Assignment #1

Elements of Machine Learning

Saarland University - Winter Semester 2024/25

Rabin Adhikari 7072310 raad00002@stud.uni-saarland.de

Dhimitrios Duka 7059153

dhdu00001@stud.uni-saarland.de

- 1 Problem 3 (Linear Regression)
- 2 Derive Residual Sum of Squares (RSS) is the sum of squared residuals for all data points.
- 3 Make sure to customize it to our model.
- 4 First, we will start by defining the Residual Sum of Squares (RSS) formula. Mathematically, RSS
- 5 is defined as:

$$RSS = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 (1)

6 Furthermore, Equation 1 can be expressed in matrix notation as follows:

$$RSS = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\mathbf{T}}(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$
 (2)

For our model, RSS can be expanded as:

$$RSS = \sum_{i=1}^{N} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} \right)^2$$
 (3)

- 8 Derive and compute the estimates $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$ that minimize the residual sum of squares by
- 9 taking the partial derivatives of the RSS with respect to each coefficient.
- We need to derive and compute the estimates $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\beta}_2$ that minimize the RSS. Because RSS is
- a convex problem, we can just take the partial derivatives of the RSS w.r.t each estimate and set it to
- 0. First, we will start with $\hat{\beta}_0$ since that is also the simplest one.

$$\frac{\partial RSS}{\partial \hat{\beta}_0} = \sum_{i=1}^{N} 2 \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} \right) \cdot (-1)$$

$$= -2 \sum_{i=1}^{N} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} \right) \tag{4}$$

Equating it with zero, we get:

$$-2\sum_{i=1}^{N} \left(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i1} - \hat{\beta}_{2} x_{i2} \right) = 0$$

$$\sum_{i=1}^{N} y_{i} - \sum_{i=1}^{N} \hat{\beta}_{0} - \hat{\beta}_{1} \sum_{i=1}^{N} x_{i1} - \hat{\beta}_{2} \sum_{i=1}^{N} x_{i2} = 0$$

$$\sum_{i=1}^{N} y_{i} - N \hat{\beta}_{0} - \hat{\beta}_{1} \sum_{i=1}^{N} x_{i1} - \hat{\beta}_{2} \sum_{i=1}^{N} x_{i2} = 0$$

$$\frac{1}{N} \sum_{i=1}^{N} y_{i} - \frac{\hat{\beta}_{1}}{N} \sum_{i=1}^{N} x_{i1} - \frac{\hat{\beta}_{2}}{N} \sum_{i=1}^{N} x_{i2} = \hat{\beta}_{0}$$
(5)

Next, following a similar procedure, we can derive the estimates for $\hat{\beta}_1$ and $\hat{\beta}_2$. First, we will derive the estimate for $\hat{\beta}_1$.

$$\frac{\partial RSS}{\partial \hat{\beta}_1} = \sum_{i=1}^{N} 2 \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} \right) \cdot (-x_{i1})$$

$$= -2 \sum_{i=1}^{N} x_{i1} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} \right) \tag{6}$$

16 Equating it with zero, we get:

$$-2\sum_{i=1}^{N} x_{i1} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} \right) = 0$$

$$\sum_{i=1}^{N} x_{i1} y_i - \sum_{i=1}^{N} \hat{\beta}_0 x_{i1} - \sum_{i=1}^{N} \hat{\beta}_1 x_{i1}^2 - \sum_{i=1}^{N} \hat{\beta}_2 x_{i1} x_{i2} = 0$$
(7)

17 So, we get:

$$\hat{\beta}_{0} \cdot \sum_{i=1}^{N} x_{i1} + \hat{\beta}_{1} \sum_{i=1}^{N} x_{i1}^{2} + \hat{\beta}_{2} \sum_{i=1}^{N} x_{i1} x_{i2} = \sum_{i=1}^{N} x_{i1} y_{i}$$

$$\frac{\sum_{i=1}^{N} y_{i} x_{i1} - \hat{\beta}_{0} \sum_{i=1}^{N} x_{i1} - \hat{\beta}_{2} \sum_{i=1}^{N} x_{i1} x_{i2}}{\sum_{i=1}^{N} x_{i1}^{2}} = \hat{\beta}_{1}$$
(8)

Similarly, due to symmetry, we can obtain the optimal value for $\hat{\beta}_2$ also by replacing x_{i1} with x_{i2} and vice versa, $\hat{\beta}_1$ with $\hat{\beta}_2$ and vice versa.

$$\hat{\beta}_{0} \cdot \sum_{i=1}^{N} x_{i2} + \hat{\beta}_{1} \sum_{i=1}^{N} x_{i1} x_{i2} + \hat{\beta}_{2} \sum_{i=1}^{N} x_{i2}^{2} = \sum_{i=1}^{N} x_{i2} y_{i}$$

$$\frac{\sum_{i=1}^{N} y_{i} x_{i2} - \hat{\beta}_{0} \sum_{i=1}^{N} x_{i2} - \hat{\beta}_{1} \sum_{i=1}^{N} x_{i1} x_{i2}}{\sum_{i=1}^{N} x_{i2}^{2}} = \hat{\beta}_{2}$$
(9)

Now, solving equations 5, 8, and 9, we get the optimal values of $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$, for least squares method.

Table 1: The calculation of parameters for the normal equations.

				. 1				
	x_{i1}	x_{i2}	y_i	x_{i1}^{2}	x_{i2}^{2}	$x_{i1} \cdot x_{i2}$	$x_{i1} \cdot y_i$	$x_{i2} \cdot y_i$
	1	2	5	1	4	2	5	10
	2	1	6	4	1	2	12	6
	3	3	9	9	9	9	27	27
	4	2	10	16	4	8	40	20
	5	3	13	25	9	15	65	39
Sum	15	11	43	55	27	36	149	102

22 So, using Table 1 and the normal equations we get the following equations.

$$43 = 5\hat{\beta}_0 + 15\hat{\beta}_1 + 11\hat{\beta}_2$$

$$149 = 15\hat{\beta}_0 + 55\hat{\beta}_1 + 36\hat{\beta}_2$$

$$102 = 11\hat{\beta}_0 + 36\hat{\beta}_1 + 27\hat{\beta}_2$$

- Solving above equations, we get, $\hat{\beta}_0=1.642,\,\hat{\beta}_1=1.779,\,$ and $\hat{\beta}_2=0.737.$
- Compute the R-square value for our model.
- We know that R^2 is defined as $R^2 = 1 \frac{RSS}{TSS}$, where $TSS = \sum_{i=0}^{N} (y_i \overline{y})^2$ and $RSS = \sum_{i=0}^{N} (y_i \hat{y}_i)^2$. So, to calculate RSS and TSS let us calculate the necessary values in Table 2.

Table 2: Calculations for R^2 with $\overline{y} = 8.6$

Tuble 2. Calculations for T_{ℓ} with $g = 0.0$										
$\overline{x_{i1}}$	x_{i2}	y_i	\hat{y}_i	$(y_i - \overline{y})^2$	$(y_i - \hat{y})^2$					
1	2	5	4.895	12.96	0.011					
2	1	6	5.937	6.76	0.0040					
3	3	9	9.189	0.16	0.036					
4	2	10	10.232	1.96	0.054					
5	3	13	12.747	19.36	0.064					

- From the above table, we get RSS=0.168 and TSS=41.2. Hence, R^2 can be calculated as $R^2=1-\frac{0.168}{41.2}=0.9959\approx 1$.