This dataset consists of 48283 different accidents in different parts of UK and explains about their casualties. All accidents were unvalidated and occurred in 2022.

Some Terms About Casualties

- Accident Reference: a unique value for each accident
- Accident Index: year of accident + Accident Reference
- Vehicle Reference: unique value for each vehicle in a singular accident
- Casualty Reference: unique value for each vehicle in a singular accidents
- Casualty Class: whether the casualty was a driver/rider, passenger or pedestrian
- Casualty Severity: degree of severity (slight, severe, fatal)
- Casualty Home Area Type: where did the casualty live? (urban area, small town or rural area)
- Casualty IMD Decile: In which IMD decile was the casualty located?

Analysis Techniques

- Basic EDA
 - o Descriptive Statistics
 - Checking unique values of columns
- Data Preparation
 - Nonanonymizing Data
 - Finding Guide Data From Source Website
 - Mapping to meaningful data
 - Handling Missing Values
 - Figuring Out Type of Missing Values
 - np.nan
 - None
 - 'unkown'
 - MCAR, CAR and NCAR Analysis
 - checking if missing values are randomly occurring in the data or not
 - Checking number of missing values in each record
 - a simple programmer-written function
 - Dropping Rows with multiple missing values
 - Imputing Some Rows With Mode, Mean or Median
 - Feature Selection
 - Identification of invaluable columns which provide no information and dropping them
 - status, accident_index, accident_year
 - Identification of controversial columns and records
 - accident reference: 34NNC2522
 - pedestrian location, movement and road maintenance worker
 - car, bus/coach passenger
 - o Univariate Analysis
 - Plotting Each Column To Get Insight About Its Distribution

- Multivariate Analysis
 - Plotting Some Columns Together To See If They're Related Or Not
 - kde plot
 - violin plot
 - heatmap
 - countplot
 - boxenplot
 - Statistical Analysis
 - · chi2 independence and goodness of fit test
- Preprocessing Data
 - One Hot Encoding
 - converting categorical data to a numerical matrix of zeros and ones
 - Train Test Split
 - creating data for training the model and testing how well it's learnt
 - Random Over Sampling
 - balancing data because number of records for different categories were not equal
- Training Models For Severity Prediction
 - Decision Tree Classifier
 - Random Forest Classifier
 - SVC
- Model Evaluation
 - Classification Report
 - Accuracy
 - Precision
 - Recall
 - F1 Score

Results

• Males tend to have more accidents that females

• There's no difference in age distribution between different genders.

• Drivers have more accidents than passengers and pedestrians

• Most of accidents have occurred on cars

Casualty Type

• Most of accidents occur in urban areas

• Higher imd deciles have less accidents

• Men tend to have more severe casualties than women

• People from lower imd deciles tend to have more severe casualties

• People from less developed areas have more severe accidents

Discussion and Recommendations

- Since less developed areas have more rates of fatal and serious casualties it's recommended to put signs in roads and train people to have safer driving experience.
- Since teens have more rates of accidents and casualties It's better to have them practice more and be more careful.
- Constructing Healthcare centers is a good idea to prevent more severe casualties
- Further investment in lower imd decile regions could prevent fatal casualties.
- Enhancing Education for teens and lower imd decile people should be one the most important things to consider