Relatório

Nome: Henrique Andrade Lopes

Matrícula:105459

Funcionamento do código:

O código "parte1.cpp" contém a implementação do Trabalho 1. As instâncias são lidas pelo terminal. Primeiro deve-se passar as coordenadas das cidades e logo em seguida as multas. Caso deseje utilizar uma instância que não tenha o arquivo.txt para as multas basta descomentar a linha 274 e comentar a linha 273.

Resultados:

- o guloso encontra uma boa rota, comparada à trivial 1, 2, 3, ..., n?

Os dois métodos gulosos implementados, guloso1 (vizinho mais próximo) e o método guloso2 (considerando os dois extremos) encontram uma rota melhor que a trivial em todas as instâncias. Os dados foram retirados da planilha.

Instância	Sequencial	Guloso1	Guloso2	Guloso1 x Sequencial	Guloso2 x Sequencial
burma14	42	40	39	4,76%	7,14%
cedo	74	62	66	16,22%	10,81%
mix	90	76	82	15,56%	8,89%
berlin52	22205	8980	8790	59,56%	60,41%
cedo	22695	9110	9110	59,86%	59,86%
cedo2	23013	9568	9105	58,42%	60,44%
mix	22885	9290	9250	59,41%	59,58%
mix2	23559	9612	9785	59,20%	58,47%
s70	3410	830	869	75,66%	74,52%
cedo	3555	897	940	74,77%	73,56%
cedo2	3679	976	1018	73,47%	72,33%
cedo3	3589	1102	1141	69,30%	68,21%
mix	3663	1173	1212	67,98%	66,91%
mix2	3863	1408	1450	63,55%	62,46%
gil262	26298	3208	2845	87,80%	89,18%
gr666	5508	4046	4192	26,54%	23,89%
dsj1000	557633555	24630960	23570849	95,58%	95,77%
				56,92%	56,03%

A tabela mostra o resultado obtido pelos métodos sequencial, guloso1 e guloso2. Sendo a coluna guloso1xSequencial a porcentagem de melhora do método guloso1 em relação ao método sequencial. Apesar da melhora, percebemos que não houve muita diferença na melhora do método guloso1 em relação ao guloso2. Em média o guloso1 melhorou a solução em 56,92% enquanto o guloso2 melhorou em 56,03%.

- alguma versão do guloso se saiu melhor ou tanto faz?

Como pode ser observado pelo gráfico abaixo, os custos obtidos pelos métodos gulosos são bastante parelhos, não havendo melhoria de um para o outro, a maior diferença no custo é entre o método sequencial e os outros dois métodos.

- a busca local conseguiu melhorar a solução trivial? em quanto?

Como a rota gerada pelo método sequencial é bem ruim, é esperado que a melhoria seja significativa, principalmente em instâncias grandes.

Instância	Sequencial	Busca Local	Melhoria
burma14	42	31	26,19%
cedo	74	49	33,78%
mix	90	62	31,11%
berlin52	22205	7776	64,98%

cedo	22695	8578	62,20%
cedo2	23013	8895	61,35%
mix	22885	8688	62,04%
mix2	23559	9651	59,03%
s70	3410	766	77,54%
cedo	3555	782	78,00%
cedo2	3679	924	74,88%
cedo3	3589	882	75,42%
mix	3663	954	73,96%
mix2	3863	1020	73,60%
gil262	26298	2700	89,73%
gr666	5508	3399	38,29%
dsj1000	557633555	20795349	96,27%
			63,43%

A Busca Local aplicado na solução trivial melhorou a solução em média 63,43%.

- a busca local conseguiu melhorar a solução gulosa? em quanto?

A busca local também conseguiu melhorar o guloso, porém, como podemos ver pela tabela abaixo, a melhora foi significativamente menor. Isso se deve porque o método guloso nos dá uma solução mais próxima de um ótimo local do que a sequencial. Em média, a melhora depois de aplicado a busca local no método guloso foi de 16,25%. Na tabela abaixo também apresenta a comparação dos resultados obtidos após a busca local aplicada na solução sequencial x aplicada na solução gulosa.

É interessante observar que, mesmo partindo de uma solução pior, em algumas instâncias a solução obtida pela buscalocalSequencial foi melhor que a buscalocalGulosa. No entanto, a buscalocalGulosa ainda apresenta resultados ligeiramente melhores, em média 2,77% melhores.

Instância	Guloso1	Busca Local	Melhoria	Busca Local: Guloso1xSequencial
burma14	40	30	25,00%	3,23%
cedo	62	52	16,13%	-6,12%
mix	76	58	23,68%	6,45%
berlin52	8980	8060	10,24%	-3,65%
cedo	9110	8228	9,68%	4,08%
cedo2	9568	8742	8,63%	1,72%
mix	9290	8517	8,32%	1,97%

mix2	9612	8715	9,33%	9,70%
s70	830	726	12,53%	5,22%
cedo	897	793	11,59%	-1,41%
cedo2	976	869	10,96%	5,95%
cedo3	1102	833	24,41%	5,56%
mix	1173	912	22,25%	4,40%
mix2	1408	1030	26,85%	-0,98%
gil262	3208	2606	18,77%	3,48%
gr666	4046	3255	19,55%	4,24%
dsj1000	24630960	20125759	18,29%	3,22%
			16,25%	2,77%

O gráfico abaixo mostra os custos obtidos após a aplicação da busca local em uma rota sequencial e em uma rota gerada pelo método guloso.

Como dito acima, os resultados obtidos parecem não depender tanto da solução inicial, mas a porcentagem de melhoria é muito maior para a sequencial, como mostrado abaixo.

Obs: A ordem dos dados é a mesma da tabela, primeiro barra comparando burma14 e última barra a do dsj1000.

- algo mais que for interessante

O algoritmo também retorna seu tempo de execução. Na primeira implementação da busca local a função precisava calcular o custo da nova rota com a troca de cidades a cada iteração, isso fazia o algoritmo ficar bastante lento para instâncias grandes.

No entanto é possível realizar esse cálculo em O(1), o novo algoritmo de busca local implementado faz isso subtraindo do custo da rota original as distâncias das "arestas" removidas e adicionando a distância das novas. Como a ordem das cidades muda, a multa gerada pode mudar também. Assim, calculamos a multa do trecho invertido antes e depois da inversão, subtraídos do custo original a valor da multa antes da inversão e somamos o custo depois da inversão. O resultado dessa conta será o custo da nova rota.

No código a função utilizada é a "buscaLocalBestImp()", que é a versão otimizada, mas a versão antiga "buscaLocalBestImp2()" ainda está no codigo.