## Extra credit problems

## Math 427

- 0. Find a mistake or misprint in the book. (The score depends on the type of mistake.)
- 1. Describe all the motions of the Manhattan plane.
- 2. Construct a metric space  $\mathcal{X}$  and a distance preserving map  $f: \mathcal{X} \to \mathcal{X}$  that is not a motion of  $\mathcal{X}$ .
- 3. Note that the following quantity

$$\tilde{\angle}ABC = \begin{bmatrix} \pi & \text{if} & \angle ABC = \pi \\ -\angle ABC & \text{if} & \angle ABC < \pi \end{bmatrix}$$

can serve as the angle measure; that is, the axioms hold if one changes everywhere  $\measuredangle$  to  $\tilde{\measuredangle}.$ 

- (a). Show that  $\angle$  and  $\tilde{\angle}$  are the only possible angle measures on the plane.
- (b). Show that without Axiom IIIc, this is not longer true.
- 4. (solved) Let M be the midpoint of the side [AB] of  $\triangle ABC$  and M' be the midpoint of the side [A'B'] of  $\triangle A'B'C'$ . Assume C'A' = CA, C'B' = CB, and C'M' = CM. Prove that  $\triangle A'B'C' \cong \triangle ABC$ .
- 5. (solved) Show that a composition of three reflections in the sides of a nondegenerate triangle does not have a fixed point.
- 6. (solved) Consider triangle  $\triangle ABC$  with  $D \in (AC)$  such that  $(BD) \perp (AC)$ , and points N and M such that AN = DC, CM = AD,  $(AN) \perp (AB)$  and  $(CM) \perp (BC)$ .

Prove that M and N are equidistant form B.

7. (solved) Lines  $\ell$  and m are tangent to two circles of radiuses r and R on such a way the circles are on one side of  $\ell$  and on different sides of m. Let A and B be tangential points of  $\ell$  and Q be the point of intersection  $\ell$  and m. Show that

$$QA \cdot QB = R \cdot r.$$

8. Given two parallel lines  $\ell$  and m and a point P, use only ruler to construct the line through P parallel to  $\ell$  and m. (You can play with the java applet "Third parallel line" on anton-petrunin.github.io/birkhoff/car/.)

9. Let ABC be a nondegenerate trianglee and  $A' \in (BC)$ ,  $B' \in (CA)$ ,  $C' \in (AB)$  be the points such that

$$2 \cdot \angle AA'B \equiv 2 \cdot \angle BB'C \equiv 2 \cdot \angle CC'A \equiv \frac{2}{3} \cdot \pi.$$

Show that the triangle formed by the lines (BB'), (CC'), and (AA'), is congruent to  $\triangle ABC$ .

- 10. Construct a triangle with the given perimeter, base, and the opposite angle (You can play with the java applet "Triangle with given base, perimeter and angle.html" on anton-petrunin.github.io/birkhoff/car/.)
- 11. Two points A and B lie on one side of a line  $\ell$ . Two points M and N are chosen on  $\ell$  such that AM + BM is minimal and AN = BN. Show that points A, B, M and N lie on one circle.
- 12. Let  $\Gamma$  be a circle with the center O and A and C be two different points on  $\Gamma$ . For any third point P of the circle let X and Y be the midpoints of the segments AP and CP. Finally, let H be the orthocenter of the triangle OXY. Prove that the position of the point H does not depend on the choice of P.
- 13. Suppose D and E lie on the same side from (AC),  $(AE) \parallel (CD)$ , and AB = BC. Let K be the intersection of the bisectors of the angles EAB and BCD. Prove that  $(BK) \parallel (AE)$ .
- 14. Give a ruler-and-compass construction of a circle or a line which perpendicular to each of three given circles. (You may assume any two of three given circles do not intersect. Play with the java applet "Perpendicular to 3 circles.html" on anton-petrunin.github.io/birkhoff/car/.)
- 15. Give a ruler-and-compass construction of an inscribed quadrilateral with given sides.
- 16. Show that a neutral plane is Euclidean if and only if it has a rectangle.
- 17. Let ABCDE be a regular right-angled pentagon in the hyperbolic plane; that is,

$$AB_h = BC_h = CD_h = DE_h = EA_h$$

and

$$\angle_h ABC = \angle_h BCD = \angle_h CDE = \angle_h DEA = \angle_h EAB = \pm \frac{\pi}{2}.$$

Find its side  $AB_h$ .