MATH3423 Statistical Inference

Classwork 2

1. (6 marks)

Let $X_1, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$. Define

$$\overline{X}_k = \frac{1}{k} \sum_{i=1}^k X_i$$

$$\overline{X}_{n-k} = \frac{1}{n-k} \sum_{i=1+k}^{n} X_i$$

and

$$S_k^2 = \frac{1}{k-1} \sum_{i=1}^k (X_i - \overline{X}_k)^2,$$

$$S_{n-k}^2 = \frac{1}{n-k-1} \sum_{i=k+1}^n (X_i - \overline{X}_{n-k})^2,$$

Answer the following:

- (a) What is the distribution of $((k-1)S_k^2 + (n-k-1)S_{n-k}^2)/\sigma^2$?
- (b) What is the distribution of S_k^2/S_{n-k}^2 ?
- (c) What is the distribution of $(\overline{X}_k + \overline{X}_{n-k})/2$?
- (d) What is the distribution of $(\overline{X}_n \mu)/(S_n/\sqrt{n})$?

If $\mu = 0 \ \sigma = 1$,

- (e) What is the distribution of X_1/X_2 ?
- (f) What is the distribution of $(X_1 + X_2)^2/(X_1 X_2)^2$?

Answers:

- (a) _____ (b) ____
- (c) _____ (d) ____
- (e) _____ (f) ____

2. **(6 marks)**

Let X_1, \ldots, X_n be i.i.d. r.v.'s from the $U(0, \theta), \theta \in \Omega = (0, \infty)$, distribution. Answer the following questions.

- (a) Find the p.d.f. of $X_{(n)}$ and $E(X_{(n)})$, where $X_{(n)} = \max(X_1, \dots, X_n)$;
- (b) Find the p.d.f. of $X_{(1)}$ and $E(X_{(1)})$, where $X_{(1)}=\min(X_1,\ldots,X_n)$;
- (c) Find two unbiased estimators for θ .