ROBOTICS

ASSIGNMENT 12

BY

TOM BULLMANN AND NICOLAS LEHMANN

25TH JANUARY 2016

LECTURER: PROF. DR. DANIEL GÖHRING

FREE UNIVERTIY OF BERLIN
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
INSTITUTE OF COMPUTER SCIENCE

Table of Contents

1	Assignme	nt 12	1
	1.1	Task 1	1
	1.1.1	a)	1
	1.1.2	b)	3
	1.1.3	c)	3
	1.1.4	Task 3	3
	1.1.5	a)	3
	1.1.6	b)	4

Lecturer: Prof. Dr. Daniel Göhring

1 Assignment 12

1.1 Task 1

1.1.1 a)

Gesucht sind die Parameter a,b,c,d,h,i,j,k für zwei Splines $f[0,1] \to \mathbb{R}, g[1,2] \to \mathbb{R}$. Die gesuchten Funktionen mit ihren Ableitungen sind

$$f(x) = a \cdot x^{3} + b \cdot x^{2} + c \cdot x + d \tag{1.1}$$

$$f'(x) = 3 \cdot a \cdot x^2 + 2 \cdot b \cdot x + c \tag{1.2}$$

$$f''(x) = 6 \cdot a \cdot x + 2 \cdot b \tag{1.3}$$

$$q(x) = h \cdot x^{3} + i \cdot x^{2} + j \cdot x + k \tag{1.4}$$

$$g'(x) = 3 \cdot h \cdot x^2 + 2 \cdot i \cdot x + j \tag{1.5}$$

$$q''(x) = 6 \cdot h \cdot x + 2 \cdot i \tag{1.6}$$

(1.7)

Aus der Beschreibung sind direkt die folgenden Eigenschaften abzulesen

$$f(0) = 0 ag{1.8}$$

$$f'(0) = 0 (1.9)$$

$$g(2) = 8 (1.10)$$

$$g'(2) = 8 (1.11)$$

$$f''(1) = 0 (1.12)$$

$$g''(1) = 0 (1.13)$$

(1.14)

Um das soweit unterbestimmte Gleichungssystem lösen zu können, verwenden wir als zusätzliche Eigenschaft die Tatsache, dass sich f und g an der Grenze ihrer Definitionsbereiche bei x=1 schneiden müssen. Es gilt also zusätzlich

$$f(1) = g(1) (1.15)$$

$$f'(1) = g'(1) (1.16)$$

Ausformuliert erhält man somit ein lineares Gleichungssystem

$$d = 0 ag{1.17}$$

$$k = 0 ag{1.18}$$

$$8 \cdot h + 4 \cdot i + 2 \cdot j = 8 \tag{1.19}$$

$$12 \cdot h + 4 \cdot i + j = 8 \tag{1.20}$$

$$6 \cdot a + 2 \cdot b = 0 \tag{1.21}$$

$$a + b + c = h + i + j (1.23)$$

$$3 \cdot a + 2 \cdot b + c = 3 \cdot h + 2 \cdot i + j \tag{1.24}$$

(1.25)

(1.22)

 $6 \cdot h + 2 \cdot i = 0$

Lecturer: Prof. Dr. Daniel Göhring

d,k sind also an dieser Stelle bereits bekannt. Für die übrigen Parameter lösen wir mittels Gaussschem Eliminierungsverfahren:

a	b	c	h	i	j	=
0	0	0	8	4	2	8
0	0	0	12	4	1	8
6	2	0	0	0	0	0
0	0	0	6	2	0	0
1	1	1	-1	-1	-1	0
3	2	1	-3	-2	-1	0

Zuerst etwas umsortieren

a	b	c	h	i	j	=
1	1	1	-1	-1	-1	0
3	2	1	-3	-2	-1	0
6	2	0	0	0	0	0
0	0	0	6	2	0	0
0	0	0	8	4	2	8
0	0	0	12	4	1	8

a-Spalte eliminieren

a	b	c	h	i	j	=
1	1	1	-1	-1	-1	0
0	-1	-2	0	1	2	0
0	-4	-6	6	6		
0	0	0	6	2	0	0
0	0	0	8	4	2	8
0	0	0	12	4	1	8

b-Spalte eliminieren

a	b	c	h	i	j	=
1	1	1	-1	-1	-1	0
0	1	2	0	-1	-2	0
0	0	2	6	2	-2	0
0	0	0	6	2	0	0
0	0	0	8	4	2	8
0	0	0	12	4	1	8

c-Spalte sieht schon gut aus, deshalb weiter mit h

a	b	c	h	i	j	=
1				-1	-1	0
0	1	2	0	-1	-2	0
0	0	1	3	1	-1	0
0	0	0	6	2	0	0
0	0	0	0	4	6	24
0	0	0	0	0	1	8

So ein Glück i,j ergeben sich direkt! Von unten nach oben können nun alle Parameter ausgerechnet werden, zu

$$a = 2, b = -6, c = 8,$$
 (1.26)

$$h = 2, i = -6, j = 8 \tag{1.27}$$

Lecturer: Prof. Dr. Daniel Göhring

Eine partielle Interpolation war hier also gar nicht nötig - ein einziges Polynom $e[0,2] \to \mathbb{R}$ genügt, um alle Eigenschaften zu erfüllen.

Ergebnis:

$$e(x) = 2 \cdot x^3 - 6 \cdot x^2 + 2 \cdot x$$

1.1.2 b)

Auch wenn f = g = e sind hier unabhängig von einander f in blau und g in rot geplottet (Abbildung 1.1).

Figure 1.1: Spline

1.1.3 c)

Der Schnittpunkt (x_s,y_s) ist vorgegeben bei $x_s=1$ mit $y_s=e(1)=a+b+c=4$ Die Geschwindigkeit v ist dort $v=e'(1)=3\cdot a+2\cdot b+c=2$

1.1.4 Task 3

1.1.5 a)

Wir definieren Ereignis A als "keine Enten sind zu sehen" und Ereignis B als "Krokodile sind zu sehen".

Robotics

WS 15/16 25th January 2016

Lecturer: Prof. Dr. Daniel Göhring

Wir wissen
$$P(\neg A) = (P(\neg A|B) + P(\neg A|\neg B)) = (0.1 + 0.5) = 0.6$$
.

Daraus folgt P(A) = 1 - P(l /A) = 0.4

Außerdem wissen wir $P(B) = P(\neg A|B) + P(A|B)$.

Das stellen wir um nach $P(A|B) = P(B) - P(\neg A|B)$ und rechnen aus P(A|B) = 0.2 - 0.03 = 0.17.

Weil wir alle benötigten Variablen haben, setzen wir in den Satz von Bayes ein Es gilt der Satz von Bayes $P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)} = \frac{0.17 \cdot 0.2}{0.4} = 0.085$.

1.1.6 b)

Die Variablen $\neg A$ und B sind abhängig.

Beweis durch Widerspruch:

Angenommen $\neg A$ und B sind unabhängig, dann gilt $P(\neg A|B) = P(\neg A)$. $0.1 \neq 0.6$ Widerspruch q.e.d.