МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Построение и анализ алгоритмов»

Тема: Поиск с возвратом

Студентгр. 8304	 Чешуин Д.И.
Преподаватель	Размочаева Н.В

Санкт-Петербург 2020

Цель работы.

Ознакомиться с алгоритмом поиска с возвратом, научиться оценивать временную сложность алгоритма и применять его для решения задач.

Постановка задачи.

Вариант 1и. Итеративный бэктрекинг. Поиск решения за разумное время (меньше минуты) для $2 \le N \le 30$.

Входные данные:

Размер столешницы — одно целое число $N(2 \le N \le 20)$.

Выходные данные:

Одно число задающее минимально количество обрезков (квадратов), из которых можно построить столешницу (квадрат) заданного размера N. Далее должны идти K строк, каждая из которых должна содержать три целых числа x, y и w, задающие координаты левого верхнего угла $(1 \le x, y \le N)$ и длину стороны соответствующего обрезка (квадрата).

Описание алгоритма.

Алгоритм разбиения:

Т.к. наименьшее разбиение для чисел, не являющихся простыми, будет совпадать с их наименьшим простым делителем, сначала мы находим этот делитель. Затем с помощью некоторой функции разбиения получаем начальную конфигурацию, которую затем пытаемся улучшить с помощью бэктрекинга.

Алгоритм бэктрекинга пытается заполнить изначальный квадрат квадратами наибольшего размера, затем удаляет все последние единичные квадраты и уменьшает последний не единичный. После этого цикл повторяется. Алгоритм завершает работу, когда не останется квадратов, размер которых можно уменьшить.

Оптимизации алгоритма.

- 1) Было обнаружено, что у всех минимальных разбиений совпадают первые 3 части, за счёт этого значительно снижается число проверяемых вариантов.
- 2) Отбрасываются все варианты, частичное решение которых содержит большее или равное количество частей относительно текущего лучшего варианта.
- 3) Отбрасываются симметричные варианты, за счёт ограничения области добавления новых квадратов и запыления оставшегося свободного места наибольшими возможными квадратами.

4) Придуман алгоритм генерации базовой конфигурации, который даёт первоначальное решение близкое к идеальному, а в ряде случаев - идеальное решение, что отбрасывает большое количество плохих разбиений за счёт оптимизации номер 2.

Анализ алгоритма.

Для квадратов, сторона которых не является простым числом алгоритм работает примерно за одно и то же время, что и для квадрата со стороной равной минимальному простому делителю числа. Сложность алгоритма по времени возрастает по экспоненте. Сложность по памяти $O(N^2)$

Описание функций и СД.

Для решения задачи был реализован класс Table и структура отдельной части – Part.

Структура парт содержит 3 целочисленных поля: координата X, координата Y и размер части.

Класс содержит методы вывода на экран промежуточных решений, получения минимального разбиения, генерации начального решения.

Промежуточные решения хранятся в двумерном массиве, а перечень квадратов в векторе. UML диаграмму использованных структур данных смотри на рисунке 1.

Рисунок 1 – UML диаграмма использованных структур данных

Метод бэктрекинга:

bool verificateWithBacktracking ()

Ничего не принимает т.к. использует поля класса, возвращает true, если было найдено решение, лучше начальной конфигурации, иначе false. Функция записывает промежуточные данные и результат в поля класса.

bool hasSpaceTo(Part part)

Метод проверяем, хватит ли места для переданной части.

bool addNewPart()

Метод добавляет новую часть и возвращает true. Если стол уже заполнен – вовращает false.

bool reduceLastImportantPart()

Метод уменьшает последнюю значимую часть и удаляет все предыдущие. Возвращает false, если не осталось частей для уменьшения, иначе – true.

bool removeLastPart()

Удаляет последнюю часть. Возвращает false, если не осталось частей для удаления, иначе – true.

void printConfiguration()

Метод печатает на экран текущую конфигурацию стола.

vector<Part> createStartingConfiguration()

Метод генерирует начальную конфигурацию и возвращает её.

vector<Part> getConfiguration()

Метод возвращает текущую конфигурацию.

unsigned long long getItersCount()

Метод возвращает число итераций, затраченное методом бэктрекинга.

Спецификация программы.

Программа предназначена для нахождения минимального способа разбиения квадрата на меньшие квадраты. Программа написана на языке C++. Входными данными является число N (сторона квадрата), выходными –

минимальное количество меньших квадратов и К строк, содержащие координаты левого верхнего угла и длину стороны соответствующего квадрата.

Тестирование.

Пример вывода программы для стола размером 37 смотри на рисунке 2. Проверка некоторых разбиений представлена в таблице 1.

Размер стола	Ожидаемое количество	Полученное количество
	частей	частей
2	4	4
3	6	6
10	4	4
11	11	11
25	8	8
29	14	14
37	15	15

Таблица 1 — Ожидаемые и полученные минимальные разбиения я некоторых размеров стола.

```
Search finished!

Parts count - 15

Part - 1 x - 0 y - 0 size - 19

Part - 2 x - 0 y - 19 size - 18

Part - 3 x - 19 y - 0 size - 18

Part - 4 x - 19 y - 18 size - 2

Part - 5 x - 21 y - 18 size - 5

Part - 6 x - 26 y - 18 size - 4

Part - 7 x - 30 y - 18 size - 7

Part - 8 x - 18 y - 19 size - 1

Part - 9 x - 18 y - 20 size - 3

Part - 10 x - 26 y - 22 size - 1

Part - 11 x - 27 y - 22 size - 3

Part - 12 x - 18 y - 23 size - 7

Part - 13 x - 25 y - 23 size - 2

Part - 14 x - 25 y - 25 size - 12

Part - 15 x - 18 y - 30 size - 7

Fime - 30.618

Iterations - 130953294
```

Рисунок 2 – Пример вывода для стола размером 37

Выводы.

В ходе выполнения лабораторной работы был реализован алгоритм итеративного бэктрекинга, дана оценка времени работы алгоритма, а также были получены навыки решения задач с помощью поиска с возвратом.

ПРИЛОЖЕНИЕ А. ИСХОДНЫЙ КОД ПРОГРАММЫ

main.cpp.

```
#include <iostream>
#include <fstream>
#include <queue>
#include <cstring>
#include <vector>
#include <chrono>
using namespace std;
class IOManager
private:
    static istream* input;
    static ostream* output;
    static void setStreamsFromArgs(int argc, char** argv)
        if(argc > 1)
        {
            for(int i = 1; i < argc; i++)</pre>
                if(strcmp(argv[i], "-infile") == 0)
                    if(i + 1 < argc)
                    {
                        input = new ifstream(argv[i + 1]);
                         i += 1;
                if(strcmp(argv[i], "-outfile") == 0)
                    if(i + 1 < argc)
                    {
                        output = new ofstream(argv[i + 1]);
                        i += 1;
                    }
                }
            }
        }
    static istream& getIS()
        return *input;
    }
    static ostream& getOS()
        return *output;
    }
    static void resetStreams()
        if(input != & cin)
            delete input;
```

```
input = &cin;
        }
        if(output != & cout)
            delete output;
            output = &cout;
        }
    }
};
class Table
{
public:
    struct Part
    {
        unsigned x = 0;
        unsigned y = 0;
        unsigned size = 0;
    };
private:
    unsigned _size = 0;
    vector<vector<uint8_t>> _cells;
    unsigned _searchPos = 0;
    vector<Part> _bestConfiguration;
    vector<Part> _parts;
    queue<Part> _onCheck;
    queue<Part> _onSplit;
    unsigned long long itersCount = 0;
private:
    bool hasSpaceTo(Part part);
    void checkPart();
    void splitPart();
    bool addNewPart();
    bool reduceLastImportantPart();
    bool removeLastPart();
    void printConfiguration();
public:
    Table(unsigned size);
    vector<Part> createStartingConfiguration();
    vector<Part> getConfiguration();
    bool verificateWithBacktracking();
    unsigned long long getItersCount();
};
int main(int argc, char** argv)
{
    IOManager::setStreamsFromArgs(argc, argv);
    unsigned size = 0;
    unsigned divider = 0;
    unsigned multiplier = 0;
    cout << "Enter table size." << endl;</pre>
    IOManager::getIS() >> size;
    cout << "Entered size: " << size << endl;</pre>
    for(unsigned i = 2; i <= size; i++)</pre>
```

```
if(size % i == 0)
            divider = i;
            multiplier = size / divider;
            break;
        }
    }
    Table table(divider);
    vector<Table::Part> solution;
    auto start = std::chrono::system_clock::now();
    solution = table.createStartingConfiguration();
    if(table.verificateWithBacktracking())
    {
        solution = table.getConfiguration();
    }
    auto end = std::chrono::system_clock::now();
    auto delta = std::chrono::duration_cast<std::chrono::microseconds>(end-start).count();
    IOManager::getOS() << "Search finished!" << endl;</pre>
    IOManager::getOS() << "Parts count - " << solution.size() << endl;</pre>
    unsigned i = 1;
    for(auto part : solution)
        IOManager::getOS() <<"Part - " << i << " x - " << part.x * multiplier << " y - "</pre>
             << part.y * multiplier << " size - " << part.size * multiplier << endl;
        i += 1;
    }
    IOManager::getOS() << "Time - " << static_cast<float>(delta) / 1000000 << endl;</pre>
    IOManager::getOS() << "Iterations - " << table.getItersCount() << endl;</pre>
    cout << "Work finished!" << endl;</pre>
    IOManager::resetStreams();
    return 0;
Table::Table(unsigned size)
    _size = size;
    cells.resize(size);
    for (unsigned i = 0; i < size; i++)</pre>
        _cells[i].resize(size);
        for (unsigned j = 0; j < size; j++)
            _cells[i][j] = 0;
        }
    }
    Part starter;
    starter.x = 0;
    starter.y = 0;
```

}

```
starter.size = size;
    _onSplit.push(starter);
}
vector<Table::Part> Table::createStartingConfiguration()
    while (!(_onCheck.empty() && _onSplit.empty()))
    {
        while(!_onCheck.empty())
        {
            checkPart();
        }
        while(!_onSplit.empty())
            splitPart();
        }
    }
    _bestConfiguration = _parts;
    return _bestConfiguration;
}
bool Table::hasSpaceTo(Part part)
{
    for(unsigned x = part.x; x < part.x + part.size; x++)</pre>
        for(unsigned y = part.y; y < part.y + part.size; y++)</pre>
            if(_cells[y][x])
            {
                return false;
            }
        }
    }
    return true;
}
void Table::checkPart()
{
    Part part = _onCheck.front();
    _onCheck.pop();
    if(hasSpaceTo(part))
        for(unsigned x = part.x; x < part.x + part.size; x++)</pre>
        {
            for(unsigned y = part.y; y < part.y + part.size; y++)</pre>
            {
                uint8_t partNum = _parts.size() + 1;
                _cells[y][x] = partNum;
        }
        _parts.push_back(part);
    }
    else
    {
        _onSplit.push(part);
```

```
}
}
void Table::splitPart()
    Part part = _onSplit.front();
    _onSplit.pop();
    if(part.size <= 1)</pre>
        return;
    }
    unsigned isOdd = part.size % 2;
    for(unsigned onLeft = 0; onLeft < 2; onLeft++)</pre>
        for(unsigned onTop = 0; onTop < 2; onTop++)</pre>
            Part newPart;
            newPart.x = part.x + (part.size / 2 + isOdd) * onLeft - isOdd * (onLeft & onTop);
            newPart.y = part.y + (part.size / 2 + isOdd) * onTop - isOdd * (onLeft & onTop);
            newPart.size = part.size / 2 + isOdd * (1 - onLeft ^ onTop);
            _onCheck.push(newPart);
        }
    }
}
vector<Table::Part> Table::getConfiguration()
{
    return _bestConfiguration;
}
bool Table::addNewPart()
    _itersCount += 1;
    unsigned maxPos = _size * _size;
    for(; _searchPos < maxPos; _searchPos++)</pre>
    {
        unsigned y0 = _searchPos / _size;
        unsigned x0 = _searchPos % _size;
        if(_cells[y0][x0] == 0)
            //проверяем, часть какого размера войдёт на это место
            unsigned freeSpace = 0;
            bool hasSpace = true;
            while(hasSpace)
                freeSpace += 1;
                if(x0 + freeSpace >= _size || y0 + freeSpace >= _size)
                {
                    hasSpace = false;
                    break;
                for(unsigned x = x0; x < x0 + freeSpace; x++)
                    if(_cells[y0 + freeSpace][x])
                    {
```

```
hasSpace = false;
                         break;
                     }
                }
                for(unsigned y = y0; y < y0 + freeSpace; y++)</pre>
                     if(_cells[y][x0 + freeSpace])
                     {
                         hasSpace = false;
                         break;
                     }
                }
            }
            //добавляем новую часть
            Part part;
            part.size = freeSpace;
            part.x = x0;
            part.y = y0;
            for(unsigned x = part.x; x < part.x + part.size; x++)</pre>
            {
                for(unsigned y = part.y; y < part.y + part.size; y++)</pre>
                {
                     uint8_t partNum = _parts.size() + 1;
                     _cells[y][x] = partNum;
                 }
            }
            _searchPos += part.size;
            _parts.push_back(part);
            return true;
        }
    }
    return false;
}
bool Table::reduceLastImportantPart()
    _itersCount += 1;
    unsigned border = _size / 2 + _size / 4 + 1;
    Part part = _parts.back();
    while(part.y > border)
    {
        if(!removeLastPart())
        {
            return false;
        part = _parts.back();
    }
    if(_parts.back().size > 1)
        _parts.pop_back();
```

```
for(unsigned y = part.y; y < part.y + part.size; y++)</pre>
           _cells[y][part.x + part.size - 1] = 0;
       for(unsigned x = part.x; x < part.x + part.size; x++)</pre>
           _cells[part.y + part.size - 1][x] = 0;
       part.size -= 1;
       _parts.push_back(part);
       _searchPos = part.y * _size + part.x + part.size;
       return true;
   }
   else
       return false;
    }
}
bool Table::removeLastPart()
   _itersCount += 1;
    //первые 3 части гарантировано корректны, менять их не имеет смысла
   if(_parts.size() > 3)
       Part part = _parts.back();
       _parts.pop_back();
       for(unsigned x = part.x; x < part.x + part.size; x++)</pre>
           for(unsigned y = part.y; y < part.y + part.size; y++)</pre>
               _{cells[y][x] = 0};
           }
       }
       _searchPos = part.y * _size + part.x;
       return true;
    }
   else
    {
       return false;
    }
}
bool Table::verificateWithBacktracking()
    bool hasBetterSolution = false;
    IOManager::getOS() << "Starting configuration generated!" << endl;</pre>
    printConfiguration();
    IOManager::getOS() << "-----Trying to</pre>
                                                                                  find
                                                                                          better
solution...---- << endl;
```

```
//очистка текущей конфигурации до 3 частей
    while(removeLastPart());
    _searchPos = 0;
    bool allChecked = false;
    bool isFull = false;
    while (!allChecked)
        while(!isFull && _parts.size() < _bestConfiguration.size())</pre>
            isFull = !addNewPart();
        if(isFull)
            _bestConfiguration = _parts;
            hasBetterSolution = true;
            IOManager::getOS() << "Better solution finded!" << endl;</pre>
            IOManager::getOS() << "Parts count - " << _bestConfiguration.size() << endl;</pre>
            printConfiguration();
            IOManager::getOS() << "-----Trying to find better</pre>
                      -----" << endl;
solution...-
        while(!reduceLastImportantPart())
            if(!removeLastPart())
            {
                allChecked = true;
                break;
            }
        }
        isFull = false;
    }
    return hasBetterSolution;
}
void Table::printConfiguration()
    for(unsigned y = 0; y < _size; y++)</pre>
        for(unsigned x = 0; x < _size; x++)
            IOManager::getOS().width(2);
            IOManager::getOS().fill(' ');
            IOManager::getOS() << static_cast<unsigned>(_cells[y][x]) << " ";</pre>
        IOManager::getOS() << endl << endl;</pre>
    }
}
unsigned long long Table::getItersCount()
    return _itersCount;
}
```

istream* IOManager::input = &cin;
ostream* IOManager::output = &cout;