《自动检测技术与系统实验》实验报告

系列六: 光电式传感器 实验

学 校: 南开大学

学院: 人工智能学院

专业: 智能科学与技术

实验成员: 2211292 郑皓文

2212055 张箫鹏

2212266 张恒硕

实验十七 光电式传感器的转速测量实验

一、实验目的

- 1、了解光电式传感器的基本结构。
- 2、掌握光电式传感器及其转换电路的工作原理。
- 3、掌握差动变压器的调试方法。

二、实验所用单元

光电式传感器、光电式传感器转换电路板、直流稳压电源、频率与转速表、 数字电压表、 位移台架。

三、实验原理及电路

1、光断续器原理如图 17-1 所示,一个开口的光耦合器,当开口处被遮住时,光敏三极管接收不到发光二极管的光信号,输出电压为 0,否则有电压输出。

图 17-1 光断续器示意图

图 17-2 测速装置示意图

- 2、图 17-2 为测速装置示意图,其中微型电动机带动转盘在两个成 90 度的 光继续器的开口中转动,转盘上一半为黑色,另一半透明,转动时,两个光继 续器将输出不同相位的方波信号,这两个方波信号经过转换电路中的四个运放器,可输出相位差分别为 0°、90°、180°、270°的方波信号,它们的频率都 是相同的,其中任意一个方波信号均可输出至频率表显示频率。原理如图 17-3 所示。
- 3、微型电动机的转速可调,电路图如图 17-4 所示,调节电位器 RP 可输出 $0\sim12V$ 的直流电压。

图 17-3 光电传感器实验原理图

图 17-4 电机调速电路图

四、实验步骤

- 1、固定好位移台架,将光电式传感器置于位移台架上,将传感器上的 A、B 点与转换电路板上的 A、B 点相连;转换电路板上的 $0\sim12V$ 输出接到传感器上;转换电路的 A、B 与 0° 、 90° 、 180° 、 270° 输出均可接至频率与转速表。
- 2、接通电源,调节电位器 RP 使输出电压从最小逐渐增加到最大,观察频率表上显示的频率的变化情况。

五、实验报告

记录观察现象,分析怎样根据显示的频率换算出电动机的转速?

实验现象: 在调节电位器使电压从小到大的过程中,电机开始时不转,开转之后运转声音逐渐变大,说明转速在提高,最后达到一定转速(对应频率在 38.7Hz 左右)保持稳定;频率表上显示的数据,一开始维持在 0,电机开始运转后同步

增大,最后维持在最大值附近。

频率换算转速: 二者之间大概是 60 倍的的关系,即数值上转速是频率的 60 倍。频率的单位是赫兹 (Hz),表示每秒周期性变化次数;而转速的单位是转每分钟 (RPM),表示每分钟转的圈数。在本实验中,变化周期即是转一圈,因此二者之间是 60 倍关系。

以下是实验记录的数据:

电压 (V)	频率(Hz)	转速 (RPM)
1.09	0	0
2. 08	0	0
3.09	15. 53	943. 6
4. 03	26. 43	1566
5. 00	34. 67	2099
6. 01	38. 65	2318
7.04	38. 65	2321
8.00	38. 65	2327
9. 07	38. 79	2327

实验十八 光电式传感器的旋转方向测量实验

一、实验目的

了解旋转方向的测量方法。

二、实验所用单元

光电式传感器、光电式传感器转换电路板、直流稳压电源、频率与转速表、 位移台架、双踪示波器。

三、实验原理及电路

光电式传感器经过转换电路后可输出相位差分别为 0°、90°、180°、270°的方波信号,如果电动机的旋转方向改变,这四个方波信号之间的相位关系也随之改变,可以根据相位关系判断电动机的旋转方向。

四、实验步骤

- 1、按照实验十七的步骤连接好实验电路。
- 2、接通电源,调节电位器 RP 使电动机在一个合适的转速上旋转。
- 3、将双踪示波器 Y_1 探头接 0° 输出端, Y_2 探头依次接 90° 、 180° 、 270° 输出端,观察波形之间的相位关系,并记录波形。
 - 4、改变电动机输入电压的方向,重复步骤3,并记录波形。

五、实验报告

1、画出从示波器上观察到的八组波形,比较电动机旋转方向不同时,各方波之间的相差关系。

2、为什么开关型光电传感器多采用红外线形式?

红外线形式有以下优点:

- 环境适应性好:红外线波长长,能较好穿透烟雾、尘埃等障碍物,使其在恶劣环境下仍能保持工作稳定性。
- 抗干扰能力强:相比于可见光,红外线不易受自然光线变化影响。
- 功耗、成本低: 红外 LED 发射器通常功耗较低,有助于减少系统能耗,延长电池供电设备的工作时间。红外线组件相对便宜,易于制造,且技术成熟,具有较高性价比。
- 安全性高: 红外线属于非可见光谱范围,不会像强可见光那样对人眼造成伤害,避免了与人类视觉系统的直接交互,减少潜在安全隐患。
- 响应速度快:能够快速响应目标物体。