Chronic Kidney Disease Prediction

Project #2 Christine Orosco 2/4/2023

Agenda

Introduction Methods Analysis Conclusion

Introduction

Objective

- Chronic Kidney Disease Prediction
- Binary Classification

3 Models

- Random Forest Classifier
- AdaBoost
- XgBoost

Dataset

- Study conducted (Dua and Graff, 2019)
- 400 observations

Validation

- Validation dataset (Atul, n.d.)
- CURE-CKD (*Tuttle et al., 2019*)
- CRIC (Chronic-Kidney-Disease Research Chronic Renal Insufficiency Cohort Study Kidney Disease, n.d.)

Methods

EDA

- Correlations
- Linear Relationship

Feature Selection

- RFE
- RFECV

Build and Fit Models

- Cross-Validation
- GridSearch
- Compute predictions

Compare results

- Validation dataset
- Published studies

Data Exploration

CRIC and CURE-CKD confirm:

- Diabetes and hypertension 2 leading cause of CKD
- Albumin to Creatine levels are elevated in CKD

Feature Selection

Results

MODEL	TEST ACCURACY SCORE	1 ST VALIDATION ACCURACY SCORE	2 ND VALIDATION ACCURACY SCORE
Random Forest	0.96	0.85	.85
AdaBoost	0.95	0.57	.5
XgBoost	0.98	0.93	.92

Prediction Results – Test Data

Prediction Results - Validation Data

Conclusion

- XgBoost has the best accuracy and consistent across the test and validation datasets
- Random Forest is a potential
- AdaBoost not a viable model
 - Prone to Overfitting
 - Lags behind XgBoost in speed and CPU memory usage

References

- 1. Tuttle, K. R., Alicic, R. Z., Duru, O. K., Jones, C. R., Daratha, K. B., Nicholas, S. B., McPherson, S. M., Neumiller, J. J., Bell, D. S., Mangione, C. M., & Norris, K. C. (2019). Clinical Characteristics of and Risk Factors for Chronic Kidney Disease Among Adults and Children. *JAMA Network Open, 2*(12), e1918169. https://doi.org/10.1001/jamanetworkopen.2019.18169
- 2. Chronic-Kidney-Disease Research Chronic Renal Insufficiency Cohort Study Kidney Disease. (n.d.). http://www.cristudy.org/Chronic-Kidney-Disease/Chronic-Renal-Insufficiency-Cohort-Study/CRIC-DataView
- 3. Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
- 4. Atul, A. (n.d.). *Kidney Disease.csv*. https://raw.githubusercontent.com/AP-Atul/Chronic-Kidney-Disease/master/dataset/train.csv
- 5. <u>Kidney Disease</u>. (2022, December 17). National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/kidney-disease