Calcul de la limite d'une somme

Partie I

On définit la suite réelle (u_n) par : $\forall n \in \mathbb{N}, u_n = \sum_{k=1}^n \frac{1}{k}$.

- 1.a Montrer que la suite (u_n) est croissante.
- 1.b Etablir $\forall n \in \mathbb{N}^*, u_{2n} u_n \ge \frac{1}{2}$.
- 1.c Déterminer la limite de (u_n) .
- 2. On introduit deux suites (a_n) et (b_n) définies par : $\forall n \in \mathbb{N}^*, a_n = u_n \ln(n+1)$ et $b_n = u_n \ln n$.
- 2.a Montrer que $\forall x \in]-1, +\infty[, \ln(1+x) \le x]$.
- 2.b En déduire que pour tout $n \in \mathbb{N}^*$: $\ln\left(\frac{n+2}{n+1}\right) \le \frac{1}{n+1} \le \ln\left(\frac{n+1}{n}\right)$.
- 2.c Montrer que les suites (a_n) et (b_n) sont adjacentes. On note γ leur limite commune (appelée constante d'Euler).
- 2.d Justifier la relation $u_n = \ln n + \gamma + o(1)$.

Partie II

On définit deux suites réelles (v_n) et (S_n) par : $\forall n \in \mathbb{N}^*, v_n = \sum_{k=1}^n k^2$ et $S_n = \sum_{k=1}^n \frac{1}{v_k}$.

- 1.a Etablir que pour tout $n \in \mathbb{N}$: $\sum_{k=1}^{n} (k+1)^3 = \sum_{k=1}^{n} k^3 + 3v_n + \frac{n(3n+5)}{2}$.
- 1.b En déduire une expression factorisée du terme général de (v_n) .
- 2.a Déterminer des réels a,b,c tels que $\frac{1}{n(n+1)(2n+1)} = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{2n+1}$.
- $\text{2.b} \qquad \text{Montrer que}: \ \forall n \in \mathbb{N}^*, \sum_{k=1}^n \frac{1}{2k+1} = u_{2n+1} \frac{1}{2} \, u_n 1 \, .$
- 2.c Obtenir un expression de S_n à l'aide de termes de la suite (u_n) .
- 3. Déterminer la limite de (S_n) .