



# MOVIE SUCCESS PREDICTION SYSTEM

## A MACHINE LEARNING APPROACH









### MEET OUR TEAM



**Arjun Sarkar** 

BTECH, CSE

[ARTIFIIAL INTELLIGENCE &

MACHINE LEARNING]

7<sup>th</sup> SEMESTER



**Rupal Dhurde** 

BTECH, CSE
[ARTIFIIAL INTELLIGENCE &
MACHINE LEARNING]
7<sup>th</sup> SEMESTER



**Urvashi Bohare** 

BTECH , CSE
[ARTIFIIAL INTELLIGENCE &
MACHINE LEARNING]
7<sup>th</sup> SEMESTER



Vishnupriya Jaiswal

BTECH , CSE
[ARTIFIIAL INTELLIGENCE &
MACHINE LEARNING]
7<sup>th</sup> SEMESTER



## INTRODUCTION



#### **Problem**

• The movie industry is a high-risk, high-reward business. Millions of dollars are invested without a guarantee of success.

#### Solution

• We can use machine learning to analyze historical movie data and identify patterns that correlate with success.

### Project Objective

 To build a predictive model that can classify a movie as a "Hit" or "Flop" based on pre-release factors like genre, budget, cast, and crew.





### ABOUT OUR DATASET





#### The Dataset

- Source We used the "TMDB 5000 Movie Dataset" available on Kaggle.
- Content It contains two CSV files with data for approximately 5000 movies.

#### **Key Features**

- budget The production budget of the movie.
- genres The genres associated with the movie (e.g., Action, Comedy).
- keywords Keywords or tags describing the movie's plot.
- cast Main actors in the movie.
- crew Director, producer, etc.
- vote\_average The average user rating.
- revenue The worldwide box office revenue.





### SYSTEM ARCHITECTURE



analysing
Steps
involved in

out prediction

Raw Movie Data (CSV files)

### Processing

**Data Cleaning & Preprocessing** Feature Extraction Train/Test Split

### Modeling

Random Forest Algorithm Training

### Output





## Krishna's Vikash Group of Institutions

### PROJECT METHODOLOGY

- Data Loading & Cleaning Merged the two datasets and removed irrelevant columns.
- Feature Engineering Created our target variable, "success," by defining a successful movie as one with a high rating and positive return on investment.
- Exploratory Data Analysis (EDA) Visualized the data to understand relationships between features like budget, genre, and success.
- Data Preprocessing Converted text data (like genres, cast) into a numerical format that the model can understand.
- Model Training Trained a Random Forest Classifier, a powerful and popular ML model.
- Model Evaluation Tested the model's performance using metrics like Accuracy and a Confusion Matrix.





## EXPLORATORY DATA ANALYSIS (GRAPHICS)



## PLOT 1: TOP 10 GENRES BY SUCCESS RATE

- Success by Genre We created a bar chart showing which genres (like Adventure and Sci-Fi) have a higher tendency to produce successful movies.
- Feature Importance Our final model showed that features like budget, vote\_average, and runtime were the most influential in predicting success.



## EXPLORATORY DATA ANALYSIS (GRAPHICS)



## PLOT 2: BUDGET VS. REVENUE

 Budget vs. Revenue - A scatter plot showed a positive correlation, but many high-budget films still failed.



## MODEL PERFORMANCE RESULTS

### **Model Used**

**Random Forest Classifier** 

### Accuracy

Our model achieved an accuracy of approximately 88% on the test data.

### **Confusion Matrix**

The matrix showed that our model is effective at correctly identifying both "Hits" and "Flops," with a good balance.





### LIVE DEMONSTRATION (PROJECT)

- We built a simple function to test our model.
- Input: A new movie's budget, genres, keywords, and director.
- Prediction: The model outputs

   a prediction: "This movie is
   predicted to be a HIT!" or "This
   movie is predicted to be a
   FLOP."



### CONCLUSION & FUTURE SCOPE

- Conclusion We successfully developed a machine learning model that accurately predicts movie success. This proves that data-driven insights can be valuable for the film industry.
- Future Scope -
- 1. Incorporate more data, such as social media buzz or critic reviews.
- 2. Use more advanced models like Gradient Boosting or Neural Networks.
- 3. Deploy the model as a user-friendly web application.

Training the Random Forest model...
Model training complete.

Model Accuracy: 0.88

Classification Report:

| 0140011104010 | precision | recall | f1-score | support |
|---------------|-----------|--------|----------|---------|
| Flop          | 0.91      | 0.92   | 0.91     | 447     |
| Hit           | 0.81      | 0.78   | 0.79     | 196     |
| accuracy      |           |        | 0.88     | 643     |
| macro avg     | 0.86      | 0.85   | 0.85     | 643     |
| weighted avg  | 0.87      | 0.88   | 0.88     | 643     |







# THANK YOU FOR WATCHING