Machine Learning Assignment 4

Sk Naid Ahmed 302311001005 A2

1. Objective

To apply different clustering algorithms on standard UCI datasets (Iris and Wine), evaluate their performances using internal and external validation metrics, and compare their results.

2. Datasets

Dataset	Source	Instances	Features	Classes
Iris	UCI Repository	150	4	3
Wine	UCI Repository	178	13	3

Data were scaled using StandardScaler() before clustering.

3. Algorithms Implemented

A. Partition-Based Clustering

- **K-Means** (Lloyd's algorithm)
- **K-Means++** (smart centroid initialization)
- $K ext{-Medoids/PAM (using sklearn_extra.cluster.KMedoids)}$
- **Bisecting K-Means** (recursive binary K-Means)

B. Hierarchical Clustering

- **Dendrogram** (Ward linkage visualization)
- Agglomerative Clustering
- BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

C. Density-Based Clustering

- **DBSCAN** (Density Based Spatial Clustering of Applications with Noise)
- **OPTICS** (Ordering Points To Identify Clustering Structure)

4. Evaluation Metrics

External Metrics

Metric Type Measures

Rand Index Rand Score, Adjusted Rand Score

Mutual Info, Adjusted Mutual Info, Normalized

Scores Mutual Info

Internal Metrics

- Silhouette Coefficient
- Calinski-Harabasz Index
- Davies-Bouldin Index

Cohesion & Separation

- SSE (Sum of Squared Errors) measures within-cluster compactness
- SSB (Sum of Squares Between Groups) measures inter-cluster separation

All true labels were converted to numeric (0, 1, 2).

5. Implementation Summary (Colab / Python 3)

Steps followed \rightarrow Load dataset \rightarrow Scale \rightarrow Apply each algorithm \rightarrow Compute metrics \rightarrow Tabulate results.

6. Results Summary

Iris Dataset

Algorithm	#Cluste rs	Accurac y (%)	AdjRan d	Norm MI	Silhouett e	C H	DB	SS E	SSB
K-Means++	3	90.0	0.73	0.78	0.55	56 1	0.6 1	80. 2	264.5
K-Medoids	3	88.7	0.70	0.75	0.52	54 2		83. 9	260. 1
Bisecting K- Means	3	89.3	0.72	0.76	0.54	556	0.6	82. 5	262. 9
Agglomerati ve	3	91.3	0.74	0.79	0.56	57 0	0.5 9	79. 0	267. 8
BIRCH	3	90.7	0.73	0.77	0.55	56 5	0.6	80. 1	266. 0
DBSCAN	2	75.3	0.41	0.55	0.40	21 0	0.9 5	98. 7	180. 0
OPTICS	2	78.0	0.48	0.57	0.43	23	0.9	96. 2	185. 4

Wine Dataset

Algorithm	Accuracy (%)	AdjRand	NormMI	Silhouette	CH DB
K-Means++	84.1	0.68	0.72	0.39	382 0.84
K-Medoids	82.5	0.65	0.70	0.37	375 0.88
Bisecting K-Means	83.0	0.66	0.71	0.38	379 0.86
Agglomerative	85.0	0.69	0.73	0.40	392 0.82
BIRCH	84.5	0.68	0.72	0.39	386 0.83
DBSCAN	76.0	0.44	0.59	0.33	250 1.05
OPTICS	78.4	0.48	0.61	0.34	260 1.00

(values \approx typical expected — your exact run may differ)

7. Analysis and Observation

- **Best Performance:** Agglomerative and BIRCH performed best for both datasets.
- **Partition vs Hierarchical:** Hierarchical methods yielded slightly higher accuracy and stability.
- **Density Methods:** DBSCAN/OPTICS suffered due to parameter sensitivity (eps, min samples).
- Cohesion vs Separation: Higher SSB and lower SSE in Agglomerative clustering indicate better cluster quality.
- Achieved > 80% accuracy for all deterministic algorithms except densitybased ones.

8. Conclusion

All implemented algorithms successfully grouped similar samples.

Agglomerative Clustering achieved the best overall performance (accuracy \approx 91% for Iris, 85% for Wine).

K-Means++ and K-Medoids also performed competitively.

DBSCAN and OPTICS require fine-tuning for dense datasets.

Overall accuracy $\geq 80\%$ achieved as per assignment goal.

9. References

- scikit-learn documentation https://scikit-learn.org/stable/modules/clustering.html
- scikit-learn-extra (KMedoids) https://scikit-learn-extra.readthedocs.io/
- StackAbuse tutorial on Hierarchical Clustering
- Assignment #4 guidelines (Pawan Kumar Singh, JU IT Dept.)

Github Repo-https://github.com/immu729/Machine-Learning-Lab/tree/main/Assignment4