Math 4A03 - Assignment 3

September 30, 2020

Question 1: (each part starts on a new page)

a) We want to show

$$F = \left\{ x = (x(1), \dots,) : |x(k)| \le \frac{1}{k^2}, \forall k \in \mathbb{N} \right\} \subset \ell^1$$

is closed. Our strategy is to use sequences; that is, by Theorem 4.9 in the text, we have that F is closed if and only if all convergent sequences in F converge to a point in F. So let $(x^t)_{t\in\mathbb{N}}$ be any sequence in F that converges to some $x\in\ell^1$, then we need to show that $x\in F$. In other words, we need to show that

$$|x(k)| \le \frac{1}{k^2}, \forall k \in \mathbb{N}$$

First, we establish a useful fact that we will use later. For any $y \in \ell^1$, the absolute value of any specific index |y(i)| is less than or equal to the norm of the element $||y||_1$. This is because the series in the norm is monotonically increasing and $y \in \ell^1$, so we have the following for each fixed index $i \in \mathbb{N}$

$$|y(i)| \le |y(1)| + \dots + |y(i)| \le \sum_{i=1}^{\infty} |y(j)| = ||y||_1 < \infty$$
 (1)

Now since x^t converges to x, by definition we have that $||x - x^t||_1$ can be made arbitrarily small since

$$\forall \epsilon > 0, \exists T \in \mathbb{N} \text{ such that } \|x - x^t\|_1 < \epsilon \text{ whenever } t \ge T$$
 (2)

Then using (1), (2), and transitivity, we have that any index $k \in \mathbb{N}$ can also be made arbitrarily small since

$$\left| x(k) - x^t(k) \right| \le \left\| x - x^t \right\|_1 < \epsilon \tag{3}$$

In fact, using the definition of absolute value, monotonicity, and transitivity, we get

$$x^{t}(k) - \epsilon < x(k) < x^{t}(k) + \epsilon \tag{4}$$

But by construction, every element in the sequence (x^t) is in F, so by definition we have

$$\left| x^t(k) \right| \le \frac{1}{k^2} \tag{5}$$

Then combining (4) and (5) gives us

$$\frac{-1}{k^2} - \epsilon \le x^t(k) - \epsilon < x(k) < x^t(k) + \epsilon \le \frac{1}{k^2} + \epsilon \tag{6}$$

or more succinctly

$$\frac{-1}{k^2} - \epsilon < x(k) < \frac{1}{k^2} + \epsilon \tag{7}$$

Notice that this strict inequality holds for every arbitrarily small $\epsilon > 0$ so it is equivalent to write (7) as

$$\left(\frac{-1}{k^2} \le x(k) \le \frac{1}{k^2}\right) \equiv \left(|x(k)| \le \frac{1}{k^2}\right)$$

as required.

b) We want to show

$$G = \left\{ x = (x(1), \dots,) : |x(k)| < \frac{1}{k^2}, \forall k \in \mathbb{N} \right\} \subset \ell^1$$

is not open. Our strategy is to find an element in G with no neighbourhood that is contained in G. That is, we must show that

$$\not\exists \epsilon > 0 \text{ such that } B_{\epsilon}(x) \subset G \text{ for some } x \in G$$

We will use 0 which is an element of G since all indices are 0 and are trivially less than $\frac{1}{k^2}$, $\forall k \in \mathbb{N}$. Now, the Archimedean property states that given any positive real number x, no matter how small, one can always find a fraction $\frac{1}{n}$, $n \in \mathbb{N}$ that is smaller i.e. $\frac{1}{n} < x$. So, given any $\epsilon > 0$, by the Archimedean property, we will always be able to find a fraction $\frac{1}{k^2}$, $k \in \mathbb{N}$ less than $\frac{\epsilon}{4}$. This allows us to construct the element

$$y_{\epsilon} = (0, 0, 0, \dots, \frac{\epsilon}{2}, 0, \dots) \in \ell^{1}$$
 (8)

i.e. the element in ℓ^1 with 0 for each index except for the k^{th} index which is $\frac{\epsilon}{2}$ and where k is the index such that $\frac{1}{k^2} < \frac{\epsilon}{4}$. Note that $y_{\epsilon} \in B_{\epsilon}(0)$ since

$$d(y_{\epsilon}, 0) = ||y_{\epsilon} - 0||_{1} = |0 - 0| + \dots + |\frac{\epsilon}{2} - 0| + |0 - 0| + \dots = \frac{\epsilon}{2} < \epsilon$$
(9)

But we also have the $y_{\epsilon} \notin G$ since

$$|y_{\epsilon}(k)| = \frac{\epsilon}{2} > \frac{\epsilon}{4} > \frac{1}{k^2} \tag{10}$$

Thus, no matter which $\epsilon > 0$ we choose, there will always be elements in $B_{\epsilon}(0)$ that are not in G. Therefore, $B_{\epsilon}(0) \not\subset G, \forall \epsilon > 0$ and so G is not open.

c) We would like to show $F = \bar{G}$. Our strategy is to show

$$F \subset \bar{G}$$
 and $\bar{G} \subset F$

First, suppose $x \in F$, then by Proposition 4.10 in the textbook, $x \in \bar{G}$ if and only if $B_{\epsilon}(x) \cap G \neq \emptyset$, $\forall \epsilon > 0$. Given any positive ϵ , we have

$$B_{\epsilon}(x) \cap G = \left\{ y \in \ell^1 : \|y - x\|_1 < \epsilon \text{ and } |y(k)| < \frac{1}{k^2}, \forall k \in \mathbb{N} \right\}$$

$$\tag{11}$$

We will break up the problem into two cases, $\epsilon > 1$ and $0 < \epsilon \le 1$. For $\epsilon > 1$, we can construct the element

$$x_{\epsilon} = \left(\frac{x(1)}{\epsilon}, \dots, \frac{x(k)}{\epsilon}, \dots\right)$$
 (12)

i.e. the element in ℓ^1 that is a scaled down version of $x \in F$. Now for x_{ϵ} to be in $B_{\epsilon}(x) \cap G$, we need to check if it satisfies both conditions. The second condition is trivial since

$$x \in F, \epsilon > 1 \implies |x_{\epsilon}(k)| = \left| \frac{x(k)}{\epsilon} \right| < |x(k)| \le \frac{1}{k^2}, \forall k \in \mathbb{N}$$
 (13)

Now for the first condition, we have

$$\|x - x_{\epsilon}\|_{1} = \sum_{i=1}^{\infty} \left| x(i) - \frac{x(i)}{\epsilon} \right| = \sum_{i=1}^{\infty} \left| x(i) \left(1 - \frac{1}{\epsilon} \right) \right|$$
$$= \left(1 - \frac{1}{\epsilon} \right) \sum_{i=1}^{\infty} |x(i)| = \frac{\epsilon - 1}{\epsilon} \|x\|_{1}$$
(14)

Note that since $x \in F$, we also have the following

$$||x||_1 = \sum_{i=1}^{\infty} |x(i)| \le \sum_{i=1}^{\infty} \left| \frac{1}{i^2} \right| = \frac{\pi^2}{6}$$
 (15)

So (14) and (15) imply

$$\|x - x_{\epsilon}\|_{1} = \frac{\epsilon - 1}{\epsilon} \|x\|_{1} \le \frac{\epsilon - 1}{\epsilon} \frac{\pi^{2}}{6}$$

$$\tag{16}$$

But since $\epsilon > 1$, $\frac{\epsilon - 1}{\epsilon} \frac{\pi^2}{6} < \epsilon$ is always true. To see this, consider the equivalent expression

$$\left(\frac{\epsilon - 1}{\epsilon} \frac{\pi^2}{6} < \epsilon\right) \equiv \left(0 < \frac{6}{\pi^2} \epsilon^2 - \epsilon + 1\right) \tag{17}$$

This is a quadratic in ϵ with complex roots and positive opening thus is always greater than zero. So, x_{ϵ} satisfies both conditions i.e. $||x - x_{\epsilon}||_1 < \epsilon$ and $x_{\epsilon}(k) < \frac{1}{k^2}, \forall k \in \mathbb{N}$; therefore, $x_{\epsilon} \in B_{\epsilon}(x) \cap G$ for $\epsilon > 1$.

For the next case $0 < \epsilon \le 1$, we construct the element

$$x^{\epsilon} = \left(\left(1 - \frac{6\epsilon}{2\pi^2} \right) x(1), \dots, \left(1 - \frac{6\epsilon}{2\pi^2} \right) x(k), \dots \right)$$
 (18)

which is another scaled down version of x in ℓ^1 . As before, the second condition is easily satisfied since

$$x \in F, 0 < \epsilon \le 1 \implies |x^{\epsilon}(k)| = \left| \left(1 - \frac{6\epsilon}{2\pi^2} \right) x(k) \right| < |x(k)| \le \frac{1}{k^2}, \forall k \in \mathbb{N}$$
 (19)

Similarly for condition one, we get

$$||x - x^{\epsilon}||_{1} = \sum_{i=1}^{\infty} \left| x(i) - \left(1 - \frac{6\epsilon}{2\pi^{2}} \right) x(i) \right| = \sum_{i=1}^{\infty} \left| x(i) \left(\frac{6\epsilon}{2\pi^{2}} \right) \right|$$
$$= \left(\frac{6\epsilon}{2\pi^{2}} \right) \sum_{i=1}^{\infty} |x(i)| = \left(\frac{6\epsilon}{2\pi^{2}} \right) ||x||_{1}$$
(20)

As before, we have

$$||x - x^{\epsilon}||_1 = \left(\frac{6\epsilon}{2\pi^2}\right) ||x||_1 \le \left(\frac{6\epsilon}{2\pi^2}\right) \frac{\pi^2}{6} = \frac{\epsilon}{2} < \epsilon$$
 (21)

So, x^{ϵ} satisfies both conditions i.e. $||x - x^{\epsilon}||_1 < \epsilon$ and $x^{\epsilon}(k) < \frac{1}{k^2}, \forall k \in \mathbb{N}$; therefore, $x^{\epsilon} \in B_{\epsilon}(x) \cap G$ for $0 < \epsilon \le 1$. Thus, $\forall \epsilon > 0$, we have that $B_{\epsilon}(x) \cap G \ne \emptyset$ and so, $x \in \overline{G}$.

For the other direction, suppose that $x \in \overline{G}$, then we must show $x \in F$. Since $x \in \overline{G}$, it must be either a point of G or a limit point of G (from class notes). If it is a point a G, then it is trivially in F since

$$x \in G \implies |x(k)| < \frac{1}{k^2}, \forall k \in \mathbb{N} \implies |x(k)| \le \frac{1}{k^2}, \forall k \in \mathbb{N} \implies x \in F$$
 (22)

If x is a limit point of G then it must be the limit of a convergent sequence (x^t) in G. But all sequence elements of (x^t) have the property that each value at index $k \in \mathbb{N}$ is bounded by $|x^t(k)| < \frac{1}{k^2}$. So, if (x^t) converges to x, by part a) equations (1) to (7), we must have

$$\frac{-1}{k^2} - \epsilon < x(k) < \frac{1}{k^2} + \epsilon, \forall \epsilon > 0$$

or equivalently

$$|x(k)| \le \frac{1}{k^2}$$

Thus, the limiting value of each index $k \in \mathbb{N}$ from a sequence in G is bounded by $\frac{1}{k^2}$ and so $x \in F$.

Together, this implies that $F \subset \bar{G}$ and $\bar{G} \subset F$ and so $F = \bar{G}$.