DataSci 520

lesson 3

combinatorics and probability distributions

today's agenda

- discrete vs continuous random variables
- understand the 3 axioms of probability
- properties of basic probability distributions
- conditional, mutually exclusive, and independent events

Introduction to Counting & Probability

- > Why counting?
 - Counting is fundamental to probability theory.
 - Probability is the extent or likelihood of an event or set of events.
 - > Depends heavily on the ability to COUNT up potential outcomes.

Counting

- > Counting is one of the biggest areas of mathematics, called "Combinatorics".
- > Example:
 - Subway has 4 different breads, 5 different meats, and 4 different toppings. How many sandwich combinations are there?
 - How many different 4-beer tasters can I have in a bar with 10 beers on tap?
- > Solve the above with the "Multiplication Principle".
 - Subway:

Beer Tasters:

Multiplication Principle

- > If there are A ways of doing task-a, B ways of doing task-b, then there are A*B ways of completing both tasks.
- > Example:
 - If I have 5 books, how many ways can I ORDER them on the bookshelf

Factorials

- > Factorials
 - Count # of ways to order N things = N!
- > Factorials get VERY VERY large quickly.
 - 21! Is larger than the biggest long-int in 64 bit.
 - > 21! = 5.1E19
 - > Biggest long int (64bit) = 9.2E18
 - Fun fact, every 52 card shuffle is highly likely to be the only time that shuffle has ever occurred.

Counting Subgroups

- > Revisit: 10 beers on tap, need a sample of 4 different beers.
- > Let's assume order matters.
 - E.g. Amber-Stout-Porter-Red is different than Red-Porter-Stout-Amber
- > Use "Permutations" or "Pick":

$$10 * 9 * 8 * 7 = \frac{10!}{6!} = \frac{10!}{(10-4)!} = 10P4 = P(10,4)$$

Counting Subgroups

- > Now we assume order doesn't matter.
- > Use 'Combinations' or 'choose'.
- > Remember that 10*8*7*6 = orderings of 4 beers.
- > Now we are counting some groups multiple times, so we divide out the multiple counts.

$$\frac{(10*9*8*7)}{(\# of ways to order 4 beers)} = \frac{P(10,4)}{4!} = \frac{10!}{(10-4)! \, 4!} = C(10,4) = {10 \choose 4}$$

More About Combinations

- > Combinations appear on Pascal's Triangle!
- > C(N,x) appears on the Nth row, x-th number over (starting counting at 0).

Counting Examples

- > There are 10 Light beers on tap, and 10 Dark beers on tap.
- > How many ways can Rick get a 4-beer sampler that contains exactly 1 light beer? (Order does not matter)

$$= \frac{(\# of \ ways \ for \ 1 \ Light) * (\# of \ ways \ for \ 3 \ D)}{(\# of \ ways \ to \ arrange \ 1L \& 3D)} = \frac{C(10,1) * C(10,3)}{C(4,1)} = \frac{10 * 120}{4}$$
$$= 300$$

Counting Examples

- > 6:5 Blackjack is dealt with a 6 shoe deck (52*6=312 cards)
- > How many ways can someone get dealt two rank 10 cards?

$$\binom{6decks * 4ranks * 4suits}{2} = \binom{96}{2} = 4,560$$

DICE!

> How many ways can two dice be rolled to get a sum of 10?

	0	0	•	•	⊗	⊗
0	2	3	4	5	6	7
0	3	4	5	6	7	8
③	4	5	6	7	8	9
•	5	6	7	8	9	10
⊗	6	7	8	9	10	11
8	7	8	9	10	11	12

Probability

- > The Probability of an event, A, is the number of ways A can occur, divided by the number of total possible outcomes in a "Sample Space".
 - The sample space is the set of all possible outcomes.

$$P(A) = \frac{N(A)}{N(S)}$$

In this example, if ' ' is an event, then:

- P(A) = 6/10=3/5
- P(B) = 3/10
- P(S) = 10/10 = 1.0

Probability

- > If ' ' is an event, then
 - <u>Intersection:</u>

$$-P(A \cap B) = \frac{2}{10} = \frac{1}{5}$$

– Union:

$$-P(A \cup B) = \frac{7}{10}$$

- Negation:
- $P((A \cup B)') = \frac{3}{10}$ $P(A' \cap B') = \frac{3}{10}$

Axioms of Probability

1. Probability is bounded between 0 and 1.

$$0 \le P(A) \le 1$$

Note: "percent" literally means per one hundred.

2. Probability of the Sample Space is equal to 1.

$$P(S) = 1$$

3. The probability of finite *mutually exclusive* events is the sum of their probabilities.

 $P(A \cup B) = P(A) + P(B)$ if A and B are Mutually Exclusive

Quick Review – Probabilities

- > What is the probability of rolling a 10?
- > What is the probability of rolling an even #?
- > What is the probability of doubles?

"At Least" or "At Most" Probabilities

> When dealing with problems that are "At Least" or "At Most", we can think of what else can happen and do 1 minus that.

> Ex:

- What is the probability that the sum is at least 3? > 1-P(sum = 2) = 1-(1/36) = 35/36.
- If it is always 40% chance of rain each day, what is the probability that it rains on at most 6 days this week?
 - $> 1-P(rains all week) = 1- (0.4)^7$

Why is this false?

$$P(A \cup B) = P(A) + P(B)$$

Mutually Exclusive Events

> In all cases, the probability of the union of A and B takes the form:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

> If A and B are *mutually exclusive* then means that:

$$P(A \cap B) = 0$$

$$P(A \cup B) = P(A) + P(B)$$

Conditional Probability

> The Probability of A given B is written:

> And is equal to:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, compare to: $P(E) = \frac{P(E)}{P(S)}$

Independence VS Mutually Exclusive

- > These concepts are not similar AT ALL, and in fact, are nearly opposite ideas.
- > If A is M.E. of B, then P(A|B) = 0

The event, B, has a HUGE effect on the occurrence of event A.

> If A is independent of B, then P(A|B) = P(A)

Example: The probability the sidewalk is wet given it is raining is very high, but the probability that it is raining given the sidewalk is wet could be quite low, if I run my sprinklers often.

ODDS

- > Odds are probabilities expressed as
 - (Count of events in favor):(Count of events not in favor), with the reduced form of probability in fractional form.

$$P(A) = \frac{n}{m} = \frac{n}{n + (m - n)}$$

This implies the odds are **n:(m-n)**

Example:

- > If P(A)=50%, then the odds are 1:1 or "one to one".
- > If P(A)=1/3, then the odds are 1:2 or "one to two".
- > If P(A)=5/6, then the odds are 5:1. 'five to one'.
- > If the odds are 3:20, then P(A)=3/23
- > A straight up sports bet in Vegas has odds 1:1 (50%) (but pays 0.95Xbet.)

Independent Events

> Event A is *independent* of event B if and ONLY if:

$$P(A|B) = P(A)$$

> A being independent of B does NOT imply B is independent of A

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

$$P(A|B) = P(A) = \frac{P(A \cap B)}{P(B)}$$

$$P(A)P(B) = P(A \cap B)$$

<u>Used in a sentence:</u> The event that my boss takes a vacation has an impact on when I take vacation. But when I take vacation has no impact on when my boss takes a vacation.

discrete vs continuous random variables

	discrete	continuous
sample space	counted	measured
math	summation	integration
P(A)	probability mass function $P(A) = \sum_{a \in A} P(A = a)$	probability density function $P(A) = \int_{a \in A} P(A)$
examples	dice roll, number of arrivals, etc.	price, height, distance
visualizations	bar plot, n-way tables,	histograms, box plots,

Consider the probabilities of all potential sums of the two die:

$$P(2)=1/36$$

$$P(3)=2/36$$

$$P(4)=3/36$$

$$P(5)=4/36$$

$$P(6)=5/36$$

$$P(7)=6/36$$

$$P(8)=5/36$$

$$P(9)=4/36$$

$$P(10)=3/36$$

$$P(11)=2/36$$

$$P(12)=1/36$$

If we consider all the event possibilities together, this is called a "Probability Distribution".

Discrete Distributions

- > Properties of Discrete Distributions:
 - Sum of all events MUST be equal to 1.
 - Probability of event, E, is equal to the value of the distribution at that point.
 - No negative values or values greater than 1.

Discrete Distribution: Bernoulli Distribution (1 coin flip)

> Bernoulli (1 event, example: 1 coin flip)

$$P(x) = \begin{cases} p & \text{if } x = 1\\ (1-p) & \text{if } x = 0 \end{cases}$$

$$P(x) = p^{x}(1-p)^{(1-x)}$$
 for $x \in \{0,1\}$

- > Mean = p
- > Variance = p(1-p)

Discrete Distribution: Binomial Distribution (Multiple Coin Flips)

> Multiple independent events = Product of Bernoilli probabilities.

- > Mean = np
- > Variance = np(1-p)

> Note: for larger n, we approximate this by a normal distribution.

Discrete Distribution: Poisson Distribution (Counting)

> Count number of events in a time span.

$$P(x|\lambda) = \frac{\lambda^x}{x!}e^{-\lambda}$$

- > Mean = λ
- > Variance = λ
- > Interpretation: The rate of occurrence of an event is equal to lambda in a finite period of time
- > Can also approximate by a normal at large lambda.

Continuous Distributions

- > Properties of Continuous Distributions:
 - AREA under the curve MUST be equal to 1.
 - Probability of event, E, is equal to the AREA under the curve between two points.
 - No negative values or values greater than 1.
 - Probability of a single, exact value is 0.

Continuous Distribution Triangle Distribution

Continuous Distribution: Uniform Distribution (Equal Probability)

- Most commonly *used* in machine learning. (not most commonly occurring in data)
- Uninteresting distribution, all events are equal.
- Flat & Bounded.

$$f(x) = \begin{cases} \frac{1}{(b-a)} & \text{if } a \le x \le b \\ 0 & \text{if } a < x > b \end{cases}$$

f(x)

- > Mean = $\frac{(a+b)}{2}$ > Variance = $(\frac{1}{12})(b-a)^2$
- > Very useful when we *need* to put in information about a data point or parameter, but we don't know much about it.

Continuous Distribution: Normal Distribution (Gaussian/Bell Curve)

- > Most common & naturally occurring in data/nature.
- > Defined by a mean and variance only.

- > Has very nice properties.
- > Testing data for normality is VERY important.

Continuous Distribution: Student's T Distribution

- > Important for investigating / testing smaller data sample sizes.
- > Used specifically for:
 - Testing of a mean-value when st.dev. is unknown.
 - Testing difference between two distribution means.
- > Looks very similar to the Normal distribution, but has longer tails.

Distribution Transformations

- > The purpose of transforming a variable is to make it easier to distinguish between values (graphically, statistically, ML models...)
 - Most commonly, we are looking to transform it to a normal distribution.
- > Useful transformations are generally MONOTONIC
 - Functions used are never changing directions.
- > Common Transformations to consider:
 - Log basedLog(x), log(x+1), log(x-min(x)+1)
 - N-th root based (of positive #s)
 - $> X^{(1/n)}$
 - Any combination you can think of- but keep it monotonic.
- > How to determine? We will cover normality tests in a later class.

notebook time

we return to the lecture later

the Monte Hall game

- you are presented with three doors: two have goats behind, one has a car behind
- the host knows which door has a car behind it, but you don't
- you select a door, then host would open one of the two other doors to reveal a goat
- you have a choice between sticking with the door you selected, or switching to the other door the host didn't open
- does it matter if you switch or not?

- > Start with 3 doors. One prize behind unknown door. Pick a door.
- > Host reveals a separate door with no prize.
- > Then contestant can switch. Should they?

Let's consider this situation first

- > Start with 3 doors. One prize behind unknown door. Pick a door.
- > Host reveals a separate door with no prize.
- > Then contestant can switch. Should they?

- > Start with 3 doors. One prize behind unknown door. Pick a door.
- > Host reveals a separate door with no prize.
- > Then contestant can switch. Should they?

- > Start with 3 doors. One prize behind unknown door. Pick a door.
- > Host reveals a separate door with no prize.
- > Then contestant can switch. Should they?

- ullet let $C=\{1,2,3\}$ represent where the car is
- let $H = \{1, 2, 3\}$ represent the door opened by host
- assume by symmetry that we pick door 1, and compute conditionals probabilities:
 - \circ note that P(H=1|C=1)=0, which leaves us with P(H=2|C=1)=0.5 and P(H=3|C=1)=0.5
 - \circ note that P(H=1|C=2)=P(H=1|C=3)=0 because Montey won't open a door containing the car, leaving us with P(H=3|C=2)=1 and P(H=2|C=3)=1 respectively
- now we compute the joint probabilities P(H and C) = P(H|C)P(C)
- finally, we add up joint probabilities for goat and car under switch scenario

Dealing with Missing Data (Intro)

- > Reasons for missing data
 - Recording failure (mechanical/software failures)
 - Reporting failure (human decisions)
 - Translation failure (data parsing / data transferring errors)
- > Many shapes and types of missing data:
 - Block missing Physical shapes of data missing
 - > Examples: Time series- collection was down for some time.
 - Regular missing
 - > Rule based missing: Temperature gauge doesn't work below freezing.
 - Random missing
 - > Probability of missing data point equal across all data points.
 - Sparsity
 - > Very low observations. Hard to observe data (endangered species, rare events)
- > NOTE: Outliers may be treated as missing data. Depending on reasons.

Dealing with Missing Data

Туре	Benefits	Disadvantages	Notes
Drop Missing	Speed	Data Loss	
Mean/Median/Mode Fill	No Data Loss	Variation Reduction	
X ~ F(independents)	More accurate No Data Loss	Slower	Needs most columns to be filled out Harder on truly independent data
KNN	More accurate No Data Loss	Slower Dependent on a Distance Function	
X~F(y,independents)	Very Accurate No Data Loss	Slower Need Y	Can ONLY do this on a TRAINING dataset.

Dealing with Missing Data in the Real World: Using Outside or New Data Sources as Supplements

- > Don't forget to explore outside or new data sources to help with missing data.
- > With the advent of free public data and bigger data sources, this is gaining popularity as a tool for imputation.
- > This includes using unstructured text as a major source of data.
- > Will eventually include asking Large-Language-Models to generate missing data.
- > Ex
 - Caesar's uses public reviews on websites to mine for customer sentiment about hotel rooms.
 - Zillow uses text descriptions of properties to fill in missing data about homes (# BDs, # BTHMs, sq footage, etc)
 - Subject to human stupidity.:

Yelp Rating for Circus-Circus: 2/5

Text Description: "My son and I stayed here. The service and room was great, but it turns out my son is deathly afraid of clowns.

Breakout Discussion

- > Below are some example situations for missing data.
 - How would / could we address these? (Both statistically AND business wise)

Situations

An intern at your company accidentally deleted 10 rows in a large user-events table.

A set of door-to-door poll workers in a county were all sick over the same time period. (They are interviewing residents about news topic sentiments).

A malicious SQL injection attack dropped data from user-sign in logging records. Only from users who have a email that starts with the letter 'A' or 'a'.

The IoT coffee maker company you work for has a defect in the devices — it disconnects from wifi when boiling water is spilled in a certain spot.

A rental car company cannot collect GPS car locations during severe weather.

the end