Примерно решение на домашна работа 1 по Дискретни структури, специалност Информационни системи, първи курс, зимен семестър на 2019/2020 г.

Задача 1

Нека $A = \{x \in \mathbb{R} : |x| > 1\}$ и $B = \{x \in \mathbb{R} : |x - 1| \le \frac{1}{2}\}$. Намерете: $A \cup B$.

Решение:

$$A \cup B = (-\infty, -1) \cup \left[\frac{1}{2}, +\infty\right)$$

Задача 2

Нека $A = \{x \in \mathbb{R} : |x| > 2\}$ и $B = \{x \in \mathbb{R} : |x - 1| \le 1\frac{1}{3}\}$. Намерете: $A \cap B$.

Решение:

$$A \cap B = (2, 2\frac{1}{3}]$$

Задача 3

Нека $A = \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$ е множество. Колко елемента има множеството 2^A ?

Решение:

 ${\bf A}$ има 2 елемента. Следователно ${\bf 2}^A$ има 4 елемента.

Задача 4

Нека $R = \{(x,y) \mid (x-y) \text{ е рационално число } \} \subseteq \mathbb{R} \times \mathbb{R}$. Кое от следните е вярно?

- а) R е релация на еквивалентност и има безкраен брой класове.
- R е частична наредба и има най-голям елемент, но няма най-малък елемент.
- в) R е релация на еквивалентност и има краен брой класове.

Решение:

R е релация на еквивалентност и има безкраен брой класове.

Задача 5

Нека R е релация над $\{1,2,3,4,5,6,7,8\}$ дефинирана чрез $aRb \leftrightarrow a = b \lor a = 5$. Кой е минималният елемент на R?

Решение:

Елементът a е минимален елемент по отношение на R, ако не съществува друг елемент b, за който bRa. Това е елемнтът 5.

Задача 6

Кое от следните множества е (тотална) функция над \mathbb{Z} ?

- a) $\{(a, |a|) | a \in \mathbb{Z}\}.$
- 6) $\{(|a|, a) \mid a \in \mathbb{Z}\}.$
- B) $\{(a, a+1) \mid a \in \mathbb{Z}\}.$

Решение:

а) и в) са тотални функции. б) не е тотална функция, понеже е дефинирана само над неотрицателните цели числа.

Задача 7

Вярно ли е, че $f: \mathbb{R} \to \mathbb{R}$ $f(x) = x^3 + 9$ е биекция.

Решение:

Да, функцията е дефинирана над реалните числа и от дефиницията и лесно се вижда, че е сюрекция и инекция.

Задача 8

Вярно ли е, че $q: \mathbb{R} \to \mathbb{R}$ $q(x) = x^2 - 1$ е инекция.

Решение:

Не, защото f(4)=f(-4) (както и всяко х с -х). От това следва, че не е инекция.

Задача 9

Вярно ли е, че $g: \mathbb{N} \to \mathbb{N}$ g(x) = x + 1 е сюрекция?

Решение:

He, елементът $0 \in \mathbb{N}$ няма първообраз.

Задача 10

Колко са всички биекции $f:A \to B$ ($|\mathbf{A}| = |\mathbf{B}| = \mathbf{n}$).

Решение:

Всяка биекция може да се представи като наредена n-орка с различни елементи от В. Броят такива n-орки е $n*(n-1)*(n-2)\dots 1=n!$.