WEB272 – SOMT Refolding

$Benjamin\ Weigel$ 07/23/2015

Contents

1	Pro	tein concetration	1
	1.1	Regression tree	1
	1.2	Main effects plot	3
	1.3	Statistical test	4
2	Pro	tein volume activity	5
	2.1	Regression tree	-
	2.2	Main effects plot	7
	2.3	Statistical test	8
Af	ter re	buffering protein concentrations were measured by Bradford:	

1 Protein concetration

1.1 Regression tree

Next we build a regression tree. To see, which factors have the most influence on the protein concentration.

Rattle 2015-Okt-22 11:41:40 mori

Arginine seems to have the biggest impact on refolding efficiency (Arginine addition is better). Then comes SAH (no SAH is better).

1.2 Main effects plot

Main effects plot for BFmean


```
## \% latex table generated in R 3.1.2 by xtable 1.7-4 package
## % Thu Oct 22 11:41:42 2015
## \begin{table}[ht]
## \centering
## \begin{tabular}{rllr}
     \hline
##
    & state & ME & value \\
##
##
     \hline
## 1 & - & pH & 11.34 \\
     2 & + & pH & 24.63 \\
##
##
     3 & - & Arginine & 0.67 \\
##
     4 & + & Arginine & 35.29 \\
     5 & - & Glycerin & 25.90 \\
##
##
     6 & + & Glycerin & 10.07 \\
##
     7 & - & ionicStrength & 15.36 \\
     8 & + & ionicStrength & 20.60 \\
##
##
     9 & - & divCations & 18.66 \\
     10 & + & divCations & 17.30 \\
##
##
     11 & - & redox & 18.66 \\
##
     12 & + & redox & 17.30 \\
     13 & - & CycloDex & 14.63 \\
##
##
     14 & + & CycloDex & 21.33 \\
##
     15 & - & SAH & 26.63 \\
     16 & + & SAH & 9.34 \\
##
      \hline
##
## \end{tabular}
## \end{table}
```


1.3 Statistical test

Test the statistical significance of main effects. Only Arginine is statistically significant to a p-value of 0.05. SAH to a p-value of 0.1.

% latex table generated in R 3.1.2 by x table 1.7-4 package % Thu Oct 22 11:41:44 2015

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Arginine	1	3595.63	3595.63	24.56	0.0158
pН	1	529.87	529.87	3.62	0.1533
Glycerin	1	752.08	752.08	5.14	0.1083
ionicStrength	1	82.37	82.37	0.56	0.5077
divCations	1	5.49	5.49	0.04	0.8588
redox	1	5.52	5.52	0.04	0.8584
CycloDex	1	134.67	134.67	0.92	0.4083
SAH	1	896.83	896.83	6.13	0.0897
Residuals	3	439.26	146.42		

Error in eval(expr, envir, enclos): could not find function "LenthPlot"

2 Protein volume activity

2.1 Regression tree

Next we build a regression tree. To see, which factors have the most influence the SOMT activity.

Rattle 2015-Okt-22 11:41:46 mori

The redox status seems to have the biggest impact on refolding efficiency measured by activity (reducing is better, DTT). Then comes arginine (arginine is better).

2.2 Main effects plot

2.2.1 ÁUC

Main effects plot for P1_AC

2.2.2 conversion

Main effects plot for conversion

2.3 Statistical test

Test the statistical significance of main effects. Only Arginine is statistically significant to a p-value of 0.05. SAH to a p-value of 0.1.

2.3.1 AUC

% latex table generated in R 3.1.2 by x table 1.7-4 package % Thu Oct 22 11:41:50 2015

-	Df	Sum Sq	Mean Sq	F value	Pr(>F)
pН	1	0.02	0.02	4.83	0.1153
Arginine	1	0.03	0.03	8.14	0.0649
Glycerin	1	0.00	0.00	0.55	0.5122
ionicStrength	1	0.01	0.01	3.27	0.1682
divCations	1	0.00	0.00	0.57	0.5047
redox	1	0.06	0.06	19.88	0.0210
CycloDex	1	0.00	0.00	0.78	0.4428
SAH	1	0.00	0.00	0.13	0.7439
Residuals	3	0.01	0.00		

 $\begin{array}{c} \text{factors} \\ \text{PSE ME SME } 0.05000000 \ 0.03975856 \ 0.11446004 \ 0.24518392 \end{array}$

2.3.2 conversion

% latex table generated in R 3.1.2 by x table 1.7-4 package % Thu Oct 22 11:41:50 2015

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
pН	1	5.71	5.71	4.55	0.1227
Arginine	1	8.31	8.31	6.62	0.0824
Glycerin	1	0.44	0.44	0.35	0.5945
ionicStrength	1	3.38	3.38	2.69	0.1997
divCations	1	0.54	0.54	0.43	0.5605
redox	1	24.26	24.26	19.31	0.0218
CycloDex	1	1.07	1.07	0.85	0.4250
SAH	1	0.11	0.11	0.09	0.7893
Residuals	3	3.77	1.26		

alpha

 $\begin{array}{c} \text{factors} \\ \text{PSE ME SME } 0.0500000 \ 0.7637776 \ 2.1988227 \ 4.7100805 \end{array}$

alpha