Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №7

По дисциплине «Основы профессиональной деятельности»

Вариант 1418

Выполнил:

Петров Вячеслав Маркович

Группа Р3108

Принял:

Вербовой Александр Александрович

Оглавление

Текст задания	3
Исходный код синтезируемой команды	3
Трассировка микропрограммы	4
Код программы проверки команды на языке ассемблера	4
Описание тестовых программ	7
Подготовка к проверке	8
Методика проверки тестов	8
Вывод	8

Текст задания

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

Введите номер варианта 1418

- 1. MADC M сложение с учетом переноса аккумулятора с ячейкой памяти с записью результата в ячейку памяти и без установки N/Z/V/C
- 2. Код операции 9...
- 3. Тестовая программа должна начинаться с адреса 040F₁₆

Исходный код синтезируемой команды

Адрес ячейки	новый код МК	Комментарий				
3D	81E0104002	if CR(12) = 1 then GOTO RESERVED E0 // Команда 9XXX теперь обрабатывается микрокомандой с адресом @E0				
Цикл исполнения команды MADC(E0—E4)						
E0	80E2011040	if PS(C) = 0 then GOTO E2 // Если флаг С не выставлен, то				
E1	0001009401	DR + 1 ? DR // Инкрементируем DR без установки флагов				
E2	0001009011	AC + DR ? DR // Сложение чисел и запись результата в регистр DR без установки флагов				
E3	020000000	DR ? MEM(AR) // Запись результата в ячейку памяти				
E4	80C4101040	GOTO INT @ C4 // Завершение цикла выполнения команды, переход к циклу прерываний				

Трассировка микропрограммы

МР до	Содержимое памяти и регистров процессора после выборки и исполнения команды									
выборки МК	MR	IP	CR	AR	DR	SP	BR	AC	NZVC	МР (СчМК)
E0	80E2011040	011	9501	501	020D	000	0010	0000	0100	E2
E2	0001009011	011	9501	501	020D	000	0010	0000	0100	E3
E3	0200000000	011	9501	501	020D	000	0010	0000	0100	E4
E4	80C4101040	011	9501	501	020D	000	0010	0000	0100	C4

Код программы проверки команды на языке ассемблера

ORG 0x0

TT1: WORD 0x0; Тест 1 - Проверка корректного результата при C=0

ТТ2: WORD 0x0; Тест 2 - Проверка на отсутствие изменения NZVC

ТТ3: WORD 0x0; Тест 3 - Проверка на корректный результат при C = 1 +

проверка на сам флаг

TT4: WORD 0x0; Тест 4 – Аналогично 1ому тесту, только с другой адресацией

TT6: WORD 0x0; Тест 6 – Крайний случай

MEM: WORD 0x7C1

ORG 0x40F

START: CALL \$TEST1; Вызов первого теста

LD \$TT1; Загрузка результата 1ого теста в AC

NOP; Проверка

CALL \$TEST2; Вызов второго теста

LD \$TT2; Загрузка результата 20го теста в AC

NOР ; Проверка

CALL \$TEST3; Вызов третьего теста

LD \$TT3; Загрузка результата 3его теста

NOР ; Проверка

CALL \$TEST4; Вызов четвертого теста

LD \$TT4; Загрузка результата 4его теста

NOP ; Проверка

CALL \$TEST5; Вызов пятого теста

NOP ; Проверка

CALL \$TEST6; Вызов шестого теста

LD \$TT6; Загрузка результата бого теста

NOP ; Проверка

HLT

ORG 0x500

A1: WORD 0хA234 ; Первое слагаемое

```
B1: WORD 0x020D
                              ; Второе слагаемое / результат сложения
      RES1: WORD ?; Результат сложения командной ADD
TEST1: CLA
      CLC
     LD A1
      ADC B1
      ST RES1; Запись результата A1 + B1 -> RES1
     LD A1
      WORD 0х9501; Выполнение команды MADC
      LD
            В1; Запись результата МАДС в АС
      CMP
            RES1; Проверка результатов
      BNE
            ERR1
      LD #0x1
                  ; Запись работы теста
      ST $TT1
                  ; при корректной работе
      RET
ERR1: LD #0x0
                  ; Запись работы теста
      ST $TT1
                  ; при некорректной работе
      RET
      ORG 0x600
      A2: WORD 0хA234; Первое слагаемое
      B2: WORD 0xFFFF ; Второе слагаемое / результат сложения двух слагаемых
TEST2: CLA
      CLC
      LD
           A2
      WORD 0x9601; Вызов MADC
      BLO ERR2; Carry Flag выставляться не должен
     LD
            #0х1; Запись работы теста
      ST
            $ТТ2; при корректной работе
      RET
ERR2: LD
                  ; Запись работы теста
          \#0x0
      ST
           $TT2
                 ; при некорректной работе
      RET
      ORG 0x700
      A3:
                        0хА234; Первое слагаемое
            WORD
      B3:
            WORD
                        0xFFFF; Второе слагаемое / результат сложения командой
MADC c C = 1
      RES3: WORD ?; Результат команды ADC для A3 и B3
TEST3: CLA
      CLC
      CMC
      LD A3
```

```
ST $RES3; ADC + также выставляется сам CF
      LD A3
      WORD 0x9701; Выполнение MADC с выставленным флагом С
      LD
            B3
      BHIS ERR3; Сравнение С с 0, проверка на то, был ли сброшен флаг
      CMP
            RES3; Сравнение с командой ADC,
      BNE
            ERR3; результаты должны совпадать
      LD
           #0х1; Запись работы теста
      ST
            $ТТ3; при корректной работе
      RET
ERR3: LD
           #0х0; Запись работы теста
      ST
            $ТТ3; при некорректной работе
      RET
      ORG
            0x750
      A4:
            WORD
                        0хА234; Первое слагаемое
      B4:
            WORD
                        0х0234; Второе слагаемое / результат сложения командой
MADC
      RES4: WORD ?; Результат команды ADC для A4 и B4
TEST4: CLA
      CLC
      LD A4
      ADC B4
      ST $RES4; ADC
      LD A4
      WORD 0x9EF6; Выполнение MADC с адресацией
      LD
      CMP
            RES4; Сравнение с командой ADC,
      BNE
            ERR4; результаты должны совпадать
      LD
           #0х1; Запись работы теста
      ST
            $ТТ4; при корректной работе
      RET
ERR4: LD
           #0х0; Запись работы теста
      ST
            $ТТ4; при некорректной работе
      RET
      ORG 0x7A0
                        0хА234; Первое слагаемое
      A5:
            WORD
      RES5: WORD ?; Результат команды ADC для A4 и B4
TEST5: CLA
      CLC
      LD A4
```

ADC B3

```
ADC #0x33: то есть WORD 0x5F33
      ST $RES5; ADC
      LD A4
      ORG 0x7C0
      A6:
            WORD
                        0х0000; Первое слагаемое
                        0xFFFF: Второе слагаемое / результат сложения командой
      B6:
            WORD
MADC c C = 1
      RES6: WORD ?; Результат команды ADC для A3 и B3
TEST6: CLA
      CLC
      CMC
      LD A6
      ADC (MEM)
      ST $RES6; ADC + также выставляется сам CF
      LD A3
      WORD 0x9805; Выполнение MADC с выставленным флагом С
      LD
      CMP
            RES6; Сравнение с командой ADC,
      BNE
            ERR6; результаты должны совпадать
      LD
           #0х1; Запись работы теста
      ST
            $ТТ6; при корректной работе
      RET
ERR3: LD
           #0х0; Запись работы теста
      ST
            $ТТ6; при некорректной работе
      RET
```

Описание тестовых программ

- 1. Первый тест проверяет команду MADC без CF: значение сравнивается с результатом команды ADD тех же чисел. Если тест работает правильно, то в переменную TT1 записывается 1, если тест неверный, то в TT1 записывается 0. После выполнения TEST1 результат TT1 также выводится в AC, перед выполнением следующего теста.
- 2. Второй тест проверяет отсутствие выставления знаков: при корректной работе в переменную TT2 записывается 1, при некорректной 0. Аналогично первому тесту перед переходом к выполнению третьего теста значение TT2 выводится на AC.
- 3. Третий тест проверяет результат сложения ADD двух чисел + 1 с результатом MADC (с выставленным CF), они должны совпадать. Также флаг C не должен сбрасываться. Аналогично: корректный результат 1 в TT3, некорректный 0 в TT3. К концу программы результат теста выводится в AC.
- 4. Четвертый тест аналогичен первому, но использует относительную адресацию
- 5. В пятом тесте показывает, что будет, если мы напрямую загрузим значение второго слагаемого, то есть не будем иметь нужный нам AR

6. Шестой тест рассматривает крайний случай, когда складываются 0xFFFF и 0x0000, Carry Flag = 1

Подготовка к проверке

- 1. Открыть БЭВМ в формате cli или dual "java –Dmode=dual –jar bcomp-ng.jar"
- 2. Открыть help "?"
- 3. На основе help и таблицы микрокоманд перенести нужные микрокоманды в БЭВМ
- 4. Открыть режим ввода Assembler "asm"
- 5. Загрузить команды Assembler в БЭВМ
- 6. Заменить везде NOP на HLT.
- 7. Написать после кода Assembler END и нажать Enter

Методика проверки тестов

- 1. Запустить программу в режиме "РАБОТА" (адрес начала программы 0х40F).
- 2. Дождаться останова. Записать значение из АС в результат первого теста ТТ1.
- 3. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 4. Дождаться останова. Записать значение из АС в результат второго теста ТТ2.
- 5. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 6. Дождаться останова. Записать значение из АС в результат третьего теста ТТ3.
- 7. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 8. Дождаться останова. Записать значение из АС в результат третьего теста ТТ4.
- 9. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 10. Дождаться останова. Посмотреть, куда записался результат МАDC.
- 11. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 12. Дождаться останова. Записать значение из АС в результат третьего теста ТТ6.
- 13. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 14. Дождаться останова.
- 15. Удостовериться, что все результаты тестов равны 0х1.

Вывод

В ходе выполнения лабораторной работы я изучил алгоритм синтеза собственной команды БЭВМ с помощью микропрограмм и методику проверки сделанной программы