On the Semantic Expressiveness of Recursive Types

Marco Patrignani^{1,2} Eric M. Martin¹ Dominique Devriese³

19th November 2020

What is the relative semantic expressiveness of iso- and equi-recursive types?

What is the relative semantic expressiveness of iso- and equi-recursive types?

open question

What is the relative semantic expressiveness of iso- and equi-recursive types?

- open question
- clarifies the design of emerging languages

What is the relative semantic expressiveness of iso- and equi-recursive types?

- open question
- clarifies the design of emerging languages
- better understanding of how to answer language expressiveness questions

 prove that iso-recursive and (coinductive) equi-recursive types have the same semantic expressiveness

prove that iso-recursive and (coinductive)
 equi-recursive types have the same
 semantic expressiveness and the same as
 term-level recursion (fix)

prove that iso-recursive and (coinductive)
 equi-recursive types have the same
 semantic expressiveness and the same as
 term-level recursion (fix)
 (via fully-abstract compilation (FAC) proofs)

- prove that iso-recursive and (coinductive)
 equi-recursive types have the same
 semantic expressiveness and the same as
 term-level recursion (fix)
 (via fully-abstract compilation (FAC) proofs)
- devise a new proof technique for FAC

- prove that iso-recursive and (coinductive)
 equi-recursive types have the same
 semantic expressiveness and the same as
 term-level recursion (fix)
 (via fully-abstract compilation (FAC) proofs)
- devise a new proof technique for FAC based on approximate cross-language LR

- prove that iso-recursive and (coinductive)
 equi-recursive types have the same
 semantic expressiveness and the same as
 term-level recursion (fix)
 (via fully-abstract compilation (FAC) proofs)
- devise a new proof technique for FAC based on approximate cross-language LR

- prove that iso-recursive and (coinductive)
 equi-recursive types have the same
 semantic expressiveness and the same as
 term-level recursion (fix)
 (via fully-abstract compilation (FAC) proofs)
- devise a new proof technique for FAC based on approximate cross-language LR

Talk Outline

Recursive Types

Comparing Language Expressiveness

Iso is Co-Equi (is Fix)

Recursive Types

$$\tau := \cdots \mid \mu \alpha . \tau \mid \alpha$$

$$\tau ::= \cdots \mid \mu \alpha. \tau \mid \alpha$$

$$LN \stackrel{\text{def}}{=} \mu \alpha. \ Unit \uplus (Nat \times \alpha)$$

$$\tau ::= \cdots \mid \mu \alpha. \tau \mid \alpha$$

$$LN \stackrel{\text{def}}{=} \mu \alpha. \ Unit \uplus (Nat \times \alpha)$$

Q: How are these types related:

$$LN \qquad Unit \uplus (Nat \times LN)$$

$$Unit \uplus (Nat \times Unit \uplus (Nat \times LN))$$

$$\tau ::= \cdots \mid \mu \alpha. \tau \mid \alpha$$

$$LN \stackrel{\text{\tiny def}}{=} \mu \alpha. \ Unit \uplus (Nat \times \alpha)$$

Q: How are these types related:

$$LN \qquad Unit \uplus (Nat \times LN)$$

$$Unit \uplus (Nat \times Unit \uplus (Nat \times LN))$$

A1: they are *equivalent*

[Morris '68]

$$\tau ::= \cdots \mid \mu \alpha. \tau \mid \alpha$$

$$LN \stackrel{\text{def}}{=} \mu \alpha. \ Unit \uplus (Nat \times \alpha)$$

Q: How are these types related:

$$LN \qquad Unit \uplus (Nat \times LN)$$

$$Unit \uplus (Nat \times Unit \uplus (Nat \times LN))$$

A1: they are *equivalent*

[Morris '68]

A2: they are isomorphic

[Gordon et al.'79]

Iso-recursive Types: $\lambda_{\rm I}^{\mu}$

$$\mathbf{t} \coloneqq \cdots \mid \mathbf{fold}_{\mu\alpha.\tau} \mathbf{t} \mid \mathbf{unfold}_{\mu\alpha.\tau} \mathbf{t}$$
 $\mathbf{v} \coloneqq \cdots \mid \mathbf{fold}_{\mu\alpha.\tau} \mathbf{v}$

Iso-recursive Types: $\lambda_{\rm I}^{\mu}$

```
\mathbf{t} := \cdots \mid \mathbf{fold}_{\mu\alpha.\tau} \mathbf{t} \mid \mathbf{unfold}_{\mu\alpha.\tau} \mathbf{t}
                 \mathbf{v} := \cdots \mid \mathbf{fold}_{\mu\alpha.\tau} \mathbf{v}
        Nil [2, 1, Nil] LN \stackrel{\mathsf{def}}{=} \mu \alpha. Unit \uplus (Nat \times \alpha)
fold<sub>LN</sub> inl unit
fold_{LN} inr \langle 2, fold_{LN} inr \langle 1, fold_{LN} inl unit \rangle \rangle
```

Iso-recursive Typing & Semantics: $\lambda_{\rm I}^{\mu}$

$$\frac{(\lambda_{\mathrm{I}}^{\mu}\text{-Type-fold})}{\Gamma \vdash \mathbf{t} : \boldsymbol{\tau} \big[\mu \alpha. \, \boldsymbol{\tau} \big/ \alpha \big]}}{\Gamma \vdash \mathrm{fold}_{\mu \alpha. \, \boldsymbol{\tau}} \, \mathbf{t} : \mu \alpha. \, \boldsymbol{\tau}}$$

Iso-recursive Typing & Semantics: $\lambda_{\rm I}^{\mu}$

$$\begin{array}{c} (\lambda_{\rm I}^{\mu}\text{-Type-fold}) \\ \Gamma \vdash t : \tau \big[\mu\alpha.\,\tau/\alpha\big] \\ \hline \Gamma \vdash {\sf fold}_{\mu\alpha.\tau} \ t : \mu\alpha.\,\tau \\ (\lambda_{\rm I}^{\mu}\text{-Type-unfold}) \\ \Gamma \vdash t : \mu\alpha.\,\tau \\ \hline \Gamma \vdash {\sf unfold}_{\mu\alpha.\tau} \ t : \tau \big[\mu\alpha.\,\tau/\alpha\big] \end{array}$$

Iso-recursive Typing & Semantics: $\lambda_{\rm I}^{\mu}$

$$\begin{array}{c} (\lambda_{\rm I}^{\mu}\text{-Type-fold}) \\ \Gamma \vdash t : \tau \big[\mu\alpha.\,\tau/\alpha\big] \\ \hline \Gamma \vdash {\sf fold}_{\mu\alpha.\tau} \ t : \mu\alpha.\,\tau \\ (\lambda_{\rm I}^{\mu}\text{-Type-unfold}) \\ \Gamma \vdash t : \mu\alpha.\,\tau \\ \hline \Gamma \vdash {\sf unfold}_{\mu\alpha.\tau} \ t : \tau \big[\mu\alpha.\,\tau/\alpha\big] \end{array}$$

$$\operatorname{unfold}_{\mu\alpha.\tau} (\operatorname{fold}_{\mu\alpha.\tau} \mathbf{v}) \hookrightarrow_{\mathbf{p}} \mathbf{v}$$

 $(\lambda_{\rm T}^{\mu}$ -Eval-fold)

Equi-recursive Types: λ_E^μ

No term-level annotation

Equi-recursive Types: λ_E^{μ}

No term-level annotation

$$\frac{\Gamma \vdash t : \mu\alpha. \, \tau \qquad \mu\alpha. \, \tau \stackrel{\text{($\underline{\mathscr{a}}$)}}{=} \sigma}{\Gamma \vdash t : \sigma}$$

Equi-recursive Types: λ_E^μ

No term-level annotation

$$\frac{\Gamma \vdash t : \mu\alpha. \tau \qquad \mu\alpha. \tau \stackrel{\text{(λ_E^{μ}-Type-eq (\pms_{\bullet}))}}{\Gamma \vdash t : \sigma}$$

Definitions of ≗:

inductive

e.g., [Abadi & Fiore '96]

coinductive

e.g., [Cai et al. '16]

(proven to be strictly stronger than the first one wrt expressing type equality)

Equi-recursive Types: λ_E^μ

No term-level annotation

$$\frac{\Gamma \vdash t : \mu\alpha. \tau \qquad \mu\alpha. \tau \stackrel{\text{(λ_E^{μ}-Type-eq (\mathbe{s}))}}{\Gamma \vdash t : \sigma}$$

Definitions of ≗:

inductive

e.g., [Abadi & Fiore '96]

coinductive

e.g., [Cai et al. '16]

(proven to be strictly stronger than the first one wrt expressing type equality)

Coinductive Type Equality: λ_E^{μ}

$$($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = Unit \vee Bool \vee \alpha \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-bin)}}{\iota} = Unit \vee Bool \vee \alpha \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-bin)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-order]}}{\sigma_2} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_1 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \qquad ($\stackrel{\text{$\scriptscriptstyle (\pm$-prim)}}{\iota} = \sigma_2 \quad \tau_2 \qquad ($\stackrel{\text{$\scriptscriptstyle$$

Contractiveness: α are used only after a \star

Non-contractiveness: (e.g., $\mu\alpha$. α) are value-uninhabited

Knowns and Unknowns between $\lambda_{\rm I}^{\mu}$ & λ_{E}^{μ}

• typable $\lambda_{\mathbf{I}}^{\mu} \iff$ typable λ_{E}^{μ}

[Abadi & Fiore '96]

Knowns and Unknowns between $\lambda_{\rm I}^{\mu}$ & λ_{E}^{μ}

- typable $oldsymbol{\lambda}^{\mu}_{ extbf{I}} \iff$ typable λ^{μ}_{E} [Abadi & Fiore '96]
- Q: termination $\lambda_{\rm I}^{\mu} \iff$ termination λ_{E}^{μ} ?

 Q: (generally) how to compare relative semantic expressiveness of languages?

Comparing Language

Expressiveness

Felleisen '91, Mitchell '93

• observe the interaction between terms (t) and contexts (C) over an interface (C[t])

- observe the interaction between terms (t) and contexts (C) over an interface (C[t])
- C's language affects interface choice

- observe the interaction between terms (t) and contexts (C) over an interface (C[t])
- C's language affects interface choice e.g., $\lambda_{\rm I}^{\mu}$ & λ_E^{μ} have rec.-typed interface

- observe the interaction between terms (t) and contexts (C) over an interface (C[t])
- C's language affects interface choice e.g., $\lambda_{\rm L}^{\mu}$ & λ_E^{μ} have rec.-typed interface
- Hp: take the same t in $\lambda^{\mu}_{\mathbf{I}}$ and λ^{μ}_{E}

- observe the interaction between terms (t)
 and contexts (C) over an interface (C[t])
- C's language affects interface choice e.g., $\lambda_{\rm I}^{\mu}$ & λ_{E}^{μ} have rec.-typed interface
- Hp: take the same t in $\lambda^{\mu}_{\mathbf{I}}$ and λ^{μ}_{E}
- Q: does C[t] behave differently from C[t]?

- observe the interaction between terms (t)
 and contexts (C) over an interface (C[t])
- C's language affects interface choice e.g., $\lambda_{\mathbf{I}}^{\mu}$ & λ_{E}^{μ} have rec.-typed interface
- Hp: take the same t in $\lambda^{\mu}_{\mathbf{I}}$ and λ^{μ}_{E}
- Q: does $\mathbb{C}[t]$ behave differently from C[t]?

- observe the interaction between terms (t)
 and contexts (C) over an interface (C[t])
- C's language affects interface choice e.g., $\lambda_{\mathbf{I}}^{\mu}$ & λ_{E}^{μ} have rec.-typed interface
- Hp: take the same t in $\lambda^{\mu}_{\mathbf{I}}$ and λ^{μ}_{E}
- Q: does C[t] behave differently from C[t]?

Often: compiler (language translator)

$$\llbracket \cdot \rrbracket : \mathbf{t} \to t$$

Often: compiler (language translator)

$$\llbracket \cdot \rrbracket : \mathbf{t} \to t$$

not just any [⋅]

Often: compiler (language translator)

$$\llbracket \cdot \rrbracket : \mathbf{t} \to t$$

- not just any [.]
- use canonical / well-behaved [[·]]

or the result is trivial

[Parrow '08, Gorla & Nestmann '16]

Often: compiler (language translator)

$$\llbracket \cdot \rrbracket : \mathbf{t} \to t$$

- not just any [.]
- use canonical / well-behaved [[·]]
 or the result is trivial [Parrow '08, Gorla & Nestmann '16]
- our []: identity and erase fold/unfold

Telling if \mathbb{C} [] behaves differently from \mathbb{C} []

reason about equivalences

Telling if $\mathbb{C}[\]$ behaves differently from $C[\]$

- reason about equivalences
- take two programs t₁ and t₂

Telling if $\mathbb{C}[\]$ behaves differently from $C[\]$

- reason about equivalences
- take two programs t₁ and t₂
 - if they are eq. in λ_I^μ
 (i.e., C cannot differentiate them semantically)

Telling if $\mathbb{C}[\]$ behaves differently from $\mathbb{C}[\]$

- reason about equivalences
- take two programs t₁ and t₂
 - if they are eq. in λ_I^μ
 (i.e., C cannot differentiate them semantically)
 - they must be eq. in λ_E^{μ} (C cannot tell $[\mathbf{t_1}]$ from $[\mathbf{t_2}]$)

Telling if $\mathbb{C}[\]$ behaves differently from $C[\]$

- reason about equivalences
- take two programs t_1 and t_2
 - if they are eq. in λ_I^μ
 (i.e., C cannot differentiate them semantically)
 - they must be eq. in λ_E^{μ} (C cannot tell $[\mathbf{t_1}]$ from $[\mathbf{t_2}]$)
 - and vice-versa (sanity check on [.])

Telling if C behaves differently from C

- reason about equivalences
- take two programs t₁ and t₂
 - if they are eq. in $\lambda_{\rm I}^{\mu}$
- eq. preservation ., C cannot differentiate them semantically)
 - they must be eq. in λ_E^{μ} $(C \text{ cannot tell } \mathbf{t_1} \mathbf{l} \text{ from } \mathbf{t_2} \mathbf{l})$
 - eq. reflection nd vice-versa (sanity check on [-])

Telling if C [] behaves differently from C []

- reason about equivalences
- take two programs t₁ and t₂
 - if they are eq. in $\lambda_{\rm I}^{\mu}$
- eq. preservation ., C cannot differentiate them semantically)
 - they must be eq. in λ_E^{μ} $(C \text{ cannot tell } [\mathbf{t_1}]] \text{ from } [\mathbf{t_2}])$
 - eq. reflection nd vice-versa (sanity check on [-])
 - semantic differentiation: ↑ vs ↓

 Preservation and reflection of contextual equivalence

```
\begin{array}{c} \bullet \; \vdash \llbracket \cdot \rrbracket : \mathsf{FAC} \stackrel{\scriptscriptstyle\mathsf{def}}{=} \; \forall \, \mathbf{t}_1, \, \mathbf{t}_2 \\ \\ & \quad \mathbf{t}_1 \simeq_{\mathsf{ctx}} \mathbf{t}_2 \iff \llbracket \mathbf{t}_1 \rrbracket \simeq_{\mathsf{ctx}} \llbracket \mathbf{t}_2 \rrbracket \end{array}
```

 Preservation and reflection of contextual equivalence

$$(\forall \mathbf{C}.\mathbf{C}[\mathbf{t}_1] \Downarrow \iff \mathbf{C}[\mathbf{t}_2] \Downarrow)$$

$$\updownarrow$$

$$(\forall C.C[\llbracket \mathbf{t}_1 \rrbracket] \Downarrow \iff C[\llbracket \mathbf{t}_2 \rrbracket] \Downarrow)$$

$$(\forall \mathbf{C}.\mathbf{C}[\mathbf{t}_{1}] \Downarrow \iff \mathbf{C}[\mathbf{t}_{2}] \Downarrow)$$

$$\updownarrow$$

$$(\forall C.C[\llbracket \mathbf{t}_{1} \rrbracket] \Downarrow \iff C[\llbracket \mathbf{t}_{2} \rrbracket] \Downarrow)$$

• TH: $\lambda_{\rm I}^{\mu}$ and λ_{E}^{μ} are eq. expressive

$$(\forall \mathbf{C}.\mathbf{C}[\mathbf{t}_{1}] \Downarrow \iff \mathbf{C}[\mathbf{t}_{2}] \Downarrow)$$

$$\updownarrow$$

$$(\forall C.C[\llbracket \mathbf{t}_{1} \rrbracket] \Downarrow \iff C[\llbracket \mathbf{t}_{2} \rrbracket] \Downarrow)$$

- TH: $\lambda_{\rm I}^{\mu}$ and λ_{E}^{μ} are eq. expressive
- T.S.: [·] (well-behaved) ⊢ FAC

$$(\forall \mathbf{C}.\mathbf{C}[\mathbf{t}_{1}] \Downarrow \iff \mathbf{C}[\mathbf{t}_{2}] \Downarrow)$$

$$\updownarrow$$

$$(\forall C.C[\llbracket \mathbf{t}_{1} \rrbracket] \Downarrow \iff C[\llbracket \mathbf{t}_{2} \rrbracket] \Downarrow)$$

- TH: $\lambda_{\rm I}^{\mu}$ and λ_{E}^{μ} are eq. expressive
- T.S.: [I·] (well-behaved) ⊢ FAC
- take 2 progs. in $\lambda_{\rm I}^{\mu}$ and the same in λ_E^{μ}

$$(\forall \mathbf{C}.\mathbf{C}[\mathbf{t}_1] \Downarrow \iff \mathbf{C}[\mathbf{t}_2] \Downarrow)$$

$$\updownarrow$$

$$(\forall C.C[\llbracket \mathbf{t}_1 \rrbracket] \Downarrow \iff C[\llbracket \mathbf{t}_2 \rrbracket] \Downarrow)$$

- TH: $\lambda_{\rm I}^{\mu}$ and λ_{E}^{μ} are eq. expressive
- T.S.: [·] (well-behaved) ⊢ FAC
- take 2 progs. in $\lambda_{\rm I}^\mu$ and the same in λ_E^μ
- T.S.: interactions over $\lambda_{\rm I}^{\mu}$ interfaces reveal as much as interactions over $\lambda_{\rm E}^{\mu}$ ones

$$\begin{array}{ccc} (\forall \mathbf{C}.\mathbf{C} \begin{bmatrix} \mathbf{t_1} \end{bmatrix} \Downarrow & \Longleftrightarrow & \mathbf{C} \begin{bmatrix} \mathbf{t_2} \end{bmatrix} \Downarrow) \\ & & \uparrow \text{ simple} \\ (\forall C.C \begin{bmatrix} \llbracket \mathbf{t_1} \rrbracket \end{bmatrix} \Downarrow & \Longleftrightarrow & C \begin{bmatrix} \llbracket \mathbf{t_2} \rrbracket \end{bmatrix} \Downarrow) \end{array}$$

- TH: $\lambda_{\rm I}^{\mu}$ and λ_{E}^{μ} are eq. expressive
- T.S.: [·] (well-behaved) ⊢ FAC
- take 2 progs. in $oldsymbol{\lambda_{I}^{\mu}}$ and the same in $oldsymbol{\lambda_{E}^{\mu}}$
- T.S.: interactions over $\lambda_{\rm I}^{\mu}$ interfaces reveal as much as interactions over λ_{E}^{μ} ones

$$(\forall \mathbf{C}.\mathbf{C} [\mathbf{t_1}] \Downarrow \iff \mathbf{C} [\mathbf{t_2}] \Downarrow)$$

$$\downarrow \mathsf{hard}$$

$$(\forall C.C [\llbracket \mathbf{t_1} \rrbracket] \Downarrow \iff C [\llbracket \mathbf{t_2} \rrbracket] \Downarrow)$$

- TH: $\lambda_{\rm I}^{\mu}$ and λ_{E}^{μ} are eq. expressive
- T.S.: [·] (well-behaved) ⊢ FAC
- take 2 progs. in $\lambda_{\mathbf{I}}^{\mu}$ and the same in λ_{E}^{μ}
- T.S.: interactions over $\lambda_{\rm I}^{\mu}$ interfaces reveal as much as interactions over λ_{E}^{μ} ones

Iso is Co-Equi (is Fix)

[Devriese et al.'16]

 $\mathbf{t_1} \simeq_{\mathbf{ctx}} \mathbf{t_2}$

[Devriese et al.'16]

15/22

$$C[\llbracket \mathbf{t_1} \rrbracket] \downarrow_n \quad \stackrel{?}{\Rightarrow} \quad C[\llbracket \mathbf{t_2} \rrbracket] \downarrow_{_}$$
$$\llbracket \mathbf{t_1} \rrbracket \stackrel{?}{\simeq_{\mathrm{ctx}}} \llbracket \mathbf{t_2} \rrbracket$$

[Devriese et al.'16]

[Devriese et al.'16]

[Devriese et al.'16]

ctx. eq. preservation

15/22

[Devriese et al.'16]

[Devriese et al.'16]

[Devriese et al.'16]

Questions

• Q1: what are logical approximations \lesssim_n and \gtrsim_n ?

Questions

• Q1: what are logical approximations \lesssim_n and \gtrsim_n ?

• Q2: what is an approximate backtranslation $\langle\!\langle \cdot \rangle\!\rangle_n : C \to \mathbb{C}$?

Questions

• Q1: what are logical approximations \lesssim_n and \gtrsim_n ? if one terminates, so does the other [Devriese *et al.* '16]

• Q2: what is an approximate backtranslation $\langle\!\langle \cdot \rangle\!\rangle_n : C \to \mathbb{C}$?

• $[\cdot]$: $\mathbf{t} \to t$ is defined on \mathbf{t} 's syntax

- $[\cdot]: \mathbf{t} \to t$ is defined on \mathbf{t} 's syntax
- $\langle\!\langle \cdot \rangle\!\rangle : \overline{C} \to \mathbf{C}$

- $[\cdot]: \mathbf{t} \to t$ is defined on \mathbf{t} 's syntax
- $\langle\!\langle \cdot \rangle\!\rangle : C \to \mathbf{C}$
 - cannot define on C's syntax (how to type $\langle\!\langle C \rangle\!\rangle$?)

- $\|\cdot\|$: $\mathbf{t} \to t$ is defined on \mathbf{t} 's syntax
- $\langle\langle \cdot \rangle\rangle$: $C \to \mathbb{C}$
 - cannot define on C's syntax (how to type ((C))?)
 - define on C's derivation (but ≜ is coinductive)

- $\|\cdot\|$: $\mathbf{t} \to t$ is defined on \mathbf{t} 's syntax
- $\langle\langle \cdot \rangle\rangle$: $C \to \mathbb{C}$
 - cannot define on C's syntax (how to type ((C))?)
 - define on C's derivation (but ^a is coinductive)
 - approximate! $\langle\langle \cdot \rangle\rangle \rightarrow \langle\langle \cdot \rangle\rangle_n$

- $[\cdot]: \mathbf{t} \to t$ is defined on \mathbf{t} 's syntax
- $\langle\langle\cdot\rangle\rangle$: $C \to \mathbb{C}$
 - cannot define on C's syntax (how to type $\langle\!\langle C \rangle\!\rangle$?)
 - define on C's derivation (but ≜ is coinductive)
 - approximate! $\langle\!\langle \cdot \rangle\!\rangle \rightarrow \langle\!\langle \cdot \rangle\!\rangle_n$
- Since $C[[t]] \downarrow_n$, n-unfolding of recursive types in C suffices to replicate \downarrow in $\lambda_{\mathbf{I}}^{\mu}$

Approximate Backtranslation Type

- n not-known statically
- Q: what if we encounter a n+1 unfolding?

Approximate Backtranslation Type

- n not-known statically
- Q: what if we encounter a n+1 unfolding?
- A: backtranslate at <u>Backtranslation Type</u> NO: $\langle\!\langle \cdot \rangle\!\rangle_n : \tau \to \tau$ YES: $\langle\!\langle \cdot \rangle\!\rangle_n : \tau \to \mathbf{BtT_{n;\tau}}$

Approximate Backtranslation Type

- n not-known statically
- Q: what if we encounter a n+1 unfolding?
- A: backtranslate at <u>Backtranslation Type</u> NO: $\langle\!\langle \cdot \rangle\!\rangle_n : \tau \to \tau$ YES: $\langle\!\langle \cdot \rangle\!\rangle_n : \tau \to \mathbf{BtT}_{\mathbf{n}:\tau}$

```
\mathbf{BtT_{0;\tau}} \stackrel{\mathsf{def}}{=} \mathbf{Unit}
\mathbf{BtT_{n+1;\tau}} \stackrel{\mathsf{def}}{=} \begin{cases} \mathbf{Unit} \uplus \mathbf{Unit} & \text{if } \tau = Unit \\ (\mathbf{BtT_{n;\tau}} \to \mathbf{BtT_{n;\tau'}}) \uplus \mathbf{Unit} & \text{if } \tau = \tau \to \tau' \\ (\mathbf{BtT_{n;\tau}} \uplus \mathbf{BtT_{n;\tau'}}) \uplus \mathbf{Unit} & \text{if } \tau = \tau \uplus \tau' \\ \mathbf{BtT_{n+1;\tau'[\mu\alpha.\tau'/\alpha]}} \uplus \mathbf{Unit} & \text{if } \tau = \mu\alpha.\tau' \end{cases}
```

$$\langle\langle unit \rangle\rangle_{n>0} = ?$$

 $\operatorname{BtT}_{n+1;Unit} = \operatorname{Unit} \cup \operatorname{Unit}$

$$\langle\langle unit\rangle\rangle_{n>0} =$$
inl unit

 $\mathbf{BtT}_{\mathbf{n+1};Unit} = \mathbf{Unit} \cup \mathbf{Unit}$

$$\langle\langle unit\rangle\rangle_{n>0} =$$
inl unit

 $\mathbf{BtT}_{n+1:Unit} = \mathbf{Unit} \cup \mathbf{Unit}$

Cannot relate using normal LR:

$$\mathcal{V} \llbracket \mathbf{Unit} \rrbracket \stackrel{\mathsf{def}}{=} \{ (\mathbf{unit}, unit) \}$$

$$\langle\langle unit\rangle\rangle_{n>0} =$$
inl unit

 $\mathbf{BtT}_{n+1:Unit} = \mathbf{Unit} \cup \mathbf{Unit}$

Cannot relate using normal LR:

$$\mathcal{V} \llbracket \mathbf{Unit} \rrbracket \stackrel{\text{def}}{=} \{ (\mathbf{unit}, unit) \}$$

Need a special value relation:

$$\mathcal{V} \left[\mathbf{BtT_{n+1;\tau}} \right] \stackrel{\text{def}}{=} \left\{ (\mathbf{v}, v) \mid \text{either } \mathbf{v} = \mathbf{inr \ unit} \right]$$
or $\tau = Unit \ \text{and} \ \exists \mathbf{v}'. \ \mathbf{v} = \mathbf{inl \ v}' \ \text{and}$
 $(\mathbf{v}', v) \in \mathcal{V} \left[\mathbf{Unit} \right]$

- Since $\mathbf{t} : \boldsymbol{\tau}$ implies $[\![\mathbf{t}]\!] : \widetilde{[\![\boldsymbol{\tau}]\!]}$
- And C [: τ]

- Since $\mathbf{t} : \boldsymbol{\tau}$ implies $[\![\mathbf{t}]\!] : \widetilde{[\![\boldsymbol{\tau}]\!]}$
- And $C[:\tau]$
- $\langle\!\langle C \rangle\!\rangle_{\mathbf{n}} [:?]$

- Since $\mathbf{t} : \boldsymbol{\tau}$ implies $[\![\mathbf{t}]\!] : \widehat{[\![\boldsymbol{\tau}]\!]}$
- And $C [: \tau]$
- $\langle\!\langle C \rangle\!\rangle_{\mathbf{n}} [: \mathbf{BtT}_{\mathbf{n};\tau}]$
- Mismatch! $\tau \neq \overline{BtT}_{n; \llbracket \tau \rrbracket}$

- Since $\mathbf{t} : \boldsymbol{\tau}$ implies $[\![\mathbf{t}]\!] : [\![\boldsymbol{\tau}]\!]$
- And C [: τ]
- $\langle\!\langle C \rangle\!\rangle_{\mathbf{n}} [: \mathbf{BtT}_{\mathbf{n};\tau}]$
- Mismatch! $\tau \neq \operatorname{BtT}_{n;[\![\tau]\!]}$ e.g., $\mu\alpha.\operatorname{Unit} \uplus \alpha \neq \operatorname{BtT}_{1:[\![\mu\alpha.\operatorname{Unit} \uplus \alpha]\!]} = (\operatorname{Unit} \uplus \operatorname{Unit}) \uplus \operatorname{Unit}$

```
    Since t : τ implies [t] : [τ]

• And C[:\tau]
• \langle\!\langle C \rangle\!\rangle_{\mathbf{n}} [: \mathbf{BtT}_{\mathbf{n}:\tau}]
• Mismatch! \tau \neq \overline{\mathbf{BtT}_{\mathbf{n}: \llbracket \tau \rrbracket}} e.g.,
      \mu\alpha. Unit \upsilon \alpha \neq \operatorname{BtT}_{1:\llbracket \mu\alpha.\operatorname{Unit} \upsilon \alpha \rrbracket} = (\operatorname{Unit} \uplus \operatorname{Unit}) \uplus \operatorname{Unit}
• \langle\langle [\cdot] \rangle\rangle_{n} = [inject_{n;\tau} \cdot]
```

```
    Since t : τ implies [t] : [τ]

• And C[:\tau]
• \langle\!\langle C \rangle\!\rangle_{\mathbf{n}} [: \mathbf{BtT}_{\mathbf{n}:\tau}]
• Mismatch! \tau \neq \overline{\mathbf{BtT}_{\mathbf{n}: \llbracket \tau \rrbracket}} e.g.,
      \mu\alpha. Unit \upsilon \alpha \neq \operatorname{BtT}_{1:\llbracket \mu\alpha.\operatorname{Unit} \upsilon \alpha \rrbracket} = (\operatorname{Unit} \uplus \operatorname{Unit}) \uplus \operatorname{Unit}
• \langle\langle[\cdot]\rangle\rangle_{n} = [inject_{n;\tau} \cdot]
     inject_{n;\tau} \,: \tau \to BtT_{n:\llbracket\tau\rrbracket}
```

```
• Since \mathbf{t} : \boldsymbol{\tau} implies [\![\mathbf{t}]\!] : [\![\boldsymbol{\tau}]\!]
• And C[:\tau]
• \langle\!\langle C \rangle\!\rangle_{\mathbf{n}} [: \mathbf{BtT}_{\mathbf{n}:\tau}]
• Mismatch! \tau \neq \mathbf{I}_{\mathbf{n}: \llbracket \tau \rrbracket} e.g.,
       \mu\alpha. Unit \upsilon \alpha \neq \text{BtT}_{[:\|\mu\alpha\text{.Unit}\upsilon\alpha\|} = (\text{Unit} \upsilon \text{Unit}) \upsilon \text{Unit}
• \langle\langle [\cdot] \rangle\rangle_{\mathbf{n}} = [\text{inj}(\mathbf{ct}_{\mathbf{n};\tau})]
      \operatorname{inject}_{n;	au}: \overset{\backprime}{	au} 	o \operatorname{BtT}_{n:\llbracket	au
rbracket}
```

```
• Since \mathbf{t} : \boldsymbol{\tau} implies [\![\mathbf{t}]\!] : [\![\boldsymbol{\tau}]\!]
• And C[:\tau]
• \langle\!\langle C \rangle\!\rangle_{\mathbf{n}} [: \mathbf{BtT}_{\mathbf{n}:\tau}]
• Mismatch! \tau \neq \mathbf{VtT}_{\mathbf{n}: \llbracket \tau \rrbracket} e.g.,
      \mu\alpha. Unit \upsilon \alpha \neq \text{BtT}_{[:\|\mu\alpha\text{.Unit}\upsilon\alpha\|} = (\text{Unit} \upsilon \text{Unit}) \upsilon \text{Unit}
• \langle\langle [\cdot] \rangle\rangle_{\mathbf{n}} = [\inf_{\mathbf{r} \in \mathbf{r}} \operatorname{ct}_{\mathbf{n};\tau} \cdot]
     inject_{n;\tau} : \tau \to \underline{BtT}_{n;\llbracket \tau \rrbracket}
```

```
• Since \mathbf{t} : \boldsymbol{\tau} implies [\![\mathbf{t}]\!] : [\![\boldsymbol{\tau}]\!]
• And C[:\tau]
• \langle\!\langle C \rangle\!\rangle_{\mathbf{n}} [: \mathbf{BtT}_{\mathbf{n};\tau}]
• Mismatch! \tau
                                                 u\alpha.Unitu\alpha = (Unit u Unit) u Unit
     \mu\alpha. Unit \forall \alpha \neq BtT
• \langle\langle [\cdot] \rangle\rangle_{\mathbf{n}} = [\mathbf{inj}] \mathbf{ct}
     inject_{n:\tau} : \tau \rightarrow 0
```


 $\llbracket \cdot \rrbracket_{\lambda_E^{\mu}}^{\lambda_{\mathbf{I}}^{\mu}}$ erases **fold/unfold**, $\langle \langle \cdot \rangle \rangle_{\lambda_{\mathbf{I}}^{\mu}n}^{\lambda_E^{\mu}}$ is approximate

$$[\![\cdot]\!]_{\lambda_E^\mu}^{\lambda_I^\mu}$$
 erases fold/unfold, $\langle\!\langle\cdot\rangle\!\rangle_{\lambda_I^\mu n}^{\lambda_E^\mu}$ is approximate

 $[\cdot]_{\lambda_{E}^{\mu}}^{\lambda_{E}^{\mu}}$ erases fold/unfold, $\langle\langle\cdot\rangle\rangle_{\lambda_{E}^{\mu}n}^{\lambda_{E}^{\mu}}$ is approximate

$$\left[\!\left[\cdot\right]\!\right]_{\lambda_{E}^{\mu}}^{\lambda_{E}^{h}} = \left[\!\left[\!\left[\cdot\right]\!\right]_{\lambda_{\mathbf{I}}^{\mu}}^{\lambda_{\mathbf{I}}^{h}}\right]_{\lambda_{E}^{\mu}}^{\lambda_{\mathbf{I}}^{\mu}}, \left\langle\!\left\langle\cdot\right\rangle\!\right\rangle_{\lambda_{E}^{h}n}^{\lambda_{E}^{\mu}} = \left\langle\!\left\langle\left\langle\cdot\right\rangle\!\right\rangle\!\right\rangle_{\lambda_{\mathbf{I}}^{\mu}n}^{\lambda_{E}^{\mu}n} \right\rangle\!\right\rangle_{\lambda_{E}^{h}n}^{\lambda_{\mathbf{I}}^{\mu}n}$$

 $[\cdot]_{\lambda_{E}^{\mu}}^{\lambda_{E}^{\mu}}$ erases fold/unfold, $\langle\langle\cdot\rangle\rangle_{\lambda_{E}^{\mu}n}^{\lambda_{E}^{\mu}}$ is approximate

$$\left[\!\left[\cdot\right]\!\right]_{\lambda_{E}^{\mu}}^{\lambda_{E}^{h}} = \left[\!\left[\!\left[\cdot\right]\!\right]_{\lambda_{\mathbf{I}}^{\mu}}^{\lambda_{\mathbf{I}}^{h}}\right]_{\lambda_{E}^{\mu}}^{\lambda_{\mathbf{I}}^{\mu}}, \left\langle\!\left\langle\cdot\right\rangle\!\right\rangle_{\lambda_{E}^{h}n}^{\lambda_{E}^{\mu}} = \left\langle\!\left\langle\left\langle\cdot\right\rangle\!\right\rangle\!\right\rangle_{\lambda_{\mathbf{I}}^{\mu}n}^{\lambda_{E}^{\mu}n} \right\rangle\!\right\rangle_{\lambda_{E}^{h}n}^{\lambda_{\mathbf{I}}^{\mu}n}$$

$$[\![\cdot]\!]_{\lambda_E^\mu}^{\lambda_I^\mu}$$
 erases fold/unfold, $\langle\!(\cdot)\!\rangle_{\lambda_I^\mu n}^{\lambda_E^\mu}$ is approximate

$$\llbracket \cdot \rrbracket_{\lambda_{E}^{\mu}}^{\lambda_{E}^{\kappa}} = \left[\llbracket \cdot \rrbracket_{\lambda_{\mathbf{I}}^{\mu}}^{\lambda_{\mathbf{I}}^{\kappa}} \right]_{\lambda_{E}^{\mu}}^{\lambda_{\mathbf{I}}^{\mu}}, \left\langle \left\langle \cdot \right\rangle \right\rangle_{\lambda_{\mathbf{I}}^{\kappa} n}^{\lambda_{E}^{\mu}} = \left\langle \left\langle \left\langle \cdot \right\rangle \right\rangle_{\lambda_{\mathbf{I}}^{\mu} n}^{\lambda_{E}^{\mu}} \right\rangle_{\lambda_{\mathbf{I}}^{\kappa} n}^{\lambda_{\mathbf{I}}^{\mu}}$$

Questions?

• $\forall \alpha. \tau \& \exists \alpha. \tau$ types: orthogonal to ours

- $\forall \alpha. \tau \& \exists \alpha. \tau$ types: orthogonal to ours
- Conjecture: complex proofs but sem. eq. holds

- $\forall \alpha. \tau \& \exists \alpha. \tau$ types: orthogonal to ours
- Conjecture: complex proofs but sem. eq. holds
- Conjecture: holds for <u>fully applied</u> rec. types: [Kireev et al. '19]

$$(\mu\alpha :: K. \tau)\tau_1 \cdots \tau_n$$
 for $K = K_1 \Rightarrow \cdots K_n \Rightarrow *$

- $\forall \alpha. \tau \& \exists \alpha. \tau$ types: orthogonal to ours
- Conjecture: complex proofs but sem. eq. holds
- Conjecture: holds for <u>fully applied</u> rec. types: [Kireev et al. '19]

$$(\mu\alpha :: K. \tau)\tau_1 \cdots \tau_n$$
 for $K = K_1 \Rightarrow \cdots K_n \Rightarrow *$

Arbitrary kinds: unknown