Planning in the block world Triangle table

Precondition list Delete list 1) pickup(x) P&D ONTABLE(x), CLEAR(x), HANDEMPTY A HOLDING(x) P & D: HOLDING(x) A: ONTABLE(x), CLEAR(x), HANDEMPTY 3) stack(x,y) P & D: HOLDING(x), CLEAR(y) A: HANDEMPTY, ON(x,y), CLEAR(x) 4) unstack(x,y) P & D: HANDEMPTY, CLEAR(x), ON(x,y)

A: HOLDING(x), CLEAR(y)

Goal State

Example

the initial state

the goal state

 $[On\ (B,\ C)\ ^{\wedge}\ On\ (A,\ B)]$

А

В

 \boldsymbol{C}

States predicates

- Clear(B), On(C, A), On-table(A)
- Clear(C), $Hand\ empty(HE)$, On-table(B)

Using triangle table to solve

Generate plan

- 1. Unstack(C, A)
- 2. Putdown(C)
- 3. Pickup(B)
- 4. Stack(B,C)
- 5. Pickup(A)
- 6. Stack(A,B)

Applying F- Rules

pickup(x)

P & D: ONTABLE(x), CLEAR(x), HANDEMPTYA: HOLDING(x)

2) putdown(x)

P & D: HOLDING(x)A: ONTABLE(x), CLEAR(x), HANDEMPTY

3) stack(x,y)

P & D: HOLDING(x), CLEAR(y)A: HANDEMPTY, ON(x,y), CLEAR(x)

4) unstack(x,y)

P & D: HANDEMPTY, CLEAR(x), ON(x,y)A: HOLDING(x), CLEAR(y)

HANDEMPTY CLEAR(C) ON(C,A)	1 unstack(C,A)					
	HOLDING(C)	2 putdown(C)				
ONTABLE(B) CLEAR(B)		HANDEMPTY	3 pickup(B)			
		CLEAR(C)	HOLDING(B)	4 stack(B,C)		
ONTABLE(A)	CLEAR(A)			HANDEMPTY	5 pickup(A)	
		-		CLEAR(B)	HOLDING(A)	6 stack(A,B)
		=		ON(B,C)		ON(A,B)

Triangle Table

Triangle table represents set of snapshots that correspond to state description that result from executing plan

Concept of kernel

What is the i-th kernel?

the i-th kernel is the part of the triangle table that is below i-th row (include this row) and to the left the i-th column

Now, restack the (B, C) then try to repeat

Plan generation

Using forward chaining mechanism

• The search process of plan would be starting with initial state and figuring out the sequences of these operation.

- What is state from which could arrive at (this particular description) though use one of rules
- Can regress the state though one of the rule!
- Using backward chaining more efficient finding plan

The F-rule (Robot action) can be used in backward chaining way as following

- The goal expression must contain a predicate that unifies with one of the predicates in the add list of the rule.
- The sub-goal expression is created by regressing the unmatched predicates in the goal expression though the match instance of the precondition list of the rule

The regression procedure

Let R(Q, Fu) be the regression if Q na Fu

If
$$Q, u \in Au$$
 then $R(Q, Fu) = T$ (true)
else If $Q.u \in Du$ then $R(Q, Fu) = F$ (false)
else $R(Q, Fu) = Qu$

Example

Regress

goal state [$on(A,B) \land on(B,C)$]

$$Stack(x,y) \ P, D: holding(x), clear(y)$$

$$A: HE, On(x,y) \ Clear(x)$$
Applying the rule (stack) to reach the goal state

- First, knowing if it is possible to use this rule or not
- Second, which state could arrive to the target state by using this rule

There are two cases

- 1) Case 1: $\{\langle x, A \rangle, \langle y, B \rangle\}$
- 2) Case 2: $\{ \langle x, B \rangle, \langle y, C \rangle \}$

Case 1:

$$\{ < x, A > , < y, B > \}$$

- Regress: On (B, C) via case1, rule stack(A, B)
- Procedure: On (B, C) is it in the Add list? $\rightarrow NO$

is it in the Delete list ? $\rightarrow NO$

else

On (B, C)

stack (x,y) P, D: holding (x), clear (y)A: HE, On (x,y) Clear (x)

<mark>In sub-goal</mark>

• On (B,C) ^ Holding (A) ^ Clear (A)

Regression

What is the processes?

There is goal state and ask question "what is the sub-goal?" which

Example 2

Substitute each y by A

What should the list of predicate which arrive at goal state or "Clear (A)"

Regression Procedure: holding $(x) \in Au$ "Add list"? $\rightarrow Yes$

Example 3

