Листок 2

Семинарские задачи

Задача 2.1. Применяя метод математической индукции, докажите равенства **a)** $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ **б)** $1^3+2^3+3^3+\ldots+n^3=(1+2+3+\ldots+n)^2;$

5)
$$1^3 + 2^3 + 3^3 + \ldots + n^3 = (1 + 2 + 3 + \ldots + n)^2$$
;

Задача 2.2. Найдите $1^2 + 2^{\overline{2}} + 3^2 + \ldots + n^2$.

Задача 2.3. Применяя метод математической индукции, докажите неравенства

6)
$$2^{n-1} \leqslant n! \leqslant \left(\frac{n+1}{2}\right)^n$$
;

a)
$$1 + nx \le (1+x)^n, x > -1;$$
 6) $2^{n-1} \le n! \le \left(\frac{n+1}{2}\right)^n;$ b) $1 < \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{3n+1} < 2.$

Задача 2.4. Указав $N(\varepsilon)$, вычислите пределы

a)
$$\lim_{n \to \infty} \frac{n}{n+1}$$
; 6) $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}$; b) $\lim_{n \to \infty} \frac{2n^2+3}{n^3+n}$.

B)
$$\lim_{n\to\infty} \frac{2n^2+3}{n^3+n}$$

Задача 2.5. Указав $N(\varepsilon)$, вычислите пределы

6)
$$\lim_{n\to\infty}\frac{a^n}{n!}$$
;

$$\mathbf{B}) \lim_{n \to \infty} \frac{n^k}{a^n}, a > 1$$

а)
$$\lim_{n \to \infty} q^n, |q| < 1;$$
 б) $\lim_{n \to \infty} \frac{a^n}{n!};$ в) $\lim_{n \to \infty} \frac{n^k}{a^n}, a > 1;$ г) $\lim_{n \to \infty} \sqrt[n]{a}, a > 0.$

6)
$$\lim_{n\to\infty} \frac{13n^2+n+4}{3n^2+\sqrt{n+7}}$$
;

B)
$$\lim_{n\to\infty} \frac{n^{10}+2^n}{n^{100}+2^{n+1}};$$

$$\mathbf{r}) \lim_{n \to \infty} \sqrt[n]{n^2 + \sin n + 2^n}.$$

Задача 2.6. Пользуясь арифметическими свойствами, вычислите а) $\lim_{n\to\infty} (\sqrt{n+1}-\sqrt{n});$ б) $\lim_{n\to\infty} \frac{13n^2+n+4}{3n^2+\sqrt{n+7}};$ в) $\lim_{n\to\infty} \frac{n^{10}+2^n}{n^{100}+2^{n+1}};$ г) $\lim_{n\to\infty} \sqrt[n]{n^2+\sin n+2^n}.$ Задача 2.7. Докажите сходимость последовательности $a_n = \frac{10}{1} \cdot \frac{11}{3} \cdot \ldots \cdot \frac{n+9}{2n-1}.$

Задача 2.8. Чему равняется $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}}$?

Задача 2.9. Исследуйте следующие рекуррентные последовательности на сходимость:

a)
$$a_{n+1} = 1 - \frac{1}{4a_n}, a_1 = 1;$$
 6) $a_{n+1} = \frac{1}{4}a_n - a_n^2, a_1 = \frac{1}{2}.$

Домашние задачи

Задача 2.10 (ДЗ). Применяя метод математической индукции, докажите, что $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}, \quad n \geqslant 2.$

6)
$$\lim_{n\to\infty} \frac{\log_a n}{n}, a>1;$$

Задача 2.11 (ДЗ). Указав $N(\varepsilon)$, вычислите пределы а) $\lim_{n\to\infty}\frac{n^2+6}{n^2-10n+26};$ б) $\lim_{n\to\infty}\frac{\log_a n}{n}, a>1;$ в) $\lim_{n\to\infty}\sqrt[n]{n};$ г) $\lim_{n\to\infty}\left(\frac{1}{n^2}+\frac{2}{n^2}+\ldots+\frac{n-1}{n^2}\right).$ Задача 2.12 (ДЗ). Пользуясь арифметическими свойствами, вычислите

a) $\lim_{n\to\infty} \left(\sqrt{4+n^2} - \sqrt{n^2+1}\right);$ 6) $\lim_{n\to\infty} \left(\sqrt{4+2n+n^2} - \sqrt{n^2-n+1}\right);$ B) $\lim_{n\to\infty} \sqrt[n]{\frac{7+5^n+3^n}{3+2^n}}.$

Задача 2.13 (ДЗ). Исследуйте следующие рекуррентные последовательности на сходимость:

a) $a_{n+1} = \sqrt{2a_n}, a_1 = \sqrt{2};$ 6) $a_{n+1} = \sqrt{6+a_n}, a_1 = 0;$

B) $a_{n+1} = \frac{1}{3} \left(2a_n + \frac{3}{a_n^2} \right), a_1 = 3.$

Дополнительные задачи

Задача 2.14 (Доп.). Докажите неравенства:

a)
$$5^n \ge 2n^2 + 3;$$
 6) $n^{n+1} > (n+1)^n, n \ge 3;$

Задача 2.15 (Доп.). Докажите, что для произвольных неотрицательных чисел a_1, \ldots, a_n выполнено

$$\frac{a_1 + \ldots + a_n}{n} \geqslant \sqrt[n]{a_1 \cdot \ldots \cdot a_n}$$

Задача 2.16 (Доп.). Вычислите пределы:

a)
$$\lim_{n \to \infty} \frac{n \cos n!}{2^n};$$
 6) $\lim_{n \to \infty} \left(\frac{1^2}{n^3} + \frac{2^2}{n^3} + \dots + \frac{(n-1)^2}{n^3} \right);$
B) $\lim_{n \to \infty} \sin \left(\sqrt{n^2 + 3} - \sqrt{n^2 + 1} \right);$ Γ) $\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right).$

$$\Gamma$$
) $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \ldots + \frac{1}{\sqrt{n^2+n}}\right)$

Задача 2.17 (Доп.). Исследуйте следующие рекуррентные последовательности на схо-

a)
$$a_{n+1} = \sqrt{3a_n - 2}$$
, $a_1 = \frac{3}{2}$; $a_{n+1} = 1 + \frac{1}{1+a_n}$, $a_1 = 1$; $a_{n+1} = \frac{a}{2+a_n}$, $a_1 = a > 0$.