

SPONSORED BY

$C\{\}DE-A-TH\{\}N - 2022$

Assignment 4

- Q. 1 A. Write a C/C++ or Python program to perform Sparse matrix-vector multiplication
 - B. Deploy the above code on GPU using CUDA C++/ CUDA Python
 - Randomly generate the sparse matrix size sufficiently large eg. 4096 X
 4096 of type double.
 - Measure the performance of of sequential version and optimized parallel version
 - Calculate the speedup observed
 - You may execute sequential programs on your local machine
 - However all parallel codes must be executed on server
 - Parallel versions considered for evaluations only if both sequential and parallel codes gives same and correct output

Sparse matrix vector multiplication

- There are different sparse matrix storage formats you can pick whichever you feel more suitable for parallelization on GPU.
- Final output of sequential and parallel code must be validated

• Explain in brief your parallelization strategy like data splitting, thread/block creation, and allocation etc.

Ans:

Insert your findings into the below table

Ans:

	Sequential Time	Parallel version 1 time	Parallel version 2 time	Speedup wrt parallel version 1	Speedup wrt parallel version 1
Matrix matrix addition					

Note:- In case if needed you can add more columns if you have implemented multiple parallel versions

• Comment on your observations such as limitations of proposed solution, etc.

Ans:

- Rename the file as <TEAM_NAME>_Assignment1
- Send the presentation file with source code to coordinator's mail