

(51) Int. Cl.6:

(9) BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift [®] DE 195 21 924 A 1

DEUTSCHES PATENTAMT

(2) Aktenzeichen: 195 21 924.4 (2) Anmeldetag: 9. 6.95

Offenlegungstag: 18. 1.96

3 Innere Priorität: 3 3 3

24.06.94 DE 94 10 822.6 21.03.95 DE 295056258

7) Anmelder: Dr. Bruno Lange GmbH, 14163 Berlin, DE

(4) Vertreter: Christiansen, H., Dipl.-Ing., Pat.-Anw., 14195 Berlin © Erfinder: Simon, Helmut, Dr., 14165 Berlin, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Gefäß mit Schraubverschluß sowie Vorrichtung zum automatisierten Verschließen des Gefäßes
- Gefäß mit einem Schraubverschluß 1, 2 aus Polyvinylidenfluorid (PVDF), das insbesondere in Form einer Küvette 3
 einen Reagensbehälter zur photometrischen Analyse bildet,
 mit einem zur Anlage an der Innenseite des den Gewindebereich tragenden Halses des Gefäßes bestimmten konischen
 und/oder ballig-konvexen Dichtungselement 5, 6 sowie
 Vorrichtung zum automatisierten Verschließen des Gefäßes
 mit dem Schraubverschluß 1, 2.

Beschreibung

Die Erfindung betrifft ein Gefäß mit einem Schraubverschluß gemäß den Oberbegriffen des Anspruchs 1 sowie eine Vorrichtung bzw. ein Verfahren zum automatisierten Verschließen des Gefäßes gemäß dem Oberbegriff des Anspruchs 9.

Es ist bekannt, Fertig-Reagenzien in Küvettengefäßen aus Glas zu liefern, die eine als Schraubverschluß photometrische Bestimmung durch Einsetzen der Küvette in ein Photometer und Hinzufügender Analysensubstanz erfolgt.

Zur Abdichtung weisen die bekannten Schraubverschlüsse ein in der Regel aus Kunststoff bestehendes 15 rotationssymmetrisches Dichtungselement auf, welches sich an der Innenseite des das Gewinde aufweisenden Halses anlegt und damit eine Dichtwirkung erzeugt.

Die bisher verwendeten Kunststoffe sind gegen verschiedene in dem Gefäß zu verwahrende Substanzen 20 nicht beständig. Wenn der Kunststoff mit der Zeit angegriffen wird, ist aber naturgemäß auch die Dichtwirkung nicht mehr sichergestellt. Insbesondere die Aufbewahrung von Chrom-Schwefelsäure bereitet hierbei Probleme.

Beim Verschließen der bekannten Gefäße mit den bekannten Schraubverschlüssen wird in der Regel der Schraubverschluß solange zugedreht, bis dieser mit der Innenseite seines Deckels oben auf dem Hals des Gefä-Bes aufsetzt. Nach dem Aufsetzen des Schraubverschlusses auf den Hals des Gefäßes wird dieser aufgrund mangelnder Sorgfalt des Benutzers oder wegen der Trägheit der Verschließvorrichtung oftmals noch weiter mit einem Drehmoment beaufschlagt. Hierdurch entste-Schraubverschluß, die diesen beschädigen können. Insbesondere bei Schraubverschlüssen, die mehrfach verwendet werden sollen, wirkt sich dies störend aus.

Es ist deshalb insbesondere die Aufgabe der Erfindung, ein Gefäß der eingangs genannten Gattung zu 40 schaffen, welches einen Schraubverschluß aus Kunststoff aufweist, der langfristig auch gegen aggressive Chemikalien, insbesondere gegen Chrom-Schwefelsäure beständig ist.

Zusätzlich soll eine Vorrichtung bzw. ein Verfahren 45 Gefäße verwendet werden. geschaffen werden, mit der ein Schraubverschluß automatisiert zugedreht und dabei in seiner Dichtwirkung überprüft werden kann.

Die Aufgabe wird mit den im kennzeichnenden Teil des Anspruchs 1, bzw. - hinsichtlich der Vorrichtung 50 bzw. dem Verfahren zum automatisierten Verschließen des Gefäßes - mit den im kennzeichnenden Teil des Anspruchs 16 angegebenen Maßnahmen gelöst.

Die Erfindung schließt die technische Lehre ein, daß ein konisches und/oder ballig konvex geformtes Dich- 55 tungselement eine im wesentlichen zylindrische Öffnung eines Gefäßes verschließt, wobei sich das Dichtungselement infolge der im wesentlichen in radialer Richtung wirkenden Anpreßkraft in seiner Form verändert und an die Öffnung des Gefäßes anpaßt.

Die Erfindung geht von der Erkenntnis aus, daß sich Kunststoff, insbesondere Polyvinylidenfluorid (PVDF) oder Polyhexafluorpropylen (HFP) bzw. das Copolymer Polyvinylidenfluorid (PVDF) / Polyhexafluorpropylen Verformung - auch als Kaltfließen bezeichnet - führt beim Verschließen des Gefäßes mit dem Schraubverschluß dazu, daß sich das Dichtungselement verformt und der Oberfläche der Innenseite des Halses des Gefäßes anpaßt, wodurch eine optimale Dichtwirkung erreicht wird.

Wegen der verbleibenden elastischen Vorspannung kann sich der Kunststoff während des Kaltfließvorgangs im Verlauf von einigen Tagen der Gefäßwandung noch präziser anpassen, wobei gleichzeitig das aufzubringende Schraubmoment verringert wird.

Dadurch ist das erforderliche Drehmoment beim Öffausgebildete Verschlußkappe aufweisen, wobei eine 10 nen des Schraubverschlusses geringer als beim Schließen. Auf diese Weise kann der Schraubverschluß zur Erzielung einer optimalen Dichtwirkung mit dem durch die Stabilität des Halses des Gefäßes begrenzten maximal zulässigen Drehmoment angezogen werden und trotzdem auch manuell leicht wieder zu öffnen.

Der Schraubverschluß weist ein hohlzylindrisches Dichtungselement auf, das im verschlossenen Zustand an der Innenseite des Halses des Gefäßes anliegt und so eine Dichtwirkung herstellt. Hierzu weist das Dichtungselement einen axialen Teilbereich auf, in dem der Außenradius des Dichtungselements größer ist als der Innenradius des Halses des Gefäßes. Hierdurch wird sichergestellt, daß zwischen dem Dichtungselement und dem Hals des Gefäßes eine Preßpassung entsteht. 25 Durch die infolge der Preßpassung auftretende radiale Spannung verformt sich das Dichtungselement teilweise plastisch und paßt sich der Form und der Oberflächenstruktur der Innenseite des Halses gut an.

Die Preßpassung tritt dabei nur in einem axialen Teilbereich des Dichtungselements auf. Die von dem Hals des Gefäßes auf das Dichtungselement aufzubringenden radialen Kräfte konzentrieren sich also auf den Bereich des Dichtungselements, in dem dessen Außenradius größer ist als der Innenradius des Halses. Da diese hen relativ große mechanische Spannungen in dem 35 radialen Kräfte also nur von einem relativ kleinen Flächenbereich und nicht von der gesamten Wandungsfläche des Dichtungselements aufgenommen werden, herrscht im Bereich der Preßpassung eine relativ hohe Spannung und demzufolge eine gute Formanpassung von Dichtungselement und Hals. Die zur Erzeugung einer bestimmten Spannung von dem Hals des Gefäßes aufzubringenden radialen Kräfte sind deshalb geringer als bei den bekannten Anordnungen. Es können deshalb vorteilhaft härtere Kunststoffe oder dünnwandigere

> In einer Variante der Erfindung ist die Außenwandung des Dichtungselements in Richtung der Gewindeachse ballig, insbesondere faßartige, konvex geformt. Der Radius des Dichtungselements nimmt also von seinem freien Ende zum Fußbereich zunächst bis zu einem maximalen Radius zu und anschließend wieder auf den Radius im Fußbereich ab.

> Der Radius des Dichtungselements an seinem freien Ende ist dabei kleiner als der Innenradius des Halses des Gefäßes unmittelbar an der Öffnung. Hierdurch wird das Aufsetzen des Schraubverschlusses erleichtert, da dieser selbstzentrierend wirkt.

Das Dichtungselement weist in dieser Variante der Erfindung in der Mitte einen axialen Teilbereich auf, in 60 dem sein Außenradius größer ist als der Innenradius des Halses des Gefäßes. Dadurch entsteht in einem im wesentlichen zylindermantelförmigen Bereich eine Preßpassung von Dichtungselement und Hals des Gefäßes. Da die Preßpassung sich nur auf einen axialen Teilbe-(HFP), unter Druck plastisch verformt. Diese plastische 65 reich und nicht auf die gesamte Außenwandung des Dichtungselements erstreckt, ist der lokale Druck am Ort der Preßpassung relativ hoch, was zu einer guten Formanpassung und damit zu einer guten Dichtwirkung

3

führt.

Das Übermaß des Dichtungselements gegenüber dem Hals des Gefäßes ist dabei so bemessen, daß einerseits der Hals den von dem Dichtungselement ausgeübten radialen Kräften standhält und andererseits das Kaltfließen des Kunststoffs erreicht wird.

Die Höhe der auftretenden Spannungen ist bei dieser Variante der Erfindung ausschließlich durch die Form des Dichtungselements und des Halses des Gefäßes soments bestimmt.

Das Dichtungselement hat die Funktion, ein Entweichen der in dem Gefäß enthaltenen Substanz zu verhindern. Die Strömungsrichtung der Substanz beim Ent-Bes - im wesentlichen axial. Da die das Gefäß abdichtende Preßpassung des Dichtungselements eine axiale Erstreckung aufweist, ist die Zuverlässigkeit der Dichtung besonders hoch. Insbesondere werden Fehlstellen in der Außenwand des Dichtungselements oder der In- 20 nenwand des Halses des Gefäßes, wie vorzugsweise in azimuthaler Richtung verlaufende Riefen, von der Preßpassung abgedeckt und führen so nicht zu einer Beeinträchtigung der Dichtwirkung.

In einer Variante der Erfindung nimmt der Quer- 25 schnitt des hohlzylindrischen Dichtungselements von seinem freien Ende zu seinem Fußbereich hin im wesentlichen kontinuierlich ab.

Auf diese Weise wird sichergestellt, daß bei einer Belastung des Dichtungselements in radialer Richtung von 30 außen her die Nachgiebigkeit in umgekehrter Weise zum Fußpunkt hin abnimmt. Da andererseits die in Bezug auf eine tangentiale Achse wirkende tordierende Belastung (bezogen auf die radial gerichtete Darstellungsebene) durch den entstehenden Hebelarm im Fußpunkt am größten ist, wird durch diese Bemessung sichergestellt, daß das Dichtungselement beim Einführen in den Mündungsbereich des Gefäßes entlang eines tangential gerichteten äquatorial streifenförmigen Anlagebereichs sicher dichtend anliegt. Der streifenförmige 40 Anlagebereich weist eine hohe Flächenpressung auf, so daß nach dem Einsetzen durch das eintretende Kaltfließen des Kunststoffs eine Dichtwirkung unter Anpassung an die Glasoberfläche im mikrokopischen Bereich eintritt.

Zusammenfassend läßt sich für diese Variante der Erfindung sagen, daß die ballige Außenform des Dichtungselements einen guten Kompromiß darstellt zwischen den Anforderungen eines möglichst großen lokalen Drucks in der Preßpassung einerseits und einer 50 möglichst großen axialen Erstreckung der Preßpassung zur Abdeckung von Fehlstellen andererseits.

In einer anderen Variante der Erfindung weist der Schraubverschluß ein konisches Dichtungselement auf, das beim Verschließen des Gefäßes mit seiner sich ver- 55 jüngenden Seite in die kreisförmige Öffnung des Gefä-Bes im wesentlichen axial eingeführt wird.

Der Radius des konischen Dichtungelements ist dabei an seinem freien Ende kleiner als der Radius des Halses unmittelbar an der Öffnung des Gefäßes. Hierdurch hat 60 das Dichtungselement vorteilhaft eine Zentrierwirkung, in dem es bei einem leicht exzentrischen Aufsetzen des Schraubverschlusses auf den Hals des Gefäßes den Schraubverschluß beim weiteren Hineingleiten des koeine zentrische Lage zwingt. Hierdurch ist es vorteilhaft möglich, den Schraubverschluß mit relativ geringer Genauigkeit zu positionieren.

Das konische Dichtungselement weist einen axialen Bereich auf, in dem sein Radius größer oder gleich dem Radius der Öffnung des Gefäßes ist. Hierdurch wird sichergestellt, daß das Dichtungselement groß genug ist, um die Öffnung des Gefäßes abzudichten.

Darüber hinaus wird durch die konische Form des Dichtungselements eine annähernd parallele und fluchtende Ausrichtung der Gewindeachsen des Schraubverschlusses und des außen an dem Hals des Gefäßes bewie durch die Materialeigenschaften des Dichtungsele- 10 findlichen Außengewindes erreicht. Schließt das konische Dichtungselement die Öffnung des Gefäßes locker ab, so ist bei einem Hals mit einer zylindrischen Innenseite eine Verdrehung der Gewindeachsen des Schraubverschlusses und des Außengewindes und damit des Geweichen ist dabei - bedingt durch die Form des Gefä- 15 fäßes maximal um den Konuswinkel des konischen Dichtungselements möglich. Je kleiner dieser Winkel gewählt ist und je größer die Tiefe ist, bis zu der das konische Dichtungselement in dem Hals des Gefäßes steckt, desto besser ist die erzwungene Ausrichtung der beiden Gewindeachsen. Dadurch wird ein korrekter Eingriff des Gewindes des Schraubverschlusses in das Außengewinde des Gefäßes erzwungen und damit das Gewinde geschont.

Beim Verschließen des Gefäßes bildet sich in dieser Variante der Erfindung zunächst eine kreisringförmige Kontaktfläche des konischen Dichtungselements mit der Innenseite des Halses des Gefäßes. Beim weiteren Zudrehen des Schraubverschlusses wird das Dichtungselement an der Kontaktfläche radial auf Druck beansprucht und paßt sich in seiner Form an die Innenseite des Halses an. Zur Erreichung einer optimalen Dichtwirkung ist ein möglichst großer lokaler Druck auf das Dichtungselement erwünscht. Der maximal mögliche Druck ist jedoch durch die von dem Hals maximal aufnehmbaren radialen Kräfte begrenzt. Bei dem erfindungsgemäßen Schraubverschluß ist die Kontaktfläche von Dichtungselement und Hals des Gefäßes minimal bzw. bei einer geometrisch idealisierten Betrachtung der "Kontaktfläche" eines Konus mit der Mündung eines Hohlzylinders sogar Null. Der entstehende Druck als Quotient aus Anpreßkraft und Kontaktfläche ist bei dieser Variante der Erfindung deshalb sehr hoch, wodurch vorteilhaft eine gute Dichtwirkung erreicht wird.

Beim Zudrehen des Schraubverschlusses wird die In-₄₅ nenkante des Halses des Gefäßes in das konische Dichtungselement hineingedrückt. Zum Entweichen eines Teilchens der in dem Gefäß befindlichen Substanz aus dem Gefäß muß das Teilchen die Preßpassung aus Dichtungselement und Hals des Gefäßes passieren und dabei zwangsläufig mehrmals seine Richtung wechseln, da es nur entlang dem Zwischenraum zwischen Dichtungselement und Hals entweichen kann. Durch diese erzwungene mehrfache Richtungsänderung wird der das entweichende Teilchen antreibende effektive Druck verringert und damit die Dichtwirkung erhöht. Die Dichtung wirkt also bei dieser Variante der Erfindung zusätzlich als Labyrinthdichtung.

Beim Zudrehen des Schraubverschlusses wird dieser auch nach Eintritt einer ersten Dichtwirkung weiter zugedreht, um die Dichtwirkung noch zu steigern. Dabei wird das in dem Gefäß befindliche Volumen infolge der axialen Bewegung des Dichtungselements beim Zudrehen komprimiert.

Bei dieser Variante der Erfindung ist die Höhe der nischen Dichtungselements in den Hals des Gefäßes in 65 auftretenden Spannung - im Gegensatz zu der Variante mit dem balligen Dichtungselement - nicht nur durch die Form und die Materialeigenschaften von Dichtungselement und Hals bestimmt, sondern auch

durch das Aufschraubmoment bzw. durch den Aufschraubwinkel. Aus diesem Grund läßt sich bei dieser Variante ein Schraubverschluß für Gefäße mit unterschiedlichen Innenradien des Halses und unterschiedlichen Festigkeiten verwenden, da die beim Zuschrauben entstehenden Spannungen durch das Aufschraubmoment gesteuert werden können.

Auch ist bei dieser Variante der Erfindung der Einschraubbereich, innerhalb dessen ein relativ großes Drehmoment aufzubringen ist, kürzer als bei der Vari- 10 ante mit dem balligen Dichtungselement. Die beim Zuschrauben zu verrichtende mechanische Arbeit ist deshalb geringer.

In einer Ausführungsform der Erfindung nimmt die Stärke der Wandung des Dichtungselements von sei- 15 nem freien Ende zu seinem Fußbereich hin zu. Die Nachgiebigkeit des Dichtungselements in radialer Richtung nimmt deshalb von dem freien Ende zum Fußbereich hin ab. Beim Zudrehen des Schraubverschlußes ist also zunächst die Nachgiebigkeit relativ hoch und 20 nimmt mit dem Drehwinkel ab. Hierdurch wird vorteilhaft ein weiches Ansprechen des Schraubverschlusses einer progressiven Drehmoment-Drehwinkel-Kennlinie erreicht. Darüberhinaus wird hierdurch der Tatsache Rechnung getragen, daß das von dem Dich- 25 tungselement aufzunehmende axiale Drehmoment im Fußbereich am größten ist und zum freien Ende des Dichtungselements hin abnimmt.

Bei der Ausführungsform der Erfindung mit einem konischen Dichtungselement nimmt das Übermaß des 30 Dichtungselements gegenüber dem Hals des Gefäßes an der Kontaktstelle wegen der konischen Form beim Zudrehen mit zunehmendem Drehwinkel zu. Mit dem Übermaß steigt infolge der zu überwindenden Reibungskräfte auch das zum Zudrehen erforderliche 35 Drehmoment. Während des Zudrehens des Schraubverschlusses zeigt also das Drehmoment - mathematisch betrachtet - über dem Drehwinkel einen streng monoton steigenden Verlauf. Mit dem Übermaß nimmt ebenfalls der von dem Hals des Gefäßes auf das Dich- 40 tungselement ausgeübte Druck und damit die Qualität der Dichtwirkung zu. Das zum Zudrehen des Schraubverschlusses erforderliche Drehmoment kennzeichnet also die Qualität der Dichtwirkung.

ligen Außenform des Dichtungselements nimmt das Drehmoment ebenfalls zunächst streng monoton zu. Wenn jedoch im Verlauf des Zudrehens die Preßpassung zwischen dem Dichtungselement und dem Hals des Gefäßes auf der ganzen Länge ihrer axialen Erstrek- 50 kung entstanden ist, bleibt das Drehmoment beim weiteren Zudrehen des Schraubverschlusses im wesentlichen konstant. Auch bei dieser Ausführungsform ist also das zum Zudrehen des Schraubverschlusses erforderli-

Bei einer weiteren günstigen Ausführung der Erfindung werden die ballige Außenform des Dichtungselement es mit der konischen kombiniert, so daß sich beide Bereiche in ihrer vorteilhaften Wirkung ergänzen. Hierbei können die jeweiligen Eigenschaften insbesondere so eingestellt werden, daß wechselseitig gerade in Grenzbereichen der Wirkung der einen Dichtung die andere ein maximales Dichtvermögen erzeugt und um-

Als Kunststoff ist ein Werkstoff zu verwenden, der in seinem Fließverhalten und seiner Beständigkeit den durch das hier beschriebene Vorgehen umrissenen An-

forderungen genügt. Hierfür sind insbesondere die genannten geeignet. Diese haben den Vorteil, daß sie sich auch zu Kennzeichnungszwecken einfärben lassen und hierbei ihre vorteilhaften Eigenschaften im wesentlichen beibehalten.

Eine Weiterbildung der Erfindung von eigener schutzwürdiger Bedeutung sieht deshalb eine Vorrichtung zum automatisierten Verschließen eines Gefäßes mit dem erfindungsgemäßen Schraubverschluß vor, die das Drehmoment beim Zudrehen des Schraubverschlusses mißt.

Hierbei ist ein Greifer vorgesehen, der einen Schraubverschluß aufnehmen und über der Öffnung des Gefäßes so positionieren kann, daß die Gewindeachsen des Schraubverschlusses und des Gefäßes im wesentlichen fluchten.

Der Greifer besteht vorzugsweise aus einem rotationssymmetrischen, hohlen, einseitig offenen Kunststoffelement, dessen Innenraum sich entlang der Rotationsachse konisch verjüngt. Der Innendurchgeber des Kunststoffelements ist an der Öffnung etwas größer als der Durchgeber der Außenwandung des Schraubverschlusses, sinkt jedoch nach innen hin unter diesen Wert ab. Durch die konische Innenform entsteht deshalb beim axialen Aufdrücken auf den Schraubverschluß eine kraftschlüssige Verbindung von Greifer und Schraubverschluß, die es erlaubt, den Schraubverschluß aufzunehmen und das zum Zudrehen erforderliche Drehmoment auf diesen aufzubringen.

Der Greifer ist im wesentlichen parallel zur Gewindeachse des Gefäßes verschiebbar, so daß der Schraubverschluß auf das Gefäß aufgesetzt werden kann. In einer Weiterbildung erfolgt diese Verschiebung durch einen Motorantrieb.

Weiterhin weist die Vorrichtung einen Drehwinkelgeber und einen Drehmomentgeber auf.

Zur Steuerung des Verschließens ist insbesondere ein Schwellwertglied vorgesehen, das als Schwellwerte zunächst einen maximalen Drehwinkel und ein maximales Drehmoment aufweist. Wird einer dieser beiden Schwellwerte überschritten, so gibt das Schwellwertglied ein Signal an eine Steuereinheit, die den Antrieb anhält.

In diesem Fall ist entweder der Schraubverschluß Bei der Ausführungsform der Erfindung mit einer bal- 45 oder das Gefäß fehlerhaft oder der Schraubverschluß nicht richtig auf das Gefäß aufgesetzt.

Bei einem Durchrutschen des Schraubverschlusses infolge eines fehlerhaften Gewindes wird so das Zudrehen des Schraubverschlusses nach Erreichen des maximalen Drehwinkels abgebrochen. Durch die Begrenzung auf das maximale Drehmoment wird vorzugsweise das Zudrehen eines schief aufgesetzten Schraubverschlusses mit entsprechend hohem Drehmoment abgebrochen.

In einer vorteilhaften Variante der Erfindung weist che Drehmoment kennzeichnend für die Qualität der 55 das Schwellwertglied zusätzlich einen minimalen Drehwinkel und ein minimales Drehmoment als weitere Schwellwerte auf. Liegt sowohl das Drehmoment oberhalb des minimalen Drehmoments als auch der Drehwinkel oberhalb des minimalen Drehwinkels, so wird das Zudrehen des Schraubverschlusses beendet, da die Dichtwirkung als hinreichend gut betrachtet werden

> Durch die vier Schwellwerte wird also ein "Drehmoment-Drehwinkel-Fenster" definiert. Dieses Fenster kennzeichnet den Bereich von Drehmoment und Drehwinkel, innerhalb dessen die Dichtwirkung des Schraubverschlusses als hinreichend gut betrachtet wird. Die Vorrichtung dreht nun den Schraubverschluß so lange

Spannungen verringert, die beim Zudrehen der Schraubkappe 1 entstehen, da die Spannungen an einspringenden Ecken mit zunehmendem Rundungsradius abnehmen.

zu, bis entweder das maximale Drehmoment oder der maximale Drehwinkel erreicht ist oder sowohl Drehmoment als auch Drehwinkel in das "Drehmoment-Drehwinkel-Fenster" hineinlaufen.

Dieser Konus 5 bildet mit seiner äußeren Oberfläche 5a eine Dichtung, welche ein Auslaufen des in definierter Menge in der Küvette 3 enthaltenen Reagens verhindert. Der Bereich I ist in Fig. 2 detailliert dargestellt.

In einer günstigen Weiterbildung der Erfindung ist 5 eine Selektionsvorrichtung vorgesehen, die diejenigen Gefäße kennzeichnet oder entfernt, deren Verschließen wegen Erreichen des maximalen Drehmoments oder des maximalen Drehwinkels bei nicht erreichten Solloder Minimalwerten der jeweils anderen Größe abge- 10 brochen wurde. Die Selektionsvorrichtung wertet hierzu das Ausgangssignal des Schwellwertglieds aus.

Ebenfalls an der Innenseite der Schraubkappe 1 ist ein Gewinde 7 angeformt, das so bemessen ist, daß es im verschlossenen Zustand paßgenau in das Gewinde 8 in der Außenwand des Halses der Küvette 3 eingreift.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der 15 bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:

Bei dem in Fig. 2 detailliert im Querschnitt dargestellten Bereich I von Fig. 1 ist erkennbar, daß der Konus 5 einen Konuswinkel von ca. 9° und an seinem Ansatz eine Verrundung mit einem Außenradius R1 aufweist, der größer ist als der Innenradius R5 der Öffnung der in Fig. 7 dargestellten Küvette 3. Dadurch dichtet der Konus 5 die Öffnung der Küvette 3 beim Hineindrehen bereits in einer Position vollständig ab, die nicht identisch zu sein braucht mit dem erreichten Endanschlag des Schraubdeckels. Es ist also nicht notwendig, die Schraubkappe 1 vollständig zuzudrehen, bis diese axial auf der Oberseite der Mündung 9 des Halses der Küvette 3 aufliegt.

Fig. 1 eine Verschlußkappe mit einem konischen Dichtungselement als Teil eines ersten Ausführungsbeispiels der Erfindung im Teilschnitt,

An dem in der Verjüngungsrichtung gelegenen Ende des Konus 5 weist dieser einen Außenradius R2 auf, der kleiner ist als der Innenradius R5 der Offnung der in Fig. 7 dargestellten Küvette 3. Dadurch wirkt der Ko-Ansatz als Teil eines dritten Ausführungsbeispiels der 30 nus 5 selbstzentrierend und die Schraubkappe 1 kann mit relativ geringer Positionierungsgenauigkeit aufgesetzt werden.

Fig. 2 das konische Dichtungselement der Verschluß-

In Fig. 3 ist eine Schraubkappe 2 im Teilschnitt dargestellt, welche auf den Schraubhals einer Küvette 3 gemäß Fig. 7 aufsetzbar ist. Die Schraubkappe 2 besteht aus PVDF, einem Kunststoff, der sich durch Härte und Chemikalienbeständigkeit auszeichnet. In dem in Fig. 3 links dargestellten, ungeschnittenen Bereich ist erkennbar, daß die Schraubkappe 2 an ihrer Außenwandung im oberen Bereich eine Rifflung 4 aufweist, welche das Aufbzw. Zudrehen der Schraubkappe 2 zum Öffnen bzw. Schließen der Küvette 3 erleichtert.

kappe gemäß Fig. 1 detailliert im Schnitt,

An der Innenseite der Schraubkappe 2 ist ein Dichtungselement 6 angeformt, welches durch die Wandung eines ballig-konvex geformten Hohlzylinders gebildet wird, der zentral am Innenboden der Schraubkappe 2 vorgesehen ist. Dieser Hohlzylinder bildet eine Dichtung, welche ein Aus laufen des in definierter Menge in der Küvette 3 enthaltenen Reagens verhindert. Der Be-

Fig. 3 eine Verschlußkappe mit einem balligen Dichtungselement als Teil eines zweiten Ausführungsbei-

> eine koaxial zum Gewinde verlaufende Ausrichtung und dem Hals 9 der Küvette 3 eine Preßpassung.

spiels der Erfindung im Teilschnitt, Fig. 4 das ballige Dichtungselement der Verschlußkappe gemäß Fig. 3 detailliert im Schnitt,

> In Fig. 5 ist eine auf eine Küvette 3 aufgesetzte Schraubkappe 1 mit einem konischen Dichtungselement

Fig. 5 eine weitere Verschlußkappe mit einem balligen Dichtungselement kombiniert mit einem konischen Erfindung im Teilschnitt,

> reich II ist detailliert in Fig. 4 dargestellt. Ebenfalls an der Innenseite der Schraubkappe 2 ist ein Gewinde 7 angeformt, das so bemessen ist, daß es im

> verschlossenen Zustand paßgenau in das Gewinde 8 in

der Außenwand des Halses der Küvette 3 gemäß Fig. 7

Fig. 6 das Dichtungselement der Verschlußkappe ge-

Fig. 4 zeigt den in Fig. 3 enthaltenen Bereich II detailliert im Ouerschnitt. Es ist ersichtlich, daß die Außenwandung 6a des Dichtungselements 6 - bezogen auf ballig-konvex geformt ist. Der maximale Außenradius R₃ des balligen Bereichs ist etwas größer als der Innenradius R5 des Halses der in Fig. 7 dargestellten Küvette 3. Dadurch entsteht zwischen dem Dichtungselement 6

mäß Figur detailliert im Schnitt,

5 im Schnitt dargestellt.

Fig. 7 die mit der Verschlußkappe gemäß Fig. 1 versehene Küvette im Schnitt, Fig. 8 die mit der Verschlußkappe gemäß Fig. 3 ver-

Fig. 9 den mit einem Schraubgewinde versehenen

Halsbereich einer Küvette zur Aufnahme einer Ver-

Fig. 10 ein Drehwinkel-Drehmoment-Kennlinien-Diagramm, aufgenommen beim Zuschrauben von unterschiedlichen Schraubverschlüssen sowie Fig. 11 ein Ausführungsbeispiel der erfindungsgemä-

1, ist auf den Schraubhals einer Küvette 3 aufsetzbar,

ßen Vorrichtung zum automatisierten Verschließen des 45

Die in Fig. 1 im Teilschnitt dargestellte Schraubkappe

schlußkappe,

sehene Küvette im Schnitt,

wie es weiter unten in Fig. 7 dargestellt ist. Die Schraubkappe besteht aus Polyvinylidenfluorid (PVDF) oder 50 Polyhexafluorpropylen (HFP) bzw. einem Copolmer aus den vorgenannten, und damit aus Kunststoffen, die sich durch Härte und Chemikalienbeständigkeit bei großer Zähigkeit auszeichnen und insbesondere für die hier beschriebene Verarbeitungsweise geeignet sind. In dem in 55 Fig. 1 links dargestellten, ungeschnittenen Bereich ist erkennbar, daß die Schraubkappe 1 an ihrer Außenwandung im oberen Bereich eine Rifflung 4 aufweist, welche das Auf- und Zudrehen der Schraubkappe 1 zum Öffnen bzw. Schließen der Küvettte 3 erleichtert. An der Innenseite der Schraubkappe 1 ist ein Dich-

tungselement angeformt, welches durch die Wandung eines hohlen Konus 5 gebildet wird, der zentral am Innenboden der Schraubkappe 1 vorgesehen ist und an seinem Ansatz den Außenradius R1 aufweist. Am An- 65 satz des Konus 5 ist die Übergangsstelle, an der der Konus 5 in den Innenboden der Schraubkappe 1 übergeht, abgerundet. Hierdurch werden die mechanischen

Wie aus den Fig. 1, 5 und 7 ersichtlich ist, handelt es

sich bei dem verwendeten Schraubgewinde 7,8 um ein (von Haus aus leichtgängiges) Rundgewinde, wobei der Querschnitt bzw. der Flankenwinkel des Gewindeprofils 8 des Küvettenhalses wesentlich größer gewählt sind als die entsprechenden Größen des Gewindeprofils 7 der Schraubkappe 1.

Wegen der beim Einschrauben erhöhten Flächenpressung ist der Glasquerschnitt des Küvettenhalses stärker ausgeführt als bei entsprechenden Gefäßen mit Schraubverschlüssen aus weicherem Kunststoff.

Fig. 6 zeigt eine auf eine Küvette 3 aufgesetzte Schraubkappe 2 mit einem ballig-konvexen Dichtungselement 6 im Schnitt. Das Gewinde 7, 8 ist - wie in Fig. 5 - ein Rundgewinde, wodurch eine gute Leichtgängigkeit gewährleistet ist.

Bei dem in den Fig. 7 und 8 dargestellten weiteren Ausführungsbeispiel sind die Maßnahmen der zuvor dargestellten Ausführungsbeispiele kombiniert und ergänzen sich in vorteilhafter Weise. Fig. 8 gibt dabei den in Fig. 7 mit III bezeichneten Bereich wieder. Während 20 die mit den vorangehenden Darstellungen übereinstimmenden Bezugszeichen entsprechende Elemente wiedergeben, ist der konische Bereich 24 bei diesem Ausführungsbeispiel auf den Anschlußbereich des Dichtungskörpers 6 an die Stirnfläche der Schraubkappe be- 25 schränkt 2'. Der Winkel α ist mit ca. 30° geringfügig größer als bei dem zuvor dargestellten Ausführungsbeispiel mit konischem Dichtkörper. Der konische Bereich geht in einem Übergangsbereich 25, der radial gegenüber dem maximalen Radius der Oberfläche 6a des balligen Bereichs 6 geringfügig zurückversetzt ist in diesen

Es ist ersichtlich, daß bei dieser Ausführung beide Dichtungsmechanismen nebeneinander (in Serie ge-Weise ergänzen. Hierdurch ist einerseits eine Doppelwirkung erzielt. Andererseits ergänzen sich die Dichtungen auch in der Weise, daß wechselseitig gerade in Grenzbereichen der Wirkung der einen Dichtung die

Nach dem maschinellen Aufschrauben der Schraubkappe 2 verringert sich der Anpreßdruck des Dichtungselements 6 aufgrund der Kaltfließeigenschaften schließen ein Öffnen von Hand ohne besondere Anstrengung möglich ist.

Das Übermaß des ballig-konvexen Dichtungselements 6 gegenüber dem Innenradius des Halses der Küvette 3 ist dabei so bemessen, daß sich ein Einschraub- 50 moment von ca. 50 Ncm ergibt, welches durch das Kaltfließen des Werkstoffs PVDF nach im wesentlichen zwei Tagen wieder auf 30 Ncm zurückgeht und im wesentlichen in der Nähe dieses Wertes verbleibt.

Bei dem in Fig. 9 in Seitenansicht wiedergegebenen 55 chend das Drehen zu beenden. Öffnungsbereich der Küvette 3 ist in dem geschnitten dargestellten Bereich 10 die Dicke der Glaswandung der Küvette 3 erkennbar. Der Innenradius der Mündung 9 ist mit dem Pfeil R5 markiert. Am Innenrand der Mün-Winkel von ca. 45° angefast.

Das Verschließen der Küvetten mit den erfindungsgemäßen Schraubverschlüssen erfolgt mit einer weiter unten dargestellten Vorrichtung unter Kontrolle von Drehmoment und Drehwinkel.

Beim maschinellen Verschließen des Schraubverschlusses mit der erfindungsgemäßen Vorrichtung werden Drehmoment und Drehwinkel kontinuierlich ge-

messen. In dem in Fig. 10 wiedergegebenen Diagramm ist der Verlauf des Drehmoments über den Drehwinkel für vier Schraubverschlüsse beispielhaft wiedergegeben. Die vier ausgewählten Schraubverschlüsse weisen jeweils konische Dichtungselemente auf, wie sie in Fig. 2 dargestellt sind. Fig. 10 zeigt hierbei die Drehwinkel-Drehmoment-Kennlinien von den drei beispielhaften Schraubverschlüssen.

Die Steuerung und Kontrolle des Verschraubungs-10 vorgangs soll anhand des Diagramms zunächst einmal prinzipiell dargestellt werden: Zu Beginn der Drehung ist anfangs nur das relativ geringe Drehmoment Mo aufzubringen, da zwischen dem konischen Dichtungselement und der Innnenseite des Halses des Gefäßes vor Beginn des Drehens noch keine Vorspannung besteht. Mit zunehmendem Drehwinkel steigt jedoch die auf das Dichtungselement wirkende Flächenpressung und damit das erforderliche Drehmoment an. Der Einschraubvorgang wird solange fortgesetzt, bis bei Erreichen eines vorgegebenen Solldrehmoments auch ein vorgebebener Solldrehwinkel überschritten ist. Der Einschraubvorgang wird also abgebrochen, wenn die letzte der beiden Bedingungen erreicht ist. Im Diagramm gemäß Fig. 10 bilden ein minimales Drehmoment M_{MIN} und ein minimaler Drehwinkel ϕ_{MIN} gleichzeitig die entsprechenden Sollwerte, welche die Abschaltung im "Gut"-Zustand steuern.

Die Drehung wird dann als erfolgslos abgebrochen, falls ein maximal zulässiges Drehmoment MMAX und/ 30 oder ein maximal zulässige Drehwinkel φ_{MAX} überschritten wird, ohne daß der minimale Grenzwert des jeweils anderen Wertes erreicht wird.

Das durch die vier Werte omin, omax, Mmin und M_{MAX} begrenzte, von links oben nach rechts unten schaltet) wirken und sich damit in kombinatorischer 35 schraffierte Fenster stellt also den Bereich in dem Drehwinkel-Drehmoment-Diagramm dar, in dem die durch den Schraubverschluß hergestellte Dichtung als hinreichend gut (+) betrachtet wird.

Beim Überschreiten eines maximal zulässigen Drehandere ein maximales Dichtvermögen erzeugt und um- 40 moments oder eines maximal zulässigen Drehwinkels wird am Ausgang das Zustandssignal Z2 abgegeben, da das entsprechende Gefäß nicht ordnungsgemäß verschlossen wurde. Hierdurch wird ein fehlgeschlagenes Verschließen des Gefäßes 11 signalisiert. Die entspredes Kunststoffs, so daß einige Tagen nach dem Ver- 45 chenden Bereiche (-) sind von links unten nach rechts oben schraffiert. Bei zu früh erreichtem oberem Grenzdrehmoment klemmt die Kappe vor dem vollständigen Aufschrauben, während bei ohne Mindestmoment erreichtem Maximal-Drehwinkel möglicherweise fehlerhafterweise gar kein Gefäß zugeführt wurde. Durch die Begrenzung des Drehmoments wird auch eine Zerstörung des Gefäßes verhindert. Die Begrenzung des Drehwinkels ist auch notwendig, um ein Durchrutschen eines schadhaften Gewindes zu erkennen und entspre-

> Die vier Kennlinien A bis D für vier (übertrieben dargestellte Toleranzen aufweisende) Schraubverschlüsse unterscheiden sich in ihrer Steilheit.

Während das Drehen bei dem ersten Schraubverdung 9 der Küvette 3 ist die Glaswandung in einem 60 schluß im Punkt A1 und bei dem zweiten Schraubverschluß im Punkt B1 erfolgreich beendet wird, da jeweils sowohl das minimale Drehmoment M_{MIN} als auch der minimale Drehwinkel ϕ_{MIN} erreicht ist, wird das Drehen bei dem dritten Schraubverschluß im Punkt C1 erfolglos abgebrochen, da der maximale Drehwinkel ϕ_{MAX} überschritten ist (Leerdrehung). Das entsprechende gilt für den Schraubverschluß mit der Kennlinie D und dem Abbruchpunkt D₁ bei überschrittenem Maximalmo-

ment Mmax (Klemmen). Es ist ersichtlich, daß die vorgegebenen Sollwerte auch so eingestellt werden können, daß sie an anderer Stelle innerhalb des Gutbereichs (+) gelegen sind. Die dargestellten Grenzlinien des Gutbereichs stellen im dargestellten Ausführungsbeispiel die Entscheidungsgrenzen für den "Ausschuß" dar.

11

Anhand von Fig. 9 soll die erfindungsgemäße Vorrichtung zum automatisierten Verschließen des Gefäßes lung der Vorrichtung selbst ist hierzu mit einem Blockschaltbild kombiniert.

Auf einem Förderband 18 befinden sich mehrere Gefäße 11 in Zuführungsposition. Neben dem Förderband 18 ist ein aus Metall bestehender Rahmen 22 angeord- 15 ein Auffanggefäß (hier nicht dargestellt) für Ausschuß net, an dem zwei Führungsstangen 16 senkrecht angebracht sind. Auf diesen Führungsstangen 16 laufen zwei Buchsen, an denen mittels zweier Haltearme ein Elektromotor 13 befestigt ist. Der Elektromotor 13 kann mittels eines zweiten Elektromotors (hier nicht darge- 20 stellt) verschoben werden. An dem Motor 13 ist an der Oberseite ein Drehwinkelgeber 15 angeflanscht, der den Drehwinkel \(\phi \) der Welle des Motors 13 mißt. An der Unterseite des Motors 13 ist an der Welle des Motors 13 ein Greifer 14 befestigt. Zwischen Greifer 14 und Motor 25 13 ist ein Drehmomentgeber 23 angebracht, der das von dem Motor 13 auf den Greifer 14 aufgebrachte Drehmoment M mißt.

Der Greifer 14 besteht im wesentlichen aus einem rotationssymmetrischen, hohlen Kunststoffelement, 30 dessen Innenraum sich von der unten liegenden Öffnung ausgehend nach innen hin verjüngt. Der Innendurchgeber der Öffnung ist etwas größer als der Außendurchgeber des Schraubverschlusses 12. Nach innen hin sinkt der Innendurchgeber des Kunststoffelements jedoch 35 unter den Außendurchgeber des Schraubverschlusses 12 ab. Beim axialen Aufdrücken des Greifers 14 auf den Schraubverschluß 12 bilden diese deshalb eine kraftschlüssige Verbindung miteinander, so daß der Greifer 14 das zum Zudrehen des Schraubverschlusses 12 erfor- 40 derliche Drehmoment auf diesen aufbringen kann.

Zum Zudrehen des Schraubverschlusses wird also der Motor 13 mit dem angeflanschten Greifer 14 auf den Schraubverschluß 12 abgesenkt. Anschließend dreht der Motor 13 den Schraubverschluß 12 zu.

Hierbei werden kontinuierlich durch den Drehwinkelgeber 15 der Drehwinkel ϕ und durch den Drehmomentgeber 23 das Drehmoment M gemessen und an das Schwellwertglied 17 weitergeleitet.

Das Schwellwertglied 17 weist vier Schwellwerte auf 50 und gibt an seinem Ausgang in Abhängigkeit von der Lage des aktuellen Drehmoments M und des aktuellen Drehwinkels φ relativ zu den Schwellwerten drei verschiedene mögliche Zustandsignale Z aus.

Weiterhin sind als Schwellwerte ein minimal erfor- 55 derlicher Drehwinkel und ein minimal erdorderliches Drehmoment vorgegeben. Durch die vier Schwellwerte ist nun ein "Drehmoment-Drehwinkel-Fenster" definiert. Liegen sowohl das Drehmoment als auch der Drehwinkel innerhalb dieses Fensters, so wird die 60 Dichtwirkung des Schraubverschlusses 12 als hinreichend gut betrachtet und am Ausgang das Zustandssignal Z3 abgegeben.

Liegen jedoch Drehmoment und Drehwinkel außerhalb dieses Fensters, aber noch innerhalb des zulässigen 65 Bereichs, so ist die Drehung noch nicht beendet und am Ausgang wird das Zustandssignal Z_1 abgegeben.

Das von dem Schwellwertglied 17 erzeugte Zustands-

signal wird einer Steuereinheit 21 zugeleitet. Liegt am Eingang der Steuereinheit 21 das Zustandssignal Z1 an, so ist das Verschließen noch nicht beendet und demzufolge legt die Steuereinheit an den Motor 13 die Betriebsspannung Uo an, d.h. der Motor 13 dreht den Schraubverschluß 12 weiter zu.

Liegt das Zustandssignal Z2 oder Z3 an, so wird das Zudrehen des Schraubverschlusses 12 beendet, d. h. die Steuereinheit 21 schaltet die Spannung U am Motor 13 näher beschrieben werden. Die perspektivische Darstel- 10 ab, damit dieser den Schraubverschluß 12 nicht weiter zudreht.

Bei einem Zustandssignal Z2 wird zusätzlich die Selektiervorrichtung 20 aktiviert, die mittels eines Hydraulikstempels 19 das Gefäß 11 von dem Förderband 18 in

Bei einem Zustandssignal Z₃ hingegen wird die Dichtwirkung des Schraubverschlusses als hinreichend gut betrachtet und das Gefäß 11 läuft auf dem Förderband 18 weiter.

Die Erfindung beschränkt sich in ihrer Ausführung nicht auf die vorstehend angegebenen bevorzugten Ausführungsbeispiele. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht.

Patentansprüche

1. Gefäß mit einem kappenartigen Schraubverschluß (2) aus Kunststoff, das - insbesondere in Form einer Küvette (3) - einen Reagensbehälter zur photometrischen Analyse bildet, mit einem an der Innenseite des Schraubverschlusses (2) vorgesehenen und zur Anlage an der rotationssymmetrischen Innenfläche des den Gewindebereich tragenden Halses des Gefäßes bestimmten hohlzylindrischen Dichtungselement (6), dadurch gekennzeichnet,

daß die Außenwandung des Dichtungselements (6) in Richtung der Gewindeachse des Schraubverschlusses (2)

- ballig, insbesondere faßartig konvex, und/
- mindestens in seinem dem freien Ende abgewandten Anschlußbereich im wesentlichen konisch geformt ist, wobei die Achse des die Außenwandung bildenden Konus mit der Gewindeachse des Schraubverschlusses (1) im wesentlichen fluchtet, der Konus sich zu seinem freien Ende hin verjüngt und an seinem dem freien Ende abgewandten Ende zumindest in einem Teilbereich seiner axialen Erstreckung ein Übermaß gegenüber dem Innenradius (R5) des Halses des Gefäßes aufweist und

daß das Dichtungselement (6) zumindest in einem Teilbereich seiner axialen Erstreckung ein Übermaß gegenüber dem Innenradius (R5) des Halses des Gefäßes aufweist.

2. Gefäß nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Übermaß des Dichtungselements (6) gegenüber dem Innenradius (R₅) des Halses des Gefäßes so bemessen ist, daß sich ein maximales Aufschraubmoment von ca. 50 Ncm ergibt, welches durch Kaltfließen des Werkstoffs innerhalb weniger Tage auf ca. 30 Ncm zurückgeht und dann im wesentlichen auf diesem

12

Wert verbleibt, wobei der maximale Radius des Dichtungselements (6) im wesentlichen fünf Prozent größer ist als der Innenradius (R₅) des Halses des Gefäßes.

3. Gefäß nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Dichtungselement (5) aus Polyvinylidenfluorid (PVDF) oder Polyhexafluorpropylen (HFP) bzw. deren Copolymer besteht.

4. Gefäß nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Radius des Dichtungselements (5, 6) zum Erleichtern des Einführens an seinem freien Ende deutlich kleiner ist als der Innenradius (R₅) des Halses des Gefäßes an seiner Oberkante.

5. Gefäß nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Dichtungselement (5, 6) einstückig an den Schraubverschluß (1, 2) angeformt ist und/oder daß der Schraubverschluß (1, 2) an seiner Außenwand zur Verbesserung der Handhabbarkeit eine im wesentlichen in axialer Richtung verlaufende Rifflung (4) aufweist.
6. Gefäß nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gewinde (7) des Schraubverschlusses (1, 2) ein Rundgewinde ist, wobei insbesondere der Querschnitt und/oder der Flankenwinkel des Gewindeprofils (8) des Halsbereiches des Gefäßes größer ist als derjenige der Verschlußkappe (1, 2).

7. Gefäß nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Innendurchmesser (R₃) des Halses des Gefäßes im wesentlichen 6 mm beträgt.

8. Gefäß nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Auf- bzw. 35 Abschraubmoment für den Schraubverschluß von einem beim ersten Eindrehen erreichten Maximalwert innerhalb eines vorgegebenen Zeitraums, insbesondere von einigen Tagen, auf einen im wesentlichen konstanten Wert absinkt, der einem üblichen bei derartigen für manuelle Handhabungen bestimmten Kleingefäßen Verwendung findenden Wert entspricht.

9. Vorrichtung und Verfahren zum Verschließen eines Gefäßes (11) mit einem Schraubverschluß 45 (12) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

daß zur Aufnahme des Schraubverschlusses (12) ein über der Öffnung des Gefäßes (11) die Gewindeachsen des Gefäßes (11) und des Schraubverschlusses (12) in Fluchtung positionierbarer Greifer (14) vorgesehen ist, der so ausgebildet ist, daß er den Schraubverschluß (12) während des Verschließens zumindest auf einem Teil seines Umfangs umfaßt, daß der Greifer (14) im wesentlichen in Richtung 55 der Gewindeachse des Gefäßes (11) verschiebbar

der Gewindeachse des Gefäßes (11) verschiebbar und um diese drehbar gelagert ist,

daß zum Zudrehen des Schraubverschlusses (12) ein Antrieb (13) vorgesehen ist, der Mittel zum Aufbringen eines Drehmoments auf den Greifer (14) 60 aufweist,

daß zur Messung des Drehwinkels des Greifers (14) ein Drehwinkelgeber (15) und zur Messung des auf den Greifer (14) aufgebrachten Drehmoments ein Drehmomentgeber (23) vorgesehen ist,

daß zur Kontrolle des Verschließvorgangs ein Schwellwertglied (17) vorgesehen ist, dem als Eingangssignale der Drehwinkel und das Drehmoment zugeführt werden und als Schwellwerte ein, Solldrehwinkel und ein Solldrehmoment vorgebbar sind, welche insbesondere mit einem unteren Grenzdrehwinkel bzw. Grenzdrehmoment zusammenfallen oder oberhalb davon gelegen sind, wobei das Schwellwertglied (17) derart ausgebildet ist, daß ein Ausgangssignal als Abschaltsignal für den Einschraubvorgang beim Erreichen bzw. Überschreiten sowohl des vorgegebenen Solldrehmoments als auch des vorgegebenen Solldrehwinkels erzeugt wird.

10. Vorrichtung bzw. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Schwellwertglied (17) zusätzlich einen oberen Grenzdrehwinkel und ein oberes Grenzdrehmoment als Schwellwerte aufweist und so ausgebildet ist, daß beim Überschreiten entweder des oberen Grenzdrehwinkels oder des oberen Grenzdrehmoments ein Abschalten des Einschraubvorgangs in jedem Fall erfolgt.

11. Vorrichtung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß zur Ansteuerung des Antriebs (13) eine Steuereinheit (21) vorgesehen ist, die über ihren Eingang mit dem Ausgang des Schwellwertglieds (17) und mit ihrem Ausgang mit dem Antrieb (13) verbunden ist.

12. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß eine mit dem Ausgang des Schwellwertglieds (17) verbundene Selektionsvorrichtung (19, 20) vorgesehen ist, die Mittel zum Aussondern des betreffenden Gefäßes aufweist, die aktiviert werden, wenn beim Einschraubvorgang ein oberes Grenzdrehmoment oder ein oberer Grenzdrehwinkel erreicht werden, ohne daß ein unteres Grenzdrehmoment bzw. unterer Grenzdrehwinkel erreicht werden.

Hierzu 6 Seite(n) Zeichnungen

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

Fig.10

Fig.11

PUB-NO: DE019521924A1

DOCUMENT-IDENTIFIER: DE 19521924 A1

TITLE: Plastic screw cap for a

photometric analysis

container

PUBN-DATE: January 18, 1996

INVENTOR-INFORMATION:

NAME COUNTRY

SIMON, HELMUT DR DE

ASSIGNEE-INFORMATION:

NAME COUNTRY

LANGE GMBH DR BRUNO DE

APPL-NO: DE19521924

APPL-DATE: June 9, 1995

PRIORITY-DATA: DE19521924A (June 9, 1995) ,

DE09410822U (June 24, 1994), DE29505625U (March 21, 1995)

INT-CL (IPC): B65D041/04 , B65D041/28 ,

B65D053/00 , B01L003/00 ,

G01N021/03

ABSTRACT:

CHG DATE=19990617 STATUS=O>A container, esp. an optical cell, has a plastic screw cap closure (2)

with an internal hollow cylindrical seal (6) bearing on the rotationally symmetrical inside of the vessel neck. This seal is spherical, especially a convex barrel shape. In the entry region, towards the exposed end, it has a conical reduction. Further back, the outer radius exceeds the inner radius, R5, of the neck of the vessel. The procedure and process of assembly of the vessel are also claimed. A hollow grip grips the cap, to descend axially to the container below, and screw it on, rotated by the drive. A shaft encoder measures the rotation; there is also a torque sensor. The threshold value control, monitors these values with reference to predetermined upper and lower limits, and detects completion. This control also identifies an upper limiting rotation angle and torque, which if exceeded, results in the drive being switched off. The drive control unit, connects to the threshold value control during cap tightening. A selector, also connected, rejects containers for which either under- or over turning angle, or torque are achieved.