

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

# NASIONALE SENIOR SERTIFIKAAT

**GRAAD 12** 

FISIESE WETENSKAPPE: CHEMIE (V2)

**NOVEMBER 2023** 

**PUNTE: 150** 

TYD: 3 uur

Hierdie vraestel bestaan uit 16 bladsye en 4 gegewensblaaie.

#### **INSTRUKSIES EN INLIGTING**

- 1. Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit NEGE vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae oop, bv. tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Toon ALLE formules en substitusies in ALLE berekeninge.
- 9. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 10. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 11. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 12. Skryf netjies en leesbaar.

#### **VRAAG 1: MEERVOUDIGEKEUSE-VRAE**

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Elke vraag het slegs EEN korrekte antwoord. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, bv. 1.11 E.

- 1.1 Watter EEN van die volgende verteenwoordig 'n reguitketting- VERSADIGDE koolwaterstof?
  - A  $C_5H_8$
  - B  $C_5H_{10}$
  - $C C_6H_{12}$

 $D C_6H_{14}$  (2)

- 1.2 Watter EEN van die volgende is 'n SEKONDÊRE alkohol?
  - A C(CH<sub>3</sub>)<sub>3</sub>OH
  - B CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>OH
  - C CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>CHO
  - D  $CH_3CH_2CH(OH)CH_3$  (2)
- 1.3 Watter EEN van die volgende is 'n HIDROLISE-reaksie?
  - A  $CH_3CH_2Br + H_2O \rightarrow CH_3CH_2OH + HBr$
  - B  $CH_3CH_2OH + HBr \rightarrow CH_3CH_2Br + H_2O$
  - C  $CH_2CH_2 + H_2O \rightarrow CH_3CH_2OH$
  - $D \quad CH_2CH_2 + H_2 \rightarrow CH_3CH_3$  (2)

#### 1.4 Soutsuur reageer met 'n OORMAAT sink:

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

Verskillende reaksietoestande word in die diagramme hieronder getoon. Die massa sink wat in beide proefbuise gebruik word, is dieselfde.



Hoe sal die AANVANKLIKE reaksietempo en die FINALE VOLUME van  $H_2(g)$  geproduseer in proefbuis **Y** met dié in proefbuis **X** vergelyk?

|   | AANVANKLIKE<br>REAKSIETEMPO IN Y | FINALE VOLUME<br>VAN H₂(G) IN Y |
|---|----------------------------------|---------------------------------|
| Α | Hoër                             | Gelyk                           |
| В | Laer                             | Meer                            |
| С | Laer                             | Gelyk                           |
| D | Hoër                             | Meer                            |

(2)

Kopiereg voorbehou

1.5 Die diagram hieronder verteenwoordig 'n mengsel van  $NO_2(g)$  en  $N_2O_4(g)$ molekule by ewewig in 'n 1 dm<sup>3</sup>-houer by T °C.





Die gebalanseerde vergelyking vir hierdie reaksie is:

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

Watter EEN van die volgende is WAAR vir die waarde van die ewewigskonstante, K<sub>c</sub>, vir die reaksie by T °C?

A 
$$K_c = 24$$

B 
$$K_c > 1$$

$$C K_c = 1$$

$$D = 0 < K_c < 1$$
 (2)

1.6 'n Reaksie is in ewewig in 'n geslote houer volgens die volgende gebalanseerde vergelyking:

$$4CuO(s) \rightleftharpoons 2Cu_2O(s) + O_2(g)$$

Die volume van die houer word nou vergroot terwyl die temperatuur konstant gehou word. 'n Nuwe ewewig word bereik.

Watter EEN van die volgende kombinasies is KORREK vir die nuwe ewewig?

|   | KONSENTRASIE<br>VAN O <sub>2</sub> | AANTAL MOL<br>VAN O₂ | EWEWIGS-<br>KONSTANTE (K₀) |
|---|------------------------------------|----------------------|----------------------------|
| А | Neem af                            | Bly dieselfde        | Neem toe                   |
| В | Bly dieselfde                      | Neem af              | Bly dieselfde              |
| С | Bly dieselfde                      | Neem toe             | Bly dieselfde              |
| D | Neem af                            | Neem toe             | Bly dieselfde              |

(2)

1.7 Salpetersuur, HNO<sub>3</sub>(aq), en etanoësuur, CH<sub>3</sub>COOH(aq), met gelyke volumes en konsentrasies word vergelyk.

Bestudeer die volgende stellings oor hierdie oplossings:

- (i) Dit het verskillende pH-waardes.
- (ii) Beide het dieselfde elektriese geleidingsvermoë.
- (iii) Beide oplossings benodig dieselfde hoeveelheid mol KOH(aq) vir volledige neutralisasie.

Watter van die stelling(s) hierbo is WAAR?

- A Slegs (i)
- B Slegs (i) en (ii)
- C Slegs (i) en (iii)

1.8 Die apparaat in die diagram hieronder word vir die titrasie tussen HCl(aq) en KOH(aq) gebruik.



In 'n titrasie het die leerder per ongeluk verby die eindpunt gegaan. Watter EEN van die volgende sal WAAR wees vir die titrasiemengsel?

- A  $[H^{+}] > [OH^{-}] \text{ en pH } < 7$
- B  $[H^{+}] < [OH^{-}] \text{ en pH } < 7$
- C  $[H^{+}] < [OH^{-}] \text{ en pH} > 7$

D 
$$[H^{\dagger}] > [OH^{-}]$$
en pH > 7 (2)

Kopiereg voorbehou

1.9 Die volgende hipotetiese standaard-reduksiepotensiale het betrekking op 'n galvaniese sel:

$$X^{2+}(aq) + 2e^{-} \rightarrow X(s)$$
  $E^{\Theta} = +0.10 \text{ V}$   
 $Y^{+}(aq) + e^{-} \rightarrow Y(s)$   $E^{\Theta} = -0.10 \text{ V}$ 

Bestudeer die volgende stellings vir hierdie galvaniese sel:

- (i) Die emk van die sel is 0,20 V onder standaardtoestande.
- (ii) Elektrode Y is die anode.
- (iii) X word geoksideer.

Watter van die stelling(s) hierbo is WAAR vir hierdie galvaniese sel?

- A Slegs (i)
- B Slegs (i) en (ii)
- C Slegs (i) en (iii)

1.10 Watter EEN van die halfreaksies hieronder sal die HOOF-reaksie by die ANODE tydens die elektrolise van GEKONSENTREERDE CuCl<sub>2</sub>(aq) wees?

A 
$$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$

B 
$$2H_2O(\ell) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$

$$C \qquad 2 H_2 O(\ell) \ \to \ O_2(g) + 4 H^+(aq) + 4 e^-$$

D 
$$2C\ell^{-}(aq) \rightarrow C\ell_{2}(g) + 2e^{-}$$
 (2) [20]

#### VRAAG 2 (Begin op 'n nuwe bladsy.)

Die letters A tot H in die tabel hieronder verteenwoordig agt organiese verbindings.

| Α | Heptanoësuur                                                                                        | В | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> COOCH <sub>3</sub>                        |
|---|-----------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------|
| С | 4-etiel-3,3-difluoroheksaan                                                                         | D | Heksanoësuur                                                                              |
| E | CH <sub>2</sub><br>  <br>CH <sub>3</sub> —CH—C—CH <sub>3</sub><br> <br>CH <sub>3</sub>              | F | O<br>  <br>CH <sub>3</sub> —CH—C—CH <sub>2</sub> —CH <sub>3</sub><br> <br>CH <sub>3</sub> |
| G | CH <sub>3</sub><br> <br>CH <sub>3</sub> —C—CH <sub>2</sub> —CH <sub>3</sub><br> <br>C=O<br> <br>H—O | Н | H H O H<br>        <br>H—C—C—C—H<br>    H H                                               |

2.1 Definieer die term *organiese verbinding*. (1)

2.2 Skryf neer die IUPAC-naam van verbinding:

2.3 Skryf neer die:

2.3.2 STRUKTUURFORMULE van verbinding **C** (3)

2.3.3 Algemene formule van die homoloë reeks waaraan verbinding **E** behoort (1)

2.3.4 STRUKTUURFORMULE van die FUNKSIONELE groep van verbinding **F** (1)

2.3.5 IUPAC-naam van die alkohol benodig vir die produksie van verbinding **B** (2)

2.4 Skryf neer die letter(s) van die verbinding(s) wat:

(2)

#### VRAAG 3 (Begin op 'n nuwe bladsy.)

Die verwantskap tussen kookpunt en die molekulêre massa van aldehiede, karboksielsure en primêre alkohole word ondersoek. Kurwes **P**, **R** en **S** word verkry. Alle verbindings wat gebruik word, is reguitkettingmolekule.





- 3.1 Definieer die term *kookpunt*.
- 3.2 Skryf die gevolgtrekking neer wat vir kurwe **P** gemaak kan word. (2)
- 3.3 Verduidelik die antwoord op VRAAG 3.2 in terme van die struktuur van die verbindings. (2)
- 3.4 Kurwe **R** verteenwoordig die alkohole.
  - 3.4.1 Watter homoloë reeks word deur kurwe **S** verteenwoordig? (1)
  - 3.4.2 Verduidelik die antwoord op VRAAG 3.4.1 deur na die sterkte van intermolekulêre kragte te verwys. (2)

| 3.5 | Vir | kurwe | R, | skryf | neer | die: |
|-----|-----|-------|----|-------|------|------|
|-----|-----|-------|----|-------|------|------|

- 3.5.1 Molekulêre massa van die verbinding met 'n kookpunt van 97 °C (1)
- 3.5.2 IUPAC-naam van die verbinding in VRAAG 3.5.1 (2)
- Twee verbindings, **A** en **B**, wat in hierdie ondersoek gebruik word, het 'n molekulêre massa van 74 g·mol<sup>-1</sup>. **A** het 'n kookpunt van 118 °C en **B** het 'n kookpunt van 142 °C. Verduidelik die verskil in hierdie kookpunte deur na die strukture van hierdie verbindings te verwys.

(3) **[15]** 

(2)

(3)

#### VRAAG 4 (Begin op 'n nuwe bladsy.)

4.1 Beskou die krakingsreaksie hieronder.

$$C_{16}H_{34} \longrightarrow C_6H_{14} + C_6H_x + 2C_vH_z$$

- 4.1.1 Definieer *kraking*.
- 4.1.2 Skryf die waardes neer wat deur **x**, **y** en **z** in die vergelyking hierbo verteenwoordig word. (3)

Verbinding C<sub>6</sub>H<sub>14</sub> ondergaan volledige verbranding.

- 4.1.3 Gebruik MOLEKULÊRE FORMULES en skryf die gebalanseerde vergelyking vir hierdie reaksie neer.
- 4.2 Beskou die vergelykings vir reaksies I tot III hieronder.

**A** en **B** verteenwoordig organiese verbindings wat POSISIONELE ISOMERE is. **X** is 'n anorganiese produk.

| I   | $CH_3CH_2CHCHCH_3 + HC\ell \rightarrow A + B$                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | $A \xrightarrow{H_2O} CH_3CH_2CH_2CH(OH)CH_3 + X$                                                                                              |
| III | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH(OH)CH <sub>3</sub> → CH <sub>3</sub> CH <sub>2</sub> CHCHCH <sub>3</sub> + H <sub>2</sub> O |

Skryf neer die:

- 4.2.1 Definisie van *posisie-isomere* (2)
- 4.2.2 Tipe reaksie wat deur reaksie I verteenwoordig word (1)
- 4.2.3 STRUKTURELE formule van verbinding **B** (3)
- 4.2.4 Formule van  $\mathbf{X}$  (1)
- 4.2.5 Anorganiese reagens vir reaksie **III** (1)

Verbinding **A** kan direk omgeskakel word na die organiese produk van reaksie **III**.

- 4.2.6 Behalwe hitte, skryf die reaksietoestand neer wat vir hierdie omskakeling benodig word. (1)
- 4.2.7 Skryf TWEE terme neer wat hierdie tipe reaksie beskryf. (2) [19]

#### VRAAG 5 (Begin op 'n nuwe bladsy.)

Die reaksie tussen OORMAAT verdunde soutsuur en natriumtiosulfaat word gebruik om die faktore wat reaksietempo beïnvloed, te ondersoek.

$$Na_2S_2O_3(aq) + 2HC\ell(aq) \rightarrow 2NaC\ell(aq) + S(s) + H_2O(\ell) + SO_2(g)$$

Die konsentrasie van HCl(aq) wat gebruik is, is 1 mol·dm<sup>-3</sup>. Dieselfde volume HCl(aq) word in elke lopie gebruik.

Die tyd wat dit die kruis op die papier onder die fles neem om onsigbaar te word, word gemeet.



Die tabel hieronder som die reaksietoestande en resultate van die eksperiment op.

| LOPIE | VOLUME<br>Na₂S₂O₃(aq)<br>(cm³) | VOLUME H <sub>2</sub> O(ℓ) BYGEVOEG (cm³) | KONSENTRASIE<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (aq)<br>(mol·dm <sup>-3</sup> ) | TYD<br>(s) |
|-------|--------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|------------|
| 1     | 50                             | 0                                         | 0,13                                                                                          | 20,4       |
| 2     | 40                             | 10                                        | 0,10                                                                                          | 26,7       |
| 3     | 30                             | 20                                        | Р                                                                                             | 33,3       |

- 5.1 Definieer *reaksietempo*.
- 5.2 Skryf die onafhanklike veranderlike vir hierdie ondersoek neer. (1)
- 5.3 Bereken die waarde van **P** in die tabel. (3)
- 5.4 Wanneer 0,21 g swawel in Lopie 1 geproduseer is, raak die kruis onsigbaar.

Bereken die gemiddelde reaksietempo met betrekking tot natriumtiosulfaat, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>(aq), in g·s<sup>-1</sup>. (5)

'n Ander ondersoek word by verskillende temperature uitgevoer.

- 5.5 Skets die Maxwell-Boltzmann-verspreidingskurwe vir die reaksie by 20 °C.
  Benoem hierdie kurwe as **A**. Teken op dieselfde assestelsel die kurwe wat by
  35 °C verkry sal word en benoem dit as **B**. (4)
- 5.6 Verduidelik die effek van temperatuur op reaksietempo in terme van die botsingsteorie.

(4) [19]

(2)

(3) **[19]** 

#### VRAAG 6 (Begin op 'n nuwe bladsy.)

Beskou die volgende hipotetiese reaksie wat by 150 °C ewewig bereik in 'n 4 dm³ geslote houer.

$$2AB(g) \rightleftharpoons A_2(g) + B_2(g)$$

Die grafiek hieronder toon die veranderinge in die hoeveelhede reaktanse en produkte oor tyd.



- 6.1 Skryf die betekenis van die term *omkeerbare reaksie* neer. (1)
- 6.2 Stel Le Chatelier se beginsel. (2)
- 6.3 'n Verandering is aan die ewewigsmengsel by t = 80 s aangebring.
  - 6.3.1 Skryf die verandering wat by t = 80 s aangebring is, neer. (1)
  - 6.3.2 Gebruik Le Chatelier se beginsel om te verduidelik hoe die sisteem op hierdie verandering reageer. (2)
- Bereken die ewewigskonstante,  $K_c$ , by t = 120 s. (4)
- 6.5 By t = 130 s is die temperatuur van die sisteem tot 100 °C verlaag.
  - 6.5.1 Teken 'n potensiële-energiediagram vir hierdie reaksie. (3)
    - 6.5.2 Sal die ewewigskonstante,  $K_c$ , by 100 °C GROTER AS, KLEINER AS of GELYK AAN die  $K_c$  by 150 °C wees? Verduidelik die antwoord. (3)
- 6.6 Die aanvanklike reaksie vind nou in die teenwoordigheid van 'n katalisator by 150 °C plaas.

Beskryf die veranderinge wat op die grafiek tussen t = 0 s en t = 60 s waargeneem sal word.

#### VRAAG 7 (Begin op 'n nuwe bladsy.)

Om metaal **M** in 'n onbekende metaalkarbonaat, **M**CO<sub>3</sub>, te identifiseer, word die volgende stappe uitgevoer:

- Stap 1: 0,198 g van ONSUIWER **M**CO<sub>3</sub> reageer met 25 cm<sup>3</sup> van 0,4 mol·dm<sup>-3</sup>-salpetersuur, HNO<sub>3</sub>(aq).
- Stap 2: Die OORMAAT HNO<sub>3</sub>(aq) word dan deur 20 cm<sup>3</sup> van 0,15 mol·dm<sup>-3</sup>-barium-hidroksied, Ba(OH)<sub>2</sub>(aq), geneutraliseer.

Aanvaar dat die volumes bymekaartel.

Die volgende reaksies vind plaas:

$$2HNO_3(aq) + MCO_3(s) \rightarrow M(NO_3)_2(aq) + CO_2(g) + H_2O(\ell)$$
  
 $2HNO_3(aq) + Ba(OH)_2(aq) \rightarrow Ba(NO_3)_2(aq) + 2H_2O(\ell)$ 

- 7.1 Definieer die term *sterk basis*. (2)
- 7.2 Bereken die:
  - 7.2.1 Aantal mol van  $Ba(OH)_2(aq)$  wat met die oormaat  $HNO_3(aq)$  reageer (3)
  - 7.2.2 pH van die oplossing ná Stap 1 (5)
- 7.3 Die persentasie suiwerheid van die  $MCO_3(s)$  in die monster is 85%. Identifiseer metaal M. (8) [18]

### VRAAG 8 (Begin op 'n nuwe bladsy.)

'n Skoongemaakte suiwer koperstrook, Cu(s), word in 'n beker geplaas wat 'n kleurlose silwernitraatoplossing, AgNO<sub>3</sub>(aq), by 25 °C bevat, soos hieronder getoon.



Na 'n rukkie word waargeneem dat die oplossing in die beker blou word.

- 8.1 Skryf neer:
  - 8.1.1 EEN ander WAARNEEMBARE verandering, behalwe dat die oplossing blou word (1)
  - 8.1.2 Die NAAM of FORMULE van die oksideermiddel (1)
- 8.2 Verduidelik die antwoord op VRAAG 8.1.1 deur na die relatiewe sterktes van die oksideermiddels of reduseermiddels te verwys. (3)

'n Galvaniese sel word nou opgestel deur Cu- en Ag-stroke as elektrodes te gebruik. 'n Vereenvoudigde diagram van die sel word hieronder getoon.



- 8.3 Skryf neer die:
  - 8.3.1 NAAM of FORMULE van elektrode **A** (1)
  - 8.3.2 NAAM of FORMULE van oplossing **B** (1)
  - 8.3.3 Algebele (netto) gebalanseerde vergelyking vir die selreaksie (3)
- 8.4 Die soutbrug bevat kaliumnitraat, KNO<sub>3</sub>(aq).

Skryf neer die FORMULE van die ioon in die soutbrug wat in die silwerioonoplossing sal inbeweeg. Kies uit  $K^+(aq)$  of  $NO_3^-(aq)$ .

Gee 'n rede vir die antwoord. (2) [12]

#### VRAAG 9 (Begin op 'n nuwe bladsy.)

'n Elektrolitiese sel word opgestel om 'n stuk koper wat silwer en sink as onsuiwerhede bevat, te suiwer. 'n Vereenvoudigde diagram van die sel word hieronder getoon. Elektrode **R** is onsuiwer koper.



- 9.1 Definieer die term *elektrolise*. (2)
- 9.2 Skryf die reaksie neer wat by elektrode **Q** plaasvind. (2)
- 9.3 In watter rigting vloei die elektrone in die eksterne stroombaan? Kies uit **Q** na **R** of **R** na **Q**. (1)
- 9.4 Bereken die stroom wat nodig is om 16 g koper te vorm terwyl die sel vir vyf uur in werking is. (5)
- 9.5 Gedurende hierdie elektrolise word slegs koper en sink geoksideer.
  - Gee 'n rede waarom die silwer nie geoksideer word nie. (2) [12]

TOTAAL: 150

### DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

## GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

#### TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

| NAME/NAAM                                       | SYMBOL/SIMBOOL | VALUE/WAARDE                              |
|-------------------------------------------------|----------------|-------------------------------------------|
| Standard pressure Standaarddruk                 | p <sup>θ</sup> | 1,013 x 10 <sup>5</sup> Pa                |
| Molar gas volume at STP Molêre gasvolume by STD | V <sub>m</sub> | 22,4 dm <sup>3</sup> ·mol <sup>-1</sup>   |
| Standard temperature Standaardtemperatuur       | Τ <sup>θ</sup> | 273 K                                     |
| Charge on electron  Lading op elektron          | е              | -1,6 x 10 <sup>-19</sup> C                |
| Avogadro's constant Avogadro-konstante          | N <sub>A</sub> | 6,02 x 10 <sup>23</sup> mol <sup>-1</sup> |

#### TABLE 2: FORMULAE/TABEL 2: FORMULES

| $n = \frac{m}{M}$                                                                                                                                                   | $n = \frac{N}{N_A}$                                                                       |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$                                                                                                                          | $n = \frac{V}{V_m}$                                                                       |  |  |  |  |  |  |
| $\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$                                                                                                                         | $pH = -log[H_3O^+]$                                                                       |  |  |  |  |  |  |
| $K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ M}$                                                                                             | <                                                                                         |  |  |  |  |  |  |
| $E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode}  / E^{\theta}_{sel} = E^{\theta}_{katode} - E$                                                       | e anode                                                                                   |  |  |  |  |  |  |
| or/of $E_{cell}^\theta = E_{reduction}^\theta - E_{oxidation}^\theta / E_{sel}^\theta = E_{reduksie}^\theta$                                                        | - Ε <sup>θ</sup> <sub>oksidasie</sub>                                                     |  |  |  |  |  |  |
| or/of $E_{cell}^{\theta} = E_{oxidisingagent}^{\theta} - E_{reducingagent}^{\theta} / E_{sel}^{\theta} = E_{oksideermiddel}^{\theta} - E_{reduseermiddel}^{\theta}$ |                                                                                           |  |  |  |  |  |  |
| $I = \frac{Q}{\Delta t}$                                                                                                                                            | $n = \frac{Q}{q_e}$ where n is the number of electrons/<br>waar n die aantal elektrone is |  |  |  |  |  |  |

# TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

|          | 1<br>(l) |     | 2<br>(II) |                    | 3   |     | 4         | 5      | 6               | 7       | 8        | 9                            | 10              | 11     | 12          | 13<br>(III)  | 14<br>(IV)      | 15<br>(V)   | 16<br>(VI) | 17<br>(VII)       | 18<br>(VIII) |
|----------|----------|-----|-----------|--------------------|-----|-----|-----------|--------|-----------------|---------|----------|------------------------------|-----------------|--------|-------------|--------------|-----------------|-------------|------------|-------------------|--------------|
|          | 1.7      | 7   | (,        |                    |     |     |           |        |                 | А       | tomic n  | umber                        |                 |        |             | (,           | (,              | (•)         | (**)       | ( •,              |              |
|          | 1        |     |           |                    |     |     |           | KEY/SL | <b>EUTEL</b>    | •       | Atoom    |                              |                 |        |             |              |                 |             |            |                   | 2            |
| 2,1      | Н        |     |           |                    |     |     |           |        |                 |         | 1        | 9014.                        |                 |        |             |              |                 |             |            |                   | He           |
| ''       | 1        |     |           |                    |     |     |           |        |                 |         | -        |                              |                 |        |             |              |                 |             |            |                   | 4            |
|          | 3        |     | 4         | 1                  |     |     |           | Flactr | onegati         | ivitv   | 29       | Sv                           | mbol            |        |             | 5            | 6               | 7           | 8          | 9                 | 10           |
| 1,0      | Li       | 7,5 | Be        |                    |     |     |           |        | onegativ        |         | ું, Cu   |                              | nbool           |        |             |              | 2,5<br>O        |             | 3,5        | 6,4<br>F          | Ne           |
| <u> </u> |          | ۲,  |           |                    |     |     |           | LIENU  | Jiieyau         | WILEIL  | 63,5     | 5   3"                       | IIDOOI          |        |             |              |                 |             |            | -                 |              |
|          | 7        |     | 9         |                    |     |     |           |        |                 |         |          |                              |                 |        |             | 11           | 12              | 14          | 16         | 19                | 20           |
|          | 11       |     | 12        |                    |     |     |           |        | _               |         | _        |                              |                 |        |             | 13           | 14              | 15          | 16         | 17                | 18           |
| 6,0      | Na       | 1,2 | Mg        |                    |     |     |           |        |                 | oximate |          |                              |                 |        |             | <b>₹ ∀</b> € | <sup>∞</sup> Si | 2, <b>b</b> | S,5        | o, C6             | Ar           |
|          | 23       |     | 24        |                    |     |     |           |        | Bena            | derde r | elatiewe | atoom                        | massa           |        |             | 27           | 28              | 31          | 32         | 35,5              | 40           |
|          | 19       |     | 20        |                    | 21  |     | 22        | 23     | 24              | 25      | 26       | 27                           | 28              | 29     | 30          | 31           | 32              | 33          | 34         | 35                | 36           |
| 8,0      | K        | 1,0 | Ca        | <del>ر</del><br>کر | Sc  | 1,5 | Ti        | 6. A   | ç Cr            | ਨੂੰ Mu  | ∞ Fe     | <sup>2</sup> <sub>∞</sub> Co | <sup>2</sup> Ni | ್ಕ್ Cu | <u>۾</u> Zn | ဗ္. Ga       | ∞. Ge           | % As        | % Se       | <sup>∞</sup> , Br | Kr           |
| 0        | 39       | _   | 40        | 7                  | 45  | _   | 48        | 51     | 52              | 55      | 56       | 59                           | 59              | 63,5   | _           | 70           | 73              | 75          | 79         | 80                | 84           |
|          | 37       |     | 38        |                    | 39  |     | 40        | 41     | 42              | 43      | 44       | 45                           | 46              | 47     | 48          | 49           | 50              | 51          | 52         | 53                | 54           |
| 8        |          | 0   |           | 7                  |     | 4   | _         |        |                 | _       |          |                              | _               |        | _           | _            |                 |             |            |                   |              |
| 0,8      | Rb       | 1,0 | Sr        | 1,2                | Y   | 4,1 | Zr        | Nb     | <sup>∞</sup> Mo | ್ಷ Tc   | 1        | <sup>≈</sup> Rh              |                 |        | _           | l =          | ç Sn            |             |            |                   | Xe           |
|          | 86       |     | 88        |                    | 89  |     | 91        | 92     | 96              |         | 101      | 103                          | 106             | 108    | 112         | 115          | 119             | 122         | 128        | 127               | 131          |
|          | 55       |     | 56        |                    | 57  |     | <b>72</b> | 73     | 74              | 75      | 76       | 77                           | 78              | 79     | 80          | 81           | 82              | 83          | 84         | 85                | 86           |
| 0,7      | Cs       | 6,0 | Ba        |                    | La  | 1,6 | Hf        | Ta     | W               | Re      | Os       | Ir                           | Pt              | Au     | Hg          | % <b>T</b> € | <sup>2</sup> Pb | ್ಲ್ Bi      | % Po       | 5,5 <b>At</b>     | Rn           |
|          | 133      |     | 137       |                    | 139 |     | 179       | 181    | 184             | 186     | 190      | 192                          | 195             | 197    | 201         | 204          | 207             | 209         |            |                   |              |
|          | 87       |     | 88        |                    | 89  |     |           |        | <u> </u>        | 1       |          |                              |                 |        |             |              |                 |             | I          | <u> </u>          |              |
| 2,0      | Fr       | 6'0 | Ra        |                    | Ac  |     |           |        | T               | 1       | 1        | T                            | ı               | ı      | 1           | T            | 1               | 1           | T          | 1                 |              |
| 0        | 1 1      | 0   | 226       |                    | AC  |     |           | 58     | 59              | 60      | 61       | 62                           | 63              | 64     | 65          | 66           | 67              | 68          | 69         | 70                | 71           |
|          |          |     | 220       |                    |     |     |           | Ce     | Pr              | Nd      | Pm       | Sm                           | Eu              | Gd     | Tb          | Dy           | Но              | Er          | Tm         | Yb                | Lu           |
|          |          |     |           |                    |     |     |           | 140    | 141             | 144     |          | 150                          | 152             | 157    | 159         | 163          | 165             | 167         | 169        | 173               | 175          |
|          |          |     |           |                    |     |     |           |        |                 |         | 00       |                              |                 |        |             |              |                 |             |            |                   |              |
|          |          |     |           |                    |     |     |           | 90     | 91              | 92      | 93       | 94                           | 95              | 96     | 97          | 98           | 99              | 100         | 101        | 102               | 103          |
|          |          |     |           |                    |     |     |           | Th     | Pa              | U       | Np       | Pu                           | Am              | Cm     | Bk          | Cf           | Es              | Fm          | Md         | No                | Lr           |
|          |          |     |           |                    |     |     |           | 232    |                 | 238     |          |                              |                 |        |             |              |                 |             |            |                   |              |
|          |          |     |           |                    |     |     |           |        |                 | 1       | <u> </u> | 1                            |                 |        | 1           |              | 1               | <u> </u>    |            |                   |              |

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

| BEL 4A: STANDAARD-REDUKSIEPOTENSIA    |                      |                                       |                    |  |  |  |  |  |
|---------------------------------------|----------------------|---------------------------------------|--------------------|--|--|--|--|--|
| Half-reactions                        | Hal                  | freaksies                             | Ε <sup>θ</sup> (V) |  |  |  |  |  |
| F <sub>2</sub> (g) + 2e <sup>-</sup>  | =                    | 2F_                                   | + 2,87             |  |  |  |  |  |
| Co <sup>3+</sup> + e <sup>-</sup>     | $\Rightarrow$        | Co <sup>2+</sup>                      | + 1,81             |  |  |  |  |  |
| $H_2O_2 + 2H^+ + 2e^-$                | =                    | 2H <sub>2</sub> O                     | +1,77              |  |  |  |  |  |
| $MnO_{4}^{-} + 8H^{+} + 5e^{-}$       | =                    | $Mn^{2+} + 4H_2O$                     | + 1,51             |  |  |  |  |  |
| $C\ell_2(g) + 2e^-$                   | =                    | 2Cℓ <sup>-</sup>                      | + 1,36             |  |  |  |  |  |
| $Cr_2O_7^{2-} + 14H^+ + 6e^-$         | =                    | 2Cr <sup>3+</sup> + 7H <sub>2</sub> O | + 1,33             |  |  |  |  |  |
| $O_2(g) + 4H^+ + 4e^-$                | =                    | 2H <sub>2</sub> O                     | + 1,23             |  |  |  |  |  |
| $MnO_2 + 4H^+ + 2e^-$                 | =                    | $Mn^{2+} + 2H_2O$                     | + 1,23             |  |  |  |  |  |
| Pt <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Pt                                    | + 1,20             |  |  |  |  |  |
| $Br_2(\ell) + 2e^-$                   | =                    | 2Br <sup>-</sup>                      | + 1,07             |  |  |  |  |  |
| $NO_{3}^{-} + 4H^{+} + 3e^{-}$        | =                    | $NO(g) + 2H_2O$                       | + 0,96             |  |  |  |  |  |
| Hg <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Hg(ℓ)                                 | + 0,85             |  |  |  |  |  |
| Ag <sup>+</sup> + e <sup>-</sup>      | =                    | Ag                                    | + 0,80             |  |  |  |  |  |
| $NO_{3}^{-} + 2H^{+} + e^{-}$         | =                    | $NO_2(g) + H_2O$                      | + 0,80             |  |  |  |  |  |
| Fe <sup>3+</sup> + e <sup>-</sup>     | =                    | Fe <sup>2+</sup>                      | + 0,77             |  |  |  |  |  |
| $O_2(g) + 2H^+ + 2e^-$                | =                    | $H_2O_2$                              | + 0,68             |  |  |  |  |  |
| l <sub>2</sub> + 2e <sup>-</sup>      | <b>=</b>             | 2I <sup>-</sup>                       | + 0,54             |  |  |  |  |  |
| Cu <sup>+</sup> + e <sup>−</sup>      | =                    | Cu                                    | + 0,52             |  |  |  |  |  |
| $SO_2 + 4H^+ + 4e^-$                  | =                    | $S + 2H_2O$                           | + 0,45             |  |  |  |  |  |
| $2H_2O + O_2 + 4e^-$                  | =                    | 40H <sup>-</sup>                      | + 0,40             |  |  |  |  |  |
| Cu <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Cu                                    | + 0,34             |  |  |  |  |  |
| $SO_4^{2-} + 4H^+ + 2e^-$             | <b>=</b>             | $SO_2(g) + 2H_2O$                     | + 0,17             |  |  |  |  |  |
| Cu <sup>2+</sup> + e <sup>-</sup>     | =                    | Cu⁺                                   | + 0,16             |  |  |  |  |  |
| Sn <sup>4+</sup> + 2e <sup>-</sup>    | =                    | Sn <sup>2+</sup>                      | + 0,15             |  |  |  |  |  |
| S + 2H <sup>+</sup> + 2e <sup>-</sup> | =                    | $H_2S(g)$                             | + 0,14             |  |  |  |  |  |
| 2H <sup>+</sup> + 2e <sup>-</sup>     | <b>=</b>             | H <sub>2</sub> (g)                    | 0,00               |  |  |  |  |  |
| Fe <sup>3+</sup> + 3e <sup>-</sup>    | =                    | Fe                                    | - 0,06             |  |  |  |  |  |
| Pb <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Pb                                    | - 0,13             |  |  |  |  |  |
| Sn <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Sn                                    | - 0,14             |  |  |  |  |  |
| Ni <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Ni                                    | - 0,27             |  |  |  |  |  |
| Co <sup>2+</sup> + 2e <sup>-</sup>    | $\rightleftharpoons$ | Co                                    | - 0,28             |  |  |  |  |  |
| Cd <sup>2+</sup> + 2e <sup>-</sup>    | $\Rightarrow$        | Cd                                    | - 0,40             |  |  |  |  |  |
| Cr <sup>3+</sup> + e <sup>-</sup>     | $\Rightarrow$        | Cr <sup>2+</sup>                      | - 0,41             |  |  |  |  |  |
| Fe <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Fe                                    | - 0,44             |  |  |  |  |  |
| Cr <sup>3+</sup> + 3e <sup>-</sup>    | =                    | Cr                                    | - 0,74             |  |  |  |  |  |
| Zn <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Zn                                    | - 0,76             |  |  |  |  |  |
| 2H <sub>2</sub> O + 2e <sup>-</sup>   | $\Rightarrow$        | H <sub>2</sub> (g) + 2OH <sup>-</sup> | - 0,83             |  |  |  |  |  |
| Cr <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Cr                                    | - 0,91             |  |  |  |  |  |
| Mn <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Mn                                    | - 1,18             |  |  |  |  |  |
| $Al^{3+} + 3e^{-}$                    | =                    | Αℓ                                    | - 1,66             |  |  |  |  |  |
| $Mg^{2+} + 2e^{-}$                    | =                    | Mg                                    | - 2,36             |  |  |  |  |  |
| Na <sup>+</sup> + e <sup>-</sup>      | =                    | Na                                    | - 2,71             |  |  |  |  |  |
| Ca <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Ca                                    | - 2,87             |  |  |  |  |  |
| Sr <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Sr                                    | - 2,89             |  |  |  |  |  |
| Ba <sup>2+</sup> + 2e <sup>-</sup>    | =                    | Ba                                    | - 2,90             |  |  |  |  |  |
| Cs <sup>+</sup> + e <sup>-</sup>      | =                    | Cs                                    | - 2,92             |  |  |  |  |  |
| K <sup>+</sup> + e <sup>-</sup>       | =                    | K                                     | - 2,93             |  |  |  |  |  |
| Li <sup>+</sup> + e <sup>-</sup>      | =                    | Li                                    | - 3,05             |  |  |  |  |  |

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

| BEL 4B. STANDAARD-REDUKSIEFOT                                            |               |                                       |                    |  |  |  |  |
|--------------------------------------------------------------------------|---------------|---------------------------------------|--------------------|--|--|--|--|
| Half-reactions                                                           | /Hal          | freaksies                             | Ε <sup>θ</sup> (V) |  |  |  |  |
| Li <sup>+</sup> + e <sup>-</sup>                                         | =             | Li                                    | - 3,05             |  |  |  |  |
| K <sup>+</sup> + e <sup>-</sup>                                          | =             | K                                     | - 2,93             |  |  |  |  |
| Cs <sup>+</sup> + e <sup>-</sup>                                         | $\Rightarrow$ | Cs                                    | - 2,92             |  |  |  |  |
| Ba <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Ва                                    | - 2,90             |  |  |  |  |
| Sr <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Sr                                    | - 2,89             |  |  |  |  |
| Ca <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Ca                                    | - 2,87             |  |  |  |  |
| Na <sup>+</sup> + e <sup>-</sup>                                         | $\Rightarrow$ | Na                                    | - 2,71             |  |  |  |  |
| Mg <sup>2+</sup> + 2e <sup>-</sup><br>Al <sup>3+</sup> + 3e <sup>-</sup> | =             | Mg                                    | - 2,36             |  |  |  |  |
| At + 3e<br>Mn <sup>2+</sup> + 2e <sup>-</sup>                            | =             | Ał<br>Mn                              | - 1,66             |  |  |  |  |
| Cr <sup>2+</sup> + 2e <sup>-</sup>                                       | <b>=</b>      | Cr                                    | – 1,18<br>– 0,91   |  |  |  |  |
| 2H <sub>2</sub> O + 2e⁻                                                  | <b>=</b>      | H <sub>2</sub> (g) + 2OH <sup>-</sup> | - 0,91<br>- 0,83   |  |  |  |  |
| $Zn^{2+} + 2e^{-}$                                                       | =             | Zn                                    | - 0,76             |  |  |  |  |
| Cr <sup>3+</sup> + 3e <sup>-</sup>                                       | <del>=</del>  | Cr                                    | - 0,74             |  |  |  |  |
| Fe <sup>2+</sup> + 2e <sup>-</sup>                                       | <del>=</del>  | Fe                                    | - 0,44             |  |  |  |  |
| Cr <sup>3+</sup> + e <sup>-</sup>                                        | =             | Cr <sup>2+</sup>                      | - 0,41             |  |  |  |  |
| Cd <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Cd                                    | - 0,40             |  |  |  |  |
| Co <sup>2+</sup> + 2e <sup>-</sup>                                       | ÷             | Co                                    | - 0,28             |  |  |  |  |
| Ni <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Ni                                    | - 0,27             |  |  |  |  |
| Sn <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Sn                                    | - 0,14             |  |  |  |  |
| Pb <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Pb                                    | - 0,13             |  |  |  |  |
| Fe <sup>3+</sup> + 3e <sup>-</sup>                                       | $\Rightarrow$ | Fe                                    | - 0,06             |  |  |  |  |
| 2H⁺ + 2e⁻                                                                | <b>=</b>      | H <sub>2</sub> (g)                    | 0,00               |  |  |  |  |
| S + 2H <sup>+</sup> + 2e <sup>-</sup>                                    | <b>=</b>      | $H_2S(g)$                             | + 0,14             |  |  |  |  |
| Sn <sup>4+</sup> + 2e <sup>-</sup>                                       | $\Rightarrow$ | Sn <sup>2+</sup>                      | + 0,15             |  |  |  |  |
| Cu <sup>2+</sup> + e <sup>-</sup>                                        | =             | Cu⁺                                   | + 0,16             |  |  |  |  |
| $SO_4^{2-} + 4H^+ + 2e^-$                                                | =             | $SO_2(g) + 2H_2O$                     | + 0,17             |  |  |  |  |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Cu                                    | + 0,34             |  |  |  |  |
| $2H_2O + O_2 + 4e^-$                                                     | $\Rightarrow$ | 40H <sup>-</sup>                      | + 0,40             |  |  |  |  |
| SO <sub>2</sub> + 4H <sup>+</sup> + 4e <sup>-</sup>                      | =             | S + 2H <sub>2</sub> O                 | + 0,45             |  |  |  |  |
| Cu⁺ + e⁻                                                                 | =             | Cu                                    | + 0,52             |  |  |  |  |
| l <sub>2</sub> + 2e <sup>-</sup>                                         | =             | 2I <sup>-</sup>                       | + 0,54             |  |  |  |  |
| $O_2(g) + 2H^+ + 2e^-$                                                   | =             | H <sub>2</sub> O <sub>2</sub>         | + 0,68             |  |  |  |  |
| Fe <sup>3+</sup> + e <sup>-</sup>                                        | =             | Fe <sup>2+</sup>                      | + 0,77             |  |  |  |  |
| NO <sub>3</sub> + 2H <sup>+</sup> + e <sup>-</sup>                       | =             | $NO_2(g) + H_2O$                      | + 0,80             |  |  |  |  |
| Ag <sup>+</sup> + e <sup>-</sup>                                         | =             | Ag                                    | + 0,80             |  |  |  |  |
| Hg <sup>2+</sup> + 2e <sup>-</sup>                                       | $\Rightarrow$ | Hg(l)                                 | + 0,85             |  |  |  |  |
| $NO_3^- + 4H^+ + 3e^-$                                                   | =             | $NO(g) + 2H_2O$                       | + 0,96             |  |  |  |  |
| $Br_2(\ell) + 2e^-$                                                      | =             | 2Br                                   | + 1,07             |  |  |  |  |
| Pt <sup>2+</sup> + 2 e <sup>-</sup>                                      | $\Rightarrow$ | Pt                                    | + 1,20             |  |  |  |  |
| $MnO_2 + 4H^+ + 2e^-$                                                    | =             | Mn <sup>2+</sup> + 2H <sub>2</sub> O  | + 1,23             |  |  |  |  |
| $O_2(g) + 4H^+ + 4e^-$                                                   | =             | 2H <sub>2</sub> O                     | + 1,23             |  |  |  |  |
| $Cr_2O_7^{2-} + 14H^+ + 6e^-$                                            | <b>=</b>      | 2Cr <sup>3+</sup> + 7H <sub>2</sub> O | + 1,33             |  |  |  |  |
| $Cl_2(g) + 2e^-$                                                         | =             | 2Cl 2+ 411 0                          | + 1,36             |  |  |  |  |
| $MnO_{4}^{-} + 8H^{+} + 5e^{-}$                                          | =             | $Mn^{2+} + 4H_2O$                     | + 1,51             |  |  |  |  |
| $H_2O_2 + 2H^+ + 2e^-$                                                   | =             | 2H <sub>2</sub> O                     | +1,77              |  |  |  |  |
| Co <sup>3+</sup> + e <sup>-</sup>                                        | =             | Co <sup>2+</sup>                      | + 1,81             |  |  |  |  |
| F <sub>2</sub> (g) + 2e <sup>-</sup>                                     | =             | 2F                                    | + 2,87             |  |  |  |  |

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels