Лекція 15. Гомоморфізми груп.

Відображення $f: G_1 \to G_2$ групи (G_1, \bullet) в групу $(G_2, *)$ називають гомоморфізмом, якщо для будь-яких елементів $x, y \in G_1$ виконується умова:

$$f(x \bullet y) = f(x) * f(y).$$

Гомоморфізм, який разом з тим є ін'єктивним відображенням, називають мономорфізмом груп. Гомоморфізм, який одночасно є сюр'єктивним відображенням, називають епіморфізмом груп. Гомоморфізм, який додатково є бієктивним відображенням, називають ізоморфізмом груп. Іншими словами, ізоморфізмом з групи G_1 в групу G_2 називають бієктивний гомоморфізм з групи G_1 в групу G_2 .

Дві групи G_1 і G_2 називають ізоморфними, якщо існує ізоморфізм групи G_1 в групу G_2 ; це позначають $G_1 \cong G_2$.

Розглянемо хрестоматійний приклад ізоморфізму двох груп.

Як першу групу беремо $\mathbb{C}_2 = \{1, -1\}$ – множину коренів другого степеня з одиниці відносно операції множення. Таблицю Келі для цієї групи наведено в табл. 12.

Табл. 12.

•	1	-1
1	1	-1
-1	-1	1

В якості другої групи розглядаємо S_2 — множину підстановок з двох елементів відносно композиції підстановок. Кількість елементів у вказаній групі дорівнює 2. Позначимо елементи цієї групи так: $e = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$, $u = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Таблицю Келі для цієї групи наведено в табл. 13.

Табл. 13.

0	e	и
e	e	и
и	и	e

Як бачимо, групи G_1 = C_2 і G_2 = S_2 мають аналогічну таблицю Келі: якщо в першій таблиці (табл. 12) замінити 1 і -1 відповідно на e і u, то отримаємо другу таблицю (табл. 13). Зауважимо, що обидві групи є циклічними, а тому й абелевими.

Отже, з точки зору виконання алгебраїчних операцій ці дві групи з двох елементів не відрізняються між собою. Це можна виразити ще так. Існує бієктивне відображення $f: G_1 \to G_2$, визначене рівностями f(1) = e, f(-1) = u, яке узгоджує результати операцій. Це означає, що $f(1 \cdot (-1)) = f(1) \circ f(-1)$, $f((-1) \cdot (-1)) = f(-1) \circ f(-1)$. Справді, $f(1 \cdot (-1)) = u$ та $f((-1) \cdot (-1)) = e$, оскільки $f(1) \circ f(-1) = e \circ u = u$ та $f(-1) \circ f(-1) = u \circ u = e$.

Слід зауважити, що друге можливе тут відображення $g: G_1 \to G_2$, визначене рівностями g(1) = u та g(-1) = e, не узгоджує результати операцій. Це видно з такого: $g((-1)\cdot (-1)) = u$ та $g(-1)\circ g(-1) = e\circ e = e$, тобто, $g((-1)\cdot (-1))\neq g(-1)\circ g(-1)$.

Підсумовуючи сказане, варто зауважити, що дві групи ϵ ізоморфними, якщо вони мають однакові таблиці Келі з точністю до перепозначень їх елементів.

Проте, як бачимо далі, навіть якщо існує бієктивне відображення з однієї групи в іншу, ці групи не обов'язково є ізоморфними. Так, групи \mathbf{Q}^+ додатніх раціональних чисел відносно множення й \mathbf{Q} раціональних чисел відносно додавання не ізоморфні. Правда, існують бієктивні відображення множини \mathbf{Q}^+ на множину \mathbf{Q} , але жодне з них не може бути ізоморфізмом. Справді, яке б не було бієктивне відображення $f: \mathbf{Q}^+ \to \mathbf{Q}$, завжди існують такі елементи $a \in \mathbf{Q}$ і $x \in \mathbf{Q}^+$, що f(2) = a і f(x) = a/2. Якби це відображення було ізоморфізмом, то мала б виконуватися рівність $f(x^2) = a/2 + a/2 = a = f(2)$. Звідси, виходячи з бієктивності вказаного відображення, маємо $x^2 = 2$, що неможливо, бо $x \in \mathbf{Q}$ додатнім раціональним числом.

Прикладом епіморфізму груп, який не є ізоморфізмом, може слугувати такий. Візьмемо $G_1 = S_n$ групу підстановок з n елементів (n -довільне натуральне число більше, ніж 2) відносно операції композиції підстановок. Як другу групу беремо $G_2 = \mathbb{C}_2 = \{1, -1\}$ — множину коренів другого степеня з одиниці відносно операції множення. Відображення f з групи G_1 в групу G_2 задаємо так: для будь-якого елемента a з групи G_1 беремо f(a) = 1, якщо a — парна підстановка та f(a) = -1, якщо a — непарна підстановка. Це відображення є гомоморфізмом, бо композиція двох парних або двох непарних підстановок дає парну підстановку, а композиція парної та непарної або непарної та парної

підстановок дає непарну підстановку. Зрозуміло, що вказане відображення є сюр'єктивним. Оскільки перша група має n! елементів (і це число більше 2 при n>2), а друга — лише 2 елементи, то, очевидно, відображення f не є бієктивним. Таким чином, розглянуте відображення є епіморфізмом груп, але не є ізоморфізмом груп. Зауважимо, що в цьому прикладі обидві групи є скінченними.