ARBORI BINARI ECHILIBRAŢI

·----

Arbori Binari de Căutare Construiți Aleator

Teorema 13.6. Înălţimea medie a unui arbore binar de căutare construit aleator cu n chei distincte este O(lg n).

Red Black Trees

• Reguli:

- o Fiecare nod e fie roşu, fie negru
- o Rădăcina e mereu neagră
- Nu putem avea două noduri adiacente roşii
- Orice drum de la un nod la un descendent NULL are același număr de noduri negre

Red Black Trees

- o Red Black Trees (nu veți avea la examen)
 - MIT Video
 - MIT Lecture Notes

Red Black Trees

Red Black Trees AVL

AVL

- Construcția AVL-urilor:
 - o pentru fiecare nod, diferența dintre înălțimile fiilor drept și stâng trebuie să fie maxim 1

AVL

- Factorul de echilibru al unui nod:
 - BF(X) = h(subarbore_drept(X)) h(subarbore_stang(X))

AVL - Reechilibrare

- Rotații:
- 1) Rotație stânga-stânga
 - o când un nod este inserat în stânga subarborelui stâng
 - o se realizează o rotație la dreapta
- 2) Rotație dreapta-dreapta
 - o când un nod este inserat în dreapta subarborelui drept
 - o se realizează o rotație la stânga
- 3) Rotație dreapta-stânga
 - o când un nod este inserat la dreapta subarborelui stâng
 - o se realizează două rotații
- 4) Rotație stânga-dreapta
 - o când un nod este inserat la stânga subarborelui drept
 - o se realizează două rotații

Mai multe informații: https://www.guru99.com/avl-tree.html

AVL

AVL (veţi avea la examen)

- <u>Video</u> (MIT).
- Lecture Notes

SKIP LISTS

- Sunt structuri de date echilibrate
- Alte structuri de date eficiente (log n sau mai bun):
 - Tabele de dispersie (hash tables) nu sunt sortate
 - O Heap-uri nu putem căuta în ei
 - o Arbori binari echilibraţi (AVL, Red Black Trees)

- Ajută la o căutare rapidă
- Elementele sunt sortate!

- Sunt implementate ca liste înlănţuite
- Ideea de implementare:
 - este extinsă pe mai multe nivele (mai multe liste înlănţuite)
 - o la fiecare nivel adăugat, sărim peste o serie de elemente față de nivelul anterior
 - o nivelele au legături între ele

- Să presupunem că avem doar 2 liste
 - Oum putem alege ce elemente ar trebui transferate în nivelul următor?

Skip Lists - 2 liste

- Cum putem alege ce elemente ar trebui transferate în nivelul următor?
 - Cea mai bună metodă: elemente egal depărtate
 - Oostul căutării = $|L_2| + (|L_1| / |L_2|) = |L_2| + (n / |L_2|)$
 - Când este minim acest cost?

Skip Lists - 2 liste

- Cum putem alege ce elemente ar trebui transferate în nivelul următor?
 - Cea mai bună metodă: elemente egal depărtate
 - Ostul căutării = $|L_2| + (|L_1| / |L_2|) = |L_2| + (n / |L_2|)$
 - Când este minim acest cost?
 - Când $|L_2| = n / |L_2|$ \Rightarrow $|L_2| = sqrt(n)$

Skip Lists - 2 liste

- Cum putem alege ce elemente ar trebui transferate în nivelul următor?
 - Cea mai bună metodă: elemente egal depărtate
 - Oostul căutării = $|L_2| + (|L_1| / |L_2|) = |L_2| + (n / |L_2|)$
 - o Când este minim acest cost?
 - Când $|L_2| = n / |L_2|$ \Rightarrow $|L_2| = sqrt(n)$
 - O Deci, costul minim pentru căutare este sqrt(n) + n / sqrt(n) = 2*sqrt(n)

○ Complexitate: O(sqrt(n)) → seamănă un pic cu **Batog**

• Ce se întâmplă când avem mai mult de 2 liste înlănțuite?

- Ce se întâmplă când avem mai mult de 2 liste înlănţuite?
 - o Costul c<u>ău</u>țății <u>n</u>e modifică
 - o 2 liste:
 - o 3 liste: ?

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căuțării se modifică 2 liste: $\sqrt[2]{n}$

 - 3 liste: $3 * \sqrt[3]{n}$
 - k liste: $k * \sqrt[k]{n}$ 0

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căutării se modifică $2 \text{ liste: } 2 * \sqrt{n}$
 - 2 liste:
 - 3 liste: $3 * \sqrt[3]{n}$
 - k liste:
 - logn liste $k * \sqrt[k]{n}$

$$logn*\sqrt[log n]{n}$$

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căutării se modifică $2 \text{ liste: } 2*\sqrt{n}$
 - 2 liste:
 - 3 liste: $3 * \sqrt[3]{n}$
 - k liste:
 - logn liste $k * \sqrt[k]{n}$ = ? Cu cât este egal $logn * \sqrt[log n]{n}$ $\sqrt[log n]{n}$

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căutării se modifică $2 \text{ liste:} 2 * \sqrt{n}$

 - 3 liste: $3 * \sqrt[3]{n}$
 - k liste:
 - logn liste $k * \sqrt[k]{n}$ ⇒ Complexitate: O(logn)! $logn * \sqrt[logn]{n} \quad 2 * logn$

Skip Lists - Căutare

- 1) Începem căutarea cu primul nivel (cel mai de sus)
- Avansăm în dreapta, până când, dacă am mai avansa, am merge prea departe (adică elementul următor este prea mare)
- 3) Ne mutăm în următoarea listă (mergem în jos)
- 4) Reluăm algoritmul de la pasul 2)

Skip Lists - Căutare

- 1) Începem căutarea cu primul nivel (cel mai de sus)
- 2) Avansăm în dreapta, până când, dacă am mai avansa, am merge prea departe (adică elementul următor este prea mare)
- 3) Ne mutăm în următoarea listă (mergem în jos)
- 4) Reluăm algoritmul de la pasul 2)

Exemplu: search(22)

Complexitate: O(logn)

Skip Lists - Inserare

- Vrem să inserăm elementul x
- Observație: Lista de jos trebuie să conțină toate elementele!

- x trebuie să fie inserat cu siguranță în nivelul cel mai de jos
 - o căutăm locul lui x în lista de jos \rightarrow search(x)
 - adăugăm x în locul găsit în lista cea mai de jos
- Cum alegem în câte liste să fie adăugat?

Skip Lists - Inserare

- Vrem să inserăm elementul x
- x trebuie să fie inserat cu siguranță în nivelul cel mai de jos
- Cum alegem în ce altă listă să fie adăugat?
 - Alegem metoda probabilistică:
 - aruncăm o monedă
 - dacă pică Stema o adăugăm în lista următoare și aruncăm din nou moneda
 - dacă pică Banul ne oprim
 - probabilitatea să fie inserat și la nivelul următor: 1/2
- În medie:
 - o ½ elemente nepromovate
 - o 1/4 elemente promovate 1 nivel
 - 1/8 elemente promovate 2 nivele
 - o etc.
- Complexitate: O(logn)

- Skip Lists ŞtergereŞtergem elementul x din toate listele care îl conțin
- Complexitate: O(logn)

- Articol
- Video MIT
- Notes

Bibliografie

http://ticki.github.io/blog/skip-lists-done-right/

https://www.guru99.com/avl-tree.html

https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/

MIT lecture notes on skip lists

Esoteric Data Structures: Skip Lists and Bloom Filters - Stanford University

```
???
sol = 0;
for (t = 1 \ll 30; t > 0; t >= 1) {
   if (sol + t < v.size() && v[sol + t] <= x)
      sol += t;
```

???

```
sol = 0;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <= x)
      sol += t;
}</pre>
```

x= 32	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	3	7	11	20	24	28	30	32	44	49	62	68	82	84	93	97	

???

```
sol = 0; x = 32;
for (t = 1 << 30; t > 0; t>>=1) {
  if (sol + t < v.size() && v[sol + t] <= x)
     sol += t;
}</pre>
```

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	11	20	24	28	30	32	44	49	62	68	82	84	93	97

Căutare binară

```
sol = 0; x = 32;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <= x)
      sol += t;
}</pre>
```

Comp)exit	ate?	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	3	7	11	20	24	28	30	32	44	49	62	68	82	84	93	97

Căutare binară

```
sol = 0; x = 32;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <= x)
      sol += t;
}</pre>
```

Complexitate	O(log n)	- recomand o	u căldură :)
--------------	----------	--------------	--------------

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	11	20	24	28	30	32	44	49	62	68	82	84	93	97