The Acceptance Rejection Method

The Inverse-Transform Method is often time consuming in generating random numbers which have positive mass at **many** points, unless for some special distributions; and yet there are **not** many continuous distributions whose cdf has closed from.

Theorem: Let X (to be generated) have pdf $f_X(x)$ on support I. (i.e.

$$f_X(x)>0$$
 if $x\in I$; and $f_X(x)=0$, otherwise.) Let Y have pdf $f_Y(y)$ on I , $U\sim U(0,1)$ and U and Y be independent. Let $c\geq 1$ and $g(x)=\frac{f_X(x)}{cf_Y(x)}$ such that $0< g(x)\leq 1$, $\forall x\in I$. Then

$$f_Y(x|U \le g(Y)) = f_X(x), \ \forall x \in I.$$

Proof: Casella and Berger (2002).

Theorem: Let X (to be generated) have pdf $f_X(x)$ on support I. (i.e.

 $f_X(x)>0$ if $x\in I$; and $f_X(x)=0$, otherwise.) Let Y have pdf $f_Y(y)$ on I, $U\sim U(0,1)$ and U and Y be independent. Let $c\geq 1$ and $g(x)=\frac{f_X(x)}{c\,f_Y(x)}$ such that $0< g(x)\leq 1$, $\forall x\in I$. Then

$$f_Y(x|U \le g(Y)) = f_X(x), \ \forall x \in I.$$

Proof: Casella and Berger (2002).

Note: 1. It says that the distribution of X is same as the conditional distribution of Y given $U \leq g(Y)$.

- 2. One can generate U and Y independently and see if $U \leq g(Y)$.
- 3. $U \le g(Y) \iff U \le \frac{f_X(Y)}{cf_Y(Y)}$.
- 4. The density f_Y is called the majorizing density, trial density, or proposal density.
- cf_Y(x) is called the majorizing function, envelope function or hat function.
- 6. The larger c the larger rejection region, so want **small** c.

- **Note**: 1. It says that the distribution of *X* is same as the conditional distribution of Y given $U \leq g(Y)$.
 - 2. One can generate U and Y independently and see if U < q(Y).
 - 3. $U \leq g(Y) \iff U \leq \frac{f_X(Y)}{cf_Y(Y)}$.

- **Note**: 1. It says that the distribution of X is same as the conditional distribution of Y given $U \leq g(Y)$.
 - 2. One can generate U and Y independently and see if $U \leq g(Y)$.
 - 3. $U \leq g(Y) \iff U \leq \frac{f_X(Y)}{cf_Y(Y)}$.
 - 4. The density f_Y is called the *majorizing density*, *trial density*, or *proposal density*.
 - cf_Y(x) is called the majorizing function, envelope function or hat function.
 - 6. The larger c the larger rejection region, so want **small** c.

- **Note**: 1. It says that the distribution of X is same as the conditional distribution of Y given $U \leq g(Y)$.
 - 2. One can generate U and Y independently and see if $U \leq g(Y)$.
 - 3. $U \le g(Y) \iff U \le \frac{f_X(Y)}{cf_Y(Y)}$.
 - 4. The density f_Y is called the *majorizing density*, *trial density*, or *proposal density*.
 - 5. $cf_Y(x)$ is called the majorizing function, *envelope* function or *hat function*.
 - 6. The larger c the larger rejection region, so want **small** c.

- **Note**: 1. It says that the distribution of X is same as the conditional distribution of Y given $U \leq g(Y)$.
 - 2. One can generate U and Y independently and see if $U \leq g(Y)$.
 - 3. $U \leq g(Y) \iff U \leq \frac{f_X(Y)}{cf_Y(Y)}$.
 - 4. The density f_Y is called the *majorizing density*, *trial* density, or *proposal density*.
 - 5. $cf_Y(x)$ is called the majorizing function, *envelope* function or *hat function*.
 - 6. The larger c the larger rejection region, so want **small** c.

Discrete case

<u>Discrete Case</u>: If the (discrete) r.v. Y with $P(Y=x)=q_x, x\in I$, countable, can be generated easily, then a r.v. X with $P(X=x)=p_x$, $x\in I$ can be generated based on Y and an independent U(0,1) r.v..

A-R Algorithm: 1. Generate $U \sim U(0,1)$

- 2. Generate $Y \sim P(Y = y) = q_y$, $y \in I$.
- 3. Set X = Y, if $U \le \frac{p_Y}{cq_Y}$; return to Step otherwise

Discrete case

<u>Discrete Case</u>: If the (discrete) r.v. Y with $P(Y=x)=q_x, x\in I$, countable, can be generated easily, then a r.v. X with $P(X=x)=p_x$, $x\in I$ can be generated based on Y and an independent U(0,1) r.v..

- **A-R Algorithm**: 1. Generate $U \sim U(0, 1)$.
 - 2. Generate $Y \sim P(Y = y) = q_y$, $y \in I$.
 - 3. Set X=Y, if $U \leq \frac{p_Y}{cq_Y}$; return to Step 1 otherwise.

The Composition Method

Note: 1. The number of trials N that a successful pair (Y, U) is found has a **geometric** distribution with parameter

$$p = P(U < \frac{p_Y}{cq_Y}) = \sum_{y \in I} P(U < \frac{p_Y}{cq_Y} | Y = y) P(Y = y)$$
$$= \sum_{y \in I} \frac{p_y}{cq_y} q_y = 1/c.$$

- 2. The **mean** number of trials to generate an X is EN = c. So want c as **small** as possible.
- 3. Take $c = \max_{\mathbf{x}} \frac{\mathbf{f}_{\mathbf{X}}(\mathbf{x})}{\mathbf{f}_{\mathbf{Y}}(\mathbf{x})} \geq 1$.
- 4. More efficient if $\mathbf{c} \approx \mathbf{1} \Longleftrightarrow f_Y(\cdot)$ and $f_X(\cdot)$ are similar

1 > 4 @ > 4 E > 4 E > E *) Q (*

$$p = P(U < \frac{p_Y}{cq_Y}) = \sum_{y \in I} P(U < \frac{p_Y}{cq_Y} | Y = y)P(Y = y)$$
$$= \sum_{y \in I} \frac{p_y}{cq_y} q_y = 1/c.$$

- 2. The **mean** number of trials to generate an X is EN = c. So want c as **small** as possible.
- 3. Take $c = \max_{x} \frac{f_{X}(x)}{f_{Y}(x)} \ge 1$.
- 4. More efficient if $\mathbf{c} \approx \mathbf{1} \Longleftrightarrow f_Y(\cdot)$ and $f_X(\cdot)$ are similar

Note: 1. The number of trials N that a successful pair (Y, U) is found has a **geometric** distribution with parameter

$$p = P(U < \frac{p_Y}{cq_Y}) = \sum_{y \in I} P(U < \frac{p_Y}{cq_Y} | Y = y) P(Y = y)$$
$$= \sum_{y \in I} \frac{p_y}{cq_y} q_y = 1/c.$$

- 2. The **mean** number of trials to generate an X is EN = c. So want c as **small** as possible.
- 3. Take $\mathbf{c} = \max_{\mathbf{x}} \frac{\mathbf{f}_{\mathbf{X}}(\mathbf{x})}{\mathbf{f}_{\mathbf{Y}}(\mathbf{x})} \geq 1$.
- 4. More efficient if $\mathbf{c} \approx \mathbf{1} \Longleftrightarrow f_Y(\cdot)$ and $f_X(\cdot)$ are similar.

6 / 45

The Composition Method

$$p = P(U < \frac{p_Y}{cq_Y}) = \sum_{y \in I} P(U < \frac{p_Y}{cq_Y} | Y = y) P(Y = y)$$
$$= \sum_{y \in I} \frac{p_y}{cq_y} q_y = 1/c.$$

- 2. The **mean** number of trials to generate an X is EN = c. So want c as **small** as possible.
- 3. Take $c = \max_{x} \frac{f_{X}(x)}{f_{Y}(x)} \ge 1$.
- 4. More efficient if $c \approx 1 \iff f_Y(\cdot)$ and $f_X(\cdot)$ are similar

$$p = P(U < \frac{p_Y}{cq_Y}) = \sum_{y \in I} P(U < \frac{p_Y}{cq_Y} | Y = y) P(Y = y)$$
$$= \sum_{y \in I} \frac{p_y}{cq_y} q_y = 1/c.$$

- 2. The **mean** number of trials to generate an X is EN = c. So want c as **small** as possible.
- 3. Take $\mathbf{c} = \max_{\mathbf{x}} \frac{\mathbf{f}_{\mathbf{X}}(\mathbf{x})}{\mathbf{f}_{\mathbf{Y}}(\mathbf{x})} \geq 1$.
- 4. More efficient if $c \approx 1 \iff f_Y(\cdot)$ and $f_X(\cdot)$ are similar

$$p = P(U < \frac{p_Y}{cq_Y}) = \sum_{y \in I} P(U < \frac{p_Y}{cq_Y} | Y = y) P(Y = y)$$
$$= \sum_{y \in I} \frac{p_y}{cq_y} q_y = 1/c.$$

- 2. The **mean** number of trials to generate an X is EN = c. So want c as **small** as possible.
- 3. Take $c = \max_{x} \frac{f_{\mathbf{X}}(x)}{f_{\mathbf{Y}}(x)} \geq 1$.
- 4. More efficient if $\mathbf{c} \approx \mathbf{1} \iff f_Y(\cdot)$ and $f_X(\cdot)$ are similar

$$p = P(U < \frac{p_Y}{cq_Y}) = \sum_{y \in I} P(U < \frac{p_Y}{cq_Y} | Y = y) P(Y = y)$$
$$= \sum_{y \in I} \frac{p_y}{cq_y} q_y = 1/c.$$

- 2. The **mean** number of trials to generate an X is EN = c. So want c as small as possible.
- 3. Take $\mathbf{c} = \max_{\mathbf{x}} \frac{\mathbf{f}_{\mathbf{X}}(\mathbf{x})}{\mathbf{f}_{\mathbf{Y}}(\mathbf{x})} \ge 1$.

$$p = P(U < \frac{p_Y}{cq_Y}) = \sum_{y \in I} P(U < \frac{p_Y}{cq_Y} | Y = y) P(Y = y)$$
$$= \sum_{y \in I} \frac{p_y}{cq_y} q_y = 1/c.$$

- 2. The **mean** number of trials to generate an X is EN = c. So want c as small as possible.
- 3. Take $\mathbf{c} = \max_{\mathbf{x}} \frac{\mathbf{f}_{\mathbf{X}}(\mathbf{x})}{\mathbf{f}_{\mathbf{Y}}(\mathbf{x})} \geq 1$.
- 4. More efficient if $\mathbf{c} \approx \mathbf{1} \iff f_Y(\cdot)$ and $f_X(\cdot)$ are similar.

$$p = P(U < \frac{p_Y}{cq_Y}) = \sum_{y \in I} P(U < \frac{p_Y}{cq_Y} | Y = y) P(Y = y)$$
$$= \sum_{y \in I} \frac{p_y}{cq_y} q_y = 1/c.$$

- 2. The **mean** number of trials to generate an X is EN = c. So want c as **small** as possible.
- 3. Take $c = \max_{\mathbf{x}} \frac{f_{\mathbf{X}}(\mathbf{x})}{f_{\mathbf{Y}}(\mathbf{x})} \geq 1$.
- 4. More efficient if $\mathbf{c} \approx \mathbf{1} \Longleftrightarrow f_Y(\cdot)$ and $f_X(\cdot)$ are similar.

Continuous case

Continuous Case: For X with bounded support [a,b] and density f_X , we may consider $Y \sim U(a,b)$, i.e. $f_Y(y) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(y)$ and let $\mathbf{c} = \max_{a \leq x \leq b} \frac{f_X(x)}{f_Y(x)} = (\mathbf{b} - \mathbf{a})\mathbf{M}$, where M = the density at the **mode of**

Then $g(x)=f_X(x)/M$, $a\leq x\leq b$.

Continuous case

Continuous Case: For X with bounded support [a,b] and density f_X , we may consider $Y \sim U(a,b)$, i.e. $f_Y(y) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(y)$ and let $\mathbf{c} = \max_{a \leq x \leq b} \frac{f_X(x)}{f_Y(x)} = (\mathbf{b} - \mathbf{a})\mathbf{M}$, where M = the density at the mode of X.

Then $g(x) = f_X(x)/M$, $a \le x \le b$.

Continuous case

<u>Continuous Case</u>: For X with bounded support [a,b] and density f_X , we may consider $Y \sim U(a,b)$, i.e. $f_Y(y) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(y)$ and let $\mathbf{c} = \max_{a \leq x \leq b} \frac{f_X(x)}{f_Y(x)} = (\mathbf{b} - \mathbf{a})\mathbf{M}$, where M = the density at the **mode of** X.

Then $g(x) = f_X(x)/M$, $a \le x \le b$.

- **A-R Algorithm**: 1. Generate $U_1, U_2 \sim U(0, 1)$.
 - 2. Set $Y = a + U_1(b a)$.
 - 3. If $U_2 \le f_X(Y)/M$, set X = Y; otherwise, return to Step 1.

<u>Note</u>: EN = (b - a)M, so if f_X has high maximum density, U(a,b) is **not** a good choice for the proposal density.

 $\underline{\mathsf{Ex}}$. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$.

i.e.
$$f(x)=rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}, x>0$$
, where $lpha,eta>0$.

Recall that $EX = \alpha/\beta$ and the support of X is $(0, \infty)$

Consider $Y \sim \mathbf{Exp}(\lambda), \lambda = ???$

Ex. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$.

i.e.
$$f(x)=rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}, x>0,$$
 where $lpha,eta>0.$

Recall that $EX = \alpha/\beta$ and the support of X is $(0, \infty)$.

Consider $Y \sim \mathbf{Exp}(\lambda)$, $\lambda = ???$

Ex. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$.

i.e.
$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, x > 0$$
, where $\alpha, \beta > 0$.

Recall that $EX = \alpha/\beta$ and the support of X is $(0, \infty)$.

Consider $Y \sim \mathbf{Exp}(\lambda)$, $\lambda = ???$

Ex. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).

For given λ , we need to find

$$c_{\lambda} = \max_{x} \frac{f_{X}(x)}{f_{Y}(x|\lambda)} = \max_{x} \frac{Kx^{\alpha-1}e^{-\beta x}}{\lambda e^{-\lambda x}}.$$

Hence, we want to maximize

$$h_{\lambda}(x) = x^{\alpha-1}e^{-(\beta-\lambda)x}$$
, for given λ .

Note that when $0 < \alpha < 1$, $\lim_{x\to 0} h_{\lambda}(x) = \infty$, so Y can *not* be used.

Ex. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).

For given λ , we need to find

$$c_{\lambda} = \max_{x} \frac{f_{X}(x)}{f_{Y}(x|\lambda)} = \max_{x} \frac{Kx^{\alpha-1}e^{-\beta x}}{\lambda e^{-\lambda x}}.$$

Hence, we want to maximize

$$h_{\lambda}(x) = x^{\alpha-1}e^{-(\beta-\lambda)x}$$
, for given λ .

Note that when $0 < \alpha < 1$, $\lim_{x\to 0} h_{\lambda}(x) = \infty$, so Y can *not* be used.

Ex. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).

For given λ , we need to find

$$c_{\lambda} = \max_{x} \frac{f_{X}(x)}{f_{Y}(x|\lambda)} = \max_{x} \frac{Kx^{\alpha-1}e^{-\beta x}}{\lambda e^{-\lambda x}}.$$

Hence, we want to maximize

$$h_{\lambda}(x) = x^{\alpha-1}e^{-(\beta-\lambda)x}$$
, for given λ .

Note that when $0 < \alpha < 1$, $\lim_{x \to 0} h_{\lambda}(x) = \infty$, so Y can *not* be used.

<u>Ex</u>. 1. $X \sim \text{Gamma}(\alpha, \beta)$ (Cont'd).

Now for $\alpha > 1$,

$$\frac{d}{dx}h_{\lambda}(x)=(\alpha-1)x^{\alpha-2}e^{-(\beta-\lambda)x}-(\beta-\lambda)x^{\alpha-1}e^{-(\beta-\lambda)x}=0 \text{ occurs at}$$

$$x=\frac{\alpha-1}{\beta-\lambda}, \text{ when } \lambda<\beta;$$

and $h_{\lambda}(x) \uparrow \infty$ when $\lambda \geq \beta$. So

$$c_{\lambda} = \frac{f_X(\frac{\alpha-1}{\beta-\lambda})}{f_Y(\frac{\alpha-1}{\beta-\lambda}|\lambda)} = K\lambda^{-1} \left(\frac{\alpha-1}{\beta-\lambda}\right)^{\alpha-1} e^{1-\alpha}, \quad \text{for given } \lambda < \beta.$$

<u>Ex</u>. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).

Now for $\alpha > 1$,

$$\frac{d}{dx}h_{\lambda}(x)=(\alpha-1)x^{\alpha-2}e^{-(\beta-\lambda)x}-(\beta-\lambda)x^{\alpha-1}e^{-(\beta-\lambda)x}=0 \text{ occurs at }$$

$$x=\frac{\alpha-1}{\beta-\lambda}, \text{ when } \lambda<\beta;$$

and $h_{\lambda}(x) \uparrow \infty$ when $\lambda \geq \beta$. So

$$c_{\lambda} = \frac{f_X(\frac{\alpha-1}{\beta-\lambda})}{f_Y(\frac{\alpha-1}{\beta-\lambda}|\lambda)} = K\lambda^{-1} \left(\frac{\alpha-1}{\beta-\lambda}\right)^{\alpha-1} e^{1-\alpha}, \quad \text{for given } \lambda < \beta.$$

$\underline{\mathsf{Ex}}$. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).

Then one should choose λ such that c_{λ} is as **small** as possible. That is $\lambda(\beta-\lambda)^{\alpha-1}$ to be maximized. Solving

$$(\beta - \lambda)^{\alpha - 1} - (\alpha - 1)\lambda(\beta - \lambda)^{\alpha - 2} = 0$$

yields $\lambda = \beta/\alpha$, $c = (\alpha/\beta)^{\alpha} K e^{-(\alpha-1)}$. Therefore,

$$g(y) = \left(\frac{e\beta}{\alpha}\right)^{\alpha - 1} y^{\alpha - 1} e^{-\frac{\beta}{\alpha}(\alpha - 1)y}.$$

- Ex. 1. $X \sim \text{Gamma}(\alpha, \beta)$ (Cont'd).
- **Algorithm**: 1. Generate $U_1 \sim U(0,1)$, set $Y = -\frac{\alpha}{\beta} \log U_1$.
 - 2. Generate $U \sim U(0,1)$.
 - 3. If $U \leq (\frac{e\beta}{\alpha})^{\alpha-1}Y^{\alpha-1}e^{-\frac{\beta}{\alpha}(\alpha-1)Y}$, set X=Y

$$\underline{\mathsf{Ex}}$$
. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).

- **Algorithm**: 1. Generate $U_1 \sim U(0,1)$, set $Y = -\frac{\alpha}{\beta} \log U_1$.
 - 2. Generate $U \sim U(0,1)$.
 - 3. If $U \leq (\frac{e\beta}{\alpha})^{\alpha-1}Y^{\alpha-1}e^{-\frac{\beta}{\alpha}(\alpha-1)Y}$, set X=Y; otherwise, return to 1.

- $\underline{\mathbf{Ex}}$. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).
- **<u>Note</u>**: 1. $EX = \alpha/\beta$ and $EY = 1/\lambda$. So try λ such that EX = EY.

We get $\lambda = \beta/\alpha \ (\alpha > 1) \Longrightarrow$ optimal!

- 2. $Gamma(n, \beta)$ can be obtained by summing up n i.i.d $Exp(\beta)$ r.v.'s, if n is integer.
- 3. If $Y \sim f_Y(y|\lambda)$, a given parametric family, take $c = \min_{\lambda} \frac{f_X(x)}{f_Y(x|\lambda)}$, in general.

- $\underline{\mathbf{Ex}}$. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).
- Note: 1. $EX = \alpha/\beta$ and $EY = 1/\lambda$. So try λ such that EX = EY. We get $\lambda = \beta/\alpha$ ($\alpha > 1$) \Longrightarrow optimal!
 - 2. $Gamma(n, \beta)$ can be obtained by summing up n i.i.d. $Exp(\beta)$ r.v.'s, if n is integer.
 - 3. If $Y \sim f_Y(y|\lambda)$, a given parametric family, take $c = \underset{\lambda}{\operatorname{minmax}} \frac{f_X(x)}{f_Y(x|\lambda)}$, in general.

- $\underline{\mathbf{Ex}}$. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).
- Note: 1. $EX = \alpha/\beta$ and $EY = 1/\lambda$. So try λ such that EX = EY. We get $\lambda = \beta/\alpha$ ($\alpha > 1$) \Longrightarrow optimal!
 - 2. $Gamma(n,\beta)$ can be obtained by summing up n i.i.d. $Exp(\beta)$ r.v.'s, if n is integer.
 - 3. If $Y \sim f_Y(y|\lambda)$, a given parametric family, take $c = \underset{\lambda}{\operatorname{minmax}} \frac{f_X(x)}{f_Y(x|\lambda)}$, in general.

- $\underline{\mathbf{Ex}}$. 1. $X \sim \mathbf{Gamma}(\alpha, \beta)$ (Cont'd).
- Note: 1. $EX = \alpha/\beta$ and $EY = 1/\lambda$. So try λ such that EX = EY. We get $\lambda = \beta/\alpha$ ($\alpha > 1$) \Longrightarrow optimal!
 - 2. $Gamma(n, \beta)$ can be obtained by summing up n i.i.d. $Exp(\beta)$ r.v.'s, if n is integer.
 - 3. If $Y \sim f_Y(y|\lambda)$, a given parametric family, take $c = \underset{\lambda}{\min \max} \frac{f_X(x)}{f_Y(x|\lambda)}$, in general.

 $\underline{\mathsf{Ex}}$. 2. $X \sim \mathbf{Beta}(\alpha, \beta)$.

i.e.
$$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, 0 < x < 1 \text{ and } \alpha, \beta > 0.$$

Method I: $(\alpha, \beta \ge 1.)$ **Acceptance-Rejection**: Use

$$f_Y(y) = \alpha y^{\alpha - 1}, 0 < y < 1, \text{ or } f_Y(y) = \beta y^{\beta - 1}, 0 < y < 1.$$

$$\underline{\mathsf{Ex}}$$
. 2. $X \sim \mathbf{Beta}(\alpha, \beta)$.

i.e.
$$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, 0 < x < 1 \text{ and } \alpha, \beta > 0.$$

Method I: $(\alpha, \beta > 1.)$ **Acceptance-Rejection**: Use

$$f_Y(y) = \alpha y^{\alpha - 1}, 0 < y < 1, \text{ or } f_Y(y) = \beta y^{\beta - 1}, 0 < y < 1.$$

The Composition Method

Method II: If $X \sim Gamma(\alpha, 1)$ independent of $Y \sim Gamma(\beta, 1)$, then $X/(X + Y) \sim Beta(\alpha, \beta)$.(Exercise.)

wethod III:
$$(\alpha,\beta<1.)$$
 Let $Y_1=U_1$ and $Y_2=U_2$, where $U_1,U_2\stackrel{i.i.d.}{\sim}U(0,1).$ Then if $Y_1+Y_2\leq 1,$ $\implies Y_1/(Y_1+Y_2)\sim Beta(\alpha,\beta).$ (Exercise).

Note: The efficiency is
$$P(Y_1 + Y_2 \le 1) = \frac{\alpha\beta}{\alpha+\beta} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
. (Exercise.)

Method II: If $X \sim Gamma(\alpha, 1)$ independent of $Y \sim Gamma(\beta, 1)$, then $X/(X + Y) \sim Beta(\alpha, \beta)$.(Exercise.)

Method III: $(\alpha, \beta < 1.)$ Let $Y_1 = U_1^{1/\alpha}$ and $Y_2 = U_2^{1/\beta}$, where $U_1, U_2 \overset{i.i.d.}{\sim} U(0,1)$. Then if $Y_1 + Y_2 \le 1$, $\implies Y_1/(Y_1 + Y_2) \sim Beta(\alpha, \beta)$. (Exercise).

Note: The efficiency is $P(Y_1 + Y_2 \le 1) = \frac{\alpha\beta}{\alpha+\beta} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$. (Exercise.)

Method II: If $X \sim Gamma(\alpha, 1)$ independent of $Y \sim Gamma(\beta, 1)$, then $X/(X + Y) \sim Beta(\alpha, \beta)$.(Exercise.)

Method III:
$$(\alpha, \beta < 1.)$$
 Let $Y_1 = U_1^{1/\alpha}$ and $Y_2 = U_2^{1/\beta}$, where $U_1, U_2 \overset{i.i.d.}{\sim} U(0,1)$. Then if $Y_1 + Y_2 < 1$, $\Longrightarrow Y_1/(Y_1 + Y_2) \sim Beta(\alpha, \beta)$. (Exercise).

Note: The efficiency is
$$P(Y_1 + Y_2 \le 1) = \frac{\alpha\beta}{\alpha+\beta} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
. (Exercise.)

<u>Ex</u>. 3. $Z \sim N(0, 1)$.

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, -\infty < z < \infty.$$

Need 1) $Y \sim f_Y(y)$, such that $f_Y(y) > 0, \forall y \in (0, \infty)$.

2) $c = \max_{x} \frac{f_X(x)}{f_Y(y)}$ can be easily found.

Ex. 3. $Z \sim N(0, 1)$.

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, -\infty < z < \infty.$$

Need 1) $Y \sim f_Y(y)$, such that $f_Y(y) > 0, \forall y \in (0, \infty)$.

2) $c = \max_x \frac{f_X(x)}{f_Y(y)}$ can be easily found.

 $\underline{\mathsf{Ex}}$. 3. $Z \sim \mathbf{N}(\mathbf{0}, \mathbf{1})(\mathsf{Cont'd})$.

Consider
$$X = |Z| > 0$$
 with density $f_X(x) = \sqrt{\frac{2}{\pi}}e^{-x^2/2}, x > 0$.

Z is symmetric so $Z=\pm X$ with probability 1/2 of each, if X is determined.

Method I: Take
$$Y \sim \mathbf{Exp}(\mathbf{1})$$
 ($EY = 1 \approx EX = \sqrt{2/\pi} \approx 0.8$.)

Then
$$c=\max_x \sqrt{2/\pi} rac{e^{-x^2/2}}{e^{-x}}=\sqrt{2/\pi} e^{1/2}.$$
 Thus,

$$g(y) = \frac{f_X(y)}{cf_Y(y)} = e^{-\frac{1}{2}(y-1)^2}$$

 $\underline{\mathsf{Ex}}$. 3. $Z \sim \mathbf{N}(\mathbf{0}, \mathbf{1})(\mathsf{Cont'd})$.

Consider X = |Z| > 0 with density $f_X(x) = \sqrt{\frac{2}{\pi}}e^{-x^2/2}, x > 0$.

Z is symmetric so $Z=\pm X$ with probability 1/2 of each, if X is determined.

Method I: Take $Y \sim \text{Exp}(1)$ ($EY = 1 \approx EX = \sqrt{2/\pi} \approx 0.8$.)

Then $c = \max_x \sqrt{2/\pi} \frac{e^{-x^2/2}}{e^{-x}} = \sqrt{2/\pi} e^{1/2}$. Thus,

$$g(y) = \frac{f_X(y)}{c f_Y(y)} = e^{-\frac{1}{2}(y-1)^2}.$$

- **Algorithm**: 1. Generate $U \sim U(0,1)$, and $Y \sim Exp(1)$.
 - 2. If $U \leq e^{-\frac{1}{2}(Y-1)^2}$, set X=Y; otherwise, return to 1.
 - 3. Generate $U_1 \sim U(0,1)$.
 - 4. Set Z = X if $U_1 \le 1/2$; otherwise, Z = -X.

Note:
$$U \le e^{-\frac{1}{2}(Y-1)^2} \Longleftrightarrow -\log U \ge (Y-1)^2/2$$

 $\Longleftrightarrow Y_1 \ge (Y-1)^2/2$, where $Y_1 \sim Exp(1)$.

- **Algorithm**: 1. Generate $U \sim U(0,1)$, and $Y \sim Exp(1)$.
 - 2. If $U \leq e^{-\frac{1}{2}(Y-1)^2}$, set X=Y; otherwise, return to 1.
 - 3. Generate $U_1 \sim U(0,1)$.
 - 4. Set Z = X if $U_1 \le 1/2$; otherwise, Z = -X.

Note:
$$U \le e^{-\frac{1}{2}(Y-1)^2} \Longleftrightarrow -\log U \ge (Y-1)^2/2$$

 $\Longleftrightarrow Y_1 \ge (Y-1)^2/2$, where $Y_1 \sim Exp(1)$.

Method II: Take $Y \sim \text{logistic}$;

$$f_Y(y|\theta) = \frac{e^{-y/\theta}}{\theta(1+e^{-y/\theta})^2}, -\infty < y < \infty, \theta > 0.$$

Find optimal θ , i.e. $\min_{\theta} c_{\theta} = \min_{\theta} \sup_{x} f_{Z}(x) / f_{Y}(x|\theta)$. $\theta = .626657$.

<u>Def</u>: f is a **mixture** of g_i 's if $f_X(x) = \sum_i p_i g_i(x)$, where g_i are densities and $\sum_i p_i = 1$, $0 \le p_i \le 1$,

i.e. $X \sim g_i$ with probability p_i .

<u>Note</u>: One can sample X from g_i with probability p_i if $X \sim g_i$ is inexpensive.

Algorithm: 1. Generate $U \sim U(0,1)$.

2. Set
$$I = i$$
, if $\sum_{j=1}^{i-1} p_j \le U < \sum_{j=1}^{i} p_j$, $i = 1, 2, ...$

3. Generate $X \sim ar$

<u>Def</u>: f is a **mixture** of g_i 's if $f_X(x) = \sum_i p_i g_i(x)$, where g_i are densities and $\sum_i p_i = 1$, $0 \le p_i \le 1$,

i.e. $X \sim g_i$ with probability p_i .

Note: One can sample X from g_i with probability p_i if $X \sim g_i$ is inexpensive.

Algorithm: 1. Generate $U \sim U(0,1)$.

2. Set
$$I = i$$
, if $\sum_{j=1}^{i-1} p_j \le U < \sum_{j=1}^{i} p_j$, $i = 1, 2, ...$

3. Generate $X \sim q_T$

<u>Def</u>: f is a **mixture** of g_i 's if $f_X(x) = \sum_i p_i g_i(x)$, where g_i are densities and $\sum_i p_i = 1$, $0 \le p_i \le 1$,

i.e. $X \sim g_i$ with probability p_i .

<u>Note</u>: One can sample X from g_i with probability p_i if $X \sim g_i$ is inexpensive.

Algorithm: 1. Generate $U \sim U(0,1)$.

2. Set
$$I = i$$
, if $\sum_{j=1}^{i-1} p_j \le U < \sum_{j=1}^{i} p_j$, $i = 1, 2, ...$

3. Generate $X \sim q_I$.

$$\underline{\mathsf{Ex}}$$
. $f(x) = \frac{5}{12}[1 + (x-1)^4]$, $0 \le x \le 2$.

$$f(x) = \frac{5}{12} \left[2 \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{5}{2} (x - 1)^4 \right] = \frac{5}{6} g_1(x) + \frac{1}{6} g_2(x).$$

Thus
$$G_1^{-1}(x) = 2x$$
 and $G_2^{-1}(x) = 1 + \sqrt[5]{2x - 1}$.

Algorithm: 1. Generate $U_1, U_2 \sim U(0, 1)$.

2. If
$$U_1 \leq 5/6$$
, set $X = 2U_2$ (i.e. $X \sim g_1$); otherwise, set $X = 1 + \sqrt[5]{2U_2 - 1}$ (i.e. $X \sim g_2$).

$$\underline{\mathsf{Ex}}$$
. $f(x) = \frac{5}{12}[1 + (x-1)^4]$, $0 \le x \le 2$.

$$f(x) = \frac{5}{12} \left[2 \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{5}{2} (x - 1)^4 \right] = \frac{5}{6} g_1(x) + \frac{1}{6} g_2(x).$$

Thus
$$G_1^{-1}(x) = 2x$$
 and $G_2^{-1}(x) = 1 + \sqrt[5]{2x - 1}$.

Algorithm: 1. Generate $U_1, U_2 \sim U(0,1)$.

2. If
$$U_1 \leq 5/6$$
, set $X = 2U_2$ (i.e. $X \sim g_1$); otherwise, set $X = 1 + \sqrt[5]{2U_2 - 1}$ (i.e. $X \sim g_2$).

$$\underline{\mathsf{Ex}}$$
. $f(x) = \frac{5}{12}[1 + (x-1)^4]$, $0 \le x \le 2$.

$$f(x) = \frac{5}{12} \left[2 \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{5}{2} (x - 1)^4 \right] = \frac{5}{6} g_1(x) + \frac{1}{6} g_2(x).$$

Thus
$$G_1^{-1}(x) = 2x$$
 and $G_2^{-1}(x) = 1 + \sqrt[5]{2x - 1}$.

Algorithm: 1. Generate $U_1, U_2 \sim U(0, 1)$.

2. If
$$U_1 \leq 5/6$$
, set $X = 2U_2$ (i.e. $X \sim g_1$); otherwise, set $X = 1 + \sqrt[5]{2U_2 - 1}$ (i.e. $X \sim g_2$).

$$\underline{\mathsf{Ex}}$$
. $f(x) = \frac{5}{12}[1 + (x-1)^4]$, $0 \le x \le 2$.

$$f(x) = \frac{5}{12} \left[2 \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{5}{2} (x - 1)^4 \right] = \frac{5}{6} g_1(x) + \frac{1}{6} g_2(x).$$

Thus
$$G_1^{-1}(x) = 2x$$
 and $G_2^{-1}(x) = 1 + \sqrt[5]{2x - 1}$.

Algorithm: 1. Generate $U_1, U_2 \sim U(0, 1)$.

2. If
$$U_1 \leq 5/6$$
, set $X = 2U_2$ (i.e. $X \sim g_1$); otherwise, set $X = 1 + \sqrt[5]{2U_2 - 1}$ (i.e. $X \sim g_2$).

For $X \sim f(x)$ difficult to simulate, if we know another r.v. Y with $P(Y=y_i)=p_i$ and $\sum_i p_i=1$ such that $f(x|y_i)$ can be easily generated for each i, then by

$$f(x) = \sum_{i} f(x|y_i)p(Y = y_i) = \sum_{i} f(x|y_i)p_i,$$

we can generate Y first, then generate $X \sim f(x|Y)$.

Continuous Version:

$$f_X(x) = \int g(x|y)h_Y(y)dy,$$

where $h_Y(y)$ is a density and g(x|y) is the conditional density of X given Y=y.

Hence, generate $Y \sim h_Y(y)$ first, then generate $X \sim g(x|Y)$.

$$\underline{\mathbf{Ex}}$$
. $f_X(x) = n \int_1^\infty y^{-n} \mathbf{e}^{-\mathbf{xy}} dy, x > 0 \stackrel{?}{=} \int \mathbf{g}(\mathbf{x}|\mathbf{y}) h_Y(y) dy$.

Here y > 1 and x > 0.

Let
$$\mathbf{g}(\mathbf{x}|\mathbf{y}) = ye^{-xy} \sim \mathbf{Exp}(\mathbf{y})$$
 and $h(y) = ny^{-n-1}, y > 1$
(Check $\int_0^\infty h_Y(y)dy = 1$: pdf.) Hence

$$f_X(x) = \int_1^\infty (ye^{-xy})(ny^{-(n+1)})dy = \int_1^\infty g(x|y)h_Y(y)dy$$

$$\underline{\mathbf{Ex}}$$
. $f_X(x) = n \int_1^\infty y^{-n} \mathbf{e}^{-\mathbf{xy}} dy, x > 0 \stackrel{?}{=} \int \mathbf{g}(\mathbf{x}|\mathbf{y}) h_Y(y) dy$.

Here y > 1 and x > 0

Let
$$\mathbf{g}(\mathbf{x}|\mathbf{y}) = ye^{-xy} \sim \mathbf{Exp}(\mathbf{y})$$
 and $h(y) = ny^{-n-1}, y > 1$

(Check $\int_1^\infty h_Y(y)dy=1$, .. pdf.) Hence,

$$f_X(x) = \int_1^\infty (ye^{-xy})(ny^{-(n+1)})dy = \int_1^\infty g(x|y)h_Y(y)dy$$

$$\underline{\mathbf{Ex}}$$
. $f_X(x) = n \int_1^\infty y^{-n} \mathbf{e}^{-\mathbf{xy}} dy, x > 0 \stackrel{?}{=} \int \mathbf{g}(\mathbf{x}|\mathbf{y}) h_Y(y) dy$.

Here y > 1 and x > 0.

Let
$$\mathbf{g}(\mathbf{x}|\mathbf{y}) = ye^{-xy} \sim \mathbf{Exp}(\mathbf{y})$$
 and $h(y) = ny^{-n-1}, y > 1$
(Check $\int_1^\infty h_Y(y) dy = 1$, : pdf.) Hence,

$$f_X(x) = \int_1^\infty (ye^{-xy})(ny^{-(n+1)})dy = \int_1^\infty g(x|y)h_Y(y)dy$$

$$\underline{\mathbf{Ex}}$$
. $f_X(x) = n \int_1^\infty y^{-n} \mathbf{e}^{-\mathbf{xy}} dy, x > 0 \stackrel{?}{=} \int \mathbf{g}(\mathbf{x}|\mathbf{y}) h_Y(y) dy$.

Here y > 1 and x > 0.

Let
$$\mathbf{g}(\mathbf{x}|\mathbf{y}) = ye^{-xy} \sim \mathbf{Exp}(\mathbf{y})$$
 and $h(y) = ny^{-n-1}, y > 1$.

(Check $\int_{1}^{\infty} h_Y(y) dy = 1$, .: pdf.) Hence,

$$f_X(x) = \int_1^\infty (ye^{-xy})(ny^{-(n+1)})dy = \int_1^\infty g(x|y)h_Y(y)dy$$

$$\underline{\mathbf{Ex}}$$
. $f_X(x) = n \int_1^\infty y^{-n} \mathbf{e}^{-\mathbf{xy}} dy, x > 0 \stackrel{?}{=} \int \mathbf{g}(\mathbf{x}|\mathbf{y}) h_Y(y) dy$.

Here y > 1 and x > 0.

Let
$$\mathbf{g}(\mathbf{x}|\mathbf{y}) = ye^{-xy} \sim \mathbf{Exp}(\mathbf{y})$$
 and $h(y) = ny^{-n-1}, y > 1$.

(Check $\int_1^\infty h_Y(y)dy = 1$, .. pdf.) Hence,

$$f_X(x) = \int_1^\infty (ye^{-xy})(ny^{-(n+1)})dy = \int_1^\infty g(x|y)h_Y(y)dy$$

$$\underline{\mathbf{Ex}}$$
. $f_X(x) = n \int_1^\infty y^{-n} \mathbf{e}^{-\mathbf{xy}} dy, x > 0 \stackrel{?}{=} \int \mathbf{g}(\mathbf{x}|\mathbf{y}) h_Y(y) dy$.

Here y > 1 and x > 0.

Let
$$\mathbf{g}(\mathbf{x}|\mathbf{y}) = ye^{-xy} \sim \mathbf{Exp}(\mathbf{y})$$
 and $h(y) = ny^{-n-1}, y > 1$.

(Check $\int_1^\infty h_Y(y)dy = 1$, .. pdf.) Hence,

$$f_X(x) = \int_1^\infty (ye^{-xy})(ny^{-(n+1)})dy = \int_1^\infty g(x|y)h_Y(y)dy.$$

Algorithm: 1. Generate $U_1, U_2 \sim U(0, 1)$.

2. Set
$$Y = U_1^{-1/n}$$
 and $X = -\frac{1}{Y} \ln U_2$.

Ex. T-distribution. $X \sim T_1(p; 0, 1)$,

$$f_X(x) = \frac{\Gamma(\frac{p+1}{2})}{(p\pi)^{1/2}\Gamma(p/2)} \frac{1}{(1+\frac{x^2}{p})^{(p+1)/2}}.$$

Fact: $X \sim T_1(p; \theta, \sigma^2)$ if and only if

$$\mathbf{X}|\mathbf{z} \sim \mathbf{N}(\theta,\mathbf{z}\sigma^2)$$
 and $\frac{1}{\mathbf{z}} \sim \mathbf{Gamma}(\frac{\mathbf{p}}{2},\frac{\mathbf{p}}{2})$

i.e.

$$f_X(x) = \int_0^\infty f(x|z) f_Z(z) dz$$

Ex. T-distribution. $X \sim T_1(p; 0, 1)$,

$$f_X(x) = \frac{\Gamma(\frac{p+1}{2})}{(p\pi)^{1/2}\Gamma(p/2)} \frac{1}{(1+\frac{x^2}{p})^{(p+1)/2}}.$$

Fact: $X \sim T_1(p; \theta, \sigma^2)$ if and only if

$$\mathbf{X}|\mathbf{z} \sim \mathbf{N}(\theta,\mathbf{z}\sigma^2) \quad \text{and} \quad \frac{1}{\mathbf{z}} \sim \mathbf{Gamma}(\frac{p}{2},\frac{p}{2}).$$

i.e.

$$f_X(x) = \int_0^\infty f(x|z) f_Z(z) dz.$$

Generation of Random Vectors

Case 1: X_1, \ldots, X_n independent if and only if

$$f(x_1,\ldots,x_n)=f_1(x_1)\ldots f_n(x_n).$$

STEP 1: Generate
$$X_i \sim f_i$$
, $i = 1, ..., n$ and set $X_i = F_i^{-1}(U_i)$

STEP 2: Set
$$X = (X_1, ..., X_n)$$

Generation of Random Vectors

Case 1: X_1, \ldots, X_n independent if and only if

$$f(x_1,\ldots,x_n)=f_1(x_1)\ldots f_n(x_n).$$

STEP 1: Generate
$$X_i \sim f_i$$
, $i = 1, ..., n$ and set $X_i = F_i^{-1}(U_i)$

STEP 2: Set
$$X = (X_1, ..., X_n)$$
.

Case 2: X_1, \ldots, X_n dependent, then

$$f(x_1,\ldots,x_n)=f_1(x_1)f_2(x_2|x_1)\ldots f_n(x_n|x_1,\ldots,x_{n-1}).$$

STEP 1: Generate $X_1 \sim f_1$.

STEP 3: Generate $X_2 \sim f_2(x_2|X_1)$.

STEP n: Generate $X_n \sim f_n(x_n|X_1,\ldots,X_{n-1})$

Case 2: X_1, \ldots, X_n dependent, then

$$f(x_1,\ldots,x_n)=f_1(x_1)f_2(x_2|x_1)\ldots f_n(x_n|x_1,\ldots,x_{n-1}).$$

STEP 1: Generate $X_1 \sim f_1$.

STEP 3: Generate $X_2 \sim f_2(x_2|X_1)$:

STEP n: Generate $X_n \sim f_n(x_n|X_1,\ldots,X_{n-1})$

The Composition Method

Case 2: X_1, \ldots, X_n dependent, then

$$f(x_1,\ldots,x_n)=f_1(x_1)f_2(x_2|x_1)\ldots f_n(x_n|x_1,\ldots,x_{n-1}).$$

STEP 1: Generate $X_1 \sim f_1$.

STEP 3: Generate $X_2 \sim f_2(x_2|X_1)$.

:

STEP n: Generate $X_n \sim f_n(x_n|X_1,\ldots,X_{n-1})$.

. Inverse Transform Method: Let

$$\begin{cases} U_1 &= F_1(X_1) \\ U_2 &= F_2(X_2|X_1) \\ &\vdots \\ U_n &= F_n(X_n|X_1, \dots, X_{n-1}) \end{cases}$$

Sovle for $X = (X_1, \dots, X_n)$ in terms of U_1, \dots, U_n .

 $\underline{\operatorname{Ex}}$. $f_{X_1,X_2}(x_1,x_2)=6x_1$ for $x_1,x_2\geq 0$ and $x_1+x_2\leq 1$; and zero, otherwise.

1). Find

$$\begin{cases} f_1(x_1) &= \int_0^{1-x_1} f_{X_1,X_2}(x_1,x_2) dx \\ f_2(x_2|x_1) &= f_{X_1,X_2}(x_1,x_2)/f_1(x_1) \end{cases}$$

$$\Rightarrow \begin{cases} F_1(x_1) &= \int_0^{x_1} f_1(t) dt \\ F_2(x_2|x_1) &= \int_0^{x_1} f_2(t|x_1) dt. \end{cases}$$

 $\underline{\operatorname{Ex}}$. $f_{X_1,X_2}(x_1,x_2)=6x_1$ for $x_1,x_2\geq 0$ and $x_1+x_2\leq 1$; and zero, otherwise.

1). Find

$$\begin{cases} f_1(x_1) &= \int_0^{1-x_1} f_{X_1,X_2}(x_1,x_2) dx_2 \\ f_2(x_2|x_1) &= f_{X_1,X_2}(x_1,x_2) / f_1(x_1) \end{cases}$$

$$\implies \begin{cases} F_1(x_1) &= \int_0^{x_1} f_1(t) dt \\ F_2(x_2|x_1) &= \int_0^{x_1} f_2(t|x_1) dt. \end{cases}$$

2). Find $f_2(x_2)$ and $f_1(x_1|x_2) \Longrightarrow F_2(x_2)$ and $F_1(x_1|x_2)$.

$$X_1 = \sqrt{U_2} U_1^{1/3}, \ \ X_2 = 1 - U_1^{1/3}, \ \ \ \text{where} \ U_1, U_2 \overset{i.i.d}{\sim} U(0,1).$$

Easier!

Note: No general rule for the optimal order!

2). Find $f_2(x_2)$ and $f_1(x_1|x_2) \Longrightarrow F_2(x_2)$ and $F_1(x_1|x_2)$.

Easier!

Note: No general rule for the optimal order!

II. Acceptance-Rejection Method.

Case 1:
$$X \sim (X_1, \dots, X_n) \sim f_{\mathbf{X}}(\mathbf{x}), \mathbf{Y} \sim (Y_1, \dots, Y_n) \sim h_{\mathbf{Y}}(\mathbf{y}).$$

If
$$f_{\boldsymbol{X}}(\boldsymbol{x}) = c \cdot g(\boldsymbol{x}) h_{\boldsymbol{Y}}(\boldsymbol{x})$$
, for some $c \geq 1$, $0 < g(\boldsymbol{x}) < 1$, $\forall \boldsymbol{x}$, then

$$f_{\boldsymbol{Y}}(\boldsymbol{x}|U \leq g(\boldsymbol{Y})) = f_{\boldsymbol{X}}(\boldsymbol{x}), \text{ where } U \sim U(0,1), \text{ independent of } \boldsymbol{Y}.$$

<u>Case 2</u>: $X = (X_1, ..., X_n) \in G$ uniformly. (i.e. X is uniformly distributed over a region G.)

STEP 1: Generate Y uniformly in Ω , where Ω is an n-dimensional rectangle containing G.

STEP 2: If $Y \in G$, set X = Y; otherwise, return to Step 1.

Note: Good if $|G|/|\Omega|$ is large.

<u>Case 2</u>: $X = (X_1, ..., X_n) \in G$ uniformly. (i.e. X is uniformly distributed over a region G.)

STEP 1: Generate Y uniformly in Ω , where Ω is an n-dimensional rectangle containing G.

STEP 2: If $Y \in G$, set X = Y; otherwise, return to Step 1.

Note: Good if $|G|/|\Omega|$ is large.

<u>Case 2</u>: $X = (X_1, ..., X_n) \in G$ uniformly. (i.e. X is uniformly distributed over a region G.)

STEP 1: Generate Y uniformly in Ω , where Ω is an n-dimensional rectangle containing G.

STEP 2: If $Y \in G$, set X = Y; otherwise, return to Step 1.

Note: Good if $|G|/|\Omega|$ is large.

The Composition Method

III. Multivariate Transformation Method.

<u>Idea</u>: If the desired random vector Y is a transformation of other r.v.'s,

i.e. $Y = g(X_1, \dots, X_k)$, where X_1, \dots, X_k are 'easy' to be generated.

Then

STEP 1: Generate X_i , $i = 1, \ldots, k$.

STEP 2: Plug into g to receive Y.

Ex. Normal random variates.

(1) Box-Muller Transformation: If $X, Y \stackrel{i.i.d.}{\sim} N(0, 1)$, then

 $R=X^2+Y^2\sim Exp(1/2),\,\Theta=\arctanrac{Y}{X}\sim U(0,2\pi)$ and R and Θ are independent.

Conversely, if $R \sim Exp(1/2)$ and $\Theta \sim U(0,2\pi)$ are independent, then $X = \sqrt{R}\cos\Theta$ and $Y = \sqrt{R}\sin\Theta$ are i.i.d. N(0,1).

Proof: Exercise.

Note: 1. If
$$U_1, U_2 \overset{i.i.d.}{\sim} U(0,1)$$
, then $X = \sqrt{-2 \log U_1} \cos(2\pi U_2)$ and $Y = \sqrt{-2 \log U_1} \sin(2\pi U_2)$ are i.i.d. $N(0,1)$.

2. Time-comsuming to compute *sin*, *cos*.

Note: 1. If
$$U_1, U_2 \overset{i.i.d.}{\sim} U(0,1)$$
, then $X = \sqrt{-2 \log U_1} \cos(2\pi U_2)$ and $Y = \sqrt{-2 \log U_1} \sin(2\pi U_2)$ are i.i.d. $N(0,1)$.

2. Time-comsuming to compute *sin*, *cos*.

(2) **Polar Method**: If (X,Y) is uniformly distributed over the unit circle, then $R=X^2+Y^2$ and $\Theta=\arctan\frac{Y}{X}$ are independent with

$$f_{R,\theta}(r,\theta) = \frac{1}{2\pi}, \ 0 < r < 1, 0 < \theta < 2\pi.$$

Proof: Exercise.

Note: $R \sim U(0,1)$ and $\Theta \sim U(0,2\pi)$, independent

(2) **Polar Method**: If (X,Y) is uniformly distributed over the unit circle, then $R=X^2+Y^2$ and $\Theta=\arctan\frac{Y}{X}$ are independent with

$$f_{R,\theta}(r,\theta) = \frac{1}{2\pi}, \ 0 < r < 1, 0 < \theta < 2\pi.$$

Proof: Exercise.

Note: $R \sim U(0,1)$ and $\Theta \sim U(0,2\pi)$, independent!

Thus, if (X,Y) is a point randomly selected within the unit circle, then $R \sim U(0,1)$ and $\Theta \sim U(0,2\pi)$ independently; moreover, $\cos\Theta = X/\sqrt{R}$ and $\sin\Theta = Y/\sqrt{R}$ both are independent of R.

- Algorithm: 1. Generate $U_1, U_2 \sim U(0, 1)$.
 - 2. Set $X = 2U_1 1$ and $Y = 2U_2 1$ ($\sim U(-1, 1)$).
 - 3. If $X^2 + Y^2 \le 1$, set $\mathbf{R} = X^2 + Y^2$ ($\sim \mathbf{U}(\mathbf{0}, \mathbf{1})$); otherwise, return to 1.
 - 4. Set $Z_1 = \sqrt{-2\log \mathbf{R}} \frac{\mathbf{X}}{\sqrt{\mathbf{R}}}$ and $Z_2 = \sqrt{-2\log R} \frac{Y}{\sqrt{R}}$

Thus, if (X,Y) is a point randomly selected within the unit circle, then

 $R \sim U(0,1)$ and $\Theta \sim U(0,2\pi)$ independently; moreover,

 $\cos\Theta = X/\sqrt{R}$ and $\sin\Theta = Y/\sqrt{R}$ both are independent of R.

Algorithm: 1. Generate $U_1, U_2 \sim U(0,1)$.

- 2. Set $X = 2U_1 1$ and $Y = 2U_2 1$ ($\sim U(-1,1)$).
 - . If $X^2 + Y^2 \le 1$, set $\mathbf{R} = X^2 + Y^2$ ($\sim \mathbf{U}(\mathbf{0}, \mathbf{1})$); otherwise, return to 1.
- 4. Set $Z_1 = \sqrt{-2\log \mathbf{R}} \frac{\mathbf{X}}{\sqrt{\mathbf{R}}}$ and $Z_2 = \sqrt{-2\log R} \frac{Y}{\sqrt{R}}$.

Thus, if (X,Y) is a point randomly selected within the unit circle, then

 $R \sim U(0,1)$ and $\Theta \sim U(0,2\pi)$ independently; moreover,

 $\cos\Theta = X/\sqrt{R}$ and $\sin\Theta = Y/\sqrt{R}$ both are independent of R.

Algorithm: 1. Generate $U_1, U_2 \sim U(0, 1)$.

- 2. Set $X = 2U_1 1$ and $Y = 2U_2 1$ ($\sim U(-1,1)$).
- 3. If $X^2 + Y^2 \le 1$, set $\mathbf{R} = X^2 + Y^2$ ($\sim \mathbf{U}(\mathbf{0}, \mathbf{1})$); otherwise, return to 1.
- 4. Set $Z_1 = \sqrt{-2\log \mathbf{R}} \frac{\mathbf{X}}{\sqrt{\mathbf{R}}}$ and $Z_2 = \sqrt{-2\log R} \frac{Y}{\sqrt{R}}$

Thus, if (X,Y) is a point randomly selected within the unit circle, then $R \sim U(0,1)$ and $\Theta \sim U(0,2\pi)$ independently; moreover, $\cos\Theta = X/\sqrt{R}$ and $\sin\Theta = Y/\sqrt{R}$ both are independent of R.

Algorithm: 1. Generate $U_1, U_2 \sim U(0, 1)$.

- 2. Set $X = 2U_1 1$ and $Y = 2U_2 1$ ($\sim U(-1,1)$).
- 3. If $X^2 + Y^2 \le 1$, set $\mathbf{R} = X^2 + Y^2$ ($\sim \mathbf{U}(\mathbf{0}, \mathbf{1})$); otherwise, return to 1.
- 4. Set $Z_1 = \sqrt{-2 \log \mathbf{R}} \frac{\mathbf{X}}{\sqrt{\mathbf{R}}}$ and $Z_2 = \sqrt{-2 \log R} \frac{Y}{\sqrt{R}}$.

Note: 1. The mean number of iterations

$$= [P(X^2 + Y^2 \le 1)]^{-1} = 4/\pi \approx 1.273.$$

- 2. $\mathbf{X} = \sigma \mathbf{Z} + \mu \sim N(\mu, \sigma^2)$ if and only if $Z \sim N(0, 1)$.
- 3. $m{X} \sim N_p(m{\mu}, \Sigma)$, where $\Sigma_{p \times p}$ is symmetric, p.s.d., then $\exists \ C_{p \times p}$ such that $\Sigma = CC'$ and $m{X} = Cm{Z} + m{\mu}$ if and only if $m{Z} \sim N_p(m{0}, I_p)$.

Note: 1. The mean number of iterations

$$= [P(X^2 + Y^2 \le 1)]^{-1} = 4/\pi \approx 1.273.$$

- 2. $\mathbf{X} = \sigma \mathbf{Z} + \mu \sim N(\mu, \sigma^2)$ if and only if $Z \sim N(0, 1)$.
- 3. $m{X} \sim N_p(m{\mu}, \Sigma)$, where $\Sigma_{p \times p}$ is symmetric, p.s.d., then $\exists \ C_{p \times p}$ such that $\Sigma = CC'$ and $m{X} = Cm{Z} + m{\mu}$ if and only if $m{Z} \sim N_p(\mathbf{0}, I_p)$.

<u>Ex</u>. χ^2 -distribution.

(1)
$$Z_1, \ldots, Z_k \overset{i.i.d.}{\sim} N(0,1) \Longrightarrow X = \sum_{i=1}^k Z_i^2 \sim \chi_{(k)}^2$$
.

- (2) $\chi^2_{(k)} \equiv Gamma(\frac{k}{2}, \frac{1}{2}).$
 - (i) k even, $\chi^2_{(k)} = X_1 + \dots + X_{k/2} = -2 \sum_{i=1}^{k/2} \log U_i$, $\mathbf{X_i} \sim \mathbf{Exp}(\mathbf{1/2}), \ U_i \sim U(0,1)$.
 - (ii) k odd, $\chi^2_{(k)} = X_1 + \dots + X_{[k/2]} + Z^2$, $Z \sim N(0, 1)$.

<u>Ex</u>. χ^2 -distribution.

(1)
$$Z_1, \ldots, Z_k \overset{i.i.d.}{\sim} N(0,1) \Longrightarrow X = \sum_{i=1}^k Z_i^2 \sim \chi_{(k)}^2$$
.

- (2) $\chi^2_{(k)} \equiv Gamma(\frac{k}{2}, \frac{1}{2}).$
 - (i) k even, $\chi^2_{(k)} = X_1 + \dots + X_{k/2} = -2 \sum_{i=1}^{k/2} \log U_i$ $\mathbf{X_i} \sim \mathbf{Exp}(\mathbf{1/2}), \ U_i \sim U(0,1).$
 - (ii) k odd, $\chi^2_{(k)} = X_1 + \dots + X_{[k/2]} + Z^2$, $Z \sim N(0, 1)$.

<u>Ex</u>. χ^2 -distribution.

(1)
$$Z_1, \ldots, Z_k \overset{i.i.d.}{\sim} N(0,1) \Longrightarrow X = \sum_{i=1}^k Z_i^2 \sim \chi_{(k)}^2$$
.

- (2) $\chi^2_{(k)} \equiv Gamma(\frac{k}{2}, \frac{1}{2}).$
 - (i) k even, $\chi^2_{(k)} = X_1 + \dots + X_{k/2} = -2 \sum_{i=1}^{k/2} \log U_i$, $\mathbf{X_i} \sim \mathbf{Exp}(1/2)$, $U_i \sim U(0,1)$.
 - (ii) k odd, $\chi^2_{(k)} = X_1 + \cdots + X_{[k/2]} + Z^2$, $Z \sim N(0, 1)$.

Ex. χ^2 -distribution.

(1)
$$Z_1, \ldots, Z_k \overset{i.i.d.}{\sim} N(0,1) \Longrightarrow X = \sum_{i=1}^k Z_i^2 \sim \chi_{(k)}^2$$
.

- (2) $\chi^2_{(k)} \equiv Gamma(\frac{k}{2}, \frac{1}{2}).$
 - (i) k even, $\chi^2_{(k)} = X_1 + \dots + X_{k/2} = -2 \sum_{i=1}^{k/2} \log U_i$, $\mathbf{X_i} \sim \mathbf{Exp}(1/2)$, $U_i \sim U(0,1)$.
 - (ii) k odd, $\chi^2_{(k)} = X_1 + \cdots + X_{[k/2]} + Z^2$, $Z \sim N(0, 1)$.

Ex. Multinomial distribution.

$$\boldsymbol{X} = (X_1, \cdots, X_d) \sim Mult(n, d; \pi_1, \cdots, \pi_d)$$
 with

$$P(X_1 = x_1, \dots, X_d = x_d) = \frac{n!}{\prod_{j=1}^d x_j!} \prod_{j=1}^d \pi_j^{x_j}, \ \pi_j, \ x_j \ge 0,$$

$$\sum x_j = n$$
, and $\sum \pi_j = 1$.

Recall: The marginals are **binomials** and the conditional marginals are also binomials.

<u>Idea</u>: Use successive **conditional** marginals and begin with the one with the largest probability.

Ex. Multinomial distribution.

$$\boldsymbol{X} = (X_1, \cdots, X_d) \sim Mult(n, d; \pi_1, \cdots, \pi_d)$$
 with

$$P(X_1 = x_1, \dots, X_d = x_d) = \frac{n!}{\prod_{j=1}^d x_j!} \prod_{j=1}^d \pi_j^{x_j}, \ \pi_j, \ x_j \ge 0,$$

$$\sum x_j = n$$
, and $\sum \pi_j = 1$.

Recall: The marginals are **binomials** and the conditional marginals are also binomials.

<u>Idea</u>: Use successive **conditional** marginals and begin with the one with the largest probability.

Ex. Multinomial distribution.

$$\boldsymbol{X} = (X_1, \cdots, X_d) \sim Mult(n, d; \pi_1, \cdots, \pi_d)$$
 with

$$P(X_1 = x_1, \dots, X_d = x_d) = \frac{n!}{\prod_{j=1}^d x_j!} \prod_{j=1}^d \pi_j^{x_j}, \ \pi_j, \ x_j \ge 0,$$

$$\sum x_j = n$$
, and $\sum \pi_j = 1$.

Recall: The marginals are **binomials** and the conditional marginals are also binomials.

<u>Idea</u>: Use successive <u>conditional</u> marginals and begin with the one with the largest probability.

Without loss of generality, assume $\pi_1 \geq \pi_2 \geq \cdots \geq \pi_d$.

Algorithm: 1. Generate $X_1 \sim bin(n, \pi_1)$, say $X_1 = x_1$.

2. Generate

$$X_2 \sim X_2 | X_1 = x_1 \sim bin(\mathbf{n} - \mathbf{x_1}, \frac{\pi_2}{1 - \pi_1})$$
, say $X_2 = x_2$

3. Generate $X_3 \sim X_3 | X_1 = x_1, X_2 = x_2$

$$\sim bin(\mathbf{n} - \mathbf{x_1} - \mathbf{x_2}, \frac{\pi_2}{1 - \pi_1 - \pi_2})$$

$$\vdots$$

n.
$$X_d = n - (x_1 + \cdots + x_{d-1})$$

The Composition Method

Without loss of generality, assume $\pi_1 > \pi_2 > \cdots > \pi_d$.

Algorithm: 1. Generate $X_1 \sim bin(n, \pi_1)$, say $X_1 = x_1$.

2. Generate

$$X_2 \sim X_2 | X_1 = x_1 \sim bin(\mathbf{n} - \mathbf{x_1}, \frac{\pi_2}{1 - \pi_1}), \text{ say } X_2 = x_2.$$

$$\sim bin(\mathbf{n} - \mathbf{x_1} - \mathbf{x_2}, \frac{\pi_2}{1 - \pi_1 - \pi_2}).$$

n.
$$X_d = n - (x_1 + \dots + x_{d-1})$$

The Composition Method

Without loss of generality, assume $\pi_1 \geq \pi_2 \geq \cdots \geq \pi_d$.

- **Algorithm**: 1. Generate $X_1 \sim bin(n, \pi_1)$, say $X_1 = x_1$.
 - 2. Generate

$$X_2 \sim X_2 | X_1 = x_1 \sim bin(\mathbf{n} - \mathbf{x_1}, \frac{\pi_2}{1 - \pi_1})$$
, say $X_2 = x_2$.

3. Generate $X_3 \sim X_3 | X_1 = x_1, X_2 = x_2$

$$\sim bin(\mathbf{n}-\mathbf{x_1}-\mathbf{x_2},\frac{\pi_2}{1-\pi_1-\pi_2}).$$
 :

n.
$$X_d = n - (x_1 + \cdots + x_{d-1})$$
.

Ex. Dirichlet distribution.

a multivariate extension of a Beta distribution.

$$\boldsymbol{X} = (X_1, \cdots, X_{d+1}) \sim Dir(d+1; \alpha_1, \cdots, \alpha_{d+1})$$
 with

$$f(\boldsymbol{x}) = \frac{\Gamma(\sum_{j=1}^{d+1} \alpha_j)}{\prod_{j=1}^{d+1} \Gamma(\alpha_j)} x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1} \cdots x_d^{\alpha_d - 1} (1 - x_1 - \dots - x_d)^{\alpha_{d+1} - 1},$$

$$0 \le x_j \le 1$$
.

Ex. Dirichlet distribution.

a multivariate extension of a Beta distribution.

$$\boldsymbol{X} = (X_1, \cdots, X_{d+1}) \sim Dir(d+1; \alpha_1, \cdots, \alpha_{d+1})$$
 with

$$f(\boldsymbol{x}) = \frac{\Gamma(\sum_{j=1}^{d+1} \alpha_j)}{\prod_{j=1}^{d+1} \Gamma(\alpha_j)} x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1} \cdots x_d^{\alpha_d - 1} (1 - x_1 - \dots - x_d)^{\alpha_{d+1} - 1},$$

$$0 \le x_j \le 1$$
.

Fact: If $Y_1, Y_2, \cdots, Y_{d+1}$ are independent, each of $\mathbf{Gamma}(\alpha_i, \beta)$, $i=1,\ldots,d+1$, respectively, then $\boldsymbol{X}=(X_1,\cdots,X_{d+1})$ with

$$\mathbf{X_j} = \frac{\mathbf{Y_j}}{\sum_{k=1}^{d+1} \mathbf{Y_k}}, \ j = 1, \dots, d+1,$$

has a $Dir(d+1; \alpha_1, \dots, \alpha_{d+1})$ distribution.

