2022 Inha AI Challenge

12181912 김현수 12181901 고영호

- Abstract
- Feature
- II Prepare
- II Model

1. Abstract

1. Abstract

목표: 134개 터빈의 2일 동안의 Patv 값 예측

TurbID - 발전기 ID

Day - 날짜

Tmstamp - 시간

Wspd - 풍속

Ndir - 터빈이 바라보는 방향 각도

Pab - 터빈 당 3개의 날이 있으며 각각의 각도가 다름

Prtv - 무효전력 : 에너지원을 필요로 하지 않는 전력

Patv - 유효전력 : 실제로 터빈을 돌리는 일을 하는 전력

	Α	В	C	D
1	TurbID	×	У	
2	1	3349,852	5939,232	
3	2	3351,002	6416,647	
4	3	3314.78	6892,184	
5	4	3352.094	7366,142	
6	5	3355,342		
7	6	3329,428	and the first of the contract	
8	7	3360,547		
9	8	3240,299	2265 214	_
10		3: 942	569	
11	10	3: 1 62	111	
12	11	3: 1.	164 0	
13		3: 5.7	1 21	
14		3: 3,259	44. 59	
15	14	3328,78		_
16	15		1194,288	
17	16		1658,257	
18	17	3334,256		
19	18	3336,848		
20	19	3338,886		
21				
	20	3361,034		
22	21	3249,022	4043,586	

- Abstract
- Feature
- Model

중력권전의 원리 / YTN 사이던스

E-9 2 ex-50001-3210-0-16

n는 891 - 및 4012 - 45 국의 및 요료하여 제상 급수 계약 - 1 등원생물기 노력

중력발전의 원리 / YTN 사이던스 X24 exercial conv. s. 15.

白 201 및 장에서 2012부 및 모드에면서의 2차 서울 - 미국업상품기보다

(TurbID == 1 & Day == 1) Wspd 와 Patv 비교

공간정보 ..?

1 cluster_df.iloc[[1,10,20,30,40,50,60,70],:]]

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 0.0 1.0 0.0 0.0 0.0 21 0.0 30 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 31 0.0 0.0 41 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 51 0.0 0.0 0.0 61 0.0 0.0 0.0 1.0 0.0 0.0 71

Perceiver Resampler K ram layers. of perturbed repositions A.Y., of the 12 hours about the same of the same framework FFW Print, printerings. In The IT. L. of the part below to the A. J. S. Marriett Lancency of Street St. 421 man, Talance . It makes not become Attention 8.9 (12.4) F AND THE THE BELLEDING MEMBERS AND PROPERTY. A. P. v. S. P. v. Street Association on All - Calmin to 17 of 17, 4, 40 - 17 - 4, 41 S marky Con Cornelius, Barragher, hope on to a selection are it Learned N althoughton letent: a continuous men tenengials will a high remark. A - A - YIM TON SERVICE D

Fartism a Visual Laurance Model for few Short couries

Figure 4.1 The Perceiver Resampler module maps a variable size grid of spatio-temporal visual features coming out of the Vision Encoder to a fixed number of output rolens (five in the figure), independently of the input image resolution or the number of input video braines. This transformer has a set of learned input video as queries, and the keys and values are a concanenation of the spatio-temporal visual features with the learned latent vectors. More details can be found in Section 3.1.1.

architecture in Figure 3. It takes as input a variable morbor of image or video features from the vision encoder and produces a fixed number of chard outputs as illustrated in Figure 4 (hence the many Resampler). The motivation for re-sampling the visual input to a fixed and small number (in practice 64) of outputs is to significantly reduce the computational complexity of vision-text cross attention. particularly important when dealing with multiple long videos. In similar spirit to Perceiver (Jacyle et al., 2021) and DETR (Carion et al., 2020), we learn a predefined number of latent input queries. These latent queries are fed to a transformer stack and cross attend to the flattened visual features X1. These visual features are obtained by first adding a learnt temporal position encoding to each spatial grid of features corresponding to a given frame of the video (an image being considered as a single-frame videa). Note that we only use temporal encodings and an spatial grid position encodings; we did not observe improvements from the latter, potentially because CNNs implicitly encode space information channel wise (Islam et al., 2021). The visual features are then flattened and concatenated as illustrated in Figure 4. The number of output tokens of the Resampler is thus equal to the number of learnt latent queries. Unlike in DETR and Perceiver, the keys and values computed from the learns latents are concatenated to the keys and values obtained from X1, which we found to perform slightly better. We show later in the ablation studies (Section 4.4), that using such a vision language resampler module outperforms a plain transformer and an MLP. More architectural details are provided in Table 13.

3.1.2. Conditioning a frozen language model on visual representations

As illustrated in Figure 5, text generation is performed by a Transformer decoder, conditioned on the visual representations X penalized by the Perceiver Resampler. We build this model by interleaving

because CNNs implicitly encode space information channel-wise.

(CNN은 암묵적으로 공간 정보를 채널별로 인코딩하기 때문이다.)

CNN의 활용

12

하나의 터빈에 대하여 <mark>거리가 가까운 121개 터빈</mark>의 Patv값을 입력

1

Patv값 Patv값 Patv값 Patv값 Patv값 Patv값

256x256 이미지 예시

11x11 이미지 예시

- **E** Abstract
- **l** Feature
- Prepare
- Mode


```
l imput_len = 144 W id 한 개당 하루에 생성되는 row의 갯수 (24hour / 10minute = 144)
3 for turbid in range(184): # 터빈 마이디의 갯수
      # print(turbid)
      full_dict = collections.defaultdict(list)
      turb_data = df[df]'Turb[0']==turb[d+1].reset_Index(drop=True)
      ls = list(turb_data['Pate'])
8
      for i in range(0, len(is)-288-input_len): # range(0, ) # 28B (id 달 예측해야 하는 paty 갯수 2일 -> 144 ± 2).
9
          if i % 10000 == 1: orint(i)
10
          # 1 가 미 마면 Waod의 처음 시장 1일 마시 마분 부터 1일 23시 50분까지의 Waod 리스트 휴가
          full_dict['Aspd_seq'].append(list(turb_data['Aspd'])||:|*Input_len|);
          full_dict['Patv_seg'].append(list(turb_data['Patv'])]i:i+input_len]);
                                                                                              README.md
13
          full_dict['Ethpuseq'].append(list(turb_data['Ethp'])|i:i+input_len]);
                                                                                               prepare.ipvnb
14
          full_dict['ltmp_seq'].append(list(turb_data['ltmp'])|i:i+input_len])
                                                                                              model.ipynb
15
          full dict[ Pahl seq ] append(list(burb data[ Pah] ]) liftitingut (en])
                                                                                              test.ipynb
16
                                                                                               data
17
          full_dict['target'].append(list(turb_data['Patv'])[i+input_len:i+input_len+288]);
                                                                                               - turbine data1.csv
18
          # i 2h 00년만 [144: 144 + 268] (286개의 paty 값 제장)
                                                                                               - turbine data2.csv
19
      dt_his = pd.DataFrame(full_dict)
20
      di_his_to_csv['turbine_data'+str(turbid+1)+'.csv', index=False).

    turbine data134.csv

                                                                                                  train data42.csv
                                                                                                  dist dict.pickle
```


하루(144개) 의 Feature list * 5 → 이틀치의(288개) Target list 예측


```
for in tech(range(134))
             of trp = policead csv('data/turbine cata'+str(i+1)+' csv')
             of :mp['index'] = list(range(len(df tmp)))
             of two = di two samp effrac=0.01, rancon state=2)
             index list = list(of tmp['index'])
             of_trp['TorotD'] = i+1
             turo data = df idf['Turo]D'[==i+1].reset_index(drop=True)
             near_turbs = dist_blot[i+1][:121]
             index new = [x+144-1] for x in index list]
             selected of = numb data, ocl index newl
             selected of = cd merge(selected of, of group, how=' eft , on=[ "lay", 'Thistano'])
             selected_df('Patv_space') = selected_df('Patv_Hst'), apply(lambda <math>x: [x(x-1)] for x: In rear\_turbs()
             df_trp['Faty_space ] = | st(selectoo_df['Paty_space'])
             11 (==0)
                 train = df tno.coov()
             clse:
                 train = pd.concat('train of trol)
         train = train.reset_ ntex(trop=True).
         train = train.samble(frac=), randon_state=2).neset_index(drop=True)
                                                                                                  04/:04 [03:45<00:0
         1003
         0 | 638/1.3
In [33] |\cos z| = 1x for x in train columns II |\sec z| in x or x— Largel I
         for col in cols:
             train[col] = train[col].apply(tambda.x: [son.loads(x))
         train - drup atnorra (train).
         train to_csv( data/train_data42.dsv', index=halse)
[1 [42] dat 42 = pd. reac_dsv( data/:rain_data42.csv*)
         print (dat 42)
```

```
README.md
   prepare.ipynb
   model.ipynb
   test.ipynb
   data
       turbine_data1.csv
       turbine data2.csv
. . .
        turbine_data134.csv
        train_data42.csv
       dist dict.pickle
```


Tuebto	Index	Papd_seq	Fat v. neq	Hup and	Thing seq	Pahil_neq	Paty_space	tarpet	→ 거리가 가까운 121개의 터빈의
9	62	[18,45, 9,61, 8,17, 7,96, 8,71, 8,22, 8,68,	11442.60, 1392.17, 1325.7, 963.62, 504.150, 96	[3277, 32.8], 38.04 88.27, 38.57, 58.67 31	[43.53, 45.42, 45.51, 45.84, 46.59, 46.69, 48.	(1.01, 10, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,11	(1778 1, 458 78, 505.6A, 505.58, 508 71, 390.74	(598.99, 535.09 (591.37, 444.78 (407.78, 310.5	Patv 값을 feature로 사용
)31	157	(461 57 471 443 485 314 57 457;	1553 75, 347 N, 3483 ,445 (4, 264,04 471.51,	135.25, 25.01, 25.84 25.49, 25.27, 24.95 24	139 97, 39 09, 38 32 37 58, 47 15, 45 77 38.	10.99 0.99, 0.99. OME BYM, TQ, BYM, U.SM.	(980.43 1457.23, 1176.17, 1100.27, 1674.57, 1.	71548.62 - 545.65 1649.37, 1448.51 5544.11	
ğ	251	[5:04 5:78 4:05 4:4, 5:85, 3:90, 8:11, 2:77	[121.01, 164.86, 206.14, 240.6, 168.27] 145.6	j51,84, 51,85, 31,0 51,75, 31,53, 51,54 51,1	(80.00, 80.01, 80.86, 30.75, 30.51, 30.4, 35.3	(0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.8	[1937.5_1466.76, 1493.21460.34, 1647.56_1	[1450.34, 1421.3 [488.68, 1500.56] [1521.49, 1]	↓
337	391	0.118.11.57.11.75. 11.63.11.33.11.23. 10.	(1511.20, 1532.87) 1571.61, 1509.51 1500.71	(2031, 2029, 2027, FR.13, 7941, 794, 79.7	[43:02-48:02-42:90, 43:01-13:03, 43:04, 45	11.02 : 04 1.05. 104 : n1 104 1.00, 18	3843 36, 440 9, 378.82 445.85, 587.82, 485.14	[430,32] 014.8 427.88, 434.88 332.55, 436.54	11 by 11 matrix로 만들어 CNN의 이미지로 활용
ā	40.1	0 159 1155 11.77 11.03 1202 1234 12	[1451.01, 1544.07, 15.21.01, 1548.11, 1081.58,	122:28, 12:2, 22:14 22:09, 22:01, 22:07 22:1_	[37.19, 97.09, 87.09, 37.08, 16.08, 18.99, 36	11.07 36, 1.07 107 107 1.09 1.03 1.0.	0819-55 833-94 800-04, 882-72 1234-27 883	(1422.55, 205.05) 139494, 168435 109033 _	
33	480	[1588] 1286, 1286, 11127, 11(0), 82,51, 127,	[1510.00] 1528.67, 1584.10, 1510.82, 737.0, 10	[2285 2234 2312 29.8 23.64 29.87 23.9.	(8749) 3740, 3748 8752, 3786, 3801 37	1,67, 1,09, 1,09, 1,62, 1,42, 1,08, 1,67, 1,0.,	903,403,7733, 58316,-03,69854, 00,	[154378 150818] 149339 1517.56 1517.00	
ğ	495	(1225 1208 1212 1359 1179 1238 124	[1542.44, 1547.11, 1534.13, 1545.59 1527.62,	[24.72, 25.05, 25.42] 28.7, 26.0, 26.56, 26.56,	(\$8.55, \$8.56, \$8.02, 39.17, \$9.42, \$9.43, 40	[1.07, 1.06, 1.07, 1.08, 1.06, 1.07, 1.06, 1.0.	[-03, -03, 241.65, 25445, -03, 275.06, -0.0	[1318.48, 1512.88, 1488.15, 1470.04 1490.43	
)21	505	[1788] 1307,1280 1784,1753,1755 12.5	(1531/31 1545-58 1542/35 1515/52 1548/12	[2025, 228, ALTS, 26.16, 28.56, White, 20.1	40.00, 30.00, 30.05 -0.50, 30.00, 30.05 -42	(100) 100, 100, 100, 100, 100, 107, 10	[-0% -0% 78545] 227 0% -0% 239 62 00%	(5507.87, 1500.7 1500.87, 1500.38 1408.51, 12	
ū	562	[824, 774, 443, 907, 871, 890, 927, 932	(AdkAs) attacle 1074 A\$ 1079 55. 1058 A\$ 10.,	29.7, 29.92, 29.97, 29.7, 29.0 (29.44, 29.8	39.3(38.21, 38.29 99.77, 99.74, 39.94 40.0.	3194, 10, 10, 10, 10, 10, 10, 10, 10,-	(550,19, 871,86, 543,72, 175,68, 488,81, 863,0	(400.06, 676.75, 1288.2, 1085.93, 1086.96, 878	
30	50.0	/971, 299, 907, 938, 925, 685, 931, 93.	11588.42 1091.11 115418 1191.08 116438	129/01/29/48/29/62 25/18/28/00/28/88 20/	139.74, 39.94, 40.98 40.15, 40.22, 40.92 43.	0.0 10.10.10.10 10.10.10.10	38815 16606 118346 1 6964 AUJIE 1	75498, 50025 25134, 444	

- Abstract
- Prepare
- Model


```
class GNU(nn. Module):
    det (mit (scit));
        super(GRU, self). Init ()
        self.gru - nn.CRU(input_size-4, hidden_size-48, num_layers-2)
        sett dropout = rn Dropout (0.05).
          self.Linear = nn.Linear(46+2, j. bias_attr=irue)
        self_Linear - mn_Linear(48+2, 1)
        sett.endayer = nn.Sequenttat(
        nn Conv2d(1, 64, kernel stze=3, stride=1, padding=1);
        nn BatchNorm2d(54):
        rm GELU()
        \operatorname{rm}.\operatorname{MaxPool2d}((3,3)))
    def forward(self, X, space data):
          x = teron.xeros([X.shape[0], 144, X.shape[1]], dtype="ficat32"]
        z = \text{torch.} z \text{eros}([X.\text{shape}[0], 144, X.\text{shape}[1]])
        z = z. to (device)
          x = torch, concat(lX, transcope(l0, 2, 11), x), axis=1)
          or int (X. shape)
          ocint(z)
         print(type(x))
          print(type(X))
          or int (time(2))
        x = torch.concat((torch.transpose(X,2,1),z), axis=1)
          octor(1)
        outf. = -setf.gru(x)
        out - self_dropout(out1)
        cnn_out = self.cnnLayer(space_data)
          or Intionn out shape)
        cnm_out = torch.reshape(cnm_out, (cnm_out.shape(0), 288, -1));
A.
          print(orm_out.shape)
        out2 = self.Linear(torch.concat((out1, cnn_out), 2))
        return out2
```

[하이퍼파라미터] batch = 16,32,64Ir = 0.0005, 0.0003, 0.00001optimizer = GELU, RELU

Image

```
tensor() [[379., 498., 506., 506., 509., 391., 328., 409., 490., 474., 575.], [455., -0., 462., 335., 293., -0., 301., 336., 278., -0., 424.], [427., 339., -0., 282., 215., 351., -0., -0., 180., -0., -0.], [-0., 391., -0., -0., -0., -0., 423., 226., -0., -0., 217.], [-0., -0., 350., -0., 135., 180., -0., -0., -0., -0., -0.], [-0., -0., 324., 276., -0., -0., 131., 235., -0., -0., -0.], [312., -0., -0., -0., 120., 233., -0., -0., 110., -0., 94.], [-0., 64., -0., 133., -0., 0., -0., 163., 131., -0., -0.], [10., -0., -0., 244., -0., -0., 104., 125., -0., 163., 131., -0., -0.], [-0., -0., 244., -0., -0., -0., 129., -0., 79., -0., -0.], [-0., -0., -0., 257., 111., -0., 2., -0., -0., -0., -0., -0.]] [
```

Conv2d

Ex) Convolution

n	. 11	D	- 11	0	0	0
ò	60	113	56	139	85	9
a	rs.	121	54	114	128	3
9	131	99	70	129	127	9
0	80	57	115	69	134	0
0	104	126	123	-55	130	D
ò	n	9	n	0	6	- 3

	Keme	1
0	1	0
-1	5	-1
0	-1	0

114	328	26	470	158
53	766	-b1	-an	344
403	116	-47	295	244
108	-135	256	-128	344
314	346	279	153	421

```
1 s2 =torch.reshape(np.round(s1,0),(-1,1,11,11))

1 conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1)
2 out1 = conv1(s2)

1 out1.shape

torch.Size([1, 64, 11, 11])

1 torch.round(out1[0][0])[:,:]

tensor([[ 14., -19., -16., 70., 133., 16., -46., 21., 109., -47., 143.],
```

tensor([[14., -19., -16., 70., 133., 16., -46., 21., 109., -47., 143.], [-94., -65., -170., -158., -115., -74., -63., -155., -77., -161., -119.], [-207., 67., -52., -118., -95., -80., -62., -26., -24., -70., -74.], [-164., -154., 38., -37., -109., -111., 22., 53., -22., -44., 22.], [-11., -221., -26., 100., 41., -15., -133., -31., 30., -6., -50.], [32., 3., -86., -2., -59., -22., 12., 7., 31., -3., 10.], [16., 23., -103., -89., -15., 30., -17., -112., 9., -9., 22.], [-69., 6., -14., -16., -44., -28., -33., -39., 34., 9., -9.], [9., -67., 17., 1., -17., -11., -0., -1., 4., 13., -28.], [-21., -35., -39., 16., 34., -34., 0., -41., -33., -3., -0.], [4., -4., -93., -6., 33., 5., -29., -11., -18., -6., -0.]], grad_fn=<SliceBackwardO>)


```
tensor([[ 14., -19., -16., 70., 133., 16., -46., 21., 109., -47.,
        143.1.
      [ -94., -65., -170., -158., -115., -74., -63., -155., -77., -161.,
       -119.],
       [-207., 67., -52., -118., -95., -80., -62., -26., -24., -70.,
       -74.1.
      [-164., -154., 38., -37., -109., -111., 22., 53., -22., -44.,
      [ -11., -221., -26., 100., 41., -15., -133., -31., 30., -6.,
        -50.1.
      1 32.,
               3., -86., -2., -59., -22., 12., 7., 31., -3.,
        10.),
       1 16.,
              23., -103., -89., -15., 30., -17., -112., 9.,
         22.1,
      -69.,
               6., -14., -16., -44., -28., -33., -39., 34., 9.,
        -9.],
       [ 9., -67., 17., 1., -17., -11., -0., -1., 4., 13.,
        -28.),
      [ -21., -35., -39., 16., 34., -34., 0., -41., -33., -3.,
        -0.],
      [ 4., -4., -93., -6., 33.,
                                       5., -29., -11., -18., -6.,
         -0.]], grad_fn=<SliceBackward0>)
```

BatchNormalization


```
1 batch1 = nn.BatchNorm2d(64)
2 out2 = batch1(out1)
3 print(out2.shape)
4 but2[0][0]

torch.Size([1, 64, 11, 11])
tensor([[ 6.6612e-01, 1.3315e-01, 1.8540e-01, 1.5603e+00, 2.5513e+00, 6.8686e-01, -2.9704e-01, 7.7814e-01, 2.1786e+00, -3.0944e-01,
```

```
6.8686e-01, -2.9704e-01, 7.7814e-01, 2.1786e+00, -3.0944e-01,
 2.7136e+00].
[-1.0560e+00, -6.0338e-01, -2.2632e+00, -2.0789e+00, -1.3894e+00,
-7.4707e-01, -5.6277e-01, -2.0304e+00, -7.9335e-01, -2.1309e+00,
-1.4617e+00]
[-2.8569e+00, 1.5107e+00, -3.9784e-01, -1.4395e+00, -1.0735e+00,
-8.4347e-01, -5.4561e-01, 2.1713e-02, 5.2930e-02, -6.8428e-01,
-7.4316e-01]
[-2.1679e+00, -2.0094e+00, 1.0398e+00, -1.5237e-01, -1.3012e+00,
-1.3358e+00, 7.8404e-01, 1.2858e+00, 7.9492e-02, -2.5088e-01,
 7.9342e-011.
[ 2.6121e-01, -3.0881e+00, 2.5165e-02,
                                       2.0338e+00. 1.0868e+00.
 1.9849e-01, -1.6854e+00, -5.0611e-02, 9.1003e-01, 3.3840e-01,
-3.5249e-011.
[ 9.5256e-01, 4.8590e-01, -9.3685e-01, 4.0024e-01, -5.0403e-01,
 8.7469e-02, 6.2727e-01, 5.5579e-01, 9.2688e-01, 3.9535e-01,
 5.9070e-011.
[ 6.9449e-01, 8.0825e-01, -1.1992e+00, -9.7262e-01, 2.0402e-01,
 9.1987e-01, 1.6221e-01, -1.3533e+00, 5.8699e-01, 2.9566e-01,
 7.8926e-011.
[-6.6234e-01, 5.4043e-01, 2.1175e-01, 1.8532e-01, -2.5611e-01,
-1.4226e-02, -8.6193e-02, -1.7941e-01, 9.7519e-01, 5.7587e-01,
 2.9208e-011.
[ 5.8813e-01, -6.2854e-01, 7.1162e-01, 4.5879e-01, 1.7431e-01,
 2.6236e-01, 4.3695e-01, 4.2049e-01, 5.0743e-01, 6.5013e-01,
-6.2905e-04).
[ 1.0536e-01, -1.1915e-01, -1.8992e-01, 6.9262e-01, 9.7283e-01,
-9.7259e-02, 4.4404e-01, -2.2113e-01, -8.5840e-02, 3.9737e-01,
 4.3466e-011.
[ 5.0410e-01, 3.8176e-01, -1.0441e+00, 3.3980e-01, 9.5678e-01,
 5.1907e-01, -2.9969e-02, 2.6303e-01, 1.4810e-01, 3.4940e-01,
 4.3466e-01]], grad_fn=<SelectBackward0>)
```



```
| batch1 = nn.BatchNorm2d(64)
 2 out2 = batch1(out1)
 3 print(put2.shape)
 4 hut 2[0] [0]
torch Size((1, 84, 11, 111)
tensor([] 6.6612e-01, 1.3315e-01, 1.8540e-01, 1.5603e+00, 2.5513e+00,
          6.8685e-01, -2.9704e-01, 7.7814e-01, 2.1785e+00, -3.0944e-01
          2.7135e+001
       1-1_0560e+00, -6_0338e-01, -2_2632e+00, -2_0789e+00, -1_3894e+00,
         -7,4707e-01, -5,6277e-01, -2,0304e+00, -7,9336e-01, -2,1309e+00,
         -1.4617e+001
        [-2.8569e+00, 1.5107e+00, -3.9784e-01, -1.4395e+00, -1.0735e+00,
         -8.4347e-01, -5.4561e-01, 2.1713e-02, 5.2930e-02, -6.8428e-01
         -7, 4315e-011
       [-2,1679e+00, -2,0094e+00, 1,0398e+00, -1,5237e+01, -1,3012e+00,
         -1.3358e+00. 7.8404e+01. 1.2858e+00. 7.8492e+02. -2.6088e+01.
          7. 9342e-011
       [ 2.5121e-01, -3.0881e+00, -2.5165e-02, -2.0338e+00, -1.0868e+00,
         1.9849e-01, -1.5854e+00, -5.0611e-02, 9.1003e-01, 3.3840e-01,
         -3.5249e-011
       1 9.5256e-01, 4.8590e-01, -9.3685e-01, 4.0024e-01, -5.0403e-01,
         8.7469e-02, 6.2727e-01, 5.5579e-01, 9.2686e-01, 3.9535e-01,
          5.9070e-011
        [ 6.9449e-01, 8.0825e-01, -1.1992e+00, -9.7252e-01, 2.0402e-01,
         9.1987e-01. 1.5221e-01. -1.3533e+00. 5.8899e-01. 2.9565e-01.
          7.8926e-011
       [-6.6234e-01, 5.4043e-01, 2.1175e-01, 1.8532e-01, -2.5611e-01,
         -1.4225e-02, -8.6193e-02, -1.7941e-01, 9.7519e-01, 5.7587e-01,
          2.9208e-01
       1 5.8813e-01, -6.2854e-01, 7.1162e-01, 4.5879e-01, 1.7431e-01,
          2.6236e-01. 4.3635e-01. 4.2049e-01. 5.0743e-01. 6.5013e-01.
         -6. 2905e-04
       [ 1.0535e-01, -1.1915e-01, -1.8992e-01, 6.9262e-01, 9.7283e-01
         -9.7259e-02, 4.4404e-01, -2.2113e-01, -8.5840e-02, 3.9737e-01,
         4:3465e-01
       [ 5.0410e-01, 3.8176e-01, -1.0441e+00, 3.3980e-01, 9.5878e-01
         5.1907e-01, -2.9969e-02, 2.6303e-01, 1.4810e-01, 3.4940e-01,
         4.3465e-01]], grad_fn=<SelectBackwardD>)
```

Activation function(GELU)


```
1 optil = nn.GELU()
 2 out3 = optil(out2)
 3 out3.shape
 4 (out3[0][0])
tensor([[ 4.9781e-01, 7.3624e-02, 1.0633e-01, 1.4677e+00, 2.5377e+00,
         5.1783e-01, -1.1383e-01, 6.0831e-01, 2.1466e+00, -1.1712e-01,
         2.7046e+001.
        [-1.5363e-01, -1.6480e-01, -2.6734e-02, -3.9113e-02, -1.1442e-01,
        -1.6997e-01, -1.6140e-01, -4.2958e-02, -1.6961e-01, -3.5265e-02,
        -1.0512e-01).
        [-6.1104e-03, 1.4119e+00, -1.3740e-01, -1.0796e-01, -1.5192e-01,
        -1.6826e-01, -1.5968e-01, 1.1045e-02, 2.7582e-02, -1.6895e-01,
        -1.6996e-011.
        [-3.2702e-02, -4.4703e-02, B.8469e-01, -6.6958e-02, -1.2569e-01,
        -1.2131e-01, 6.1429e-01, 1.1581e+00, 4.2265e-02, -1.0359e-01,
         6.2381e-011.
        [ 1.5752e-01, -3.1101e-03, 1.2835e-02, 1.9911e+00, 9.3623e-01,
         1.1486e-01, -7.7459e-02, -2.4284e-02, 7.4495e-01, 2.1403e-01,
        -1.2768e-01],
        [ 7.9024e-01, 3.3356e-01, -1.6340e-01, 2.6236e-01, -1.5480e-01,
         4.6783e-02, 4.6089e-01, 3.9507e-01, 7.6283e-01, 2.5845e-01,
         4.2686e-01].
        [ 5.2525e-01, 6.3894e-01, -1.3818e-01, -1.6084e-01, 1.1850e-01,
         7.5537e-01, 9.1558e-02, -1.1907e-01, 4.2345e-01, 1.8220e-01,
         6.1959e-D11.
        [-1.6815e-01, 3.8130e-01, 1.2363e-01, 1.0628e-01, -1.0217e-01,
        -7.0322e-03, -4.0136e-02, -7.6932e-02, 8.1455e-01, 4.1327e-01,
         1.7959e-D1],
        [ 4.2450e-01, -1.6645e-01, 5.4200e-01, 3.1052e-01, 9.9213e-02,
         1.5833e-01, 2.9229e-01, 2.7876e-01, 3.5220e-01, 4.8252e-01,
        -3.1437e-04],
        [ 5.7102e-02, -5.3926e-02, -8.0656e-02, 5.2344e-01, 8.1200e-01;
        -4.4862e-02, 2.9817e-01, -9.1214e-02, -3.9984e-02, 2.6006e-01,
         2.9040e-011.
        [ 3,4929e-01, 2,4764e-01, -1,5476e-01, 2,1509e-01, 7,9476e-01,
         3.6238e-01, -1.4626e-02, 1.5880e-01, 8.2765e-02, 2.2243e-01,
         2.9040e-01]], grad_fn=<SelectBackwardO>)
```



```
| optil = nn.GELU()
 2 out3 = optil(out2)
 3 out3, shape
 4 (out3[0][0])
tensor([[ 4.9781e-01, 7.3624e-02, 1.0633e-01, 1.4677e+00, 2.5377e+00,
          5.1783e-01, -1.1383e-01, 6.0831e-01, 2.1466e+00, -1.1712e-01,
         2.7046e+00],
        [-1.5363e-01. -1.6480e-01. -2.6734e-02. -3.9113e-02. -1.1442e-01.
        -1.6997e-01, -1.6140e-01, -4.2958e-02, -1.6961e-01, -3.5265e-02,
        -1.0512e-011.
        [-6.1104e-03, 1.4119e+00, -1.3740e-01, -1.0796e-01, -1.5192e-01,
        -1.6826e-01, -1.5968e-01, 1.1045e-02, 2.7582e-02, -1.6895e-01,
        -1.6996e-011.
        [-3,2702e-02, -4,4703e-02, B,8469e-01, -6,6958e-02, -1,2569e-01,
        -1.2131e-01. 6.1429e-01. 1.1581e+00. 4.2265e-02. -1.0359e-01.
         6.2381e-01],
        [ 1.5752e-01, -3.1101e-03, 1.2835e-02, 1.9911e+00, 9.3623e-01,
         1.1486e-01. -7.7459e-02. -2.4284e-02. 7.4495e-01. 2.1403e-01.
        -1.2768e-011.
        [ 7.9024e-01, 3.3356e-01, -1.6340e-01, 2.6236e-01, -1.5480e-01,
         4.6783e-02, 4.6089e-01, 3.9507e-01, 7.6283e-01, 2.5845e-01,
         4.2686e-01].
        [ 5.2525e-01, 6.3894e-01, -1.3818e-01, -1.6084e-01, 1.1850e-01,
         7.5537e-01, 9.1558e-02, -1.1907e-01, 4.2345e-01, 1.8220e-01,
         6.1959e-011
```

Max-Pooling & Reshape


```
Input
   3
           2
       5
                               Output
8
           6
                                8
                                    6
                 maxpool
   9
       3
           9
4
                                9
                                    9
   8
           5
0
       4
```

```
1 \text{ Pool} 1 = \text{nn.MaxPool} 2d((3.3))
 2 out 4 = Pool1(out 3)
 3 out 4, shape
 4 \operatorname{cnn_out} = \operatorname{torch.reshape}(\operatorname{out} 4.(1.288.-1))
 5 print(cnn_out.shape)
 6 cnn_out
torch.Size([1, 288, 2])
tensor([[[ 1.4119e+00, 2.5377e+00],
           2.1466e+00. 8.8469e-011
           1.9911e+00, 1.1581e+00].
           6.3894e-01. 7.5537e-011
           8.1455e-01. 3.2357e+001
           2.0508e+00, 2.1387e+00].
           1.2468e+00. 9.6917e-011
           5.1291e-01, 4.3646e-01]
           1.8598e-02, 3.1642e-02]
           2.6429e+00. 2.8486e-011
           6.5287e-01. 1.9474e+001
           8.2418e-01, 2.4485e-021
           1.1294e+00, 5.8659e-011.
           9.8939e-01. 7.4055e-011.
           6.3070e-01. 1.1087e+00].
           1.6139e+00, 2.0318e+00]
           2.4533e+00. 2.5359e+001
           1.0758e+00. 1.8824e+001.
           2.2384e+00, 3.0895e-011
           2.6339e-01. 2.5383e+001.
           5.5352e-01. 9.2229e-011.
           1.0497e+00, 6.4886e-01]
           1.1535e+00. 3.7798e+001
           7.8024e-01, 2.4156e+00]
           2.7883e+00. 1.5911e+001
           3.0061e-01, 1.4013e+00],
           4.1781e-01. 9.9199e-011.
           3.4100e+00. 3.1764e+001.
           2.9760e+00, 1.1447e+00],
           5.9553e-01, 8.6133e-01],
           1.5682e-01, 1.1398e-01]
```

[1.4693e-01, 2.4255e+00],


```
In [19]: from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler
         def my scale(lst):
             n = len(lst)
                                                        In [13]: df_train['Wspd_seg'] = df_train.apply(
             x = np.array(Ist).reshape(-1.1)
                                                                     lambda x: [round(r**3,4) for r in x['Wspd_seq']],
             scaler robust = RobustScaler()
                                                                     axis=1,
             scaler robust fit(x)
             k = scaler robust.transform(x)
             kk = k.reshape(n)
                                                        In [14]: df_train['Wspd_seg']
             return list(np.round(kk, 4))
                                                        Out [14]: 0
                                                                             [0.0244, 0.2054, 0.9127, 2.6281, 7.3014, 11.08...
                                                                             [4.2515, 1.5209, 6.2295, 14.1725, 5.0884, 5.35...
          Standard Scaler
                                     x_i - \text{mean}(\boldsymbol{x})
                                                                             [19.0342, 20.7969, 18.6096, 18.8211, 14.1725, ...
                                       stdev(x)
                                                                             1423.8281, 1211.3555, 1201.157, 876.4675, 104...
                                                                             [92.3454, 51.8951, 46.656, 42.5085, 27.8181, 2...
          MinMax Scaler
                                       x_i - \min(\boldsymbol{x})
                                     \max(\boldsymbol{x}) - \min(\boldsymbol{x})
                                                                  37044
                                                                             [353.3932, 382.6572, 430.3689, 433.7981, 460.0...
                                                                  37045
                                                                             [34.3281, 10.3602, 9.1293, 7.6454, 10.2183, 13...
          Robust Scaler
                                                                  37046
                                                                             [6.2295, 58.4111, 84.6045, 51.4788, 59.7765, 5...
                                       x_i - Q_1(x)
                                                                  37047
                                                                             [252.436, 211.7087, 228.0991, 174.6769, 125.0,...
                                     Q_3(x) - Q_1(x)
                                                                  37048
                                                                             [296.741, 189.1192, 329.9394, 135.0057, 91.733...
                                                                  Name: Wspd_seq, Length: 37049, dtype: object
```

```
class EarlyStopping:
    def __init__(self, patience=7, verbose=False, celta=0, path='checkpoint.pt', trace_func-print);
        self patience - patience.
        self.verbose - verbose
       set f. counter = 0
        self.best_score = None
       self.early stop - False
        self.val_loss_nin = np.lnf.
       self.delta - delta
       sælf.oath = cath
       self.trace_func = trace_func
    def __call__(self, val_loss, model):
       score - ryal loss
        If self best score is None:
        self.best_score = score
            self.save_checkpoint(val_loss, wodel)
       elif score < self.best_score + self.delta:
            self counter += 1
            self.trace funcificariyStopping counter: {self.counter} out of [self.patience] }
            if self counter >= self.patience!
               self.early.stop - True
        else:
            self best score = score
            self.save_checkpoint(val_foss, model)
            self counter = il.
    def save_checkpoint(self, val_loss, model)
        if self verbose
            self, trace_func(f) validation loss decreased ([self,val_loss_min:.Bf) \rightarrow (val_loss:.Bf)). Saving model ...)
        torch.save(model.state_dict(), self.path)
        self.val_loss_nin = val_loss
```



```
in [30] def train(model, optimizer, train loader, device):
             nodel to(device)
             oritarion - nm.MSELoss(1.to(device)
             metric = mn.1 \parallel oss().tn(device)
             182 - 11
             prod 11st - [1]
             Tabel List = 11
             val luss ist = []
             val mae IBI - []
             loss_11st = []
             early_stopping - EarlyStopping(patience - 5, verbose - True)
              for epoch in ranne(1001:
                  model train()
                  Tor seg, space date, Tabel In Egdm(train Loader):
                      sen = sen (ype/forch flon(92): to(device).
                      space data - Lorch reshape(space data: [-1.1.11.11.)).(o[device)
                      space_data = space_data.type(forch.float82)
                      Tabel - Tabel, type(torch.float32), to(device)
                      pred = model(seq, space_data);
                      Loss = onliceton(pred.squeeze()/1000; label/1000);
                      loss_fist.append(ioss.item())
                      Tosa backward()
                      optimizer.step()
                      optimizer.zera_grad()
                      pred_fist.extend(pred.squeeze().epu().detach().humpy())
                      Tabel_list.extend(label.squeeze().cpu().detach().numpy())
                      del pred
                      del sea
                      del space_data
                      de Li Tabelli
                  for val_seq, val_space_data; val_label in todm(val_loader):
                      val seg = val seg.type(torch.float321.to(device)
                      vai_space_data = torch.reshape(val_space_data, (-1,1,11,11)).to(devtce)
                      val space data - val space data.type(torch.fluat32)
                      val Tabet - val Tabet type(torch.flost32)
                      val_pred = model(val_seq, val_space_data).cpu()
```


- I Abstract
- T Feature
- Model
- Test (Forecast)

5. Test

```
ofess weDateset mo(Dateset):
   del (m) (self. di):
       self.sealfist! - Tist(dff!#spd:sea/l)
       setf. sea fig12 - figt(dff Paty sea 1)
       self.sea lists - fistfd(fittim) sea 1)
       self.seq_list4 = list(dff'(tmp.seq'1))
       self. see Trat6 - Tratfelf Puty space: 11
       well, label list - df.tarmet.values
   def __wetitew__iself. index):
       seq = np.usrack((self.seq_list1)[index], self.seq_list2[index], self.seq_list3[index], self.seq_list1
       seq = np.array(seq).astype("float")
        heage = np.array(self.seq_list5[index1].astype("float").
        Image realize(11, 11, 1)
       label = np.array( self.label_listlinded ) astype( 'float' )
       seq - torch tersor(seq. device - 'auda')
       space_data - touch tensor(laage, device - foudal)
        neturn seg, space_data, label
   def __len__(self)
       return leniself.sed Tisti)
def prod mrofmodel, test loader.device):
   model to (device)
   model . avet (3)
   priest first - III
   for sea, space_data, label in tochitest_loader):
       sea sea type(torch.float02).to(device)
       space data = torch.reshame(space data: (-1.1111.11 10.to(device))
       space_data - space_data.type(torch.float32).
       label = label_twoeltorch_float020.toldevice)
       pred - model(see, seace data)
       predulist.extend(pred.squeeze().cnu() detach(),nuwpw()]
   network pred_like.
```

5. Test

```
In [10]: def forecas: ()
             device = tooch.device('cuda' if borsh outs is_available() eise 'cau')
             os er vir or 11 OUDA MISTRUE DEVICES: 1 = 160
             rest_x = od_read_csv("train_caraf.csv").
             test x = test \times filling(0)
             rest_x = test_x sort_values(['Turb10', 'Lay', 'Tustany'], ascending=True).reset_index(drop=True).
             model1 = 63000
             model, loed state diet (torch, loed) ourbestäbatolääsnuffleRäsin datainennal. In üõsealingääveskendedale poparars ())
             path_ro_disadict = "d-st_dict.olckle"
             with open (bath to disadict, "th") as the
                 clst_clst = pickle !nad(t)
             df_group = test_xd[]'Day', 'Transmp', 'Patv']] groupby([ Day', Transmp'], as_incex=False).agg(List)
             arried (df. gen.in)
             dr_group columns = "Day", instanp", "Maiv, si"]
             for turbid in range/1841:
                 fura cara = test x test x test x test ( ==turbid+1 reset index(drop=1rue)
                 huro_cara = polerge(furb_date, df_group, now= left , on= (Ney', Testamp')).
                 turb_data[ Fark_space ] = turb_data[ 'Park_Hist' ].apply( tambda < [x] - 1] for 1 included on turb tH = 121H1.
                 "Paty seq": [ st (funt_data[ 'Paty'])] = 440 []
                                        'Etip_lasg' : [List (turb_data] 'Etip: [)[-140 [].
                                        "Itop seg : It at fourt, dated "Itop" [] [ - 44: [].
                                        'Rabi segic' i si (such date) 'Rabi' [) [- 440] [
                                         "Path space" [[1]st(hurb_data] Fath space []-[[].
                                        france: 1.01+298-10
                 of fest here secil = df jest apply(get of f lexis=1).
                 If thirtides!
                     test_new = df_fest_copy()
                     test new = od compat(itest new dt test[)
             .est detase. - myte.eset aruf.est new)
              test loader = JateLoader(test dateset)
                                      botton silze=841
                                      stutt ethalse.
                                      TUN Horkers+0)
             pred fist = pred gru(model tost coder device)
```


- **I** Abstract
- I Feature
- Prepare
- Model
- I Test (Forecast)
- Q&A

감사합니다.

