Semantic similarity and machine learning with ontologies

Robert Hoehndorf and Maxat Kulmanov

Preliminaries: ontologies

- Specific artifacts expressing the intended meaning of a vocabulary in terms of primitive categories and relations describing the nature and structure of a domain of discourse
 - ▶ in order to account for the competent use of vocabulary in real situations (such as annotations in databases, etc.)
- the intended meaning of *primitive* categories and relations is expressed through axioms (axiomatic method, Tarski)

Preliminaries: axioms

- classes represent kinds of things in the world
 - Arm, Apoptosis, Influenza, Homo sapiens, Drinking behavior, Membrane
- instances of classes are individuals satisfying the classes' intension
 - my arm, the influenza I had last year, one ethanol molecule, etc.
- relations between instances arise from interactions, configurations, etc., of individuals
 - my arm is part of me, the duration of my influenza was 10 days
- axioms specify the conditions that instances of a class must satisfy
 - every instance of Hand is a part of an instance of Arm

Description Logics: overview

- TBox: axioms pertaining to the terminology of the domain (classes)
- ABox: axioms stating facts (assertions) about the world
- RBox: axioms holding for relations
- Reasoning: derive implicitly represented knowledge (e.g., subsumption)
- NB: a "knowledge graph" is an ABox + RBox

Manchester OWL Syntax

DL Syntax	Manchester Syntax	Example
$C \sqcap D$	C and D	Human and Male
$C \sqcup D$	C or D	Male or Female
$\neg C$	not C	not Male
∃ <i>R</i> . <i>C</i>	R some C	hasChild some Human
∀R.C	R only C	hasChild only Human
$(\geq nR.C)$	R min n C	hasChild min 1 Human
$(\leq nR.C)$	R max n C	hasChild max 1 Human
(= nR.C)	R exactly n C	hasChild exactly 1 Human
$\{a\} \sqcup \{b\} \sqcup$	{a b}	{John Robert Mary}

Description Logic ALC: syntax

Definition

Let N_C be a set of concept names and N_R be a set of relation names, $N_C \cap N_R = \emptyset$. \mathcal{ALC} concept descriptions are inductively defined as:

- If $A \in N_C$, then A is an \mathcal{ALC} concept description
- If C, D are \mathcal{ALC} concept description, and $r \in N_R$, then the following are \mathcal{ALC} concept descriptions:
 - \triangleright $C \sqcap D$
 - \triangleright $C \sqcup D$
 - \rightarrow $\neg C$
 - **▶** ∀*r*.*C*
 - **▶** ∃*r*.*C*
- Use \bot as abbreviation of $A \sqcap \neg A$, \top as abbreviation of $A \sqcup \neg A$

Examples of concept descriptions, dl1.pdf, p8

Description Logic ALC: semantics

Definition

An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of a non-empty domain $\Delta^{\mathcal{I}}$ and an interpretation function $\cdot^{\mathcal{I}}$:

- ullet $A^{\mathcal{I}}\subseteq\Delta^{\mathcal{I}}$ for all $A\in\mathcal{N}_{C}$,
- $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all $r \in N_R$

The interpretation function is extended to \mathcal{ALC} concept descriptions as follows:

- $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $\bullet \ (C \sqcup D)^{\mathcal{I}} := C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $\bullet \ (\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} C^{\mathcal{I}}$
- $\bullet \ \, (\forall r.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} | \text{for all } e \in \Delta^{\mathcal{I}} : (d,e) \in r^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}} \}$
- $\bullet \ (\exists r.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} | \text{there is } e \in \Delta^{\mathcal{I}} : (d,e) \in r^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}} \}$

Description Logic: terminologies

- A concept definition is of the form $A \equiv C$ where
 - ► *A* is a concept name
 - C is a concept description
- A TBox is a finite set of concept definitions such that it
 - does not contain multiple definitions,
 - does not contain cyclic definitions
- A defined concept occurs on the left-hand side of a definition
- A primitive concept does not occur on the left-hand side of a definition
- An interpretation $\mathcal I$ is a model of a TBox $\mathcal T$ if it satisfies all its concept definitions: $A^{\mathcal I}=C^{\mathcal I}$ for all $A\equiv C\in \mathcal T$

Description Logic: assertions

- An assertion is of the form C(a) (concept assertion) or r(a, b) (role assertion), where C is a concept description, r is a role, a, b are individual names from a set N_I of such names
- An ABox is a finite set of assertions
- An interpretation $\mathcal I$ is a model of an ABox $\mathcal A$ if it satisfies all its assertions:
 - $ightharpoonup a^{\mathcal{I}} \in C^{\mathcal{I}}$ for all $C(a) \in \mathcal{A}$
 - $ightharpoonup (a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}} ext{ for all } r(a,b) \in \mathcal{A}$

Description Logic: Reasoning

- Subsumption: Is C a subconcept of D?
 - $\blacktriangleright \ \ C \sqsubseteq_{\mathcal{T}} D \ \text{iff} \ \ C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \ \text{for all models} \ \mathcal{I} \ \text{of} \ \mathcal{T}$
- Satisfiability: Is the concept *C* non-contradictory?
 - ightharpoonup C is satisfiable w.r.t. \mathcal{T} iff $C^{\mathcal{I}} \neq \emptyset$ for some model \mathcal{I} of \mathcal{T}
- ullet Consistency: Is the ABox ${\cal A}$ non-contradictory?
 - \blacktriangleright ${\cal A}$ is consistent w.r.t. ${\cal T}$ iff it has a model that is also a model of ${\cal T}$
- Instantiation: Is e an instance of C?
 - ▶ $A \models_{\mathcal{T}} C(e)$ iff $e^{\mathcal{I}} \in C^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{T} and \mathcal{A} .

Offtopic: knowledge graphs

My favorite definition of "knowledge graph": A knowledge graph is an ABox + RBox.

• ontologies are (mostly) the TBox!

Ontologies provide background knowledge

Annotation	Value	
label	T cell aggregation	
definition	The adhesion of one T cell to one or more other T cells via adhesion molecules.	
class	http://purl.obolibrary.org/obo/GO_0070489	
ontology	GO-PLUS	
Equivalent	leukocyte aggregation and (has participant some T cell)	
SubClassOf	lymphocyte aggregation, has participant some T cell	
has_obo_namespace	blological_process	
Id	GO:0070489	
synonyms	T-cell aggregation, T lymphocyte aggregation, T-lymphocyte aggregation	

Ontologies provide background knowledge

Annotation	Value
label	T cell activation
definition	The change in morphology and behavior of a mature or immature T cell resulting from exposure to a mitogen, cytokine, chemokine, cellular ligand, or an antigen for which it is specific.
class	http://purl.obolibrary.org/obo/GO_0042110
ontology	GO-PLUS
Equivalent	cell activation and (has input some T cell)
SubClassOf	has input some T cell, lymphocyte activation
has_obo_namespace	biological_process
ld	GO:0042110
synonyms	T-lymphocyte activation, T lymphocyte activation, T-cell activation

Problem statement (first attempt):

Given a set of entities (instances) within an ontology (DL theory). Can we discover/predict *new* relations between the entities, or between entities and classes in the ontology?

Problem statement (first attempt):

Given a set of entities (instances) within an ontology (DL theory). Can we discover/predict *new* relations between the entities, or between entities and classes in the ontology?

• what relations, and when is a fact "new"?

Problem statement (first attempt):

Given a set of entities (instances) within an ontology (DL theory). Can we discover/predict *new* relations between the entities, or between entities and classes in the ontology?

- what relations, and when is a fact "new"?
- what features are relevant?
 - depends on the relation!

Problem statement (first attempt):

Given a set of entities (instances) within an ontology (DL theory). Can we discover/predict *new* relations between the entities, or between entities and classes in the ontology?

- what relations, and when is a fact "new"?
- what features are relevant?
 - depends on the relation!
- finding new facts is only one (minor?) use case
 - other uses: encode background knowledge for machine learning models; add new classes; expand definition; constrained learning; etc.
 - computing "similarity"

Semantic similarity: some examples

- Are cyclin dependent kinases *functionally* more similar to lipid kinases or to riboflavin kinases? How about *phenotypically*?
- Which protein in the *mouse* is functionally most similar to the zebrafish *gustducin* protein?
- Which mouse knockout resembles Bardet-Biedl Syndrome 8?
- Are there mouse knockouts that resemble the side effects of diclofenac?
- Which genetic disease produces similar symptoms to ebola?
- Does functional similarity correlate with phenotypic similarity?

Semantic similarity

semantic similarity measures:

- for words, terms, classes
- role of background knowledge:
 - statistical/distributional semantics, large corpora
 - ontologies: (graph) topology
- similarity measures: hand-crafted or data-driven?

Semantic similarity or machine learning

- semantic similarity measures are mostly hand-crafted
 - ► capture certain intuition about what constitutes "similarity"
 - different measures for different kinds of similarity
 - usually interpretable (and explainable)

Semantic similarity or machine learning

- semantic similarity measures are mostly hand-crafted
 - ► capture certain intuition about what constitutes "similarity"
 - ▶ different measures for different kinds of similarity
 - usually interpretable (and explainable)
- machine learning methods are mostly data-driven
 - ▶ the architecture of the model is still hand-crafted
 - usually hard to interpret

Ontologies and graphs

- semantic similarity measures and machine learning models on ontologies can be graph-based, feature-based, or model-based
 - ► graph-based: ontology as a graph
 - ► feature-based: extract (or obtain) features for classes/relations
 - ▶ model-based: define similarity within (special) Σ -structures

Ontologies and graphs

- semantic similarity measures and machine learning models on ontologies can be graph-based, feature-based, or model-based
 - ► graph-based: ontology as a graph
 - feature-based: extract (or obtain) features for classes/relations
 - lacktriangle model-based: define similarity within (special) Σ -structures
- we may need to generate graphs from ontologies
 - ▶ is-a relations are easy (this is just owl:subClassOf)
 - ▶ how about *part-of*, *regulates*, *precedes*, etc.?
 - disjointness, universal vs. existential quantification, cardinality restrictions, intersection, union, negation?

Ontologies and graphs

- semantic similarity measures and machine learning models on ontologies can be graph-based, feature-based, or model-based
 - ► graph-based: ontology as a graph
 - feature-based: extract (or obtain) features for classes/relations
 - ightharpoonup model-based: define similarity within (special) Σ -structures
- we may need to generate graphs from ontologies
 - ▶ is-a relations are easy (this is just owl:subClassOf)
 - ▶ how about *part-of*, *regulates*, *precedes*, etc.?
 - disjointness, universal vs. existential quantification, cardinality restrictions, intersection, union, negation?
- relational patterns are implicit in OWL axioms
 - design patterns as "relations" between classes

Relations as patterns

Relations as patterns

• ...

• X SubClassOf: Y: $X \xrightarrow{\text{is-a}} Y$ • X SubClassOf: part-of some Y: $X \xrightarrow{\text{part-of}} Y$ • X SubClassOf: regulates some Y: $X \xrightarrow{\text{regulates}} Y$ • X DisjointWith: Y: $X \xleftarrow{\text{disjoint}} Y$ • X EquivalentTo: Y: $X \xleftarrow{\equiv} Y$, $\{X,Y\}$

NB: in bio-ontologies, the OBO Relation Ontology defines these patterns

Asserted and inferred

- relation patterns can be asserted or inferred
- X SubClassOf: part-of some Y
- Y SubClassOf: part-of some Z
- part-of o part-of SubPropertyOf: part-of
- $\bullet \vdash X \text{ SubClassOf: part-of some Z}$
- Therefore: $X \xrightarrow{\text{part-of}} Z$
- ullet \Rightarrow we should use deductive inference to generate these patterns

Tree models

- some languages have the finite model and tree model properties
 - ightharpoonup such as the Description Logic \mathcal{ALC}
 - generated through a tableaux algorithm
- nodes: individuals
 - node labels: concept names, concept descriptions
- edges: relations between individuals
- can be extended to more expressive languages (with blocking, cycles, etc.)

Methods and tools

- edges should be "meaningful": not merely syntax (why?)
 - the RDF serialization of OWL is a graph and contains all information but is a bad idea for semantic similarity or machine learning (more later)
 - conceptual graphs?
- OBO Format represents ontologies as graphs:
 - ► Protege/OWLAPI: OBO export
 - OBO toolsets (e.g., ROBOT)
 - https://github.com/bio-ontology-research-group/ Onto2Graph

Methods and tools

- edges should be "meaningful": not merely syntax (why?)
 - the RDF serialization of OWL is a graph and contains all information but is a bad idea for semantic similarity or machine learning (more later)
 - conceptual graphs?
- OBO Format represents ontologies as graphs:
 - ► Protege/OWLAPI: OBO export
 - ► OBO toolsets (e.g., ROBOT)
 - https://github.com/bio-ontology-research-group/ Onto2Graph
- but: a conversion of an ontologies into a graph will almost always lead to a loss of information