TESTS PARAMÉTRIQUES USUELS (une population)

Critères de rejet pour un niveau (seuil) critique α .

Situation	Statistique du test			
Une moyenne μ $H_0: \mu = \mu_0$		$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu \neq \mu_0$
σ^2 est connue	_	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
et	$Z_0 = \frac{X - \mu_0}{\sigma / \sqrt{n}}$	$Z_0 < -z_{\alpha}$	$Z_0 > z_{\alpha}$	$ Z_0 > z_{\alpha/2}$
$X \sim N(\mu, \sigma^2)$, ou n grand		$\beta(d)$, page 491	$\beta(d)$, page 491	$\beta(d)$, page 490
σ^2 est inconnue	77	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
et	$T_0 = \frac{X - \mu_0}{S/\sqrt{n}}$	$T_0 < -t_{\alpha;n-1}$	$T_0 > t_{\alpha;n-1}$	$ T_0 > t_{\alpha/2;n-1}$
$X \sim N(\mu, \sigma^2)$		$\beta(d)$, page 493	$\beta(d)$, page 493	$\beta(d)$, page 492
σ^2 est inconnue		rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
et	$Z_0 = \frac{X - \mu_0}{S/\sqrt{n}}$	$Z_0 < -z_{\alpha}$	$Z_0 > z_{\alpha}$	$ Z_0 > z_{lpha/2}$
n est très grand	, ,	2 (2)	0 (1)	2 (1)
		$\beta(d)$, page 491	$\beta(d)$, page 491	$\beta(d)$, page 490
Une variance σ^2 $H_0: \sigma^2 = \sigma_0^2$ $X \sim N(\mu, \sigma^2)$		$H_1: \sigma^2 < \sigma_0^2$	$H_1: \sigma^2 > \sigma_0^2$	$H_1: \sigma^2 \neq \sigma_0^2$ rejeter H_0 si
$X \sim N(\mu, \sigma^2)$	~ 2	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
et	$\chi_0^2 = (n-1)\frac{S^2}{\sigma_0^2}$	$\chi_0^2 < \chi_{1-\alpha;n-1}^2$	$\chi_0^2 > \chi_{\alpha;n-1}^2$	$\chi_0^2 < \chi_{1-\alpha/2;n-1}^2$
μ et σ^2 sont inconnues	V	$\beta(\lambda)$, page 496	$\beta(\lambda)$, page 495	ou $\chi_0^2 > \chi_{\alpha/2;n-1}^2$ $\beta(\lambda)$, page 494
n est grand $(n \ge 40)$	$Z_0 = \frac{S - \sigma_0}{\sigma_0 / \sqrt{2n}}$	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
		$Z_0 < -z_{\alpha}$	$Z_0 > z_{\alpha}$	$ Z_0 > z_{\alpha/2}$
Une proportion $p \mid H_0: p = p_0$		$H_1: p < p_0$	$H_1: p > p_0$	$H_1: p \neq p_0$
$X \sim \text{Bernoulli}$		rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
de paramètre p	$Z_0 = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}}$	$Z_0 < -z_\alpha \text{ si}$	$Z_0 > z_{\alpha}$	$ Z_0 > z_{\alpha/2}$
et n est très grand	$\sqrt{\frac{100}{n}}$	β : pp.291-292	β : pp.291-292	β : pp.291-292

Les critères de rejet ci-dessus sont déterminés en considérant un échantillon aléatoire X_1, \ldots, X_n d'une variable X. La moyenne et la variance de l'échantillon sont: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, et $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ respectivement.

Pour 0 < a < 1, les nombres (ou centiles) z_a , $t_{a;n-1}$ et $\chi^2_{a;n-1}$ sont définis par :

$$\Phi(z_a) = 1 - a$$
; $P(T_{n-1} > t_{a;n-1}) = a$; $P(\chi_{n-1}^2 > \chi_{a;n-1}^2) = a$.

Calcul de β :

- Pour le test portant sur une moyenne, $d = \frac{|\mu \mu_0|}{\sigma}$, et $\beta(d) = P(\text{accepter } H_0 | |\mu \mu_0| = d\sigma)$. Pour le test portant sur une variance, $\lambda = \frac{\sigma}{\sigma_0}$, et $\beta(\lambda) = P(\text{accepter } H_0 | \sigma = \lambda \sigma_0)$. Pour le test portant sur une proportion p, les formules (11.48) à (11.52) pages 291 et 292 du livre donnent $\beta(p)$ et n.

TESTS PARAMÉTRIQUES USUELS (deux populations)

Critères de rejet pour un niveau (seuil) critique α .

Situation	Statistique du test			
2 moyennes μ_1, μ_2 $H_0: \mu_1 = \mu_2$		$H_1: \mu_1 < \mu_2$	$H_1: \mu_1 > \mu_2$	$H_1: \mu_1 \neq \mu_2$
σ_1^2 et σ_2^2 sont connues		rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
et $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$	$Z_0 = \frac{X_1 - X_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$Z_0 < -z_{\alpha}$	$Z_0 > z_{\alpha}$	$ Z_0 > z_{\alpha/2}$
ou alors n_1 et n_2 grands.	\mathbf{v}^{n_1} n_2	$\beta(d)$, page 491	$\beta(d)$, page 491	$\beta(d)$, page 490
σ_1^2 et σ_2^2 sont inconnues				
avec $\sigma_1^2 = \sigma_2^2 = \sigma^2$	$T_0 = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
et $X_i \sim N(\mu_i, \sigma^2), i = 1, 2$		$T_0 < -t_{\alpha;n_1+n_2-2}$	$T_0 > t_{\alpha; n_1 + n_2 - 2}$	$ T_0 > t_{\alpha/2;n_1+n_2-2}$
σ_1^2 et σ_2^2 sont inconnues				
avec $\sigma_1^2 \neq \sigma_2^2$	$T_0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
et $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$		$T_0 < -t_{\alpha;\nu}$	$T_0 > t_{\alpha;\nu}$	$ T_0 > t_{\alpha/2;\nu}$
σ_1^2 et σ_2^2 sont inconnues				
et n_1, n_2 sont grands	$Z_0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
$(n_1 \ge 30, n_2 \ge 30)$	$\bigvee n_1 n_2$	$Z_0 < -z_{\alpha}$	$Z_0 > z_{\alpha}$	$ Z_0 > z_{\alpha/2}$
Les observations sont couplé				
$D = X_1 - X_2 \sim \text{Normale}$	$T_0 = \frac{\overline{D}}{S_D/\sqrt{n}}$	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
$D_j = X_{1j} - X_{2j}, j = 1, \dots,$	n = (***)	$T_0 < -t_{\alpha;n-1}$	$T_0 > t_{\alpha;n-1}$	$ T_0 > t_{\alpha/2;n-1}$
2 variances σ_1^2 , σ_2^2 $H_0: \sigma_1^2 =$	$=\sigma_2^2$	$H_1: \sigma_1^2 < \sigma_2^2$	$H_1: \sigma_1^2 > \sigma_2^2$	$H_1:\sigma_1^2\neq\sigma_2^2$
	g2	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
$X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$	$F_0 = \frac{S_1^2}{S_2^2}$	$F_0 < F_{1-\alpha;n_1-1,n_2-1}$	$F_0 > F_{\alpha;n_1-1,n_2-1}$	$F_0 < F_{1-\alpha/2;n_1-1,n_2-1}$
			$\beta(\lambda)$, page 498	ou $F_0 > F_{\alpha/2;n_1-1,n_2-1}$ $\beta(\lambda)$, page 497
n_1 et n_2 sont grands	$Z_0 = \frac{S_1 - S_2}{S_p \sqrt{\frac{1}{2n_1} + \frac{1}{2n_2}}}$	rejeter H_0 si	rejeter H_0 si	rejeter H_0 si
$n_1 > 40, \ n_2 > 40$	(*)	$Z_0 < -z_{\alpha}$	$Z_0 > z_{\alpha}$	$ Z_0 > z_{\alpha/2}$

$$(*) \ S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \qquad (**) \ \nu = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 + 1} + \frac{(S_2^2/n_2)^2}{n_2 + 1}} - 2 \qquad (***) \ \overline{D} = \frac{1}{n} \sum_{j=1}^n D_j, \ S_D = \sqrt{\frac{1}{n-1} \sum_{j=1}^n (D_j - \overline{D})^2}$$

Les critères de rejet ci-dessus sont déterminés en considérant deux échantillons aléatoires X_{11},\ldots,X_{1n_1} et $X_{21},\ldots,X_{2n_2},\ldots,X_{2n_2}$

indépendants (sauf dans le cas des observations couplées), provenant de deux variables (populations)
$$X_1$$
 et X_2 . On considère: $\overline{X}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} X_{1i}$ $\overline{X}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} X_{2i}$ $S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_{1i} - \overline{X}_1)^2$ $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (X_{2i} - \overline{X}_2)^2$.

Calcul de β :

• Pour le test portant sur deux moyennes, $d = \frac{|\mu_1 - \mu_2|}{\sqrt{\sigma_1^2 + \sigma_2^2}}$, et $\beta(d) = P\left(\text{accepter } H_0 | |\mu_1 - \mu_2| = d\sqrt{\sigma_1^2 + \sigma_2^2}\right)$.

On considère $n_1 = n_2 = n$ et on utilise les mêmes courbes (pages 490 et 491 du livre) que dans le cas d'une moyenne.