MATH 417, HOMEWORK 10

CHARLES ANCEL

Exercise 1. Given a polyhedron with set V of vertices of size m, consider the evident action by its symmetry group G on the set V, which gives a homomorphism $\phi: G \to \operatorname{Sym}(V) \simeq S_m$. For each of the four cases (cube, octahedron, dodecahedron, icosahedron), describe the cycle type of $\phi(g)$ for each type of element $g \in G$ (according to the classification of elements of G that I gave in class).

SOLUTION

The symmetry groups of the polyhedra are as follows:

- Cube and Octahedron: Symmetry group S_4
- Dodecahedron and Icosahedron: Symmetry group A_5

The cycle type of $\phi(g)$ in S_4 and A_5 corresponds to the permutation of vertices induced by the symmetry g.

Cube and Octahedron (Symmetry Group: S_4). The cube has 8 vertices, and the octahedron has 6 vertices.

Cube (8 vertices):

- Rotation by $\pm 2\pi/3$ (order 3): 4-cycle among vertices.
- Rotation by $\pm \pi/2$ (order 4): 4-cycle among vertices on the face.
- Rotation by π (order 2): product of two 2-cycles.

Octahedron (6 vertices):

- Rotation by $\pm 2\pi/3$ (order 3): 3-cycle among vertices.
- Rotation by π (order 2): product of two 2-cycles.
- Rotation by $\pm 2\pi/4$ (order 4): 4-cycle among vertices.

Dodecahedron and Icosahedron (Symmetry Group: A_5). The dodecahedron has 20 vertices, and the icosahedron has 12 vertices.

Dodecahedron (20 vertices):

- Rotation by $\pm 2\pi/3$ (order 3): 5-cycle among vertices.
- Rotation by π (order 2): product of two 2-cycles.
- Rotation by $\pm 2\pi/5$ (order 5): 5-cycle among vertices.

Icosahedron (12 vertices):

- Rotation by $\pm 2\pi/3$ (order 3): 3-cycle among vertices.
- Rotation by π (order 2): product of two 2-cycles.
- Rotation by $\pm 2\pi/5$ (order 5): 5-cycle among vertices.

Exercise 2. Let G act on a set X. Show that for $x \in X$ and $g \in G$ we have $g\operatorname{Stab}(x)g^{-1} = \operatorname{Stab}(gx)$.

SOLUTION

To prove this, we will show that $g\operatorname{Stab}(x)g^{-1}\subseteq\operatorname{Stab}(gx)$ and $\operatorname{Stab}(gx)\subseteq g\operatorname{Stab}(x)g^{-1}$.

Definition 0.1. The stabilizer of an element $x \in X$ under the action of G is defined as $\operatorname{Stab}(x) = \{h \in G \mid h \cdot x = x\}.$

Proof.

• Step 1: Show that $gStab(x)g^{-1} \subseteq Stab(gx)$

Let $h \in \operatorname{Stab}(x)$. By definition, this means $h \cdot x = x$. Consider an element of $g\operatorname{Stab}(x)g^{-1}$, which is of the form ghg^{-1} for some $h \in \operatorname{Stab}(x)$.

$$(ghg^{-1}) \cdot (gx) = g(h(g^{-1} \cdot (gx))) = g(h \cdot x) = g \cdot x = gx$$

Therefore, $ghg^{-1} \in \operatorname{Stab}(gx)$, and hence $g\operatorname{Stab}(x)g^{-1} \subseteq \operatorname{Stab}(gx)$.

• Step 2: Show that $Stab(gx) \subseteq gStab(x)g^{-1}$

Let $k \in \text{Stab}(gx)$. By definition, this means $k \cdot (gx) = gx$. We need to show that $k \in g\text{Stab}(x)g^{-1}$, i.e., there exists some $h \in \text{Stab}(x)$ such that $k = ghg^{-1}$.

Consider the element $g^{-1}kg \in G$. We apply it to x:

$$(g^{-1}kg) \cdot x = g^{-1}(k \cdot (gx)) = g^{-1}(gx) = x$$

Thus, $g^{-1}kg \in \text{Stab}(x)$, and let $h = g^{-1}kg$. Then $k = ghg^{-1}$. Therefore, $\text{Stab}(gx) \subseteq g\text{Stab}(x)g^{-1}$.

Since both inclusions are shown, we conclude that $g\operatorname{Stab}(x)g^{-1} = \operatorname{Stab}(gx)$.

Exercise 3. Identify D_4 as the group of rotational symmetries of the square in the xy-plane with vertices $\{\pm e_1, \pm e_2\}$. Thus D_4 is a subgroup of SO(3). Determine the orbits of the evident action by D_4 on \mathbb{R}^3 .

SOLUTION

The dihedral group D_4 consists of 8 elements that represent the symmetries of the square:

- 1 identity element
- 3 rotations by 90° , 180° , 270°
- 4 reflections (over the x-axis, y-axis, and the two diagonals)

These elements form a subgroup of the special orthogonal group SO(3).

When D_4 acts on \mathbb{R}^3 , the orbits of the action are determined by how the group elements move points in \mathbb{R}^3 :

- Orbit of the origin (0,0,0): The origin is fixed by all elements of D_4 , so its orbit is $\{(0,0,0)\}$.
- Orbits of points in the xy-plane (except the origin): Points in the xy-plane are moved around within the plane according to the symmetries of the square. For example, the point (1,0,0) has an orbit of 4 points $\{(1,0,0),(0,1,0),(-1,0,0),(0,-1,0)\}$ under the rotations, and additional reflections double the count to 8 unique points.
- Orbits of points off the xy-plane: Points not in the xy-plane are moved to other points not in the xy-plane, but their distance from the xy-plane (the z-coordinate) is preserved. For example, the point (1,0,1) is rotated and reflected within planes parallel to the xy-plane. The orbit of (1,0,1) consists of 8 points: $\{(1,0,1),(0,1,1),(-1,0,1),(0,-1,1),(1,0,-1),(0,1,-1),(-1,0,-1),(0,-1,-1)\}.$

Exercise 4. Show that for a group G, the function $\tau: G \to \operatorname{Sym}(G)$ defined by $\tau(g)(x) := xg$ is a group action if and only if G is abelian.

SOLUTION

To show that $\tau: G \to \operatorname{Sym}(G)$ defined by $\tau(g)(x) := xg$ is a group action if and only if G is abelian, we need to check the properties of a group action and the condition that G is abelian.

Definition 0.2. A function $\tau: G \to \operatorname{Sym}(G)$ is a group action if it satisfies the following properties:

- (1) $\tau(e)(x) = xe = x$ for all $x \in G$, where e is the identity element in G.
- (2) $\tau(gh)(x) = \tau(g)(\tau(h)(x))$ for all $x \in G$ and $g, h \in G$.

Proof.

\bullet If G is abelian:

Assume G is abelian. Then for any $g, h \in G$, we have gh = hg. Therefore,

$$\tau(gh)(x) = x(gh) = x(hg) = (xh)g = \tau(g)(\tau(h)(x)).$$

Thus, τ is a group action.

• If τ is a group action:

Assume τ is a group action. Then for any $x \in G$ and $g, h \in G$,

$$\tau(gh)(x) = \tau(g)(\tau(h)(x)) \implies x(gh) = (xg)h.$$

This implies x(gh) = x(hg). For this to hold for all $x \in G$, we must have gh = hg. Thus, G must be abelian.

Therefore, τ is a group action if and only if G is abelian.

Exercise 5. Let n = 2k+1 be an odd integer with $n \ge 3$. Describe all the conjugacy classes in D_n (there are k+2) and determine their sizes. Pick a representative from each class. For each of these representatives, describe the elements of its centralizer group.

SOLUTION

Let D_n be the dihedral group with n=2k+1. The elements of D_n can be written as r^i and r^is , where r is a rotation by $\frac{2\pi}{n}$ and s is a reflection. The conjugacy classes are as follows:

- The class containing the identity element e: $\{e\}$.
- The class containing the rotations r^i for $i=1,\ldots,k$: Each class has size $\frac{n}{\gcd(i,n)}$.
- The class containing the reflections s: This class has size n.

Representatives from each class:

- \bullet Identity: e
- Rotations: r, r^2, \dots, r^k
- \bullet Reflections: s

Centralizer groups:

- $C(e) = D_n$
- $C(r^i) = \{e, r^i\}$
- $C(s) = \{e, s\}$

Exercise 6. Let n = 2k be an even integer with $n \ge 4$. Describe all the conjugacy classes in D_n (there are k+3) and determine their sizes. Pick a representative from each class. For each of these representatives, describe the elements of its centralizer group.

SOLUTION

Let D_n be the dihedral group with n=2k. The elements of D_n can be written as r^i and r^is , where r is a rotation by $\frac{2\pi}{n}$ and s is a reflection. The conjugacy classes are as follows:

- The class containing the identity element e: $\{e\}$.
- The class containing the rotations r^i for $i=1,\ldots,k-1$: Each class has size $\frac{n}{\gcd(i,n)}$.
- The class containing the rotation r^k : $\{r^k\}$.
- The class containing the reflections s and sr^k : Each class has size $\frac{n}{2}$.

Representatives from each class:

- \bullet Identity: e
- Rotations: $r, r^2, \dots, r^{k-1}, r^k$
- Reflections: s, sr^k

Centralizer groups:

- $C(e) = D_n$
- $\bullet \ C(r^i) = \{e, r^i\}$
- $\bullet \ C(r^k) = \{e, r^k, s, sr^k\}$
- $\bullet \ C(s) = \{e, s\}$
- $C(sr^k) = \{e, sr^k\}$

Exercise 7. List the conjugacy classes in S_5 (there are 7) and determine their sizes. Pick a representative from each class. For each of these representatives, describe the elements of its centralizer group.

SOLUTION

The conjugacy classes in S_5 (symmetric group on 5 elements) are determined by the cycle types of the permutations:

- (1) (identity): Size 1
- (12) (transposition): Size 10
- (123) (3-cycle): Size 20
- (12345) (5-cycle): Size 24
- (12)(34) (product of two transpositions): Size 15
- (1234) (4-cycle): Size 30
- (123)(45) (product of 3-cycle and transposition): Size 20

Representatives and their centralizers:

- Identity: e Centralizer: S_5
- Transposition: (12) Centralizer: $S_3 \times S_2$
- 3-cycle: (123) Centralizer: $C_3 \times S_2$
- 5-cycle: (12345) Centralizer: C_5
- Product of two transpositions: (12)(34) Centralizer: $(S_2)^2$
- 4-cycle: (1234) Centralizer: C_4
- Product of 3-cycle and transposition: (123)(45) Centralizer: C_3

Exercise 8. Let G be a group with normal subgroup N. Show that if $\sigma \in N$, then $\mathrm{CL}_G(\sigma) \subseteq N$. Give an example to show that it is possible that $\mathrm{CL}_N(\sigma) \neq \mathrm{CL}_G(\sigma)$.

SOLUTION

• Show $CL_G(\sigma) \subseteq N$:

Let $\sigma \in N$. Then the conjugacy class of σ in G is defined as $CL_G(\sigma) = \{g\sigma g^{-1} \mid g \in G\}$.

Since N is a normal subgroup, for any $g \in G$ and $\sigma \in N$, $g\sigma g^{-1} \in N$. Therefore, $\mathrm{CL}_G(\sigma) \subseteq N$.

• Example where $CL_N(\sigma) \neq CL_G(\sigma)$:

Consider $G = S_3$ and $N = A_3$, the alternating group of even permutations. Let $\sigma = (123) \in N$.

The conjugacy class of σ in N is $CL_N(\sigma) = \{(123), (132)\}.$

The conjugacy class of σ in G is $CL_G(\sigma) = \{(123), (132)\}$, since (123) and (132) are the only 3-cycles in S_3 .

However, consider $\sigma = (12) \in N$. Then $CL_N((12)) = \{(12)\}$, but $CL_G((12)) = \{(12), (13), (23)\}$.