(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-53566 (P2002-53566A)

(43)公開日 平成14年2月19日(2002.2.19)

(51) Int.CL'		識別記号		ΡI			Ť	-73-1*(参考)
C07D	277/46			C 0 1	7 D 277/46			4 C 0 3 3
A 6 1 K	31/427			A 6	LK 31/427			4 C 0 6 3
	31/4439				31/4439			4C086
	31/454				31/454			
	31/4709				31/4709			
		•	審查請求	水蒜水	趙求奨の数11	OL	(全113頁)	最終質に続く

(21)出験番号 特額2000-244080(P2000-244080) (71)出題人 000004569 日本たばこ産業株式会社 東京都港区虎ノ門二丁目2番1号 (72)発明者 稲葉 隆之 大阪府高槻市紫町1番1号 日本たばこ産 業株式会社医薬総合研究所 (72)発明者 佐川 勝一 大阪府高槻市紫町1番1号 日本たばこ産 業株式会社医薬総合研究所 (74)代理人 100100217 弁理士 大東 輝雄

最終頁に続く

(54) 【発明の名称】 チアゾール化合物及びその医薬用途

(57)【要約】

【課題】 PKC、特に、PKC $_{7}$ を選択的に阻害することにより、疼痛をはじめとするPKCに起因する疾患に対し有効かつ安全な治療剤及び予防剤を提供すること。

【解決手段】 下記一般式[1]

【化1】

(式中、R1、R2、R3及びR4は、水素原子等であり、R2とR3は、隣接する-N-CO-CR4-と一緒になって環を形成してもよく、環Hyはヘテロ環基であり、環Cyはアリール基等であり、当該各環は置換されてもよい。)等で表されるチアゾール化合物又は製薬上許容されるその塩、及び該化合物を含んでなるPKC阻害剤。

【特許請求の範囲】

【請求項1】 下記一般式 [I] で表されるチアゾール 化合物又は製薬上許容されるその塩を含んでなるプロテ インキナーゼC阻害剤。

【化1】

「大中、

 R^1 は、水素原子、ハロゲン原子、又は、 C_{1-6} アル キル基であり、

R2は、水素原子、又は、下記グループAから選ばれる 置換基で置換されてもよいC1-6アルキル基であり、 【グループA:ハロゲン原子、-ORb¹(式中、R b 1 は、水素原子、又は、C1 - 6 アルキル基であ る。)、-SRb2 (式中、Rb2は、水素原子、又 は、C1-6アルキル基である。)、及び、-NRb3 Rb4(式中、Rb3及びRb4は、それぞれ同一若し くは異なって、水素原子、C1-6アルキル基、又は、 Rb 3 及びRb 4 が隣接する窒素原子と一緒になって形 成するヘテロ環基であり、ここで、該隣接する窒素原子 と一緒になって形成するヘテロ環基は、1つの窒素原子 の他に、酸素原子、窒素原子又は硫黄原子から選ばれる 0乃至3個のヘテロ原子を含み、C1-6アルキル基で 置換されてもよい。)。}

R3 及びR4 は、それぞれ同一若しくは異なって、水素 原子、上記グループAから選ばれる置換基で置換されて もよいC1-6アルキル基、-ORª1(式中、Rª1 ルキルカルポニル基である。)、又は、-NRª2R a 3 (式中、Ra 2 及びRa 3 は、それぞれ同一若しく は異なって、水素原子、C1-6アルキル基、C1-6 アルコキシカルボニル基、又は、Ra2及びRa3が隣 接する窒素原子と一緒になって形成するヘテロ環基(前 記定義の通り。)である。)であり、

R²とR³は、隣接する-N-CO-CR⁴-と一緒に なって、

【化2】

く式中、Vは、-CH2-、-O-、-S-、-CO -, -OCO-, -NRa5-, -CO-NRa5-, 又は、-NRa5-CO-(ここで、Ra5は、水素原 子、C1-6アルキル基、C6-14アリールC1-6 アルキル基、C1 - 6 アルコキシカルボニル基、又は、

C6-14 アリールC1-6 アルキルオキシカルボニル 基である。)、Wは、C1-6アルキル基、又は、上記 グループAから選ばれる置換基であり、tは、0、1又 は2であり、tが2の時、2つのWはそれぞれ同一若し くは異なってもよく、m及びnは、それぞれ同一若しく は異なって、0又は1乃至3の整数である。) で表され る環を形成してもよく、

Xは、単結合、C1-4アルキレン、-O-、-S-、 -COO-, -OCO-, -NR = 4-, -CO-NR10 a 4 - 、又は、-NR a 4 -CO- (式中、Ra 4 は、 水素原子、又は、上記グループAから選ばれる置換基で 置換されてもよいC1ー6アルキル基である。)であ

環Hyは、ヘテロ環基であり、ここで、該ヘテロ環基 は、酸素原子、窒素原子又は硫黄原子から選ばれる1万 至4個のヘテロ原子を含み、該ヘテロ環基は、下記グル ープBから選ばれる1乃至3個の置換基で置換されても よく、該置換基が2個又は3個の時、該置換基はそれぞ れ同一若しくは異なっていてもよい {グループB:ニト ロ基、ハロゲン原子、及び、-Y-Z[ここで、

Yは、単結合、-CH=CH-、-O-、-CH(O $H) - COO - NR^{b5} - NR^{b6} - CO$ -, $-NR^{b7}$ -COO-, $-NR^{b8}$ -CO-NRb9-、-NRb10-SO2-、及び、-CO-NR b 1 1 - (式中、Rb 5、Rb 6、Rb 7、Rb 8、R b9、Rb10及びRb11は、水素原子、又は、C 1-6アルキル基である。)、

Zは、水素原子、上記グループAから選ばれる置換基で 置換されてもよいC1-6アルキル基、C6-14アリ は、水素原子、C1-6アルキル基、又は、C1-6ア 30 ール基、C3-7シクロアルキル基、C3-7シクロア ルケニル基、ヘテロ環基(前記定義の通り。)、C 6-14 アリールC1-6 アルキル基、C3-7 シクロ アルキルC1-6アルキル基、C3-7シクロアルケニ ルC1-6アルキル基、及び、ヘテロ環C1-6アルキ ル基(ここで、該基は、前記定義の通りのヘテロ環に置 換されたCı - 6 アルキル基を示す。) であり、 ここ で、該C6 - 1 4 アリール基、該C3 - 7 シクロアルキ ル基、該Cg-7シクロアルケニル基、該ヘテロ環基。 該C6-14アリールC1-6アルキル基、該C3-7 40 シクロアルキルC₁ - 6 アルキル基、該C₃ - 7 シクロ アルケニルC1-6アルキル基、及び、該ヘテロ環C 1-6アルキル基は、下記グループCから選ばれる1万 至3個の置換基で置換されてもよく、該置換基が2個又 は3個の時、置換基はそれぞれ同一若しくは異なってい てもよい

> 【グループC:ハロゲン原子、上記グループAから選ば れる置換基で置換されてもいて1-6アルキル基 -0 Rc1 (式中、Rc1 は、水素原子、又はC1-6 アル キル基である。)、及び、-NR^2R^3(式中、R 50 c2及びRc3は、それぞれ同一若しくは異なって、水

素原子、又はC1-6アルキル基であ

る。)。}。]。}。環Cyは、C6-14アリール 基、C3-7シクロアルキル基、又は、ヘテロ環基(前 記定義の通り。)であり、該C6-14アリール基、該 C3 - 7 シクロアルキル基及び該へテロ環基は、上記グ ループBから選ばれる1乃至3個の置換基で置換されて もよく、該置換基が2個又は3個の時、置換基はそれぞ れ同一若しくは異なっていてもよい。]

【請求項2】 下記一般式 [II] で表されるチアゾール 化合物又は製薬上許容されるその塩。

【化3】

[式中、

 R^1 は、水素原子、ハロゲン原子、又は、 $C_1 - 6$ アル キル基であり、R2は、水素原子、又は、下記グループ Aから選ばれる置換基で置換されてもよいC₁ - 6 アル 20 キル基であり、

【グループA:ハロゲン原子、-ORb¹(式中、R b 1 は、水素原子、又は、C1 - 6 アルキル基であ る。)、-SRb2 (式中、Rb2は、水素原子、又 は、C1-6アルキル基である。)、及び、-NRb3 Rb4(式中、Rb3及びRb4は、それぞれ同一若し くは異なって、水素原子、C1-6アルキル基、又は、 Rb 3 及びRb 4 が隣接する窒素原子と一緒になって形 成するヘテロ環基であり、ここで、該隣接する窒素原子 と一緒になって形成するヘテロ環基は、1つの窒素原子 30 の他に、酸素原子、窒素原子又は硫黄原子から選ばれる 0乃至3個のヘテロ原子を含み、C1 − 6 アルキル基で 置換されてもよい。)。) R3 及びR4 は、それぞれ同 一若しくは異なって、水素原子、上記グループAから選 ばれる置換基で置換されてもよいC1-6アルキル基、 -ORa1 (式中、Ra1は、水素原子、C1-6アル*

z-**y**-(")

{ここで、Qは、-NRa6-(式中、Ra6は水素原 子、又は、上記グループAから選ばれる置換基で置換さ れてもよいC1-6アルキル基である。)、又は、一〇 ー、-S-であり、

 R^5 は、水素原子、ハロゲン原子、又は、 C_{1-6} アル キル基であり、

Yは、単結合、-CH=CH-、-O-、-CH(O $H) - COO - NR^{b} = NR^{b} = CO$ -, $-NR^{b7}$ -COO-, $-NR^{b8}$ -CO-NR

*キル基、又は、C1 - 6 アルキルカルボニル基であ る。)、又は、-NRa2Ra3 {式中、Ra2及びR a 3 は、それぞれ同一若しくは異なって、水素原子、C 1-6アルキル基、C1-6アルコキシカルボニル基、 又は、Ra2及びRa3が隣接する窒素原子と一緒にな って形成するヘテロ環基 (前記定義の通り。) であ る。} であり、

R² とR³ は、隣接する-N-CO-CR⁴ -と一緒に なって、

10 【化4】

{式中、Vは、−CH2−、−O−、−S−、−CO -, -OCO-, -NRa5-, -CO-NRa5-, 又は、一NRa5一CO一(ここで、Ra5は、水素原 子、C1-6アルキル基、C6-14アリールC1-6 アルキル基、C1 - 6 アルコキシカルボニル基、又は、 C6-14 アリールC1-6 アルキルオキシカルボニル 基である。)、Wは、C1-6アルキル基、又は、上記 グループAから選ばれる置換基であり、tは、0、1又 は2であり、tが2の時、2つのWはそれぞれ同一若し くは異なってもよく、m及びnは、それぞれ同一若しく は異なって、0又は1乃至3の整数である。) で表され る環を形成してもよく、

Xは、単結合、C1 - 4 アルキレン、-O-、-S-、 -COO-, -OCO-, -NRa4-, -CO-NRa 4 - 、又は、-NR a 4 -CO- (式中、R a 4 は、 水素原子、又は、上記グループAから選ばれる置換基で 置換されてもよいC1-6アルキル基である。) であ り、

環Hy'は、 【化5】

※b 1 1 - (式中、R b 5 、 R b 6 、 R b 7 、 R b 8 、 R b9、Rb10及びRb11は、水素原子、又は、C 1-6 アルキル基である。)、

Zは、水素原子、上記グループAから選ばれる置換基で 置換されてもよいC1 - 6 アルキル基、C6 - 1 4 アリ ール基、C3-7シクロアルキル基、C3-7シクロア ルケニル基、ヘテロ環基(前記定義の通り。)、C 6 - 1 4 アリールC1 - 6 アルキル基、C3 - 7 シクロ アルキルC1-6アルキル基、C3-7シクロアルケニ b9-、-NRb10-SO2-、及び、-CO-NR※50 ルC1-6アルキル基、及び、ヘテロ環C1-6アルキ

ル基(ここで、該基は、前記定義の通りのヘテロ環に置 換されたC1 - 6 アルキル基を示す。) であり、ここ で、該C6-14アリール基、該C3-7シクロアルキ ル基、該C3-7シクロアルケニル基、該ヘテロ環基、 該C6 - 1 4 アリールC1 - 6 アルキル基、該C3 - 7 シクロアルキルC1-6アルキル基、該C3-7シクロ アルケニルC1-6アルキル基、及び、該ヘテロ環C 1-6 アルキル基は、下記グループCから選ばれる1乃 至3個の置換基で置換されてもよく、該置換基が2個又 は3個の時、置換基はそれぞれ同一若しくは異なってい 10 キナーゼCアイソザイム r 選択的阻害剤。 てもよい

【グループC:ハロゲン原子、上記グループAから選ば。 れる置換基で置換されてもいC1-6アルキル基、-0 Rc1 (式中、Rc1は、水素原子、又はC1-6アル キル基である。)、及び、-NRc2Rc3 (式中、R c2及びRc3は、それぞれ同一若しくは異なって、水 素原子、又はC1-6アルキル基であ

る。)。}。]。}。環Cyは、C6-14アリール 基、C3-7シクロアルキル基、又は、ヘテロ環基(前 記定義の通り。) であり、該C6-14 アリール基、該 20 C3 - 7 シクロアルキル基及び該へテロ環基は、下記グ ループBから選ばれる1乃至3個の置換基で置換されて もよく、該置換基が2個又は3個の時、置換基はそれぞ れ同一若しくは異なっていてもよい。

【グループB:ニトロ基、ハロゲン原子、及び、-Y-Z(Y及びZは前記定義の通り。)}]

【請求項3】 環Hy'が、

【化6】

(式中、各記号は請求項2記載の通り。)である請求項 2記載のチアゾール化合物又は製薬上許容されるその 塩、

【請求項4】 Yが、-NRb5-又は-NRb6-C 〇一(式中、各記号は請求項2記載の通り。)である請 求項3記載のチアゾール化合物又は製薬上許容されるそ

【請求項5】 Qが、-S-である請求項4記載のチア 40 ゾール化合物又は製薬上許容されるその塩。

【請求項6】 Xが、単結合である請求項5記載のチア ゾール化合物又は製薬上許容されるその塩。

【請求項7】 Yが、-NRb6-CO-(式中、記号 Rb 6 は請求項2記載の通り。) であり、Zが、C 1-6アルキル基又はC3-7シクロアルキル基である 請求項6記載のチアゾール化合物又は製薬上許容される その塩。

【請求項8】 環Cyが、フェニル基又はピリジル基で ある請求項7記載のチアゾール化合物又は製薬上許容さ 50 トレオニンタンパク質リン酸化酵素である。

れるその塩であって、当該フェニル基及びピリジル基 は、請求項2記載のグループCから選ばれる1乃至3個 の置換基で置換されてもよく、該置換基が2個又は3個 の時、該置換基はそれぞれ同一若しくは異なっていても

【請求項9】 請求項2乃至8記載のチアゾール化合物 又は製薬上許容されるその塩を含んで成る医薬組成物。 【請求項10】 請求項1乃至9記載のチアゾール化合 物又は製薬上許容されるその塩を含んで成るプロテイン

【請求項11】 請求項2乃至9記載のチアゾール化合 物又は製薬上許容されるその塩を含んで成る鎮痛剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規チアゾール化 合物又は製薬上許容されるその塩、及びそれらを有効成 分として含有してなる医薬組成物に関する。更に詳しく は、プロテインキナーゼC (PKC) 活性を阻害するこ と、特に、選択的にPKCアイソザイムァ(PKCァ) 活性を阻害することにより、鎮痛作用を有する新規チア ゾール化合物又は製薬上許容されるその塩、及びそれら を有効成分として含有してなる医薬組成物に関する。 [0002]

【従来の技術】PKCは、細胞内の多様な情報伝達に中 心的な役割を果たすセリン/トレオニンタンパク質リン 酸化酵素の一種である。PKCがリン酸化する蛋白は、 上皮細胞成長因子受容体、インスリン受容体、インター ロイキン2受容体、アセチルコリン受容体、アドレナリ・ ン受容体などの受容体、ホスホランバン、ナトリウムイ 30 オンチャンネル、グルコース担体など多数の膜蛋白、筋 肉を構成するアクチン、ミオシンなど、グリコーゲンホ スホリラーゼキナーゼ、シトクロムP450などの代謝 性酵素など多数にわたる。現在、PKCには少なくとも 10種以上のアイソザイムが存在することが知られる。 これらアイソザイムは、何れもC末端側にキナーゼドメ インを、N末端側に制御ドメインを配した構造をとる。 キナーゼドメインは、PKC間では高い相同性を示し、 Aキナーゼ(サイクリックAMP依存性プロテインキナ ーゼ、PKAともいう。)、Gキナーゼ (サイクリック GMP依存性プロテインキナーゼ)、チロシンキナーゼ など他のプロテインキナーゼとも相同性を示す。制御ド メイン中には、カルシウム結合部位、ホルボールエステ ル結合部位が存在し、その両者を有する一群 $\{\alpha \ , \beta \}$ (「型、川型)、ア)と、ホルボールエステル結合部位 のみを有する一群(δ 、arepsilon 、eta 、 η)、及びその両者を 欠く一群(ζ 、 λ)に区別できる。 $PKC\alpha$ 、 β 、 γ は、ジアシルグリセロール (DAG) 等の細胞膜イノシ トールリン脂質の代謝産物及びカルシウムにより活性化 される、すなわちリン脂質/カルシウム依存性セリン/

【0003】PKC活性化を介する病状としては、網膜血流低下などの血流異常、網膜血管の血管透過性亢進、腎糸球体沪過値の亢進などの血管収縮性異常、腎メサンギウム細胞において収縮応答性の低下及び細胞外基質の産生増加が挙げられる。また、転写因子の活性化による細胞増殖異常及び遺伝子発現異常、心筋組織においては心肥大、心臓細動などの病態に係わるなど様々な報告がある。そのためPKC活性を阻害する薬剤は、糖尿病合併症(糖尿病性網膜症、糖尿病性腎症、糖尿病性心筋症、糖尿病性神経障害)、動脈硬化、血管障害(血栓症 10等)、炎症、皮膚病、免疫性疾患(後天性免疫不全症等)、中枢神経系疾患(アルツハイマー病等)、癌など様々な疾患への適応が考えられる。

【0004】また、PKC阻害剤の薬理作用として、鎮 痛に関する報告も見られる。PKCは中枢神経系に多く 発現することが知られており、特に脊髄後角に多く存在 することから、痛みに何らかの影響を示すと見られてい た。1992年には、PKC B阻害剤のPDBu (phor bor 12 13-dibutyrate) が炎症性痛覚過敏を抑制するこ とが報告され (Neurosci. Lett., 14 0,181-184,1992)、PKC阻害剤の痛み に関する作用が実証された。PKCアイソザイムの中で も、PKCγは脳と脊髄にのみ発現が認められており、 特にPKCヶ選択的阻害剤は、疼痛、痛覚過敏、アロデ ィニア及びモルヒネ等麻薬性鎮痛薬に対する耐性への適 応が期待される。1995年、モルヒネの連続投与によ ってモルヒネ耐性の得られた実験動物において、脊髄後 ---角でPKC アの免疫活性が明らかに増加したことが報告 zh (BRAIN RESEARCH, 677 (2), 257-67, 1995)、モルヒネとPKC阻害剤を 併せて投与した結果、モルヒネ耐性を予防したことも報 告された (PAIN, 85 (3), 395-404, 2 000)。また、普通の動物では、末梢神経の傷害によ って神経過敏症状や持続痛が引き起こされる場合がある が、PKCァを欠如させた実験動物においては、ほとん ど完全に神経性疼痛症状には発展しなかったことが報告 され、持続痛の予防及び治療への可能性が示されている (SCIENCE, 278 (5336), 279-8 3, 1997)。1999年には、末梢性の炎症によっ て引き起こされるアロディニアの持続に、PKCァが寄 与しているとする説が提案されている (NEUROSC IENCE, 88 (4), 1267-74, 199 9)。PKC阻害作用を有する化合物は、既に数多く報 告されている。このうちいくつかの阻害剤はその他のキ ナーゼ類等と比較しPKC選択的であるにもかかわら ず、アイソザイムにおける選択性が不十分である等の理 由により、未だ実用的な薬剤の開発には至っていない。 PKCが細胞内情報伝達に中心的な役割を果たすことを

考慮すると、特に、PKCャの分布が多い細胞及び酸器、PKCャを選択的に活性化する症状、PKCャが深く関連する症状に於ては、PKCヶ活性を選択的に阻害することが望ましく、PKCヶ選択的阻害剤が安全かつ副作用の少ない薬剤の開発ターゲットとして期待される。

【0005】外傷、外科手術、炎症等により引き起こさ れる痛み、更には傷害が回復した後の神経の損傷・機能 障害等から生じる慢性的な痛みは臨床上の大きな問題の 一つである。また、通常の痛い刺激に対し反応の亢進を 示す痛覚過敏、正常な場合痛みを感じない刺激に対し痛 みを感じるアロディニア等の知覚神経異常による痛み も、生活に支障をきたす深刻な症状に発展することがあ る。現在、モルヒネを始めいくつかの鎮痛薬が用いられ ている。しかし、麻薬性及び非麻薬性オピオイドは強い 鎮痛作用を示す一方、身体依存性、精神依存性を示し、 退薬症状を発現する。また、その他の副作用として呼吸 抑制作用、悪心、嘔吐、便秘、排尿困難等の症状が現れ るため、その使用が制限されると言う欠点を持つ。神経 の損傷・機能障害等によって起こる疼痛には、現在通常 臨床で使用されている鎮痛薬、例えば解熱性鎮痛薬・麻 薬性鎮痛薬に対し抵抗性を示し、有効な鎮痛作用を示さ ない症状も見られる。よって安全性と有効性を兼ね備え た鎮痛剤特に耽溺性を有さない強力な鎮痛剤、痛覚過敏 及びアロディニア等の知覚神経異常に対する鎮痛剤、モ ルヒネ等の麻薬性鎮痛剤の耐性を改善する薬剤の開発が 望まれている。

【0006】ここで、本発明のチアゾール化合物と比較 的構造の類似する化合物を開示する先行文献を紹介す る。特開平10-287634号には、PKC阻害剤と して下記化合物A等が開示されている。

【化7】

化合物A

しかし、該特許の発明化合物と本発明化合物とは、化学 構造的な特徴が異なっており、本発明化合物の示唆も見 られない。

【0007】更に、Pharmazie, 48(12), 948-949(1993)には、下記化合物B及び類似化合物の抗炎症効果が示されており、抗炎症の試験で最も効果の高い下記化合物Cについては鎮痛効果も示されている。

【化8】

化合物B

化合物C

【0008】また、J. Indian Chem. Soci., 57 (12), 1241-3 (1980) には、アセチルコリンエステラーゼ阻害剤として、下記化合物Dが開示されている。

【化9】

化合物D

また、WO99/21555号には、アデノシンA3受容体アンタゴニストとして下記化合物Eが開示されており、該化合物の喘息、アレルギー疾患、炎症等への治療 20 剤としての用途が述べられている。

【化10】

化合物G

しかし、これら文献に開示されるアミド化合物は、単に 鎮痛作用を有する化合物の中間体として開示されるに止 まるものである。

[0011]

【発明が解決しようとする課題】これらの知見によりP KC阻害剤は、PKCに関連する諸症状を治療又は/及 40 び予防する薬剤となり得る。特に、PKCヶ選択的阻害 剤は、正常な細胞内情報伝達を損なうことなく、顕著な 副作用を示さない安全な薬剤となり、特に痛み(疼痛、 痛覚過敏、アロディニア、モルヒネ等の麻薬性鎮痛薬に 対する耐性等)の治療及び予防剤となり得る。従って、 本発明の目的は、PKC阻害作用を有する薬剤、特にP KCヶ選択的阻害作用を有する薬剤を提供することである。

【課題を解決するための手段】

【0012】本発明者らは、高いPKC阻害作用を有し※50

*【0009】更に、特開昭59-193878号(US 4649146, US4735957, EP11708 2)には、下記化合物Fが開示されており、該化合物の10 強心作用、抗潰瘍作用が述べられている。

【化11】

化合物F

しかし、これら文献には、該化合物の医薬用途について の記載はあるものの、本発明化合物を教示するような記 載はなく、また、PKC阻害活性についての記載も見ら れない。

【0010】一方、FR2073282号には、下記アミド化合物Gが、また、Indian J. Chem., 1 (10), 441-2 (1963)には、下記アミド化合物Hが開示されている。

【化12】

化合物H

※かつPKC ア選択的阻害作用を有する化合物を見出すべく鋭意研究を重ねた結果、本発明を完成するに至った。 より詳しくは下記(1)乃至(11)に示す通りである。

【0013】(1) 下記一般式 [I]で表されるチア ゾール化合物又は製薬上許容されるその塩を含んでなる プロテインキナーゼC阻害剤。

【化13】

[式中、R¹ は、水素原子、ハロゲン原子、又は、C 1-6 アルキル基であり、R² は、水素原子、又は、下 記グループAから選ばれる置換基で置換されてもよいC 1-6 アルキル基であり、

{グループA:ハロゲン原子、-ORb¹(式中、R b1は、水素原子、又は、C1-6アルキル基であ る。)、-SRb2 (式中、Rb2は、水素原子、又 は、C1-6アルキル基である。)、及び、-NRb3 Rb4(式中、Rb3及びRb4は、それぞれ同一若し くは異なって、水素原子、C1-6アルキル基、又は、 Rb3 及びRb4 が隣接する窒素原子と一緒になって形 成するヘテロ環基であり、ここで、該隣接する窒素原子 と一緒になって形成するヘテロ環基は、1つの窒素原子 の他に、酸素原子、窒素原子又は硫黄原子から選ばれる ○乃至3個のヘテロ原子を含み、C₁-6アルキル基で - 置換されてもよい。)。) R 3 及び R 4 は、それぞれ同 一若しくは異なって、水素原子、上記グループAから選 ばれる置換基で置換されてもよいC1-6アルキル基、 -ORa1 (式中、Ra1は、水素原子、C1-6アル キル基、又は、C1-6アルキルカルボニル基であ る。)、又は、-NRa2Ra3 {式中、Ra2及びR a 3 は、それぞれ同一若しくは異なって、水素原子、C 1-6 アルキル基、C1-6 アルコキシカルボニル基、 又は、Ra2及びRa3が隣接する窒素原子と一緒にな 20 って形成するヘテロ環基(前記定義の通り。)であ る。} であり、R2 とR3 は、隣接する-N-CO-C R4ーと一緒になって、

【化14】

{式中、Vは、-CH₂-、-O-、-S-、-CO -, -OCO-, -NRa 5 -, -CO-NRa 5 -, 又は、-NRa5-CO-(ここで、Ra5は、水素原 子、C1-6アルキル基、C6-14アリールC1-6 アルキル基、C1 - 6 アルコキシカルボニル基、又は、 C6-14 アリールC1-6 アルキルオキシカルボニル 基である。)、Wは、C1-6アルキル基、又は、上記 グループAから選ばれる置換基であり、tは、0、1又 は2であり、tが2の時、2つのWはそれぞれ同一若し くは異なってもよく、m及びnは、それぞれ同一若しく は異なって、0又は1乃至3の整数である。)で表され 40 れ同一若しくは異なっていてもよい。] る環を形成してもよく、Xは、単結合、C1-4アルキ νν, -O-, -S-, -COO-, -OCO-, -N Ra4-、-CO-NRa4-、又は、-NRa4-C O-(式中、Ra4は、水素原子、又は、上記グループ Aから選ばれる置換基で置換されてもよいC1-6アル キル基である。) であり、

【0014】環Hyは、ヘテロ環基であり、ここで、該 ヘテロ環基は、酸素原子、窒素原子又は硫黄原子から選 ばれる1乃至4個のヘテロ原子を含み、該ヘテロ環基は、 下記グループBから選ばれる1万至3個の置換基で置換 50 1-6アルキル基であり、R2は、水素原子、又は、下

されてもよく、該置換基が2個又は3個の時、該置換基

12

はそれぞれ同一若しくは異なっていてもよい {グループB: ニトロ基、ハロゲン原子、及び、-Y--Z[ここで、Yは、単結合、-CH=CH-、-O-、 -CH(OH) - COO - NRb5 - NRb 6 - CO - , - NR b 7 - COO - , - NR b 8 - C O-NR^{b 9} -、-NR^{b 1 0} - SO₂ -、及び、-C O-NRb11-(式中、Rb5、Rb6、Rb7、R b8、Rb9、Rb10及びRb11は、水素原子、又 10 は、C₁ - 6 アルキル基である。)、Zは、水素原子、 上記グループAから選ばれる置換基で置換されてもよい C1-6アルキル基、C6-14アリール基、C2-7、 シクロアルキル基、Cョーァシクロアルケニル基、ヘテ 口環基(前記定義の通り。)、C6-14アリールC 1-6 アルキル基、C3-7 シクロアルキルC1-6 ア ルキル基、C3-7シクロアルケニルC1-6アルキル 基、及び、ヘテロ環C1-6アルキル基 (ここで、該基 は、前記定義の通りのヘテロ環に置換されたC1-6ア ルキル基を示す。) であり、ここで、該C6-14アリ ール基、該C3-7シクロアルキル基、該C3-7シク ロアルケニル基、該ヘテロ環基、該C6-14アリール C1-6アルキル基、該C3-7シクロアルキルC 1-6アルキル基、該C3-7シクロアルケニルC 1-6アルキル基、及び、該ヘテロ環C1-6アルキル 基は、下記グループCから選ばれる1乃至3個の置換基 で置換されてもよく、該置換基が2個又は3個の時、置 換基はそれぞれ同一苦しくは異なっていてもよい

【グループC:ハロゲン原子、上記グループAから選ば れる置換基で置換されてもいて1-6アルキル基、一〇 30 Rc 1 (式中、Rc 1 は、水素原子、又はC1-6 アル キル基である。)、及び、-NRc2Rc3 (式中、R c2及びRc3は、それぞれ同一若しくは異なって、水 素原子、又はC1-6アルキル基であ

る。)。}。]。}。環Cyは、C6 - 1 4 アリール 基、C3-7シクロアルキル基、又は、ヘテロ環基 (前 記定義の通り。)であり、該C6-14アリール基、該 C3-7シクロアルキル基及び該へテロ環基は、上記グ ループBから選ばれる1乃至3個の置換基で置換されて もよく、該置換基が2個又は3個の時、置換基はそれぞ

【0015】(2) 下記一般式[11]で表されるチア ゾール化合物又は製薬上許容されるその塩。

【化15】

$$\begin{array}{c|c}
 & R^2 & R^3 \\
 & R^3 & R^3 \\
 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 & R^3 & R^3 & R^3 \\
 & R^3 &$$

[式中、R1は、水素原子、ハロゲン原子、又は、C

記グループAから選ばれる置換基で置換されてもよいC 1-6アルキル基であり、

{グループA:ハロゲン原子、-ORb¹(式中、R b1は、水素原子、又は、C1-6アルキル基であ る。)、-SRb2 (式中、Rb2は、水素原子、又 は、C1-6アルキル基である。)、及び、-NRb3 Rb4(式中、Rb3及びRb4は、それぞれ同一若し くは異なって、水素原子、C1-6アルキル基、又は、 Rb 3 及びRb 4 が隣接する窒素原子と一緒になって形 成するヘテロ環基であり、ここで、該隣接する窒素原子 と一緒になって形成するヘテロ環基は、1つの窒素原子 。。の他に、酸素原子、窒素原子又は硫黄原子から選ばれる 0乃至3個のヘテロ原子を含み、C1-6アルキル基で 置換されてもよい。)。) R3 及びR4 は、それぞれ同 一若しくは異なって、水素原子、上記グループAから選 ばれる置換基で置換されてもよいC1-6アルキル基、 -ORa1 (式中、Ra1は、水素原子、C1-6 アル キル基、又は、C1-6アルキルカルボニル基であ る。)、又は、-NRa2Ra3 {式中、Ra2及びR a 3 は、それぞれ同一若しくは異なって、水素原子、C 20 り。)、C6-14 アリールC1-6 アルキル基、C 1-6 アルキル基、C1-6 アルコキシカルボニル基、 又は、Ra2及びRa3が隣接する窒素原子と一緒にな って形成するヘテロ環基 (前記定義の通り。)であ る。) であり、R2とR3は、隣接する-N-CO-C R4ーと一緒になって、

【化16】

{式中、Vは、-CH2-、-O-、-S-、-CO -, -OCO-, -NRa5-, -CO-NRa5-, 又は、-NRa5-CO-(ここで、Ra5は、水素原 子、C1-6アルキル基、C6-14アリールC1-6 アルキル基、C1 - 6 アルコキシカルボニル基、又は、 C6-14 アリールC1-6 アルキルオキシカルボニル 基である。)、Wは、C1-6アルキル基、又は、上記 グループAから選ばれる置換基であり、tは、0、1又 40 は2であり、tが2の時、2つのWはそれぞれ同一若し くは異なってもよく、m及びnは、それぞれ同一若しく は異なって、0又は1乃至3の整数である。)で表され る環を形成してもよく、Xは、単結合、C1-4アルキ $\nu\nu$, -0-, -S-, -C00-, -OCO-, -N Ra4-,-CO-NRa4-, XII, -NRa4-C O-(式中、Ra4は、水素原子、又は、上記グループ Aから選ばれる置換基で置換されてもよいC₁₋₆アル キル基である。)であり、

【0016】環Hy'は、

【化17】

{ここで、Qは、-NRa6-(式中、Ra6は水素原 子、又は、上記グループAから選ばれる置換基で置換さ れてもよいC1-6アルキル基である。)、又は、一〇 -、-S-であり、R5は、水素原子、ハロゲン原子。 又は、C1-6アルキル基であり、Yは、単結合、一C H=CH-, -O-, -CH(OH)-, -COO-, $-NR^{b5}$ - $-NR^{b6}$ - CO - $-NR^{b7}$ - CO $O = \frac{1}{2} - \frac{1}{2} + \frac{1}{2} +$ SO₂ -、及び、-CO-NRb 1 1 - (式中、 Rb5、Rb6、Rb7、Rb8、Rb9、Rb10及 びRb 1 1 は、水素原子、又は、C1 - 6 アルキル基で ある。)、Zは、水素原子、上記グループAから選ばれ る置換基で置換されてもよいC₁₋₆アルキル基、C 6-14 アリール基、C3-7 シクロアルキル基、C 3-7シクロアルケニル基、ヘテロ環基(前記定義の涌 3-7シクロアルキルC1-6アルキル基、C3-7シ クロアルケニルC1 - 6 アルキル基、及び、ヘテロ環C 1-6アルキル基(ここで、該基は、前記定義の通りの ヘテロ環に置換されたC1-6アルキル基を示す。) で あり、ここで、該C6-14アリール基、該C3-7シ クロアルキル基、該C3-7シクロアルケニル基、該へ テロ環基、該C6-14アリールC1-6アルキル基、 該C3 - 7 シグロアルキルC1 - 6 アルキル基、該C 3-7シクロアルケニルC1-6アルキル基、及び、該 30 ヘテロ環C1-6アルキル基は、下記グループCから選 ばれる1乃至3個の置換基で置換されてもよく、該置換 基が2個又は3個の時、置換基はそれぞれ同一若しくは 異なっていてもよい

【グループC:ハロゲン原子、上記グループAから選ば れる置換基で置換されてもいC1 - 6 アルキル基、-〇 R^{c 1} (式中、R^{c 1} は、水素原子、又はC₁ - 6 アル キル基である。)、及び、-NRc2Rc3 (式中、R c2及びRc3は、それぞれ同一若しくは異なって、水 素原子、又はC1-6アルキル基であ

る。)。 } 。] 。 } 。 環C yは、 C6 - 1 4 アリール 基、Cョ-ヮシクロアルキル基、又は、ヘテロ環基 (前 記定義の通り。) であり、該C6-14アリール基、該 C3-7シクロアルキル基及び該ヘテロ環基は、下記グ ループBから選ばれる1乃至3個の置換基で置換されて もよく、該置換基が2個又は3個の時、置換基はそれぞ れ同一若しくは異なっていてもよい。

· 【グループB: ニトロ基、ハロゲン原子、及び、-Y-Z(Y及びZは前記定義の通り。) }]

【0017】(3) 環Hy'が、

50 【化18】

(式中、各記号は請求項2記載の通り。)である(2) 記載のチアゾール化合物又は製薬上許容されるその塩。 【0018】(4) Yが、-NRb5-Xは-NR b 6 −CO− (式中、各記号は請求項2記載の通り。) である(3)記載のチアゾール化合物又は製薬上許容さ れるその塩。

【0019】(5) Qが、-S-である(4)記載の 10 チアゾール化合物又は製薬上許容されるその塩。

- 『【0020】(6) Xが、単結合である(5)記載の チアゾール化合物又は製薬上許容されるその塩。

【0021】(7) Yが、-NRb6-CO-(式 中、記号Rb6は請求項2記載の通り。)であり、Z が、C1-6アルキル基又はC3-7シクロアルキル基 である(6)記載のチアゾール化合物又は製薬上許容さ れるその塩。

【0022】(8) 環Cyが、フェニル基又はピリジ ル基である(7)記載のチアゾール化合物又は製薬 上許 20 容されるその塩であって、当該フェニル基及びピリジル 基は、請求項2記載のグループCから選ばれる1乃至3 個の置換基で置換されてもよく、該置換基が2個又は3 個の時、該置換基はそれぞれ同一若しくは異なっていて もよい.

【0023】(9) (2) 乃至(8) 記載のチアゾー ル化合物又は製薬上許容されるその塩を含んで成る医薬 組成物。

[0024](10)(1) 乃至(9) 記載のチアゾ ール化合物又は製薬上許容されるその塩を含んで成るプ 30 ロテインキナーゼCアイソザイムァ選択的阻害剤。

【0025】(11) (2)乃至(9)記載のチアゾ ール化合物又は製薬上許容されるその塩を含んで成る鎮 痛剤。

【0026】本明細書において使用する各用語の意味 は、次の通りである。「プロテインキナーゼC阻害剤」 とは、プロテインキナーゼC (以下、PKC)の酵素活 性を阻害することにより、PKCに関連する症状を治療 又は/及び予防する薬剤である。PKCに関連する症状 としては、痛み(疼痛、痛覚過敏、アロディニア、モル ヒネ等の麻薬性鎮痛薬に対する耐性等)、糖尿病合併症 (糖尿病性網膜症、糖尿病性腎症、糖尿病性心筋症、糖 尿病性神経障害等)、動脈硬化、血管障害(血栓症 等)、炎症、皮膚病、免疫性疾患(後天性免疫不全症 挙げられる。「プロテインキナーゼCアイソザイムγ選 状的阻害剤」とは、PKCアイソザイム中のアの酵素活 性を阻害する薬剤であって、その他のアイソザイム、特 $に、 \alpha 及 U \beta に対する 阻害活性と比較し、 <math>\gamma$ に対する 阻

害活性が α 及び β の3倍以上のものであり、10倍以上 ものが更に好ましい。「鎮痛剤」とは、痛みを軽減或い は消失させる薬剤であって、疼痛、特に、術後疼痛等の 激しい疼痛或いは神経の損傷・機能障害等によって起こ る疼痛を抑えるものが好ましい。また、痛覚過敏、アロ ディニア等の知覚神経異常の症状を治療する薬剤、モル ヒネ等の麻薬性鎮痛薬に対する耐性の改善により鎮痛薬

の鎮痛効果を高める薬剤を意味する。また、これら症状

を予防するための薬剤の使用を包含する。

16

【0027】「ハロゲン原子」とは、フッ素原子、塩素 原子、臭素原子又はヨウ素原子であり、好ましくはフッ - 素原子、塩素原子又は臭素原子である。R1-において特 に好ましくは、塩素原子であり、環Hyの置換基 (グル ープB)、環HyのZの置換基(グループC)、環Cy の置換基(グループB)、環CyのZの置換基(グルー プC)として特に好ましくは、フッ素原子である。

【0028】「C1 - 6 アルキル基」とは、炭素数1 乃 至6の直鎖又は分岐鎖アルキル基を表し、具体的には、 メチル基、エチル基、プロピル基、イソプロピル基、ブ チル基、イソブチル基、secーブチル基、tertー ブチル基、ペンチル基、イソペンチル基、tertーペ ンチル基、ヘキシル基等が挙げられる。好ましくは炭素 数1乃至4の直鎖又は分岐鎖アルキル基であり、R1、 R5 , Ra1 , Ra2 , Ra3 , Rb1 , Rb2 , R b 6、R b 7、R b 8、R b 9、R b 1 0、R b 1 1 及 びWにおいて特に好ましくは、メチル基であり、Rb3 及びRb4においては、メチル基又はエチル基であり、 更に好ましくは、メチル基である。Ra5において特に 好ましくは、メチル基、エチル基、イソプロピル基又は イソブチル基であり、更に好ましくはメチル基である。 環HyのRb5 において特に好ましくは、メチル基又は エチル基であり、環HyのRc 1 において好ましくは、 メチル基であり、環CyのRb5、Rc1、Rc2、R c 3 において特に好ましくは、メチル基である。

【0029】「C1-6アルキルカルボニル基」とは、 上記「C1-6アルキル基」が置換したカルボニル基で あって、具体的には、アセチル基、プロピオニル基、ブ チリル基、イソブチリル基、ピバロイル基等が挙げられ る。好ましくはアルキル部位が炭素数1乃至4の直鎖又 は分岐鎖アルキル基であり、Ra 1 において特に好まし くはアセチル基である。

【0030】「C1-6アルコキシカルボニル基」と は、C1-6アルコキシ部位のアルキルが上記「C 1 - 6 アルキル基」であるアルキルオキシカルボニル基 であって、メトキシカルボニル基、エトキシカルボニル 基、プロポキシカルボニル基、イソプロピルオキシカル ボニル基、ブトキシカルボニル基、イソブチルオキシカ ルボニル基、tert-ブトキシカルボニル基、ペンチ ルオキシカルボニル基、ヘキシルオキシカルボニル基等 害活性が高いものが好ましい。特に好ましくは、アの阻 50 が挙げられる。好ましくはアルキル部位が炭素数1万至

4の直鎖又は分岐鎖アルキル基であり、R a 2 及びR a 3 において特に好ましくはtertーブトキシカルボニル基である。

【0031】「隣接する窒素原子と一緒になって形成す るヘテロ環基」とは、1つの窒素原子の他に、酸素原 子、窒素原子又は硫黄原子から選ばれる0乃至3個のへ テロ原子を含み、3乃至10員環の飽和又は不飽和のへ テロ環であり、C1-6アルキル基で置換されてもよ い。具体的には、アジリジニル基、ピロリル基、ピロリ ニル基、ピロリジニル基、イミダゾリル基、ピラゾリル 10 基、オキサゾリル基、ピペリジノ基、ピペラジニル基、 ビラゾリジニル基、モルホリノ基、インドリル基、イソ インドリル基、インドリニル基、イソインドリニル基、 4-メチルピペラジン-1-イル基等が挙げられる。好 ましくは1つの窒素原子の他に、酸素原子、窒素原子又 は硫黄原子から選ばれる0又は1個のヘテロ原子を含 み、5又は6員環の飽和又は不飽和のヘテロ環であり、 C1 - 6 アルキル基で置換されてもよい。Rb3 とR b 4 が、「隣接する一緒になって窒素原子と一緒になっ て形成するヘテロ現基」として特に好ましくは、ピロリ ジニル基、イミダゾリル基、ピペリジノ基、モルホリノ 基、4-メチル-1-ピペラジニル基であり、Ra2と Ra3が、「隣接する一緒になって窒素原子と一緒にな って形成するヘテロ環基」として特に好ましくは、ピペ リジノ基である。

【0032】「グループAから選ばれる置換基で置換さ れてもよいC1-6アルキル基」とは、上記定義の「C 1-6 アルキル基」が、下記グループAから選ばれる1· 乃至3個の置換基で置換されてもよいものであって、無 置換のC1-6アルキル基も含む。グループAとは、上 30 記定義の「ハロゲン原子」、-ORb1 (式中、Rb1 は、水素原子、又は、上記定義の「C1-6アルキル 基」である。)、-SRb2 (式中、Rb2は、水素原 子、又は、上記定義の「C1-6アルキル基」であ る。)、及び、-NRb3Rb4 (式中、Rb3及びR b 4 は、それぞれ同一若しくは異なって、水素原子、上 記定義の「C₁ - 6 アルキル基」、又は、Rb 3 及びR b 4 が上記定義の「隣接する窒素原子と一緒になって形 成するヘテロ環基」である。) である。該グループ Aか ら選ばれる置換基で置換されてもよいC₁₋₆アルキル 40 基として、具体的には、メチル基、エチル基、プロビル 基、イソプロビル基、ブチル基、イソブチル基、sec ーブチル基、tertーブチル基、ペンチル基、イソペ ンチル基、tertーペンチル基、ヘキシル基、クロロ メチル基、トリフルオロメチル基、2-ヒドロキシエチ ル基、3-ヒドロキシプロピル基、2-メトキシエチル 基、2ーメチルチオエチル基、2ーアミノエチル、2-(メチルアミノ) エチル基、2-(ジメチルアミノ) エ チル基、2-(ジエチルアミノ)エチル基、3-(ジメ チルアミノ) プロビル基、4-(ジメチルアミノ) ブチ

ル基、3-(ジメチルアミノメチル)ブチル基、1-(ジメチルアミノメチル)ブチル基、2-ピペリジノエチル基、2-ピペラジン-1-イル)エチル基、3-(4-メチルピペラジン-1-イル)プロピル基、2-モルホリノエチル基、3-(イミダゾリン-1-イル)プロピル基、2-ピロリジン-1-イル)エチル基等が挙げられる。

【0033】R2において好ましくは、無置換、-OR b 1 置換又は−NR b 3 R b 4 置換 (各記号は上記の通 り。)の「C1-6アルキル基」であり、具体的には、 メチル基、2-ヒドロキシエチル基、3-ヒドロキシア ロピル基、2ーメトキシエチル基、2ーアミノエチル。 2-(メチルアミノ) エチル基、2-(ジメチルアミ ノ) エチル基、2-(ジエチルアミノ) エチル基、3-(ジメチルアミノ) プロピル基、4-(ジメチルアミ ノ) ブチル基、2-ピペリジノエチル基、3-(4-メ チルピペラジン-1-イル) プロピル基、2-モルホリ ノエチル基、3-(イミダゾリン-1-イル)プロピル 基、2-(ピロリジン-1-イル)エチル基であり、R 2において特に好ましくは、-NRb3Rb4置換の 「C1-6アルキル基」であり、具体的には、2-アミ ノエチル、2-(メチルアミノ)エチル基、2-(ジメ チルアミノ) エチル基、2-(ジエチルアミノ) エチル 基、3-(ジメチルアミノ)プロピル基又は4-(ジメ チルアミノ) ブチル基であり、更に好ましくは、2-(ジメチルアミノ) エチル基である。R3 において好ま - しくは、無置換の「C1 - 6 アルキル基」であり、特に · 好ましくは、メチル基である。環Hyの2 (グループ) B) において好ましくは、メチル基、エチル基、イソア ロピル基、イソブチル基、tert-ブチル基、3-ペ ンチル基、トリフルオロメチル基、ヒドロキシメチル 基、ジメチルアミノメチル基又はメチルチオメチル基、 特に好ましくは、メチル基又はtert-ブチル基であ る。環HyのZの置換基(グループC)において好まし くは、メチル基、tert-ブチル基又はトリフルオロ メチル基である。環CyのZにおいて好ましくは、メチ ル基、イソプロピル基、イソブチル基、tertーブチ ル基、トリフルオロメチル基又はジメチルアミノメチル 基である。環CyのZの置換基 (グループC) において 好ましくは、メチル基、プロピル基、tertーブチル 基、トリフルオロメチル基である。

【0034】「C1-4アルキレン」とは、炭素数1乃至4の直鎖又は分岐鎖のアルキレンであり、メチレン、エチレン、トリメチレン、プロピレン、テトラメチレン等が挙げられる。Xにおいて好ましくは、メチレン及びエチレンであり、特に好ましくはメチレンである。【0035】「C6-14アリール基」とは、炭素数6乃至14の芳香族炭化水素基であり、具体的にはフェニル基、ナフチル基、アントリル基、アズレニル基、フェナントリル基等が挙げられる。環HyのZ(グルーア

B)、環Cy、環CyのZ(グループB)において、好 ましくはフェニル基又はナフチル基であり、特に好まし くはフェニル基である。

【0036】「C3-7シクロアルキル基」とは、炭素 数3乃至7個の飽和シクロアルキル基であり、具体的に はシクロプロピル基、シクロブチル基、シクロペンチル 基、シクロヘキシル基又はシクロヘプチル基である。環 Cy及び環CyのZ (グループB) として好ましくは、 シクロペンチル基、シクロヘキシル基、シクロヘプチル 基であり、環Cy及び環CyのZ (グループB) におい 10 て特に好ましくは、シクロヘキシル基であり、環Hyの Z (グループB) において特に好ましくはシクロプロピ ル基である。

【0037】「Cョーァシクロアルケニル基」とは、炭 素数3乃至7個、好ましくは5乃至7個のシクロアルケ ニル基であり、部分的な二重結合を含むが、フェニル基 の様なアリール基及び完全飽和のシクロアルキル基を含 まない。具体的には、シクロプロペニル基、シクロブテ ニル基、シクロペンテニル基、シクロペンタジエニル 基、シクロヘキセニル基、2、4-シクロヘキサジエン 20 -1-イル基、2、5-シクロヘキサジエン-1-イル 基、シクロヘプテニル基等が挙げられる。環Hyの乙に おいて、特に好ましくはシクロペンテニル基である。

【0038】「ヘテロ環基」とは、酸素原子、窒素原子 又は硫黄原子から選ばれる1乃至4個のヘテロ原子を含む 5員環又は6員環の飽和又は不飽和のヘテロ環基であっ て、それらは互いに縮合若しくはベンゼン環と縮合して 2環の縮合環を形成してもよい。単環であるヘテロ環基 として具体的には、ピリジル基、ピラジニル基、ピリミ ジニル基、ピリグジニル基、トリアジニル基、ピロリル 30 ニル基、1,3-ジオキサインダンニル基、キノリル 基、ピラゾリル基、イミダゾリル基、トリアゾリル基、 テトラゾリル基、チエニル基、フリル基、オキサゾリル 基、イソオキサゾリル基、チアゾリル基、イソチアゾリ ル基、オキサジアゾリル基、チアジアゾリル基、ピロリ ニル基、ピロリジニル基、イミダゾリジニル基、ピペリ ジル基、ピペラジニル基、モルホリル基、チオモルホリ ル基、テトラヒドロビラニル基等が挙げられる。また、 縮合環であるヘテロ環基として具体的には、キノリル 基、イソキノリル基、キナゾリニル基、キノキサリニル 基、フタラジニル基、シンノリニル基、ナフチジニル 基、5,6,7,8-テトラヒドロキノリル基、インド リル基、ベンゾイミダゾリル基、ベンゾフラニル基、ベ ンゾチエニル基、1,3-ジオキサインダンニル基、イ ンドニリル基、ベンゾオキサゾリル基、ベンゾチアゾリ ル基、1,3-ジオキソイソインドリル基、1-オキソ -1, 2-ジヒドロイソキノリル基、1-オキソ-1, 2, 3, 4ーテトラヒドロイソキノリル基等が挙げられ る.

【0039】環Hyにおいて好ましくは、5員或は6員

リジル基、ピラジニル基、ピリミジニル基、ピリダジニ ル基、トリアジニル基、ピロリル基、ピラゾリル基、イ ミダゾリル基、トリアゾリル基、テトラゾリル基、フリ ル基、チエニル基、オキサゾリル基、イソオキサゾリル 基、オキサジアゾリル基、チアゾリル基、イソチアゾリ ル基、オキサジアゾリル基、チアジアゾリル基等が挙げ られる。特に好ましくは、ピリジル基、ピロリル基、フ リル基、チエニル基、イミダゾリル基、オキサゾリル 基、イソオキサゾリル基、チアゾリル基、イソチアゾリ ル基、トリアゾリル基、オキサジアゾリル基又はチアジ アゾリル基であり、であり、更に好ましくは、オキサゾ リル基、チアゾリル基又はモアジアゾリル基であり、最。 も好ましくはチアゾリル基である。環HyのZ (グルー プB)において好ましくは、5員或は6員の単環である 不飽和又は飽和のヘテロ環基であり、具体的には、イミ ダゾリル基、チエニル基、ピロリジニル基、ピペリジル 基、モルホリル基等が挙げられる。現Cyにおいて好ま しくは、5員或は6員の単環である不飽和又は飽和のへ テロ環基若しくはそれらとベンゼン環の縮合環であり、 具体的には、イミダゾリル基、チエニル基、ピロリジニ ル基、ピペリジル基、インドリル基、ベンゾフラニル 基、ベンゾチエニル基、1,3-ジオキサインダンニル 基等が挙げられる。環CyのZ (グループB) において 好ましくは、5員或は6員の単環である不飽和又は飽和 のヘテロ環基若しくはそれらとベンゼン環の縮合環であ り、具体的には、ピロリル基、フリル基、チエニル基。 イミダゾリル基、イソオキサゾリル基、ピロリジニル 基、ピラジニル基、ピリジル基、ピペリジル基、モルホ リル基、インドリル基、ベンゾフラニル基、ベンゾチェ 基、キノキサリニル基、シンノリニル基等が挙げられ る。特に好ましくはピリジル基、ピラジニル基、ピロリ ル基、フリル基、チエニル基、ピロリジニル基、モルホ リル基、イソオキサゾリル基、インドリル基、キノリル 基、キノキサリニル基、シンノリニル基である。

【0040】「C6-14アリールC1-6アルキル 基」とは、上記「C6-14アリール基」が置換した上 記「C1 - 6 アルキル基」であり、 好ましくはアルキル 部位が炭素数1乃至4の直鎖アルキル基であり、アリー 40 ル部位がフェニル基であるアリールアルキル基である。 具体的には、ベンジル基、フェネチル基、3-フェニル プロビル基、2-フェニルプロビル基、4-フェニルブ チル基等が挙げられる。環HyのZ (グループB) 及び 環CyのZ(グループB)において特に好ましくは、ベ ンジル基又はフェネチル基である。

【0041】「C3-7シクロアルキルC1…6アルキ ル基」とは、上記「С3-6シクロアルキル基」が置換 した上記「C1-6アルキル基」であり、好ましくはア ルキル部位が炭素数1乃至4の直鎖アルキル基であるシ の単環である不飽和へテロ環基であり、具体的には、ビ 50 クロアルキルアルキル基である。具体的には、シクロブ

ロピルメチル基、シクロブチルメチル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロヘアチルメチル基、2-シクロブロピルエチル基、2-シクロブチルエチル基、2-シクロヘンチルエチル基、2-シクロヘキシルエチル基、2-シクロヘアチルエチル基等が挙げられる。環HyのZ(グループB)として好ましくは、シクロペンチルメチル基又はシクロヘキシルメチル基である。

【0042】「C3-7シクロアルケニルC1-6アル キル基」とは、上記「C3-6シクロアルケニル基」が 10 置換した上記「С1-6アルキル基」であり、好ましく はアルキル部位が炭素数1乃至4の直鎖アルキル基であ るシクロアルケニルアルキル基である。具体的には、 (2-シクロプロペン-1-イル)メチル基、(2-シ クロブテン-1-イル) メチル基、(2-シクロペンテ ン-1-イル) メチル基、2-(2-シクロペンテン-1-イル) エチル基、(2,4-シクロペンタジエンー 1-イル)メチル基、(2-シクロヘキセニルー1-イ ル) メチル基、(3-シクロヘキセニル-1-イル) メ チル基、(2,4-シクロヘキサジエン-1-イル)メ チル基、(2,5ーシクロヘキサジエン-1-イル)メ チル基、(2-シクロヘプテニル)メチル基等が挙げら れる。環HyのZにおいて、特に好ましくは(2-シク ロペンテン-1-イル) メチル基である。

【0043】「ヘテロ環C1-6アルキル基」とは、上記「ヘテロ環基」が置換した上記「C1-6アルキル基」であり、好ましくは、ヘテロ環部位が5員又は6員の単環式ヘデロ環であり、アルキル部位が炭素数1万至4の直鎖アルキル基であるヘテロ環アルキル基である。具体的には、1ーピロリルメチル基、2ーフリルメチル基、2ーピロリジニルメチル基、4ーピラジニルメチル基、4ーピリジルメチル基、4ーピリジルメチル基、4ーピリジルメチル基、モルホリノメチル基等が挙げられ、環Hyにおいて特に好ましくは、2ーチエニルメチル基又は1ーイミダゾリルメチル基である。

【0044】「C6-14アリールC1-6アルキルオキシカルボニル基」とは、C6-14アリールC1-6アルキル部位が、上記「C6-14アリール基」が置換した上記「C1-6アルキル基」であるアリールアルキルオキシカルボニル基であり、好ましくは、ヘテロ環部位が受素数1乃至4の直鎖アルキル基である。具体的には、ベンジルオキシカルボニル基、フェネチルオキシカルボニル基、3-フェニルプロピルオキシカルボニル基、4-フェニルプロピルオキシカルボニル基、4-フェニルプチルオキシカルボニル基等が挙げられる。Ra5において特に好ましくは、ベンジルオキシカルボニル基である。

【0045】R¹ として好ましくは、水素原子、塩素原子又はメチル基であり、特に好ましくは水素原子であ

る。R²として好ましくは、上記「グループAから選ば れる置換基で置換されてもよいC1-6アルキル基」で あり、メチル基、2-ヒドロキシエチル基、3-ヒドロ キシプロピル基、2-メトキシエチル基、2-アミノエ チル基、2-(メチルアミノ)エチル基、2-(ジメチ ルアミノ) エチル基、2-(ジエチルアミノ) エチル 基、3-(ジメチルアミノ)プロピル基、4-(ジメチ ルアミノ) ブチル基、2-ピペリジノエチル基、2-(ピペリジン-1-イル) エチル基、3-(4-メチル ピペラジン-1-イル) プロピル基、2-モルホリノエ チル基、3-(イミダゾリン-1-イル)プロピル基。 2- (ピロリジン-1ニイル) エチル基等が挙げられ。 る。特に好ましくは、2-アミノエチル基、2-(メチー ルアミノ) エチル基、2-(ジメチルアミノ) エチル 基、2- (ジエチルアミノ) エチル基、3- (ジメチル アミノ) プロピル基又は4- (ジメチルアミノ) ブチル 基であり、更に好ましくは、2- (ジメチルアミノ) エ チル基である。

【0046】 R^3 として好ましくは、水素原子である。 また、 R^2 と R^3 が隣接する $-N-CO-CR^4-と一緒になって$

【化19】

【0047】環Hyとして好ましくは、5員或は6員の 単環である不飽和へテロ環基である。具体的には、ピリ ジル基、ピロリル基、フリル基、チエニル基、イミダゾ リル基、オキサゾリル基、イソオキサゾリル基、チアゾ リル基、イソチアゾリル基、トリアゾリル基、オキサジ アゾリル基又はチアジアゾリル基であり、特に好ましく は、

【化20】

(式中、各記号は上記の通り。)である。更に好ましく

は、オキサゾリル基、チアゾリル基又はチアジアゾリル 基であり、最も好ましくはチアゾリル基である。環Hy は一般式のチアゾリル基の4位に置換することが好まし く、環Hyがチアゾリル基の時、5位で置換することが 好ましい。 R^5 として好ましくは、上記「 $C_1 - 6$ アル キル基」であり、特に好ましくはメチル基である。 【0048】環Hyの置換基(グループB)として好ま に好ましくは-Y-Zである。環Hyは、1又は2個の -Y-Zで置換されていることが好ましい。環Hyの置 換基 (グループB) として-Y-Zが2個の時、その一 つは、Yが単結合であり、Zが上記「グループAから選 ばれる置換基で置換されてもよいC1-6アルキル基」 であることが好ましい。特に好ましくは、メチル基又は ヒドロキシメチル基であり、更に好ましくはメチル基で ある。環Hyの置換基 (グループB) として少なくとも 20 1つの-Y-Zは、Yが単結合、-O-、-COO-、 $-NR^{b5}$ - $-NR^{b6}$ - CO - $-NR^{b7}$ - COO-、又は、-NRb 1 0 -SO2 - (式中、各記号は 前記の通り。) であることが好ましく、2が水素原子、 上記「グループAから選ばれる置換基で置換されてもよ いC1-6アルキル基」、上記「C6-14アリール 基」、上記「Ca - 7シクロアルキル基」、上記「ヘテ 口環基」、上記「C6-14 アリールC1-6 アルキル 基」、上記「C3-7シクロアルキルC1-6アルキル 基」、上記「C3-7シクロアルケニルC1-6アルキ 30 ル基」、及び、上記「ヘテロ環C1-6アルキル基」で あることが好ましい。Yとして特に好ましくは、-NR b5-又は-NRb6-CO-であり、更に好ましくは -NRb6-CO-である。ここで、Rb5、Rb6、 Rb7及びRb10として好ましくは、水素原子であ る。 Zとして特に好ましくは、水素原子、上記「グルー プAから選ばれる置換基で置換されてもよいC1-6ア ルキル基」、又は、上記「C3-7シクロアルキル基」 であり、更に好ましくは、上記「グループAから選ばれ る置換基で置換されてもよいC1-6アルキル基」、又 は、上記「C3-7シクロアルキル基」であり、最も好 ましくは、メチル基又はシクロプロピル基である。ま た、該C6-14アリール基、該C3-7シクロアルキ ル基、該C3-7シクロアルケニル基、該ヘテロ環基、 該C6-14アリールC1-6アルキル基、該C3-7 シクロアルキルC1-6アルキル基、該C3-7シクロ アルケニルC1-6アルキル基、及び、該ヘテロ環C 1-6 アルキル基は、下記グループCから選ばれる1乃 至3個の置換基で置換されてもよく、該置換基が2個又

てもよい。グループC:上記「ハロゲン原子」、上記 「グループAから選ばれる置換基で置換されてもよいC 1-6 アルキル基」、-ORc1 (式中、Rc1 は、水 素原子、又は上記「C1-6アルキル基」である。) 及び、-NRc2Rc3 (式中、Rc2及びRc3は、 それぞれ同一若しくは異なって、水素原子、又は上記 「C1-6アルキル基」である。環Hyの乙の置換基 (グループC)として好ましくは、上記「ハロゲン原 子」、上記「グループAから選ばれる置換基で置換され 10 てもいC1-6アルキル基」又は-ORc1であり、更 に好ましくは、フッ素原子、メチル基、tertーブチ ル基、トリフルオロメチル基、又は、メトキシ基であ る。環Hyの置換基が-Y-Zである時、YとZの好ま しい組合せは、Yが-NRb5-かつRb5が水素原子 かつZが水素原子、又は、Yが-NRb6-CO-かつ Rb 6 が水素原子かつZが上記「グループAから選ばれ る置換基で置換されてもよいC1 - 6 アルキル基」、若 しくは、上記「C3-7シクロアルキル基」である。 【0049】環Cyとして好ましくは、上記「C 6-14アリール基」又は「ヘテロ環基」であり、特に 好ましくは、フェニル基、ピリジル基、イミダゾリル 基、チエニル基、ピロリジニル基、ピペリジル基、イン ドリル基、ベンゾフラニル基、ベンゾチエニル基、1. 3-ジオキサインダンニル基であり、更に好ましくは、 フェニル基である。環Cyは、無置換若しくは1置換で あることが好ましく、環Cyがフェニル基である時、環 Cyの置換基(グループB)は、2位であることが好ま しい。環Cyの置換基 (グループB) として好ましく は、上記「ハロゲン原子」であり、特に好ましくは、フ ッ素原子である。環Cyの置換基 (グループB) が-Y -Zの時、Yとして好ましくは、単結合、-CH=CH -, -O-, -C (OH) -, $-NR^{b5}-$, -NR

b = CO - NRb = CO - NRb = -NRb 1 0 - SO₂ - 及び-CO-NRb 1 1 - (式中、各 記号は前記の通りである。) であり、特に好ましくは、 単結合、-O-、-NRb6-CO-である。ここで、 Rb5、Rb6、Rb8、Rb10及びRb11として 好ましくは、水素原子であり、Rb9として好ましくは メチル基である。環C yの置換基 (グループB) が-Y -Zの時、Zとして好ましくは、水素原子、上記「グル ープAから選ばれる置換基で置換されてもよいC1-6 アルキル基」、上記「C6-14 アリール基」、上記 「С3-7シクロアルキル基」、上記「ヘテロ環基」、 又は、上記「C6-14アリールC1-6アルキル基」 であり、特に好ましくは、水素原子、メチル基、イソプ ロピル基、イソブチル基、tert-ブチル基、トリフ ルオロメチル基又はジメチルアミノメチル基、フェニル 基、シクロペンチル基、シクロヘキシル基、シクロヘプ チル基、ピロリル基、フリル基、チエニル基、イソオキ は3個の時、置換基はそれぞれ同一若しくは異なってい 50 サゾリル基、ピロリジニル基、ピリジル基、ピラジニル

基、ピペリジル基、モルホリル基、インドリル基、キノ リル基、キノキサリニル基、シンノリニル基である。ま た、該C6-14アリール基、該C3-7シクロアルキ ル基、該C3-7シクロアルケニル基、該ヘテロ環基、 該C6-14アリールC1-6アルキル基、該C3-7 シクロアルキルC1-6アルキル基、該C3-7シクロ アルケニルC1 - 6 アルキル基、及び、該ヘテロ環C 1-6 アルキル基は、上記グループCから選ばれる1乃 至3個の置換基で置換されてもよく、該置換基が2個又 は3個の時、置換基はそれぞれ同一若しくは異なってい 10 剤、希釈剤、増量剤、崩壊剤、安定剤、保存剤、緩衝 てもよい。環CyのZの置換基 (グループC) として好 ましくは、。フッ素原子、塩素原子、臭素原子、メチル 基、プロピル基、セertーブチル基、トリフルオロメ チル基、メトキシ基、アミノ基、又は、ジメチルアミノ 基である。

【0050】環Hy'の一Y-Zにおいて好ましい態様 は、環Hyと同じである。

【0051】また、「製薬上許容されるその塩」とは、 上記一般式[I]で示される化合物と無毒の塩を形成す るものであればいかなる塩でもよく、例えば塩酸、硫 酸、リン酸、臭化水素酸等の無機酸;又はシュウ酸、マ ロン酸、クエン酸、フマル酸、乳酸、リンゴ酸、コハク 酸、酒石酸、酢酸、グルコン酸、アスコルビン酸、メチ ルスルホン酸、ベンジルスルホン酸等の有機酸;又は水 酸化ナトリウム、水酸化カリウム、水酸化カルシウム、 水酸化マグネシウム、水酸化アンモニウム等の無機塩 基;又はメチルアミン、ジエチルアミン、トリエチルア ミン、トリエタソールアミン、エチレンジアミン、トリ ス(ヒドロキシメチル)メチルアミン、グアニジン、コ リン、シンコニン等の有機塩基;又はリジン、アルギニ 30 ン、アラニン等のアミノ酸と反応させることにより得る ことができる。なお、本発明においては各化合物の含水 物或るいは水和物及び溶媒和物も包含される。

【0052】また、上記一般式[I]で示される化合物 においては、種々の異性体が存在する。例えば、幾何異 性体としてE体及びZ体が存在し、また、不斉炭素原子 が存在する場合は、これらに基づく立体異性体としての 鏡像異性体及びジアステレオマーが存在する。場合によ っては互変異性体が存在し得る。従って、本発明の範囲 にはこれらすべての異性体及びそれらの混合物が包含さ*40

* 12.

【0053】なお、本発明においては各化合物のプロド ラッグ及び代謝物も包含される。「プロドラッグ」と は、化学的又は代謝的に分解し得る基を有し、生体に投 与された後、元の化合物に復元して本来の薬効を示す本 発明化合物の誘導体であり、共有結合によらない複合体 及び塩を含む。

【0054】本発明化合物を医薬製剤として用いる場 合、通常それ自体公知の製薬上許容される担体、賦形 剤、乳化剤、芳香剤、着色剤、甘味剤、粘稠剤、矯味 剤、溶解補助剤、その他添加剤、具体的には水、植物 油、エタノール又はベンジルアルコール等のアルコー ル、ポリエチレングリコール、グリセロールトリアセテ ート、ゼラチン、ラクトース、デンプン等の炭水化物、 ステアリン酸マグネシウム、タルク、ラノリン、ワセリ ン等と混合して、常法により錠剤、丸剤、散剤、顆粒、 坐剤、注射剤、点眼剤、液剤、カプセル剤、トローチ 剤、エアゾール剤、エリキシル剤、懸濁剤、乳剤、シロ ップ剤等の形態となすことにより、全身的或るいは局所 的に、経口若しくは非経口で投与することができる。投 与量は年齢、体重、症状、治療効果、投与方法等により 異なるが、通常、成人ひとり当たり、1回に0.1mg 乃至1gの範囲で、1日1回乃至数回が投与される。 [0055]

【発明の実施の形態】次に、本発明を実施するために用 いる化合物の製造方法の一例を説明する。しかしなが ら、本発明化合物の製造方法はこれらに限定されるもの ではない。本製法に記載はなくとも、必要に応じて官能 基に保護基を導入し後工程で脱保護を行う、各製法及び 工程の順序を入れ替えるなどの工夫により効率よく製造 を行えばよい。また、各工程において、反応処理は通常 行われる方法で行えばよく、単離精製、結晶化、再結晶 化、シリカゲルクロマトグラフィー、分取HPLC等の 慣用される方法を適宜選択し、また組み合わせて行えば よい。

【0056】製法1-1

本製法は、α-ハロケトン化合物とチオウレア化合物よ り、アミノ置換チアゾール化合物を得る方法である。 【化21】

(式中、Hall は臭素原子、塩素原子等のハロゲン原 ※化合物[1]を、溶媒中、常法若しくは下記製法3によ 子であり、その他各記号は前記の通り。) り得られるチオウレア化合物 [2]と反応させることに 常法若しくは下記製法2により得られるα-ハロケトン ※50. より、アミノ置換チアゾール化合物[3]を得ることが

できる。好ましい溶媒としてはジオキサン、テトラヒドロフラン等のエーテル系溶媒;メタノール、エタノール等のアルコール系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒等;ベンゼン、トルエン等の炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;水若しくはそれらの混合溶媒等が挙げられる。化合物[1]及び化合物 *

* [2]は、氷冷下で混合し、室温乃至加熱下で反応させることが好ましい。炭酸カリウム、水酸化ナトリウム等の塩基を加えてもよい。

【0057】製法1-2

本製法は、アミノ置換チアゾールとカルボン酸化合物を アミド縮合することにより、一般式[I]で表されるチ アゾール化合物を得る方法である。

【化22】

(式中、各記号は前記の通り。)

常法若しくは製法1-1と同様にして得られるアミノ置 換チアゾール化合物[4]を、常法により得られるカル ボン酸化合物[5]とアミド縮合させることによりチア ゾール化合物[I]を得ることができる。 アミド縮合は 常法により行えばよく、例えば、化合物「4]を、DM F、アセトニトリル、THF、クロロホルム、酢酸エチ ル、塩化メチレン、トルエン等の溶媒中、ジシクロヘキ シルカルボジイミドや、1-エチルー3ー(3-ジメチ ルアミノプロピル) カルボジイミド・塩酸塩、ジフェニ ルホスホリルアジド等の縮合剤及び必要に応じてN-L 30 ドロキシスクシンイミド、1-ヒドロキシベンゾトリア ゾール等を加えて、カルボン酸化合物 [5] と縮合する ことによりチアゾール化合物[I]を得ることが出来。 る。また、カルボン酸化合物「5」を、塩化チオニル、 塩化オギザリル等で誘導される酸ハライドとする、或 は、塩化ビバロイル、クロロ炭酸エチル等により誘導さ れる混合酸無水物とする等により化合物 [5]の活性化 エステルとし、次いで、DMF、アセトニトリル、TH%

20※F、クロロホルム、酢酸エチル、塩化メチレン、トルエン等の溶媒中、トリエチルアミン、炭酸カリウム、ビリジン等の塩基の存在下、或はピリジン等のアミン溶媒中で反応させることによりチアゾール化合物[I]を得ることも出来る。本反応は加熱下で行うことが望ましい。【0058】製法1-3

本製法は、一般式 [I] においてR² とR³ が、隣接する-N-CO-CR⁴ -と一緒になって

【化23】

(式中、各記号は前記の通り。)を形成する場合のチア ゾール化合物を得る方法である。

【化24】

(式中、 R^{CPRO} は、メチル基、エチル基等のカルボン酸の保護基であり、その他各記号は前記の通りであり、ここで $-(W)_{\epsilon}$ は、 $-(CH_2)_m - V - (CH_2)_n$ ー上の置換基である。)

常法若しくは下記製法2により得られるα-ハロケトン化合物[1]を、室温乃至加熱下、好ましくは加熱下、溶媒中、下記製法3により得られるチオウレア化合物[6]と反応させることにより、化合物[I']を得ることができる。好ましい溶媒としてはジオキサン、テトラヒドロフラン等のエーテル系溶媒;メタノール、エタ*

(式中、Hal² は塩素原子、臭素原子等のハロゲン原子であり、各記号は前記の通りである。) 第1工程

常法によって得られるチオアミド化合物 [7]をメタノール、エタノール等の溶媒中、室温乃至加熱下、好ましくは加熱下、ジケトン化合物 [8]と環化反応させることにより化合物 [9]を得ることができる。炭酸カリウム、水酸化ナトリウム等の塩基を加えてもよい。好ましい溶媒としてはジオキサン、テトラヒドロフラン等のエーテル系溶媒;メタノール、エタノール等のアルコール系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒等;ベンゼ ※50

*ノール等のアルコール系溶媒;ジメチルホルムアミド、 ジメチルスルホキシド、アセトニトリル、アセトン等の 極性溶媒;ジクロロメタン、クロロホルム等のハロゲン 系溶媒等;ベンゼン、トルエン等の炭化水素系溶媒;酢 酸エチル、酢酸ブチル等のエステル系溶媒;水若しくは それらの混合溶媒等が挙げられる。

【0059】製法2

本製法は、チアゾール化合物 [I] の中間体としてα-ハロケトン化合物を得る方法である。製法2-1

※ン、トルエン等の炭化水素系溶媒;酢酸エチル、酢酸ブ チル等のエステル系溶媒;水若しくはそれらの混合溶媒

40 等が挙げられる。化合物 [9] は下記参考文献等と同様 にして合成することもできる。

参考文献: Khim Geterotsikl Soedin, 1995 (1), 130-132 (1995). Khim Geterotsikl Soedin, 1994 (2), 249-252 (1994). Indian J. Chem., 32 (8), 848-857 (1993).

第2工程

化合物[9]を溶媒中、加熱下、N-ブロモスクシンイミド、テトラブチルアンモニウムトリブロミド、ベンジ

ルトリメチルアンモニウム・ジクロロヨウ素酸塩、臭素等のハロゲン化剤と反応させることによりα-ハロケトン化合物[10]を得ることができる。好ましい溶媒としてはジオキサン、テトラヒドロフラン等のエーテル系溶媒;メタノール、エタノール等のアルコール系溶媒;ジメチルスルホキシド、アセトニトリル等の極性溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒等;*

*ベンゼン、トルエン等の炭化水素系溶媒;酢酸エチル、 酢酸ブチル等のエステル系溶媒;水若しくはそれらの混 合溶媒等が挙げられる。

32

【0060】製法2-2

本製法は、Z-Y-がZ-CO-NH-の時の α -ハロケトン化合物を得る方法である。

【化26】

(式中、各記号は前記の通りである。)

第1工程

製法2-1の第1工程と同様にして、チオウレア[1 1]と、常法により得られるジケトン化合物[8]を環 化反応させることにより化合物[12]を得ることがで きる。

第2工程

常法により化合物 [12] と化合物 [13] をアミド縮合させることにより化合物 [14] を得ることができ ※

$$R^{-1} - N = C = S + H_2N - [16]$$

[16] [17]

%る。

第3工程

製法2-1の第2工程と同様にして化合物 [14]より α-ハロケトン化合物 [15]を得ることができる。

【0061】製法3

製法3-1

本製法は、チアゾール化合物 [I] の中間体としてチオウレア化合物を得る方法である。

【化27】

(式中、RNPROは、ベンゾイル基、tert-ブチル基、tert-ブチルカルボニル基、tert-ブトキシカルボニル基等のアミン保護基であり、その他各記号は前記の通りである。)

第1工程

常法により得られるイソチオシアン酸化合物 [16]を 溶媒中、常法若しくは下記製法3-2と同様にして得られるアミン化合物 [17]と反応させることにより化合物 [18]を得ることができる。好ましい溶媒としては ジオキサン、テトラヒドロフラン等のエーテル系溶媒;★50

★メタノール、エタノール等のアルコール系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒等;ベンゼン、トルエン等の炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;水若しくはそれらの混合溶媒等が挙げられる。本製法は、冷却下で行うことが好ましい。

第2工程

常法により化合物 [18] の保護基を脱離させることによりチオウレア化合物 [2]を得ることができる。アミ

ン保護基としては、ベンゾイル基、tertーブチル基、tertーブチルカルボニル基、tertーブトキシカルボニル基等が挙げられる。例えば、RNPROがベンゾイル基の時、メタノール、エタノール等のアルコール系溶媒中で、炭酸カリウム、水酸化ナトリウム等の塩基*

*で処理する等の方法を用い脱保護すればよい。 【0062】製法3-2

【化28】本製法は、チアゾール化合物 [I'] の中間体として、チオウレア化合物を得る方法である。

(式中、各記号は前記の通り。)

第1工程

常法で得られるイソチオシアン酸化合物 [16] と常法若しくは下記製法3-3と同様にして得られる化合物 [19]を、メタノール、エタノール等の溶媒中、加熱下、反応させることにより化合物 [20]を得ることができる。好ましい溶媒としてはジオキサン、テトラヒドロフラン等のエーテル系溶媒;メタノール、エタノール 30 等のアルコール系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒等;ベンゼン、トルエン等の炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;水若しくはそれら※

※の混合溶媒等が挙げられる。本製法は、冷却下で行うことが好ましい。

第2工程

常法により化合物 [20]のアミン保護基を脱離させることによりチオウレア化合物 [6]を得ることができる。化合物 [19]が光学活性体の時、ラセミ化を抑えるために冷却下で脱保護することが好ましい。

30 【0063】製法3-3

本製法は、一般式 $\begin{bmatrix} I \\ \end{bmatrix}$ においてVが $-NR^a 5 \\ - C$ あり、 $R^a 5 \\ - KC_1 \\ - KC_2 \\ - KC_3 \\ - KC_4 \\ - KC_4 \\ - KC_5 \\ - KC_4 \\ - KC_5 \\$

(式中、m' は1 又は2であり、Ra 7 及びRa 6 は、それぞれ同一若しくは異なって、水素原子;メチル等の C1-6 アルキル基;フェニル基等のC6-14 アリー 30 ル基;ベンジル基等のC1-14 アリールC1-6 アルキル基であり、その他各記号は前記の通りである。ここで、Ra 5 7 は上記-CHRa 7 Ra 8 に相当する。) 第1工程

常法で得られる化合物 [21]を、溶媒中、還元剤の存在下、常法で得られる化合物 [22]と反応させることにより化合物 [23]を得ることができる。還元剤としては水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム、水素化トリアセトキシホウ素ナトリウム等の水素化ホウ素塩が挙げられる。酢酸、塩酸等の酸を加えてもよい。好ましい溶媒としてはジオキサン、テトラヒドロフラン等のエーテル系溶媒;メタノール、エタノール等のアルコール系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル等の極性溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒等;ベンゼン、トルエン等の炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;水若しくはそれらの混合溶媒等が挙げられる。また、パラジウム炭素、水酸化パラジウム等触媒の存在下、水素添加を行ってもよい。

第2工程

*化合物[23]を、溶媒中、還元剤の存在下、常法で得 られる化合物[24]と反応させることにより化合物 [25]を得ることができる。還元剤としては水素化ホ ウ素ナトリウム、水素化シアノホウ素ナトリウム、水素 化トリアセトキシホウ素ナトリウム等の水素化ホウ素塩 が挙げられる。酢酸、塩酸等の酸を加えてもよい。好ま しい溶媒としてはジオキサン、テトラヒドロフラン等の エーテル系溶媒;メタノール、エタノール等のアルコー ル系溶媒;ジメチルホルムアミド、ジメチルスルホキシ ド、アセトニトリル等の極性溶媒;ジクロロメタン、ク ロロホルム等のハロゲン系溶媒等;ベンゼン、トルエン 等の炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエス テル系溶媒;水若しくはそれらの混合溶媒等が挙げられ る。また、パラジウム炭素、水酸化パラジウム等触媒の 存在下、水素添加を行ってもよい。第1工程と第2工程 の反応は、順序を入れ換えて行うこともできる。 第3工程

常法によって化合物 [25] のアミン保護基を脱離させることにより化合物 [26]を得ることができる。アミン保護基としては、ベンゾイル基、tertーブトキシカルボニル基、ベンジルオキシカルボニル基等が挙げられる。例えば、RNPROがtertーブトキシカルボニル*50 基の時、室温下、酢酸エチル又はメタノール溶液中、塩

酸の酢酸エチル溶液で処理をする;室温下、テトラヒド ロフラン中、塩酸で処理をする;或るいは室温下、メタ ノール中、塩酸ージオキサンで処理をする等の方法を用 い脱保護すればよい。

【0064】次に、本発明に係る一般式 [1]で示され る化合物及びその製造方法を実施例によって具体的に設 明する。しかしながら、本発明はこれら実施例によって 限定されるものではない。

【0065】実施例1

N-[4-{2-(シクロプロピルカルボニルアミノ)-4-メチル チアゾール-5-イル)チアゾール-2-イル]-N-[2-(ジメチ ルアミノ)エチル]-2-(2-フルオロフェニル)アセトアミ ドの合成

【0066】工程1-1

チオウレア(151.18g, 1.986mol)のエタノール(1000mL) 溶液に3-クロロアセチルアセトン(237.8mL, 2.085mol) を加え、90℃で1時間攪拌した。室温まで冷却後、ヘキ サン/酢酸エチル(1/1)溶液(500元)を加え、氷冷下析出 した固体をろ取することにより、5-アセチル-2-アミノ-4-メチルチアゾール 塩酸塩を白色結晶(357.9g, 94%)と 20 して得た。

NMR値 (DMSO-d6-300MHz): 2.43(s, 3H), 2.51(s, 3 H), 9.32(br, 1H).

【0067】工程1-2

実施例1の工程1-1で得られた5-アセチル-2-アミノ-4-メチルチアゾール塩酸塩(100g, 519mmol)とピリジン (96.5mL, 1194mmol)およびクロロホルム(1000mL)を混合 し、水冷下、シクロプロパンカルボニルクロリド(51.8m L, 571mol)を滴下した。そのまま30分間攪拌した 後、室温で2時間攪拌した。反応混合物を氷冷し、水(5 30 00mL)を加えることにより析出した固体をろ取し、水(50 0ml)で洗浄することによりN-(5-アセチル-4-メチルチア ゾール-2-イル]シクロプロパンカルボキサミド(112.9g, 97%)を白色結晶として得た。

NMR値(DMSO-d6-400MHz): 0.91-0.96(m, 4H), 1.9-2.0(m, 1H), 2.46(s,3H), 2.56(s, 3H).

【0068】工程1-3

実施例1の工程1-2で得られたN-(5-アセチル-4-メチ ルチアゾール-2-イル]シクロプロパンカルボキサミド(1 08.0g, 482mmol)のメタノール(500mL)溶液にテトラブチ 40 ルアンモニウムトリブロミド(255.4g, 530mol)を加 え、85℃で2時間撹拌した。氷冷下、水(540社)を加 え、析出した固体をろ取することにより、N-[5-(2-プロ モアセチル)-4-メチルチアゾール-2-イル]シクロプロバ ンカルボキサミドを白色結晶(86.3g, 59%)として得た。 NMR値 (DMSO-d6-400MHz): 0.91-1.01(m, 4H), 1.94 -2.01(m, 1H), 2.6(s, 3H), 4.62(s, 2H), 12.85(s, 1)H).

【0069】工程1-4

オキサン(110元)を混合し、氷冷下イソチオシアン酸べ ンゾイル(17.4mL, 129.3mmo1)を加えて、そのまま15 分間攪拌した。この反応混合物に、氷冷下メタノール(5 5元)および炭酸カリウム(17.9g, 129.3mol)を加えた 後、室温で2時間撹拌した。この反応混合物に、氷冷 下、実施例1の工程1-3で得られたN-(5-(2-ブロモア セチル)-4-メチルチアゾール-2-イル]シクロプロパンカ ルボキサミド(39.2g, 129.3mol)を加え、室温でさらに 1時間攪拌した後、氷冷下において水を加え、酢酸エチ 10 ルで4回抽出し、有機層を飽和炭酸水素ナトリウム水溶 液と水および飽和食塩水で洗浄後、硫酸マグネシウムで 乾燥した。硫酸マグネシウムをろ過後、ろ液を減圧濃縮・・・・・・ することにより得られた残渣に酢酸エチルを加えて析出 した結晶をろ過することによりN-(5-{2-(2-(ジメチルア ミノ)エチルアミノ]チアゾール-4-イル}-4-メチルチア ゾール-2-イル]シクロプロパンカルボキサミドを淡橙色 結晶(21.2g, 47%)として得た。

38

NMR値(DMSO-d6-300MHz): 0.88-0.93(m, 4H), 1.87 -1.96(m, 1H), 2.18(s, 6H), 2.42-2.47(m, 2H), 2.44(s, 3H), 3.31-3.36(m, 2H), 6.59(s, 1H), 7.60(t, 1 H, J=6.0Hz), 12.26(s, 1H).

【0070】工程1-5

2-フルオロフェニル酢酸(110mg, 0.712mmol)とトリエチ ルアミン(0.107ml, 0.769mmol)およびTHF(0.5ml)を混合 し、氷冷下塩化ピバロイル(0.0879元, 0.712mol)を加 え、室温で15分間攪拌した。この反応混合物に実施例1 の工程1-4で得られたN-(5-2-(2-(ジメチルアミノ) エチルアミノ]ナアゾール-4-イル}-4-メチルチアゾール・ -2-イル]シクロプロパンカルボキサミド(100mg, 0.285m mol)のピリジン溶液(2元)を加えて70℃で90分間攪拌し た。室温まで冷却した後、反応混合物に水および飽和炭 酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、 有機層を飽和炭酸水素ナトリウム水溶液と水および飽和 食塩水で洗浄後、硫酸マグネシウムで乾燥した。硫酸マ グネシウムをろ過後、ろ液を減圧濃縮することにより得 られた残渣をトルエンで2回共沸し、4規定塩酸の酢酸工 チル溶液を加えて析出した固体をろ過することにより表 題化合物ハー[4-{2-(シクロプロピルカルボニルアミノ)-イ -メチルチアゾール-5-イル}チアゾール-2-イル]-N-[2-(ジメチルアミノ)エチル]-2-(2-フルオロフェニル)アセ トアミドを白色固体(81.3mg, 54%)として得た。本化合 物の化学構造式及び物性値を表1に示す。

【0071】実施例2

┣-【4-メチルー5-{2-(4-メチル-2-オキソ-3-フェニルピペ ラジン-1-イル)チアゾール-4-イル/チアゾール-2-イル] -シクロプロパンカルボキサミドの合成

【0072】工程2-1

(R)-(-)-α-アミノフェニル酢酸 メチルエステル 塩酸 塩(1.15g, 5.71mmol)とtert-ブチル N-(2-オキソエチ N,N-ジメチルエチレンジアミン(11.4g, 129.3mol)とジ 50 ル)カーバメート(1.0g, 6.28mol)と酢酸(0.425ml, 7.4 2mmol)およびメタノール(15mL)を混合し、氷冷下ナトリウムシアノボロヒドリド(431mg, 6.85mmol)を加え、そのまま2時間撹拌した。氷冷下反応混合物に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、有機層を水、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ過後、ろ液を減圧濃縮して得られた残渣をシリカゲルクロマトグラフィー(展開溶媒: ヘキサン/酢酸エチル=2/1~1/1)で精製することにより(R)-α-[2-(tert-ブトキシカルボニルアミノ)エチルアミノ]フェニル酢 10酸メチルエステルを無色油状物質(639mg, 36%)として得た。

NMR值(DMSO-d6-300MHz): 1.36(s, 9H), 2.38-2.51(m, 2H), 2.95-3.05(m, 2H), 3.59(s, 3H), 4.39(br, 1H), 6.75(br, 1H), 7.25-7.40(m, 5H).

【0073】工程2-2

実施例2の工程2-1で得られた(R)-α-[2-(tert-ブトキシカルボニルアミノ)エチルアミノ)フェニル酢酸メチルエステル(3.52g, 11.42mmol)と37%ホルマリン水溶液(3.4元, 45.68mmol)と酢酸(0.719元, 12.56mmol)およ20びTIF(30元)を混合し、氷冷下ナトリウムトリアセトキシボロヒドリド(2.90g, 13.71mmol)を加え、そのまま1時間撹拌した。氷冷下反応混合物に飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加え、有機層を飽和炭酸水素ナトリウム水溶液を加えて、100円で

NMR值 (DMSO-d6-400MHz): 1.36(s, 9H), 2.19(s, 3 H), 2.33-2.50(m, 2H), 2.95-3.10(m, 2H), 3.63(s, 3 H), 4.37(s, 1H), 6.57(br, 1H), 7.3-7.37(m,5H).

【0.074】工程2-3

実施例2の工程2-2で得られた(R)-α-[N-メチル-N-(2-(tert-ブトキシカルボニルアミノ)エチル}アミノ]フェニル酢酸 メチルエステル(1.82g, 5.66mmol)と酢酸エチル(10mL)を混合し、4規定塩酸の酢酸エチル溶液(8.5mL, 33.9mmol)を加え、2時間損拌した。反応混合物を減圧濃縮後、トルエンで2回共沸することにより(R)-α-[N-メチル-N-(2-アミノエチル)アミノ]フェニル酢酸 メチルエステル 二塩酸塩の粗生成物を黄色アモルファスとして得た。これをそのまま次工程に用いた。

【0075】工程2-4

実施例2の工程2-3(R)-α-(N-メチル-N-(2-アミノエチル)アミノ]フェニル酢酸 メチルエステル 二塩酸塩の 租生成物(5.66mol)とTHF(22mL)を混合し、氷冷下ジイソプロピルエチルアミン(2.1mL, 12.4mol)およびイソチオシアン酸ベンゾイル(0.744mL, 5.66mol)を加え

て、そのまま15分間攪拌した。氷冷下反応混合物に水を加え、酢酸エチルで抽出し、有機層を水および飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ過後、ろ液を減圧濃縮することにより(R)-α-(N-メチル-N-{2-(3-ベンゾイルチオウレイド)エチル)アミノ]フェニル酢酸メチルエステルの粗生成物を得た。これをそのまま次工程に用いた。

40

【0076】工程2-5

実施例2の工程2-4で得られた(R)-α-{N-メチル-N-(2-(3-ベンゾイルチオウレイド)エチル}アミノ]フェニル酢酸 メチルエステルの粗生成物(5.66mmol)とメタノール(15元)を混合し、米冷下炭酸カリウム(860mg、6.22mmol)を加えて、そのまま1時間攪拌した。米冷下反応混合物に水を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ過後、ろ液を減圧濃縮することにより(R)-α-{N-メチル-N-(2-チオウレイドエチル)アミノ]フェニル酢酸 メチルエステルの粗生成物を得た。これをそのまま次工程に用いた。

20 【0077】工程2-6

実施例2の工程2-5で得られた(R)-α-(N-メチル-N-(2-チオウレイドエチル)アミノ]フェニル酢酸 メチルエ ステルの粗生成物(2.83㎜1)とエタノール(6元)を混合 し、実施例1の工程1-3で得られたN-[5-(2-プロモア セチル)-4-メチルチアゾール-2-イル]シクロプロパンカ ルボキサミド(857mg, 2.83mmol)を加えて、5時間還流し た。氷冷下反応混合物に飽和炭酸水素ナトリウム水溶液 ・を加え、THFと酢酸エチルの混合溶媒で抽出し、有機層' を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ 過後、ろ液を減圧濃縮して得られた残渣にメタノールを 加えて析出した結晶をろ過することにより表題化合物N-[4-メチルー5-12-(4-メチル-2-オキソ-3-フェニルピベラ ジン-1-イル)チアゾール-4-イル}チアゾール-2-イルー シクロプロパンカルボキサミドを白色結晶(370mg, 2次) として得た。本化合物の化学構造式及び物性値を表1に 示す。

【0078】実施例3

N-[4-メチル-5-{2-(4-メチル-2-オキソ-3-フェニルピペラジン-1-イル)チアゾール-4-イル)チアゾール-2-イル] -シクロプロパンカルボキサミド 塩酸塩の合成

【0079】実施例2で得られたN-(4-メチル-5-(2-(4-メチル-2-オキソ-3-フェニルピペラジン-1-イル)チアゾール-4-イル}チアゾール-2-イル]-シクロプロパンカルボキサミド(350mg, 0.772mmol)に酢酸エチル(3.3mL)及び4規定塩酸の酢酸エチル溶液(0.39mL, 1.54mmol)を加えて10分間撹拌した。析出した固体をろ過することにより表題化合物N-(4-メチル-5-{2-(4-メチル-2-オキソ-3-フェニルピペラジン-1-イル)チアゾール-4-イル}チアゾール-2-イル]-シクロプロパンカルボキサミド塩酸塩を50 白色固体(390mg, 100%)として得た。本化合物の化学構

造式及び物性値を表1に示す。

比旋光度: [α]D²⁵ = -116° (c = 0.536, 溶媒: D MF)

【0080】実施例4

N-[4-メチルー5-{2-(4-メチルー2-オキソー3-フェニルピペラジン-1-イル)チアゾールー4-イル}チアゾールー2-イル] -アセトアミドの合成

【0081】工程4-1

実施例1の工程1-1で得られた5-アセチルー2-アミノー 4-メチルチアゾール塩酸塩(100g, 519mmol)とピリジン (96.5ml, 1194mmol)およびクロロホルム(1000ml)を混合し、氷冷下アセチルクロリド(40.6ml, 571mmol)を滴下した。そのまま1時間撹拌した後、室温で2時間撹拌した。反応混合物を氷冷し、水(500ml)を加えることにより折出した固体をろ取し、水(500ml)で洗浄することによりN-(5-アセチルー4-メチルチアゾールー2-イル)-アセトアミド(85.0g, 77%)を自色結晶として得た。

NMR値 (DMSO-d6-300): 2.17(s, 3H), 2.47(s, 3H), 2.56(s, 3H), 12.43(s, 1H).

【0082】工程4-2

実施例4の工程4-1で得られたN-[5-アセチル-4-メチルチアゾール-2-イル]-アセトアミド(72.8g, 367mmol)のメタノール(366mL)溶液にテトラブチルアンモニウムトリブロミド(194.8g, 404mmol)を加え、84℃で2時間 規拌した。氷冷下、反応混合物を水(750mL)に加え、析出した固体をろ取することにより、N-[5-(2-ブロモアセチル)-4-メチルチアゾール-2-イル]-アセトアミドを白色結晶(63.3g, 62%)として得た。

NMR值 (DMSO-d6-300): 2.18(s, 3H), 2.58(s, 3H), 2.65(s, 2H), 12.57(s, 1H).

【0083】工程4-3

実施例2の工程2-5で得られた(R)-α-(N-メチル-N-(2-チオウレイドエチル)アミノ]フェニル酢酸 メチルエ ステルの粗生成物(2.83mol)とエタノール(6ml)を混合 し、実施例4の工程4-2で得られたN-(5-(2-プロモアセチル)-4-メチルチアゾール-2-イル]-アセトアミド(85 7mg, 2.83mmol)を加えて、5時間還流した。氷冷下反応混合物に飽和炭酸水素ナトリウム水溶液を加え、THFと酢酸エチルの混合溶媒で抽出し、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ過後、ろ液を減圧濃縮して得られた残渣にメタノールを加えて析出した結晶をろ過することにより粗結晶(517mg, 43%)を得た。これに酢酸エチル(4ml)を加えて5分間還流させ、室温まで冷却後結晶をろ過することにより表題化合物N-[4-メチル-5-(2-(4-メチル-2-オキソ-3-フェニルピペラジン-1-イル)チアゾール-4-イル)チアゾール-2-イル]-アセトー

42

【0084】実施例5

化学構造式及び物性値を表1に示す。

トー【4-メチルー5-{2-(4-メチルー2-オキソー3-フェニルピペラジン-1-イル)チアゾールー4-イル}チアゾールー2-イル} -アセトアミド塩酸塩の合成

アミドを白色結晶(355㎏, 30%)として得た。本化合物の

【0085】実施例4で得られた(340mg, 0.795mmol)に 酢酸エチル(50mL)および4規定塩酸の酢酸エチル溶液((). 4mL, 1.6mmol)を加えて10分間攪拌した。析出した固体 をろ過することにより表題化合物ト(4-メチル-5-{2-(4-メチル-2-オキソ-3-フェニルピペラジン-1-イル)チアゾ ール-4-イル}チアゾール-2-イル]-アセトアミド 塩酸塩 を白色固体(374mg, 100%)として得た。本化合物の化学 構造式及び物性値を表2に示す。

・比旋光度: [α]p²⁵ = −116° (c = 0.541, 溶媒:D

【0086】実施例6から実施例306

30 実施例1から5と同様にして、実施例6から306の化 合物を得た。本化合物の化学構造式及び物性値を表2か ら表77に示す。

[0087]

【表1】

44

桑	竹俊編 / 竹州奉	秋 1 446/44/ 製成 (%)	iti NMR(Ø) ppm DMSO-48-300	W 1
-	QZ3H27GIFN5O282	>90 48 88 >220	0.71-0.86(m, 4H), 1.80-1.88(m, 1H), 2.51(a, 3H), 1.80-1.88(m, 2H), 4.71(a, 2H), 7.34(a, 2H), 7.38-7.45(m, 2H), 10.48(br, 1H), 12.41(a, 2H)	488(100)
~	C22H28N5O282	142-156	DMSO-de-400 089-0.94(m, 4H), 1.92-1.88(m, 1H), 2.14(a, 3H), 0.89-0.94(m, 4H), 1.92-1.88(m, 1H), 2.14(a, 3H), 1.84-3.30(m, 1H), 4.11(dt, 1H,	ESI+ 454(100)
ဗ	C22H24CIN5O2S2	>90 ፖモルファス	DMSO-46-300 0.88-0.94(m, 4H), 1.81-1.89(m, 1H), 2.50(s, 3H), 2.50(s, 3H), 3.6(tr, 2H), 4.59(tr, 2H), 7.41(s, 1H), 7.47-7.6(m, 5H), 12.42(s, 1H)	ESI+ 454(100)
4	CZOHZINGOZSZ	211-214	DMSO-de-400 2.13(a, 3H), 2.14(a, 3H), 2.48(a, 3H), 2.85(dt. 1H, J-6, 0.1181tz), 3-3-3.38(m, 1H), 4.1(a, 1H), 4.08-4.16(m, 1H), 4.44(dt. 1H, J-11.8, 2.84Hz), 7.31(a, 1H), 7.32-7.41(m, 5H), 12.05(a, 1H)	ESI+ 428(100)

[0088]

* *【表2】

	4	5
_		

ſ		45	(24)	Γ .	有册200. 46
	S	428(10)	373(100)	ESI+ 403(100)	ESI+ 403(100)
	1H NMR(&) ppm	DMSO-d6-300 2.164, 3H), 2.50(a, 3H), 2.67(a, 3H), 3.71-3.98(m, 2H), 4.85(br, 2H), 5.52(br, 1H), 7.48(a, 1H), 7.45-7.70(m, 5H), 12.12(a, 1H)	DMSO-46-300 2.13(s, 3H), 2.46(s, 3H), 3.78(s, 2H), 7.20(s, 1H), 7.24- 7.35(m, 5H), 12.08(brs, 1H), 12.52(brs, 1H)	DMSO-46-300 1.25(t, 3t, J-6.9tz), 2.43(s, 3t), 3.78(s, 2t), 4.20(q, 2t), J-6.9tz), 7.18(s, 1t), 7.24-7.35(m, 5t), 11.63(brs, 1t), 12.51(brs, 1t)	DMSO-48-300 2.13(a, 3H), 2.47(a, 3H), 3.75(a, 3H), 3.77(a, 2H), 6.91(t, 1H, 3-7.32Hz), 6.88(d, 1H, 3-8.07Hz), 7.18(a, 1H), 7.22(d, 1H, 3-7.32Hz), 7.26(t, 1H, 3-8.07Hz), 12.08(a, 1H)
3 4	関係/性状/配成 (%) /性状/配成	>90 ### >220	>90 #8 #8 >200	>90 (1)	06<
	(東西) 大地西川	OZOHZZOINSOZSZ	OI 7H18N40282	C18H18N403S2	CIBHIBNAD382
		ភេ	60	7	œ

[0089]

* *【表3】

-	Ł	4
_	_	_
	~	

ない。	集体以 / 組成以	韓度/住伏/ 財成 (%) ~住伏/ 財成	1H NMR(&) ppm	MS
	N N N	08<	DMSO-de-300 2.13(s, 3H), 2.46(s, 3H), 3.80(s, 2H), 7.20(s, 1H),	ESH- 407(100)
Φ.			/J8(88, 97, J=8.4, 14.8Mz), 12,08(8, 1H)	
	O17H15CIN402S2	>230		
	F 2 2	08<	DMSO-48-300 2.13(a, 3H), 2.46(a, 3H), 3.88(a, 2H), 7.22(a, 1H),	ESI+ 418(100)
2		4	7.82(d, 2H, J=8,79Hz), 8.22(d, 2H, J=8,79Hz), 12.06(s, 1H), 12.62(s, 1H)	
	C17H15N5O4S2	>230		
	/ 0		DMSO-46-300	ESŦ
,		٠	081–1.31(m, 5H), 1.61–1.85(m, 6H), 2.13(a, 3H), 2.33(d, 2H, J=7.4Hz), 2.46(a, 3H), 7.17(a, 1H), 12.07(a, 1.03(a, 1H), 1.03(a, 1H), 1.03	378(100)
Ξ	S 21	4	in, 12.25(8, in)	
	C17HZZN402S2	224-224.9 dec.		
		06×	2.13(a. 3H), 248(a. 3H), 277(t. 2H, J=7,4Hz), 2,94(t.	ESI+ 387(100)
12		- 福	2.28(g, 1H)	
	C18H18N4O282	212.7 - 213.9	ı	

[0090]

	•	数4		
が	(株)	和像/性伏/融点 (%) ~性伏/配点	1H NMR(&) ppm	§ S
	A A A A A A A A A A A A A A A A A A A	08<	DMSO66-300 2.13(a, 3H), 2.46(a, 3H), 3.68(a, 2H), 3.73(a, 3H), 8.89(d, 2H, J=8.79Hz), 7.19(a, 1H), 7.25(d, 2H,	ESI+
5	8 8	4	J=8.79Hz), 12.05(a, 1H), 12.46(a, 1H)	
	O18H18N4O3S2	>230		
		08<	DMSO-48-300 1.98(в. 3H), 2.46(в. 3H), 3.58(в. 2H), 7.01(с. 1H,	ESH 412(100)
7		***	J=8.872, 7.09(1, 1), .J=8.842, 7.3(4, 11, J=2242), 7.37(4, 11, J=8.142), 7.6(4, 11, J=8.142), 10.87(6, 11), 12.07(6, 11), 12.48(6, 11)	
	O19H17N6O2S2	022<		<u>.</u>
	1 × 1 × 1	06<	DMSO-48-300 214(s, 3H), 246(s, 3H), 3.75(s, 3H), 3.75(s, 2H),	ESI+ 403(100)
75	S. H.	4	6.80(d. 11., J=7.8Hz), 8.92(d. 111, J=7.9Hz), 6.93(g. 11.), 7.21(g. 11.), 7.26(t. 11., J=7.8Hz), 12.08(g. 11.), 12.52(g. 11.)	•
	C18H18N40382	>230		
	I N	08<	DMSO-46-300 2.14(e, 3H), 2.47(e, 3H), 4.03(e, 2H), 6.89-7.04(m, 2H),	ESI+ 378(100)
9	SVI	€	7.237(s, 1H)	
	C15H14N4Q2S3	>230		

[0091]

* *【表5】

		教			
	美術は 八部政党	和度/性状/融点(%)	1H NMR(&) ppm	MS.	
7	CZSH20N4O2S2	>90 (数編 210.2 - 210.7	DMSOde-300 247(a, 3H), 3.76(a, 2H), 3.78(a, 2H), 7.19(a, 1H), 7.19- 7.38(m, 10H), 12.32(c, 1H), 12.51(a, 1H)	ESI+ 448(100)	51
6	O17H18N4O282	>80 88.8 133.5 - 138.5	DMSO-d6-300 2.15(a, 3H), 2.47(a, 5H), 3.76(a, 2H), 7.18(a, 1H), 7.19- 7.39(m, 5H), 12.24(a, 1H), 12.32(a, 1H)	373(100)	
6	C14H14N8O282	>90 ## >250	DMSO-d6-400 2.14s 3H, 2.47s, 3H, 5.04s, 2H, 6.90(s, 1H), 7.18s, 1H), 7.23s, 1H, 7.64(s, 1H), 12.06(brs, 1H), 12.70(brs, 1H)	ESH 383(100)	
8	CZCHZZN4C3SZ	>90 7モルファス	CDCI3-300 154(a, 9H), 248(a, 3H), 3.84(a, 2H), 8.84(a, 1H), 7.29- 7.46(m, 5H), 8.84(bra. 1H)	ESI- 428(100)	5 2

[0092]

* *【表6】

54

	敬 6		
建物丸 / 角点丸	和度/性状/融点 (%) /性状/融点	ili NMR(&) ppm	MS
NEO3S2	>90 7モルファス	DMSO -48- 300 248(a, 3H), 3.48(bra, 4H), 3.57(brd, 4H, J=4.4Hz), 3.77(a, 2H), 7.11(e, 1H), 7.28-7.34(m, 5H), 10.85(bra, 1H), 12.48(bra, 1H)	ESH 444(100)
N40352	>80 ፖモ <i>ኬጋዮ</i> አ	DMSO-46-300 2.42(a, 3H), 3.78(a, 2H), 5.22(a, 2H), 7.18(a, 1H), 7.26- 7.42(m, 10H), 11.78(tra, 1H), 12.50(tra, 1H)	ESI+ 465(100)
N40352	>80 結構 212 - 214	DMSO-d8-400 0.92(4, 6H, J=8.7Hz), 1.93(m, 1H), 2.43(s, 3H), 3.78(s, 2H), 3.94(d, 2H, J=8.7Hz), 7.17(s, 1H), 7.25-7.34(m, 5H), 11.83(brs, 1H), 12.48(brs, 1H)	ESI+
A STATE OF THE STA	>90 (新典 >250	DMSC-48-300 246(s, 3H), 3.76(s, 2H), 5.99(s, 2H), 6.88(s, 1H), 7.17(s, 1H), 7.18(s, 1H), 7.24-7.33(m, 5H), 7.63(s, 1H), 12.48(brs, 1H)	ESI+

[0093]

* *【表7】

כ	כ

	10	金田野人 竹魚藤	数を含まれて製品			_
	*	方法第 / 方實家	(%) LEW (C)	IH NMR(&)ppm	S E	
	25		98 18	DMSO-48-300 2.46(a, 3H), 3.77(a, 2H), 3.38(a, 2H), 6.97(m, 1H), 6.98(a, 1H), 7.20(a, 1H), 7.25-7.41(m, 5H), 7.41(d, 1H, J=1.4Hz), 12.34(bra, 1H), 12.51(bra, 1H)	ESI+ 455(100)	5 5
		Q21H18N4Q283	201 – 203			
	28		>80 7モルファス	CDCB-300 2-45(a, 3H), 2.71(t, 2H, J=7.7Hz), 3.05(t, 2H, J=7.7Hz), 3.84(a, 2H), 8.87(a, 1H), 7.17-7.45(m, 10H), 8.82(brs, 1H)	ESH 463(100)	
L		O24H22N4O2S2		⊕ ′,∀ .		(29)
	27)80 414	DMSO-48-300 0.90-0.98(m, 2H), 1.13-1.23(m, 2H), 1.81-1.88(m, 6H) 1.77(m, 1H), 2.29(brd, 2H, J=7.4Hz), 2.45(a, 3H), 3.78(a, 2H), 7.18(a, 1H), 7.25-7.34(m, 5H), 12.00(bra, 1H), 12.50(bra, 1H)	ESH 455(100)	
1		C22H18N4O2S2	229 - 231			
			>90 7モルファス	DMSO-48, 300MH 0.90-0.98(m, 2H), 1.13-1.23(m, 2H), 1.61-1.68(m, 6H) 1.77(m, 1H), 2.29(brd, 2H, J=7.4Hz), 2.45(a, 3H), 3.78(a, 2H), 7.18(a, 1H), 7.25-7.34(m, 5H), 12.00(bra,	ESI+ 455(100)	गि । 56
		C23H26N4O282		17, 7250003, 17)		刊 乙 U U z

[0094]

* *【表8】

57

		₩		
	は世帯 / 岩瀬美	雑度/性状/ 融点 (%)	(H NMR(&) ppm	MS
	A NA MARIA	08<	DMSO-46-400 1.45(4, 3H, J=7.1Hz); 2.12(a, 3H); 2.44(a, 3H); 4.01(a, 1H, J=7.1Hz); 7.18(a, 1H); 7.24-7.38(n, 5H); 12.03(a,	ESI+ 387(100)
58	S S S	アモルファス	1H), 12.43(s, 1H)	
	O18H18M0262			
-		08<	DMSO-46-300 2.13(a. 3H), 2.45(a. 3H), 3.34(a. 3H), 5.05(a. 1H),	ESI+ 403(100)
န	S S S S S S S S S S S S S S S S S S S	福	7.23(8, 114), 7.34-7.52(m, 5H), 12.08(8, 1H), 12.54(8, 1H)	
	O18H18N4O3S2	217.1 - 218.6		
	1 × × ×	06<	DMSO-48-300 2.13(s. 3H), 2.46(s. 3H), 3.89(s. 2H), 7.22(s. 1H), 7.65(t.	ESH 418(100)
<u> </u>	10 S H	4	14, J=7,874z), 7,8(d, 14, J=7,874z), 8,16(d, 14, J=8,874z), 8,28(s, 14), 12,06(s, 14), 12,61(s, 14)	
	C17H15N5O4S2 O.N	>220		
	17 H / N	08<	Į į	ES/+ 391(100)
32			—	
	C17H15FN40282	>220		
				•

[0095]

* *【表9】

60

		极		
蘊	は世界 / 阿州家	植産/性状/融点(%)	1H NMR(8) ppm	X8
33	A Market	08× 188	DMSO-68-300 2.14(a, 3H), 2.47(a, 3H), 3.84(a, 2H), 7.35(d, 1H, J=8.3Hz), 7.35(d, 1H, J=8.3Hz), 7.62(d, 1H, J=8.3Hz), 7.63(a, 1H), 12.08(a, 1H), 12.56(a, 1H)	ESI+ 441(100)
	G17H14OI2M40282	>220		
34	A REAL STATES	280	DMSO-de-300 2.144a, 3H), 248(s. 3H), 3.58(s. 2H), 5.05(s. 2H), 8.45(d. 1H, J=7.3Hz), 8.47(d. 1H, J=7.3Hz), 8.53(s. 1H), 8.88(t. 1H, J=7.3Hz), 7.20(s. 1H), 12.08(s. 1H), 12.46(s.	ESI+ 388(100)
	G17H17N50282 H ₂ N	>220		
35	John Holy A	08<	DMSO-d6-400 1.39(s. 9H), 2.12(s. 3H), 2.45(s. 3H), 5.46(br. 1H), 7.21(s. 1H), 7.31(s. 3H), 7.49(d. 2H, J=6.7Hz), 7.69(br. 1H), 12.04(s. 1H), 12.57(s. 1H)	ESI+ 488(82)
	C22H28N3O452	>220		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96	DMSO46-300 2.24(s. 3H) 2.47(s. 3H), 3.8(s. 2H), 7.1(d. 1H, J=7.3Hz),	ESI+ 492(100)
38		4	7.7(d, 14, J=9.2Hz), 7.8(e, 14), 7.97(d, 24, J=6.6Hz), 10.28(e, 2H), 12.08(e, 2H), 12.58(e, 2H)	
	C24H21N5O3S2	>220	· .	•

[0096]

* *【表10】

62

	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	数 10 編成/性状/整成 (%)	1H NMR(Ø) ppm	MS
37	Contraction of the second	>90 在 在 220	DMSO-48-400 2.13(a, 3H), 2.48(a, 3H), 3.75(a, 2H), 5.09(a, 2H), 8.92(a, 2H, 0=7.7Hz), 7.02(zr., 1H), 7.26(z, 1H), 7.26(t, 1H, 0=7.8Hz), 7.32(d, 1H, 0=7.1Hz), 7.38(d, 2H, 0=1.4.8Hz), 7.45(d, 2H, 0=7.1Hz), 12.04(a, 1H), 12.48(a, 1H)	ESI+ 478(100)
88	CZIHZ4N60352	>90 アモルファス	DMSO-d 6 -300 214(a, 3H), 2.28(a, 6H), 2.47(a, 3H), 3.08(a, 2H), 3.75(a, 2H), 7.04(d, 1H, 9-7.9Hz), 7.21(a, 1H), 7.27(t, 1H, 9-7.9Hz), 7.56(d, 1H, 9-7.9Hz), 7.66(a, 1H), 9.72(a, 1H), 12.08(a, 1H), 12.05(a, 1H)	ESI+ 473(100)
38	CITHITUBOZEZ	780 88 88 88 87 87 87 87 87 87 87 87 87 87 8	DMSO-46-300 2.12(a, 3H), 2.44(a, 3H), 4.62(a, 1H), 7.06(a, 1H), 7.21- 7.37(m, 3H), 7.46(d, 2H, J=7.32Hz)	ESI+ 388(100)
9	FLORITEMOSES	>90 衛動 197.1 - 188	DMSO-d6-400 2.52(a, 3H), 3.8(a, 2H), 7.25-7.4(m, 8H), 8.16-8.2(m, 2H), 12.63(a, 1H), 12.63(a, 1H)	ESI+ 453(100)

[0097].

* *【表11】

=	1 1 2
歉	1

63

		服 1		
	権強式 / 組成式	名成/布衣/配点 (名) / 作枚/配点	IN NMR(&) ppm	SE SE
4	La La La La Constitution of the Constitution o	06<	DMSO~d6~400 252(s, 3H), 3.86(s, 2H), 3.85(s, 3H), 7.07(d, 2H, J≒8.72Hz), 7.23~7.35(m, 6H), 8.1(d, 2H, J=8.84Hz)	ESI+ 485(100)
	G23H20N4O3S2	230.2 - 232.2		
42	Chity of	08<	DMSOd8-400 1.32(a, 9H), 2.52(a, 3H), 3.8(a, 2H), 7.18-7.35(m, 6H), 7.56(d, 2H, J=8.48Hz), 8.05(d, 2H, J=8.44Hz), 12.53(br. 2H)	ESI+ 481(100)
	C28HZ8N4O2S2	192.4 - 195.3		
3	A A A A A A A A A A A A A A A A A A A	08<	DMSO-d8-400 1.55-1.89(m, 8H), 246(s, 3H), 2.88-2.92(m, 1H), 3.79(s, 2H), 7.18-7.23-(m, 8H), 12.01(s, 1H), 12.5(s, 1H)	ESI+ 427(100)
	C21H22N4O2S2	115.8 - 118.9	•	
4		08<	DMSOd8-300 3.82(s. 2H), 7.10(d. 1H, J=7.7Hz), 7.32(d. 1H, J=7.7Hz), 7.50-7.59(m. 3H), 7.88(d. 1H, J=9.2Hz), 7.80-7.85(m. 3H), 7.84-7.98(m. 3H), 8.81-8.83(m, 2H), 10.28(brs. 1H), 12.83(brs. 1H)	ESI+ 415(100)
	C23H18N4O2S	248 – 250		

[0098]

* *【表12】

65

66

数 12	総庫/性状/ 融点 :H NMR(よ)ppm MS (6)	>90 1.15-1.31(m, BH), 1.85-1.80(m, BH), 2.13(a, 3H), 2.13(a, 1H), 2.46(a, 3H), 3.76(a, 2H), 8.23(dd, 1H, 2-6.6, 16.0Hz), 6.35(d, 1H, 3-16.0Hz), 7.17(m, 1H), 7.24-7.27(m, 2H), 7.35(m, 1H), 12.48(bra, 1H)	28) 281(a, 2H, 710(d, 1H, J=7.7Hz), 7.32(t, 1H, J=7.7Hz), 7.10(d, 1H, J=7.7Hz), 7.45(dd, 1H, J=6.1, 8.2Hz), 7.50-7.88(m, 3H), 7.88(d, 1H, J=8.2Hz), 7.50-7.88(m, 3H), 7.88(d, 1H, J=8.2Hz), 7.88(a, 1H),	DMSO-d6, 400MH ESI+ 1.15-1.31(m, 5H), 1.65-1.80(m, 5H), 2.13(a, 3H), 2.13(a, 1H), 2.13(a, 1H), 3.76(a, 2H), 8.23(d, 1H, 3-18.0Hz), 8.35(d, 1H, 3-18.0Hz), 7.17(m, 1H), 7.18(a, 1H), 7.24-7.27(m, 2H), 7.35(m, 1H), 12.03(brs, 1H), 12.48(brs, 1H)	DMSO-d6-300 ESI+ 3.77(s, 2H), 7.77(s, 1H), 7.86- 414(100) 7.83(m, 4H), 10.6(s, 1H), 12.5(s, 1H) 12.5(s, 1H)
数 12		DMSOd8400 1.15-1.31(m, 6H), 1 2.13(m, 1H), 2.46(e 2-8, 18.0Hz), 6.3 7.18(e, 1H), 7.24-7 1H), 12.48(brs, 1H)	DMSO-d8-4 381(s. 2H). 7.48(dd. 1H, 1H, 69.2H). 8.22(dt. 1H, 1). 9.11(d. 1H, 1).	DMSO-d6, 400MH 1.15-1.31(m, 5H), 1.62 2.13(m, 1H), 2.46(a, 3) 2-5.6, 16.0Hz), 8.35(d, 7.16(a, 1H), 7.24-7.27) 1H), 12.48(brs, 1H)	DMSO-46-300 3.77(s, 2H), 7.05-7.87(r, 7.83(m, 4H), 10.5(s, 1H
	群後式 / 組成式 (9)	98%	00×	780 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	00X #

[0099]

* *【表13】

	4	数 13		
医食物	構造式/組成式	親度/性状/脱点 (%)	IH NMR(&) ppm	MS
84		06<	DMSO-46-300 3.8(s, 3H), 7.08(d, 1H, J=7.71Hz), 7.24-7.34(m, 3H), 7.5-7.58(m, 4H), 7.71(d, 1H, J=7.71Hz), 7.8(s, 1H), 7.91-7.86(m, 4H), 10.26(s, 1H), 12.51(s, 1H)	ESI+ 432(100)
	O24H18FN3O2S	232.6 - 233.2		
20		08<	DMSO-46-300 1.22-1.41(m, 5H), 1.45-1.8(m, 5H), 2.13(a, 3H), 2.28(br, 1H), 2.48(a, 3H), 3.73(a, 2H), 6.98(d, 1H, 5-5.87Hz), 7.18(a, 1H, 7.23(t, 1H, 4-5.91Hz), 7.48(d, 1H, 5-5.87Hz), 7.81(a, 1H), 9.77(a, 1H), 12.04(a, 1H)	ESI+
	O24H27N5O3S2	225.2 - 227.2	12.51(a, 1H)	
Ţ.		08X	O-d6-400 a, 2H), 7.10 -7.59(m, 3H) a, 1H), 7.87-	ESI+ 415(100)
5 .	C23H18N4028	212 - 214	10.28(bra, 1H), 12.9兴bra, 1H)	•
52	Challe Shapes	08/	DMSO-d8-400 7.50-7.58(m, 3H), 7.08(d, 1H, J=7.8Hz), 7.32(t, 1H, J=7.8Hz), 7.50-7.58(m, 3H), 7.89(d, 1H, J=7.8Hz), 7.74-7.78(m, 2H), 7.80(d, 1H), 7.88(d, 1H, J=3.3Hz), 7.85(d, 2H, J=7.1Hz), 10.25(brs, 1H), 12.72(brs, 1H)	ESI+ 421(100)
	C21H16N4O282	223 - 225		

[0100]

* *【表14】

,	表 14	*			
机式	和度/性状/製造(%)	IH NMR(&) ppm	M8		
	>90 相關 214 - 216	DMSO-46-400 1.10(t, 8H, J=7.0Fiz.); 3.38(q, 4H, J=7.0Hz.); 3.78(a, 2H), 6.88(d, 2H, J=8.9Fiz.); 7.08(d, 1H, J=7.8Hz.); 7.28(a, 1H), 7.31(t, 1H, J=7.8Hz.); 7.80-7.80(m, 3H); 7.87(d, 2H, J=8.9Hz.); 7.84(a, 1-½; 7.86(d, 2H, J=7.0Hz.); 10.24(brs. 1H); 12.41(brs., 1H)	ESI+	69	
20	>80 7モルファス	DMSO-d6-400 2.13(a, 3H), 2.46(a, 3H), 3.6(a, 2H), 4.24(d, 2H, J=5.86Hz), 6.24(c, 1H, J=5.86Hz), 6.43(d, 1H, J=2.Hz), 6.49(d, 1H, J=7.8Hz), 8.6(a, 1H), 6.37(c, 1H, J=7.9Hz), 7.17-7.31(m, 4H), 7.25(d, 2H, J=7.1Hz), 12.03(a, 1H), 12.42(a, 1H)	ESI+ 478(100)	(36)	
Do	>90 結局 184.4 — 188.8	DMSO68-400 2.13(a, 3H), 2.46(a, 3H), 3.77(a, 2H), 6.89(t, 4H, 5.13(t, 1H, J=7.4Hz), 7.2(a, 1H), 7.34-7.4(m, 4H), 12.04(a, 1H), 12.6(a, 1H)	ESH 485(100)		
===	790 香	DMSOd8-400 1.22(a, 9H), 2.13(a, 3H), 2.46(a, 3H), 3.78(a, 2H), 7.02(d, 1H, 2-7.52Hz), 7.19(a, 1H), 7.24(t, 1H, J-7.88Hz), 7.54(d, 1H), J-8.2Hz), 7.63(a, 1H), 9.18(a, 1H), 12.04(a, 1H), 12.51(a, 1H)	ESI+ 472(100)	特開2002 70	

[0101]

*【表15】

O24H23N6O2S2

54

C28H28N4O2S

53

C23H20N4O3S2

22

C22H25N5O3S2

26

		表 15	. ~		
좚		和度/住状/ 融点 (%)	fill NMR(&) ppm	MS	
27		00人 超	DMSO-48-400 1.54-1.84(m, 8H), 2.13(a, 3H), 2.46(a, 3H), 2.74- 2.78(m, 1H), 3.74(a, 2H), 8.98(d, 1H, J=7.44Hz), 7.2(a, 1H), 7.23(t, 1H, J=7.82Hz), 7.5(d, 1H, J=8.18Hz), 7.8(a, 1H), 9.83(a, 1H), 12.04(a, 1H), 12.51(a, 1H)	ESH 484(100)	71
	O23H26N5O3S2	230	:		
			DMSO-48-400 2.13(a, 3H), 2.46(a, 3H), 3.78(a, 2H), 3.89(a, 3H), 7.08- 7.09(m, 2H), 7.18-7.18(m, 2H), 7.29(t, 1H, J=BHz), 7.49-7.61(m, 3H), 7.77(a, 1H), 10.1(a, 1H), 11.9(a, 1H), 12.58(a, 1H)	ESI+ 522(100)	121
	C25H23N6O4S2	230			(37)
		06<	O-d6-400 s. 3H), 2.48(s. 3H), 3.78(s. 2H), 3. m, 2H), 7.20(s. 1H), 7.30-7.55(m,	ESI+ 522(100)	
.		- 報	7.89(m, 1H) 7.77(a, 1H), 10.2(a, 1H), 120(a, 1H), 12.54(a, 1H)		
	C25H23N5O482	153.6 - 156.5			
		06<	1	ESI+ 522(100)	7
0			7.88(m, 14), 7.77(s, 14), 7.86–7.87(m, 2H), 1.008(s, 14), 12.03(s, 1H), 12.53(s, 1H)		
	C25H23N5O4S2	219.8 - 222			2002
				•	4

[0102]

* *【表16】

	2

		2 X		
が	構造式 / 組成式	親康/性状/ 軽点	id NMR(&)ppm	MS.
		06<	DMSO-46-400 2.13(a, 3H), 2.46(a, f1), 2.81(t. 2H, J=7.7Hz), 2.9(t. 2H, J=7.7Hz), 2.9(t. 2H, J=7.7Hz), 2.9(t. 2H, J=7.7Hz), 3.4(t. 2H, J=7.8Hz), 3.4(t. 2Hz), 3.4(t. 2Hz), 3.4(t. 2Hz), 3.4(t. 2Hz),	ESI+ 620(100)
.		曜祭	چ.	
	C26H25N5O3S2	193 – 195.6		200,
;		08<	DMSOd8-400 213(s, 3H), 2.48(s, 3H), 3.8(s, 2H), 7.11(d, 1H, J=7.55Hz), 7.2(s, 1H), 7.33(dd, 1H, J=7.88, 7.84Hz),	ESI+ 493(100)
95	C23H20N6O382	₩ 530	7.05°7.08(m, 1H), 8.05°7.7.7(m, 1H), 7.78(a, 1H), 8.05°7.78(m, 1H), 8.05°7.78(m, 1H), 12.05(a, 1H), 12.05(a, 1H), 12.05(a, 1H), 12.05(a, 1H)	
			007-9P-OSMO	ES#
8		08 ₩	2.11(a, 3H), 2.49(a, 3H), 3.67(a, 2H), 6.95(br, 1H), 7.09(d, 1H, J=7.84(bz), 7.29(cd, 1H, J=7.84, 7.72Hz), 7.547–757(m, 1H), 7.147–771(m, 2H), 9.82(d, 1H, 1.87 (dd+5), 8.746–8.747, 1H), 9.40–9.47, 1H), 9.40	483(100)
	C23H20N6O382	230	, 10.42(a, 1H), 12.15(br, 1H)	
		06<	DMSO-d8-400 2.13(a, 3H), 2.48(a, 2H), 7.13(d, 1H, 7.13	ESI+ 493(100)
2			7.77(a, 1H) 7.77(a, 1H) J=5.84Hz),	
	O23H20N6O3S2	230	(4.00%, 17), 12,34,3; 1H)	

[0103]

* *【表17】

	7	5	
1			

- T	翻	推送其 / 組成以	雑席/性状/ 難点	IH NMR(&) ppm	MS	
		,		007-9P-08NG	103	
			>80	213(a, 3H), 248(a, 3H), 3.62(a, 2H), 3.74(a, 2H), 2.74(d, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H	506(100)	75
	99			(2.5(a, 14)		
		G25H23N5O382	210.3 - 212.2	,		
			08<	DMSO-d6-400 2.11(a, 3H), 2.44(a, 8:1), 2.99(a, 6H), 2.99(a, 6H),	ESI+ 535(100)	
-	88			2H), 6.75(4) , 1H, J=7.92 1.88Hz), 9.82		
<u> </u>		G26H26N6O382	230			(<i>)</i> 9)
			Ş	DMSO-d6-400	EST	
	67			2.134, 377, 2.464, 371, 3.244, 31), 3.74, 31), 8.334, 21, 3-7.684z), 7.15-7.42(m, 91), 8.11(a, 11), 12.03(a, 11), 12.47(a, 11)	521(100)	
		C26H24N6O3S2	230	•		
			08<		ESI+ 528(100)	7 (
	88		福	3.21(6, 3Hx1/2), 3.24(4, 3 (d, 1H, J=7.12Hz), 7.19-7.		
		C25H29N6O4S2	204.3 - 208.5	1H), 7,58(8, 1H), 8,77(8, 1Hx1/2), 9,82(2002

[0104]

*【表18】

		77		. (40)			特開 <i>2</i> 78	2002	-53	566
	MS	ESH-458(100)		ESI+ 472(100)	•	ESI+ 449(100)		ESI+ 471(100)			
	iH NMR(&) ppm	DMSO-46-300 1.08(a, 3H), 1.1(a, 3H), 2.13(a, 3H), 2.48(a, 3H), 2.51- 2.8(m, 1H), 3.74(br, 2H), 7(d, 1H, J=7.88Hz), 7.2(a, 1H), 7.24(dd, 1H, J=7.68, 7.88Hz), 7.51(d, 1H, J=8.04Hz), 7.8(a, 1H), 9.82(a, 1H), 12.08(a, 1H), 12.54(a, 1H)	~ \.	DMSO-48-300 0.81(a, 3H), 0.83(a, 3H), 2.05-2.1(m, 1H), 2.13(a, 3H), 2.16(a, 2H), 3.74(a, 2H), 7(d, 1H, J=7.88Hz), 7.2(a, 1H), 7.24(dd, 1H, J=8.07, 7.68Hz), 7.5(d, 1H, J=8.43Hz), 7.58(a, 1H), 9.84(a, 1H), 12.05(a, 1H), 12.53(a, 1H)		DMSO-46-400 2.50(a, 3H), 2.56(a, 3H), 3.79(a, 2H), 7.08(d, 1H, 2.7,5H2), 7.27(a, 1H), 7.31(t, 1H, J=7.1H2), 7.59(m, 1H), 7.67(d, 1H, J=5.2Hz), 7.79(a, 1H), 7.95(d, 2H, 3.7,1Hz), 10.24(brs, 1H), 12.57(brs, 1H)	**:	DMSO-46-400 2.06(a. 3H), 3.81(a. 2H), 7.1(d. 1H, J=7.6Hz), 7.31- 7.61(m. 8H), 7.89(d.:1H, J=8.1Hz), 7.8(a. 1H), 7.96(d. 2H, J=7.1Hz), 8.23(a. 2H), 8.96(a. 1H), 10.25(a. 1H), 12.53(a, 1H)	N - 20		·
₩ 18	約度~性状~酸点 (%)	. · · · · · · · · · · · · · · · · · · ·	>230	- 08<	>230	08<	218 - 220	. 08<	>220		
	(株) はん (地) はい (C21H23N5O3S2		C22H25N5O3S2		C23H20N4O2S2		CZ6HZZN4O3S		· · · · · · · · · · · · · · · · · · ·
	髓	88		2		12		72			

[0105]

40【表19】

1	9

	79	(41)		80
W.S	E8i+ 444(100)	ESH 471(100)	ESI+ 430(100)	ESI+ 430(100)
114 NMR(&)ppm	DMSO-48-400 3.8(a, 3H), 6.28(dd, 1H, J=3.1, 8.2Hz), 7.1(d, 1H, J=7.8Hz), 7.33(dd, 2H, J=7.8, 15.2Hz), 7.46-7.69(m, TH), 7.8(a, 1H), 7.98(d, 2H, J=7.1Hz), 10.24(a, 1H), 12.51(a, 1H)	DMSO-d6-400 206(a, 3H), 3.8(a, 2H), 7.11(d, 1H, J=8.1Hz), 7.33(t, 1H, J=7.6Hz), 7.81(a, 1H), 7.81-7.71(m, 7H), 7.81(a, 1H), 7.82(d, 2H, J=8.7Hz), 9.98(a, 1H), 10.24(a, 1H), 12.48(a, 1H)	DMSO-46-300 380(a, 2H), 6.73(d, i.f. J=8.93Hz), 7.1(d, 1H, 3.80(a, 2H), 7.21(t, 1H, 1-7.7Hz), 7.28-7.34(m, 3H), 7.49-7.61(m, 4H), 7.68(d, 1H, J=8.07Hz), 7.80(e, 1H), 7.85(d, 2H, J=8.43Hz), 9.47(a, 1H), 10.27(a, 1H), 12.51(a, 1H)	DMSO-46-300 3.78(s, 2H), 8.81(d, 2N, J=11.3Hz), 7.1(d, 1H, J=8.1Hz), 7.31(d, 1H, J=8.1Hz), 7.35(s, 1H), 7.49-7.73(m, 6H), 7.81(s, 1H), 7.98(d, 2N, J=8.1Hz), 9.56(s, 1H), 10.27(s, 1H), 12.47(s, 1H)
(名) (名) (名)	>90 香華 190.8 - 191.8	>BD 新春 ************************************	>90 結晶 129 - 132.1	>90 ##.8 >220
権達式 / 組成式	CZSHZI N3O3S	CZ6HZZN4038	HO HO H HO HO C24H18N3038	HO R H H H H H H H H H H H H H H H H H H
の大学	23	74	75	92

[0106]

* *【表20】

81

多		数 20 数 20 単元 20 20 20 20 20 20 20 20 20 20 20 20 20	z ·	
	新祖共/朝成政	(多) / 西本/ (多)	1H NMR(&) ppm	S S
		00<	DMSO-48-400 228(a, 3H), 3.78(a, 2H), 6.92(a, 1H), 6.93(d, 2H, 1H), 7.08(d, 1H, 1H), 7.08(d, 1H, 1H), 7.08(d, 1H, 1H), 7.08(d, 1H, 1H), 7.08(d, 1H),	ESI+ 450(100)
17			7.51-7.61(m, 3H), 7.68(d, 1H, J=7.9Hz), 7.78(e, 1H), 7.96(d, 2H, J=7.1Hz), 10.24(e, 1H), 12.43(e, 1H)	
	G22H19N5O2S2 622H19N5O2S2	>220		
		08<	0-48-400 4, 3Hx1/2, J=8.52Hz), 0.93(d, 3Hx1	ESH 512(100)
78		4	1.76-1.84(m. 3H), 2.13(s 6.88%, 2H, J=7.8Hz), 7.1 J=7.64Hz), 7.17(s, 2H), 9	
	C25H2BN5O3S2	223 - 224.5		
-				ESI+
79		08 48	081(s, 9Hx1/2), 0.8≗′d, 9Hx1/2), 1.0(br, 2H), 1.3− 1.68(m, 4H), 1.76−1.92(m, 2H), 2.04−2.11(m, 1H), 2.13(a, 3H), 2.19−2.23(m, 1H), 2.46(s, 3H), 3.73(s, 2H),	554(100)
	C28K6503S2	183.3 - 186.9	oseva, Ir., 5–1.06712; 7.21–7.250m, 2H, 7.48(d. 1H, 5–8.18Hz), 7.61(e, 1∰, 9.68(e, 14k1/2), 9.8(
			DMSO-48-400	ESI÷
8		08个 福	3.81(a, 2H, 7.28-7.56(m, 5H), 7.83(d, 2H, J=3.04Hz), 7.98(a, 1H), 8.62(d, 2H, J=3Hz), 12.82(a, 1H)	296(100)
	C18H13N3OS	>220		

[0107]

7-12-6

* *【表21】

83

		₩ 21		
No.	単位 一部内は	和度/性状/ 融点 (%)	i H _i NMR(&) ppm	MS
		08<	DMSO-48-400 2.13(a, 3H), 2.47(a, 3H), 3.88(a, 2H), 6.83-7(m, 2H),	ESI+ 628(100)
<u>~</u>		4	7.1 = 7.21 (m, 3H), 7.4 = 7.08 (m, 4H), 7.1 = 7.77 (m, 2H), 10.27 (s, 1H), 12.04 (s, 1H), 12.48 (s, 1H)	
	G23H21N6O483	>220 dec.	:	
	# *	8	;	ESI+
8		26° 38	2.114, 3H, 3B1(4, 24), 7.11(4, 1H, J=7.3Hz), 7.33(t, 1H, J=7.85Hz), 7.51-7.71(m, 5H), 7.82(a, 1H), 7.87(d, 2H, J=88Hz), 8.53(d, 1H, J=88Hz), 8.23(dd, 1H, J=2.2Hz), 10.28(a, 1H), 10.6(a, 1H)	472(100)
	OZSH21N5O3S	>220	1281(s, 1H)	
	Ī		DMSO-66-100	ESH
		06.	1.34(t, 3H, J=7.1Hz), 2.65(s, 3H), 3.82(s, 2H), 4.37(q, 2H, J=7.1Hz), 7.09(d, 1H, J=7.7Hz), 7.32(t, 1H, J=7.9Hz), 7.69(d, 1H, J=7.8Hz), 7.694-1H, 1H, 2H, 7.694-1H, 1H, 2H, 7.694-1H, 1H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2	507(100)
3			7.96(d. 2)	
	CZSHZZN4O4SZ	>220		
		08<	3	ESH 485(100)
2		アモルファス	7.52-7.63(m, 3H), 7.6 0, 7.97(d, 2H, J=8.1H	
	C23H20N4O3S2			

[0108]

* *【表22】

		<	>	-
_	_	_	_	_

		表 22			
計	集後以 人 起政則	範度/性状/耐点 (%) /性状/配点	1≓ NMR(∂) ppm	WS	
		08<	DMSO-48-400 2.15(a, 3H), 3.78(a, 2H), 7.09(d, 1H, J=7.6Hz), 7.31(t, 1H, J=7.6Hz), 7.31(t	ESI+ 478(100)	85
88		4	9(0, 1H), 7.81(a, 1H), 7.96(d, 1, 1H), 12.68(a, 1H),		5
	O23HI9N5O3S2	>220			
	Y	08<	DMSO-46-400 QB6(t, 3H, J=7.4Hz), Q.86-0.83(m, 2H), 1.14-1.43(m,	ESI+ 540(100)	
8		4	SES TOE		
	C27H33N5O3S2	230 - 232	7.61(brs. 1H), 9.78(brs. 1H), 12.03(brs.		(44)
_		06<	-d6-300 2H), 7.07(d, 1⅓, J=7.3H;	ESH-	
87		4	7.48—7.58(m, 3H), 7.64(a, 1H), 7.67(d, 1H, 1=8.1Hz), 7.78(a, 1H), 7.94(dd, 2H, 1=1.1, 7.7Hz), 10.25(brs, 1H), 12.65(brs, 1H)		
	C20H16N6O2S2	>250		9	
		06<	8 I	ESI+ 491(100)	8
8		#G ##	4.105(a, 1H), 12.53(a, 1H) 12.05(a, 1H), 12.53(a, 1H)		
]	O25H22N4O3S2	139.5 - 141.7		_	200.

[0109]

*【表23】

		数 23	4	
魏	権強式 / 船成式	組度/柱状/融点(%)	L. I NMR(&) ppm	₹
88		08<	DMSO-46-300 1.81-1.92(m, 4H), 2.01-2.13(m, 5H), 2.27-2.39(m, 4H), 2.91-2.98(m, 2H), 3.74(a, 2H), 7(d, 1H, 1.747Hz), 7.2- 7.31(m, 2.H), 7.48(d, 1H, 1.8.181hz), 7.81(a, 1H), 9.89(a, 1H), 12.02(br, 1H), 12.64(a, 1H)	ESI+ 513(100)
	C24H28N6O3S2	>220		<u> </u>
06	A STANK STAN	ንቁ0 ፖモル <i>ን</i> ፖス	CDCI3-300 227(a, 3H), 2.62(a, 5H), 3.13(dd, 1H, J=5.5, 18.7Hz), 3.47(dd, 1H, J=9.9, 18.7Hz), 4.29(dd, 1H, J=5.5, 9.9Hz), 7.25(a, 1H), 7.33−7.46(m, 5H)	ESH 413(100)
	O19H16N40382			
16		06<	DMSO-d8-400 7.94(a, 3H), 2.48(a, 3H), 3.78(a, 3H), 4.15(a, 2H), 7.94(a, 1H, J=7.5Hz), 7.28(a, 1H), 7.33(t, 1H, J=7.1Hz), 7.50-7.69(m, 3H), 7.70(m, 1H), 7.72(a, 1H), 7.85(d, 2H, J=7.1Hz), 10.25(brs, 1H), 12.03(brs, 1H)	ESI+ 508(100)
	C26H23N5O3S2	>250		
92	A A A A A A A A A A A A A A A A A A A	08<	DMSOde400 1.38(br., 2H), 1.52(br., 4H), 2.13(s., 3H), 2.46(s., 3H), 3.26(br., 4H), 12.03(s., 1H)	ESI+ 380(100)
	C16H21N5O2S2	183.8 - 194.9	٠.	

[0110]

* *【表24】

89

	,	表 24		
	推进式 / 施政式	(名) /住状/ 融点	1H NMR(&)ppm	S X
	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08<	400 3H), 2.13	ESI+
83		4	2.88(m, 3H), 3.38(dc; 2H, J=15.7, 21.8Hz), 7.02(t, 1H, J=7.4Hz), 7.22(s, 2H, J=7.4Hz), 7.63(d, 2H, J=7.4Hz), 10.04(s, 1H), 12.04(s, 1H), 12.11(s, 1H)	
	O23H26N6O3S2	>220	. 4	
	1 2 2 C	8		ESI+
\$	The second secon	アモルファス	1.70~1.80(m, 3H), 2.18~224(m, 1H), 2.62~2.88(m, 1H), 3.21~3.28(m, 1H), 3.44~3.48(m, 1H), 3.58(d, 1H, 2.53(e, 1H), 7.28(d, 2H, 2.53(e, 2H, 2.53(e, 2H, 2.54), 19.45, 2.54, 4.7.85(e, 2H, 2.54), 19.45, 1.7.88(d, 2H, 2.54), 19.45, 1.7.88(e, 1H), 19.45, 19.48(e, 1H), 19.45, 19	485(100)
	G22H24N6O382			
		08<	DMSO-d8-300 1.34-1.85(m. 13H), 2.13(e. 3H), 2.48(e. 3H), 3.73(e.	ESI+
93			2H), 6.98(4, 1H, J=7.8Hz), 7.2-7.31(m, 2H), 7.47(4, 2H, J=7.85Hz), 7.6(e, 1H), 9.76(e, 1H), 12.06(e, 1H), 12.54(e, 1H)	
	C25H28N5G3S2	>220		
		08<	DMSO-d8-400 1.17(4, 3H), 1.25-1 80(m, 8H), 2.05-2.08(m, 2H),	ES/+ 512(100)
96	7.5	- 平	2-1048, 577, 2-7048, 577, 3.748, 277, 7.0243, 114, 7-7.28(m, 24), 7.84(d, 114, 7-8.384z), 7.83(s, 114), 8.16(s, 114), 12.04(s, 114), 12.81(s, 114)	
	C25H28N5O3S2	>220	. ,5	

[0111]

* *【表25】

197 1987			¥ 25			
DMSC-66-400 DMSC-66-300	調整	構造式 /組成式	雑席/住状/酵点 (%)	1H NMR(&)ppm	S	
C28H32NB00382 C28H32NB00382 C2276, 341, 3156, 241, 729-708(m, 241, 729(m, 24			08<	316r, 2H), 1.91(br, 2H), 2.13(a, 3H), 3.74(a, 2H), 7(d, 1H, 1, 7.48(d, 2H, 1)=8H2), 7.68(a, 1H), 12.81(a, 1H)	ESI+ 541(100)	91
DMSO-48-300 227(a, 3H), 3.78(a, 24), 7.29- 451(100) 2227(a, 3H), 3.78(a, 14), 7.28(a, 14), 7.24(a, 14) 2221(a, 3H), 3.76(a, 14), 7.28(a, 14), 7.24(a, 14) 2221(a, 3H), 3.76(a, 14), 7.24(a, 14), 7.24(a, 14) 223(a, 3H), 7.24(a, 14), 7.24(a, 14) 223(a, 3H), 7.24(a, 14), 7.24(a, 14), 7.24(a, 14) 223(a, 3H), 7.24(a, 14), 7.24(a		C26H32N6O3S2	199.7 - 201.3			
177-178 dec. 177-	86		₩ ##	. (2:4), 7.08–7.08(m, 2H) 18:n, 5H), 7.78(s, 1H), 1 18: (H), 11.28(s, 1H), 12.	ESI+ 451(100)	
C17420N4O854		022H18N403S2	177~179 dec.	Teda - 20		(47)
C1 7H20N40854	. 6		08<		ESI+ 409(100)	
2.12(a, 3H), 3.77(a, 2H), 4.56(d, 2H, J=5.5Hz), 5.21(t, 1H, J=5.5Hz), 5.21(t, 1H, J=5.5Hz), 5.21(t, 1H, J=5.5Hz), 5.21(t, 1H, J=5.5Hz), 7.36(t, 1H, J=7.7Hz), 7.36(t, 1H, J=7.7Hz), 7.36(t, 1H, J=7.7Hz), 7.36(t, 1H, J=7.5Hz), 10.24(brs, 1H, J=7.5Hz		Ĩ	184 - 186			•
1H), 12.12(bra, 1H), 12.56(bra, 1H)				300 3.77(a, 2H), 4.56(d, 2H, J=5.5Hz), 5.21(t, 2), 7.06(4, 1H, J=7.7Hz), 7.30(t, 1H, 2.5(a, 1H), 7.50–7.57(m, 3H), 7.66(d, 1H, 7.7(a, 1H), 7.93(d, 2H, J=7.5Hz), 10.24(brz.	ESI+ 508(100)	
		C28H23N5O6S2	165 - 167	12.12(brs, 1H), 12.56(brs, 1H)		2002

[0112]

* *【表26】

a	2
,	_

		X 28		
	精達式 / 組成式	製度/性状/製点 (%)	f⁴ NMR(Ø)ppm	ΜS
5		08<	DMSO-46, 300MH 2.12(a, 3H), 3.77(a, 5:4), 4.86(d, 2H, J=5.5Hz), 5.21(t, 1H, J=5.5Hz), 7.30(t, 1H, J=7.7Hz), 7.30(a, 1H), 7.80-7.57(a, 3H), 7.80(a, 1H), 7.80(a, 3H, J=7.8Hz), 10.20(b, b, J=7.8Hz), 10	ESI+ 508(100)
	C24H21N6O4S2	>260	2.12(brs. 1H), 12.56(brs. 1H)	
5	Control of the contro	>90 	DMSO-de-300 1.81(br. 2H), 2.12(s. 3H), 2.23(br, 6H), 2.35(br, 2H), 2.47(s. 3H), 4.18(s. 2H), 7.428(br, 2H), 7.05(d. 1H, 2.7.7Hz), 7.27(s. 1H), 7.34(t. 1H, 197.8Hz), 7.5-	ESI+ 577(100)
<u> </u>	CZ8H9ZNBOSSZ		H), 7.71(d, 1H, J=7.9Hz), 7. 2), 10.28(s, 2H), 12.05(s, 2H	
	= = = = = = = = = = = = = = = = = = = =	06<	DMSO-48-400 1.42(4, 3H, J=74z), 2.13(e, 3H), 2.45(e, 3H), 4.02(br.	ESH 493(100)
103		唱歌	1H), 5.62(br, 1H), 5.88(br, 1H), 7.18–7.35(m, 10H), 11.88(br, 1H), 12.34(br, 1H)	
	C25H24N4O3S2	133 - 135.5		
		. 06<	DMSO-46-300 2.13(a, 3H), 2.46(a, 3H), 3.78(a, 2H), 6.7(br. 1H), 7.02(d, 1H, J=7.76Hz), 7.2(a, 1H), 7.25-7.335(m, 3H), 7.54(d, 1H), 7.25-7.335(m, 2H), 7.54(d, 2H), 7.25-7.335(m, 2H), 7.25-7.	ESI+ 482(100)
401		-	J=8.38Hz), 7.73(c, 1H), 10.18(e, 1H), 12.00 56(e, 1H)	
	C22H18N6O4S2	>220		

[0113]

* *【表27】

a	_
"	_

Į		表 27		
を開発し	権造式 /組成式	朝度/性状/ 関点 (%)	iti NMR(&) ppm	M8
105		>	DMSO-48-400 2.13(a, 3H), 2.48(a, 3H), 3.78(a, 2H), 7.02(d, 1H, 2.13(a, 3H), 2.48(a, 3H), 7.82-7.73(m, 2H), 7.81(br, 1H), 7.88(br, 1H), 10.18(a, 1H), 12.08(a, 1H), 12.58(a, 1H)	ESI+ 498(100)
	G22H18N6G3S3	>220	8	
90_		08<	DMSO-d6-400 2.13(a, 3H), 2.46(a, 3:1), 3.78(a, 2H), 7.02(d, 1H, J=7.78Hz), 7.2(a, 1H), 7.3-7.45(m, 4H), 7.56-7.62(m, 1H), 7.67-7.71(m, 1H), 7.39-7.89(m, 1H), 10.29(a, 1H), 12.08(a, 1H), 12.56(a, 1H)	ESI+ 510(100)
	C24H20FN5O3S2	175.4 – 177.1		
107		06<	DMSO-d8-300 2.13(s, 3H), 2.46(s, 3H), 3.78(s, 2H), 7(d, 1H, 2-7.88Hz), 7.2(s, 1H), 7.24(dd, 1H, 2-7.88, 7.68Hz), 7.56-7.59(m, 1H), 7.73(s, 1H), 7.91(d, 1H, 1-8.04Hz), 8.01(s, 1H), 10.38(s, 7H), 12.06(s, 1H), 12.57(s, 1H)	ESH 528(100)
	C24H20CIN5O3S2	182 – 183.9		
108		08<	DMSO-d6-400 2.13(a, 3H), 2.48(a, 3H), 3.78(a, 2H), 7.13(d, 1H, 0=7.88Hz), 7.2(a, 1H), 7.24(dd, 1H, 0=7.68, 7.68Hz), 7.66-7.78(m, 3H), 7.51(d, 1H, 0=8.04Hz), 8.21-8.3(m, 2H), 10.46(a, 1H), 12.01(a, 1H), 12.57(a, 1H)	ESI+ 580(100)
	C25H20F3N5O3S2	171.7 - 173.4		

[0114]

* *【表28】

製品金	计替罪 / 计完整	1	A YOUNG TO	[_
*		(%) / * / (C)	make o spiri	20 E	
			DMSO-46-400	ESI+	
109		08<	2.13(a, 3H), 2.46(a, 3H), 3.78(a, 2H), 7.16(d, 1H, J=7.68Hz), 7.21(a, 1H), 7.38(dd, 1H, J=7.88, 7.68Hz), 7.36(dd, 1H, J=8.04Hz), 7.96(a, 1H), 8.01-8.04(m, 3H), 8.21-8.35(m, 3H), 8.55(a, 1H), 10.84(a, 1H), 12.06(a,	544(100)	97
	O28H21N7O3S2	>220	8(6 , IH)		
3			DMSO-d9-300 1.78(br. 3H) 213(br. 4H), 2.34(s. 4H), 2.48(s. 3H), 3.75(s. 2H), 714 1H, JE7.88H2), 7.26(s. 1H), 7.26(d. 1H,	ESI+ 498(100)	
2	Section 19 contraction 19 contractio	>220	9.87(a, 1H), 10.84(a, 1H), 12.06(a, 1H), 12.53(a, 1H)		(50
			DMSO-46-400	HS.H	,
Ξ		06〈 据	213(a, 3H), 2.46(a, 5H), 3.76(a, 2H), 3.87(a, 3H), 6.06(tr. 1H), 6.85-7.14(rn. 3H), 72(a, 1H), 7.26(dd. 1H, 2-8.04(tr.), 7.86(dd. 1H, 2-8.04(tr.), 7.67(a, 1H), 8.867(a, 1H), 12.53(a, 1	495(100)	
	C23H22N8O3S2	>220	, 1		
112	State of the state	08<	50-d6-400 (kg 3H), 2.48(c, 3H), 3.80(c, 2H) kd, 1H, J=7.84H2, 7.2(c, 1H), 7 Hz), 7.58(d, 1H, J=8.04H2), 7.9	ESI+ 494(100)	98
	CZZHIBN703SZ	>220	12.56(e, 1H)		利2002

[0115]

*【表29】

	2	,	2
_			

\$\frac{\pi}{2}\$	黄色式 / 相成式	御度/性状/融点 (%) /性状/ ^{融点}	1H NMR(&)ppm	S.≅
===		>90 ME	DMSO-48-300 3.88(a, 2H), 7.17(d, 1H, J=7.7Hz), 7.38(t, 1H, J=7.7Hz), 7.83-7.87(m, 3H), 7.97-8.08(m, 4H), 8.23(m, 1H), 8.31(m, 1H), 8.61-0.63(m, 2H), 9.58(a, 1H), 10.88(brs, 1H), 12.87(brs, 1H)	ESI+ 467(100)
O26H18N6O2S		253 – 255		
=======================================		19 19 8	DMSO-48-300 3.88(a, 3H), 4.21(a, 2:1), 7.11(d, 1H, J=7.7Hz), 7.40(t, 1H, J=7.7Hz), 7.85-7.60(m, 4H), 7.99-8.03(m, 3H), 8.22(m, 1H), 8.31(m, 3H), 8.60-8.62(m, 2H), 8.54(s, 1H), 10.84(bra, 1H)	ESI+ 481(100)
O26H20N6O28	a ·	250 – 252		
115		08<	DMSO-d6-300 2.18(a, 3H), 3.81(a, 2H), 7.1(d, 1H, J=7.7Hz), 7.33(t, 1H, J=7.8Hz), 7.46(a, 1H), 7.51-7.83(m, 3H), 7.7(d, 1H, J=7.7Hz), 10.28(a, 1H), 12.83(a,	ESI+ 546(100)
C24H18F3N5O3S2	> \	160 – 163	W. J. M	
911	O L	080 電報	DMSOd6-300 2.18(s. 3H), 3.81(s. 2H, 7.08(d. 1H, J=7.4Hz), 7.32(t. 1H. 97.9Hz), 7.5-7.6(m, 3H), 7.68(d. 1H, J=7.9Hz), 7.78(s. 1H), 7.88(d. 2H, J=7.7Hz), 10.27(s, 1H), 12.78(s, 1H), 12.88(s, 1H), 12	ESI+ 580(100)
C24H17GF3N5O3S2	· · ·	>220		
		-163	DMSO-48-300 2.19(a. 3H), 3.81(a. 2H), 7.1(d. 2H2), 7.45(a. 1H), 7.51-7.9 3-7.7Hz), 7.8(a. 1H), 1.87(d. 2H1), 12.63(a. 1H), 12.98(a. 1H) DMSO-46-300 2.19(a. 3H), 3.81(a. 2H), 7.08(d. 1H, 3H2), 7.5-7.6(m. 3H), 7.81(a. 2H, 2.1, 2.1), 7.88(d. 2H, 3.1), 11.7.88(d. 2H, 3.1), 11.89(a. 1H), 12.89(a. 1H)	1H, J=7.7Hz), 7.33(t, 1H, 53(m, 3H), 7.7(d, 1H, H, J=7.7Hz), 10.28(g, 1H, J=7.9Hz), 7.32(t, 1H, J=7.9Hz), 7.32(t, 1H, J=7.9Hz), 12.78(g, 1H),

[0116]

* *【表30】

	101			102
MS MS	ESI+ 531(100)	ESH 544(100)	ESI+ 545(100)	ESI+ 497(100)
	7.09(m, 2H), 7.36(m, 2H), 1.2.51(br,	7.18(m, 2H), 1H), 7.79(s, 159–8,61(m, 1.12.56(s, 1H)	3H), 7.08– 7.52–7.54(m, 1H),	, 1H, 7,84Hz), 1H), 10.01(s,

DMSO-46-400

\$ \$2

DMSO-46-400

%

171.4 - 173.9

C22H20N8O4S2

196.4 - 198.5

C27H24N6O3S2

118

地址 8

数解/存状/ (S) (S)

無事は/他内以

1H NMR(&) ppm

DMSO-48-400

DMSO-48-400

%

201.8 - 204.4

O28H22N8O3S2

日本

8

数30

[0117]

*【表31】

026H21N703S2

1	. О	3

	103	I a	<u> </u>	104
S S	ESI+ 643(100)	ESH 574(100)	ESI+ 626(100)	548(100)
1H NWR(&) ppm	DMSO-48-400 2.13(a, 3H), 2.46(a, 3H), 3.83(a, 2H), 7.10(d, 1H, 2-7.56Hz), 7.2(a, 1H), 7.31(dd, 1H, 2-7.88, 7.84Hz), 7.71-7.34(m, 4H), 8.69-8.12(m, 1H), 8.21-8.27(m, 2H), 8.61-8.84(m, 1H), 10.71(a, 1H), 11.98(a, 1H), 12.51(a, 1H)	DMSO-48-300 0.90-1.29(m, 5H), 1,33-1.85(m, 8H), 2.30(d, 2H, 0.50-1.29(m, 5H), 7.1(d, 1H, J=7.8Hz), 7.22(a, 1H), 7.33(t, 1H, J=7.8Hz), 7.61-7.83(m, 3H), 7.70(d, 1H, J=7.8Hz), 7.80(a, 1H), 7.57(d, 2H, J=7.9Hz), 10.28(br, 1H), 12.04(br, 1H), 7.5.58(br, 1H)	DMSO-d8-300 0.88-1.28(m, 5H), 1.58-1.88(m, 6H), 2.31(d, 2H, 0.284m, 5H), 1.58(a, 2H), 7.22(a, 1H), 7.40(t, 1H, 2+1, 85Hz), 7.87(a, 1H, 2+1, 81, 1+2), 7.87(a, 1H, 8.01-8.08(m, 2H), 8.22-8.37(m, 2H), 8.57(a, 1H), 10.88(a, 1H), 12.91(a, 1H)	DMSO-48-300 1.00(a, 9H), 2.28(a, 2H), 2.47(a, 3H), 3.80(a, 2H), 1.00(a, 9H), 2.28(a, 2H), 2.71(a, 1H), 7.31(t, 1H, 1-7.7Hz), 7.49-7.60(m, 3H), 7.70(d, 1H, 1-8.00E), 7.78(a, 1H), 7.85-7.87(m, 2H), 10.27(bra, 1H), 11.99(bra, 1H), 12.55(bra, 1H)
Sep.				
報度/性状/(%)	>90 (4)	ን ያ 0 ፖモルファス	ን90 ፖモルファス	ን 9 0 ፖモルファス
無違れ / 組成式	CETHEZNBOSSEZ	Captainsoass	COLUMNO SEZ	CZBHZBN5O3SZ
	121	122	123	124

[0118]

* *【表32】

127(4 6H. JE 127(4 6H. JE 1860-48-300 127(4 6H. JE 1860-48-300 1870-187 1870-48-300 1870-48-300 1870-48-3000	IN NMR(&) DOT	SX S
	0 6.24z), 2.43(a, 3H), 3.80(a, 2H), "	1 0 5 639(100)
C26H26N6O4S2 DMSO-46-300 247(a, 3H.) 3.76(a, 3H.) 7.21(a, 3H.) 7.21(a, 3H.) 7.21(a, 3H.) 7.21(a, 3H.) 7.21(a, 3H.) 10.28(bre, 1H.) 230H26N6O3S2	2~d6~300 a. 3H), 3.78(a. 2H), 7.09(d. 1H, Hz), 7.21(a. 1H, 7.28~7.34(m, 8H), 7.49~7.59(m, 1.88(d. 1H, J=8.0Hz), 7.78(a. 1H), 7.93~7.97(m, 0.28(bra. 1H), 12.33(bra, 1H), 12.56(bra. 1H)	ESI+568(100)
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7(a, 3H), 3,37(a, 2H), 3,80(a, 2H), 7,742), 7,23(a, 1H), 7,32(c, 1H, J=7,7H2), 7,86(c, 1H, J=8,0Hz), 7,78(a, 1H), 1C,28(brs, 1H), 12,19(brs, 1H),	ESI+ 538(100)
C30H24FN50382	78(a. 251), 3.80(a. 2H), 7.07–7.18(m, 4H), 28(t. 5:4, J=7.7Hz), 7.37(m, 1H), 7.49–1.68(d. 5:4, J=8.0Hz), 7.78(a. 1H), 7.83–0.25(Sru. 1H), 12.34(Sru. 1H), 12.58(Sru.	1 0 6

[0119]

	107	(33)		108
WS	ESH 660(100)	ESI+ 558(100)	ESI+ 546(100)	ESH 572(100)
1H NMR(&) DPm	DMSO-46-300 1.11-1.24(m, 2H), 1.45-1.78(m, 6H), 2.18-2.32(m, 1H), 2.42(d, 2H), 1.77-1.24, 2.47(e, 3H), 3.80(e, 2H), 7.10(d, 1H, 2.744e), 7.22(e, 1H, 7.33(e, 1H, 2.784e), 7.56(d, 1H, 2.784e), 7.86(d, 1H, 2.784e), 7.86(d, 1H, 2.784e), 7.81(e, 1H), 7.87(d, 2H, 2Hz), 10.28(e, 1H), 12.04(e, 1H), 7.87(d, 2Hz), 10.28(e, 1H), 12.04(e, 1H), 7.87(d, 1H), 7.87(d, 1H), 12.04(e, 1H), 7.87(d, 1H), 12.04(e, 1H), 7.87(d, 1H), 12.04(e, 1H), 7.87(d, 1H),	DMSO-d8-300 1.40-1.51(m, 1H), 1.97-2.08(m, 1H), 2.22-2.44(m, 4H), 2.47(m, 3H), 3.02-3.14(m, 1H), 8.77-5.8(m, 1H), 7.33(t, 1H, 7.19(d, 1H, 9.78Hz), 7.28(a, 1H), 7.33(t, 1H, 9.78Hz), 7.70(d, 1H, 9.78Hz), 7.08(a, 1H), 7.97(d, 2H, 9.7.9Hz), 10.28(a, 1H), 12.07(a, 1H, 9.7.9Hz), 10.28(a, 1H), 12.07(a, 1H, 9.7.9Hz)	DMSO-48-300 1.50-1.83(m, 8H), 2.47(a, 3H), 2.83-2.85(m, 1H), 2.80(a, 2H), 7.10(d, 1H, 5-7.8Hz), 7.21(a, 1H, 7.33(t, 1H, 5-7.8Hz), 7.51(a, 1H, 1-7.8Hz), 7.80(a, 1H, 1-7.8Hz), 7.80(a, 1H), 1.203(a, 1H), 1.2.03(a, 1H),	DMSO-48-300 2.53(e, 3H), 3.81(e, 2H), 7.28-7.48(m, 5H), 7.49- 7.80(m, 7H), 7.85-7.89(m, 2H), 10.27(e, 1H), 12.51(e, 1H), 12.58(e, 1H)
和康/性状/製点 (%)	>90 個圖 187.9 — 191.9	>90 アモルファス	ን80 ን モルファス	>90 (14) dec.
権権人 人態政政	CZBHZBNBO3S2	C28HZ7N50352	CZBHZ7N5C33SZ	C28H22FN50382
ない。	129	130	131	132

[0120]

*【表34】 .

109

9		表 34		
髓	構造式 / 絶成式	観察/性化/ 観点	1H NMR(&) ppm	SE SE
133		>90 アモルファス	DMSO-d6-300 2.63(s, 3H), 3.81(a, 7H), 7.13(d, 1H, J=7.68Hz), 7.2(a, 1H), 7.34(dd, 1H, J=/1.88, 7.84Hz), 7.49-7.81(m, 6H), 7.8(a, 1H), 7.94-7.87(m, 4H), 10.27(a, 1H), 12.61(a, 1H), 1.266(br, 1H)	ESH 572(100)
	G29H22FN5G3S2			
134		>90 7モルファス	DMSD—d9-300 2.53(a, 3H), 3.81(a, 35), 7.13(d, 1H, 上7.56Hz), 7.25(e, 1H), 7.32—7.4(m, 4H), 7.49—7.81(m, 4H), 7.80(a, 1H), 7.95—7.97(m, 2H), 10.27(a, 1H), 12.54(br, 2H)	ESI+ 572(100)
•	C28H22FN5O3S2		1	
135	Pidiotist.	08<	DMSO-de-300 253(a, 3H), 3.81(a, 2H), 7.13(d, 1H, J=7.58Hz), 7.27(a, 1H), 7.34(dd, 1H, J=7.88, 7.84Hz), 7.49=7.61(m, 4H), 7.80(a, 1H), 7.85=7.97(m, 2H), 8.26=8.28(m, 2H), 10.27(a, 1H), 12.61(a, 1H), 12.60x, 1H)	ESH 622(100)
	C30H22F3N5O3S2	171.2 - 173.3		
136		ን 90 ፖモ <i>ዜን</i> ታス	DMSO-de-300 253(a, 3H), 3.78(a, 2H), 3.98(a, 2H), 6.92-7(m, 2H), 7.13(d, 1H, 27.56Hr), 7.21(a, 1H), 7.34(dd, 1H, 27.88, 7.84Hz), 7.38-7.396m; 1H), 7.48-7.81(m, 4H), 7.80(a, 1H), 7.84-7.88(m, 2H), 10.28(a, 1H), 12.41(br, 1H), 12.56(br, 1H)	ESI+ 574(100)
	G28H23NBO3S3			

[0121]

* *【表35】

SE	ESI+ -7.21(m, 588(100) :78(e, 1H), 4), 12.56(e,		ESI+ 564(100)		1 . 5			
	1(m. 8, 1H), 2.5(s,		E .		ESI+ 558(100)		ESI+	
IH NMR(&) ppm	DMSD-48-300 2.473(a, 34), 3.76(a, 24), 3.78(a, 21), 7.05-7.21(m, 44), 7.25-7.39(m, 31), 7.48-7.81(m, 44), 7.78(a, 11), 7.94-7.86(m, 21), 10.26(a, 11), 12.32(a, 11), 12.5(11)		DMSO-d6-400 0.84(a, 9H), 2.44(a, 3H), 3.79(a, 2H), 3.87(a, 2H), 7.08(d, 1H, 1=7.7Hz), 718(a, 1H), 7.31(z, 1H, 1=7.7Hz), 7.49-7.58(m, 3H), 7.50(d, 1H, 1=7.8Hz), 7.79(a, 1H), 7.94-7.59(m, 2H), 10.24(bra, 1H), 11.85(bra, 1H),	(11,000,007)	DMSO-48-400 2.14(s, 3H), 2.48(s, 3H), 3.80(s, 3H), 4.20(s, 2H), 7.11(d, 1H, 3=7.7hz), 7.28(s, 1H), 7.40(t, 1H, 3=7.7hz), 7.88(m, 1H), 7.88(s, 1H), 8.01-8.03(m, 2H), 8.23(m, 1H), 8.31(d, 1H, 3=8.3Hz), 9.55(s, 1H), 10.82(brs, 1H),	12.03088, 17)	DMSO-46-400 2.37(a, 3H), 2.89(bra, 3H), 3.78(a, 2H), 7.08-7.10(m, 2H), 7.28(t, 1H, 4-7.8Hz), 7.50-7.59(m, 3H), 7.66(d, 1H, 4-8.5Hz), 7.78(a, 1H), 7.93-7.96(m, 2H), 10.24(bra, 1H), 12.49(bra, 1H)	٠,
報度/性状/職点 (%)	>90 アモルファス	•	08<	158-160 dec.	96<	159-161 dec.	>90 7モルファス	
精造式 / 超改式	didiation.	C30H24FN5O3S2	District of the second	C28H29N5O4S2		C27H23N7O3S2		C23H21N5O2S2
製料	137		138		139		5	

[0122]

* *【表36】

監	構造式 /組成式	剣度/性状/ 融点 (%)	H NMR(&) ppm	Σ	
· 4		>90 7 モルファス	DMSO-46-400 2.40(a. 3H). 2.81(bra. 3H), 3.74(a. 3H), 4.16(a. 2H), 7.02(d. 1H, 27.8Hz), 7.18(bra. 1H), 7.33(t. 1H, 2.7.8Hz), 7.50-7.58(m, 3H), 7.68(d. 1H, 24.0Hz), 7.74(a. 1H), 7.83-7.88(m, 2H), 10.25(bra. 1H)	ESI+ 478(100)	113
	O24H23N5O2S2				
42		>90 7 E JU 7 P. X	DMSD-46-400 1.80br, 3H) 2.12(br, 1H) 2.33(br, 4H), 2.47(a, 3H), 3.09(br, 2H) 3.8(a, 2H), 7.09(d, 1H, J=7.68Hz), 7.23(a, 1H), 7.31(da, 1H, J=7.88, 7.84Hz), 7.5-7.58(m, 3H), 7.68(d, 1H, J=7.92Hz), 7.79(a, 1H), 7.95(d, 2H, J=7.08Hz), 10.24(a, 1H), 11.5(a, 1H), 12.55(ESI+ 561(100)	(56
	C28H28N6O3S2				3 /
£		>90 アモルファス	DMSO~d6~400 1.84~1.93(m, 6H), 2.18(a, 3H), 2.43(br, 1H), 2.47(a, 3H), 2.82(br, 2H), 3.8(a, 2H), 7.08(d, 1H, J=7.88Hz), 7.23(a, 1H), 7.31(dd, 1H, J=7.88, 7.84Hz), 7.5~7.98(m, 3H), 7.88(d, 1H, J=7.92Hz), 7.79(a, 1H), 7.95(d, 2H, J=7.08Hz), 10.24(a, 1H), 12.02(a, 1H), 1	ESH 575(100)	
	C29H30NBO3S2		A1		
2		>90 7モルファス	DMSO-d8-400 1.11(br, 5H), 1.39-1.42(m, 2H), 1.68-1.82(m, 4H), 2.48(a, 3H), 3.8(a, 2H), 7.09(a, 1H, J=7.88Hz), 7.18(a, 1H), 7.31(dd, 1H, J=7.88, 7.84Hz), 7.5-7.59(m, 3H), 7.88(a, 1H, J=7.82Hz), 7.78(a, 1H), 7.95(a, 2H, J=7.08Hz), 10.24(a, 1H), 11.93(a, 1H), 12.54(a, 1	ESI+ 560(100)	特無∠U 114
	C29H28N5O3S2				0 2

[0123]

敬 36

* *【表37】

115

		¥ 3/	,	
	権権式 / 組成式	和度/性状/耐点 (%)	H NMR(&)ppm	MS
·		08<	DMSO-48-400 0.89(d, 3Hx1/2, J=8,62Hz), 0.92(d, 3Hx1/2, J=8,96Hz), 14-158(m, 5H), 178-184(m, 3H), 248(m, 3H), 248(m	ESI+ 574(100)
145		4	, '-' '-'	
	O30H31N5O3S2	150.5 - 153.2	J=7,92HZ), 7,78(6, 1H), 7,86(d, 2H, J=7,08Hz),	
		08<	240, 1.35–1.59(ESI+ 616(100)
148		福	2.00(67, 17), 246(8, 3H), 35(8, 2H), 7,08(6, 1H, 1=7,88Hz), 7,18(6, 1H, 1=7,88,7,84Hz), 7,57(64, 1H, 1=7,82Hz), 7,78(8, 1H),	
	G33H37N5G3S2	151.9 - 154.8	7.96(d, 2H, J=7.08Hz), 10.26(a. 1H), 11.93(
·		-	DMSO-46-400	ESI+
147		0 4 %	1.48-1.67(m, 10H), i.84(br. 2H), 2.64-2.67(m, 1H), 2.48(a, 3H), 3.8(a, 2h), 7.08(d, 1H, L=7.8Hz), 7.18(a, 1H), 7.31(d, 1H, L=7.8Hz), 7.31(d, 1H, L=7.8Hz), 7.94(d, 1H, L=7.8Hz),	574(100)
	C30H31N5O382	158.5 - 160.5	7.08Hz), 10.24(g, 1H), 11.92(g, 1H), 12.53(g,	P
148	Pilitary O.	>90 ፖモルファス	DMSO-d8-400 1.21-1.67(m, 8H), 1.87(br, 2H), 2.05(br, 1H), 2.48(s, 3H), 3.21(s, 3Hx1/2), 3.24(s, 3Hx1/2), 3.8(s, 2H), 7.08(d, 1H, 0=7.68Hx), 7.18(s, 1H), 7.31(dd, 1H, 0=7.88, 7.84(x), 7.5-7.89(m, 3H), 7.88(d, 1H, 0=7.82Hx),	ESH 580(100)
	C30H31N5O4S2		7.79(e, 1H), 7.95(c, 451, J=7.08Hz), 10.24(e,	

[0124]

1. 60 40. 193

* *【表38】

		117	. (00)		118
	Z Z	ESI+ 518(100)	ESI+ 532(100)	ESI+ 548(100)	ESI+ 532(100)
्रमा । -	MMR(Ø) ppm	DM80-48-300 087-0.86(m, 4H), 1.67-1.88(m, 1H), 2.47(a, 3H), 3.08(a, 2H), 7.10(d), 34, 0=7.742), 7.21(a, 1H), 7.32(t, 1H, 0=7.842), 7.50(d, 1H, 0=8.0Hz), 7.80(a, 1H), 7.87(d, 2H, 0=7.84z), 10.28(a, 1H), 12.58(a, 1H)	DMSO-48-300 1.75-229(m. 7H), 2.48(a. 3H), 3.81(a. 3H), 7.10(q. 1H, J=7.7Hz), 7.22(a. 1H, J=7.7Hz), 7.80(a. 1H), 7.80(a. 3H), 7.87(q. 1H, J=7.80(a. 1H), 7.87(q. 2H, J=7.8Hz), 10.28(a. 1H), 11.84(a. 1H), 12.58(a. 1H)	DMSO-48-300 0.82(t, 8H, J=7.5Hz), 1.43-1.83(m, 4H), 2.38-2.48(m, 1H), 2.48(a, 3H), 3.81(a, 2H), 7.10(d, 1H, J=7.9Hz), 7.22(a, 1H), 7.33(t, 11, J=7.9Hz), 7.51-7.82(m, 3H), 7.71(d, 1H, J=7.9Hz), 7.81(a, 1H), 7.87(d, 2H, J=7.9Hz), 10.28(a, 1H), 12.10(c, 1H), 12.58(a, 1H	DMSO-46-300 1.49-1.98(m, 8H), 2.87-3.02(m, 1H), 3.80(s, 2H), 7.10(d, 1H, 5-7.8Hz), 7.33(t, 1H, 3-7.9Hz), 7.44(s, 1H), 7.52-7.83(m, 3H), 7.70(s, 1H, 3-8.0Hz), 7.80(s, 1H), 7.84(s, 1H), 7.97(d, 2H, 3-7.8Hz), 10.28(s, 1H), 12.14(s, 1H), 12.83(s, 1H)
38	#(C)				
Ħ	報度/性状/ (%)	>90 (科斯	>80 7モルファス	>80 アモルファス	>90 ###
	株逢式 / 組成式	OZBHZ3N50352	C27H2BNBG382	CZBHZBN5C3S2	C27H2SN503S2
	の対象を	149	150	151	152

[0125]

* *【表39】

1	1	9
---	---	---

		119	(01)		120
	WS	ESI+ 546(100)	ESI+ 351(100)	ESI+ 365(100)	ES + 582(100)
,	HAMR(&) HAMR(DMSO-48-300 1.48-1.96(m, 8H), 2.68-2.98(m, 1H), 3.78(a, 3H), 4.16(a, 2H), 7.05(d, 1H, J=7.3Hz), 7.35(t, 1H, J=7.7Hz), 7.47(a, 1H), 7.61-7.62(m, 3H), 7.72(d, 1H, J=7.3Hz), 7.74(br, 1H), 7.86(br, 1H), 7.97(d, 2H, J=7.3Hz), 10.28(a, 1H), 12.15(a, 1H)	DMSO-48-400 1.49-1.83(m, BH), 2.13(s, 3H), 2.46(s, 3H), 2.9-2.98(m, 1H), 7.18(s, 1H), 12.03(s, 1H), 12.21(s, 1H)	DMSO-46-400 1.17-1.46(m, 5H), 1.62-1.86(m, 5H), 2.13(s, 3H), 2.46(s, 3H), 2.46-2.57(m, 1H), 7.17(s, 1H), 12.03(s, 1H), 12.16(s, 1H)	DMSO-48-400 1.51-1.95(m, 8H), Z. ⁶ .2(a, 3H), 3.80(a, 2H), 5.15(br, 1H), 7.09(d, 1H, J=7.8Hz), 7.18(a, 1H), 7.32(z, 1H, J=7.9Hz), 7.50-7.62(m, 3H), 7.88(d, 1H, J=8.4Hz), 7.78(a, 1H), 7.86(d, 2H, J=8.3Hz), 10.26(a, 1H), 11.51(a, 1H), 12.53(a, 1H)
₹ 39	親康/性状/ 軽点 (%)	>90 衛編 188-192 dec.	>80 右 212-215 deo.	>90 7 モルファス	>90 アモルファス
	構造式 人組成式	CZBHZNIGOSSZ	CIBHIBNAO2S2	CI BHZON402822	CZBHZ7N5O4SZ
	変	153	154	155	158

[0126]

*【表40】

1	2	1
Т	4	T

		121	(02)	·	122
	MS	ESH 576(100)	ESH 563(10)	ESH 520(100)	ESI+ 504(100)
	1H NMR(&) ppm	DMSO~48~300 1.18~1.56(m, 8H), 1.68~1.77(m, 2H), 1.83~1.94(m, 2H), 2.43(a, 3H), 3.80(a, 2H), 4.70(br, 1H), 7.10(d, 1H, 27.74rz), 7.196a, 1H, 7.33(t, 1H, 25.74rz), 7.81 - 7.80(m, 3H), 7.70(d, 1H, 28.84z), 7.80(a, 1H), 7.97(d, 2H, 28.54z), 10.28(a, 1H), 11.59(a, 1H), 1	DMSO~de~300 2.43(a, 3H), 3.45~3.64(m, 8H), 3.80(a, 2H), 7.10(d, 1H, 2.7.7.Hz), 7.14(a, 1H, 7.33(t, 1H, 1~8.1.Hz), 7.51~7.7.62(m, 3H), 7.70(d, 3H, 1~8.5Hz), 7.80(a, 1H), 7.87(d, 2H, 10.80(a, 1H), 12.56(a, 1H)	DMSO—d6-400 1.12(d, 8H, J=8.6Hz), 2.47(a, 3H), 2.67-2.76(m, 1H), 3.80(a, 2H), 7.08(d, 1H, J=7.8Hz), 7.20(a, 1H, J=7.8Hz), 1.47	DMSO-48-400 0.87-0.98(m, 4H), 1.54-2.00(m, 1H), 3.78(a, 2H), 7.08(d, 1H, 2.7.8Hz), 7.31(t, 1H, 2.7.9Hz), 7.41(e, 1H), 7.50-7.61(m, 3H), 7.68(d, 1H, 2.9.1Hz), 7.78(e, 1H), 7.82(e, 1H), 7.96(d, 2H, 2.7.6Hz), 10.24(e, 1H), 12.38(e, 1H), 11.58(e, 1H)
敬 40	網度/性状/副点(%)	>90 7モルファス	ንቁ0 7 モルファス	> ያ 0 ፖモルファス	>90 射晶
	精強式 / 組成式	Continue Ly By By Continue Con	CZ7HZBNBO4SZ	THE	CZSHZINSO3SZ
	K S	157	158	159	160

[0127]

* *【表41】

\$3 Terrisi

#記載 / 組成性 (6) ppm		表 41			
DMSO-46-400 DMSO-46-400 DMSO-46-400 DMSO-46-400 DMSO-46-400 DMSO-46-300 DMSO-48-300 DMSO-	無違式 ノ 組成式	製庫/性状/製点 (%)	H NMR(6) ppm	MS	
### 1920 1920		06 X	-400 m, 4H), 1.14-1.47(m, 5H), 1.	ESI+ 510(100)	12
14, 12,404 14, 12,564 14		4	-201(m, 14), 228-236(m, 14), 3,74(a, 24), d, 14, J=7,742), 7,23(c, 14, J=7,742), 7,41(d, 14, J=7,742), 7,81(a, 14), 7,82(a, 14), 9,		3
Separation Sep	C25H27N5O3S2	>220	14), 12.40(a. 14), 12.56(a. 14)		
220 DMSO—d8-300 2.38(m, 14), 7.14-1, 5.91, 1.59-1.98(m, 64), 2.28-2.38(m, 14), 7.28(t, 14), 7.58(t, 14), 7.78(t, 14), 7.	C The state of the	08<	-300 m, 4H), 1.93-2.01(m, 1H), 3.78(s. 3H	ESH 518(100)	
220 DMSO—46-300 DMSO—400 2.32(a, 14), 7.15f(a, 14), 7.25f(a, 14), 12.45f(a, 14),		#2	(s. 24), 7.06(d. 11, J=7.6Hz), 7.36(t. 11, J (s. 11), 7.49—7.63(m. 34), 7.72(d. 11, J=7. (s. 11), 7.88(s. 11), 7.97(d. 21, J=7.8Hz), "5.45(f. 11)		
DMSO—46-300 0.83(m, 44), 1.14-1.43(m, 54), 1.59-1.89(m, 64), 2.26-2.38(m, 14), 3.75(a, 34), 4.10(a, 24), 6.95(d, 14, 2.7), 4.75(a, 14), 3.75(a, 14), 7.85(a, 14), 7.83(a, 14), 1.245(a, 14), 1.245(a, 14), 1.245(a, 14), 1.245(a, 14), 1.245(a, 14), 1.34(a, 14), 1.245(a, 14), 1.34(a, 14), 1.34(a	C26H23N5O3S2	>220	in, 1248M, in,	•	
2.386m, 14), 3.75(a, 34), 4.10(a, 14), 1.38-1.986m, 64), 2.26-1.286m, 14), 7.26(a, 14), 4.10(a, 14), 12.45(a, 14), 7.26(a, 14), 7.85(a, 14), 7.85(a, 14), 7.85(a, 14), 12.45(a, 14), 12.45(a, 14), 7.85(a, 14), 7.85(001	ESI+	
1H) >220 DMSO-46-400 2.32(a, 3H), 3.74(a, 3H), 4.13(a, 2H), 8.93(bra, 2H), 6.95(a, 1H, 7.02(d, 1H, 1-7.7Hz), 7.35(t, 1H, 1-7.7Hz), 7.56(t, 1H, 1-7.7Hz)			7.14~1,43(m, 5H,) 1,59~1,98(m, 6H), 2.26—3.75(a, 3H), 4.10(a, 2H), 6.95(d, 1H, F.).84(a, 1H), 7.53(d, 1H, F.).84(a, 1H), 7.53(d, 1H, 5.84), 7.84(a, 1H), 7.84(a,	524(100)	
DMSO-46-400 2.32(a, 3H), 3.74(a, 3H), 4.13(a, 2H), 6.93(bra, 2H), 6.95(a, 1H), 7.02(d, 1H, 1.2.77Hz), 7.35(t, 1H, 1.2.77Hz), 7.50-7.59(m, 3H), 7.71(m, 1H), 7.73(a, 1H), 7.93-7.96(m, 2H), 10.22(trq, 1H)	C26H2BN5O3S2	>220	(H)		
6.96(a, 1H, 7.02(d, 1H, J=7.7Hz), 7.35(c, 1H, J=7.7Hz), 7.35(c, 1H, J=7.7Hz), 7.35(c, 1H, J=7.7Hz), 7.36(a, 1H), 7.93-7.96(m, 2H), 10.22(tvq, 1H)			0-d8-400 s. 3H), 3.74(s. 3½), 4.13(s. 2H), 6.93(brs. 2H).	ESI+	1
.:	The second secon		a, 1H), 7.02(d, 1H, D=7.7Hz), 7.35(t, 1H, D=7.7Hz), 7.58(m, 3H), 7.71(m, 1H), 7.73(a, 1H), 7.93- m, 2H), 10.22(tvg, 1H)		24
	C23H21N6O282	219-221 dec.			

[0128]

* *【表42】

1	2	
1	4	2

P.	Tri NMR(&) ppm	6-300 (fm, 4H), 1.81(m, 1H), 2.46(a, 3H), 3.75(a, 3H), 532(100) 7 4), 7.02(d, 19, 19.74Hz), 7.23(a, 1H), 7.32(c, 19.71(a, 19.27), 7.14(a, 19.71(a,		ESI+ 2.30(a, 3H), 3.75(a, 34), 4.20(a, 2H), 8.93(a, 1H), 8.94(bra, 2H), 7.33-7.30(m, 3H), 7.48(m, 1H), 7.87- 7.97(m, 4H)		5-400 (m, 5H), 1.65(m, 1H), 1.72-1.80(m, 4H), 470(100) 1), 2.31(m, 1-0, 3.71(a, 3H), 4.07(a, 2H), 24), 85(m, 1H), 7.50(t, 1H, J=7.7Hz), 1), 7.53(a, 1H), 9.77(bra, 1H)		FSH (m, 4H), 181(m, 1H), 247(a, 3H), 3.78(a, 3H), 558(100) 7.7.24(a, 1H), 7.35–7.37(m, 3H), 7.50(m, 1H), 7.35–7.37(m, 3H), 7.50(m, 1H), 7.35–7.37(m, 3H), 7.50(m, 1H), 7.50(m,	
表 42	知度/性伏/ (%)	>90 DMSO-de-300 0.87-0.81(m, 4) 4.14(a, 2.H), 7.0, 1H, U-7.442), 7 1H, U-7.442), 7 1H, 17.92-7.885,	241-243 dec.	DMSO-46-300 2.30(a, 3H), 3.71 8.94(bra, 2H), 7 7.97(m, 4H)	188-190 dec.	>90 1.14-1.41(m, 5H) 2.31(a, 3H), 2.31(2.31(a, 3H), 2.31(6.92(bra, 2H), 6.81 (5.92(bra, 1H), 7.53	168-170 dec.	DMSO—48—300 0.87—0.91(m, 4H) 4.23(m, 2H), 7.24(, 4H),	226 – 227
	株強式 / 組成式		C2TH25N5O3S2	The state of the s	O24H19N5O3S2	The same of the sa	C23H27N5O2S2		C28H23N5O482
	を開発	165		188		167		168	

[0129]

*【表43】

]	L	2	7

Г	127	T a		128
MS MS	ESH 538(100)	ESI+ 502(100)	570(100)	ESI+ 458(100)
H NMR(&) ppm	DMSO-d8-300 0.87-0.91(m, 4H), 1.14-1.41(m, 5H), 1.64(m, 1H), 1.72-1.78(m, 4H), 1.91(m, 1H), 2.31(m, 1H), 2.47(a, 3H), 1.786m, 4H), 1.91(m, 1H), 2.31(m, 1H), 2.47(a, 3H), 7.26(m, 2H), 8.92(a, 1H, 0.774Hz), 7.20-7.26(m, 2H), 7.52(a, 1H), 9.78(bra, 1H), 12.32(bra, 1H)	DMSO-de-300 2.3(e, 3H), 3.8(e, 2H), 6.93(e, 1H), 6.95(e, 2H), 7.16(d, 1H, J=7.68Hz), 7.38(dd, 1H, J=7.88Hz), 7.86(d, 1H, J=7.88Hz), 7.86(d, 1H, 1H, J=7.82Hz), 7.95(a, 1H), 8.01-6.04(m, 2H), 8.21-8.33(m, 3H), 9.55(e, 1H), 10.84(e, 1H), 12.47(e, 1H)	DMSO-46-400 0.89-0.8(m, 4H), 1.93(br, 1H), 2.49(s, 3H), 3.84(s, 2H), 7.16(d, 1H, J=7.64Hz), 7.2(s, 1H), 7.38(dd, 1H, J=7.88, 7.84Hz), 7.85(d, 1H, J=8.18Hz), 7.95(s, 1H), 8.01- 8.03(m, 2H), 8.22-8.24(m, 2H), 8.29-8.32(m, 2H), 8.55(s, 1H), 10.82(s, 1H), 12.31(s, 1H), 12	DMSO-d6-400 1.16-1.42(m, 5H), 1.68-1.78(m, 5H), 2.29(s, 3H), 2.31(br, 1H), 3.22(s, 1H), 8.91(s, 2H), 6.93(s, 1H), 2.88(s, 1H, J=7.58Hz), 7.22(ss, 1H, J=7.92, 7.8Hz), 7.48(s, 1H, J=8.38Hz), 7.8(s, 1H), 9.77(s, 1H), 12.99(s,
(38) イ布女/ 職点(38)	>90 アモルファス	>90 (4) (1) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	>90 被 196.3 - 199	>90 新 山 >220
禁造式 / 組成式	OZHBINGOSSZ	14,14	CZBHZ3N703S2	H,M As H, H, H, H, C22H2ENBO282
	169	170	171	172

[0130]

*【表44】

		129	8		130
	SE SE	ESI+ 524(100)	ESI+ 482(100)	ESI+ 476(100)	ESH 506(100)
	1st NMR(&) ppm	DMSO-46-400 0.89-0.8(m, 4H), 1.13-1.42(m, 5H), 1.86-1.78(m, 5H), 1.830r, 1H), 2.28(a, 3H), 2.32(br, 1H), 3.73(a, 1H), 8.98(d, 1H, J=7.56Hz), 7.18(a, 1H, 77.22(dd, 1H, J=7.82, 7.8Hz), 7.48(d, 1H, J=8.38Hz), 7.8(a, 1H), 9.77(a, 1H), 12.31(a, 1H), 12.5(a, 1H)	DMSO-46-300 2.12(a, 3H), 3.73(a, 1H, J=7.7Hz), 7.25(a, 1H), 7.27(a, 1H), 7.27(a, 1H, J=7.5Hz), 7.51-7.83(m, 3H), 7.70(d, 1H, J=7.5Hz), 7.80(a, 1H), 7.97(d, 2H, J=6.0Hz), 10.28(a, 1H), 11.30(a, 1H), 12.72(a, 1H), 7.27(a, 1H)	DMSO-d8-300 2.11(s, 3H), 3.78(s, 3H), 4.16(s, 2H), 7.04(d, 1H, J=8.1Hz), 7.31-7.36(rd, 3H), 7.49-7.63(rn, 3H), 7.71(d, 1H, J=7.9Hz), 7.74(s, 1H), 7.96(d, 2H, J=6.6Hz), 10.27(s, 1H), 11.27(s, 1H)	DMSO-d8-300 2.14(s, 3H), 2.23(s, 3H), 3.78(s, 2H), 7.14(s, 3H), 2.73(s, 1H, 3-7.94z), 7.51-7.32(t, 1H, 3-7.94z), 7.51-7.82(s, 1H), 7.97(s, 1H), 7.97(d, 2H, 3-6.9Hz), 10.28(s, 1H), 12.10(s, 1H), 12.39(s, 1H)
X #	本への場合				
	哲典/在状/観点 (%) /在状/観点	>80 ###	>80 アモルファス	>90 アモルファス	>90 アモルファス
	精谱式 人組成式	CZ6HZBN5O382	CZ3HIBNSO48	CZ4HZIN5O4S	CZSHZ3N603SZ
	ない。	173	174	175	178

[0131]

*【表45】

1	3	1

		表 45	j .	
医	神迷式 ノ 組成式	純度/性状/融点(%)	IH NMR(&) ppm	SE SE
171	Charles to the	08<	DMSO-46-300 214(a, 3H), 2256a, 3H), 231(a, 3H), 3.86(a, 3H), 4.13(a, 2H), 7.04(d, 1H, J=7.7Hz), 7.34(t, 1H, J=7.7Hz), 7.51-7.63(m, 3H), 7.72(d, 1H, J=7.7Hz), 7.73(a, 1H), 7.87(d, 2H, J=8.5Hz), 10.28(a, 1H), 12.09(a, 1H)	ESH 520(100)
	O26H25N5O3S2	>220	Ver 1	
	-{	06<	DMSO-48-400 1.88-1.87(m, 2H), 2.17(s, 6H), 2.30-2.32(m, 2H), 241(-341), 441(-341), 450-4.000, 200), 200)	ESI+ 535(100)
178	HAN AST TO THE CZ7H30N6O282	4	25), 68, 68, 71, 71, 72, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75	
			DMSO-48-400	ES#
179		08人 根	1.85~1.87(m, 2H), 2.17(a, 8H), 2.30~2.32(m, 2H), 2.31(a, 3H), 4.11(a, 2H), 4.20~4.22km, 2H), 6.93(bra, 2H), 6.95(a, 1H, 0.7), 7.3(d, 1H, 0~7.54k,), 7.33(k, 1H, 0.27.54k), 7.50~7.56(m, 3H), 7.70(m, 1H), 7.74(a, 1H)	535(100)
	CZ7H30N602SZ	180 - 182	Km, 2H), 10.25(brg, 1H)	
		06<	DMSO-d8-300 5 5 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ESI+ 803(100)
98		4	24 (tc. 37.), 4.18(s., 2H.), 4.21- 7.5Hz), 7.23(s., 1H.), 7.32(t., 1 3H), 7.63(m, 1H), 7.72(s., 1H), 10.25(brz., 1H), 12.31(brs	
	C31H34NB03S2	167 - 171		

[0132]

* *【表46】

9	•	椒	estat and a		
	・	関度/在状/配点(%)	H NMR(&) ppm	MS	
		8 4), 3.80(s, 3H),	ESI+ 556(100)	13
<u>~</u>		4	7.55(m, 6H), 7.74(a, 1H), 7.77(m, 1H), 8.26(d, 1H, 138–18.04z), 12.34(bm, 1H)		3
	O29H25N5O3S2	>250	,		
182		280	£ 4.	ESH 550(100)	:
	C27H24FN5O3S2	>220	10, 110 1.000(1) 470, 10.000(8, 10), 14.00(M, 10)		(08)
		08<	DMSO-46-300 0.89-0.9(m, 4H), 1.90(br. 1H), 2.48(s. 3H), 3.77(s. 3H), 4.15(s. 2H), 7.(d. 1H, 1=7.88Hz), 7.25(s. 1H), 7.33-	ESH 550(100)	
183		電響	7.68-7.7 12.34(s		
	C27H24FN5O3S2	190.5 - 192.4			
\$		780 10 10 10 10 10 10 10 10 10 10 10 10 10 1	NO	ESH 558(100)	134
	C28H27N5O3S2	249-251 dec.	7.50001, 177, 7.8500, 17, 5—6.002), 12.550078, 17)		# Z U U Z
			The state of the s		

[0133]

*【表47】

T	2	Ξ
 _		

		135		<i>'</i>			· .		136	
	MS	ESH 428(100)		ESI+ 443(100)		ESI+ 428(100)			ESI+ 429(100)	
	IR NMR(ð) ppm	DMSO—46-300 089-0.9(m, 4H), 1.83(br, 1H), 2.47(a, 3H), 3.69(a, 3H), 3.94(a, 2H), 5.06(a, 2H), 6.42-6.48(m, 3H), 6.32- 7.02(m, 1H), 7.24(a, 2H), 12.34(a, 1H)		DMSO-46-400 0.89-0.8(m, 4H), 1.93(ir, 1H), 2.46(a, 3H), 3.38(a, 3H), 3.81(a, 3H), 5.86(a, 1H), 7.22(a, 1H), 7.46-7.61(m, 5H), 12.31(a, 1H)		DMSO-48-400 0.89-0.9(m, 4H), 1.93(m, 1H), 2.48(s, 3H), 3.34(s, 3H), 5.05(s, 1H), 7.94-7.50(s, 2H), 4.0.90(s, 2H	1H), 12:54(6, 1H)		DMSD-d8-300 0.88-0.8(m, 4H), 1.83(br. 1H), 2.48(a, 3H), 3.34(a, 3H), 5.05(a, 1H), 7.22(a, 1H), 7.34-7.52(m, 5H), 12.33(a, 1H), 12.54(a, 1H)	
表 47	の職の									
	網度/性状/(%)			:	dec.			ರ		og G
	(多)	180 年	>220	280 福	201.4 dec.	280	堰	212 dec.	08< ₩	215.9 dec.
	春後丸 / 絶成丸		O20H21N6O2S2	S S S S S S S S S S S S S S S S S S S	C21H22N4O3S2		S S S S	C20H20N4O3S2		CZ0H2DN4O3S2
		188 188		186		_	187		188	

[0134]

*【表48】

[0135]

* *【表49】

T	2	У
_		

		表 49		
S. S	推造式 人名成式	親康/性状/離点(%)	1H NMR(&) ppm	MS
193		06人	DMSD-48-400 0.89-0.9(m, 4H), 1.84(br, 4H), 1.93(br, 1H), 2.48(a, 3H), 3.35(br, 4H), 3.73(a, 3H), 4.06(a, 2H), 8.84(d, 1H, 0.27.88Hb), 7.13(dd, 1H, 0.27.88, 7.84Hz), 7.25(a, 1H), 7.43-7.47(m, 2H), 8.08(a, 1H), 12.31(a, 1H)	ESI+ 525(100)
	G26H28N6O382	>220		
194		>90 アモルファス	DMSO-46-400 0.89-0.8(m, 4H), 1.93(br, 1H), 2.47(a, 3H), 3.36(a, 3H), 3.88(a, 2H), 7.01-7.23(m, 10H), 12.31(br, 1H)	ESI+ 532(100)
	O27H26N5O3S2		· · ·	
192	10H 3HH2 HOI	08<	DMSO-68-400 0.88-0.8(m, 4H) 1.93(br, 1H), 2.46(s, 3H), 5.28(br, 1H), 7.30(s, 1H), 7.47-7.8(m, 5H), 8.91(br, 1H), 12.31(s, 1H), 13.01(s, 1H)	ESI+ 414(100)
	C19+20CIN5O2S2	214.3 – 215.8		
196		790 アモルファス	DMSO-d8-400 0.89-0.9(m, 4H), 1.83(br, 1H), 2.16(s, 3H), 2.45(s, 3H), 5.06(s, 1H), 7.23(s, 1H), 7.42-7.44(m, 3H), 7.54-7.56(m, 2H), 12.29(s, 1H), 12.82(s, 1H)	ES + 457(100)
	C21H20N40482		·	

[0136]

* *【表50】

1	4	1
---	---	---

表 50	1H NMR(&) ppm	DMSO-48-300 0.89-0.8(m, 4H), 1.83(br, 1H), 2.48(a, 3H), 5.28(br, 1H), 418(100)	DMSO-d6-300 085-0.86(m, 4H), 1.91-2.02(m, 1H), 3.34(s, 3H), 415(100) 5.08(s, 1H), 7.33-7.53(m, 6H), 7.83(s, 1H), 12.43(s, 1H) 1H), 12.61(s, 1H) C	DMSO-d6-300 085-0.97(m, 4H), 1.42-1.54(m, 1H), 1.72-1.84(m, 1H), 500(100) 1.91-1.99(m, 1H), 2.15(a, 6H), 2.19-2.29(m, 2H), 3.36(a, 3H), 3.39-4.21(m, 2H), 5.60(a, 1H), 7.35-7.48(m, 5H), 7.52(a, 1H), 7.84(a, 1H), 12.42(a, 1H)	BMSO-48-300
	純度/性状/ 融点 (%)		0MS 0.85- 5.08(1.11), 1.17ファス	メファス	2-200.2 dec.
	(は)	C19H18N40352	N N N N N N N N N N N N N N N N N N N	290 C24H29N5C3S2	COSHETNINGS
		197	198	199	500

[0137]

* *【表51】

1		143	(13)		行用 2002 144
	SMS	ESI+ 588(100)	ESI+ 603(100)	ESI+ 617(100)	ESI+ 498(100)
*,-	. IH NMR(&) ppm	DMSO-46-400 0.87-0.86m, 4H), 1.63-2(m, 3H), 2.18(a, 6H), 2.28- 2.86m, 2H), 4.18(a, 2H), 4.21-4.3(m, 2H), 7.04(a, 1H, 1.718(h, 1H, 1.718(h, 1H, 1.718(h, 1H), 7.80(a, 3H), 7.72(a, 1H, 1.718(h, 1H), 7.80(a, 3H), 7.72(a, 1H, 1.718(h, 1H), 7.86(a, 3H, 1.718(h, 1H, 1.718(h, 1H), 7.86(a, 3H, 1H), 7.	DMSO-46-300 0.88-0.81(m, 4H), 1.75-2(m, 1H), 2.18(br. 2H), 2.48(br. 3H), 2.78(a, 3H), 2.78(a, 3H), 2.78(a, 2H), 4.18(br. 2H), 4.30br. 2H), 7.08(d, 1H, J=9.tz), 7.28-7.37(m, 2H), 7.58(m, 3H), 7.68(d, 1H, J=9.tz), 7.8(a, 1H), 7.86(d, 2H, J=9.tz), 7.8(a, 1H), 7.8(a, 2H, J=9.tz), 7.8(a, 1H), 7.8(a, 2H, J=9.tz), 7.8(a, 2H,	DMSO-46-300 0.88-0.92(m, 4H), 1.85-2(m, 1H), 4.273(a, 3H), 2.75(a, 3H), 3.09(br, 2H), 4.17(a, 2H), 4.20(br, 2H), 7.08(d, 1H, 1=8Hz), 7.28(a, 1H), 7.35(t, 1H, 1=7.59(m, 3H), 7.7(d, 1H, 1=8Hz), 7.81(a, 1H, 1=8Hz), 7.81(a, 1H, 10.32(a, 1H), 7.97(d, 2H, 1H, 10.15(br, 1H), 10.32(a, 1H))	DMSO-d8-300 0.87-0.83(m, 4H), 1.78(br, 4H), 1.85-2(m, 1H), 2.53(s, 3H), 2.73(s, 3H), 2.75(s, 3H), 3.08(br, 2H), 4.17(s, 2H), 4.25(br, 2H), 7.28(s, 1H), 7.28-7.39(m, 5H)
₩ 5]	観察/性状/観点	>80 衛島 215.1 - 217.5	>80 新疆 157 — 162	>90 結晶 210 - 215	780 春春 188 - 191
	株逢式 / 組成式	C30H3ZNB038Z	C31H38GINBO3S2	C32H37CIN8O382	CZSH3ZCINSOZSZ
	经	201	202	203	204

[0138]

*【表52】

		表 52	N		
蘊	は位果 / は娯楽	模度/性状/製点(%)	IH NMR(&) ppm	SMS	
	<u>.</u>	08 <	DMSO-48-300 0.88-0.82m, 4H), 1 c 80m, 2H), 1.98-2(m, 1H), 2.48(e,	ESH 528(100)	14
202			470, 27.14, 370, 27.34, 33.37a, 371, 380br, 2H), 4.08(br, 2H), 5.58(a, 1H), 7.32(a, 1H), 7.4-7.48(m, 5H)		5
	Q28H34CIN5C382	167 – 169			
	₹	06<	46-300 83(m, 4H), 1.85-2.0(br, 1H), 2.27(br, 2H)	ESH+ 490(100)	
208		***	3H), 2.76(4, 3H), 2.77(4, 3H), 3.18(br, 2H), 4.18(4, 2H), 4.28(br, 2H), 7.11(4, 1H, J=9Hz), 7.28(a, 1H), 7.43(br, 1H), 7.53(br, 1H)		
	C22H28CIN5O2S3	>250			:
	IOH /	0 6 <	DMSO-d8-300 0.88-0.83(m, 4H), 113-5-2.0(br, 1H), 2.46(s, 3H),	ESH 470(100)	
207	7	4			
	C23H28CIN5O2S2	>250			
		>90	DMSO-d8-300 0.88-0.83(m, 4H), 1.64-1.88(m, 1H), 2.49(s, 3H),	ESH 588(100)	1 4
208			2.52(5, 5H, 2.52(5, 5H, 3.50(5, 2H), 4.86(5r, 2H), 7.12(d, 1H, J=8Hz), 7.32–7.37(m, 2H), 7.38–7.37(m, 2H), 7.38–7.37(m, 2H), 7.38–7.37(m, 2H), 7.31(6, 1H), 7.31(
	COOKBOOSE	194.5 – 198	, , , , , , , , , , , , , , , , , , ,		2002

[0139]

*【表53】

147

		₹ 53		
新	(金田) 人名成式	名詞/古女/ (名)	IN NMR(&) ppm	MS
508	C24H30CIN5C3S2	780 建 187 — 102	DMSO-46-300 0.89-082(m, 4H), 1.81-2(m, 1H), 2.5(s, 3H), 2.86(s, 3H), 2.86(s, 3H), 3.1-3.3(m, 2H), 3.35(s, 3H), 4.4-4.6(m, 3.15, 5.72(s, 3H), 7.37(s, 1H), 7.42-7.45(m, 3H), 7.5-	ESI+ 500(100)
210	C24H30CIN5O282	>9d 被 1 	DMSO-d6-300 0.88-0.83(m, 4H), 1.84-1.88(m, 1H), 2.14-2.25(m, 2H), 2.5(a, 3H), 2.76(a, 3H), 2.78(a, 3H), 3.13-3.25(m, 2H), 4.17(a, 2H), 4.25-4.35(m, 2H), 7.28(a, 1H), 7.32- 7.37(m, 5H)	ESI+
211	C30H33CIN6O3S2	>90 相攝 172-187 dec.	DMSO-d6-400 088-0.88(m, 4H), 1.84-2.02(m, 1H), 2.11-2.23(m, 2H), 2.78(a, 3H), 2.86, 3H), 3.18-3.28(m, 2H), 4.18(a, 2H), 4.27-4.37(m, 2H), 7.09(d, 1H, 4.7.9Hz), 7.35(q, 1H, 4.7.9Hz), 7.47-7.81(m, 4H), 7.87(d, 1H, 4.7.9Hz), 7.80(a, 1H), 7.80(a, 1H, 4.7.9Hz),	ESI+ 588(100)
212	CZSHZNISO4SZ	ንዓ0 <i>ን</i> モルファス	CDCi3-300 0.93-1.04(m, 2H), 1.16-1.3(m, 3H), 2.53(s, 3H), 3.68- 3.80(m, 1H), 4.12-4.28(m, 2H), 4.44-4.62(m, 1H), 8.97(s, 1H), 7.27-7.48(m, 10H), 8.18(br, 1H)	674(100)

[0140]

* *【表54】

14	19
----	----

Ĺ		墩 54		
福	全 (1) 人名内贝	和度/性状/ 融点(%)	fit NMR(8) ppm	MS
	THE THE PERSON OF THE PERSON O	08<	DMSO-48-300 0.88-1.00(m, 4H), 1.91-2.00(m, 1H), 2.46(a, 3H), 3.71-	ESI+ 440(100)
213	S S S S S S	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7.48-7.61(m, 6H), 9.81(br, 2H), 12.42(s, 1H)	
	C21H22BN50282	>220		
	<u> </u>	8 <	DMSO~d8-300 Q87-088(m, 4H), 1.94-1.88(m, 1H), 2.05-2.16(m, 2H),	ESH 523(100)
214			3H), 2.74(e, 5 36(m, 2H), 7(8(c, 1H), 7.3)	
	C28H31CINBO2S2	132 - 137	IN, CF8H2)	
	<u>≅</u>	. 06<	DMSO-46-400 089-08(m, 4H) 1,32(t. 6H, J=7,22Hz), 1,93(hr. 1H)	ESH 488(100)
215		アモルファス	((br. 4H), 3.44(br, 2H), 4. -7.57(m, 6H), 7.51-7.53(3.34(a, 1H)	
	C25H32CIN502S2			
	Ē.	06<	7.5	ESH 510(100)
216			2.46(8. 37), 3.08(br, 2H), 3.44(br, 2H), 3.65(br, 2H), 4.22(a. 2H), 4.71(br, 2H), 7.31-7.37(m, 6H), 7.51-7.33(m, 2H), 10.28(br, 1H), 12.34(a, 1H)	
	C28H32CIN5O2S2 6	>220		

[0141]

* *【表55】

151

李		軟		
*	20年代 / 地元円	第6/44/189	1⅓I NMR(&)ppm	MS
	Ŷ	08<	DMSO-46-400 0.89-0.8(m, 44), 1.32(t. 6H, J=7.22Hz), 1.93(br. 1H).	ESH-
217		## ## ## ## ## ## ## ## ## ## ## ## ##	2.47(a, 3H), 3.32(br, 4H), 4.24(a, 2H), 4.68(br, 2H), 7.08(d, 1H, J=7.88Hz), 7.33=7.37(m, 2H), 7.53=7.68(m, 5H), 7.82(a, 1H), 7.98(d, 2H, J=7.08Hz), 10.28(a, 1H),	
l	C32H370IN6O3S2	212.3 - 214.3	12.34(s, 1H)	
			005	ESH
	<u> </u>	084	0.89-0.8(m, 4H), 1 &((br. 1H), 1.69-1.93(br. 6H), 2.48(e, 3H), 3.08(br. 2H), 3.49(br. 2H), 3.59(br. 2H),	628(100)
2 8		アモルファス	4.23(a, 2H), 4.71(br, 2H), 7.09(d, 1H, J=7.68Hz), 7.32-7.37(m, 2H), 7.52-7.67(m, 5H), 7.83(a, 1H), 7.98(d, 2H), 7.09Hz), 10.28(a, 1H), 12.35(a, 1H)	
	CS3H37GINBO3S2		a. ••	
	<u>.</u>	08%		ESI÷
			0.00 - 0.90 m, 4-fr, 18.5 - 1.90 m, 14, 2.48 k, 3H, 2.8 k, 3H, 2.91 k, 4.7 km, 4.7 km, 2H, 8.9 k, 4.7 km, 2H, 8.9 k, 4.7 km, 2H, 7.7 km, 4.7 km, 4.7 km, 2H, 7.7 km, 4.7 km, 4	908(100)
<u> </u>			7.38(d, 1H, J=9Hz), 7.52(a, 1H), 7.61(d, 1H, J=9Hz)	
	C25H2GCINGO2S2	189 - 191		
		08<	DMSO-d8-300 0.88-0.98(m, 4H), 1,6/1-1,98(m, 1H), 2,45(±,3H)	ESI+
220		帽	291(a, 3H), 2.82(a, 3H), 3.50cr, 2H), 4.5(a, 2H), 4.65(br, 2H), 7.03(a, 1H, J=8Hz), 7.11(a, 1H), 7.32(a, 1H), 7.45(d, 1H), 1.30(a, 1H),	3
		147 - 151		
	CZ1HZ&GINBOZ83			

[0142]

* *【表56】

153

		录 56		
製	権治式 / 組成式	制度/性状/ 製点 (%) /性状/ 製点	(H NMR(&)ppm	S.
	IDH	08<	DMSO-46-300 085-086(m, 4H), 19-2(m, 1H), 2.48(a, 3H), 2.8(a, 3H), 2.92(a, 3H), 3.48(hr, 2H), 4.8(a, 2H), 4.8(hr, 2H),	ESI+ 476(100)
221		- 4	7.12(d, 1H, J=6Hz), 7.31(a, 1H), 7.49-7.54(m, 2H)	
	CZ1 H28CIN5OZS3	150 - 155		
	豆	08<	DMSO-d8-300 0.85-0.95(m, 4H), 1.53-1.98(m, 1H), 2.48(s. 3H)	ESI+
222		4 2	287(a, 3H), 288(a, S¹4), 3.18-3.3(m, 2H), 3.36(a, 3H), 4.5-4.8(m, 2H), 5.72(a, 1H), 7.36(a, 1H), 7.42-7.45(m, 3H), 7.54-7.58(m, 2H)	
	024H30C3NE03S2	86 ~ 96	· 1.	
)		DMSO-46-300	ESI+
223	HGI		0.85–0.95(m, 4H), 1.03–1.98(m, 1H), 2.48(a, 3H), 2.9(e, 3H), 2.9(e, 3H), 3.7½(b, 2H), 4.18(a, 2H), 4.84(br, 2H), 6.85–6.97(m, 3H), 7.24–7.31(m, 2H)	500(100)
	CZ4H30GN#503S2	218 - 222	te	
		08<	DMSOd6-300 0.85-0.85/m, 4H) 5.33-1.88/m, 1H) 2.48/e, 3H) 2.9/e	ESI+
224			3H), 292(s, 3H), 3.48(br, 2H), 3.78(s, 3H), 4.27(s, 2H), 4.85-4.86(m, 2H), 7.04(t, 1H, J=7.5Hz), 7.17(t, 1H, J=7.5Hz), 7.17(t, 1H, J=7.5Hz), 7.82(d, 1H, J=7.48(m, 2H), 7.82(d, 1H, J=7	
	C28H31CINBO2S2	188 - 190	J=6Hz)	

[0143]

* *【表57】

		155	(79)		特開2002 156
	SΣ	510(100)	ESI+ 488(100)	ESI+ 500(100)	ESI+ 548(100)
	H NMR(Ø) ppm	DMSO—48—300 0.85—0.86(m, 4H), ::33—1.86(m, 1H), 2.48(a, 3H), 2.84(a, 3H), 2.85(a, 3H), 3.58(br, 2H), 4.36(a, 2H), 4.7— 4.75(m, 2H), 7.28—7.36(m, 3H), 7.58(d, 1H, D=8Hz), 7.71(d, 1H, J=8Hz), 8.08(a, 1H)	DMSO-48-300 0.85-0.95(m, 4H), 1.83-1.96(m, 1H), 2.49(a, 3H), 2.92(a, 3H), 2.94(a, 3H), 3.54(br, 2H), 4.26(a, 2H), 4.6- 4.7(m, 2H), 7.14-7.21(m, 2H), 7.31(a, 1H), 7.39-7.42(m, 2H)	DMSO~d9~300 0.85~0.85(m, 4H), 1.54~1.98(m, 1H), 2.49(a, 3H), 2.91(a, 3H), 2.83(a, 3H), 3.48(br, 2H), 3.75(a, 3H), 1.14(a, 2H), 4.82~4.68(m, 2H), 6.92(d, 2H, J≕9Hz), 7.27~ 7.3(m, 3H)	DMSO-48-300 0.85-0.85(m, 4H), 1.84-1.98(m, 1H), 2.49(a, 3H), 2.92(a, 3H), 2.94(a, 3H), 3.54(br, 2H), 4.26(a, 2H), 4.64- 4.88(m, 2H), 7.31-7.35(m, 3H), 7.48-7.51(m, 1H), 7.8(a, 1H)
表 57	和歌/性状/副点(元)	>90 250	>80 SER BE 248 - 251	/80 新聞 214-218	>90 (8) 198 – 201
	権強式 / 組成式	CZSHZ8CIN5O3S2	C23HZ7CIFN60282	C24H30CIN503S2	CZ3H27BrCIN502S2
	蠶	226	226	722	228

[0144]

* *【表58】

	157		ĝ	(80)	â			T	58	
MS	ESI+		ESI+ 631(100)		ESI+ 518(100)	-	•	ESI+ 512(100)		··
1H NMR(&) ppm	DMSO-48-300 0.89-0.8(m, 4H), 1.83(br, 1H), 2.45(a, 3H), 2.88(br, 2H), 4.71(br, 1H), 7.34(a, 1H), 7.52-7.82(m, 5H), 10.83(br, 1H), 12.35(a, 1H), 12.88(a, 1H)	47	DMSO-48-300 0.85-0.95(m, 4H), 1.54-1.88(m, 1H), 2.49(a, 3H), 3.28(hr. 2H), 3.54(hr. 2H), 3.8-3.7(m, 2H), 3.8-3.0(m, 2H), 3.8-3.7(m, 2H), 3.8-3.0(m, 2H), 3.8-3.7(m, 2H), 3.8-3.0(m, 2H), 3.8-3	H), 4.24(s, 2H), 4, 7.32–7.37(m, 2H), 7.81(s, 1H), 7.8	DMSO-48-300 085-035(m, 4H), 1.94-1.98(m, 1H), 2.49(s, 3H),	3.26tr, 27J, 3.51tr, 2HJ, 3.82-3.66(m, 2H), 3.8-3.9(m, 2H), 4.01-4.1(m, 2H), 4.24(a, 2H), 4.85-4.75(m, 2H), 7.11-7.14(m, 1H), 7.91(a, 1H), 7.52-7.54(m, 2H)		DMSO-d6-300 0.89-0.93(m, 4H), 1.84-1.98(m, 1H), 2.48(e, 3H), 3.25-	33(m, 2H), 3.52-3.56(m, 2H), 3.63-3.68(m, 2H), 3.83-3.88(m, 2H), 4-4.05(m, 2H), 4.23(e, 2H), 4.68-4.72(m, 2H), 7.31-7.38(m, 6H)	
ななくを記録し										I
本/ (4)	08 4	>220	08<	新 >220	>90	相	>230	>90	曜	>230
(単語) 人 組成式	LA SA HOLI	C21H24CIN5O282		C32H36CIN6O4S2	0		CZ3HZBCINGO3S3	•	2	C26H30CIN5O3S2
を	229			230		231			232	

[0145]

*【表59】

1	5	9

		159	(01)	X	160
	MS WS	ESI+ 482(100)	E3I+ 482(100)		ESH 468(100)
	1H NMR(&)ppm	DMSO-48-300 0.91-1.32(m. 10H), 1.88-2.01(m. 1H), 2.46(a. 3H), 3.91- 4.21(m, 4H), 4.55(br, 1H), 7.21-7.62(m, 6H), 12.36(s, 1H)	DMSO~de-300 0.91-1.32(m, 10H), 1 88-2.01(m, 1H), 2.46(s, 3H), 3.91- 4.21(m, 4H), 4.55(tr; 1H), 7.21-7.62(m, 6H), 12.38(s, 1H)	DMSO-d8-300 0.84-0.89(m, 4H) 1.90-1.89(m, 1H), 2.47(s, 3H), 3.18(dd, 1H, J=8.4, 14.7Hz), 3.56(dd, 1H, J=5.1, 14.6Hz), 3.63-3.73(m, 2H), 4.24-4.35(m, 1H), 4.44- 4.55(m, 1H), 4.70(br, 1H), 7.29-7.47(m, 6H), 9.40(br, 1H), 9.81(br, 1H), 12.41(s, 1H)	DMSO-d9-300 0.85-0.95(m, 4H), 1.89-1.89(m, 1H), 2.49(a, 3H), 2.72- 2.94(m, 2H), 3.33-3.44(m, 2H), 3.87-4.08(m, 2H), 4.36- 4.52(m, 1H), 7.18-7.42(m, 6H), 12.40(a, 1H)
装 69	純度/性代/ 製点 (%)	>90 7 モルファス	>90 アモルファス	>90 新書 >220	>90 アモルファス
	推进式 / 組成式	C24H2BOINGO252	CZSH30CIN502S2	C22H24BM30282	CZ3H28CIN5O2S2
	ない。	233	234	235	236

[0146]

*【表60】

1	6	1

		161	(82)		特開2002 162
	SE SE	ESI+ 578(100)	ESI+ 545(100)	ESI+ 538(100)	ESH 515(100)
	1H NMR(&)ppm	DMSO-d8-300 0.88-0.956m, 4H), 1.94-1.98(m, 1H), 2.21(br, 2H), 2.486m, 4H), 1.94-1.98(m, 1H), 2.21(br, 2H), 3.65-3.75(m, 4H), 4.346, 2H), 4.34-4.98(m, 2H), 8.8-7.02(m, 1H), 7.07-7.08(m, 1H), 7.27(e, 1H), 7.27-7.37(m, 2H), 7.86d, 1H, 1.96Hz)	DMSO-d6-300 D.85-0.96(m, 4H), 1.54-1.98(m, 1H), 2.23(br, 2H), 2.82(a, 3H), 3.3-3.36(m, 2H), 3.4-3.46(m, 4H), 3.65-3.36(m, 2H), 4.3-4.336(m, 2H), 7.08(d, 1H, J-6Hz), 7.29(a, 1H), 7.43(a, 1H), 7.51-7.54(m, 1H)	DMSO—48-300 0.85-0.85(m, 4H), 1.54-1.88(m, 1H), 2.27(br, 2H), 2.5(s, 3H), 2.82(s.3H), 3.2-0.35(m, 2H), 3.34-3.5(m, 4H), 3.85- 3.7(m, 4H), 4.18(s, 2H), 4.3-4.4(m, 2H), 7.29-7.38(m, 6H)	DMSO-d8-300 0.83-0.85(m, 440, 1.87-2.01(m, 1H), 2.48(s, 3H), 2.96(s, 3H), 2.97(s, 3H), 3.65-3.64(m, 2H), 4.43(s, 2H), 4.80-4.71(m, 2H), 7.32(s, 1H), 7.68(c, 1H, J=7.9Hz), 7.81(d, 1H, J=8.1Hz), 9.16(d, 1H, J=8.1Hz), 8.30(s, 1H), 10.44(br, 1H), 12.40(s, 1H)
00 ¥4	制度/性状/ 融点 (%) /住状/ 配点	>90 精晶 110 – 118	>90 新編 193.5 - 195	>90 65 	ን80 ፖモ <i></i>
	集治式 / 組成式	24CI	CZSH34CIZNBOZS3	CZ7H36CI2N8OZSZ	C23H27CIN8O4S2
	N. Est	237	238	239	240

[0147]

*【表61】

精隆式 / 組成式	(%) /住状/ 製点	AH NMR(Ø) ppm	N N
R HG HG O2852	>90 7モルファス	DMSO-46-300 0.86-0.97(m, 4H), 1.90-2.00(m, 1H), 2.47(m, 3H), 2.85(m, 4H), 1.90-2.00(m, 1H), 2.47(m, 2H), 4.28(m, 2H), 4.28(m, 2H), 7.33(m, 1H, 1.84Hz), 7.68(m, 1H, 1.84Hz), 7.68(m, 1H, 10.67(m, 1H), 1.84Hz), 1.68(m, 1H), 10.67(m, 1H), 1.84Hz), 1.88(m, 1H), 10.67(m, 1H), 1.88(m, 1H), 10.67(m, 1H), 1.88(m, 1H	638(100) 103
S S S S S S S S S S S S S S S S S S S	>90 アモルファス	DMSO -d8- 300 0.84-0.97(m, 4H), 1.80-1.88(m, 1H), 2.50(s, 3H), 4.95(s, 3H), 2.97(s, 3H), 3.50-3.59(m, 2H), 4.22(s, 2H), 4.81-4.68(m, 2H), 7.18-7.43(m, 5H), 10.37(br, 1H), 12.40(s, 1H)	ESI+ 488(100)
S0282	>90 (株) 	DMSO-48-300 0.88-0.88(m, 4H), 1.5-1.38(m, 1H), 2.48(s, 3H), 2.96(s, 3H), 2.58(s, 2H), 4.24-3.63(m, 2H), 4.28(s, 2H), 4.64-4.75(m, 2H), 7.09-7.51(m, 4H), 10.32(br, 1H), 12.4(s, 1H)	ESI+ 508(100)
PS22	>90 新品 >220	DMSO-46-300 085-0.97(m, 4H), 1.60-2.01(m, 1H), 2.22(a, 3H), 2.48(a, 3H), 2.83(a, 3H), 3.50-3.60(m, 2H), 4.22(a, 2H), 4.61-4.74(m, 2H), 7.17-7.28(m, 4H), 7.33(a, 1H), 10.50(br, 1H), 12.41(a, 1H)	1 6 4 484(100)

[0148]

* *【表62】

1	•	
	n	ר

		165	(04		166
	MS.	ESH 484(100)	ESI+ 504(100)	ESI+ 538(100)	ESI+ 506(100)
	1H NMR(&) ppm	DMSO-48-300 0.84-0.86(m, 4H) 1.80-1.89(m, 1H), 2.31(s, 3H), 2.48(s, 3H), 2.83(s, 3H), 2.85(s, 2H), 4.15(s, 2H), 4.57-4.68(m, 2H), 7.18(s, 2H, D=3.1Hz), 7.24(s, 2H, D=8.1Hz), 7.32(s, 1H), 10.38(br, 1H), 12.46(s, 1H)	DMSO-46-300 0.88-0.96(m, 4H), 1.55-1.98(m, 1H), 2.47(s, 3H), 4.85-4.68(m, 2H), 7.20-7.47(m, 5H), 10.31(br, 1H), 12.38(s, 1H)	DMSO-48-300 0.88-0.86(m, 4H), 1.85-1.89(m, 1H), 2.47(a, 3H), 2.96(a, 3H), 2.97(a, 3H), 3.63-3.65(m, 2H), 4.37(a, 2H), 4.61-4.75(m, 2H), 7.32(a, 1H), 7.59-7.69(m, 3H), 7.75(2, 1H), 10.61(br. 1H), 12.39(a, 1H)	DMSO-48-300 0.88-0.86(m, 4H), 1.83-1.96(m, 1H), 2.47(e, 3H), 2.96(e, 3H), 2.96(e, 3H), 3.53-3.86(m, 2H), 4.28(e, 2H), 4.57-4.86(m, 2H), 7.10-7.21(m, 3H), 7.22(e, 1H), 10.51(tr., 1H), 12.38(c, 1H)
※ 62	観度/住代/観点(%)	>90 アモルファス	>90 ### ## #	>90 ### >220	780 編 2220
	養海式 / 密度式 …			C24HZ70IF3N50252	C23H28GIFZN5O2S2
	計	245	248	247	248

[0149]

*【表63】

5.	株強式 / 組成式	都度/在状/製成 (%)	1H NMR(&)ppm	MS	
6	DH PARTY TO THE PA	08×	DMSOde-300 0.89-0.86m, 4H). 1.466br, 1H). 1.816br, 6H). 2.456a, 3H). 2.85(br, 2H). 3.12(br, 1H). 3.62(br, 1H). 5.35(br, 1H). 7.33(a, 1H). 7.82-7.63(m, 5H). 10.48(br, 1H), 12.26(a, 1H), 13.28(a, 1H)	ES(+ 482(100)	167
	C24H2BCIN5O2S2	>220			
	0	08<	DMSO-48-300 0.88-0.8(m, 4H), 1.92(br, 5H), 3.21(br, 3H), 2.47(a, 3H), 3.77(b, 1H), 4.9(b,	ESI+ 496(100)	
0		4			
	C25H30CIN5O2S2	>220			
	\subset	٠		ESI+	
	Ē.	>80 7モルフ?ス	0.89-0.8(m, 4H), 1.85(br, 5H), 3.21(br, 3H), 2.47(e, 3H), 3.27(br, 1H), 4.2(e, 1H), 4.3(br, 1H), 4.63(br, 1H), 7.07-7.13(m, 2Hx1/2), 7.13(e, 1H), 7.25-7.38(m, 2Hx1/2)	615(100)	
			7.5) - 7.63(m, 10Hx/2), 7.82(s, 2Hx1/2), 7.95–7.97(m, 4Hx1/2), 10.23(s, 1Hz1/2), 10.28(s		
T	C32H35CINBO3S2		1		
	٤		DMSO-46-300	_	1
			2586 - 347, 477, 1-35, 47, 45, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48	538(100),	68
			Ĩ		
	C23HZ6CI3N5O2S2	>220	to produce		
1					

[0150]

₩ 63

* *【表64】

1	6	9

		169	(80)		有册 2002 170
	SE SE	ESI+ 484(100)	ESH (538(100)	ESH 512(100)	ESH 507(100)
ů	iH NMR(&) ppm	DMSO-48-400 0.89-0.8(m, 4H), 1.83(br, 1H), 2.31(a, 3H), 2.92(a, 3H), 2.84(a, 3H), 3.51(br, 2H), 4.15(a, 2H), 4.63(br, 2H), 7.11-7.16(m, 3H), 7.24-7.28(m, 1H), 7.3(a, 1H), 10.48(a, 1H), 12.38(a, 1H)	DMSO-48-300 0.89-0.8(m, 4H), 1.93(br, 1H), 2.31(a, 3H), 2.94(a, 3H), 2.98(a, 3H), 4.98(a, 2H), 4.93(br, 2H), 7.73(a, 1H), 12.38(br, 1H), 12.38(br, 1H)	DMSO-48-300 089-0.8(m, 4H), 1,93(br, 1H), 2,17(a, 8H), 2,23(a, 3H), 2,98(a, 3H), 2,98(a, 2H), 3,48(a, 2H), 4,63(br, 2H), 6,88(a, 1H), 7,39(a, 1H), 10,55(br, 1H), 12,36(br, 1H)	DMSO-48-300 0.89-0.8(m, 4H), 1.£3ibr, 1H), 2.38(br, 2H), 2.45(e, 3H), 4.12(e, 2H), 4.45(br, 2H), 7.28-7.35(m, 6H), 7.75(e, 1H), 7.86(e, 1H), 8.18(e, iH), 12.32(br, 1H)
数 64	類度/性状/ 融点 (%)	022<	980 建建 1987 2087	>90 結論 >220	ን 9 0 ፖモルファス
:	株造式 / 組成式	024H30CINBO2S2	C24H27CIF3NBO2S2	C28H34CINBO252	CZSH27CIN6O2S2
	製物	253	254	255	256

[0151]

* *【表65】

	传染式 / 組成式	報度/性状/職権 (%) /性状/ 職権	(je NMR(&) pom	MS MS	
257	C34H41CIZN7C35S2	>90 アモルファス :208.5 - 219.5	DMSO-d8-300 0.85-0.85(m, 4H), 1.84-1.98(m, 1H), 2.27(br, 2H), 2.8(a, 3H), 3.2-3.34(m, 2H), 3.34-3.5(m, 4H), 3.89-3.7(m, 4H), 3.89-3.7(m, 4H), 4.196a, 2H), 4.3-3.4-3.5(m, 2H), 7.08(d, 1H, 1.89bx), 7.29-7.37(m, 2H), 7.5-7.68(m, 3H), 7.74(d, 1H, 1.24Hz), 7.85(a, 1H), 7.97(d, 2H, 1.89bx)	ESI+ 658(100)	171
258	C23H28GIFZN5O282	>90 特品 >250	DMSO-d8-300 0.85-0.85(m, 4H), 1.54-1.98(m, 1H), 2.49(e, 3H), 2.94(e, 3H), 2.95(e, 3H), 3.57(br, 2H), 4.39(e, 2H), 4.67- 4.72(m, 2H), 7.22-7.23(m, 2H), 7.33(e, 1H), 7.34(e, 1H)	ESI+ 506(100)	(87)
259	C24H27CIF3N5O2S2	>90 65 a. >250	DMSO-d8-300 0.85-0.95(m, 4H), 1.54-1.98(m, 1H), 2.49(a, 3H), 2.94(a, 3H), 2.96(a, 3H), 3.53(br, 2H), 4.4(a, 2H), 2.94(a, 3H), 2.96(a, 3H), 7.55-7.58(m, 2H), 7.89-7.77(m, 2H)	ESI+ 538(100)	
. 580	C23H2TB-CIN5O2S2	>90 (数量) >250	DMSO-d8-300 085-0.95(m, 4H), 1.84-1.98(m, 1H), 2.48(s, 3H), 2.95(s, 3H), 2.96(s, 3H), 3.57(br, 2H), 4.37(s, 2H), 4.7- 7.75(m, 2H), 7.28-7.32(m, 2H), 7.41-7.47(m, 2H), 7.66(d, 1H, J=9Hz)	ESI+ 550(100)	172

[0152]

* *【表66】

1	7	3

		3⊈ 00	4	•
聖	構造式 / 組成式	純度/性状/融点 (%)	1H NMR(&) ppm	ΜS
	HGI	>80	DMSD-48-300 0.85-0.85(m, 4H), 1.94-1.98(m, 1H), 2.48(m, 3H), 2.90(m, 2H), 2.90(m, 2	ESI+ 514(100)
261		アモルファス	4.65(m, 2H), 6.01(e, 2H), 6.83-6.94(m, 3H), 7.31(e, 1H)	
	C24H28CIN5O4S2	>219 - 227		
	160	06 <	DMSO-48-300 0.9-0.92(m, 4H), 1.94-1.98(m, 1H), 2.94(s, 3H), 2.93(s,	ESI+ 530(100)
262		アモルファス	3H, 255(s, 3H, 3.46-3.52(m, 2H), 3.66(s, 3H), 3.71(s, 3H), 4.06(s, 2H), 4.69-4.72(m, 2H), 6.84-6.85(m, 3H), 7.3(s, 1H)	
	C25H32CIN5O4S2	131 - 139	. •	
	₽	8	DMSO-48-300 085-095(m, 4H), 194-198(m, 1H), 249(s, 3H)	ESI+
263		唱	284(a, 3H), 298(a, 3H), 3.55-3.65(m, 2H), 4.51(a, 2H), 4.72-4.72(m, 2H), 7.31(a, 1H), 7.38-7.41(m, 2H), 7.73(a, 1H), 7.88-7.88(m, 1H), 8-8.03(m, 1H)	,
	C25H28CIN5O2S3	248 - 250.5		
	I PE	08<		ESH 504(100),
284		「「「」	7.38(m, 2H), 7.42-7.51(m, 2H), 10.28(hr, 1H), 12.37(s, 1H)	206(40)
	C23H27GI2N5G2S2	>220	i di	***

[0153]

* *【表67】

raiges

176

]	Ĺ	7	5	
_		-		

[0154]

* *【表68】

1	7	7

	_	177	(90)	<i>i</i> .	178
	W.S	ESH 508(100)	ESI+ 506(100)	ESI+ 478(100)	ESI+ 480(100)
• 3	1H NMR(&) ppm	DMSO-46-400 0.89-0.8(m, 4H), 1.93(tr., 1H), 2.94(a, 8H), 3.48(tr., 2H), 4.25(a, 2H), 4.85(tr., 2H), 7.14(tr., 1H), 7.31(a, 1H), 7.42- 7.48(m, 1H), 10.83(tr., 1H), 12.37(a, 1H)	DMSO-d8-400 0.89-0.9(m, 4H), 1.83(br, 1H), 2.98(a, 6H), 3.49(br, 2H), 4.3(a, 2H), 4.89(br, 2:1), 7.21-7.32(m, 4H), 10.48(br, 1H), 12.37(a, 1H)	DMSO-de-300 2.14(s, 3H), 2.48(s, 5H), 2.85(s, 3H), 2.97(s, 3H), 3.56(br, 2H), 4.37(s, 2H), 4.74-4.76(m, 2H), 7.33-7.38(m, 3H), 7.45-7.€(m, 2H)	DMSO-46-300 2.14(a, 3H), 2.48(a, 3H), 2.84(a, 3H), 2.86(a, 3H), 3.56- 3.58(m, 2H), 4.7-4.72(m, 2H), 7.1-7.12(m, 1H), 7.28-7.28(m, 1H;, 7.33(a, 1H), 7.48(a, 1H)
₩ 68	概要/性状/観点(%)	>90 46 88 >220	- >90 特量 >220	>90 f8	>90 衛星 157 - 159.5
	佛達式 / 組成式	CZ3HZ8GIFZN5O2S2	CZ3HZ8CIFZNSO282	C21H25CI2N5O2S2	OZIH24GIFZNBOZSZ
	融	269	270	271	272

[0155]

*【表69】

1	7	9

	1H NMR(&) ppm	44	m, 2H), 7.52-7.58(m, 3H), 7.88-), 7.97(d, 2H, J=9Hz)		DMSOd6-300 ESI+ 2.14(a. 3H), 2.98(a. 3H), 4.29(a. 2H), 482(100)	m, złu, 7.348, 1H, 7.35- H), 12.11(s, 1H)			7.16(4, 1H, D=8,02Hz), 7.18(4, 1H, J=7.79Hz), 7.33(4, 1H), 7.42-7.48(m, 1H), 10.48(hr, 1H), 12.10(4, 1H)		348(br 2H) 421(a 2H) 444(10h)	4.82(br. 2H), 7.32-7.38(m, 6H), 10.48(br, 1H), 12.08(s,	÷
表 69	制度/性状/制点 (%)	DMSD-48-300 2.14(e, 3H), 2.64, 3H), 2.94(3.53(m, 2H), 4.234, 2H), 4.6	新品 7.14(m, 1H), 7.33-7.35(m, 7.87(m, 1H), 7.82(g, 1H), 7.87(m, 1H), 7.82(g, 1H), 7	182 – 185	DMSD-46-300 2.14(a. 3H), 2.96(a. 3H)	4.08(応, ZH), /19-7.24(m, ZH), 7.34(g, TH), 7.34(g, TH), 7.34(g, TH), 7.31(g, TH)		DMSO-48-300	メンフス		DMSO-48-300	メファス	
	株法式 / 組成式			C28H31CIN6O3S2	IOH		C21H25CiFN5O2S2 0	I DH		C21 H24 CIF2N60282	¥		C21H28GIN5O2S2
	ない。		273			274			275			276	

[0156]

* *【表70】

181

		181	() 2 /	,	182
	W S	ESH-460(100)	ESI+ 478(100)	ESI+ 478(100)	ESI+ 478(100)
	H NMR(&) ppm	DMSC-48-300 0.84-0.98(m, 44), 1.90-2.01(m, 1H), 2.48(a, 3H), 3.29-3.43(m, 2H), 4.27(a, 2H), 4.48-4.60(m, 2H), 7.18-7.45(m, 5H), 8.26(br. 3H), 12.41(a, 1H)	DMSO-46-400 0.84-0.97(m, 4H), 1.81-1.99(m, 1H), 2.48(a, 3H), 3.27- 3.36(m, 2H), 4.33(a, 2H), 4.54-4.63(m, 2H), 7.16(t, 2H, U=7.86Hz), 7.31(a, 1H), 7.4-7.5(m, 1H), 8.31(br, 3H), 12.38(br, 1H)	DMSO—48—300 0.84—0.88(m, 4H), 1.89—2.01(m, 1H), 2.48(a, 3H), 3.29— 3.45(m, 2H), 4.35(a, 5H), 4.49—4.63(m, 2H), 7.26— 7.55(m, 5H), 8.31(br, 3H), 12.41(br, 1H)	DMSO-46-300 0.83-0.98(m, 4H), 1.50-2.01(m, 1H), 2.48(s, 3H), 3.27- 3.46(m, 2H), 4.27(s, 2H), 4.45-4.82(m, 2H), 7.12(s, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H
	(%) /性铁/ 配品	>90 アモルファス	>90 アモルファス	>90 プモルファス	> ያ 0 ፖモルファス
	精谱式 人名森克	C21H23CIFN8O282	O21H22OFZNEO2S2	C21H23OIZN5O252	C21H22CIF2N5O2S2
D 44-0		772	278	279	280

[0157]

*【表71】

184

		版 71		
を	株逢氏 / 超级式	親康/性状/ 職点 (%)	154 NMR(Ø) ppm	SY X
281	C21H24CIN5O2S2	>90 アモルファス	DMSO~de~400 0.83~0.86(m, 4H), 1.91~2.00(m, 1H), 2.47(s, 3H), 3.28~ 3.41(m, 2H), 4.21(s, ∑H), 4.42~4.51(m, 2H), 7.28~ 7.38(m, 6H), 8.32(b; ∃H), 12.36(br, 1H)	ESI+ 442(100)
282	CZIHZZGINBOZSZ	>\$0 7€ルファス	DMSO-de-300 084-0.87(m, 4H), 1.90-2.01(m, 1H), 2.51(a, 3H), 3.66- 3.80(m, 2H), 4.54-4.63(m, 2H), 6.66(a, 1H), 7.43(a, 1H), 7.46-7.66(m, 5H), 10.48(br, 1H), 10.84(br, 1H), 12.44(br, 1H)	ESI+ 440(100)
283	C23H28CIFN5O2S2	>90 数数 155 - 161	DMSO-d8-300 1.1(a, 3H), 1.13(a, 3H), 2.48(a, 3H), 2.72-2.74(m, 1H), 2.98(a, 3H), 2.98(a, 3H), 3.58-3.68(m, 2H), 4.3(a, 2H), 7.33(a, 1H), 7.39-7.41(m, 2H)	ESH 490(100)
284	C23H29OI2N5O2S2	>90 韓國 >230	DMSO-de-300 1.11(a, 3H), 1.13(a, 3H), 2.48(a, 3H), 2.72-2.74(m, 1H), 2.97(a, 3H), 2.98(a, 3H), 3.58-3.58(m, 2H), 4.38(a, 2H), 4.72-4.74(m, 2H), 7.33-7.38(m, 3H), 7.45-7.48(m, 2H)	ESI+ (00)909

[0158]

* *【表72】

3 :	
	3 :

		185	5				(24)			•.	18	36	
	MS WS	ESI+ 608(100)			ESH- 502(100)			ESI+ 518(100)			ESH 520(100)		
-	1H NÄR(Ø) ppm	55. 7. 7.	4.74-4.76(m, 2H), 7.17(t, 2H, J=7.5Hz), 7.34(a, 1H), 7.45-7.47(m, 1H)		DMSO-48-300 0.89-0.83(m, 4H), 1.94-1.88(m, 1H), 2.25-2.28(m, 2H),	2.446, 210, 2.10(4, 34), 2.88, 31), 3.23-3.25(m, 2H), 4.24(a, 2H), 4.35-4.57(m, 2H), 7.18-7.28(m, 2H), 7.28(a, 1H), 7.34-7.43(m, 2H)		0.89-0.93(m, 4H), 1.94-1.88(m, 1H), 2.25-2.28(m, 2H),	2.4818, 311, 2.18(8, 311, 2.28(8, 311, 3.23-3.26(m, 2.1), 4.31(8, 2.1), 4.37-4.38(m, 2.1), 7.28(8, 1.1), 7.34- 7.37(m, 2.1), 7.44-7.51(m, 2.1)		DMSO-48-300 0.89-0.83(m, 4H), 1.6.4-1.98(m, 1H), 2.25-2.28(m, 2H),	248(a, 3H), 2.78(a, 3H), 2.8(a, 3H), 3.25–3.26(m, 2H), 4.27(a, 2H), 4.39–4.41(m, 2H), 7.13–7.18(m, 2H), 7.3(a, 1H), 7.42(a, 2H)	
表 72	観像/性状/観点	06<	1 082%		06<	4	226 - 228	06 <	4	217 - 219	08<	4	>230
	集海以/組成 別	Ž.		C23H28CIFZN6O2S2	₹		024H280IFN502S2	Ē		G24H29CI2N5O2S2	Ē		C24H28GIFZN5O282
	**		282			286			287			288	

[0159]

* *【表73】

188

	- tU	表 73		
が	構造式/組成式	制度/性状/ 職点 (%)	I H NMR(&)ppm	SE SE
288	HOI SECTION OF THE SE	>90 (4) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	DMSO-48-400 1.13(d, 8H, J=8.85Hz), 2.65(br, 1H), 2.7-2.78(m, 1H), 3.8(br, 5H), 4.86(br, 1H), 4.82(br, 1H), 7.39(e, 1H), 7.47(br, 3H), 7.8(br, 2H), 12.09(e, 1H)	ESI+ 458(100)
290	C23H30CIN6O282	>90 66 8 >220	DMSO~d6~300 1.12(d, 6H, J=8.57Hz), 2.7~2.76(m, 1H), 2.85(e, 3H), 2.88(e, 3H), 3.51(br. ∰H), 4.22(e, 2H), 4.65(br, 1H), 7.32~ 7.38(m, 6H), 10.52(bj. 1H), 12.05(e, 1H)	ESI+ 472(100)
291	C30H35GIN6O352	>90 ፖモルファス	DMSO66-300 1.12(4, 8H, J=8.88Hz.), 2.7-2.76(m, 1H), 2.85(a, 3H), 2.86(a, 3H), 3.51(br. 2H), 4.86(br. 2H), 7.09(d, 1H, J=7.88Hz), 7.32-7.36(m, 2H), 7.52-7.8(m, 3H), 7.68(d, 1H, J=7.92Hz), 7.82(a, 1H), 7.96-7.86(m, 2H), 10.3(a, 1H), 10.1.2(br, 1H), 12.12(a,	ESH 591(100)
282	CZ3H28CIFZN5O2S2	>80 杜	DMSO-d8-400 1.12kd 6H, J=686:\(\frac{2}{3}\), 268-2.75km, 1H), 2.97(s, 6H), 3.58bx, 2H), 4.28k, 2H), 4.7bx, 2H), 7.09-7.14km, 1H), 7.24-7.3km, 1H), 7.35(s, 1H), 7.41-7.48km, 1H), 10.41(bx, 1H), 12(s, 1H)	ESH 508(100)

[0160]

* *【表74】

#

8

ᅙ

C25H31CIN6O3S2

295

>220

C23H27CIN6O4S2

190 189 ESI+ 548(100) ESH 520(100) ESH 527(100) ESI+ 515(100) 8 0.89-0.83(m, 4H), 1.84-1.89(m, 1H), 2.46(s, 3H), 2.86(s, 3H), 2.98(s, 3H), 2.98(s, 3H), 3.5-3.6(m, 2H), 4.86(s, 2H), 4.75-4.85(m, 2H), 7.31(s, 1H), 3.65(m, 2H), 7.79-7.81(m, 1H), 8.17-6.2(m, 1H) H NMR(&)ppm 0.89-0.83(m, 4H), 1.84-1.98(m, 1H), 3H), 2.91(a, 3H), 2.92(a, 3H), 3.46-3.2H), 4.6-4.86(m, 2H), 7.04(d, 1H, J=2H), 7.48(d, 1H, J=6+iz), 7.57(a, 1H) DMSO-48-300 DMSO-46-300 DMSO-46-300 DMSO-48-300 を取し在状へ 職員(金) 121 - 123 162 - 167

×28

훂

C29H32CIN5O2S2

8

욯

数 74

墨

윷

₽

無事以/他政共

[0161]

*【表75】

C27H30CIN50282

191

	神楽な ノ 他内内	報酬/存状/製造 (%)	(id NMR(&) ppm	MS
	19E	8	DMSO-d8-300 0.89-0.83(m, 4H), 1.94-1.88(m, 1H), Z.48(a, 3H), 2.95(a, 3H), 2.86(a, 3H), 3.5-3.6(m, 2H), 4.43(a, 2H),	ESI+ 522(100)
297		·····································	4.75-4.78(m, 2H), 7.25-7.5(m, 4H)	
	G23H26GIZFN5O2S2 CI	7550		
	2	08<	1.87-1.98(m, 1H), 2.	ESH 561(100)
298		アモルファス	3-3600, 41), 3-43(8, 74), 6.65(8, 11), 7.01(d, 11), 7.57(4, 11), 2-7.74z), 7.51-7.86(m, 3H), 7.86(d, 11), 2-7.74z), 7.7(s, 14), 7.87(d, 2H, 3H), 7.7(s, 14), 7.87(d, 2H, 3H), 7.7(s, 1H), 7.87(d, 2H, 3H), 10.24(s, 2H), 12.30(s, 2H)	
	C28H28CIN8O3S2			
	→		DMSO-46-300	ESI+
	- F		0.88-0.93(m, 4H), 1.94-1.98(m, 1H), 2.48(s, 3H), 2.65(s, 3H), 3.4-3.45(m, 2H), 4.31(s, 2H), 4.9-4.65(m,	474(100)
299		電響	kH), 1.16-7.24(m, 2H), 7.3(s, 1H), 7.38-7.42(m, 2H)	
	C22H26GIFN5O2S2	121 - 123		
	104 m	06<	0 H), 1.81-1.97(m, 1H), 2.48(s, 3H),	ESI+ 575(100)
300		4	ZCK8, 3H, 34-3,43(m, 2H), 4.2(s, 2H), 4.5-4,6(m, 2H), 7.12(d, 1H, J=BHZ), 7.3-7.36(m, 2H), 7.5-7.58(m, 3H), 7.86(d, 1H, J=BHZ), 7.81(s, 1H), 7.96(d, 2H, J=BHZ)	
	C28H31CINBO3S2	118 – 121		

[0162]

* *【表76】

C19H20CIN50282 223H26CIN50282 222H24CIN50282	表 76	組成式 報度/性状/融点 :H NMR(よ)ppm MS (%)	MH HCI >90 2.15(a, 3H), 3.75(br, 2H), 4.57(br, 2H), 5.65(a, 2H), 7.43(a, 1H), 7.5(br, 3H), 7.58(br, 2H), 12.11(a, 1H) 414(100)	DMSO-d8-300 ESH 0.88-0.8(m, 4H), 1.18(br, 3H), 1.83(br, 1H), 4.44(br, 468(100) 7 + 1.77 This of the second o	BMSO—48–400 S89—0.8(m, 4H), 1.8:(br, 1H), 2.81(br, 2H), 4.01(br, 454(100)) 3H), 4.44(br, 1H), 4.02(br, 1H), 5.28(br, 1H), 7.39(a, 1H), 7.47(br, 3H), 7.8(br, 2H), 12.34(a, 1H) >220	HCI >90 2.15(a, 3H), 2.83(br, 2H), 4.8(br, 2H), 4.28(100) 8.43(br, 1H), 7.42(b, 3H), 7.82(br, 2H), 12.09(a, 1H) 3.43(br, 1H), 7.43(br, 3H), 7.82(br, 2H), 2.220
303 303 304		機能を主義を表現し、他の対し、他の対し、他の対し、他の対し、他の対し、他の対し、他の対し、他の対	G19H20CIN502S2	C23H26CIN5O2S2	C22H24CIN5O2S2	CZOHZZCINGOZSZ

【0163】 【表77】

		以 数 77	कम् व	
医中侧	集後式 / 組成式	組成/性状/難点(%)	SANMR(&) ppm	MS.
305	IDH I	08<	DMSO-d6-300 2.43(a, 3H), 2.93(a, 3H), 2.85(a, 3H), 3.54(br. 2H), 4.31(a, 2H), 4.7(br. 2H), 7.19-7.26(m, 2H), 7.27-7.43(m, 2H)	ESI+ 420(100)
	018H24Cl2FN5OS2	>220		
		08<	DMSO-48-400 2-42(a, 3H), 2-82(a, 3H), 3-48(tr., 2H), 4-24(a, 2H), 4-86(tr., 2H), 7-13(4, 1H, 1-7,40), 1	ESI+ 521(100)
88		アモルファス	7.35(dd, 1H, J=788, 7.8Hz), 742(a, 1H), 7.51–7.81(m, 3H), 7.67(d, 1H, J=8.44Hz), 7.83(g, 1H), 7.86–7.98(m, 2H), 9.11(br, 1H), 10.28(g, 1H), 10.92(br,	
	C26H30Cl2NBO2S2			

The state of

【0164】次に、本発明化合物のPKC阻害活性の測 定方法について説明する。

試験例[1] PKC酵素活性試験

基質混合液と被検物質溶液を10:1の割合で混合した

196

後、酵素溶液を基質混合液と等量加え、37℃で15分 インキュベートした。反応停止剤として300mMオルトリ ン酸を基質混合液と等量加えて反応を停止させた後、反 応液をホスホセルロースペーパー (Whatman社製, P-8 1) にスポットし、75mm オルトリン酸で2回洗浄した後 にバイオ・イメージングアナライザー (BAS2500, Fuji film社製)により放射活性を測定した。DMSOを添加 した場合の放射活性に対する、被検物質を添加した場合 の放射活性の割合を求め、各濃度の阻害率より I C50値

10 を算出し、阻害活性の指標とした。結果を表78から表 89に示す。

被檢物質溶液:被験物資をジメチルスルホキシド(DM、。 SO)に溶解し、終濃度10mi-10μilとなるように希釈し た。

基質混合液: 200 μM calcium chloride、10mM magnesiu m chloride, 2μ M ATP, 60μ g/ml L- α -phosphatidyl-L -serine, 6µg/ml 1,2-dioleoyl-sn-glycerol(C18:1, (cis)-9), 0.02% Triton X-100, 5μ M myelin basic pr oteinとなるように50mM Tris/HC1 (pH 7.5) に溶解さ 20 せ、[r-32P] ATP (Amersham社製, cat. No. PB168) を60μCi/mlとなるように加えた。

酵素溶液: PKC酵素標品 (Protein Kinase C, Human Recombinant, CALBIOCHEM社製) を、アッセイバッファ - (10mM Hepes pH 7.4, 0.01% Triton X-100)を用い て、本酵素活性試験において被験物質未添加の場合に約 5%のATPが反応に使用される酵素量となるよう希釈し た。

【0165】試験例[2] ホルマリン テスト 本試験は、ヒトの末梢組織傷害後の病態に比較的類似す 30 ることから、鎮痛効果の検討において多く用いられる i n vivo試験である。ラット (Crj, SD, 7若 しくは8週齢、雄)を試験実施前日に絶食ケージの中で 絶食した。被検物質を0.5%MC溶液に懸濁し、ラッ トに経口投与した。投与2時間後にラットの左後肢足底 部に、飽和ホルマリン溶液を生理食塩水で20倍希釈し た溶液を皮下注射した後、投与直後から5分後(第1 相)までと15-30分後 (第11相) までにラットが左 後肢を舐める行動の秒数を計測した。ホルマリン皮下注 射後5分後までと、15-30分後までの秒数の溶媒投 40 与群に対する有意差をそれぞれDunnet test を用いて検討した。結果を表90に示す。

[0166] 【表78】

実施例	РКС	活性阻害 IC ₅₀ (μM)			
番号	PKC a	PKC 8 II	РКСу		
1	0.8691	2.9062	0.0369		
. 2	0.6811	2.0681	0.0505		
3	0.640	2.70	0.049		
4	0.9238	2.0825	0.0966		
5	1.00	2.60	0.096		
	1.0342	1.6049	0,3559		
7	0.381	3.1067	0.2181		
9	3:1034	5.8587	0.6783		
10	100	100	0.9605		
12	2.2365	3.2109	0.7864		
14	0.484	, 0.8281	0.3475		
15	0.6744	1.5877	0.4428		
18	1.5652	2.8276	0.3887		
17	1.9997	1.9916	0.3033		
20	0.4222	2.5555	0.1314		
22	0.2146	1.1874	0.2336		
23	0.2607	1.5836	0.1846		
24	0.7288	0.7508	0.1422		
25	1.1193	1.0252	0.2364		
26	0.4024	0.6619	0.1003		
27	0.7984	2.1487	0.3068		

[0167]

*【表79】

表79

実施例 番号	PKC	活性阻害 IC 50	(μM)
番号	PKC a	PKC 8 II	PKC y
28	20.9551	58.7021	0.7796
30	1.1229	2.3889	0.1452
31	0.8852	2.2086	0.3141
32	0.8931	10	0.2666
33	0.5861	0.8481	0.2966
34	1.3769	3.403	0.5586
38	0.1011	0.2243	0.1
38	1.0239	2,3066.	0.2804
39	1.6275	2.3583	0.4253
40	3.7545	9.3437	0.4791
41	0.7993	1.6952	0.3414
43	1.8608	2.9152	0.3758
44	4.2445	18.6092	0.505
50	0.1253	0.4761	0.1
56	1.9705	3.2759	0.6389
57	0.3019	0.7948	0.047
58	0.2356	0.7665	0.0431
59	0.0861	0.3512	0.0234
60	0.0982	0.3345	0.0274
61	0.3514	1.328	0.1123
62	0.0713	0.1727	0.0286

[0168]

* *【表80】

表80

実施例 PKC活性阻害 IC 50		₃ (μM)	
番号	PKC a	РКС В П	РКСγ
63	0.1384	0.4357	0.0389
64	0.1084	0.2647	0.0383
65	0.2031	0.5139	0.0546
66	0.0829	0.2596	0.0305
87	0.1377	0.503	0.0643
68	0.7166	2.5578	0.1621
69	0.5753	3.0038	0.1886
70	0.369	1.8323	0.0914
π	0.1811	1.1455	0.0436
78	0.3671	4.4274	0.0377
79	6.1068	10	0.4187
85	0.4281	0.0817	0.0518
86	10	10	0.4095
87	4.2331	10	0.6303
89	0.4605	0.8827	0.1468
91	0.3335	0.9374	0.0645
95	0.1558	0.4456	0.0289
36	0.6069	0.978	0.2311
97	0.6261	1.3975	0.6133
101	0.4178	5.2222	0.1573
102	0.0814	0.3242	0.0438

[0169]

* *【表81】

表81

実施例	РКС	活性阻害 IC 50	₀ (μM)
番号	PKC a	PKC 8 II	РКС у
104	0.2578	0.4058	0.0555
105	0.2559	0.3638	0.0569
108	0.1656	0.3231	0.301
107	0.1257	0.2503	0.0292
108	0.2942	0.4942	0.0815
109	10,0 F	0.0253	C.01
110	1.0028	2.5185	0.3547
111	0.2484	0.6543	0.0885
112	0.0582	0.1389	0.0266
113	0.1352	0.4307	0.2066
117	0.1486	0.2804	0.0411
118	0.1303	0.3481	0.0252
119	0.5804	0.7109	0.1313
120	0.5003	1.121	0.1835
121	0.043	0.0849	0.0315
122	10	10	0.2648
123	0.231	0.3928	0.0667
124	0.605	4.005	0.176
125	0.1213	0.7247	0.0374
126	0.4539	0.8748	0.0696
127	0.1409	0.5416	0.0358

[0170]

* *【表82】

表82

実施例	PKC	活性阻害 IC 50)(μM)
番号	PKCa	PKC B II	РКСу
128	0.6411	1.3177	0.0832
129	0.7891	10	0.1053
130	0.4813	2.6958	0.0778
131	0.3694	1.0981	0.0458
132	10	10	0.3842
133	0.7601	7.2341	0.2096
134	0.6145	10	0.1126
135	10	10	0.4226
136	0.3835	0.5662	0.0477
137	0.6491	0.6733	0.114
138	0.206	0.7927	0.0731
139	0.039	0.18	0.0233
140	0.6994	4.4524	0.2783
141	4.3222	10	0.6945
142	0.5658	3.4076	0.262
143	2.4709	2.8369	0.238
144	1.8262	5.1504	0.2386
145	10	.10	0.4329
147	10	10	0.3341
148	0.7315	2.2953	0.1236
149	0.2026	0.4703	0.022

[0171]

* *【表83】

表83

実施例	РКС	C活性阻害 IC ₅₀ (μM)		
番号	PKC a	PKC 8 II	PKCγ	
150	0.2403	0.6434	0.034	
151	4.1609	10	0.586	
152	1.3969	0.2374	0.1091	
153	10	10	0.7554	
156	0.0817	0.6858	0.037	
157	0.2053	10	0.0854	
158	0.8114	2.2487	0.1631	
159	0.4899	1.4472	0.0722	
160	0.5408	0.1689	0.048	
161	0.7628	0.2478	0.0549	
182	10	0.3797	0.2692	
183	10	9.3292	0.3971	
184	0.6204	3.0762	0.2238	
165	0.4699	10	0.0439	
166	1.8756	10	0.8109	
167	0.7312	10	0.2404	
168	- 10	10	0.2727	
169	0.6706	10	0.0535	
170	0.01	0.0528	0.0115	
171	0.01	0.0278	0.01	
172	0.2315	2.284	0.0693	

[0172]

* *【表84】

表84

実施例	PKC	活性阻害 IC 50	_O (μ M)
番号	PKCa	PKC # II	PKCy
173	0.1803	0.823	0.0227
178	0.2014	1.0955	0.0589
179	0.2014	1.0955	0.0589
400	0.0447	0.1852	0.0148
182	0.493	10	0.0632
183	0.5188	10	0.0655
185	5.5305	19.0984	0.7888
187	0.7463	2.4368	0.0677
188	3.1367	3.8826	0.3118
189	0.5497	1.2724	0.0648
190	0.2765	0.9269	0.0327
191	0.3441	1.4509	0.05
192	0.1874	0.6329	0.0411
193	0.3171	1.0387	0.0435
194	3.1816	10	0.7699
195	4.1963	6.8348	0.6202
196	3.118	4.2776	0.3954
. 197	0.5301	1.3578	0.0947
198	2.2416	0.7359	0.2847
199	3.5292	1.735	0.5815
200	2.7132	0.504	0.3708

[0173]

* *【表85】

. 表85

実施例番号 PKC活性阻害 IC 50(μM) 容号 PKCα PKCβII PKCγ 201 0.4534 0.0583 0.0326 202 0.1438 0.2821 0.0126 203 0.0181 0.0509 0.01 204 0.2536 0.6034 0.0752 205 1.8445 2.0435 0.6881 206 0.3621 0.7343 0.0497 207 1.2896 2.9182 0.0576 208 0.5169 1.4617 0.0229 209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0415 218 0.6108 1.987				
PKC α PKC β II PKC γ 201 0.4534 0.0583 0.0326 202 0.1438 0.2821 0.0126 203 0.0181 0.0509 0.01 204 0.2536 0.6034 0.0752 205 1.8445 2.0435 0.6881 206 0.3621 0.7343 0.0497 207 1.2896 2.9182 0.0576 208 0.5169 1.4617 0.0229 209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836		. РКС	C活性阻害 IC ₅₀ (μM)	
202 0.1438 0.2821 0.0126 203 0.0181 0.0509 0.01 204 0.2536 0.6034 0.0752 205 1.8445 2.0435 0.6881 206 0.3621 0.7343 0.0497 207 1.2896 2.9182 0.0576 208 0.5169 1.4617 0.0229 209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	番号	. PKC a	PKC 8 II	РКСγ
203 0.0181 0.0509 0.01 204 0.2536 0.6034 0.0752 205 1.8445 2.0435 0.6881 206 0.3621 0.7343 0.0497 207 1.2896 2.9182 0.0576 208 0.5169 1.4617 0.0229 209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	201	0.4534	0.0583	0.0326
204 0.2536 0.6034 0.0752 205 1.8445 2.0435 0.6881 206 0.3621 0.7343 0.0497 207 1.2896 2.9182 0.0576 208 0.5169 1.4617 0.0229 209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	202	0.1438	0.2821	0.0126
205 1.8445 2.0435 0.6881 206 0.3621 0.7343 0.0497 207 1.2896 2.9182 0.0576 208 0.5169 1.4617 0.0229 209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	203	0.0181	0.0509	0.01
206 0.3621 0.7343 0.0497 207 1.2896 2.9182 0.0576 208 0.5169 1.4617 0.0229 209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	204	0.2536	0.6034	0.0752
207 1.2896 2.9182 0.0576 208 0.5169 1.4617 0.0229 209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	205	1.8445	2.0435	0.6881
208 0.5169 1.4617 0.0229 209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	206	0.3621	0.7343	0.0497
209 5.1562 8.5936 0.4971 210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	207	1.2896	2.9182	0.0576
210 0.2416 0.7747 0.07 211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	208	0.5169	1.4617	0.0229
211 0.324 0.0546 0.0345 213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	209	5.1562	8.5936	0.4971
213 1.0162 4.1203 0.0976 214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	210	0.2416	0.7747	0.07
214 0.0899 0.3258 0.0287 215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	211	0.324	0.0546	0.0345
215 1.2266 2.6531 0.3828 216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	213	1.0162	4.1203	0.0976
216 1.5912 1.7024 0.3088 217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	214	0.0899	0.3258	. 0.0287
217 0.3023 0.8786 0.0569 218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	215	1.2266	2.6531	0.3828
218 0.6108 1.9878 0.0415 219 0.3836 1.0157 0.0425	216	1.5912	1.7024	0.3088
219 0.3836 1.0157 0.0425	217	0.3023	0.8786	0.0569
7,0120	218	0.6108	1.9878	0.0415
220 1 7341 3 5640 0 000	219	0.3836	1.0157	0.0425
0.082	220	1.7341	3.5649	0.082
221 1.1928 3.2046 0.1244	221	1.1928	3.2046	0.1244
222 1.4298 4.8165 0.4648	222	1.4298	4.8165	0.4648

[0174]

* *【表86】

表86

実施例	PKC	括性阻害 IC ₅₀ (μM)		
番号	PKCa	PKC 8 II	PKC y	
223	1.1599	3.0946	0.2411	
224	0.6074	1.3187	0.1009	
225	0.8434	2.0511	0.1088	
226	1.2533	2.0744	0.0987	
227	4.6416	10	0.3154	
228	0.1439	0.527	0.0377	
230	0.7932	10	0.1519	
231	1.9148	4.3648	0.6877	
232	2.2058	4.3243	0.7279	
233	1.1948	7.5429	0.2491	
234	3.3771	10	0.642	
237	0.0664	0.2718	0.0753	
238	0.1643	0.4521	0.1138	
239	0.1645	0.3851	0.1128	
240	2.0602	4.4752	0.1667	
241	1.6723	3.275	0.2455	
242	1.5715	3.9299	0.1314	
243.	0.5143	2.0035	0.0327	
244	1.6825	4.5809	0.1265	
245	4.5598	7.7718	0.3007	
248	4.1918	7.8553	0.269	

[0175]

* *【表87】

表87

		~~ .	
実施例	PKC活性阻害 IC ₅₀ (μM)		
番号	PKC a	PKC \$ II	РКСγ
247	0.7353	1.4122	0.1574
248	4.7388	3.0942	0.2127
250	2.2456	3.8395	0.3516
251	1.2051	3,3082	0.1165
252	7.5785	9.9982	0.1643
253	0.7711	1.6616	0.0908
255 [:]	8.7832	10	9,3696
258	0.6817	2.1602	0.1743
257	0.0197	0.0574	0.013
258	0.5716	1.8643	0.0434
259	2.3994	10	0.129
260	0.5492	1.9493	0.038
261	3.3157	8,2864	0.3605
262	2.7343	5.6371	0.7032
283	2.5549	0.9648	0.2083
264	0.3683	1.4796	0.0324
265	0.6817	2.5745	0.0588
267	1.4729	2.9851	0.2119
268	2.9237	5.219	0.073
269	2.3036	4.6499	0.2522
270	1.8292	3.7545	0.149

[0176]

* *【表88】

表88

		<u> </u>	
実施例	PKC活性阻害 IC ₅₀ (μM)		
番号	PKCα	PKC B II	. PKC y
271	0.8243	2.139	0.0606
272	1.2554	2.4596	0.0672
273	0.6934	1.4572	. 0.0297
274	1.7267	2.5746	0.0768
275 4.6116		5.5656	0.2395
276	2.7981	5.0732	0.2772
277	1.5974	2.902	0.121
278	4.7862	7.3154	0.3694
279	0.5391	2.1049	0.158
280	0.5228	1.8414	0.1874
281 282	2.028	4.1114	0.4423
	0.9474	6.0803	0.1372
283	1.6883	2.3741	0.1019
284	3.2021	2.0008	0.2032
285	10	6.255	0.4102
286	0.2957	0.6491	0.0526
287	0.1501	0.3063	0.0503
288	1.8182	2.2867	0.3434
289	1.8581	2.2649	0.1214
290	9.5046	4.951	0.3994
291	1.978	1.79	0.0708

[0177]

* *【表89】

実施例	PKC活性阻害 IC ₅₀ (μM)		
番号	PKC a	РКСВП	РКС у
292	2.7292	2.1358	0.1568
294	1.5731	. 2.9446	0.1406
295	1.70	5.90	0.076
296	2.0174	4.0763	0.2116
297	3.7313	5.8978	0.1485
299	2.0506	5.6728	0.2506
300	6.54	10	0.8001
301. :	4.0711	10	0.7776
302	2.2321	10	0.2145
305	3.8583	10	0.5705
306	1.3647	6.3833	0.2066

[0178]

20【表90】

・ (mg/kg) 第1相	'タイム (秒) 第Ⅱ相
(mg/kg) 第1相	第Ⅱ相
コントロール - 151.9 ± 2.6	328.1 ± 7.4
3 148.5 ± 2.7	225.3 ± 7.6
10 143.8 ± 3.8	199.9 ± 17.0
モルヒネ 10 129.0 ± 4.8	215.9 ± 13.0
コントロール - 149.4 ± 2.7	317.5 ± 12.2
3 148.4 ± 4.3	209.5 ± 12.3
10 146.4 ± 4.1	187.5 ± 11.1
モルヒネ 10 122.0 ± 3.3	216.5 ± 6.9
「コントロール - 159.6 ± 3.2	329.5 ± 5.5
3 145.6 ± 4.0	232.9 ± 9.7
10 143.3 ± 5.2	203.8 ± 13.9
モルヒネ 10 117.9 ± 6.7	237.0 ± 7.3
コントロール - 151.3 ± 3.9	277.9 ± 13.3
202 30 136.1 ± 8.4	163.9 ± 14.9
100 132.4 ±4.1	145.8 ± 22.2
コントロール - 150.4 ± 2.9	322.9 ± 8.6
208 3 148.8 ± 5.7	275.4 ± 12.1
コントロール - 141.3 ± 3.6	300.9 ± 9.0
243 3 140.9 ± 4.5	250.6 ± 15.8
コントロール - 146.0 ± 8.8	288.0 ± 8.8
268 10 128.1 ± 8.1	195.6 ± 28.9
30 119.3 ± 7.0	185.8 ± 17.4
コントロール - 147.3 ± 4.0	310.1 ± 5.8
274 8 141.8 ± 5.3	222.8 ± 14.0
コントロール - 149.4 ± 2.7	317.5 ± 12.2
295 3 147.1 ± 4.6	218.1 ± 16.8

コントロール:溶媒のみ。

リッキングタイム:ラットが左後肢を舐める行動の時間。 被験物質の番号は、該当する実施例番号で合成された化合物を示す。

【0179】以下に製剤例を挙げるが、これに限定され* *るものではない。

製剤例

(a)実施例1の化合物	10g
(b)乳糖	50g
(c)トウモロコシデンプン	15g
(d)カルボキシメチルセルロースナトリウム	44 g
(e) ステアリン酸マグネシウム	1 g

(a)、(b)、(c)の全量及び(d)の30gを水で練合し、真空乾燥後、製粒を行う。この製粒末に14gの(d)及び1gの(e)を混合し、打錠機で錠剤とすることにより、1錠あたり10mgの(a)を含有する錠剤1000個を製造する。

[0180]

【発明の効果】上記結果から明らかな様に、本発明のチアゾール化合物はPKCに対し高い阻害活性を示し、そ※

※の一部はPKCα、PKCβ、PKAに比し選択的にP KCγへの阻害作用を示す。よって、これら化合物は、 痛み(疼痛、痛覚過敏、アロディニア、モルヒネ等の麻 薬性鎮痛薬に対する耐性等)をはじめとするPKCに関 連する症状を治療又は/及び予防する薬剤となる。ま た、PKCγへの選択的な作用は顕著な副作用を示さな い安全な薬剤となり得る。

フロントページの続き

(51) Int. Cl. 7	識別記号	F I	テーマコード(参考)
A61K	31/4725	A 6 1 K 31/4725	
	31/496	31/496	
	31/497	31/497	
	31/498	31/498	
	31/502	31/502	
	31/5355	31/5355	
A61P	29/00	A 6 1 P 29/00	
	43/00 1 1 1	43/00	111
- C07D	417/04	CO7D 417/04	
	417/14	417/14	*
(72)発明者	岡本 佳久	・ Fターム(参考) 40033 AD()3 ADO4 ADO6 AD13 AD17
	大阪府高槻市紫町1番1号		
	業株式会社医薬総合研究所		01 AA03 BB02 BB09 CC62
			'6 CC81 CC92 DD03 DD06
	•		7 DD10 DD12 DD14 DD15
			25 DD28 DD34 DD54 DD62
	,	EEC	
			1 AA02 AA03 BC82 GA02
			4 GA07 GA08 GA09 GA10
			1 MAO4 NA14 ZAO8 ZC20