Quantitative Methods in Finance

Tutorial, Part 4:

Direct, indirect and total effects of an explanatory variable on the dependent variable. Frisch-Waugh-Lovell theorem.

Interpretation of the regression coefficients.

Example 1: By applying the method of least squares, the following two regression functions were estimated:

$$\hat{C} = a_1 + 0.92DI$$
 and $\widehat{CPI} = c_1 + 0.78DI$,

where C represents consumption, CPI is the consumer price index, and DI represents disposable income. Calculate the value of regression coefficient b_2 from the following regression function:

$$\hat{C} = b_1 + b_2DI + b_3CPI$$

t: (4.64) (1.95)

where $var(b_3) = 0.09$.

Example 2: We were analysing how percentage of the population above age 65 (*POP65*) and consumption of cigarettes per capita (*TOBACCO*; number of consumed cigarette packets) affect mortality (*MRT*; number of deaths per 100,000 inhabitants). The sample contains 35 countries (the data are provided in Stata Data file tobacco.dta, while the programming code is given in Stata Do file tobacco-commands.do) and serves as a basis for econometric estimation of different regression functions, as shown below.

Write down the estimated regression models and interpret the results. What is the meaning of partial regression coefficients in these models?

Computer printout of the results in Stata:

. sum mrt pop65 tobacco

Variable	Obs	Mean	Std. Dev.	Min	Max
mrt	35	874.12	117.4456	554.2	1120.5
pop65	35	12.18286	1.697487	9	17.7
tobacco	35	122.2543	23.59086	69.8	201.1

. scatter mrt pop65

. scatter mrt tobacco

- . gen lmrt=log(mrt)
 . gen lpop65=log(pop65)
- . gen ltobacco=log(tobacco)

. regress mrt pop65 tobacco

Source	SS	df	MS	Number of obs $F(2, 32)$		
Model Residual Total	316665.524 152312.816 468978.34		2.762 .7755 		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.6752
mrt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pop65 tobacco _cons	52.79328 1.441107 54.76546	6.971745 .501654 104.3763	7.57 2.87 0.52	0.000 0.007 0.603	38.5923 .4192715 -157.8422	66.99426 2.462943 267.3731

. regress lmrt lpop65 ltobacco

Source	SS	df	MS		Number of obs	= 35
+					F(2, 32)	= 47.67
Model	.526056623	2 .2630	028311		Prob > F	= 0.0000
Residual	.176566817	32 .005!	517713		R-squared	= 0.7487
+					Adj R-squared	= 0.7330
Total	.70262344	34 .020	665395		Root MSE	= .07428
lmrt	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
+						
lpop65	.7856827	.0935545	8.40	0.000	.5951183	.9762471
ltobacco	.2834557	.0692842	4.09	0.000	.1423285	.424583
_cons	3.449101	.3855704	8.95	0.000	2.663719	4.234482

. regress lmrt pop65 tobacco

Source	SS	df	MS	Number of obs $=$	35
 +				F(2, 32) =	33.90
Model	.477335891	2	.238667945	Prob > F =	0.0000
Residual	.225287549	32	.007040236	R-squared =	0.6794
 +				Adj R-squared =	0.6593
Total	.70262344	34	.020665395	Root MSE =	.08391

Interval]	[95% Conf.	P> t	t	Err.	Std.	Coef.	lmrt
.0807219 .0032431 6.004676	.0461798 .0007576 5.487535	0.000 0.003 0.000	7.48 3.28 45.27	6101	.0084	0634508 .0020003 5.746105 	pop65 tobacco _cons
						IPOPUS ICODAC	· regress mre
= 35 = 43.04	Number of obs F(2, 32)		MS		df	SS	Source
= 0.0000 = 0.7290	Prob > F	Prob > F R-squared		1709 3971		341892.883 127085.457	Model Residual
= 63.019	Root MSE		93.4806	1379	34	468978.34	Total
Interval]	[95% Conf.	P> t	t	Err.	Std.		mrt
813.9283 321.9178 -1052.577	490.5841 82.45706 -2385.19	0.000 0.002 0.000	8.22 3.44 -5.25	7972	79.37 58.77 327.1	652.2562 202.1874 -1718.884	lpop65 ltobacco _cons
					co	t pop65 ltobac	. regress lmr
= 40.79			MS		df	SS +	Source
= 0.7183	Prob > F R-squared Adj R-squared		2339972 5185734			.504679945 .197943495 +	Model Residual
= .07865	Root MSE)665395	.020	34	.70262344	Total
Interval]	[95% Conf.	P> t	t	Err.	Std.	 Coef.	lmrt
.077698 .4478244 5.310484	.0452256 .1496251 3.857952	0.000 0.000 0.000	7.71 4.08 12.86	1981	.0079	.0614618 .2987248 4.584218	pop65 ltobacco _cons

Example 3: Based on data for 100 companies from the industry of high-tech electronic appliances, we analyse how are sales (*SALES*; in mil. monetary units) related to advertising costs (*ADV*; in 1,000 monetary units), research and development costs (*R&D*; in 1,000 monetary units), and percentage of employees with higher education (*EDUC*).

We estimated the following two regression functions, where the variable ADV^2 represents the squared value of advertising costs:

$$\widehat{SALES} = 12.33 + 0.46ADV - 0.002ADV^2 + 1.203 \ln R \& D + 0.004EDUC;$$

$$\widehat{\ln SALES} = 1.78 + 0.125ADV - 0.005ADV^2 + 1.122 \ln R \& D + 0.008EDUC.$$

a) Explain, based on the first regression function, the effect on sales of a one-unit change in advertising costs, if research and development costs and percentage of employees with higher

education remain unchanged. What is the change in sales, if the advertising costs increase from 4,000 to 5,000 monetary units, while the variables *R&D* and *EDUC* remain unchanged?

- b) Interpret the estimates of partial regression coefficients $b_4 = 1.122$ and $b_5 = 0.008$ in the second regression function. What do these estimates represent in the model?
- c) Comment on the following statement: "The above regression models are nonlinear in parameters, thus it was not possible to estimate them by using the method of least squares."