CSE331 – Computer Organization

Lecture 5: Multiply, Shift and Divide

MULTIPLY (unsigned)

Paper and pencil example (unsigned):

```
Multiplicand \rightarrow 1000 = 8

Multiplier \rightarrow \times 1001 = 9

1000

0000

0000

1000

Product \rightarrow 01001000 = 72
```

- \rightarrow n bits x n bits = 2n bit product
- Binary makes it easy:
 - 0 => place 0 (0 x multiplicand)
 1 => place a copy (1 x multiplicand)
- 4 versions of multiply hardware & algorithm:
 - successive refinement

Unsigned shift-add multiplier (version 1)

64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg,
 32-bit multiplier reg

Multiplier = datapath + control

Observations on Multiply Version 1

- 1/2 bits in multiplicand always 0
 => 64-bit adder is wasted
- O's inserted into the least significant bit of multiplicand as shifted => least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right.

MULTIPLY HARDWARE Version 2

32-bit Multiplicand reg, 32 -bit ALU, 64-bit
 Product reg, 32-bit Multiplier reg

Observations on Multiply Version 2

- Product register wastes space that exactly matches size of multiplier
- Both Multiplier register and Product register require right shift
- Combine Multiplier register and Product register

MULTIPLY HARDWARE Version 3

▶ 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg, (0-bit Multiplier reg)

Observations on Multiply Version 3

- 2 steps per bit because Multiplier & Product combined
- MIPS registers Hi and Lo are left and right half of Product
- Gives us MIPS instruction Multu
- What about signed multiplication?
 - easiest solution is to make both positive & remember whether to complement product when done (leave out the sign bit, run for 31 steps)
 - Booth's Algorithm is elegant way to multiply signed numbers using same hardware as before and save cycles
 - can be modified to handle multiple bits at a time

Motivation for Booth's Algorithm

• Example $2 \times 6 = 0010 \times 0110$:

```
0010

x 0110

+ 0000 shift (0 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001100
```

ALU with add or subtract gets same result in more than one way:

$$\begin{array}{rcl}
12 & = -4 + 16 \\
01100 & = -00100 + 10000
\end{array}$$

For example

```
0010

x 0110

0000 shift (0 in multiplier)

-0010 sub (start string of 1's)

0000 shift (mid string of 1's)

+ 0010 add (end string of 1's)
```

Booth's Algorithm

 Replace a string of 1s in multiplier with an initial subtract when we first see a one and then later add for the bit after the last one

Booths Example (2 x 7)

Operation	Multiplicand	Product	next?
0. initial value	0010	0000 0111 0	10 -> sub
1a. P = P - m	1110	+ 1110 1110 <mark>0111 0</mark>	shift P (sign ext)
1b.	0010	1111 0 <mark>011 1</mark>	11 -> nop, shift
2.	0010	1111 10 <mark>01 1</mark>	11 -> nop, shift
3.	0010	1111 110 <mark>0 1</mark>	01 -> add
4a.	0010	+ 0010	
		0001 110 <mark>0 1</mark>	shift
4b.	0010	0000 1110 0	done

Booths Example (2×-3)

Operation	Multiplicand	Product	next?
0. initial value	0010	0000 1101 0	10 -> sub
1a. P = P - m	1110	+ 1110 1110 1101 0	shift P (sign ext)
1b.	0010	1111 0 <mark>110 1</mark> + 0010	01 -> add
2a.		0001 0110 1	shift P
2b.	0010	0000 10 <mark>11 0</mark> + 1110	10 -> sub
3a.	0010	1110 1011 0	shift
3b.	0010	1111 0101 1	11 -> nop
4a		1111 0101 <mark>1</mark>	shift
4b.	0010	1111 1010 <mark>1</mark>	done

Shifters

Two kinds:

Note: these are single bit shifts. A given instruction might request 0 to 32 bits to be shifted!

Combinational Shifter from MUXes

8-bit right shifter

- What comes in the MSBs?
- How many levels for 32-bit shifter?

Unsigned Divide: Paper & Pencil

See how big a number can be subtracted, creating quotient bit on each step

Binary => 1 * divisor or 0 * divisor
Dividend = Quotient x Divisor + Remainder
3 versions of divide, successive refinement

DIVIDE HARDWARE Version 1

64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg,
 32-bit Quotient reg

Observations on Divide Version 1

- 1/2 bits in divisor always 0
 => 1/2 of 64-bit adder is wasted
 => 1/2 of divisor is wasted
- Instead of shifting divisor to right, shift remainder to left?
- 1st step cannot produce a 1 in quotient bit (otherwise too big)
 - => switch order to shift first and then subtract, can save 1 iteration

Divide: Paper & Pencil

```
01010 Quotient
Divisor 0001 00001010 Dividend

0001
-0001
0000
0001
-0001
0
Remainder (or Modulo result)
```

• Notice that there is no way to get a 1 in leading digit! (this would be an overflow, since quotient would have n+1 bits)

DIVIDE HARDWARE Version 2

32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg,
 32-bit Quotient reg

Observations on Divide Version 2

- Eliminate Quotient register by combining with Remainder as shifted left
 - Start by shifting the Remainder left as before.
 - Thereafter loop contains only two steps because the shifting of the Remainder register shifts both the remainder in the left half and the quotient in the right half
 - The consequence of combining the two registers together and the new order of the operations in the loop is that the remainder will shifted left one time too many.
 - Thus the final correction step must shift back only the remainder in the left half of the register

DIVIDE HARDWARE Version 3

32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg,
 (0-bit Quotient reg)

Observations on Divide Version 3

- Same Hardware as Multiply: just need ALU to add or subtract, and 64-bit register to shift left or shift right
- Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide
- Signed Divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary
 - Note: Dividend and Remainder must have same sign
 - Note: Quotient negated if Divisor sign & Dividend sign disagree e.g., $-7 \div 2 = -3$, remainder = -1