

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07D 277/06, A61K 31/425	A1	(11) International Publication Number: WO 99/48879 (43) International Publication Date: 30 September 1999 (30.09.99)
---	----	--

(21) International Application Number: PCT/GB99/00920	(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 24 March 1999 (24.03.99)	
(30) Priority Data: 9806309.2 24 March 1998 (24.03.98) GB 9811157.8 22 May 1998 (22.05.98) GB	
(71) Applicant (for all designated States except US): CELLTECH THERAPEUTICS LIMITED [GB/GB]; 216 Bath Road, Slough, Berkshire SL1 4EN (GB).	
(72) Inventors; and	
(75) Inventors/Applicants (for US only): ARCHIBALD, Sarah, Catherine [GB/GB]; 5 College Glen, Maidenhead, Berkshire SL6 6BL (GB). HEAD, John, Clifford [GB/GB]; 4 Dorchester Close, Maidenhead, Berkshire SL6 6RX (GB). WARRELOW, Graham, John [GB/GB]; 4 Wieland Road, Oakside, Northwood, Middlesex HA6 3QU (GB). PORTER, John, Robert [GB/GB]; 5 Farm Place, Henton, Chinnor, Oxfordshire OX9 4AD (GB).	
(74) Agent: MERCER, Christopher, Paul; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).	

(54) Title: THiocarboxamide derivatives and their use as inhibitors of alpha-4 integrins

(57) Abstract

Compounds of formula (1), wherein R¹ is a hydrogen atom or an optionally substituted cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group; Alk¹ is an optionally substituted aliphatic or heteroaliphatic chain; L¹ is a linker atom or group; r and s is each zero or an integer 1; R² and R³, which may be the same or different, is each a hydrogen or halogen atom or a straight or branched alkyl, haloalkyl, alkoxy, haloalkoxy, hydroxyl or nitro group; Alk² is a straight or branched alkylene chain; m is zero or an integer 1; R⁴ is a hydrogen atom or a methyl group; R⁵ is a hydrogen atom or a straight or branched alkyl group; R⁶ is a group -(CH₂)_tR⁷ in which t is zero or the integer 1 and R⁷ is an optionally substituted polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group; R is a carboxylic acid (-CO₂H) or a derivative thereof; and the salts, solvates and hydrates thereof are described. The compounds are able to inhibit the binding of alpha 4 integrins to their ligands and are of use in the prophylaxis and treatment of immune or inflammatory disorders.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

THiocarboxamide derivatives and their use as inhibitors of alpha-4 integrins

This invention relates to a series of thioamides, to compositions containing
5 them, to processes for their preparation, and to their use in medicine.

Over the last few years it has become increasingly clear that the physical
interaction of inflammatory leukocytes with each other and other cells of
the body plays an important role in regulating immune and inflammatory
10 responses [Springer, T A. *Nature*, 346, 425, (1990); Springer, T. A. *Cell*
76, 301, (1994)]. Many of these interactions are mediated by specific cell
surface molecules collectively referred to as cell adhesion molecules.

The adhesion molecules have been sub-divided into different groups on
15 the basis of their structure. One family of adhesion molecules which is
believed to play a particularly important role in regulating immune and
inflammatory responses is the integrin family. This family of cell surface
glycoproteins has a typical non-covalently linked heterodimer structure. At
least 14 different integrin alpha chains and 8 different integrin beta chains
20 have been identified [Sonnenberg, A. *Current Topics in Microbiology and
Immunology*, 184, 7, (1993)]. The members of the family are typically
named according to their heterodimer composition although trivial
nomenclature is widespread in this field. Thus the integrin termed $\alpha 4\beta 1$
25 consists of the integrin alpha 4 chain associated with the integrin beta 1
chain, but is also widely referred to as Very Late Antigen 4 or VLA4. Not
all of the potential pairings of integrin alpha and beta chains have yet been
observed in nature and the integrin family has been subdivided into a
number of subgroups based on the pairings that have been recognised
[Sonnenberg, A. *ibid*].

30

The importance of cell adhesion molecules in human leukocyte function
has been further highlighted by a genetic deficiency disease called
Leukocyte Adhesion Deficiency (LAD) in which one of the families of
leukocyte integrins is not expressed [Marlin, S. D. *et al*. *J. Exp. Med.* 164,
35 855 (1986)]. Patients with this disease have a reduced ability to recruit

leukocytes to inflammatory sites and suffer recurrent infections which in extreme cases may be fatal.

The potential to modify adhesion molecule function in such a way as to beneficially modulate immune and inflammatory responses has been extensively investigated in animal models using specific monoclonal antibodies that block various functions of these molecules [e.g. Issekutz, T. B. J. Immunol. 3394, (1992); Li, Z. *et al* Am. J. Physiol. 263, L723, (1992); Binns, R. M. *et al* J. Immunol. 157, 4094, (1996)]. A number of monoclonal antibodies which block adhesion molecule function are currently being investigated for their therapeutic potential in human disease.

One particular integrin subgroup of interest involves the $\alpha 4$ chain which can pair with two different beta chains $\beta 1$ and $\beta 7$ [Sonnenberg, A. *ibid*]. The $\alpha 4\beta 1$ pairing occurs on many circulating leukocytes (for example lymphocytes, monocytes and eosinophils) although it is absent or only present at low levels on circulating neutrophils. $\alpha 4\beta 1$ binds to an adhesion molecule (Vascular Cell Adhesion Molecule-1 also known as VCAM-1) frequently up-regulated on endothelial cells at sites of inflammation [Osborne, L. Cell, 62, 3, (1990)]. The molecule has also been shown to bind to at least three sites in the matrix molecule fibronectin [Humphries, M. J. *et al*. Ciba Foundation Symposium, 189, 177, (1995)]. Based on data obtained with monoclonal antibodies in animal models it is believed that the interaction between $\alpha 4\beta 1$ and ligands on other cells and the extracellular matrix plays an important role in leukocyte migration and activation [Yednock, T. A. *et al*, Nature, 356, 63, (1992); Podolsky, D. K. *et al*. J. Clin. Invest. 92, 373, (1993); Abraham, W. M. *et al*. J. Clin. Invest. 93, 776, (1994)].

The integrin generated by the pairing of $\alpha 4$ and $\beta 7$ has been termed LPAM-1 [Holzmann, B and Weissman, I. EMBO J. 8, 1735, (1989)] and like $\alpha 4\beta 1$, binds to VCAM-1 and fibronectin. In addition, $\alpha 4\beta 7$ binds to an adhesion molecule believed to be involved in the homing of leukocytes to mucosal tissue termed MAdCAM-1 [Berlin, C. *et al*, Cell, 74, 185, (1993)]. The interaction between $\alpha 4\beta 7$ and MAdCAM-1 may also be important at

sites of inflammation outside of mucosal tissue [Yang, X-D. *et al.*, PNAS, 91, 12604 (1994)].

Regions of the peptide sequence recognised by $\alpha 4\beta 1$ and $\alpha 4\beta 7$ when they bind to their ligands have been identified. $\alpha 4\beta 1$ seems to recognise LDV, IDA or REDV peptide sequences in fibronectin and a QIDSP sequence in VCAM-1 [Humphries, M. J. *et al.*, *ibid*] whilst $\alpha 4\beta 7$ recognises a LDT sequence in MAdCAM-1 [Briskin, M. J. *et al.*, J. Immunol. 156, 719, (1996)]. There have been several reports of inhibitors of these interactions being designed from modifications of these short peptide sequences [Cardarelli, P. M. *et al.* J. Biol. Chem. 269, 18668, (1994); Shroff, H. N. Bioorganic. Med. Chem. Lett. 6, 2495, (1996); Vanderslice, P. J. Immunol. 158, 1710, (1997)]. It has also been reported that a short peptide sequence derived from the $\alpha 4\beta 1$ binding site in fibronectin can inhibit a contact hypersensitivity reaction in a trinitrochlorobenzene sensitised mouse [Ferguson, T. A. *et al.*, PNAS 88, 8072, (1991)].

Since the alpha 4 subgroup of integrins are predominantly expressed on leukocytes their inhibition can be expected to be beneficial in a number of immune or inflammatory disease states. However, because of the ubiquitous distribution and wide range of functions performed by other members of the integrin family it is very important to be able to identify selective inhibitors of the alpha 4 subgroup.

We have now found a group of compounds which are potent and selective inhibitors of $\alpha 4$ integrins. Members of the group are able to inhibit $\alpha 4$ integrins such as $\alpha 4\beta 1$ and/or $\alpha 4\beta 7$ at concentrations at which they generally have no or minimal inhibitory action on α integrins of other subgroups. The compounds are thus of use in medicine, for example in the prophylaxis and treatment of immune or inflammatory disorders as described hereinafter.

Thus according to one aspect of the invention we provide a compound of formula (1)

wherein

- 5 R^1 is a hydrogen atom or an optionally substituted cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;
- 10 Alk^1 is an optionally substituted aliphatic or heteroaliphatic chain;
- 15 L^1 is a linker atom or group;
- 20 r and s is each zero or an integer 1;
- 25 R^2 and R^3 , which may be the same or different, is each a hydrogen or halogen atom or a straight or branched alkyl, haloalkyl, alkoxy, haloalkoxy, hydroxyl or nitro group;
- 30 Alk^2 is a straight or branched alkylene chain;
- 35 m is zero or an integer 1;
- 40 R^4 is a hydrogen atom or a methyl group;
- 45 R^5 is a hydrogen atom or a straight or branched alkyl group;
- 50 R^6 is a group $-(CH_2)_tR^7$ in which t is zero or the integer 1 and R^7 is an optionally substituted polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;
- 55 R is a carboxylic acid ($-CO_2H$) or a derivative thereof; and the salts, solvates and hydrates thereof.

It will be appreciated that compounds of formula (1) may have one or more chiral centres. Where one or more chiral centres is present, enantiomers or diastereomers may exist, and the invention is to be understood to extend to all such enantiomers, diasteromers and mixtures thereof, including racemates. Formula (1) and the formulae hereinafter are intended to represent all individual isomers and mixtures thereof, unless stated or shown otherwise.

In the compounds of formula (1), derivatives of the carboxylic acid group R include carboxylic acid esters and amides. Particular esters and amides include those -CO₂Alk⁵, -CONH₂, -CONHR¹² and -CON[R¹²]₂ groups described below in relation to the group R⁷.

5.

Alk² in the compounds of the invention may be for example a straight or branched C₁₋₃alkylene chain. Particular examples include -CH₂-, -CH(CH₃)- and -(CH₂)₂-.

10 When R⁵ in the compounds of formula (1) is a straight or branched alkyl group it may be a straight or branched C₁₋₆alkyl group, e.g. a C₁₋₃alkyl group such as a methyl or ethyl group.

15 When in the compounds of the invention L¹ is present as a linker atom or group it may be any divalent linking atom or group. Particular examples include -O- or -S- atoms or -C(O)-, -C(O)O-, -C(S)-, -S(O)-, -S(O)₂-, -N(R⁸)- [where R⁸ is a hydrogen atom or an optionally substituted alkyl group], -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸)-, -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)₂N(R⁸)-, -N(R⁸)S(O)₂-, -N(R⁸)CSN(R⁸)-, -or
20 -N(R⁸)SO₂N(R⁸)- groups. Where the linker group contains two R⁸ substituents, these may be the same or different.

When Alk¹ in compounds of formula (1) is an optionally substituted aliphatic chain it may be an optionally substituted C₁₋₁₀ aliphatic chain.
25 Particular examples include optionally substituted straight or branched chain C₁₋₆ alkyl, C₂₋₆ alkenyl, or C₂₋₆ alkynyl chains.

Heteroaliphatic chains represented by Alk¹ include the aliphatic chains just described but with each chain additionally containing one, two, three or
30 four heteroatoms or heteroatom-containing groups. Particular heteroatoms or groups include atoms or groups L² where L² is as defined above for L¹ when L¹ is a linker atom or group. Each L² atom or group may interrupt the aliphatic chain, or may be positioned at its terminal carbon atom to connect the chain to an adjoining atom or group.

Particular examples of aliphatic chains represented by Alk¹ include optionally substituted -CH₂-, -CH₂CH₂-, -CH(CH₃)-, -C(CH₃)₂, -(CH₂)₂CH₂-, -CH(CH₃)CH₂-, -(CH₂)₃CH₂-, -CH(CH₃)CH₂CH₂-, -CH₂CH(CH₃)CH₂-, -C(CH₃)₂CH₂-, -(CH₂)₄CH₂-, -(CH₂)₅CH₂-, -CHCH-, 5 -CHCHCH₂-, -CH₂CHCH-, -CHCHCH₂CH₂-, -CH₂CHCHCH₂-, -(CH₂)₂CHCH-, -CC-, -CCCH₂-, -CH₂CC-, -CCCH₂CH₂-, -CH₂CCCH₂-, or -(CH₂)₂CC- chains. Where appropriate each of said chains may be optionally interrupted by one or two atoms and/or groups L² to form an optionally substituted heteroaliphatic chain. Particular examples include 10 optionally substituted -L²CH₂-, -CH₂L²CH₂-, -L²(CH₂)₂-, -CH₂L²(CH₂)₂-, -(CH₂)₂L²CH₂-, -L²(CH₂)₃- and -(CH₂)₂L²(CH₂)₂- chains.

The optional substituents which may be present on aliphatic or heteroaliphatic chains represented by Alk¹ include one, two, three or more 15 substituents where each substituent may be the same or different and is selected from halogen atoms, e.g. fluorine, chlorine, bromine or iodine atoms, or C₁-6alkoxy, e.g. methoxy or ethoxy, thiol, C₁-6alkylthio e.g. methylthio or ethylthio, amino or substituted amino groups. Substituted amino groups include -NHR⁹ and -N(R⁹)₂ groups where R⁹ is an 20 optionally substituted straight or branched alkyl group as defined above for R⁵. Where two R⁹ groups are present these may be the same or different. Particular examples of substituted chains represented by Alk¹ include those specific chains just described substituted by one, two, or three halogen atoms such as fluorine atoms, for example chains of the type 25 -CH(CF₃)-, -C(CF₃)₂- -CH₂CH(CF₃)-, -CH₂C(CF₃)₂-, -CH(CF₃)- and -C(CF₃)₂CH₂.

Optionally substituted heterocycloaliphatic groups represented by R⁷ include optionally substituted C₃-10heterocycloaliphatic groups. Particular 30 examples include optionally substituted C₃-10heterocycloalkyl, e.g. C₃-7 heterocycloalkyl or C₃-10heterocycloalkenyl, e.g. C₃-7heterocycloalkenyl groups, each of said groups containing one, two, three or four heteroatoms or heteroatom-containing groups L² as just defined.

35 Optionally substituted polycycloaliphatic groups represented by R⁷ include optionally substituted C₇-10 bi- or tricycloalkyl or C₇-10bi- or tricycloalkenyl

groups. Optionally substituted polyheterocycloaliphatic groups represented by R⁷ include the optionally substituted polycycloalkyl groups just described, but with each group additionally containing one, two, three or four L³ atoms or groups.

5

Particular examples of R⁷ polycycloaliphatic, heterocycloaliphatic and polyheterocycloaliphatic groups include optionally substituted adamantyl, norbornyl, norbornenyl, tetrahydrofuranyl, pyrrolidine, e.g. 2- or 3-pyrrolyl, pyrrolidinyl, pyrrolidinone, oxazolidinyl, oxazolidinone, dioxolanyl, e.g. 1,3-dioxolanyl, imidazolinyl, e.g. 2-imidazolinyl, imidazolidinyl, pyrazolinyl, e.g. 2-pyrazolinyl, pyrazolidinyl, pyran, e.g. 2- or 4-pyran, piperidinyl, piperidinone, 1,4-dioxanyl, morpholinyl, morpholinone, 1,4-dithianyl, thiomorpholinyl, piperazinyl, 1,3,5-trithianyl, oxazinyl, e.g. 2H-1,3-, 6H-1,3-, 6H-1,2-, 2H-1,2- or 4H-1,4- oxazinyl, 1,2,5-oxathiazinyl, isoazinyl, e.g. o- or p-isoazinyl, oxathiazinyl, e.g. 1,2,5 or 1,2,6-oxathiazinyl, or 1,3,5-oxadiazinyl groups.

10

The optional substituents which may be present on the R⁷ polycycloaliphatic, heterocycloaliphatic or polyheterocycloaliphatic groups include one, two, three or more substituents selected from halogen atoms, e.g. fluorine, chlorine, bromine or iodine atoms, or hydroxyl, C₁₋₆alkoxy, e.g. methoxy or ethoxy, thiol, C₁₋₆alkylthio e.g. methylthio or ethylthio, amino or substituted amino groups. Substituted amino groups include -NHR⁹ and -N(R⁹)₂ groups where R⁹ is as defined above. Additionally, when R⁷ is a heterocycloaliphatic group containing one or more nitrogen atoms each nitrogen atom may be optionally substituted by a group -(L³)_p(Alk³)_qR¹⁰ in which L³ is -C(O)-, -C(O)O-, -C(S)-, -S(O)₂-, -CON(R⁸)-, -CSN(R⁸)-, -SON(R⁸)- or SO₂N(R⁸)-; p is zero or an integer 1; Alk³ is an optionally substituted aliphatic or heteroaliphatic chain; q is zero or an integer 1; and R¹⁰ is a hydrogen atom or an optionally substituted cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, polyheterocyclo-aliphatic, aromatic or heteroaromatic group.

15

Optionally substituted aliphatic or heteroaliphatic chains represented by Alk³ include those optionally substituted chains described above for Alk¹.

Optionally substituted cycloaliphatic, heterocycloaliphatic, polycyloaliphatic or polyheterocycloaliphatic groups represented by R¹⁰ include those groups just described for R⁷. Optional substituents which may be present on these groups include those described above in relation to Alk¹ aliphatic and heteroaliphatic chains.

Optionally substituted aromatic or heteroaromatic groups represented by R¹⁰ include those aromatic and heteroaromatic groups generally and specifically described below for R⁷.

10

In the compounds of formula (1), optionally substituted aromatic groups represented by the group R⁷ and/or R¹⁰ include for example optionally substituted monocyclic or bicyclic fused ring C₆-12 aromatic groups, such as optionally substituted phenyl, 1- or 2-naphthyl, 1- or 2-tetrahydro-15 naphthyl, indanyl or indenyl groups.

15

Optionally substituted heteroaromatic groups, represented by the group R⁷ and/or R¹⁰ in compounds of formula (1) include for example optionally substituted C₁-9 heteroaromatic groups containing for example one, two, three or four heteroatoms selected from oxygen, sulphur or nitrogen atoms. In general, the heteroaromatic groups may be for example monocyclic or bicyclic fused ring heteroaromatic groups. Monocyclic heteroaromatic groups include for example five- or six-membered heteroaromatic groups containing one, two, three or four heteroatoms selected from oxygen, sulphur or nitrogen atoms. Bicyclic heteroaromatic groups include for example nine- to thirteen-membered fused-ring heteroaromatic groups containing one, two or more heteroatoms selected from oxygen, sulphur or nitrogen atoms.

20

Particular examples of heteroaromatic groups of these types include optionally substituted pyrrolyl, furyl, thienyl, imidazolyl, N-methylimidazolyl, N-ethylimidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazole, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 1,3,5-triazinyl, 1,2,4-triazinyl, 1,2,3-triazinyl, benzofuryl, [2,3-dihydro]benzofuryl, isobenzofuryl, benzothienyl, benzo-

triazolyl, indolyl, isoindolyl, benzimidazolyl, imidazo[1,2-a]pyridyl, benzothiazolyl, benzoxazolyl, benzopyranyl, [3,4-dihydro]benzopyranyl, quinazolinyl, naphthyridinyl, pyrido[3,4-b]pyridyl, pyrido[3,2-b]pyridyl, pyrido[4,3-b]pyridyl, quinolinyl, isoquinolinyl, tetrazolyl, 5,6,7,8-tetrahydroquinolinyl, 5,6,7,8-tetrahydroisoquinolinyl, and imidyl, e.g. succinimidyl, phthalimidyl, or naphthalimidyl such as 1,8-naphthalimidyl.

Optional substituents which may be present on the aromatic or heteroaromatic groups represented by R⁷ and/or R¹⁰ include one, two, three or more substituents, each selected from an atom or group R¹¹ in which R¹¹ is -R^{11a} or -Alk⁴(R^{11a})_m, where R^{11a} is a halogen atom, or an amino (-NH₂), substituted amino, nitro, cyano, amidino, hydroxyl (-OH), substituted hydroxyl, formyl, carboxyl (-CO₂H), esterified carboxyl, thiol (-SH), substituted thiol, -COR¹² [where R¹² is an -Alk⁴(R^{11a})_m, aryl or heteroaryl group], -CSR¹², -SO₃H, -SO₂R¹², -SO₂NH₂, -SO₂NHR¹², SO₂N(R¹²)₂, -CONH₂, -CSNH₂, -CONHR¹², -CSNHR¹², -CON[R¹²]₂, -CSN(R¹²)₂, -N(R⁸)SO₂R¹², -N(SO₂R¹²)₂, -N(R⁸)SO₂NH₂, -N(R⁸)SO₂NHR¹², -N(R⁸)SO₂N(R¹²)₂, -N(R⁸)COR¹², -N(R⁸)CON(R¹²)₂, -N(R⁸)CSN(R¹²)₂, -N(R⁸)CSR¹², -N(R⁸)C(O)OR¹², -SO₂NHet¹ [where Het¹ is an optionally substituted C₅-7cyclicamino group optionally containing one or more other -O- or -S- atoms or -N(R⁸)-, -C(O)- or -C(S)- groups], -CONHet¹, -CSNHet¹, -N(R⁸)SO₂NHet¹, -N(R⁸)CONHet¹, -N(R⁸)CSNHet¹, -SO₂N(R⁸)Het² [where Het² is an optionally substituted monocyclic C₅-7carbocyclic group optionally containing one or more -O- or -S- atoms or -N(R⁸)-, -C(O)- or -C(S)- groups], -CON(R⁸)Het², -CSN(R⁸)Het², -N(R⁸)CON(R⁸)Het², -N(R⁸)CSN(R⁸)Het², aryl or heteroaryl group; Alk⁴ is a straight or branched C₁-6alkylene, C₂-6alkenylene or C₂-6alkynylene chain, optionally interrupted by one, two or three -O- or -S- atoms or -S(O)_n [where n is an integer 1 or 2] or -N(R¹³)- groups [where R¹³ is a hydrogen atom or C₁-6alkyl, e.g. methyl or ethyl group]; and m is zero or an integer 1, 2 or 3. It will be appreciated that when two R⁸ or R¹² groups are present in one of the above substituents, the R⁸ or R¹² groups may be the same or different.

35 When in the group -Alk⁴(R^{11a})_m m is an integer 1, 2 or 3, it is to be understood that the substituent or substituents R^{11a} may be present on

any suitable carbon atom in -Alk⁴. Where more than one R^{11a} substituent is present these may be the same or different and may be present on the same or different atom in -Alk⁴. Clearly, when m is zero and no substituent R^{11a} is present the alkylene, alkenylene or alkynylene chain represented by Alk⁴ becomes an alkyl, alkenyl or alkynyl group.

When R^{11a} is a substituted amino group it may be for example a group -NHR¹² [where R¹² is as defined above] or a group -N(R¹²)₂ wherein each R¹² group is the same or different.

10

When R^{11a} is a halogen atom it may be for example a fluorine, chlorine, bromine, or iodine atom.

15

When R^{11a} is a substituted hydroxyl or substituted thiol group it may be for example a group -OR¹² or a -SR¹² or -SC(=NH)NH₂ group respectively.

20

Esterified carboxyl groups represented by the group R^{11a} include groups of formula -CO₂Alk⁵ wherein Alk⁵ is a straight or branched, optionally substituted C₁₋₈alkyl group such as a methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl or t-butyl group; a C₆₋₁₂arylC₁₋₈alkyl group such as an optionally substituted benzyl, phenylethyl, phenylpropyl, 1-naphthylmethyl or 2-naphthylmethyl group; a C₆₋₁₂aryl group such as an optionally substituted phenyl, 1-naphthyl or 2-naphthyl group; a C₆₋₁₂aryloxyC₁₋₈alkyl group such as an optionally substituted phenoxyethyl, phenoxyethyl, 25 1-naphthyl-oxymethyl, or 2-naphthyoxyethyl group; an optionally substituted C₁₋₈alkanoyloxyC₁₋₈alkyl group, such as a pivaloyloxymethyl, propionyloxyethyl or propionyloxypropyl group; or a C₆₋₁₂aroyloxyC₁₋₈alkyl group such as an optionally substituted benzoyloxyethyl or benzoyloxypropyl group. Optional substituents present on the Alk⁵ group include R^{11a} 30 substituents described above.

30

When Alk⁴ is present in or as a substituent it may be for example a methylene, ethylene, n-propylene, i-propylene, n-butylene, i-butylene, s-butylene, t-butylene, ethenylene, 2-propenylene, 2-butenylene, 3-butenylene, ethynylene, 2-propynylene, 2-butynylene or 3-butynylene.

chain, optionally interrupted by one, two, or three -O- or -S-, atoms or -S(O)-, -S(O)₂- or -N(R⁸)- groups.

Aryl or heteroaryl groups represented by the groups R^{11a} or R¹² include
5 mono- or bicyclic optionally substituted C₆-12 aromatic or C₁-9 heteroaromatic groups as described above for the group R⁷. The aromatic and heteroaromatic groups may be attached to the remainder of the compound of formula (1) by any carbon or hetero e.g. nitrogen atom as appropriate.

10 When -NHET¹ or -HET² forms part of a substituent R⁷ each may be for example an optionally substituted pyrrolidinyl, pyrazolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, piperidinyl or thiazolidinyl group. Additionally HET² may represent for example, an optionally substituted cyclopentyl or
15 cyclohexyl group. Optional substituents which may be present on -NHET¹ or -HET² include those substituents described above in relation to Alk¹ chains.

Particularly useful atoms or groups represented by R¹¹ include fluorine,
20 chlorine, bromine or iodine atoms, or C₁-6alkyl, e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl, optionally substituted phenyl, pyridyl, pyrrolyl, furyl, thiazolyl, or thienyl, C₁-6alkylamino, e.g. methylamino or ethylamino, C₁-6hydroxyalkyl, e.g. hydroxymethyl or hydroxyethyl, carboxyC₁-6alkyl, e.g. carboxyethyl, C₁-6alkylthio e.g. methylthio or ethylthio, carboxyC₁-25 alkylthio, e.g. carboxymethylthio, 2-carboxyethylthio or 3-carboxypropylthio, C₁-6alkoxy, e.g. methoxy or ethoxy, hydroxyC₁-6alkoxy, e.g. 2-hydroxyethoxy, optionally substituted phenoxy, pyridyloxy, thiazolyoxy, phenylthio or pyridylthio, C₅-7cycloalkoxy, e.g. cyclopentyloxy, haloC₁-6alkyl, e.g. trifluoromethyl, haloC₁-6alkoxy, e.g. trifluoromethoxy, C₁-30 6alkylamino, e.g. methylamino or ethylamino, amino (-NH₂), aminoC₁-6alkyl, e.g. aminomethyl or aminoethyl, C₁-6dialkylamino, e.g. dimethylamino or diethylamino, C₁-6alkylaminoC₁-6alkyl, e.g. ethylaminoethyl, C₁-6dialkylaminoC₁-6alkyl, e.g. diethylaminoethyl, aminoC₁-6alkoxy, e.g. aminoethoxy, C₁-6alkylaminoC₁-6alkoxy, e.g. methylaminoethoxy, C₁-35 6dialkylaminoC₁-6alkoxy, e.g. dimethylaminoethoxy, diethylaminoethoxy, isopropylaminoethoxy, or dimethylaminopropoxy, imido, such as

phthalimido or naphthalimido, e.g. 1,8-naphthalimido, nitro, cyano, amidino, hydroxyl (-OH), formyl [HC(O)-], carboxyl (-CO₂H), -CO₂Alk⁵ [where Alk⁵ is as defined above], C₁₋₆ alkanoyl e.g. acetyl, optionally substituted benzoyl, thiol (-SH), thioC₁₋₆alkyl, e.g. thiomethyl or thioethyl, -SC(=NH)NH₂, sulphonyl (-SO₃H), C₁₋₆alkylsulphonyl, e.g. methylsulphonyl, aminosulphonyl (-SO₂NH₂), C₁₋₆alkylaminosulphonyl, e.g. methylaminosulphonyl or ethylaminosulphonyl, C₁₋₆dialkylaminosulphonyl, e.g. dimethylaminosulphonyl or diethylaminosulphonyl, phenylaminosulphonyl, carboxamido (-CONH₂), C₁₋₆alkylaminocarbonyl, e.g. methylaminocarbonyl or ethylaminocarbonyl, C₁₋₆dialkylaminocarbonyl, e.g. dimethylaminocarbonyl or diethylaminocarbonyl, aminoC₁₋₆alkylaminocarbonyl, e.g. aminoethylaminocarbonyl, C₁₋₆dialkylaminoC₁₋₆alkylaminocarbonyl, e.g. diethylaminoethylaminocarbonyl, aminocarbonylamino, C₁₋₆alkylaminocarbonylamino, e.g. methylaminocarbonylamino or ethylaminocarbonylamino, C₁₋₆dialkylaminocarbonylamino, e.g. dimethylaminocarbonylamino or diethylaminocarbonylamino, C₁₋₆alkylaminocarbonylC₁₋₆alkylamino, e.g. methylaminocarbonylmethylamino, aminothiocarbonylamino, C₁₋₆alkylaminothiocarbonylamino, e.g. methylaminothiocarbonylamino or ethylaminothiocarbonylamino, C₁₋₆dialkylaminothiocarbonylamino, e.g. dimethylaminothiocarbonylamino or diethylaminothiocarbonylamino, C₁₋₆alkylaminothiocarbonylC₁₋₆alkylamino, e.g. ethylaminothiocarbonylmethylamino, -CONHC(=NH)NH₂, C₁₋₆alkylsulphonylamino, e.g. methylsulphonylamino or ethylsulphonylamino, C₁₋₆dialkylsulphonylamino, e.g. dimethylsulphonylamino or diethylsulphonylamino, optionally substituted phenylsulphonylamino, aminosulphonylamino (-NHSO₂NH₂), C₁₋₆alkylaminosulphonylamino, e.g. methylaminosulphonyl-amino or ethylaminosulphonylamino, C₁₋₆dialkylaminosulphonylamino, e.g. dimethylaminosulphonylamino or diethylaminosulphonylamino, optionally substituted morpholinesulphonylamino or morpholinesulphonylC₁₋₆alkylamino, optionally substituted phenylaminosulphonylamino, C₁₋₆alkanoylamino, e.g. acetylamino, aminoC₁₋₆alkanoylamino e.g. aminoacetylarnino, C₁₋₆dialkylaminoC₁₋₆alkanoylamino, e.g. dimethylaminoacetylarnino, C₁₋₆alkanoylaminoC₁₋₆alkyl, e.g. acetylaminomethyl, C₁₋₆alkanoylaminoC₁₋₆alkylamino, e.g. acetamidoethylarnino, C₁₋₆alkoxycarbonylamino, e.g. methoxycarbonylamino, ethoxycarbonylamino or t-butoxycarbonylamino or optionally substituted benzyloxy, pyridylmethoxy, thiazolylmethoxy,

benzyloxycarbonylamino, benzyloxycarbonylaminoC₁₋₆alkyl e.g. benzyl-oxy carbonylaminoethyl, benzothio, pyridylmethylthio or thiazolylmethylthio groups.

5 Where desired, two R¹¹ substituents may be linked together to form a cyclic group such as a cyclic ether, e.g. a C₁₋₆alkylenedioxy group such as methylenedioxy or ethylenedioxy.

It will be appreciated that where two or more R¹¹ substituents are present,
10 these need not necessarily be the same atoms and/or groups. In general, the substituent(s) may be present at any available ring position in the aromatic or heteroaromatic group represented by R⁷.

Alkyl groups represented by the groups R² or R³ in compounds of the
15 invention include for example straight or branched C₁₋₆alkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl or t-butyl groups. Alkoxy groups represented by the groups R² or R³ include straight or branched C₁₋₆alkoxy groups such as methoxy or ethoxy groups. Halogen atoms represented by the groups R² or R³ include for example fluorine,
20 chlorine, bromine or iodine atoms. When R² and/or R³ is a haloalkyl or haloalkoxy group it may be for example a haloC₁₋₆alkyl or haloC₁₋₆alkoxy group containing one, two or three halogen atoms selected from fluorine, chlorine, bromine or iodine atoms. Particular examples of groups of this type include -CF₃, -OCF₃, -CCl₃, -OCCl₃, -CHF₂, -OCHF₂, -CHCl₂,
25 -OCHCl₂, -CH₂F, -OCH₂F, -CH₂Cl and -OCH₂Cl groups.

The presence of certain substituents in the compounds of formula (1) may enable salts of the compounds to be formed. Suitable salts include pharmaceutically acceptable salts, for example acid addition salts derived
30 from inorganic or organic acids, and salts derived from inorganic and organic bases.

Acid addition salts include hydrochlorides, hydrobromides, hydroiodides, alkylsulphonates, e.g. methanesulphonates, ethanesulphonates, or
35 isethionates, arylsulphonates, e.g. p-toluenesulphonates, besylates or napsylates, phosphates, sulphates, hydrogen sulphates, acetates,

trifluoroacetates, propionates, citrates, maleates, fumarates, malonates, succinates, lactates, oxalates, tartrates and benzoates.

Salts derived from inorganic or organic bases include alkali metal salts
5 such as sodium or potassium salts, alkaline earth metal salts such as magnesium or calcium salts, and organic amine salts such as morpholine, piperidine, dimethylamine or diethylamine salts.

Particularly useful salts of compounds according to the invention include
10 pharmaceutically acceptable salts, especially acid addition pharmaceutically acceptable salts.

Generally in the compounds of the invention the group R is preferably a -CO₂H group.

15 Alk² in compounds of formula (1) is preferably a -CH₂- chain and m is preferably an integer 1.

20 R⁴ and R⁵ in compounds of the invention is each preferably a hydrogen atom.

In general in compounds of formula (1) -Alk¹L¹- is preferably -CH₂O- or -CON(R⁸)-, particularly -CONH-.

25 The group R¹ in compounds of formula (1) is preferably an optionally substituted aromatic or heteroaromatic group. Particularly useful groups of these types include optionally substituted phenyl, pyridyl or pyrimidinyl groups.

30 Particularly useful classes of compounds according to the invention are those wherein R⁶ is a group -R⁷ [i.e. where t is zero] where R⁷ is an optionally substituted heterocycloaliphatic, aromatic or heteroaromatic group as defined herein. Particularly useful groups of this type include optionally substituted C₅-7heterocycloaliphatic, especially optionally substituted pyrrolidinyl or thiazolidinyl, optionally substituted phenyl and optionally substituted C₅-7heteroaromatic, especially optionally substituted

pyridinyl groups. Optional substituents on these groups include in particular R¹¹ atoms or groups where the group is an aromatic or heteroaromatic group and -(L³)_p(Alk³)_qR¹⁰ groups as described earlier where the group is a nitrogen-containing heterocycloaliphatic group such as a pyrrolidinyl or thiazolidinyl group. Particularly useful -(L³)_p(Alk³)_qR¹⁰ groups include those in which L³ is a -CO-group. Alk³ in these groups is preferably present (i.e. q is preferably an integer 1) and in particular is a -CH₂- chain. Compounds of this type in which R⁶ is a hydrogen atom or an optionally substituted aromatic or heteroaromatic group, especially an optionally substituted phenyl, pyridyl or imidazolyl group are particularly preferred.

Compounds according to the invention are potent and selective inhibitors of $\alpha 4$ integrins. The ability of the compounds to act in this way may be simply determined by employing tests such as those described in the Examples hereinafter.

The compounds are of use in modulating cell adhesion and in particular are of use in the prophylaxis and treatment of diseases or disorders involving inflammation in which the extravasation of leukocytes plays a role. The invention extends to such uses and to the use of the compounds for preparing a medicament for treating these diseases and disorders. Particular diseases or disorders of this type include inflammatory arthritis such as rheumatoid arthritis vasculitis or polydermatomyositis, multiple sclerosis, allograft rejection, diabetes, inflammatory dermatoses such as psoriasis or dermatitis, asthma and inflammatory bowel disease.

For the prophylaxis or treatment of disease the compounds according to the invention may be administered as pharmaceutical compositions, and according to a further aspect of the invention we provide a pharmaceutical composition which comprises a compound of formula (1) together with one or more pharmaceutically acceptable carriers, excipients or diluents.

Pharmaceutical compositions according to the invention may take a form suitable for oral, buccal, parenteral, nasal, topical or rectal administration, or a form suitable for administration by inhalation or insufflation.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets, lozenges or capsules prepared by conventional means with pharmaceutically acceptable excipients such as

- 5 binding agents (e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g. lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g. magnesium stearate, talc or silica); disintegrants (e.g. potato starch or sodium glycollate); or wetting agents (e.g. sodium lauryl sulphate). The tablets
- 10 may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable
- 15 additives such as suspending agents, emulsifying agents, non-aqueous vehicles and preservatives. The preparations may also contain buffer salts, flavouring, colouring and sweetening agents as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound.

For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.

- 25 The compounds for formula (1) may be formulated for parenteral administration by injection e.g. by bolus injection or infusion. Formulations for injection may be presented in unit dosage form, e.g. in glass ampoule or multi dose containers, e.g. glass vials. The compositions for injection may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising, preserving and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g. sterile pyrogen-free water, before use.
- 30
- 35 In addition to the formulations described above, the compounds of formula (1) may also be formulated as a depot preparation. Such long acting

formulations may be administered by implantation or by intramuscular injection.

For nasal administration or administration by inhalation, the compounds
5 for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation for pressurised packs or a nebuliser, with the use of suitable propellant, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.

10

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack or dispensing device may be accompanied by instructions for administration.

15

The quantity of a compound of the invention required for the prophylaxis or treatment of a particular condition will vary depending on the compound chosen, and the condition of the patient to be treated. In general, however, daily dosages may range from around 100ng/kg to 100mg/kg
20 e.g. around 0.01mg/kg to 40mg/kg body weight for oral or buccal administration, from around 10ng/kg to 50mg/kg body weight for parenteral administration and around 0.05mg to around 1000mg e.g. around 0.5mg to around 1000mg for nasal administration or administration by inhalation or insufflation.

25

The compounds of the invention may be prepared by a number of processes as generally described below and more specifically in the Examples hereinafter. In the following process description, the symbols R, R¹-R⁶, L¹, Alk¹, Alk², m, r and s when used in the formulae depicted
30 are to be understood to represent those groups described above in relation to formula (1) unless otherwise indicated. In the reactions described below, it may be necessary to protect reactive functional groups, for example hydroxy, amino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the
35 reactions. Conventional protecting groups may be used in accordance with standard practice [see, for example, Green, T. W. in "Protective

Groups in Organic Synthesis", John Wiley and Sons, 1991]. In some instances, deprotection may be the final step in the synthesis of a compound of formula (1) and the processes according to the invention described hereinafter are to be understood to extend to such removal of 5 protecting groups.

Thus according to a further aspect of the invention, a compound of formula (1) in which R is a -CO₂H group may be obtained by hydrolysis of an ester of formula (2):

10

where R¹³ is an alkyl group.

15

The hydrolysis may be performed using either an acid or a base depending on the nature of R¹³, for example an organic acid such as trifluoroacetic acid or an inorganic base such as lithium hydroxide optionally in an aqueous organic solvent such as an amide, e.g. a

20 substituted amide such as dimethylformamide, an ether, e.g. a cyclic ether such as tetrahydrofuran or dioxane or an alcohol, e.g. methanol at around ambient temperature. Where desired, mixtures of such solvents may be used.

25 Intermediate esters of formula (2) may be prepared by treatment of a corresponding ester of formula (3):

with a thiation reagent, such as Lawesson's Reagent, in an anhydrous solvent, for example a cyclic ether such as tetrahydrofuran, at an elevated temperature such as the reflux temperature.

This reaction may not be particularly suitable with starting materials in which other carbonyl groups are present, for example in L¹ and/or R⁶, and which might undesirably participate in the reaction. To avoid this the reaction with the thiation reagent may be performed earlier in the synthesis of the compound of the invention with an intermediate in which other carbonyl groups are absent and any required carbonyl groups then subsequently introduced by for example acylation as generally described hereinafter.

• 15

Esters of formula (3) may be prepared by coupling an amine of formula (4):

20

or a salt thereof with an acid R^6CO_2H or an active derivative thereof. Active derivatives of acids include anhydrides, esters and halides.

The coupling reaction may be performed using standard conditions for reactions of this type. Thus for example the reaction may be carried out in a solvent, for example an inert organic solvent such as an amide, e.g. a

substituted amide such as dimethylformamide, an ether, e.g. a cyclic ether such as tetrahydrofuran, or a halogenated hydrocarbon, such as dichloromethane, at a low temperature, e.g. around -30°C to around ambient temperature, optionally in the presence of a base, e.g. an organic
5 base such as an amine, e.g. triethylamine, pyridine, or dimethylaminopyridine, or a cyclic amine, such as N-methylmorpholine.

Where an acid R^6CO_2H is used, the reaction may additionally be performed in the presence of a condensing agent, for example a diimide
10 such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide or N,N'-dicyclohexylcarbodiimide, advantageously in the presence of a catalyst such as a N-hydroxy compound e.g. a N-hydroxytriazole such as 1-hydroxybenzotriazole. Alternatively, the acid may be reacted with a chloroformate, for example ethylchloroformate, prior to reaction with the amine of formula
15 (3).

The esters of formula (3) and acids R^6CO_2H are either known compounds or may be obtained from simpler compounds by one or more standard synthetic methods employing substitution, oxidation, reduction or cleavage
20 reactions. Particular substitution approaches include conventional alkylation, arylation, heteroarylation, acylation, thioacetylation, halogenation, sulphonylation, nitration, formylation and coupling procedures. It will be appreciated that these methods may also be used to modify the compounds of formula (1) and the esters or formula (2) where appropriate
25 functional groups exist in these compounds.

Thus, for example compounds of the invention and intermediates thereto may be prepared by alkylation, arylation or heteroarylation. For example compounds containing a L¹H or L³H group may be alkylated or arylated
30 using a reagent $R^1(Alk^1)_rX$ or $R^{10}(Alk^3)_qX$ in which X is a leaving atom or group such as a halogen atom, e.g. a fluorine, bromine, iodine or chlorine atom or a sulphonyloxy group such as an alkylsulphonyloxy, e.g. trifluoromethylsulphonyloxy or arylsulphonyloxy, e.g. p-toluenesulphonyloxy group.

The alkylation or arylation reaction may be carried out in the presence of a base such as a carbonate, e.g. caesium or potassium carbonate, an alkoxide, e.g. potassium t-butoxide, or a hydride, e.g. sodium hydride, in a dipolar aprotic solvent such as an amide, e.g. a substituted amide such as

5. dimethylformamide or an ether, e.g. a cyclic ether such as tetrahydrofuran.

In another example, compounds containing a L¹H or -L³H group may be functionalised by acylation or thioacetylation, for example by reaction with a

10. reagent R¹(Alk¹)_rL¹X [wherein L¹ is a -C(O)-, -C(S)-, or -N(R⁸)C(S)- group], R¹⁰(Alk³)_qCOX or R¹⁰(Alk³)_qNHCOX in the presence of a base, such as a hydride, e.g. sodium hydride or an amine, e.g. triethylamine or N-methylmorpholine, in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane or carbon tetrachloride or an amide, e.g. dimethyl-

15. formamide, at for example ambient temperature, or by reaction with R¹(Alk¹)_rCO₂H or R¹⁰(Alk³)_qCO₂H or an activated derivative thereof, for example as described above for the preparation of esters of formula (3).

In a further example a compound may be obtained by sulphonylation of a

20. compound where R¹(Alk¹)_r(L¹)_s is an -OH group by reaction with a reagent R¹(Alk¹)_rL¹Hal [in which L¹ is -S(O)- or -SO₂- and Hal is a halogen atom such as a chlorine atom] in the presence of a base, for example an inorganic base such as sodium hydride in a solvent such as an amide, e.g. a substituted amide such as dimethylformamide at for

25. example ambient temperature.

In another example, a compound where R¹(Alk¹)_r(L¹)_s is a -L¹H group, may be coupled with a reagent R¹OH (where R¹ is other than a hydrogen atom) or R¹Alk¹OH in a solvent such as tetrahydrofuran in the presence of

30. a phosphine, e.g. triphenylphosphine and an activator such as diethyl, diisopropyl- or dimethylazodicarboxylate to yield a compound containing a R¹(Alk¹)_rO- group.

In a further example, ester groups -CO₂Alk⁵ in the compounds may be

35. converted to the corresponding acid [-CO₂H] by acid- or base-catalysed

hydrolysis depending on the nature of the group Alk⁵ using the reactants and conditions described above for the hydrolysis of esters of formula (2).

In another example, -OR¹² groups [where R¹² represents an alkyl group such as methyl group] in compounds of formula (1) may be cleaved to the corresponding alcohol -OH by reaction with boron tribromide in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane at a low temperature, e.g. around -78°C.

5 Alcohol [-OH] groups may also be obtained by hydrogenation of a corresponding -OCH₂R¹² group (where R¹² is an aryl group) using a metal catalyst, for example palladium on a support such as carbon in a solvent such as ethanol in the presence of ammonium formate, cyclohexadiene or hydrogen, from around ambient to the reflux temperature. In another 10 example, -OH groups may be generated from the corresponding ester [-CO₂Alk⁵] or aldehyde [-CHO] by reduction, using for example a complex metal hydride such as lithium aluminium hydride or sodium borohydride in a solvent such as methanol.

15 Aminosulphonylamino [-NHSO₂NH₂] groups in the compounds may be obtained, in another example, by reaction of a corresponding amine [-NH₂] with sulphamide in the presence of an organic base such as pyridine at an elevated temperature, e.g. the reflux temperature.

20 In a further example amine (-NH₂) groups may be alkylated using a reductive alkylation process employing an aldehyde and a borohydride, for example sodium triacetoxyborohydride or sodium cyanoborohydride, in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane, a ketone such as acetone, or an alcohol, e.g. ethanol, where necessary in 25 the presence of an acid such as acetic acid at around ambient temperature.

30 In a further example, amine [-NH₂] groups in compounds of formula (1) may be obtained by hydrolysis from a corresponding imide by reaction 35 with hydrazine in a solvent such as an alcohol; e.g. ethanol at ambient temperature.

In another example, a nitro [-NO₂] group may be reduced to an amine [-NH₂], for example by catalytic hydrogenation using for example hydrogen in the presence of a metal catalyst, for example palladium on a support such as carbon in a solvent such as an ether, e.g. tetrahydrofuran or an alcohol e.g. methanol, or by chemical reduction using for example a metal, e.g. tin or iron, in the presence of an acid such as hydrochloric acid.

Aromatic halogen substituents in the compounds may be subjected to halogen-metal exchange with a base, for example a lithium base such as n-butyl or t-butyl lithium, optionally at a low temperature, e.g. around -78°C, in a solvent such as tetrahydrofuran and then quenched with an electrophile to introduce a desired substituent. Thus, for example, a formyl group may be introduced by using dimethylformamide as the electrophile; a thiomethyl group may be introduced by using dimethyldisulphide as the electrophile.

In another example, sulphur atoms in the compounds, for example when present in a linker group L¹ or L³ may be oxidised to the corresponding sulphoxide or sulphone using an oxidising agent such as a peroxy acid, e.g. 3-chloroperoxybenzoic acid, in an inert solvent such as a halogenated hydrocarbon, e.g. dichloromethane, at around ambient temperature.

N-oxides of compounds of formula (1) may be prepared for example by oxidation of the corresponding nitrogen base using an oxidising agent such as hydrogen peroxide in the presence of an acid such as acetic acid, at an elevated temperature, for example around 70°C to 80°C, or alternatively by reaction with a peracid such as peracetic acid in a solvent, e.g. dichloromethane, at ambient temperature.

Salts of compounds of formula (1) may be prepared by reaction of a compound of formula (1) with an appropriate base in a suitable solvent or mixture of solvents e.g. an organic solvent such as an ether e.g. diethylether, or an alcohol, e.g. ethanol using conventional procedures.

Where it is desired to obtain a particular enantiomer of a compound of formula (1) this may be produced from a corresponding mixture of enantiomers using any suitable conventional procedure for resolving enantiomers.

5

Thus for example diastereomeric derivatives, e.g. salts, may be produced by reaction of a mixture of enantiomers of formula (1) e.g. a racemate, and an appropriate chiral compound, e.g. a chiral base. The diastereomers may then be separated by any convenient means, for example by 10 crystallisation and the desired enantiomer recovered, e.g. by treatment with an acid in the instance where the diastereomer is a salt.

In another resolution process a racemate of formula (1) may be separated using chiral High Performance Liquid Chromatography. Alternatively, if 15 desired a particular enantiomer may be obtained by using an appropriate chiral intermediate in one of the processes described above.

The following Examples illustrate the invention. All temperatures are in °C. The following abbreviations are used:

20	EDC - 1-(3-dimethylaminopropyl)3-ethycarbodiimide;	DMSO - dimethylsulphoxide;
	DMF - dimethylformamide;	THF - tetrahydrofuran;
	HOBT - 1-hydroxybenzotriazole;	NMM - N-methylmorpholine;
	TFA - trifluoroacetic acid;	Ph - phenyl;
	DCM - dichloromethane;	EtOAc - ethyl acetate;
25	BOC - <u>tert</u> -butoxycarbonyl;	LDA - lithium diisopropylamide
	MeOH - methanol;	Ar - aryl;
	tyr - tyrosine;	pyr - pyridine;
	HetAr - heteroaryl;	Bu - butyl
	thiopro - thioproline;	
30	Me - methyl	

INTERMEDIATE 1

N-BOC-D-thioproline-(O-2,6-dichlorobenzyl)-L-tyrosine methyl ester

EDC (634mg, 3.3mmol) was added to a solution of *N*-BOC-*D*-thioproline 35 (699mg, 3mmol), (O-2,6-dichlorobenzyl)-*L*-tyrosine methyl ester hydrochloride (1.17g, 3mmol), HOBT (446mg, 3.3mmol) and NMM (692μl,

6.3mmol) in DCM (30ml). The mixture was stirred for 4h at room temperature then diluted with DCM (20ml) and washed with dilute hydrochloric acid (1M, 50ml), saturated NaHCO₃ solution (50ml) and water (50ml). The DCM solution was dried (Na₂SO₄) and evaporated under reduced pressure to give the title compound (1.70g) as a white foam. δH (DMSO-d₆, 300K) 8.41 (1H, br s, CONH), 7.57-7.43 (3H, m, ArH), 7.15 (2H, d, \downarrow 8.5Hz, ArH), 6.96 (2H, d, \downarrow 8.6 Hz, ArH), 5.18 (2H, s, OCH₂Ar), 4.6-4.4 (2H, br m, CH_αthiopro + CH_αtyr), 4.56 (1H, d, \downarrow 8.9Hz, NCH₂HB(S)), 4.23 (1H, d, \downarrow 9.0Hz, NCH₂HB(S)), 3.64 (3H, s, CO₂Me), 3.19 (1H, dd, \downarrow 7.5, 11.5Hz, CHCH₂HB(S)), 3.04 (1H, dd, \downarrow 5.1, 13.7Hz, CHCH₂HB(Ar)), 2.85 (1H, dd, \downarrow 9.6, 13.7Hz, CHCH₂HB(Ar)), 2.7 (1H, br m, CHCH₂HB(S)) and 1.33 (9H, br s, tBu); m/z (ESI, 60V) 591 M⁺ + Na.

INTERMEDIATE 2

15 **Methyl (2R)-3-[4-[(2,6-dichlorobenzyl)oxy]phenyl]-2-[([(4S)-3-(tert-butoxycarbonyl)-1,3-thiazolan-4-yl]carbothioyl]amino]propanoate**
Lawesson's reagent (202mg, 0.5mmol) was added to a solution of Intermediate 1 (569mg, 1mmol) in THF (10ml). The suspension was refluxed for 3.5h to give a yellow solution. The solvent was removed under reduced pressure and the residue purified by column chromatography (SiO₂; DCM) to give the title compound as a colourless gum (345mg, 59%). δH (DMSO-d₆, 300K) 10.3 (1H, br s, CSNH), 7.57-7.42 (3H, m, ArH), 7.17 (2H, d, \downarrow 8.3Hz, ArH), 6.96 (2H, d, \downarrow 8.6Hz, ArH), 5.27 (1H, br s, CH_αthiapro), 5.18 (2H, s, OCH₂Ar), 4.88 (1H, br s, CH_αtyr), 4.65 (1H, d, \downarrow 9.1Hz, NCH₂HB(S)), 4.37 (1H, d, \downarrow 9.2Hz, NCH₂HB(S)), 3.66 (3H, s, CO₂Me), 3.33-3.27 (1H, m, CHCH₂HB(S)), 3.18 (1H, dd, \downarrow 5.5, 14.0Hz, CHCH₂HB(Ar)), 3.05 (1H, dd, \downarrow 9.1, 14.0Hz, CHCH₂HB(Ar)), 2.73 (1H, br m, CHCH₂HB(S)) and 1.31 (9H, br s, CMe₃); m/z (ESI, 60V) 605 (M⁺Na).

30

INTERMEDIATE 3

Methyl (2R)-3-[4-[(2,6-dichlorobenzyl)oxy]phenyl]-2-[([(4S)-1,3-thiazolan-4-yl]carbothioyl]amino]propanoate hydrochloride
Anhydrous HCl gas was bubbled through a solution of Intermediate 2 (324mg, 0.554mmol) in EtOAc (10ml) for one minute. After 30min the solvent was removed under reduced pressure to give the title compound

(292mg) as a yellow solid. δ H (DMSO-d₆, 300K) 11.19 (1H, br d, \downarrow 7.3Hz, CSNH), 7.57-7.43 (3H, m, ArH), 7.20 (2H, d, \downarrow 8.6Hz, ArH), 6.98 (2H, d, \downarrow 8.6Hz, ArH), 5.21-5.18 (1H, m, CH₂tyr), 5.18 (2H, s, OCH₂Ar), 4.65 (1H, br t, \downarrow 7.7Hz, CH₂thiopra), 4.33 (1H, d, \downarrow 9.6Hz, NCH₂HBS), 4.28 (1H, d, \downarrow 9.6Hz, NCH₂HBS), 3.69 (3H, s, CO₂Me), 3.33 (1H, dd, \downarrow 7.1, 11.2Hz, CHCH₂HBS), 3.23 (1H, dd, \downarrow 5.2, 13.9Hz, CH₂H_BAr), 3.08 (1H, dd, \downarrow 9.8, 13.9Hz, CH₂H_BAr) and 2.61 (1H, dd, \downarrow 8.5, 11.2Hz, CHCH₂HBS); m/z (ESI, 60V) 485 ($M^{+}+1$).

10 **INTERMEDIATE 4**

Methyl (2R)-2-{[(4S)-3-acetyl-1,3-thiazolan-4-yl]carbothioyl}amino)-3-{4-[(2,6-dichlorobenzyl)oxy]phenyl}propanoate

Acetic anhydride (57 μ l, 0.602mmol) was added to a solution of Intermediate 3 (285mg, 0.547mmol) and NMM (60 μ l, 0.547mmol) in DCHM(10ml). The mixture was stirred at room temperature for 3h, diluted with DCM (100ml), washed with dilute HCl (aqueous) (20ml), dried (Na₂SO₄) and evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂; EtOAc/hexane, 50:50 to 75:25) to give the title compound as a colourless oil (285mg). δ H (DMSO-d₆, 400K) 9.67 (1H, br s, CSNH), 7.51-7.39 (3H, m, ArH), 7.17 (2H, d, \downarrow 8.6Hz, ArH), 6.97 (2H, d, \downarrow 8.6Hz, ArH), 5.36 (1H, dd, \downarrow 5.8, 8.1Hz, CH₂tyr), 5.26 (2H, s, OCH₂Ar), 5.15 (1H, dd, \downarrow 4.6, 7.4Hz, CH₂thiopro), 4.83 (1H, d, \downarrow 9.3Hz, NCH₂HBS), 4.51 (1H, d, \downarrow 9.3Hz, NCH₂HBS), 3.68 (3H, s, CO₂Me), 3.39 (1H, dd, \downarrow 7.5, 11.7Hz, CHCH₂HBS), 3.21 (1H, dd, \downarrow 5.8, 14.2Hz, CH₂H_BAr), 3.13 (1H, dd, \downarrow 8.3, 14.2Hz, CH₂H_BAr), 3.07 (1H, dd, \downarrow 4.8, 11.7Hz, CHCH₂HBS) and 1.95 (3H, s, NCOCH₃); m/z (ESI, 60V) 527 ($M^{+}+1$).

EXAMPLE 1

30 (A) **(2R)-2-{[(4S)-3-Acetyl-1,3-thiazolan-4-yl]carbothioyl}amino)-3-{4-[(2,6-dichlorobenzyl)oxy]phenyl}propanoic acid**
 (B) **(2R)-2-{[(4R)-3-Acetyl-1,3-thiazolan-4-yl]carbothioyl}amino)-3-{4-[(2,6-dichlorobenzyl)oxy]phenyl}propanoic acid**

Lithium hydroxide monohydrate (25mg, 0.58mmol) was added to a solution of Intermediate 4 (280mg, 0.531mmol) in THF (5ml) and water (5ml). After 1h at room temperature the THF was removed under reduced

pressure, the aqueous residue acidified and extracted with DCM (2 x 50ml). The extracts were dried (Na_2SO_4) and evaporated under reduced pressure to give a fluffy white solid (233mg). Separation by preparative HPLC gave the title compound, diastereoisomer A. δH (DMSO-d₆, 390K)

5 9.55 (1H, br s, CSNH), 7.51-7.39 (3H, m, ArH), 7.17 (2H, d, \downarrow 8.7Hz, ArH), 6.96 (2H, d, \downarrow 8.7ArH), 5.26 (2H, s, OCH₂Ar), 5.26-5.22 (1H, m, CH α tyr), 5.15 (1H, dd, \downarrow 4.8, 7.4Hz, CH α thiapro), 4.84 (1H, d, \downarrow 9.3Hz, NCH₂HB_S), 4.50 (1H, d, \downarrow 9.3Hz, NCH₂HB_S), 3.38 (1H, dd, \downarrow 7.5, 11.7Hz, CHCH₂HB_S) 3.25 (1H, dd, \downarrow 5.4, 14.3Hz, CH₂HBAr), 3.06 (1H, dd, \downarrow 4.7, 11.7Hz, CHCH₂HB_S), and 1.94 (3H, s, NCOCH₃); m/z (ESI, 60V), 513 ($M^{+}+1$). and the title compound, diastereoisomer B δH (DMSO-d₆, 390K) 9.49 (1H, br s, CSHN) 7.51-7.39 (3H, m, ArH), 7.20 (2H, d, \downarrow 8.6Hz, ArH), 6.95 (2H, d, \downarrow 8.6Hz, ArH), 5.30-5.25 (1H, m, CH α tyr), 5.25 (2H, s, OCH₂Ar), 5.16 (1H, dd, \downarrow 4.3, 7.5Hz, CH α thiopro), 4.81 (1H, d, \downarrow 9.4Hz, NCH₂HB_S), 15 4.46 (1H, d, \downarrow 9.4Hz, NCH₂HB_S), 3.45 (1H, dd, \downarrow 7.5, 11.7Hz, CHCH₂HB_S), 3.26 (1H, dd, \downarrow 5.5, 14.3Hz, CH₂HBAr), 3.20-3.10 (2H, m, CH₂HBAr + CHCH₂HB_S) and 1.93 (3H, s, NCOCH₃); m/z (ESI, 60V) 513 ($M^{+}+1$).

20 The following assays can be used to demonstrate the potency and selectivity of the compounds according to the invention. In each of these assays an IC₅₀ value was determined for each test compound and represents the concentration of compound necessary to achieve 50% inhibition of cell adhesion where 100% = adhesion assessed in the absence of the test compound and 0% = absorbance in wells that did not receive cells.

25

$\alpha_4\beta_1$ Integrin-dependent Jurkat cell adhesion to VCAM-Ig

96 well NUNC plates were coated with F(ab)₂ fragment goat anti-human IgG Fc γ -specific antibody [Jackson Immuno Research 109-006-098; 100 μl at 2 $\mu\text{g/ml}$ in 0.1M NaHCO₃, pH 8.4], overnight at 4°. The plates were washed (3x) in phosphate-buffered saline (PBS) and then blocked for 1h in PBS/1% BSA at room temperature on a rocking platform. After washing (3x in PBS) 9 ng/ml of purified 2d VCAM-Ig diluted in PBS/1% BSA was 30 added and the plates left for 60 minutes at room temperature on a rocking platform. The plates were washed (3x in PBS) and the assay then 35

performed at 37° for 30 min in a total volume of 200 µl containing 2.5 x 10⁵ Jurkat cells in the presence or absence of titrated test compounds.

Each plate was washed (2x) with medium and the adherent cells were

5 fixed with 100µl methanol for 10 minutes followed by another wash. 100µl 0.25% Rose Bengal (Sigma R4507) in PBS was added for 5 minutes at room temperature and the plates washed (3x) in PBS. 100µl 50% (v/v) ethanol in PBS was added and the plates left for 60min after which the absorbance (570nm) was measured.

10

$\alpha_4\beta_7$ -Integrin-dependent JY cell adhesion to MAdCAM-Ig

This assay was performed in the same manner as the $\alpha_4\beta_1$ assay except that MAdCAM-Ig (150ng/ml) was used in place of 2d VCAM-Ig and a sub-line of the β -lympho blastoid cell-line JY was used in place of Jurkat cells.

15 The IC₅₀ value for each test compound was determined as described in the $\alpha_4\beta_1$ integrin assay.

$\alpha_5\beta_1$ -Integrin-dependent K562 cell adhesion to fibronectin

96 well tissue culture plates were coated with human plasma fibronectin (Sigma F0895) at 5µg/ml in phosphate-buffered saline (PBS) for 2 hr at 37°C. The plates were washed (3x in PBS) and then blocked for 1h in 100µl PBS/1% BSA at room temperature on a rocking platform. The blocked plates were washed (3x in PBS) and the assay then performed at 37°C in a total volume of 200µl containing 2.5x 10⁵ K562 cells, phorbol-12-myristate-13-acetate at 10ng/ml, and in the presence or absence of titrated test compounds. Incubation time was 30 minutes. Each plate was fixed and stained as described in the $\alpha_4\beta_1$ assay above.

$\alpha_m\beta_2$ -dependent human polymorphonuclear neutrophils adhesion to plastic

96 well tissue culture plates were coated with RPMI 1640/10% FCS for 2h at 37°C. 2 x 10⁵ freshly isolated human venous polymorphonuclear neutrophils (PMN) were added to the wells in a total volume of 200µl in the presence of 10ng/ml phorbol-12-myristate-13-acetate, and in the presence or absence of test compounds, and incubated for 20min at 37°C followed by 30min at room temperature. The plates were washed in medium and

100 μ l 0.1% (w/v) HMB (hexadecyl trimethyl ammonium bromide, Sigma H5882) in 0.05M potassium phosphate buffer, pH 6.0 added to each well. The plates were then left on a rocker at room temperature for 60 min. Endogenous peroxidase activity was then assessed using tetramethyl benzidine (TMB) as follows: PMN lysate samples mixed with 0.22% H₂O₂ (Sigma) and 50 μ g/ml TMB (Boehringer Mannheim) in 0.1M sodium acetate/citrate buffer, pH 6.0 and absorbance measured at 630nm.

α IIb/ β 3 -dependent human platelet aggregation

- 10 Human platelet aggregation was assessed using impedance aggregation on the Chronolog Whole Blood Lumiaggregometer. Human platelet-rich plasma (PRP) was obtained by spinning fresh human venous blood anticoagulated with 0.38% (v/v) tri-sodium citrate at 220xg for 10 min and diluted to a cell density of 6 x 10⁸/ml in autologous plasma. Cuvettes contained equal volumes of PRP and filtered Tyrode's buffer (g/liter: NaCl 8.0; MgCl₂.H₂O 0.427; CaCl₂ 0.2; KCl 0.2; D-glucose 1.0; NaHCO₃ 1.0; NaHPO₄.2H₂O 0.065). Aggregation was monitored following addition of 2.5 μ M ADP (Sigma) in the presence or absence of inhibitors.
- 15
- 20 In the above assays the compounds of the invention generally have IC₅₀ values in the α ₄ β ₁ and α ₄ β ₇ assays of 1 μ M and below. In the other assays featuring α integrins of other subgroups the same compounds had IC₅₀ values of 50 μ M and above thus demonstrating the potency and selectivity of their action against α ₄ integrins.

CLAIMS

1. A compound of formula (1):

5

wherein

10 R¹ is a hydrogen atom or an optionally substituted cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;

15 Alk¹ is an optionally substituted aliphatic or heteroaliphatic chain;

L¹ is a linker atom or group;

r and s is each zero or an integer 1;

20 R² and R³, which may be the same or different, is each a hydrogen or halogen atom or a straight or branched alkyl, haloalkyl, alkoxy, haloalkoxy, hydroxyl or nitro group;

Alk² is a straight or branched alkylene chain;

m is zero or an integer 1;

R⁴ is a hydrogen atom or a methyl group;

25 R⁵ is a hydrogen atom or a straight or branched alkyl group;

R⁶ is a group -(CH₂)_tR⁷ in which t is zero or the integer 1 and R⁷ is an optionally substituted polycycloaliphatic, heterocycloaliphatic, polyhetero-cycloaliphatic, aromatic or heteroaromatic group;

30 R is a carboxylic acid (-CO₂H) or a derivative thereof; and the salts, solvates and hydrates thereof.

2. A compound according to Claim 1 wherein R is a -CO₂H group.

3. A compound according to Claim 1 or Claim 2 wherein Alk is a -CH₂- chain and m is an integer 1.

4. A compound according to Claim 1 to Claim 3 wherein R⁴ and R⁵ is each a hydrogen atom.

5. A compound according to Claim 1 to Claim 4 wherein -Alk¹L¹- is a -CH₂O- or -CON(R⁸)- group where R⁸ is a hydrogen atom or a straight or branched alkyl group.

6. A compound according to Claim 1 to Claim 5 wherein R¹ is an optionally substituted aromatic or heteroaromatic group.

10 7. A compound according to Claim 6 wherein R¹ is an optionally substituted phenyl, pyridyl or pyrimidinyl group.

8. A compound according to any one of Claim 1 to Claim 7 wherein R⁶ is an optionally substituted heterocycloaliphatic, aromatic or heteroaromatic group.

15 9. A compound according to Claim 8 wherein R⁶ is an optionally substituted pyrrolidinyl, thiazolidinyl, phenyl or pyridyl group.

20 10. A pharmaceutical composition comprising a compound of formula (1):

25 wherein
R¹ is a hydrogen atom or an optionally substituted cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;
Alk¹ is an optionally substituted aliphatic or heteroaliphatic chain;
L¹ is a linker atom or group;
r and s is each zero or an integer 1;

R² and R³, which may be the same or different, is each a hydrogen or halogen atom or a straight or branched alkyl, haloalkyl, alkoxy, haloalkoxy, hydroxyl or nitro group;

Alk² is a straight or branched alkylene chain;

5 m is zero or an integer 1;

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a straight or branched alkyl group;

R⁶ is a group -(CH₂)_tR⁷ in which t is zero or the integer 1 and R⁷ is an optionally substituted polycycloaliphatic, heterocycloaliphatic, polyhetero-cycloaliphatic, aromatic or heteroaromatic group;

10 R is a carboxylic acid (-CO₂H) or a derivative thereof; and the salts, solvates and hydrates thereof; together with one or more pharmaceutically acceptable carriers, excipients or diluents..

INTERNATIONAL SEARCH REPORT

Inte. onal Application No
PCT/GB 99/00920

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D277/06 A61K31/425

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07D C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>BACH E ET AL: "Anomalous optical rotation and circular dichroism of N-thioacylated alpha.-amino acids and deriva" ACTA CHEM. SCAND., vol. 20, no. 10, 1966, pages 2781-2794, XP002109904 see page 2783; table 1, the compounds of formula no. V</p> <p>----</p> <p>-/-</p>	1-4,8,9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

26 July 1999

Date of mailing of the international search report

13.08.99

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3015

Authorized officer

Fink, D

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 99/00920

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BARRETT G C: "Circular dichroism of N-thiobenzoyl-L-alpha.-amino-acids. III. Their circular dichroism through the near-ultraviolet wavelength range" J. CHEM. SOC. C, no. 1, 1967, pages 1-5, XP002109905 see page 4; the table, see the first 5 compounds (and their cyclohexylammonium salts) beneath the heading: "alpha-Amino-acids (aromatic)" ---	1-4,8,9
X	JEPSON J B ET AL: "Reactions of alpha-Thioacylamino-acids. Their conversion into Thiazolones and Derivatives Thereof." J. CHEM. SOC., 1955, pages 1791-1797, XP002109906 see page 1794; table 1, see the entries 5-7 ---	1-4,8,9
X	TSUNEMATSU H ET AL: "Hydrolysis of phenylthiazolones of p-guanidinophenylalanine and arginine by trypsin and related enzymes" J. BIOCHEM., vol. 94, no. 4, 1983, pages 1119-1125, XP002109907 see page 1122; scheme 1, the N-thiobenzoyl-L-amino acid wherein R = -CH ₂ -C ₆ H ₄ -NH-C(=NH)-NH ₂ ---	1-4,8,9
X	HARTKE K ET AL: "Dithio and thiono esters. Part 61. Synthesis of alpha.-amino dithioesters and endothiodipeptides" J. PRAKT. CHEM./CHEM.-ZTG., vol. 338, no. 3, 1996, pages 251-256, XP002109908 see page 252, the general formula 7; and page 256, table 2, the compound no. 70 ---	1-4,8,9
X	DATABASE CROSSFIRE 'Online!' Beilstein Informationssysteme GmbH, Frankfurt DE XP002109909 see the compound with the Beilstein Registry Number: 3161750 & CORNFORTH: CHEM. PENICILLIN, 1949, page 688, 799 and 800 Princeton Book Review ---	1-4 -/-

INTERNATIONAL SEARCH REPORT

Inte. onal Application No

PCT/GB 99/00920

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 015, no. 345 (C-0864), 3 September 1991 (1991-09-03) -& JP 03 135962 A (SHIKOKU CHEM CORP), 10 June 1991 (1991-06-10) abstract ---	1-4,8
A	WO 97 36859 A (RICO JOSEPH G ;SEARLE & CO (US); YU STELLA S (US); CHEN BARBARA B) 9 October 1997 (1997-10-09) page 287 - page 292; claim 1 page 120; example 47 page 31, line 4 - line 26 ---	1-10
A	DE 196 54 483 A (MERCK PATENT GMBH) 2 January 1998 (1998-01-02) page 20 - page 21; claim 1 page 2, line 44 - line 50 page 3, line 33 - line 40 ---	1-10
P,X	WO 99 06436 A (LOMBARDO LOUIS JOHN ;SEMKO CHRISTOPHER M (US); THORSETT EUGENE D () 11 February 1999 (1999-02-11) page 156; claim 1 pages 144-145; table II, the examples no. 86 and 91 examples 86,91; table II ---	1-4,8-10
P,X	WO 99 06437 A (SEMKO CHRISTOPHER M ;THORSETT EUGENE D (US); KREFT ANTHONY (US); A) 11 February 1999 (1999-02-11) page 235 - page 247; claim 1 ---	1-10

INTERNATIONAL SEARCH REPORT

International application No.
PCT/GB 99/00920

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 1-10 (in part)
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-10 (in part)

Present claim 1 relates to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible.

Moreover, the expression "...or a derivative thereof..." (cf. the definition of the substituent group R in the present claim 1) is considered to be unclear in the sense of Article 6 PCT since this term is non-limiting as regards the structure of the compound of formula (1).

Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds of the present formula (1) wherein $m = 1$ and Alk_2 is a $-\text{CH}_2-$ chain, and wherein R is a carboxylic acid ($-\text{COOH}$) group.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 99/00920

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
JP 03135962 A	10-06-1991	JP 2098990 C JP 7121917 B		22-10-1996 25-12-1995
WO 9736859 A	09-10-1997	AU 2536097 A EP 0891325 A		22-10-1997 20-01-1999
DE 19654483 A	02-01-1998	AU 3343097 A CZ 9804249 A WO 9800395 A EP 0907637 A NO 986090 A		21-01-1998 17-03-1999 08-01-1998 14-04-1999 23-12-1998
WO 9906436 A	11-02-1999	AU 8585198 A		22-02-1999
WO 9906437 A	11-02-1999	AU 8823498 A		22-02-1999