These questions are for practice, in preparation for Workshop 2.

- 1. Let $E = \{a, b, c, d, e, f\}$, $A = \{a, b, c\}$, $B = \{d, e\}$, $C = \{\{a, b, c\}, \{d, e\}\}$. Are the following statements true or false? Explain your answers.
- (a) $A \subseteq E$.
- (b) $B \subset E$.
- (c) $C \subseteq E$.
- (d) $A \subseteq C$.
- **2.** Let $E = \{a, b, c, d, e, f\}$ be a universe of discourse. Let $A = \{a\}$, $B = \{b, c, d\}$, $C = \{f, a, d\}$. Compute the following.
- (a) $A \cup B$.
- (b) $B \cap C$
- (c) B^c .
- (d) $A\Delta C$.
- (e) $C \setminus A$.
- **3.** Let A, B, C be sets. Prove that $(A \cap B)^c = A^c \cup B^c$.
- **4.** Is $0 \in \emptyset$? Is $\{\emptyset\} \in \emptyset$? Explain why.
- **5.** Let $A = \{a, b, c, d\}$, $B = \{c, d, e\}$. Compute the following:
- (a) P(A).
- (b) $P(A \cap B)$.
- **6.** Let $A = \{a, b\}, B = \{1, 2\}$. Compute the following:
- (a) $A \cap B$.
- (b) $P(A \cap B)$.
- **7.** Let $A = \{0, 1\}$. Compute $A \times A \times A \times A$.

8. Let $A = \{0, 1\}$ and $B = \{a, b, c\}$. Are the following partitions of $A \times B$? Explain why or why not.

- (a) $\{A_1, A_2\}$ where $A_1 = \{(0, a), (0, b), (0, c)\}$ and $A_2 = \{(1, a), (1, b), (1, c)\}$.
- (b) $\{A_1, A_2\}$ where $A_1 = \{(0, a), (0, b), (0, c), (0, 0)\}$ and $A_2 = \{(1, a), (1, b), (1, c), (1, 1)\}$.
- (c) $\{A_1, A_2, A_3\}$ where $A_1 = \{(0, a), (1, a)\}, A_2 = \{(0, b), (1, b)\}$ and $A_3 = \{(0, c), (1, c)\}.$
- (d) $\{A_1, A_2, A_3, A_4\}$ where $A_1 = \{(0, a), (0, b), (0, c)\}, A_2 = \{(0, a), (1, a)\}, A_3 = \{(0, b), (1, b)\}$ and $A_4 = \{(0, c), (1, c)\}.$
- **9.** Prove that $A \cup (B \setminus A) = A \cup B$.

- 10. Find counterexamples to the following statements.
- (a) $A \subseteq B \implies A^c \subseteq B^c$.
- (b) $(A \not\subseteq B) \land (B \not\subseteq C) \implies A \not\subseteq C$.
- (c) $(A \subseteq B) \land (B \not\subseteq C) \implies A \not\subseteq C$