

光電科技導論(通識中心課程)

Chapter 2 光是什麼 --- 光的特性介紹

大綱

- ■科學單位介紹與光學演進史
- ■光是什麼?粒子說、波動說、二相性
- 光的特性與應用實例 幾何光學:反射、折射、色散 物理光學:繞射、干涉、偏振

科學數量級

◆ 微小數量級:微米(μm)製程、奈米(nm)科技

中文	英文	代號	科學表示	傳統表示
亳	mini	m	10 ⁻³	0.001
微	micro	μ	10 ⁻⁶	0.000001
奈	nano	n	10 ⁻⁹	0.00000001
皮	pico	р	10 ⁻¹²	依此類推
飛	femto	f	10 ⁻¹⁵	依此類推

<實例> 長度以公尺(m)為基準

公里	米	亳米	微米	奈米
km	m	mm	μ m	nm

科學數量級

光電系

■ 科學數量級

◆ 巨大數量級:硬碟(MB)、頻寬(GHz)

中文	英文	代號	科學表示	傳統表示
7	kilo	K	10 ³	1,000
百萬	million	М	10 ⁶	1,000,000
十億	giga	G	10 ⁹	1,000,000,000
兆	tera	Т	10 ¹²	依此類推

古典光學

幾何光學: 反射、折射、透鏡

波動光學:干涉、繞射、偏振

光學

量子光學:光的發射、吸收、相互作用

近代光學

光學發展簡史_反射定律

- 埃及可追溯到遠古時代(西元前1200年)舊約 聖經的出埃及記,當時製作反射鏡的材料為銅 (Copper)、青銅(Bronze)等金屬。
- <u>墨翟</u> (468~376 B.C.) 所著的<u>墨子</u>一書,載有 光的直線傳播、面鏡成像等現象,並對面鏡成像 提出一些經驗規則
- ■歐幾里德 (Euclid, 330~275 B.C., 希臘人) 在 光學一書中對平面鏡成像進行研究,並指出反射 角與入射角相等的關係

介面 光電系

光學發展簡史_折射定律

- <u>阿爾哈金</u> (Alhazen, 965~1038, <u>阿拉伯人</u>) 研究球面鏡、拋物面鏡,並發明 凸透鏡以及描繪眼構造
- <u>伽利略</u>首先使用天文望遠鏡1607年還嘗 試測量光速但未成功;
- <u>司乃耳</u> (Willebrord Snell, 1591~1626 , 荷蘭人) 由實驗歸納出折射定律

Willebrord Snell (1580-1626)

光學發展簡史

- 格里馬第(Francesco Grimaldi, 1618~1663,義大利人)首先觀 察到光的繞射(diffraction)現 象。
- 牛頓曾以稜鏡進行光的色散實驗,發現白光是由數種色光所組成_ 色散現象。
- <u>隆美耳</u> (Ole RÖmer, 1644~ 1710, <u>丹麥</u>人) 由觀測木星的衛星, 首次測定光速約為2.15×10⁸ m/s

大綱

- ■科學單位介紹與光學演進史
- 光是什麼? 粒子說、波動說、二相性
- 光的特性與應用實例 幾何光學:反射、折射、色散 物理光學:繞射、干涉、偏振

光是什麼?

I. 粒子說(Particle models)

1621: W. Snell(司乃耳,英國): 折射(Snell's Law)

1637: R. Descartes(笛卡兒,法):折射,反射

1664: P. Fermat(費馬)

觀察 (a)自然界遵行最短距離行為

(b)光速有限

Fermat Principle 為幾何光學基楚礎

1704: I. Newton (牛頓):稜鏡,色散現象(Dispersion)

可以解釋:光的直線傳播,光的反射,光的折射等現象。

難以解釋:光在兩介質界面所產生的部分反射與部分折

射的現象、光的干涉和繞射現象。

光是什麼? (續)

II. 波動說(wave theory)

1665: F. M. Grimaldi(格里馬第): 繞射

R. Hooke(虎克):干涉

1779: C. Huygens(惠更斯): 惠更斯第二波前理論

1802: T. Young (楊格): 雙狹縫干涉

1815: A. Fresnel(菲涅耳):

繞射理論

偏極光反射(Fresnel eq.)

横波(transverse wave)

1864: J. C. Maxwell(馬克士威):

建立了電磁波理論,並推算出在真空中電磁波速度真空中光速相等,推論光為電磁波的一種

可以解釋:光的反射,光的折射,光的獨立傳播等現

難以解釋:光電效應與康卜吞效應。

光是什麼? (續)

Ⅲ. 量子論:

- □十九世紀末到二十世紀初,光學的研究深入到光的發生、光和物質相互作用的某些現象,例如熾熱黑體輻射中能量按波長分佈的,特別是1887年赫茲發現的光電效應、1900年普朗克(1858-1947年)提出了輻射的量子論,認為各種頻率的電磁波只能是電磁波(或光)的頻率與普朗克常數乘的整數倍,成功地解釋了黑體輻射問題。
- □1905年愛因斯坦(1879-1955年)發展了普朗克的能量子假設,把量子論貫穿到整個輻射和吸收過程中,提出光量子(光子 Photon)理論,圓滿解釋了光電效應,並為後來的許多實驗例如康普頓效應所證實。
- □1924年德布羅依 (L.V.de Broglie, 1892-1987) 創立了物質波學說。他大膽地設想每一物質的粒子都和一定的波相聯繫,這一假設在1927年為戴維孫 (C.J.Davisson, 1881-1958) 和革末 (L.H.Germer, 1896-1971年) 的電子束繞射實驗所證實。

波粒二相性(particle-wave duality)

波動

E = hv

 $P = h / \lambda$

波傳播

- 1.干涉
- 2.繞射
- 3.偏振

粒子

 $\upsilon = E / h$

 $\lambda = h / p$

與物質互作用

- 1.光發射
- 2.光吸收
- 3.光電效應

波爾(Niels Bohr)所提出的互補原理(the Principle of Complementarity

大綱

- ■科學單位介紹與光學演進史
- 光是什麼? 粒子說、波動說、二相性
- ■光的特性與應用實例

幾何光學:反射、折射、色散

物理光學:繞射、干涉、偏振

■ 光波的定義

◆ 光是一種電磁波

⇒ 波長:波峰到波峰的距離

□ 頻率:一秒鐘內電磁波訊號振動的次數(單位:赫兹Hz)

□ 振幅:電磁波振動幅度的大小

頻率低 = 2 Hz

頻率高 = 4 Hz

■ 光的波長與頻率

◆ 不同顏色的光波長不同

$$<$$
公式 $>$ $v(頻率) = \frac{c(光速)}{\lambda(波長)}$ $c = 3 \times 10^8 (m/s)$

$$c = 3 \times 10^8 (\text{m/s})$$

<實例>

第二代行動電話通訊電磁波之中心頻率為1800MHz, 請換算其電磁波之波長為何?

$$\lambda = \frac{c}{v} = \frac{3 \times 10^8 (\text{m/s})}{1800 \times 10^6 (\text{1/s})} = 0.16 (\triangle R) = 16 (\triangle A)$$

■ 光的波長與能量

◆ 不同顏色的光能量不同

$$<$$
公式 $>$ $E(能量) = hv(頻率) = h \frac{c(光速)}{\lambda(波長)}$

$$h = 6.626 \times 10^{-34} (J \cdot s)$$

$$<$$
公式 $>$ $E(eV) = \frac{1.24}{\lambda(\mu m)}$

- <重要觀念>
- ➡ 光的波長愈長,頻率愈低,能量愈低 ➡ 紅光
- ⇒ 光的波長愈短,頻率愈高,能量愈高 → 藍光

■ 光的波長與顏色

◆ 不同顏色的光波長不同

波長長 ← 0.78μm — 0.38μm — 波長短

頻率低 ← 3.85×10¹⁴Hz — 7.89×10¹⁴Hz — 頻率高

	紅	村	登	黄	綠	藍	靛	紫
0.78	0.6	0	0.58	3 0.53	0.48	0.45	0.43	0.38 μm
1.59	2.0	0	2.14	4.04	2.58	2.76	2.88	3.26 eV

■ 光的三原色

◆ 紅色(Red)、綠色(Green)、藍色(Blue) 紅、綠、藍不同亮度可以組合成光譜中所有的顏色

藍色 <實例> 綠色 紅色 光電系

■ 人類的視覺色彩

- ◆ 人類視覺神經對色彩之感受程度大小與顏色有關
- ⇒白天人類視覺神經對『黃綠色』感受程度最大
- □ 夜晚人類視覺神經對『藍綠色』感受程度最大

Department of Photosiliss
光電系

大綱

- ■科學單位介紹與光學演進史
- 光是什麼? 粒子說、波動說、二相性
- ■光的特性與應用實例

幾何光學:反射、折射、色散

物理光學:繞射、干涉、偏振

光的反射

- 射向鏡面的光線為入射線,反射 出來的光線稱為反射線。
- 法線是入射線與反射線交點處與 反射面(鏡面)垂直的線。
- 入射線與法線的夾角稱為入射角。
- 反射線與法線的夾角稱為反射角。
- 不平整的材料介面,但其仍然遵 守反射定律,稱為"漫射"

非光滑平面 ➡ 漫射

光電系

光的反射與平面鏡

- 面鏡的種類
 - 1.平面鏡
 - 2.凸面鏡:反射面是凸的表面
 - 3. 凹面鏡:反射面是凹的表面
 - 4.哈哈鏡:平、凹、凸面鏡組合造成趣味效果
- 凸、凹面鏡用途與性質
 - 1.凸面鏡 ➡ 正立縮小虛像
 - ① 性質:成像範圍廣,有發散光線性質
 - ② 用途:公路轉彎反光鏡、汽車後視鏡

視野廣

光的反射與平面鏡

- 面鏡用途與性質
 - 2.凹面鏡
 - ① 性質:有會聚光線性質
 - ② 用途 → 光路有可逆性
 - (1) 手電筒燈頭、汽車車前燈、探照燈
 - → 光源在焦點,能使光反射平行集中射出
 - (2) 太陽爐、太洋傘:為利用焦點之光能
 - → 光源在無窮遠(平行光),能使光會聚於焦點

光的折射

❖ 光在不同介質間傳播而改變行進方向的現象稱為 光的折射

(a)

(a)光的折射、(b)示意圖

❖入射線、折射線和法線位於同一平面上,入射角和 折射角的Sin值成一定的比例

折射率與全反射

介質	折射率
真空	1.0000
空氣	1.0003
水	1.33
矽	3.50
矽玻璃	1.45
塑膠	1.49
砷化鎵	3.60
绪	4.06

光密介質進入光疏介質時,若入射角增大至某一角度 θ ,我們將會發現折射角為90

• 折射率亦有關於眼鏡的厚薄問題

全反射的應用

□光纖利用全反射來傳輸光線

光電系

- 不同頻率的色光相對於介質的折射率並不相同, 太陽光本身包含有不同顏色(頻率)的色光。
- 產生折射時,不同顏色的光線因折射角不同 而分 開,於是形成色散現象。

光的色散:彩虹

光電系

神蹟?彩虹?彩光環(glory)知多少

1730年代,厄瓜多的潘巴馬爾卡山山頂進行觀測的科學考察隊報告說:我們頭頂的一片雲自行消散,曙光透了出來……後來我們每個人都看見自己的影子投射在雲上……最特別的是影子的頭部周圍出現光環,由三或四個同心圓組成,色彩十分鮮明……最令人驚奇的是當時在場的六、七個人中,每個人都只看見自己的影子頭部周圍有光環,看別人的影子時則什麼都沒有。

彩光環形成機制

- 彩光環的色彩和彩虹一樣,它由組成雲的細小水珠所產生,但物理現象更複雜。
- 逆向射回的光能大多來自波穿隧效應。在此現象中,光線沒有接觸水珠,但仍可將能量傳入水珠內部。

透鏡色散 (色差)

色散嚴重的相機拍攝照片

高對比區域邊緣幾乎都有紫邊或綠邊

http://blog.dcview.com/article.php?a=DzFXNFQ1ATM% 3D

光電系

大綱

- ■科學單位介紹與光學演進史
- 光是什麼? 粒子說、波動說、二相性
- 光的特性與應用實例 幾何光學:反射、折射、色散 物理光學:繞射、干涉及偏振

波動現象

(a) Water waves

楊式雙狹縫干涉實驗

 $d \sin \theta = m\lambda$

繞射光栅:分光利器

$$d \sin \theta = m\lambda$$

http://en.wikipedia.org/wiki/Diffraction_grating

光栅範例:光碟片

	DVD	CD
碟片直徑	120mm	120mm
厚度	1.2mm(0.6mm*2)	0.6mm
容量	4.7GB(單面單層)	650MB
軌跡間隙	0.74µm	1.6µm
Data Rate	1108Kbytes/Sec(平均)	Mode 1: 153.6 Kbytes/sec Mode 2: 176.4 Kbytes/sec
DVD讀取速度 約為CD 8X	576~1600 rpm	200~4500 rpm

VCD

DVD

光電系

■ 光的偏振(極化)方向

◆ 極化方向:電磁波的電場方向

➡ 非極化光:沒有固定電場方向的光

➡ 極化光:有固定電場方向的光

▶ 垂直極化光:電場方向垂直的光 P-polarization(TE)

▶ 水平極化光:電場方向水平的光 S-polarization(TM)

非極化光

垂直極化光

水平極化光

光電系

回 偏光片(Analysizer)

◆ 功能:將非極化光轉變為極化光

<應用>液晶顯示器(LCD)、極化分離器(Polarizer)

http://www.phy.ntnu.edu.tw/demolab/phpBB/viewtopic.php?topic=1742

光經介面反射後的偏振性

反射光和折射光的偏振

眩光更低 照度更佳

- → 照度提升40%,光線好充足,又亮又清楚! (比較基礎為TL1900系列)
- → 除眩效果No1,光線不刺眼,眼睛好舒服!

>> 3M Polarizing Light 創新濾光額

◎ 3M創新濾光篩如何有效濾過眩光?

防眩光檯燈並無法100%去除眩光,3M創新濾光篩可 有效去除刺眼的眩光,其除眩光效果為所有市售檯燈 中最佳。

■ 3M創新濾光篩改善反射眩光的原理

Polarizing Light

將近千層具特殊折射率的高分子 材料,製成一片僅132釐米的濾 光片 (Polarizing Light)

【偏光眼鏡】

使用前

使用後

- 當月光在通過大氣層時,因為會受到大氣層中微粒的散射,使得照射到地表的月光具有特定的偏振方向!
- 瑞典科學家Marie Dacke與其研究團隊首度發現:非洲 糞金龜(African Dung beetles)可以在有月色的夜晚,利 用月光的偏振來進行導航定位。這是人類研究動物定位 系統的重大發現,而他們的研究結果也已發表於《自然 》期刊(Nature 424, 33 (2003))。
- ■令人驚奇的是:當改變月光方向90度後,非洲糞金龜的爬行方向也偏離了90度!!這種突然大轉彎90度的移動行為顯示:非洲糞金龜能夠利用月光的偏振來貫徹其直線路徑的行動。

