第一章 向量代数

第一节 向量及其线性运算

理解空间直角坐标系、向量的概念及其表示,掌握向量的线性运算.理解向量在坐标轴上的分向量与向量的坐标的概念,掌握向量、单位向量、方向余弦的坐标表示法以及用坐标对向量进行线性运算.

1. 向量的定义、向量的模、向量的夹角、向量的平行、垂直等概念,向量的运算包含向量的加法,向量的数乘运算,以及向量平行的充分必要条件;

2. 空间直角坐标系的定义,向量的坐标分解式,利用坐标进行向量运算,及利用坐标 判断向量的平行;

3. 向量的模、方向角、方向余弦的定义与计算.

例1 求 x 轴上与点 A(4, 4, -7) 和点 B(-1, 8, 6) 等距离的点.

分析 本题主要涉及两个知识点:(1)坐标轴上点坐标表示;(2)空间上两点间的距离公式.

解 设 x 轴上点 P 的坐标为(x,0,0),依题意可得

$$|PA| = \sqrt{(x-4)^2 + 16 + 49}$$

 $|PB| = \sqrt{(x+1)^2 + 64 + 36}$

由|PA| = |PB|可解得x = -2,故该点的坐标为(-2,0,0).

例 2 设一向量与各坐标轴之间的夹角为 α , β , γ , 其中 $\alpha = \frac{\pi}{3}$, $\beta = \frac{2\pi}{3}$, 求 γ .

分析 本题主要利用向量的三个方向角之间的关系,即 $\cos^2\alpha + \cos^2\beta + \cos^3\gamma = 1$.

解 因为 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$,可知

$$\cos^2 \gamma = 1 - (\cos^2 \alpha + \cos^2 \beta) = 1 - (\cos^2 \frac{\pi}{3} + \cos^2 \frac{2\pi}{3}) = \frac{1}{2}$$

2. 从点 A(2,-1,7)沿向量 a=8i+9j-12k 的方向取线段 AB, 其|AB| 长为 34, 求点 B 的坐标.

3. 已知向量 a 与三个坐标轴成相等的锐角,求 a 的方向余弦. 若 |a|=2,求 a.

4. 已知三点 A, B, C 的向径分别为 $r_1 = 2i + 4j - k$, $r_2 = 3i + 7j + 3k$, $r_3 = 4i + 10j + 7k$. 证明 A, B, C 在同一直线上.

第二节 数量积、向量积、混合积

掌握向量的数量积、向量积定义及运算性质. 掌握数量积和向量积的坐标表示式. 掌握两个向量垂直、平行的条件.

1. 数量积的定义、性质及运算律,数量积的坐标表示,利用数量积求两向量的夹角,两个向量垂直、平行的条件;

2. 向量积的定义、性质及运算律,向量积的坐标表示.

例1 设 a,b,c 满足 $a_b,(\hat{a,c}) = \frac{\pi}{3},(\hat{b,c}) = \frac{\pi}{6}, |a| = 2, |b| = |c| = 1, 求 |a+b+c|$.

分析 本题主要运用数量积运算的性质和运算律.

解 因为

 $|a+b+c|^2 = (a+b+c) \cdot (a+b+c)$

$$= |\mathbf{a}|^{2} + |\mathbf{b}|^{2} + |\mathbf{c}|^{2} + 2\mathbf{a} \cdot \mathbf{b} + 2\mathbf{b} \cdot \mathbf{c} + 2\mathbf{a} \cdot \mathbf{c}$$

$$= |\mathbf{a}|^{2} + |\mathbf{b}|^{2} + |\mathbf{c}|^{2} + 2|\mathbf{a}| |\mathbf{b}| \cos(\widehat{\mathbf{a}}, \widehat{\mathbf{b}}) +$$

$$2 |\mathbf{b}| |\mathbf{c}| \cos(\widehat{\mathbf{b}}, \widehat{\mathbf{c}}) + 2|\mathbf{a}| |\mathbf{c}| \cos(\widehat{\mathbf{a}}, \widehat{\mathbf{c}})$$

$$= 2^{2} + 1^{2} + 1^{2} + 4\cos(\frac{\pi}{2}) + 2\cos(\frac{\pi}{6}) + 4\cos(\frac{\pi}{3}) = 8 + \sqrt{3}$$

所以 $|a+b+c|=\sqrt{8+\sqrt{3}}$.

例 2 已知 $\overrightarrow{OA} = i + 3k$, $\overrightarrow{OB} = j + 3k$, 求 $\triangle OAB$ 的面积.

分析 主要利用向量积的定义以及 $S_{\triangle OAB} = \frac{1}{2} |OA \times OB|$.

解 因为

$$\overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} i & j & k \\ 1 & 0 & 3 \\ 0 & 1 & 3 \end{vmatrix} = -3i - 3j + k$$

所以 $|\overrightarrow{OA} \times \overrightarrow{OB}| = \sqrt{(-3)^2 + (-3)^2 + 1^2} = \sqrt{19}$,即 $S_{\triangle OAB} = \frac{1}{2} |\overrightarrow{OA} \times \overrightarrow{OB}| = \frac{1}{2} \sqrt{19}$.

A类题

1. 判断题

- $(1) a \cdot a \cdot a = a^3.$
- (2) 当 $a \neq 0$ 时, $\frac{a}{a} = 1$.
- $(3) a(a \cdot b) = a^2 b. \tag{}$
- $(4) (a \cdot b)^2 = a^2 \cdot b^2. \tag{}$
- $(5) (a+b) \times (a-b) = a \times a b \times b = 0.$
- (6) 若 $a\neq 0$, $a\cdot b=a\cdot c$, 则 b=c.

2. 填空题

(1) $\mathfrak{P}_{a=3i-2j-k,b=4i+2j+k,\mathbb{N}}$ $a \cdot b = \underline{\hspace{1cm}}, a \times b = \underline{\hspace{1cm}},$

a,b的夹角余弦为_____

- (2) $\mathfrak{B}|a|=2, |b|=2\sqrt{3}, |a+b|=2, \mathfrak{M}(a,b)=$
- (3) 已知 $a=(4,-5,3), b=(1,-4,z), |a+b|=|a-b|, 则 z=______.$
- (4) 已知 $(a \times b) \cdot c = 2$,则 $[(a+b) \times (b+c)] \cdot (c+a) =$
- (5) 设向量 $a = (\lambda, -3, 2)$ 与 $b = (1, 2, -\lambda)$ 相互垂直,则 $\lambda =$ _____.

3. 选择题

- (1)对任意向量 a 与 b, 下列表达式中错误的是().
- (A) |a| = |-a|

(B) |a| + |b| > |a+b|

6/工科数学分析练习与提高(二)▶

- (C) $|a| \cdot |b| \geqslant |a \cdot b|$ (D) $|a| \cdot |b| \geqslant |a \times b|$.
- (2)下列叙述中不是两个向量 a 与 b 平行的充要条件的是().
- (A) a 与 b 的内积等于零 (B) a 与 b 的外积等于零
- (C) 对任意向量 c 有混合积[abc]=0 (D) a 与 b 的坐标对应成比例
- (3)设a和b为非零向量,若等式 $\frac{a}{|a|} = \frac{b}{|b|}$ 成立,则a和b().

- (A) 相互垂直 (B) 相互平行 (C) a=b (D) |a|=|b|
- (4)如果向量 a 和 b 共线, c 和 b 共线,则 a 和 c ().
- (A) **a**=**c** (B) 一定共线
- (C) 一定不共线 (D) 既可能共线,也可能不共线
- (5)设非零向量 a 和 b 相互正交, λ 为任意的非零实数,则 $|a+\lambda b|$ 与 |a| 的大小关系

是().

- (A) $|a+\lambda b| \leq |a|$ (B) $|a+\lambda b| \geq |a|$
- (C) 大小不定

- (D)不能比较
- 4. 求与向量 a=3i-j+k 平行,且满足方程 $a \cdot x=-22$ 的向量 x.

5. 已知 |a|=1, |b|=4, |c|=5, 并且 a+b+c=0. 计算 $a\times b+b\times c+c\times a$.

7. 求向量 u=2i+3j-k 在向量 v=-3i-j+k 上的投影及分向量.

8. 求同时垂直于 a=2i-j-k, b=i+2j-k 的单位向量.

B类题

1. 利用向量证明勾股定理.

2. 设 a 是非零向量,已知 b 在与 a 平行且正向与 a 一致的数轴上投影为 p,求极限: $\lim_{x\to 0} \frac{|a+xb|-|a|}{x}$.

3. 已知三点 $M_1(2,2,1), M_2(1,1,1), M_3(2,1,2),$

(1)求 $\angle M_1 M_2 M_3$;

(2)求与 $\overline{M_1M_2}$, $\overline{M_2M_3}$ 同时垂直的单位向量.

- 4. 已知平行四边形以 $a = \{1, 2, -1\}, b = \{1, -2, 1\}$ 为两边,
- (1)求它的边长和内角;
- (2)求它的两对角线的长和夹角.

5. 设 AD 为 $\triangle ABC$ 中 BC 边上的高,记 $\overrightarrow{BA} = c$, $\overrightarrow{BC} = a$,证明

$$S_{\triangle ABD} = \frac{\mid a \cdot c \mid \mid a \times c \mid}{2 \mid a \mid^2}$$

C类题

1. 设 $a \perp b$,沿着 a 正方向将 b 绕 a 右旋 θ 角得向量 c ,试用 a ,b 及 θ 表示 c .

- (1) 求证 $\tan(a,b) = \frac{|a \times b|}{a \cdot b};$
- (2) 求证 $(\mathbf{a} \times \mathbf{b})^2 \leqslant \mathbf{a}^2 \mathbf{b}^2$,并求等号成立的充分必要条件.

可得 $\cos \gamma = \pm \frac{\sqrt{2}}{2}$,由于 $\gamma \in [0,\pi]$,因此 $\gamma = \frac{\pi}{4}$ 或 $\gamma = \frac{3\pi}{4}$.

例3 设m=i+j, n=-2j+k,求以m,n为边的平行四边形的对角线长度.

分析 本题涉及向量的加减以及向量模的计算.

解 对角线的长分别为|m+n|,|m-n|,因为

$$m+n = i+j+(-2j+k) = i-j+k = (1,-1,1)$$

 $m-n = i+j-(-2j+k) = i+3j-k = (1,3,-1)$

所以

$$|m+n| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$$

 $|m-n| = \sqrt{1^2 + 3^2 + (-1)^2} = \sqrt{11}$

即平行四边形的边长分别为 $\sqrt{3}$, $\sqrt{11}$.

A类题

- (1)若 A(1,-1,3), B(1,3,0), 则 AB 中点坐标为 , |AB| =
- (2)已知点 A(1, -6, 3)和点 B(6, 4, -2),点 P 在 Z 轴上使 |AP| = |BP|,则 P 点 的坐标为
- (3)若点 M 的坐标为(x,y,z),则向径OM用坐标可表示为____
 - (4)平行于向量 a=(2,5,-6)的单位向量为_____.
- (5)已知两点 A(0,1,2)和 B(1,-1,0),则用坐标表示向量 $\overrightarrow{AB}=$ ______,向量 -3 \overrightarrow{BA} 用坐标表示为_____
- (6)已知 $\triangle ABC$ 三顶点的坐标分别为A(0,0,2),B(8,0,0),C(0,8,6),则边 BC上的中线长为
- (7)若 α , β , γ 为向量 a 的方向角,则 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma =$ _____, $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ _____.
- 2. 一边长为 α 的立方体放置在xOy面上,其下底面的中心在坐标原点,底面的顶点在x轴和y轴上,求它各顶点的坐标.

3. 求关于点(x,y,z) (1)各坐标面;(2)各坐标轴;(3)坐标原点对称的点的坐标.

4. 已知 A(-1,2,-4), B(6,-2,t), E[AB]=9, 求; (1)t; (2) 线段 AB 的中点坐标.

6. 设已知两点 A(2,0,5)和 $B(1,\sqrt{2},6)$,计算向量 \overrightarrow{AB} 的模、方向余弦和方向角.

7. 求 y 轴上与点 A(-4,7,1) 和点 B(3,-2,5) 等距离的点.

1. 向量 a=4i-4j+7k 的终点 B 的坐标为(2,-1,7),求它的始点 A 的坐标,并求 a 的模及其方向余弦.