Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт Кафедра «Прикладная математика»

> Отчёт по курсовой работе по дисциплине «Интервальный анализ»

> > Выполнил студент: Овечкин Данил Александрович группа: 5030102/80201

Проверил: Баженов Александр Николаевич

Санкт-Петербург 2022 г.

1 Постановка задачи

Решить с помощью субдифференциального метода Ньютона переопределённую систему размера 128×18 . путем нахождения решений с различными матрицами из исходной СЛАУ и взятием минимума по включению.

2 Теория

Пусть имеется ИСЛАУ $\mathbf{C}y = d, y \in \mathbb{K}\mathbb{R}^n$.

Процедура субградиентного метода Ньютона состоит в следующем:

- 1. Задаём начальное приближение $x^0 \in \mathbb{R}^{2n}$, релаксационный параметр $\tau \in (0;1]$ и точность $\varepsilon > 0$
- 2. Строим отображение \mathcal{G} :

$$G(x) = sti(\mathbf{Csti}^{-1}(x)) - sti(d)$$

- 3. Вычисляем субградиент D^{k-1} отображения $\mathcal G$ в точке $x^{(k-1)}$
- 4. $x^{(k)} = x^{(k-1)} \tau(D^{k-1})^{-1}\mathcal{G}(x^{(k-1)})$
- 5. Итерационная процедура повторяется, пока $||x^{(k)} x^{(k-1)}|| \ge \varepsilon$. В качестве ответа возвращается $\mathrm{sti}^{-1}(x^{(k)})$

Начальное приближение можно найти, решив 'среднюю систему':

$$mid\mathbf{C}\,\dot{x}^{(0)} = sti\,\mathbf{d}$$

3 Результаты

Пусть нам дана система с матрицей размерности 126×18 , правой частью - интервальным вектром и элементами вектора-решения - случайными значениями из интервала [1,9]

Решение такой задачи будет состоять в выборе 18 строк из такой матрицы и решением подсистемы субдифференциальным методом Ньютона в том случае, если определить матрицы не равен 0. А после этого найдём пересечение

полученных решений и проведём сравнения с истинным.

Будем искать решение-пересечения для случайного выбора 1, 5, 15, 30, 50 и 100 подсистем. Тем самым у нас получаются разные подсистемы, которые мы будем решать соответсвующим методом и которые будем сравнивать для того, чтобы получить зависимость получаемого решения от количества выборов подматриц. Также сравним правые части таких систем с истинной.

Исходная прямоугольная матрица имеет вид:

Рис. 1: Исходная матрица

Далее представлены сравнения полученных и истинных решений при выборе $1,\,5,\,15,\,30,\,30$ и 100 подсистем. Также представлены и сравение полученных правых частей с исходными.

Рис. 2: Правые части для 1 подматрицы

Рис. 3: Исходное решение с полученным для 1 подматрицы

Рис. 4: Правые части для 5 подматриц

Рис. 5: Исходное решение с полученным для 5 подматриц5

Рис. 6: Правые части для 15 подматриц

Рис. 7: Исходное решение с полученным для 15 подматриц

Рис. 8: Правые части для 30 подматриц

Рис. 9: Исходное решение с полученным для 30 подматриц

Рис. 10: Правые части для 50 подматриц

Рис. 11: Исходное решение с полученным для 50 подматриц

Рис. 12: Правые части для 100 подматриц

Рис. 13: Исходное решение с полученным для 100 подматриц

А теперь можно проверить зависимость нормы разности исходного решения и полученного от количества используемых подматриц. Для этого будем искать нормы разности вектора-решения и вектора правых границ модельных решений, вектора-решения и вектора левых границ модельных решений, вектора-решения и вектора середины интервалов модельных решений. Полученный результат представлен на следующих графиках:

Рис. 14: Сравнение норм разности исходного вектора-решения и границ интервалов полученных решений (|| $x_{sol}-x_{inf}$ || и || $x_{sol}-x_{sup}$ ||)

Рис. 15: Сравнение норм разности исходного вектора-решения и векторасередины интервалов полученных решений ($||x_{sol} - x_{mid}||$)

4 Обсуждение

Выводы, которые можно сделать по проделанной работе:

- 1. Сравнивая графики, можно заметить, что для всех вариантов правая часть находилась в границах исходной правой части. А при увелечении количества выбираемых подматриц интервалы правой части суждались.
- 2. Для всех вариантов исходное решение всегда находилось в интервале полученного решения. Более того, при увеличении количества выбираемых подматриц полученный вектор сужался к исходному.
- 3. Середина полученного интервального вектора-решения почти сразу совпала с исходным решением. Норма разности имела порядок 10^{-14} для любого количества используемых подматриц.

Если суммировать все пункты выше, то можно сделать вывод, что при увеличении количества выбираемых матриц решение-пересечение стремится к истинному.