DIGITAL ASSIGNMENT I

Problem Sheet

	<u>-</u>	IODICIII	<u>i Sheet</u>	
********	*******	******	**********	*****
Course Code: BI	Course Code: BPHY101P		Course Title: ENGINEERING PHYSICS	
Class Nbr: VL20	23240105832	Due Da	ate: 07 September 2023	
Max. Marks 25	Slot : E1		Faculty: Dr. S. Balakrisl	hnan
*******	******	******	*********	****
1. The assignment co	ntains 5 question s	s from M	Nodule 1- Introduction to Wa	ives
2. Each question carr to 10 marks.	ies 5 marks and h	ence the	e total is 25 marks which will	be scaled down
	•		take a snap shot of it. Howe ONOT upload image files.	ever, you should
4. Template for word at the end.	document in wh	ich image	es of the solutions should be	inserted is given
5. After completing t with your registration	•		document, convert it into on	e single PDF file
For example: 2	3MIS0001_Physic	csDA1		
6. Only one PDF file i files, Word files, Goo	_		er should be uploaded. (I will	discard image
7. Submit the Assignm	nent only through	ı VTOP.		
8. Due date for subm	ssion: 07 Septem k	oer 2023		
9. Any reason for late	submission will	not be co	onsidered.	
*****	All the ver	y best	*****	

ASSIGNMENT Questions

Wave equation

- 1. A uniform rope of length 12 m and mass 6 kg hangs vertically from a rigid support. A block of mass 2 kg is attached to the free end of the rope. A transverse pulse of wavelength 0.06 m is produced at the lower end of the rope. What is the wavelength of the pulse when it reaches the top of the rope?
- 2. A wave travelling on a string at a speed of $10\ ms^{-1}$ causes each particle of the string to oscillate with a time period of $20\ ms$. (a) What is the wavelength of the wave (b) If the displacement of the particle is $1.5\ mm$ at a certain instant, what will be the displacement of a particle $10\ cm$ away from it at the same instant?

Standing Waves

- 3. A Sonometer wire has a total length of $1\,m$ between the two fixed ends. Where the two bridges should be placed below the wire so that the three segments of the wire have their fundamental frequencies in the ratio 1:2:3?
- 4. (a) A piano string of length $0.6 \, m$ is under a tension of $300 \, N$ and vibrates with a fundamental frequency of $660 \, Hz$. What is the mass density of the string? (b) What are the frequencies of the first two harmonics? (c) A flute organ pipe (opened at both ends) also plays a note of $660 \, Hz$. What is the length of the pipe? Take the speed of sound as $340 \, ms^{-1}$.
- 5. A wire, fixed at both ends is seen to vibrate at a resonant frequency of $240 \, \text{Hz}$ and also at $320 \, \text{Hz}$. (a) What could be the maximum value of the fundamental frequency? (b) If transverse waves can travel on this string at a speed of $40 \, \text{ms}^{-1}$, what is its length?

DIGITAL ASSIGNMENT I

Solutions to Problem Sheet

Reg. No.:		Name:			

	Max. Marks 30	Slot: E1	Faculty: Dr. S. Balakrishnan		
	Posted on 29 August 2023		Due Date: 07 September 2023		
Course Code: BPHY101P			Course Title: ENGINEERING PHYSICS		
******	********	******	*************		