PHY250: Sound

Anabela R. Turlione

Digipen

Fall 2021

Characteristics

Mathematical Description

Sources of Sound

Quality of Sound, and Noise; Superposition

Is an interpretation of our brain of a physical sensation that stimulate our ears, that is, a longitudinal wave.

Is an interpretation of our brain of a physical sensation that stimulate our ears, that is, a longitudinal wave.

Is an interpretation of our brain of a physical sensation that stimulate our ears, that is, a longitudinal wave.

We must consider...

Source → vibrating object.

Is an interpretation of our brain of a physical sensation that stimulate our ears, that is, a longitudinal wave.

- Source → vibrating object.
- Needs mater to spread.

Is an interpretation of our brain of a physical sensation that stimulate our ears, that is, a longitudinal wave.

- Source → vibrating object.
- Needs mater to spread.
- The energy is transferred as longitudinal waves.

Is an interpretation of our brain of a physical sensation that stimulate our ears, that is, a longitudinal wave.

- Source → vibrating object.
- Needs mater to spread.
- The energy is transferred as longitudinal waves.
- ▶ Detection → ears, microphone, etc.

Characteristics
Mathematical Description
Sources of Sound
Quality of Sound, and Noise; Superposition

Sound Speed

The velocity of the propagation of sound in a medium is,

$$v = \sqrt{\frac{B}{\rho}} \tag{1}$$

The velocity of the propagation of sound in a medium is,

$$v = \sqrt{\frac{B}{\rho}} \tag{1}$$

where B is the Bulk modulus, defined by

$$\Delta P = -B \frac{\Delta V}{V}$$

The velocity of the propagation of sound in a medium is,

$$v = \sqrt{\frac{B}{\rho}} \tag{1}$$

where B is the Bulk modulus, defined by

$$\Delta P = -B \frac{\Delta V}{V}$$

change in pressure

The velocity of the propagation of sound in a medium is,

$$v = \sqrt{\frac{B}{\rho}} \tag{1}$$

where B is the Bulk modulus, defined by

$$\Delta P = -B \frac{\Delta V}{V}$$

change in pressure \rightarrow change of volume

TABLE 16-1 Speed of Sound in Various Materials (20°C and 1 atm)

Material	Speed (m/s)
Air	343
Air (0°C)	331
Helium	1005
Hydrogen	1300
Water	1440
Sea water	1560
Iron and steel	≈ 5000
Glass	≈ 4500
Aluminum	≈ 5100
Hardwood	≈ 4000
Concrete	≈3000

Pressure Waves

Pressure Waves

$$D(x,t) = Asin(kx - \omega t)$$

Characteristics Mathematical Description Sources of Sound Quality of Sound, and Noise; Superposition

Pressure Waves

$$D(x, t) = Asin(kx - \omega t)$$
 displacement

$$D(x, t) = Asin(kx - \omega t)$$
 displacement

A sound wave is a longitudinal wave described by,

$$D(x, t) = Asin(kx - \omega t)$$
 displacement

The variation of pressure is easier to measure.

The displacement and pressure are $\frac{\pi}{2}$ out of phase.

Mathematical Description
Sources of Sound

Quality of Sound, and Noise; Superposition

Pressure Waves

If we know D(x, t)

Pressure Waves

If we know D(x, t) what is the pressure wave?

Pressure Waves

If we know D(x, t) what is the pressure wave? use the Bulk modulus

If we know D(x, t) what is the pressure wave? use the Bulk modulus

$$\Delta P = -B \frac{\Delta V}{V}$$

If we know D(x, t) what is the pressure wave? use the Bulk modulus

$$\Delta P = -B\frac{\Delta V}{V}$$

$$V = S\Delta x$$

If we know D(x, t) what is the pressure wave? use the Bulk modulus

$$\Delta P = -B \frac{\Delta V}{V}$$

$$V = S\Delta x$$

$$\Delta V = S\Delta D$$

If we know D(x, t) what is the pressure wave? use the Bulk modulus

$$\Delta P = -B \frac{\Delta V}{V}$$

$$V = S\Delta x$$

$$\Delta V = S\Delta D$$

$$\rightarrow \Delta P = -B \frac{S\Delta D}{S\Delta x}$$

Taking the limit for $\Delta x \rightarrow 0$

$$\Delta P = -B \frac{\partial D}{\partial x}$$

$$\rightarrow \frac{\partial D}{\partial x} = kA\cos(kx - \omega t)$$

$$\rightarrow \boxed{\Delta P = -BkA\cos(kx - \omega t)}$$
(2)

The pressure amplitude is:

$$\Delta P_M = BkA \tag{3}$$

Quality of Sound, and Noise; Superposition

Pressure Waves

Using the relations,

$$v = \sqrt{\frac{B}{\rho}}, \ k = \frac{2\pi f}{v}$$

$$\Delta P_M = BkA = \boxed{2\pi v \rho f A}$$
 (4)

Sound Characteristics

To describe the sound, we have to consider two aspects,

Sound Characteristics

To describe the sound, we have to consider two aspects,

▶ Loudness → Intensity $(\frac{E}{tS})$

Sound Characteristics

To describe the sound, we have to consider two aspects,

- ▶ Loudness → Intensity $(\frac{E}{tS})$
- ▶ Pitch → frequency

Sound Characteristics

To describe the sound, we have to consider two aspects,

- ▶ Loudness → Intensity $(\frac{E}{tS})$
- ▶ Pitch → frequency

The audible range by humans is 20~Hz to 20000~Hz

Intensity of sound

We are going to define a new measurement unit that relates the intensity with loudness.

Intensity of sound

We are going to define a new measurement unit that relates the intensity with loudness.

$$I = \frac{\textit{Energy}}{\textit{time Surface}}, \quad [I] = \frac{\textit{W}}{\textit{m}^2}$$

► Intensity → Physically meassurable quantity.

Intensity of sound

We are going to define a new measurement unit that relates the intensity with loudness.

$$I = \frac{Energy}{time\ Surface}, \ \ [I] = \frac{W}{m^2}$$

- ► Intensity → Physically meassurable quantity.
- ▶ Loudness → Subjective sensation.

Intensity of sound

We are going to define a new measurement unit that relates the intensity with loudness.

$$I = \frac{Energy}{time\ Surface}, \ \ [I] = \frac{W}{m^2}$$

- ► Intensity → Physically meassurable quantity.
- ▶ Loudness → Subjective sensation.

In terms of intensity, the Human ear can hear

Intensity of sound

We are going to define a new measurement unit that relates the intensity with loudness.

$$I = \frac{Energy}{time\ Surface}, \ \ [I] = \frac{W}{m^2}$$

- ▶ Intensity → Physically meassurable quantity.
- ▶ Loudness → Subjective sensation.

In terms of intensity, the Human ear can hear

form
$$10^{-12} \ \frac{W}{m^2}$$
 to $1 \ \frac{W}{m^2}$.

Intensity of sound

We are going to define a new measurement unit that relates the intensity with loudness.

$$I = \frac{Energy}{time\ Surface}, \ \ [I] = \frac{W}{m^2}$$

- ▶ Intensity → Physically meassurable quantity.
- ▶ Loudness → Subjective sensation.

In terms of intensity, the Human ear can hear

form
$$10^{-12} \frac{W}{m^2}$$
 to $1 \frac{W}{m^2}$.

Then, we are going to define this new unit in log scale.

Decibel

We are going to define one decibel $(1 \ dB)$ as,

Sound

Decibel

We are going to define one decibel (1 dB) as,

$$\beta \text{ (in dB)} = 10\log\frac{I}{I_0} \tag{5}$$

We are going to define one decibel (1 dB) as,

$$\beta \ (in \ dB) = 10 \log \frac{I}{I_0} \tag{5}$$

where log is in base 10, and l_0 is the intensity of a chosen reference level.

We are going to define one decibel (1 dB) as,

$$\beta \ (in \ dB) = 10 \log \frac{I}{I_0} \tag{5}$$

where log is in base 10, and l_0 is the intensity of a chosen reference level.

$$I_0 = 10^{-12} \frac{W}{m^2}$$
, minimum audible intensity (6)

Characteristics
Mathematical Description
Sources of Sound

Quality of Sound, and Noise; Superposition

Decibel

Example:

What is the level of a sound whose intensity is $I = 10^{-10} \frac{W}{m^2}$?

Example:

What is the level of a sound whose intensity is $I = 10^{-10} \frac{W}{m^2}$?

$$\beta = 10\log\left(\frac{10^{-10}}{10^{-12}}\right) = 10\log 100 = 20 \ dB \tag{7}$$

Example:

What is the level of a sound whose intensity is $I = 10^{-10} \frac{W}{m^2}$?

$$\beta = 10\log\left(\frac{10^{-10}}{10^{-12}}\right) = 10\log 100 = 20 \ dB \tag{7}$$

At the threshold of hearing? $I = 10^{-12} \frac{W}{m^2}$?

$$\beta = 10\log\left(\frac{10^{-12}}{10^{-12}}\right) = 10\log 1 = 0 \tag{8}$$

Decibel

An increase in *I* by a factor 10 is equivalent to an increase in 10 dB.

An increase in *I* by a factor 10 is equivalent to an increase in 10 dB.

$$I' = 10I \rightarrow \beta' = 10log \frac{10I}{I_0} = 10[log 10 + log \frac{I}{I_0}]$$

An increase in *I* by a factor 10 is equivalent to an increase in 10 dB.

An increase in *I* by a factor 10 is equivalent to an increase in 10 dB.

$$I' = 10I \rightarrow \beta' = 10log\frac{10I}{I_0} = 10[log10 + log\frac{I}{I_0}]$$

$$\rightarrow \beta' = 10 \ dB + 10log\frac{I}{I_0}$$

An increase in I by a factor 10^2 is equivalent to an increase in 20 dB and so on...

TABLE 16–2 Intensity of Various Sounds

Source of the Sound	Sound Level (dB)	Intensity (W/m²)
Jet plane at 30 m	140	100
Threshold of pain	120	1
Loud rock concert	120	1
Siren at 30 m	100	1×10^{-2}
Truck traffic	90	1×10^{-3}
Busy street traffic	80	1×10^{-4}
Noisy restaurant	70	1×10^{-5}
Talk, at 50 cm	65	3×10^{-6}
Quiet radio	40	1×10^{-8}
Whisper	30	1×10^{-9}
Rustle of leaves	10	1×10^{-11}
Threshold of hearing	ng O	1×10^{-12}

Sound

Characteristics
Mathematical Description
Sources of Sound
Quality of Sound, and Noise; Superposition

Decibel

Conceptual example:

Conceptual example:

$$\beta = 10\log\frac{4I_1}{I_0}$$

Conceptual example:

$$\beta = 10\log\frac{4I_1}{I_0} = 10\log(4) + 10\log\frac{I_1}{I_0}$$

Conceptual example:

$$\beta = 10\log\frac{4I_1}{I_0} = 10\log(4) + 10\log\frac{I_1}{I_0} = 6.0 \ dB + 75 \ dB = 81 \ dB$$

Sound

Characteristics
Mathematical Description
Sources of Sound
Quality of Sound, and Noise; Superposition

Equally Tempered Chromatic Scale

PITCH ↔ FREQUENCY

Tempered Chromatic Scale		
Frequency (Hz)		
262		
277		
294		
311		
330		
349		
370		
392		
415		
440		

TABLE 16-3 Equally

A# or Bb

В

466

494 524

Sources of Sound

VIBRATING OBJECTS

M: So

Characteristics
Mathematical Description
Sources of Sound
Quality of Sound, and Noise; Superposition

- VIBRATING OBJECTS
- ► PUSHES THE MEDIUM

- VIBRATING OBJECTS
- PUSHES THE MEDIUM PRODUCES SOUND WAVES

- VIBRATING OBJECTS
- ▶ PUSHES THE MEDIUM PRODUCES SOUND WAVES
- ► FEQUENCIE = SOURCE FREQUENCY

- VIBRATING OBJECTS
- PUSHES THE MEDIUM PRODUCES SOUND WAVES
- ► FEQUENCIE = SOURCE FREQUENCY
- SPEED DEPENDS ON THE MEDIUM

- VIBRATING OBJECTS
- PUSHES THE MEDIUM PRODUCES SOUND WAVES
- ► FEQUENCIE = SOURCE FREQUENCY
- SPEED DEPENDS ON THE MEDIUM

Stringed Instruments

Standing waves are the basis for all stringed instruments.

Stringed Instruments

- Standing waves are the basis for all stringed instruments.
- ▶ Pitch= fundamental frequency $f = v/2\ell$

Stringed Instruments

- Standing waves are the basis for all stringed instruments.
- ▶ Pitch= fundamental frequency $f = v/2\ell$
- ► Harmonics= $f_n = nf_1 = n\frac{v}{2\ell}$

Stringed Instruments

- Standing waves are the basis for all stringed instruments.
- ▶ Pitch= fundamental frequency $f = v/2\ell$
- ► Harmonics= $f_n = nf_1 = n\frac{v}{2\ell}$

Mathematical Description
Sources of Sound

uality of Sound, and Noise; Superposition

Stringed Instruments

v, f fixed.

Stringed Instruments

v, f fixed. ℓ variable

Figure from https://www.pitchperfectstrings.com.au/

Mathematical Descript
Sources of Sound

Quality of Sound, and Noise; Superposition

Stringed Instruments

Different $\mu \to \text{different pitch}$

Stringed Instruments

Different $\mu \rightarrow$ different pitch

$$v = \sqrt{\frac{F_T}{\mu}} \tag{9}$$

Sources of Sound Quality of Sound, and Noise; Superposition

Stringed Instruments

Different $\mu \rightarrow$ different pitch

$$v = \sqrt{\frac{F_T}{\mu}} \tag{9}$$

heavier string

Stringed Instruments

Different $\mu \rightarrow$ different pitch

$$v = \sqrt{\frac{F_T}{\mu}} \tag{9}$$

heavier string lower v and frequency.

Stringed Instruments

Different $\mu \rightarrow$ different pitch

$$v = \sqrt{\frac{F_T}{\mu}} \tag{9}$$

heavier string lower v and frequency.

The tension F_T may also be different. Adjusting the tension \rightarrow tuning the pitch of each string.

Sound Amplification

1. Strings are set into vibration

- 1. Strings are set into vibration
- 2. the sounding board or box is set into vibration as well

Characteristics
Mathematical Description
Sources of Sound
Quality of Sound, and Noise; Superposition

- 1. Strings are set into vibration
- 2. the sounding board or box is set into vibration as well
- 3. much greater area in contact with the air

- 1. Strings are set into vibration
- 2. the sounding board or box is set into vibration as well
- 3. much greater area in contact with the air
- 4. has much greater area in contact with the air, it can produce a

- 1. Strings are set into vibration
- 2. the sounding board or box is set into vibration as well
- 3. much greater area in contact with the air
- 4. has much greater area in contact with the air, it can produce a

Modes of vibration for an open tube

Modes of vibration for a tube closed at one end

Mathematical Description Sources of Sound

Quality of Sound, and Noise; Superposition

Quality of sound

SOUND

Characteristics
Mathematical Description
Sources of Sound

Quality of Sound, and Noise; Superposition

Quality of sound

 $\mathsf{SOUND} \to \mathsf{LOUDNESS}$

Characteristics
Mathematical Description
Sources of Sound

Quality of Sound, and Noise; Superposition

Quality of sound

SOUND → LOUDNESS PITCH and QUALITY

Quality of sound

 $\mathsf{SOUND} \to \mathsf{LOUDNESS}$ PITCH and QUALITY QUALITY

Quality of sound

 $SOUND \rightarrow LOUDNESS$ PITCH and QUALITY

QUALITY ↔ Harmonics (combination of sins)

Quality of sound

SOUND → LOUDNESS PITCH and QUALITY

QUALITY ↔ Harmonics (combination of sins)

ightarrow Shapes of the waves

Characteristics
Mathematical Description
Sources of Sound

Quality of Sound, and Noise; Superposition

Quality of sound

WAVE:

$$f(t) = \sum_{n=1}^{N} A_n \cos\left(\frac{2n\pi t}{L}\right)$$

Quality of Sound, and Noise; Superposition

Sound

Quality of sound

WAVE:

$$f(t) = \sum_{n=1}^{N} A_n \cos\left(\frac{2n\pi t}{L}\right)$$

 $A_n(w_n)$ Determines wave shape

Sound spectra for different instruments

 A_n vs. w_n

Beats—Interference in Time

TWO SOURCES CLOSE IN FREQUENCY

Beats—Interference in Time

TWO SOURCES CLOSE IN FREQUENCY

Characteristics
Mathematical Description
Sources of Sound
Quality of Sound, and Noise; Superposition

Beats, Interference in Time

At a fixed point in space:

$$D_1 = A sin(2\pi f_1 t)$$

Characteristics
Mathematical Description
Sources of Sound
Quality of Sound, and Noise; Superposition

Beats, Interference in Time

At a fixed point in space:

$$D_1 = A sin(2\pi f_1 t)$$

$$D_2 = Asin(2\pi f_1 t)$$

Characteristics
Mathematical Description
Sources of Sound
Quality of Sound, and Noise; Superposition

Beats, Interference in Time

At a fixed point in space:

$$D_1 = A sin(2\pi f_1 t)$$

$$D_2 = Asin(2\pi f_1 t)$$

The resultant displacement is,

Characteristics Mathematical Description Sources of Sound Quality of Sound, and Noise; Superposition

Beats, Interference in Time

At a fixed point in space:

$$D_1 = A sin(2\pi f_1 t)$$

$$D_2 = A sin(2\pi f_1 t)$$

The resultant displacement is,

$$D = D_1 + D_2 = A[Asin(2\pi f_1 t) + sin(2\pi f_1 t)]$$

Beats, Interference in Time

Using,
$$sin\theta_1 + sin\theta_2 = 2sin\frac{1}{2}(\theta_1 + \theta_2)cos\frac{1}{2}(\theta_1 - \theta_2)$$

Beats, Interference in Time

Using,
$$sin\theta_1 + sin\theta_2 = 2sin\frac{1}{2}(\theta_1 + \theta_2)cos\frac{1}{2}(\theta_1 - \theta_2)$$

$$D = \left[2Acos2\pi\left(\frac{f_1 - f_2}{2}\right)t\right]sin2\pi\left(\frac{f_1 + f_2}{2}\right)t \qquad (10)$$

Characteristics
Mathematical Description
Sources of Sound
Quality of Sound, and Noise; Superposition

Beats, Interference in Time

The superposition frequency: $(f_1 + f_2)/2$.

Beats, Interference in Time

The superposition frequency: $(f_1 + f_2)/2$.

Amplitude:
$$\left[2A\cos 2\pi \left(\frac{f_1 - f_2}{2}\right)t\right]$$
 (11)

Beats, Interference in Time

The superposition frequency: $(f_1 + f_2)/2$.

Amplitude:
$$\left[2A\cos 2\pi \left(\frac{f_1-f_2}{2}\right)t\right]$$
 (11)

 \rightarrow two beats occur per cycle

Beats. Interference in Time

The superposition frequency: $(f_1 + f_2)/2$.

Amplitude:
$$\left[2A\cos 2\pi \left(\frac{f_1-f_2}{2}\right)t\right]$$
 (11)

 \rightarrow two beats occur per cycle \rightarrow beat frequency is $f_1 - f_2$.