II. Opérations sur les DL.

semaine du 23 mars 2020

Dans cette seconde partie, nous abordons les théorèmes généraux sur les développements limités, c'est-à-dire les opérations licites.

Combinaisons Linéaires

Soient des réels λ et μ . Soient des fonctions f et g définies sur un voisinage I de 0, ayant des développements limités quand $x \to 0$: $f(x) = \sum_{i=0}^{m} a_i x^i + o(x^m)$ et $g(x) = \sum_{j=0}^{n} b_j x^j + o(x^n)$.

Théorème

$$\lambda . f(x) + \mu . g(x) = \sum_{k=0}^{\ell} (\lambda a_k + \mu b_k) x^k + o(x^{\ell}), \text{ où } \ell = \min\{m, n\}.$$

La fonction $\lambda . f + \mu . g$ admet donc un développement limité en 0. **Remarques :** si f et g sont suffisamment régulières, la formule de Taylor leur fournit de tels développements limités. Aussi :

- la combinaison se généralise à plus de 2 termes (récurrence);
- nous avons un résultat similaire avec la notation O.

Exemple:
$$e^x = 1 + x + \frac{x^2}{2} + O(x^3)$$
 et $e^{-x} = 1 - x + \frac{x^2}{2} + O(x^3)$, quand $x \to 0$; d'où $ch(x) = (e^x + e^{-x})/2 = 1 + \frac{x^2}{2} + O(x^3)$ quand $x \to 0$; idem pour $sh(x) = (e^x - e^{-x})/2 = x + O(x^3)$, $x \to 0$.

Primitive

Soit une fonction f, définie et **continue** sur un voisinage 0, ayant un développement limité quand $x \to 0$: $f(x) = \sum_{i=0}^{n} a_i x^i + o(x^n)$.

Théorème

Au voisinage de 0, toute primitive F de f admet le développement limité à l'ordre $n+1: F(x)=F(0)+\sum_{j=1}^{n+1}\frac{a_{j-1}}{j}x^j+o(x^{n+1})$.

Remarques:

- L'hypothèse de continuité permet le calcul intégral (Riemann).
- Il existe un résultat similaire avec la notation "O".
- On ne dérive pas un développement limité!

Exemple : quand $x \to 0$, on peut obtenir le développement limité de $Ch(x) = 1 + \frac{x^2}{2} + O(x^4)$ (à l'ordre 3) avec $Sh(x) = x + O(x^3)$ (primitive), mais pas en dérivant $Sh(x) = x + \frac{x^3}{6} + O(x^5)$...

Logarithme et Arctan

• La fonction $\ln(1-x)$, quand $x \to 0$. Pour tout $n \ge 1$, partons de $\frac{1}{1-x} = \sum_{i=0}^{n-1} x^i + O(x^n)$; il vient :

$$-\ln(1-x) = \sum_{j=1}^{n} \frac{x^{j}}{j} + O(x^{n+1}), \text{ quand } x \to 0.$$

• Remplaçons x par -x. Nous obtenons pour tout $n \ge 1$:

$$\ln(1+x) = \sum_{j=1}^{n} (-1)^{j-1} \frac{x^{j}}{j} + O(x^{n+1}), \text{ quand } x \to 0.$$

• Remplaçons x par $-x^2$: $\frac{1}{1+x^2} = \sum_{i=0}^{n-1} (-1)^j x^{2j} + O(x^{2(n-2)})$.

$$Arctan(x) = \sum_{i=0}^{n} (-1)^{i} \frac{x^{2i+1}}{2i+1} + O(x^{2n+3}), \text{ quand } x \to 0.$$

ullet De même, nous avons pour tout $n\geqslant 1$:

$$Argth(x) = \sum_{i=0}^{n} \frac{x^{2i+1}}{2i+1} + O(x^{2n+3}), \text{ quand } x \to 0.$$

Produit

Soient des fonctions f et g définies sur un voisinage I de 0, ayant des développements limités quand $x \to 0$:

$$f(x) = \sum_{i=0}^{m} a_i x^i + o(x^m)$$
 et $g(x) = \sum_{j=0}^{n} b_j x^j + o(x^n)$.

Théorème

Le produit f(x).g(x) admet un développement limité quand $x \to 0$ à l'ordre $\ell = \min\{n, m\} : f(x)g(x) = \sum_{k=0}^{\ell} c_k x^k + o(x^{\ell}),$

 $c_0 = a_0b_0, \ c_1 = a_0b_1 + a_1b_0, \ c_2 = a_0b_2 + a_1b_1 + a_2b_0, \ \text{etc}$; sauf qu'il convient d'ignorer les termes $a_ib_jx^{i+j}$ quand $i+j>\ell$. **Exemple.** Quand $x\to 0$, $\sin(x)=x-\frac{x^3}{6}+\frac{x^5}{120}+o(x^6)$ et $\cos(x)=1-\frac{x^2}{2}+\frac{x^4}{24}+o(x^4)$. D'où le développement limité : $\sin(x)\cos(x)=(0).1+(0.1+1.1)x+(0.\frac{-1}{2}+1.0+0.1)x^2+(0.0+1.\frac{-1}{2}+0.0+\frac{-1}{6}.1)+(0.\frac{1}{24}+1.0+0.\frac{-1}{2}+\frac{-1}{6}.0+0.1)x^4+o(x^4)=x-\frac{2}{3}x^3+o(x^4)$ (ordre $4, x\to 0$). À comparer avec $\sin(2x)...$

Composition

Soient des fonctions f et g définies sur un voisinage I de 0, ayant des développements limités quand $x \to 0$, à l'ordre m et n resp. : $f(x) = \sum_{i=0}^m a_i x^i + o(x^m)$ et $g(x) = \sum_{i=0}^n b_i x^j + o(x^n)$.

Théorème

Si
$$g(0) = 0$$
 ($b_0 = 0$), $f \circ g$ admet un développement limité quand $x \to 0$ à l'ordre $\ell = \min\{n, m\} : f(g(x)) = \sum_{k=0}^{\ell} c_k x^k + o(x^{\ell}).$

Les coefficients c_k s'obtiennent avec la composition polynomiale P(Q(x)) (où $P=\sum_{i=0}^m a_i X^i,\ Q=\sum_{j=1}^n b_j X^j)$; mais il convient de ranger dans $o(x^\ell)$ les termes de degré $>\ell$.

Exemple. Développement limité de $e^{\cos x}$ quand $x \to 0$ (ordre 2). Nous avons : $f(x) = e^x = 1 + x + \frac{x^2}{2} + o(x^2)$ quand $x \to 0$, mais

cos 0
$$\neq$$
 0... Il faut donc utiliser $g(x) = \cos(x) - 1 = -\frac{x^2}{2} + o(x^2)$:

$$e^{\cos x} = e^1 e^{g(x)} = e(1 + g(x) + \frac{g(x)^2}{2} + o(g(x)^2) = e - \frac{e}{2}x^2 + o(x^2).$$

Inverse

Soit une fonctions f, définie sur un voisinage I de 0, ayant un développements limité quand $x \to 0$ ("o" ou "O").

Théorème

Si $f(0) \neq 0$, 1/f(x) admet un développement limité, quand $x \rightarrow 0$.

Preuve. Quitte à factoriser, on suppose f(0)=1; la réécriture $1/f=i\circ (f-1)$, avec $i(x)=\frac{1}{1+x}$, ramène le calcul du développement limité de 1/f à celui d'une composition. Notons que l'ordre du développement limité de 1/f(x) est celui de f(x). **Exemple :** développement limité de $1/\cos x$ ($x\to 0$, ordre 2). Nous avons : $\cos(x)-1=-\frac{x^2}{2}+o(x^2)$ et $i(x)=1-x+x^2+o(x^2)$. $\frac{1}{\cos x}=i(-\frac{x^2}{2}+o(x^2))=1-(-\frac{x^2}{2})^1+(-\frac{x^2}{2})^2+o(x^2)=1+\frac{x^2}{2}+o(x^2)$.

Quotient

Soient des fonctions f et g définies sur un voisinage I de 0, ayant des développements limités quand $x \to 0$, à l'ordre m et n.

Théorème

Si $g(0) \neq 0$, f(x)/g(x) admet un développement limité, quand $x \to 0$, à l'ordre $\ell = \min\{n, m\}$.

Avec l'inverse, nous disposons déjà d'une stratégie pour obtenir ce résultat : si g(0)=1 alors $f/g=f.(i\circ(g-1))$, où $i(x)=\frac{1}{1+x}$. Une seconde stratégie consiste à effectuer la division "puissance croissante" des polynômes de nos développements limités.

Exemple : $\tan = \sin/\cos$, en 0, à l'ordre 3. Quelques rappels : $\cos(x) = 1 - \frac{x^2}{2} + o(x^3)$ et $\sin(x) = x - \frac{x^3}{6} + o(x^3)$. La division donne : $x - \frac{x^3}{6} = x(1 - \frac{x^2}{2}) + \frac{x^3}{3}$ et $\frac{x^3}{3} = \frac{x^3}{3}(1 - \frac{x^2}{2}) + \frac{x^5}{6}$, soit $x - \frac{x^3}{6} = (x + \frac{x^3}{3})(1 - \frac{x^2}{2}) + \frac{x^5}{6}$. De là : $\tan(x) = x + \frac{x^3}{3} + o(x^3)$.

Tangentes

Nous disposons de plusieurs méthodes pour obtenir les développements limités de la fonction tangente (en 0) : formule de Taylor, quotient de sin par cos (inverse, "puissance décroissante").

Théorème

$$tan(x) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + O(x^7)$$
, quand $x \to 0$. (ordre 6)

Une autre méthode, récursive, utilise la dérivée : $\tan' = 1 + \tan^2$; admettons que nous ayons déjà $\tan(x) = x + O(x^3)$ (ordre 2); la dérivée se récrit : $\tan(x)' = 1 + (x + O(x^3))^2 = 1 + x^2 + O(x^4)$; on intègre, $\tan(x) = x + \frac{x^3}{3} + O(x^5)$: ordre 4. Et on peut réitèrer ! Ce procédé rapide s'applique aussi à Th = Sh/Ch ($Th' = 1 - Th^2$) :

Théorème

$$Th(x) = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + O(x^7)$$
, quand $x \to 0$. (ordre 6)

