Lecture 8: Language model and Natural Language Generation

Language Model

- Task of predicting the word coming to the next based on the given word
- a probabilistic model which predicts the probability that a sequence of tokens belongs to a language
- Language Modeling in Natural Language Generation
 - Conditional Language Modelling:

the task of predicting the next word, given the words so far, and also some other input \mathbf{x} :

- Natural Language Generation
 - o Dialogue (chit chat and task-based)
 - x=dialogue history, y=next utterance
 - Abstractive Summarisation
 - x=input text, y=summarized text
 - Machine Translation
 - x=source sentence, y=target sentence
- Tips for using LM
 - collect and learn the model with the corpus that includes documents about the domain that your system/application will be used

Traditional LM

Statistical Language Model (SLM):
$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(A \cap B)}{p(A)}$$

Conditional probability

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(A.B)}{p(A)}$$

- Conditional Language Modeling:
 - Predicting the next word, given the words so far, and also some other input x

$$P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}) = P(\mathbf{x}^{(1)}) \times P(\mathbf{x}^{(2)} | \mathbf{x}^{(1)}) \times \dots \times P(\mathbf{x}^{(T)} | \mathbf{x}^{(T-1)}, \dots, \mathbf{x}^{(1)})$$

$$= \prod_{t=1}^{T} P(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)}, \dots, \mathbf{x}^{(1)})$$

N-gram LM

- N-gram: a sequence of N words=a chunk if n consecutive words
- N-gram model predicts the probability of a given N-gram within any sequence of words in the language
- ullet Assumption: the next word, $x^{(t+1)}$, depends only on the preceding n-1 words

$$P(\mathbf{x}^{(t+1)}|\mathbf{x}^{(t)},\dots,\mathbf{x}^{(1)}) = P(\mathbf{x}^{(t+1)}|\mathbf{x}^{(t)},\dots,\mathbf{x}^{(t-n+2)})$$

$$\approx \frac{\operatorname{count}(\boldsymbol{x}^{(t+1)},\boldsymbol{x}^{(t)},\ldots,\boldsymbol{x}^{(t-n+2)})}{\operatorname{count}(\boldsymbol{x}^{(t)},\ldots,\boldsymbol{x}^{(t-n+2)})}$$

- Limitations
 - Trade-off Issue

— OOV (small n) or Model Size(big n)

- Optimal n
- Zero count issue:

P(w|is spreading) = Count(is spreading w) / Count(is spreading)

- 1. ' is speeding w' never occur in the coupurs:
 - Consequence: the probability will be 0
 - Solution: Smoothing (add small value to the count for every \boldsymbol{w} in the courpus)
- 2. 'is spreding' never occur in the corpus
 - Consequence: impossible to calculate the porbability for any \boldsymbol{w}
 - Solution: Backoff (condition on 'spreading')

Neural Language model

Window-based NLM

"An adorable little boy is spreading ? "

fixed window window size =3

- Pros
 - No Trade-off issue
- Cons
 - window size selection issue : incresing window size elarge ${\it W}$
 - Input vectors are multiplied by completely different wieghts in W: No symmetry in how the inputs are processed

RNN-based LM

 $Neural\ Network + Memory = Recurrent\ Neural\ Network$

• Basic architecture

• Types of RNN

• Example of prediction

Pros

- can process any length input (sequence 2 sequence structure)
- can use information from many step back (hidden state)
- model size does not increase (sequence padding)
- same weights applied on every time step (symmetry structure: share parameters)

Cons

- Slow computation (Neural nets)
- Difficult to access information from many step back (coverage sequence no.)

Seq2Seq Model with trained language Model

Teacher reforming: feed the gold target sentence into the decoder,
 regardess of what the decoder predicts

Natural Language Generation

Decoding Algorithm

Greedin Decoding

- Generate the sentence by taking argmax on each step of the decoder
 - Take the most probable word on each step
- Use that as the previous argmax ouput as the next word and feed it as input on the next step
- Keep going until you produce (end token)
- LIMITATION : cannot backtracking (no way to undo decisions) -> ungrammatical and unnatural
 - Solution: Exhaustive search decoding —> computing all possible sequences

Beam Search

- A search algorithm which aims to find a high-probability sequence by tracking multiple possible sequences at once
- One each step of decoder, keep track of the k most probable partial sequences (which we call hypotheses)
 - ∘ K: beam size (usually 5–10)
- After reaching stopping criterion, choose the sequence with the highest probability (factoring in some adjustment for length)

- The effect of beam size k
 - o Small k: similar problems to greedy decoding
 - Large k: consider more hypothesis
 - solve the issues in greedy decoding
 - Conputationallu expensive
 - open-ended tasls like chit-chat dialogue, large k can make output more generic

Beam size	Model response	
1	I love to eat healthy and eat healthy	
2	That is a good thing to have	
3	I am a nurse so I do not eat raw food	
4	I am a nurse so I am a nurse	
5	Do you have any hobbies?	
6	What do you do for a living?	
7	What do you do for a living?	
8	What do you do for a living?	

Lower beam size

More on topic but non-sensical

Higher beam size

Converges to safe, "correct" response, but it's generic and less relevant

Machine Answer

Sampling-based decoding

Pure sampling

— Each step t, randomly sample from the probability distribution p_t to obtain next word. — Like greedy decoding, but using sample instead of argmax

Top-n sampling

- Each step t, randomly sample from P_t , restricted to just the top-n most probable words
- Like pure sampling, but truncate the probability distribution
- n=1 is greedy search, n=V is pure sampling
- increase n to get more diverse/risky output
- Decrease n to get more generic/safe output

Other NLG Approaches

Neural based NLG in Dialog: Issue

A naive application of standard seq2seq methods has serious pervasive deficiency

- Either because it's generic
- Or because changing the subject to something unrelated
- Boring response
- Repetition problem
- Lack of consistent persona problem

Template-based generation

- The most common approach in spoken natural language generation
- In simplest form, words fill in slots

"Flights from ORIGIN to DEST on DEPT_DATE DEPT_TIME. Just one moment please"			
Slot	Туре	Question	
ORIGIN	city	What city are you leaving from?	
DEST	city	Where are you going?	
DEPT DATE	date	What day would you like to leave?	
DEPT TIME	time	What time would you like to leave?	
AIRLINE	line	What is your preferred airline?	

- Most common NLG used in comeercial system
- Used in conjunction with concatenative TTS to make natural sounding output
- Pros
 - Conceputally simple : No specialized knowledge required to develope
 - Tailored to the domain, so often good quality
- Cons
 - Lacks generality: Repeatedly encode linguistic rules
 - Little variation in style
 - Difficult to grow/maintain: each utterace must be manually added

- Solution
 - Deeper utterance representations
 - Linguistic rules to manipulate them

Rule-based Generation

- Content planning
 - What information must be communicated?
 - Content selection ordering
- Sentence planning
 - What words and ysntactic constructions will be used for describing the content
 - Aggretation: what elements can be grouped together for more natural-sounding, succinct output
 - Lexicalisation: what word are used to express the various entities?

Realisation

 How is it all combined into a sentence that is syntactically and morphologically correct

Example:

Assume that the dialog system need to tell the user about the restaurant

Content Planning

- · Select Information ordering
 - has(sushitrain, crusine(bad))
 - has(sushitrain, decor(good))

Sentence Planning

- Choose syntactic templates
- Choose lexicon
 - Bad → awful; crusine → food quality
 - Good → excellent: decor → décor
- Generate expressions
 - Entity → this restaurant

HAVE Subj Obj ENTITY FEATURE MODIFIER

Realisation

- Choose correct verb: HAVE → has
- No article needed for feature names

"This restaurant has awful food quality but excellent décor"

Summarisation: two strategies

Extractive Summarisation

• slect parts (sentences) of the orginal text to form a summary

Abstraction Summarisation

Generate new text using natural laguange generation techniques

Language Model and NLG Evaluation

Evaluation

- Perplexity
 - only caputre how powerful the model it is, but not the generation
 - = Exponential of the cross-entropy loss: Lower perplexity is better

$$\text{perplexity} = \prod_{t=1}^T \left(\frac{1}{P_{\text{LM}}(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})} \right)^{1/T} \stackrel{\textit{Normalized by number of words}}{\textit{number of words}}$$
 Inverse probability of corpus, according to Language Model

$$= \prod_{t=1}^T \left(\frac{1}{\hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}}\right)^{1/T} = \exp\left(\frac{1}{T}\sum_{t=1}^T -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}\right) = \exp(J(\theta))$$

- No automatic metrics to adequately capture overall quality
- Some metrics to capture particular aspects of generated text
 - Fluency: compute probability-well-trained LM
 - Correct style: LM tranined on targert corpus
 - o Diversity: rare word usage, uniqueness of n-grams
 - Relevance to input: semantic similarity measure

- Simple things like length and repetition:
- o Task-specific metrics: compression rate for summarization
- Human evaluation