МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

СПОСОБЫ, АЛГОРИТМЫ УМНОЖЕНИЯ ДВОИЧНЫХ ЧИСЕЛ С ФЗ

Отчет по лабораторной работе №2 дисциплины «Информатика»

Выполнил студент группы ИВТ-11	/Рзаев А. Э./
Проверил преподаватель	/Шихов М. М./

1 Умножение первым способом

1.1 Постановка задачи

Перемножить два числа, представленных в двоичной системе счисления с фиксированной запятой в дополнительном коде с ручной поправкой, используя первый способ умножения. Для выполнения поставленной задачи использовать программную компьютерную модель. Исходными данными являются числа: $A = 52_{10} = 0.0110100_2$; $B = -56_{10} = 1.1001000_2$. В результате должно получиться число $A * B = -2912_{10} = 1.11010010100000_2$.

1.2 Описание алгоритма умножения первым способом

Устройства, которые хранят операнды, регистры, имеют следующую разрядность:

- регистры множителя и множимого n-разрядные;
- регистр частичных произведений 2n-разрядный.

Суммирование множимого следует выполнять в старших п разрядах регистра суммы частичных произведений. Причем, разрядность его можно уменьшить вдвое, до п-разрядов, помещая при сдвиге младшие разряды суммы на место освобождающихся разрядов регистра множителя. После основного цикла суммирования сделать поправку, прибавив -А к п старшим разрядам регистра суммы частичных произведений.

Особенность первым способом умножения состоит в том, что имеется, возможно, временное переполнение разрядной сетки (ПРС) в регистре суммы частичных произведений, которое ликвидируется при очередном сдвиге вправо.

1.3 Умножение первым способом

Экранная форма получения результата умножения первым способом на программной компьютерной модели представлена на рисунке 1.

Рисунок 1 — Результат работы программы при умножении первым способом

Таблица расчётов умножения первым способом представлена на рисунке 2

Множитель>	СЧП>	Комментарий
0,011010 <u>0</u>	0,0000000 0000000	Сдвиги
.,001101 <u>0</u>	0,0000000 0000000	Сдвиги
.,.00110 <u>1</u>	0,0000000 0000000	Сложение
	0,1001000 0000000	Сдвиги
	0,1001000 0000000	
.,0011 <u>0</u>	0,0100100 0000000	Сдвиги
.,001 <u>1</u>	0,0010010 0000000	Сложение
+	0,1001000 0000000	Сдвиги
	0,1011010 0000000	
.,00 <u>1</u>	0,0101101 0000000	Сложение
+	0,1001000 0000000	Сдвиги
	0,1110101 0000000	
.,0 <u>0</u>	0,0111010 1000000	Сдвиги
.,0	0,0011101 0100000	Поправка
	0,1001100 0000000	
	0,1101001 0100000	
.,0	1,1101001 0100000	Результат

Рисунок 2 – Таблица расчетов первым способом умножения

2 Умножение вторым способом

2.1 Постановка задачи

Задача формулируется так же, как и в пункте 1.1. Особенность состоит в том, что при умножении используется второй способ.

2.2 Описание алгоритма умножения вторым способ

Второй способ реализует умножение с младших разрядов множителя со сдвигом множимого влево. Этот способ требует п-разрядного регистра множителя, а также 2n-разрядных регистров множимого и суммы частичных произведений. Причем, первоначально множимое помещается в младшие разряды регистра, а затем в каждом такте сдвигается на один разряд влево. После основного цикла суммирования сделать поправку, прибавив -А к n старшим разрядам регистра суммы частичных произведений.

2.3 Умножение вторым способом

Экранная форма получения результата умножения вторым способом на программной компьютерной модели представлена на рисунке 3.

Рисунок 3 - Результат работы программы при умножении вторым способом

Таблица расчётов умножения вторым способом представлена на рисунке 4.

7.5	3.5		1
Множитель →	Множимое ←	СЧП	Комментарий
0,011010 <u>0</u>	0,0000000 1001000	0,0000000 0000000	Сдвиги
.,001101 <u>0</u>	0,0000001 001000.	0,0000000 0000000	Сдвиги
.,.00110 <u>1</u>	0,0000010 01000	0,000000 0000000	Сложение
		0,0000010 01000	Сдвиги
		0,0000010 0100000	
.,0011 <u>0</u>	0,0000100 1000	0,0000010 0100000	Сдвиги
.,001 <u>1</u>	0,0001001 000	0,0000010 0100000	Сложение
	+	0,0001001 000	Сдвиги
		0,0001011 0100000	
.,00 <u>1</u>	0,0010010 00	0,0001011 0100000	Сложение
	†	0,0010010 00	Сдвиги
		0,0011101 0100000	
.,0 <u>0</u>	0,0100100 0	0,0011101 0100000	Сдвиги
.,0	0,1001000	0,0011101 0100000	
.,0	0,1001000	0,0011101 0100000	Поправка
	†	0,1001100 0000000	
		0,1101001 0100000	
.,0	0,1001000	1,1101001 0100000	Результат

Рисунок 4 — Таблица расчетов вторым способом умножения

3 Умножение третьим способом

3.1 Постановка задачи

Задача формулируется так же, как и в пункте 1.1. Особенность состоит в том, что при умножении используется третий способ.

3.2 Описание алгоритма умножения третьим способом

III способ — умножение со старших разрядов множителя со сдвигом суммы частичных произведений влево. Этот способ требует два п-разрядных регистра множителя и множимого и одного 2n-разрядных регистра суммы частичных произведений. Суммирование множимого следует выполнять в младшие п разряды регистра суммы частичных произведений. Особенность III способа умножения состоит в том, что в последнем такте не следует выполнять сдвиг в регистре сумм частичных произведений. После основного цикла суммирования сделать поправку, прибавив -А к п старшим разрядам регистра суммы частичных произведений.

3.3 Умножение третьим способом

Экранная форма получения результата умножения третьим способом на программной компьютерной модели представлена на рисунке 5.

Рисунок 5 - Результат работы программы при умножении третьим способом

Таблица расчётов умножения третьим способом представлена на рисунке 6.

Множитель —	СЧП ←	Комментарий
0, <u>0</u> 110100	0,0000000 0000000	Сдвиги
0, <u>1</u> 10100.	0,0000000 000000.	Сложение
+	0,0000000 1001000	Сдвиги
	0,0000000 1001000	
1 <u>,1</u> 0100	0,0000001 001000.	Сложение
+	0,0000000 1001000	Сдвиги
	0,0000001 1011000	
1, <u>0</u> 100	0,0000011 011000.	Сдвиги
0, <u>1</u> 00	0,0000110 11000	Сложение
+	0,0000000 1001000	Сдвиги
	0,0000111 0101000	
0, <u>0</u> 0	0,0001110 101000.	Сдвиги
0,0	0,0011101 01000	Поправка
Ţ	0,1001100 0000000	
	0,1101001 0100000	
0,0	1,1101001 0100000	Результат

Рисунок 6 – Таблица расчетов третьим способом умножения

4 Умножение четвертым способом

4.1 Постановка задачи

Задача формулируется так же, как и в пункте 1.1. Особенность состоит в том, что при умножении используется третий способ.

4.2 Описание алгоритма умножения четвертым способом

IV способ — умножение со старших разрядов множителя со сдвигом множимого вправо. Этот способ требует одного п-разрядного регистра множителя и двух 2n-разрядных регистров множимого и суммы частичных произведений. Причем первоначально множимое помещается в старшие разряды регистра, а затем в каждом такте сдвигается на один разряд вправо. Особенность IV способа умножения состоит в том, что перед началом цикла умножения следует множимое сдвинуть на один разряд вправо. После основного цикла суммирования сделать поправку, прибавив -A к п старшим разрядам регистра суммы частичных произведений.

4.3 Умножение четвертым способом

Экранная форма получения результата умножения четвертым способом на программной компьютерной модели представлена на рисунке 7.

Рисунок 7 - Результат работы программы при умножении четвертым способом

Таблица расчётов умножения четвертым способом представлена на рисунке 8.

Множитель	Множимое <i>→</i>	СЧП	Комментарий
0,0110100	0,01001000 0000000	0,0000000 0000000	Сдвиги
0 <u>,1</u> 10100.	0,00100100 0000000	0,0000000 0000000	Сложение
	+	0,0010010 0000000	Сдвиги
		0,0010010 0000000	
1 <u>,1</u> 0100	0,0001001 0000000	0,0010010 0000000	Сложение
	+	0,0001001 0000000	Сдвиги
		0,0011011 0000000	
1, <u>0</u> 100	0,0000100 1000000	0,0011011 0000000	Сдвиги
0, <u>1</u> 00	0,0000010 0100000	0,0011011 0000000	Сложение
	+	0,0000010 0100000	Сдвиги
		0,0011101 0100000	
1 <u>,0</u> 0	0,0000001 0010000	0,0011101 0100000	Сдвиги
0, <u>0</u>	0,0000000 1001000	0,0011101 0100000	Сдвиги
0,	0,0000000 0100100	0,0011101 0100000	Поправка
	+	0,1001100 0000000	
		0,1101001 0100000	
0,	0,0000000 0100100	1,1101001 0100000	Результат

Рисунок 8 – Таблица расчетов четвертым способом умножения