Semana 14: Control Sintético

Equipo Econometría Avanzada

Universidad de los Andes

8 de mayo de 2025

Pregunta

Cunningham & Kang (2019) buscan responder la siguiente pregunta: ¿Cuál es el efecto de construir prisiones en Texas sobre las tasas de encarcelamiento de la población negra?

- En 1980, el departamento correccional de Texas perdió una demanda por hacinamiento carcelario que los obligó a construir más cárceles.
- A partir de 1993 se aceleró la construcción de prisiones. Se llegó a duplicar la capacidad carcelaria del Estado en solo 3 años.

Los autores utilizan la metodología de control sintético. Esta metodología estima el efecto del tratamiento usando como control una combinación lineal de unidades óptimamente elegidas.

Metodología-Contexto

- Generalmente se usa con una o pocas unidades tratadas.
- Se busca construir una unidad sintética usando el pool de no tratados que modele el comportamiento que hubiese tenido la una unidad tratada en ausencia de tratamiento.
- Se cuenta con información de J+1 unidades indexadas por j, de las cuales sólo una está tratada. Sin pérdida de generalidad, supongamos que la unidad tratada es j=1.
- Cada unidad se observa durante T periodos de tiempo, de los cuales, los primeros $T_0 < T$ corresponden a periodos previos al tratamiento.

Control sintético - Aplicaciones

- Efecto de la ley de porte de armas (Donohue et al., 2017)
- Efectos de la legalización de la prostitución sobre la salud pública (Cunningham & Shah, 2018)
- Política de migración sobre el empleo (Bohn et al., 2014)
- Efecto de conexiones corporativas con el gobierno (Acemoglu et al., 2016)
- Los costos económicos del conflicto (país Vasco) (Abadie & Gardeazabal, 2003)

Metodología-Contexto

- ullet Sea Y_{it} la variable de interés para la unidad j en el tiempo t
- Para cada unidad j, observamos un conjunto de k predictores $\mathbf{X}_j = [X_{1j}, \cdots, X_{kj}]^T$. Estas variables no deben estar afectados por la intervención, esto es, deben ser idealmente previos a la misma.
- Sea $X_0 = [X_2 \cdots X_{J+1}]$ la matriz de tamaño $k \times J$ que contiene la información sobre las unidades no tratadas.

Metodología-¿Qué estamos estimando?

- Para cada unidad j y tiempo t, sea Y_{jt}^N el estado potencial de la variable de tratamiento en ausencia de tratamiento. Similarmente, para j=1 y $t>T_0$, denote por $Y_{1,t}^I$ el estado potencial de la unidad 1 cuando es tratada.
- El efecto de interés es entonces

$$\tau_{1,t} = Y_{1t}^I - Y_{1t}^N; \qquad t > T_0$$

• Sabemos que para j=1 y $t>T_0$ tenemos que $Y_{i,t}^I=Y_{1,t}$ La gran pregunta entonces es **cómo econtramos una** aproximación para $\mathbf{Y}_{1t}^{\mathbf{N}}$.

Estimación-Contrafactual

- Queremos aproximar la variable dependiente de la unidad tratada en ausencia de tratamiento usando las unidades no tratadas, a modo de crear una unidad j=1 sintética. De ahí que, debemos escoger pesos $\boldsymbol{W} = [w_2 \cdots w_{J+1}]^T$, de manera que el clon de j=1 sea una combinación convexa de las unidades sin tratar usando esos pesos.
- Dado un vector de pesos $\mathbf{W} = [w_2 \cdots w_{J+1}]^T$, podemos construir el resultado potencial sintético como

$$\hat{Y}_{1t}^{N} = \sum_{j=2}^{J+1} w_j Y_{j,t}$$

y, naturalmente, el efecto causal estimado como

$$\hat{\tau}_t = Y_{1,t} - \hat{Y}_{1t}^N$$

Estimación-¿Cómo elegimos los pesos de una manera óptima?

- El siguiente paso es elegir los pesos **W**. Queremos elegir los pesos de manera que la unidad sintética replique de la mejor manera a la unidad tratada antes del tratamiento.
- Abadie, Diamond & Hainmuller (2010) proponen minimizar una norma pesada:

$$\mathbf{W}^*(\mathbf{V}) = \sup_{\sum_j w_j = 1} \|\mathbf{X}_1 - \mathbf{X}_0 \mathbf{W}\|_{\mathbf{V}} = \sqrt{(\mathbf{X}_1 - \mathbf{X}_0 \mathbf{W})' \mathbf{V} (\mathbf{X}_1 - \mathbf{X}_0 \mathbf{W})}$$

donde $V = [v_1, \dots, v_k]$ son los pesos dados a cada característica predeterminada en la predicción.

 Los pesos V deben interpretarse como la relevancia de cada variable predictora en la definición del control sintético.

Estimación-¿cómo elegimos los pesos de la norma de una manera óptima?

- Para cada elección de los pesos de la norma V, podemos obtener unos pesos óptimos W*(V). ¿Cómo elegimos V?
- Abadie & Gardeazabal (2003) sugirieron que la manera de dilucidar cuáles características deben recibir mayor peso son aquellas que mejor nos ayudan a reproducir la evolución de la unidad en el tiempo.
- Por ello, sugieren minimizar el error de predicción cuadrático medio (MSPE) en el periodo pre-tratamiento, esto es,

$$\boldsymbol{V}^* = \sum_{\substack{v_j \geq 0 \\ \sum_j v_j = 1}} \sum_{t \in \mathcal{T}_0} (Y_{1,t} - w_2(\boldsymbol{V}) Y_{2t} - \cdots - w_{J+1}(\boldsymbol{V}) Y_{J+1t})^2$$

donde $\mathcal{T}_0\subseteq\{1,2,\cdots,\mathcal{T}_0\}$ es un conjunto de periodos previos al tratamiento. Idealmente no se deben tomar todos, para evaluar si la elección es confiable o no.

Resumen

Para realizar la metodología de control sintético, Abadie (2021) sugiere lo siguiente

- ① Dividir los periodos de pre-tratamiento en 2: uno de entrenamiento y uno de validación. Supongamos que T_0 es par, entonces podemos tomar los periodos $t=1,\cdots,t_0=T_0/2$ como validación y $t=t_0+1,\cdots,T_0$ como los de entrenamiento.
- ② Para cada valor de V, encuentre los pesos $\tilde{w}_2(V), \dots, \tilde{w}_{J+1}(V)$ usando los predictores.
- Oetermine el valor V* que minimiza el MSPE para los periodos de entrenamiento.
- **4** Usando los pesos $\tilde{w}_2(\mathbf{V}^*), \dots, \tilde{w}_{J+1}(\mathbf{V}^*)$, calcule el efecto del tratamiento $\hat{\tau}_1$.

Supuestos de la metodología

Para que la metodología de control sintético recupere el efecto deseado necesitamos el cumplimiento de <u>cuatro</u> supuestos:

- Sólamente la unidad tratada es afectada por la política (no spillovers).
- La política no tiene efecto en los periodos previos al tratamiento (no efectos anticipatorios)
- Se puede construir un control sintético a partir de las unidades de control. (Las características de la unidad tratada pueden construirse como combinación convexa de las características de las unidades no tratadas).
- No hay mas eventos que puedan afectar la variable dependiente ocurriendo en el mismo periodo de tratamiento.

Validación

Cuadro: Verificación de similaridad

	Texas	Texas Sintético
Cantidad de afrodescendientes encarcelados (1990)	22634	22897.27
Cantidad de afrodescendientes encarcelados (1991)	23249	24044.85
Cantidad de afrodescendientes encarcelados (1992)	27568	25564.58
Cantidad de afrodescendientes encarcelados (1988)	16956	18136.65
Consumo de alcohol (1990)	2.47	2.70874
Mortalidad SIDA por 100k hab. (1990)	13.58992	14.8187
Mortalidad SIDA por 100k hab. (1991)	14.83504	17.06916
Ingreso per cápita	16108.63	18636.61
Tasa de Pobreza	17.2	14.79869
% de población afrodescendiente (1990)	16.15459	15.9497
% de población afrodescendiente (1991)	16.29985	16.13737
% de población afrodescendiente (1992)	16.45955	16.34404

Inferencia estadística: p-valor bajo la Fisher sharp null

• La hipótesis nula de Fisher (1935) consiste en evaluar la siguiente hipótesis:

$$\begin{cases} H_0: \tau_{j,t} = Y_{j,t}^I - Y_{j,t}^N = 0 & \text{para todo } j = 1, \cdots, J+1; \ t = 1, \cdots, T \\ H_a: \tau_{j,t} = Y_{j,t}^I - Y_{j,t}^N \neq 0 & \text{para algún } j = 1, \cdots, J+1; \ t = 1, \cdots, T \end{cases}$$

- Bajo la hipótesis nula, si calculásemos el control sintético de cualquier unidad, tratada o no tratada, el estimador resultante debería ser cercano a 0.
- Así las cosas, un estimador relativamente grande del efecto es indicio del cumplimiento de la hipótesis alterna, en particular, para la unidad j=1.

Inferencia estadística: p-valor bajo la Fisher sharp null

Abadie et al. (2010) recomiendan los siguientes pasos para calcular los p-valores estandarizados:

- Construir el control sintético para el tratamiento y para cada uno de los posibles controles del pool de donantes.
- **2** Para cada unidad $j \in \{1, 2, ..., J + 1\}$ construir el *RMSPE* pre y post tratamiento.
- **3** Para cada unidad j construir $Ratio_j = \frac{RMSPE_{post,j}}{RMSPE_{pre,j}}$.
- El p-valor es la probabilidad de que el efecto estimado del tratamiento sea resultado de algo aleatorio, entonces el estimador de frecuencias está definido por:

$$\mathsf{P-valor} = \frac{\# \text{ de ratios mayores que } \mathit{Ratio}_{j=1,\mathit{Tratamiento}}}{\# \text{ de placebos}}$$

Cierre

Lo último en el tema...

Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. Journal of Economic Literature. https://pubs.aeaweb.org/doi/pdfplus/10.1257/jel.20191450