Definition 0.1. (derivative) For a function f we define upper and lower right derivative

$$D^*f(t) = \limsup_{h\downarrow 0} \frac{f(t+h) - f(h)}{h}$$

$$D_*f(t) = \liminf_{h\downarrow 0} \frac{f(t+h) - f(h)}{h}$$

Theorem 0.1. Fix t, almost surely B(t,w) is not differentiable at t. Moreover $D^*B(t) = \infty$, $D_*B(t) = -\infty$.

Proof. Consider the time inversion $\{X(t)\}, X(t) = tB(1/t)$ for t > 0 and 0 for t=0, this is s.b.m. if original B() is s.b.m.

$$D^*X(0) = \limsup_{n \to \infty} \frac{X(\frac{1}{n}) - X(0)}{\frac{1}{n}}$$

$$\geq \limsup_{n \to \infty} \sqrt{n}(X(\frac{1}{n} - X(0)))$$

$$= \lim_{n \to \infty} \sqrt{n}X(\frac{1}{n})$$

$$= \limsup_{n \to \infty} \frac{B(n)}{\sqrt{n}} = +\infty.$$

Above implies that t = 0, then a.s. B(t,w) is not differentiable.

For fixed t > 0, we consider

$$\bar{X}(s) := B(s+t) - B(t)$$

is also a s.b.m.(we can directly check the 4 conditions) and s.b.m is not differentiable at 0, so \bar{X} is not differentiable at 0. \Rightarrow original process B is not differentiable at t.

Theorem 0.2. (Paley- wiener- Zygmund, stronger result) Almost surely, for every t, s.b.m. is not differentiable. Moreover, either $D^*B(t) = +\infty$ or $D_*B(t) = -\infty$ or both. In particular, this implies that almost surely, B(t) is not differentiable at every $t \geq 0$.

Proof. We can define $E_t := \{S.B.M. \text{ not differentiable at } t\}$. We know $P(E_t) = 1$ for every t, then we want to show $P(\cap_{t\geq 0} E_t) = 1$.

Suppose we have $t_0 \in [0,1]$ such that

$$-\infty < D_*B(t) \le D^*B(t) < \infty.$$

Then

$$\limsup_{h\downarrow 0} \left| \frac{B(t+h) - B(t)}{h} \right| < \infty \tag{*}$$

because $\limsup_{h\downarrow 0} -\frac{B(t+h)-B(t)}{h} = -\liminf_{h\downarrow 0} \frac{B(t+h)-B(t)}{h}$. This further implies there exists some finite M such that

$$\sup_{h \in [0,1]} \frac{B(t+h) - B(t)}{h} \le M \tag{**}$$

because when h is small (*) imply (**) and if h is large, then the path continuity of B.M. guarantees (**)(otherwise if there is a point at which derivative is not finite then we don't have continuity) Then we have

$$|B(t_0+h) - B(t_0)| \le Mh$$

now we fix M and assume $t_o \in \left[\frac{k-2}{2^n,\frac{k}{2^n}}\right]$, then for every $1 \le j \le 2^n - k$,

$$|B(\frac{k+j}{2^n}) - B(\frac{k+j-1}{2^n})|$$

$$\leq |B(\frac{k+j}{2^n}) - B(t_0)| + |B(\frac{k+j-1}{2^n}) - B(t_0)|$$
 (by triangle)
$$\leq \frac{M(2j+1)}{2^n}$$

Let

$$\Omega_{n,k} = \{ |B(\frac{k+j}{2^n}) - B(\frac{k+j-1}{2^n})| \le \frac{M(2j+1)}{2^n} \text{ for } j = 1, 2, 3 \}$$

note that above is intersection of independent events,

$$\begin{split} P(\Omega_{n,k}) & \leq \prod_{j=1}^{3} P(|B(\frac{k+j}{2^{n}}) - B(\frac{k+j-1}{2^{n}})| \leq \frac{M(7)}{2^{n}}) \\ & = P(N(0,\frac{1}{2^{n}}) \leq \frac{7M}{2^{n}})^{3} \\ & (\leq \frac{1}{\sqrt{2\pi}} \cdot 2 \times \frac{7M}{2^{n/2}})^{3} = \frac{cM^{3}}{2^{1.5n}} \end{split} \qquad \text{(check integration of two symmetric width)}$$

then we have that by B-C

$$P(\bigcup_{k=1}^{2^n-3}\Omega_{n,k} \ happen \ for \ i.o.)=0$$

 \Rightarrow

$$P(there \ is \ t_0 \in [0,1] \ with \sup_{h \in [0,1]} \frac{|B(t_0 + h) - B(t_0)|}{h} \le M)$$

 $\le P(\bigcup_{k=1}^{2^n - 3} \Omega_{n,k} \ happen \ for \ i.o.) = 0$

this proves that there is no derivative almost everywhere.

(heuristic)

$$f'(x_0 + h) - f(x_0) \approx f'(x_0) \cdot h \text{ but}$$

 $|B(x+h) - B(x)| \sim \sqrt{h \log(1/h)} > h.$

Definition 0.2. A function $f:[0,\infty)\to R$ is said to be α - Holder continuous at $x\geq 0$ if there exists $\epsilon>0$ and c>0 such that if $|y-x|<\epsilon$, then

$$|f(x) - f(y)| \le c|x - y|^{\alpha}.$$

If f is α - Holder continuous at every point x, then we say f is locally α -Holder continuity every where.

Corollary 0.1. If $\alpha < \frac{1}{2}$, then almost surely, B.M. is locally Holder continuous.

Proof. We know for fixed x,

$$|B(x+h) - B(x)| \le c\sqrt{hlog(1/h)} \le ch^{\alpha} \text{ (since } \alpha < 1/2)$$

also because $\sqrt{\log(1/h)} < 1$ for $h \in (0,1]$

Definition 0.3. A right continuous function $f:[0,t] \to R$ is of bounded variation if

$$V_f^{(1)}(t) := \sup_{\{0 = t_0 < t_1 \dots \le t_k = t\}} \sum_{j=1}^k |f(t_j) - f(t_{j-1})| < \infty.$$

If $V_f^{(1)}(t) = \infty$ then we say f is unbounded variation. Suppose $f \in c^1[0,t]$, then $|f'| \leq M$ then

$$V_f^{(1)}(t) \le \sum_{j=1}^k M(t_j - t_{j-1}) = M.T < \infty$$

In fact $V_f^{(1)}(t) = \int_0^t |f'| ds$ if f is smooth enough.

analysis: f is of bounded variation if and only if f can be written as difference of increasing functions. If f is non decreasing then is of bounded variance since

$$V_f^{(1)}(t) = f(t) - f(0).$$

Facts

1. If $\{X_n\}$ is a martingale, then

$$E(\sum_{n=1}^{k} (X_n - X_{n-1})^2)$$

$$= E(x_n^2 - X_{n-1}^2)$$

$$= EX_k^2 - EX_0^2 \ge 0$$

because $EX_nX_{n-1} = EX_{n-1}^2$ by using tower law. Observe that later term has larger 2nd moment.

2. Lemma: If X,Z independent symmetric r.v. in L2, then

$$E[(X+Z)^2|X^2+Z^2] = X^2+Z^2$$

Proof. It suffices to show $E[XZ|X^2 + Z^2] = 0$. By symmetry,

$$E[(X+Z)^2|X^2+Z^2] = E[X-Z)^2|X^2+(-Z)^2]$$

3. B.M. is locally Holder continuous with $\alpha < 1/2$.

Theorem 0.3. (Quadratic variation) Suppose fix t > 0 and suppose we have a sequence of partitions such that

$$p_n := 0 = t_0^{(n)} \le t_1^{(n)} \cdots t_{k(n)}^{(n)} = t$$

which are nested and

$$\nabla_n := \max_{1 \le j \le k(n)} \{ t_j^{(n)} - t_{j-1}^{(n)} \} \to 0$$

(so we are considering thinner partitions), then

$$\lim_{n\to\infty} \sum_{j=1}^{k(n)} \left(B(t_j^{(n)}) - B(t_{j-1}^{(n)}) \right)^2 = t \text{ a.s. and in } L_1.$$

Which further implies that B.M. is of unbounded variation.

First we prove quadratic variation converges a.s.

Proof. We define

$$X_{-n} = \sum_{j=1}^{k(n)} \left(B(t_j^{(n)}) - B(t_{j-1}^{(n)}) \right)^2,$$

define

$$g_{-n} = \sigma(X_{-n}, X_{-(n+1)}, \dots).$$

Therefore $X_{-n} \in g_{-n}$. We want to show

$$E[X_{-n+1}|q_{-n}] = X_{-n}.$$

W.L.O.G, we assume P_{n+1} only adds one more point to P_n . Suppose at step (n+1), the added point is $s \in (t_1, t_2)$.

$$X_{-(n+1)} - X_{-n} = (B(S) - B(t_1))^2 + (B(t_2) - B(S))^2 - (B(t_2) - B(t_1))^2$$

let $X = B(S) - B(t_1)$, $Z = B(t_2) - B(S)$ since we have $E[(X + Z)^2 | X^2 + Z^2] = X^2 + Z^2$, X_{-n} is a backward M.G.

$$E[X_{-(n+1)} - X_{-n}|g_{-n-1}] = X_{-(n+1)} - E[X_{-n}|g_{-n-1}]$$

= 0(RHS).

We know that $X_{-n} \to X$ a.s. and in L1,

$$EX = E[X_{-n}]$$

since $\{B(0) = 0, ..., B(t_{k(n)}^{(n)})\}$ is a discrete time MG,

$$E[X_{-n}] = E[B(t)^2 - B(0)^2] = t - 0 = t = EX$$

By Fatou's lemma

$$Var(X) \leq \liminf_{n \to \infty} var\left(\sum_{j=1}^{k(n)} (B(t_{j}^{(n)} - B(t_{j-1}^{(n)})^{2})\right)$$

$$= \liminf_{n \to \infty} \sum_{j=1}^{k(n)} var\left(B(t_{j}^{(n)}) - B(t_{j-1}^{(n)})\right)^{2}$$

$$= \liminf_{n \to \infty} 3\sum_{j=1}^{k(n)} (t_{j} - t_{j-1})^{2}$$

$$\leq \liminf_{n \to \infty} 3\nabla_{n} \sum_{j=1}^{k(n)} (t_{j} - t_{j-1}) \to 0.$$
(1)

So X_{-n} converges to X in L_1 , EX=t, but it degenerates, hence X_{-n} converges to t a.s.

Above (1) use the fact that $B(t_i^{(n)}) - B(t_{i-1}^{(n)}) \sim N(0, t_j - t_{j-1})^2$, so

$$Var[(\sqrt{t_j-t_{j-1}}N(0,1))^2] = (t_j-t_{j-1})^2 Var(N^2(0,1)) = 3(t_j-t_{j-1})^2.$$

Now we prove B.M. is of unbounded variation.

Proof. By Holder continuity, for every fixed ω , we can find n large enough such that

$$|B(a) - B(b)| < |a - b|^{\alpha}$$

for every $a, b \in [0, t]$ with $|a - b| \leq \nabla(n)$. Then

$$\sum_{j=1}^{k(n)} \left(B(t_j^{(n)}) - B(t_{j-1}^{(n)}) \right)^2 \le \sum_{j=1}^{k(n)} \nabla(n)^{\alpha} |B(t_j^{(n)}) - B(t_{j-1}^{(n)})|,$$

$$\sum_{j=1}^{k(n)} |B(t_j^{(n)}) - B(t_{j-1}^{(n)})| \ge \nabla(n)^{-\alpha} \sum_{j=1}^{k(n)} \left(B(t_j^{(n)}) - B(t_{j-1}^{(n)}) \right)^2$$

where quadratic variation goes to t and $\nabla(n)^{-\alpha}$ goes to ∞ , so B.M. has infinite variation.

Brownian motion as a Markov process

Markov property: If we have stochastic process $\{X(t)\}$ and if "predicting" X(t') based on $\{X(S)\}_0^t$ is the same as X(t), then we say the process has Markov property. Moreover a process is called (time-homogeneous) Markov process if it starts refresh at any fixed S. (like B.M.)

Theorem 0.4. (Markov Property) Suppose $\{B(t)\}$ is a B.M. started at x, then $\{B(t+s) - B(s)\}$ is again a B.M. started at origin and is independent of $\{B(u)\}_{u=0}^{s}$.

Proof. Definition check.
$$\Box$$

Definition 0.4. 1. Filtration on (Ω, F, P) is a family $\{F(t)|t \geq 0\}$ of σ - algebra such that

$$F(S) \subset F(t) \subset F$$
 for every $s \leq t$.

2. (Ω, F, P) with filtration $\{F(t)\}$ is called a filtered probability space. $\{X(t)\}_{t\geq 0}$ is adapted to $\{F(t)\}$ if $X(t) \in F(t)$ for every $t \geq 0$. Suppose we have a B.M. $\{B(t)\}$ on (Ω, F, P) , then

$$F^{0}(t) = \sigma(B(S) | 0 \le s \le t)$$

is a filtration. We know

$$B(t+s) - B(s) \perp \{B(u), u \in [0, s]\} = F^{0}(s).$$

We can also define

$$F^+(S) = \cap_{t>s} F^0(t), \ F^+(s) \supset F^0(s).$$
 (right limit)

Theorem 0.5. Fix S, we know $\{B(t+s) - B(s)\}\$ is independent with $F^+(s)$.

Proof. By continuity,

$$B(t+s) - B(s) = \lim_{n \to \infty} B(S_n + t) - B(S_n)$$

for $S_n \in Q$ and $S_n \downarrow S$.

$$B(S_n + t) - B(S_n) \perp F^+(S)$$
 for each n (markov property)

we can choose $s_0 \in (s, s_n)$, $F^+(s) \subset F^0(s_0) \subset F^+(s_0)$ and LHS $\perp F^+(S_0)$, so $B(t+s) - B(s) \perp F^+(s)$ by taking limit(use right continuity of F^+) to both sides. Similarly for any fixed $t_1, t_2, ..., t_n$

$${B(t_i+s)}_{i=1}^n \perp F^+(s).$$

learn a trick here using rational number, limit and squeeze the sandwich.

Theorem 0.6. (Blumenthal's 0-1 law) Let $X \in R$ and $A \in F^+(0)$, then we have $P_x(A) = \{0, 1\}$. (P_x means the B.M. starts at X)

Proof. We apply previous theorem for s=0,

$$\{B(t)\}_{t>0} \perp F^+(0)$$

- 1. $A \in F^+(0)$
- 2. $A \in \{B(t)\}_{t \ge 0} \Rightarrow A \perp A \Rightarrow P(A) = \{0, 1\}$

B.M. is a continuous process and filteration is continuous as well

Theorem 0.7. Suppose $\{B(t)\}$ is S.B.M. let

$$\tau = \inf\{t > 0, B(t) > 0\}$$

 $\sigma = \inf\{t > 0, B(t) = 0\}$

then

$$P(\tau = 0) = p(\sigma = 0) = 1$$

(then we show $P(\tau = 0)$ is either 0 or 1 then show it cannot be 0.

$$\{\tau = 0\} = \bigcap_n \{there \ is \ 0 < \epsilon < \frac{1}{n} \ s.t. \ B(\epsilon) > 0\}$$

so the intersection is also $\in F^+(0)$. Then by above Theorem 0.6,

$$P(\tau = 0) = \{0, 1\}$$

Now,

$$P(\tau \le t) = P(B(s) \le 0 \text{ for every } s \in [0, t]) \ge P(B(t) \le 0) = \frac{1}{2},$$

which means $P(\tau \le t) \ge 1/2$, then $P(\tau = 0) = 1$.

We can also define

$$\tau = \inf\{t > 0, B(t) < 0\},\$$

then $P(\tau = 0) = 1$. This implies that $P(\sigma = 0) = 1$ by continuity of brownian path.

We can also define the tail σ -field

$$\mathcal{T} = \bigcap_{t \geq 0} g(t) \bigg(= \bigcap_{t \geq s} g(t), \text{ finite time invariant} \bigg), \text{ where } g(t) = \sigma(\{B(s) | s \geq t\}).$$

Theorem 0.8. For $A \in \mathcal{T}$, then p(A) = 0 or 1.

Proof. Since $x(t) = t \cdot B(\frac{1}{t})$ is also a B.M., $\sigma(x(t)) = \sigma(B(\frac{1}{t}))$, therefore $A \in \mathcal{T}^B$ is the same as $A \in \bigcap_{t \geq 0} \sigma(\{B(s)|s \geq t\}) = \bigcap_{t \geq 0} \sigma(\{B(s)|s \geq t\})$ (finite invariant) and

$$\bigcap_{t>0} \sigma(\lbrace B(s)|s \ge t\rbrace) = \bigcap_{t>0} \sigma(\lbrace x(u)|u \le \frac{1}{t}\rbrace)$$
$$= F^{+}(0)$$

hence P(A) = 0 or 1.

Given a filtration $\{F(t)\}_{t\geq 0}$ a r.v. T is called a stopping time if the event $\{T\leq t\}\in F(t)$ for every t.

Proposition 0.1. 1. Constant t is always a stopping time

2. Suppose $T_n \uparrow T$ and each T_n is a stopping time, then T is a stopping time.

$$\{T \le t\} \cap_{n=1}^{\infty} \{T_n \le t\} \in F_t$$

3. Suppose T is a stopping time. Let

$$T_n = (m+1)2^{-n} \text{ if } T \in [m2^{-n}, (m+1)2^{-n})$$

then each T_n is a stopping time and $T_n \downarrow T$.

4. Every stopping time w.r.t. $F^{0}(t)$ is also a stopping time w.r.t. $F^{+}(t)$.

$$\{T \le t\} \in F^0(t) \subset F^+(t).$$
 (Right continuity)

- 5. The first hitting time of a Brownian motion to a closed set H is a stopping time w.r.t. $F^{0}(t)$.
- 6. The first hitting time of a Brownian motion to an open set H is a stopping time w.r.t. $F^+(t)$.

$$T = \inf\{t : B(t) \in H\}$$

$$\{T \le t\} = \{\exists t_0 \le t, \text{ such that } B(t_0) \in H\} \bigcup \{\text{there is a sequence } t_n > t \text{ s.t. } t_n \to t \text{ and } B(t_n) \in H\} \in F^+(t)$$

when H is a closed set, Suppose we have $t_n > t$ and $t_n \to t$ and $B(t_n) \in H$. Then we know $\lim_{n \to \infty} B(t_n) = B(t) \in H$ because H is closed.

In the future, we use $F^+(t)$ as the filtration for $\{B(t)\}$ by default.

Proposition 0.2. $(F^+(t) properties)$

1. Right-continuity.

Proof.

$$\lim_{\epsilon \downarrow 0} F^+(t+\epsilon) = \bigcap_{\epsilon > 0} F^+(t+\epsilon)$$
$$F^+(t) = \bigcap_{s > 0} F^0(t+s) = \bigcap_{\epsilon > 0} F^+(t+\epsilon).$$

(trick: $\bigcap_{S>0} F^0(t+s) = \bigcap_{S>t} F^0(s)$) In contrast, $F^0(t)$ is not right continuous.

$$lim F^0(t+\epsilon) = F^+(t).$$

2. Suppose T satisfy $\{T < t\} \in F(t)$ and F(t) is right continuous, then T is a stopping time w.r.t. F(t)

$$\{T \le t\} = \bigcap_{k \in N^+} \{T < t + \frac{1}{k}\} \bigcap_{k \in N^+} F(t + \frac{1}{k}) = F(t).$$

Theorem 0.9. (Strong Markov Property) Suppose T is a.s. finite stopping time, then $\{B(T+t) - B(T)\}$ is a s.b.m. independent of $F^+(T)$, where $F^+(T) = \{A | A \cap \{T \le t\} \in F(t)\}$, a σ -algebra generated by T.

Proposition 0.3. If $\{B(T)\}\$ is a Brownian motion, then

1. $(symmetry) \{-B(T)\}$ is a Brownian motion.

- 2. (Invariance under scaling) For every $\lambda > 0$, $\{\frac{1}{\lambda}B(T)\}$ is a Brownian motion.
- 3. (simple markov property) $\{B(T+s) B(s)\}\$ is a Brownian motion.
- 4. Time reversal $\{B(T) B(T-t)\}\$ is a Brownian motion.

Theorem 0.10. (Refelection principle) Suppose T is a stopping time a.s. finite and $\{B(t)\}$ is a standard brownian motion, then

$$B^*(t) = B(t)1_{t \le T} + \{2B(T) - B(t)\}1_{t > T}$$

is also a Brownian motion.

if M=(x,y), then the reflection of M with respect to the line passing through (0,a) and parallel to the X-axis is $M^* = (X, 2a - y)$ (draw a picture).

Proof. $\{B(t+T) - B(T)|t \ge 0\}(*)$ is a standard B.M. independent with $F^+(T)$. $\{-B(t+T) + B(T)\}(**)$ is also a B.M. independent with $F^+(T)$. If we glue (*), which depends on ω as well, to $\{B(t)|0 \le t \le T\}$ then we have a new Brownian motion which is just $\{B(t)\}$. If we glue (**) to $\{B(t)|0 \le t \le T\}$ then we have B^* , a standard Brownian motion.

Application of reflection property:

Define $M(t) = \max_{0 \le s \le t} B(s)$, where B(s) is a.s. finite is well defined in a compact set. Then

$$P(M(t) > a) = 2P(B(t) > a) = P(|B(t)| > a) \le 2 * \frac{\sqrt{t}}{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{a^2}{2t}}$$
 (gaussian tail)

for all a > 0.

Proof. Let $T_a = \inf\{t|B(t) = a\}$, then

$$P(M(t) > a) = P(B(t) > a) + P(B(t) < a, there exists s such that $B(S) > a)(C)$.$$

Then we can show $\{B(t) \leq a, \text{ there exists s such that } B(S) > a\} = \{B^{*T_a}(t) > a\}(D). \to \text{Suppose C happens then we know } T_a \leq s \text{ for some } s \in [0,t] \text{ and } B^{*T_a}(t) > a. \leftarrow \text{Similarly if D happens} \Rightarrow T_a \leq t, B(t) < a \text{ (before reflection where reflection } > a). So$

$$P(M(t) > a) = P(B(t) > a) + P(B^*(t) > a).$$

Omit the proof of claim that B(t), $B^*(t)$ have the same distribution. Check notes.