This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

OLD BEE BLANK USPRO)

世界知的所有権機関 A: 国 際 事 務 局

Document **AN8** Appl. No. 09/803,659

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 213/38, 213/63, 213/70, 213/71, 213/89, 401/04, 405/14, 409/04, A61K 31/44, 31/495

A1

(11) 国際公開番号

WO99/31062

(43) 国際公開日

1999年6月24日(24.06.99)

(21) 国際出願番号

PCT/JP98/05561

(22) 国際出願日

1998年12月9日(09.12.98)

(30) 優先権データ 特願平9/347574

1997年12月17日(17.12.97)

(71) 出願人 (米国を除くすべての指定国について) 塩野義製薬株式会社(SHIONOGI & CO., LTD.)[JP/JP] 〒541-0045 大阪府大阪市中央区道修町3丁目1番8号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

足立 誠(ADACHI, Makoto)[JP/JP]

〒636-0941 奈良県生駒郡平群町緑ヶ丘6-18-22 Nara, (JP)

笹谷隆司(SASATANI, Takashi)[JP/JP]

〒631-0056 奈良県奈良市丸山1-1079-86 Nara, (JP)

長命信雄(CHOMEI, Nobuo)[JP/JP]

〒593-8303 大阪府堺市上野芝向ヶ丘町1-14-16 Osaka, (JP)

福井喜一(FUKUI, Yoshikazu)[JP/JP]

〒630-0251 奈良県生駒市谷田町843-6 Nara, (JP)

安居 充(YASUI, Mitsuru)[JP/JP]

〒562-0001 大阪府箕面市箕面3-17-5 Osaka, (JP)

(74) 代理人

弁理士 山内秀晃(YAMAUCHI, Hideaki) 〒553-0002 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 特許部 Osaka, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許 (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

(54) Title: NOVEL PYRIDINE COMPOUNDS

(54)発明の名称 新規ピリジン化合物

(57) Abstract

Compounds represented by general formula (I) and 5-HT₂ receptor-binding agents containing the same as the active ingredient wherein Ar represents optionally substituted aryl or optionally substituted heteroaryl; R₁ represents hydrogen, halogeno, alkyl, alkenyl, alkyloxy, etc.; R₂ and R₃ independently represent each hydrogen or optionally substituted alkyl or R₂ and R₃ may form together with the adjacent nitrogen atom an optionally substituted heterocycle; and n is an integer of 1 to 6.

本発明は、一般式(1)

(式中、Ar は置換又は非置換のアリール基または置換又は非置換のヘテロアリール基: R_1 は水素、ハロゲン、アルキル、アルケニル、アルキルオキシ等: R_2 および R_3 は、それぞれ独立して水素原子、置換もしくは非置換のアルキル基、または R_2 および R_3 は一緒になって隣接する窒素原子とともに置換又は非置換のヘテロ環を形成してもよい:n は、 $1\sim6$ の整数。)

で表される化合物、およびそれを有効成分として含有する $5-HT_7$ 受容体結合剤を提供する。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

アラブ首長国連邦 アルバニア アルメニア オーストラリア オーストラリア アゼルバイジャン ボズニア・ヘルツェゴビナ スフフガ英 ベィラボ国レルー インシン ナジナ ド SSIKLN ZD リヒテンシュタイン スリ・ランカ リベリア ΑÊ EFFGGGGGGGGGHH-IIIIIJKKKKLLSIPRGGGRRNG AL AM AT AU スロヴェニア スロヴァキア ンエラ・レオネ レントリトアニア ンエフ・レオ セネガル スワジランド チャーゴー LU ルクセンブルグ LV ラトヴィア MC モナコ MD モルドヴァ ボスニア・ヘルフ バルバドス ベルギー ブルギナ・ファソ ブルガリア TTTTTTUUUVYZZ タジキスタン トルクメニスタン マダガスカル マケドニア旧ユーゴスラヴィア トルクァーヘット トルコ トリニダッド・トバゴ ウガンダ MK ノベブペカナジル カナジルーシ カナナジルーシ カウナケアゴラ カウンシ BBBCCCCCCCCCCDDE MRWXELOZLT NONE ワガンタ 米国 ウヴィキスタン ウブィンドースタン コーゴリカ共 南アフリエ ジンバブエ コンコー スイス コートジボアール カメルーン 中国 スノールウェー ノールウェー ニュー・ジーランド ボーランド ボルトガル _{下四} キューバ キブロス ナン ナン ナン デンマー アントニア ルーマニア ロシア

明細書新規ピリジン化合物

技術分野

本発明は、新規なピリジン化合物、その薬理学的に許容される塩、またはそれらの水和物に関する。詳細には、本発明化合物は5-HT₇(5-Hydroxytryptamin e₇)受容体に作用することから、概日リズム障害治療薬、老人性睡眠障害薬、抗うつ薬、抗不安薬、循環器障害治療薬、片頭痛治療薬、鎮痛薬等として有用である。

10 背景技術

15

20

25

セロトニン(5-Hydroxytryptamine)は、生理活性アミンの一つであり、一種のホルモンとして機能している。例えば、腸の基底顆粒細胞に存在し腸管運動を促進するほか、出血の際には血小板から血中に放出され、毛細血管を収縮するなど止血にも関係する。これとは別に、セロトニンは脳内で神経伝達物質としても働き、催眠覚醒サイクルの調節、痛覚閾値の調節、体温調節などの機能に関係している。また、精神活動においてもセロトニンは大きな役割を果たしており、これらの機能はセロトニン受容体を介して発現する。

中枢神経系における 5 - HT 7 受容体 mRNA は海馬 [J. Neurochem. <u>63</u> (1994) 456-464]、視床下部 [Br. J. Pharmacol. <u>117</u> (1995) 567-666] に高濃度分布することが知られている。視床下部の中でも視交叉上核は哺乳類における概日リズムの発生源であると言われている [J. Neurochem. 63 (1994) 456-464]。

概日リズムの障害は睡眠障害のみならず、うつ病との関連が強く示唆されている [精神神経薬理、18(1996)679-686]。重篤な症状では就業や就学不能に陥る場合もある。概日リズム異常に対し多くの治療法が試みられているが、その効果は

十分であるとは言えない。最近 $in\ vi\ tro\ o$ 実験系で $5-HT_7$ 受容体作動薬が概日リズムに変化を及ぼすことが報告されている [Neuron, 11(1993) 449-458]。 従って、 $5-HT_7$ 受容体作動薬は概日リズム障害治療薬や老人性睡眠障害治療薬になり得る可能性がある。また概日リズム障害とうつ病との関連から抗うつ薬にもなり得る。さらに、抗不安作用を有する薬物が概日リズムに変化を与えることが知られている [精神神経薬理, 18(1996)697-702] ことから、抗不安薬になる可能性もある。

5-HT $_7$ 受容体はまた血管系にも分布することが明らかにされており [FEBS Lett. 370(1995) 215-221]、5-HT $_7$ 受容体作動薬は血管を拡張させることが知られている[Br. J. Pharmacol. 114 (1995) 383]。脳血管拡張は片頭痛の原因になると言われることから、5-HT $_7$ 受容体結合剤は循環器障害治療薬になるだけでなくそのアンタゴニストは片頭痛治療薬になり得る可能がある。5-HT $_7$ 受容体は痛みとの関連も示唆されており、5-HT $_7$ 受容体結合剤は従来とは異なったタイプの鎮痛薬になる可能性もある。

15 発明の開示

5

10

本発明の目的は、新規な5-HT₇受容体結合剤を提供することにある。本発明 者らは、鋭意検討した結果、一般式(I)

$$R_1$$
 (CH₂)_nNR₂R₃ (I)

で示される化合物群が 5 - HT 7 受容体に作用し、医薬として有用であることを見 20 出し、本発明を完成した。

即ち、本発明は、

下記式 (I)

$$R_1 = (CH_2)_n NR_2 R_3 \qquad (I)$$

(式中、

Ar は置換又は非置換のアリールまたは置換又は非置換のヘテロアリール: R,はハロゲン、アルキル、アルケニル、アルキルオキシ、アルケニルオキシ、ア ルキルチオ、アルケニルチオ、置換又は非置換のアルキルスルホニルオキシ、ア ルケニルスルホニルオキシ、アルキルスルホニル、アルケニルスルホニル、アル キルカルボニルオキシ、アルケニルカルボニルオキシ、アルケニルスルホニルオ キシ、置換又は非置換のアリールアルキルオキシ、置換又は非置換のアリールア ルキルチオ、置換又は非置換のアリールチオ、置換又は非置換のヘテロアリール アルキルオキシ、置換又は非置換のアリールスルホニルオキシ、ヘテロアリール スルホニルオキシ、 $-0S0_2NR_4R_5$ 、 $-0CONR_4R_5$ 、 $-0CSNR_4R_5$ 、 $-NR_6R_7$ 、 $-N(R_8)-(CH_7)_0-NR_9$ R_{10} (R_{4} および R_{5} は、それぞれ独立して水素原子、アルキル、または R_{4} および R_{5} 10 はいっしょになって隣接する窒素原子とともに置換又は非置換のヘテロ環基を形 成してもよい: R_6 および R_7 は、それぞれ独立して水素原子、置換又は非置換のア ルキル、または R₆ および R₇ はいっしょになって隣接する窒素原子とともに置換又 は非置換のヘテロ環基を形成してもよい:R₈は、水素原子またはアルキル:pは、 2~4の整数:R¸およびRıoは、それぞれ独立して水素原子またはアルキル): 15 R, および R, は、それぞれ独立して水素原子、置換又は非置換のアルキル、または R,およびR,はいっしょになって隣接する窒素原子とともに置換又は非置換のヘテ-ロ環基を形成してもよい:

nは、1~6の整数:

20 但し、Arが置換又は非置換のヘテロアリールの場合、 R_1 はアルキル、アルケニル又はハロゲンのいずれでもない。)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物に関するものである。

本発明は一つの形態として、一般式(II):

$$R_1$$
 (II) $(CH_2)_nNR_2R_3$

25 (式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物、好ましくは一般式(IV):

$$R_1$$
 (IV)
Ar N (CH₂)_nNR₂R₃

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物、より好ましくは(1)一般式(VI):

$$R_1$$
 (VI) R_1 (CH₂)_nNR₂R₃

5 (式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物、または(2)一般式(VII):

$$R_1$$
 (VII) $(CH_2)_nNR_2R_3$

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物、または(3)一般式(VIII):

$$R_1$$
 (VIII)
Ar $(CH_2)_nNR_2R_3$

10

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物を提供する。

上記化合物(VI)の好ましい形態としては以下の通りである。

15 (1) A r が置換又は非置換のアリール: R_1 がアルキルスルホニルオキシ、置換又は非置換のアリールアルキルオキシ、 $-0SO_2NR_4R_5$ 、又は $-0CONR_4R_5$ (R_4 および R_5 はそれぞれ独立して水素又は非置換のアルキル基): R_2 および R_3 が一緒に

なって隣接する窒素原子と共に置換又は非置換のヘテロ環基を形成する: n が 1 である化合物 (VI)。

- (2) Ar が置換フェニル: R_1 がアルキルスルホニルオキシ又は置換ベンジルオキシ: R_2 および R_3 が一緒になって隣接する窒素原子と共に置換ピペラジノを形成する、上記(1) の化合物(VI)。
- (3) 置換ピペラジノが置換フェニルピペラジノ又はペンゾフランー 7 ーイルピペラジノである、上記 (2) の化合物 (VI) 。
- (4) A r が 3 ヒドロキシフェニル、 <math>3 P N コキシフェニル又は 3 N ロゲ $J フェニル: R_1 がメチルスルホニルオキシ: R_2 および R_3 が一緒になって隣接$ 10 する窒素原子と共に、 4 - (2 - ヒドロキシフェニル) ピペラジノを形成する、上記 (1) の化合物 (VI)。
 - (5) $Arが3-ヒドロキシフェニル、3-メトキシフェニル又は3-フルオロフェニル: <math>R_1$ がメチルスルホニルオキシ: R_2 および R_3 が一緒になって隣接する窒素原子と共に、4-(2-ヒドロキシフェニル) ピペラジノを形成する、化合物 (VI)。

本発明は別の形態として、一般式(III):

$$R_1$$
 (CH₂)_nNR₂R₃ (III)

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物、好ましくは一般式(V):

$$\begin{array}{c|c} Ar & (CH_2)_nNR_2R_3 \\ \hline R_1 & (V) \end{array}$$

20

5

15

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物、より好ましくは(1)一般式(IX):

$$\begin{array}{c} \text{Ar} & \text{(CH}_2)_n \text{NR}_2 \text{R}_3 \\ \text{(IX)} & \text{R}_1 & \text{N} \end{array}$$

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物、または(2)一般式(X):

$$\begin{array}{c|c} \text{Ar} & \text{(CH}_2)_n \text{NR}_2 \text{R}_3 \\ \hline & \text{(X)} \end{array}$$

5 (式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物を提供するものである。

さらに本発明は別の態様として、

下記式(I)

$$R_1 = (CH_2)_n NR_2 R_3 \qquad (I)$$

10 (式中、

Ar は置換又は非置換のアリールまたは置換又は非置換のヘテロアリール:

 R_1 は、水素、ハロゲン、アルキル、アルケニル、アルキルオキシ、アルケニルオキシ、アルキルチオ、アルケニルチオ、置換又は非置換のアルキルスルホニルオキシ、アルケニルスルホニル、アルケニルスルホニル、アルケニルスルホニル、アルケニルスルホニル、アルケニルスルホニルオキシ、置換又は非置換のアリールアルキルオキシ、置換又は非置換のアリールアルキルチオ、置換又は非置換のアリールチオ、置換又は非置換のアリールチオ、置換又は非置換のアリールスルホニルオキシ、ヘテロアリールアルキルオキシ、置換又は非置換のアリールスルホニルオキシ、ヘテロアリールスルホニルオキシ、ヘテロアリールスルホニルオキシ、ヘテロアリールスルホニルオキシ、・ $0SO_2NR_4R_5$ 、 $-0CONR_4R_5$ 、 $-0CSNR_4R_5$ 、 $-NR_6R_7$ 、 $-N(R_8)-20 (CH_2)_p-NR_9R_{10} (R_4および R_5 は、それぞれ独立して水素原子、アルキル、または R_4$

および R_5 はいっしょになって隣接する窒素原子とともに置換又は非置換のヘテロ環基を形成してもよい: R_6 および R_7 は、それぞれ独立して水素原子、置換又は非置換のアルキル、または R_6 および R_7 はいっしょになって隣接する窒素原子とともに置換又は非置換のヘテロ環基を形成してもよい: R_8 は、水素原子またはアルキル:P は、 $2 \sim 4$ の整数: R_9 および R_{10} は、それぞれ独立して水素原子またはアルキル):

 R_2 および R_3 は、それぞれ独立して水素原子、置換又は非置換のアルキル、または R_2 および R_3 はいっしょになって隣接する窒素原子とともに置換又は非置換のヘテロ環基を形成してもよい:

10 nは、1~6の整数)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物を含有する医薬、好ましくはセロトニン受容体結合剤を提供する。

さらに本発明は、前記化合物(II)~(X)のいずれかに記載の化合物を有効成分として含有する、セロトニン受容体結合剤を提供する。上記結合剤として好ましくは、5-HT7受容体に対して親和性を有するもの、即ち5-HT7受容体のアゴニストまたはアンタゴニストであり、より好ましくはアゴニストである。また該結合剤は、5-HT7受容体に起因すると考えられる概日リズム障害や老人性睡眠障害等の治療薬として有用であり、また抗うつ薬、抗不安薬、片頭痛治療薬、鎮痛薬等としても有用であると考えられる。

20 さらに本発明は、本発明化合物の新規な中間体として一般式 (XI)

(式中、Y は酸素原子又は硫黄原子: R_1 はハロゲン又は $-NR_2R_3$: Ar、 R_2 及び R_3 は前記と同義)で表される化合物またはその塩、および一般式(XII):

5

$$\begin{array}{c} R_{12} \\ \\ R_{13} \end{array}$$

(式中、 R_{12} はアルキルオキシ、アルケニルオキシ、アルキルスルホニルオキシ、アルケニルスルホニルオキシ、又は置換若しくは非置換のアリールアルキルオキシ: R_{13} はアセチルオキシ、ヒドロキシ又はハロゲン:Arは前記と同義)で表される化合物またはその塩、および一般式(XIII):

$$R_{15}$$
 R_{16}
 R_{14}
 R_{16}
 R_{14}

(式中、 R_{14} は水素原子、アルキル、アルケニル、アリールアルキル、ヘテロアリールアルキル、アルキルスルホニル、アルケニルスルホニル、アリールスルホニル、アリールスルホニル、アリールスルホニル、アリールスルホニルスはヘテロアリールスルホニル: R_{15} および R_{16} の一方は Ar を示し、他方は $-CH_2$ NR_2R_3 を示す:Ar、 R_2 及び R_3 は前記と同義)で表される化合物またはその塩を提供する。

以下、本発明について詳細に説明する。

「アリール」としては、単独又はその他の用語と組み合わせて用いられる場合、フェニル、ナフチル等が例示されるが、好ましくはフェニルである。

15 「ヘテロアリール」としては、単独又はその他の用語と組み合わせて用いられる場合、ピロリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、インドリル、キノリル、フリル、ベンゾフリル、2,3-ジヒドロベンゾフリル、チエニル、もしくはベンゾイソキサゾリル等が例示される。

これらの「アリール」または「ヘテロアリール」が置換基を有する場合、同一 20 または異なる一以上の置換基を有していてもよく、該置換基としてはハロゲン基 (F、Cl、Br等)、水酸基、アルキル(メチル、エチル等)、トリハロゲン 化メチル(CF3等)、アルケニル(エテニル、プロペニル等)、アルキルオキ

5

シ(メトキシ、エトキシ等)、アルコキシアルコキシ(メトキシメトキシ等)、シアノ、ニトロ、アミノ、カルバモイル、アルキルカルバモイルオキシ(メチルカルバモイルオキシ等)、アルカノイル(アセチル等)、アラルキル(ベンジル等)、アルカノイルオキシ(アセチルオキシ等)、アラルカノイルオキシ(ベンジルカルボニルオキシ等)、メチレンジオキソ、 $-NHCOR_{17}$ 、 $-NR_{18}R_{19}$ または $-0CONR_{18}R_{19}$ 等で置換されていてもよい。 R_{17} R_{18} および R_{19} は、それぞれ独立して水素原子またはアルキル(メチル、エチル等)を示し、また R_{18} および R_{19} はいっしょになって隣接する窒素原子とともに置換又は非置換のヘテロ環基(ピペリジノ、ピペラジノ、モルホリノ、ピロリジニル等)を形成してもよい。

10 Arとして好ましくは、置換アリール、特に置換フェニル(置換基:好ましくは、メチル、メトキシ、ヒドロキシ、カルバモイル、メチルカルバモイル、ジオキソメチレン、ハロゲン、シアノ、メトキシメトキシ、トリハロゲン化メチル等である。

「アルキル」とは、単独又はその他の用語と組み合わせて用いられる場合、メチル、エチル、プロピル、イソプロピル、tertーブチル、nーブチル、nーペンチル、nーヘキシルなどの1から6個の炭素原子を含有する直鎖状又は分岐状の飽和炭化水素鎖を包含する。置換アルキルの置換基としては、ヒドロキシ、ハロゲン、アルキルオキシ、C3~C6シクロアルキル、前記アリール、前記ヘテロアリール等が例示される。「アルケニル」とは、エテニル、プロペニル、1ープラニル、2ープテニル、1ーペンテニル、1ーヘキセニルなどの2から6の炭素原子を含有する直鎖状又は分岐状の不飽和炭化水素鎖を包含する。

「ハロゲン」は、フッ素、塩素、臭素、ヨウ素を意味する。

R₁のアルキルオキシ、アルキルチオ、アルキルスルホニルオキシ、アルキルスルフォニル、アルキルカルボニルオキシ、アリールアルキルオキシ、及びヘテロアリールアルキルオキシにおける各アルキルは、前記アルキルを意味する。R₁のアルケニルオキシ、アルケニルチオ、アルケニルスルホニルオキシ、アルケニルスルフォニル、およびアルケニルカルボニルオキシにおける各アルケニルは、前記アルケニルを意味する。

アルキルオキシ、ヘテロアリールスルホニルオキシにおける各アリールおよびへ テロアリールは、それぞれ前記の通り意味する。

 R_1 として好ましくは、置換アリールアルキルオキシ、特に置換ベンジルオキシ(置換基:メトキシ、ハロゲン等)、アルキルスルホニルオキシ(メチルスルホニルオキシ、エチルスルホニルオキシ等)、ジメチルスルファモイルオキシ、ジメチルカルバモイルオキシ等である。

 R_1 における「 R_4 および R_5 」並びに「 R_6 および R_7 」によって形成される各「ヘテロ環基」は、1以上の窒素原子を有する基であり、1 - ピロリジニル、ピペリジノ、ピペラジノ、モルホリノ等が例示される。

10 「R,および R₃」によって形成されるヘテロ環基とは、1以上の窒素原子を含有 する5~7員の単環またはその縮合環であり、1-ピロリジニル、ピペリジノ、 ピペラジノ、モルホリノ、キノリノまたはそれらのベンゼン縮合環等が例示され る。これらのヘテロ環基は、アルキル、ヒドロキシ、ヒドロキシアルキル、アル コキシカルボニル、フェニル、ベンジル、ピリジル、ピリミジニル、ベンゾフリ ル、2,3-ジヒドロベンゾフリル、1,4-ベンゾジオキサニル、1-ベンゾ 15 チエニル、インドリル、キノリノ、ベンゾイソチアプリル、ベンゾイミダゾリル 等で置換されていてもよく、さらにこれらの各置換基は、一つもしくはそれ以上 のハロゲン(F、Cl、Br)、アルキル(メチル、エチル等)、水酸基、アル コキシ (メトキシ、エトキシ、プロポキシ等)、アルコキシアルコキシ (メトキ シメトキシ等)、ニトロ、シアノ、カルバモイル、カルバモイルオキシ、アルキ 20 ルカルバモイルオキシ(メチルカルバモイルオキシ)、メチレンジオキシ、オキ ソ、 $-NR_4R_5$ 等によって置換されていてもよい。 R_4 および R_5 は前記と同義である。 「R₂およびR₃」によって形成されるヘテロ環基として好ましくは、置換フェニル ピペリジノ(置換基:ヒドロキシ、メトキシ、i-プロポキシ、シアノ等)、ベン ゾフランー7-イルピペラジノ等である。 25

nは $1\sim 6$ の整数であるが、好ましくは $1\sim 4$ 、より好ましくは $1\sim 2$ である。「5-HT $_7$ 受容体結合物質」とは、5-HT $_7$ 受容体に結合する作用を有する物質をいい、5-HT $_7$ 受容体の有する機能を促進又は抑制する。即ち、該受容体に対するアゴニストまたはアンタゴニストを包含する。

本発明化合物の製薬上許容される塩としては、無機塩基、アンモニア、有機塩基、無機酸、有機酸、塩基性アミノ酸、ハロゲンイオン等により形成される塩又は分子内塩が例示される。該無機塩基としては、アルカリ金属(Na,K等)、アルカリ土類金属(Ca,Mg等)、有機塩基としては、トリメチルアミン、トリエチルアミン、コリン、プロカイン、エタノールアミン等が例示される。無機酸としては、塩酸、臭化水素酸、硫酸、硝酸、リン酸等が例示される。有機酸としては、pートルエンスルホン酸、メタンスルホン酸、ギ酸、トリフルオロ酢酸、マレイン酸等が例示される。塩基性アミノ酸としては、リジン、アルギン、オルニチン、ヒスチジン等が例示される。

10 本発明化合物は、セロトニン受容体に起因する各種疾患に対する予防または治療薬として、人を含む動物に経口又は非経口的に投与可能である。投与剤形としては、顆粒剤、錠剤、カプセル剤、注射剤、坐剤等が例示される。製剤化に際しては、所望により種々の添加剤、例えば賦形剤(乳糖、マンニトール、結晶セルロース、デンプン等)、崩壊剤(カルメロース、ヒドロキシプロピルメチルセルロース、ポリピニルポリピロリドン等)、結合剤(メチルセルロース、ヒドロキシプロピルセルロース、ポリピニルアルコール等)、滑沢剤(ステアリン酸マグネシウム、タルク等)、安定化剤、着色剤、コーティング剤を使用できる。投与量は、被験体の年齢、体重、症状や投与方法などにより変化し得るが本発明化合物に換算して、通常、成人1日当たり、経口投与の場合、約0.05mg~50mgであり、非経口投与の場合、約0.1mg~10mgである。

発明を実施するための最良の形態

一般式 (IV) で示される本発明化合物の一つは、以下に例示する反応式 2-1 から反応式 2-8 により製造することが可能である。

(反応式1-1)

M. L. Miles, T. M. Harris and C. R. Hauser, J. Org. Chem., 30, 1007(1965)に記載の

25

方法に従って化合物(20)より化合物(21)を得る。 (反応式1-2)

化合物(21)とアンモニアを反応させて化合物(22)を得る。

アンモニアは化合物(21)に対して1.2~3モルを使用するが通常1.5
 モルである。溶媒としてメタノール、エタノール、プロパノール等のアルコール類、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロルメタン、クロロホルム、ジクロルエタン等のハロゲン化炭化水素類、アセトニトリル、ジメチルホルム、ジクロルエタン等のハロゲン化炭化水素類、アセトニトリル、ジメチルホルムアミド等が挙げられる。反応温度は通常室温~100℃、好ましくは20~80℃で反応時間は1~3時間である。必要に応じて、蟻酸、酢酸、プロピオン酸、蓚酸、トリフルオロ酢酸等の有機酸を添加する。

(反応式1-3)

化合物(22)を塩基および試薬と反応させ化合物(24)を得る。

塩基として水素化ナトリウム、カリウム tーブトキシド等を用いる場合は溶媒としてテトラヒドロフラン、ジメチルホルムアミドを使用する。また塩基としてジイソプロピルエチルアミンを用いる場合は溶媒としてジクロルメタン、クロロホルム、ジクロルエタン等のハロゲン化炭化水素類、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類およびアセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。試薬のアルキル化剤はヨウ化メチル、ヨウ化エチル、

15

ヨウ化プロピル、臭化プロピル、臭化イソプロピル、臭化ブチル、臭化ベンチル、臭化ヘキシル等の低級アルキルハライド類、ベンジルブロマイド、ベンジルクロライド、p-メトキシベンジルブロマイド等のアリルアルキルハライド類、ジメチル硫酸、ジエチル硫酸等の低級アルキル硫酸類、メチル メタンスルホネート、エチル メタンスルホネート等の低級アルキル 低級アルキルスルホネート類、メチル p-トルエンスルホネートの低級アルキル アリールスルホネート類が挙げられる。このようなアルキル化剤は原料(22)に対して1~1.3モル使用する。

またメタンスルホニルクロライド、エタンスルホニルクロライド、イソプロピルスルホニルクロライド等のアルキルスルホニルクロライド類、ジメチルアミノスルホニルクロライド、ジエチルアミノスルホニルクロライド等のジアルキルアミノスルホニルクロライド類、ジメチルアミノカルバモイルクロライド、ジエチルアミノカルバモイルクロライド、ジェチルアミノカルバモイルクロライド等のジアルキルアミノカルバモイルクロライド類、クロル炭酸メチル、クロル炭酸エチル等のクロル炭酸アルキル類が挙げられる。反応温度は通常氷冷下~50℃、好ましくは氷冷下~室温である。反応時間は30分~3時間である。

(反応式1-4)

5

20 化合物(24)と試薬を反応させ化合物(25)を得る。

試薬の過酸は過酢酸またはm-クロル過安息香酸が原料(24)に対して等モル量ないしやや過剰(1.1~1.5倍モル量)使用される。溶媒としてベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロルメタン、クロロホルム。ジクロルエタン等のハロゲン化炭化水素類が挙げられる。反応温度は通常氷冷ないし室温下で行い、反応時間は1~65時間である。

(反応式1-5')

$$Ar \xrightarrow{N} CH_3 \xrightarrow{Heat} Ar \xrightarrow{R_1} CI$$

化合物(25)と試薬を反応させて化合物(28)を得る。

試薬はベンゼンスルホニウムクロライド、トルエンスルホニウムクロライドなどのアリルスルホニウムハライド等が使用される。溶媒としてベンゼン、トルエン、キシレンのような芳香族炭化水素類、ジクロルメタン、クロロホルム、ジクロルエタンのようなハロゲン化炭化水素類が使用される。反応温度は $50\sim15$ 0℃で反応時間は $5\sim48$ 時間である。また化合物(28)は以下に示す反応式 $1\sim5$ 0 によっても得ることが出来る。

10

5

(反応式1-5')

試薬として用いられる酸無水物は、無水酢酸、無水プロピオン酸、無水酪酸等

まず、化合物(25)と試薬を反応させて化合物(26)を得る。

が挙げられるが、好ましくは無水酢酸が使用される。反応温度は、通常70~130℃、好ましくは70~90℃であり、反応時間は100分~3時間である。次に、化合物(26)と塩基を反応させて化合物(27)を得る。使用する塩基は、水酸化ナトリウム、水酸化カリウム等の苛性アルカリ、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリ等が挙げられる。溶媒としてメタノール、エタノール、プロパノールのようなアルコール類、エチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、ベンゼン、トルエン、キシレン、のような芳香族炭化水素類、アセトニトリル、ジメチルムアミドまたはこれらの混合物が

挙げられる。反応温度は通常氷冷下 ~ 100 \mathbb{C} 、好ましくは室温 ~ 50 \mathbb{C} であり、反応時間は30 分 ~ 2 時間である。

更に、化合物 (27) とハロゲン化剤を反応させて化合物 (28) を得る。

ハロゲン化剤は、塩化チオニル、臭化チオニル、オキシ塩化燐、五塩化燐等がある。溶媒としてハロゲン化剤と反応しないベンゼン、トルエン、キシレンのような芳香族炭化水素、エチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、ジクロルメタン、クロロホルム、ジクロルエタンのようなハロゲン化炭化水素類が使用される。反応温度は通常氷冷下~100℃、好ましくは氷冷~50℃であり、反応時間は30分~3時間である。

10

(反応式1-6)

$$Ar \xrightarrow{R_1} CI \xrightarrow{NHR_2R_3} Ar \xrightarrow{R_1} NR_2R_3$$
(28) (1)

化合物(28)と一級アミンまたは二級アミンとを反応させ化合物(1)を得る。

15 一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロプロピルアミン、シクロペンチルアミン、シクロヘキシルアミン、エタノールアミン、ジメチルアミノエチルアミンおよびジエチルアミノエチルアミンが挙げられる。

二級アミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、
20 ジイプロピルアミン、ピロリジン、ピペリジン、モルホリン、4-ベンジルピペリジン、4-フェニルピペリジン、4-(2-メトキシフェニル) ピペリジン、
エチル 4-ピペリジンカルボキシレート、ピペラジン、1-メチルピペラジン、
2、6-ジメチルピペラジン、1-ベンジルピペラジン、1-ピペロニルピペラジン、1-フェニルピペラジン、1-(4-クロルフェニル) ピペラジン、125 (4-フルオロフェニル) ピペラジン、1-(2-メトキシフェニル) ピペラジ

ン、1 - (3 - x) トキシフェニル) ピペラジン、1 - (4 - x) トキシフェニル)

ピペラジン、1-(2- (1)) ピペラジン、1-(2- (2- (1)) ピペラジン、1-(2- (2- (1)) ピペラジン、1-(2- (2- (1)) ピペラジン、1-(3- (2- (1)) ピペラジン、1-(4- (2- (1)) ピペラジン、1-(3- (1)) ピペラジン、1-(4- (1)) ピペラジン、1-(4- (1)) ピペラジン、1-(4- (1)) ピペラジン、1-(2- (2- (2- (2)) ピペラジン、1-(2- (2- (2- (2)) ピペラジン等が挙げられる。

反応は通常溶媒中で行われ、溶媒の具体例としてジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロルメタン、クロロホルム、ジクロルエタン等のハロゲン化炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン類、酢酸エチル、アセトニトリル、ジメチルホルムアミドまたはこれらの混合物等が挙げられる。

通常、化合物(28)に対して一級アミンまたは二級アミンはモル量ないしやや過剰(1.1~3倍モル量)使用されるが、大過剰使用することも可能である。本反応は、酸受容体の存在下に行うことが好ましく、酸受容体の具体例としては、重炭酸ナトリウム、重炭酸カリウム等の重炭酸アルカリ、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリが挙げられるが一級アミンまたは二級アミンを過剰に用いてそれ自体酸受容体を兼ねさせることもできる。

反応温度は通常、室温~130℃、好ましくは室温~80℃であり、反応時間は 10分~15時間である。

25

10

15

20

一般式(VII)で示される本発明の化合物の一つは、以下に例示する反応式2-1から反応式2-8により製造することが可能である。

(反応式2-1)

化合物(2-1)から化合物(2-2)の合成は、Kelly YR, Lang FR, Tetrahedron Lett., 36(30), 5319-5322(1995)に記載の反応条件で行う。

5 (反応式2-2)

$$HO$$
 Br
 CH_3
 HO
 CH_3
 CH_3
 $(2-2)$
 $(2-3)$

化合物 (2-2) とフェニルホウ酸を反応させ化合物 (2-3) を得る。

フェニルホウ酸は 2 - メトキシフェニル、3 - メトキシフェニル、4 - メトキシフェニル、3 . 4 - メチレンジオキシフェニル、3 . 4 - ジメトキシフェニル、10 2 - ハイドロオキシフェニル、3 - ハイドロオキシフェニル、4 - ハイドロオキシフェニル、2 - シアノフェニル、3 - シアノフェニル、4 - シアノフェニルホウ酸等が挙げられる。溶媒としてジメトキシエタン、トルエン、ジメチルホルムアミドが挙げられる。一般的に触媒としてテトラキストリフェニルホスフィンパラジウムが使用され、塩基として炭酸ナトリウム水溶液が用いられる。反応温度15 は通常 8 0 - 1 0 0 ℃、反応時間は 1 - 2 4 時間である。

(反応式2-3)

$$R_1$$
 R_1
 R_1
 R_1
 R_1
 R_2
 R_3
 R_4
 R_4

化合物 (2-3) とアルキルハライドを反応させ化合物 (2-4) を得る。 溶媒としてアセトン、メチルエチルケトン、アセトニトリル、ジメチルホルム

アミドが挙げられる。アリールアルキルハライドはベンジルクロライド、ベンジルプロミド、pーメトキシベンジルクロライド、pーメトキシベンジルプロミド、2.4ージメトキシベンジルプロミド、等が挙げられる。塩基は重炭酸アルカリ、炭酸アルカリ、苛性アルカリ、水素化ナトリウム等が挙げられる。

(反応式2-4)

$$R_1$$
 Ar
 N
 CH_3
 CH_3
 $(2-4)$
 $(2-5)$

化合物(2-4)と過酸を反応させ化合物(2-5)を得る。

10 過酸は過酢酸またはm-クロル過安息香酸が原料(2-4)に対してモル量ないしやや過剰($1.1\sim1.5$ 倍モル量)使用される。

溶媒としてベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロルメタン、クロロホルム。ジクロルエタン等のハロゲン化炭化水素類が挙げられる。

反応温度は通常氷冷ないし室温下で行い、反応時間は1~65時間である。

15

5

(反応式2-5)

$$R_1$$
 Ar
 CH_3
 CH_2OCOCH_3
 $(2-5)$
 $(2-6)$

化合物(2-5)と試薬を反応させ化合物(2-6)を得る。

試薬として用いられる酸無水物は無水酢酸、無水プロピオン酸、無水酪酸等が 20 挙げられるが通常無水酢酸が使用される。反応温度は通常70~130℃、好ま しくは70~90℃であり反応時間は通常10分~3時間である。

(反応式2-6)

$$R_1$$
 Ar
 N
 CH_2OCOCH_3
 R_1
 Ar
 N
 CH_2OH
 $(2-6)$
 $(2-7)$

化合物(2-6)と塩基を反応させて化合物(2-7)を得る。

使用する塩基は水酸化ナトリウム、水酸化カリウム等の苛性アルカリ、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリ等が挙げられる。溶媒としてメタノール、エタノール、プロパノールのようなアルコール類、エチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、ベンゼン、トルエン、キシレンのような芳香族炭化水素類、アセトニトリル、ジメチルホルヌアミドまたはこれらの混合物が挙げられる。反応温度は通常氷冷下~100℃、好ましくは室温~50℃であり、反応時間は30分~2時間である。

10

(反応式2-7)

$$R_1$$
 Ar
 CH_2OH
 Ar
 R_1
 CH_2CI
 CH_2CI
 $(2-7)$
 $(2-8)$

化合物 (2-7) をハロゲン化剤と反応させ化合物 (2-8) を得た。

ハロゲン化剤は塩化チオニル、臭化チオニル、オキシ塩化燐、五塩化燐等がある。溶媒としてハロゲン化剤と反応しないベンゼン、トルエン、キシレンのような芳香族炭化水素類、エチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、ジクロルメタン、クロロホルム、ジクロルエタンのようなハロゲン化炭化水素類が使用される。反応温度は通常氷冷下または100℃、好ましくは氷冷下~50℃であり、反応時間は30分~3時間である。

20

(反応式2-8)

$$R_1$$
 Ar
 N
 CH_2CI
 Ar
 NR_2R_3
 $(2-8)$
 $(2-9)$

化合物 (2-8) と一級アミンまたは二級アミンとを反応させ化合物 (2-9) を得る。

一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン、イソプ5 ロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロプロピルアミン、シクロペンチルアミン、シクロヘキシルアミンおよびエタノールアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミンが挙げられる。

また、二級アミンとはジメチルアミン、ジエチルアミン、ジプロピルアミン、 ジイプロピルアミン、ピロリジン、ピペリジン、モルホリン、4-ベンジルピペ リジン、4-フェニルピペリジン、4-(2-メトキシフェニル) ピペリジン、 エチル 4-ピペリジンカルボキシレート、ピペラジン、1-メチルピペラジン、 2、6-ジメチルピペラジン、1-ベンジルピペラジン、1-ピペロニルピペラ・ ジン、1-フェニルピペラジン、1-(4-クロルフェニル)ピペラジン、1-(4-フルオロフェニル) ピペラジン、1-(2-メトキシフェニル) ピペラジ ン、1 - (3 - x) トキシフェニル) ピペラジン、1 - (4 - x) キシフェニル) ハイドロオキシフェニル)ピペラジン、1-(2-シアノフェニル)ピペラジン、 1-(3-シアノフェニル) ピペラジン、1-(4-シアノフェニル) ピペラジ ン、1-(3-ハイドロオキシフェニル)ピペラジン、1-(4-ハイドロオキ シフェニル) ピペラジン、1-(3-メトキシフェニル) ピペラジン、1-(2 -ニトロフェニル) ピペラジン、1-(2-ピリジル) ピペラジン、1-(2-ピリミジル) ピペラジン、1 - (ベンゾフラン-7-イル) ピペラジン、1 - (ベ ンゾチオフェン-7-イル)ピペラジン、1-(2-メトキシメチルオキシフェ ニル) ピペラジン、1-(3-メトキシメチルオキシフェニル) ピペラジン等が 挙げられる。

反応は通常溶媒中で行われ、溶媒の具体例としてテトラヒドロフラン、ジオキ

10

15

20

サン、ジメトキシエタン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロルメタン、クロロホルム、ジクロルエタン等のハロゲン化炭化水素類、アセトン、メチルエチルケトン、メチルイソプチルケトン等のジアルキルケトン類、酢酸エチル、アセトニトリル、ジメチルホルムアミドまたはこれらの混合物等が挙げられる。

通常、化合物(2-8)に対して一級アミンまたは二級アミンはモル量ないしやや過剰(1.1~3倍モル量)使用されるが、大過剰使用することも可能である。本反応は、酸受容体の存在下に行うことが好ましく、酸受容体の具体例としては、重炭酸ナトリウム、重炭酸カリウム等の重炭酸アルカリ、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリが挙げられるが一級アミンまたは二級アミンを過剰に用いてそれ自体酸受容体を兼ねさせることもできる。

反応温度は通常、室温~130℃、好ましくは室温~80℃であり、反応時間は10分~15時間である。

15 一般式(IX)で示される本発明の化合物の一つは、以下にて例示する反応式3-1から反応式3-2により製造することが可能である。

(反応式3-1)

5

10

5-プロモー3-クロロメチルピリジン(J. Heterocyclic Chem., 29, 97120 (1992))と一級アミンまたは二級アミンとを反応させ化合物(3-1)を得る。

一級アミンとはメチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロプロピルアミン、シクロペンチルアミン、シクロヘキシルアミンおよびエタノールアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミンが挙げられる。

25 また、二級アミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルア ミン、ジイプロピルアミン、ピロリジン、ピペリジン、モルホリン、4~ベンジ

ルピペリジン、4-フェニルピペリジン、4-(2-メトキシフェニル) ピペリ ジン、エチル 4-ピペリジンカルボキシレート、ピペラジン、1-メチルピペ ラジン、2、6-ジメチルピペラジン、1-ベンジルピペラジン、1-ピペロニ ルピペラジン、1-フェニルピペラジン、1-(4-クロルフェニル) ピペラジ ン、1 - (4 - 7) フェニル) ピペラジン、1 - (2 - 4) トキシフェニル) 5 ピペラジン、1-(3-メトキシフェニル) ピペラジン、1-(4-メトキシフ ェニル) ピペラジン、1-(2-イソプロピルオキシフェニル) ピペラジン、1 - (2-ハイドロオキシフェニル)ピペラジン、1-(2-シアノフェニル)ピ ペラジン、1-(3-シアノフェニル)ピペラジン、1-(4-シアノフェニル) 10 ピペラジン、1-(3-ハイドロオキシフェニル) ピペラジン、1-(4-ハイ ドロオキシフェニル) ピペラジン、1-(3-メトキシフェニル) ピペラジン、 1-(3-メトキシフェニル)ピペラジン、1-(2-ニトロフェニル)ピペラ ジン、1-(2-ピリジル)ピペラジン、1-(2-ピリミジル)ピペラジン、 1-(ベンゾフラン-7-イル)ピペラジン、1-(ベンゾチオフェン-7-イ ル) ピペラジン、1-(2-メトキシメチルオキシフェニル) ピペラジン、1-15 (3-メトキシメチルオキシフェニル) ピペラジン等が挙げられる。

反応は通常溶媒中で行われ、溶媒の具体例としてテトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロルメタン、クロロホルム、ジクロルエタン等のハロゲン化炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン類、酢酸エチル、アセトニトリル、ジメチルホルムアミドまたはこれらの混合物等が挙げられる。

通常、原料に対して一級アミンまたは二級アミンはモル量ないしやや過剰(1.1~3倍モル量)使用されるが、大過剰使用することも可能である。本反応は、酸受容体の存在下に行うことが好ましく、酸受容体の具体例としては、重炭酸ナトリウム、重炭酸カリウム等の重炭酸アルカリ、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリが挙げられるが一級アミンまたは二級アミンを過剰に用いてそれ自体酸受容体を兼ねさせることもできる。

反応温度は通常、室温~130℃、好ましくは室温~80℃であり、反応時間

は10分~15時間である。

(反応式3-2)

$$R_2R_3$$
 R_2R_3
 R_2R_3
 R_2R_3
 R_2R_3
 R_2R_3

5 化合物 (3-1) とアリルホウ酸を反応させ化合物 (3-2) を得る。

アリルホウ酸はフェニルホウ酸、2-メトキシフェニルホウ酸、3-メトキシフェニルホウ酸、4-メトキシフェニルホウ酸、3.4-メチレンジオキシフェニルホウ酸、3.4-メチレンジオキシフェニルホウ酸、3.4-ジメトキシフェニルホウ酸、2-ハイドロオキシフェニルホウ酸、3-ハイドロオキシフェニルホウ酸、4-ハイドロオキシフェニルホウ酸、2-シアノフェニルホウ酸、3-シアノフェニルホウ酸、4-シアノフェニルホウ酸、2-チエニルホウ酸、3-チエニルホウ酸、2-アリルホウ酸、3-アリルホウ酸等が挙げられる。溶媒としてジメトキシエタン、トルエン、ジメチルホルムアミドが挙げられる。一般的に触媒としてテトラキストリフェニルホスフィンパラジウムが使用され、塩基として炭酸ナトリウム水溶液が用いられる。

15 反応温度は通常80-100℃、反応時間は1-24時間である。

また、一般式(X)で示される本発明の化合物の一つは、以下にて例示する反応 式4-1から反応式4-2にても製造することが可能である。本製造方法自体は いかなる意味においても、本発明を制限するものではない。

20 (反応式 4-1)

2-クロロ-3 -ホルミル-5 - フェニルピリジン(Tetrahedron Lett., 37, 8231, (1996))と一級アミンまたは二級アミンとを反応させ化合物(4-1)を

得る。

5

10

15

20

一級アミンとはメチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロプロピルアミン、シクロペンチルアミン、シクロヘキシルアミンおよびエタノールアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミンが挙げられる

メチルアミノエチルアミン、ジエチルアミノエチルアミンが挙げられる。 また、二級アミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルアミ ン、ジイプロピルアミン、ピロリジン、ピペリジン、モルホリン、4-ベンジル ピペリジン、4-フェニルピペリジン、4-(2-メトキシフェニル) ピペリジ ン、エチル 4-ピペリジンカルボキシレート、ピペラジン、1-メチルピペラ ジン、2、6-ジメチルピペラジン、1-ベンジルピペラジン、1-ピペロニル ピペラジン、1-フェニルピペラジン、1-(4-クロルフェニル) ピペラジン、 1-(4-フルオロフェニル)ピペラジン、1-(2-メトキシフェニル)ピペ ラジン、1-(3-メトキシフェニル)ピペラジン、1-(4-メトキシフェニ ル) ピペラジン、1-(2-イソプロピルオキシフェニル) ピペラジン、1-(2 -ハイドロオキシフェニル) ピペラジン、1-(2-シアノフェニル) ピペラジ ン、1-(3-シアノフェニル)ピペラジン、1-(4-シアノフェニル)ピペ ラジン、1-(3-ハイドロオキシフェニル)ピペラジン、1-(4-ハイドロ オキシフェニル) ピペラジン、1-(3-メトキシフェニル) ピペラジン、1-(3-メトキシフェニル) ピペラジン、1-(2-ニトロフェニル) ピペラジン、 1 - (2 - ピリジル) ピペラジン、<math>1 - (2 - ピリミジル) ピペラジン、<math>1 - (ベ ンゾフラン-7-イル)ピペラジン、1-(ベンゾチオフェン-7-イル)ピペ

還元的 N-アルキル化反応の溶媒はジクロルメタン、クロロホルム、ジクロルエ 25 タン等のハロゲン化炭化水素類、テトラヒドロフラン、ジオキサン、ジメトキシ エタン等のエーテル類が使用される。還元剤として水素化トリアセトキシホウ素 ナトリウムが用いられる。反応温度は氷冷下~80℃、好ましくは室温で、反応 時間は1~24時間である。

ラジン、1-(2-メトキシメチルオキシフェニル)ピペラジン、1-(3-メ

トキシオキシフェニル)ピペラジン等が挙げられる。

(反応式4-2)

$$N_{2}R_{3}$$
 $N_{2}R_{3}$ $N_{2}R_{3}$ $N_{2}R_{3}$ $N_{2}R_{3}$ $N_{2}R_{3}$

化合物 (4-1) とアルコキシド類またはチオフェノキシド類を反応させ化合物 (4-3) を得る。

アルコキシド類は、メタノール、エタノール、プロピルアルコールのようなアルキルアルコール類、ベンジルアルコール、pーメトキシベンジルアルコールのようなアリルアルキルアルコール類と水素化ナトリウムを反応させることにより選られる。チオフェノキシド類は、チオフェノール、pーメトキシチオフェノールのようなチオフェノール類と水素化ナトリウムを反応させることにより得られる。エーテル化およびチオエーテル化の溶媒としてテトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド等が使用される。反応温度は氷冷下~80℃、好ましくは室温で、反応時間は1~24時間である。

一般式 (IX) で示される本発明の化合物の一つは、以下にて例示する反応式 5 - 1 から反応式 5 - 3 により製造することが可能である。

(反応式5-1)

$$CH_3O$$
 N CH_3O N OH OCH_3 OCH_3 OCH_3

5-(2-メトキシフェニル)-6-メトキシニコチン酸メチルエステル(J. 0rg. Chem., 49, 5237(1984))を還元剤と反応させ化合物(5-1)を得る。

間である。

(反応式5-2)

5 化合物(5-1)とハロゲン化剤を反応させ化合物(5-2)を得る。

ハロゲン化剤は塩化チオニル、臭化チオニル、オキシ塩化燐、五塩化燐等が挙げられる。溶媒としては、ハロゲン化剤と反応しないベンゼン、トルエン、キシレンのような芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、ジクロルメタン、クロロホルム、ジクロルエタンのようなハロゲン化炭化水素類が使用される。反応温度は通常氷冷下または100℃、好ましくは氷冷下~50℃であ理、反応時間は30分~3時間である。

(反応式5-3)

10

15 化合物 (5-2) と一級アミンまたは二級アミンを反応させ化合物 (5-3) を得る。

一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロプロピルアミン、シクロペンチルアミン、シクロヘキシルアミンおよびエタノールアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミンなどが挙げられる。

また、二級アミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルア

ミン、ジイプロピルアミン、ピロリジン、ピペリジン、モルホリン、4-ベンジ ルピペリジン、4-フェニルピペリジン、4-(2-メトキシフェニル) ピペリ ジン、エチル 4-ピペリジンカルボキシレート、ピペラジン、1-メチルピペ ラジン、2、6-ジメチルピペラジン、1-ベンジルピペラジン、1-ピペロニ ルピペラジン、1-フェニルピペラジン、1-(4-クロルフェニル) ピペラジ ン、1-(4-フルオロフェニル)ピペラジン、1-(2-メトキシフェニル) ピペラジン、1-(3-メトキシフェニル)ピペラジン、1-(4-メトキシフ ェニル) ピペラジン、1-(2-イソプロピルオキシフェニル) ピペラジン、1 - (2-ハイドロオキシフェニル)ピペラジン、1-(2-シアノフェニル)ピ ペラジン、1 - (3 - シアノフェニル) ピペラジン、<math>1 - (4 - シアノフェニル)10 ピペラジン、1-(3-ハイドロオキシフェニル) ピペラジン、1-(4-ハイ ドロオキシフェニル) ピペラジン、1-(3-メトキシフェニル) ピペラジン、 1-(3-メトキシフェニル) ピペラジン、1-(2-ニトロフェニル) ピペラ ジン、1-(2-ピリジル)ピペラジン、1-(2-ピリミジル)ピペラジン、 1 - (ベンゾフラン-7-イル)ピペラジン、1-(ベンゾチオフェン-7-イ 15 ル) ピペラジン、1-(2-メトキシメチルオキシフェニル) ピペラジン、1-(3-メトキシメチルオキシフェニル) 等が挙げられる。

反応は通常溶媒中で行われ、溶媒の具体例としてテトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロルメタン、クロロホルム、ジクロルエタン等のハロゲン化炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン類、酢酸エチル、アセトニトリル、ジメチルホルムアミドまたはこれらの混合物等が挙げられる。

通常、化合物(5-2)に対して一級アミンまたは二級アミンはモル量ないし やや過剰(1.1~3倍モル量)使用されるが、大過剰使用することも可能である。本反応は、酸受容体の存在下に行うことが好ましく、酸受容体の具体例としては、重炭酸ナトリウム、重炭酸カリウム等の重炭酸アルカリ、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリが挙げられるが一級アミンまたは二級アミンを過剰に用いてそれ自体酸受容体を兼ねさせることもできる。

反応温度は通常、室温~1 3 0 ℃、好ましくは室温~8 0 ℃であり、反応時間は 10 分~15 時間である。

以下に実施例を示す。略号は以下の通りである。

5 Me = xfh; Et = xfh; $i-Pr = 4y^2 - y^2 - y^2 - y^2$ + y; $Ms = x^2 - y^2$

[実施例1]

5

10

15

2-メチル-6-(2-メトキシフェニル)-4-ピリト゚ン(22-1)の製造例

水素化ナトリウム15.5gを1.2-ジメトキシエタン200mlに懸濁させ、油浴上加熱還流下2.4-ペンタンジオン20gの1.2-ジメトキシエタン50ml溶液を20分で滴下し更に45分間還流する。次に、2-7ニス酸メチルエステル33.2gを1.2-ジメトキシエタン50mlに溶解した溶液を加熱還流下20分で滴下する。2時間加熱還流後氷水で冷却、メタノール5ml加え過剰の水素化ナトリウムを分解、氷を加え、6N塩酸120mlを加える。エーテルで抽出、順次食塩水、希重曹水、食塩水で水洗、硫酸マグネシウムで乾燥後溶媒を減圧下除去する。粗生成物42.0gをトルエンに溶解させシリカゲル94gのカラムクロマトに付し10%酢酸エチル・トルエン混液で溶出、溶媒を減圧下除去し生成物37.58gを得る。これをエタノール300mlに溶解し2.45Nアンモニア・エタノール溶液98mlを加え65℃の油浴上1時間温めた後トリフルオロ酢酸1.85mlを加え油浴上3時間加熱還流する。減圧下溶媒を除去、水を加えクロロホルムで抽出、水洗、硫酸マグネシウムで乾燥後溶媒を除去、水を加えクロロホルムで抽出、水洗、硫酸マグネシウムで乾燥後溶媒を除去、粗生成物をメタノールー酢酸エチルより再結晶し、2-メチルー6-(2-メトキシフェニル)ー4-ピリドン(22-1)融点182-187℃の結晶22.63gを得る。母液残査11.94gをシリカゲル50gで精製後メタノールー酢酸エチルより再結晶し、融点190-192℃の結晶5.21gを得る。収率64.7%

NMR (CDC13) 2. 32 (3H, s), 3. 90 (3H, s), 6. 11 (1H, br. s), 6. 45 (1H, br. s), 6. 97-7. 50 (4H, m), 9. 98 (1H, br. s).

[実施例 2-16]

実施例 1 と同様に反応を行い 2-メチル-6-アリル-4-ピリドン(22-2)~(22-16)を得た。これらの融点および NMR を表 1 に示した。

表 1-1

実施	化合物	Ar	融点 ℃	NWD (12 THE P
例 No	No	NI NI	歴点し	NMR(d6-DMSO)
2	22-2	2-メトキシ4-クロロフェ	246-248	2 20 - 10 20 (27)
-		ニル	240-248	2. 20 and 2. 38 (3H, br, s), 3. 84 (3H
ľ	ĺ	-W		, s), 5, 93 (1H, d), 6, 56 (1H, br), 7
	}			. 08-7. 77 (3H, m), 10. 44 and 11. 20
3	22-3	2-メトキシ 4-ブ ロモ	242-244	(1H, s)
"	22-3	7±=N	242-244	2. 20 and 2. 40 (3H, s), 3. 80 and 3. 8
		1 /1-1/		3 (3H, s) 5. 95 (1H, d), 6. 59 (1H, br
4	22-4	0 7, 11 - 1	150 150	, s), 7. 08-7. 87 (3H, m)
4	. 22-4	3-7 ロモフェニル	170-172	2. 41 (3H, s), 6. 15 (1H, s), 6. 30 (1
				H, s), 7. 21-
5	00.5	1 -1		7. 72 (4H, m), 11. 5 (1H, br)
5	22-5	4ーフ・ロモフェニル	245-246	2. 42 (3H, s), 6. 63 (1H, s),
1				7. 10 (1H, s) 7. 46-7. 94 (4H, d),
	00.0	0 -11		10. 58 (1H, s)
6	22-6	3ーフルオロフェニル	198-199	2. 40 (3H, s), 6. 54 (1H, br. s),
			·	6. 99 (1H, br. s), 7. 21 -
				7. 79 (4H, m), 10. 73 (1H, br)
7	22-7	2-メトキシ 5-フルオロ	188-190	2. 20 and 2. 40 (3H, s), 5. 92 and
		フェニル		6. 00 (1H, br. s)
				6. 59 (1H, br. s), 7. 12-
				7. 59 (3H, m), 10. 47and
				11. 22(1H, br. s)
8	22-8	3. 4ーシ・メトキシフェニ	178-180	2. 37 (3H, s), 3. 86 (3H, s), 3. 87 (3
		<i>I</i> V		H, s), 6.02(1H, br. s) 6.33(1H, br
				. s) 6. 83-7. 23 (3H, m)
9	22-9	3. 4ーメチレンシ オキシ	275-277	2. 35 (3H, s), 6. 08 (2H, s),
		フェニル		6. 52-7. 54 (5H, m), 10. 45
				(1H, br. s)
10	22-10	4ーメトキシフェニル	245-246	2. 35 (3H, s), 3. 81 (3H, s),
				6. 50-7. 91 (6H, m), 10. 43
				(1H, br. s)
11	22-11	2-711/	oil	2.04(3H, s),
	J			6. 30 (1H, d), 6. 51 (1H, m), 6. 78
				(1H, d), 7. 20(1H, d), 7. 51(1H, d)
12	22-12	2-メトキシメチルオキシフ	149-150	2. 37 (3H, s), 3. 43 (3H, s),
1	ł	エニル	•	5. 15 (2H, s), 6. 10 (1H, s),
				6. 41 (1H, s), 7. 04-7. 32 (4H, m)
				,,

表 1 - 2

13	22-13	3ーメトキシフェニル	160-162	2. 38 (3H, s), 3. 80 (3H, s), 6. 14 (1H, d), 6. 41-6. 43 (1H, m), 6. 92 -7. 34 (4H, m)
14	22-14	3ーメチルフェニル	153-155	2. 32 (3H, s), 2. 37 (3H, s), 6. 08 (1 H, br. s), 6. 34 (1H, br. s), 7. 17-7 . 37 (4H, m), 11. 09 (1H, br. s)
15	22-15	4ーメトキシメチルオキシフ ェニル	131-133	2. 36 (3H, s), 3. 44 (3H, s), 5. 15 (2 H, s), 6. 08 (1H, s), 6. 34 (1H, s), 7. 03-7. 54 (4H, m)
16	22-16	3 - シアノフ エニル	271-274	NMR (CD30D) 2. 44 (3H, s), 6. 38 (1H, s), 6. 61 (1 H, s), 7. 12 (1H, t), 7. 89 (1H, dt) , 8. 00 (1H, dt), 8. 10 (1H, d)

[実施例17]

2-メチルー4-(4-メトキシベンジルオキシ)-6-(2-メトキシフェ 5 ニル) ピリジン (24-1)

$$OCH_2$$
 OCH_3 $OCH_$

水素化ナトリウム 3. 7 2 g をジメチルホルムアミド 150ml に懸濁させ氷冷、 攪拌下 2 - メチル - 6 - (2 - メトキシフェニル) - 4 - ピリドン (2 2 - 1) 2 7. 8 g を加え同温度で 15 分間攪拌し更に 5 0 ℃の油浴上 30 分攪拌する。次 10 に氷水で冷却、4 - メトキシベンジルプロマイド 2 8. 6 g を加え 1 時間攪拌する。メタノールを加え過剰の水素化ナトリウムを分解した後氷水を加えて結晶を 析出させる。結晶を濾別し、アセトン-イソプロピルエーテルより再結晶し 2 - メチル - 4 - (4 - メトキシベンジル) オキシ - 6 - メトキシフェニルピリジン (2 4 - 1) 融点 1 1 6 - 1 1 8 ℃の結晶 36.3g を得る。収率 84% NMR(CDC13) 2.56(3H, s) 3.81(3H, s) 3.82(3H, s) 5.04(2H, s) 6.69-7.73(10H, s)

5 NMR(CDC13) 2.56(3H, s), 3.81(3H, s), 3.82(3H, s), 5.04(2H, s), 6.69-7.73(10H, m).

[実施例18-41]

[実施例 1 7]と同様に反応を行い 2-メチル-4-アルコキシ-6-アリルピリジン $(24-2)\sim(24-25)$ を得た。これらの融点および NMR を表 2 および表 3 に示した。

表 2 - 1

実 施	化合物	Ar	R,	融点(℃)	NMR (CDC13)
例 No	No	711	, , , , , , , , , , , , , , , , , , ,	Max AR (C)	NMR (CDC13)
18	24-2	2-メトキシ	ベンジルオ	oil	2.55(211 -) 2.75(21
10	24-2	フェニル	1 ' ' ' '	011	2. 56 (3H, s), 3. 79 (3H
		ノエール	キシ		, s), 5. 12 (2H, s)
10	0.4.0				6. 70-7. 74 (11H, m)
19	24-3	2-メトキシ	4-メトキ	95-97	2.55 (3H, s), 3.81 (3H)
		4-クロロフ		j	, s), 3.83(3H, s)
[エニル	オキシ		5.04(2H, s), 6.69-
ļ					7.72(9H, m)
20	24-4	2-メトキシ	メトキシ	67-68	2.57(3H, s), 3.84(3H
i i		フェニル			, s), 3.86(3H, s)
					6.64-7.71(6H, m)
21	24-5	4-フルオロ	4-メトキ	110-111	2.57(3H, s), 3.83(3H
		フェニル	シベンジル		, s), 5. 07(2H, s)
			オキシ		6.69-7.95(10H, m)
22	24-6	4-メトキシ	4-メトキ	106-107	2.56(3H, s), 3.83(3H
		フェニル	シベンジル		, s), 3. 85 (3H, s), 5. 0
]			オキシ		7(2H, s), 6.66(1H, d)
·					, 6. 94 (2H, d), 6. 96 (2
					H, d), 7. 05 (1H, d), 7.
					37(2H, d), 7.89(2H, d
				· i)
23	24-7	4-クロルフ	メトキシ	56	2.57(3H, s), 3.89(3H
		エニル			, s), 6. 65 (1H, d), 7. 0
					1 (1H, d), 7. 41 (2H, d)
					, 7. 89 (2H, d)
24	24-8	3 - ブロモフ	メトキシ	o i l	2.58(3H, s), 3.89(3H
		エニル			, s) 6. 66 (1H, d) 7. 01 (
					1H, d), 7. 31-
					8. 12 (6H, m)
L L					5. 15 (OII, III/

表 2 - 2

25	24-9	2 - メトキシ	メトキシ	69-70	57(3H, s), 3.83(3H, s
Í		5 - プロモフ), 3. 86 (3H, s) 6. 65 (1
		エニル		1	H, d), 7. 13(1H, d), 6.
1		İ			85 (1H, d), 7. 43 (1H, d
<u></u>					ofd), 7.87(1H, d)
26	24-10	フェニル	メトキシ	o i l	2. 56 (3H, s), 3. 89 (3H
					, s), 6.64(1H, d), 7.0
					4(1H, d), 7.41-
					7. 96 (5H, m)
27	24-11	2-メトキシ	1	125-127	2. 56 (3H, s), 3. 80 (3H
		5 - プロモフ	シベンジル		, s), 3.83(3H, s) 5.04
		エニル	オキシ		(2H, s), 6, 70-
					7.88(9H, m)
28	24-12	4 - プロモフ	メトキシ	48-49	2. 58 (3H, s), 3. 89 (3H
		エニル	-	ŧ	, s), 6.65(1H, d), 7.0
					1 (1H, d), 7. 57 (2H, d)
					, 7. 83 (2H, d)
29	24-13	3 - フルオロ	4 - メトキ	113-114	2. 58 (3H, s), 3. 83 (3H
		フェニル	シベンジル		s), 5. 08(2H, s), 6. 7
	,		オキシ		3(1H, d), 7. 10(1H, d)
					6. 93-7. 72 (8H, m)
30	24-14	2 - メトキシ		139-141	2. 56 (3H, s), 3. 79 (3H
		5 - フルオロ	シベンジル		, s), 3. 83 (3H, s), 5. 0
		フェニル	オキシ	j	5 (2H, s), 6.88-
	0.4 . 5				7. 57 (7H, m)
31	24-15	4 - クロロフ	4 - メトキ	88-89	2. 57 (3H, s), 3. 83 (3H
		ェニル	シベンジル	-	, s), 5. 07 (2H, s), 6. 7
			オキシ		1 (1H, d), 6. 94 (2H, d)
				i	, 7. 08 (1H, d), 7. 36 (2
					H, d), 7. 41 (2H, d), 7.
L					88(2H, d)

表 3

	1 A 44	r	Y		
実施 例No	│化合物 │ No	Ar	R,	融点 (℃)	NMR (CDC13)
32	24-16	4 - ブロモ フェニル	4 - メトキ シベンジル オキシ	80-81	2. 57 (3H, s), 3. 83 (3H, s), 5. 07 (2H, s), 6. 71 (1H, d), 6. 94 (2H, d), 7. 08 (1H, d), 7. 36 (2H, d) 7. 56 (2H, d), 7. 82 (2H, d)
33	24-17	フェニル	4 - メトキ シベンジル オキシ	82-83	2. 58 (3H, s), 3. 83 (3H, s), 5. 08 (2H, s), 6. 71 (1H, d), 7. 11 (1H, d), 6. 92-7. 95 (9H, m)
34	24-18	3. 4 - ジ メトキシフ ェニル	4 - メトキ シベンジル オキシ	110-111	2. 57 (3H, s), 3. 83 (3H, s), 3. 93 (3H, s), 3. 98 (3H, s), 5. 07 (2H, s), 6. 67 (1H, d), 7. 06 (1H, d), 6. 9 1-7. 58 (7H, m)
35	24-19	3. 4 - メ チレンデオ キシ	4 - メトキ シベンジル オキシ	158-159	2. 55 (3H, s), 3. 83 (3H, s), 5. 06 (2H, s), 6. 00H, s), 6. 66 (1H, d), 7. 01 (1H, d), 6. 85-7. 47 (7H, m)
36	24-20	2 – フリル	4 - メトキ シベンジル オキシ	122-123	2. 54 (3H, s), 3. 83 (3H, s), 5. 06 (2H, s), 6. 50 (1H, m), 6. 63 (1H, d), 6. 94 (2H, d), 7. 12 (1H, d), 7. 36 (2H, d), 7. 51 (1H, d)
37	24-21	3 - メトキ シメチルオ キシフェニ ル	4 - メトキ シベンジル オキシ	oil	2. 57 (3H, s), 3. 50 (3H, s), 3. 83 (3H, s), 5. 07 (2H, s), 5. 24 (2H, s), 6. 70 (1H, d), 6. 93 (2H, d), 7. 0 9 (1H, d), 7. 37 (2H, d), 7. 04-7. 62 (4H, m)
38	24-22	3 - メトキ シフェニル	4 - メトキ シベンジル オキシ	101.5- 103	2. 58 (3H, s), 3. 83 (3H, s), 3. 88 (3H, s), 5. 08 (2H, s), 6. 70-7, 11 (5H, m), 7. 30-7. 52 (5H, m),
39	24-23	3 - メチル フェニル	4 - メトキ シベンジル オキシ	81-82	2. 42 (3H, s), 2. 58 (3H, s), 3. 83 (3H, s), 5. 07 (2H, s) 6. 70-7. 77 (10H, m)
40	24-24	キシフェニ ル	4 - メトキ シベンジル オキシ	67-68	2. 56 (3H, s), 3. 49 (3H, s), 3. 83 (3H, s), 5. 06 (2H, s), 5. 21 (2H, s), 6. 66-7. 90 (10H, m)
41	24-25	3 - シアノ フェニル	4 - メトキ シベンジル オキシ	110-111	2. 58 (3H, s), 3. 83 (3H, s), 5. 09 (2H, s), 6. 76-8. 28 (10H, m)

[実施例42]

2-メチル-6-(2-メトキシフェニル)-4-チオピリドン(23)

5 2 - メチルー6 - メトキシフェニルー4 - ピリドン(2 2 - 1)2. 15g(0.01モル)ローソン試薬3.23g(0.008モル)トルエン60mlの混合物を90℃で9時間加温した。氷冷後析出した結晶を濾取。結晶はクロロホルムに溶かし水洗、硫酸マグネシウムで乾燥後溶媒を留去。残渣をアルミナ(100g)のカラムクロマトで精製。クロロホルムーメタノール(100:1)混10 液溶出物として表記チオピリドンを得た。1.75g(75.8%) 酢酸エチルークロロホルムの混合溶媒でで再結晶することで、融点170-172℃(分解)を示した。 NMR(CDC13) 2.36(3H,s),3.97(3H,s),7.03-7.63(7H,m)

[実施例43]

2-メチル-6-(2-メトキシフェニル)-4-チオピリドン(23) 1. 65g(0.00714モル)とアセトン66mlの懸濁液に、氷冷下、ヨウ化 20 メチル1.03g(0.00728モル)のアセトン溶液5mlを加え室温下!

時間攪拌した。溶媒を減圧下留去し、残差をアルミナ 50gのカラムクロマトで精製。クロロホルム溶出物として 2-メチル-6-(2-メトキシフェニル)-4-メチルチオーピリジン <math>1.75gを油状物 として得た。収率 97.7% NMR(CDC1₃) 2.50(3H,s), 2.57(3H,s), 3.85(3H,s), 6.90-7.72(5H,m)

5

[実施例44]

2-メチル-4-(4-メトキシベンジルオキシ)-6-(2-メトキシフェニル) ピリジン-N-オキシド(25-1)

2 - メチルー4 - (4 - メトキシベンジルオキシ) - 6 - (2 - メトキシフェニル) ピリジン (2 4 - 1) 2 6.3 gをクロロホルム 2 0 0 m 1 に溶解し氷冷下 8 0 % m - クロロ過安息香酸 2 0.3 gを加え同温度で 1 時間攪拌した後 23時間室温に放置する。氷水と 10gの亜硫酸ナトリウムを加えた後アンモニア水でアルカリ性とし分液、硫酸マグネシウムで乾燥、シリカゲル 1 8 0 gのカラムクロマトに付し 5 %メタノール・クロロホルムで溶出し油状の 2 - メチルー4 - (4-メトキシベンジルオキシ) - 6 - (2 - メトキシフェニル) ピリジン-N-オキシド (2 5 - 1) 2 6.8 gを得る。収率 9 7.5 %

NMR (CDC13) 2.55(3H, s), 3.80(3H, s), 3.83(3H, s), 4.99(2H, s), 6.86-7.44(10H, m).

20

[実施例45-66]

実施例 4.4 と同様に反応を行い 2- メチル-4- アルコキシ-6- アリルピリジン- N- オキシド(2.5-2.) ~ (2.5-2.5.) を得た。これらの融点および NMR を表 4.4 および表 5 に示した。

表 4-1

実施	化合	Ar	R ₁	融点℃	NMR (CDC13)
例 No	物No				
45	25-2	2-メトキシ	4-ベンジルオキ	oil	2. 56 (3H, s), 3. 79 (3H
		フェニル	シ		, s), 5. 07 (2H, s) 6. 88
4.6	0.5.0	0 11.35.3			-7. 72 (11H2, m)
46	25-3	2-メトキシ	4-(4-×ト	oil	2. 55 (3H, s), 3. 79 (3H
		4-クロロフ	キシベンジルオ		, s), 3. 83 (3H, s), 4. 9
1		ェニル	キシ)		9 (2H, s), 6. 81-
4.7	0.5.4	0 11 -)] _b >		7. 36 (9H, m)
47	25-4	2-メトキシ	メトキシ	145-	2. 58 (3H, s), 3. 81 (3H
		フェニル		146	, s), 3. 84 (3H, s) 6. 81
					(2H, m), 6, 98-
					7. 08 (2H, m), 7. 36-
40	95.5	0 7 7 7 7	1 1 .1- >	ļ. <u>.</u>	7. 46 (2H, m)
48	25-5	3 - ブロモフ ェニル	メトキシ	oil	2. 57 (3H, s), 3. 87 (3H
		エール			, s), 6. 83-7. 97
49	25.6	フェニル	メトキシ	- : 1	(6H, m).
49	25-6	ノエール	メトキン	oil	2. 58 (3H, s), 3. 86 (3H
1					, s), 6. 85 (1H, d), 6. 8
					1 (1H,-d),-7-43
50	25-7	4-フルオロ	4 - (4 - メト	oil	
00	25-7	4	4 = (4 = スト キシベンジルオ	011	2. 56 (3H, s), 3. 83 (3H , s), 5. 03 (2H, s) 6. 88
		ノエール	(キシハ <i>ンシル</i> オ キシ)		-7.84(10H, m)
51	25-8	4-クロロフ	メトキシ	118-	2. 57 (3H, s), 3. 87 (3H
	20-0	エニル	ストモン	118-	, s), 6. 82 (2H, s) 7. 43
		エール		,119	(2H, d), 7. 77 (2H, d)
5 2	25-9	2-メトキシ	メトキシ	141-	2. 56 (3H, s), 3. 79 (3H
""	40 9	5 - プロモフ	ハト エ ン	141-	. s), 3. 84 (3H, s) 6. 75
1		ェニル		142	(1H, d), 6. 83 (1H, d) 6
		1-1/			. 88(1H, d) 7. 47-
					7. 54 (2H, m)
53	25-10	4-プロモフ	メトキシ	128-	2. 59 (3H, s), 3. 88 (3H
"		エニル	ハトモン	128	, s), 6. 84 (2H, s) 7. 59
		/V		163	(2H, d), 7. 71 (2H, d)
52	25-11	3-フルオロ	4 - (4 - メト	96-97	2. 58 (3H, s), 3. 83 (3H
"	1 1 0 4	フェニル	キシベンジルオ	ופיטפ	, s), 5. 04 (2H, s), 6. 9
		/ <i>1 - N</i>	キシハフフルオーキシ)		0-7. 62 (10H, m)
	L		コンノ		0 1. 02 (1011, 111)

表 4 - 2

51	25-12	2-メトキシ	4-(4-メト	107-	2. 56 (3H, s), 3. 77 (3H
		5-フルオロ	キシベンジルオ	109	, s), 3.83(3H, s) 5.00
		フェニル	キシ)		(2H, s), 6.84-7.36(9
					H, m)
55	25-13	4 - クロロフ	4- (4-メト	77-119	2. 57 (3H, s), 3. 83 (3H
		エニル	キシベンジルオ		, s), 5. 03 (2H, s) 6. 94
			キシ)		(2H, d), 7. 34(2H, d),
					7. 43 (2H, d), 7. 76H, d
)
56	25-14	4-ブロモフ	4-(4-メト	158-	2. 56 (3H, s), 3. 83 (3H
		ェニル	キシベンジルオ	160	, s), 5. 03 (2H, s) 6. 94
Í			キシ)		(2H, d), 7. 34(2H, d),
					7. 58 (2H, d), 7. 70 (2H
					, d)
57	25-15	フェニル	4-(4-メト	oil	2.57(3H,s),3.83(3H
			キシベンジルオ		, s), 5. 03 (2H, s) 6. 86
			キシ)		-7.81(11H, m)
58	25-16	3.4-ジメ	4 - (4 - メト	oil	2. 57 (3H, s), 3. 83 (3H
		トキシフェニ	キシベンジルオ	1	, s), 3. 96 (6H, s) 5. 03
		ル	キシ)		(2H, s), 6, 83-7, 62 (9
					H, m)
59	25-17	3.4-メチレ	4 - (4 - メト	116-	2. 55 (3H, s), 3. 83 (3H
		ンジオキシフ	キシベンジルオ	117	, s), 5. 02 (2H, s), 6. 0
		エニル	キシ)		1 (2H, s), 6.82-7.44(
					9H, m)

表 5

実 施	化 合	Ar	R ₁	融点℃	NMR (CDC13)
例 No	物 No				
60	25-18	4-メトキシ	4-(4-メト	oil	2. 56 (3H, s), 3. 83 (3H
		フェニル	キシベンジルオ		, s), 3.86(3H, s), 5.0
		,	キシ)		2(2H, s), 6.84-7.83(
					10H, m)
60	25-19	2-フリル	4-(4-メト	135-	2.57(3H, s), 3.83(3H
			キシベンジルオ	136	.s), 5.07(2H, s), 6.6
			キシ)		1(1H, m), 6.70(1H, d).
					, 6. 94 (2H, d), 7. 37 (2
					H, d), 7. 44(1H, d), 7.
		!			57 (1H, m), 8. 10 (1H, d
)
61	25-20	3-メトキシ	4- (4-メト	oil	2.57(3H,s),3.49(3H
		メチルオキシ	キシベンジルオ		, s), 3.83(3H, s), 5.0
	:	フェニル	キシ)		3(2H, s), 5. 21(2H, s)
					, 6.86-7.47(10H, m)
62	25-21	3-メトキシ	4-(4-メト	oil	57 (3H, s), 3. 83 (3H, s
		フェニル	キシベンジルオ	:), 3. 84 (3H, s) 5. 02 (2
			キシ)		H, s), 6. 85-7. 42 (10H
	05.00	0 11 4	4 1 1 2 2 1		, m)
63	25-22	2-メトキシ	4 - メタンスル	oil	2. 59 (3H, s), 3. 13 (3H
		フェニル	ホニル		, s), 3. 81 (3H, s), 7. 0
64	25-23	2-メチルフ	4-(4-メト	oil	1-7. 76 (6H, m) 2. 40 (3H, s), 2. 56 (3H)
04	25-23	Z = メテルノ エニル	4	011	2. 40 (3h, s), 2. 56 (3h , s), 3. 83 (3H, s), 5. 0
		エール	キシハフラルオ キシ)		2 (2H, s) 6. 84-7. 64 (1
			77)		OH, m)
65	25-24	4-メトキシ	4-(4-メト	oil	2. 56 (3H, s), 3. 50 (3H)
"	20 27	メチルオキシ	キシベンジルオ	011	, s), 3. 83 (3H, s), 5. 0
		フェニル	キシ)		2 (2H, s), 5. 22 (2H, s)
			. • /		, 6. 82-7. 80 (10H, m)
66	25-25	3 - シアノフ	4-(4-メト	oil	2. 57 (3H, s), 3. 84 (3H
		エニル	キシベンジルオ		, s), 5. 05 (2H, s) 6. 89
			キシ)		-8. 14 (10H, m)

5 [実施例67] 2-クロロメチル-4-メトキシ-6-(2-メトキシフェニル)ピリジン(28-31)

2-メチルー4-メトキシー6-(2-メトキシフェニル)ピリジン-N-オキシド(25-4)1. 63 g とパラートルエンスルホニルクロライド1. 39 g をベンゼン32 m l に溶解し油浴上 24 時間加熱還流する。氷水を加えアンモニア水でアルカリ性としクロロホルムで抽出、硫酸マグネシウムで乾燥後アルミナ60 g のカラムクロマトに付しクロロホルムで溶出する。 クロロホルムを除去し油状の2-クロロメチルー4-メトキシー6-(2-メトキシフェニル)ピリジン (28-31) 0.924 g を得る。 収率 52.8 %

NMR (CDC13) 3.86(3H, s), 3.90(3H, s), 4.71(2H, s), 6.97-7.78(6H, m)

10 [実施例68-71]

表 6

5

実 施	化合物	Ar	R ₁	融点℃	NMR (CDC 13)
例 No	No				
68	28-32	3-Br-Ph	MeO	oil	3. 94 (3H, s), 4. 70 (2H, s), 7. 01 (1H, d)
					, 7. 13(1H, d), 7. 29-8. 15(4H, m)
69	28-33	2-MeO,	Me0	95-96	3. 84 (3H, s), 3. 91 (3H, s), 4. 70 (2H, s)
		5-Br-Ph			, 6.87(1H, d), 7.00(1H, d), 7.30(1H, d
), 7. 45 (1H, d of d), 7. 92 (1H, d)
70	28-34	4-Cl-Ph	MeO	87-89	3. 93 (3H, s), 4. 69 (2H, s), 6. 99 (1H, d)
					, 7. 13(1H, d), 7. 43(2H, d), 7. 92(2H, d
	×	- <u>-</u> -)
71	28-35	4-Br-Ph	MeO	96-98	3. 93 (3H, s), 4. 70 (2H, s), 7. 00 (1H, d)
					7. 13(1H, d), 7. 48(2H, d), 7. 86(2H, d
)

上記反応で得られる化合物(28)は以下の実施例72から実施例120によっても得られる。

[実施例72] 2-アセトキシメチル-4-(4-メトキシベンジルオキシ)-6-(2-メトキシフェニル) ピリジン (26-1)

$$OCH_2$$
 OCH_3 OCH_3 $OCOCH_3$ OCH_3 OC

NMR (CDC13) 2. 17 (3H, s), 3. 82 (3H, s), 3. 83 (3H, s), 5. 07 (2H, s), 5. 24 (2H, s), 6. 8 8-7. 79 (10H, m)

[実施例73-96]

実施例 7 2 と同様に反応を行い 2 - アセチルオキシメチル体 $(26-2)\sim (200)$ 6 - 26)を得た。これらの融点および NMR を表 7 および表 8 に示した。

10

表 7 - 1

BM600010- >MO 0031063411 >

実 施	化合物	Ar	R ₁	融点℃	NMR (CDC13)
例No	No		'		
73	26-2	2-0Me,	4-MeOBnO	oil	2. 17 (3H, s), 3. 82 (3H, s), 3. 83
		4-Cl-Ph			(3H, s), 5. 07(2H, s), 5. 22(2H,
					s), 6.88-7.77(9H, m)
74	26-3	Ph	MeO	70-71	2. 19(3H, s), 3. 93(3H, s), 5. 26
					(2H, s), 6.83(1H, d), 7.15(1H,
					d), 7. 43-7. 98 (5H, m)
75	26-4	4-F-Ph	4-McOBnO	99-100	2. 18(3H, s), 3. 83(3H, s), 5. 10
					(2H, s), 5. 24 (2H, s), 6. 88-
					7. 97(10H, m)
76	26-5	4-F-Ph	Н	oil	2. 19 (3H, s), 5. 30 (2H, s), 7. 28
					(1H, d), 7. 61 (1H, d), 7. 77 (1H,
					t), 8.00(2H, d of d,)
77	26-6	3-F-Ph	4-MeOBnO	93-96	2. 19 (3H, s), 3. 83 (3H, s), 5. 11
					(2H, s), 5. 25 (2H, s), 6. 92-
					7. 73 (10H, m)
78	26-7	2-MeO,	4-MeOBnO	90-91	2. 17(3H, s), 3. 80(3H, s), 3. 83
		4-F-Ph			(3H, s), 5. 02 (2H, s), 5. 24 (2H,
		<u> </u>			s), 6. 89-7. 62 (9H, m)
79	26-8	3-F-Ph	Н	oil	2. 20 (3H, s), 5. 30 (2H, s), 7. 06
					-7. 83 (7H, m)
80	26-9	2-MeO,	Н	oil	2. 19 (3H, s), 3. 84 (3H, s), 5. 29
		3-F-Ph			(2H, s), 6. 89-7. 85 (6H, m)
81	26-10	F3C-Ph	MeO	81-83	2. 20 (3H, s), 3. 94 (3H, s), 5. 26
					(2H, s), 6. 88 (1H, d), 7. 18 (1H,
20	0.0			00 101	d), 7. 71 (2H, d), 8. 08 (2H, d)
82	26-11	4-C1-Ph	4-MeOBnO	99-101	2. 18 (3H, s), 3. 83 (3H, s), 5. 10
1					(2H, s), 5. 24 (2H, s), 6. 89 (1H,
					d), 6. 94 (2H, d), 7. 18 (1H, d), 7
					. 37 (2H, d), 7. 42 (2H, d), 7. 90 (
0.0	0.0 1.0	4 D . D1	4 M-OB-O	102	2H, d)
83	26-12	4-Br-Ph	4-MeOBnO	103-	2. 18 (3H, s), 3. 83 (3H, s), 5. 10
				106	(2H, s), 5. 24 (2H, s), 6. 90 (1H,
					d), 6. 94 (2H, d), 7. 18 (1H, d), 7
					1.37(2H, d), 7.54(2H, d), 7.83(2H, d)
0.1	00 10	Db	4 MaOD=0	101	
84	26-13	Ph	4-MeOBnO	101-	2. 18 (3H, s), 3. 83 (3H, s), 5. 11
				104	(2H, s), 5. 26 (2H, s), 6. 89 (1H,
					d), 7. 22 (1H, d), 6. 92-
	L		<u> </u>		7. 97 (9H, m)

表 7 一 2

85	26-14	3.4- diMeO-Ph	4-McOBnO	oil	2. 18(3H, s), 3. 83(3H, s), 3. 93 (3H, s), 3. 98(3H, s), 5. 10(2H, s), 5. 25(2H, s), 6. 85(1H, d), 7 . 16(1H, d), 6. 91-7. 59(7H, m)
86	26-15	4-F-Ph	MeO	60-62	2. 19(3H, s), 3. 92(3H, s), 5. 24 (2H, s), 6. 82(1H, d), 7. 10(1H, d), 7. 13(2H, t) 7. 95(2H, d of d)
87	26-16	2-MeO, 4-F-Ph	Me0	oil	2. 18(3H, s), 3. 85(3H, s), 3. 89 (3H, s), 5. 23(2H, s), 6. 69- 7. 81(5H, m)

表 8

rtz +/-	//z A	A	Г р	Et 1: %	NWD (CDC14)
実 施	化合	Ar	R ₁	融点℃	NMR (CDC13)
例 No	物No				
88	26-17	3.4-	4-MeOBnO	111-	2. 18(3H, s), 3. 83(3H, s), 5. 09(2H,
		Methylen		112	s), 5. 23(2H, s), 6. 01(2H, s), 6. 85(
		e			IH, d), 7. 12 (1H, d), 6. 86-
		dioxy			7. 49 (7H, m)
89	26-18	4-MeO-Ph	4-MeOBnO	90-91	2. 18(3H, s), 3. 83(3H, s), 3. 86(3H,
	,				s), 5. 09 (2H, s), 5. 23 (2H, s), 6. 84 (
				1	1H, d), 6. 94 (2H, d), 6. 97 (2H, d), 7.
				•	15(1H, d), 7. 37(2H, d), 7. 91(2H, d)
90	26-19	2-Furyl	4-MeOBnO	oil	2. 16 (3H, s), 3. 83 (3H, s), 5. 09 (2H,
					s), 5. 20 (2H, s), 6. 52 (1H, m), 7. 04 (
					1H, m), 6. 81 (1H, d), 6. 94 (2H, d), 7.
		i .			21 (1H, d), 7. 37 (2H, d), 7. 51 (1H, m)
91	26-20	2-	MeO	50-51	2. 10 (3H, s), 3. 91 (3H, s), 5. 21 (2H,
"	20 20	Thienyl	1	00 0.	s), 6. 74 (1H, d), 7. 07 (1H, d), 7. 09-
		Intent			7. 57 (3H, m)
92	26-21	3-	4-MeOBnO	80-81	2. 18 (3H, s), 3. 50 (3H, s), 3. 83 (3H,
32	20 21	MeOCH2O-	4 MCODIO	00 01	s), 5. 10 (2H, s), 5. 24 (2H, s), 6. 89 (
		Ph		ŀ	1H, d), 6. 94 (2H, d), 7. 20 (1H, d), 7.
		ודוו			
0.0	0.0 0.0	0 N-0 Db	4 N - OD - O	100	38 (2H, d), 7. 06-7. 64 (4H, m)
93	26-22	3-MeO-Ph	4-MeOBnO	128-	2. 18 (3H, s), 3. 83 (3H, s), 3. 88 (3H,
				130	s), 5. 10 (2H, s), 5. 25 (2H, s), 6. 88-
					6. 98 (4H, m), 7. 20-7. 54 (6 H, m
)
94	26-24	3-Me -Ph	4-MeOBnO	85-86	2. 18(3H, s), 2. 43(3H, s), 3. 83(3H,
				1	s), 5. 10(2H, s), 5. 26(2H, s), 6. 87-
					7. 78 (10H, m)
95	26-25	4-	4-MeOBnO	97-98	3. 18 (3H, s), 3. 50 (3H, s), 3. 83 (3H,
		MeOCH20-			s), 5. 10(2H, s), 5. 22(2H, s), 5. 24(
		Ph			2H, s), 6.85-7.92(10H, m)
96	26-26	3-CN -Ph	4-MeOBnO	129-	2. 19 (3H, s), 3. 83 (3H, s), 5. 12 (2H,
				130	s), 5. 25(2H, s), 6. 92-8. 29(10H, m)
					

[実施例97]

$$OCH_2$$
 OCH_3 OCH_2 OCH_3 OCH_2 OCH_3 $OCH_$

5

 $2-アセトオキシメチルー4-(4-メトキシベンジルオキシ)-6-(2-メトキシフェニル) ピリヂン(26-1) 23.4g をメタノール300mlに溶解し2N水酸化ナトリウム溶液44.6ml加え室温下1時間攪拌する。減圧下濃縮し塩化アンモニウム3.18gと水を加えて結晶を析出させる。結晶を濾別し融点129-131<math>\mathbb C$ 02-ハイドロオキシメチル-4-(4-メトキシベンジルオキシ)-6-(2-メトキシフェニル) ピリジン(27-1) 20.8g を得る。収率 99.5%

NMR (CDC13) 3. 83 (3H, s), 3. 84 (3H, s), 4. 07 (1H, br), 4. 74 (2H, s), 5. 07 (2H, s), 6. 47-7. 85 (10H, m)

15

10

[実施例98-119]

実施例 97 と同様に反応を行い 2- ハイドロメチル体 (27-2) ~ (27-2) 4) を得た。これらの融点および NMR を表 9 および表 10 に示した。

表 9 - 1

実 施	化合物	Аг	R,	融点℃	NMR (CDC13)
例 No	No				
98	27-2	2-MeO, 4-	4-MeOBnO	112-113	3. 83 (3H, s), 3. 85 (3H, s), 3.
		Cl-Ph			94 (1H, t). 4. 73 (2H, d), 5. 07
	!				(2H, s), 6.75-7.82(9H, m)
99	27-3	4-F-Ph	4-McOBnO	110-111	3. 83(3H, s), 3. 99(1H, t), 4.
					75 (2H, d), 5. 10 (2H, s), 6. 74
					-7.99(10H, m)
100	27-4	Ph	MeO	oil	3. 92 (3H, s), 4. 12 (1H, t), 4.
					76 (2H, d), 6. 69 (1H, d), 7. 16
<u></u>					(1H, d), 7. 45-8.01 (5H, m)
101	27-5	4-F-Ph	Н	oil	4.06(1H, br), 4.82(2H, s), 7
					. 17(2H, m), 7.61(1H, d), 7.1
					7(1H, d), 7, 76(1H, t), 8, 01(
					2H, m)
102	27-6	2-MeO, 5-	4-MeOBnO	137-139	3.82(6H, s), 4.00(1H, br), 4
		F-Ph			. 75(2H, s), 5. 08(2H, s), 6. 7
	L				5-7. 64 (9H, m)

表 9 - 2

103	27-7	3-F-Ph	4-MeOBnO	77-79	3.83(3H, s), 4.00(1H, br), 4
	- ' '	"			. 76 (2H, s), 5. 11 (2H, s), 6. 7
					9-7. 76 (10H, m)
104	27-8	4-C1-Ph	4-MeOBnO	90-92	3. 83 (3H, s9, 3. 96 (1H, 1), 4.
'''	2	1 0	1 1.002.00	0000	75 (2H, d), 5. 10 (2H, s), 6. 76
					(1H, d), 6. 94 (2H, d), 7. 19 (1
					H, d), 7. 36 (2H, d), 7. 43 (2H,
					d), 7. 91 (2H, d)
105	27-9	4-Br-Ph	4-MeOBnO	99-100	3. 83 (3H, s), 3. 95 (1H, t), 4.
					75 (2H, d), 5. 10 (2H, s), 6. 77
					(1H, d), 6. 94 (2H, d), 7. 19 (1
					H, d), 7. 36 (2H, d), 7. 59 (2H,
					d), 7.85(2H, d)
106	27-10	Ph	4-MeOBnO	oil	3. 83 (3H, s), 4. 10 (1H, t), 4.
					75 (2H, d), 5. 10 (2H, s), 6. 75
				1	(1H, d), 7. 23(1H, d), 6. 92-
			1		8. 00 (9H, m)
107	27-11	3. 4-di-	4-MeOBnO	oil	3. 83 (3H, s), 3. 94 (3H, s), 3.
		MeO-Ph		:	97(3H, s), 4.08(1H, t), 4.74
					(2H, d), 5. 10(2H, s), 6. 71(1
					H, d), 7. 17 (1H, d), 6. 92-
	<u> </u>				7. 58 (7H, m)
108	27-12	4-CF3-Ph	MeO	77-78	3.80(1H, br, s), 3.93(3H, s)
					, 4. 78 (2H, s), 6. 72 (1H, d), 7
					. 19(1H, d), 7. 72(2H, d), 8. 0
					9 (2H, d)
109	27-13	4-F-Ph	MeO	80-81	3. 91 (3H, s), 3. 99 (1H, br, s)
					, 4. 75 (2H, s), 6. 67 (1H, d), 7
		1	}		. 10 (, 1H, d), 7. 15 (2H, t), 7.
		ļ. <u></u>			97 (2H, d of d)
110	27-14	2-MeO, 4-	MeO	147-148	3. 87 (3H, s), 3. 89 (3H, s), 4.
		F-Ph			74 (2H, s), 6. 71 (1H, d), 6. 69
					(1H, d), 6. 81 (1H, d), 7. 29 (1
	0.7.15	10.4	4 11.02.0	07.00	H, d), 7. 82 (1H, d of d)
111	27-15	3. 4-	4-MeOBnO	97-98	3. 83 (3H, s), 4. 03 (1H, t), 4.
		Methylen-			73 (2H, d), 5. 08 (2H, s), 6. 02
		dioxy-Ph		1	(2H, s), 6. 70 (1H, d), 7. 12 (1
L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	H, d), 6.87-8.50(7H, m)

表 1 0

実 施	化合物	Ar	R ₁	融点℃	NMR (CDC13)
例No	No		·		
112	27-16	4-MeO-Ph	4-MeOBnO	oil	3. 83 (3H, s), 3. 86 (3H, s), 4.
					16(1H, br, s), 4.73(2H, s), 5
					. 09(2H, s), 6. 69(1H, d), 6. 9
					4(2H, d), 6.98(2H, d), 7.16(
					1H, d), 7. 37(2H, d), 7. 94(2H
1					, d)
113	27-17	2-Furyl	4-MeOBnO	129	3. 83 (3H, s), 3. 84 (1H, t), 4.
					70(2H, d), 5.09(2H, s), 6.53
					(1H, m), 6.68(1H, d), 6.94(2
					H, d), 7. 08(1H, d), 7. 36(2H,
					d), 7. 51 (1H, m)
114	27-18	2-Thienyl	MeO	oil	3. 89 (3H, s), 4. 71 (2H, s), 6.
					61 (1H, d), 7. 07 (1H, d), 7. 11
					(1H, d of d), 7.39(1H, d of
			A		d), 7.60 (1H, d of d)
115	27-19	3-MOMO-Ph	4-MeOBnO	69-70	3. 51 (3H, s), 3. 83 (3H, s), 4.
					75 (2H, s), 5. 10 (2H, s), 5. 25
		•			(2H, s), 6. 75(1H, d), 6. 94(2
					H, d), 7. 21 (1H, d), 7. 37 (2H,
					d), 7. 08-7. 67 (4H, m)
116	27-20	2-MeO-Ph	4-MeOBnO	117-119	3. 83 (3H, s), 3. 88 (3H, s), 4.
					07(1H, br. s), 4.75(2H, s), 5
					. 10(2H, s), 6. 75(1H, d), 6. 9
					2-6.99(3H, m), 7.21-7.54(6
	0.5				H, s)
117	27-22	3-Me-Ph	4-MeOBnO	96-98	2. 44 (3H, s), 3. 83 (3H, s), 4.
					10(1H, br. s), 4, 75(2H, d), 5
					. 10(2H, s), 6. 75-7. 81(10H,
110	07.00	44-0040	4 W - O D - O	101 109	m)
118	27-23	4MeOCH20-	4-MeOBnO	101-103	3. 50 (3H, s), 3. 83 (3H, s), 4.
		Ph			13(1H, br. s), 4. 73(2H, d), 5
					. 09 (2H, s), 5. 23 (2H, s), 6. 7
110	07 04	O CN DL	4 M = 0 D = 0	100 104	0-7. 94 (10H, m)
119	27-24	3-CN-Ph	4-MeOBnO	133-134	3. 73 (1H, t), 3. 83 (3H, s), 4.
					77 (2H, d), 5. 12 (2H, s), 6. 84
L					-8. 29(10H, m)

[実施例120]

2-クロロメチル-4-(4-メトキシベンジルオキシ)-6-(2-メトキシフェニル) ピリジン(28-1)

$$OCH_2$$
 OCH_3 OCH_2 OCH_3 OCH_2 OCH_3 $OCH_$

2 - ハイドロオキシメチルー4 - (4 - メトキシベンジルオキシ) - 6 - (2 - メトキシフェニル) ピリジン (27-1) 23.27gをテトラキドロフラン470m1に溶解させ氷冷、攪拌下塩化チオニル9.44m1を加え1時間室温で攪拌する。減圧下テトラヒドロフランを除去、氷水を加え重炭酸ソーダ水溶液でアルカリ性としクロロホルムで抽出、硫酸マグネシウムで乾燥後シリカゲル10 120gのカラムクロマトに付し2.5%アセトニトリル・クロロホルム混液溶出物をアセトンーイソプロピルエーテルより再結晶し、融点117-119℃の2-クロロメチル-4-(4-メトキシベンジルオキシ) - 6-(2-メトキシフェニル) ピリジン (28-1) 22.32gを得る。収率91.2%

NMR(CDCl₃) 3.82(3H,s), 3.83(3H,s), 4.70(2H,s), 5.08(2H,s), 6.92-7.79(10H,m)

[実施例121-143]

実施例 $1 \ 2 \ 0$ と同様に反応を行い $2 \ -$ クロロメチル体 $(2 \ 8 \ - \ 2) \sim (2 \ 8 \ - \ 2 \ 5)$ を得た。これらの融点および NMR を表 $1 \ 1$ および表 $1 \ 2$ に示した。

15

表11-1

実施例	化合物	Ar	R ₁	配点℃	NMR(CDCl3)
No	No				11111(02010)
121	28-2	2-	4-MeOBnO	98-99	3.83(6H,s),4.68(2H,s),5.09(2
		MeO,4-			H,s),6.92-7.79(9H,m)
		Cl-Ph			
122	28-3	Ph	MeO	oil	3.94(3H,s), 4.71(2H,s), 7.00(1
					H,d),7.16(1H,d),7.43-
					7.48(3H,m),7.93(2H,m)
123	28-4	4-F-Ph	4-MeOBnO	87-88	3.83(3H,s),4.69(2H,s),5.11(2
104	00.5	4 T D1			H,s),6.93-7.98(10H,m)
124	28-5	4-F-Ph	Н	54-55	4.74(2H,s),7.43(1H,d),7.62(1
105	00.0	0 17 DL	4 M-OP-O	110	H,d),7.79(1H,t),8.00(4H,m)
125	28-6	3-F-Ph	4-MeOBnO	116-	3.83(3H,s),4.70(2H,s),5.12(2
126	28-7	2-	4-MeOBnO	117 110-	H,s),6.93-7.73(10H,m)
120	20-1	MeO,5-	4-MeOBIIO	111	3.81(3H,s),3.83(3H,s),4.70(2 H,s),5.09(2H,s),6.88-
		F-Ph	·	111	7.65(9H,m)
127	28-8	Ph	4-MeOBnO	118-	3.83(3H,s),4.71(2H,s),5.12(2
				119	H,s),7.06(1H,d),7.22(1H,d),6
					.93-7.97(9H,m)
128	28-9	3.4-di-	4-MeOBnO	89-90	3.83(3H,s),3.93(3H,s),3.98(3
		MeO-Ph			H,s),4.70(2H,s),5.11(2H,s),7
	ļ				.03(1H,d),7.12(1H,d),6.91-
					7.58(7H,m)
129	28-10	4-Cl-Ph	4-MeOBnO	97-98	3.84(3H,s),4.69(2H,s),5.12(2
					H,s),7.07(1H,d),6.95(2H,d),7
					.19(1H,d),7.38(2H,d),7.42(2
130	28-11	4-Br-Ph	4-MeOBnO	96-97	H,d),7.91(2H,d)
130	20-11	4-Dr-r n	4-MeObnO	96-97	3.84(3H,s),4.69(3H,s),5.12(2 H,s),7.07(1H,d),6.95(2H.d),7
					.19(1H,d),7.38(2H,d),7.58(2
					H,d),7.84(2H,d)
131	28-12	4-F3C-	MeO	97-98	3.97(3H,s),4.72(2H,s),7.06(1
		Ph			H,d),7.25(1H,d),7.73(2H,d),
					8.11(2H,d)
132	28-13	4-F-Ph	MeO	85-86	3.93(3H,s),4.69(2H,s),6.98(1
					H,d),7.11(1H,d),7.14(2H,t),7
		····			.96(2H,d of d)
133	28-14	2-	MeO	91-92	3.85(3H,s),3.90(3H,s),4.62(2
		MrO,4-			H,s),6.69
		F-Ph			6.80(2H,m),6.97(1H,d),7.27(
10:		176),,		1H,d),7.79(1H,d of d)
134	28-15	4-MeO-	MeO	68-69	3.83(3H,s),3.86(3H,s),4.69(2
		Ph			H,s),5.10(2H,s)6.92-
<u> </u>		<u></u>	<u> </u>		7.93(10H,m)

表 1 2

実施例	化合物	Ar	R_1	融点℃	NMR(CDCl3)
No	No				, , ,
135	28-16	3.4-	4-MeOBnO	103-	3.83(3H,s)
		Methyle		104	4.67(2H,s),5.10(2H,s),6.01
		nedioxy-			(2 H,s), 6.86-7.49(9H,m)
		Ph			
136	28-17	2-Furyl	4-MeOBnO	122-	3.83(3H,s),4.65(2H,s),5.10
				123	(2H,s),6.52(1H,d) of
	i				d),6.94(2H,d),6.98(1H,d)
ļ					,7.05(
					1H,m),7.21(1H,d),7.37(2H
137	28-18	2-Thienyl	MeO	73-74	(d),7.52(1H,m) 3.92(3H,s),4.66(2H,s),6.92
10'	20-10	Z-I mienyi	MeO	10-14	(1H,d),7.08(1H,d),7.10(1H
					,d of d),7.39(1H,d of
					d),7.58 (1H,d of d)
138	28-19	3-MOM-O-	4-MeOBnO	69-70	3.50(3H,s),3.83(3H,s),4.70
		Ph	i		(2H,s),5.11(2H,s),5.24(2H,
]					s),6.95(2H,d),7.07(1H,d),7
					.20(1H,d),7.38(2H,d),7.08-
ļ					7.64(4H,m)
139	28-20	3-HO-Ph	4-MeOBnO	62-76	3.83(3H,s),4.70(2H,s),5.11
140	00.01	0.14.0.71	. 14 00 0		(2H,s),6.86-7.49(10H,m)
140	28-21	3-MeO-Ph	4-MeOBnO	111.	3.83(3H,s),3.88(3H,s),4.71
				112	(2H,s),5.11(2H,s),6.93-
141	28-23	3-Me -Ph	4-MeOBnO	79-	7.54(10H,m)
141	20.23	2-Me -1 II	4-MeODIO	80.5	2.43(3H,s),3.83(6H,s),4.71 (2H,s),5.11(2H,S),6.93-7.7
				00.5	8(10H,m)
142	28-24	4.	4-MeOBnO	71-72	3.49(3H,s),3.83(3H,s),4.69
		MeOCH2O	1,100210		(2H,s),5.11(2H,s),5.22(2H,
		-Ph			S),6.92-7.92 (10H,m)
143	28-25	3-CN -Ph	4-MeOBnO	154-	NHR(de-DMSO)
				155	3.77(3H,s),4.79(2H,s),5.24
					(2H,s),6.98-8.57(10H,m)

[実施例144]

2-クロロメチルー4-(4-メトキシベンジルオキシ)-6-(2-メトキシフェニル)ピリジン(28-1) 500mg、N-エチルー $\alpha-$ メチルベンジルアミン 262mg、炭酸カリ 187mg、ヨウ化カリ 45mg、アセトニトリル 10mlの混合物を油浴上 3.5時間加熱還流する。減圧下溶媒を除去し残査をトルエンに溶かしシリカゲル6.5gのカラムクロマトに付し10%酢酸エチル・トルエン混液で溶出し無色油状の2-(N-エチルー $\alpha-$ メチルーベンジルアミノ)メチルー4-(4- メトキシベンジルオキシ)-6-(2- メトキシフェニル)ピリジン (1-1) 621mgを得る。収率 95.2%

10 NMR(CDCl₃)1.05(3H,t,),1.39(3H,d),2.60(2H,m)3.71(1H,q,),3.81(1H,q),3.81(3 H,s),3.83(3H,s),3.99(1H,5.06(2H,s),6.92-7.73(15H,m)

[実施例145-265]

実施例 1 4 4 と同様に反応を行い 2- アルキルアミノメチル体(1-2)~ (1-122) を得た。これらの融点および NMR は表 1 3 から表 2 4 に示した。

5

表 1 3-1

実	化	-NR ₂ R ₃	R ₁	Ar	融点	NMR(CDCl3)
施	合			1	rc	(free base)
例	物					
No 145	No 1-2	 		004-	1.40	
145	1-2		OMe	OMe	146- 147	2.78(4H,m),3.12(4H,
	ŀ				147	m),3.79(2H,s),3.82(3 H,s),3.83(3H,s),3.87(
		MeO	OH2C			3H,s),5.09(2H,s),6.85
	ļ					-7.79(14H,m)
146	1-3			QMe	132-	2.78(4H,m),3.13(4H,
1		N N	OMe		133	m),3.79(2H,s),3.83(3
			OH ₂ C			H,s),3.85(3H,s),3.88(
		MeO	2-	, O.		3H,s),5.11(2H,s),6.86
1.2						-7.79(13H,m)
147	1-4		✓ OMe	OMe	105-	1.05-
1		N)	OWIE		106	1.06(6H,m),2.57(4H,
		``/	ОЊС	CI .		m),3.73(2H,s), 3.84(6H,s),5.11(2H,s)
						,6.93-7.76(9H,m)
148	1-5			OMe	125-	1.83-
			OMe		126	2.30(6H,m),2.53(1H,
l			OH ₂ C	CI	3	m),3.07(2H,m)
	1		- 1.72	Oi		3.73(2H,s),3.80(3H,s)
1						,3.83(3H,s),5.10(2H,s
140	1 0),6.91-7.76(14H,m)
149	1-6	OH	OMe	OMe	127-	1.63(2H,m),2.18(2H,
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			128	m), 2.60(2H, m), 2.86(2
			OH₂C	CI		H,m),3.77(2H,s),3.81 (3H,s),3.83(3H,s),5.1
						0(2H,s),6.91-
						7.76(13H,m)
150	1-7			QМе	139-	2.71(4H,m),3.22(4H,
			OMe		140	m),3.75(2H,s),3.81(
			OH ₂ C	CI		3H,s),3.83(3H,s),5.
						09(2H,s),6.85-7.76
15.	1.0					(14H,m)
151	1-8		OMe	OMe	74-	2.30(3H,s),2.47(4H,m
		N NMe	OWIE		78),2.58(4H,m),3.69(2H
!			OH ₂ C	CI		,s),3.82(3H,s),3.83(3 H a) 5.07(9H a) 6.01
						H,s),5.07(2H,s),6.91-
LI				<u></u>		7.77(9H,m)

•

表 1 3 - 2

152	1-9	N(Et)2	OH₂C OMe	OMe	oil	1.07(6H,t),2.61(4H,q) ,3.75(2H,s),3.83(6H,s),5.07(2H,s),6.91- 7.75(9H,m)
153	1- 10	N CH2 €	OH₂C OM€	OMe	oil	2.52(4H,m),2.57(4H, m),3.53(2H,s),3.69(2 H,s),3.82(6H,s),5.07(2H,s),6.91-7.73 (14H,m)
154	1-11		OH ₂ C OMe	OMe	oil	2.61(4H,m),3.86(4H, m),3.73(2H,s),3.83(6 H,s),5.09(2H,s),6.48(1H,t),6.92- 7.74(7H,m),8.31(2H, d)
155	1- 12	N_N-()-OMe	OH₂C	OMe	157- 158	2.76(4H,m),3.15(4H, m),3.77(3H,s),3.81(3 H,s),3.83(3H,s),5.09(2H,s),6.86-7.76 (13H,m)
156	1- 13	√N-CI	OH ₂ C OMe	OMe	184- 186	2.75(4H,m),3.21(4H, m),3.81(3H,s),3.83(3 H,s),5.09(2H,s),6.82- 7.75(13H,m)
157	1. 14	N_N_ MeO	MeO	OMe	100- 101	2.79(4H,m),3.14(4H, m),3.79(2H,s),3.85(3 H,s),3.86(3H,s),3.89(3H,s),6.84-7.78 (10H,m)

表 1 4 - 1

47	TIV	ND D	Т	T	d# +-	111417 (27) 21)
実	化	-NR ₂ R ₃	Rı	Ar	融点	NMR(CDCl ₃)
施	合			Į.	J. C.	(free base)
例	物					
No	No					
158	1-	N N	MeO	Br	123-	2.79(4H,m),3.15(4H,
	15	'\''	[124	m), 3.80(2H, s), 3.86(3)
]		MeÓ		~	İ	H,s),3.93(3H,s),6.84-
						8.14(10H,,m)
159	1.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MeO		136-	2.81(4H,m),3.16(4H,
	16				137	m),3.82(2H,s),3.87(3
	1	MeÓ				H,s),3.93(3H,s),6.85
	i					7.99(11H,m)
160	1.	100	MeO	QMe	135-	2.79(4H,m),3.14(4H,
1	17				149	m), 3.78(2H, s), 3.86(3)
		MeÓ			HC1-	H,s),3.89(3H,s),6.88-
				Cl 💝	塩	7.76(9H,m)
161	1-		OMe		126-	2.77(4H,m),3.12(4H,
	18				127	m),3.79(2H,s),3.82(3
		MeO	OH ₂ C	F	121	
<u> </u>		İ				H,s),3.86(3H,s),5.12(
162	1-		MeO	Br.	135-	2H,s),6.86- 3.24(4H,m),3.95(4H,
102	19		MeO		149	
	10	MeO		OMe	HCl-	m),3.85(3H,s),3.86(3
					塩	H,s),3.92(3H,s),6.85-
163	1.		MeO	~_	105-	7.92(9H,m)
103	20		MeO		105.	2.93(4H,m),3.23(4H,
	20	MeO		CI	106	m),3.86(3H,s),3.94(5
						H,s),6.85-
						7.13(6H,m),7.43(2H,
164	1.		MeO	OMe	138-	d),7.92 (2H,d)
104	21		MeO	Olvie		2.93(4H,m),3.82(3H,s
	41	$N \sim N$			140 HCl-),3.86(3H,s),3.87(3H,
					塩	s),3.93(2H,s),6.97
165	1-		MeO			7.78(10H,m)
105	22	n n n n n n n n n n	MeO		118-	2.84(4H,m),3.17(4H,
]	22	MeO		Br 🗸	119	m),3.83(2H,s),3.86(3
				ļ		H,s),3.93(3H,s),6.84-
						7.09(6H,m),7.58
166	1-		H		100	(2H,d),7.85(2H,d)
100	23	N N N	п		122-	2.82(4H,m),3.15(4H,
	20	MeO		F^	124	m),3.86(3H,s),6.84-
						7.05(4H,m),7.45(1H,
			}			d),7.56(1H,d),7.74(1
اـــــا		1				H,t),8.00(2H,d of d)

表14-2

167	1- 24	N_N_	OH ₂ C OMe	F	oil	2.86(4H,m),3.18(4H, m),3.82(5H,s),3.86(3
		MeO				H,s),5.14(2H,s),6.85- 7.74(14H,m)
168	1-25	N_N_ MeO	OH₂C OMe	FOME	oil	2.87(4H,m),3.19(4H, m),3.81(3H,s),3.82(3 H,s),3.86(3H,s),5.12(2H,s),6.85-7.61
169	1- 26	N_N_ MeO	Н	F	117- 118	(13H,m) 2.86(4H,m),3.16(4H, m),3.86(3H,s),3.87(2 H,s),6.85-
170	1- 27	N_N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	FOMe	131- 132 fuma	7.80(11H,m) 2.84(4H,m),3.17(4H, m),3.84(3H,s),3.86(3 H,s),3.89(2H,s),6.85- 7.78(10H,m)

表 1 5 - 1

実	化	-NR ₂ R ₃	R ₁	Ar	融点	NMR(CDCl3)
施	合	11102103	101		€ max :::	(free base)
例	物					(Hee base)
1	1				ļ	
No	No		0145			
171	1.	N N-{ }	OMe		102-	2.78(4H,m),3.13(4H,
	28	MeO	OH ₂ C	Br A	103	m), 3.80(2H,s), 3.81(3
1	İ	5				H,s),3.86(3H,s),5.12(
1]					2H,s),6.85-7.40
						(10H,m),7.57(2H,d),7
ļ	ļ					.84(2H,d)
172	1-		OMe		112-	2.78(4H,m), 3.13(4H,
	29		OH ₂ C	CI	113	m),3.80(2H,s),3.81(3
		MeO	020	Ci		H,s),3.86(3H,s),5.12(
				:		2H,s),6.86-7.36
						(10H,m),7.41(2H,d),7
						.90(2H,d)
173	1.	N N	OMe		111-	2.79(4H,m),3.13(4H,
1	30		OH ₂ C		112	m),3.82(3H,s),3.86(3
1]	MeO	01120			H,s),5.13(2H,s),6.84-
						7.98(15H,m)
174	1.		OMe	MeO	oil	2.80(4H,m),3.14(4H,
1	31		OH ₂ C	MeO		m),3.82(5H,s),3.86(3
		MeÓ	0/120			H,s),3.93(3H,s),3.98(
1						3H,s),5.13(2H,s),6.85
			i			-7.60(13H,m)
175	1-	N N	MeO		96-	2.81(4H,m),3.16(4H,
	32			_	97	m),3.82(2H,s),3.86(3
		MeÓ		F ₃ C		H,s),3.94(3H,s),6.85-
						7.15(6H,m)
176	1.				144-	1.34(6H,d),2.75(4H,
	33		OMe		145	m),3.16(4H,m),3.78(2
			OH ₂ C			H,s),3.81(3H,s),4.60(
		i-PrÓ	J. 120	CI		1H,m),5.13(2H,s),6.8
						6-
				j		7.40(10H,m),7.41(1H
						,d),7.91(1H,d)
177	1-				136-	1.34(6H,d),2.74(4H,
	34		OMe		137	m), 3.15(4H, m), 3.77(2
			OH ₂ C			H,s),3.81(3H,s),4.60(
		i-PrÓ	01120	Br		1H,m),5.12(2H,s),6.8
				ĺ	ļ	5-
					ĺ	7.40(10H,m),7.57(1H
			1	į	İ	,d),7.75(1H,d)
<u>_</u>	1		<u>-</u>			,u),1.10(111,u)

表 1 5 - 2

178	1. 35	i-PrO	OH₂C OMe	O	99- 100	1.34(6H,d),2.75(4H, m),3.15(4H,m),3.79(2 H,s),3.82(3H,s),4.60(1H,m),5.13(2H,s),6.9 2-7.97(15H,m)
179	1- 36	N N	OH₂C OMe	OMe	oil	2.68(4H,m),3.58(4H, m),3.76(2H,s),3.82(3 H,s),3.83(3H,s),5.09(2H,s),6.00-8.20 (13H,m)
180	1- 37	O_2N	OH₂C OMe		111- 112	2.74(4H,m),3.15(4H, m),3.82(5H,s),5.13(2 H,s),6.93- 7.96(15H,m)
181	1- 38	NNN H ₂ N	OH ₂ C OMe		oil	2.76(4H,m),2.99(4H, m),3.81(3H,s),5.14(2 H,s),6.71- 7.98(15H,m)

表 1 6 - 1

実 施 例 No	化 合 物 No	-NR2R3	R ₁	Ar	融点℃	NMR(CDCl3) (free base)
182	1- 39	N N MeO	MeO	OMe F	135- 137 HCl- 塩	2.80(4H,m),3.12(4H,m),3.80(2H,s),3.84(3H,s),3.86(3H,s),3.89(3H,s),6.69-7.21(8H,m),7.77(1H,m)
183	1- 40	$\langle \mathcal{D} \rangle$	OH ₂ C OMe	OMe	114- 115	1.41(4H,m),2.64(4H, m),3.82(6H,s),3.83(2 H,s),5.08(3H,s),6.91- 7.39(9H,m),7.76 (1H,d of d),
184	1· 41	2	ОН₂С	OMe	102- 103	1.48- 1.61(6H,m),2.49(4H, m),3.67(2H,s), 3.82(6H,s),5.08(2H,s), 6.91-7.40(9H,m), 7.75(1H,d of d)

表 1 6 - 2

PNSDOCID: < WO 993106241 1 >

105	T ₁		OMe	0440	T 0.7	0.50(411) 0.50(011
185	1-		1 1 7	OMe	97-	2.56(4H,m),3.70(2H,s
	42	NO	OH₂C		98),3.75(4H,m),3.82(6H
1						,s),5.08(2H,s),6.91-
				-		7.40(9H,m),7.74
		<u></u>			<u> </u>	(1H,d of d)
186	1-	N NMe	OMe	QMe	96-	2.31(3H,s),2.49(4H,m
1	43	N NMe	OH ₂ C		97),2.58(4H,m),3.71(2H
	ŀ		0.120			,s),3.82(3H,s),3.83(3
				· ·		H,s),5.07(2H,s),6.91-
						7.40(9H,m),7.74(1H,
					ļ	d of d)
187	1-			OMe	146-	2.56(6H,m),2.59(4H,
	44	NON CH ON	OMe		148	m),3.62(2H,t),3.71(2
	-	n NCH₂CH₂OH	البائلا		oxal	H,s),3.82(6H,s),5.07(
			OH ₂ C		ate	2H,s),6.91-7.40
					"""	(9H,m),7.74(1H,d of
						(311,111),7.74(111,d of d)
188	1-			OMe	119-	0.89(6H,t),1.50(4H,q)
100	45	N(I-Pr)2	OMe	人	120	,2.47(4H,t),3.75(2H,s
	*0	14(1-1-1)2			oxal),3.82(6H,s),5.07(2H,
			OH ₂ C		ate	s),6.92-7.39
1					ate	(9H,m),7.75(1H,d of
						(311,111), 7.73(111,0 01) d)
189	1.			OMe	141-	2.35(6H,s),3.65(2H,s)
	46	N(Me)2	OMe	Ĭ.,,	141	,3.82(6H,s),5.08(2H,s)
	1	11(1110)2			172),6.92-
	i		OH ₂ C			7.39(9H,m),7.76(1H,
				i		d of d)
190	1-			OMe	116-	2.52(4H,m),2.92(4H,
	47		OMe		117	m),3.82(6H,s),5.02(2
	* '	NH NH			11,	H,s),6.92-
		``/```	OH ₂ C			7.39(9H,m),7.75(1H,
		1	、			d of d)
191	1-			QMe	65-	1.13(6H,d),2.89(1H,
131	48	NH(I-Pr)	OMe		66	m),3.82(6H,s),3.90,
	30	1111(1-11)			00	(2H,s),5.06(2H,s),6.
			OH ₂ C		!	85-7.38(9H,m),7.77
						l i
192	1.			QMe	94-	(d of d) 2.63(4H,m),3.76(2H,s
132	49	N_	OMe	J.VIE	94. 95),3.82(6H,s),3.87(4H,
	43	(`_\`\\			ชอ	
		\ N/	OH ₂ C			m),5.09(2H,s),6.47(1
						H,t),6.92-7.40(9
						[H,m), 7.75(1H,d) of
	L	L				d),8.30(2H,d),

表 1 7

実 施 例 No	化 合 物 No	-NR2R3	Rı	Ar	融点℃	NMR(CDCl3) (free base)
193	1- 50		OH₂C OMe	OMe	115- 116	2.73(4H,m),3.23(4H, m),3.77(2H,s),3.81(3 H,s),3.83(3H,s),5.09(2H,s),6.85-7.39 (14H,m),7.76(1H,d of d)
194	1. 51	N_N———OMe	OH₂C OMe	OMe	145- 146	2.73(4H,m),3.13(4H, m),3.77(5H,s),3.81(3 H,s),3.83(3H,s),5.09(2H,s),6.81-7.39 (13H,m),7.76(1H,d of d)
195	1- 52	N_N	OH₂C OMe	OMe	118- 119	1.34(6H,d),2.75(4H, m),3.15(4H,m),3.78(2 H,s),3.81(3H,s),3.83(3H,s),4.60(1H,m),5.0 9(2H,s),6.87- 7.39(13H,m),7.77(1H ,d of d)

表 1 8 - 1

実 施 例 No	化合物 No	-NR2R3	R ₁	Ar	融点	NMR(CDCl3) (free base)
196	1- 53	n_nCH2⟨	OH ₂ C OMe	OMe	103- 104	2.53(4H,m),2.59(4H, m),3.53(2H,s),3.71(2 H,s),3.81(6H,s),5.07(2H,s),6.91-7.39 (14H,m),7.74(1H,d of d)
197	1- 54	n NCH2 CCC	OH₂C OMe	OMe	100- 102	2.49(4H,m),2.59(4H, m),3.43(2H,s),3.71(2 H,s),3.82(6H,s),5.07(2H,s),5.93(2H,s),6.74 7.39(12H,m),7.74(1H ,d of d)

表 1 8 - 2

100	T •	<u></u>	1	094-	T 4	0.00(477) 0.75(177
198	1-		OMe	OMe	94-	2.68(4H,m),3.57(4H,
	55	N N-()			95	m),3.77(2H,s),3.82(3
		\ N	OH ₂ C			H,s),3.83(3H,s),5.09(
				~		2H,s),6.58-8.21
						(14H,m)
199	1-			QMe	170-	1.04(6H,d),1.71(4H,
	56	Me	ON		171	m),2.83(4H,m),2.97(2
			OH ₂ C		fuma	H,m),3.68(2H,s),3.82
		N NH	01.20	~	rate	(3H,s),3.83(3H,s),5.0
						8(2H,s),6.92-
		Me				7.39(9H,m),7.74(1H,
L						d of d)
200	1-			QМе	61-	1.26(3H,t),1.78-
1	57	005	OMe		62	2.86(9H,m),3.68(2H,s
		N CO₂Et	OH ₂ C),
			2			3.82(6H,s),4.14(2H,q
),5.08(2H,s),6.92-
						7.39(9H,m),7.74(1H,
						d of d)
201	1-			QMe	97-	1.34-
	58	N CH2	OMe		98	1.62(5H,m),2.05(2H
			OH ₂ C			,m),2.93(2H,m)
1			0/120			2.55(2H,d),3.67(2H,s
),3.81(3H,s),3.82(3H,
						s),5.07(2H,s),6.92-
						7.39(14H,m),7.73
						(1H,d of d)
202	1-			QMe	120-	1.84(4H,m),2.25-
	59		OM		121	3.08(4H,m),2.53(1H
			OH ₂ C			,m)
			Un ₂ U	~		3.75(2H,s),3.80(3H,s)
		`				,3.83(3H,s),5.10(2H,s
),6.92-
						7.40(14H,m),7.76(1H
					İ	,d of d)
203	1-			ОМе	144-	2.71(4H,m),3.19(4H,
.	60	N N CI	COME		145	m),3.77(2H,s),3.81(3
			OH ₂ C			H,s),3.83(3H,s),5.08(
			01120			2H,s),6.82-7.39
		İ			ļ	(9H,m),7.75(1H,d of
		ļ				d)
		·	<u></u>			

表 1 8 - 3

204	1- 61	N_N-{}-F	OH₂C OMe	OMe	137- 138	2.73(4H,m),3.15(4H, m),3.77(2H,s),3.81(3 H,s),3.83(3H,s),5.08(2H,s),6.89-7.39 (9H,m),7.76(1H,d of d)
205	62	N_N-(OH ₂ C OMe	OMe	119- 120	1.20- 1.92(10H,m),2.24(1H,m),2.61(8H,m),3.71(2H,s),3.82(6H,s),5.07(2H,s),6.91- 7.39(9H,m),7.74(1H,d of d)
206	1- 63	2	OH ₂ C OMe	OMe	167- 168	2.83(4H,m),3.39(4H, m),3.81(3H,s),3.82(2 H,s),3.83(3H,s),5.10(2H,s),6.74-7.80 (15H,m)

表19-1

実 施 例 No	化 合 物 No	-NR2R3	Rı	Ar	融点	NMR(CDCl3) (free base)
207	1- 64	N H	OH₂C OMe	OMe	135- 140 oxal ate	1.82- 3.29(6H,m),3.80(3H,s),3.82(3H,s), 4.03(2H,s),4.98(2H,q),5,26(1H,m),6.89- 7.89(14H,m),8.97(1H,s),
208	1- 65	N N N N N N N N N N N N N N N N N N N	OH ₂ C OMe	CI	163- 165 oxal ate	1.82- 3.29(6H,m),3.81(3H,s),3.93(2H,q), 4.99(2H,q),5.25(1H,m),6.89-7.91(14H,m),9.29(1H,s)

表 1 9 - 2

209	1.		OMe	ОМе	127-	2.28-
	66	$ \cdot \rangle$	OH ₂ C		131	3.27(6H,m), 3.80(3H,s)
		_)—ŃH			oxal),3.81(3H,s),
		0]	Ci	ate	3.91(2H,q),4.98(2H,q
1), $5.24(1H,m)$, 6.90 -
1						7.86(13H,m),8.96(1H
	ļ				ļ	,s)
210	1-				117-	2.78(4H,m),3.13(4H,
	67			l	118	m),3.79(2H,s),3.81(3
			. ∠OMe			H,s),3.85(3H,s),3.86(
	l		Olvie			3H,s),5.11(2H,s),6.93
1			OH ₂ C	MeO ~		
		MeÓ				7.13(6H,m),6.93(2H,
					1	d),6.97(2H,d),
1						7.38(2H,d),7.91(2H,d
					i)
211	1-		OMe	0~~	106-	2.77(4H,m),3.12(4H,
	68				107	m),3.78(2H,s),3.81(3
İ		MeO	OH ₂ C ^r ✓	0 ~	**'	H,s),3.86(3H,s),5.11(
					ļ	2H,s),6.00(2H,s)6.85-
İ						7.50(13H,m)
212	1-		OMe	QMe	138-	1.76-
	69				139	1.83(4H,m),2.23-
		MeO	OH₂C ✓		103	2.35(2H,m),2.20-
	ŀ					3.11(3H,m),3.76(2H,s
1),3.81(3H,s),3.83(3H,
j l						s),5.10(2H,s),6.84-
			:			7.78(14H,m)
213	1.	/\ OH	OMe	QMe	139-	2.00-
	70	N X	OH ₂ C		141	2.23(4H,m),2.68-
			OH ₂ C		***	2.85(4H,m),3.78
ļ		MeO				(2H,s),3.80(3H,s),3.8
		ľ				3(3H,s),3.91(3H,s),4.
						01(1H,s),5.08(2H,s),6
						.90.7.40(13H,m),
					1	7.78(1H,d of d)
214	1-		OMe	,O.	110-	2.76(4H,m),3.12(4H,
	71		OH ₂ C		111	m),3.76(2H,s),3.81(3
		MeÓ	Un ₂ U	Ľ		H,s),3.86(3H,s),5.11(
						2H,s),6.50-7.51
						(13H,m)
215	1-	,		,S, _	185-	2.81(4H,m),3.15(4H,
	72		MeO		186	m),3.77(2H,s),3.86(3
		MeÓ			oxal	H,s),3.91(3H,s),6.85-
					ate	7.56(9H,m)
216	1-		OMe	HO	oil	2.81(4H,m),3.35(4H,
	73		OH ₂ C		3.1	m),3.81(5H,s),5.08(2
		ó/	20			H,s),6.70-
						7.56(15H,m)
<u> </u>						7.00(1011,III)

表 2 0 - 1

実 施 例 No	化合物 No	-NR ₂ R ₃	R ₁	Ar	融点℃	NMR(CDCl3) (free base)
217	1-74	N N N	OH ₂ C OMe	MeOCH2O	oil	2.82(4H,m),3.39(4H, m),3.51(3H,s),3.80(3 H,s),3.82(3H,s),5.12(2H,s),5.25(2H,s),6.74 -7.66(15H,m)
218	1- 75	PO HO	OH₂C OMe	но	oil	2.72(4H,m),2.86(4H, m),3.78(2H,s),3.82(3 H,s),5.10(2H,s),6.81- 7.62(14H,m)
219	1- 76	N HO	OH₂C OMe	MeOCH2O	oil	2.75(4H,m),2.93(4H, m),3.79(2H,s),3.81(3 H,s),5.13(2H,s),5.25(2H,s),6.84-7.65 (14H,m)
220	1- 77	N_N_MeO	OH₂C OMe	MeO	88 - 89	2.78(4H,m),3.12(4H,m),3.80(2H,s),3.81(3H,s),3.86(3H,s),3.88(3H,s),5.12(3H,s),6.85 -7.55 (14H,m)
221	1- 78	N_N-SN	OH ₂ C OMe	MeO	18 4- 18 6 ox al at e	2.80(4H,m),3.59(4H,m),3.80(3H,s),3.83(2H,s),3.88(2H,s),3.88(3H,s),5.12(3H,s),6.91-7.93 (14H,m)
222	1- 79	N NH	OH ₂ C OMe	MeO	21 0- 21 3	1.50-2.62(8H,m),3.01 -3.21(2H,m),3.79(3H, s),3.89(3H,s),4.24-4.5 0(1H,m),,s),5.16(2H,s),6.92-7.53 (14H,m), 9.80(1H,br.s)

表20-2

		1		·		
223	1-		_		12	2.67(4H,m), 3.11(4H,
	80	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	OMe	MeO	6-	m), 3.71(2H,s), 3.83(3)
1	İ	I W NO YOUN	OH₂C		12	H,s, 3.87(3 H,s), 5.06(
			-		7	3H,s),6.87-7.52 (11H)
	ļ					,m),8.03-9.01(3H,m)
224	1-	İ			16	2.76(4H,m),2.93(4H,
	81	N N	OMe	MeO	7-	m), 3.81(5H,s), 3.88(3)
	ł		OH ₂ C		17	H,s),5.13(2H,s),6.83-
ļ		HO	-1.2	~	0	7.54(14H,m)
j					ox	
					al	
					at	
					e	
225	1.				92	2.82(4H,m),3.38(4H,
1	82	N	OMe	MeO	-	m),3.80(3H,s),3.82(2
			OH ₂ C		93	H,s),3.87(3H,s),5.13(
		0	2	~		2H,s),6.73-7.60(15H,
						m)
226	1-				16	(oxalate)3.30(4H,m),
	83			QMe	4.	3.49(4H,m), 3.77(3H,s)
}	,	N N-()-OMe	OMe		16),3.81(2H,s),3.84(3H,
		MeO	OH ₂ C		5	s),4.38(2H,br.s),5.07(
			_	. —	ox	2H,br.s),6.30-7.80(13
1					al	H,m)
İ			ļ		at	
					e	
227	1-				12	2.84(4H,m), 3.40(4H,
	84	(OMe	MeO	4-	m), 3.80(3H,s), 3.83(2)
			OH ₂ C	1400	12	H,s),3.93(3H,s),3.98(
		· /		MeO	6	3H,s),5.13(2H,s),6.74
L						-7.61(14H,m)

表 2 1 - 1

実	化	-NR ₂ R ₃	Rı	Ar	融	NMR(CDCl3)
施	合				点	(free base)
例 No	物 No				က	
228	1.	 			75	2.75(4H,m),2.93(4H,
	85		OMe	MeO	'	m),3.80(2H,s),3.81(3
			OH ₂ C	MeO	77	H,s),3.93(3H,s),3.98(
		HO				3H,s),5.13(2H,s),6.8-
229	1.			OMe	13	7.6(13H,m) 2.76(4H,m),2.93(4H,
	86		OMe		1-	m),3.79(2H,br.s),3.81
			OH ₂ C		13	(3H,s),3.83(3H,s),5.1
		ПО			5	0(2H,s),6.8-7.7(14H, m)
230	1-			QМе	17	2.75(4H,m),3.17(4H,
	87	N N	OMe		1-	m),3.77(2H,s),3.80(3
			OH ₂ C		$\frac{17}{2}$	H,s),3.81(3H,s),3.82(
						3H,s),4.59(2H,t),5.09 (2H,s),6.7-7.8(13H,m
)
231	1- 88		OMe	0 0 0	13	(oxalate) 3.23(4H,m)
	00	N_N-\	OH ₂ C		0- 14	,3.37(4H,m),3.83(3H, s),4.29(2H,br.s),5.13(
	:	но	OH ₂ C		3	2H,s),6.04(2H,s),6.8-
İ					ox	7.5(13H,m)
					al at	
					e	
232	1-	N N-	OMe	2	11	2.82(4H,m),3.39(4H,
	89		OH ₂ C	\ \o'\\\	9- 12	m),3.81(5H,s),5.12(2
		0./			$\begin{bmatrix} 12 \\ 2 \end{bmatrix}$	H,s),6.01(2H,s),6.7-7. 7(14H,m)
233	1-				17	2.77(4H,m),3.20(4H,
	90	N N-()	OMe	MeO	2-	m), 3.80(2H,s), 3.81(3)
			OH 2C	MeO	17 3	H,s),3.93(3H,s),3.98(
					ox	3H,s),3.98(3H,s),5.12 (2H,s),6.69(d of d),6.
		ļ			al	8-7.6(13H,m)
			į		at	
L					е	

表 2 1 - 2

234	91		OH₂C OMe	MeO	10 4- 10 6 ox al at e	2.82(4H,m),3.39(4H,m),3.81(5H,s),3.86(3H,s),5.12(2H,s),6.7-8.0(15H,m)
235	1- 92	N_N-\D	OH ₂ C OMe	MeO	14 2- 14 4 ox al at e	2.76(4H,m),2.93(4H,m),3.78(2H,s),3.81(3H,s),3.86(3H,s),5.12(2H,s),6.8-8.0(14H,m)
236	1- 93	NOMO	OH ₂ C OMe	MeO MeO	oil	2.74(4H,m),3.14(4H, m),3.52(3H,s),3.79(2 H,s),3.81(3H,s),3.93(3H,s),3.98(3H,s),5.12 (2H,s),5.22(2H,s),6.9 -7.6(13H,m)
237	94	N_N_ MOMO	OH ₂ C OMe	MeO	oil	2.76(4H,m),3.14(4H, m),3.52(3H,s),3.77(2 H,s),3.81(3H,s),3.85(3H,s),5.12(2H,s),5.22 (2H,s),6.9-7.9(14H,m)
238	1- 95	N_N_ MOMO	OH ₂ C OMe		oil	2.74(4H,m),3.13(4H,m),3.52(3H,s),3.77(2 H,s),3.81(3H,s),5.11(2H,s),5.22(2H,s),6.00 (2H,s),6.8-7.5(13H,m)

表 2 2 - 1

実	化	-NR ₂ R ₃	R ₁	Ar	融点	NMR(CDCl3)
施	合				ე ზ	(free base)
例	物	i				
No	No	ļ				
239	1-			QMe	oil	2.75(4H,m),3.14(4H,
-	96		OMe			m), 3.51(3H,s), 3.78(3
			OH₂C T			H,s,3.81(3 H,s),3.83(3
		MOMO			l	H,s),5.09(2H,s),5.22(2
0.40	 		16.00			H,s, 6.9-7.8(14 H,m)
240	1.		MeSO ₂	QMe	200-	2.82-2.84(4H,m),3.13(
	97	N N-()			202	3H,s),3.15-3.17(4H,m
		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			oxal),3.86(3H,s),3.90(3H,s
		MeO		~	ate),3.95(2H,s),6.85-7.14
						(6H,m),7.39-7.94(3H,
241	1.		MeSO ₂	OMe	166-	m),8.29(1H,s) 2.80-2.84(4H,m),2.96-
	98		1416502	Jivie	169	3.01(4H,s),3.15(3H,m)
					103),3.90(3H,s),3.96(2H,s
1		но),6.85-7.14(6H,m),7.2
	<u> </u>			Ŭ		0-7.96(4H,m),8.32(1H
						,s)
242	1-				oil	2.82(4H,m),3.38(4H,
	99					m), 3.49(3H, s), 3.80(5)
			OMe			H,s),5.12(2H,s),5.22(2
		○ ✓	анс	омом		H,s),6.74-7.39(12H,m
			ungc •),7.60(1H,d),7.89-7.92
0.40						(2H,m)
243	1- 100		OMe	- [oil	2.75(4H, m), 3.12(4H,
	100	(ł	m),3.49(3H,s),3.52(3
		MOMO	OH ₂ C			H,s),3.77(2H,s),3.81(3
		IVIOIVIO		омом	ľ	H,s),5.11(2H,s),5.21(2 H,s),5.22(2H,s)6.91-7.
						13(10H,m),7.36-7.92(
						4H,m)
244	1 -				oil	$\frac{2.69(4H,m),3.19(4H,}{2.69(4H,m),3.19(4H,})$
	101	он	OMe	но		m), 3.50(3H,s), 3.76(2)
			OH ₂ C			H,s),3.82(3H,s),5.11(2
			01120	-	1	H,s),5.24(2H,s),6.27-6
				ľ	l	.53(3H,s),6.91-7.65(1
						1H,m)

表 2 2 - 2

245	1- 102	N_N_ MeO	OH₂C OM€	момо	oil	2.77(4H,m),3.12(4H,m),3.51(3H,s),3.79(2H,s),3.81(3H,s),3.86(3H,s),5.12(2H,s),5.24(2H,s),6.85-7.64(14H,m)
246	1- 103	N HO	OH ₂ C OMe	Me	81.5 -83	2.43(3H,s),2.75(4H,m),2.93(4H,m),3.81(5H,s),5.14(2H,s),6.84-7.79(14H,m)
247	1- 104	N_N_N_ MO MO	OH ₂ C OMe	Me	115- 121 oxal ate	2.43(3H,s),2.75(4H,m),3.14(4H,m),3.52(2H,s),3.80(2H,s),3.81(3H,s),5.12(2H,s),5.22(2H,s),6.92-7.78(14H,m)
248	1· 105	N_N-\\ MO MO	OH ₂ C	момо	oil	2.88(4H,m),3.14(4H, m),3.50(3H,s),3.52(3 H,s),3.79(2H,s),5.19(2 H,s),5.22(2H,s),5.25(2 H,s),6.95-7.39(11H,m),7.56-8.02(3H,m)

表 2 3 - 1

実 施 例 No	化 合 物 No	-NR ₂ R ₃	Rı	Ar	融点℃	NMR(CDCl3) (free base)
249	1- 106	N N N MO MO	OMe OH₂C	момо	oil	2.74(4H,m),3.13(4H, m),3.50(3H,s),3.52(2 H,s),3.78(2H,s),5.17(2H,s),5.22(2H,s),5.25 (2H,s),6.87-7.65(14H,m)
250	1- 107	√N—Q) OH	MsO	₽ F	163- 165	2.70(4H,m),3.23(4H,m),3.28(3H,s),3.80(2H,s),6.31-7.75(10H,m),13.98(1H,br.s)
251	1· 108	N_N_N	MsO	F	132- 133	2.77(4H,m),2.97(4H, m),3.28(3H,s),3.87(2 H,s),6.87-7.79(10H,m)

表 2 3 - 2

252	1.	1		ÓН	156-	9 79 9 9C(4II) 2 90
-0-	109		MsO	Ĭ,	157	2.78-2.86(4H,m),3.29
	100		MSO		107	(3H,s),3.38·3.46(4H,
1						m),3.85(2H,s),6.74-7.
ł					1	40(8H,m),7.58-7.77(3
253	1.		 	 		H,m)
200	110		OMe	NO	128-	2.73(4H,m),2.94(4H,
	110		OWIE	NC Y	129	m),3.79(2H,s),3.81(3
1		но	OHC			H,s),5.15(2H,s),6.84-
				į		7.67(12H,m),8.18(1H
	<u> </u>		ļ			,dd),8.30(1H,br.s)
254	1.				87-	2.82(4H,m),3.39(4H,
1	111	N N-{_}	OMe	NC Y	90	m),3.81(3H,s),3.82(2
	ļ		OH₂C C		oxal	H,s),5.15(2H,s),6.74-
1		Ť		_	ate	7.68(13H,m),8.20(1H
	ļ					,dd),8.30(1H,br.s)
255	1-				118-	2.73(4H,m),2.93(4H,
]	112	N	OMe	H ₂ NOC	120	m),3.79(2H,s),3.81(3
		HO	OH ₂ C		oxal	H,s),5.15(2H,s),6.84-
		110	2		ate	7.88(12H,m),8.11(1H
						,dd),8.46(1H,s)
256	1-	_			110-	2.82(4H,m),3.40(4H,
	113	$N \longrightarrow N$	OMe	H ₂ NOC	112	m), 3.81(3H,s), 3.82(2)
]			OH ₂ C		oxal	H,s),5.14(2H,s),5.68(
			_		ate	1H,br.s),6.41(1H,br.s
),6.74-7.89(13H,m),8.
<u> </u>						11(1H,d),8.47(1H,s)
257	1-			-	180-	2.74(4H,m),2.97(4H,
	114	N N-	MsO	NC Y	184	m), 3.30(3H,s), 3.88(2)
					oxal	H,s),6.83.7.75(8H,m)
		110		-	ate	,8.22(1H,d),8.36(1H,s
)
258	1-				86-	2.85(4H,m),3.29(3H,s
1	115		MsO	NC	90),3.43(4H,m),3.90(2H
					oxal	,s),6.75-7.75(9H,m),8
		0/		~	ate	.23(1H,d),8.36(1H,s)
259	1-				104	, ,
200	116		MsO	NC.	194-	2.78(4H,m),3.11(4H,
			14120		195	m),3.31(3H,s),3.87(2
		H ₂ NOC			1	H,s),5.79(1H,br.s),7.
	ļ		1			21-8.23(9H,m),8.36(1
لــــــا			l			H,s),9.45(1H,br.s)

表 2 4

実	化	-NR ₂ R ₃	R ₁	Ar	融点	NMR(CDCl3)
施	台				C	(free base)
例	物					
No	No			ĺ		
260	1-				96-	2.77(4H,m),2.97(4H,
	117		MsO	H ₂ NOC ✓	98	m), 3.29(3H,s), 3.88(2)
1			1			H,s),5.74(1H,br.s),6.
	1	но				30(1H,br.s),6.84-7.90
		1				(8H,m),8.17(1H,d),8.
1						49(1H,s)
261	1-				147-	2.86(4H,m),3.28(3H,s
1	118		MsO	H ₂ NOC √	149),3.43(4H,m),3.90(2H
	1		ļ			,s),5.72(1H,br.s),6.30
1	1	0				(1H,br.s),6.75-7.91(9
						H,m),8.17(1H,d),8.50
						(1H,s)
262	1-				125-	2.78(4H,m),3.12(4H,
	119	N N	MsO	H ₂ NOC ✓	128	m),3.29(3H,s),3.88(2
1						H,s),5.95(2H,br.s),6.
1		H₂NOC				33(1H,br.s),7.20-8.16
						(9H,m),8.51(1H,s),9.
						46(1H,br.s)
263	1				oil	2.76(4H,m),3.07(4H,
	120		OMe	MOMO		m), 3.51(3H,s), 3.79(2)
		H₂NOC	OH₂C			H,s),3.81(3H,s),5.12(
		1121100				2H,s),5.25(2H,s),5.77
				1		(1H,br.s),6.91-7.67(1
						3H,m),8.17(1H,dd),9.
-	_					51(1H,br.s)
264	1.				oil	2.79(4H,m), 3.23(4H,
	121		OMe	MOMO Y	Ì	m), 3.51(3H,s), 3.79(2)
		NC NC	OH₂C		ļ	H,s),3.82(3H,s),5.12(
						2H,s),5.24(2H,s),6.91
						-7.10(6H,m),7.17(1H,
1005			·			d),7.33-7.65(7H,m)
265	1-			140140	oil	2.69(4H,m), 2.86(3H,
]	122	N N-{_}	OMe	момо	j	br.t),3.04(4H,m),3.50
		MeHNOCO	OH₂C			(3H,s),3.77(2H,s),3.8
						1(3H,s),5.03(1H,m),5
			Ì			.12(2H,s),5.25(2H,s),
<u> </u>						6.92-7.66(14H,m)

[実施例266]

2-[4-(2-x)++ > 7x=n) ピペラジン-1-4 ルメチル]-6-(2-x) トキ シ フ ェ ニ ル) -4 - ピ リ ド ン 塩 酸 塩 (29 - 1)

2 ~ [4 ~ (2 ~ メトキシフェニル) ピペラジン-1 ~ イルメチル] ~ 4 ~ (4 ~ メトキシベンジルオキシ) ~ 6 ~ (2 ~ メトキシフェニル) ピリジン(1 ~ 2) 5
 2 6 m g を 2 5 % HBr・AcOH 溶液 5 m l に加え室温で 1 時間攪拌する。氷水を加えクロロホルムで抽出して副生成物を除去、水溶液はアンモニア水でアルカリ性としクロロホルムで抽出、硫酸マグネシウムで乾燥後シリカゲル 6 g のカラムクロマトに付し 5 % メタノール・クロロホルム溶出物 3 8 0 m g を エタノールに溶解し塩酸で塩酸塩としエタノールー酢酸エチルより再結晶し融点 1 3 8 ~ 1 6 0 ℃ (分解) の 2 ~ [4 ~ (2 ~ メトキシフェニル) ピペラジン ~ 1 ~ イルメチル] ~ 6 ~ (2 ~ メトキシフェニル) ~ 4 ~ ピリドン塩酸塩(2 9 ~ 1) 3 8 6 m g を得る。

15 収率 73.8%, NMR(CDCl3) (free base) 2.78(4H,m),3.15(4H,m),3.56(2H,s),3.88(3H,s),3.96(3H,s),6.28(1H,d),6.44 (1H,d),6.78-7.81(8H,m),10.4(1H,br) [実施例 2 6 7 - 2 8 9]

実施例 266 と同様に反応を行い 4-ピリドン体(29-2) \sim (29-24) を得た。これらの融点および NMR を表 25 および表 26 示した。

表 2 5 - 1

実 施	化合物	-NR2R3	Ar	融点	NMR(CDCl3) (free
例 No	No			°C	base)
267	29-2	N(Et)2	OMe	124 - 125	1.06(6H,t),2.63(4H,q),3. 04(3H,s),3.54(2H,s),6.23 (1H,d),6.57(1H,d),7.03- 7.12(2H,m), 7.50 (1H,d)
268	29-3	NCH2	OMe	180 - 181	2.57(8H,m),3.47(2H,s),3. 57(2H,s),3.88(3H,s),6.22 (1H,d),6.55(1H,d),7.03(1 H,d),7.09(1H,d of d),7.31(5H,s),7.49(1H,d) , 10.20(1H,bs)
269	29-4	MeO N—N—	OMe	190 - 191 fum ara te	2.78(4H,m),3.15(4H,m),3 .56(2H,s),3.88(3H,s),3.9 6(3H,s),6.27(1H,d),6.57(1H,d),6.87-7.5 2(7H,m),10.19(1H,br)
270	29-5	\sim	OMe	127 - 128	1.60(6H,m),2.49(4H,m),3 .43(2H,s),3.96(3H,s),6.2 1(1H,d),6.55(1H,d),7.04- 7.12(2H,m), 7.49(1H,d),10.25(1H,br)
271	29-6	~	OMe	152 - 153	1.68- 1.98(4H,m),2.60(1H,m),2 .35(2H,m), 3.01(2H,m),3.52(2H,s),3. 98(3H,s),6.26(1H,d),6.56 (1H,d),7.05- 7.52(8H,m),10.19(1H,br)
272	29-7		OMe	195 - 196	2.74(4H,m),3.25(4H,m),3 .55(2H,s),3.93(3H,s),6.2 8(1H,d),6.58(1H,d),6.90- 7.53(8H,m), 10.19(1H,br)

表 2 5 - 2

273	29-8	<u> </u>	T	1 - 2 -	T = 1 = 1 = 1
213	29-0		ОМе	186	2.32(3H,s), 2.49(4H,m), 2.
1		N NMe		•	61(4H,m),3.49(2H,s),3.9
	1	IAIME		188	8(3H,s),6.24(1H,d),6.56(
		1	Cl ⁻ ~		1H,d),7.05(1H,d),7.09(1
	1				H,d of
Ì			1		d),7.50(1H,d),10.04(1H,b
		ļ			r)
274	29-9		QMe	247	3.57(4H,m), 3.76(4H,m), 3
				-	.86(3H,s), 6.08(1H,br), 6.
	j	'\'\'		248	62(1H,t),6.86(1H,br),7.1
	İ			İ	5(1H,m),7.76(1H,d),8.35
	·}			_	(2H,d),10.53(1H,s)
275	29-10	MeQ		147	2.79(4H,m), 3.14(4H,m), 3
		N N		-	.60(2H,s), 3.87(3H,s), 6.3
			F^	149	1(1H,d),6.57(1H,d),6.87-
<u></u>		<u> </u>			7.61(8H,m)
276	29-11	MeO	F.	195	2.90(4H,m), 3.21(4H,m), 3
	1			-	.73(2H,s),3.87(3H,s),6.5
	1			197	2(1H,d),6.74(1H,d),6.87-
ļ					7.51(8H,m)
277	29-12	MeO	F	165	2.84(4H,m),3.19(4H,m),3
	İ	N N—()		-	.64(2H,s),3.88(3H,s),3.9
	į		OMe	166	4(3H,s),6.38(1H,d),6.67(
					1H,d),6.87-7.3
					4(7H,m)
278	29-13	MeO	MeO	109	2.81(4H,m), 3.16(4H,m), 3
		N N—()		-	.61(2H,s),3.87(3H,s),3.9
			MeO	122	4(6H,s),6.60(1H,d),6.93(
<u> </u>		-			1H,d),6.87-7.15(7H,m)
279	29-14	MeO		210	2.62(4H,m),3.00(4H,m),3
] .	n' n_(=)		-	.63(2H,s),3.77(3H,s),6.8
			Br	211	8-
					7.19(6H,m), 7.66(2H,d), 7
		<u></u>			.97(2H,d), 10.65(1H,s)

表 2 6

接触 化合
281 29-16 MeO 208 2.62(4H,m),3.00(4H,m),3 (63(2H,d), 10.65(1H,s). 282 29-17 i-PrO 20 124 1.35(6H,d),2.81(4H,m),3 (19(4H,m),3.65(2H,s),4.5 (1H,d),6.92(4H,m),7.52(4H,d),6.85 (2H,d),2.81(4H,m),3 (17(4H,m),3.63(2H,s),4.5 (1H,d),6.85 (2H,d),2.81(4H,d),7 (19(4H,m),7.47(2H,d),7 (19(4H,m),3.63(2H,s),4.5 (1H,d),6.85 (2H,d),2.81(4H,m),3 (19(4H,m),3.63(2H,s),4.5 (1H,d),6.85 (2H,d) (19(4H,m),3.63(2H,s),4.5 (1H,d),6.85 (2H,d) (19(4H,m),3.63(2H,s),4.5 (1H,d),6.85 (2H,d) (19(4H,m),3.63(2H,s),4.5 (1H,d),6.85 (2H,d) (19(4H,m),3.63(2H,s),4.5 (1H,m),6.92(4H,m),7.50 (2H,d),6.92(4H,m),7.50 (2H,d),6.92(4H,m),7.50 (2H,d) (282 29-20 29-2
281 29-16 MeO N N Sequence of the property of
281 29-16 MeO 208 2.62(4H,m),3.00(4H,m),3 .63(2H,s),3.77(3H,s),6.8 .7 .8 .01(11H,m),10.59(1H,s) .124 1.35(6H,d),2.81(4H,m),3 .19(4H,m),3.65(2H,s),4.5 .126 9(1H,m),6.40(1H,d),6.64 (1H,d),6.92(4H,m),7.52(4H,m) .123 1.34(6H,d),2.79(4H,m),3 .17(4H,m),3.63(2H,s),4.5 .125 9(1H,m),6.39(1H,d),6.64 (1H,d),6.85 .7 .00(4H,m),7.47(2H,d),7 .65(2H,d) .136(6H,d),2.79(4H,m),3 .19(4H,m),3.63(2H,s),4.5 .105 9(1H,m),6.35(1H,m),6.65 (1H,m),6.92(4H,m),7.50 .7.58(5H,m) .19(4H,m),3.51(4H,m),3 .57(2H,s),6.60 .225 8.14(9H,m),10.51(1H,s)
281 29-16 MeO 208 2.62(4H,m),3.00(4H,m),3 .63(2H,s),3.77(3H,s),6.8 .7. 8.01(11H,m),10.59(1H,s) .124 1.35(6H,d),2.81(4H,m),3 .19(4H,m),3.65(2H,s),4.5 .9(1H,m),6.40(1H,d),6.64 (1H,d),6.92(4H,m),7.52(4H,m) .17(4H,m),3.63(2H,s),4.5 .125 9(1H,m),6.39(1H,d),6.64 (1H,d),6.85 .7.00(4H,m),7.47(2H,d),7 .65(2H,d) .135(6H,d),2.79(4H,m),3 .19(4H,m),3.63(2H,s),4.5 .105 9(1H,m),6.39(1H,d),6.65 (1H,m),6.35(1H,m),6.65 (1H,m),6.92(4H,m),7.50 .7.58(5H,m) .285 29-20
281 29-16 MeO NN NN Sequence of the property o
282 29-17 i-PrO 124 1.35(6H,d),2.81(4H,m),3 .19(4H,m),3.65(2H,s),4.5 126 9(1H,m),6.40(1H,d),6.64 (1H,d),6.92(4H,m),7.52(4H,m) 284 29-19 i-PrO 103 1.34(6H,d),2.79(4H,m),3 .17(4H,m),3.63(2H,s),4.5 125 9(1H,m),6.39(1H,d),6.64 (1H,d),6.85-7.00(4H,m),7.47(2H,d),7 .65(2H,d) 285 29-20 NMe 223 2.54(4H,m),3.51(4H,m),3 .57(2H,s),6.60 225 8.14(9H,m),10.51(1H,s)
282 29-17 i-PrO 124 1.35(6H,d),2.81(4H,m),3 .19(4H,m),3.65(2H,s),4.5 126 9(1H,m),6.40(1H,d),6.64 (1H,d),6.92(4H,m),7.52(4H,m) 283 29-18 i-PrO 123 1.34(6H,d),2.79(4H,m),3 .17(4H,m),3.63(2H,s),4.5 125 9(1H,m),6.39(1H,d),6.64 (1H,d),6.85-7.00(4H,m),7.47(2H,d),7 .65(2H,d) 284 29-19 i-PrO 103 1.35(6H,d),2.79(4H,m),3 .19(4H,m),3.63(2H,s),4.5 105 9(1H,m),6.35(1H,m),6.65 (1H,m) ,6.92(4H,m),7.50 -7.58(5H,m) 285 29-20 OME 223 2.54(4H,m),3.51(4H,m),3 .57(2H,s),6.60-225 8.14(9H,m),10.51(1H,s)
Second S
282 29-17 i-PrO
283 29-18 i-PrO
283 29-18 i-PrO Br 126 9(1H,m),6.40(1H,d),6.64 (1H,d),6.92(4H,m),7.52(4H,m) 284 29-19 i-PrO NN 103 1.35(6H,d),2.79(4H,m),3 - (.65(2H,d) - (.19(4H,m),3.63(2H,s),4.5 105 9(1H,m),6.35(1H,m),6.65 (1H,m),6.35(1H,m),6.65 (1H,m),6.92(4H,m),7.50 - (.758(5H,m) 285 29-20 NN OME 223 2.54(4H,m),3.51(4H,m),3 - (.57(2H,s),6.60- 225 8.14(9H,m),10.51(1H,s)
11, d), 6.92(4H, m), 7.52(4H, m)
283 29-18 i-PrO Br 123 1.34(6H,d),2.79(4H,m),317(4H,m),3.63(2H,s),4.5 125 9(1H,m),6.39(1H,d),6.64 (1H,d),6.85- 7.00(4H,m),7.47(2H,d),7 .65(2H,d) 284 29-19 i-PrO NN 103 1.35(6H,d),2.79(4H,m),319(4H,m),3.63(2H,s),4.5 105 9(1H,m),6.35(1H,m),6.65 (1H,m),6.92(4H,m),7.50 -7.58(5H,m) 285 29-20 NN C OMe 223 2.54(4H,m),3.51(4H,m),357(2H,s),6.60- 225 8.14(9H,m),10.51(1H,s)
283 29-18 i-PrO Br 123 1.34(6H,d),2.79(4H,m),3 . 17(4H,m),3.63(2H,s),4.5 125 9(1H,m),6.39(1H,d),6.64 (1H,d),6.85- 7.00(4H,m),7.47(2H,d),7 .65(2H,d) 284 29-19 i-PrO NN- 103 1.35(6H,d),2.79(4H,m),3 . 19(4H,m),3.63(2H,s),4.5 105 9(1H,m),6.35(1H,m),6.65 (1H,m),6.92(4H,m),7.50 -7.58(5H,m) 285 29-20 NN- OME 223 2.54(4H,m),3.51(4H,m),3 . 57(2H,s),6.60- 225 8.14(9H,m),10.51(1H,s)
Br
Br 125 9(1H,m),6.39(1H,d),6.64 (1H,d),6.85-7.00(4H,m),7.47(2H,d),7 .65(2H,d) 284 29-19 i-PrO 103 1.35(6H,d),2.79(4H,m),3 .19(4H,m),3.63(2H,s),4.5 9(1H,m),6.35(1H,m),6.65 (1H,m) ,6.92(4H,m),7.50 .7.58(5H,m) 285 29-20 OME 223 2.54(4H,m),3.51(4H,m),3 .57(2H,s),6.60-225 8.14(9H,m),10.51(1H,s)
284 29-19 i-PrO 103 1.35(6H,d),2.79(4H,m),3 .65(2H,d) 285 29-20 OME 223 2.54(4H,m),3.51(4H,m),3 .57(2H,s),6.60 .51(1H,s)
284 29-19 i-PrO 103 1.35(6H,d),2.79(4H,m),3 .19(4H,m),3.63(2H,s),4.5 105 9(1H,m),6.35(1H,m),6.65 (1H,m) ,6.92(4H,m),7.50 .7.58(5H,m) 285 29-20 OME 223 2.54(4H,m),3.51(4H,m),3 .57(2H,s),6.60-225 8.14(9H,m),10.51(1H,s)
284 29-19 i-PrO 103 1.35(6H,d),2.79(4H,m),3 .19(4H,m),3.63(2H,s),4.5 105 9(1H,m),6.35(1H,m),6.65 (1H,m) ,6.92(4H,m),7.50 .7.58(5H,m) 285 29-20 OME 223 2.54(4H,m),3.51(4H,m),3 .57(2H,s),6.60-225 8.14(9H,m),10.51(1H,s)
284 29-19 i-PrO 103 1.35(6H,d),2.79(4H,m),319(4H,m),3.63(2H,s),4.5 105 9(1H,m),6.35(1H,m),6.65 (1H,m) ,6.92(4H,m),7.50 -7.58(5H,m) 285 29-20 OME 223 2.54(4H,m),3.51(4H,m),357(2H,s),6.60- 225 8.14(9H,m),10.51(1H,s)
19(4H,m),3.63(2H,s),4.5 9(1H,m),6.35(1H,m),6.65 (1H,m) ,6.92(4H,m),7.50 -7.58(5H,m) 285 29-20 OMe 223 2.54(4H,m),3.51(4H,m),3 57(2H,s),6.60- 225 8.14(9H,m),10.51(1H,s)
285 29-20 OMe 223 2.54(4H,m),3.51(4H,m),357(2H,s),6.60-225 8.14(9H,m),10.51(1H,s)
285 29-20 OMe 223 2.54(4H,m),3.51(4H,m),3 .57(2H,s),6.60-225 8.14(9H,m),10.51(1H,s)
285 29-20 NN N OME 223 2.54(4H,m),3.51(4H,m),3 .57(2H,s),6.60-225 8.14(9H,m),10.51(1H,s)
285 29-20 NMe 223 2.54(4H,m),3.51(4H,m),357(2H,s),6.60- 225 8.14(9H,m),10.51(1H,s)
57(2H,s),6.60- 225 8.14(9H,m),10.51(1H,s)
CI 225 8.14(9H,m),10.51(1H,s)
$286 29-21 O_2N 194 2.60(4H,m), 3.04((4H,m), 3.0$
\ \ \ \ \ \ \ \ \ \ \ \ \
196 8.01(11H,m),10.60(1H,s)
287 29-22 197 2.89(4H,m),3.02(4H,m),3
H_2N 65(2H,s),3.93(2H,br),6.
N N - 202 37(1H,d), 6.67(1H,d), 6.73
HC17.61(9H,m)
塩 288 29-23 MeO 粉 -
NNN MeO T
IVIEO
289 29-24 MeO 82- 2.80(4H,m),3.14(4H,m),3
88 .61(2H,s),3.86(3H,s),3.8
N N 7 (3H,s),5.86(3H,s),5.8 (7(3H,s),6.33.

[実施例290]

2-[(4-ベンゾフラン-7-イル) ピペラジン-1-イルメチル] -6-(3-メトキシメチルフェニル) -4-ピリドン (29-41)

$$CH_3OCH_2O$$
 OCH_2
 OCH_3
 OCH_2O
 OCH_3
 OCH_3OCH_2O
 OCH_3
 OCH_3OCH_2O
 OCH_3
 OCH_3OCH_2O
 OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3

2-[(4-ベンゾフラン-7-イル)ピペラジン-1-イルメチル]-4-(4-メトキシベンジルオキシ)-6-(3-メトキシメチルフェニル)-4-ピリジン(1-74) 752mgをメタノール10ml、テトラヒドロフラン10mlの混液に溶解し10%パラジウム炭素50mgを加え水素ガス中室温下2時間攪拌する。パラジウム炭素を濾別、減圧下溶媒を除去、残査を7gのシリカゲルカラムに付し10%メタノール・クロロホルムで溶出し2-[(4-ベンゾフラン-7-イル)ピペラジン-1-イルメチル]-6-(3-メトキシメチルフェニル)-4-ピリドン (29-41)の粉末 531mgを得る。

収率 95.3%, NMR(CDCl3) 2.84(4H,m), 3.43(4H,m), 3.47(3H,s), 3.63(2H,s), 5.2 1(2H,s), 6.32(1H,d), 6.63(1H,d), 6.74-7.62(7H,m)

[実施例291-301]

実施例 290 と同様に反応を行いピリドン体(29-42) \sim (29-62) を 得 た 。 こ れ ら の 融 点 お よ び NMR を 表 27 に 示 し た 。

表 2 7

実 施 例 No	化 合 物 No	-NR2R3	Ar	融点	NMR(CDCl3) (free base)
291	29-42	MeOCH ₂ O N N N	MeOCH ₂ O	oi l	2.78(4H,m),3.17(4H,m),3. 48(3H,s),3.52(3H,s),3.60(2 H,s),5.23(4H,s),6.31(1H,b r,s),6.63(1H,br,s),6.86- 7.48(8H,m)
292	29-43	N_N-\(\)	MeO	oi 1	2.83(4H,m),3.40(4H,m),3. 63(2H,s),3.85(3H,s),6.63(1 H,br,s),6.75-7.61(11H,m)
293	29-44		MeO		2.88(4H,m),3.42(4H,m)3.7 8(2H,s),3.84(3H,s),6.6- 7.7(11H,m)
294	29-45	MeO N_N_	MeOCH ₂ O	oil	2.79(4H,m),3.15(4H,m),3. 48(3H,s),3.60(2H,s),3.87(3 H,s),5.22(2H,s),6.29(1H,b r,s),6.61(1H,br,s),6.86-7.4 7(8H,m)
295	29-46		момо	oil	2.84(4H,m),3.42(4H,m),3. 49(3H,s),3.61(2H,s),5.23(2 H,s),6.29(1H,br,s),6.56(1 H,br,s),6.75-7.52(8H,m),7. 61(1H,d)
296	29-47	MOMO N_N-	момо	oil	2.76(4H,m),3.16(4H,m),3. 50(3H,s),3.52(3H,s),3.59(2 H,s),5.22(2H,s),5.24(2H,s),6.27(1H,br,s),6.55(1H,br,s),6.78-7.52(8H,m)
297	29-48	N-W-OMOM	момо	oil	2.74(4H,m),3.25(4H,m),3. 46(3H,s),3.48(3H,s),3.59(2 H,s),5.16(2H,s),5.21(2H,s),6.29(1H,br,s),6.56-6.61(4 H,m),7.13-7.46(5H,m)
298	29-49	MeHNOCO NN-	MeOCH ₂ O	oil	2.71(4H,m),2.92(3H,d).3.0 8(4H,m),3.49(3H,s),3.56(2 H,s),5.06(1H,q),5.23(2H,s) ,6.28(1H,br,s),6.60(1H,br. s),7.02-7.46(8H,m),9.44(1 H,br.s)
299	29-50	N N N	Me	oil	2.44(3H,s),2.78(4H,m),3.1 7(4H,m),3.52(3H,s),3.60(2 H,s),5.23(2H,s),6.31(1H,b r,s),6.61(1H,br.s),6.78-7.4 2(8H,m)
300	29-51	H₂NOC N_N—	MeOCH ₂ O	oil	2.87(4H,m),3.13(4H,m),3. 48(3H,s),3.74(2H,s),5.24(2 H,s),5.98(1H,br,s),6.50(1 H,br.s),6.75(1H,br.s),7.14- 7.49(8H,m),8.12(1H,d),9.0 8(1H,br.s)

301	29-52	NC NC	MeOCH ₂ O		2.86(4H,m),3.32(4H,m),3. 48(3H,s),3.67(2H,s),5.23(2 H,s),6.41(1H,br,s),6.69(1 H,br.d),7.01-7.32(5H,m),7 .40-7.62(3H,m)
-----	-------	-------	----------------------	--	--

[実施例302]

5

10

2-(4-(2-)++)フェニル) ピペラジン-1-(1+1) - 4-メトキシ-6-(4-) フルオロフェニル) ピリジン (1-1) 2 3)

2-(4-(2-)++2) アニニル)ピペラジン-1-イルメチル)-6-(4ーフルオロフェニル)ピリドン(29-10) 500 mgをDMF 7mlに溶かし氷冷下、水素化ナトリウム 66 mgを加え室温下 30 分攪拌、再び氷水で冷却しヨウ化メチル87 ul加え室温下 1時間攪拌する。水を加えトルエンで抽出、硫酸マグネシウムで乾燥後シリカゲル10gで精製、20%アセトニトリル・クロロホルム溶出物375 mgをアセトン・石油エーテルより再結晶し、2-(4-(2-)+キシフェニル)ピペラジン-1-イルメチル)-4-メトキシー6-(4-フルオロフェニル)ピリジン(1-123) 融点121-122 $\mathbb C$ の結晶341 mgを得る。

15 収率 65.8%, NMR(CDCl₃)2.93(4H,m),3.23(4H,m),3.86(2H,s),3.94(6H,s),6.85-8.00(10H,m).

[実施例303-342]

実施例 3 0 2 と同様に反応を行い 4 - アルコキシ体(1-1 2 4) - (1-1 6 20 3) を得た。これらの融点および NMR を表 2 8 から表 3 1 に示した。

表 2 8 - 1

実	化	-NR2R3	R ₁	Ar	融点	NMR(CDCl3) (free
施	合	1			\ C	base)
例	物]			}	<u> </u>
No	No					
303	1-				164-	2.84(4H,m),3.18(4H,
	124	MeO	MeO	F~~	165	m),3.84(3H,s),3.87(3
		N N-{-}		OMe	oxal	H,s),3.91(3H,s),6.85-
			1	Olvie	ate	7.61 (9H,m)
304	1-				151-	2.77(4H,m),3.12(4H,
1	125	MeO			152	m),3.79(2H,m),3.82(6
		N N-	OH ₂ C OMe		oxal	H,s),3.86(3H,s),5.14(
			2	OMe	ate	2H,s),6.84-7.46
	1					(13H,m),7.77(1H,d of
						d),
305	1-				170-	2.77(4H,m),3.12(4H,
	126	MeO			171	m),3.79(2H,s),3.81(3
		N N-{ }	OH ₂ C	OMe	oxal	H,s),3.86(3H,s),5.17(
1			01120		ate	2H,s),6.85-7.47
						(14H,m),7.77(1H,d of
						d)
306	1-	MeQ	M 00 0	^	168-	2.99(4H,br,s),3.12(4
	127		$MeSO_2O$		169	H,br,s),3.54(3H,s),3.
				OMe	oxal	76(3H,s),3.86(3H,s),4
		ľ			ate	.12(2H,s),6.88-
307	1-					7.86(10H,m)
30 /	$\frac{1}{128}$	MeO	OMe		174-	2.67(4H,m),3.07(4H,
	140	<u></u>	00,5		176	m),3.77(2H,s),3.81(3
]		N_N-(_)	20 20	OMe	fuma	H,s),3.84(3H,s),3.87(
					rate	3H,s),6.86-7.86
308	1-		CI		110-	(14H,m)
	129	MeO		\sim	120	2.78(4H,m),3.12(4H, m) 3.80(2H a) 3.81(2
	-20		OH ₂ C		fuma	m),3.80(2H,s),3.81(3 H,s),3.86(3H,s),5.28(
	ļ	N_N_	51.120	OMe	rate	2H,s),6.85-7.80
				ļ	late	(14H,m)
					I	(1411,111)

表 2 8 - 2

		,	, 	· · · · · · · · · · · · · · · · · · ·	,	
309	130	MeO N_N_	OH₂C C	OMe	167- 169 oxal ate	2.77(4H,m),3.13(4H,m),3.79(2H,s),3.82(3H,s),3.86(3H,s),5.14(2H,s),6.84-7.80(14H,m)
310	131	MeQ N_N_	OH ₂ C	OMe	120- 122	2.77(4H,m),3.13(4H,m),3.79(2H,s),3.82(3 H,s),3.86(3H,S),5.12(2H,s),6.84·7.47 (13H,m),7.77(1H,d of d)
311	1- 132	MeO N	OH ₂ C F	OMe	175- 177 oxal ate	2.77(4H,m),3.12(4H, m),3.79(2H,s),3.82(3 H,s),3.86(3H,s),5.16(2H,s),6.48-7.42 (13H,m),7.77(1H,d of d)
312	1- 133	MeO N—N—	OH ₂ C	OMe	173- 174 oxal ate	2.78(4H,m),3.13(4H, m),3.79(2H,s),3.82(3 H,s),3.86(3H,s),5.24(2H,s),6.85-7.51 (13H,m)7.77(1H,d of d)
313	1- 134	MeO N—N—	Me2NSO2O	OMe	154- 156 fuma rate	2.79(4H,m),3.03(6H,s),3.15(4H,m),3.84(2H,s),3.86(3H,s),3.87(3H,s),6.85-7.71 (9H,m),7.84(1H,d of d)
314	1- 135	MeO N—	Me2NCOO	OMe	138- 140 oxal ate	2.79(4H,m),3.14(4H, m),3.03(3H,s),3.12(3 H,s)3.83(2H,s),3.85(3 H,s),3.86(3H,s),6.84- 7.52(9H,s),7.79(1H,d of d)

表 2 9 - 1

実	化合	-NR2R3	R 1	Ar	融点	NMR(CDCl3) (free
施	物		i L		C	base)
例 No	No					
315	1-			 -	131-	1.24(6H,m),2.84(4H,
1010	136	MeQ	Et2NCOO		132	m),3.14(4H,m),3.43(4
	100		20211000		oxal	H,m),3.83(2H,s),3.85
				OMe	ate	(3H,s),3.86(3H,s),6.8
						4-
				,		7.52(9H,m),7.78(1H,
						d of d)
316	1-				100-	2.78(4H,m),3.12(4H,
	137	MeO	OMe	S	104	m),3.76(2H,s),3.81(3
		N - N - N	OH ₂ C		oxal	H,s),3.86(3H,s),5.11(
1	İ				ate	2H,s),6.85-7.54
0.17		MeO			120	(13H,m)
317	1- 138		MeSO ₂ O	(S)	150-	2.80(4H,m),3.15(4H,
	136	N N	MeSO ₂ O		151 oxal	m), 3.24(3H,s), 3.82(2H,s), 0.84
					ate	H,s),3.86(3H,s),6.84- 7.62(9H,m)
318	1-				oil	2.80(4H,m),3.15(4H,
	139	MeQ			011	m),3.24(3H,s),3.85(2
		N N	MeSO ₂ O	MeO		H,s),3.86(3H,s),3.87(
				Wieo		3H,s),6.85-7.47
						(6H,m),6.99(2H,d),7.
						96(2H,d)
319	1.			_	106-	2.81(4H,m),3.15(4H,
	140	MeO	14 11900		108	m),3.05(3H,s),3.13(3
		N_N-⟨ ⟩	Me2NCOO	MeO		H,s),3.84(2H,s),3.86(
						3H,s),6.83-6.98
						(4H,m),6.97(2H,d),7.
						23(1H,d),7.37(1H,d), 7.94(2H,d)
320	1.				oil	2.85(4H,m),3.43(4H,
	141		MeSO ₂ O	МөОСН₂О	711	m),3.25(3H,s),3.52(3
						H,s),3.89(2H,s),5.26(
		ó./		ļ		2H,s),6.74-7.71
						(11H,m)
321	1-				oil	2.77(4H,m),3.17(4H,
	142	MeOCH ₂ O	MeSO ₂ O	MeOCH ₂ O		m),3.25(3H,s),3.86(3
	`	()n—()				H,s),5.23(2H,s),5.26(
						2H,s),6.96-7.69
						(10H,m)

表 2 9 - 2

322	1- 143	MeO N	MeSO ₂ O	OMe	75- 76	2.82(4H,m),3.17(4H, m),3.27(3H,s),3.87(5 H,s),3.91(3H,s),6.86- 7.60 (10H,m)
323	1- 144	MeO N	Me2NCOO	OMe	146- 149 oxal ate	2.81(4H,m),3.05(3H,s),3.13(3H,s),3.85(2H,s),3.88(6H,s),6.84-7.5 8(10H,m)
324	1- 145		MeSO ₂ O	OMe	118- 119	2.86(4H,m),3.26(3H,s),.3.42(4H,m),3.90(5 H,s),6.74- 7.61(11H,m)
325	1. 146	MeO N_N_	CF ₃ SO ₂ O	OMe	189- 192 oxal ate	2.79(4H,m),3.15(4H, m),.3.86(3H,s),3.88(2 H,s),3.89(3H,s),6.85- 7.94(10H,m)

表 3 0 - 1

実	化合	-NR2R3	R 1	Ar	融点	NMR(CDCl3) (free
施	物				${\mathcal C}$	base)
例	No					
No						
326	1-		$MeSO_2O$	MeO	153-	2.88(4H,m),3.25(3H,s
Ì	147			MeO	155),3.42(4H,m),3.89(2H
		0.				s),3.95(3H,s),4.00(3
		- ~				H,s, 6.7-7.7(10 H,m)
327	1-	N N	$MeSO_2O$	MeO	153-	2.78(4H,m),3.20(4H,
1	148	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		MeO	154	m),3.25(3H,s),3.85(2
1		6.)				H,s),3.94(2H,s),4.00(
		Ť		٠		3H,s),4.59(2H,t),6.7-
						7.6(8H,m)
328	1-	N	MeSO ₂ O		162-	2.84(4H,m),3.23(3H,s)
İ	149	' ` ''		OMe	166),3.42(4H,m),3.88(5H
		0,		OME	oxal	s),6.7-7.9(11H,m)
					ate	
329	1.		i-		174-	1.58(6H,d),2.85(4H,
	150	'\'	$PrSO_2O$	OMe	177	m),3.42(4H,m),3.54(1
1		6, 1		Owie	oxal	H,m),6.7-7.9(9H,m)
		~			ate	
330	1-	N	MeSO ₂ O		96-	(oxalate) 3.29(3H,m)
	151	''\''		MeO A	98	,3.58(4H,m),3.65(4H,
į		ó, 🔎			oxal	s),3.86(3H,s),4.46(2H
					ate	,br.s),6.7-8.0(11H,m)

表 3 0 - 2

331	11.		M-00 0		1150	0.04/477
331	152	N N-()	MeSO ₂ O		150-	2.84(4H,m),3.25(3H,
	152) ò~	151	m),3.41(4H,s),3.86(2
	1			ļ		H,s, $6.03(2H,s)$, $6.7-7$.
	ļ.,					6(10H,m)
332	1-	МОМО	MeSO ₂ O		oil	2.76(4H,m),3.16(4H,
	153]			m), 3.25(3H,s), 3.52(3
				_		H,s),3.83(2H,s),5.22(
				1		2H,s),6.03(2H,s),6.8-
			l			7.6(9H,m)
333	1-	МОМО	MeSO ₂ O		oil	2.77(4H,m),3.16(4H,
	154					m),3.23(3H,s),3.52(3
				→ OMe		H,s),3.85(3H,s),3.88(
1					<u> </u>	2H,s),5.22(2H,s),6.9-
						7.9(10H,m)
334	1-	MOMQ	MeSO ₂ O		oil	2.77(4H,m),3.17(4H,
	155			MeO	022	m), 3.24(3H,s), 3.52(3)
l		$N \longrightarrow N \longrightarrow N$		MeO		H,s),3.84(2H,s),3.87(
!						3H,s),5.23(2H,s),7.0-
	Í					8.0(10H,m)
335	1-	MeO	MeSO ₂ O		oil	2.80(4H,m), 3.14(4H,
	156	$\overline{}$	1.100020			m), 3.25(3H,s), 3.51(3)
		$N \longrightarrow N$		Y		H,s),3.86(5H,s),5.26(
				ОМОМ		2H,s),6.48.7.69 (10H
						(1011 m)
336	1-		MeSO ₂ O	1	oil	2.85(4H,m),3.24(3H,s
	157	(_) - (_)	14100020		011),3.41(4H,m),3.50(3H)
	10.					
		0_//		T A	ļ	,s),3.87(2H,s),5.23(2
				ОМОМ		H,s),6.73-6.80(2H,m)
i						,7.11-7.92(9H,m)

表 3 1

実	化合	-NR2R3	R ₁	Ar	融点	NMR(CDCl3) (free
施	物		_		C	base)
例	No		ļ			
No		<u>_</u> _				
337	1.				oil	2.71(4H,m),2.88(3H,
	158	MeHNOCO	MeSO ₂ O		ľ	d),3.07(4H,m),3.26(3
	ŀ					H,s),3.52(3H,s),3.84(
				омом		2H,s),5.01(1H,br.s),5
1						.26(2H,s),7.02-7.69(1
		110:10				0H,m)
338	1.	момо	Me		oil	2.43(3H,s),2.67(4H,m
	159	N N-{ }	ו וווו),3.10(4H,m),3.51(3H
ĺ			SO₂O	омом		,s),3.52(3H,s),3.77(2
						H,s),5.22(2H,s),5.24(
ŀ	Ì					2H,s),6.98-7.82(14H,
339	1.	МОМО			oil	m) 2.44(3H,s),2.78(4H,m
	160		MeSO ₂ O),3.17(4H,m),3.52(3H
		$N \longrightarrow N$	1100020			,s),3.86(2H,s),5.22(2
			ĺ	Me		H,s),6.94-7.81(10H,m
)
340	1-	момо			oil	1.59(3H,t),2.77(4H,m
	161	N N	EtSO ₂ O	. 🕌),3.17(4H,m),3.38(2H
				омо м		,q),3.51(3H,s),3.56(3
						H,s),3.85(2H,s),5.22(
						2H,s),5.26(2H,s),6.92
341	1-	H NOC				-7.69(10H,m)
341	162	H ₂ NOC	MeSO ₂ O		oil	2.80(4H,m),3.11(4H,
	102	N N-()	MeSO ₂ O			m),3.27(3H,s),3.52(3
			ĺ	ÓМОМ		H,s),3.88(2H,s),5.26(
			l			2H,s),5.78(1H,br.s),7 .12-7.69(9H,m),8.17(
			{	·		1H,dd),9.47(1H,br.s)
342	1-	NÇ			oil	2.81(4H,m),3.25(3H,s
	163		MeSO ₂ O),3.30(4H,m),3.51(3H
			- ·	Y	1	,s),3.87(2H,s),5.26(2
	ĺ	i		ОМОМ		H,s),6.98-7.70(10 H,m
		<u> </u>)

[実施例343]

$$OSO_2CH_3$$
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 OSO_2CH_3
 $OSO_$

2-[4-(ベンゾフラン-7-イル) ピペラジン-1-イルメチル」-4-メタンスルホニルオキシ-6-(3-メトキシメチルオキシフェニル) ピリジン (1-141) 618 mgメタノール5 ml、テトラヒドロフラン5 mlの混液に溶解し 6 N塩酸1 mlを加え室温下 19 時間放置する。減圧下溶媒を除去、アンモニア水でアルカリ性としクロロホルムで抽出、硫酸マグネシウムで乾燥後シリカゲル15gのカラムクロマトに付し20%アセトニトリル・クロロホルム溶出物466 mgをエタノールに溶かし塩酸を加えて塩酸塩としエタノールより再結晶、<math>2-[4-(ベンゾフラン-7-イル) ピペラジン-1-イルメチル]-4-メタンスルホニルオキシー6-(3-ハイドロオキシフェニル) ピリジン (1-164) 塩酸塩、融点185-191℃ (d) の結晶 459 mg を得る。

収率 75.4%, NMR(CDCl3) (free base) 2.88(4H,m),3.44(4H,m),3.26(3H,s),3.9 0(2H,s),6.75-7.61(11H,m)。

15 [実施例344-362]

5

10

実施例 3 4 3 と同様に反応を行いピリジン体(1-1 6 5) \sim (1-1 8 3) を得た。これらの融点および NMR を表 3 2 および表 3 3 に示した。

表 3 2 - 1

横	実	化合	-NR2R3	R ,	Ar	融点	NMR(CDCl3)
No No No No No No No No		1				1	
No	例	No					(liee base)
165							
165	344	1-	HQ			176-	2 78(4H m) 2 95(4H
Ho		165		MeSO ₂ O	HO		
345	1	İ				- ' '	
166							12,0),0:02 1:10(011,111)
166	345	1.	HQ		MeO	66.5-	2.74-2.79(4H m) 2.94
Signature Sign		166		MeSO ₂ O		i .	
346					~		
140				<u> </u>			
167	346	1 - 1	НО			140-	
347 1- HO 168 HO MeSO2O MeSO2O 146- 148 2.749(4H,m),2.94(4H,m),3.25(3H,s),3.85(2H,s),3.85(2H,s),3.87(3H,s),6.8-8.0(10H,m) 348 1- HO 169 MeSO2O 140- 143 2.76(4H,m),2.95(4H,m),3.26(3H,s),3.84(2H,s),6.03(2H,s),6.8-7.6(9H,m) 349 1- HO NN NN NN NN NN NN NN NN NN NN NN NN NN		167	N N	MeSO ₂ O	OMO	142	
347					OIME	oxal	
168						ate	,s),6.7-7.9(10H,m)
MeO	347	1 - 1	_ но			1	2.749(4H,m),2.94(4H
348 1-		168	$N \longrightarrow N$	$MeSO_2O$		148	, m), 3.25(3H, s), 3.85(2)
348 1- 169 HO N MeSO ₂ O 140- 143 2.76(4H,m),2.95(4H, m),3.26(3H,s),3.84(2 H,s),6.03(2H,s),6.8-7. 6(9H,m) 349 1- 170 HO N MeSO ₂ O MeO MeO 83- 84 2.82(4H,m),2.97(4H, m),3.27(3H,s),3.89(2 H,s),3.94(3H,s),4.00(3H,s),6.8-7.6(9H,m) 350 1- 171 MeO N HO 157- 159 oxal ate 2.83(4H,m),3.15(4H, m),3.22(3H,s),3.85(3 H,s),3.87(2H,s),6.84- 7.48(10H,m) 351 1- 172 N MeSO ₂ O HO 201- 205 oxal H,s),3.37(3H,s),4.31(2 H,s),6.38-7.67(10H,m					MeO		
169							0(10H,m)
N N N N N N N N N N N N N N N N N N N	348	ı – ı	но		0	140-	2.76(4H,m),2.95(4H,
H,s),6.03(2H,s),6.8-7. 6(9H,m)	i i	169	N N	$MeSO_2O$		143	m),3.26(3H,s),3.84(2
349 1-	<u> </u>					-	
170 MeSO ₂ O MeO 84 m),3.27(3H,s),3.89(2 H,s),3.94(3H,s),4.00(3H,s),6.8-7.6(9H,m) 350 1- 171 MeSO ₂ O HO 157 2.83(4H,m),3.15(4H,m),3.22(3H,s),3.85(3 H,s),3.87(2H,s),6.84-7.48(10H,m) 351 1- 172 MeSO ₂ O HO 201 2.98(4H,m),3.24(4H,m),3.37(3H,s),4.31(2 m),3.37(3H,s),4.31(2 m),3.37(3H,s),4.31(2 m),3.37(3H,s),4.31(2 m),6.38-7.67(10H,m)	0.40						
MeSO ₂ O MeSO ₂	349	_	HO				
3H,s),6.8-7.6(9H,m) 350 1- 171 MeO MeSO ₂ O HO 157- 159 m),3.22(3H,s),3.85(3 H,s),3.87(2H,s),6.84- 7.48(10H,m) 351 1- 172 NH MeSO ₂ O HO 201- 201- 205 m),3.37(3H,s),4.31(2 H,s),6.38-7.67(10H,m)		170	N-√\\	MeSO ₂ O	MeO	84	
350 1- MeO MeSO ₂ O HO 157- 159 m),3.22(3H,s),3.85(3 H,s),3.87(2H,s),6.84- 7.48(10H,m) 351 1- OH MeSO ₂ O HO 201- 2.98(4H,m),3.24(4H, m),3.37(3H,s),4.31(2 Oxal H,s),6.38-7.67(10H,m)					MeO		
171 MeSO ₂ O HO 159 m),3.22(3H,s),3.85(3 H,s),3.87(2H,s),6.84-7.48(10H,m) 351 1-172 MeSO ₂ O HO 201-205 m),3.37(3H,s),4.31(2 oxal H,s),6.38-7.67(10H,m)							3H,s),6.8-7.6(9H,m)
171	350		MeO				
Oxal H,s),3.87(2H,s),6.84- 7.48(10H,m) 351 1- 172 N MeSO ₂ O HO 201- 2.98(4H,m),3.24(4H, 205 m),3.37(3H,s),4.31(2 H,s),6.38-7.67(10H,m MeSO ₂ O HO 201- 2.98(4H,m),3.24(4H,m)		171		MeSO ₂ O	HO~~~		
351 1- 172 N MeSO ₂ O HO 201- 2.98(4H,m),3.24(4H, m),3.37(3H,s),4.31(2 oxal H,s),6.38-7.67(10H,m				l		oxal	H,s),3.87(2H,s),6.84
172 MeSO ₂ O HO 205 m),3.37(3H,s),4.31(2 H,s),6.38-7.67(10H,m						ate	7.48(10H,m)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	351		он			201-	2.98(4H,m),3.24(4H.
		172	N	MeSO ₂ O	HO	205	
		j				oxal	
					-	ate)

表 3 2 - 2

352	1- 173	N N-	MeSO ₂ O	но	168- 170 oxal ate	2.76(4H,m),2.94(4H, m),3.26(3H,s),3.85(2 H,s),6.89-7.46(8H,m) ,7.87-7.92(2H,m)
353	1- 174	MeHNOCO N_N-	MeSO ₂ O	но	126- 131 oxal ate	2.74(4H,m),2.83(3H, d),3.05(4H,m),3.19(3 H,s),3.81(2H,s),5.19(1H,br.s),6.82-7.44(10 H,m)
354	1- 175	N N HO	Me SO ₂ O	но	164- 169 oxal ate	2.42(3H,s),2.67(4H,m),2.89(4H,m),3.78(2H,s),6.82-7.46(14H,m)
355	1- 176	N N	MeSO ₂ O	Me	185- 186 oxal ate	2.45(3H,s),2.77(4H,m),2.96(4H,m),3.26(3H,s),3.87(2H,s),6.85-7.81(10H,m)
356	1- 177		MeSO ₂ O	ОСОИНМЕ	139- 142	2.84(4H,m),2.92(3H, d),3.25(3H,s),3.42(4 H,m),3.88(2H,s),4.99 (1H,q),6.73-7.60(9H, m),7.92-8.02(2H,m)
357	1- 178	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	EtSO ₂ O	но	183- 185 oxal ate	1.58(3H,t),2.78(4H,m),2.95(4H,m),3.38(2H),q),3.85(3H,s),6.82-7.48(10H,m)
358	1- 179	N_N-\\	OH ₂ C	НО	190- 191 oxal ate	2.72(4H,m),2.87(4H, m),3.79(2H,s),5.17(2 H,s),6.78-7.43(13H,m),7.61(1H,s)

表 3 3

実施	化合	-NR2R3	R 1	Ar	融点℃	NMR(CDCl3)
例	物					(free base)
No	No			ļ		
359	1-	НО	QMe 1		143-	2.70(4H,m),2.85(4H,
	180			HO	144	m),3.78(2H,s),3.81(3
1			OH₂C			H,s),5.15(2H,s),6.79
L						7.35(13H,m),7.62(1H ,m)
360	1-	H₂NOC ₍			228-	NMR(de-DMSO)
]	181		MeSO ₂ O	HO	230	2.69(4H,m),3.00(4H,
			i		1	m), 3.54(3H,s), 3.79(2)
						H,s),6.85-7.60(11H,m
				:),8.54(1H,br,s),9.63(1 H,s)
361	1-	NÇ			122-	2.95(4H,m),3.24(3H,s
	182		MeSO ₂ O	HO	125),3.28(4H,m),3.93(2H
					oxal	,s),6.90-7.59(10H,m)
					ate	
362	1-	0	MeSO ₂ O	HO	113-	2.87(4H,m),3.42(4H,
	183		j		116	m), 3.49(3H,s), 3.87(2)
						H,s, 6.73-7.87(11 H,m
			<u></u>			<i>)</i>

[実施例 363]

5 2-[4-(2-メトキシフェニル)ヒ゜ヘ゜ラシ゜ン-1-イルメチル] -6-(2-メトキシフェニル)-4-ヒ゜リト・ン(29-1)

2. 1g(0.00519 E ル) ロ-ソン試薬 1.68g(0.00415 E ル)トルエン60ml の混合物を 70℃で 4.5 時間加温した。反応後溶媒を留去。残渣はクロロホルムに溶かし水洗、硫酸マグ ネシウムで乾燥後溶媒を留去。残渣をアルミナ(100g)のカラムクロマトに付し、クロロホルム溶出物として 2-[4-(2-メトキシフェニル) ピペラジン-1-イルメチル]-6-(2-メトキシフェニル)-4-チオピリトンを黄色結晶として得た。1.13g(51.8%) 酢酸エチルークロロホルムの混合溶媒で再結晶することで、融点 135-136.5℃(分解)を示した。

NMR(CDCl₃) 2.78-2.82(4H,m),3.13-3.19(4H,m),3.58(2H,s),3.88(3H,s),4.00(3 H,s),6.88-7.79(10H,m)

15 [実施例 364-365]

10

実施例 363 と同様に反応を行い(30-2)~(30-3)の化合物を得た。これらの融点および NMR は、表 34 に示した。

1

ï

表 34

実施 例 No	化合 物 No	-NR2R3	Ar	融点 ℃	NMR(CDCl3)
364	30-2	MeO N—	OMe	95-103 (dec)	2.80-2.84(4H,m),3.14-3.18 (4H,m),3.63(3H,s),3.97(3 H,s&3H,s),6.87-7.68(10H,m)
365	30-3	MeO N_N_	OMe	167-170 (dec)	2.79-2.83(4H,m),3.14-3.18 (4H,m),3.62(3H,s),3.88(3 H,s&3H,s),6.87-7.65(10H, m)

[実施例 366]

2-[4-(2-メトキシフェニル) ピ ペ ラシ゚ ン-1-イルメチル] -6-(2-メトキシフェニル)-4-チオピリト゚ ン(30-1)253mg(0.6ミリモル)とアセトン10ml の懸濁液に、氷冷下、3ウ化メチル117mg(0.83ミリモル)のア セトン溶液 1ml を加え室温下 2 時間反応した。溶媒を除き、残差をアルミナ8g のカラムクロマトで精製。クロロホルム溶出物として、2-[4-(2-メトキシフェニル)ピ ペ ラジ ン-1-イルメチル]-6-(2-メトキシフェニル)-4-メチルチオピリジンの結晶を得た。250mg(95.8%) この結晶を、酢酸エチル-ヘキサンの混合溶媒より再結晶することで融点 122-124℃を示した。

NMR(CDCl₃) 2.78-2.82(4H,m),3.13-3.19(4H,m),3.58(3H,s),3.88(3H,s),4.00(3 H,s),6.88-7.79(10H,m)

[実施例 367-370]

10

実施例 366 と同様に反応を行い(1-185)~(1-188)の化合物を得た。これらの融点および NMR は、表 35 に示した。

表 35

実	化	-NR ₂ R ₃	R_1	Ar	融点	NMR(CDCl3)
施	合				€	(free base)
例	物			Ì	1	
No	No					
367	1-185			OMe	167-171	2.55(3H,s),2.84-2.88(
		N	MeS		oxalate	4H,m),3.17-3.20(4H,
İ		MeO				m),3.82(2H,s),3.84(3
						H,s),3.85(3H,s),6.84-
-				<u>'</u>		7.95(10H,m)
368	1-186			011	114-115	2.56(3H,s),2.80(4H,m
		N N-()	M	OMe 1),3.15(4H,m),3.81(2H
		MeO	MeS		ı	,s),3.87(3H,s),3.90(3
						H,s),6.85-7.56(10H,m
		*)
369	1-187				125-126	2.74-2.78(4H,m),3.11
		$N \longrightarrow N$	MeO- ⟨)—CH₂S	OMe	oxalate	-3.15(4H,m), 3.77(3H,
į ·		MeO				s),3.82(3H,s),3.86(3H
		WIGO				,s),4.21(2H,s),6.84-7.
270					101 102	76(10H,m)
3 7 0			- 111 6	QMe	181-183	2.78-2.81(4H,m),3.12
188		N	allyl-S-	O IVIC	oxalate	-3.16(4H,m),3.66-3.6
100		MeO				9(2H,d-d),3.80(2H,s),
]				~		3.85(3H,s),5.18-5.40(2H,m),5.88-6.02(1H,
						m),6.84-7.76(10H,m)
لـــــا						ш,,0.64-1.16(10П,Ш)

5

実施例 144 で得られる化合物(1)は、以下にて示す実施例 371 から実施例 385、更に実施例 302 と同様に反応を行なうことにより得ることもできる。

[実施例 371]

2-クロロメチル-6-(4-トリフルオロメチルフェニル)-4-ピ。リト・ン(31-1)

2-クロロメチル-4-メトキシ-6-(4-トリフルオロメチルフェニル) ピリシ'ン(28-12)739mg に濃臭化水素酸 15ml を加え油浴上 4 時間加熱還流する。減圧下臭化水素酸を除去、水を加えアンモニア 水でアルカリ性 としクロロホルムで抽出、硫酸マク'ネシウムで乾燥後シリカケ'ル10g のカラムクロマトに付し 10%メタノ-ル・クロロホルム溶出物をアセトン・石油エーテルより再結晶、融点 143-145℃の 2-クロロメチル-6-(4-トリフルオロメチルフェニル)-4-ピリト'ン(31-1)580mg を得る。

収率 82.3%, NMR(d6-DMSO) 4.62(2H,s),6.99(1H,d),7.31(1H,d),7.84(2H,d),8.22(2H,d)

10 [実施例 372-380]

実施例 371 と同様に反応を行い 4-t°リドン体(31-2)~(31-10)を得た。これらの融点 および NMR を表 36 に示した。

表 36

実施例	化合物	Ar	融点 ℃	NMR(de-DMSO)
No	No		,	111111(40 111111111111111111111111111111
372	31-2	O	175-176	4.74(2H,s),6.90(1H,d),7.21(1H,d),7 .45-8.0 1(5H,m),10.89(1H,br)
373	31-3	O ₂ N	-	4.68(2H,s),7.02(1H,s),7.37(1H,s),8. 28(2H,d),8.33(2H,d),11.09(1H,br,s)
374	31-4	F	165-167	4.64(2H,s),6.91(1H,d),7.19(1H,d),7 .30(2H,t),8.03(2H,d of d),10.89(1H,s)
375	31-5	FUOH	160-162	4.72(2H,s),6.73(2H,t),6.96(1H,d),7 .34(1H,d),7.93(1H,d of d),11.32(1H,s),14.70(1H,s)
376	31-6	S	222-239	_
377	31.7	CN	oil CF3COOH salt	NMR(CDCl3,CH3COOH salt) 4.74(2H,s),7.12(1H,d),7.15(1H,d),7 .63(1H,t),7.79(1H,d),7.98(1H,d),8. 04(1H,s)
378	31-8	CONH ₂	185-188 CF3COOH salt	4.79(2H,s),6.99(1H,d),7.33(1H,d),7 .46(1H,br.s),7.58(1H,t),7.92- 8.16(3H,m),8.46(1H,s)
379	31-9	OMe	156-158 CF3COOH salt	NMR(CD3OD,CH3COOH salt) 3.91(3H,s),4.84(2H,s),7.14- 7.27(4H,m), 7.53(1H,dd),7.62(1H,dt)
380	31-10	F	115-116 CF3COOH salt	NMR(CD3OD, CH3COOH salt) 4.83(2H,s),7.18(1H,d),7.25(1H,d),7 .32-7.68 (4H,m)

[実施例381]

2-クロロメチル-6-(4-トリフルオロメチルフェニル)-4-ピリドン (31-1)144 mg、1-(2- メトキシフェニル) ピペラジン115 mg、炭酸カリ83 mg、3 可化カリ17 mg、7 セトニトリル10 m 10 混合物を油浴上1 時間加熱還流する。減圧下溶媒を除去し残査をクロロホルムで処理、不溶物を除去、シリカゲル6 gのカラムクロマトに付し5 % メタノール・クロロホルム溶出物213 mgをアセトン・エーテルより再結晶、融点154-156 $\mathbb C$ の2-[4-(2- メトキシフェニル) ピペラジン)-1- イルメチル]-6-(4- トリフルオロメチルフェニル)-4- ピリドン(29-53) 152 mgを得る。

収率 68.5%, NMR(CDCl3) 2.62(4H,m),3.00(4Hm),3.65(2H,s),3.77(3H,s),6.9 0-7.28(6H,m),7.83(2H,d),8.23(2H,d),10.75(1H,s)

[実施例382-385]

15 実施例 381 と同様に反応を行いピリドン体(29-54) \sim (29-57) を 得た。これらの融点および NMR を表 37 に示した。

5

表 3 7

実 施 例 No	化合物	-NR2R3	Ar	融点℃	NMR(de-DMSO) (free base)
382	No 29- 54	i-PrO N	F	178-185 HCl-塩	1.35(6H,d),2.80(4H,m),3.1 9(4H,m),3.64(2H,s),4.59(1 H,m),6.38(1H,d),6.62(1H,d),6.86- 7.01(4H,m),7.21(2H,t),7.5 9(2H,d of d)
383	29- 55	i-PrO N—N—	F ₃ C	193-195 fumarat e	1.34(6H,d),2.82(4H,m),3.1 9(4H,m),3.67(2H,s),4.59(1 H,m),6.47(1H,br,s),6.73(1 H,br,s),6.86- 7.00(4H,m),7.75(2H,d),7.7 8(2H,d)
384	29- 56	N_N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	210-212	2.56(4H,m),3.51(4H,m),3. 61(2H,s),6.90(1H,d),7.15(1H,d),6.61- 8.11(8H,m),10.61(1H,s)
385	29- 57	MeO N_N_	F OH	187-190	2.60(4H,m),3.00(4H,m),3. 64(2H,s),3.77(3H,s),6.67- 7.94(9H,m),11.11(1H,br)

[実施例386]

5 $2 \cdot [4 \cdot (2 - \mathsf{X} + \mathsf{x} + \mathsf{y$

2-[4-(2-)++)フェニル)ピペラジン-1-1ル]メチル-6-(2-)キシフェニル)ピリドン(29-1) 2.00 gとオキシ塩化燐 15 m 1 の混合物を50 $\mathbb C$ の油浴上 1 時間攪拌する。減圧下過剰のオキシ塩化燐を除去、残査に氷

水を加えアンモニア水でアルカリ性としクロロホルムで抽出、硫酸マグネシウムで乾燥後シリカゲル40gのカラムクロマトに付し10%アセトニトリル.クロロホルム混液溶出物 1.90gを得る。溶出物 1.90gをメタノールに溶解、フマル酸 1.03gを加え濃縮、i-プロピルアルコールを加えて析出結晶を濾過、融点 142-144 $\mathbb C$ の白色結晶 2-[4-(2-メトキシフェニル) ピペラジン-1-イル]メチル-4-クロル-6-(2-メトキシフェニル) ピリジン. 1/2フマル酸塩 (1-189) 1.80gを得る。

収率 76.6%, NMR(CDCl3) (free base) 2.79(4H,m),3.15(4H,m),3.82(2H,s), 3.86(3H,s),3.88(3H,s),6.84-7.42(7H,m),7.46(2H,d),7.75(2H,d),7.80(1H,d of d) [実施例 3 8 7]

2 - ピコリン-N-オキシド 5.46gを乾燥テトラヒドロフラン30m1に 溶解し4-フルオロプロムベンゼン10.1g、マグネシウム1.47g、1.2 - ジプロモエタン0.25m1、乾燥テトラヒドロフラン70mより調整した4-フルオロフェニルマグネシウムプロマイド・テトラフラン溶液に10℃以下で攪拌下滴下する。40℃で30分攪拌した後室温下一夜放置する。塩化アンモニウム4.85gを水30m1に溶かして加えエーテルで抽出、硫酸マグネシウムで乾燥後溶媒を除去、残査9.49gをシリカゲル95gのカラムクロマトに付し10%アセトニトリル・クロロホルム溶出物7.40gをエーテルー石油エーテルで再結晶し融点118-119℃の1-ハイドロオキシ-2-メチル-6-(4-フルオロフェニル)-5.6-ジヒドロピリジン(33-1)6.15gを得る。

25 収率 60.0%, NMR(CDCl3) 2.08(3H,s),5.79(1H,d),6.36(1H,d),6.66(1H,d),6.9 8-7.43(4H,m),7.46(1H,d of d).

5

[実施例388-395]

実施例 387 と同様に反応を行いジヒドロピリジン体 $(33-2) \sim (33-9)$ を得た。これらの融点および NMR を表 38 に示した。

表38

5

[etc. +tc	1 11: 6	T		·	
実施	化合	R_1	Ar	融点	NMR(CDCL3)
例 No	物 No			L °C	
388	33-2	Н	F_	93-94	5.83(1H,d),6.37(1H,t),6.66(1
					H,d),6.90-7.34
					(4H,m), 7.55(1H,d of d)
389	33-3	H]	107-109	2.11(3H,s),3.84(3H,s),4.50(1
		1	F	1	H,br),5.83(1H,d),6.41(1H,t),6
			OMe		.79(1H,d of
			Olvio		d),6.92(1H,m),7.01(1H,d),7.2
L					4(h,d of d),7.52(1H,d of d)
390	33-4	H		120-102	2.10(3H,s),3.85(3H,s),5.78(1
		ĺ			H,d),6.39(1H,t),6.57-
			F CMe		6.67(2H,m),6.94(1H,d),7.44-
					7.56(2H,m)
391	33-5			108-109	2.04(3H,s),3.76(3H,s),5.18(1
		MeO	<u>-</u>		H,s),7.10-7.43
			F₃C ✓		(2H,m), 7.56(4H,s)
392	33-6			121-122	2.08(3H,s),5.86(1H,d),6.38(1
		H	F ₃ C		H,t),6.71(1H,d),7.55(4H,m),7.
			7 30		63(1H,d of d)
393	33-7			114-115	1.93(3H,s),3.68(3H,s),5.29(1
		MeO			H,s),6.96-7.55(6H,m)
			F V		10.84(1H,s)
394	33-8			120-121	2.06(3H,s),3.84(3H,s),5.12(1
		MeO	F OMe		H,s, 6.55-7.49(5 H,m)
					· · · · · ·
395	33-9		S	oil	2.04(3H,s),3.72(3H,s),5.10(1
		MeO			H,s, 6.96-7.27(6 H,m)
					,,,,

[実施例396]

2-メチル-6-(4-フルオロフェニル) ピリジン-N-オキシド (25-

3 1)

収率 79.9%, NMR(CDCl3) 2.60(3H,s),7.13-7.30(5H,m),7.80-7.87(2H,m).

[実施例397-404]

実施例 396 と同様に反応を行いピリジン $N-オキシド体 (25-32) \sim (2$ 15 5-39) を得た。これらの融点および NMR は表 39 に示した。

表 3 9

実 施	化合物	R_1	Ar	点 婦	NMR(CDCl3)
例 No	No			<u>°C</u>	
397	25-32	H	F	oil	2.58(3H,s),7.10-
	· · · · · · · · · · · · · · · · · · ·				7.63(7H,m)
398	25-33	Н	ОМе	130-131	2.57(3H,s),3.79(3H,s),6.90 -7.30(6H,m)
399	25-34	Н	F OMe	_	2.56(3H,s),3.79(3H,s),6.70 -7.39(6H,m)
400	25-35	MeO	F ₃ C	115-116	2.59(3H,s),3.89(3H,s),6.86 (2H,s),7.74(2H,d),7.93(2H,d)
401	25-36	Н	F ₃ C	106-107	2.59(3H,s),7.20- 7.35(3H,m),7.72(2H,d),7.9 2 (2H,d)
402	25-37	MeO	F	141-142	2.58(3H,s),3.87(3H,s),6.82 (2H,d),7.14(2H,t),7.82(2H, m)
403	25-38	MeO	FOMe	粗結晶	2.57(3H,s),3.80(3H,s),3.85 (3H,s),6.69-7.39 (5H,m),
404	25-39	MeO	S	oil	2.62(3H,s),3.91(3H,s),6.74 (1H,d),7.34(1H,d),7.20(d of d),7.57(d of d),7.84(d of d)

実施例67より得られる化合物(28)は、以下の実施例405、実施例40 6又は実施例410により得られる。

[実施例405]

$$OCH_2$$
 OCH_3 OCH_2 OCH_3 OCH_2 OCH_3 OCH_2 OCH_3 OCH_2 OCH_2 OCH_3 OCH_2 OCH_3 OCH_2 OCH_3 OCH_2 OCH_3 OCH_2 OCH_3 OCH_2 OCH_3 OCH_2 OCH_3 $OCH_$

2-クロロメチル-6-(3-シアノフェニル)-4-(4-メトキシベンジルオキシ)ピリジン1.14gをジメチルスルホキシド20mlに溶解し、炭酸カリウム43mg、30%過酸化水素水溶液426mgを加え、室温下3時間攪拌10 する。反応液に水を加え、析出した結晶を濾取し、融点172-174℃の6-(3-カルバモイルフェニル)-2-クロロメチル-4-(4-メトキシベンジルオキシ)ピリジン(28-41)1.18gを得る。

収率 98.2%, NMR(d6-DMSO) 3.77(3H,s),4.80(2H,s),5.24(2H,s),6.98(2H,d),7.2 1(1H,d),7.45(3H,m),7.57(1H,t),7.64(1H,d),7.94(1H,d),8.10(1H,br.s),8.25(1H,d),8.55(1H,s)

[実施例406]

2-クロロメチル-4-メタンスルホニルオキシ-6-(2-メトキシフェニル) ピリジン <math>(28-42)

(28-42)

収率 93.7%, NMR(CDCl3) 3.24(3H,s),3.89(3H,s),4.75(2H,s),7.01(1H,d),7.09(1H,t),7.35-7.47(2H,m),7.82(1H,d),7.89(1H,dd)

[実施例407-409]

15 実施例406と同様に反応を行い 4-ピリジン体(28-43)~(28-45)を得た。これらの融点および NMR を表40に示した。

5

表 4 0

実施例 No	化合物 No	Ar	融点 ℃	NMR(CDCl3)
407	28-43	\\ -\z	67-68	3.31(3H,s),4.76(2H,s),7.45(1H,d),7.6 0(1H,t),7.62(1H,d),7.74(1H,dt),8.23(1H,dt),8.35(1H,t)
408	28-44	CONH ₂	176-177	NMR(d6-DMSO)3.60(3H,s),4.93(2H,s),7.52(1H,br.s),7.60(1H,d),7.62(1H,t),7.97-8.02(2H,m),8.14(1H,br.s),8.28(1H,d),8.58(1H,br.s)
409	28-45	} ⊢	oil	3.28(3H,s),4.75(2H,s),7.10-7.21(1H,m),7.38-7.80(5H,m)

[実施例410]

2-クロロメチル-4-メタンスルホニルオキシ-6-(2-メトキシフェニル)ピリジン(28-42)2.51gを塩化メチレン50mlに溶解し、-78℃で三塩化ホウ素(1.60 M)の塩化メチレン溶液9.6 mlを加え3時間攪拌する。反応液に氷を加え、5 N塩酸8 mlを加えてさらに0.5時間攪拌した後、炭酸水素ナトリウム10gを加えて弱アルカリ性とし、クロロホルムで抽出、有機層を飽和塩化ナトリウム水溶液で洗浄、硫酸マグネシュウムで乾燥した後、溶媒を減圧下留去する。得られた残査をシリカゲル30gのカラムクロマトに付し

3%メタノール・クロロホルム溶出物をエーテルで再結晶し、融点158-15 9 \mathbb{C} の 2 - クロロメチル-6 - (2 - ヒドロキシフェニル)-4 - メタンスルホニルオキシーピリジン(28-46) 1. 61 g を得る。

収率 67.0%, NMR(CDCl3) 3.31(3H,s), 4.72(2H,s),6.94(1H,t),7.04(1H,dd),7.31-7.40(2H,m),7.71-7.78(2H,m)

実施例306で得られた化合物(1-127)を、以下の実施例411又は実施例412に記載の方法を用いることで、化合物(1-190)、(1-191)を得た。

10 [実施例411]

2 - (2 - メトキシフェニル) - 4 - メタンスルフォニルオキシー6 - [4 - (2 - メトキシフェニル) ピペラジン-1 - イル]メチルピリジン(1-127) 24 3 mgをジクロルメタン10mlに溶解しドライアイス-アセトンで-78℃に冷却、攪拌下1.6モル三臭化ホウ素のジクロルメタン溶液0.95mlを加え同温度で3時間攪拌後室温にて18時間放置する。氷を加え重炭酸ナトリウムでアルカリ性としクロロホルム抽出、硫酸マグネシウムで乾燥後シリカゲル30gのカラムクロマトに付し酢酸エチル:ヘキサン(1:2)混液溶出物71mgをエーテルより再結晶し融点128-129℃の結晶、2-(2-ハイドロオキシフェニル) - 4 - メタンスルフォニルオキシー6-[4-(2-メトキシフェニル)ピペラジン-1-イル|メチルピリジン(1-190)44mgを得る。

25 収率 19.2%, NMR(CDCl₃)2.602.84(4H,m),3.10-.20(4H,m),3.29(3H,s),3.83(2H,

s),3.86(3H,s),6.84-7.06(6H,m),7.33(1H,d of d),7.37(1H,d),7.69(1H,d),7.74(1H,d of d)

[実施例412]

2-(2-メトキシフェニル) -4-メタンスルフォニルオキシ-6-[4-(2 - メトキシフェニル) ピペラジン-1-イル]メチルピリジン(1-127) 24 1 mgをジクロロメタン10mlに溶解、氷冷下1.60モル三臭化ホウ素のジクロルメタン溶液 2.2ml加え室温下 18時間放置し更に 2時間加熱還流する。氷と1N塩酸5mlを加え室温下30分攪拌した後重炭酸ナトリウムでアルカリ性とし塩化ナトリウムを加え10%メタノール.クロロホルム溶液で抽出、硫酸マグネシウムで乾燥後溶媒を除去、残査をシリカゲル20gのカラムクロマトに付し酢酸エチル:ヘキサン(1:2)混液溶出物をエーテルより再結晶し融点115-117℃の結晶 2-(2-ハイドロオキシフェニル) -4-メタンスルフォニルオキシー6-[4-(2-ハイドロオキシフェニル) ピペラジン-1-イル]メチルピリジン(1-191)108mgを得る。

20 収率 47.7%, NMR(CDCl3) 2.60-2.80(4H,m),2.92-3.00(4H,m),3.30(3H,s),3.83 (2H,s),6.84-7.23(6H,m), 7.32-7.38(2H,m),7.69(1H,d),7.74(1H,d of d)

[実施例413]

5-ヒドロキシー2-メチルーピリジン(2-1)6.6g(0.06モル)を 乾燥ピリジン120mlに溶解し、内温15-25℃で臭素10.55g(0. 066モル)のピリジン溶液60mlを20分間で滴下し、室温で15時間撹拌 した。減圧下溶媒を留去し、残渣に水を加え氷冷後析出した結晶を濾取して、2 ープロムー3-ヒドロキシー6-メチルピリジン8.6gを得た。収率75.6 % エタノールで再結晶することで融点188-190℃の結晶となる。

NMR(CDCl₃) 2.47(3H,s), 5.48(1H,br.s), 7.03(1H,d,J=8.4), 7.20(1H,d,J=8.4)

10 [実施例414]

5

3-ヒドロキシー6-メチルー2-(2-メトキシフェニル)ピリジン(2-3)

テトラキストリフェニルホスフィンパラジウム922mg (0.000798 15 モル)、トルエン50ml、ピリジン5.0g (0.0266モル)、2規定炭酸ナトリウム25ml、2-メトキシフェニルホウ酸4.45g (0.0293 モル)、エタノール10mlを順次加えた混合物を、90℃にて4時間加温した。 室温に冷却後、酢酸エチルで抽出。有機層は飽和食塩水で洗浄、硫酸マグネシウムで乾燥後溶媒を留去。残渣をシリカゲル(180g)のカラムクロマトで精製。 20 クロロホルムーヘキサン(4:1)混液溶出物として3-ヒドロキシー6-メチル-2-(2-メトキシフェニル)ピリジン(2-3)を融点179-182 ℃ (分解)の結晶として、2.95g (51.7%) 得た。

NMR(CDCl₃) 2.56(3H,s),3.95(3H,s),6.82(1H,br.s),7.04-7.27(2H,m),7.39-7.72 (2H,m)

[実施例415]

20 NMR(CDCl₃) 2.53(3H,s), 3.73(3H,s), 3.78(3H,s), 4.95(2H,s), 6.80-7.38(10H,m)

[実施例416]

6-メチル-2-(2-メトキシフェニル)-3-(4-メトキシベンジルオキシ)ピリジン-N-オキシド (2-5)

10

6-メチルー2-(2-メトキシフェニル)-3-(4-メトキシベンジルオキシ)ピリジン(2-4) 4. 3g(0. 0128モル)をクロロホルム90m1 に溶解し、氷冷下80%メタクロロ過安息香酸3. 47gを加え同温度で1時間攪拌した後65時間室温で放置した。氷水と炭酸水素ナトリウム1. 18g(0. 014モル)を加え15分間撹拌後、分液。硫酸マグネシウムで乾燥、アルミナ130gのカラムクロマトに付し、クロロホルムの溶出部として 6-メチルー2-(2-メトキシフェニル)-3-(4-メトキシベンジルオキシ)ピリジンーN-オキシド(2-5) 4. 32gを得た。収率 95. 8% 酢酸エチルーエーテルの混合溶媒で再結晶することで、融点130. 5-132 Cの結晶となる。

NMR(CDCl₃) 2.13(3H,s),3.73(3H,s),3.79(3H,s),5.01(2H,s),5.20(2H,s),6.81 - 7.42(10H,m).

15 [実施例417]

5

10

6-アセトキシメチル-3-(4-メトキシベンジルオキシ)-2-(2-メトキシフェニル)ピリジン (2-6)

$$CH_3O$$
 CH_3O
 CH_3O
 CH_2OCOCH_3
 OCH_3
 $(2-5)$
 $(2-6)$

6 - メチル-2 - (2 - メトキシフェニル) - 3 - (4 - メトキシベンジルオキ
 20 シ) ピリジン-N-オキシド(2-5) 3. 7 gを無水酢酸 3 0 m 1 に溶解し8
 0 ℃の油浴上 2 時間加熱した。減圧下溶媒を除去、残査をクロロホルムに溶解し

水水を加えアンモニア水でアルカリ性とした後、クロロホルムで抽出。飽和食塩水で洗浄、硫酸マグネシウムで乾燥後アルミナ100gで精製。クロロホルムーヘキサン(2:1)混液の溶出で、6-アセトキシメチル-3-(4-メトキシベンジルオキシ)-2-(2-メトキシフェニル)ピリジンを油状物として3.15g得た。

収率 76.1%, NMR(CDCl3) 2.13(3H,s),3.73(3H,s),3.79(3H,s),5.01(2H,s),5.20(2H,s),6.81-7.42(10H,m)

[実施例418]

5

15

20

6-アセトキシメチルー3-(4-メトキシベンジルオキシ)-2-(2-メトキシフェニル)ピリジン(2-6)3.5g(0.00891モル)をメタノール25m1に溶解し氷冷下2N水酸化ナトリウム溶液6.7m1(0.0134モル)を加え室温下6時間反応した。飽和塩化アンモニウム水4m1を加えて溶媒を濃縮して結晶を析出させる。結晶を濾別し6-ハイドロオキシメチルー2-(2-メトキシフェニル)-3-(4-メトキシベンジルオキシ)ピリジン(2-7)を得た。2.75g(87.9%) 酢酸エチルーエーテルより再結晶すると融点125-127Cの結晶となる。

NMR(CDCl₃) 3.70(1H,br.s),3.73(3H,s),3.79(3H,s),4.72(2H,s),5.00(2H,s),6.8 0-7.44(10H,m)

[実施例419]

25 6-クロロメチル-2-(2-メトキシフェニル)-3-(4-メトキシベン

ジルオキシ) ピリジン(2-8)

$$CH_3O$$
 CH_2OH
 CH_2OH
 OCH_3
 $(2-7)$
 CH_3O
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OC

6 - ハイドロオキシメチルー2 - (2 - メトキシフェニル) - 3 - (4 - メトキシベンジルオキシ)ピリジン(2 - 7)2.8 g(0.00798 モル)をテトラヒドロフラン 70 mlに溶解させ氷冷、攪拌下 塩化チオニル 1.90g(0.016 モル)を加え 2 時間室温で反応した。減圧下テトラヒドロフランを除去、氷水を加水炭酸水素ナトリウム溶液でアルカリ性としクロロホルムで抽出。硫酸マグネシウムで乾燥後、アルミナ 80g のカラムクロマトに付しクロロホルムーへキサン(4:1)混液の溶出物として、6 - クロロメチルー2 - (2 - メトキシフェニル) - 3 - (4 - メトキシベンジルオキシ)ピリジン(2 - 8)を結晶として 2.8 g得た。収率 9 4.9% ヘキサン-エーテルで再結晶すると、融点 7 7 - 7 8 ℃の結晶となる

NMR(CDCl3) 3.73(3H,s),3.79(3H,s),4.70(2H,s),5.02(2H,s),6.82-7.41 (10H,m)

15

10

[実施例420]

20

6-クロロメチル-2-(2-メトキシフェニル)-3-(4-メトキシベン

ジルオキシ)ピリジン(2-8)500mg(0.00135モル)、1-(2-メトキシフェニル)ピペラジン 286mg(0.00145モル)、炭酸カリ 186 mg 80.00135モル)、ヨウ化カリ 45 mg(0.00027モル)、アセトニトリル 10mlの混合物を油浴上2時間加熱還流した。減圧下溶媒を除去し残査をクロロホルムに溶かしシリカゲル20gのカラムクロマトに付しクロロホルムーメタノール(100:1)混液で溶出し、無色油状の 3-(4-メトキシベンジルオキシ)-2-(2-メトキシフェニル)6-[4-(2-メトキシフェニル)ピペラジノ-1-イルメチル]ピリジン(2-9-1)690mgを得た。収率 97.2%

10 この油状物をアセトン20mlに溶解して、1.1等量に対応するシュウ酸の アセトン溶液を加えて、シュウ酸塩とした。融点80-83℃(分解) NMR(CDCl3)(free base) 2.74-2.78(4H,m),3.11-3.15(4H,m),3.72(3H,s),3.78(3 H,s),3.79(2H,s),3.85(3H,s),4.99(2H,s),6.81-7.39(14H.m)

15 [実施例421-423]

実施例 4 2 0 と同様に反応を行い $(2-9-2) \sim (2-9-4)$ の化合物を得た。これらの融点および NMR は、表 4 1 に示した。

表 4 1

実施	化合	A	В	融点	NMR(CDCl3)
例 No	物			\mathcal{C}	
	No				
421	2-9-	MeO-CH ₂	но	142-143	2.76(4H,br.s),2.95(4H,br.s),
	2	MeO—CH ₂			3.72(3H,s).3.77(2H,s),3.79(3
1					H,s),5.00(2H,s),6.81-7.40(14
					H,m)
422	2-9-		—(¯)_F	164-166	2.71-2.5(4H,m),3.13-3.17(4
	3	MeO———CH ₂		oxalate	H,m)-3.73(3 H,s),3.76(2 H,s),
ļ					3.79(3H,s),4.99(2H,s),.6.81-
					7.39(14H,m)
423	2-9-		0	129-130	2.79-2.84(4H,m),3.36-3.41(4
	4	MeO—CH ₂	CH ₂		H,m)3.73(3H,s),3.79(3H,s&2
					H,s),5.00(2H,s),673-7.59(15
					H,m)

[実施例424]

5 3-ヒドロキシー2-(2-メトキシフェニル)6-[4-(2-メトキシフェニル)ピペラジノー1-イルメチル]ピリジン(2-10)

$$CH_3O$$
 CH_3O
 OCH_3
 $(2-9-1)$
 CH_3O
 OCH_3
 $(2-10)$

3-(4-メトキシベンジルオキシ)-2-(2-メトキシフェニル)6-[4-(2-メトキシフェニル)ピペラジノ-1-イルメチル]ピリジン(2-9-10 1) 580mgを酢酸6mlに溶かし氷冷下48%臭化水素酸2mlを加え50℃で2.5時間加温した。氷水を加えエーテルで抽出して副生成物を除去、水溶液はアンモニア水でアルカリ性としクロロホルムで抽出。水洗、硫酸マグネシウムで乾燥後アルミナ20gのカラムクロマトに付しクロロホルム溶出物として表記化合物を結晶として434mg得た。 収率97.1% ヘキサン-酢酸エ

チルで再結晶し融点145−147.5℃の純品を得た。

NMR(CDCl₃) 2.74-2.79(4H,m),3.11-3.15(4H,m),3.7 8 (2H,s),3.86(3H,s),3.96 (3H,s),6.84-7.72 (10H,m)

5 [実施例425]

3-メタンスルホニルオキシ-2-(2-メトキシフェニル)-6-[4-(2-メトキシフェニル)ピペラジノ-1-イルメチル]ピリジン シュウ酸塩 (2-11-1)

- 10 3-ヒドロキシー2-(2-メトキシフェニル)6-[4-(2-メトキシフェニル)ピペラジノ-1-イルメチル]ピリジン(2-10) 122mg(0.3ミリモル)をテトラヒドロフラン4mlに溶かし氷冷下、水素化ナトリウム15mg(0.36ミリモル)を加え室温下30分攪拌。再び氷水で冷却し塩化メタンスルホニル38mg(0.33ミリモル)加え室温下1.5時間攪拌した。
- 15 氷水を加えクロロホルムで抽出。硫酸マグネシウムで乾燥後アルミナ6gで精製。 酢酸エチルーヘキサン(2:1)混液で溶出して、3-メタンスルホニルオキシ -2-(2-メトキシフェニル)-6-[4-(2-メトキシフェニル)ピペラジ ノー1-イルメチル]ピリジンを油状物として135mg(93.1%)得た。こ の油状物をアセトンに溶解し、1.1等量に相当するシュウ酸のアセトン溶液を 加えてシュウ酸塩とした。融点144-146 $\mathbb C$ (分解)

NMR(CDCl₃) (free base) 2.65(3H,s), 2.77-2.80(4H,m), 3.12-3.17(4H,m), 3.81(3H,s), 3.83(3H,s), 3.86(3H,s), 6.84-7.76(10H,m)

[実施例426]

25 実施例425と同様に反応を行い(2-11-2)の化合物を得た。融点および

NMRは、表42に示した。

表 4 2

実施 例 No	化合物 No	A	В	融点℃	NMR(CDCl3)
426	2-11-2	MeSO ₂	MeO	72-75(d) oxalate	2.74-2.79(4H,m),3.10-3.15(4 H,m)3.71(3H,s),3.78(2H,s),3. 85(3H,s),5.02(2H,d),6.83-7.41 (10H,m)

5 [実施例427]

3-(4-x)トキシベンジルオキシ)-2-(2-x)トキシフェニル)-6-[4-(2-x)トキシメチルオキシ)ピペラジノ-1-(2-x)ピリジン シュウ酸塩 (2-12)

$$CH_3O$$
 CH_3OCH_2O
 OCH_3
 $(2-9-2)$
 CH_3OCH_2O
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3

6-[4-(2-ヒドロキシフェニル) ピペラジノ-1-イルメチル]-3-(4-メトキシベンジルオキシ)-2-(2-メトキシフェニル) ピリジン (2-9-2) 750mg (0.00147モル) をテトラヒドロフラン8m 1に溶かし氷冷下、水素化ナトリウム70mg (0.00176モル) を加え、室温下 30分間攪拌。再び氷水で冷却しクロルメチルメチルエーテル131mg (0.00162モル)のテトラヒドロフラン溶液1m1を滴下後、室温下2.5時間反応した。氷水を加えクロロホルムで抽出。硫酸マグネシウムで乾燥後シリカゲル20gで精製。クロロホルムーメタノール (30:1) 混液の溶出部として、3-(4-メトキシベンジルオキシ)-2-(2-メトキシフェニル)-

6-[4-(2-メトキシメチルオキシ) ピペラジノ-1-イルメチル]ピリジン (2-12) を油状物として得た。<math>720mg (88.5%) この油状物をアセトンに溶解し、1.1等量に相当するシュウ酸のアセトン溶液を加えてシュウ酸塩とした。融点 135-136.5 (分解)

5 NMR(CDCl3) (free base) 2.74-2.79(4H,m),3.10-3.15(4H,m),3.71(3H,s),3. 78(3H,s),3.85(3H,s),5.02(2H,s),6.83-7.41(10H,m)

[実施例428]

3-(ヒドロキシ)-2-(2-メトキシフェニル)-6-[4-(2-メトキ 10 シメチルオキシ)-ピペラジノ-1-イルメチル]ピリジン (2-13)

$$CH_3O$$
 CH_3OCH_2O
 OCH_3
 $(2-12)$
 CH_3OCH_2O
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3

NMR(CDCl₃) 2.72-2.76(4H,m),2.92-2.96(4H,m),3.51(3H,s),3.77(2H,s),3.95(3 20 H,s),5.22(2H,s),6.69-7.77(10H,m)

[実施例429]

25

3-ヒドロキシ-2-(2-メトキシフェニル)-6-[4-(2-メトキシメチルオキシ)ピペラジノ-1-イルメチル]ピリジン(2-13) 195mg (0.448ミリモル)をテトラヒドロフラン4mlに溶かし氷冷下、水素化ナトリウム22mg (0.538ミリモル)を加え室温下40分間攪拌。ついで氷水で冷却し塩化メタンスルホニル56mg (0.493ミリモル)加え室温下2時間反応した。溶媒を減圧留去、残渣に塩化アンモニア水とクロロホルムを加え有機層を分離。硫酸マグネシウムで乾燥後アルミナ8gで精製。クロロホルムーヘキサン (2:1)混液で溶出して、<math>3-メタンスルホニルオキシ-2-(2-メトキシフェニル)-6-[4-(2-メトキメチルオキシ)ピペラジノ-1-イルメチル]ピリジン (2-14)を油状物として203mg (88.3%)得た。NMR(CDCl3) 2.56(3H,s),2.73-2.78(4H,m),3.13-3.18(4H,m),3.51(3H,s),3.89(3H,s,&,2H,s),5.22(2H,s),6.95-7.77(10H,m)

15 [実施例430]

5

10

6-[4-(2-ヒドロキシ) ピペラジノ-1-イルメチル]-3-メタンスルホニルオキシ-2-(2-メトキシフェニル) ピリジン シュウ酸塩 (2-15)

3-メタンスルホニルオキシ-2-(2-メトキシフェニル)-6-[4-(2-メトキメチルオキシ)ピペラジノ-1-イルメチル]ピリジン(2-14)
 200mg(0.39ミリモル)をメタノール5m1に溶かし濃塩酸50mgをを加え40℃で、1時間加温した。溶媒を濃縮しアンモニア水でアルカリ性としク

ロロホルムで抽出。水洗、硫酸マグネシウムで乾燥後、シリカゲル8gのカラムクロマトに付しクロロホルムーメタノール(100:1)混液の溶出部として、6-[4-(2-ヒドロキシ) ピペラジノ-1-イルメチル]-3-メタンスルホニルオキシ-2-(2-メトキシフェニル) ピリジンを油状物として<math>153mg(83.6%)得た。この油状物をアセトンに溶解し、1.1等量に対応するシュウ酸のアセトン溶液を加えてシュウ酸塩とした。融点190.5-193 $\mathbb C$ (分解)

NMR(CDCl₃) 2.56(3H,s),2.73-2.77(4H,m),2.93-2.97(4H,m),3.81(2H,s),3.83 (3 H,s),6.87-7.77(10H,m)

10

5

[実施例431]

1-(5-プロモピリジン-3-イルメチル)-4-(2-メトキシフェニル) ピペラジン (3-1)

(3-1)

15 5 - プロモー 3 - クロロメチルピリジン塩酸塩 (J. Heterocyclic Chem., 29, 971 (1992)., 1.50 g, 6.19 mmol) のアセトニトリル (10 ml) 縣濁液に、室温下ヨウ化カリウム (206 mg, 1.24 mmol)、炭酸カリウム (1.88 g, 13.6 mmol)、1 - (2 - メトキシフェニル) ピペラジン (1.43 g, 7.43 mmol) のアセトニトリル溶液 (15 ml) を加え、3 時間環流攪拌した。反応液を濾過した後、得られた残20 査をアルミナカラムクロマトグラフィー (Merck alminiumoxide 90, 70-230 メッシュ)に付し、酢酸エチル: ヘキサン=1:1 の混合溶媒で溶出し、化合物 (3 - 1) (2.18 g, 97%) を得た。

また化合物 (3-1) の一部をエーテルに溶解し、シュウ酸 (1 当 量) を加えて 1-(5-プロモピリジン-3-イルメチル)-4-(2-メトキシフェニル)

25 ピペラジン・1.0シュウ酸塩を得た。

3-1: Colorless oil. Oxalate; colorless prisms, mp 225.0-230.0℃ (dec).

¹H-NMR (CDCl3, free base) δ 2.60 - 2.74 (4H, m), 3.02 - 3.18 (4H, m), 3.58 (2H, s), 3.86 (3H, s), 6.84 - 7.04 (4H, m), 7.89 (1H, br s), 8.49 (1H, d, J = 2.1 Hz), 8.58 (1H, d, J = 2.1 Hz).

5 [実施例432]

BNSDOCID: -WO 003106341 L

1-(2-メトキシフェニル)-4-(5-(2-メトキシフェニル) ピリジン-3-イルメチル) ピペラジン(3-2)

Br
$$N$$
 CH_3O CH_3O CH_3O CH_3O CH_3O

1 - (5 - プロモピリジン - 3 - イルメチル) - 4 - (2 - メトキシフェニル)
10 ピペラジン (364 mg, 1.01 mmol) を N,N-ジメチルホルムアミド (4 ml) に溶解し、室温下 2 - メトキシフェニルホウ酸 (183 mg, 1.24 mmol) 、テトラキストリフェニルホスフィンパラジウム (58.0 mg, 0.05 mmol) 、トリエチルアミン (304 mg, 3.00 mmol) の N,N-ジメチルホルムアミド溶液 (1 ml) を加え、100℃で19時間撹拌した。

- 15 反応液は溶媒を減圧下留去した後、クロロホルムに溶解し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、減圧下溶媒を留去して得られた残査をアルミナカラムクロマトグラフィー (Merck alminiumoxide 90, 70-230 メッシュ)に付し、酢酸エチル: ヘキサン=1:3の混合溶媒で溶出し、化合物 (3-2) (270 mg, 69%)を得た。

3-2: Colorless oil. Oxalate; colorless prisms, mp $163.0 \cdot 165.0$ °C.

¹H-NMR (CDCl3, free base) δ 2.64 - 2.84 (4H, m), 3.04 - 3.20 (4H, m), 3.69 (2H, s), 3.83 (3H, s), 3.86 (3H, s), 6.84 - 7.09 (6H, m), 7.33 - 7.40 (1H, m), 7.88 (1H, br s), 8.52 (1H, d, J = 2.1 Hz), 8.69 (1H, d, J = 2.1 Hz).

[実施例433-436]

以下、実施例432と同様の方法で合成した1-(2-メトキシフェニル)-4-(5-アリールピリジン-3-イルメチル)ピペラジン誘導体の融点、1H-NMR 値を表43に示した。

$$Ar$$
 N
 CH_3O

表 4 3

実施	化合	A -:	Fh + 90	177 177 177
		Ar	融点 ℃	1H-NMR (CDCl3) δ
例	物			
No	No		<u> </u>	
433	3-3	phenyl	198.0 -	2.62 - 2.78 (4H, m), 3.02 - 3.20 (4H,
			201.0	m), 3.68 (2H, s), 3.86 (3H, s), 6.84
			oxalate	7.02 (4H, m), 7.59 - 7.64 (2H, m),
1				7.91 (1H, br s), 8.56 (1H, d, $J = 1.8$
				Hz), 8.76 (1H, d, $J = 2.4 Hz$)
434	3-4	3-	187.0 -	
		methoxyphenyl	190.0	m), 3.68 (2H, s), 3.86 (3H, s), 3.89
			oxalate	(3H, s), 6.84 - 7.03 (5H, m), 7.12 -
				7.16 (1H, m), 7.18 - 7.22 (1H, m),
				7.40 (1H, t, J = 8.1 Hz), 7.90 (1H, br)
			ļ	s), 8.56 (1H, d, J = 1.8 Hz), 8.75 (1H,
ļ				d, J = 2.4 Hz)
435	3-5	4-	206.0 -	2.62 - 2.78 (4H, m), 3.02 - 3.20 (4H,
	-	methoxyphenyl	210.0	m), 3.66 (2H, s), 3.86 (3H, s), 3.87
	ł		oxalate	(3H, s), 6.84 - 7.04 (6H, m), 7.52 -
				7.58 (2H, m), 7.87 (1H, br s), 8.51
	,			(1H, d, J = 2.4 Hz), 8.72 (1H, d, J =
				2.4 Hz)
436	3-6	thiophen-3-yl	209.0 -	2.64 - 2.78 (4H, m), 3.02 - 3.20 (4H,
			211.0	m), 3.65 (2H, s), 3.86 (3H, s), 6.84
			oxalate	7.02 (4H, m), 7.41 - 7.47 (2H, m),
	ŀ			7.55 - 7.57 (1H, m), 7.91 (1H, br s),
	ļ			8.50 (1H, d, J = 2.1 Hz), 8.78 (1H, d,
L	·			J = 2.1 Hz)

[実施例437]

2-クロロー3-ホルミルー5-フェニルピリジン(Tetrahedron Lett., 37, 8231, (1996)., 109 mg, 0.50 mmol)を 1,2-ジクロロエタン(2 ml)に溶解し、室温下 1- (2-メトキシフェニル)ピペラジン(96.0 mg, 0.50 mmol)の 1,2-ジクロロエタン溶液(15 ml)、水素化トリアセトキシホウ素ナトリウム(95%, 134 mg, 0.60 mmol)を加え 8 時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出を行い、有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、減圧下溶媒を留去して得られた残査をシリカゲルカラムクロマトグラフィー(Merk Kieselgel 60, 70-230 メッシュ)に付し、酢酸エチル:ヘキサン= 1:4 の混合溶媒で溶出し、化合物(4-1-1)(191 mg, 97%)を得た。

また化合物 (4-1-1) の一部をエーテルに溶解し、シュウ酸 (1 当 量) を加えて 1-(2-0) ロロー 5-0 フェニルピリジン -3-1 ルメチル(2-1) メトキシフェニル(2-1) ピペラジン・(1-1) のシュウ酸塩を得た。

4-1-1: Colorless oil. Oxalate; colorless prisms, mp 158.0-159.0℃.
¹H-NMR (CDCl3, free base) δ 2.78 (4H, t, J = 4.8 Hz), 3.13 (4H, t, J = 4.8 Hz),
3.69 (2H, s), 6.85 - 7.03 (4H, m), 7.39 - 7.60 (5H, m), 8.09 (1H, d, J = 2.7 Hz),
8.51 (1H, d, J = 2.7 Hz).

20 [実施例438]

5

10

実施例437と同様の操作を行い、1-(2-2)ロロ-5-(2-3)トキシフェニル)ピリジン-3-4ルメチル)-4-(2-3) を得た。

Colorless oil. Oxalate; colorless prisms, mp 168.0-169.0℃.

25 ¹H-NMR (CDCl3, free base) δ 2.72 - 2.83 (4H, m), 3.07 - 3.20 (4H, m), 3.74 (2H,

s), 3.82 (3H, s), 3.87 (3H, s), 6.84 - 7.09 (6H, m), 7.31 - 7.42 (2H, m), 8.03 - 8.10 (1H, m), 8.44 (1H, d, J = 2.4 Hz).

[実施例439]

5 1-(2-(4-)++) (2-) (4-) (2-) (4-) (2-) (4-) (2-) (4-) (2-) (4-) (2-) (4-) (2-) (4-) (2-) (4-) (2-) (4-)

60% 水素化ナトリウム (50.9 mg, 1.27 mmol) に室温下 4 - メトキシベンジルアルコール (180 mg, 1.30 mmol) の N,N-ジメチルホルムアミド溶液 (1 ml) を加え 5 分間攪拌した後、1 - (2 - クロロ-5 - フェニルピリジン-3 - イルメチル) - 4 - (2 - メトキシフェニル) ピペラジン (99.1 mg, 0.252 mmol) の N,N-ジメチルホルムアミド溶液 (2 ml) を加え、1 2 0 ℃で 3 時間加熱攪拌した。反応液に水を加え、クロロホルムで抽出を行い、有機層は飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、減圧下溶媒を留去して得られた残査をアルミナカラムクロマトグラフィー (Merck alminiumoxide 90, 70-230 メッシュ) に付し、酢酸エチル: ヘキサン=1:10 の混合溶媒で溶出し、化合物 (4-2-1) (105 mg, 84%) を得た。

また化合物(4-2-1)の一部をエーテルに溶解し、シュウ酸(1 当量)を加えて1-(2-(4-))トキシベンジルオキシ)-5-フェニルピリジン-3-イルメチル)-4-(2-)メトキシフェニル)ピペラジン・1.0シュウ酸塩 (4-4) を得た。

4-2-1: Colorless oil. Oxalate; colorless prisms, mp $168.0 \cdot 170.0 ^{\circ}$ C.

¹H-NMR (CDCl3, free base) δ 2.68 - 2.82 (4H, m), 3.04 - 3.16 (4H, m), 3.70 (2H, s), 3.82 (3H, s), 3.85 (3H, s), 5.41 (2H, s), 6.83 - 7.02 (6H, m), 7.32 - 7.59 (7H, m), 7.93 (1H, m), 8.31 (1H, d, J = 2.7 Hz).

20

[実施例440-442]

・以下、実施例439と同様の方法で合成した化合物の融点、1H-NMR値を表44 に示した。

表 4 4

5

22 4 4					
実 施 例 No	化合 物 No	D	E	プ点蛹	1H-NMR (CDCl3) δ
440	4-1- 2	H	₩eO S	106.0 - 107.0 oxalate	2.72 - 2.86 (4H, m), 3.08 - 3.24 (4H, m), 3.73 (2H, s), 3.84 (3H, s), 3.87 (3H, s), 6.84 - 7.04 (6H, m), 7.32 - 7.60 (7H, m), 7.86 (1H, br s), 8.53 (1H, d, J = 1.8Hz)
441	4-1-3	OMe	₩eO Co	144.0 - 148.0 oxalate	2.60 · 2.80 (4H, m), 3.02 · 3.24 (4H, m), 3.69 (2H, s), 3.82 (6H, s), 3.85 (3H, s), 5.40 (2H, s), 6.83 · 7.07 (8H, m), 7.28 · 7.40 (2H, m), 7.42 · 7.46 (2H, m), 7.89 (1H, d, J = 2.4 Hz), 8.24 (1H, d, J = 2.4 Hz)
442	4-1-4	OMe	₩eO S	142.0 - 144.0 free	2.60 - 2.85 (4H, m), 3.06 - 3.20 (4H, m), 3.72 (2H, s), 3.80 (3H, s), 3.83 (3H, s), 3.87 (3H, s), 6.84 - 7.05 (8H, m), 7.27 - 7.36 (2H, m), 7.47 - 7.53 (2H, m), 7.84 (1H, br s), 8.45 (1H, d, J = 2.1Hz)

[実施例443]

3-(4-(2-メトキシフェニル) ピペラジン<math>-1-1 ルメチル) -5-7 10 ェニル-1 H-ピリジン-2 -オン (4-3)

$$(4-2-1)$$

1-(2-(4-)++) ベンジルオキシ) -5- フェニルピリジン-3- イルメチル) -4-(2-) トキシフェニル)ピペラジン(227 mg, 0.458 mmol)を酢酸(2 ml)に溶解し、4. 7%臭化水素酸(1.0 ml, 8.80 mmol)を加え5. 0 $\mathbb C$ で2時間撹拌した。反応液に水を加え、5 規定水酸化ナトリウムでアルカリ性とした後、クロロホルムで抽出し、有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、減圧下溶媒を留去して得られた残査をシリカゲルカラムクロマトグラフィー(Merk Kieselgel 60, 70.230 メッシュ)に付し、クロロホルム:メタノール=9. 7:3. の混合溶媒で溶出し、化合物(4-3.)(109 mg, 63%)を得た。

Colorless prisms, mp 193.0-194.0℃.

¹H-NMR (CD3OD, free base) δ 2.72 - 2.81 (4H, m), 3.03 - 3.14 (4H, m), 3.60 (2H, s), 3.84 (3H, s), 6.85 - 7.03 (4H, m), 7.29 - 7.55 (5H, m), 7.63 (1H, d, J = 2.4 Hz), 8.01 (1H, d, J = 2.4 Hz).

[実施例444]

5

10

15

3-(4-(2-メトキシフェニル) ピペラジン-1-イルメチル) -1-メチル-5-フェニル-1H-ピリジン-2-オン <math>(4-4-1)

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

20 60% 水素化ナトリウム (24.1 mg, 0.602 mmol) に室温下 3 - (4 - (2 - メ トキシフェニル) ピペラジン-1-イルメチル) - 5 - フェニル-1 H - ピリジ

ンー 2 ー オン (200 mg, 0.533 mmol) の N,Nージメチルホルムアミド溶液 (5 ml) を加え 5 分間攪拌した後、ヨウ化メチル (91.0 mg, 0.641 mmol) の N,Nージメチルホルムアミド溶液 (1 ml) を加え、室温下 2 時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、クロロホルムで抽出を行い、有機層は飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、減圧下溶媒を留去して得られた残査をアルミナカラムクロマトグラフィー (Merck alminiumoxide 90, 70-230 メッシュ) に付し、酢酸エチル:ヘキサン= 3 : 1 の混合溶媒で溶出し、化合物 (4 ー 4 ー 1) (96.5 mg, 47%) を得た。

Colorless prisms, mp 167.0-168.0℃.

[実施例445]

5

Colorless prisms, mp 138.0-139.0℃.

¹H-NMR (CDC13, free base) δ 2.74 - 2.85 (4H, m), 3.05 - 3.20 (4H, m), 3.66 (2H, s), 3.79 (3H, s), 3.86 (3H, s), 5.16 (2H, s), 6.84 - 7.02 (6H, m), 7.28 - 7.44 (8H, m), 7.75 (1H, d, J = 2.4 Hz).

[実施例446]

1-メタンスルホニル-3-(4-(2-メトキシフェニル)ピペラジン-1-イルメチル)-5-フェニル-1H-ピリジン-2-オン(4-5-1)および 2-メタンスルホニルオキシ-3-(4-(2-メトキシフェニル)ピペラジン -1-イルメチル)-5-フェニルピリジン(4-5-2)

60% 水素化ナトリウム(26.0 mg, 0.650 mmol)に室温下 3-(4-(2-x)+2) トキシフェニル)ピペラジン-1-(1) 1 ーイルメチル) -(5-(2-x)+2) 2 ー (223 mg, 0.593 mmol) の N,Nージメチルホルムアミド溶液(5 ml)を加え 5 分間攪拌した後、塩化メタンスルホニル(75.0 mg, 0.655 mmol)の N,Nージメチルホルムアミド溶液(1 ml)を加え、室温下で 2 時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、クロロホルムで抽出を行い、有機層は飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、減圧下溶媒を留去して得られた残査をアルミナカラムクロマトグラフィー(Merck alminiumoxide 90, 70-230メッシュ)に付し、酢酸エチル:ヘキサン=1:2 の混合溶媒で溶出し、溶出順に化合物(4-(5-(2-x)+2) (82.0 mg, 31%)を得た。

また化合物(4-5-1)の一部をエーテルに溶解し、シュウ酸(1 当量)を加えて2-メタンスルホニルオキシ-3-(4-(2-メトキシフェニル)ピペラジン-1-イルメチル)-5-フェニルピリジン・1. 0シュウ酸塩を得た。Cororless oil. Oxalate; colorless prisms, mp 161.0-163.0 \mathbb{C} .

¹H-NMR (CDCl3, free base) δ 2.70 - 2.82 (4H, m), 3.02 - 3.20 (4H, m), 3.59 (3H, s), 3.76 (2H, s), 3.86 (3H, s), 6.84 - 7.03 (4H, m), 7.40 - 7.60 (5H, m), 8.16 (1H, d, J = 2.4 Hz), 8.42 (1H, d, J = 2.4 Hz).

20 Colorless prisms, mp 157.0-158.0℃.

¹H-NMR (CDCl3, free base) δ 2.72 - 2.84 (4H, m), 3.05 - 3.24 (4H, m), 3.63 (2H, s), 3.69 (3H, s), 6.84 - 7.04 (4H, m), 7.35 - 7.50 (5H, m), 7.87 - 7.89 (1H, m), 8.01 (1H, d, J = 2.4 Hz).

5

10

[実施例447]

(6-メトキシ-5-(2-メトキシフェニル) ピリジン-3-イル) メタノール (5-1)

$$CH_3O$$
 N CH_3O OH OCH_3 OCH_3 OCH_3 OCH_3

5-(2-メトキシフェニル) -6-メトキシニコチン酸メチルエステル(J. Org. Chem., 49, 5237 (1984)., 1.32 g, 4.83 mmol) をトルエン(50 ml) に溶解し、-70℃で水素化ジイソブチルアルミニウムのトルエン溶液(1.01 mmol/ml, 11.6 ml, 11.7 mmol) を加え1時間撹拌した。反応液にメタノールを加え、1規定塩酸で弱酸性とし、クロロホルムで抽出を行い、有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、減圧下溶媒を留去して得られた残査をシリカゲルカラムクロマトグラフィー(Merk Kieselgel 60, 70-230 メッシュ)に付し、酢酸エチル:ヘキサン=1:1の混合溶媒で溶出し、化合物(5-1)(1.22 g, 100%)を得た。

15 Colorless oil

5

¹H-NMR (CDCl3) δ 3.78 (3H, s), 3.92 (3H, s), 4.66 (2H, s), 6.98 (1H, d, J = 7.5 Hz), 7.01, (1H, dt, J = 7.5, 0.9 Hz), 7.24 (1H, dd, J = 7.5, 1.8 Hz), 7.35 (1H, dt, J = 7.5, 0.9 Hz), 7.59 (1H, d, J = 1.8 Hz), 8.13 (1H, d, J = 1.8 Hz).

20 [実施例448]

5 - クロロメチル - 2 - メトキシ - 3 - (2 - メトキシフェニル) ピリジン(5 - 2)

10 Colorless needles, mp 66.0-67.0℃

¹H-NMR (CDCl3) δ 3.78 (3H, s), 3.93 (3H, s), 4.59 (2H, s), 6.97 - 7.05 (2H, m), 7.26 (1H, dd, J = 7.5, 1.5 Hz), 7.36 (1H, dt, J = 7.5, 1.5 Hz), 7.56 (1H, d, J = 2.7 Hz), 8.15 (1H, d, J = 2.7 Hz).

15 [実施例449]

5

20 5-クロロメチルー 2-メトキシー 3-(2-メトキシフェニル)ピリジン(191 mg, 0.725 mmol) のアセトニトリル (4 ml) 溶液に、室温下ヨウ化カリウム (24.0

mg, 0.145 mmol) 、炭酸カリウム(120 mg, 0.870 mmol) 、 1-(2-メトキ シフェニル) ピペラジン(167 mg, 0.871 mmol)のアセトニトリル溶液(1 ml)を加え、 $2 \text{ 時間環流攪拌した。反応液を濾過した後、得られた残査をアルミナカ ラムクロマトグラフィー(Merck alminiumoxide 90, <math>70-230 \text{ メッシュ)に付し、酢酸エチル:<math>0.85 \text{ mg}$, 0.875 mg を得た。

Colorless prisms, mp 144.0-145.0℃

¹H-NMR (CDCl3) δ 2.62 - 2.74 (4H, m), 3.00 - 3.16 (4H, m), 3.58 (2H, s), 3.79 (3H, s), 3.86 (3H, s), 3.92 (3H, s), 6.84 - 7.05 (6H, m), 7.26 - 7.38 (2H, m), 7.58 (1H, d, J = 2.4 Hz), 8.08 (1H, d, J = 2.4 Hz).

[実施例450]

5

10

15

20

3-(2-メトキシフェニル)-5-(4-(2-メトキシフェニル) ピペラジン-1-イルメチル)-1H-ピリジン-2-オン(5-4)

1-(6- + 1) と 1-(2- + 1) と 1-

Colorless prisms, mp 207.0-208.0℃

25 1 H-NMR (CDCl3) δ 2.60 - 2.80 (4H, m), 2.98 - 3.15 (4H, m), 3.45 (2H, s), 3.78

(3H, s), 3.85 (3H, s), 6.85 - 7.06 (6H, m), 7.27 (1H, dd, J = 7.2, 1.8 Hz), 7.34 (1H, dt, J = 7.2, 1.8 Hz), 7.38 (1H, d, J = 2.4 Hz), 7.60 (1H, d, J = 2.4 Hz).

[実施例451]

5 $3-(2-\lambda+1)$ $-5-(4-(2-\lambda+1)$ $2-\lambda+1)$ $2-\lambda+1$ $3-(2-\lambda+1)$ $3-(2-\lambda+1)$ $3-(2-\lambda+1)$ $3-(2-\lambda+1)$ $3-(2-\lambda+1)$ $3-(2-\lambda+1)$ $3-(2-\lambda+1)$ $3-(2-\lambda+1)$ $3-(2-\lambda+1)$

60% 水素化ナトリウム(23.3 mg, 0.583 mmol)に室温下 3-(2- + 1) フェニル)-5-(4-(2- + 1)) ピペラジン-1- (4- (2- + 1)) ピペラジン-1- (4- (2- + 1)) ピペラジン-1- (4- (2- + 1)) ピペラジン-1- (4- (2- + 1)) ピペラジン-1- (2- + 1) (214 mg, 0.529 mmol)の N,N- (2 + 1) が (82.5 mg, 0.581 mmol)の N,N- (2 + 1) が (82.5 mg,

Colorless prisms, mp 127.0-129.0℃

¹H-NMR (CDCl3) δ 2.60 - 2.74 (4H, m), 3.02 - 3.16 (4H, m), 3.36 (2H, s), 3.59 20 (3H, s), 3.80 (3H, s), 3.86 (3H, s), 6.84 - 7.03 (6H, m), 7.27 (1H, dd, J = 8.1, 1.8 Hz), 7.30 - 7.38 (3H, m), 7.46 (1H, d, J = 1.8 Hz).

[実施例452]

実施例 4 5 1 と同様の操作を行い、1 - (4 - メトキシベンジル) - 3 - (2 - 25 メトキシフェニル) - 5 - (4 - (2 - メトキシフェニル) ピペラジン-1 - イ

10

ルメチル)-1H-ピリジン-2-オン(5-5-2)を得た。

Colorless prisms, mp 115.0-116.0℃

¹H-NMR (CDCl3) δ 2.54 - 2.72 (4H, m), 2.98 - 3.16 (4H, m), 3.32 (2H, s), 3.79 (3H, s), 3.80 (3H, s), 3.85 (3H, s), 5.13 (2H, s), 6.84 - 7.03 (8H, 5), 7.23 - 7.45 (6H, m).

[実施例453]

$$CH_3SO_2O$$
 N CH_3O CH_3

60% 水素化ナトリウム (23.9 mg, 0.598 mmol) に室温下 3 - (2 - メトキシフェニル) - 5 - (4 - (2 - メトキシフェニル) ピペラジン-1 - イルメチル) - 1 H - ピリジン-2 - オン (202 mg, 0.497 mmol) の N,N - ジメチルホルムアミド溶液 (4 ml) を加え 1 0 分間攪拌した後、塩化メタンスルホニル (67.0 mg, 0.585 mmol) の N,N - ジメチルホルムアミド溶液 (1 ml) を加え、室温下で 1 時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、クロロホルムで抽出を行い、有機層は飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、減圧下溶媒を留去して得られた残査をアルミナカラムクロマトグラフィー (Merck alminiumoxide 90, 70-230 メッシュ) に付し、酢酸エチル: ヘキサン=1:3の混合溶媒で溶出し、化合物 (5 - 6) (113 mg, 47%) を得た。

25 Colorless oil. Oxalate; colorless powder, mp 178.0-179.0℃

10

15

¹H-NMR (CDCl3, free base) δ 2.60 - 2.76 (4H, m), 3.02 - 3.18 (4H, m), 3.46 (3H, s), 3.63 (2H, s), 3.83 (3H, s), 3.86 (3H, s), 6.84 - 7.07 (6H, m), 7.24 - 7.29 (1H, m), 7.40 (1H, m), 7.80 (1H, d, J = 2.1 Hz), 8.26 (1H, d, J = 2.1 Hz).

5 (試験例)

ヒト 5-HT₇ 受容体 [Bard J.A.ら、*J. Biol. Chem.* **268** (1993) 23422-23426] を発現させた HEK293 細胞から得られた細胞膜標本と 1 nM の [³H]5HT および数濃度の被験化合物の混合物をそれぞれ 25℃で 120 分間インキュベーションした後、Whatman GF/C フィルター上に吸引濾過する。液体シンチレーションカウンターでフィルター上の放射活性を測定し、特異的 [³H]5HT 結合に対する被験化合物の50% 阻害濃度(IC₅₀値)を算出し、Cheng-Prusoff [*Biochem. Pharmacol.* **22** (1973) 3099-3108] の式 Ki=IC₅₀/(1+[L]/Kd)から Ki 値を求めた。[L]は用いたラジオリガンドの濃度、Kd は解離常数を示す。

表 4 5

10

化合物 No	Ki 値(nM)	化合物 No	Ki 値(nM)	化合物 No	Ki 値 (nM)
1-2	57	1-128	25	1-152	18
1-52	35	1-130	30	1-164	9.2
1-63	35	1-131	26	1-165	17
1-81	56	1-132	38	1-166	24
1-84	63	1-133	47	1-167	22
1-85	37	1-134	58	1-168	25
1-86	20	1-135	32	1-169	30
1-87	36	1-138	27	1-170	44
1-109	16	1-140	40	1-171	10
1-117	15	1-143	26	1-178	28
1-118	23	1-145	19	1-182	28
1-125	25	1-147	37	2-12	160
1-126	32	1-149	16	4-11	46
1-127	26	1-151	37	5-6	53

15

産業上の利用可能性

本発明化合物は、セロトニン受容体の中でも特に5-HT, (5-Hydroxytrpta mine7) 受容体に作用する化合物であり、概日リズム障害治療薬、老人性睡眠障害治療薬、抗うつ薬、抗不安薬、循環器障害治療薬、片頭痛治療薬、鎮痛薬薬等として有用である。

請求の範囲

1. 一般式(I):

$$R_1$$
 (CH₂)_nNR₂R₃ (I)

5 (式中、

10

15

Ar は置換又は非置換のアリールまたは置換又は非置換のヘテロアリール: Riはハロゲン、アルキル、アルケニル、アルキルオキシ、アルケニルオキシ、ア ルキルチオ、アルケニルチオ、置換又は非置換のアルキルスルホニルオキシ、ア ルケニルスルホニルオキシ、アルキルスルホニル、アルケニルスルホニル、アル キルカルボニルオキシ、アルケニルカルボニルオキシ、アルケニルスルホニルオ キシ、置換又は非置換のアリールアルキルオキシ、置換又は非置換のアリールア ルキルチオ、置換又は非置換のアリールチオ、置換又は非置換のヘテロアリール アルキルオキシ、置換又は非置換のアリールスルホニルオキシ、ヘテロアリール スルホニルオキシ、-OSO2NR4R5、-OCONR4R5、-OCSNR4R5、-NR6R7、-N(R8)- $(CH_2)_{p}$ -NR₉R₁₀ $(R_4$ および R₅ は、それぞれ独立して水素原子、アルキル、または R4 および R5 はいっしょになって隣接する窒素原子とともに置換又は非置換のへ テロ環基を形成してもよい: R_6 および R_7 は、それぞれ独立して水素原子、置換 又は非置換のアルキル、または R6 および R7 はいっしょになって隣接する窒素原 子とともに置換又は非置換のヘテロ環基を形成してもよい:R₈は、水素原子また はアルキル:p は、 $2 \sim 4$ の整数: R_9 および R_{10} は、それぞれ独立して水素原子

またはアルキル):

 R_2 および R_3 は、それぞれ独立して水素原子、置換又は非置換のアルキル、または R_2 および R_3 はいっしょになって隣接する窒素原子とともに置換又は非置換のヘテロ環基を形成してもよい:

5 nは、1~6の整数:

但し、Arが置換又は非置換のヘテロアリールの場合、 R_1 はアルキル、アルケニル又はハロゲンのいずれでもない。)で表される化合物、もしくは薬理学的に許容される塩、又はそれらの水和物。

2. 一般式(II):

$$R_1$$
 (II)
 $(CH_2)_nNR_2R_3$

10

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物、である請求項1記載の化合物。

3. 一般式 (III):

$$R_1$$
 (CH₂)_nNR₂R₃ (III)

15 (式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物である、請求項1記載の化合物。

4. 一般式 (IV):

$$R_1$$
 (IV)
Ar N (CH₂)_nNR₂R₃

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容され 20 る塩、またはそれらの水和物である、請求項2記載の化合物。

5. 一般式 (V)

$$\begin{array}{c|c} Ar & (CH_2)_nNR_2R_3 \\ \hline R_1 & (V) \end{array}$$

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物である、請求項3記載の化合物。

5 6. 一般式 (VI)

$$R_1$$
 (VI)
$$Ar \qquad (CH_2)_nNR_2R_3$$

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物である、請求項4記載の化合物。

7. 一般式 (VII):

$$R_1$$
 (VII)
 Ar (CH₂)_nNR₂R₃

10

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物である、請求項4記載の化合物。

8. 一般式 (VIII):

$$R_1$$
 (VIII)
Ar $(CH_2)_nNR_2R_3$

15

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物である、請求項4記載の化合物。

9. 一般式 (IX):

$$\begin{array}{c|c} Ar & (CH_2)_nNR_2R_3 \\ \hline R_1 & N & (IX) \end{array}$$

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物である、請求項5記載の化合物。

5 10. 一般式(X):

$$\begin{array}{c|c} Ar & (CH_2)_nNR_2R_3 \\ \hline & (X) \\ \hline & R_1 \end{array}$$

(式中、各記号は前記と同義)で表される化合物、もしくは薬理学的に許容される塩、またはそれらの水和物である、請求項5記載の化合物。

11. Arが置換又は非置換のアリール: R_1 がアルキルスルホニルオキシ、置換又は非置換のアリールアルキルオキシ、-OSO $_2$ NR $_4$ R $_5$ 、又は·OCONR $_4$ R $_5$ (R_4 および R_5 はそれぞれ独立して水素又はアルキル): R_2 および R_3 が一緒になって隣接する窒素原子と共に置換又は非置換のヘテロ環基を形成する:nが1である、請求項6記載の化合物。

12. Ar が置換フェニル: R_1 がアルキルスルホニルオキシ又は置換ベンジル オキシ: R_2 および R_3 が一緒になって隣接する窒素原子と共に置換ピペラジノを 形成する、請求項11記載の化合物。

13. 置換ピペラジノが置換フェニルピペラジノ又はベンゾフランー 7 ーイルピペラジノである、請求項12記載の化合物。

14. Ar が3-ヒドロキシフェニル、3-アルコキシフェニル又は3-ハロゲ 20 ノフェニル: R₁がメチルスルホニルオキシ: R₂およびR₃が一緒になって隣接 する窒素原子と共に、<math>4-(2-ヒドロキシフェニル) ピペラジノを形成する、請求項11記載の化合物。

15. Arが3-ヒドロキシフェニル、3-メトキシフェニル又は3-フルオロフェニル: R₁がメチルスルホニルオキシ: R₂およびR₃が一緒になって隣接する窒素原子と共に、4-(2-ヒドロキシフェニル) ピペラジノを形成する、請求

項11記載の化合物。

16.請求項1から請求項15のいずれかに記載の化合物を有効成分として含有する医薬。

17. 一般式 (I):

$$R_1$$
 (CH₂)_nNR₂R₃ (I)

5

10

15

(式中、

Ar は置換又は非置換のアリールまたは置換又は非置換のヘテロアリール:

R1は水素、ハロゲン、アルキル、アルケニル、アルキルオキシ、アルケニルオキ シ、アルキルチオ、アルケニルチオ、アルキルスルホニルオキシ、アルケニルス ルホニルオキシ、アルキルスルフィニル、アルケニルスルフィニル、アルキルカ ルボニルオキシ、アルケニルカルボニルオキシ、アルケニルスルホニルオキシ、 置換又は非置換のアリールアルキルオキシ、置換又は非置換のアリールアルキル チオ、置換又は非置換のアリールチオ、置換又は非置換のヘテロアリールアルキ ルオキシ、置換又は非置換のアリールスルホニルオキシ、ヘテロアリールスルホ ニルオキシ、 $-OSO_2NR_4R_5$ 、 $-OCONR_4R_5$ 、 $-OCSNR_4R_5$ 、 $-NR_6R_7$ 、 $-N(R_8)$ - $(CH_2)_p$ $-NR_9R_{10}$ (R₄ および R₅ は、それぞれ独立して水素原子、アルキル、または R₄ お よび R5 はいっしょになって隣接する窒素原子とともに置換又は非置換のヘテロ 環基を形成してもよい: R_6 および R_7 は、それぞれ独立して水素原子、置換又は 非置換のアルキル、または R_6 および R_7 はいっしょになって隣接する窒素原子と ともに置換又は非置換のヘテロ環基を形成してもよい:R₈は、水素原子またはア

ルキル: pは、 $2\sim4$ の整数: R_9 および R_{10} は、それぞれ独立して水素原子またはアルキル):

 R_2 および R_3 は、それぞれ独立して水素原子、置換又は非置換のアルキル、または R_2 および R_3 はいっしょになって隣接する窒素原子とともに置換又は非置換のヘテロ環基を形成してもよい:

nは、1~6の整数)で表される化合物、もしくは薬理学的に許容される塩、又はそれらの水和物を含有する、セロトニン受容体結合剤。

18. 請求項1から請求項15のいずれかに記載の化合物を有効成分として含有するセロトニン受容体結合剤。

10 19.5-HT₇受容体に対して親和性を有する、請求項18記載のセロトニン受容体結合剤。

20.5-HT $_7$ 受容体のアゴニストである、請求項19 記載のセロトニン受容体結合剤。

21. 概日リズム障害治療薬として有用な、請求項17~20のいずれかに記載 のセロトニン受容体結合剤。

22. 老人性睡眠障害治療薬として有用な、請求項17~20のいずれかに記載のセロトニン受容体結合剤。

23. 抗うつ薬、抗不安薬、循環器障害治療薬、片頭痛治療薬、または鎮痛薬として有用な、請求項17または18記載のセロトニン受容体結合剤。

20 24. 一般式 (XI):

5

$$Ar \xrightarrow{N} R_{11}^{(XI)}$$

(式中、

Yは酸素原子又は硫黄原子:

 R_{11} はハロゲン又は $-NR_2R_3$:

25 その他記号は前記と同義)で表される化合物またはその塩。

25. 一般式 (XII):

$$R_{12}$$
(XII)

(式中、

 R_{12} はアルキルオキシ、アルケニルオキシ、アルキルスルホニルオキシ、アルケ 5 ニルスルホニルオキシ、又は置換若しくは非置換のアリールアルキルオキシ: R_{13} はアセチルオキシ、ヒドロキシ又はハロゲン:

その他記号は前記と同義)で表される化合物またはその塩。

26. 一般式 (XIII):

10 (式中、

R₁₄は水素原子、アルキル、アルケニル、アリールアルキル、ヘテロアリールアルキル、アルキルスルホニル、アルケニルスルホニル、アリールスルホニル又はヘテロアリールスルホニル:

 R_{15} および R_{16} の一方は Ar を示し、他方は- $CH_2NR_2R_3$ を示す:その他記号は前記 2 と同義)で表される化合物またはその塩。

International application No. PCT/JP98/05561

CLASSIFICATION OF SUBJECT MATTER C07213/38, 213/63, 213/70, 213/71, 213/89, 401/04, 405/14, 409/04, A61K31/44, 31/495 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) Int.Cl° C07D213/00-89, 401/00-14, 409/00-04, A61K31/00-495 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN), CAPLUS (STN), WPIDS (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х JP, 3-141270, A (Fujisawa Pharmaceutical 1, 2, 4, 6 Α Co., Ltd.), 3, 5, 7-26 17 June, 1991 (17. 06. 91) EP, 417751, A & US, 5364871, A US, 5371097, A MUKKALA, V,; KANKARE, J.J. Х 1, 2, 4, 6-8 3, 5, 9-26 New 2,2'-Bipyridine Derivatives and Their Luminescence Properties with Europium (III) and Terbium (III) Ions Helvetica Chimica Acta, Vol. 75, p.1578-1592 (1992) Х JP, 3-500249, A (PHARMACIA AB), 25 24 January, 1991 (24. 01. 91) 1-24, 26Α & WO, 90/00623, A & EP, 386180, A VAINS, J.B.; PAPET, A.L.; MARSURA, A. Х 25 New Symmetric and Unsymmetric Polyfunctionalized 1-24, 262,2'-Bipyridines J. Heterocyclic Chem., Vol. 31, p.1069-1077 (1994) X Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority document defining the general state of the art which is not date and not in conflict with the application but cited to understand considered to be of particular relevance the principle or theory underlying the invention earlier document but published on or after the international filing date document of particular relevance; the claimed invention cannot be document which may throw doubts on priority claim(s) or which is considered novel or cannot be considered to involve an inventive step cited to establish the publication date of another citation or other when the document is taken alone special reason (as specified) document of particular relevance; the claimed invention cannot be document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such combination document published prior to the international filing date but later than being obvious to a person skilled in the art "&" document member of the same patent family the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 23 February, 1998 (23. 02. 98) 2 March, 1999 (02. 03. 99) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Facsimile No. Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

International application No. PCT/JP98/05561

VACHER, B.; BONNAUD, B.; FUNES, P.; JUBAULT, N.; KOEK,	
W.; ASSIE, M.; COSI, C. Design and Synethsis of a Series of 6-Substituted 2-pyridinylmethylamine Drivatives as Novel, High- affinity, Selective Agonists at 5-HT1A Receptors. J. Med. Chem., Vol. 41, No. 25, p.5070-5083 (1998) December 3)	1-26
WO, 95/28400, A1 (GLAXO GROUP LTD), 26 October, 1995 (26. 10. 95) & AU, 9523439, A	1-26
DE, 4226527, A (MERCK PATENT GMBH), 17 February, 1994 (17. 02. 94) & EP, 586855, A2 & JP, 6-184140, A	1-26
	,
,	,
,	
	2-pyridinylmethylamine Drivatives as Novel, High- affinity, Selective Agonists at 5-HTlA Receptors. J. Med. Chem., Vol. 41, No. 25, p.5070-5083 (1998) December 3) WO, 95/28400, A1 (GLAXO GROUP LTD), 26 October, 1995 (26. 10. 95) & AU, 9523439, A DE, 4226527, A (MERCK PATENT GMBH), 17 February, 1994 (17. 02. 94)

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.

PCT/JP98/05561

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 1, 16-23
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically: In claim 1, the Ar group in the general formula of the compounds is merely
defined as "optionally substituted aryl or optionally substituted
heteroaryl" and the positions of the three substituents on the pyridine ring are not specified. Thus, the above compounds include a remarkably broad
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all
searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.
The process accompanies are payment of additional scales sees.
Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)
T (COMINECTION OF FILE OFFICE (*)) (T-) (T-)

International application No.
PCT/JP98/05561

Continuation of Box N	o. I	of continuation	of	first	sheet	(1)
-----------------------	------	-----------------	----	-------	-------	-----

range of compounds. Concerning the compounds disclosed in claim 1, therefore, prior art documents have been searched on compounds wherein the locations of the substituents are specified as disclosed in claims 2 to 15. The same applies to claims dependent on claim 1, and claim 17 and claims dependent thereon.

Form PCT/ISA/210 (extra sheet) (July 1992)

	属する分野の分類(国際特許分類(IPC)) 7213/38, 213/63, 213/70, 213/71, 213/89, 401/04,	405/14, 409/04, A61K31/44, 31/495	
5 tm-t- + 2	/\ m7		
	テった分野 最小限資料(国際特許分類(IPC))		
l .	7D213/00-89, 401/00-14, 409/00-04, A61K31/00-4	95	
最小限資料以外	4の資料で調査を行った分野に含まれるもの		
	•	•	•
	•		
		in the control of the	
	目した電子データベース(データベースの名称、 STN), CAPLUS(STN), WPIDS(STN)	調査に使用した用語)	
C. 関連す	ると認められる文献		· · · · · · · · · · · · · · · · · · ·
引用文献の			関連する
カテゴリー*	引用文献名 及び一部の箇所が関連すると	さは、その関連する箇所の表示	請求の範囲の番号
X	JP, 3-141270, A(藤沢薬品工業株式会	社) 17.6月.1991(17.06.91)	1, 2, 4, 6
Α -	&EP, 417751, A		3, 5, 7-26
	&US, 5364871, A &US, 5371097, A		
		·	
X	MUKKALA, V.; KANKARE, J. J.) m) ; (;	1, 2, 4, 6-8
Α	New 2, 2'-Bipyridine Derivatives Properties withEuropium(III) and	Tarbium(III) Jons	3, 5, 9-26
	Helvetica Chimica Acta, Vol. 75.		
		•	
区 旧の続	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献	のカテゴリー 運のある文献ではなく、一般的技術水準を示す。	の日の後に公表された文献 「T」国際出願日又は優先日後に公表。	された女都であって
A 特に関	単ののる文献ではなく、 一般的技術が単を小り	て出願と矛盾するものではなく、	
「E」国際出	頼日前の出願または特許であるが、国際出願日	論の理解のために引用するもの	72.77
	公表されたもの	「X」特に関連のある文献であって、	
	主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する	の新規性又は進歩性がないと考	
日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の 文献(理由を付す) 上の文献との、当業者にとって自明である組合			
「O」口頭による開示、使用、展示等に言及する文献よって進歩性がないと考えられるもの			
「P」国際出	願日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	
国際調査を完	て1.た日	国際調査報告の発送日	
197八曜月日 6 九	23. 02. 98	02.03.9	39
(T) 110 V 4012 ~6~ LUL 1717	カルサルバキナナ	##\$# 产家 / 按照 小 * * * * * * * * * * * * * * * * * *	2 4 6 6 6 6 6
	の名称及びあて先 国特許庁(ISA/JP)	特許庁審査官(権限のある職員)	4C 9164
	郵便番号100-8915	ran radii - clas - (77)	(). -
東京	都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 6439

様式PCT/ISA/210 (第2ページ) (1998年7月)

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP, 3-500249, A (PHARMACIA AB) 24. 1月. 1991 (24. 01. 91) &W090/00623, A &EP386180, A	25 1-24, 26
X A	VAINS, J. B.; PAPET, A. L.; MARSURA, A. New Symmetric and Unsymmetric Polyfunctionalized 2, 2'-Bipyridines J. Heterocyclic Chem., Vol. 31, p. 1069-1077(1994)	25 1-24, 26
PA	VACHER, B.; BONNAUD, B.; FUNES, P.; JUBAULT, N.; KOEK, W.; ASSIE, M.; COSI, C. Design and Synethsis of a Series of 6-Substituted 2-pyridinylmethylamine Drivatives as Novel, High-affinity, Selective Agonists at 5-HT1A Receptors. J. Med. Chem., Vol. 41, No. 25, p. 5070-5083 (1998 Decmber 3)	1-26
A	WO, 95/28400, A1(GLAXO GROUP LTD)26.10月.1995(26.10.95) &AU, 9523439, A	1-26
A	DE, 4226527, A(MERCK PATENT GMBH)17.02月.1994(17.02.94) &EP, 586855, A2 &JP, 6-184140, A	1-26

第1欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条 第3項(PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなス
った。 1. 1. は、この国際調査機関が調査をすることを要しない対象に係るものである。 請求の範囲
2. 図 請求の範囲 1、16-23 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、 請求の範囲1では、その化合物の一般式における基Arにつき、単に「置換又は非置換のアリールまたは置換又は非置換のヘテロアリール」とのみ定義し、ピリジン環上の3つの置換基の置換位置が不特定であるため、非常に広範囲の化合物を含んでいる。そのため、請求の範囲1に記載された化合物については、 (続きアリ)
3. []は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 請求の範囲
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 出願 人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
の範囲について作成した。 2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、i 加調査手数料の納付を求めなかった。
3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の利付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記録されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意

様式PCT/ISA/210(第1ページの続葉(1))(1998年7月)

(第1棚の続き)

置換基の置換位置を請求の範囲 2 - 1 5 に記載のように特定されたものについて、先行技術文献調査を行った。請求の範囲 1 を引用する請求の範囲および、請求の範囲 1 7 でにれを引用する請求の範囲についても、同様である。

様式PCT/ISA/210 (特別ページ) (1998年7月)