

HO CHI MINH UNIVERSITY OF TECHNOLOGY FACULTY OF TRANSPORTATION ENGINEERING DEPARTMENT OF AUTOMOTIVE AND ENGINE

GRADUATION THESIS STUDY ON AUTOMOTIVE PUSH-ROD SUSPENSION SYSTEM

STUDENT: Nhu Quoc Huy – ID: 1852412

INSTRUCTOR: Ph.D Tran Dang Long

DATE: June 15th 2022

- 1 Introduction
- 2 Key problems
- 3 Implementation process
- 4 Result and disscussion
- 5 Conclusion and future work

- 1 Introduction
- 2 Key problems
- 3 Implementation process
- 4 Result and disscussion
- 5 Conclusion and future work

- 1.1 Suspension system
- **1.2** Suspension components
- 1.3 Technical characteristics
- 1.4 Thesis objectives & limitations

1.1 Suspension system

Fig 1: Push-rod suspension system

Suspension system: connects the wheels to vehicle body, allows relative motions.

Primary function of the suspension system:

- Isolating the roughness between road and the vehicle chassis
- Keep the wheel in proper position (wheel alignment)
- Stable in rapid cornering without body roll
- Keep the tires in contact with the road surface
- Support the weight of the vehicle

1.2 Suspension components

Fig 2: Push-rod suspension system components

1.2 Suspension components: Elastic elements & damping elements

Fig 4: Coil spring parameters

Non-return valves Remote oil Remote gas a) chamber chamber Compression FD chamber Piston rod chamber orifice Piston orifice b) Rebound Compression chamber Piston rod Piston orifice. Floating piston-: u, v chamber

Fig 5: Twin-tube (a) and mono-tube (b) dampers

Elastic element:

- Support vehicle weight
- Absorb vibration energy
- $\bullet \quad F_k = -k(L_f L)$

Damping element:

- Dissipate vibration energy
- $F_{\dot{c}} = -c \times v$

1.3 Technical characteristics: Natural frequency & Damping ratio

Fig 6: Underdamped characteristics curve

Natural frequency:
$$f_n = \frac{1}{T}$$

Vehicle body supported by main suspension: **0.2 – 2 Hz**

The un-sprung mass: 2 – 20 Hz

Damping ratio:
$$\zeta = \frac{1}{\sqrt{1+(\frac{2\pi}{\delta})^2}}$$
 where $\delta = Ln\frac{x^1}{x^2}$

 \rightarrow 0< ζ <1 (Underdamped)

1.4 Thesis objectives & limitations: Evaluate the technical characteristic of Push-rod suspension system

Thesis's objectives:

- Relationship between the wheel displacement and the Suspension travel
- The Spring stiffness and the Damping coefficient
- The change in Camber angle and sliding range of the tire

Idea:

Compare with the Conventional suspension system under the same conditions:

- Natural frequency
- Damping ratio

1.4 Thesis objectives & limitations: Evaluate the technical characteristic of Push-rod suspension system

Hypothesis:

- Neglect the tire's stiffness and sliding friction between tire and road
- Use vehicle's mass of the conventional suspension system

Limitations:

 Not evaluate the frequency-weighted acceleration to calculate how intensive vibrations affect human body

- 1 Introduction
- 2 Key problems
- 3 Implementation process
- 4 Result and disscussion
- 5 Conclusion and future work

- 2.1 Kinematic problem
- 2.2 Dynamic problem

2. KEY PROBLEMS

2.1 Kinematic problems

Relationship between wheel displacement and suspension travel

Kinematic problems

The change in camber angle

Sliding range between road and tire

2.2 Dynamic problem

Spring stiffness

Dynamic problems

Damping coefficient

Natural frequency and damping ratio

- 1 Introduction
- 2 Key problems
- 3 Implementation process
- 4 Result and disscussion
- 5 Conclusion and future work

- 3.1 Build 3D model on SolidWorks
- 3.2 Simulate on Matlab/Multibody
- **3.3** Road profile simulation
- 3.4 Calculation flow

3.1 Build 3D model on SolidWorks

Parameters	Unit	Meaning	Value
m_{s_1}	Kg	Sprung weight (1/3 load)	574
m_{s_2}	Kg	Sprung weight (2/3 load)	706
m_{s_3}	Kg	Sprung weight (full load)	840
m_u	Kg	Unsprung weight	80
k_{s}	N/m	Spring stiffness	28566
c_s	Ns/m	Damping coefficient	2090

Table 1: light truck suspension parameters (Source: Vibration analysis of a light truck by 3d dynamic vehicle vibration model by Mr. Truong Hoang Tuan, Dr. Tran Huu Nhan and Mr. Tran Quang Lam.)

3.2 Simulate on Matlab/Multibody

Fig 9: Simulation model in Matlab/ Multibody environment

Fig 10: Simulation input and output parameters

3.3 Road profile simulation

Fig 11: Harmonic road profile simulation on Matlab/ Multibody

Using harmonic road profile to find

Natural frequency of the simulation model

The Gain response spectrum

3.4 Calculation flow

Fig 12: Calculation flowchart of the simulation model

- 1 Introduction
- 2 Key problems
- 3 Implementation process
- 4 Result and disscussion
- 5 Conclusion and future work

- 4.1 Relationship between wheel displacement and suspension travel
- 4.2 Change in wheel alignment and sliding gain
- 4.3 Gain response spectrum

4.1 Relationship between wheel displacement and suspension travel

Fig 13: Relationship between wheel displacement and suspension travel curve

- Suspension travel of the Push-rod suspension system is 25 mm shorter than Conventional suspension

 → Use shorter suspension system
- Maximum and minimum wheel displacement of Push-rod suspension is 70mm and 50mm lower than Conventional suspension respectively
 - → Decrease the dynamic deflection, reduce the movement of vehicle's body

4.2 Change in camber angle and sliding range

Fig 14: Relationship between change in camber angle and tire's sliding range curve

- Camber angle of both suspension system vary from 2° to 7°
- The sliding rang of the tire of the Push-rod suspension system is always lower when the camber angle change, about 4 mm lower
 - → Less tire slip compared with the conventional suspension system

4.3 Gain response of the vehicle

Fig 15: Gain response spectrum of 1/3 load condition

1/3 load: m = 574 kg

Natural frequency:

Push-rod: fn = 1.62 Hz

Conventional: fn = 1.25 Hz

Damping ratio: $\zeta = 0.259$

Fig 16: Gain response spectrum of 2/3 load condition

2/3 load: m = 706 kg

Natural frequency:

• Push-rod: fn = 1.15 Hz

Conventional: fn = 1.17 Hz

Damping ratio: $\zeta = 0.249$

4.3 Gain response of the vehicle

Fig 17: Gain response spectrum of full load condition

Full load: m = 840 kg **Natural frequency:**

Push-rod: fn = 1.09 Hz

• Conventional: fn = 1.02 Hz

Damping ratio: $\zeta = 0.274$

4.3 Gain response of the vehicle

	1/3 Load		2/3 load		Full load	
Suspension	Push-rod	Conventional	Push-rod	Conventional	Push-rod	Conventional
Natural frequency	1.62	1.25	1.15	1.17	1.02	1.09
Damping ratio	0.259	0.259	0.249	0.249	0.274	0.274

Table 2: Natural frequency and damping ratio of Push-rod and Conventional suspension system with different load condition

	Push-rod	Conventional	Difference
Spring stiffness (N/m)	36500	28566	1.27 times
Damping coefficient (Ns/m)	3034	2090	1.45 times

Table 3: Spring stiffness and damping coefficient of Push-rod and Conventional suspension system

- When the load increases from 1/3 to full load → the Natural frequency decreases moderately and the damping ratio fluctuate from 0.249 to 0.274
- The Spring stiffness and Damping coefficient of the Push-rod suspension system is 1.27 times and 1.45 times greater than Coventional suspension system respectively
 - → Use a spring with higher stiffness

- 1 Introduction
- 2 Method and core solution
- 3 Implementation process
- 4 Result and disscussion
- 5 Conclusion and future work

5. CONCLUSION & FUTURE WORK

CONCLUSION

- Push-rod suspension has more linkage components
- Shorter suspension travel and movement of vehicle's body
- Spring stiffness and damping coefficient is greater than conventional suspension system
- Simulation method compared with calculus method:
 - Combination of vertical and horizontal direction
 - Use various linkage components in the simulation model
- Advantages of Push-rod suspension:
 - Better aerodynamic by optimizing the push-rod design
 - More stable when heavy cornering

FUTURE WORKS

- Optimize the design of Push rods and the rocker arms.
- Study the relationship between ride comfort and handling of vehicle. To achieve this, a 3D suspension model is utilized to consider the vehicle rotational motions.
- Evaluate the frequency-weighted acceleration to calculate how intensive vibrations affect human body

References

- [1] Georg Rill (2012), Road Vehicle Dynamics: Fundamentals and Modeling, CRC Press.
- [2] MathWorks, Student competition programs, MathWorks Support for Student Competitions https://www.mathworks.com/academia/student-competitions.html
- [3] Truong Hoang Tuan, Tran Huu Nhan, Tran Quang Lam (2015). Vibration analysis of a light truck by 3d dynamic vehicle vibration model, Science and Technology Development Journal.
- [4] Thomas D. Gillespie (1992), Fundamentals of Vehicle Dynamics, Society of Automotive Engineers.
- [5] Figure of Push-rod suspension system at https://suspensionsguy.wordpress.com/2020/08/02/example-post-3/
- [6] Figure of Positive and Negative camber angle at https://cartreatments.com/what-is-camber/
- [7] Bayer, Andrew (May 2009). Adjustable Pushrod Suspension Design (PDF) (Thesis). University of Cincinnati.
- [8] Karthik.S, Krupa R, Smruti Rekha Sen. (2016). "Design and Analysis of a Pushrod Suspension System for a Formula Racing Car" (PDF). Technical Research Organisation India.

Thank You

