This is a project for verifying the theorems and lemmas in topological network-control games played on graphs. All the codes are to compute the Opt(G,C) in a brute-force way and then compare the result with the characterization provided by lemmas and theorems. If a lemma or theorem cannot cover some case, the counter case will be printed. Verifications are designed as follows:

Lemma 1:

- $lemma1_solver(opt_g, n)$ is the function of computing the result by applying the lemma directly where opt_g is $Opt(G', \emptyset)$ and n corresponds to the same n in the lemma.
- In $lemma1_verifier$, we use dynamic programming algorithm to compute the result for all configurations $G' \cup Path_n$ with $Opt(G',\emptyset) \in [0,1]$ and $n \leq 100$. Then after comparing the results with lemma1 solver's results, the verification is done.

Lemma 2:

- $lemma2_solver(opt_g, n)$ is the function of computing the result by applying the lemma directly where opt_g is $Opt(G', \emptyset)$ and n corresponds to the same n in the lemma.
- In $lemma2_verifier$, we use dynamic programming algorithm to compute the result for all configurations $G' \cup Path_n$ with $Opt(G',\emptyset) \in [2,3]$ and $16 \le n \le 100$. Then after comparing the results with $lemma2_solver$'s results, the verification is done.

Corollary 3:

- *corollary3_solver(opt_g, n)* is the function of computing the result by applying the corollary directly where opt_g is $Opt(G', \emptyset)$ and n corresponds to the same n in the corollary.
- In *corollary3_verifier*, we use dynamic programming algorithm to compute the result for all configurations $G' \cup Cycle_n$ with $Opt(G',\emptyset) \in [2,3]$ and $1 \le n \le 18$. Then after comparing the results with *corollary3_solver*'s results, the verification is done.

Theorem 1:

- theorem1_solver(cycles) is the function of computing the result by applying the theorem directly where cycles[i] is the size of $Cycle_{x_i}$, or namely, cycles[i] corresponds to the x_i in the theorem.
- theorem1_generate generates all the required cycles and theorem1_compute applies memorized searching algorithm to compute the results and stores them in opt.
- In theorem1_verifier, we apply theorem1_generate and theorem1_compute to generate and compute the result for configurations $(\bigcup Cycle_{x_i}, \emptyset)$ with $\sum x_i \leq 80$ and $x_i \in \bigcup_{j=0}^9 P_j$. Then after comparing the results with theorem1_solver's results, the verification is done.

Theorem 2:

- theorem2_solver(cycles) is the function of computing the result by applying the theorem directly where cycles[i] is the size of $Cycle_{x_i}$, or namely, cycles[i] corresponds to the x_i in the theorem.
- *theorem2_generate* generates all the required cycles and *theorem2_compute* applies memorized searching algorithm to compute the results and stores them in *opt*.
- In theorem2_verifier, we apply theorem2_generate and theorem2_compute to generate and compute the result for configurations $(\bigcup Cycle_{x_i}, \emptyset)$ of $\sum x_i \leq 60$. Then after comparing the results with theorem2_solver's results, the verification is done.

Lemma 5:

- $lemma5_solver(opt_g, n, m)$ is the function of computing the result by applying the lemma directly where opt_g is $Opt(G', \emptyset)$ and n, m correspond to the same n, m in the lemma.
- In $lemma5_verifier$, we use dynamic programming algorithm to compute the result for all configurations $G' \cup Path_n \cup Path_m$ with $Opt(G',\emptyset) \in [0,1]$ and $1 \leq n,m \leq 10$. Then after comparing the results with $lemma5_solver$'s results, the verification is done.

Lemma 7:

- $lemma7_solver(opt_g, n, m)$ is the function of computing the result by applying the lemma directly where opt_g is $Opt(G', \emptyset)$ and n, m correspond to the same n, m in the lemma.
- In $lemma7_verifier$, we use dynamic programming algorithm to compute the result for all configurations $G' \cup Path_n \cup Path_m$ with $Opt(G',\emptyset) \in [2,3]$ and $16 \le n \le 25, m \le 25$. Then after comparing the results with $lemma7_solver$'s results, the verification is done.

Lemma 8:

- $lemma8_solver(opt_g, n)$ is the function of computing the result by applying the lemma directly where opt_g is $Opt(G',\emptyset)$ and n correspond to the same n in the lemma.
- In $lemma8_verifier$, we use dynamic programming algorithm to compute the result for all configurations $G' \cup Path_n$ with $Opt(G',\emptyset) \in [2,3]$ and $1 \le n \le 33$. Then after comparing the results with $lemma8_solver$'s results, the verification is done.

Theorem 3:

- theorem3_solver(paths) is the function of computing the result by applying the theorem directly where paths[i] is the size of $Path_{x_i}$, or namely, paths[i] corresponds to the x_i in the theorem.
- *theorem3_generate* generates all the required paths and *theorem3_compute* applies memorized searching algorithm to compute the results and stores them in *opt*.
- In theorem3_verifier, we apply theorem3_generate and theorem3_compute to generate and compute the result for configurations $(\bigcup Path_{x_i}, \emptyset)$ with $\sum x_i \leq 75$ and $x_i \in \bigcup_{i=0}^7 P_i$. Then after comparing the results with theorem3 solver's results, the verification is done.

Theorem 4:

- theorem4_solver(paths) is the function of computing the result by applying the theorem directly where paths[i] is the size of $Path_{x_i}$, or namely, paths[i] corresponds to the x_i in the theorem.
- *theorem4_generate* generates all the required paths and *theorem4_compute* applies memorized searching algorithm to compute the results and stores them in *opt*.
- In theorem4_verifier, we apply theorem4_generate and theorem4_compute to generate and compute the result for configurations $(\bigcup Path_{x_i},\emptyset)$ of $\sum x_i \leq 60$. Then after comparing the results with theorem4_solver's results, the verification is done.

Other functions:

- $path_p_type(path)$ computes which P_i the path belongs to.
- $get_path_cntp(paths)$ computes $cnt_{P_i}(G)$ where G is a linear forest defined by paths.
- $get_path_cntodd(paths)$ computes $cnt_{odd}(G)$ where G is a linear forest defined by paths.
- get path s(paths) computes the $\mathcal{S}(G)$ where G is a linear forest defined by paths.
- $cycle_p_type(cycle)$ computes which P_i the cycle belongs to.
- $get_cycle_cntp(cycles)$ computes $cnt_{P_i}(G)$ where G is union of cycles defined by cycles.
- $get_cycle_cntodd(cycles)$ computes $cnt_{odd}(G)$ where G is union of cycles defined by cycles.

• $get_cycle_s(cycles)$ computes the $\mathcal{S}(G)$ where G is union of cycles defined by cycles.

How to run the code?

- Firstly, install the rust environment with command curl --proto '=https' --tlsv1.2 -ssf https://sh.rustup.rs | sh (see https://www.rust-lang.org/tools/install)
- Then run with command cargo run --release in the work directory containing Cargo.toml file.
- In some time, you will see the following result printed on the terminal:

```
Verifying Lemma 1 for 1<=n<=100 ...
 2 Lemma 1 passed!
 3
   Verifying Lemma 2 for 16<=n<=100 ..
 4
   Lemma 2 passed!
   Verifying Corollary 3 for 1<=n<=18 ..
 5
   Corollary 3 passed!
 6
   Verifying Theorem 1 for 1 \le |G| \le 80 ..
 7
   Theorem 1 for |G| \le 80 passed!
9
   Verifying Theorem 2 for 1 <= |G| <= 60 ..
10
   Theorem 2 for |G| <= 60 passed!
11 Verifying Lemma 5 for 1<=n,m<=10 ...
12 Lemma 5 passed!
13 Verifying Lemma 7 for 16 <= n <= 25 and m <= 25..
14
   Lemma 7 passed!
15 | Verifying Lemma 8 for 1<=n<=33 ...
16 Lemma 8 passed!
17
   Verifying Theorem 3 for |G| \le 75 ...
18 Theorem 3 for |G| \le 75 passed!
19 Verifying Theorem 4 for |G|<=60 ...
20 Theorem 4 for |G| \le 60 passed!
```

The M2 Max completed the task in 10 minutes, whereas the i7-12700H took 50 minutes, highlighting distinct performance variations among the different CPUs.