

Orthogonality

Linear Algebra

Department of Computer Engineering
Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Overview

Introduction

Orthogonality

Gram-Schmidt Algorithm

Orthogonal Complements

Projection

Best Approximation

Introduction

Least Squares Error Correction

Least Squares Error Correction

Least Squares

Objective:
$$\hat{y} = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n + b$$

$$\min ||y - \hat{y}||$$

Least Square Method

Orthogonality

Orthogonal vectors

□ Geometry

□ Algebra

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

Suppose V is an inner product space.

Two vectors $\mathbf{v}, \mathbf{w} \in V$ are called **orthogonal** if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.

The Pythagorean Theorem

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$

Orthogonal Sets

 \square A set of vectors $\{a_1, ..., a_k\}$ in \mathbb{R}^n is orthogonal set if each pair of distinct vectors is orthogonal (mutually orthogonal vectors).

Definition

A basis B of an inner product space V is called an orthonormal basis of V if

- a) $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ for all $\mathbf{v} \neq \mathbf{w} \in B$, and (mutual orthogonality)
- b) $\|\mathbf{v}\| = 1$ for all $\mathbf{v} \in B$. (normalization)
 - oxdot set of n-vectors a_1, \dots, a_k are *(mutually) orthogonal* if $a_i \perp a_j$ for $i \neq j$
 - ☐ They are *normalized* if $||a_i|| = 1$ for i = 1, ..., k
 - ☐ They are *orthonormal* if both hold
 - ☐ Can be expressed using inner products as

$$a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Orthogonal Sets

Example

- ☐ Zero vector is orthogonal to every vector in vector space *V*
- \square The standard basis of \mathbb{R}^n or \mathbb{C}^n is an orthogonal set with respect to the standard inner product.

Orthogonal Sets

Theorem

If $S = \{a_1, ..., a_k\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and is a basis for the subspace spanned by S.

Proof

If k = n, then prove that S is a basis for R^n

Orthonormal vectors

Independence-dimension inequality

If the n-vectors a_1, \dots, a_k are linearly independent, then $k \leq n$.

- orthonormal sets of vectors are linearly independent
- \square by independence-dimension inequality, must have $k \leq n$
- \square when $k = n, a_1, ..., a_n$ are an *orthonormal basis*

Orthonormal bases

Example

- \square Standard unit n-vectors e_1, \dots, e_n
- ☐ The 3-vectors

$$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

☐ The 2-vectors shown below

 \Box The standard basis in $P^p[a,b]$ (be the set of real-valued polynomials of degree at most p.)

Gram-Schmidt Algorithm

 \Box Find orthonormal basis for span $\{a_1, a_2, ..., a_k\}$

□ Geometry:

- \Box Find orthonormal basis for span $\{a_1, a_2, ..., a_k\}$
- □ Algebra:

1)
$$q1 = \frac{a_1}{\|a_1\|}$$

2)
$$\widetilde{q_2} = a_2 - (q_1^T a_2) q_1 \to q_2 = \frac{\widetilde{q_2}}{\|\widetilde{q_2}\|}$$

3)
$$\widetilde{q_3} = a_3 - (q_1^T a_3) q_1 - (q_2^T a_3) q_2 \rightarrow q_3 = \frac{\widetilde{q_3}}{\|\widetilde{q_3}\|}$$

.

.

.

$$\mathsf{k}) \ \widetilde{q_k} = a_k - (q_1^T a_k) q_1 - \dots - \left(q_{k-1}^T a_k \right) q_{k-1} \to q_k = \frac{\widetilde{q_k}}{\|\widetilde{q_k}\|}$$

- \Box Why $\{q_1, q_2, ..., q_k\}$ is a orthonormal basis for span $\{a_1, a_2, ..., a_k\}$?
 - \circ $\{q_1, q_2, \dots, q_k\}$ are normalized.
 - $\circ \{q_1, q_2, \dots, q_k\}$ is a orthogonal set
 - \circ a_i is a linear combination of $\{q_1, q_2, ..., q_i\}$

$$span\{q_1, q_2, ..., q_k\} = span\{a_1, a_2, ..., a_k\}$$

 $oldsymbol{\Box} \quad q_i$ is a linear combination of $\{a_1, a_2, ..., a_i\}$

 \Box Given n-vectors a_1, \dots, a_k

for
$$i = 1, ..., k$$

- 1. Orthogonalization: $\widetilde{q}_i = a_i (q_1^T a_i)q_1 \dots (q_{i-1}^T a_i)q_{i-1}$
- 2. Test for linear dependence: if $\widetilde{q}_i = 0$, quit
- 3. Normalization: $q_i = \frac{\widetilde{q_i}}{\|\widetilde{q_i}\|}$

Note

- If G-S does not stop early (in step 2), a_1, \dots, a_k are linearly independent.
- If G-S stops early in iteration i=j, then a_j is a linear combination of a_1,\ldots,a_{j-1} (so a_1,\ldots,a_k are linearly dependent)

$$a_j = (q_1^T a_j)q_1 + \dots + (q_{j-1}^T a_j)q_{j-1}$$

Complexity of Gram-Schmidt algorithm

 Gram-Schmidt algorithm gives us an explicit method for determining if a list of vectors is linearly dependent or independent.

 \Box Given n-vectors a_1, \dots, a_k

 $O(nk^2)$

for
$$i = 1, ..., k$$

- 1. Orthogonalization: $\widetilde{q}_i = a_i (q_1^T a_i)q_1 \dots (q_{i-1}^T a_i)q_{i-1}$
- 2. Test for linear dependence: if $\widetilde{q_i} = 0$, quit
- 3. Normalization: $q_i = \frac{\widetilde{q_i}}{\|\widetilde{q_i}\|}$

Conclusion

Existence of Orthonormal Bases

- Every finite-dimensional inner product space has an orthonormal basis.
- □ Since finite-dimensional inner product spaces (by definition) have a basis consisting of finitely many vectors, and the Gram-Schmidt process tells us how to convert that basis into an orthonormal basis, we now know that every finite-dimensional inner product space has an orthonormal basis.

Orthogonal Complements

Orthogonal Complements

Definition

- \square If a vector z is orthogonal to every vector in a subspace W of \mathbb{R}^n , then z is said to be orthogonal to W.
- \Box The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by w^{\perp}

Example

W be a plane through the origin in \mathbb{R}^3 .

$$L = W^{\perp}$$
 and $W = L^{\perp}$

Orthogonal Complements

Note

- 1) A vector x is in W^{\perp} if and only if x is orthogonal to every vector in a set that spans W.
- 2) W^{\perp} is a subspace of \mathbb{R}^n .

Important

We emphasize that W_1 and W_2 can be orthogonal without being complements.

$$W_1 = span((1,0,0))$$
 and $W_2 = span((0,1,0))$.

Projection

Projection

- \Box Finding the distance from a point B to line I = Finding the length of line segment BP
- \square AP: projection of AB onto the line l

Definition

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n and $\mathbf{u} \neq \mathbf{0}$, then the **projection of \mathbf{v} onto \mathbf{u}** is the vector $proj_{\mathbf{u}}(\mathbf{v})$ defined by

$$proj_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$$

The projection of v onto u

Linear combinations of orthonormal vectors

□ A simple way to check if an n-vector y is a linear combination of the orthonormal vectors $a_1, ..., a_k$, if and only if:

$$y = (a_1^T y)a_1 + \dots + (a_k^T y)a_k$$

 \Box For orthogonal vectors a_1, \dots, a_k :

$$y = c_1 a_1 + \dots + c_k a_k$$

$$c_j = \frac{y \cdot a_j}{a_j \cdot a_j}$$

Linear combinations of orthonormal vectors

Example

Write x as a linear combination of a_1, a_2, a_3 ?

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ a_1 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \ a_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ a_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Orthogonal Projection of y onto W

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each \mathbf{y} in \mathbb{R}^n can be written uniquely in the form:

$$\mathbf{y} = (\hat{\mathbf{y}} + \mathbf{z}) \frac{\text{proj}_W \mathbf{y}}{\mathbf{z}}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in \mathbf{W}^{\perp} . In fact, if $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$
 (2)

and $z = \mathbf{y} - \hat{\mathbf{y}}$

Important

The uniqueness of the decomposition (1) shows that the orthogonal projection \hat{y} depends only on W and not on the particular basis used in (2).

The orthogonal projection of y onto W.

Best Approximation

Best Approximation

The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n . let \mathbf{y} be any vector in \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that

for all \mathbf{v} in W distinct from $\hat{\mathbf{v}}$.

Proof

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

Some Notes

- □ Determining if a vector is a linear combination of linearly independent vectors.
- □ Checking if a collection of vectors is a basis.

TAKE HOME QUESTION

Example

Find an orthonormal basis for $P^2[-1,1]$ with respect to the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

References

- □ Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston
- □ Chapter 6: Linear Algebra David Cherney
- Linear Algebra and Optimization for Machine Learning
- □ Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares