Code: 13BS1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI I B.Tech I Semester Regular Examinations, February-2015 **ENGINEERING MATHEMATICS – I**

(Common to All Branches)

Time: 3 hours Max Marks:70

PART -A

Answer all questions

[10 x 1 = 10M]

- 1 (a) Form the differential equation from y = ax + b by eliminating arbitrary constants.
- (b) Find the general solution of the differential equation $e^x dx + (e^x + 1) dy = 0$.
- (c) Find the solution of $(D^2 + 4) y = 0$.
- (d) What is the particular integral of $(D^2 + 1) y = \cos x$.
- (e) If $U = x^2 y^2$, V = 2x y then find (u,v) / (x, y). (f) Write the stationary points of $f(x, y) = x^2 + y^2$.
- (g) Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} (x^{2} + 2y) \, dy \, dx$.
- (h) Convert to polar co ordinates $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$
- (i) For any closed sphere S with center at origin find $\int \text{curl} \overline{F}$. $d\overline{S}$
- (j) If r = x i + y j + z k, find $\nabla . r$

PART - B

UNIT-1

Answer one question from each unit

[5x12=60 M]

- 2 (a) Find the differential equation for all parabolas each having its latus rectum 4a and axis parallel to x-axis. [6+6=12M]
 - (b) Solve the differential equation ($y \cos x + \sin y + y$) $dx + (\sin x + x \cos y + x) dy = 0$.

- 3 (a) Solve the differential equation $(1-x^2)\frac{dy}{dx} + 2xy = x\sqrt{1-x^2}$.
 - (b) Solve the differential equation $\frac{dy}{dx} + y \tan x = y^3 secx$. [6 + 6 = 12M]

UNIT-II

4 (a) Solve $(D^2 + 2D + 3)x = \sin t$.

[6 + 6 = 12M]

(b) Solve $(D^3 - D) y = 2x + 1$.

1 to 2

AR13

SET 02

(OR)

5 (a) Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x e^x$$
.

(b) Solve the following differential equation by variation of parameters method $\frac{d^2y}{dx^2} + y = \sec x$ [6 + 6 = 12M]

UNIT-III

- 6 (a) Evaluate the following integral by changing the order of integration $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x e^{-x^2/y} dy dx$
- (b) Find the area lying inside the cardioid r = a (1+cos) and outside the circle r = a. [6+6=12M]

(OR) 7 Find the volume bounded by the paraboloid $x^2 + y^2 = az$, the cylinder $x^2 + y^2 = 2ay$ and the plane z = 0. [12M]

UNIT-IV

8 Find the Taylors's series expansion of $f(x,y) = e^x \log(1+y)$ in powers of x and y up to terms of third degree. [12M]

9 If $U = x \sqrt{1-y^2} + y\sqrt{1-x^2}$, $V = \sin^{-1}(x) + \sin^{-1}(y)$, show that U, V are functionally related and find the relationship. [12M]

- UNIT-V 10 (a) Find the directional derivative of $f(x,y,z) = x y^2 + y z^3$ at the point (2, -1, 1) in the direction of the vector i + 2j + 2k.
 - (b) Find the divergence of \overline{F} at the point (1,2,3) where $\overline{F} = 3 \times {}^{2}i + 5 \times {}^{2}j + \times {}^{2}j + \times {}^{2}k$. [6+6=12M]

11 Evaluate $\int \overline{F} \cdot d\overline{s}$ where $\overline{F} = (x + y^2) i - 2x j + 2yzk$ and S is the surface of the plane 2x + 2yzky + 2z in the first octant. [12M]