1. 编写蚁群算法,以下面 0-1 背包问题进行测试:

n=10 (物品数), V=269 (背包总重量)

每件物品的重量W = (95, 4, 60, 32, 23, 72, 80, 62, 65, 46)

每件物品的价值P = (55,10,47,5,4,50,8,61,85,87)

参考最优值 295

要求:

- (1) 提交可以运行带注释的代码; 提交最大价值;
- (2) 画出平均收敛性曲线(横坐标迭代次数,纵坐标目标值(每个迭代次上运行 10 轮的平均值);
- (3)给出一个表格,包含迭代次上最好、最差、平均结果

迭代次数	最差	最好	平均
1			
10			
50			
100			
150			

2. 编写粒子群算法,以下面的问题进行测试:

采用了无时间窗 VRP 的例子,问题为一个有 7 个发货点任务的车辆路径问题,各任务点的 坐标及货运量见下表:

表1 各发货点坐标及货运量										
序号	0	1	2	3	4	5	6	7		
坐标	(18,54)	(22,60)	(58,69)	(71,71)	(83,46)	(91,38)	(24,42)	(18,40)		
货运量 (g _i)		0.89	0.14	0.28	0.33	0.21	0.41	0.57		

注:序号0表示中心仓库,设车辆容量皆为*q*=1.0,由3辆车完成所有任务。(最优路径距离为217.81)

要求:

- (1) 提交可以运行带注释的代码; 提交最后最优路径距离值, 给出最优路径;
- (2) 此问题用前面的作业中 GA 或者 SA 算法实现一下,根据实验结果对比求解本问题上述哪种算法更适合?为什么?