Math 252 Exam 1 Review (Problems)

- 1. Find the center and radius of the sphere given by $x^2 + y^2 + z^2 8x + 6x = 0$
- 2. Indentify via cross-sections the surface defined by the following:

$$3^2 - y^2 + 3z^2 + 9 = 0$$

- 3. Identify the surface $2x^2 3y^2 + 6z^2 = 6$.
- 4. Identify the surface $x^2 6y + 5z^2 = 0$.
- 5. Indentify via cross-sections the surface defined by the following:

$$2y^2 = 3z^2 = 12$$

- 6. Using P(-4,1,2), Q(1,-3,4), R(-1,0,2),
 - a. Find an equation of the plane passing through the points.
 - b. Find parametric equations for the line through P and parallel to $a = \langle 2, -1, 4 \rangle$.
 - c. Find the distance from the point (5, -3, 2) to the plane.
 - d. Find the area of the parallelogram determined by P, Q, and R.
- 7. Given $\vec{u} = \langle 8, -4, 1 \rangle$ and $\vec{v} = \langle -4, 4, 2 \rangle$, find $||\vec{u}||$ and $||\vec{v}||$.
- 8. Identify the surface $4x^2 + 4y^2 + z^2 = 4$.
- 9. Using $\mathbf{u} = \langle 8, 3, -5 \rangle$, $\mathbf{v} = \langle 4, -4, -2 \rangle$, find $\|\mathbf{u}\|$, $\|\mathbf{v}\|$.
- 10. Find the distance from the point (-4, -1, 5) to the plane determined by the points P(-2, 0, 3), Q(1, 2, 4), and R(-3, 1, 0).
- 11. Indentify via cross-sections the surface defined by the following:

$$u = x^2$$

- 12. Using $\mathbf{u} = \langle -4, 6, 5 \rangle$ and $\mathbf{w} = \langle 2, -3, 1 \rangle$,
 - a. Find $\|\boldsymbol{u}\|$ and $\|\boldsymbol{w}\|$.
 - b. Find $\boldsymbol{u} \cdot \boldsymbol{w}$.
 - c. Find the angle θ between \boldsymbol{u} and \boldsymbol{w} .
 - d. Find $\operatorname{proj}_{\boldsymbol{w}}\boldsymbol{u}$.
 - e. Find $\boldsymbol{u} \times \boldsymbol{w}$.
- 13. Given $\vec{u} = \langle 8, -4, 1 \rangle$ and $\vec{v} = \langle -4, 4, 2 \rangle$, font $\vec{u} \times \vec{v}$.
- 14. A baseball is thrown from the stands 128 feet above the field at an angle of 30 degrees up from the horizontal with an initial speed of 64 feet per second.
 - a. Give the position vector for any time t.

- b. When will the ball strike the ground?
- c. How far away will the ball strike the ground?
- d. What is the speed of the ball when it strikes the ground?
- 15. Given $\vec{u} = \langle 8, -4, 1 \rangle$ and $\vec{v} = \langle -4, 4, 2 \rangle$, find the angle θ between \vec{u} and \vec{v} .
- 16. Indentify via cross-sections the surface defined by the following:

$$x = 3y^2 + 5z^2$$

- 17. Identify the surface $x = y^2$.
- 18. Given $\vec{u} = \langle 8, -4, 1 \rangle$ and $\vec{v} = \langle -4, 4, 2 \rangle$, find $\text{proj}_{\vec{v}}\vec{u}$.
- 19. Find the set of parametric equations for the line through Q(1,2,4) and parallel to $a=\langle 4,-3,-2\rangle$.
- 20. Find a vector orthogonal to the plane determined by the points P(-2,0,3), Q(1,2,4), and R(-3,1,0).
- 21. Find an equation of the plane passing through the points P(-2,0,3), Q(1,2,4), and R(-3,1,0).
- 22. Given $\vec{u} = \langle 8, -4, 1 \rangle$ and $\vec{v} = \langle -4, 4, 2 \rangle$, find $\vec{u} \cdot \vec{v}$.
- 23. Using $\mathbf{r}(t) = \langle t \cos t, t \sin t, t^2 \rangle$ at t = 0,
 - a. Find \boldsymbol{v} and \boldsymbol{a} .
 - b. Find T and N.
 - c. Find K.
 - d. By first finding a_T and a_N , express $a = a_T T + a_N N$.
- 24. Using $\mathbf{u} = \langle 8, 3, -5 \rangle, \mathbf{v} = \langle 4, -4, -2 \rangle,$ find 3u 4v.

Math 252 Exam 1 Review (Answers)

- 1. $C(4, -3, 0), \rho = 5$
- 2. Circular hyperboloid of two sheets
- 3. ANSWER
- 4. ANSWER
- 5. Elliptical cylinder
- 6. ANSWER
- 7. $\|\vec{u}\| = 9, \|\vec{v}\| = 6$
- 8. ANSWER

9.
$$\|\mathbf{u}\| = 7\sqrt{2}, \|\mathbf{v}\| = 6$$

10.
$$h = \frac{16}{\sqrt{138}}$$

11. Parabolic cylinder

12. a.
$$\|u\| = \sqrt{77}$$

$$\|\boldsymbol{w}\| = \sqrt{14}$$

b.
$$\boldsymbol{u} \cdot \boldsymbol{w} = -21$$

c.
$$\theta = \arccos\left(\frac{-21}{7\sqrt{22}}\right)$$

13.
$$\vec{u} \times \vec{v} = \langle -12, -20, 16 \rangle$$

- 14. ANSWER
- 15. $\theta = \arccos\left(-\frac{23}{27}\right) = 148.4^{\circ}$
- 16. Elliptical paraboloid
- 17. Parabolic cylinder

18.
$$\operatorname{proj}_{\vec{v}}\vec{u} = -\frac{23}{18}\langle -4, 4, 2 \rangle = \langle -\frac{46}{9}, -\frac{46}{9}, -\frac{23}{9} \rangle$$

19.
$$x = 1 + 4t, y = 2 - 3t, z = 4 - 2t; t \in \mathbb{R}$$

20.
$$\vec{n} = \vec{PQ} \times \vec{PR} = \langle -7, 8, 5 \rangle$$

$$21. -7x + 8y + 5z = 29$$

22.
$$\vec{u} \cdot \vec{v} = -46$$

23. a.
$$\mathbf{v} = \langle -t \sin t + \cos t, t \cos t + \sin t, 2t \rangle$$

$$a = \langle -t\cos t - 2\sin t, -t\sin t + 2\cos t, 2 \rangle$$

b.
$$||v|| =$$

$$T =$$

$$N =$$

24.
$$\langle 8, 25, -7 \rangle$$