2.4 Independence of random variables

2.4 Independence of random variables

Definition Suppose that the joint distribution sequence of a discrete random vector (ξ, η) satisfies

$$P(\xi = x_i, \eta = y_j) = P(\xi = x_i)P(\eta = y_j),$$

 $i, j = 1, 2, \dots,$

then we call ξ and η mutually independent.

2.4 Independence of random variables

Definition Suppose that the joint distribution sequence of a discrete random vector (ξ, η) satisfies

$$P(\xi = x_i, \eta = y_j) = P(\xi = x_i)P(\eta = y_j),$$

 $i, j = 1, 2, \dots,$

then we call ξ and η mutually independent.

$$p_{ij} = p_{i\cdot} \cdot p_{\cdot j}, \qquad i, j = 1, 2, \cdots.$$

$$P(\xi \le x, \eta \le y) = \sum_{x_i \le x} \sum_{y_j \le y} P(\xi = x_i, \eta = y_j)$$
$$= \sum_{x_i \le x} P(\xi = x_i) \sum_{y_j \le y} P(\eta = y_j)$$
$$= P(\xi \le x) P(\eta \le y).$$

That is,

$$F(x,y) = F_{\xi}(x)F_{\eta}(y).$$
 (2.62)

$$P(\xi \le x, \eta \le y) = \sum_{x_i \le x} \sum_{y_j \le y} P(\xi = x_i, \eta = y_j)$$
$$= \sum_{x_i \le x} P(\xi = x_i) \sum_{y_j \le y} P(\eta = y_j)$$
$$= P(\xi \le x) P(\eta \le y).$$

That is,

$$F(x,y) = F_{\xi}(x)F_{\eta}(y).$$
 (2.62)

On the contrary,

$$(2.62) \implies P(\xi = x_i, \eta = y_j) = P(\xi = x_i)P(\eta = y_j)$$

Definition Suppose that F(x,y), $F_{\xi}(x)$ and $F_{\eta}(y)$ are the joint distribution function and marginal distribution functions of (ξ, η) respectively. If

$$F(x,y) = F_{\xi}(x)F_{\eta}(y), \quad \forall x, y,$$

(i.e.,
$$P(\xi \le x, \eta \le y) = P(\xi \le x)P(\eta \le y), \quad \forall x, y)$$

then we say ξ and η are independent.

Theorem Suppose that p(x,y), $p_{\xi}(x)$ and $p_{\eta}(y)$ are the joint density function and marginal density functions of (ξ,η) respectively. Then ξ and η are independent if and only if

$$p(x,y) = p_{\xi}(x)p_{\eta}(y).$$

Proof. For any x, y, it follows

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

Proof. For any x, y, it follows

$$\begin{split} F(x,y) &= F_{\xi}(x) F_{\eta}(y) \\ \Leftrightarrow & \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v) du dv = \int_{-\infty}^{x} p_{\xi}(u) du \int_{-\infty}^{y} p_{\eta}(v) dv \end{split}$$

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

$$\Leftrightarrow \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} p_{\xi}(u)du \int_{-\infty}^{y} p_{\eta}(v)dv$$

$$\Leftrightarrow \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} \int_{-\infty}^{y} p_{\xi}(u)p_{\eta}(v)dudv$$

Proof. For any x, y, it follows

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

$$\Leftrightarrow \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} p_{\xi}(u)du \int_{-\infty}^{y} p_{\eta}(v)dv$$

$$\Leftrightarrow \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} \int_{-\infty}^{y} p_{\xi}(u)p_{\eta}(v)dudv$$

$$\Leftrightarrow p(x,y) = p_{\xi}(x)p_{\eta}(y).$$

This is the desired conclusion.

Example 2. Suppose $(\xi, \eta) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, r)$. Find out the necessary and sufficient condition for ξ, η to be independent.

Solution. Note that $\xi \sim N(\mu_1, \sigma_1^2)$ and $\eta \sim N(\mu_2, \sigma_2^2)$. By definition,

$$\xi,\eta$$
 are independent $\Leftrightarrow p(x,y)=p_{\xi}(x)p_{\eta}(y)$

Solution. Note that $\xi \sim N(\mu_1, \sigma_1^2)$ and $\eta \sim N(\mu_2, \sigma_2^2)$. By definition,

$$\xi, \eta \text{ are independent } \Leftrightarrow p(x,y) = p_{\xi}(x)p_{\eta}(y)$$

$$\Leftrightarrow \frac{1}{\sqrt{2\pi}\sigma_1} \exp\{-\frac{(x-\mu_1)^2}{2\sigma_1^2}\}$$

$$\times \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-r^2}} \exp\{-\frac{[y-\mu_2-\frac{r\sigma_2}{\sigma_1}(x-\mu_1)]^2}{2\sigma_2^2(1-r^2)}\}$$

$$= \frac{1}{2\pi\sigma_1\sigma_2} \exp\{-\frac{1}{2}[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2}]\}$$

$$\Leftrightarrow r = 0.$$

Definition Suppose that $F(x_1, \dots, x_n)$,

 $F_1(x_1), \dots, F_n(x_n)$ are joint distribution function and marginal distribution functions of ξ_1, \dots, ξ_n , then we call them mutually independent if

$$F(x_1, \cdots, x_n) = F_1(x_1) \cdots F_n(x_n).$$

$$\left(i.e., P(\xi_1 \le x_1, \dots, \xi_n \le x_n)\right) \\
= P(\xi_1 \le x_1) \dots P(\xi_n \le x_n), \forall x_1, \dots, x_n$$

Corollary If ξ_1, \dots, ξ_n are mutually independent, then so are any r random variables $(2 \le r < n)$.

Proof.

Corollary If ξ_1, \dots, ξ_n are mutually independent, then so are any r random variables $(2 \le r \le n)$.

Proof. By the definition of the independence of ξ_1, \dots, ξ_n , we have for all x_1, \dots, x_n ,

$$P(\xi_1 \le x_1, \cdots, \xi_n \le x_n) = P(\xi_1 \le x_1) \cdots P(\xi_n \le x_n).$$

Corollary If ξ_1, \dots, ξ_n are mutually independent, then so are any r random variables $(2 \le r < n)$.

Proof. By the definition of the independence of ξ_1, \dots, ξ_n , we have for all x_1, \dots, x_n ,

$$P(\xi_1 \le x_1, \cdots, \xi_n \le x_n) = P(\xi_1 \le x_1) \cdots P(\xi_n \le x_n).$$

It follows that

$$P(\xi_{i_1} \le x_{i_1}, \dots, \xi_{i_r} \le x_{i_r})$$

= $P(\xi_{i_1} \le x_{i_1}) \dots P(\xi_{i_r} \le x_{i_r}), \quad \forall x_{i_1}, \dots, x_{i_r}.$

So, $\xi_{i_1}, \dots, \xi_{i_r}$ are independent.

• ξ_1, \dots, ξ_n are indept. iff (if and only if)

$$P(\xi_1 \in B_1, \cdots, \xi_n \in B_n) = P(\xi_1 \in B_1) \cdots P(\xi_n \in B_n)$$

for any
$$B_1, \dots, B_n \in \mathcal{B}$$
.

• ξ_1, \dots, ξ_n are indept. iff (if and only if)

$$P(\xi_1 \in B_1, \dots, \xi_n \in B_n) = P(\xi_1 \in B_1) \dots P(\xi_n \in B_n)$$
 for any $B_1, \dots, B_n \in \mathcal{B}$.

• An n-dimensional $\pmb{\xi}$ and an m-dimensional $\pmb{\eta}$ are indept. iff

$$P(\pmb{\xi}\in A,\pmb{\eta}\in B)=P(\pmb{\xi}\in A)P(\pmb{\eta}\in B),$$
 for all $A\in\mathcal{B}^n,B\in\mathcal{B}^m.$

• ξ_1, \dots, ξ_n are indept. iff (if and only if)

$$P(\xi_1 \in B_1, \dots, \xi_n \in B_n) = P(\xi_1 \in B_1) \dots P(\xi_n \in B_n)$$

for any $B_1, \dots, B_n \in \mathcal{B}$.

• An n-dimensional ξ and an m-dimensional η are indept. iff

$$P(\boldsymbol{\xi} \in A, \boldsymbol{\eta} \in B) = P(\boldsymbol{\xi} \in A)P(\boldsymbol{\eta} \in B),$$

for all $A \in \mathcal{B}^n, B \in \mathcal{B}^m$.

 If two random vectors are independent, then so are their sub-vectors. **Example 3.** Suppose that ξ is a constant a, show ξ and η are independent for any random variable η .

Example 3. Suppose that ξ is a constant a, show ξ and η are independent for any random variable η .

Proof Let B_1 and B_2 be two Borel sets. We want to prove

$$P(\xi \in B_1, \eta \in B_2) = P(\xi \in B_1)P(\eta \in B_2).$$
 (*)

If
$$a \notin B_1$$
, then $P(\xi \in B_1) = 0$ and

$$P(\xi \in B_1, \eta \in B_2) \le P(\xi \in B_1) = 0.$$

(*) is true.

If $a \notin B_1$, then $P(\xi \in B_1) = 0$ and

$$P(\xi \in B_1, \eta \in B_2) \le P(\xi \in B_1) = 0.$$

(*) is true.

If $a \in B_1$, then $P(\xi \in B_1) = 1$ and

$$P(\xi \in B_1, \eta \in B_2) = P(\eta \in B_2) - P(\xi \notin B_1, \eta \in B_2)$$

= $P(\eta \in B_2)$.

(*) is also true.

2.5 Conditional distributions

LDiscrete random variables:

$$P(\xi = x_i, \eta = y_j) = p_{ij}, i, j = 1, 2, \cdots$$

$$P(\eta = y_j | \xi = x_i) = \frac{P(\eta = y_j, \xi = x_i)}{P(\xi = x_i)}$$

$$= \frac{p_{ij}}{p_{i}},$$

where $j=1,2,\cdots$. This is the conditional distribution of η conditioning on $\xi=x_i$.

$$P(\eta \le y | \xi = x_i) = \sum_{j: y_j \le y} p_{\eta | \xi}(y_j | x_i)$$

为在 $\xi = x_i$ 的条件下 η 的条件分布函数.

从条件分布的定义和 ξ , η 的独立性的定义可知, ξ , η 独立的充分必要条件是对任何 $i,j \geq 1$ 有

$$P(\eta = y_j | \xi = x_i) = P(\eta = y_j).$$

例1 在独立重复伯努里试验中, 记p为每次试验"成功"的概率, S_n 表示第n次成功时的试验次数. 求(1) 在 $S_n = t$ 的条件下, S_{n+1} 的条件概率分布列; (2) 在 $S_{n+1} = w$ 的条件下, S_n 的条件概率分布列.

例1 在独立重复伯努里试验中, 记p为每次试验"成功"的概率, S_n 表示第n次成功时的试验次数. 求(1) 在 $S_n = t$ 的条件下, S_{n+1} 的条件概率分布列; (2) 在 $S_{n+1} = w$ 的条件下, S_n 的条件概率分布列.

解 对 $t \le w$, 事件 $\{S_n = t, S_{n+1} = w\}$ 意味着在w次试验中, 第t, w次出现"成功", 在第1次到第t - 1次中出现n - 1次"成功",其余均出现"失败". 所以

$$P(S_n = t, S_{n+1} = w) = p \cdot p \cdot {t-1 \choose n-1} p^{n-1} q^{w-(n+1)}$$
$$= {t-1 \choose n-1} p^{n+1} q^{w-(n+1)}.$$

$$P(S_n = t) = {t-1 \choose n-1} p^n q^{t-n}.$$

而

$$P(S_n = t) = {t-1 \choose n-1} p^n q^{t-n}.$$

从而在 $S_n = t$ 的条件下, S_{n+1} 的条件概率分布列为

$$P(S_{n+1} = w | S_n = t) = \frac{P(S_n = t, S_{n+1} = w)}{P(S_n = t)} = pq^{w-t-1}$$

这意味着, 在 $S_n = t$ 的条件下, $S_{n+1} - S_n$ 服从几何分布.

$$P(S_n = t | S_{n+1} = w) = \frac{P(S_n = t, S_{n+1} = w)}{P(S_{n+1} = w)}$$

$$= \frac{\binom{t-1}{n-1} p^{n+1} q^{w-(n+1)}}{\binom{w-1}{n} p^{n+1} q^{w-(n+1)}}$$

$$= \frac{\binom{t-1}{n-1}}{\binom{w-1}{n}}, \quad t = n, \dots, w - 1.$$

这一条件分布不依赖于p.

II.Continuous case: $P(\xi = x) = 0$. Given $\xi = x$, the conditional distribution function of η can be understood as

$$P(\eta \le y | \xi = x)$$

$$P(\eta \le y | \xi = x)$$

$$= \lim_{\Delta x \to 0} P(\eta \le y | x < \xi \le x + \Delta x)$$

$$= \lim_{\Delta x \to 0} \frac{P(x < \xi \le x + \Delta x, \eta \le y)}{P(x < \xi \le x + \Delta x)}$$

$$= \lim_{\Delta x \to 0} \frac{F(x + \Delta x, y) - F(x, y)}{F_{\xi}(x + \Delta x) - F_{\xi}(x)}.$$

$$P(\eta \le y | \xi = x) = \frac{\partial F/\partial x}{F'_{\xi}(x)}$$
$$= \frac{\int_{-\infty}^{y} p(x, v) dv}{p_{\xi}(x)} = \int_{-\infty}^{y} \frac{p(x, v)}{p_{\xi}(x)} dv.$$

$$p_{\eta|\xi}(y|x) = \frac{p(x,y)}{p_{\xi}(x)}.$$

定义2 设随机向量 (ξ, η) 有联合密度函数p(x, y), ξ 有边际密度函数 $p_{\xi}(x) = \int_{-\infty}^{\infty} p(x, y) dy$. 若在x处, $p_{\xi}(x) > 0$, 则称

$$P(\eta \le y | \xi = x) = \int_{-\infty}^{y} \frac{p(x, v)}{p_{\xi}(x)} dv, \quad y \in \mathbf{R}$$

为在 $\xi = x$ 的条件下, η 的条件分布函数, 简称为条件分布, 记作 $F_{\eta|\xi}(y|x)$. 称

$$p_{\eta|\xi}(y|x) = \frac{p(x,y)}{p_{\xi}(x)}, \quad y \in \mathbf{R}$$
 (1)

为在 $\xi = x$ 的条件下, η 的条件密度函数, 简称为条件密度.

若 $p_{\xi}(x) = \int_{-\infty}^{\infty} p(x,y) dy = 0$,则对所有的y,p(x,y) = 0,(1)式右边是 $\frac{0}{0}$ 型不定式,通常定义 $p_{\eta|\xi}(y|x)$ 的值为0.

同理, 若 $p_{\eta}(y) > 0$, 则在 $\eta = y$ 的条件下, ξ 的密度 函数为

$$p_{\xi|\eta}(x|y) = \frac{p(x,y)}{p_{\eta}(y)}.$$

If ξ and η are independent, then

$$p_{\eta|\xi}(y|x) = p_{\eta}(y), \quad p_{\xi|\eta}(x|y) = p_{\xi}(x).$$

If ξ and η are independent, then

$$p_{\eta|\xi}(y|x) = p_{\eta}(y), \quad p_{\xi|\eta}(x|y) = p_{\xi}(x).$$

Bayesian formula:

$$\begin{split} p_{\xi|\eta}(x|y) = & \frac{p(x,y)}{p_{\eta}(y)} = \frac{p(x,y)}{\int p(u,y)du} \\ = & \frac{p_{\eta|\xi}(y|x)p_{\xi}(x)}{\int p_{\eta|\xi}(y|u)p_{\xi}(u)du}. \end{split}$$

Example 1. Suppose that

 $(\xi,\eta) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,r)$, calculate the conditional density $p_{\eta|\xi}(y|x)$.

 $(\xi,\eta) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,r)$, calculate the conditional density $p_{\eta|\xi}(y|x)$.

 \mathbf{M} (ξ,η)的联合密度为

$$p(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{1}{2(1-r^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2r\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}.$$

Example 1. Suppose that

 $(\xi,\eta) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,r)$, calculate the conditional density $p_{\eta|\xi}(y|x)$.

 \mathbf{M} (ξ,η)的联合密度为

$$p(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{1}{2(1-r^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2r\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}.$$

下面我们推导在 $\xi = x$ 的条件下, η 的条件密度. 为此, 我们不断把不含y的因子提出来, 用常数 C_i 表示. 最后的常数通过 $\int_{-\infty}^{\infty} p_{n|\xi}(y|x)dy = 1$ 求得.

$$\begin{split} p_{\eta|\xi}(y|x) &= \frac{p(x,y)}{\int_{-\infty}^{\infty} p(x,y) dy} = C_1 p(x,y) \\ &= C_2 \exp\left\{-\frac{1}{2(1-r^2)} \left[\frac{(y-\mu_2)^2}{\sigma_2^2} - 2r \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1 \sigma_2}\right]\right\} \\ &= C_3 \exp\left\{-\frac{1}{2(1-r^2)} \left(\frac{y-\mu_2}{\sigma_2} - r \frac{x-\mu_1}{\sigma_1}\right)^2\right\} \\ &= C_3 \exp\left\{-\frac{\left[y-\mu_2 - r \frac{\sigma_2}{\sigma_1}(x-\mu_1)\right]^2}{2\sigma_2^2(1-r^2)}\right\}. \end{split}$$

上述过程可以简写为

$$p_{\eta|\xi}(y|x) \propto_y p(x,y) \propto_y \dots$$

$$\propto_y \exp\left\{-\frac{\left[y - \mu_2 - r\frac{\sigma_2}{\sigma_1}(x - \mu_1)\right]^2}{2\sigma_2^2(1 - r^2)}\right\}.$$

上述过程可以简写为

$$p_{\eta|\xi}(y|x) \propto_y p(x,y) \propto_y \dots$$

$$\propto_y \exp\left\{-\frac{\left[y - \mu_2 - r\frac{\sigma_2}{\sigma_1}(x - \mu_1)\right]^2}{2\sigma_2^2(1 - r^2)}\right\}.$$

回顾正态分布的密度函数知 $p_{\eta|\xi}(y|x)$ 为正态密度函数

$$p_{\eta|\xi}(y|x) = \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{\left[y - \mu_2 - r\frac{\sigma_2}{\sigma_1}(x - \mu_1)\right]^2}{2\sigma_2^2(1-r^2)}\right\}.$$
(2)

即在 $\xi = x$ 的条件下,二维正态分布的条件分布是 正态分布 $N(\mu_2 + r \frac{\sigma_2}{\sigma_1}(x - \mu_1), (1 - r^2)\sigma_2^2)$,记作

$$\eta|_{\xi=x} \sim N(\mu_2 + \frac{r\sigma_2}{\sigma_1}(x-\mu_1), (1-r^2)\sigma_2^2),$$

其中第一个参数 $m = \mu_2 + r \frac{\sigma_2}{\sigma_1}(x - \mu_1)$ 是x的线性函数,第二个参数与x无关.

In general, suppose that the joint distribution function of (ξ, η) is F(x, y). If

$$\lim_{\Delta y \to 0} \frac{P(\xi \le x, \eta \in (y, y + \Delta y])}{P(\eta \in (y, y + \Delta y])}$$

$$= \lim_{\Delta y \to 0} \frac{F(x, y + \Delta y) - F(x, y)}{F_{\eta}(y + \Delta y) - F_{\eta}(y)}$$

exists for any x, we call the limit function $F_{\xi|\eta}(x|y)$ be the conditional distribution function of ξ for given $\eta=y$.

$$F_{\xi|\eta}(x|y) = \sum_{i:x_i \le x} p_{\xi|\eta}(x_i|y), \quad x \in \mathbf{R},$$

the we call $p_{\xi|\eta}(x_i|y)$, $i=1,2,\ldots$, the conditional mass function (条件分布列). If $F_{\xi|\eta}(x|y)$ can represented as the form

$$F_{\xi|\eta}(x|y) = \int_{-\infty}^{x} p_{\xi|\eta}(v|y)dv, \ x \in \mathbf{R},$$

then we call $p_{\xi|\eta}(x|y)$ the conditional density function.

例4 设 Λ 服从伽玛分布 $\Gamma(b,a)$, 在条件 $\Lambda = \lambda$ 下, X服从参数为 λ 的泊松分布. 求在X = x的条件下 Λ 的分布.

例4 设 Λ 服从伽玛分布 $\Gamma(b,a)$, 在条件 $\Lambda = \lambda$ 下, X服从参数为 λ 的泊松分布. 求在X = x的条件下 Λ 的分布.

 \mathbf{M} Λ为连续型随机变量, X为离散型随机变量. $\forall x = 0, 1, ..., 有$

$$P(X = x | \Lambda = \lambda) = \frac{\lambda^x}{x!} e^{-\lambda}.$$

这意味着

$$P(X = x | \Lambda = \lambda) = \lim_{\Delta \lambda \to 0} \frac{P(X = x, \Lambda \in (\lambda, \lambda + \Delta \lambda))}{P(\Lambda \in (\lambda, \lambda + \Delta \lambda))}.$$

即

$$P(X = x, \Lambda \in (\lambda, \lambda + \Delta \lambda))$$

= $P(X = x | \Lambda = \lambda) P(\Lambda \in (\lambda, \lambda + \Delta \lambda)) + o(\Delta \lambda)$
= $P(X = x | \Lambda = \lambda) p_{\Lambda}(\lambda) \Delta \lambda + o(\Delta \lambda).$

所以

$$P(X = x, \Lambda \le y) = \int_{-\infty}^{y} P(X = x | \Lambda = \lambda) p_{\Lambda}(\lambda) d\lambda.$$

即

$$P(X = x, \Lambda \in (\lambda, \lambda + \Delta \lambda))$$

$$= P(X = x | \Lambda = \lambda) P(\Lambda \in (\lambda, \lambda + \Delta \lambda)) + o(\Delta \lambda)$$

$$= P(X = x | \Lambda = \lambda) p_{\Lambda}(\lambda) \Delta \lambda + o(\Delta \lambda).$$

所以

$$P(X = x, \Lambda \le y) = \int_{-\infty}^{y} P(X = x | \Lambda = \lambda) p_{\Lambda}(\lambda) d\lambda.$$

从而

$$P(\Lambda \le y | X = x) = \frac{P(X = x, \Lambda \le y)}{P(X = x)}$$
$$= \int_{-\infty}^{y} \frac{P(X = x | \Lambda = \lambda) p_{\Lambda}(\lambda)}{P(X = x)} d\lambda.$$

$$p_{\Lambda|\xi}(\lambda|x) = \frac{P(X = x | \Lambda = \lambda) p_{\Lambda}(\lambda)}{P(X = x)}$$
$$\propto_{\lambda} \lambda^{x} e^{-\lambda} \lambda^{b-1} e^{-\lambda a} = \lambda^{x+b-1} e^{-(a+1)\lambda}, \quad \lambda > 0.$$

$$p_{\Lambda|\xi}(\lambda|x) = \frac{P(X = x | \Lambda = \lambda) p_{\Lambda}(\lambda)}{P(X = x)}$$
$$\propto_{\lambda} \lambda^{x} e^{-\lambda} \lambda^{b-1} e^{-\lambda a} = \lambda^{x+b-1} e^{-(a+1)\lambda}, \quad \lambda > 0.$$

将上式右边添加正则化常数因子使得其积分为1,得

$$p_{\Lambda|\xi}(\lambda|x) = \frac{(a+1)^{x+b}}{\Gamma(x+b)} \lambda^{x+b-1} e^{-(a+1)\lambda}, \quad \lambda > 0.$$

即在X = x的条件下, Λ 服从伽玛分布 $\Gamma(x + b, a + 1)$.

IV. Multi-dimensional case:

Suppose that the joint distribution function of random vectors $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ is $F(\boldsymbol{x}, \boldsymbol{y})$. If

$$\lim_{\Delta \boldsymbol{y} \to 0} \frac{P(\boldsymbol{\xi} \leq \boldsymbol{x}, \boldsymbol{\eta} \in (\boldsymbol{y}, \boldsymbol{y} + \Delta \boldsymbol{y}])}{P(\boldsymbol{\eta} \in (\boldsymbol{y}, \boldsymbol{y} + \Delta \boldsymbol{y}])}$$

$$= \lim_{\Delta \boldsymbol{y} \to 0} \frac{F(\boldsymbol{x}, \boldsymbol{y} + \Delta \boldsymbol{y}) - F(\boldsymbol{x}, \boldsymbol{y})}{F_{\boldsymbol{\eta}}(\boldsymbol{y} + \Delta \boldsymbol{y}) - F_{\boldsymbol{\eta}}(\boldsymbol{y})}$$

exists for any x, we call the limit function $F_{\xi|\eta}(x|y)$ be the conditional distribution function of ξ for given $\eta = y$.

When (ξ, η) is a continuous random vector with probability density function p(x, y), the conditional probability density function of ξ for given $\eta = y$ is

$$\begin{split} p_{\pmb{\xi}|\pmb{\eta}}(\pmb{x}|\pmb{y}) = & \frac{p(\pmb{x},\pmb{y})}{p_{\pmb{\eta}}(\pmb{y})} = \frac{p(\pmb{x},\pmb{y})}{\int p(\pmb{u},\pmb{y})d\pmb{u}}, \\ & \text{if } p_{\pmb{\eta}}(\pmb{y}) > 0. \end{split}$$

When $(\boldsymbol{\xi}, \boldsymbol{\eta})$ is a discrete random vector with probability mass function

 $P(\boldsymbol{\xi} = \boldsymbol{x}_i, \boldsymbol{\eta} = \boldsymbol{y}_j) = p(\boldsymbol{x}_i, \boldsymbol{y}_j)$, the conditional probability mass function of $\boldsymbol{\xi}$ for given $\boldsymbol{\eta} = \boldsymbol{y}_j$ is

$$p_{\boldsymbol{\xi}|\boldsymbol{\eta}}(\boldsymbol{x}_i|\boldsymbol{y}_j) = \frac{p(\boldsymbol{x}_i,\boldsymbol{y}_j)}{p_{\boldsymbol{\eta}}(\boldsymbol{y}_j)} = \frac{P(\boldsymbol{\xi} = \boldsymbol{x}_i,\boldsymbol{\eta} = \boldsymbol{y}_j)}{P(\boldsymbol{\eta} = \boldsymbol{y}_j)},$$
if $P(\boldsymbol{\eta} = \boldsymbol{y}_j) > 0.$