

3.003 Principles of Engineering Practice Principles of Engineering Practice Principles of Engineering Practice

Engineering the Future of Solar Electricity

Project 1A,B

A: Solar Electricity Generation System Constraints rate limiting factors
B: Materials Selection
Constraints, FOM analysis

Engineering the Future of Solar Electricity

Problem

- What fraction of US/global power consumption?
- Timeline for deployment?
- Markets and applications?
- Roles of Government, Users, Investment, Performance, Sustainability?

Constraints

- Design-limiting attributes and specifications
 - Figures-of-Merit, estimates, rules-of-thumb

Project 1 Judges

Dr. Hichem M'Saad

- PhD, Materials Science and Engineering MIT, 1994
- Corporate Vice President and GM of Silicon Sector Group Applied Materials, 1997-2008
- CEO and Founder
 Volta PV, Renewable Energy and PV Systems Integrator

Professor Gavin Conibeer

- PhD, Engineering Materials
 University of Southampton, 1994
- Deputy Director and Senior Research Fellow
 School of Photovoltaic and Renewable Energy Engineering, UNSW

University of Tokyo

- Website
 - Post interim reports for comment
 - April 22, 6:30-7:30p (pizza and video conf)
- UT teams
 - Name and Logo
 - Assignment UT1 and UT2 (April-May)
 - Learning from Koseki and Salvucci
 - Learning from Toriumi and Fitzgerald
 - Assignment UT3 (May-July)
 - Engineering Solar Electricity
 - May 22: MIT-UT Solar Symposium

P1A: Social and Political Factors

- Solar technical language
- Solar benefits
 - Availability, security, reduced transmission losses, grid independent, grid load leveling
- Greenhouse reduction
- Jobs

P1B: Materials Factors

Materials

- Absorption: energy gap
- Charge collection: p-n junction, diffusion length
- Reflectance: AR coating, texture
- Current extraction: contacts, shading
- Light trapping: optics

PiC: Engineering Practice

- Module
 - Interconnection, shading, uniformity
- Manufacturing
 - Extraction of materials, process flow, thin film vs. wafer, throughput, yield
- Deployment
 - Reliability
 - Control circuits, compatibility
 - SWAP: size, weight and power
 - Safety, skill set

Project 1A,B,C,D Execution

- Each project status review will be presented by a team leader.
 - Take notes from meeting before
 - Manage delivery of commitments
 - Report results to the group (BIRAC format)
 - Goal
 - Progress
 - Next steps
- U Tokyo is part of your team
 - Post on new global website

Project 1A: *due 4-6*Electricity Generation System Constraints

Applications: FOM Comparisons

- Strengths
 - Attributes of solar electricity
 - Optimization plot
 - x vs. y with maximum for solar attributes
- Weaknesses
 - Barriers
 - Crossover point to solar advantage
- Competition
 - Local power
 - Gasoline: energy/unit volume

Engineering Practice

- 1. Problem Definition (B)
- 2. Constraints (I)
- 3. Options (R)
- 4. Analysis (A)
- 5. Solution (C)

Project Planning

- Timeline
- Resources
- Problem Definition

Engineering the Future of Solar Electricity Teams: local power; grid connected power

- Project 1A: due 4-6
 - Electricity Generation System Constraints
- Project 1B: due 4-13
 - Materials Selection
- Project 1C: due 4-27
 - Solar Cell Solar Cell Design
 - Module Manufacturing Platform
- Pentachart Summary Presentations: due 5-4
- Project 1D: due 5-6
 - Final Report and Presentation

Infrastructure Change Issues

- New technology requires changing multiple components.
- Multi-vendor interoperability must be considered.
- Expected rewards in one area are sometimes accompanied by risks of disruption in other more critical application areas.
- Capital cost of infrastructure upgrade vs. sunk cost of existing.
- Missing or incomplete backward compatibility leading to replacing more equipment than will benefit from the upgrade.
- Incomplete value-chain availability, particularly in early stages of new technology.
- New skills availability and adoption.
- Changes in Economic Marketplace.

The Solar Cell

- 1) Principles of operation
- 2) Relevant performance metrics
- 3) Design for performance
- 4) Design for manufacturing
- 5) Design for application
- 6) What scale of production is consistent with (6)?

Project Execution

- One Project assignment is given and divided into parts for concurrent engineering by teams.
- One solution will be submitted per team. All members of the team receive the same project grade.
- Teams will complete four project stages during the term.
 - Plan; Initial Findings; Solution Consistency among Teams;
 Final Presentation to Panel of Experts
- The final deliverables are:
 - 20 minute presentation (5-10 slides), during which all workgroup members must speak.
 - Two days later, edited slides and a final two-page report.

MIT OpenCourseWare http://ocw.mit.edu

3.003 Principles of Engineering Practice Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.