Answers to the mid-term examination on Logic Circuit Design

Christian Rinderknecht

18 October 2006

1 Binary numbers

Question. If $N = b_{n-1}b_{n-2}...b_0$ is an *n*-bit binary number, what is 2N and $\lfloor N/2 \rfloor$?

Answer. By definition

$$N = b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12 + b_0$$

$$= 2(b_{n-1}2^{n-2} + b_{n-2}2^{n-3} + \dots + b_1) + b_0$$

$$\lfloor N/2 \rfloor = b_{n-1}2^{n-2} + b_{n-2}2^{n-3} + \dots + b_1$$

$$= 0 \times 2^{n-1} + b_{n-1}2^{n-2} + b_{n-2}2^{n-3} + \dots + b_1$$

$$= 0b_{n-1}b_{n-2} \dots b_1$$

And

$$2N = 2(b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12 + b_0)$$

= $b_{n-1}2^n + b_{n-2}2^{n-1} + \dots + b_12^2 + b_02^1 + 0 \times 2^0$
= $b_{n-1}b_{n-2}\dots b_1b_00$

2 Boolean algebra

Question. Using truth tables, prove the distributive laws

$$A + BC \stackrel{1}{=} (A + B)(A + C)$$
$$A(B + C) \stackrel{2}{=} AB + AC$$

Answer. Using truth tables, prove the distributive laws

$$A + BC \stackrel{1}{=} (A + B)(A + C)$$
$$A(B + C) \stackrel{2}{=} AB + AC$$

A	B	$\mid C \mid$	BC	$\mathbf{A} + \mathbf{BC}$	A+B	A + C	$ (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C}) $
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

A	$\mid B \mid$	$\mid C \mid$	B+C	A(B+C)	AB	AC	AB + AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	$\mid 1 \mid$	1	1	1	1	1

Given the distributive laws and the following

$$1 + A \stackrel{3}{=} 1 \qquad 0 \cdot A \stackrel{4}{=} 0 \qquad 0 + A \stackrel{5}{=} A \qquad 1 \cdot A \stackrel{6}{=} A$$
$$A + A \stackrel{7}{=} A \qquad A \cdot A \stackrel{8}{=} A \qquad A + \overline{A} \stackrel{9}{=} 1 \qquad A \cdot \overline{A} \stackrel{10}{=} 0 \qquad \overline{\overline{A}} \stackrel{11}{=} A$$

prove the absorption laws

$$A + AB \stackrel{12}{=} A$$
$$A(A+B) \stackrel{13}{=} A$$

without truth tables.

Question. Given the distributive laws and the following

$$1 + A \stackrel{3}{=} 1 \qquad 0 \cdot A \stackrel{4}{=} 0 \qquad 0 + A \stackrel{5}{=} A \qquad 1 \cdot A \stackrel{6}{=} A$$
$$A + A \stackrel{7}{=} A \qquad A \cdot A \stackrel{8}{=} A \qquad A + \overline{A} \stackrel{9}{=} 1 \qquad A \cdot \overline{A} \stackrel{10}{=} 0 \qquad \overline{\overline{A}} \stackrel{11}{=} A$$

prove the absorption laws

$$A + AB = A \tag{1}$$

$$A(A+B) = A \tag{2}$$

without truth tables.

Answer. For the sake of simplicity, we assume AB = BA and A + B = B + A. There are several possible answers.

$$A + AB \stackrel{6}{=} A \cdot 1 + AB \stackrel{2}{=} A(1+B) \stackrel{3}{=} A \cdot 1 \stackrel{6}{=} A$$

Note: equation 2 is used after replacing C by 1.

$$A(A+B) \stackrel{5}{=} (A+0)(A+B) \stackrel{1}{=} A + 0 \cdot B \stackrel{4}{=} A + 0 \stackrel{5}{=} A$$

Note: equation 3 is used after replacing C by 0. Or, assuming $\stackrel{12}{=}$:

$$A(A + B) \stackrel{2}{=} A \cdot A + AB \stackrel{8}{=} A + AB \stackrel{12}{=} A$$

Note: equation 2 is used after replacing C by A.

3 Addition of BCD numbers

Question. State any overflow or underflow.

(a)
$$0111 0101 1001 0000 + 0010 1001 0011 0011 0101$$

Answer. Note that there cannot be underflows since we are adding positive numbers. There cannot be overflows because the number of digits of the

result is not specified.

(a)		1 1	1	1 1	
		$0\ 1\ 1\ 1$	$0\ 1\ 0\ 1$	$1\ 0\ 0\ 1$	0000
		$0\ 0\ 1\ 0$	$1\ 0\ 0\ 1$	$0\ 0\ 1\ 1$	0101
		1 1	11 1	1	
		$1\ 0\ 0\ 1$	$1\ 1\ 1\ 0$	$1\ 1\ 0\ 0$	0101
			$0\ 1\ 1\ 0$	$0\ 1\ 1\ 0$	
	1	1 1			
		$1\ 0\ 1\ 0$	$0\ 1\ 0\ 1$	$0\ 0\ 1\ 0$	0101
		$0\ 1\ 1\ 0$			
	0001	0000	0 1 0 1	0010	0 1 0 1

(b)	1 1	1		
	$0\ 0\ 1\ 1$	$0\ 1\ 1\ 0$	$0\ 0\ 0\ 1$	$0\ 1\ 1\ 1$
	$0\ 0\ 0\ 1$	$0\ 1\ 0\ 0$	$0\ 1\ 1\ 0$	$1\ 0\ 0\ 0$
	1	1 1	1111	1 1
	$0\ 1\ 0\ 0$	$1\ 0\ 1\ 0$	$0\ 1\ 1\ 1$	1111
		$0\ 1\ 1\ 0$		$0\ 1\ 1\ 0$
	0101	0000	$1\ 0\ 0\ 0$	0101

(c)		1 1	1 1		1 1
		$1\ 0\ 0\ 1$	$0\ 1\ 0\ 1$	$1\ 0\ 0\ 0$	$0\ 1\ 1\ 1$
		$0\ 0\ 1\ 1$	$0\ 1\ 0\ 1$	$0\ 1\ 1\ 0$	$0\ 0\ 1\ 0$
	1	1 1	11 1	1 1	
		$1\ 1\ 0\ 0$	$1\ 0\ 1\ 0$	$1\ 1\ 1\ 0$	$1\ 0\ 0\ 1$
		$0\ 1\ 1\ 0$	$0\ 1\ 1\ 0$	$0\ 1\ 1\ 0$	
	0001	0011	0001	0100	1001