

Fundamentos de Programación Ejercicios – Semana 11

Ejercicios

- Sea M una matriz de enteros de "n" filas por "m" columnas, ambas positivas y menores que 10. Realice una aplicación que permita:
 - Solicitar el ingreso de n y m, según las restricciones indicadas.
 - Generar cada uno de los valores de la matriz.
 - Mostrar, para cada fila, la suma de sus valores, y el menor valor almacenado.
 - Mostrar, para cada columna, el promedio de sus valores y el mayor valor.
 - El mayor valor almacenado en toda la Matriz, indicando en que fila y columna se encuentra.
- 2. Elabore un programa que cree una matriz de m X n (m y n son valores positivos menores a 10, genere valores aleatorios, la imprima y luego la escriba poniendo las columnas como renglones y los renglones como columnas.
 - Ejemplo: Si el usuario ingresó como valores de m=3 y n=5:

4	7	1	3	5] .	4	2	3
2	0	6	9	7		7	0	1
3	1	2	6	4		1	6	2
					-	3	9	6
						5	7	4

3. Haga un programa que calcule la suma del triángulo inferior más el triángulo superior de una matriz cuadrada de n X n (2 ≤ n ≤ 50), dejando el resultado en el triángulo inferior de otra matriz cuadrada de dimensión n X n. La matriz resultante tendrá 0 en la diagonal y en el triángulo superior.

Por ejemplo, si la matriz que proporciona el usuario es:.

Entonces la matriz resultante será:

0	0	0	0	0
8	0	0	0	0
10	7	0	0	0
13	10	8	0	0
17	14	12	11	0

Ya que la suma de los dos triángulos, dejando el resultado en el triángulo inferior es:

$$(1,0) = (1,0) + (0,1)$$

$$(2,0) = (2,0) + (0,2)$$

$$(2,1) = (2,1) + (1,2)$$

$$(3,0) = (3,0) + (0,3)$$

$$(3,1) = (3,1) + (1,3)$$

$$(3,2) = (3,2) + (2,3)$$

$$(4,0) = (4,0) + (0,4)$$

$$(4,1) = (4,1) + (1,4)$$

$$(4,2) = (4,2) + (2,4)$$

$$(4,3) = (4,3) + (3,4)$$

4. El sábado pasado, en el distrito de Jesús María se ha realizado las elecciones para escoger a la nueva Junta Vecinal. En dichas elecciones se presentaron 5 candidatos y la municipalidad colocó en 4 parques distintos una mesa de votación para que los vecinos pudieran emitir su voto.

Elabore un programa que:

- Genere e imprima una tabla indicando los votos obtenidos en cada una de las mesas de votaciones por cada uno de los 5 candidatos.
- Calcule el total de votos recibidos por cada candidato y el porcentaje del total de votos emitidos.
- Calcule el candidato más votado.
- Si un candidato recibió más del 50% de los votos, indicar que es el ganador. Si ningún candidato recibió más del 50% de los votos, el programa debe imprimir los dos candidatos más votados, que serán los que pasen a la segunda ronda de las elecciones...

		Candidatos				
		C1	C2	C3	C4	C5
Mesas	M1					
de	M2					
Votación	М3					
	M4					

- 5. Escriba un programa que genere aleatoriamente los datos de 40 personas. Los datos a generar son:
 - DNI (8 dígitos en el rango 00000001 99999999)
 - Mes de nacimiento (2 dígitos en el rango 01 12)

Año de nacimiento (4 dígitos en el rango 1900 – 2000)

Asimismo, el programa debe tener las siguientes opciones:

- Listar todas las personas mostrando sus 3 datos.
- Ingresar un mes y mostrar:
 - Cantidad total de personas que nacieron en ese mes
 - o Lista de las personas que nacieron en el mes seleccionado.
- 6. Una empresa naviera desea registrar los siguientes datos de sus contenedores:
 - Código (4 dígitos)
 - Un carácter ("C" o "P") que indica si le pertenece a la compañía o es prestado
 - Tamaño (20, 40 o 50)

Desarrolle un programa que permita generar los datos de 100 contenedores teniendo en cuenta que no se puede repetir el código del contenedor.

Al final deberá calcular e imprimir los siguientes datos:

- Los datos del arreglo ordenados por código de contenedor
- Número total de contenedores que le pertenecen a la empresa naviera
- Número total de contenedores menores de 50.
- 7. Se desea que en la segunda fila del arreglo bidimensional se complete con números sucesivos.

$$j=0 \quad j=1 \quad j=2 \quad j=3$$

$$i = 0 \quad | \quad 0 \quad | \quad 0 \quad | \quad 0 \quad | \quad 0 \quad |$$

$$i = 1 \quad | \quad 1 \quad | \quad 2 \quad | \quad 3 \quad | \quad 4 \quad |$$

$$i = 2 \quad | \quad 0 \quad | \quad 0 \quad | \quad 8 \quad | \quad 0 \quad |$$

$$i = 3 \quad | \quad 0 \quad | \quad 0 \quad | \quad 0 \quad | \quad 0 \quad |$$

$$i = 4 \quad | \quad 0 \quad | \quad 0 \quad | \quad 0 \quad | \quad 0 \quad |$$

8. Se desea colocar números aleatorios de 0 al 9 en todos los elementos de la matriz.

9. Se desea agregar el número 7 a todos los elementos de la diagonal principal

$$j=0 \quad j=1 \quad j=2 \quad j=3 \quad j=4$$

$$i = 0 \quad | \quad 7 \quad | \quad 0 \mid 0 \quad | \quad 0 \quad | \quad 0 \quad |$$

$$i = 1 \quad | \quad 0 \quad | \quad 7 \mid 0 \quad | \quad 0 \quad |$$

$$i = 2 \quad | \quad 0 \quad | \quad 0 \mid 7 \quad | \quad 0 \quad |$$

$$i = 3 \quad | \quad 0 \quad | \quad 0 \mid 0 \quad | \quad 7 \quad | \quad 0 \quad |$$

$$i = 4 \quad | \quad 0 \quad | \quad 0 \mid 0 \quad | \quad 0 \quad | \quad 7 \quad |$$

10. Se desea agregar el número 7 a todos los elementos de la diagonal secundaria

11. En un arreglo bidimensional, encuentre el mayor valor y remplace en todos los números que sean pares.

Después:

$$j=0 \quad j=1 \quad j=2 \quad j=3 \quad j=4$$

$$i = 0 \quad | \quad 3 \quad | \quad 0 \quad | \quad 0 \quad | \quad 66 \quad | \quad 9 \quad |$$

$$i = 1 \quad | \quad 0 \quad | \quad 0 \quad | \quad 0 \quad | \quad 9 \quad | \quad 0 \quad |$$

$$i = 2 \quad | \quad 0 \quad | \quad 66 \quad | \quad 9 \quad | \quad 66 \quad | \quad 0 \quad |$$

$$i = 3 \quad | \quad 0 \quad | \quad 9 \quad | \quad 0 \quad | \quad 0 \quad | \quad 5 \quad |$$

$$i = 4 \quad | \quad 66 \quad | \quad 0 \quad | \quad 0 \quad | \quad 0 \quad | \quad 0 \quad |$$