

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$\therefore \frac{r + (z - r)\sec\theta}{u} = \frac{yz}{m}. \qquad \therefore y = \frac{m}{uz}(r - r\sec\theta + z\sec\theta) = y'.$$

The limits of θ are 0 and 2π ; of z, 0 and 2r for total, and $r(1+\cos\theta)=z'$ to $r(1-\cos\theta)=z''$ for favorable cases; of y, 0 and $2\sqrt{(2rz-z^2)}=y''$ for total, and 0 and y' for favorable cases.

$$\therefore p = \frac{\int_{0}^{2\pi} \int_{z'}^{z'} \int_{0}^{y'} d\theta \, dz \, dy}{\int_{0}^{2\pi} \int_{0}^{2r} \int_{0}^{y'} d\theta \, dz \, dy} = \frac{1}{2\pi^{2} r^{2}} \int_{0}^{2\pi} \int_{z'}^{z'} \int_{0}^{y'} d\theta \, dz \, dy$$

$$= \frac{m}{2\pi^2 r^2 u} \int_0^{2\pi} \int_{z''}^{z'} \frac{(r - r \sec\theta + z \sec\theta) d\theta \ dz}{z}$$

$$=rac{m}{\pi^2 r u} \int_0^{2\pi} (1+\sec heta\,\log\, anrac{1}{2} heta - \log\, anrac{1}{2} heta) d heta = rac{2m}{\pi r u}.$$

Therefore the chance of meeting one dereliet out of the n is $\sum p = 2nm/\pi ru$, and the probability that e will be encountered is

$$II\left(\frac{2nm}{\pi ru}\right) = \left(\frac{2nm}{\pi ru}\right)^e$$

CALCULUS.

203. Proposed by S. A. COREY, Hiteman, Iowa.

Evaluate*
$$\int_0^{\pi} \frac{\sin mx \, dx}{x}.$$

Solution by G. B. M. ZERR, A. M., Ph. D., Parsons, W. Va.

$$\int_{0}^{\pi} \frac{\sin mx}{x} dx = \int_{0}^{\pi} \left(m - \frac{m^{3} x^{2}}{5!} + \frac{m^{5} x^{4}}{5!} - \frac{m^{7} x^{6}}{7!} + \dots \right) dx$$

$$= m\pi \left(1 - \frac{m^2 \pi^2}{3.3!} + \frac{m^4 \pi^4}{5.5!} - \frac{m^6 \pi^6}{7.7!} + \dots \right).$$

Also solved by L. E. Newcomb.

204. Proposed by M. E. GRABER. A. M., Heidelberg University. Tiffin, Ohio.

Required the variation of $\int V dx$ where V is a function of x, y, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and v where $v = \int V' dx$ and V' is also a function of x, y, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

^{*}See Byerly's Integral Calculus (p. 23, Table of Integrals) Formulae 211 and 241. A solution not in the form of an infinite series would also be desirable.