Redes neuronales y aprendizaje profundo

Aprendizaje automático

Juan David Martínez jdmartinev@eafit.edu.co

2023

Agenda

- Introducción
- Redes neuronales
- Retropropagación

Introducción

Deep Learning ha alcanzado el estado del arte en varias disciplinas académicas en pocos años:

- Computer vision
- Natural Language Processing
- Speech recognition
- Computational biology

Papel clave en:

- Vehículos autónomos
- Interfaces reconocimiento de habla
- Agentes conversacionales
- Superhuman game playing
- Robótica, materiales, ...

¿Por qué ahora?

- Razón 1: Grandes cantidades de datos
- Razón 2: Recursos computacionales
- Razón 3: Modelos grandes fáciles de entrenar

• Razón 4: Los bloques de las redes neuronales se pueden usar como piezas de lego

Deep learning – Lego blocks

Deep learning – Lego blocks

Neuronas reales vs artificiales

$$\sum_{i=0}^{d} \mathbf{w}_i \mathbf{x}_i \quad \mathbf{x}_0 := 1$$

Regresión lineal como red neuronal

Linear

$$h(\mathbf{x}, \mathbf{w}, \mathbf{b}) = \langle \mathbf{w}, \mathbf{x} \rangle + \mathbf{b}$$

Loss:

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

Regresión logística como red neuronal

Loss: cross-entropy

$$\ell_{\text{CE}}(\mathbf{p}, \mathbf{t}) = -[\mathbf{t} \log \mathbf{p} + (1 - \mathbf{t}) \log(1 - \mathbf{p})]$$

Linear

$$h(\mathbf{x}, \mathbf{w}, b) = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

Node: Sigmoide

Regresión softmax como red neuronal

Linear

 $f_{\text{linear}}(\mathbf{x}, \mathbf{W}, \mathbf{b}) = \mathbf{W}\mathbf{x} + \mathbf{b}$

Node: Softmax

$$f_{\mathrm{sm}}(\mathbf{x}) = \frac{e^{\mathbf{x}}}{\sum_{j=1}^{k} e^{\mathbf{x}_{j}}}$$

Loss: cross-entropy

$$\ell_{\text{CE}}(f_{\text{sm}}(\mathbf{x}), \mathbf{t}) = -\sum_{j=1}^{k} \mathbf{t}_{j} \log[f_{\text{sm}}(\mathbf{x}_{j})] = -\sum_{j=1}^{k} \mathbf{t}_{j} [\mathbf{x}_{j} - \log \sum_{l=1}^{k} e^{\mathbf{x}_{l}}]$$

Limitaciones

$$\mathbf{W} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$$

Moraleja

Las capas ocultas hacen transformaciones no-lineales en los datos de tal forma que una capa lineal al final pueda resolver el problema de clasificación

Funciones de activación

Cómo convertir una combinación lineal en una salida no lineal

Name	Plot	Function	Description
Logistic (sigmoid)	0 x	$f(x) = \frac{1}{1 + e^{-x}}$	The most common activation function. Squashes input to (0,1).
Hyperbolic tangent (tanh)	0 -1	$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	Squashes input to (-1, 1).
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$	Popular activation function. Anything less than 0, results in zero activation.
	0		

Las derivadas de estas funciones también son importantes

Funciones de activación

Cómo predecir un resultado

Problem	Description	Name	Function
Binary classification	 Output probability for each class, in (0,1) Logistic regression of output of last layer 	Sigmoid	$f(x) = \frac{1}{1 + e^{-x}}$
Multi-class classification	 Output probability for each class, in (0,1) Sum of outputs to be 1 (probability distribution) Training drives target class values up, others down 	Softmax	$f(x_i) = \frac{\exp(x_i)}{\sum_i \exp(x_i)}$
Regression		Linear/ ReLU	$f(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$

Funciones de activación

Cómo comparar las salidas con la verdad

Problem	Name	Function	Notes
Binary classification	Cross entropy for logistic	$C = -\frac{1}{n} \sum_{examples} y \ln(p) + (1 - y) \ln(1 - p)$	Notations for Classification • n = training examples • i = classes • p = prediction (probability) • y = true class (1/yes, 0/no)
Multi-class classification	Cross entropy for Softmax	$C = -\frac{1}{n} \sum_{examples} \sum_{classes} y_i \ln(p_i)$	
Regression	Mean Squared Error	$C = \frac{1}{n} \sum_{examples} (y - p)^2$	Notations for Regression • n = training examples • p = prediction (numeric) \hat{y} • y = true value

Red neuronal – lego blocks

Regla de la cadena

$$\frac{\partial \mathbf{c}}{\partial \mathbf{x}} = \frac{\partial \mathbf{c}}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial \mathbf{x}} + \frac{\partial \mathbf{c}}{\partial \mathbf{b}} \frac{\partial \mathbf{b}}{\partial \mathbf{x}}$$

$$\frac{\partial \mathbf{c}}{\partial \mathbf{x}} = \frac{\partial \mathbf{c}}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial \mathbf{x}} + \frac{\partial \mathbf{c}}{\partial \mathbf{b}} \frac{\partial \mathbf{b}}{\partial \mathbf{x}}$$

Backpropagation

Backpropagation

Gradient

$$y = f(\mathbf{x}) : \mathbb{R}^d \to \mathbb{R}$$
$$\frac{\partial y}{\partial \mathbf{x}} = \nabla_{\mathbf{x}} f(\mathbf{x}) = \left[\frac{\partial f}{\partial \mathbf{x}_1}, \dots, \frac{\partial f}{\partial \mathbf{x}_d} \right]$$

Jacobian

$$\mathbf{y} = f(\mathbf{x}) : \mathbb{R}^d \to \mathbb{R}^k$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{J}_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial \mathbf{x}_1} & \cdots & \frac{\partial f_1}{\partial \mathbf{x}_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k}{\partial \mathbf{x}_1} & \cdots & \frac{\partial f_k}{\partial \mathbf{x}_d} \end{bmatrix}$$

Sintonización de parámetros

$$y = f(g(\mathbf{x})) \quad \frac{\partial y}{\partial \mathbf{x}} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial \mathbf{x}} \qquad \qquad y = f(\mathbf{g}(\mathbf{x})) \quad \frac{\partial y}{\partial \mathbf{x}} = \sum_{i=1}^{m} \frac{\partial f}{\partial \mathbf{g}^{(i)}} \frac{\partial \mathbf{g}^{(i)}}{\partial \mathbf{x}}$$

$$y = f(g(\mathbf{x})) \quad \frac{\partial y}{\partial \mathbf{x}} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial \mathbf{x}} \qquad \qquad y = f(\mathbf{g}(\mathbf{x})) \quad \frac{\partial y}{\partial \mathbf{x}} = \sum_{i=1}^{m} \frac{\partial f}{\partial \mathbf{g}^{(i)}} \frac{\partial \mathbf{g}^{(i)}}{\partial \mathbf{x}}$$

$$y = f(g(x))$$
 $\frac{\partial y}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$

$$y = f(\mathbf{g}(\mathbf{x})) \quad \frac{\partial y}{\partial \mathbf{x}} = \sum_{i=1}^{m} \frac{\partial f}{\partial \mathbf{g}^{(i)}} \frac{\partial \mathbf{g}^{(i)}}{\partial \mathbf{x}}$$

$$y = f(g(x))$$
 $\frac{\partial y}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$

$$y = f(\mathbf{g}(\mathbf{x})) \quad \frac{\partial y}{\partial \mathbf{x}} = \sum_{i=1}^{m} \frac{\partial f}{\partial \mathbf{g}^{(i)}} \frac{\partial \mathbf{g}^{(i)}}{\partial \mathbf{x}}$$

Capa lineal como bloque de lego

$$f_{\text{linear}}(\mathbf{x}, \mathbf{W}, \mathbf{b}) = \mathbf{W}\mathbf{x} + \mathbf{b}$$

$$\frac{\partial L}{\partial \mathbf{x}} = \frac{\partial L}{\partial \mathbf{y}} \mathbf{W} - \frac{\partial L}{\partial \mathbf{W}} = \left(\frac{\partial L}{\partial \mathbf{y}}\right)^{\mathrm{T}} \mathbf{x}^{\mathrm{T}} - \frac{\partial L}{\partial \mathbf{b}} = \frac{\partial L}{\partial \mathbf{y}} \leftarrow \frac{\partial L}{\partial \mathbf{y}} + \frac{\partial L}{\partial \mathbf{y}} - \frac{\partial L}{\partial \mathbf{y}} + \frac{\partial L}{\partial \mathbf$$

ReLU como bloque de lego

$$f_{\text{relu}}(\mathbf{x}) = \max(0, \mathbf{x})$$

$$\frac{\partial L}{\partial \mathbf{x}} = \frac{\partial L}{\partial \mathbf{y}} \odot \mathbf{1}_{\mathbf{y} > 0}$$

Can be seen as gating the incoming gradients. The ones going through neurons that were active are passed through, and the rest zeroed.

Softmax como bloque de lego

$$f_{\rm sm}(\mathbf{x}) = \frac{e^{\mathbf{x}}}{\sum_{j=1}^{k} e^{\mathbf{x}_j}}$$

$$\frac{\partial L}{\partial \mathbf{x}_{j}} = \sum_{i=1}^{m} \frac{\partial L}{\partial \mathbf{y}_{i}} \mathbf{y}_{i} (\delta_{ij} - \mathbf{y}_{j})
= \frac{\partial L}{\partial \mathbf{y}} - \mathbf{y} \sum_{i=1}^{m} \frac{\partial L}{\partial \mathbf{y}_{i}}$$

Backwards pass is essentially a difference between incoming gradient and our output.

Cross entropy como bloque de lego

$$\ell_{\mathrm{CE}}(f_{\mathrm{sm}}(\mathbf{x}), \mathbf{t}) = -\sum_{j=1}^{k} \mathbf{t} \log f_{\mathrm{sm}}(\mathbf{x})$$

$$\frac{\partial L}{\partial \mathbf{x}} = \mathbf{t} - \mathbf{x}$$
 Simplifies extremely!

$$rac{\partial L}{\partial \mathbf{t}} = -\log f_{
m sm}(\mathbf{x})$$
 We can also backprop into labels themselves

Producto hadamard como bloque de lego

$$f_{\mathrm{cond}}(\mathbf{x}, \mathbf{p}) = \mathbf{x} \odot \mathbf{p}$$

$$\frac{\partial L}{\partial \mathbf{x}} = \frac{\partial L}{\partial \mathbf{y}} \odot \mathbf{p}^{\mathrm{T}} \longleftarrow \begin{array}{c} \text{Backwards pass is} \\ \text{gated in the same} \\ \text{way forward one is} \end{array}$$

$$\frac{\partial L}{\partial \mathbf{p}} = \frac{\partial L}{\partial \mathbf{y}} \odot \mathbf{x}^{\mathrm{T}} \longleftarrow \begin{array}{c} \text{We can learn} \\ \text{conditionals} \\ \text{themselves too,} \\ \text{just use softmax.} \end{array}$$

Función cuadrática como bloque de lego

$$\ell_2(\mathbf{x}, \mathbf{t}) = \|\mathbf{t} - \mathbf{x}\|^2$$

$$rac{\partial L}{\partial \mathbf{x}} = 2(\mathbf{x} - \mathbf{t})^{\mathrm{T}} \leftarrow egin{matrix} \mathrm{Backwards\ pass\ is} \ \mathrm{just\ a\ difference\ in} \ \mathrm{predictions} \ \end{split}$$

$$rac{\partial L}{\partial \mathbf{t}} = 2(\mathbf{t} - \mathbf{x})^{\mathrm{T}}$$
 Learning targets is analogous

Gradiente descendente estocástico

$$\begin{aligned} \boldsymbol{\theta}_{t+1} &:= \boldsymbol{\theta}_t - \alpha_t \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_t) \\ \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_t) &= \nabla_{\boldsymbol{\theta}} \sum_i \ell(g(\mathbf{x}^{(i)}, \boldsymbol{\theta}_t), \mathbf{t}^{(i)}) \\ &= \sum_i \nabla_{\boldsymbol{\theta}} \ell(g(\mathbf{x}^{(i)}, \boldsymbol{\theta}_t), \mathbf{t}^{(i)}) \end{aligned}$$

Gradiente descendente estocástico

Regularización de redes neuronales: Dropout

- Técnica que ayuda a prevenir el sobre-entrenamiento
- Remueve de forma aleatoria algunos nodos con una probabilidad fija durante el entrenamiento

