ANALYSIS I EXTENSION LECTUR 3.ARITHMETIC ON \mathbb{N}

ASILATA BAPAT

Addition

How can we make sense of "1+2=3" if $1=\{\varnothing\}$ and $2=\{\varnothing,\{\varnothing\}\}$? The strategy is to define a function of "addition of m" for every $m\in\mathbb{N}$.

Theorem. For every $m \in \mathbb{N}$, there exists a function $S_m \subseteq \mathbb{N} \times \mathbb{N}$ such that

- (1) $S_m(0) = m$
- (2) $\forall n \in \mathbb{N}, S_m(n^+) = (S_m(n))^+$

Proof. First we show that there exists at least one relation $S'_m \subseteq \mathbb{N} \times \mathbb{N}$ with the "right" properties. Then we show that S'_m is a function. Define

$$S_m := \{ R \subseteq \mathbb{N} \times \mathbb{N} \mid (0, m) \in R \text{ and if } (n, x) \in R \text{ then } (n^+, m^+) \in R \}$$

 $S_m \neq \emptyset$ because $\mathbb{N} \times \mathbb{N} \in S_m$. Set

$$S'_m := \bigcap_{R \in S_m} R$$

 S'_m is the smallest relation with the properties. We will show that S'_m is indeed a function. It has the required properties by construction.

(1) We need to show $Domain(S'_m) = \mathbb{N}$.

Let p(n) be true if $\exists x \text{ s. t. } (n, x) \in S'_m$. It is obvious that p(0) is true because $(0, m) \in S'_m$. Suppose p(n) is true if $\exists x \in \mathbb{N} \text{ s. t. } (n, x) \in S'_m$. So $\forall R \in S_m, (n, x) \in R \Longrightarrow (n^+, x^+) \in R \Longrightarrow (n^+, x^+) \in S'_m \Longrightarrow p(n^+)$ is true. So by induction, Domain $(S'_m) = \mathbb{N}$.

(2) We need to show that if (n, x), (n, y) are both in S'_m , then x = y.

Let p(n) be true: $\forall r \in n$, there exists a unique $x \in \mathbb{N}$ s. t. $(r, x) \in S'_m$. Note that p(0) is vacuously true.

Suppose p(n) is true, we want to show $p(n^+)$ is also true. Let $r \in n^+ = n \cup \{n\}$. This means that r = n or $r \in n$. If $r \in n$, we already know the statement is true; If r = n, suppose that $(n, a) \in S'_m$ and $(n, b) \in S'_m$.

Claim. At most one of (n, a) and (n, b) can have a "predecessor" in S'_m .

Suppose $(p_1, x_1) \in S'_m$ and $(p_2, x_2) \in S'_m$ s. t. $(p_1^+, x_1^+) = (n, a)$ and $(p_2^+, x_2^+) = (n, b)$. Since $p_1^+ = p_2^+ = n$, we have $p_1 = p_2$ and $p_1 \in n \Longrightarrow (p_1, x_1) \in S'_m$ and $(p_2, x_2) \in S'_m$ imply $x_1 = x_2$. So, $a = x_1^+$ and $b = x_2^+ \Longrightarrow a = b$. If $a \neq b$, either $\nexists (p_1^+, x_1^+) = (n, a)$ or $\nexists (p_2^+, x_2^+) = (n, b)$. Suppose (WLOG) $\not\equiv p_1$ s.t. $(p_1^+, x_1^+) = (n, a)$ and $(p_1, x_1) \in S'_m$, then we can remove (n, a) from S'_m by defining $S''_m := S'_m - (n, a)$ and we get a smaller relation with the same properties! This cannot happen because S'_m is the intersection of all R, which implies $S'_m \subset S''_m$

So, by (1) and (2), $\exists !a \text{ s.t. } (n,a) \in S'_m$, and so $p(n^+)$ also is true $\implies S'_m$ is a function with the desired properties S_m .

We can now prove the following facts:

- $(1) \ \forall n \in \mathbb{N}, S_1(n) = n^+.$
- (2) $\forall n \in \mathbb{N}, S_0(n) = n.$
- (3) $\forall m, n, k \in \mathbb{N}$, we have $S_{S_m(n)}(k) = S_m(S_n(k))$ (associativity)
- (4) $\forall m, n \in \mathbb{N}$, we have $S_m(n) = S_n(m)$ (commutativity)

All properties are proved by induction.

Proof of (1) Let p(n) be true if $S_1(n) = n^+$. $S_1(0) = 1 = 0^+$. So p(0) is true. Suppose p(n) is true. Then

$$S_1(n^+) = [S_1(n)]^+ = (n^+)^+$$

So $p(n^+)$ is true \rightarrow induction.

Proof of (2) Let p(n) be true if $S_0(n) = n$. p(0) is true because $S_0(0) = 0$. Let p(n) be true. Then

$$S_0(n^+) = [S_0(n)]^+ = n^+$$

So p(n+) also is true \rightarrow induction.

Proof of (3) Let p(k) be true if $\forall m, n$ we have $S_{S_m(n)}(k) = S_m(S_n(k))$. For k = 0, $S_{S_m(0)} = S_m(n)$; $S_m(S_n(0))S_m(n) = S_{S_m(0)}$. So p(0) is true. Suppose p(k) is true. Then

$$S_{S_m(n)}(k^+) = \left[S_{S_m(n)}(k) \right]^+ = \left[S_m(S_n(k)) \right]^+ = S_m \left[(S_n(k))^+ \right] = S_m \left(S_n(k^+) \right)$$

So $p(k^+)$ is true \rightarrow induction.

Proof of (4) Let p(n) be true $\forall m \in n$, we have $S_m(n) = S_n(m)$. For n = 0, $S_m(0) = m = S_0(m)$. So p(0) is true. Suppose p(n) is true.

$$S_m(n^+) = [S_m(n)]^+ = [S_n(m)]^+ = S_n(m^+) = S_n(S_1(m)) = S_{S_n(1)}(m) = S_{S_1(n)}(m) = S_{n^+}(m)$$

So $p(n^+)$ is true \to induction.

There are some more properties of \mathbb{N} .

- (1) If $m, n \in \mathbb{N}$, $m \in n$ iff $m \subsetneq n$.
- (2) If $m, n \in \mathbb{N}$, we say that m < n if $m \in n$, and $m \le n$ if $m \in n$ or m = n. Then $\forall M, N \in \mathbb{N}$, exactly one of the following is true (Trichotomy):

$$m < n \text{ or } n < m \text{ or } m = n$$

- (3) For every $m, n\mathbb{N}$, we have $m \leq n$ iff there is a unique $k \in \mathbb{N}$ such that m + k = n
- (4) For every $m, n, k \in \mathbb{N}$, if n + m = n + k then m = k (Cancellation).

SUBTRACTION AND MULTIPLICATION

Definition (Subtruction). Given $m, n\mathbb{N}$, such that $m \leq n$, define n - m to be the unique $k \in \mathbb{N}$ such that m + k = n

Remark. This satisfies the usual properties.

Multiplication is defined similarly to addition. Fix $m \in \mathbb{N}$, then \exists a function $P_m : \mathbb{N} \to \mathbb{N}$ with the following properties:

- (1) $P_m(0) = 0$
- (2) $P_m(n^+) = P_m(n) + m$

(Proved analogously to S_m)

We eventually write $P_m(n)$ as $m \cdot n$ or mn.

Multiplication satisfies the following properties: $\forall m, n, k \in \mathbb{N}$

- (1) $P_m(0) = 0$
- (2) $P_1(n) = n$
- (3) $P_m(n) = P_n(m)$ (commutativity)
- (4) $P_m(P_n(k)) = P_{P_m(n)}(k)$ (associativity)
- (5) $P_m(n+k) = P_m(k) + P_n(k)$ (distributivity)