Mathematics for Al

Adams Wai Kin Kong School of Computer Science and Engineering Nanyang Technological University, Singapore adamskong@ntu.edu.sg

- The term **vector** is used by scientists to indicate a quantity (such as displacement or velocity or force) that has both magnitude and direction.
- A vector is often represented by an arrow or a directed line segment. The length of the arrow represents the magnitude of the vector and the arrow points in the direction of the vector.
- In fact, any point in \Re^n can be considered a vector from origin.

If
$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 and $\mathbf{b} = \langle b_1, b_2 \rangle$, then

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle \qquad \mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$
$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

Similarly, for three-dimensional vectors,

$$\langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$

 $\langle a_1, a_2, a_3 \rangle - \langle b_1, b_2, b_3 \rangle = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$
 $c \langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$

- More generally, we will consider the set V_n of all n-dimensional vectors.
- ▶ An *n*-dimensional vector is an ordered *n*-tuple:

$$\mathbf{a} = \langle a_1, a_2, \dots, a_n \rangle$$

where a_1, a_2, \ldots, a_n are real numbers that are called the components of **a**.

Addition and scalar multiplication are defined in terms of components just as for the cases n = 2 and n = 3.

Properties of Vectors If **a**, **b**, and **c** are vectors in V_n and c and d are scalars, then

1.
$$a + b = b + a$$

2.
$$a + (b + c) = (a + b) + c$$

3.
$$a + 0 = a$$

4.
$$a + (-a) = 0$$

5.
$$c(a + b) = ca + cb$$

6.
$$(c + d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$$

7.
$$(cd)\mathbf{a} = c(d\mathbf{a})$$

8.
$$1a = a$$

Note that $\mathbf{0}$ is the zero vector <0,0,...,0>

▶ Three vectors in V_3 play a special role. Let

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$
 $\mathbf{j} = \langle 0, 1, 0 \rangle$ $\mathbf{k} = \langle 0, 0, 1 \rangle$

- These vectors i, j, and k are called the standard basis vectors.
- They have length I and point in the directions of the positive x-, y-, and z-axes.

Similarly, in two dimensions we define $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$.

In an n-dimensional vector space, **standard basis vectors** are $e_1, e_2, \cdots e_n$, where $e_i = <0, \cdots, 1, \cdots, 0>$. More clearly, all the elements in e_i are zero, except for the ith element, which is one.

 \triangleright e_i is commonly considered as a column vector.

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

If
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
, then we can write
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle a_1, 0, 0 \rangle + \langle 0, a_2, 0 \rangle + \langle 0, 0, a_3 \rangle$$

$$= a_1 \langle 1, 0, 0 \rangle + a_2 \langle 0, 1, 0 \rangle + a_3 \langle 0, 0, 1 \rangle$$

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$

Thus any vector in V_3 can be expressed in terms of \mathbf{i} , \mathbf{j} , and \mathbf{k} . For instance,

$$\langle 1, -2, 6 \rangle = \mathbf{i} - 2\mathbf{j} + 6\mathbf{k}$$

Similarly, for a n-dimensional vector $\mathbf{a} = \langle a_1, a_2, ... a_n \rangle$, \mathbf{a} can be rewritten as $\mathbf{a} = \sum_{i=1}^{n} a_i e_i$.

Figure 18

Unit vector

A unit vector is a vector whose length is 1. For instance, i, j, and k are all unit vectors. In general, if $\mathbf{a} \neq \mathbf{0}$, then the unit vector that has the same direction as \mathbf{a} is

$$\mathbf{u} = \frac{\mathbf{a}}{\|\mathbf{a}\|}$$

In order to verify this, we let $\mathbf{c} = \frac{1}{\|\mathbf{a}\|}$. Then $\mathbf{u} = c\mathbf{a}$ and c is a positive scalar, so \mathbf{u} has the same direction as \mathbf{a} . Also $\|\mathbf{u}\| = \|\mathbf{ca}\| = \mathbf{c}\|\mathbf{a}\| = 1$

A 100-lb weight hangs from two wires as shown in Figure 19. Find the tensions (forces) T_1 and T_2 in both wires and the magnitudes of the tensions.

We first express T_1 and T_2 in terms of their horizontal and vertical components. From the figure we see that

$$\mathbf{T}_1 = -|\mathbf{T}_1| \cos 50^{\circ} \mathbf{i} + |\mathbf{T}_1| \sin 50^{\circ} \mathbf{j}$$

$$\mathbf{T}_2 = |\mathbf{T}_2| \cos 32^{\circ} \mathbf{i} + |\mathbf{T}_2| \sin 32^{\circ} \mathbf{j}$$

The resultant $T_1 + T_2$ of the tensions counterbalances the weight $\mathbf{w} = -100 \, \mathbf{j}$ and so we must have

$$T_1 + T_2 = -w = 100j$$

Thus $(-|\mathbf{T}_1|\cos 50^\circ + |\mathbf{T}_2|\cos 32^\circ)\mathbf{i} + (|\mathbf{T}_1|\sin 50^\circ + |\mathbf{T}_2|\sin 32^\circ)\mathbf{j}$

=100j

Equating components, we get

$$-|\mathbf{T}_1|\cos 50^\circ + |\mathbf{T}_2|\cos 32^\circ = 0$$

$$|T_1|\sin 50^\circ + |T_2|\sin 32^\circ = 100$$

Solving the first of these equations for $|\mathbf{T}_2|$ and substituting into the second, we get

$$|\mathbf{T}_1| \sin 50^\circ + \frac{|\mathbf{T}_1| \cos 50^\circ}{\cos 32^\circ} \sin 32^\circ = 100$$

 $|\mathbf{T}_1| \left(\sin 50^\circ + \cos 50^\circ \frac{\sin 32^\circ}{\cos 32^\circ}\right) = 100$

So the magnitudes of the tensions are

$$|\mathbf{T}_1| = \frac{100}{\sin 50^\circ + \tan 32^\circ \cos 50^\circ} \approx 85.64 \text{ lb}$$

and

$$|\mathbf{T}_2| = \frac{|\mathbf{T}_1| \cos 50^{\circ}}{\cos 32^{\circ}} \approx 64.91 \text{ lb}$$

Considering an image as a vector I, what does the equation below do?

$$I_r = aI + b\mathbb{I}$$

where $a, b \in \Re$ and $\mathbb{I} = <1, 1, \dots 1>$.

$$+1001$$

So far we have added two vectors and multiplied a vector by a scalar. The question arises: Is it possible to multiply two vectors so that their product is a useful quantity? One such product is the dot product, whose definition follows.

Definition If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Thus, to find the dot product of **a** and **b**, we multiply corresponding components and add.

Example

$$\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle = 2(3) + 4(-1) = 2$$

$$\langle -1, 7, 4 \rangle \cdot \langle 6, 2, -1/2 \rangle = (-1)(6) + 7(2) + 4(-1/2) = 6$$

$$(i + 2j - 3k) \cdot (2j - k) = 1(0) + 2(2) + (-3)(-1) = 7$$

The dot product obeys many of the laws that hold for ordinary products of real numbers. These are stated in the following theorem.

2 Properties of the Dot Product If a, b, and c are vectors in V_3 and c is a scalar, then

1.
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

2.
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$
 4. $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$

5.
$$0 \cdot a = 0$$

Remarks

- 1) |a| is the norm of a. It is also denoted as |a|.
- **0** is a zero vector and 0 is a number.
- The properties are valid for n-dimensional vectors.
- 4) $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$ if a and b are column vectors, where T represents transpose.

These properties are easily proved using Definition 1. For instance, here are the proofs of Properties 1 and 3:

1.
$$\mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 + a_3^2 = |\mathbf{a}|^2$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \langle a_1, a_2, a_3 \rangle \cdot \langle b_1 + c_1, b_2 + c_2, b_3 + c_3 \rangle$$

$$= a_1(b_1 + c_1) + a_2(b_2 + c_2) + a_3(b_3 + c_3)$$

$$= a_1b_1 + a_1c_1 + a_2b_2 + a_2c_2 + a_3b_3 + a_3c_3$$

$$= (a_1b_1 + a_2b_2 + a_3b_3) + (a_1c_1 + a_2c_2 + a_3c_3)$$

$$= \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

- The dot product $\mathbf{a} \cdot \mathbf{b}$ can be given a geometric interpretation in terms of the **angle** θ **between a and** \mathbf{b} , which is defined to be the angle between the representations of \mathbf{a} and \mathbf{b} that start at the origin, where $0 \le \theta \le \pi$.
- In other words, θ is the angle between the line segments OA and OB in Figure 1. Note that if \mathbf{a} and \mathbf{b} are parallel vectors, then $\theta = 0$ or $\theta = \pi$.

Figure 1

The formula in the following theorem is used by physicists as the definition of the dot product

Theorem If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Example: If the vectors **a** and **b** have lengths 4 and 6, and the angle between them is $\pi/3$,

$$a \cdot b = |a| |b| \cos(\pi/3) = 4 \cdot 6 \cdot 1/2 = 12$$

- The formula in Theorem 3 also enables us to find the angle between two vectors.
 - **Corollary** If θ is the angle between the nonzero vectors **a** and **b**, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

Example: Find the angle between the vectors $\mathbf{a} = \langle 2, 2, -1 \rangle$ and $\mathbf{b} = \langle 5, -3, 2 \rangle$.

Since
$$|\mathbf{a}| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$
 $|\mathbf{b}| = \sqrt{5^2 + (-3)^2 + 2^2} = \sqrt{38}$

and
$$\mathbf{a} \cdot \mathbf{b} = 2(5) + 2(-3) + (-1)(2) = 2$$

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{2}{3\sqrt{38}} \qquad \theta = \cos^{-1} \left(\frac{2}{3\sqrt{38}}\right) \approx 1.46 \quad (\text{or } 84^\circ)$$

Two nonzero vectors **a** and **b** are called **perpendicular** or **orthogonal** if the angle between them is $\theta = \pi/2$. Then Theorem 3 gives

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\pi/2) = 0$$

and conversely if $\mathbf{a} \cdot \mathbf{b} = 0$, then $\cos \theta = 0$, so $\theta = \pi/2$. The zero vector $\mathbf{0}$ is considered to be perpendicular to all vectors.

Therefore we have the following method for determining whether two vectors are orthogonal.

Two vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Because $\cos \theta > 0$ if $0 \le \theta < \pi/2$ and $\cos \theta < 0$ if $\pi/2 < \theta \le \pi$, we see that $\mathbf{a} \cdot \mathbf{b}$ is positive for $\theta < \pi/2$ and negative for $\theta > \pi/2$. We can think of $\mathbf{a} \cdot \mathbf{b}$ as measuring the extent to which \mathbf{a} and \mathbf{b} point in the same direction.

The dot product **a** • **b** is positive if **a** and **b** point in the same general direction, 0 if they are perpendicular, and negative if they point in generally opposite directions (see Figure 2).

In the extreme case where **a** and **b** point in exactly the same direction, we have $\theta = 0$, so $\cos \theta = 1$ and

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}|$$

If **a** and **b** point in exactly opposite directions, then we have $\theta = \pi$ and so $\cos \theta = -1$ and $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}| |\mathbf{b}|$.

The **direction angles** of a nonzero vector **a** are the angles α , β , and γ (in the interval $[0, \pi]$) that **a** makes with the positive x-, y-, and z-axes, respectively. (See Figure 3.)

Figure 3

The cosines of these direction angles, $\cos \alpha$, $\cos \beta$, and $\cos \gamma$, are called the **direction cosines** of the vector **a**. Using Corollary 6 with **b** replaced by **i**, we obtain

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{|\mathbf{a}||\mathbf{i}|} = \frac{a_1}{|\mathbf{a}|}$$

(This can also be seen directly from Figure 3.) Similarly, we also have

$$\cos \beta = \frac{a_2}{|\mathbf{a}|} \qquad \cos \gamma = \frac{a_3}{|\mathbf{a}|}$$

Note
$$i = <1, 0, 0>$$
, $j = <0 1, 0>$, and $k = <0, 0, 1>$

By squaring the expressions in Equations 8 and 9 and adding, we see that

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

We can also use Equations 8 and 9 to write

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle |\mathbf{a}| \cos \alpha, |\mathbf{a}| \cos \beta, |\mathbf{a}| \cos \gamma \rangle$$

=
$$|\mathbf{a}| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

Therefore

$$\frac{1}{|\mathbf{a}|}\mathbf{a} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

which says that the direction cosines of **a** are the components of the unit vector in the direction of **a**.

Example

Find the direction angles of the vector $\mathbf{a} = \langle 1, 2, 3 \rangle$.

Solution:

Since
$$|a| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
, Equations 8 and 9 give

$$\cos \alpha = \frac{1}{\sqrt{14}} \qquad \cos \beta = \frac{2}{\sqrt{14}} \qquad \cos \gamma = \frac{3}{\sqrt{14}}$$

and so

$$\alpha = \cos^{-1}\left(\frac{1}{\sqrt{14}}\right) \approx 74^{\circ}$$
 $\beta = \cos^{-1}\left(\frac{2}{\sqrt{14}}\right) \approx 58^{\circ}$ $\gamma = \cos^{-1}\left(\frac{3}{\sqrt{14}}\right) \approx 37^{\circ}$

Projections

Figure 4 shows representations \overrightarrow{PQ} and \overrightarrow{PR} of two vectors \mathbf{a} and \mathbf{b} with the same initial point P. If S is the foot of the perpendicular from R to the line containing \overrightarrow{PQ} , then the vector with representation \overrightarrow{PS} is called the **vector projection** of \mathbf{b} onto \mathbf{a} and is denoted by $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$. (You can think of it as a shadow of \mathbf{b}).

Projections

The **scalar projection** of **b** onto **a** (also called the **component of b along a**) is defined to be the signed magnitude of the vector projection, which is the number $|\mathbf{b}| \cos \theta$, where θ is the angle between **a** and **b**.

(See Figure 5.)

Scalar projection

Figure 5

Projections

This is denoted by comp_a **b**. Observe that it is negative if $\pi/2 < \theta \le \pi$. The equation

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = |\mathbf{a}| (|\mathbf{b}| \cos \theta)$$

shows that the dot product of a and b can be interpreted as the length of a times the scalar projection of b onto a. Since

$$|\mathbf{b}| \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{\mathbf{a}}{|\mathbf{a}|} \cdot \mathbf{b}$$

the component of \mathbf{b} along \mathbf{a} can be computed by taking the dot product of \mathbf{b} with the unit vector in the direction of \mathbf{a} .

Projections

We summarize these ideas as follows.

Scalar projection of **b** onto **a**:
$$\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

Vector projection of **b** onto **a**:
$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

Notice that the vector projection is the scalar projection times the unit vector in the direction of \mathbf{a} .

Find the scalar projection and vector projection of $\mathbf{b} = \langle 1, 1, 2 \rangle$ onto $\mathbf{a} = \langle -2, 3, 1 \rangle$.

Solution:

Since $|\mathbf{a}| = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{14}$, the scalar projection of **b** onto **a** is

$$comp_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

$$= \frac{(-2)(1) + 3(1) + 1(2)}{\sqrt{14}}$$

$$= \frac{3}{\sqrt{14}}$$

The vector projection is this scalar projection times the unit vector in the direction of **a**:

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \frac{3}{\sqrt{14}} \frac{\mathbf{a}}{|\mathbf{a}|}$$

$$=\frac{3}{14}\mathbf{a}$$

$$= \left\langle -\frac{3}{7}, \frac{9}{14}, \frac{3}{14} \right\rangle$$

Projections

The work done by a constant force F in moving an object through a distance d as W = Fd, but this applies only when the force is directed along the line of motion of the object. Suppose, however, that the constant force is a vector $\mathbf{F} = PR$ pointing in some other direction, as in Figure 6.

Figure 6

Projections

If the force moves the object from P to Q, then the **displacement vector** is $\mathbf{D} = PQ$. The **work** done by this force is defined to be the product of the component of the force along \mathbf{D} and the distance moved:

$$W = (|\mathbf{F}| \cos \theta) |\mathbf{D}|$$

But then, from Theorem 3, we have

$$W = |\mathbf{F}| |\mathbf{D}| \cos \theta = \mathbf{F} \cdot \mathbf{D}$$

Thus the work done by a constant force **F** is the dot product **F** • **D**, where **D** is the displacement vector.

A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 70 N. The handle of the wagon is held at an angle of 35° above the horizontal. Find the work done by the force.

Solution:

If **F** and **D** are the force and displacement vectors, as pictured in Figure 7, then the work done is

$$W = \mathbf{F} \cdot \mathbf{D}$$
$$= |\mathbf{F}| |\mathbf{D}| \cos 35^{\circ}$$

Figure 7

$$= (70)(100) \cos 35^{\circ}$$

$$= 5734 J$$

Lines and Planes

A line in the xy-plane is determined when a point on the line and the direction of the line (its slope or angle of inclination) are given.

The equation of the line can then be written using the point-slope form.

Likewise, a line L in three-dimensional space is determined when we know a point $P_0(x_0, y_0, z_0)$ on L and the direction of L. In three dimensions the direction of a line is conveniently described by a vector, so we let \mathbf{v} be a vector parallel to L.

Let P(x, y, z) be an arbitrary point on L and let \mathbf{r}_0 and \mathbf{r} be the position vectors of P_0 and P (that is, they have representations $\overrightarrow{OP_0}$ and \overrightarrow{OP}).

If **a** is the vector with representation $\overrightarrow{P_0P}$, as in Figure 1, then the Triangle Law for vector addition gives $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}$.

But, since \mathbf{a} and \mathbf{v} are parallel vectors, there is a scalar t such that $\mathbf{a} = t\mathbf{v}$. Thus

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

which is a **vector equation** of *L*.

Each value of the **parameter** t gives the position vector \mathbf{r} of a point on L. In other words, as t varies, the line is traced out by the tip of the vector \mathbf{r} .

As Figure 2 indicates, positive values of t correspond to points on L that lie on one side of P_0 , whereas negative values of t correspond to points that lie on the other side of P_0 .

Figure 2

If the vector \mathbf{v} that gives the direction of the line L is written in component form as $\mathbf{v} = \langle a, b, c \rangle$, then we have $t\mathbf{v} = \langle ta, tb, tc \rangle$.

We can also write $\mathbf{r} = \langle x, y, z \rangle$ and $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$, so the vector equation (1) becomes

$$\langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle$$

Two vectors are equal if and only if corresponding components are equal.

Therefore we have the three scalar equations:

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

where $t \in \mathbb{R}$.

These equations are called **parametric equations** of the line L through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$.

Each value of the parameter t gives a point (x, y, z) on L.

2 Parametric equations for a line through the point (x_0, y_0, z_0) and parallel to the direction vector $\langle a, b, c \rangle$ are

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

- (a) Find a vector equation and parametric equations for the line that passes through the point (5, 1, 3) and is parallel to the vector $\mathbf{i} + 4\mathbf{j} 2\mathbf{k}$.
- (b) Find two other points on the line.

Solution:

Here
$$\mathbf{r}_0 = \langle 5, 1, 3 \rangle = 5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$
 and $\mathbf{v} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$, so the vector equation (1) becomes
$$\mathbf{r} = (5\mathbf{i} + \mathbf{j} + 3\mathbf{k}) + t(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$$
 or
$$\mathbf{r} = (5 + t)\mathbf{i} + (1 + 4t)\mathbf{j} + (3 - 2t)\mathbf{k}$$

Parametric equations are

$$x = 5 + t$$
 $y = 1 + 4t$ $z = 3 - 2t$

(b) Choosing the parameter value t = 1 gives x = 6, y = 5, and z = 1, so (6, 5, 1) is a point on the line.

Similarly, t = -1 gives the point (4, -3, 5).

The vector equation and parametric equations of a line are not unique. If we change the point or the parameter or choose a different parallel vector, then the equations change.

For instance, if, instead of (5, 1, 3), we choose the point (6, 5, 1), then the parametric equations of the line become

$$x = 6 + t$$
 $y = 5 + 4t$ $z = 1 - 2t$

Or, if we stay with the point (5, 1, 3) but choose the parallel vector $2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}$, we arrive at the equations

$$x = 5 + 2t$$
 $y = 1 + 8t$ $z = 3 - 4t$

In general, if a vector $\mathbf{v} = \langle a, b, c \rangle$ is used to describe the direction of a line L, then the numbers a, b, and c are called **direction numbers** of L.

Since any vector parallel to \mathbf{v} could also be used, we see that any three numbers proportional to a, b, and c could also be used as a set of direction numbers for L.

Another way of describing a line L is to eliminate the parameter t from Equation 2.

If none of a, b, or c is 0, we can solve each of these equations for t:

$$t = \frac{x - x_0}{a} \qquad t = \frac{y - y_0}{b} \qquad t = \frac{z - z_0}{c}$$

Equating the results, we obtain

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

These equations are called **symmetric equations** of *L*.

- Notice that the numbers a, b, and c that appear in the denominators of Equations 3 are direction numbers of L, that is, components of a vector parallel to L.
- If one of a, b, or c is 0, we can still eliminate t. For instance, if a = 0, we could write the equations of L as

$$x = x_0 \qquad \qquad \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

▶ This means that *L* lies in the vertical plane $x = x_0$.

In general, we know from Equation 1 that the vector equation of a line through the (tip of the) vector \mathbf{r}_0 in the direction of a vector \mathbf{v} is $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$.

If the line also passes through (the tip of) \mathbf{r}_1 , then we can take $\mathbf{v} = \mathbf{r}_1 - \mathbf{r}_0$ and so its vector equation is

$$r = r_0 + t(r_1 - r_0) = (1 - t)r_0 + tr_1$$

The line segment from \mathbf{r}_0 to \mathbf{r}_1 is given by the parameter interval $0 \le t \le 1$.

The line segment from \mathbf{r}_0 to \mathbf{r}_1 is given by the vector equation

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1 \qquad 0 \le t \le 1$$

The line equation $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ is valid for high dimensional space.

Although we can derive an equation similar Eq 3 for the high dimensional case, we don't use it. We normally use the equation in vector form i.e., $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$.

Although a line in space is determined by a point and a direction, a plane in space is more difficult to describe.

A single vector parallel to a plane is not enough to convey the "direction" of the plane, but a vector perpendicular to the plane does completely specify its direction.

Thus a plane in space is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector **n** that is orthogonal to the plane. This orthogonal vector **n** is called a **normal vector**.

Let P(x, y, z) be an arbitrary point in the plane, and let \mathbf{r}_0 and \mathbf{r} be the position vectors of P_0 and P. Then the vector $\mathbf{r} - \mathbf{r}_0$ is represented by $\overrightarrow{P_0P_1}$ (See Figure 6.)

The normal vector \mathbf{n} is orthogonal to every vector in the given plane. In particular, \mathbf{n} is orthogonal to $\mathbf{r} - \mathbf{r}_0$ and so we have

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

which can be rewritten as

$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

Either Equation 5 or Equation 6 is called a **vector** equation of the plane.

To obtain a scalar equation for the plane, we write

$$\mathbf{n} = \langle a, b, c \rangle, \mathbf{r} = \langle x, y, z \rangle, \text{ and } \mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle.$$

Then the vector equation (5) becomes

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

7 A scalar equation of the plane through point $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Find an equation of the plane through the point (2, 4, -1) with normal vector $\mathbf{n} = \langle 2, 3, 4 \rangle$. Find the intercepts and sketch the plane.

Solution:

Putting a = 2, b = 3, c = 4, $x_0 = 2$, $y_0 = 4$, and $z_0 = -1$ in Equation 7, we see that an equation of the plane is

$$2(x-2) + 3(y-4) + 4(z+1) = 0$$

or

$$2x + 3y + 4z = 12$$

To find the x-intercept we set y = z = 0 in this equation and obtain x = 6.

Similarly, the y-intercept is 4 and the z-intercept is 3. This enables us to sketch the portion of the plane that lies in the first octant (see Figure 7).

Figure 7

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation of a plane as

$$ax + by + cz + d = 0$$

where $d = -(ax_0 + by_0 + cz_0)$.

Equation 8 is called a **linear equation** in x, y, and z. Conversely, it can be shown that if a, b, and c are not all 0, then the linear equation (8) represents a plane with normal vector $\langle a, b, c \rangle$.

Two planes are parallel if their normal vectors are parallel.

For instance, the planes x + 2y - 3z = 4 and 2x + 4y - 6z = 3 are parallel because their normal vectors are $\mathbf{n}_1 = \langle 1, 2, -3 \rangle$ and $\mathbf{n}_2 = \langle 2, 4, -6 \rangle$ and $\mathbf{n}_2 = 2\mathbf{n}_1$.

If two planes are not parallel, then they intersect in a straight line and the angle between the two planes is defined as the acute angle between their normal vectors (see angle θ in Figure 9).

Figure 9

Hyperplanes

If \mathbf{n} , \mathbf{r} and \mathbf{r}_0 are n-dimensional vectors, equations 5 and 6 are still valid. If these vectors are column vectors,

$$\mathbf{n} \cdot (\mathbf{r} - r_0) = \mathbf{n}^T (\mathbf{r} - r_0) = 0$$

Let
$$\mathbf{n}^T = [\mathbf{a}_1, \dots, \mathbf{a}_n], \mathbf{r}^T = [x_1, \dots, x_n]$$
 and $\mathbf{r}_0^T = [c_1, \dots, c_n].$

$$\mathbf{n}^{T}(\mathbf{r} - \mathbf{r_0}) = \sum_{i=1}^{n} a_i x_i + d = 0$$

where $d = -\sum_{i=1}^{n} a_i c_i$. When $r_0 = 0$, d = 0 and the plane equation becomes $\sum_{i=1}^{n} a_i x_i = 0$. Note that $[a_1, \dots, a_n]$ is the normal vector.

Find a formula for the distance D from a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0.

Solution:

Let $P_0(x_0, y_0, z_0)$ be any point in the given plane and let **b** be the vector corresponding to $\overline{P_0P_1}$. Then

$$\mathbf{b} = \langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$$

From Figure 12 you can see that the distance D from P_1 to the plane is equal to the absolute value of the scalar projection of \mathbf{b} onto the normal vector $\mathbf{n} = \langle a, b, c \rangle$.

Figure 12

Thus

$$D = |\operatorname{comp}_{\mathbf{n}} \mathbf{b}| = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}$$

$$= \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$=\frac{\left|(ax_1+by_1+cz_1)-(ax_0+by_0+cz_0)\right|}{\sqrt{a^2+b^2+c^2}}$$

Since P_0 lies in the plane, its coordinates satisfy the equation of the plane and so we have

$$ax_0 + by_0 + cz_0 + d = 0.$$

Thus the formula for D can be written as

9

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$