Latent Networks Models Game of Thrones

Lily Chou, Ben Draves, Nathan Josephs, Kelly Kung¹

¹Department of Mathematics and Statistics Boston University

December 9, 2018

Overview

- Introduction
- Latent Network Model
- 3 Expectaction Maximimation
 - Unweighted Network Model
 - Weighted Network Model

Weighted Network Model

Let Y_{ij} be the weight on edge $E_{ij} \in \mathbf{E}$.

$$Y_{ij}|\lambda_{ij} \stackrel{\textit{ind}}{\sim} \mathsf{Pois}(\lambda_{ij}) \ \lambda_{ij} \stackrel{\textit{iid}}{\sim} \mathsf{Gamma}(\alpha, \beta)$$

Then the log-likelihood for this model can be written as

$$\begin{split} I(\lambda, \alpha, \beta; Y) &= \sum_{i < j} \Big\{ \log \lambda_{ij} (Y_{ij} + \alpha - 1) - \lambda_{ij} (1 + \beta) \\ &- \log (Y_{ij}!) + \alpha \log(\beta) - \log \Gamma(\alpha) \Big\} \end{split}$$

Weighted Network Model: E-Step

Taking an expectation of this log-likelihood given the data ${\bf Y}$ and parameters $\theta=(\alpha,\beta)$

$$\begin{aligned} Q(\theta; \theta^{(t)}) &= \sum_{i < j} \left\{ (Y_{ij} + \alpha - 1) \mathbb{E}_{\lambda_{ij} | Y_{ij}, \theta^{(t)}} \left[\log \lambda_{ij} \right] \right. \\ &- (1 + \beta) \mathbb{E}_{\lambda_{ij} | Y_{ij}, \theta^{(t)}} \left[\lambda_{ij} \right] - \log(Y_{ij}!) + \alpha \log(\beta) - \log \Gamma(\alpha) \right\} \end{aligned}$$

Seeing as $\lambda_{ij}|Y_{ij}, \theta \propto \mathsf{Gamma}(\alpha + Y_{ij}, \beta + 1)$ we can define

$$egin{aligned} \pi_{ij} &\equiv \mathbb{E}_{\lambda_{ij} \mid Y_{ij}, heta} \left[\lambda_{ij}
ight] = rac{lpha + Y_{ij}}{1 + eta} \ \eta_{ij} &\equiv \mathbb{E}_{\lambda_{ij} \mid Y_{ij}, heta} \left[\log \lambda_{ij}
ight] = \log(1 + eta) + \Psi(lpha + Y_{ij}) \end{aligned}$$

Weighted Network Model: M-Step

Maximizing $Q(\theta, \theta^{(t)})$ with respect to θ , we see that $\theta^{(t+1)}$ must satisfy

$$\beta^{(t+1)} = \frac{\binom{n}{2}}{\sum_{i < j} \pi_{ij}} \alpha^{(t+1)}$$

$$\Psi(\alpha^{(t+1)}) = \frac{\sum_{i < j} \eta_{ij} + \binom{n}{2} \log(\beta^{(t+1)})}{\binom{n}{2}}$$

We first update $\beta^{(t+1)}$ using $\alpha^{(t)}$ then use Netwon-Raphson to attain $\theta^{(t+1)}$.

Weighted Network Model: Psuedo-Code

Algorithm 1: EM for simplified latent network weighted model

```
1 LNM EM (G, tol);
   Input: Graph G
                 Tolerance tol
   Output: Nuisance Parameters \alpha^*, \beta^*
                 Latent Mean Estimates \hat{\lambda}
                 Latent Distance Estimates \hat{d}
2 Initialize Q^{(0)} repeat
        E: calculate \pi^{(t)}. \eta^{(t)}:
3
        M: update \beta^{(t+1)} using (\beta_W);
4
        update \alpha^{(t+1)} using (\alpha_W);
5
        calculate Q(\theta, \theta^{(t+1)})
6
7 until \left|\frac{Q(\theta^{(t+1)},\theta^{(t)})-Q(\theta^{(t)},\theta^{(t)})}{Q(\theta^{(t)},\theta^{(t)})}\right| < tol;
8 return \alpha^*, \beta^*, \hat{\lambda} = \pi^*, \hat{d} = \frac{1}{\pi^*}; where \alpha^*, \beta^*, \pi^* are converged values
```