The pth-order operator appearing on the right side of (2.1.19) is known as the *formal* adjoint of L and is denoted by L^* . We can then write (2.1.19) as $\langle Lf, \phi \rangle = \langle f, L^*\phi \rangle,$ (2.1.20)

which defines the distribution
$$Lf$$
 in terms of the action of the distribution f on the test function $L^*\phi$. Note that the operator L^* is the one that would appear if we integrated by parts the left side of (2.1.20), treating f as an ordinary p -times-

differentiable function. We always have $(L^*)^* = L$. If $L = L^*$, we say that L is formally self-adjoint. Let $L = a_2(x)D^2 + a_1(x)D + a_0(x)$ be the most general second-order operator

in one variable,
$$x$$
. Then L^* is defined from
$$L^*\phi=a_2\phi''+(2a_2'-a_1)\phi'+(a_2''-a_1'+a_0)\phi, \tag{2.1.21}$$

and the necessary and sufficient condition for L^* to be formally self-adjoint is

$$a_2' = a_1. (2.1.22)$$

self-adjoint if it has constant coefficients and only partial derivatives of even order.

Note that an operator L of any order in any number of variables will be formally