

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

WHAT IS CLAIMED IS:

1. A method of operating a liquid feed fuel cell,
comprising adding a quantity of perfluorooctanesulfonic acid to
a fuel of the fuel cell.

1 G38
#46
10 2. The method of claim 1, wherein said
perfluorooctanesulfonic acid is provided with a concentration of
at least 0.0001 M.

10 3. The method of claim 2, wherein said
perfluorooctanesulfonic acid is in the range of 0.0001 M to 0.01
Molar.

15 4. An aqueous organic fuel-feed fuel cell, comprising:
a first electrode having a first polarity;
a second electrode having a second polarity different
than the first polarity;
an electrolyte, comprising a proton-conducting
membrane which is coupled to both said first and second
20 electrodes; and

DP 1872
#6
a circulating system, operating to circulate a first
liquid organic fuel which is substantially free of acid-
containing electrolytes into an area of said first electrode to
cause a potential difference between said first and second

electrodes when a second component is in an area of said second electrode;

wherein said first electrode is formed of a porous material configured in a way to be wet by the organic fuel.

5

5. A fuel cell as in claim 4, wherein said first electrode includes an additive which increases wetting properties by decreasing interfacial tension of an interface between the liquid organic fuel and a catalyst on the first electrode.

6. A method of operating a fuel cell, comprising:

preparing a first electrode to operate as a first polarity electrode, said first electrode having a first surface exposed to the fuel;

15 circulating an organic fuel which is substantially free of
any acid electrolyte into contact with said first surface of
said first electrode, said organic fuel having a component which
is capable of electro-oxidation;

preparing a second electrode which operates as a second
20 polarity electrode, said second polarity being different than
the first polarity, said second electrode having a second
surface;

preparing an electrolyte which includes a proton conducting membrane:

circulating a second reactive component into contact with said second surface of said second electrode, said second reactive component including a component capable of electro-reduction; and

5 coupling an electrical load between said first electrode and said second electrode, to receive a flow of electrons caused by a potential difference between said first and second electrodes.

10 1872 7. A method as in claim 6, wherein said organic fuel

10 includes a methanol derivative and water and is substantially free of any acid component.

1872 8. A fuel cell as in claim 4, wherein said first electrode

15 has a surface which is formed with high surface-area particles,
~~scope~~
said particles formed of alloys including at least two different kinds of metals.

g-12
9. A fuel cell as in claim 8, wherein one of said metals

20 of said alloy is platinum.

10. A fuel cell as in claim 9, wherein said alloy is formed of platinum-ruthenium, with a composition varying from 5 to 90 atom % of platinum.

11. A fuel cell as in claim 10, wherein said alloy particles are unsupported.

5 12. A fuel cell as in claim 8 further comprising a high-
surface area carbon material for supporting said alloy particles.

10 13. An organic fuel cell, comprising:

a first chamber;
an anode electrode, formed in said first chamber, and including a first surface exposed to said first chamber, at least said first surface including an electrocatalyst and a wetting agent thereon;

15 an electrolyte, operatively associated with said anode electrode in a way to allow proton-containing materials to pass from said anode into said electrolyte, said electrolyte comprising a proton conducting membrane; and
a cathode electrode, operatively associated with said electrolyte, and having a second operative surface.

20 14. A fuel cell as in claim 13, wherein said second operative surface of said cathode electrode includes particles of electrocatalyst material thereon.

15. A fuel cell as in claim 14, wherein said electrocatalyst materials are materials optimized for electro-oxidation of a desired organic fuel.

5

16. A fuel cell as in claim 15, wherein said fuel is an aqueous methanol derivative which is free of acid component and said electrocatalyst is platinum-ruthenium.

17. A fuel cell as in claim 14, wherein said particles of electrocatalyst on said cathode are optimized for gas diffusion.

18. A fuel cell as in claim 17, wherein said particles include an electrocatalyst alloy mixed with a teflon additive.

15

19. A fuel cell as in claim 17, wherein said particles include an electrocatalyst mixed with said wetting agent which is an additive to promote hydrophobicity. ^{112 47"}

20. A fuel cell as in claim 14, further comprising a pumping element operating to circulate said organic fuel past said anode electrode.

21. A fuel cell apparatus, comprising:

a first chamber having surfaces for containing an organic aqueous fuel therein;

an anode structure, having a first surface in contact with said first chamber, said anode structure being porous and
5 capable of wetting the liquid fuel and also having electronic and ionic conductivity;

an electrolyte, in contact with said anode structure, said electrolyte formed of a proton-conducting membrane;

10 a cathode, in contact with said electrolyte in a way to receive protons which are produced by said anode structure, conducted through said electrolyte to said cathode; and

a second chamber, holding said cathode, said second chamber including a second material including a reducible component therein.

15

22. A fuel cell as in claim 21, wherein said anode is formed of carbon paper with an electrocatalyst thereon.

23. A fuel cell as in claim 21, wherein said anode
20 includes a hydrophilic proton conducting additive.

24. A fuel cell as in claim 22, wherein said electrocatalyst layer and said carbon support are impregnated with a hydrophilic proton conducting polymer additive.

25. A fuel cell as in claim 23, wherein said polymer additive is formed of substantially the same material as the material of the electrolyte.

5

26. A fuel cell as in claim 21, wherein said anode is impregnated with an ionomeric additive.

TOP SECRET

27. A method of forming an anode with an ionomeric additive, comprising:

preparing an electrode structure having a high surface area;

impregnating the high surface area electrode structure with an electrocatalyst and binding said electrocatalyst thereto;

15 immersing the electrocatalyst-impregnated particles on said electrode structure into a solution containing an ionomeric additive;

removing said electrode structure from said solution, and drying said electrode structure; and

20 repeating said impregnating, removing and drying step until a desired composition electrode structure is obtained.

28. A method as in claim 27, wherein said electrocatalyst is bound in a polytetrafluoroethylene binder.

29. A method as in claim 27, wherein said ionomeric additive is a Nafion™-type material.

5 30. A method as in claim 27, wherein said impregnating comprises mixing electrocatalyst particles with a binder and applying said binder/electrocatalyst onto a backing to form a thin layer of greater than substantially 200 meters squared per gram.

10 31. A fuel cell comprising:

a first chamber;

an anode electrode, formed in said first chamber, and including a surface exposed to said first chamber, at least said 15 surface including an electrocatalyst material thereon, and including a hydrophobicity additive thereon;

an electrolyte operatively associated with said anode in a way to allow proton-containing materials to pass from said anode into said electrolyte, said electrolyte comprising a proton- 20 conducting membrane; and

a cathode electrode, operatively associated with said electrolyte, to receive said protons from said membrane.

32. An aqueous fuel cell, comprising:
a first electrode operating as an anode, said first
electrode being effective to catalyze an oxidation reaction of a
non-acidic component;
5 a second electrode, operating as a cathode to undergo a
reduction reaction of a non-acidic component;
a circulating system, operating to circulate a first
organic fuel in an area of said anode; and
an electrolyte, comprising a proton conducting membrane
ionically coupled with both said first and second electrodes, to
pass ions therebetween.

33. A fuel cell as in claim 32, wherein said first
electrode includes a hydrophilic proton conducting additive.

15 34. A method as in claim 6, wherein said preparing
includes adding a hydrophilic proton conducting additive to said
anode.

off 9 + wfl

20 35. An organic fuel cell, comprising:
a first chamber;
an anode electrode, formed in said first chamber, to have a
surface exposed to said first chamber, at least said surface

including particles of a material thereon which catalyzes said anode to react with non-acid containing organic fuels;

an electrolyte operatively associated with said anode in a way to allow proton-containing materials to pass from said anode
5 into said electrolyte, said electrolyte comprising a hydrogen ion conducting membrane; and

a cathode electrode, operatively associated with said membrane, to receive said ions from said membrane and to react with a specified material.

10 36. A fuel cell as in claim 36, wherein said anode includes a hydrophilic proton conducting additive.

37. A method as in claim 7, wherein said methanol derivative is dimethoxymethane mixed with water to a concentration of about .1 to 2 M.
15

20 38. A method as in claim 7, wherein said methanol derivative includes dimethoxymethane, forming an electrochemical reaction of

PPU 072
DP 1,5, and 25-28

39. A method as in claim 7, wherein said methanol derivative is trimethoxymethane mixed with water to a concentration of about .1 to 2 M.

5 40. A method as in claim 7, wherein said methanol derivative includes trimethoxymethane, forming an electro chemical reaction of

10 41. A method as in claim 7, wherein said methanol derivative is trioxane mixed with water to a concentration of about .1 to 2 M.

15 42. A method as in claim 7, wherein said methanol derivative includes trioxane, forming an electro chemical reaction of

20 43. A method as in claim 7, wherein said methanol derivative is dimethoxymethane mixed with water to a concentration of about .1 to 2 M.

44. A method as in claim 7, wherein said methanol derivative includes dimethoxymethane, forming an electro chemical reaction of

5

45. A method as in claim 7, wherein said methanol derivative is trimethoxymethane mixed with water to a concentration of about .1 to 2 M.

10 46. A method as in claim 7, wherein said methanol derivative includes trimethoxymethane, forming an electro chemical reaction of

15

47. A method as in claim 7, wherein said methanol derivative is trioxane mixed with water to a concentration of about .1 to 2 M.

20 48. A method as in claim 7, wherein said methanol derivative includes trioxane, forming an electro chemical reaction of

49. A fuel cell as in claim 65 wherein said additive is liquid Nafion™.

50. A method of oxidizing aqueous methanol in a fuel cell reaction, comprising:

receiving aqueous methanol at an anode;

oxidizing said aqueous methanol at the anode;

producing protons from the aqueous methanol oxidizing at the anode;

allowing the protons to cross a proton conducting membrane to a cathode and reducing a second component, at the cathode, using said protons which are produced at said anode.

51. A method as in claim 131, wherein said agent is Nafion™.