

Sheet 2

Problem#1

- **6.2-9** A signal band-limited to 1 MHz is sampled at a rate 50% higher than the Nyquist rate and quantized into 256 levels using a μ -law quantizer with $\mu = 255$.
 - (a) Determine the signal-to-quantization-noise ratio.
 - (b) The SNR (the received signal quality) found in part (a) was unsatisfactory. It must be increased at least by 10 dB. Would you be able to obtain the desired SNR without increasing the transmission bandwidth if it was found that a sampling rate 20% above the Nyquist rate is adequate? If so, explain how. What is the maximum SNR that can be realized in this way?

Problem#2

Consider a sinusoidal signal with random phase, defined by

$$X(t) = A\cos(2\pi f_c t + \Theta) \tag{1.15}$$

where A and f_c are constants and Θ is a random variable that is uniformly distributed over the interval $[-\pi, \pi]$, that is,

$$f_{\Theta}(\theta) = \begin{cases} \frac{1}{2\pi}, & -\pi \le \theta \le \pi \\ 0, & \text{elsewhere} \end{cases}$$
 (1.16)

Find the auto-correlation function and the power spectral density of X(t)

Problem#3

Figure 1.6 shows the sample function x(t) of a process X(t) consisting of a random sequence of binary symbols 1 and 0. The following assumptions are made:

- 1. The symbols 1 and 0 are represented by pulses of amplitude +A and -A volts, respectively, and duration T seconds.
- 2. The pulses are not synchronized, so the starting time t_d of the first complete pulse for positive time is equally likely to lie anywhere between zero and T seconds. That is, t_d is the sample value of a uniformly distributed random variable T_d , with its probability density function defined by

$$f_{T_d}(t_d) = \begin{cases} \frac{1}{T}, & 0 \le t_d \le T \\ 0, & \text{elsewhere} \end{cases}$$

3. During any time interval $(n-1)T < t - t_d < nT$, where n is an integer, the presence of a 1 or a 0 is determined by tossing a fair coin; specifically, if the outcome is heads,

we have a 1 and if the outcome is tails, we have a 0. These two symbols are thus equally likely, and the presence of a 1 or 0 in any one interval is independent of all other intervals.

FIGURE 1.6 Sample function of random binary wave.

Find the auto-correlation function and the power spectral density of x(t)

Problem#4

- 1.8 A random process Y(t) consists of a DC component of $\sqrt{3/2}$ volts, a periodic component g(t), and a random component X(t). The autocorrelation function of Y(t) is shown in Figure P1.8.
 - (a) What is the average power of the periodic component g(t)?
 - (b) What is the average power of the random component X(t)?

Problem#5

- 1.12 The power spectral density of a random process X(t) is shown in Figure P1.12. It consists of a delta function at f = 0 and a triangular component.
 - (a) Determine and sketch the autocorrelation function $R_X(\tau)$ of X(t).
 - (b) What is the DC power contained in X(t)?
 - (c) What is the AC power contained in X(t)?
 - (d) What sampling rates will give uncorrelated samples of X(t)?

FIGURE P1.12