

Data Sheet October 1999 File Number 3121.4

Dual/Quad SPST, CMOS Analog Switches

HI-200/HI-201 (dual/quad) are monolithic devices comprising independently selectable SPST switches which feature fast switching speeds (HI-200 240ns, and HI-201 185ns) combined with low power dissipation (15mW at 25°C). Each switch provides low "ON" resistance operation for input signal voltage up to the supply rails and for signal current up to 80mA. Rugged DI construction eliminates latch-up and substrate SCR failure modes.

All devices provide break-before-make switching and are TTL and CMOS compatible for maximum application versatility. HI-200/HI-201 are ideal components for use in high frequency analog switching. Typical applications include signal path switching, sample and hold circuit, digital filters, and operational amplifier gain switching networks.

Ordering Information

PART	TEMPERATURE	D40//405	DICO NO
NUMBER	RANGE (°C)	PACKAGE	PKG. NO.
HI1-0200-5	0 to 75	14 Ld CERDIP	F14.3
HI2-0200-5	0 to 75	10 Pin Metal Can	T10.B
HI3-0200-5	0 to 75	14 Ld PDIP	E14.3
HI1-0201-2	-55 to 125	16 Ld CERDIP	F16.3
HI1-0201-4	-25 to 85	16 Ld CERDIP	F16.3
HI1-0201-5	0 to 75	16 Ld CERDIP	F16.3
HI3-0201-5	0 to 75	16 Ld PDIP	E16.3
HI4P0201-5	0 to 75	20 Ld PLCC	N20.35
HI9P0201-5	0 to 75	16 Ld SOIC	M16.15
HI9P0201-9	-40 to 85	16 Ld SOIC	M16.15

Features

Analog Voltage Range
Analog Current Range 80m/
• Turn-On Time
• Low r _{ON}
Low Power Dissipation

• TTL/CMOS Compatible

Applications

- · High Frequency Analog Switching
- · Sample and Hold Circuits
- · Digital Filters
- · Operational Amplifier Gain Switching Networks

Functional Diagram

TRUTH TABLE

LOGIC	HI-200	HI-201
0	ON	ON
1	OFF	OFF

Pinouts (Switches Shown For Logic "1" Input)

HI-200 (METAL CAN) TOP VIEW

Schematic Diagrams

TTL/CMOS REFERENCE CIRCUIT V_{REF} CELL HI-200

TTL/CMOS REFERENCE CIRCUIT V_{REF} CELL HI-201

Schematic Diagrams (Continued)

SWITCH CELL

DIGITAL INPUT BUFFER AND LEVEL SHIFTER

Absolute Maximum Ratings

Supply Voltage (V+ to V-)	44V (±22)
V _{REF} to Ground	20V, -5V
Digital Input Voltage (V+) +4V	to (V-) -4V
Analog Input Voltage (One Switch) (V+) +2V	to (V-) -2V

Operating Conditions

Temperature Ranges
HI-201-255°C to 125°C
HI-201-425°C to 85°C
HI-200-5, HI-201-50°C to 75°C
HI-201-940°C to 85°C

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (oC/W)	θ_{JC} (oC/W)
14 Ld CERDIP Package	80	24
16 Ld CERDIP Package	75	20
PLCC Package	80	N/A
PDIP Package	95	N/A
16 Ld SOIC Package	110	N/A
10 Pin Metal Can Package	160	75
Maximum Storage Temperature	65	^o C to 150°C
Maximum Junction Temperature (Hermetic	Packages).	175 ^o C
Maximum Junction Temperature (Plastic P	ackages)	150 ^o C
Maximum Lead Temperature (Soldering, 1 (PLCC and SOIC - Lead Tips Only)	0s)	300°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

 $\textbf{Electrical Specifications} \qquad \text{Supplies} = +15 \text{V}, -15 \text{V}; \ \text{V}_{\text{REF}} = \text{Open}; \ \text{V}_{\text{AH}} \ (\text{Logic Level High}) = 2.4 \text{V}, \ \text{VAL} \ (\text{Logic Level Low}) = 0.8 \text{V}$

	TEST CONDITIONS	TEMP (°C)	-2			-4, -5, -9			
PARAMETER			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS		'	!	!		!	'	!	!
Switch ON Time, t _{ON}									
HI-200		25	-	240	500	-	240	-	ns
HI-201		25	-	185	500	-	185	-	ns
		Full	-	1000	-	-	1000	-	ns
Switch OFF Time, t _{OFF}									
HI-200		25	-	330	500	-	500	-	ns
HI-201		25	-	220	500	-	220	-	ns
		Full	-	1000	-	-	1000	-	ns
Off Isolation	(Note 4)								
HI-200		25	-	70	-	-	70	-	dB
HI-201		25	-	80	-	-	80	-	dB
Input Switch Capacitance, C _{S(OFF)}		25	-	5.5	-	-	5.5	-	pF
Output Switch Capacitance, C _{D(OFF)}		25	-	5.5	-	-	5.5	-	pF
Output Switch Capacitance, C _{D(ON)}		25	-	11	-	-	11	-	pF
Digital Input Capacitance, CA		25	-	5	-	-	5	-	pF
Drain-to-Source Capacitance, C _{DS(OFF)}		25	-	0.5	-	-	0.5	-	pF
DIGITAL INPUT CHARACTERISTICS				'		ı			1
Input Low Threshold, V _{AL}		Full	-	-	0.8	-	-	0.8	V
Input High Threshold, V _{AH}		Full	2.4	-	-	2.4	-	-	V
Input Leakage Current (High or Low), IA	(Note 3)	Full	-	-	1.0	-	-	1.0	μΑ
ANALOG SWITCH CHARACTERISTICS	,	1	1	-	1	1	1	1	1
Analog Signal Range, V _S		Full	-15	-	+15	-15	-	+15	V
ON Resistance, r _{ON}	(Note 2)	25	-	55	70	-	55	80	Ω
		Full	-	80	100	-	72	100	Ω

 $\textbf{Electrical Specifications} \qquad \text{Supplies = +15V, -15V; V}_{REF} = \text{Open; V}_{AH} \text{ (Logic Level High) = 2.4V, VAL (Logic Level Low) = 0.8V} \quad \textbf{(Continued)}$

	TEST	TEMP		-2		-4, -5, -9			
PARAMETER	CONDITIONS	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFF Input Leakage Current, I _{S(OFF)}	(Note 6)	25	-	1	5	-	1	50	nA
HI-200		Full	-	100	500	-	10	500	nA
HI-201		25	-	2	5	-	2	50	nA
		Full	-	-	500	-	-	250	nA
OFF Output Leakage Current, I _{D(OFF)}	(Note 6)	25	-	1	5	-	1	50	nA
HI-200		Full	-	100	500	-	10	500	nA
HI-201		25	-	2	5	-	2	50	nA
		Full	-	35	500	-	35	250	nA
ON Leakage Current, I _{D(ON)}	(Note 6)	25	-	1	5	-	1	50	nA
HI-200		Full	-	100	500	-	10	500	nA
HI-201		25	-	2	5	-	2	50	nA
		Full	-	-	500	-	-	250	nA
POWER SUPPLY CHARACTERISTICS	(Note 5)								1
Power Dissipation, P _D		25	-	15	-	-	15	-	mW
		Full	-	-	60	-	-	60	mW
Current, I+		25	-	0.5	-	-	0.5	-	mA
		Full	-	-	2.0	-	-	2.0	mA
Current, I-		25	-	0.5	-	-	0.5	-	mA
		Full	-	-	2.0	-	-	2.0	mA

NOTES:

- 2. $V_{OUT} = \pm 10V$, $I_{OUT} = 1mA$.
- 3. Digital Inputs are MOS gates: typical leakage is < 1nA.
- 4. $V_A = 5V$, $R_L = 1k\Omega$, $C_L = 10pF$, $V_S = 3V_{RMS}$, f = 100kHz.
- 5. $V_A = +3V$ or $V_A = 0V$ for Both Switches.
- 6. Refer to Leakage Current Measurements (Figure 2).

Test Circuits and Waveforms $T_A = 25^{\circ}C$, $V_{SUPPLY} = \pm 15V$, $V_{AH} = 2.4V$, $V_{AL} = 0.8V$ and $V_{REF} = Open$

FIGURE 1A. ON RESISTANCE TEST CIRCUIT

 $\textbf{\textit{Test Circuits and Waveforms}} \quad \text{T}_{A} = 25^{o}\text{C}, \ \text{V}_{SUPPLY} = \pm 15\text{V}, \ \text{V}_{AH} = 2.4\text{V}, \ \text{V}_{AL} = 0.8\text{V} \ \text{and} \ \text{V}_{REF} = \text{Open (Continued)}$

FIGURE 1B. ON RESISTANCE vs TEMPERATURE

FIGURE 1C. HI-200 ON RESISTANCE vs ANALOG SIGNAL LEVEL

FIGURE 1. ON RESISTANCE

FIGURE 2B. OFF LEAKAGE CURRENT TEST CIRCUIT

FIGURE 2A. LEAKAGE CURRENT vs TEMPERATURE

FIGURE 2C. ON LEAKAGE CURRENT TEST CIRCUIT

FIGURE 2. LEAKAGE CURRENTS

±V_{IN} HI-201

FIGURE 3A. SWITCH CURRENT vs VOLTAGE

6

FIGURE 3B. TEST CIRCUIT

FIGURE 3. SWITCH CURRENT

$\textbf{\textit{Test Circuits and Waveforms}} \quad T_{A} = 25^{o}C, \ V_{SUPPLY} = \pm 15 \text{V}, \ V_{AH} = 2.4 \text{V}, \ V_{AL} = 0.8 \text{V} \ \text{and} \ V_{REF} = Open \ \textbf{(Continued)}$

FIGURE 4A. MEASUREMENT POINTS

 $V_A = 0$ to 4V Vertical: 2V/Div. Horizontal: 100ns/Div. V_A = 0 to 15V Vertical: 5V/Div. Horizontal: 100ns/Div.

FIGURE 4B. WAVEFORMS WITH TTL COMPATIBLE LOGIC

FIGURE 4C. WAVEFORMS WITH CMOS COMPATIBLE LOGIC INPUT

FIGURE 4. SWITCH ton AND toff

FIGURE 5. HI-201 OFF ISOLATION vs FREQUENCY

For more information see Application Notes AN520, AN521, AN531, AN532 and AN557.

Application Information

Single Supply Operation

The switch operation of the HI-200/201 is dependent upon an internally generated switching threshold voltage optimized for $\pm 15 \text{V}$ power supplies. The HI-200/201 does not provide the necessary internal switching threshold in a single supply system. Therefore, if single supply operation is required, the HI-300 series of switches is recommended. The HI-300 series will remain operational to a minimum +5V single supply.

Switch performance will degrade as power supply voltage is reduced from optimum levels (± 15 V). So it is recommended that a single supply design be thoroughly evaluated to ensure that the switch will meet the requirements of the application.

For further information see Application Notes AN520, AN521, AN531, AN532, AN543 and AN557.

Die Characteristics

DIE DIMENSIONS:

54 mils x 79 mils

METALLIZATION:

Type: CuAl

Thickness: 16kÅ ±2kÅ

PASSIVATION:

Type: Nitride over Silox Nitride Thickness: 3.5kÅ ±1kÅ

Silox Thickness: 12kÅ ±2kÅ WORST CASE CURRENT DENSITY:

2 x 10⁵ A/cm² at 25mA

Metallization Mask Layout

HI-200

Die Characteristics

DIE DIMENSIONS:

81 mils x 85 mils

METALLIZATION:

Type: CuAl

Thickness: 16kÅ ±2kÅ

PASSIVATION:

Type: Nitride over Silox

Nitride Thickness: 3.5kÅ ±1kÅ Silox Thickness: 12kÅ ±2kÅ

WORST CASE CURRENT DENSITY:

2 x 10⁵ A/cm² at 25mA

Metallization Mask Layout

HI-201

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902

TEL: (407) 724-7000 FAX: (407) 724-7240 **EUROPE**

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111

FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029