CS3402 : Chapter 7 Relational Algebra

Relational Algebra

- Relational algebra: a formal language for the relational model
- The operations in relational algebra enable a user to specify basic retrieval requests (or queries)
- Relational algebra consists of a set of operations on relations to generate relations
- The result of an operation is a new relation
 - They can be further manipulated using operations
- A sequence of relational algebra operations forms a relational algebra expression

Importance of Relational Algebra

- Foundation of SQL: Relational algebra forms the theoretical foundation of SQL. SQL is a practical implementation of the concepts and operations defined in relational algebra. By learning relational algebra, you gain a deeper understanding of the fundamental principles that underpin SQL, allowing you to write better SQL queries
- Query optimization: Relational algebra provides a mathematical framework for reasoning about the efficiency and optimization of queries. Understanding relational algebra helps you analyze the complexity of your queries, identify potential performance bottlenecks, and devise strategies to optimize them.

Relational Algebra Overview

- Relational algebra consists of several groups of operations
 - Unary Relational Operations
 - \bullet SELECT (symbol: σ (sigma))
 - ightharpoonup PROJECT (symbol: π (pi))
 - ◆RENAME (symbol: ρ (rho))
 - Binary Relational Operations
 - ◆JOIN (several variations of JOIN exist)
 - **◆DIVISION**
 - Relational algebra operations from set theory
 - ◆UNION (∪), INTERSECTION (∩), DIFFERENCE (or MINUS,)
 - ◆CARTESIAN PRODUCT (x)
 - Additional Relational Operations
 - AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM, COUNT, AVG, MIN, MAX)

Database State for COMPANY

 All examples discussed below refer to the COMPANY database shown here

Figure 5.7Referential integrity constraints displayed on the COMPANY relational database schema.

The following query results refer to this database state

Figure 5.6

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

- The SELECT operation (denoted by σ (sigma)) is used to select a subset of the tuples from a relation based on a selection condition.
 - The selection condition acts as a filter
 - Keeps only those tuples that satisfy the qualifying condition
 - Horizontal partitioning
 - Tuples satisfying the condition are selected whereas the other tuples are discarded (filtered out)
- The general form of the select operation is:

$$\sigma_{\text{condition}}(R)$$

- Examples1:
 - ◆ Select the EMPLOYEE tuples whose department number is 4:

$$\sigma_{DNO=4}$$
 (EMPLOYEE)

Equivalent to:

SELECT *

FROM EMPLOYEE

WHERE DNO=4;

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	NULL	1

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4

Examples2:

◆ Select the employee tuples whose department number is 4 and salary is greater than \$25,000 or department number is 5 and salary is greater than \$30,000:

σ (Dno =4 AND Salary>25,000) OR

(Dno=5 AND Salary> 30,000) (EMPLOYEE)

Equivalent to:

SELECT *
FROM EMPLOYEE
WHERE (Dno=4 AND
Salary>25,000) OR
(Dno=5 AND
Salary>30,000)

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Ε	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	К	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5

- SELECT Operation Properties
 - ♦ The SELECT operation $\sigma_{\text{<selection condition>}}(R)$ produces a relation S that has the same schema (same attributes) as R
 - ♦ SELECT σ is commutative:

$$\bullet \sigma_{\text{condition}1>}(\sigma_{\text{condition}2>}(R)) = \sigma_{\text{condition}2>}(\sigma_{\text{condition}1>}(R))$$

◆ Because of commutativity property, a cascade (sequence) of SELECT operations may be applied in any order:

$$\bullet_{\sigma_{\text{cond1}}}(\sigma_{\text{cond2}}) (\sigma_{\text{cond3}}) = \sigma_{\text{cond2}} (\sigma_{\text{cond3}}) (\sigma$$

- SELECT Operation Properties
 - ◆ A cascade of SELECT operations may be replaced by a single selection with a conjunction (and) of all the conditions:
 - ◆ The number of tuples in the result of a SELECT is less than (or equal to) the number of tuples in the input relation R.
 - ◆ The fraction of tuples selected by a selection condition is called the selectivity of the condition.

- PROJECT Operation is denoted by π (pi)
- This operation keeps certain attributes from a relation and discards the other attributes
 - PROJECT creates a vertical partitioning
 - The list of specified attributes is kept in each tuple
 - The other attributes in each tuple are discarded
- The general form of the project operation is:

 $\pi_{\text{<attribute list>}}(R)$

- \bullet π (pi) is the symbol used to represent the *project* operation
- <attribute list> is the desired list of attributes from relation R

Example: To list each employee's first and last name and salary, the following is used:

 $\pi_{\text{LNAME, FNAME,SALARY}}$ (EMPLOYEE)

Equivalent to:

SELECT LNAME, FNAME, SALARY FROM EMPLOYEE;

Examples of applying SELECT and PROJECT operations

- The project operation removes any duplicate tuples
 - This is because the result of the project operation must be a set of tuples
 - ◆ Mathematical sets do not allow duplicate elements
- Example: π_{Sex,Salary}(EMPLOYEE)

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Sex	Salary		
M	30000		
М	40000		
F	25000		
F	43000		
М	38000		
М	25000		
М	55000		

- PROJECT Operation Properties
 - ♦ The number of tuples in the result of projection $\pi_{\langle list \rangle}(R)$ is always less (duplicates are removed) or equal (unique values) to the number of tuples in R.
 - ◆If the list of attributes includes a key of R, then the number of tuples in the result of PROJECT is equal to the number of tuples in R.
 - ◆ PROJECT is *not* commutative
 - $lacklarph\pi_{< \text{list1}>} (\pi_{< \text{list2}>} (R)) \neq \pi_{< \text{list2}>} (\pi_{< \text{list1}>} (R))$

List1 = LNAME, FNAME List2 = LNAME, FNAME, SALARY

Relational Algebra Expressions

- We may want to apply several relational algebra operations one after the other
 - Either we can write the operations as a single relational algebra expression by nesting the operations, or
 - We can apply one operation at a time and create intermediate result relations

In the latter case, we must give names (rename) to the relations that hold the intermediate results

Single expression versus sequence of relational operations

- Example: To retrieve the first name, last name, and salary of all employees who work in department number 5, we must apply a select and a project operation
- We can write a *single relational algebra expression* as follows:
 - \bullet $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO=5}}(\text{EMPLOYEE}))$
- OR We can explicitly show the sequence of operations, giving a name to each intermediate relation:
 - ♦ TEMP \leftarrow σ DNO=5(EMPLOYEE)
 - ♦ RESULT $\leftarrow \pi_{\text{FNAME. LNAME. SALARY}}$ (TEMP)

Unary Relational Operations: RENAME

- The RENAME operator is denoted by ρ (rho)
- The general RENAME operation ρ can be expressed by any of the following forms:
 - \bullet $\rho_{S (B1, B2, ..., Bn)}(R)$ changes both:
 - ◆the relation name to S, and
 - ◆the attribute names to B1, B2,Bn
 - \bullet $\rho_{S}(R)$ changes:
 - the relation name only to S
 - \bullet $\rho_{(B1, B2, ..., Bn)}(R)$ changes:
 - ♦ the attribute names only to B1, B2,Bn

```
SELECT E.Fname, E.Lname, E.Salary FROM EMPLOYEE AS E WHERE E.Dno = 5;
```

Unary Relational Operations: RENAME

- If we write:
 - RESULT $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$ (TEMP)
 - RESULT will have the same attribute names as TEMP
- ◆ If we write:
 - ρ_{R (First_name, Last_name, Salary))}(RESULT)
 - The 3 attributes of RESULT are renamed to First_name , Last_name and Salary, respectively; and R is the name of the result relation.

Note: the ← symbol is an assignment operator

Example of applying multiple operations and RENAME

- TEMP $\leftarrow \sigma_{Dno=5}$ (EMPLOYEE)
- $\rho_{R \text{ (First_name, Last_name, Salary)}} (\pi_{Fname, Lname, Salary} \text{ (TEMP)})$

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	M	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston,TX	M	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston,TX	M	40000	888665555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble,TX	M	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

R

First_name	Last_name	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

Set Theory: UNION

- UNION Operation
 - ◆ Binary operation, denoted by ∪
 - ◆ The result of R ∪ S, is a relation that includes all tuples that are either in R or in S or in both R and S
 - Duplicate tuples are eliminated
 - The two operand relations R and S must be "type compatible" (or UNION compatible)
 - R and S must have same number of attributes
 - ◆Each pair of corresponding attributes must be type compatible (have same or compatible domains)

Relational Algebra Operations from Set Theory: UNION

Example:

- ◆ To retrieve the social security numbers of all employees who either work in department 5 (RESULT1 below) or directly supervise an employee who works in department 5 (RESULT2 below)
- ◆ We can use the UNION operation as follows:

```
DEP5_EMPS \leftarrow \sigma_{\text{DNO=5}} (EMPLOYEE)

RESULT1 \leftarrow \pi_{\text{SSN}}(DEP5_EMPS)

RESULT2 \leftarrow \pi_{\text{SUPERSSN}}(DEP5_EMPS)

RESULT \leftarrow RESULT1 \cup RESULT2
```

◆ The union operation produces the tuples that are in either RESULT1 or RESULT2 or both

Figure 8.3 Result of the UNION operation RESULT ← RESULT1 ∪ RESULT2.

RESULT1

Ssn
123456789
333445555
666884444
453453453

RESULT2

Ssn
333445555
888665555

RESULT

Ssn
123456789
333445555
666884444
453453453
888665555

RESULT ← RESULT1 ∪ RESULT2

Relational Algebra Operations from Set Theory: INTERSECTION

- INTERSECTION is denoted by ∩
- The result of the operation R ∩ S, is a relation that includes all tuples that are in both R and S
- The two operand relations R and S must be "type compatible"

Relational Algebra Operations from Set Theory: SET DIFFERENCE

- SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by –
- The result of R S, is a relation that includes all tuples that are in R but not in S
- The two operand relations R and S must be "type compatible"
- $R \cap S = (R \cup S) (R S)) (S R)$

Given two type compatible relations

STUDENT UINSTRUCTOR

STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

7 rows

Result

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

10 rows

Given two type compatible relations

STUDENT ∩ INSTRUCTOR

STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

Fname	Lname	
John	Smith	
Ricardo	Browne	
Susan	Yao	Keep
Francis	Johnson	these
Ramesh	Shah	common
5 rows	,	tuples

Result

Fn	Ln
Susan	Yao
Ramesh	Shah

2 rows

7 rows

Given two type compatible relations

STUDENT

STUDENT – INSTRUCTOR

Eliminate these
two tuples
because they
appear in
INSTRUCTOR

	11.11	LII
•	Susan	Yao
•	Ramesh	Shah
	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang

Gilbert

7 rows

Ernest

INSTRUCTOR

Fname	Lname		
John	Smith		
Ricardo	Browne		
Susan	Yao		
Francis	Johnson		
Ramesh	Shah		

5 rows

Result

Fn	Ln
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

5 rows

Given two type compatible relations

INSTRUCTOR – STUDENT

STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

Fname	Lname	
John	Smith	Eliminate these
Ricardo	Browne	two tuples
Susan	Yao	because they
Francis	Johnson	appear in
Ramesh	Shah	STUDENT
5 rows		

Result

Fname	Lname
John	Smith
Ricardo	Browne
Francis	Johnson

3 rows

7 rows

Requirements of UNION, INTERSECT, and DIFFERENCE

- Type compatibility of operands is required for the binary set operation UNION ∪, (also for INTERSECTION ∩, and SET DIFFERENCE –)
- R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type compatible if:
 - they have the same number of attributes, and
 - ◆ the domains of corresponding attributes are type compatible (i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n)
- It does not require R1 and R2 have same attribute name. The resulting relation for R1∪R2 (also for R1∩R2, or R1–R2) has the same attribute names as the *first* operand relation R1

Properties of UNION, INTERSECT, and DIFFERENCE

 Notice that both union and intersection are commutative operations; that is

$$ightharpoonup$$
 R $ightharpoonup$ S = S $ightharpoonup$ R, and R $ightharpoonup$ S = S $ightharpoonup$ R

The minus operation is not commutative

$$R - S \neq S - R$$

Both union and intersection can be treated as n-ary operations applicable to any number of relations as both are associative operations; that is

$$ightharpoonup$$
 R \cup (S \cup T) = (R \cup S) \cup T

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT

- CARTESIAN (or CROSS) PRODUCT Operation
 - ◆ This operation is used to combine tuples from two relations in a combinatorial fashion
 - ◆ Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)
 - ◆ Result is a relation Q with degree n + m attributes:
 - ◆Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order
 - The resulting relation state has one tuple for each combination of tuples - one from R and one from S
 - Hence, if R has n_R tuples (denoted as |R| = n_R), and S has n_S tuples, then R x S will have n_R * n_S tuples
 - ◆ The two operands R and S do NOT have to be "type compatible"

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT

- Generally, CROSS PRODUCT is not a meaningful operation
 - Some tuples in the result do not exist in the mini-world
 - Can become meaningful when followed by other operations
- Example (not meaningful):
 - ♦ FEMALE_EMPS \leftarrow σ _{SEX='F'}(EMPLOYEE)
 - ♦ EMPNAMES $\leftarrow \pi_{\text{FNAME, LNAME, SSN}}$ (FEMALE_EMPS)
 - ◆ EMP_DEPENDENTS ← EMPNAMES x DEPENDENT
- EMP_DEPENDENTS will contain every combination of EMPNAMES and DEPENDENT
 - whether or not they are actually related

Figure 8.5 The CARTESIAN PRODUCT (CROSS PRODUCT) operation

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291Berry, Bellaire, TX	F	43000	888665555	4
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

MPNAM	4	
Fname	Lname	Ssn
Alinia	Zolovo	000007

Fname	Lname	Ssn	L
Alicia	Zelaya	999887777	ı
Jennifer	Wallace	987654321	
Joyce	English	453453453	

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	1000
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	
Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	****
Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	4.4.4
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
Jennifer	Wallace	987654321	987654321	Abner M 19		1942-02-28	
Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	696
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
Joyce	English	453453453	333445555	Alice	F	1986-04-05	
Joyce	English	453453453	333445555	Theodore	М	1983-10-25	
Joyce	English	453453453	333445555	Joy	F	1958-05-03	200
Joyce	English	453453453	987654321	Abner	М	1942-02-28	
Joyce	English	453453453	123456789	Michael	М	1988-01-04	
Joyce	English	453453453	123456789	Alice	F	1988-12-30	
Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

Figure 8.5 The CARTESIAN PRODUCT (CROSS PRODUCT) operation

FEMALE EMPS

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291Berry, Bellaire, TX	F	43000	888665555	4
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

IPNAMES

CIMILIAM	ILS			
Fname	Lname	Ssn		
Alicia	Zelaya	999887777		
Jennifer	Wallace	987654321		

English 453453453

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

EMP_DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	
Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	149.0
Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	
Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
Joyce	English	453453453	333445555	Alice	F	1986-04-05	
Joyce	English	453453453	333445555	Theodore	М	1983-10-25	
Joyce	English	453453453	333445555	Joy	F	1958-05-03	
Joyce	English	453453453	987654321	Abner	М	1942-02-28	
Joyce	English	453453453	123456789	Michael	М	1988-01-04	
Joyce	English	453453453	123456789	Alice	F	1988-12-30	
Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

Figure 8.5 The CARTESIAN PRODUCT (CROSS PRODUCT) operation

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291Berry, Bellaire, TX	F	43000	888665555	4
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

Fname

MPNAN	nes (2
name	Lname	Г

Zelava Wallace English

_	-	
	Ssn	
	999887777	1
9	987654321	
	453453453	
		1

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

EMP DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	
Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	***
Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	
Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
Joyce	English	453453453	333445555	Alice	F	1986-04-05	***
Joyce	English	453453453	333445555	Theodore	М	1983-10-25	
Joyce	English	453453453	333445555	Joy	F	1958-05-03	
Joyce	English	453453453	987654321	Abner	М	1942-02-28	***
Joyce	English	453453453	123456789	Michael	М	1988-01-04	
Joyce	English	453453453	123456789	Alice	F	1988-12-30	
Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	***

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT

- To keep only combinations where the DEPENDENT is related to the EMPLOYEE, we add a SELECT operation as follows
- Example (meaningful):
 - ♦ FEMALE_EMPS \leftarrow σ _{SEX='F'}(EMPLOYEE)
 - ♦ EMPNAMES $\leftarrow \pi_{\text{FNAME, LNAME, SSN}}$ (FEMALE_EMPS)
 - ◆ EMP_DEPENDENTS ← EMPNAMES x DEPENDENT
 - ♦ ACTUAL_DEPS \leftarrow σ _{SSN=ESSN}(EMP_DEPENDENTS)
 - ♦ RESULT $\leftarrow \pi$ FNAME, LNAME, DEPENDENT NAME (ACTUAL_DEPS)
- RESULT will now contain the name of female employees and their dependents

The CARTESIAN PRODUCT (CROSS PRODUCT) operation

EMALE_EMPS

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291Berry, Bellaire, TX	F	43000	888665555	4
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

MPNAMES 2

Fname	Lname	Ssn
Alicia	Zelaya	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

ACTUAL_DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	***
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	access.

RESULT

name	Lname	Dependent_name	1
ennifer	Wallace	Abner	-

EMP_DEPENDENT

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	
Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
Jennifer	Wallace	987654321	333445555	Alice	E	1986-04-05	
Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	
Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
Joyce	English	453453453	333445555	Alice	F	1986-04-05	
Joyce	English	453453453	333445555	Theodore	М	1983-10-25	
121	English	453453453	333445555	Joy	F	1958-05-03	
Joyce		450450450	987654321	Abner	М	1942-02-28	***
Joyce Joyce	English	453453453	00,00 1021				
Joyce	English English	453453453	123456789	Michael	М	1988-01-04	
	-0.0. P * 6.000.00			Michael Alice	M F	1988-01-04 1988-12-30	

Binary Relational Operations: JOIN

- JOIN Operation (denoted by)
 - ◆ The sequence of CARTESIAN PRODUCT followed by SELECT is used quite commonly to identify and select related tuples from two relations
 - ◆ A special operation, called JOIN combines this sequence into a single operation
 - ◆ The general form of a join operation on two relations R(A1, A2, . . ., An) and S(B1, B2, . . ., Bm) is:

R S

- R and S can be any relations that result from general relational algebra expressions
- R and S are not required to be type compatible.

Binary Relational Operations: JOIN

- Example: Suppose that we want to retrieve the name of the manager of each department
 - ◆ To get the manager's name, we need to combine each DEPARTMENT tuple with the EMPLOYEE tuple whose SSN value matches the MGRSSN value in the department tuple.
 - ◆ DEPT_MGR ← DEPARTMENT MGRSSN=SSN EMPLOYEE
- MGRSSN=SSN is the join condition
 - Combines each department record with the employee who manages the department

Figure 8.6 Result of the JOIN operation

DEPT MGR

Dname	Dnumber	Mgr_ssn		Fname	Minit	Lname	Ssn	
Research	5	333445555		Franklin	Т	Wong	333445555	
Administration	4	987654321	36345340	Jennifer	S	Wallace	987654321	*****
Headquarters	1	888665555		James	E	Borg	888665555	10.00

$$\mathsf{DEPT_MGR} \leftarrow \mathsf{DEPARTMENT} \longrightarrow_{\mathsf{Mgr_ssn=Ssn}} \mathsf{EMPLOYEE}$$

Some properties of JOIN

Consider the following JOIN operation:

```
◆ R(A1, A2, . . . , An) S(B1, B2, . . . , Bm)

R.Ai=S.Bj
```

- ◆ Result is a relation Q with degree n + m attributes:
 - ◆Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order
- ◆ The resulting relation state has one tuple for each combination of tuples: r from R and s from S, but only if they satisfy the join condition r[Ai]=s[Bj]
- ◆ Hence, if R has n_R tuples, and S has n_S tuples, then the join result will generally have *less than* n_R x n_S tuples.

Theta-join

- The general case of JOIN operation is called a Theta-join:
- R <conditions> S
- The join condition is called theta
- Theta can be any general boolean expression on the attributes of R and S; for example:
 - ◆ R.Ai < S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)
- Most join conditions involve one or more conditions "AND"ed together; for example:
 - ◆ R.Ai=S.Bj AND R.Ak>S.Bl AND R.Ap<S.Bq

EQUIJOIN

- EQUIJOIN Operation
- The most common use of join involves join conditions with equality comparisons only
- Such a join, where the only comparison operator used is =, is called an EQUIJOIN
 - ◆ In the result of an EQUIJOIN we always have one or more pairs of attributes (whose names need not be identical) that have identical values in every tuple
 - The JOIN seen in the previous example was an EQUIJOIN

NATURAL JOIN Operation

- NATURAL JOIN Operation
 - Another variation of JOIN called NATURAL JOIN denoted by * was created to get rid of the second (superfluous) attribute in an EQUIJOIN condition
 - because one of each pair of attributes with identical values is superfluous
 - ◆ The standard definition of natural join requires that the two join attributes, or each pair of corresponding join attributes, have the same name in both relations.
 - e.g. $Q \leftarrow R(A,B,C,D) * S(C,D,E)$
 - ◆ The implicit join condition includes each pair of attributes with the same name, "AND"ed together: R.C=S.C AND R.D=S.D
 - Result keeps only one attribute of each such pair:

 \bigcirc CS3402 \bigcirc Q(A,B,C,D,E)

NATURAL JOIN

- Example: Suppose we want to combine each PROJECT tuple with the DEPARTMENT controlling it.
- We first rename the Dnumber attribute of DEPARTMENT to Dnum, so that it has the same name as the Dnum attribute in PROJECT, and then we apply NATURAL JOIN.

```
DEPT ← ρ(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)
PROJ_DEPT ← PROJECT * DEPT
```

- The attribute Dnum is called the join attribute for NATURAL JOIN, because it is the attribute with the same name in both relations.
- Only one join attribute value is kept.

Example of NATURAL JOIN operation

DEPT $\leftarrow \rho(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)$

PROJ_DEPT ← PROJECT * DEPT

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT

Dname	Dnum	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

PROJ_DEPT

Pname	Pnumber	Plocation	Dnum	Dname	Mgr_ssn	Mgr_start_date
ProductX	1	Bellaire	5	Research	333445555	1988-05-22
ProductY	2	Sugarland	5	Research	333445555	1988-05-22
ProductZ	3	Houston	5	Research	333445555	1988-05-22
Computerization	10	Stafford	4	Administration	987654321	1995-01-01
Reorganization	20	Houston	1	Headquarters	888665555	1981-06-19
Newbenefits	30	Stafford	4	Administration	987654321	1995-01-01

Binary Relational Operations: DIVISION

- DIVISION Operation
 - The division operation is applied to two relations
 - $ightharpoonup R(Z) \div S(X)$, where X is a subset of Z
 - ♦ Let Y = Z X (and hence $Z = X \cup Y$); that is, let Y be the set of attributes of R that are not attributes of S
 - The result of DIVISION is a relation T(Y) that includes a tuple t if tuples t_R appear in R with t_R [Y] = t, and with
 - $igstar{}$ t_R [X] = t_s for every tuple t_s in S
 - For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with every tuple in S.

Binary Relational Operations: DIVISION

- Example: retrieve the Social Security numbers of employees who work on all the projects that 'John Smith' works on.
- First, retrieve the list of project numbers that 'John Smith' works on in the intermediate relation SMITH_PNOS:

Next, we create a relation that includes a tuple <Essn, Pno> for all employees:

```
SSN\_PNOS \leftarrow \pi_{Essn, Pno}(WORKS\_ON)
```

Finally, apply the DIVISION operation to the two relations, which gives the desired employees' Social Security numbers:

Example of DIVISION

SSNS(Ssn) ← SSN_PNOS ÷SMITH_PNOS

•R= SSN_PNOS, S= SMITH_PNOS, T= SSNS. Z={Essn,Pno}, Y = {Essn}, X ={Pno}

•E.g., 123456789 is in SSNS because tuples tR appear in R with tR[Y]=123456789, and with tR[X]= ts for every tuple ts(i.e., 1 and 2) in S

R{Essn, Pno} ssn_pnos

Essn	Pno
123456789	1
123456789	2
666884444	3
453453453	1
453453453	2
333445555	2
333445555	3
333445555	10
333445555	20
999887777	30
999887777	10
987987987	10
987987987	30
987654321	30
987654321	20
888665555	20

S{Pno} smith_pnos

_		
	Pno	
	1	
	2	

SSNS

Essn
123456789
453453453

48

Complete Set of Relational Operations

- The set of operations including SELECT σ , PROJECT π , UNION \cup , DIFFERENCE -, RENAME ρ , and CARTESIAN PRODUCT X is called a *complete set* because any other relational algebra expression can be expressed by a combination of these SIX operations
- For example:

 - ightharpoonup R
 ightharpoonup R join condition> $ightharpoonup S = \sigma$ join condition> ightharpoonup (R X S)

Table 8.1 Operations of Relational Algebra

 Table 8.1
 Operations of Relational Algebra

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R .	$\sigma_{< m selection\ condition>}(R)$
PROJECT	Produces a new relation with only some of the attributes of <i>R</i> , and removes duplicate tuples.	$\pi_{< ext{attribute list}>}(R)$
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_1 \bowtie_{< \text{join condition}>} R_2$
EQUIJOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$R_1\bowtie_{<\text{join condition}>} R_2$, OR $R_1\bowtie_{(<\text{join attributes 1}>)}$, (<join 2="" attributes="">) R_2</join>
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$R_1*_{<\text{join condition}>} R_2,$ OR $R_1*_{<\text{join attributes 1}>},$ (<join 2="" attributes="">) R_2 OR R_1*_R</join>

Table 8.1 Operations of Relational Algebra

Table 6.1 Operations of Relational Algebra	Table 8.1	Operations of Relation	al Algebra	1
--	-----------	------------------------	------------	---

OPERATION	PURPOSE	NOTATION
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
DIFFERENCE	Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible.	$R_1 - R_2$
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$

Additional operators: Grouping and Aggregate Functions

■ We can define an AGGREGATE FUNCTION operation, using the symbol ℑ (pronounced script F) as follows:

$$<$$
grouping attributes $> \Im <$ function list $> (R)$

- <grouping attributes> is a list of attributes of the relation specified in R
- <function list> is a list of <function> (attribute) pairs. In each such pair, <function> is one of the allowed functions—such as SUM, AVERAGE, MAXIMUM, MINIMUM, COUNT
- E.g. retrieve each department number, the number of employees in the department, and their average salary

References

- **6e**
 - ◆ Ch. 6, p. 141-157, 167-170