

Circuital Symbol	Logical Operator	Truth Table	Logical Symbol	
_a	c = NOT a	a c 0 1 1 0	c=ā	C = a NAND b
_a	c = a AND b (·)	a b c 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1	c=a·b	$+\frac{a}{b}$ $c = a NORb$
	c = a OR b (+)	a b c 0 0 0 0 1 1 1 0 1 1 1 1	c= a+b	$\frac{a}{b}$) $c = a \times ORb$

-D Leggi di De Morgan

NAND e OR possono essere scombiati

NOT (X AND Y)

$$\overline{\times \cdot \vee} = \overline{\times} + \overline{\vee}$$

X NAND Y = (NOTX) OR(NOTY)

NOR e AND possono essere scambiati

$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

-D Teorema del Consenso

Quando 2 segnali binari sono in AND con X e X, l'altima termine 1.2 si riduce.

Quando a segnali binari sono in OR con X e X, l'ultimo temine é (V+2) si viduce

1) Se x=0 abbiano w=2+1.2=2 in entrambi: casi else $w = y + y^2 = y$ Y. Z si viduce -D Sintesi di somma dei prodotti (SoP) e prodotto delle somme (PoS).

Ogni funzione logica con Ninput e 1 output può essere espres sa in 2 forme canoniche:

- Somma dei prodoti X.Y.Z+X.Y.Z+X.Y.Z

- Prodotto delle some (x+v+2)

Esempio

"Design un circuito logico che compora due numeri $A \in B$ binari, Y = A > B " W = A = B"

	B1 B0	٧	W
0	0 0	0	1
00	0 1	0	0
0 0	10	0	0
:	:	:	:
0 1	0 0	1 1	0

(1)	Faccio	tobella
	della	z veritá

Otteniamo 50P: (Sommo dove c'é 1)

Pos (Faccio i prodotti dove ele' 0)

Y= (A1+A0+B1+B0) ...

-D Mappa di Kamaugh

Funzioni Logiche possono essere minimizzate con le proprieta logiche.

Distributiva

Complemento

De Morgan (1)

Complemento

K-MAP (can esempio di prima)

	Y		A1 A0			
			01	. 11	10	
	00	0	1	1	۲	
BI	01	0	O	1	1	
150	11	0	0	0	0	
	10	0	0	1	0	

=D é una tabella della verita vistretta!

-D Pericolo Statico e Dinamico

- Le porte logiche non hanno un comportamento ideale
- Non commutano istantaneamente quando cambio il segnale di ingresso.
- Il tempo di salita/discesa di uno specifico processo logico dipende da quante porte sono connesse.
- Il numero di LP collegati all'uscita di INVO é chiama to Fan-Out
- Piú é grande FO, piú lento é il tempo di risposta

Consideriamo:

- facciomo la tabella di verita

A	B	C	ΙУ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	O
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A.C mi rida' sempre 1

-D KMAP con mintermini

Y A1A0 00 01 11 10 B1 01 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Ho minimizzato P = A1 · B1 + A0 · B1 · B0 perché + A0 · A1 · B0
se A1 = 1 e B1 = 0 accetta qualsiasi A0 e B0