Systematische Studien zur π^0 Kalibrierung des Crystal-Ball Detektor

von

Martin Sobotzik

Bachelorarbeit in Physik rtm/vorgelegt dem Fachbereich Physik, Mathematik und Informatik (FB 08)der Johannes Gutenberg-Universität Mainzam 10. Mai 2017

Gutachter: Prof. Dr. Wolfgang Gradl
 Gutachter: Prof. Dr. Achim Denig

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.
Mainz, den [Datum] [Unterschrift]

Martin Sobotzik KOMET Institut für Physik Staudingerweg 7 Johannes Gutenberg-Universität D-55099 Mainz msobotzi@students.uni-mainz.de

Inhaltsverzeichnis

1.	Einle	itung	1
	1.1.	Motivaton	1
		Gliederung	2
2.	Ехре	rimenteller Aufbau am MAMI	3
	2.1.	Der MAMI-Beschleuniger	3
	2.2.	Die Photonenmarkierungsanlage	6
		Das Detektorsystem	7
		2.3.1. Der Crystal-Ball-Detektor	8
		2.3.2. TAPS, PID & MWPC	9
3.	Stuc	en zur Kalibrierung des Crystal-Ball	10
			10
			10
			14
	3.2.		16
			17
			17
4.	Zusa	mmenfassung und Ausblick	20
Α.	Anh	ng	21
	A.1.	Herleitung der Formel zur Berechnung der invarianten Masse	21
	A.2.	Tabellen und Abbildungen	22
			23
В.	Dan	sagung	28

1. Einleitung

In der folgenden Arbeit werden natürliche Einheiten verwendet, d.h. $\hbar = c = 1$.

1.1. Motivaton

Diese Bachelorarbeit beschäftigt sich mit Studien zur Kalibrierung des Crystal-Ball Detektors der A2-Kollaboration am Institut für Kernphysik an der Johannes-Gutenberg-Universität. Die A2-Kollaboration untersuchte unter anderem die innere Struktur von Nukleonen mit Hilfe eines, durch Bremsstrahlung erzeugten, reellen Photonenstrahls.

Wird ein hochenergetisches Photon durch ein Proton absorbiert, werden Stark-Wechselwirkende Teilchen erzeugt. Diese Teilchen zerfallen überwiegend in Photonen, welche schließlich mit dem Crystal-Ball Detektor nachgewiesen werden können.

Der Crystal-Ball bestand aus 672 Natriumiodid Kristallen die als Detektoren dienten und deckte ca. 94% des Raumwinkels ab. Er hatte zwei Bereiche ohne Detektor die für den Strahlenein und -ausgang vorheriger Experimente dienten. Um die Detektoren nun zu kalibrieren, betrachtete man folgende Prozesse:

$$\gamma + p \to p + \pi^0 \tag{1.1}$$

Bei diesem Prozess absorbiert ein Proton p ein hochenergetischen Photon γ . Dabei wird ein π^0 -Meson erzeugt.

$$\pi^0 \to \gamma \gamma$$
 (1.2)

Das π^0 -Meson zerfällt direkt zu 98,8% in zwei Photonen und zu ca. 1,2% in $e^+e^-\gamma$. Andere Modi können vernachlässigt werden, da sie nur Wahrscheinlichkeiten von unter 10^{-5} % aufweisen. Im Crystal-Ball wurde, sowohl die Energie der Photonen, als auch ihr Auftreffort bestimmt, woraus sich die invariante Masse des π^0 berechnen lies. Laut Literatur beträgt diese Masse 135 MeV [PDG16], folglich wurden die Detektoren so eingestellt, dass sich der errechnete π^0 -Peak bei dieser Masse befand.

Das Hauptaugenmerk dieser Arbeit lag bei der Untersuchung der Energieabhängigkeit des Crystal-Ball-Detektors. Es wurde untersucht wie sich die Kalibrierung des Detektors für verschiedene Energien verhält und es wurde nach der Ursache für diese Abweichungen gesucht.

1. Einleitung

1.2. Gliederung

Gliederung

Der Mainzer Mikrotron (MAMI) war zur Zeit meiner Bachelorarbeit ein mehrstufiger Rennbahn-Teilchenbeschleuniger (RTM¹) für Elektronenstrahlen und stand verschiedenen Arbeitsgruppen für Experimente zur Verfügung. Die Anlage befand sich auf dem Gelände des Instituts für Kernphysik (KPh) der Johannes Gutenberg-Universität und bestand aus mehreren Hallen.

Die A2-Kollaboration untersuchte vor allem die Struktur von Nukleonen mit Hilfe von reellen Photonen, welche durch Bremsstrahlung des MAMI-Elektronenstrahls erzeugt wurden. Die Photonenenergie konnte durch eine Photonenmarkierungsanlage (Tagger²) bestimmt werden. Nach der Reaktion mit dem Target wurden die Teilchen durch ein System von verschiedenen Teilchendetektoren nachgewiesen.

2.1. Der MAMI-Beschleuniger

1979 wurde das MAMI erstmals in Betrieb genommen und bestand damals nur aus einem einzelnen RTM, womit eine maximale Elektronenenergie von 14 MeV erreicht werden konnte. Im Laufe der Jahre wurde das MAMI um zwei weitere RTMs und einem HDSM³ erweitert, wodurch eine Elektronenenergie von 1,5 GeV erreicht werden konnte.[KPh11G]

Um unpolarisierte Elektronen zu erzeugen, wurde eine Glühkathode auf 1000°C erhitzt. Dadurch konnten Elektronen den Heizdraht, aufgrund ihrer thermischen Bewegung, verlassen. Diese Elektronen wurden dann durch ein elektrisches Feld, welches durch die heiße Kathode und einer Anode, erzeugt wurde, zur Anode beschleunigt und traten dann durch ein Loch in der Anode aus und wurden weiter durch einen Linearbeschleuniger mit einer Frequenz von 2,45 GHz auf ca. 3,5 MeV beschleunigt. Diese Frequenz ist für das MAMI typisch und machte es zu einem Dauerstrich-Elektronen-Beschleuniger. Das heißt die Frequenz, mit der die Elektronen-Pakete auftraten, war größer, als die Frequenz, mit der die Detektoren einzelne Events auflösen konnten und somit wirkte der Strahl für die Detektoren kontinuierlich. Am MAMI war es auch möglich einen spinpolarisierten Elektronenstrahl zu erzeugen, dazu wurde ein GaAs Kristall mit polarisiertem Laserlicht bestrahlt.

Für die Experimente der A2-Kollaboration war ein unpolarisierter Strahl allerdings ausreichend.

 $^{^{1}} Race\text{-}Track\text{-}Microtron$

²to tag = markieren

³Harmonic Double Sided Microtron

Abbildung 2.1.: Grundriss der Beschleunigeranlage MAMI. Zu sehen sind die drei RTMs, der HDSM der Tagger und die verschiedenen Experimentierhallen: A1 (Elektronenstreuung), A2 (Strukturanalyse von Nukleonen), A4 (Paritätsverletzung) und X1 (Röntgenstrahlung). [KPh07]

Da die Elektronen mit einem Linearbeschleuniger nur einige MeV pro Meter beschleunigt werden können, und man keine kilometerlangen Strecke bauen wollte, entschied man sich dafür, die Elektronen mehrmals durch den gleichen Beschleunigerabschnitt zu beschleunigen. Dazu wurden sie nachdem sie beschleunigt wurden, durch zwei 180° Dipole so umgeleitet, dass sie wieder am Anfang des Beschleunigerabschnitts waren und diese Bahn abermals durchlaufen konnten. Nun besaßen die Elektronen mehr Energie und wurden in einer Bahn mit größerem Radius durch die Dipole geleitet bis die gewünschte Energie erreicht wurde und der Strahl in den nächsten Abschnitt umgeleitet wurde. Die Struktur eines RTM erinnerte an eine antike Pferderennbahn, daher hat er auch seinen Namen.

Eine phasengerichtete Rückkopplung ist allerdings nur möglich, wenn die statische und die dynamische Kohärenzbedingung erfüllt sind. Um die statische Kohärenzbe-

dingung zu erfüllen, muss die Länge der ersten vollständigen Bahn ein ganzzahliges Vielaches der Wellenlänge der beschleunigten Hochfrequenz sein. Für die dynamische Kohärenzbedingung muss die Längendifferenz von zwei aufeinander folgenden Umläufen ebenfalls ein ganzzahliges Vielfaches der Wellenlänge sein[Un08].

Diese Bedingungen gaben ebenfalls die Grenzen für den maximal möglichen Energiegewinn jeder Stufe an.

Wie bereits erwähnt besaß MAMI drei dieser RTMs. Die erste Stufe MAMI A bestand aus zwei RTMs mit 18 bzw. 51 Umläufen. Die zweite Stufe MAMI B bestand aus dem, zu diesem Zeitpunkt, größten RTM der Welt mit 90 Umläufen und Dipolen mit einer Breite von jeweils 5 m, wodurch sie 450 t schwer waren. Damit waren auch die technischen Grenzen erreicht. [KPh11F]

Abbildung 2.2.: Prinzip eines RTM: Der Elektronenstrahl wird immer wieder durch den Linearbeschleuniger geschickt, bis die gewünschte Energie erreicht wurde und der Strahl mittels eines sogenannten Kicker-Magnet zum nächstem Abschnitt weiter geleitet wird. [KPh07]

Damit dennoch höhere Energien erreicht werden konnten, war ein neues Konzept erforderlich. MAMI C war folglich kein RTM mehr, sondern ein HDSM. Das heißt, es bestand aus vier 90° Dipolen, welche jeweils 250 t schwer waren und einem zusätzlichen Linearbeschleuniger. Für dieses HDSM wurde der erste Linearbeschleuniger der Welt entwickelt, der mit einer Fequenz von 4,9 GHz laufen konnte, betrieben wurde er allerdings, wie die beiden voherigen RTMs mit einer Frequenz von 2,45 GHz.

Am Ende der Beschleunigung hatte der Elektronenstrahl eine Energie von ca. 1,5 GeV, diese konnte in Schritten von etwa 15 MeV eingestellt werden und sein Durchmesser lag im Mikrometerbereich, was sehr gute Voraussetzungen für Präzisionsexperimente waren. [KPh07].

	RTM1	RTM2	RTM3	HDSM
Eingangsenergie	$3,455~{ m MeV}$	$14,35~\mathrm{MeV}$	$179,5~\mathrm{MeV}$	$854,6~\mathrm{MeV}$
Ausgangsenergie	$14,35~\mathrm{MeV}$	$179,5~\mathrm{MeV}$	$854,6~\mathrm{MeV}$	1,5 GeV
Anzahl Umläufe	18	51	90	43
Energiegewinn pro Umlauf	$0,559~\mathrm{MeV}$	$3,24~{ m MeV}$	$7.5~{ m MeV}$	$13,93-16,63~{ m MeV}$

Tabelle 2.1.: Technische Daten der MAMI-Beschleunigerstufen [Un08]

2.2. Die Photonenmarkierungsanlage

In der A2-Experimentierhalle wurde schließlich der reelle Photonenstrahl mittels Bremsstrahlung erzeugt. Dazu traf der MAMI-Elektronenstrahl auf einen Radiator, typischerweise ein dünnes Metall oder ein Diamant mit einer Dicke von 10 bis 100 μ m. Die Elektronen werden anschließend im Coloumbfeld eines Kerns des Radiators beschleunigt und können dann, aufgrund der Impulserhaltung ein Photon in Vorwärtsrichtung ausstrahlen.

$$e^- + N \to N + e^- + \gamma \tag{2.1}$$

Der Rückstoß des Kerns konnte aufgrund seiner großen Masse vernachlässigt werden und die Energie der Photonen konnte anschließend mit folgender Formel berechnet werden:

$$E_{\gamma} = E_e - E_{e^-} \tag{2.2}$$

Dabei war E_e die Energie des Elektronenstrahls und E_{e^-} die Energie der gestreuten Elektronen, welche durch den Glasgow-Mainz-Tagger (siehe Abbilding 2.3) bestimmt wurde. Dieser war ein impulsselektierendes, magnetisches Spektrometer, in dem ein magnetisches Feld angelegt war, welches die Elektronen auf Fokalebene lenkte, hinter der sich die Tagger-Elektronenleiter befand. Dadurch wurde zusätzlich der Elektronenstrahl von dem Photonenstrahl getrennt. Dieses Magnetfeld war zusätzlich so eingestellt, dass Elektronen, welche keine Energie durch Bremsstrahlung verloren haben, direkt in den Strahlenfang abgelenkt wurden. Die restlichen Elektronen wurden je nach Impuls auf einen anderen Abschnitt der Tagger-Leiter fokusiert.

Diese Tagger-Elektronenleiter bestand aus 353 Szintillatoren, welche sich jeweils zur Hälfte überlappten. Dadurch ergaben sich 352 Kanäle mit einer Energieauflösung von $\Delta E \approx 2$ MeV bzw. 4 MeV bei einer Strahlenenergie von $E_e = 800$ MeV bzw. 1,5 GeV. Folglich ließ sich der Impuls durch Kenntnis des Auftrefforts des Elektron auf der Tagger-Leiter und der Stärke des Magnetfeldes bestimmen und dadurch auch die Energie der Elektronen.

Da die Energie des Elektronenstrahls und die der gestreuten Elektronen bekannt war, konnte die Energie der Photonen mit Gleichung refeq. Photonenenergie errechnet werden.

Abbildung 2.3.: Der Glasgow-Mainz-Tagger: Am Radiator entstanden durch Bremsstrahlung Photonen, welche den Kollimator passierten und auf das Target trafen. Die Elektronen wurden durch den Dipol auf den Elektronenleiter angelenkt, wodurch sich ihre Energie bestimmen ließ[Un08]

2.3. Das Detektorsystem

Nach seiner Erzeugung traf der Photonenstrahl auf ein ca. 10 cm langes Flüssig-Wasserstoff-Target, welches sich im Zentrum des Crystal-Balls (CB) befand. Die erzeugten und gestreuten Teilchen konnten dann durch ein System von Detektoren bestehend aus dem Crystal-Ball Detektor, einem Teilchenidentifikationsdetektor (PID⁴), zwei Vieldrahtproportionalkammern (MWPC⁵) und einem Photonenspektrometer (TAPS⁶) nachgewiesen werden. Der PID und die MWPC waren im Inneren des CB angebracht. Der TAPS wurde am Ausgang des CB platziert, um einen fast vollständig abgedeckten Raumwinkel zu erreichen.

 $^{^4}$ Particle Ideticication Detector

⁵Multi-Wire Proportional Chamber

⁶Two Arm Photon Spectrometer

Abbildung 2.4.: Anordnung des Detektorsystems: Im Zentrum des sphärischen Kalorimeters (CB) befanden sich der Detektor zur Teilchenidentifikation (PID) und zwei zur Bestimmung der Teilchen-Trajektorie (MWPC). Die TAPS-Wand befand sich am Ausgang des CB und sorgte dafür, dass der CB einen Raumwinkel von fast 4π abdeckte[We13]

2.3.1. Der Crystal-Ball-Detektor

Ursprünglich wurde der Crystal-Ball Detektor Anfang der 70er Jahre am SPEAR zur Entdeckung des J/Ψ -Mesons entwickelt. Später wurde mit seiner Hilfe das Bottom-Quark am DESY und Baryonenresonanzen am BNL untersucht. Seit November 2002 stand der Crystal-Ball Detektor der A2-Kollaboration am MAMI für Experimente mit reellen Photonen zur Verfügung.

Der Crystal-Ball war ein Kalorimeter bestehend aus 672 Natriumiodid (NaI) Szintillatoren, welche so angeordnet waren, dass 93,3% des Raumwinkels abgedeckt werden konnte. Die Geometrie basierte auf der Form eines Ikosaeders, ein Würfel bestehend

⁷Stanford Positron Electron Asymmetric Ring

⁸Deutsches Elektronen-Synchrotron

⁹Brookhaven National Laboratory

aus 20 gleichgroßen gleichseitigen Dreiecken. Jedes dieser Dreiecke war weiter aufgeteilt in in vier kleinere gleichseitige Dreiecke, welche wiederum jeweils in neun gleichseitige Dreiecke unterteilt waren. Somit ergaben sich 720 gleichseitige Flächen. Aufgrund der hohen Zahl der Flächen erinnerte der Crystal-Ball an eine Hohlkugel mit einem außen Radius von ca. 66 cm und einen Innenradius von ca. 25 cm.

Da der Crystal-Ball Detektor ursprünglich in e^+e^- Streuexperimenten verwendet wurde, mussten sowohl, für den Strahleneingang, als auch -ausgang 24 dieser Flächen entfernt werden, wodurch insgesamt 672 Detektoren angebracht werden konnten. Die Detektoren bestanden aus NaI-Szintillatorkristallen und waren ca. 40 cm (\sim 15,7 Strahlungslängen) lang, hatten die Form eines Pyramidenstumpfes mit dreieckiger Grundfläche und einer Seitenlänge von etwa 5 cm am schmalen und ca. 13 cm am dicken Ende. Jeder dieser Kristalle deckte etwa 0,14 % des Raumwinkels ab und wurde durch einen eigenen Photoelektronenvervielfacher (PMT¹⁰) ausgelesen.

2.3.2. TAPS, PID & MWPC

Der PID hatte eine zylindrische Form mit einem Durchmesser von 116,5 mm und bestand aus 24 einzelnen Szintillatoren, welche jeweils 500 mm lang, 15,3 mm breit und 4 mm dick waren. Da die Szintillatoren nur eine geringe Dicke aufwiesen, verloren Photonen beim durchfliegen weniger als 1% ihrer Energie. Geladene Teilchen auf der anderen Seite erfuhren einen Energieverlust ΔE . Ihre restliche Energie wurde im Crystal-Ball abgegeben. Folglich konnte der PID zwischen geladenen und ungeladenen Teilchen unterscheiden.

Außerhalb des PIDs waren die MWPCs angebracht. Dabei handelte es sich um zwei, aus Anodendrähten aufgebauten, Ioniastionskammern in Form von Zylindern. Die Anodendrähte waren parallel zur Strahlenachse ausgerichtet und befanden sich zwischen zwei Lagen von spiralförmigen Kathodenstreifen.

Da die A2-Kollaboraions Experimente mit einem Fixed-Target untersucht und der Crystal-Ball zwei $L\ddot{o}cher$ für einen Strahleneingang und -ausgang besaß, wurde die TAPS-Wand entwickelt. Diese deckte einen Polarwinkel zur Strahlenachse von 1,2° bis 20° ab. Sie wurde etwa 1,5 m vom Mittelpunkt des CB entfernt positioniert und bestand aus 72 PbWO₄ und 366 BaF₂ Szintillatorkristallen.

Somit konnte mit diesem Detektorsystem ein Raumwinkel von fast 97% abgedeckt werden.

¹⁰ PhotoMultiplier-Tube	
PhotoMultiplier-Tube	

9

Zerfällt ein π^0 , so werden nach Reaktion 1.2 zwei Photonen frei. Diese Photonen wurden durch den Crystal-Ball Detektor nachgewiesen. Dabei wurde sowohl der Winkel zwischen den beiden Photonen, als auch die Energie der Photonen bestimmt, um die invariante Masse des π^0 ausrechnen zu können.

Zur Analyse wurde ${\rm ANT^1}$ benutzt. Mit diesem Programm konnten auch alle gewünschten Bedingungen eingestellt werden.

3.1. Reelle Daten

Im folgenden Abschnitt werden die gemessenen Daten aus der Strahlzeit Oktober 2014 verwendet.

3.1.1. Energie-Interval Abhängigkeit

Als erstes wurde überprüft, ob es eine Abhängigkeit der Kalibrierung im Bereich verschiedener Energieintervalle gab. Sprich, stimmt die Kalibrierung auch dann noch, wenn die Energie der beiden detektierten Photonen sich ähnelte. Das heißt, die Differenz der Energie der beiden Photonen beträgt maximal 25 MeV. Diese Bedingung wurde eingeführt, da man auf diese Weise herausfinden konnte, ob die Kalibirierung auch noch für zum Beispiel hoch energetische Photonen stimmt, da man weiß, dass beide Photonen eine hohe Energie besaßen. Anders konnte sonst nicht die Folgerung getroffen werden, da man sonst eine 'Mischung' der Energien hat und man nicht sagen kann, welcher Effekt durch welche Energie verursacht wurde.

Zur Untersuchung konnten dann aus den Daten der Strahlzeit, die invariante Masse des π^0 mit folgender Gleichung berechnet werden.

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\vartheta))}$$
 (3.1)

Hier ist m_{π^0} die berechnete Masse aus den beiden Energien E_1 und E_2 der Photonen. ϑ ist der Winkel zwischen den beiden Photonen. Um diesen zu berechnen musste angenommen werden, dass das Pion im Ursprung zerfällt. Mehr dazu in Kapitel 3.2. Die Herleitung der Gleichung 3.1 befindet sich im Anhang A.1.

¹Analysis Toolkit

Mit diesen Daten konnte schließlich ein zweidimensionales Histogramm mit der invarianten Masse auf der x-Achse angelegt werden. Auf der y-Achse wurde die Energie der Photonen aufgetragen, welche in Intervalle mit einer Breite von 25 MeV unterteilt wurden.

Abbildung 3.1.: 2-D Histogramm: Auf der x-Achse ist die errechnete invariante Masse aufgetragen, die y-Achse ist in 25 MeV Intervalle aufgeteilt. Es wurden nur dann die Invariante Masse errechnet, wenn die Energiedifferenz der beiden Photonen kleiner als 25 MeV war.

Beim Füllen des Histogramms wurde darauf geachtet, dass sich die Energien der beiden Photonen um maximal 25 MeV unterschieden.

Im folgenden wurden nur die Energieintervalle für Photonen von 125 MeV bis 425 MeV berücksichtigt. Dieser Bereich wurde bewusst gewählt, da für kleinere Energien der Peak des π^0 zu stark durch das Rauschen gestört wurde und somit die Position nicht eindeutig bestimmt werden konnte. Für Energien oberhalb von 425 MeV lagen nicht mehr genug Ereignisse vor, sodass höhere Energieintervalle ebenfalls verworfen werden mussten.

Um nun die Position des π^0 zu bestimmen, wurde für jedes Intervall über den Bereich der errechneten invarianten Masse von 50 MeV bis 220 MeV mit Hilfe von ROOT gefittet. Die Einschränkung des Bereichs ermöglichte einen besseren Fit.

Zum Fitten wurde zunänchst auf ein bereits existierendes Fitmodul zurückgegriffen. Dieses war eine Kombination aus einer Gaußfunktion und einer Potenzreihe. Allerdings entspricht die Form des Peaks nicht der einer Gaußverteilung, weswegen eine alternative Fitfunktion gesucht werden musste.

Bei dieser neuen Funktion handelte es sich um die Crystal-Ball-Funktion, welche nach der Crystal-Ball Kollaboration benannt wurde. Diese Funktion war eine Dichtefunktion einer asymmetrischen Wahrscheinlichkeitsverteilung und war in zwei Bereiche aufgeteilt. Im zentralen Bereich entsprach sie einer Gaußform, diese ging für kleine Werte in eine Potenzreihe über.

$$f(x|\alpha, n, \bar{x}, \sigma) = N \begin{cases} exp(-\frac{(x-\bar{x})^2}{2\sigma^2}), & \text{falls } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A(B - \frac{x-\bar{x}}{\sigma})^{-n}, & \text{falls } \frac{x-\bar{x}}{\sigma} \leqslant -\alpha \end{cases}$$
(3.2)

Dabei war N der Normierungsfaktor, \bar{x} der Erwartungswert und σ die Standardabweichung der Gaußfunktion. Der Parameter α gab die Position an, an dem die Gaußverteilung in das Potenzgesetz, mit dem freien Parameter n, übergeht[NBI15]. ROOT stellte diese Funktion bereits größtenteils zur Verfügung, lediglich die Normierung musste noch nachträglich hinzugefügt werden.

Der Untergrund wurde weiterhin mit einem Polynom vierten Grades angenähert, bevor die Crystal-Ball-Funktion angewand wurde.

Abbildung 3.2.: Beispiel eines Fits. Es handelt sich dabei um das Energieintervall von 250 MeV bis 275 MeV mit der Bedingung, dass sich die Energie der Photonen im gleichem Intervall befanden. Zu erkennen ist der Untergrundfit (Blau), der Crystal-Ball-Fit (Grün) und die Addition der beiden Fits (Rot). Alle weiteren Fits mit dieser Bedingung sind in Abbildung A.1 zu sehen.

Zuerst wurde der Untergrund mit einem Polynom vierten Grades gefittet, in Abbildung 3.2 blau dargestellt. Von den Daten konnte damit der Untergrund abgezogen werden. Nun wurde über die verbleibenden Daten der Crystal-Ball-Fit angewand (Grün). Damit leichter überprüft werden konnte, ob der Fit sinnvoll war, wurde beide Fits addiert und zusätzlich in den Graphen gezeichnet (Rot). In dieser Abbildung und in Abbildung 3.1 ist ebenfalls das η -Meson bei einer Masse von ungefähr 550 MeV zu erkennen. Sein Peak wird allerdings sehr stark durch den Untergrund gestört. Der Fokus dieser Arbeit lag zwar bei der Betrachtung des π^0 , allerdings war es auch interresant die Position des η -Peaks zu betrachten, daher wurde nach einem Weg gesucht, den Untergrund möglichst stark zu reduzieren.

Daher wurde nun auch überprüft, ob die detektierten Teilchen eine Ladung besaßen, wenn ja, dann handelte es sich nicht um Photonen und sie wurden nicht in das Histogramm eingefügt.

Abbildung 3.3.: Links ist das 2-D Histogramm zu sehen, für welches überprüft wurde, ob die gemessenen Teilchen ungelafen waren. Rechts ist ein Beispielfit aus diesem Historgramm mit der Crystal-Ball-Funktion zu sehen. Sowohl der π^0 , als auch der η -Peak sind deutlich ausgeprägter.

Bereits an diesem neuem Histogramm war zu erkennen, dass die Störung durch den Untergrund stark reduziert wurde, was einen besseren Fit für sowohl das π^0 als auch das η ermöglichte.

Nun wurde auch über dieses Histogramm für das π^0 von 125 MeV bis 425 MeV gefittet. Aus diesen Fitdaten konnte dann die Position des π^0 bestimmt werden.

Abbildung 3.4.: Die errechnete Position des π^0 Peaks wurde gegen die Energie der Photonen aufgetragen. Es galt die Bedingung, dass die gemessenen Teilchen ungeladen sein mussten und dass die Energie der Photonen sich ähneln sollte.

In Abbildung 3.4 wurden die errechneten Positionen der Pionen gegen die Energie der Photonen aufgetragen. Zu sehen ist eine deutliche Abweichung zum Literaturwert des π^0 Peaks. Auch nahm die Abweichung für größere Energien zu und betrug teilweise über 7%. Zusätzlich fällt auf, dass die errechnete invariante Masse fast ausschließlich größer als erwartet war.

Daraus folgte, dass eine Abhängigkeit zwischen der Position des π^0 -Peaks und der Energie der Photonen vorlag. Die Ursache dieser Abhängigkeit soll in den Folgenden Abschnitten bestimmt werden.

3.1.2. Vernachlässigung der Detektoren am Rand

Als Ursprung der in Kapitel 3.1.1 ermittelten Abweichung wurde zunächst der Aufbau des Crystal-Balls vermutet. Genauer gesagt, der Strahlenein und -ausgang. Denn durch diese hatten die Detektoren im Crystal-Ball nicht alle gleich viele Nachbar Detektoren und da ein Photon seine gesamte Energie nicht an einen Detektorkristall abgab, sondern immer auch an seine Nachbarn, konnten diese Randdetektoren nicht ideal kalibriert werden.

Zusätzlich zu den in Kapitel 3.1.1 geltenden Bedingungen wurde noch die Bedingung hinzugefügt, dass die Detektoren am Rand des Strahlenein- und ausgangs nicht betrachtet wurden. Dies erreichte man dadurch, dass alle Reaktionen, die ein oder mehrere Photonen besaßen, welche einen Winkel von 30° oder weniger zur Strahlenachse hatten, verworfen wurden. Diese Gradzahl wurde durch eine Abschätzung errechnet. Die Öffnungen für den Strahlenein- und ausgang hatten einen 'Radius' von 2 Detektoren, und erstreckte sich über einen Polarwinkel von 20°. Folglich hätte ein Ring aus Detektoren um diese Öffnungen einen Polarwinkel von 10°.

Auch für diese Bedingung wurde anschließend ein Histogramm angelegt (Abb.: A.7) und die einzelnen Positionen wurden dann gefittet (Abb.: A.8), um die Position des π^0 zu bestimmen. Das Energieintervall das betrachtet und gefittet wurde entsprach dem aus Kapitel 3.1.1, damit ein war ein besserer Vergleich zwischen den verschiedenen Effekte möglich.

Zum besseren Vergleich der beiden Ergebnisse wurden die relative Abweichungen mit und ohne Bedingung zusammen in einen Graphen gezeichnet.

In diesem erkennt man, dass der Unterschied für kleine Photonenenergie nur sehr klein ist und weniger als 0.1% beträgt. Bei einem so kleinen Unterschied kann man nicht mit Gewissheit sagen, dass der Cut bei 30° eine Verbesserung der π^{0} -Peak Position bewirkt hat. Die Differenz ist noch im Bereich der statistischen Fluktuation.

Für Photonenenergien oberhalb von ca. 275 MeV nimmt diese Abweichung jedoch zu und beträgt teilweise über 1%.

Ein Grund dafür war, dass hochenergetische Photonen dann erzeugt werden, wenn auch das Pion eine hohe kinetische Energie besaß.

Um das zu erklären betrachte man zunächst ein ruhendes π^0 . Dieses zerfällt in 2 Photonen in zufälliger Richtung mit einem Winkel von 180° zueinander und mit einer Energie von jeweils etwa 67,5 MeV. Gibt man dem π^0 nun einen Boost in z-Richtung,

Abbildung 3.5.: Die relative Abweichung wurde in Prozent gegen die Energie der Photonen gezeichnet. Die rote Linie stellt die relative Abweichung ohne die Bedingung, dass Photonen mit einem Winkel kleiner als 30° verworfen wurden, die schwarze Linie mit der Bedingung.

so erhalten auch die beiden Photonen einen Boost in diese Richtung. Zur Veranschaulichung betrachte man nun zwei extrem Beispiele:

- 1. Im Ruhesystem des π^0 werden die Photonen in einem Winkel von 90° zur Strahlenachse ausgesandt. Wird nun ein Boost in z-Richtung angewandt, so erhalten beide Photonen einen gleich großen Impuls in z-Richtung und haben folglich beide die gleiche Energie und den gleichen Winkel zur z-Achse.
- 2. Werden die Photonen allerdings entlang der z-Achse ausgesandt. Bewirkt ein Boost in z-Richtung, dass das Photon in z-Richtung Energie dazu erhält, während das Photon entgegengesetzt zur z-Richtung Energie 'verliert'. Die Energiedifferenz nimmt also zu.

Für höhere Energien werden diese Effekte verstärkt und alles in allem werden mehr Photonen in Strahlenrichtung gemessen. Daraus folgt, dass Photonen mit niedrieger Energie sich eher gleichmäßig im Raum verteilen, während hochenergetische Photonen häufiger am Strahlenausgang des Crystal-Balls auftreten.

Dies führte auch zu einem weiteren Problem. Dadurch, dass die höher energetischen Photonen wahrscheinlicher am Strahlenausgang vorliegen, werden nicht alle Detektoren im Crystal-Ball gleich berücksichtigt. So liegen, am Strahleneingang fast keine hochenergetische Photonen vor.

In dieser Abbildung erkennt man sehr gut, wie sich die Verteilung der Photonen ändert, wenn die Energie der Photonen zunimmt und die Bedingung gilt, dass sich die Energie der Photonen ähnelt. So sind die Photonen für kleine Energien über den ganzen

Abbildung 3.6.: Links ist die Verteilung der Photonen im Crystal-Ball mit einer Energie von 125 MeV bis 150 MeV zu sehen, rechts von 425 MeV bis 450 MeV.

Crystal-Ball verteilt, während für größere Energien die Photonen immer häufiger am Strahlenausgang auftreten.

Aus der Verbesserung der Abweichung für hohe Photonenenergien und unter Vernachlässigung der Detektoren am Rand folgte, dass die Detektoren am Rand des Strahleneingangs nicht sehr gut für hohe Photonenenergien kalibriert sind. Allerdings war damit nicht die gesamte Abweichung zu erklären, sondern nur bis zu einem Prozent. Aussagen über die Detektoren am Strahleneingang konnten ebenfalls nicht getroffen werden.

Also musste weiter nach der Ursache dieser starken Abweichung gesucht werden.

3.2. Simulation

Da mit reellen Daten keine Ursache gefunden werden konnte, wodurch die Abweichung entstand, wurde auf simulierte Daten zurückgegriffen.

Der Grund dafür war, dass alle Prozesse in simulierten Daten genau bekannt waren. Das heißt von jedem registriertem Teilchen war bekannt, um welches Teilchen es sich gehandelt und aus welchem Prozess es entstanden ist.

So konnte der ganze Zerfall Schritt für Schritt auseinander genommen werden, bis die Ursache für die Abweichung bestimmt war.

In diesem Fall wurden zuerst die Daten aus dem sogenanntem Cocktail genommen.

Im Cocktail waren ca. 250 Millionen physikalisch mögliche Prozesse enthalten, daher hatte er auch seinen Namen. Folglich waren im Cocktail aber nicht nur $\pi^0 \to \gamma \gamma$ enthalten, sondern auch alle anderen möglichen.

Allerdings stellte sich relativ schnell heraus, dass der Cocktail nicht genug Prozesse enthielt, nachdem alle Photonenpaare rausgefiltert wurden, die sich nicht energetisch ähnelten. Deshalb musste ein neues Packet mit mehr Prozessen erstellt werden.

Diese Prozesse wurden durch Pluto, eine Monte-Carlo basierende Simulation, generiert. Insgesamt beinhaltete dieses neue Packet ca 10 Millionen $\pi^0 \to \gamma \gamma$ Prozesse.

Das Verhalten des Crystal-Ball Detektors wurde mittels GEANT4², einer Simulation, welche das Durchdringen von Partikeln durch Materie zu beschreibt, simuliert.

Zunächst musste also überprüft werden, ob die in Kapitel 3.1.1 und 3.1.2 gefundene Abhängigkeit auch in der Simulation auftritt. Dazu wurde ein Histogramm mit den Bedingungen aus Kapitel 3.1.2 gefüllt, da mit diesen Bedingungen die kleinste Abweichung erzielt wurde. Über dieses Histogramm wurde dann wieder gefittet, um die π^0 Position zu bestimmen.

Hist von Simulierten Daten + Abweichung Simulierte Daten ohne Dek. am Rand Am Histogramm erkannte man auch, dass es sich bei den verwendeten Daten um simulierte handelte, da der η -Peak nicht vorhanden ist.

Auch hier ist die Abweichung zu erkennen. Folglich können nun weitere Aspekte mit der Simulation überprüft werden.

3.2.1. Zerfall von π^0 im Ursprung

Zunächst wurde überprüft, wie sich die Detektoren verhielten, wenn das π^0 im Ursprung zerfällt, dabei durfte das Pion einen Boost in eine beliebige Raumrichtung haben, wodurch es keine ausgezeichneten Detektoren mehr gab. Somit konnte ein Vergleich gezogen werden, ob sich alle Detektoren gleich verhalten.

Für diese Untersuchung gab es allerdings kein vorgefertigtes Packet, weshalb ein neues geschrieben werden musste. Die Zerfälle wurden dieses mal allerdings etwas anders erstellt.

In Pluto wurde zunächst ein π^0 erstellt. Dieses zerfiel in seinem Ruhesystem in zwei Photonen im 180° Winkel zueinander. Anschließend erhielten beide Photonen einen zufällig starken Boost in eine zufällige Richtung.

Da auch dieses mal nur Photonen betrachtet werden sollten, die eine ähnliche Energie aufwiesen, mussten sehr viele Zerfälle verworfen werden, da sie diese Bedingung nicht erfüllten. Außerdem benötigt das Simulieren des Crystal-Balls sehr viel Zeit und würde durch die verworfenen Prozesse noch länger dauern. Deswegen wurde beim Erstellen der Simulation über Pluto, bereits hier überprüft, ob die beiden Photonen sich energetisch ähnelten. Nur dann wurde der Zerfall von Pluto eingetragen und anschließend über GEANT4 simuliert. Dies hatte eine erhebliche Zeitersparnis zur Folge.

Als erstes wurde überprüft, ob die Photonen auch wirklich gleichmäßig im Raum verteilt wurden, sieh dazu Abb

Histogramm mit Abb für Verteilung der Photonen im Raum; niedrige und hohe Energie Hier ist zu erkennen, dass sich die Photonen gleichmäßig im Raum verteilen und es keine ausgezeichnete Richtung gibt. Also wurde alles wie gewünscht eingestellt, wodurch das weitere Verhalten des Crystal-Balls betrachtet werden konnte.

3.2.2. Z-Vertex Abhängigkeit

Auch wurde die Abhängigkeit, zwischen der errechneten Position des π^0 -Peaks und dem Ort im Target in dem das Pion entstanden und zerfallen war, überprüft. Da die

²Geometry And Tracking

Lebenszeit eines π^0 nur etwa $8,5*10^{-17}$ Sekunden beträgt, würde ein Pion bei Lichtgeschwindigkeit eine Strecke von ca. 25 nm zurücklegen. Folglich konnte angenommen werden, dass das Pion am gleichem Ort zerfällt, an dem es auch entsteht.

Zur Untersuchung der Z-Vertex Abhängigkeit wurde das 10 cm lange Flüssig-Wasserstoff-Target im Zentrum des Crystal-Ball Detektor in zehn 1 cm lange Intervalle unterteilt. Im Zentrum des Targets befand sich der Ursprung des Koordinatensystems, so lag am Anfang des Targets das Intervall von z=-5 cm bis z=-4 cm, dann folgte z=-4 cm bis z=-3 cm usw.

Hier wurde ein weiterer Vorteil der Simulation ausgenutzt. Aus den, im Experiment genommenen Daten, konnte nämlich nicht der Ort bestimmt werden, an dem das π^0 zerfallen war. Dafür gab es keine Detektoren im Crystal-Ball. In Simulationen waren alle Prozesse allerdings wohl bekannt. So wusste man auch von jeden Prozess an welchem Ort er sich ereignete.

Anschließend wurde mit den Daten aus dem Cocktail ein dreidimensionales Histogramm angelegt mit den Intervallen des Z-Vertex auf der z-Achse, der errechneten invarianten Masse auf der x-Achse und der Energie der Photonen auf der y-Achse.

Abbildung 3.7.: Dreidmensionales Histogramm zur Untersuchung der Z-Vertex Abhängigkeit. Auf der z-Achse ist das Interval des Z-Vertex mit einer Breite von 1 cm aufgetragen. Auf der x-Achse ist die errechnete invariante Masse und auf der y-Achse die Energie der Photonen aufgetragen. Dieses Histogramm konnte leider nicht farbig dargestellt werden

Daraus konnte dann die Position des π^0 -Peaks in Abhängigkeit zum Z-Vertex Intervall berechnet werden, dazu wurde jedes Z-Intervall einzeln betrachtet und die Position abhängig von der Energie der Photonen, wie in den vorangehenden Kapiteln, berechnet. Diese 10 Z-Vertex Abhängigkeiten wurden anschließend in Abbildung 3.8 eingetragen.

Wie zu erwarten war, ergaben verschiedene Z-Vertices unterschiedliche Abweichungen

Abbildung 3.8.: Die Abweichung der π^0 -Peak Position für verschiedene Intervalle des Z-Vertex gegen die Energie der gemessenen Photonen. Beachte: Die unterste Linie repräsentiert das Intervall von -5 cm bis -4 cm, das darüber von -4 cm bis -3 cm usw.

des Peaks. So war die Abweichung größer, wenn die Bedingung galt, dass das π^0 am Rand des Targets zerfällt, als wenn nur Zerfälle in der Mitte des Targets betrachtet wurden. Dies lag daran, das zur Kalibrierung des Crystal-Ball angenommen wurde, dass das Meson im Zentrum des Targets zerfällt. Das hatte zur Folge, dass der Winkel aus Gleichung 3.1 verfälscht wurde, wenn ein Zerfall außerhalb des Zentrum des Targets betrachtet wurde. Der Grund dafür war, dass beim Zerfall des π^0 die meisten hochenergetischen Photonen in Strahlrichtung entstehen³. Folglich hebten sich die Abweichungen im Winkel nicht mit der Statistik weg, sondern es gab eine inhomogene Verteilung der Winkel.

Auch zu sehen ist, dass der Abstand der Linien für niedrige Energie, fast durchgehend, ca. 1% betrug, ausgenommen ist das Intervall von -5 cm bis -4 cm. Ebenfalls war zu erkennen, dass die einzelnen Abweichungen sich für größere Energien der ca. 2% Abweichung annäherten. Eine solche Abweichung war bereits in Kapitel 3.1 zu erkennen, dort wurde der Z-Vertex nicht in Intervalle unterteilt, sondern als ganzes betrachtet. Da auch in den simulierten Daten diese Abweichung der π^0 -Peak Position zu erkennen war, musste genauer nach der Ursache gesucht werden.

³Siehe dazu Kapitel 3.1.2 Ende

4. Zusammenfassung und Ausblick

A.1. Herleitung der Formel zur Berechnung der invarianten Masse

Man betrachte die drei Viererimpulse für den Prozess: $\pi^0 \to \gamma \gamma$

$$p_{\pi^0}^{\mu} = \begin{pmatrix} E_{\pi^0} \\ \overrightarrow{p_{\pi^0}} \end{pmatrix}, p_1^{\mu} = \begin{pmatrix} E_1 \\ \overrightarrow{p_1} \end{pmatrix} \text{ und } p_2^{\mu} = \begin{pmatrix} E_2 \\ \overrightarrow{p_2} \end{pmatrix}$$
 (A.1)

Dabei sind E_1 und E_2 die Energien und $\overrightarrow{p_1}$ und $\overrightarrow{p_2}$ die Impulse der beiden Photonen und E_{π^0} die Energie und $\overrightarrow{p_{\pi^0}}$ der Impuls des Pion.

Aufgrund der Energie- und Impulserhaltung gilt:

$$p_{\pi^0}^{\mu} = p_1^{\mu} + p_2^{\mu} \tag{A.2}$$

Diese Gleichung kann nun quadriert werden:

Da man sich nur für die Photonen interessierte, konnte angenommen werden, dass es sich bei den Teilchen um Photonen handelt. Daraus folgt das $|\overrightarrow{p_1}| = E_1$ und $|\overrightarrow{p_2}| = E_2$ und $m_1 = m_2 = 0$ gilt.

Damit lässt sich die invariante Masse des Pions, welches in die beiden Photonen zerfallen ist, durch

$$\Rightarrow m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\vartheta))} \tag{A.4}$$

berechnen.

Durch den Crystal-Ball waren alle Variablen in dieser Gleichung bekannt. So konnte die Energie der Photonen bestimmt werden und durch Kenntnis des Auftreffortes der Photonen im Crystal-Ball konnte der Winkel zwischen den beiden Photonen errechnet werden, dazu musste allerdings angenommen werden, dass das π^0 im Zentrum des Targets zerfällt. Siehe dazu 3.2.

A.2. Tabellen und Abbildungen

Abbildung A.1.: Alle Fits der Energieintervalle mit der Bedingung, dass sich die Photonen sich energetisch ähneln.

Abbildung A.2.: Die relative Abweichung des errechneten π^0 -Peaks aus Abbildung 3.1 von dem Literaturwert. Die Abweichung wurde in Prozent gegen die Energie der Photonen aufgetragen. Position des π^0 Peaks wurde gegen die Energie der Photonen aufgetragen. Größere Energieintervalle wurden aufgrund zu kleiner Statistik nicht berücksichtigt. Für kleinere Energien konnten keine π^0 Teilchen erzeugt werden

Abbildung A.3.: Zwei zweidimensionales Histogramm. Auf der x-Achse ist die errechnete invariante Masse aufgetragen, auf der y-Achse sind die Energien der Photonen. Das Histogramm wurde mit jedem Photonenpaar gefüllt. Es gab also keine Einschränkung

Abbildung A.4.: Alle Fits der Energieintervalle, ohne die Bedingung, dass die beiden Photonen energetisch ähnlich waren. Oben links ist wurde das Intervall 122 -155 MeV gefittet. Das nächste ist das Intervall von 155 - 278 MeV usw.

A.3. Weiterführende Details zur Arbeit

Manch wichtiger Teil Ihrer tatsächlichen Arbeit ist zu technisch und würde den Hauptteil des Textes unübersichtlich machen, beispielsweise wenn es um die Details des Versuchsaufbaus in einer experimentellen Arbeit oder um den für eine numerische

Abbildung A.5.: Die relative Abweichung der errechneten π^0 Position, ohne die Bedingung, dass die Photonen sich energetisch ähneln

Abbildung A.6.: Alle Fits der Energieintervalle zur Bestimmung des π^0 . Es galt keine weitere Bedingung. Daten stammen aus einer Simulation (Cocktail). Oben links ist wurde das Intervall 122 -155 MeV gefittet. Das nächste ist das Intervall von 155 - 278 MeV usw.

Abbildung A.7.: Energie der Photonen gegen die errechnete invariante Masse mit der Bedingung, dass die Detektoren am Rand nicht berücksichtigt werden

Auswertung verwendeten Algorithmus geht. Dennoch ist es sinnvoll, entsprechende Beschreibungen in einem Anhang Ihrer Bachelorarbeit aufzunehmen. Insbesondere für zukünftige Arbeiten, die an Ihre Bachelorarbeit anschließen, sind dies manchmal hilfreiche Informationen.

Abbildung A.8.: Alle Fits der Energieintervalle zur Bestimmung des π^0 . Mit der Bedingung, dass die Detektoren am Rand vernachlässigt wurden. Daten stammen aus einer Simulation (Cocktail). Oben links ist wurde das Intervall 122 -155 MeV gefittet. Das nächste ist das Intervall von 155 - 278 MeV usw.

Abbildung A.9.: Hier werden alle Fits zur Bestimmung der π^0 Position für verschiedene Z-Vertizes aufgelistet. Die erste Zeile ist das Z-Vertex Intervall von -5 cm bis -4 cm das nächste von -4 cm bis -3 cm usw. Die Energienintervalle der Photonen sind in den Titeln der einzelnen Fits aufgetragen. Es wurden die Daten aus dem Cocktail benutzt.

Literaturverzeichnis

- [Un04] Diplomarbeit von Marc Unverzagt, 2004 Energie-Eichung des Crystal-Ball-Detektors am MAMI
- [Un08] Dissertation von Marc Unverzagt, 2008 Bestimmung des Damitz-Plot-Parameters α für den Zerfall $\eta \to 3\pi^0$ mit dem Crystal Ball am MAMI
- [We13] Diplomarbeit von Jennifer Wettig, 2013 Aufbau und Inbetriebnahme einer neuen HV-Versorgung für den Crystal Ball Detektor am MAMI
- [KPh11G] Internetseite der Kernphysik Mainzer Mikrotron-Geschichte, Internetseite http://www.kernphysik.uni-mainz.de/379.php, (Stand 04.03.2017)
- [KPh11F] Internetseite der Kernphysik Funktionsprinzip des MAMI, Internetseite http://www.kernphysik.uni-mainz.de/375.php, (Stand 06.03.2017)
- [KPh04] Prospekt des Institut für Kernphysik Internetlink, https://portal.kph.uni-mainz.de/de/information/introduction/prospekt.pdf, (Stand: 04.03.2017)
- [KPh07] Pressemitteilung der KPh, https://www.uni-mainz.de/presse/archiv/zope.verwaltung.uni-mainz.de/presse/mitteilung/2007/2007_10_05_phys_einweihung_mami/showArticle_dtml.html, (Stand 06.03.2017)
- [KPh16] Internetseite der A2-Kollaboration Reelle Photonen Internetseite http://www.kph.uni-mainz.de/a2.php (Stand 11.03.2017)
- [PDG16] Internetseite der PDG Partivle Data Group http://pdg.lbl.gov/, (Stand 20.03.2017)
- [De15] Skript & Übungsblätter zur Vorlesung Experimentalphysik Vb WS15/16 Johannes-Gutenberg Universiät Mainz, Prof. Denig https://reader.uni-mainz.de/WiSe2015-16/08-128-055-00/_layouts/15/start.aspx#/Lists/DocumentLib/Forms/AllItems.aspx?RootFolder=, (Stand: 14.03.2017)
- [NBI15] Einfürung in die Programmierung mit Root von Manuel Calderon de la Barca Sanchez http://www.nbi.dk/~petersen/Teaching/Stat2015/PythonRootIntro/ROOT_TipsAndTricks.pdf (Stand: 27.03.2017)
- [1] B. Freund Nummer eins, Bachelorarbeit, Johannes Gutenberg-Universität Mainz, 2012.

B. Danksagung

 \dots an wen auch immer. Denken Sie an Ihre Freundinnen und Freunde, Familie, Lehrer, Berater und Kollegen.