Lecture # 1 INTRODUCTION - Data driven modeling
1.0 Introduction
Parameteric us data driven model.
2.0 Machine Learning workflow
3.0 Source of data
3.1 Synthetic date
3.2 Field date
4 0 5,1,000,000
Π
П
(°
-

Led	Data- Driven Machine Learning Modeling
-	Brief Introduction
1.	
	This part of the Course is data-drive
	Modeling. (Machine hearning (ML) - modeling)
	The lectures present the concepts how
	ML modeling works? and practical laboratory
	exercises.
[]	Briefly,
П	Lecture 1: presents introduction about
	ML modeling and workflows
П	that we are going to work with.
E	
Γ	hecture 2: Presents the concepts of the
C	first part of Mc work flow.
	That is Feature Engineering/or
C -	Data preprocessing
	-> Then, Laboratory practices
	Lecture 3: The mathematics / statistics
L	of How ML modeling and
	Model Performace analysis
	- Here Linear / Poly / Mutivarials
1	regression will be analyed.
	-> Practical Laboratory work
1	Lacture 4 The Mathematics of how An
1	modeling wordes?
1	-> Then, Practical Laborator
	works.
1	
1	
-	
-	
_	

	Machine Learning modelling
T	, recentle
17	1:0 Introduction
F-1	1.0 INCIDANCTION
[7]	In this section, we will review
	the parameteric model and machine learning
Γ.	modelling.
Г	For the machine learning modeling, we will
П	focus on REGRESSION
Г	
17	As you know, for any design analysis
-	works, we need to measure the
17-	material properties such as mechanical,
1)-	Phymal, electrical, magnetic and other
	Measurment in general takes time and costy.
	Measurment in general takes time and costy. Moreover, situations may not allow to perform
	measurment.
	Therefore, Scientists and Engineers are trying
L	Therefore, Scientists and Engineers are trying to develope mathematical models to describe
	the given process / estimate material properties
L	based on a measured other parameters.
L	However, the ACCURACY of the model
L	Should be verified by the measurment
L	dataset
1	1.1 Mathematical / Parameteric model?
	mathematical models are developed
	based on GOVERNIG LAWS: Example
45-	· Ronsevuation of mass
15	· Conservation of momentum, Energy

П	
-	1.2 Machine Learning model?
Г	ML modeling does not apply physical
	laws, but it generates model by
П	ML modeling does not apply physical laws, but it generates model by Learning input and output data set
П	- It is called Data-Driven Modelling
П	
	- ML model develope model that best fit' the output with input.
<u>Г</u>	In a.t 1 Au
Γ.— -Γ.— -Γ.—	Dataset - Apply Learning develope output Output = f(inpo)
	ML. Learning algorithm are based on the trends between input-output
L	Example: If the data spread looks like this (Fis below), the trend
L	like this (Fig below), the trend
L	is Linear and hence, the
L	mapping function that best -
L	y suite for the data is linear
	Best-Fit y = Bo + Bix
1	The ML algorithm will process
	Fig x and find the optimized Bo and B that gives the "best-fit" model
1	
and a	

П	
-	
	In this class, we will learn Regression modelling
Г	modelling
	(I) Linear Regression
	(a) Simple linear regressor > y = Bo + Bix
	(2) Polynomial regren - y: Bot B.x+ - Bnxn
\Box	(3) Multivarible reg -> 2 = Bo + Bix + Bix + - Bix
П	X1, X2, X3 Xn = Input Feature
Г	(I) The above three mapping functions
-[are called Linear Regression Even though
4	the polynomial Contains non-linear
	term, the Coefficients are linear.
	Therefore, it is under Linear reg.
-13-	Catagory
-1.7	
1.	(I) Non-Linear Regression.
L	The function contain non-linear
	exponent
L	
L	(a) Exponential = y = ae +c
L	(b) power y = ax bx + c
1	(& ∈R.), > i
L	(C) Sin/comme y= a sin (bx+c)
L	(a) (og/10 y= alm(bx+c)
1	
L	(P) Combined to y= ae. cos (ex +c)
	We select / estimate the above mapping
1	We select / estimate the above mapping function based on the trend of imput/outpit
hard	

3.0 Source of Data
During the course, we will use two types of data
two types of data
4.60 6 6 11 5 1
3.1 (a) Synthetic Data:
The data will be generated
From physics based models
> projectile motion - with land withou
air/wind speedetd
> Rectilinear motion
> Simple harmonic motion
32 63 7 1 1 1
3.2 (b) Field data
-The data is measured using
Sensors.
-s It is a big data
-> Data is expected to Contain
· Norse
· depicates
· Blanks / vu recorder
o outliers +
Therefore the data must be pre-proc
Reason for using synthetic data is to VERIF
Reason for using Synthetic data is to VERIF Mow ML. model recover the known Physics
0 + 1. 0
model from which the data has been

40 Summary
lake will be a did
bothe the Concept and practical. These one
Than the Concept and practical.
a) • Linear Regression
b) Non-Linear curve fitting
The street correct lung
5) · ANN regression
- Ji caston
> The three methods require
> The three methods require input-output data set.
> Before modelling, data most be
PRE-PROCESSSED and the RIGHT FEATURES
most be selected!
> Then, the input /output data will
be trained - to develope ML Trained model
> The trained ML-model most be
acessed its prediction accuracy
> Once we pass the model, will
use the model for application