Übungsserie 8

Fassen Sie Ihre Lösungen in der ZIP-Datei *Name_S8.zip* zusammen. Laden Sie dieses File vor der nächsten Übungsstunde nächste Woche auf Moodle hoch.

Aufgabe 1 (ca. 30 Minuten):

Beweisen Sie, dass ausgehend von der Trapezregel für ein Intervall [a, b]

$$Tf = \frac{f(a) + f(b)}{2} \cdot (b - a)$$

a) die summierte Trapezregel in der Form gilt

$$Tf(h) = \sum_{i=0}^{n-1} \frac{y_i + y_{i+1}}{2} \cdot (x_{i+1} - x_i),$$

wenn eine tabellierte, nicht äquidistante Wertetabelle $(x_i, y_i)_{0 \le i \le n}$ vorliegt mit $x_0 = a$, $x_n = b$ und $y_i = f(x_i)$.

b) die summierte Trapezregel in der Form gilt

$$Tf(h) = h\left(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i)\right),$$

wenn das Intervall [a,b] aufgespalten wird in n äquidistante Subintervalle, wobei $x_i=a+ih$ und h=(b-a)/n und i=0,...,n (also $x_0=a$ und $x_n=b$)

Aufgabe 2 (ca. 50 Min.):

Ein Teilchen der Masse m, das sich durch eine Flüssigkeit bewegt, wird durch den Widerstand R der Flüssigkeit abgebremst. Der Widerstand ist dabei eine Funktion der Geschwindigkeit, R=R(v), d.h. je grösser die Geschwindigkeit, desto grösser ist der Widerstand und umgekehrt. Die Beziehung zwischen dem Widerstand R und der Zeit t ist durch die folgende Gleichung gegeben:

$$t = \int_{v(t_0)}^{v(t)} \frac{m}{R(v)} dv$$

Angenommen, es sei für eine spezielle Flüssigkeit $R(v) = -v\sqrt{v}$, wobei R in [N] (Newton) und v in [m/s] gegeben sind. Approximieren Sie für m =10 kg und v(0) =20 m/s die Zeit, die das Teilchen benötigt, um seine Geschwindigkeit auf v =5 m/s zu verlangsamen. Führen Sie die Herleitung manuell durch (Zahlenwerte berechnen Sie natürlich z.B. mit Python).

- (a) Verwenden Sie die summierte Rechtecksregel mit n=5
- (b) Verwenden Sie die summierte Trapezregel mit n=5
- (c) Verwenden Sie die summierte Simpsonregel mit n=5

Geben Sie für (a) - (c) immer auch an, wie gross der tatsächliche absolute Fehler der Näherung ist. Berechnen Sie dazu den exakten Wert des Integrals.

Aufgabe 3 (40 Minuten):.

Die Dichte ρ der Erde variiert mit dem Radius r gemäss der folgenden Tabelle, in der die Abstände in r nicht äquidistant sind (aus [9]):

r (km)	0	800	1200	1400	2000	3000	3400	3600	4000	5000	5500	6370
$\rho (\mathrm{kg/m}^3)$	13000	12900	12700	12000	11650	10600	9900	5500	5300	4750	4500	3300

Berechnen Sie die Masse m der Erde mit folgendem Integral

$$m = \int_0^{6370} \rho \cdot 4\pi r^2 dr,$$

in dem sie die beiden folgenden Teilaufgaben lösen:

a) Schreiben Sie zuerst eine Funktion [Tf_neq] = Name_S8_Aufg3a(x,y), welche Ihnen für eine tabellierte, nicht äquidistante Wertetabelle $(x_i,y_i)_{0\leq i\leq n}$ in den Vektoren x und y das entsprechende bestimmte Integral Tf_neq mittels der summierten Trapezregel für nicht äquidistante x-Werte löst gemäss Aufgabe 1b):

$$\int_{x_0}^{x_n} f(x)dx \approx T f_{neq} = \sum_{i=0}^{n-1} \frac{y_i + y_{i+1}}{2} \cdot (x_{i+1} - x_i)$$

b) Schreiben Sie ein Skript Name_S8_Aufg3b.m, welches Ihnen mit Funktion aus a) die Erdmasse berechnet. Beachten sie dabei, dass r im km gegeben ist, ρ aber in kg/m^3 . Vergleichen Sie Ihr Resultat für die Erdmasse mit einem Refernzwert aus der Literatur. Berechnen Sie den absoluten und den relativen Fehler Ihrer Integration im Vergleich mit dem Literaturwert.