6.3 迫近梯度法

$\underline{\mathrm{SMaLL}}$

¹ 中国石油大学(华东) SMaLL 课题组 small.sem.upc.edu.cn liangxijunsd@163.com

2023

迫近梯度法

1. 迫近梯度法

- 2. 收敛性分析
- 2.1 收敛性分析: g 是强凸的
- 2.2 收敛性分析: g 是凸函数
- 3. 示例. ISTA, 矩阵填充
- 4. 特殊情况
- 5. 加速

迫近梯度法: 动机

假设

$$f(x) = g(x) + h(x) \tag{1}$$

- g 是凸的,可微的, $dom(g) = \mathbb{R}^n$
- h 是凸的, 不一定是可微的

如果 f 是可微的,那么梯度下降更新将是:

$$x^{+} = x - t \cdot \nabla f(x) \tag{2}$$

最小化 f 在 x 附近的近似值, 用 $\frac{1}{t}I$ 代替 $\nabla^2 f(x)$

$$x^{+} = \underset{z}{\operatorname{argmin}} \underbrace{f(x) + \nabla f(x)^{T} (z - x) + \frac{1}{2t} \|z - x\|_{2}^{2}}_{\bar{f}_{t}(z)}$$
(3)

迫近梯度法

模型.

迫近梯度法♣

定义 迫近映射:

$$\operatorname{prox}_{h,t}(x) = \operatorname{argmin} \frac{1}{2t} \|x - z\|_2^2 + h(z)$$
 (6)

迫近梯度下降: 选取初始点 x(0), 迭代:

$$x^{(k)} = \operatorname{prox}_{h,t_k} \left(x^{(k-1)} - t_k \nabla g \left(x^{(k-1)} \right) \right), \quad k = 1, 2, 3, \dots$$
 (7)

使此更新步骤看起来熟悉, 写为

$$x^{(k)} = x^{(k-1)} - t_k \cdot G_{t_k} \left(x^{(k-1)} \right)$$
 (8)

其中 G_t : f 的广义梯度,

$$G_t(x) = \frac{x - \operatorname{prox}_{h,t}(x - t\nabla g(x))}{t}$$

这有什么好处?

观察: 似乎一个最小化问题 \rightarrow 另一个最小化问题 要点: $\operatorname{prox}_{h,t}(\cdot)$ 对许多重要函数 h 都有解析解

- 映射 $\operatorname{prox}_{h,t}(\cdot)$ 不依赖于 g, 只依赖于 h
- g 的平滑部分可能很复杂 → 只需要计算其梯度
- 每次迭代计算 $prox_{h,t}(\cdot)$ 一次

迫近梯度法

1. 迫近梯度法

2. 收敛性分析

- 2.1 收敛性分析: g 是强凸的
- 2.2 收敛性分析: g 是凸函数
- 3. 示例. ISTA, 矩阵填充
- 4. 特殊情况
- 5. 加速

Sec. 1 收敛性分析: g 是强凸的

Theorem 1 (收敛)

假设

- $g: \mathbb{R}^d \to \mathbb{R}$ 是连续可微的, 具有常数 c > 0 的强凸
- ∇g : 常数 L > 0 Lipschitz 连续
- $\alpha_k = \alpha \in (0, 1/L]$ 对于任意的 $k \in \mathbb{N}$.
- ⇒ 对于所有 $k \in \mathbb{N}$, 产生的迭代点列的函数值满足 $f(x^{k+1}) f(x^*) \le (1 \alpha c)^k (f(x^1) f(x^*))$

其中 $x^* \in \mathbb{R}^d$: f 的唯一全局最优解.

g强凸时, $f(x^k)$ 线性收敛

Sec. 1 收敛性分析: g 是强凸的

证明.

因为
$$\alpha_k = \alpha \in (0, 1/L]$$
,

$$\begin{split} f\left(x^{k+1}\right) &= g\left(x^{k+1}\right) + h\left(x^{k+1}\right) \\ &\leq g\left(x^{k}\right) + \nabla g\left(x^{k}\right)^{T}\left(x^{k+1} - x^{k}\right) + \frac{1}{2}L\left\|x^{k+1} - x^{k}\right\|_{2}^{2} + h\left(x^{k+1}\right) \\ &\leq g\left(x^{k}\right) + \nabla g\left(x^{k}\right)^{T}\left(x^{k+1} - x^{k}\right) + \frac{1}{2\alpha}\left\|x^{k+1} - x^{k}\right\|_{2}^{2} + h\left(x^{k+1}\right) \\ &\leq g\left(x^{k}\right) + \nabla g\left(x^{k}\right)^{T}\left(w - x^{k}\right) + \frac{1}{2\alpha}\left\|w - x^{k}\right\|_{2}^{2} + h(w) \\ &\text{对于所有} w \in \mathbb{R}^{d} \end{split}$$

取 $w = x^k + d$. 得到

$$\begin{split} f\left(x^{k+1}\right) &\leq g\left(x^{k}\right) + \nabla g\left(x^{k}\right)^{T} d + \frac{1}{2\alpha} \|d\|_{2}^{2} + h\left(x^{k} + d\right) \\ &\leq g\left(x^{k}\right) + \nabla g\left(x^{k}\right)^{T} d + \frac{1}{2}c\|d\|_{2}^{2} - \frac{1}{2}c\|d\|_{2}^{2} + \frac{1}{2\alpha} \|d\|_{2}^{2} + h(x^{k} + d) \\ &\leq g\left(x^{k} + d\right) + h\left(x^{k} + d\right) - \frac{1}{2}c\|d\|_{2}^{2} + \frac{1}{2\alpha} \|d\|_{2}^{2} \\ &= f\left(x^{k} + d\right) + \frac{1}{2}\left(\frac{1}{\alpha} - c\right) \|d\|_{2}^{2} \end{split}$$

• 其中 $d = -\alpha c(x^k - x^*)$ 意味着

$$f(x^{k+1}) \leq f(x^{k} - \alpha c(x^{k} - x^{*})) + \frac{1}{2} \left(\frac{1}{\alpha} - c\right) \|\alpha c(x^{k} - x^{*})\|_{2}^{2}$$

$$= f(x^{k} - \alpha c(x^{k} - x^{*})) + \frac{1}{2} \alpha c^{2} (1 - \alpha c) \|x^{k} - x^{*}\|_{2}^{2}$$
(9)

另一方面, f 是 c-强凸函数 \rightarrow

 $f(\tau w + (1 - \tau)\bar{w}) \le \tau f(w) + (1 - \tau)f(\bar{w}) - \frac{1}{2}c\tau(1 - \tau)\|w - \bar{w}\|_{2}^{2}$ 对于所有 $(w, \bar{w}, \tau) \in \mathbb{R}^{d} \times \mathbb{R}^{d} \times [0, 1]$ (10)

 \Rightarrow (考虑 $\bar{w} = x^k, w = x^*, 和 \tau = \alpha c \in (0,1]$)

$$f(x^{k} - \alpha c(x^{k} - x^{*})) \leq \alpha c f(x^{*}) + (1 - \alpha c) f(x^{k}) - \frac{c}{2} \alpha c (1 - \alpha c) \left\| x^{k} - x^{*} \right\|_{2}^{2}$$

$$= \alpha c f(x^{*}) + (1 - \alpha c) f\left(x^{k}\right) - \frac{1}{2} \alpha c^{2} (1 - \alpha c) \left\| x^{k} - x^{*} \right\|_{2}^{2}$$
(11)

合并減去 $f(x^*) \to f(x^{k+1}) - f(x^*) \le (1 - \alpha c) (f(x^k) - f(x^*))$

对光滑的强凸函数: 迫近梯度法与梯度下降法收敛速度相似.

Sec. 2 收敛性分析: g 是凸函数

对于 f(x) = g(x) + h(x),

Theorem 2 (定理)

假设

- g 是凸函数,可微的,dom(g) = ℝⁿ,且 ∇g 是 Lipschitz 连续的, Lipschitz 常数 L > 0
- h 是凸函数, $\operatorname{prox}_t(x) = \operatorname{argmin}_z \{ \|x z\|_2^2/(2t) + h(z) \}$ 可有效估计
- 固定步长的迫近梯度下降 $t \le 1/L$

$$\Rightarrow$$
 $f(x^{(k)}) - f^* \le \frac{\|x^{(0)} - x^*\|_2^2}{2tk}$

且同样的结果适用于回溯, t 将被 β/L 代替.

g 是凸函数: 迫近梯度下降法收敛速度 O(1/k) 或 $O(1/\epsilon)$

迫近梯度法

- 1. 迫近梯度法
- 2. 收敛性分析
- 2.1 收敛性分析: g 是强凸的
- 2.2 收敛性分析: g 是凸函数
- 3. 示例. ISTA, 矩阵填充
- 4. 特殊情况
- 5. 加速

示例: ISTA♣♣

取 $y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p}$, 回忆 Lasso 模型:

$$f(\beta) = \underbrace{\frac{1}{2} \|y - X\beta\|_{2}^{2}}_{g(\beta)} + \underbrace{\lambda \|\beta\|_{1}}_{h(\beta)}$$
 (12)

迫近映射:♣♣

$$\operatorname{prox}_{t}(\beta) = \underset{z}{\operatorname{argmin}} \frac{1}{2t} \|\beta - z\|_{2}^{2} + \lambda \|z\|_{1}$$
$$= S_{\lambda t}(\beta)$$
(13)

其中 $S_{\lambda}(\beta)$ 是软阈值算子,

$$[S_{\lambda}(\beta)]_{i} = \begin{cases} \beta_{i} - \lambda & \text{mut} \beta_{i} > \lambda \\ 0 & \text{mut} - \lambda \leq \beta_{i} \leq \lambda, \quad i = 1, \dots, n \\ \beta_{i} + \lambda & \text{mut} \beta_{i} < -\lambda \end{cases}$$

分析

$$\bar{\beta} \stackrel{\text{def}}{=} \operatorname{prox}_{t}(\beta) = \underset{z}{\operatorname{argmin}} \frac{1}{2t} \|\beta - z\|_{2}^{2} + \lambda \|z\|_{1}$$

$$\Leftrightarrow \quad \bar{\beta}_{i} = \underset{z_{i}}{\operatorname{argmin}} \frac{1}{2t} (\beta_{i} - z_{i})^{2} + \lambda |z_{i}| \stackrel{\text{def}}{=} \phi(z_{i})$$

$$\Leftrightarrow \quad 0 \in \partial \phi(\bar{\beta}_{i})$$

$$\Leftrightarrow \quad 0 \in -\frac{1}{t} (\beta_{i} - \bar{\beta}_{i}) + \lambda \partial |t|_{t = \bar{\beta}_{i}}$$

其中

$$\partial |t|_{t=\bar{\beta}_i} = \left\{ \begin{array}{cc} 1, & \bar{\beta}_i > 0 \\ [-1,1], & \bar{\beta}_i = 0 \\ -1, & \bar{\beta}_i < 0 \end{array} \right\}$$

 \Rightarrow 如果 $\bar{\beta}_i \neq 0$, $sgn(\beta_i - \bar{\beta}_i) = sgn(\bar{\beta}_i)$

(i) 如果 $\beta_i > \lambda t > 0$, 那么 $\bar{\beta}_i > 0$.

如 (14), $0 = -\frac{1}{t}(\beta_i - \bar{\beta}_i) + \lambda \cdot 1 \Rightarrow \bar{\beta}_i = \beta_i - \lambda t$

(ii) 类似的,如果 $\beta_i < -\lambda t < 0$, $\bar{\beta}_i = \beta_i + \lambda t$

(iii) if $-\lambda t \leq \beta_i \leq \lambda t$, $\bar{\beta}_i = 0$

(14)

示例: ISTA♣♣

回忆
$$\nabla g(\beta) = -X^T(y - X\beta) \rightarrow$$
 迫近梯度更新: ***
$$\beta^+ = S_{\lambda t} \left(\beta + tX^T(y - X\beta) \right) \tag{15}$$

通常称为 迭代软阈值算法 (ISTA) $\beta^+ = S_{\lambda t} (\beta - t \nabla g(\beta))$

ISTA 和次梯度法的 收敛曲线 (纵横: $f(x^k) - f^*$)

示例:矩阵填充

- 矩阵 $Y \in \mathbb{R}^{m \times n}$, 且已知元素 Y_{ij} , $(i,j) \in \Omega$
- 想要补上缺失的元素(例如,推荐系统)→矩阵填充问题:

$$\min_{B} \frac{1}{2} \sum_{(i,j) \in \Omega} (Y_{ij} - B_{ij})^2 + \lambda ||B||_{\text{tr}}$$
 (16)

• ||B||_{tr} 是 B 的迹范数 (或核范数):

$$||B||_{\operatorname{tr}} = \sum_{i=1}^{r} \sigma_i(B) \tag{17}$$

其中 $r = \operatorname{rank}(B)$, $\sigma_1(X) \ge \cdots \ge \sigma_r(X) \ge 0$ 是 X 的奇异值

示例: 矩阵填充

定义 P_0 为观测集 Ω 上的投影算子:

$$[P_{\Omega}(B)]_{ij} = \begin{cases} B_{ij} & (i,j) \in \Omega \\ 0 & (i,j) \notin \Omega \end{cases}$$
(18)

那么

$$f(B) = \underbrace{\frac{1}{2} \|P_{\Omega}(Y) - P_{\Omega}(B)\|_F^2}_{g(B)} + \underbrace{\lambda \|B\|_{\text{tr}}}_{h(B)}$$
(19)

迫近梯度下降法所需的两个运算:

- 梯度计算: $\nabla q(B) = -(P_{\Omega}(Y) P_{\Omega}(B))$
- 拍近算子:

$$\operatorname{prox}_t(B) = \underset{Z}{\operatorname{argmin}} \, \frac{1}{2t} \|B - Z\|_F^2 + \lambda \|Z\|_{\operatorname{tr}}$$

(20)

示例:矩阵填充

定理1

示例:矩阵填充

证明.

记 prox_t(B) = Z, 其中 Z 满足

$$0 \in Z - B + \lambda t \cdot \partial \|Z\|_{\mathrm{tr}}$$

• 有用的结论: 若 $Z = U \Sigma V^T \Rightarrow$

$$\partial \|Z\|_{\text{tr}} = \{UV^T + W : \|W\|_{\text{op}} \le 1, U^T W = 0, WV = 0\}$$

• 可以验证: (23) 成立

迫近梯度更新步骤:

$$B^{+} = S_{\lambda t} \left(B + t \left(P_{\Omega}(Y) - P_{\Omega}(B) \right) \right)$$

(23)

(24)

(25)

示例: 矩阵填充

- 可验证 $\nabla g(B)$ Lipschitz 连续, Lipschitz 常数 L=1
- 固定步长 t = 1
- → 更新公式:

$$B^{+} = S_{\lambda} \left(P_{\Omega}(Y) + P_{\Omega^{\perp}}(B) \right) \tag{26}$$

其中 Ω^{\perp} 未观测集, $P_{\Omega}(B) + P_{\Omega^{\perp}}(B) = B$

● 简单有效迭代算法 → 实现矩阵填充

迫近梯度法

- 1. 迫近梯度法
- 2. 收敛性分析
- 2.1 收敛性分析: g 是强凸的
- 2.2 收敛性分析: g 是凸函数
- 3. 示例. ISTA, 矩阵填充
- 4. 特殊情况
- 5. 加速

特殊情况

迫近梯度下降也称为 复合梯度下降或广义梯度下降 为什么" 广义"?

迫近梯度下降: $\min f = g + h$:

- h = 0: gradient descent (梯度下降法)
- $h = I_C$: gradient projection method (梯度投影法)
- g = 0: proximal minimization algorithm (迫近极小化算法)

梯度投影法♣

• 闭凸集 $C \in \mathbb{R}^n$, $h(x) \equiv 0$

$$\min_{x \in C} g(x) + 0 \iff \min_{x} g(x) + I_{C}(x)$$
其中 $I_{C}(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$ 是 C 的指示函数

•

$$\operatorname{prox}_{t}(x) = \underset{z}{\operatorname{argmin}} \frac{1}{2t} ||x - z||_{2}^{2} + I_{C}(z)$$

$$= \operatorname*{argmin}_{z \in \mathit{C}} \lVert x - z \rVert_2^2$$

• → 此种情况下, $\operatorname{prox}_t(x) = P_C(x)$ 到 C 的投影算子

$$x^{(k)} = \operatorname{prox}_{h, t_k} \left(x^{(k-1)} - t_k \nabla g \left(x^{(k-1)} \right) \right)$$

= $P_C \left(x^{(k-1)} - t_k \nabla g \left(x^{(k-1)} \right) \right)$

迫近梯度下降 → 梯度投影法

(28)

(29)

迫近极小化算法

• $\mathcal{G} g = 0, h$ 是凸的 (不一定是可微的):

$$\min_{x} h(x) \tag{30}$$

• 迫近梯度法更新步骤:

$$x^{+} = \operatorname{argmin} \frac{1}{2t} ||x - z||_{2}^{2} + h(z)$$
 (31)

称作 迫近极小化算法 (proximal minimization algorithm)

比次梯度方法快,但通常未必方便实现→除非知道(31)封闭形式的解

不能准确计算迫近算子?

迫近梯度法: f = g + h,假设迫近算子是准确计算: $prox_t(x) = \underset{z}{\operatorname{argmin}} \frac{1}{2t} \|x - z\|_2^2 + h(z)$ (32)

可精确求解

- Q. 如果只能计算近似解?
- A. 如果能够控制逼近迫近算子的误差 → 原始的收敛速度

迫近梯度法

- 1. 迫近梯度法
- 2. 收敛性分析
- 2.1 收敛性分析: g 是强凸的
- 2.2 收敛性分析: g 是凸函数
- 3. 示例. ISTA, 矩阵填充
- 4. 特殊情况
- 5. 加速

加速迫近梯度法

考虑

$$\min_{x} g(x) + h(x) \tag{33}$$

其中 g 是凸的, 可微的且 h 也是凸函数

• 加速迫近梯度法:

取初始点 $x^{(0)} = x^{(-1)} \in \mathbb{R}^n$,

For k = 1, 2, 3, ...

$$v = x^{(k-1)} + \frac{k-2}{k+1} \left(x^{(k-1)} - x^{(k-2)} \right)$$

$$x^{(k)} = \operatorname{prox}_{t_k} \left(v - t_k \nabla g(v) \right)$$
(34)

- $v = x^{(k-1)} + \frac{k-2}{k+1} (x^{(k-1)} x^{(k-2)})$: 从以前的迭代中获得一些"动力"
- 当 $h=0 \rightarrow$ 加速梯度法.

加速迫近梯度法

加速迫近梯度法

回到 lasso 的例子:加速真的很有帮助!

注. 加速迫近梯度法的迭代函数值未必是单调下降的

收敛性分析

对于 f(x) = g(x) + h(x), 假设同前:

- g 是凸的, 可微的, $dom(g) = \mathbb{R}^n$, 且 ∇g Lipschitz 连续, Lipschitz 常数 L > 0
- h 是凸的, $\operatorname{prox}_t(x) = \operatorname{argmin}_z \left\{ \|x z\|_2^2/(2t) + h(z) \right\}$ 可有效估计

Theorem 3

固定步长的加速迫近梯度法 $t \leq 1/L$ 满足

$$f(x^{(k)}) - f^* \le \frac{2 \|x^{(0)} - x^*\|_2^2}{t(k+1)^2}$$

且同样的结果适用于回溯, t 被 β/L 取代

- 对于一阶方法实现 最佳速率 $O(1/k^2)$ 或 $O(1/\sqrt{\epsilon})$

FISTA

• 回到 lasso 问题:

$$\min_{\beta} \frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1} \tag{35}$$

• 回忆 ISTA (迭代软阈值算法):

$$\beta^{(k)} = S_{\lambda t_k} \left(\beta^{(k-1)} + t_k X^T \left(y - X \beta^{(k-1)} \right) \right), \quad k = 1, 2, 3, \dots$$
 (36)

 $S_{\lambda}(\cdot)$ 是向量软阈值算子

• 使用加速技巧 **FISTA** (F: Fast) 对于 k = 1, 2, 3, ...

$$v = \beta^{(k-1)} + \frac{k-2}{k+1} \left(\beta^{(k-1)} - \beta^{(k-2)} \right)$$

$$\beta^{(k)} = S_{\lambda t_{k}} \left(v + t_{k} X^{T} (v - Xv) \right)$$
(37)

FISTA

Lasso 回归: 100 个样本 (n = 100, p = 500):

加速总是有用的吗?

有时回溯和加速可能是不利的!

回顾矩阵填充问题: 迫近梯度更新:

$$B^{+} = S_{\lambda} \left(B + t \left(P_{\Omega}(Y) - P_{\Omega^{\perp}}(B) \right) \right)$$

其中 S_{λ} 是矩阵软阈值算子 ... 要实施奇异值分解

(38)

加速总是有用的吗?

- 一个回溯循环在要 t 的不同值上估计 $prox \rightarrow 对于矩阵填充,$ 意味着多个 SVD
- 加速技巧改变了传递给 prox 的参数: $v t\nabla g(v)$ 代替了 $x t\nabla g(x)$. 对于矩阵填充 (且 t = 1),

$$B - \nabla g(B) = \underbrace{P_{\Omega}(Y)}_{\text{sparse}} + \underbrace{P_{\Omega^{\perp}}(B)}_{\text{low rank}} \Rightarrow \text{ fast SVD}$$

$$V - \nabla g(V) = \underbrace{P_{\Omega}(Y)}_{\text{sparse}} + \underbrace{P_{\Omega^{\perp}}(V)}_{\text{not necessarily low rank}} \Rightarrow \text{ slow SVD}$$

$$(39)$$

作业

1. 记矩阵 $Y \in \mathbb{R}^{m \times n}$,针对矩阵填充问题,自主设定已知元素 $Y_{ij}, (i,j) \in \Omega$,编程实现迫近梯度算法,求解相应模型,实现 矩阵缺失元素填充。

参考文献和进一步阅读

Extensions and/or analyses:

- A. Beck and M. Teboulle (2008), "A fast iterative shrinkage-thresholding algorithm for linear inverse problems"
- S. Becker and J. Bobin and E. Candes (2009), "NESTA: a fast and accurate first-order method for sparse recovery"
- P. Tseng (2008), "On accelerated proximal gradient methods for convex-concave optimization"

参考文献和进一步阅读

Helpful lecture notes/books:

- E. Candes, Lecture notes for Math 301, Stanford University, Winter 2010 2011
- Y. Nesterov (1998), "Introductory lectures on convex optimization: a basic course", Chapter 2
- L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring 2011 – 2012