

Grundlagen Datenbanken

Benjamin Wagner

7. Dezember 2018

Allgemeines

- Folien von mir sollen unterstützend dienen. Sie sind nicht von der Übungsleitung abgesegnet und haben keinen Anspruch auf Vollständigkeit (oder Richtigkeit).
- Bei Fragen: wagnerbe@in.tum.de
- Vorlesungsbegleitendes Buch von Professor Kemper (Chemiebib)
- Mein Foliensatz ist online: https://github.com/wagjamin/GDB2018

Funktionale Abhängigkeiten

- Betrachte Schema \mathscr{R} bestehend aus Relationen $\mathscr{R}_1, \mathscr{R}_2, ..., \mathscr{R}_n$ mit Ausprägung R
- Betrachte funktionale Abhängigkeit lpha
 ightarrow eta
- Das heißt: $r,t \in R$: $r.\alpha = t.\alpha \Rightarrow r.\beta = r.\beta$
- Frage: Was bedeutet das in Worten?
- Zu einer Menge funktionaler Abhängigkeiten F kann die Hülle F^+ bestimmt werden

Schlüssel

- Wir erinnern uns: Schlüssel identifizieren Tupel eindeutig
- In der Relation \mathscr{R} ist $\alpha \subseteq \mathscr{R}$ ein **Superschlüssel**, falls: $\alpha \to \mathscr{R}$
- Volle funktionale Abhängigkeit: α kann nicht weiter verkleinert werden
- ullet Dann heißt lpha Kandidatenschlüssel

Warum machen wir das alles?!

- Wir wollen quantifizieren, ob Schemata gut oder schlecht sind
- Dafür braucht es etwas Theorie
- Ziel: Schöne Schemata entwerfen können
- Ab jetzt: Zerlege Relationenschema \mathscr{R} in Schemata $\mathscr{R}_1, \mathscr{R}_2, ..., \mathscr{R}_n$
- Invariante: Abhängigkeitserhaltung, Verlustlosigkeit
- Abhängigkeitserhaltung: $F_{\mathscr{R}}^+ = (F_{\mathscr{R}_1} \cup ... \cup F_{\mathscr{R}_n})^+$

Verlustlosigkeit

• Eine Zerlegung von \mathcal{R} in $\mathcal{R}_1, \mathcal{R}_2$ heißt verlustlos, wenn mindestens eine der folgenden funktionalen Abhängigkeiten herleitbar ist:

$$\mathscr{R}_1 \cap \mathscr{R}_2 \to \mathscr{R}_1 \in F_R^+ \text{ oder } \mathscr{R}_1 \cap \mathscr{R}_2 \to \mathscr{R}_2 \in F_R^+$$

Beispiel: Pizaesser

Pizzaesser		
Restaurant	Gast	Pizza
Bella Italia	Ben	Funghi
Pizza Huber	Jonas	Salami
Bella Italia	Jonas	Tonno

Frage: Kann man die Relation verlustlos in {[Restaurant, Gast]} und {[Gast, Pizza]} zerlegen?

Normalformen

- Quantifizieren Qualität der Relation
- Erste Normalform: bei uns immer eingehalten: Attribute müssen atomare Werte haben
- **Zweite Normalform:** Eine Relation \mathscr{R} mit FDs F ist in 2NF, falls jedes Nichtschlüssel-Attribut $A \in \mathscr{R}$ von jedem Kandidatenschlüssel in \mathscr{R} voll funktional abhängig ist
- Dritte Normalform: Nichtschlüssel-Attribute dürfen nur Fakten von Schlüsseln darstellen
- Boyce-Codd Normalform: Informationseinheiten werden nicht mehrmals gespeichert

Dritte Normalform

- Relationenschema $\mathscr R$ ist in 3NF, wenn für jede FD $\alpha \to B$ mit $\alpha \subseteq \mathscr R$ und $B \in \mathscr R$ gilt:
- * $B \in \alpha$, d.h. FD trivial, oder
- * α ist Superschlüssel von \mathcal{R} , oder
- * B in Kandidatenschlüssel von R enthalten
- Kanonische Überdeckung: möglichst redundanzfreie Darstellung der FDs einer Relation

Dritte Normalform

Algorithmus 1: Synthesealgorithmus

Data: Relationenschema \mathcal{R} , FDs F

Result: Zerlegung $\mathcal{R}_1,...,\mathcal{R}_n$ in 3NF

 F_c = kanonische_überdeckung(F);

for
$$(\alpha \rightarrow \beta) \in F_c$$
 do

$$\mathcal{R}_{\alpha} = \alpha \cup \beta ;$$

$$F_{a} = \{\alpha \prime \to \beta \prime | \alpha \prime \cup \beta \prime \in \mathcal{R}_{\alpha}\} ;$$

end

if Kein \mathcal{R}_{α} enthält Kandidatenschlüssel then

 $\kappa = \text{kandidatenschlüssel}(\mathcal{R});$ $\mathcal{R}_{\kappa} = \kappa;$ $F_{\kappa} = \emptyset;$

end

Teilschemata eliminieren;

Boyce-Codd Normalform

- Relationenschema $\mathscr R$ ist in BCNF, wenn für jede FD $\alpha \to \beta$ mit $\alpha, \beta \subseteq \mathscr R$ gilt:
- * $\beta \subseteq \alpha$, d.h. FD trivial, oder
- $* \alpha$ ist Superschlüssel von $\mathscr R$
- Achtung: es kann nicht garantiert werden, dass die Zerlegung abhängigkeitsbewahrend ist

Boyce-Codd Normalform

Algorithmus 2: Dekompositionsalgorithmus

```
Data: Relationenschema \mathscr{R}, FDs F
Result: Zerlegung Z = \{\mathscr{R}_1, ..., \mathscr{R}_n\} in BCNF Z = \{\mathscr{R}\};
while \exists \mathscr{R}_i \in Z : \mathscr{R}_i nicht in BCNF do

repeat

wähle (\alpha \to \beta) \in F_{\mathscr{R}_i} nicht trivial;
until (\alpha \cap \beta = \emptyset) \land ! (\alpha \to \mathscr{R}_i);
\mathscr{R}_{i_1} = \alpha \cup \beta;
\mathscr{R}_{i_2} = \mathscr{R}_i \setminus \beta;
Z = Z \setminus \mathscr{R}_i;
Z = Z \cup \mathscr{R}_{i_1} \cup \mathscr{R}_{i_1};
```

end