Review for Final Exam Part 2

Higher Order DEs (Constant Coefficients)

Most General Problem: A non-homogeneous IVP.

$$ay'' + by' + cy = f(x)$$
; $y(x_0) = y_0$, $y'(x_0) = y_1$

STEPS

- 1 Find y_c , the general solution of the associated homogeneous problem (that is, if f(x) = 0. Yc = C, y, + C2 y2)
- 2 Find y_p , a particular solution.
 - Undetermined Coefficients
 - Variation of Parameters
 - * Superposition Principle

MATH 267

April 25, 2018 1 / 11

- y = y + y = C1y1+ (2y2 + y2 3 Write the general solution:
- 4 Plug in initial conditions into the general solution to find the undetermined constants.

To find y_c : Use ay'' + by' + cy = 0

Auxiliary Equation \rightarrow $am^2 + bm + C = 0$

Find its roots \rightarrow m_1 and m_2 .

Cases:

 $m_{1,2} = \alpha \pm i\beta$ (complex conjugates)

$$y_1 = e^{\alpha \times} \omega S(\beta X)$$
 $y_2 = e^{\alpha \times} \sin(\beta X)$

MATH 267

Examples

Find the general solution of the following:

a)
$$36y'' + 4y' = 0$$

$$4m(9m+1)=0 \Rightarrow M_1=0, M_2=-1/9$$

b)
$$2y'' - 18y = 0$$

Auxiliary Equation:
$$2m^2-18=0$$

 $2(m^2-9)=0$

$$2(m^2-3)(m+3)=0$$
 \Rightarrow $m_1=3$ and $m_2=-3$

c)
$$y'' - 4y' + 4y = 0$$

$$(M-Z)^2 = 0 = > M_1 = M_2 = 2$$

d)
$$y'' + 16y' + 68y = 0$$

$$(m+8)^2 = -4 \implies m = -8 \pm 2i$$

$$\beta = 2$$

To find y_p : Suppose we have $ay'' + by' + cy = f_1(x) + f_2(x)$

- I. Undetermined Coefficients (and superposition principle)
 - "Guess/propose" the form of y_{p_i} according to the form of f_i .

• Examples.
$$f(x)=2 \Rightarrow y_p = A$$

$$f(x)=\sin(3x) \text{ or } f(x)=\cos(3x)$$

$$f(x)=x^3+x \Rightarrow y_p = A+Bx+cx^2+Dx^3 \text{ or } f(x)=7\sin 3x-\cos 3x$$

$$f(x)=3e^{7x} \Rightarrow y_p = Ae^{7x}$$

$$\Rightarrow y_p = A\cos 3x + B\sin 3x$$

- Remember sometimes is necessary to multiply by an extra x (or x^2).
- ullet Determine the coefficients of each y_{p_i} separately by plugging it into

$$ay'' + by' + cy = f_i(x).$$

• By superposition principle $y_p = y_{p_1} + y_{p_2}$

MATH 267

Final Review I

April 25, 2018

/ 11

Example

Find a particular solution for $y'' + y' - 6y = 3x + \cos(2x) + e^{2x}$

Aux. Eqn:
$$m^2 + m - 6 = (m + 3)(m - 2) = 0 => m_1 = -3, m_2 = 2.$$

$$0+A-(6(AX+B)=3X$$
 Need: $-6A=3$ and $A-6B=0$
 $-6AX+(A-6B)=3X$ $=7A=-\frac{1}{2}$ $B=\frac{A}{6}=-\frac{1}{12}$

$$y_{p_2} = -\frac{1}{2} \times -\frac{1}{12}$$

$$y_{P_2}$$
: let $-6y_{P_2} = -6(A\omega s 2x + B \sin 2x)$
 $+ y_{P_2}' = 2B\cos 2x - 2A\sin 2x$
 $+ y_{P_2}'' = -4A\cos 2x - 4B\sin 2x$
 $(2B-10A)\cos 2x + (-10B-2A)\sin 2x = \cos 2x$

MATH 267

April 25, 2018

6 / 11

Need
$$2B-10A = 1$$
 $\frac{1}{5}$ solve $2x^2 = \frac{5}{52}$, $B = \frac{1}{52}$
 $\therefore y_{P_2} = -\frac{5}{52} \cos 2x + \frac{1}{52} \sin 2x$
 $y_{P_3} : \text{Let } -\omega y_{P_3} = -\omega A \times e^{2x}$
 $+ y_{P_3}' = A e^{2x} + 2A \times e^{2x}$
 $+ y_{P_3}'' = 2A e^{2x} + 2A e^{2x} + 4A \times e^{2x}$
 $+ y_{P_3}'' = 2A e^{2x} + 2A e^{2x} + 4A \times e^{2x}$
 $+ y_{P_3}'' = 2A e^{2x} + 2A e^{2x} + 4A \times e^{2x}$
 $+ y_{P_3} = \frac{1}{5} \times e^{2x}$

II. Variation of Parameters

Recall we look for a particular solution of the form $y_p = u_1y_1 + u_2y_2$. Where y_1 and y_2 are the l.i. solutions from y_c and u_1 , u_2 are:

$$u_1 = -\int \frac{f y_2}{W} dx$$
 $u_2 = \int \frac{f y_1}{W} dx$

and
$$W = \text{wronskian}(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$$

This method is most useful when f(x) is not a polynomial, a sine or a cosine or an exponential.

April 25, 2018 8 / 11

Example

Use variation of parameters to find a particular solution to

$$y'' - 2y' + y = \frac{e^x}{x^2}$$
, and solve the IVP: $y(1) = 5e$, $y'(1) = 6e$.

Aux. Eqn:
$$m^2 - 2m + 1 = (m - 1)^2 = 0 = > m = m_2 = 1$$
 (repeated)
 $y_1 = e^{\times} y_2 = xe^{\times} y_c = c_1 e^{\times} + c_2 xe^{\times}$

$$W = \begin{vmatrix} e^{x} & xe^{x} \\ e^{x} & e^{x} + xe^{x} \end{vmatrix} = e^{2x} + xe^{2x} - xe^{2x} = e^{2x}$$

$$u_1 = -\int \frac{e^{x}}{x^2} \cdot \frac{xe^{x}}{e^{2x}} dx = -\int \frac{1}{x} dx = -\ln|x|$$

$$u_2 = \int \frac{e^{x}}{x^2} \cdot \frac{e^{x}}{e^{2x}} dx = \int \frac{1}{x^2} dx = -\frac{1}{x}$$

MATH 267

Final Review I

April 25, 2018 9 /

General Solution:
$$y(x) = c_1 e^x + c_2 x e^x + (-\ln |x| - 1) e^x$$

 $y'(x) = c_1 e^x + c_2 e^x + c_2 x e^x + (-\frac{1}{x}) e^x + (-\ln |x| - 1) e^x$

Plug initial Conditions:

$$y(1) = (C_1 + C_2 - 1)e = 5e$$

 $y'(1) = (C_1 + 2C_2 - 2)e = 6e$
 $y'(1) = (C_1 + 2C_2 - 2)e = 6e$
 $y'(1) = (C_1 + 2C_2 - 2)e = 6e$
 $y'(1) = (C_1 + 2C_2 - 2)e = 6e$
 $y'(1) = (C_1 + 2C_2 - 2)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$
 $y'(1) = (C_1 + C_2 - 1)e = 6e$

Application

Mass-Spring oscillator system: We can model the position of a mass mattached to a spring with constant k.

Without Damping:
$$y'' + \omega^2 y = 0$$
 $\omega = \sqrt{\frac{k}{m}}$

With Damping:
$$y'' + \lambda y' + \omega^2 y = 0$$

According to the nature of the roots in this second type we have three cases:

underdamped, contically damped, overdamped.

wots.

complex conj. repeated real distinct real

April 25, 2018 11 / 11