elektrische Einheiten

- elektrische Ladung Q

Einheit: As

Formel: Q = I * t

- elektrische Spannung = Maß für den Unterschied von PLUS und MINUS

Einheit: Volt

Formel: U = I * R (R = elektrische Widerstand) oder U = P / I

AC = Wechselspannung; DC = Gleichspannung

Messen: Voltmeter

- elektrische Stromstärke I

Einheit: A

Formeln: I = U / R

I = P / U

I = Q / t

Messen: Ampermeter

elektrischer Widerstand (ohmscher Widerstand)

Einheit: Ohm oder 🕰

Formel: R = U/I

Reihenschaltung: $R_{ges} = R_1 + R_2$

Parallelschaltung:
$$\underline{1} = \underline{1} + \underline{1} \dots$$
; $R_{ges} = \underline{R1 * R2} (R_1 + R_2)$

Magnetfeld

- Dauermagnetismus (Dauermagnet)
- Elektromagnetismus (Elektromagnet)

Induktion

beweglicher Leiter (Generatorprinzip)

elektrische Leistung

Formel: P = U * I

 $P = R * I^{2}$ $P = U^{2} / R$

Einheit: Watt; VA

elektrische Arbeit/Energie

Einheit: kWh

Formel: W = U * I * t; W = P * t; W = I² * R * t, W = U * Q

Kondensator

⊣⊢ Schaltzeichen

Formel: C = Q / U Einheit: Farad

++; +++; ++

Übungen:

Stab-Mixer

ges: I

$$P = U * I$$
 $I = P / U$
 $P_{aus} = 400W = 78\%$
 $P_{ein} = 100\%$
 $d.h. P_{ein} = 400W / 0,78$
 $I = P_{ein} / U$
 $I = 400W / 0,78 / 12V; I = 400W / (0,78 * 12V)$
 $I = 42,7A$

Netzteil:

U = 230V P = 950W

ges.: Strom

Lösung:

P = I * U I = P / U I = 950W / 230V I = 4,13A Sie sollen einen Klassenraum mit 15 PC's bestücken. Das Netzteil eines PC's hat eine Eingangsleistung von 650W. Wie hoch ist der Gesamtstrom???????

Lösung:

Der Gesamtstrom beträgt 42,4A.

geg.:

$$R1 = 250\Omega$$
$$R2 = 1,7K\Omega$$

 $ges.:R_{ges} \ in \ \Omega$

$$R_{ges}$$
 = R1 + R2

$$R_{ges}$$
 = 250 Ω + 1,7 * 1000 Ω

$$R_{ges}$$
 = 1950 Ω

Netzteil:

$$P_{Ausgang} = 950W$$

 $U = 220V$
 $\eta = 87\%$

ges.: PEingang und IEingang

Lösung:

 $P_{Eingang} = P_{Ausgang} / 87\%$ $P_{Eingang} = 950W / 0,87$ $P_{Eingang} = 1092W$

 $P_{Eingang} = U * I_{Eingang}$ $I_{Eingang} = P_{Eingang} / U$ $I_{Eingang} = 1092W / 220V$

I_{Eingang} = 4,96A

Reihenschaltung

$$R_{ges}$$
 = R1 + R2

$$I_{ges} = I_1 = I_2$$

$$U_{ges} = U_1 + U_2$$

Parallelschaltung

$$R_{ges} = \frac{R_1 * R_2}{(R_1 + R_2)}$$

$$I_{\text{ges}} = I_1 + I_2$$

$$U_{ges} = U_1 = U_2$$

Berechnen Sie den Gesamtwiderstand R_{ges} , der an den Klemmen A-B gemessen werden kann.

$$R_{ges}$$
 = $(1\Omega+3\Omega)$ * 2Ω / $((1\Omega+3\Omega)+2\Omega)$ + 4Ω

$$R_{ges}$$
 = 5,33 Ω

$$U_{ges} = 5V$$

 $I = 1A$
 $R_1 = 2\Omega$

ges.:

 $U_2 \ und \ R_2$

$$U_{ges} = U_1 + U_2$$

 $I_{ges} = I_1 = I_2$
 $R_{ges} = R_1 + R_2$

$$U_1 = I * R_1$$

 $U_1 = 1A * 2\Omega$
 $U_1 = 2V$

$$U_{ges} = U_1 + U_2$$
; $U_2 = U_{ges} - U_1$
 $U_2 = 5V - 2V$
 $U_2 = 3V$

$$U_2 = I * R_2; R_2 = U_2 / I$$

 $R_2 = 3V / 1A$
 $R_2 = 3\Omega$

Knotenregel (Kirchhoff 1)

$$I_{zu} = I_1 + I_2$$

geg.:

$$U_2 = 5V$$

 $I_2 = 0,5A$
 $R_1 = 2\Omega$
 $R = 3\Omega$

ges.: U_{ges}

$$U_2 = I_1 * R_1; I_1 = U_2 / R_1$$

 $I_1 = 5V / 2\Omega$
 $I_1 = 2,5A$

$$I_{Zu} = I_1 + I_2$$

 $I_{Zu} = 2,5A + 0,5A$
 $I_{Zu} = 3A$

$$U_R = I_{zu} * R$$

 $U_R = 3A * 3\Omega$
 $U_R = 9V$

$$U_{ges} = U_R + U_2$$

 $U_{ges} = 9V + 5V$
 $U_{ges} = 14V$

Sie besitzen einen Elektrorasenmäher über 230V betrieben mit einer Stromaufnahme von 4A. Da das Grundstück sehr groß ist, schließen sie ein 50m Verlängerungkabel an. Das Kabel besteht aus Kupfer und hat einen Leitungsquerschnitt von 2,5mm². Spezifischer Widerstand von Kupfer: 0,018Ωmm²/m.

Gesucht ist die tatsächliche Leistung in Watt.

- Widerstand
- Stromstärke
- Spannungsabfall (U_{Kabel} = R_{Kabel} * I_{ges})
- Verlustleistung (P_{Kabel} = U_{Kabel} * I_{ges})
- tatsächliche Leistung

Widerstand

```
\begin{aligned} &R_{Kabel} = p * L/A \\ &R_{Kabel} = 0,018\Omega mm^2 * 50m / 2,5mm^2 \\ &R_{Kabel} = 0,36\Omega \end{aligned} \begin{aligned} &R_{Leitung} = U^2 / P; \ R_{Leitung} = U^2 / (U * I) \\ &R_{Leitung} = 230^2 V / (230V * 4A) \\ &R_{Leitung} = 57,5\Omega \end{aligned} \begin{aligned} &R_{ges} = 2 * R_{Kabel} + R_{Leitung} \\ &R_{ges} = 2 * 0,36\Omega + 57,5\Omega \\ &R_{ges} = 58,22\Omega \end{aligned}
```

Stromstärke

 $I_{ges} = U / R_{ges}$ $I_{ges} = 230V / 58,22\Omega$ $I_{ges} = 3,95A$

Spannungsabfall

 U_{Kabel} = R_{Kabel} * I_{ges} U_{Kabel} = 0,36 Ω * 3,95A U_{Kabel} = 1,4V

Verlustleistung

P_{Kabel} = U_{Kabel} * I_{ges} P_{Kabel} = 1,4V * 3,95A P_{Kabel} = 5,53W P_{Kabel gesamt} = 5,53W * 2 P_{Kabel gesamt Verlust} = 11,06W

tatsächliche Leistung

 $U_{\text{Leitung tatsächlich}} = R_{\text{Leitung}} * I_{\text{ges}}$ $U_{\text{Leitung tatsächlich}} = 57,5\Omega * 3,95A$ $U_{\text{Leitung tatsächlich}} = 227,125V$

Ptatsächlich = ULeitung tatsächlich * Iges Ptatsächlich = 227,125V * 3,95A Ptatsächlich = 897,14W

```
geg.:
     W = 27kWh
     U = 1,2V
     I = 2A
ges.:
     t in s
Lösung:
     W = U * I * t
     t = W / (U * I)
     W = 27kWh; 27 * 10^3 Wh
     W = 27kWh; 27 * 10<sup>3</sup> * 3600 Ws
     W = 27 * 10^6 * 3,6 Ws
     t = <u>27 * 10<sup>6</sup> * 3,6 Ws</u>
           1,2V * 2A
```

 $t = 4,05 * 10^7 s$