Exercice: Viterbi à la main

- Quelle est la matrice de transition A?
- Quelles sont les probabilités initiales π ?
- Quelles sont les probabilités B?

- Quelle est la probabilité de la séquence d'observation « GGCAC » (ADN) avec la séquence d'états « LLHHL » ? Indiquez le chemin dans le graphe, calculez la probabilité de ce chemin.

T1	i=1,	i=2,	i=3,	i=4,	i=5,
	O ₁ = « G »	O ₂ = « G »	O ₃ = « C »	O ₄ = « A »	O ₅ = « C »
Н					
L					

- Il existe plusieurs séquences d'états pouvant générer la séquence d'observation « GGCAC ». Appliquer Viterbi pour trouver le chemin de probabilité maximale.
- Que ce passe-t-il si je retire l'arc de L vers H?

T1	i=1	i=2	i=3,	i=4,	i=5,
	O ₁ = « G »	O ₁ = « G »	O ₃ = « C »	O ₄ = « A »	O ₅ = « C »
Н	0.5x0.3=0.15	0.0225	0.6033 75	0.0003375	521160000.0
L	$0.5 \times 0.2 = 0.1$	0.015	0-00 225	0.00050625	6.0000 405

T2	i=1	i=2	i=3,	i=4,	i=5,
	O ₁ = « G »	O ₁ = « G »	O ₃ = « C »	O ₄ = « A »	O ₅ = « C »
H	start	Н	4-9	H	L
L	start	H	d and	H	

TP HMM

Algorithme de Viterbi (wikipedia EN)

Entrées

- Un ensemble de K états S={s₁, s₂, ...,s_i, ..., s_K}
- Un ensemble de taille N des observations $O = \{o_1, o_2, ..., o_j, ..., o_N\}$.
- Une matrice de transition A de taille K x K tel que a_{i,j} est la probabilité de transité de l'état i à létat j.
- La matrice de probabilité des observations B de taille K x N. b_{i,j} est la probabilité de l'observation o_j dans l'état s_i.

```
function VITERBI(O, S, \Pi, Y, A, B): X
       for each state i \in \{1, 2, ..., K\} do
              T_1[i,1] \leftarrow \pi_i \cdot B_{iy_1}
              T_2[i,1] \leftarrow 0
       end for
       for each observation i \in \{2, 3, ..., T\} do
              for each state j \in \{1,2,\ldots,K\} do
                     T_1[j,i] \leftarrow B_{jy_i} \cdot \max_k \left(T_1[k,i-1] \cdot A_{kj}\right)
                     T_2[j,i] \leftarrow rg \max_k \left(T_1[k,i-1] \cdot A_{kj}
ight)
              end for
       end for
       z_T \leftarrow rg \max \left(T_1[k,T]\right)
      x_T \leftarrow s_{z_T}
       for i \leftarrow T, T-1, ..., 2 do
              z_{i-1} \leftarrow T_2[z_i,i]
             x_{i-1} \leftarrow s_{z_{i-1}}
       end for
       return X
end function
```

Archéologie:

- Regarder l'article suivant : http://documents.irevues.inist.fr/bitstream/handle/2042/10273/AR88.pdf?sequence=1&isAllowed=Y