МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 1.4.8

Измерение модуля Юнга методом аккустического резонанса

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

- 1. исследовать явление акустического резонанса в тонком стержне
- 2. измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров
- 3. измерить модули Юнга различных материалов

В работе используются:

- генератор звуковых частот
- частотомер
- осциллограф
- электромагнитные излучатель и приёмник колебаний
- набор стержней из различных материалов

2 Теоретические сведения

Согласно закону Гука при приложении к элементу среды механического напряжения σ возникает относительная деформация в этом направлении $\varepsilon = \frac{\Delta x}{x_0}$, определяемая соотношением

$$\sigma = \varepsilon E \tag{1}$$

При кратковременном воздействии в среде возникает кратковременная волна, называемая аккустической или звуковой. Скорость распространения этой волны u равна

$$u = \sqrt{\frac{E}{\rho}} \tag{2}$$

где ρ – плотность среды.

Рассмотрим стержень длинной L. Его можно считать тонким в направлении распространения волн, если длина λ звуковых волн в нём сильно больше радиуса: $\lambda \gg R$. Такая волна может распространяться только вдоль стержня.

Аккустическая волна отражается от торцов стержня. Если при этом на длине стержня укладывается целое число полуволн, то отражённые волны будут складываться в фазе с падающими, что приведёт к резкому усилению амплитуды их колебаний и возникновению акустического резонанса в стержне. Измеряя соответствующие резонансные частоты, можно определить скорость звуковой волны в стержне и, таким образом, измерить модуль Юнга материала стержня. Акустический метод является одним из наиболее точных методов определения упругих характеристик твёрдых тел.

Волновое уравнение выглядит так:

$$\frac{\partial^2 \xi}{\partial t^2} = u^2 \frac{\partial^2 \xi}{\partial x^2} \tag{3}$$

Здесь $\xi(x,t) = f(x-ut)$, где f – произвольная функция. Это дифференциальное уравнение описывает распространение упругих волн в тонком стержне. Оно имеет универсальный

характер и описывает волны самой разной природы: акустические волны в твёрдых телах, жидкостях и газа, волны на струне, электромагнитные волны и т.п. Величина u в уравнении (3) имеет смысл скорости распространения волны.

В случае гармонического возбуждения колебаний с частотой f продоль- ная волна в тонком стержне может быть представлена в виде суперпозиции двух бегущих навстречу гармонических волн:

$$\xi(x,t) = A_1 \sin \omega t - kx + \varphi_1 + A_2 \sin \omega t - kx + \varphi_2 \tag{4}$$

где $\omega = 2\pi f$ – циклическая частота. $k = 2\pi/\lambda$ – волновое число.

Первое слагаемое (4) описывает гармоническую (синусоидальную) волну, бегущую в положительном направлении по x, второе — в отрицательном. Соотношения между амплитудами $A_{1,2}$ и начальными фазами $\varphi_{1,2}$ этих волн, а также возможные частоты колебаний ω , определяются граничными условиями на концах стержня. Рассмотрим этот вопрос подробнее.

Пусть концы стержня не закреплены. Тогда напряжения в них должны равняться нулю. Положим координаты торцов равными x=0 и x=L. Тогда, используя связь напряжения и деформации

$$\sigma = \varepsilon E = E \frac{\partial \xi}{\partial x} \tag{5}$$

запишем граничные условия для свободных (незакреплённых) концов стержня:

$$\sigma(0) = 0 \longrightarrow \frac{\partial \xi}{\partial x} \Big|_{x=0} = 0, \quad \sigma(L) = 0 \longrightarrow \frac{\partial \xi}{\partial x} \Big|_{x=L}$$
 (6)

Соотношения (6) должны выполняться в произвольный момент времени. Записывая первое граничное условие (6) для функции (4), найдём

$$-kA_1\cos\omega t + \varphi_1 + kA_2\cos\omega t + \varphi_2 = 0\tag{7}$$

Нетрудно видеть, что это соотношение будет выполняться при любом t, если только у «падающей» и «отражённой» волн одинаковы амплитуды

$$A_1 = A_2 \tag{8}$$

и фазы

$$\varphi_1 = \varphi_2 \tag{9}$$

Условие равенства амплитуд (8) можно интерпретировать как условие отражения волн от торцов без потери энергии. Поскольку на практике потери неизбежны, это условие выполняется лишь приближённо: $A_1 \approx A_2$. Условие (9) означает, что при отражении синусоидальной волны от свободного конца стержня, её фаза не изменяется. Нетрудно также убедиться, что если же концы стержня закрепить ($\xi|_{x=0} = \xi|_{x=L} = 0$), то фазы падающей и отражённой волн будут отличаться друг от друга на π .

Далее, перепишем исследуемую функцию (4), используя граничные условия (8) и (9) и формулу суммы синусов:

$$\xi(x,t) = 2A\cos kx\sin\omega t + \varphi \tag{10}$$

Колебания вида (10) называют гармоническими стоячими волнами. Наконец, воспользуемся вторым граничным условием (6) применительно к функции (10). В результате придём к уравнению $\sin kL = 0$, решения которого определяют набор допустимых значений волновых чисел k:

$$k_n L = \pi n, \quad n \in \mathbb{N} \tag{11}$$

или, выражая (13) через длину волны $\lambda = 2\pi/k$, получим

$$\lambda_n = \frac{2L}{n}, \quad n \in \mathbb{N} \tag{12}$$

Таким образом, для возбуждения стоячей волны на длине стержня должно укладываться целое число полуволн.

Допустимые значения частот

$$f_n = \frac{u}{\lambda_n} = n \frac{u}{2L}, \quad n \in \mathbb{N}$$
 (13)

называют собственными частотами колебаний стержня длиной L. Именно при совпадении внешней частоты с одной из частот f_n в стержне возникает акустический резонанс.

Рис. 1: Собственные продольные колебания стержня с незакреплёнными концами (для наглядности изображение дано не в масштабе, реальные смещения малы по сравнению с длиной стержня, $\xi \ll L$)

Зависимость амплитуды смещения ξ от координаты x для собственных колебаний стержня с незакреплёнными концами при n=1,2,3 представлена на рис. 1. Амплитуда колебаний смещения среды распределена вдоль стержня по гармоническому закону: $\xi_0(x)=2A\cos kx$. Точки с максимальной амплитудой называются пучностями смещения, точки с минимальной (нулевой) амплитудой — узлами смещения. Номер гармоники n определяет количество узлов смещения на стержне. Заметим, что согласно закону Гука (1) в пучности смещения имеет место узел напряжения, и, наоборот, в узлах смещения имеется пучность напряжения (в частности, на свободных торцах стержня напряжение всегда нулевое, а деформация максимальна).

Напоследок отметим, что в реальной системе стоячая волна не может быть получена в чистом виде: всегда существуют потери энергии, связанные, в том числе с отражением волн на краях стержня $(A_1 \neq A_2)$. Поэтому для поддержания колебаний необходимо наличие некоторого стороннего возбудителя, а к стоячей волне примешивается бегущая с малой амплитудой: $|A_1 - A_2| \ll A_{1,2}$. Также именно благодаря бегущим волнам энергия может передаваться от одних частей стержня к другим (в стоячей волне энергия не переносится, а только переходит из кинетической в потенциальную и обратно).

3 Оборудование и экспериментальные погрешности

Штангенциркуль: $\sigma_{\text{шт}} = \pm 0{,}005 \text{ см}$

Электронные весы ВЛТЭ-310: $\sigma_m = \pm 0{,}003~\Gamma$

Микрометр: $\Delta_{\scriptscriptstyle \mathrm{MKM}} = \pm 0.01$ мм

Измеритель частоты: $\Delta_{\mbox{\tiny ч}}=\pm 0.3~\Gamma$ ц

4 Результаты измерений и обработка данных

4.1 Настройка осциллографа

Проведём предварительную настройку осциллографа. Выставим настройки согласно рисунку 2. Таким образом при включении установки в дальнейшем мы получим фигуру Лиссажу на экране. Включим все приборы.

Рис. 2: Предварительные настройки осциллографа

4.2 Подготовка эксперимента

Развдинем датчики и поместим между ними на подставку исследуемый стержень. В начале используется медный стержень. Длина стержня $L = (600 \pm 0.5)$ мм.

4.3 Установка электромагнитов

Разместим электромагниты напротив торцов стержня так, чтобы торцы стержня совпали с центрами датчиков, а зазор между полюсами электромагнита и торцевой поверхностью стержней составлял 1–3 мм. Плоскость магнитов должна быть строго перпендикулярна оси стержня. Электромагниты не должны касаться стержня.

4.4 Предварительная оценка резонансных частот

Для этого оценим частоту первого резонанса $f_1=u/2L$, где u — табличное значение скорости звука в среде. Для меди u=3790 м/с. А значит $f_1\approx 3160$ Гц. Значит резонансную частоту для стержня будем искать в этом диапазоне значений.

4.5 Настройка утановки

Медленно перестраивая звуковой генератор вблизи оценочного значения f_1 найдём первый резонанс. Приближение к резонансу характеризуется появлением фигуры Лиссажу на экране осциллографа. Для увеличения сигнала колебаний стержня нужно очень осторожно придвигать датчики к торцам стержня, не допуская прилипания стержня к датчикам. На экране осциллографа должна получиться фигура, напоминающая бочку (рис. 3). При резонансе амплитуда принятого сигнала достигает максимума и не меняется во времени.

Рис. 3: Бочка

4.6 Получение первого резонанса

Согласно предыдущему пункту определим значение первого резонанса.

$$f_1 = 3218,7 \; \Gamma_{\mathrm{II}}$$
 (14)

Погрешность измерения равна утроенному последнему разряду измерения: $\sigma_{f_1}=0.3~\Gamma$ ц.

4.7 Определение резонансных частот

Для определения значения резонансных частот оценим следующие значения по формуле:

$$f_n = n f_1 \tag{15}$$

После чего будем искать резонанс в районе полученных значений по аналогии с первым резонансом и результаты измерений запишем в таблицу 1.

n	1	2	3	4	5	6	7
f, Гц	3218,7	6444,2	9663,7	12890,0	16105,0	19308,0	22472,0

Таблица 1: Результаты измерения резонансных частот для медного стержня

Погрешность измерений равна $\sigma_f = 0.3 \, \Gamma$ ц.

4.8 Определение плотности стержня

Плотность стержня будем определять используя несколько циллиндрических образцов, сделанных из того же материала, что и стержень. Для каждого измерим: диаметр с помощью микрометра, высоту с помощью штангенциркуля и массу с помощью электронных весов. После чего посчитаем плотность по формуле:

$$\rho = \frac{4m}{\pi h d^2} \tag{16}$$

Приборную погрешность измерения плотности вычислим по формуле:

$$\sigma_{\rho}^{\text{приб}} = \sqrt{\left(\frac{\partial \rho}{\partial m}\right)^2 \sigma_m^2 + \left(\frac{\partial \rho}{\partial h}\right)^2 \sigma_h^2 + \left(\frac{\partial \rho}{\partial d}\right)^2 \sigma_d^2} \tag{17}$$

Результаты всех измерений запишем в таблицу 2.

n	1	2	3	4	5	6	7	8
d, мм	11,85	11,96	11,85	11,75	12,11	11,96	11,94	11,95
h, мм	29,8	30,3	30,1	40,3	40,0	40,5	39,7	41,5
т, г	29,109	30,106	29,453	38,710	40,989	40,347	39,382	41,333
ρ , kr/m ³	8857	8844	8872	8858	8897	8868	8859	8880
$\sigma_{\rho}^{\text{приб}}$, кг/м ³	33	33	33	27	27	26	27	26

Таблица 2: Измерение плотности стержня

Среднее значение $\overline{\rho} = 8867 \ \text{кг/м}^3$. Тогда случайную погрешность можно вычислить по формуле: $\sigma_{\rho}^{\text{сл}} = \sqrt{\frac{1}{N(N-1)} \sum (\rho_i - \overline{\rho})^2} \approx 6 \ \text{кг/м}^3$.

Тогда погрешность измерения плотности $\sigma_{\rho} = \sqrt{(\sigma_{\rho}^{\rm cn})^2 + (\overline{\sigma_{\rho}^{\rm npu6}})^2} \approx 30~{\rm kr/m^3}.$ Тогда плотность медного стержня равна:

$$\rho_{\rm M} = (8867 \pm 30) \, \frac{{\rm K}\Gamma}{{\rm M}^3} \tag{18}$$

4.9 Проверка справедливости соотношения $R/\lambda \ll 1$

Диаметр стержня напрямую не измерялся но он сравним с диаметром образцов $d \approx 12$ мм. Длина волны при резонансе λ вычисляется по формуле:

$$\lambda = \frac{2L}{n} \implies \frac{R}{\lambda} = \frac{Rn}{2L} = \frac{dn}{4L} \tag{19}$$

Тогда если это соотношение выполняется для наибольшего n, то и для всех меньших значений оно тоже выполняется:

$$\lambda = \frac{dn}{4L} \approx 0.035 \ll 1 \tag{20}$$

Отсюда следует, что соотношение выполняется для всех n <= 7. Поэтому во время работы стержень можем считать тонким.

4.10 Опыты с другими стержнями

Повторим опыты пунктов 4.2-4.9 для двух других стержней: стального и дюралюминиего.

Для обоих стержней измерим значение семи резонансных частот аналогично медному и запишем в таблицу 3.

n	1	2	3	4	5	6	7
$f_{\rm cr}$, Γ ц	4128,6	8285,1	12400,0	16529,0	20653,0	24772,0	28882,0
$f_{\text{дюр}}, \Gamma$	ц 4246,2	8514,2	12742,0	16998,0	21225,0	25453,0	29662,0

Таблица 3: Результаты измерения резонансных частот для двух стерженей

Измерим плотность стержней аналогично медному, результаты измерений для стального запишем в таблицу 4, а для дюралюминиего в таблицу 5.

n	1	2	3	4	5	6	7	8
d, мм	11,98	11,83	11,99	12,00	12,00	11,99	11,89	12,11
h, мм	29,6	32,2	29,9	40,0	39,7	39,9	41,1	41,3
т, г	26,022	28,105	26,151	35,186	34,938	35,145	36,916	37,080
ρ , kr/m ³	7799	7941	7746	7778	7781	7801	8089	7795
$\sigma_{\rho}^{\text{приб}}$, кг/м ³	29	28	29	23	24	23	24	23

Таблица 4: Результаты измерения плотности стального стержня

Среднее значение $\overline{\rho}_{\rm cr}=7841~{\rm kr/m^3}.$ Тогда случайную погрешность можно вычислить по формуле: $\sigma_{\rho}^{\rm cn}=\sqrt{\frac{1}{N(N-1)}\sum(\rho_i-\overline{\rho})^2}\approx 41~{\rm kr/m^3}.$

Тогда погрешность измерения плотности $\sigma_{\rho} = \sqrt{(\sigma_{\rho}^{\rm cn})^2 + (\overline{\sigma_{\rho}^{\rm приб}})^2} \approx 48~{\rm кг/m^3}.$ Тогда плотность стального стержня равна:

$$\rho_{\rm ct} = (7841 \pm 48) \, \frac{\rm K\Gamma}{\rm M^3} \tag{21}$$

n	1	2	3	4	5	6	7	8
d, мм	12,05	11,85	11,73	11,73	11,85	11,74	11,75	12,12
h, мм	30,1	30,1	30,1	30,8	40,1	41,4	41,5	41,2
т, г	9,485	9,193	8,992	9,260	12,178	12,452	12,480	13,232
ρ , K Γ /M ³	2763	2769	2764	2782	2754	2779	2773	2784
$\sigma_{\rho}^{\text{приб}}$, кг/м ³	10	10	10	10	8	8	8	8

Таблица 5: Результаты измерения плотности дюралюминиего стержня

Среднее значение $\overline{\rho}_{\text{дюр}}=2771~\text{кг/м}^3$. Тогда случайную погрешность можно вычислить по формуле: $\sigma_{\rho}^{\text{сл}}=\sqrt{\frac{1}{N(N-1)}\sum(\rho_i-\overline{\rho})^2}\approx 4~\text{кг/м}^3$.

Тогда погрешность измерения плотности $\sigma_{\rho} = \sqrt{(\sigma_{\rho}^{\rm cn})^2 + \langle \sigma_{\rho}^{\rm приб} \rangle^2} \approx 10~{\rm кг/m^3}.$ Тогда плотность дюралюминиего стержня равна:

$$\rho_{\text{дюр}} = (2771 \pm 10) \frac{\text{K}\Gamma}{\text{M}^3}$$
(22)

Так как диаметр стержней одинаковый, а длина волн при резонансе такая же, то соотношение $R/\lambda \ll 1$ выполняется для обоих стержней.

4.11 Половинная частота резонанса

Для стержня из дюралюминия проведём дополнительный опыт: добъёмся резонанса при частоте генератора $f = f_1/2 = 2123,5$ Гц. При этой частоте наблюдается фигура Лиссажу изображённая на рисунке 4.

Во время обычного резонанса частота собственных колебаний стержня равна частоте колебаний стоячих волн в нём. Во время же половинного резонанса, частота колебаний волн в два раза больше. Из-за этого вид фигуры Лиссажу меняется: она становится похожа на бабочку (рис. 4).

4.12 Определение добротности стержня

Для стального стержня определим добротность, как для колебательной системы, измерив амплитудночастотную характеристику $A(f-f_1)$ вблизи первого резонанса.

Рис. 4: Фигура Лиссажу при половинном резонансе

Ширина максимума функции $A(f-f_1)$ связана с добротностью Q стержня как колебательной системы :

$$Q = \frac{f_n}{\Delta f} \tag{23}$$

где Δf – ширина AЧX на уровне $A = A_{max}/\sqrt{2}$.

Получим резонанс в стержне при некоторой частоте $f=(4129\pm0.3)$ Γ ц и, переключив CH1 в режим GND считаем показания $A_{max}=(27\pm1)$ делений, соответственно $A\approx19$ делений. Измерим $\Delta f=f_1-f_2$. Где f_1 и f_2 - частоты, при которых достигается значение A. Погрешность измерения Δf равна удвоенной погрешности измерения $f\colon\sigma_{\Delta f}=0.6$ Γ ц. Повторим это измерение три раза и результаты запишем в таблицу 6.

№	1	2	3
f_1 , Гц	4127,3	4127,4	4127,3
f_2 , Гц	4130,3	4130,5	4130,4
Δf , Гц	3,0	3,1	3,1
Q	1376	1332	1332
$\sigma_Q^{ m приб}$	138	129	129

Таблица 6: Измерение ширины АЧХ при А

Для каждого измерения так же вычислим добротность по формуле (23), где $f_n = f$ и результаты запишем в таблицу.

Приборную погрешность измерения Q можно вычислить по формуле:

$$\sigma_Q^{\text{приб}} = Q\sqrt{\left(\frac{\sigma_f}{f}\right)^2 + \left(\frac{\sigma_{\Delta f}}{\Delta f}\right)^2} \tag{24}$$

Вычислим её для каждого Q и результаты запишем в таблицу. Случайная погрешность Q пренебрежимо мала по сравнению с приборной, поэтому $\sigma_Q \approx \sigma_Q^{\rm npu6}$. Тогда добротность равна:

$$Q = 1347 \pm 132 \tag{25}$$

4.13 Опыты со стержнями другой длины

Во врмея выполнения работы аналогичные опыты со стержнями с другими параметрами не проводились.

4.14 Обработка результатов

Для каждого из исследуемых стержней построим график зависимости f_n от n. Для этого воспользуемся МНК. В данном случае $u=f_n$, а v=n. Так как зависимость согласно формуле должна быть линейной, получаем:

$$k_{\text{мед}} = \frac{\langle uv \rangle}{\langle v^2 \rangle} = 3217 \ \Gamma$$
ц (26)

$$k_{\rm cr} = \frac{\langle uv \rangle}{\langle v^2 \rangle} = 4129 \, \Gamma_{\rm H} \tag{27}$$

$$k_{\text{дюр}} = \frac{\langle uv \rangle}{\langle v^2 \rangle} = 4243 \ \Gamma \text{ц}$$
 (28)

Найдём погрешность σ_k :

$$\sigma_{k_{\text{мед}}} = \frac{1}{\sqrt{7}} \sqrt{\frac{\langle u^2 \rangle}{\langle v^2 \rangle} - k^2} = 2 \ \Gamma$$
ц (29)

$$\sigma_{k_{\rm cr}} = \frac{1}{\sqrt{7}} \sqrt{\frac{\langle u^2 \rangle}{\langle v^2 \rangle} - k^2} = 1 \ \Gamma$$
ц (30)

$$\sigma_{k_{\text{дюр}}} = \frac{1}{\sqrt{7}} \sqrt{\frac{\langle u^2 \rangle}{\langle v^2 \rangle} - k^2} = 2 \ \Gamma$$
ц (31)

График изображён на рисунке 5.

4.15 Определение скорости звука

Определим скорость звука в стержнях. Для этого воспользуемся формулой (13). Оттуда следует, что:

$$k = \frac{u}{2L} \quad \Longrightarrow \quad u = 2Lk \tag{32}$$

Тогда случайная относительная погрешность $\varepsilon_u = \varepsilon_k^{\text{случ}}$.

Коэффициент k так же можно найти как $k = f_n/n$, поэтому приборная относительная погрешность k равна приборной относительной погрешности f_n : $\varepsilon_k^{\rm приб} = 0.01\%$. Тогда

$$\varepsilon_k = \sqrt{\left(\varepsilon_k^{\text{случ}}\right)^2 + \left(\varepsilon_k^{\text{приб}}\right)^2} \tag{33}$$

Погрешность вычисления u равна:

$$\sigma_u = u\sqrt{(\varepsilon_L)^2 + (\varepsilon_k)^2} \tag{34}$$

Для каждого стержня рассчитаем u и σ_u , результаты измерений запишем в таблицу 7.

материал	медь	сталь	дюраль
к, Гц	3217	4129	4243
ε_k , %	1	1	1
и, м/с	3860	4955	5092
σ_u , M/C	39	50	51

Таблица 7: Скорость звука в стержнях

4.16 Определение модуля Юнга

Модуль Юнга для каждого стержня можно вычислить из формулы (2): $E=u^2\rho$ Погрешность нахождения модуля Юнга можно найти по формуле:

$$\sigma_E = \sqrt{\left(\frac{\partial E}{\partial u}\right)^2 \sigma_u^2 + \left(\frac{\partial E}{\partial \rho}\right)^2 \sigma_\rho^2} \tag{35}$$

Вычислим модуль Юнга и погрешность для каждого стержня, результаты измерений запишем в таблицу 8. В эту же таблицу запишем табличные значения модуля Юнга для материалов.

материал	медь	сталь	дюраль
ρ	8867	7841	2771
$\sigma_{ ho}$	30	48	10
Ε, ΓΠα	132	192	72
$\sigma_E, \Gamma \Pi a$	3	4	1
$E_{\text{табл}}, \Gamma \Pi a$	110	200	70

Таблица 8: Модуль Юнга для материалов стержней

5 Обсуждение результатов и выводы

Во время работы было исследовано являение акустического резонанса в тонких стержнях, сделанных из различных материалов.

Была измерена скорость распространения продольных звуковых колебаний в этих стержнях. Был измерен модуль Юнга по полученным данным.

Рис. 5: График зависимости f_n от n