Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Reference book: Solomon, Justin. Numerical Algorithms. Published by AK Peters/CRC Press, 2015.

Mativation

Representing Number

Exotic Representation

Error

Practical Aspects

Topics I

- Numeric
 - Stability and error analysis
 - Floating-point representation
- Linear algebra
 - Guassian elemination and LU
 - Column space and QR
 - Eigenproblems
 - Applications
- Root-finding and optimization
 - Single variable
 - Multivariable
 - Constrained optimization
 - Iterative linear solvers; Conjugate gradients

Topics II

Motivation

Representing Numbers

Exotic Representation

Error

- Interpolation and quadrature
 - Approximating integrals
 - Approximating derivatives
- Differential equations
 - ODEs: time-stepping, discretization
 - PDEs: Poisson equation, heat equation, waves
 - Techniques: Differencing, finite elements (time-permitting)

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Lecture

Numerics And Error Analysis

Prototypical Example

Motivation

Representing Numbers

Exotic Representation

Error

```
double x = 1.0;
double y = x / 3.0;
if (x == y*3.0) cout << "They_are_equal!";
else cout << "They_are_NOT_equal.";
```

Using Tolerances

Motivation

Representing Numbers

Exotic Representation

Error

Ovactical Aspects

```
double x = 1.0;
double y = x / 3.0;
if (fabs(x-y*3.0) <
    numeric_limits < double > :: epsilon)
    cout << "They_are_equal!";
else cout << "They_are_NOT_equal.";</pre>
```

A Crucial Point

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspect

Mathematically correct

 \neq

Numerically sound

Rarely if ever should the operator == and its equivalents be used on fractional values. Instead, some <u>tolerance</u> should be used to check if they are equal.

Counting in Binary: Integer

Motivation

Representing Numbers

Exotic Representation

Error

$$463 = 256 + 128 + 64 + 8 + 4 + 2 + 1$$
$$= 2^{8} + 2^{7} + 2^{6} + 2^{3} + 2^{2} + 2^{1} + 2^{0}$$
$$\downarrow$$

1	1	1	0	0	1	1	1	1
2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^2	2^{1}	2^{0}

Counting in Binary: Fractional

Motivation

Representing Numbers

Exotic Representation

Error

$$463.25 = 256 + 128 + 64 + 8 + 4 + 2 + 1 + 1/4$$
$$= 2^{8} + 2^{7} + 2^{6} + 2^{3} + 2^{2} + 2^{1} + 2^{0} + 2^{-2}$$
$$\downarrow$$

1	1	1	0	0	1	1	1	1	0	1
2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^1	2^{0}	2^{-1}	2^{-2}

Familiar Problem

Motivation

Representing Numbers

Exotic Representation

Frror

Practical Aspects

$$\frac{1}{3} = 0.0101010101\dots_2$$

Finite number of bits

Fixed-Point Arithmetic

Motivation

Representing Numbers

Exotic Representation

Error

1	1	 0	0	 1	1
2^{ℓ}	$2^{\ell-1}$	 2^{0}	2^{-1}	 2^{-k+1}	2^{-k}

- Parameters: $k, \ell \in Z$
- $k + \ell + 1$ digits total
- Can reuse integer arithmetic (fast; GPU possibility):

$$a + b = (a \cdot 2^k + b \cdot 2^k) \cdot 2^{-k}$$

Two-Digit Example

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspect

$$0.1_2 \times 0.1_2 = 0.01_2 \cong 0.0_2$$

Multiplication and division easily change order of magnitude!

Demand of Scientific Applications

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

$$9.11 \times 10^{-31} \rightarrow 6.022 \times 10^{23}$$

Desired: graceful transition

Observations

Mativation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Compactness matters:

$$6.022 \times 10^{23} =$$

602,200,000,000,000,000,000,000

Observations

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Compactness matters:

$$6.022 \times 10^{23} =$$

602,200,000,000,000,000,000,000

Some operations are unlikely:

$$6.022 \times 10^{23} + 9.11 \times 10^{-31}$$

Scientific Notations

 $\mathsf{Motivation}$

Representing Numbers

Exotic Representation

Error

Practical Aspect

Store Significant digits

$$\underbrace{\pm}_{\text{sign}}\underbrace{(d_0+d_1\cdot b^{-1}+d_2\cdot b^{-2}+\cdots+d_{p-1}\cdot b^{1-p}))}_{\text{significand}}\times\underbrace{b^e}_{\text{exponent}}$$

• Base: $b \in N$

• Precision: $p \in N$

• Range of exponents: $e \in [L, U]$

Properties of Floating Point

Motivation

Representing Numbers

Exotic Representation

Error

- Unevenly spaced
 - Machine precision ϵ_m : smallest ϵ_m with $1+\epsilon_m\ncong 1$

Properties of Floating Point

Motivation

Representing Numbers

Exotic Representation

Error

- Unevenly spaced
 - Machine precision ϵ_m : smallest ϵ_m with $1 + \epsilon_m \ncong 1$
- Needs rounding rule (e.g. "round to nearest, ties to even")

Properties of Floating Point

Motivatio

Representing Numbers

Exotic Representation

Error

- Unevenly spaced
 - Machine precision ϵ_m : smallest ϵ_m with $1 + \epsilon_m \ncong 1$
- Needs rounding rule (e.g. "round to nearest, ties to even")
- Can remove leading 1

Infinite Precision

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

$$Q = \{a/b : a, b \in Z\}$$

- Simple rules: a/b + c/d = (ad + cb)/bd
- Redundant: 1/2 = 2/4
- Blowup:

$$\frac{1}{100} + \frac{1}{101} + \frac{1}{102} + \frac{1}{103} + \frac{1}{104} + \frac{1}{105} = \frac{188463347}{3218688200}$$

• Restricted operations: $2 \mapsto \sqrt{2}$

Bracketing

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Store range $a \pm \epsilon$

- Keeps track of certainty and rounding decisions
- Easy bounds:

$$(x \pm \epsilon_1) + (y \pm \epsilon_2) = (x + y) \pm (\epsilon_1 + \epsilon_2 + error(x + y))$$

Implentation via operator overloading

Sources of Error

Motivation

Representing Numbers

Exotic Representation

Error

- Rounding
- Discretization
- Modeling
- Input

Example

otivation

Representing Number

Exotic Representation

Error

Practical Aspects

What sources of error might affect planets simulation?

Absolute vs. Relative Error

Representing Numbers

Exotic Representation

Error

Practical Aspects

Absolute Error

The <u>difference</u> between the approximate value and the underlying true value.

Absolute vs. Relative Error

NA -+i. .-+i -.

Representing Numbers

Exotic Representation

Error

Practical Aspects

Absolute Error

The <u>difference</u> between the approximate value and the underlying true value.

Relative Error

Absolute error divided by the true value.

Absolute vs. Relative Error

.

Representing Numbers

Exotic Representation

Error

Practical Aspects

Absolute Error

The <u>difference</u> between the approximate value and the underlying true value.

Relative Error

Absolute error divided by the true value.

$$2~cm \pm 0.02~cm$$

$$2 \ cm \pm 1\%$$

Relative Error: Difficulty

lotivatior

Representing Number

Exotic Representation

Error

Practical Aspects

Problem: Generally not computable

Relative Error: Difficulty

 ${\cal M}$ otivation

Representing Number

Exotic Representation

Error

Practical Aspect

Problem: Generally not computable

Common fix: Be conservative

Computable Measures of Success

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Root-finding problem

For $f: \mathbb{R} \to \mathbb{R}$, find x^* such that $f(x^*) = 0$

Actual output: x_{est} with $|f(x_{est})| \ll 1$

Backward Error

Activation 8 4 1

Representing Numbers

Exotic Representation

Error

Practical Aspects

Backward Error

The amount the problem statement would have to change to make the approximate solution exact

Backward Error

lotivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Backward Error

The amount the problem statement would have to change to make the approximate solution exact

Example 1:
$$\sqrt{x}$$

Backward Error

Error

Backward Error

The amount the problem statement would have to change to make the approximate solution exact

Example 1: \sqrt{x} Example 2: $A\vec{x} = \vec{b}$

Conditioning

lotivation

Representing Numbers

Exotic Representation

Error

Practical Aspect

Well-conditioned:

Small backward error ⇒ small forward error

Poorly conditioned:

Otherwise

Example: Root-finding

Condition Number

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Condition number

Ratio of forward to backward error

Condition Number

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

Condition number

Ratio of forward to backward error

Root-finding example:

$$\frac{1}{|f'(x^*)|}$$

Theme

otivation

Representing Number

Exotic Representation

Error

Practical Aspects

Extremely careful implementation can be necessary

Example: $\|\vec{x}\|_2$

Motivation

Representing Numbers

Exotic Representation

Frror

```
double normSquared = 0;
for (int i = 0; i < n; i++)
normSquared += x[i]*x[i];
return sqrt(normSquared);
```

Motivation

Representing Numbers

Exotic Representation

Error

```
double maxElement = epsilon;
\\
for (int i = 0; i < n; i++)
maxElement = max(maxElement, fabs(x[i]));
for (int i = 0; i < n; i++) {
  double scaled = x[i] / maxElement;
  normSquared += scaled*scaled;
}
return sqrt(normSquared) * maxElement;</pre>
```

More Involved Example: $\sigma_i x_i$

Motivation

Representing Number

Exotic Representation

Frror

Motivation for Kahan Algorithm

Motivation

Representing Numbers

Exotic Representation

Error

Practical Aspects

$$((a+b)-a)-b\stackrel{?}{=}0$$

Store compensation value!