MATH 230B

Name: Quin Darcy Instructor: Dr. Ricciotti

1. Let $a_k \geq 0$, $b_k > 0$ for all $k \in \mathbb{N}$. Assume that $\lim_{k \to \infty} \frac{a_k}{b_k} = \lambda$, where $0 < \lambda < \infty$. Prove that $\sum_{k=1}^{\infty} a_k$ is convergent if and only if $\sum_{k=1}^{\infty} b_k$ is convergent.

Proof. Assume that $\sum_{k=1}^{\infty} b_k$ is convergent. Let $\varepsilon = 1$. Then since $\lim_{n \to \infty} a_n/b_n = \lambda$, then there exists $N \in \mathbb{N}$ such that

$$\left| \frac{a_n}{b_n} - \lambda \right| < 1 \Leftrightarrow \left| \frac{a_n}{b_n} \right| - |\lambda| < 1 \Leftrightarrow \frac{a_n}{b_n} < 1 + \lambda \Leftrightarrow a_n < (1 + \lambda)b_n$$

for all $n \geq N$. Hence for any $M \geq N$

$$\sum_{k=N}^{M} a_k < \sum_{k=N}^{M} (1+\lambda) b_k \le (1+\lambda) \sum_{k=1}^{\infty} b_k < \infty.$$

The last inequality holds by assumption. Noting that $\sum_{k=1}^{N-1} a_k$ is finite, then the above inequality implies that the sequence of partial sums $S_n = \sum_{k=1}^n a_k$ is bounded from above. Moreover, this sequence is monotonically increasing as all of its terms are positive. Therefore the sequence of parthial sums is convergent and so

$$\sum_{k=1}^{\infty} a_k < \infty.$$

Now assume that $\sum_{k=1}^{\infty} a_k < \infty$. Let $\varepsilon > 0$ such that $\varepsilon < \lambda$. Then there exists $N \in \mathbb{N}$ such that

$$\left| \frac{a_n}{b_n} - \lambda \right| < \varepsilon \Leftrightarrow (\lambda - \varepsilon)b_n < a_n < (\lambda + \varepsilon)b_n$$

for all $n \geq N$. This implies that for any $M \geq N$

$$\sum_{k=N}^{M} b_k < (\lambda - \varepsilon) \sum_{k=N}^{M} a_k \le (\lambda - \varepsilon) \sum_{k=1}^{\infty} a_k < \infty.$$

Since $\sum_{k=1}^{N-1} b_k < \infty$, then the sequence of partial sums $S_n = \sum_{k=1}^n b_k$ is bounded above. Since the sequence is monotineally increasing, then it converges. Therefore

$$\sum_{k=1}^{\infty} b_k < \infty.$$

Due Date: 04/01/2022

Assignment: Homework 04

MATH 230B Darcy

2. Let $a_k \geq 0$ for all $k \in \mathbb{N}$. Prove that if $\sum_{k=1}^{\infty} a_k$ is convergent, then $\sum_{k=1}^{\infty} a_k^2$ is convergent.

Proof. Since $\sum_{k=1}^{\infty} a_k$ converges, then from Theorem 3.23 (Rudin), it follows that $\lim_{k\to\infty} a_k = 0$. Letting $\varepsilon = 1$, there exists $N \in \mathbb{N}$ such that $|a_k| < 1$ for all $k \geq N$. Since $a_k \geq 0$ for all $k \in \mathbb{N}$, then $a_k < 1$ for all $k \geq N$. Hence, $a_k^2 \leq a_k < 1$ for all $k \geq N$. This implies that for all $M \geq N$

$$\sum_{k=N}^{M} a_k^2 \le \sum_{k=N}^{M} a_k \le \sum_{k=1}^{\infty} a_k < \infty.$$

By Theorem 3.25 (Rudin),

$$\sum_{k=1}^{\infty} a_k^2 < \infty.$$

3. Let $a_k \geq 0$ for all $k \in \mathbb{N}$. Prove that if $\sum_{k=1}^{\infty} a_k$ is convergent, then $\sum_{k=1}^{\infty} \sqrt{a_k a_{k+1}}$ is convergent.

Proof. Before proceeding, we note that if $a, b \ge 0$, then $(\sqrt{a} - \sqrt{b})^2 \ge 0$, which implies that

$$a+b-2\sqrt{ab} \ge 0 \Leftrightarrow \sqrt{ab} \le \frac{a+b}{2}.$$
 (1)

From (1) it follows that for all $k \in \mathbb{N}$

$$\sqrt{a_k a_{k+1}} \le \frac{a_k + a_{k+1}}{2}.$$

Thus for any $n \in \mathbb{N}$

$$\sum_{k=1}^{n} \sqrt{a_k a_{k+1}} \le \frac{1}{2} \sum_{k=1}^{n} a_k + a_{k+1} = \frac{a_1}{2} + \sum_{k=1}^{n-1} a_{k+1}.$$

This implies that the sequence of partial sums $S_n = \sum_{k=1}^n \sqrt{a_k a_{k+1}}$ is bounded above and therefore converges.

4. Let $a_k \ge 0$ for all $k \in \mathbb{N}$. Prove that $\sum_{k=1}^{\infty} a_k$ is convergent if and only if $\sum_{k=1}^{\infty} \frac{a_k}{1+a_k}$ is convergent.

Proof. Assume that $\sum_{k=1}^{\infty} a_k$ is convergent. Then since $a_k \geq 0$ for all $k \in \mathbb{N}$, we have that

$$\frac{a_k}{1 + a_k} \le a_k$$

for all $k \in \mathbb{N}$. By Theorem 3.25 (Rudin) it follows that

$$\sum_{k=1}^{\infty} \frac{a_k}{1 + a_k} < \infty.$$

MATH 230B Darcy

Now assume that $\sum_{k=1}^{\infty} \frac{a_k}{1+a_k}$ is convergent. Then $\lim_{k\to\infty} \frac{a_k}{1+a_k} = 0$. Letting $0 < \varepsilon < 1$, then there exists $N \in \mathbb{N}$ such that for all $k \geq N$

$$\frac{a_k}{1 + a_k} < \varepsilon \Leftrightarrow a_k < \varepsilon (1 + a_k)$$
$$\Leftrightarrow a_k (1 - \varepsilon) < \varepsilon$$
$$\Leftrightarrow a_k < \frac{\varepsilon}{1 - \varepsilon}.$$

As $\varepsilon \to 0$, then $\frac{\varepsilon}{1-\varepsilon} \to 0$ and therefore $a_k \to 0$ as $k \to \infty$. Since $\lim_{k\to\infty} a_k = 0$, then for any 1 < B, there exists N such that for all $k \ge N$, we have that $1 + a_k < B$. Then $\frac{B}{1+a_k} > 1$ for all $k \ge N$. Thus for all $k \ge N$

$$a_k \le \frac{Ba_k}{1 + a_k}.$$

By Theorem 3.23 (Rudin),

$$\sum_{k=1}^{\infty} a_k < \infty.$$

5. Prove that if $\sum_{k=1}^{\infty} a_k$ is conditionally convergent, then $\sum_{k=1}^{\infty} k^2 a_k$ is not convergent.

Proof. If $\sum_{k=1}^{\infty} a_k$ is conditionally convergent, then $\sum_{k=1}^{\infty} |a_k|$ is divergent. For contradiction, assume that $\sum_{k=1}^{\infty} k^2 a_k$ converges. Then $\lim_{k\to\infty} k^2 a_k = 0$. If $\varepsilon = 1$, there exists $N \in \mathbb{N}$ such that for all $k \geq N$,

$$|k^2 a_k| = k^2 |a_k| < \varepsilon \Rightarrow |a_k| < \frac{1}{k^2}.$$

Given that by Theorem 3.28 (Rudin), $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, then by Theorem 3.23 (Rudin), $\sum_{k=1}^{\infty} |a_k|$ converges. This contradicts our assumption that $\sum_{k=1}^{\infty} a_k$ converges conditionally. Therefore $\sum_{k=1}^{\infty} k^2 a_k$ is divergent.

6. Let $a_n \geq 0$ for all $k \in \mathbb{N}$. Prove that if $\sum_{k=1}^{\infty} a_k$ is convergent, then $\lim_{k \to \infty} \inf k a_k = 0$. Is it true that $\lim_{k \to 0} k a_k = 0$?

Proof. For contradiction, assume that $\lim_{n\to\infty}\inf ka_k>0$. Then no subsequences of $\{ka_k\}$ converge to 0. Hence, there exists r>0 and some $N\in\mathbb{N}$ such that for all $n\geq N$ we have that $na_n>r$ which implies that $a_n>r/n$. Thus

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{N-1} a_k + \sum_{k=N}^{\infty} a_k \ge \sum_{k=1}^{N-1} a_k + \sum_{k=N}^{\infty} \frac{r}{k}.$$

Since $\sum_{k=N}^{\infty} r/k = \infty$, then this contradicts the assumption that $\sum_{k=1}^{\infty} a_k$ is convergent.

3