Machine Learning

Learning Model

Fabio Vandin

October 14th, 2022

Finite Hypothesis Classes

Assume \mathcal{H} is a finite class: $|\mathcal{H}| < \infty$

Let h_S be the output of $ERM_{\mathcal{H}}(S)$, i.e. $h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$

Assumptions

- Realizability: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$
- i.i.d.: examples in the training set are independently and identically distributed (i.i.d) according to \mathcal{D} , that is $S \sim \mathcal{D}^m$

Observation: realizability assumption implies that $(L_S(h^*) = 0)$

Can we learn (i.e., find using ERM) h*?

(Simplified) PAC learning

Probably Approximately Correct (PAC) learning

Since the training data comes from \mathcal{D} :

- we can only be approximately correct
- we can only be probably correct

Parameters:

- accuracy parameter ε : we are satisfied with a good h_S : $L_{\mathcal{D},f}(h_S) \leq \varepsilon$ (ε Small)
- confidence parameter δ : want h_S to be a good hypothesis with probability $\geq 1 \delta$ (δ small)

Theorem

Let $\mathcal H$ be a finite hypothesis class. Let $\delta \in (0,1)$, $\varepsilon \in (0,1)$, and $m \in \mathbb N$ such that $m \geq \frac{\log(|\mathcal H|/\delta)}{2}. \qquad \qquad = \int_{\mathbb R^n} \mathbb S^n \, ds \, ds$

Then for any f and any f for which the realizability assumption holds, with probability $\geq 1 - \delta$ we have that for every ERM hypothesis h_S it holds that

 $L_{\mathcal{D},f}(h_S) \leq \varepsilon.$

Note: $\log = \text{natural logarithm}$

With finite hydresis classes, I can always"

find a good hypothesis of (hs) & e with prob. >1-5

if I have enough data.

for any I for any I for any I for any I

Proof (see book as well, Corollary 2.3) Let $S|_{x} = \{x_1, x_2, ..., x_m\}$ be the instances in the twining set S. We want to bound (i.e., on upper bound) to: $O^{m}(\{S_{1x}, L_{0,f}(l_{1s}), E\})$. Let $\mathcal{H}_{B} = \{h \in \mathcal{H}: L_{0,f}(h) > E\}$ (BAD HYPOTHESES) and M= {S/x: 3heHB, Ls(h)=0} (MISLEADING SAMPLES) Since we have the realizability assumption: Ls(hs)=0 $\Rightarrow L_{0,f}(hs)>\varepsilon$ only if some $h\in\mathcal{H}_{B}$ has $L_{s}(h)=0$. That is, our training data must be in the set M (for this to happen): $\{S_{1\times}: L_{0,f}(h_{s}) > E\} \leq M$.

Note that: M = U {S[x: Ls(h) = 0} because of Therefore $\mathbb{O}^m(\{S_{1_{\times}}: L_0, f(h_s) > \epsilon\}) \in \mathbb{O}^m(M) \in \mathbb{O}^m(\bigcup_{h \in \mathcal{H}_0} \{S_{1_{\times}}: L_0 \})$

 $(bound) \leq \sum_{h \in \mathcal{H}_B} \mathcal{O}^m (\{S_{1x}: L_S(h)=0\})$ (*)

Now let's fix he tog: Ls(h)=0 > + i=1,...,m:h(xi)=f(xi) Therefore: 0"(\{S|x: L_S(h)=0\}) = 0"(\{S|x: \(\nabla: = 1, ..., m\), \(\lambda: \(\nabla: = 1, ..., m\)\) (become $\times_{i,i}$ \times_{i} $\times_$ Consider some $i, 1 \le i \le m : \mathcal{O}(\{x_i : h(x_i) = f(x_i)\}) = 1 - \mathcal{O}(\{x_i : h(x_i) \ne h(x_i)\})$ $L_{0,f}(h) = \Pr_{x \in \mathcal{D}} [h(x) \neq f(x)]$ (since hote) = 1 - Lo, f(h) $= 4 + x + \frac{x^2}{2!} + \dots \Rightarrow$ Combining the above with (x): D^m(fSIx: Log(hs) > E) = m = m = m = MB/e = |HB/e = |HB/e = MB/e = MB/ Now, given the choice of m:

\(\frac{1}{2} = \frac{1}{2}

PAC Learning

Definition (PAC learnability)

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \varepsilon \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f:\mathcal{X} \to \{0,1\}$, if the realizability assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d. examples generate by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of examples): $\mathcal{L}_{\mathcal{D}, f}(h) \leq \varepsilon$.

PAC Learning

Definition (PAC learnability)

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \varepsilon \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f:\mathcal{X} \to \{0,1\}$, if the realizability assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d. examples generate by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of examples): $L_{\mathcal{D}, f}(h) \leq \varepsilon$.

 $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$: sample complexity of learning \mathcal{H} .

PAC Learning

Definition (PAC learnability)

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \varepsilon \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f:\mathcal{X} \to \{0,1\}$, if the realizability assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d. examples generate by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of examples): $L_{\mathcal{D}, f}(h) \leq \varepsilon$.

 $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}:$ sample complexity of learning \mathcal{H} .

• $m_{\mathcal{H}}$ is the minimal integer that satisfies the requirements.

Corollary

Every finite hypothesis class is PAC learnable with sample complexity
$$m_{\mathcal{H}}(\varepsilon,\delta) \leq \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\varepsilon} \right\rceil$$
.

A More General Learning Model: Remove Realizability Assumption (Agnostic PAC Learning)

Realizability Assumption: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$

Informally: the label is fully determined by the instance x

A More General Learning Model: Remove Realizability Assumption (Agnostic PAC Learning)

Realizability Assumption: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*)=0$

Informally: the label is fully determined by the instance x

⇒ Too strong in many applications!

Relaxation: \mathcal{D} is a probability distribution over $\mathcal{X} \times \mathcal{Y}$ $\Rightarrow \mathcal{D}$ is the *joint distribution* over domain points and labels.

For example, two components of \mathcal{D} :

- D: (marginal) distribution over domain points
- $\mathcal{D}((x, \mathbb{Z})|x)$: conditional distribution over labels for each

A More General Learning Model: Remove Realizability Assumption (Agnostic PAC Learning)

Realizability Assumption: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$

Informally: the label is fully determined by the instance x

⇒ Too strong in many applications!

Relaxation: \mathcal{D} is a probability distribution over $\mathcal{X} \times \mathcal{Y}$ $\Rightarrow \mathcal{D}$ is the *joint distribution* over domain points and labels.

For example, two components of \mathcal{D} :

- \mathcal{D}_{x} : (marginal) distribution over domain points
- $\mathcal{D}((x,y)|x)$: conditional distribution over labels for each domain point

Given x, label y is obtained according to a conditional probability $\mathbb{P}[y|x]$.

The Empirical and True Error

With \mathcal{D} that is a probability distribution over $\mathcal{X} \times \mathcal{Y}$ the *true error* (or risk) is:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{P}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[h(\mathbf{x}) \neq \mathbf{y}]$$

The Empirical and True Error

With \mathcal{D} that is a probability distribution over $\mathcal{X} \times \mathcal{Y}$ the *true error* (or risk) is:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x) \neq y]$$

As before $\mathcal D$ is not known to the learner; the learner only knows the training data $\mathcal S$

Empirical risk: as before, that is

$$L_{\mathcal{S}}(h) \stackrel{\text{def}}{=} \frac{|\{i, 0 \leq i \leq m : h(x_i) \neq y_i\}|}{m}$$

The Empirical and True Error

With \mathcal{D} that is a probability distribution over $\mathcal{X} \times \mathcal{Y}$ the true error (or risk) is:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x) \neq y]$$

As before \mathcal{D} is not known to the learner; the learner only knows the training data S

Empirical risk: as before, that is

as before, that is
$$L_{\mathcal{S}}(h) \stackrel{\text{def}}{=} \frac{|\{i, 0 \leq i \leq m : h(x_i) \neq y_i\}|}{m}$$

Note: $L_{\mathcal{S}}(h)$ = probability that for a pair (x_i, y_i) taken uniformly at random from S the event " $h(x_i) \neq y_i$ " holds.

Learner's goal: find $h: \mathcal{X} \to \mathcal{Y}$ minimizing $L_{\mathcal{D}}(h)$

An Optimal Predictor

Learner's goal: find $h: \mathcal{X} \to \mathcal{Y}$ minimizing $L_{\mathcal{D}}(h)$

Is there a best predictor?

Given a probability distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$, the best predictor is the **Bayes Optimal Predictor**

$$f_{\mathcal{D}}(x) = \left\{ egin{array}{ll} 1 & \mbox{if } \mathbb{P}[y=1|x] \geq 1/2 \\ 0 & \mbox{otherwise} \end{array} \right.$$

Proposition

For any classifier $g: \mathcal{X} \to \{0,1\}$, it holds $L_{\mathcal{D}}(f_{\mathcal{D}}) \leq L_{\mathcal{D}}(g)$.

An Optimal Predictor

Learner's goal: find $h: \mathcal{X} \to \mathcal{Y}$ minimizing $L_{\mathcal{D}}(h)$

Is there a best predictor?

Given a probability distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$, the best predictor is the **Bayes Optimal Predictor**

$$f_{\mathcal{D}}(x) = \left\{ egin{array}{ll} 1 & ext{if } \mathbb{P}[y=1|x] \geq 1/2 \\ 0 & ext{otherwise} \end{array}
ight.$$

Proposition

For any classifier $g: \mathcal{X} \to \{0,1\}$, it holds $L_{\mathcal{D}}(f_{\mathcal{D}}) \leq L_{\mathcal{D}}(g)$.

PROOF: Exercize

Can we use such predictor? N_0 , because we sont know $\Pr\left\{y=1 \mid \times\right\}$ (we sont N)

Agnostic PAC Learnability

Consider only predictors from a hypothesis class \mathcal{H} .

We are going to be ok with not finding the best predictor, but not being too far off.

Definition

A hypothesis class \mathcal{H} is agnostic PAC learnable if there exist a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \varepsilon \in (0,1)$, for every distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, when running the learning algorithm on $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d. examples generated by \mathcal{D} the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of the m training examples):

$$L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \varepsilon.$$

Note: this is a generalization of the previous learning model.

Previously: - D was a distribution on X only

- Ding Lop(h) = 0

A More General Learning Model: Beyond Binary Classification

```
Binary classification: \mathcal{Y} = \{0, 1\}
```

Other learning problems:

- multiclass classification: classification with > 2 labels
- regression: $\mathcal{Y} = \mathbb{R}$

Multiclass classification: same as before!

Regression

Domain set: \mathcal{X} is usually \mathbb{R}^p for some p.

Target set: \mathcal{Y} is \mathbb{R}

Training data: (as before) $S = ((x_1, y_1), \dots, (x_m, y_m))$

Learner's output: (as before) $h: \mathcal{X} \to \mathcal{Y}$

Loss: the previous one does not make much sense...

if the "observed value"/"true value" is 11.72, and I predict 11.71999, the predicted value of observed value, Lit as on error it is less than the array of predicting 1.

(Generalized) Loss Functions

Definition

Given any hypotheses set \mathcal{H} and some domain \mathbb{Z} , a loss function is any function $\ell: \mathcal{H} \times \mathbb{Z} \to \mathbb{R}_+$

(Generalized) Loss Functions

Definition

Given any hypotheses set \mathcal{H} and some domain Z, a loss function is any function $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$

Risk function = expected loss of a hypothesis $h \in \mathcal{H}$ with respect to \mathcal{D} over Z:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$$

$$(x, y)$$

(Generalized) Loss Functions

Definition

Given any hypotheses set $\mathcal H$ and some domain Z, a loss function is any function $\ell:\mathcal H\times Z\to\mathbb R_+$

Risk function = expected loss of a hypothesis $h \in \mathcal{H}$ with respect to \mathcal{D} over Z:

$$L_{\mathcal{D}}(h) \stackrel{def}{=} \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$$

Empirical risk = expected loss over a given sample
$$S = (z_1, \dots, z_m) \in Z^m: \qquad \qquad \begin{cases} (x_1, y_1) & \text{for } (x_1, y_2) \\ (x_1, y_1) & \text{for } (x_1, y_2) \end{cases}$$

$$(x_1, y_1) \qquad (x_2, y_2) \qquad (x_3, y_4) \qquad (x_4, y_5) \qquad (x_4, y_5) \qquad (x_4, y_5) \qquad (x_4, y_5) \qquad (x_5) \qquad$$

0-1 loss:
$$Z = \mathcal{X} \times \mathcal{Y}$$

$$\ell_{0=1}(h,(x,y)) \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} 0 & \text{if } h(x) = y, \\ 1 & \text{if } h(x) \neq y. \end{array} \right.$$

0-1 loss:
$$Z = \mathcal{X} \times \mathcal{Y}$$

$$\ell_{0-1}(h,(x,y)) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} 0 & \text{if } h(x) = y \\ 1 & \text{if } h(x) \neq y \end{array} \right.$$

Commonly used in binary or multiclass classification.

Squared loss:
$$Z = \mathcal{X} \times \mathcal{Y}$$

$$\ell_{sq}(h,(x,y)) \stackrel{def}{=} (h(x) - y)^2$$

0-1 loss:
$$Z = \mathcal{X} \times \mathcal{Y}$$

$$\ell_{0-1}(h,(x,y)) \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} 0 & \text{if } h(x) = y \\ 1 & \text{if } h(x) \neq y \end{array} \right.$$

Commonly used in binary or multiclass classification.

Squared loss:
$$Z = \mathcal{X} \times \mathcal{Y}$$

$$\ell_{sq}(h,(x,y)) \stackrel{\text{def}}{=} (h(x) - y)^2$$

Commonly used in regression.

0-1 loss:
$$Z = \mathcal{X} \times \mathcal{Y}$$

$$\ell_{0-1}(h,(x,y)) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} 0 & \text{if } h(x) = y \\ 1 & \text{if } h(x) \neq y \end{array} \right.$$

Commonly used in binary or multiclass classification.

Squared loss:
$$Z = \mathcal{X} \times \mathcal{Y}$$

$$\ell_{sq}(h,(x,y)) \stackrel{\text{def}}{=} (h(x) - y)^2$$

Commonly used in **regression**.

Note: in general, the loss function may depend on the application! But computational considerations play a role...

How to Choose the Loss Function? classification of figorpriate *figurprint S+1 occess

-1 ho access Two types of orrors: false accept and false reject How do you dook the Bs ?