Preliminary reference Earth model * Adam M. Dziewonski ¹ and Don L. Anderson ²

¹ Department of Geological Sciences, Harvard University, Cambridge, MA 02138 (U.S.A.)
² Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 (U.S.A.)

(Received December 3, 1980; accepted for publication December 5, 1980)

Dziewonski, A.M. and Anderson, D.L., 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25: 297-356.

A large data set consisting of about 1000 normal mode periods, 500 summary travel time observations, 100 normal mode Q values, mass and moment of inertia have been inverted to obtain the radial distribution of elastic properties, Q values and density in the Earth's interior. The data set was supplemented with a special study of 12 years of ISC phase data which yielded an additional 1.75×10^6 travel time observations for P and S waves. In order to obtain satisfactory agreement with the entire data set we were required to take into account anelastic dispersion. The introduction of transverse isotropy into the outer 220 km of the mantle was required in order to satisfy the shorter period fundamental toroidal and spheroidal modes. This anisotropy also improved the fit of the larger data set. The horizontal and vertical velocities in the upper mantle differ by 2–4%, both for P and S waves. The mantle below 220 km is not required to be anisotropic. Mantle Rayleigh waves are surprisingly sensitive to compressional velocity in the upper mantle. High S_n velocities, low P_n velocities and a pronounced low-velocity zone are features of most global inversion models that are suppressed when anisotropy is allowed for in the inversion.

The Preliminary Reference Earth Model, PREM, and auxiliary tables showing fits to the data are presented.

Preamble

The study of precession and nutation in astronomy and geodesy, and of Earth tides and free oscillations in geophysics, need knowledge of the internal structure of the Earth. The importance of free and forced nutations, for instance, polar motion, Chandler and annual components, and diurnal motion of the Earth, in different fields of science, emphasizes the value of the contribution of seismology for these researches.

It was very difficult to set up models of the Earth's structure before the advent of computers; the more important ones were set up by Bullen,

* With a preamble by the Standard Earth Committee of the I.U.G.G. Followed by "A note on the calculation of travel times in a transversely isotropic Earth model" by J.H. Woodhouse (this issue, pp. 357–359).

and his models A and B were employed extensively.

Seismological studies of the structure of the Earth have developed rapidly since 1950, much aided by the fast improvement in computer techniques.

Expansion in the utilization of computers made it possible to construct many types of Earth models. The consequent proliferation of Earth models had two consequences:

- (1) There was a difficulty of choice of an adequate Earth model for researchers that depend on the structure of the Earth, such as those listed in the first paragraph.
- (2) Several researchers adopted some properties from one model and other properties from a second model, with the consequence that their models were not self-compatible.

These difficulties were pointed out, at a Sym-

posium on Earth Tides, during the 1971 IUGG General Assembly in Moscow (Vicente, R.O., 1973, Bull. Geodesique No. 107, p. 105), and informal discussions on the subject led to the setting up of a working group, composed of members of IAG and ISPEI, called the "Standard Earth Model Committee"; the chairman was the late Professor K.E. Bullen.

The objective of the working group was to set up a standard model for the structure of the Earth, from the center to the surface, defining the main parameters and principal discontinuities in such a way that they could be adopted by the international scientific community in any studies that depended on the Earth's structure.

The initial approach was to appoint several sub-committees dealing with different regions of the Earth, composed of scientists specialising in those areas. The original sub-committees were on: (1) the hydrostatic equilibrium problem; (2) the crust; (3) the upper mantle; (4) region D"; (5) core radius; (6) P-velocity distribution in the core; and (7) density and rigidity of the inner core.

During the meeting of the Symposium on Mathematical Geophysics (Banff, 1972), three research groups, headed by D.L. Anderson, F. Gilbert and F. Press, presented models giving the main parameters; in spite of the fact that these models employed different data sets and computation techniques, the values obtained for the core radius agreed within 0.2%, which was a remarkable result. The papers were published in *Geophys. J.*, vol. 35 (1973); there was by then a general feeling that it was possible to set up an adequate standard Earth model.

During the IASPEI meeting in Lima (1973) there was agreement about the need for a parametrisation of the model to be adopted. It was decided to call the model for the Earth's structure a "reference model", following the example of geodesy where there is a reference ellipsoid. In spite of this change in the name, it was agreed to keep the same name for the Committee. The reports of the sub-committees were published in *Phys. Earth Planet. Inter.*, vol. 9 (1974).

By the time of the 1975 IUGG General Assembly (Grenoble) it was evident that it would be difficult for several sub-committees to work sep-

arately and produce a consistent reference model. Several approaches to the problem of setting up a reference model were discussed, including allowance for attenuation; it was decided to invite colleagues to produce and present complete models worked out by themselves and satisfying the guidelines laid down by the Committee. The guidelines were published during 1976 in several scientific journals (*Bull. Seismol. Soc. Am., Geophys. J., EOS*, etc.) with the announcement that proposed models should be presented during the IASPEI meeting in 1977.

The meeting of the Committee during the IASPEI assembly in Durham (1977) was concerned with the presentation and discussion of three different proposals, corresponding to researches done by D.L. Anderson, B. Bolt and A.M. Dziewonski. It appeared to be possible to construct models taking account of damping, that is, of Q values. The Committee members present considered that the effects of attenuation were important and should be considered; but, since Q was not well determined, instead of having one reference model, we should have two reference models—one including Q values and the other without Q values.

At this meeting it was evident that the original reference model envisaged was growing more and more detailed, thanks to the rapid progress of seismology. Several features that could not have been considered in 1971 were now feasible. It was decided to entrust to D.L. Anderson and A.M. Dziewonski the task of presenting a suitable reference model.

The first report on the reference model of Anderson and Dziewonski was presented at the meeting of the Committee on Mathematical Geophysics (Caracas, 1978), with the statement that the gross Earth data employed for the construction of the model was being enlarged, using the ISC tapes.

During the 1979 IUGG General Assembly (Canberra) a preliminary report on the Interim Reference Earth Model was presented by A.M. Dziewonski and D.L. Anderson. It was agreed by the Committee that the report should be submitted to *Physics of the Earth and Planetary Interiors*, and that interested seismologists should be encouraged

to use the Preliminary Earth Model and send comments to the authors. In order that the authors should be able to consider such comments, and to modify the model in the light of them if they think fit, such comments should be in the hands of Dziewonski and Anderson as soon as possible.

Professors Dziewonski and Anderson have been asked to make a further Report, which the Committee hopes to be able to regard as the conclusion of its work, at the IASPEI Assembly in 1981.

E.R. Lapwood, Chairman R.O. Vicente, Secretary For the Standard Earth Model Committee May 5, 1980

1. Introduction

A variety of geophysical, geochemical and astronomical studies require an accurate description of the variation of elastic properties and density in the interior of the Earth. This paper contains a brief description of a new Earth model, PREM, that satisfies the guidelines established by the Standard Earth Model (S.E.M.) Committee at its meeting in Grenoble in 1975. In order to satisfy the large amount of precise normal mode, surface wave and body wave data, we have found it necessary to introduce anelastic dispersion and anisotropy. The model is therefore frequency-dependent and, for the upper mantle, transversely isotropic. We present tables containing the velocities, elastic constants and Q as a function of radius, and auxiliary parameters such as gravity, pressure, dK/dP and the Bullen parameter, η_B .

The model is parametric in nature, a concept discussed, and, in general terms, found acceptable during the meeting of the S.E.M. Committee, chaired by the late Professor Keith Bullen, in Lima, 1973. We have provided analytic formulae for the seismic velocities, density and quality factor Q as a function of radius. For this purpose we use low-order polynomials in radius, of order between zero and three, to describe seismic velocities, density and attenuation in the various regions of the Earth.

Section 2 deals with the basic concept of the model. The division of the Earth into regions

within which the properties are assumed to vary smoothly predetermines the general features of the final model and must be done with care. In general terms, we follow the recommendations of the Subcommittee on Parameterization, whose findings were published among reports of the other subcommittees in *Phys. Earth Planet. Inter.*, vol. 9 (1974).

Section 3 contains a description of the datasets that we use in inversion for the final model. Section 4 describes procedures adopted in formulation of the starting model. In Section 6 we provide a brief outline of the inversion method used, the final (in terms of this report only, of course) model and discussion of the fit to the data.

There have been a number of important problems and decisions that we have faced during the course of this work. Some of these decisions required choices between conflicting datasets. Others were resolved by accepting that the velocities in the real Earth are dispersive. The most difficult decision to make was whether we should drop the assumption of isotropy. A large amount of important data could not be fit adequately with the preliminary isotropic Earth models. So we view anisotropy and anelastic dispersion as essential complexities. We have, however, tabulated results for the "equivalent" isotropic Earth. "Equivalent" means that the model has approximately the same bulk modulus and shear modulus as the anisotropic model, not that it provides an equivalent, or satisfactory, fit to the data. The isotropic moduli are calculated with a Voigt averaging scheme and, therefore, represent the least upper bound. We encourage the geophysical community to test and evaluate the model and the tables and to contribute to refinement of what we call the Preliminary Reference Earth Model, or PREM.

2. The concept of the model

An average Earth model, the subject of this work, is a mathematical abstraction. The lateral heterogeneity in the first few tens of kilometers is so large that an average model does not reflect the actual Earth structure at any point. In construction of the structure within the first 100 km we

have adopted the concept of weighted average: assuming that oceanic crust covers two-thirds of the Earth's surface and that the average depth to the Moho is 11 km under oceans and 35 km under continents, we arrive at a figure of 19 km for the depth to the Moho for the average Earth. This is used as the trial starting value.

We recognize the following principal regions within the Earth:

- (1) Ocean layer.
- (2) Upper and lower crust.
- (3) Region above the low velocity zone (LID), considered to be the main part of the seismic lithosphere. When we finally dropped the assumption of isotropy the distinction between LID and LVZ became less pronounced.
- (4) Low velocity zone (LVZ).
- (5) Region between low velocity zone and 400 km discontinuity.
- (6) Transition zone spanning the region between the 400 and 670 km discontinuities.
- (7) Lower mantle. In our work we found it necessary to subdivide this region into three parts connected by second-order discontinuities.
- (8) Outer core.
- (9) Inner core.

While the existence of most of the regions listed above has been recognized for some time, the subdivision of the upper mantle is still subject to some differences of opinion. We feel that evidence for the world-wide existence of a zone of low velocity gradient in the upper mantle is very strong and that the same is true with respect to at least two major discontinuities, although the actual velocity gradients are still unresolved.

From a practical viewpoint, such a modular construction is very convenient. It is much easier to perturb a particular feature of a model when it is separated from the remaining ones by clearly defined discontinuities than to alter a model that by definition is continuous. Other practical reasons have to do with numerical applications. Many methods of construction of synthetic seismograms can satisfactorily treat abrupt discontinuities, but are not suitable for regions with very steep velocity gradients. Another important issue is the inverse problem: there exist formulae for the effect of change in the radius of a discontinuity on periods

of free oscillations or travel times of body waves, but there are no equivalent expressions for diffused transitions.

The preceding discussion dealt only with the elastic properties of the Earth. One fundamental assumption that we make an interpretation of the data in the seismic frequency band is that the seismic quality factor Q is independent of the frequency. This hypothesis seems to be consistent with most of the currently available information except perhaps for periods shorter than $5-10 \, \mathrm{s}$. We in no way imply that Q is exactly independent of frequency at all depths and over the entire seismic frequency band but only that most data can be satisfactorily fitted with this assumption.

3. The gross Earth data set

There are three principal subsets of data:

1. Astronomic-geodetic data

Radius of the Earth: 6371 km. Mass: 5.974×10^{24} kg. I/MR^2 : 0.3308. These values, listed in the guideline of the SEM Committee, were used as constraints.

2. Free oscillation and long-period surface wave data

There is an impressive set of measurements of eigenfrequencies for over 1000 normal modes. The precision of measurements varies appreciably: from up to 4×10^{-3} for some of the toroidal overtones to the 4×10^{-6} recently reported for the fundamental radial mode.

Qur set of normal mode data consists of about 900 modes collected from early observations compiled by Derr (1969), Dziewonski and Gilbert (1972, 1973), Mendiguren (1973), Gilbert and Dziewonski (1975), and Buland et al. (1979). This dataset has been supplemented by measurements of dispersion of surface waves by Kanamori (1970), Dziewonski (1971), Dziewonski et al. (1972), Mills (1977), and Robert North (personal communication, 1980).

The data on attenuation are important in the context of this report only to a limited extent. The anelastic component of our model is primarily

meant as a tool for taking into account the small, but important, frequency-dependence of the elastic parameters. The published data on attenuation of normal modes is of variable quality. We have chosen a relatively small set of data based on measurements of Kanamori (1970), Dratler et al. (1971), Sailor (1978), Sailor and Dziewonski (1978), Stein and Geller (1978), Buland et al. (1979), Geller and Stein (1979), and Stein and Dziewonski (1980).

3. Body waves

Observations of travel times of body waves are most numerous: there have been hundreds of studies dealing with this subject. The advantage of the body wave data over the normal mode observations is that, because of shorter periods, they are capable of higher radial resolution. The disadvantage lies in the somewhat relative nature of their absolute values. The problem of base-line differences is well known and need not be discussed here. There is also the question of small differences in the overall slope of the teleseismic travel-time curve; some of the controversies on this subject are now over a decade old and still remain unresolved. The body wave dataset is important in defining the regions of the mantle which we discussed above and in improving the resolving power of the dataset.

In order to obtain a representative global bodywave dataset we have studied the P- and S-wave travel times using the arrival time data from Bulletins of the International Seismological Centre for years 1964-1975. Rejecting events with fewer than 30 stations reporting, one retains approximately 26000 events with reports of nearly 2000000 Pwave arrival times and 250000 S-wave arrival times. Since neither the distribution of stations nor earthquakes is uniform, there exists the important question of an appropriate averaging method. After many experiments, a decision was made to divide the Earth into a number of sections of equal area. derive a travel-time curve for sources in each of the areas and then average all these travel-time curves. This would tend to eliminate the bias introduced by unequal seismicity in the presence of lateral heterogeneity. In actual experiments we have used 72 regions, each 30° wide in longitude and of the appropriate latitudinal extent to assure

equality of the area. Average travel times were computed only if at least five readings for a given 1° cell were available. Figures 1 and 2 show the deviations of our global average travel-time curve from Jeffreys–Bullen travel times. Also shown are residuals for other travel-time studies; these two figures will be discussed more extensively later on in the text.

All events analyzed were shallow, between 0 and 100 km in depth. For reasons that, at least originally, were not particularly relevant to this report, we have also derived average travel-time curves separately for regions with shallow and deep seismicity (but for shallow events only). There are significant and systematic differences between these two types of regions. The P-wave intercept time for shallow seismicity regions is earlier by about 0.6 s; the deep seismicity areas are earlier by about 0.4 s at 90°. This is not purely a problem of a tilt in the travel-time curves as there are at least two intersections of the curves at intermediate distances. While the broad-scale features for both curves are virtually identical, the short wavelength structure is markedly different.

For the S-wave data, differences between travel times for regions of deep and shallow seismicity are much greater. The difference in the intercept time is 5-6 s and, what is even more surprising, there is a systematic difference of 3-4 s in the distance range from 90 to 100°. The wide scatter of data in the interval 80-90° can probably be explained by interference with the SKS phase, which begins to arrive before S at approximately 82°.

It would appear that the events for regions with deep seismicity (trenches) are systematically mislocated. The near-source stations tend to be grouped only on one side of the event, and an epicentral mislocation is very plausible, particularly if S-wave data are not used. This error in the position and the origin time must be compensated by an equivalent error in depth. This is reflected in the baseline and tilt of a derived travel-time curve.

Because of the very large differences between various datasets, a meaningful average is difficult to determine. Various datasets are shown in Fig. 2. Substantial adjustments in the absolute values of the travel times appear to be necessary.

Fig. 1. Surface focus P-wave travel-time residuals with respect to JB times. Crosses are ISC data. Boxes are from Hales et al. (1968). Dashed line is from Herrin et al. (1968). Solid line is anisotropic PREM. ISC times have been corrected with $-1.88 \, \mathrm{s}$ baseline and $-0.0085 \, \mathrm{s}$ deg $^{-1}$ slope. Residuals calculated at a period of 1 s.

Because of the baseline and tilt uncertainty of travel-time observations from natural sources we use body-wave data as a constraint on the fine structure of velocity variations rather than as a strong constraint on absolute velocities. Thus, we are mainly concerned with fitting the shape of the travel-time curves. Differential travel times and the normal mode dataset provide constraints on absolute velocities. Even these datasets contain a source and path bias but we have been able to find a spherically symmetric Earth model which satisfies these data to high precision.

Other subsets of teleseismic travel times, used mostly for comparison, include deep source P-wave data of Sengupta and Julian (1976) and S-wave data of Sengupta (1975), Hales et al. (1968), and Gogna et al. (1981). Differential travel times, PcP-

P (Engdahl and Johnson, 1974) and ScS-S (Jordan and Anderson, 1974), are important for the control of the outer core radius.

If the issues are somewhat unclear with respect to the mantle travel times, the difficulties increase by an order of magnitude in the outer core. To obtain reasonably good control over velocities in the outer core, one must combine the data from four travel-time branches: SKKS, SKS, PKP(AB) and PKP(BC). Some attempts to combine these data have resulted in a marked roughness of the derived model at depth intervals corresponding to junctures between segments. In addition, SKKS data are likely to suffer from a $\pi/2$ phase shift with respect to the SKS phase (Choy and Richards, 1975), unless SKKS is Hilbert transformed before cross-correlation with SKS (or vice versa).

Fig. 2. Surface focus S-wave travel-time residuals with respect to JB. Boxes are ISC data. +: from Gogna et al. (1981). ×: from Hales and Roberts (1970). Solid line is for the vertically polarized (SV) shear wave and dashed line is for the horizontally polarized (SH) shear wave in the anisotropic PREM model. No baseline or slope corrections. Residuals calculated at a period of 1 s.

We use the SKS data of Hales and Roberts (1970), core phase data for the AB, BC and DF branches of Gee and Dziewonski (unpublished) and PKiKP-PcP differential travel times of Engdahl et al. (1974). The latter study gives the best available control of the inner core radius.

4. The starting model

Design of the velocity models for the upper mantle represented the most involved part of this stage of our work. Our decision to locate discontinuities at 220, 400 and 670 km was based on results of many other studies. The bottom of the lithosphere was initially placed at a depth of 80 km. Then, the velocities were adjusted to satisfy

the ISC travel time data for distances up to 25°, allowing for an arbitrary base-line correction. A decrease in S-velocity gradient below 600 km was dictated by the need to obtain intersection with the teleseismic branch at 24°; without that feature the intersection occurs at 21.5°, which is distinctly inappropriate.

Once the starting velocity models for the uppermost 670 km were designed, it was possible to strip the upper mantle and invert the stripped data to obtain the lower mantle structure. It was at this stage that the need for introduction of the features in the lower mantle became obvious. One, and perhaps the most important, is the second-order discontinuity some 150 km above the core-mantle boundary. The velocity gradient at this depth changes abruptly and could become negative. This

feature is clear on a $dT/d\Delta$ plot, where a sudden change in the slope of $dT/d\Delta$ occurs at 90°. The other feature is a region of steep velocity gradient just below the 670 km discontinuity extending to a depth that is not particularly easy to define exactly, but 771 km (5600 km radius) appeared to be a reasonable estimate. The model of the lower mantle was formed by representing the velocity between 3485 and 3630 km as well as between 5600 and 5701 km by linear segments and the region between by a cubic in radius requiring that there should be continuity at the points of junction. The starting model for P-velocities predicts travel times that match observations with an r.m.s. error of 0.06 s, roughly the average s.e.m. of a single observation in our global averaging procedure.

The scatter of the S-wave data is larger by more than an order of magnitude, and these data could not be expected to reveal independently the fine features demanded by the P-wave data. The S-wave data were inverted *assuming* that first- and second-order discontinuities exist at the same depths as in the P-velocity model.

In view of the fact that our knowledge of the structure of the inner and outer core is still rather poor, we began with the hypothesis that both cores are individually homogeneous. For this reason we have used the results of fourth-order finite strain theory to construct the starting model of P-velocity in the outer core, and P- and S-velocities in the inner core. The starting density distribution was obtained by a variation of the method proposed by Birch (1964). We assumed that the Adams-Williamson equation is satisfied in each subregion from the center of the Earth up to the 670 km discontinuity. Following Birch, we assume that the density in the upper mantle is linearly related to P-velocity: $\rho = a + bv_p$. Given the mass and the moment of inertia of the Earth, we can find the density at the center of the Earth and the jump of density at the 670 km discontinuity if we specify the following parameters: density jump across the inner-outer core boundary; density at the base of the mantle; and density below the Mohorovičić discontinuity (Birch had only one free parameter, but he did not treat the inner core separately and his density distribution was continuous from the

Moho to the core). Our choice of the free parameters was -0.5, 5.55, and 3.32 g cm⁻³, respectively. This yielded a central density of 12.97 g cm⁻³ and a density jump at 670 km of -0.35 g cm⁻³. These assigned and derived parameters were free to change in the inversion. Derivation of the starting density distribution completes this stage of our work.

5. Anisotropy

Global inversions of seismic data, such as presented here, usually give very high shear velocities. ~ 4.8 km s⁻¹, in the uppermost mantle. Such models do not satisfy short period (< 200 s) Love and Rayleigh wave data or shear wave travel times at short distances (< 20°). Very pronounced lowvelocity zones (LVZ) are a prominent feature of most models. We have found it impossible to simultaneously satisfy the data which are relevant to the upper 200 km or so of the mantle with an isotropic model. The discrepancy between Love wave and Rayleigh wave data suggests that the upper mantle is anisotropic (Anderson, 1966). The discrepancy is also pronounced for relatively homogeneous oceanic paths (Forsyth, 1975a,b; Schlue and Knopoff, 1977; Yu and Mitchell, 1979). Th suggests that lateral variations are not the primary cause of the discrepancies. Although azimuthal anisotropy is important just below the Moho in oceanic environments (Hess, 1964; Backus, 1965; Raitt et al. 1969), it appears to be less important at surface wave periods (Forsyth, 1975a; Yu and Mitchell, 1979). Transverse isotropy, or polarization anisotropy, has been invoked to explain the Love wave-Rayleigh wave discrepancy. Since our data represent an average over many azimuths any residual azimuthal anisotropy will be effectively averaged out. We therefore deal only with the spherical equivalent of transverse isotropy. The symmetry axis is vertical (radial).

For this type of anisotropy there are five elastic constants, A, C, F, L and N, following the notation of Love (1927, p. 196). A and C can be determined from measurements of the velocity of P waves propagating perpendicular and parallel to the axis of symmetry. Since in our case the axis of

symmetry is vertical (radial)

$$A = \rho V_{\rm PH}^2$$

$$C = \rho V_{\rm PV}^2$$

where ρ is the density.

In general, the shear-wave velocity depends on polarization and direction of propagation. In the direction perpendicular to the axis of symmetry:

$$N = \rho V_{
m SH}^2$$

$$L = \rho V_{\rm SV}^2$$

In the radial direction, parallel to the symmetry axis, there is no splitting and both polarizations are controlled by the elastic constant L. Therefore, both horizontally and vertically travelling SV waves have the same velocity. The elastic constant N controls the propagation of fundamental mode Love waves. All five elastic constants enter into the dispersion equation for Rayleigh waves but L is the more important shear-type modulus (Anderson, 1965). For this reason, vertically travelling S or ScS waves are controlled by the same set of elastic constants that control Rayleigh wave dispersion.

The fifth constant, F, is a function of the velocities at intermediate incidence angles. It is convenient to introduce a non-dimensional parameter $\eta = F/(A-2L)$ (Anderson, 1961; Harkrider and Anderson, 1962; Takeuchi and Saito, 1972). In Fig. 3 we show the P and S velocities as a function of incidence angle for five values of η ranging from 0.9 to 1.1. For an isotropic solid, A = C, L = N, and $\eta = 1$. It is clear that variations in η can lead to substantial differences in velocities at intermediate incidence angles and also in average values of velocity. Anderson (1966) showed that fundamental mode Rayleigh wave dispersion is also very sensitive to this parameter.

It is often assumed that Rayleigh waves are controlled by the horizontal SV velocity so that isotropic programs can be used to compute dispersion curves. It is also often assumed that the compressional velocity is unimportant in Rayleigh wave inversion. These assumptions are not strictly valid (Anderson, 1966) and we have inverted for the five independent elastic parameters. The fundamental mode Love and Rayleigh modes are

Fig. 3. P- and S-velocities as a function of angle of incidence and the anisotropic parameter η , which is varied from 0.9 to 1.1 at intervals of 0.05. The values of velocities used in the calculation are $V_{\rm PV}=7.752~{\rm km~s^{-1}}$; $V_{\rm PH}=7.994~{\rm km~s^{-1}}$ and $V_{\rm SV}=4.343~{\rm km~s^{-1}}$.

Angle of incidence (degrees)

almost independent of SV and SH, respectively, but Rayleigh waves are sensitive to η , PV and PH. In this sense an isotropic solid is a degenerate case.

We shall show later that it is possible to satisfy the global dataset with anisotropy restricted to the upper 200 km of the mantle. The anisotropy required is about 2–4% for both P and S waves. The resulting models do not have the pronounced decrease in velocity from the LID to the LVZ that characterizes most surface wave models, particu-

larly for global and oceanic paths. In fact, the variations with depth of all the velocities is rather mild in this region of the mantle. It appears that some of the features of isotropic or pseudoisotropic (SH, SV) models are due to the neglect of parameters, such as η , PV and PH, which are important in anisotropic Rayleigh wave dispersion.

The anisotropic upper mantle reconciles the Rayleigh and Love wave data and also permits a fit of the short period Rayleigh wave group velocity data. This is important for surface wave studies of seismic sources.

In the course of this study we have, of course, calculated partial derivatives for anisotropic structures. The results can be summarized as follows:

As expected the fundamental toroidal mode is primarily controlled by SH. The toroidal overtones, however, are sensitive to both SV and SH. The spheroidal modes are only slightly sensitive to SH. However, PV, PH, SV, and η all have a significant effect on the spheroidal modes and there is no a priori relationship between these parameters. It is necessary, therefore, to invert for five elastic parameters. We cannot assume, for example, that P-wave velocities are isotropic and invert only for P, SV, and SH. This would be a reasonable procedure only if the compressional wave partials were very much less than the shear wave partials or if naturally occurring upper mantle minerals had a more pronounced shear wave anisotropy. Neither is the case.

Figures 4, 5, and 6 show the effects of perturbing the shear and compressional velocities in an anisotropic Earth model. The formulae used to evaluate these partials are given in the Appendix. As expected, fundamental mode Rayleigh waves, in this case the mode $_0S_{80}$ with a period of 120 s, are mainly controlled by SV (short dashes) and are little influenced by SH (long dashes). The total shear wave partial derivative is shown as the solid curve. The parameter plotted is the relative change in period of $_0S_{80}$ for a change in shear velocity as a function of depth.

A more surprising effect is the nature of perturbations in the PV and PH velocities, shown in Fig. 5. The isotropic partial derivative (solid line) shows that compressional wave velocities are only

Fig. 4. Partial derivatives for a relative change in period of mode $_0\mathrm{S}_{80}$ ($T\sim120~\mathrm{s}$) as a function of depth. The short dashed line corresponds to perturbation in SV velocity and long dashed line SH velocity; \tilde{S}_V and \tilde{S}_H of eq. A6 of the Appendix. The continuous line corresponds to the isotropic case (eq. A9).

important near the top of the structure. At depth the PV and PH partials are nearly equal and opposite. Individually they are significant but in the isotropic case they nearly cancel. Changes of opposite sign of the component velocities cause an additive effect and the net partial is nearly as significant as the SV partial. The same effect persists for all the spheroidal modes so that there is good control on the anisotropic P-velocities and better control on P-velocities in the upper mantle in general than is usually considered to be the

Fig. 5. Partial derivatives for a relative change in period of mode $_0\mathrm{S}_{80}$ ($T\sim120\,\mathrm{s}$) as a function of depth. The short dashed line corresponds to perturbation in PV velocity and long-dashed line in PH velocity; \tilde{P}_V and \tilde{P}_H of eq. A6 of the Appendix. The solid line corresponds to the isotropic case (eq. A9).

Fig. 6. Partial derivatives giving the relative change in period with respect to the anisotropic parameter η (solid line) and the isotropic velocities $V_{\rm P}$ (short-dashed line) and $V_{\rm S}$ (long-dashed line). See eqs. A6 and A9 of the Appendix.

case. Mantle Rayleigh wave data are often inverted for shear velocity alone. Even in the isotropic case this is not good practice since a wrong P-velocity at shallow depths can cause a large perturbation in shear velocity at greater depth.

The isotropic P and S partials are shown in Fig. 6 along with the η partial; it is clear that perturbations in the anisotropic parameter η can lead to substantial changes in the periods of free oscillations.

6. Inversion and the final model

Our starting model at a reference period of, say, 1 s is defined by a set of five functions of radius $(V_{\rm P}, V_{\rm S}, \rho, q_{\mu}, q_{\rm K})$, where $q = Q^{-1}$ and q_{μ} and q_{κ} relate to isotropic dissipation of the shear and compressional energy, respectively. For an isotropic region of the Earth, perturbation in a period of free oscillation or travel time of a body wave can be expressed by

$$\frac{\delta T}{T} = \int_{0}^{1} dr \left(\delta v_{P} \cdot \tilde{P} + \delta v_{S} \cdot \tilde{S} + \delta \rho \cdot \tilde{R} + \delta q_{\mu} \tilde{M} \cdot \ln \tau + \delta q_{K} \tilde{K} \cdot \ln \tau \right) \tag{1}$$

+ (terms related to changes in radii of discontinuities)

where τ represents either the period of free oscillation ($\tau = T$ in that case) or the appropriate period for the body wave under consideration. The perturbation in attenuation factor q is

$$\delta q = \int_0^1 \mathrm{d}r \left(\delta q_{\mu} \cdot Q \tilde{M} + \delta q_{K} \cdot Q \tilde{K} \right) \tag{2}$$

It is clear that given the observed values for the travel times, periods of free oscillations and their attenuation factors, the inverse problems for the elastic and anelastic parameters can be solved simultaneously. An additional advantage of proceeding in this manner is that presence of the δq_{μ} , $\delta q_{\rm K}$ terms in eq. 1 above may provide additional resolution for the anelastic structure, since $\ln \tau$ in the seismic frequency band varies from 0 to 8, roughly. Generalization of eq. 1 for the case of transverse anisotropy is considered in the Appendix.

Another feature of our particular inversion procedure was that we optionally could introduce a baseline correction or linear slope for a given branch of the travel times as additional unknowns. Our starting model and perturbations thereto were assumed to have, for each of the regions, a form of a low-order polynomial in radius. For example

$$\delta v_{\rm P} = a_0 + a_1 r + a_2 r^2 + a_3 r^3$$
 for $r_1 \le r \le r_2$

Substitution into the integral leads to a familiar form of the system of equations of condition which then can be solved by standard procedures. The order of the polynomials needed to satisfy the data was determined by trial and error.

The method was extended to the problem of transverse isotropy by modifying equations given by Takeuchi and Saito (1972), as described in the Appendix and utilizing the formulas derived by Woodhouse (1981), in the note accompanying this report, for the travel times. We solve for five elastic constants which we take as the horizontal P-velocity, *PH*; vertical P-velocity, *PV*; horizontal and vertical S-velocities, *SH* and *SV*; and an anisotropic parameter (Anderson, 1966; Takeuchi and Saito, 1972). We found it necessary to introduce anisotropy into the outer part of the upper mantle but not elsewhere.

Parameters of the final model are listed in Table I. Graphical representation of the model is

TABLE I Coefficients of the polynomials describing the Preliminary Reference Earth Model (PREM). The variable x is the normalized radius: x=r/a where a=6371 km. The parameters listed are valid at a reference period of 1 s

Region	Radius (km)	Density (g cm ⁻³)	$V_{\rm P}$ (km s ⁻¹)	$\frac{V_{\rm S}}{({\rm km~s}^{-1})}$	Q_{μ}	$Q_{\mathbf{K}}$
Inner core	0- 1221.5	$ \begin{array}{r} 13.0885 \\ -8.8381x^2 \end{array} $	$ \begin{array}{r} 11.2622 \\ -6.3640x^2 \end{array} $	$ 3.6678 \\ -4.4475x^2 $	84.6	1327.7
Outer core	1221.5- 3480.0	$ 12.5815 \\ -1.2638x \\ -3.6426x^2 \\ -5.5281x^3 $	$ \begin{array}{r} 11.0487 \\ -4.0362 x \\ +4.8023 x^2 \\ -13.5732 x^3 \end{array} $	0.	∞	57823
Lower nantle	3480.0– 3630.0	$7.9565 -6.4761x +5.5283x^2 -3.0807x^3$	$ \begin{array}{r} 15.3891 \\ -5.3181x \\ +5.5242x^2 \\ -2.5514x^3 \end{array} $	6.9254 + 1.4672 x - 2.0834 x2 + 0.9783 x3	312	57823
Transition	3630.0- 5600.0	$7.9565 \\ -6.4761x \\ +5.5283x^2 \\ -3.0807x^3$	$ 24.9520 \\ -40.4673x \\ +51.4832x^2 \\ -26.6419x^3 $	$ \begin{array}{r} 11.1671 \\ -13.7818x \\ +17.4575x^2 \\ -9.2777x^3 \end{array} $	312	57823
	5600.0- 5701.0	$7.9565 -6.4761x +5.5283x^2 -3.0807x^3$	$ 29.2766 \\ -23.6027x \\ +5.5242 x2 \\ -2.5514x3 $	$ 22.3459 \\ -17.2473x \\ -2.0834x^2 \\ +0.9783x^3 $	312	57823
Transition zone	5701.0- 5771.0	5.3197 $-1.4836x$	19.0957 $-9.8672 x$	9.9839 $-4.9324x$	143	57823
	5771.0- 5971.0	11.2494 - 8.0298x	39.7027 $-32.6166x$	22.3512 18.5856	143	57823
	5971.0- 6151.0	7.1089 $-3.8045x$	20.3926 $-12.2569x$	8.9496 4.4597 <i>x</i>	143	57823
			$V_{ m PV}$	$V_{ m SV}$	Q_{μ}	$Q_{\rm K}$
LVZ*	6151.0 6291.0	2.6910 + 0.6924x	0.8317 + 7.2180x	5.8582 -1.4678 <i>x</i>	80	57823
			$V_{ m PH}$	$V_{ m SH}$	η	
			3.5908 +4.6172 x	-1.0839 + 5.7176x	3.368° -2.4778	
			$V_{ m PV}$	$V_{ m SV}$	Q_{μ}	Q_{K}
LID *	6291.0- 6346.6	2.6910 + 0.6924x	0.8317 + 7.2180x	5.8582 1.4678 <i>x</i>	600	57823
			$V_{ m PH}$	$V_{ m SH}$	η	
			3.5908 +4.6172 x	-1.0839 +5.7176 <i>x</i>	3.368° - 2.4778	
					Q_{μ}	Q_{K}
Crust	6346.6– 6356.0	2.900	6.800	3.900	600	57823
	6356.0– 6368.0	2.600	5.800	3.200	600	57823
Ocean	6368.0- 6371.0	1.020	1.450	0	∞	57823

^{*} The region between 24.4 and 220 km depths is transversely isotropic with the symmetry axis vertical. The effective isotropic velocities over this interval can be approximated by

 $V_{\rm P} = 4.1875 + 3.9382 \, x$

 $V_{\rm S} = 2.1519 + 2.3481x$

shown in Figs. 7 and 8. It is important to remember that these parameters are valid at a reference period of 1 s. For other periods the velocities must be modified according to equations given in Kanamori and Anderson (1977)

$$\begin{split} V_{\mathrm{S}}(T) &= V_{\mathrm{S}}(1) \cdot \left(1 - \frac{\ln T}{\pi} q_{\mu}\right) \\ V_{\mathrm{P}}(T) &= V_{\mathrm{P}}(1) \cdot \left\{1 - \frac{\ln T}{\pi} \left[\left(1 - E\right) q_{\mathrm{K}} + E q_{\mu}\right]\right\} \end{split} \tag{3}$$

where

$$E = \frac{4}{3}(V_{\rm S}/V_{\rm P})^2$$

(The particular distribution of bulk dissipation and shear dissipation in the inner core given in Table I should be only understood as a way to lower the Q of radial modes in order to make them

more compatible with observations. The problem is highly non-unique and its early resolution is not likely.)

The velocities, density and several other parameters of geophysical interest are listed in Table II. In the depth range from 24.4 to 220 km, in which our structure is anisotropic, we also give the values for the "equivalent" isotropic solid. This corresponds to an appropriate averaging over all angles of incidence; the general equations have been given by Woodhouse and Dahlen (1978). For the case of transverse isotropy, the Voigt bulk and shear moduli are

$$K = \frac{1}{9}(4A + C + 4F - 4N)$$

$$\mu = \frac{1}{15}(A + C - 2F + 5N + 6L)$$

these represent upper bounds on the effective elastic moduli.

Fig. 7. Upper mantle velocities, density and anisotropic parameter η in PREM. The dashed lines are the horizontal components of velocity. The solid curves are η , ρ and the vertical, or radial, components of velocity.

Fig. 8. The PREM model. Dashed lines are the horizontal components of velocity. Where η is 1 the model is isotropic. The core is isotropic.

One of the entries in Table II is the parameter η_B of Bullen (to be distinguished from the anisotropic parameter η), which represents a measure of deviation of a model from the Adams–Williamson equation

$$\eta_B = \frac{\mathrm{d}K}{\mathrm{d}P} + \frac{1}{g} \frac{\mathrm{d}\Phi}{\mathrm{d}r} \tag{4}$$

For the most part η_B in the core and lower mantle is very close to unity. Small deviations are, in some cases, an artifact of the polynomial representation. The parameter dK/dP is another measure of homogeneity. The values for the lower mantle (except for the region immediately above the core-mantle boundary) and outer core can be considered normal.

In Table III we give the model parameters at a period of 200 s; the velocities at other periods can

be determined from eq. 3. Table IV lists the anisotropic and anelastic parameters in the crust and upper mantle computed at a reference frequency of 1 s (above) and 200 s (below). Notice that the effect of the velocity dispersion due to anelasticity leads to the development, at long periods, of a low velocity zone in a depth range from 80 to 220 km. This is due to the low Q in this region.

In Fig. 9 the relative changes in P- and S-wave velocities are shown as a function of incidence angle for three depths: 24.4, 100 and 200 km. The angular dependence of SV and SH explains the fact that the "effective" shear velocity at a depth of 200 km is lower than either SV or SH.

The Q distribution is modelled with a small number of homogeneous regions. The radial modes are the main control on Q_K and these essentially constrain only the average value in large regions.

Fig. 9. Velocity as a function of direction of angle of incidence for three depths in the anisotropic region of the PREM model. Upper curves are compressional velocities; lower panel gives $V_{\rm SV}$ (solid) and $V_{\rm SH}$ (dashed).

Table V lists the observed and computed periods of the normal mode data used in this study. For comparison we list the theoretical results for the "equivalent" isotropic model discussed above. It may be noted that at high phase velocities or very long periods, the equivalent isotropic model fits the data nearly as well as the anisotropic model. For example, the periods of radial modes predicted by both models are nearly identical and the same is true with respect to modes ${}_{0}S_{2}-{}_{0}S_{6}$. But for short-period fundamental modes the dif-

ferences are substantial. Group velocities computed for the anisotropic model are consistent with the observations of Mills (1977) and Kanamori (1970). There is satisfactory agreement between the observed and predicted values of Q of the normal modes.

The theoretical periods for the "equivalent" isotropic model are systematically too short for the fundamental spheroidal mode. The reverse is the case for the fundamental toroidal mode. The same trend is evident for the first overtones. The isotropic model is an adequate fit to the longer period spheroidal overtones but the fit degenerates at the shorter periods. All of this is suggestive of an anisotropic upper mantle, such as we have adopted here. We see no need to invoke deep anisotropy. The highly anisotropic minerals olivine and pyroxene, in fact, are restricted to the upper mantle.

The travel-time data and theoretical fits are given in Table VI. The original data are also given. In some cases we correct the data for an offset and a tilt. The baseline for most travel-time studies is arbitrary and, for our purposes, adjustable.

There are several effects which contribute to an offset and tilt among various travel-time datasets and between these and global models. First, there are the well known source and receiver effects. Secondly, the origin time and location of the event are in error if the travel-time table used in their location is in error. An error in assigned depth of an event also causes an error in both baseline and tilt. Published depths are sometimes based on minimization of the residual vs. distance relative to a standard curve. Thirdly, the effect of attenuation makes the frequency content of the arrivals vary with distance. In addition, in calculating theoretical travel times we must assume a period and correct for Q. Uncertainties in Q and a frequency dependence of Q give rise to a change in baseline and tilt. The effects of dispersion and the depth variation of Q give an offset and a variation of travel time with distance that depends on period. Differential travel times also contain these effects and have different effective Q's for the two phases in question. For these reasons we calculate all theoretical travel times at a period of one-second and, in Tables VIa-v, compute the baseline and, in some cases, a tilt that gives the best match

TABLE II Earth model isotropic mo

given are "equivalent"	• GRAVITY CM/S2	0	36.5	1.67	146.0	182.3	218.6	9 254.7	290.6	326.4	9 562-03	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.044	3 440.	2 463.6	494.1	524.7	555.4	586.	0 616.6	647.0	706.5	736	765.5	794.2	822	2.008	906	930.2	955.7	980.5	1004.6	1028.0	1068-2	1068-2	. –	1052.0	1048.4	1048.4	1040.6	1000.7	1015	
given a	f. P	0.9	0.0	V		6 0	0.9	0.9	0.9	0.0	0 0		1.0	1.0	1.0	-	1.01	-:		1.0		7 -	•	_	_	Π.	٠,		-		_	, ·	٠,		_	· -		• •		٠,	٦-	1.00	
rameters g	DK/DP										2.3443																										w.	~	٠, ٠		Ă.c	3.1716	
the mantle is transversely isotropic; the parameters	PRESSURE KBAR	38	•								3402.383								4.0	. ·	ο ·	•	2606.838	9.6	2432.4	2341.6	2248.4	2055-189	1956.9	1856.4	1754.4	1651.2	1546.9	144107	1457.5		1287.0	1269.7	1269.7	1229.7	111004	1063.8	
ersely isot	SIGMA	0 • 4	0.4	4.	4 4	4	0.4	0.4	4 •	4	0.4428	4	4.0	0.5	0.5	0.500	0.50	0.500	0.500	0.50	0.00	0 0 0	0.500	0.500	0.5	0	0 0	0.0000			0	0.5	0) u			0	0	0	0	9 0	200	,
transv	MU KBAR	1761		٠,		٠.	-	-	П.	-	1630		٠,																						c	2933	2907	2899	2899	2855	2734	2675	í
mantle is	KAPPA KBAR	25	14248	14231	14203	14114	14053	13981	13898	13805	13701	13462	13434	13047	12888	12679	12464	12242	12013	11775	11529	11000	10735	10451	10158	9855	9542	0226	8550	8202	7846	7484	7116	6/43	7447	6537	6440	6412	6412	6279	6095	5744	ì
. km	PHI KM2/S2	108.90	108.88	108.80	108.68	108.29	108.02	107.70	107.33	106.91	106.45	105.38	105.25	107.24	106.29	105.05	103.78	102.47	101.12	99.71	98.25	96+13	93.48	91.75	89.95	88.06	86.10	84.04	40	· •	4	-	9.8	61.23		9	6.9	_	9	115.08	2.0	108.23	
Above 220 km this region.	QAL										4 4 0 4 4 0			.,	щ,	ш,	٠,	ш,		u , .	., .	, .	, u,	ц,		•,	٠,				4,	٠,									81	807	
of 1 s	G X	1328	1328	1328	1328	1328	1328	1328	1328	1328	1328	1400	1328	57822	57822	57822	57822	57825	57822	57822	5/822	27070	57822	57822	57822	57822	57822	57872	57822	57822	57822	57822	57822	57822	27010	57822	57822	57822	57822	57822	57822	57822	
cons cons	D M O	10	10.1	n I	വ	י נ	ח נ	D.	ıO	n	8 5 1) if) LO	0																						312	312	312	312	312	312	312	1
reference _l slete elastic	VS KM/S	3.6678	m I	3.6634	3.657	7.640	3.628	3.614	3.597	3.579	3.55823		3.504	• 0	0	0.	0	0	• 0	o o	•	-	0		0	0	• 0	-		0	0	0	0	• 0	٦,	7.2648	7.2657	7,2659	7.2659	7.2340	7.1889	7-19974	
als evaluated at a reference period of 1 s. Above 220 Table IV for complete elastic constants in this region	V V V S	11.26220	11.26064	11.25593	11.24809	11.22711	11.20576	11.18538	11.16186	11,13521	11.10542	11.03647	11.02827	10.35568	10.30971	10.24959	10.18743	10.12291	10.05572	9.98554	9.91206	7.83475	9.66865	9.57881	9.48409	9.38418	9.27876	9.16752	0.400.00	8.79573	8.65805	8.51298	8.36019	8.19939	2010100	13,71168	13.68753	13.68041	13.68041	13.59597	13.47742	13.24532))
□ ·	DENSITY 6/CCM	5.08848	5.08630	3.07977	3.06888	7.03404	5.01009	2.98178	2.94912	2.91211	12,87073	1007000	2.76360	2.16634	2.12500	2.06924	2.00989	1.94682	1.87990	1.80900	1.73401	1,004/6	1.48311	1.39042	1.29298	1.19067	1.08335	0.97091	0.73012	0.60152	0.46727	0.32726	0.18134	0.02940	5 C C A B	55641	.50642	•49145	.49145	45657	.40681	30704	-
Earth model PREM and its function isotropic moduli and velocities. See	OEP X X X X X		÷	÷			-	-	÷	÷	5371.0	• :	- 0	6	÷	·	÷	ä		i:	. :	-	-		Ē	Ĕ:	-		-		Η	÷	7	Ċ;	-	: :	7	7	ij	Z.	Ċ		1
nodel PRJ ic moduli	RACIUS KM	0	ö	Ö	•	•	• •	0	Ö	ċ	1000.0	•	· -	-	Ö	ė	ö	Ö	ė,	٥	<u>.</u>	-		Ö	0	ġ.	ġ,	• c	9	9	ė	ė	ġ.	2 5	2 0		0	20	0	0	ġ s	2 0	2
Earth 1 isotrop	LEVEL	1	~	m	4 n	n 4	۰ ۲	· 00	0	10	11.	7 7	14	15	16	17	18	19	20	21	55	Si	25	56	27	58	53	30	10.5	33	34	35	36	· ·	0 0	40	4.1	4 2	43	4		0 t	:

P. GRAVITY CM/S2	10100 10005.3 1001.5 1001.5 998.6 994.3 993.0 993.0	9956 9996 9999 9999 9999 9999 9999 9999	20
E DK/DP E.	3.1503 1 3.1383 1 3.14583 1 3.1457 1 3.1657 1 3.1935 0 3.2750 0 3.2750 0	5.4527 5.4528 5.5288 5.4582 5.48403 5.98403 5.0358 6.0358	2.3739 2.3739 2.3739 2.2633 2.2633 3.3718
A PRESSUR KBAR	1010 9957 8854 803 753 753 6655 6655	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2010.426 9 210.426 9 210.426 1 10.316 2 133.527 1 152.2511 2 133.527 1 133.527 1 133.527 1 10.2027 86.497 7 71.1018 1 7 71.1018 1 7 71.1018 1 86.497 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MU SIGM KBAR	00000000000	0039 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
KAPPA KBAR			2489 51 2489 52 2131 53 2031 54 899 55 2131 56 2131 57 9 1899 57 1682 58 1899 50 1579 50 1579 50 1579 50 1579 50 1579 50 1579 50 1579 50 1579 50 1579 60 15
AL PHI KM2/S			362 62.61 363 62.61 364 56.6 364 56.6 365 53.7 366 50.99 372 47.8 367 46.7 365 46.7 365 46.7 365 46.0 195 38.0 195 38.0 195 38.0 1447 38.6 447 38.8 366 447 38.6 447 38.8 367 46.0 368 60 369 38.6 369 389 38.6 369 38.6 369 38.6 369 38.6 369 38.6 369 38.6 369 38.6 36
Э Ж Э	g, <u>u</u> , <u>u</u>		**********
VS OF	7.05525 6.96538 6.91957 6.87289 6.87289 6.77606 6.72548	6.56250 6.50370 6.44232 6.37813 6.37813 6.24046 6.24046 6.09418 5.94508	5.50000 6
V X X	13.13055 13.01575 12.90045 12.6655 12.6655 12.42075 12.29316 12.16126	11.88209 11.73357 11.73357 11.74560 11.24490 11.06557 11.005557 10.75131	10.15782 10.15782 9.90185 9.38990 9.38997 8.91529 8.91528 8.91528 8.91528 8.91528 8.91528 8.01180 8.01180 8.01180 8.01180 8.01180 8.01180 8.01180 8.01180 8.01180 8.01180 8.01180 8.01089 8.01089 8.01089 8.01089 8.01089
DENSITY 6/CCM	5.2572 5.2071 5.1566 5.1059 5.0059 6.0029 4.8978 4.8442	4.734 4.734 4.052 4.052 4.052 4.033 4.033 4.033 6.034	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S DEPTH	2271 2071 2071 1871 1771 1571 1571	1271 1171 1071 971 771 771 721	0 0 0 0 0 4 4 4 6 6 6 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1
IL RAEIUS KM	4100 4200 4300 4400 4500 4700 4700 4700 4900 5000	5100 5200 5300 5400 5500 5600 5650	9 5725.0 9 5771.0 1 5821.0 5 5871.0 6 5671.0 6 5671.0 6 6016.0 6 6016.0 6 6106.0 6 6106.0 6 6106.0 7 6 6221.0 6 6221.0 7 6 6221.0 6 6221.0 8 6 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
LEVEI	440000000000 9001	30.000000000000000000000000000000000000	688 887 887 887 888 888 889 889 990

TABLE III Same as Table II except the reference period is 200 s

GRAVITY CM/S2	10 17 W W II W	. O O O O O O O O O O O O O O O O O O O	20077000	. 4 4 0 0 7 0 4 7 0 7 4 0 0 0 0 4 8 0 0 1 4 8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1068.23 1068.23 1065.32 1058.44 1048.44 1040.66 1030.55
П	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0.98 0.99 1.00 1.01 1.01 1.01 1.01 1.00
DK/DP			2002 2002 2002 2002 2002 2002	5 5 5 6 1 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	The property of
PRESSURE KBAR	52 113 95 31 31 78 78 99	24444 4464 3354 3354 3354 3454 3454 3454	44284	V4 0 4 4 0 0 0 4 4 0 0 0 1	1357,510 1357,509 1287,619 1269,742 1229,741 1229,719 1173,465 1118,207
SIGMA	4444444	4444440000 44444400000		յանը այասարը արարարայանը կ	000 000 000 000 000 000 000 000 000 00
RU KBAR	1690 1690 1686 1680 1671 1659 1645	1561 1565 1565 1565 1512 1516 0			2906 2906 2901 2876 2868 2868 2825 2764 2705
KAPPA KBAR	14216 14211 14194 14166 14127 14077 13945	13862 13769 13665 13551 13427 13399 13046 12887	12242 12012 11774 11528 11273 11008	101 101 101 101 101 101 101 101 101 101	6441 6556 6536 6411 6411 6211 6279 6095
PHI KM2/S2	108.62 108.59 108.52 108.40 108.23 108.01 107.74	107.05 106.64 106.17 105.66 105.10 107.23 106.28	102-47 101-11 99-71 98-24 96-72 95-13 93-48	81.90 88.04 88.09 86.09 81.90 77.36 77.36 77.36 72.47 72.47	65.04 117.77 117.65 116.95 116.75 115.07 112.73
GAL	0 0 T T T T T T T T T T T T T T T T T T	444 448 450 450 455 455 57825 57822 57822	57822 57822 57822 57822 57822 57822 57822	5 7 8 2 2 2 2 3 2 4 8 2 5 2 4 8 2 2 2 3 2 4 8 2 2 2 3 2 4 8 2 2 2 3 3 4 8 2 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 2 3 3 4 8 2 3 3 4 8 2 3 3 4 8 2 3 3 4 8 2 3 3 3 4 8 2 3 3 4 8 2 3 3 4 8 2 3 3 4 8 2 3 3 4 8 2 3 3 4 8 2 3 3 4 8 2 3 3 4 8 3 4 4 8 3 4 4 4 4	57822 832 831 828 827 827 827 820 816
ğ	88888888888888888888888888888888888888		782778277827782778277827	5 1 8 2 5 7 8 8 2 5 7 8 8 2 5 7 8 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	782 782 782 782 782 782
∩ ¥. 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ស	0000000		3313313
VS KM/S	3.59469 3.59362 3.59040 3.58503 3.57751 3.56785	.5259 .5077 .4873 .46647 .4400		• • • • • • • • • • • • • • • • • • • •	0. 7.22538 7.22547 7.22670 7.19492 7.15006 7.10561
VP N S	12021221	11188 0924 0629 0303 9946 9865 3555 3094	100000-90) + M 01 - 1 - 0 - 4 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	= 0 0 0 0 0 0 m 4 w vi
DENSITY G/CCM	08 08 07 07 05 03 03	94 91 91 77 77 77 77 70 90	94 80 80 13 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	11.292998 11.19067 11.08335 10.85301 10.85301 10.86152 10.46727 10.46727	> 0 0 0 4 4 4 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
DEPTH KM				3971.0 3871.0 3871.0 3871.0 3871.0 3871.0 3871.0 3871.0	
RADIUS KM		000000000000000000000000000000000000000	9000000	2500.0 2500.0 2500.0 2500.0 2500.0 3100.0 3300.0	80055000
LEVEL				17777777777777777777777777777777777777	

	AV 11 Y	0	5.35	1.5	8.59	5.3	4.14	3.6	3.1	3.01	3.5	3.83	4.6	5 • 7	6.9	8.3	9.8	9.85	0.63	1.43	1.43	0.88	0.38	0.38	9.65	8.83	17.90	98•9	98.9	5.22	3.61	2 03	84.0	\$ F	7.07	6.64	5.53	5.53	4.93	4 . 37	3.94	3.94	3.32	983.31	2 - 5 5	2~55	1.56
	GR A	1	10	10	9.	9.	5	מ	5	•	יט	5	a,	9.	σ,	5	S.		_	_	_	_	-	_																							
	e G	1.00	1.00	1.00	1.00	1.00	0.99	66.0	0.99	0.99	0.99	0.99	0.99	0.99	0.98	0.98	0.97	0.97	0	0	0	0	0	_	_	1.86	1.79	1.73	0.83	0.82	0.80	0.79	0.78	-0.12	0.10	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.00	0.00	0.00	-0.00	-0.00	00.0
	DK/DP	150	13	38	3.1469	.165	3.1933	.229	3.2748	.327	.386	S	.523	.598	.677	•758	α,	2.9817		•	2.3998		2.3732	8.0901	7.8824	7.6752	7.4687	7.2624	3.3715	3,3366	3,3013	3.2659	3.2302	-0.6961 -0.1 -0.6961 -0.1	-0.6660	-0.6481	63	99	65	•64	53	00	8	0	• 00	-0.0000	000000
¥.	PRESSURE KBAR	10.36	7.64	905.64	æ																						152.251	133.527	133.520	117.702	102.027	85.497	71.115	50 066	07 - TO	36.183								3.364	0.303	0.299	000*0-
	SIGMA	0.09	0.297																																										0.282	0.500	ċ
	MU KBAR																																			642		67	67	19	67	43	43	265	265	0	•
	KAPPA KBAR	5575	5409	5246	5084	4925	4765	4607	4448	4288	4127	3966	3802	3638	3471	3303	3133	3133	3067	5999	2556	2552	2489	2489	2332	2181	2036	1898	1735	1682	1630	1579	1529	1269	1005	1293	1300	1302	1307	1311	1314	753	753	520	\sim	21	21
	PHI KM2/S2	106.04	103.87	101+73	99.58	97.43	95.25	93.05	90.81	88.52	86.17	83.76	81.27	78.71	76.07	73.34	70.52	70.52	69.51	68.46	64.02	63,31	62.61	62.61	59.59	26.65	53.78	50.98	48.96	47.83	46.70	5	ای	31.19	• 0	38.36	38.53	8.5	8.7	38.80	38.88	25.96	5.9	19.99	19.99	2.10	2.10
	GAL	808	804	801	197	793	789	784	780	175	771	765	760	754	748	741	734	734	748	764	368	367	367	367	368	369	370	371	377	375	373	370	368	200	000	200	200	1452	1451	1450	1450	1354	1354	1460	146	78	82
	G T																																			57822			57822				5782	5782	578	5782	57822
	Ω Σ Θ	312	31	312	31	31	31	31	31	31	31	31	33	31	3.1	3	3	31	31	3	14	7	4	7	7	14	7	14	-	1,	7	4		000	0 0	တ	80	9	9	3 600	9	4 600		009 1		0	0
	VS KM/S	7.01711	ூ	•	6.88216	8	۲.	۲.	9	9	υ, (1)	ď	4	4	6.34365	6.27680	6.20673	6.20672	6.06124	5.91294	5.50452	5.47775	5.45097	5.45095	5.30682				4.71364		•	•	•	4.0247	•	4.00004	•		4.4648	.4725	•4786	8890	888	3.19101	•191	• 0	• 0
	VP KM/S	1029	9883	87	7566	638	5176	3938	2664			11.85576		11.55225		11.21918		11.04001	10.88533	10.72743	10.21852	10.16454	10.11055	10,11055	9.85588	9.60122	9.34655	9.09193	8.86489	8.17848	8.69204	8.60561	8.51920	7 94153	07670 7	7.98383	8.00468	8.06715	8.07928	8.09135	8.10074	6.79151	6.79151	5.79328	. 7932	4	1.44996
	DENSITY G/CCM	•			σ	9	9	7	8	3	æ	9	4	\sim	0	_	-	-	4	7	_	9	œ	φ	Φ.	8	~	~	Ŋ	m.	Σ.	9 1	ب ج	O W	? :	10	~	_	8	2	_	9	8	2.60000	2 1	9	9
	DEPTH XX	271.	171	•	971.	871.	771.	671.	571.	471.	371.	271.	171.	071.	•	•	-		•	ċ	ċ	ů	ċ	ċ	ċ	ċ	ċ	ċ	å	'n	· .	ė,		. ב		115.0	ċ	•	ċ	ċ	•	•	ນ	15.0	3.0	3.U	•
	RADIUS KM																																											6356.0			
	LEVEL	4	4	50	51	55	53	54	55	56	57	58	29	9	61	62	63	64	65	99	67	99	69	70	7.1	72	73	4.7	75	16	77	8 6	2 3	0 4	4 6	8 8	84	85	86	8.7	88	89	9.0	91	N 6	ر بر د	94

TABLE IV

Crust and upper mantle of PREM including directional velocities, anisotropic elastic constants and "equivalent" isotropic velocities. Evaluated at reference periods of 1 s (top) and 200 s (bottom)

VS KM/S	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	VS **32499 **33212 **33934 **35212 **35212 **35129 **35129 **35129 **4553 **45480 **47253 **47253 **47253 **47253 **47253 **47253 **47253
VP KM/S	7.98970 8.00235 8.021494 8.021494 8.021494 8.021494 8.02392 8.05231 8.06231 8.	VP 7.92008 4- 7.9457 4- 7.94657 4- 7.96882 4- 7.96884 4- 7.99279 4- 8.00468 4- 7.99279 4- 8.01928 4- 8.01928 4- 8.01928 4- 8.01928 4- 8.01074 4- 8.01074 3- 8.01074 3- 8.01074 3- 8.10174 3- 8.1
ж т ю	8831 8833 8843 8843 8851 8851 8851 8851 8854 8854 8854 8854	K8 8849 7 8853 7 8855 7 8855 7 8865 7 8865 7 8865 7 8865 7 8865 8 8871 8 885 9 885 9 885 9 885 9 885 9 885 9 885 9 885 9 885 1 885 1 865 1
× 00	661 6673 673 6879 6895 696 702 702 719 719 719 719 719	X N R B C C C C C C C C C C C C C C C C C C
ж В	66623 66623 6663 6656 6656 6656 6656 665	L K B 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 X	2044 2057 20171 20184 20191 21138 21138 21159 21155 21165 21161 875 875 875 211	C KB C C C C C C C C C C C C C C C C C C
₹ 83	2176 2195 2195 22194 22232 2232 2242 2242 2242 2260 1341 1341 1341 1341 1341 1341 1341 134	AB KB 2139 2157 2157 2157 2157 2166 2166 2166 2262 2262 2265 2265 2265
GKAPPA	57822 57822 57822 57822 57822 57822 57822 57822 57822 57822 57822 57822 57822	GKAPPA 57822
OMO	000 000 000 000 000 000 000 000 000 00	B 0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ETA	0.97654 0.96877 0.95819 0.94543 0.93765 0.92210 0.92210 0.91654 0.91654 0.91654 0.91654 0.91654 0.91654 0.91654 0.91654 0.9160000 0.9160000 0.9160000	ETA 0.97654 0.96877 0.96099 0.95321 0.92765 0.92210 0.92210 0.92210 0.92210 0.92210 0.91654 0.91654 0.91677 1.00000 1.00000
VSH KM/S	4,43629 4,45423 4,45118 4,50113 4,50113 4,50113 4,50119 4,50118 4,501100 3,20000 3,20000	VSH KM/S 4.34277 4.37290 4.37790 4.37790 4.37790 4.39547 4.45130 4.45130 4.56490 4
VSV KM/S	4 + 4 + 4 + 110 4 + 4 + 4 + 110 4 + 4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	VSV KM/S 4.34748 4.34297 4.33846 4.33395 4.33395 4.32692 4.33395 4.32692 4.33692 4.33692 4.33693 4
VPH KM/S	8.04862 8.06310 8.07760 8.07760 8.10659 8.12108 8.15108 8.15108 8.15008 8.17906 8.17906 8.17906 8.17906 8.17906 8.17906	VPH KM/S 7.99380 8.00786 8.00786 8.02192 8.05094 8.056410 8.056410 8.16480 8.15480 8.15480 8.15480 8.15480 8.15480 8.15480 8.15480 8.15480 8.16499 8.164996
VPV KM/S	7.86.81 7.86.81 7.86.84 7.86.84 7.93.64 7.95.91	VPV KM/S 7.72930 7.752930 7.7531 7.86731 7.86432 7.86432 7.86432 7.84432 7.94432 7.94931 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251 7.997251
DENSITY G/CCM	3.35950 3.36167 3.36602 3.36602 3.36602 3.37036 3.37471 3.37471 3.377906 3.377906 3.377906 3.377906 3.377906 3.377906 3.37790000000000000000000000000000000000	DENSITY 6/CCM 3,35950 3,35187 3,36187 3,36187 3,37136 3,37713 3,37471 3,37471 3,37471 3,37471 2,90000 2,90000 2,60000 1,02000
DEP TH KM	22200000000000000000000000000000000000	DEPTH 12000 116000 116000 116000 116000 116000 116000 116000 116000 116000 116000
RADIUS	6151.0 6171.0 6191.0 6211.0 6251.0 6271.0 6271.0 631.0 6331.0 6336.6 6356.0 6356.0	KM KM 6151.0 6171.0 6271.0 6231.0 6251.0 6291.0 6291.0 6291.0 6346.6 6346.6 6356.0 6356.0

TABLE V Observed and theoretical parameters of the normal modes used in this study including period and Q. Periods are given for anisotropic PREM and an isotropic model having the bulk modulus and rigidity evaluated according to a Voigt averaging scheme. The group velocity is calculated for the anisotropic model; see Note added in proof

M O D E OBSERVATI PERIOD S. SEC		ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D. %	Q COM	GROUP VEL. KM/S
0 S 0 1227.52 0. 1 S 0 612.99 0. 2 S 0 398.55 0. 3 S 0 305.84 0. 4 S 0 243.67 0. 5 S 0 204.61 0. 6 S 0 174.25 0.	01 612.99 0.00 05 398.33 0.06 05 305.70 0.05 06 243.56 0.04 05 204.74 -0.07	1228.07 -0.05 612.99 0. 398.30 0.06 305.65 0.06 243.49 0.07 204.65 -0.02 174.12 0.07	5230.0 9.0 1970.0 18.8 1170.0 15.0 874.0 15.0 989.0 9.9 824.0 16.8 933.0 15.0	1241.6 1083.4 969.1 920.8	
0 S 2 3233.25 0.0 S 3 2134.67 0.0 S 4 1545.60 0.0 S 5 1190.13 0.0 S 6 963.18 0.0 S 7 811.45 0.0 S 8 707.66 0.0 S 9 633.89 0.0 S 12 502.36 0.0 S 13 473.17 0.0 S 14 448.21 0.0 S 15 426.15 0.0 S 16 406.76 0.0 S 17 389.30 0.0 S 18 373.94 0.0 S 19 360.14 0.0 S 19 360.14 0.0 S 20 347.50 0.0 S 21 335.81 0.0 S 22 325.06 0.0 S 21 335.81 0.0 S 22 325.06 0.0 S 23 315.30 0.0 S 24 306.20 0.0 S 25 297.67 0.0 S 26 289.67 0.0 S 27 282.21 0.0 S 28 275.11 0.0 S 29 268.43 0.0 S 29 268.43 0.0 S 29 268.43 0.0 S 30 262.09 0.0 S 31 256.02 0.0 S 32 250.29 0.0 S 33 244.88 0.0 S 34 239.62 0.0 S 35 234.60 0.0 S 36 229.79 0.0 S 37 225.17 0.0 S 38 229.79 0.0 S 37 225.17 0.0 S 38 220.71 0.0 S 39 216.45 0.0 S 39 216.45 0.0 S 49 212.35 0.0 S 44 200.90 0.0 S 44 12.35 0.0 S 45 193.91 0.0 S 46 197.31 0.0 S 46 197.31 0.0 S 47 187.33 0.0 S 48 184.21 0.0 S 48 184.21 0.0 S 49 181.16 0.0 S	02 2134.22 0.02 05 1545.43 0.01 05 1189.88 0.02 05 963.20 -0.00 05 707.47 0.03 05 707.47 0.03 05 536.94 -0.01 05 536.94 -0.01 05 536.94 -0.01 05 473.28 -0.02 05 448.15 0.01 05 426.19 -0.01 05 389.55 -0.06 05 374.47 0.02 05 335.83 -0.01 05 347.42 0.02 05 335.83 -0.01 05 347.42 0.02 05 335.83 -0.01 05 347.42 0.01 05 347.42 0.02 05 35.18 -0.04 05 36.20 0.00 05 297.68 -0.00 05 289.70 -0.01 05 289.70 </td <td>3233.45 -0.01 2134.44 0.01 1545.73 -0.01 1190.19 -0.00 963.51 -0.03 812.16 -0.09 707.83 -0.02 634.01 -0.02 537.35 -0.09 502.83 -0.09 473.68 -0.11 448.53 -0.07 426.55 -0.10 407.15 -0.09 389.87 -0.15 374.37 -0.12 360.38 -0.07 347.67 -0.05 336.06 -0.07 325.38 -0.10 315.51 -0.07 306.35 -0.05 297.81 -0.04 289.80 -0.05 282.28 -0.03 275.19 -0.03 268.48 -0.02 262.11 -0.01 250.29 -0.00 244.79 0.04 239.53 0.04 234.49 0.05 229.66 0.06 225.02 0.07 220.56 0.07 216.27 0.08 212.15 0.10 208.17 0.08 204.33 0.11 200.63 0.13 197.05 0.13 193.60 0.16 190.25 0.16 187.02 0.17 183.89 0.17 180.86 0.17</td> <td>463.0 17.8 421.0 17.5 355.0 18.2 352.0 32.1 357.0 25.0 330.0 12.8 338.0 5.0 315.0 5.0 306.0 5.0 299.0 5.0 299.0 5.0 299.0 5.0 278.0 5.0 273.0 5.0 231.0 5.0 237.0 5.0 231.0 5.0 237.0 5.0 216.0 5.0 219.0 5.0 219.0</td> <td>373.1 355.5 347.3 342.0 337.3 332.7 322.1 315.2 307.2 298.3 288.8 278.9 268.9 259.1 249.7 240.8</td> <td>5.254 4.997 4.813 4.665 4.533 4.411 4.298 4.193 4.097 4.011 3.934 3.866 3.808 3.758 3.716 3.681 3.652</td>	3233.45 -0.01 2134.44 0.01 1545.73 -0.01 1190.19 -0.00 963.51 -0.03 812.16 -0.09 707.83 -0.02 634.01 -0.02 537.35 -0.09 502.83 -0.09 473.68 -0.11 448.53 -0.07 426.55 -0.10 407.15 -0.09 389.87 -0.15 374.37 -0.12 360.38 -0.07 347.67 -0.05 336.06 -0.07 325.38 -0.10 315.51 -0.07 306.35 -0.05 297.81 -0.04 289.80 -0.05 282.28 -0.03 275.19 -0.03 268.48 -0.02 262.11 -0.01 250.29 -0.00 244.79 0.04 239.53 0.04 234.49 0.05 229.66 0.06 225.02 0.07 220.56 0.07 216.27 0.08 212.15 0.10 208.17 0.08 204.33 0.11 200.63 0.13 197.05 0.13 193.60 0.16 190.25 0.16 187.02 0.17 183.89 0.17 180.86 0.17	463.0 17.8 421.0 17.5 355.0 18.2 352.0 32.1 357.0 25.0 330.0 12.8 338.0 5.0 315.0 5.0 306.0 5.0 299.0 5.0 299.0 5.0 299.0 5.0 278.0 5.0 273.0 5.0 231.0 5.0 237.0 5.0 231.0 5.0 237.0 5.0 216.0 5.0 219.0	373.1 355.5 347.3 342.0 337.3 332.7 322.1 315.2 307.2 298.3 288.8 278.9 268.9 259.1 249.7 240.8	5.254 4.997 4.813 4.665 4.533 4.411 4.298 4.193 4.097 4.011 3.934 3.866 3.808 3.758 3.716 3.681 3.652

TABLE V (continued)

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D.	Q COM GROUP VEL. KM/S
0 S 50 0 S 51 0 S 52 0 S 53 0 S 55 0 S 55 0 S 55 0 S 55 0 S 55 0 S 60 0 S 70 0 S 70 0 S 70 0 S 77 0	62.91 0.80 61.08 0.80	60.85 0.38	62.13 1.23 60.31 1.27	133.0 5.0 134.0 5.0 136.0 5.0 139.0 5.0 134.0 5.0 131.0 5.0 131.0 5.0	143.2 3.620 142.1 3.624 140.9 3.629 139.9 3.633 138.8 3.637 137.8 3.641 136.9 3.645 135.0 3.653 134.1 3.656 133.3 3.660 132.5 3.663 131.7 3.667 130.9 3.670 130.2 3.673 128.9 3.679 128.2 3.682 127.6 3.685 127.0 3.688 126.4 3.691 125.8 3.694 125.3 3.696 124.8 3.699 124.3 3.702 123.8 3.704 123.4 3.707 121.8 3.717 120.3 3.728 119.1 3.739 118.0 3.758 117.9 3.768 117.9 3.768 118.1 3.776 118.6 3.784 119.3 3.792 120.3 3.799 121.4 3.806 122.8 3.812 124.3 3.817 126.1 3.822 128.0 3.827 130.1 3.831 132.3 3.834 134.8 3.837
1 S 2 1 S 3 1 S 4 1 S 5 1 S 6 1 S 7 1 S 8 1 S 9 1 S 10 1 S 16 1 S 17	1470.85 0.08 1063.96 0.11 852.67 0.05 730.56 0.06 657.61 0.05 603.92 0.05 556.03 0.07 509.96 0.05 465.46 0.06 299.57 0.05 286.22 0.07	1064.04 -0.01	1471.32 -0.03 1064.36 -0.04 852.84 -0.02 729.83 0.10 657.00 0.09 604.05 -0.02 555.78 0.04 509.23 0.14 465.45 0.00 299.52 0.02 286.19 0.01	484.0 17.6	310.3 10.913 282.7 9.881 271.1 8.712 291.9 6.975 345.7 5.472 372.2 5.464 379.4 6.170 380.3 7.039 378.3 7.745 165.9 6.363 158.5 6.094

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D.	Q COM	GROUP VEL. KM/S
1 S 19 1 S 20 1 S 22 1 S 23 1 S 24 1 S 26 1 S 27 1 S 36 1 S 37 1 S 38 1 S 39 1 S 40 1 S 41 1 S 42 1 S 43 1 S 50 1 S 52 1 S 53 1 S 55 1 S 56 1 S 57	263.63 0.07 253.97 0.07 236.21 0.07 228.42 0.09 220.99 0.07 207.71 0.07 196.31 0.07 164.60 0.10 161.38 0.05 157.67 0.10 154.73 0.05 151.64 0.07 148.61 0.07 145.78 0.05 143.12 0.07 140.61 0.07 138.25 0.09 125.33 0.10 121.87 0.05 120.00 0.05 118.50 0.10 116.81 0.13 115.32 0.10 110.91 0.10 92.48 0.10	263.59 0.02 253.72 0.10 236.17 0.02 228.33 0.04 221.02 -0.01 207.80 -0.04 201.80 -0.05 196.17 0.07 164.78 -0.11 161.20 0.11 157.80 -0.08 154.57 0.10 151.50 0.09 148.57 0.03 145.77 0.00 143.11 0.01 140.56 0.04 138.12 0.10 125.41 -0.07 121.79 0.06 120.07 -0.06 118.40 0.08 116.79 0.01 115.24 0.07 112.26 -0.01 110.84 0.06 92.51 -0.04	263.52 0.04 253.63 0.13 236.06 0.06 228.21 0.09 220.89 0.05 207.65 0.03 201.64 0.03 196.00 0.16 164.55 0.03 160.97 0.26 157.56 0.07 154.32 0.26 151.24 0.26 148.31 0.20 145.51 0.19 142.83 0.20 140.27 0.24 137.83 0.30 125.10 0.18 121.46 0.33 119.74 0.22 118.08 0.36 116.46 0.30 114.90 0.36 111.93 0.29 110.51 0.37 92.20 0.31		155.4 155.8 156.1 156.5 157.0 157.2 157.2 153.9 153.0 150.9 149.7 148.5 147.2 145.8 133.6 132.5 131.5 130.5 129.6 127.9 127.1	5.921 5.872 5.798 5.798 5.725 5.668 5.725 5.555 5.313 5.221 5.313 6.
2 S 5 6 8 9 10 12 13 14 15 26 27 28 2 S S S S S S S S S S S S S S S S S	724.87 0.05 660.41 0.05 594.80 0.05 448.35 0.05 415.92 0.05 365.13 0.05 344.72 0.05 326.59 0.05 326.59 0.05 179.24 0.05 179.24 0.05 174.03 0.05 169.29 0.05 164.74 0.05 160.53 0.05 149.27 0.05 145.95 0.05 139.58 0.05 131.10 0.05 128.57 0.05 121.65 0.05 119.49 0.05 119.49 0.05	725.08 -0.03 660.12 0.04 594.96 -0.03 488.00 0.04 448.69 -0.06 365.33 -0.06 344.85 -0.04 326.42 0.05 308.56 -0.04 179.13 0.06 174.07 -0.02 169.32 -0.02 164.85 -0.07 160.63 -0.06 156.64 -0.04 149.28 -0.01 145.88 0.05 139.57 0.01 136.64 0.02 133.85 0.02 131.18 -0.06 128.64 -0.05 123.87 -0.02 121.63 0.01 119.49 0. 117.43 -0.08	725.36 -0.07 660.55 -0.02 595.44 -0.11 488.36 -0.04 449.00 -0.14 416.42 -0.12 365.50 -0.10 344.97 -0.07 326.51 0.03 308.60 -0.06 179.40 -0.09 174.33 -0.17 169.58 -0.17 165.09 -0.21 160.86 -0.20 156.85 -0.17 149.46 -0.13 146.05 -0.07 139.71 -0.09 136.76 -0.07 133.96 -0.06 131.28 -0.13 128.72 -0.11 123.92 -0.06 121.67 -0.02 119.52 -0.02 117.45 -0.09	350.0 5.0 244.0 20.0 179.0 20.0	302.2 237.9 197.7 188.2 181.2 173.3 174.3 188.0 258.1 194.2 188.1 185.4 185.4 185.5 173.9 175.5 173.9 176.8 166.5 164.8 164.0 163.3	5.336 6.201 7.2859 6.2859 6.2859 6.4851 6.4851 6.4853 6.5853

TABLE V (continued)

MODE	OBSERVATION PERIOD S.D. SEC %	SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D. %	Q COM	GROUP VEL. KM/S
2 S 48 2 S 49 2 S 50 2 S 56 2 S 66 2 S 66 2 S 66 2 S 77 2 S 76	110.07 0.20 108.37 0.20 106.71 0.20 96.61 0.20 94.14 0.20 4 89.66 0.20 88.65 0.20 87.66 0.22 82.97 0.20 4 80.53 0.20	111.73	111.71	151.0 20.0	160.8 160.3 159.7 159.2 155.1 153.8 151.0 150.3 149.6 146.1 144.2 143.1	5.745 5.713 5.680 5.647 5.405 5.333 5.188 5.152 5.118 4.956 4.872 4.823
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	310.45 0.05 297.45 0.05 285.10 0.05 273.33 0.05 262.42 0.05 252.17 0.05 242.46 0.05 233.25 0.05 224.99 0.05 224.99 0.05 202.69 0.05 196.18 0.06 190.07 0.05 184.32 0.06 113.35 0.05 111.41 0.05 109.42 0.06 107.77 0.05 106.00 0.06 107.77 0.05 106.00 0.06 104.20 0.10 102.51 0.06 104.20 0.10 102.51 0.06 104.20 0.10 102.51 0.06 104.20 0.10 102.51 0.05 88.83 0.05 89.46 0.08 97.99 0.05 93.73 0.06 90.10 0.05 88.83 0.05 87.65 0.05 88.83 0.05 87.65 0.05 88.83 0.05 87.65 0.05 88.83 0.05 87.65 0.05 87.65 0.05 87.65 0.05 87.65 0.05 87.76 0.10 76.11 0.10 73.78 0.10	1059.40 -0.12 904.00 0.03 392.21 0.03 354.66 -0.07 338.80 0.05 310.44 0.00 297.44 0.01 285.11 -0.00 273.44 -0.04 262.44 -0.01 252.09 0.03 242.39 0.03 224.85 0.06 216.93 0.03 224.85 0.06 216.93 0.05 202.61 0.04 196.14 0.02 190.07 0. 184.32 0.00 113.38 -0.03 111.41 0.00 109.51 -0.08 107.68 0.08 105.92 0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.03 102.59 -0.08 104.23 -0.00 173.70 0.01 73.70 0.01	99.61 -0.15 98.13 -0.14 93.97 -0.26 90.17 -0.08 88.98 -0.17 87.82 -0.20 82.50 -0.14 78.72 0.05 76.13 -0.03 73.72 0.08	229.0 20.0	366.6 275.5 263.6 258.7 249.9 245.4 240.9 236.2 231.5 226.9 210.1 203.0 207.3 224.5 221.8 219.1 216.6 214.1 207.3 209.4 207.3 209.4 209.6 209.6 209.7 20	6.087 6.066 6.046 5.989 5.933 5.915 5.897 5.815 5.757 5.717 5.676
	580.81 0.12 3 489.04 0.07 4 439.17 0.11	580.62 0.03 488.05 0.20 438.68 0.11	580.59 0.04 488.02 0.21 438.73 0.10		434.2 480.2 290.2	

M O D E	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SÉC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D. %	Q COM GROUP VEL. KM/S
4 S 5 4 S 9 4 S 10 4 S 11 4 S 13 4 S 15 4 S 16 4 S 17 4 S 16 4 S 17 4 S 20 4 S 30 4 S 31 4 S 32 4 S 33 4 S 34 5 S 36 6 S 37 8 S 39 8 S 39	414.62 0.06 269.63 0.05 258.75 0.05 249.38 0.05 240.78 0.05 232.75 0.05 232.75 0.05 211.24 0.05 211.24 0.05 204.66 0.05 198.16 0.05 191.96 0.05 186.33 0.05 165.68 0.05 141.97 0.05 138.72 0.05 135.65 0.05 129.87 0.05 127.18 0.05 124.66 0.05 124.66 0.05 129.87 0.05 127.18 0.05 127.18 0.05 127.18 0.05 127.18 0.05 127.18 0.05 127.18 0.05 127.18 0.05 127.18 0.05 127.18 0.05 127.18 0.05 127.18 0.05 127.18 0.05	414.69 -0.02 269.63 -0.00 258.76 -0.01 249.35 0.01 240.79 -0.00 232.82 -0.03 225.27 -0.08 211.16 0.04 204.53 0.06 198.16 -0.00 192.07 -0.06 186.25 0.04 165.67 0.01 141.97 0.00 138.70 0.02 135.59 0.04 129.83 0.03 127.15 0.02 124.59 0.06 122.15 0.05 119.82 0.04 117.58 0.06 115.44 -0.01 76.67 -0.03	414.76 -0.03 269.61 0.01 258.76 -0.00 249.36 0.01 240.82 -0.01 232.85 -0.04 225.31 -0.10 218.11 0.02 204.58 0.04 198.22 -0.03 192.13 -0.09 186.31 0.01 165.74 -0.03 142.05 -0.05 138.78 -0.05 135.68 -0.02 129.92 -0.04 127.25 -0.05 124.69 -0.02 122.26 -0.03 119.93 -0.05 117.69 -0.04 115.55 -0.11 76.69 -0.05	288.0 20.0 291.0 20.0 264.0 20.0 234.0 20.0 246.0 20.0	282.4 5.534 339.0 6.613 302.4 5.975 284.6 5.744 274.5 5.681 268.2 5.713 264.3 5.804 261.8 5.930 260.3 6.071 259.5 6.212 259.1 6.343 258.9 6.457 258.9 6.552 258.8 6.735 253.9 6.651 252.3 6.618 250.5 6.583 246.2 6.509 243.8 6.471 241.2 6.433 238.5 6.396 235.8 6.360 233.0 6.325 230.7 6.305 237.4 6.221
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	460.78 0.05 420.36 0.05 369.92 0.05 332.11 0.05 303.98 0.05 283.56 0.05 224.45 0.05 203.09 0.05 194.61 0.05 166.78 0.05 150.57 0.05 146.98 0.05 143.59 0.05 143.59 0.05 137.12 0.05 134.08 0.05 131.18 0.05 128.49 0.05 121.02 0.05 118.76 0.05 118.76 0.05 114.57 0.05 114.57 0.05 110.57 0.05 110.57 0.05 110.57 0.05 110.57 0.05 108.66 0.05	460.90 -0.03 420.25 0.03 369.91 0.00 332.15 -0.01 303.88 0.03 283.64 -0.03 224.39 0.03 203.07 0.01 194.68 -0.03 166.79 -0.00 162.44 0.00 150.58 -0.00 146.96 0.01 143.52 0.05 140.23 0.02 137.09 0.02 134.10 -0.02 131.25 -0.06 128.54 -0.03 125.94 -0.03 125.94 -0.03 125.94 -0.05 118.81 -0.05 116.62 0.02 114.52 0.04 112.48 0.06 110.52 0.05 108.62 0.04	460.94 -0.03 420.20 0.04 369.84 0.02 332.07 0.01 303.79 0.06 283.57 -0.00 224.25 0.09 202.91 0.09 194.52 0.05 166.73 0.03 150.54 0.02 146.93 0.03 150.54 0.02 146.93 0.03 143.48 0.08 140.19 0.04 137.05 0.05 134.06 0.01 131.21 -0.03 128.50 -0.00 125.91 -0.01 123.43 -0.02 121.06 -0.03 118.78 -0.02 116.59 0.05 114.49 0.07 112.45 0.09 110.49 0.08 108.59 0.07	248.0 20.0 223.0 20.0	292.4 3.870 489.1 13.233 502.5 12.722 506.3 11.853 492.8 10.458 418.2 8.272 374.7 9.735 386.1 8.850 371.6 8.118 284.7 6.399 279.4 6.415 268.8 6.516 265.9 6.534 263.0 6.540 260.0 6.532 257.0 6.513 253.9 6.485 250.8 6.452 247.9 6.418 245.1 6.386 242.6 6.357 240.4 6.325 238.6 6.320 237.1 6.312 236.0 6.310 235.3 6.315 234.9 6.325 234.8 6.339

TABLE V (continued)

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D.	Q COM GROUP VEL. KM/S
5 S 41	105.06 0.05	104.99 0.07	104.97 0.09		235.3 6.372
5 S 42	103.36 0.05	103.26 0.10	103.24 0.12		235.9 6.389
5 S 43	101.69 0.05	101.58 0.11	101.56 0.12		236.5 6.406
5 S 44	100.09 0.05	99.95 0.14	99.94 0.15		237.3 6.421
5 S 45	98.45 0.05	98.37 0.08	98.36 0.09		238.1 6.434
5 S 46	97.01 0.05	96.84 0.18	96.83 0.19		239.0 6.445
5 S 47	95.51 0.05	95.35 0.17	95.34 0.18		239.8 6.453
5 S 51	89.91 0.05	89.82 0.10	89.81 0.11		242.3 6.455
9 14 15 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	252.63 0.07 185.15 0.05 178.76 0.07 172.29 0.05 166.09 0.06 160.46 0.07 155.08 0.05 150.13 0.05 145.75 0.05 141.87 0.05 138.23 0.05 131.80 0.05 128.79 0.05 128.79 0.05 128.79 0.05 128.79 0.05 128.79 0.05 128.79 0.07 112.06 0.07 112.06 0.07 112.06 0.07 112.06 0.07 109.90 0.07 107.96 0.07 104.18 0.07 104.18 0.07 104.18 0.07 104.18 0.07 104.18 0.07 104.18 0.07 105.80 0.07 106.06 0.07 107.96 0.07 108.97 0.07 109.90 0.07	252.19	252.10 0.21 184.80 0.19 178.41 0.19 172.05 0.14 165.93 0.10 160.20 0.16 154.91 0.11 150.07 0.04 145.67 0.05 141.67 0.14 138.03 0.15 134.69 0.09 131.61 0.15 128.72 0.06 125.99 -0.02 123.39 0.08 120.90 0.09 118.51 0.20 116.21 0.16 111.85 0.18 109.79 0.10 107.80 0.15 105.88 0.17 104.03 0.14 102.24 0.13 100.52 0.16 98.86 0.11 95.72 0.09 94.23 0.10 87.55 0.08 86.35 0.07 84.06 0.01 82.97 0.02 81.92 0.02 79.90 0.07 78.93 -0.01 77.06 0.07 76.16 0.06 75.28 0.07 74.41 0.06	292.0 20.0	320.6 9.638 259.3 7.368 272.2 8.002 287.9 8.418 300.8 8.571 309.0 8.540 312.7 8.389 312.2 8.158 308.0 7.875 300.8 7.572 292.0 7.288 282.9 7.053 274.7 6.882 287.9 6.669 253.0 6.673 251.5 6.684 250.0 6.708 249.7 6.716 249.6 6.720 249.6 6.718 249.7 6.711 249.7 6.680 249.7 6.680 249.7 6.680 249.7 6.680 249.7 6.680 249.7 6.680 249.7 6.680 249.7 6.653 244.7 6.360 243.8 6.321 241.9 6.251 241.1 6.222 240.4 6.198 239.2 6.164 238.9 6.156 238.7 6.152 238.7 6.153 238.8 6.158 239.0 6.167
7 S 2	397.37 0.05	397.25 0.03	397.22 0.04		341.4 15.311
7 S 4	293.25 0.05	292.98 0.09	292.94 0.11		333.8 7.703
7 S 5	273.43 0.05	273.24 0.07	273.20 0.09		477.4 11.638
7 S 6	252.66 0.05	252.61 0.02	252.56 0.04		504.3 12.075

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D.	Q COM GROUP VEL. KM/S
7 S 7 S 8 7 S 9 7 S 10 7 S 11 7 S 12 7 S 22 7 S 24 7 S 25 7 S 28 7 S 29 7 S 35 7 S 36 7 S 37 7 S 38 7 S 39 7 S 43 7 S 45 7 S 46 7 S 48 7 S 55 7 S 56 7 S 57 S 56 7 S 57	236.04 0.05 224.36 0.10 216.62 0.10 209.42 0.10 203.09 0.10 197.12 0.10 147.82 0.07 141.23 0.07 138.06 0.07 134.81 0.07 128.57 0.07 125.48 0.07 117.21 0.07 114.65 0.07 112.16 0.07 112.16 0.07 101.74 0.07 99.98 0.07 98.19 0.07 98.19 0.07 98.19 0.07 98.89 0.07 88.99 0.07 88.99 0.07 85.13 0.07 82.76 0.07 74.59 0.07 73.68 0.07	235.97 0.03 224.59 -0.10 216.55 0.03 209.74 -0.15 203.38 -0.14 197.20 -0.04 147.79 0.02 141.20 0.02 137.98 0.06 134.78 0.02 128.53 0.03 125.52 -0.04 117.18 0.02 114.65 -0.00 112.24 -0.07 101.78 -0.04 99.96 0.02 98.21 -0.02 96.54 -0.03 94.93 -0.04 89.09 -0.11 86.47 -0.11 85.22 -0.11 82.84 -0.10 75.51 0.02 74.57 0.02 73.66 0.03	235.93		415.1 10.086 321.5 7.366 281.9 6.167 266.3 5.938 258.4 6.046 254.1 6.314 241.0 6.144 239.2 6.507 240.1 6.743 242.3 6.992 249.2 7.394 252.5 7.507 258.0 7.549 258.4 7.509 258.4 7.459 258.4 7.459 255.9 7.188 255.3 7.137 254.7 7.087 254.1 7.038 253.6 6.990 251.9 6.828 251.6 6.770 251.5 6.748 251.8 6.716 255.0 6.682 255.6 6.677 256.0 6.671
8 S 1 8 S 5 8 S 6 8 S 7 8 S 9 8 S 23 8 S 24 8 S 29 8 S 30 8 S 32 8 S 34 8 S 46 8 S 47 8 S 48	348.12 0.05 239.96 0.05 225.28 0.05 215.13 0.05 191.89 0.07 158.50 0.07 120.87 0.07 118.67 0.07 108.08 0.07 106.04 0.07 102.20 0.07 91.81 0.07 87.28 0.07 80.79 0.07 79.78 0.07	348.02 0.03 240.03 -0.03 225.47 -0.08 215.03 0.04 191.87 0.01 158.30 0.12 120.67 0.16 118.48 0.16 108.02 0.06 106.02 0.01 102.16 0.04 91.79 0.02 87.33 -0.05 80.85 -0.08 79.69 0.12 78.56 0.01	347.98 0.04 239.95 0.01 225.38 -0.04 214.95 0.08 191.76 0.07 158.26 0.15 120.62 0.21 118.43 0.20 107.98 0.09 105.98 0.05 102.12 0.08 91.73 0.09 87.26 0.03 80.78 0.01 79.61 0.21 78.49 0.11	483.0 20.0	930.2 14.177 611.6 12.457 441.0 9.202 351.6 9.011 501.3 12.448 250.6 5.878 237.8 6.052 237.5 6.176 243.1 6.895 244.9 7.019 248.5 7.219 256.1 7.435 257.9 7.400 258.5 7.247 258.3 7.208 257.9 7.167
9 S 3 9 S 4 9 S 6 9 S 7 9 S 8 9 S 11 9 S 12 9 S 13 9 S 14 9 S 15	281.39 0.05 258.10 0.07 216.37 0.05 205.16 0.05 194.22 0.07 170.01 0.05 161.64 0.05 154.30 0.07 147.87 0.05 142.23 0.05	281.30 0.03 257.87 0.09 216.41 -0.02 205.23 -0.04 194.38 -0.08 169.90 0.07 161.62 0.01 154.24 0.04 147.75 0.08 142.25 -0.02	281.23 0.06 257.80 0.12 216.37 0. 205.18 -0.01 194.34 -0.06 169.80 0.12 161.50 0.09 154.10 0.13 147.60 0.18 142.10 0.09		777.7 13.266 515.2 13.197 331.1 8.510 489.9 11.072 472.3 10.581 413.9 11.972 465.0 12.017 484.6 11.659 484.7 11.062 430.1 9.635

MOD	E OBSERVA PERIOD SEC		ANISOT PERIOD SEC	ROPIC DEV %	ISOTRO PERIOD SEC	PIC DEV %	Q OBS VALUE S.D.	Q COM	GROUP VEL. KM/S
9 S 1 9 S 1 9 S 2 9 S 3 9 S 3	9 129.87 9 100.32 5 91.16	0.07 0.07 0.07	132.40 129.90 100.27 91.18 88.39	-0.02 0.05 -0.02	132.33 129.83 100.20 91.13 88.35	0.11 0.03 0.12 0.03 0.16		255.9 248.2 243.4 242.7 241.6	5.797 6.373 6.854
10 S 1 10 S 2 10 S 2 10 S 2 10 S 2 10 S 3 10 S 3 10 S 3 10 S 3 10 S 4 10 S 4	3 145.46 4 142.06 7 130.34 8 126.00 9 121.93 0 118.37 1 115.20 8 95.58 9 93.90 1 91.14 2 89.78 4 87.21 6 84.86 7 83.58 1 79.18	0.05 0.07 0.05 0.05 0.05 0.05 0.05 0.05	247.99 161.53 145.47 142.07 130.28 125.97 121.98 118.39 115.30 95.59 93.93 91.00 89.67 87.15 84.76 83.61 79.21 76.13	0.08 -0.00 -0.01 0.05 0.02 -0.05 -0.02 -0.09 -0.01 -0.03 0.15 0.13 0.07 0.12 -0.03 -0.04	247.96 161.49 145.42 142.02 130.13 125.81 121.80 118.21 115.12 95.43 93.78 90.88 89.56 87.05 84.68 83.53 79.15 76.08	0.10 0.03 0.03 0.16 0.15 0.10 0.14 0.07 0.15 0.13 0.28 0.25 0.18 0.22 0.06 0.04		376.2 277.7 259.1 387.5 410.7	10.444 10.490 10.218 9.599 8.457 7.715 7.180 6.606 6.496 6.441 6.489 6.530 6.734
11 S	2 109.66 3 107.15 4 104.36 1 87.29 2 85.78 4 82.87 5 81.45 7 79.15 9 77.24 0 76.21 1 75.21 3 73.39 4 72.53 6 70.68	0.05 0.05 0.05 0.05 0.05 0.05 0.07	104.38 87.42 85.81 82.90 81.60 79.28 77.19 76.21 75.25 73.40 72.50 70.76	-0.07 -0.11 0.04 -0.01 -0.02 0.09 0.03 0.13 0.13 -0.11 -0.05 -0.13 -0.08 0.09 -0.02 -0.15 -0.04 -0.03 -0.16 0.06 0.00 -0.05 -0.01 0.04 -0.11	271.28 224.02 209.70 196.99 179.69 155.22 148.85 134.76 126.22 123.29 120.88 112.24 109.65 104.23 87.30 85.68 82.75 81.46 79.15 77.08 76.11 75.15 73.31 72.42 70.68	-0.04 -0.07 0.08 0.02 0.01 0.17 0.12 0.17 0.18 -0.05 0.01 -0.07 0.00 0.21 0.12 -0.01 0.12 0.14 -0.01 0.20 0.14 0.07 0.11 0.15 0.	652.0 20.0	447.5 701.6 665.4 463.4 280.6 627.1 426.3 420.4 332.1 284.6 261.8 277.3 317.1 363.1 335.4 332.1 307.3 291.9 268.3 291.9 252.4 250.0 247.3 246.6 245.6	11.964 9.483 11.095 8.347 6.849 6.144 7.668 8.831 9.411 9.504 8.641 8.484 7.473 6.929 6.678 6.678 6.726 6.760 6.824
	7 170.67 0 145.67		170.77 145.74		170.65 145.69	0.01 -0.01			10.271 9.171

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D. %	Q COM GROUP VEL. KM/S
12 S 11 12 S 12 12 S 13 12 S 14 12 S 15 12 S 16 12 S 17 12 S 18 12 S 22 12 S 23 12 S 26 12 S 33	140.25 0.05 134.24 0.05 128.68 0.05 123.57 0.05 118.93 0.05 115.11 0.05 111.79 0.07 109.39 0.07 102.08 0.07 100.48 0.07 95.80 0.07 81.43 0.07	140.08 0.12 134.14 0.07 128.59 0.08 123.50 0.06 118.89 0.03 115.05 0.05 111.93 -0.13 109.34 0.05 102.05 0.02 100.50 -0.02 95.87 -0.07 81.42 0.01	139.99 0.18 134.03 0.15 128.47 0.17 123.37 0.16 118.75 0.15 114.94 0.15 111.84 -0.04 109.25 0.13 101.99 0.09 100.44 0.04 95.82 -0.02 81.37 0.07		511.1 12.324 570.0 12.859 568.6 12.883 552.7 12.743 543.2 12.228 449.6 10.261 382.9 9.131 325.3 7.865 253.5 6.027 252.0 6.094 265.4 6.914 267.4 6.970
13 S 1 13 S 2 13 S 8 13 S 12 13 S 14 13 S 18 13 S 19 13 S 21 13 S 22 13 S 23 13 S 25 13 S 26 13 S 29 13 S 37 13 S 38	222.27 0.05 206.57 0.05 192.71 0.05 152.39 0.10 125.76 0.10 120.96 0.10 106.77 0.10 103.41 0.05 97.65 0.10 95.32 0.10 93.62 0.10 90.52 0.10 89.31 0.10 85.94 0.10 73.52 0.10 72.74 0.10	222.43 -0.08 206.39 0.09 192.54 0.09 152.59 -0.13 125.71 0.04 121.08 -0.10 106.71 0.06 103.36 0.05 97.68 -0.03 95.36 -0.04 93.48 0.15 90.62 -0.11 89.38 -0.08 85.93 0.02 73.51 0.02 72.63 0.14	222.35 -0.04 206.30 0.13 192.45 0.13 152.52 -0.08 125.64 0.10 121.02 -0.05 106.59 0.17 103.23 0.17 97.54 0.12 95.23 0.10 93.38 0.26 90.54 -0.03 89.31 -0.00 85.87 0.08 73.46 0.09 72.59 0.20		735.1 14.369 878.5 13.939 908.6 14.039 278.4 5.358 247.4 5.134 285.7 7.587 490.5 12.196 486.8 11.789 440.0 10.566 378.6 9.237 316.8 7.652 267.8 6.228 259.6 6.042 251.6 6.073 250.1 6.431 254.2 6.634
14 S 4 14 S 7 14 S 8 14 S 9 14 S 10 14 S 17 14 S 19 14 S 25 14 S 28 14 S 31	180.81 0.10 147.79 0.05 142.02 0.05 136.13 0.05 131.27 0.10 104.97 0.07 99.99 0.05 87.15 0.07 82.07 0.07 78.89 0.07	180.45 0.20 147.65 0.10 141.89 0.10 135.98 0.11 130.96 0.23 104.97 0.00 100.02 -0.03 87.30 -0.17 82.08 -0.02 78.79 0.13	180.36 0.25 147.59 0.14 141.83 0.14 135.92 0.16 130.91 0.27 104.92 0.05 99.98 0.01 87.16 -0.02 81.94 0.15 78.70 0.24		742.4 13.843 330.4 9.582 483.1 12.058 528.4 12.226 388.4 9.760 316.2 8.241 406.9 10.022 434.3 10.451 331.8 8.221 253.9 6.034
15 S 3 15 S 11 15 S 12 15 S 16 15 S 18 15 S 28 15 S 30 15 S 31 15 S 32	165.83 0.05 122.85 0.07 118.59 0.05 100.69 0.05 96.03 0.07 80.39 0.07 77.63 0.07 76.21 0.07 74.83 0.07	165.69 0.08 122.99 -0.11 118.59 0.00 100.71 -0.02 96.07 -0.04 80.45 -0.07 77.63 -0.00 76.22 -0.01 74.89 -0.08	165.61 0.13 122.87 -0.02 118.48 0.09 100.59 0.10 95.99 0.04 80.39 0. 77.53 0.13 76.10 0.14 74.77 0.08		805.8 14.327 500.5 11.355 572.3 12.417 538.1 13.254 281.3 6.544 324.4 8.142 392.7 9.538 392.2 9.474 371.5 9.071
16 S 5 16 S 6 16 S 7 16 S 10	146.45 0.05 139.87 0.05 133.90 0.07 118.58 0.05	146.28 0.12 139.79 0.06 133.80 0.08 118.52 0.06	146.19 0.18 139.69 0.13 133.69 0.16 118.43 0.13		581.1 12.415 739.3 12.890 800.0 12.770 774.3 12.609

TABLE V (continued)

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D. %	Q COM GROUP VEL. KM/S
16 S 19 16 S 20 16 S 25 16 S 26 16 S 31	88.61 0.07 80.23 0.07	91.20 -0.02 88.62 -0.01 80.23 0.01 78.77 0.05 73.57 0.06	91.08 0.11 88.49 0.14 80.17 0.07 78.71 0.12 73.52 0.12		543.2 13.034 521.2 12.457 393.3 9.373 373.6 8.943 272.9 6.604
17 S 12 17 S 13 17 S 14 17 S 15 17 S 22 17 S 23 17 S 26 17 S 28 17 S 29 17 S 30 17 S 31	76.47 0.07 73.56 0.07	76.39 0.11 73.51 0.07 72.22 0.05	109.19 -0.07 105.89 0.04 102.88 0.08 100.52 -0.04 83.40 0.17 81.47 0.17 76.27 0.26 73.42 0.18 72.15 0.16 71.01 0.15 70.01 -0.04		462.0 10.800 553.8 11.501 459.1 10.157 350.7 8.117 406.5 10.528 465.9 11.450 427.8 10.525 414.0 9.964 386.7 9.349 347.8 8.476 314.6 7.635
18 S 3 18 S 4 18 S 15 18 S 16 18 S 17 18 S 25 18 S 27	138.11 0.05 95.68 0.07 93.28 0.07 90.84 0.07 76.19 0.07	145.10 0.12 138.10 0.00 95.65 0.03 93.28 0.00 90.86 -0.02	145.00 0.19 138.00 0.08 95.60 0.08 93.23 0.05 90.81 0.03 76.06 0.17 73.59 0.05		851.4 14.056 943.1 13.726 381.7 9.762 474.4 11.332 480.2 11.169 307.9 7.518 425.4 10.101
19 S 9 19 S 10 19 S 11 19 S 14 19 S 15	106.86 0.05 103.66 0.05 93.36 0.07	110.53 0.08 106.87 -0.00 103.55 0.10 93.37 -0.01 90.99 -0.09	110.43 0.17 106.77 0.09 103.46 0.19 93.23 0.13 90.85 0.07		612.4 12.165 675.8 12.402 531.4 11.082 646.4 11.600 521.3 10.321
20 S 4 20 S 5 20 S 15 20 S 16 20 S 17 20 S 18 20 S 19 20 S 20 20 S 25	118.06 0.05 89.12 0.05 87.39 0.07 85.30 0.07 83:16 0.07 81.12 0.07 79.46 0.07	123.20 -0.02 118.04 0.02 89.12 0.00 87.46 -0.07 85.31 -0.01 83.14 0.02 81.11 0.01 79.35 0.13 70.60 0.22	123.12 0.05 117.96 0.08 89.07 0.06 87.40 -0.01 85.24 0.07 83.06 0.12 81.03 0.11 79.28 0.23 70.53 0.31		782.5 15.087 636.8 12.844 301.9 6.601 458.8 10.481 606.2 12.088 634.4 12.273 565.7 11.677 417.9 10.104 547.0 12.876
21 S 6 21 S 7 21 S 8 21 S 10 21 S 11 21 S 12	109.02 0.05	112.99 -0.02 109.01 0.01 105.30 0.07 98.71 -0.01 95.75 0.09 93.25 0.08	112.87 0.08 108.90 0.11 105.19 0.17 98.60 0.10 95.65 0.20 93.15 0.18		739.8 12.736 799.9 12.970 667.3 13.043 833.9 12.812 747.8 12.111 516.9 10.000
22 S 12 22 S 13 22 S 14 22 S 23	89.88 0.07 88.23 0.07 86.08 0.07 70.88 0.07	89.87 0.02 88.14 0.10 85.98 0.11 70.93 -0.06	89.81 0.08 88.09 0.16 85.93 0.18 70.89 -0.02		309.0 6.971 442.9 10.365 591.3 12.088 394.9 9.572

мо	DE	OBSERVA PERIOD SEC		ANISOT PERIOD SEÇ	TROPIC DEV %	ISOTRO PERIOD SEC	OPIC PEV %		Q COM	GROUP VEL. KM/S
23 S 23 S 23 S 23 S 23 S 23 S 23 S	4 5 7 8 9 10 22	111.88 107.57 100.14 97.06 94.16 92.14 69.59	0.05 0.07 0.07 0.07 0.07	111.84 107.65 100.14 96.90 94.12 92.21 69.57	-0.07 0.00 0.16 0.04 -0.08	111.73 107.54 100.04 96.81 94.04 92.14 69.49	0.03 0.09 0.26 0.13 -0.00		899.2 660.4 740.2 553.6 322.0	13.920 13.971 13.593 12.991 10.985 6.608 11.659
24 S 24 S 24 S 24 S 24 S 24 S 24 S 24 S	10 11 12 14 15 16 17 18	89.52 87.33 85.06 80.65 78.63 76.71 75.20 74.26	0.10 0.10 0.10 0.10 0.10	89.62 87.42 85.12 80.70 78.69 76.77 75.10 74.19	-0.10 -0.07 -0.06 -0.08 -0.08	89.54 87.32 85.02 80.63 78.62 76.70 75.04 74.13	0.01 0.05 0.03 0.02 0.01 0.22	1125.0 20.0	673.3 744.1 742.8 814.6 795.8 482.8	9.875 12.088 12.472 12.516 12.747 12.532 9.577 5.146
25 S 25 S 25 S 25 S 25 S 25 S 25 S	1 2 3 5 6 10 18	115.46 110.89 106.05 98.65 95.32 84.78 72.99	0.05 0.05 0.10 0.10 0.10	115.54 110.83 106.11 98.66 95.39 84.82 72.99	-0.07 0.05 -0.05 -0.02 -0.07 -0.05	115.43 110.73 106.02 98.57 95.29 84.70 72.93	0.15 0.03 0.08		787.6 376.8 766.3 724.1 537.1	14.375 15.431 16.618 14.552 13.155 10.397 11.733
26 S 26 S 26 S 26 S 26 S	8 9 11 12 13	89.19 86.82 81.77 79.66 77.58	0.07 0.07 0.07	89.25 86.76 81.68 79.62 77.61	0.06 0.11 0.05	89.15 86.67 81.63 79.56 77.56	0.05 0.17 0.17 0.12 0.03		325.0 536.0 763.9	12.347 14.111 11.748 13.159 12.533
27 S 27 S 27 S 27 S 27 S	2 4 14 15 16	101.44 94.37 75.18 73.43 71.60	0.07 0.15 0.15	101.35 94.37 75.06 73.45 71.82	0.00 0.16 -0.03	101.25 94.27 74.98 73.38 71.76	0.26 0.07		576.7 420.9 680.1	14.802 13.198 9.752 12.495 11.971
28 S 28 S 28 S 28 S	5 6 10 11	91.39 88.61 78.59 76.75	0.07	91.19 88.47 78.47 76.78	0.15 0.16	91.09 88.37 78.40 76.72	0.27		756.4	13.244 13.555 13.264 5.868
29 S	1	97.04	0.10	96.99	0.05	96.89	0.16		734.5	15.708
30 S 30 S 30 S	3 7 8	90.61 79.69 77.52	0.07	90.49 79.69 77.53	0.13 0.01 -0.02	90.39 79.61 77.46	0.24 0.10 0.07		848.0	15.394 14.177 13.594
32 S	1	90.03	0.07	89.94	0.10	89.93	0.11		89.8	11.653
33 S	6	77.00	0.10	76.82	0.24	76.75	0.33		606.6	14.012
34 S	1	83.83	0.10	83.76	0.08	83.68	0.18	630.0 20.0	754.0	15.822

TABLE V (continued)

М	0	DE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D.	Q COM	GROUP VEL. KM/S
0 0 0 0 0 0 0 0 0 0 0 0	T T T T T T T T T T T T T T T T T T T	2 3 4 5 6 7 8 9 10 12 13 14 16 17 18	2636.38 0.08 1705.95 0.15 1305.92 0.07 1075.98 0.12 925.84 0.09 819.31 0.08 736.86 0.20 671.80 0.20 618.97 0.20 538.05 0.20 506.07 0.20 477.53 0.20 430.01 0.20 410.24 0.20 391.82 0.20	2637.45 -0.04 1706.07 -0.01 1306.11 -0.01 1077.34 -0.13 926.96 -0.12 819.22 0.01 737.42 -0.08 672.69 -0.13 619.88 -0.15 538.25 -0.04 505.84 0.05 477.49 0.01 430.08 -0.02 410.00 0.06 391.83 -0.00	2639.40 -0.11 1707.61 -0.10 1307.55 -0.13 1078.79 -0.26 928.45 -0.28 820.77 -0.18 739.03 -0.29 674.35 -0.38 621.59 -0.42 540.05 -0.37 507.67 -0.32 479.35 -0.38 432.00 -0.46 411.93 -0.41 393.77 -0.50	170.0 20.0 180.0 20.0	228.2 216.4 205.4 195.6 187.1 179.7 173.3 162.9 158.8 155.3 149.5 147.2 145.2	5.826 5.528 5.304 5.132 4.995 4.794 4.720 4.659 4.567 4.533 4.505
0 0 0 0 0 0	T T T T T	20 21 22 23 24 25 26 27	360.03 0.08 346.50 0.08 333.69 0.08 321.70 0.08 310.63 0.07 300.37 0.06 290.77 0.06 281.75 0.06	360.16 -0.03 346.25 0.07 333.41 0.08 321.52 0.05 310.48 0.05 300.18 0.06 290.56 0.07 281.55 0.07	362.11 -0.58 348.20 -0.49 335.37 -0.50 323.48 -0.55 312.43 -0.58 302.13 -0.59 292.50 -0.60 283.48 -0.61	114.0 20.0 110.0 23.0 113.0 22.3 115.0 21.4	141.9 140.5 139.3 138.3 137.4 136.6 135.9 135.2	4.447 4.434 4.423 4.414 4.407 4.402
0 0 0	T T T T	28 29 30 31 32 33	273.27 0.06 265.30 0.06 257.76 0.06 250.66 0.06 243.95 0.06 237.59 0.05	273.09 0.07 265.12 0.07 257.62 0.06 250.53 0.05 243.82 0.05 237.46 0.05	275.01 -0.64 267.04 -0.65 259.52 -0.68 252.42 -0.70 245.70 -0.72 239.33 -0.73	116.0 20.0 115.0 18.0 113.0 16.1 112.0 15.0 112.0 15.2 112.0 16.5	134.7 134.2 133.7 133.3 133.0 132.7	4.393 4.390 4.388 4.386 4.385 4.384
0 0 0 0 0 0	T T T T T	34 35 36 37 38 39 40	231.56 0.05 225.83 0.05 220.37 0.05 215.17 0.05 210.21 0.05 205.47 0.05 200.95 0.05	231.43 0.06 225.70 0.06 220.24 0.06 215.05 0.06 210.09 0.06 205.35 0.06 200.83 0.06	233.29 -0.75 227.54 -0.76 222.07 -0.77 216.86 -0.79 211.90 -0.80 207.15 -0.82 202.61 -0.83	113.0 18.3 113.0 20.0 113.0 21.2 112.0 22.0 111.0 22.5 111.0 22.8 111.0 23.0	132.4 132.2 132.0 131.8 131.7 131.5	4.382 4.382 4.382 4.382 4.381 4.382
0000000	T T T T T	41 42 43 44 45 46 47	196.60 0.05 192.50 0.05 188.51 0.05 184.70 0.05 181.04 0.05 177.52 0.05 174.10 0.05 170.87 0.05	177.37 0.08 173.99 0.06	198.26 -0.85 194.10 -0.83 190.12 -0.85 186.29 -0.86 182.61 -0.87 179.07 -0.87 175.68 -0.91	121.0 24.8 122.0 25.0	131.1 131.1	4.382 4.382 4.382 4.382 4.383 4.383
000000000	T T T T T T T	48 49 50 51 52 53 54 55 56 57	167.73 0.05 164.70 0.05 161.78 0.05 158.95 0.05 156.23 0.05 153.59 0.05 151.04 0.05 148.57 0.05 146.19 0.05	170.72 0.09 167.58 0.09 164.56 0.09 161.64 0.09 158.82 0.08 156.10 0.09 153.46 0.08 150.92 0.08 148.46 0.07 146.08 0.08	172.40 -0.90 169.25 -0.90 166.21 -0.91 163.27 -0.92 160.44 -0.94 157.71 -0.95 155.07 -0.96 152.51 -0.97 150.04 -0.99 147.64 -0.99	123.0 25.1 123.0 25.1 122.0 25.1 121.0 25.1 120.0 25.0 119.0 25.0 118.0 25.0 117.0 25.0 116.0 25.1	131.1 131.1 131.1 131.1 131.2 131.3 131.3 131.4 131.4	4.383 4.384 4.384 4.384 4.384 4.384 4.385 4.385
0	T	58 59	143.87 0.05 141.63 0.05	143.77 0.07 141.54 0.07	145.33 -1.01 143.08 -1.02	115.0 25.5 115.0 25.8	131.5 131.6	4.385 4.385

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D.	Q COM GROUP VEL. KM/S	
0 T 60 0 T 61 0 T 62 0 T 63 0 T 64 0 T 65 0 T 66 0 T 67	139.46 0.05 137.35 0.05 135.30 0.06 133.32 0.06 131.39 0.06 129.51 0.06 127.69 0.06 125.92 0.07	139.37 0.06 137.27 0.06 135.23 0.05 133.25 0.05 131.33 0.05 129.46 0.04 127.65 0.03 125.88 0.03	140.90 -1.03 138.79 -1.05 136.74 -1.07 134.75 -1.07 132.82 -1.09 130.94 -1.10 129.12 -1.12 127.34 -1.13	116.0 26.2 116.0 26.6 116.0 27.1 117.0 27.6 117.0 28.1 118.0 28.7 118.0 29.3 119.0 30.0	131.7 4.385 131.8 4.385 131.9 4.385 132.0 4.385 132.1 4.385 132.3 4.385 132.4 4.385 132.5 4.385	
1 T 2 1 T 3 1 T 6 1 T 7 1 T 8 1 T 9 1 T 10 1 T 11	756.57 0.08 695.18 0.07 519.09 0.06 475.17 0.13 438.49 0.05 407.74 0.07 381.65 0.10 359.13 0.05	757.50 -0.12 694.86 0.05 519.32 -0.04 475.33 -0.03 438.55 -0.01 407.75 -0.00 381.68 -0.01 359.28 -0.04	757.54 -0.13 694.95 0.03 519.45 -0.07 475.47 -0.06 438.70 -0.05 407.91 -0.04 381.84 -0.05 359.45 -0.09	238.0 20.0	256.4 4.103 252.9 5.361 242.2 7.102 237.3 7.112 232.1 6.979 227.3 6.607 220.0 6.454	
1 T 12 1 T 13 1 T 15 1 T 16 1 T 17 1 T 18 1 T 19	339.54 0.06 322.84 0.12 293.35 0.05 280.56 0.05 269.51 0.05 259.00 0.05 249.41 0.05	339.76 -0.07 322.53 0.10 293.34 0.00 280.84 -0.10 269.47 0.02 259.08 -0.03 249.55 -0.06	322.70 0.04 293.51 -0.06 281.00 -0.16 269.63 -0.04 259.24 -0.09 249.71 -0.12	195.0 20.0 195.0 20.0	217.4 6.334 215.1 6.240 211.3 6.097 209.4 6.036 207.3 5.977 205.2 5.919 202.9 5.860	
1 T 20 1 T 21 1 T 22 1 T 23 1 T 24 1 T 25 1 T 26 1 T 27	240.88 0.05 232.53 0.05 225.22 0.05 218.31 0.05 211.91 0.05 205.80 0.05 200.24 0.05 194.83 0.05	240.79 0.04 232.70 -0.07 225.21 0.00 218.26 0.02 211.80 0.05 205.78 0.01 200.15 0.05	211.96 -0.03 205.94 -0.07 200.31 -0.04	182.0 20.0 164.0 20.0 192.0 20.0	200.4 5.800 197.8 5.740 195.2 5.678 192.4 5.617 189.6 5.555 186.7 5.493 183.9 5.432	
1 T 28 1 T 29 1 T 30 1 T 31 1 T 32 1 T 33 1 T 34	189.94 0.05 185.26 0.05 180.80 0.05 176.85 0.07 172.98 0.05 169.22 0.05	194.87 -0.02 189.93 0.01 185.27 -0.00 180.88 -0.05 176.74 0.06 172.82 0.09 169.11 0.06 165.59 0.08	195.04 -0.11 190.09 -0.08 185.43 -0.09 181.05 -0.14 176.90 -0.03 172.99 -0.01 169.27 -0.03		181.0 5.373 178.2 5.314 175.5 5.257 172.9 5.203 170.4 5.150 168.0 5.100 165.8 5.053	
1 T 35 1 T 36 1 T 37 1 T 38 1 T 39 1 T 40 1 T 41	165.72 0.05 162.34 0.05 159.09 0.05 156.03 0.05 153.13 0.05 150.26 0.05 147.63 0.05 145.05 0.05	162.23 0.06 159.04 0.04 155.99 0.03 153.08 0.04 150.29 -0.02 147.62 0.01	165.75 -0.02 162.40 -0.04 159.20 -0.07 156.15 -0.08 153.24 -0.07 150.45 -0.12 147.78 -0.11		163.6 5.008 161.6 4.966 159.7 4.927 157.9 4.890 156.3 4.856 154.7 4.825 153.3 4.795	
1 T 42 1 T 43 1 T 45 1 T 46 1 T 47 1 T 48	142.60 0.05 140.21 0.05 135.64 0.24 133.63 0.05 131.54 0.05 129.56 0.05	142.59 0.00 140.22 -0.01 135.74 -0.08 133.62 0.01 131.57 -0.03 129.59 -0.02	145.22 -0.11 142.75 -0.11 140.38 -0.12 135.90 -0.19 133.78 -0.11 131.73 -0.15 129.75 -0.15		152.0 4.768 150.8 4.743 149.6 4.720 147.7 4.680 146.8 4.662 146.0 4.646 145.3 4.631	
1 T 49 1 T 50 1 T 51	127.72 0.05 125.92 0.10 124.18 0.10	127.68 0.03 125.82 0.08 124.02 0.12	127.83 -0.09 125.98 -0.05 124.18 -0.00		144.6 4.618 144.0 4.605 143.4 4.594	

TABLE V (continued)

мо	DE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D.	Q COM	GROUP VEL. KM/S
1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	52 54 57 58 59 60 62 64 66	122.26 0.10 118.99 0.10 114.41 0.10 112.92 0.10 111.40 0.10 110.24 0.10 107.44 0.10 104.94 0.10 102.59 0.10	122.28 -0.02 118.95 0.03 114.30 0.09 112.84 0.07 111.41 -0.01 110.02 0.20 107.35 0.09 104.81 0.13 102.39 0.20	122.44 -0.14 119.10 -0.09 114.45 -0.04 112.99 -0.06 111.56 -0.14 110.17 0.07 107.49 -0.05 104.95 -0.01 102.53 0.06	134.0 20.0 138.0 20.0	142.9 142.0 140.9 140.6 140.4 140.1 139.8 139.4 139.2	4.583 4.565 4.542 4.536 4.530 4.524 4.514 4.506 4.498
	38 40 41 47 49 51 55 56 58	420.46 0.07 363.65 0.07 343.34 0.06 219.95 0.05 211.90 0.05 204.63 0.05 191.91 0.05 186.19 0.05 171.12 0.12 166.50 0.05 154.64 0.05 147.71 0.05 144.59 0.06 141.54 0.05 133.14 0.05 138.62 0.05 135.73 0.05 133.14 0.05 128.15 0.05 121.43 0.05 121.43 0.05 115.49 0.05 110.22 0.05 106.98 0.05 104.01 0.05 199.93 0.05 99.93 0.05 99.93 0.05 99.93 0.05 97.40 0.05 97.40 0.05 91.85 0.05	420.19 0.06 363.14 0.14 343.17 0.05 220.03 -0.03 212.10 -0.10 204.83 -0.10 191.91 -0.00 186.14 0.03 170.98 0.08 166.54 -0.02 158.38 0.03 154.63 0.00 147.70 0.01 144.49 0.07 141.43 0.08 138.51 0.08 135.72 0.00 133.06 0.06 128.08 0.05 123.50 0.05 121.36 0.06 115.42 0.06 110.15 0.06 106.96 0.02 103.99 0.02 102.59 0.01 98.65 -0.04 97.43 -0.03 95.09 -0.01 91.84 0.01	420.21 0.06 363.19 0.13 343.22 0.04 220.06 -0.05 212.13 -0.11 204.86 -0.11 191.94 -0.01 186.16 0.02 171.00 0.07 166.55 -0.03 158.40 0.02 154.65 -0.01 147.71 -0.00 144.50 0.06 141.44 0.07 138.52 0.07 135.73 -0.00 133.07 0.06 128.08 0.05 123.51 0.05 121.36 0.06 115.42 0.06 110.15 0.07 106.95 0.03 103.99 0.02 102.58 0.02 99.91 0.02 98.65 -0.04 97.42 -0.02 95.08 -0.00 91.84 0.02	183.0 20.0 172.0 20.0 182.0 20.0 207.0 20.0 178.0 20.0 162.0 20.0	209.4 223.4 229.2 235.6 231.6 227.3 225.2 219.3 217.5 214.3 212.9 210.3 209.1 207.9 206.7 205.6 204.4 201.8 199.0 197.4 192.3 186.6 176.7 178.6 176.7 172.8 170.9 165.6 160.9	3.803 6.092 6.697 6.844 6.646 6.430 6.220 6.220 6.137 6.100 6.237 6.100 5.970 5.939 5.877 5.812 5.742 5.745 5.586 5.239 5.156 5.239 5.239 5.239 6.007
3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T 3 T T T 3 T	19 20 21 24 26 27	259.26 0.07 240.49 0.07 184.09 0.07 178.13 0.05 172.74 0.05 167.69 0.05 154.67 0.05 147.11 0.05 143.67 0.05 140.40 0.05 137.21 0.05 134.23 0.05 131.37 0.05	259.48 -0.09 240.86 -0.15 184.26 -0.09 178.31 -0.10 172.85 -0.07 167.82 -0.08 154.70 -0.02 147.20 -0.06 143.74 -0.05 140.46 -0.04 137.33 -0.08 134.35 -0.09 131.50 -0.10	259.48 -0.08 240.86 -0.15 184.25 -0.09 178.30 -0.10 172.85 -0.06 167.81 -0.07 154.68 -0.01 147.18 -0.05 143.73 -0.04 140.44 -0.03 137.31 -0.07 134.33 -0.07 131.48 -0.09	215.0 20.0	233.9 240.1 236.3 232.8 229.5 226.7 221.4 219.9 219.5 219.2 219.1 219.0 218.9	5.454 6.439 7.317 7.156 7.004 6.873 6.628 6.546 6.517 6.492 6.470 6.448 6.427

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D. %	Q COM	GROUP VEL. KM/S
3 T 32 3 T 33 3 T 34 3 T 37 3 T 38 3 T 41 3 T 42 3 T 46 3 T 47 3 T 54 3 T 57 3 T 58 3 T 59 3 T 62 3 T 65 3 T 65 3 T 65 3 T 68 3 T 72 3 T 73	128.68 0.05 126.16 0.05 123.75 0.05 116.89 0.05 114.66 0.05 108.87 0.05 107.04 0.05 100.56 0.05 99.08 0.05 89.90 0.07 86.41 0.07 85.33 0.07 84.35 0.07 84.35 0.07 81.44 0.07 78.69 0.07 75.42 0.07 73.16 0.07 72.36 0.07	128.78 -0.08 126.18 -0.02 123.70 0.04 116.84 0.04 114.74 -0.07 108.92 -0.05 107.13 -0.08 100.58 -0.02 99.09 -0.01 89.86 0.04 86.46 -0.06 85.39 -0.07 84.35 -0.00 81.39 0.06 78.66 0.03 76.14 0.06 75.35 0.10 73.08 0.11 72.36 0.00	128.76 -0.06 126.16 -0.00 123.68 0.06 116.82 0.06 114.72 -0.05 108.90 -0.03 107.10 -0.06 100.56 0.00 99.06 0.02 89.84 0.07 86.44 -0.03 85.37 -0.04 84.33 0.03 81.37 0.09 78.64 0.06 76.12 0.09 75.32 0.13 73.06 0.14 72.34 0.03		218.7 218.5 218.3 217.0 216.4 214.2 213.4 210.2 209.5 206.1 205.0 204.6 204.2 202.6 200.4 197.4 196.3 192.3 190.8	6.405 6.382 6.358 6.277 6.127 6.157 6.015 5.990 5.851 5.769 5.769 5.713 5.647 5.568 5.539 5.446 5.413
4 T 11 4 T 20 4 T 21 4 T 25 4 T 27 4 T 40 4 T 41 4 T 45 4 T 47 4 T 50 4 T 62 4 T 64 4 T 65 4 T 67 4 T 80 4 T 90 4 T 99 4 T 99	199.74 0.15 155.64 0.15 155.64 0.15 151.15 0.15 136.30 0.15 130.03 0.15 101.27 0.07 99.71 0.07 91.11 0.07 82.95 0.07 75.46 0.45 73.77 0.07 72.94 0.07 72.94 0.07 71.07 0.47 63.06 0.45 57.69 0.45 55.43 0.45 54.95 0.45 54.50 0.45 53.94 0.45	93.94 -0.16 91.27 -0.18 87.56 -0.11 83.06 -0.14 75.38 0.10 73.70 0.10 72.89 0.07 71.32 -0.35 62.77 0.45 57.67 0.03 55.49 -0.11 54.68 0.50 54.28 0.41	200.10 -0.18 155.72 -0.05 151.30 -0.10 136.15 0.11 129.88 0.11 101.39 -0.12 99.79 -0.08 93.90 -0.12 91.24 -0.14 87.52 -0.07 83.03 -0.10 75.36 0.14 73.68 0.13 72.86 0.10 71.30 -0.32 62.76 0.48 57.66 0.05 55.48 -0.09 54.66 0.52 54.27 0.43 53.88 0.10		221.1 231.7 232.2 231.6 231.1 219.9 219.3 217.3 217.3 217.9 219.1 219.0 218.2 217.6 216.5 206.5 197.8 192.1 189.6 188.3 187.0	4.726 7.482 7.493 7.162 6.998 6.352 6.320 6.206 6.185 6.164 6.082 6.051 6.034 5.998 5.740 5.516 5.381 5.323 5.294 5.265
5 T 38 5 T 40 5 T 41 5 T 42 5 T 43 5 T 45 5 T 46 5 T 47 5 T 50 5 T 51 5 T 52 5 T 55	97.11 0.07 94.12 0.07 92.65 0.07 91.34 0.07 89.97 0.07 88.64 0.07 87.47 0.07 86.26 0.07 85.08 0.07 81.60 0.07 80.55 0.07 79.52 0.07 76.52 0.07	97.25 -0.15 94.24 -0.13 92.80 -0.16 91.41 -0.07 90.05 -0.09 88.74 -0.11 87.46 0.01 86.22 0.04 85.02 0.07 81.60 0. 80.52 0.03 79.48 0.05 76.51 0.01	97.21 -0.10 94.20 -0.08 92.76 -0.12 91.37 -0.03 90.02 -0.05 88.71 -0.07 87.43 0.05 86.19 0.08 84.99 0.11 81.57 0.04 80.50 0.07 79.45 0.09 76.49 0.04		224.5 225.4 226.1 227.0 227.9 228.9 229.8 230.7 231.5 233.1 233.4 233.4 232.6	6.584 6.569 6.568 6.569 6.572 6.575 6.577 6.575 6.554 6.541 6.526 6.462

TABLE V (continued)

. (· /					
MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D. %	Q COM	GROUP VEL. KM/S
5 T 56 5 T 57 5 T 60 5 T 77 5 T 79 5 T 105 5 T 107 5 T 109 5 T 110 5 T 111 5 T 118	75.67 0.07 74.75 0.07 72.13 0.42 60.87 0.42 59.69 0.42 48.79 0.42 47.94 0.45 47.68 0.43 47.23 0.42 46.77 0.42 44.68 0.42	75.58 0.12 74.68 0.10 72.10 0.04 60.80 0.11 59.73 -0.07 48.76 0.07 48.09 -0.31 47.44 0.50 47.12 0.23 46.81 -0.09 44.76 -0.18	75.55 0.15 74.65 0.14 72.08 0.07 60.78 0.14 59.71 -0.03 48.75 0.09 48.08 -0.29 47.43 0.52 47.11 0.25 46.80 -0.07 44.75 -0.17		232.0 231.2 228.3 212.3 211.7 204.9 204.1 203.3 202.8 202.2 197.0	6.408 6.314 5.884 5.720 5.702 5.680 5.667 5.653
6 T 125 6 T 131 6 T 132 6 T 141 6 T 145 6 T 149	97.13 0.07 95.46 0.07 92.29 0.07 86.70 0.07 81.85 0.07 79.71 0.07 77.65 0.07 60.82 0.40 60.12 0.40 56.02 0.40 51.97 0.40 51.38 0.40 51.02 0.40 48.62 0.40 43.24 0.40 40.98 0.40 39.67 0.40 39.43 0.40 37.36 0.40 36.89 0.40 35.90 0.40 33.71 0.40	97.14 -0.01 95.49 -0.04 92.39 -0.11 86.80 -0.11 81.88 -0.04 79.65 0.07 77.56 0.12 60.98 -0.26 60.41 -0.48 55.72 0.54 52.18 -0.40 51.37 0.01 50.98 0.09 48.76 -0.29 42.98 0.62 40.97 0.04 39.59 0.19 39.37 0.14 37.52 -0.41 36.76 0.35 36.04 -0.41 35.20 -0.04 33.82 -0.32	97.10 0.03 95.46 0.01 92.35 -0.07 86.76 -0.07 81.85 -0.01 79.62 0.11 77.53 0.15 60.96 -0.23 60.39 -0.44 55.70 0.57 52.16 -0.37 51.36 0.04 50.96 0.12 48.75 -0.26 42.96 0.65 40.96 0.06 39.58 0.21 39.37 0.16 37.51 -0.40 36.76 0.37 36.04 -0.39 35.19 -0.02 33.82 -0.31		233.1 233.7 235.6 239.9 241.7 241.3 239.9 223.3 223.5 222.9 216.7 216.1 212.9 207.2 204.5 202.4 202.1 197.9 195.2 191.9 176.8	7.081 7.007 6.941 6.868 6.811 6.740 6.201 6.201 6.027 5.997 5.982 5.724 5.667 5.628 5.620 5.526 5.460 5.379 5.259
7 T 8 7 T 34 7 T 38 7 T 40 7 T 42 7 T 45 7 T 46 7 T 48 7 T 66 7 T 77 7 T 81 7 T 82 7 T 83 7 T 102 7 T 106 7 T 109 7 T 130 7 T 144	82.84 0.10	129.58 0.06 91.44 0.02 85.47 -0.02 82.85 -0.01 80.44 0.09 77.16 0.09 76.14 0.05 74.22 0.09 73.30 0.08 60.91 -0.61 55.00 -0.54 53.16 -0.24 52.73 0.06 52.30 -0.29 45.38 -0.14 44.16 0.22 43.29 -0.41 38.22 0.29 35.51 0.39	129.50 0.13 91.40 0.06 85.44 0.01 82.82 0.03 80.41 0.13 77.13 0.13 76.11 0.09 74.18 0.13 73.27 0.13 60.88 -0.57 54.98 -0.50 53.15 -0.21 52.71 0.09 52.28 -0.26 45.37 -0.11 44.15 0.25 43.28 -0.38 38.21 0.32 35.50 0.41		211.2 246.6 249.5 248.6 242.8 241.1 235.9 232.6 227.2 223.8 223.1 222.5 222.4 221.1 219.4 207.7 206.0	7.701 7.494 7.313 7.149 6.938 6.874 6.757 6.704 6.488

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %	ISOTROPIC PERIOD DEV SEC %	Q OBS VALUE S.D. %	Q COM	GROUP VEL. KM/S
7 T 151 7 T 152 7 T 165 7 T 178 7 T 187 7 T 191	34.43 0.38 34.23 0.38 32.18 0.38 30.45 0.38 29.37 0.38 28.75 0.38	34.30 0.37 34.14 0.27 32.15 0.12 30.43 0.06 29.40 -0.09 28.97 -0.79	34.30 0.39 34.13 0.29 32.14 0.13 30.43 0.07 29.40 -0.08 28.97 -0.79		204.1 203.8 197.4 186.7 177.3 173.0	5.643 5.637 5.491 5.228 5.023 4.940
8 T 9 8 T 14 8 T 75 8 T 88 8 T 92 8 T 93 8 T 94 8 T 116 8 T 121 8 T 123 8 T 125 8 T 173 8 T 188 8 T 193 8 T 193 8 T 202 8 T 212 8 T 216	47.99 0.38 46.70 0.38 46.58 0.38 46.09 0.38 45.64 0.38 39.88 0.38 38.79 0.38 38.15 0.38 37.85 0.38 30.10 0.38 28.26 0.38 27.70 0.38 27.45 0.38 26.84 0.38	48.23 -0.49 46.79 -0.19 46.44 0.29 46.10 -0.02 45.77 -0.29 39.92 -0.10 38.76 0.08 38.32 -0.42 37.88 -0.06 30.04 0.21 28.26 -0.02 27.72 -0.07 27.51 -0.22 26.80 0.13	113.79 0.03 109.93 -0.26 53.57 -0.46 48.21 -0.46 46.77 -0.15 46.43 0.32 46.09 0.01 45.75 -0.26 39.91 -0.06 38.75 0.11 38.30 -0.39 37.87 -0.03 30.03 0.22 28.26 -0.01 27.72 -0.06 27.51 -0.21 26.80 0.14 25.89 0.14 25.55 -0.49		202.3 204.9 227.6 231.3 231.6 231.4 230.9 230.4 217.4 219.3 220.1 220.7 199.2 195.7 193.4 192.3 187.4 178.9 175.3	1.967 2.957 6.391 6.393 6.362 6.348 6.332 6.314 5.977 6.003 6.013 6.019 5.551 5.585 5.552 5.530 5.413 5.052
9 T 10 9 T 84 9 T 99 9 T 103 9 T 104 9 T 105 9 T 130 9 T 135 9 T 136 9 T 138 9 T 140 9 T 183 9 T 185 9 T 194 9 T 211 9 T 217 9 T 220 9 T 229 9 T 237 9 T 241	42.76 0.37 41.76 0.37 41.67 0.37 41.24 0.37 40.86 0.37 35.59 0.37 34.77 0.37 34.51 0.37 34.08 0.37	42.91 -0.36 41.80 -0.11 41.53 0.34 41.27 -0.08 41.01 -0.36 35.58 0.04 34.66 0.32 34.48 0.08 34.14 -0.18 33.80 0.12 27.92 0.46	101.55 -0.26 47.80 -0.25 42.89 -0.31 41.79 -0.07 41.52 0.38 41.25 -0.04 40.99 -0.32 35.57 0.07 34.65 0.35 34.47 0.12 34.13 -0.15 33.79 0.15 27.92 0.48 27.70 0.22 26.77 0.22 25.19 -0.00 24.68 -0.15 24.44 -0.44 23.74 -0.23 23.16 0.14 22.89 -0.32		213.3 237.9 223.6 223.3 223.7 224.2 224.8 219.9 214.8 214.1 212.9 212.1 198.9 195.6 194.5 193.6 189.4 183.5 180.1	2.032 6.579 6.188 6.171 6.175 6.182 6.191 6.019 5.870 5.835 5.661 5.642 5.566 5.461 5.399 5.299 5.167 5.089
10 T 11 10 T 18 10 T 109 10 T 113 10 T 115 10 T 117	91.24 0.36 87.29 0.36 38.80 0.36 38.03 0.36 37.70 0.36 37.10 0.36	91.07 0.19 87.41 -0.14 38.90 -0.25 37.95 0.22 37.49 0.55 37.06 0.11	91.00 0.26 87.35 -0.07 38.88 -0.22 37.93 0.26 37.48 0.58 37.04 0.14		228.9 231.1 236.8 233.9 231.6 229.0	2.045 3.182 6.453 6.386 6.334 6.276

TABLE V (continued)

MODE	OBSERVATION PERIOD S.D. SEC %	ANISOTROPIC PERIOD DEV SEC %		Q OBS VALUE S.D. %	Q COM	GROUP VEL. KM/S
10 T 118 10 T 134 10 T 144 10 T 149 10 T 152 10 T 154 10 T 199 10 T 202 10 T 210 10 T 213 10 T 214 10 T 233 10 T 245 10 T 262 10 T 265	34.01 0.36 32.16 0.36 31.52 0.36 30.94 0.36 30.75 0.36 25.79 0.36 25.42 0.36 24.79 0.36 24.52 0.36 24.34 0.36 22.81 0.36 21.85 0.36 20.98 0.36	30.68 0.22 25.54 0.95 25.27 0.57 24.58 0.83 24.33 0.76 24.25 0.37 22.81 0.02	36.83 -0.14 33.80 0.60 32.16 0. 31.40 0.39 30.96 -0.07 30.67 0.24 25.54 0.97 25.27 0.59 24.58 0.84 24.33 0.77 24.25 0.38 22.81 0.02 21.99 -0.63 20.95 0.12 20.78 -0.16		227.7 220.3 221.9 219.0 216.5 214.7 203.1 201.8 199.7 199.3 199.2 195.9 191.7 182.9 180.9	6.000 6.055 6.035 6.007 5.985 5.614 5.574 5.511 5.502 5.500 5.480 5.395
11 T 13 11 T 20	82.63 0.35 79.27 0.35	82.29 0.41 79.37 - 0.12	82.21 0.50 79.29 - 0.03		221.9 219.9	2.067 3.035
12 T 14 12 T 22	75.81 0.35 72.62 0.35	75.74 0.09 72.91 -0.39	75.67 0.19 72.84 -0.31		216.1 220.9	2.021
13 T 15 13 T 24		69.97 0.10 67.19 -0.26	69.91 0.19 67.14 -0.18		226.5 229.1	2.062 3.170
14 T 16 14 T 25		64.98 0.19 62.70 - 0.29	64.92 0.28 62.65 - 0.21		222.2	1.983 2.970
15 T 17 15 T 27	60.79 0.34 58.33 0.34	60.83 - 0.06 58.59 - 0.45	60.78 0.03 58.55 - 0.37		216.5 222.8	1.960 3.074
16 T 18 16 T 29	57.03 0.34 54.67 0.34	57.02 0.01 54.77 - 0.19	56.98 0.08 54.74 - 0.12		229.7 234.3	2.035 3.177
17 T 20 17 T 31	53.54 0.34 51.45 0.34	53.40 0.26 51.46 -0.02	53.36 0.34 51.41 0.06		228.5 223.9	2.081 3.048
18 T 21 18 T 33	50.59 0.33 48.58 0.33	50.53 0.11 48.69 -0.23	50.48 0.20 48.65 -0.14		216.8	1.961 3.028

between theory and observation. The uncorrected data are also given.

The parameter T^* is equal to the ratio of the travel time to Q of a given phase. In addition to its application in calculations of a change in the spectrum of a phase, it can be used to correct the theoretical travel times computed at a certain reference frequency (1 s in our case) to the frequency appropriate for the observed waveform. The for-

mula is

$$T_{corr} = T_{\text{ref}} - \frac{\ln f}{\pi} \cdot T^*$$

If we assume, for example, that the appropriate frequency for observations of the travel times of the S-waves by Hales and Roberts (1970) is 0.2 Hz, then at 30° distance the correction is 2 s and at 90°, 3 s. The same approach can be used to

TABLE VI a P travel times: global average from ISC data. Baseline correction -1.88 s; slope -0.0085 s deg $^{-1}$

T OBS SEC SEC SEC SEC SEC SEC/DEG SEC SEC/DEG 25.00 327.09 325.00 0.06 325.08 -0.09 9.135 324.74 0.26 9.128 26.00 336.31 334.20 0.06 334.19 0.01 9.083 333.84 0.36 9.075 27.00 345.43 343.31 0.06 343.25 0.06 9.021 342.88 0.43 9.011 28.00 354.38 352.26 0.06 352.23 0.03 8.947 351.85 0.41 8.936 29.00 363.32 361.18 0.06 361.14 0.04 8.864 360.75 0.43 8.851 30.00 372.14 370.00 0.06 369.98 0.03 8.810 369.59 0.41 8.807 31.00 381.05 378.90 0.06 378.78 0.12 8.806 378.40 0.50 8.797 32.00 389.89 387.74 0.06 387.56 0.17 8.765 387.18 0.56 8.758 33.00 398.49 396.32 0.06 396.31 0.02 8.718 395.91 0.41 8.712 34.00 407.28 405.11 0.06 405.01 0.10 8.668 404.60 0.51 8.658 35.00 415.90 413.72 0.06 413.64 0.08 8.614 413.23 0.49 8.608 36.00 424.48 422.29 0.06 422.23 0.07 8.556 421.81 0.48 8.549	
26.00 336.31 334.20 0.06 334.19 0.01 9.083 333.84 0.36 9.075 27.00 345.43 343.31 0.06 343.25 0.06 9.021 342.88 0.43 9.011 28.00 354.38 352.26 0.06 352.23 0.03 8.947 351.85 0.41 8.936 29.00 363.32 361.18 0.06 361.14 0.04 8.864 360.75 0.43 8.851 30.00 372.14 370.00 0.06 369.98 0.03 8.810 369.59 0.41 8.807 31.00 381.05 378.90 0.06 378.78 0.12 8.806 378.40 0.50 8.797 32.00 389.89 387.74 0.06 387.56 0.17 8.765 387.18 0.56 8.758 33.00 398.49 396.32 0.06 396.31 0.02 8.718 395.91 0.41 8.712 34.00 407.28 405.11 0.06 405.01 0.10 8.668 404.60 0.51<	SEC
27.00 345.43 343.31 0.06 343.25 0.06 9.021 342.88 0.43 9.011 28.00 354.38 352.26 0.06 352.23 0.03 8.947 351.85 0.41 8.936 29.00 363.32 361.18 0.06 361.14 0.04 8.864 360.75 0.43 8.851 30.00 372.14 370.00 0.06 369.98 0.03 8.810 369.59 0.41 8.807 31.00 381.05 378.90 0.06 378.78 0.12 8.806 378.40 0.50 8.797 32.00 389.89 387.74 0.06 387.56 0.17 8.765 387.18 0.56 8.758 33.00 398.49 396.32 0.06 396.31 0.02 8.718 395.91 0.41 8.658 34.00 407.28 405.11 0.06 405.01 0.10 8.668 404.60 0.51 8.658 35.00 415.90 413.72 0.06 413.64 0.08 8.614 413.23 0.49<	0.9
29.00 363.32 361.18 0.06 361.14 0.04 8.864 360.75 0.43 8.851 30.00 372.14 370.00 0.06 369.98 0.03 8.810 369.59 0.41 8.807 31.00 381.05 378.90 0.06 378.78 0.12 8.806 378.40 0.50 8.797 32.00 389.89 387.74 0.06 387.56 0.17 8.765 387.18 0.56 8.758 33.00 398.49 396.32 0.06 396.31 0.02 8.718 395.91 0.41 8.712 34.00 407.28 405.11 0.06 405.01 0.10 8.668 404.60 0.51 8.658 35.00 415.90 413.72 0.06 413.64 0.08 8.614 413.23 0.49 8.608	0.9
30.00 372.14 370.00 0.06 369.98 0.03 8.810 369.59 0.41 8.807 31.00 381.05 378.90 0.06 378.78 0.12 8.806 378.40 0.50 8.797 32.00 389.89 387.74 0.06 387.56 0.17 8.765 387.18 0.56 8.758 33.00 398.49 396.32 0.06 396.31 0.02 8.718 395.91 0.41 8.712 34.00 407.28 405.11 0.06 405.01 0.10 8.668 404.60 0.51 8.658 35.00 415.90 413.72 0.06 413.64 0.08 8.614 413.23 0.49 8.608	0.9
32.00 389.89 387.74 0.06 387.56 0.17 8.765 387.18 0.56 8.758 33.00 398.49 396.32 0.06 396.31 0.02 8.718 395.91 0.41 8.712 34.00 407.28 405.11 0.06 405.01 0.10 8.668 404.60 0.51 8.658 35.00 415.90 413.72 0.06 413.64 0.08 8.614 413.23 0.49 8.608	0.9
33.00 398.49 396.32 0.06 396.31 0.02 8.718 395.91 0.41 8.712 34.00 407.28 405.11 0.06 405.01 0.10 8.668 404.60 0.51 8.658 35.00 415.90 413.72 0.06 413.64 0.08 8.614 413.23 0.49 8.608	0.9
34.00 407.28 405.11 0.06 405.01 0.10 8.668 404.60 0.51 8.658 35.00 415.90 413.72 0.06 413.64 0.08 8.614 413.23 0.49 8.608	0.9
35.00 415.90 413.72 0.06 413.64 0.08 8.614 413.23 0.49 8.608	0.9
36.00 424.48 422.29 0.06 422.23 0.07 8.556 421.81 0.48 8.549	0.9
	0.9
37.00 432.91 430.71 0.06 430.75 -0.05 8.496 430.33 0.38 8.488 38.00 441.43 439.22 0.06 439.22 0.00 8.434 438.79 0.43 8.428	0.9 1.0
39.00 449.79 447.57 0.06 447.62 -0.05 8.369 447.18 0.39 8.360	1.0
40.00 458.20 455.97 0.06 455.96 0.01 8.303 455.51 0.46 8.297	1.0
41.00 466.49 464.26 0.06 464.23 0.02 8.235 463.77 0.48 8.228 42.00 474.66 472.42 0.06 472.44 -0.02 8.166 471.97 0.45 8.159	1.0 1.0
42.00 474.66 472.42 0.06 472.44 -0.02 8.166 471.97 0.45 8.159 43.00 482.77 480.52 0.06 480.57 -0.05 8.096 480.09 0.43 8.090	1.0
44.00 490.85 488.59 0.06 488.64 -0.05 8.026 488.15 0.44 8.015	1.0
45.00 498.84 496.57 0.06 496.61 -0.04 7.955 496.13 0.45 7.948	1.0
46.00 506.80 504.52 0.06 504.53 -0.01 7.883 504.04 0.48 7.873 47.00 514.53 512.25 0.06 512.38 -0.13 7.811 511.88 0.37 7.804	1.0
48.00 522.38 520.09 0.06 520.15 -0.06 7.738 519.64 0.45 7.728	1.0
49.00 530.14 527.83 0.06 527.85 -0.02 7.665 527.34 0.50 7.659	1.0
50.00 537.70 535.39 0.06 535.48 -0.09 7.592 534.96 0.43 7.581	1.0
51.00 545.36 543.04 0.06 543.04 0.00 7.519 542.51 0.53 7.513 52.00 552.81 550.48 0.06 550.52 -0.04 7.446 549.98 0.50 7.436	1.1
53.00 560.22 557.88 0.06 557.93 -0.04 7.372 557.38 0.50 7.366	1.1
54.00 567.59 565.25 0.06 565.26 -0.01 7.300 564.71 0.54 7.292	1.1
55.00 574.88 572.52 0.06 572.52 0.00 7.226 571.97 0.55 7.219 56.00 582.06 579.70 0.06 579.71 -0.02 7.153 579.15 0.55 7.147	1.1
56.00 582.06 579.70 0.06 579.71 -0.02 7.153 579.15 0.55 7.147 57.00 589.28 586.91 0.06 586.83 0.08 7.080 586.26 0.64 7.072	1.1
58.00 596.25 593.87 0.06 593.87 0.00 7.007 593.29 0.58 7.002	1.1
59.00 603.26 600.87 0.06 600.84 0.03 6.934 600.26 0.61 6.925	1.1
60.00 610.20 607.80 0.06 607.73 0.07 6.861 607.15 0.65 6.855 61.00 616.99 614.58 0.06 614.56 0.02 6.788 613.97 0.61 6.782	1.1

correct the differential travel times, such as ScS-S, and in this case the parameter T^* has a meaning only in terms of this specific application. This illustrates the large effect on both baseline and tilt that can occur by this process alone. Each source region has its own upper mantle velocity and Q and these variations contribute to variations in

these "static" values from one travel-time study to another.

The observed travel times from Tables VIa-c are compared with the results of calculations for model PREM in Fig. 1. After the global average of the ISC data is corrected for baseline and slope, the fit of the predicted travel times is very good to

TABLE VI a (continued)

DELTA		ERVATION		ANISOTROPIC			ISOTROPIC			
222	T OBS	T CORR ERRO			P		(O-C)	P		
DEG	SEC	SEC SEC	C SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC	
62.00	623.75	621.33 0.00	621.31	0.02	6.715	620.71	0.62	6.709	1.1	
63.00	630.38	627.96 0.00			6.643	627.39	0.57	6.638	1.1	
64.00	636.98	634.55 0.06			6.570	633.99	0.56	6.562	1.1	
65.00	643.43	640.99 0.00			6.497	640.52	0.47	6.492	1.1	
66.00	649.96	647.51 0.06			6.425	646.97	0.54	6.419	1.2	
67.00	656.40	653.94 0.00			6.352	653.35	0.59	6.346	1.2	
68.00	662.81	660.35 0.06		_	6.279	659.66	0.69	6.274	1.2	
69.00	668.96	666.49 0.06			6.206	665.90	0.59	6.199	1.2	
70.00	675.11	672.63 0.06			6.133	672.06	0.56	6.128	1.2	
71.00	681.31	678.82 0.06		0.02	6.061	678.15	0.67	6.056	1.2	
72.00	687.30	684.81 0.06			5.987	684.17	0.63	5.980	1.2	
73.00	693.27	690.76 0.00			5.914	690.12	0.64	5.909	1.2	
74.00	699.15	696.63 0.00			5.841	695.99	0.64	5.836	1.2	
75.00	704.94	702.42 0.06			5.767	701.79	0.63	5.760	1.2	
76.00	710.72	708.19 0.06		0.00	5.693	707.51	0.68	5.688	1.2	
77.00	716.41	713.87 0.00	713.84	0.03	5.619	713.16	0.71	5.614	1.2	
78.00	721.95	719.40 0.00	719.42	-0.02	5.544	718.74	0.66	5.539	1.2	
79.00	727.44	724.88 0.06	724.93	-0.04	5.469	724.24	0.64	5.464	1.2	
80.00	732.90	730.33 0.00	730.36	-0.02	5.394	729.67	0.66	5.389	1.2	
81.00	738.33	735.75 0.00		0.04	5.318	735.02	0.74	5.313	1.2	
82.00	743.55	740.97 0.00			5.241	740.30	0.67	5.236	1.2	
83.00	748.75	746.16 0.06		-0.04	5.165	745.49	0.67	5.160	1.2	
84.00	753.93	751.33 0.06			5.088	750.61	0.72	5.083	1.2	
85.00	758.87	756.26 0.06			5.010	755.66	0.60	5.005	1.3	
86.00	763.92	761.30 0.06			4.931	760.62	0.68	4.926	1.3	
87.00	768.89	766.26 0.06		0.03	4.852	765.51	0.75	4.847	1.3	
88.00	773.64	771.00 0.06			4.772	770.32	0.69	4.767	1.3	
89.00	778.36	775.72 0.06			4.691	775.04	0.67	4.686	1.3	
90.00	783.17	780.52 0.06		0.09	4.617	779.70	0.82	4.614	1.3	
91.00	787.79	785.13 0.06		0.08	4.597	784.33	0.80	4.595	1.3	
92.00	792.40	789.73 0.06		0.07	4.606	788.94	0.78	4.601	1.3	
93.00	797.02	794.34 0.06		0.09	4.606	793.53	0.80	4.591	1.3	
94.00	801.66	798.97 0.06		0.13	4.573	798.11	0.86	4.566	1.3	
95.00	806.04	803.35 0.06			4.544	802.67	0.68	4.539	1.3	
96.00	810.63	807.93 0.06			4.513	807.19	0.73	4.509	1.3	
97.00	815.26	812.55 0.06		0.12	4.479	811.68	0.86	4.477	1.3	
98.00	819.67	816.95 0.06	816.89	0.06	4.444	816.15	0.80	4.442	1.3	

distances as short as 20° ; in particular, the 24° discontinuity is well matched. At shorter distances, the difference between the upper mantle velocity of model PREM (8.2 km s⁻¹) and the apparent velocity of the P_n phase from the ISC data (\sim 8.0 km s⁻¹) leads to a several second difference. The data of Hales et al. (1968) and Herrin et al. (1968) show differences in slope of opposite sign with respect to PREM, but reproduce well the details of the travel–time curve.

The surface focus S-wave travel times of Gogna

et al. (1981, Table VIk) and Hales and Roberts (1970, Table VIm) are compared with the global average of the ISC data and SV and SH travel times of the PREM model in Fig. 2. The overall shape of the SV first arrival travel times matches that of the ISC data well up to a distance of approximately 80°. In a distance range from 30 to 80° all three data sets are in reasonable agreement if allowance for tilt and baseline corrections are made. Beyond 80°, the shape of the SV and SH travel–time curves are most consistent with the data of Hales and Roberts.

TABLE VI b P travel times: Hales et al. (1968). Baseline correction -1.18 s; slope 0.0085 s deg $^{-1}$

DELTA	OBS	ERVATION	AN	ISOTRO	PIC	IS	T*		
	T OBS	T CORR ERF	ROR T COMP	(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC SE	EC SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
27.00	343.98	343.04 0.3			9.021	342.88	0.15	9.011	0.9
29.00	362.02	361.09 0.3			8.864	360.75	0.34	8.851	0.9
31.00	379.89	378.98 0.3	-		8.806	378.40	0.58	8.797	0.9
33.00	397.50	396.61 0.3		_	8.718	395.91	0.70	8.712	0.9
35.00	414.84	413.97 0.3			8.614	413.23	0.73	8.608	0.9
37.00	431.90	431.04 0.3	-		8.496	430.33	0.71	8.488	0.9
39.00	448.70	447.86 0.3			8.369	447.18	0.68	8.360	1.0
41.00	465.21	464.39 0.3		-	8.235	463.77	0.61	8.228	1.0
43.00	481.45	480.64 0.3			8.096	480.09	0.55	8.090	1.0
45.00	497.41	496.62 0.3			7.955	496.13	0.50	7.948	1.0
47.00	513.09	512.32 0.3			7.811	511.88	0.44	7.804	1.0
49.00	528.50	527.75 0.3			7.665	527.34	0.41	7.659	1.0
51.00	543.62	542.88 0.3			7.519	542.51	0.37	7.513	
53.00	558.46	557.74 0.3		-0.19	7.372	557.38	0.36	7.366	1.1
55.00	573.02	572.32 0.3		-0.20	7.226	571.97	0.35	7.219	1.1
57.00	587.30	586.62 0.3			7.080	586.26	0.36	7.072	1.1
59.00	601.30	600.63 0.3			6.934	600.26	0.37	6.925	1.1
61.00	615.00	614.35 0.3			6.788	613.97	0.38	6.782	1.1
63.00	628.43	627.80 0.3		-0.19		627.39	0.41	6.638	1.1
65.00	641.56	640.95 0.3	-	-0.18		640.52	0.43	6.492	1.1
67.00	654.41	653.81 0.3		-0.16	6.352	653.35	0.46	6.346	1.2
69.00	666.97	.0ر 666.39		-0.14	6.206	665.90	0.49	6.199	1.2
71.00	679.23	678.67 0.3		-0.13	6.061	678.15	0.52	6.056	1.2
73.00	691.21	690.66 0.3			5.914	690.12	0.54	5.909	1.2
75.00	702.90	702.37 0.3	-	-0.09		701.79	0.58	5.760	1.2
77.00	714.29	713.78 0.3		-0.06		713.16	0.62	5.614	1.2
79.00	725.39	724.90 0.3		-0.03		724.24	0.65	5.464	1.2
81.00	736.19	735.71 0.3			-	735.02	0.70	5.313	1.2
83.00	746.70	746.24 0.3				745.49	0.75	5.160	1.2
85.00	756.92	756.48 0.3			5.010	755.66	0.82	5.005	1.3
87.00	766.83	766.41 0.3			-	765.51	0.90	4.847	1.3
89.00	776.45	776.04 0.3			-	775.04	1.00	4.686	1.3
91.00	785.76	785.37 0.3		-		784.33	1.04	4.595	1.3
93.00	794.82	794.45 0.3	30 794.25	0.20	4.606	793.53	0.91	4.591	1.3

7. Discussion

When the upper mantle was allowed to be anisotropic, the inversion decreased the shear velocity of the LID and increased the velocity of the LVZ. The SH and SV velocities, although different, were individually almost continuous from the Moho to 220 km. It appeared that the LID, or seismic lithosphere, could not be resolved with the data being used. The shortest periods used in the

inversion were 61 and 126 s for fundamental model Rayleigh and Love waves, respectively. These modes have wavelengths of > 240 km so we can only determine average properties of the upper mantle. Short-period Rayleigh waves, < 20 s, suggest that SV in the uppermost mantle is about 4.6 km s⁻¹, 5% greater than the average upper mantle SV determined in this study.

Since the thickness of the LID and velocities in the LID and LVZ can be expected to vary with the

TABLE VI c P travel times: Herrin et al. (1968). Baseline correction -0.94 s; slope -0.0141 s deg $^{-1}$

DELTA	OBSERVATION			ANISOTROPIC			ISOTROPIC			
	T OBS	T CORR		T COMP	-	P	T COMP		P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
25.00	324.39	324.98	0 10	325.08	_0 11	9.135	324.74	0.23	9.128	0.9
26.00	333.63	334.20		334.19	0.01	9.083	333.84	0.37	9.075	0.9
27.00	342.71	343.27		343.25	0.02	9.021	342.88	0.38	9.011	0.9
28.00	351.68	352.23		352.23		8.947	351.85	0.37	8.936	0.9
29.00	360.60	361.14		361.14		8.864	360.75	0.38	8.851	0.9
30.00	369.51	370.03		369.98	0.05	8.810	369.59	0.44	8.807	0.9
31.00	378.38	378.88		378.78	0.10	8.806	378.40	0.48	8.797	0.9
32.00	387.19	387.68		387.56	0.12	8.765	387.18	0.50	8.758	0.9
33.00	395.96	396.44		396.31	0.13	8.718	395.91	0.53	8.712	0.9
34.00	404.68	405.14		405.01	0.14	8.668	404.60	0.55	8.658	0.9
35.00	413.34	413.79		413.64	0.15	8.614	413.23	0.56	8.608	0.9
36.00	421.95	422.38		422.23	0.15	8.556	421.81	0.57	8.549	0.9
37.00	430.49	430.91		430.75	0.16	8.496	430.33	0.58	8.488	0.9
38.00	438.96	439.37		439.22	0.15	8.434	438.79	0.58	8.428	1.0
39.00	447.37	447.76		447.62	0.13	8.369	447.18	0.57	8.360	1.0
40.00	455.70	456.08	0.10	455.96	0.12	8.303	455.51	0.57	8.297	1.0
41.00	463.97	464.33	0.10	464.23	0.10	8.235	463.77	0.56	8.228	1.0
42.00	472.17	472.52	0.10	472.44	0.09	8.166	471.97	0.55	8.159	1.0
43.00	480.31	480.64	0.10	480.57	0.07	8.096	480.09	0.55	8.090	1.0
44.00	488.37	488.69	0.10	488.64	0.05	8.026	488.15	0.54	8.015	1.0
45.00	496.36	496.67	0.10,	496.61	0.05	7.955	496.13	0.54	7.948	1.0
46.00	504.28	504.57	0.10	504.53	0.04	7.883	504.04	0.53	7.873	1.0
47.00	512.12	512.40		512.38	0.03	7.811	511.88	0.52	7.804	1.0
48.00	519.89	520.16		520.15	0.00	7.738	519.64	0.51	7.728	1.0
49.00	527.58	527.83		527.85		7.665	527.34	0.49	7.659	1.0
50.00	535.20	535.44		535.48		7.592	534.96	0.48	7.581	1.0
51.00	542.74	542.97		543.04		7.519	542.51	0.46	7.513	1.1
52.00	550.22	550.42		550.52		7.446	549.98	0.44	7.436	1.1
53.00	557.62	557.81		557.93		7.372	557.38	0.43	7.366	1.1
54.00	564.95	565.13		565.26		7.300	564.71	0.42	7.292	1.1
55.00	572.21	572.38		572.52		7.226	571.97	0.41	7.219	1.1
56.00	579.40	579.55		579.71		7.153	579.15	0.40	7.147	1.1
57.00		-586.65		586.83		7.080	586.26	0.39	7.072	1.1
58.00	593.55	593.68		593.87		7.007	593.29	0.38	7.002	1.1
59.00	600.52	600.63		600.84		6.934	600.26	0.37	6.925	1.1
60.00	607.42	607.51		607.73		6.861	607.15	0.36	6.855	1.1
61.00	614.24	614.33	0.10	614.56	-0.24	6.788	613.97	0.35	6.782	1.1

age of the lithosphere we have chosen to treat the entire upper mantle to a depth of 220 km as a smooth entity.

The final model predicts significantly different travel times for SV and SH waves. The effect is most pronounced at short distances, $<25^{\circ}$, but is maintained at teleseismic distances. SH is faster by 1.16 s at 30° and 0.34 s at 90°. This, plus variations in Q and period, may contribute to the large

scatter which is typical of S-wave studies. Other contributors to S-wave scatter are: (1) the difficulty of identifying and picking later arrivals; (2) the longer period nature of S; (3) the fact that locations are based on P-wave times; and (4) the finiteness of natural sources and rupture velocities which are close to shear velocities.

As can be seen from Fig. 1 and the tables, PREM is an excellent fit to P-wave travel-time

DELTA	OBS	ERVATION	AN	ISOTROPIC		IS	ISOTROPIC		
	T OBS	T CORR ERROR	T COMP	(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
62.00	621.01	621.08 0.10	621.31	-0.23	6.715	620.71	0.36	6.709	1.1
63.00	627.71	627.76 0.10	627.99		6.643	627.39	0.37	6.638	1.1
64.00	634.35	634.38 0.10	634.60		6.570	633.99	0.40	6.562	1.1
65.00	640.91	640.94 0.10	641.13		6.497	640.52	0.42	6.492	1.1
66.00	647.41	647.42 0.10	647.59		6.425	646.97	0.45	6.419	1.2
67.00	653.85	653.84 0.10	653.98	-0.13	6.352	653.35	0.49	6.346	1.2
68.00	660.22	660.20 0.10	660.29	-0.10	6.279	659.66	0.53	6.274	1.2
69.00	666.51	666.48 0.10	666.53	-0.05	6.206	665.90	0.58	6.199	1.2
70.00	672.74	672.69 0.10	672.71	-0.01	6.133	672.06	0.63	6.128	1.2
71.00	678.88	678.82 0.10	678.80	0.02	6.061	678.15	0.67	6.056	1.2
72.00	684.94	684.86 0.10	684.83	0.04	5.987	684.17	0.69	5.980	1.2
73.00	690.91	690.82 0.10	690.78	0.04	5.914	690.12	0.70	5.909	1.2
74.00	696.81	696.70 0.10	696.65	0.05	5.841	695.99	0.71	5.836	1.2
75.00	702.63	702.51 0.10	702.46	0.05	5.767	701.79	0.73	5.760	1.2
76.00	708.38	708.25 0.10	708.19	0.07	5.693	707.51	0.74	5.688	1.2
77.00	714.07	713.92 0.10	713.84	0.08	5.619	713.16	0.76	5.614	1.2
78.00	719.67	719.51 0.10	719.42	0.09	5.544	718.74	0.77	5.539	1.2
79.00	725.19	725.02 0.10	724.93	0.09		724.24	0.78	5.464	1.2
80.00	730.63	730.45 0.10	730.36	0.09		729.67	0.78	5.389	1.2
81.00	736.00	735.80 0.10	735.71	0.09		735.02	0.78	5.313	1.2
82.00	741.29	741.07 0.10	740.99	0.08	-	740.30	0.78	5.236	1.2
83.00	746.49	746.26 0.10	746.20	0.07		745.49	0.77	5.160	1.2
84.00	751.61	751.36 0.10	751.32			750.61	0.75	5.083	1.2
85.00	756.63	756.37 0.10	756.37			755.66	0.71	5.005	1.3
86.00	761.56	761.29 0.10	761.34			760.62	0.67	4.926	1.3
87.00	766.43	766.15 0.10	766.23			765.51	0.64		1.3
88.00	771.25	770.95 0.10	771.04			770.32	0.63		1.3
89.00	776.01	775.69 0.10	775.77			775.04	0.65	4.686	1.3
90.00	780.72	780.39 0.10	780.43			779.70	0.69		1.3
91.00	785.40	785.06 0.10	785.05	0.01		784.33	0.73		1.3
92.00	790.06	789.70 0.10	789.66	0.05		788.94	0.76		1.3
93.00	794.69	794.32 0.10	794.25	0.07		793.53	0.78		1.3
94.00	799.30	798.91 0.10	798.84	0.07		798.11	0.80		1.3
95.00	803.89	803.49 0.10	803.40	0.09		802.67	0.82		1.3
96.00	808.47	808.05 0.10	807.93			807.19	0.86		1.3
97.00	813.04	812.61 0.10	812.43			811.68	0.93		1.3
98.00	817.60	817.16 0.10	816.89	0.27	4.444	816.15	1.01	4.442	1.3

data from about 22 to 90°. The simplified uppermantle structure we adopted is inappropriate for local and regional travel-time studies. In addition to a good fit to the travel times, PREM is also an excellent fit to $dt/d\Delta$ data. Gogna et al. (1981), hereafter GJS, tabulate results from a recent study. PREM fits $dt/d\Delta$ for P-waves, from this study, with an average error of only 0.004 s deg⁻¹, over the interval 40–77°. Maximum isolated errors are only 0.008 s deg⁻¹. Beyond 77° PREM deviates from GJS but is within the scatter of other studies

out to about 94°. At larger distances, $dt/d\Delta$ for PREM is up to 0.1 s deg⁻¹, low compared to the majority of recent data. This indicates that velocities in the lowermost mantle should be decreased slightly.

The $dt/d\Delta$ for S-waves for PREM falls in the midst of the rather widely-scattered published values in the distance range 30–40°. Compared to GJS the errors are 0.03 s deg⁻¹ (36–40°), 0.04 (41–51°), 0.03 (51–60°), 0.02 (61–70°), 0.05 (71–80°), 0.11 (81–90°) and 0.16 (91–95°). The correc-

TABLE VI d Deep focus (550 km) P travel times: Sengupta and Julian (1976). Baseline correction $0.67 \, \mathrm{s}$; slope $-0.0173 \, \mathrm{s} \, \mathrm{deg}^{-1}$

DELTA	OBS	ERVATION	ANISOTROPIC			ISOTROPIC			
	T OBS	T CORR ERROR	T COMP		P	T COMP		P	
DEG	SEC	SEC SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
23.00	263.30	263.57 0.30	262.87	0.70	8.888	262.68	0.89	8.883	0.6
25.00	279.90	280.13 0.30	280.61	-0.48	9.021	280.35	-0.22	8.812	0.6
27.00	297.40	297.60 0.30	298.10		8.741	297.91		8.739	0.6
29.00	315.40	315.56 0.30	315.50	0.07	8.648	315.29	0.27	8.645	0.6
31.00	332.70	332.83 0.30	332.69	0.14	8.543	332.48	0.35	8.539	0.7
33.00	349.40	349.49 0.30	349.66	-0.17	8.428	349.45	0.05	8.427	0.7
35.00	366.40	366.46 0.30	366.40	0.06	8.307	366.17	0.29	8.305	0.7
37.00	382.90	382.92 0.30	382.89	0.03	8.181	382.66	0.26	8.175	0.7
39.00	399.10	399.09 0.30	399.13	-0.05	8.051	398.89	0.20	8.047	0.7
41.00	415.40	415.35 0.30	415.09	0.26	7.919	414.85	0.50	7.915	0.8
43.00	430.90	430.82 0.30	430.79	0.03	7.784	430.54	0.28	7.781	0.8
45.00	446.30	446.19 0.30	446.22	-0.04	7.648	445.97	0.22	7.645	0.8
47.00	461.70	461.55 0.30	461.38	0.17	7.511	461.12	0.43	7.509	0.8
49.00	476.40	476.22 0.30	476.26	-0.05	7.374	476.00	0.21	7.371	0.8
51.00	491.00	490.78 0.30	490.88	-0.10	7.236	490.60	0.18	7.234	0.8
53.00	505.30	505.05 0.30	505.21	-0.16	7.098	504.93	0.11	7.095	0.9
55.00	519.30	519.01 0.30	519.27	-0.25	6.960	518.98	0.03	6.957	0.9
57.00	533.40	533.08 0.30	533.05	0.03	6.823	532.76	0.32	6.819	0.9
59.00	546.90	546.54 0.30	546.56	-0.02	6.684	546.26	0.28	6.680	0.9
61.00	560.20	559.81 0.30	559.79	0.02	6.547	559.49	0.32	6.543	0.9
63.00	573.30	572.87 0.30	572.74	0.13	6.409	572.43	0.44	6.406	0.9
65.00	585.80	585.34 0.30	585.42	-0.08	6.270	585.11	0.23	6.268	0.9
67.00	598.40	597.90 0.30	597.82	0.08	6.131	597.51	0.40	6.129	0.9
69.00	610.40	609.87 0.30		•	5.992	609.62	0.25	5.988	1.0
71.00	622.30	621.73 0.30		-0.05	5.852	621.46	0.27	5.849	1.0
73.00	634.20	633.60 0.30	633.35	0.25	5.711	633.02	0.58	5.709	1.0
75.00	645.30	644.66 0.30	644.63	0.04	5.568	644.29	0.38	5.565	1.0
77.00	656.50	655.83 0.30	655.62	0.21	5.425	655.28	0.55	5.423	1.0
79.00	667.10	666.40 0.30	666.33	0.07	5.280	665.98	0.41	5.278	1.0
81.00	677.60	676.86 0.30	676.73	0.13	5.133	676.39	0.47	5.130	1.0
83.00	687.50	686.73 0.30	686.85		4.984	686.50	0.23	4.982	1.0
85.00	697.50	696.69 0.30	696.67	0.02	4.832	696.31	0.38	4.830	1.0
87.00	707.10	706.26 0.30	706.18	0.08	4.678	705.82	0.44	4.676	1.1
89.00	716.20	715.32 0.30	715.45	_	4.598	715.10	0.23	4.597	1.1
91.00	725.30	724.39 0.30	724.65	- 0.26	4.603	724.30	0.09	4.589	1.1

TABLE VIe PKP travel times, AB branch: Gee and Dziewonski (unpublished). Baseline correction -4.22 s

DELTA	OBSERVATION			ANISOTROPIC			IS	T*		
	T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
152.00	1000 E1	1205 20	0 50	1001: 00	0 20	11 454	1001 45	a a 11	11 450	
		1205.29		1204.90	0.39	4.151	1204.15	1.14	4.153	1.2
154.00	1217.67	1213.45	0.50	1213.27	0.18	4.214	1212.52	0.93	4.216	1.2
156.00	1226.08	1221.86	0.50	1221.75	0.11	4.262	1221.00	0.86	4.263	1.2
158.00	1234.60	1230.38	0.50	1230.31	0.07	4.301	1229.57	0.81	4.302	1.2
160.00	1243.25	1239.03	0.50	1238.95	0.08	4.332	1238.21	0.83	4.333	1.2
162.00	1251.52	1247.30	0.50	1247.63	-0.33	4.356	1246.90	0.41	4.357	1.2
164.00	1260.04	1255.82	0.50	1256.37	-0.55	4.376	1255.63	0.19	4.376	1.2
166.00	1269.17	1264.95	0.50	1265.14	-0.18	4.391	1264.40	0.55	4.392	1.3
168.00	1278.36	1274.14	0.50	1273.93	0.22	4.402	1273.20	0.95	4.404	1.3

TABLE VI f PKP travel times, BC branch: Gee and Dziewonski (unpublished). Baseline correction $-2.18\,\mathrm{s}$

DELTA	OBSERVATION			AN	ANISOTROPIC			ISOTROPIC			
	T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(0-C)	P		
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC	
46.00	1182.67	1180.50	0.30	1180.51	-0.01	3.025	1179.72	0.78	3.017	1.0	
47.00	1185.28	1183.11	0.30	1183.43	-0.32	2.822	1182.63	0.48	2.815	1.0	
48.00	1188.28	1186.11	0.30	1186.16	-0.06	2.660	1185.36	0.75	2.655	1.0	
49.00	1191.02	1188.85	0.30	1188.75	0.09	2.515	1187.94	0.91	2.510	1.0	
50.00	1193.42	1191.25	0.30	1191.20	0.05	2.385	1190.39	0.86	2.382	1.0	
51.00	1195.80	1193.63	0.30	1193.52	0.10	2.262	1192.70	0.92	2.257	1.0	
52.00	1198.04	1195.87	0.30	1195.72	0.14	2.147	1194.90	0.96	2.143	1.0	

TABLE VI g PKIKP travel times: Gee and Dziewonski (unpublished). Baseline correction $-2.18\,\mathrm{s}$

DELTA	OBS	SERVATIO	N	AN	ISOTRO	PIC	IS	OTROP:	IC	T*
	T OBS	T CORR	ERROR	T COMP	(0-C)	P	T COMP	(0-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
122.00	1136.94	1134.75	0.30	1134.78	-0.03	1.934	1133.97	0.79	1.933	1.0
124.00	1140.76	1138.57	0.30	1138.63	-0.06	1.929	1137.82	0.75	1.929	1.0
126.00		1142.50		1142.48	0.03	1.924	1141.66	0.84	1.923	1.0
128.00	1148.68	1146.49	0.30	1146.31	0.18	1.917	1145.50	0.99	1.917	1.0
130.00	1152.59	1150.40	0.30	1150.14	0.26	1.910	1149.33	1.07	1.910	1.0
132.00	1156.41	1154.22	0.30	1153.95	0.27	1.901	1153.14	1.08	1.900	1.0
134.00	1160.22	1158.03	0.30	1157.74	0.29	1.888	1156.93	1.10	1.888	1.1
136.00	1163.94	1161.75	0.30	1161.51	0.25	1.873	1160.69	1.06	1.872	1.1
138.00	1167.70	1165.51	0.30	1165.23	0.28	1.852	1164.42	1.10	1.852	1.1
152.00	1191.18	1188.99	0.30	1189.23	-0.24	1.506	1188.40	0.59	1.505	1.2
154.00	1194.30	1192.11	0.30	1192.17	-0.06	1.421	1191.33	0.78	1.421	1.3
156.00	1196.90	1194.71	0.30	1194.93	-0.22	1.329	1194.08	0.63	1.329	1.3
158.00	1199.68	1197.49	0.30	1197.49	0.00	1.232	1196.64	0.85	1.231	1.3
160.00	1202.02	1199.83	0.30	1199.85	-0.01	1.130	1199.00	0.83	1.129	1.3
162.00	1204.08	1201.89	0.30	1202.02	-0.13	1.022	1201.15	0.74	1.023	1.4
164.00	1205.78	1203.59	0.30	1203.98	-0.38	0.912	1203.09	0.50	0.913	1.4
166.00	1207.51	1205.32	0.30	1205.69	-0.37	0.801	1204.81	0.51	0.803	1.4
168.00	1209.34	1207.15	0.30	1207.20	-0.04	0.688	1206.30	0.85	0.690	1.4
170.00	1210.82	1208.63	0.30	1208.51	0.12	0.568	1207.57	1.06	0.577	1.4
172.00	1211.64	1209.45	0.30	1209.59	-0.14	0.447	1208.61	0.84	0.462	1.4

TABLE VI h PKiKP travel times: Engdahl et al. (1974). Baseline correction -2.59 s

		-								
DELTA	OBS	SERVATIO	N	AN	ISOTROI	PIC	IS	SOTROP:	IC	T*
	T OBS	T CORR	ERROR	T COMP	(0-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
1.00	995.80	993.21	0.30	992.87	0.34	0.022	992.03	1.18	0.022	0.9
10.00	996.90	994.31	0.30	993.98	0.33	0.224	993.14	1.17	0.224	0.9
20.00	1000.10	997.51	0.30	997.33	0.18	0.445	996.49	1.02	0.445	0.9
30.00	1005.70	1003.11	0.30	1002.85	0.26	0.659	1002.02	1.09	0.660	0.9
40.00	1013.20	1010.61	0.30	1010.49	0.12	0.865	1009.65	0.96	0.865	0.9
50.00	1022.80	1020.21	0.30	1020.12	0.09	1.060	1019.29	0.92	1.060	0.9
60.00	1034.20	1031.61	0.30	1031.63	-0.02	1.240	1030.80	0.81	1.241	0.9
70.00	1047.40	1044.81	0.30	1044.88	-0.06	1.405	1044.05	0.76	1.406	0.9
80.00	1062.20	1059.61	0.30	1059.69	-0.07	1.554	1058.86	0.75	1.554	0.9
90.00	1078.20	1075.61	0.30	1075.89	-0.28	1.684	1075.06	0.55	1.684	0.9
100.00	1095.50	1092.91	0.30	1093.29	-0.38	1.795	1092.48	0.44	1.795	1.0
110.00	1113.80	1111.21	0.30	1111.72	-0.50	1.886	1110.90	0.31	1.887	1.0

TABLE VI i Differential travel times, PcP-P: Engdahl and Johnson (1974)

DELTA	OBSERVATION			AN	ISOTRO	PIC	I	T*		
	T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(0-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
				_		_	_			
32.00	169.00	169.00	0.20	169.73	- 0.73	- 6.052	169.31	-0.31	-6.044	0.1
35.00	151.50	151.50	0.20	152.08	-0.58	-5.711	151.69	-0.19	-5.704	0.1
38.00	135.20	135.20	0.20	135.48	-0.28	- 5.354	135.11	0.09	- 5.346	0.0
41.00	119.20	119.20	0.20	119.95	-0.75	-4.992	119.62	-0.42	-4.983	0.0
44.00	105.10	105.10	0.20	105.50	-0.40	-4.632	105.21	-0.11	-4.620	0.0
47.00	92.00	92.00	0.20	92.16	-0.16	-4.279	91.87	0.13	-4.271	0.0
50.00	79.40	79.40	0.20	79.84	-0.44	- 3.935	79.58	-0.18	- 3.923	0.0
53.00	68.40	68.40	0.20	68.53	-0.13	-3.603	68.31	0.09	- 3.595	0.0
56.00	58.10	58.10	0.20	58.22	-0.12	-3.281	58.01	0.09	- 3.274	0.0
59.00	48.80	48.80	0.20	48.84	-0.04	-2.971	48.66	0.14	-2.961	-0.0
62.00	40.20	40.20	0.20	40.38	-0.18	-2.671	40.22	-0.02	-2.664	-0.0
65.00	32.70	32.70	0.20	32.81	-0.11	-2.382	32.66	0.04	-2.376	-0.0
75.00	13.40	13.40	0.20	13.58	-0.18	-1.475	13.51	-0.11	-1.468	-0.0

TABLE VI j Differential travel times, PKiKP-PcP: Engdahl et al. (1974)

DELTA	OBS	ERVATION	ANISOTRO	PIC	ISOTROPI	С	T*
	T OBS	T CORR ERRO	T COMP (O-C)	P	T COMP (O-C)	P	
DEG	SEC	SEC SEC	SEC SEC	SEC/DEG	SEC SEC	SEC/DEG	SEC
10.90	477.50	477.50 0.40	477.34 0.16	-0.784	477.34 0.16	-0.785	0.0
11.73	477.20	477.20 0.40	476.67 0.53	-0.842	476.67 0.53	-0.843 -	-0.0
21.34	464.90	464.90 0.40	465.54 -0.64	-1.457	465.53 -0.63	-1.459 -	.0.0
26.64	457.40	457.40 0.40	457.02 0.38	-1.752	457.01 0.39	-1.753 -	.0.0
27.71	454.80	454.80 0.40	455.12 -0.32	-1.807	455.10 -0.30	-1.808 -	.0.0
29.69	451.15	451.15 0.40	451.44 -0.29	-1.904	451.42 -0.27	-1.906 -	-0.0
30.50	450.40	450.40 0.40	449.89 0.51	-1.943	449.86 0.54	-1.944 -	-0.0
30.60	449.50	449.50 0.40	449.69 -0.19	-1.947	449.67 -0.17	-1.949 -	-0.0
31.08	448.20	448.20 0.40	448.75 -0.55	-1.969	448.73 -0.53	-1.971 -	-0.0
35.94	438.35	438.35 0.40	438.67 -0.32	-2.177	438.63 -0.28	-2.178 -	-0.1
36.04	438.75	438.75 0.40	438.45 0.30	- 2.181	438.41 0.34	-2.182 -	-0.1
38.17	433.50	433.50 0.40	433.72 -0.22	-2.261	433.68 -0.18	-2.263 -	-0.1
47.18	411.85	411.85 0.40	412.04 -0.19	/-2.533	411.99 -0.14	-2.534 -	-0.1

tion to a period of 5 s increases $dt/d\Delta$ of PREM by about 0.02 s deg^{-1} . Beyond 95°, PREM has $dt/d\Delta$ values which are 0.17 to 0.38 s deg^{-1} higher than GJS. This suggests that the shear velocities at the base of the mantle should be increased or that the structure in this region is more complicated than that given by PREM.

Considering all data sets, the discrepancy starts to set in at about 93° with $dt/d\Delta$ of 8.85 s deg⁻¹. This means that the error is in the lower 195 km of the mantle.

Travel times out to distances of about 20° vary substantially from region to region. For example,

in the GJS study, P-wave times are up to 3.2 s short and S-times up to 6.9 s short in the Hindu Kush area compared to previous travel-time studies, and the tilts from 30–90° differ by about 0.01 s deg⁻¹. This is of the order of the tilt correction required to reconcile PREM travel times with observed travel times.

Region D"

The lowermost mantle, region D" in Bullen's notation, clearly has a different velocity gradient than the rest of the lower mantle. For simplicity

TABLE VI k S travel times (SH): Gogna et al. (1981). Baseline correction -1.87 s; slope 0.0329 deg $^{-1}$

B traver t	inics (511). C	ogna et ai. ((1961). L	asenne com	ccnon	1.67 S, Stope	0.0329 deg	т*		
DELTA	OBS	SERVATION		ANISOTROPIC			ISOTROPIC			
	T OBS	T CORR	ERROR	T COMP	(0-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
32.00	701.46	700.64	0.75	701.81	_1 17	15.484	702.02	-1.38	15.474	4.0
33.00	717.27	716.48		717.27		15.429	717.46		15.417	4.0
34.00	732.96	732.21		732.67		15.369	732.85		15.360	4.1
35.00	748.52	747.80		748.00		15.305	748.19		15.296	4.1
36.00	763.94	763.25		763.28		15.236	763.44			4.2
37.00	779.20	778.55		778.47	0.07	15.163	778.63		15.149	4.2
38.00	794.34	793.72		793.60	0.12	15.086	793.75		15.076	4.2
39.00	809.38	808.79		808.65	0.14	15.005	808.78	0.01	14.995	4.3
40.00	824.33	823.77		823.60	0.17	14.922	823.73	0.04	14.907	4.3
41.00	839.18	838.66		838.49	0.17	14.835	838.60	0.06	14.825	4.4
42.00	853.94	853.45		853.29	0.16	14.746	853.38	0.07	14.734	4.4
43.00	868.60	868.14		867.99	0.16	14.654	868.06	0.08	14.640	4.4
44.00	883.16	882.74		882.60	0.14	14.560	882.66	0.07	14.549	4.5
45.00	897.63	897.24		897.12	0.12	14.464	897.17	0.07	14.450	4.5
46.00	912.00	911.64		911.52	0.13	14.366	911.56	0.09	14.355	4.5
47.00	926.26	925.93		925.83	0.11	14,266	925.86	0.07	14.253	4.6
48.00	940.43	940.14		940.04	0.10	14.165	940.07	0.07	14.151	4.6
49.00	954.49	954.23		954.15	0.08	14.061	954.16	0.07	14.050	4.6
50.00	968.46	968.23		968.16	0.07	13.957	968.17	0.07	13.940	4.7
51.00	982.31	982.12		982.07	0.04	13.851	982.05	0.07	13.840	4.7
52.00	996.07	995.91		995.86	0.05	13.744	995.84	0.07	13.729	4.8
53.00		1009.59		1009.55	0.04	13.637	1009.52	0.08	13.626	4.8
54.00		1023.17		1023.14	0.03	13.528	1023.08	0.08	13.513	4.8
55.00	1036.70	1036.64	0.75	1036.61	0.03	13.419	1036.55	0.09	13.408	4.9
56.00		1050.00		1049.98	0.02	13.308	1049.90	0.10	13.293	4.9
57.00		1063.25		1063.22	0.03	13.197	1063.15	0.11	13.186	4.9
58.00	-	1076.40		1076.37	0.03	13.085	1076.27	0.13	13.070	5.0
59.00		1089.44		1089.40	0.04	12.973	1089.28	0.16	12.962	5.0
60.00		1102.36		1102.31	0.05	12.860	1102.19	0.17	12.844	5.0
61.00	1115.04	1115.18	0.75	1115.11	0.07	12.747	1114.98	0.20	12.736	5.1
62.00	1127.70	1127.87	0.75	1127.80	0.07	12.632	1127.66	0.21	12.619	5.1
63.00		1140.46		1140.37	0.09	12.518	1140.23	0.24	12.507	5.1
64.00	1152.70	1152.93	0.75	1152.84	0.10	12.403	1152.67	0.26	12.392	5.2
65.00		1165.29		1165.18	0.11	12.287	1165.01	0.28	12.276	5.2
66.00	1177.23	1177.53	0.75	1177.41	0.12	12.172	1177.22	0.31	12.161	5.2

we have assumed that the top of this region is a second-order discontinuity. The inversion results in a nearly constant velocity in the lower 150 km of the mantle. The P-wave travel-times beyond 90° are at least 0.08 s fast relative to baseline- and tilt-corrected travel-time data. This is a small error but is indicated by all datasets. Apparently, the average time spent in region D" by rays at near grazing incidence should be longer by about 0.27%. This can be accomplished by reducing the P-

velocity by about $0.04~\rm km~s^{-1}$ or by decreasing the velocity gradient somewhere near 3630 km radius. The study of amplitudes and wave-forms should resolve the possibilities.

Radius of the core

The radius of the outer core in PREM is 3480 km. It may be noted that PcP-P times for the model are systematically slow with respect to the

TABLE VI k (continued)

TA OBSERVATION									
OBS	SERVATION	1	ANI		PIC	IS	EC	T*	
T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(O-C)	P	
SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
				_					5.3
_			_	-		_			5.3
			_						5.3
									5.4
									5.4
									5.4
					_				5.4
	•				-		_		5.5
	_				-				5.5
				7					5.5
								-	5.6
	-								5.6
									5.6
									5.7
									5.7
									5.7
					-	-			5.7
									5.8
			_						5.8
							_		5.8
							_		5.8
				_		-	_		5.9
									5.9
-		_		_				- :	5.9
			_						5.9
									6.0
	_							_	6.0
									6.0
							-		6.1
									6.1
									6.1
									6.1
									6.2
1519.07	1520.49	2.25	1522.72	-2.23	8.524	1522.26	-1.77	8.518	6.2
	0BS T 0BS SEC 1189.32 1201.30 1213.15 12248.90 1236.50 1248.00 1259.37 1270.62 1281.75 1303.63 1314.38 1325.01 1335.50 1345.87 1356.11 1366.22 1376.19 1386.04 1395.75 1405.33 1414.77 1424.08 1433.25 1442.28 1451.18 1459.94 1468.56 1477.04 1485.44 1493.85 1502.26 1510.67	OBSERVATION T OBS SEC 1189.32 1189.65 1201.30 1201.67 1213.15 1213.55 1224.89 1225.32 1236.50 1236.96 1248.00 1248.50 1259.37 1259.90 1270.62 1271.18 1281.75 1282.35 1292.75 1293.38 1303.63 1304.29 1314.38 1315.08 1325.01 1325.74 1335.50 1336.26 1345.87 1346.66 1356.11 1356.94 1366.22 1367.08 1376.19 1377.08 1386.04 1386.97 1395.75 1396.71 1405.33 1406.32 1414.77 1415.79 1424.08 1425.14 1433.25 1434.34 1442.28 1443.40 1451.18 1452.34 1459.94 1461.13 1468.56 1469.78 1477.04 1478.29 1485.44 1486.73 1493.85 1495.17 1502.26 1503.61 1510.67 1512.06	OBSERVATION T OBS T CORR ERROR	OBSERVATION AND T OBS SEC T CORR ERROR SEC T COMP SEC 1189.32 1189.65 0.75 1189.52 1201.30 1201.67 0.75 1201.52 1213.15 1213.55 0.75 1213.40 1224.89 1225.32 0.75 1225.15 1236.50 1236.96 0.75 1236.80 1248.00 1248.50 0.75 1248.33 1259.37 1259.90 0.75 1259.73 1270.62 1271.18 0.75 1282.19 1292.75 1293.38 0.75 1282.19 1292.75 1293.38 0.75 1282.19 1292.75 1293.38 0.75 1304.17 1314.38 1315.08 0.75 1325.66 1335.50 1336.26 0.75 1346.66 1356.11 1356.94 2.25 1356.98 1366.22 1367.08 2.25 1377.24 1386.04 1386.97 2.25 1387.18	OBSERVATION ANISOTROI T OBS SEC T CORR ERROR SEC T COMP (O-C) SEC 1189.32 1189.65 0.75 1189.52 0.13 1201.30 1201.67 0.75 1201.52 0.15 1213.15 1213.55 0.75 1225.15 0.17 1236.50 1236.96 0.75 1225.15 0.17 1236.50 1236.96 0.75 1225.15 0.17 1236.50 1236.96 0.75 1225.32 0.16 1248.00 1248.50 0.75 1248.33 0.17 1259.37 1259.90 0.75 1248.33 0.17 1270.62 1271.18 0.75 1282.19 0.16 1281.75 1282.35 0.75 1282.19 0.16 1292.75 1293.38 0.75 1282.19 0.16 1292.75 1293.38 0.75 1304.17 0.13 1314.38 1315.08 0.75 1349.97 0.11 1325.01 1325.74	OBSERVATION ANISOTROPIC T OBS T CORR ERROR SEC T COMP (0-C) P SEC SEC SEC SEC SEC SEC DEC/DEG 1189.32 1189.65 0.75 1189.52 0.13 12.055 1201.30 1201.67 0.75 1201.52 0.15 11.939 1213.15 1213.55 0.75 1213.40 0.15 11.821 1224.89 1225.32 0.75 1225.15 0.17 11.704 1236.50 1236.96 0.75 1236.80 0.16 11.586 1248.00 1248.50 0.75 1248.33 0.17 11.467 1259.37 1259.90 0.75 1248.33 0.17 11.467 1270.62 1271.18 0.75 1271.02 0.16 11.229 1281.75 1282.35 0.75 1282.19 0.16 11.09 1292.75 1293.38 0.75 1293.24 0.14 10.989 1303.63 1304.29	OBSERVATION ANISOTROPIC T COMP T OBS T CORR ERROR T COMP (O-C) P T COMP SEC SEC SEC SEC SEC/DEG SEC 1189.32 1189.65 0.75 1189.52 0.13 12.055 1189.33 1201.30 1201.67 0.75 1201.52 0.15 11.939 1201.31 1213.15 1213.55 0.75 1213.40 0.15 11.821 1213.18 1224.89 1225.32 0.75 1225.15 0.17 11.704 1224.93 1236.50 1236.96 0.75 1236.80 0.16 11.586 1236.56 1248.00 1248.50 0.75 1248.33 0.17 11.467 1248.08 1259.37 1259.90 0.75 1228.30 0.71 11.467 1248.08 1270.62 1271.18 0.75 1282.19 0.16 11.194 1229.16 1303.63 1304.29 0.75 1304.17 0.13	TOBS TOORN ERROR SEC SEC	TOBS TOORN ERROR SEC SEC

observations, indicating that the core should be slightly larger. The ScS-S times are also marginally too long. Taking into account the slower velocities which may exist in D", good agreement with these two datasets can be obtained with a core radius 1.7 km larger, or 3481.7 km.

Acknowledgements

Anton Hales was an interested observer at all stages of this study and we gratefully acknowledge his advice. We also acknowledge helpful correspondence with Sir Harold Jeffreys. John

Woodhouse participated in numerous discussions related to this work and assisted us in solving many problems. In particular, he derived equations for the travel times in a transversely isotropic medium and his note on this subject accompanies this report. Robert North made available to us his Love wave data prior to publication. This research was supported by National Science Foundation Grants No. EAR78-05353 (Harvard) and EAR77-14675 (California Institute of Technology). Contribution No. 3531 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125.

TABLE VI 1 S travel times (SV): Gogna et al. (1981). Baseline correction -0.29 s; slope 0.0188 s deg $^{-1}$

DELTA	OBS	SERVATION	N .	ANI	ISOTROI	PIC	IS	SOTROP	[C	T*
	T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
32.00	701.46	701.77	0.75	702.94	1 17	15.474	702.02	0.26	15.474	4.0
_	717.27	717.60		718.39		15.474	717.46	0.14	15.474	4.0
33.00	732.96			733.78		15.358	732.85	0.46		4.1
34.00		733.31 748.89		749.10			748.19		15.360	
35.00	748.52			, -		15.292		0.70	15.296	4.1
36.00	763.94	764.32		764.35	•	15.223	763.44	0.88	15.225	4.2
37.00	779.20	779.60		779.54	0.06	15.149	778.63	0.98	15.149	4.2
38.00	794.34	794.76		794.66	0.11	15.072	793.75	1.02	15.076	4.2
39.00	809.38	809.82		809.69	0.13	14.991	808.78	1.04	14.995	4.3
40.00	824.33	824.79		824.64	0.15	14.907	823.73	1.06	14.907	4.3
41.00	839.18	839.66		839.50	0.16	14.820	838.60	1.06	14.825	4.4
42.00	853.94	854.44		854.29	0.15	14.730	853.38	1.06	14.734	4.4
43.00	868.60	869.12		868.98	0.14	14.638	868.06	1.05	14.640	4.4
44.00	883.16	883.69		883.57	0.12	14.544	882.66	1.03	14.549	4.5
45.00	897.63	898.18		898.06	0.12	14.448	897.17	1.02	14.450	4.5
46.00	912.00	912.57		912.44	0.13	14.350	911.56	1.02	14.355	4.5
47.00	926.26	926.85	0.75	926.74	0.11	14.250	925.86	0.99	14.253	4.6
48.00	940.43	941.04	0.75	940.94	0.10	14.149	940.07	0.97	14.151	4.6
49.00	954.49	955.12	0.75	955.04	0.08	14.045	954.16	0.96	14.050	4.6
50.00	968.46	969.11		969.03	0.07	13.941	968.17	0.94	13.940	4.7
51.00	982.31	982.98	0.75	982.92	0.05	13.836	982.05	0.93	13.840	4.7
52.00	996.07	996.76	0.75	996.70	0.05	13.729	995.84	0.91	13.729	4.8
53.00	1009.72	1010.42	0.75	1010.38	0.04	13.621	1009.52	0.91	13.626	4.8
54.00	1023.26	1023.98	0.75	1023.94	0.04	13.512	1023.08	0.90	13.513	4.8
55.00	1036.70	1037.44	0.75	1037.40	0.04	13.403	1036.55	0.89	13.408	4.9
56.00	1050.03	1050.79	0.75	1050.76	0.03	13.293	1049.90	0.89	13.293	4.9
57.00	1063.25	1064.03	0.75	1063.98	0.04	13.182	1063.15	0.88	13.186	4.9
58.00		1077.16		1077.12	0.04	13.070	1076.27	0.89	13.070	5.0
59.00	_	1090.19		1090.13	0.06	12.958	1089.28	0.90	12.962	5.0
60.00	1102.26	1103.10	0.75	1103.03	0.07	12.845	1102.19	0.91	12.844	5.0
61.00		1115.89		1115.82	0.08	12.732	1114.98	0.91	12.736	5.1
62.00		1128.57		1128.48	0.09	12.619	1127.66	0.92	12.619	5.1
63.00		1141.15		1141.04	0.11	12.504	1140.23	0.93	12.507	5.1
64.00		1153.61		1153.50	0.11	12.389	1152.67	0.94	12.392	5.2
65.00		1165.95		1165.82	0.13	12.273	1165.01	0.94	12.276	5.2
66.00		1178.18		1178.04	0.14	12.158	1177.22	0.95	12.161	5.2
30.00		,		,			,	, ,		

Appendix. Differential kernels for perturbation of eigenfrequencies of normal modes in a transversely isotropic medium

Equations for differential kernels given by Backus and Gilbert (1967) can be easily expanded to accommodate transversely isotropic medium. A relative change in the squared eigenfrequency is

$$\frac{\delta\omega^2}{\omega^2} = \int_0^1 r^2 \, \mathrm{d}r \left(\delta\tilde{A} \cdot A + \delta C \cdot \tilde{C} + \delta F \cdot \tilde{F} + \delta L \cdot \tilde{L} + \delta N \cdot \tilde{N} + \delta \rho \cdot \tilde{R}\right) \tag{A1}$$

where A, C, F, N, and L are the five independent elastic constants as defined by Love (1927, p. 196). The problem of differential kernels for this case has been presented by Takeuchi and Saito (1972),

TABLE VI 1 (continued)

DELTA	OBSERVATION			AN	ISOTRO	PIC	I	T*		
	T OBS	T CORR		T COMP	(O-C)	P	T COMP		P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
67.00	1189.32	1190.29	0.75	1190.15	0.14	12.042	1189.33	0.96	12.042	5.3
68.00	1201.30	1202.29		1202.12	0.16	11.925	1201.31	0.98	11.929	5.3
69.00	1213.15	1214.15		1213.99	0.16	11.808	1213.18	0.97	11.809	5.3
70.00	1224.89	1225.91		1225.74	0.18	11.691	1224.93	0.98	11.693	5.4
71.00	1236.50	1237.54		1237.37	0.18	11.573	1236.56	0.98	11.576	5.4
72.00	1248.00			1248.88	0.18	11.454	1248.08	0.99	11.455	5.4
73.00	1259.37	1260.45		1260.27	0.18	11.336	1259.48	0.97	11.339	5.4
74.00		1271.72		1271.55	0.17	11.217	1270.75	0.96	11.219	5.5
75.00	1281.75	1282.87		1282.71	0.16	11.097	1281.91	0.95	11.099	5.5
76.00	1292.75	1293.89	0.75	1293.75	0.14	10.977	1292.96	0.93	10.980	5.5
77.00	1303.63	1304.78		1304.66	0.12	10.856	1303.87	0.91	10.856	5.6
78.00	1314.38	1315.55	0.75	1315.45	0.10	10.735	1314.66	0.89	10.737	5.6
79.00	1325.01	1326.20	0.75	1326.12	0.08	10.613	1325.34	0.86	10.616	5.6
80.00	1335.50	1336.71	0.75	1336.68	0.03	10.491	1335.89	0.82	10.491	5.7
81.00	1345.87	1347.10	0.75	1347.11	-0.01	10.367	1346.32	0.78	10.369	5.7
82.00	1356.11	1357.36	2.25	1357.41	-0.05	10.244	1356.63	0.73	10.246	5.7
83.00	1366.22	1367.49	2.25	1367.59	-0.10	10.120	1366.81	0.68	10.120	5.7
84.00		1377.48	2.25	1377.65	-0.18	9.994	1376.88	0.60	9.995	5.8
85.00	1386.04	1387.35		1387.58		9.868	1386.81	0.54	9.870	5.8
86.00	1395.75	1397.07		1397.38	-0.31	9.742	1396.62	0.45	9.743	5.8
87.00	1405.33	1406.67	2.25	1407.06	-0.39	9.614	1406.30	0.38	9.615	5.8
88.00		1416.13		1416.61		9.486	1415.84	0.29	9.487	5.9
89.00	1424.08	1425.46		1426.03	-0.57	9.357	1425.27	0.19	9.358	5.9
90.00	1433.25	1434.65		1435.32		9.227	1434.56	0.09	9.227	5.9
91.00				1444.48	•	9.095	1443.72	-0.02	9.096	5.9
92.00		1452.62		1453.51	-	8.963		-0.13	8.964	6.0
93.00	1459.94			1462.40		8.830	1461.65		8.831	6.0
94.00		1470.03		1471.17		8.702	1470.41		8.700	6.0
95.00		1478.53		1479.86		8.719	1479.12		8.666	6.1
96.00		1486.95		1488.52		8.798	1487.83		8.681	6.1
97.00		1495.38		1497.20		8.755	1496.50		8.653	6:1
98.00		1503.81		1505.87		8.626	1505.13	_	8.614	6.1
99.00		1512.24		1514.46	-	8.573	1513.72		8.568	6.2
100.00	1519.07	1520.66	2.25	1523.01	- 2.36	8.520	1522.26	-1.61	8.518	6.2

but their expressions are inconvenient to apply in our formulation of the parameters sought in inversion.

The expressions for the differential kernels in terms of the eigenfunctions for spheroidal modes are

$$\tilde{C} = \dot{U}^{2}$$

$$\tilde{A} = r^{-2} [2U - l(l+1)V]^{2}$$

$$\tilde{F} = 2r^{-1}\dot{U}[2U - l(l+1)V]$$

$$\tilde{L} = l(l+1)[\dot{V} + (U-V)/r]^{2}$$
(A2)

$$\tilde{N} = r^{-2} \{ (l+2)(l+1)l(l-1)V^2 - [2U - l(l+1)V]^2 \}$$

where the dot signifies differentiation with respect to the radius and the eigenfunctions are normalized

$$\omega^2 \int_0^1 \rho \left[U^2 + l(l+1)V^2 \right] r^2 dr = 1$$

For toroidal modes

$$\tilde{L} = (\dot{W} - W/r)^2$$

$$\tilde{N} = (l+2)(l-1)(W/r)^2$$
(A3)

TABLE VI m S travel times (SH): Hales and Roberts, (1970). Baseline correction -1.14 s; slope -0.0068 s deg $^{-1}$

DELTA		SERVATION		ANISOTROPIC			ISOTROPIC T COMP (O-C) P			
DEG	T OBS SEC	T CORR ER	ROR T COMP EC SEC	(O-C) SEC	P SEC/DEG	T COMP SEC	(O-C) SEC	P SEC/DEG	SEC	
30.00 31.00	671.97 687.09	670.62 0.1 685.73 0.1		-0. 12	15.580 15.534	670.98	- 0.35	15.567	3.9	
32.00	702.82	701.46 0.			15.484	686.52 702.02		15.524 15.474	4.0 4.0	
33.00	717.59	716.22 0.		-1.05	15.429	717.46		15.417	4.0	
34.00	733.43	732.05 0.			15.369	732.85		15.360	4.1	
35.00	748.55	747.17 0.		-0.84	15.305	748.19		15.296	4.1	
36.00	764.22	762.83 0.	75 763.28	-0.45	15.236	763.44	-0.61	15.225	4.2	
37.00	779.20	777.80 0.	778.47	-0.67	15.163	778.63	-0.82	15.149	4.2	
38.00	794.32	792.92 0.	75 793.60	-0.68	15.086	793.75	-0.83	15.076	4.2	
39.00	809.83	808.42 0.			15.005	808.78	_	14.995	4.3	
40.00	824.97	823.55 0.			14.922	823.73		14.90	4.3	
41.00	840.99	839.57 0.			14.835	838.60	0.97	14.825	4.4	
42.00	856.40	854.97 0.			14.746	853.38	1.59	14.734	4.4	
43.00	870.23	868.79 0.			14.654	868.06	0.73	14.640	4.4	
44.00	885.01	883.57 0.1			14.560	882.66	0.90	14.549	4.5	
45.00	899.50	898.05 0.			14.464	897.17	0.88	14.450	4.5	
46.00	914.02	912.56 0.			14.366	911.56	1.01	14.355	4.5	
47.00	927.50	926.04 0.			14.266	925.86	0.17	14.253	4.6	
48.00 49.00	941.12 955.42	939.65 0.° 953.94 0.°			14.165 14.061	940.07		14.151	4.6	
50.00	969.79	968.31 0.			13.957	954.16 968.17	0.14	14.050	4.6	
51.00	983.74	982.25 0.	-		13.851	982.05	0.14	13.940 13.840	4.7 4.7	
52.00	997.43	995.93 0.			13.744	995.84	0.20	13.729	4.8	
53.00	1011.42	1009.92 0.			13.637	1009.52	0.40	13.626	4.8	
54.00	1025.07	1023.56 0.		-	13.528	1023.08	0.47	13.523	4.8	
55.00	1038.33	1036.81 0.	_		13.419	1036.55	0.26	13.408	4.9	
56.00		1050.33 0.	_		13.308	1049.90	0.44	13.293	4.9	
57.00	1065.26	1063.73 0.		_	13.197	1063.15	0.58	13.186	4.9	
58.00		1076.26 0.			13.085	1076.27		13.070	5.0	
59.00	1091.24	1089.69 0.	75 1089.40	0.30	12.973	1089.28	0.41	12.962	5.0	
60.00	1104.06	1102.51 0.	75 1102.31	0.20	12.860	1102.19	0.32	12.844	5.0	
61.00	1116.50	1114.94 0.	75 1115.11	-0.17	12.747	1114.98	-0.04	12.736	5.1	
62.00	1129.56	1127.99 0.	75 1127.80	0.19	12.632	1127.66	0.34	12.619	5.1	
63.00	1142.41	1140.84 0.			12.518	1140.23	0.61	12.507	5.1	
64.00	1154.10	1152.52 0.	75 1152.84	-0.32	12.403	1152.67	- 0.15	12.392	5.2	

with the normalization

$$\omega^2 \int_0^1 \rho W^2 r^2 \, \mathrm{d}r = 1$$

The differential kernel for the density, \tilde{R} , is the same as given by Backus and Gilbert (1967).

As in our inversion we consider simultaneously periods of free oscillations and travel times of body waves, it is desirable to recast the problem in terms of the perturbations in velocities and a non-dimensional parameter η

$$V_{PH} = (A/\rho)^{1/2}$$

$$V_{PV} = (C/\rho)^{1/2}$$

$$V_{SH} = (N/\rho)^{1/2}$$

$$V_{SV} = (L/\rho)^{1/2}$$

$$\eta = F/(A-2L)$$
(A4)

TABLE VI m (continued)

DELTA	OBSERVATION			ANISOTROPIC			IS	T*		
	T OBS	T CORR E		T COMP	(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
(5.00	4466 76	1165 17 0		4465 40	0 00	40.00	4465 04		10.076	
65.00 66.00	1166.76	1165.17 0		1165.18		12.287	1165.01	0.17	12.276	5.2
	1178.97	1177.38 0		1177.41	_	12.172	1177.22	0.15	12.161	5.2
67.00		1189.05 0		1189.52	-	12.055	1189.33		12.042	5.3
68.00		1200.97 0		1201.52		11.939	1201.31	_	11.929	5.3
69.00		1213.10 0		1213.40	-	11.821	1213.18		11.809	5.3
70.00		1224.59 0		1225.15		11.704	1224.93		11.693	5.4
71.00		1235.66 0		1236.80		11.586	1236.56	-	11.576	5.4
72.00		1247.52 0		1248.33		11.467	1248.08		11.455	5.4
73.00		1259.24 0		1259.73		11.349	1259.48		11.339	5.4
74.00		1270.66 0		1271.02	_	11.229	1270.75	-	11.219	5.5
75.00		1282.53 0		1282.19	0.34	11.109	1281.91	0.61		5.5
76.00		1293.76 0		1293.24	0.52	10.989	1292.96	0.80	10.980	5.5
77.00	-	1303.90 0		1304.17		10.868	1303.87	0.03	10.856	5.6
78.00		1314.83 0		1314.97		10.747	1314.66	0.16	10.737	5.6
79.00	1326.97	1325.29 0		1325.66	_	10.625	1325.34	-0.05	10.616	5.6
80.00	1337.93	1336.24 0		1336.22	0.02	10.502	1335.89	0.35	10.491	5.7
81.00		1347.80 0		1346.66	1.14	10.379	1346.32	1.48	10.369	5.7
82.00	1358.61	1356.91 0		1356.98	-0.07	10.255	1356.63	0.28	10.246	5.7
83.00	1367.94	1366.23 2		1367.17	_	10.131	1366.81	- 0.58	10.120	5.7
84.00	1379.14	1377.42 2		1377.24	0.19	10.005	1376.88	0.55	9.995	5.8
85.00		1390.42 2		1387.18	3.24	9.879	1386.81	3.61	9.870	5.8
86.00		1398.58 2		1396.99	1.59	9.753	1396.62	1.96	9.743	5.8
87.00		1405.60 2		1406.68	-1.08	9.625	1406.30	-0.69	9.615	5.8
88.00	1419.57	1417.83 2		1416.24	1.58	9.496	1415.84	1.99	9.487	5.9
89.00		1426.69 2	-	1425.67	1.02	9.367	1425.27	1.42	9.358	5.9
90.00		1434.26 2		1434.98	-0.71	9.236	1434.56		9.227	5.9
91.00	1446.15	1444.39 2	.25	1444.15	0.24	9.105	1443.72	0.66	9.096	5.9
92.00	1455.30	1453.53 2	.25	1453.18	0.35	8.973	1452.75	0.78	8.964	6.0
93.00	1463.20	1461.42 2	.25	1462.09	-0.67	8.840	1461.65	-0.23	8.831	6.0
94.00	1473.47	1471.69 2	.25	1470.86	0.82	8.708	1470.41	1.27	8.700	6.0
95.00	1482.35	1480.56 2		1479.55	1.01	8.713	1479.12	1.44	8.666	6.1
96.00		1487.86 2		1488.22	-0.36	8.794	1487.83	0.03	8.681	6.1
97.00	1496.69	1494.89 2		1496.90		8.766	1496.50	-1.61	8.653	6.1
98.00	1505.38	1503.57 2	.25	1505.57	-2.00	8.631	1505.13	-1. 56	8.614	6.1

We seek an expression for a relative perturbation in a period of a normal mode in the form

$$\frac{\delta T}{T} = \int_{0}^{1} dr \left(\delta \rho R' + \delta v_{PV} \cdot \tilde{P}_{V} + \delta V_{PH} \cdot \tilde{P}_{H} + \delta V_{SV} \cdot \tilde{S}_{V} + \delta V_{SH} \cdot \tilde{S}_{H} + \delta \eta \cdot \tilde{E} \right)$$
(A5)

After simple algebraic transformations, the appropriate expressions are

$$\begin{split} R' &= -\tfrac{1}{2} r^2 \Big[\, \tilde{R} + V_{\rm PV}^2 \cdot \tilde{C} + \big(\tilde{A} + \eta \tilde{F} \big) V_{\rm PH}^2 \\ &\quad + \big(\, \tilde{L} - 2 \eta \tilde{F} \, \big) V_{\rm SV}^2 + \tilde{N} V_{\rm SH}^2 \Big] \\ \tilde{P}_{\rm V} &= - r^2 \rho V_{\rm PV} \tilde{C} \end{split}$$

$$\begin{split} \tilde{P}_{\rm H} &= -r^2 \rho V_{\rm PH} (\tilde{A} + \eta \tilde{F}) \\ \tilde{S}_{\rm V} &= -r^2 \rho V_{\rm SV} (\tilde{L} - 2\eta \tilde{F}) \\ \tilde{S}_{\rm H} &= -r^2 \rho V_{\rm SH} \tilde{N} \\ \tilde{E} &= -\frac{1}{2} r^2 \rho \tilde{F} (V_{\rm PH}^2 - 2V_{\rm SV}^2) \end{split} \tag{A6}$$

For toroidal modes, \tilde{A} , \tilde{C} , and \tilde{F} are set to zero, of course.

In calculation of the kernels for Q_{μ} and Q_{K} we use the concept of an equivalent isotropic medium (Woodhouse and Dahlen, 1978) with the bulk and

TABLE VI n S travel times (SV): Hales and Roberts (1970). Baseline correction 0.44 s; slope -0.021 s deg $^{-1}$

DELTA	OBSERVATION				ISOTRO	PIC	IS	T *		
	T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
30.00	671.97	671.78		671.90		15.571	670.98	0.80	15.567	3.9
31.00	687.09	686.88		687.45		15.525	€86.52	0.36	15.524	4.0
32.00	702.82	702.59		702.94		15.474	702.02	0.56	15.474	4.0
33.00	717.59	717.34		718.39		15.418	717.46		15.417	4.0
34.00	733.43	733.16		733.78		15.358	732.85	0.31	15.360	4.1
35.00	748.55	748.25		749.10		15.292	748.19	0.07	15.296	4.1
36.00	764.22	763.90		764.35		15.223	763.44	0.46	15.225	4.2
37.00	779.20	778.86		779.54		15.149	778.63	0.24	15.149	4.2
38.00	794.32	793.96		794.66		15.072	793.75	0.21	15.076	4.2
39.00	809.83	809.45		809.69		14.991	808.78	0.67	14.995	4.3
40.00	824.97	824.57			-0.07	14.907	823.73	0.84	14.907	4.3
41.00	840.99	840.57		839, 50	1.07	14.820	838.60	1.97	14.825	4.4
42.00	856.40	855.96		854.29	1.67	14.730	853.38	2.58	14.734	4.4
43.00	870.23	869.77		868.98	0.79	14.638	868.06	1.70	14.640	4.4
44.00	885.01	884.53	0.75	883.57	0.95	14.544	882.66	1.86	14.549	4.5
45.00	899.50	898.99	0.75	898.06	0.93	14.448	897.17	1.83	14.450	4.5
46.00	914.02	913.49	0.75	912.44	1.05	14.350	911.56	1.94	14.355	4.5
47.00	927.50	926.95	0.75	926.74	0.21	14.250	925.86	1.09	14.253	4.6
48.00	941.12	940.55	0.75	940.94	-0.39	14.149	940.07	0.49	14.151	4.6
49.00	955.42	954.83		955.04	-0.21	14.045	954.16	0.67	14.050	4.6
50.00	969.79	969.18		969.03	0.15	13.941	968.17	1.01	13.940	4.7
51.00	983.74	983.11		982.92	0.19	13.836	982.05	1.06	13.840	4.7
52.00	997.43	996.78	0.75	996.70	0.07	13.729	995.84	0.94	13.729	4.8
53.00	1011.42	1010.75	0.75	1010.38	0.36	13.621	1009.52	1.23	13.626	4.8
54.00	1025.07	1024.38	0.75	1023.94	0.43	13.512	1023.08	1.29	13.513	4.8
55.00	1038.33	1037.61	0.75	1037.40	0.21	13.403	1036.55	1.06	13.408	4.9
56.00	1051.86	1051.12	0.75	1050.76	0.37	13.293	1049.90	1.22	13.293	4.9
57.00	1065.26	1064.50	0.75	1063.98	0.52	13.182	1063.15	1.36	13.186	4.9
58.00	1077.80	1077.02	0.75	1077.12	-0.10	13.070	1076.27	0.76	13.070	5.0
59.00	1091.24	1090.44	0.75	1090.13	0.31	12.958	1089.28	1.16	12.962	5.0
60.00	1104.06	1103.24	0.75	1103.03	0.21	12.845	1102.19	1.05	12.844	5.0
61.00	1116.50	1115.66	0.75	1115.82	-0.16	12.732	1114.98	0.68	12.736	5.1
62.00	1129.56	1128.70		1128.48	0.21	12.619	1127.66	1.04	12.619	5.1
63.00	1142.41	1141.53		1141.04	0.48	12.504	1140.23	1.30	12.507	5.1
64.00		1153.20		1153.50		12.389	1152.67	0.52	12.392	5.2
							•			

shear moduli defined as

$$K = (1/9)(4A + C + 4F - 4N)$$

$$\mu = (1/15)(A + C - 2F + 5N + 6L)$$

Attenuation of a normal mode is evaluated from an integral

$$Q^{-1} = \int_0^1 r^2 dr \left(\mu \tilde{M} Q_{\mu}^{-1} + K \cdot \tilde{K} Q_{K}^{-1} \right)$$
 (A7)

where

 $\tilde{K} = \tilde{A} + \tilde{C} + \tilde{F}$

and
$$\tilde{M} = \tilde{L} + \tilde{N} - \frac{2}{3}\tilde{K} \tag{A8}$$

For the isotropic (or "equivalent") structure the kernels for perturbations in the density and velocities are

TABLE VI n (continued)

DELTA	OBS	SERVATION	AN	ISOTRO	PIC	IS	T *		
DEG	T OBS SEC	T CORR ER	OR T COMP	(O-C) SEC	P SEC/DEG	T COMP SEC	(O-C) SEC	P SEC/DEG	SEC
65.00 66.00 67.00 68.00 69.00 70.00 71.00	1166.76 1178.97 1190.65 1202.58 1214.71 1226.21 1237.29	1165.83 0. 1178.02 0. 1189.68 0. 1201.59 0. 1213.70 0. 1225.18 0. 1236.24 0.	75 1178.04 75 1190.15 75 1202.12 75 1213.99 75 1225.74 75 1237.37	-0.02 -0.46 -0.53 -0.29 -0.56 -1.13	12.273 12.158 12.042 11.925 11.808 11.691 11.573	1165.01 1177.22 1189.33 1201.31 1213.18 1224.93 1236.56	0.83 0.80 0.35 0.28 0.52 0.25	12.276 12.161 12.042 11.929 11.809 11.693 11.576	5.2 5.3 5.3 5.4 5.4
72.00 73.00 74.00 75.00 76.00 77.00 78.00 79.00 80.00 81.00 82.00 83.00 84.00	1249.15 1260.88 1272.31 1284.18 1295.42 1305.57 1316.50 1326.97 1337.93 1349.50 1358.61 1367.94 1379.14	1248.08 0. 1259.79 0. 1271.20 0. 1283.04 0. 1294.26 0. 1304.39 0. 1315.30 0. 1325.75 0. 1336.69 0. 1348.24 0. 1357.33 0. 1366.64 2. 1377.82 2.	75 1260.27 75 1271.55 75 1282.71 75 1293.75 75 1304.66 75 1315.45 75 1336.68 75 1347.11 75 1357.41	-0.49 -0.35 0.52 -0.27 -0.15 -0.37 0.01 1.13 -0.08 -0.95	11.097 10.977 10.856 10.735 10.613 10.491 10.367 10.244 10.120	1248.08 1259.48 1270.75 1281.91 1292.96 1303.87 1314.66 1325.34 1335.89 1346.32 1356.63 1366.81 1376.88	0.00 0.31 0.44 1.13 1.31 0.52 0.64 0.41 0.80 1.92 0.70 -0.18	11.455 11.339 11.219 11.099 10.980 10.856 10.737 10.616 10.491 10.369 10.246 10.120 9.995	5.4 5.5 5.5 5.6 5.6 5.7 5.7 5.7 5.8
85.00 86.00 87.00 88.00 89.00 90.00 91.00 92.00 93.00 94.00 95.00 96.00 97.00 98.00	1446.15 1455.30 1463.20 1473.47 1482.35 1489.66 1496.69	1390.79 2. 1398.94 2. 1405.95 2. 1418.16 2. 1427.01 2. 1434.57 2. 1444.68 2. 1453.81 2. 1461.69 2. 1471.94 2. 1480.79 2. 1488.08 2. 1495.09 2. 1503.76 2.	25 1387.58 25 1397.38 25 1407.06 25 1416.61 25 1426.03 25 1435.32 25 1453.51 25 1462.40 25 1471.17 25 1479.86 25 1488.52 25 1497.20	3.22 1.56 -1.11 1.55 0.98 20.75 0.20 0.30 -0.72 0.77 0.94 20.43	9.742 9.614 9.486 9.357 9.227 9.095 8.963 8.830 8.702 8.719 8.798 8.755	1386.81 1396.62 1406.30 1415.84 1425.27 1434.56 1443.72 1452.75 1461.65 1470.41 1479.12 1487.83 1496.50 1505.13	2.32 1.74 0.01 0.96 1.06 0.04 1.52 1.67 0.26	9.487 9.358 9.227 9.096 8.964 8.831 8.700 8.666 8.681	5.8 5.8 5.9 5.9 5.9 6.0 6.1 6.1 6.1

$$R' = -\frac{1}{2}r^{2} \left[\tilde{R} + \left(\mu \tilde{M} + K \cdot \tilde{K} \right) / \rho \right]$$

$$\tilde{P} = -r^{2} \rho V_{P} \tilde{K}$$

$$\tilde{S} = -r^{2} \rho V_{S} \left(\tilde{M} - \frac{4}{3} \tilde{K} \right)$$
(A9)

Note added in proof

An error in code for evaluation of group velocity of spheroidal modes has recently been dis-

covered. The error was in a term associated with the gravitational potential in the fluid core and, therefore, it only affects results for the gravest modes. For example, for $_0S_{11}$ and all following $_0S_t$ modes the results in Table V are correct to all decimal places listed. Also, none of the theoretical calculations of periods of normal modes have been corrected for the second order effects. For example, the appropriate correction of the period of $_0S_0$ brings it much closer to the observed value.

TABLE VI o Deep focus (550 km) S travel times (SH): Sengupta (1975). Baseline correction 2.28 s; slope -0.0433 s deg $^{-1}$

DELTA		SERVATION			ISOTRO			SOTROP:	IC	T*
	T OBS	T CORR	ERROR		(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
31.00	596.02	596.96	-	599.61	-2.65	15.241	599.71		15.236	2.9
33.00	628.98	629.83		629.95	-0.11	15.099	630.03		15.095	3.0
35.00	659.95	660.72	0.60	660.00	0.72	14.944	660.07	0.64	14.937	3.1
37.00	689.81	690.49	0.60	689.73	0.76	14.779	689.78	0.71	14.774	3.2
39.00	719.34	719.93	0.60	719.12	0.82	14.604	719.14	0.79	14.599	3.3
41.00	748.38	748.89	0.60	748.15	0.74	14.421	748.17	0.72	14.412	3.3
43.00	776.32	776.74	0.60	776.79	-0.05	14.232	776.81	-0.07	14.225	3.4
45.00	804.11	804.44	0.60	805.05	-0.61	14.037	805.07	-0.63	14.032	3.5
47.00	833.60	833.85	0.60	832.92	0.92	13.838	832.93	0.92	13.833	3.6
49.00	861.37	861.53	0.60	860.40	1.13	13.634	860.39	1.14	13.629	3.7
51.00	886.17	886.24	0.60	887.46	-1.22	13.426	887.43	-1.19	13.422	3.7
53.00	912.18	912.17	0.60	914.10	-1. 93	13.216	914.07	-1.90	13.211	3.8
55.00	939.75	939.65	0.60	940.32	-0.67	13.003	940.27	-0.62	12.998	3.9
57.00	964.84	964.65	0.60	966.10	-1.45	12.787	966.05	-1.40	12.783	4.0
59.00	991.84	991.57	0.60	991.46	0.10	12.570	991.40	0.17	12.565	4.0
61.00	1017.14	1016.78	0.60	1016.38	0.40	12.350	1016.30	0.48	12.346	4.1
63.00	1040.74	1040.29	0.60	1040.86	-0.56	12.129	1040.77	-0.48	12.124	4.2
65.00	1064.96	1064.43	0.60	1064.89	-0.47	11.906	1064.80	-0.37	11.901	4.2
67.00	1088.39	1087.77	0.60	1088.48	-0.71	11.681	1088.37	-0.60	11.675	4.3
69.00		1112.38		1111.62	0.77	11.454	1111.50	0.88	11.447	4.4
71.00	1136.64	1135.85	0.60	1134.30	1.55	11.227	1134.17	1.67	11.221	4.4
73.00	1157.00	1156.12	0.60	1156.52	-0.40	10.997	1156.38	-0.26	10.992	4.5
75.00	1179.51	1178.54	0.60	1178.28	0.27	10.764	1178.13	0.42	10.759	4.6
77.00	1200.23	1199.18	0.60	1199.57	-0.39	10.529	1199.41	-0.24	10.524	4.6
79.00	1221.03	1219.89	0.60	1220.38	-0.49	10.293	1220.23	-0.34	10.288	4.7
81.00	1241.47	1240.24	0.60	1240.73	-0.49	10.053	1240.56	-0.32	10.049	4.8
83.00	1261.23	1259.92	0.60	1260.60	-0.68	9.811	1260.41	-0.50	9.806	4.8
85.00	1281.21	1279.81	0.60	1279.97	-0.16	9.567	1279.78	0.03	9.561	4.9
87.00	1301.62	1300.13	3.00	1298.85	1.28	9.317	1298.66	1.48	9.313	4.9
89.00	1318.88	1317.31	3.00	1317.24	0.07	9.066	1317.03	0.28	9.060	5.0
91.00		1336.15		1335.11	1.04	8.810	1334.90	1.25	8.805	5.0
93.00		1353.69		1352.54	1.15	8.725	1352.35	1.34	8.670	5.1
95.00		1371.97		1369.89	2.07	8.730	1369.72	2.25	8.648	5.1

TABLE VI p Deep focus (550 km) S travel times (SV): Sengupta (1975). Baseline correction 3.00 s; slope -0.0495 s deg $^{-1}$

DELTA	OBS	SERVATION			SOTRO			SOTROP		T*
	T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
31.00	596.02	597.48	-	600.15		15.235	599.71	-2.22	15.236	2.9
33.00	628.98	630.35		630.48		15.092	630.03	0.31	15.095	3.0
35.00	659.95	661.22		660.52	0.70	14.937	660.07	1.14	14.937	3.1
37.00	689.81	690.98		690.22	0.75	14.771	689.78	1.20	14.774	3.2
39.00	719.34	720.41		719.60	0.81	14.596	719.14	1.26	14.599	3.3
41.00	748.38	749.35		748.62	0.73	14.414	748.17	1.18	14.412	3.3
43.00	776.32	777.19		777.25		14.225	776.81	0.38	14.225	3.4
45.00	804.11	804.88	0.60	805.50	-0.62	14.030	805.07		14.032	3.5
47.00	833.60	834.27	0.60	833.35	0.92	13.830	832.93	1.34	13.833	3.6
49.00	861.37	861.94	0.60	860.80	1.14	13.626	860.39	1.55	13.629	3.7
51.00	886.17	886.64	0.60	887.86	-1.21	13.419	887.43	-0.79	13.422	3.7
53.00	912.18	912.56	0.60	914.49	-1.93	13.209	914.07	-	13.211	3.8
55.00	939.75	940.03	0.60	940.68	-0.66	12.996	940.27	-0.24	12.998	3.9
57.00	964.84	965.02	0.60	966.46	-1.45	12.780	966.05		12.783	4.0
59.00	991.84	991.92	0.60	991.80	0.12	12.563	991.40	0.52	12.565	4.0
61.00	1017.14	1017.12	0.60	1016.71	0.41	12.344	1016.30	0.82	12.346	4.1
63.00	1040.74	1040.62	0.60	1041.18	-0.56	12.122	1040.77	-0.15	12.124	4.2
65.00	1064.96	1064.74	0.60	1065.19	-0.45	11.900	1064.80		11.901	4.2
67.00	1088.39	1088.07	0.60	1088.76	-0.69	11.675	1088.37	-0.30	11.675	4.3
69.00	1113.09	1112.67	0.60	1111.89	0.78	11.448	1111.50	1.17	11.447	4.4
71.00	1136.64	1136.12	0.60	1134.56	1.56	11.221	1134.17	1.95	11.221	4.4
73.00	1157.00	1156.38	0.60	1156.76	-0.38	10.991	1156.38	0.00	10.992	4.5
75.00	1179.51	1178.80	0.60	1178.52	0.27	10.758	1178.13	0.67	10.759	4.6
77.00	1200.23	1199.42	0.60	1199.79	-0.38	10.524	1199.41	0.00	10.524	4.6
79.00	1221.03	1220.12	0.60	1220.61	-0.49	10.288	1220.23	-0.11	10.288	4.7
81.00	1241.47	1240.46	0.60	1240.94	-0.48	10.048	1240.56	-0.11	10.049	4.8
83.00	1261.23	1260.12	0.60	1260.80	-0.68	9.806	1260.41	-0.30	9.806	4.8
85.00	1281.21	1280.00	0.60	1280.16	-0.16	9.561	1279.78	0.22	9.561	4.9
87.00	1301.62	1300.31	3.00	1299.03	1.28	9.312	1298.66	1.66	9.313	4.9
89.00	1318.88	1317.47	3.00	1317.40	0.08	9.061	1317.03	0.44	9.060	5.0
91.00	1337.81	1336.30		1335.27	1.04		1334.90	1.41	8.805	5.0
93.00		1353.83		1352.77	1.06	8.727	1352.35	1.48	8.670	5.1
95.00		1372.09		1370.06	2.03		1369.72	2.38	8.648	5.1

TABLE VI q Deep focus (550 km) ScS travel times (SH): Sengupta (1975). Baseline correction $-0.57\,\mathrm{s}$

DELTA	OBSERVATION			AN:	ANISOTROPIC			ISOTROPIC			
	T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(O-C)	P		
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC	
32.50	909.93	909.36	1.00	908.42	0.94	5,227	908.13	1.23	5.229	3.6	
37.50	936.92	936.35	1.00	936.01	0.34	5.796	935.73	0.63	5.798	3.7	
42.50	966.47	965.90	1.00	966.27	-0.36	6.294	965.99	-0.09	6.296	3.8	
47.50	998.04	997.47	1.00	998.84	-1.36	6.723	998.57	-1.10	6.725	3.9	
52.50	1032.81	1032.24	1.00	1033.39	-1.15	7.088	1033.13	-0.89	7.089	4.0	
57.50	1068.02	1067.45	1.00	1069.62	-2.17	7.394	1069.37	-1.92	7.395	4.2	
62.50	1109.34	1108.77	1.00	1107.24	1.53	7.647	1107.00	1.78	7.648	4.3	
67.50	1146.76	1146.19	1.00	1146.01	0.18	7.852	1145.77	0.42	7.853	4.4	
72.50	1187.62	1187.05	1.00	1185.69	1.36	8.015	1185.46	1.59	8.016	4.5	
77.50	1227.35	1226.78	1.00	1226.09	0.69	8.140	1225.86	0.92	8.141	4.7	

TABLE VI r Deep focus (550 km) ScS travel times (SV): Sengupta (1975). Baseline correction $-0.47 \, \mathrm{s}$

DELTA	OBSERVATION			ANISOTROPIC			IS	T*		
	T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
32.50	909.93	909.46	1.00	908.48	0.99	5.230	908.13	1.33	5.229	3.6
37.50	936.92	936.45	1.00	936.08	0.38	5.799	935.73	0.73	5.798	3.7
42.50	966.47	966.00	1.00	966.35	-0.35	6.296	965.99	0.01	6.296	3.8
47.50	998.04	997.57	1.00	998.92	-1.35	6.725	998.57	-1.00	6.725	3.9
52.50	1032.81	1032.34	1.00	1033.49	-1.15	7.090	1033.13	-0.79	7.089	4.0
57.50	1068.02	1067.55	1.00	1069.72	-2.17	7.396	1069.37	-1.82	7.395	4.2
62.50	1109.34	1108.87	1.00	1107.36	1.51	7.648	1107.00	1.88	7.648	4.3
67.50		1146.29		1146.13	0.16	7.853	1145.77	0.52	7.853	4.4
72.50	1187.62	1187.15	1.00	1185.82	1.33	8.016	1185.46	1.69	8.016	4.5
77.50		1226.88		1226.23	0.65	8.141	1225.86	1.02	8.141	4.7

TABLE VI s SKS travel times (SV): Hales and Roberts (1970). Baseline correction $-3.13~\mathrm{s}$

DELTA	OBSERVATION			ANISOTROPIC			IS	T*		
	T OBS	T CORR	ERROR	T COMP		P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
84.00	1377 . 11	1373.98	2.00	1374.70	-0.72	6.510	1373,99	-0.01	6.509	4.8
85.00		1382.57		1381.16	1.41	6.409	1380.45	2.12	6.410	4.8
86.00		1388.93		1387.52	1.41	6.308	1386.81	2.12	6.311	4.8
87.00		1394.77		1393.78	0.99	6.207	1393.07	1.70	6.206	4.7
88.00	1404.10	1400.97	2.00	1399.94	1.04	6.107	1399.23	1.74	6.107	4.7
89.00	1408.63	1405.50	2.00	1405.99	-0.49	6.007	1405.29	0.22	6.010	4.7
90.00	1414.03	1410.90	2.00	1411.95	-1.04	5.910	1411.24	-0.34	5.909	4.7
91.00	1419.44	1416.31	2.00	1417.81	-1.50	5.812	1417.11	-0.80	5.810	4.6
92.00	1425.96	1422.83	2.00	1423.57	-0.74	5.716	1422.87	-0.04	5.718	4.6
93.00	1432.41	1429.28	2.00	1429.24	0.04	5.622	1428.54	0.74	5.623	4.6
94.00	1438.41	1435.28	2.00	1434.82	0.47	5.528	1434.11	1.17	5.525	4.6
95.00	1442.97	1439.84		1440.30	-0.46	5.437	1439.60	0.24	5.438	4.6
96.00	1449.20	1446.07		1445.69	0.39	5.346	1444.99	1.08	5.349	4.6
97.00	1454.34	1451.21		1450.99	0.22	5.257	1450.29	0.92	5.254	4.5
98.00	1459.55	1456.42		1456.20	0.22	5.169	1455.50	0.92	5.170	4.5
99.00	1464.11	1460.98		1461.33	-0.34	5.083	1460.63	0.35	5.085	4.5
100.00	1469.99	1466.86		1466.36	0.50	4.998	1465.67	1.19	4.997	4.5
101.00	1475.02			1471.32	0.57	4.913	1470.63	1.26	4.913	4.5
102.00	1480.18	1477.05		1476.19	0.86	4.830	1475.50	1.55	4.832	4.5
103.00	1485.55	1482.42		1480.98	1.45	4.749	1480.29	2.13	4.749	4.5
104.00	1491.73	1488.60		1485.69	2.92	4.667	1485.00	3.60	4.666	4.5
105.00	1495.28	1492.15		1490.31	1.84	4.588	1489.63	2.53	4.589	4.5
106.00	1498.73	1495.60		1494.86	0.74	4.509	1494.17	1.43	4.510	4.4
107.00	1502.30	1499.17		1499.33	-0.16	4.430	1498.64	0.53	4.428	4.4
108.00	1506.62	1503.49	2.00	1503.72	-0.23	4.353	1503.03	0.46	4.354	4.4
109.00	1511.82	1508.69		1508.04	0.66	4.277	1507.35	1.34	4.278	4.4
110.00	1517.59	1514.46		1512.28	2.18	4.201	1511.59	2.88	4.199	4.4
111.00		1515.90		1516.44	-0.54	4.127	1515.75	0.15	4.127	4.4
112.00	-	1518.27		1520.52		4.053	1519.84		4.054	4.4
113.00		1524.27			-0.27		1523.86	0.42	3.976	4.4
114.00	-	1528.98		1528.48	0.50	3.906	1527.80	1.18	3.906	4.4
115.00	1536.32	1533.19	2.00	1532.35	0.84	3.834	1531.67	1.52	3.835	4.4

TABLE VI s (continued)

116.00	1538.58	1535.45	2.00	1536.15	-0.70	3.763	1535.47	-0.02	3.762	4.4
117.00	1540.86	1537.73	2.00	1539.88	-2.15	3.691	1539.20	-1.46	3.691	4.4
118.00	1545.67	1542.54	2.00	1543.53	-0.99	3.621	1542.85	-0.31	3.622	4.4
119.00	1549.66	1546.53	2.00	1547.12	-0.58	3.552	1546.44	0.10	3.551	4.4
120.00	1551.99	1548.86	2.00	1550.64	-1.77	3.481	1549.95	-1.09	3.480	4.3
121.00		1552.80		1554.08	-1.28	3.413	1553.40	-0.60	3.413	4.3
122.00	1560.67	1557.54	2.00	1557.45	0.09	3.344	1556.78	0.76	3.344	4.3
123.00	1563.67	1560.54	2.00	1560.77	-0.23	3.276	1560.09	0.46	3.274	4.3
124.00	1566.87	1563.74	2.00	1564.01	-0.27	3.208	1563.33	0.41	3.208	4.3
125.00	1568.57	1565.44	2.00	1567.18	-1.74	3.141	1566.50	-1.06	3.141	4.3
126.00	1572.53	1569.40	2.00	1570.29	-0.89	3.073	1569.61	-0.21	3.072	4.3
120.00	1572.53	1569.40	2.00	1570.29	-0.89	3.073	1569.61	-0.21	3.072	4.3

TABLE VI t Deep focus (600 km) differential travel times ScS(SH)-S(SH): Jordan and Anderson (1974). No baseline correction

DELTA	OBS	AA	ANISOTROPIC			ISOTROPIC			
DEG	T OBS	T CORR ERRO		,	P	T COMP	(O-C)	P P P P P P P P P P P P P P P P P P P	OPA
DEG	SEC	SEC SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
35.00	259.40	259.40 0.71	258.57	0.83	- 9.352	258.22	1.18	-9.343	0.6
40.00	215.70	215.70 0.66	214.22	1.48	-8.386	213.91	1.79	-8.377	0.5
45.00	174.30	174.30 0.52	174.67	-0.37	-7.449	174.39	-0.09	-7.439	0.4
50.00	138.60	138.60 0.69	139.70	-1.10	- 6.549	139.45	-0.85	-6.540	0.3
55.00	108.50	108.50 0.58	109.11	-0.61	- 5.690	108.91	-0.41	-5.684	0.2
60.00	82.00	82.00 0.52	82.73	-0.73	-4.874	82.55	-0.55	-4.866	0.2
65.00	59.70	59.70 0.44	60.32	-0.62	-4.095	60.17	-0.47	-4.088	0.1
70.00	40.60	40.60 0.46	41.72	-1.12	-3.351	41.60	-1.00	-3.345	0.1
75.00	25:50	25.50 0.60	26.76	-1.26	- 2.635	26.68	-1.18	-2.629	0.0
80.00	14.00	14.00 0.37	15.3 ¹	-1.34	-1.940	15.28	-1.28	-1.933	0.0

TABLE VI u
Deep focus (600 km) differential travel times ScS(SH)-S(SH): Jordan and Anderson (1974). Baseline correction 0.68 s

DELTA	OBS	SERVATION	ANISOTRO	PIC	ISOTROF	T*	
DEG	T OBS SEC	T CORR ERROR SEC SEC	T COMP (O-C) SEC SEC	P SEC/DEG	T COMP (O-C) SEC SEC	P SEC/DEG	SEC
35.00	259.40	260.08 0.71	258.57 1.51	-9.352	258.22 1.86	-9.343	0.6
40.00	215.70	216.38 0.66	214.22 2.16	-8.386	213.91 2.46	-8.377	0.5
45.00	174.30	174.98 0.52	174.67 0.31	-7.449	174.39 0.59	-7.439	0.4
50.00	138.60	139.28 0.69	139.70 -0.42	-6.549	139.45 -0.17	-6.540	0.3
55.00	108.50	109.18 0.58	109.11 0.06	- 5.690	108.91 0.27	-5.684	0.2
60.00	82.00	82.68 0.52	82.73 -0.05	-4.874	82.55 0.13	-4.866	0.2
65.00	59.70	60.38 0.44	60.32 0.06	-4.095	60.17 0.20	-4.088	0.1
70.00	40.60	41.28 0.46	41.72 -0.44	-3.351	41.60 -0.33	-3.345	0.1
75.00	25.50	26.18 0.60	26.76 -0.58	-2.635	26.68 -0.50	-2.629	0.0
80.00	14.00	14.68 0.37	15.34 -0.66	-1.940	15.28 -0.60	-1. 933	0.0

TABLE VI v Deep focus (600 km) differential travel times ScS(SV)-S(SV): Jordan and Anderson (1974). No baseline correction

DELTA	OBSERVATION			ANISOTROPIC			I	T*		
	T OBS	T CORR	ERROR	T COMP	(O-C)	P	T COMP	(O-C)	P	
DEG	SEC	SEC	SEC	SEC	SEC	SEC/DEG	SEC	SEC	SEC/DEG	SEC
25. 22				.=0		1	0			_
35.00	259.40	259.40	0.71	258.11	1.29	-9.342	258.22	1.18	-9.343	0.6
40.00	215.70	215.70	0.66	213.81	1.89	-8.376	213.91	1.79	-8.377	0.5
45.00	174.30	174.30	0.52	174.31	-0.01	-7.439	174.39	-0.09	-7.439	0.4
50.00	138.60	138.60	0.69	139.38	-0.78	-6.540	139.45	-0.85	-6.540	0.3
55.00	108.50	108.50	0.58	108.84	-0.34	- 5.682	108.91	-0.41	-5.684	0.2
60.00	82.00	82.00	0.52	82.51	-0.51	-4.866	82.55	-0.55	-4.866	0.2
65.00	59.70	59.70	0.44	60.14	-0.44	-4.088	60.17	-0.47	-4.088	0.1
70.00	40.60	40.60	0.46	41.58	-0.98	-3.344	41.60	-1.00	-3.345	0.1
75.00	25.50	25.50	0.60	26.66	-1.16	-2.629	26.68	-1.18	-2.629	0.0
80.00	14.00	14.00	0.37	15.25	-1.25	-1. 934	15.28	-1.28	-1.933	0.0

References

- Anderson, D.L., 1961. Elastic wave propagation in layered anisotropic media. J. Geophys. Res., 66: 2953–2963.
- Anderson, D.L., 1966. Recent evidence concerning the structure and composition of the Earth's mantle. In: Physics and Chemistry of the Earth. Vol. 6. Pergamon Press, Oxford, pp. 1–131.
- Backus, G.E., 1965. Possible forms of seismic anisotropy of the upper mantle under oceans. J. Geophys. Res., 70: 3249– 3439.
- Backus, G.E. and Gilbert, F., 1967. Numerical applications of a formalism for geophysical inverse problems. Geophys. J. R. Astron. Soc., 13: 247–276.
- Birch, F., 1964. Density and composition of mantle and core. J. Geophys. Res., 69: 4377–4388.
- Buland, R., Berger, J. and Gilbert, F., 1979. Observations from the IDA network of attenuation and splitting during a recent earthquake. Nature (London), 277: 358–362.
- Choy, G.L. and Richards, P.G., 1975. Pulse distortion and Hilbert transformation in multiply reflected and refracted body waves. Bull. Seismol. Soc. Am., 65: 55-70.
- Derr, J., 1969. Free oscillation observations through 1968. Bull. Seismol. Soc. Am., 59: 2079–2099.
- Dratler, J., Farell, W.C., Block, B. and Gilbert, F., 1971. High-*Q* overtone modes of the Earth. Geophys. J.R. Astron. Soc., 23: 399–410.
- Dziewonski, A.M., 1971. On regional differences in dispersion of mantle Rayleigh waves. Geophys. J.R. Astron. Soc., 22: 289–325.
- Dziewonski, A.M. and Gilbert, F., 1972. Observations of normal modes from 84 recordings of the Alaskan earthquake of 28 March 1964. Geophys. J. R. Astron. Soc., 27: 393–446.
- Dziewonski, A.M. and Gilbert, F., 1973. Observations of normal modes from 84 recordings of the Alaskan earthquake of 28 March 1974, Part II: spheroidal overtones. Geophys. J. R. Astron. Soc., 35: 401–437.

- Dziewonski, A.M., Mills, J.M. and Bloch, S., 1972. Residual dispersion measurement—a new method of surface wave analysis, Bull. Seismol. Soc. Am., 62: 129–139.
- Engdahl, E.R. and Johnson, L.E., 1974. Differential PcP travel times and the radius of the core. Geophys. J. R. Astron. Soc., 39: 435–456.
- Engdahl, E.R., Flinn, E.A. and Massé, R.P., 1974. Differential PKiKP travel times and the radius of the inner core. Geophys. J. R. Astron. Soc., 39: 457-464.
- Forsyth, D.W., 1975a. A new method for the analysis of multimode surface wave dispersion; application to Lovewave propagation in the east Pacific. Bull. Seismol. Soc. Am., 65: 323–342.
- Forsyth, D.W., 1975b. The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astron. Soc., 43: 103–162.
- Geller, R.J. and Stein, S., 1979. Time domain measurements of attenuation of fundamental spheroidal modes (${}_{0}S_{6}-{}_{0}S_{28}$) for the 1977 Indonesian earthquake. Bull. Seismol. Soc. Am., 69: 1671–1691.
- Gilbert, F. and Dziewonski, A.M., 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos. Trans. R. Soc. London, Ser. A, 278: 187–269.
- Gogna, M.L., Jeffreys, H. and Shimshoni, M., 1981. Seismic travel times for Central Asian epicenters. Geophys. J. R. Astron. Soc. (in press).
- Hales, A.L. and Roberts, J.L., 1970. The travel times of S and SKS. Bull. Seismol. Soc. Am., 60: 461–489.
- Hales, A.L., Cleary, J.R. and Roberts, J.L., 1968. Velocity distribution in the lower mantle. Bull. Seismol. Soc. Am., 58: 1975–1989.
- Harkrider, D.G. and Anderson, D.L., 1962. Computation of surface wave dispersion for multilayered anisotropic media. Bull. Seismol. Soc. Am., 52: 321-332.
- Herrin, E., Tucker, W., Taggart, J.N., Gordon, D.W. and Lobdell, J.L., 1968. Estimation of surface-focus P travel times. Bull. Seismol. Soc. Am., 58: 1273–1929.

- Hess, H., 1964. Seismic anisotropy of the uppermost mantle under the oceans. Nature (London), 203: 629–631.
- Jordan, T.H. and Anderson, D.L., 1974. Earth structure from free oscillations and travel times. Geophys. J. R. Astron. Soc., 36: 411.
- Kanamori, H., 1970. Velocity and Q of mantle waves. Phys. Earth Planet. Inter., 2: 259–275.
- Kanamori, H. and Anderson, D.L., 1977. Importance of physical dispersion in surface waves and free oscillation problems. Rev. Geophys. Space Phys., 15: 105-112.
- Love, A.E.H., 1927. A Treatise on the Mathematical Theory of Elasticity. 4th edn. Cambridge University Press, Cambridge, 643 pp.
- Mendiguren, J.A., 1973. Identification of the free oscillation of spectral peaks for 1970 July 31, Colombian deep shock using the excitation criterion. Geophys. J. R. Astron. Soc., 33: 281-321.
- Mills, J.M., 1977. Rayleigh Wave Group Velocities and Attenuation Coefficients. Ph.D. thesis, Australian National University, Canberra.
- Raitt, R., Shor, G., Francis, T. and Morris, G., 1969. Anisotropy of Pacific upper mantle. J. Geophys. Res., 74: 3095–3109.
- Sailor, R.V., 1978. Attenuation of Low Frequency Seismic Energy. Ph.D. thesis, Harvard University, Cambridge, MA.
- Sailor, R.V. and Dziewonski, A.M., 1978. Measurements and interpretation of normal mode attenuation. Geophys. J. R. Astron. Soc., 53: 559-581.

- Schlue, J. and Knopoff, L., 1977. Shear-wave polarization anisotropy in the Pacific basin. Geophys. J. R. Astron. Soc., 49: 145-165.
- Sengupta, M., 1975. The structure of the Earth's mantle from body wave observations. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
- Sengupta, M. and Julian, B.R., 1976. P-wave travel times for deep earthquakes. Bull. Seismol. Soc. Am., 66: 1555-1580.
- Steim, J.M. and Dziewonski, A.M., 1980. A new approach to measurements of dispersion and attenuation of mantle waves. EOS Trans. Am. Geophys. Union, 61: 298 (abstract).
- Stein, S. and Geller, R.J., 1978. Attenuation measurements of split normal modes for the 1960 Chilean and 1964 Alaskan earthquakes. Bull. Seismol. Soc. Am., 68: 1595–1611.
- Takeuchi, H. and Saito, M., 1972. Seismic surface waves. In: Methods in Computational Physics. Academic Press, New York, NY, 11: 217–295.
- Woodhouse, J.H., 1981. A note on the calculation of travel times in a transversely isotropic earth model. Phys. Earth Planet. Inter., 25: 357–359.
- Woodhouse, J.H. and Dahlen, F.A., 1978. The effect of a general aspherical perturbation on the free oscillations of the Earth. Geophys. J. R. Astron. Soc., 53: 263–280.
- Yu, G. and Mitchell, B.J., 1979. Regionalized shear velocity models of the Pacific upper mantle from observed Love and Rayleigh wave dispersion. Geophys. J. R. Astron. Soc., 57: 311–341.