- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

$$wp(S, c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma, c) \hookrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in S \}$$

- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

$$wp(S, c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma, c) \hookrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in S \}$$

- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

$$wp(S, c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma, c) \hookrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in S \}$$

- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

$$wp(S, c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma, c) \hookrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in S \}$$

• Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

$$wp(S, c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma, c) \hookrightarrow *(\sigma', skip) \rightarrow \sigma' \in S \}$$

- We can use a FOL formula F to represent a set of states.
- The symbolic weakest pre-condition operator can be defined as:

$$\sigma \vDash wp(F, c) \Leftrightarrow \forall \sigma'. (\sigma, c) \hookrightarrow^* (\sigma', skip) \rightarrow \sigma' \vDash F$$

• We now use the symbolic FOL semantics (ρ) for individual commands:

$$wp(F, c) \triangleq \forall V'. \ \rho(c) \rightarrow F[V'/V]$$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x+1 \rightarrow x' > 10$$
$$\equiv x+1 > 10 \equiv x > 9$$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x + 1 \rightarrow x' > 10$$

$$\equiv x + 1 > 10 \equiv x > 9$$

 $wp(true, c) \equiv ???$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x+1 \rightarrow x' > 10$$

$$\equiv x+1 > 10 \equiv x > 9$$

 $wp(true, c) \equiv true$

$$wp(x > 10,x:=x+1) \triangleq \forall x' \cdot x' = x+1 \rightarrow x' > 10$$

$$\equiv x+1 > 10 \equiv x > 9$$

 $wp(true, c) \equiv true$

 $wp(false, c) \equiv ???$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x + 1 \rightarrow x' > 10$$

$$\equiv x + 1 > 10 \equiv x > 9$$

 $wp(true, c) \equiv true$

 $wp(false, c) \equiv All \text{ states for which c does not terminate}$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x + 1 \rightarrow x' > 10$$

$$\equiv x + 1 > 10 \equiv x > 9$$

 $wp(true, c) \equiv true$

 $wp(false, c) \equiv All \text{ states for which c does not terminate}$

 $wp(false, assume(x>0)) \equiv ???$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x + 1 \rightarrow x' > 10$$

$$\equiv x + 1 > 10 \equiv x > 9$$

 $wp(true, c) \equiv true$

 $wp(false, c) \equiv All \text{ states for which c does not terminate}$

$$wp(false, assume(x>0)) \equiv \forall x' . x > 0 \land x' = x \rightarrow false$$

 $\equiv x \leq 0$

• $wp(F, x := e) \triangleq F[e/x]$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

EXAMPLES:

• $wp(x = 5,x=6) \equiv ???$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

EXAMPLES:

• $wp(x = 5,x=6) \equiv false$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

- $wp(x = 5,x=6) \equiv false$
- $wp(x = 5, x = 5) \equiv ???$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

- $wp(x = 5,x=6) \equiv false$
- $wp(x = 5,x=5) \equiv true$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

- $wp(x = 5,x=6) \equiv false$
- $wp(x = 5,x=5) \equiv true$
- $wp(x > 5,x=y+1) \equiv ???$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

- $wp(x = 5,x=6) \equiv false$
- $wp(x = 5,x=5) \equiv true$
- $wp(x > 5,x=y+1) \equiv x > 5[(y+1)/x] \equiv y > 4$

WEAKEST PRE-CONDITION HAVOC, ASSUME

•
$$wp(F, x:=havoc) \equiv \forall x . F$$

 $wp(F, x:=havoc) \triangleq \forall V' . frame(x) \rightarrow F[V'/V]$
 $\equiv \forall x' . F[x'/x] \equiv \forall x . F$

• $wp(F, assume(G)) \equiv ???$

WEAKEST PRE-CONDITION HAVOC, ASSUME

•
$$wp(F, x:=havoc) \equiv \forall x . F$$

 $wp(F, x:=havoc) \triangleq \forall V' . frame(x) \rightarrow F[V'/V]$
 $\equiv \forall x' . F[x'/x] \equiv \forall x . F$

•
$$wp(F, assume(G)) \equiv G \rightarrow F$$

 $wp(F, assume(G)) \triangleq \forall V' . G \land frame(\emptyset) \rightarrow F[V'/V]$
 $\equiv \forall V' . G \rightarrow F \equiv G \rightarrow F$

• $wp(x > 0,x=havoc) \equiv ???$

• $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv false$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv false$
- $wp(x + i \le 0, x := havoc) \equiv ???$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv false$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv false$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv false$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv false$
- $wp(x \ge 0, assume(x=1)) \equiv ???$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv false$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv false$
- $wp(x \ge 0, assume(x=1)) \equiv x=1 \rightarrow x \ge 0 \equiv true$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv false$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv false$
- $wp(x \ge 0, assume(x=1)) \equiv x=1 \rightarrow x \ge 0 \equiv true$
- wp(x > 0,assume $(x<0)) \equiv ???$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv false$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv false$
- $wp(x \ge 0, assume(x=1)) \equiv x=1 \rightarrow x \ge 0 \equiv true$
- wp(x > 0,assume $(x<0)) \equiv x < 0 \rightarrow x > 0 \equiv x \geq 0$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv false$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv false$
- $wp(x \ge 0, assume(x=1)) \equiv x=1 \rightarrow x \ge 0 \equiv true$
- wp(x > 0,assume $(x<0)) \equiv x < 0 \rightarrow x > 0 \equiv x \geq 0$
- Does there exist F and G such that $wp(F, assume(G)) \equiv false$?

WEAKEST PRE-CONDITION ASSERT

• $wp(F, assert(G)) \equiv ???$

WEAKEST PRE-CONDITION ASSERT

- $wp(F, assert(G)) \equiv F \wedge G$
 - Assume that $F \neq true$.
 - Assumption makes sense because we do not want error = 1 after assert.