

Practices and tools for collaboration

in ML projects

Lesson 2

DVC Tools for Data Scientists & Analysts

Coursé lessons

- **Lesson 1.** Course Introduction
- Lesson 2. Practices and Tools for Efficient Collaboration in ML projects
- Lesson 3. Pipelines Automation and Configuration Management
- **Lesson 4.** Versioning Data and Models
- **Lesson 5.** Visualize Metrics & Compare Experiments with DVC and Studio
- **Lesson 6.** Experiment Management and Collaboration
- **Lesson 7.** Tools for Deep Learning Scenarios
- **Lesson 8.** Review Advanced Topics and Use Cases

- ML development workflow & collaboration
- ♦ Git
- Project repository structure & dev environment
- Coding (software development)
- Documentation & task tracking
- ML pipelines & experiments

ML development workflow

Machine Learning Workflow

This course focuses on ML experiments and data management

Machine Learning Workflow

This course focuses on ML experiments and data management

ML Experiments

take long time and produce mess of metrics and artifacts

Collaboration in ML projects

Common DS/ML Challenges

- Difficult sharing & collaboration
- Inefficiency & work duplication
- Slow updates
- Pipelines not reliable or not reproducible
- Data quality issues
- Model metrics tracking

Priority 1: Reproducibility

ML Reproducibility checklist

- 1. Environment dependency control
- 2. Code version control
- **3.** Control run params
- 4. Automated pipelines
- 5. Artifact version control
- **6.** Experiment results tracking
- 7. Automated CI/CD and MLOps

Good practices for ML projects

1. Coding (Software Development)

- Clean Code
- Code version control (Git)
- Testing

2. Project structure & dev environment

- Organize a project repository
- Environment dependencies control

3. Documentation & task tracking

- Document your code, experiments and findings
- Task tracking

4. ML pipelines development & experiments

- Automated pipelines
- Control run params
- Model and artifact version control
- Experiment results tracking
- Reproducible experiments

Coding (software development)

Coding (Software Development)

- Organize code into clean reusable units (functions, classes, modules)
- Use Git for code version control
- Follow style-guides (i.t. PEP8 in case of Python)
 - Write comments, docstrings and type annotations
 - b. Give functions and variables meaningful names
- Make dependencies and requirements explicit
 - Add requirements.txt and Dockerfile to a project repository
- Testing

```
def headline(text: str, align: bool = True):
    if align:
        return f"{text.title()}\n{'-' * len(text)}"
    else:
        return f" {text.title()} ".center(50, "o")

print(headline("python type checking"))
print(headline("use pycharm", "center"))

Expected type 'bool', got 'str' instead more... (Ctrl+F1)
```

Git basics for machine learning development

Git workflow

- git add
- git commit
- git push
- git fetch
- git pull
- git checkout
- git merge / rebase

Apply Git based workflows to ML development

Git basics

Project repository structure

Cookiecutter DS Project structure

Source: https://drivendata.github.io/cookiecutter-data-science/#requirements

Cookiecutter DS Project structure


```
...(part 1)
                      <- Source code for use in this project.
     src
           _init___.py <- Makes src a Python module
                      <- Scripts to download or generate data
        - data
         — make dataset.pv
        - features
                     <- Scripts to turn raw data into features for modeling
          - build features.pv
                     <- Scripts to train models and then use trained models to make predictions
        models
           predict model.pv
          train_model.py

    visualization <- Scripts to create exploratory and results oriented visualizations</li>

          - visualize.py
     tox.ini
                        <- tox file with settings for running tox; see tox.readthedocs.i
```

Source: https://drivendata.github.io/cookiecutter-data-science/#requirements

Custom template_repo


```
README.md
config/
data/
models/
notebooks/
reports/
src/
   - data/
               <- data prepare and/or preprocess
   - evaluate/ <- code for model quality evaluation and metrics
   features/ <- code to compute features
              <- DVC stages code
   stages/
               <- code for visualization and plots
   report/
   train/
               <- code for training and hyper-parameters tuning
```

Custom structure

- simple
- flexible
- easy to share & collaborate

Live code example

Project repository structure

Python Virtual Environments

Virtual Environments

- a simple solution for reproduce development environment
- isolates the project-related libraries
- controls Python version

Example packages:

- venv & virtualenv
- conda
- pipenv
- poetry
- ۰..

Virtual Environments with venv

create virtual environment

python -m venv dvc-venv

activate a virtual environment source dvc-venv /bin/activate

exit the virtual environment deactivate

- venv a subset of virtualenv project, integrated into the standard library
- Changed in version 3.5: The use of venv is now recommended for creating virtual environments

Specify Python dependencies: requirements.txt

- Environment documentation
 - a. Add requirements.txt to the project repository
- Install dependencies from requirements.txt
 # create virtual environment
 pip install -r requirements.txt

Live code example

Python Virtual Environments

Documentation & task tracking

Good practices: Documentation

- Project repository documentation
 - a. README
 - info about the project
 - how to install and run instructions
 - contacts and author(s) details
 - b. docs/
 - c. License
- Project documentation (problem statement, methods, data, findings)
- Experiment metrics and reports

Good practices: Task Tracking

- Create a shared "to-do" list (task tracking)
- Keep changes small
- Share changes frequently
- Create tasks (issues) for each changes in task tracking systems (i.e. GitLab/GitHub/Bic)
- Link tasks to Git branches

Documentation & task tracking

What have we learned?

What have we learned?

- Requirements for successful collaboration
- 2. How to structure your repository
- Good practices for coding and collaboration
- 4. Good practices for documentation and task tracking

Good practices: ML pipelines & experiments

- Automated pipelines
- Control run params
- Models and artifacts version control
- Experiments results tracking
- Reproducible experiments

Follow the next lessons...

Links

Data Science blueprint
 https://data-science-blueprint.readthedocs.io/en/latest/presentation/schema.html