TABLE OF CONTENTS

I

ABSTRACT

1

2	ACKNOWLEDGEMENT	11	
3 4	TABLE OF CONTENTS LIST OF FIGURES	III-V	
		VI	
CHAPTER NO	TITLE	PAGE NO	
Chapter 1:	Introduction	01	
	1.1 Overview	01	
	1.2 Motivation	01	
	1.3 Problem Statement	02	
	1.4 Project Objectives	02	
Chapter 2:	Literature Survey	03	
	2.1 Survey Papers	03	
Chapter 3:	Requirement Specification	06	
	3.1 Functional Requirement	06	
	3.2 Non-Functional Requirement	06	
	3.2.1 Dependability	07	
	3.2.2 Availability	07	
	3.2.3 Reliability	07	
	3.2.4 Safety	07	
	3.2.5 Security	07	
	3.3 System Requirements	07	
	3.3.1 Raspberry Pi	07	
	3.3.2 Raspian OS	09	
	3.3.3 OS	10	
	3.3.4 Fingerprint Sensor	11	
	3.3.5 Pi camera	12	

	3.3.6 Gear Motor	13
	3.3.7 Relay Drivers	13
	3.3.8 Arduino	15
Chapter 4:	System Analysis	16
	4.1 Existing System	16
	4.2 Proposed System	16
	4.3 Scope	17
	4.4 Programming Language	17
	4.5 Haar feature-based cascade classifiers	18
	4.6 Fingerprint with Arduino	20
	4.7 Dataset	22
	4.8 Overall process of the project	22
Chapter 5:	System Design	24
	5.1 Design Constraints	24
	5.2 Architectural Design	24
	5.3 Data Flow Diagram	27
	5.4 Use-case Diagram	28
Chapter 6:	Implementation	29
	6.1 Eye Matching	29
	6.2 Fingerprint Matching	36
	6.3 Final Result	44
Chapter 7:	Testing	45
	7.1 Unit Testing	45
	7.2 Integration Testing	46
	7.3 System Testing	46
	7.4 Testing Methods	48

Chapter 8:	Interpretation of Results	49
Chapter 9:	Conclusion	53
	9.1 Tasks	53
	9.2 Achievements	53
	9.3 Final Outcomes	53
Chapter 10:	Future Enhancements	54
	Bibliography	55

LIST OF FIGURES

Fig no.	Figure Name	Page
		no.
Fig 3.1	Raspberry Pi Model.	8
Fig 3.2	Gear motor.	13
Fig 3.3	Circuit of the relay.	14
Fig 3.4	Arduino shields.	15
Fig 4.1	Haar features.	18
Fig 4.2	Results of Haar cascade algorithm.	20
Fig 4.3	Overall process of project.	23
Fig 5.1	System Architecture.	25
Fig 5.2	Pi Camera Module Sequence Diagram.	26
Fig 5.3	Data Flow Diagram.	27
Fig 5.4	Use Case Diagram.	28
Fig 7.1	Test case for Both Samples Valid	47
Fig 7.2	Test case for Invalid Fingerprint	48
Fig 7.3	Test case for Invalid Eye sample	48
Fig 8.1	R307 Fingerprint Sensor Connected to Arduino board.	49
Fig 8.2	Pi Camera Connected to Raspberry Pi.	49
Fig 8.3	Gear Motor connected to Relay.	50
Fig 8.4	System integrated with all the components.	50
Fig 8.5	Screen after capturing the database for Eye samples.	51
Fig 8.6	Output screen for a valid user.	51
Fig 8.7	Output screen for an Imposter or Invalid user.	52