T_n = Natural period of n'th mode [s]

 $t_{\rm f}$ = Flange thickness of a seismic link

 $t_{\rm w}$ = Web thickness of a seismic link

 $V_{\rm b}$ = Base shear in the earthquake direction considered

 $V_{\rm bx}$ = Base shear in x earthquake direction

 V_{bCx} = Base shear obtained by modal combination in x earthquake direction

 $V_{\rm by}$ = Base shear in x earthquake direction

 V_{bCy} = Base shear obtained by modal combination in y earthquake direction V_{Ed} = Shear force obtained from analysis for the seismic design situation

 $V_{\rm Ed}$ = Design shear force determined in accordance with capacity design rule

 $V_{\rm Ed\,E}$ = Shear force due to design seismic action

 $V_{\rm Ed,G}$ = Shear force due to non-seismic actions in seismic design situation

 $V_{\rm Ed,M}$ = Shear force due to application of plastic moment resistances at the two ends

 V_i = i'th storey seismic shear in the earthquake direction considered

V_{ic} = Sum of seismic shear forces of all columns at the i'th storey in the earthquake direction considered

 $V_{\rm is}$ = Sum of seismic shear forces in the earthquake direction considered at the i'th storey columns where strong column – weak beam condition is satisfied at both bottom and top joints

 $V_{\rm pl,Rd}$ = Design value of shear resistance of a member in accordance with EN 1993-1-1: 2004

 $V_{\rm wb\,Rd}$ = Shear buckling resistance of the web panel

 $V_{\rm wp,Ed}$ = Design shear force in web panel due to design seismic action effects

 $V_{\rm wp,Rd}$ = Shear resistance of the web panel in accordance with EN 1993- 1-8:2004, 6.2.4.1

 W_i = Seismic weight of i'th storey of building

 $W_{\rm t}$ = Total seismic weight of building corresponding to total mass, $M_{\rm t}$

 α = Confinement effectiveness factor; ratio of the smaller bending moments $M_{\rm Ed,A}$ at one end of the link in the seismic design situation, to the greater bending moments $M_{\rm Ed,B}$ at the end where the plastic hinge develops, both moments being taken as absolute values.

 α_G = Coefficient used for determining the gap size of a seismic joint

 α_i = Ratio of V_{is} / V_{ic} calculated for any i'th storey

 Δ_{ii} = Reduced storey drift of the j'th vertical element at i'th storey

 $(\Delta_i)_{avg}$ = Average reduced storey drift of the i'th storey

 δ_{ii} = Effective storey drift of the j'th vertical element at i'th storey

 $(\delta_i)_{max}$ = Maximum effective storey drift of the i'th storey

 $\Delta F_{\rm N}$ = Additional equivalent seismic load acting on the N'th storey (top) of building

 ε = Shear amplification factor of wall

 ε_a = Total strain of steel at Ultimate Limit State

 ε_{cg} = Upper limit (capacity) of concrete compressive strain in the extreme fiber inside the confinement reinforcement

 ε_{cu2} = Ultimate compressive strain of unconfined concrete ε_{s} = Upper limit (capacity) of strain in steel reinforcement

 $\varepsilon_{\text{sy,d}}$ = Design value of steel strain at yield

 η_{ti} = Torsional Irregularity Factor defined at i'th storey of building η_{ci} = Strength Irregularity Factor defined at i'th storey of building η_{ki} = Stiffness Irregularity Factor defined at i'th storey of building

 Φ_{xin} = In buildings with floors modelled as rigid diaphragms, horizontal component of n'th mode shape in the x direction at i'th storey of building