Mantık Temelli Modeller El Kitabı VIP

Afshine Amidi ve Shervine Amidi September 14, 2019

Ayyüce Kızrak ve Başak Buluz tarafından çevrilmiştir

Temeller

 \Box Önerme mantığının sözdizimi – f,g formülleri ve $\neg,\wedge,\vee,\rightarrow,\leftrightarrow$ bağlayıcılarını belirterek, aşağıdaki mantıksal ifadeleri yazabiliriz:

Adı	Sembol	Anlamı	Gösterim
Doğrulama	f	f	f
Dışlayan	$\neg f$	f değil	f
Kesişim	$f \wedge g$	f ve g	$\begin{array}{ c c c c }\hline f & g \\ \hline \end{array}$
Birleşim	$f \lor g$	f veya g	$\begin{array}{ c c c }\hline f & g \\ \hline \end{array}$
Implication	f o g	eğer f 'den g çıkarsa	f g
İki koşullu	$f \leftrightarrow g$	f ve g 'nin ortak olduğu bölge	$\begin{array}{ c c c c }\hline f & g \\ \hline \end{array}$

Not: bu bağlantılar dışında tekrarlayan formüller oluşturulabilir.

 \square Model – w modeli, ikili sembollerin önermeli sembollere atanmasını belirtir.

 \ddot{O} rrnek: $w = \{A: 0, B: 1, C: 0\}$ doğruluk değerleri kümesi, A, B ve C önermeli semboller için olası bir modeldir.

 \square Yorumlama fonksiyonu – Yorumlama fonksiyonu $\mathcal{I}(f,w), w$ modelinin f formülüne uygun olup olmadığını gösterir:

$$\mathcal{I}(f,w) \in \{0,1\}$$

 \square Modellerin seti – $\mathcal{M}(f)$, f formülünü sağlayan model setini belirtir. Matematiksel konuşursak, şöyle tanımlarız:

$$\forall w \in \mathcal{M}(f), \quad \mathcal{I}(f,w) = 1$$

Bilgi temelli

 \square Tanım – Bilgi temeli KB (knowledge base), şu ana kadar düşünülen tüm formüllerin birleşimidir. Bilgi temelinin model kümesi, her formülü karşılayan model dizisinin kesişimidir. Diğer bir deyişle:

$$\mathcal{M}(\mathrm{KB}) = \bigcap_{f \in \mathrm{KB}} \mathcal{M}(f)$$

 \square Olasılıksal yorumlama – fsorgusunun 1 olarak değerlendirilmesi olasılığı, fyı sağlayan bilgi temeli KB'nin w modellerinin oranı olarak görülebilir, yani:

$$P(f|KB) = \frac{\sum_{w \in \mathcal{M}(KB) \cap \mathcal{M}(f)} P(W = w)}{\sum_{w \in \mathcal{M}(KB)} P(W = w)}$$

 \square Gerçeklenebilirlik – En az bir modelin tüm kısıtlamaları yerine getirmesi durumunda KB'nin bilgi temelinin gerçeklenebilir olduğu söylenir. Diğer bir deyişle:

KB karşılanabilirlik
$$\iff \mathcal{M}(KB) \neq \emptyset$$

Not: $\mathcal{M}(KB)$, bilgi temelinin tüm kısıtları ile uyumlu model kümesini belirtir.

 \Box Formüller ve bilgi temeli arasındaki ilişki – Bilgi temeli KB ile yeni bir formül f arasında aşağıdaki özellikleri tanımlarız:

Adı	Matematiksel formülü	Gösterim	Notlar
KB f içerir	$\mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f) = \mathcal{M}(\mathrm{KB})$	$\mathcal{M}(f)$ $\mathcal{M}(KB)$	- f yeni bir bilgi getirmiyor - Ayrıca KB $\models f$ yazıyor
$\begin{array}{c} \text{KB} \\ f \text{ içermez} \end{array}$	$\mathcal{M}(\mathrm{KB})\cap\mathcal{M}(f)=arnothing$	$\mathcal{M}(f)$ $\mathcal{M}(KB)$	- Hiçbir model f ekledikten sonra kısıtlamaları yerine getirmiyor - KB $\models \neg f$ 'ye eşdeğer
f koşullu KB	$\mathcal{M}(KB) \cap \mathcal{M}(f) \neq \emptyset$ ve $\mathcal{M}(KB) \cap \mathcal{M}(f) \neq \mathcal{M}(KB)$	$\mathcal{M}(f)$ $\mathcal{M}(\mathrm{KB})$	 - f KB'ye aykırı değil - f KB'ye önemsiz miktarda bilgi ekliyor

□ Model denetimi – Bir model denetimi algoritması, KB'nin bilgi temelini girdi olarak alır ve bunun karşılanabilir olup olmadığını çıkarır.

Not: popüler model kontrol algoritmaları DPLL ve WalkSat'ı içerir.

 \Box Çıkarım kuralı – $f_1,...,f_k$ ve sonuç g yapısının çıkarım kuralı şöyle yazılmıştır:

$$\frac{f_1, \dots, f_k}{g}$$

 \Box İleri çıkarım algoritması – Çıkarım kurallarından Rules, bu algoritma mümkün olan tüm $f_1,...,f_k$ 'den geçer ve eşleşen bir kural varsa, KB bilgi tabanına g ekler. Bu işlem KB'ye daha fazla ekleme yapılamayana kadar tekrar edilir.

 \square Türetme – f'nin KB içerisindeyse veya Rules kurallarını kullanarak ileri çıkarım algoritması sırasında eklenmişse, KB'nin Rules ile f (KB \vdash f yazılır) türettiğini söylüyoruz.

 \Box Çıkarım kurallarının özellikleri – Çıkarım kurallarının kümesi Rules aşağıdaki özelliklere sahip olabilir:

Adı	Matematiksel formülü	Notlar	
Sağlamlık	$\{f: KB \vdash f\} \subseteq \{f: KB \models f\}$	- Çıkarılan formüller KB arafından sağlanmıştır - Her defasında bir kural kontrol edilebilir - " <i>Gerçeğinden başka bir şey yok</i> "	
Tamlık	$\{f: KB \vdash f\} \supseteq \{f: KB \models f\}$	-Ya KB 'yi içeren formüller ya bilgi tabanında zaten vardır, ya da ondan çıkarılan değerlerdir - " <i>Tüm gerçek</i> "	

Önerme mantığı

Bu bölümde, mantıksal formülleri ve çıkarım kurallarını kullanan mantık tabanlı modelleri inceleyeceğiz. Buradaki fikir ifade ve hesaplamanın verimliliğini dengelemektir.

□ Horn cümlesi – $p_1,...,p_k$ ve q önerme sembollerini not ederek, bir Horn cümlesi şu şekildedir (matematiksel mantık ve mantık programlamada, kural gibi özel bir biçime sahip mantıksal formüllere Horn cümlesi denir):

$$(p_1 \wedge ... \wedge p_k) \longrightarrow q$$

Not: q = false olduğunda, "hedeflenen bir cümle" olarak adlandırılır, aksi takdirde "kesin bir cümle" olarak adlandırırız.

 \square Modus ponens – $f_1,...,f_k$ ve p önermeli semboller için modus ponens kuralı yazılır:

$$\frac{f_1, \dots, f_k, \quad (f_1 \wedge \dots \wedge f_k) \longrightarrow p}{p}$$

Not: her uygulama tek bir önermeli sembol içeren bir cümle oluşturduğundan, bu kuralın uygulanması doğrusal bir zaman alır.

 \square Tamlık – KB'nin sadece Horn cümleleri içerdiğini ve p'nin zorunlu bir teklif sembolü olduğunu varsayalım, Hornus cümlelerine göre modus ponenleri tamamlanmıştır. Modus ponens uygulanması daha sonra p'yi türetir.

□ Konjunktif normal form – Bir konjonktif normal form (CNF, conjunctive normal form) formülü, her bir cümlenin atomik formüllerin bir ayrıntısı olduğu cümle birleşimidir.

Açıklama: başka bir deyişle, $CNF'ler \lor ait \land bulunmaktadır$.

□ Eşdeğer temsil – Önerme mantığındaki her formül eşdeğer bir CNF formülüne yazılabilir. Aşağıdaki tabloda genel dönüşüm özellikleri gösterilmektedir:

Kural adı		Başlangıç	Dönüştürülmüş
	\leftrightarrow	$f \leftrightarrow g$	$(f \to g) \land (g \to f)$
Eleme	\rightarrow	f o g	$\neg f \lor g$
	77	$\neg \neg f$	f
Dağıtma	¬ üzerine ∧	$\neg (f \wedge g)$	$\neg f \vee \neg g$
	¬ üzerine ∨	$\neg (f \vee g)$	$\neg f \wedge \neg g$
	∨ üzerine ∧	$f\vee (g\wedge h)$	$(f\vee g)\wedge (f\vee h)$

 \square Çözünürlük kuralı $-f_1,...,f_n$ ve $g_1,...,g_m$ önerme sembolleri için, p, çözümleme kuralı yazılır:

$$\frac{f_1 \vee ... \vee f_n \vee p, \quad \neg p \vee g_1 \vee ... \vee g_m}{f_1 \vee ... \vee f_n \vee g_1 \vee ... \vee g_m}$$

Not: her uygulama, teklif sembollerinin alt kümesine sahip bir cümle oluşturduğundan, bu kuralı uygulamak için üssel olarak zaman alabilir.

 $\hfill \Box$ Çözünürlük tabanlı çıkarım
 – Çözünürlük tabanlı çıkarım algoritması, aşağıdaki adımları izler:

• Adım 1: Tüm formülleri CNF'ye dönüştürün

• Adım 2: Tekrar tekrar, çözünürlük kuralını uygulayın

• Adım 3: False türetilmişse tatmin edici olmayan dönüş yapın

Birinci dereceden mantık

Buradaki fikir, daha kompakt bilgi sunumları sağlamak için değişkenleri kullanmaktır.

- \square Model Birinci mertebeden mantık haritalarında bir w modeli:
 - nesnelere sabit semboller
 - nesnelerin dizisini sembolize etmek için tahmin

 $\hfill\Box$ Horn cümlesi – $x_1,...,x_n$ değişkenleri ve $a_1,...,a_k,b$ atomik formüllerine dikkat çekerek, bir boynuz maddesinin birinci derece mantık versiyonu aşağıdaki şekildedir:

$$\forall x_1, \dots, \forall x_n, (a_1 \wedge \dots \wedge a_k) \to b$$

- \Box Yer değiştirme Bir yerdeğiştirme değişkenleri terimlerle eşler ve $\mathrm{Subst}(\theta,f)$ yerdeğiştirme sonucunu folarak belirtir.
- \Box Birleştirme Birleştirme fve g'nin iki formülünü alır ve onları eşit yapan en genel ikameyi θ verir:

$$\boxed{ \text{Unify}[f,g] = \theta } \quad \text{\"oyle ki} \quad \boxed{ \text{Subst}[\theta,f] = \text{Subst}[\theta,g] }$$

Not: Unify[f,g] eğer böyle bir θ yoksa Fail döndürür.

□ Modus ponens – $x_1,...,x_n$ değişkenleri, $a_1,...,a_k$ ve $a'_1,...,a'_k$ atomik formüllerine dikkat ederek ve $\theta = \text{Unify}(a'_1 \wedge ... \wedge a'_k, a_1 \wedge ... \wedge a_k)$ modus ponenlerin birinci dereceden mantık versiyonu yazılabilir:

$$\boxed{\frac{a_1',...,a_k' \quad \forall x_1,...,\forall x_n(a_1 \land ... \land a_k) \to b}{\operatorname{Subst}[\theta,b]}}$$

- $\hfill\Box$ Tamlık Modus ponens sadece Horn cümleleriyle birinci dereceden mantık için tamamlanmıştır.
- $\hfill\Box$ Resolution rule $f_1,...,f_n,\,g_1,...,g_m,\,p,\,q$ formüllerini not ederek ve $\theta=$ Unify(p,q) ifadesini kullanarak, çözümleme kuralının birinci dereceden mantık sürümü yazılabilir:

$$\boxed{ \begin{aligned} &f_1 \vee \ldots \vee f_n \vee p, & \neg q \vee g_1 \vee \ldots \vee g_m \\ &\operatorname{Subst}[\theta, f_1 \vee \ldots \vee f_n \vee g_1 \vee \ldots \vee g_m] \end{aligned}}$$

- $\hfill \Box$ Yarı-karar verilebilirlik Birinci dereceden mantık, sadece Horn cümleleriyle sınırlı olsa bile, yarı karar verilebilir eğer:
 - KB $\models f$ ise f sonsuz zamanlıdır
 - KB $\not\models f$ ise sonsuz zamanlı olabilirliği gösteren algoritma yoktur