IMPLEMENTAÇÃO DO ALGORITMO DE ORDENAÇÃO BUBBLE SORT UTILIZANDO MÁQUINA DE TURING

Disciplina: Linguagens Formais e Autômatos

Orientador: Dr. Thales L. A. Valente

Universidade Federal do Maranhão

São Luís - Maranhão. | 11 e 13 de fev. 2025

INTEGRANTES - GRUPO 3

FERNANDA SOUSA DE ASSUNÇÃO VALE

Matrícula: 2022024316

JHONES DE SOUSA SOARES

Matrícula: 2020002730

ÍNDICE

04	Introdução
09	Fundamentação Teórica
12	Desenvolvimento
21	Análise de Resultados
28	Conclusão
29	Programa em Funcionamento
30	Referências

- O que é a Máquina de Turing?
- Modelo teórico criado por Alan Turing (1936);
- Define quais problemas podem ser resolvidos por um algoritmo;
- Usada para estudar as possibilidades e os limites da computação

Figura 1.1 - Alan Turing

Componentes principais:

- Fita infinita (memória de entrada e saída)
 à direita e dividida em "casas":
- Cabeçote de leitura/escrita, estando sempre situado sobre uma das casas da fita;
- Conjunto de estados e tabela de transição.

Figura 1.3 - Outro exemplo de componentes

O que é o Bubble Sort?

- Algoritmo de ordenação simples, mas ineficiente na ordenação de um grande conjunto;
- Compara elementos adjacentes e os troca caso estejam fora de ordem.
- Repetido até que a lista esteja ordenada.

Objetivos do trabalho

- Apresentar a Máquina de Turing e seu papel na computação.
- Explicar o funcionamento do Bubble Sort e sua relação com a Máquina de Turing.

Figura 1.5 - Máquina de Turing

Bubble Sort

Figura 1.6 - Representação do Bubble Sort

Relação entre a Máquina de Turing e o Bubble Sort

O Bubble Sort funciona comparando elementos adjacentes e trocando-os se estiverem fora de ordem. A Máquina de Turing pode implementar essa lógica percorrendo a fita, lendo valores e reescrevendo conforme necessário.

2. FUNDAMENTAÇÃO TEÓRICA

Máquina de Turing - Definição formal:

Máquina de Turing com Fita Infinita M é uma 8-tupla:

$$M = \{\Sigma, Q, \delta, q_0, F, V, \beta, \circledast\}$$

- Σ: alfabeto de símbolos de entrada;
- Q: conjunto finito de estados do autômato;
- δ: função programa da forma

$$\delta: Q \times (\Sigma \cup V \cup \{\beta, \circledast\}) \rightarrow Q \times (\Sigma \cup V \cup \{\beta, \circledast\}) \times \{E, D\}$$

- q0: estado inicial, tal que q0 \in Q.
- F: conjunto de estados finais, tal que $F \subseteq Q$.
- V: alfabeto auxiliar (pode ser vazio).
- β: símbolo especial branco.
- 🟵: símbolo ou marcador de início da fita.

2. FUNDAMENTAÇÃO TEÓRICA

Máquina de Turing - FUNCIONAMENTO:

Possui um controle de estados finitos e uma fita de leitura/escrita, onde:

- 1.O cabeçote lê um símbolo na fita.
- 2. Seguindo a tabela de transição, ele:
 - a. Escreve um novo símbolo.
 - b. Move-se para a esquerda ou direita.
 - c. Muda de estado.
- 3. Repete até atingir um estado de parada

Figura 2.1 - Instruções de uma Máquina de Turing

Instruction when '0' symbol is read

Instruction when '1' symbol is read

Instruction when 'Blank' symbol is read

2. FUNDAMENTAÇÃO TEÓRICA

- Bubble Sort FUNCIONAMENTO:
 - 1. Comparar dois elementos adjacentes: se o primeiro é maior do que o segundo, ambos são trocados;
 - 2. Realizar a comparação/troca (caso necessária) até o fim da lista. Neste ponto o último elemento é o maior.
 - 3. Repetir o passo 2 para todos os elementos até que nenhuma troca seja necessária, com exceção do último sucessivamente.

Figura 2.2 - Demonstração do Bubble Sort

3. DESENVOLVIMENTO

PARTE 1

Codigo "turing-machine.ipynb".

PARTE 2

Visualização da fita

Definição formal do algoritmo

```
TM = (Q, \Sigma, \Gamma, \delta, q_0, q_accept)
Q (Estados): {Inicio(q0), comparação, troca, checar_flag, fim(q_accept)}
\Sigma (Alfabeto de entrada): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
\Gamma (Alfabeto da fita): \Sigma \cup \{0, 1, \square\} (Indicadores de troca)
\delta (Funções de transição): definido na tabela de transição
q_0 (Estado inicial): Inicio
q_accept: Fim
```

Tabela de transição

Estado Atual	Simbolo Lido	Próximo estado	Simbolo escrito	Direção do movimento	Descrição
Inicio(q0)	*	Comparação(q1)	Comparação(q1) * Direta		Começo de um novo ciclo
Comparação(q1)	а	Comparação(q1)	1) a Direta		a ≤ próximo elemento
Comparação(q1)	а	Troca(q2)	а	-	a > próximo elemento
Troca(q2)	а	Comparação(q1)	b	Direta	Troca a↔b, alteração da flag
Comparação(q1)		Checar_flag(q3)		Esquerda	Fim da lista
Checar_flag(q3)	0	Fim(q_accepted)	epted) O -		Sem trocas → Ordenado
Checar_flag(q3)	1	Inicio(q0)	0	Esquerda Resetar fla cicl	

Tabela 3.1 - Tabela de estados de transição da maquina de turing com algoritmo de

ordenação bubble sort

Diagrama

Figura 3.1 - Diagrama de estados de transição para a maquina de turing

Exemplo de uso tabela de transição

Ordenação inicial da

lista: 3,1,2,4

Passo	Estado	Fita(posição da cabeça)	Ação	
1	Inicio(q0)	[3,1,2,4,0]	Reseta cabeça de leitura	
2	Comparação(q1)	[3 <u>,</u> 1,2,4,0]	Compara 3 > 1 → Troca	
3	Troca(q2)	[1 <u>,</u> 3,2,4,1]	Troca completa	
4	4 Comparação(q1) [1,3 <u>,</u> 2,4,1]		Compara 3 > 2 → Troca	
5	Troca(q2)	[1,2 <u>,</u> 3,4,1]	Troca completa	
6	Comparação(q1)	[1,2,3 <u>,</u> 4,1]	Compara 3 < 4 → Move	
7	Checar_flag(q3)	[1,2,3,4,1]	Flag=1 → Novo ciclo	
8	8 Inicio(q0) [1 <u>,</u> 2,3,4,0]		Reseta para o novo ciclo	
9	9 Comparação(q1)		Todos os elementos ordenados → fim	

Tabela 3.2 - Tabela com estados de transição para um exemplo teste do algoritmo de ordenação

PARTE 1 Código turingmachine.ipynb

• Implementação do Bubble Sort

- Estado 'inicio': Reinicia a fita, posiciona a cabeça na primeira posição;
- Estado 'comparar': Compara elemento atual com o próximo. Se maior, troca;
- Estado 'trocar': Realiza a troca e move a cabeça para a próxima posição;
- Estado 'verificar_flag': Verifica se houve troca. Se sim, reinicia. Caso contrário, a ordenação está concluída;

PARTE 1 Código turingmachine.ipynb

Máquina de Turing

- Fita: Representa os elementos a serem ordenados;
- Cabeça de leitura: Realiza comparações e troca de valores;
- Fluxo: A cada passo, a máquina verifica e troca valores, simulando o Bubble Sort.

PARTE 2 Visualização

Fluxo de Execução

- Fita inicial: ['1', '4', '4', '3', '2'];
- A máquina executa até a ordenação completa;
- A animação mostra o progresso a cada passo.

PARTE 2 Visualização

Animação

- Biblioteca: Usamos matplotlib.animation para criar a animação;
- Quadros: Cada quadro representa um passo do algoritmo;
- Informações Exibidas: Fita, estado da máquina, flag de troca, e log de ações.

4. ANÁLISE DE RESULTADOS

Estado Atual	Simbolo lido	Próximo estado	Simbolo escrito	Direção do movimento	Condição
q0	3	q1	3	Direita	Movimenta para o próximo
q1	2	q2	2	Esquerda	Troca necessária
q2	3	q2	2	Direita	Troca para a esquerda
q2	2	q1	3	Direta	Troca para a direita
q1	1	q2	1	Esquerda	Troca necessária
q2	3	q2	1	Direita	Troca para a esquerda
q2	1	q1	3	Direita	Troca para a Direta
q1	_	q3	_	Esquerda	Fim da fita, checar flag de troca
q3	X	q0	X	Esquerda	Reiniciar se houver alguma troca
q3	_	q4		_	Fim da ordenação

Tabela 4.1 - Tabela de transições para ordenação da lista (3,2,1)

Figura 4.1 - Diagrama de estados da ordenação obtida - Passo 1

Figura 4.1 - Diagrama de estados da ordenação obtida - Passo 2

Figura 4.1 - Diagrama de estados da ordenação obtida - Passo 3

Figura 4.1 - Diagrama de estados da ordenação obtida - Passo 4

Figura 4.1 - Diagrama de estados da ordenação obtida - Passo 5

Figura 4.1 - Diagrama de estados da ordenação obtida - Passo 6

Figura 4.1 - Diagrama de estados da ordenação obtida - Passo 7

Figura 4.1 - Diagrama de estados da ordenação obtida - Passo 8

Figura 4.1 - Diagrama de estados da ordenação obtida - Passo 9

Estado Atual	Simbolo lido	Próximo estado	Simbolo escrito	Direção do movimento	Condição
q0	3	q1	3	Direita	Movimenta para o próximo
q1	2	q2	2	Esquerda	Troca necessária
q2	3	q2	2	Direita	Troca para a esquerda
q2	2	q1	3	Direta	Troca para a direita
q1	1	q2	1	Esquerda	Troca necessária
q2	3	q2	1	Direita	Troca para a esquerda
q2	1	q1	3	Direita	Troca para a Direta
q2	4	q1	4	Direita	Sem trocas
q1	_	q3	_	Esquerda	Fim da fita, checar flag de troca
q3	Χ	q0	X	Esquerda	Reiniciar se houver alguma troca
q3		q4		_	Fim da ordenação

Tabela 4.2 - Tabela de transições para ordenação da lista (3,2,1,4)

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 1

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 2

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 3

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 4

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 5

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 6

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 7

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 8

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 9

Figura 4.2 - Diagrama de estados da ordenação obtida - Passo 10

Estado Atual	Simbolo lido	Próximo estado	Simbolo escrito	Direção do movimento	Condição
q0	1	q1	1	Direita	Movimenta para o próximo
q1	4	q1	4	Direita	Compara com o próximo
q1	4	q1	4	Direita	Compara com o próximo
q1	3	q2	3	Esquerda	Troca para a esquerda
q2	3	q1	4	Direita	Troca para a direita
q1	2	q2	2	Esquerda	Troca
q2	4	q2	2	Direita	Troca para a esquerda
q2	2	q1	4	Direita	Troca para a direita
q1	_	q3	_	Esquerda	Fim da fita, checar flag de troca
q3	X	q0	Х	Esquerda	Reiniciar se houver alguma troca
q3	_	q4	_	-	Fim da ordenação

Tabela 4.3 - Tabela de transições para ordenação da lista (1,4,4,3,2)

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 1

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 2

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 3

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 4

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 5

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 6

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 7

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 8

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 9

Figura 4.3 - Diagrama de estados da ordenação obtida -Passo 10

CONCLUSÃO

 Qualquer algoritmo, incluindo o Bubble Sort, pode ser executado por uma Máquina de Turing.

- Contribuição significativa
- Potencial para expansão

PROGRAMA EM FUNCIONAMENTO

REFERÊNCIAS

RAMOS, MARCUS V. M. LINGUAGENS FORMAIS: TEORIA, MODELAGEM E IMPLEMENTAÇÃO. 1ª ED. PORTO ALEGRE: BOOKMAN, 2009.

PAULO BLAUTH MENEZES. LINGUAGENS FORMAIS E AUTÔMATOS: VOLUME 3 DA SÉRIE LIVROS DIDÁTICOS INFORMÁTICA UFRGS. [S.L.] BOOKMAN EDITORA, 2009.

RMIN, WANG. ANALYSIS ON BUBBLE SORT ALGORITHM OPTIMIZATION. IN: 2010 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS. IEEE, 2010. P. 208-211.. ACESSO EM: 10 JAN. 2025.

REPRINTSEV, ALEX. TURING COMPLETENESS. IN: ORACLE SQL REVEALED: EXECUTING BUSINESS LOGIC IN THE DATABASE ENGINE. BERKELEY, CA: APRESS, 2018. P. 235-242.

IMPLEMENTAÇÃO DO ALGORITMO DE ORDENAÇÃO BUBBLE SORT UTILIZANDO MÁQUINA DE TURING

Orientador: Dr. Thales L. A. Valente

OBRIGADO

- FERNANDA SOUSA DE ASSUNÇÃO VALE
- JHONES DE SOUSA SOARES

RECONHECIMENTOS E DIREITOS AUTORAIS

@AUTOR: JHONES DE SOUSA E FERNANDA ASSUNÇÃO

@DATA ÚLTIMA VERSÃO: 20/02/2025

@VERSÃO: 1.0

@OUTROS REPOSITÓRIOS: HTTPS://GITHUB.COM/JHONES257/TURING-MACHINE-SORTING-ALGORITH/TREE/MAIN

@AGRADECIMENTOS: UNIVERSIDADE FEDERAL DO MARANHÃO (UFMA), PROFESSOR DOUTOR THALES LEVI AZEVEDO VALENTE, E COLEGAS DE CURSO.

COPYRIGHT/LICENSE

PROFESSOR DR. THALES LEVI AZEVEDO VALENTE, SEMESTRE LETIVO 2024.2, CURSO ENGENHARIA DA COMPUTAÇÃO, NA UNIVERSIDADE FEDERAL DO MARANHÃO (UFMA). TODO O MATERIAL SOB ESTA LICENÇA É SOFTWARE LIVRE: PODE SER USADO PARA FINS ACADÊMICOS E COMERCIAIS SEM NENHUM CUSTO. NÃO HÁ PAPELADA, NEM ROYALTIES, NEM RESTRIÇÕES DE "COPYLEFT" DO TIPO GNU. ELE É LICENCIADO SOB OS TERMOS DA LICENÇA MIT, CONFORME DESCRITO ABAIXO, E, PORTANTO, É COMPATÍVEL COM A GPL E TAMBÉM SE QUALIFICA COMO SOFTWARE DE CÓDIGO ABERTO. É DE DOMÍNIO PÚBLICO. OS DETALHES LEGAIS ESTÃO ABAIXO. O ESPÍRITO DESTA LICENÇA É QUE VOCÊ É LIVRE PARA USAR ESTE MATERIAL PARA QUALQUER FINALIDADE, SEM NENHUM CUSTO. O ÚNICO REQUISITO É QUE, SE VOCÊ USÁ-LOS, NOS DÊ CRÉDITO. LICENCIADO SOB A LICENÇA MIT. PERMISSÃO É CONCEDIDA, GRATUITAMENTE, A QUALQUER PESSOA QUE OBTENHA UMA CÓPIA DESTE SOFTWARE E DOS ARQUIVOS DE DOCUMENTAÇÃO ASSOCIADOS (O "SOFTWARE"), PARA LIDAR NO SOFTWARE SEM RESTRIÇÃO, INCLUINDO SEM LIMITAÇÃO OS DIREITOS DE USAR, COPIAR, MODIFICAR, MESCLAR, PUBLICAR, DISTRIBUIR, SUBLICENCIAR E/OU VENDER CÓPIAS DO SOFTWARE, E PERMITIR PESSOAS A QUEM O SOFTWARE É FORNECIDO A FAZÊ-LO, SUJEITO ÀS SEGUINTES CONDIÇÕES: ESTE AVISO DE DIREITOS AUTORAIS E ESTE AVISO DE PERMISSÃO DEVEM SER INCLUÍDOS EM TODAS AS CÓPIAS DE QUALQUER TIPO, EXPRESSA OU

ESTE MATERIAL É RESULTADO DE UM TRABALHO ACADÊMICO PARA A DISCIPLINA LINGUAGENS FORMAIS E AUTÔMATOS, SOB A ORIENTAÇÃO DO

AS CÓPIAS OU PARTES SUBSTANCIAIS DO SOFTWARE. O SOFTWARE É FORNECIDO "COMO ESTÁ", SEM GARANTIA DE QUALQUER TIPO, EXPRESSA OU IMPLÍCITA, INCLUINDO MAS NÃO SE LIMITANDO ÀS GARANTIAS DE COMERCIALIZAÇÃO, ADEQUAÇÃO A UM DETERMINADO FIM E NÃO INFRINGÊNCIA. EM NENHUM CASO OS AUTORES OU DETENTORES DE DIREITOS AUTORAIS SERÃO RESPONSÁVEIS POR QUALQUER RECLAMAÇÃO, DANOS OU OUTRA RESPONSABILIDADE, SEJA EM AÇÃO DE CONTRATO, TORT OU OUTRA FORMA, DECORRENTE DE, FORA DE OU EM CONEXÃO COM O SOFTWARE OU O USO OU OUTRAS NEGOCIAÇÕES NO SOFTWARE.

PARA MAIS INFORMAÇÕES SOBRE A LICENÇA MIT: HTTPS://OPENSOURCE.ORG/LICENSES/MIT