Spis treści

0	Wst	
	0.1	Literatura
	0.2	Całki
1	Kin	nematyka 2
_	1.1	Wielkości średnie i chwilowe
	1.2	Ruch
	1.3	Ruch w wielu wymiarach
	1.4	Ruch po okręgu
	1.4	tuch po oktygu
2	Siły	,
	2.1	Prawa Newtona
	2.2	Ciążenie powszechne
	2.3	Tarcie
3	Ene	ergia 4
	3.1	Zasada zachowania energii
	3.2	Tarcie i energia
4	Dyr	namika układów wielu ciał
-	4.1	Środek masy
	4.2	Zasada zachowania pędu
	4.3	Zderzenia
	4.4	Popęd
5	Obr	roty
	5.1	Bryła sztywna
	5.2	Przyspieszenie kątowe
		5.2.1 Punkt na obwodzie koła
	5.3	Bezwładność, pęd i energia
	5.4	Moment obrotowy (siły)
	5.5	Twierdzenie Steinera
	5.6	Energia kinetyczna w ruchu obrotowym
	5.7	Porównanie ruchu liniowego i obrotowego
6	Szcz	zególna Teoria Względności
U	6.1	Postulaty
	6.2	Transformacja Lorentza
	6.3	Względność równoczesności
	6.4	Dylatacja czasu
	6.5	Skrócenie długości
	6.6	Geometria czasoprzestrzeni

0 Wstęp

0.1 Literatura

- $\bullet\,$ D. H., R. R., Jearl Walker "Fundamentals of Physics"
- R. Shankar "Fundamentals of Physics"

Diagram 1: Całka oznaczona funkcji f(x) na przedziale [0,3]

0.2 Całki

Całki to operacje odwrotne do pochodnych. Dla funkcji f(x) całka oznaczona to pole pod wykresem funkcji f(x) na przedziale [a, b]. Pozwalają nam obliczyć pole pod krzywą, a także sumę nieskończenie wielu wartości funkcji.

$$f(x) = 1$$
, $\int_0^3 f(x)dx = \int_0^3 3dx = [x]_0^3 = 3 - 0 = 3$

albo, o wiele prościej:

$$\int_0^3 f(x)dx = 3 \cdot 1 = 3$$

Naturalnie nie zawsze możemy obliczyć całkę oznaczoną w ten sposób. Wtedy musimy posłużyć się bardziej zaawansowanymi metodami. Aby zademonstrować zastosowanie całek wyobraźmy sobie ciało co się porusza ciągle przyspieszając w jednym kierunku. $a(t) = t^2$. Jeśli chcielibyśmy obliczyć prędkość ciała w chwili t = 3 to chcemy dodać wszystkie przyspieszenia jakie ciało doświadczyło do tej chwili. Wtedy mamy:

Diagram 2: Całka oznaczona a(t) na przedziale [0,3]

$$v(t) = \int_0^3 a(t)dt = \int_0^3 t^2 dt = \left[\frac{t^3}{3}\right]_0^3 = 9$$

1 Kinematyka

Kinematyka to nauka o ruchu ciał.

1.1 Wielkości średnie i chwilowe

Wielkości średnie, to takie których doświadcza ciało w czasie Δt . Z kolei wielkości chwilowe, to takie które opisują ciało w danym momencie. Idealnym przykładem jest prędkość. v(t) to prędkość chwilowa, a $v_{\Delta t}$ to prędkość średnia.

1.2 Ruch

Ruch ciała można opisać przy pomocy dwóch wielkości. Prędkości chwilowej (v), oraz przyspieszenia chwilowego (a).

$$v = \frac{\Delta s}{\Delta t}$$

$$v(t) = v_0 + a(t) \cdot t = v_0 + \int a(t)dt$$

$$a = \frac{\Delta v}{\Delta t} = v'$$

Dla pozycji ciała x mamy:

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2 = x_0 + \int v(t)dt$$

1.3 Ruch w wielu wymiarach

Aby opisać ruch w $n \in \mathbb{N}$ wymiarach, potrzebujemy po prostu n wymiarowych wektorów. Dla ruchu w dwóch wymiarach mamy:

Diagram 3: Dekonstrukcja prędkości na składowe

$$\vec{v}_x = |\vec{v}| \cos \alpha, \quad \vec{v}_y = |\vec{v}| \sin \alpha$$

1.4 Ruch po okręgu

Dla ruchu po okręgu mamy:

$$a = \frac{v^2}{r}$$

2 Sily

Miara wielkości oddziaływania ciał na siebie to siła.

$$F = m \cdot a$$

Dla siły grawitacyjnej działającej na ciało o masie m pod kątem α do osi x mamy:

$$F_g = m \cdot g \cdot \sin \alpha$$

2.1 Prawa Newtona

- 1. Ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeżeli na nie nie działa żadna siła. $\sum F = 0 \rightarrow \Delta v = 0$.
- 2. Jeżeli na ciało działa siła, to ciało porusza się z przyspieszeniem proporcjonalnym do siły i odwrotnie proporcjonalnym do masy ciała.
- 3. Jeżeli ciało działa na inne ciało siłą, to drugie ciało działa na pierwsze siłą o tej samej wartości, ale przeciwnie skierowaną.

2.2 Ciążenie powszechne

Każda para ciał we wszechświecie oddziałuje na siebie siłą grawitacyjną.

$$F_g = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

gdzie G to stała grawitacyjna, m_1 i m_2 to masy ciał, a r to odległość między nimi.

2.3 Tarcie

Tarcie to siła przeciwna kierunku ruchu ciała. Wyróżniamy tarcie statyczne i kinetyczne. Tarcie statyczne oddziałuje na ciała gdy te nie poruszają się, a tarcie kinetyczne gdy ciała poruszają się. W pewnym sensie tarcie statyczne określa siłę potrzebną do wzruszenia ciała, a tarcie kinetyczne to jaką siłę trzeba utrzymać aby ciało poruszało się z daną prędkością.

3 Energia

Energia to miara zdolności ciała do wykonywania pracy. Energia kinetyczna to energia którą ciało posiada dzięki swojemu ruchowi, a energia potencjalna to energia którą ciało posiada dzięki swojemu stanowi.

$$E_K = \frac{mV^2}{2}$$

$$W = E_{K1} - E_{K0} = \Delta E_K = F \cdot d = \int F(x)dx$$

Wyróżniamy energie potencjalna grawitacyjna, zwiazana z wysokościa ciała nad pewnym ustalonym punktem.

$$E_p = mgh$$

Oraz energię potencjalną sprężystości sprężyny:

$$E_p = \frac{1}{2}kd^2$$

gdzie k to stała sprężystości, a d to odkształcenie sprężyny.

3.1 Zasada zachowania energii

W układzie izolowanym energia jest stała. Energia nie może zostać ani stworzona, ani zniszczona.

$$E_{t=0} = E_{t=t}$$

3.2 Tarcie i energia

Praca siły tarcia jest zawsze ujemna, ponieważ działa ona przeciwnie do kierunku ruchu ciała. Obecność tarcia powoduje, że energia kinetyczna ciała maleje.

4 Dynamika układów wielu ciał

Układy ciał to zbiory ciał, które oddziałują na siebie. Wewnątrz układu ciała mogą oddziaływać na siebie siłami wewnętrznymi, a na zewnątrz siłami zewnętrznymi. W układzie izolowanym suma sił wewnętrznych jest równa zeru.

4.1 Środek masy

Środek masy to punkt, w którym można zlokalizować całą masę układu. Jego położenie w relacji do ciał w układzie może mieć wpływ na ruch układu. Dla równej dystrybucji masy środek masy znajduje się w środku układu. Np.: dla trójkąta środek masy znajduje się w punkcie przecięcia środkowych.

Diagram 4: Środek masy trójkata

Dla układu n ciał środek masy to będzie ważona średnia położeń ciał. Zatem dla układu n ciał o masach m_i i położeniach r_i środek masy to:

$$M = \frac{\sum m_i \cdot r_i}{\sum m_i}$$

oraz dla odległości od środka masy d_i mamy $m_i \cdot d_i = d_n \cdot m_n$

4.2 Zasada zachowania pędu

$$p=m\cdot v$$

W izolowanym układzie pęd jest stały.

$$p_{t=0} = p_{t=t}$$

4.3 Zderzenia

Zderzenia to procesy w których ciała zmieniają swoje prędkości. Rozróżniamy zderzenia sprężyste, w których energia kinetyczna jest zachowana, oraz niesprężyste, w których energia kinetyczna nie jest zachowana.

4.4 Popęd

$$J = \Delta p = F \cdot \Delta t$$

Szczególnie przydatne jeśli np.: mamy wykres siły w czasie F(t). Wtedy $\int_{t_0}^{t_1} F(t) dt = \Delta p$

5 Obroty

5.1 Bryła sztywna

Bryła sztywna to ciało, które zachowuje swoją formę podczas ruchu. W odróżnieniu od ciała punktowego, bryła sztywna ma rozmiar i kształt. Dla bryły sztywnej mamy dwa rodzaje ruchu: ruch liniowy i ruch obrotowy.

5.2 Przyspieszenie kątowe

Zmiana kąta obrotu ciała to przyspieszenie kątowe. Jest to cecha całego ciała, a nie jego składowych. Przyspieszenie kątowe to zmiana prędkości kątowej w czasie.

Diagram 5: Ilustracja wartości i sił w ruchu obrotowym

$$\omega = \frac{\Delta\phi}{\Delta t}, \quad \alpha = \frac{\Delta\omega}{\Delta t}$$

Prędkość kątowa jest analogiczna do prędkości liniowej, a przyspieszenie kątowe do przyspieszenia liniowego.

$$\int \alpha(t)dt = \omega(t)$$

$$\int \omega(t)dt = \phi(t)$$

$$rpm = \frac{2\pi}{60} \frac{rad}{s}$$

5.2.1 Punkt na obwodzie koła

Prędkość punktu na obwodzie koła to prędkość styczna (v_t) . Dla koła mamy:

$$\omega = \frac{v_t}{r}$$

Punkt na obwodzie koła doświadcza przyspieszenia dośrodkowego:

$$F_c = m \cdot a_c = m \cdot r \cdot \omega^2$$

gdzie a_c to przyspieszenie dośrodkowe, a r to promień obrotu. Dla obiektu o długości l i jednorodnym rozłożeniu masy to $r = \frac{l}{2}$.

5.3 Bezwładność, pęd i energia

$$I = \sum m_i r_i^2$$

czyli suma momentów bezwładności wszystkich punktów materialnych w ciele. Moment bezwładności wyraża opór ciała na zmianę ruchu obrotowego. Dla pręta o długości l mamy:

$$I = \int r^2 dm$$

Moment pędu:

$$L = I \cdot \omega$$

$$W = \int_0^{\theta_0} mgr \sin \theta d\theta = mgr(1 - \cos \theta_0)$$

Ciało	Moment bezwładności
Pręt	$I = \frac{1}{12}m \cdot l^2$
Koło	$I = \frac{1}{2}m \cdot r^2$
Pierścień	$I = m \cdot r^2$
Kula	$I = \frac{2}{5}m \cdot r^2$

Tabela 1: Momenty bezwładności dla różnych ciał

5.4 Moment obrotowy (siły)

$$\tau = I \cdot \alpha = I \cdot \frac{\Delta \omega}{\Delta t} = r \sin \alpha \cdot F = \frac{L}{\Delta t}$$

gdzie α to kąt między siłą a promieniem obrotu. O momencie obrotowym (torque) można myśleć jako o siły powodującej obrót ciała. Aby zatrzymać obracające się ciało musimy zastosować siłę przeciwną do momentu obrotowego. Jest to jakby siła odpowiedzialna za ω .

$$\vec{\tau} = \vec{r} \times \vec{F}$$

gdzie \vec{r} to pozycja a \vec{F} to siła

5.5 Twierdzenie Steinera

W przypadku gdy znamy moment bezwładności względem jednej osi obrotu (przechodzącej przez środek masy) to możemy obliczyć moment bezwładności względem innej równoległej osi obrotu:

$$I = I_0 + m \cdot d^2$$

5.6 Energia kinetyczna w ruchu obrotowym

W jaki sposób obliczyć energię kinetyczną ciała w ruchu obrotowym? Wystarczy zsumować energię kinetyczną wszystkich punktów materialnych w ciele. Dla ciała które nie porusza się liniowo mamy:

$$E_K = \sum \frac{1}{2} m_i v_{ti}^2 = \frac{1}{2} \sum m_i r_i^2 \omega^2 = \frac{I\omega^2}{2}$$

Dla ciała które porusza się liniowo i obrotowo mamy:

$$E_K = \frac{m \cdot v^2}{2} + \frac{I \cdot \omega^2}{2}$$

Dystrybucja energii na ruch obrotowy i postępowy zależy od momentu bezwładności.

5.7 Porównanie ruchu liniowego i obrotowego

Cecha	Ruch liniowy	Ruch obrotowy
przemieszczenie	x	$\angle \theta$
prędkość	$v = \frac{\Delta v}{\Delta t}$	$\omega = \frac{\Delta \theta}{\Delta t}$
przyspieszenie	$a = \frac{\Delta a}{\Delta t}$	$\alpha = \frac{\Delta\omega}{\Delta t}$
bezwładność	m	I
pęd	$p = m \cdot v$	$L = I \cdot \omega$
zmiana pędu	$F = m \cdot a$	$\tau = I \cdot \alpha$
E_K	$\frac{m \cdot v^2}{2}$	$\frac{I \cdot \omega^2}{2}$
Praca	$W = F \cdot d$	$\tau \cdot \theta$

Tabela 2: Porównanie ruchu liniowego i obrotowego

6 Szczególna Teoria Względności

Szczególna teoria względności to podzbiór ogólnej teorii względności, i nie uwzględnia grawitacji. Skupia się na ruchu ciał w układach odniesienia poruszających się z prędkościami zbliżonymi do prędkości światła.

Układ odniesienia obserwatora to zbiór elementów, które obserwator uważa za spoczywające. Jeżeli prawa Newtona są prawdziwe w tym układzie, to jest to inercjalny układ odniesienia. Na przykład: pokój to inercjalny układ odniesienia, z kolei pociąg przyspieszający to nie jest inercjalny układ odniesienia, ponieważ wewnątrz tego układu rzeczy postawione na ziemi będą reagować na przyspieszenie.

Pomiędzy dwoma układami odniesienia poruszającymi się względem siebie z niezerową prędkością, nie da się określić, który z nich jest w spoczynku dla trzeciego obserwatora. W kontekście relatywistycznym nie ma absolutnego spoczynku.

W mechanice klasycznej, czas jest absolutny i niezależny od układu odniesienia. Zatem transformacja między dwoma układami odniesienia to po prostu przesunięcie względem siebie. Pozycja x w układzie S ma postać x' = x - ut w układzie S' i t' = t.

Jednym wielkim założeniem fizyki jako dziedziny, jest to że prawa fizyki są takie same we wszystkich układach odniesienia. W szczególnej teorii względności prawa fizyki są takie same we wszystkich inercjalnych układach odniesienia. Jest to szczególnie istotne w kontekście czasu i odległości na skali w której STW ma znaczenie.

6.1 Postulaty

- 1. Wszyscy inercjalni obserwatorzy są równoważni.
- 2. Prędkość światła w próżni jest stała i niezależna od prędkości źródła światła ani obserwatora.

Z tych postulatów, oprócz nie możliwości osiągnięcia prędkości światła, wynika to, że prawa są niezależne od prędkości obserwatora i są stałe.

6.2 Transformacja Lorentza

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Transformacja Lorentza to przekształcenie współrzędnych między układami odniesienia poruszającymi się z różnymi prędkościami. Dla dwóch układów odniesienia S i S' poruszających się względem siebie z prędkością v względem siebie wzdłuż osi x mamy:

$$x' = \gamma(x - vt)$$

$$t' = \gamma(t - \frac{vx}{c^2})$$

Relatywistyczna suma prędkości:

$$u = \frac{u' + v}{1 - \frac{u'v}{c^2}}$$

6.3 Względność równoczesności

Dla danego układu odniesienia zdarzenia odbywają się z różnicą czasu $\leq \Delta t_0$. Jest to stała dla danego układu odniesienia. Dla obserwatora poruszającego się z prędkością v zdarzenia mogą odbywać się w różnych momentach czasu.

$$\Delta t = \gamma \Delta t_0$$

6.4 Dylatacja czasu

Dla obserwatora poruszającego się z prędkością v, dla obserwatora poruszającego się relatywnie wolniej, czas płynie szybciej i na odwrót.

$$t = t_0 \cdot \gamma$$

6.5 Skrócenie długości

Dla obserwatora w układzie odniesienia S obserwator w układzie S' poruszającym się z prędkością v zauważy skrócenie długości ciała w układzie S i na odwrót.

$$l = l_0 \cdot \gamma$$

gdzie l to długość ciała w układzie poruszającym się, a l_0 to długość ciała w układzie stacjonarnym.

6.6 Geometria czasoprzestrzeni

W szczególnej teorii względności czas i przestrzeń są złączone w jedną całość. Dlatego też zamiast mówić o czasie i przestrzeni mówimy o czasoprzestrzeni. Względność czasu i przestrzeni sprawia, że czas i przestrzeń są względne i zależą od prędkości obserwatora. To oznacza, że pozycję w czasoprzestrzeni wyraża się czterowektorem (x, y, z, t).