, at laboratory levels, the potential, as well as actual overlap and duplication of efforts, suggested/demanded a coordinated review at laboratory levels on an annual basis by engineering and top management personnel from the three services.

^{*}Willie L. Doxey was Chief of the Frequency Control Branch, Signal Corps Engineering Laboratories, Fort Monmouth, NJ, during the early days of the Symposium, prior to the publication of the first Proceedings.

In the absence of a structured organization to review and coordinate the research and development in this new and important field of Frequency Control, representatives of the Army, Navy, and Air Force (with participation of the National Bureau of Standards, experts from commercial R&D laboratories, and manufacturers), initiated action to formalize an annual review of problems, progress, and programs in this rapidly growing field of frequency control.

The first "Conference on Frequency Control" was held in 1946 in the conference room of Squire Signal Laboratory, Fort Monmouth, NJ, under Signal Corps sponsorship, with the participation of Air Force, Navy, and industry. Approximately 65 people attended. The agenda was flexible, with informal presentations by engineers of the three services, covering, primarily, their internal programs and contractual requirements, followed by a tour of the facilities and inter-nal activities of the Frequency Control Branch of Squire Signal Laboratory. Informal presentations were made by engineers from R&D contractors and other technical representatives from commercial manufacturers and laboratories. Interesting and profitable discussions followed each presentation. Attendees expressed opinions that this technical meeting was very worthwhile, and that a similar meeting should be held annually. No formal reports were prepared; however, the informal notes and discussions proved valuable. The next three annual reviews were also held at the Fort Monmouth facility. Attendance increased substantially each year, and soon exceeded the capacity of facilities available at Fort Monmouth. The conferences were then held at the Berkeley-Carteret Hotel in Asbury Park, NJ, where they were entitled Symposium. Invitations and formal agenda were prepared and issued by the Frequency Control Branch; however, no proceedings were prepared of the first nine symposia. Beginning with the 10th Frequency Control Symposium, formal papers were required, and proceedings were prepared and distributed.

The major technical areas of research, development and production explored during the first nine Frequency Control Symposia were as follows:

- O Quartz Crystals
- Other Crystals Having
 Piezoelectric Properties
 Such as: Tourmaline,
 Aluminum Phosphate,
- Nepheline
 O High Pressure Crystal Growing
 Techniques
- O Defects in Quartz
 - Piezoelectric Oscillators
- O Processing Technology
 Plating (Materials)
 Polishing
 Mounting, etc.
- O Crystal Holders Metal, Phenolic, Glass
- O Hermetic Sealing
- O Aging Studies
- O High Precision Crystals and Oscillators
- O Temperature Control (Ovens)

- Mass Production Techniques, Equipments, Automation
- O Measurement Methods

Atomic and molecular frequency standards were first addressed at the Symposium in the mid-1950's.

The symposium remained at the Berkeley-Carteret Hotel until 1959; after which time it was transferred to the Shelburne Hotel in Atlantic City, NJ, where it remained until 1971. The Symposium soon reached an attendance of several hundred engineers and scientists from a number of domestic and foreign countries.

In 1972, the Symposium moved to the Howard Johnson's Motor Lodge in Atlantic City. In 1973, due to a major fire at the Howard Johnson's a few months prior to the Symposium, the Symposium was moved to the Cherry Hill Inn, Cherry Hill, NJ. In 1974, the Symposium returned to Howard Johnson's, and remained there until 1979 (which is about the time that gambling became legal in Atlantic City). From 1980 to 1987, the Symposium was held in Philadelphia, PA.

Sponsorship and management of the Symposium remained with the leadership of the Frequency Control Branch of Fort Monmouth, NJ until 1981. There was no registration fee charged up to 1981. Because the costs, in terms of both manpower and dollars, became an increasing burden on the Frequency Control Branch, a contractor was hired in 1981 to assist with the administrative aspects of the Symposium, and a registration fee was instituted in 1982. By this time, the Symposium had long ago developed into the premier international scientific and engineering meeting in the area of frequency control. Discussions of defense related frequency control issues were no longer the focus. In 1983, a Memorandum of Understanding for cosponsorship of the Symposium was signed between the Director, U.S. Army Electronics Technology and Devices Laboratory and the President, Institute of Electrical and Electronics Engineers, Sonics and Ultrasonics Group. The Sonics and Ultrasonics Group changed its name shortly thereafter to the IEEE Ultrasonics, Ferroelectrics and Frequency Control Society.

As long as the Frequency Control Branch provided the manpower for admin stering the Symposium, it was necessary for the Symposium to be located in the vicinity of Fort Monmouth, NJ. With the changes implemented between 1981 and 1983, this was no longer essential. The Symposium management, therefore, decided to change the Symposium location annually, starting with the 1988 Symposium.

Symposium Chairmen, 1956-1988

Year	General Chairman	Technical Program Chairman	Other
1956	Eduard A. Gerber	Personnel of the Frequency Control Branch, US Army Signal Corps Engineering Laboratories	
1957	Eduard A. Gerber	J.M. Havel, R. Bechmann, M. Bernstein, G.K. Guttwein, F.H. Reder	Arrangements: Clarence E. Searles, Ruth C. Jenny
1958	Eduard A. Gerber	Jerome M. Havel	Arrangements: Clarence E. Searles, Ruth C. Jenny Facilities: Millard F. Timm
1959	Eduard A. Gerber	Jerome M. Havel	Arrangements: Clarence E. Searles Facilities: Millard F. Timm
1960	 Eduard A. Gerber 	Jerome M. Havel	Arrangements: Clarence E. Searles Facilities: Millard F. Timm
1961	 Eduard A. Gerber 	Jerome M. Havel	Arrangements: Clarence E. Searles Facilities: Millard F. Timm
1962	 Eduard A. Gerber 	Jerome M. Havel	Arrangements: Millard F. Timm
1963	 Eduard A. Gerber 	Gunter K. Guttwein	Arrangements: Millard F. Timm
1964	Eduard A. Gerber	Gunter K. Guttwein	Arrangements: Millard F. Timm
1965	Eduard A. Gerber	Gunter K. Guttwein	General Vice Chairman: Vincent J. Kublin Executive Assistant: Millard F. Timm Publications & Publicity: Mrs. P. Goldon Local Arrangements: Millard F. Timm
1966	Vincent J. Kublin 	Gunter K. Guttwein	Executive Assistant: Millard F. Timm Publications & Publicity: Marilyn Herberg Local Arrangements: Millard F. Timm
1967	Vincent J. Kublin 	Gunter K. Guttwein	Executive Assistant: Millard F. Timm Publications & Publicity: Marilyn Herberg Local Arrangements: Millard F. Timm
1968	Vincent J. Kublin 	Gunter K. Guttwein	Executive Assistant: Millard F. Timm Publications & Publicity: Marilyn Herberg Local Arrangements: Arthur D. Ballato
1969	 Vincent J. Kublin 	Gunter K. Guttwein	Executive Assistant: Millard F. Timm

Year	General Chairman	Technical Program Chairman	Other
			Local Arrangements:
1970	 Vincent J. Kublin 	Gunter K. Guttwein	Joseph M. Stanley Executive Assistant: Joseph M. Stanley Staff Consultant: Millard F. Timm
1971	Vincent J. Kublin	Gunter K. Guttwein	Executive Assistant: Joseph M. Stanley Staff Consultant: Millard F. Timm
1972	Vincent J. Kublin	Erich Hafner	Executive Assistant: Joseph M. Stanley Staff Consultant: Millard F. Timm
1973	Milton Tenzer	Erich Hafner (ECOM)	Executive Assistant: John Vig
1974	Milton Tenzer Erich Hafner	Erich Hafner	Executive Assistant: John Vig
1975	Milton Tenzer Erich Hafner	Erich Hafner	Exec. Asst.: John Vig Secretary: Lee Hildebrandt
1976	Milton Tenzer Erich Hafner	Erich Hafner	Executive Assistant: John Vig Secretary: Lee Hildebrandt
1977	Erich Hafner	Erich Hafner	Executive Assistant: John Vig Executive Secretary: Lee Hildebrandt
1978	Erich Hafner	Erich Hafner	Executive Assistant: John Vig Executive Secretary: Lee Hildebrandt
1979	Erich Hafner	 Erich Hafner 	Executive Secretary: Lee Hildebrandt
1980	Erich Hafner	Erich Hafner	Executive Secretary: Lee Hildebrandt
1981	Erich Hafner	Erich Hafner Arthur Ballato	Executive Secretary: Lee Hildebrandt
1982	Vladimir G. Gelnovatch	Arthur Ballato	
1983	John R. Vig		
1984	John R. Vig		
1985	John R. Vig	Samuel R. Stein	Finance Chairman: Thomas Parker
1986 	John R. Vig	Leonard S. Cutler	Finance Chairman: Thomas Parker Publicity Chairman: Raymond Filler
1987 	John R. Vig	Leonard S. Cutler	Finance Chairman: Thomas Parker Publicity Chairman: Raymond Filler
1988 	John R. Vig	Thrygve R. Meeker	Finance Chairman: Raymond Filler Local Arrangements Chairman: Michael Driscoll

Symposium Awards, 1966-1988

From 1966 to 1982, only one award, the C.B. Sawyer Memorial Award, had been presented at the Frequency Control Symposium. According to the Sawyer Award announcement, the Award is "to consist of \$500.00 and a plaque, shall be made on an annual basis to the person, or the group of persons, who, in the opinion of an independent three-man judging committee, has made the most outstanding recent contribution to advancement in the field of quartz crystals and devices. No award will be made in a year in which the committee determines that no award is warranted. Presentations will be made at the Frequency Control Symposium."

Aside from permitting the presentation of the Sawyer Award at the Symposium Banquet, the Symposium's management has had no involvement with the Sawyer Award. The Award is sponsored by Sawyer Research Products, Inc.; the judging committee is selected by that company. The first Sawyer Award was presented in 1966. It has been presented each year since then, except in 1982, when no suitable award nominations were received.

In the early 1980's, sentiment was expressed at Symposium program committee meetings for the creation of awards to recognize outstanding contributions in all fields covered by the Symposium, not just in the field of quartz crystals and devices. Therefore, in early 1983, the program committee voted to create two new awards. One, the Cady Award, named after Walter Guyton Cady, is to recognize outstanding contributions related to piezoelectric frequency control devices. The other, the Rabi Award, named after Prof. I.I. Rabi, is to recognize outstanding contributions related to fields such as atomic and molecular frequency standards, and time transfer and dissemination. Each award consists of \$500.00, and a limited edition original print and certificate in a leather binder. The awards are presented to the recipients at the Symposium.

SAWYER AWARD WINNERS, 1966 to 1982:

- 1966 Warren P. Mason: "For outstanding contributions in quartz crystal devices, particularly
 in the field of frequency selection" and
 Rudolf Bechman: "For outstanding contributions in quartz crystal devices, particularly
 in the field of frequency control."
- 1967 Raymond D. Mindlin: "For fundamental contributions to the theory of vibration in piezoelectric resonators leading directly to advancements in the art."
- 1968 Daniel R. Curran: "For original and imaginative design of multielectrode piezoelectric resonators, concributing significantly to the rapid advance of the quartz filter art in the past few years" and

 David B. Fraser: "For contributions to the knowledge of the mechanisms of acoustic loss in crystalline quartz, and the evaluation of this acoustic loss by optical methods."
- 1969 Arthur W. Warner, Jr.: "Contributions to the development of high frequency thickness shear quartz resonators for precise frequency control and as an aid to the measurement of the intrinsic Q of quartz material."
- 1970 Issac Koga: "Theoretical and experimental investigations of quartz and tutorial leadership in the field of piezoelectric crystals."
- 1971 Donald L. Hammond: "For development and applications of crystal devices to highly precise frequency control, and temperature and pressure inscrumentation."
- 1972 W.J. Spencer: "For advances in the theory and development of piezoelectric crystal devices."
- 1973 James C. King: "For major contributions to the understanding of the fundamental properties of quartz crystals, and methods for improvement of these properties in synthetic quartz."
- 1974 Robert A. Laudise, Robert A. Ballman and David W. Rudd: "For outstanding contributions to the synthesis of crystalline quartz with special properties for resonator applications."
- 1975 Morio Onoe: "For theoretical and practical contributions in the field of frequency control and selection, as well as leadership in national and international committees on piezoelectric devices."
- 1976 Warren L. Smith: "For outstanding contributions in the field of precision crystal controlled oscillators of high spectral purity and monolithic crystal filters."
- 1977 Virgil E. Bottom: "In recognition of theoretical and practical contributions to the Quartz Crystal Industry, and inspiration to his students to choose this field of endeavor."

- 1978 Arthur D. Ballato: "For contributions in the field of piezoelectric crystals such as; stacked filters, electric circuit analogues and stress effects in doubly rotated plates."
- 1979 Harry F.R. Tiersten: "For contributions to the theory of piezoelectric resonators."
- 1980 Peter Chung-Yi Lee: "For contributions to the theory of vibrations in quartz crystal plates."
- 1981 Eduard A. Gerber: "For pioneering research in VHF and UHF precision oscillators and filter crystals and international leadership in the field of frequency control" and Roger A. Sykes: "For outstanding contributions in the development and application of quartz crystals in the frequency control industry."
- 1982 No award given in this year (due to lack of suitable award nominations).

AWARD WINNERS, 1983 to 1988:

Year	Cady Award	Rabi Award	Sawyer Award
1983	Errol P. EerNisse "For his theoretical prediction of planar stress compensation in doubly rotated quartz plate resonators leading to the realization of the SC-cut."	I.I. Rabi "For theoretical and experimental contributions to atomic beam resonance spectroscopy leading to the development of practical atomic frequency standards."	Erich Hafner "For technical contributions and leadership in the fields of quartz resonator research, technology and measurement, and high precision frequency control."
1984	Arthur W. Warner "For his contributions to the development of high precision quartz crystal units."	David W. Allan "For his contributions to the statistics of atomic clocks, measurement techniques, time scale and time coordination and distribution."	William B. Benedick, Robert A. Graham and Frank W. Neilson "For their fundamental experimental studies of the physical properties of crystalline quartz under extreme pressures and rates of loading leading to applications including a high pressure quartz stress gauge with nano- second time resolution."
1985	John A. Kusters "For his contributions to the development of SC-cut and other doubly rotated quartz resonators."	Norman Ramsey "For his contributions to the development of atomic frequency standards."	Thrygve Meeker "For his contributions to the theory and design of piezoelectric quartz devices."
1986	Juergen H. Staudte "For his pioneering contribu- tions to the photolithographic processing of quartz devices, especially the development and commercialization of quartz tuning forks for timekeeping."	frequency standards,	Larry E. Halliburton "For his contributions toward the characteriza- tion of cultured quartz using infrared absorption, electron spin resonance, acoustic loss, and thermo- luminescence measurements."
1987	Virgil E. Bottom "For contributions to funda- mental theory and experiments, stimulation of growth of the industry, and education in quartz resonator technology."	Louis Essen "For contributions to cesium atomic beam and quartz frequency stand- ards."	John A. Kusters "In recognition of outstanding contributions in engineering, technology development and management relating to quartz crystals and devices."

Year	Cady Award	Rabi Award	Sawyer Award
1988	Baldwin Sawyer "For his work leading to the development of improved cultured quartz crystals, improved ed qualification techniques, and his tireless contributions to the frequency control industry."	portable clocks; encour-	Charles A. Adams "For contributions to the development of unique devices and manufacturing technology."

INDEX TO THE PROCEEDINGS OF THE FREQUENCY CONTROL SYMPOSIUM 1956 (10TH) TO 1988 (42ND)

Prepared by: John R. Vig, US Army Electronics Technology and Devices Laboratory (LABCOM)

This index consists of a subject index and an author index. Each paper has been assigned to one of fourteen categories. The subject categories are as follows:

- 1. Fundamental Properties of Natural and Synthetic Piezoelectric Crystals
- 2. Theory and Design of Piezoelectric Resonators
- 3. Radiation Effects on Resonators and Oscillators
- 4. Resonator Processing Techniques and Aging
- 5. Filters, Surface and Shallow Bulk Acoustic Wave Devices, Other Nonquantum-electronic Microwave Resonators, and Non-Piezoelectric Acoustic Resonators
- 6. Quartz Crystal Oscillators and Frequency Control Circuitry
- 7. Quantum Electronic Frequency Standards (Microwave Frequencies)
- 8. Quantum Electronic Frequency Standards (Visible and Infrared Frequencies)
- 9. Frequency and Time Coordination and Distribution
- 10. Applications of Frequency Control Devices
- 11. Measurements and Specifications
- 12. Frequency Stability and Phase Noise (other than "measurement of")
- 13. Sensors and Transducers
- 14. Other Topics

The papers are listed first according to the subject categories. Within each subject category, the papers are listed in the order of the Proceedings volume numbers, then under each Proceedings volume, according to the page numbers. (There were no Proceedings published prior to the 10th Symposium.)

The papers are numbered according to the following numbering system:

first number = subject category
second number = symposium number
third number = page number of the first page of the paper

For example, paper number 11-24-301 is listed under category 11- Measurements and Specifications, it is in the Proceedings of the 24th Symposium, and the paper starts on page 301 of that Proceedings volume.

Users of this index are cautioned that each paper is assigned to only one subject category, even though most papers touch on more than one category.

In the author index, the names of the authors are listed alphabetically, and for each author, the papers are listed chronologically according to the Proceedings volume number.

This index is intended to be revised and updated periodically. Please send comments and corrections to:

John R. Vig US Army Electronics Technology and Devices Laboratory ATTN: SLCET-EQ Fort Monmouth, NJ 07703

or telephone: (201) 544-4275 or (201) 544-4805.

Acknowledgement

Thanks are due to Karen Blisnuk, Raymond L. Filler, Joanna Pridy and Deborah Semasko for their contributions to the preparation of this document.

SUBJECT INDEX

CATEGORY 1:

Fundamental Properties of Natural and Synthetic Piezoelectric

Crystals

1-10-45	Structure Sensitivity of Quartz - J.C. King	1-18-121	The Doping of Cultured Quartz - A.A. Ballman and D.W. Rudd
1-10-60	Defects in Quartz Crystals - G.W. Arnold, Jr.	1-19-5	New Piezoelectric Materials - A.W. Warner, Jr.
1-10-75	Growth of Quartz at High Temperature and Pressure in the United Kingdom - L.A. Thomas	1-19-669	Quality in Cultured Quartz - C.B. Sawyer
1-10-94	Optimum Methods for Quartz Synthesis - D.R. Hale	1-21-1	Impurities and Their Effects on the Acoustic Behavior of Crystalline Quartz - D.B. Fraser
1-10-100	Physical Chemistry of Aqueous Solutions - J.F. Corwin	1-21-39	Elastic and Piezoelectric Constants of Lithium Tantalate from Ultrasonic Velocity Measurements - R.T. Smith
1-11-62	The Anelasticity of Natural and Synthetic Crystalline Quartz - J.C. King	1-22-15	Quality and Cost of Synthetic Quartz - H. Yoda, S. Taki, J. Asahara and S. Okano
1-11-90	Some Properties of Doped and Undoped Synthetic Quartz - J.M. Stanley and A.R. Chi	1-23-21	Measurement of the Piezoelectric Coefficient of Quartz Using the
1-11-112	Defects in Quartz Crystals - G.W. Arnold, Jr.		Fabry-Perot Dilatometer - V.E. Bottom
1-11-130	Improving the Quality of Synthetic Quartz - F. Augustine	1-23-171	Computerized Process Control for Synthetic Quartz Growth - D.W. Rudd, R.E. Dubois and N.C. Lias
1-11-142	Factors Covering the Hydrothermal Formation of Cristobalite and Quartz - R.G. Yalman	1-26-92	The Growth of Lithium Tantalate, a Wideband, Low Impedance and Zero Temperature Coefficient of Frequency
1-12-67	Improving the Quality of Synthetic Quartz - D.R. Hale and F. Augustine		Piezoelectric - D.W. Rudd and A.A. Ballman
1-12-84	X-Ray Irradiation on the Anelasticity of Natural and Synthetic Quartz - J.C. King	1-26-93	Physical Properties of Synthetic Quartz and Its Electrical Characteristics - S. Taki and J. Asahara
1-13-1	Dislocations and Impurity Induced Defects in Quartz - J.C. King	1-26-106	Strain in Quartz Crystals Under
1-13-17	Factors Influencing the Rate of Crystallization of Synthetic Quartz Crystals - R.A. Laudise		Electric Field Using Strain Gauge Instrumentation and Their Application for Determining the Goodness of Raw Quartz Crystals - R. Parshad and V.R. Singh
1-13-462	Progress in Engineering Cultured Quartz for Use by the Crystal Industry - C.B. Sawyer	1-28-8	Measurement of Nonlinear Elastic, Piezoelectric, Dielectric Coefficients of Quartz Crystal -
1-14-1	Acoustic Behavior of Modified Synthetic Quartz - J.C. King		R.J. Besson
1-14-19	Piezoelectric Properties of Cadmium Sulfide Crystals - H. Jaffe, D. Berlincourt, H. Krueger and L. Shiozawa	1~28-117	Defects in Synthetic Quartz Crystal and Their Influences on the Electrical Characteristics of Quartz Crystal Resonators - J. Asahara, K. Takazawa, H. Yazaki, J. Okuda, N. Asanuma and K. Nagai
1-14-24	Study of Methods for Improving the Quality of Synthetic Quartz - D.R. Hale and H. Krueger	1-28-125	Analysis of Synthetic Quartz for Stringent Frequency Versus
1-16-43	Microwave Acoustic Losses in Yttrium Iron Garnet - E.G. Spencer, R.T. Denton and R.P. Chambers		Temperature Applications - L. Conlee and D. Reifel

1-28-129	Characterization of Cultured Quartz for Use in Medium Precision AT-Cut Quartz Resonators - J.H. Sherman, Jr.	1-32-43	Electrical and Acoustic Emission During Ferrobielastic Twinning in Quartz - T.W. Cline, J.W. Laughner, R.E. Newnham and L.E. Cross
1-29-98	Production and Perfection of "r-Face" Quartz - R.L. Barns, E.D. Kolb, P.L. Key, R.A. Laudise, E.E. Simpson and K.M. Kroupa	1-32-189	Progress in Closing the Lithium Niobate-ST-Cut Quartz Piezoelectric Coupling Gap - R.M. O'Connell and P.H. Carr
1-29-139	Exhibit Temperature Stability for Surface Waves - R.W. Weinert and T.J. Isaacs	1-32-196	Experimental Measurement of the SAW Properties of Berlinite - D.G. Morency, W. Soluch, J.F. Vetelino, S.D. Mittleman, D. Harmon, S. Surek and J.C. Field
1-29-143	Temperature Stable Materials for SAW Devices - T.E. Parker, M.B. Schulz and H. Wichansky	1-33-70	Bulk and Surface Acoustic Wave Propagation in Berlinite - J. Detaint, M. Feldmann, J. Henaff, H.
1-29-211	Influence of the Inclusions in Synthetic Quartz Crystal on the Electrical Characteristics of Quartz Crystal Resonator - J. Asahara, E. Yazaki, K. Takazawa and K. Kita	1-33-80	Poignant and Y. Toudic Piezoelectric Properties of Single Crystal Berlinite - E.J. Ozimek and B.H.T. Chai
1-30-71	Secondary Ferroics and Domain- Divided Piezoelectrics - L.E. Cross and R.E. Newnham	1-33-88	Solubility Crystal Growth and Perfection of Aluminum Orthophosphate - E.D. Kolb, R.L. Barns, J.C. Grenier and R.A.
1-30-129	New Temperature Compensated Materials with High Piezoelectric Coupling ~ P.H. Carr and R.M. O'Connell	1-34-1	Laudise Point Defects in Synthetic Quartz: A Survey of Spectroscopic Results
1-31-159	Second Order Phenomena in Quaslinear Interpretation of the Polarizing	. 24.6	with Application to Quality Assurance - L.E. Halliburton, M.E. Markes and J.J. Martin
1-31-171	Effect with Thickness Vibrations of a-Quartz Plates - C.K. Hruska Coercive Stress for Ferrobielastic	1-34-9	Electrical Conductivity and Dielectric Loss of Quartz Crystals Before and After Irradiation - A.S. Nowick and H. Jain
	Twinning in Quartz - T.L. Anderson, R.E. Newnham and L.E. Cross	1-34-14	Studies of Micron Order Defects in Quartz by a High Angular Resolved X-
1-31-178	Hydrothermal Synthesis of Aluminum Metaphosphate - E.D. Kolb and R.A. Laudise		Ray Small Angle Scattering Technique - C.K. Suzuki, F. Iwasaki and K. Kohra
1-31-182	Temperature Compensated Cuts of Berlinite and β Eucryptite for SAW Devices - R.M. O'Connell and P.H. Carr	1-34-25	A New Method for Predicting the Temperature Dependence of Elastic Compliance in Simple Proper Ferroelectrics - L.E. Cross, R. Betsch, H. McKinstry, T. Shrout and
1-32-1	The Characterization of Synthetic Quartz By Using Infrared Absorption		R. Neurgaonkar
1-32-11	- J.C. Brice and A.M. Cole Low Temperature Infrared Absorption of Impurities in High Grade Quartz - H.G. Lipson, F.K. Euler and A.F.	1-34-65	Factors Affecting the Quality and Perfection of Hydrothermally Grown Quartz - J.F. Balascio and N.C. Lias
1-32-24	Armington Steady State Radiation Effects in	1-34-81	The Acoustic Loss Spectrum of 5MHz 5th Cvertone AT-Cut Deuterated Quartz Resonators - J.J. Martin and
	Precision Quartz Resonator F.K. Euler, P.A. Ligor, A. Kahan, P. Pellegrini, T.M. Flanagan and T.F.	1-34-85	S.P. Doherty The Temperature Coefficient of Frequency of AT-Cut Resonators Made
1-32-34	Wrobel Radiation Induced Frequency and Resistance Changes in Electrolyzed High Purity Quartz Resonators - T.J. Young, D.R. Koehler and R.A. Adams		from Cultured r-Face Quartz - T.R. Meeker and A.J. Miller

1-34-93	Experimental Thermal Behavior of Berlinite Resonators - J. Detaint, H. Poignant and Y. Toudic	1-36-115	Characterization of Alkali Impurities in Quartz - F.K. Euler, H.G. Lipson, A. Kahan and A.F.
1-34-102	Netplane Data for Quartz, Berlinite, LiTaO ₃ and LiNbO ₃ - E. Knolmayer	1-36-124	Armington The Elastic, Dielectric and
1-35-291	Recent Progress on Aluminum Phosphate Crystal Growth - E.D. Kolb and R.A. Laudise		Piezoelectric Constants of Berlinite - D.S. Bailey, W. Soluch, D.L. Lee, J.F. Vetelino, J.C. Andle and B.H.T. Chai
1-35-297	Initial Results With The Air Force Hydrothermal Facility - A.F. Armington, J.J. Larkin, J.J. O'Connor and J.A. Horrigan	1-36-159	Elastic Constants of Quartz and Their Temperature Coefficients - A. Kahan
1-35-304	Synthetic Quartz Crystals Grown in NaCL, KCL Solutions and Pure Water, and Their Low Temperature Infrared Absorption - M. Hosaka, S. Taki, K.	1-36-187	Photoluminescence from Worked Surface Layers and Frequency Instability of Quartz Resonators - A. Halperin, S. Katz and M. Ronen
1-35-312	Nagai and J. Asahara	1-36-193	Growth Tunnels in Quartz Crystals - S. Katz, A. Halperin and M. Schieber
	of Quartz on Some Device Properties - J.C. Brice, E.D. Fletcher and J. Dowsett	1-37-111	
1-35-317	Point Defects in Cultured Quart: Recent Acoustic Loss, Infrared, and Magnetic Resonance Results - J.J.	1-37-116	Darces, P. Zecchini and J. Lamboley Tensile Fracture Strength of ST-Cut
	Martin, L.E. Halliburton and R.B. Bossoli		Quartz ~ H.L. Chao and T.E. Parker
1-35-329	High Temperature Resonance Loss and Infrared Characterization of Quartz - H.G. Lipson, A. Kahan, R.N. Brown and F.K. Euler	1~37~125	Effect of Alkali Ions on Electrical Conductivity and Dielectric Loss of Quartz Crystals - J. Toulouse, E.R. Green and A.S. Nowick
1-36-55	Recent Results with the Air Force Hydrothermal Facility - A.F. Armington, J.J. Larkin, J.J.	1-37-136	The Bulk Acoustic Wave Properties of Lithium Tetraborate - C.D.J. Emin and J.F. Werner
1-36-62	O'Connor and J.A. Horrigan Growth and Characterisation of High Purity Quartz - D.F. Croxall, I.R.A. Christie, J.M. Holt, B.J. Isherwood	1-37-144	Sputtered c-xis Inclined Piezoelectric Films and Shear Wave Resonators - J.S. Wang, K.M. Lakin and A.R. Landin
1-36-66	and A.G. Todd Radiation Effects in Synthetic and	1-37-151	Recalibration of Q Capability Indications from Infrared Measurements on Cultured Ouartz -
	High Purity Synthetic Quartz: Some Recent Infrared, Electron Spin Resonance and Acoustic Loss Results	127152	C.B. Sawyer
	- S.P. Doherty, S.E. Morris, D.C. Andrews and D.F. Croxall	1-37-155	Pressure-Volume-Temperature Behavior in the System H ₂ O-NaOH-SiO ₂ and its Relationship to the Hydrothermal Growth of Quartz - E.D. Kolb, P.L.
1-36-77	The Influence of Crystal Growth Rate and Electrodiffusion (Sweeping) on Point Defects in α -Quartz - J.J.	157	Key, R.A. Laudise and E.E. Simpson
	Martin, L.E. Halliburton, R.B. Bossoli and A.F. Armington	1-37-157	Standard Characterization Methods for the Determination of the Quality of Hydrothermally Grown Quartz - J.F. Balascio and N.C. Lias
1-36-82	A Comparison of Quartz Crystals Grown from Fused Silica and from Crystalline Nutrient - R.J. Baughman	1-37-164	Electrodiffusion of Charge- Compensating Ions in Alpha-Quartz - J.J. Martin, R.B. Bossoli, L.E.
1-36-97	Electroelastic Effects and Impurity Relaxation in Quartz Resonators - R.		Halliburton, B. Subramaniam and J.D. West
	Brendel and J.J. Gagnepain	1-37-169	Aluminum and Hydroxide Defect Centers in Vacuum Swept Quartz - H.G. Lipson, A. Kahan and J.J. O'Connor

1-37-177	Effect of Seed Treatment on Quartz Dislocations - A.F. Armington, J.J. Larkin, J.J. O'Connor, J.E. Cormier and J.A. Horrigan	1-39-247	The Influence of Temperature and Electric Field on the Etch-Channel Density in Swept Cultured Quartz - J.G. Gualtieri
1~37-181	Thermoluminescence from Different Growth Sectors in Synthetic Quartz Crystals - S. Katz, A. Halperin and M. Ronen	1-39-255	Defect Centers in Irradiated and Swept Quartz - A. Kahan and H.G. Lipson
1-37-185	Characterization of Quartz Crystals by Cathodeluminescense - S. Katz, A. Halperin and M. Schieber	1-39-282	Effect of Crystal Orientation on the Surface Texture of Chemically Etched Quartz Plates, The Case of Cuts Close to the AT-Cut - C.R. Tellier
1-38-3	The Growth of High Purity Low Dislocation Quartz - A.F. Armington and J.F. Balascio	1-40-26	Computer Modeling of Point Defects in Quartz - T.M. Wilson, L.E. Halliburton, M.G. Jani and J.J. Martin
1-38-8	Cultured Quartz of Low Aluminum Content from Production Sized Autoclaves - C.B. Sawyer and D.R. Kinloch	1-40-32	A Radiation Growth Study of Acoustic Loss Related Defects in Alpha-Quartz - J.J. Martin, H.B. Hwang and T.M. Wilson
1-38-10	Distribution of Aluminum and Hydroxide Defect Centers in Irradiated Quartz - H.G. Lipson and A. Kahan	1-40-39	Characterization of Brazilian Lascas from Various Regions and Their Use for Synthetic Quartz Growth - Part I. Lascas Study - H. Iwasaki, F.
1-38-16	Aluminum-Related Acoustic Loss in AT-Cut Quartz Crystals - J.J. Martin		Iwasaki, C.K. Suzuki, V.A.R. Oliveira, D.C.A. Hummel and A.H. Shinohara
1-38-22	The Constants of Alpha Quartz - R.W. Ward	1-40-47	Characterization of Brazilian Lascas from Various Regions and Their Use for Synthetic Quartz Growth - Part
1-38-38	Probable Ion Signature in Quartz Electrodiffusion Data - W.P. Hanson		II. Properties Correlation - C.K. Suzuki, A.H. Shinohara, V.A.R. Oliveira, S. Takiya and J. Kiss
1-38-42	Sweeping and Irradiation Studies in Quartz - J.G. Gualtieri and J.R. Vig	1-40-54	On the Disagreement in the Order of Magnitude of the Electroelastic Constants of Alpha-Quartz - C.K.
1-38-50	Computer Controlled Quartz Electrodiffusion (Sweeping) with Real Time Data Collection - W.P. Hanson	1-40-63	Hruska Infrared and Laser Spectroscopic Characterization of Aluminum Defects
1-38-105			in Cultured Quartz - H.G. Lipson
	BT, X, and Y-cut Plates - C.R. Tellier	1-40-70	Developmental Results for the Production of High Quality Quartz - J.F. Balascio and A.F. Armington
1-39-223	Characteristics of Natural, Swept Natural, and Cultured X- and Z- Growth Quartz Material in High Temperature, High Stress Applications - J.A. Kusters and G.S. Kaitz	1-40-76	Experimental Study and Numerical Simulation of Quartz Crystal Etched Figures - C.R. Tellier, N. Vialle and J.L. Vaterkowski
1-39-230	The Growth of High Quality Quartz in Commercial Autoclaves - A.F.	1-40-91	Quartz Analogues - J.H. Sherman, Jr.
1-39-234	Characterization and B.A.W. Devices Applications of Berlinite - J. Detaint, J. Schwartzel, E. Philippot, J.C. Jumas, A. Zarka, B.	1-40-101	Berlinite: Characterization of Crystals with a Low Water Concentration and Design of Bulk Wave Resonators - J. Detaint, A. Zarka, B. Capelle, Y. Toudic, J. Schwartzel, E. Philippot, J.C. Jumas, A. Goiffon and J.C. Doukhan
	Capelle and J.C. Doukhan	1-40-121	Impurities Migration Study in Quartz Crystal Resonators by Using Electroelastic Effect - R. Brendel, J.J. Gagnepain and J.P. Aubry

1-41-167	Electrodiffusion or Sweeping of Ions in Quartz - J.J. Martin	1-42-176	A Production Study of Acoustic Loss Related Defects in Quartz - A.
1-41-175	Etch Channels in Single Crystal Cultured Quartz - G.R. Johnson and R.A. Irvine	1-42-184	Lopez, H.B. Hwang and J.J. Martin The Thermoluminescence (TSL) of Lithium- and Sodium-Swept Quartz
1-41-183	Etch Pits and Channels in Swept AT- and SC-Cut Quartz - J.R. Hunt		Crystals - A. Halperin and S. Katz
1-41-192	Further Studies on Electrode- Diffusion-Suppressed-Swept Quartz - J.G. Gualtieri		
1-41-213	A Study of Dislocations and Inclusions in Alpha Quartz - A.F. Armington, J.A. Horrigan, M.T. Harris and J.F. Balascio		
1-41-223	Dielectric Relaxation and EPR in Quartz Crystals Containing Fe - S. Keilson, S. Ling, A.S. Nowick and L.E. Halliburton		
1-41-228	Transmission X-Ray Topography of Single Crystal Quartz Using White Beam Synchrotron Radiation - W.P. Hanson		
1-42-53	Temperature Derivatives of the Dynamic Permittivity and Permeability of the Simple Thickness Modes of Quartz Plates - J.A. Kosinski, A.D. Ballato, T.J. Lukaszek, M. Mizan, R. McGowan and K. Klohn		
1-42-116	High Performance Quartz (Invited Paper) - R.A. Laudise, R.L. Barns, D.S. Stevens, H. Brown and E. Simpson		
1-42-127	Recent Experiments in a Silver Lined Autoclave - R.A. Irvine, J. Foise, E. Leeson and G.R. Johnson		
1-42-138	New Advances in Crystal Growth of High Purity Berlinite: A New Solvent the Sulfuric Acid - E. Philippot, A. Goiffon, J.C. Jumas, C. Avinens, J. Detaint, J. Schwartzel and A. Zarka		
1-42-146	A New Measurement of the Basic Elastic and Dielectric Constants of Quartz (Invited Paper) - B. James		
1-42-155	Possible Mechanisms for the Introduction of Hydrogen into Alpha- Quartz During Sweeping - J.G. Gualtieri		
1-42-162	Evaluation of Resonators Fabricated from High Quality Quartz - J.J. Martin, A. Lopez, A.F. Armington and J.F. Balascio		

1~42~169 Dose Dependence of Radiation-Induced Defect Changes in Quartz - H.G. Lipson and F.K. Euler

CATEGORY 2:

Theory and Design of Piezoelectric Resonators

2-10-1	The Piezoelectric Survey of Strain Patterns in Thickness Shear Quartz Resonators - K.S. Van Dyke	2-16-33	Causes of Internal Friction in Crystal Resonators - E. Hafner
2-10-10	Mathematical Theory of Vibrations of Elastic Plates - R.D. Mindlin	2-16-46	Effects of External Forces on the Frequency of Vibrating Crystal Plates - C.R. Mingins, L.C. Barcus and R.W. Perry
2-10-46	Frequency Temperature Behavior of AT-Cut Quartz Resonators - A.R. Chi	2-16-77	Frequency Temperature
2-10-182	Some Phenomena in VHF Crystal Units - E. Hafner		Characteristics of Quartz Resonators Derived from the Temperature Behavior of the Elastic Constants - R. Bechmann, A.D. Ballato and T.J.
2-11-1	Mathematical Theory of Vibrations of Elastic Plates - R.D. Mindlin	2 17 20	Lukaszek
2-11-41	Strain Patterns in Thickness-Shear Quartz Resonators - K.S. Van Dyke	2-17-28	Measurement of Amplitude Distributions of Vibrating AT-Cut Crystals by Means of Optical Observations - G. Sauerbrey
2~11-78	A Study of VHF Crystal Units - E. Hafner	2-17-51	Reactions of a Vibrating Piezoelectric Crystal Plate to
2-12-2	Mathematical Theory of Vibrations of Elastic Plates and Bars - R.D. Mindlin		Externally Applied Forces - C.R. Mingins, L.C. Barcus and R.W. Perry
2-12-9	Frequency Spectra in Quartz Resonators - C.R. Mingins, R.W. Perry and D.W. Macleod	2-17-88	Energy Trapping and Related Studies of Multiple Electrode Filter Crystals - W. Shockley, D.R. Curran and D.J. Koneval
2-13-53	Some New Results in the Mathematical Theory of Vibrations of Crystal Plates - R.D. Mindlin	2-17-190	Status of Quartz Crystal Research and Development - G.K. Guttwein
2-13-54	Modes of Vibration of Quartz Crystal Resonators Investigated by Means of the Probe Method - I. Koga, H. Fukuyo and J.E. Rhodes	2-18-93	Energy Trapping and the Design of Single and Multi-Electrode Filter Crystals - D.R. Curran and D.J. Koneval
2-13-207	Quartz Crystals at Low Temperatures - P.A. Simpson and A.H. Morgan	2-18-120	Effect of Electrode Size on Thickness Shear Vibrations of Quartz Plates - R.D. Mindlin
2-14-35	Influence of Lattice Parameters on the Properties of Crystal Resonators - W.P. Mason	2-19-22	The Study of Quartz Resonators by X-Ray Diffraction Topography - W.J. Spencer and K. Haruta
2-14-53	Measurements of the Vibrations of Quartz Plates - I. Koga, Y. Tsuzuki, S.N. Witt, Jr. and A.L. Bennett	2-19-23	Special X-Ray Studies of Quartz Frequency Control Units - R.A. Young, R.B. Belser, A.L. Bennett, W.H. Hicklin, J.C. Meaders and C.E.
2-14-67	Coupled Contour and Thickness Shear Vibrations - R.D. Mindlin		Wagner
2-14-89	Effects of Initial Stress on Quartz Plates Vibrating in Thickness Modes - A.D. Ballato	2-19-212	Studies in the Mathematical Theory of Vibrations of Crystal Plates - R.D. Mindlin
2-14-179	Design of Low Frequency AT-Cut Resonators - L.A. Tyler	2-20-1	X-ray Diffraction Study of Vibrational Modes - K. Haruta and W.J. Spencer
2-15-1	Mathematical Theory of Vibrations of Crystal Plates - R.D. Mindlin	2-20-14	Characteristics of the Electrostrictor as a Lumped Electrostrictive Active Resonator -
2-15-2	Performance of Quartz Resonators Near the Alpha-Beta Inversion Point - J.C. King and D.B. Fraser	2-20-32	A.A. Gundjian An Active Crystal Resonator - D.L.
2-15-22	Frequency-Temperature Behavior of Thickness Modes of Double-Rotated Quartz Plates - R. Bechmann, A.D. Ballato and T.J. Lukaszek	2-20-33	White and W.C. Wang The Force Sensitivity of AT-Cut Quartz Crystals - J.M. Ratajski

2 22 52	Manual and Danah land to Observe		
2-20-50	Transient Reactions to Stress Changes in Vibrating Crystal Plates - C.R. Mingins, R.W. Perry and L.C. Barcus	2-23-143	A Novel Algorithm for the Design of the Electrodes of Single-Mode AT-Cut Resonators - J.H. Sherman, Jr.
2-20-252	Studies in the Mathematical Theory of Vibrations of Crystal Plates -	2-24-17	Thickness-Twist Vibrations of a Quartz Strip - R.D. Mindlin
	R.D. Mindlin	2-24-33	Frequency-Temperature Dependance of Thickness Vibrations of
2-21-3	Anharmonic, Thickness-Twist Overtones of Thickness-Shear and Flexural Vibrations of Rectangular,	2-24-46	Piezoelectric Plates - C.K. Hruska The Effect of Static Electric Fields
	AT-Cut Quartz Plates - R.D. Mindlin and W.J. Spencer	2-24-40	on the Elastic Constants of α - Quartz - J.A. Kusters
2-21-28	On the Sinusoidal Steady-State Characteristics of Multielectroded Piezoelectric Devices - E.P. EerNisse and R. Holland	2-24-55	Selected Topics in Quartz Crystal Research - C.A. Adams, G.M. Enslow, J.A. Kusters and R.W. Ward
2-21-63	Investigation of Resonant Modes of Plano-convex AT-Plates - G. Sauerbrey	2-24-64	Defects and Frequency Mode Patterns in Quartz Plates - E.W. Hearn and G.H. Schwuttke
2-21-72	Amplitude Distribution Determination by an X-Ray Diffraction Technique - C.E. Wagner and R.A. Young	2-25-58	Acoustical and Optical Activity in Alpha Quartz - R.D. Mindlin and R.A. Toupin
2-21-115	Practical Consequences of Modal Parameter Control in Crystal Resonators - G.K. Guttwein, T.J.	2-25-63	Extensional, Flexural and Width- Shear Vibrations of Thin Rectangular Crystal Plates - P.C.Y. Lee
2-21-402	Lukaszek and A.D. Ballato The Unwanted Responses of the	2-25-109	Evaluation of Quartz for High Precision Resonators - B.R. Capone, A. Kahan and C.B. Sawyer
2 21 402	Crystal Oscillator Controlled by AT- Cut Plate - H. Fukuyo, H. Yoshie and M. Nakazawa	2-25-139	•
2-21-420	Activity Dips in AT-Cut Crystals - A.F.B. Wood and A. Seed	2-26-84	Theory of Vibrations of Plates -
2-21-436	On Activity Dips of AT-Crystals at High Level of Drive - C. Franx	2-26-85	R.D. Mindlin An Approximate Theory for High-
2-22-1	Electro-mechanical Vibrations in Centrosymmetric Crystals - R.D.		Frequency Vibrations of Elastic Plates - P.C.Y. Lee and Z. Nikodem
2-22-2	Mindlin Parametric and Other Nonlinear	2-26-86	Transmission-Line Analogs for Stacked Piezoelectric Crystal Devices - A.D. Ballato
	Effects in Piezoelectric Resonators - E.P. EerNisse	2-26-108	The Temperature Dependance of the
2-22-55	Hysteresis Effects in Quartz Resonators - D.L. Hammond, C.A.		Force Sensitivity of AT-Cut Quartz Crystals - C.R. Dauwalter
	Adams and A. Benjaminson	2-26-148	Type of Crystal - The FC-Cut - G.A.
2-22-269	The Role of Crystal Parameters in Circuit Design - E. Hafner	2-27-1	Lagasse, J. Ho and M.B. Bloch Elastic Waves and Vibrations in
2-23-26	Analysis of Contoured Piezoelectric Resonators Vibrating in Thickness- Twist Modes - M. Onoe and K. Okada		Deformed Crystal Plates - P.C.Y. Lee, Y.S. Wang and X. Markenscoff
2-23-39	Resonance Frequencies of Monolithic Quartz Structures - A. Glowinski	2-27-7	Finite Element Calculations Relevant to AT-Cut Quartz Resonators - D.R. Cowdrey and J.R. Willis
2-23-56	Electric Field Effects in Monolithic Crytal Filters - H.F. Tiersten	2-27-11	Design Equations for Bi-and Plano- Convex AT-Cut Resonators - W.D. Beaver
2-23-128	Anomalous Vibrations in AT-Cut Plates - I. Koga		

2-27-20	Mass Effects on Crystal Resonators with Arbitrary Piezocoupling - A.D. Ballato and T.J. Lukaszek	2-29-54	Plate Constants and Dispersion Relations for Width-Length Effects in Rotated Y-Cut Quartz Plates - T.R. Meeker
2-27-30	Rectangular AT-Cut Resonators - J.J. Royer	2-29-65	Waves and Vibrations in an Infinite Piezoelectric Plate - P.C.Y. Lee and
2-27-35	X-Ray Topography of Quartz Resonators - C.J. Wilson		S. Syngellakis
2-28-1	Analysis of Intermodulation in Rotated Y-Cut Quartz Thickness-Shear Resonators - H.F. Tiersten	2-29-71	Analysis of Trapped Energy Resonators Operating In Overtones of Coupled Thickness-Shear and Thickness-Twist - H.F. Tiersten
2-28-5	Intermodulation in Thickness-Shear Resonators - R.C. Smythe	2-29-76	Vibrational Response of a Sonar Transducer Using Piezoelectric Finite Elements - J.T. Hunt
2-28-14	Effects of Initial Bending on the Resonance Frequencies of Crystal Plates - P.C.Y. Lee, Y.S. Wang and X. Markenscoff	2-29-195	A Length-Thickness Flexure Mode Quartz Resonator - R.W. Allington
2-28-19	Influence of Environment Conditions on a Quartz Resonator - M. Valdois, J.J. Gagnepain and R.J. Besson	2-30-1	Effects of Acceleration on the Resonance Frequencies of Crystal Plates - P.C.Y. Lee and K.M. Wu
2-28-44	Analysis of Trapped Energy Resonators Operating in Overtones of Thickness-Shear - H.F. Tiersten	2-30-8	Calculation the Stress Compensated (SC-Cut) Quartz Resonator - E.P. EerNisse
2-28-67	High-Q BT-Cut Resonators in Flat Configuration - P.K. Schmitt	2-30-32	Frequency/Temperature, Activity/Temperature Anomalies in High Frequency Quartz Crystal Units - J. Birch and D.A. Weston
2-28-73	Further Development on Precision Quartz Resonators - M.B. Bloch and J. Denman	2-30-40	The Relationship Between Plateback, Mass Loading and Electrode Dimensions for AT-Cut Quartz Crystal
2-28-270	Excitation and Network Representation - A.D. Ballato		Having Rectangular Resonators Operating at Fundamental and Overtone Modes - J.F. Werner and A.J. Dyer
2-29-1	Quartz Resonator Frequency Shifts Arising from Electrode Stress - E.P. EerNisse	2-30-54	Dimensioning Rectangular Electrodes and Arrays of Electrodes on AT-Cut Quartz Bodies - J.H. Sherman, Jr.
2-29-5	Relationship of Resonant Frequency of Quartz Crystal to Mass Loading - O. Lewis and C. Lu	2-30-65	Laser Interferometric Measurement of the Vibration Displacements of a Circular Plano-Convex AT-Cut Quartz
2-29-10	Coefficients of Frequency of Mass- Loaded Piezoelectric Crystal Plates		Crystal Resonator - K. Iijima, Y. Tsuzuki, Y. Hirose and M. Akiyama
2-29-26	- A.D. Ballato and T.J. Lukaszek Determination of the	2-30-84	Fundamental Noise Studies of Quartz Resonators - J.J. Gagnepain
2-29 20	Electromechanical Coupling Factor of Quartz Bars Vibrating in Flexure or Length-Extension - J.W. Hermann	2-30-132	Temperature Characteristics of High Frequency Lithium Tantalate Plates - J. Detaint and R. Lancon
2-29-35	Simple Exact Solutions for Thickness-Shear Mode of Vibration of a Crystal Strip - Y. Mochizuki	2-30-141	The Angular Dependence of Piezoelectric Plate Frequencies and Their Temperature Coefficients - A.D. Ballato and G.J. Iafrate
2-29-42	Miniature AT-Cut Strip Resonators with Tilted Edges - M. Once and M. Okazaki	2-30-167	Analysis of Tuning Fork Type Crystal Unit and Application into Electronic Wrist Watch - S. Kanbayashi, S.
2-29-49	Analysis of Nonlinear Resonance in Rotated Cut Quartz Thickness-Shear Resonators - H.F. Tiersten		Okano, K. Hirama, T. Kudama, M. Konno and Y. Tomikawa

2-30-175	Analytical and Experimental Investigations of 32 KHz Quartz Tuning Forks - J.A. Kusters, C.A. Adams, H.E. Karrer and R.W. Ward	2-32-120	A New Method to Analyse Vibrations of Resonators by the Combination of Plate Equations and Finite Element Method - Y. Mochizuki
2-30-184	An Approximate Theory for the High- Frequency Vibrations of Piezoelectric Crystal Plates - S.	2-32-134	Finite Element Analysis of AT-Cut Crystals - D.C.L. Vangheluwe
	Syngellakis and P.C.Y. Lee	2-32-142	Discrete Element Modeling of AT- Quartz Devices - L.N. Dworsky
2-30-191	Plate - N. Oura, H. Fukuyo and A. Yokoyama	2-32-150	Fundamental Elastic Constants of Quartz - B.K. Sinha and H.F.
2-30-196	Properties of a Flat Rectangular Quartz Resonator Vibrating in a Coupled Mode - A.E. Zumsteg and P.	2-32 - 155	
2-30-202	Suda Miniaturized Circular Disk AT-Cut Crystal Vibrator - Y. Oomura		Changes in Electroded Doubly-Rotated Quartz Thickness Mode Resonators - H.F. Tiersten and B.K. Sinha
2-31-3	TTC's - Further Developmental Results - J.A. Kusters, C.A. Adams, H. Yoshida and J.G. Leach	2-32-162	A New NonLinear Analysis Method and Its Application to Quartz Crystal Resonator Problems - J.H. Balbi, J.A. Duffaud and R.J. Besson
2-31-8	The Force-Frequency Effect in Doubly Rotated Quartz Resonators - A.D. Ballato, T.J. Lukaszek and E.P. EerNisse	2-32-169	Analytical Calculation of Initial Stress Effects on Anisotropic Crystals: Application to Quartz Resonators - D. Janiaud, L. Nissim and J.J. Gagnepain
2-31-17	Amplitude-Frequency Behavior of Doubly Rotated Quartz Resonators - J.J. Gagnepain, J.C. Poncot and C. Pegeot	2-32-180	, .
2-31-23	Temperature Induced Frequency Changes in Electroded AT-Cut Quartz Thickness-Shear Resonators - H.F. Tiersten and B.K. Sinha	2-32-202	J.R. Vig Holographic Displacement Amplitude Measurements of Four Anharmonic AT
2-31-29	The Influence of Support Configuration on the Acceleration Sensitivity of Quartz Resonator Plates - P.C.Y. Lee and K.M. Wu	2-32-207	Modes - L.C. Barcus Some Observations Using Scanning Electron Microscope for Studying The Ultrasonic Vibrations of Quartz Crystals - H. Bahadur, A. Hepworth,
2-31-35	X1 and X3 Flexure, Face-Shear, Extension, Thickness-Shear, and Thickness-Twist Modes in Rectangular Rotated Y-Cut Quartz Plates - T.R.	2-32-255	V. Lall and R. Parshad Rotated X-Cut Quartz Resonators for High-Temperature Applications - E.P.
2-31-44	Meeker An Analysis of Overtone Modes in Contoured Crystal Resonators - H.F. Tiersten and R.C. Smythe	2-32-260	Energy Trapping of Coupled Modes in Rectangular AT-Cut Resonators - A.E. Zumsteg, P. Suda and W. Zingg
2-31-48	4 MHz AT-Cut Strip Resonator for Wrist Watch - M. Onoe, K. Kamada, M. Okazaki, F. Tajika and N. Manabe	2-32-267	Rectangular AT-Cut Quartz Resonator - S. Yamashita, N. Echigo, Y.
2-31-55	DT-Cut Torsional Resonators - J.W. Hermann	2-32-277	Kawamura, A. Watanabe and K. Kubota +5° X Micro Quartz Resonator by
2-31-147	A New "Electrodeless" Resonator Design - R.J. Besson		Lithographic Process - K. Oguchi and E. Momosaki
2-32-108	Thickness-Shear, Thickness-Twist, and Flexural Vibrations of Rectangular AT-Cut Quartz Plates with Patch Electrodes - P.C.Y. Lee, C. Zee and C.A. Brebbia	2-33-228	Temperature Induced Frequency Changes in Electroded Contoured Quartz Crystal Resonators - B.K. Sinha and H.F. Tiersten

2-33-235	Frequency Response of a Quartz Oscillator to Temperature Fluctuation - Y. Teramachi, M. Horie, H. Kataoka and T. Musha	2-34-58	A New Equivalent Circuit for Piezoelectric Ceramic Disk Resonators - M. Toki, Y. Tsuzuki and O. Kawano
2-33-239	Dynamic Thermal Behavior of Quartz Resonators - G. Theobald, G. Marianneau, R. Pretot and J.J. Gagnepain	2-34-131	New Frequency Temperature Characteristics of Miniaturized GT- Cut Quartz Resonators - H. Kawashima, H. Sato and O. Ochiai
2-33-247	New Quartz Tuning Fork with Very Low Temperature Coefficent - E. Momosaki, S. Kogure, M. Inoue and T. Sonoda	2-34-140	Frequency Temperature Behavior of Miniaturized Circular Disk-AT-Cut Crystal Resonator - Y. Oomura
2-33-255		2-34-152	Improving Frequency-Temperature Characteristics of Grooved AT-Cut Plates - M. Nakazawa
2-33-263	Three-Dimensional Variational Analysis of Small Crystal Resonators	2-34-160	New Type Twin Mode Resonator - S. Kogure, E. Momosaki and T. Sonoda
2-22-271	- R.F. Milsom Frequency Temperature	2-34-187	Fundamental Mode SC-Cut Resonators - R.L. Filler and J.R. Vig
	Characteristics of Rectangular AT- Cut Quartz Plates - T. Kato and H. Ueda	2-34-384	Temperature Induced Frequency Changes in Electroded AT-Cut Quartz Trapped Energy Resonators - D.S. Stevens and H.F. Tiersten
2-33-277	New Frequency-Temperature Characteristics of 4.19 MHz Beveled Rectangular AT-Cut Quartz Resonator - S. Yamashita, S. Motte, K. Takahashi, N. Echigo, A. Watanabe and K. Kubota	2-34-393	Transient Thermally Induced Frequency Excursions in Doubly- Rotated Quartz Thickness Mode Resonators - B.K. Sinha
2-33-286		2-34-403	Nonlinear Effect of Initial Stresses in Doubly-Rotated Crystal Resonator Plates - P.C.Y. Lee and K.M. Wu
2-33-293		2-34-412	The Frequency and Motional Capacitance of Partial Contoured Crystal Resonators - D.C.L. Vangheluwe
2-33-300	Temperature Dependence of the Force Frequency Effect for the Rotated X-Cut - E.P. EerNisse	2-34-419	•
2-33-306	Low "g" Sensitivity Crystal Units and Their Testing - A.W. Warner, Jr., B. Goldfrank, M.P. Meirs and M. Rosenfeld	2-34-426	Temperature Dependence of the Force Frequency Effect for the AT-, FC-, SC, and Rotated X-Cuts - E.P. EerNisse
	Resonators for Severe Environments - T.J. Lukaszek and A.D. Ballato	2-34-431	Vibrators - A.D. Ballato, T.J.
2-33-322	Resonators Compensated for Acceleration Fields - A.D. Ballato	2-35-14	Lukaszek and G.J. Iafrate Nonlinear Properties of Quartz
2-33-337	Design of a Bulk Wave Quartz Resonator Insensitive to Acceleration - R.J. Besson, J.J.	2-33-14	Crystal and Quartz Resonators: A Review - J.J. Gagnepain
	Gagnepain, D. Janiaud and M. Valdois	2-35-31	The Effect of Vibration on Frequency Standards and Clocks - R.L. Filler
2-33-346	A Comparison of the Effects of Bending Moments on the Vibrations of AT and SC (or TTC) Cuts of Quartz - E.D. Fletcher and A.J. Douglas	2-35-71	Force and Acceleration Frequency Effects in Grooved and Ring Supported Resonators - M. Nakazawa, T.J. Lukaszek and A.D. Ballato
2-33-444	Bulk Acoustic Resonators for Microwave Frequencies - R.A. Moore, F.W. Hopwood, T. Haynes and B.R. McAvoy	2-35-92	Update of SC-Cut Crystal Resonator Technology - B. Goldfrank, J. Ho and A.W. Warner, Jr.

2-35-99	Design of High Performance SC Resonators - R.W. Ward	2-35-340	Quartz Resonator Thermal Transient Due To Crystal Support ~ D. Janiaud, M. Valdois, R.J. Besson and J.J.
2-35-110	The Acceleration and Warmup		Gagnepain
	Characteristics of Four-Point- Mounted SC and AT-Cut Resonators - R.L. Filler and J.R. Vig	2-35-365	Direct Frequency Crystal Oscillators - L. Bidart and J. Chauvin
2-35-122	in Resonators Working on Two	2-36-3	Third Overtone Quartz Resonator - R.D. Mindlin
	Frequencies - J.P. Valentin, C.P. Guerin and R.J. Besson	2-36-22	The Design of Partially Controlled Quartz Crystal Resonators - R.C.
2-35-130	Quartz Tuning Fork Crystal Using Overtone Flexure Modes - S.S. Chuang	2-36-29	Peach Effect of Transverse Force on the
	Chuang	2 30 23	Thickness-Shear Resonance
2-35-144	A Miniature Quartz Resonator Vibrating at 1 MHz - R.J. Dinger		Frequencies in Rectangular, Doubly- Rotated Crystal Plates - P.C.Y. Lee and C.S. Lam
2-35-149	Investigation of Spurious Modes of		
	Convex DT-Cut Quartz Crystal Resonators - T. Adachi, Y. Tsuzuki and C. Takeuchi	2-36-37	An Analysis of Contoured SC-Cut Quartz Crystal Resonators - H.F. Tiersten and D.S. Stevens
2-35-157	The Edge Mode Resonator - D.C.L. Vangheluwe and E.D. Fletcher	2-36-46	Temperature Induced Frequency Changes in Electroded Contoured SC- Cut Quartz Crystal Resonators - D.S.
2-35-166	4.19 MHz Cylindrical AT-Cut		Stevens and H.F. Tiersten
	Miniature Resonator - S. Okano, T. Kudama, K. Yamazaki and H. Kotake	2-36-133	Thermal Frequency Behavior in
	•	_ 00 _00	Contoured Quartz Crystal Plates
2-35-174	Three-Dimensional Mode-Matching Theory of Rectangular Bar Resonators		Induced by Direct Irradiation of Laser Beam - N. Oura, N. Kuramochi,
	Using Complex Wavenumbers - R.F. Milsom, D.T. Elliott and M. Redwood		J. Nakamura and T. Ogawa
	MIISOM, D.I. EIIIOCC and M. Redwood	2-36-140	
2-35-187	Simple Model For an AT-Cut Rectangular Quartz Plate - J.H.		Quartz Crystal Resonators; Automated Measurement Method and Results -
	Balbi and M.I. Dulmet		H.J. Forster
2-35-193	Stresses in Rectangular Cantilever	2-36-170	Turnover Temperatures for Doubly
	Crystal Plates Under Transverse Loading - P.C.Y. Lee and C.S. Lam		Rotated Quartz - A. Kahan
	•	2-36-181	
2-35-205	An Analysis of SC-Cut Quartz Trapped Energy Resonators with Rectangular		Compensated Oscillators - J.R. Vig, R.L. Filler and J.A. Kosinski
	Electrodes - D.S. Stevens and H.F. Tiersten	2-36-200	Amplitude Frequency Effect of SC-Cut
		2 30 200	Quartz Trapped Energy Resonators -
2-35-213	Stress Compensated Orientations for Thickness-Shear Quartz Resonators		R. Bourquin, D. Nassour and D. Hauden
	- B.K. Sinha	2-36-215	The Effect of Blank Geometry on the
2-35-222	Extensional Vibrations of	2-30-213	Acceleration-Sensitivity of AT- &
	Rectangular Crystal Plates - P.C.Y. Lee, M. Nakazawa and J.P. Hou		SC-Cut Quartz Resonators - R.L. Filler, J.A. Kosinski and J.R. Vig
	•	2 26 512	
2-35-230	Coupled Thickness-Shear and Thickness-Twist Resonances in	2-36-513	<pre>Improved Ring-Supported Resonators - M. Nakazawa, H. Ito, T.J.</pre>
	Unelectroded Rectangular and Circular AT-Cut Quartz Plates - H.F.		Lukaszek and A.D. Ballato
Tiersten and R.C. Smythe		2-36-529	
2-35-250	Unwanted Modes in 5 X-Cut Crystal		Frequency X-Cut Bars - J.F. Werner, H.W. Edwards and M. Smith
	Units - J.J. Royer	2-36-549	Development and Technology of
2-35-335			Piezoelectric Bulk Wave Resonators
	Cryogenic Temperature - B. Komiyama		and Transducers - T.R. Meeker
		2-37-194	The Stress Coefficient of Frequency of Quartz Plate Resonators - M.
			Mizan and A.D. Ballato

2-37-200	Temperature Derivatives of Elastic Stiffnesses Derived from the Frequency-Temperature Behavior of Quartz Plates - P.C.Y. Lee and Y.K.	2-38-141	Analysis and Design of Coupled Mode AT Rectangular Resonators - J. Tomase and L.N. Dworsky
2.27.200	Yong Transient Thermally Induced	2-38-150	Cut Crystal Resonators - F.K. Euler
2-37-208	Transient Thermally Induced Frequency Excursions in AT- and SC-		and A. Kahan
2-37-226	Cut Quartz Trapped Energy Resonators - D.S. Stevens and H.F. Tiersten Thickness Modes in Circular AT-Cut	2-38-157	Frequency Shifts Arising from In- Phase Temperature Gradient Distribution in Quartz Resonators - J.P. Valentin, G. Theobald and
• • • • • • • • • • • • • • • • • • • •	Quartz Plates with Circular Electrodes - W.D. Beaver		J.J. Gagnepain
2-37-232	Properties of AT Quartz Resonators on Wedgy Plates - L.N. Dworsky	2-38-164	Thickness Vibrations of Doubly- Rotated Quartz Plates Affected by
2-37-255	Miniature Quartz Resonator Force		Plate Dimensions and Orientations - P.C.Y. Lee and Y.K. Yong
	Transducers - E.P. EerNisse and J.M. Paros	2-38-176	On the Change in Orientation of the Zero-Temperature Contoured SC-Cut Quartz Resonator with the Radius of
2-37-265	Further Studies on the Acceleration Sensitivity of Quartz Resonators - R.L. Filler, J.A. Kosinski and		the Contour - D.S. Stevens and H.F. Tiersten
	J.R. Vig	2-38-184	Piezo Electric Ceramic Resonators
2-37-272	Sensitivity of Bulk Mode Resonator		and Filters - S. Fujishima, J. Merlina and J. Miyazaki
	Plates - H. Rossman, J.T. Haynes	2-38-190	Further Results on 5 and 10 MHz Resonators of BVA and QAS Designs
2-37-317	Composite Resonators - K.B. Yoo, H.		- J.P. Aubry and A. Debaisieux
	Uberall, D. Ashrafi and S. Ashrafi	2-38-201	Frequency Stability of Quartz at Very Low Temperatures: Preliminary
2-37-320	Analysis of Composite Resonator Geometries - K.M. Lakin		Results ~ G. Robichon, J. Groslambert and J.J. Gagnepain
2-37-325	An Analysis of Thickness-Extensional Trapped Energy Resonators with Rectangular Electrodes in the Zinc- Oxide Thin Film on Silicon Configuration - H.F. Tiersten and	2-38-206	Lateral-Field Excitation of Berlinite - A.D. Ballato, M. Mizan, R. Tilton, T.J. Lukaszek, E.R. Hatch and B.H.T. Chai
2-37-337	D.S. Stevens Miniature LiTaO ₃ X-Cut Strip	2-38-245	Extended Pressure and Temperature Operation of BT-Cut Pressure Transducers - G.S. Kaitz
	Resonator - M. Okzaki and S. Watanabe		
2-37-343	Miniaturized LiTaO ₃ Strip Resonator	2-39-311	The Amplitude-Frequency Effect in SC-Cut Resonators - R.L. Filler
	- Y. Fujiwara, S. Yamada and N. Wakatsuki	2-39-317	Experimental Evaluation of the Effective Non-Linear Elastic Constant for Trapped Energy and
2-38-73	The Vibration Sensitivity of VHF Quartz Crystals for Missile Applications - R.D. Weglein		Contoured Resonators - R.C. Smythe and P.E. Morley
2-38-80	Acceleration Sensitivity Compensation and Symmetry in Quartz Oscillators - D.A. Emmons, R.M. Garvey and B.T. Milliren	2-39-325	The Evaluation of the Coefficient of Nonlinear Resonance for SC-Cut Quartz Resonators - H.F. Tiersten and D.S. Stevens
2-38-126	Electrode Stress Effects for Length- Extensional and Flexural Resonant Vibrations of Quartz Bars - E.P.	2-39-351	Strip Type Resonator of Lithium Tetraborate - Y. Fujiwara, M. Ono, M. Sakai and N. Wakatsuki
	EerNisse	2-39-356	Recent Developments on Membrane Bulk-Acoustic-Wave Resonators - J.S.
2-38-132	An Analysis of Nonlinear Resonance in Electroded Contoured AT- and SC- Cut Quartz Resonators - H.F. Tiersten		Wang, A.M. Kong, K.F. Lau and K.H. Yen

2-39-361	An Air-Gap Type Piezoelectric Composite Thin Film Resonator ~ H. Satoh, Y. Ebata, H. Suzuki and C.	2-39-473	Lateral Field Resonators - A.W. Warner, Jr. and B. Goldfrank
	Narahara	2-40-145	Dynamic Permittivities and
2-39-372	Highly Stable, Ovenized Bulk Shear Mode Resonators - B.R. McAvoy, S.V. Krishnaswamy, H.L. Salvo, Jr. and R.A. Moore		Resistivities of the Equivalent Network Representing Plate Resonators - A.D. Ballato, E.R. Hatch, M. Mizan and T.J. Lukaszek
2-39-37	A Novel Miniature ZT-Cut Resonator - J.W. Hermann	2-40-152	Initial Stress Field and Resonance Frequencies of Incremental Vibrations in Crystal Resonators by Finite Element Method - P.C.Y. Lee
2-39-381	Characteristics of a Quartz Crystal Tuning Fork with Shortened Arm Length for High Frequencies - M. Okazaki, H. Tohma and Y. Tomikawa	2-40-161	and M.S.H. Tang A Transmission Line Matric Model for
2 22 226			AT Quartz Thickness Shear Devices - L.N. Dworsky
2-39-386	Analysis of Trapped Energy Resonators with Tabs - H. Sekimoto, H. Nakata and M. Miura	2-40-168	Nonlinear Electroelastic Equations of Wave Propagation and Vibrations in Quartz Bars - M.C. Dokmeci
2-39-392	A Variational Method for the Design of Trapped Energy Resonators - R.C. Peach	2-40-179	Three-Dimensional Finite Element Solution of the Lagrangean Equations
2-39-400	Dependence of the Frequency- Temperature Characteristic of SC-Cut		for the Frequency-Temperature Behavior of Y-Cut and NT-Cut Bars - Y.K. Yong
	Resonators - J.A. Kosinski	2-40-187	Suppression of Anharmonic Spurious Modes by Modified Electrode Design
2-39-405	Discontinuities of the Frequency- Temperature Curves of Contoured Quartz Resonators - R. Bourquin, B.		Using Charge Cancellation - H. Sekimoto, T. Ihara, H. Nakata and M. Miura
2-39-415	Dulmet and G. Genestler Frequency-Temperature Behavior of Flexural and Thickness-Shear	2-40-193	Variational Analysis of GT-Cut Quartz Crystal Resonators with the Supporting Portions at the Ends - H. Kawashima
	Vibrations of Rectangular Rotated Y- Cut Quartz Plates - Y.K. Yong and P.C.Y. Lee	2-40-201	An Overtone-Mode Assigned AT-Cut Crystal Resonator - K. Hirama, T. Shoji and Y. Tanaka
2-39-427	A note on "Ballato's Angle Increment" - J.H. Sherman, Jr.	2-40-206	•
2-39-431		- 10 - 211	Acoustic Resonators - J. Rosenbaum, H.L. Salvo, Jr. and S.V. Krishnaswamy
2-39-436	An Analysis of Doubly-Rotated Contoured Quartz Crystal Resonators - D.S. Stevens and H.F. Tiersten	2-40-262	An Analysis of the Acceleration Sensitivity of ST-Cut Quartz Surface Wave Resonators Supported Along the Edges - D.V. Shick and H.F.
2-39-448	Generalized Equation for the Force- Frequency Characteristics of Circular Quartz Plates with Three-	2-40-269	Tiersten Low Loss, Highly Stable Saw Devices on Quartz - T.N. Oliver, D.E.
	Point Support and its Application to Supporting of an SC-Cut Plate - N.		Bower and J. Dowsett
2-39-453	Oura, N. Kuramochi, Y. Miyazaki, M. Yamashina and S. Suzuki Vibrations of Doubly-Rotated	2-40-285	and Performance - M.J. Hoskins, M.J. Brophy, J.M. Dallesasse, M.J.
2 37 333	Piezoelectric Crystal Strip with a Pair of Electrode-Plated, Traction-Free Edges - P.C.Y. Lee and J.P. Hou	2-41-236	Stroboscopic Topography - A. Zarka, B. Capelle, J. Detaint and J.
2-39-462	Simple Thickness Plate Modes Driven by Lateral Fields - A.D. Ballato, E.R. Hatch, M. Mizan, T.J. Lukaszek and R. Tilton	2-41-266	Schwartzel Nonlinear Constants and Their Significance - J.J. Gagnepain

2-41-277	Acceleration Effect on the Thickness Bibrations of Doubly Rotated Crystal Resonators - P.C.Y. Lee and M.S.H. Tang	2-42-65	A Variational Analysis of a New Shape Face Shear Mode Quartz Crystal Resonator Formed by an Etching Method - H. Kawashima, M. Matsuyama and M. Nakazato
2-41-282	An Analysis of the Normal Acceleration Sensitivity of ST-Cut Quartz Surface Wave Resonators Rigidly Supported Along the Edges - H.F. Tiersten and D.V. Shick	2-42-73	Chemically-Milled UHF SC-Cut Resonators - R.C. Smythe and R. Angove
2-41-289	Force Sensitivity of Trapped Energy Vibrations in a Countoured Resonator - R. Bourquin and B. Dulmet		
2-41-295	AT Quartz Strip Resonators - L.N. Dworsky		
2-41-303	A Lagrangean, High Frequency Plate Element for the Static Temperature Behavior of Low Frequency Quartz Resonators - Y.K. Yong		
2-41-311	An Approximate Expression for the Motional Capacitance of a Lateral Field Resonator - R.C. Smythe and H.F. Tiersten		
2-41-314	Energy Trapping in Plan and Corrugated Resonators: Application to Quartz and Berlinite - J. Detaint, J. Schwartzel, C. Joly and E. Philippot		
2-41-325	Lateral- and Thickness-Field Coupling in Zincblende Structures - A.D. Ballato, T.J. Lukaszek, M. Mizan and J.A. Kosinski		
2-41-391	Analysis and Design of the Piezoelectric Ceramic Resonator Oscillators - S. Fujishima, K. Togawa and S. Ohta		
2-42-6	Mindlin's Elastoelectrodynamics Problem - A.D. Ballato		
2-42-14	Acceleration Insensitivity of Thickness Frequencies of Doubly Rotated Quartz Disks - P.C.Y. Lee and M.S.H. Tang		
2-42-19	Linear Model of the Contoured Resonators - J. Detaint, H. Carru, J. Schwartzel, B. Capelle and A. Zarka		
2-42-29	Vibrations of Z-Cut Resonator- Structure by Finite Element Analysis - Y.K. Yong, P.C.Y. Lee and S.S. Chuang		
2-42-38	Rigorous Two-Dimensional Equations for the Analysis of Contoured Crystal Resonators - R.C. Peach		
2-42-45	Vibration Analysis of Coupled Flexural Torsional Mode Tuning Fork Type Quartz Crystal Resonator - H. Kawashima		

CATEGORY 3:

Radiation Effects on Resonators and Oscillators

	Dila Tanadiation of Occupts (Constant)		
3-12-101	Pile Irradiation of Quartz Crystal Units - F.E. Graham and A.F. Donovan	3-33-62	Radiation Effects in Berlinite - L.E. Halliburton, L.A. Kappers, A.F. Armington and J.J. Larkin
3-13-37	Defects of the Quartz System Produced by Neutron Irradiation - R. Weeks	3-33-98	Point Defects and Radiation Damage Processes in a-Quartz - D.L. Griscom
3-14-138	Nuclear Radiation Effects in Quartz Crystals - J.M. Stanley	3-33-118	Radiation-Induced Frequency Transients In AT, BT and SC-Cut Quartz Resonators - D.R. Koehler
3-16-7	Effects of Reactor Irradiation on Thickness Shear Crystal Resonator - J.C. King and D.B. Fraser	3-33-122	
3-17-127	Aging Characteristics of Quartz Resonators with Comments on the Effects of Radiation - R.B. Belser	2-22-124	Euler and P.A. Ligor
	and W.H. Hicklin	3-33-134	Radiation-Induced Mobility of Interstitial Ions in Synthetic
3-20-82	Radiation Effects in Frequency Control Devices - J.M. Stanley		Quartz - J.J. Martin, S.P. Doherty, L.E. Halliburton, M.E. Markes, N. Koumvakalis, W.A. Sibley, R.N. Brown and A.F. Armington
3-23-178	Effects of Gamma Irradiation on Frequency Stability of 5th Overtone	3-34-72	Radiation Effects in Quartz
2 27 112	Crystal Oscillators - C.A. Berg and J.R. Erickson		Oscillators, Resonators and Materials - F.K. Euler, H.G. Lipson and P.A. Ligor
3-27-113	Rapid Annealing of Frequency Change in High Frequency Crystal Resonators Following Pulsed X-Irradiation at Room Temperature - J.C. King and H.H. Sander	3-35-322	Radiation-Induced Conductivity and High Temperature Q Changes in Quartz Resonators - D.R. Koehler
3-27-120	Crystal Controlled Oscillators for Radiation Environments - R.E. Paradysz and W.L. Smith	3-37-130	Radiation Induced Transient Acoustic Loss in Quartz Crystals - D.R. Koehler and J.J. Martin
3-27-124	·	3-38-32	Effect of Irradiation and Annealing on the Electrical Conductivity of Quartz Crystals - E.R. Green, J. Toulouse, J. Wacks and A.S. Nowick
	King	3-38-55	An X-Ray Irradiation System for Total-Dose Testing of Quartz
3-27-128	Transient X-Ray Induced Conductivity in Single Crystal Quartz - R.C. Hughes		Resonators - L.J. Palkuti and Q.T. Troung
3-27-136	Hydrogen Diffusion in Quartz: The Kinetics of a One-Dimensional Process - A. Sosin	3-38-63	Results from Gamma Ray and Proton Beam Radiation Testing of Quartz Resonators - J.R. Norton, J.M. Cloeren and J.J. Suter
3-27-139	Effects of a Co-60 Gamma-Ray Irradiation on the Optical Properties of Natural and Synthetic Quartz from 85 to 300 K P.L. Mattern, K. Lengweiller and P.W.	3-39 - 259	Radiation Effects in Quartz: Low Doses and Defect Production Mechanisms - L.E. Halliburton, C.Y. Chen and S.D. Tapp
	Levy	3-39-266	Radiation Effects in the Acoustic Loss Spectra of AT-Cut Quartz
3-27-153	A Review of Impurity Atom Defects in -Quartz as Observed by Electron Paramagnetic Resonance - J.A. Weill		Crystals - J.J. Martin, H.B. Hwang and H. Bahadur
3-28-143	The Effect of Gamma Irradiation on the Temperature-Frequency Characteristic of AT-Cut Quartz ~ H.J. Benedikter, J.H. Sherman, Jr. and R.D. Gillespie III	3-40-96	Study of Irradiation Effects in Quartz Crystal Using Low-Temperature Dielectric Relaxation - S. Ling and A.S. Nowick

- 3-40-127 Evaluation of Mechanisms for Low-Dose Frequency Shifts in Crystal Oscillators - T.M. Flanagan, R.E. Leadon and D.L. Shannon
- 3-40-134 Low and Medium Dose Radiation Sensitivity of Quartz Crystal Resonators with Different AL-Impurity Content - J.J. Suter and R.H. Maurer
- 3-41-216 Radiation Effects in Vacuum-Swept
 Quartz A. Kahan, F.K. Euler, H.G.
 Lipson, C.Y. Chen and L.E.
 Halliburton

CATEGORY 4:

Resonator Processing Techniques and Aging

4-10-122	Aging Study of Quartz Crystal Resonators - R.B. Belser and W.H. Hicklin	4-13-71	Aging Studies on Crystal Units - R.B. Belser and W.H. Hicklin
4-10-190	Crystal Unit Design for Use in a Ground Station Frequency Standard -	4-13-109	Aging Characteristics of Quartz Crystal Units - P.E. Mulvihill
4 10 512	A.W. Warner, Jr.	4-13-406	Phase Stable Crystal Units - L.A. Dick
4-10-513	Tests on Hermetic Enclosures of Piezoelectric Quartz Crystals - B.W. Schumacher	4-13-423	Glass Enclosed Moderate Precision Crystral Units - E.M. Shideler and D.L. Hammond
4-10-524	Production Procedures for VHF Crystals - R.D. Cortwright	4-13-430	Glass Enclosed Minaturized Crystal
4-10-540	Manufacturing Problems Connected with High Precision Crystals - J.M.		Units - H. Long
	Wolfskill	4-13-445	High Temperature Crystal Units Employing Thermocompression Techniques - J.P. Griffin
4-10-569	Manufacturing Problems Connected with Miniaturized Crystals - G.K. Bistline, Jr.	4-13-498	-
4-10-573	Automatic X-Ray Sorter for Crystal Blanks - L.V. Wise	4-13-512	•
4-11-157	Aging Study of Quartz Resonators - R.B. Belser and W.H. Hicklin		Crystal Units - J.M. Wolfskill and R.T. Schlaudecker
4-11-189	High Temperature AT-Cut Crystal Units - C.W. Mann	4-13-529	Results of Pilot Runs in a Mechanized Crystal Plant - A. Mann
4-11-214	High Temperature, Low Frequency Crystal Units - J.M. Wolfskill	4-13-535	Production of VHF Crystal Units - G.F. Fisher
4-11-240	High Precison Crystal Units - L.A. Dick	4-14-68	Parallel Field Excitation of Thickness Modes of Quartz Plates - R. Bechmann
4-11-256	Stability of Quartz Resonators at Very Low Temperatures - F.P. Phelps	4-14-115	The Aging of Aluminum Plated 16.5 Mc AT-cut Quartz Resonators - R.B. Belser and W.H. Hicklin
4-11-277	Fundamental Studies on an Improved Crystal-Controlled Frequency Standard - M.D. Fagen and W.L. Smith	4-14-154	
4-12-37	Effects of Plating to Frequency on the Stability of Quartz Resonators - R.B. Belser and W.H. Hicklin	4-14-397	Tuning Forks as Circuit Elements - M. Pleasure
4-12-162	Research at NBS Boulder Laboratories on Quartz Crystal Resonators and Oscillators at Low Temperatures - F.P. Phelps and A.H. Morgan	4-15-49	Temperature Compensation of Piezoelectric Resonators by Mechanical Stress - E.A. Gerber and M.H. Miles
4-12-211	Ruggedization of Low Frequency Crystal Units - J.M. Wolfskill	4-15-66	Stability Studies of Quartz Crystals for Satellites - R.B. Belser and W.H. Hicklin
4-12-241	Phase Stable Quartz Crystal Units - L.A. Dick	4-15-109	Micro-Module and Ultra-Miniaturized Crystal Units - R.R. Bigler
4-12-260	Moderate Precision Crystal Units - D.L. Hammond	4-15-113	Precision Glass Enclosed Crystal Units - E.M. Shideler and P.E. Bryan
4-12-281	Low Frequency XY'Flexure Crystal Units - A.S. Matistic	4-15-125	•
4-12-296	Design Data for HF AT Crystal Units - L.A. Tyler and C. Rutkowski		Hammond
4-12-316		4-16-110	Aging of Quartz Resonators at Fundamental and Overtone Modes with Comments on Radiation Effects - R.B. Belser and W.H. Hicklin

4-16-146	Recent Developments in Miniaturized Glass Enclosed Crystal Holders - G.K. Bistline, Jr.	4-18-597	High-Q, BT-Cut, Quartz Resonator Units - A. Seed
4-16-156	Improved Ceramic Envelopes for Micromodule Crystal Units - J.H. Sherman, Jr.	4-19-78	Miniature Single Sideband Crystal Units - J.M. Wolfskill and R.A. Spurlin
4-16-169		4-19-105	Passive Temperature Compensation of Quartz Clystals for Oscillator Applications - S.B. Boor, W.H. Horton and R.B. Angove
4-17-4	Studies on High Precision Resonators - R.A. Sykes, W.L. Smith and W.J. Spencer	4-19-125	·
4-17-215	Hammond, C.A. Adams and L.S. Cutler	4-19-137	Application of Leak Theory to Crystal Testing - J.W. Marr and J.H. Sherman, Jr.
4-17-233	Ianouchevsky	4-20-161	Comments on Unwanted Responses in VHF Crystals - E.A. Gerber
4-17-248	Use of Parallel-Field Excitation in the Design of Quartz Crystal Units - A.W. Warner, Jr.	4-20-167	Discussion of 3.0 and 5.0 MHz, SSB Crystals Precise and Uniform - R.F. Woolley and G.A. Lagasse
4-17-267	Crystal Units for Single Sideband Application - P.E. Bryan and E.M. Shideler	4-20-180	Aging of Aluminum Plated 3-MC Semi- Precision Resonators - R.B. Belser and W.H. Hicklin
4-17-272	Design Equations for Plano-Convex AT-Filter Crystals - W.G. Stoddard	4-20-192	Aging Characteristics of Quartz Crystal Resonators - J.H.
4-17-283	Development Status of Quartz Micromodule Crystal Units - P.J. Staelens		Armstrong, P.R. Blomster and J.L. Hokanson
4-17-302	Improvements in Technique for Thermo-Compressing Mounting Wires to	4-20-208	Quartz Crystal Life Test Data - F. Wolf and G.K. Bistline, Jr.
	Quartz Crystal Plates - J.P. Griffin	4-20-219	Five Megacycle Fifth Overtone Resonators Operating Near the Inflection Temperature - J.G. Leach
4-17-325	Problems Associated with Precision Quartz Resonators - W.J. Spencer	4-20-234	Microminiature Cold Weld Crystal Units - A. Seed
4-18-129	Aging Analysis of AT-Cut Quartz Resonators of Natural, Cultured and Swept Varieties - R.B. Belser and W.H. Hicklin	4-20-530	Low Power Crystal Ovens - M.B. Bloch, J. Ho and I. Math
4-18-166	Design and Performance of a New Series of Cold Welded Crystal Unit Enclosures - R.J. Byrne and R.L. Reynolds	4-21-200	The Transient Thermal Characteristics of Quartz Resonators and Their Pelation to Temperature- Frequency Curve Distortion - L.E. Schnurr
4-18-181	A New Design for Microminiature Crystals - W.G. Stoddard	4-21-211	AT-Cut Resonators with Annular Electrodes - R.B. Belser and W.H. Hicklin
4-18-193	Glass Enclosed Crystal Units for Temperature Compensated Oscillators - G.K. Bistline, Jr. and D.B. Jacoby	4-21-224	SSB Quartz Crystal Units Utilizing Coldweld Enclosures and High Temperature Bakeout Techniques - F.R. Brandt and G.E. Ritter
4-18-204	New Developments in Glass Enclosed Crystal Units - D.M. Eisen	4-21-244	
4-18-217	Reliability of Quartz Crystal Units - J.M. Stanley and P.E. Mulvihill	4-22-67	Bernstein Design Considerations for Oscillator
4-18-426	On the Control of the Temperature Coefficient of Frequency of AT- Crystals - C. Franx	. 22 0,	Crystals - G.K. Guttwein, A.D. Ballato and T.J. Lukaszek

4-22-89	Advancements in Production of 5-MHz Fifth Overtone High Precision Crystal Units - J.M. Wolfskill	4-27-73	The Molecular Nature of Absorption on Silica Surfaces - M.L. Hair
4-22-118	Kold-Seal Thermal Compression Bonded Crystals - J. Denman, G.A. Lagasse,	4-27 - 79	Clean Surface Technology - M.L. White
4 22 126	M.B. Bloch and J. Ho	4-27-89	Thin Film Metallization of Oxides - D.M. Mattox
4-22-136	Quartz Crystal Aging - E. Hafner and R.S. Blewer	4-27-98	Surface Preparation and Characterization Techniques for
	Improvements in Sealing HC-26/U and HC-27/U Glass Holders - G. Giber*		Quartz Resonators - J.R. Vig, H. Wasshausen, C.F. Cook, Jr., M. Katz and E. Hafner
	Micro Resonators in Substitute Electronics - J.H. Staudte	4-28-85	The Structure and Properties of Thin Metal Films - D.M. Hoffman
	Comparison of Aging Performance of 5-MHz Resonators Plated with Various Electrode Metals - R.B. Belser and W.H. Hicklin	4-28-89	Methods of Cleaning Contaminants from Quartz Surfaces During Resonator Fabrication - R.K. Hart, W.H. Hicklin and L.A. Phillips
4-23-163	Laser Machining Thin Film Electrode Arrays on Quartz Crystal Substrates - J.L. Hokanson	4-28-96	Surface Studies for Quartz Resonators - J.R. Vig, C.F. Cook, Jr., K. Schwidtal, J.W. LeBus and E.
4-24-111	Auger Spectroscopy in Studies of the Aging Factors of Quartz Crystal		Hafner
	Resonators - G.W. Simmons, W.H. Hicklin and R.K. Hart	4-28-109	Stabilization of Resonance Frequencies in Piezoelectric Ceramic Resonators Against Sudden
4-24-117	5 MHz BT Cut Resonators - J.G. Leach		Temperature Change - M. Takahashi, F. Yamauchi and S. Takahashi
	Mode Control and Related Studies of VHF Quartz Filter Crystal - T.J. Lukaszek	4-29-128	A Survey of Ion Beam Milling Techniques for Piezoelectric Device Fabrication - R.N. Castellano and J.L. Hokanson
4-24-141	Temperature Compensated Oscillators - J.F. Silver and L.A. Dick	4-29-187	32 KHz Quartz Crystal Unit for High Precision Wrist Watch - J. Engdahl and H. Matthey
4-24-148	Quartz Crystal Units - W.H. Hicklin	4-29-202	A New Ceramic Flat Pack for Quartz Resonators - P.D. Wilcox, G.S. Snow, E. Hafner and J.R. Vig
4-24-157	The Direct Temperature Control of Quartz Crystals in Evacuated Enclosures - F.G. Tinta, A.S. Matistic and G.A. Lagasse	4-29-220	Further Results on UV Cleaning and Ni Electrobonding - J.R. Vig, J.W. LeBus and R.L. Filler
4-26-71	Thermocompression Bonding to Quartz Crystals - R.J. Byrne	4-29-230	On the Origin of the 'Second Level of Drive' Effect in Quartz Oscillators - J.E. Knowles
4-26-78	Modern Technologies - F. Ura	4-29-240	
4-26-120	Stability Remote Sensor Transmitters - J.M. Stanley, H. Wasshausen and S.		Ray Goniometer for Circular Plates - J.R. Vig
4-26-152	Precision and SSB Crystal Units for	4-30-23	Fracture Resistance of Synthetic α - Quartz Seed Plates - D.L. Brownlow
	Temperature Compensated Crystal Oscillators - R.K. Hart and W.H. Hicklin	4-30-78	A New Piezoelectric Resonator Design - R.J. Besson
4-27-42	Low Frequency Resonators of Lithium Tantalate - M. Onoe, T. Shinada, K. Itch and S. Miyazaki	4-30-209	Direct Plating to Frequency - A Powerful Method for Crystals with Closely Controlled Parameters - R. Fischer and L. Schulzke
4-27-50	Subminiature Quartz Tuning Fork Resonators - J. Staudte		TISCHEL GIR B. SCHULZAE

4-30-224	Ceramic Flat Pack Enclosures for Precision Quartz Crystal Units - R.D. Peters	4-32-310	Goniometric Measurements of the Angles of Cut of Doubly Rotated Quartz Plates - J. Clastre, C. Pegeot and P.Y. Leroy
4-30-232	Design of a Nozzle Beam Type Metal Vapor Source - R.P. Andres	4-32-317	•
4-30-237	An Evaluation of Leak Test Methods for Hermetically Sealed Devices - R.E. McCullough	4-32-321	- Y. Kobayashi Basic Considerations on Metal Canned
4-30-240	Characterization of Metal-Oxide System by High Resolution Electron		Enclosures for the Encapsulation of Quartz Crystal Units - D. Fuchs
	Spectroscopy - E.J. Scheibner and W.H. Hicklin	4-33-351	Etching Studies on Singly and Doubly Rotated Quartz Plates - J.R. Vig, R.J. Brandmayr and R.L. Filler
4-30-249	A Novel Method of Adjusting the Frequency of Aluminum Plated Quartz Crystal Resonators - V.E. Bottom	4-33-359	Anisotropy of Etching Rate for Quartz in Ammonium Bifluoride - P. Suda, A.E. Zumsteg and W. Zingg
4-30-254	Polishing Layer of Crystal Plates - H. Fukuyo and N. Oura	4-33-364	A Microprocessor Assisted Anodizing Apparatus for Frequency Adjustments
4-30-259	A Method of Angle Correction - D. Husgen and C.C. Calmes		- D. Ang
4-30-264	The Effect of Bonding on the Frequency vs. Temperature Characteristics of AT-Cut Resonators	4-33-368	Continuous Vacuum Processing System for Quartz Crystal Resonators - R.J. Ney and E. Hafner
	- R.L. Filler and J.R. Vig	4-34-34	An On-Wafer Detection Method of the Imbalance of Quartz Tuning Fork
4-31-122	Accoustic Bulk Wave Resonators and Filters Operating in the Fundamental Mode at Frequencies Greater than 100		Resonators - P.E. Debely and R.J. Dinger
4-31-126	MHz - M. Berte	4-34-41	A Micro-Processor Assisted Baseplating Apparatus with Improved Plateback Distribution - D. Ang
	Surface Morphology and the Q of High Frequency Resonators - R.N. Castellano, T.R. Meeker and R.C. Sundahl	4-34-46	Analysis of Quartz Resonator Electrodes Using the Rutherford Backscattering Technique - G.L. Dybwad
4-31-131	Chemically Polished Quartz - J.R. Vig, J.W. LeBus and R.L. Filler	4-34-112	•
4-31-144	Aging Analysis of Quartz Crystal Units with Ti Pd Au Electrodes -		Lamboley
4-31-153	G.L. Dybwad Making Doubly Rotated Quartz Plates	4-34-120	Highly Precise Measurement of Orientation Angle for Crystal Blanks - N. Asanuma and J. Asahara
1 32 233	- W.L. Bond and J.A. Kusters	4-34-167	Production Statisitics of SC (or
4-32-282	Design and Implementation of an Etch System for Production Use - D. Ang		TTC) Crystals - J.A. Kusters and C.A. Adams
4-32-286	Simplified Fixtures with Improved Thin Film Deposition Uniformity on Quartz Crystals ~ G.L. Dybwad	4-34-175	Further Advances on B.V.A. Quartz Resonators - R.J. Besson and U.R. Peier
4-32-290	Polyimide Bonded Resonators - R.L. Filler, J.M. Frank, R.D. Peters and J.R. Vig	4-34-183	Further Developments on 'SC' Cut Crystals - B. Goldfrank and A.W. Warner, Jr.
4-32-304	Final X-Ray Control of the Orientation of Round or Rectangular Quartz Slides for Industrial	4-35-40	Vacuum Processing System for Quartz Crystal Resonators - J.M. Frank
Pu	Purposes - J.F. Darces and H. Merigoux	4-35-48	Metallization of Quartz Oscillators - A.T. Lowe
		4-35-56	X-Pay Gonlometry of the Modified Doubly Rotated Cuts - E. Knolmayer

4-35-60	An Instrument for Automated Measurement of the Angles of Cut of Doubly Rotated Quartz Crystals - J.L. Chambers, M.A. Pugh, S.T. Workman, R.W. Birrell and R.J.		Laser Processed Miniature LiTaO Resonators and Monolithics Filters - R. Lefevre, L. Jenselme and D. Servajean
4-35-104	Valihura Adjusting the Frequency vs. Temperature Characteristics of SC- Cut Resonators by Contouring - J.R. Vig, W. Washington and R.L. Filler	4-39-338	A Progress Report on Manufacturing Methods and Technology for Production of High-Stability, Vibration-Resistant Quartz Crystal Units - J.C. Korman
4-35-237	Quartz Plates - L.N. Dworsky and G.	4-39-342	Tsaclas and J. Korman
4-36-90	Kennedy A Method of Adjusting Resonant	4-39-345	Low Profile Glass Packaged Crystal Unit - M. Sato, J. Eguchi, S. Ishigami and K. Yamamoto
	Frequency and Frequency-Temperature Coefficients of Miniaturized GT-Cut Quartz Resonators - O. Ochiai, A. Kudo, A. Nakajima and H. Kawashima	4-39-367	Processing of a Five Resonator VHF Crystal Device - C.W. Shanley, L.N. Dworsky, J.A. Whalin, G.C. Clifford and M.N. Scansaroli
4-36-108	DC Plasma Anodization of Quartz Resonators - C.W. Shanley and L.N. Dworsky	4-39-475	,
4-36-208	Further Development in SC Cut Crystal Resonator Technology - A.W. Warner, Jr., B. Goldfrank and J.	4-39-519	Kusters and C.A. Adams
4-37-261	Tsaclas Chemically Polished High Frequency		Devices - T.E. Parker, J. Callerame and G.K. Montress
4-38-101	Resonators - W.P. Hanson Reactive Ion Beam Etching for VHF	4-40-86	Further Results on the Use of Surfactants in Chemically polishing Quartz Crystals - R.J. Brandmayr and
	Crystal Resonators - J.S. Wang, S.K. Watson and K.F. Lau	4-40-115	J.R. Vig The Influence of Surface Finish and
4-38-114	Chip Crystal Resonator with Load Capacitors - Y. Kojima, Y. Fujiwara, S. Yamada and N. Wakatsuki	4.40.113	Metallization on Electrode Electomigration in Alpha-Quartz During Sweeping - J.G. Gualtieri and D.W. Eckart
4-38-119	AT-Cut Strip Resonators Enclosed in Cylindrical Package - M. Okazaki and N. Manabe	4-40-140	Angle in a Triply Rotated Cut, Determination and Control - H. Merigoux and J.F. Darces
4-38-225	Aging Studies on Quartz Crystal Resonators and Oscillators - R.L. Filler, J.A. Kosinski, V.J. Rosati and J.R. Vig	4-41-199	Effects of Initial Quartz Surface Finish and Etch Removal on Etch Figures and Quartz Crystal Q - K.H. Jones
4-39-271	Etching Study of AT-Cut Cultured Quartz Using Etchants Containing Fluoride Salts, Hydrofluoric Acid, and Ammonium Bifluoride - A.J.	4-41-243	Computing Crystal Orientation from X-Ray Measurements - J.H. Sherman, Jr.
4-39-276	Bernot	4-41-249	X-Ray Technology - A Review - C.A. Adams, D.C. Bradley and J.A. Kusters
	Solutions That Contain Surfactants - R.J. Brandmayr and J.R. Vig	4-41-258	An Update of Surface Mount Packages for Quartz Crystal Products - C.
1-39 -292	Chemically Milled VHF and UHF AT-Cut Resonators - J.R. Hunt and R.C. Smythe	4-41-351	Mercer
4-39-301	Etch Processing of Bulk and Surface Wave Devices - J. Dowsett, D.F.G. Dwyer, F. Stern, R.A. Heinecks and A.H. Truelove		Frequency of a Sealed Surface Acoustic Wave Resonator - J.A. Greer, T.E. Parker, M. Rothschild and D.J. Ehrilich

- 4-41-360 Parametric Failure Rate Model for Quartz Crystal Device Aging with Application to Surface Acoustic Wave Filters A.A. Feinberg
- 4-41-429 Fabrication and Methods for Evaluation and Circuit Utilization of Prototype Lateral Field Resonators M.M. Driscoll and W.P. Hanson
- 4-41-444 The Aging of Resonators and Oscillators Under Various Test Conditions R.L. Filler, R. Lindenmuth, J. Messina, V.J. Rosati and J.R. Vig
- 4-41-548 Use of Annular SAW for Cutting Quartz Resonator Blanks and Comparison with Other Methods J. Dowsett, R.B. Spencer and A.F.B. Wood
- 4-42-85 Stroboscopic X-Ray Topography of Quartz Resonators - A. Zarka, B. Capelle, Y. Zheng, M. Curie, J. Detaint and J. Schwartzel
- 4-42-93 Probe Examination of Thickness-Shear Vibrations of AT-Cut Narural Quartz Crystals: Some New Results R. Parshad and A. Sharma
- 4-42-189 New Technology for Detection and Removal of Surface Contamination Involving Particulates or Water/Organic Materials (Invited Paper) S. Hoenig
- 4-42-202 Measurement of Plano-Convex SC Quartz Blanks Using Lateral Field Excitation - A.W. Warner, Jr.
- 4-42-205 Use of Annular SAW for the Cutting of Quartz Resonator Blanks and Substrates J. Dowsett, R.B. Spencer and P.E. Morley
- 4-42-208 X-Ray Topographic Study of Vacuum Swept Quartz Crystals - A. Zarka, M. Sebastian and B. Capelle
- 4-42-211 A New Shutter System for Fine-Tuning Coupled-Dual Crystals G. Roberts
- 4-42-404 Aging Prediction of Quartz Crystal Units M. Miljkovic, G. Trifunovic and V. Brajovic
- 4-42-412 Experimental Results of Aging of AT-Cut Strip Resonators - J. Gehrke and R. Klawitter

CATEGORY 5:

Filters, Surface and Shallow Bulk Acoustic Wave Devices, Other

Nonquantum-electronic Microwave Resonators, and Non-Piezoelectric

Acoustic Resonators

5-10-339	High-Frequency Crystal Filters - D.I. Kosowsky	5-20-103	Improved VHF Filter Crystals using Insulating Film Techniques - D.J. Koneval, W.J. Gerber and D.R.
5-11-535	Latest Developments in Mechanical Filters - J.C. Hathaway		Curran
5-11-556	High-Frequency Crystal Filters - L. Storch	5-20-131	Design and Fabrication of Modern Filter Crystals - A.D. Ballato, T.J. Lukaszek, H. Wasshausen and E. Chabak
5-12-437	Filter Crystals - R. Bechmann	5-20-266	
5-12-475	High Frequency Crystal Filters - R.A. Sykes	3 20 200	Employing Multiple Mode Resonators Vibrating in Trapped Energy Modes - M. Once, H. Jumonji and N. Kobori
5-12-501	Type NB Bandpass Crystal Filters - L. Storch	5-20-288	High Frequency Monolithic Crystal Filters with Possible Application to
5-13-404	Single-Side-Band Crystal Filters - M. Dishal		Single Frequency and Single Side Band Use - R.A. Sykes and W.D. Beaver
5-13-405	Quartz Crystal Mechanical Filters - H. Yoda	5-20-309	
5-14-361	VHF Crystal Filters - F.K. Priebe and D. Schwab		Crystals into Filters for Quantity Production - H. Mailer and D.R. Beuerle
5-15-318	Transfer Function Synthesis of Quartz Crystal Filters - E.C. Ho	5-20-343	Tolerance Considerations in Crystal Filter Design - R.C. Smythe
5-16-347	HF and VHF Crystal Filters - S. Malinowski and D. Schennberg	5-20-352	A Temperature Compensation Technique for Crystal Filters - E.C. Ho and K. Lichtenfeld
5-16-373	High Frequency Crystal Electromechanical Filters - Y. Nakazawa	5-21-83	Alternate Approaches to High Frequency Filter Crystals - D.A. Roberts, D.J. Koneval and T.R.
5-17-566	Filters - D.I. Kosowsky and C. Hurtig		Sliker
		5-21-138	Bandpass Filters with Single
5-18-536	Tandem Lattice All-Pole Bandpass Filters on the Insertion-Loss Basis	5-21-160	Frequency or Single Sideband Characteristics - D.I. McLean Theory of Thickness-Shear Vibrators, with Extensions and Applications to VHF Acoustically-Coupled-Resonator Filters - W.H. Horton and R.C. Smythe
	- R.C. Smythe		
5-18-558	Malinowski		
5-19-42	Ultrasonic Tapped Delay Lines for Filter Applications - G.A. Coquin	5-21 -1 79	Theory and Design of the Monolithic Crystal Filter - W.D. Beaver
5-19-213	Factors in the Design of VHF Filter Crystals - D.R. Curran and D.J. Koneval	5-22-188	High Frequency Crystal Mechanical Filters - H. Yoda, Y. Nakazawa and N. Kobori
5-19-269	Improvements of Quartz Filter Crystals - T.J. Lukaszek	5-23-65	The Development of High Performance Filters Using Acoustically Coupled Resonators on AT-Cut Quartz Crystals - J.F. Werner, A.J. Dyer and J. Birch
5-19-509	Filters - E.C. Ho and R.H. Tuznik		
5-19-534	Trapped Energy Modes, Network Synthesis, and the Design of Quartz Filters - A.D. Waren, W.J. Gerber and D.R. Curran	5-23-76	High Frequency Crystal Monolithic (HCM) Filters - H. Yoda, Y. Nakazawa and N. Kobori
		5-24-16	Surface Waves and Devices - H.J. Shaw

5-24-21	Zero Temperature Coefficient Ultrasonic Delay Lines Utilizing Synthetic Quartz Crystals as Delay Media - M. Onoe and Y. Mochizuki	5-26-257	A Superconducting Cavity Stabilized Oscillator - S.R. Stein and J.P. Turneaure
5-24-74	Review of Digital Filtering - J.D. Heightley	5-26-257	A Superconducting Cavity Stabilized Oscillator - S.R. Stein and J.P. Turneaure
5-24-78	Active Filter Capabilities - P. Geffe	5-27-227	Monolithic Crystal Filter with Attenuation Poles Utilizing 2-Dimensionsal Arrangement of
5-24-83	Generalized Filters Using Surface Ultrasonic Waves - M.G. Holland		Electrode - Y. Masuda, I. Kawakami and M. Kobayashi
5-24-84	Monolithic Crystal Filters - R.J. Byrne	5-27-233	Effects of Asymmetry in Trapped Energy Piezoelectric Resonators - A. Glowinski, R. Lancon and R. Lefevre
5-24-93	Preparation of Quartz Crystal Plates for Monolithic Crystal Filters - A.J. Miller	5-27-243	Experimental Investigations of Intermodulation in Monolithic
5-24-104	Crystal Filter Frequency Adjustment		Crystal Filters - W.H. Horton and R.C. Smythe
5-25-246		5-27-246	Single Mode Resonance in Lithium Niobate/Lithium Tantalate for Monolithic Crystal Filters - J.W.
	Tantalate X-Cut Resonator - K. Sawamoto	5-27-253	Burgess Some Practical Design Considerations
5~25-251	CdS-Quartz Monolithic Filters for Use in the 100-500 MHz Frequency Range - D.A. Roberts	3-27-233	of Dispersive Surface Wave Filters - W.J. Skudera, Jr. and H.M. Gerard
5-25-262	Consideration About Channel Filters for a New Carrier Frequency System with Mechanical Filters - H.	5-27-262	A Novel Frequency Selective Device: The Stacked Crystal Filter - A.D. Ballato and T.J. Lukaszek
5-25-271		5-27-406	S and X-Band Superconducting Cavity Stabilized Oscillators - J.J. Jimenez and A. Septier
	Filters and Monolithic Quartz Filters - L. Bidart	5-27-414	The Development of Superconducting Cavity Stabilized Oscillators - S.R.
5-25-280	Frequency Division Multiplex - P.		Stein and J.P. Turneaure
5-25-287	Lloyd Composite Filter Structures Incorporating Monolithic Crystal	5-28-33	Filter Applications in Communications and Electronics Industry - C.F. Kurth
	Filters and L-C Networks - H.A. Simpson, E.D. Finch, Jr., R.K. Weeman and A.N. Georgiades	5-28-43	Energy Trapped Vibrations in Lithium Tantalate and Lithium Niobate Resonators - M.C. Hales, J.W. Burgess and R.J. Porter
5-26-164	VHF/UHF Bandpass Filters Using Piezoelectric Surface Wave Devices - C.S. Hartmann, T.F. Cheek and H.G. Vollers	5-28-256	
5-26-171	Charge Transfer Devices in Frequency Filtering - D.D. Buss, C.R. Reeves, W.H. Bailey and D.R. Collins	5-28-260	Surface Acoustic Wave Oscillator Experiments - A.K. Nandi, S.T. Costanza and C.E. Wheatley III
5-26-180	Intermodulation in Crystal Filters - S. Malinowski and C. Smith	5-28-266	Surface Acoustic Wave Oscillators - H.E. Karrer and J.F. Dias
5-26-187	The Design of Compact Monolithic Crystal Filters for Portable Telecommunications Equipment - G.R.	5-28-280	UHF Surface Acoustic Wave Crystal Resonators - E.J. Staples
5-26-193	Kohlbacher	5-28-286	On the Design of Elastic Surface Wave Filters with No Tuning Coil - H. Sato, K. Yamanouchi, K. Shibayama and S. Nishiyama

5-28-299	Low-Loss Unidirectional Acoustic Surface Wave Filters - R.C. Rosenfeld, C.S. Hartmann and R.B. Brown	5-30-109	A Hybrid Integrated Monolithic Crystal Filter - T. Watanabe and K. Okuno
5-28-304		5-30-119	Surface Acoustic Wave VIF Filters for TV Using ZnO-Sputtered Film - S. Fujishima, H. Ishiyama, A. Inoue and H. Ieki
5-29-77	Frequency Filtering Using Charge Coupled Devices - C.R. Hewes, D.D. Buss and R.W. Brodersen	5-30-123	Filtering with Analog CCD and SAW Devices - D.D. Buss, L.T. Claiborne, C.S. Hartmann and C.R. Hewes
5-29-88	Practical Application of CCD- Transversal Filters in Communication Systems - R.D. Baertsch, W.J. Butler, W.E. Engeler, H.S. Goldberg, O. Mueller, C.M. Puckette, J.J. Tiemann and J.J.	5-30-157	Progress Report on Surface Acoustic Wave Device MMT - A.R. Janus
		5-30-322	SAW Resonators and Coupled Resonator Filters - E.J. Staples and R.C. Smythe
5-29-105	VandeGraaf A6 Monolithic Crystal Filter Design for Manufacture and Device Quality - S.H. Olster, I.R. Oak, G.T. Pearman, R.C. Rennick and T.R. Meeker	5-30-328	Two-Port Quartz SAW Resonators - W.R. Shreve
		5-30-334	Surface Acoustic Wave Ring Filter - T.E. Parker and F. Sandy
5-29-113	Manufacture of Monolithic Crystal Filters for the A-6 Channel Bank - H.F. Cawley, J.D. Jennings, J.I. Pelc, P.R. Perri, F.E. Snell and A.J. Miller	5-30-340	Optical Waveguide Model for SAW Resonators - J.S. Schoenwald
		5-30-346	Design of Quartz and Lithium Niobate SAW Resonators Using Aluminum Metallization - W.H. Haydl, P. Hiesinger, B. Dischler, R.S. Smith
5-29-120	Polylithic Crystal Filters - D.F. Sheahan	E 20 250	and K. Heber
5-29-135	A Survey of Current SAW Device Capabilities - L.T. Claiborne	5-30 - 358	Aging Effects in Plasma Etched SAW Resonators - D.T. Bell, S.P. Miller and L.A. Simonson
5-29-150	Surface Acoustic Wave Resonator Development - J.S. Schoenwald, W.R. Shreve and R.C. Rosenfeld	5-30-363	The Periodic Grating Oscillator (PGO) - R.D. Weglein and O.W. Otto
5-29-158		5-30-367	Fast Freqency Hopping with Surface Acoustic Wave (SAW) Frequency Synthesizers - L.R. Adkins
5-29-167	· .	5-31-187	CCD Recursive Filter for MTI Applications - W.L. Eversole, W.H. Bailey and P.L. Ham
5-29-177		5-31-191	Unwanted Modes in Monolithic Crystal Filters - G.T. Pearman and R.C. Rennick
5-29-181	Experimental Investigation of Mass- Producible Acoustic Surface Wave Filter - G. Coussot and G. Menager	5-31-197	Multi-Mode Stacked Crystal Filter - C.M. Stearns, S. Wanuga, S.W. Tehon and A. Kachelmyer
5-29-321	Application of Superconductivity to Precision Oscillators - S.R. Stein	5-31-207	128 kHz Pole-Type Mechanical Channel Filter - K. Yakuwa, S. Okuda, K. Shirai and Y. Kasai
5-30-12	Static Strain Effects on Surface Acoustic Wave Delay - R.B. Stokes and K.M. Lakin	5-31-213	Lithium Tantalate Channel Filters for Multiplex Telephony - T. Arranz
5-30-103	Monolithic Crystal Filters - H.F.	5-31-225	1.2 GHz Temperature-Stable SAW Oscillator - R.D. Weglein
	Tiersten	5-31-231	Tuning Quartz SAW Resonators by Opening Shorted Reflectors - R.C. Rosenfeld, T.F. O'Shea and S.H. Arneson

5-31-240	Tunable Variable Bandwidth/Frequency SAW Resonators - J.S. Schoenwald	5-32-77	Higher Order Temperature Coefficients of Quartz SAW Oscillators - D. Hauden, M. Michel
5-31-246	Deeply Etched SAW Resonators - C.A. Adams and J.A. Kusters		and J.J. Gagnepain
5-31-251	Piezoelectric Shear Surface Wave Grating Resonators - B.A. Auld and B.H. Yeh	5-32-87	A New Cut of Quartz Giving Improved Temperature Stability to SAW Oscillators - T.I. Browning and M.F. Lewis
5-31-258	A New Class of Quartz Crystal Oscillator Controlled by Surface- Skimming Bulk Waves - T.I. Browning and M.F. Lewis	5-32-95	Temperature Stable Shallow Bulk Acoustic Wave Devices - K.H. Yen, K.F. Lau and R.S. Kagiwada
5-31-266	Interdigital TransducersA Means of Efficient Bulk Wave Excitation -	5-32-220	Some Recent Advances in Integrated Crystal Filters - R.C. Smythe
	K.H. Yen, K.L. Wang, R.S. Kagiwada and K.F. Lau	5-32-233	A Polylithic Crystal Filter Employing A Rhodes Transfer Function - P.A. Herzig and T.W. Swanson
5-31-271	Surface Acoustic Wave Scattering From a Groove in Y-Z LiNbO3 - S.D. Wu and H.S. Tuan	5-32-244	A Selective Linear Phase Crystal Filter - P. Siffert and J. Kerboull
5-31-275	UHF Range SAW Filters Using Group- Type Uni-Directional Interdigital Transducers - J. Otomo, S. Nishiyama, Y. Konno and S.	5-32-250	Crystal Filter AM-PM Conversion Measurements - T.W. Swanson
	Shibayama	5-32-385	10 GHz Cavity Stabilized FET Oscillator - B.E. Rose
5-31-281	Progress Report on Surface Acoustic Wave Device MMT - II - A.R. Janus and L. Dyal III	5-33-148	Monolithic Crystal Filters With High Q Factor and Low Spurious Level - R. Lefevre
5-31-285	The Versatility of the "In-Line" SAW Chirp Filter - W.J. Skudera, Jr.	5-33-166	New Discrete Crystal Filters for
5-31-359	Current Developments in SAW Oscillator Stability - T.E. Parker		Bell System Analog Channel Banks - D.I. McLean, A.F. Graziani and J.J. Royer
5-31-365	SAW Oscillators for Phase Locked Applications - T.R. Joseph	5-33-173	The Design and Application of Electromechanical Single Silicon Beam Filters - M.F. Hribsek
5-31-371	300 MHz Oscillators Using SAW Resonators and Delay Lines - E.J. Staples and T.C. Lim	5-33-206	Digital Filters - An Overview - F.J. Witt
5-31-616	Clocks Based Upon High Mechanical Q Single Crystals - D.F. McGuigan and D.H. Douglass	5-33-209	Modern Crystal Filters - R.C. Smythe
5-32-50	SAW Devices for Use in a High Performance Television Tuner - R.E.	5-33-214	CCD and Switched Capacitor Filters - C.R. Hewes
	Stigall and W.R. Shreve	5-33-220	Surface Acoustic Wave (SAW) Bandpass Filter Review - R.C. Rosenfeld
5-32-58	Design and Construction of SAW Oscillators for Secondary Radar Systems - H. Eschler, L. Sanchez- Hermosilla, W.E. Bulst and P. Schucht	5-33-223	Mechanical Filters - E.M. Frymoyer
		5-33-374	and Packaging - S.J. Dolochycki, E.J. Staples, J. Wise, J.S.
5-32-66	Vibration Effects on Close in Phase Noise of a 300 MHz Surface Wave		Schoenwald and T.C. Lim
	Resonator Oscillator - R. Allison and S.J. Goldman	5-33-379	Stability of Phase Shift on Quartz Saw Devices - T.E. Parker and D.L. Lee
5-32-74	Improved Long-Term Aging in Deeply Etched SAW Resonators - C.A. Adams and J.A. Kusters	5-33-388	Analysis of Shallow Bulk Acoustic Wave Excitation by Interdigital Transducers - K.F. Lau, K.H. Yen, J.Z. Wilcox and R.S. Kagiwada

5-33-396	L-Band Low Loss Saw Filters - B.R. Potter	5-34-445	The Overlapping Ground - A New Monolithic Crystal Filter Configuration - J.L. Dailing
5-33-402	A New Cut of Quartz with Orthogonal Temperature-Compensated Propagation Directions for Surface Acoustic Wave Applications - R.M. O'Connell	5-35-13	The Role of Analog Devices in a Digital Age - R.C. Williamson
5-34-221	SAW Stabilized 1680 MHz Microwave Oscillator - D.J. Dodson, K.F. Lau, M.Y. Huang and T.J. Lukaszek	5-35-244	Laser Processed VHF Monolithic Crystal Filters With On Plate Integrated Matching Impedances - R. Lefevre
5-34-237	A Temperature Stable 2 GHz SBAW Delay Line Oscillator - K.R. Lau, K.H. Yen, R.S. Kagiwada and A.M. Kong	5-35 - 257	Equivalent Circuit Modelling of Stacked Crystal Filters - K.M. Lakin
5-34-243	High Q Bulk Acoustic Resonators for Direct Microwave Oscillator Stabilization - R.A. Moore, J. Goodell, A. Zahorchak, R.A. Sundelin, F.W. Hopwood, T. Haynes,	5-35-345	Commercial Satellite Navigation Using Saw Oscillator - B.Y. Lao, N.J. Schneier, D.A. Rowe, R.E. Dietterle, J.S. Schoenwald, E.J. Staples and J. Wise
5-34-252	B.R. McAvoy and J. Murphy	5-35-349	UHF Voltage-Controlled Narrow- Bandwidth Saw Filters - J. Henaff, M. Feldmann and M. Carel
3-34-232	Superconducting Microstrip Resonators - R. Davidheiser	5-35-352	Saw Filter Technology and
5-34-255	Non-Linear Propagation of Surface Acoustic Waves on Quartz - M.		Applications - B.R. Potter and D.B. MacDonald
	Planat, D. Hauden, J. Groslambert and J.J. Gagnepain	5-35-358	The Status of Magnetostatic Wave Devices - J.M. Owens, C.V. Smith, Jr. and R.L. Carter
5-34-2.62	Theoretical Analysis of Second-Order Effects in Surface-Wave Gratings - P.V. Wright and H.A. Haus	5-35-376	The Propagation Characteristics of Surface Acoustic Waves on Singly and Doubly Rotated Cuts of Quartz - D.F.
5-34-269	Surface Acoustic Wave Resonators with Hermito-Gaussian Transverse Modes - F. Pirio and P.		Williams, F.Y. Cho, A.D. Ballato and T.J. Lukaszek
	Desrousseaux	5-35-383	SAW Resonator Pairs - J.S.
5-34-273	SAW Resonator 2-Pole Filters - E.J. Staples, J. Wise, J.S. Schoenwald and T.C. Lim		Schoenwald, J. Wise and E.J. Staples
5-34-278	UHF SAW Resonators and Applications - W.J. Tanski	5-35-388	Elements of SAW Resonator Fabrication and Performance - W.J. Tanski
5-34-286	SH-Type Surface Acoustic Waves on Rotated Y-Cut Quartz - T. Nishikawa, A. Tani, K. Shirai and C. Takeuchi	5-35-395	GaAs SAW Resonator Oscillators with Electronic Tuning - M. Gilden and T.W. Grudkowski
	Analysis of Aging Data on SAW Oscillators - T.E. Parker	5-35-401	Shallow Bulk Acoustic Waves in Berlinite - K.F. Lau, K.H. Yen, R.B. Stokes, R.S. Kagiwada and B.H.T. Chai
	Numerical Analysis of Doubly Rotated Cut SAW Devices - D.F. Williams and F.Y. Cho	5-35-436	Advanced SAW-LSI Frequency Synthesizer - D.J. Dodson, M.Y. Huang and M.D. Brunsman
	Observations of Effects Induced by Dielectric Coatings on SSBW and SAW Devices - C.N. Helmick, Jr. and D.J. White	5-36-270	Inertial Guidance and Underwater Sound Detection Using SAW Sensors - E.J. Staples, J. Wise and A.P. Andrews
5-34-312	Sensitivities of SAW Oscillators to Temperature, Forces and Pressure: Application to Sensors - D. Hauden, S. Rousseau and J.J. Gagnepain	5-36-276	A Surface Acoustic Wave Gas Detector - A. Bryant, M. Poirier, D.L. Lee and J.F. Vetelino

5-36-284	Pressure and Temperature Measurements with SAW Sensors - D. Hauden, S. Rousseau, G. Jaillet and R. Coquerel	5-37-239	Acoustically Coupled Resonators: Filters and Pressure Transducers - J. Detaint, H. Carru, P. Amstutz and J. Schwartzel
5-36-389	Intermediate Bandwidth Quartz Crystal Filters - A Simple Approach to Predistortion - R.C. Peach, A.J.	5-37-349	Current Trends in Crystal Filters - R.C. Smythe, M.D. Howard
	Dyer, A.J. Byrne, E. Read and J.K. Stevenson	5-37-354	Surface Acoustic Wave Bandpass Filters - C.S. Hartmann and S. Wilkus
5-36-396	Developments in Low Loss, Low Ripple SAW Filters K.H. Yen, K.F. Lau, R.B.	5-37-361	EHF Waveguide Filters - J.E. Raue
	Stokes, A.M. Kong and R.S. Kagiwada	5-37-362	Digital Filters: An Overview - L. Sheats
5-36-400	Multipole SAW Resonator Filters - W.J. Tanski	5-37-371	Microeletronic Analog Active Filters - R. Schaumann
5-36 -4 05	Recent Advances in UHF Crystal Filters - B. d'Albaret and P. Siffert	5-37-376	Timing Tank Mechanical Filter for Digital Subscriber Transmission System - T. Gounji, T. Kawatsu, Y.
5-36-419	Magnetostatic Wave Multi-Channel Filters - J.D. Adam		Kasai, T. Takeuchi, Y. Tomikawa and M. Konno
5-36-428	Application of SAW Convolvers and Correlators - H. Gautier	5 - 37 - 387	Stripline Filters - An Overview - L.N. Dworsky
5-36-442	Ultrareproducible SAW Resonator Production - W.E. Bulst and E. Willibald	5-37-394	Precision L-Band SAW Oscillator for Satellite Application - T.F. O'Shea, V. Sullivan and R. Kindell
5-36-453	Development of Precision SAW Oscillators for Military Applications - T.E. Parker	5-37-405	SAW Resonator Stabilized Oscillator - C. Bennett
5-36 -4 59	Effects of RIE Tuning on the Electrical and Temperature Characteristics of Quartz SAW	5-37-410	Very Long Period Random Frequency Fluctuations in SAW Oscillators - T.E. Parker
	Resonators - C. Kotecki	5-37-415	Propagation of Surface Waves - B.K.
5-36-470	Frequency Fine Tuning of Reliable SAW Transducers Using Anodization Technique - F.Y. Cho, T.B. Chatham		Sinha, W.J. Tanski, T.J. Lukaszek and A.D. Ballato
5-36-486		5-37 -42 3	S.J. Martin, R.L. Gunshor, T.J. Miller, S. Datta, R.F. Pierret and
	Sensitivity with Digital Compensation - A.J. Slobodnik, Jr., R.D. Colvin, G.A. Roberts and J.H.	5-37-428	M.R. Melloch High-Frequency Shallow Bulk Acoustic
5-36-517	Silva		Wave Quartz Frequency Sources - K.V. Rousseau, K.H. Yen, K.F. Lau and A.M. Kong
3 30 32.	Composite Bulk Wave Resonators - K.M. Lakin, J.S. Wang and A.R. Landin	5-37-473	MSSW Delay Line Based Oscillators ~ V. Lander and J.P. Parekh
5-36-525	SAW and SSBW Propagation in Indium Phosphide - J. Henaff and M. Feldmann	5-37-477	The Status of Magnetostatic Wave Oscillators - R.L. Carter and J.M. Owens
5-36-537	Progress in the Development of Miniature Thin Film BAW Resonator and Filter Technology - T.W. Grudkowski, J.F. Black, G.W. Drake and D.E. Cullen	5-37-481	An X-Band GaAs FET Oscillator Using a Dielectric Resonator - K. Wakino, T. Nishikawa, S. Tamura and H. Tamura
5-37-81	Superconductive Tapped Delay Line for Low-Insertion-Loss Wideband Analog Signal-Processing .ilters - R.S. Withers and P.V. Wright	5-38-251	Filter Applications of High Frequency Chemically Polished Fundamental Mode Bulk Wave Quartz Crystal Resonators - P.J. Kavolis and W.P. Hanson

5-38-254	A New Generation of UHF Filters from 300 MHz to Some GHz Using "Dielectric Resonators" - B. d'Albaret	5-39-491	Monolithic Crystal Filters Having Improved Intermodulation & Power Handling Capability - M.D. Howard, R.C. Smythe and P.E. Morley
5-38-263	Temperature Stable Microwave Resonators Using ZnO Shear Mode Transducers - S.V. Krishnaswamy, B.R. McAvoy and R.A. Moore	5-39-504	Monolithic Filters Using Ion Etched Fundamental Mode Resonators Between 60 and 100 MHz - J. Brauge, M. Fragneau and J.P. Aubry
5-38-266	Performance of Fundamental-Mode UHF Oscillators Using Bulk-Acoustic-Wave Resonators - S.G. Burns and R.S. Ketcham	5-39-514	Scattering Parameters of Electrically Loaded SAW Group Type Unidirectional Tranducers - A.R. Reddy and S.K. Lahiri
5-38-271	A Review of Surface Acoustic Wave Devices and their Current Applications - R.C. Rosenfeld and R.M. Hays	5-40-252	Real Time, Interactive Saw Filter Computer Aided Design and Analysis Implementation - S.M. Richie, C.D. Bishop and D.C. Malocha
5-38-273	The Effects of Temperature, RF Power, Radiation and Time on SAW Resonator Electrical Characteristics - A.I. Vulcan and C. Gloeckl	5-40-257	On a Continuous Representation of the Mode Shape in Acoustic Surface Wave Resonators - H.F. Tiersten and D.V. Shick
5-38-279	Tuning SAW Oscillators Using Magnetic Bubble Garnet Films - S.M. Hanna and F.J. Friedlander	5-40-275	Wideband Timing Tank Filters for Digital Transmission Systems - S. Yamamoto, T. Gounji and J. Shimizu
5-38-282	SBAW Versus SAW Oscillator Aging - R.B. Stokes, K.H. Yen and K.F. Lau	5-40-385	The BASS FET Oscillator - Its Signal and Noise Performance - R.A. Pucel
5-38-286	Narrow Bandpass Filter Using Double- Mode SAW Resonators on Quartz - M. Tanaka, T. Morita, K. Ono and Y. Nakazawa	5-40-392	Magnetically Tunable High Overtone Microwave Resonators - J.D. Adam, B.R. McAvoy and H.L. Salvo, Jr.
5-38-294	Theoretical Analysis of Dynamic Thermal Effects in SAW Devices - G. Theobald and D. Hauden	5-41-365	Approximation Method for Plate Modes in Surface Acoustic Wave Devices - J.P. Hou
5-38-300	Transient Thermal Response of Surface Acoustic Wave Resonators - B.K. Sinha	5-41-371	Thin Film Resonator Technology - K.M. Lakin, G.R. Kline, R.S. Ketcham, A.R. Landin, W.A. Burkland, K.T. McCarron, S.D. Braymen and S.G. Burns
5-38-310	Bias Controlled Frequency Trimming of SAW Devices in a DC _{O2} Plasma - J. Day, T.E. Parker and G. Jackson	5-41-382	
5-38-435	Development of the Superconducting Cavity Maser as a Stable Frequency		- S.G. Burns, G.R. Kline and K.M. Lakin
	Source - G.J. Dick and D.M. Strayer	5-41-388	Shear Mode Transducers for High Q Bulk Microwave Resonators - H.L. Salvo, Jr., M. Gottlieb and B.R.
5-39-138	Phase Noise in Crystal Filters - R.C. Smythe	5 43 4 3 0	McAvoy
5-39-159	A 9.2 GHz Superconducting Cavity Stabilized Oscillator - B. Komiyama	5-41-478	Review of Dielectric Resonator Oscillator Technology - A.P.S. Khanna
5-39 -48 1	VHF Monolithic Crystal Filters Fabricated by Chemical Milling - R.C. Smythe, M.D. Howard and J.R. Hunt	5-41-487	Cryogenic Sapphire Dielectric Resonators and DRO's - G.J. Dick and D.M. Strayer
5-39-486	The Motorola Multi-Pole Monolithic Filter Project - L.N. Dworsky and C.S. Shanley	5-41-503	The Impact of Digital Signal Processing on Crystal Filter Requirements - M.E. Frerking

5-42-95	New Monolithic Crystal Filter with Wide Tabs - Y. Okamoto and H. Sekimoto	!
5-42-101	Semi-Analytical Analysis of Coupled Thickness-Shear and Thickness-Twist in Monolithic Crystal Filters - H. Carru, R. Lefevre, J.P. Aubry and S. LeChopier	
5-42-106	Performance of TFR Filters Under Elevated Power Conditions - R.S. Ketcham, G.R. Kline and K.M. Lakin	
5-42-112	Frequency Sorting Based on Planar YIG Resonators - S.M. Hanna and S. Zeroug	
5-42-217	Analysis of Anharmonics in Surface Skimming Bulk Wave Devices - J.P. Hou	
5-42-224	Experimental Temperature and Stress Sensitivities of Surface Acoustic Wave Quartz Cuts - E. Bigler, R. Coquerel and D. Hauden	
5-42-230	An Analysis of the In-Plane Acceleration Sensitivity of ST-Cut Quartz Surface Wave Resonators with the Substrate Extending Beyond the Supports - D.V. Shick and H.F. Tiersten	
5-42-239	Improved Vibration Sensitivity of the All Quartz Package Surface Acoustic Wave Resonator - J.A. Greer and T.E. Parker	
5-42-252	SAW Tapped Delay Lines for New Potential Circuit Applications - W.J. Skudera, Jr.	
5-42-259	Dielectric Resonators (Invited Paper) - P. Guillon	
5-42-263	Temperature Sensitivity of Dielectric Resonators and Dielectric Resonator Oscillators - M. Loboda, T.E. Parker and G.K. Montress	
5-42-272	Non-Linear Modeling and Performance of Oscillators Using Thin-Film Bulk-Acoustic Wave Devices - S.G. Burns, P. Thompson and G.R. Kline	
5-42-284	Temperature Compensation of SAW Oscillators - M. Cracknell, A. Harrison and D. Sharpe	
5-42-288	Frequency Stability of SAW Oscillators at High Temperatures - B.K. Sinha, Y. Sudo, S. Sato and J. Groves	
5-42-301	Theory and Design of Low Phase Noise Microwave Oscillators - R. Rogers	
5-42-364	A Phase-Locked 4-6 GHz Local Oscillator Using Microwave Prescaler - P. Kandnal	

- P. Kandpal

- 5-42-369 Low Noise, Microwave Signal Generation Using Bulk and Surface Acoustic Wave Resonators - M.M. Driscoll
- 5-42-378 Low Phase Noise Oscillators Above 1
 GHz Utilizing Hermetically Sealed
 All Quartz Resonators and Harmonic
 Extraction C. Chase, R. Laton and
 C. Yuen

CATEGORY 6:

Quartz Crystal Oscillators and Frequency Control Circuitry

6-10-197	A Frequency Standard at Low Temperature - W.D. George	6-14-200	Quartz Crystal Units and Precision Oscillators for Operation in Severe Mechanical Environments - A.W.
6-10-268	The Evaluation of Phase-Stable Oscillators for Coherent Communication System - W.K. Victor	6-14-242	Warner, Jr. and W.L. Smith Effects of Thermal Noise on the
6-10-354	Design Data for Crystal Oscillators - H.E. Gruen		Frequency of a Regenerative Oscillator - M.J.E. Golay
6-10-422	A Precision Crystal Oven - M.D. McFarlane and R.B. Metz	6-14-381	Development of Quartz Crystal Synthesizers - J.M. Shapiro and W.A. Schultz
6-10-470	The Magnetron Beam Switching Tube as a High Speed Frequency Divider - H. Moss	6-14-421	Frequency and Phase Control of Local Oscillators by Transmitters of Standard Frequency - L. Mooser
6-10-506	Change of State Crystal Ovens - E. Snitzer and R. Strong	6-15-139	Precision Crystal Frequency Standards - W.J. Spencer and W.L. Smith
6-11-426	Crystal Oven Developments - M.D. McFarlane	6-15-251	Frequency Contro. by Means of a Phase Tracking VLF Receiver - 0.J.
6-11-502	Design Criteria for Vacuum Tube Crystal Oscillators - H.E. Gruen		Baltzer
6-11-518	Studies on Transistor Crystal	6-15 - 278	APC with Pulse Reference - T.J. Rey
	Oscillators - E. Eberhard and W.R. McSpadden	6-15-282	Design of Low Power Crystal Oven - I.A. Black, A. Everest and T.P. Heuchling
6-11-586	A Portable Frequency Standard ~ R.L. Craiglow	6-15-297	A Temperature-Compensated Frequency Standard - G.R. Hykes and D.E.
6-11-614	Frequency Translator for MASER - S. Schneider	6 16 220	Newell
6-12-131	Fundamental Studies on an Improved Crystal-Controlled Standard - W.L. Smith and A.W. Warner, Jr.	6-16-328	Multiple-Stage Varactor Harmonic Generators - M.E. Hines, A. Blaisdell, F. Collins, W. Priest, L. Baldwin and S. Johnson
6-12-406	A Precision Delayed Pulse Generator as a Variable Time Interval Standard - D. Hartke, M. Willrodt and D.	6-16-391	Stability of Tunnel Diode Oscillators - F. Sterzer
	Broderick	6-16-405	Precision Quartz Crystal Controlled
6-12-420	Frequency Multiplication with Phase- Locked Oscillators - H.T. McAleer		Oscillator for Severe Environmental Conditions - W.J. Spencer and W.L. Smith
6-13-165	Tuning Fork Precision Oscillators - H.E. Gruen and O. Colpen	6-16-422	Thermoelectric Temperature Control - T.D. Merritts and J.C. Taylor
6-13-182	Designing Transistor Oscillator for Crystals - J.H. Sherman, Jr.	6~17-482	Problems of Frequency Multiplication in Atomic Standards - H.D. Guy
6-13-191	Highly Stable Crystal Oscillators for Missile Application - A.W. Warner, Jr. and W.L. Smith	6-17-491	Temperature Compensation of Quartz Crystal Oscillators - D.E. Newell and R.H. Bangert
6-13-232	Missile-borne Frequency Standard - H.P. Brower	6-17-508	Theory of Oscillator Design - E. Hafner
	Parametric Frequency Multiplication for Atomic Frequency Standards - R. Rafuse	6-17-587	Frequency Synthesizing Techniques Permitting Direct Control and Rapid Switching - R.R. Stone, Jr. and H.F. Hastings
6-13-371	Automatic Phase Lock Frequency Control for Mobile Equipment - J.A. Loutit, R. Story	6-18-487	Advances in Crystal Oscillator and Resonator Compensation - D.E.
6-13-566	A Compact Frequency Translator for Use with the Ammonia MASER - W.K. Saunders		Newell, H.D. Hinnah and R.H. Bangert

6-18-584	A Frequency Synthesis Technique Using Digital Controlled Division - R.H. Bancroft, Jr. and M.W. Burt	6-21-370	Automated Crystal Oscillator Design - R.L. Craiglow
6-19-565		6-21-377	Variable Frequency Voltage Controlled Oscillators Incorporating Quartz Crystal Units - D.J. Healey III
6-19-580		6-22-298	Automatic Compensation Equipment for TCXO's - H.D. Hinnah and D.E. Newell
6-19-617	Recent Developments in Crystal Oscillator Temperature-Compensation - D.E. Newell, H.D. Hinnah and R.H.		Recent Improvements to TCXO - P.G. Vovelle
6-19-642	Oscillator (VCXO), Its Capabilities	6-22-325	Temperature Compensation of AT-Cut Crystals by Thermally Controlled Non-Linear Reactances - E.A. Roberts
6-19-658		6-22-354	The LOH Frequency Synthesizer - R.J. Hughes and R.J. Sacha
	Oscillators Employing 3 M.C. Fundamental Crystals in HC-27/U Enclosures - R.J. Munn	6-23-187	A Report on Segmented Compensation and Special TCXO's - D.E. Newell and H.D. Hinnah
6-20-464	Microminiaturization of Time and Frequency Control Equipments - F. Van Steen and R. Troell	6-23-192	
6-20-500	and Digital - R.M. Aughey and A.		Batdorf
6-20-501	Seipel Spurious Oscillation in Crystal	6-23-198	Frequency Standards for Communications - E.N. LeFevre
	Oscillators - M.E. Frerking	6-23-201	Digiphase Frequency Synthesizer - G.C. Gillette
6-20-517	Generation of Selectable Precise Fractional Frequency Offsets - B. Parzen	6-23-211	A Miniature Precision Digital Frequency Synthesizer - R.J. Hughes and R.J. Sacha
6-20-544	Programmed Oscillators for Doppler Radar Systems - G.D. Thompson, Jr. and R.L. Sydnor	6-24-191	Temperature Compensated Crystal Oscillators - P. Duckett, R. Peduto and G. Chizak
6-20-624	Sidereal Time Standard at the National Radio Astronomy Observatory - C.C. Bare and D.L. Thacker	6-24-200	New Approach to a High Stability Temperature Compensated Crystal Oscillator - S. Schodowski
6-20-629	An Analysis of a Low Information Rate Time Control Unit - L. Fey, J.A. Barnes and D.W. Allan	6-24-209	
6-21-287	Vibration Characteristics of Crystal Oscillators - G.F. Johnson	6-25-231	The Design and Performance of an Ultra-Pure, VHF Frequency Synthesizer for Use in HF Receivers
6-21-294	Frequency Synthesizers - R.R. Stone, Jr.	6-25-240	- M.E. Peterson The Spectral Frequency Synthesizer -
6-21-308	RADA Frequency Synthesizer - R.J. Breiding and C. Vammen		D.R. Lohrmann and A.R. Sills
6-21-331	A Low Power, Remotely Controlled Satellite Frequency Standard - M.B. Bloch, J. Ho, I. Math and J. Teitelbaum	6-26-43	Two Stage Self Limiting Series Mode Type Quartz Crystal Oscillator Exhibiting Improved Short-Term Frequency Stability - M.M. Driscoll
6-21-345	Microminiature Crystal Oscillator - H.P. Thomas, J.H. Sherman, Jr. and R.C. Early	6-26-50	Low Noise Frequency Multiplication - R.A. Baugh

6-26-55	The Design and Performance of an Ultra Low-Noise Digital Frequency Synthesizer for Use in VLF Receivers - M.E. Peterson	6-28-237	Computer Design and Analysis for High Precision Oscillators J. Ho and R. Nardin
6-26-132	A Temperature Compensated Crystal Oscillator Utilizing Three Crystals	6-29-248	Low Noise Microwave Oscillator Design - G. Jerinic, N. Gregory and W. Murphy
6-26-140	- K. Hirama and M. Onoe Low Power Crystal Oscillator for	6-29 - 264	Aerospace Radar Stalo-Synthesizers - R.C. Kley, Jr.
	Electronic Wrist Watch - H. Yoda, H. Ikeda and Y. Yamabe	6-29-285	Data Collection Platforms - K.L. Farber
6-26-264	The Disciplined Time/Frequency Standard: A New Multi-Function Crystal Oscillator - D. Babitch, J. Ho and M.B. Bloch	6-29-294	for TCXO - S. Fujii and H. Uchida
6-26-279	Quasiperiodic Frequency Synthesis - G. Becker	6-29-300	VCXO: Theory and Practice - J. Helle
6-27-157	Q-Multiplied Quartz Crystal Resonator for Improved HF and VHF Source Stabilization - M.M.	6-30-275	An Ultra-Stable Low Power 5 Mhz Quartz Oscillator Qualified for Space Usage - J.R. Norton
6-27-170	Driscoll Low Noise UHF Crystal Controlled	6-30-279	Stable Oscillator for Pioneer Venus Program - M.P. Meirs, T. Robinson and M.B. Bloch
6-27-180	Source - D.J. Healey III A 500 MHz Low Noise General Purpose	6-30-292	A Miniature High Stability TCXO Using Digital Compensation - A.
	Frequency Synthesizer - W.F. Byers, K.W. Craft and G.H. Lohrer	6-30-301	Mroch and G.R. Hykes Linearization of Direct FM Voltage
6-27-191	Digitally Compensated TCXO - G.E. Buroker and M.E. Frerking		Controlled Crystal Oscillators - S.J. Lipoff
6-27-199	Oscillator - H.M. Greenhouse, R.L. McGill and D.P. Clark	5-30-318	An Efficient Hardware Implementation for High Resolution Frequency Synthesis - B. Bjerde and G.F. Fisher
6-27-218	High Stability Integrator-Controlled Oven for Crystal Oscillators - T. Hamatsuki, H. Uchida and U. Goto	6-30-420	Microwave Frequency Synthesis for Satellite Communications Ground Terminals - G. Mackiw and G. Wild
6-28-181	Crystal Óscillator Exhibiting Improved Short Term Frequency Stability - J. Groslambert, G.	6-31-375	Ultra-Stable LC Oscillators and Their Applications in Metrology - C.T. Van Degrift
	Marianneau, M. Olivier and J. Uebersfeld	6-31-385	Frequency Synthesizers for Airborne Radars - F.W. Hopwood, J.P. Muhlbaier and H. Rossman
6-28-203	Abnormal Crystal Oscillator Frequency Change with Load Capacitance and its Elimination - S. Nonaka	6-31-390	
6-28-211	Compensated Wide Band Voltage Controlled Oscillator for the Viking Program - M.B. Bloch, M.P. Meirs and M. Rosenfeld	6-31-396	The MXO - Monolithic Crystal Oscillator - T. Luxmore and D.E. Newell
6-28-214	Microcircuit Temperature Compensated Crystal Oscillator (MCTCXO) - D.L. Thomann	6-31-400	Linear Crystal Controlled FM Source for Mobile Radio Application - R. Arakelian and M.M. Driscoll
6-28-221	New Approach to the Design of Crystal Oscillators - Y. Ohata	6-31-407	Design Considerations for a Digitally Temperature Compensated Crystal Oscillator - P.J. Scott
6-28-232	Explicit Expressions for TCXO Design - S.K. Sarkar	6-31-412	Precision Oscillators Flown on the LES-8/9 Spacecraft - H.S. Babbitt

6-31-421	A Fast Warmup Oscillator for the GPS Receiver - J. Ho and M.B. Bloch	6-33-458	An m/n Frequency Divider Using a Lambda (^) - Shaped Three-Terminal Negative Resistance Device - Y.
6-32-102	Temperature Compensation of Crystals with Parabolic Temperature Coefficients - R.G. Kinsman		Sekine, M. Suyama, K. Nakamura, H. Sekine and Y. Sakuta
6-32-365	A General Purpose LSI Frequency Synthesizer System - M.J. Underhill, P.A. Jordan, M.A.G.	6-34-52	Digital Temperature Control for Ultrastable Quartz Oscillators - G. Marianneau and J.J. Gagnepain
6-32-373	Clark and R.I.H. Scott	6-34-194	Internal Heating and Thermal Regulation of Bulk Quartz Resonators - J.P. Valentin
	Various Tuning Time and Frequency Increment Requirements - D.E. Phillips	6-34-202	An L- and S-Band Radar Exciter Using Agile Low Noise Phase Locked Loop Synthesizers - C. Andricos
6-32-378	Voltage-Controlled Oscillator with Time-Delay Feedback - J.B.L. Rao and W.M. Water	6-34-213	High Speed, Broadband Tuneable Microwave Synthesizer - E.M.
6-32-389	Dual Mode Operation of Temperature and Stress Compensated Crystals - J.A. Kusters, M.C. Fischer and J.G. Leach	6-34-217	Perdue Digital Generation of Wideband Linear FM Waveforms - F.W. Hopwood and R.A. Tracy
6-32-398	Temperature Compensation of Crystal Oscillator by Microprocessor - M. Onoe, I. Yamagishi and H. Nariai	6-34-233	Crystal, with Low Noise Performances and High Long Term Stability - C.
6-32-403	Highly Precise Standard Signal Circuit for Timepiece - Y. Akahane	6-34-449	Pegeot and G. Sauvage Tactical Miniature Crystal Oscillator - H.W. Jackson
6-32-409	Mathematical Analysis and Design of an Ultra-Stable Low Noise 100MHz Crystal Oscillator with Differential Limiter and Its Possibilities in Frequency Standards - U.L. Rohde	6-34-457	
6-32-426	Improvement in System Performance Using a Crystal Oscillator Compensated for Acceleration Sensitivity - J.M. Przyjemski	6-34-463	A Fast Warmup, SC Cut Crystal Oscillator - M.P. Meirs, P. Sherman, M.B. Bloch and J. Ho
6-32-549	Theoretical Performance of Frequency Estimators Using Phase-Locked Loops - T.A. Schonhoff	6-34-471	Requirements and Evaluation of the Circuitry, Excluding the Crystal in Crystal Oscillators - B. Parzen
6-33-406	Performance Results of an Oscillator Using the SC Cut Crystal - R. Burgoon and R.L. Wilson	6-34-475	Miniature Packaged Crystal Oscillators - D.M. Embree, R.E. Paradysz, V.R. Saari and R.J. McClure
6-33-411	Design Aspects of an Oscillator Using the SC Cut Crystal - R. Burgoon and R.L. Wilson	6-34-488	Direct-Temperature Compensated Crystal Oscillator for Advanced VHF/UHF Radio Communication Systems - S. Okano, T. Mitsuoka and T.
6-33-417	An Analysis of Unwanted Frequency Oscillation in a Crystal Controlled Oscillator - S. Kodama and Y. Sato	6-34-498	Ohshima Integrated Circuit Compensation of
6-33-425	A Non-Iterative Solution for a Two- Thermistor TCXO - C.T. Swanson and		AT-Cut Crystal Oscillators - T. Keller, D. Marvin and R. Steele
6-33-431	E.S. McVey The Application of Microprocessors	6-34-504	TCXO Error Due to Aging Adjustment ~ W.D. Galla and E.S. McVey
3 33 332	to Communications Equipment Design - M.E. Frerking	6-35-117	Reduction of the Effects of Vibration on SC-Cut Quartz Crystal Oscillators - V.J. Rosati and R.L.
6-33-449	The Effect of the Sampling Action of Phase Comparators on Frequency Synthesizer Performance - M.J.	6-35-406	Filler
	Underhill and R.I.H. Scott	3 33 400	A.L. Bramble

6-35-415	A Low Noise 500 MHz Frequency Source - A.I. Vulcan, M.B. Bloch and W.J. Tanski	6-37-442	An Improved Method of Temperature Compensation of Crystal Oscillators - J.S. Wilson
6-35-428	Spurious Suppression In Direct Digital Synthesizers - C.E. Wheatley III and D.E. Phillips	6-37-448	A New Frequency Temperature Compensation Method for Oscillators - T. Kudo, S. Fujii and S. Nanamatsu
6-35-440	SC-Cut Quartz Crystal Units in Low- Noise Oscillator Application at VHF - D.J. Healey III and S.Y. Kwan	6-37-454	
6-35-455	Digital Temperature Compensation of Crystal Oscillators - A.M. Renard and K. Barnhill	6-37-459	
6-35-492	Frequency Retrace of Quartz Oscillators - F.K. Euler and N.F. Yannoni	6-37-485	•
6-36-197	Vibration Compensation of the SEEKTALK Rubidium Oscillator - C. Colson	6-37 - 492	
6-36-474	A Digitally Compensated Hybrid Crystal Oscillator - G.B. Pollard		U.R. Peier
6-36-492	Update on the Tactical Miniature Crystal Oscillator Program - H.W. Jackson	6-37 - 501	Temperature Compensated Crystal Oscillator Survey and Test Results - V.J. Rosati, S. Schodowski and R.L. Filler
6-36-499	Argos System Quartz Device Performance and Orbital Data - M. Geesen, M. Brunet, M.P. Meirs, A. Strauss, J. Ho and M. Rosenfeld	6-38 - 86	A Vibration Compensation Scheme for a Tactical Rubidium Oscillator - W. Weidemann
6-36-507	Computer Aided Design and Assembly of Oscillators - T.M. Hall	6-38-315	Development of a Low "G" Sensitivity Missile Clock - A.I. Vulcan
6-36-562	Temperature Compensated Crystal Oscillator Panel Discussion - D.E.	6-38-327	Balanced Feedback Oscillators - A. Benjaminson
6-36-564	Newell Methods of Temperature Compensation - M.E. Frerking	6-38-334	Analysis and Design of the Relaxation Quartz Crystal Oscillators - D. Vasiljevic
6-36-571	Dual Mode Digitally Temperature	6-38-341	GPS User Receivers and Oscillators - D. Hessick and W. Euler
	Compensated Crystal Oscillator - R. Rubach	6-38 - 363	A Time and Frequency Reference System for the Tacamo Aircraft -
6-36-576	A Temperature Compensated SC-Cut Quartz Crystal Oscillator - E.K. Miguel	6-38-366	T.C. Jewell and J.D. Geist New Approach of Fast Warm Up for
6-37-87	Low Phase Noise Multiple Frequency Microwave Source - J.T. Haynes, H. Salvo, R.A. Moore and B.R. McAvoy	0 30 300	Crystal Resonators and Oscillators - J.P. Valentin, M.D. Decailliot and R.J. Besson
6-37-91	Synchronization and Tracking with Synchronous Oscillators - V. Uzunoglu	6-38-374	Space Qualified High Performance Digitally Tuned Quartz Crystal Oscillators - R.M. Garvey, D.A. Emmons and A.F. Beaubien
6-37-97	Frequency (Standard) Combiner Selector - V.S. Reinhardt and R.J. Costlow	6-38-380	Manufacturing Mehtods and Technology for Tactical Miniature Crystal Oscillator - D.A. Brown, E. Laszlo, R.L. McGill and P. Stoermer
6-37-434	A New Digital TCXO Circuit Using a Capacitor-Switch Array - T. Uno and Y. Shimoda	6-39-140	Designing Crystal Oscillators for Improved Phase-Noise Performance - A. Benjaminson

6-39-166	Reducing TCXO Error After Aging Adjustment - R.L. Clark	6-40-452	A Rubidium-Crystal Oscillator (RbXO) - W.J. Riley and J.R. Vaccaro
6-39-176	176 Results of Continued Development of the Differential Crystal Oscillator (Computer Analysis of Colpitts' Crystal Oscillator) - T. Adachi, M.	6-41-398	The Acceleration Sensitivity of Quartz Crystal Oscillators: A Review - R.L. Filler
6-39-189	Hirose and Y. Tsuzuki	6-41-409	Suppression of Vibration-Induced Phase Noise in Crystal Oscillators: An Update - V.J. Rosati
	SSB Radio Equipment - C.K. Richardson	6-41-413	•
6-39-193	Hybrid Miniature Oven Quartz Crystal Oscillator - J. Ho		Debaisieux, E. Gerard and G. Robichon
	Low Noise, VHF Crystal-Controlled Oscillator Utilizing Dual, SC-Cut Resonators - M.M. Driscoll	6-41-435	A Digitally Compensated TCXO Using a Single Chip LSI - T. Hara, T. Kudo, S. Uriya, H. Saita, S. Ogou and Y. Katsuta
6-39-202	A Satellite Oscillator for Very Precise Orbitography: The Doris Program - A. Debaisieux, J.P. Aubry, E. Gerard and M. Brunet	6-41-439	Analysis of High Performance Compensated Thermal Enclosures - F.L. Walls
6-39-212	An Oscillator for the GPS Program - G. Marotel, G. Caret and J.P. Aubry	6-41-452	The Design and Analysis of VHF/UHF Crystal Oscillators - A. Benjaminson
6-40-292	Fast Channelizer - A New Frequency Sorting Technique - J.H. Elliott, R.B. Stokes and K.H. Yen	6-41-460	CMOS Gate Oscillator Design - T.B. Mills
6-40-325	A Frequency Adjustable Ultra- Compact, High-Performance Quartz Crystal Oscillator and Its Simple Temperature Compensation Method - O.	6-41-492	Compact and Simple x 3 (9 to 27 GHz) PLL Frequency Multiplier Using Harmonic Phase Detection - J. Berenguer, J. Bara and A. Comeron
	Ochiai, F. Tamura and Y. Mashimo	6-41-495	of Direct Digital Frequency
6-40-329	Low Noise Crystal Oscillators Using 50-OHM, Modular Amplifier Sustaining Stages - M.M. Driscoll		Synthesizers in the Presence of Phase-Accumulator Truncation - H.T. Nicholas III and H. Samueli
6-40-340	Crystal Oscillators Using Temperature Switches - Z. Aleksic,	6-41-512	Low Noise Frequency Synthesis - F.L. Walls and C.M. Felton
6-40-344		6-41-519	Low Noise Airborne Synthesizer for Frequency Agile Radar - A.I. Vulcan and M.B. Bloch
	Bidrectional Frequency Control and Feedback ALC - A. Benjaminson	6-41-524	Improvement of the Pull-In Range and Acquisition Time of a Microwave
6-40-350	Integrated Oven Controlled Quartz Crystal Oscillator - G. Marianneau, D. Hauden and J.J. Gagnepain		P.L.L System by Injection Locking the V.C.O J. Berenguer, J. Bara, E. Artal, I. Corbella and A. Comeron
6-40-355	A Short Survey of Frequency Synthesizer Techniques - V.S. Reinhardt, K. Gould, K. McNab and M. Bustamante	6-41-539	High Frequency Stable Frequency Sources for Advanced Systems - A. Harrison, J. Dowsett and D. Sharpe
6-40-366	Army Frequency Agile Synthesizer Program - A.L. Bramble and J. Kesperis	6-42-276	A Wide Frequency Range, Surface Mountable, Voltage Controllable Crystal Oscillator Family - S. Logan, D.M. Embree, R. Sheehey and
6-40-370	SOS Frequency Synthesizer Development - D.P. O'Rourke		D.S. Stevens
6-40-373	Performance Analysis of the Numerically Controlled Oscillator - E.C. Kisenwether and W.C. Troxell	6-42-327	A New Digitally Temperature Compensated Crystal Oscillator for a Mobile Telephone System - T. Miyayama, Y. Ikeda and S. Okano

- 6-42-334 An Acceleration Compensated Precision Quartz Oscillator B.T. Milliren, D. Martin and D.A. Emmons
- 6-42-342 The Relaxation Quartz Crystal Oscillators - Design & Performances - D. Vasiljevic
- 6-42-348 Clarification and a Generalized Restatement of Leeson's Oscillator Noise Model - B. Parzen
- 6-42-352 Phase Noise in Direct Digital Synthesizers - E.M. Mattison, L. Coyle
- 6-42-357 The Optimization of Direct Digital Frequency Synthesizer Performance in the Presence of Finite Word Length Effects H.T. Nicholas III, H. Samueli and B. Kim

CATEGORY 7:

Quantum Electronic Frequency Standards (Microwave Frequencies)

7-10-259	Atomic and Molecular Frequency Standards - R.H. Dicke	7-13-309	Broken Beam Experiment at Harvard University - D. Kleppner
7-11-307	Rubidium Oscillator Experiments - T.R. Carver	7-13-546	Missile-borne MASER - F.H. Reder and C.J. Bickart
7-11-318	Optical Pumping, Buffer Gases and Walls - W.B. Hawkins	7-13-575	Gas MASER for Frequency Control - J.F.Lotspeich and M.L. Stitch
7-11-324	Hot Sources for MASER - M.W.P. Strandberg	7-13-583	MASER Frequency Stability - J.A. Barnes and R. Mockler
7-11-335	MASER Progress and Phase Lock Techniques - F.O. Vonbun and G.M.R. Winkler	7-13-596	Ammonia MASER Work at Bell Telephone Laboratories - L.D. White
7-11-352	MASER Engineering at Jet Propulsion Laboratory - W. Higa	7-13-603	MASERs With Slow Molecules - J.G. King
7-11-373	Precision Atomic Beam Techniques - P. Kusch	7-13-604	Suitable Molecules for Utilizing MM- Wave Transitions for Frequency Control - J.J. Gallagher
7-11-385	Performance of Cesium Beam Standards and Future R&D Plans - F.H. Reder and S.H. Roth	7-13-618	MASER Laboratory Frequency Standard - F.O. Vonbun
7-12-517	Progress in MASER Work at USASEL - F.H. Reder	7-13-632	Triple Resonance Method to Achieve Narrow and Strong Spectral Lines - C. Alley
7-12-534	Measurement of MASER Frequency in Terms of Cesium Standard - G.M.R. Winkler	7-13-648	Gas Cell Frequency Standards Using Buffer Gases and Buffer Walls - R. Whitehorn
7-12-538	MASER Research at Neuchatel University, Switzerland - J. Bonanomi	7-13-655	Evaluation of ITT Breadboard Gas Cell Frequency Standard - M. Arditi
7-12-551		7-13-668	Hyperfine Transitions in Rubidium 87 Vapor - E.C. Beaty, P.L. Bender and A.R. Chi
7-12-569	A Sealed-Off MASER - S. Johnson		
7-12-577	Realization and Measurement of Long Free Atom Spin State Lifetimes - H. Dehmelt	7-13-676	Gas Cell Work at the Space Technology Laboratories - D.J. Farmer, J.M. Andres and G.I. Inouye
7-12-593	Optical Detecting of Cesium Hyperfine Transition - P.L. Bender, E.C. Beaty and A.R. Chi	7-13-683	Study of the Spin Relaxation of Optically Aligned Rubidium Vapor - W. Franzen
7-12-606	Gas Cell "Atomic Clocks" Using Buffer Gases and Optical Orientation - M. Arditi	7-14-250	Work on Atomic Frequency Standards at the Nat'l Physical Laboratory during 1959-1960 - L. Essen
7-12-625	Discussion of Some Limits of Atomic Frequency Control - T.R. Carver	7-14-261	A Superior Atomic Clock for Continuous Long Time Operation - G.M.R. Winkler
7-12-632	Design Considerations of Atomic Beam Frequency Standards for Missile Environment - R.T. Daly	7-14-298	
7-13-266	Atomic Beam Work at the National Physical Laboratory during 1958-1959 - L. Essen	7-14-310	Molecular Beam Devices with Storage Boxes - N.F. Ramsey, D. Kleppner and H.M. Goldenberg
7-13-276	National's Militarized Cesium Beam Frequency Standards - A.O. McCoubrey	7-14-315	Missile-borne Atomicron Frequency Standard - A.O. McCoubrey
7-13-297		7-14-328	Effect of Molecular Frequency Spread on Emission Cavities - I.R. Senitzky

7-14-329	Frequency Shifts of Microwave Resonance in a Gas Cell Using Optical Pumping - M. Arditi and T.R. Carver	7-17-176	Application of Superconductivity to Frequency Control - W. Hartwig
7-14-330		7-17-329	Achievements and Problem Areas of Atomic Frequency Control - F.H. Reder
/-14-330	Design Considerations for a Self- Contained Ammonia Maser Oscillator - S. Hopfer	7-17-372	Frequency Beat Experiments with Hydrogen Masers - R.F.C. Vessot and
7-14-354	Description of a Long Cesium Beam Frequency Standard - P.		H.E. Peters
	Kartaschoff, J. Bonanomi and J. DePrins	7-17-392	Experimental Evaluation of a Thallium Beam Frequency Standard - R.E. Beehler and D.J. Glaze
7-15-156	The Atomic Clock as a Phase-Stable Oscillator for Deep Space Communication - L. Malling	7-17-408	Recent Developments in the Field of Atomic Frequency and Time Standards in Switzerland - J. Bonanomi
7-15-168	Frequency Control of NBA on an International System (II) - W.M. Markowitz and R.G. Hall	7-17-409	Excitation of Millimeter Wave Transitions for Frequency Control - R.G. Strauch, R.E. Cupp and J.J.
7-15-180	The Atomic Hydrogen Maser - N.F. Ramsey	7-17-438	Gallagher Development and Performance of a
7-15-181	Frequency Control by Gas Cell Standards Fundamental Problems in the Light of Recent Experimental	7-17-438	Miniaturized Cesium Beam Tube - J. George
7-15-203	Results - M. Arditi	7-17-449	Performance and Application of Gas Cell Frequency Standards - D.J. Farmer
7-15-205	Possibilities of a Maser - I.R. Senitzky	7-17-462	Report on the Frequency of Hydrogen - W.M. Markowitz
7-15-204	Choice of a Molecular Transition for Frequency Control in the Millimeter Wave Region - F. Barnes, D. Burkhard and M. Mizushima	7-18-265	A Discussion of the Properties of Four Molecular Beam Detectors - F. Barnes, S.G. Andresen, C. Shipley and D. Foiani
7-15-210	Deuterated Ammonia Submillimeter Maser - A Progress Report - V.E. Derr, J.J. Gallagher and M. Lichtenstein	7-18-283	Hydrogen Maser Work at USAEL - H.G. Andresen and C.J. Bickart
7-16-256	Advances in CW Solid State Optical Masers - C.G.B. Garrett	7-18-299	Recent Developments in Hydrogen Masers - R.F.C. Vessot, H.E. Peters and J. Vanier
7-16-257	Frequency Characteristics of an Optical Maser - A. Javan and T.S. Jaseja	7-18-308	The NPL Frequency Standard - L. Essen, J. McA. Steele and D.S. Sutcliffe
7-16-258	Spectral Distribution of Induced and Spontaneous Emission by a Molecular Beam in a Cavity - I.R. Senitzky	7-18-322	Recent Developments for Cesium Beam Resonators - J. George, E. Wunderer and T. Athanis
7-16-259	Comparision of Performance Criteria of Frequency Standards - C.L. Searle and D.A. Brown	7-18-344	A Modern Solid State Portable Cesium Beam Frequency Standard - A.S. Bagley and L.S. Cutler
7-16-267	Theory of Resonance Frequency Shift Due to the Radiation Field - M. Mizushima	7-18-366	Progress in the Development of a Cesium Beam Oscillator for Aerospace Guidance - J.H. Holloway and R.H. Woodward
7-16-287	The Atomic Hydrogen Maser - N.F. Ramsey	7-18-384	
7-16-305	Generation of Phase-Locked Millimeter Waves for Frequency		Orenberg
	Control - R.G. Strauch, R.E. Cupp, J.W. Dees and J.J. Gallagher	7-19-298	A Militarized Solid State Cesium Beam Frequency Standard - S. Fast, J. George, G. Simpson and C. Lydiard
		-	

7-19-332	Long Time Constant Servo System for Cesium Beam Frequency Standard - H. Daams and A.G. Mungall	7-20-448	Performance Characteristics of a Portable Cesium Beam Standard - L.N. Bodily
7-19-344	Characteristics of a High Performance Cesium Beam Frequency Standard - J.H. Holloway and R. Sanborn	7-21-467	Molecular and Atomic Beam Geometry Optimization - J. DePrins, P.J. Wauters and S.G. Andresen
7-19-369	Line Width Investigation of	7-21-483	A New Cesium Beam Resonator - J. George
	Millimeter Electric Resonance Molecular Beam Transitions - R.G. Strauch, R.E. Cupp, V.E. Derr and J.J. Gallagher	7-21-484	A Proposed Barium Oxide Molecular Beam Frequency Standard - H. Hellwig
7-19-385	Methods and Results for Reducing Cavity Pulling Effects of the Hydrogen Maser Frequency - H.G. Andresen	7-21-491	Determination of the Tl205 Ground State hfs Transition Frequency ~ R.F. Lacey
7-19-402	A Comparison of Performance	7-21-500	Recent Developments in Atomic Hydrogen Masers - N.F. Ramsey
	Characteristics of Hydrogen, Rubidium and Ammonia Masers - R.F.C. Vessot, J. Vanier, H.E. Peters and L.F. Mueller	7-21-543	Atomic Hydrogen Maser Work at L.S.R.H., Neuchatel, Switzerland - C. Menoud, J. Racine and P. Kartaschoff
7-19-416	Large Storage Bulb for Hydrogen Frequency Standard - N.F. Ramsey	7-21-568	Recent Development on the Rubidium 87 Maser - J. Vanier
7-19-417	The Effects of Optical Pumping on the Rb87 Maser Oscillator - P. Davidovits and W.A. Stern	7-22-452	Large Storage Box Hydrogen Maser - E.E. Uzgiris and N.F. Ramsey
7-20-364	On the Power Output of the Optically Pumped Rb87 Maser - J. Vanier	7-22-464	Hydrogen Standard Work at Goddard Space Flight Center - H.E. Peters, T.E. McGunigal and E.H. Johnson
7-20-365	High-Power Maser Atomic Frequency Standards - R. Novick, W. Happer and W.A. Stern	7-22-493	Application of the Transient Behavior to the Study of the Hydrogen Maser - C. Audoin, M.
7-20-370			Desaintfuscien and J.P. Schermann
	Maser Atomic Frequency Standards - W.A. Stern, W. Happer and R. Novick	7-22-517	Applicable to a Molecular Beam Frequency Standard - S.G. Andresen,
7-20-377	Millimeter and Submillimeter Wave Molecular Beam Investigations - J.J. Gallagher, R.E. Cupp and R.A. Kempf		H.O. Mortelmans, P.J. Wauters and J. DePrins
7-20-387	Recent Developments in Hydrogen Masers - N.F. Ramsey	7-22-529	Barium Oxide Beam Tube Frequency Standard - H. Hellwig, R. McKnight, E. Pannaci and G. Wilson
7-20-389	for Use in Atomic Beam Tube	7-22-545	Phase Shift in Microwave Ramsey Structures - R.F. Lacey
	Detectors - J.H. Holloway and P. Penfield, Jr.	7-22-559	Study of Phenomena Affecting the Composition of Rubidium Vapor Cells
7-20-402	Servo-Controlled Hydrogen Maser Cavity Tuning - H.G. Andresen and E. Pannaci		- M.P.R. Thomsen, L.J. Stief and R.J. Fallon
7-20-416	A Thallium Atomic Beam Tube for Frequency Control - R.F. Lacey	7-22-573	Extension of Frequency Control Techniques to the Submillimeter Wavelength Region - R.A. Kempf, R.E. Cupp W T Smith and I I
7-20-424	Atomic Beam Frequency Standard -		Cupp, W.T. Smith and J.J. Gallagher
	R.J. Harrach	7-22-605	Hydrogen Masers - M. Baker, M.W.
7-20-436	The Canadian Cesium Beam Frequency Standard - A.G. Mungall, H. Daams and R. Bailey		Levine, L.F. Mueller and R.F.C. Vessot

7-23-263	Light Modulation at the ${ m Rb}^{87}$ Hyperfine Frequency ~ H. Tank and W. Happer	7-25-46	History of Atomic and Molecular Control of Frequency and Time - N.F. Ramsey
7-23-271	An Optically Pumped Rb ⁸⁵ Maser Frequency Standard - W.A. Stern and R. Novick	7-25-297	Cesium Atomic Beam Frequency Standards - R.E. Beehler
7-23-274		7-25-309	Frequency Biases in a Beam Tube Caused by Ramsey Cavity Phase Differences - H. Hellwig, J.A. Barnes and D.J. Glaze
7-23-279	Improved State Selection for Hydrogen Masers - R.F. Lacey and R.F.C. Vessot	7-25-313	Performance of Newly Developed Cesium Beam Tubes and Standards - R. Hyatt, D.H. Throne, L.S. Cutler, J.H. Holloway and L.F. Mueller
7-23-284	Recent Results Concerning the Hydrogen Maser Wall Shift Problem - E.E. Uzgiris and P.W. Zitzewitz	7-25-325	A Field Independent Optically Pumped Rb85 Maser Frequency Standard - W.A. Stern and R. Novick
7-23-288	A New Method for Measurement of the Population Difference of Hyperfine-Levels of Stored Atoms - C. Audoin,	7-25-331	Miniaturized Rapid Warm Up Rubidium Frequency Source - M.M. Zepler
	M. Desaintfuscien, P. Piejus and J.P. Schermann	7-25-337	Discussion of Cavity Pulling in Passive Frequency Standards ~ J. Viennet, C. Audoin and M.
7-23-297	Atomic Hydrogen Standards for NASA Tracking Stations - H.E. Peters, T.E. McGunigal and E.H. Johnson	7-25-343	Desaintfuscien
7-24-246	Areas of Promise for the Development of Future Primary Frequency	, 23 343	Experiments at the Nat'l Research Council of Canada - D. Morris
7-24-259	Standards - H. Hellwig Hydrogen Maser with Deformable	7-25-348	Hydrogen Maser Frequency Standard - C. Finnie, R.L. Sydnor and A. Sward
	Storage Bulb - P.E. Debely		
7-24-263	Surface Collision Frequency Shifts in the Atomic Hydrogen Maser - P.W. Zitzewitz	7-26-202	Joseph H. Holloway (1929-1971) - Twenty Years of Progress in Atomic Frequency Standards - A.O. McCoubrey and L.S. Cutler
7-24-270	Studies of Hydrogen Maser Wall Shift for High Molecular Weight Polytetrafluorethylene - R.F.C. Vessot and M.W. Levine	7-26-211	Automatic Frequency Controlled Rubidium Frequency Standard - Y. Sato, H. Kumamoto, H. Oyamada and H. Uchida
7-24-279	New Information on the Physics of Rubidium Gas Cells - P.L. Bender and V.W. Cohen	7-26-216	Rubidium Frequency and Time Standard for Military Environment - M.E. Frerking and D.E. Johnson
7-24-280	Progress Report on the Rubidium 85 Maser - J. Vanier, R. Vaillancourt, G. Missout and M. Tetu	7-26-223	Further Results on the Rubidium-87 Maser Frequency Standard - W.A. Stern and R. Novick
7-24-285	An Optically Pumped Parametric Frequency Converter - H. Tang and W.	7-26-225	Short Term Stability of Rb87 Maser - M. Tetu and J. Vanier
7-24-294	Happer Cesium Beam Servo System Using Square Wave Frequency Modulation -	7-26-230	Hydrogen as an Atomic Standard - H.E. Peters
7-24-308	H. Daams New Primary Cesium Beam Frequency	7-26-242	Experimental Results with Atomic Hydrogen Storage Beam Systems - H. Hellwig and H.E. Bell
	Standard - F. Kupersmith, C. Thornburg and J. Ho	7-26-248	Precision Absolute Frequency and Wavelength Measurements in the
7-24-361	The NBS Atomic Time Scale System: AT(NBS), SAT(NBS), and UTC(NBS) - D.W. Allan, J.E. Gray and H.E. Machlan		Infrared: A Review of Activities at MIT - J.G. Small, J.P. Monchalin, M.J. Kelly, F. Keilmann, A. Sanchez, S.K. Singh, N.A. Kurnit and A. Javan

7-26-319	Absolute Frequency of an Atomic Hydrogen Maser Clock - E.E. Peters, R.G. Hall and D.B. Percival	7-28-362	Preliminary Research and Development of the Cesium Tube Accuracy Evaluation System - D.A. Howe, H.E. Bell and H. Hellwig
7-27-317	A Preliminary Report on Cs V, New NRC Long-Beam Primary Frequency and Time Standard - A.G. Mungall, R. Bailey, H. Daams, D. Morris and C.C. Costain	7-28-401	•
7-27-334	Some Performance Data for the Standards in the National Bureau of Standards Atomic Time Scale System -	7-29-352	A New Compact Cesium Beam Frequency Standard - E.P. Graf, L.F. Johnson and R.A. Kern
	D.W. Allan, D.J. Glaze, H.E. Machlan, A.E. Wainwright, H. Hellwig, J.A. Barnes and J.E. Gray	7-29-357	An Improved Method for Measuring the Magnetic Inhomogeneity Shift in Hydrogen Masers - V.S. Reinhardt and H.E. Peters
7-27-347	Recent Progress on the NBS Frequency Standards - D.J. Glaze, H. Hellwig, S. Jarvis, Jr. and A.E. Wainwright	7-29-362	The Concertina Hydrogen Maser - H.E. Peters
7-27-357	Time Domain Velocity Modulation as a Tool to Evaluate Cesium Beam Tubes - H. Hellwig, S. Jarvis, Jr., D.J. Glaze, D. Halford and H.E. Bell	7-29-371	The Hydrogen Maser Wall Shift Problem - J. Vanier, R. Larouche and C. Audoin
7-27-367		7-29-383	Theoretical and Experimental Studies of Some Problems Related to the Passive Rubidium Gas Cell Frequency Standard - G. Missout and J. Vanier
7-27-387	A New Miniature Rubidium Gas Cell Frequency Standard - E. Jechart	7-29-387	A Digital 5.00688 MHz Synthesizer and Squarewave FM Servo System for Cesium Standards - D.A. Howe and
7~27-390	Evaluation of a Rubidium Standard for Satellite Application - R.B. Moore, S.A. Nichols and J.D. White	7-30-414	H.F. Salazar
7-27-400	Cavity Tuning and Light Shift in the Rb87 Maser - G. Busca, M. Tetu and	7-30-414	A Heuristic Model of Long-Term Atomic Clock Behaviour - D.B. Percival
	J. Vanier	7-30-451	Velocity Distribution Measurements of Cs Beam Tubes - D.A. Howe
7-27-404	Status of the Development of the Rubidium-87 Maser Frequency Standard - W.A. Stern, E. Aulich and R. Novick	7-30-457	Performance of a Dual Beam High Performance Cesium Beam Tube - G. Seavey and L.F. Mueller
7-28-247	Atomic Frequency Standard Relativistic Doppler Shift Experiment - H.E. Peters and V.S. Reinhardt	7-30-463	Measured Performance and Environmental Sensitivities of a Rugged Cesium Beam Frequency Standard - M.C. Fischer and C.E.
7-28-315	Atomic Frequency Standards, A Survey - H. Hellwig	7-30-468	
7-28-340	A Consideration of Rubidium Lamp Stability for Rubidium Frequency Standard - H. Oyamada, K. Takahashi, Y. Sato and H. Uchida		Mixture for Optically Pumped Cs Frequency Standards - F. Strumia, N. Beverini, A. Moretti and G.D. Rovera
7-28-344	A Compact Rb ⁸⁷ Maser - G. Busca, J. Racine and J. Vanier	7-30-473	A New Kind of Passively Operating H- Frequency Standard - F.L. Walls and H. Hellwig
7-28-350	Mg Frequency Standard: Optimization of the Metastable Atomic Beam - F. Strumia, P. Minguzzi, M. Francesconi and R. Benedetti	7-30-481	NASA Atomic Hydrogen Frequency Standards Program - An Update - V.S. Reinhardt, D.C. Kaufman, W.A. Adams, J.J. DeLuca and J.L. Soucy
7-28-355	Density-Dependent Shifts of Hydrogen Maser Standards - S.B. Crampton and H.T.M. Wang	7-30-489	A Study to Identify Hydrogen Maser Failure Modes - A.E. Popa, H.T.M. Wang, W.B. Bridges, A.N. Chester, J.E. Etter and B.L. Walsh

7-31-510	Design of a Spacecraft Hydrogen Maser - E.S. Sabisky and H.E. Peters	7-32-492	A Passive Hydrogen Maser Frequency Standard - F.L. Walls and D.A. Howe
7-31-520	Hydrogen Maser with a Double Configuration Bulb for Wall Shift Measurements in the Temperature	7-32-499	An Operating Development Model Spcaecraft Hydrogen Maser - E.S. Sabisky and H.A. Weakliem
	Range 25-120°C - P. Petit, M. Desaintfuscien and C. Audoin	7-32-506	Effect of Line Inhomogeneity on the Frequency of Passive Rb ⁸⁷ Frequency Standards - A.S. Risley and G.
7-31-525	A New Generation of SAO Hydrogen Masers - M.W. Levine, R.F.C. Vessot, E.M. Mattison, G.U. Nystrom, T. Hoffman and E.L. Blomberg	7-32-531	Analysis of H-Maser Autotuning Systems - C. Audoin, P. Lesage, J.
7-31-535	Zeeman Effects on H and Rb Masers -		Viennet and R. Barillet
	G. Busca, J.Y. Savard, S. Rovea, J. Vanier, M. Desaintfuscien, P. Petit and C. Audoin	7-32-560	NTS-2 Cesium Frequency Stability Results - T.B. McCaskill, J.D. White, S. Stebbins and J.A. Buisson
7-31-542	Development of a Cesium Beam Clock for Satellite Application - J. George and A.I. Vulcan	7-33-477	Study of the Dependence of Frequency Upon Microwave Power of Wall-Coated and Buffer-Gas-Filled Passive Rb ⁸⁷
7-31-551	New Cesium Beam Frequency Standards for Flight and Ground Applications - T.K. Gregory		Frequency Stanards - A.S. Risley, S. Jarvis, Jr. and J. Vanier
7-31-555	Some Causes and Cures of Frequency Instabilities (Drift and Noise) in Cesium Beam Frequency Standards -	7-33-484	Development of a Light Weight, Military, Cesium Standard - I. Pascaru and M.P. Meirs
	D.W. Allan, H. Hellwig, S. Jarvis, Jr., D.A. Howe and R.M. Garvey	7-33-490	New Cesium Beam Tube Utilizing Hexapole / Double-Dipole Optics - D.A. Emmons and P.J. Rogers
7-31-562	Results with Special-Purpose Ammonia Frequency Standard - D.J. Wineland, D.A. Howe and M.B. Mohler	7-33 - 511	Research With a Cold Atomic Hydrogen Maser - R.F.C. Vessot, E.M. Mattison and E.L. Blomberg
7-32-444	Analysis of New Microwave and Optical Frequency Standards Based on Ions Storage - F. Strumia	7-33-515	
7-32-453	New Possibilities for Frequency Standards Using Laser Cooling and Detection of Stored Ions - F.L. Walls, D.J. Wineland and R.E. Drullinger	7-33-536	Hydrogen Frequency Standard Using Free-Induction Technique - H.T.M. Wang
7-32-460		7-33-543	Compact Cavity for Hydrogen Frequency Standard - H.T.M. Wang, J.B. Lewis and S.B. Crampton
	Standard - H. Jumonji, K. Tanaka, J. Toyama, H. Takoaka, K. Kariya and J. Kawada	7-33-549	Design, Construction and Testing of a Small Passive Hydrogen Maser -
7-32-466	Parameters Affecting the Stability of an Optically Pumped Cesium		E.M. Mattison, E.L. Blomberg, G.U. Nystrom and R.F.C. Vessot
	Frequency Standard - G.D. Rovera, S. Leschiutta, G. Busca and F. Strumia	7-33-554	A Small Passively Operated Hydrogen Maser - D.A. Howe, F.L. Walls, H.E. Bell and H. Hellwig
7-32-469	Small, Very Small, and Extremely Small Hydrogen Masers - H.E. Peters	7-33-563	"Passive H Maser" - G. Busca and H. Brandenberger
7-32-477	Performance Evaluation of the SAO VLG-11 Atomic Hydrogen Masers - M.W. Levine, R.F.C. Vessot and E.M. Mattison	7-34-320	Longevity Performance of Cesium Beam Frequency Standards - A.C. Johnson, M.M. Force and T.N. Osterdock
7-32-486	NASA NR Hydrogen Maser - L.J. Rueger, A.G. Bates, L. Stillman, J. Norton, C.M. Blackburn and V.A. Reinhardt	7-34-353	Mercury Ion Frequency Standard: Preliminary Results - M. Jardino, M. Desaintfuscien, R. Barillet, J. Viennet, P. Petit and C. Audoin

7-34-360	New Hydrogen Maser Designs - H.E. Peters	7-36-255	The Development of a Magnetically Enhanced Hydrogen Gas Dissociator - L. Maleki
7-34-364	An Oscillating Compact Hydrogen Maser - H.T.M. Wang	7-36-260	Preliminary Measurements on EFOS 1 H Maser - G. Busca, F. Addor, F.
7-34-370	Results of the Development of the Light Weight Cesium Standard - M.P. Meirs, I. Pascaru and M.B. Bloch		Hadorn, G. Nicolas, L. Prost, H. Brandenberger, P. Thomann and L.F. Johnson
7-34-376	Possible Avenues of Improvement of the Short and Long Term Stability of Optically Pumped Passive Rubidium Frequency Standards - L.G. Bernier, A. Brisson, M. Tetu, J.Y. Savard and J. Vanier	7-36-340	Short-Term Frequency Stability and Systematic Effects on the Rubidium 87 Maser Oscillator Frequency - M. Tetu, P. Tremblay, D. Bonnier and J. Vanier
7-35-602	Proposed Stored 201 _{Hg} + Ion Frequency Standards - D.J. Wineland, W.M. Itano, J.C. Bergquist and F.L. Walls	7-36-348	On the Lightshift and Buffer Gas Shift in Passive Rubidium Frequency Standards - J. Vanier, R. Kunski, P. Paulin, J.Y. Savard, M. Tetu and N. Cyr
7-35-612	Optical Pumping by Lasers in Atomic Frequency Standards - L.L. Lewis and M. Feldman	7-37-5	History of Atomic Frequency Standards - N.F. Ramsey
7-35-625	Preliminary Investigation of a New	7-37-6	Pulsars: Nature's Most Precise Clocks - J.H. Taylor
	Optically Pumped Atomic Rubidium Standard - M. Feldman, J.C. Bergquist, L.L. Lewis and F.L. Walls	7-37-7	Application of Metal Hydrides for Gas Handling in Hydrogen Masers - H.T.M. Wang
7-35-637	Development of a Sapphire Lamp for Use in Satellite-borne Atomic Rubidium Clocks - T.C. English and E. Jechart	7-37-12	Compact Rectangular Cavity for Rubidium Vapor Cell Frequency Standards - H.E. Williams, T.M. Kwon and T. McClelland
7-35-646	A Miniature, High-Performance Rubidium Frequency Standard - T. Hashi, K. Chiba and C. Takeuchi	7-37-18	Improved Vibration Performance in Passive Atomic Frequency Standards by Servo-Loop Control - T.M. Kwon and T. Hahn
7-35-651	Performance of the GPS Cesium Beam Frequency Standard in Orbit - M.W. Levine	7-37-21	Ultra-Stable Laser Clock, Second Generation - R.L. Facklam
7-35-657	Long Term Performance of VLG-11 Masers - J.D. White and K. McDonald	7-37-27	Microprocessor for the NR Series of Hydrogen Maser Frequency Standards - E.E. Mengel and D.W. Stover
7-35-662	Feasiblity of Extremely Small Hydrogen Masers - H.E. Peters	7-37-32	Mercury-199 Trapped Ion Frequency Standard: Recent Theoretical Progress and Experimental Results -
7-36-223	A Squarewave F. M. Servo System with Digital Signal Processing for Cesium Frequency Standards - Y. Nakadan and		L.S. Cutler, R.P. Giffard and M.D. McGuire
7-36-230	Y. Koga	7-37-37	Laser Cooled Be Accurate Clock - J.J. Bollinger, W.M. Itano and D.J. Wineland
7-30-230	Cesium Beam Tube Electron Multipliers - E.R. Straka	7-37-42	Performance of Compact Hydrogen Masers - A. Kirk
7-36-236	A Cesium Beam Frequency Standard with Microprocessor Control - R.M. Garvey	7-37-49	Cold Hydrogen Maser Research at SAO and Related Developments - R.F.C. Vessot, E.M. Mattison and E.
7-36-240	Experimental Results of the Light- Weight Hydrogen Maser Development Program - H.E. Peters	7-38-387	Imbier
7-36-249		, 30 30,	Discharge Lamps for Use in Atomic Frequency Standards - C.H. Volk, R.P. Frueholz, T.C. English, T.J. Lynch and W.J. Riley

7-38-401	Analysis of Dicke Narrowing in Wall Coated and Buffer Gas Filled Cells with Application to Gas Cell Atomic Clocks - R.P. Frueholz and C.H. Volk	7-39-13	A Recirculating Oven for Atomic Beam Frequency Standards - R.E. Drullinger, D.J. Glaze and D.B. Sullivan
7-38-408	Evaluation of the Performance of Passive Rubidium Frequency Standards Using Cavity Operated in Mode TE, TE and TE - P. Tremblay, N. Cyr and M. Tetu	7-39-18	Optically Pumped Small Cesium Beam Standards: A Status Report - A. Derbyshire, R.E. Drullinger, M. Feldman, D.J. Glaze, D. Hilliard, D.A. Howe, L.L. Lewis, J.H. Shirley, I. Pascaru and D. Stanciulescu
7-38-416	A New Miniaturized Passive Hydrogen Maser - F.L. Walls and K.B. Persson	7-39-22	Fluorescent Light Shift in Optically Pumped Cesium Standards - J.H. Shirley
7-38-420	Design and Performance of New Hydrogen Masers Using Cavity Frequency Switching Servos - H.E. Peters	7-39-24	Cesium Beam Frequency Standard for the PLSS Program - D. Silvermetz, I. Pascaru and M.P. Meirs
7-38-428	Design and Performance of a Hydrogen Maser with a New State Selector - S. Urabe, Y. Ohta, T. Morikawa and Y.	7-39-29	A Rubidium Clock Model - R.P. Frueholz and J.C. Camparo
	Saburi	7-39-43	A Highly Stabilized Semiconductor
7-38-431	Experimental determination of the Energy of Stored Ions from the Side-Bands in their Microwave Spectrum - M. Jardino, F. Plumelle, M.		Laser and its Application to Optically Pumped Rb Atomic Clock ~ M. Ohtsu, M. Hashimoto and H. Ozawa
445	Desaintfuscien and J.L. Duchene	7-39-54	An Ultra-Miniature Rubidium Frequency Standard - K. Chiba and T.
7-38-447	Accuracy Evaluation of the RRL Primary Cesium Beam Frequency		Hashi
	Standard - K. Nakagiri, M. Shibuki, S. Urabe, M. Ishisu, Y. Ohta, T. Morikawa and Y. Saburi	7-39 - 59	Evaluation of the Rubidium Atomic Frequency Standard Developed in India - G.M. Saxena, A. Chatterjee, D.S. Sachdeva and B.S. Mathur
7-38-452	Results on a Laser Diode Optically Pumped Cesium Beam - P. Cerez, G. Avila, M. de Labachelerie, M. Tetu and E. de Clercq	7-39 - 64	Experimental Results on a Frequency Standard Based on a Rubidium 87 Maser - M. Tetu, R. Brousseau, N. Cyr, A. Michaud, P. Tremblay and B.
7-38-458	Cesium Blicks Deployed in the Global Positioning System: Design and		Villeneuve
	Performance Data - H. Hellwig and M.W. Levine	7-39-72	Measurement and Interpretation of Hydrogen Maser Quality Parameters - E.M. Mattison, R.F.C. Vessot and W.
7-38-464	Beam Frequency Standard for Retrofit		Shen
	of Replacement Cesium Beam Tubes - J.C. Robb	7-39-75	Properties of Low-Expansion Materials For Hydrogen Maser Cavities - E.M. Mattison, R.F.C.
7-38-471	0-1695A/U Retrofit or Replace? - M.P. Meirs, I. Pascaru, D.		Vessot and S.F. Jacobs
	Silvermetz and D. Jones	7-39-80	Design for a Subcompact Q-Enhanced Active Maser - R.R. Hayes and
7-38-476	A Brief Introduction to the Atomic Time and Frequency Standards at		H.T.M. Wang
	Shanghai Observatory - 2. Zao-Cheng, Z. Qi-Ziang, H. Hang-Xiang, K. Wen- Wei and D. Xiu-Feng	7-39-85	Doppler-Free Two-Photon Laser Spectroscopy of HgII - J.C. Bergquist, D.J. Wineland, W.M. Itano, H. Hemmati, H.U. Daniel and
7-39-3	A Beam Reversal Experiment on NBS-6 Primary Cs Standard Including Rabi		G. Leuchs
	Pulling Evaluation - A. DeMarchi, G. Ferraris, G.D. Rovera, R.E. Drullinger and D.A. Howe	7-39-88	Performance of Laser-Induced Resonance Raman Clock - P.R. Hemmer, G.P. Ontai, A. Rosenberg and S. Ezekiel
7-39-8	Experimental Studies on Majoorana Transitions in a Cs Atomic Beam Frequency Standard - A. Bauch and T. Heindorff	7-40-410	Active H-Masers for V.L.B.I. Applications - R. Barillet, P. Petit, J. Viennet and C. Audoin

7-40-413	A Hydrogen Maser at Temperatures Below 1K - R.F.C. Vessot, E.M. Mattison, R.L. Walsworth, Jr., I.F. Silvera, H.P. Godfried and C.C. Agosta	7-41-53	New Insights into Causes and Cures of Frequency Instabilities (Drift and Long Term Noise) in Cesium Beam Frequency Standards - A. DeMarchi
7-40-419		7-41-59	An Optically Pumped Cesium Beam Frequency Standard for Military Applications - T. McClelland, I. Pascaru, J. Zacharski, N.H. Tran and M.P. Meirs
	Single-State Selection System for Hydrogen Masers - E.M. Mattison, R.F.C. Vessot and S. Wei	7-41-66	Development of a Rubidium Frequer.cy Standard for the MILSTAR Satellite System - T. McClelland, I. Pascaru and M.P. Meirs
7-40-428	Progress Toward an Optically Pumped Cesium Beam Frequency Standard - R.E. Drullinger, J.H. Shirley, D.J. Glaze, L.W. Holberg and A. DeMarchi	7-41-75	Hydrogen Masers for Radio Astronomy - H.E. Peters, B. Owings, T. Oakley and L. Beno
7-40-432	Effect of the Atom Transit Time on the Frequency Stability of Cesium Beam Frequency Standards - C. Audoin, V. Candelier and J. Vanier	7-41-82	The New Generation of Hydrogen Maser at Shanghai Observatory - Z.C. Zhai, H.X. Huang, G.X. Jiang, W.H. Luo, J.F. Lu and C.F. Lin
7-40-432	Effect of the Atom Transit Time on the Frequency Stability of Cesium Beam Frequency Standards - C. Audoin, V. Candelier and J. Vanier	7-41-87	Performance of a Hydrogen Maser with Auto-Tuning Utilizing Cavity Q Modulation - T.K. Tucker and G.J. Dick
7-40-441	A Novel Cavity Design for Minimization of Distributed Phase Shift in Atomic Beam Frequency Standards - A. DeMarchi	7-41-91	Hyperfine Contribution to Spin- Exchange Frequency Shifts in the Hydrogen Maser - B.J. Verhaar, J.M.V.A. Koelman, H.T.C. Stoof, O.J. Luiten and S.B. Crampton
7-40-447	A Comparison of Various Alkali Gas Cell Atomic Frequency Standards - J.C. Camparo and R.P. Frueholz	7-41-95	Surface Interaction of Atomic Hydrogen with Teflon - E.M. Mattison, R.F.C. Vessot, C. Bain, S. Wasserman and G. Whitesides
7-40-465	A Disciplined Rubidium Oscillator - A. MacIntyre and S.R. Stein	7-42-490	
7-40-470	Subminiature Rubidium Oscillator Model FRS - W. Weidemann		DeBoer, B. Fischer, T. Heindorff and R. Schroeder
7-41-12	Initial Operational Experience with a Mercury Ion Storage Frequency Standard - L.S. Cutler, R.P. Giffard, P.J. Wheeler and G.M.R. Winkler	7-42-496	Research on the Optically Pumped Cesium Beam Frequency Standards - G. Theobald, V. Giordano, M. de Labachelerie, A. Hamel, N. Dimarcq, P. Cerez and C. Audoin
7-41-20	JPL Trapped Ion Frequency Standard Development - J.D. Prestage, G.J. Dick and L. Maleki	7-42-505	Calculations on the Efficiency of Optical Pumping of a Cesium Atomic Beam by Lasers of Finite Linewidth - C. Jacques and P. Tremblay
7-41-25	Ultra-Sensitive Frequency Discrimination in a Diode Laser Pumped 87 Rb Atomic Clock - M. Hashimoto, H. Furuta and M. Ohtsu	7-42-510	
7-41-36	A Three Dimensional Model of the Gas Cell Atomic Frequency Standard - J.C. Camparo and R.P. Frueholz	7-42-514	The Effect of Humidity on Commercial Cesium Beam Atomic Clocks - J.E. Gray, H.E. Machlan and D.W. Allan
7-41-47	Cesium Gettering by Graphite - N.D. Bhaskar, C.M. Kahla, R.P. Frueholz and R.A. Cook	7-42-519	A Novel Compact Rubidium Frequency Standard with a Low Sensitivity to Magnetic and Vibrational Disturbances - A. Stern, A. Hertz, Y. Zarfaty and A. Lepek

- 7-42-525 An Improved Rubidium Consumption Model for Discharge Lamps Used in Rubidium Frequency Standards - R.A. Cook and R.P. Frueholz
- 7-42-532 Neutron Hardness of Photodiodes for Use in Passive Rubidium Frequency Standards T.C. English, G. Malley and R. Korde

CATEGORY 8:

Quantum Electronic Frequency Standards (Visible and Infrared

Frequencies)

8-15-225	The Optical Maser - W. Kaiser	8-29-328	High Speed Rectifying Junctions in the Infrared Regions: Recent MIT
8-17-425	Frequency Standards in the Optical - Range - G. Gould		Developments - A. Sanchez
8-21-455	455 Techniques for Generating, Detecting and Phase Stabilizing Submillimeter	8-29-330	Frequency Stabilization of CO ₂ Lasers - C. Freed
	Coherent Radiation - G.W. Bechtold, V.E. Derr and W.T. Smith	8-29-338	Potential Frequency Accuracy of the CO ₂ Fluorescence Saturation Dip -
8-23-305	Frequency Mixing and Multiplication in the Far Infrared and Infrared - A. Javan		M.J. Kelly, J.E. Thomas, J.P. Monchalin, N.A. Kurnit and A. Javan
8-23-306	Pressure Shift and Broadening of Methane Line at 3.39 Micron Studied	8-29-344	Limitations on Miniature Molecular Frequency Sources - J.J. Gallagher
	by Laser-Saturated Molecular Absorption - R.L. Barger and J.L.	8-31-574	Detecting and Mixing at FIR/Submillimeter Wavelengths With Submicron Size Schottky Barrier Diodes - M. McColl, D.T. Hodges,
8-23-307	Stability Investigations of HCN Laser - V.J. Corcoran, R.E. Cupp and J.J. Gallagher	8-31-578	A.B. Chase and W.A. Garber
8-23-312	Laser Frequency Stabilization Using a Primary Frequency Reference ~ S.	8-31-578	A Narrow Output Linewidth Multiplier Chain for Precision Frequency Measurement in the 1 THz Region - E. Bava, A. DeMarchi and A. Godone
	Ezekiel	8-31-583	A Study of Point-Contact Josephson
8-24-233	Laser Frequency Stabilization Techniques and Its Applications - H.S. Boyne		Junctions for use in Frequency Synthesis - A.S. Risley
8-24-240	Automatic Frequency Control and Phaselocking of Lasers - V.J. Corcoran, R.E. Cupp and J.J. Gallagher	8-31 - 590	Optical Electronics, Extension of Microwave Techniques Into the Optical Region - C.F. Davis, Jr., G. Elchinger, A. Sanchez, K.C. Liu and A. Javan
8-24-275	Frequency Stabilization of CO_2 Lasers with Respect to Passive SF_6 and CO_2 Line Centers - P.	8-31-592	Progress in CO ₂ Laser Stabilization -C. Freed
	Rabinowitz, R. Keller and J.T. LaTourrette	8-31-601	Electronic Tuning and Phase-Lock Techniques for Optically Pumped Far Infrared Lasers - S.R. Stein and H.
8-26-250	A Stabilized HCN Laser for Infrared Frequency Synthesis - J.S. Wells		Van de Stadt
8-27-376	Characteristics of the 644 nm He-Ne Laser Stabilized by Saturated Absorption in Iodine Vapour - A.J. Wallard	8-31-605	Frequency Modulation of a Far Infrared CH ₃ F Laser by Stark Effect - R. Benedetti, A. Di Lieto, M. Inguscio, P. Minguzzi, M. Tonelli and F. Strumia
8-27-382	Molecular Beam Stabilized Laser - L.A. Hackel, D.C. Youmans and S. Ezekiel	8-31-612	The Trapped Mercury Ion Frequency Standard - M.D. McGuire
8-27-386	Influence of Hyperfine Structure of Methane Stabilized He-Ne Laser - C. Borde and J.L. Hall	8-32-439	Saturated Absorption Optical Ramsey Fringes - J.C. Bergquist, R.L. Barger and D.J. Glaze
8-28-348	Infrared Rectification and Frequency Mixing in a Thin Film Metal, Metaloxide, Metal Diode Structure - A. Javan and J.G. Small	8-33-494	Laser to Microwave Frequency Division Using Synchrotron Radiation II - J.C. Bergquist and D.J. Wineland
8-29-316	Frequency Stabilization of a CW Dye Laser and Laser Saturation of Atomic Beams - R.L. Barger, T.C. English and J.B. West	8-33-498	An Improved Multiplier Chain For Precise Frequency Measurements Up to 20 THz - A. Godone, A. DeMarchi and E. Bava

- 8-33-504 Comparison of Different Tuning and Modulation Techniques for F. I. R. Lasers A. DeMarchi, A. Godone and E. Bava
- 8-35-596 Mono-Ion Oscillator as Potential Ultimate Laser Frequency Standard -H. Dehmelt
- 8-36-327 Frequency Stabilization of AlGaAs Lasers - M. Ohtsu, H. Tsuchida and T. Tako
- 8-36-338 Frequency Stability and Control Characteristics of (GaAl)As Semiconductor Lasers - A. Mooradian and D. Welford
- 8-36-355 Spectral Characteristics of Single Mode GaAlAs Semiconductor Lasers -R.O. Miles
- 8-36-361 Ultra-Stable Laser Clock R.L. Facklam
- 8-36-370 A Laser Atomic Beam Standard C.C. Leiby, Jr., R.H. Picard, J.E. Thomas, P.R. Hemmer and S. Ezekiel
- 8-41-42 Study of Several Error Sources in a Laser Raman Clock P.R. Hemmer, B. Bernacki, V.D. Natoli, M.S. Shahriar, H. Lamela-Rivera, S.P. Smith and S. Ezekiel

CATEGORY 9:

Frequency and Time Coordination and Distribution

9-10-216	Comparison Measurements on Frequency Standards - J.A. Pierce	9-20-577	A Digital Servo for Frequency and Time Scale Conversion - P. Kartaschoff and H. Brandenberger
9-11-574	Low Frequency Standard Transmissions - W.D. George	9-20-588	
9-12-648	Comparison of Atomichrons with British Cesium Beam Frequency Standard - A.O. McCoubrey, J.H. Holloway, W. Mainberger, F.H. Reder, G.M.R. Winkler, L. Essen and	9-20-612 9-20-613	- A.R. Chi and S.N. Witt, Jr. VLF Envelope Timing Experiment - D. Himes
9-12-665	J.V.L. Parry Comparison of Atomic and Astronomical Time - W.M. Markowitz	9-20-013	Frequency Comparison - L.D. Shapiro
9-13-316	The System of Atomic Time, A.1 - W.M. Markowitz	9-21-509	Frequency Comparison System for Spacecraft Relativity Experiment - D. Kleppner
9-13-318	Atomic Frequency Standards for Propagation Studies - J.A. Pierce	9-22-383	Recent Improvements in the U.S. Naval Observatory Timekeeping and Time Distribution Operations -
9-13-342	Synchronized Clock Experiment - R. Bridgham, F.H. Reder and G.M.R. Winkler	9-22-384	G.M.R. Winkler Clock Error Statistics as a Renewal
9-14-254	Preliminary Results on Project WOSAC - G.M.R. Winkler and F.H. Reder		Process - G.E. Hudson and J.A. Barnes
9-14-267	Results of GBR Experiment - J.A. Pierce	9-22-419	Results of Differential Omega Test and Evaluation Program - J.R. Wright
9-14-275	Stabilization of VLF Transmissions at NBA - H.F. Hastings and W.M. Markowitz	9-22-441	Precise Frequency Comparison Using a Frequency Tracking Technique - W.V. Burhop and L.G. Wilson
9-14-276	Timing Potential of Loran-C - G. Hefley, R.F. Linfield and R.H. Doherty	9-23-18	International Coordination of Radio Time Signal Emission - H. Smith
9-15-226		9-23-236	Use of the Loran-C System for Time and Frequency Dissemination - P.E. Pakos
9-16-227	G.M.R. Winkler and C.J. Bickart Synchronization of Local Frequency Standards with VLF Transmissions - R.R. Stone, Jr.	9-23-248	An Application of Statistical Smoothing Techniques on VLF Signals for Comparison of Time Between USNO and NBS - A. Guetrot, D.W. Allan, L.S. Higbie and J. Lavanceau
9-16-249	Time Keeping Satellites - R.H. Dicke	9-23-249	A Coordinate Frequency and Time System - G.E. Hudson, D.W. Allan, J.A. Barnes, J. Lavanceau, R.G. Hall
9-16-250	Theory of Time Keeping in Space - R.K. Sachs	9-24-315	and G.M.R. Winkler Time/Frequency Technology in System
9-18-251	High Precision Frequency and Clock Synchronization Techniques on an International Basis - W.M.	9-24-322	Development - R.E. Perkinson A Survey of Time and Frequency
9-18-395	Markowitz VLF Frequency Synchronization	J 24 J22	Dissemination Techniques - J.L. Jespersen
	Provided with FSK Capability - R.R. Stone, Jr. and T.H. Gee	9-24-325	Time and Frequency Transfer Via Microwave Link - D.E. Phillips, R.E. Phillips and J.J. O'Neill
9-19-195	A Report on the Hewlett-Packard Flying Clock Experiment Number Two - L.N. Bodily	9-24-332	Diurnal Phase of VLF Signals Near Antipode of a Transmitter - A.R. Chi
9-19-297	Clock Synchronization Via Relay II, Preliminary Report - W.M. Markowitz and C.A. Lidback	9-24-339	A Second Satellite Oscillator Experiment - R. Easton, C. Bartholomew and J.A. Bowman

9-24-345	The Omega Navigation System as a Source of Frequency and Time - W. Palmer	9-27-286	Diurnal and Seasonal Variations in Atmospheric Time Delay - D.M. LeVine
9-25-152	Time Control of Frequency Shift Keyed Transmissions at VLF - R.R. Stone, Jr., T.H. Gattis and T.N. Lieberman	9-27-290	Application of Phase Stable VLF Signals in Small Aircraft - J.J. Tymczysyn
	Liebeiman	9-27-296	
9-25-159			Synchronization of Remote Clocks in a Time Ordered System - P.
9-25-167	Time Dissemination Capabilities Using the Omega System - L. Fey	9-27-304	Coralnick and R.C. Stow Accuracy of Overland Radio Location
9-25-171	Use of Loran-C Over Land - B. Wieder	<i>J</i> 2, 301	System at Fort Hood Using 1.5 to 2.0 MHz Frequency Region - J.R. Wright
9-25-179	One Way Time Dissemination from Low Altitude Satellites - L. Reuger	9-27-312	UHF Frequency Translator Based on Regenerative Division - J.J. O'Neill, D.E. Phillips and R.R.
9-25-186	Time Transfer by Defense Communications Satellite - J.A.		Stone, Jr.
	Murray, D.L. Pritt, L.W. Blocker, W.E. Leavit, P.M. Hooton and W.D. Goring	9-28-373	Reference Frequency Transmission over Bell System Radio and Coaxial Facilities - R.F. Powers
9-25-194	Long Term Accuracy of Time Comparisons Via TV Radio Relay Links - S. Leschiutta	9-28-379	A Comparison of the Cesium and Hydrogen Hyperfine Frequencies by Means of Loran C and Portable Clocks - V.S. Reinhardt and J. Lavanceau
9-25-195	Synchronization Via Portable Clocks, Loran-C, and Network Television	9-28-384	Satellite to Ground Timing Experiments - R.J. Taylor
	Broadcasts - D.W. Allan, D.D. Davis, B.E. Blair and H.E. Machlan	9-28-389	Collecting and Processing PTTI Data - L.C. Fisher
9-25-209	Transfer - D.H. Philips, R.E. Phillips, J.A. Bowman and J.J. O'Neill	9-28-395	Frequency Synthesizer for Normalizing the Frequency and Time Scales of Crystal Clocks on Orbiting Satellites - L.J. Rueger and A.G. Bates
9-25-217	International Coordinated Clock Time and the Coming Improvements in System "UTC" - G.M.R. Winkler	9-28-406	
9-26-269			Switched Long Distance Telephone Lines - C.C. Costain, L.G. Miller and A. Nishimura
	G.M.R. Winkler	9-28-408	Performance Data of Space and Ground
9-26-292	Nationwide Precise Time and Frequency Distribution Utilizing an Active Code Within Network Television Broadcasts - D.A. Howe		Hydrogen-Masers and Ionospheric Studies for High Accuracy Frequency Comparison Between Space and Ground Clocks - R.F.C. Vessot and M.W. Levine
9-26-309	Time Transfer Using Nearly Simultaneous Reception Times from a Common Transmitter - D.W. Allan, H.E. Machlan and J. Marshall	9-29-384	Sub-Microsecond Time Transport with a Rubidium Portable Clock - H. Hellwig and A.E. Wainwright
9-26-317	Standard Frequency and Time Service Using Radio Broadcasting Facilities - L.H. Montgomery	9-30-401	Minimum Variance Numerical Methods for Synchronizing Airborne Clocks - R.J. Kulpinski
9-27-270	Tracking Stations via LORAN-C - W.E. Mazur	9-30-438	Phase Synchronization of a large HF Array by a Local Broadcast Station - S.H. Taheri, B.D. Steinburg and D.L. Carlson
9-27-277	International Time Transfer Using the Timation II Satellite - J.A. Buisson	9-30-444	The Remote Synchronization Technology - L.J. Rueger

9-31-429	Synchronization Methods for Frequency - And Time-Division- Multiplex Networks - H.L. Hartman	9-34-334	Accurate Time and Frequency Transfer During Common-View of a GPS Satellite - D.W. Allan and M.A. Weiss
9-31-436	Frequency Control and Digital Network Synchronization - M.I. Spellman, J.B. Cain and D.B. Bradley	9-35-532	NAVSTAR Global Positioning System (GPS) Clock Program: Present and Future - D.M. Tennant
9-31-448	of Integrated Switches - H.A. Sunkenberg and M.J. Ross	9-35-537	Time Dissemination Using NAVSTAR Global Positioning System (GPS) Phase IIB User Equipment - M.D. Yakos and E.H. Hirt
9-31-455	Results of Investigations for the Clock Frequency Control and Distribution System in the Digital Telephone and Data Networks of the Deutsche Bundespost and Future Plans - W.R. Slabon	9-35-546	Construction and Performance Characteristics of a Prototype NBS/GPS Receiver - D.D. Davis, M.A. Weiss, A. Clements and D.W. Allan
9-31-463		9-35-553	The NATO III 5 MHz Distribution System - A.I. Vulcan and M.B. Bloch
9-31-465	Daams An Overview of TDMA for Digital Satellite Communications and the Censar Synchronization Experiment -	9-35-565	Low Noise Buffer Amplifiers and Buffered Phase Comparators for Precise Time and Frequency Measurement and Distribution - R.A. Eichinger
9-31-489	K.E. Brown and P.P. Nuspl Time Determination for Spacecraft Users of the Navstar Global Positioning System (GPD) - T.J. Grenchik and B.T. Fang	9-36-372	Time and Time Interval (PTTI) Platform Distribution System (PDS) - R.T. Allen
9-31-495	Transcontinental and Intercontinental Portable Clock Time Comparison - H. Hellwig, D.W. Allan,	9-36-378	Optimal Time and Frequency Transfer Using GPS Signals - D.W. Allan and J.A. Barnes
9-31-499	S.R. Stein and K.A. Prichard	9-36-388	Test Results of the STI GPS Time Transfer Receiver - D.L. Hall and K. Putkovich
	Transmission of a Beat Note Between the Carrier of a TV Broadcast Signal and a Frequency Synthesized from the	9-37-55	National and International Time and Frequency Comparisons - D.W. Allan
0-21-502	Frequency Standards - A. Gabry, G. Faucheron, B. Dubouis and P. Petit Study of L. F. and V. L. F. Time	9-37-61	An International Time Transfer Experiment - C. Wardrip, J.A. Buisson, O. Oaks, M. Lister, S. Stebbins, B. Guinot, M. Granveaud,
9-31-303	Signals by Digital Method - F. Guillaume, J.C. Lieven and J. DePrins	9-37-67	G. Freon, B. Dubois and W. Schluter Precision Timekeeping at the
9-33-468	and Its Impact on Frequency Control	0 27 70	Observatory Lustuehel, Graz, Austria - D. Kirchner
9-33-473	Requirements - D.L. Blanchard, A.J. Fuchs and A.R. Chi Two-Way Time Transfers Between	9-37-78	Time Dissemination from the National Research Council of Canada - C.C. Costain, H. Daams, J.S. Boulanger and R.J. Douglas
	National Research Council (Ottawa) and Paris Observatory Via the "Symphonie" Satellite - C.C. Costain, J.S. Boulanger, H. Daams, L.G. Miller, G. Freon, P.	9-39-107	Time Scale Stabilities Based on Time and Frequency Kalman Filters - J.A. Barnes and D.W. Allan
	Parcelier, M. Brunet, J. Azoubib and B. Guinot	9-39-145	Receiver and Time Comparison Results - M. Imae, M. Uratsuka, C. Miki, T.
9-34-326	Initial Test Results of USNO GPS Time Transfer Unit - K. Putkovich		Morikawa, K. Akatsuka and K. Yoshimura

- 9-39-150 Commercial GPS Receiver for Time and Frequency Equipment Applications R.L. Lewis, G.F. Knoernschild and N.B. Hemesath
- 9-39-153 The State-of-the-Art Medium Terminal (SAMT) Time and Frequency Distribution System A.I. Vulcan and M.B. Bloch
- 9-39-183 Recent Developments in Synchronization and Tracking with Synchronous Oscillators T. Flamouropoulos, M.H. White and V. Uzunoglu
- 9-40-394 Using Multiple Reference Stations to Separate the Variances of Noise Components in the Global Positioning System - M.A. Weiss and D.W. Allan
- 9-40-405 The U.S. Naval Observatory (USNO) PTTI Data Service - G.M.R. Winkler
- 9-41-111 Accuracy of Time Transfer in Satellite Systems C.M. Will
- 9-41-130 Positioning and Timing Study of GPS C/A Code Receivers Q. Zhuang, W.J. Klepczynski and C.F. Lukac
- 9-41-144 Estimating Combined Errors Due to Propagation and Ephemeris and Their Effect on Time and Frequency Transfer - D.W. Allan and L. Ping-Ping
- 9-41-149 Ku-Band Satellite Two-Way Timing.
 Using a Very Small Aperture Terminal
 (VSAT) D.A. Howe
- 9-41-161 Reference Frequency Distribution Over Optical Fibers: A Progress Report - G. Lutes
- 9-42-465 Ensemble Time and Frequency Stability of GPS Satellite Clocks -D.W. Allan and T. Peppler
- 9-42-472 Preliminary Comparison Between GPS and Two-Way Satellite Time Transfer W.J. Klepczynski, P.J. Wheeler, W. Powell, J. Jeffries, A. Myers, R.L. Clarke, W.P. Hanson, J.L. Jespersen and D.A. Howe
- 9-42-478 Fiber Optic Frequency Transfer Link
 L. Primas, G. Lutes and R.L.
 Sydnor
- 9-42-485 Israel's New Synchronized Time Scale, UTC (INPL) - A. Shenhar, W. Litman, A. Lepek, A. Citrinovitch, D.W. Allan and T. Peppler

CATEGORY 10:

Applications of Frequency Control Devices

10-10-439	Crystal Requirements for Future Military Equipment - J.M. Havel	10-25-104	The Present State of the Art in Piezoelectric Sensors - W. King
10-12-193	A Frequency Standard for Use in Missiles - H.P. Brower	10-25-125	Quartz Crystal Units for High G Environment - M. Bernstein
10-13-248	A Communications Requirement of the Space Age - W.K. Victor	10-26-4	Precise Time and Frequency in a Communication System - H. Folts
10-13-261	Frequency Control Devices and the Micro Module Program - M. Bernstein	10-26-8	Synchronization in High Capacity Broadband Carrier Systems - J.F. Barry and S. Narayanan
10-14-404	Frequency Standards for Military Applications - D.E. Johnson and J.P. Fredericks	10-26-15	Frequency Control Aspects in Army Communications and Surveillance - E. Hafner
10-21-512	The Design of an Atomic Hydrogen Maser System for Satellite Experiments - R.F.C. Vessot, M.W. Levine, L.F. Mueller and M. Baker	10-26-21	Short Term Frequency Stability in Coherent Radar Applications - W.K. Saunders
10-22-206	The Application of Piezoelectric Coupled-Resonator Devices to Communication Systems - W.L. Smith	10-26-113	Frequency Control Requirements for Remote Sensor Systems - W.D. Lawrence
10-22-342	Crystal Oscillator Satellite Experiment - R. Easton, A. Bartholomew, D.E. Phillips and M.B. Bloch	10-27-39	Quartz Crystal Units for Space Applications - C. Gilbert, S. Broussou and J. Morel
10-23-1	Frequency Control Requirements for the Mallard Communication System ~ J. DelVecchio and J. Dressner	10-29-417	Time Standard Error Modeling with Applications to Satellite Navigation - G.L. Mealy and D.R. Vander Stoep
10-23-8	Application of Precise Time- Frequency Technology in Multi- Function Systems - T.C. Viars	10-30-371	Frequency Control and Time Information in the NAVSTAR/Global Positioning System - F.E. Butterfield
10-23-14	Frequency Control for Tactical Net SSB Equipment - O.P. Layden	10-30-375	Time Requirements in the NAVSTAR Global Positioning System (GPS) Control Segment - A.J. Van
10-23-157	A Flexure-Mode Quartz for an Electronic Wrist Watch - M.P. Forrer	10-30-384	Dierendonck and M. Birnbaum Oscillator and Frequency Management
10-25-70	Quartz Crystal Applications in Digital Transmission - R.B. Robrock		Requirements for GPS User Equipments - R.A. Maher
10-25-74	II Frequency Control Devices for Mobile	10-30-390	NAVSTAR Global Positioning System - Oscillator Requirements for the GPS Manpack - J. Moses
	Communications - R.J. Nunamaker	10-31-71	Using the X-Y Flexure Watch Crystal
10-25-75	The Crystal Controlled Electronic Wrist Watch System: A Si-gate and CMOS-MSI Approach - R.G. Daniels and	10 01 .1	as a Pressure-Force Transducer - A. Genis and D.E. Newell
10-25-82	F.H. Musa	10-31-478	Frequency Control and Timing Requirements for Communications Systems - P. Kartaschoff
20 00 00	Control and Collision Avoidance Application - V.I. Weihe	10-31-484	Generation of Base-Band Frequencies for FDM and TDM Telecommunications -
10-25-88	Application of Crystal Clocks for Navigation and Time-Ordered Communication - R.J. Kulpinski	10-22-555	E.P. Graf and B. Walther
10-25-04	-	10 -32-335	Applications of Atomic Frequency Standards to Satcom Spread Spectrum Systems - S.A. Nichols and D.G. Woodring
			•
10-25-102	Piezoelectric Sensors for Use as Pollution Detectors, Meteorology Monitors and Research Instruments - J. Kertzman	10-34-347	Time Related Aspects of the Position Location Reporting System - J.E. Lioy

- 10-35-501 Frequency Control Requirements for 800 MHz Land Mobile Communication R.G. Kinsman and D. Gunn
- 10-35-511 Frequency Stabilization Requirements for Modern Millimeter Wave Systems A. Tirkel
- 10-35-516 Frequency Stability Requirements for a 95 GHz Instrumentation Radar System D.N. McQuiddy, Jr.
- 10-35-525 Optical Frequency Control for Wavelength Multiplexed Systems F. Welsh and T. Stakelon
- 10-38-92 Vibration Effects on EHF System
 Performance Employing Low Noise
 Rubidium Standard and Crystal
 Filters E.M. Perdue
- 10-42-453 Radar Measurement Applications of Fiber Optic Links - I. Newberg, C. Gee, G. Thurmond and H.W. Yen

CATEGORY 11:

Measurements and Specifications

11-10-30	5 VHF Crystal Measurements - G.K. Guttwein and D. Pochmerski	11-16-187	The Measurement of the Parameters of High Frequency Filter Crystals - F.K. Priebe
11-10-32	3 A New Method for Measuring the Equivalent Parameters of VHF Quartz Crystals - D.W. Robertson	11-17-289	Reliability of Military Quartz Crystal Units - W. Ingling and C.E. Jones
11-10-49	 6 A Counter Transfer Oscillator System for Microwave Frequency Measurements - A.S. Bagley and D. Hartke 	11-17-312	Spurious Modes in AT-Cut Quartz Crystals - A.E. Anderson
11-11-40	2 Frequency Control Standardization Trends Within the International Electrotechnical Commission - W.J.	11-17-314	Temperature Testing Tight Tolerance Crystal Units - G.K. Bistline, Jr.
11-11-44	Young 1 Equipment for Detecting Unwanted Modes in Oscillator Crystals - J.	11 - 17-316	The Hybrid-Coil Bridge Method of Measuring Unwanted Modes of Vibration in Quartz Crystals - W.H. Horton and R.C. Smythe
	Loos	11-17-464	Progress and Problems in Quartz
11-11-45	Low Frequency C.I. Meter AN/TSM-14 - E.A. Gilbert		Crystal Circuitry and Measurements - O.P. Layden
	3 VHF C.I. Meter AN/TSM-15 - D. Pochmerski	11-17-537	Accuracy of VHF Filter Crystal Measurements - A.D. Ballato and F.K. Priebe
11-11-47	9 Crystal Measuring Techniques Above 200 mc/sec - S.N. Witt, Jr.	11-17-602	Measurement of the Instantaneous Frequency and Phase Stability of
11-11-597	Precision Measurement of Short Time Intervals - F.K. Priebe, D. Schwab and H.D. Tanzman		Frequency Standards by Means of Frequency Comparators - B. Parzen
11-12-33	4 Measuring the Resonance Frequency of Quartz Crystals with Improved Accuracy - A.O. Plait, H.G. Tobinski and H.E. Gruen	11-18-243	Frequency and Timing Control Requirements for Future Military Communication Equipment - M.M. Baltas
11-12-35	9 An Instrument for Detecting Unwanted Modes in Oscillator Crystals - J.	11-18-407	Quantity Testing of Moderate- Precision Crystal Units - G.E. Buroker
11-12-38	3 VHF Crystal Parameter Measurements - S.N. Witt, Jr.	11-18-441	Design Considerations for Crystal Impedance Meters - C.L. Shibla
11-13-12	3 Measurement of HF Crystal Units with Increased Accuracy - D. Pochmerski and C.L. Shibla	11 - 18-458	Comparison of Various Methods Used for Determination of Quartz Crystal Parameters in the Frequency Range 1 to 30 MC - F.K. Priebe and A.D. Ballato
11-13-13	7 Methods of Measuring Quartz Crystal Units at VHF - S.N. Witt, Jr.	11-19-49	Aerospace Crystal Environmental Requirements - D.B. Leeson
11-13-35	4 Measuring Instruments for Determination of Electrical Characteristics of Quartz Over the Range from 0 to 300 mc - H. Flicker		Comparison of Crystal Measurement Equipment - W.H. Horton and S.B. Boor
11-13-38	4 Short-term Frequency Stability Measurements - H.D. Tanzman		Automatic Crystal Aging Assembly - M. Bernstein
11-15-98	Higher Precision Crystal Measurements 1 - 15 Mc - M. Bernstein	11-19-487	Attenuation and Resistance Measurements of Unwanted Modes of Quartz Crystals - F.K. Priebe
11-15-26	1 The Effects of Frequency Multipliers	11-19-655	Modification of Crystal Impedance Meter TS-710/TSM - C.L. Shibla
	on the Uncertainty of a Frequency Measurement - J. Rarity, L. Saporta and G. Weiss	11-20-465	Measurement of Mode Parameters by Sweep Frequency Methods in the

and G. Weiss

Sweep Frequency Methods in the Frequency Range from 20 to 250 MHz - F.K. Priebe and A.D. Ballato

11-20-636	Precision Frequency Measurement of Satellite Emitted Beacon Signals - P.R. Arendt	11-24-168	Precision Measurement of Crystal Frequency by Means of "Center Line Method" - I. Koga
11-20-648	Experimental Frequency-Measuring Receiver System - F.D. Lewis	11-24-177	Quartz Crystal Measurements - E. Hafner, A.D. Ballato and P.R. Blomster
11-20-661	Digital and Automatic Printing Frequency Counter System - U.E. Adelsberger	11-24-301	Frequency Comparison of Five Commercial Standards with a NASA Experimental Hydrogen Maser - A.R.
11-20-672	A New Instrument for Automatic Measurement of Microwave Frequencies - R.L. Allen	11-25-113	Chi, F.G. Major and J.E. Lavery Measurement of Vibration Modes of
11-21-273	Short Term Frequency Stability Measurements - M.E. Frerking		Piezoelectric Resonators by Means of Holography - Y. Tsuzuki, Y. Hirose and K. Iijima
11-22-46	Writing Crystal Specifications - J.D. Holmbeck	11-25-118	Study of Frequency Control Devices in the Scanning Electron Microscope - R.J. Gerdes and C.E. Wagner
11-22-163	Temperature Testing Quartz Crystals, Equipment and Methods - G.K. Bistline, Jr. and R. Pompeo	11-25-134	Using a Pendulum Diffractometer to Improve Precision of X-Raying Quartz Crystals - G.E. Nemetz
11-22-164	Reliable and Repeatable Measurements of Frequency and Resistance Changes of Quartz Crystals Due to Wide Temperature Variations - R. Schade	1-25-148	Standards and the Frequency Control Industry - J.D. Holmbeck
11-22-232	Precision Measurement of the	11-25-222	Frequency Modulation Analysis with the Hadamard Variance - R.A. Baugh
11-22-248	Frequency Aging of Quartz Crystal Units - M. Bernstein Measurement Techniques for Quartz Crystals - C.A. Adams	11-25-226	High Quality Quartz Crystal Oscillators: Frequency Domain and Time Domain Stability - H. Brandenberger, F. Hadorn, D. Halford and J.H. Shoaf
11-22-259	Technique for Crystal Resonance Measurements Based on Phase Detection in a Transmission Type Measurement System - R.P. Grenier	11-26-20	Problems in the Definition and Measurement of Frequency Stability - J.A. Barnes
11-22-282	Newly Developed Crystal Measurement Instruments - O.P. Layden, A.D. Ballato and C.L. Shibla	11-26-29	Flicker and Frequency Phase, and White Frequency and Phase Fluctuations in Frequency Sources - D.J. Healey III
11-22-592	Long-Term Frequency Stability Measurement of Rubidium Gas Cell Frequency Standards - A.R. Chi, J.H. Roeder, S.C. Wardrip and B. Kruger	11-26-79	Calculator Controlled Testing of Crystals and Crystal Filters - C.E. Nelson
11-23-93	Vector Voltmeter Crystal Measurement System - M.E. Frerking	11-26-159	The Practical Aspects of International Standardization in the Frequency Control Field - E.
11-23-102	On Precision Measurements of Frequency and Resistance of Quartz Crystal Units - C. Franx	11-26-258	Kentley US Army Calibration Program - J.M.
11-23-111	Another Look at Specifying Crystals - D.W. Nelson		Rivamonte USAF Time and Frequency Calibration
11-23-122	Temperature Run, MIL-C-3098, Amendment I - R. Pompeo and F.		Program - J.F. Barnaba Practical Crystal Measurements and
11-23-223	Wolf A Carrier Suppression Technique for Measuring S/N and Carrier/Sideband Ratios Greater than 120 dB - C.H. Horn	11-27-63	An / Atic Crystal Measurement System H.S. Pustarfi and W.L. Smith

- 11-27-421 Spectral Density Analysis: Frequency
 Domain Mesurements of Frequency
 Stability D. Halford, J.H. Shoaf
 and A.S. Risley
- 11-27-432 A New Development in the Field of Spectrum Analyzers K. Zirwick
- 11-27-440 Short and Long Term Stability
 Measurements Using Automatic Data
 Recording System J.A. Bowman
- 11-28-49 Precision Determination of Parameters of VHF Crystals I. Koga
- 11-28-177 Direct Measurements of the Inherent Frequency Stability of Quartz Crystal Resonators A.E. Wainwright, F.L. Walls and W.D. McCaa
- 11-28-184 Low Noise Measuring Techniques M.B. Bloch and A.I. Vulcan
- 11-28-190 L(f) Measurements on UHF Sources Comprising VHF Crystal Controlled Oscillator Followed by a Frequency Multiplier - D.J. Healey III
- 11-29-237 A Rapid and Simple In-Process Test
 Method Designed to Improve Quality
 of Quartz Resonators in Current
 Demand Today P.E. Bryan
- 11-29-270 Test Set for the Measurement of Transmitter Stability Parameters -J.M. Milan
- 11-29-394 A Time Domain Method for Measurement of the Spectral Density of Frequency Fluctuations at Low Fourier Frequencies P. Lesage and C. Audoin
- 11-29-404 Picosecond Time Difference Measurement System - D.W. Allan and H. Daams
- 11-29-412 Timekeeping and the Reliability
 Problem D.B. Percival and G.M.R.
 Winkler
- 11-29-425 NTS-1 (Timation III) Quartz and Rubidium Oscillator Frequency Stability Results T.B. McCaskill and J.A. Buisson
- 11-30-92 Implementation of Bridge Measurement Techniques for Quartz Crystal Parameters - E. Hafner and W.J. Riley
- 11-30-269 Design Considerations in State-ofthe-Art Signal Processing and Noise Measurement Systems - F.L. Walls, S.R. Stein, J.E. Gray, D.J. Glaze and D.W. Allan
- 11-30-309 System for Automatic Phase Noise
 Measurement L. Peregrino and D.
 Ricci

- 11-31-78 Methods for Production Screening for Anommalous Responses in Quartz Crystals Intended for High Reliability Applications P.F. Godwin, Jr. and G.L. Snider
- 11-31-96 Extending the Frequency Range of the Transmission Line Method for the Measurement of Quartz Crystals Up to 250 MHz R. Fischer and L. Schulzke
- 11-31-102 Ovenless Activity Dip Tester A.D. Ballato and R. Tilton
- 11-31-108 Measurement of the Characteristic Frequency of an AT-Cut Plate - J.H. Sherman, Jr.
- 11-31-117 A New Quality Evaluation Method of Raw Quartz by Measuring the Q-Value of Y-Bar Resonator - H. Fukuyo, N. Oura and F. Shishido
- 11-31-291 Oscillator Specifications: A Review of Classical and New Ideas J.
 Rutman
- 11-31-302 Specification and Measurement of Oscillator Phase Noise Instability W.C. Lindsey and C.M. Chie
- 11-31-311 Estimation of the Two-Sample Variance with a Limited Number of Data - P. Lesage and C. Audoin
- 11-31-319 Prediction Error Analysis of Atomic Frequency Standards D.B. Percival
- 11-31-327 Models and Predictions for the Realization of Time Scales U. Hubner
- 11-31-335 Accurate Measurements of Spectral Density of Phase Noise in Devices -F.L. Walls and S.R. Stein
- 11-31-344 Frequency and Time Domain Stability of A Progress Report J. Vanier, M. Tetu and R. Brousseau
- 11-31-347 Automating Phase Noise Measurements in the Frequency Domain A.L. Lance, W.D. Seal, F.G. Mendoza and N.W. Hudson
- 11-32-326 Derivation of a Leak Specification for a Hermetic En.elope J.H. Sherman, Jr.
- 11-32-334 Crystals and NMOS: Frequency Controlled MPU's - J.J. Farrell
- 11-32-337 The Measurement of Load Resonance Characteristics of Quartz Crystals Using the Zero Phase II-Network -S.J. Hughes, R.W. Parfitt and J.S. Hardy

- 11-32-344 Results of Temperature Slewing Quartz Crystals for Anomalous Responses - M.B. Bloch, M.P. Meirs and A. Strauss
- 11-32-354 Automatic Microcircuit Bridge
 Measurements on Quartz Crystal Units
 G.J. Malinowski and E. Hafner
- 11-32-432 A Technique for a Self Phase Noise Measuring System for Signal Sources - B. Parzen and J.P. Hou
- 11-33-110 A High-Sensitivity AC Dilatometer for the Direct Measurement of Piezoelectricity and Electrostriction K. Uchino and L.E. Cross
- 11-33-159 A Four-Frequency Process for Accurately Measuring Coupled-Dual Resonator Crystals - G.E. Roberts
- 11-33-176 A Review of the New IEEE Standard on Piezoelectricity T.R. Meeker
- 11-33-181 Trim Sensitivity A Useful Characterization of a Resonator -J.H. Sherman, Jr.
- 11-33-186 New Metal Enclosures for Resistance Welding Developed to Meet Mil-Specifications D. Fuchs and K.H. Mucke
- 11-33-189 Quartz Crystal Measurements by a 'Phase-Amplitude' Method W.D. Beaver, W.E. Van Loben Sels and M. Wang
- 11-33-201 Automatic Measurement of Parameters of VHF Quartz Crystal Resonators Y. Tsuzuki, M. Toki, T. Adachi and H. Yanagi
- 11-35-263 The Quartz Resonator Automatic Aging Measurement Facility - D.E. Beetley, B.R. Blitch and T.M. Snowden
- 11-35-271 Comparison of Methods for Measurement of Quartz Crystal Resonators With Load Capacitance -W.H. Horton, T.S. Payne, R.C. Smythe and D.A. Symonds
- 11-35-280 An Automated Resonator Measurement System Using a Reflection Coefficient Bridge - R.C. Smythe
- 11-35-286 Implementation of an Automatic Microcircuit Measuring System for Quartz Crystals G.J. Malinowski, C. Nyholm and G.L. Snider
- 11-35-458 Characterization of Frequency
 Fluctuations by Crosscorrelations
 and By Using Three or More
 Oscillators J. Groslambert, D.
 Fest, M. Olivier and J.J. Gagnepain
- 11-35-464 An Ultra-High Resolution Frequency Meter J.J. Snyder

- 11-35-470 A Modified "Allan Variance" With Increased Oscillator Characterization Ability - D.W. Allan and J.A. Barnes
- 11-36-297 New Method for the Measurement of Quartz Crystal Resonator Parameters - R.C. Peach, A.J. Dyer, A.J. Byrne and S.P. Doherty
- 11-36-302 An Instrument for Automated

 Measurement of the Angles of Cut of
 Doubly Rotated Quartz Crystals J.L. Chambers
- 11-36-314 Performance of an Automated High
 Accuracy Phase Measurement System S.R. Stein, D.J. Glaze, J. Levine,
 J.E. Gray, D. Hilliard, D.A. Howe
 and L. Erb
- 11-36-321 A Frequency Domain Reflectometer for Quartz Resonator Investigations -C.S. Stone and O.J. Baltzer
- 11-36-480 Theoretical and Practical Effects of the Resonator Specifications and Characteristics upon Precision Crystal Oscillator Design and Performance - B. Parzen
- 11-37-187 Improvements of Laser Interferometric Measurement System of Vibration Displacements - T. Adachi, M. Okazaki and Y. Tsuzuki
- 11-37-275 An Instrument for Automated
 Measurement of the Angles of Cut of
 Doubly Rotated Quartz Crystals J.L. Chambers
- 11-37-284 A Measurement Technique for Determination of Frequency vs Acceleration Characteristics of Quartz Crystal Units - D.J. Healey III, H. Hahn and S. Powell
- 11-37-290 Evaluation of Crystal Measurement Systems R.C. Smythe and W.H. Horton
- 11-37-297 A New Frequency for Piezoelectric Resonator Measurement - W.H. Horton and R.C. Smythe
- 11-37-300 Measuring Method of Equivalent Series Capacitance and Negative Resistance of Quartz Crystal Oscillator Circuits - M. Toki, Y. Tsuzuki and T. Mitsuoka
- 11-37-306 S.Y. Parameters Method for Accurate Measurement of Bulk Wave Crystal Resonators at Frequencies up to 2 GHz J.P. Aubry, E. Gerard and S. LeChopier
- 11-37-506 A New Frequency Calibration Service Offered by the National Bureau of Standards - G. Kamas and J.L. Jespersen

- 11-37-513 Specifying Performance for Atomic Standards J.D. White
- 11-37-516 Platform Distribution System Specifications J.A. Murray
- 11-37-519 Modernization of the Military Specification for Quartz Crystal Units - R.L. Filler
- 11-37-524 Revision of the Military-Specification for Quartz Crystal Oscillators - V.J. Rosati and S. Schodowski
- 11-37-525 Review of New Military Specification on Surface Acoustic Wave Devices -E.A. Mariani
- 11-38-483 Software for Two Automated Time
 Measurement Systems S.R. Stein and
 G.A. Gifford
- 11-38-487 The Specification of Quartz for Piezoelectric Devices J.C. Brice
- 11-38-496 X-Ray Handedness Determination on Finished Doubly Rotated Quartz Plates H. Merigoux, J.F. Darces and J. Lamboley
- 11-38-499 Resistance-Measurements of Quartz Crystals at Very Low Drive Levels -J.S. Yerna
- 11-38-507 Further Results of Temperature Compensated Crystal Oscillator Testing - V.J. Rosati and P.L. Thompson
- 11-39-132 Application of Spectrum Estimation in Phase Noise Measurement D. Wulin and X. Sanbao
- 11-39-527 A System for Precision Parameter
 Measurements on Quartz Crystal
 Resonators and Bipoles R.C. Peach
 and S.E. Morris
- 11-39-535 Investigation of Quartz Crystal Thickness Shear and Twist Modes Using a New Noninterferometric Laser Speckle Measurement Method - S. Hertl, E. Benes, L. Wimmer and M. Schmid
- 11-39-544 A Study of Flexural, Anharmonic and Thickness-Shear Modes of Vibrations in Quartz Resonators Using Scanning Electron Microscope - H. Bahadur and R. Parshad
- 11-40-295 Group Delay Measurements A
 Sensitive Method For Detecting
 Spurious Crystal Resonances F.K.
 Euler
- 11-40-306 Aging Measurements on Quartz Crystals in the Batch Mode - E. Hafner and H.W. Jackson

- 11-40-313 The Precise Determination by an Automatic System on the Resonance Frequencies of the Quartz Crystal Resonator Y. Oomura and Y. Watanabe
- 11-40-323 Report on the Workshop on Traceability of Quartz Measurements to U.S. Standards - J.A. Kusters
- 11-41-126 A Method for Using a Time Interval Counter to Measure Frequency Stability - C.A. Greenhall
- 11-41-241 Cultured Quartz Quality Standards Updated by the EIA - C.B. Sawyer
- 11-41-466 Review of the Revised Military
 Specification for Quartz Crystal
 Oscillators S. Schodowski and V.J.
 Rosati
- 11-41-527 Progress Report on the EIA/P.11 Round Robin Crystal Measurements Experiment - W.L. Smith
- 11-42-304 A Simple Way of Characterizing High Q Oscillators J. Goldberg
- 11-42-380 Measurement and Analysis of Thermal Hysteresis in Resonators and TCXO's - R.L. Filler
- 11-42-419 Standard Terminology for Fundamental Frequency & Time Metrology D.W. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J.R. Vig, G.M.R. Winkler and N.F. Yannoni
- 11-42-432 Extending the Range and Accuracy of Phase Noise Measurements F.L. Walls, A. Clements, C.M. Felton, M. Lombardi and M. Vanek
- 11-42-442 Technique for Measuring the Acceleration Sensitivity of SC-Cut Quartz Resonators M. Watts, E.P. EerNisse, R.W. Ward and R.B. Wiggins
- 11-42-456 Precise Measurements of Quartz
 Crystal Units by Network Analyzer
 Technique Applied to Two Different
 Types of Test Jig V. PopovicMilovanovic, B. Dobnikar and V.
 Popovic

CATEGORY 12:

Frequency Stability and Phase Noise (other than "measurement of")

		Long and Short Term Frequency Stability of UHF Cavity-Controlled Oscillators - R.E. Meek	12-32-520	Transfer of Frequency Stability From an Atomic Frequency Reference to a Quartz Crystal Oscillator - J. Vanier, M. Tetu and L.G. Bernier
	12-14-192	Stability of Crystal Oscillators - E. Hafner	12-32-527	A Systems Approach to High Performance Oscillators - S.R.
	12-16-438	The Effects of Noise on Oscillator Frequency Stability - L. Saporta and G. Weiss		Stein, C.M. Manney, Jr., F.L. Walls, J.E. Gray and R.J. Besson
	12-16-448	Measurements on Oscillator Stability Improvement by Means of High Purity Nickel Cathode Tubes - C.J.G. Abom		Estimation of the Spectrum of Fractional Frequency Deviates - D.B. Percival
	12-18-535	Short Term Stability of High Precision Crystal Oscillators - M.B. Bloch and K. Toerper	12-34-228	Application of Modern Time Series Analysis to High Stability Oscillators - B.F. Farrell, E.M. Mattison and R.F.C. Vessot
	12-19-43	Progress and Problems in Short Term Stability - W.A. Edson	12-35-476	Relation Between 1/f Noise and Q-Factor in Quartz Resonators at Room
	12-21-259	Present Status in Short Term Frequency Stability - L.S. Cutler		and Low Temperatures, First Theoretical Interpretation - J.J. Gagnepain, J. Uebersfeld, G. Goujon and P. Handel
	12-21-264	Study of Short Term Stability of Crystal Oscillator - B. Boychuk, M.B. Bloch, G. Weiss and A. Thumin	12-35-484	1/f Frequency Fluctuation of a Quartz Crystal Oscillator and Temperature Fluctuation - Y.
	12-22-340	Flicker Noise of Phase in RF Amplifiers and Frequency Multipliers: Characterization, Cause and Cure - D. Halford, A.E. Wainwright and J.A. Barnes	12-36-371	Noguchi, Y. Teramachi and T. Musha Vibration and Acceleration-Induced Timing Errors of Clocks and Clock Systems - F.L. Walls
	12-28-150	Phase Noise of Various Oscillators at Very Low Fourier Frequencies - D. Babitch and H. Fallek	12-37-218	Excess Noise in Quartz Crystal Resonators - J.J. Gagnepain, M. Olivier and F.L. Walls
	12-28-160	Relations Between Spectral Purity and Frequency Stability - J. Rutman	12-38-319	Simulation of Oscillator Noise - J.A. Barnes
	12-28-166	On 1/f-Noise in Diodes and Transistors - O. Mueller	12-39-91	Errors in Servo Systems Using Sinusoidal Frequency (Phase) Modulation - F.L. Walls
	12-28-243	A Method for Estimating the Frequency Stability of an Individual Oscillator - J.E. Gray and D.W. Allan	12-39-97	1/f Frequency Fluctuations in Acoustic and Other Stable Oscillators - T.E. Parker
	12-29-308	1/f Resonant Frequency Fluctuation of a Quartz Crystal - T. Musha	12-39-113	The Fractal Dimension of Phase and Frequency Noises: Another Approach to Oscillator Characterization -
	12-29-311	I Internal Noise of a Quartz Crystal Oscillator, Influence of the Parallel Capacitance - R. Brendel,		J.J. Gagnepain, J. Groslambert and R. Brendel
	J. Groslambert, G. Marianneau, M. Olivier and J. Uebersfeld	12-39-119	Frequency Stability Characterization From the Filtered Signal of a Precision Oscillator - P. Tremblay	
	12-30-284	The Stability of Precision Oscillators in Vibratory Environments - A.I. Vulcan and M.B. Bloch	12-39-127	and M. Tetu The Analytic Signal Representation of Oscillators with Application to
12-32-514	12-32-514	4 Conversion Between Time and Frequency Domain of Intersection Points of Slopes of Various Noise Processes - R. Burgoon and M.C. Fischer		Frequency Stability Analysis - L.G. Bernier and F.E. Gardiol
			12-39-135	A Comparison of Frequency Noise of Quartz Resonators - J.J. Gagnepain
	. 1001101	12-40-241	Random Walk Frequency Fluctuations In Saw Oscillators - T.E. Parker	

- 12-40-300 RF Spectrum of the Oscillator Signal Under Non-Stationary Phase Instabilities B. Joss, L.G. Bernier and F.E. Gardiol
- 12-40-336 Minimum Sideband Noise in Oscillators J.K.A. Everard
- 12-40-379 The Coherence of a Radar Master Oscillator R.D. Weglein
- 12-41-99 Characteristics and Sources of Phase Noise in Stable Oscillators T.E. Parker
- 12-41-112 Relating the Allan Variance to the Diffusion Coefficients of a Linear Stochastic Differential Equation Model for Precision Oscillators J.W. Chaffee
- 12-41-116 Theoretical Analysis of the Modified Allan Variance L.G. Bernier
- 12-41-122 Frequency Stability Characterization of Hopping Sources G.A. Kalivas and R.G. Harrison
- 12-41-420 The Relationship Between Resonator and Oscillator Noise, and Resonator Noise Measurement Techniques G.S. Curtis
- 12-41-471 Noise in Oscillators Employing
 Submicron Field-Effect Transistors M.S. Gupta
- 12-41-507 Random Noise in Digital Gates and Dividers D.E. Phillips
- 12-42-279 The Influence of Pressure and Humidity on the Medium and Long-Term Frequency Stability of Quartz Oscillators F.L. Walls
- 12-42-389 Burst Noise and 1/F Noise in Quartz Crystals and Oscillators - G. Moulton
- 12-42-397 Resonator Surface Contamination A Cause of Frequency Fluctuations? -Y.K. Yong and J.R. Vig
- 12-42-426 Noise and Time and Frequency --- A Potpourri J.A. Barnes
- 12-42-447 Kalman Filter Analysis for Real Time Applications of Clocks and Oscillators - S.R. Stein

CATEGORY 13:

Sensors and Transducers

- 13-31-62 Quartz Crystal Accelerometer
 Insensitive to Temperature Variation
 M. Onoe, K. Furusawa, S. Ishigami,
 T. Sase and M. Sato
- 13-36-265 The Torsional Tuning Fork as a Temperature Sensor R.J. Dinger
- 13-36-290 New Quartz Resonators with Precision Frequency Linearity over a Wide Temperature Range M. Nakazawa, H. Ito, A. Usui, A.D. Ballato and T.J. Lukaszek
- 13-37-248 Force Sensor Using Double-Ended Tuning Fork Quartz Crystals - S.S. Chuang
- 13-38-233 Force Sensing Using Quartz Crystal Flexure Resonators W.C. Albert
- 13-38-240 Stress-Compensated Quartz Resonators
 Having Ultra-Linear FrequencyTemperature Responses M. Nakazawa,
 H. Yamaguchi, A.D. Ballato and T.J.
 Lukaszek
- 13-39-556 Enhanced Composite Resonator
 Analysis and its Application to the
 Quartz Crystal Microbalance E.
 Benes, K.C. Harms and G. Thorn
- 13-39-571 Transient Analysis of Piezoelectric Transducer Response - A.H. Banah
- 13-39-575 A Filled Thermal System Utilizing A
 Gas Density Sensing Quartz Crystal
 Tuning Fork R.W. Ward and E.P.
 EerNisse
- 13-40-211 A Quartz Fluid Density Sensor Pressure Transducer - R.W. Ward and E.P. EerNisse
- 13-40-216 A Resonator Temperature Transducer with No Activity Dips E.P. EerNisse and R.B. Wiggins
- 13-40-224 Temperature Sensor Using quartz
 Tuning Fork Resonator T. Ueda, F.
 Kohsaka, T. Iino and D. Yamazaki
- 13-40-230 Double-Ended Tuning Fork Quartz
 Acelerometer W.J. Kass and G.S.
 Snow
- 13-40-237 An Economical Touch Panel Using Saw Absorption - R. Adler and P.J.
- 13-41-333 New Prospects for Acoustic Sensors:
 An Overview R.M. White
- 13-41-339 Theoretical Modeling of Quartz Resonator Pressure Transducers -E.P. EerNisse
- 13-41-344 A Reduced Hysteresis, Extended Range Quartz Pressure Transducer - R.W. Ward and E.P. EerNisse

- 13-41-350 Study of Liquids in Shear Using a Quartz Resonator K.K. Kanazawa and C.E. Reed
- 13-41-544 A High Linearity SAW Accelerometer D.E. Bower, M. Cracknell and A. Harrison
- 13-42-78 A Low Cost Force Sensing Crystal Resonator Applied to Weighing - W. Albert

CATEGORY 14:

Other Topics

14-10-455	A Transistorized 1 Mc/Sec Frequency Counter - N. Sher and R. Goodwin	14-23-313	Precision Time Measurements of Optical Pulsars - P. Boynton, R.B. Partridge and D.T. Wilkinson
14-12-623	The Velocity of Light - J.R. Zacharias	14-24-1	Introductory Session Honoring Rodger Sykes on His Retirement - E.A.
14-12-624	Experimental Tests of Special and General Relativity by Accurate Timing Devices - C.H. Townes	14-24-8	Gerber Introductory Session Honoring Rodger
14-13-477	Analysis and Presentation of Data for a Manufacturers' Handbook - R.		Sykes on His Retirement - W.P. Mason
	Bennett, C. Rutkowski and L.A. Tyler	14-24-13	Introductory Session Honoring Rodger Sykes on His Retirement - J.M. Wolfskill
14-13-542	Induced and Spontaneous Emissions in a Coherent Field - I.R. Senitzky	14-24-172	A Report on IEC Technical Committee TC-49 - C. Franx
14-13-543	A Relativity Experiment with MASERs - J. Cedarholm	14-25-1	A Quarter Century of Progress in the Theory and Development of Crystals
14-13-629	Time Scales in the Structure of the Universe - R.H. Dicke		for Frequency Control and Selection - E.A. Gerber and R.A. Sykes
14-13-697	Frequency Control Research and Development in Western Europe - J.C.B. Missel	14-26-1	An Overview of Electronic Equipment Reliability - A.W. Rogers
14-14-217	The Micro-Module Program - V. Kublin	14-28-57	Technical Aspects of Crystal Wrist Watches - H. Yoda and N. Horie
]14-31-1	Opening Remarks - V.L. Friedrich
	Is the Fine Structure Constant Invariant - R.H. Dicke	14-33-1	The Sesquicentennial of the First Crystal Plate Equations - R.D.
14-16-211	The Coming Era of Microelectronics - J.D. Meindl and M. Tobman	14 22 4	Mindlin Palatinitus and Glass
14-16-241	Frequency Control Research and	14-33-4	Relativity and Clocks - C. Alley
	Development in Western Europe - U.E. Adelsberger	14-33-40	<pre>1/f (Flicker) Noise: A Brief Review - R.F. Voss</pre>
14-18-5	Professor Cady's Work in Crystal Physics - H. Jaffe	14-33-47	The Domestic and International Use of the Radio Spectrum - D.M. Jansky
14-18-12	Developments in Ultrasonics - W.P. Mason	14-33-436	Use of Fiber Optic Frequency and Phase Determining Elements in Radar - A.M. Levine
14-18-43	Piezoelectricity - Frequency Control - R. Bechmann	14-34-510	Precision Frequency Control and
14-19-59			
			Selection - A Bibligraphy, continued - E.A. Gerber
	Tuning Forks and Other Vibrating Metal Resonators in Frequency	14-35-1	Selection - A Bibligraphy, continued
14-20-70	Tuning Forks and Other Vibrating Metal Resonators in Frequency Control Systems - F. Dostal Crystals And Filters - The State-of-	14-35-1 14-35-3	Selection - A Bibligraphy, continued - E.A. Gerber
14-20-70 14-22-35	Tuning Forks and Other Vibrating Metal Resonators in Frequency Control Systems - F. Dostal Crystals And Filters - The State-of- the-Art in Europe - W.J. Young Frequency Management and Spectrum	14-35-3	Selection - A Bibligraphy, continued - E.A. Gerber Opening Remarks MG - E. Paige, Jr. A History of the Quartz Crystal
	Tuning Forks and Other Vibrating Metal Resonators in Frequency Control Systems - F. Dostal Crystals And Filters - The State-of- the-Art in Europe - W.J. Young	14-35-3 14-35-576	Selection - A Bibligraphy, continued - E.A. Gerber Opening Remarks MG - E. Paige, Jr. A History of the Quartz Crystal Industry in the USA - V.E. Pottom The Future of the Quartz Crystal
14-22-35	Tuning Forks and Other Vibrating Metal Resonators in Frequency Control Systems - F. Dostal Crystals And Filters - The State-of- the-Art in Europe - W.J. Young Frequency Management and Spectrum Development within the Executive Branch of the Government - W.E.	14-35-3 14-35-576 14-35-583	Selection - A Bibligraphy, continued - E.A. Gerber Opening Remarks MG - E. Paige, Jr. A History of the Quartz Crystal Industry in the USA - V.E. Pottom The Future of the Quartz Crystal Industry - Worldwide - A.D. Ballato The Future of the Quartz Crystal
14-22-35	Tuning Forks and Other Vibrating Metal Resonators in Frequency Control Systems - F. Dostal Crystals And Filters - The State-of- the-Art in Europe - W.J. Young Frequency Management and Spectrum Development within the Executive Branch of the Government - W.E. Plummer Piezoelectric Traing Program at	14-35-3 14-35-576 14-35-583 14-35-592	Selection - A Bibligraphy, continued - E.A. Gerber Opening Remarks MG - E. Paige, Jr. A History of the Quartz Crystal Industry in the USA - V.E. Pottom The Future of the Quartz Crystal Industry - Worldwide - A.D. Ballato The Future of the Quartz Crystal Industry - Worldwide - J.H. Staudte The Future of the Quartz Crystal The Future of the Quartz Crystal

CATEGORY 14 (Cont'd)

14-35-669	Properties of Signal Sources and Measurement Methods - D.A. Howe, D.W. Allan and J.A. Barnes	1
14-36-1	Opening Remarks - E.A. Gerber	1
14-36-220	"Atomic Clocks": Preview of an Exhibit at the Smithsonian - P. Forman	
14-37-1	In Memoriam - Andrew Chi	1.
14-37-3	Awards - 1983	
14-38-1	Awards Program	1
14-38-2	1984 Award Winners	
14-39-1	1985 Awards	
14-39-2	Awards Program	
14-39-270	Quartz for the National Defense Stockpile - R.A. Laudise	
14-40-1	IN MEMORIAM - Jerrold R. Zacharias	
14-40-2	IN MEMORIAM - Eduard A. Gerber	
14-40-3	1986 Award Winners and Remarks	
14-40-8	Plenary Session Remarks - E.A. Gerber	
14-40-9	Quartz Crystals Paved the Way - W.L. Doxey	
14-40-15	Origin and Influence of the AFCS - V.E. Bottom	
14-40-16	Looking Back - J.C. King	
14-40-18	Early Frequency Control Reminiscences - M. Bernstein	
14-40-20	The Year When Quartz Ran Short - R. Adler	
14-40-22	The Frequency Control Symposium - Then and Now - W.L. Smith	
14-40-24	The Atomichron - 30 Years Ago - R.T. Daly	
14-41-1	Award Presentation - 1987	
14-41-2	Millisecond Pulsar Rivals Best Atomic Clock Stability - D.W. Allan	
14-42-1	Award Presentations	
14-42-2	In Memoriam - R.D. Mindlin	
14-42-4	In Memoriam - I.I. Rabi	
14-42-540	High-Temperature Superconductivity: Novel Concepts, Fundamental Issues, and Frequency Control Aspects (Invited Paper) - G.J. Iafrate and T.F. Parker	

T.E. Parker

- 14-42-545 Superconducting Resonators and High-T Materials - D. Oates, A.E. Anderson and J. Steinbeck
- 14-42-550 High Temperature Superconductors and Their Promise for Better Microwave Circuits (Invited Paper) P.H. Carr and J. Derov
- 14-42-556 Evaluating Superconducting Resonator Materials - B.R. McAvoy, J.D. Adam and G. Wagner
- 14-42S-1 Background and Early Sessions of the Frequency Control Symposium W.L. Doxey

Abom, C.J.G. 12-16-448

Adachi, T. 11-33-201, 2-35-149, 11-37-187, 6-39-176

Adam, J.D. 5-36-419, 5-40-392, 14-42-556

Adams, C.A. 4-17-215, 2-22-55, 11-22-248, 2-24-55, 2-30-175, 2-31-3, 5-31-246, 5-32-74, 4-34-167, 4-39-475, 4-41-249

Adams, R.A. 1-32-34

Adams, W.A. 7-30-481

Addor, F. 7-36-260

Adelsberger, U.E. 14-16-241, 11-20-661

Adkins, L.R. 5-30-367

Adler, R. 14-40-20, 13-40-237

Agosta, C.C. 7-40-413

Akahane, Y. 6-32-403

Akatsuka, K. 9-39-145

Akiyama, M. 2-30-65

Albert, W. 13-42-78, 13-38-233

Aleksic, Z. 6-40-340

Allan, D.W. 6-20-629, 9-23-248, 9-23-249, 7-24-361, 9-25-195, 9-26-309, 7-27-334, 12-28-243, 11-29-404, 11-30-269, 9-31-495, 7-31-555, 9-34-334, 11-35-470, 9-35-546, 14-35-669, 9-36-378, 9-37-55, 9-39-107, 9-40-394, 14-41-2, 9-41-144, 11-42-419, 9-42-465, 9-42-485, 7-42-514

Allen, R.L. 11-20-672

Allen, R.T. 9-36-372

Alley, C. 7-13-632, 14-33-4

Allington, R.W. 2-29-195

Allison, R. 5-32-66

Alusow, J.A. 5-29-167

Amstutz, P. 5-37-239

Anderson, A.E. 11-17-312, 14-42-545

Anderson, T.L. 1-31-171

Andle, J.C. 1-36-124

Andres, J.M. 7-13-676

Andres, R.P. 4-30-232

Andresen, H.G. 7-18-283, 7-19-385, 7-20-402

Andresen, S.G. 7-18-265, 7-21-467, 7-22-517

Andrews, A.P. 5-36-270

Andrews, D.C. 1-36-66

Andricos, C. 6-34-202

Ang, D. 4-32-282, 4-33-364, 4-34-41

Angove, R. 2-42-73, 4-19-105

Arakelian, R. 6-31-400

Arditi, M. 7-12-606, 7-13-655, 7-14-329, 7-15-181

Arendt, P.R. 11-20-636

Armington, A.F. 1-32-11, 3-33-62, 3-33-134, 1-35-297, 1-36-55, 1-36-77, 1-36-115, 1-37-177, 1-38-3, 1-39-230, 1-40-70, 1-41-213, 1-42-162

Armstrong, J.H. 4-20-192

Arneson, S.H. 5-31-231

Arnold Jr., G.W. 1-10-60, 1-11-112

Arranz, T. 5-31-213

Artal, E. 6-41-524

Asahara, J. 1-22-15, 1-26-93, 1-28-117, 1-29-211, 4-34-120, 1-35-304

Asanuma, N. 1-28-117, 4-34-120

Ashrafi, D. 2-37-317

Ashrafi, S. 2-37-317

Athanis, T. 7-18-322

Aubry, J.P. 11-37-306, 2-38-190, 6-39-202, 6-39-212, 5-39-504, 1-40-121, 5-42-101

Audoin, C. 7-22-493, 7-23-288, 7-25-337, 7-27-367, 7-29-371, 11-29-394, 11-31-311, 7-31-520, 7-31-535, 7-32-531, 7-33-515, 7-34-353, 7-40-410, 7-40-432, 7-42-496

Aughey, R.M. 6-20-500, 10-25-94

Augustine, F. 1-11-130, 1-12-67

Auld, B.A. 5-31-251

Aulich, E. 7-27-404

Avila, G. 7-38-452

Avinens, C. 1-42-138

Azoubib, J. 9-33-473

Babbitt III, H.S. 6-31-412

Babitch, D. 6-26-264, 12-28-150

Baertsch, R.D. 5-29-88

Bagley, A.S. 11-10-496, 7-18-344

Bahadur, H. 2-32-207, 3-39-266, 11-39-544

Bailey, D.S. 1-36-124

Bailey, R. 7-20-436, 7-27-317

Bailey, W.H. 5-26-171, 5-31-187

Bain, C. 7-41-95

Baker, M. 10-21-512, 7-22-605

Balascio, J.F. 1-34-65, 1-37-157, 1-38-3, 1-39-230, 1-40-70, 1-41-213, 1-42-162

Balbi, J.H. 2-32-162, 2-35-187

Baldwin, L. 6-16-328

Ballato, A.D. 2-14-89, 2-15-22, 2-16-77, 11-17-537, 11-18-458, 5-20-131, 11-20-465, 2-21-115, 4-22-67, 11-22-282, 11-24-177, 2-26-86, 2-27-20, 5-27-262, 2-28-270, 2-29-10, 2-30-141, 2-31-8, 11-31-102, 2-32-180, 2-33-293, 2-33-311, 2-33-322, 2-34-431, 2-35-71, 5-35-376, 14-35-576, 13-36-290, 2-36-513, 2-37-194, 5-37-415, 2-38-206, 13-38-240, 2-39-462, 2-40-145, 2-41-325, 2-42-6, 1-42-53

Ballman, A.A. 1-18-121, 1-26-92

Baltas, M.M. 11-18-243

Baltzer, O.J. 6-15-251, 11-36-321

Banah, A.H. 13-39-571

Bancroft, Jr., R.H. 6-18-584

Bangert, R.H. 6-17-491, 6-18-487, 6-19-617

Bara, J. 6-41-492, 6-41-524

Barcus, L.C. 2-16-46, 2-17-51, 2-20-50, 2-32-202

Bare, C.C. 6-20-624

Barger, R.L. 8-23-306, 8-29-316, 8-32-439

Barillet, R. 7-32-531, 7-34-353, 7-40-410

Barnaba, J.F. 11-26-260

Barnes, F. 7-15-204, 7-18-265

Barnes, J.A. 7-13-583, 6-20-629, 12-22-340, 9-22-384, 9-23-249, 7-25-309, 11-26-20, 9-26-269, 7-27-334, 11-35-470, 14-35-669, 9-36-378, 12-38-319, 9-39-107, 12-42-426

Barnhill, K. 6-35-455

Barns, R.L. 1-29-98, 1-33-88, 1-42-116

Barry, J.F. 10-26-8

Bartholomew, A. 10-22-342

Bartholomew, C. 9-24-339

Bartillet, R. 7-27-367

Batdorf, H.A. 6-23-192

Bates, A.G. 9-28-395, 7-32-486

Bauch, A. 7-39-8, 7-42-490

Baugh, R.A. 11-25-222, 6-26-50

Baughman, R.J. 1-36-82

Bava, E. 8-31-578, 8-33-498, 8-33-504

Beaty, E.C. 7-12-593, 7-13-668

Beaubien, A.F. 6-38-374

Beaver, W.D. 5-20-288, 5-21-179, 2-27-11, 11-33-189, 2-37-226

Bechmann, R. 5-12-437, 4-14-68, 2-15-22, 2-16-77, 14-18-43

Bechtold, G.W. 8-21-455

Becker, G. 6-26-279

Beehler, R.E. 7-14-298, 7-17-392, 7-25-297

Beetley, D.E. 11-35-263

Bell, D.T. 5-30-358

Bell, H.E. 7-26-242, 7-27-357, 7-28-362, 7-33-554

Belser, R.B. 4-10-122, 4-11-157, 4-12-37, 4-13-71, 4-14-115, 4-15-66, 4-16-110, 3-17-127, 4-18-129, 2-19-23, 4-20-180, 4-21-211, 4-23-132

Bender, P.L. 7-12-593, 7-13-668, 7-24-279

Benedetti, R. 7-28-350, 8-31-605

Benedikter, H.J. 3-28-143

Benes, E. 11-39-535, 13-39-556

Benjaminson, A. 2-22-55, 6-38-327, 6-39-140, 6-40-344, 6-41-452

Bennett, A.L. 2-14-53, 2-19-23

Bennett, C. 5-37-405

Bennett, R. 14-13-477

Beno, L. 7-41-75

Berenguer, J. 6-41-492, 6-41-524

Berg, C.A. 3-23-178

Bergquist, J.C. 8-32-439, 8-33-494, 7-35-602, 7-35-625, 7-39-85

Berlincourt, D. 1-14-19

Berlinsky, A.J. 7-40-419

Bernacki, B. 8-41-42

Bernier, L.G. 12-32-520, 7-34-376, 12-39-127, 12-40-300, 12-41-116

Bernot, A.J. 4-39-271

Bernstein, M. 10-13-261, 11-15-98, 11-19-469, 4-21-244, 11-22-232, 10-25-125, 14-40-18

Berte, M. 4-31-122

Besson, R.J. 1-28-8, 2-28-19, 4-30-78, 2-31-147, 2-32-162, 12-32-527, 2-33-337, 4-34-175, 6-34-457, 2-35-122, 2-35-340, 6-38-366

Betsch, R. 1-34-25

Beuerle, D.R. 5-20-309

Beverini, N. 7-30-468

Bhaskar, N.D. 7-41-47, 7-42-510

Bickart, C.J. 7-13-546, 9-15-226, 7-18-283

Bidart, L. 5-25-271, 2-35-365

Bigler, E. 5-42-224

Bigler, R.R. 4-15-109

Birch, J. 5-23-65, 2-30-32

Birnbaum, M. 10-30-375

Birrell, R.W. 4-35-60

Bishop, C.D. 5-40-252

Bistline, Jr., G.K. 4-10-569, 4-16-146, 11-17-314, 4-18-193, 4-20-208, 11-22-163

Bjerde, B. 6-30-318

Black, I.A. 6-15-282

Black, J.F. 5-36-537

Blackburn, C.M. 7-32-486

Blair, B.E. 9-25-195

Blaisdell, A. 6-16-328

Blanchard, D.L. 9-33-468

Blewer, R.S. 4-22-136

Blitch, B.R. 11-35-263

Bloch, M.B. 12-18-535, 4-20-530, 12-21-264, 6-21-331, 4-22-118, 10-22-342, 2-26-148, 6-26-264, 2-28-73, 11-28-184, 6-28-211, 6-30-279, 12-30-284, 6-31-421, 11-32-344, 7-34-370, 6-34-463, 6-35-415, 9-35-553, 9-39-153, 6-41-519

Blocker, L.W. 9-25-186

Blomberg, E.L. 7-31-525, 7-33-511, 7-33-549

Blomster, P.R. 4-20-192, 11-24-177

Bodily, L.N. 9-19-195, 7-20-448

Bollinger, J.J. 7-37-37

Bonanomi, J. 7-12-538, 7-14-354, 7-17-408

Bond, W.L. 4-31-153

Bonnier, D. 7-36-340

Boor, S.B. 4-19-105, 11-19-436

Borde, C. 8-27-386

Bossoli, R.B. 1-35-317, 1-36-77, 1-37-164

Bottom, V.E. 14-22-42, 1-23-21, 4-30-249, 14-35-3, 14-40-15

Boulanger, J.S. 9-33-473, 9-37-78

Bourgeois, C. 2-33-255, 2-34-419

Bourke, B. 6-37-485

Bourquin, R. 2-36-200, 2-39-405, 2-41-289

Bower, D.E. 2-40-269, 13-41-544

Bowman, J.A. 9-24-339, 9-25-209, 11-27-440

Boychuk, B. 12-21-264

Boyne, H.S. 8-24-233

Boynton, P. 14-23-313

Bradley, D.B. 9-31-436

Bradley, D.C. 4-41-249

Brajovic, V. 4-42-404

Bramble, A.L. 6-35-406, 6-40-366

Brandenberger, H. 9-20-577, 11-25-226, 7-33-563, 7-36-260

Brandmayr, R.J. 4-33-351, 4-39-276, 4-40-86

Brandt, F.R. 4-21-224

Brauge, J. 5-39-504

Braymen, S.D. 5-41-371

Brebbia, C.A. 2-32-108

Breiding, R.J. 6-21-308

Brendel, R. 12-29-311, 1-36-97, 12-39-113, 1-40-121

Brice, J.C. 1-32-1, 1-35-312, 11-38-487

Bridges, W.B. 7-30-489

Bridgham, R. 9-13-342

Brisson, A. 7-34-376

Broderick, D. 6-12-406

Brodersen, R.W. 5-29-77

Brophy, M.J. 2-40-285

Brousseau, R. 11-31-344, 7-39-64

Broussou, S. 10-27-39

Brower, H.P. 10-12-193, 6-13-232

Brown, D.A. 7-16-259, 6-38-380

Brown, H. 1-42-116

Brown, K.E. 9-31-465

Brown, P. 9-15-226

Brown, R.B. 5-28-299

Brown, R.N. 3-33-134, 1-35-329

Browning, T.I. 5-31-258, 5-32-87

Brownlow, D.L. 4-30-23

Brunet, M. 9-33-473, 6-36-499, 6-37-454, 6-39-202

Brunsman, M.D. 5-35-436

Bryan, P.E. 4-15-113, 4-17-267, 11-29-237

Bryant, A. 5-36-276

Buisson, J.A. 9-27-277, 11-29-425, 7-32-560, 9-37-61

Bulst, W.E. 5-32-58, 5-36-442

Burgess, J.W. 5-27-246, 5-28-43

Burgoon, R. 12-32-514, 6-33-406, 6-33-411

Burhop, W.V. 9-22-441

Burkhard, D. 7-15-204

Burkland, W.A. 5-41-371

Burns, S.G. 5-38-266, 5-41-371, 5-41-382, 5-42-272

Buroker, G.E. 11-18-407, 6-27-191

Burt, M.W. 6-18-584

Busca, G. 7-27-400, 7-28-344, 7-31-535, 7-32-466, 7-32-506, 7-33-563, 7-36-260

Buss, D.D. 5-26-171, 5-29-77, 5-30-123

Bustamante, M. 6-40-355

Butler, W.J. 5-29-88

Butterfield, F.E. 10-30-371

Byers, W.F. 6-27-180

Byrne, A.J. 11-36-297, 5-36-389

Byrne, R.J. 4-18-166, 4-19-125, 5-24-84, 4-26-71

Cain, J.B. 9-31-436

Callerame, J. 4-39-519

Calmes, C.C. 4-30-259

Camparo, J.C. 7-39-29, 7-40-447, 7-41-36

Candelier, V. 7-40-432

Capelle, B. 1-39-234, 1-40-101, 2-41-236, 2-42-19, 4-42-85, 4-42-208

Capone, B.R. 2-25-109

Carel, M. 5-35-349

Caret, G. 6-39-212, 6-41-413

Carlson, D.L. 9-30-438

Carr, P.H. 1-30-129, 1-31-182, 1-32-189, 14-42-550

Carru, H. 5-37-239, 2-42-19, 5-42-101

Carter, R.L. 5-35-358, 5-37-477

Carver, T.R. 7-11-307, 7-12-625, 7-14-329

Castellano, R.N. 4-29-128, 4-31-126

Cawley, H.F. 5-29-113

Cedarholm, J. 14-13-543

Cerez, P. 7-38-452, 7-42-496

Chabak, E. 5-20-131

Chaffee, J.W. 12-41-112

Chai, B.H.T. 1-33-80, 5-35-401, 1-36-124, 2-38-206

Chambers, J.L. 4-35-60, 11-36-302, 11-37-275

Chambers, R.P. 1-16-43

Chao, H.L. 1-37-116

Chase, A.B. 8-31-574

Chase, C. 5-42-378

Chatham, T.B. 5-36-470

Chatterjee, A. 7-39-59

Chauvin, J. 2-35-365

Cheek, T.F. 5-26-164

Chen, C.Y. 3-39-259, 3-41-216

Chester, A.N. 7-30-489

Chi, A.R. 2-10-46, 1-11-90, 7-12-593, 7-13-668, 9-20-588, 11-22-592, 11-24-301, 9-24-332, 9-33-468

Chiba, K. 7-35-646, 7-39-54

Chie, C.M. 11-31-302

Chizak, G. 6-24-191

Cho, F.Y. 5-34-302, 5-35-376, 5-36-470

Christie, I.R.A. 1-36-62

Chuang, S.S. 2-35-130, 13-37-248, 2-42-29

Citrinovitch, A. 9-42-485

Claiborne, L.T. 5-28-256, 5-29-135, 5-30-123

Clark, D.P. 6-27-199

Clark, L.R. 4-13-498

Clark, M.A.G. 6-32-365

Clark, R.L. 6-39-166

Clarke, R.L. 9-42-472

Clastre, J. 4-32-310

Clements, A. 9-35-546, 11-42-432

Clifford, G.C. 4-39-367

Cline, R.W. 7-40-419

Cline, T.W. 1-32-43

Cloeren, J.M. 3-38-63

Cohen, V.W. 7-24-279

Cole, A.M. 1-32-1

Collins, D.R. 5-26-171

Collins, F. 6-16-328

Colpen, O. 6-13-165

Colson, C. 6-36-197

Colvin, R.D. 5-36-486

Comeron, A. 6-41-492, 6-41-524

Conlee, L. 1-28-125

Cook, Jr., C.F. 4-27-98, 4-28-96

Cook, R.A. 7-41-47, 7-42-525

Coquerel, R. 5-36-284, 5-42-224

Coquin, G.A. 5-19-42

Coralnick, P. 9-27-296

Corbella, I. 6-41-524

Corcoran, V.J. 8-23-307, 8-24-240

Cormier, J.E. 1-37-177

Cortwright, R.D. 4-10-524

Corwin, J.F. 1-10-100

Costain, C.C. 7-27-317, 9-28-406, 9-33-473, 9-37-78

Costanza, S.T. 5-28-260

Costlow, R.J. 6-37-97

Coussot, G. 5-29-181

Cowdrey, D.R. 2-27-7

Coyle, L. 6-42-352

Cracknell, M. 13-41-544, 5-42-284

Craft, K.W. 6-27-180

Craiglow, R.L. 6-11-586, 6-21-370

Crampton, S.B. 7-28-355, 7-33-543, 7-41-91

Cross, L.E. 1-30-71, 1-31-171, 1-32-43, 11-33-110, 1-34-25

Croxall, D.F. 1-36-62, 1-36-66

Cullen, D.E. 5-36-537

Cupp, R.E. 7-16-305, 7-17-409, 7-19-369, 7-20-377, 7-22-573, 8-23-307, 8-24-240

Curie, M. 4-42-85

Curran, D.R. 2-17-88, 2-18-93, 5-19-213, 5-19-534, 5-20-103

Curtis, G.S. 12-41-420

Cutler, L.S. 4-17-215, 7-18-344, 12-21-259, 7-25-313, 7-26-202, 7-37-32, 7-41-12

Cyr, N. 7-36-348, 7-38-408, 7-39-64

Daams, H. 7-19-332, 7-20-436, 7-24-294, 7-27-317, 11-29-404, 9-31-463, 9-33-473, 9-37-78

Dachel, P. 9-37-61

Dailing, J.L. 5-34-445

d'Albaret, B. 5-36-405, 5-38-254

Dallesasse, J.M. 2-40-285

Daly, R.T. 7-12-632, 7-13-297, 14-40-24

Daniel, H.U. 7-39-85

Daniels, R.G. 10-25-75

Darces, J.F. 4-32-304, 4-34-112, 1-37-111, 11-38-496, 4-40-140

Datta, S. 5-37-423

Dauwalter, C.R. 2-26-108

Davidheiser, R. 5-34-252

Davidovits, P. 7-19-417

Davis, D.D. 9-25-195, 9-35-546

Davis, Jr., C.F. 8-31-590

Day, J. 5-38-310

DeBoer, H. 7-42-490

de Clercq, E. 7-38-452

de Labachelerie, M. 7-38-452, 7-42-496

DeLuca, J.J. 7-30-481

DeMarchi, A. 8-31-578, 8-33-498, 8-33-504, 7-39-3, 7-40-428, 7-40-441, 7-41-53

DePrins, J. 7-14-354, 7-21-467, 7-22-517, 9-31-503

Debaisieux, A. 2-38-190, 6-39-202, 6-41-413

Debely, P.E. 7-24-259, 4-34-34

Decailliot, M.D. 6-38-366

Dees, J.W. 7-16-305

Dehmelt, H. 7-12-577, 8-35-596

DelVecchio, J. 10-23-1

Denman, J. 4-22-118, 2-28-73

Denton, R.T. 1-16-43

Derbyshire, A. 7-39-18

Derov, J. 14-42-550

Derr, V.E. 7-15-210, 7-19-369, 8-21-455

Desaintfuscien, M. 7-22-493, 7-23-288, 7-25-337, 7-27-367, 7-31-520, 7-31-535, 7-34-353, 7-38-431

Desmares, P.J. 13-40-237

Desrousseaux, P. 5-34-269

Detaint, J. 2-30-132, 1-33-70, 1-34-93, 5-37-239, 1-39-234, 1-40-101, 2-41-236, 2-41-314, 2-42-19, 4-42-85, 1-42-138

Detoma, E. 9-37-61

Di Lieto, A. 8-31-605

Dias, J.F. 5-28-266

Dick, G.J. 5-38-435, 7-41-20, 7-41-87, 5-41-487

Dick, L.A. 4-11-240, 4-12-241, 4-13-406, 4-24-141

Dicke, R.H. 7-10-259, 14-13-629, 14-14-248, 9-16-249

Dietterle, R.E. 5-35-345

Dimarcq, N. 7-42-496

Dinger, R.J. 4-34-34, 2-35-144, 13-36-265

Dischler, B. 5-30-346

Dishal, M. 5-13-404

Dobnikar, B. 11-42-456

Dodson, D.J. 5-34-221, 5-35-436

Doherty, R.H. 9-14-276

Doherty, S.P. 3-33-134, 1-34-81, 1-36-66, 11-36-297

Dokmeci, M.C. 2-39-431, 2-40-168

Dolochycki, S.J. 5-33-374

Donovan, A.F. 3-12-101

Dostal, F. 14-19-59

Douglas, A.J. 2-33-346

Douglas, R.J. 9-37-78

Douglass, D.H. 5-31-616

Doukhan, J.C. 1-39-234, 1-40-101

Dowsett, J. 1-35-312, 4-39-301, 2-40-269, 6-41-539, 4-41-548, 4-42-205

Doxey, W.L. 14-40-9, 14-425-1

Drake, G.W. 5-36-537

Dressner, J. 10-23-1

Driscoll, M.M. 6-26-43, 6-27-157, 6-31-400, 6-39-197, 6-40-329, 4-41-429, 5-42-369

Drullinger, R.E. 7-32-453, 7-39-3, 7-39-13, 7-39-18, 7-40-428

Dubois, B. 9-37-61

Dubois, R.E. 1-23-171

Dubouis, B. 9-31-499

Duchene, J.L. 7-38-431

Duckett, P. 6-24-191

Duffaud, J.A. 2-32-162

Dulmet, B. 2-39-405, 2-41-289

Dulmet, M.I. 2-35-187

Dworsky, L.N. 2-32-142, 4-35-237, 4-36-108, 2-37-232, 5-37-387, 2-38-141, 4-39-367, 5-39-486, 2-40-161, 2-41-295

Dwyer, D.F.G. 4-39-301

Dyal III, L. 5-31-281

Dybwad, G.L. 4-31-144, 4-32-286, 4-34-46

Dyer, A.J. 5-23-65, 2-30-40, 11-36-297, 5-36-389

Early, R.C. 6-21-345

Easton, R. 10-22-342, 9-24-339

Ebata, Y. 2-39-361

Eberhard, E. 6-11-518

Echigo, N. 2-32-267, 2-33-277

Eckart, D.W. 4-40-115

Edson, W.A. 12-19-43

Edwards, H.W. 2-36-529

EerNisse, E.P. 2-21-28, 2-22-2, 2-29-1, 2-30-8, 2-31-8, 2-32-255, 2-33-300, 2-34-426, 2-37-255, 2-38-126, 13-39-575, 13-40-211, 13-40-216, 13-41-339, 13-41-344, 11-42-442

Equchi, J. 4-39-345

Ehrilich, D.J. 4-41-351

Eichinger, R.A. 9-35-565

Eisen, D.M. 4-13-498, 4-18-204

Elchinger, G. 8-31-590

Elliott, D.T. 2-35-174

Elliott, J.H. 6-40-292

Embree, D.M. 6-34-475, 6-42-276

Emin, C.D.J. 1-37-136

Emmons, D.A. 7-33-490, 6-34-457, 2-38-80, 6-38-374, 6-42-334

Engdahl, J. 4-29-187

Engeler, W.E. 5-29-88

English, T.C. 8-29-316, 7-35-637, 7-38-387, 7-42-532

Enslow, G.M. 2-24-55

Erb, L. 11-36-314

Erickson, J.R. 3-23-178

Eschler, H. 5-32-58

Essen, L. 9-12-648, 7-13-266, 7-14-250, 7-18-308

Etter, J.E. 7-30-489

Euler, F.K. 1-32-11, 1-32-24, 3-33-122, 3-34-72, 1-35-329, 6-35-492, 1-36-115, 2-38-150, 11-40-295, 3-41-216, 1-42-169

Euler, W. 6-38-341

Everard, J.K.A. 12-40-336

Everest, A. 6-15-282

Eversole, W.L. 5-31-187

Ezekiel, S. 8-23-312, 8-27-382, 8-36-370, 7-39-88, 8-41-42

Facklam, R.L. 8-36-361, 7-37-21

Fagen, M.D. 4-11-277

Fallek, H. 12-28-150

Fallon, R.J. 7-22-559

Fang, B.T. 9-31-489

Farber, K.L. 6-29-285

Farmer, D.J. 7-13-676, 7-17-449

Farrell, B.F. 12-34-228

Farrell, J.J. 11-32-334

.ast, S. 7-19-298

Faucheron, G. 9-31-499

Feinberg, A.A. 4-41-360

Feldman, M. 7-35-612, 7-35-625, 7-39-18

Feldmann, M. 1-33-70, 5-35-349, 5-36-525

Felton, C.M. 6-41-512, 11-42-432

Ferraris, G. 7-39-3

Fest, D. 11-35-458

Fey, L. 6-20-629, 9-25-167

Field, J.C. 1-32-196

Filler, R.L. 4-29-220, 4-30-264, 4-31-131, 4-32-290, 4-33-351, 2-34-187, 2-35-31, 4-35-104, 2-35-110, 6-35-117, 2-36-181, 2-36-215, 2-37-265, 6-37-501, 11-37-519, 4-38-225, 2-39-311, 6-41-398, 4-41-444,

11-42-380, 12-42-447

Finch, Jr., E.D. 5-25-287

Finnie, C. 7-25-348

Fischer, B. 7-42-490

Fischer, M.C. 7-30-463, 6-32-389, 12-32-514

Fischer, R. 4-30-209, 11-31-96, 14-35-595

Fisher, G.F. 4-13-535, 6-30-318

Fisher, L.C. 9-28-389

Flamouropoulos, T. 9-39-183

Flanagan, T.M. 1-32-24, 3-40-127

Fletcher, E.D. 2-33-346, 2-35-157, 1-35-312

Flicker, H. 11-13-354

Foiani, D. 7-18-265

Foise, J. 1-42-127

Folts, H. 10-26-4

Force, M.M. 7-34-320

Forman, P. 14-36-220

Forrer, M.P. 10-23-157

Forster, H.J. 2-.6-140

Fragneau, M. 5-39-504

Francesconi, M. 7-28-350

Frank, J.M. 4-32-290, 4-35-40

Franx, C. 4-18-426, 2-21-436, 11-23-102, 14-24-172

Franzen, W. 7-13-683

Fraser, D.B. 2-15-2, 3-16-7, 1-21-1

Fredericks, J.P. 10-14-404

Freed, C. 8-29-330, 8-31-592

Freon, G. 9-33-473, 9-37-61

Frerking, M.E. 6-20-501, 11-21-273, 11-23-93, 7-26-216, 6-27-191, 6-33-431, 6-36-564, 5-41-503

Friedlander, F.J. 5-38-279

Friedrich, V.L. 14-31-1

Frueholz, R.P. 7-38-387, 7-38-401, 7-39-29, 7-40-447, 7-41-36, 7-41-47, 7-42-525

Frymoyer, E.M. 5-33-223

Fuchs, A.J. 9-33-468

Fuchs, D. 4-32-321, 11-33-186

Fujii, S. 6-29-294, 6-37-448

Fujishima, S. 5-30-119, 2-38-184, 2-41-391

Fujiwara, Y. 2-37-343, 4-38-114, 2-39-351

Fukuyo, H. 2-13-54, 2-21-402, 2-30-191, 4-30-254, 11-31-117

Furusawa, K. 13-31-62

Furuta, H. 7-41-25

Gabry, A. 9-31-499

Gagnepain, J.J. 2-28-19, 2-30-84, 2-31-17, 5-32-77, 2-32-169, 2-33-239, 2-33-337, 6-34-52, 5-34-255, 5-34-312, 2-35-14, 2-35-340, 11-35-458, 12-35-476, 1-36-97, 12-37-218, 2-38-157, 2-38-201, 12-39-113, 12-39-135, 1-40-121, 6-40-350, 2-41-266

Galla, W.D. 6-34-504

Gallagher, J.J. 7-13-604, 7-15-210, 7-16-305, 7-17-409, 7-19-369, 7-20-377, 7-22-573, 8-23-307, 8-24-240, 8-29-344

Garber, W.A. 8-31-574

Gardiol, F.E. 12-39-127, 12-40-300

Garrett, C.G.B. 7-16-256

Garvey, R.M. 7-31-555, 7-36-236, 2-38-80, 6-38-374

Gattis, T.H. 9-25-152

Gautier, H. 5-36-428

Gee, C. 10-42-453

Gee, T.H. 9-18-395

Geesen, M. 6-36-499

Geffe, P. 5-24-78

Gehrke, J. 4-42-412

Geist, J.D. 6-38-363

Genestler, G. 2-39-405

Genis, A. 10-31-71

George, J. 7-17-438, 7-18-322, 7-19-298, 7-21-483, 7-31-542

George, W.D. 6-10-197, 9-11-574

Georgiades, A.N. 5-25-287

Gerard, E. 11-37-306, 6-39-202, 6-41-413

Gerard, H.M. 5-27-253

Gerber, E.A. 4-15-49, 4-20-161, 14-24-1, 14-25-1, 14-34-510, 14-36-1, 14-40-8

Gerber, W.J. 5-19-534, 5-20-103

Gerdes, R.J. 11-25-118

Gibert, G. 4-22-155

Giffard, R.P. 7-37-32, 7-41-12

Gifford, G.A. 11-38-483

Gikow, E. 5-26-193

Gilbert, C. 10-27-39

Gilbert, E.A. 11-11-457

Gilden, M. 5-35-395

Gillespie III, R.D. 3-28-143

Gillette, G.C. 6-23-201

Giordano, V. 7-42-496

Girardet, P.G. 6-34-457

Glaze, D.J. 7-17-392, 7-25-309, 7-27-334, 7-27-347, 7-27-357, 11-30-269, 8-32-439, 11-36-314, 7-39-13, 7-39-18, 7-40-428

Gloeckl, C. 5-38-273

Glowinski, A. 2-23-39, 5-27-233

Godfried, H.P. 7-40-413

Godone, A. 8-31-578, 8-33-498, 8-33-504

Godwin, Jr., P.F. 11-31-78

Goiffon, A. 1-40-101, 1-42-138

Golay, M.J.E. 6-14-242

Goldberg, H.S. 5-29-88

Goldberg, J. 11-42-304

Goldenberg, H.M. 7-14-310

Goldfrank, B. 2-33-306, 4-34-183, 2-35-92, 4-36-208, 2-39-473

Goldman, S.J. 5-32-66

Goodell, J. 5-34-243

Goodwin, R. 14-10-455

Goring, W.D. 9-25-186

Goto, U. 6-27-218

Gottlieb, M. 5-41-388

Goujon, G. 12-35-476

Gould, G. 8-17-425

Gould, K. 6-40-355

Gounji, T. 5-37-376, 5-40-275

Graf, E.P. 7-29-352, 10-31-484, 6-34-457, 6-37-492

Graham, F.E. 3-12-101

Granveaud, M. 9-37-61

Gray, J.E. 7-24-361, 7-27-334, 12-28-243, 11-30-269, 12-32-527, 11-36-314, 7-42-514

Graziani, A.F. 5-33-166

Green, E.R. 1-37-125, 3-38-32

Greenhall, C.A. 11-41-126

Greenhouse, H.M. 6-27-199

Greer, J.A. 4-41-351, 5-42-239

Gregory, N. 6-29-248

Gregory, T.K. 7-31-551

Grenchik, T.J. 9-31-489

Grenier, J.C. 1-33-88

Grenier, R.P. 11-22-259, 5-24-104

Griffin, J.P. 4-13-445, 4-17-302

Griscom, D.L. 3-33-98

Groslambert, J. 6-28-181, 12-29-311, 5-34-255, 11-35-458, 2-38-201, 12-39-113

Groves, J. 5-42-288

Grudkowski, T.W. 5-35-395, 5-36-537

Gruen, H.E. 6-10-354, 6-11-502, 11-12-334, 6-13-165

Gualtieri, J.G. 1-38-42, 1-39-247, 4-40-115, 1-41-192, 1-42-155

Guerin, C.P. 2-35-122

Guetrot, A. 9-23-248

Guillaume, F. 9-31-503

Guillon, P. 5-42-259

Guinot, B. 9-33-473, 9-37-61

Gundjian, A.A. 2-20-14

Gunn, D. 10-35-501

Gunshor, R.L. 5-37-423

Gupta, M.S. 12-41-471

Guttwein, G.K. 11-10-305, 2-17-190, 2-21-115, 4-22-67

Guy, H.D. 6-17-482

Hackel, L.A. 8-27-382

Hadorn, F. 11-25-226, 7-36-260

Hafner, E. 2-10-182, 2-11-78, 12-14-192, 2-16-33, 6-17-508, 4-22-136, 2-22-269, 11-24-177, 10-26-15, 4-27-98, 4-28-96, 4-29-202, 11-30-92, 11-32-354, 4-33-368, 11-40-306

Hahn, H. 11-37-284

Hahn, T. 7-37-18

Hair, M.L. 4-27-73

Hale, D.R. 1-10-94, 1-12-67, 1-14-24

Hales, M.C. 5-28-43

Halford, D. 12-22-340, 11-25-226, 7-27-357, 11-27-421

Hall, D.L. 9-36-388

Hall, J.L. 8-23-306, 8-27-386

Hall, R.G. 7-15-168, 9-23-249, 7-26-319

Hall, T.M. 6-36-507

Halliburton, L.E. 3-33-62, 3-33-134, 1-34-1, 1-35-317, 1-36-77, 1-37-164, 3-39-259, 1-40-26, 3-41-216, 1-41-223

Halperin, A. 1-36-187, 1-36-193, 1-37-181, 1-37-185, 1-42-184

Ham, P.L. 5-31-187

Hamatsuki, T. 6-27-218

Hamel, A. 7-42-496

Hammond, D.L. 4-12-260, 4-13-423, 4-15-125, 4-17-215, 2-22-55

Handel, P. 12-35-476

Hang-Xiang, H. 7-38-476

Hanna, S.M. 5-38-279, 5-42-112

Hanson, W.P. 4-37-261, 1-38-38, 1-38-50, 5-38-251, 1-41-228, 4-41-429, 9-42-472

Happer, W. 7-20-365, 7-20-370, 7-23-263, 7-24-285

Hara, K. 2-25-139

Hara, T. 6-41-435

Hardy, J.S. 11-32-337

Hardy, W.N. 7-40-419

Harmon, D. 1-32-196

Harms, K.C. 13-39-556

Harrach, R.J. 7-20-424

Harris, M.T. 1-41-213

Harrison, A. 6-41-539, 13-41-544, 5-42-284

Harrison, R.G. 12-41-122

Hart, R.K. 4-24-111, 4-26-152, 4-28-89

Hartke, D. 11-10-496, 6-12-406

Hartman, E.F. 3-27-124

Hartman, H.L. 9-31-429

Hartmann, C.S. 5-26-164, 5-28-299, 5-30-123, 5-37-354

Hartwig, W. 7-17-176

Haruta, K. 2-19-22, 2-20-1

Hashi, T. 7-35-646, 7-39-54

Hashimoto, M. 7-39-43, 7-41-25

Hastings, H.F. 9-14-275, 6-17-587

Hatch, E.R. 2-38-206, 2-39-462, 2-40-145

Hathaway, J.C. 5-11-535

Hauden, D. 5-32-77, 5-34-255, 5-34-312, 2-36-200, 5-36-284, 5-38-294, 6-40-350, 5-42-224

Haus, H.A. 5-34-262

Havel, J.M. 10-10-439

Hawkins, W.B. 7-11-318

Haydl, W.H. 5-30-346

Hayes, R.R. 7-39-80

Haynes, J.T. 6-37-87, 2-37-272

Haynes, T. 2-33-444, 5-34-243

Hays, R.M. 5-38-271

Healey III, D.J. 6-21-377, 11-26-29, 6-27-170, 11-28-190, 6-35-440, 11-37-284

Hearn, E.W. 2-24-64

Heber, K. 5-30-346

Hefley, G. 9-14-276

Heger, C.E. 7-30-463

Heightley, J.D. 5-24-74

Heindorff, T. 7-39-8, 7-42-490

Heinecks, R.A. 4-39-301

Helle, J. 6-29-300

Hellwig, H. 7-21-484, 7-22-529, 7-24-246, 7-25-309, 7-26-242, 7-27-334, 7-27-347, 7-27-357, 7-28-315, 7-28-362, 9-29-384, 7-30-473, 9-31-495, 7-31-555, 7-33-554,

7-38-458, 11-42-419

Helmick, Jr., C.N. 5-34-307

Hemesath, N.B. 9-39-150

Hemmati, H. 7-39-85

Hemmer, P.R. 8-36-370, 7-39-88, 8-41-42

Henaff, J. 1-33-70, 5-35-349, 5-36-525

Hepworth, A. 2-32-207

Hermann, J.W. 2-29-26, 2-31-55, 2-33-255, 2-39-375

Hertl, S. 11-39-535

Hertz, A. 7-42-519

Herzig, P.A. 5-32-233

Hessick, D. 6-38-341

Heuchling, T.P. 6-15-282

Hewes, C.R. 5-29-77, 5-30-123, 5-33-214

Hicklin, W.H. 4-10-122, 4-11-157, 4-12-37, 4-13-71, 4-14-115, 4-15-66, 4-16-110, 3-17-127, 4-18-129, 2-19-23, 4-20-180, 4-21-211, 4-23-132, 4-24-111, 4-24-148, 4-26-152, 4-28-89, 4-30-240

Hiesinger, P. 5-30-346

Higa, W. 7-11-352, 7-12-551

Higbie, L.S. 9-23-248

Hill, J.D. 6-19-565

Hilliard, D. 11-36-314, 7-39-18

Himes, D. 9-20-612

Hines, M.E. 6-16-328

Hinnah, H.D. 6-18-487, 6-19-617, 6-22-298, 6-23-187

Hirama, K. 6-26-132, 2-30-167, 2-40-201

Hirose, M. 6-39-176

Hirose, Y. 11-25-113, 2-30-65

Hirt, E.H. 9-35-537

Ho, E.C. 5-15-318, 5-19-509, 5-20-352

Ho, J. 4-20-530, 6-21-331, 4-22-118, 7-24-308, 2-26-148, 6-26-264, 6-28-237, 6-31-421, 6-34-463, 2-35-92, 6-36-499, 6-39-103

Hodges, D.T. 8-31-574

Hoenig, S. 4-42-189

Hoffman, D.M. 4-28-85

Hoffman, T. 7-31-525

Hokanson, J.L. 4-20-192, 4-23-163, 4-29-128

Holberg, L.W. 7-40-428

Holland, M.G. 5-24-83

Holland, R. 2-21-28

Holloway, J.H. 9-12-648, 7-18-366, 7-19-344, 7-20-389, 7-25-313

Holmbeck, J.D. 11-22-46, 11-25-148, 6-31-390

Holt, J.M. 1-36-62

Hooton, P.M. 9-25-186

Hopfer, S. 7-14-330

Hopwood, F.W. 6-31-385, 2-33-444, 6-34-217, 5-34-243

Horie, M. 2-33-235

Horie, N. 14-28-57

Horn, C.H. 11-23-223

Horrigan, J.A. 1-35-297, 1-36-55, 1-37-177, 1-41-213

Horton, W.H. 11-17-316, 4-19-105, 11-19-436, 5-21-160, 5-27-243, 11-35-271, 14-35-592, 11-37-290, 11-37-297

Hosaka, M. 1-35-304

Hoskins, M.J. 2-40-285

Hou, J.P. 11-32-432, 2-35-222, 2-39-453, 5-41-365, 5-42-217

Howard, M.D. 5-37-349, 5-39-481, 5-39-491

Howe, D.A. 9-26-292, 7-28-362, 7-29-387, 7-30-451, 7-31-555, 7-31-562, 7-32-492, 7-33-554, 14-35-669, 11-36-314, 7-39-3, 7-39-18, 9-41-149, 9-42-472

Hribsek, M.F. 5-33-173

Hruska, C.K. 2-24-33, 1-31-159, 1-40-54

Huang, H.X. 7-41-82

Huang, M.Y. 5-34-221, 5-35-436

Hubner, U. 11-31-327

Hudson, G.E. 9-22-384, 9-23-249

Hudson, N.W. 11-31-347

Hughes, R.C. 3-27-128

Hughes, R.J. 6-22-354, 6-23-211

Hughes, S.J. 11-32-337

Hummel, D.C.A. 1-40-39

Hunsinger, B.J. 5-29-177

Hunt, J.R. 4-39-292, 5-39-481, 1-41-183

Hunt, J.T. 2-29-76

Hurlimann, M.D. 7-40-419

Hurtig, C. 5-17-566

Husgen, D. 4-30-259

Hwang, H.B. 3-39-266, 1-40-32, 1-42-176

Hyatt, R. 7-25-313

Hykes, G.R. 6-15-297, 6-30-292

Iafrate, G.J. 2-30-141, 2-34-431, 14-42-540

Ianouchevsky, W. 4-17-233

Ieki, H. 5-30-119

Ihara, T. 2-40-187

Iijima, K. 11-25-113, 2-30-65

Iino, T. 13-40-224

Ikeda, H. 6-26-140

Ikeda, Y. 6-42-327

Imae, M. 9-39-145

Imbier, E. 7-37-49

Ingling, W. 11-17-289

Ingold, J. 9-37-61

Inguscio, M. 8-31-605

Inoue, A. 5-30-119

Inoue, M. 2-33-247

Inouye, G.I. 7-13-676

Irvine, R.A. 1-41-175, 1-42-127

Isaacs, T.J. 1-29-139

Isherwood, B.J. 1-36-62

Ishigami, S. 13-31-62, 4-39-345

Ishisu, M. 7-38-447

Ishiyama, H. 5-30-119

Itano, W.M. 7-35-602, 7-37-37, 7-39-85

Itch, K. 4-27-42

Ito, H. 13-36-290, 2-36-513

Iwasaki, F. 1-34-14, 1-40-39

Iwasaki, H. 1-40-39

Jackson, G. 5-38-310

Jackson, H.W. 6-34-449, 6-36-492, 11-40-306

Jacobs, S.F. 7-39-75

Jacoby, D.B. 4-18-193

Jacques, C. 7-42-505

Jaffe, H. 1-14-19, 14-18-5

Jaillet, G. 5-36-284

Jain, H. 1-34-9

James, B. 1-42-146

Jani, M.G. 1-40-26

Janiaud, D. 2-32-169, 2-33-337, 2-35-340

Jansky, D.M. 14-33-47

Janus, A.R. 5-30-157, 5-31-281

Jardino, M. 7-34-353, 7-38-431

Jarvis, Jr., S. 7-27-347, 7-27-357, 7-31-555, 7-33-477

Jaseja, T.S. 7-16-257

Javan, A. 7-16-257, 8-23-305, 7-26-248, 8-28-348, 8-29-338, 8-31-590

Jechart, E. 7-27-387, 7-35-637

Jeffries, J. 9-42-472

Jennings, J.D. 5-29-113

Jenselme, L. 4-39-333

Jerinic, G. 6-29-248

Jespersen, J.L. 9-24-322, 11-37-506, 9-42-472

Jewell, T.C. 6-38-363

Jiang, G.X. 7-41-82

Jimenez, J.J. 5-27-406

Johnson, A.C. 7-34-320

Johnson, D.E. 10-14-404, 7-26-216

Johnson, E.H. 7-22-464, 7-23-297

Johnson, G.F. 6-21-287

Johnson, G.R. 1-41-175, 1-42-127

Johnson, L.F. 7-29-352, 7-35-260

Johnson, S. 7-12-569, 6-16-328

Joly, C. 2-41-314

Jones, C.E. 11-17-289

Jones, D. 7-38-471

Jones, K.H. 4-41-199

Jordan, P.A. 6-32-365

Joseph, T.R. 5-29-158, 5-31-365

Joss, B. 12-40-300

Jumas, J.C. 1-39-234, 1-40-101, 1-42-138

Jumonji, H. 5-20-266, 7-32-460

Kachelmyer, A. 5-31-197

Kagiwada, R.S. 5-31-266, 5-32-95, 5-33-388, 5-34-237, 5-35-401, 5-36-396

Kahan, A. 2-25-109, 1-32-24, 1-35-329, 1-36-115, 1-36-159, 2-36-170, 1-37-169, 1-38-10, 2-38-150, 1-39-255, 3-41-216

Kahla, C.M. 7-41-47, 7-42-510

Kaiser, W. 8-15-225

Kaitz, G.S. 2-38-245, 1-39-223

Kalivas, G.A. 12-41-122

Kamada, K. 2-31-48

Kamas, G. 11-37-506

Kanazawa, K.K. 13-41-350

Kanbayashi, S. 2-30-167

Kandpal, P. 5-42-364

Kansy, R.J. 5-29-177

Kappers, L.A. 3-33-62

Kariya, K. 7-32-460

Karrer, H.E. 5-28-266, 2-30-175

Kartaschoff, P. 7-14-354, 9-20-577, 7-21-543, 10-31-478, 11-42-419

Kasai, Y. 5-31-207, 5-37-376

Kass, W.J. 13-40-230

Kataoka, H. 2-33-235

Kato, T. 2-33-271

Katsuta, Y. 6-41-435

Katz, M. 4-27-98

Katz, S. 1-36-187, 1-36-193, 1-37-181,
1-37-185, 1-42-184

Kaufman, D.C. 7-30-481

Kavolis, P.J. 5-38-251

Kawada, J. 7-32-460

Kawakami, I. 5-27-227

Kawamura, Y. 2-32-267

Kawano, O. 2-34-58

Kawashima, H. 2-34-131, 4-36-90, 2-40-193, 2-42-45, 2-42-65

Kawatsu, T. 5-37-376

Keilmann, F. 7-26-248

Keilson, S. 1-41-223

Keller, R. 8-24-275

Keller, T. 6-34-498

Kelly, M.J. 7-26-248, 8-29-338

Kempf, R.A. 7-20-377, 7-22-573

Kennedy, G. 4-35-237

Kent, R.L. 6-19-642

Kentley, E. 11-26-159

Kerboull, J. 5-32-244

Kern, R.A. 7-29-352

Kertzman, J. 10-25-102

Kesperis, J. 6-40-366

Ketcham, R.S. 5-38-266, 5-41-371, 5-42-106

Key, P.L. 1-29-98, 1-37-153

Khanna, A.P.S. 5-41-478

Kim, B. 6-42-357

Kindell, R. 5-37-394

King, J.C. 1-10-45, 1-11-62, 1-12-84, 1-13-1, 1-14-1, 2-15-2, 3-16-7, 3-27-113, 3-27-124, 14-40-16

King, J.G. 7-13-603

King, W. 10-25-104

Kinloch, D.R. 1-38-8

Kinsman, R.G. 6-32-102, 10-35-501

Kirchner, D. 9-37-67

Kirk, A. 7-37-42

Kisenwether, E.C. 6-40-373

Kiss, J. 1-40-47

Kita, K. 1-29-211

Klawitter, R. 4-42-412

Klepczynski, W.J. 9-41-130, 9-42-472

Kleppner, D. 7-13-309, 7-14-310, 9-21-509

Kley, Jr., R.C. 6-29-264

Kline, G.R. 5-41-371, 5-41-382, 5-42-106, 5-42-272

Klohn, K. 1-42-53

Knoernschild, G.F. 9-39-150

Knolmayer, E. 1-34-102, 4-35-56

Knowles, J.E. 4-29-230

Kobayashi, M. 5-27-227

Kobayashi, Y. 4-32-317

Kobori, N. 5-20-266, 5-22-188, 5-23-76

Kodama, S. 6-33-417

Koehler, D.R. 1-32-34, 3-33-118, 3-35-322, 3-37-130

Koelman, J.M.V.A. 7-41-91

Koga, I. 2-13-54, 2-14-53, 2-23-128, 11-24-168, 11-28-49

Koga, Y. 7-36-223

Kogure, S. 2-33-247, 2-34-160

Kohlbacher, G.R. 5-26-187

Kohra, K. 1-34-14

Kohsaka, F. 13-40-224

Kojima, Y. 4-38-114

Kolb, E.D. 1-29-98, 1-31-178, 1-33-88, 1-35-291, 1-37-153

Komiyama, B. 2-35-335, 5-39-159

Koneval, D.J. 2-17-88, 2-18-93, 5-19-213, 5-20-103, 5-21-83

Kong, A.M. 5-34-237, 5-36-396, 5-37-428, 2-39-356

Konno, M. 2-30-167, 5-37-376

Konno, Y. 5-31-275

Korde, R. 7-42-532

Korman, J. 4-39-342, 4-39-338

Kosinski, J.A. 2-36-181, 2-36-215, 2-37-265, 4-38-225, 2-39-400, 2-41-325, 1-42-53

Kosowsky, D.I. 5-10-339, 5-17-566

Kotake, H. 2-35-166

Kotecki, C. 5-36-459

Koumvakalis, N. 3-33-134

Krishnaswamy, S.V. 5-38-263, 2-39-372, 2-40-206

Kroupa, K.M. 1-29-98

Krueger, H. 1-14-19, 1-14-24

Kruger, B. 11-22-592

Kruger, R. 9-37-61

Kublin, V. 14-14-217

Kubota, K. 2-32-267, 2-33-277

Kudama, T. 2-30-167, 2-35-166

Kudo, A. 4-36-90

Kudo, T. 6-37-448, 6-41-435

Kulpinski, R.J. 10-25-88, 9-30-401

Kumamoto, H. 7-26-211

Kunski, R. 7-36-348

Kupersmith, F. 7-24-308

Kuramochi, N. 2-36-133, 2-39-448

Kurnit, N.A. 7-26-248, 8-29-338

Kurth, C.F. 5-28-33

Kusch, P. 7-11-373

Kusters, J.A. 2-24-46, 2-24-55, 2-30-175, 2-31-3, 4-31-153, 5-31-246, 5-32-74, 6-32-389, 4-34-167, 1-39-223, 4-39-475, 11-40-323, 4-41-249

Kwan, S.Y. 6-35-440

Kwon, T.M. 7-37-12, 7-37-18

LaTourrette, J.T. 8-24-275

Lacey, R.F. 7-20-416, 7-21-491, 7-22-545, 7-23-279

Lagasse, G.A. 4-20-167, 4-22-118, 4-24-157, 2-26-148

Lahiri, S.K. 5-39-514

Lakin, K.M. 5-29-158, 5-30-12, 5-35-257, 5-36-517, 1-37-144, 2-37-320, 5-41-371, 5-41-382, 5-42-106

Lall, V. 2-32-207

Lam, C.S. 2-35-193, 2-36-29

Lamboley, J. 4-34-112, 1-37-111, 11-38-496

Lamela-Rivera, H. 8-41-42

Lance, A.L. 11-31-347

Lancon, R. 5-27-233, 2-30-132

Lander, V. 5-37-473

Landin, A.R. 5-36-517, 1-37-144, 5-41-371

Iao, B.Y. 5-35-345

Larkin, J.J. 3-33-62, 1-35-297, 1-36-55, 1-37-177

Larouche, R. 7-29-371

Laszlo, E. 6-38-380

Laton, R. 5-42-378

Lau, K.F. 5-31-266, 5-32-95, 5-33-388, 5-34-221, 5-35-401, 5-36-396, 5-37-428, 4-38-101, 5-38-282, 2-39-356

Lau, K.R. 5-34-237

Laudise, R.A. 1-13-17, 1-29-98, 1-31-178, 1-33-88, 1-35-291, 1-37-153, 14-39-270, 1-42-116

Laughner, J.W. 1-32-43

Lavanceau, J. 9-23-248, 9-23-249, 9-28-379

Lavery, J.E. 11-24-301

Lawrence, W.D. 10-26-113

Layden, O.P. 11-17-464, 11-22-282, 10-23-14

LeBus, J.W. 4-28-96, 4-29-220, 4-31-131

LeChopier, S. 11-37-306, 5-42-101

LeFevre, E.N. 6-23-198

LeVine, D.M. 9-27-286

Leach, J.G. 4-20-219, 4-24-117, 2-31-3, 6-32-389

Leadon, R.E. 3-40-127

Leavit, W.E. 9-25-186

Lee, D.L. '-33-379, 1-36-124, 5-36-276

Lee, P.C.Y. 2-25-63, 2-26-85, 2-27-1, 2-28-14, 2-29-65, 2-30-1, 2-30-184, 2-31-29, 2-32-108, 2-34-403, 2-35-193, 2-35-222, 2-36-29, 2-37-200, 2-38-164, 2-39-415, 2-39-453, 2-40-152, 2-41-277, 2-42-14, 2-42-29

Leeson, D.B. 11-19-49

Leeson, E. 1-42-127

Lefevre, R. 5-27-233, 5-33-148, 5-35-244, 4-39-333, 5-42-101

Leiby, Jr., C.C. 8-36-370

Lemieux, C. 9-31-463

Lengweiller, K. 3-27-139

Lepek, A. 9-42-485, 7-42-519

Leroy, P.Y. 4-32-310

Lesage, P. 11-29-394, 11-31-311, 7-32-531, 7-33-515

Leschiutta, S. 9-25-194, 7-32-466

Leuchs, G. 7-39-85

Levine, A.M. 14-33-436

Levine, J. 11-36-314

Levine, M.W. 10-21-512, 7-22-605, 7-24-270, 9-28-408, 7-31-525, 7-32-477, 7-35-651, 7-38-458

Levy, P.W. 3-27-139

Lewis, F.D. 11-20-648

Lewis, J.B. 7-33-543

Lewis, L.L. 7-35-612, 7-35-625, 7-39-18

Lewis, M.F. 5-28-304, 5-31-258, 5-32-87

Lewis, O. 2-29-5

Lewis, R.L. 9-39-150

Li, R.C.M. 5-29-167

Lias, N.C. 1-23-171, 1-34-65, 1-37-157

Lichtenfeld, K. 5-20-352

Lichtenstein, M. 7-15-210

Lidback, C.A. 9-19-297

Lieberman, T.N. 9-25-152

Lieven, J.C. 9-31-503

Ligor, P.A. 1-32-24, 3-33-122, 3-34-72

Lim, T.C. 5-31-371, 5-33-374, 5-34-273

Lin, C.F. 7-41-82

Lindenmuth, R. 4-41-444

Lindsey, W.C. 11-31-302

Linfield, R.F. 9-14-276

Ling, S. 3-40-96, 1-41-223

Lioy, J.E. 10-34-347

Lipoff, S.J. 6-30-301

Lipson, H.G. 1-32-11, 3-33-122, 3-34-72, 1-35-329, 1-36-115, 1-37-169, 1-38-10, 1-39-255, 1-40-63, 3-41-216, 1-42-169

Lister, M. 9-37-61

Litman, W. 9-42-485

Liu K.C. 8-31-590

Lloyd, P. 5-25-280

Loboda, M. 5-42-263

Logan, S. 6-42-276

Lohrer, G.H. 6-27-180

Lohrmann, D.R. 6-25-240

Lombardi, M. 11-42-432

Long, H. 4-13-430

Loos, J. 11-11-441, 11-12-359

Lopez, A. 1-42-162, 1-42-176

Lotspeich, J.F. 7-13-575

Loutit, J.A. 6-13-371

Lowe, A.T. 4-35-48

Lu, C. 2-29-5

Lu, J.F. 7-41-82

Luiten, O.J. 7-41-91

Lukac, C.F. 9-41-130

Lukaszek, T.J. 2-15-22, 2-16-77, 5-19-269, 5-20-131, 2-21-115, 4-22-67, 4-24-126, 2-27-20, 5-27-262, 2-29-10, 2-31-8, 2-33-311, 5-34-221, 2-34-431, 2-35-71, 5-35-376, 13-36-290, 2-36-513, 5-37-415, 2-38-206, 13-38-240, 2-39-462, 2-40-145, 2-41-325, 1-42-53

Luo, W.H. 7-41-82

Lutes, G. 9-41-161, 9-42-478

Luxmore, T. 6-31-396

Lydiard, C. 7-19-298

Lynch, T.J. 7-38-387

MacDonald, D.B. 5-35-352

MacIntyre, A. 7-40-465

Machlan, H.E. 7-24-361, 9-25-195, 9-26-309, 7-27-334, 7-42-514

Mackiw, G. 6-30-420

Macleod, D.W. 2-12-9

Maher, R.A. 10-30-384

Mailer, H. 5-20-309

Mainberger, W. 9-12-648

Major, F.G. 11-24-301

Maleki, L. 7-36-255, 7-41-20

Malinowski, G.J. 11-32-354, 11-35-286

Malinowski, S. 5-16-347, 5-18-558, 5-26-180

Malley, G. 7-42-532

Malling, L. 7-15-156

Malocha, D.C. 5-40-252

Manabe, N. 2-31-48, 4-38-119

Mann, A. 4-13-529

Mann, C.W. 4-11-189

Manney, Jr., C.M. 12-32-527

Mariani, E.A. 11-37-525

Marianneau, G. 6-28-181, 12-29-311, 2-33-239, 6-34-52, 6-40-350

Markenscoff, X. 2-27-1, 2-28-14

Markes, M.E. 3-33-134, 1-34-1

Markowitz, W.M. 9-12-665, 9-13-316, 9-14-275, 7-15-168, 7-17-462, 9-18-251, 9-19-297

Marotel, G. 6-39-212

Marr, J.W. 4-19-137

Marshall, J. 9-26-309

Martin, D. 6-42-334

Martin, J.J. 3-33-134, 1-34-1, 1-34-81, 1-35-317, 1-36-77, 3-37-130, 1-37-164, 1-38-16, 3-39-266, 1-40-26, 1-40-32, 1-41-167, 1-42-162, 1-42-176

Martin, S.J. 5-37-423

Marvin, D. 6-34-498

Mashimo, Y. 6-40-325

Mason, W.P. 2-14-35, 14-18-12, 14-24-8

Masuda, Y. 5-27-227

Math, I. 4-20-530, 6-21-331

Mathur, B.S. 7-39-59

Matistic, A.S. 4-12-281, 4-24-157

Matsuyama, M. 2-42-65

Mattern, P.L. 3-27-139

Matthey, H. 4-29-187

Mattison, E.M. 7-31-525, 7-32-477, 7-33-511, 7-33-549, 12-34-228, 7-37-49, 7-39-72, 7-39-75, 7-40-413, 7-40-422, 7-41-95, 6-42-352

Mattox, D.M. 4-27-89

Maurer, R.H. 3-40-134

Mazur, W.E. 9-27-270

McAleer, H.T. 6-12-420

McAvoy, B.R. 2-33-444, 5-34-243, 6-37-87, 5-38-263, 2-39-372, 5-40-392, 5-41-388, 14-42-556

McCaa, W.D. 11-28-177

McCarron, K.T. 5-41-371

McCaskill, T.B. 11-29-425, 7-32-560

McClelland, T. 7-37-12, 7-41-59, 7-41-66

McClure, R.J. 6-34-475

McColl, M. 8-31-574

McCoubrey, A.O. 9-12-648, 7-13-276, 7-14-315, 7-26-202

McCullough, R.E. 4-30-237

McDonald, K. 7-35-657

McFarlane, M.D. 6-10-422, 6-11-426

McGill, R.L. 6-27-199, 6-38-380

McGowan, R. 1-42-53

McGuigan, D.F. 5-31-616

McGuire, M.D. 8-31-612, 7-37-32

McGunigal, T.E. 7-22-464, 7-23-297

McKeown, D. 4-12-316

McKinstry, H. 1-34-25

McKnight, R. 7-22-529

McLean, D.I. 5-21-138, 5-33-166

McNab, K. 6-40-355

McQuiddy, Jr., D.N. 10-35-516

McSpadden, W.R. 6-11-518

McVey, E.S. 6-33-425, 6-34-504

Meaders, J.C. 2-19-23

Mealy, G.L. 10-29-417

Meek, R.E. 12-10-390

Meeker, T.R. 2-29-54, 5-29-105, 2-31-35, 4-31-126, 11-33-176, 2-33-286, 1-34-85, 2-36-549

Meindl, J.D. 14-16-211

Meirs, M.P. 6-28-211, 6-30-279, 11-32-344, 2-33-306, 7-33-484, 7-34-370, 6-34-463, 6-36-499, 7-38-471, 7-39-24, 7-41-59, 7-41-66

Melloch, M.R. 5-37-423

Menager, G. 5-29-181

Mendoza, F.G. 11-31-347

Mengel, E.E. 7-37-27

Menoud, C. 7-21-543

Mercer, C. 4-41-258

Merigoux, H. 4-32-304, 4-34-112, 1-37-111, 11-38-496, 4-40-140

Merlina, J. 2-38-184

Merritts, T.D. 6-16-422

Messina, J. 4-41-444

Metcalf, W.S. 11-27-55

Metz, R.B. 6-10-422

Meyer, D.G. 6-24-209

Michaud, A. 7-39-64

Michel, M. 5-32-77

Miguel, E.K. 6-36-576

Miki, C. 9-39-145

Milan, J.M. 11-29-270

Miles, M.H. 4-15-49

Miles, R.O. 8-36-355

Miljkovic, M. 4-42-404

Miller, A.J. 5-24-93, 5-29-113, 1-34-85

Miller, L.G. 9-28-406, 9-33-473

Miller, M.J. 2-40-285

Miller, S.P. 5-30-358

Miller, T.J. 5-37-423

Milliren, B.T. 2-38-80, 6-42-334

Mills, T.B. 6-41-460

Milsom, R.F. 2-33-263, 2-35-174

Mindlin, R.D. 2-10-10, 2-11-1, 2-12-2, 2-13-53, 2-14-67, 2-15-1, 2-18-120, 2-19-212, 2-20-252, 2-21-3, 2-22-1, 2-24-17, 2-25-58, 2-26-84, 14-33-1, 2-36-3

Mingins, C.R. 2-12-9, 2-16-46, 2-17-51, 2-20-50

Minguzzi, P. 7-28-350, 8-31-605

Missel, J.C.B. 14-13-697

Missout, G. 7-24-280, 7-29-383

Mitsuoka, T. 6-34-488, 11-37-300

Mittleman, S.D. 1-32-196

Miura, M. 2-39-386, 2-40-187

Miyayama, T. 6-42-327

Miyazaki, J. 2-38-184

Miyazaki, S. 4-27-42

Miyazaki, Y. 2-39-448

Mizan, M. 2-37-194, 2-38-206, 2-39-462, 2-40-145, 2-41-325, 1-42-53

Mizushima, M. 7-15-204, 7-16-267

Mochizuki, Y. 5-24-21, 2-29-35, 2-32-120

Mockler, R. 7-13-583, 7-14-298

Mohler, M.B. 7-31-562

Momosaki, E. 2-32-277, 2-33-247, 2-34-160

Monchalin, J.P. 7-26-248, 8-29-338

Montgomery, L.H. 9-26-317

Montress, G.K. 4-39-519, 5-42-263

Mooradian, A. 8-36-338

Moore, R.A. 2-33-444, 5-34-243, 6-37-87, 5-38-263, 2-39-372

Moore, R.B. 7-27-390

Mooser, L. 6-14-421

Morel, J. 10-27-39

Morency, D.G. 1-32-196

Moretti, A. 7-30-468

Morgan, A.H. 4-12-162, 2-13-207

Morikawa, T. 7-38-428, 7-38-447, 9-39-145

Morita, T. 5-38-286

Morley, P.E. 2-39-317, 5-39-491, 4-42-205

Morris, D. 7-25-343, 7-27-317

Morris, S.E. 1-36-66, 11-39-527

Mortelmans, H.O. 7-22-517

Moses, J. 10-30-390

Moss, H. 6-10-470

Motte, S. 2-33-277

Moulton, G. 12-42-389

Mroch, A. 6-30-292

Mucke, K.H. 11-33-186

Mueller, L.F. 7-19-402, 10-21-512, 7-22-605, 7-25-313, 7-30-457

Mueller, O. 12-28-166, 5-29-88

Muhlbaier, J.P. 6-31-385

Mulvihill, P.E. 4-13-109, 4-18-217

Mungall, A.G. 7-19-332, 7-20-436, 7-27-317

Munn, R.J. 4-16-169, 6-19-658

Murphy, J. 5-34-243

Murphy, W. 6-29-248

Murray, J.A. 9-25-186, 11-37-516

Musa F.H. 10-25-75

Musha, T. 12-29-308, 2-33-235, 12-35-484

Myers, A. 9-42-472

Nagai, K. 1-28-117, 1-35-304

Nakadan, Y. 7-36-223

Nakagiri, K. 7-38-447

Nakajima, A. 4-36~90

Nakamura, J. 2-36-133

Nakamura, K. 6-33-458

Nakata, H. 2-39-386, 2-40-187

Nakazato, M. 2-42-65

Nakazawa, M. 2-21-402, 2-34-152, 2-35-71, 2-35-222, 13-36-290, 2-36-513, 13-38-240

Nakazawa, Y. 5-16-373, 5-22-188, 5-23-76, 5-38-286

Nanamatsu, S. 6-37-448

Nandi, A.K. 5-28-260

Narahara, C. 2-39-361

Narayanan, S. 10-26-8

Nardin, R. 6-28-237

Nariai, H. 6-32-398

Nassour, D. 2-36-200

Natoli, V.D. 8-41-42

Nehring, D. 6-37-459

Nelson, D.W. 11-23-111

Nelson, G.E. 11-26-79

Nemetz, G.E. 11-25-134

Neurgaonkar, R. 1-34-25

Newberg, I. 10-42-453

Newell, D.E. 6-15-297, 6-17-491, 6-18-487, 6-19-617, 6-22-298, 6-23-187, 10-31-71, 6-31-396, 6-36-562

Newnham, R.E. 1-30-71, 1-31-171, 1-32-43

Ney, R.J. 4-33-368

Nicholas III, H.T. 6-41-495, 6-42-357

Nichols, S.A. 7-27-390, 7-28-401, 10-32-555

Nicolas, G. 7-36-260

Nikodem, Z. 2-26-85

Nishikawa, T. 5-34-286, 5-37-481

Nishimura, A. 9-28-406

Nishiyama, S. 5-28-286, 5-31-275

Nissim, L. 2-32-169

Noguchi, Y. 12-35-484

Nonaka, S. 2-25-139, 6-28-203

Norton, J. 7-32-486, 6-30-275, 3-38-63

Nottarp, K. 9-37-61

Novick, R. 7-20-365, 7-20-370, 7-23-271, 7-25-325, 7-26-223, 7-27-404

Nowick, A.S. 1-34-9, 1-37-125, 3-38-32, 3-40-96, 1-41-223

Nunamaker, R.J. 10-25-74

Nuspl, P.P. 9-31-465

Nyholm, C. 11-35-286

Nystrom, G.U. 7-31-525, 7-33-549

O'Connell, R.M. 1-30-129, 1-31-182, 1-32-189, 5-33-402

O'Connor, J.J. 1-35-297, 1-36-55, 1-37-169, 1-37-177

O'Neill, J.J. 9-24-325, 9-25-209, 9-27-312

O'Rourke, D.P. 6-40-370

O'Shea, T.F. 5-31-231, 5-37-394

Oak, I.R. 5-29-105

Oakley, T. 7-41-75

Oaks, O. 9-37-61

Oates, D. 14-42-545

Ochiai, O. 2-34-131, 4-36-90, 6-40-325

Ogawa, T. 2-36-133

Ogou, S. 6-41-435

Oguchi, K. 2-32-277

Ohata, Y. 6-28-221

Ohshima, T. 6-34-488

Ohta, S. 2-41-391

Ohta, Y. 7-38-428, 7-38-447

Ohtsu, M. 8-36-327, 7-39-43, 7-41-25

Okada, K. 2-23-26

Okamoto, Y. 5-42-95

Okano, S. 1-22-15, 2-30-167, 6-34-488, 2-35-166, 6-42-327

Okazaki, M. 2-29-42, 2-31-48, 11-37-187, 4-38-119, 2-39-381

Okuda, J. 1-28-117

Okuda, S. 5-31-207

Okuno, K. 5-30-109

Okzaki, M. 2-37-337

Oliveira, V.A.R. 1-40-39, 1-40-47

Oliver, T.N. 2-40-269

Olivier, M. 6-28-181, 12-29-311, 11-35-458, 12-37-218

Olster, S.H. 5-29-105

Ono, K. 5-38-286

Ono, M. 2-39-351

Onoe, M. 5-20-266, 2-23-26, 5-24-21, 6-26-132, 4-27-42, 2-29-42, 2-31-48, 13-31-62, 6-32-398

Ontai, G.P. 7-39-88

Oomura, Y. 2-30-202, 2-34-140, 11-40-313

Orenberg, A. 7-18-384

Osterdock, T.N. 7-34-320

Otomo, J. 5-31-275

Otto, O.W. 5-30-363

Oura, N. 2-30-191, 4-30-254, 11-31-117, 2-36-133, 2-39-448

Owens, J.M. 5-35-358, 5-37-477

Owings, B. 7-41-75

Oyamada, H. 7-26-211, 7-28-340

Ozawa, H. 7-39-43

Ozimek, E.J. 1-33-80

Paige, Jr., MG E. 14-35-1

Pakos, P.E. 9-23-236

Palkuti, L.J. 3-38-55

Palmer, W. 9-24-345

Pannaci, E. 7-20-402, 7-22-529

Paradysz, R.E. 3-27-120, 6-34-475

Parcelier, P. 9-33-473

Parekh, J.P. 5-37-473

Parfitt, R.W. 11-32-337

Parker, T.E. 1-29-143, 5-30-334, 5-31-359, 5-33-379, 5-34-292, 5-36-453, 1-37-116, 5-37-410, 5-38-310, 12-39-97, 4-39-519, 12-40-241, 12-41-99, 4-41-351, 5-42-239, 5-42-263, 14-42-540

Paros, J.M. 2-37-255

Parry, J.V.L. 9-12-648

Parshad, R. 1-26-106, 2-32-207, 11-39-544, 4-42-93

Partridge, R.B. 14-23-313

Parzen, B. 11-17-602, 6-20-517, 11-32-432, 6-34-471, 11-36-480, 6-42-348

Pascaru, I. 7-33-484, 7-34-370, 7-38-471, 7-39-18, 7-39-24, 7-41-59, 7-41-66

Paulin, P. 7-36-348

Pavasovic, A. 6-40-340

Payne, T.S. 11-35-271

Peach, R.C. 2-36-22, 11-36-297, 5-36-389, 2-39-392, 11-39-527, 2-42-38

Pearman, G.T. 5-29-105, 5-31-191

Peduto, R. 6-24-191

Pegeot, C. 2-31-17, 4-32-310, 6-34-233

Peier, U.R. 4-34-175, 6-37-492

Pelc, J.I. 5-29-113

Pellegrini, P. 1-32-24

Penfield, Jr., P. 7-20-389

Penrod, B. 6-37-485

Peppler, T. 9-42-465, 9-42-485

Percival, D.B. 7-26-319, 11-29-412, 7-30-414, 11-31-319, 12-32-542

Perdue, E.M. 6-34-213, 10-38-92

Peregrino, L. 11-30-309

Perkinson, R.E. 9-24-315

Perri, P.R. 5-29-113

Perry, R.W. 2-12-9, 2-16-46, 2-17-51, 2-20-50

Persson, K.B. 7-38-416

Peters, E.E. 7-26-319

Peters, H.E. 7-17-372, 7-18-299, 7-19-402, 7-22-464, 7-23-297, 7-26-230, 7-28-247, 7-29-357, 7-29-362, 7-31-510, 7-32-469, 7-34-360, 7-35-662, 7-36-240, 7-38-420, 7-41-75

Peters, R.D. 4-30-224, 4-32-290

Peterson, J.W. 2-40-285

Peterson, M.E. 6-25-231, 6-26-55

Petit, P. 7-27-367, 9-31-499, 7-31-520, 7-31-535, 7-34-353, 7-40-410

Phelps, F.P. 4-11-256, 4-12-162

Philippot, E. 1-39-234, 1-40-101, 2-41-314, 1-42-138

Phillips, D.E. 10-22-342, 9-24-325, 9-27-312, 6-32-373, 6-35-428, 12-41-507

Phillips, D.H. 9-25-209

Phillips, L.A. 4-28-89

Phillips, R.E. 9-24-325, 9-25-209

Picard, R.H. 8-36-370

Piejus, P. 7-23-288

Pierce, J.A. 9-10-216, 9-13-318, 9-14-267

Pierret, R.F. 5-37-423

Ping-Ping, L. 9-41-144

Pirio, F. 5-34-269

Plait, A.O. 11-12-334

Planat, M. 5-34-255

Pleasure, M. 4-14-397

Plumelle, F. 7-38-431

Plummer, W.E. 14-22-35

Pochmerski, D. 11-10-305, 11-11-463, 11-13-123

Poignant, H. 1-33-70, 1-34-93

Poirier, M. 5-36-276

Pollard, G.B. 6-36-474

Pompeo, R. 11-22-163, 11-23-122

Ponce de Leon, R. 5-36-470

Poncot, J.C. 2-31-17

Popa, A.E. 7-30-489

Popovic, V. 11-42-456

Popovic-Milovanovic, V. 11-42-456

Porter, R.J. 5-28-43

Potter, B.R. 5-33-396, 5-35-352

Powell, S. 11-37-284

Powell, W. 9-42-472

Powers, R.F. 9-28-373

Prestage, J.D. 7-41-20

Pretot, R. 2-33-239

Prichard, K.A. 9-31-495

Priebe, F.K. 11-11-597, 5-14-361, 11-16-187, 11-17-537, 11-18-458, 11-19-487, 11-20-465

Priest, W. 6-16-328

Primas, L. 9-42-478

Pritt, D.L. 9-25-186

Prost, L. 7-36-260

Przyjemski, J.M. 6-32-426

Pucel, R.A. 5-40-385

Puckette, C.M. 5-29-88

Pugh, M.A. 4-35-60

Pustarfi, H.S. 11-27-63

Putkovich, K. 9-34-326, 9-36-388

Qi-Ziang, Z. 7-38-476

Rabinowitz, P. 8-24-275

Racine, J. 7-21-543, 7-28-344

Rafuse, R. 6-13-350

Ramsey, N.F. 7-14-310, 7-15-180, 7-16-287, 7-19-416, 7-20-387, 7-21-500, 7-22-452, 7-25-46, 7-37-5

Rao, J.B.L. 6-32-378

Rarity, J. 11-15-261

Ratajski, J.M. 2-20-33

Raue, J.E. 5-37-361

Read, E. 5-36-389

Reddy, A.R. 5-39-514

Reder, F.H. 7-11-385, 7-12-517, 9-12-648, 9-13-342, 7-13-546, 9-14-254, 9-15-226, 7-17-329

Redwood, M. 2-35-174

Reed, C.E. 13-41-350

Reeves, C.R. 5-26-171

Reifel, D. 1-28-125

Reinhardt, V. 9-37-61, 7-32-486, 7-28-247, 9-28-379, 7-29-357, 7-30-481, 6-37-97, 6-40-355

Renard, A.M. 6-35-455

Rennick, R.C. 5-29-105, 5-31-191

Reuger, L. 9-25-179

Rey, T.J. 6-15-278

Reynolds, R.L. 4-18-166, 4-19-125

Rhodes, J.E. 2-13-54

Ricci, D. 11-30-309

Richardson, C.K. 6-39-189

Richie, S.M. 5-40-252

Riley, W.J. 11-30-92, 7-38-387, 6-40-452

Risley, A.S. 11-27-421, 8-31-583, 7-32-506, 7-33-477

Ritter, G.E. 4-21-224

Rivamonte, J.M. 11-26-258

Robb, J.C. 7-38-464

Roberts, D.A. 5-21-83, 5-25-251

Roberts, E.A. 6-22-325

Roberts, G. 4-42-211, 5-36-486, 11-33-159

Robertson, D.W. 11-10-323

Robichon, G. 2-38-201, 6-41-413

Robinson, T. 6-30-279

Robrock II, R.B. 10-25-70

Roeder, J.H. 11-22-592

Rogers, A.W. 14-26-1

Rogers, P.J. 7-33-490

Rogers, R. 5-42-301

Rohde, U.L. 6-32-409

Roloff, R. 9-37-61

Ronen, M. 1-36-187, 1-37-181

Rosati, V.J. 6-35-117, 6-37-501, 11-37-524, 4-38-225, 11-38-507, 6-41-409, 4-41-444, 11-41-466

Rose, B.E. 5-32-385

Rosenbaum, J. 2-40-206

Rosenberg, A. 7-39-88

Rosenfeld, M. 6-28-211, 2-33-306, 6-36-499

Rosenfeld, R.C. 5-28-299, 5-29-150, 5-31-231, 5-33-220, 5-38-271

Ross, M.J. 9-31-448

Rossman, H. 6-31-385, 2-37-272

Roth, S.H. 7-11-385

Rothschild, M. 4-41-351

Rousseau, K.V. 5-37-428

Rousseau, S. 5-34-312, 5-36-284

Rovea, S. 7-31-535

Rovera, G.D. 7-30-468, 7-32-466, 7-39-3

Rowe, D.A. 5-35-345

Royer, J.J. 2-27-30, 5-33-166, 2-35-250

Rubach, R. 6-36-571

Rudd, D.W. 1-18-121, 1-23-171, 1-26-92

Rueger, L.J. 9-28-395, 9-30-444, 7-32-486

Rutkowski, C. 4-12-296, 14-13-477

Rutman, J. 12-28-160, 11-31-291

Saari, V.R. 6-34-475

Sabisky, E.S. 7-31-510, 7-32-499

Saburi, Y. 7-38-428, 7-38-447

Sacha, R.J. 6-22-354, 6-23-211

Sachdeva, D.S. 7-39-59

Sachs, R.K. 9-16-250

Saita, H. 6-41-435

Sakai, M. 2-39-351

Sakuta, Y. 6-33-458

Salazar, H.F. 7-29-387

Salvo, H. 6-37-87

Salvo, Jr., H.L. 2-39-372, 2-40-206, 5-40-392, 5-41-388

Samueli, H. 6-41-495, 6-42-357

Sanbao, X. 11-39-132

Sanborn, R. 7-19-344

Sanchez, A. 7-26-248, 8-29-328, 8-31-590

Sanchez-Hermosilla, L. 5-32-58

Sander, H.H. 3-27-113

Sandy, F. 5-30-334

Saporta, L. 11-15-261, 12-16-438

Sarkar, S.K. 6-28-232

Sase, T. 13-31-62

Sato, H. 5-28-286, 2-34-131

Sato, M. 13-31-62, 4-39-345

Sato, S. 5-42-288

Sato, Y. 7-26-211, 7-28-340, 6-33-417

Satoh, H. 2-39-361

Sauerbrey, G. 2-17-28, 2-21-63

Saunders, W.K. 6-13-566, 10-26-21

Sauvage, G. 6-34-233

Savard, J.Y. 7-31-535, 7-34-376, 7-36-348

Sawamoto, K. 5-25-246

Sawyer, C.B. 1-13-462, 1-19-669, 2-25-109, 1-37-151, 1-38-8, 11-41-241

Saxena, G.M. 7-39-59

Scansaroli, M.N. 4-39-367

Schade, R. 11-22-164

Schaumann, R. 5-37-371

Scheibner, E.J. 4-30-240

Schennberg, D. 5-16-347

Schermann, J.P. 7-22-493, 7-23-288

Schieber, M. 1-36-193, 1-37-185

Schlaudecker, R.T. 4-13-512, 4-14-154

SCHIUCEL, M. 3-3/-01	Schluter, W.	9-37-61	
----------------------	--------------	---------	--

Schmid, M. 11-39-535

Schmitt, P.K. 2-28-67

Schneider, S. 6-11-614

Schneier, N.J. 5-35-345

Schnurr, L.E. 4-21-200

Schodowski, S. 6-24-200, 4-26-120, 6-37-501, 11-37-524, 11-41-466

Schoenwald, J.S. 5-29-150, 5-30-340, 5-31-240, 5-33-374, 5-34-273, 5-35-345, 5-35-383

Schonhoff, T.A. 6-32-549

Schroeder, R. 7-42-490

Schucht, P. 5-32-58

Schultz, W.A. 6-14-381

Schulz, M.B. 1-29-143

Schulzke, L. 4-30-209, 11-31-96

Schumacher, B.W. 4-10-513

Schussler, H. 5-25-262

Schwab, D. 11-11-597, 5-14-361

Schwartzel, J. 5-37-239, 1-39-234, 1-40-101, 2-41-236, 2-41-314, 2-42-19, 4-42-85, 1-42-138

Schwidtal, K. 4-28-96

Schwuttke, G.H. 2-24-64

Scott, P.J. 6-31-407

Scott, R.I.H. 6-32-365, 6-33-449

Seal, W.D. 11-31-347

Searle, C.L. 7-16-259

Seavey, G. 7-30-457

Sebastian, M. 4-42-208

Seed, A. 4-18-597, 4-20-234, 2-21-420

Seipel, A. 6-20-500

Sekimoto, H. 2-39-386, 2-40-187, 5-42-95

Sekine, H. 6-33-458

Sekine, Y. 6-33-458

Senitzky, I.R. 14-13-542, 7-14-328, 7-15-203, 7-16-258

Sennett, R.S. 4-13-498

Septier, A. 5-27-406

Servajean, D. 4-39-333

Shahriar, M.S. 8-41-42

Shanley, C.S. 5-39-486

Shanley, C.W. 4-36-108, 4-39-367

Shannon, D.L. 3-40-127

Shapiro, J.M. 6-14-381

Shapiro, L.D. 9-20-613

Sharma, A. 4-42-93

Sharpe, D. 6-41-539, 5-42-284

Shaw, H.J. 5-24-16

Sheahan, D.F. 5-29-120

Sheats, L. 5-37-362

Sheehey, R. 6-42-276

Shen, W. 7-39-72

Shenhar, A. 9-42-485

Sher, N. 14-10-455

Sherman, Jr., J.H. 6-13-182, 4-16-156, 4-19-137, 6-21-345, 14-22-168, 2-23-143, 1-28-129, 3-28-143, 2-30-54, 11-31-108, 11-32-326, 11-33-181, 2-39-427, 1-40-91, 4-41-243

Sherman, P. 6-34-463

Shibayama, K. 5-28-286

Shibayama, S. 5-31-275

Shibla, C.L. 11-13-123, 11-18-441, 11-19-655, 11-22-282

Shibuki, M. 7-38-447

Shick, D.V. 5-40-257, 2-40-262, 2-41-282, 5-42-230

Shideler, E.M. 4-13-423, 4-15-113, 4-17-267

Shimizu, J. 5-40-275

Shimoda, Y. 6-37-434

Shinada, T. 4-27-42

Shinohara, A.H. 1-40-39, 1-40-47

Shiozawa, L. 1-14-19

Shipley, C. 7-18-265

Shirai, K. 5-31-207, 5-34-286

Shirley, J.H. 7-39-18, 7-39-22, 7-40-428

Shishido, F. 11-31-117

Shoaf, J.H. 11-25-226, 11-27-421

Shockley, W. 2-17-88

Shoji, T. 2-40-201

Shreve, W.R. 5-29-150, 5-30-328, 5-32-50

Shrout, T. 1-34-25

Sibley, W.A. 3-33-134

Siffert, P. 5-32-244, 5-36-405

Sills, A.R. 6-25-240

Silva, J.H. 5-36-486

Silver, J.F. 4-24-141

Silvera, I.F. 7-40-413

Silvermetz, D. 7-38-471, 7-39-24

Simmons, G.W. 4-24-111

Simonson, L.A. 5-30-358

Simpson, E. 1-42-116, 1-29-98, 1-37-153

Simpson, G. 7-19-298

Simpson, H.A. 5-25-287

Simpson, P.A. 2-13-207

Singh, S.K. 7-26-248

Singh, V.R. 1-26-106

Sinha, B.K. 2-31-23, 2-32-150, 2-32-155, 2-33-228, 2-34-393, 2-35-213, 5-37-415, 5-38-300, 5-42-288

Skudera, Jr., W.J. 5-27-253, 5-31-285, 5-42-252

Slabon, W.R. 9-31-455

Sliker, T.R. 5-21-83

Slobodnik, Jr., A.J. 5-36-486

Small, J.G. 7-26-248, 8-28-348

Smith, C. 5-26-180

Smith, H. 9-23-18

Smith, Jr., C.V. 5-35-358

Smith, M. 2-36-529

Smith, R.S. 5-30-346

Smith, R.T. 1-21-39

Smith, S.P. 8-41-42

Smith, W.L. 4-11-277, 6-12-131, 6-13-191, 6-14-200, 6-15-139, 6-16-405, 4-17-4, 10-22-206, 11-27-63, 3-27-120, 14-40-22, 11-41-527

Smith, W.T. 8-21-455, 7-22-573

Smythe, R.C. 11-17-316, 5-18-536, 5-20-343, 5-21-160, 5-27-243, 2-28-5, 5-30-322, 2-31-44, 5-32-220, 5-33-209, 2-35-230, 11-35-271, 11-35-280, 11-37-290, 11-37-297, 5-37-349, 5-39-138, 4-39-292, 2-39-317, 5-39-481, 5-39-491, 2-41-311, 2-42-73

Snell, F.E. 5-29-113

Snider, G.L. 11-31-78, 11-35-286

Snitzer, E. 6-10-506

Snow, G.S. 4-29-202, 13-40-230

Snowden, T.M. 11-35-263

Snyder, J.J. 11-35-464

Soluch, W. 1-32-196, 1-36-124

Sonoda, T. 2-33-247, 2-34-160

Sosin, A. 3-27-136

Soucy, J.L. 7-30-481

Spellman, M.I. 9-31-436

Spencer, E.G. 1-16-43

Spencer, R.B. 4-41-548, 4-42-205

Spencer, W.J. 6-15-139, 6-16-405, 4-17-4, 4-17-325, 2-19-22, 2-20-1, 2-21-3

Spurlin, R.A. 4-19-78

Staelens, P.J. 4-17-283

Stahl, A. 6-37-454

Stakelon, T. 10-35-525

Stalder, T. 9-37-61

Stanciulescu, D. 7-39-18

Stanley, J.M. 1-11-90, 3-14-138, 4-18-217, 3-20-82, 4-26-120

Staples, E.J. 5-28-280, 5-30-322, 5-31-371, 5-33-374, 5-34-273, 5-35-345, 5-35-383, 5-36-270

Staudte, J. 4-27-50, 4-22-226, 14-35-583

Stearns, C.M. 5-31-197

Stebbins, S. 7-32-560, 9-37-61

Steele, J. McA. 7-18-308

Steele, R. 6-34-498

Stein, S.R. 5-26-257, 5-27-414, 5-29-321, 11-30-269, 11-31-335, 9-31-495, 8-31-601, 12-32-527, 11-36-314, 11-38-483, 7-40-465, 12-42-447

Steinbeck, J. 14-42-545

Steinburg, B.D. 9-30-438

Stern, A. 7-42-519

Stern, F. 4-39-301

Stern, W.A. 7-19-417, 7-20-365, 7-20-370, 7-23-271, 7-25-325, 7-26-223, 7-27-404

Sterzer, F. 6-16-391

Stevens, D.S. 2-34-384, 2-35-205, 2-36-37, 2-36-46, 2-37-208, 2-37-325, 2-38-176, 2-39-325, 2-39-436, 1-42-116, 6-42-276

Stevenson, J.K. 5-36-389

Stief, L.J. 7-22-559

Stigall, R.E. 5-32-50

Stillman, L. 7-32-486

Stitch, M.L. 7-13-575

Stoddard, W.G. 4-17-272, 4-18-181

Stoermer, P. 6-38-380

Stokes, R.B. 5-30-12, 5-35-401, 5-36-396, 5-38-282, 6-40-292

Stone, C.S. 11-36-321

Stone, Jr., R.R. 9-16-227, 6-17-587, 9-18-395, 6-21-294, 9-25-152, 9-27-312

Stoof, H.T.C. 7-41-91

Storch, L. 5-11-556, 5-12-501

Story, R. 6-13-371

Stover, D.W. 7-37-27

Stow, R.C. 9-27-296

Straka, E.R. 7-36-230

Strandberg, M.W.P. 7-11-324

Strauch, R.G. 7-16-305, 7-17-409, 7-19-369

Strauss, A. 11-32-344, 6-36-499

Strayer, D.M. 5-38-435, 5-41-487

Strong, R. 6-10-506

Strumia, F. 7-28-350, 7-30-468, 8-31-605, 7-32-444, 7-32-466

Subramaniam, B. 1-37-164

Suda, P. 2-30-196, 2-32-260, 4-33-359

Sudo, Y. 5-42-288

Sullivan, D.B. 7-39-13

Sullivan, V. 5-37-394

Sundahl, R.C. 4-31-126

Sundelin, R.A. 5-34-243

Sunkenberg, H.A. 9-31-448

Surek, S. 1-32-196

Sutcliffe, D.S. 7-18-308

Suter, J.J. 3-38-63, 3-40-134

Suyama, M. 6-33-458

Suzuki, C.K. 1-34-14, 1-40-39, 1-40-47

Suzuki, H. 2-39-361

Suzuki, S. 2-39-448

Swanson, C.T. 6-33-425

Swanson, E.R. 9-25-159

Swanson, T.W. 5-32-233, 5-32-250

Sward, A. 7-25-348

Sydnor, R.L. 6-20-544, 7-25-348, 9-42-478

Sykes, R.A. 5-12-475, 4-17-4, 5-20-288, 14-25-1

Symonds, D.A. 11-35-271

Syngellakis, S. 2-29-65, 2-30-184

Taheri, S.H. 9-30-438

Tajika, F. 2-31-48

Takahashi, K. 7-28-340, 2-33-277

Takahashi, M. 4-28-109

Takahashi, S. 4-28-109

Takazawa, K. 1-28-117, 1-29-211

Takeuchi, C. 5-34-286, 2-35-149, 7-35-646

Takeuchi, T. 14-35-593, 5-37-376

Taki, S. 1-22-15, 1-26-93, 1-35-304

Takiya, S. 1-40-47

Tako, T. 8-36-327

Takoaka, H. 7-32-460

Tamura, F. 6-40-325

Tamura, H. 5-37-481

Tamura, S. 5-37-481

Tanaka, K. 7-32-460

Tanaka, M. 5-38-286

Tanaka, Y. 2-40-201

Tang, H. 7-24-285

Tang, M.S.H. 2-40-152, 2-41-277, 2-42-14

Tani, A. 5-34-286

Tank, H. 7-23-263

Tanski, W.J. 5-34-278, 5-35-388, 6-35-415, 5-36-400, 5-37-415

Tanzman, H.D. 11-11-597, 11-13-384

Tapp, S.D. 3-39-259

Taylor, J.C. 6-16-422

Taylor, J.H. 7-37-6

Taylor, R.J. 9-28-384

Tehon, S.W. 5-31-197

Teitelbaum, J. 6-21-331

Tellier, C.R. 1-38-105, 1-39-282, 1-40-76

Tennant, D.M. 9-35-532

Teramachi, Y. 2-33-235, 12-35-484

Tetu, M. 7-24-280, 7-26-225, 7-27-400, 11-31-344, 12-32-520, 7-33-515, 7-34-376, 7-36-340, 7-36-348, 7-38-408, 7-38-452, 7-39-64, 12-39-119

Thacker, D.L. 6-20-624

Theobald, G. 2-33-239, 2-38-157, 5-38-294, 7-42-496

Thomann, D.L. 6-28-214

Thomann, P. 7-36-260

Thomas, H.P. 6-21-345

'Thomas, J.E. 8-29-338, 8-36-370

Thomas, L.A. 1-10-75

Thomas, T.C. 6-19-565

Thompson, Jr., G.D. 6-20-544

Thompson, P. 5-42-272, 11-38-507

Thomsen, M.P.R. 7-22-559

Thorn, G. 13-39-556

Thornburg, C. 7-24-308

Throne, D.H. 7-23-274, 7-25-313

Thumin, A. 12-21-264

Thurmond, G. 10-42-453

Tiemann, J.J. 5-29-88

Tiersten, H.F. 2-23-56, 2-28-1, 2-28-44, 2-29-49, 2-29-71, 5-30-103, 2-31-23, 2-31-44, 2-32-150, 2-32-155, 2-33-228, 2-33-293, 2-34-384, 2-35-205, 2-35-230, 2-36-37, 2-36-46, 2-37-208, 2-37-325, 2-38-132, 2-38-176, 2-39-325, 2-39-436, 5-40-257, 2-40-262, 2-41-282, 2-41-311, 5-42-230

Tilton, R. 11-31-102, 2-38-206, 2-39-462

Tinta, F.G. 4-24-157

Tirkel, A. 10-35-511

Tobinski, H.G. 11-12-334

Tobman, M. 14-16-211

Todd, A.G. 1-36-62

Toerper, K. 12-18-535

Togawa, K. 2-41-391

Tohma, H. 2-39-381

Toki, M. 11-33-201, 2-34-58, 11-37-300

Tomase, J. 2-38-141

Tomikawa, Y. 2-30-167, 5-37-376, 2-39-381

Tonelli, M. 8-31-605

Toudic, Y. 1-33-70, 1-34-23, 1-40-101

Toulouse, J. 1-37-125, 3-38-32

Toupin, R.A. 2-25-58

Townes, C.H. 14-12-624

Toyama, J. 7-32-460

Tracy, R.A. 6-34-217

Tran, N.H. 7-41-59

Tremblay, P. 7-36-340, 7-38-408, 7-39-64, 12-39-119, 7-42-505

Trifunovic, G. 4-42-404

Troell, R. 6-20-464

Troung, Q.T. 3-38-55

Troxell, W.C. 6-40-373

Truelove, A.H. 4-39-301

Tsaclas, J. 4-36-208, 4-39-342

Tsuchida, H. 8-36-327

Tsuzuki, Y. 2-14-53, 11-25-113, 2-30-65, 11-33-201, 2-34-58, 2-35-149, 11-37-187, 11-37-300, 6-39-176

Tuan, H.S. 5-31-271

Tucker, T.K. 7-41-87

Turneaure, J.P. 5-26-257, 5-27-414

Tuznik, R.H. 5-19-509

Tyler, L.A. 4-12-296, 14-13-477, 2-14-179

Tymczysyn, J.J. 9-27-290

Uberall, H. 2-37-317

Uchida, H. 7-26-211, 6-27-218, 7-28-340, 6-29-294

Uchino, K. 11-33-110

Uebersfeld, J. 6-28-181, 12-29-311, 12-35-476

Ueda, H. 2-33-271

Ueda, T. 13-40-224

Ulicki, E. 6-19-580

Underhill, M.J. 6-32-365, 6-33-449

Uno, T. 6-37-434

Ura, F. 4-26-78

Urabe, S. 7-38-428, 7-38-447

Uratsuka, M. 9-39-145

Uriya, S. 6-41-435

Usui, A. 13-36-290

Uzgiris, E.E. 7-22-452, 7-23-284

Uzunoglu, V. 6-37-91, 9-39-183

Vaccaro, J.R. 6-40-452

Vaillancourt, R. 7-24-280

Valdois, M. 2-28-19, 2-33-337, 2-35-340

Valentin, J.P. 6-34-194, 2-35-122, 2-38-157, 6-38-366

Valihura, R.J. 4-35-60

Vammen, C. 6-21-308

Van Degrift, C.T. 6-31-375

Van Dierendonck, A.J. 10-30-375

Van Dyke, K.S. 2-10-1, 2-11-41

Van Loben Sels, W.E. 11-33-189

Van Steen, F. 6-20-464

Van de Stadt, H. 8-31-601

VandeGraaf, J.J. 5-29-88

Vander Stoep, D.R. 10-29-417

Vanek, M. 11-42-432

Vangheluwe, D.C.L. 2-32-134, 2-34-412, 2-35-157

Vanier, J. 7-18-299, 7-19-402, 7-20-364, 7-21-568, 7-24-280, 7-26-225, 7-27-400, 7-28-344, 7-29-371, 7-29-383, 11-31-344, 7-31-535, 12-32-520, 7-33-477, 7-34-376, 7-36-340, 7-36-348, 7-40-432, 11-42-419

Vasiljevic, D. 6-38-334, 6-40-340, 6-42-342

Vaterkowski, J.L. 1-40-76

Verhaar, B.J. 7-41-91

Verma, P.K. 9-31-463

Vessot, R.F.C. 7-17-372, 7-18-299, 7-19-402, 10-21-512, 7-22-605, 7-23-279, 7-24-270, 9-28-408, 7-31-525, 7-32-477, 7-33-511, 7-33-549, 12-34-228, 7-37-49, 7-39-72, 7-39-75, 7-40-413, 7-40-422, 7-41-95

Vetelino, J.F. 1-32-196, 1-36-124, 5-36-276

Vialle, N. 1-40-76

Viars, T.C. 10-23-8

Victor, W.K. 6-10-268, 10-13-248

Viennet, J. 7-25-337, 7-27-367, 7-32-531, 7-34-353, 7-40-410

Vig, J.R. 5-26-193, 4-27-98, 4-28-96, 4-29-202, 4-29-220, 4-29-240, 4-30-264, 4-31-131, 2-32-180, 4-37-290, 4-33-351, 2-34-187, 4-35-104, 2-35-110, 2-36-181, 2-36-215, 2-37-265, 1-38-42, 4-38-225, 4-39-276, 4-40-86, 4-41-444, 12-42-397, 11-42-419

Villeneuve, B. 7-39-64

Volk, C.H. 7-38-387, 7-38-401

Vollers, H.G. 5-26-164, 5-28-256

Vonbun, F.O. 7-11-335, 7-13-618

Voss, R.F. 14-33-40

Vovelle, P.G. 6-22-311

Vulcan, A.I. 11-28-184, 12-30-284, 7-31-542, 6-35-415, 9-35-553, 5-38-273, 6-38-315, 9-39-153, 6-41-519

Wacks, J. 3-38-32

Wagner, C.E. 2-19-23, 2-21-72, 11-25-118

Wagner, G. 14-42-556

Wainwright, A.E. 12-22-340, 7-27-334, 7-27-347, 11-28-177, 9-29-384

Wakatsuki, N. 2-37-343, 4-38-114, 2-39-351

Wakino, K. 5-37-481

Wallard, A.J. 8-27-376

Walls, F.L. 11-28-177, 11-30-269, 7-30-473, 11-31-335, 7-32-453, 7-32-492, 12-32-527, 7-33-554, 7-35-602, 7-35-625, 12-36-371, 12-37-218, 7-38-416, 12-39-91, 6-41-439, 6-41-512, 12-42-279, 11-42-432

Walsh, B.L. 7-30-489

Walsworth, Jr., R.L. 7-40-413

Walther, B. 10-31-484

Wang, H.T.M. 7-28-355, 7-30-489, 7-33-536, 7-33-543, 7-34-364, 7-36-249, 7-37-7, 7-39-80

Wang, J.S. 5-36-517, 1-37-144, 4-38-101, 2-39-356

Wang, K.L. 5-31-266

Wang, M. 11-33-189

Wang, W.C. 2-20-32

Wang, Y.S. 2-27-1, 2-28-14

Wanuga, S. 5-31-197

Ward, R.W. 2-24-55, 2-30-175, 2-35-99, 1-38-22, 13-39-575, 13-40-211, 13-41-344, 11-42-442

Wardrip, C. 9-37-61

Wardrip, S.C. 11-22-592

Waren, A.D. 5-19-534

Warner, Jr., A.W. 4-10-190, 6-12-131, 6-13-191, 6-14-200, 4-17-248, 1-19-5, 2-33-306, 4-34-183, 2-35-92, 4-36-208, 4-39-342, 2-39-473, 4-42-202

Washington, W. 4-35-104

Wasserman, S. 7-41-95

Wasshausen, H. 5-20-131, 4-26-120, 4-27-98

Watanabe, A. 2-32-267, 2-33-277

Watanabe, S. 2-37-337

Watanabe, T. 5-30-109

Watanabe, Y. 11-40-313

Water, W.M. 6-32-378

Watson, S.K. 4-38-101

Watts, M. 11-42-442

Wauters, P.J. 7-21-467, 7-22-517

Weakliem, H.A. 7-32-499

Weeks, R. 3-13-37

Weeman, R.K. 5-25-287

Weglein, R.D. 5-30-363, 5-31-225, 2-38-73, 12-40-379

Wei, S. 7-40-422

Weidemann, W. 6-38-86, 7-40-470

Weihe, V.I. 10-25-82

Weill, J.A. 3-27-153

Weinert, R.W. 1-29-139

Weiss, G. 11-15-261, 12-16-438, 12-21-264

Weiss, M.A. 9-34-334, 9-35-546, 9-40-394

Welford, D. 8-36-338

Wells, J.S. 8-26-250

Welsh, F. 10-35-525

Wen-Wei, K. 7-38-476

Werner, J.F. 5-23-65, 2-30-40, 2-36-529, 1-37-136

West, J.B. 8-29-316

West, J.D. 1-37-164

Weston, D.A. 2-30-32

Whalin, J.A. 4-39-367

Wheatley III, C.E. 5-28-260, 6-35-428

Wheeler, P.J. 7-41-12, 9-42-472

White, D.J. 5-34-307

White, D.L. 2-20-32

White, J.D. 7-27-390, 7-28-401, 7-32-560, 7-35-657, 11-37-513

White, L.D. 7-13-596

White, M.H. 9-39-183

White, M.L. 4-27-79

White, R.M. 13-41-333

Whitehorn, R. 7-13-648

Whitesides, G. 7-41-95

Wichansky, H. 1-29-143

Wieder, B. 9-25-171

Wiggins, R.B. 13-40-216, 11-42-442

Wilcox, J.Z. 5-33-388

Wilcox, P.D. 4-29-202

Wild, G. 6-30-420

Wilkinson, D.T. 14-23-313

Wilkus, S. 5-37-354

Will, C.M. 9-41-111

Williams, D.F. 5-34-302, 5-35-376

Williams, H.E. 7-37-12

Williamson, R.C. 5-29-167, 5-35-13

Willibald, E. 5-36-442

Willis, J.R. 2-27-7

Willrodt, M. 6-12-406

Wilson, C.J. 2-27-35

Wilson, G. 7-22-529

Wilson, J.S. 6-37-442

Wilson, L.G. 9-22-441

Wilson, R.L. 6-33-406, 6-33-411

Wilson, T.M. 1-40-26, 1-40-32

Wimmer, L. 11-39-535

Wineland, D.J. 7-31-562, 7-32-453, 8-33-494, 7-35-602, 7-37-37, 7-39-85

Winkler, G.M.R. 7-11-335, 7-12-534, 9-12-648, 9-13-342, 9-14-254, 7-14-261, 9-15-226, 9-22-383, 9-23-249, 9-25-217, 9-26-269, 11-29-412, 9-40-405, 7-41-12, 11-42-419

Wise, J. 5-33-374, 5-34-273, 5-35-345, 5-35-383, 5-36-270

Wise, L.V. 4-10-573

Withers, R.S. 5-37-81

Witt, F.J. 5-33-206

Witt, Jr., S.N. 11-11-479, 11-12-383, 11-13-137, 2-14-53, 9-20-588

Wolf, F. 4-20-208, 11-23-122

Wolfskill, J.M. 4-10-540, 4-11-214, 4-12-211, 4-13-512, 4-14-154, 4-19-78, 4-22-89, 14-24-13

Wood, A.F.B. 2-21-420, 4-41-548

Woodring, D.G. 10-32-555

Woodward, R.H. 7-18-366

Woolley, R.F. 4-20-167

Workman, S.T. 4-35-60

Wright, J.R. 9-22-419, 9-27-304

Wright, P.V. 5-34-262, 5-37-81

Wrobel, T.F. 1-32-24

Wu, K.M. 2-30-1, 2-31-29, 2-34-403

Wu, S.D. 5-31-271

Wulin, D. 11-39-132

Wunderer, E. 7-18-322

Xiu-Feng, D. 7-38-476

Yakos, M.D. 9-35-537

Yakuwa, K. 5-31-207

Yalman, R.G. 1-11-142

Yamabe, Y. 6-26-140

Yamada, S. 2-37-343, 4-38-114

Yamagishi, I. 6-32-398

Yamaguchi, H. 13-38-240

Yamamoto, K. 4-39-345

Yamamoto, S. 5-40-275

Yamanouchi, K. 5-28-286

Yamashina, M. 2-39-448

Yamashita, S. 2-32-267, 2-33-277

Yamauchi, F. 4-28-109

Yamazaki, D. 13-40-224

Yamazaki, K. 2-35-166

Yanagi, H. 11-33-201

Yannoni, N.F. 6-35-492, 11-42-419

Yazaki, E. 1-29-211

Yazaki, H. 1-28-117

Yeh, B.H. 5-31-251

Yen, H.W. 10-42-453

Yen, K.H. 5-31-266, 5-32-95, 5-33-388, 5-34-237, 5-35-401, 5-36-396, 5-37-428, 5-38-282, 2-39-356, 6-40-292

Yerna, J.S. 11-38-499

Yoda, H. 5-13-405, 1-22-15, 5-22-188, 5-23-76, 6-26-140, 14-28-57

Yokoyama, A. 2-30-191

Yong, Y.K. 2-37-200, 2-38-164, 2-39-415, 2-40-179, 2-41-303, 2-42-29, 12-42-397

Yoo, K.B. 2-37-317

Yoshida, H. 2-31-3

Yoshie, H. 2-21-402

Yoshimura, K. 9-39-145

Youmans, D.C. 8-27-382

Young, R.A. 2-19-23, 2-21-72

Young, T.J. 1-32-34

Young, W.J. 11-11-402, 14-20-70

Yuen, C. 5-42-378

Yuuki, T. 2-25-139

Zacharias, J.R. 14-12-623

Zacharski, J. 7-41-59

Zahorchak, A. 5-34-243

Zao-Cheng, Z. 7-38-476

Zarfaty, Y. 7-42-519

Zarka, A. 1-39-234, 1-40-101, 2-41-236, 2-42-19, 4-42-85, 1-42-138, 4-42-208

Zecchini, P. 1-37-111

Zee, C. 2-32-108

Zepler, M.M. 7-25-331

Zeroug, S. 5-42-112

Zhai, 2.C. 7-41-82

Zheng, Y. 4-42-85

Zhuang, Q. 9-41-130

Zingg, W. 2-32-260, 4-33-359

Zirwick, K. 11-27-432

Zitzewitz, P.W. 7-23-284, 7-24-263

Zumsteg, A.E. 2-30-196, 2-32-260, 4-33-359