Introdução

Esse trabalho tem como objetivo fazer uma análise ampla dentro do contexto dos modelos VAR, permitindo realizar inferências e previsões sobre as variáveis trabalhadas. Nesse caso, lidaremos com as variáveis brasileiras de PIB, taxa de câmbio real e saldo da balança comercial. As variáveis escolhidas nessa abordagem VAR são de suma importância, pois o Brasil passa por uma década (2011 a 2020) de quase estagnação em termos econômicos. Perceber como a taxa de câmbio real impacta no saldo de balança comercial, afetando o crescimento do PIB, permite vislumbrar como seria o cenário econômico com diferentes decisões sobre a política econômica. Além de se ressaltar que a maior integração no comercio internacional está associado a maiores níveis de crescimento e bem-estar social.

O período amostral das séries mensais se restringe de janeiro de 1995 até dezembro de 2013 (228 observações). Esse recorte simplifica a análise, pois o horizonte temporal parte do processo de estabilização da hiperinflação brasileira até o fim de 2013, momento em que se evidencia o esgotamento do modelo econômico brasileiro. Posteriormente a esse período, houve forte retração da economia, gerando provavelmente uma quebra estrutural. Nesse sentido, essa análise que tem como foco principal a projeção, permitiria o exercício contra factual de observar como se comportariam as séries com a adoção de outras políticas econômicas.

Análise descritiva dos Dados

A série do PIB utilizada é medida em milhões de dólares (fonte: Banco Central do Brasil). É visível a presença de uma tendência ascendente durante boa parte do período amostral (Anexo 1). No período de 2004 a 2008 foi verificado um crescimento mais forte do PIB sucedido por uma queda da atividade econômica, derivada da crise econômica internacional (2008-2009). Em 2010 já se obtém uma forte recuperação da atividade econômica, por meio da política anticíclica adotada (Ayres et al, 2019). Após esse período, o modelo de crescimento adotado mostrou esgotamento e o país sofreu com baixíssimo crescimento do PIB na década, com fortes quedas no produto em 2015 e 2016. A análise do correlograma ACF (Anexo 2) auxilia a perceber características de uma série com raiz unitária, além de possível sazonalidade. Para comprovar tal existência de raiz unitária, será realizado o teste de aumentado de Dickey Fuller ou ADF (Anexo 3). A formalização do teste aplicado à série do PIB já transformada (log) pode ser descrita da seguinte forma:

$$\Delta y_{1,t} = \beta_0 + \beta_1 t + \Phi y_{1,t-1} + \varepsilon_t$$

Onde β_0 representa a inclusão da constante na estatística de teste, $\beta_1 t$ representa a tendência determinística, pois é razoável imaginar que para séries de PIB exista tal componente.

A não inclusão dessa componente determinista, no caso de ser necessária, faz com que haja um problema de potência no teste ADF. Procura-se testar a hipótese nula: H_0 : $\phi = 0$ contra a alternativa H_1 : $\phi < 0$. É importante ressaltar que o teste realizado deve utilizar os valores críticos tabulados por Dickey e Fuller, já que as propriedades assintóticas usuais não se verificam. Como não se rejeita H_0 , temos evidência estatística da existência de raiz unitária. Nos anexos $\mathbf{4}$, $\mathbf{5}$ e $\mathbf{6}$ podemos ver respectivamente: a série já diferenciada, após ter sido aplicado \mathbf{log} ; os correlogramas da série transformada e diferenciada; o resultado do teste ADF, após diferenciação, em que já não temos evidência estatística de raiz unitária (rejeita-se H_0).

A série do saldo de balança comercial utilizada é medida em milhões de dólares (valores FOB) (fonte: Ministério das Relações Exteriores do Brasil). A série parece não possuir uma tendência bem definida (Anexo 1), mas cujas componentes (exportações e importações) parecem ter um incremento ao longo do período analisado (Anexo 7). O saldo tem um incremento no período de 2002 a 2010 (aproximadamente), estimulado pelo valor das commodities no mercado internacional. Após esse período se observa uma redução desse saldo (até o período do impeachment da presidente Dilma), que corre em paralelo a um ritmo de crescimento econômico mais fraco e termos de troca menos vantajosos. No entanto, o correlograma (Anexo 2) permite desconfiar da existência de raiz unitária, bem como da existência de sazonalidade. A formalização do teste aplicado à série da balança comercial pode ser descrita da seguinte forma:

$$\Delta y_{2,t} = \beta_0 + \Phi y_{2,t-1} + \varepsilon_t$$

Onde β_0 representa a inclusão da constante na estatística de teste. Nesse caso, não se introduz a tendência determinística, pois não é razoável supor que para balança comercial exista tal componente. Procura-se testar a hipótese nula: H_0 : $\phi = 0$ contra a alternativa H_1 : $\phi < 0$. O teste ADF dá evidências da existência de raízes unitárias na série (**Anexo 3**). Nos anexos **4**, **5** e **6** podemos ver respectivamente: a série já diferenciada; o correlograma da série diferenciada; o resultado do teste ADF, após diferenciação.

A série índice da taxa de câmbio efetiva real utiliza o índice de preços ao consumidor amplo (IPCA) como ponderador e tem como junho de 1994 o valor base (IPCA - 1994 junho = 100). Esses dados foram extraídos do Banco Central do Brasil. A série parece vagar sem uma tendência bem definida (Anexo 1). Nos primeiros anos do período analisado, existe uma relativa estabilidade, com câmbio relativamente valorizado, devido à existência de um regime cambial semifixo. No fim dos anos 90, após as crises econômicas da Ásia e Rússia, houve ataque especulativo contra o Real, o que deteriorou as reservas internacionais do país (Ayres et al, 2019). Após isso, aconteceu a maxidesvalorização da taxa de câmbio nominal e foi adotado o regime de metas de inflação, com câmbio flutuante. Essa desvalorização se acentuou até os

primeiros meses do governo Lula, em que o compromisso com tripé macroeconômico (Lei de Responsabilidade Fiscal, metas de inflação e câmbio flutuante) foi mantido. No período próximo à crise de 2008 se verifica uma nova desvalorização da taxa de câmbio, devido ao aumento da aversão a risco. Depois se inicia um novo ciclo de desvalorização cambial em 2012, paralelamente aos fatos já mencionados, culminando com o impeachment da presidente Dilma. Assim como na série de balança comercial, o correlograma (Anexo 2) deixa indícios da existência de uma raiz unitária, pelo que será realizado também o teste ADF. A formalização do teste aplicado à série da taxa de câmbio já transformada pode ser descrita da seguinte forma:

$$\Delta y_{3,t} = \beta_0 + \Phi y_{3,t-1} + \varepsilon_t$$

O resumo dos dados para as diferentes séries pode ser visto no anexo **8**. Podem-se observar máximos, mínimos, médias, quartis, coeficiente de curtose e outras estatísticas.

Estimação VAR

A escolha da ordem do modelo VAR respeita o seguinte processo:

- Análise dos correlogramas cruzados da série diferenciada (Anexo 5)
- Escolha da ordem do modelo VAR com base nos critérios de seleção, após correr uma série de modelos de ordens diferentes.

Com os sinais de possível existência de sazonalidade e relevância de alguns *lags* nesses correlogramas, realizou-se a estimação de VAR com sazonalidade 12 (11 *time dummies*) até a ordem 8 (lag máx = 8). A equação pode ser descrita em (1), em que: \mathbf{v} representa os interceptos; \mathbf{A}_1 são os parâmetros da 1° ordem; \mathbf{A}_2 são os parâmetros da 2° ordem; \mathbf{D} bsazonal é o conjunto de *dummies* temporais e \mathbf{u}_t representa os erros do modelo (ruídos brancos).

$$Y_t = v + A_1 Y_{t-1} + A_2 Y_{t-2} + \varphi Dsazonal + u_t \sim RB (0, \Sigma_u)$$
 (1)

No anexo **9**, podemos ver os diferentes critérios de informação para os modelos estimados. Tendo como principal objetivo de análise a previsão, optamos por escolher o critério AIC para seleção do modelo, já que esse não penaliza tanto uma eventual sobreparametrização. Além disso, o acréscimo de uma ordem a ser estimada frente aos critérios BIC e HQ, nos dá uma margem maior para não haver possíveis problemas com autocorrelação dos erros. Cabe

ressaltar que nossa amostra é relativamente grande, pelo que se poderiam considerar os critérios BIC ou HQ, que tem propriedades desejáveis em grandes amostras.

As estimações do modelo escolhido para as equações de IPIB, ITaxa de Câmbio e Balança Comercial podem ser vistas nos anexos **10, 11 e 12**, respectivamente.

Após definida a escolha do modelo (VAR 2), procura-se validar o modelo com os testes de diagnóstico realizados. O procedimento comum observado na literatura para os testes diagnósticos é utilizar os resíduos da regressão no lugar dos erros não observados. No caso de reprovação ao teste de autocorrelação, pode-se voltar ao passo anterior e testar outro modelo:

- Teste de normalidade dos erros
- Teste de autocorrelação dos erros
- Teste de heterocedasticidade dos erros

O teste de normalidade realizado é o Jarque-Bera, em que se utilizam os coeficientes de curtose e assimetria na sua estatística para evidenciar essa normalidade. A formalização da estatística pode ser vista da seguinte maneira:

$$\hat{\theta}_{sk} = \hat{\theta}_s + \hat{\theta}_k \sim \chi^2(2k)$$

Onde o primeiro termo representa a estimativa para coeficiente de assimetria, enquanto o segundo representa a curtose. Testa-se a hipótese nula de que os dados são normalmente distribuídos, contra a alternativa de que não são. O anexo 13 nos dá evidência estatística de que os resíduos não seguem normalidade. Isso não gera um grande problema, pois a amostra é suficientemente grande, relativamente aos coeficientes estimados. A inferência pode ser baseada nas propriedades assintóticas.

O teste de autocorrelação utilizado é o Breusch Godfrey, do tipo LM, em que se regride os resíduos obtidos na estimação do modelo original contra as variáveis (regressores) usadas originalmente e os desfasamentos dos resíduos. Essas variáveis repetidas na regressão auxiliar servem para branquear os resíduos e tornar mais visíveis as características dos erros. O teste pode ser formalizado da seguinte maneira, a começar pelo desfasamento de ordem 3, já que os outros dois estão presentes no modelo (VAR 2), e, portanto, não se aplica

$$\hat{\mathbf{u}}_t = v + A_1 Y_{t-1} + A_2 Y_{t-2} + \varphi Dsazonal + D_3 \hat{\mathbf{u}}_{t-3} + \dots + D_{10} \hat{\mathbf{u}}_{t-10} + \varepsilon_t$$

Testa-se a hipótese nula: H_0 : $D_3 = D_4 = ... = D_{10} = 0$ contra a alternativa H_1 : $\exists D_i \neq 0$, i = 3,..., 10. Nota-se que não há evidencia estatística para rejeitar H_0 (**Anexo 14**), pelo que não há sintomas de autocorrelação dos erros e podemos permanecer com o modelo escolhido.

O teste de heterocedasticidade (ARCH) procura avaliar se a variância dos erros varia ao longo das séries temporais. O teste pode ser formalizado da seguinte maneira, a começar pelo

desfasamento de ordem 3, já que os outros dois estão presentes no modelo (VAR 2), e, portanto, não se aplica.

$$\hat{\mathbf{u}}_t^2 = \alpha_0 + \alpha_3 \hat{\mathbf{u}}_{t-3}^2 + \alpha_4 \hat{\mathbf{u}}_{t-4}^2 + \dots + \alpha_{10} \hat{\mathbf{u}}_{t-10}^2 + \varepsilon_t$$

Testa-se a hipótese nula: H_0 : $\alpha_3 = \alpha_4 = ... = \alpha_{10} = 0$ contra a alternativa H_1 : $\exists \alpha_i \neq 0$, i = 3,..., 10. Nota-se que não há evidência estatística para rejeitar H_0 (**Anexo 14**), pelo que parece se tratar de um modelo adequado.

Análise aos resultados finais do VAR

Estabelecer nexo entre as variáveis é um dos objetivos da análise dos modelos VAR. Nesse sentido, observar quais variáveis ajudam a prever o comportamento de outra ou até mesmo estabelecer relações de causalidade entre elas. A começar pelo desafio da previsão, cerne desse trabalho. A causalidade de Granger é o conceito que implica que se uma variável \mathbf{x}_t causa a Granger \mathbf{y}_t , significa que ela ajuda a prever o comportamento dessa. Formalmente, pode-se dizer que se $x_t \xrightarrow[]{} y_t$, então:

$$EQM[E(y_{t+h}|y_t, y_{t-1}, x_t, x_{t-1} \dots)] \le EQM[E(y_{t+h}|y_t, y_{t-1}, \dots)] \in EQM[E(y_{t+h}|y_t, y_{t-1}, x_t, x_{t-1} \dots)] \ne EQM[E(y_{t+h}|y_t, y_{t-1}, \dots)]$$

No anexo **15**, podemos ver que o IPIB ajuda a prever a Balança comercial, ao nível de significância de 5% (causa a Granger). Outra análise decorrente do contexto de previsão é a causalidade contemporânea. Essa difere da última, pois é um conceito simétrico. Isto é, não se diz que \mathbf{x}_t causa \mathbf{y}_t ou vice versa. Elas ajudam na previsão simultaneamente. Tem a ver com a matriz de covariâncias dos erros entre as variáveis. Formalmente se diz que se há causalidade contemporânea entre \mathbf{x}_t e \mathbf{y}_{t_r} , logo E ($\mathbf{u}_{zt}\mathbf{u}_{xt}$) \neq 0.

$$EQM[E(y_{t+1}|x_{t+1},y_t,y_{t-1},x_t,x_{t-1}...)] \le EQM[E(y_{t+1}|y_t,y_{t-1},...)] e$$

$$EQM[E(y_{t+1}|x_{t+1},y_t,y_{t-1},x_t,x_{t-1}...)] \ne EQM[E(y_{t+1}|y_t,y_{t-1},...)]$$

Pode-se observar (**Anexo 15**) que existem relações de causalidade contemporânea entre IPIB e Balança Comercial; e Balança Comercial e ITaxa de Câmbio.

No contexto da análise de funções resposta a impulso (FRI), é necessário ordenar as variáveis para mensurar os impactos sofridos pelas variáveis a choques sofridos por elas ou nas outras variáveis do sistema VAR. A literatura sugere que se ordene seguindo a ordem decrescente de exogeneidade das variáveis. Nesse sentido, parece ser razoável que o PIB deve ser a primeira variável, pois o impacto das taxas de câmbio e saldos das balanças comerciais têm efeitos limitados. A seguir, estaria a taxa de câmbio real, pois uma parte da sua dinâmica (relações de preços) é determinada de maneira independente e a outra é formada no mercado financeiro. A última componente parece ser a balança comercial, pois está relacionada a níveis de renda da população e das taxas de câmbio real.

Na presente análise só serão avaliadas as Funções de Resposta a Impulsos ortogonais, já que essas procuram isolar os erros do modelo VAR (que normalmente são correlacionados). Isto dá uma segurança maior em afirmar que o choque em uma variável é exclusivo dela. Esses erros ortogonais são obtidos pela decomposição de Choleski. Resumidamente, queremos analisar θ_{jk} , i (como responde a variável \mathbf{j} a choques da variável \mathbf{k} , no período \mathbf{i}). Cabe ainda ressaltar que ao ordenar as variáveis para estudar as FRI, são impostas restrições aos efeitos contemporâneos para se avaliar os impactos das variáveis, que correspondem: a variável mais exógena (no ordenamento) pode gerar um efeito contemporâneo nas demais, mas o mesmo não ocorre no sentido contrário.

Observando como resposta a variável IPIB aos diferentes choques (**Anexo 16**) nas FRI (primeira linha) e FRI acumuladas (segunda linha), podemos ver que a variável responde imediatamente a choques dela mesma (como razoável supor). Não há evidência estatística de que o IPIB responda às demais variáveis, como seria se o intervalo de confiança do efeito LPIB fugisse totalmente do valor 0.

Observando como resposta a variável ITaxa de Câmbio aos diferentes choques (**Anexo 17**), podemos ver que a variável responde imediatamente a choques dela mesma. Há evidência estatística de que a variável responde a choques no IPIB no segundo período, como pode ser visto pelo intervalo de confiança "escapar" do 0.

Observando como resposta a variável Balança Comercial aos diferentes choques (**Anexo 18**), podemos ver que a variável responde imediatamente a choques dela mesma. Não há evidência estatística de que a Balança Comercial responda às demais variáveis.

Por fim, cabe avaliar qual porcentagem do erro da variância de cada variável se deve a choques dessa ou de outra variável do sistema. O anexo **19** traz a decomposição da variância das diferentes variáveis. O IPIB responde quase totalmente pelo erro de previsão no IPIB. Já a ITaxa de Câmbio, tem cerca de 10% da variância do erro de previsão devido a choques do IPIB, enquanto o restante cabe a choques nela mesma. Pode-se concluir que quase a totalidade do erro de previsão da Balança Comercial se deve a choques nessa mesma variável.

Previsão

O modelo escolhido do VAR para esse trabalho, com base nos critérios de informação, nos permite fazer previsões para as séries do vetor trabalhado. Dado o tamanho da amostra (19 anos), é razoável estabelecer uma previsão para o período subsequente à amostra de dois anos. Isto é, fazer a previsão para os meses nos anos 2014 e 2015. No anexo 20, vê-se o gráfico da previsão para o vetor de séries. Observam-se nos anexos 21, 22 e 23 os valores previstos para as séries (Pib, Taxa de Câmbio e Balança Comercial) e seus respectivos intervalos de confiança.

A previsão a um passo pode ser formalizada por:

$$Y_t(1) = v + A_1 Y_t + A_2 Y_{t-1} + \varphi Dsazonal$$

A previsão para h passos pode ser formalizada por:

$$Y_t(h) = v + A_1 Y_t(h-1) + A_2 Y_t(h-2) + \varphi Dsazonal$$

As previsões para cada série a um passo e seus respectivos intervalos de confiança podem ser descritos pelas expressões abaixo. Como já explicitado acima, Y_t (1) representa a previsão para a série ou vetor 1 passo à frente; o elemento dentro da raiz quadrada representa a estimativa para a variância da série respectiva 1 passo à frente (elemento k da diagonal principal da matriz \sum_{y} (1).

$$\begin{split} I.\,C_{95\%}\,(Y_{1,t+1}) &= \widehat{Y_{1,t}}(1)^+_- \, 1,\!96\,\sqrt{\widehat{\sigma}_{11}(1)}\\ I.\,C_{95\%}\,(Y_{2,t+1}) &= \widehat{Y_{2,t}}(1)^+_- \, 1,\!96\,\sqrt{\widehat{\sigma}_{22}(1)}\\ I.\,C_{95\%}\,(Y_{3,t+1}) &= \widehat{Y_{3,t}}(1)^+_- \, 1,\!96\,\sqrt{\widehat{\sigma}_{33}(1)} \end{split}$$

Para aferir a qualidade do modelo de previsão, que é o cerne desse trabalho, podemos comparar a previsão para a série do PIB transformado, com base no conjunto informacional dessa variável e das demais presentes no modelo VAR com um modelo alternativo. Esse modelo alternativo escolhido - que só utiliza informação histórica dessa variável foi escolhido com base nos correlogramas (Anexo 24) e também em um *loop* gerado para encontrar o modelo com menor BIC - é o SARIMA (0,1,0)(0,1,1)₁₂. Para tal comparação, divide-se a amostra total em amostras de treino e teste, onde o período de teste corresponde às últimas 24 observações da amostra original. Isto é, amostra de treino compreende o período de janeiro de 1995 até dezembro de 2011, enquanto amostra teste corresponde ao período de janeiro de 2012 até dezembro de 2013. O critério de comparação para verificar qual melhor modelo utilizado é o erro quadrático médio. A previsão do modelo VAR pode ser vista no anexo 25, enquanto a do SARIMA escolhido pode ser visto no anexo 26.

No anexo 27 podem ser vistas as previsões para ambos os modelos, bem como os erros quadráticos médios de previsão. Cabe ressaltar que, em função de diferentes comandos utilizados no R, os valores reais observados e previsão na tabela são diferentes. Posto isso, a informação fundamental dessa tabela é a do erro quadrático médio para ambos os modelos de previsão. Fica evidente que a utilização das outras séries, no modelo VAR, contribuem para uma previsão mais acurada da série IPIB.

Análise das relações de cointegração entre as variáveis

Até o presente momento não foram consideradas possíveis relações de longo prazo entre as variáveis, pelo que nossa análise ficou circunscrita à abordagem VAR. A partir desse momento, na procura por não desprezar tais relações, testa-se a existência de um mecanismo de correção dos erros. Queremos saber se existe alguma tendência estocástica que seja compartilhada entre as variáveis para melhor prever o comportamento dessas. De antemão, por termos três variáveis no sistema, sabemos que pode haver no máximo duas relações independentes de cointegração.

Primeiramente, deve-se estimar a ordem do modelo VEC que utilizaremos. Esse modelo procura incorporar informações de curto e longo prazo. O critério adotado para escolha da ordem do modelo será o mesmo que o adotado anteriormente (AIC). Temos evidência estatística (Anexo 28) que o modelo mais adequado é de ordem 3. Como a estimação do VEC será feita em diferenças, perdemos um grau de liberdade, pelo que estimaremos um VEC de ordem 2.

Com base na ordem estimada, realizaremos o teste do traço e do máximo valor próprio para saber se existem relações de cointegração e quantas são. No teste do traço realizado (Anexo 29) não há evidência estatística de presença de vetor de cointegração a 10% de significância. Por outro lado, no teste do máximo valor próprio (Anexo 30), há evidência da existência de uma relação de cointegração.

A estimação do VEC pode ser vista no anexo **31**. Podemos observar dos outputs verificados nesse anexo que existe uma relação de longo prazo negativa entre a taxa de câmbio real e o PIB (ceteris paribus), enquanto entre o PIB e a balança comercial é praticamente neutra (ceteris paribus). Podemos ver a equação de longo prazo estimada como:

A existência do vetor de cointegração faz com que desequilíbrios existentes no período anterior sejam corrigidos, em direção ao equilíbrio de longo prazo. Não há sinais de autocorrelação dos erros no modelo estimado (**Anexo 32**). O teste utilizado para verificar foi do tipo *Portmanteau* em que se testa H_0 : R(3) = R(4) = ... = R(10) contra H_1 : $\exists R_i \neq 0$, i = 3,...,10.

Podemos formalizar o modelo VEC estimado como:

$$\Delta Y_t = v + \pi Y_{t-1} + \Gamma_1 \Delta Y_{t-1} + \Gamma_2 \Delta Y_{t-2} + u_t$$

Pode-se perceber o modelo acima como sendo um VAR das diferenças com a adição de um termo (π) , que representa o mecanismo de correção de erros. Essa matriz pode ser decomposta como $(\alpha\beta)$. Nesse caso, α corresponde à velocidade de ajustamento e β representa a matriz de cointegração. O mecanismo de correção de erros tem que ser negativo para trazer um eventual desequilíbrio verificado no período anterior de volta para o equilíbrio de longo prazo. Nos outputs (**Anexo 31**) não verificamos tais resultados.

Conclusões

O presente trabalho teve como objetivo realizar uma análise no contexto dos modelos VAR, com a realização de inferências e previsões sobre as variáveis econômicas brasileiras: PIB, taxa de câmbio real e saldo da balança comercial.

Verificou-se que essas séries apresentaram uma sazonalidade, e somente a série referente ao PIB apresentou uma tendência ascendente. Todas as séries apresentaram raízes unitárias, facto verificado através do teste ADF, o que fez necessário utilizar algumas transformações nos dados a fim de torna-los estacionários.

O modelo VAR estimado foi de segunda ordem, e acreditamos que o modelo se ajustou bem aos dados, uma vez os resultados dos testes de diagnóstico apresentaram um resultado satisfatório. Inclusive o modelo apresentou uma boa capacidade de previsão, considerando a comparação com o modelo concorrente SARIMA.

Notou-se também que há causalidade a Granger entre o PIB e Balança comercial, e causalidade contemporânea a Granger entre PIB e Balança Comercial; e Balança Comercial e Taxa de Câmbio. Analisando a FRI, acreditamos que a ordenação das séries está de maneira correta no contexto da Decomposição de Cholesky.

Em relação a análise das relações de cointengração entre as variáveis, os resultados do teste de cointengração de Johansen foram conflitantes, uma vez que no teste do traço não houve rejeição da hipótese nula enquanto que no teste do valor próprio máximo houve a rejeição da hipótese nula e verificou-se que há uma relação de cointengração.

Existem algumas limitações no trabalho, houve a rejeição da hipótese do teste de cointegração do valor próprio máximo somente ao nível de 10% de significância, o que acreditamos que possa influenciar na análise do modelo VEC. Adicionalmente, sugerimos que a análise desse trabalho possa ser replicada aumentando o período de análise, o que será muito interessante analisar o comportamento das séries com uma possível quebra de estrutura decorrente da crise econômica que o Brasil passou na metade da última década.

Anexos

Anexo 1

Série Dados Econômicos do Brasil - 1995 a 2013

Anexo 2

Anexo 3

Séries Originais				
Série Dickey-Fuller p-value				
PIB	-1.4635	0.7451		
Balança	-2.589	0.3285		
Comercial	-2.363	0.3263		
Taxa de Cambio	-1.8093	0.656		

Anexo 4

Série Diferenciada Dados Econômicos do Brasil - 1995 a 2013

Anexo 5

Anexo 6

Séries Diferenciadas				
Série	Dickey-Fuller	p-value		
PIB	-6.7773	0.01		
Balança	-8.9999	0.01		
Comercial	-6.5555	0.01		
Taxa de Cambio	-6.2356	0.01		

Anexo 7

Exportação em Milhoes US\$ - 1995 a 2013

Importação em Milhoes US\$ - 1995 a 2013

Anexo 8

	LPIB	Balança.Comercial	LTAXA_de_Cambio
nobs	228.000000	2.280000e+02	228.000000
NAS	0.000000	0.000000e+00	0.000000
Minimum	10.569546	-4.051766e+03	4.198104
Maximum	12.334338	5.671753e+03	5.141839
1. Quartile	10.915923	-6.521240e+01	4.324662
3. Quartile	11.879961	2.761637e+03	4.672010
Mean	11.385202	1.326067e+03	4.530564
Median	11.219802	1.162927e+03	4.520257
Sum	2595.826045	3.023432e+05	1032.968633
SE Mean	0.036361	1.156614e+02	0.015352
LCL Mean	11.313554	1.098160e+03	4.500314
UCL Mean	11.456849	1.553974e+03	4.560814
Variance	0.301437	3.050083e+06	0.053734
Stdev	0.549033	1.746449e+03	0.231806
Skewness	0.389760	2.030670e-01	0.474698
Kurtosis	-1.269620	-7.262440e-01	-0.695362

Anexo 9

Critérios de Seleção							
Ordem	AIC	BIC	FPE	HQ			
1	0.97	1.67	2.65	1.25			
2	0.93	1.77	2.55	1.27			
3	0.99	1.96	2.69	1.38			
4	1.01	2.13	2.77	1.46			
5	1.03	2.28	2.81	1.53			
6	1.07	2.47	2.95	1.64			
7	1.11	2.64	3.07	1.73			
8	1.12	2.79	3.09	1.79			

Anexo 10

Y	Estimate	Std. Error	t value	Pr(> t)
LPIB. 11	0.0636	0.0710	0.8952	0.3717
Balança_Comercial.11	0.0000	0.0000	0.5428	0.5879
LTAXA_de_Cambio.11	-0.0157	0.0869	-0.1801	0.8572
LPIB. 12	0.0340	0.0733	0.4643	0.6429
Balança_Comercial.12	0.0000	0.0000	-0.5255	0.5998
LTAXA_de_Cambio.12	-0.0071	0.0838	-0.0843	0.9329
const	0.0048	0.0030	1.5871	0.1140
sd1	0.0254	0.0170	1.4979	0.1357
sd2	0.0926	0.0162	5.7312	0.0000
sd3	-0.0088	0.0173	-0.5087	0.6115
sd4	0.0267	0.0166	1.6043	0.1102
sd5	0.0062	0.0154	0.4032	0.6872
sd6	0.0520	0.0155	3.3541	0.0009
sd7	0.0239	0.0161	1.4841	0.1393
sd8	-0.0055	0.0159	-0.3439	0.7312
sd9	0.0411	0.0155	2.6541	0.0086
sd10	-0.0044	0.0162	-0.2695	0.7878
sdl1	-0.0219	0.0159	-1.3770	0.1700

Anexo 11

255	Estimate	Std. Error	t value	Pr(> t)
LPIB. 11	-0.1806	0.0566	-3.1902	0.0016
Balança_Comercial.11	0.0000	0.0000	-0.8854	0.3770
LTAXA_de_Cambio. 11	0.3974	0.0693	5.7353	0.0000
LPIB. 12	0.0515	0.0585	0.8801	0.3798
Balança_Comercial.12	0.0000	0.0000	-1.2115	0.2271
LTAXA_de_Cambio.12	-0.1360	0.0668	-2.0365	0.0430
const	0.0013	0.0024	0.5448	0.5865
sdl	0.0282	0.0135	2.0810	0.0387
sd2	0.0006	0.0129	0.0455	0.9638
sd3	0.0168	0.0138	1.2170	0.2250
sd4	0.0175	0.0133	1.3228	0.1873
sd5	0.0224	0.0122	1.8322	0.0684
sd6	0.0111	0.0124	0.8996	0.3694
sd7	0.0311	0.0128	2.4233	0.0162
sd8	0.0190	0.0127	1,4995	0.1353
sd9	0.0176	0.0124	1.4282	0.1547
sd10	0.0083	0.0129	0.6388	0.5237
sdl1	0.0093	0.0127	0.7340	0.4638

3	Estimate	Std. Error	t value	Pr(> t)
LPIB. 71	-2952.7835	1419.5009	-2.0802	0.0387
Balança_Comercial.11	-0.7297	0.0670	-10.8923	0.0000
LTAXA_de_Cambio. 11	-2.0972	1737.7127	-0.0012	0.9990
LPIB. 12	-258.7635	1466.0486	-0.1765	0.8601
Balança_Comercial.12	-0.2764	0.0673	-4.1048	0.0001
LTAXA_de_Cambio.12	-143.3009	1674.3380	-0.0856	0.9319
const	37.1739	60.7083	0.6123	0.5410
sdl	707.8941	339.5999	2.0845	0.0383
sd2	1260.7622	322.9083	3.9044	0.0001
sd3	1831.4292	346.4314	5.2866	0.0000
sd4	1831.8137	332.3784	5.5112	0.0000
sd5	1629.7174	307.0415	5.3078	0.0000
sd6	1045.0202	310.2071	3.3688	0.0009
sd7	1245.9772	321.5283	3.8752	0.0001
sd8	979.0566	318,3560	3.0754	0.0024
sd9	470.9500	309.7959	1.5202	0.1300
sd10	309.1872	323,9006	0.9546	0.3409
sdl1	1751.8880	318.2013	5.5056	0.0000

Anexo 13

Testes Normalidade				
Teste Valor P-value				
JB	9728.1	0.0000		
Skewness	368.77	0.0000		
Kurtosis	9359.3	0.0000		

Anexo 14

	Testes Diagnósticos						
	Teste	s de					
aut	ocorrel	ação nos	Teste	ARCH			
	erros	- BG					
Lag	Valor	P-Value	Valor	P-Value			
3	30.71	0.2831	117.48	0.2508			
4	41.17	0.2544	149.02	0.3702			
5	45.65	0.4449	178.36	0.5205			
6	57.09	0.3608	206.37	0.6694			
7	61.7	0.5225	226.57	0.8735			
8	73.23	0.4373	255.86	0.9138			
9	82.52	0.4318	270.38	0.9864			
10	94.06	0.3638	298.18	0.9924			

		Causalidade	Causalidade
Variável 1	Variável 2	à Granger -	Contemporâneas
		P-value	- P-Value
LPIB	Ltaxa de	0.3306	0.8013
LFID	Câmbio	0.3300	0.8013
Balança	Ltaxa de	0.8437	0.0039
Comercial	Câmbio	0.6437	0.0039
LPIB	Balança 0.011		0.0038
LPIB	Comercial	0.011	0.0038

Anexo 16

Anexo 19

\$LPIB		
		alança_Comercial
		0.000000000
[2,] 0.9985667	0.0001213745	0.001311975
[3,] 0.9949883	0.0002848947	0.004726761
[4,] 0.9938720		
[5,] 0.9938115	0.0002917991	0.005896655
[6,] 0.9937971	0.0002918140	0.005911098
[7,] 0.9937719	0.0002918975	0.005936161
[8,] 0.9937650	0.0002918977	0.005943134
\$LTAXA_de_Cambio		
		Balança_Comercial
[1,] 0.05116074	0.9488393	0.000000000
[2,] 0.11996974	0.8772234	0.002806901
[3,] 0.12028637	0.8730193	0.006694355
[4,] 0.12059341	0.8714333	
[5,] 0.12063708	0.8713445	0.008018422
[6,] 0.12064837		
[7,] 0.12064598	0.8713157	0.008038319
[8,] 0.12064601	0.8713078	0.008046191
\$Balança_Comercia	a	
		Balança Comercial
[1,] 0.001043516	0.0009291684	0.9980273 0.9884476
[2,] 0.010629781	0.0009225958	0.9884476
[3,] 0.013964354	0.0008927023	0.9851429
[4,] 0.014426479	0.0008980738	0.9846754
[5,] 0.014358490	0.0008986233	0.9847429
[6,] 0.014390626	0.0008980504	0.9846754 0.9847429 0.9847113
[7,] 0.014414682	0.0008978845	0.9846874
[8,] 0.014416721	0.0008979241	0.9846854

Anexo 20

Forecast of series LPIB

Forecast of series Balança_Comercial

Forecast of series LTAXA_de_Cambio

Anexo 21

```
SLPIB
                             fest
                                                      lower
                                                                            upper
            -0.017946147 -0.105540203 0.06964791 0.08759406
            0.004392004 -0.083451063 0.09223507 0.08784307
  [2,]
  [3,] 0.084026350 -0.004044675 0.17209737 0.08807102
  [4,] -0.019314481 -0.107443787 0.06881483 0.08812931 [5,] 0.014818757 -0.073313354 0.10295087 0.08813211 [6,] -0.006761599 -0.094894387 0.08137119 0.08813279 [7,] 0.036707811 -0.051426098 0.12484172 0.08813391 [8,] 0.011476574 -0.076657659 0.09961081 0.08813423 [9,] -0.017064617 -0.105198865 0.07106963 0.08813425 [10,] 0.025317215 -0.062817040 0.11345147 0.08813426
[10,]
[11,] -0.018065333 -0.106199596 0.07006893 0.08813426
[12,] -0.036325688 -0.124459954 0.05180858 0.08813427
[13,] -0.014050028 -0.102184294 0.07408424 0.08813427
[13,] -0.014050028 -0.102184294 0.07408424 0.08813427 [14,] 0.004189354 -0.083944912 0.09232362 0.08813427 [15,] 0.082198055 -0.005936211 0.17033232 0.08813427 [16,] -0.018248500 -0.106382766 0.06988577 0.08813427 [17,] 0.014469361 -0.073664905 0.10260363 0.08813427 [18,] -0.006829655 -0.094963921 0.08130461 0.08813427 [19,] 0.036861241 -0.051273025 0.12499551 0.08813427 [20,] 0.011384575 -0.076749691 0.09951884 0.08813427
[21,] -0.017040927 -0.105175193 0.07109334 0.08813427
[22,]
            0.025326271 -0.062807996 0.11346054 0.08813427
[23,] -0.018079026 -0.106213292 0.07005524 0.08813427
[24,] -0.036318218 -0.124452484 0.05181605 0.08813427
```

Anexo 22

```
$LTAXA_de_Cambio
               fcst
                          lower
                                     upper
 [1,] -0.0215731076 -0.09139923 0.04825301 0.06982612
 [2,] 0.0090652842 -0.06902983 0.08716040 0.07809511
 [3,] -0.0037630308 -0.08206325 0.07453719 0.07830022
 [4,] -0.0182977716 -0.09672584 0.06013030 0.07842807
 [5,] 0.0041458067 -0.07429989 0.08259151 0.07844570
      0.0068223704 -0.07162413 0.08526887 0.07844650
 [6,]
 [7,] -0.0007351053 -0.07918244 0.07771223 0.07844734
      0.0094241745 -0.06902354 0.08787189 0.07844772
 [8,]
 [9,]
      0.0089191299 -0.06952861 0.08736687 0.07844774
      0.0095627934 -0.06888495 0.08801053 0.07844774
[10,]
[11,] -0.0067126801 -0.08516043 0.07173507 0.07844775
[12,] -0.0014985197 -0.07994627 0.07694923 0.07844775
[13,] -0.0092756015 -0.08772335 0.06917215 0.07844775
[14,]
      0.0116439177 -0.06680383 0.09009167 0.07844775
[15,] -0.0048158648 -0.08326361 0.07363188 0.07844775
[16,] -0.0176639832 -0.09611173 0.06078377 0.07844775
[17,]
      0.0036367158 -0.07481103 0.08208446 0.07844775
[18,]
      0.0067924540 -0.07165529 0.08524020 0.07844775
[19,] -0.0006087232 -0.07905647 0.07783903 0.07844775
[20,]
      0.0093508183 -0.06909693 0.08779857 0.07844775
[21,]
      0.0089468441 -0.06950090 0.08739459 0.07844775
[22,]
      0.0095661779 -0.06888157 0.08801393 0.07844775
[23,] -0.0067235579 -0.08517131 0.07172419 0.07844775
[24,]
     -0.0014919205 -0.07993967 0.07695583 0.07844775
```

```
$Balanca_Comercial
               fest
                          lower
                                     upper
                                                  CI
      -2223.686320 -3974.843 -472.5292 1751.157
       1080.936442 -1097.306 3259.1785 2178.242
 [3,]
          30.044169
                    -2196.107
                                2256.1956 2226.151
         208.685364 -2018.519 2435.8901 2227.205
 [4,]
        655.637625 -1577.530 2888.8053 2233.168
 [5,]
           6.022849 -2229.755 2241.8005 2235.778
 [6,]
        -176.564356 -2412.593 2059.4642 2236.029
         214.060183 -2021.984 2450.1047 2236.045
        -223.093256 -2459.187 2013.0007 2236.094
       -430.860982 -2666.973 1805.2507 2236.112
-437.864738 -2673.978 1798.2482 2236.113
1184.456311 -1051.657 3420.5694 2236.113
[10,
[11,]
[12,]
[13,]
       -1681.772639 -3917.886
                                 554.3409 2236.114
[14,]
         607.237648 -1628.876 2843.3513 2236.114
[15,]
         223.698723 -2012.415 2459.8123 2236.114
         203.416792 -2032.697
                                2439.5304 2236.114
[16,]
[17,
        603.422865 -1632.691
                                2839.5365 2236.114
[18,
                                2282.3581 2236.114
         46.244428 -2189.869
ſ19,
        -191.113758 -2427.227
                                2044.9999 2236.114
[20,]
         213.125998 -2022.988 2449.2396 2236.114
[21,]
        -218.175572 -2454.289 2017.9381 2236.114
[22,]
        -434.226666 -2670.340 1801.8870 2236.114
[23,]
        -436.805229 -2672.919 1799.3084 2236.114
[24.]
       1184.651271 -1051.462 3420.7649 2236.114
```

Anexo 24

PACF DIF. LPIB LAG 1 e 12

Anexo 25

Anexo 26

Anexo 27

Observação	Previsão Sarima	Valor Real	SE	Previsão VAR	Valor Real	SE
2012-1	0.07340	-0.14769	4.89%	0.01463	-0.14769	2.63%
2012-2	0.01830	0.01710	0.00%	-0.00688	0.01710	0.06%
2012-3	0.09078	0.08023	0.01%	0.08888	0.08023	0.01%
2012-4	-0.02190	-0.04258	0.04%	-0.02108	-0.04258	0.05%
2012-5	0.01738	0.03105	0.02%	0.01614	0.03105	0.02%
2012-6	0.00104	-0.01672	0.03%	-0.00610	-0.01672	0.01%
2012-7	0.03605	0.04078	0.00%	0.03584	0.04078	0.00%
2012-8	0.00992	0.02227	0.02%	0.01143	0.02227	0.01%
2012-9	-0.01956	-0.05227	0.11%	-0.01424	-0.05227	0.14%
2012-10	0.02466	0.05247	0.08%	0.02335	0.05247	0.08%
2012-11	-0.00693	-0.02608	0.04%	-0.01717	-0.02608	0.01%
2012-12	-0.01678	-0.03277	0.03%	-0.03801	-0.03277	0.00%
2013-1	0.07448	-0.04828	1.51%	-0.00226	-0.04828	0.21%
2013-2	0.01939	-0.01768	0.14%	0.00405	-0.01768	0.05%
2013-3	0.09187	0.08078	0.01%	0.08268	0.08078	0.00%
2013-4	-0.02081	0.00919	0.09%	-0.01875	0.00919	0.08%
2013-5	0.01847	-0.01819	0.13%	0.01539	-0.01819	0.11%
2013-6	0.00212	-0.01242	0.02%	-0.00596	-0.01242	0.00%
2013-7	0.03714	0.05042	0.02%	0.03586	0.05042	0.02%
2013-8	0.01101	0.00028	0.01%	0.01140	0.00028	0.01%
2013-9	-0.01847	-0.02998	0.01%	-0.01422	-0.02998	0.02%
2013-10	0.02575	0.03216	0.00%	0.02334	0.03216	0.01%
2013-11	-0.00584	-0.02559	0.04%	-0.01717	-0.02559	0.01%
2013-12	-0.01569	-0.01112	0.00%	-0.03801	-0.01112	0.07%
	MSE		0.30%	MSE		0.15%

Anexo 28

Lag	LogL	LR	FPE	AIC	SC	HQ
1	-1132.533	NA	6.449133	10.37757	10.51640	10.43364
2	-1080.178	101.8546	4.348553	9.983434	10.26109*	10.095563
3	-1065.663	27.84158	4.136323*	9.933301*	10.34979	10.10149
4	-1057.407	15.61099	4.165184	9.940067	10.49539	10.16432
5	-1054,109	6.146463	4.388145	9.991902	10.68605	10.27222
6	-1046.048	14.80300	4.427817	10.00044	10.83342	10.33682
7	-1034.952	20.07367*	4.347067	9.981384	10.95320	10.37383
8	-1031.848	5.531732	4.590379	10.03498	11.14562	10.48349

^{*} indicates lag order selected by the criterion

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Anexo 29

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None	0.088726	25.93616	29.79707	0.1306
At most 1	0.022520	5.123972	15.49471	0.7955
At most 2	9.71E-05	0.021760	3.841466	0.8826

Trace test indicates no cointegration at the 0.05 level

Anexo 30

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None	0.088726	20.81219	21.13162	0.0553
At most 1	0.022520	5.102211	14.26460	0.7289
At most 2	9.71E-05	0.021760	3.841466	0.8826

Max-eigenvalue test indicates no cointegration at the 0.05 level

LR: sequential modified LR test statistic (each test at 5% level)

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

Cointegrating Eq.	CointEq1	Error Correction:	D(LPIB)	D(LTAXA	D(BALANC
LPIB(-1)	1.000000	CointEq1	-0.009858	0.001651	302.0666
			(0.00390)	(0.00267)	(74.5978)
LTAXA_DE_CAMBIO(-1)	3.161899		[-2.52531]	[0.61862]	[4.04927
LIPON_DE_CHIIDIO(-1)	(0.86841)	D(LPIB(-1))	-0.008787	-0.151834	47.42446
		D(LFIB(-1))	(0.06715)	(0.04592)	(1283.26
	[3.64102]		[-0.13085]	[-3.30619]	[0.03696
BALANCA COMERCI	-0.000741	D(LPIB(-2))	-0.008976	0.055849	3362 145
	(0.00013)	D(LF10(-2))	(0.06880)	(0.04705)	(1314.71
			[-0.13047]	[1.18703]	[2.55732
	[-5.74525]		[-0.15047]	[1.10703]	[2.00/32
C	24 72462	D(LTAXA_DE_CAMBI_	0.055358	0.389535	-554.6456
C	-24.72463		(0.09917)	(0.06783)	(1895.28)
			[0.55818]	[5.74311]	[-0.29265
		D(LTAXA DE CAMBI	-0.014603	-0.143558	-1062.874
			(0.09718)	(0.08647)	(1857.26
			[-0.15026]	[-2.15989]	[-0.57228
		D(BALANCA COMER	-4.64E-06	-2.23E-08	-0.546530
			(3.8E-06)	(2.6E-06)	(0.07306
			[-1.21248]	[-0.85270]	[-7.48049
		D(BALANCA COMER	-7.81E-06	-6.86E-07	-0.175630
			(3.5E-06)	(2.4E-06)	(0.06595
			[-2.26234]	[-0.29063]	[-2.66319]
		С	0.005191	0.001224	5.463647
			(0.00354)	(0.00242)	(67.6840)
			[1.46560]	[0.50549]	[0.08072
		R-squared	0.049804	0.200716	0.411195
		Adj. R-squared	0.019152	0.174933	0.392201
		Sum sq. resids	0.595072	0.278335	2.17E+00
		S.E. equation	0.052367	0.035814	1000.756
		F-statistic	1.624834	7.784736	21.64901
		Log likelihood	348.4458	433.9299	-1869.603
		Akaike AIC	-3.026184	-3.786044	16.68981
		Schwarz SC	-2.904723	-3.664582	16.81127
		Mean dependent	0.005085	0.000996	15.82209
		S.D. dependent	0.052875	0.039428	1283.655
		Determinant resid covari		3.383857	
		Determinant resid covari	ance	3.035594	
		Log likelihood		-1082.704	
		Akaike information criteri	on	9.864038	
		Schwarz criterion		10.27397	

Anexo 32

Lags	Q-Stat	Prob.	Adj Q-Stat	Prob.	df
1	0.547913	NA*	0.550359	NA*	NA*
2	2.261046	NA*	2.278857	NA"	NA*
3	8.124281	0.9187	8.221325	0.9146	15
4	22.75253	0.5344	23.11434	0.5131	24
5	35.72306	0.3416	36.37965	0.3142	33
6	51.95539	0.1396	53.05671	0.1179	42
7	60.97795	0.1599	62.36898	0.1321	51
8	72.43174	0.1304	74.24503	0.1021	60
9	83.04302	0.1193	85.29845	0.0890	69
10	93.13270	0.1163	95.85742	0.0829	78