川口康平・澤田真行『因果推論の計量経済学』

(日本評論社, 2024 年刊)

正誤情報一覧

2024.10.08 ver.1.0

本書にて、下記の通り補足説明と訂正がございます。ここにお詫びして訂正いたします。また、ご指摘をいただいた皆さまには深く御礼申し上げます。

第1版版第1刷(2024年9月20日発行)時点の訂正

		20-april
ページ等	誤	正
19ページ、	SUTVA (stable unit treatment value)	SUTVA (stable unit treatment value assumption)
上から5行目		
および 303 ペ		
ージ (索引)		
72ページ、	このとき、中間点の定理より	このとき、 <mark>平均値</mark> の定理より
下から 5 行目		
91 ページ、	【下から9行目】この場合、統制群には…	【下から9行目】この場合、 <mark>処置群</mark> には…
下から9行	【下から8行目】すると、統制群の患者から…	【下から8行目】すると、 <mark>処置群</mark> の患者から…
目、8行目、4	【下から4行目】観測できるなら、統制群の中で…	【下から4行目】観測できるなら、 <mark>処置群</mark> の中で…
行目		
105 ページ、	$\frac{1}{2}\sum_{x} (Y_{x}^{*}(1.0) - Y_{x}^{*}(0.0))$	$\frac{1}{2}\sum_{i}\left(Y_{i}^{*}(1,1)-Y_{i}^{*}(0,1)\right)$
下から2行目	$\frac{1}{n_{at}} \sum_{G_i = at} (Y_i^*(1,0) - Y_i^*(0,0))$	$\frac{1}{n_{at}} \sum_{G_i = at} (Y_i^*(1, 1) - Y_i^*(0, 1))$
106ページ、	$\frac{1}{n_{nt}} \sum_{G:=nt} (Y_i^*(1,1) - Y_i^*(0,1))$	$\frac{1}{n_{nt}} \sum_{G_i = nt} \left(Y_i^*(1,0) - Y_i^*(0,0) \right)$
上から2行目	$n_{nt} \sum_{G_i=nt} (1000)$	$n_{nt} \sum_{G_i=nt} (1 + G_i)$
159 ページ、		【青字の「正の」をトル】
上から2段落	次に、図 6.4 (b) はサポートの端点の近傍における	次に、図 6.4 (b) はサポートの端点の近傍における
目	推定を図示している。このとき、カーネル推定(グ	推定を図示している。このとき、カーネル推定(グ
	レーの点線) は真の関数に対して、正のバイアスが	レーの点線)は真の関数に対して、バイアスが生じ
	生じる片側s≥0の観測のみを用いることになって	る片側s≥0の観測のみを用いることになってい
	いる。図 6.4 (a) の場合と異なり、正のバイアスを	る。図 6.4 (a) の場合と異なり、バイアスを打ち消
	打ち消す相手である $s < 0$ 側の観測が存在しない。	す相手であるs < 0側の観測が存在しない。その結
	その結果、 正の バイアスが打ち消されずに残って	果、バイアスが打ち消されずに残ってしまう。この

	しまう。この図 6.4 (b) のように打ち消す相手とな	図 6.4 (b) のように打ち消す相手となる観測がな
	る観測がない場合には、関数の傾きを捉えられて	い場合には、関数の傾きを捉えられていないこと
	いないことに起因するバイアスが生じており、こ	に起因するバイアスが生じており、このバイアス
	のバイアスはhに応じて線形増加する。	はhに応じて線形増加する。
189 ページ、	$C_{I^{1-\alpha}} = \begin{bmatrix} \hat{\sigma} & \sigma_{NN} & \hat{\sigma}_{NN} \\ \hat{\sigma} & \sigma_{NN} & \hat{\sigma} & \sigma_{NN} \end{bmatrix}$	$\hat{\sigma}_{NN}$
下から 14 行目	$CI^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}\right]$	$I^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} + cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}\right]$