

## Mecânica e Campo Electromagnético

**Problemas** 

Capítulo 1.2: Dinâmica

2011-12

- 1 Um homem cuja massa é de 90 kg está num elevador. Determine a força que o chão exerce sobre ele quando:
  - a) O elevador sobe com velocidade uniforme.
  - b) O elevador desce com velocidade uniforme.
  - c) O elevador sobe com uma aceleração de 3 ms<sup>-2</sup>.
  - d) O elevador desce com uma aceleração de 3 ms<sup>-2</sup>.
  - e) O cabo parte-se e o elevador cai livremente.
- **2** Um automóvel cuja massa é 1000 kg sobe uma rua cuja inclinação é de 20°. Determine a força que o motor deve produzir para que o carro se mova (despreze o atrito interno):
  - a) Com movimento uniforme.
  - b) Com uma aceleração de 0,2 ms<sup>-2</sup>.
  - c) Determine em cada caso a força exercida no automóvel pela estrada.
- \*  $\bf 3$  \* Calcule a aceleração dos corpos da figura e a tensão nas cordas. Aplique ao caso em que  $m_1 = 50$  g,  $m_2 = 80$  g e F = 1N.





**4** - Determine a aceleração com que os corpos na figura se movem e as tensões nas cordas.





\*  $\mathbf{5}$  \* - Considere o sistema em equilíbrio representado na figura. Calcule o ângulo  $\theta$  e a tensão na corda AB, sendo  $M_1 = 3$  kg e  $M_2 = 4$  Kg.



\* 6 \* - Um bloco de massa m = 10 kg está em repouso na origem sobre uma superfície horizontal (plano OXY) sem atrito. Para  $t \ge 0$  actua sobre o bloco uma força de intensidade variável

$$\vec{F} = (4t^2 - t)\hat{i}$$
 (t em s, F em N)

## Determine:

- a) a expressão do impulso da força em função do tempo.
- b) o impulso da força em t=4 s.
- c) a variação do momento linear nos 4 s iniciais.
- d) a velocidade do bloco no instante t = 4 s.
- e) A velocidade do bloco em função do tempo
- f) A posição do bloco em função do tempo
- \* 7 \* Uma bola de pingue-pongue cai verticalmente sobre o solo com velocidade cujo módulo é  $10 \text{ ms}^{-1}$ . A bola ressalta com uma velocidade de  $8 \text{ ms}^{-1}$ . Supondo que a força média exercida pela bola sobre o solo é igual a 180 N e que o tempo em que ela fica em contacto com o solo é igual a  $10^{-3} \text{ s}$ , calcule a massa da bola.
- \* 8 \* Uma massa de 1 kg descreve um arco de circunferência situado no plano vertical, presa à extremidade dum fio de comprimento 1 metro e de peso desprezável. Sendo a sua velocidade 2 ms<sup>-2</sup> quando o fio faz um ângulo  $\theta = 30^{\circ}$  com a vertical, determinar:
  - a) as componentes radial e tangencial da aceleração.
  - b) a grandeza e direcção da aceleração resultante.
- **9** Uma massa de 0,4 kg está presa a uma corda de 0,8 m e é posta a rodar horizontalmente a 80 voltas/min.
  - a) Qual é a intensidade da força que a corda exerce sobre a massa?
  - b) Se a corda se partir quando a tensão for superior a 50 kgf, qual é a maior velocidade angular possível para a corda?
- \*  $\mathbf{10}$  \* Um comboio descreve uma curva a 63 kmh $^{\text{-}1}$  . O raio da curva é 300 m. Calcule:
  - a) a inclinação que a curva deve ter para que no comboio não actuem forças laterais.
  - b) o ângulo que uma vara suspensa do tecto de uma das carruagens faz com a vertical.
- \* 11 \* Um corpo D cuja massa é de 6 kg está sobre uma superfície cónica A B C e está rodando em torno do eixo EE' com uma velocidade angular de 10 rev/min. Calcule:
  - a) a velocidade linear do corpo
  - b) a reacção da superfície do corpo
  - c) a tensão no fio.
  - d) a velocidade angular necessária para reduzir a reacção do plano a zero.



- **12** O pêndulo cónico da figura anterior descreve no plano horizontal um círculo com uma velocidade angular ω. Calcule a tensão na corda e o ângulo que faz com a vertical no caso de M=1,2~kg,  $L=1,~16~m~e~\omega=30~rad~s^{-1}$
- \* 13 \* As massas A e B da figura são respectivamente 10 kg e 5 kg. Os coeficientes de atrito estático e cinético de A com a mesa são 0,20.
  - a) Calcule a massa mínima C que impede A de se mover.
  - b) Calcule a aceleração do sistema se se levantar C.



- **14** Determine a força de atrito exercida pelo ar sobre um corpo cuja massa é de 0,4 kg se ele cair com uma aceleração de 9,0 ms<sup>-2</sup>.
- 15 Um corpo que pesa 4 kg está assente sobre uma superfície horizontal. Aplicando-lhe uma força horizontal de intensidade crescente, verifica-se que o corpo se mantém em equilíbrio até a força ser de 0,8 kgf. Determinar o coeficiente de atrito estático entre as duas superfícies.
- 16 Um bloco de madeira está sobre um plano inclinado cuja inclinação se pode variar. Aumenta-se gradualmente a inclinação até que o bloco comece a deslizar, para uma inclinação de 30°. Determine o coeficiente de atrito estático entre o bloco e o plano.
- 17 Partindo do repouso, um corpo percorre num plano inclinado de  $45^{\circ}$  e de coeficiente de atrito  $\mu$ , uma certa distância num tempo determinado. Qual deveria ser o coeficiente de atrito, para que o móvel percorresse nas mesmas condições, a mesma distância em metade do tempo?
- **18** Um corpo com massa 0,8 kg está sobre um plano inclinado de 30°, com coeficiente de atrito cinético 0,3. Que força, paralela ao plano, deve ser aplicada sobre o corpo de modo a que ele deslize ao longo do plano
  - a) para cima, com um movimento uniforme
  - b) para baixo, com um movimento uniforme
  - c) para cima, com movimento acelerado (a= 0,10 ms<sup>-2</sup>)
  - d) para baixo, com movimento acelerado (a= 0,10 ms<sup>-2</sup>)

- \* 19 \* Uma auto-estrada cujo raio é de 300 m não é inclinada nas curvas. Sabendo que o coeficiente de atrito entre a borracha e o asfalto seco é de 0,75, entre a borracha e o asfalto molhado é de 0,5 e entre a borracha e o gelo é de 0,25, determine a velocidade máxima dentro dos limites de segurança de modo a que um carro possa descrever a curva em: a) dias secos; b) dias de chuva e c) dias com neve.
- \* 20 \* Calcule a velocidade limite de uma esfera com raio 2 cm e massa volúmica 1,50 gcm<sup>-3</sup> caindo através da glicerina (massa volúmica 1,26 gcm<sup>-3</sup>). Calcule também a velocidade da esfera quando a sua aceleração é de 1,00 ms<sup>-2</sup> ( $\eta_{glicerina} = 833 \cdot 10^{-3}$ S.I.).
- 21 Uma régua, indeformável, está ligada a um eixo vertical (fig.) e serve de apoio a uma mola, de 50cm de comprimento, que tem presa numa extremidade uma esfera de 200g estando a outra extremidade fixa no eixo vertical. O comprimento da mola sofre um aumento de 1cm quando está sujeita a uma forca de 1N. O conjunto roda com movimento circular uniforme, em torno do eixo vertical, a uma altura de 50cm acima do solo. Despreze o atrito entre a régua e a esfera.



- a) Qual passará a ser o comprimento da mola quando o conjunto roda dando uma volta em cada 2s?
- b) Qual o vector velocidade com que a esfera atinge o solo se se desprender num dado instante. Despreze todas as forças de resistência.
- 22 Considere o esquema da figura. A mola tem uma constante de força k = 400N/m. Estando o sistema em repouso, e na iminência de se movimentar, qual o elongamento da mola (o ângulo mantém-se constante):
  - a) Se não houver atrito.
  - b) Se o coeficiente de atrito entre m<sub>1</sub> e a mesa for 0,4.



## Soluções de I.2

```
1 - a) R = 882 \text{ N}; b) R = 882 \text{ N}; c) R = 1152 \text{ N}; d) R = 612 \text{ N}; e) R = 0 \text{ N}
2 - a) F = 3352 \text{ N}; b) F = 3552 \text{ N}; c) R_1 = R_2 = 9209,0 \text{ N}; F_{a1} = 3352 \text{ N}; F_{a2} = 3552 \text{ N}
3 - a) a = 1,66 \text{ m/s}^2; T = 0.92 \text{ N}; b) a = 5,43 \text{ m/s}^2; T = 1,22 \text{ N}
4 - a) a = [m_1 \operatorname{sen} \alpha - m_2]g/[m_1 + m_2]; T = m_1 m_2[1 + \operatorname{sen} \alpha]g/[m_1 + m_2]
     b) a = [m_1 \sec \alpha - m_1 \sec \beta]g/[m_1 + m_2]; T = m_1 m_2[\sec \alpha + \sec \beta]g/[m_1 + m_2]
5 - \theta = 53,1°; T = 5 N
6 - Segundo xx: a) I(t) = 4t^3/3 - t^2/2 (kg.m.s^{-1}); b) 77,3 kg.m.s^{-1}; c) 77,3 kg.m.s^{-1}; d)
7,73 m.s<sup>-1</sup>; e) v=2t^3/15 - t^2/20; f) x=t^4/30 - t^3/60
7 - m = 10 g
8 - a) a_t = 4.9 \text{ m/s}^2; a_n = 4 \text{ m/s}^2; b) |\vec{a}| = 6.33 \text{ m/s}^2; \theta = 39.2^\circ
9 - a)T = 22.3 \text{ N}; b) \omega = 39.13 \text{ rad/s}
10 - a) \alpha = 5.95^{\circ}; b) \theta = 5.95^{\circ}
11 - a)V = 3,64 m/s; b) R = 39,46 N; T = 49,24 N; d) \omega = 2,21 rad/s
12 - T = 1252,8 N; \theta = 89.5^{\circ}
13 – a) m_c = 15 \text{ kg}; b) a = 1.96 \text{ m/s}^2
14 - F_a = 0.32 \text{ N}
15 - \mu = 0.2
16 - \mu = 0.58
17 - \mu' = 4\mu-3
18 - a) F = 5.96 \text{ N}; b) F = 1.88 \text{ N}; c) F = 6.04 \text{ N}; d) F = 1.80 \text{ N}
19 - a) V = 46.96 \text{ m/s}; b) V = 38.34 \text{ m/s}; c) V = 27.11 \text{ m/s}
20 - V_L = 0.25 \text{ m/s}; V = 0.09 \text{ m/s}
21 - a) 51cm; b)v=3,55m/s fazendo um ângulo de 63<sup>a</sup> com a horizontal.
22 - a) 11,3cm; b)7,4 cm
```