A finite element time domain method for Maxwell's equations

Herbert Egger, Bogdan Radu

Johann Radon Institute for Computational and Applied Mathematics (RICAM)

Austrian Academy of Sciences (ÖAW)

Linz. Austria

25th October 2022 RICAM Group seminar

Abstract

We present two discretization methods for solving Maxwell's equations on unstructured grids efficiently.

Abstract

We present two discretization methods for solving Maxwell's equations on unstructured grids efficiently.

▶ The first method is based on a finite-element approximation by Nédélec elements of type II, which allows for mass-lumping by numerical quadrature. The resulting scheme has two degrees of freedom per edge and a block diagonal mass matrix, and hence allows for an efficient time integration by explicit methods.

Abstract

We present two discretization methods for solving Maxwell's equations on unstructured grids efficiently.

- ▶ The first method is based on a finite-element approximation by Nédélec elements of type II, which allows for mass-lumping by numerical quadrature. The resulting scheme has two degrees of freedom per edge and a block diagonal mass matrix, and hence allows for an efficient time integration by explicit methods.
- ▶ The second method is obtained by an algebraic reduction of the first, leading to a scheme with only one degree of freedom per edge most of the time. This scheme has a sparse inverse mass matrix, again enabling an efficient time integration

Maxwell's equations

Maxwell's equations

$$\begin{array}{ll} \operatorname{curl} \boldsymbol{H}(t) = & \partial_t \boldsymbol{D}(t) + \boldsymbol{j}(t) & \operatorname{Ampere/Maxwell\ Law} \\ \operatorname{curl} \boldsymbol{E}(t) = -\partial_t \boldsymbol{B}(t) & \operatorname{Faraday\ Law} \\ \operatorname{div} \boldsymbol{D}(t) = \varrho & \operatorname{Gauss\ Law} \\ \operatorname{div} \boldsymbol{B}(t) = 0 & \operatorname{Magnetic\ Gauss\ Law} \end{array}$$

Material laws for linear and non-dispersive but inhomogeneous/anisotropic media

$$\boldsymbol{D}(t) = \varepsilon \boldsymbol{E}(t) \qquad \text{and} \qquad \boldsymbol{B}(t) = \mu \boldsymbol{H}(t) \qquad \text{and} \qquad \boldsymbol{j}(t) = \boldsymbol{j}_s(t) + \sigma \boldsymbol{E}(t)$$

Substituting the material laws yields

$$\varepsilon \partial_t \mathbf{E}(t) + \sigma \mathbf{E}(t) - \operatorname{curl} \mathbf{H}(t) = -\mathbf{j}_s(t)$$
$$\mu \partial_t \mathbf{H}(t) + \operatorname{curl} \mathbf{E}(t) = 0$$

Initial and boundary conditions will be discussed in a bit.

Maxwell's equations

$$\varepsilon \partial_t \boldsymbol{E}(t) + \sigma \boldsymbol{E}(t) - \operatorname{curl} \boldsymbol{H}(t) = -\boldsymbol{j}_s(t)$$
$$\mu \partial_t \boldsymbol{H}(t) + \operatorname{curl} \boldsymbol{E}(t) = 0$$

Goal: systematic and flexible space discretization

- stable: no artificial energy production
- accurate: provable convergence rates
- efficient: appropriate for explicit time-stepping methods

Maxwell's equations

$$\varepsilon \partial_t \boldsymbol{E}(t) + \sigma \boldsymbol{E}(t) - \operatorname{curl} \boldsymbol{H}(t) = -\boldsymbol{j}_s(t)$$
$$\mu \partial_t \boldsymbol{H}(t) + \operatorname{curl} \boldsymbol{E}(t) = 0$$

Goal: systematic and flexible space discretization

- stable: no artificial energy production
- accurate: provable convergence rates
- efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FEM, FVM, DG, ...

- ▶ 1966 Yee Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
- ▶ 1977 Weiland Eine Methode zur Lösung der Maxwell'schen Gleichungen für sechskomponentige Felder auf diskreter Basis
- ▶ 1980 Taflove Application of the Finite-Difference Time-Domain method to sinusoidal steady-state electromagnetic penetration problems

$$\begin{split} \varepsilon \partial_t \pmb{E}(t) + \sigma \pmb{E}(t) - \operatorname{curl} \pmb{H}(t) &= -\pmb{j}_s(t) \\ \mu \partial_t \pmb{H}(t) + \operatorname{curl} \pmb{E}(t) &= 0 \end{split}$$

Finite differences: TE case

$$\mathbf{E} = \begin{pmatrix} E_x \\ E_y \\ 0 \end{pmatrix} \qquad \mathbf{H} = \begin{pmatrix} 0 \\ 0 \\ H_z \end{pmatrix}$$
$$\begin{cases} \varepsilon \partial_t E_x + \sigma E_x - \partial_y H_z = -j_{s,1}, \\ \varepsilon \partial_t E_y + \sigma E_y + \partial_x H_z = -j_{s,2}, \\ -\mu \partial_t H_z - \partial_x E_y + \partial_y E_x = 0. \end{cases}$$

$$\begin{split} \varepsilon \partial_t \boldsymbol{E}(t) + \sigma \boldsymbol{E}(t) - \operatorname{curl} \boldsymbol{H}(t) &= -\boldsymbol{j}_s(t) \\ \mu \partial_t \boldsymbol{H}(t) + \operatorname{curl} \boldsymbol{E}(t) &= 0 \end{split}$$

Finite differences: TE case

$$m{E} = egin{pmatrix} E_x \ E_y \ 0 \end{pmatrix} \qquad m{H} = egin{pmatrix} 0 \ 0 \ H_z \end{pmatrix}$$

$$\begin{cases} \varepsilon \partial_t E_x + \sigma E_x - \partial_y H_z = -j_{s,1}, \\ \varepsilon \partial_t E_y + \sigma E_y + \partial_x H_z = -j_{s,2}, \\ -\mu \partial_t H_z - \partial_x E_y + \partial_y E_x = 0. \end{cases}$$

$$\varepsilon \partial_t \boldsymbol{E}(t) + \sigma \boldsymbol{E}(t) - \operatorname{curl} \boldsymbol{H}(t) = -\boldsymbol{j}_s(t)$$
$$\mu \partial_t \boldsymbol{H}(t) + \operatorname{curl} \boldsymbol{E}(t) = 0$$

Finite differences: TE case

$$\boldsymbol{E} = \begin{pmatrix} E_x \\ E_y \\ 0 \end{pmatrix} \qquad \boldsymbol{H} = \begin{pmatrix} 0 \\ 0 \\ H_z \end{pmatrix}$$
$$\begin{cases} \varepsilon \partial_t E_x + \sigma E_x - \partial_y H_z = -j_{s,1}, \\ \varepsilon \partial_t E_y + \sigma E_y + \partial_x H_z = -j_{s,2}, \\ -\mu \partial_t H_z - \partial_x E_y + \partial_y E_x = 0. \end{cases}$$

$$\begin{split} \varepsilon \partial_t \boldsymbol{E}(t) + \sigma \boldsymbol{E}(t) - \operatorname{curl} \boldsymbol{H}(t) &= -\boldsymbol{j}_s(t) \\ \mu \partial_t \boldsymbol{H}(t) + \operatorname{curl} \boldsymbol{E}(t) &= 0 \end{split}$$

Finite differences: TE case

$$\boldsymbol{E} = \begin{pmatrix} E_x \\ E_y \\ 0 \end{pmatrix} \qquad \boldsymbol{H} = \begin{pmatrix} 0 \\ 0 \\ H_z \end{pmatrix}$$
$$\begin{cases} \varepsilon \frac{\partial_t E_x}{\partial_t E_y} + \sigma E_x - \frac{\partial_y H_z}{\partial_t H_z} = -j_{s,1}, \\ \varepsilon \frac{\partial_t E_y}{\partial_t H_z} + \sigma E_y + \frac{\partial_x H_z}{\partial_t H_z} = -j_{s,2}, \\ -\mu \frac{\partial_t H_z}{\partial_t H_z} - \frac{\partial_x E_y}{\partial_t H_z} + \frac{\partial_y E_x}{\partial_t H_z} = 0. \end{cases}$$

Pros

- Easy to implement
- \blacktriangleright stable, $h^2 + \tau^2$ accurate, efficient

Cons

Complex domains

$$\varepsilon \partial_t \boldsymbol{E}(t) + \sigma \boldsymbol{E}(t) - \operatorname{curl} \boldsymbol{H}(t) = -\boldsymbol{j}_s(t)$$
$$\mu \partial_t \boldsymbol{H}(t) + \operatorname{curl} \boldsymbol{E}(t) = 0$$

Finite differences: TE case

$$\boldsymbol{E} = \begin{pmatrix} E_x \\ E_y \\ 0 \end{pmatrix} \qquad \boldsymbol{H} = \begin{pmatrix} 0 \\ 0 \\ H_z \end{pmatrix}$$

$$\begin{cases} \varepsilon \partial_t E_x + \sigma E_x - \partial_y H_z = -j_{s,1}, \\ \varepsilon \partial_t E_y + \sigma E_y + \partial_x H_z = -j_{s,2}, \\ -\mu \partial_t H_z - \partial_x E_y + \partial_y E_x = 0. \end{cases}$$

Pros

- Easy to implement
- \blacktriangleright stable, $h^2 + \tau^2$ accurate, efficient

Cons

Complex domains

$$\varepsilon \partial_t \boldsymbol{E}(t) + \sigma \boldsymbol{E}(t) - \operatorname{curl} \boldsymbol{H}(t) = -\boldsymbol{j}_s(t)$$
$$\mu \partial_t \boldsymbol{H}(t) + \operatorname{curl} \boldsymbol{E}(t) = 0$$

$$\begin{split} \varepsilon \partial_t \boldsymbol{E}(t) + \sigma \boldsymbol{E}(t) - \operatorname{curl} \boldsymbol{H}(t) &= -\boldsymbol{j}_s(t) & \text{in } \Omega, t > 0 \\ \mu \partial_t \boldsymbol{H}(t) + \operatorname{curl} \boldsymbol{E}(t) &= 0 & \text{in } \Omega, t > 0 \\ \boldsymbol{n} \times \boldsymbol{E}(t) &= \boldsymbol{G}(t) & \text{on } \partial \Omega, t > 0 \\ \boldsymbol{E}(0) &= \boldsymbol{E}_0, \ \boldsymbol{H}(0) &= \boldsymbol{H}_0 & \text{in } \Omega \end{split}$$

$$\begin{split} \varepsilon \partial_{tt} \boldsymbol{E}(t) + \sigma \partial_t \boldsymbol{E}(t) + \mathrm{curl}(\mu^{-1} \, \mathrm{curl} \, \boldsymbol{E}(t)) &= -\partial_t \boldsymbol{j}_s(t) & \text{in } \Omega, t > 0 \\ \boldsymbol{n} \times \boldsymbol{E}(t) &= \boldsymbol{G}(t) & \text{on } \partial \Omega, t > 0 \\ \boldsymbol{E}(0) &= \boldsymbol{E}_0, \ \partial_t \boldsymbol{E}(0) &= \boldsymbol{F}_0 & \text{in } \Omega \end{split}$$

$$\begin{split} \varepsilon \partial_{tt} \boldsymbol{E}(t) + \boldsymbol{\omega} \partial_t \boldsymbol{E}(t) + \mathrm{curl}(\mu^{-1} \, \mathrm{curl} \, \boldsymbol{E}(t)) &= -\partial_t \boldsymbol{j}_s(t) & \text{in } \Omega, t > 0 \\ \boldsymbol{n} \times \boldsymbol{E}(t) &= \boldsymbol{G}(t) & \text{on } \partial \Omega, t > 0 \\ \boldsymbol{E}(0) &= \boldsymbol{E}_0, \ \partial_t \boldsymbol{E}(0) &= \boldsymbol{F}_0 & \text{in } \Omega \end{split}$$

$$\varepsilon \partial_{tt} \boldsymbol{E}(t) + \boldsymbol{\sigma} \partial_{t} \boldsymbol{E}(t) + \operatorname{curl}(\boldsymbol{\mu}^{-1} \operatorname{curl} \boldsymbol{E}(t)) = \boldsymbol{\partial}_{t} \boldsymbol{j}_{s}(t) \qquad \text{in } \Omega, t > 0$$

$$\boldsymbol{n} \times \boldsymbol{E}(t) = \boldsymbol{G}(t) \qquad \text{on } \partial \Omega, t > 0$$

$$\boldsymbol{E}(0) = \boldsymbol{E}_{0}, \ \partial_{t} \boldsymbol{E}(0) = \boldsymbol{F}_{0} \qquad \text{in } \Omega$$

$$arepsilon\partial_{tt}m{E}(t) + ext{curl}(ext{curl}\,m{E}(t)) = 0 \qquad \text{in } \Omega, t > 0$$

$$m{n} imes m{E}(t) = 0 \qquad \text{on } \partial\Omega, t > 0$$

$$m{E}(0) = m{E}_0, \ \partial_tm{E}(0) = m{F}_0 \qquad \text{in } \Omega$$

Galerkin method: For t > 0 find $\boldsymbol{E}_h(t) \in \boldsymbol{V}_h \subseteq H(\operatorname{curl}, \Omega)$ such that

$$(\varepsilon \partial_{tt} \boldsymbol{E}_h(t), \boldsymbol{v}_h) + (\operatorname{curl} \boldsymbol{E}_h(t), \operatorname{curl} \boldsymbol{v}_h) = 0$$

for all test functions ${m v}_h \in {m V}_h.$

Finite element spaces: What are proper spaces for discretizing $H(\operatorname{curl},\Omega)$?

Basis functions

▶ Global basis functions for H¹

► Local degrees of freedom

• Global basis functions for H(curl)

► Local degrees of freedom

Finite element spaces on reference elements.

▶ 1980 - Nedelec - Mixed Finite Elements in \mathbb{R}^3

$$V_h(T) = \mathcal{N}_0(T)$$
 $\phi_1 = (1 - y, x)$ $\phi_3 = (y, 1 - x)$ $\phi_2 = (-y, x)$

Finite element spaces on reference elements.

▶ 1980 - Nedelec - Mixed Finite Elements in \mathbb{R}^3

$$V_h(T) = \mathcal{N}_0(T)$$
 $\phi_1 = (1 - y, x)$ $\phi_3 = (y, 1 - x)$ $\phi_2 = (-y, x)$

Lemma (accuracy) If E is sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \boldsymbol{E}_h(t)\|_{H(\text{curl})} \le Ch$$

- ▶ 1992 Monk Analysis of a finite element method for Maxwell's equations
- ▶ 1993 Monk An analysis of Nedelec's method for spatial discretization of Maxwell's equations

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathsf{M}_{\varepsilon}\partial_{tt}\mathbf{e}(t) + \mathsf{K}\mathbf{e}(t) = 0$$

by explicit schemes requires application of $\mathsf{M}_{\varepsilon}^{-1}.$

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathsf{M}_{\varepsilon}\partial_{tt}\mathbf{e}(t) + \mathsf{K}\mathbf{e}(t) = 0$$

by explicit schemes requires application of $\mathsf{M}_{\varepsilon}^{-1}.$

Note. M_{ε} does not have a sparse inverse!

Thus, explicit time-stepping for standard FEM is not efficient.

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathsf{M}_{\varepsilon}\partial_{tt}\mathbf{e}(t) + \mathsf{K}\mathbf{e}(t) = 0$$

by explicit schemes requires application of $\mathsf{M}_{\varepsilon}^{-1}.$

Note. M_{ε} does not have a sparse inverse! Thus, explicit time-stepping for standard FEM is not efficient.

Remedy – Mass-lumping: replace M_{ε} by approximation $\mathsf{M}_{\varepsilon}^L$ such that

- $ightharpoonup {\mathsf{M}}^L_{arepsilon}$ corresponds to positive definite matrix (stability)
- ▶ $\mathsf{M}_{\varepsilon}^L$ is good approximation for M_{ε} (accuracy)
- $\blacktriangleright~(\mathsf{M}^L_\varepsilon)^{-1}$ can be applied efficiently (efficiency)

construction of M^L_ε usually via numerical quadrature.

Use a larger polynomial space

$$\widetilde{\boldsymbol{V}}_h(T) = \mathcal{NC}_1(T) = P_1(T)^2$$

Use a larger polynomial space

$$\widetilde{\boldsymbol{V}}_h(T) = \mathcal{NC}_1(T) = P_1(T)^2$$

Lemma. $\widetilde{\mathsf{M}}^L_{\varepsilon}$ is block diagonal and thus also $(\widetilde{\mathsf{M}}^L_{\varepsilon})^{-1}.$

Use a larger polynomial space

$$\widetilde{\boldsymbol{V}}_h(T) = \mathcal{NC}_1(T) = P_1(T)^2$$

Lemma. $\widetilde{\mathsf{M}}^L_{\varepsilon}$ is block diagonal and thus also $(\widetilde{\mathsf{M}}^L_{\varepsilon})^{-1}$.

Use a larger polynomial space

$$\widetilde{\boldsymbol{V}}_h(T) = \mathcal{NC}_1(T) = P_1(T)^2$$

Lemma. $\widetilde{\mathsf{M}}^L_{\varepsilon}$ is block diagonal and thus also $(\widetilde{\mathsf{M}}^L_{\varepsilon})^{-1}$.

Use a larger polynomial space

$$\widetilde{\boldsymbol{V}}_h(T) = \mathcal{NC}_1(T) = P_1(T)^2$$

Lemma. $\widetilde{\mathsf{M}}^L_\varepsilon$ is block diagonal and thus also $(\widetilde{\mathsf{M}}^L_\varepsilon)^{-1}.$

Use a larger polynomial space

$$\widetilde{\boldsymbol{V}}_h(T) = \mathcal{NC}_1(T) = P_1(T)^2$$

Lemma. $\widetilde{\mathsf{M}}^L_{\varepsilon}$ is block diagonal and thus also $(\widetilde{\mathsf{M}}^L_{\varepsilon})^{-1}$.

Theorem (accuracy)

If $oldsymbol{E}$ is sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_h(t)\|_{H(\text{curl})} \le Ch$$

2020 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

Use a larger polynomial space

$$\widetilde{\boldsymbol{V}}_h(T) = \mathcal{NC}_1(T) = P_1(T)^2$$

Lemma. $\widetilde{\mathsf{M}}^L_\varepsilon$ is block diagonal and thus also $(\widetilde{\mathsf{M}}^L_\varepsilon)^{-1}.$

Theorem (accuracy)

If $oldsymbol{E}$ is sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_h(t)\|_{H(\text{curl})} \le Ch$$

2020 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

Proof Idea: Error splitting in discrete and projection error, discrete stability, energy estimates, consistency error, analysis of the quadrature error (Strang).

Use a larger polynomial space

$$\widetilde{\boldsymbol{V}}_h(T) = \mathcal{NC}_1(T) = P_1(T)^2$$

Lemma. $\widetilde{\mathsf{M}}^L_{\varepsilon}$ is block diagonal and thus also $(\widetilde{\mathsf{M}}^L_{\varepsilon})^{-1}.$

Theorem (accuracy)

If $oldsymbol{E}$ is sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_h(t)\|_{H(\text{curl})} \le Ch$$

▶ 2020 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

Proof Idea: Error splitting in discrete and projection error, discrete stability, energy estimates, consistency error, analysis of the quadrature error (Strang).

Requirement : The quadrature rule must be exact for $P_0(T)^2 imes \widetilde{m{V}}_h(T)$

A projection matrix and its properties

Consider the projection $\Pi_P: \mathcal{NC}_1 \to \mathcal{N}_0$ realized algebraically by the matrix P:

such that $PP^{\top} = Id$. Then

$$\mathsf{M} \coloneqq \mathsf{P}\widetilde{\mathsf{M}}\mathsf{P}^\top \qquad \mathsf{and} \qquad \mathsf{K} \coloneqq \mathsf{P}\widetilde{\mathsf{K}}\mathsf{P}^\top$$

are mass and stiffness matrices for \mathcal{N}_0 w.r.t. the projected basis. Moreover,

$$\widetilde{\mathsf{K}} = \mathsf{P}^{\mathsf{T}} \mathsf{K} \mathsf{P}$$

since both \mathcal{NC}_1 and \mathcal{N}_0 produce the same curls, i.e. $\operatorname{curl} \Pi_P v_h = \operatorname{curl} v_h$. This is a consequence of the commuting diagram property

Reduction to one DOF per edge

Let $\widetilde{\mathbf{e}}(t)$ be the coefficient vector to $\boldsymbol{E}_h(t)$, and it satisfies

$$\widetilde{\mathsf{M}}_{\varepsilon}^{L}\partial_{tt}\widetilde{\mathbf{e}}(t) + \widetilde{\mathsf{K}}\widetilde{\mathbf{e}}(t) = 0$$

Then $e(t) := P\widetilde{e}(t)$ satisfies

$$\begin{split} \partial_{tt}\mathbf{e}(t) &= \mathsf{P}\partial_{tt}\widetilde{\mathbf{e}}(t) = -\mathsf{P}(\widetilde{\mathsf{M}}_{\varepsilon}^{L})^{-1}\widetilde{\mathsf{K}}\widetilde{\mathbf{e}}(t) = -\mathsf{P}(\widetilde{\mathsf{M}}_{\varepsilon}^{L})^{-1}\mathsf{P}^{\mathsf{T}}\mathsf{K}\mathsf{P}\widetilde{\mathbf{e}}(t) \\ &= -\mathsf{P}(\widetilde{\mathsf{M}}_{\varepsilon}^{L})^{-1}\mathsf{P}^{\mathsf{T}}\mathsf{K}\mathbf{e}(t) \end{split}$$

Thus $\mathbf{e}(t)$ satisfies

$$\mathsf{M}_{\varepsilon}^{L}\partial_{tt}\mathbf{e}(t) + \mathsf{K}\mathbf{e}(t) = 0$$

where $(\mathsf{M}^L_\varepsilon)^{-1} = \mathsf{P} \; (\widetilde{\mathsf{M}}^L_\varepsilon)^{-1} \; \mathsf{P}^\top$. **Note:** M^L_ε is not a FEM matrix.

Theorem (accuracy) If E is sufficiently smooth, then $E_h(t) \coloneqq \Pi_{\mathsf{P}} \widetilde{E}_h(t)$ satisfies

$$\|\boldsymbol{E}(t) - \boldsymbol{E}_h(t)\|_{H(\text{curl})} \le Ch$$

Impact on the matrices

Let us investigate the impact of the reduction (visually)

Inverse of M_{ε} on the left, the inverse of M_{ε} on the right.

$$(\varepsilon \partial_{tt} \widetilde{\boldsymbol{E}}_h(t), \widetilde{\boldsymbol{v}}_h)_h + (\operatorname{curl} \widetilde{\boldsymbol{E}}_h(t), \operatorname{curl} \widetilde{\boldsymbol{v}}_h) = 0$$

$$\begin{aligned} & & \Downarrow \\ \mathbf{e}(t) \coloneqq \mathsf{P}\widetilde{\mathbf{e}}(t) \\ & & \Downarrow \end{aligned}$$

$$\partial_{tt}\mathbf{e}(t) = -(\mathsf{P}(\widetilde{\mathsf{M}}^L_\varepsilon)^{-1}\mathsf{P}^\top)\mathsf{K}\mathbf{e}(t)$$

$$(\varepsilon d_{\tau\tau} \widetilde{\boldsymbol{E}}_{h}^{n}, \widetilde{\boldsymbol{v}}_{h})_{h} + (\operatorname{curl} \widetilde{\boldsymbol{E}}_{h}^{n}, \operatorname{curl} \widetilde{\boldsymbol{v}}_{h}) = 0$$

$$\mathbf{e}^n \coloneqq \mathsf{P}\widetilde{\mathbf{e}}^n \\ \Downarrow$$

$$\frac{\mathbf{e}^{n+1} - 2\mathbf{e}^n + \mathbf{e}^{n-1}}{\tau^2} = -(\mathsf{P}(\widetilde{\mathsf{M}}_\varepsilon^L)^{-1}\mathsf{P}^\top)\mathsf{K}\mathbf{e}^n$$

$$(\varepsilon d_{\tau\tau} \widetilde{\boldsymbol{E}}_h^n, \widetilde{\boldsymbol{v}}_h)_h + (\operatorname{curl} \widetilde{\boldsymbol{E}}_h^n, \operatorname{curl} \widetilde{\boldsymbol{v}}_h) = 0$$

$$\mathbf{e}^n \coloneqq \mathsf{P}\widetilde{\mathbf{e}}^n \\ \Downarrow$$

$$\mathbf{e}^{n+1} = 2\mathbf{e}^n - \mathbf{e}^{n-1} - \tau^2 (\mathsf{P}(\widetilde{\mathsf{M}}^L_\varepsilon)^{-1} \mathsf{P}^\top) \mathsf{K} \mathbf{e}^n$$

$$(\varepsilon d_{\tau\tau} \widetilde{\boldsymbol{E}}_{h}^{n}, \widetilde{\boldsymbol{v}}_{h})_{h} + (\sigma d_{\tau} \widetilde{\boldsymbol{E}}_{h}^{n}, \widetilde{\boldsymbol{v}}_{h})_{h} + (\operatorname{curl} \widetilde{\boldsymbol{E}}_{h}^{n}, \operatorname{curl} \widetilde{\boldsymbol{v}}_{h}) = 0$$

$$\begin{split} \mathbf{e}^{n+1} &= 2\mathbf{e}^n - \mathbf{e}^{n-1} - \tau^2 (\mathsf{P}(\widetilde{\mathsf{M}}_{\varepsilon}^L + \tfrac{\tau}{2} \widetilde{\mathsf{M}}_{\sigma}^L)^{-1} \mathsf{P}^\top) \mathsf{K} \mathbf{e}^n \\ &- \tau^2 (\mathsf{P}(\widetilde{\mathsf{M}}_{\varepsilon}^L + \tfrac{\tau}{2} \widetilde{\mathsf{M}}_{\sigma}^L)^{-1} \left(\widetilde{\mathsf{M}}_{\sigma}^L \frac{\widetilde{\mathbf{e}}^n - \widetilde{\mathbf{e}}^{n-1}}{\tau} \right) \end{split}$$

$$(\varepsilon d_{\tau\tau} \widetilde{\boldsymbol{E}}_h^n, \widetilde{\boldsymbol{v}}_h) + (\sigma d_{\tau} \widetilde{\boldsymbol{E}}_h^n, \widetilde{\boldsymbol{v}}_h)_h + (\operatorname{curl} \widetilde{\boldsymbol{E}}_h^n, \operatorname{curl} \widetilde{\boldsymbol{v}}_h) = 0$$

$$\mathbf{e}^n\coloneqq\mathsf{P}\widetilde{\mathbf{e}}^n$$

$$\begin{split} \mathbf{e}^{n+1} &\coloneqq 2\mathbf{e}^n - \mathbf{e}^{n-1} - \tau^2 \big(\mathsf{P} \big(\widetilde{\mathsf{M}}_{\varepsilon}^L + \tfrac{\tau}{2} \widetilde{\mathsf{M}}_{\sigma}^L \big)^{-1} \mathsf{P}^\top \big) \mathsf{K} \mathbf{e}^n \\ &- \tau^2 \big(\mathsf{P} \big(\widetilde{\mathsf{M}}_{\varepsilon}^L + \tfrac{\tau}{2} \widetilde{\mathsf{M}}_{\sigma}^L \big)^{-1} \left(\mathsf{P}^\top \mathsf{M}_{\sigma} \mathsf{P} \frac{\widetilde{\mathbf{e}}^n - \widetilde{\mathbf{e}}^{n-1}}{\tau} \right) \end{split}$$

Recall:

$$\widetilde{\mathsf{K}} = \mathsf{P}^{\top} \mathsf{K} \mathsf{P} \qquad \text{but} \qquad \widetilde{\mathsf{M}}_{\sigma}^{L} \neq \mathsf{P}^{\top} \mathsf{M}_{\sigma} \mathsf{P}$$

$$(\varepsilon d_{\tau\tau} \widetilde{\boldsymbol{E}}_{h}^{n}, \widetilde{\boldsymbol{v}}_{h})_{h} + (\boldsymbol{\sigma} d_{\tau} \widetilde{\boldsymbol{E}}_{h}^{n}, \widetilde{\boldsymbol{v}}_{h})_{h} + (\operatorname{curl} \widetilde{\boldsymbol{E}}_{h}^{n}, \operatorname{curl} \widetilde{\boldsymbol{v}}_{h}) = 0$$

$$\mathbf{e}^n\coloneqq \mathsf{P}\widetilde{\mathbf{e}}^n \ lacksquare$$

$$\begin{split} \mathbf{e}^{n+1} \coloneqq 2\mathbf{e}^n - \mathbf{e}^{n-1} - \tau^2 (\mathsf{P}(\widetilde{\mathsf{M}}_\varepsilon^L + \tfrac{\tau}{2}\widetilde{\mathsf{M}}_\sigma^L)^{-1}\mathsf{P}^\top) \mathsf{K} \mathbf{e}^n \\ &- \tau^2 (\mathsf{P}(\widetilde{\mathsf{M}}_\varepsilon^L + \tfrac{\tau}{2}\widetilde{\mathsf{M}}_\sigma^L)^{-1}\mathsf{P}^\top \mathsf{M}_\sigma \frac{\mathbf{e}^n - \mathbf{e}^{n-1}}{\tau} \end{split}$$

$$((\varepsilon + \frac{\tau}{2}\sigma)d_{\tau\tau}\widetilde{\boldsymbol{E}}_{h}^{n}, \widetilde{\boldsymbol{v}}_{h})_{h} + (\sigma\Pi_{\mathsf{P}}d_{\tau}\widetilde{\boldsymbol{E}}_{h}^{n-1/2}, \Pi_{\mathsf{P}}\widetilde{\boldsymbol{v}}_{h}) + (\operatorname{curl}\widetilde{\boldsymbol{E}}_{h}^{n}, \operatorname{curl}\widetilde{\boldsymbol{v}}_{h}) = 0$$

$$\mathbf{e}^n \coloneqq \mathsf{P}\widetilde{\mathbf{e}}^n$$

$$\downarrow$$

$$\begin{split} \mathbf{e}^{n+1} \coloneqq 2\mathbf{e}^n - \mathbf{e}^{n-1} - \tau^2 (\mathsf{P}(\widetilde{\mathsf{M}}_\varepsilon^L + \tfrac{\tau}{2}\widetilde{\mathsf{M}}_\sigma^L)^{-1}\mathsf{P}^\top) \mathsf{K} \mathbf{e}^n \\ &- \tau^2 (\mathsf{P}(\widetilde{\mathsf{M}}_\varepsilon^L + \tfrac{\tau}{2}\widetilde{\mathsf{M}}_\sigma^L)^{-1}\mathsf{P}^\top \mathsf{M}_\sigma \frac{\mathbf{e}^n - \mathbf{e}^{n-1}}{\tau} \end{split}$$

Let's do some numerics...

1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
-1
-0.5
0
0.5
0

Figure: \mathcal{NC}_1 method with mass-lumping

Figure: Reduced \mathcal{NC}_1 method (to \mathcal{N}_0)

Let's do some numerics...

Let's do some numerics...

Convergence order tanks...

$$((\varepsilon + \frac{\tau}{2}\sigma)d_{\tau\tau}\widetilde{\boldsymbol{E}}_{h}^{n}, \widetilde{\boldsymbol{v}}_{h})_{h} + (\sigma\Pi_{\mathsf{P}}d_{\tau}\widetilde{\boldsymbol{E}}_{h}^{n-1/2}, \Pi_{\mathsf{P}}\widetilde{\boldsymbol{v}}_{h}) + (\operatorname{curl}\widetilde{\boldsymbol{E}}_{h}^{n}, \operatorname{curl}\widetilde{\boldsymbol{v}}_{h}) = 0$$

Theorem (accuracy) If E is sufficiently smooth, then $E_h^n\coloneqq \Pi_{\mathsf{P}}\widetilde{E}_h^n$ satisfies $\|E^n-E_h^n\|_{H(\mathrm{curl})}\le C(h^{1/2}+\tau^2)$

$$((\varepsilon + \frac{\tau}{2}\sigma)d_{\tau\tau}\widetilde{\boldsymbol{E}}_{h}^{n}, \widetilde{\boldsymbol{v}}_{h})_{h} + (\sigma\Pi_{\mathsf{P}}d_{\tau}\widetilde{\boldsymbol{E}}_{h}^{n-1/2}, \Pi_{\mathsf{P}}\widetilde{\boldsymbol{v}}_{h}) + (\operatorname{curl}\widetilde{\boldsymbol{E}}_{h}^{n}, \operatorname{curl}\widetilde{\boldsymbol{v}}_{h}) = 0$$

Theorem (accuracy) If E is sufficiently smooth, then $E_h^n \coloneqq \Pi_P \widetilde{E}_h^n$ satisfies $\|E^n - E_h^n\|_{H(\operatorname{curl})} \le C(h^{1/2} + \tau^2)$

Further complications for non-trivial boundary conditions ${m n} \times {m E}(t) = G(t).$ Again:

$$\|E^n - E_h^n\|_{H(\text{curl})} \le C(h^{1/2} + \tau^2)$$

Let's fix this!

$$\mathcal{N}_0^\dagger \coloneqq \operatorname{span} \left\{ \begin{array}{ll} \boldsymbol{\Phi}_0^e & \text{if e is an interior edge and } \sigma \text{ is smooth across it} \\ \boldsymbol{\Phi}_1^{e,1}, \boldsymbol{\Phi}_1^{e,2} & \text{if e is a boundary edge and } \sigma \text{ jumps across it} \end{array} \right\}$$

Define the projection $\Pi_{\mathsf{P}}^{\dagger}: \mathcal{NC}_1 \to \mathcal{N}_0^{\dagger}$ and the method:

$$((\varepsilon + \frac{\tau}{2}\sigma)d_{\tau\tau}\widetilde{\boldsymbol{E}}_{h}^{n}, \widetilde{\boldsymbol{v}}_{h})_{h} + (\sigma \boldsymbol{\Pi}_{\mathsf{P}}^{\dagger}d_{\tau}\widetilde{\boldsymbol{E}}_{h}^{n-1/2}, \boldsymbol{\Pi}_{\mathsf{P}}^{\dagger}\widetilde{\boldsymbol{v}}_{h}) + (\operatorname{curl}\widetilde{\boldsymbol{E}}_{h}^{n}, \operatorname{curl}\widetilde{\boldsymbol{v}}_{h}) = 0$$

Theorem (accuracy) If
$$E$$
 is sufficiently smooth, then $E_h^n\coloneqq \Pi_{\mathsf{P}}^\dagger \widetilde{E}_h^n$ satisfies $\|E^n-E_h^n\|_{H(\operatorname{curl})} \le C(h+\tau^2)$

Summary

▶ Derived 2 methods