COMP0083 Convex Optimisation Assignment

Jan 9, 2023

Part 1

1.1

The function for (a):

$$\max\{ax + b, x^4 - 5, e^{x^2}\}\$$

is a convex function.

1.2

For the function:

$$f(x) = \begin{cases} -x & \text{if } x \in]-1,0] \\ x^2 & \text{if } x \ge 0 \end{cases}$$

the sub-differential is:

$$\partial f(x) = \begin{cases} -1 & \text{if } x \in]-1, 0[\\ [0,1] & \text{if } x = 0\\ 2x & \text{if } x > 0 \end{cases}$$

corresponding to Figure (a).

1.3

For a function:

$$f(x) = \langle Ax, x \rangle + \langle x, b \rangle + c$$

where A is a square matrix not necessarily symmetric, the gradient is (a):

$$\nabla f(x) = A^*x + Ax + b$$

1.4

The Fenchel conjugate of f(x) = g(2x) is (a):

$$f^*(u) = g^*(u/2)$$

1.5

The solution to the dual problem is (c):

$$\bar{u} = (\mathbf{K} + \lambda n \mathbf{Id})^{-1} y$$

Part 2

2.1

2.1.1

Given:

$$f(x) = \begin{cases} +\infty & \text{if } x \le 0\\ -\log x & \text{if } x > 0 \end{cases}$$

The Fenchel conjugate is defined:

$$f^*(u) = \sup_{x \in \mathcal{X}} \{ \langle x, u \rangle + \log x \}$$

To find the supremum, we can take the partial derivative with respect to x, set to zero, and solve for x:

$$\frac{\partial}{\partial x}(ux + logx) = u + \frac{1}{x} = 0$$

Thus, the supremum above is solved when $x = \frac{-1}{u}$:

$$f^*(u) = u\left(\frac{-1}{u}\right) + \log\left(\frac{-1}{u}\right)$$

Simplifying, we have the Fenchel conjugate:

$$f^*(u) = -(1 + \log u)$$

2.1.2

Given:

$$f(x) = x^2$$

The Fenchel conjugate is defined:

$$f^*(u) = \sup_{x \in \mathcal{X}} \{\langle x, u \rangle - x^2\}$$

We can compute the partial derivative:

$$\frac{\partial}{\partial x}(ux - x^2) = u - 2x = 0$$

Thus, the supremum is solved when $x = \frac{u}{2}$:

$$f^*(u) = u\left(\frac{u}{2}\right) - \left(\frac{u}{2}\right)^2$$

Simplifying, we have the Fenchel conjugate:

$$f^*(u) = \frac{u^2}{4}$$

2.1.3

Given:

$$f(x) = i_{[0,1]}$$

The Fenchel conjugate is defined:

$$f^*(u) = \sup_{x \in \mathcal{X}} \{ \langle x, u \rangle - i_{[0,1]} \}$$

Thus,

$$f^*(u) = \sup_{x \in [0,1]} \{ \langle x, u \rangle \}$$

We can see the Fenchel conjugate is:

$$f^*(u) = \max(0, u)$$

2.2.1

Given f a proper convex function, to prove by induction Jensen's inequality:

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

for all $x_1, ... x_n \in \mathcal{X}$ and for all $\lambda_1, ..., \lambda_n \in \mathbb{R}_+$ with $\sum_{i=1}^n \lambda_i = 1$, we start with the definition of convexity which states:

$$f(\lambda_1 x_1 + \lambda_2 x_2) \le \lambda_1 f(x_1) + \lambda_2 f(x_2)$$

for all $x1, x2 \in \mathcal{X}$ and $\lambda_1, \lambda_2 \in \mathbb{R}_+$ with $\lambda_1 + \lambda_2 = 1$. In this base case n = 2. Our inductive step will prove that the inequality continues to hold for n + 1:

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\sum_{i=1}^n \lambda_i x_i + \lambda_{n+1} x_{n+1}\right)$$

We can insert the term $(1 - \lambda_{n+1})$:

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left((1 - \lambda_{n+1}) \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} x_i + \lambda_{n+1} x_{n+1}\right)$$

If we define $\bar{x} = \sum_{i=1}^{n} \frac{\lambda_i}{1-\lambda_{n+1}} x_i$ and we are back to our n=2 base case, so we know from convexity:

$$f((1 - \lambda_{n+1})\bar{x} + \lambda_{n+1}x_{n+1}) \le (1 - \lambda_{n+1})f(\bar{x}) + \lambda_{n+1}f(x_{n+1})$$

Rewriting this,

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \le (1 - \lambda_{n+1}) f\left(\sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} x_i\right) + \lambda_{n+1} f\left(x_{n+1}\right)$$

We know that the first term on the right hand side:

$$f\left(\sum_{i=1}^{n} \frac{\lambda_{i}}{1 - \lambda_{n+1}} x_{i}\right) = \frac{1}{1 - \lambda_{n+1}} f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \frac{1}{1 - \lambda_{n+1}} \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) = \sum_{i=1}^{n} \frac{\lambda_{i}}{1 - \lambda_{n+1}} f\left(x_{i}\right)$$

Thus can upper bound our previous inequality:

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \le \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} f\left(x_i\right) + \lambda_{n+1} f\left(x_{n+1}\right) = \sum_{i=1}^{n+1} \frac{\lambda_i}{1 - \lambda_{n+1}} f\left(x_i\right)$$

proving our inductive step and Jensen's inequality as required. \square

2.2.2

The characterisation of convexity states:

f is convex
$$\leftrightarrow \langle \nabla f(x) - \nabla f(y), x - y \rangle > 0$$

 $\forall x, y \in dom f$.

For $f(x) = -\log(x)$, $\nabla f(x) = \frac{-1}{x}$:

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle = \langle \frac{1}{y} - \frac{1}{x}, x - y \rangle$$

If x > y we have the following:

$$\frac{1}{y} > \frac{1}{x}$$

$$x - y > 0$$

$$\frac{1}{y} - \frac{1}{x} > 0$$

and

$$\langle \frac{1}{y} - \frac{1}{x}, x - y \rangle > 0$$

If x < y we have the following:

$$\frac{1}{y} < \frac{1}{x}$$

$$x - y < 0$$

$$\frac{1}{y} - \frac{1}{x} < 0$$

and

$$\langle \frac{1}{y} - \frac{1}{x}, x - y \rangle > 0$$

If x = y we have the following:

$$\frac{1}{y} = \frac{1}{x}$$
$$x - y = 0$$
$$\frac{1}{y} - \frac{1}{x} = 0$$

and

$$\langle \frac{1}{y} - \frac{1}{x}, x - y \rangle = 0$$

Thus, $\forall x, y \in dom f, \langle \nabla f(x) - \nabla f(y), x - y \rangle \geq 0$ so $f(x) = -\log(x)$ is convex. \square

2.2.3

Given Jensen's inequality in 2.2.1 for a convex function f(x):

$$f\bigg(\sum_{i=1}^{n} \lambda_i x_i\bigg) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

and having proved in 2.2.2 that $f(x) = -\log(x)$ is convex, we can write:

$$-\log\left(\sum_{i=1}^{n}\lambda_{i}x_{i}\right) \leq -\sum_{i=1}^{n}\lambda_{i}\log(x_{i})$$

Rearranging:

$$\sum_{i=1}^{n} \lambda_i x_i \ge \exp\left(\sum_{i=1}^{n} \log(x_i^{\lambda_i})\right)$$

Choosing $\lambda_i = \frac{1}{n}$:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \ge \exp\left(\sum_{i=1}^{n} \log(x_i^{\frac{1}{n}})\right)$$

The sum of logarithms is the logarithm of the products:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \ge \exp\left(\log((x_1 \cdots x_n)^{\frac{1}{n}})\right)$$

Thus we get our inequality:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \ge \sqrt[n]{x_1 \cdots x_n}$$

2.3

Given a polytope $C = co(a_1, ..., a_m)$ in X, we know that any point $x \in C$ can be expressed:

$$x = \sum_{i=1}^{m} \lambda_i a_i$$

where $\sum_{i=1}^{m} \lambda_i = 1$. Knowing that f is a convex function on C, we can write Jensen's inequality

$$f\left(\sum_{i=1}^{m} \lambda_i a_i\right) \le \sum_{i=1}^{m} \lambda_i f(a_i)$$

where $\sum_{i=1}^{m} \lambda_i = 1$. Because $\sum_{i=1}^{m} \lambda_i f(a_i)$ is a weighted average of $f(a_i)$'s we know that:

$$\sum_{i=1}^{m} \lambda_i f(a_i) \le \max_{\{a_i\}_{i=1}^m} f(a_i)$$

the weighted average will always be less than or equal to the maximum $f(a_i)$ value. Thus, we know that:

$$f\left(\sum_{i=1}^{m} \lambda_i a_i\right) \le \max_{\{a_i\}_{i=1}^{m}} f(a_i)$$

So the maximum of the convex function f on C is attained at one of the vertices $a_1,...,a_m$. \square

2.4

To prove that the function $f(x,y) = ||x-2y||^2$ is convex, we will show that the Hessian is a positive semi-definite matrix. The Hessian is defined as:

$$\nabla^2 f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial^2 x} & \frac{\partial f(x,y)}{\partial y \partial x} \\ \frac{\partial f(x,y)}{\partial x \partial y} & \frac{\partial f(x,y)}{\partial^2 y} \end{bmatrix}$$

Calculating each term:

$$\nabla^2 f(x,y) = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix}$$

we see that the Hessian is positive semi-definite and so the function is jointly convex.

2.5

The conditions for the existence of minimizers is that f is closed and coercive. The conditions for the uniqueness of minimizers is that f is strictly convex. Thus for the existence and uniqueness of minimizers for a convex function f, we require that f is closed, coercive, and strictly convex.

2.6

Part 3

Our problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2n} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{x}\|_1$$

where $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{x} \in \mathbb{R}^{d \times 1}$, $\mathbf{y} \in \mathbb{R}^{n \times 1}$, n is the number of data points, and d is the number of dimensions.

Equivalently, our problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^n \left(\left\langle \mathbf{a}^i, \mathbf{x} \right\rangle - y_i \right)^2 + \lambda ||x||_1$$

where $\mathbf{a}^i \in \mathbb{R}^{1 \times d}$ is the i^{th} row of \mathbf{A} , i = 1, ..., n.

3.1

The Proximal Stochastic Gradient Algorithm:

$$\mathbf{x}^{k+1} = prox_{\gamma_k \lambda \|\cdot\|_1} \left(\mathbf{x}^k - \gamma_k \left(\left\langle \mathbf{a}^{i_k}, \mathbf{x}^k \right\rangle - y_{i_k} \right) \mathbf{a}^{i_k} \right)$$

where:

$$\gamma_k = \frac{n}{\|A\|^2 \sqrt{k+1}}$$

and

$$prox_{\gamma_k\lambda\|\cdot\|_1}(x) = soft_{\gamma_k\lambda}(x) = \begin{cases} 0, & \text{if } |x| \le \gamma_k\lambda \\ x - \gamma_k\lambda, & \text{if } x > \gamma_k\lambda \\ x + \gamma_k\lambda, & \text{if } x < -\gamma_k\lambda \end{cases}$$

and i_k is sampled uniformly from $\{1, ..., n\}$ at each step k.

3.2

The Randomized Coordinate Proximal Gradient Algorithm:

$$x_j^{k+1} = \begin{cases} soft_{\gamma_j \lambda} (x_j^k - \frac{\gamma_j}{n} \langle a_j, \mathbf{A} \mathbf{x}^k - y \rangle), & \text{if } j = j_k \\ x_j^k, & \text{otherwise} \end{cases}$$

where we define $\mathbf{a}_j \in \mathbb{R}^{n \times 1}$ as the j^{th} column of \mathbf{A} , i = 1, ..., d.

$$\gamma_j = \frac{n}{\|\mathbf{a}_i\|^2}$$

and j_k is sampled uniformly from $\{1, ..., d\}$ at each step k.

Part 4

We are given the primal problem:

$$\min_{w \in \mathcal{H}} \frac{\lambda}{n} \sum_{i=1}^{n} (1 - y_i \langle w, \Lambda(x_i) \rangle)_+ + \frac{\lambda}{2} ||w||^2$$

We can express in the form:

$$\min_{w \in \mathcal{H}} g(w) + f(w)$$

where:

$$g(w) = \frac{\lambda}{n} \sum_{i=1}^{n} (1 - y_i \langle w, \Lambda(x_i) \rangle)_{+}$$

and

$$f(w) = \frac{\lambda}{2} ||w||^2$$

The corresponding dual problem:

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \langle \mathbf{K}_y \alpha, \alpha \rangle - \langle \mathbf{1}_n, \alpha \rangle + \sum_{i=1}^n i_{\left[0, \frac{1}{\lambda n}\right]}(\alpha_i)$$

We can express in the form:

$$\min_{\alpha \in \mathbb{R}^n} g^*(\alpha) + f^*(\alpha)$$

4.1