MTH 511 HW 1

Brandyn Tucknott

Due 8 October 2025

- 1. Exercise 3.22: Show that $||x||_{\infty} \leq ||x||_2$ for any $x \in \ell_2$, and that $||x||_2 \leq ||x||_1$ for any $x \in \ell_1$.
- 2. Exercise 3.23: The subset of ℓ_{∞} consisting of all sequences that converge to 0 is denoted by c_0 . (Note that c_0 is actually a linear subspace of ℓ_{∞} ; thus c_0 is also a normed vector space under $\|\cdot\|_{\infty}$.) Show that we have the following proper set inclusions: $\ell_1 \subset ell_2 \subset c_0 \subset \ell_{\infty}$.
- 3. Exercise 3.25: State and prove lemma 3.7 and theorem 3.8 (also cover $p=1, q=\infty$ for lemma 3.7).
- 4. Exercise 3.36: Given a metric space (M, d), prove a convergent sequence is Cauchy and a Cauchy sequence is bounded.
- 5. Exercise 3.37: A Cauchy sequence with a convergent subsequence converges.
- 6. **Exercise 3.39:** If every subsequence of (x_n) has a further subsequence that converges to x, then (x_n) converges to x.