Numerical Methods for Partial Differential Equations A.Y. 2024/2025

Laboratory 08

Finite Element method for the heat equation: convergence analysis and a nonlinear time dependent problem

Exercise 1.

Let $\Omega = (0,1)^3$ be the unit cube and T=1. Let us consider the following time-dependent problem:

$$\begin{cases} \frac{\partial u}{\partial t} - \nabla \cdot (\mu \nabla u) = f & \text{in } \Omega \times (0, T), \\ u = g & \text{on } \partial \Omega \times (0, T), \\ u = u_0 & \text{in } \Omega \times \{0\}, \end{cases}$$
(1a)

with $\mu = 1$.

1.1. Knowing that the exact solution to problem (1) is

$$u_{\rm ex}(\mathbf{x},t) = \sin(5\pi t)\sin(2\pi x)\sin(3\pi y)\sin(4\pi z) ,$$

where $\mathbf{x} = (x, y, z)^T$, compute the forcing term f, the boundary datum g and the initial condition u_0 .

- 1.2. Starting from the code of Laboratory 07, implement a finite element solver for problem (1) with the data computed at Point 1. Then, implement a method double Heat::compute_error(const VectorTools::NormType & norm_type) that computes the L^2 and H^1 norms of the error at the final time T between the numerical and the exact solution.
- 1.3. Consider the mesh mesh/mesh-cube-10.msh (corresponding to a mesh size h = 0.1). Solve the problem (1) with the implicit Euler method (setting $\theta = 1$), with time steps $\Delta t = 0.25, 0.125, 0.0625, 0.03125, 0.015625$ and linear finite elements (degree r = 1). Compute the error L^2 and H^1 norms of the error at the final time T and estimate their convergence order with respect to Δt .
- **1.4.** Repeat the previous point with quadratic polynomials (degree r=2).

1.5. Repeat Points 3 and 4 using the mesh mesh/mesh-cube-20.msh and using the Crank-Nicolson method (i.e. setting $\theta = \frac{1}{2}$).

Exercise 2.

Let $\Omega = (0,1)^3$ be the unit cube and T = 1. Let us consider the following nonlinear, time-dependent problem:

$$\begin{cases}
\frac{\partial u}{\partial t} - \nabla \cdot ((\mu_0 + \mu_1 u^2) \nabla u) = f & \text{in } \Omega \times (0, T), \\
u = g & \text{on } \partial\Omega \times (0, T), \\
u = u_0 & \text{in } \Omega \times \{0\},
\end{cases} \tag{2a}$$
(2b)

with $\mu_0 = 0.1$, $\mu_1 = 1$, $g(\mathbf{x}, t) = 0$, $u_0(\mathbf{x}) = 0$ and

$$f(\mathbf{x}, t) = \begin{cases} 2 & \text{if } t < 0.25 ,\\ 0 & \text{if } t \ge 0.25 . \end{cases}$$

2.1. Implement in deal.II a finite element solver for problem (2), using the implicit Euler method for time discretization and Newton's method for linearization. Then, compute the solution using the mesh mesh/mesh-cube-20.msh, with linear finite elements (degree r=1) and $\Delta t=0.05$.