

Some Placeholder Title

A Master Thesis

written by

Victor Melbye Staven vista17@student.sdu.dk

The code for this project is available at https://github.com/vmstavens/in_hand_pose_estimation

University of Southern Denmark

The Technical Faculty

Word Count: 4124 September 16, 2022

Abstract

Some abstract text ex	plaining the goal	 methods and 	conclusion of	of the project.

Contents

	Acknowledgments	ii iii
1	Example section	1
2 Introduction		2
3	Litterature Review	3
4	Problem 1 4.1 Introduction 4.2 Related Work	4 4 4
5	Problem 2	5
6 Discussion		6
7	Conclusion	7
A	Appendix A Title	9

Acknowledgements

We would like to thank our supervisor Christoffer Sloth for the guidance he provided during the project.

Acronyms

 ${\bf acronym\text{-}abbr}\ {\bf actorym\text{-}description}.$

glossary-multi-abbr glossary-multi-long.

Terms

glossary term glossary term description.

 ${\bf gloss ary\text{-}multi\text{-}long} \ ({\bf gloss ary\text{-}multi\text{-}abbr}) \ \ {\bf gloss ary\text{-}multi\text{-}description}.$

Example section

This document demonstrate the use of figures, references, SI units, glossary, math notation, lists, and otherwise relevant formatting specifications. Paragraphs are typically separated using \medskip.

Fig. 1: An example image using actorym-description.

To exemplify math notation, consider the mapping between the joint configuration of a robot

$$\mathbf{q} = [q_1 \quad q_2 \quad \dots \quad q_n]^\mathsf{T},\tag{1}$$

and glossary term, given as a homogeneous transformation

$$\mathbf{T}_{B}^{A} = \begin{bmatrix} \mathbf{R}_{B}^{A} & \mathbf{t}_{B}^{A} \\ \mathbf{0}^{1 \times 3} & 1 \end{bmatrix}, \tag{2}$$

where \mathbf{R}_B^A and \mathbf{t}_B^A is the rotation and translation, respectively, from frame $\{A\}$ to frame $\{B\}$, denoted using a homogeneous transformation matrix $\mathbf{T}(\mathbf{q}) \in \mathbb{R}^{4\times 4}$ as a function of the joint configuration in (1), as described in [robotics-book].

Complex table/figure hybrids with aligned captions and functioning labels can be implemented using minipage, as shown in Table 1 and Fig. 2. Use https://cite as a placeholder for citations.

Pose Method	1	2	3
Linear	18.97 s	20.35 s	22.85 s
Parabolic	13.66 s	14.93 s	17.33 s

Table 1: Trajectory durations of the interpolation-based trajectory generation methods.

Fig. 2: Average planning time for each of the interpolation-based trajectory generation methods.

For numbers, units and ranges, the siunitx package is used, which allows to express a number 10, a range of 5 s to 6 s, or a SI unit of 5.73 ± 1.09 s. Inline row-vectors (with the transpose symbol) can be written as $\mathbf{a} = \begin{bmatrix} \mathbf{a}_p & \mathbf{a}_o \end{bmatrix}^\mathsf{T}$, where as parentheses can be automatically written using (a, b) or $\left\{\frac{a}{b}, c\right\}$. Also, shorthands for \mathbf{A}^{-1} , \mathbf{A}^{\dagger} and \mathbf{A}^{T} .

Introduction

Subject matter terms are addressed with $\gls{glossary-label}$ like so glossary term.

Acronyms are addressed with either with their long equivalent $\acrlong{gls-label}$ which gives actorymdescription or the short equivalent $\acrshort{gls-label}$ which gives acronym-abbr.

Subject matter terms can also be multi structure $\gls{glossary-multi-label}$ which gives glossary-multi-long (glossary-multi-abbr) (see terms and acronyms above).

Litterature Review

Problem 1

4.1 Introduction

Here we write the introduction for problem 1.

4.2 Related Work

Here we cite the related work by \cite{source-label} like this [1]

Problem 2

Discussion

Conclusion

Bibliography

[1] Quigley, Morgan et al. "ROS: an open-source Robot Operating System". In: *ICRA Workshop on Open Source Software* 3 (Jan. 2009).

Appendix A

Appendix A Title