

ECE3110J/VE311 Electronic Circuits

Mid-term Summary

Yuljae Cho, *PhD*Associate Professor
Joint Institute, SJTU

PN Junction Diode

The pn junction diode is formed by fabrication of a p-type semiconductor region in intimate contact with an n-type semiconductor region.

Non-linear, or rectifying, behavior

As a result of the diffusion of charges, immobile ionized charges (atoms) are revealed, generating an electric field, or **built-in potential**.

The carriers **drift in directions opposite the diffusion** of the same carrier species. Because the terminal currents must be zero, **a dynamic equilibrium** is established in the junction region. Hole diffusion is precisely balanced by hole drift, and electron diffusion is exactly balanced by electron drift.

I-V Characteristics of Diode

The diode permits **current to flow in one direction in a circuit**, but prevents movement of current in the opposite direction **due to the barrier**, **or built-in potential**. We will find that this nonlinear behavior has many useful applications in electronic circuit design.

- Turn-on voltage typically 0.5 to 0.7 V
- Saturation current (I_s) typically 10^{-18} to 10^{-9} A
- kT/q = 0.025875 V at 300 K

Diode Equation and Diode Under Bias

Forward bias, i.e. $v_D > 0$, **diode is on**: Current flows from P to N **Reverse bias**, i.e. $v_D < 0$, **diode is off**: Current does not flow, but saturation current exists

The total current through the diode is i_D , and the voltage drop across the diode terminals is v_D . $I_D = I_C \left(\frac{qV_d}{e^{RT}} - 1 \right) \text{ or } I_C \left(e^{v_D/V_T} - 1 \right) \text{ where k is Boltzmann's constant.}$

e.g.
$$v_D = 1 \text{ V}$$
, $i_D = I_S \left(e^{v_D/v_T} - 1 \right) = I_S \left(e^{1/0.025} - 1 \right)$
e.g. $v_D = -1 \text{ V}$, $i_D = I_S \left(e^{v_D/v_T} - 1 \right) = I_S \left(e^{-1/0.025} - 1 \right) = I_S * (-1) \approx -I_S$

Diode Circuit Analysis

One common objective of diode circuit analysis is to find the quiescent operating point (Qpoint), or bias point, for the diode. The Q-point consists of the dc current and voltage (I_D, V_D) that define the point of operation on the diode's i-v characteristic.

$$V = I_D R + V_D$$

$$I_D = ?$$

$$V_D = ?$$

- V = I_DR + V_D
 I_D = ?
 Mathematical analysis
 Simplified analysis (ideal diode)
 V_D = ?
 Simplified analysis (constant walk) 4. Simplified analysis (constant voltage drop)

Simplified Analysis (Ideal Diode)

Though the diode i-v curve is not linear we can use **piecewise linear** approximations for the diode i-v characterization. The **ideal diode model** is the simplest model for the diode. The i-v characteristic for the **ideal diode consists of two straight-line segments.**

(1) Forward bias

Based on the ideal diode model, we can find that the diode is forward biased and operating with a current of 1 mA as follows.

$$I_D = \frac{10 \, V}{10 k \Omega} = 1 \, mA$$

Q-point is 0 V and 1 mA.

(2) Reverse bias

As the diode is off, the circuit is open.

$$I_D = 0$$
 and $V_D = -10 \text{ V}$

Q-point is -10 V and 0 A.

Simplified Analysis (Constant Voltage Drop)

Voltage required to turn on the diode

The diode current flows when electric charges **overcome the built-in potential**, i.e. voltage loss, which can be viewed as the **turn-on voltage V**_{on} of the diode. The piecewise linear model for the diode can be improved by adding a constant voltage V_{on} in series with the ideal diode. This is the **constant voltage drop (CVD) model.**

We can think V_{on} as the voltage required to turn on the diode by overcoming V_{bi} .

The diode is forward biased and thus the diode is on with 0.6 V of voltage loss in the circuit.

$$v_D = v_{on} = 0.6 \text{ V} \text{ and } I_D = \frac{10 - 0.6}{10 k \Omega} = 0.94 \text{ } mA$$

Thus, Q-point is 0.6 V and 0.94 mA.

Half-Wave Rectifier Circuit

The basic rectifier circuit converts an ac voltage to a pulsating dc voltage. A filter is added to eliminate the ac components of the waveform and produce a nearly constant dc voltage output. In fact, majority of electronic circuits are powered by a dc source, usually based on some form of rectifier.

Input Voltage 240 Volts (AC)

Wattage 65 watts

Output Voltage 19.5 Volts (DC)

Power Source Corded Electric

Current Rating 3.34 Amps

Frequency Range 60 hertz

Frequency: 50 to 60 Hz, single phase

Line Voltage: 100 to 240 VAC

Output Voltage/Current: 9 VDC/2.2 A

Minimum Power Output: 20 W

Half-wave rectifier with resistor load

 v_0 is not DC.

Half-Wave Rectifier with RC Load

To understand operation of the rectifier filter, we first consider operation of the peak-detector circuit consisting of the input source, diode, and capacitor. The cap was initially discharged $V_0(0) = 0 \text{ V}$

No path for cap discharge when diode is off

By connecting a load R to the peak-detector circuit, now we provide power to the load R, meaning that there is a path available to discharge the capacitor during the time the diode is not conducting.

The output voltage is no longer constant, but has a ripple voltage V_r . Also, the diode only conducts for a short time ΔT during each cycle. We are interested in three parameters:

- (1) Ripple voltage V_r
- (2) Conduction interval ΔT
- (3) Conduction angle $\theta_c = \omega \Delta T$

Ripple Voltage

Δ T: Diode ON

Recall VE215, a RC response without a source (discharge period) is

$$v_o(t) = (V_P - V_{on}) \exp\left(-\frac{t}{RC}\right)$$

Ripple voltage V_r can be described as

$$V_r = Peak \ point - RC \ response$$

$$= (V_P - V_{on}) - (V_o(t)) \qquad \text{When diode is off, i.e.}$$

$$= (V_P - V_{on}) \left[1 - \exp\left(-\frac{T - \Delta T}{RC}\right) \right] \qquad \text{RC response}$$
Discharging period

By Taylor series, $e^{-x} = 1 - x$, **ripple voltage** V_r becomes $V_r = (V_P - V_{on}) \left[1 - \left(1 - \frac{T - \Delta T}{RC} \right) \right]$, and to attain stable DC V_r needs to be minimized.

From the graph above, we can see that if $\Delta T \ll T$, V_r becomes smaller.

Thus, finally,
$$V_r = \frac{(V_P - V_{on})}{R} \frac{T}{C}$$

Conduction angle and interval

At $5/4T - \Delta T$, the input voltage $(V_P - V_{on})$ just exceeds the output voltage (V_O) . **Diode is ON**.

$$\Theta = \omega t = 2\pi f \cdot t = \frac{2\pi}{T} \left(\frac{5}{4} T - \Delta T \right) = \frac{5\pi}{2} - \theta_C \text{ as } \theta_C = \omega \Delta T$$

At $5/4T - \Delta T$, Input sine wave $-V_{on} = (Peak of Sine wave <math>-V_{on}) - V_{r}$

$$V_P \sin \left[\omega \left(\frac{5T}{4} - \Delta T\right)\right] - V_{on} = (V_P - V_{on}) - V_r$$

$$\rightarrow V_{P} \sin \left(\frac{5\pi}{2} - \theta_{c}\right) - V_{on} = (V_{P} - V_{on}) - V_{r}$$

Thus, the equation becomes $V_P \cos \theta_c = V_P - V_r \rightarrow \cos \theta_c = \frac{V_P - V_r}{V_P} \cong 1 - \frac{\theta_c^2}{2}$ if θ_c is very small

$$\theta_{\rm c} = \sqrt{\frac{2V_{\rm r}}{V_{P}}} \qquad \Delta T = \frac{\theta_{\rm c}}{\omega} = \frac{1}{\omega} \sqrt{\frac{2V_{\rm r}}{V_{\rm s}}}$$

Diode Current

Diode current flows for only a very small fraction of the period T. The capacitor is charged during ΔT and is discharged during $T - \Delta T$.

$$Q \cong \frac{I_{\text{peak}}\Delta T}{2} = I_{\text{dc}}(T - \Delta T) \cong I_{\text{dc}}T$$

$$where I_{\text{dc}} = \frac{V_p - V_{on}}{R}$$

$$\rightarrow I_{\text{peak}} = \frac{2I_{\text{dc}}T}{\Delta T}$$

Surge Current

At the first cycle, the capacitor is completely discharged (as we assumed), and therefore, there will be a larger current through the diode. During charging period (ΔT), almost all diode current goes to C.

$$I_{surge} = i_d(t) = C \frac{d(V_P \sin \omega t - V_{on})}{dt} = \omega C V_P \cos \omega t$$

Peak Inverse Voltage (PIV)

The breakdown voltage rating of the diodes is called the peak-inverse-voltage (VIP). If V_r is very small, the diode must be able to withstand a large negative peak voltage.

Peak-inverse-voltage (PIV)
$$\geq V_{DC} + V_I = V_P - V_{on} + V_P \cong 2V_P - V_{on}$$

If the diode PIV is smaller than $2V_P - V_{on}$, the diode breaks down.

Full-Wave Bridge Rectifier

For $v_I > 0$, D_2 and D_4 will be on and D_1 and D_3 will be off. For $v_I < 0$, D_1 and D_3 will be on and D_2 and D_4 will be off.

$$V_{dc} = \mathbf{V_P} - 2\mathbf{V_{on}}$$

$$I_{dc} = \frac{V_{dc}}{R}$$

$$\mathbf{V_r} = (V_P - 2V_{on}) \left(1 - e^{-\frac{T/2 - \Delta T}{RC}}\right) \cong (V_P - 2V_{on}) \left(\frac{T/2 - \Delta T}{RC}\right) \quad if \left(\frac{T}{2} - \Delta T\right) \ll RC$$

$$\cong (\mathbf{V_P} - 2\mathbf{V_{on}}) \left(\frac{T}{2RC}\right) \quad if \Delta T \ll \frac{T}{2}$$

Conduction angle and interval

$$-V_{P} \sin \left[\omega \left(\frac{3T}{4} - \Delta T\right)\right] - 2V_{on} = (V_{P} - 2V_{on}) - V_{r}$$

$$-V_{P} \sin \left(\frac{3\pi}{2} - \theta_{c}\right) - 2V_{on} = (V_{P} - 2V_{on}) - V_{r}$$

$$V_{P} \cos \theta_{c} = V_{s} - V_{r}$$

$$\cos \theta_{c} = \frac{V_{P} - V_{r}}{V_{s}} \cong 1 - \frac{\theta_{c}^{2}}{2} \text{ if } \theta_{c} \text{ very small}$$

$$\theta_{c} = \sqrt{\frac{2V_{r}}{V_{P}}}$$

$$\Delta T = \frac{\theta_{c}}{\omega} = \frac{1}{\omega} \sqrt{\frac{2V_{r}}{V_{P}}}$$

$$Q \cong \frac{I_{\text{peak}}\Delta T}{2} = I_{\text{dc}}\left(\frac{T}{2} - \Delta T\right) \cong I_{\text{dc}}\frac{T}{2}$$

$$I_{peak} = \frac{I_{dc}T}{\Delta T}$$

$$I_{\text{surge}} = \omega CV_P \text{ (at } t = 0)$$

$$PIV = V_P - V_{on} \cong V_P$$

Device Schematics

BJT has n^+ -p-n or p^+ -n-p structure.

e.g. n⁺-p-n structure

- Emitter: heavily doped n—type
- Base: p-region
- Collector: lower n-region
- Electron diffusion length (L_n) in base $\gg W_b$
- Emitter doping $N_{de} \gg$ base doping N_{ab} $(I_n \approx I)$

Structure of BJT

The BJT consists of three doped regions forming a sandwich. Below is an example comprising of a p layer sandwiched between two n regions and called an npn BJT.

There are three terminal voltages V_E , V_B , and V_C , and consequently the voltage differences between terminals V_{BE} , V_{CB} , and V_{CE} . Among various biasing conditions, **for amplification of BJT**, there is **only one biasing condition**.

Transport Model for NPN BJT

There are also three terminal currents, collector current i_C , emitter current i_E , and base current i_B . The base-emitter voltage v_{BE} and the base-collector voltage v_{BC} applied to the two pn junctions determine the magnitude of these three currents in the BJT and are defined as positive when they forward-bias their respective pn junctions.

The bias condition for the Forward active mode of BJT (a normal BJT operation mode) is $\mathbf{v}_{BE} > \mathbf{0}$ and $\mathbf{v}_{BC} < \mathbf{0}$.

Large-Signal Model

IV characteristics – Transfer characteristic

Transfer characteristic plots I_C vs V_{BE} with the assumption that the V_{CE} is constant and no lower than the V_{BE} , i.e. $V_{CE} > V_{BE}$. Thus, the BJT is in the forward active mode.

 I_C is independent of V_{CE} ; thus, different values of V_{CE} do not alter the characteristic.

$$i_C = I_S[e^{v_{BE}/V_T} - 1]$$

IV characteristics – Output characteristic

Output characteristic shows I_C for a given V_{BE} but with V_{CE} varying.

 $V_{CE} < V_{BE}$, Both diodes (B-E and C-B) are on and thus the BJT is in a saturation.

 $V_{CE} > V_{BE}$, BJT is in a forward active. V_{BE} increases I_{C} increases as $i_{C} = I_{S}[e^{v_{BE}/V_{T}} - 1]$

Transconductance

In the **forward active region**, the transistor becomes **a better amplifying device** by producing larger changes in I_C in response to a given signal level (V_{BE}) applied (I_C/V_{BE}) .

 $g_m = dI_C / dV_{BE}$ represents the slope of $I_C - V_{BE}$ characteristic at a given I_{C0} , and the corresponding V_{BE0} . In other words, if V_{BE} experiences a small perturbation $\pm \Delta V$ around V_{BE0} , then the I_C displays a change of $\pm g_m \Delta V$ around I_{C0} .

Small-Signal Model

Without Early Effect

$$\boldsymbol{g_m} = \frac{dI_C}{dV_{BE}} = \frac{\boldsymbol{I_C}}{\boldsymbol{V_T}}$$

$$\mathbf{r_{\pi}} = \frac{\Delta V_{\mathrm{BE}}}{\Delta I_{\mathrm{B}}} = \frac{\boldsymbol{\beta}}{\mathbf{g_{m}}}$$

Ground all constant voltage sources and open all constant current sources while constructing the small-signal equivalent circuit

Early Effect

As $V_{CE} < V_{CE2}$, the depletion region in C-B areas increases, and thus the slope of the profile increases. Equivalently, the effective W_B decreases, thereby increasing I_C . Early effect indicates that the V_{CE} does affect the I_C .

With the Early effect,
$$I_C \approx \left(I_S exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right)$$
 $V_A = \text{Early voltage}$

Without the Early effect, $i_C = I_S[e^{v_{BE}/V_T} - 1]$

With the Early effect, $I_C \approx \left(I_S exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right)$

Small-signal model with Early effect

The small-signal model contains only one extra element $\mathbf{r}_{\mathbf{0}}$ to represent the Early effect. This output resistance $\mathbf{r}_{\mathbf{0}}$ plays a critical role in high gain amplifiers

Summary

Without Early Effect

With Early Effect

PNP BJT

Operation of PNP in the active region requires forward biasing the base-emitter junction and reverse-biasing the collector junction. Thus, $V_{BE} < 0$ (Forward) and $V_{BC} > 0$ (Reverse). All of the operation principles and equations described for npn transistors apply to pnp devices as well.

PNP BJT Small Signal model

Since the small-signal model represents changes in the voltages and currents, we expect npn and pnp transistors to have similar models. The small signal model of the pnp transistor is indeed identical to that of the npn device.

DC and Small-Signal Analysis

How to analyze a BJT circuit? (1) we determine the **effect of constant voltages and currents** while **signal sources are set to zero**; (2) we analyze the response to signal sources while **constant sources are set to zero**.

Common-Emitter (C-E) Amplifier

If the input signal is applied to base (B) and the output signal is sensed at the collector (C), the circuit is called a **common-emitter** (C-E) **stage**, i.e. **emitter** (E) **is grounded and appears in common to the input and output**.

CE Stage With Emitter Degeneration (Without Early Effect)

By KCL,
$$-g_m v_{\pi} = \frac{v_{out}}{R_C} \to v_{\pi} = -\frac{v_{out}}{g_{mR_C}}$$

Current through $R_E = v_{\pi}/r_{\pi} + g_m v_{\pi}$ By KVL: $-v_{in} + v_{\pi} + v_{R_E} = 0$ where $v_{R_E} = (v_{\pi}/r_{\pi} + g_m v_{\pi})R_E$ Thus, $v_{in} = v_{\pi} + (v_{\pi}/r_{\pi} + g_m v_{\pi})R_E = v_{\pi} [1 + (1/r_{\pi} + g_m)R_E]$

$$\frac{v_{out}}{v_{in}} = -\frac{g_m R_C}{1 + (1/r_{\pi} + g_m) R_E} \approx -\frac{g_m R_C}{1 + g_m R_E}$$

CE Stage With Emitter Degeneration-Input and Output Impedance

$$v_{\pi} = r_{\pi}i_{X}$$

Current through \mathbf{R}_{E} is $i_{X} + g_{m}v_{\pi} = i_{X} + g_{m}r_{\pi}i_{X} = (\mathbf{1} + \boldsymbol{\beta})\mathbf{i}_{X}$ as $r_{\pi} = {}^{\boldsymbol{\beta}}/g_{m}$
 $v_{X} = r_{\pi}i_{X} + R_{E}(1 + \boldsymbol{\beta})i_{X}$ and thus $\mathbf{R}_{in} = {}^{v_{X}}/i_{X} = \mathbf{r}_{\pi} + (\boldsymbol{\beta} + \mathbf{1})\mathbf{R}_{E}$

 $v_{\pi} = 0$, all i_X flows through R_C and thus $R_{out} = R_C$

Effect of Transistor Output Resistance with Early Effect

$$v_{\pi} = -i_{x}(R_{E}||r_{\pi})$$

A current through r_{O} is $i_{X} - g_{m}v_{\pi}$

By KVL:
$$-v_X + r_O(i_X - g_m v_\pi) - v_\pi = 0 \rightarrow v_X = r_O[i_X + g_m i_X (R_E || r_\pi)] + i_X (R_E || r_\pi)$$

 $R_{out} = \frac{v_X}{i_X} = r_O[1 + g_m (R_E || r_\pi)] + (R_E || r_\pi) \rightarrow r_O + (g_m r_O + 1)(R_E || r_\pi)$
 $R_{out} \approx r_O[1 + g_m (R_E || r_\pi)] \text{ as } g_m r_O \gg 1 \text{ (intrinsic gain)}$

Increase in the output impedance r_O produces amplifiers with a higher gain.

Coupling capacitor

Ly separate DC and Ac signal.

A series capacitor can be inserted to isolate the dc biasing of the amplifier from the AC signal.

The bias point of Q_1 remains independent of the resistance of the microphone (AC signal) because C_1 carries no bias current (DC Open). The value of C_1 is chosen so that it provides a relatively low impedance for the frequencies of interest (AC Short). C_1 is a coupling capacitor and the input of this stage is ac-coupled or capacitively coupled.

e.g.

$$\frac{v_{out}}{v_{in}} = -g_m R_C$$

$$R_{in} = r_{\pi} ||R_1||R_2$$

$$R_{out} = R_C$$

Common-Base (CB) Topology

The input is applied to the emitter and the output is sensed at the collector. Biased at a proper voltage, the base acts as ac ground and hence as a node "common" to the input and output ports.

General case of the CB topology

$$v_{\text{out}} = -g_{\text{m}}v_{\pi}R_{\text{C}} \rightarrow v_{\pi} = -v_{\text{out}}/g_{\text{m}}R_{\text{C}}$$

The current through the v_{π} node is $v_{\pi}/r_{\pi} = -v_{\text{out}}/g_{\text{m}}R_{\text{C}}r_{\pi}$ Therefore, voltage at node p is $v_p = v_{\text{out}}/g_{\text{m}}R_{\text{C}}r_{\pi}$ $(R_B + r_{\pi}) = v_{\text{out}}/\beta R_{\text{C}}(R_B + r_{\pi})$ * $r_{\pi} = \frac{\beta}{g_m}$

KCL at node P, we get
$$\frac{v_{\pi}}{r_{\pi}} + g_{m}v_{\pi} = \frac{v_{p} - v_{in}}{R_{E}}$$

KCL at node P, we get
$$\frac{v_{\pi}}{r_{\pi}} + g_m v_{\pi} = \frac{v_p - v_{in}}{R_E} (1)$$

where $v_{\pi} = -\frac{V_{out}}{g_m R_C}$ and $v_p = -\frac{V_{out}}{\beta R_C} (R_B + r_{\pi})$.

Put v_{π} and v_{p} into the equation (1) and rearrange terms, we get

$$\frac{v_{out}}{v_{in}} = \frac{\beta R_C}{(\beta + 1)R_E + R_B + r_\pi} \text{ or } \approx \frac{R_C}{R_E + \frac{R_B}{\beta + 1} + \frac{1}{g_m}}$$

Input Resistance of General CB Topology

$$-v_{\pi} = \frac{r_{\pi}}{R_{B} + r_{\pi}} v_{p}, v_{p} = v_{x} - R_{E} i_{x}$$
KCL at node P gives $\frac{v_{\pi}}{r_{\pi}} + i_{x} + g_{m} v_{\pi} = 0$
This results in $\left(\frac{1}{r_{\pi}} + g_{m}\right) v_{\pi} + i_{x} = 0$ where $-v_{\pi} = \frac{r_{\pi}}{R_{B} + r_{\pi}} (v_{x} - R_{E} i_{x})$

$$\left(\frac{1}{r_{\pi}} + g_{m}\right) \frac{r_{\pi}}{R_{B} + r_{\pi}} (v_{x} - R_{E} i_{x}) = i_{x} \quad *r_{\pi} = \frac{\beta}{g_{m}}$$

Rearrange terms we get $\frac{v_x}{i_x} = R_E + \frac{R_B + r_\pi}{\beta + 1}$ or without R_E (series R) $\frac{v_x}{i_x} = \frac{R_B}{\beta + 1} + \frac{1}{g_m}$

Emitter Follower

In an emitter follow circuit, V_{out} is always lower than V_{in} by an amount equal to V_{BE} , and the circuit is said to provide **level shift** and a **voltage gain less than unity**.

Even though the voltage gain is less than unity, the **input and output impedances** of the emitter follower make it a particularly useful circuit for some applications.

With Early effect

(1) Gain

By small signal analysis, the equivalent circuit yields

$$\frac{v_{\pi}}{r_{\pi}} + g_{m}v_{\pi} = \frac{v_{out}}{R_{E}} + \frac{v_{out}}{r_{o}}$$

$$v_{\pi} = \frac{r_{\pi}}{\beta + 1} \cdot \frac{v_{out}}{R_{E} \| r_{o}}$$

$$v_{in} = v_{\pi} + v_{out}$$

$$\frac{v_{out}}{v_{in}} = \frac{1}{1 + \frac{r_{\pi}}{\beta + 1} \cdot \frac{1}{R_E \| r_o}} \approx \frac{R_E \| r_o}{R_E \| r_o + \frac{1}{g_m}}$$

With Early effect

(2) Input Impedances

From the circuit above, we can derive

$$v_{\pi} = i_{X} r_{\pi}; V_{P} = v_{X} - v_{\pi} = v_{X} - i_{X} r_{\pi}$$

By KCL at node P,
$$i_X + g_m v_\pi = \frac{v_P}{R_E} + \frac{v_P}{r_o}$$
 where $\frac{1}{R_E} + \frac{1}{r_o} = \frac{1}{R_E || r_o|}$
 $\Rightarrow R_{in} = \frac{v_X}{i_X} = (1 + g_m r_\pi)(R_E || r_o) + r_\pi = (1 + \beta)(R_E || r_o) + r_\pi$

With Early effect

(3) Output Impedances

$$\boldsymbol{R_{out}} = \frac{1}{g_m} \| \boldsymbol{R_E} \| \boldsymbol{r_0}$$

MOS I/V Characteristics

Assume we change V_G from negative to positive

Electron direction Drain current (I_D) direction

- By applying **positive** V_{GS} , electrons are induced in the channel, or holes are repelled from the channel, forming a **depletion region** at the interface between oxide and Si.
- When V_{GS} (> 0) is large enough, a channel of electrons (inversion layer) is formed at the interface.
- The value of V_{GS} at which the inversion layer forms is the **threshold voltage** (V_{TH}) . The device turns on abruptly for $V_{GS} \ge V_{TH}$.
- With the bias of V_{DS}, electrons flow from source to drain.

Threshold Voltage (PMOS)

The turn-on phenomenon in a PMOS device is similar to that of NFETs, but with all the polarities reversed. If the V_{GS} becomes sufficiently *negative*, an inversion layer consisting of holes is formed at the oxide-silicon interface, providing a conduction path between the source and the drain. V_{TH} of PMOS < 0.

Modes of MOSFET

(1) $V_{GS} < V_{TH}$: No channel exists, the **device is off**, and $I_D = 0$ regardless of the value of V_{DS} .

(2) $V_{GS} > V_{TH}$: The channel is formed. With $V_{DS} > 0$, the **device is on** and there is $I_D > 0$.

In an output curve of MOSFET, we can determine two modes (regions): (1) **Triode or ohmic region and (2) saturation region.**

Saturation Region

When the $V_{DS} > V_{GS} - V_{TH}$, the drain current does not follow the parabolic behavior. In fact, I_D becomes relatively constant and the device operates in the **saturation region**.

 $V_{DS} = V_{GS} - V_{TH}$ is the minimum value for the NMOS to operate in saturation region. For $V_{DS} > V_{GS} - V_{TH}$, I_D becomes relatively constant.

The local density of the inversion-layer charge is proportional to $V_{GS} - V(x) - V_{TH}$. Thus, if V(x) approaches $V_{GS} - V_{TH}$, then $Q_d(x)$ drops to zero. In other words, if V_{DS} is slightly greater than $V_{GS} - V_{TH}$, then the inversion layer stops at $x \le L$, and the channel is **pinched off**. As V_{DS} increases further, **the point at which Q_d equals zero gradually moves toward the source**.

When $V_{DS} = V_{GS} - V_{TH}$, the saturation occurs. Thus, substitute V_{DS} with $V_{GS} - V_{TH}$ then

$$I_D = \mu_n C_{ox} \frac{W}{L_{off}} [(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} {V_{DS}}^2] \ \rightarrow I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$

L': the point at which Q_d drops to zero

NMOS vs **PMOS**

Triode region:
$$I_D = \mu_n C_{ox} \frac{W}{L_{eff}} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Saturation region: $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$

Transconductance

Transconductance (g_m) indicates how well a device converts a voltage to a current. Transconductance is usually defined in the saturation region.

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH}) = \sqrt{2\mu_{n} C_{ox} \frac{W}{L'} I_{D}} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$

Second-Order Effects

Body Effect

As V_B or V_{BS} becomes more negative ($V_{SB} > 0$), more holes are attracted to the substrate connection, leaving a larger negative charge behind. the depletion region becomes wider.

More depletion charge (bound charge) $Q_d \uparrow \rightarrow V_{TH}$ increases $V_{TH} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$

For the transconductance,

$$g_{mb} = \frac{\partial I_{D}}{\partial V_{BS}} (= -\frac{\partial I_{D}}{\partial V_{SB}}) = \frac{\partial I_{D}}{\partial V_{TH}} \cdot \frac{\partial V_{TH}}{\partial V_{BS}}$$

$$= -\mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH}) \cdot \frac{\partial V_{TH}}{\partial V_{BS}}$$

$$= g_{m} \cdot \eta$$

$$V_{D}$$

$$\Delta I_{D} = \Delta V_{GS} \times g_{m}$$

$$\Delta I_{D} = \Delta V_{BS} (> 0) \times g_{mb}$$

- V_{GS} positively increases, I_D increases.
- V_{BS} positively increases, i.e. V_{SB} negatively increases, V_{TH} decreases and thus I_D increases.

Channel-Length Modulation

The actual length of the channel gradually decreases as the potential difference between the gate and the drain decreases. L is in fact a function of V_{DS} .

$$\begin{split} I_{D} &= \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2} \\ I_{D} &= \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^{2} \left(1 + \frac{\Delta L}{L_{eff}} \right) \\ &= \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^{2} (1 + \lambda V_{DS}) \end{split}$$

With the channel-length modulation,

$$I_D = \frac{1}{2} \mu_{\rm n} C_{\rm ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

$$\mathbf{g_m} = \frac{\partial \mathbf{I_D}}{\partial \mathbf{V_{GS}}} = \mu_{n} \mathbf{C_{ox}} \frac{W}{L_{eff}} (\mathbf{V_{GS}} - \mathbf{V_{TH}}) (\mathbf{1} + \lambda V_{DS})$$

$$\mathbf{r_o} = \frac{\partial V_{DS}}{\partial I_D} = 1 / \frac{\partial I_D}{\partial V_{DS}} = \frac{1}{\frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \cdot \lambda}$$

$$\approx \frac{1}{I_D \cdot \lambda}$$

Channel-length modulation is reflected in g_m and r_o by λ

Small-Signal Model for NMOS

$$V_{d} = V_{D} + V_{d}$$

$$V_{g} = V_{G} + V_{g} + V_{d}$$

$$V_{g} = V_{S} + V_{g} + V_{d}$$

$$V_{g} = V_{G} + V_{g} + V_{g}$$

$$V_{g} = V_{G} + V_{g}$$

Small-Signal Model for PMOS

