Circuit QED

4.2 Hamiltonien de Jaynes-Cummings

$$H_{JC} = \hbar a^{\dagger} a + \hbar \frac{\omega_a}{2} \sigma_z + \hbar g \left(a^{\dagger} \sigma_- a \sigma_+ \right)$$

Le couplage est:

$$g = dE_0$$

On peut faire la diagonalisation par block pour trouver les énergies propres et les états propres. Les dress states:

$$E_{\bar{\sigma n}}, |\bar{\sigma n}\rangle$$

Exception: l'état fondamentale

$$E_{\bar{g0}} = E_{go} = -\hbar\omega_q/2$$

dans le sous espace à n quanta:

$$E_{g\bar{n}} = \hbar n\omega_r - \sqrt{\Delta^+ 4gn}$$
 $E_{g\bar{n}} = \hbar n\omega_r + \sqrt{\Delta^+ 4gn}$

$$|\bar{gn}\rangle = \cos\theta_n |gn\rangle - \sin\theta_n |en-1\rangle$$
 $|en-1\rangle = \sin\theta_n |gn\rangle + \cos\theta_n |en-1\rangle$

avec $\theta_n = \arctan(2g\sqrt{n}/\Delta)$ l'angle de mélange

2 premier états excités à $\Delta=0$

$$|\bar{g1}\rangle = \frac{1}{\sqrt{2}} (|g1\rangle - |e0\rangle) \qquad |\bar{e0}\rangle = |g1\rangle + |\bar{e0}\rangle$$

4.3 Régime dispersif

à $\Delta = 0$, le qubit est maximalement intriqué avec les photon: le qubit est essentiellement dans un état aléatoire si on a pas acces au photon

$$\begin{array}{l} \Delta = 0 \\ \Delta \neq 0 \end{array}$$

États habilles:

 $|3\rangle$

3> –		$ 2\rangle$	
$ 2\rangle$ _	 	$ 1\rangle$	

$$|1
angle$$
 $|0
angle$ $|0
angle$

$$|0
angle \hspace{2cm} |g
angle \hspace{2cm} |e
angle$$

Figure 1: niveaux d'énérgies

4.3.1 Transformation de Shrieffer-Wolff

En quantique, L'approche usuelle pour solutionner un problème est de diagonaliser l'hamiltonien

$$H_D = UHU^{\dagger}$$

Malheureusement, ce n'est pas toujours possible, on représente alors notre hamiltonien comme

$$H = H_D + V$$

Ou V est un petit terme qui perturbe note Hamiltonien

La perturbation couple faiblement les sous=espaces μ

On prend un trasformation unitaire qui diagonalise approximetivement le Halitonien

$$H' = e^{-S}He^{S}$$
 avec $S^{\dagger} = S$ pour que e^{S} soitunitaire

Figure 2: circuit avec drive

$$H' = \left(\mathbb{1} - s + \frac{s^2}{2!} + \cdots\right) H \left(\mathbb{1} + s + \frac{s^2}{2} + \cdots\right)$$
$$= H + [H, S] + \frac{1}{2!} [[H, S], S] + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{1}{k!} [H, S]^{(k)}$$

Figure 3: transmission en fonction de la fréquance

 $\Delta = 0$

Figure 4: delta pas zero