Intro to AI

Name: JIANG Guarlin Student Number: 223490900/2

2.1

(a)
$$P(0=1 | S_1=1, S_2=1, \dots S_{N}=1)$$

$$= \frac{P(S_1=1, S_2=1, \dots S_{N}=1 | D=1) P(D=1)}{P(S_1=1, S_2=1, \dots S_{N}=1)} = \frac{P(S_1=1, S_2=1, \dots S_{N}=1 | D=0) P(D=0)}{P(S_1=1, S_2=1, \dots S_{N}=1)}$$

$$\gamma_{K-} \frac{P(D=0 | S_1=1, S_2=1, \dots, S_K=1)}{P(D=1 | S_1=1, S_2=1, \dots, S_K=1)} \\
= \frac{P(S_1=1, S_2=1, \dots, S_K=1 | D=0) P(D=0)}{P(S_1=1, S_2=1, \dots, S_K=1 | D=1) P(D=1)}$$

$$=\frac{P(S_1=1,S_2=1,5)}{P(S_1=1,S_2=1,5)} \times |D=0)$$

$$P(S_{1}=1,S_{2}=1,\cdots,S_{K}=1 \mid D=1)$$

$$\vdots = \frac{f(K-1)}{f(K)}$$

$$= \frac{2^{K-1}+(-1)^{K-1}}{2^{K}+(-1)^{K}}$$

$$= P(S_1=1|D=1) \times P(S_2=1|D=1) \times \cdots \times P(S_K=1|D=1)$$

$$= \frac{f(0)}{1} \times \frac{f(1)}{1} \times \frac{f(2)}{1} \times \cdots \times \frac{f(K-1)}{1}$$

$$= \frac{f(0)}{f(1)} \times \frac{f(1)}{f(2)} \times \frac{f(2)}{f(3)} \times \cdots \times \frac{f(K-1)}{f(K)}$$

$$=\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}$$

$$=\frac{1}{2^{K+(1)^{K}}}$$

$$P(s_{1}, s_{2}=1, \dots s_{k}=1) | D=0)$$

$$= P(s_{1}=1 | D=0) \times P(s_{2}=1 | D=0) \times \dots \times P(s_{k}=1 | D=0) \times P(s_{k}=1 | D=0)$$

$$\gamma_{k} = \frac{1}{2^{k} + (1)^{k}} = \frac{2^{k} + (1)^{k}}{2^{k}} = \frac{2^{k}}{2^{k}} = \frac{2^{k$$

= ZK

(b): Kis odd: 7K>1 K is even: YKC|

> :- The doctor diagnoses on odd days: D=1; on even days: D=0. tollow the Kimcrease, the YK more close to 1.

2.2

lay (PT:

X ₁	X ₂	X3	$P(Y=1 X_1,X_2,X_3)$
0	0	0	0
1	0	0	<u>t</u>
0	1	0	1/3
0	0	1	号
1	1	0	49
	0	1	
0	1	1	45
1	1	1	56

 $P(Y=1|X=0,X_2=0,X_3=0)=0$ $P(Y=1|X=0,X_2=1,X_3=0)=\frac{1}{3}$ $P(Y=1|X=0,X_2=1,X_3=1)=\frac{1}{3}$ $P(Y=1|X=0,X_2=1,X_3=1)=\frac{1}{3}$ $P(Y=1|X=1,X_2=1,X_3=1)=\frac{1}{3}$

: The values are match.

(b)
$$P(x_{2}=1)$$

$$P(x_{2}=1|Y=0)$$

$$P(x_{2}=1|Y=1)$$

$$P(x_{2}=1|Y=1,X_{1}=0,X_{2}=0)$$

$$P(x_{2}=1|Y=1,X_{1}=0,X_{3}=1)$$

big
$$P(X_2=1 | Y=1, X_1=0, X_3=0)$$

 $P(X_2=1 | Y=1)$
 $P(X_2=1 | Y=1, X_1=1, X_3=1)$
 $P(X_2=1 | Y=0)$

$$P(x_{i=1}) = \frac{1}{3} i \in \{1, 2, 3\}$$

$$P(x_{i=1}) = \frac{1}{3} i \in \{1, 2, 3\}$$

$$P(x_{i=1}) = 0$$

$$P(x_{i=1}) = \frac{1}{2} (x_{i=1}) =$$

= 19

$$= \frac{P(X_2=1, X_1=0, X_3=0)}{P(Y_2=1, X_1=0, X_3=0)}$$

$$= 1$$

$$P(X_2=1, X_1=1, X_1=1, X_3=1)$$

$$= \frac{P(X_2=1, Y_1=1, X_3=1)}{P(Y_2=1, Y_1=1, X_3=1)}$$

$$= \frac{P(X_2=1, Y_1=1, X_1=1, X_3=1)}{P(Y_2=1, X_1=1, X_3=1)}$$

 $P(X_2=1|Y=1,X=0,X_3=0)$

(a)

In tile hw2_2-3_code.py.

(b)	correctly guessed	incorrectly	best next gness f	P(Li=l for some ic-{1,2,34;
		{ }	E	0.5394
		{E,0}	I 0 4	0.6366
	Q	{}	教 し	0.9867
	Q	{#}	Q A	1:0000
	ZE _	N 10)	& 0	0.8803
			I	0.6366
	D I_		A	0.8207
	0 I -		E	0.752
		- {A, E, I, O, S}	Y	0.6270

(a) False P(FIH)=P(FIC,H)

(b) True P(E/A,B)=P(E/A,B,F)

(C) False P(E, F|B, G)=P(E|B, G)P(F|B,G)

(d) True P(F/B,C,4,H)=P(F/B,C,E,G,H)

(e) True P(A,B|O,E,F) = P(A,B|O,E,F,G,H)

1) False P(D,E,F) = P(D)P(E|D)P(F|E)

19) False P(A|F) = P(A)

(h) True P(E,F)=P(E)P(F)

(i) False P(D|A) = P(D|A, E)

(j) True P(B, C)=P(B)P(C)

(b)
$$P(A|c) = P(A|s)$$

: $S = \{C, D, E, F\}$

$$(b) P(B) = P(B|S)$$

$$(c) S = \{ p, E, F \}$$

(h)
$$P(D|A) = P(D|S)$$

 $S = \{c, E, F\}$
(i) $P(D|C,E) = P(D|S)$
 $S = \{F\}$
(j) $P(D|F) = P(D|S)$
 $S = \{F\}$