НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

про виконання лабораторної роботи № 5 по дисципліні «Алгоритми і системи комп'ютерної математики - 1 » на тему

«Чисельні методи оптимізації»

Виконала: Керівник: студентка групи КМ-81 Старший викладач Верзун П. В. Ліскін В.О.

ВСТУП

У загальному випадку задача лінійного програмування формулюється в такий спосіб:

$$f(x) = c_1 x_1 + ... + c_n x_n -> min(max)$$

при обмеженнях

Задача може бути розв'язана або повним перебором многогранника, утвореного перетинаю оимися гіперплощинами, що задаються умовами обмеженнями /для більшості практичних задач- чисто теоретичний спосіб/, або з використанням симплекс-методу, що реалізує спрямований перебір.

Розглянемо кілька різновидів задачі лінійного програмування.

1. Задача про використання ресурсів. Для виготовлення n продукції $P_1,...,P_n$ підприємство використовує m видів ресурсів $S_1,...,S_m$. Запаси кожного виду обмежені і рівні $b_1,...,b_m$. На виготовлення одиниці продукції j-го виду (j=) витрачається a_{ij} одиниць i-го ресурсу (i=). При реалізації j-ї продукції підприємство одержує c_j одиниць прибутку. Необхідно скласти такий план випуску продукції, щоб при її реалізації отримати максимальний прибуток.

ВАРІАНТ ЗАВДАННЯ

Варіант	Види ресурсів	Витрати ресурсів на одиницю продукції			Запаси ресурсів	Прибуток від реалізації одиниці продукції		
		P ₁	P ₂	P ₃		C_{P_1}	C_{P_2}	C_{P_3}
2	S_1	2	5	-	300			
		4	5	-	400	5	8	-
	S_2	3	0	-	100			
	S_3	0	4	-	200			
	S_4							

Необхідно розв'язати задачу оптимізації використання ресурсів. Розв'яжемо задачу ЛП симплекс-методом, використаємо Python та Octave.

ЛІСТИНГ ПРОГРАМ

Python

```
1 import numpy as np
   from scipy.optimize import linprog
c = [-5, -8]

b_ub = [300, 400, 100, 200]

A_ub = [[2, 5], [4, 5], [3, 0], [0, 4]]
 8 bnd = [(0, 10000), (0, 10000)]
9
10 def optimize(c, A_ub, b_ub, bnd):
        d = linprog(c, A ub, b ub, method="simplex", bounds=bnd, options={"autoscale": True})
for key, val in d.items():
11
12
             if key == 'x':
    q = [sum(i) for i in A_ub * val]
13
14
15
                  print('Used resources: ', q)
                  q1 = np.array(b_ub) - np.array(q)
16
17
                  print('Saved resources:', q1)
18
             elif key == "fun":
                  print(f"Fuction value: {val}")
19
20
   optimize(c, A ub, b ub, bnd)
```

Octave

```
c = [-5, -8]';
    b = [300, 400, 100, 200]';
 3
    A = [2, 5; 4, 5; 3, 0; 0, 4];
 4
 5
    lb=[0, 0]';
 6
    ub = [];
 7
    ctype = "UUUU";
    vartype = "CC";
 8
9
10
    [xmin, fmin, status, extra] = glpk (c, A, b, lb, ub, ctype, vartype);
11
    disp(xmin);
12
    disp(fmin);
13
```

Результати роботи програм:

Python

Octave

```
>> lab5
33.333
46.667
-540
```

ВИСНОВКИ

В даній ЛР ми реалізували симплекс-метод розв'язку задачі лінійного програмування за допомогою Python та Octave. Були отримані хороші результати однакової точності для обох систем.