第1章 ビッグデータ概要

1-1.ビッグデータとは	5
1-2.ビッグデータの量	
1-3.ビッグデータの質	
1-4.ビッグデータの種類	
1-5.ビッグデータが持つ特性	
1-6.ビッグデータ登場の背景	10
1-7.ビッグデータの所在	11
1-8.オープンデータとは	
1-9.オープンデータ×ビッグデータ活用例	
1-10.ビッグデータが活用される分野	
1-11.ビッグデータが活用される業界	15

- 2 -

第2章 ビッグデータとセキュリティ

2-1.ビッグデータとセキュリティ	(個人情報保護)	17
2-3.個人情報保護法改正		19
2-6.オプトインとオプトアウト		22
2-7.匿名加工処理の手法		23
		24
		25
2-10. L-多様化したテーブル		26

3

第1章 ビッグデータを支える技術 クラウド、IoT

1-1.ビッグデータ周辺技術 クラウド	9
1-2.クラウドサービスの種類	10
1-3.クラウドサービスのメリット・デメリット	
1-4.クラウドコンピューティングとビッグデータ	12
1-5.ビッグデータ周辺技術 IoT	13
1-6. IoTとは	14
1-7. IoTとユビキタス社会	15
1-8. IoTとM2M	17
1-9. IoTを構成する技術要素	19
1-10. IoTを構成する技術要素 センサー	20
1-11. IoTを構成する技術要素 デバイス	23
1-12. IoTを構成する技術要素 IoTサービス	24

-4-

第2章 ビッグデータを支える技術 データ収集・加工

2-1.ビッグデータの解析までの流れ	27
2-2.データ蓄積までの流れ	28
2-3.データ収集例	29
2-4.同期通信と非同期通信	32
2-5.ビッグデータの処理と保存	33
2-6.ストリーム処理	34
2-7.データ蓄積までの流れ(振り返り)	36
2-8.データ管理: クレンジング	37
2-8.データ管理: クレンジング具体例	38
2-9.データ管理: ETLとELT	39
2-10.データ管理: 従来型データ蓄積	40
2-11.データ管理: データレイク	41
2-12.スループットとレイテンシ	42
2-13.従来型のデータベース: 行指向DB	43
2-14.従来型のデータベース:列指向DB	44
2-15.従来型のデータベース: MPP	45

第3章 ビッグデータコア技術 NoSQL

3-1. NoSQLとは	47
3-2.ビッグデータで扱うデータの種類	48
3-3. NoSQLのメリット、デメリット	
3-4. NoSQLの代表的な種類	54
3-5.キー・バリュー型の特徴	
3-6.列指向型の特徴	
3-7.ドキュメント型の特徴	61
3-8.グラフ型の特徴	62
3-9.代表的なNoSQL製品	63
3-10. NoSQLの基本的概念と技術 (マスタ型・P2P型)	
3-11. NoSQL時代の必要要件	65
3-12. NoSQLの基本的概念と技術(整合性)	66
3-13. NoSQLの基本的概念と技術(データ分割)	73
3-14. NoSOLの基本的概念と技術 (ストレージレイアウト)	77

6

第4章 ビッグデータコア技術 分散処理

4-1.分散処理とは	80
4-2.分散処理のメリット・デメリット	82
4-3. Hadoopとは	83
4-4. Hadoopの基本構成	85
4-5. HDFS (Hadoop Distributed File System)	86
4-6. HDFSはマスタ型	87
4-7. HDFSの読み書き	88
4-8. MapReduce処理とは	89
4-9. MapReduceのアーキテクチャ	91
4-10.分散ファイルシステムとリソースマネージャー	
4-11.分散データ処理とクエリエンジン	96
4-12.分散データ処理とSpark	99

-7-

第5章 ビッグデータにおけるデータ解析

5-1.ヒックテータにおけるテータ解析	101
5-2.アドホック分析ツール	102
5-3.ダッシュボードツール	
5-4.データ活用:一般的な統計分析手法	104
5-5.度数分布とヒストグラム	
5-6.平均と標準偏差	106
5-7.正規分布	107
5-8.標本調査と標本平均	108
5-9.相関関係	109
5-10.相関係数	110
5-11.相関関係と因果関係	111
5-12.回帰分析と重回帰分析	112
5-13.多項式回帰曲線のイメージ	113
5-14.テキストマイニング	114

- 8 -

第6章 ビッグデータとAI、機械学習

6-1. AIの発展	117
6-2.機械学習	118
6-3.教師あり学習と教師なし学習	119
6-4.機械学習アルゴリズム	120
6-5.画像分析手法	124
6-6.地図情報システムとの連動	125

- 9 -

第1章ビッグデータ概要

- 10 -

ビッグデータとは

ビッグデータとは

一般的なデータ管理・処理ソフトウエアで扱うことが困難なほど巨大で複雑な データの集合のこと。

ビッグデータを取り巻く課題の範囲は、情報の収集、取捨選択、保管、検索、 共有、転送、解析、可視化等多岐にわたる。これら課題を克服しビッグデータ の傾向をつかむことで「ビジネスに使える発見、疾病予防、犯罪防止、リアル タイムの道路交通状況判断」に繋がる可能性がある.

Wikipediaより

つまり、ビッグデータとは、

- ・従来のシステムでは処理できないほど巨大なデータ
- ・定型を持たない複雑なデータ
- ・発見、予防といった新たな価値をもたらし得る、2次元的情報をもたらすデータであることが分かります。

- 11 -

ビッグデータの量

巨大なデータとはどれくらい?

ビッグデータの例を見てみましょう。

データ量を表す単位は、以下の順に1024倍となります。

キロ(KB)<メガ(MB)<ギガ(GB)<テラ(TB)<ペタ(PB)<エクサ(EB)<ゼタ(ZB)

全世界で生成・消費されるデジタルデータの総量

IDC(International Data Corporation)の発表: 59ゼタバイトを超える

出典:https://www.idc.com/getdoc.jsp?containerId=prUS46286020

- 12 -

ビッグデータの種類 ビッグデータの分類 構造化データ 準構造化データ 非構造化データ データベースに格納される行列 完全な構造定義を持たない データ部に構造定義を全く持た の二次元テーブルで表現されるデータ。 ないデータ。準構造化データと データ。 合わせてデータ総量の 80%を 例・ログデータ ・センサーデータ ・SNS に書き込まれたデータ 占め、5年で800%の増加傾向。 それほど増加しない見込み。 分類の意味 例・文書 ・音声 ・動画 例・顧客テーブルデータ ・受注テーブルデータ ・CSV データ ・Excel データ 画像 販売 POS データ ツイートデータ 防犯カメラ映像 前のページの例を 当てはめると… 販売・生産実績 Web 操作ログ コールセンター音声 - 14 -

ビッグデータの所在				
社内 (ローカル)	自社基幹シ 販売実績や、生産 データ、会計データ	E実績	Web、SNSサービス等 ECサイト、社内ポータルサイト 、アプリ操作ログ	
社外	顧客・ユーザー スマホや家電、 メーター上の データ	グルー企業間で活情報	プ企業 共有される	取引企業 サプライチェーンの情報
一般	政府・自治体等 統計データや地図情報など公開されている 情報	提携 SNSデータ 報空間統 機関乗降	計、交通	データ提供事業者 地図、統計情報など 目的に合わせて整 備したデータ
	- 17	-		

オープンデータとは				
特徴	■ 誰でも入手可能で、自由に利用・再配布できる状態で存在する■ 特許・著作権に制限がない■ コンピューターから利用できる状態となっている			
公開主体	■ 政府■ 地方自治体■ 研究機関・大学■ 民間企業			
具体例	 ■ 国勢調査データ(政府統計の総合窓口「e-Stat」) ■ 公共施設やAEDの位置データ ■ 気象データ ■ 有志により作られた地図データ(OpenStreetMap など)「行政と市民によるオープンデータ共創支援プラットフォーム(LinkData) 			
	-18 -			

オープンデータ×ビッグデータ活用例

- ・過去のTwitterなどのSNS上の書き込み + 販売データ
 - * 相関を調べ、売上の増減や欠品可能性を予測する。
- ・自社の販売データ + 気象データ
 - * 気象変化と売上推移の相関を見出し、予測を行う。

- ・医療施設の位置データ + 患者の郵便番号のデータ
- * 来院マップを作成し、診療費ごとの外来状況を分析することで、地域医療に関して重点的な連携、促進を図る。
- ・国勢調査などの人口統計情報 + 将来の人口推計
 - + ターゲット層の世帯が多数存在する地域の売上相関
 - * 重点的に販売を行う地域を模索する。

- 19 -

ビッグデータが活用される業界

	運輸	金融	医療•健康	製造
利活用事例	 航空機チケットの割引サービスの改善: Web販売サイトでの購入傾向を分析 渋滞予測:スマホGPSの情報を分析 トラックの最適な輸送ルート:過去の情報から算出 	 金融商品の提案・開発:数千万件の顧客情報から、決済や資産運用の動きを分析 保険サービスの開発:車の走行距離の情報を元に保険料を定めるサービスを開始 	1.インフルエンザ対策: SNS上のコメントや検索キーワードから、広がりを検知 2.メディケア(アメリカの公的保険)のデータ公開:公的機関が分析して公開	 品質改善のための最善策の策定:生産工程に関する多数の情報を収集、分析 製品開発:建機にセンサーを設置し故障時の稼働環境を分析してフィードバック。
効果	販売促進 人流動態分析	新サービス開発	兆候把握• 情報提供	品質向上

- 21 -

第2章 ビッグデータとセキュリティ

- 22 -

ビッグデータとセキュリティ(個人情報保護)

個人情報とは

個人情報の保護に関する法律 第二条 第1項 第一号において、次のように 定義されています。

「生存する個人に関する情報であって、」「当該情報に含まれる氏名、生年月日その他の記述等」「により特定の個人を識別することができるもの(他の情報と容易に照合することができ、それにより特定の個人を識別することができることとなるものを含む。)」

- 23 -

個人情報保護法

個人情報保護法

・成立:2003年(平成15年)5月23日

・施行:即日(但し、一般企業に直接関わり罰則を含む第4~6章を除く)

・全面施行: 2005年(平成17年) 4月1日 … 成立の2年後

個人情報取扱事業者

- ・個人情報を個人情報データベース等として所持し事業に用いている事業者 のことをいう。
- ・個人情報保護法および同施行令により、取扱件数に関わらず、個人情報取扱事業者とされるようになった。
- ・主務大臣への報告や、それに伴う改善措置に従うなどの適切な対処を行わなかった個人情報取扱事業者に対しては、刑事罰が科される。

- 24 -

個人情報保護法改正

個人情報保護法 2015年の改正内容

- ・これまで対象外だった、5,000人分以下の個人情報を取り扱う小規模な事業者に対しても、改正法が適用されるようになった。
- ・個人情報を取得する場合、予め本人に利用目的を明示することが必要となった。
- ・個人情報を他企業などの第三者に提供する場合、予め本人から同意を得ることが必要となった。
- ・オプトアウトには、個人情報保護委員会への届出が必須となった。 更に、第三者提供の事実、その対象項目、提供方法、望まない場合の停止方 法などを、全て予め本人に示さなければならなくなった。 ※オプトアウト:本人の同意を得ないで個人情報を提供できる特例のこと。
- ・「人種」、「信条」、「病歴」といった「要配慮個人情報」は、オプトアウトでは提供できないこととされた。

- 25 -

個人情報保護の情勢

・1980年 プライバシー保護と個人データの国際流通についてのガイドラインに関する OECD理事会勧告(OECDプライバシーガイドライン)

(OECDの34加盟国)

①収集制限 ②データ内容 ③目的明確化 ④利用制限 ⑤安全保護措置 ⑥公開 ⑦個人参加 ⑧責任 の8原則からなる。

・1995年 EUデータ保護指令 (EUの28構成国) EUおよび英国においては、十分なデータ保護レベルが確保されて いない第三国への個人データの移動を禁止する。

・2003年 個人情報保護法 (日本) 個人情報を扱う事業者に対し、個人情報の適切な取り扱いを求める。

・2012年 消費者プライバシー権利章典 (アメリカ)

①個人によるコントロール ②透明性 ③背景情報の尊重 ④セキュリティ ⑤アクセスと正確性 ⑥適切な範囲の収集 ⑦説明責任 の7つの権利を定める。

- 26 -

個人情報保護法の情勢

- ・EU一般データ保護規定(GDPR)が可決(2016年4月 EU) データポータビリティ権が提唱される。 * 域外適応につき、日本の事業者に影響が出る。
- ・EU USプライバシーシールドに米国と欧州委員会が合意 (2016年2月 米国) スノーデン事件を受けて無効化されていたセーフハーバーの後継。 商務省とFTCに強い権限が与えられ、企業に対して自主規制を求める機 運が高まった。
- ・APEC 越境プライバシールールシステム (CBPRs) への参加 (アジア) 日本に関しては、2014年にJIPDECがCBPR認証機関に認定された。 * 2016年6月1日から申請受付開始。
- ・個人情報保護委員会が発足(2016年1月日本) 個人情報保護法の改正を受け、政府の第三者機関として設立した。
- ・一般財団法人情報法制研究所(JILIS)が設立(2016年5月 日本)

- 27 -

オプトインとオプトアウト

オプトイン(事前承認)

明示的な同意が無い限り、個人情報やプライバシー情報は収集されないような仕組みのことを言います。

例・ショッピングサイトからのセール情報に関するメールの送付を許可する。・個人情報の収集・利用を含むサービスの利用規約に同意する。

オプトアウト(事後承諾)

オプトインとは反対に、明示的に拒否していない限りは同意したものとみなし、明示的な拒否があった場合に個人情報やプライバシー情報の利用が停止されるような仕組みのことを言います。

例・Webサイトにおけるクッキーを用いた行動追跡・ショッピングサイトにおける購買履歴の削除

- 28 -

匿名加工処理の手法

以下のそれぞれの手法を組み合わせることで、より強固な匿名化が実現されます。

技法大部類	No.	技法例	概要
摂動法	1	K-匿名化	同じグループ内に、同じ属性のユーザが「K人以上いる」状態を作り出 す。
	2	L-多様性	漏えいさせたくない属性が同じグループ内で「L種類以上ある」状態を 作り出す。
	3	T-近接性	マイナー属性を持つグループが生まれるなど、属性値の分布に偏りが 出てしまう場合に、グループの分割や一般化を行う。
	4	差分プライバシー	2006年に提案された新しい手法。元のデータベースにノイズを足した 別のデータベースを用意し、守りたいレコードを特定しづらくする。
暗号法	5	質問監査	データベースへのアクセス者に質問を投げかけ、答えられれば、アク セスに対する回答を返す。
	6	秘密計算	関係者全員が、自社データを他人が読めないように変換し、秘密計算 のシステムへ投入する。そのシステムの管理者が、秘密計算の結果を 求め、関係者に回答する。
	7	準同型性公開鍵暗号を用いた暗号プロトコル	遺伝子データなど、加工してしまうと、そもそも分析できなくなる データを処理するときに活用。検索者の検索クエリ、データベース、 その回答それぞれを暗号化する。分析者が元データにふれずとも、望 む解析結果が得られる。

出典:中川裕志『プライバシー保護入門:法制度と数理的基礎』(2015年)

- 29 -

識別子の削除(仮名化)

個人の識別・特定に直結するカラムを削除して、仮名化を行います。

No.	ZIP⊐ード	年齢	職業	病状
1	13068	28	ダンサー	心臓病
2	13068	29	技術者	心臓病
3	13053	21	法律家	感染症
4	13053	23	技術者	感染症
5	14853	31	技術者	風邪
6	14853	37	作家	風邪
7	14850	36	法律家	がん
8	14850	35	技術者	がん

準識別子

出典:「情報処理学会」(Vol.54 No.11 Nov.2013) より

- 30 -

K-匿名化したテーブル

次に、再特定・識別につながる「職業」を秘匿した上で、「年齢」、「病状」の列に「同じ値が少なくとも2つ以上は存在する状態」のテーブルを作ります。

No.	ZIP⊐ − ド	年齢	職業	病状
1	13068	28-29	*	心臓病
2	13068	28-29	*	心臓病
3	13053	21-23	*	感染症
4	13053	21-23	*	感染症
5	14853	31-37	*	風邪
6	14853	31-37	*	風邪
7	14850	35-36	*	がん
8	14850	35-36	*	がん

出典:「情報処理学会」(Vol.54 No.11 Nov.2013)より

- 31 -

L-多様化したテーブル

「ZIPコード」と「年齢」を曖昧にして、「どのレコードを取り出しても、2種類の「病状」が存在する状態」になるようにします。

No.	ZIP⊐ − ۴	年齢	職業	病状
1	130**	21-29	*	心臓病
2	130**	21-29	*	心臓病
3	130**	21-29	*	感染症
4	130**	21-29	*	感染症
5	148**	31-37	*	風邪
6	148**	31-37	*	風邪
7	148**	31-37	*	がん
8	148**	31-37	*	がん

出典:「情報処理学会」(Vol.54 No.11 Nov.2013) より

- 32 -

第1章

ビッグデータを支える技術

クラウド、IoT

- 33 -

ビッグデータ周辺技術 クラウド

クラウドコンピューティングとは

メールやグループウェア、その他様々なサービスをインターネット上で提供し、インターネット上にデータまでをも保存するようなサービス形態のことをいいます。

アプリケーションの実行場所が、雲(クラウド)のようにどこにあるのかが分からないモヤモヤとした場所にあることから、このように呼ばれています。

- 34 -

クラウドサービスの種類

クラウドサービスの種類

· SaaS (Software as a Service)

インターネットを経由してソフトウェアパッケージを提供するサービスのこと。 アプリをPCにダウンロードしなくても、Webなどのブラウザ上で利用するこ とができる。

例・メール ・カレンダー ・チャット

PaaS (Platform as a Service)

インターネットを経由してアプリの開発・運用環境全体を提供するサービスのこと。システム管理者、開発者向けである。

・HaaS / IaaS (Hardware as a Service / Infrastructure as a Service)
インターネットを経由してハードウェアや回線などのインフラを提供するサービスのこと。ユーザーはハードウェア資産を所有することなく、仮想サーバーやストレージ(外部記憶装置)を利用することができる。

- 35 -

クラウドコンピューティングとビッグデータ

クラウドサービスに蓄積されるビッグデータ

クラウドサービスは、ビッグデータの蓄積場所に有力な選択肢です。

実際、以下はビッグデータがクラウドに保存されています。

- ・GREE、mixi、Facebook、Twitterなどに代表されるSNSのユーザーデータ
- ・IoTのようにセンサーなどで発生したデータ

ビッグデータ周辺技術 IoT

IoTとは

IoT = Internet of Things 「モノのインターネット」

ここで、「モノ」とは、ネットワークに繋がるあらゆる物のことです。 従来はインターネットとは関係のなかったもの、例えば、

- ・眼鏡 ・服 ・時計 ・冷蔵庫 ・電力メーター ・自動車
- ・太陽光パネル ・家 ・スマートフォン

もすべて「モノ」です。

IoTとは、モノがネットワークに繋げられることによって、モノとインターネットが相互に情報交換をできるようになった状態のことをいいます。

- 38 -

IoTとは

- ・Internet of Thingsという用語は1999年、ケビン・アシュトン(イギリス)によって初めて提唱されました。
- ・当初はRFIDによる商品管理システムをインターネットに例えたものでした。
 - * 徐々にスマートフォンやクラウドコンピューティングが普及。
 - * IoTはモノ自体がインターネットを形作るという環境全体のことを表す概念 として捉えられるようになる。
- ・IDC(ICT市場調査会社)による定義 「IP接続による通信を人の介在なしにローカルまたはグローバルに行うことが できる識別可能なエッジデバイスから成るネットワークのネットワーク」

- 39 -

IoTとユビキタス社会

<u>IoTとユビキタスの違い</u>

・IoT: モノとモノが相互に制御し合っている状態を表す。・・・・「モノ」を中心とした概念

・ユビキタス: ユーザーが時間や場所にとらわれずインターネットに繋がって 様々なサービスを受けられる状態を表す。 …ユーザーという「人」を中心とした概念

参考

ユビキタス (ubiquitous) は、遍在(いつでもどこでも存在すること)をあらわす言葉。

パロアルト研究所のマーク・ワイザーが、1991年の論文『The Computer for the 21st Century』にて、コンピュータやネットワークなどの遍在を表す意味合いで用いた。以来、ユビキタスコンピューティングやユビキタスネットワーク、さらにはそれらが当たり前になった社会を指す「ユビキタス社会」の意味で用いられるようになった

Wikipedia

- 41 -

IoTを構成する技術要素

・センサー:物理的な現象を検知し、電気信号として出力する装置。

・デバイス: センサーが組み込まれることによって、ネットワークに接続された 装置やモノ。

例 スマホ、時計、メガネ

・ネットワーク:デバイスをIoTサービスに繋ぐ、あるいはデバイス同士を繋ぐこ とでデータを共有、処理するシステム。

・IoTサービス: ①デバイスとのデータの送受信 … IoT

②データの処理と保存 … ビッグデータの技術的守備範囲

を行うサービス。

・データ分析:蓄積したデータについて統計分析や機械学習を行う。

→ 最適な判断や行動方針を導き出す。

- 44 -

IoTを構成する技術要素 センサー

センサー

物理的な現象を検知し、電気信号として出力する装置のことをいいます。 多くの場合、一つのデバイスに対して複数のセンサーが埋め込まれています。

- ・画像センサー:光を捉えて処理することで、画像や動画を撮影する。 赤外線を検知して画像処理するものもある。
- ・光センサー:光の強度を測定する。
- ・温度センサー:温度を測定する。
- ・湿度センサー:湿度を測定する。
- ・振動/速度/加速度センサー:機器の振動や速度、加速度を測定する。
- ・地磁気センサー:地磁気を検出することで、方角を計測する。
- ・ジャイロセンサー:デバイスの傾きを検知する。
- ・音声マイク:機器が発する音や、人の声などの音声を収集する。

- 45 -

IoTを構成する技術要素

センサーの代表的なデータフォーマットとしては、 · XML · JSON · MessagePack があります。

```
XML
<xml>
 <info>
   <id>12996</id>
   <name>RoomSensor</name>
   <date>20170123112255</date>
  </info>
 <data>
    <temperature>27.8</temperature>
    <humid>72</humid>
 </data>
</xml>
```

```
JSON
},
"data"{"temperature": 27.8,
"humid":72
}
```

データ量が少ない

人が読んで分かりやすい データ量が多い

いずれも各言語のライブラリが充実していますが、文字データであることから、 パース(解析)をしないとプログラムで利用できません。 MessagePackは、バイナリデータをそのまま扱いたい場合、有利です。

- 46 -

IoTを構成する技術要素 センサー

MessagePack

- ・センサーの代表的なデータフォーマットの一つ。 ・JSONと似た形式だが、値はバイナリのままである。
- ・軽量でプログラム間処理に向いている。

MessagePackの特徴

- ・シリアライズ(データの直列化)、デシリアライズ:非常に高速
- ・シリアライズされたデータのサイズ:小さい
- ・フォーマット定義:不要 ・ストリーム処理:可能

JSONとMessagePackの比較

JSON $\{\text{"a":null,"b":}10,\text{"c":}[20],\text{"d":"30"}\} \cdots 35 byte$

* MessagePack に変換すると…

84 a2 61 c0 a2 62 0a a2 63 91 14 a2 64 a2 33 30 ···· 16byte

- 47 -

IoTを構成する技術要素 デバイス

デバイス

センサーが組み込まれることによって、ネットワークに接続された装置、モノのことをいいます。例えば、スマホ、時計、メガネはいずれもデバイスです。

デバイスの2つの機能

・センシング: センサーを利用して、デバイス自身や周りの環境の状態を収集し、 IoTシステムに通知すること。

> 例・画像センサーによる人の有無の検知 ・スマホの位置情報や加速度の計測

・フィードバック:システムからの通知を受け、指示や動作をもとのシステムに 返すこと。次のような方法がある。

・可視化: センシング結果表示、デバイスの管理、画面表示

・通知:システムが判断した結果を画面に表示 ・制御:デバイス自身や環境の状態そのものを変更

- 48 -

IoTを構成する技術要素 IoTサービス サーバー構成 IoTサービスの役割は、フロントエンド、処理、蓄積の大きく3つに分けられます。 蓄積されるデータは膨大な量となります。 IoTサービスのサーバー フロントエンド部 受信サーバー/送信サーバー 処理部 蓄積部 データ RDB NoSQL 分散ストア デバイスへ の指示 ビッグデータ データの受信 データの送信 ネットワーク SOAP HTTP ソケット - 50 -

第2章

ビッグデータを支える技術

データ収集・加工

- 51 -

データ収集例

データ収集と通信方法

IoTの受信サーバの通信方法は3種類に分類できます。

- ・HTTPプロトコル 通常のWebシステムと同様、HTTPプロトコルを利用したWeb APIを利用してデ バイスからアクセスを行う。
- WebSocket 音声や動画のリアルタイム通信を行う。
- ・MQTT 送受信を媒介する第三者の存在により、柔軟な通信を可能にするメッセージ・ キュー方式を利用する。

ビッグデータの処理と保存

ビッグデータの処理

受信したデータは、データベースや分散ファイルシステムなどに保存されます。 また、受信したデータからデバイス制御の判断を行います。

処理と保存の方法には、ストリーム処理とバッチ処理の2種類があります。

データ内容を常に判断し、即座にデバイスを制御したい場合に利用

記録とデバイス制御にタイムラグがあっても問題ない場合に利用

- 58 -

ストリーム処理

ストリーム処理

ストリーム処理はデータを保存せずに、処理サーバーに到着したデータを逐次処理する方法です。与えられたデータにリアルタイムで反応することができます。

Spark Streaming

Spark Streamingは、ストリーム処理を行うためのSparkのライブラリです。 時系列的に連続したデータ列をRDDで分割し、分割されたRDDに対して小さな 処理単位のバッチを実行します。

データ管理: クレンジング

<u>クレンジング</u>

データの整理や加工を行うことで、効率的に分析できるようになります。 これをクレンジングもしくはデータ加工と呼びます。 専用のツールやR、Python、GOなどのスクリプト言語で実施できます。

クレンジング対象	具体例	対処例
型の統一、日付、 数値など	数値演算を行いたいデータに文字が 入る場合など	基準を用意し、基準に合わな いデータ修正
書式の不適合・ 表記ゆれ	住所、会社名、電話番号、郵便番号などの表記の不統一、通貨や数値の単位、文字コードなど	表記方法や単位の基準を定 義し、基準に従うようにデータ を修正する
異常データ	ある条件下でのセンサーの誤動作、 データの無記入による空データ、デー タ入力ミスによる意味のないデータ	回帰やクラスタリングにおいて、 結果の精度を下げる原因に 異常値を検知し、事前に外す
個人情報およびプライ バシー情報の保護	氏名、住所、メールアドレスなど個人 を直接特定できる情報	個人を直接特定できる情報を 削除または匿名化処理を施す

- 62 -

スループットとレイテンシ

ビッグデータ処理性能を測る指標

- ・スループット 一定時間に処理できるデータの総量。 WHやデータレイクなど、データの量が多い処理を行う時に重視。
- ・レイテンシデータ処理が終わるまでの待機時間。アドホック集計、データマート、BIツールなどで重視。

スループットとレイテンシは両立しないことが多く、複数のシステムで役割を 分担することがあります。

- 67 -

従来型のデータベース: 行指向DB

行指向データベース

テーブルの行を一つのデータとしてディスクに保存する方法です。

追記は末尾に加えるだけなので容易です。 トランザクションが多く発生する業務アプリなどで利用されます。

ディスク

ディスク格納イメージ

| 2017-01-01 | 商品A | 5000 | 10

2017-01-02 商品B 3750 1

2017-01-03 商品C 2160 5

高速化のためにIndexを利用することがありますが、分析対象となる列がわからないため、ディスクI/Oの軽減にならない場合が多いです。

- 68 -

従来型のデータベース:列指向DB

列指向データベース

テーブルのデータを列単位にまとめて保存する方法です。

集計に必要な項目だけを読み込むことができ、ディスクI/Oの軽減ができます。

ディスク格納イメージ

また、カラム単位での重複は集約が容易なため、圧縮効率が高いです。

- 69 -

従来型のデータベース:MPP

MPPデータベース (Massively Parallel Processing)

一つのクエリを多数の小さなタスクに分解し、多くのCPUコアやコンピュータを並列的に稼働することで結果を得る手法です。

- 70 -

第3章 ビッグデータコア技術 NoSQL

- 71 -

NoSQLとは

NoSQLとは

- ・Not only SQL = RDBMS以外のデータベースの総称
- ・SQLを否定するものではない。
- ・1998年にCarlo Strozzi氏が初めて名称を使用した。(NoREL)
- ・非構造化データの蓄積や管理に利用される。

BASE

- Basically Available Soft-state Eventual consistency
- ・処理速度を優先するNoSQLで採用されているトランザクションの考え方。
- …「稼動が第一で、厳密な整合性は過程ではなく結果でのみ重要視する」

- 72 -

ビッグデータで扱うデータの種類

ビッグデータの種類	データの例
構造化データ	データベースに格納されたデータ など (顧客テーブルデータ、 受注テーブルデータ など)
準構造化データ	ログデータ、センサーデータ、SNSに書き込まれた データ など
非構造化データ	文書、音声、動画、画像など

- 73 -

<u>NoSQLのメリット</u>

- ・前もったデータの構造の定義が不要で、柔軟な変更が容易である
- ・特定の形式に固執しないため、複数のサーバにデータの分散ができる
- ・データ構造が単純で、更新や検索処理の速度が速い
- ・基本的にPutとGetのみを行えばよく、JOINがないため操作が明快

NoSQLのデメリット

・RDBMSと比較すると、データ間の整合性を維持する機能が弱い

- 74 -

NoSQLとRDBMSとの比較

	RDBMS	NoSQL
保存に適するデータ	構造化データ	非構造化データ
スキーマ定義	事前定義が必要 固定的で変更しにくい	事前定義不要 データ構造を変更しやすい
データの整合性	同時実行制御がある データ整合性を重視	比較的緩い 大容量データの高速処理を優 先、結果整合重視
データ操作命令	SQL言語 (SELECT、INSERT、 UPDATE、DELETE)	Put(書き込み) Get(読み出し)
拡張方式	スケールアップ	スケールアウト

- 75 -

データベースの拡張方式の比較

RDBMS : スケールアップを行う NoSQL : スケールアウトを行う

<u>スケールアップ</u>

1台のサーバの処理性能やストレージを拡張します。

<u>スケールアウト</u>

サーバを増設し処理性能を向上させます。

- 76 -

スケールアップ

ハードウェアの性能(ディスク、CPU、メモリ)の増強により、特定の1台のサーバの性能を向上させます。

RDBは以下の特徴を持つため、スケールアップが効果的です。

- ・複数のサーバで運用すると、データ分割や配置作業が必要となる
- ・サーバ間の大規模トランザクションによりパフォーマンスが低下する

スケールアウト

サーバの台数を増やし、全体での処理能力を向上させます。

高性能がサーバに求められないため、低コストで処理性能を上げることが可能です

また、1台サーバの停止による影響は少なく、稼働率は向上します。

NoSQLは、データベースで扱うデータが非構造化データなため、複数のサーバへの分割・複製が容易、つまりスケールアウトの手法に向いています。

- 78 -

キー・バリュー型の特徴

キー・バリュー型

キー・バリュー型

キーとバリュー(値)のセットでデータを整列します。 キーは、値に対する識別子となるデータです。 値はバイナリデータであれば、BLOB型の画像や音声も 格納できます。

キーとキーに紐付けられたデータという単純な構造であるため、スキーマ定義が不要で、検索が高速化でき、またサーバの追加やデータの分割・配置作業が容易となります。つまり、簡単にスケールアウト環境が構築できます。

Dynamo、Voldemort、Riak、Hibari、Redis、 Scalaris、TokyoCabinet/Tylantなどで採用されてい ます。

列指向型の特徴

キー・バリュー型を機能強化したもので、各行のキーが複数の列(カラム)の値を持つことが可能です。

列単位でデータの保存や読み込み処理を行うことができ、列の集計処理などを高速に実行することができます。

一部の列のデータが欠けている行があっても問題ありません。また、行や列の数は自由に 好きなだけ拡張可能です。

Bigtable、Cassandra、Hbase、Hypertableが採用 ※カラムナデータベースとは別物です。

- 84 -

ドキュメント型の特徴

↓

ドキュメントの例 (JSON)

```
{
"title": "今日のランチ"
"userName": "Morimoto"
"postedDateTime":
"2014/10/10 13:00"
"content": "カレー"
"count":2
}
```

ドキュメント指向型

JSONやXMLなどのデータ記述書式のドキュメントを格納します。

階層構造は持たないフラットなドキュメントの形式 でデー! します。各ドキュメントには管理の ためのユニークIDが割ます。

スキーマレスです。(データ設計が不要です。)

ドキュメントの内部構造はDB、アプリケーションからわかり、 の内容でクエリを作成できます。

MongoDB、CouchDBで採用されています。

- 86 -

グラフ型の特徴

グラフ型

● キーバリュー型格納の例

グラフ型格納の例

データ同士の入り組んだ関係を独立して表現します。 グラフ型は以下の要素により構成されます。

ノード (node) … 他のノードと関係をもつ要素を表す。 リレーションシップ(RelationShip) … ノード間における関係の有無と方向を矢印で示す。 プロパティ(Property) … ノードとリレーションシップの具体的な属性を示す。

- 87 -

代表的なNoSQL製品

代表的なNoSQL製品

NoSQL製品はさまざまなものが多数存在します。

NoSQL分類	製品	ベンダー
キー・バリュー型	Amazon DynamoDB	Amazon
	Hibari	クラウディアン
	Riak	Basho Technologies
	memchached	(オープンソース)
列指向型	HBase	(オープンソース)
	Apache Cassandra	(オープンソース)
	Bigtable	Google
ドキュメント型	Apache CouchDB	(オープンソース)
	MongoDB	(オープンソース)
グラフ型	InfiniteGraph	Objectivity, Inc.
	Neo4j	オープンソース / 商用ライセンス(Neo Technology)

- 88 -

NoSQLの基本的概念と技術

NoSQLのデータベースアーキテクチャ サーバの配置方法には、マスタ型やP2P型の2つがあります。

マスタ型

マスターノードはノード管理を役割を持ちます。 単一障害点(SPOF)が存在します。 ※マスターノードがSPOFです

例 BigTable、CouchDB、 Hbase、Hibari、MongoDB ピア・ツゥ・ピア(P2P)型

単一障害点はありません

例 Cassandra、Dynamo Riak、Voldemart

- 89 -

NoSQL時代の必要要件

<u>必要要件</u>

NoSQLに求められることは様々であり、全てをみたすデータベースは存在しません。

・膨大なデータ : 複数のサーバを必要とするデータ量を扱う

・分散配置:データを複数のサーバに分けて保存する

・コスト:性能は求めず、安価なハードウェアを多数用意する

・信頼性:データの欠損や漏洩を防ぐ

・可用性:稼働率を高く維持する

・耐障害性: 障害による影響を最小限にとどめる

・性能:処理や応答をできる限り早く行う

- 90 -

データの整合性(Consistency)とは 作業の実行後に複製(レプリケーション)されたデータ間に矛盾がないことを示します。 整合性には、「強い整合性」と「緩い整合性」があります。

強い整合性

必ず最新の更新データが出力されることを保証しま す。特に、RDBでは重要視され、保持されます。

緩い整合性 更新から少し時間をおいた後であれば、全てのノードで 最新のデータが読み出せればよいとする考え方です。

- 91 -

ACID BASE

ACID(Atomicity, Consistentry, Isolation, Durability)

トランザクションは、全ての処理完了または処理以前の状態への復元のいず れかを行う仕組み。

Atomicity 原子性 : 手順が全て実行されるか、一つも実行されないか

Consistency 一貫性 : トランザクションの前後で整合性が保たれる Isolation 独立性 : 実行中に他の処理に影響を与えない

: データが正しく記録され、損失の可能性がない Durability 耐久性

• BASE(Basically Available, Soft-state, Eventual Consistency)

アプリは基本的に常に動作し(Basically Available)、強い整合性は持って いないが(Soft-state)、最終的に整合性をもつ(Eventual Consistency) という特性を備えているべきであると言う考え方。

- 94 -

ネットワーク障害時のCPとAPの対応

CP (整合性と分断耐性)

リクエストは片方のグループだけが受け付け、他のグループは自動的に停止します。データを受け付けないグループは更新が起きないため、整合性が乱れる心配はありません。

クライアントA クライアントB フート2 データ ネットワーク障害による分断が発生

AP(可用性と分断耐性)

全てのノードで更新を行えるようにするため、リク エストは全てのグループが受け付けます。情報の 共有ができないノード間で不整合が発生します。

- 95 -

整合性と性能のトレードオフ

R(ノードから読み込む数)とW(ノードに書き込む数)の和がN(レプリカの数)より大きければ、整合性が保証することができます。

複数の書き込みと読み出しを行う事は、応答速度とのトレードオフになります。

データのバージョン管理

- ・タイムスタンプ(TimeStamp) データの更新時間を記録する。 新しいタイムスタンプを持つものを重要視することでバージョンを管理する。
- ・ベクタークロック(Vector Cloks) 複数のバージョン間の仲裁をする仕組み。 変更が行われたノードと、そのノードで変更が行われた回数を記録する。

- 72 -

NoSQLの基本的概念と技術(データ分割)

整合性を後から修復する仕組み

- ・リードリペア(Read Repair) 全てのノードで複製データの読み出し要求を行い、データに矛盾がない かを確認する。発見された矛盾はバッググラウンド処理で修復する。
- ・ヒンテッド・ハンドオフ(Hinted Handoff) 故障が発生した場合、他の稼働中のノードに、故障の復旧後の更新手続きを 指示する仕組み。
- ・マークル・ツリー(Markle Tree) Markle Treeという樹形図構造のアルゴリズムによりデータの整合性を確認し、 整合性に問題がある場合は手動での修復を行うもの。

NoSQLの基本的概念と技術(データ分割)

シャーディング (Sharding)

あらかじめ、サーバ毎に保存するデータのキーの範囲を設定しておくことで、検索や管理を容易にする機能です。

サーバー2

他、アルファベットA \sim G、H \sim N、O \sim Z ID 1 \sim 1000、1001 \sim 2000…など

データの偏りがあった場合、適切な負荷分散ができません。なので、データ単位を小さくし、 ノード数より多くすることなどにより、データの偏りを減らす工夫が必要です。

BigtableやHbaseは再分割、再配置を自動的に行います。

- 99 -

NoSQLの基本的概念と技術(データ分割)

コンシステントハッシング Consistent Hashing

分散型システムを構成するノードを、論理的に輪を形作るよう配置します。データのキーのハッシュ値をハッシュ関数によって求め、不規則な値であるハッシュ値を元に、データを保存するノードを選択します。ノードの位置を変更することで、負荷の代償を変更することも可能です。

NoSQLの基本的概念と技術

ストレージレイアウトの技術

・LSM-Tree(Log Structured Merge Tree) メモリを使って応答性能を高めつつ、ハードディスクにデータを格納すること でデータの安全性を保つ機能。

サーバーメモリ

Memtable

メモリ上のキャッシュ領域

サーバーディスク

Commit Log Commit Gommt SSLogTable

ディスク上の履歴情報

ディスク上のデータ 辞書順にソート

- 102 -

第4章

ビッグデータコア技術

分散処理

- 104 -

分散処理とは

分散処理とは

ビッグデータを分割し、複数のサーバで同時に並行して処理した後、処理結果を統合することで全体の処理結果を生成する処理方法です。

- 105 -

分散処理のメリット・デメリット

分散処理のメリット

ビッグデータの処理時間を短縮することができます。 スケールアウトによる拡張が可能で、比較的低コストになります。 一台の故障が全体の停止には直結しないので、稼働率が高いです。

分散処理のデメリット

データが複数コンピュータにまたがるので、厳密な整合性が必要なオンライントランザクション処理に向きません。 少量のデータ処理には効果が薄いです。

システム全体の性能は、ネットワークの帯域幅や稼働率から大きな影響を受けます。

- 107 -

Hadoopとは

<u>Hadoop</u>

Hadoopはデータベースではなく、複数のソフトウェアからなる分散処理フレームワークです。 一定期間のデータを一括処理する、バッチ向けのフレームワークです。

2つの主要プロダクト

- ・ファイルシステム(HDFS): Hadoop Distributed File System バッチ処理向けに高いスループットを分提供する分散ファイルシステム。
- ・分散処理アルゴリズム(MapReduce): Hadoop MapReduce 複数のサーバでの並列分散処理するプログラミングのためのソフトウェア。 HDFS上のファイルを読み込み、集計結果を別のHDFS上に書き込む。

- 108 -

Hadoopとは

Hadoopの特徴

オープンソースソフトウェアフレームワークで、非構造化であるビッグデータの解析や大量のバッチ処理に用いられます。 Googleによる開発の後、Apache Software Foundationが現在は開発、公開を行っています。

HadoopはLinuxで動作します。また、システムはJavaで構築されているため、JVMが必要です。

MapReduceフレームワークやHDFSを操作するためのJavaのAPI(クラスライブラリ)が提供されています。

専門スキルが導入に必要なため、商用のサポートサービスを提供している会社があります。 (クラウデラ、ホートンワークス、MapRなど)

- 109 -

HDFSの読み書き

HDFSへの書き込み・読み出し

データは、クライアント側で任意のサイズのブロックに分割され、NameNode がどのDataNodeに格納するか指示し、書き込みを行います。 読み出しは、NameNodeがクライアントに対して目的のデータが保存されているDataNodeを示し、直接ブロックを読み出します。

データの複製と耐障害性

データ処理の分散と障害対策のために、一定数複製を作成し、複数のノードにまたがってデータを保存します。障害時は、障害のあるノードをクラスタから切り離し、切り離されたノードにあった複製の分を、他のノードに複製します。

<u>リバランシング</u>

ノードの追加や削除された場合に、データの分散に偏りが生じないようにデータ の再配置を行います。

- 113 -

MapReduce処理とは

MapReduce

大量データを分割し、複数のサーバで並列処理するための方法です。複数のスレーブノードで同一の処理を実行します。次の2段階の処理に分かれます。

①Man処理

データを小さく分割し、必要な情報を選んで出力します。出力データはキーバ リュー型の構造となります。

②Reduce処理

キーごとにデータを集約し加工を行なった上で、HDFSに出力します。

Map処理とReduce処理の開発には、Hadoopが提供するJavaのAPI(クラスライブラリ)を利用します。複雑な分散処理アルゴリズムや障害対応処理などの実装は不要で、開発者は業務ロジックの開発に集中できます。

- 115 -

MapReduceのアーキテクチャ

MapReduceのアーキテクチャ

JobTrackerは、ある程度処理が進むとShuffle&Sort処理を起動します。 Mapタスクにより処理された中間データを、キーの値よって、ノードを跨っているものを含めて1箇所にグループ化します。

MapReduceのアーキテクチャ MapReduceのアーキテクチャ

処理がさらに進むとJobTrackerはReduceタスクをTaskTrackerに割り当てます。 TaskTrackerはReduceタスクを実行し、処理結果をHDFSに書き込みます。全て のタスクが終了するまで繰り返し行います。

分散データ処理とクエリエンジン

Hive on MapReduce

MapReduceはJavaプログラムをデータに対し実行できるため、加工には便利です。SQLに対応させる場合、専用に設計されたクエリーエンジンApache Hiveを利用します。

Hiveは応答性能が重要視される場合や少量データを扱う場面などではには不適です。

データ処理ステージが変わるタイミングで待ちが発生。 中間データを毎回Diskに保存するため低速

- 96 -

分散データ処理とクエリエンジン

Hive on Tez

Apache TezはHiveの高速化するために開発されたコンポーネントです。 Mapreduceの仕組みを調整し、処理段階の終わりで他のプログラムの情報を 保持せずに後続の処理へと受け渡す仕組みに変更しました。

ステージの合間にあったディスクへの書き込み、待ち、Map処理を省略

現在、Hive on Sparkというものも存在します。RDDがMapreduceに代わる存在として活用されています。

- 122 -

分散データ処理とクエリエンジン

Impala / Presto

ImpalaとPrestoは、Hiveの高速化ではなく、対話型クエリ実行に特化させることで、SQLに対応させた製品です。バッチ処理ではなく、最大瞬間速度を最大にするため、あらゆるリソースを有効活用するよう設計されています。

自前の分散処理機構を実装し、マルチコアを活用しながら並列化処理を実行

- 123 -

分散データ処理とSpark

Spark

Apache SparkもMapReduceより効率良くデータ処理をするために開発されました。メモリの使用量増やすことで高速化を実現します。Sparkの実行にはJava ランタイムが必要ですが、Java、Scala、Python、Rからも呼び出すことができます。

Sparkは中間DBにデータを書き込むことなくメモリ上に保ち続けます。 障害でデータが失われるともう一度最初からやり直します。

- 124 -

第5章 ビッグデータにおける データ解析

125 -

アドホック分析ツール

データを可視化するためのソフトウェアは多種多様に存在します。

アドホック分析ツール

行錯誤を繰り返しながら、繰り返しデータを見ていく際に利用するものです。 アドホック分析環境には次のようなものがあります。

- Jupyter Notebook
 - Python、Ruby、Rなどのソースを書き留めながら実行することが可能。 matplotlibライブラリを利用してグラフを作成することもできる。
- · Apache Zeppelin
 - Spark/Hadoopなどの分散処理システムに対してコードを実行し、 実行結果をグラフとして描画することが可能。
 - シェル/SQL/scala/python言語に対応している。

https://zeppelin.apache.org/

- 127 -

ダッシュボードツール

<u>ダッシュボードツール</u>

傾向の把握が進むと、定期的にクエリを実行し、レポートやグラフなどを用いたダッシュボードを作成するツールです。

対話的なBI商用ツールとしてTableau、ClikViewなどが存在します。 オープンソースのダッシュボードツールも存在します。

Redash

Python製のダッシュボードツール。 SQLクエリの実行結果を直感的に可視化できる。搭載したDBに結果を記録する ため、表示自体は高速だが、クエリ結果が大規模になるとエラーや遅延が生じる。

Superset

Python製のWebアプリケーションで対話的なダッシュボードを作成する。 集計は外部ストレージ「Druid」で行い、リアルタイムな出力を行える。

Kibana

JavaScript製の対話的可視化ツール。 Elasticsearchのフロントエンドでよく用いられる。

- 128 -

データ活用:一般的な統計分析手法 度数分布と ヒストグラム データを範囲に区切って表したもので、データの分布を 知ることができる 平均と標準偏差 状況を特定することができる 正規分布 統計的なデータを元に、可能な予測を立てることができる 標本調査 (全体像の推測) 標本 (一部のデータ) を元に、全体像を把握できる 標本平均 標本の平均を求めることで、全体の平均を推測できる

度数分布とヒストグラム

度数分布

度数分布表を用いて表します。

※度数分布表:データをいくつかの範囲に分け、その範囲に 入るデータの個数を書き表した表。

データがどのような値を中心にして、どのように広がっているのかを調べることができます。

値)	人数
21~25(23)	1
26~30(28)	4
31~35(33)	9
36 ~ 40(38)	16
41~45(43)	21
46 ~ 50(48)	5
51~55(53)	3
56 ~ 60(58)	1

ヒストグラム

ヒストグラムとは、データの分布状態(度数分布)を表す棒グラフのことです。

度数分布の他の表現方法としては、箱ひげ図があります。

- 130 -

平均と標準偏差

・平均: データの代表値としてよく利用される。平均の代わりに、最頻値、中央値を用いることもある。

平均値
$$=$$
 $\frac{\ddot{r}-go値の総計}{\ddot{r}-g数}$

・分散:データがどのくらいばらついているかを表す。

分散
$$=\frac{{{{\left({4 ilde{7}}-9 ilde{o}} ilde{d}}{- ilde{v}-9 ilde{d}}}}{{ec{7}}-9 ilde{d}}$$

… 平均との差の2乗の平均

・標準偏差:そのデータの傾向や性質を把握するために利用される。

・異なるデータ間でのデータのばらつきの度合いを比較できる

・平均値からのばらつきの幅を測定できる。

… 分散の平方根

- 131 -

正規分布

正規分布とは

- ・確率分布の1つ。
- ・平均値(または中央値)を中心に左右対称な、釣鐘型の分布。
- ・平均値で最も発生確率は高くなり、平均値から離れるほど低くなる。
- ・正規分布をしていると想定できるデータに関しては、平均値と標準偏差さえわかれば、どのように分布が広がっているかを推定できる。

標本調査と標本平均

標本調査とは

標本、つまり大量のデータ(母集団)の一部を入手、観測した際に、その母集 団を推測するために仮説検定の考え方を用いて行う統計的推定の手法のことを 言います。

標本平均とは

標本データの平均値を利用することで、母集団の平均を推測することができます。母集団の傾向を推測するために利用されます。

… (標本平均) = (抽出した標本データの合計) ÷ (抽出した標本データ数)

- 133 -

相関関係

相関関係とは

一方の値の変化に伴って、もう一方の値が変化するという、2つの値の関係の ことを相関関係と言います。

・正の相関: 2つのデータのうち、一方の値が<u>増加</u>すると、もう一方の値も<u>増加</u>す

・負の相関: 2つのデータのうち、一方の値が<u>増加</u>すると、もう一方の値は<u>減少</u>するような関係。

- 134 -

相関関係と因果関係

・相関関係:一方の値が変化すると、もう一方の値も変化するという2つの値の

関係のこと。

・因果関係: 2つ以上のものの間に原因と結果の関係が成り立っていること。

つまり、一方によって、もう一方が引き起こされるという関係。

相関関係があっても因果関係があるとは限りません。

- 136 -

回帰分析と重回帰分析

回帰分析とは

「原因となる数値」と「結果となる数値」との関連性を、統計的手法によって 分析することを言います。

回帰分析を行うことで、一方の数値(説明変数)の変化から、もう一方の数値(被説明変数)の変化を推測することができ、仮説を立てることが可能になります。式にすると、Y=aX+bのように表されます。

重回帰分析とは

1つの目的変数を複数の説明変数を用いて推測する統計的手法のことを言います。

式にすると、 $Y = a + b_1 X + b_2 X + h_2 X + ... + b_n X$ のように表されます。

多項式回帰曲線のイメージ

回帰曲線を用いて、データをモデル化することを考えます。

1次回帰線

3次回帰線

9次回帰線

ここでは3次回帰曲線を用いて表すのが適当だと考えられます。 上の図からも分かるように、9次回帰線は全ての点を通っていますが、実態とは かけ離れています。従って、新たな点が現れた時にその点が9次回帰線上にある 確率は却って下がってしまい、予測には向いていません。 これを、過学習(オーバーフィッティング)といいます。

- 138 -

テキストマイニング

テキストマイニングとは

大量のテキストデータから、トピックの傾向や、役立つ知識、情報などを見つけ 出す分析技術のことを言います。

まず膨大に蓄積されたテキストデータを単語や文節(形態素)に分解し、それぞれの形態素の出現頻度や相関関係を解析します。

そして、係り受けなどの関係や時系列の変化といった構文解析を行うことで、結 果的に客観的な意味内容を掴むことを目的とします。

テキストマイニング

テキストマイニングをすることで、テキスト情報から何らかの有用な情報を 得ることができます。

- 例・自社の評判と他社の評判を分析、比較する。
 - → トピックの傾向を把握したり、新たな気づきを得たりできる。
 - ・売上やキャンペーンデータについて、時系列で比較する。→ マーケティングなどに有用な情報を得られる。

- 140 -

第6章 ビッグデータとAI、機械学習 _{クラウド、IoT}

- 141 -

AIの発展

AI (artificial intelligence) とは

コンピュータ上などで、人工的に人間と同様の知能を実現させようという試み、あるいはそのための一連の基礎技術のことを言います。

- ・エキスパートシステムとルールエンジン エキスパート(専門家)がルールをつくりプログラムに実行させ、推論機能を 適用することで結論を得る。 エキスパートシステムは大量の既知情報を処理し、関係性を導ける。
- ・事例ベース推論(CBR) 類似した過去の事例を基準に、修正をしながら試行を行い、結果と事例を事例 ベースに記憶する。
- ・ベイジアン・ネットワーク 因果関係を確率により記述する。 複雑な因果関係の推論を有向非巡回グラフ構造により表しながら、個々の変数 の関係を条件つき確率で表す確率推論のモデルである。

- 142 -

機械学習

機械学習と深層学習

2005年以降は機械学習と深層学習による第3次AIブームとなっています。

<u>機械学習</u>

データから反復的に学習し相関を見つけ出すことです。また、その結果を元に して将来を予測することができます。

予測分析におけるモデル構築の自動化ができるため、データサイエンティスト の人材不足を補うものとして期待されています。

深層学習

ニューラルネットワークの多層化、1990年代の視覚野の研究や、ブルーノ・オルスホーゼンによるスパース・コーディング理論を基にしたアルゴリズムが実装されたものを指します。

情報が第1層からより深くへ伝達されると、各層で学習が繰り返され、特徴量 (問題の解決に必要な本質的な変数であったり、特定の概念を特徴づける変数) が計算されます。

- 143 -

機械学習の手法として、教師あり学習と教師なし学習があります。

「教師あり学習」のイメージ 入力データに対応する出力を予測

① 入出力のペアで訓練データを用意 し、入出力の関係を学習させる

② 未知データを正しく判断できるように する

* 迷惑メール判定、株価予測などに使われている

「教師なし学習」のイメージ 入力データの特徴を学習して分類

① 入力データのみを与え、データの特徴をつかみ、分類を行うもの

* クラスタリングなどを用いて、同じ集合の 持つ特性などから結果を予測する

- 144 -

機械学習アルゴリズムの分類

- Classification/Class probability estimation 既存のデータをクラスに分類し、未知の新規データの分類を予測する。 新規データに対しては、属する特定のクラスを示したり、各クラスに属する 期待値も計算したりする。
 - 例 商品の買い替え時に、もともと使っていた製品から購入を予測する
- · Regression (回帰分析) 既存データの関係を示す、数的な「関数」を推測し、定量的な予測をたて る。
 - 例 広告費と売り上げの相関を見つける
- Similarity matching 新規データの、既存データへの類似性を予測する。

- 145 -

機械学習アルゴリズムの分類

- ・Clustering 具体的な指標を示さず、既存データを自然に分類できるグループを見つける。 分類後、各グループの特性を別のアルゴリズムで分析する。 例 顧客をグループ化し、それぞれに別のサービスを提供する
- Co-occurrence grouping 既存データから、同時にまたは付帯的に起こる事象を推定する。 <u>例</u> Aを買った人は、Bも買っている
- ・Reinforcement learning(強化学習) 環境との相互作用を元に、データを収集し分析する。 <u>例</u> 囲碁プログラムがコンピュータ同士の対局から有効な手筋を発見する

- 146 -

クラスタリング (clustering)

データの集合を、具体的な指標を使わず性質が近い部分集合にすることです。

統計解析や多変量解析の分野ではクラスター分析 (cluster analysis) とも呼ばれ、基本的なデータ解析手法としてデータマイニングでも頻繁に利用されています。

- 147 -

協調フィルタリング

商品の閲覧と購入のデータから、人同士の類似性や商品間の共起性をアソシエーション分析(相関分析)で解析し、対象者の行動履歴と関連づけることで、パーソナライズされた商品を提示する手法です。

協調フィルタリングは、商品スペックの関連性や商品閲覧の共起性だけではなく、購買データを基に人と人の類似性も重要視します。それにより、対象者に似ている集団が持つ特徴の中から、意外性のある商品を提示すること(セレンディピティ)もでき、コンバージョンレートのアップが期待できます。

- 148 -

画像分析手法

画像データを解析し、顔認識や、画像の分類などを行う事が可能となります。

- ・SIFT 特徴点周りの輝度から最も輝度変化が大きいベクトルを調べ分類することにより、細かい特徴を把握することができる。
- ・Haar-like 形状やパーツが固定的なものに対し、平均的に示される特徴から画像を解析する。カメラの顔認識などに用いられる。
- ・畳み込み深層学習(CNN) 画像をピースごとに比較して、位置や形状の特徴が類似する箇所を検出する。

その上で、色、明度、エッジなどの多層において学習を繰り返す。 顔認証などに用いられる。

- 149 -

地図情報システムとの連動

GISの特徴

- ・地図データとビッグデータを重ね合わせ、新たな発見を得ることができます。
- 地理的な位置情報との情報の関連性を 視覚的に理解することができたり、図面上 で情報の集約、整理をしたりできます。

GISの利用シーン

• 災害時の、正確で素早く効果的な行動 決定などに利用されています。

- 150 -