Chapter 5: Video 1 - Supplemental slides

The Simple Moving Average Model

Simple moving average (MA) processes

Let $\epsilon_1,\epsilon_2,\ldots$ be White Noise $(\mathbf{0},\!\sigma^2_\epsilon)$ innovations, with variance σ^2_ϵ

Then, Y_1,Y_2,\ldots is an MA process if for some constants μ and θ ,

$$Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

• We focus on this 1st order case, the simplest MA process

Simple moving average (MA) processes

$$Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

- μ is the mean of the $\{Y_t\}$ process
- If $\theta=0$, then $Y_t=\mu+\epsilon_t$, such that Y_t is White Noise (μ,σ^2_ϵ)
- If $\theta \neq 0$, then observations Y_t depend on both ϵ_t and ϵ_{t-1}
- \bullet And the process $\{Y_t\}$ is autocorrelated
- If $\theta \neq 0$, then ϵ_{t-1} is fed forward into Y_t
- θ determines its impact
- Larger values of $|\theta|$ result in greater impact

MA Processes: Autocorrelations

Figure: Autocorrelation functions of MA processes with θ equal to 0.75, 0.5, 0.2, and -0.3.