• 对"飞镖弄均" 向说明								
—"扬·73"阿昪。								
S对于可观测量 ()(p.g). 测量铅果:								
$\langle 0 \rangle = \frac{1}{T} \int_{4}^{t+T} dt \ O(p_{(4)}, q_{(4)})$								
且一般每 T» t. t: 微欢运动的特征时间。								
Ale, 13 T→∞.								
(0) = lim + (to 0 (per. 910)								
1改致: 元丁→∞时, 体子会到还导配量曲面阳每一个二	E.							
云草处花费的时间 正比产 报车火小								
1त्रेग्टक -								
$\langle 0 \rangle = \langle 0 \rangle_{\text{ens}} = \int d\mathcal{T} \cdot \mathcal{O}(p,q) \rho_{\text{ME}}(p,q) \; .$								
先生历经路通 Ergodic Hypothesis								
一 问题,局险性								
· 只对弹钳/力体体分(多)) 驻网 · 财闷尽应 <u>T~O(e*)</u> 运返延出测量可能!làde无重除中知铅体子子相足								
・ 1917人の <u>1~ U(e**)</u>	地位皇际中和物理体系	3.3-抽支						
OKING 名基历经 ≠ 淋漓可名焓。	可仍否记周期性振	い ほがみわるる						
3p3℃: O(t→m), 不明(0),!	, , , , , , , , , , , , , , , , , , , ,							
+								
• "岩马历钐" 预层级								
"Mixing" C "Ergodicity" "baker's maj	" : Mixing							
相互络网 才采约一支2"								
· 庄等衡对应3钱%" 連至" 秋王								
这初五年彻的过程:"雅更至"→"庚至"(e ^m · 问题: 叙私子声格。	场长的执车)							
11x 2007/19								
· 正99343;								
名双状马:(T.V.N) ⇒ 允许限量查抄。								
2 全铁 压配号闰爻⇒ 俶正购3锅								
$E_T = E_1 + E_2$ fixed								
考选:3统1处才能量为En的转换量3年(n)的报车								
1+2的乌状三数:								
用を観視者In) $ \mathcal{N}(E_T) = \sum_{\mathbf{n}} \mathcal{N}_1(E_{\mathbf{n}}) \mathcal{N}_2(E_T - E_{\mathbf{n}}) $								
= Z 1·N2(ET-En) 对予应库采现:有 En								
$\ln \Omega_2(E_7 - E_n) \simeq \ln \Omega_2(E_7) + \frac{\partial \ln \Omega_2}{\partial E} \cdot (-E_n)$ $ > \frac{1}{k_B T} = : \beta. $								
$\mathcal{N}(E^1) = \sum_{i} \mathcal{N}^2(E^1) e^{-lock}$								
$= \mathcal{N}_2(E_7) \cdot \sum_{\mathbf{n}} e^{-\beta E_{\mathbf{n}}}.$								
推掘(搬正列3倍级)多抽车发源: -BEn -BEn								
$P(E_n) = \frac{\sqrt{2}_z(E_T)}{\sqrt{2}_z(E_T)} \frac{e^{-\beta E_n}}{\sum_n e^{-\beta E_n}} = \frac{e^{-\beta E_n}}{\sum_n e^{-\beta E_n}} = : \frac{1}{Z} e^{-\beta E_n}$								
ショフェアe ^{βEn} 内2分配を partition function								

统比分别是电子名In7, 考在M重上=En World.							
$P(E) = \frac{n(E)e^{-\beta E}}{Z}$ $n(E)$: 派先为E路級現状3	· 程.						
$\sum_{n} e^{-\beta E_{n}} = \sum_{E} e^{-\beta E} \sum_{n} \delta_{E_{n},E} $ $\longrightarrow E^{+\delta E}$ $\nearrow \mathcal{O}(E)$	犯太: Q(E)~E*, 孤莫狷	초!					
配分五級的物門意义							
$Z = \sum_{E} n(E) e^{-\beta E} = \sum_{E} e^{\frac{S(E)}{k_B}} e^{-\beta E}$							
$= \sum_{E} e^{-\beta(E-Ts(E))} = \sum_{E} e^{-\beta F}.$							
≃ e ^{-βF*(E*)} E*: 含β由配厂取扱小值F*	(A)						
一 有限没体3中, <u>自由</u> 加极小! 芳面份以(E) 与后面的	3 e ^{-pE} 是"竞年"的3	しる: 重征果为: Z=(2-BF*				
- F2-16 Inz. 弄型简单的e-pt.g							
3	与E为夏						
• 正则孑缘中的.盐力量量							
$\langle E \rangle = \sum_{n} E_{n} p(E_{n}) = \frac{1}{2} \cdot \sum_{n} E_{n} e^{-\beta E_{n}}$							
$= \frac{1}{2} \left(-\frac{\partial}{\partial \beta} \right) \sum_{\mathbf{n}} e^{-\beta E_{\mathbf{n}}} = -\frac{\partial}{\partial \beta} \ln 2.$							
〈E7=-是InZ. (注意沒呈稅 E.〈E〉与E*.享种践应上是 Sloppy Language··但其至立力子拉陷下是一样的)							
$F = E - TS$, $\alpha F = -S\alpha T - p\alpha V + \mu \alpha N$.							
$F = E + T \frac{\partial F}{\partial T} \implies E = F - \frac{\partial F}{\partial T} = \frac{\partial (\frac{F}{T})}{\partial (\frac{T}{T})} = \frac{\partial (\beta F)}{\partial \beta}$							
又:〈E〉= - ≥ lnZ ⇒ F= - flnZ. 死"稿"的结果	<i>ক</i> a) হ !						
SME: V2 (→ S CE: Z (→ F. (△)							
其名物22号:							
$p = \frac{1}{\beta} \frac{\partial \ln z}{\partial v}$, $\mu = -\frac{1}{\beta} \frac{\partial \ln z}{\partial v}$.							
$S = -\frac{\partial F}{\partial T} = \frac{\partial (k_B T \ln Z)}{\partial T} = k_B (\ln Z + T \frac{\partial}{\partial T} \ln Z)$							
$S = k_{\mathbf{B}} \left(\ln 2 - \beta \frac{\partial}{\partial \beta} \ln 2 \right).$							
熵的另一种基边的式:							
$p(E_n) = \frac{1}{2} e^{-\beta E_{n}}$							
$Inp(E_n) = -\beta E_n - InZ.$							
$\sum p(E_n) \cdot lnp(E_n) = -\beta \sum_{n} E_n p(E_n) - \sum_{n} p(E_n) \cdot lnz$							
$= -\beta E + \beta \widetilde{F} = -\frac{S}{F_{E}}.$							
⇒ S=-kg∑p(En) Inp(En) 13無機.							
信息:对于任何 撒荐分布 p(x). 夷又 I = →∑ p(x)·ln?	o(x). 羞ಒ熵.						
— p(x) = δ _{x,x0} : 吳万施忠稅屁 x=x,坎 ⇒ I=−1.	In1=0. "3~mを言						
- P(a) = 1/4x: 均匀分析, 了最大, 最为"混乱"。							