SIMPLICIAL HOMOLOGY

KUMAR SATYADARSHI

May 14, 2025

Contents

1 Simplices 2

1 Simplices

1. Simplicial homology is defined for a certain class of spaces, which is the class of all polyhedra.

Definition 1.1. Given a set $\{a_0,...,a_n\}$ of points of \mathbb{R}^N , this set is said to be **geometrically independent** if for any real scalars t_i , the equations

$$\sum_{i=0}^{n} t_i = 0 \quad \text{and} \quad \sum_{i=0}^{n} t_i a_i = 0$$

imply that $t_0 = ... = t_n = 0$.

- 2. One-point set is always geometrically independent.
- 3. It is easy to see that in general $\{a_0,...,a_n\}$ is geometrically independent iff the vectors

$$a_1 - a_0, \cdots, a_n - a_0$$

are linearly independent in the sense of ordinary linear algebra. This is true for any a_i in the place of a_0 . 4. The **n-plane** spanned by these points consist of all points x of \mathbb{R}^N such that

$$x = \sum_{i=0}^{n} t_i a_i$$

for some scalars t_i with $\sum_{i=0}^{n} t_i = 1$.

Lemma 1.2. If $\{a_0, ..., a_n\}$ is geometrically independent, and if w lies outside the plane that these points span, then $\{w, a_0, ..., a_n\}$ is geometrically independent.

- 5. An **affine transformation** T of \mathbb{R}^N is a map that is a composition of translations and non-singular linear maps.
- 6. An affine transformations preserves geometric independent sets and carries the plane P spanned by $\{a_0,...,a_n\}$ onto the plane spanned by $\{Ta_0,...,Ta_n\}$.
- 7. The translation $T(x) = x a_0$ carries P onto the vector subspace of \mathbb{R}^N having $a_1 a_0, \dots, a_n a_0$ as a basis; if we follow T by a linear transformation of \mathbb{R}^N carrying $a_1 a_0, \dots, a_n a_0$ to the first n unit basis vectors of \mathbb{R}^N , we obtain an affine transformation S of \mathbb{R}^N that carries P onto the plane $\mathbb{R}^n \times 0$ of the first n coordinates in \mathbb{R}^N .

Definition 1.3. Let $\{a_0,...,a_n\}$ be a geometrically independent set in \mathbb{R}^N , We define **n-simplex** σ spanned by a_0,\cdots,a_n to be the set of all points x in \mathbb{R}^N such that

$$x = \sum_{i=0}^{n} t_i a_i \quad \text{where} \quad \sum_{i=0}^{n} t_i = 1$$

and $t_i \ge 0$ for all i. The numbers t_i are uniquely determined by x; they are called the **barycentric** coordinates of the point x of σ with respect to a_0, \dots, a_n .

9. The points a_0, \dots, a_n that span σ are called **vertices** of σ ; the number n is called the dimension of σ . Any simplex spanned by a subset of $\{a_0, \dots, a_n\}$ is called a **face** of σ . In particular, the face of σ spanned by a_1, \dots, a_n is called the face opposite a_0 .

- 10. The faces of σ different from σ itself are called **proper faces** of σ ; their union is called the **boundary** of σ and denoted Bd σ . The **interior** of σ is defined by the equation Int $\sigma = \sigma Bd\sigma$; the set Int σ is sometimes called an **open simplex**.
- 11. Bd σ consists of all points x of σ such that at least one of the barycentric coordinates $t_i(x)$ is zero. Int σ consists of those points of σ for which $t_i(x) > 0$ for all i. It follows that, given $x \in \sigma$, there is exactly one face s of σ such that $x \in Ints$, for s must be the face of σ spanned by those a_i for which $t_i(x)$ is positive.
- 12. Let us list some basic properties of simplices.
 - i The barycentric coordinates $t_i(x)$ of x with respect to a_0, \dots, a_n are continuous functions of x.
- ii σ equals the union of all line segments joining a_0 to points of the simplex s spanned by a_0, \dots, a_n . Two such line segments intersect only in the point a_0 .
- iii σ is a compact, convex set in \mathbb{R}^N , which equals the intersection of all convex sets in \mathbb{R}^N containing a_0, \dots, a_n . It means it is the **convex hull** of a_0, \dots, a_n .
- iv Given a simplex σ there is one and only one geometrically independent set of points spanning σ .
- v Int σ is convex and is open in the plane P; its closure is σ . Furthermore, Int σ equals the union of all open line segments joining a_0 to points of Int s, where s the face opposite σ opposite a_0 .
- vi There is a homeomorphism of σ with the unit ball B^n that carries Bd σ onto the unit sphere S^{n-1} .

Lemma 1.4. Let U be a bounded, convex, open sets in \mathbb{R}^n ; let $w \in U$.

- 1. Each ray emanating from w intersects Bd $U = \bar{U} U$ in precisely one point.
- 2. There is a homeomorphism of \bar{U} with B^n carrying Bd U onto S^{n-1} .