10 класс.

1. Упругая комбинированная прокладка представляет собой стальную и

алюминиевую пластины, сложенные вместе. Определите коэффициенты упругости системы вдоль осей OX; OY; OZ. Модуль Юнга стали $E_1 = 250 \, \Gamma \Pi a$, алюминия $E_2 = 71 \, \Gamma \Pi a$, толщина стального бруска $a_1 = 1.0 \, \text{см}$, алюминиевого $a_2 = 2.0 \, \text{см}$, $b = 5.0 \, \text{см}$, $c = 10 \, \text{см}$.

2. В горизонтальном однородном электростатическом поле находится гладкий сферический купол, с вершины которого (точка A) отпускают

небольшую заряженную шайбу. Шайба оторвалась от поверхности купола в точке B, причем $\angle AOB = 30^{\circ}$ (O - центр купола). Определите отношение силы тяжести, действующей на шайбу, к силе ее взаимодействия с полем.

3. Два небольших пластилиновых шарика привязаны нитями длиной $a=20\,cm$ к точке A, расположенной на горизонтальной поверхности диска на расстоянии a от его центра O. Шарики расположили так, что одна нить образует угол $\alpha_1=45^\circ$ с отрезком OA, а вторая - угол $\alpha_2=90^\circ$.

Диск начинают медленно раскручивать вокруг вертикальной оси, проходящей через его центр. Постройте примерный график зависимости угла между нитями от угловой скорости вращения диска, укажите его характерные точки. Коэффициент трения шариков о поверхность диска $\mu = 0.40$.

- **4.** В качестве модели упругой пленки можно рассмотреть квадратную сетку, образованную очень маленькими пружинками с жесткостью k. Покажите, что в рамках данной модели потенциальная энергия однородно растянутой пленки определяется формулой $U = k(\sqrt{S} \sqrt{S_0})^2$, где S- площадь растянутой пленки, S_0 ее площадь в недефермированном состоянии. Из пленки изготовили воздушный шарик, радиус которого при недеформированной пленкие равен r_0 . Найдите зависимость давления воздуха внутри шарика от его радиуса. Атмосферным давлением пренебречь.
- **5.** Для измерения заряда электрона американский физик Роберт Милликен в 1909-1912 годах провел серию экспериментов по исследованию движения маленьких заряженных масляных капель в электрическом поле. В установке Милликена капли масла

вбрызгивались в пространство между двумя горизонтальными металлическими пластинами, к которым прикладывалось постоянное электрическое напряжение. С помощью микроскопа проводилось наблюдение за движущимися в воздухе каплями и измерялась скорость их движения. Капли преобретали отрицательный электрический заряд в процессе разбрызгивания. Кроме того, можно было изменять заряд капель, облучая их ультрафиолетовым излучением.

Не претендуя на абсолютно точное воспроизведение результатов опытов Милликена, опишем одну из возможных схем проведения эксперимента и приведем их результаты в Таблице 1.

В отсутствии электрического поля измеряется значение скорости падения капли v_{θ} . Если на пластины подать постоянное напряжение U_{θ} , капля начинает двигаться вверх, измеренная при этом скорость капли обозначена v_{2} , измеренное значение радиусов капель r. Плотность масла

$$ho = 910 \frac{\kappa 2}{M^3}$$
, расстояние между металлическим пластинами $h = 1.0 \, \mathrm{cm}$,

ускорение свободного падения принять равным $g = 9.8 \frac{M}{c^2}$.

Для капель микронного радиуса сила вязкого трения пропорциональна скорости их движения. Считать, что в процессе измерения по описанной схеме заряд капли остается постоянным.

Таблица 1.

1 10011111111111				
No	r, мкм	$v_0^{}, \frac{MM}{C}$	$U_{_{\scriptscriptstyle{0}}}$, κB	$v_1, \frac{MM}{c}$
1	1,3	0,19	5,0	0,18
2	1,7	0,32	5,0	0,51
3	1,7	0.32	5,0	0,24
4	1,2	0,16	5,0	0,23
5	1,4	0,22	5,0	0,29
6	2,0	0,44	5,0	0,39
7	1,6	0,28	5,0	0,46
8	1,5	0,25	5,0	0,38
9	2,2	0,53	5,0	0,22
10	1,4	0,22	5,0	0,63

Определите по этим данным заряд электрона, оцените погрешность полученной величины.

Республиканская олимпиада школьников по физике. Брест, 2000 год

11 класс.