Surfaces

Height Fields

$$z = f(x,y)$$

Example Height Fields

Gaussian

$$z = f(x, y) = e^{-ax^2 - by^2}$$

Sinc

$$z = f(x,y) = \frac{\sin\left(\sqrt{x^2 + y^2}\right)}{\sqrt{x^2 + y^2}}$$

Surface Representations

Explicit: z = f(x,y)

Implicit: f(x,y,z) = 0

Surface normal: $\mathbf{n} = \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix}$

Parametric: $x = f_x(u,v), y = f_y(u,v), z = f_z(u,v)$

Computing Surface Normals

Parametric surface patch

$$\mathbf{p}(u,v) = \begin{bmatrix} x(u,v) & y(u,v) & z(u,v) \end{bmatrix}^{\mathsf{T}}$$

Tangent vectors to surface

$$\mathbf{p}_{u}(u,v) = \begin{bmatrix} \frac{\partial \mathbf{X}}{\partial u} & \frac{\partial \mathbf{Y}}{\partial u} & \frac{\partial \mathbf{Z}}{\partial u} \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{p}_{v}(u,v) = \begin{bmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{bmatrix}^{\mathsf{T}}$$

The tangent vectors are also tangent to the *isoparametric curves* p(u=c,v) and p(u,v=c)

Unit normal vector to parametric surface

$$\mathbf{n}(u,v) = \frac{\mathbf{p}_u \times \mathbf{p}_v}{\|\mathbf{p}_u \times \mathbf{p}_v\|}$$

Quadric Surfaces

FIGURE 6.70 The six quadric surfaces: (a) Ellipsoid.
(b) Hyperboloid of one sheet.
(c) Hyperboloid of two sheets.
(d) Elliptic cone. (e) Elliptic paraboloid. (f) Hyperbolic paraboloid.

Quadric Surfaces

Sphere

$$f(x, y, z) = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 - R^2 = 0$$
$$x(\phi, \theta) = R\cos(\phi)\cos(\theta)$$
$$y(\phi, \theta) = R\cos(\phi)\sin(\theta)$$

$$-\pi/2 \le \phi \le \pi/2$$
$$-\pi \le \theta \le \pi$$

 $z(\phi, \theta) = R\sin(\phi)$

Quadric Surfaces

Ellipsoid

$$f(x, y, z) = \left(\frac{x - x_0}{R_x}\right)^2 + \left(\frac{y - y_0}{R_y}\right)^2 + \left(\frac{z - z_0}{R_z}\right)^2 - 1 = 0$$

$$x(\phi,\theta) = R_x \cos(\phi) \cos(\theta)$$

$$y(\phi,\theta) = R_y \cos(\phi) \sin(\theta)$$

$$z(\phi,\theta) = R_z \sin(\phi)$$

$$-\pi/2 \le \phi \le \pi/2$$

$$-\pi \leq \theta \leq \pi$$

Parametric Formulations

Ruled surfaces:

Convex linear combination of two curves

 Through every point on the surface there passes at least one line that lies on the surface

$$P(v) = (1 - v)P_0 + vP_1$$

Making P_0 and P_1 curves:
 $P(u, v) = (1 - v)P_0(u) + vP_1(u)$

Special Cases

Generalized cone

$$P(u,v) = (1-v)P_0 + vP_1(u)$$

P₀ is the apex

Special Cases

Generalized cylinder

P_1 is a translated version of P_0

$$P(u,v) = (1-v)P_0(u) + v(P_0(u) + \mathbf{d}) \Rightarrow P(u,v) = P_0(u) + v\mathbf{d}$$

Bilinear Patches

Both P_1 and P_0 are lines

$$P(u,v) = (1-v)P_0(u) + vP_1(u)$$

$$= (1-v)[(1-u)P_{00} + uP_{01}] + v[(1-u)P_{10} + uP_{11}]$$

$$= (1-v)(1-u)P_{00} + (1-v)uP_{01} + v(1-u)P_{10} + vuP_{11}$$

Surfaces of Revolution

Sweep profile curve around an axis:

 $C(v) = [x(v), z(v)]^{\mathsf{T}}$

 $P(u,v)=[x(v)\cos(u), x(v)\sin(u), z(v)]^{\mathsf{T}}$

Spline Surface Patches

Our prior examples of surfaces are useful, but...

- We generated them by hand from first principles
- · The parameterization is completely customized

It would be nice to have a common building block

 Just as we can build curves out of many spline segments, we can build surfaces out of spline patches

Formulating Spline Patches

Our spline curves had the form

$$\mathbf{p}(u) = \sum_{i=0}^{n} \mathbf{p}_{i} B_{i}^{n}(u) \qquad 0 \leq u \leq 1$$

- A linear combination of control points p_i
- Controlled by blending functions B_iⁿ

Our spline patches will have an analogous form

$$\mathbf{p}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{ij} B_{ij}^{mn}(u,v)$$
 $0 \le u,v \le 1$

Tensor Product Patches

We assumed a set of nm basis functions

$$\mathbf{p}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{ij} B_{ij}^{mn}(u,v) \qquad 0 \le u,v \le 1$$

We will only consider "tensor product" patches

Each basis function is the product of two 1-D basis functions

$$B_{ij}^{mn}(u,v)=B_{i}^{m}(u)B_{j}^{n}(v)$$

· Giving us the general spline equation

$$\mathbf{p}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{ij} B_{i}^{m}(u) B_{j}^{n}(v)$$
 $0 \le u,v \le 1$

Bilinear Interpolation

de Casteljau Algorithm for Bézier Patches

Repeated bilinear interpolation

$$\mathbf{p}_{i,j}^{r}(u,v) = (1-u)(1-v)\mathbf{p}_{i,j}^{r-1} + u(1-v)\mathbf{p}_{i,j+1}^{r-1} + (1-u)v \mathbf{p}_{i+1,j}^{r-1} + uv \mathbf{p}_{i+1,j+1}^{r-1}$$

Producing the Bézier patch:

$$\mathbf{p}(u,v)=\mathbf{p}_{0,0}^n(u,v)$$

Bicubic Bézier-Bernstein Basis

Properties of Bezier Surfaces

Affine invariance

Convex hull

Plane precision

Variation diminishing

Piecewise Cubic Bezier Surfaces

G1 continuity
Common edge
Make 2 sets of 4 control points collinear

Modeling Objects with Patches

Paste together multiple patches to cover entire object

For example, the Utah Teapot is built from 32 patches

This raises some tricky questions

- How many patches are needed?
- How to guarantee the continuity of patches?
 - While animating?!
- How can we cut holes in the surface?
 - Trimming curves create boundary spline curves on surface

Rendering Parametric Curves and Surfaces

Transform into primitives we know how to handle

Curves

Line segments

Surfaces

- Quadrilaterals
- Triangles

Converting to Quadrilaterals

Straightforward Uniform subdivision

Evaluation of P(s,t) at each grid point

Isoparametric lines become isoparametric curves

Drawing Spline Curves and Surfaces

Method 1 - Direct evaluation of curves

- · We have a function that generates points on the curve
- Vary parameter u between 0 and 1
- Substitute into formula and compute a position
- · Connect consecutive points with line segments
- Method 1a Direct evaluation with forward differencing
 - Instead of evaluating polynomials directly, incrementalize polynomials to cut down on multiplies

This approach has some problems

- Uniform parameter spacing is not uniform in space
 - Length of segments will vary over curve
- · Control over length is important
 - Too long jagged curves
 - Too short excessive drawing time

Modeling by Subdivision

Recall that we can draw spline curves by subdivision

- Start with the control polyline
- · Recursively subdivide until "smooth enough"
- · And draw the individual line segments

We can use this as a modeling primitive

- Define the curve (or surface) as the limit of an infinite number of subdivision steps
- Discard all our polynomials!

Developing Subdivision Curves

Assume that we have some control polygon

· A closed piecewise linear curve in the plane

We need two fundamental operations:

- Linear subdivision introduce new vertices
- Linear smoothing modify position of vertices

Linear Subdivision of Curves

Split each edge of the curve at its midpoint (barycenter)

Thus doubling the number of vertices

 \mathbf{v}_{i+1}

 \mathbf{v}_i

$$\frac{1}{2}(\mathbf{v}_i + \mathbf{v}_{i+1})$$

Linear Smoothing of Curves

Reposition each vertex at a weighted combination of neighbor vertices

$$\mathbf{v}_{i}^{'} = \alpha_{1}\mathbf{v}_{i-1} + \alpha_{2}\mathbf{v}_{i} + \alpha_{3}\mathbf{v}_{i+1}$$

$$\sum \alpha_i = 1$$

We can also write the above in matrix form

$$\mathbf{v}_{i}^{'} = \begin{bmatrix} \mathbf{v}_{i-1} & \mathbf{v}_{i} & \mathbf{v}_{i+1} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix}$$

Linear Smoothing of Curves

We are generally interested in symmetric weighting schemes

$$\mathbf{v}_{i}' = \left(\frac{1-\alpha}{2}\right)\mathbf{v}_{i-1} + \alpha \,\mathbf{v}_{i} + \left(\frac{1-\alpha}{2}\right)\mathbf{v}_{i+1}$$

Weights $\begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$

Creating Smooth Curves by Subdivision

Repeat subdivision and smoothing operations

- Converges to some limit curve (determined by weights)
- For weights $\begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$ the resulting curve is a piecewise B-spline!

Subdivision as Linear Operator

Points after k steps are linear combinations of previous points

• We can therefore write the subdivision step as a matrix operation

$$\mathbf{p}_k = \mathbf{p}_{k-1} \mathbf{S}_{k-1}$$

$$\begin{bmatrix} x_1 & \cdots & x_{2i} & x_{2i+1} & \cdots & x_{2n} \\ y_1 & \cdots & y_{2i} & y_{2i+1} & \cdots & y_{2n} \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix} \mathbf{S}_{k-1}$$

Smoothing as Barycentric Averaging

Compute barycenters of adjacent edges

Compute barycenter of barycenters

• Same as weights $\begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$ but works in higher dimensions

Surfaces: Quadrilateral Subdivision of Polygons

Split face in middle and connect to edge midpoints

Converts any polygon into set of quadrilaterals

Smoothing by Barycentric Averaging

Works just like it did with curves

- Compute barycenters around vertex
- Move vertex to barycenter of barycenters

Extraordinary Points

All the points we introduce by quad subdivision are "valence 4"

They all have 4 edges/faces connected to them

But there are other points with valence # 4

- These are called extraordinary points
- · Most of the smoothness analysis action happens here

Subdivision Surfaces

Have become a very successful primitive

- The subject of a lot of recent research
- Naturally multiresolution representation
- · Continuum from polygon meshes to splines

Like spline surfaces

- · Represent smooth surfaces well
- · Can be built automatically with scanners
- · Easier than polygons for manipulation

Demos:

· www.subdivision.org

Pixar's "Geri"

Modeled using subdivision surfaces

