

Research Questions/Hypotheses

Initial Conditions

- What initial conditions lead to the propagation of the ant colony?

Exploration vs Exploitation

- Is there a critical level of exploration that maximizes foraging efficiency and/or colony survival?

Phase transition in organization of ants

- Is there a critical amount of ants that results in an organized society?

Self-organized criticality

- Is there self-organized criticality in the system when we introduce predators?

Model: Mechanisms

Birth & death

- Ants being born
- Ants dying (from starvation)
- Ants dying (from predation)

Foraging behaviour

- Exploring for food
- Eating food
- Transporting food

Communication & Environment

- Communication through pheromones
- Diffusion and evaporation

Initial Conditions: Number of Ants

Critical Transition: Around 150 ants, the system shifts from extinction to colony growth.

Food Collection: Increases with ant population but becomes more variable at higher numbers.

Pheromone Average: Stabilizes after the critical transition, indicating optimized foraging.

Entropy: Oscillations at higher values.

num ants = 150

Initial Conditions: Max Steps without Food

Food Collection & Population: Longer survival without food increases resource collection and supports larger populations, with greater variability.

Self Organization: At higher values of the parameter, the ants are able to self organize (seen through the fluctuation of entropy in the system)

200

g 2.5

Initial Conditions: Pheromone Evaporation

Evaporation Rate: At 0.2, the system transitions from efficient foraging to a collapse in food collection and ant population.

Pheromone Average: High evaporation rates reduce pheromone persistence, leading to decreased foraging efficiency.

Sustained Population: Higher pheromone evaporation rate does not lead to the extinction of the colony but hinders population growth.

evaporate = 0.1

No Phase Transitions

- No phase transitions in organisation of ants
- No phase transitions in survival of colony when varying exploration parameter

	tors	eda		point uring ber :hat ithin	Introdu spawns at random moves to neighbound ne maximum number eats one ant from the still no more ants with the sourhood total number of all	es: Predator recell with the fants Predator excell Predator excell Repeat unit	Ru	
--	------	-----	--	--	--	--	----	--

Predator Meal Size Distribution

Rules:

- Predator spawns at random point
- Predator moves to neighbouring cell with the maximum number of ants
- Predator eats one ant from that cell
- Repeat until no more ants within the neighbourhood
- Meal size = total number of ants consumed

Predator Meal Size Distribution

Power law relationship observed!

Is this self-criticality?

Question: what features of the model drive this relationship?

Idea: Change the model investigate how the power law changes.

Self-Organized Criticality?

Ingredients

- (Slow) build-up of stress
 i. ants being born
- 3. self-organization

Varying The Exploration Parameter Powerlaw fit for random snawning ants

No food	
No pheromones	0
	0
	•

No food	
No pheromones	0
	0
	0

		References								
			- Zoe poly - Wile - http and - M. B. and	cook, Daniel W. domous ant colonsky, U. (1997). Note://ccl.northwester.Computer-Base eekman, D. J. Surordered foraging 2703-9706, Aug.	Exploration vers Sciences, Volume Franks, Elva J.H. I onies, Journal of T NetLogo Ants mo ern.edu/netlogo/red Modeling, Nor- mpter, and F. L. F g in Pharaoh's an 2001. -mesa, (2020), G	Robinson, Explor Theoretical Biolog Idel. models/Ants. Ce thwestern Unive Ratnieks, 'Phase t	ration versus exp gy,Volume 323, 2 inter for Connec rsity, Evanston, I gransition betwee cad. Sci. U. S. A.,	oloitation in 2013. ted Learning L. en disordered		
1	7								*	