

Introduction to Mobile and Distributed Computing

Lecture 1 – Part I

FIT5046: Mobile and Distributed Computing Systems

FIT5046 Teaching Team

Clayton campus

(CE and Lecturer) Pari Delir Haghighi pari.delir.haghi@monash.edu

Ekjyot Kaur (head tutor) ekjyot.kaur@monash.edu

Sunny Patel <u>sunny.patel@monash.edu</u>

Ayaz Rahman <u>ayaz.rahman@monash.edu</u>

Jinx Huang jinx.huang@monash.edu

Suzhou campus

Cheng-Hao Cai cheng-hao.cai@monash.edu

Prerequisites

- FIT9131 AND FIT9137 or (FIT9134 and FIT9135)
- Strong Java programming skills are required

Week	Topics	Lab Activities and Exercises
1	Introduction to distributed and mobile computing, Web services, REST	Introduction to Android Lab
2	Android Introduction	EventListeners and Spinner Labs
3	Android Views, ViewBinding and Intent	ViewBinding, Kotlin and Intent Labs
4	Android Fragments	Fragments with LiveData lab
5	Android Navigation	Navigation lab Research Paper Presentation (15%) during your lab
6	Android Room	Room lab
Semester Break		
7	Android Network Connection Mobile User Interface Design	Android Project Proposal (20%) due Friday Google search and Retrofit lab
8	Ubiquitous Computing and IoT	Graph and RecyclerView labs
9	Mobile Sensing	Map and Firebase labs
10	Location-Aware Computing	Android Practical Assignment (40%) due Friday
11	Guest Lecturer	Demos and Interviews (compulsory)
12	Advanced Topics, Review and Exam Questions	Quiz (25%) Demos and Interviews (compulsory)

Assessment

■ Research Paper Presentation 15% Presentation 10 min presentation in Week 5 in labs (Groups of 2) PowerPoint and pre-recorded video (with the presenter view) Submission to Moodle Assignment 1-Android Project Proposal (20%) Assignment 1 A Proposal Report for an Android app (to be implemented in (groups of 3-4) Assignment 2) Submission to Moodle (Turnitin) Week 7 Friday Android App Development and Demo (40%) Assignment 2 (groups of 3-4) Week 10 Friday Submission of project & demo to Moodle (code similarity) detection) Individual Quiz(25%) Week 12

■ Moodle quiz 2hrs: 10 Multiple choice Qs & 5 short answer Qs

Alignment of ULOs and Assignments

Unit Learning Outcomes (ULOs):

- identify and describe different approaches and methods for building distributed and mobile computing systems;
- evaluate several models and approaches and select suitable mobile computing solution to a particular case;
- propose and develop a mobile distributed system that is appropriate to a problem domain;
- identify the current research directions in the field
 and their impacts

Assignment 1
Research Paper Analysis
Presentation

Assignment 2
Android app
Proposal

Quiz

Assignment 3
Android App
development

Software for This Unit

The version used in lab exercise and lectures

- Android Studio Electric Eel, 2022.1.1 (stable version) SDK 13
 API 33
 - Instructions to install Android Studio are in Lab 1

On-campus students: bring your own device (laptop) to the lab

Programming Language

Android

- Java
 - The original language
- Kotlin
 - We learn the Kotlin code by comparing to Java and only limited to the lecture topics

Resources

- □ No Textbook required
- Refer to Android official website for any related information
- □ https://developer.android.com/

Academic Integrity

Plagiarism

unacknowledged use of someone else's work

Collusion

- Collusion is unauthorised collaboration on assessments (written, oral or practical) with other people
- Collusion may be with another Monash student or with people outside university. This also includes sharing and copying notes, and offering to complete work for other students instead of collaborating (e.g. on team assignments)
- Learn more about Academic Integrity, plagiarism and collusion at Monash:
 - https://www.monash.edu/students/study-support/academic-integrity
- Complete Academic Integrity Awareness Training