Exercices prieparation oralle	Exercise 15 IIII TOUT PREMIER POINT À VÉRIFIER: il faut justifier que cette intégrale est bien définie, par exemple avec 1. Soit $E = \{f \in \mathcal{E}^\circ(\mathbb{R}, \mathbb{R}), \int_{\mathbb{R}} f^2 \text{ existe } f^2 \}$ $\forall (f,g) \in \mathcal{E}^2, \text{ on pose } \{f,g\} = \{f,g\}\}$
	· $\forall (f,g) \in E^2, \langle f,g \rangle = \langle g,f \rangle donc \langle \cdot, \cdot \rangle$ est symétrique arnaque
e par composition de gordions continu	• $\forall (f,g,h) \in \mathbb{Z}^3, \forall \lambda \in \mathbb{R}$, $\langle f,g+\lambda h \rangle = \int_{-\infty}^{+\infty} f(t)g(t)dt + \lambda \int_{-\infty}^{+\infty} f(t)h(t)dt \langle f,g+h \rangle \in \mathbb{Z}$ $\langle \cdot, \cdot, \cdot \rangle$ est line aire à droite donc bilime aire intégrales continue if $\int_{-\infty}^{+\infty} f(t)dt$ existe avec $\forall t \in \mathbb{R}$, $\langle f(t) \rangle \geq 0$ On en conclut que $\forall f \in \mathbb{Z}$, $\langle f, f \rangle \geq 0$
	Soit $f=0:\langle f,f\rangle=0$ inutile Réciproquiment, $\forall f\in E$, si $\langle f,f\rangle=0$: f^{ℓ} est containe sur R avec $\forall t\in R$, $f^{\ell}(t)\geq 0$ Nécessainment, $f^{\ell}=0$ donc $f=0$ si $\langle f,f\rangle=0$ On en déduit que $\forall f\in E, \langle f,f\rangle=0$ $\langle f,f\rangle=0$
	2 Pront (v) and EFN* of the CN* Q = ((v. v.)) (C) (Q)
	2. Scient (4m) men EE N* et Von EN*, Qn = (4i,4)) eignesting ETm(R) On suppose que In EN*, Qn est inversible. D'une part, Qn ES(R) donc toutes ses valeurs propries sont reelles. D'autre part, Qn est inversible donc O m'est pas valeur proprie de Qn
	Soil XER on mote X= ((2i))is[1].
	$X^{T}Q_{n}X = \sum_{j=1}^{n} x_{j}\sum_{i=1}^{n} x_{i} \langle \psi_{i}, \psi_{j} \rangle = \sum_{j=1}^{n} x_{j} \langle \sum_{i=1}^{n} \psi_{i}x_{i}, \psi_{j} \rangle = \langle \sum_{i=1}^{n} \psi_{i}x_{i}, \sum_{j=1}^{n} \psi_{j}x_{i} \rangle$ $\langle \cdot, \cdot \rangle \text{ est un. poduit}$

En posent $z = \sum_{j=1}^{\infty} \varphi_j x_j$, $X^TQ_n X = x ^2 > 0$ donc $Q_n \in S^+(\mathbb{R})$
Que y+(R) et O & Sp(Qu) donc Sp(Qu) C R*, Ainsi, la plus petite valeur propre de Que est strictement positive car l'ensemble des valeurs propres est FINI, donc il a bien un minimum
3. · Montrons que fan E Vect (qui qu) => Ques mon-inversible.
Si φ _{n+1} ∈ Vect (φ ₁ ,φ _n), alors (φ ₁ ,φ _{n+2}) est lile. ∃(λi)ic[1;nex] ∈ R mon low muls, ∑ λi φi = 0
$\forall j \in [1, n+1], \sum_{i=1}^{n+1} \lambda_i < j_j : \varphi_i > 0$ donc en motant $(C_j)_{j \in [1, n+1]}$ les vecteurs colonnes de Q_{n+1} on a $\sum_{j=1}^{n+1} j \in Q_j = 0$.
$(C_j)_{j\in I_{i,n+1}}$ est liée donc $ng((C_j))< n+1: Q_{n+1}$ est donc non Xinnersille
· Par contraposé, si Qn est inversible, alors (q,,qn) est libre.
· Montrons que Quinversible = (q, q,) est libre.
Soil XER: $X^TQ_nX = \langle x, x \rangle$ d'après la question 2 $\langle x, x \rangle = 0 \text{ is } x = 0, \text{ donc par libre de et pourquoi ? à détailler}$
Ainsi, an est définie positive stricte donc OSSpan). On est innerest
of a months que Q_n inversible $(\varphi_1, \dots, \varphi_n)$ libre donc on en diduit Q_{n+2} mon X inversible (\Rightarrow) $(\varphi_1, \dots, \varphi_{n+2})$ lies. pas de tiret entre "non" et un adjectif, seulement entre "non" et un substantif
Jonknons que Qnos mont inversible > pnos € Vect(p1,000 p).
Soit Gnez non X un visible:

et pourquoi ??	Je pense que tu parles de (phi_1,,phi_r) mais tu n'écris pas r mais n :
K	c'est incompréhensible
27.5 27.5	$\exists (A_i) \in \mathbb{R}^{n+1}$ mon tous onuls $\int_{c=1}^{n+1} \lambda_i \cdot q_i = 0$
the state of the s	On, (q.,,q.) est libre donc $\lambda_{n+2} \neq 0$ car sinon il y a contradiction. Aimsi, $q_{n+2} = \frac{1}{\lambda_{n+2}} \sum_{i=1}^{n} \lambda_i q_i donc q_{n+1} \in Vect(q_n, \dots, q_n)$
	On a donc membré que Que Que ron-unansible () Pars (Vect (g., g.)
1.	The summand
4.	C'est donc un r ?? Tontrons par récurrence sur N^* : $y_m \in Vect (y_1,, y_m)$ en supposant que Q_{n+s} est non χ invensible et que $\forall (i,j,k) \in (N^*)^3$, $(y_{i+k}, y_{j+k}) = (y_i, y_j)$
	Pour $m=1$, $\psi_1=\psi_1+\sum_{i=2}^n C\times\psi_i$ denc $\mathcal{D}(1)$ est viole.
	Soit m E N* fel que D(1), D(2), D(m) sont viraires. Montrons que D(n+1) est virair par hérédité.
	∀(i,z)∈[1;nn]; ∀k∈N; (yin, yzh) = (yi, y;) donc la matrice de Gram de (yk+2, ···· yk+n+2) est égale à celle de (y1, ···· yn) Ces deux matrices sont non xunversibles donc d'agrès la guestion 3, yk+n+2 ∈ Vect (yk+1, ···· yk+n)
	Jumpho, on mole m = k10 donc ym E Vect (ym-1+1/" ym)
	On, par hypothèse de recurrence, Vi El[m·n·1; m], fi Elect (92,g.) donc 9n+2 Elect (91,y.): P(m+1) est vraie
	etinsi, Vm EN*, ym E Vect (y,,yn)