تمرین ششم معماری کامپیوتر بخش عملی دکتر اسدی

دانشجویان: امیرکسری احمدی روژین تقیزادگان

شماره دانشجویی: ۴۰۱۱۷۰۵۰۷

طراحي مدار مولتي سايكل:

برای اضافه کردن ضرب به پردازنده خود نیاز است که آن را مولتی سایکل کنیم، برای این کار یک شمارنده به مدار اضافه می کنیم که با استفاده از آن زمانی که دستور ضرب می آید تا ۸ سایکل بعدی زیردستور Fetch انجام نمی شود و دستور ضرب به طور درست انجام می شود در ۹ تا سایکل طول می کشد تا انجام شود و دستورهای دیگر در یک سایکل که در حالت قبلی انجام می شد انجام می شوند. شماتیک مدار به شکل زیر است:

برای این کار این بخش را نیز باید به کنترل یونیت اضافه کنیم تا بفهمیم دستور ما ضرب است یا نه:


```
int factorial(int a) {
    if(a == 0)
        return 1;
    return a * factorial(a-1);
}

int main() {
    for(int i = 0; i <= 10; i++)
        printf("%d ", factorial(i));
    printf("\n");
    return 0;
}</pre>
```

کد C برنامه موردنظر

تست فاكتوريل:

1 1 2 6 24 120 720 5040 40320

نتیجه اجرای کد C

این کد اسمبلی فاکتوریل ما است و تست این پردازنده در تصاویر صفحه بعد آمده است:

ADDRESS 00	CODE(B)	CODE(H)	ASSEMB	ASSEMBLY LINE				
02	0010 000 010 000101	2085	addi	r2, r0, 5				
04	1111 XXXXX 0000101	F005	jal	factorial				
06	0000 100 000 001 000	0808	add	r1, r4, r0				
08	1110 XXXXX 0011011	E01B	j	done				
			,					
0A			factorial	:	r0 = 0			
0A	0011 001 001 000011	3243	subi	r1, r1, 3	r1 = sp			
OC	0110 001 111 000010	63C2	sb	r7, 2(r1)	r2 = a0			
0E	0110 001 010 000001	6281	sb	r2, 1(r1)	r3 = t0			
				, , ,	r4 = v0			
10	0010 000 011 000000	20C0	addi	r3, r0, 0	r5 = s1			
12	1000 011 010 001110	868E	beq	r2, r3, base_case	r6			
			•	· · · -	r7 = ra			
14	0000 010 000 101 000	0428	add	r5, r2, r0				
16	0110 001 101 000000	6340	sb	r5, 0(r1)				
18	0011 010 010 000001	3481	subi	r2, r2, 1				
1A	1111 XXXXX 0000101	F005	jal	factorial				
1C	0111 001 101 000000	7340	lb	r5, 0(r1)				
1E	0111 001 101 000000	7340	lb	r5, 0(r1)				
20	0000 100 101 110 100	0974	mult	r6, r4, r5				
22	0000 110 000 100 000	0C20	add	r4, r6, r0				
24	0111 001 111 000010	73C2	lb	r7, 2(r1)				
26	0111 001 111 000010	73C2	lb	r7, 2(r1)				
28	0111 001 010 000001	7281	lb	r2, 1(r1)				
2A	0111 001 010 000001	7281	lb	r2, 1(r1)				
2C	0010 001 001 000011	2243	addi	r1, r1, 3				
2E	0000 111 000 000 111	0E07	jr	r7				
30			base_cas	se:				
30	0010 000 100 000001	2101	addi	r4, r0, 1				
32	0010 001 001 000011	2243	addi	r1, r1, 3				
	0000 111 000 000 111	0E07	jr	r7				
36								
			done:					

نمای این تست از دور که در آن مشخص شده جواب فاکتوریل ۵ برابر ۱۲۰ است :

نمای تست از نزدیک که نشان می دهد ضرب به شکل مولتی سایکل عمل می کند:

تستهای قبلی:

۱ ـ تست باقیمانده بر ۳

Addr	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+a	+b	+c	+d	+e	+f
000	0000	0000	2088	0000	F004	0000	E018	0000	3242	0000	63C1	0000	6280	0000	20C2	000
010	868C	0000	20C1	0000	868A	0000	20C0	0000	8688	0000	3483	0000	F004	0000	73C1	000
020	73C1	0000	7280	0000	7280	0000	2242	0000	0E07	0000	2500	0000	2242	0000	0E07	000
030	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
040	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
050	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
060	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
070	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
080	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
090	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
0a0	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
0b0	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
0c0	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
0d0	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
0e0	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
0f0	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000

ستورات Instruction Memory برای یافتن باقی مانده عدد Λ بر

نتیجه نهایی تست = ۲

تست ۲:خارج قسمت بر ۳

دستورات Instruction Memory برای یافتن خارج قسمت عدد ۱۳ بر ۳

نتیجه نهایی تست = ۴