2.1 – Macromolecular energetics

Bioinformatics - Biophysics

Outline

- Macromolecular energetics
 - Sources of data
 - Energy components
 - Mutational analysis

- Energy evaluation
 - Quantum mechanics methods
 - Classical methods
 - Solvation
 - Statistical Potentials
 - Knowledge based methods

Objetives/strategies

- Understanding the energetic basis of macromolecular stability
 - Influence of residues/interactions (mutational analysis)
 - Stability improvement
 - Special proteins, special media
 - Special NAs (targeted therapies)
 - Annotation of sequence variants
 - pathology, target discovery

Understading folding and conformational evolution

Experimental approaches

$$\Delta G = \Delta G_w - m[D]$$

$$\Delta \Delta G = m \Delta \left[D_{1/2} \right]$$

$$\Delta H(T) = \Delta H_m + \Delta C_P (T - T_m)$$

$$\Delta H(T) = \Delta H_m + \Delta C_P(T - T_m)$$
 $\Delta S(T) = \frac{\Delta H_m}{T_m} + \Delta C_P \ln \left(\frac{T}{T_m} \right)$

$$\Delta \Delta H(T) \sim \Delta C_P \Delta T_m$$

$$\Delta \Delta S(T) \sim \Delta H_m \left(\frac{1}{T_m'} - \frac{1}{T_m} \right) + \Delta C_P \ln \left(\frac{T_m'}{T_m} \right)$$

Energy components (summary)

- Entropic
 - Conformational entropy (ΔG¬)
 - Hydrophobic effect ($\Delta G \Delta$) (Solvation entropy)
- Enthalpy
 - Van der Waals (ΔG ↘)
 - Hydrogen bonds (ΔG~)
 - Electrostatics (ΔG ⋈)
- Solvation Enthalpy (ΔG ⋈)
 - Electrostatics
 - VdW

Enthalpy

$$\Delta G = \Delta H - T \Delta S$$

Entropy

Neutral Nonpolar Amino Acids

Hydrophobic effect Van der Waals

Electrostatics (dipolar) Hydrogen bonds Van der Waals

Neutral Polar Amino Acids

Electrostatics (Full charges)
Hydrogen bonds
Van der Waals

Conformational entropy

Entropy decreases on folding

$$\Delta S = 2-6 \text{ cal/K.mol.res}$$

 $\Delta G = 1.2 \text{ kcal/mol-res} (100 \text{ res} => 120 \text{ kcal/mol})$

- Folded structures are (almost) unique but unfolded ones are complex ensembles
 - Increased chain flexibility increases the number of "unfolded" microstates (entropy <a>⊅)
 - Flexible residues (Gly) destabilize $\Delta S = 6.5$ cal/K.mol.Gly
 - Rigid Amino acids or structures (Pro, -SS-) stabilize

 $\Delta \mathsf{G}$

Pro (P)

Hydrophobic effect

• Solvent entropy increases when the number of contacts with non-polar residues decrease

Is slightly higher than conformational entropy.

• Driving force on protein folding or formation of protein complexes

Roughly proportional to molecular surface

Aprox 30 cal/Ų apolar surface (100 res 4,860 Ų =>
 -145 kcal/mol)

Van der Waals energies

- Caused by a combination of transient iteractions between electronic clouds ("dispersion"), and repulsión between them.
- Small but cummulative (~ -1000 kcal/mol average protein)
- Control surface-surface interactation

Molecular surface

- Required to highlight interaction surfaces
- Based on VdW surfaces

Molecular surfaces

SASA

Imal S

Connolly

Hydrogen bonds

- Dipolar interactions (N, O, S)-H with electron pairs in N, O, S
- Directional: geometry defines the intensity of the interaction
- Usual energy around 1-5 kcal/mol
- Little neat estabilization
 - Unfolded state forms hydrogen bonds with solvent
- Define directionality to interactions
- All hydrogen bonds should be fulfilled in a folded structure
- Usually defined following a simple distance criteria
 - Proper analysis would require Quantum mechanics calculations

Electrostatics

 δ_{+} δ_{+} δ_{+} δ_{+} δ_{+} δ_{-} δ_{+} δ_{+} δ_{+} δ_{-} δ_{-} δ_{+} δ_{+}

- Interaction between charged residues
- Dipolar (directional) interactions ("charged" hydrogen bonds)
- Largest enthalpic component of solvation (Water relative dielectric constant ~80)
- Unpaired ionic residues are strongly destabilizers unless exposed to solvent
- Buried ionic pair are strong stabilizers
- Ionization states depend on environment
- Minor interactions:
 - Helix-dipols, π -cation, π - π

Nucleic acids specifics

- Poly-anions: strong electrostatics
 - Repulsion between main-chain phosphates
 - Highly sensitive to ionic environment
- Base-base interactions
 - Hydrogen bonds
 - Basis of all recognition events (interchain, external)
 - Strong in gas phase, lower in solution
 - Stacking
 - Non specific
 - Major contribution to stability (~ 2 kcal/mol/step)
 - Highly cooperative

Mutational analysis

- Data derived from mutagenesis to change/remove interactions
- Relevant energy is the difference ($\Delta\Delta G$) between folded and unfolded states (including solvation contribution)
- Unfolded state
 - Exposed to solvent
 - Unstructured (or non-native structures)
 - Hydrogen bonds with water
- Folded state
 - Mostly structured
 - Internal interactions
 - Hydrophobic core buried

Understanding mutational analysis

Example: $R-E \rightarrow Q-E$ (buried)

- 1. Check aminoacid properties
 - R: Charged (HB, Electrostatic) Q: Polar (HB)
- 2. Assess energy balances (qualitative)

	R(F)	Q(F)	R(U)	Q(U)	$\Delta\Delta G$ (F)	$\Delta\Delta G$ (U)	$\Delta\Delta G$
Int. Polar			0	0	0	0	0
Int Elect		0	0	0	+++	0	+++
Int Vdw	-	-	0	0	0	0	0
Solvation	0	0		-	0	++	
						TOTAL	+

$$\Delta \Delta G_{A \to B} = \Delta \Delta G_{A \to B(F)}^{interP,AB} + \Delta \Delta G_{A \to B(F)}^{solvationAB} - \Delta \Delta G_{A \to B(U)}^{interP,AB} - \Delta \Delta G_{A \to B(U)}^{solvationAB}$$

Energy evaluation

Energy from structure.

• Aim: To obtain an "energy" estimation from molecular structure.

• Energy can be used as scoring function when dealing with structural data (prediction, simulation, ...)

Energy does not need to correspond to a "physical" energy.

Structure to energy (Summary)

• Different approaches: different levels of accurancy

- Rigorous, allow chemical processes, limited to small systems
- Classical mechanics
 - Less rigurous but accurate, no size limit, does not allow for chemical transformations
- Statistical/coarse-grained potentials
 - Knowledge-based, accurate for low resolution and non-realistic representations
- Empirical scores
 - Simple parameter set fitted to experiment

Quantum mechanics

- Based in first principles.
- Rigorous, Universal

$$\hat{\mathbf{H}} |\Psi(t)\rangle = i\hbar \frac{d}{dt} |\Psi(t)\rangle = \frac{\hat{\mathbf{p}}^2}{2m} |\Psi(t)\rangle + V(\hat{\mathbf{r}}, t) |\Psi(t)\rangle$$

$$\hat{H} |\varphi_n\rangle = E_n |\varphi_n\rangle$$

- Too costly
- Can be applied only to small systems (active sites, chemical trasformations)

Erwin Schrödinger Nobel <u>Prize</u> 1933

Quantum mechanics usage

Parameterization of other methods

 Fine analysis of energy terms (vdw, HB)

Characterization/Parameterization of new molecules

Kinetic mechanisms (bond reorganization)

 Usually combined with classical methods (QMMM)

Distorted structures

• "Quantum" effects: Polarization, tunnel, ...

Classical mechanics

- Empirical aproximations (require parameterization)
- Computationally very eficient
- No size limit
- Less accurate than quantum mechanics
- Solvation and entropy cannot be included!!

Martin Karplus
Nobel Prize 2013

$$\begin{split} E_{pot} &= \sum_{bonds} \frac{D_b}{2} \; (r-r_0)^2 + \sum_{angles} \frac{H_\theta}{2} \; (\theta-\theta_0)^2 + \sum_{dihedrals} \frac{V_N}{2} (1+\cos(PN\;\varphi-PH\;)) \; + \\ &+ \sum_{i} \sum_{j} \varepsilon_{ij} \big[(\frac{A_{ij}}{r_{ij}})^{12} - \; (\frac{C_{ij}}{r_{ij}})^6 \; \big] + \sum_{i} \sum_{j} \frac{q_i q_j}{\varepsilon r_{ij}} + \; E_{other} \end{split}$$

Van der Waals

Electrostatics

$$E = E_{str} + E_{bnd} + E_{tor} + E_{nb} + E_{other}$$
Non bonded-terms

Van der Waals

- Empirical
- "Lennard-Jones" or "6-12" potentials
- Several alternatives

$$E_{vdw} = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \quad E_{vdw} = \epsilon \left(\left(\frac{R_{min}}{r} \right)^{12} - 2 \left(\frac{R_{min}}{r} \right)^{6} \right) \qquad E_{vdw} = \frac{A}{r^{12}} - \frac{C}{r^{6}}$$

• Parameters for atom pairs obtained from combination of atomic ones

$$\varepsilon_{ij} = \sqrt{\varepsilon_{i} \, \varepsilon_{j}}$$

$$\varepsilon_{ij} = \sqrt{\varepsilon_{i} \, \varepsilon_{j}}$$

$$A_{ij} = (\varepsilon_{i} \varepsilon_{j})^{1/2} (R_{vdw}^{i} + R_{vdw}^{j})^{12}$$

$$\sigma_{ij} = \sqrt{\sigma_{i} \, \sigma_{j}}$$

$$Rmin_{ij} = Rvdw_{i} + Rvdw_{j}$$

$$C_{ij} = 2 \times (\varepsilon_{i} \varepsilon_{j})^{1/2} (R_{vdw}^{i} + R_{vdw}^{j})^{6}$$

Electrostatics

- Stronger interaction
- All atoms have a partial charge
 - Dipolar interactions (directional)
 - Hydrogen bond energies
- Coulomb's Law

$$E_{elec} = \frac{1}{4\pi\varepsilon_o} \frac{q_i q_j}{\varepsilon_r r} = 332.16 \frac{q_i q_j}{\varepsilon_r r}$$

- q_i, q_j : Partial charges
- ϵ_r : Relative dielectric constant
- r: distance
- Dielectric estrategies
 - Fixed value: 1 for vacuum, 80 for fully solvated
 - Linear: $\varepsilon_r = k.r$
 - Mehler-Solmajer

$$\varepsilon_r = \frac{86.9525}{1 - 7.7839 \, e^{-0.3153 \, r}} - 8.5525$$

Examples of experimental restrains

Other restrains

X-Ray refinement

$$E = E_{str} + E_{bnd} + E_{tor} + E_{nb} + E_{other}$$

$$E_{X-Ray} = \sum_{hkl} (|F_o| - k|F_c|)^2$$

 $-F_0$, F_c : Observed and calculated structure factors

NMR refinement

$$r_1 < r < r_2$$
: $k_2(r - r_2)^2$
 $r_2 < r < r_3$: 0
 $r_3 < r < r_4$: $k_3(r - r_3)^2$

Solvation energy

 Defined as the energy to move a solute from vacuum to solvent

- Two major components
 - Electrostatic (Enthalpy)
 - Hydrophobic (Solvent entropy)
 - Entropy cannot be calculated in single system
- Key to understand macromolecular stability and binding

Approaches to the electrostatic component

- Explicit solvent
 - Solvent molecules are present in the system

$$E_{solv} = \sum_{i}^{solute} \sum_{j}^{solvent} \frac{q_i q_j}{\varepsilon \, r_{ij}}$$

 However, solvent molecules reorient, a single value is meaningless, values should be averaged over time

$$E_{solv} = <\sum_{i}^{solute} \sum_{j}^{solvent} \frac{q_{i}q_{j}}{\varepsilon \, r_{ij}} >$$

Approaches to Electrostatic Solvation

• Implicit solvent. Classical continuous models

$$\nabla[\varepsilon(r)\nabla\Phi(r)] = -4\pi\rho(r)$$

$$\rho = \rho_{int} + \rho_{ext}$$

$$\rho_{\text{ext}} = -\epsilon(\kappa^2) \sinh[\Phi(r)]$$

$$\kappa = \sqrt{\frac{8\pi N_a e^2 I}{10^3 \epsilon k T}}$$

$$\Delta G_{solv} = \Delta G_{elec}^{\varepsilon = sol} - \Delta G_{elec}^{\varepsilon = vac}$$

Poisson-Boltzmann

$$\Delta G_{solv} = \frac{1}{8\pi\varepsilon_0} (1 - \frac{1}{\varepsilon}) \sum_{i,j} \frac{q_i q_j}{f_{GB}}$$

$$f_{GB} = \sqrt{r_{ij}^2 + a_{ij}^2 e^{-D}}$$

$$D = \left(\frac{r_{ij}}{2a_{ij}}\right)^2 a_{ij} = \sqrt{a_i a_j}$$

Generalized Born

Approaches to the hydrophobic component

• Experimental ΔG_{solv} is (almost) linearly correlated with ASA Surface

Calculated

- Combinations
 - PB-SA, GB-SA

$$\Delta G_{solv} = \sum_{i} \sigma_{i} A S A_{i}$$

Statistical potentials

- Aims to reproduce known structures
 - Based on position and distances of aminoacid residues
- Can include preferences or other structure features
- Used to evaluate stability of 3D structures (experimental or modelled)
- Required on simplified Systems
- Energies are obtained from Boltzmann Distribution:

$$E = -RT \ln p$$

PROSA Example

Empiric scores

$$\begin{split} \textbf{HPScore} &= C_{0,1} + C_{VDW,1}(VDW) + C_{HB,1}(H\text{-Bond}) + C_{HP}(Hydrophobic~\textbf{Pair}) + C_{RT,1}(Rotor) \\ \textbf{HMScore} &= C_{0,2} + C_{VDW,2}(VDW) + C_{HB,2}(H\text{-Bond}) + C_{HM}(Hydrophobic~\textbf{Match}) + C_{RT,2}(Rotor) \\ \textbf{HSScore} &= C_{0,3} + C_{VDW,3}(VDW) + C_{HB,3}(H\text{-Bond}) + C_{HS}(Hydrophobic~\textbf{surface}) + C_{RT,3}(Rotor) \\ &\qquad \qquad Xscore~\left(Empirical~fit\right) \end{split}$$

Which level and when?

- Quantum Mechanics
 - Very accurate energies
 - Chemical processes
 - Distorted structures
- Classical Mechanics
 - Near-equilibrium structures
 - Conformational Changes, Folding
 - Refinement of experimental structures

- Statistical/knowledge based
 - Non natural (simplified) representations
 - Scoring based on similarity
 - Uses "non-energy" terms
- Empiric scores
 - Closely related series of compounds