

Aufgaben zu Riemannsche Flächen – WS 2025/26

3. Blatt

Auf diesem Blatt bezeichnet $\Lambda_{\tau} := \mathbb{Z}1 \oplus \mathbb{Z}\tau$ stets das Gitter für $\tau \in \mathbb{H} := \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}.$

Aufgabe 8: Seien $\tau \in \mathbb{H}$ gegeben und

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) = \{ A \in \operatorname{Mat}(2 \times 2, \mathbb{Z}) \mid \det(A) = 1 \}.$$

Zeige: Wenn $\tau'=rac{a au+b}{c au+d}$ gilt, dann sind die beiden Tori $\mathbb{C}/\Lambda_{ au}$ und $\mathbb{C}/\Lambda_{ au'}$ isomorph.

Hinweis: Überlege zuerst, warum $\mathbb{C}/\Lambda_{\tau'}$ wohldefiniert ist.

Aufgabe 9: Sei $\alpha : \mathcal{F} \to \mathcal{G}$ ein Morphismus von Garben auf einem topologischen Raum X.

- i) Begründe, dass α zu jedem $x \in X$ einen Gruppenhomomorphismus $\alpha_x : \mathcal{F}_x \to \mathcal{G}_x$ auf den Halmen induziert.
- ii) Zeige: Ist $U \subset X$ offen und α_x für alle $x \in U$ injektiv, so ist auch $\alpha(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ injektiv.

Aufgabe 10: Auf \mathbb{CP}^1 betrachte die beiden offenen Mengen

$$U_0 := \mathbb{C} \quad \text{und} \quad U_\infty := \mathbb{CP}^1 \setminus \{0\}.$$

i) Sei $m \in \mathbb{Z}$. Zeige, dass durch die Zuordnung

$$U \mapsto \{(f_0, f_\infty) \mid f_j : U \cap U_j \to \mathbb{C} \text{ holomorph mit } \forall z \in U \cap U_0 \cap U_\infty : f_0(z) = z^m f_\infty(z)\}$$

eine Garbe von \mathbb{C} -Vektorräumen auf \mathbb{CP}^1 definiert ist. Wir bezeichnen sie mit $\mathcal{O}_{\mathbb{CP}^1}(m)$.

ii) Bestimme die *globalen Schnitte* $\mathcal{O}_{\mathbb{CP}^1}(m)(\mathbb{CP}^1)$ dieser Garbe in Abhängigkeit von $m \in \mathbb{Z}$. Hinweis: Betrachte die Potenzreihenentwicklungen der holomorphen Funktionen $f_0(z)$ bzw. $f_{\infty}(\frac{1}{z})$.

Aufgabe 11: Wir betrachten in dieser Aufgabe die Weierstraß ℘-Funktion, welche wie folgt definiert ist:

$$\wp(z) := \frac{1}{z^2} + \sum_{\lambda \in \Lambda_\tau \setminus \{0\}} \left(\frac{1}{(z+\lambda)^2} - \frac{1}{\lambda^2} \right)$$

Man kann mit Mitteln der Funktionentheorie zeigen, dass dies eine meromorphe Funktion auf dem Torus $T := \mathbb{C}/\Lambda_{\tau}$ definiert (nicht gefordert).

Zeige: \wp hat einen Pol der Ordnung 2 bei $z=0+\Lambda_{\tau}\in T$ und muss mindestens eine Nullstelle besitzen. Hinweis: Die Lokalisierung der Nullstellen ist nicht trivial:

Theorem. The zeros of $\wp(z,\tau)$ $(\tau \in \mathfrak{H}, z \in \mathbb{C})$ are given by

$$z = m + \frac{1}{2} + n\tau \pm \left(\frac{\log(5 + 2\sqrt{6})}{2\pi i} + 144\pi i \sqrt{6} \int_{0}^{i\infty} (t - \tau) \frac{\Delta(t)}{E_6(t)^{3/2}} dt \right)$$

 $(m,n\in\mathbb{Z})$, where $E_6(t)$ and $\Delta(t)$ $(t\in\mathfrak{H})$ denote the normalized Eisenstein series of weight 6 and unique normalized cusp form of weight 12 on $\mathrm{SL}_2(\mathbb{Z})$, respectively, and the integral is to be taken over the vertical line $t=\tau+i\mathbb{R}_+$ in \mathfrak{H} .

¹Betrachte dazu \wp als doppelt-periodische Funktion auf $\mathbb C$ zum Gitter Λ_τ auf, d.h. $\forall \lambda \in \Lambda_\tau : \wp(z+\lambda) = \wp(z)$, und benutze ein geeignetes Pol-/Nullstellen zählendes Integral.

²vgl: M. Eichler, D. Zagier, On the Zeros of the Weierstraß β-function, Math. Ann. 258, 399–407 (1982)