Комитет по образованию Правительства Санкт-Петербурга **САНКТ-ПЕТЕРБРУГСКИЙ КОЛЛЕДЖ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ**

Отчет по практической работе МДК 01.02 «Разработка мобильных приложений» Разработка интерактивного приложения карт с использованием REST API

Выполнил

студент группы 493:

Лукьянов И. А.

Преподаватель: Фомин А.В.

Структура базы данных

База данных состоит из 5 таблиц:

- 1. Tile хранит загруженные тайлы.
- 2. Layer хранит настройки дополнительных слоев.
- 3. CacheTime хранит время кэширования.
- 4. LastPosition хранит последнее место на карте.
- 5. APIEndPoint хранит конечную точку API.

ER диаграмма представлена на рисунке 1.

Рисунок 1 – ER диаграмма базы данных

Таблица Tile

Содержит сведения о загруженных тайлах. Таблица состоит из пяти столбцов:

- 1. х координата тайла по горизонтали.
- 2. у координата тайла по вертикали.
- 3. scale уровень масштабирования.
- 4. data изображение в формате строки.
- 5. time время создания тайла.

Подробное описание столбцов представлено на рисунке 2.

Tile		loaded tiles						
#	name	type	size	default	primary	foreign	unique	description
1	x	int	-		yes	-	yes	x coordinate
2	у	int	-		yes	-	yes	y coordinate
3	scale	int	-		yes	-	yes	scale level
4	data	text	-		no	-	no	image in base64 type
5	time	timestamp	-		no	-	no	creation time

Рисунок 2 – Описание столбцов таблицы Tile

Таблица Layer

Содержит сведения о настройках дополнительных слоев. Таблица состоит из четырех столбцов:

- 1. layer уникальный идентификатор слоя.
- 2. name название слоя.
- 3. color цвет слоя в численном выражении.
- 4. checked статус слоя: выбран или нет.

Подробное описание столбцов представлено на рисунке 3.

	Layer		layer settings					
#	name	type	size	default	primary	foreign	unique	description
1	layer	int	•		yes	-	yes	unique identifier
2	name	text	1		no	-	no	layer name
3	color	int	1		no	-	no	layer color
4	checked	int	-		no	-	no	layer status

Рисунок 3 – Описание столбцов таблицы Layer

Таблица LastPosition

Содержит сведения о последнем месте на карте. Таблица состоит из трёх столбцов:

1. offset_x – координата по горизонтали.

- 2. offset_y координата по вертикали.
- 3. scale уровень масштабирования.

Подробное описание столбцов представлено на рисунке 4.

LastPosition		last fixed position						
#	name	type	size	default	primary	foreign	unique	description
1	offset_x	float	-		no	-	no	offset x coordinate
2	offset_y	float	-		no	-	no	offset y coordinate
3	scale	int	-		no	•	no	scale level

Рисунок 4 – Описание столбцов таблицы LastPosition

Таблица CacheTime

Содержит сведения о времени кэширования тайлов. Таблица состоит из двух столбцов:

- 1. time время кэширования.
- 2. unit единица измерения: секунды/минуты/часы/дни.

Подробное описание столбцов представлено на рисунке 5.

	CacheTime		time of caching						
Γ	#	name	type	size	default	primary	foreign	unique	description
	1	time	timestamp	-		no	-	no	time of caching
Г	2	unit	int	-		no	-	no	unit of measurement

Рисунок 5 – Описание столбцов таблицы CacheTime

Таблица APIEndPoint

Содержит сведения о конечной точке АРІ. Таблица состоит из одного столбца:

1. endpoint – конечная точка API.

Подробное описание столбцов представлено на рисунке 6.

	APIEndPoint	endpoint of api						
#	name	type	size	default	primary	foreign	unique	description
1	endpoint	text	-		no	-	no	api endpoint

Рисунок 6 – Описание столбцов таблицы APIEndPoint

Интерфейс приложения

Приложение состоит из 2 форм:

- 1. Main Form: служит для отображения карты и изменения масштаба, а также перехода к форме настроек.
- 2. Settings Form: форма настроек, для задания конечно точки API, времени кэширования, а также выбора активных дополнительных слоев и их цветов.

Форма Main Form

На рисунке 7 показан макет внешнего вида основной формы.

Рисунок 7 – Макет формы Main Form

На рисунке 8 показан внешний вид основной формы в приложении.

Рисунок 8 – Форма Main Form в приложении

Форма Settings Form

На рисунке 9 показан макет внешнего вида формы настроек.

Рисунок 9 – Макет формы Settings Form

На рисунке 10 показан внешний вид основной формы в приложении.

Рисунок 10 – Форма Settings Form в приложении

Описание протокола взаимодействия

Для взаимодействия с базой данных мобильное приложение использует API на основе хранимых процедур и сервера, который организует вызов процедур по протоколу HTTP и обмен данными.

Всего доступно 6 функций, список которых представлен на рисунке 11.

- 1. /raster получение уровней масштабирования с характеристиками.
- 2. /raster/level/ $\{x\}$ - $\{y\}$ получение изображения тайла.
- 3. /coastline/{level} получение списка точек для рисования берегов.
- 4. $/river/\{level\}$ получение списка точек для рисования рек.
- 5. /road/{level} получение списка точек для рисования дорог.
- 6. /railroad/{level} получение списка точек для рисования железных дорог.

Рисунок 11 – Список функций

1. Растровые

Данный набор функций позволяет получить данные о тайлах карты.

1.1. Функция /raster

Обеспечивает возможность получения сведений о уровнях масштабирования карты.

Входных параметров нет.

Выходными параметрами будет массив уровней со следующими характеристиками:

— level – уровень масштабирования.

- xtiles количество тайлов по горизонтали.
- ytiles количество тайлов по вертикали.
- width ширина тайлов.
- height высота тайлов.
- resolution коэффициент разрешения.

Пример вызова функции показан на рисунке 12.

Рисунок 12 — Вызов функции /raster

1.2. Функция /raster/level/{x}-{y}

Обеспечивает возможность получения параметров тайла с использованием его координат и уровня масштабирования.

Входные параметры:

- level уровень масштабирования.
- х координата по горизонтали.
- у координата по вертикали.

Выходные параметры:

— lat – ширина.

- --lon долгота.
- data изображение в формате текста.

Пример вызова функции показан на рисунке 13.

Рисунок 13 -Вызов функции /raster/level/ $\{x\}$ - $\{y\}$

2. Физические

Данный набор функций позволяет получить физические географические данные.

2.1. Функция /coastline/{level}

Обеспечивает возможность получения точек для рисования линий берегов.

Входные параметры:

- level уровень масштабирования.
- lat0 левая-верхняя ширина.
- lon0 левая-верхняя долгота.

- lat1 правая-нижняя ширина.
- lon1 правая-нижняя долгота.

Выходные параметры:

— массив массивов точек по горизонтали и вертикали.

Пример вызова функции показан на рисунке 14.

Рисунок 14 – Вызов функции /coastline/{level}

2.2. Функция /river/{level}

Обеспечивает возможность получения точек для рисования линий рек.

Входные параметры:

- level уровень масштабирования.
- lat0 левая-верхняя ширина.
- lon0 левая-верхняя долгота.
- lat1 правая-нижняя ширина.
- lon1 правая-нижняя долгота.

Выходные параметры:

— массив массивов точек по горизонтали и вертикали.

Пример вызова функции показан на рисунке 15.

Рисунок 15 – Вызов функции /river/{level}

3. Рукотворные

Данный набор функций позволяет получить рукотворные географические данные.

3.1. Функция /road/{level}

Обеспечивает возможность получения точек для рисования линий дорог.

Входные параметры:

- level уровень масштабирования.
- lat0 левая-верхняя ширина.
- lon0 левая-верхняя долгота.
- lat1 правая-нижняя ширина.
- lon1 правая-нижняя долгота.

Выходные параметры:

— массив массивов точек по горизонтали и вертикали.

Пример вызова функции показан на рисунке 16.

Рисунок 16 – Вызов функции /road/{level}

3.2. Функция /railroad/{level}

Обеспечивает возможность получения точек для рисования линий железных дорог.

Входные параметры:

- level уровень масштабирования.
- lat0 левая-верхняя ширина.
- lon0 левая-верхняя долгота.
- lat1 правая-нижняя ширина.
- lon1 правая-нижняя долгота.

Выходные параметры:

— массив массивов точек по горизонтали и вертикали

Пример вызова функции показан на рисунке 17.

Рисунок 17 – Вызов функции /railroad/{level}

Демонстрация работы приложения

Изображения карты отображаются (рис. 18):

Рисунок 18 – Отображение карты

Реализовано перемещение по карте с загрузкой соответствующих тайлов (рис. 19):

Рисунок 19 – Перемещение по карте

Имеется возможность увеличения и уменьшение масштаба, также при перезапуске приложения показывается последний уровень масштабирования и область обзора карты (рис. 20):

Рисунок 20 – Изменение масштаба

Имеется возможность настройки, а именно: задания точки API и времени кэширования, а также дополнительных слоев отображения (рис. 21):

Рисунок 21 – Настройки

Изменим конечную точку АРІ (рис. 22):

Рисунок 22 – Изменение конечной точки АРІ

Теперь проверим загрузку новых тайлов (рис. 23):

Рисунок 23 – Загрузка тайлов по новой конечной точке АРІ

Имеется возможность настроить дополнительные слои отображения и задания им цветов (рис. 24):

Рисунок 24 – Список доступных цветов

Выберем все слои и зададим каждому свой цвет (рис. 25):

Рисунок 25 – Задание дополнительных слоев и их цветов Теперь посмотрим их отображение на карте (рис. 26):

Рисунок 26 – Отображение дополнительных слоев

Приложение имеет собственную иконку (рис. 27):

Рисунок 27 – Иконка приложения