Langevin Monte Carlo without log-concavity Candidacy Exam

Leello Dadi

August 31, 2021

The problem

The goal is to sample from a distribution π on the d dimensional space \mathbb{R}^d .

$$p_{\pi}(x) = \frac{\exp(-f(x))}{Z}$$

- $f \in C^1$ is called the *potential*.
- We will not assume convexity of f, i.e, log-concavity of p_{π} .
- We have query access to f and ∇f .

First approach: Random Walk Metropolis

Initiate a random walk at $X_0 \in \mathbb{R}^d$,

$$\mathsf{X}_{k+1} = \mathsf{X}_k + \sqrt{2\eta} \mathsf{Z}_{k+1}$$

where $\eta > 0$, and $(Z_k)_k$ is i.i.d $\mathcal{N}(0, I_d)$.

Query f to apply a Metropolis filter: Accept uphill steps, randomize acceptance of downhill steps.

Inform with the gradient

Initiate a random walk at $X_0 \in \mathbb{R}^d$,

$$\mathsf{X}_{k+1} = \mathsf{X}_k + \sqrt{2\eta} \mathsf{Z}_{k+1} - \eta \nabla f(\mathsf{X}_k)$$

where $\eta > 0$, and $(Z_k)_k$ is i.i.d $\mathcal{N}(0, I_d)$.

- Introduced as a "Gradient biasing method" [Rossky et al '1978].
- We will study these iterates for a fixed step-size η , with no Metropolis filter.

Outline

Langevin Monte Carlo (LMC)

For some $X_0 \sim \pi_0$,

$$X_{k+1} = X_k - \eta \nabla f(X_k) + \sqrt{2\eta} Z_{k+1}$$
 (LMC)

- 1. Convergence of LMC [Vempala and Wibisono '19]
- 2. Why can convergence time be exponential in dimension? [Tzen, Liang, Raginsky '18]
- 3. LMC in the real world [Song and Ermon '19]

Convergence of LMC

Defining a measure of success:

- Goal is to measure some expectation $\mathbb{E}_{\pi}[\phi(X)]$, for ϕ bounded.
- To estimate this quantity using our chain, we need

$$\sup_{\phi \text{ 1-bounded}} |\mathbb{E}[\phi(\mathsf{X}_k)] - \mathbb{E}_{\pi}[\phi(X)]| \leftarrow \text{ small }$$

Convergence of LMC

Defining a measure of success:

- Goal is to measure some expectation $\mathbb{E}_{\pi}[\phi(X)]$, for ϕ bounded.
- To estimate this quantity using our chain, we need

$$\sup_{\phi \text{ 1-bounded}} |\mathbb{E}[\phi(\mathsf{X}_k)] - \mathbb{E}_{\pi}[\phi(X)]| \leq \sqrt{\frac{1}{2}\mathsf{KL}(\mathsf{X}_k\|\pi)}$$

- So we will track the evolution of KL divergence from π .
- Recall that

$$\mathsf{KL}(
u||\pi) = \int_{\mathbb{R}^d} p_
u(x) \log rac{p_
u(x)}{p_\pi(x)} dx \quad ext{and} \quad I(
u||\pi) = \int_{\mathbb{R}^d} p_
u(x) \left\|
abla \log rac{p_
u(x)}{p_\pi(x)} \right\|^2 dx.$$

Evolution of KL from iteration k to k+1

• How does $KL(X_{k+1}||\pi)$ relate to $KL(X_k||\pi)$?

Langevin Monte Carlo (LMC)

$$X_{k+1} = X_k - \eta \nabla f(X_k) + \sqrt{2\eta} Z_{k+1}$$
 (LMC)

Continuous interpolation of the discrete chain

A single step of LMC is the *exact* solution of the following constant drift Stochastic Differential Equation (SDE) at time $t = \eta$:

$$\begin{cases} dX_t = -\nabla f(X_k)dt + \sqrt{2}dB_t \\ X_0 = X_k \end{cases}.$$

where $(B_t)_t$ is a standard Brownian motion.

• Track $t \mapsto \mathsf{KL}(X_t || \pi)$ from t = 0 to $t = \eta$.

• We gain access to SDE tools : the evolution of the density p_t of X_t , given by $\frac{\partial}{\partial t}p_t$ is known.

- We gain access to SDE tools : the evolution of the density p_t of X_t , given by $\frac{\partial}{\partial t}p_t$ is known.
- We can track KL using $\frac{d}{dt}$ KL $(X_t || \pi)$.

- We gain access to SDE tools : the evolution of the density p_t of X_t , given by $\frac{\partial}{\partial t}p_t$ is known.
- We can track KL using $\frac{d}{dt}$ KL $(X_t || \pi)$.
- Vempala and Wibisono observe that

$$\frac{d}{dt}\mathsf{KL}(X_t\|\pi) \leq -\frac{3}{4}I(X_t\|\pi) + \mathbb{E}\left[\|\nabla f(X_t) - \nabla f(\mathsf{X}_k)\|_2^2\right]$$

where *I* is the relative Fisher information.

- We gain access to SDE tools : the evolution of the density p_t of X_t , given by $\frac{\partial}{\partial t}p_t$ is known.
- We can track KL using $\frac{d}{dt}$ KL $(X_t || \pi)$.
- Vempala and Wibisono observe that (with L-smoothness)

$$\frac{d}{dt}\mathsf{KL}(X_t\|\pi) \leq -\frac{3}{4}I(X_t\|\pi) + L^2\mathbb{E}\left[\|X_t - X_k\|_2^2\right]$$

where *I* is the relative Fisher information.

- We gain access to SDE tools : the evolution of the density p_t of X_t , given by $\frac{\partial}{\partial t}p_t$ is known.
- We can track KL using $\frac{d}{dt}$ KL $(X_t || \pi)$.
- Vempala and Wibisono observe that (with L-smoothness)

$$\frac{d}{dt}\mathsf{KL}(X_t\|\pi) \leq -\frac{3}{4}I(X_t\|\pi) + L^2\mathbb{E}\left[\|X_t - X_k\|_2^2\right] \leq -C\mathsf{KL}(X_t\|\pi) + D$$

• If we had such a bound for some C, D > 0, then by applying classic tools (Grönwall), we would obtain

$$\mathsf{KL}(\mathsf{X}_{k+1} \| \pi) \leq e^{-C\eta} \mathsf{KL}(\mathsf{X}_k \| \pi) + \mathsf{bias}$$

- We gain access to SDE tools : the evolution of the density p_t of X_t , given by $\frac{\partial}{\partial t}p_t$ is known.
- We can track KL using $\frac{d}{dt}$ KL $(X_t || \pi)$.
- Vempala and Wibisono observe that (with L-smoothness)

$$\frac{d}{dt}\mathsf{KL}(X_t\|\pi) \leq -\frac{3}{4}I(X_t\|\pi) + L^2\mathbb{E}\left[\|X_t - X_k\|_2^2\right] \leq -C\mathsf{KL}(X_t\|\pi) + D$$

• By assuming that $-I(X_t||\pi) \le -C\mathbf{KL}(X_t||\pi)$, V&W show that it is possible to obtain such a bound, and prove that

$$\mathsf{KL}(\mathsf{X}_{k+1} \| \pi) \leq e^{-C\eta} \mathsf{KL}(\mathsf{X}_k \| \pi) + \mathsf{bias}$$

Main result of VW'19

Assumption: log-Sobolev Inequality

There exists a constant $\alpha > 0$ such that, for any probability measure ν where $KL(\nu || \pi) < \infty$, we have

$$\mathsf{KL}(\nu \| \pi) \le \frac{1}{2\alpha} I(\nu \| \pi) \tag{LSI}$$

The biggest α is called *the log-Sobolev constant* of π .

Assumption: Smoothness

The gradient of f is L-Lipschitz : $\forall x, y, \|\nabla f(x) - \nabla f(z)\| \le L\|x - y\|$

Evolution of KL at each step

LMC with step size $\eta > 0$ verifies at each step :

$$\mathsf{KL}(\mathsf{X}_{k+1}\|\pi) \le e^{-\alpha\eta} \mathsf{KL}(\mathsf{X}_k\|\pi) + 6\eta^2 dL^2,$$

The log-Sobolev Inequality

Assumption: log-Sobolev Inequality

There exists a constant $\alpha>0$ such that, for any probability measure ν where $\mathrm{KL}(\nu\|\pi)<\infty$, we have

$$\mathsf{KL}(\nu\|\pi) \le \frac{1}{2\alpha} I(\nu\|\pi)$$
 (LSI)

The biggest α is called *the log-Sobolev constant* of π .

- Convenient tool to show sub-Gaussian concentration (like Hoeffding etc).
- For this talk, think of LSI as equivalent to sub-Gaussianity: LSI "≡" light tails
- Contains all distributions with strongly-convex potentials f [Bakry, Émery '85].
- Stable under bounded perturbations of f [Holley, Stroock '87].

Stability under Lipschitz functions

Figure: Images from BigGAN [Brock, Donahue, Simonyan ICLR'19]

Preservation under Lipschitz functions [VW, Lemma 16]

Let $G: \mathbb{R}^p \to \mathbb{R}^d$ be a differentiable L-Lipschitz function, and π admit a LSI constant α , then G(X) for $X \sim \pi$ admits a LSI constant of at least α/L^2 .

aggregated across all devices, rather than a single device as in standard implementations. Spectral Normalization (Miyato et al., 2018) is used in both G and D, following SA-GAN (Zhang et al., 2018).

Distributions captured by GANs (whose noise input is Gaussian) admit a LSI constant.

Convergence Bound

Convergence bound [VW '19, Theorem 1]

Under $LSI(\alpha)$, to get ϵ close to π in KL, LMC needs a number of steps of the order of

$$O\left(\frac{L^2}{\alpha^2}\frac{d}{\epsilon}\right)$$

given an appropriate starting distribution on $X_{\mathbf{0}}$.

- LSI only requires good behavior at the tails.
- Scaling problem parameters, we can transform an optimization problem into a sampling problem.
- Non-convex optimization should cost $\left(\frac{1}{\epsilon}\right)^d$ to ϵ -approximate global minima [Nemirovsky, Yudin '83].

Behavior of the trajectory of LMC

Tzen, Liang, Raginsky study LMC to optimize an empirical risk approximation.

The potential takes the form

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} \ell(x, \xi_i)$$

where $(\xi_i)_i$ are n i.i.d samples from a data distribution.

- They assume ∇f and $\nabla^2 f$ are Lipschitz, and $\pi \propto e^{-f}$ verifies LSI.
- Using LMC to optimize introduces a parameter β , the inverse temperature:

$$\mathsf{X}_{k+1} = \mathsf{X}_k - \eta
abla f(\mathsf{X}_k) + \sqrt{rac{2\eta}{eta}} \mathsf{Z}_{k+1}$$

• With the added parameter β , we are targeting the measure $\pi_{\beta} \propto e^{-\beta f}$.

Main Result

- Pick a non-degenerate local minimum w of f.
- Pick $\epsilon > 0$ small enough.
- Initialize within an ϵ neighborhood of w.

Main Result of [Tzen, Liang, Raginsky '18]

For any $\delta \in [0,1]$, for any T>0, there is a choice of $\eta>0$ scaling with $\frac{1}{T}$ and a choice of β scaling with $\log(T)$ such that

$$\mathbb{P}(\text{Iterates escape }\epsilon \text{ ball around }w \text{ before }\frac{T}{\eta}) \leq \delta$$

 For a time of my choice T, I can set parameters so that LMC is trapped around a local minimum.

Dependence on T of the parameters feels like cheating. "Choose your own adventure"
 -Tzen.

- Dependence on T of the parameters feels like cheating. "Choose your own adventure"
 -Tzen.
- Ideally, β would be set beforehand: choose β so that $\pi_{\beta} \propto e^{-\beta f}$ is sufficiently concentrated, THEN, ask how long will local minima trap LMC for ?

- Dependence on T of the parameters feels like cheating. "Choose your own adventure"
 —Tzen.
- Ideally, β would be set beforehand: choose β so that $\pi_{\beta} \propto e^{-\beta f}$ is sufficiently concentrated, THEN, ask how long will local minima trap LMC for ?
- In the literature [Menz, Schlichting '14], given β (large enough), the LSI constant α_{β} of π_{β} verifies

$$rac{1}{lpha_eta}\lesssim \mathbb{E}[au]$$

where $\mathbb{E}[\tau]$ is the (worst) mean exit time from one local minimum to another.

- Dependence on T of the parameters feels like cheating. "Choose your own adventure"
 —Tzen.
- Ideally, β would be set beforehand: choose β so that $\pi_{\beta} \propto e^{-\beta f}$ is sufficiently concentrated, THEN, ask how long will local minima trap LMC for ?
- In the literature [Menz, Schlichting '14], given β (large enough), the LSI constant α_{β} of π_{β} verifies

$$rac{1}{lpha_eta}\lesssim \mathbb{E}[au]$$

where $\mathbb{E}[\tau]$ is the (worst) mean exit time from one local minimum to another.

• LSI is measuring how hard it is to jump from mode to mode.

LMC in the real world

Consider π to be a natural distribution, like natural images of a given size.

Langevin Monte Carlo (LMC)

$$X_{k+1} = X_k - \eta \nabla f(X_k) + \sqrt{2\eta} Z_{k+1}$$
 (LMC)

- We need the existence of the score ∇f .
- No reason to believe the real world admits a density, let alone a positive differentiable one.
- Good news: Convolution with a Gaussian confers all the necessary regularity.

Learning the score of a perturbed distribution

For $X \sim \pi$, $N \sim \mathcal{N}(0, \sigma^2 I)$, we consider π_{σ} the law of Y = X + N.

Score Matching [Song&Ermon '19]

We can parametrize a vector field using a neural network: $s_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$. Train it to minimize

$$\min_{\theta \in \Theta} \mathbb{E}_{\pi_{\sigma}} \left[\| s_{\theta}(Y) - \nabla \log p_{\pi_{\sigma}}(Y) \|_{2}^{2} \right]$$

Learning the score of a perturbed distribution

For $X \sim \pi$, $N \sim \mathcal{N}(0, \sigma^2 I)$, we consider π_{σ} the law of Y = X + N.

Score Matching [Song&Ermon '19]

We can parametrize a vector field using a neural network: $s_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$. Train it to minimize

$$\min_{\theta \in \Theta} \mathbb{E}_{\pi_{\sigma}} \left[\| s_{\theta}(Y) - \nabla \log p_{\pi_{\sigma}}(Y) \|_{2}^{2} \right]$$

• The true (perturbed) score is unknown.

Learning the score of a perturbed distribution

For $X \sim \pi$, $N \sim \mathcal{N}(0, \sigma^2 I)$, we consider π_{σ} the law of Y = X + N.

Score Matching [Song&Ermon '19]

We can parametrize a vector field using a neural network: $s_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$. Train it to minimize

$$\min_{\theta \in \Theta} \mathbb{E}_{\pi_{\sigma}} \left[\| s_{\theta}(Y) - \nabla \log p_{\pi_{\sigma}}(Y) \|_{2}^{2} \right]$$

- The true (perturbed) score is unknown.
- Luckily, with a few interchanges we obtain the equivalent loss [Vincent '10]

$$\min_{\theta \in \Theta} \mathbb{E}_{X \sim \pi, \ N \sim \mathcal{N}(0, \sigma^2 I)} \left[\| s_{\theta}(X + N) - \frac{N}{\sigma^2} \|_2^2 \right]$$

The need for multiple noise scales

Figure: Inaccurate estimation in low density regions [Song blog]

The need for multiple noise scales

Figure: Inaccurate estimation in low density regions [Song blog]

• Idea [SE '19]: Perturb with a decreasing sequence of noise scales:

$$\sigma_1 > \sigma_2 > \cdots > \sigma_L$$

The need for multiple noise scales

Figure: Inaccurate estimation in low density regions [Song blog]

• Idea [SE '19]: Perturb with a decreasing sequence of noise scales:

$$\sigma_1 > \sigma_2 > \cdots > \sigma_L$$

• Learn the L scores jointly with a Noise Conditional Neural Score Network

$$(x,\sigma)\mapsto s_{\theta}(x,\sigma)$$

such that $x \mapsto s_{\theta}(x, \sigma_i)$ approximates the score of π_{σ_i} .

Annealed Langevin Dynamics

- At first the only scores I can trust are $x \mapsto s_{\theta}(x, \sigma_1)$
- Closer to the modes of π_{σ_1} I can start trusting the scores $x \mapsto s_{\theta}(x, \sigma_2)$, and so on ...

Figure: Annealed Langevin Dynamics [SE '19]

Annealed Langevin Dynamics

- At first the only scores I can trust are $x \mapsto s_{\theta}(x, \sigma_1)$
- Closer to the modes of π_{σ_1} I can start trusting the scores $x \mapsto s_{\theta}(x, \sigma_2)$, and so on ...

Figure: Annealed Langevin Dynamics [SE '19]

• Each *i*-th LMC is run for T steps, with a fixed step-size η_i , and $\eta_i = \gamma \eta_{i+1}$ (decreased by a multiplicative factor)

Results

Figure: MNIST samples Figure: CIFAR-10 samples Figure: CelebA samples

Quantitative metrics: Achieved the best *Inception Score* on CIFAR-10, a metric that values clarity and coverage of all classes (can be fooled by single ouput per class).

A very small time scale

• The results were achieved for a very small T=100 iterations of LMC per noise scale with $\eta=10^{-5}$. This *is* small.

A very small time scale

- The results were achieved for a very small T=100 iterations of LMC per noise scale with $\eta=10^{-5}$. This is small.
- Consider simply going from $\mathcal{N}(0, \sigma_1)$ to $\mathcal{N}(0, \sigma_2)$, with the **diffusion**, in **closed form**, we have :

Figure: Evolution of the variance following Langevin Diffusion

Are we even sampling?

- Isn't outputting the modes enough to fool us ? (Good FID scores suggest otherwise)
- Is Annealed Langevin Dynamics completely different from LMC ?

Are we even sampling?

- Isn't outputting the modes enough to fool us? (Good FID scores suggest otherwise)
- Is Annealed Langevin Dynamics completely different from LMC ?
- Is it wrong to think that each LMC block must mix for it to work?

Figure: Annealed Langevin Dynamics does better than LMC on a mixture

Conclusion

- [Vempala, Wibisono '19] We can sample under just LSI and smoothness.
- [Tzen, Liang, Raginsky '18]: But we can be trapped by local minima for a very long time. Depends on the dimension dependence of the LSI constant.
- [Song, Ermon '19]: A Langevin like scheme appears successful.

Question

What can be said about the dimension dependence of the LSI constant of natural images ?

- The modes of π_{σ} are shallow.
- Manifold hypothesis? [Block, Mrouef, Rakhlin, Ross '20]

- We are not sampling.
- Annealed Langevin Dynamics is drastically different from LMC.