يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۲۰

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

DEFINITION 2.39

A deterministic pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ, Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow (Q \times \Gamma_{\varepsilon}) \cup \{\emptyset\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

The transition function δ must satisfy the following condition. For every $q \in Q$, $a \in \Sigma$, and $x \in \Gamma$, exactly one of the values

$$\delta(q, a, x), \delta(q, a, \varepsilon), \delta(q, \varepsilon, x), \text{ and } \delta(q, \varepsilon, \varepsilon)$$

is not \emptyset .

- همه DCFLها CFL هستند اما یک CFL وجود دارد که DCFL نیست.
 - همه RLها DCFL هستند اما یک DCFL وجود دارد که RL نیست.

محدودیت زبانهای مستقل از متن

- تاکنون دیدیم که FA زبانهای منظم را و PDA زبانهای مستقل از متن را تشخیص میدادند.
 - دیدیم که با CFG/PDA قادر به توصیف یا تشخیص برخی زبانها نیستیم.
 - چگونه ماشین را قدرتمندتر کنیم؟

سه مدل

○ ماشین تورینگ

- حافظه نامحدود
- زبانهای حساس به متنکامپیوترها
- محاسبهپذیری، پیچیدگی

آلن تورینگ (۱۹۵۴–۱۹۱۲)

- منطقدان، ریاضیدان از انگلیس
- o مهمترین فعالیت او کار بر روی اعداد شمارش پذیر بود (Entscheidungsproblem) که منتهی به ماشین تورینگ شد.
 - o همکاری در پروژه Enigma
 - o مهمترین جایزه علوم کامپیوتر: Turing award

- هدف این است که مدل محاسبات ارائه کنیم که:
- همه الگوریتمهایی که میتوان در یک کامپیوتر با زبان برنامهنویسی پیاده کرد را شامل شود.
 - امیدوار باشیم که به کمک این مدل نشان دهیم برخی چیزها را نمیتوان محاسبه کرد.

- در ابتدا نوار خالی است و تنها ورودی روی آن نوشته میشود.
 - o دو حالت متفاوت برای accept و reject دارد.

- میتواند روی نوار بنویسد.
 - میتواند به چپ برگردد.
- میتواند به خانههایی که ورودی رویشان نیست برود (حافظه نامحدود)
 - فقط یک حالت پذیرش دارد.

The following list summarizes the differences between finite automata and Turing machines.

- 1. A Turing machine can both write on the tape and read from it.
- 2. The read–write head can move both to the left and to the right.
- 3. The tape is infinite.
- **4.** The special states for rejecting and accepting take effect immediately.

Let's introduce a Turing machine M_1 for testing membership in the language $B = \{w \# w | w \in \{0,1\}^*\}$. We want M_1 to accept if its input is a member of B and to reject otherwise.

نوشتن ورودی روی نوار

0 1 1 0 0 0 # 0 1 1 0 0 0 \(\dots \)...


```
0 1 1 0 0 0 # 0 1 1 0 0 0 □ ...
```

سمبل اول را بخوان و به یاد بسپار.

○ سمبل اول را X كن.

```
о 1 1 0 0 0 # 0 1 1 0 0 0 ш ...

x 1 1 0 0 0 # 0 1 1 0 0 0 ш ...
```



```
о 1 1 0 0 0 # 0 1 1 0 0 0 ш ...

x 1 1 0 0 0 # 0 1 1 0 0 0 ш ...
```

○ اولین سمبل بعد از # را بخوان.

اولین سمبل بعد از # را بخوان.
 در صورت برابری با آنچه به یاد سپردی، آن را X کن. در غیر اینصورت به reject برو.

○ روند قبلی ادامه بده و در پایاناگر همه طرفین x شده اند به accept

○ تغییر حالات در ماشین تورینگ:

o اگر a را خواندی b را بنویس و به چپ برو.

ماشین تورینگ (تعریف فرمال)

DEFINITION 3.3

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- 2. Σ is the input alphabet not containing the **blank symbol** \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

ماشین تورینگ (تعریف فرمال)

DEFINITION 3.3

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- 2. Σ is the input alphabet not containing the **blank symbol** \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R, S\}$ transition function,
- 5. $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

ماشین تورینگ (تعریف فرمال)

 $0 \rightarrow L$

•
$$Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{accept}}, q_{\text{reject}}\},$$

•
$$\Sigma = \{0\}$$
, and

• The start, accept, and reject states are q_1 , q_{accept} , and q_{reject} , respectively.

As a Turing machine computes, changes occur in the current state, the current tape contents, and the current head location. A setting of these three items is called a *configuration* of the Turing machine.

FIGURE 3.4 A Turing machine with configuration $1011q_701111$

The *start configuration* of M on input w is the configuration $q_0 w$, which indicates that the machine is in the start state q_0 with its head at the leftmost position on the tape.

Say that configuration C_1 yields configuration C_2 if the Turing machine can legally go from C_1 to C_2 in a single step. We define this notion formally as follows.

Suppose that we have a, b, and c in Γ , as well as u and v in Γ^* and states q_i and q_j . In that case, $ua \ q_i \ bv$ and $u \ q_j \ acv$ are two configurations. Say that

$$ua q_i bv$$
 yields $u q_j acv$

if in the transition function $\delta(q_i, b) = (q_j, c, L)$. That handles the case where the Turing machine moves leftward. For a rightward move, say that

$$ua q_i bv$$
 yields $uac q_j v$

if
$$\delta(q_i, b) = (q_j, c, \mathbf{R})$$
.

In an *accepting configuration*, the state of the configuration is q_{accept} . In a *rejecting configuration*, the state of the configuration is q_{reject} .

o پس از وارد شدن به accept یا reject دیگر ادامه نمیدهد.

پذیرش در ماشین تورینگ

A Turing machine M accepts input w if a sequence of configurations C_1, C_2, \ldots, C_k exists, where

- 1. C_1 is the start configuration of M on input w,
- **2.** each C_i yields C_{i+1} , and
- 3. C_k is an accepting configuration.

The collection of strings that M accepts is **the language of** M, or **the language recognized by** M, denoted L(M).

تشخيص پذيري

DEFINITION 3.5

Call a language *Turing-recognizable* if some Turing machine recognizes it.¹

¹It is called a *recursively enumerable language* in some other textbooks.