45011 Algoritmer og datastrukturer Løsningsforslag eksamen 11. januar 1994

Oppgave 1

a	O(n)	$T(n) = 1 + 1 + \dots + 1 = O(n)$ (iterasjon)
b	$O(n \lg^3 n)$	Master-teoremet, tilfelle 2. (Spesialtilfelle, se Ex. 4.4-2)
c	$O(n^2)$	Master-teoremet, tilfelle 3
d	$O(n^{\log_2 3})$	Master-teoremet, tilfelle 1
e	O(n)	v/ substitusjon. Viser $T(n) \leq cn$ ved induksjon. For store n er
		$n/2 + \sqrt{n} \rightarrow n/2$, så $O(n)$ er en naturlig gjetning.

Oppgave 2

- Utfør A'[i] := A[i] 1 for alle i for a verdiene i området $[0, n^3 1]$. Dette tar O(n) tid.
- Behandle $\{A'[i]\}$ som 3-sifrede tall $\{a_1a_2a_3\}$, der $a_i \in [0, n-1]$, dvs radix.
- Sorter 3 runder med radix-sortering. F.eks. ved 2* "vektor av lister", hver vektor med lengde $n.\ 3O(n)$ tid.
- Gjenopprett A[i] = A'[i] + 1. O(n) tid.

Dette tar totalt O(n) tid.

Overser her (for avansert) at lengden til et tall A[i] er $O(\lg n)$. Dette kan diskuteres.

Oppgave 3

a) Ja: Bellman-Fords algoritme tolererer negative linjelengder såfremt ingen sykel med negativ lengde finnes. Løsningen blir da fortegn-snuing, deretter krav om at ingen negativ sykel finnes etter snuingen. Minstekrav til G: Ingen negative sykler etter fortegn-snuing.

b) Dette er øving 25.2-4.

Init-single-source:

$$\begin{split} \text{Init-Single-Source-Rel}(G,s) \\ \textbf{for each} \ \ v \in V[G] \ \textbf{do} \\ d[v] \leftarrow -\infty \\ \pi[v] \leftarrow \mathbf{nil} \\ d[s] \leftarrow 1 \end{split}$$

Extract-Min: Erstattes med EXTRACT-MAX

Relax: Kun operatorendring: '+' byttes ut med '.'

Relax-Reliability (u, v, r)

- 1 **if** $d[v] < d[u] \odot r(u, v)$ **then**
- 2 $d[v] \leftarrow d[u] \odot r(u, v)$
- $3 \qquad \pi[v] \leftarrow u$
- c) $w(u,v) = -\lg(r(u,v))$ (positive tall fordi $r(u,v) \in [0,1]$)

Søker maksimering av $\prod_{(u,v)\in \mathbf{Sti}} r(u,v)$. Dette er ekvivalent med å maksimere $\lg(\prod r(u,v)) = \sum \lg(r(u,v))$. Dette er igjen ekvivalent med å minimere $\sum -\lg(r(u,v))$. Det er greit at $\log 0 = -\infty$, fordi dette garanterer at usikre veier blir unngått hvis alternativ finnes.

Oppgave 4

Modell: Vi lager en hjelpekant fra t til s.

Algoritme: Basert på binærsøk.

1. Sett:

 $M:=\min\big[\sum (\text{kapasitet ut fra }s), \sum (\text{kapasitet inn til }t)\big]; \quad (\text{øvre grense, lett å finne})$ b:=M a:=b/2

2. Finner **A** gyldig flyt med verdi $F \in [a, b]$?

Ja: a := (F+b)/2

Nei: b := a; a := (F + a)/2 (gammel F hittil best)

3. Fortsett med 1 hvis og bare hvis a < b, ellers retur med siste F-verdi (=a=b) = Flytmaks-verdien.

Kompleksitet: $O((|E| + |V|) \cdot \lg M)$

Oppgave 5

```
Vi lager en ny post i typen NODE: nodestatus : integer;
nodestatus = 0 initielt.
            1 noder på stakk, ikke behandlet.
            2 alle etterfølgende noder undersøkt, kan ikke inngå i sykel.
Function SYKELFRI(startnode : NodeRef):Boolean;
var sykel: Boolean;
     Procedure NODEVISITT(nestenode:NodeRef);
     var nabokant : KantRef;
     begin
           if nestenode^n.nodestatus = 1 then
                 sykel :=true;
           else
           begin
                 if nestenode \hat{} nodestatus = 0 then
                 begin
                      nestenode^n.nodestatus := 1;
                      nabokant := nestenode^.fuk;
                      while nabokant \neq nil and not sykel then
                      begin
                            NODEVISITT(nabokant^.enode);
                            nabokant := nabokant^.nuk;
                      end;
                      nestenode^.nodestatus := 2;
                 end;
           end;
     end;
begin
sykel := false;
NODEVISITT(startnode);
SYKELFRI := not sykel;
end;
```