Accuracy of Solution and Models with Liquid/Illiquid Assets

Alberto Polo

July 18, 2017

Accuracy Tests

Accuracy Tests

Goal:

- Measure accuracy of numerical solution
- Issue could be number/position of nodes, basis functions, . . .

Tests based on

- Euler equation errors
- Den Haan-Marcet statistic

Apply to income fluctuation problem (IFP), but can be applied to other problems

Standard Euler-equation test

Euler equation if unconstrained

$$u_c(c_t) - \beta R \mathbb{E}_{s_{t+1}}[u_c(c_{t+1})|s_t] = 0$$
 (EE)

Idea

 $\mathsf{EE} \approx 0$ at nodes, but may be far from 0 outside of nodes

• Define relative approximation error ϵ as value such that, at given point (a,s) in state space, EE holds with equality

$$u_c(c(a,s)(1-\epsilon)) = \beta R \mathbb{E}_{s'}[u_c(c(a'(a,s),s'))|s]$$

Then Euler equation error is

$$\epsilon = 1 - \frac{u_c^{-1} (\beta R \mathbb{E}_{s'}[u_c(c(a'(a, s), s'))|s])}{c(a, s)}$$

Interpretation

- Error of 0.01 means agent makes a mistake equivalent to \$ 1 for each \$ 100 consumed in any period
- Error in value function (i.e. implied cost in terms of agent's welfare) is of order of ϵ^2 (Santos 2000)

Reporting

- Long simulation, exclude states where agent is constrained, take maximum and average of errors in absolute value
- Build fine grid for assets $\{\alpha_i\}_i$ (different than grid used for solution approximation), compute $\epsilon(\alpha_i, s_i)$ for all i, j and plot
- Usually reported in base 10 log (-2 means \$ 1 for each \$ 100). Acceptable average error < -4

Test only looks at one-period ahead inaccuracies: tiny errors can accumulate . . .

Dynamic Euler-equation test

Excluding periods when constaint binds, compare series $\{\hat{c}_t, \hat{a}_t\}_{t=1}^T$ generated with numerical solution and $\{\tilde{c}_t, \tilde{a}_t\}_{t=1}^T$, where

- $\tilde{a}_1 = \hat{a}_1$
- from EE and budget constraint

$$\tilde{c}_t = u_c^{-1} \left(\beta R \mathbb{E}_{s'} [u_c(c(a'(\tilde{a}_t, s_t), s')) | s_t] \right)$$
$$\tilde{a}_{t+1} = R\tilde{a}_t - \tilde{c}_t + y(s_t)$$

Notes

- In $\{\tilde{c}_t, \tilde{a}_t\}_{t=1}^T$, numerical solution used only indirectly to compute conditional expectation
- Report average or maximum % absolute errors
- Demanding test: occasional large error may not mean solution is generally bad. If large difference between average and maximum, worth inspecting the path

Den Haan-Marcet Statistic

EE implies that residual

$$\epsilon_{t+1} = u_c(c_t) - \beta R u_c(c_{t+1})$$

is uncorrelated with any variable in the information set at time t

Therefore for each t

$$\mathbb{E}_t[\epsilon_{t+1}\mathbf{z}_t] = 0 \tag{1}$$

where \mathbf{z}_t is vector of variables in known at t, e.g. $[\{y_j, c_j, a_j\}_{j=0}^t]$

Idea

A poor approximate solution does not satisfy this property

ullet Compute LHS of 1 under a given approximate solution by simulating a path of length T and constructing

$$\mathbf{q}_T = \frac{\sum_{t=1}^T \hat{\epsilon}_{t+1} \hat{\mathbf{z}}_t}{T}$$

where $\hat{\epsilon}_{t+1}$ and $\hat{\mathbf{z}}_t$ are simulated counterparts of ϵ_{t+1} and \mathbf{z}_t in 1

• Under mild conditions, $\sqrt{T}\mathbf{q}_T \xrightarrow{d} N(0,V)$, and the quadratic form of the test statistic

$$T\mathbf{q}_T'\hat{V}_T^{-1}\mathbf{q}_T \xrightarrow{d} \chi_r^2$$

where \hat{V}_T^{-1} is the inverse of the matrix

$$\hat{V}_T = \frac{\sum_{t=1}^T \hat{\epsilon}_{t+1} \hat{\mathbf{z}}_t \hat{\mathbf{z}}_t' \hat{\epsilon}_{t+1}}{T}$$

Notes

- ullet Given a level of approximation of the solution, can always find T large enough that the null is rejected, i.e. test is failed by the approximate solution
- \bullet Not a problem if comparing different approximation methods: can compare them by computing for each method the smallest T such that the test is failed, and then compare these thresholds

Notes (continued)

- In order to assess the accuracy of a given solution, Den Haan and Marcet suggest this procedure:
 - Draw a long simulation path from the approximate solution and compute the statistic (e.g. T=5000)
 - ② Record whether the value of the statistic is above/below the 2.5% critical value from the χ^2_r distribution
 - **③** Repeat several times the previous steps (e.g. N=500) and calculate the fraction of simulations where the test fails (i.e. > critical value). If this fraction is substantially different than the theoretical 5%, then the test indicates the solution is inaccurate

Excercise: apply one of these 3 tests (one-period/dynamic Euler equation tests, DHM statistic) to one of the solutions to the IFP you computed in the past weeks and discuss the results

IFP with Liquid/Illiquid Assets

IFP with Liquid/Illiquid Assets

IFP with 2 assets:

- one adjusted at no cost ("liquid asset", a)
- ullet to adjust the other, must pay fixed cost κ ("illiquid asset", d)
- ullet illiquid asset has higher return, $R^d>R^a$ (or in terms of prices: $q^a>q^d$)

When adjusting illiquid asset d,

$$V^{A}(a, d, s) = \max_{c, a', d'} \{ u(c) + \beta \mathbb{E}_{s'} [\mathbf{V}(a', d', s') | s] \}$$

subject to

$$c + q^a a' + q^d d' = a + d + y(s) - \kappa; \ a' \ge 0; \ d' \ge 0$$

When not adjusting,

$$V^{N}(a,d,s) = \max_{c,a'} \left\{ u(c) + \beta \mathbb{E}_{s'}[\mathbf{V}(a',d',s')|s] \right\}$$

subject to

$$c + q^a a' = a + y(s); d' = \frac{d}{q^d}; a' \ge 0$$

where

$$\mathbf{V}(a,d,s) = \max \left\{ V^A(a,d,s), V^N(a,d,s) \right\}$$

When adjusting illiquid asset d,

$$V^{A}(\boldsymbol{x},s) = \max_{c,a',d'} \left\{ u(c) + \beta \mathbb{E}_{s'}[\mathbf{V}(a',d',s')|s] \right\}$$

subject to

$$c + q^a a' + q^d d' = \mathbf{x} - \kappa; \ a' \ge 0; \ d' \ge 0$$

When not adjusting,

$$V^{N}(\mathbf{x}, d, s) = \max_{c, a'} \left\{ u(c) + \beta \mathbb{E}_{s'}[\mathbf{V}(a', d', s')|s] \right\}$$

subject to

$$c+q^aa'=\mathbf{x};\ d'=\frac{d}{q^d};\ a'\geq 0$$

where

$$V(a, d, s) = \max \{V^{A}(a + d + y(s), s), V^{N}(a + y(s), d, s)\}$$

FOCs

• Due to non-convexity, necessary but not sufficient

Define operator

$$\max\left\{f,g\right\}(a,d,s) = \begin{cases} f(\cdot) & \text{if } V^A(a+d+y(s),s) > V^N(a+y(s),d,s) \\ g(\cdot) & \text{otherwise} \end{cases}$$

and functions

$$FV_{a}(a,d,s) = \mathbb{E}_{s'}\left[\tilde{\max}\left\{V_{x}^{A}, V_{x}^{N}\right\}(a,d,s')|s\right]$$

$$FV_d(a, d, s) = \mathbb{E}_{s'} \left[\tilde{\max} \left\{ V_x^A, V_d^N \right\} (a, d, s') | s \right]$$

No-adjust case:

$$u_c(c) \ge \frac{\beta}{q^a} FV_a(a', d', s)$$
 (EE-N)

$$V_x^N(x,d,s) = u_c(c) \tag{Env-N 1} \label{eq:env-N 1}$$

$$V_d^N(x,d,s) = \frac{\beta}{a^d} F V_d(a',d',s) \tag{Env-N 2}$$

Adjust case:

$$u_c(c) \ge \frac{\beta}{a^a} FV_a(a', d', s)$$
 (EE-A)

$$u_c(c) \ge \frac{\beta}{q^d} FV_d(a', d', s)$$
 (Portfolio)

$$V_x^A(x,s) = u_c(c) \tag{Env-A}$$

"PFI" Algorithm

Essentially, Kaplan, Violante (2014)

- Choose grids for continuous variables x,a,d
- Iteration 0:
 - Guess $c^A(x_i,s_j)$, $c^N(x_i,d_k,s_j)$, $V^A(x_i,s_j)$, $V^N(x_i,d_k,s_j)$, $V^N_d(x_i,d_k,s_j)$. For instance,

$$c^{A}(x_{i}, s_{j}) = \max\{x_{i} - \kappa, \underline{c}\}$$

$$c^{N}(x_{i}, d_{k}, s_{j}) = x_{i}$$

$$V^{A}(x_{i}, s_{j}) = u(c^{A}(x_{i}, s_{j}))$$

$$V^{N}(x_{i}, d_{k}, s_{j}) = u(c^{N}(x_{i}, d_{k}, s_{j}))$$

$$V^{M}_{d}(x_{i}, d_{k}, s_{j}) = 0$$

- Iteration t - preliminary step:

- Define interpolants $\Phi c^A(x,s)$, $\Phi c^N(x,d,s)$, $\Phi V^A(x,s)$, $\Phi V^N(x,d,s)$, $\Phi V_d^N(x,d,s)$ for $c^A(x,s)$, $c^N(x,d,s)$, $V^A(x,s)$, $V^N(x,d,s)$, $V_d^N(x,d,s)$, respectively
- Compute

$$\tilde{V}(x_i, d_k, s_j) = \Phi V^A(x_i + d_k, s_j) - V_x^N(x_i, d_k, s_j)$$

and define associated interpolant $\Phi ilde{V}(x,d,s)$ to solve $ilde{max}$ decision

Compute

$$FV_{a}(a_{m}, d_{k}, s_{j}) = \mathbb{E}_{s'}[\tilde{\max}\{u_{c}(\Phi c^{A}(a_{m} + d_{k} + y(s'), s')), u_{c}(\Phi c^{N}(a_{m} + y(s'), d_{k}, s'))\}|s_{j}]$$

$$FV_{d}(a_{m}, d_{k}, s_{j}) = \mathbb{E}_{s'}[\tilde{\max}\{u_{c}(\Phi c^{A}(a_{m} + d_{k} + y(s'), s')), \Phi V_{d}^{N}(a_{m} + y(s'), d_{k}, s')\}|s_{j}]$$

$$CV(a_{m}, d_{k}, s_{j}) = \mathbb{E}_{s'}[\tilde{\max}\{\Phi V^{A}(a_{m} + d_{k} + y(s'), s')), \Phi V^{N}(a_{m} + y(s'), d_{k}, s')\}|s_{j}]$$

and define associated interpolants $\Phi FV_a(a,d,s)$, $\Phi FV_d(a,d,s)$ and CV(a,d,s)

- Iteration t - Adjust case:

Define

$$G_{EE}^{A}(a',d',x,s) = u_c(x - \kappa - q^a a' - q^d d') - \frac{\beta}{q^a} \Phi F V_a(a',d',s)$$

$$G_{Port}^{A}(a', d', x, s) = u_{c}(x - \kappa - q^{a}a' - q^{d}d') - \frac{\beta}{q^{d}}\Phi FV_{d}(a', d', s)$$

- For each x_i and s_i ...
 - \bullet if $x_i \kappa < 0$, then $c^A(x_i, s_i) = c$ and $V^A(x_i, s_i) = -\infty$
- ... otherwise consider the following cases:
 - if

$$G_{EE}^{A}(0,0,x_{i},s_{j}) > 0, G_{Port}^{A}(0,0,x_{i},s_{j}) > 0$$

then store

$$\hat{a}' = 0$$
, $\hat{d}' = 0$, $\hat{c} = x_i - \kappa$, $\hat{V}^A = u(\hat{c}) + \beta \Phi CV(0, 0, s_j)$

as a local solution

Iteration t - Adjust case (continued):

2 if

$$G^A_{EE}(0,\hat{d}',x_i,s_j)>0$$
 where $\hat{d}':G^A_{Port}(0,\hat{d}',x_i,s_j)=0$

then store

$$\hat{a}' = 0, \ \hat{d}', \ \hat{c} = x_i - \kappa - q^d \hat{d}', \ \hat{V}^A = u(\hat{c}) + \beta \Phi CV(0, \hat{d}', s_j)$$

as a local solution

if

$$G^A_{Port}(\hat{a}',0,x_i,s_j)>0$$
 where $\hat{a}':G^A_{EE}(\hat{a}',0,x_i,s_j)=0$

then store

$$\hat{a}', \hat{d}' = 0, \hat{c} = x_i - \kappa - q^a \hat{a}', \hat{V}^A = u(\hat{c}) + \beta \Phi CV(\hat{a}', 0, s_i)$$

as a local solution

look for local solution(s) of

$$\begin{cases} G_{EE}^{A}(\hat{a}', \hat{d}', x_i, s_j) = 0 \\ G_{Port}^{A}(\hat{a}', \hat{d}', x_i, s_j) = 0 \end{cases}$$

and store them

- Iteration t Adjust case (continued):
 - Set $c^A(x_i,s_j)=c^*$ and $V^A(x_i,s_j)=V^{A*}$ where (c^*,V^{A*}) is the local solution with $V^{A*}>\hat{V}^A$ for all other \hat{V}^A
- Iteration t No-Adjust case:
 - Analogous, but remember to set

$$V_d^N(x_i, d_k, s_j) = \frac{\beta}{q^d} \Phi F V_d(a^*, d^*, s_j)$$

after determining ${\cal V}^{N*}$ among the local solutions

- Repeat all parts of Iteration t until convergence

EGM Algorithm

Described in Druedahl, Jørgensen (2017)

- Faster than previous algorithm because it avoids root-finding
- Main challenges (in addition to non-sufficiency of FOCs):
 - no simple algorithm for finding neighboring points in the multi-dimensional irregular grid (1d EGM: easy, bisection search)
 - ② no prior knowledge of where the constraints bind (1d EGM: all a lower than endogenous asset level such that $a' = -\underline{a}$)
- In addition to extensive accuracy and speed comparisons, Druedahl and Jørgensen define a broad class of models, in terms of sufficient and necessary conditions on model fundaments, where their method can be applied

References

Den Haan, Wouter J. "Comparison of solutions to the incomplete markets model with aggregate uncertainty." Journal of Economic Dynamics and Control 34.1 (2010): 4-27.

Den Haan, Wouter J., and Albert Marcet. "Accuracy in simulations." The Review of Economic Studies 61.1 (1994): 3-17.

Druedahl, Jeppe, and Thomas Høgholm Jørgensen. "A general endogenous grid method for multi-dimensional models with non-convexities and constraints." Journal of Economic Dynamics and Control 74 (2017): 87-107.

Kaplan, Greg, and Giovanni L. Violante. "A model of the consumption response to fiscal stimulus payments." Econometrica 82.4 (2014): 1199-1239.

Santos, Manuel S. "Accuracy of numerical solutions using the Euler equation residuals." Econometrica 68.6 (2000): 1377-1402.