Постороим график этой зависимости

По МНК получаем:

$$f_0 = 6.81 \text{HM}$$

$$\sigma^2 = \frac{1}{5} \sum_{i=1}^5 (f_0 - f_i)^2 = 0.0575 \text{Hm}^2$$

$$\Rightarrow f = 6.8 \pm 0.24 \text{Hm}$$

Зная значение f, посчитаем модуль сдвига G, пользуясь формулой (3) на странице (2)

$$G = \frac{f2l}{\pi R^4} = 0.58 \pm 0.02\Gamma\Pi a$$

4.2 Динамический метод

Измерим диаметр проволоки $d_0=1.55$ мм, её длину L=1.34м и массу подвешиваемых грузов m=0.376кг. Снимем зависимость квадрата периода колебаний T от квадрата расстояния от проводоки до центра масс каждого груза l:

Зависимость $T^2(l^2)$

T^2 , c^2	l^2 , $10^{-3}m^2$
4,84	3,025
5,76	4,225
7,29	5,635
9,00	7,225
10,89	9,025

По данным значениям построим график:

По МНК найдем коэффициент наклона прямой:

$$k_0 = 1.55 \frac{c^2}{10^{-3} \text{M}^2}$$

$$\sigma^2 = \frac{1}{5} \sum_{i=1}^{5} (k_0 - k_i)^2 = 0.065 \text{Hm}^2$$

$$\Rightarrow k = 1.55 \pm 0.25 \text{Hm}$$

Из коэффициента k найдем модуль кручения f по формуле

$$f = \frac{8\pi^2 m}{k} = 19.67 \pm 3.18 \text{Hm}$$

Зная значение f, посчитаем модуль сдвига G, пользуясь формулой (3) на странице (2)

$$G = \frac{f2l}{\pi r^4} = 0.46 \pm 0.75 \Gamma \Pi a$$