What I know after taking CS 31

a. Worst Case Running Time.

- Computational problem Π has instances/inputs I; each input I has solution/output S.
- An algorithm A for Π takes $I \in \Pi$ and returns its solution S.
- Each instance I ∈ Π has a notion of size |I|.
 Often, this is the number of bits required to describe I.
- The running time of algorithm A on I is denoted as $T_A(I)$.
- The worst case running time of A as a function of size is defined to be

$$T_{\mathcal{A}}(n) := \max_{I \in \Pi: |I| \le n} T_{\mathcal{A}}(I)$$

b. The Big-Oh Notation.

- Useful notation to tell the "big picture" without worrying about annoying details.
- $g(n) \in O(f(n))$ if $\exists a, b > 0$ such that for all $n \ge b$, $g(n) \le a \cdot f(n)$.
- $g(n) \in \Omega(f(n))$ if $\exists a, b > 0$ such that for all $n \ge b$, $g(n) \ge a \cdot f(n)$.
- $g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.
- Often the \in is replaced by =; so we would say $T(n) = O(n^2)$ to imply $T(n) \in O(n^2)$.
- $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ often tells us the relation.
- Beware: limits may not exist. In that case, the definition is what we must revert to.

c. Recursive Algorithms and Recurrence Inequalities.

- One big theme of algorithms design is recursion: break into smaller subproblem, solve the smaller subproblem recursively, and pop-up.
- Recursive algorithms are analyzed using recurrence inequalities.
- Recurrence inequalities relate the running time $T_A(n)$ to $T_A(m)$ for smaller m < n.
- There is a base case involved.
- Solved using the "kitty method."

d. Divide and Conquer.

- Break a problem into two (or more), recursively solve, combine solutions.
- Often works for speeding up algorithms for which a not-so-bad naive solutions exist.
- Problems seen: MERGE SORT, COUNTING INVERSIONS, POLYNOMIAL MULTIPLICATION, CLOSEST PAIR OF POINTS, many others in the Psets.
- Analysis Tool: Master Theorem.

e. Dynamic Programming.

- Smart Recursion / Recursion with Memory.
- Think of optimum solution; see if solution can be built by combining solutions of smaller subproblems.
- Smaller subproblems should be "succinctly representable". The value should be defined by a "function" on not too many parameters. Function should have a recurrence relation.
- Six-Step Solution Presentation
 - (a) Definition of the function.
 - (b) Base Cases.
 - (c) Recurrence.
 - (d) Proof of Recurrence.
 - (e) Pseudocode (including recovery)
 - (f) Runtime and space.
- Problems Seen: SUBSET SUM, KNAPSACK, EDIT DISTANCE, LONGEST INCREASING SUBSEQUENCE, and many others in the Psets.

f. Depth First Search.

- · Revisiting an old algorithm.
- Lots of power in the first and last's returned.
- Applications: Connectivity, Cycle?, Topological Order of DAGs, Strongly Connected Components: all in *linear* O(n+m) time!
- Topological Order solves many problems in DAGs via dynamic programming: LONGEST PATH, and others in PSets.

g. Breadth First Search.

- Shortest hop-length walks in O(n+m) time.
- Distance Labels as a *certificate* of optimality.
- Queue implementation leads to fast implementation.
- Useful for checking if a graph is BIPARTITE? (in UGP)
- The "weighted" generalization also finds shortest cost paths (explored in UGP).

h. Dijkstra.

- Clever generalization of BFS which works when graphs have positive cost edges.
- Doesn't necessarily work with negative cost edges. Beware!
- Main idea: don't add vertex in queue once distance label updated. Only one vertex with the smallest distance label is added.
- Runs in $O(m + n \log n)$ time using Fibonacci heaps. Or in $O(m \log n)$ time using usual heaps.
- Same idea solves the *maximum capacity* path from source to vertex.
- Can also be used to find shortest length cycles (this was done in problem set).

i. Bellman-Ford.

- In graphs with possibly negative cost edges, this algorithm either detects negative cost cycles, or figures out shortest paths.
- Finds shortest cost walks whose lengths are bounded. In case of no negative cost cycles, shortest walks are shortest paths.
- Dynamic program. Runs in O(mn) time.
- We did this problem on *directed* graphs. The problem can also be solved in undirected graphs, but that's a story for another rainy day.
- All pairs shortest paths can be found in $O(n^3)$ time (this was done in a problem set.)