

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2022 - 2023

C6: Analyse temporelle des systèmes asservis

C6-1 - Analyse temporelle des systemes asservis du 1er ordre

14 Mars 2023

Table des matières

I	Dáfi	inition		2				
	Den			_				
	1	Systèr	ne du premier ordre	2				
	2	Exem	ple du cours	3				
II	Cara	Caractérisations de la réponse d'un système du premier ordre						
	1	Répor	nse à un échelon	4				
		a)	Équation de la réponse	4				
		b)	Comportement asymptotique	4				
		c)	Propriétés	5				
	2	Répor	nse à une rampe :	6				
		a)	Équation de la réponse	6				
		b)	Comportement asymptotique	6				
		c)	Propriétés	7				
	3	Répor	nse à une impulsion :	7				
		a)	Équation de la réponse	7				
		b)	Comportement asymptotique:	7				

Compétences

• Analyser

- o Identifier la structure d'un système asservi.
- Interpréter et vérifier la cohérence des résultats obtenus expérimentalement, analytiquement ou numériquement.

• Modéliser

- o Établir un modèle de connaissance par des fonctions de transfert.
- o Modéliser le signal d'entrée.
- o Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle.
- Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques aux résultats expérimentaux.

• Communiquer

o Utiliser un vocabulaire technique, des symboles et des unités adéquats.

Définitions

Système du premier ordre

Définition 1 : Système du premier ordre

On appelle système du premier ordre tout système linéaire, continu et invariant régi par une équation différentielle du premier degré de la forme :

$$\tau \frac{ds(t)}{dt} + s(t) = K e(t).$$
 (1)

Remarque 1 :

Pour la suite du cours, on considérera que les conditions initiales de s(t) sont toujours nulles :

- pour une équation différentielle du premier ordre : s(t = 0) = 0;
- pour une équation différentielle du deuxième ordre : s'(t=0)=0

♂Propriété 1 :

La fonction de transfert de ces systèmes peut s'écrire sous la **forme canonique suivante** :

$$H(p) = \frac{K}{1 + \tau p} \tag{2}$$

où:

- τ : **constante de temps** (en s);
- *K* : **gain statique** (unité selon l'application).

2 Exemple du cours

Exemple 1 : Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t). En isolant le solide S_1 de masse (m), on obtient le bilan des actions mécaniques extérieurs suivant \vec{x} :

• Le ressort S_2 de raideur k exerce un effort de rappel donné par sa valeur algébrique suivant \vec{x} ,

$$F_r = -k(s(t) - e(t)).$$

• L'amortisseur S_0 de coefficient de viscosité c exerce un effort de rappel donné par sa valeur algébrique suivant \overrightarrow{x} ,

$$F_c = -c \cdot \frac{ds(t)}{dt}$$
.

• On néglige le poids du solide S_1 .

En appliquant le Principe Fondamental de la Dynamique suivant la direction \vec{x} , on obtient :

$$F_r + Fc = m \frac{d^2 s(t)}{dt^2}.$$

En négligeant la masse m (ce qui revient à négliger l'inertie), on obtient alors,

$$c\frac{ds(t)}{dt} + ks(t) = ke(t).$$
(3)

Cette équation différentielle de degré 1 caractérise **un système du premier ordre**. On considère que les conditions initiales sont nulles (s(t = 0) = 0).

II. Caractérisations de la réponse d'un système du premier ordre

1 Réponse à un échelon

a) Équation de la réponse

b) Comportement asymptotique

On cherche à déterminer le comportement asymptotique (valeur et dérivée) de la réponse s(t) au voisinage de 0 et $+\infty$. Pour cela, on peut utiliser les théorèmes des valeurs limites :

Au voisinage de $+\infty$:

Au voisinage de 0:

c) Propriétés

Propriété 2 :

- La réponse indicielle à un système du 1^{er} ordre possède :
 - une **asymptote horizontale au voisinage de** $+\infty$ d'ordonnée à l'origine $K \cdot e_0$,
 - une tangente à l'origine de coefficient directeur $\frac{K \cdot e_0}{r}$.
- La rapidité d'une réponse à un échelon pour un premier ordre est quantifiée par le temps de réponse à 5% (noté t_r):

$$t_r \approx 3 \, \tau. \tag{5}$$

• La **Précision** de la réponse à un échelon peut être indiquée par **l'erreur statique**, noté ε_s . Elle s'obtient en recherchant l'écart au voisinage de $+\infty$:

$$\boxed{\varepsilon_{S} = \lim_{t \to +\infty} (e(t) - s(t))} \tag{6}$$

• L'erreur statique ε_s d'un système du 1^{er} ordre de **gain unitaire** soumis à un échelon est nulle :

$$\varepsilon_s = 0.$$
 (7)

Démonstration 1 : Rapidité

Calculons le temps de réponse à 5% pour un premier ordre

🔊 Démonstration 2 : Précision

Pour illustrer cela, prenons un gain K = 1. D'après le raisonnement suivant :

Attention : *Précision*

Pour estimer la précision, il convient d'abord de vérifier que e(t) et s(t) soient **homogènes** pour être comparables! Cela prend en compte aussi bien la nature des entrées-sorties, mais également l'amplification de la sortie par rapport à l'entrée. On prendra donc soit un gain unitaire (K = 1), soit l'équation 6 légèrement modifiée :

$$\varepsilon_{s} = \lim_{t \to +\infty} (K e(t) - s(t))$$
 (8)

2 Réponse à une rampe:

Équation de la réponse

b) Comportement asymptotique

On cherche à déterminer le comportement asymptotique (valeur et dérivée) de la réponse s(t) au voisinage de 0 et $+\infty$. Pour cela, on utilise les théorèmes des valeurs limites.

Au voisinage de $+\infty$:

Au voisinage de 0:

c) Propriétés

Propriété 3 :

- La réponse d'un système du 1^{er} ordre à une rampe possède :
 - $\circ \,$ une tangente horizontale au voisinage de 0,
 - une asymptote oblique, de coefficient directeur K a car une asymptote oblique d'équation $y_{(t)} = a$ $(t \tau)$ au voisinage de $+\infty$.
- • **Précision :** Pour K = 1, on trouve :

$$\varepsilon_{\nu} = a \, \tau. \tag{10}$$

• • Rapidité : La rapidité d'une réponse à une rampe d'un système du 1^{er} ordre peut se caractériser par un **retard de traînage** r_t :

$$\boxed{r_t = \tau.} \tag{11}$$

3 Réponse à une impulsion :

a) Équation de la réponse

Théorème 3 :

La réponse temporelle d'un système du $1^{\it er}$ ordre à une impulsion a pour équation :

$$s(t) = \frac{K}{\tau} e^{-t/\tau}.$$
 (12)

b) Comportement asymptotique:

On cherche à déterminer le comportement asymptotique (valeur et dérivée) de la réponse s(t) au voisinage de 0 et $+\infty$. Pour cela, on utilise les théorèmes des valeurs limites.

Au voisinage de 0 :

Au voisinage de +∞ :		

🚀 Propriété 4 :

- La réponse d'une système du 1^{er} ordre sollicité par un Dirac possède :

 une **asymptote horizontale** d'équation s(t)=0 au voisinage de $+\infty$,

 une **tangente d'équation d'équation** $s(t)=-\frac{K}{\tau^2}t+\frac{K}{\tau}$ au voisinage de 0.