

POLITECHNIKA POZNAŃSKA

WYDZIAŁ AUTOMATYKI, ROBOTYKI I ELEKTROTECHNIKI

Instytut Robotyki i Inteligencji Maszynowej

Praca dyplomowa inżynierska

AUTOMATYZACJA PROCESU PLANOWANIA WYDATKÓW NA USŁUGI IT W VW POZNAŃ Z WYKORZYSTANIEM MICROSOFT POWER PLATFORM

Remigiusz Wolniak, 151192 Michał Gajdzis, 151066

Promotor dr hab. inż. Piotr Kaczmarek

Zastrzeżenie dotyczące treści pracy dyplomowej

Niniejsza praca inżynierska zawiera treści, informacje itp. udostępnione przez spółkę Volkswagen Poznań Sp. z o.o. z siedzibą przy ulicy Warszawskiej 349, 61-060 w Poznaniu, mogące stanowić tajemnice przedsiębiorstwa tej spółki i mogące być wykorzystane wyłącznie dla potrzeb napisania niniejszej pracy. Wobec powyższego niedozwolone jest wykorzystywanie całości lub części niniejszej pracy, a także udostępnianie całości lub części pracy komukolwiek jak również kopiowanie, powielanie, publikowanie itp. bez pisemnej zgody spółki Volkswagen Poznań Sp. z o.o. – zastrzeżenie to nie ma zastosowania do przypadku udostępnienia niniejszej pracy nauczycielom akademickim w celu oceny, recenzji i obrony ww. pracy. Podmioty, które naruszą powyższy zakaz ponoszą odpowiedzialność odszkodowawczą wobec spółki Volkswagen Poznań Sp. z o.o.

Tutaj będzie skan karty pracy dyplomowej.

Spis treści

1	Wst	tęp	1
2	Pod	lstawy teoretyczne	3
	2.1	Struktura procesu	3
		2.1.1 Gromadzenie danych dotyczących ofert usługodawców	3
		2.1.2 Przygotowanie danych	3
		2.1.3 Przebieg Iteracji	4
	2.2	Wykorzystane technologie	5
3	Roz	zwinięcie	6
4	Zak	ończenie	7
Li	terat	cura	8
A	Skła	adanie dokumentu w systemie LAT _E X	9
	A.1	Struktura dokumentu	9
	A.2	Akapity i znaki specjalne	9
	A.3	Wypunktowania	9
	A.4	Polecenia pakietu ppcreefthesis	10
	A.5	Rysunki	10
		A.5.1 Tablice	11
		A.5.2 Przydatne uwagi	11
	A 6	Literatura i materiały dodatkowe	12

Wstęp

Współczesny świat biznesu stawia coraz większe wymagania wobec przedsiębiorstw, zarówno w zakresie wydajności procesów, jak i precyzji podejmowanych działań. Powszechne metody zarządzania i przetwarzania danych, oparte są na manualnej pracy z wykorzystaniem mało efektywnych narzędzi oraz wymianie informacji w sposób niustandaryzowany. Stają się one niewystarczające w przypadku rosnącej skali operacji oraz wymagań co do szybkości i niezawodności podejmowanych decyzji. W obliczu tych wyzwań coraz większą rolę odgrywają rozwiązania z zakresu automatyzacji biurowej, które umożliwiają oszczędność czasu i zasobów oraz pozwalają na usprawnienie kluczowych procesów organizacyjnych, minimalizując ryzyko błędów ludzkich.

Jednym z obszarów, w którym automatyzacja znajduje zastosowanie, jest zarządzanie usługami IT i powiązanymi kosztami. W dużych organizacjach o rozbudowanej strukturze, konieczność gromadzenia, analizy oraz weryfikacji danych finansowych stanowi poważne wyzwanie. Dzięki wdrożeniu odpowiednich narzędzi, procesy te mogą być prowadzone w sposób uporządkowany i efektywny, umożliwiając jednocześnie bieżącą kontrolę nad wydatkami oraz lepsze planowanie budżetowe.

Ustandaryzowany i zautomatyzowany przepływ informacji ogranicza ryzyko powielania błędów i pozwala na skrócenie czasu potrzebnego na wykonanie poszczególnych zadań. Dodatkowo, wdrożenie automatyzacji zapewnia większą przejrzystość i ułatwia dostęp do informacji każdemu uczestnikowi procesu.

W dobie intensywnej cyfryzacji przedsiębiorstw oraz dynamicznego rozwoju technologii, automatyzacja biurowa staje się konieczna, aby sprostać wymaganiom współczesnego rynku. Odpowiednio zaprojektowane systemy i narzędzia wspierają nie tylko wydajność operacyjną, ale także strategiczne zarządzanie zasobami, umożliwiając rozwój w innych obszarach swojej działalności.

Celem pracy jest opracowanie aplikacji, usprawniającej proces podejmowania decyzji dotyczących zakupu $uslug\ IT^1$ na najbliższy rok kalendarzowy. Praca została wykonana z wykorzystaniem $Power\ Platform$ oraz SharePoint, które są integralną cześcią pakietu $Microsoft\ 365$. Zdecydowano się na wybór tego rozwiązania, ponieważ pozwala ono na prostą integrację między programami wchodzącymi w skład pakietu. Ponadto, każdy z uczestników procesu ma dostęp do wspomnianych serwisów, co pozwala uniknąć dodatkowych kosztów.

DOPISAĆ:

Struktura pracy jest następująca. W rozdziale 2 przedstawiono przegląd literatury na temat ...

 $^{^1\,}Uslugi\ IT$ należy rozumieć jako licencje oraz klucze dostępu do używanych systemów informatycznych.

Wstęp 2

```
Rozdział 3 jest poświęcony ... (kilka zdań).
Rozdział 4 zawiera ... (kilka zdań) ... itd.
Rozdział X stanowi podsumowanie pracy.
```

W przypadku prac inżynierskich zespołowych lub magisterskich 2-osobowych, po tych dwóch w/w akapitach musi w pracy znaleźć się akapit, w którym będzie opisany udział w pracy poszczególnych członków zespołu. Na przykład:

Jan Kowalski w ramach niniejszej pracy wykonał projekt tego i tego, opracował ... Grzegorz Brzęczyszczykiewicz wykonał ..., itd.

Podstawy teoretyczne

2.1 Struktura procesu

Przedmiotem omawianego procesu jest podjęcie decyzji na tematu zakupu usług IT w zakładzie Volkswagen Poznań. Polega on na wymianie uwag, dotyczących wcześniej używanego bądź nowego oprogramowania, między oddziałem Volkswagen w Poznaniu a zakładem z siedzibą w Wolfsburgu. W wyniku wymiany zdań zapada decyzja o zakupie lub rezygnacji z wybranego produktu. Procedura rozpoczyna się wraz z początkiemn czerwca i trwa do przełomu grudnia i stycznia. Podzielona zazwyczaj na cztery iteracje. Efektem przedstawianych działań jest nabycie odpowiedniej ilości potrzebnych uprawnień licencyjnych. Przy podejmowaniu decyzji kluczowymi aspektami są:

- liczba użytkowników danego oprogramowania,
- cena zakupu w porównaniu z rokiem poprzednim,
- określenie czy dana usługa zostanie w pełni wykorzystana biorąc pod uwagę poprzednie kryteria.

Dotychczas analiza i przetwarzanie danych odbywało się przy użyciu arkuszy kalkulacyjnych programu Excel. Natomiast wymiana informacji pomiędzy jednostkami dokonywana była poprzez wysyłanie wiadomości e-mail.

2.1.1 Gromadzenie danych dotyczących ofert usługodawców

Informacje na temat serwisów są zbierane na początku roku, przed rozpoczęciem cyklu procesu. W tym czasie, prowadzone są rozmowy między menadżerami odpowiedzialnymi za dane rozwiązanie (BSM, ang. Business Service Manager) a firmami świadczącymi usługi, w celu otrzymania zaaktualizowanych wiadomości związanych z ich produktami. Na podstawie danych od usługodawców oraz menadżerów, powstaje arkusz, który jest przekazywany do zakładu w Poznaniu.

2.1.2 Przygotowanie danych

Otrzymany arkusz kalkulacyjny, zawiera tabelę o strzukturze kolumn podobnej do tabeli 2.1. Brakuje w nim jednak informacji kluczowych do rozpoczęcia cyklu. Dlatego pierwszym krokiem jest przygotowanie danych przez osobę nadzorującą proces ze strony odziału w Poznaniu. Jej zadaniem jest manualne przypisanie numeru określającego miejsce powstawania kosztów, wewnętrznie nazywanego *MPK*. Numer ten definiuje konkretną jednostkę należącą do obszaru IT, która decyduje o zakupie danego produktu. Ponadto dodawana jest kolumna, w której znajduje się wyliczona różnica cen między rokiem obecnym a poprzednim, w celu określenia czy koszt wzrósł lub zmalał.

2.1. Struktura procesu 4

Service group	Service main group	Service sub group	Business Service	ID	Business Service Manager	Unit of Measurement	PL70 2022 PLAN EUR w KVA	QTY	PL71 2023 PLAN EUR w KVA	QTY
------------------	--------------------------	-------------------------	---------------------	----	--------------------------------	---------------------	--------------------------------------	-----	--------------------------------------	-----

Tak przetworzony plik zostaje umieszczony we wspólnej przestrzeni dyskowej, co umożliwia pozostałym uczestnikom procesu przystąpienie do analizy oraz dalszego przetwarzania zawartych w nim informacji.

2.1.3 Przebieg Iteracji

W trakcie trwania iteracji rozpatrywane są kluczowe informacje takie jak:

- Nazwa usługi nwm czy takie kluczowe,
- ID nwm czy takie kluczowe,
- \bullet osoba zajmująca się daną usługą BSM nwm czy takie kluczowe,
- jakoś wyjaśnić Unit of Measurement xD,
- decyzja podjęta w roku poprzednim.
- cena oraz ilość użytkowników w roku obecnym,
- cena oraz ilość użytkowników w roku przyszłym,

Po analizie i porównaniu danych z wcześniejszych lat, w arkuszu powstają kolejne kolumny. Ich struktura nie jest określona przez żaden standard, ale zazwyczaj zawierają one:

- Komentarz wewnętrzny,
- Status,
- Komentarz klienta.

Komentarz wewnętrzny nie jest wymagany dla każdego serwisu. Jest on zapisywany w celu skonsultowania decyzji ze współpracownikami.

Status określa wstępną, wymaganą decyzję (Zaakceptowany/Niezaakceptowany).

Komentarz klienta zawiera uzasadnienie podjętej decyzji ze strony Volkswagen Poznań.

Tak uzupełniony arkusz zostaje przekazany pośrednio przez zakład w Wolfsburgu, do zarządu firmy.

Kolejnym etapem jest analiza tych informacji przez wcześniej wymienione podmioty. Ich zadaniem jest konfrontacja podjętej decyzji. Dodawane są kolejne kolumny:

- Komentarz BSM,
- Komentarz K-DES.

Komentarz BSM jest to odpowiedź ze strony menadżera usługi.

Komentarz K-DES (tutaj by się przydało rozszyfrować co to K-DES z niemieckiego) natomiast jest odpowiedzią międzynarodowego zarządu firmy.

Zaaktualizowany plik powraca do Volkswagen Poznań, rozpoczynając tym samym kolejną iterację procesu.

Jak wcześniej wspomniano, proces składa się zazwyczaj z czterech iteracji. Etapem zamykający proces jest sporządzenie wymaganych dokumentów oraz faktur.

2.2 Wykorzystane technologie

Aby usprawnić przebieg procesu, zabiezpieczyć go przed błędami i usystematyzować, stworzona została aplikacja do jego obsługi. Głównym kryterium przy doborze technologii była powszechna dostępność do powstałego systemu wśród pracowników. Dlatego też zdecydowano się na wykorzystanie komponentów pakietu *Office 365*. Pakiet ten jest bardzo rozbudowany i jest powszechnie używany w firmie Volkswagen. Zawiera on programy pozwalające na stworzenie kompletnego systemu bez konieczności dostępu do dodatkowych usług.

Tabela 2.2:

	2022	2023	2024	
	Service group	Service group	Service group	
	Service main group	Service main group	Service main group	
	Service sub group	Service sub group	Service sub group	
lua .	Business Service	Business Service	Business Service	
nn r i lat	ID	ID	ID	
Nazwy kolumn na przestrzeni lat	Business Service Manager	Business Service Manager	Business Service Manager	
	Unit of Measurement	Unit of Measurement	Resource Unit	
		Settlementtype	Settlementtype	
	PL71 2023 PLAN EUR w KVA	PL71 2023 PLAN EUR w KVA	PL72 2024 PLAN EUR w KVA	
	QTY	QTY	QTY	
	PL71 2023 PLAN EUR w KVA	PL72 2024 PLAN EUR w KVA	PL73 2025 PLAN EUR w KVA	
	QTY	QTY	QTY	

Rozwinięcie

Rozdziały dokumentujące pracę własną studenta: opisujące ideę, sposób lub metodę rozwiązania postawionego problemu oraz rozdziały opisujące techniczną stronę rozwiązania — dokumentacja techniczna, przeprowadzone testy, badania i uzyskane wyniki.

Praca musi zawierać elementy pracy własnej autora adekwatne do jego wiedzy praktycznej uzyskanej w okresie studiów. Za pracę własną autora można uznać np.: stworzenie aplikacji informatycznej lub jej fragmentu, zaproponowanie algorytmu rozwiązania problemu szczegółowego, przedstawienie projektu np. systemu informatycznego lub sieci komputerowej, analizę i ocenę nowych technologii lub rozwiązań informatycznych wykorzystywanych w przedsiębiorstwach, itp.

Autor powinien zadbać o właściwą dokumentację pracy własnej obejmującą specyfikację założeń i sposób realizacji poszczególnych zadań wraz z ich oceną i opisem napotkanych problemów. W przypadku prac o charakterze projektowo-implementacyjnym, ta część pracy jest zastępowana dokumentacją techniczną i użytkową systemu.

W pracy **nie należy zamieszczać całego kodu źródłowego** opracowanych programów. Kod źródłowy napisanych programów, wszelkie oprogramowanie wytworzone i wykorzystane w pracy, wyniki przeprowadzonych eksperymentów powinny być przekazane promotorowi oraz wgrane wraz z pracą do systemu informatycznego uczelni.

Styl tekstu

Należy¹ [1] stosować formę bezosobową, tj. w pracy rozważono, w ramach pracy zaprojektowano, a nie: w pracy rozważyłem, w ramach pracy zaprojektowałem. Odwołania do wcześniejszych fragmentów tekstu powinny mieć następującą postać: "Jak wspomniano wcześniej,", "Jak wykazano powyżej". Należy unikać długich zdań.

Niedopuszczalne są zwroty używane w języku potocznym. W pracy należy używać terminologii technicznej, która ma sprecyzowaną treść i znaczenie.

Niedopuszczalne jest pisanie pracy metodą *copy-paste*, bo jest to plagiat i dowód intelektualnej indolencji autora. Dane zagadnienie należy opisać własnymi słowami. Zawsze trzeba powołać się na zewnętrzne źródła.

¹Uwagi o stylu pochodzą częściowo ze stron prof. Macieja Drozdowskiego.

Zakończenie

Zakończenie pracy zwane również Uwagami końcowymi lub Podsumowaniem powinno zawierać ustosunkowanie się autora do zadań wskazanych we wstępie do pracy, a w szczególności do celu i zakresu pracy oraz porównanie ich z faktycznymi wynikami pracy. Podejście takie umożliwia jasne określenie stopnia realizacji założonych celów oraz zwrócenie uwagi na wyniki osiągnięte przez autora w ramach jego samodzielnej pracy.

Integralną częścią pracy są również dodatki, aneksy i załączniki zawierające stworzone w ramach pracy programy, aplikacje i projekty.

Literatura

- [1] Maciej Drozdowski. Jak pisać prace dyplomowe uwagi o formie. [on-line] http://www.cs.put.poznan.pl/mdrozdowski/dyd/txt/jak_mgr.html, 2006.
- [2] Donald E. Knuth. The T_EXbook . Computers and Type setting. Addison-Wesley, Reading, MA, USA, 1986.
- [3] Leslie Lamport. partial TEX A Document Preparation System User's Guide and Reference Manual. Addison-Wesley, Reading, MA, USA, 1985.

Dodatek A

Składanie dokumentu w systemie LATEX

W tym rozdziale znajduje się garść informacji o tym, jak poprawnie składać tekst pracy w systemie LATEX wraz z przykładami, które mają służyć do przeklejania do własnych dokumentów.

A.1 Struktura dokumentu

Praca składa się z rozdziałów (chapter) i podrozdziałów (section). Ewentualnie można również rozdziały zagnieżdzać (subsection, subsubsection), jednak nie powinno się wykraczać poza drugi poziom hierarchii (czyli subsubsection).

A.2 Akapity i znaki specjalne

Akapity rozdziela się od siebie przynajmniej jedną pustą linią. Podstawowe instrukcje, które się przydają to *wyróżnienie pewnych słów*. Można również stosować **styl pogrubiony**, choć nie jest to generalnie zalecane.

Należy pamiętać o zasadach polskiej interpunkcji i ortografii. Po spójnikach jednoliterowych warto wstawić znak tyldy (\sim) , który jest tak zwaną "twardą spacją" i powoduje, że wyrazy nią połączone nie będą rozdzielane na dwie linie tekstu.

Polskie znaki interpunkcyjne różnią się nieco od angielskich: to jest "polski", a to jest "angielski". W kodzie źródłowym tego tekstu będzie widać różnicę.

Proszę również zwrócić uwagę na znak myślnika, który może być pauzą "—" lub półpauzą: "–". Należy stosować je konsekwentnie. Do łączenia wyrazów używamy zwykłego "-" (północnowschodni), do myślników — pauzy lub półpauzy. Inne zasady interpunkcji i typografii można znaleźć w słownikach.

A.3 Wypunktowania

Wypunktowanie z cyframi:

- 1. to jest punkt,
- 2. i to jest punkt,
- 3. a to jest ostatni punkt.

Po wypunktowaniach czasem nie warto wstawiać wcięcia akapitowego. Wtedy przydatne jest polecenie noindent. Wypunktowanie z kropkami (tzw. bullet list) wygląda tak:

Rysunek A.1: Wykres.

- to jest punkt,
- i to jest punkt,
- a to jest ostatni punkt.

Wypunktowania opisowe właściwie niewiele się różnią:

elementA to jest opis,

elementB i to jest opis,

elementC a to jest ostatni opis.

A.4 Polecenia pakietu ppcreefthesis

Parę poleceń zostało zdefiniowanych aby uspójnić styl pracy. Są one przedstawione poniżej (oczywiście nie trzeba się do nich stosować).

Makra zdefiniowane dla języka angielskiego. Są nimi: termdef oraz acronym. Przykłady poniżej obrazują ich przewidywane użycie w tekście.

źródło	<pre>we call this a \termdef{Database Management System} (\acronym{DBMS})</pre>
docelowo	we call this a Database Management System (DBMS)

Makra zdefiniowane dla języka polskiego. Podobnie jak dla języka angielskiego zdefiniowano odpowiedniki polskie: definicja, akronim oraz english dla tłumaczeń angielskich terminów. Przykłady poniżej obrazują ich przewidywane użycie w tekście.

źródło	<pre>nazywamy go \definicja{systemem zarządzania bazą danych} (\akronim{DBMS}, \english{Database Management System})</pre>
docelowo	nazywamy go systemem zarządzania bazą danych (DBMS, ang. Database Management System)

A.5 Rysunki

Wszystkie rysunki (w tym również diagramy, szkice i inne) osadzamy w środowisku figure i umieszczamy podpis pod rysunkiem, w formie elementu caption. Rysunki powinny zostać umieszczone u góry strony (osadzone bezpośrednio w treści strony zwykle utrudniają czytanie tekstu). Rysunek A.1 zawiera przykład pełnego osadzenia rysunku na stronie.

A.5. Rysunki

RYSUNEK A.2: Ten sam wykres ale na szerokość tekstu.

A.5.1 Tablice

Tablice to piękna rzecz, choć akurat ich umiejętne tworzenie w I⁴TĒXu nie jest łatwe. Jeśli tablica jest skomplikowana, to można ją na przykład wykonać w programie OpenOffice, a następnie wyeksportować jako plik *PDF*. W każdym przypadku tablice wstawia się podobnie jak rysunki, tylko że w środowisko table. Tradycja typograficzna sugeruje umieszczenie opisu tablicy, a więc elementu caption ponad jej treścią (inaczej niż przy rysunkach).

Tablica A.1 pokazuje pełen przykład.

TABELA A.1: Przykładowa tabela. Styl opisu jest zgodny z rysunkami.

artykuł	cena [zł]
bułka	0, 4
masło	2,5

A.5.2 Przydatne uwagi

- Znakiem myślnika jest w LaTeXu dywiz pełen (—) albo półpauza (–), przykład: A niech to jasna cholera wrzasnąłem.
- Połączenie między wyrazami to zwykły myślnik, przykład: północno-zachodni
- Sprawdź ostrzeżenia o 'overfull' i 'underful' boxes. Niektóre z nich można zignorować (spójrz na wynik formatowania), niektóre trzeba poprawić; czasem przeformułować zdanie.
- \bullet Przypisy stawia się wewnątrz zdań lub za kropką, przykład: Footnote is added after a $\mathrm{comma.}^1$

 $^{^1\}mathrm{Here}$ is a footnote.

- Nie używaj przypisów zbyt często. Zobacz, czy nie lepiej będzie zintegrować przypis z tekstem.
- Tytuły tabel, rysunków powinny kończyć się kropką.
- Nie używaj modyfikatora [h] (here) do rysunków i tabel. Rysunki i tabele powinny być
 justowane do góry strony lub na stronie osobnej.
- Wyróżnienie w tekście to polecenie *wyraz*, należy unikać **czcionki pogrubionej** i <u>podkreślenia</u> (które wystają wizualnie z tekstu i rozpraszają).
- Nazwy plików, katalogów, ścieżek, zmiennych środowiskowych, klas i metod formatujemy poleceniem plik_o_pewnej_nazwie.
- Po ostatniej zmianie do treści, sprawdź i przenieś wiszące spójniki wstawiając przed nie znak tyldy (twardej spacji), przykład: Ala i kotek nie lubią mleczka, a Stasiu lubi.
- Za i.e. (id est) i e.g. (exempli gratia) stawia się zwyczajowo przecinek w typografii amerykańskiej.
- Przed i za pełną pauza nie ma zwyczajowo spacji w typografii amerykańskiej, przykład: Darn, this looks good—said Mary.
- Zamykający cudzysłów oraz footnote wychodzą za ostatni znak interpunkcji w typografii amerykańskiej, przykłady: It can be called a "curiosity," but it's actually normal. Footnote is added after a comma.²
- Odwołania do tabel i rysunków zawsze z wielkiej litery, przykład: In Figure A.1 we illustrated XXX and in Table A.1 we show detailed data.

A.6 Literatura i materialy dodatkowe

Materiałów jest mnóstwo. Oto parę z nich:

- The Not So Short Introduction..., która posiada również tłumaczenie w języku polskim. http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf
- Klasy stylu memoir posiadają bardzo wiele informacji o składzie tekstów anglosaskich oraz sposoby dostosowania LATEXa do własnych potrzeb.

http://www.ctan.org/tex-archive/macros/latex/contrib/memoir/memman.pdf

• Nasza grupa dyskusyjna i repozytorium Git są również dobrym miejscem aby zapytać (lub sprawdzić czy pytanie nie zostało już zadane).

https://github.com/politechnika/put-latex

 Dla łaknących więcej wiedzy o systemie LaTeX podstawowym źródłem informacji jest książka Lamporta [3]. Prawdziwy hardcore to oczywiście The TeXbook profesora Knutha [2].

²Here is a footnote.

 $\ \, \textcircled{\odot}$ 2025 Remigiusz Wolniak, Michał Gajdzis Instytut Robotyki i Inteligencji Maszynowej

Wydział Automatyki, Robotyki i Elektrotechniki Politechnika Poznańska Skład przy użyciu systemu L
ATEX na platformie Overleaf.