Intro_pt

Dr. Darren Norris (dnorris75@gmail.com)

31 de Março de 2020

Apresentação

Aqui vamos pesquisar desmatamento entre 2000 - 2018 ao longo de 276 quilômetros de rios na Amazônia Brasileira. As pesquisas fazem parte de atividades desenvolvidos no projeto Where is my Turtle: https://myturtlebrazil.wixsite.com/whereismyturtle.

- \circ Objetivo não é de apresentar detalhes sobre os cálculos/métodos estatísticas ou os funções no $\underline{\mathsf{R}}.$
- Mas, sim, o objetivo é de apresentar um exemplo mostrado os capacidades e opções para desenvolver e integrar pesquisas cientificas no ambiente estatística de R

Com menos de 100 linhas de código vamos: 1) carregar dados; 2) olhar mapas (SIG); 3) gerar tabelas com resumos; 4) visulizar resultados em gráficos; e 5) rodar anlises estatisticas.

Pacotes

Para fazer todo isso em menos de 100 linhas, precisamos os seguintes pacotes, que deve esta instalado antes: <u>plyr, tidyverse, sf, mapview, sjPlot, sjmisc, sjlabelled, interactions.</u>

Portanto, deve Instalar os pacotes necessários antes de começar:

Carregar pacotes:

```
library(plyr)
library(tidyverse)
library(sf)
library(mapview)
library(sjPlot)
library(sjmisc)
library(sjlabelled)
library(interactions)
```

Agora podemos fazer um gráfico com função "ggplot" (pacote ggplot2), que faz parte do "tidyverse". Mais exemplos no R cookbook : http://www.cookbook-r.com/Graphs/.

Primeiro gráfico com os dados "mtcars" no pacote ggplot2:

```
ggplot2::ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
```


Para entender melhor pode verificar ajudar no R:

Mais exemplos com <u>Scatterplots</u> aqui: <u>http://www.cookbook-r.com/Graphs/Scatterplots (ggplot2)/</u>

1) Carregar arquivos com dados de SIG.

Baixar arquivo com os dados (formato "GPKG", tamanho 54.3 MB).

Link: https://github.com/darrennorris/gisdata/blob/master/inst/vector/rivers.GPKG . Lembrando-se de salvar o arquivo ("rivers.GPKG") em um local conhecido no seu computador.

Agora avisar R sobre onde ficar o arquivo. O código abaixo vai abrir uma nova janela, e você deve buscar e selecionar o arquivo "rivers.GPKG":

```
meuSIG <- file.choose()</pre>
```

Agora vamos olhar o que tem no arquivo.

```
sf::st_layers(meuSIG)
```

Existem camadas diferentes com pontos e linhas:

1.1) Carregar dados (vectores)

O código abaixo vai carregar os dados e criar 3 objetos "rsm", "rsl" e "fl". Agora temos dados com: pontos cada 5 km ao longo os rios (rsm); linha central de rios ("rsl") e pontos cada metro ao longos os rios ("fl").

```
rsm <- sf::st_read(meuSIG, layer = "midoints")
rsl <- sf::st_read(meuSIG, layer = "centerline")
fl <- sf::st_read(meuSIG, layer = "forestloss")</pre>
```

2) Mapas

2.1) Mapa com pontos cada metro de rio

Objeto "fl" com 276086 pontos - muitos pontos cerca de 5 minutos para concluir....

```
ggplot2::ggplot(f1) + geom_sf(data = f1, aes(color=zone))
```

2.2) Mapa com linha central e pontos de rios em trechos de 5km

```
ggplot(rs1) +
  geom_sf(aes(color=rio)) +
  geom_sf(data = rsm, shape=21, aes(fill=zone))
```


2.3) Interativo (funcione somente com internet)

Mostrando agora com fundo de mapas "base" (OpenStreetMap/ESRI etc)

Mais exemplos com mapas e dados espaciais no R:

sf e ggplot2: https://www.r-spatial.org/r/2018/10/25/ggplot2-sf.html

Capitulo 8 no livro Geocomputation with R: https://geocompr.robinlovelace.net/adv-map.html

3) Resumo de dados na tabela de atributos

3.1) Desmatamento por rio e por seis zonas

Agora vamos fazer alguns resumos com os dados na tabela de atributos. No arquivo "fl" temos dados mostrando valores de <u>desmatamento</u>, "Global Forest Change" desenvolvido por Hansen e co-autores 2013 (https://science.sciencemag.org/content/342/6160/850) e obtidos de no site https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html .

Os valores calculados são uma proporção de área desmatado nos anos 2000-2018 em raios de 500 metros, 1 quilometro, 5 quilômetros e 10 quilômetros. Os dados em pontos cada metro ao longo de 276 quilômetros de rios (276086 pontos) . Vamos calcular comprimento de rio e valor media de desmatamento em seis zonas diferentes:

3.2) Desmatamento por rio e por 52 subzonas

Agora, repetindo o mesmo processo, mas acrescentando resumos para 52 subzonas (cerca de 5 km cada) para um analise mais preciso.

Visualizar tabela, aproveitando funções disponíveis no pacote "siPlot":

sjPlot::tab_df(dfsubzona)

rio	zone	subz_id	afl_500m	bfl_1km	cfl_5km	dfl_10km
Araguari	Amapari-base	10	0.14	0.12	0.03	0.05
Araguari	Amapari-base	11	0.14	0.10	0.03	0.02
Araguari	Amapari-base	12	0.09	0.09	0.02	0.01
Araguari	Amapari-base	13	0.04	0.05	0.02	0.01
Araguari	Amapari-base	14	0.09	0.06	0.01	0.01
Araguari	Amapari-base	9	0.05	0.05	0.07	0.09

Araguari	barragem-Amapari	1	0.16	0.38	0.23	0.16
Araguari	barragem-Amapari	2	0.11	0.14	0.16	0.20
Araguari	barragem-Amapari	3	0.06	0.13	0.19	0.21
Araguari	barragem-Amapari	4	0.08	0.13	0.20	0.23
Araguari	barragem-Amapari	5	0.46	0.34	0.19	0.20
Araguari	barragem-Amapari	6	0.21	0.29	0.20	0.17
Araguari	barragem-Amapari	7	0.15	0.19	0.18	0.13
Araguari	barragem-Amapari	8	0.11	0.13	0.14	0.12
Araguari	base-Araguari	15	0.00	0.00	0.01	0.01
Araguari	base-Araguari	16	0.00	0.00	0.00	0.00
Araguari	base-Araguari	17	0.01	0.01	0.00	0.00
Araguari	base-Araguari	18	0.03	0.01	0.00	0.00
Araguari	base-Araguari	19	0.00	0.00	0.00	0.00
Araguari	base-Araguari	20	0.00	0.00	0.00	0.00
Araguari	base-Araguari	21	0.00	0.00	0.00	0.00
Araguari	base-Araguari	22	0.00	0.00	0.00	0.00
Araguari	base-Araguari	23	0.00	0.00	0.00	0.00
Araguari	Sta Rosa-Mutum	24	0.00	0.00	0.00	0.00
Araguari	Sta Rosa-Mutum	25	0.00	0.00	0.00	0.01
Araguari	Sta Rosa-Mutum	26	0.00	0.00	0.01	0.01
Araguari	Sta Rosa-Mutum	27	0.10	0.06	0.01	0.01
Araguari	Sta Rosa-Mutum	28	0.02	0.04	0.01	0.01
Araguari	Sta Rosa-Mutum	29	0.00	0.00	0.01	0.01
Araguari	Sta Rosa-Mutum	30	0.00	0.00	0.00	0.01
Araguari	Sta Rosa-Mutum	31	0.00	0.00	0.00	0.00
Araguari	Sta Rosa-Mutum	32	0.00	0.00	0.00	0.00
Araguari	Sta Rosa-Mutum	33	0.00	0.00	0.00	0.00
Araguari	Sta Rosa-Mutum	34	0.00	0.00	0.00	0.00
Araguari	Sta Rosa-Mutum	35	0.00	0.00	0.00	0.00
Araguari	Sta Rosa-Mutum	36	0.00	0.00	0.00	0.00
Araguari	Sta Rosa-Mutum	37	0.00	0.00	0.00	0.00
Araguari	Sta Rosa-Mutum	38	0.00	0.00	0.00	0.00
Falsino	base-Falsino	39	0.01	0.01	0.01	0.01
Falsino	base-Falsino	40	0.02	0.02	0.01	0.00
Falsino	base-Falsino	41	0.05	0.04	0.01	0.00

Falsino	base-Falsino	42	0.01	0.00	0.00	0.00
Falsino	base-Falsino	43	0.00	0.00	0.00	0.00
Falsino	base-Falsino	44	0.00	0.00	0.00	0.00
Falsino	Espingada-Cachoeira Grande	45	0.00	0.00	0.00	0.00
Falsino	Espingada-Cachoeira Grande	46	0.00	0.00	0.00	0.00
Falsino	Espingada-Cachoeira Grande	47	0.00	0.00	0.00	0.00
Falsino	Espingada-Cachoeira Grande	48	0.00	0.00	0.00	0.00
Falsino	Espingada-Cachoeira Grande	49	0.00	0.00	0.00	0.00
Falsino	Espingada-Cachoeira Grande	50	0.00	0.00	0.00	0.00
Falsino	Espingada-Cachoeira Grande	51	0.00	0.00	0.00	0.00
Falsino	Espingada-Cachoeira Grande	52	0.00	0.00	0.00	0.00

Exportar tabela com resumos ("dfsubzona") em formato "html" para word:

```
tab_df(dfsubzona, file = "subzona.html")
```

Exportar tabela com resumos ("dfsubzona") em formato para excel:

```
write.csv2(dfsubzona, file = "subzona.csv", row.names=FALSE)
```

4) Gráficos

4.1) mostrando as diferenças em dematamento entre zonas

```
ggplot2::ggplot(dfsubzona, aes(x = zone, y = afl_500m)) +
  geom_boxplot()
```


Agora, através de ajustes no código, vamos fazer um gráfico mais elegante e mais informativo.....

```
ggplot2::ggplot(dfsubzona, aes(x = zone, y = afl_500m)) +
  geom_boxplot(aes(color=rio)) +
  ylab("Proporção desmatado (raio 500 metros)") + xlab("Zona") +
  coord_flip() +
  theme_bw() + theme(legend.position=c(0.8, 0.8))
```


4.2) Gráfico comparando desmatamento entre raios de 500m, 1km, 5km e 10km

Primeiro preciso reorganizar os dados para facilitar apresentação visual:

Agora o gráfico:

```
ggplot2::ggplot(baplot, aes(x = zone, y = desmat)) +
  geom_boxplot(aes(color=rio)) +
  ylab("Proporção desmatado (2000 - 2018)") + xlab("Zona") +
  coord_flip() +
  theme_bw() +
  facet_wrap(~variablef)
```


5) Analises estatistica, comparando desmatamento entre zonas e raios

Veja guias mostrando analises estatisticas no R para entender melhor: <u>Capítulo 12</u> no livro "Ciência de Dados com R–Introdução......": https://cdr.ibpad.com.br/modelos.html

Modelo adequado para dados de proporção (valores de 0-1). Aqui um modelo comparando efeito de raio (500 m, 1 km, 5 km, 10 km) e zona sobre proporção de desmatamento:

```
glm1 <- glm(desmat ~ variablef + zone, family = quasibinomial ,data = baplot)</pre>
```

Agora, mostrando três formas diferentes de apresentar resumo do modelo: Primeiramente com base R:

```
summary(glm1)
#> Call:
#> glm(formula = desmat ~ variablef + zone, family = quasibinomial,
   data = baplot)
#> Deviance Residuals:
#> Min 1Q Median 3Q
#> -0.40389 -0.07675 -0.03754 0.02427 0.60305
#> Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                #> (Intercept)
#> variablef1 km
#> variablef5 km
#> variablef10 km
#> zoneAmapari-base
#> zonebase-Araguari
#> zonebase-Falsino
#> zoneSta Rosa-Mutum -3.5434 0.2480 -14.290 < 2e-16 ***
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> (Dispersion parameter for quasibinomial family taken to be 0.02251878)
#> Null deviance: 21.0637 on 207 degrees of freedom
#> Residual deviance: 3.2369 on 199 degrees of freedom
#> AIC: NA
#> Number of Fisher Scoring iterations: 9
```

E com funções disponíveis no pacote "sjPlot":

```
sjPlot::tab_model(glm1)
```

	desmat			
Predictors	Odds Ratios	CI	р	
(Intercept)	0.25	0.20 - 0.32	<0.001	
variablef [1 km]	1.11	0.82 – 1.50	0.487	
variablef [5 km]	0.78	0.56 – 1.07	0.122	
variablef [10 km]	0.76	0.55 – 1.04	0.093	
zone [Amapari-base]	0.26	0.20 - 0.35	<0.001	

zone [base-Araguari]	0.02	0.01 - 0.04	<0.001
zone [base-Falsino]	0.04	0.02 - 0.07	<0.001
zone [Espingada-Cachoeira Grande]	0.01	0.00 - 0.02	<0.001
zone [Sta Rosa-Mutum]	0.03	0.02 - 0.05	<0.001
Observations	208		
R ² Tjur	0.007		

Gráfico de valores do modelo, no estilo "Forest-plot"

```
sjPlot::plot_model(glm1, show.values = TRUE, value.offset = .3)
```


 $\label{lem:comfunction} E \ com \ funçao \ ``cat_plot" \ disponivel \ no \ pacote \ ``interactions":$

```
interactions::cat_plot(glm1, pred = variablef, modx = zone, x.label = "Raio",
    y.label = "Proporção desmatado (2000 - 2018)")
```


6) Finalizar.

Salvar uma copiar de dados para uso futuro.

```
save.image("intro.RData")
```

7) Leitura

Para quem buscar mais detalhes sobre os funções/métodos estatísticas no \underline{R} :

Livro Processamento e Análise de Dados : https://www.msperlin.com/padfeR/index.html

Livro Ciência de Dados com R: https://cdr.ibpad.com.br/

Além disso, existem fontes variadas de ajudar online:

cursos : https://pt.coursera.org/learn/r-programming;

R-br a lista Brasileira oficial de discussão do programa R: http://r-br.2285057.n4.nabble.com/,

Capítulos 1 a 3 no livro "Processamento e Análise de Dados.....": https://www.msperlin.com/padfeR/index.html

Capítulos 1 a 2 no livro "Ciência de Dados com R-Introdução.....": https://cdr.ibpad.com.br/cdr-intro.pdf

Ingles

Instruções de instalação: https://moderndive.netlify.com/1-getting-started.html

Com 3 aulas básicas: https://rladiessydney.org/courses/ryouwithme/01-basicbasics-0/

Foruns: rcomputing : https://www.facebook.com/rcomputing/ ;

https://www.r-bloggers.com/ exemplo com PCA:

https://www.r-bloggers.com/computing-and-visualizing-pca-in-r/