Aufgabe 1. (Sei $\tilde{x} \in \mathbb{R}$ und (h_n) eine Nullfolge.)

$$\lim f(\tilde{x} + h_n) = \lim |\tilde{x} + h_n| = \begin{cases} \lim(\tilde{x} + h_n) = \tilde{x} + \lim h_n = \tilde{x} \\ \lim(-\tilde{x} - h_n) = -\tilde{x} - \lim h_n = -\tilde{x} \end{cases} = |\tilde{x}| = f(\tilde{x})$$

Aufgabe 2.

Aufgabe 3. Sei x_n eine Folge die auf x konvergiert. Weil f stetig in x ist, konvergiert $(f(x_n))$ gegen f(x). Weil g stetig in f(x) ist, konvergiert $(g(f(x_n)))$ gegen g(f(x)). Also ist $g \circ f$ stetig in x.

Aufgabe 4. f(x) = 0, überall in \mathbb{R} stetig.

Aufgabe 5. Ist eine Funktion f in x_0 stetig dann gilt: Für alle $\epsilon > 0$ gibt es $\delta > 0$ derart, dass für alle x

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

(Definition nach Weierstrass und Jordan.)

Wähle $\epsilon=1/2$. Zwischen zwei rationalen Zahlen gibt es immer eine irrationale Zahl, also finden wir für beliebig kleine δ mindestens eine irrationale Zahl die einen Sprung $> \epsilon$ verursacht. Zwischen zwei reellen Zahl gibt es immer eine eine rationale Zahl . . . selbes Konzept.

Aufgabe 6.

- a) Die Vorzeichenfunktion ist in x = 0 unstetig, sonst stetig.
- b)

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} x, & \text{wenn } x \in \mathbb{Q} \\ -x & \text{sonst} \end{cases}$$

ist in x = 0 stetig, sonst unstetig.

Aufgabe 7. Es gilt

$$f(xy) = x f(y) f(yx) = y f(x)$$

und somit

$$x f(y) = y f(x)$$
$$\frac{f(y)}{y} = \frac{f(x)}{x}.$$

Unsere Funktionen sind also notwendigerweise lineare Funktionen f(x)=cx+d für $c,d\in\mathbb{R}$. Klarerweise sind dieses Funktionen wegen

$$\lim f(x+h_n) = \lim (cx+ch_n+d) = cx+d+\lim ch_n = cx = f(x)$$

global stetig.

Aufgabe 8. Nachdem f stetig in einem Punkt x' ist, gilt

$$\lim_{x \to x'} f(x) = f(x').$$

Wir wollen zeigen, dass für beliebige \tilde{x} auch $\lim_{x \to \tilde{x}} f(x) = f(\tilde{x})$ gilt.

$$\lim_{x \to \tilde{x}} f(x) = \lim_{x \to x'} f(x - x' + \tilde{x})$$

$$= \lim_{x \to x'} (f(x) - f(x') + f(\tilde{x}))$$

$$= (\lim_{x \to x'} f(x)) - f(x') + f(\tilde{x})$$

$$= f(x') - f(x') + f(\tilde{x})$$

$$= f(\tilde{x})$$

Ist eine additive Funktion stetig in einem beliebigen Punkt, ist sie auch global stetig.