Quantum Computation and Quantum Information by Michael A. Nielsen and Isaac L. Chuang Problems

Chris Doble

June 2024

Contents

I Fundamental concepts	1
2 Linear algebra	1
Part I Fundamental concepts	
2 Linear algebra	
Exercise 2.1	
(1,-1) + (1,2) - (2,1) = (0,0)	

Exercise 2.2

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Using the basis $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ and $|-\rangle = (|0\rangle - |1\rangle)/\sqrt{2}$ we get

$$|0\rangle = \frac{|+\rangle + |-\rangle}{\sqrt{2}}$$

$$|1\rangle = \frac{|+\rangle - |-\rangle}{\sqrt{2}}$$

$$\begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$a_{00} + a_{01} = 1$$

$$a_{10} + a_{11} = -1$$

$$\begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$a_{00} - a_{01} = 1$$

$$a_{10} - a_{11} = 1$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Exercise 2.5

$$[y_1^* \quad \dots \quad y_n^*] \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} = [y_1^* \quad \dots \quad y_n^*] \begin{pmatrix} \begin{bmatrix} z_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ z_2 \\ \vdots \\ 0 \end{bmatrix} + \dots + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ z_n \end{bmatrix}$$

$$= \begin{bmatrix} y_1^* \quad \dots \quad y_n^* \end{bmatrix} \begin{bmatrix} z_1 \\ 0 \\ \vdots \\ z_n \end{bmatrix} + \dots + \begin{bmatrix} y_1^* \quad \dots \quad y_n^* \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ z_n \end{bmatrix}$$

$$= z_1 \begin{bmatrix} y_1^* \quad \dots \quad y_n^* \end{bmatrix} \begin{bmatrix} z_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \dots + z_n \begin{bmatrix} y_1^* \quad \dots \quad y_n^* \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ z_n \end{bmatrix}$$

$$[y_1^* \quad \dots \quad y_n^*] \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} = y_1^* z_1 + y_2^* z_2 + \dots + y_n^* z_n$$

$$= (y_1 z_1^* + y_2 z_2^* + \dots + y_n z_n^*)^*$$

$$= \left(\begin{bmatrix} z_1^* \quad \dots \quad z_n^* \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right)^*$$

$$[v_1^* \quad \dots \quad v_n^*] \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = |v_1|^2 + \dots + |v_n|^2$$

$$\geq 0$$

Exercise 2.6

$$\left(\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle\right) = \left(|v\rangle, \sum_{i} \lambda_{i} |w_{i}\rangle\right)^{*}$$

$$= \left(\sum_{i} \lambda_{i} (|v\rangle, |w_{i}\rangle)\right)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} (|v\rangle, |w_{i}\rangle)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} (|w_{i}\rangle, |v\rangle)$$

Exercise 2.7

$$\langle w|v\rangle = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$= (1)(1) + (1)(-1)$$

$$= 0$$

$$\frac{|w\rangle}{|||w\rangle||} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{|v\rangle}{|||v\rangle||} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Exercise 2.9

$$\begin{split} &\sigma_0 = \left|0\right\rangle \left\langle 0\right| + \left|1\right\rangle \left\langle 1\right| \\ &\sigma_1 = \left|1\right\rangle \left\langle 0\right| + \left|0\right\rangle \left\langle 1\right| \\ &\sigma_2 = i\left|1\right\rangle \left\langle 0\right| - i\left|0\right\rangle \left\langle 1\right| \\ &\sigma_3 = \left|0\right\rangle \left\langle 0\right| - \left|1\right\rangle \left\langle 1\right| \end{split}$$