

密级状态: 绝密() 秘密() 内部资料(√) 公开()

$RKISP11_Camera_IQ_User_Manual$

文件状态:	文件标识:	
[]草稿	当前版本:	1.0
[] 正式发布	 作 者:	陈煜
「√〕正在修改	., .	
	完成日期:	2016-9-22

历史版本

版本	日期	描	述		作 者	审核
V1. 0	2016-9-22	建立文档, 主要	介绍 RK1108	CVR IQ	陈煜	杨培杉
		Tuning 流程				
			·			

目录

—,	BLC	4
1、	拍取图片(pgm raw12)	4
	LSC	
1、	拍取图片(pgm raw12)	5
2、	选取图片	5
3、	生成参数	6
三、	CC	10
1、	拍摄图片	10
2、	选取图片	11
3、	生成参数文件	11
四、	白平衡	14
1、	生成光谱曲线文本文件。	14
2、	拍摄图片	16
3、	选取图片	16
	生成参数文件	
5、	使用 awb tool	18
五、	Denoise	27
1、	拍摄图片	27
2、	生成参数文件	28

一、BLC

1、拍取图片(pgm raw12)

黑盒盖住 Sensor;

Sensor BLC 功能必须打开; (一般驱动中都已打开)

BLC: gain 步长 1、intergate time 步长 为 flincker 半周期 100hz->10ms; 每组 setting 5 张照片,5 张照片取均值;

G1-t20 拍 5 张, g1-t30 拍 5 张, g1-t40 拍 5 张....., 拍 5-6 组即可。

点击 Load Image 导入 raw 图 点击 Calculate Black Level 计算 BLC 参数 点击 Save 保存参数

二、LSC

Sensor 正对光源(A/D50/D65/D75/TL84(f11)/cwf(f2)/horizon(2300k)),盖上 fuser(白面朝下)

A/D50/D65/D75/TL84(f11)/cwf(f2)/horizon(2300k): 这些代表不同色温的光源,实验室内有对应的灯光。

Fuser: 白色的玻璃滤光片,有一面是透明,另外一面有白色涂层。

1、拍取图片(pgm raw12)

```
<Capture format="CamSys Fmt Raw 12b" number="100" enable="0">
        <Resolution width="2592" height="1944"></Resolution>
    <Exposure mode="manual">
        <Mec integration_time="10" gain="1" integration_time_step="10" gain_step="0.5"
min_raw="6" max_raw="210" threshold="30" ae_around="false" number="0" ></Mec>
    </Exposure>
    <Wdr mode="disable"></Wdr>
    <Cac mode="disable"></Cac>
    <Gamma mode="disable"></Gamma>
    <Lsc mode="disable"></Lsc>
    <Dpcc mode="disable"></Dpcc>
    <Bls mode="disable"></Bls>
    <Adpf mode="disable"></Adpf>
    <Avs mode="disable"></Avs>
    <Af mode="disable"></Af>
</Capture>
```

2、选取图片

Dumpsys media.camera;

查看图片的直方图,选择最大值在210附近的。

3、生成参数

1. 从图中红色箭头所指的地方导入 pgm 图片和 BLC 参数

BLC 参数也可以在下方手动填写

- 2. 导入图片后选择正确的 Bayer Pattern。
- 3. 选择红色箭头所指的 uniformly distribution 此选项对应采样点分布为均匀分布。

紫色的箭头所指的是 Light fall-off 参数,对于每张图片都要做 100%和 70%两个。蓝色箭头所指的可选项可以**显示/隐藏**采样辅助线,不影响计算结果。 黑色箭头所指的可选项可以**打开/关闭**计算结果曲面图的显示,不影响计算结果。 绿色箭头所指的可选项是为**无人机特殊镜头**设计的功能,后面会介绍该功能的用法,Tuning一般模组时**不打开**此选项。

4. 选择 Process - Start 开始计算校正参数。

5. 选择保存路径,文件名最好按照规范格式:

picture_A_100 picture_D65_70 preview_TL84_100 preview_CWF_70

- 格式中 picture 为全分辨率,preview 为预览分辨率,70 或 100 对应 Light fall-off 的数值 光源名称大写,TL84 和 CWF 不要填写成 F11 和 F2。
- **6.** 生成完结果数据之后,可以选择 Start 下方的 Apply 选项应用参数,查看理论上校正的图片。
- 7. 点击 Save Image 保存校正后的图片, 此步骤为 AWB 做准备, 只需保存 100%的结果即可。
- 8. 修改 Light fall-off 参数为 70%, 重复 4,5 步骤。

三、CC

色彩管理系统 i1 必须进行校正(测试项为 Color Palette),对标准色卡的色块逐个进行测试,然后与 Imatest 安装目录下 CC_SG_data_stripped_6-29-04.csv 中所记录的值进行比较,误差基本<3,并将所测值进行替换;注意:色卡是竖着 12345678910 拍。

<u>-</u>		→ ▼ X	CC_SG_dat	.csv (只读) ×	+
	A1	₹ (R)	fx 1		
	A	В	С	D	E
1	1	97.1141			
2	1	-0.99386			
3	1	0.589469			
4	2	8.38868			
5	2	-0.16868			
- 6	2	-0.64693			
7	3	50.5028			
8	3	-0.15137			
9	3	0.108768			
10	4	97.1144			
11	4	-1.00334			
12	4	0.681907			

E列是理论值(lab 颜色空间三分量), B是实际测得值,是竖着拍色卡的;

A	В	С	D	E	F	
1	97.1141			96.3		
1	-0.993861			-1.2		
1	0.589469			2.8		
2	8.38868			9.7		
2	-0.168675			0.1		
2	-0.646932			-1		
3	50. 5028			49.9		
3	-0.15137			-0.3		
3	0.108768			0.2		
4	97.1144			96.3		
4	-1.00334			-1.2		
4	0.681907			3.1		

SiliconImage CC Tool 所 load 的 SRGB References 文件 SG_card.cxf 是横着拍的; SG_card.cxf 是自动生成的;

1、拍摄图片

- 1)、将色卡放置光源的正下方,摄像头采用 45 度角方式拍摄,显示器上色卡在距离四周边缘的距离左右上下各一致;
- 2)、对焦色卡后,拍摄色卡的 RAW,然后将色卡移除,拍摄背景的 raw 图像; (注意摄像头、

脚架不要动,只移除色卡,避免背景图像与色卡的背景图像出现移动); 3)、不同曝光以及增益值组合多拍摄几组。

拍摄 raw 数据, xml 配置同 lsc。(只做一种分辨率,一般做预览采用的分辨率)

2、选取图片

选择白色 raw 数据值<208, 黑色 raw 数据值大于黑电平:

3、生成参数文件

- 0) load 色卡的 sRGB 参考文件(即前面的 SG_card.cxf);
- 1) load 色卡 raw 图像;
- 2) load 背景 raw 图像;
- 3) 选择正确的 RGB Bayer pattern;
- 4) apply LSC 中生成的相应光源 100%的参数;
- 6)calculate 生成 100%饱和度的参数
- 5) 修改饱和度为 74%, 自动生成 74%饱和度参数;

Find Color Chart,选中色卡的四个角色块中心位置。

自动选中色卡的色块

Calculate 会生成 ccm 参数及色差结果,需要保证报告中色差在7以下;

重点说明:

- 1. 如果需要 rotate, 需要先 apply lsc 后再旋转;
- 2. Apply lsc 含两个功能,其中"apply lsc based on background"功能只在图片亮度十分不均匀的情况下使用。
- 3. 手动修改 bls 需要先 enable setbls 的复选框;
- 4. Marvin gamma 复选框选中后"output gamma"功能被关闭,可以选择 tuning gamma,但是会影响计算结果。该功能暂不稳定,建议只做 tuning gamma 用。
- 5. Calculate 只能计算 100%的饱和度,74%饱和度修改"saturation"后会自动生成一组参数,不用重新计算。
- 6. "Edit ccm"复选框使能后,可以手动修改 ccm 值,apply 即可看到效果参数。

四、白平衡

1、生成光谱曲线文本文件。

1.1、打开 sensor 的光谱曲线 exel 文件:

1.2、新建 txt 文件 ov13850-spec.txt,拷贝上图中的数据到 ov13850-spec.txt:

如下:

		ov13850-spec -
文件(F) 编辑(E)	格式(O) 查看(V) 帮助(H)	
300, 0. 00, 310, 0. 02, 320, 0. 44, 330, 1. 40, 340, 2. 21, 350, 7. 87, 360, 9. 64, 370, 9. 97, 380, 12. 04, 390, 10. 90, 400, 8. 80, 410, 6. 26, 420, 4. 59, 430, 3. 46, 440, 2. 83, 450, 2. 25, 460, 1. 95, 470, 2. 34, 480, 3. 85, 490, 5. 39, 500, 6. 40, 510, 8. 12, 520, 10. 60, 530, 12. 24, 540, 11. 17, 550, 10. 70, 560, 11. 66, 570, 13. 45, 580, 37. 97, 590, 95. 65, 600, 100. 00, 610, 89. 74, 620, 84. 45, 630, 80. 50, 640, 74. 14, 650, 70. 20, 660, 62. 30, 670, 58. 63, 680, 52. 19, 690, 50. 10, 700, 51. 63, 710, 55. 40, 720, 55. 52,	0.00, 0.00 0.17, 0.04 1.37, 0.19 3.23, 0.23 4.69, 0.32 5.57, 0.51 6.23, 1.39 6.76, 4.98 7.89, 14.87 7.23, 29.94 6.01, 44.33 4.47, 54.88 3.70, 61.38 3.14, 67.68 5.02, 73.45 5.71, 77.44 7.26, 77.34 21.06, 74.74 7.26, 77.34 21.06, 74.74 59.27, 69.64 85.96, 60.39 93.28, 48.96 98.21, 79.01 93.69, 20.58 92.22, 18.11 87.38, 15.15 81.93, 12.32 73.56, 11.02 64.76, 10.82 55.92, 10.94 42.69, 9.77 29.05, 8.21 21.51, 7.54 18.07, 7.77 16.49, 8.67 15.99, 10.14 15.74, 10.93 18.03, 12.30 20.45, 12.95 24.03, 13.88 27.67, 15.47 30.61, 16.19 29.69, 15.52	

2、拍摄图片

将灰卡放置于灯箱中光源正下方,且灰卡占据 camera 整个预览画面,拍摄不同光源下的 raw 图片,xml 配置同 lsc。(只做一种分辨率,一般做预览采用的分辨率)

3、选取图片

用 Iranview 查看像素点分布,选择平均亮度接近 sensor xml 中 setpoint 值的图片。

4、生成参数文件

对每一种光源做处理:

步骤 3 在 lsc 做过的话可以跳过。

5、使用 awb tool

5.1 导入光谱响应曲线,例如 ov8858_spec.txt

5.2 Load illumination

可以只做四个光源:

可以只做 A CWF TL84 D65 四个光源,除了 D 光,都是 indoor 光源。

5.3 生成白点边界

选择步骤 2 中生成的 png 图片,这里可以都选上:

选白点, CWF 不选

调节曲线的大小:

点 Save and exit 保存并退出

5.4 生成光源相关参数

单击 Start Calibration 选择上一步骤中 CC 生成的 100%的对应光源的参数文件:

五、Denoise

1、拍摄图片

- 1.1、拍摄高光、低光条件下,黑白渐进测试板,2种条件下 gain (一般取 1)和 interation time (30,一般取最大)最好保持不变(即低光高光下 gain 和 time 的值要一样);(拍 RAW)
- 1.2、 高光条件下基本要保持测试板上白色部分过曝, 各拍摄 20 张左右;

高光参考图片:

低光参考图片:

2、生成参数文件

分别做 binning 和 full 两个分辨率。 Load hightlight 和 lowlight 文件

分别使用图中红色箭头所指的两个按钮来**导入高光和低光**的图集。 使用绿色箭头所指的按钮来**选择参与计算的区域**。

一般拍摄时无法做到完全平行,所以在选择 ROI 时可以略小于图案。 点击上图蓝色箭头所指的 Measure 按钮,工具将开始分析图集中的数据。 计算完成后点击 Fit to Curve 拟合 Noise 曲线。

图中的 Caoture Series 参数、Black Level 参数、Model Fitting 参数可以调节拟合曲线,参数修改后重新按 Fit to Curve 即可生效。 最后按 Save 保存参数。