

Sommaire 1/ Recalage et consolidation 2/ Recalage à partir de cibles appariées 3/ L'algorithme Iterative Closest Point (ICP) 4/ Recalage avancé

2/ Recalage à partir de cibles appariées

2.1 Problème de minimisation
2.2 Solution par les matrices et SVD
2.3 Analyse de validité
2.4 Analyse de précision

Annexes:
Solution par les quaternions
Démonstration covariance pose

2.2 Résolution par matrices de rotation et SVD

Représentation de la rotation : matrice R

$$R \in SE^3 \to \begin{cases} R \in M_3(\mathfrak{R}) \\ R^T R = I \end{cases}$$

$$f(R,t) = \sum_{i=1}^{n} ||p_i - (R \times p'_i + t)||^2$$

Centre de Robot

Minimum de f

Au minimum de f, s'il existe, on a :

$$\nabla f = 0 \Rightarrow \begin{cases} \frac{\partial f}{\partial R} = 0 \\ \frac{\partial f}{\partial t} = 0 \end{cases}$$

Centre de Bobotique

Notations barycentriques

Pour la suite, on note p_m et p'_m les barycentres des jeux de points P et P' :

$$p_m = \frac{1}{n} \sum_{i=1}^{n} p_i$$
 $p_m = \frac{1}{n} \sum_{i=1}^{n} p_i^{n}$

Et Q et Q' les jeux de points translatés autour de leurs barycentres respectifs :

$$\forall i \in \{1, n\}, \begin{cases} q_i = p_i - p_m \\ q_i = p_i - p_m \end{cases}$$

Centre de Robo

Détermination de la translation

On détermine la dérivée de f par rapport à t :

$$\frac{\partial f}{\partial t}(R,t) = -2\sum_{i=1}^{n} [p_i - (R \times p'_i + t)]$$

Elle s'annule pour :

$$\begin{split} \sum_{i=1}^{n} \left[p_{i} - \left(R \times p'_{i} + t \right) \right] &= 0 \Rightarrow \sum_{i=1}^{n} p_{i} = R \times \sum_{i=1}^{n} p'_{i} + n \times t \\ \Rightarrow t &= \frac{1}{n} \sum_{i=1}^{n} p_{i} - R \times \frac{1}{n} \sum_{i=1}^{n} p'_{i} \end{split}$$

$$\Rightarrow t = p_m - Rp_m$$

To Centre de Robotique

Détermination de la rotation

Au minimum s'il existe, la fonction f peut se ré-écrire avec la valeur de t trouvée :

$$\begin{split} f\left(R,t_{\min}\right) &= \sum_{i=1}^{n} \left\| p_{i} - \left(R \times p'_{i} + p_{m} - Rp'_{m}\right) \right\|^{2} \\ &= \sum_{i=1}^{n} \left\| \left(p_{i} - p_{m}\right) - R \times \left(p'_{i} - p'_{m}\right) \right\|^{2} \\ &= \sum_{i=1}^{n} \left\| q_{i} - Rq'_{i} \right\|^{2} \end{split}$$

17 Centre de Robotique

Détermination de la rotation (2)

Le terme au carré peut s'écrire également :

$$\forall i, ||q_{i} - Rq_{i}||^{2} = (q_{i} - Rq_{i})^{T} (q_{i} - Rq_{i})$$

$$= q_{i}^{T} q_{i} - q_{i}^{T} Rq_{i}^{T} - (Rq_{i}^{T})^{T} q_{i} + (Rq_{i}^{T})^{T} Rq_{i}^{T}$$

$$= q_{i}^{T} q_{i} - 2q_{i}^{T} Rq_{i} + q_{i}^{T} R^{T} Rq_{i}^{T}$$

Or $R^TR = I$, cela peut donc s'écrire :

$$\forall i, ||q_i - Rq_i||^2 = q_i^T q_i - 2q_i^T Rq_i + q_i^T q_i$$

Détermination de la rotation (3)

La fonction à minimiser devient donc :

$$f(R, t_{\min}) = \sum_{i=1}^{n} (q_i^T q_i - 2q_i^T R q_i^T + q_i^T q_i^T)$$

$$= \sum_{i=1}^{n} q_i^T q_i + \sum_{i=1}^{n} q_i^T q_i^T - 2\sum_{i=1}^{n} q_i^T R q_i^T$$

Les deux premiers termes ne dépendent pas de R, la rotation R qui minimise f est donc également celle qui maximise :

$$g(R) = \sum_{i=1}^{n} q_i^T R q_i^T$$

Détermination de la rotation (4)

La Trace d'un scalaire étant égale à ce scalaire, la fonction g peut s'exprimer sous la forme suivante :

$$g(R) = \sum_{i=1}^{n} Tr(q_i^T R q_i^T)$$

Ceci nous permet d'utiliser une propriété de la Trace :

$$\forall (A, B) \in M_{m,n} \times M_{n,m}, Tr(A \times B) = Tr(B \times A)$$

Ce qui donne :

$$g(R) = \sum_{i=1}^{n} Tr(Rq_{i}q_{i}^{T})$$

Détermination de la rotation (5)

On note H la matrice carrée :

$$H = \sum_{i=1}^{n} q_i q_i^T$$

La fonction g à maximiser s'écrit alors :

$$g(R) = Tr(RH)$$

Détermination de la rotation (6)

On peut décomposer H en valeurs singulières (théorème spectral) (Singular Value Decomposition, SVD):

$$\exists (U,V,\Sigma) \in M_3(\mathfrak{R})^3 / H = U\Sigma V^T$$

U, V matrices orthonormales Σ matrice diagonale positive

Il faut maximiser g qui s'écrit alors :

$$g(R) = Tr(RU\Sigma V^{T})$$
$$= Tr((V^{T}RU)\Sigma)$$

Détermination de la rotation (7)

$$W = V^T R U$$

Est une matrice de rotation (WTW=I).

Propriété de la Trace - théorème de Whaba:

Σ étant une matrice diagonale positive, il existe une matrice de rotation W qui maximise $Tr(W\Sigma)$. C'est l'identité : W=I

$$W = I \Leftrightarrow V^T R U = I$$

Il existe un maximum à g (et donc un minimum à f). Il est obtenu pour:

$$R = VU^T$$

Puis:
$$t = p_m - Rp_m$$

Algorithme de résolution par matrices - pseudo-code -

Entrée : Jeux de n points (P, P')

Sortie: matrice de rotation R, vecteur t

- Déterminer les barycentres p_m et p'_m
- Calculer la matrice H $H = \sum_{i=1}^{n} q_{i}^{T} q_{i}^{T}$
- Décomposer H en valeurs singulières
- Calculer R puis t

$$H = U\Sigma V^T$$

$$R = VU^T$$
 $t = p_m - Rp_m$

2.3 Analyse de validité

Le recalage s'obtient par identification du minimum de la fonction:

$$f: \begin{cases} SE^3 \to \Re^+ \\ (X) \mapsto f(X) \end{cases}$$

$$f(X) = \sum_{i=1}^{n} ||p_i - X(p'_i)||^2$$

En notant X les paramètres de pose (rotation, translation) et X(p') l'application de la transformation affine correspondante au point p'

Propriété: résidu et loi du x²

- · Hypothèses:
 - Les points sont correctement appariés
 - Ils sont la réalisation de variables aléatoires centrées réduites d'écart-type σ
- Propriété:
 - La valeur de f au minimum, appelée « résidu », suit une loi du x² à n_{ddl} degrés de
 - n_{ddl} = nombre de points-nombre de paramètres

[Press et al. 92]

Loi du résidu

- · Nombre de degrés de liberté :
 - Nombre de points n
 - Nombre de paramètres indépendants : 6

$$Res = f(X_{min})$$

$$= \sigma^2 \chi_{n-6}^2$$

$$= \sigma^2 \sum_{i=1}^{n-6} [LG(0,1)]^2$$

Loi du résidu et usage

Moyenne et écart-type du résidu

$$\begin{cases} E(\text{Res}) = (n-6)\sigma^2 \\ \sqrt{Var(\text{Res})} = 2(n-6)\sigma^2 \end{cases}$$

Cette propriété permet de tester la validité du recalage. Exemples: - mauvais appariement des points

On fixe un seuil de probabilité acceptable et la fonction de répartition P(x<u) donne le seuil à appliquer au résidu.

Par exemple:

Si Res > $3(n-6)\sigma^2 \Rightarrow rejet$

[Goulette 97

2.4 Analyse de précision par covariance de la pose

- Hypothèses :
 - Les points sont correctement appariés
 - Ils sont la réalisation de variables aléatoires centrées réduites d'écart-type σ
- Propriété :
 - La covariance des paramètres de pose solution des moindres carrés vaut :

$$\operatorname{Cov}(X_{\min}) = \sigma^2 \left(\frac{\partial^2 f}{\partial X^2} (X_{\min}) \right)^{-1}$$

[Press et al. 92]

Sommaire

- 1/ Recalage et consolidation
- 2/ Recalage à partir de cibles appariées
- 3/ L'algorithme Iterative Closest Point (ICP)
- 4/ Recalage avancé

Centre de Robotique

3/ L'algorithme « Iterative Closest Point » (ICP)

- · Objectif:
 - Détermination de la transformation rigide (R,T)
 - Entre deux nuages de points en recouvrement partiel

- · Recalage « fin » et « local »
- » et « local » [Besl and McKay 1992]
 - S'affranchit des cibles
 - Grande quantité de données
 →Plus grande précision
 - Besoin d'estimation des paramètres initiaux

32 Centre de Robotique

Association des points

- Association d'un point d'un nuage, au point le plus proche dans l'autre nuage
 - Seuil de distance maximale autorisée
- Résultat (à chaque itération) :
 - Liste de n points associés entre les deux nuages

On note P et P' les deux sous-ensembles de points appariés :

$$P = \left\{ p_i, 1 \le i \le n \right\} \qquad P' = \left\{ p'_i, 1 \le i \le n \right\}$$

Centre de Robot

Calcul de la transformation (R,T)

On dispose de n points appariés (pi, p'i). On recherche la transformation (R,t) qui minimise :

$$f(R,t) = \frac{1}{n} \sum_{i=1}^{n} [\vec{p}_i - (R\vec{p}'_i + t)]^2$$

Important : le nombre de points varie à chaque itération. La fonction des moindres carrés est normalisée.

Solution similaire à la minimisation avec les cibles

- mais le jeu de points change à chaque itération -

34

ICP - pseudo-code

- Recalage initial (NP, NP')
- · Repéter:
 - Association de données → (P, P')
 - Calcul de la transformation (R,T)
 - Application de la transformation au nuage NP'
 - Calcul de la distance entre nuages
- Tant que :

(distance normalisée entre nuages > seuil) et (nombre d'itérations < nb_max)

Preuve de convergence ...théorique

- Si le nombre de points appariés est constant, on démontre la convergence monotone d'ICP
 - [Besl and McKay 92]
- Problème :
 - L'appariement est délicat
 - Minima locaux
 - Nombre de points variable :
 - l'hypothèse nécessaire est rarement vérifiée...!

Temps de calcul

- Appariement en $O(n_1n_2)$.
 - Le reste en $O(n_1 + n_2)$.
- Acceptable pour petits nuages de points
 - < 1000 points : qqs secondes
- Trop lent pour de gros nuages de points
 - > 1h pour image Kinect 640x480

Accélération des calculs

- · Sous-échantillonnage:
 - Sous-ensemble de points (N "points de contrôle"), pour l'un des nuages ou les deux.
 - $-O(N n_2)$ avec $N \ll n_1$
- · Recherche approchée : ANN
 - Méthode approchée de recherche du plus proche voisin : Approximate Nearest Neighbor (ANN) avec kd-tree.
 - $O(n_1 \log n_2)$

Approximate Nearest Neighbor (ANN)

- Principe
 - Pré-calcul d'un kd-tree pour partitionner l'espace
 - Recherche dichotomique avec distance seuil
- Librairie C++ ANN http://www.cs.umd.edu/~ mount/ANN/

Résultats d'accélérations sur images Kinect

- 68000 points image Kinect
 - ANN seul : ~ 100s par itération
 - ANN + échantillonnage (2000 points): < 1s

- Stratégie possible :
 - Terminer sans échantillonnage pour recalage fin.

Variantes d'ICP

- · De nombreuses variantes :
 - Robustesse ; rapidité ; précision
- Variantes principales [Rusinkiewicz & Levoy 01]
 - Métrique point à plan (point-to-plane)
 - [Chen & Medioni 91]
 - Echantillonnage régulier
 - · Aléatoire ; basé sur les normales..
 - Rejet des points sur arêtes
 - Critères d'appariement, pondération...
 - Prise en compte de la couleur

Video reconstruction KinectFusion SIGGRAPH 2011

Sommaire

- 1/ Recalage et consolidation
- 2/ Recalage à partir de cibles appariées
- 3/ L'algorithme Iterative Closest Point (ICP)
- 4/ Recalage avancé

4/ Recalage avancé

- 4.1 Recalage global et SLAM
- 4.2 Recalage sur modèles géométriques
- 4.3 Autres variantes...

4.1 Recalage global et SLAM Plusieurs points de vue en recouvrement (scans 2D) recalage par paires (gauche); recalage global (droite) Block / Bundle adjustment **[Lu and Milios 94]** (ajustement par faisceaux)

Mise en équations

- · Relation globale entre nœuds :
 - Fonction d'énergie, distance de Mahalanobis (linéarisation des relations de poses entre nœuds):

$$W = \sum_{(i,j)} \left(D_{ij} - \overline{D}_{ij} \right)^T C_{ij}^{-1} \left(D_{ij} - \overline{D}_{ij} \right)$$

D_{ii}: pose relative (réelle) entre les nœuds i et j

 \overline{D}_{ii} : observation

 $C_{ij}^{''}$: covariance estimée de l'observation

[Lu and Milios 94]

Mise en équations (2)

- Entre deux nœuds du graphe :
 - Moindres carrés sur les points d'observation appariés vus des deux stations

$$f(D_{ij}) = \sum_{k=1}^{n} ||p_{ik} - D_{ij}(p'_{jk})||^{2}$$

 \overline{D}_{ii} : pose relative qui minimise f C_{ii}^{\dagger} : covariance de la solution

[Lu and Milios 94]

Solution - « offline »

- Hypothèses
 - Valeurs initiales proches de la solution, (approximation linéaire)
 - Appariements entre points d'observation connus
 - Relations entre nœuds connues
- → Solution analytique

[Lu and Milios 94]

Solution - « online »

- · Nouvelles stations, nouvelles acquisitions
- Construction itérative
 - carte, appariements, relations entre noeuds

[Lu and Milios 94]

SLAM: Simultaneous Localisation and Mapping

Voir aussi : [Lu and Milios 94] [Gérossier 2012] [Hullo 2013] [Borrman 2007] [Thrun and Montemerlo 2006]

4.2 Recalage et modèles géométriques

- Recaler un nuage de points sur un modèle géométrique
 - Exemples : maillage 3D ; plan CAO 2D
- Recaler deux nuages de points en utilisant des primitives géométriques
 - Exemples : lignes, plans, autres primitives

4.3 Autres variantes... Recalage non rigide: - [Monnier 2013] Recalage entre lignes, - [Poreba 2013, Poreba et Goulette 2015], [Kamgar–Parsi et Kamgar–Parsi 2004] Basé sur d'autres représentations - NDT

NDT: fonction à minimiser

• Basée sur les densités de probabilité, espace probabilisé, fonction h(x)

$$f(X) = -\sum_{i=1}^{n} h(T(X, x_i))$$

X : pose à détermine

x_i: points à recaler

T(X,x_i) points après rotation - translation

La fonction f est définie pour être petite pour de grandes probabilités

Résolution de NDT

• Le minimum de f est déterminé de facon itérative par l'algorithme de Newton

$$H\Delta X = -g$$

g : gradient de f

H: Hessien de f H et g se calculent sous forme analytique

Recalage de nuages de points dans un tunnel minier [Magnusson 2007]

Comparaison NDT vs ICP

· Points forts:

[Magnusson ICRA 2009]

- Bien adapté pour de grandes quantités de données du nuage de référence (rapidité)
- Robustesse aux paramètres initiaux
- · Points faibles:
 - Choix de la taille de discrétisation de l'espace
- Quel fondement physique à la métrique ?
 - ICP: modèle physique probabiliste

FIN Ce qui a été vu aujourd'hui:

- 1/ Recalage et consolidation
- 2/ Recalage à partir de cibles appariées
- 3/ L'algorithme *Iterative Closest Point (ICP)*
- 4/ Recalage avancé

Références (1)

- Iliffe and Lott 2008. Datums and Map projections for Remote Sensing, GIS and Surveying, 2^{nd} edition. CRC Press Whitles Publishing, 2008
- Abuhadrous 2005, Thèse ENSMP.
- Horn 87, Closed-form solution of absolute orientation using unit
- Press et al. 92. Numerical Recipes in C.
- Goulette 97. Thèse ENSMP F. Goulette
- Magnusson 2007.
- Magnusson ICRA 2009
- von Hansen, W. (2006). Robust automatic marker-free registration of terrestrial scan data. Proceedings of the Photogrammetric Computer Vision, 36:105-110

Références (2)

- Rabbani, T., Dijkman, S. T., Van Den Heuvel, F. et Vosselman, G. (2007). An integrated approach for modelling and global registration of point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 61(6):355–370.
- Thrun, S. et Montemerlo, M. (2005). The GraphSLAM algorithm with applications to large-scale mapping of urban structures. *International Journal on Robotics Research*, 25(5/6):403–430.
- Dorit Borrmann, Jan Elseberg, Kai Lingemann, Andreas N"uchter, Joachim Hertzberg. Globally consistent 3D mapping with scan matching. Robotics and Autonomous Systems, 2007

Annexes

- · Référencement et géo-référencement
- Solution de (R,T) par quaternions
- Démonstration covariance de la pose

Centre de Robot

A.1 Référencement et géoréférencement

- Référencement :
 - Rattachement à une référence extérieure fixe connue (repère fixe)
- · Géo-référencement
 - La référence extérieure est un repère géodésique ou cartographique
- · Géo-référencement par GPS :
 - Directement dans le procédé de mesure
 - Exemple : Systèmes Mobiles de Cartographie
 - Indirectement : points d'intérêt (cibles, etc.)

68 Centre de Robotique

Repère géodésique ECEF

Le repère ECEF-Earth Centered Earth Fixed
Origine: centre de la terre
Suit la rotation de la terre
Axe X: vers le méridien de Greenwich (Longitude=0),
Axe Z: vers le pole nord,

68
Centre de Robeotlau

Coordonnées géodésiques WGS-84

- · Expression dans un référentiel ECEF
- Prise en compte du modèle « géoïde » de la Terre
- Différents systèmes de coordonnées
 - WGS 84 : utilisé pour les GPS
 - Latitude, longitude, hauteur
 - RGF 93 (en France)

70

Projections cartographiques Projection cartographique conique Lambert 93 Associée au système de coordonnées RGF 93 71 Cartie de Roberts 72

A.2 Solution analytique par les quaternions

Représentation de la rotation : quaternion unitaire \dot{q}

$$R \in SE^{3} \to \begin{cases} \dot{q} \in \Re^{4} \\ \dot{q} = (q_{0}, q_{x}, q_{y}, q_{z}) \end{cases}$$

Représentation d'une rotation :

$$\dot{q} = \left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2} \times (u_x, u_y, u_z)\right)$$

Calculs avec les quaternions

Produit scalaire de quaternions :

$$\dot{p} \cdot \dot{q} = p_0 q_0 + p_x q_x + p_y q_y + p_z q_z$$

Représentation en quaternion d'un vecteur de R³

$$\dot{q} = (0,q)$$

Rotation par \dot{p} du vecteur de R³ q

$$\dot{p} \cdot \dot{q}$$

Quaternion conjugué (rotation opposée):

$$\dot{p}^* = (p_0, -p_x, -p_y, -p_z)$$

Centre de Roboti

Solution de [Horn 87]

- La fonction à minimiser f est exprimée avec la représentation en quaternion.
- Détermination de la translation :
 - Idem solution avec les matrices et SVD
- Détermination de la rotation :
 - Trouver le quaternion unitaire qui maximise :

$$g(\dot{r}) = \sum_{i=1}^{n} \dot{r} \dot{q}_{i} \dot{r}^{*} \dot{q}$$

 $\dot{q}_i^{'}$ et \dot{q}_i : Quaternions des jeux de points en représentation barycentrique

74 Centre de Robotique

Solution (2)

On peut montrer que g s'écrit : $g(\dot{r}) = \dot{r}^T N \dot{r}$ [Horn 87]

Avec N (symétrique positive):

$$N = \begin{bmatrix} H_{11} + H_{22} + H_{33} & H_{23} - H_{32} & H_{31} - H_{13} & H_{12} - H_{21} \\ H_{23} - H_{32} & H_{11} - H_{22} - H_{33} & H_{12} + H_{21} & H_{31} + H_{13} \\ H_{31} - H_{13} & H_{12} + H_{21} & -H_{11} + H_{22} - H_{33} & H_{23} + H_{32} \\ H_{12} - H_{21} & H_{31} + H_{13} & H_{23} + H_{32} & -H_{11} + H_{22} + H_{33} \end{bmatrix}$$

Où l'on retrouve la matrice H déjà vue :

$$H = \sum_{i=1}^{n} q_i q_i^T$$

Le quaternion solution est le vecteur propre associé à la plus grande valeur propre de N.

Algorithme de résolution par quaternions - pseudo-code -

Entrée : Jeux de n points (P, P')

Sortie: quaternion r, vecteur t

- Déterminer les barycentres p_m et p'_m
- Calculer les matrices H (3x3) puis N (4x4)
- Décomposition en valeurs propres et vecteurs propres de N
 - r est le vecteur propre associé à la plus grande valeur propre de N
- Calcul de t

76

A.3 Démonstration – covariance de la pose

- Cette propriété se démontre de deux façons :
 - Identification des dérivées secondes des paramètres de pose à partir des dérivées secondes de f (Hessien) au minimum
 - Matrice d'Information de Fisher (probabilités)

77 Centre de Robotique

Covariance et matrice de Fisher

• I(x): matrice de Fisher, matrice d'information relative à la distribution du nuage

$$I(X) = -E\left[\frac{\partial^2}{\partial X^2}\log P(p_i - X(p_i)|X)\right]$$

Borne de Cramér-Rao :

 $Cov(X) \ge [I(X)]^{-1}$

- Estimateur obtenu :
 - par la méthode des moindres carrés avec un bruit gaussien de moyenne nulle
 - \Rightarrow borne de C.R atteinte : $Cov(X) = [I(X)]^{-1}$

Calcul de la covariance de la pose

- · Choix de la représentation :
 - → 3 paramètres seulement pour la rotation ?
 - → sens physique de la matrice de covariance
- → Représentation choisie :
 - Rotations représentées par axe u et angle θ : (Rodrigue)
- → Coordonnées homogènes : matrice 4x4
- Fonction à minimiser : $f(X) = \sum_{i=1}^{n} ||p_i Xp_i||^2$

Covariance de la pose (2)

- Transformation linéarisée autour de la solution :

$$X = X_{\min} \delta X$$

$$\delta X = I + \delta x \qquad \delta x = \begin{pmatrix} \delta \omega \wedge \cdot & \delta t \\ 0 & 0 \end{pmatrix}$$

On note le vecteur différence de rotation (dimension 3) :

Et le vecteur différence de pose (dimension 6) :

$$x = \begin{pmatrix} \delta \omega \\ \delta t \end{pmatrix}$$

- On cherche : Cov(x)

NB : le déterminant de la partie « angulaire » de la matrice de covariance permet d'obtenir la précision (variance) angulaire

Covariance de la pose (3)

- Après simplifications :
- $f(X) = \sum_{i=1}^{n} \left\| P_i P_i X \right\|^2$ $\begin{cases} P_i = p_i X_0^{-1} p_i \\ P_i = \left[-(p_i \land \cdot) I \right] \end{cases}$
- Après calcul, on trouve la matrice d'Information de Fisher :

$$I(x) = 2\sigma^2 \sum_{i=1}^n P_i^T P_i$$

- D'où la covariance de la pose (matrice 6x6) :

$$Cov(x) = [I(x)]^{-1}$$

[Hervier 2012]

14