

AD-A087 791

GAI CONSULTANTS INC MONROEVILLE PA
NATIONAL DAM INSPECTION PROGRAM, RIDGEBURY LAKE DAM, (NDI I.D. --ETC(U)
JUL 80 B M MICHALCIN

F/6 13/13
DACP31-80-C-0036
NL

UNCLASSIFIED

1 OF 2
ADA
0-47-141

DDC FILE COPY

ADA 087791

LEVEL
1

SUSQUEHANNA RIVER BASIN -
TRIBUTARY TO FALL CREEK, BRADFORD COUNTY

PENNSYLVANIA

RIDGEBEURY LAKE DAM

(NDI I.D. No PA-00727
PENNDEER LD. No. 8-57)

Tr. L. F.

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

PREPARED FOR

DEPARTMENT OF THE ARMY
Baltimore District, Corps of Engineers
Baltimore, Maryland 21203

PREPARED BY

GAI CONSULTANTS, INC.
570 BEATTY ROAD
MONROEVILLE, PENNSYLVANIA 15146

JULY 1980

GAI CONSULTANTS, INC.
✓DACPW31-80-C-0016

80 81 11 156

This document is part of the National Dam Inspection Program. It contains a significant amount of information which may be used for public release and sale. Distribution is unlimited.

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

(1)

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D. C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition, and the downstream damage potential.

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

ABSTRACT

Ridgebury Lake Dam: NDI I.D. No. PA-00727

Owner: Barry Hafer
State Located: Pennsylvania (PennDER I.D. No. 8-57)
County Located: Bradford
Stream: Unnamed Tributary to Fall Creek
Inspection Date: 22 April 1980
Inspection Team: GAI Consultants, Inc.
570 Beatty Road
Monroeville, Pennsylvania 15146

Based on a visual inspection, operational history, and available engineering data, the facility is considered to be in good condition.

The size classification of the facility is intermediate and its hazard classification is considered to be high. In accordance with the recommended guidelines, the Spillway Design Flood (SDF) for the facility is the PMF (Probable Maximum Flood). Results of the hydrologic and hydraulic analysis indicate the facility will pass and/or store only about 45 percent of the PMF prior to embankment overtopping. A breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream damage and potential for loss of life. Thus, based on screening criteria provided in the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, non-emergency.

Calculations also indicate that if the spillway were constructed in accordance with available design drawings, the facility could pass and/or store approximately 63 percent of the PMF.

It is recommended that the owner immediately:

- a. Develop a formal warning system to notify downstream inhabitants should hazardous embankment conditions

RIDGEUBURY LAKE DAM - NDI No. PA 00727

develop. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

b. Construct the spillway in accordance with the original design under the direction of a registered professional engineer experienced in the construction of earth dams or retain the services of a registered professional engineer experienced in hydrology and hydraulics to further assess the adequacy of the emergency spillway and prepare recommendations for remedial measures deemed necessary to make the facility hydraulically adequate.

c. Develop formal manuals of operation and maintenance to ensure the continued proper care of the facility. Included in these manuals should be provisions for the regular removal and disposal of accumulated debris from within the emergency spillway channel immediately below the roadway culvert and observation of the emergency spillway sidewalls particularly after discharge.

GAI Consultants, Inc.

Approved by:

Bernard M. Mihalcin

Bernard M. Mihalcin, P.E.

Date 10 July 1980

JAMES W. PECK

JAMES W. PECK
Colonel, Corps of Engineers
District Engineer

Date 31 July 1980

OVERVIEW PHOTOGRAPH

TABLE OF CONTENTS

	<u>Page</u>
PREFACE	i
ABSTRACT.	ii
OVERVIEW PHOTOGRAPH	iv
TABLE OF CONTENTS	v
SECTION 1 - GENERAL INFORMATION	1
1.0 Authority	1
1.1 Purpose	1
1.2 Description of Project.	1
1.3 Pertinent Data.	2
SECTION 2 - ENGINEERING DATA.	6
2.1 Design.	6
2.2 Construction Records.	8
2.3 Operational Records	8
2.4 Other Investigations.	8
2.5 Evaluation.	8
SECTION 3 - VISUAL INSPECTION	9
3.1 Observations.	9
3.2 Evaluation.	10
SECTION 4 - OPERATIONAL PROCEDURES.	11
4.1 Normal Operating Procedures	11
4.2 Maintenance of Dam.	11
4.3 Maintenance of Operating Facilities	11
4.4 Warning System.	11
4.5 Evaluation.	11
SECTION 5 - HYDROLOGIC/HYDRAULIC EVALUATION	12
5.1 Design Data	12
5.2 Experience Data	12
5.3 Visual Observations	12
5.4 Method of Analysis.	12
5.5 Summary of Analysis	13
5.6 Spillway Adequacy	15
SECTION 6 - EVALUATION OF STRUCTURAL INTEGRITY.	16
6.1 Visual Observations	16
6.2 Design and Construction Techniques.	16
6.3 Past Performance.	17
6.4 Seismic Stability	17
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS FOR REMEDIAL MEASURES	18
7.1 Dam Assessment.	18
7.2 Recommendations/Remedial Measures	18

TABLE OF CONTENTS

- APPENDIX A - VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES
- APPENDIX B - ENGINEERING DATA CHECKLIST
- APPENDIX C - PHOTOGRAPHS
- APPENDIX D - HYDROLOGY AND HYDRAULICS ANALYSES
- APPENDIX E - FIGURES
- APPENDIX F - GEOLOGY

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
RIDGEBURY LAKE DAM
NDI# PA-00727, PENNDER# 8-57

SECTION 1
GENERAL INFORMATION

1.0 Authority.

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers to initiate a program of inspection of dams throughout the United States.

1.1 Purpose.

The purpose is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Ridgebury Lake Dam is an earth embankment approximately 35 feet high and 535 feet long excluding spillway and west dike extension. The earth dike that spans a low area at the right abutment is about 385 feet long. The total crest length of fill across the valley is about 920 feet. A trapezoidal shaped, emergency spillway is cut into natural earth through the left abutment and is completely detached from the embankment. The facility is also equipped with a drop inlet type service spillway consisting of a reinforced concrete riser with a 42-inch diameter inlet and a 36-inch diameter discharge conduit. Drawdown control is provided by an 18-inch diameter concrete pipe with inlet at the upstream embankment toe and outlet at the base of the riser.

b. Location. Ridgebury Lake Dam is located on an unnamed tributary to Fall Creek in Ridgebury Township, Bradford County, Pennsylvania approximately three miles upstream of Bentley Creek and about two miles east of the community of Middletown, Pennsylvania. The site is adjacent to LR 08065, a highway extending from Greenes Landing to Middletown, and near its junction with Township Road 690. The dam, reservoir and watershed are contained within the Bentley Creek, Pennsylvania U.S.G.S. 7.5 minute topographic quadrangle (see Figure 1, Appendix E). The coordinates of the dam are N41° 56.1' and W76° 39.4'.

c. Size Classification. Intermediate (35 feet high, 1230 acre-feet storage capacity at top of dam).

d. Hazard Classification. High (see Section 3.1.e).

e. Ownership. Barry Hafer
Box 457-B
R.D. #2
Sayre, Pennsylvania

f. Purpose. Private Recreation.

g. Historical Data. Ridgebury Lake Dam was constructed between 1968 and 1973 for Timberstand, Inc., (originally known as Timberstand Dam No. 3) as the centerpiece of a planned real estate development. Barry O. Hafer, who currently resides within the development, served as president of Timberstand, Inc. during construction of the facility. Mr. Hafer is currently majority owner of Ridgebury Lake Estates, the successor to Timberstand, Inc. The facility was designed by Herluf T. Larsen (Consulting Soils and Foundation Engineer) from Harrisburg, Pennsylvania and David C. Meyer, P.E., of Sayre, Pennsylvania. Correspondence indicates that construction of the facility was started by Cummings Excavating, Inc., of Mansfield, Pennsylvania and was completed by Walcott Construction of Big Flats, New York. Construction inspection was provided by Herluf T. Larsen personnel.

1.3 Pertinent Data.

a. Drainage Area (square miles). 2.2

b. Discharge at Drain Site.

Discharge Capacity of Outlet Conduit - Discharge curves are not available.

Discharge Capacity of Service Spillway at Maximum Pool \approx 180 cfs (see Appendix D, Sheet 7).

Discharge Capacity of Emergency Spillway at Maximum Pool \approx 1610 cfs (see Appendix D, Sheet 11).

c. Elevation (feet above mean sea level). The following elevations were obtained from available drawings and through field measurements that were based on the elevation of the service spillway crest at 1485.0 feet (see Appendix D, Sheet 1).

Top of Dam	1496.3 (field).
Maximum Design Pool	1497.0 (design).
Maximum Pool of Record	Not known.
Normal Pool	1485.0
Service Spillway Crest	1485.0
Emergency Spillway Crest	1490.3 (field). 1491.0 (design).
Upstream Inlet Invert	1463.0
Downstream Outlet Invert	1462.7
Service Spillway Outlet Invert	1461.5
Streambed at Dam Centerline	1459.9
Maximum Tailwater	Not known.

d. Reservoir Length (feet).

Top of Dam	5000
Normal Pool	4800

e. Storage (acre-feet).

Top of Dam	1230
Normal Pool	460
Design Surcharge	Not known.

f. Reservoir Surface (acres).

Top of Dam	78
Normal Pool	58
Maximum Design Pool	Not known.

g. Dam.

Type	Homogeneous earth.
Length	920 feet (including adjacent dike, excluding spillway).
Height	35 feet (embankment crest to invert of service spillway outlet).
Top Width	18 feet (field). 17.4 feet (design).

Upstream Slope	2H:1V
Downstream Slope	1.7H:1V to 2H:1V (field). 2H:1V (design).
Zoning	Homogeneous earth (see Figure 5).
Impervious Core	None indicated.
Cutoff	Cutoff trench constructed along embank- ment centerline with 1H:1V side slopes and a 10-foot bottom width. Cutoff trench beneath dike is slightly larger (see Figure 5).
Grout Curtain	None indicated.
h. <u>Diversion Canal and Regulating Tunnels.</u>	None.
i. <u>Emergency Spillway.</u>	
Type	Uncontrolled, trapezoidal shaped earth cut channel.
Crest Elevation	1490.3 feet.
Crest Length	67 feet (design). 27 feet (field; see Appendix D, Sheet 8).
Crest Breadth	180 feet.
j. <u>Service Spillway.</u>	
Type	21-foot high reinforced concrete riser with a 42-inch

diameter drop
inlet and a
36-inch dia-
meter discharge
conduit.

Crest Elevation	1485.0 feet.
Upstream Channel	Not applicable.
Downstream Channel	Rock lined, trapezoidal shaped channel to natural stream about 150 feet beyond outlet.

k. Reservoir Drain.

Type	18-inch dia- meter concrete pipe encased in reinforced concrete with inlet at up- stream embank- ment toe and outlet at base of riser.
Length	26 feet.
Closure and Regulating Facilities	Flow through drain is regu- lated via 18-inch dia- meter gate valve manually controlled from atop the riser.
Access	The control mechanism atop the riser is accessible by a footbridge from the upstream embankment slope.

SECTION 2 ENGINEERING DATA

2.1 Design.

a. Design Data Availability and Sources. No formal design reports for the embankment and/or appurtenances are available. A report dated July 1968 by Herluf T. Larsen of Harrisburg, Pennsylvania entitled, "Soils and Foundation Report on Site of Proposed Timberstand Dam No. 3" is contained in PennDER files. Included in this report are profile drawings of foundation conditions as well as a narrative description of the various topographic, geologic and other pertinent factors noted during the investigation. The report contains details of the stability analyses performed, and includes recommendations covering design and construction of those factors within the project attributable to soil and/or foundation conditions. Also contained in PennDER files are design drawings, contract specifications, construction photographs, several construction progress reports and miscellaneous correspondence. Included with this data are several pages of hydraulic design calculations by the design engineer, David C. Meyer. A state report prepared subsequent to the owner's application for a construction permit, dated September 30, 1968, provides a good brief description of the design particulars of the project.

b. Design Features.

1. Embankment. The embankment is a homogeneous earthfill structure designed with 2H:1V side slopes and a crest width of 17.4 feet. Field measurements indicate the downstream slope varies from 2H:1V to 1.7H:1V (steeper near crest) and the crest is 18 feet wide. The dam is extended by an earth dike to the northwest or right abutment. The dike extends to the north on an angle of 52 degrees from the axis of the dam. A cutoff trench is provided by the design to ensure a relatively impervious zone between the underlying till and the embankment. Available drawings indicate the trench beneath the dam has a 10-foot bottom width with 1H:1V side slopes and is somewhat larger beneath the dike (see Figure 5). Seepage through the embankment was not expected to be significant due to the nature of the fill material utilized. Nevertheless, a gravel filter was placed beneath the downstream embankment toe to protect the embankment from the effects of heavy springs and an artesian condition noted in the soils and foundation report.

2. Appurtenant Structures.

a) Emergency Spillway. The design calls for the emergency spillway to be a trapezoidal shaped channel excavated in natural ground at the south or left abutment. Available drawings indicate the bottom width of the channel at the control section to be 67 feet with 3H:1V side slopes and an exit channel slope of 10 percent (see Figure 3). Field measurements indicate the actual dimensions of the channel vary significantly from the design (see Appendix D, Sheet 8).

b) Service Spillway. The service spillway consists of a reinforced concrete riser structure and 36-inch diameter reinforced concrete outlet conduit. A 42-inch diameter opening is provided in the riser along with a trash rack and anti-vortex device (see Figures 5 and 6).

c) Reservoir Drain. The capacity to drawdown the reservoir is provided by an 18-inch diameter concrete pipe encased in reinforced concrete with inlet at the upstream embankment toe and outlet at the base of the service spillway riser. Flow through the conduit is regulated by means of an 18-inch diameter gate valve installed along the upstream face of the riser and manually operated from atop the riser (see Figures 5, 6 and 7).

c. Specific Design Data and Criteria.

1. Embankment. Although no formal design reports by the designer, David C. Meyer, are available, it is apparent that the embankment design was based largely upon the recommendations contained in the soils and foundation report prepared by H. T. Larsen. Specific recommendations were presented concerning the cutoff trench, embankment slopes (including soils parameters and stability analyses), filter blanket, outlet pipes, spillway cut, borrow area, and site stripping.

2. Appurtenant Structures. No design data are available that pertain to the appurtenant structures of the facility, other than the soils and foundation information contained in the report by H. T. Larsen.

3. Hydraulics and Hydrology. Information contained in PennDER files indicates the spillways were designed to meet the requirements established by the Pennsylvania "C" Curve. That is, based on a drainage area of 2.07 square miles, the spillway facilities were designed to have sufficient capacity to discharge a flow of 2550 cfs.

The design engineer was provided technical assistance on the hydrologic analysis of this project by the U.S.D.A., Soil Conservation Service. The emergency spillway elevation was selected to provide sufficient storage between the service spillway and the emergency spillway crests to contain the 100-year, 6-hour point rainfall determined by the SCS methods.

2.2 Construction Records.

PennDER files contain various construction related data including design drawings, contract specifications, construction photographs, several construction progress reports and miscellaneous correspondence. Available data and correspondence indicate that the construction period was lengthy for various reasons but, in general, compliance to contract specifications was achieved. Correspondence and photographs also indicate that a substantial slide developed in the emergency spillway cut during construction.

2.3 Operational Records.

No records of the present day-to-day operation of this facility are maintained. Reportedly, the emergency spillway has never discharged.

2.4 Other Investigations.

Aside from the preliminary design investigation performed by H. T. Larsen in 1968, there are no records of other formal investigations of the facility.

2.5 Evaluation.

The data available is considered adequate to make a reasonable Phase I assessment of the facility.

SECTION 3 VISUAL INSPECTION

3.1 Observations.

a. General. The general appearance of the facility suggests the dam and its appurtenances are in good condition.

b. Embankment. Observations made during the visual inspection indicate the embankment and adjacent dike are in good condition and appear adequately maintained. No evidence of seepage through the downstream embankment face was observed, other than discharge through the 4-foot thick toe drain. The area along the base of the toe to the right of the outlet conduit is saturated as the result of poorly drained discharge from the gravel filter. The condition is not considered significant. No other deficiencies such as sloughing, erosion, excessive settlement or animal burrows were observed by the inspection team (see Photographs 1, 4 and 9).

c. Appurtenant Structures.

1. Emergency Spillway. The visual inspection revealed the emergency spillway is in fair condition. Field measurements compiled by the inspection team indicate the channel is inadequately sized and not constructed in accordance with the design drawings. An accumulation of mud and debris within the channel, that appears to be outwash from a nearby roadway culvert (see Photograph 10), and surface sloughing of soils along the left sidewall upstream of the debris area were observed.

2. Service Spillway. The service spillway is considered to be in good condition. Minor surface corrosion was observed on all metal surfaces associated with the structure (see Photographs 3, 5, 6 and 8).

3. Reservoir Drain. The reservoir drain was operated in the presence of the inspection team and is considered to be in good condition. Evidence of minor surface corrosion was observed on the manual operator and gate stem (see Photograph 6).

d. Reservoir Area. The general area surrounding the reservoir is composed of moderate slopes that are primarily forested with about 25 percent cleared areas. No signs of slope distress were observed (see Photographs 1, 2, 6 and 9).

e. Downstream Channel. Discharge from Ridgebury Lake Dam flows through a steep, narrow and heavily forested valley with steep confining slopes. The first structures situated near the streambed below the dam are located between two and three miles downstream at the community of Middletown. Within four miles of the embankment, at least 12 homes are situated sufficiently near the stream to possibly be affected by the floodwaters associated with an embankment breach. It is estimated that 25 to 50 lives could be lost and significant damage incurred in this area as the result of such an event.

3.2 Evaluation.

The overall condition of the facility is considered to be good. The construction of the emergency spillway is questionable based upon field measurements. Outwash from a roadway culvert is also accumulating in the spillway and should be removed. The sloughing of the left spillway cut slope should be observed regularly especially after spillway discharge.

SECTION 4 OPERATIONAL PROCEDURES

4.1 Normal Operating Procedures.

Ridgebury Lake Dam is essentially a self-regulating facility. Inflows in excess of the capacity of the service spillway are stored and/or discharged through the emergency spillway. The reservoir drain was observed by the inspection team to be fully operational; however, under normal operating conditions, the valve is closed. No formal operations manual is available.

4.2 Maintenance of Dam.

The facility is maintained on an unscheduled basis as needed. No formal maintenance manual outlining maintenance procedures is available.

4.3 Maintenance of Operating Facilities.

See Section 4.2 above.

4.4 Warning System.

No formal warning system is in effect.

4.5 Evaluation.

No formal operations or maintenance manuals are available, but, are recommended to ensure the continued proper care and maintenance of the facility. Included in these manuals should be a formal warning system to notify downstream residents should hazardous conditions develop. The plan should include provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

SECTION 5 HYDROLOGIC/HYDRAULIC EVALUATION

5.1 Design Data.

Information contained in PennDER files indicates the spillways were designed to meet the requirements established by the Pennsylvania "C" Curve. That is, based on a drainage area of 2.07 square miles, the spillway facilities were designed to have sufficient capacity to discharge a flow of 2550 cfs.

The design engineer was provided technical assistance on the hydrologic analysis of this project by the U.S.D.A., Soil Conservation Service.

5.2 Experience Data.

No data pertaining to emergency spillway performance is available as it is reported that the emergency spillway has never discharged. The owner stated that the largest flood he could recall at this facility occurred in October 1975 when the reservoir rose about 1-foot above normal pool. The general appearance of the facility indicates adequate past performance of the service spillway.

5.3 Visual Observations.

Field measurements compiled by the inspection team indicate the channel is inadequately sized and not constructed in accordance with design drawings. An accumulation of debris from a highway culvert partially obstructs the spillway channel and there is surface sloughing evident along the left sidewall upstream of the dam centerline.

5.4 Method of Analysis.

The facility has been analyzed in accordance with procedures and guidelines established by the U.S. Army, Corps of Engineers, Baltimore District, for Phase I hydrologic and hydraulic evaluations. The analysis has been performed utilizing a modified version of the HEC-1 program developed by the U.S. Army, Corps of Engineers, Hydrologic Engineering Center, Davis, California. Analytical capabilities of the program are briefly outlined in the preface contained in Appendix D.

5.5 Summary of Analysis

a. Spillway Design Flood (SDF). In accordance with procedures and guidelines contained in the National Guidelines for Safety Inspection of Dams for Phase I Investigations, the Spillway Design Flood (SDF) for Ridgebury Lake Dam is the Probable Maximum Flood (PMF). This classification is based on the relative size of the dam (intermediate) and the potential hazard of dam failure to downstream developments (high).

b. Results of Analysis. Ridgebury Lake Dam was evaluated under near normal operating conditions. That is, the reservoir was assumed to initially be at its normal pool or service spillway elevation of 1485.0 feet, and the low level blowoff line was assumed to be closed. However, the usually functioning service spillway, which consists of a 42-inch diameter vertical concrete shaft and a 36-inch diameter concrete outlet pipe, was assumed to be non-functional, for the purpose of analysis, due to the possibility of at least partial clogging during large floods. The unobstructed emergency spillway is a trapezoidal shaped, vegetated, earth cut chute channel, with discharges dictated by critical depth at the control section. All necessary downstream channel routing was done under the assumption that the routing streams were dry prior to the inflow of the dam outflows. In addition, the small 5-acre upstream impoundment located in the northeastern corner of the Ridgebury Lake drainage basin (Appendix E, Figure 1) was ignored in the analysis since its impact on Ridgebury Lake Dam was not expected to be significant. All pertinent engineering calculations relative to the evaluation of this facility are provided in Appendix D.

Overtopping analysis (using the Modified HEC-1 Computer Program) indicated that the discharge/storage capacity of Ridgebury Lake Dam can accommodate only about 45 percent of the PMF (SDF) prior to the overtopping of the embankment (Appendix D, Summary Input/Output Sheets, Sheet J). The low top of dam was inundated by depths of water of 0.5 and 2.1 feet under the 1/2 PMF and PMF events, respectively (Summary Input/Output Sheets, Sheet J). Therefore, since the SDF for this facility is the PMF, Ridgebury Lake Dam has a high potential for overtopping, and thus, for breaching under floods of less than SDF magnitude.

Since Ridgebury Lake Dam cannot safely accommodate a flood of at least 1/2 PMF magnitude, the possibility of embankment failure under floods of 1/2 PMF intensity or less was investigated (in accordance with Corps directive ETL-1110-2-234). Several feasible alternatives were analyzed

since it is difficult, if not impossible, to determine exactly how or if a specific dam will fail. The major concern of the breaching evaluations is with the impact of the various breach discharges on increasing downstream water surface elevations above those to be expected if breaching did not occur.

The Modified HEC-1 Computer Program was used to conduct the breaching analysis with the assumption that the breaching of an earth dam would begin once its reservoir's water level reached the low top of dam elevation.

Two sets of breach geometry were evaluated for Ridgebury Lake Dam for each of two failure times (Appendix D, Sheet 20). The two breach sections chosen were considered to be the minimum and maximum probable failure sections. The two failure times (total time for each breach section to reach its final dimensions), under which the two breach sections were investigated were assumed to be a rapid time (0.5 hour), and a prolonged time (4.0 hours), so that a range of this most sensitive variable might be examined. In addition, an average set of breach conditions was analyzed, with a failure time of 2.0 hours.

The peak breach outflows (resulting from a 0.46 PMF overtopping) ranged from about 4420 cfs for the minimum section - maximum fail time scheme to about 46,370 cfs for the maximum section - minimum fail time scheme (Appendix D, Sheet 22). The peak outflow from the average breach scheme was about 12,620 cfs, compared to the non-breach 0.46 PMF peak outflow of about 1690 cfs (Summary Input/Output Sheets, Sheets R and J). At Section 4 (see Figure 1), located about 11,460 feet downstream from the dam, the maximum water surface elevation resulting from the average breach scheme was about 11.7 feet above the 0.46 PMF non-breach peak elevation, and above the damage level of the nearby residence. At Sections 6, 8, and 9 (see Figure 1), located approximately 14,000 to 20,000 feet downstream from the dam, the peak water levels resulting from the average breach scheme were about 7.4 feet, 8.3 feet, and 7.1 feet, respectively, above those levels resulting from non-breach conditions. At each of these sections, the water surface elevation corresponding to the peak breach outflow was above the damage level of the nearby residences (see Appendix D, Sheets 23, 24).

The consequences of dam failure can be better envisioned if not only the increase in the height of the floodwave is considered, but, also the great increase in the momentum of the larger and probably swifter moving volume of water. Therefore, the failure of Ridgebury Lake Dam is quite pos-

sible, and will most probably lead to increased property damage and possibly to increased loss of life in the downstream community.

5.6 Spillway Adequacy.

As presented previously, under existing conditions, Ridgebury Lake Dam can accommodate only about 45 percent of the PMF (SDF) prior to embankment overtopping. If the emergency spillway had been constructed as originally designed, the facility would have been able to accommodate approximately 63 percent of the PMF. Nevertheless, should a 0.46 PMF or larger event occur (under existing conditions) the dam would be overtopped and could possibly fail, endangering residences downstream and increasing the potential for loss of life in the downstream community. Therefore, the spillway is considered to be seriously inadequate.

SECTION 6
EVALUATION OF STRUCTURAL INTEGRITY

6.1 Visual Observations.

a. Embankment. Visual observations indicate the embankment is in good condition. Saturation observed along the downstream embankment toe is the apparent result of poor drainage and is not considered to be significant at present. No other deficiencies were noted.

b. Appurtenant Structures.

1. Emergency Spillway. The emergency spillway is in fair condition. Debris accumulating within the spillway channel should be removed regularly and sloughing of the left sidewall upstream of the dam centerline should be observed periodically and after all spillway discharges. It was also noted that the spillway is inadequately sized relative to available design drawings.

2. Service Spillway. The service spillway was observed to be in good condition and fully functional. Minor surficial corrosion is characteristic of all metal associated with the structure, but, is not considered significant at this time.

3. Reservoir Drain. The reservoir drain was operated in the presence of the inspection team and observed to be fully functional and in good condition.

6.2 Design and Construction Techniques.

No formal design reports are available. Design information contained in PennDER files suggests, however, that the facility was designed in accordance with modern accepted engineering practice.

Available construction records indicate that the construction period of the facility was lengthy and beset with various problems. The good condition of the embankment, adjoining dike and service spillway suggests that adequate construction control was provided for the main part of the facility. In contrast, the dimensions of the inadequately sized emergency spillway suggest that it was not constructed as designed.

6.3 Past Performance.

No formal records of the day-to-day operation of the facility are maintained. The facility has reportedly functioned without any significant problems since its completion in 1973. It was noted that the emergency spillway has never discharged.

6.4 Seismic Stability.

The dam is located in Seismic Zone No. 1 and may be subject to minor earthquake induced dynamic forces. As the facility appears well constructed and sufficiently stable, it is believed that it can withstand the expected dynamic forces; however, no calculations and/or investigations were performed to confirm this belief.

SECTION 7
ASSESSMENT AND RECOMMENDATIONS FOR REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety. Based on a visual assessment and available engineering data, the facility is considered to be in good condition.

The size classification of the facility is intermediate and its hazard classification is considered to be high. In accordance with the recommended guidelines, the Spillway Design Flood (SDF) for the facility is the PMF (Probable Maximum Flood). Results of the hydrologic and hydraulic analysis indicate the facility will pass and/or store only 45 percent of the PMF prior to embankment overtopping. A breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream damage and potential for loss of life. Thus, based on screening criteria provided in the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, non-emergency.

Calculations also indicate that if the spillway were constructed in accordance to available design drawings, the facility could pass and/or store approximately 63 percent the PMF.

b. Adequacy of Information. The available data is considered sufficient to make a reasonable Phase I assessment of the facility.

c. Urgency. The recommendations listed below should be implemented immediately.

d. Necessity for Additional Investigations. Additional investigations are considered necessary to further assess the spillway adequacy unless remedial measures are taken to reconstruct the spillway to its design configuration.

7.2 Recommendations/Remedial Measures.

It is recommended that the owner immediately:

a. Develop a formal warning system to notify downstream inhabitants should hazardous embankment conditions develop. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

b. Construct the spillway in accordance with the original design under the direction of a registered professional engineer experienced in the construction of earth dams or retain the services of a registered professional engineer experienced in hydrology and hydraulics to further assess the adequacy of the emergency spillway and prepare recommendations for remedial measures deemed necessary to make the facility hydraulically adequate.

c. Develop formal manuals of operation and maintenance to ensure the continued proper care of the facility. Included in these manuals should be provisions for the regular removal and disposal of accumulated debris from within the emergency spillway channel immediately below the roadway culvert and observation of the emergency spillway sidewalls particularly after discharge.

APPENDIX A
VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES

**CHECK LIST
VISUAL INSPECTION
PHASE 1**

NAME OF DAM	Ridgebury Lake Dam	STATE	Pennsylvania	COUNTY	Bradford
NDI # PA —	00727	PENDER #	8-57		
TYPE OF DAM	Earth	SIZE	Intermediate	HAZARD CATEGORY	High
DATE(S) INSPECTION	22 April 1980	WEATHER	Clear & Cool	TEMPERATURE	30° @ 10:00 a.m.
POOL ELEVATION AT TIME OF INSPECTION	1485.2 feet	M.S.L.			
TAILWATER AT TIME OF INSPECTION	N/A	M.S.L.			

INSPECTION PERSONNEL

B. M. Mihalcin	
D. J. Spaeder	
W. J. Veon	

OWNER REPRESENTATIVES

Barry O. Hafer	
Don Hafer	

OTHERS

RECORDED BY B. M. Mihalcin

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA - 00727
SURFACE CRACKS	None observed.	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed.	
SLoughing or Erosion of Embankment and Abutment Slopes	None observed.	
Vertical and Horizontal Alignment of the Crest	Vertical - adequate (see Appendix A, Profile of Dam Crest). Horizontal - good.	
Riprap Failures	None observed. Durable well graded sandstone on main embankment. Dike is not protected with riprap; however, the natural soil at pool level appears very rocky and no erosion is evident.	
Junction of Embankment and Abutment, Spillway and Dam	Good condition.	

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA - 00727
DAMP AREAS IRREGULAR VEGETATION (LUSH OR DEAD PLANTS)	Damp area along base of downstream embankment toe between dike and outlet conduit. Appears to be drainage through 4-foot thick gravel blanket. Swamplike vegetation throughout the downstream embankment toe area.	
ANY NOTICEABLE SEEPAGE	Minor seepage along downstream embankment toe, apparently through gravel underdrain. Not detrimental to dam (design feature). Wetness extends about 4 feet above toe.	
STAFF GAGE AND RECORDER	None.	
DRAINS	No drainage conduits. Blanket drain discharges along entire toe.	

OUTLET WORKS

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDIM PA .
INTAKE STRUCTURE	18-inch diameter concrete pipe with inlet at upstream embankment toe and outlet at the base of the service spillway riser. Submerged and not observed.	00727
OUTLET CONDUIT (CRACKING AND SPALLING OF CON- CRETE SURFACES)	Submerged and not observed.	
OUTLET STRUCTURE	The outlet conduit discharges at the base of the service spillway riser and into a 36-inch diameter horizontal conduit that empties at the downstream embankment toe. The service spillway was discharging on the day of the inspection; thus, the conduit was not entered.	
OUTLET CHANNEL	Rock lined, trapezoidal shaped channel. Large rocks for ≈ 75 feet beyond the outlet (replaced after October 1975 flood). Channel is unobstructed and in good condition.	
GATE(S) AND OPERA- TIONAL EQUIPMENT	18-inch diameter gate valve at outlet end of reservoir drain and operated from atop the service spillway trash rack. Valve was successfully opened and closed by the owner for the inspection team on the day of inspection.	

EMERGENCY SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA - 00727
TYPE AND CONDITION	Trapezoidal shaped channel cut through soil in the left abutment. Completely detached from embankment. Channel is not constructed in accordance with the design drawings; however, its condition is good.	
APPROACH CHANNEL	180 feet of channel prior to reaching control section.	
SPILLWAY CHANNEL AND SIDEWALLS	Vegetated sidewalls. Minor sloughing observed along left sidewall due to spring flow. May be unstable when experiencing flow - should observe. Channel floor is flat and poorly drained. Not in accordance with design drawings.	
STILLING BASIN PLUNGE POOL	None. Highway cross-drain empties into emergency spillway causing an accumulation of sediment and debris. Should be periodically cleaned.	
DISCHARGE CHANNEL	Natural stream channel. Highway bridge located approximately 650 feet downstream of emergency spillway entrance.	
BRIDGE AND PIERS EMERGENCY GATES	None.	

SERVICE SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA - 00727
TYPE AND CONDITION	42-inch diameter drop inlet with steel trash rack. Good condition. Surface corrosion observed on all metal surfaces associated with the structure.	
APPROACH CHANNEL	N/A.	
OUTLET STRUCTURE	Concrete headwall and 36-inch diameter discharge conduit at downstream embankment toe in good condition.	
DISCHARGE CHANNEL	Rock lined channel to natural stream about 150 feet beyond outlet. 25 feet of channel relined after flood in October, 1975.	

INSTRUMENTATION

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA. 00727
MONUMENTATION SURVEYS	Survey point on highway bridge immediately below embankment. Mark on upstream left corner of service spillway.	
OBSERVATION WELLS	None.	
WEIRS	None.	
PIEZOMETERS	None.	
OTHERS		

RESERVOIR AREA AND DOWNSTREAM CHANNEL

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDIN PA - 00727
SLOPES: RESERVOIR	Moderate surrounding slopes. Primarily forested with about 25 percent cultivated or cleared areas.	
SEDIMENTATION	None observed.	
DOWNTSTREAM CHANNEL (OBSTRUCTIONS, DEBRIS, ETC.)	Highway culvert located immediately downstream of embankment.	
SLOPES: CHANNEL VALLEY	Steep, narrow and heavily forested valley with steep confining slopes.	
APPROXIMATE NUMBER OF HOMES AND POPULATION	At least 12 homes are located within 4 miles downstream of the dam sufficiently near the stream to possibly be affected by the floodwaters associated with an embankment. 25 to 50 lives could be lost in this area as the result of such an event.	

RIDGEBOURG LAKE DAM
GENERAL PLAN - FIELD INSPECTION NOTES

RIDGE BURY LAKE DAM

PROFILE OF DAM CREST
FROM FIELD SURVEY

APPENDIX B
ENGINEERING DATA CHECKLIST

CHECK LIST
ENGINEERING DATA
PHASE I

NAME OF DAM Ridgebury Lake Dam

ITEM	REMARKS	NDI#PA - 00727
PERSONS INTERVIEWED AND TITLE	Barry O. Hafer - Majority owner of Ridgeway Lake Estates.	
REGIONAL VICINITY MAP	See Figure 1, Appendix E.	
CONSTRUCTION HISTORY	Designed by David C. Meyer, P. E. of Sayre, Pennsylvania. Construction control by H. T. Larsen of Harrisburg, Pennsylvania. Cummings Excavating, Inc., of Mansfield, Pennsylvania (original contractor). Walcott Construction of Big Flat, New York (final contractor).	
AVAILABLE DRAWINGS	Complete set of 6 design drawings by David C. Meyer are contained in PennDER files.	
TYPICAL DAM SECTIONS	See Figure 5, Appendix E.	
OUTLETS: PLAN DETAILS DISCHARGE RATINGS	See Figures 3, 5, 6 and 7, Appendix E. Discharge rating curves are not available.	

CHECK LIST
ENGINEERING DATA
PHASE I
(CONTINUED)

ITEM	REMARKS	NDI# PA - 00727
SPILLWAY: PLAN SECTION DETAILS	Service and emergency spillways. See Figures 3, 4, 5, 6 and 7, Appendix E.	
OPERATING EQUIP. MENT PLANS AND DETAILS	See Figures 5 and 6, Appendix E.	
DESIGN REPORTS	No formal design report available. Report by H. T. Larsen of Harrisburg, Pennsylvania dated July 1968, entitled "Soils and Foundation Report on Subsurface Explorations of Site for the Proposed Timberstand Dam No. 3" is contained in PennDER files.	
GEOLOGY REPORTS	Limited geological data contained in H. T. Larsen report.	
DESIGN COMPUTATIONS: HYDROLOGY AND HYDRAULICS STABILITY ANALYSES SEEPAGE ANALYSES	Technical assistance provided by the U.S.D.A., Soil Conservation Service on the hydrologic analysis of this project. No data available. Seepage and stability analyses are contained in H. T. Larsen report.	
MATERIAL INVESTIGATIONS: BORING RECORDS LABORATORY TESTING FIELD TESTING	Contained in H. T. Larsen report. No field testing data available.	

**CHECK LIST
ENGINEERING DATA
PHASE I
(CONTINUED)**

ITEM	REMARKS	NDI# PA - 00727
BORROW SOURCES	Majority of material was borrowed from the left abutment hillside above the pool level.	
POST CONSTRUCTION DAM SURVEYS	Survey completed in 1974. Data available from H. T. Larsen.	
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None.	
HIGH POOL RECORDS	October 1975 - pool approximately 1-foot below emergency spillway entrance. Emergency spillway has never discharged.	
MONITORING SYSTEMS	None.	
MODIFICATIONS	None.	

CHECK LIST
ENGINEERING DATA
PHASE I
(CONTINUED)

ITEM	REMARKS	NDI# PA - 00727
PRIOR ACCIDENTS OR FAILURES	None.	
MAINTENANCE: RECORDS MANUAL	None.	
OPERATION: RECORDS MANUAL	None.	
OPERATIONAL PROCEDURES	Self-regulating.	
WARNING SYSTEM AND/OR COMMUNICATION FACILITIES	None.	
MISCELLANEOUS		

GAI CONSULTANTS, INC.

CHECK LIST
HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

NDI ID # PA-00727
PENNDER ID # 8-57

SIZE OF DRAINAGE AREA: 2.2 square miles.

ELEVATION TOP NORMAL POOL: 1485.0 STORAGE CAPACITY: 460 acre-feet.

ELEVATION TOP FLOOD CONTROL POOL: - STORAGE CAPACITY: -

ELEVATION MAXIMUM DESIGN POOL: - STORAGE CAPACITY: -

ELEVATION TOP DAM: 1496.3 STORAGE CAPACITY: 1230 acre-feet.

SPILLWAY DATA

CREST ELEVATION: Service - 1485.0 feet; Emergency - 1490.3 feet.

TYPE: Service - drop inlet; Emergency - trapezoidal, earth channel.

CREST LENGTH: Service - N/A; Emergency - 27 feet.

CHANNEL LENGTH: Service - N/A; Emergency ≈ 480 feet.

SPILOVER LOCATION: Service - embankment center; Emergency - left abutment.

NUMBER AND TYPE OF GATES: None.

OUTLET WORKS

TYPE: 18-inch diameter concrete pipe encased in concrete.

LOCATION: Upstream embankment toe to base of riser

ENTRANCE INVERTS: 1463.0 feet.

EXIT INVERTS: 1462.7 feet.

EMERGENCY DRAWDOWN FACILITIES: 18-inch diameter gate valve operated from atop riser.

HYDROMETEOROLOGICAL GAGES

TYPE: None.

LOCATION: -

RECORDS: -

MAXIMUM NON-DAMAGING DISCHARGE: Emergency spillway has never discharged.

APPENDIX C
PHOTOGRAPHS

RIDGEBURY LAKE DAM
PHOTOGRAPH KEY MAP

PHOTOGRAPH 1 View across the spillway and embankment crest as seen from the left abutment.

PHOTOGRAPH 2 View of Ridgebury Lake and its surrounding watershed as seen from the embankment crest.

PHOTOGRAPH 3 View of service spillway and riprap on the upstream embankment face.

PHOTOGRAPH 4 View of the downstream embankment face and toe area as seen from the earth dike between the spillway and dam.

2

4

1

3

PHOTOGRAPH 5 Close-up view of the drop inlet service spillway.

PHOTOGRAPH 6 View of the service spillway and protective trash rack. The men in the view are operating the outlet conduit control valve.

PHOTOGRAPH 7 View of the area immediately downstream of the embankment as seen from the crest.

PHOTOGRAPH 8 View of the discharge end of the outlet conduit at the downstream embankment toe.

6

8

5

7

PHOTOGRAPH 9 View of the embankment and adjacent dike as seen from the right abutment.

PHOTOGRAPH 10 View of mud and debris being deposited in the emergency spillway channel through a roadway cross drain.

10

9

APPENDIX D
HYDROLOGY AND HYDRAULICS ANALYSES

PREFACE

The modified HEC-1 program is capable of performing two basic types of hydrologic analyses: 1) the evaluation of the overtopping potential of the dam; and 2) the estimation of the downstream hydrologic-hydraulic consequences resulting from assumed structural failure of the dam. Briefly, the computational procedures typically used in the dam overtopping analysis are as follows:

- a. Development of an inflow hydrograph(s) to the reservoir.
- b. Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.
- c. Routing of the outflow hydrograph(s) from the reservoir to desired downstream locations. The results provide the peak discharge(s), and time(s) of the peak discharge(s), and the maximum stage(s) of each routed hydrograph at the downstream end of each reach.

The evaluation of the hydrologic-hydraulic consequences resulting from an assumed structural failure (breach) of the dam is typically performed as shown below.

- a. Development of an inflow hydrograph(s) to the reservoir.
- b. Routing of the inflow hydrograph(s) through the reservoir.
- c. Development of a failure hydrograph(s) based on specified breach criteria and normal reservoir outflow.
- d. Routing of the failure hydrograph(s) to desired downstream locations. The results provide estimates of the peak discharge(s), time(s) to peak and maximum water surface elevations of failure hydrographs for each location.

HYDROLOGY AND HYDRAULIC ANALYSIS
DATA BASE

NAME OF DAM: RIDGEBURY LAKE DAM

PROBABLE MAXIMUM PRECIPITATION (PMP) = 21.5 INCHES/24 HOURS ⁽¹⁾

STATION	1	2	3
STATION DESCRIPTION	Ridgebury Lake Dam		
DRAINAGE AREA (SQUARE MILES)	2.2		
CUMULATIVE DRAINAGE AREA (SQUARE MILES)	-		
ADJUSTMENT OF PMP FOR DRAINAGE AREA LOCATION ⁽³⁾ ⁽¹⁾			
6 HOURS	117.5		
12 HOURS	127.0		
24 HOURS	136.0		
48 HOURS	142.5		
72 HOURS	145.0		
SNYDER HYDROGRAPH PARAMETERS			
ZONE ⁽²⁾	16A		
C_p ⁽³⁾	0.52		
C_t ⁽³⁾	0.69		
L' (MILES) ⁽⁴⁾	1.2		
$t_p = C_t (L')^{0.6}$ (HOURS)	0.77		
SPILLWAY DATA ⁽⁵⁾			
CREST LENGTH (FEET)	27		
FREEOBOARD (FEET)	6.0		

(1) HYDROMeteorological Report 40, U.S. Weather Bureau, 1965.

(2) HYDROLOGIC ZONE DEFINED BY CORPS OF ENGINEERS, BALTIMORE DISTRICT, FOR DETERMINATION OF SNYDER COEFFICIENTS (C_p AND C_t).

(3) SNYDER COEFFICIENTS

(4) L' = LENGTH OF LONGEST WATERCOURSE FROM RESERVOIR INLET TO BASIN DIVIDE.

(5) EARTH EMERGENCY SPILLWAY, CUT INTO LEFT ABUTMENT.

SUBJECT DAM SAFETY INSPECTION
RIDGEFURY LAKE DAM
BY WJV DATE 5-1-80 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 1 OF 24

DAM STATISTICS

- HEIGHT OF DAM \approx 35 FT (FIELD MEASURED FROM INVERT OF SERVICE SPILLWAY OUTLET TO LOW TOP OF EMBANKMENT)
- NORMAL POOL STORAGE CAPACITY \approx 460 AC-FT (SEE NOTE 1)
- MAXIMUM POOL STORAGE CAPACITY \approx 1230 AC-FT (NEC-1) (@ LOW TOP OF DAM)
- DRAINAGE AREA \approx 2.2 sq. mi. [PLANIMETERED ON USGS 7.5 MINUTE BENTLEY CREEK, PA QUAD]
- ELEVATION OF Low Top Of DAM \approx 1496.3 FT (FIELD)
 \approx 1497.0 FT (DESIGN, FIGURE 5)
- NORMAL POOL ELEVATION \approx 1485.0 FT (FIGURE 5)
(ALSO SERVICE SPILLWAY ELEVATION)
- EMERGENCY SPILLWAY ELEVATION \approx 1490.3 FT (FIELD)
(@ CONTROL SECTION) \approx 1491.0 FT (DESIGN, FIGURE 4)
- UPSTREAM INLET INVERT ELEVATION \approx 1463.0 FT (FIGURE 5)
(RESERVOIR DRAIN)
- DOWNSTREAM RESERVOIR DRAIN OUTLET ELEVATION \approx 1462.7 FT (FIGURE 5)
(OUTLET INTO BOTTOM OF SERVICE SPILLWAY KISFK)
- SERVICE SPILLWAY OUTLET INVERT ELEVATION \approx 1461.5 ft (DESIGN, FIGURE 5)
1461.5 ft (FIELD)

OBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 5-1-80 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 2 OF 24

- STREAMBED AT DAM CENTERLINE \approx 1459.9 FT (FIGURE 3)

NOTE 1: INFORMATION OBTAINED FROM "REPORT UPON THE APPLICATION OF TIMBERSTAND, INC. TO CONSTRUCT AND MAINTAIN A DAM ACROSS AN UNNAMED TRIBUTARY TO FALL CREEK IN RIDGEBURY TOWNSHIP, BRADFORD COUNTY.", AS FOUND IN PENDER FILES.

DAM CLASSIFICATION

DAM SIZE: INTERMEDIATE (REF 1, TABLE 1)
(BASED ON MAXIMUM STORAGE)

HAZARD CLASSIFICATION: HIGH (FIELD OBSERVATION)

REQUIRED SDF: PMF (REF 1, TABLE 3)

HYDROGRAPH PARAMETERS

LENGTH OF LONGEST WATERCOURSE (L) \approx 2.2 MI

LENGTH OF LONGEST WATERCOURSE FROM DAM TO A POINT OPPOSITE THE BASIN CENTROID (LCA) \approx 0.8 MI

NOTE 2: VALUES OF L AND LCA WERE MEASURED ON THE 7.5 MINUTE USGS BENTLEY CREEK, PA QUAD. ALL HYDROGRAPH PARAMETERS ARE DEFINED IN REFERENCE 3, IN THE SECTION ENTITLED "SNYDEC SYNTHETIC UNIT HYDROGRAPH".

$$C_f \approx 0.69$$

$$C_p \approx 0.52$$

[SUPPLIED BY CDE; ZONE 16A
SUSQUEHANNA RIVER EASIDE]

OBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 5-2-80 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 3 OF 24

SINCE $L_{CA} < \text{LENGTH OF RESERVOIR} \Rightarrow \text{LENGTH OF LONGEST}$
 $\text{WATERCOURSE FROM END OF RESERVOIR TO DRAINAGE DIVIDE } (L') \approx 1.2 \text{ MI}$

SNYDER'S STANDARD LAG $(t_p) \approx C + (L')^{\alpha}$ (AS PER COE FOR CASE:
WITH $L_{CA} < \text{RESERVOIR LENGTH}$)

$$\therefore t_p \approx 0.69(1.2)^{\alpha} \approx 0.77 \text{ hr}$$

RESERVOIR SURFACE AREAS

SURFACE AREA (SA) @ NORMAL POOL ELEVATION 1495.0 $\approx 59 \text{ AC}$

$$SA @ EL 1490 \approx 67 \text{ AC}$$

$$SA @ EL 1495 \approx 76 \text{ AC}$$

$$SA @ EL 1500 \approx 84 \text{ AC}$$

} PLANIMETERED ON FIGURE 2

ELEVATION OF LOW TOP OF DAM $\approx 1496.3 \text{ FT}$

INCREASE IN RESERVOIR SURFACE AREA PER FOOT OF RESERVOIR
RISE BETWEEN ELEVATIONS 1495 AND 1500 $\approx \frac{(84-76)}{(1500-1495)} \text{ AC/FT}$
 $\approx 1.6 \text{ AC/FT}$

$$\therefore SA @ \text{LOW TOP OF DAM LEVEL} \approx 76 \text{ AC} + [1.6 \text{ AC/FT} (1496.3 - 1495) \text{ FT}] \\ \approx 78 \text{ AC}$$

RESERVOIR ELEVATION @ "0" STORAGE

STORAGE @ NORMAL POOL ELEVATION 1495 $\approx 460 \text{ AC-FT}$

JECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM

BY WJV DATE 5-2-80 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 4 OF 24

ASSUME NORMAL POOL VOLUME CAN BE ESTIMATED VIA THE CONIC METHOD $\Rightarrow V \approx \frac{1}{3} HA$ (REF 14, PG 16)

SINCE SA @ NORMAL POOL $\approx 53 AC$ \Rightarrow

$$H \approx \frac{3V}{A} \approx \frac{3(460 AC \cdot FT)}{53 AC} \approx 23.3 FT$$

\therefore ZERO VOLUME ELEVATION $\approx 1485 FT - 23.3 FT \approx 1461.2 FT$

NOTE 3: ALTHOUGH THE MINIMUM RESERVOIR ELEVATION IS ACTUALLY AROUND 1460.4 FT (FIGURE 3), IN ORDER TO CALCULATE AN ELEVATION-STORAGE RELATIONSHIP AND STILL MAINTAIN A STORAGE OF 460 AC-FT @ NORMAL POOL EL 1485FT, THE ABOVE COMPUTED "0" STORAGE ELEVATION MUST BE INPUT INTO THE HEC-1 MODEL.

RESERVOIR ELEVATION-STORAGE RELATIONSHIP

COMPUTED INTERNALLY BY THE HEC-1 MODEL, BASED ON GIVEN ELEVATION VS SURFACE AREA INFORMATION AS PREVIOUSLY PRESENTED (SEE SUMMARY INPUT/OUTPUT SHEETS).

PMP CALCULATIONS

- STANDARD RAINFALL INDEX = 22.2 IN (REF 9, FIG 2)
 (CORRESPONDING TO A DURATION OF 24 hr
 AND AN AREA OF 200 sq MI)

UBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 5-2-80 PROJ. NO. 79-203-727
CHKD. BY DTS DATE 6-6-80 SHEET NO. 5 OF 24

- GEOGRAPHIC ADJUSTMENT FACTOR $\approx 97\%$ (REF 9, FIG 1)
(CORRESPONDING TO A LONGITUDE OF $76^\circ 39'$ AND A LATITUDE OF $41^\circ 56'$)
- CORRECTED RAINFALL INDEX $\approx (22.2 \text{ IN})(0.97) \approx 21.5 \text{ IN}$
- RAINFALL DISTRIBUTION OVER THE 2.2 SQ MI BASIN :

DURATION (HR)	PERCENT OF INDEX RAINFALL (%)
6	117.5
12	127.0
24	136.0
48	142.5
72	145.0

- HOPKINS FACTOR (ADJUSTMENT FOR BASIN SHAPE AS WELL AS FOR THE LESSER LIKELIHOOD OF A SEVERE STORM CENTERING OVER A SMALLER BASIN) CORRESPONDING TO A DA < 10 S. M. $\Rightarrow 0.55$ (REF 4 PG 1)

SERVICE SPILLWAY CAPACITY

- THE SERVICE SPILLWAY IS AN SCS RISER-TYPE WITH A 42-IN DIAMETER VERTICAL SHAFT AND A 36-IN DIAMETER OUTLET PIPE (SEE FIGURE 5). ASSUMING FULL BARREL FLOW BY THE TIME THE RESERVOIR LEVEL REACHES THE LOW TOP OF DAM ELEVATION (1496.3 FT), THE FLOW CAPACITY CAN BE ESTIMATED VIA AN ENERGY BALANCE BETWEEN A POINT ON THE RESERVOIR WATER SURFACE (EL 1496.3) AND A POINT ON THE TAILWATER SURFACE (ESTIMATED TO BE @ 1 FT ABOVE THE TOP OF CULVERT \Rightarrow EL 1495.5 FT). THE ENERGY BALANCE IS THEN (REF 13, PG 26) :

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 5-7-80 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 6 OF 24

$$P_r/\gamma + \frac{V_r^2}{2g} + z_r = P_{tw}/\gamma + \frac{V_{tw}^2}{2g} + z_{tw} + H_L$$

WHERE $P_r/\gamma \approx P_{tw}/\gamma$ = ATMOSPHERIC PRESSURE HEAD @ THE RESPECTIVE WATER SURFACES ≈ 0 FT;
 $V_r^2/2g$ = VELOCITY OF RESERVOIR FLOW ≈ 0 FPS;
 z_r = ELEVATION OF RESERVOIR WATER SURFACE $\approx 14^{\circ} 0.3$ FT;
 z_{tw} = ELEVATION OF TAILWATER SURFACE $\approx 14^{\circ} 5.5$ FT
(ESTIMATED FROM DISCHARGE CHANNEL GEOMETRY AND MANNING'S EQUATION, SEE NOTE 1);
 V_{tw} = VELOCITY OF TAILWATER @ CULVERT BARREL OUTLET
 \approx VELOCITY OF WATER WITHIN CULVERT BARREL,
IN FPS;
 H_L = TOTAL LOSS OF ENERGY BETWEEN THE TWO
REFERENCE POINTS = LOSS DUE TO ENTRANCE
CONDITIONS INTO THE RISER, LOSS DUE TO THE
ABRUPT TRANSITION BETWEEN THE RISER AND
CULVERT BARREL, AND LOSS DUE TO FRICTIONAL
RESISTANCE IN BOTH THE RISER AND CULVERT BARREL,
IN FT.

$$\therefore z_r - z_{tw} \approx 30.3 \text{ FT} \approx \frac{V_{tw}^2}{2g} + H_L$$

- HEAD LOSS: ENTRANCE LOSS $\approx 0.5 \frac{V_{riser}^2}{2g} \Rightarrow$ ASSUME ENTRANCE TO
RISER IS LIKE ENTRANCE TO PIPE PROJECTING
FROM FILL (REF 15, PG 3-35); ALSO,
ARISER $V_{riser} = A_{culvert} V_{culvert}$ (REF 13 pg.)
 $\therefore V_{riser} = \frac{A_{riser}}{A_{culvert}} V_{culvert}$ (w/ $V_{culvert}$
 $\approx V_{tw}$ AS STATED ABOVE) \Rightarrow ENTRANCE LOSS
 $\approx 0.5 \left(\frac{A_{culvert}}{A_{riser}} \right)^2 \frac{V_{tw}^2}{2g}$

BEND LOSS $\approx 1.1 \frac{V_{transition}^2}{2g} \Rightarrow$ ASSUME 90° "MITER
BEND" w/ NO APPARENT GUIDE VANES (SEE
NOTE 4, AND FIGURE 6); ALSO, ASSUME $V_{transition}$
IS THE AVERAGE VELOCITY OF THE RISER AND
CULVERT $\Rightarrow V_{transition} \approx \frac{V_{riser} + V_{culvert}}{2}$

SUBJECT DAM SAFETY INSPECTION
RIDGEFRY LAKE DAM
BY WJV DATE 5-7-90 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 7 OF 24

$$\begin{aligned} &\approx \left[\left(\frac{A_{CULVERT}}{A_{RISE}} \times v_{TW} \right) + v_{TW}^2 \right] / 2, \text{ w/ } A_{CULVERT} = 21 \\ &\approx \left[\left(\frac{A_{CULVERT}}{A_{RISE}} + 1 \right) / 2 \right] \times v_{TW} \\ \Rightarrow \text{HEAD LOSS} &\approx 1.1 \left[\left(\frac{A_{CULVERT}}{A_{RISE}} + 1 \right) / 2 \right]^2 v_{TW}^2 / 2g \end{aligned}$$

$$\begin{aligned} \text{FRICTION LOSS} &\approx \left[0.00589 L_{RISE} \frac{v_{RISE}^2}{2g} \right] + \left[0.00723 L_{CULVERT} \frac{v_{CULVERT}^2}{2g} \right] \\ (\text{REF 15, PGS 3-35 AND 3-75}) &\Rightarrow L_{RISE} \approx 21 \text{ FT,} \\ \text{AND } L_{CULVERT} &\approx 116 \text{ FT. (FIGURE 5)} \Rightarrow FRICTION \text{ LOSS} \approx \left[0.00589 \times 21 \times \left(\frac{A_{CULVERT}}{A_{RISE}} \right)^2 \right] + \left[0.00723 \times 116 \right] v_{TW}^2 / 2g \end{aligned}$$

$$\therefore \text{SINCE } A_{CULVERT} \approx \pi (3 \text{ FT})^2 / 4 \approx 7.07 \text{ FT}^2, \text{ AND}$$

$$A_{RISE} \approx \pi (3.5 \text{ FT})^2 / 4 \approx 9.62 \text{ FT}^2$$

$$\begin{aligned} \Rightarrow H_L &\approx \left\{ \left[0.5 \times \left(\frac{7.07 \text{ FT}^2}{9.62 \text{ FT}^2} \right)^2 \right] + 1.1 \left[\left(\frac{7.07 \text{ FT}^2}{9.62 \text{ FT}^2} + 1 \right) / 2 \right]^2 + [0.00589 \times 21 \text{ FT} \times \left(\frac{7.07 \text{ FT}^2}{9.62 \text{ FT}^2} \right)^2] \right. \\ &\quad \left. + [0.00723 \times 116 \text{ FT}] \right\} v_{TW}^2 / 2g \\ H_L &\approx 2.0 v_{TW}^2 / 2g \end{aligned}$$

$$\therefore 30.3 \text{ FT} \approx v_{TW}^2 / 2g + (2.0 v_{TW}^2 / 2g)$$

$$v_{TW} \approx 25.7 \text{ FPS}$$

$$\begin{aligned} \therefore Q_{CAPACITY} &\approx v_{TW} A_{CULVERT} \approx (25.7 \text{ FPS})(7.07 \text{ FT}^2) \\ &\approx 182 \text{ CFS, SAY } 180 \text{ CFS} \end{aligned}$$

NOTE 4 : REFERENCE \Rightarrow VENNARD, J. K., ELEMENTARY FLUID MECHANICS,
4TH EDITION, JOHN WILEY AND SONS INC.
NEW YORK, NEW YORK, 1961, PG 318.

OBJECT DAM SAFETY INSPECTION
RIDGE BURY LAKE DAM
BY WJV DATE 5-7-92 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 8 OF 24

EMERGENCY SPILLWAY CAPACITY

- PROFILE OF SPILLWAY : (NOT TO SCALE)
(BASED ON FIELD MEASUREMENT)

- CROSS-SECTION OF SPILLWAY : (NOT TO SCALE)
(BASED ON FIELD MEASUREMENT @ CONTROL SECTION)

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 5-7-80 PROJ. NO. 79-203-727
CHKD. BY DTS DATE 6-6-80 SHEET NO. 9 OF 24

- THE SPILLWAY IS A TRAPEZOIDAL-SHAPED CHUTE CHANNEL CUT INTO THE LEFT ABUTMENT, WITH DISCHARGES CONTROLLED BY CRITICAL DEPTH @ THE CONTROL SECTION. CRITICAL FLOW IN A TRAPEZOIDAL CHANNEL IS DEFINED BY THE RELATIONSHIP:

$$Q_c \approx \sqrt{g A_c^3 / T_c} \quad (\text{REF 13, PG 141})$$

WHERE Q_c = CRITICAL DISCHARGE, IN CFS;
 A_c = AREA OF CRITICAL FLOW, IN FT²;
 T_c = TOP WIDTH OF CRITICAL FLOW AREA, IN FT; AND
 g = 32.2 FT/SEC²

- BALANCING THE ENERGY EQUATION BETWEEN SECTIONS AT ① AND ② ON SHEET B :

$$Y_1 + \frac{v_1^2}{2g} + z_1 \approx Y_2 + \frac{v_2^2}{2g} + z_2 + H_L \quad (\text{REF 7, PG 40})$$

WHERE Y_1 = DEPTH OF WATER @ ENTRANCE TO APPROACH CHANNEL $\approx 1496.3 - 1490.3 \approx 6.0$ FT FOR SPILLWAY CAPACITY COMPUTATION;
 v_1 = VELOCITY OF WATER @ ENTRANCE TO APPROACH CHANNEL, IN FPS;
 z_1 = DATUM ELEVATION ≈ 1490.3 ;
 Y_2 = Y_c = CRITICAL DEPTH OF FLOW, IN FT;
 $v_2 = v_c$ = CRITICAL VELOCITY, IN FPS;
 z_2 = DATUM ELEVATION ≈ 1490.3 ; AND
 H_L = TOTAL LOSSES IN APPROACH CHANNEL = LOS. @ ENTRANCE + LOSS DUE TO FRICTION.

$$\therefore Y_1 + \frac{v_1^2}{2g} \approx 6.0 \text{ FT} + \frac{v_2^2}{2g} \approx Y_c + \frac{v_c^2}{2g} + H_L$$

- THE APPROACH CHANNEL VARIES IN SECTION FROM A 53FT WIDE SECTION, W/ SLOPES OF 3H:1V AND 4H:1V @ THE ENTRANCE

OBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 5-7-80 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 10 OF 24

TO THE SECTION @ THE CONTROL (SHEET 9). ASSUME THAT THE ENTRANCE SECTION IS REPRESENTATIVE FOR THE FIRST 120 FT OF THE APPROACH CHANNEL, AND THAT THE VARIATION OCCURS WITHIN THE FINAL 60 FT.

$$\text{AREA @ ENTRANCE} \approx (59\text{ft} \times Y_1) + (\frac{1}{2} \times 3 \times Y_1^2) + (\frac{1}{2} \times 4 \times Y_1^2)$$

$$A_1 \approx 59Y_1 + 3.5Y_1^2, \text{ w/ } Y_1 \approx 6\text{ ft} \Rightarrow A_1 \approx 474 \text{ ft}^2$$

$$\text{AREA @ CONTROL} \approx (27\text{ft} \times Y_c) + (\frac{1}{2} \times 2.25 \times Y_c^2) + (\frac{1}{2} \times 2.25 \times Y_c^2)$$

$$A_c \approx 27Y_c + 2.25Y_c^2$$

$$\Rightarrow \bar{v}_1 \approx Q/A_1; \quad v_c \approx Q/A_c, \text{ w/ } Q = Q_c$$

$$\bar{v}_c \approx \frac{Q_c}{474 \text{ ft}^2}; \quad \bar{v}_c \approx \frac{Q_c}{(27Y_c + 2.25Y_c^2)}$$

- THE ENTRANCE LOSS IS ASSUMED TO BE $0.1 \times$ ENTRANCE VELOC. HEAD (REF 4, PG 379) $\Rightarrow 0.1 \frac{\bar{v}_1^2}{2g} \approx 0.1 \frac{Q_c^2}{2g (474 \text{ ft})^2}$
 $\approx 6.9 \times 10^{-9} Q_c^2$

THE FRICTION LOSS CAN BE DEFINED BY: $n_1 \approx S_{f,1} L_3 - S_{f,2} - \dots$
w/ $S_{f,1} L_3 \approx$ FRICTION LOSS IN THE FIRST 120 FT OF CHANNEL ($L_3 \approx 120\text{ft}$)
AND $S_{f,2} L_4 \approx$ FRICTION LOSS IN THE REMAINING 60 FT ($L_4 \approx 60\text{ft}$)

$$S_{f,1} \approx \left(\frac{Q_c^n}{1.49 A_1 R_1^{1/2}} \right)^2 \quad (\text{REF 4, PG 374})$$

WHERE $n =$ ROUGHNESS COEFFICIENT ≈ 0.04 (REF 7 PG 1.3),

$A_1 =$ FLOW AREA $\Rightarrow A_1 \approx A_3 \approx 474 \text{ ft}^2$, AND

$$A_4 \approx [(27\text{ft} \times Y_1) + (2.25 \times Y_1^2)] / 2, \text{ w/ } Y_1 \approx 6\text{ ft}$$

AND $A_4 \approx 474 \text{ ft}^2 \Rightarrow A_4 \approx 357 \text{ ft}^2$; AND

$$R_1 = \text{HYDRAULIC RADIUS} \Rightarrow L_3 \approx \frac{A_3}{[2.52 + \sqrt{(2.52^2 + 4 \cdot 1.3 \cdot 6^2)}]} \approx 4.6 \text{ ft}$$

$$\text{w/ } Y_1 \approx 6\text{ ft} \text{ AND } A_3 \approx 474 \text{ ft}^2 \Rightarrow R_1 \approx 474 \text{ ft}^2 / 32 \text{ ft} \approx 4.6 \text{ ft}$$

$$\text{AND } R_4 \approx [(27\text{ft} \times 2.25 \times Y_1^2) / (27 + 2 \sqrt{(2.25 \times Y_1^2) + (Y_1^2)})] / 2$$

$$\text{w/ } R_3 \approx 4.6 \text{ ft} \text{ AND } Y_1 \approx 6\text{ ft} \Rightarrow R_4 \approx (4.6 \text{ ft} + \frac{243 \text{ ft}^2}{32 \cdot 32 \text{ ft}}) / 2 \approx 4.6 \text{ ft}$$

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 5-9-90 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 11 OF 24

$$\therefore h_f \approx \left\{ \left[\frac{Q_c \times 0.04}{1.49 + 474 + (4.6)^2} \right]^2 \times 120 \right\} + \left\{ \left[\frac{Q_c \times 0.04}{1.49 + 359 + (4.5)^2} \right]^2 \times 60 \right\}$$

$$h_f \approx (5.03 \times 10^{-8} Q_c^2) + (4.52 \times 10^{-8} Q_c^2) \approx 9.55 \times 10^{-8} Q_c^2$$

$$\therefore H_L = (9.55 \times 10^{-8} Q_c^2) + (6.9 \times 10^{-9} Q_c^2) \approx 1.02 \times 10^{-7} Q_c^2$$

$$\Rightarrow 6.0 + \frac{Y_c^2}{2g} \approx 6.0 + \frac{Q_c^2}{2g} (474)^2 \approx Y_c + \left[\frac{Q_c^2}{2g} (27Y_c + 225Y_c^2) \right] + (1.02 \times 10^{-7} Q_c^2)$$

ALSO, $Q_c \approx \sqrt{\frac{g (27Y_c + 225Y_c^2)^3}{[27 + (2 \times 2.25 \times Y_c)]}}$ (SHEET 9)

- By TRIAL AND ERROR : $Y_c \approx 4.23 \text{ FT} \Rightarrow Q_c \approx 1615 \text{ cfs}$

EMERGENCY SPILLWAY RATING CURVE

THE RATING CURVE COMPUTATIONS ARE BASED ON THE PROCEDURE FOR CALCULATING THE CAPACITY AS OUTLINED ON SHEETS 9-11. THE FOLLOWING RELATIONSHIPS WILL BE USED TO DEFINE THE DISCHARGES :

$$Y_1 + \left[\frac{Q_c^2}{2g} (58Y_1 + 3.5Y_1^2) \right] \approx Y_c + \left[\frac{Q_c^2}{2g} (27Y_c + 225Y_c^2) \right] + \underbrace{\left[\left(Y_1 / 60 \right) \times 0.26 \text{ FT} \right]}_{H_L}$$

AND,

$$Q_c \approx \sqrt{\frac{g (27Y_c + 225Y_c^2)^3}{[27 + (2 \times 2.25 \times Y_c)]}}$$

AS CAN BE SEEN IN THE FIRST EQUATION, A LINEAR HEAD LOSS RELATIONSHIP IS ASSUMED AND COMPUTED AS A PROPORTION TO THE HEAD LOSS CALCULATED FOR $Y_1 \approx 6.0$.

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 5-9-93 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 5-6-80 SHEET NO. 12 OF 24

ELEVATION (FT)	Y_i (FT)	FINAL ASSUMED Y_c (FT)	FINAL ASSUMED Q_c (FT)	ROUNDED VALUES:
1490.3	0	0	0	
1491.3	1.0	0.66	80	
1492.3	2.0	1.36	260	
1493.3	3.0	2.07	500	
1494.3	4.0	2.77	800	
1495.3	5.0	3.50	1170	
LOW TOP OF DAM 1496.3	6.0	4.23	1610	
1497.3	7.0	4.97	2110	
1498.3	8.0	5.74	2710	
1499.3	9.0	6.49	3300	

EMBANKMENT RATING CURVE

- LENGTH OF EMBANKMENT SUBMERGED VS RESERVOIR ELEVATION
(BASED ON FIELD MEASUREMENTS)

RESERVOIR ELEVATION (FT)	EMBANKMENT LENGTH (FT)	RIGHT ABUTMENT SIDELOPES ESTIMATED TO BE 20 FT : 1 FROM FIGURE 2
1496.3	0	
1496.7	300	
1497.1	430	
1497.5	460	
1497.1	520	
1497.2	790	
1497.4	970	
1497.5	1000	
1497.3	1020	
1497.2	1040	

SUBJECT DAM SAFETY INSPECTION
RIDGEFURY LAKE DAM
BY WJV DATE 5-3-80 PROJ. NO. 79-202-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 13 OF 24

- ASSUME THAT THE EMBANKMENT ACTS ESSENTIALLY AS A LEAD-CRESTED WEIR WHEN OVERTOPPED. THUS, THE DISCHARGE CAN BE ESTIMATED BY THE RELATIONSHIP :

$$Q = CLH^{3/2} \quad (\text{REF S, PG 5-23})$$

WHERE Q = DISCHARGE OVER EMBANKMENT, IN CFS ;
 L = LENGTH OF EMBANKMENT OVERTOPPED, IN FT ;
 H = HEAD ON WEIR : IN THIS CASE, IT IS THE AVERAGE "FLOW-AREA WEIGHTED" HEAD ABOVE THE CREST, USING THE LOW T.O.F. OF DAM A. THE DATA, N ;
 C = COEFFICIENT OF DISCHARGE $\approx f$ ($^{4/3}$ WHERE $f \approx \text{BREAD-OF-CREST} \approx 18 \text{ FT}$).

- ASSUME THAT INCREMENTAL DISCHARGES FOR SUCCESSIVE RESERVOIR ELEVATIONS ARE APPROXIMATELY TRAPEZOIDAL IN CROSS-SECTIONAL FLOW AREA. THEN ANY INCREMENTAL AREA OF FLOW (BETWEEN SPECIFIED RESERVOIR ELEVATION) IS APPROXIMATELY EQUAL TO $H_i [(L_1 + L_2)/2]$, WHERE L_1 = LENGTH OF OVERTOPPED EMBANKMENT AT HIGHER ELEVATION, L_2 = LENGTH AT LOWER ELEVATION, H_i = DIFFERENCE IN ELEVATIONS. THUS, THE TOTAL AVERAGE "FLOW-AREA WEIGHTED" HEAD, H_N , IS APPROXIMATELY EQUAL TO (TOTAL FLOW AREA/L). Flows are tabulated on the following sheet.

SUBJECT DAM SAFETY INSPECTION
RIDGEFURY LAKE DAM
BY WJV DATE 5-9-90 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-8C SHEET NO. 14 OF 24

RESERVOIR ELEVATION (FT)	① LENGTH OVERTOPPED L _i (FT)	L ₂ (FT)	INCREMENTAL HEAD H _i (FT)	INCREMENTAL FLOW AREA A _i (FT)	③ TOTAL FLOW AREA A _T (FT)	④ WEIGHTED HEAD H _w (FT)	H _w /L (FT/FT)	⑤ C	⑥ Q (cfs)
1496.3	0	0	0	0	0	0	0	-	0
1496.7	300	0	0.4	60	60	0.2	0.01	2.97	30
1496.9	430	300	0.2	73	133	0.3	0.02	2.99	210
1497.0	460	430	0.1	45	178	0.4	0.02	3.01	350
1497.1	520	460	0.1	49	227	0.4	0.02	3.01	400
1497.2	790	520	0.1	66	293	0.4	0.02	3.01	600
1497.4	970	790	0.2	176	467	0.5	0.03	3.02	1040
1497.5	1000	970	0.1	99	563	0.6	0.03	3.03	1410
1498.3	1020	1000	0.8	308	1376	1.3	0.07	3.04	4600
1499.3	1040	1020	1.0	1030	2406	2.3	0.13	3.05	11060

- ① FROM SHEET 12
- ② A_i ≈ H_i × $(\frac{L_1 + L_2}{2})$
- ③ A_T = Σ A_i
- ④ H_w ≈ A_T / L_i
- ⑤ C - VALUES OBTAINED FROM REFERENCE 12, FIG 24, BASED ON H_w/L
- ⑥ Q ≈ C L_i H_w^{3/2}

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 5-9-90 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-6-80 SHEET NO. 15 OF 24

TOTAL FACILITY RATING CURVE

TOTAL DISCHARGE \approx EMERGENCY SPILLWAY Q + EMBANKMENT Q

NOTE 5: THE SERVICE SPILLWAY FLOWS ARE NOT CONSIDERED HERE SINCE THEY ARE CONSIDERED INSIGNIFICANT WITH RESPECT TO THE EXPECTED PMF, AND SINCE THERE IS THE POSSIBILITY OF AT LEAST A PARTIAL CLOGGING OF THE INLET BY DEBRIS DURING MAJOR FLOODS.

RESERVOIR ELEVATION (FT)	EMERGENCY SPILLWAY Q (CFS)	EMBANKMENT Q (CFS)	TOTAL Q (CFS)
1490.3	0	-	0
1491.3	80	-	80
1492.3	260	-	260
1493.3	500	-	500
1494.3	800	-	800
1495.3	1170	-	1170
LOW TOP OF DAM	1496.3	1610	1610
	1496.7	* 1910	1990
	1496.9	* 1910	2120
	1497.0	* 1960	2310
	1497.1	* 2010	2410
	1497.2	* 2060	2660
	1497.4	* 2170	3210
	1497.5	* 2230	3640
	1498.3	2710	7310
	1499.3	3360	14420

* STRAIGHT-LINE INTERPOLATION

DOWNSTREAM ROUTING SELECTION

SHFEST ET AL 24

SUBJECT: DOWNSTREAM ROUTING - EDGEFALL LAKE

DOWNSTREAM ROUTING SECTION JS

SHEET 14-24

SUBJECT: Downstream Routing - Elkhorn Valley, LAKE
CHMKT BY: CHMKT COLE 6-10-80 **SHR NO:** 9 OF
PROJECT NO: 1-209-727

SECTION 0.0 (0.000 ft. to 210.00 ft.)

STAFF (0.000 ft. to 210.00 ft.)

P

Q

SECTION 0.0

STAFF

ELEVATION (ft.)

DISTANCE (ft.)

OBJECT DAM SAFETY INSPECTION
RIDGE RUGY LAKE DAM
BY WJV DATE 6-12-90 PROJ. NO. 79-203-727
CHKD. BY Doss DATE 6-13-80 SHEET NO. 20 OF 24

BREACH ASSUMPTIONS

- TYPICAL BREACH SECTION :

- HEC-1 BREACHING ANALYSIS INPUTS :

(BREACHING WILL COMMENCE WHEN THE RESERVOIR LEVEL REACHES THE TOP OF DAM ELEVATION)

PLAN NUMBER AND DESCRIPTION	BREACH BOTTOM WIDTH (FT)	MAX BREACH DEPTH (FT)	SECTION SIDESLOPES	BREACH TIME (HR)	WSE - DIST. OF FAILURE (FT)
MIN BREACH SECT; MIN FAIL TIME	0	35	0.5H to IV	0.5	147.3
MAX BREACH SECT; MIN FAIL TIME	100	35	6H to IV	0.5	147.3
MIN BREACH SECT; MAX FAIL TIME	0	35	0.5H to IV	4.0	147.3
MAX BREACH SECT; MAX FAIL TIME	100	35	6H to IV	4.0	1476.3
AVERAGE POSSIBLE CONDITIONS	50	35	2H to IV	2.0	1476.3

* MAXIMUM TIME FOR BREACH SECTION TO REACH ITS FINAL DECONFUSION

OBJECT DAM SAFETY INSPECTION
RIDGEPURRY LAKE DAM
BY WJV DATE 6-13-90 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-13-80 SHEET NO. 21 OF 24

- THE BREACH ASSUMPTIONS LISTED ON SHEET 20 ARE BASED SOMEWHAT ON INFORMATION CONCERNING EARTH DAM BREACHING PROVIDED BY THE COE, BALTIMORE DISTRICT; AND ALSO ON THE PHYSICAL CONSTRAINTS OF THE DAM AND SURROUNDING TERRAIN:

CONSTRAINT	VALUE
HEIGHT OF DAM	$\approx 35\text{FT}$ (FIELD MEASURE)
EMBANKMENT CREST LENGTH:	
MAIN EMBANKMENT PORTION	$\approx 535\text{ FT}$
DIKE PORTION	$\approx 395\text{ FT}$
TOTAL	$\approx 920\text{ FT}$
VALLEY BOTTOM WIDTH	$\approx 100\text{FT}$ (FIG 3)
VALLEY SIDESLOPES ADJACENT TO DAM:	
LEFT WALL	7H:1V (FIG 3)
RIGHT WALL	6H:1V

SUBJECT DAM SAFETY INSPECTION
RED E FERRY LAKE DAM
BY WJV DATE 6-13-90 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-19-90 SHEET NO. 22 OF 24

RELEVANT DATA

- HEC-1 BREACHING ANALYSIS OUTPUT :

UNDER 0.46 PMF CONDITIONS -

* PLAN NUMBER	VARIABLE BREAK BOTTOM WEIGHT	ACTUAL MAX FLOW DURING PART TIME (CFS)	TIME OF FLOW	INTERVALS OF FLOW DURING FLOW		TIME OF FLOW THROUGH DAM (CFS)	ACTUAL MAX FLOW THROUGH DAM (CFS)	TIME OF PEAK FLOW (HR.)	CORRESPONDING TIME OF LATERAL BREACH (HR.)
				INTERVAL HEI & WIDTH (IN)	CORRESPONDING TIME OF FLOW (HR.)				
①	0	9289	42.50	9289	42.50	9289	42.50	42.00	42.00
②	100	46368	42.44	42251	42.50	46368	42.44	42.00	42.00
③	0	4417	46.00	4417	46.00	4417	46.00	42.00	42.00
④	100	7374	43.67	7374	43.67	7374	43.67	42.00	42.00
⑤	50	12615	43.50	12615	43.50	12615	43.50	42.00	42.00

* See Table on Sheet 20

- 11FL-1 BREACH ANALYSIS OUTPUT :

DOWNSTREAM ROUTING DATA

UNDER 0.45 PMF BASE FLOW CONDITIONS -

VARIABLE PLAN BREACH WIDTH (FT)	OUTPUT @ SECTION 4 LOCATED 1140 FT DS FROM DAM			OUTPUT @ SECTION 5 LOCATED 12910 FT DS FROM DAM		
	PEAK FLOW (CFS)	WSEL 1 CORRESPONDING WSEL 2. (FT)	WSEL 3. w/o BREACH (FT)	PEAK FLOW (CFS)	WSEL 2. (FT)	WSEL 3. w/o BREACH (FT)
(1) 0	7972	1179.8	1170.1	+4.7	7906	1149.8
(2) 100	31582	1186.6	1170.1	+16.5	32926	1156.9
(3) 0	4290	1174.9	1170.1	+4.8	4297	1146.9
(4) 100	7294	1179.2	1170.1	+9.1	7295	1149.4
(5) 50	12124	1181.8	1170.1	+11.7	12024	1151.9
<u>VARYABLE PLAN 4 BREACH WIDTH (FT)</u>						
VARIABLE PLAN BREACH WIDTH (FT)	OUTPUT @ SECTION 6 LOCATED 1410 FT DS FROM DAM			OUTPUT @ SECTION 7 LOCATED 15710 FT DS FROM DAM		
	PEAK FLOW (CFS)	WSEL 1 CORRESPONDING WSEL 2. (FT)	WSEL 3. w/o BREACH (FT)	PEAK FLOW (CFS)	WSEL 2. (FT)	WSEL 3. w/o BREACH (FT)
(1) 0	7701	1123.5	1123.3	+5.2	7923	1103.5
(2) 100	32103	1136.2	1122.3	+12.9	30470	1115.8
(3) 0	4297	1125.9	1123.3	+2.6	4292	1105.9
(4) 100	7364	1128.1	1123.3	+4.8	7368	1108.1
(5) 50	11971	1130.7	1123.3	+7.4	12017	1110.7

SUBJECT

DAM SAFETY INSPECTION

RIDGEPURY LAKE DAM

BY WJV

DATE 6-13-90

PROJ. NO. 79-203-727

CHKD. BY DJS

DATE 6-19-80

SHEET NO. 23 OF 24

Engineers • Geologists • Planners
Environmental Specialists

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY WJV DATE 6-12-80 PROJ. NO. 79-203-777
CHKD. BY ZDS DATE 6-19-80 SHEET NO. 24 OF 24

Engineers • Geologists • Planners
Environmental Specialists

DOWNSTREAM POTTING DATA (cont'd)

VALUABLE DATA ITEM	SECTION & SITUATION	OUTPUT PEAK FLOW	16860 FT CORRESPONDING WSEL 2.	SECTION 9 LOCATED 19870 FT. DS FROM DAM			
				WSEL 3. W/O BREACH	WSEL 4. W/O BREACH	WSEL 5. W/O BREACH	WSEL 6. W/O BREACH
PLAN	①	0	7946	1097.4	1093.4	+6.0	7940
	②	100	28461	1105.2	1093.4	+11.8	28225
	③	0	4283	1096.3	1093.4	+2.9	4250
	④	100	7307	1098.9	1093.4	+5.5	7301
	⑤	50	11993	1101.7	1093.4	+8.3	11969

1. SEE TABLE ON SHEET 20;
 2. WATER SURFACE ELEVATIONS CORRESPONDING TO GATE A1A FLOWS (SUMMARY INPUT / OUT PUT SHEETS, SHEETS R, S);
 3. BASE FLOW ELEVATIONS CORRESPONDING TO THE PEAK 0.15 PMF AS INTERPOLATED FROM SHEETS T, K; AND
 4. A ELEV = CORRESPONDING WSEL = WSEL w/o BREAK

AVERAGE DAMAGE ELEVATIONS :
 SECT 4 => HOUSE @ EL 1180 FT
 SECT 5 => HOUSES @ EL 1155 FT
 SECT 6 => HOUSES @ EL 1130 FT
 SECT 7 => HOUSE @ EL 1115 FT
 SECT 8 => HOUSES @ EL 1101 FT
 SECT 9 => HOUSES @ EL 1070 - 10

For the first section, $P_{\text{max}} \approx 15 - 20\text{ ft above sea level}$

SUBJECT DAM SAFETY INSPECTION
RIDGE-VALLEY LAKE DAM
BY DLB DATE 6-18-80 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-19-80 SHEET NO. A OF S

- SUMMARY INPUT/OUTPUT SHEETS -

OVERTOPPING ANALYSIS

DAM SAFETY INSPECTION **INVENTORYING ANALYSIS** **STORM DURATION**

		JOB SPECIFICATION				NCHAN		NCHAN		NCHAN	
		INR		IMIN		METHC		IPLF		TPRT	
		0		0		0		0		0	
NU	NHR	NUIN	TOIN	INR	IMIN	METHC	IPLF	TPRT	NCHAN		
288	0	10	0	0	0	0	0	0	0	0	0
		JOPPER		WWT	Lrupt	TRACE	-				
			5	0	0	0	0				

MULTI-PLAN ANALYSES TO BE PERFORMED
NPLAN = 1 MTHU= 5 LATU= 1

SUB-BEAMS AND BOUNDARY CONDITIONS IN AERODYNAMIC

UNIT	HYDROGRAPH	35 END-OF-PERIOD	ORDINATES.	1. ACT	.77 HOURS.	CP= .52	VUL= 1.00
83.	307.	599.	865.	946.	746.	631.	534.
83.	324.	744.	732.	196.	166.	141.	119.
72.	61.	52.	44.	37.	31.	27.	22.
72.	62.	40.	6.	7.			
74.	64.	40.	6.	7.			

COEFFICIENTS FROM GIVEN SNYDER CP AND TP ARE $T_C = 4.97$ AND $R = 6.01$ INTERVALS.

COEFFICIENTS FROM GIVEN SNYDER CP AND TP ARE $T_C = 4.97$ AND $R = 6.01$ INTERVALS.

SUBJECT

RIDGE BURY LAKE DAM

BY DLB DATE 6-18-80
CHKD. BY ATJ DATE 6-19-80

PROJ. NO. 79-203-727

CHKD. BY ATC DATE 6-19-80

SHEET NO. B OF S

CONSULTANTS, INC.

**Engineers • Geologists • Planners
Environmental Specialists**

	PEAK CFS 3280. 93.	6-HOUR 1724. 49.	24-HOUR 520. 15.	72-HOUR 261. 7.	TOTAL VOLUME 75949. 2126.
CMS INCHES MM	PEAK AC-FT THOUS CFS	6-HOUR 7.29 165.19 855. 1055.	24-HOUR 8.80 223.57 1032. 1273.	72-HOUR 8.62 224.03 1034. 1276.	TOTAL VOLUME 6.82 224.03 1034. 1276.
SIM (623.) (565.) (58.) (518.07			24.51 22.23	2.28	167806.
					0.4 PMS

**HYDROGÉOLOGIE
INFLUENCE
PRESSEUR**

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VILLAGE
CFS	4110.	2155.	651.	326.	9366.
CMS	116.	61.	18.	9.	2658.
INCHES		9.11	1.10	1.02	11.02
MM		231.49	27.946	28.03	280.03
AG-FT		1069.	1240.	1293.	1293.
AG-HOUS		3118.	1592.	1595.	1595.
CHI-M					

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	821.	4311.	130.	652.	187712.
CMS	213.	122.	37.	18.	5316.
INCHES		16.23	22.00	22.05	22.05
NM		462.90	558.91	560.06	560.06
AC-FT		2138.	2581.	2586.	2586.
THOUS CII NM		2637.	3181.	3190.	3190.

प्राचीन भूमिका

ROUTE INFILTRATION HYDROGRAPH THROUGH RESERVOIR							
	1STAQ 101	ICUMP 1	IECON 0	ITAPP 0	JPLT 0	JPRT 0	I NAME 1
QLOSS	CLOSS 0.0	Avg 0.00	INRES 1	ISAME 1	IOPT 0	IPMP 0	LSRH 0
HSIIPS	WSFDS 1	WAG 0	AMSKA 0	X	TSK 0.000	STUNA 0.000	ISPRAT -14.85.

STAGE	1490.30	1491.30	1492.30	1493.30	1494.30	1495.30	1496.30	1496.70
1497.10	1497.20	1497.40	1497.50	1498.30	1499.30			
FLOW	0.00	80.00	260.00	500.00	800.00	1170.00	1610.00	1890.00
2410.00	2660.00	3210.00	3640.00	7310.00	14420.00			2120.00
SURFACE AREA=	0.	54.	67.	76.	76.	84.		
CAPACITY=	0.	460.	772.	1130.	1240.	1524.		
ELEVATION=	1461.	1485.	1490.	1495.	1496.	1500.		

SUBJECT

DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM

BY DLBDATE 6-18-80PROJ. NO. 79-203-727CHKD. BY ZWSDATE 6-19-80SHEET NO. C OF S

CEASL 1492.3	SPUDS 0.0	CREWS 0.0	PILOTS 0.0	LEVEL 0.0	COAL 0.0	CANADA 0.0	ENGL 0.0
DAM DATA							
TOPEL 1496.3	CUDW 0.0	EXWD 0.0	HAWWD 0.0				

PEAK OUTFLOW IS 1313. AT TIME 42.67 HOURS

CFS 1113.	PFAK 944.	6-HOUR 27.	24-HOUR 8.	72-HOUR 4.	TOTAL VOLUME 38628. 1094.	0.4 PMPF
INCHES 17.						
MN	3.11		4.54	4.54		
AC-FT	101.38		115.24	115.24		
THOUS CUB M	468.	517.	522.	522.		
	577.	656.	656.	656.		

PEAK OUTFLOW IS 2034. AT TIME 42.31 HOURS

CFS 2034.	PFAK 1363.	6-HOUR 39.	24-HOUR 11.	72-HOUR 6.	TOTAL VOLUME 55946. 1564.	0.5 PMPF
CMS 58.						
INCHES MM	5.76	6.57	6.57	6.57		
AC-FT	146.35	166.90	166.90	166.90		
THOUS CUB M	676.	771.	771.	771.		
	833.	951.	951.	951.		

PFAK OUTFLOW IS 1673. AT TIME 40.67 HOURS

CFS 7673.	PFAK 3609.	6-HOUR 1021.	24-HOUR 29.	72-HOUR 511.	TOTAL VOLUME 14091. 4165.	PMPF
CMS 217.						
INCHES MM	15.26	17.28	17.28	17.28		
AC-FT	387.61	430.87	430.87	430.87		
THOUS CUB M	1790.	2026.	2026.	2026.		
	2207.	2499.	2499.	2499.		

HYDROGRAPH ROUTING

ROUTE FROM DAM TO SECTION 2.01 470 FT D.S. FROM DAM

STATION	ICOMP	TECON	ITAPE	IPLT	IPRT	INAME	ISTAGE	IAUTO
102	1	0	0	0	0	0	0	0
0.0	0.000	Avg	1mes	1samf	1opt	1pmp		
NSTPS	NSTPN	IAG	AMSKK	X	TSK	SIORA	ISPRAT	LSTR
1	0	0	0.000	0.000	0.000	-1.	0	0

RESERVOIR OUTFLOW HYDROGRAPHS

NORMAL DEPTH CHANNEL ROUTING

ON(1)	ON(2)	ON(3)	ELNVT	FIMAX	RINTH	SFL
.0700	.0350	.0900	1455.5	1500.0	470.	-01900

CROSS SECTION COORDINATES--STA. ELEV. STA. ELEV--FTC

0.00	1500.00	100.00	1480.00	1480.00	400.00	1466.00	350.00	1455.50	350.00	1455.50
166.00	1466.00	550.00	1466.00	400.00	1500.00					

STORAGE	0.00	.40	.81	1.21	1.62	2.27	4.54	8.64	14.58
	31.96	43.55	57.84	74.95	94.87	117.59	143.13	171.48	207.65
OUTFLOW	0.00	326.80	905.51	1599.72	2131.37	3285.44	5155.14	8619.12	14267.54
SLANT	34117.12 1455.50	48860.98 1457.26	68338.82 1481.26	93219.75 1483.61	128336.95 1485.95	160625.19 1488.29	204040.42 1490.63	254537.70 1492.97	312564.54 1495.32
FLUX	0.00	326.80	905.51	1599.72	2131.37	3285.44	5155.14	8619.12	14267.54
	34117.12	48860.98	68338.82	93219.75	128336.95	160625.19	204040.42	254537.70	312564.54

***** * ***** * ***** * ***** * ***** * ***** * ***** * *****

HYDROGRAPH ROUTING

ROUTE FROM SECTION 2.0 TO SECTION 3.01 6380 FT.D.S. FROM DAM

ISTAO	ICOMP	TECON	ITAPP	JPLT	JPRF	IAME	ISAGE	IATR0
203	1	0	0	0	0	1	0	0
qLOSS	CLOSS	AVG	IRFS	ISMF	IUPT	IPMP	ISRH	ISRH
0.0	0.000	0.00	1	1	0	0	0	0
MSPS	NSTDL	LAG	AMSMX	X	TSK	STMR	ISPRAT	ISPRAT
1	0	0	0.000	0.000	0.000	-1.	0	0

NORMAL DEPTH CHANNEL ROUTING

ON(1)	ON(2)	ON(3)	ELNVT	FIMAX	RINTH	SFL
0.00	1300.00	50.00	1320.00	230.00	1306.00	240.00
270.00	1306.00	310.00	1320.00	400.00	1340.00	

0.00	1300.00	50.00	1320.00	230.00	1306.00	240.00	1300.00	260.00	1300.00
270.00	1306.00	310.00	1320.00	400.00	1340.00				
STORAGE	0.00	6.71	15.43	26.24	43.81	70.93	107.29	151.21	208.57
	347.00	425.47	508.15	595.05	686.15	781.46	880.98	984.71	1092.65
OUTFLOW	0.00	565.48	1904.93	4089.40	7641.63	12459.80	18447.75	26902.91	36448.93
	63416.45	80754.09	100291.17	122013.83	145922.73	172021.95	200346.07	230898.09	263708.79

Engineers • Geologists • Planners
Environmental Specialists

SUBJECT

DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM

BY DLBDATE 6-19-80PROJ. NO. 79-203-727CHKD. BY DJSDATE 6-19-80SHEET NO. F OF S

GAI CONSULTANTS, INC.
Engineers • Geologists • Planners
Environmental Specialists

STAGE	1.000.00	1302.11	1304.21	1306.32	1308.42	1310.53	1312.63	1314.74	1316.84
	1321.05	1323.16	1325.26	1327.37	1329.47	1331.58	1333.68	1335.74	1337.83
FLINN	0.00	565.48	1909.93	4089.40	7641.61	12489.90	18447.74	26902.91	36828.93
	63416.45	60754.09	100291.17	122013.83	145922.73	172022.95	200346.07	230898.09	263708.79

HYDROGRAPH ROUTING
ROUTE FROM SECTION 3.0 TO SECTION 4.0 11,460 FT U.S. SPAN DAM

ISTAO	ICOMP	IECUM	ITAPE	JPLT	JPT	IAME	IStage	IAUTO	0
304	1	0	0	0	0	0	1	0	0
0.0	CLOSS	Avg	ROUTING DATA	IRES ISAMF	IUPU	IPMP	ISTR		
0.000	0.000	0.000		1	0	0	0		
NSTPS	NSTDL	LAG	AMSKK	X	TK	STORA	ISPRAT		
1	0	0	0.000	0.000	0.000	-1.	0		

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	FLNVT	FLMAX	HNTNH	SEL
.0900	.0350	.0000	1165.0	1200.0	5080.	.01700

CRUSS SECTION COORDINATES--STA.ELEV.STA.ELEV--ETC
0.00 1200.00 70.00 1180.00 185.00 1178.50 185.00 1165.00 210.00 1165.00

STORAGE	0.00	5.37	10.74	16.11	21.48	26.85	32.27	37.59	58.13
	195.49	279.90	374.59	479.57	594.84	720.40	856.26	1002.39	1158.82
OUTFLW	0.00	350.49	1076.60	1877.92	2842.74	3886.72	4988.51	6134.06	7747.37
	17049.64	24559.86	33986.11	45407.30	58915.50	74608.40	92586.09	112949.32	135798.73
STAGE	1165.00	1166.44	1168.68	1170.53	1172.37	1174.21	1176.05	1177.89	1179.74
	1183.42	1185.26	1187.11	1189.95	1190.79	1191.63	1194.47	1196.32	1198.16
FLINN	0.00	350.49	1076.60	1877.92	2842.74	3886.72	4988.51	6134.06	7747.37
	17049.64	24559.86	33986.11	45407.30	58915.50	74608.40	92586.09	112949.32	135798.73

SUBJECT

DAM SAFETY INSPECTION

RIDGEBURY LAKE DAM

BY D

DATE 6-18-80

PROJ. NO. 79-203-727

CHKD. BY

DATE - 6-19-81

SHEET NO. F OF S

CONSULTANTS, IN

**Engineers • Geologists • Planners
Environmental Specialists**

卷之三

HYDROGRAPHIC BOUNDING

SHAW DAW

LSTAO	ICONP	IECUN	ITAPE	IPRLI	IPRT	I NAME	I STAGE	I AUTO
405	1	0	0	0	0	0	0	0
		ROUTING DATA						
4.0SS	CLOSS	Avg	IRES ISMF	IOPF	IPMP			LSTR
0.0	0, DDD	0.0	1	0	0			0
	NSTPS	NSIDL	LAG AMSKK	AMSKK	AMSKK	TSK	STUR	ISPRAT

NORMAL DEPTH CHANNEL ROUTING

DN(1)	UN(2)	ON(3)	FLN\1	FLMAX	HJ,NTH	SEL
.0600	.0350	.0800	1140.0	1180.0	1450.	.01700

	350.00	1150.00	900.00	1160.00	1000.00	1180.00	
STORAGE	0.00	2.25	4.79	7.63	10.77	14.54	26.34
	183.00	240.54	299.55	360.04	422.01	485.45	550.36
OUTFLW	0.00	571.45	1820.95	3619.62	5937.66	8926.85	13537.19
	70385.88	9892.84	13454.56	173532.72	217761.64	265422.04	317726.40
STAGE	1140.00	1142.11	1144.21	1146.32	1148.42	1150.53	1152.61
	1161.05	1163.16	1165.26	1167.37	1169.47	1171.58	1173.68
FLOW	0.00	571.45	1820.95	3619.62	5937.66	8926.85	13537.19
	70385.88	9892.84	13454.56	173532.72	217761.64	265422.04	317726.40

HYDROGRAPHIC PRINTING

SUBJECT DAM SAFETY INSPECTION
RIDGEBOURY LAKE DAM
BY DLB DATE 6-18-80 PROJ. NO. 79-203-727
CHKD. BY 203 DATE 6-19-80 SHEET NO. I OF S

***** HYDROGRAPH ROUTING *****

ROUTE FROM SECTION 6.0 TO SECTION 9.0 AT 19.870 FT U.S. FRUN DAM

	1STA0	ICUMP	IECON	ITAPP	JPLT	JPRT	INAE	ISAGE	IAUTU
	809	1	Q	0	0	0	0	0	0
			MOUNTING DATA						
010SS	CHUSS	Avg	IRTS	ISAME	10PT	IPMP			LSTN
0.0	0.000	0.00	1	1	0	0			0
	NATPS	MSFL	LAG	AMSMM	X	TSK	STHIA	ISPRAT	
	1	0	0	0.000	0.000	0.000	-1.		0

NORMAL DEPTH CHANNEL ROUTING

ON11)	DN12)	ON13)	E1.WV1	F1.MX1	R1WTH	SEL
0.000	.0350	.0000	1060.0	1100.0	3010.	.01300

CROSS SECTION COORDINATES--STA.ELEV STA.ELEV--EFC
0.00 1100.00 250.00 1080.00 900.00 1010.00 910.00 1020.00 960.00 1060.00
370.00 1070.00 1800.00 1080.00 1950.00 1100.00

STORAGE	0.00	7.58	15.77	24.58	33.99	45.42	59.60	72.11	87.94
	714.68	946.29	1184.02	1427.88	1677.87	1933.98	2196.22	2464.58	2739.06
OUTFLOW	0.00	834.03	2644.15	5209.08	8456.81	12522.35	19077.29	30226.51	47854.63
	111656.54	162179.86	221549.69	289347.34	365285.53	449160.10	540866.61	640178.24	741141.41
STAGE	1060.00	1062.11	1064.21	1066.32	1068.42	1070.53	1072.63	1074.74	1076.84
	1081.05	1083.16	1085.26	1087.37	1089.47	1091.58	1093.64	1095.79	1097.89
FLDM	0.00	834.03	2644.15	5209.08	8456.81	12522.35	19077.29	30226.51	47854.63
	111656.54	162179.86	221549.69	289347.34	365285.53	449160.70	540866.61	640178.24	741141.41

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY DLB DATE 6-18-80 PROJ. NO. 79-203-727
CHKD. BY RJS DATE 6-19-80 SHEET NO. J OF S

USG CONSULTANTS, INC.
Engineers • Geologists • Planners
Environmental Specialists

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	ELEVATION STORAGE OUTFLOW	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM	TIME OF FAILING HOURS
RIDGEBURY LAKE DAM; OVERTOPPING OCCURS	RATIO OF PMF W.S.F.EV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS
@ ≈ 0.45 PMF	.20 .30 .40 .50 1.00	1492.12 1494.08 1495.63 1496.83 1498.35	0.00 0.00 0.00 .53 2.05	919. 1061. 1177. 1271. 1393.	229. 734. 1313. 2034. 7673.
SECTION 2 @ ≈ 470 FEET D.S. FROM DAM	RATIO OF PMF W.S.F.EV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS
SECTION 3 @ ≈ 6380 FEET D.S. FROM DAM	RATIO OF PMF W.S.F.EV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS
SECTION 4 @ $\approx 11,460$ FEET D.S. FROM DAM	RATIO OF PMF W.S.F.EV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS
SECTION 5 @ $\approx 12,910$ FEET D.S. FROM DAM	RATIO OF PMF W.S.F.EV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS

SUBJECT

DAM SAFETY INSPECTION

BY DLBDATE 6-18-80PROJ. NO. 79-203-727CHKD. BY RTSDATE 6-19-80SHEET NO. K OF S

CONSULTANTS, INC.

Engineers • Geologists • Planners
Environmental Specialists

PLAN 1		STATION	506	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT	TIME HOURS
SECTION G				.20	228.	1120.6
@ ≈ 14,440 FEET				.30	122.	1122.0
D.S. FROM DAM				.40	130.	1122.0
				.50	2030.	1122.8
				1.00	7434.	1123.7
						42.50
						40.63
						1128.2

PLAN 1		STATION	607	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT	TIME HOURS
SECTION 7				.20	228.	1100.6
@ ≈ 15,770 FEET				.30	732.	1102.0
D.S. FROM DAM				.40	1310.	1102.8
				.50	2031.	1103.7
				1.00	7434.	1108.2
						42.50
						41.00

PLAN 1		STATION	708	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT	TIME HOURS
SECTION 8				.20	228.	1090.6
@ ≈ 16,860 FEET				.30	732.	1092.0
D.S. FROM DAM				.40	1309.	1092.9
				.50	2032.	1093.9
				1.00	7457.	1099.0
						42.50
						41.00

PLAN 1		STATION	809	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT	TIME HOURS
SECTION 9				.20	228.	1060.6
@ ≈ 19,870 FEET				.30	730.	1061.8
D.S. FROM DAM				.40	1309.	1062.7
				.50	2024.	1063.5
				1.00	7464.	1067.0
						42.50
						41.00

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY DLB DATE 6-18-80 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-19-80 SHEET NO. L OF S

BREACHING ANALYSIS (INPUT DATA IS SAME AS THAT FOR
OVERTOPPING ANALYSIS WITH THE
ADDITION OF THE BREACH DATA GIVEN HERE)

DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM & BREACHING ANALYSIS
10-MINUTE TIME STEP AND 4H-HOUR STORM DURATION

NO	NHN	MAIN	IDAY	IHR	IMIN	MEHR	IPLT	IPRT	INSTAN
248	0	10	0	0	0	0	0	0	0

JOPER S NWT LROPT TRACE

MULTI-PLAN ANALYSES TO BE PERFORMED
NPLANS= 5 MRATION= 1 RATIO= 1

HYDROGRAPH ROUTING

TOPEL	CODD	EXPD	DAMWID
1496.1	0.0	0.0	0.

ARMID	Z	ELWM	TFAIL	WSEL	FFAIL
0.	.50	1461.30		.50 1485.00	1496.30

STATION 101. PLAN 1. RATIO 1

BEGIN DAM FAILURE AT 42.00 HOURS

PEAK DUFFLIN 15 9789. AT TIME: 42.50 HOURS

ARMID	Z	ELWM	TFAIL	WSEL	FFAIL
100.	6.00	1461.30		.50 1485.00	1496.30

STATION 101. PLAN 2. RATIO 1

BEGIN DAM FAILURE AT 42.00 HOURS

PEAK DUFFLIN 15 46368. AT TIME: 42.44 HOURS

PLAN ①

PLAN ②

SUBJECT

DAM SAFETY INSPECTION
RIDGEBOURG LAKE DAM

BY DLB

DATE 6-18-80

PROJ. NO. 79-203-727

CHKD. BY DJS

DATE 6-19-80

SHEET NO. M OF S

Engineers • Geologists • Planners
Environmental Specialists

PLAN
③

BHWD ID 2.00 1461.30 4.00 1495.00 1496.30
0.50 1461.30 4.00 1495.00 1496.30

STATION 101. PLAN 3. RATIO 1

BEGIN DAM FAILURE AT 42.00 HOURS

PEAK OUTFLOW IS 4417. AT TIME 46.00 HOURS

PLAN
④

BHWD ID 2.00 1461.30 4.00 1495.00 1496.30
1.00 6.00 1461.30 4.00 1495.00 1496.30

STATION 101. PLAN 4. RATIO 1

BEGIN DAM FAILURE AT 42.00 HOURS

PEAK OUTFLOW IS 7374. AT TIME 43.67 HOURS

PLAN
⑤

BHWD ID 2.00 1461.30 4.00 1495.00 1496.30
5.00 2.00 1461.30 2.00 1485.00 1496.30

STATION 101. PLAN 5. RATIO 1

BEGIN DAM FAILURE AT 42.00 HOURS

PEAK OUTFLOW IS 12615. AT TIME 43.50 HOURS

THE DAM BREACH HYDROGRAPH WAS DEVELOPED USING A TIME INTERVAL OF .010 HOURS DURING BREACH FORMATION.
 DOWNTHEWALL CALCULATIONS WILL USE A TIME INTERVAL OF .167 HOURS.
 THIS TABLE COMPARES THE HYDROGRAPH FOR DOWNTHEWALL CALCULATIONS WITH THE COMPUTED BREACH HYDROGRAPH.
 INTERMEDIATE POINTS ARE INTERPOLATED FROM END-OF-PERIOD VALUES.

TIME FROM INTERPOLATED BREACH HYDROGRAPH (HOURS)	TIME BEGINNING OF BREACH (HOURS)	COMPUTED BREACH HYDROGRAPH (CFS)	BREACH HYDROGRAPH (CFS)	ERROR (CFS)	ACCUMULATED ERROR (AC-FT)	ACCUMULATED ERROR (AC-FT)
42.000	0.000	1613.	1613.	0.	0.	0.
42.010	.010	2535.	1799.	-736.	-736.	-1.
42.020	.020	3457.	2148.	-1309.	-2045.	-2.
42.029	.029	4319.	2616.	-1763.	-3808.	-3.
42.039	.039	5301.	3198.	-2114.	-5922.	-5.
42.049	.049	6222.	3857.	-2367.	-8288.	-7.
42.059	.059	7146.	4616.	-2530.	-10618.	-9.
42.069	.069	8068.	5358.	-2610.	-13428.	-11.
42.078	.078	8990.	6319.	-2611.	-16039.	-13.
42.088	.088	9912.	7374.	-2539.	-18577.	-15.
42.098	.098	10835.	8416.	-2398.	-20976.	-17.
42.108	.108	11751.	9561.	-2196.	-23177.	-19.
42.118	.118	12679.	10743.	-1937.	-25108.	-20.
42.127	.127	13601.	11915.	-1626.	-26716.	-22.
42.137	.137	14524.	13252.	-1271.	-28006.	-23.
42.147	.147	15446.	14568.	-878.	-28884.	-25.
42.157	.157	16368.	15915.	-452.	-29337.	-24.
42.167	.167	17290.	17290.	-0.	-29337.	-24.
42.176	.176	18600.	18695.	-94.	-29247.	-24.
42.186	.186	19911.	20113.	-202.	-29040.	-24.
42.196	.196	21221.	21238.	-317.	-28733.	-23.
42.206	.206	22531.	22263.	-432.	-28291.	-23.
42.216	.216	23841.	24384.	-543.	-27748.	-22.
42.225	.225	25152.	25608.	-657.	-27091.	-22.
42.235	.235	26462.	27215.	-753.	-26339.	-21.
42.245	.245	27772.	28597.	-825.	-25544.	-21.
42.255	.255	29083.	29559.	-876.	-24637.	-20.
42.265	.265	30393.	31296.	-903.	-23734.	-19.
42.275	.275	31703.	32594.	-891.	-19887.	-16.
42.284	.284	33013.	33058.	-844.	-21999.	-14.
42.294	.294	34324.	35085.	-761.	-21288.	-12.
42.304	.304	35634.	36260.	-626.	-20617.	-11.
42.314	.314	36944.	37412.	-468.	-20144.	-10.
42.324	.324	38255.	38511.	-257.	-19887.	-10.
42.333	.333	39565.	39505.	-0.	-19887.	-10.
42.343	.343	39723.	40571.	-848.	-19040.	-15.
42.353	.353	39881.	41506.	-1625.	-17415.	-14.
42.363	.363	40039.	42368.	-239.	-15085.	-12.
42.373	.373	40197.	43156.	-2959.	-12126.	-10.
42.382	.382	40355.	43068.	-3513.	-8615.	-7.
42.392	.392	40513.	44502.	-3989.	-4627.	-4.
42.402	.402	40671.	45059.	-4388.	-235.	-0.
42.412	.412	40829.	45537.	-4708.	-4471.	-4.
42.422	.422	40987.	45921.	-4950.	-9427.	-4.
42.431	.431	41145.	46241.	-5097.	-14519.	-12.
42.441	.441	41304.	46368.	-5065.	-19587.	-10.
42.451	.451	41461.	46277.	-4831.	-24415.	-9.
42.461	.461	41619.	45996.	-4378.	-28743.	-7.
42.471	.471	41777.	45655.	-4684.	-12441.	-6.
42.480	.480	41935.	44619.	-2744.	-15227.	-5.
42.490	.490	42093.	47357.	-7523.	-36748.	-4.
42.500	.500	42251.	47751.	-61.	-47141.	-4.

SUBJECT

DAM SAFETY INSPECTION

RIDGEBURY LAKE DAM

BY DLB DATE 6-18-80

PROJ. NO. 79-203-727

CHKD. BY RJS DATE 6-19-80

SHEET NO. N OF S

CONSULTANTS, INC.
Engineers • Geologists • Planners
Environmental SpecialistsPLAN
(2)

SUBJECT LAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY DCB DATE 6-18-80 PROJ. NO. 79-203-727
CHKD. BY DJS DATE 6-19-80 SHEET NO. 0 OF 5

CONSULTANTS, INC.

Engineers • Geologists • Planners
Environmental Specialists

SUBJECT

DAM SAFETY INSPECTION

RIDGEBURY LAKE DAM

BY DLBDATE 6-18-80PROJ. NO. 79-203-727CHKD. BY DJSDATE 6-19-80SHEET NO. P OF S

THE DAM BREACH HYDROGRAPH WAS DEVELOPED USING A TIME INTERVAL OF .042 HOURS DURING BREACH FORMATION.
 DOWNSTREAM CALCULATIONS WILL USE A TIME INTERVAL OF .167 HOURS.
 THIS TABLE COMPARES THE HYDROGRAPH FOR DOWNSTREAM CALCULATIONS WITH THE COMPUTED BREACH HYDROGRAPH.
 INTERMEDIATE FLUWS ARE INTERPOLATED FROM END-UP -PERIOD VALUES.

TIME FROM BEGINNING OF BREACH (HOURS)	TIME FROM INTERPOLATED BREACH HYDROGRAPH (CFS)	COMPUTED BREACH HYDROGRAPH (CFS)		ERRIN (CFS)	ACCUMULATED ERRIN (CFS)	ACCUMULATED ERROR (AC-FT)
		BREACH	HYDROGRAPH			
42.000	0.000	1613.	1613.	0.	0.	0.
42.042	.042	1825.	1727.	98.	98.	0.
42.083	.083	2031.	1923.	114.	212.	1.
42.125	.125	2229.	2172.	77.	289.	1.
42.167	.167	2461.	2461.	-0.	289.	1.
42.208	.208	2829.	2788.	41.	330.	1.
42.250	.250	3197.	3147.	50.	380.	1.
42.292	.292	3564.	3530.	34.	415.	1.
42.333	.333	3932.	3932.	0.	415.	1.
42.375	.375	4358.	4348.	10.	425.	1.
42.417	.417	4785.	4774.	11.	436.	2.
42.458	.458	5212.	5205.	6.	441.	2.
42.500	.500	5638.	5638.	-0.	443.	2.
42.542	.542	6068.	6069.	-1.	442.	2.
42.583	.583	6498.	6506.	-7.	434.	1.
42.625	.625	6925.	6937.	-9.	425.	1.
42.667	.667	7358.	7358.	0.	425.	1.
42.708	.708	7752.	7764.	-13.	412.	1.
42.750	.750	8145.	8170.	-25.	387.	1.
42.792	.792	8559.	8562.	-23.	365.	1.
42.833	.833	8933.	8933.	0.	365.	1.
42.875	.875	9212.	9298.	-26.	339.	1.
42.917	.917	9611.	9644.	-33.	306.	1.
42.958	.958	9951.	9971.	-20.	286.	1.
43.000	1.000	10220.	10290.	0.	286.	1.
43.042	1.042	10584.	10583.	1.	287.	1.
43.083	1.083	10877.	10893.	-16.	271.	1.
43.125	1.125	11170.	11173.	-3.	268.	1.
43.167	1.167	11464.	11464.	0.	268.	1.
43.208	1.208	11672.	11721.	-49.	219.	1.
43.250	1.250	11880.	11946.	-66.	153.	1.
43.292	1.292	12088.	12137.	-49.	104.	1.
43.333	1.333	12296.	12296.	0.	104.	0.
43.375	1.375	12423.	12423.	-47.	57.	0.
43.417	1.417	12456.	12519.	-63.	76.	1.
43.458	1.458	12455.	12504.	-48.	55.	1.
43.500	1.500	12615.	12615.	0.	55.	0.
43.542	1.542	12750.	12580.	-121.	-176.	-1.
43.583	1.583	12859.	12507.	-146.	-340.	-1.
43.625	1.625	12302.	12467.	-126.	-960.	-1.
43.667	1.667	12146.	12272.	-126.	-466.	-2.
43.708	1.708	11990.	11990.	0.	-617.	-2.
43.750	1.750	11655.	11616.	-46.	-617.	-2.
43.792	1.792	10940.	11146.	0.	-55.	-0.
43.833	1.833	10416.	10573.	-121.	-423.	-1.
43.875	1.875	9891.	9891.	0.	-490.	-1.
43.917	1.917	8833.	9092.	-209.	-1169.	-4.
43.958	1.958	7094.	7164.	-290.	-1179.	-5.
44.000	2.000	6865.	7094.	-229.	-11708.	-6.
		5857.	5857.	0.	-11708.	-6.

PLAN
⑤

SUBJECT DAM SAFETY INSPECTION
RIDGEBURG LAKE DAM

BY DLB DATE 6-18-80 PROJ. NO. 79-203-727

CHKD. BY DJS DATE 6-19-80 SHEET NO. Q OF S

AD-A087 791

GAI CONSULTANTS INC MONROEVILLE PA
NATIONAL DAM INSPECTION PROGRAM, RIDGEBURY LAKE DAM, (NDI I.D. --ETC(U)
JUL 80 B M MICHALCIN

F/G 13/13
DACPW31-80-C-0016

NL

UNCLASSIFIED

2 OF 2
AIA
Q-1-M

END
DATE FILMED
19-80
DTIC

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY DLB DATE 6-18-80 PROJ. NO. 79-203-727
CHKD. BY DBS DATE 6-19-80 SHEET NO. R OF S

SUMMARY OF DAM SAFETY ANALYSIS

RIDGEBURY LAKE DAM	ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
	STORAGE	1485.00	1490.30	1496.30
	OUTFLOW	.460.	.793.	1230.
	0.	0.	0.	1610.

<u>PLAN</u>	RATIO OF PWF	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	DURATION	TIME OF	TIME OF
		RESERVOIR U.S.ELEV	DEPTH OVER DAM	STORAGE AC-FT	OUTFLOW CFS	OVER TOP	MAX OUTFLOW HOURS	FAILURE HOURS
1	.46	1496.35	.05	1233.	9289.	.39	42.50	42.00
2	.46	1496.31	.01	1230.	46368.	.20	42.44	42.00
3	.46	1496.41	.11	1238.	4417.	.92	46.00	42.00
4	.46	1496.33	.03	1232.	7374.	.33	41.67	42.00
5	.46	1496.33	.03	1232.	12615.	.33	41.50	42.00

PLAN

STATION 102

SECTION 2	<u>PLAN</u>	RATIO	MAXIMUM	MAXIMUM	TIME
			FLOW.CFS	STAGE.FT	HOURS
	1	.46	8794.	1472.0	42.50
	2	.46	42651.	1480.3	42.50
	3	.46	4398.	1468.6	46.00
	4	.46	7375.	1471.1	43.67
	5	.46	12602.	1473.5	43.50

STATION 203

SECTION 3	<u>PLAN</u>	RATIO	MAXIMUM	MAXIMUM	TIME
			FLOW.CFS	STAGE.FT	HOURS
	1	.46	8890.	1309.0	42.67
	2	.46	42013.	1317.8	42.50
	3	.46	4316.	1306.5	46.00
	4	.46	7357.	1308.2	43.83
	5	.46	12484.	1310.5	43.50

STATION 304

SECTION 4	<u>PLAN</u>	RATIO	MAXIMUM	MAXIMUM	TIME
			FLOW.CFS	STAGE.FT	HOURS
	1	.46	1975.	1179.8	42.83
	2	.46	31587.	1186.6	42.67
	3	.46	4290.	1174.9	46.17
	4	.46	7294.	1179.2	43.83
	5	.46	12124.	1181.8	43.67

STATION 405

SECTION 5	<u>PLAN</u>	RATIO	MAXIMUM	MAXIMUM	TIME
			FLOW.CFS	STAGE.FT	HOURS
	1	.46	7906.	1149.8	42.83
	2	.46	32926.	1156.9	42.67
	3	.46	4297.	1146.9	46.17
	4	.46	7295.	1149.4	44.00
	5	.46	12024.	1151.9	43.67

SUBJECT DAM SAFETY INSPECTION
RIDGEBURY LAKE DAM
BY DLB DATE 6-18-80 PROJ. NO. 79-203-727
CHKO. BY ZJS DATE 6-19-80 SHEET NO. 5 OF 5

STATION 506				
<u>PLAN</u>	RATIO	MAXIMUM FLOW.CFS	MAXIMUM STAGE.FT	TIME HOURS
SECTION 6	1	.46	7901.	1126.5 42.83
	2	.46	32101.	1136.2 42.67
	3	.46	4297.	1125.9 46.17
	4	.46	7304.	1128.1 44.00
	5	.46	11997.	1130.7 43.83

STATION 607				
<u>PLAN</u>	RATIO	MAXIMUM FLOW.CFS	MAXIMUM STAGE.FT	TIME HOURS
SECTION 7	1	.46	7921.	1100.5 42.83
	2	.46	30470.	1115.8 42.67
	3	.46	4297.	1105.9 46.17
	4	.46	7304.	1108.1 44.00
	5	.46	12017.	1110.7 43.83

STATION 708				
<u>PLAN</u>	RATIO	MAXIMUM FLOW.CFS	MAXIMUM STAGE.FT	TIME HOURS
SECTION 8	1	.46	7946.	1099.4 42.83
	2	.46	28961.	1105.2 42.83
	3	.46	4293.	1096.3 46.17
	4	.46	7307.	1098.9 44.00
	5	.46	11993.	1101.7 43.83

STATION 809				
<u>PLAN</u>	RATIO	MAXIMUM FLOW.CFS	MAXIMUM STAGE.FT	TIME HOURS
SECTION 9	1	.46	7940.	1068.1 42.83
	2	.46	28225.	1074.4 42.83
	3	.46	4250.	1065.5 46.17
	4	.46	7301.	1067.7 44.00
	5	.46	11968.	1070.2 43.83

LIST OF REFERENCES

1. "Recommended Guidelines for Safety Inspection of Dams," prepared by Department of the Army, Office of the Chief of Engineers, Washington, D. C. (Appendix D).
2. "Unit Hydrograph Concepts and Calculations," by Corps of Engineers, Baltimore District (L-519).
3. "Seasonal Variation of Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Duration of 6, 12, 24, and 48 Hours," Hydrometeorological Report No. 33, prepared by J. T. Riedel, J. F. Appleby and R. W. Schloemer, Hydrologic Service Division Hydrometeorological Section, U. S. Department of the Army, Corps of Engineers, Washington, D. C., April 1956.
4. Design of Small Dams, U. S. Department of the Interior, Bureau of Reclamation, Washington, D. C., 1973.
5. Handbook of Hydraulic, H. W. King and E. F. Brater, McGraw-Hill, Inc., New York, 1963.
6. Standard Handbook for Civil Engineers, F. S. Merritt, McGraw-Hill, Inc., New York, 1968.
7. Open-Channel Hydraulics, V. T. Chow, McGraw-Hill, Inc., New York, 1959.
8. Weir Experiments, Coefficients, and Formulas, R. E. Horton, Water Supply and Irrigation Paper No. 200, Department of the Interior, United States Geological Survey, Washington, D. C., 1907.
9. "Probable Maximum Precipitation Susquehanna River Drainage Above Harrisburg, Pennsylvania," Hydrometeorological Report 40, prepared by H. V. Goodyear and J. T. Riedel, Hydrometeorological Branch Office of Hydrology, U. S. Weather Bureau, U. S. Department of Commerce, Washington, D. C., May 1965.
10. Flood Hydrograph Package (HEC-1) Dam Safety Version, Hydrologic Engineering Center, U. S. Army, Corps of Engineers, Davis, California, July 1978.
11. "Simulation of Flow Through Broad Crest Navigation Dams with Radial Gates," R. W. Schmitt, U. S. Army, Corps of Engineers, Pittsburgh District.

12. "Hydraulics of Bridge Waterways," BPR, 1970, Discharge Coefficient Based on Criteria for Embankment Shaped Weirs, Figure 24, page 46.
13. Applied Hydraulics in Engineering, Morris, Henry M. and Wiggert, James N., Virginia Polytechnic Institute and State University, 2nd Edition, The Ronald Press Company, New York, 1972.
14. Standard Mathematical Tables, 21st Edition, The Chemical Rubber Company, 1973, page 15.
15. Engineering Field Manual, U. S. Department of Agriculture, Soil Conservation Service, 2nd Edition, Washington, D. C. 1969.
16. Water Resources Engineering, R. K. Linsley and J. B. Franzini, McGraw-Hill, Inc., New York, 1972.
17. Engineering for Dams, Volume 2, W. P. Creager, J. D. Justin, J. Hinds, John Wiley & Sons, Inc., New York, 1964.

APPENDIX E

FIGURES

LIST OF FIGURES

<u>Figure</u>	<u>Description/Title</u>
1	Regional Vicinity and Watershed Boundary Map
2	Site Plan
3	Plan of Dam
4	Profile of Dam
5	Cross Sections
6	Outlet Structure
7	Stilling Basin, Pipe Base and Cutoff Collar

2

NOTE
CONTOURS OBTAINED FROM
U.S. DEPT. OF AGRICULTURE
SOIL CONSERVATION SERVICE.

SITE PLAN
PROPOSED DAM
AND 50 ACRE LAKE
TIMBERSTAND INC NO 3
BRODGEBOURNE TOWNSHIP,
BRADFORD COUNTY, PA

SCALE 1: 200'

D.C. MEYER DA 3356
SAVILLE, PA AUG 14 1968

SHEET 1 OF 6

GAI
CONSULTANTS, INC.
FIGURE 2

FIGURE 3

PROFILE
PROPOSED DAM
TIMBERSTAND, INC. NO. 8
RIDGEBURY TOWNSHIP
BRADFORD COUNTY, PA
SCALE VERTICAL 1:10
HORIZONTAL 1:400
D.C. MEYER
SAVRE, PA
S.D. O'SULLIVAN
AUG. 19, 1968

SHEET 3 OF 6

gai
CONSULTANTS, INC.
FIGURE 4

CROSS SECTIONS
PROPOSED DAM
 TIMBERSTAND INC. NO. 8
 MIDDLEBURY TOWNSHIP,
 BRADFORD COUNTY, PA.
 SCALE 1"-50'
 G.C. MEYER
 ENGINEER
 R. COLEMAN
 ASSISTANT
 SHEET 4 OF 6

GCI CONSULTANTS, INC.
FIGURE 5

CONSULTANTS, INC.

FIGURE 6

FIGURE 7

APPENDIX F
GEOLOGY

Geology.

Ridgebury Lake Dam is located in Ridgebury Township, Bradford County, Pennsylvania, within the Low Plateaus section of the Appalachian Plateaus Physiographic Province of northeastern Pennsylvania. In this area, the Low Plateaus section is characterized by flat lying sedimentary rock strata of upper Devonian age, which is maturely dissected, glaciated and of moderate relief. Overlying this strata is a variable thickness of glacial drift deposited during the Illinoian and Wisconsinian Glacial Epochs. The general direction of ice movement in this area, was about S30°W.

From the "Soils and Foundation Report on Site of Proposed Timberstand Dam No. 3," information from 22 test pits and four borings indicate that "in general, the till sheet which underlies the area consists of a very dense mixture of gravel, sand and silt with an average of less than 10 percent clay. The till sheet materials classify as sandy silt to sandy clay with area of lean clay interbedded."

The sedimentary rock sequence underlying the glacial material in the area of the dam and reservoir are members of the Susquehanna Group of Upper Devonian age. These rocks are characterized by "red to brownish shales and sandstones; includes gray and greenish sandstone tongues."

1. Larsen, H. T., Soils and Foundation Report on Site of Proposed Timberstand Dam No. 3 Ridgebury Township, Bradford County, Pennsylvania, 1968.
2. Lohman, S. W., Groundwater in Northeastern Pennsylvania, Pennsylvania Geological Survey, Fourth Series, Bulletin W4, 1937.

LEGEND

DEVONIAN

Dso

Oswayo Formation

Brownish and greenish gray, fine and medium grained sandstones with some shales and scattered calcareous lenses. Includes red shales which become more numerous eastward. Relation to type Oswayo not proved.

Dck

Catskill Formation

Chiefly red to brownish shales and sandstones, includes gray and greenish sandstone tongues named Elk Mountain, Honendale, Shokola, and Delaware River in the east.

Dm

Marine beds

Gray to olive brown shales, greenwackes, and sandstones; contains "Chemung" beds and "Portage" beds including Burdett, Harrell, and Trimmers Rock; Tully Limestone at base.

Ds

Susquehanna Group

barbed line is "Chemung-Catskill" contact of Second Pennsylvania Survey County reports; barbs on "Chemung" side of line.

Note:

The bedrock surface is covered with Pleistocene age Wisconsin and Illinoian till composed of sands, gravels and silty clays of variable thicknesses.

GEOLOGY MAP

REFERENCE:

GEOLOGIC MAP OF PENNSYLVANIA PREPARED
BY COMMONWEALTH OF PENNA. DEPT. OF INTERNAL
AFFAIRS, DATED 1960, SCALE 1" = 4 MILES

