L'algebra delle espressioni regolari

Due espressioni regolari r, s sono equivalenti $(r \equiv s)$ se L(r) = L(s). Ad esempio, $a + b \equiv b + a$, $a + a \equiv a$, $aa^* \equiv a^*a$, $ab \not\equiv ba$.

1.1 Precedenza di operatori

Assumiamo che \cdot abbia precedenza su +. Quindi, $a+b\cdot c\equiv a+(b\cdot c)$. Inoltre, rappresentiamo l'operatore \cdot con la concatenazione degli operandi: $ab\equiv a\cdot b$.

1.2 Proprietà di + e ·

- 1. + è commutativa $(r+s\equiv s+r)$, associativa $(r+(s+t)\equiv (r+s)+t)$, con elemento neutro \emptyset $(r+\emptyset\equiv r)$, idempotente $(r+r\equiv r)$
- 2. · è associativa $(r(st) \equiv (rs)t)$, con elemento neutro $\{\varepsilon\}$ $(r\{\varepsilon\} \equiv r)$ e elemento nullo \emptyset $(r\emptyset \equiv \emptyset)$
- 3. \cdot si distribuisce su + $(r(s+t) \equiv rs + rt)$
- 4. + non si distribuisce su $\cdot (r + st \not\equiv (r + s)(r + t))$

Qualche proprietà derivabile (osservando che i relativi linguaggi sono uguali).

1.
$$\emptyset^* \equiv \{\varepsilon\}^* = \{\varepsilon\}$$

2.
$$r^* \equiv r^*r^* \equiv (r^*)^* \equiv r + r^*$$

3.
$$r^* \equiv \{\varepsilon\} + r^* \equiv \{\varepsilon\} + rr^* \equiv (\{\varepsilon\} + r)^* \equiv (\{\varepsilon\} + r)r^*$$

4.
$$r^* \equiv (r + r^2 + \dots + r^k)^* \equiv \{\varepsilon\} + r + r^2 + \dots + r^{k-1} + r^k r^* \text{ per ogni } k > 1$$

5.
$$r^*r \equiv rr^*$$

6.
$$(r+s)^* \equiv (r^*+s^*)^* \equiv (r^*s^*)^* \equiv (r^*s)^*r^* \equiv r^*(sr^*)^*$$

7.
$$r(sr)^* \equiv (rs)^*r$$

8.
$$(r^*s)^* \equiv \{\varepsilon\} + (r+s)^*s$$

9.
$$(rs^*)^* \equiv \{\varepsilon\} + r(r+s)^*$$

F

2 Qualche esempio di dimostrazione

- Dimostrazione che $(a+b)^* \not\equiv a^* + b^*$. Basta osservare che $ab \in L((a+b)^*) - L(a^* + b^*)$.
- Dimostrazione che $(a+b)^* \not\equiv a^*b^*$. Basta osservare che $ba \in L((a+b)^*) - L(a^*b^*)$
- Semplificazione dell'espressione regolare $aa(b^* + a) + a(ab^* + aa)$:

$$aa(b^*+a)+a(ab^*+aa)\equiv aa(b^*+a)+aa(b^*+a)$$
 per la distributività
$$\equiv aa(b^*+a) \text{ in quanto } r+r\equiv r$$

• Dimostrazione che $(a+aa)(a+b)^* \equiv a(a+b)^*$

$$(a+aa)(a+b)^* \equiv (a+aa)a^*(ba^*)^* \text{ in quanto } (r+s)^* \equiv r^*(sr^*)^*$$

$$\equiv a(\{\varepsilon\}+a)a^*(ba^*)^* \text{ in quanto } r \equiv r\{\varepsilon\}$$

$$\equiv aa^*(ba^*)^* \text{ in quanto } (\{\varepsilon\}+r)r^* \equiv r^*$$

$$\equiv a(a+b)^* \text{ in quanto } (r+s)^* \equiv r^*(sr^*)^*$$

• Dimostrazione che $a^*(b+ab^*)\equiv b+aa^*b^*$

$$\begin{split} a^*(b+ab^*) &\equiv (\{\varepsilon\} + aa^*)(b+ab^*) \text{ in quanto } r^* \equiv \{\varepsilon\} + rr^* \\ &\equiv b + ab^* + aa^*b + aa^*ab^* \text{ per distributività} \\ &\equiv b + (ab^* + aa^*ab^*) + aa^*b \text{ per associatività e commutatività di } + \\ &\equiv b + (\{\varepsilon\} + aa^*)ab^* + aa^*b \text{ in quanto } r \equiv r\{\varepsilon\} \\ &\equiv b + a^*ab^* + aa^*b \text{ in quanto } r^* \equiv \{\varepsilon\} + rr^* \\ &\equiv b + aa^*b^* + aa^*b \text{ in quanto } r^*r \equiv rr^* \\ &\equiv b + aa^*(b^* + b) \text{ per distributività} \\ &\equiv b + aa^*b^* \text{ in quanto } r^* \equiv r^* + r \end{split}$$