Engineering Optics

Lecture 4

by

Debolina Misra

Assistant Professor Department of Physics IIITDM Kancheepuram, Chennai, India

Harmonic waves

1-D differential wave equation

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

Simplest waveform: Sine or Cosine → Sinusoidal / harmonic waves

$$\psi(x, t)|_{t=0} = \psi(x) = A \sin kx = f(x)$$

Any wave → superposition of harmonic waves

k: propagation number → a +ve constant

 $|\psi(x)|_{max} = \rightarrow maximum \ disturbance \rightarrow amplitude$

Argument of Sine function \rightarrow 'phase (φ) '

Harmonic waves: wavelength

$$\psi(x, t)|_{t=0} = \psi(x) = A \sin kx = f(x)$$

To transform it to a wave travelling with a speed v

$$\psi(x, t) = A \sin k(x - vt) = f(x - vt)$$

Fix 'x' or 't' \rightarrow sinusoidal disturbance \rightarrow periodic wave in both space and time

A change in x by λ = change in φ by 2π

$$\sin k(x - vt) = \sin k[(x \pm \lambda) - vt] = \sin [k(x - vt) \pm 2\pi]$$

$$|k\lambda| = 2\pi$$
 $k = 2\pi/\lambda$

Harmonic waves continued

- Spatial period \rightarrow wavelength ' λ ' \rightarrow meaning? $\psi(x, t) = \psi(x \pm \lambda, t)$
- Units?

Spatial frequency: wave number $(\kappa) = 1/\lambda$

Harmonic waves: Frequency

Temporal period: τ

$$\psi(x, t) = \psi(x, t \pm \tau) \qquad kv\tau = 2\pi$$

$$\sin k(x - vt) = \sin k[x - v(t \pm \tau)] \qquad \frac{2\pi}{\lambda} v\tau = 2\pi$$

$$\sin k(x - vt) = \sin [k(x - vt) \pm 2\pi] \qquad \tau = \lambda/v$$

Temporal frequency:

$$\nu \equiv 1/\tau$$

Hence,

$$v = \nu \lambda$$

units: cycles/second or Hertz

Monochromatic (monoenergetic) waves (ideal, not reality)

 $\omega = 2\pi\nu$

Harmonic waves: Frequency

optical information \rightarrow spread out in space \rightarrow periodically like a harmonic wave

(a) _ and (b) _ spatial frequency (high/low)

Single κ (λ) \rightarrow monochromatic.

Superposition of various such waves (each with unique λ) \rightarrow images

Phase and Phase velocity

Phase

Consider a sinusoidal wave:

$$\psi = A \sin k(x - vt)$$

$$[k(x-vt) = kx-kvt = kx - (2\pi/\lambda)(v\lambda)t = kx - (2\pi v)t = kx - \omega t]$$

$$\psi(x, t) = A \sin(kx - \omega t)$$

Phase
$$\varphi = (kx - \omega t)$$

At
$$t = x = 0$$
, $\psi(x, t)|_{\substack{x=0 \ t=0}} = \psi(0, 0) = 0$

$$\psi(x, t) = A \sin(kx - \omega t + \varepsilon)$$

 ε is the initial phase.

Initial phase \rightarrow contribution from the generator.

Phase velocity

$$\varphi(x, t) = (kx - \omega t + \varepsilon)$$

Rate-of change of phase with time:
$$\left| \left(\frac{\partial \varphi}{\partial t} \right)_{x} \right| = \omega$$
 (1)

Rate of change of phase with distance: $\left| \left(\frac{\partial \varphi}{\partial x} \right)_t \right| = k$

$$(1)/(2) \Rightarrow \frac{\omega}{k} = v \Rightarrow phase velocity$$

Superposition principle

$$\frac{\partial^2 \psi_1}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi_1}{\partial t^2}$$

$$\frac{\partial^2 \psi_2}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi_2}{\partial t^2}$$

$$\frac{\partial^2 \psi_1}{\partial x^2} + \frac{\partial^2 \psi_2}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi_1}{\partial t^2} + \frac{1}{v^2} \frac{\partial^2 \psi_2}{\partial t^2}$$

$$\frac{\partial^2}{\partial x^2} (\psi_1 + \psi_2) = \frac{1}{v^2} \frac{\partial^2}{\partial t^2} (\psi_1 + \psi_2)$$

$$\psi = \psi_1 + \psi_2$$

Problems

1. Draw
$$\psi_1 = 1.0 \sin kx$$

$$\psi_2 = 0.9 \sin kx$$
and $\psi = \psi_1 + \psi_2$

2. Draw
$$\psi_1 = 1.0 \sin kx$$

 $\psi_2 = 0.9 \sin (kx - \pi/3)$
and $\psi = \psi_1 + \psi_2$

3. Draw
$$\psi_1 = 1.0 \sin kx$$

 $\psi_2 = 0.9 \sin (kx - \pi)$
and $\psi = \psi_1 + \psi_2$

In-phase

*Constructive intereference

Phase difference

Out-of-phase

*Destructive intereference

Relative phase -> Interference

Thank You