

Equations et inéquations du second degré

Dans tout ce chapitre, nous considérerons a un réel non nul.

I. Résolution de l'équation du second degré :

1. Définition et vocabulaire :

Définition :

- 1. Une **équation du second degré**, à une inconnue x, est une équation qui peut s'écrire sous la forme $ax^2 + bx + c = 0$, où a, b, c sont trois réels donnés avec $a \neq 0$.
- 2. Résoudre l'équation $ax^2+bx+c=0$, c'est trouver tous les nombres p tels que $ap^2+bp+c=0$.
- 3. Un tel nombre p est dit solution ou encore racine de l'équation.

2. Résolution de l'équation du second degré :

Posons $f(x) = ax^2 + bx + c$ avec $a \neq 0$.

2.1. Ecriture de f(x) sous forme canonique :

Définition:

Puisque
$$a \neq 0$$
, $f(x) = a(x^2 + \frac{b}{a}x + \frac{c}{a})$ ou $x^2 + \frac{b}{a}x = (x + \frac{b}{2a})^2 - \frac{b^2}{4a^2}$

donc
$$f(x) = a[(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2}].$$

2.2. Résolution de l'équation ax²+bx+c=0 :

Propriété:

On pose
$$\Delta = b^2 - 4ac$$
 ainsi $f(x) = a[(x + \frac{b}{2a})^2 - \frac{\Delta}{4a^2}]$

PREMIER CAS

Si
$$\Delta < 0$$
 alors $\frac{\Delta,}{4a^2} < 0$.

Le nombre entre crochets est strictement positif donc l'équation f(x)=0 n'a pas de solution.

SECOND CAS:

Si
$$\Delta = 0$$
 alors $f(x) = a(x + \frac{b}{2a})^2$.

Puisque $a \neq 0$, l'équation f(x)=0 a une solution et une seule :

$$x = -\frac{b}{2a}$$
.

TROISIÈME CAS :

Si
$$\Delta > 0$$
 alors $\Delta = (\sqrt{\Delta})^2$ et :

$$f(x) = a[(x + \frac{b}{2a})^2 - \frac{\Delta}{4a^2}]$$

$$f(x) = a[(x + \frac{b}{2a})^2 - (\frac{\sqrt{\Delta}}{2a})^2]$$

$$f(x) = a(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a})(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a})$$

$$f(x) = a\left(x - \frac{-b - \sqrt{\Delta}}{2a}\right)\left(x - \frac{-b + \sqrt{\Delta}}{2a}\right)$$

Si l'on pose :

$$x_1=rac{-b-\sqrt{\Delta}}{2a}$$
 et $x_2=rac{-b+\sqrt{\Delta}}{2a}$ alors $f(x)=a(x-x_1)(x-x_2)$.

Donc puisque $a \neq 0$, l'équation f(x)=0 a deux solutions distinctes x_1 et x_2 .

Définition:

Le nombre b^2-4ac est appelé **discriminant de l'équation** du second degré ax^2+bx+c ou du trinôme ax^2+bx+c .

On le note Δ (lire « delta »).

Théorème :

a. Lorsque $\Delta < 0$, l'équation n'a pas de solution dans \mathbb{R} .

b. Lorsque $\Delta=0$, l'équation a une racine double : $x_1=\frac{-b}{2a}$.

c. Lorsque $\Delta > 0$, l'équation a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

II. Factorisation et signe du trinôme :

1. Factorisation du trinôme :

Nous avons vu, au cours de la démonstration du théorème 1 que si

$$\Delta > 0$$
 alors $f(x) = a(x - x_1)(x - x_2)$.

Théorème 2 : factorisation du trinôme.

Lorsque l'équation f(x)=ax²+bx+c=0 a deux solutions x_1 et x_2 (dans le cas $\Delta > 0$) alors,

$$f(x) = a(x - x_1)(x - x_2)$$

2. Signe du trinôme :

Théorème

- 1. Lorsque $\Delta < 0$, f(x) est toujours du signe de a.
- 2. Lorsque $\Delta = 0$, f(x) est du signe de a
- 3. Lorsque $\Delta < 0$, f(x) est du signe de a, sauf lorsque x est entre les racines, auquel cas f(x) et a sont de signes contraires.

APPLICATION:

Pour résoudre une inéquation du second degré, on détermine le signe du trinôme associé.

III. Représentations graphiques des fonctions trinômes :

Définition :

La courbe de la fonction $f: x \mapsto ax^2 + bx + c$ est une parabole. Cette parabole est tournée vers le haut lorsque a>0 et tournée vers le bas lorsque a<0.

SYNTHÈSE:

	SOLUTIONS DE $ax^2 + bx + c = 0$	SIGNE DE $P(x) = ax^2 + bx + c$	FACTORISATION DE $P(x) = ax^2 + bx + c$	POSITION DE LA PARABOLE par rapport à l'axe des absisses
Δ<0	Pas de solution	$\frac{x -\infty +\infty}{P(x) \text{ signe de } a}$	Pas de factorisation	$\frac{\alpha}{\alpha a>0} \frac{\alpha}{\alpha a<0}$
$\Delta = 0$	Une solution double $x_0 = -\frac{b}{2a}$	$\begin{array}{c cccc} x & -\infty & \frac{b}{2a} & +\infty \\ \hline P(x) & \text{signe de } a & 0 & \text{signe de } a \end{array}$	$P(x) = a(x - x_0)^2$	α α α α α α α α α α α α α α α α α α α α
Δ>0	Deux solutions distinctes $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P(x) = a(x - x_1)(x - x_2)$	$ \begin{array}{c c} & \alpha \\ \hline x_1 & x_2 \\ & \alpha \\ & a > 0 \end{array} $

EXEMPLES:

Résoudre $x^2 + 3x + 3 > 0$

SOLUTION:

 $\Delta = -3$ puisque $\Delta < 0$, le trinôme n'a pas de racine dans $\mathbb{R}.$

De plus a=1 donc a>0 ainsi $x^2+3x+3>0$ pour tout x réel et $S=\mathbb{R}.$

Résoudre l'inéquation du second degré $-x^2+3x-2 \geq 0$

Nous avons $\Delta = 3^2 - 4 \times \ (-1) \times \ (-2) = 9 - 8 = 1.$

L'équation $-x^2+3x-2=0$ a deux racines qui son t:

$$x_1 = \frac{-3 + \sqrt{1}}{2 \times (-1)} = \frac{-2}{-2} = 1 \text{ if } x_2 = \frac{-3 - \sqrt{1}}{2 \times (-1)} = \frac{-4}{-2} = 2.$$

Nous avons a=-1 donc a<0 ainsi l'ensemble solution de l'inéquation du second degré $-x^2+3x-2\,\geq\,0$ est l'intervalle $[1\,;2]$.