Solutions to Practice Problems for the Final Exam

1. Simplify each of the following expressions:

(a)
$$\ln(e^{\ln e})$$

(b)
$$\ln \left| \ln \frac{1}{e} \right|$$

Solutions. (a) $\ln(e^{\ln e}) = \ln e = \boxed{1}$

(b):
$$\ln \left| \ln \frac{1}{e} \right| = \overline{\ln |-1|} = \ln 1 = \boxed{0}$$

2. Solve each of the the following equations for x:

(a)
$$\ln(\ln x) = 1$$

(b)
$$\ln(x^2) = 2 + \ln x$$

(c)
$$e^{3x-4} = 7$$

Solutions. (a): $\ln(\ln x) = 1 \Leftrightarrow \ln x = e^1 = e \Leftrightarrow \boxed{x = e^e}$

(b):
$$\ln(x^2) = 2 + \ln x \Leftrightarrow 2 \ln x = 2 + \ln x \Leftrightarrow \ln x = 2 \Leftrightarrow \boxed{x = e^2}$$

(c):
$$e^{3x-4} = 7 \Leftrightarrow 3x - 4 = \ln 7 \Leftrightarrow 3x = 4 + \ln 7 \Leftrightarrow \boxed{x = \frac{4}{3} + \frac{1}{3}\ln 7}$$

3. Decide whether each statement is True or False. Explain why or why not.

(a)
$$(e^x)^2 = e^{x^2}$$

(b)
$$\ln 5 - \ln 3 = \ln 2$$

(c)
$$(\ln x)(\ln x) = \ln(x^2)$$

Solutions. (a) FALSE

- $(e^x)^2 = e^{2x}$ by exponent rules. This is different from e^{x^2} ; for example with x = 3, we have $e^{2x} = e^6$, but $e^{x^2} = e^9 \neq e^6$
- (b) FALSE

$$\ln 5 - \ln 3 = \ln \left(\frac{5}{3}\right) \neq \ln 2$$
, since $\frac{5}{3} \neq 2$.

(c) FALSE

We have $\ln(x^2) = 2 \ln x \neq (\ln x)(\ln x)$.

For example if $\ln x = 1$ (i.e., if x = e), then $2 \ln x = 2(1) = 2$, but $(\ln x)(\ln x) = 1 \cdot 1 = 1$.

4. Compute the derivatives of the following functions. (Hint: You may want to simplify first.)

(a)
$$f(x) = \ln(5xe^{-5x})$$

(b)
$$g(x) = e^{(\ln(x^2 + x) - \ln x)}$$

(c)
$$h(x) = \ln\left(\frac{xe^x}{\sqrt{e^{7x}}}\right)$$

Solutions. (a) $f(x) = \ln 5 + \ln x + \ln (e^{-5x}) = \ln 5 + \ln x - 5x$. Thus, $f'(x) = \frac{1}{x} - 5$

(b)
$$g(x) = e^{\left(\ln(x^2 + x) - \ln x\right)} = \frac{e^{\ln(x^2 + x)}}{e^{\ln x}} = \frac{x^2 + x}{x} = x + 1$$
. Thus, $g'(x) = \boxed{1}$

$$\frac{1}{(c) h(x)} = \ln\left(\frac{xe^x}{\sqrt{e^{7x}}}\right) = \ln(xe^x) - \ln\sqrt{e^{7x}} = \ln x + \ln(e^x) - \frac{1}{2}\ln(e^{7x}) = \ln x + x - \frac{1}{2}(7x) = \ln x - \frac{5}{2}x$$

Thus,
$$h'(x) = \frac{1}{x} - \frac{5}{2}$$

5. Find the equation of the tangent line to the curve $y = (x+2)e^{-x}$ at the point (0,2).

Solution. We compute $y' = (x+2)e^{-x}(-1) + e^{-x}(1) = e^{-x}(1-(x+2)) = e^{-x}(1-x-2) = e^{-x}(-1-x)$

So the slope at x = 0 is given by $y'(0) = e^{0}(-1 - 0) = -1$.

Thus, the equation of the tangent line is y-2=(-1)(x-0), or y=-x+2

6. Find the equation of the tangent line to the curve $y = \ln(xe^{-3x})$ at the point (1, -3).

Solution. First, we can simplify the function $y = \ln(xe^{-3x}) = \ln x + \ln e^{-3x} = \ln x - 3x$.

So
$$y' = \frac{1}{x} - 3$$
.

So the slope at x = 1 is given by y'(1) = 1 - 3 = -2.

Thus, the equation of the tangent line is y + 3 = -2(x - 1), or y = -2x - 1

7. Find an equation for the line tangent to $y = 4\sqrt{\ln x}$ at the point where x = e.

Solution. We have $y' = 4 \cdot \frac{1}{2} (\ln x)^{-1/2} \cdot \frac{1}{x} = \frac{2}{x\sqrt{\ln x}}$.

So the slope at x = e is $y'(e) = \frac{2}{e\sqrt{1}} = \frac{2}{e}$.

Meanwhile, when x = e, we have $y(e) = 4\sqrt{\ln e} = 4\sqrt{1} = 4$. So the point is (e, 4).

So by point-slope, the tangent line is $y-4=\frac{2}{e}(x-e)$, which simplifies to $y-4=\frac{2}{e}x-2$,

i.e.,
$$y = \frac{2}{e}x + 2$$

8. Let
$$y = \frac{\ln x}{1 + x^2}$$
, find $f'(1)$.

Solution. By the Quotient Rule, $y' = \frac{(1+x^2)(\frac{1}{x}) - \ln x(2x)}{(1+x^2)^2} = \frac{\frac{1}{x} + x - 2x \ln x}{(1+x^2)^2}$.

So the slope at x = 1 is given by $y'(1) = \frac{1 + 1 - 2 \ln 1}{4} = \boxed{\frac{1}{2}}$

9. Let $f(x) = x \ln x$ with x > 0. Where is f(x) concave up?

Solution. We compute $f'(x) = x \frac{1}{x} + \ln x(1) = 1 + \ln x$.

So
$$f''(x) = \frac{1}{x}$$
.

We have that f''(x) > 0 for x > 0. (Note also that the formula for f'' has f''(x) < 0 for x < 0, but the original domain of f is only x > 0.)

So f''(x) > 0 for all x in the domain x > 0 of f.

That is, f is concave up on its whole domain $(0, \infty)$

10. Let
$$x^2 e^y = \ln(xy)$$
. Find $\frac{dy}{dx}$

Solution. Implicit differentiation says $\frac{d}{dx}(x^2e^y) = \frac{d}{dx}(\ln(xy))$.

That is,
$$x^2 e^y \frac{dy}{dx} + e^y 2x = \frac{1}{xy} \left(x \frac{dy}{dx} + y \right)$$
, so $x^3 y e^y \frac{dy}{dx} + 2x^2 y e^y = x \frac{dy}{dx} + y$.

Rearranging ing yields
$$x^3ye^y\frac{dy}{dx} - x\frac{dy}{dx} = y - 2x^2ye^y$$
. Thus, $\frac{dy}{dx} = \frac{y - 2x^2ye^y}{x^3ye^y - x}$

11. Find all critical numbers of the function $f(x) = (x^2 - 7)e^{-x}$, and classify each as local maximum, local minimum, or neither.

Solution. We compute $f'(x) = (x^2 - 7)e^{-x}(-1) + e^{-x}(2x) = e^{-x}(-x^2 + 7 + 2x)$, which is **always** defined.

Solving f'(x) = 0 gives $-x^2 + 2x + 7 = 0$ which, by the quadratic formula, has solutions $x = 1 \pm 2\sqrt{2}$. So these are our only two critical numbers. Our f' chart is:

\boldsymbol{x}	$(-\infty, 1-2\sqrt{2})$	$(1-2\sqrt{2},1+2\sqrt{2})$	$(1+2\sqrt{2},\infty)$		
f'(x)	_	+	_		
f(x)	>	7	>		

So f has a local maximum at $1 + 2\sqrt{x}$ and a local minimum at $1 - 2\sqrt{x}$

12. Let $f(x) = x^4 e^{-x}$. For this function, discuss domain, vertical and horizontal asymptote(s), interval(s) of increase or decrease, local extreme value(s), concavity, and inflection point(s). Then use this information to present a detailed and labelled sketch of the curve.

Take my word that $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to-\infty} f(x) = +\infty$

Solution. Domain: all of $(-\infty, \infty)$, since x^4 and e^{-x} are defined everywhere.

V.A.: No vertical asymptotes. (No zeros in a denominator.)

H.A.: By the "take my word," since $\lim_{x\to\infty} f(x) = 0$, there is a horizontal asymptote at y = 0 on the right. (But not on the left.)

First Derivative Information:

We compute $f'(x) = x^4 e^{-x}(-1) + e^{-x}(4x^3) = e^{-x}(4x^3 - x^4) = x^3(4-x)e^{-x}$, which is always defined

Solving f' = 0 gives x = 0, 4. Our f' chart is

x	$(-\infty,0)$	(0,4)	$(4,\infty)$
f'(x)	_	+	_
f(x)	7	7	>

So f is increasing on the interval (0,4); and f is decreasing on $(-\infty,0)$ and $(4,\infty)$. Moreover, f has a local max at x=4 and a local min at x=0.

Second Derivative Information:

Recall,
$$f'(x) = e^{-x}(4x^3 - x^4)$$
. So

$$f''(x) = e^{-x}(12x^2 - 4x^3) - e^{-x}(4x^3 - x^4) = e^{-x}(12x^2 - 4x^3 - 4x^3 + x^4) = e^{-x}x^2(12 - 8x + x^2) = x^2(x - 2)(x - 6)e^{-x}$$
, which is always defined. Solving $f'' = 0$ gives $x = 0, 2, 6$. Our f'' chart is

x	$(-\infty,0)$	(0, 2)	(2,6)	$(6,\infty)$
f'(x)	+	+	_	+
f(x)	U	U	N	U

So f is concave down on the interval (2,6) and concave up on $(-\infty,2)$ and $(6,\infty)$, with inflection points at x=2 and x=6.

Here is a graph:

Integrals: Evaluate the following definite and indefinite integrals.

13.
$$\int (x-3)\sqrt{x^2-6x+\pi}\,dx$$

Solution.
$$\int (x-3)\sqrt{x^2-6x+\pi} \, dx \qquad [u=x^2-6x+\pi, \, du=(2x-6) \, dx, \, (x-3) \, dx = \frac{1}{2} \, du]$$
$$= \frac{1}{2} \int \sqrt{u} \, du = \frac{1}{2} \int u^{1/2} \, du = \frac{1}{2} \cdot \frac{2}{3} u^{3/2} + C = \boxed{\frac{1}{3} (x^2-6x+\pi)^{3/2} + C}$$

$$\frac{y^3 + y - 1}{14. \int \frac{y^3 + y - 1}{y^4 + 2y^2 - 4y + 3} \, dy}$$

Solution.
$$\int \frac{y^3 + y - 1}{y^4 + 2y^2 - 4y + 3} dy \quad [u = y^4 + 2y^2 - 4y + 3, du = (4y^3 + 4y - 4) dy, (y^3 + y - 1) dy = \frac{1}{4} du]$$
$$= \frac{1}{4} \int \frac{1}{u} du = \frac{1}{4} \ln|u| + C = \left[\frac{1}{4} \ln(y^4 + 2y^2 - 4y + 3) + C \right]$$

$$\frac{15. \int_{1}^{2} \frac{(x+1)(x-1)}{x^3} dx}$$

Solution.
$$\int_{1}^{2} \frac{(x+1)(x-1)}{x^{3}} dx = \int_{1}^{2} \frac{x^{2}-1}{x^{3}} dx = \int_{1}^{2} x^{-1} - x^{-3} dx = \left[\ln x + \frac{1}{2}x^{-2}\right]_{1}^{2}$$

$$= \left[\ln 2 + \frac{1}{2} \cdot \frac{1}{4}\right] - \left[\ln 1 + \frac{1}{2} \cdot \frac{1}{1}\right] = \ln 2 + \frac{1}{8} - \frac{1}{2} = \left[\ln 2 - \frac{3}{8}\right]$$

$$\frac{16. \int \sec^2(3x) \sin(\tan(3x)) dx}{}$$

Solution.
$$\int \sec^2(3x)\sin(\tan(3x)) dx = [u = \tan(3x), du = 3\sec^2(3x) dx, \sec^2(3x) dx = \frac{1}{3} du]$$

= $\frac{1}{3} \int \sin u \, du = -\frac{1}{3} \cos u + C = \boxed{-\frac{1}{3} \cos(\tan(3x)) + C}$

17.
$$\int_0^2 \frac{x}{\sqrt{2x^2 + 1}} \, dx$$

Solution.
$$\int_0^2 \frac{x}{\sqrt{2x^2 + 1}} dx = \left[u = 2x^2 + 1, du = 4x dx, x dx = \frac{1}{4} du \right]$$
$$= \frac{1}{4} \int_1^9 u^{-1/2} du = \frac{1}{2} \left[u^{1/2} \right]_1^9 = \frac{1}{2} \left[\sqrt{9} - \sqrt{1} \right] = \frac{3 - 1}{2} = \boxed{1}$$

$$\frac{18. \int (x-1)\csc^2(x^2-2x) \, dx}{1}$$

Solution.
$$\int (x-1)\csc^2(x^2 - 2x) dx = \left[u = x^2 - 2x, du = (2x-2) dx, (x-1) dx = \frac{1}{2} du \right]$$
$$= \frac{1}{2} \int \csc^2 u \, du = -\frac{1}{2} \cot u + C = \left[-\frac{1}{2} \cot(x^2 - 2x) + C \right]$$

$$19. \int_2^4 \frac{1}{x^2} \cos\left(\frac{\pi}{x}\right) dx$$

Solution.
$$\int_{2}^{4} \frac{1}{x^{2}} \cos\left(\frac{\pi}{x}\right) dx = \left[u = \frac{\pi}{x}, du = -\frac{\pi}{x^{2}} dx, \frac{1}{x^{2}} dx = -\frac{1}{\pi} du\right]$$
$$= -\frac{1}{\pi} \int_{\pi/2}^{\pi/4} \cos u \, du = -\frac{1}{\pi} \left[\sin u\right]_{\pi/2}^{\pi/4} = -\frac{1}{\pi} \left[\frac{\sqrt{2}}{2} - 1\right] = \left[\frac{1}{\pi} - \frac{\sqrt{2}}{2\pi}\right]$$

$$20. \int_0^{\pi/2} (\sin x + \cos x)^2 dx$$

Solution.
$$\int_0^{\pi/2} (\sin x + \cos x)^2 dx = \int_0^{\pi/2} \sin^2 x + 2\sin x \cos x + \cos^2 x dx$$
$$= \int_0^{\pi/2} 1 + 2\sin x \cos x dx = \int_0^{\pi/2} 1 dx + \int_0^{\pi/2} 2\sin x \cos x dx$$

$$[u = \sin x, du = \cos x \, dx \text{ on second integral only}] = [x]_0^{\pi/2} + \int_0^1 2u \, du$$
$$= \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u^2 \end{bmatrix}^1 = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u^2 \end{bmatrix}^1 = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} + \begin{bmatrix} u & 0 \end{bmatrix} = \begin{bmatrix} \pi & 0 \end{bmatrix} = \begin{bmatrix}$$

$$= \left[\frac{\pi}{2} - 0\right] + \left[u^2\right]_0^1 = \boxed{\frac{\pi}{2} + [1 - 0] = \frac{\pi}{2} + 1}$$

$$21. \int_{1}^{e} \frac{\sin(\pi \ln x)}{x} \, dx$$

Solution.
$$\int_{1}^{e} \frac{\sin(\pi \ln x)}{x} dx = [u = \pi \ln x, du = \frac{\pi}{x} dx, \frac{dx}{x} = \frac{du}{\pi}]$$
$$= \frac{1}{\pi} \int_{0}^{\pi} \sin u \, du = \frac{1}{\pi} [\cos u]_{0}^{\pi} = \frac{1}{\pi} [1 - (-1)] = \boxed{\frac{2}{\pi}}$$

$$22. \int e^{2x} \cos(e^{2x} + 1) \, dx$$

Solution.
$$\int e^{2x} \cos(e^{2x} + 1) dx = \left[u = e^{2x} + 1, du = 2e^{2x} dx, e^{2x} dx = \frac{1}{2} du \right]$$
$$= \frac{1}{2} \int \cos u \, du = \frac{1}{2} \sin u + C = \left[\frac{1}{2} \sin(e^{2x} + 1) + C \right]$$

$$\frac{1}{23.\int x(x^2+1)^{14} dx}$$

Solution.
$$\int x(x^2+1)^{14} dx \qquad [u=x^2+1, du=2x dx, x dx=\frac{1}{2} du]$$
$$=\frac{1}{2} \int u^{14} du = \frac{1}{2} \frac{u^{15}}{15} + C = \boxed{\frac{1}{30} (x^2+1)^{15} + C}$$

24.
$$\int \sin(4x)\cos(4x) \ dx$$

Solution.
$$\int \sin(4x)\cos(4x) \ dx \qquad [u = \sin(4x), \ du = 4\cos(4x) \ dx, \ \cos(4x) \ dx = \frac{1}{4} \ du]$$
$$= \frac{1}{4} \int u \ du = \frac{1}{4} \frac{u^2}{2} + C = \left[\frac{1}{8} \sin^2(4x) + C \right]$$

$$\frac{1}{25. \int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx}$$

Solution.
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx \qquad [u = e^x + e^{-x}, du = (e^x - e^{-x}) dx]$$
$$= \int \frac{1}{u} du = \ln|u| + C = \boxed{\ln|e^x + e^{-x}| + C}$$

$$\frac{1}{26. \int_{1}^{e^{3}} \frac{1}{x} \sqrt{1 + \ln x} \ dx}$$

Solution.
$$\int_{1}^{e^{3}} \frac{1}{x} \sqrt{1 + \ln x} \, dx \qquad [u = 1 + \ln x, \, du = \frac{1}{x} \, dx; \, x = e^{3} \Rightarrow u = 4; \, x = 1 \Rightarrow u = 1]$$
$$= \int_{1}^{4} \sqrt{u} \, du = \frac{2}{3} u^{3/2} \Big|_{1}^{4} = \frac{2}{3} \left(4^{3/2} - 1^{3/2}\right) = \frac{2}{3} (8 - 1) = \boxed{\frac{14}{3}}$$

$$\frac{1}{27. \int \frac{1}{(x+1)\ln(x+1)} \, dx}$$

Solution.
$$\int \frac{1}{(x+1)\ln(x+1)} dx \qquad [u = \ln(x+1), du = \frac{1}{x+1} dx]$$
$$= \int \frac{1}{u} du = \ln|u| + C = \boxed{\ln|\ln(x+1)| + C}$$

$$28. \int \frac{\sin x}{7 + \cos x} \ dx$$

Solution.
$$\int \frac{\sin x}{7 + \cos x} dx \qquad [u = 7 + \cos x, du = -\sin x dx, \sin x dx = -du]$$
$$= -\int \frac{1}{u} du = -\ln|u| + C = \boxed{-\ln|7 + \cos x| + C}$$

$$29. \int \frac{6e^x}{e^x + 7} \ dx$$

Solution.
$$\int \frac{6e^x}{e^x + 7} dx$$
 $[u = e^x + 7, du = e^x dx]$
= $6 \int \frac{1}{u} dx = 6 \ln|u| + C = 6 \ln|e^x + 7| + C$

$$\frac{1}{30.\int \frac{e^{\ln(\sin x)}}{e^{\ln(\cos x+7)}} dx}$$

[This is just number 28 again in disguise.]

$$\frac{1}{31. \int \ln(e^{x^2}e^x e^7) \ dx}$$

Solution.
$$\int \ln(e^{x^2}e^xe^7) \ dx = \int x^2 + x + 7 \ dx = \boxed{\frac{1}{3}x^3 + \frac{1}{2}x^2 + 7x + C}$$

$$32. \int \frac{6x+3}{x^2+x-5} \ dx$$

Solution.
$$\int \frac{6x+3}{x^2+x-5} dx [u = x^2+x-5, du = (2x+1) dx (6x+3) dx = 3 du]$$
$$= \int \frac{3 du}{u} = 3 \ln|u| + C = \boxed{3 \ln|x^2+x-5| + C}$$

$$\overline{33. \int \frac{1}{1-2x} \ dx}$$

Solution.
$$\int \frac{1}{1 - 2x} dx \qquad [u = 1 - 2x, du = -2 du, du = -\frac{1}{2} dx]$$
$$= -\frac{1}{2} \int \frac{du}{u} = -\frac{1}{2} \ln|u| + C = \boxed{-\frac{1}{2} \ln|1 - 2x| + C}$$

34.
$$\int e^{3x+1} dx$$

Solution.
$$\int e^{3x+1} dx$$
 $[u = 3x + 1, du = 3 dx, dx = \frac{1}{3} du]$
= $\frac{1}{3} \int e^u du = \frac{1}{3} e^u + C = \boxed{\frac{1}{3} e^{3x+1} + C}$

$$\frac{1}{35. \int \frac{e^{-1/x^7}}{x^8} dx}$$

Solution.
$$\int \frac{e^{-1/x^7}}{x^8} dx \qquad [u = -\frac{1}{x^7} = -x^{-7}, du = 7x^{-8} dx, \frac{dx}{x^8} = \frac{1}{7} du]$$
$$= \frac{1}{7} \int e^u du = \frac{1}{7} e^u + C = \left[\frac{1}{7} e^{-1/x^7} + C \right]$$

$$36. \int \frac{1}{e^x} dx$$

Solution.
$$\int \frac{1}{e^x} dx = \int e^{-x} dx$$
 $[u = -x, du = -dx, dx = -du]$
= $-\int e^u du = -e^u + C = \boxed{-e^{-x} + C}$

$$37. \int_0^1 \frac{1}{7x+1} \ dx$$

Solution.
$$\int_0^1 \frac{1}{7x+1} dx \qquad [u = 7x+1, du = 7 dx, dx = \frac{1}{7} du; x = 0 \Rightarrow u = 1, x = 1 \Rightarrow u = 8]$$
$$= \int_1^8 \frac{1}{7} \frac{du}{u} = \frac{1}{7} \ln|u| \Big|_1^8 = \frac{1}{7} (\ln 8 - \ln 1) = \boxed{\frac{1}{7} \ln 8}$$

38.
$$\int_{e}^{e^2} \frac{1}{x(\ln x)^2} dx$$

Solution.
$$\int_{e}^{e^{2}} \frac{1}{x(\ln x)^{2}} dx \qquad [u = \ln x, du = \frac{1}{x} dx; \ x = e \Rightarrow u = 1, \ x = e^{2} \Rightarrow u = 2]$$
$$= \int_{1}^{2} \frac{1}{u^{2}} du = -\frac{1}{u} \Big|_{1}^{2} = -\frac{1}{2} - (-1) = \boxed{\frac{1}{2}}$$

$$39. \int_{\ln 4}^{\ln 7} 9e^{2x} \ dx$$

Solution.
$$\int_{\ln 4}^{\ln 7} 9e^{2x} dx \quad [u = 2x, du = 2 dx, dx = \frac{1}{2} du; x = \ln 4 \Rightarrow u = 2 \ln 4, x = \ln 7 \Rightarrow u = 2 \ln 7]$$

$$= \int_{2 \ln 4}^{2 \ln 7} \frac{9}{2} e^{u} du = \frac{9}{2} e^{u} \Big|_{2 \ln 4}^{2 \ln 7} = \frac{9}{2} \left(e^{2 \ln 7} - e^{2 \ln 4} \right) = \frac{9}{2} \left(\left(e^{\ln 7} \right)^{2} - \left(e^{\ln 4} \right)^{2} \right)$$

$$= \frac{9}{2} \left(7^{2} - 4^{2} \right) = \frac{9}{2} \cdot 33 = \boxed{\frac{297}{2}}$$

$$\frac{1}{40. \int_0^{\ln 3} \left(2 + \frac{1}{e^x}\right)^2 dx}$$

Solution.
$$\int_0^{\ln 3} \left(2 + \frac{1}{e^x}\right)^2 dx = \int_0^{\ln 3} 4 + 4e^{-x} + e^{-2x} dx = 4x - 4e^{-x} - \frac{1}{2}e^{-2x} \Big|_0^{\ln 3}$$
$$= \left(4\ln 3 - 4e^{-\ln 3} - \frac{1}{2}e^{-2\ln 3}\right) - \left(0 - 4e^0 - \frac{1}{2}e^0\right) = 4\ln 3 - \frac{4}{3} - \frac{1}{2} \cdot \frac{1}{3^2} + 4 + \frac{1}{2} = \boxed{4\ln 3 + \frac{28}{9}}$$

41.
$$\int \frac{we^{w^2}}{17 + e^{w^2}} \ dw$$

Solution.
$$\int \frac{we^{w^2}}{17 + e^{w^2}} dw \qquad [u = 17 + e^{w^2}, du = 2we^{w^2} dw, we^{w^2} dw = \frac{1}{2} du]$$
$$= \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln|17 + e^{w^2}| + C = \boxed{\frac{1}{2} \ln(17 + e^{w^2}) + C}$$

42.
$$\int_{\ln 2}^{\ln 3} e^{2x} dx$$

Solution.
$$\int_{\ln 2}^{\ln 3} e^{2x} \ dx = \frac{1}{2} e^{2x} \bigg|_{\ln 2}^{\ln 3} = \frac{1}{2} \left(e^{2 \ln 3} - e^{2 \ln 2} \right) = \frac{1}{2} \left(3^2 - 2^2 \right) = \boxed{\frac{5}{2}}$$

$$\frac{1}{43. \int \frac{e^{-x} \ln(1 + e^{-x})}{1 + e^{-x}} dx}$$

Solution.
$$\int \frac{e^{-x} \ln(1 + e^{-x})}{1 + e^{-x}} dx \qquad [u = \ln(1 + e^{-x}), du = \frac{1}{1 + e^{-x}} (e^{-x})(-1) dx, \frac{e^{-x}}{1 + e^{-x}} dx = -du]$$
$$= -\int u du = -\frac{u^2}{2} + C = \boxed{-\frac{(\ln(1 + e^{-x}))^2}{2} + C}$$

$$\frac{1}{44. \int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}} dx}$$

Solution.
$$\int_{e}^{e^{4}} \frac{1}{x\sqrt{\ln x}} dx \qquad [u = \ln x, du = \frac{1}{x} dx; x = e^{4} \Rightarrow u = 4, x = e \Rightarrow u = 1]$$
$$= \int_{1}^{4} u^{-1/2} du 2u^{\frac{1}{2}} \Big|_{1}^{4} = 2\sqrt{4} - 2\sqrt{1} = 4 - 2 = \boxed{2}$$

$$45. \int (e^{3x} + e^{-7x})^2 dx$$

Solution.
$$\int (e^{3x} + e^{-7x})^2 dx = \int e^{6x} + 2e^{-4x} + e^{-14x} dx = \boxed{\frac{1}{6}e^{6x} - \frac{1}{2}e^{-4x} - \frac{1}{14}e^{-14x} + C}$$