2016 NCAA Basketball Tournament Predictions

Adarsh Srinivas | Isha Ratti | Jay Sheth

About NCAA Basketball Tournament

- Tournament is a single elimination tournament played each spring in the United States, currently featuring 68 college basketball teams, to determine the national The National Collegiate Athletic Association (NCAA) Men's Division I Basketball championship of the major college basketball teams.
- Informally known as March Madness or the Big Dance, and has become one of the most famous annual sporting events in the United States.

Objective

• To predict the winner of each possible matchup that may happen in 2016 NCAA Basketball Tournament

• To predict the top16, top 32 teams in the tournament

Data

- Source: https://www.kaggle.com/c/march-machine-learning-mania-2016/data
- The final dataset consists of:
- Season Detailed Results 2015: A detailed set of game results, covering seasons 2003-2015 that includes team-level total statistics for each game (total field goals attempted, offensive rebounds, etc.)
- Tournament Detailed Results: This file contains the more detailed results for tournament games from 2003 onward
- Season Detailed Results 2016: This file contains the season statistics for 2016
- New features developed to better predict the winner
- Weighted Average of statistics calculated for every team
- The combined dataset consists of 72088 entries

Challenges

- created. This is a dichotomous variable with values 0 or 1 indicating whether Team 1 won the No dependent variable in the dataset. To build predictive models, an output variable 'Result' is match or not.
- tournament since 2003. Prediction of matches in 2016 for every possible matchup, required the statistics of individual teams for all the matches they had played till 2015. This required a lot of data wrangling and we did this using aggregate functions, weighted arithmetic mean, merge functions The dataset includes statistics of every match that has been played in a season and the NCAA

Season	Daynum	Wteam	Wscore	Lteam	Lscore	Wloc	Numot	Wfgm	Wfga	Wfgm3	Wfga3	Wftm	Wfta	Wor	Wdr	Wast	Wto	Wstl
2003	134	1421	92	1411		Z	1	32	69	11	. 29			26 1	14 3	30	17	12
2003	3 136		80	1436		Z	0	31		7	, 23		=======================================	14 1:	11 3	36	22	91
2003			84	_		N	0	31	. 59	9	14		. 91	22 1	10 2	1 12	18	6
2003		1141	79	1166	73 N	N	0	29			7	7	18	25 1	11 2	20 1	15	18
2003	3 136		76	_		Z	1	27	49	7	, 20		15	23 1	18 2	20 1	17	13
2003	3 136		28	_		Z	0	17	, 52	4	14		02	1. 1.	12 2	59	80	14

Feature Engineering

- Efficiency: Score + Rebound + Assist + Steal + Block Missed Field Goals Missed Free Throws
- Possessions = 0.96 * (Field Goals Attempted Offensive Rebound Turn Over + (0.475 * Field Throws Attempted))
- Offensive Efficiency = Points scored * 100/ Possessions
- Defensive Efficiency = Points allowed * 100/ Possessions
- Effective field goal percentage (0.4): eFG% = FGM + 0.5 *FGM3 / FGA
- Turnover percentage (0.25): TO% = TO/Possessions
- Offensive Rebound Percentage (0.2): OR% = OR /(OR + DROpponent)
- Free throw rate (0.15): FT R = FTA/ FGA

Logistic Regression

- Logistic regression is a method for fitting a regression curve, y = f(x), when y consists of proportions or probabilities, or binary coded (0,1--failure, success) data.
- When the response is a binary (dichotomous) variable, and x is numeric, logistic regression fits a logistic curve to the relationship between x and y.
- The logistic function is:

$$y = [\exp(b0 + b1x)] / [1 + \exp(b0 + b1x)]$$

b0 and b1= the regression coefficients

Logistic Regression

Accuracy	
Feature Combination	

Support Vector Machine

- A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane
- In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples
- The SVM algorithm is based on finding the hyperplane that gives the largest minimum distance to the training examples
- The optimal separating hyperplane maximizes the margin of the training data
- Two types of non-linear kernels are used for this project; La placian and Radial

Basis function

SVM (Laplacian)

Accuracy		0.6716
Feature Combination	T1score+T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1tor p+T1ftr+T2score+T2Eff+T2poss+T2OE+T2DE+T2efg+T2t op+T2torp+T2ftr	T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1torp+T1ftr+ 0.6716 T2Eff+T2poss+T2OE+T2DE+T2efg+T2top+T2torp+T2ftr

Decision Tree

- Recursive partitioning is a fundamental tool in data mining
- It helps us explore the structure of a set of data, while developing easy to visualize decision rules for predicting a categorical (classification tree) or continuous (regression tree) outcome
- logistic regression. It is a way that can be used to show the probability of being in any hierarchical Tree methods such as CART (classification and regression trees) can be used as alternatives to
- Boosted Trees are used for this classification problem

Decision Tree

Decision Trees

Feature Combination	Accuracy
T1score+T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+ T1torp+T1ftr+T2score+T2Eff+T2poss+T2OE+T2DE+ T2efg+T2top+T2torp+T2ftr	0.6417
T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1torp+T 1ftr+T2Eff+T2poss+T2OE+T2DE+T2efg+T2top+T2to rp+T2ftr	0.6567

Random Forest

- A Random Forest classifier uses a number of decision trees, in order to improve the classification
- It uses multiple models for better performance than just using a single tree model
- In addition because many sample are selected in the process a measure of variable importance can be obtain and this approach can be used for model selection

Random Forest

Accuracy		0.6865
Feature Combination	T1score+T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+ T1torp+T1ftr+T2score+T2Eff+T2poss+T2OE+T2DE+ T2efg+T2top+T2torp+T2ftr	T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1torp+T 1ftr+T2Eff+T2poss+T2OE+T2DE+T2efg+T2top+T2to 1p+T2ftr

Neural Network

- A neuron defines a relationship between the input signals received from dendrites and the output
- Input signals are summed and passed to activation function f
- Training means learning the values for the weights that will best approximate the output labels in our training set (x,y)
- Original values for the weights are random

Neural Network

Feature Combination	Accuracy
T1score+T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+ T1torp+T1ftr+T2score+T2Eff+T2poss+T2OE+T2DE+ T2efg+T2top+T2torp+T2ftr	0.67167
T1Eff+T1poss+T10E+T1DE+T1efg+T1top+T1torp+T1ftr+T2Eff+T2poss+T2OE+T2DE+T2efg+T2top+T2torp+T2torp+T2ftr	0.716418

Results

						·	·
Accuracy	0.716418	0.716418	0.686567	0.686567	0.671642	0.656716	0.656716
Correct							44
Model							Decision Trees

NCAA 2016 Tournament Bracket Prediction

Any Questions?

