Before we start...

Import the `titanic` dataset into R

https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html

Install the packages ONCE (to check, skip this step)

> install.packages("tidyverse")

After installing, you must load the packages every time you open R

> library(tidyverse)

Introduction to R for Research

Data Wrangling with Tidyverse

Penn State, University Libraries, Research Informatics and Publishing

Workshop Housekeeping

Questions?

Use the chat or raise hand feature.

Feedback Survey

After each session, please fill out the Qualtrics survey (link in chat and emailed out after session).

If you could live anywhere in the world for a year, where would it be?

What is the purpose of Data Wrangling?

Agenda

- Why Tidyverse?
- Quick R Recap
- Loading Libraries
- The Fundamental Functions
- Exporting Datasets
- Additional Exercises

What is the Tidyverse?

Over 87 packages combined together

Packages align on data processing philosophy

Encompasses all aspects of a project, including data processing, visualization, modeling

Tidyverse Philosophy

"Variables are in columns, observations are in rows, and values are in cells."

R Recap

General Comments

If you see: > print("Hello World")

Run print("Hello World") in R Script. Do not include the `>`.

Use `#` to write comments - code after # is not run.

> # This is not run

RStudio

Type code into Script

Code output shows in Console

Variables appear in Environment

Variable Assignment

Common Data Types

Examples
-5, 1, 3.33, 100, pi
-5L, 1L, 100L
'words', "3.33", 'TRUE', "1L"
TRUE, FALSE, T, F

(HBC Source - https://hbctraining.github.io/Training-modules/IntroR/)

Learn more about functions

- Google "<function name> in R"
- Use `help()` or `?` in R to see documentation

- > help(sqrt)
- > ?sqrt

Installing and Loading Packages

Install the packages ONCE (to check, skip this step)

> install.packages("tidyverse")

After installing, you must load the packages every time you open R

> library(tidyverse)

The Fundamental Functions

The Fundamental Functions

select Select columns

select - Select which variables to keep

select(data, `Column1`, `Column2`,...)

Columns to keep or remove (-)

Use column name, number, or colon

select - Keep columns

select(data, Name)

Name	Major	HW
Matt	math	60
Mary	math	90
Bill	biology	85
Brie	biology	87

Name
Matt
Mary
Bill
Brie

select - Remove Columns

select(data, -Major)

Name	Major	HW
Matt	math	60
Mary	math	90
Bill	biology	85
Brie	biology	87

Select all columns except `Major`

Name	HW
Matt	60
Mary	90
Bill	85
Brie	87

select - Keep multiple columns

select(data, Major, HW)

Name	Major	HW
Matt	math	60
Mary	math	90
Bill	biology	85
Brie	biology	87

Major	HW
math	60
math	90
biology	85
biology	87

select - Keep Multiple Columns

select(data, Major:HW)

Name	Major	HW
Matt	math	60
Mary	math	90
Bill	biology	85
Brie	biology	87

Major	HW
math	60
math	90
biology	85
biology	87

select - Titanic Exercises

1. Select the variables `Survived`, `Sex`, and `Parents.Children.Aboard`

- > select(titanic, _____, ____, ____)
- 2. Remove the `Name` variable, and store the new results in `Titanic_nameless`
- > Titanic_nameless <- select(titanic, _____)
- 3. Store the first four columns of `titanic` in a new dataframe. How many different ways can you do this using `select()`?

select - Titanic Exercise Solutions

- 1. Select the variables 'Survived', 'Sex', and 'Parents.Children.Aboard'
- > select(titanic, Survived, Sex, Parents.Children.Aboard
- 2. Remove the 'Name' variable, and store the new results in 'Titanic_nameless'
- > Titanic_nameless <- select(titanic, -Name)
- 3. Store the first four columns of `titanic` in a new dataframe. How many different ways can you do this using `select()`?

select - Titanic Exercise Solutions

- 3. Store the first four columns of `titanic` in a new dataframe. How many different ways can you do this using `select()`?
- > t2 <- select(titanic, 1:4)
- > t2 <- select(titanic, Survived:Sex)
- > t2 <- select(titanic, Survived, Pclass, Name, Sex)</p>
- > t2 <- select(titanic, -Age, -Siblings.Aboard, -Parents.Children.Aboard, -Fare)
- > t2 <- select(titanic, -c(Age:Fare))

The Fundamental Functions

select Select columns

The Fundamental Functions

select Select columns

filter Filter rows

filter - filter the rows

filter(data, <Boolean condition>,...)

Condition on the variables

filter - filter the rows

filter(data, <Boolean condition>,...)

Condition on the variables

< Less than >= Greater than or equal to

<= Less than or equal to == Equal to</pre>

> Greater than != Not equal to

filter - Keep specific value

filter(data, Major == "math")

Name	Major	HW
Matt	math	60
Mary	math	90
Bill	biology	85
Brie	biology	87

Keep rows where Major is "math"

Name	Major	HW
Matt	math	60
Mary	math	90

filter - Keep range of values

filter(data, HW <= 85)

Name	Major	HW
Matt	math	60
Mary	math	90
Bill	biology	85
Brie	biology	87

Keep rows where `HW` is less than or equal to 85

Name	Major	HW
Matt	math	60
Bill	biology	85

filter - Multiple Conditions

filter(data, HW <= 85, Major == "math")

Name	Major	HW
Matt	math	60
Mary	math	90
Bill	biology	85
Brie	biology	87

Keep rows where `HW` is less than or equal to 85, **AND** `Major` is math

Name	Major	HW
Matt	math	60

filter - Multiple Conditions

filter(data, HW <= 85 & Major == "math")

Name	Major	HW
Matt	math	60
Mary	math	90
Bill	biology	85
Brie	biology	87

Keep rows where `HW` is less than or equal to 85, **AND** `Major` is math

Name	Major	HW
Matt	math	60

filter - Multiple Conditions

filter(data, HW <= 85 | Major == "biology")

Name	Major	HW
Matt	math	60
Mary	math	90
Bill	biology	85
Brie	biology	87

Keep rows where `HW` is less than or equal to 85, **OR** `Major` is biology

Name	Major	HW
Matt	math	60
Bill	biology	85
Brie	biology	87

filter - Titanic Exercises

1. Create a new dataset with only those who survived (`Survived` value of 1)

2. Only show rows with 1st class ('Pclass') females ('Sex')

3. How many rows are there if you keep only males between ages 20-30?

filter - Titanic Exercise Solutions

- 1. Create a new dataset with only those who survived (`Survived` value of 1)
- > survived <- filter(titanic, Survived == 1)
- > survived <- filter(titanic, Survived == "1")

filter - Titanic Exercise Solutions

- 1. Create a new dataset with only those who survived (`Survived` value of 1)
- > survived <- filter(titanic, Survived == 1)
- > survived <- filter(titanic, Survived == "1")
- 2. Only show rows with 1st class ('Pclass') females ('Sex')
- > filter(titanic, Pclass == 1 & Sex == "female")
- > filter(titanic, Pclass == 1, Sex == "female")

filter - Titanic Exercise Solutions

3. How many rows are there if you keep only males between ages 20-30?

- > tm <- filter(titanic, Sex == "male", Age >= 20, Age <= 30)
- > nrow(tm) # 223
- > t2 <- filter(titanic, Sex == "male")
- > t3 <- filter(t2, Age >= 20)
- > t4 <- filter(t3, Age <= 30)

The Fundamental Functions

select Select columns

filter Filter rows

Pipes

%>%

Pipes (%>%) insert the data into the next line

Without pipes, multi-line processing is hard to read

df1 <- select(df, A, B, C)

df2 <- filter(df1, A == 1, B > 2)

df3 <- filter(df2, C == 1 | C == 5)

Creates unnecessary intermediate datasets

df1 <- select(df, A, B, C)

1, B > 2), C == 1 | C == 5)

Without pipes, multi-line processing is hard to read

```
df2 <- filter(df1, A == 1, B > 2)
df3 <- filter(df2, C == 1 | C == 5)

df1 <- filter(filter(select(df, A, B, C), A ==
```

Hard to read

With pipes, one line is one logical step

df1 <- df %>%

Start with dataset `df`

With pipes, one line is one logical step

df1 <- df %>%

select(A, B, C) %>%

Start with dataset `df`

Select variables A, B, C

With pipes, one line is one logical step

df1 <- df %>%

select(A, B, C) %>%

filter(A == 1, B > 2) %

Start with dataset `df`

Select variables A, B, C

Keep rows with A == 1 and B > 2

With pipes, one line is one logical step

df1 <- df %>%

select(A, B, C) %>%

filter(A == 1, B > 2) %

filter(C == 1 | C == 5)

Start with dataset `df`

Select variables A, B, C

Keep rows with A == 1 and B > 2

Keep rows with C == 1 or C == 5

(Store results in df1)

Pipe %>% - Titanic Exercise

1. Using pipes, store the first four columns and keep only 1st class (`Pclass`)

- > firstclass <- _____ %>%
- > select(1_4) ____
- > filter(Pclass ___ ___)

Pipe %>% - Titanic Exercise Solution

- 1. Using pipes, store the first four columns and keep only 1st class (`Pclass`)
- > firstclass <- titanic %>%
- > select(1:4) %>%
- > filter(Pclass == 1)

The Fundamental Functions

select Select columns

filter Filter rows

The Fundamental Functions

select Select columns

filter Filter rows

mutate Create new variables

mutate - Create new variables/columns

Computation of new variable

Can be based on another variable, a function, a single value, etc.

mutate - Create var with constant value

data %>% mutate(Sect = 1)

Name	HW	Ex
Matt	60	75
Mary	90	100
Bill	85	60
Brie	87	85

Create new variable `Sect` where all values are 1

Name	HW	Ex	Sect
Matt	60	75	1
Mary	90	100	1
Bill	85	60	1
Brie	87	85	1

mutate - Create var based on another var

data %>% mutate(Ex2 = Ex/100)

Name	HW	Ex
Matt	60	75
Mary	90	100
Bill	85	60
Brie	87	85

Create new variable `Ex2` as `Ex` divided by 100

Name	HW	Ex	Ex2
Matt	60	75	0.75
Mary	90	100	1.00
Bill	85	60	0.60
Brie	87	85	0.85

mutate - Create var based on other variables

data %>% mutate(Final = (HW + Ex)/2)

Name	HW	Ex
Matt	60	75
Mary	90	100
Bill	85	60
Brie	87	85

Create new variable `Final` as average of `HW` and `Ex`

Name	HW	Ex	Final
Matt	60	75	67.5
Mary	90	100	95
Bill	85	60	72.5
Brie	87	85	86

mutate - Titanic Exercises

1. `Fare` is currently in pounds. Convert it to dollars (1 pound = 1.37 dollars)

2. How many family members total (combine `Siblings.Spouses.Aboard` and `Parents.Children.Aboard`) were on board for each passenger?

3. Using pipes: remove the name, keep only 1st class survivors, subtract 20 from `Age`. Store these results in a dataset named `AgeAdjusted`.

mutate - Titanic Exercise Solutions

- 1. `Fare` is currently in pounds. Convert it to dollars (1 pound = 1.37 dollars)
- > titanic %>% mutate(FareDollars = Fare*1.37)
- 2. How many family members total (combine `Siblings.Spouses.Aboard` and `Parents.Children.Aboard`) were on board for each passenger?
- > titanic %>% mutate(titanic, Family =
- Siblings.Spouses.Aboard + Parents.Children.Aboard)

mutate - Titanic Exercise Solutions

- 3. Using pipes: remove the name, keep only 1st class survivors, subtract 20 from `Age`. Store these results in a dataset named `AgeAdjusted`.
- > AgeAdjusted <- titanic %>%
- > select(-Name) %>%
- > filter(Pclass == 1, Survived == 1) %>%
- > mutate(Age = Age 20)

The Fundamental Functions

select Select columns

filter Filter rows

mutate Create new variables

The Fundamental Functions

select Select columns

filter Filter rows

mutate Create new variables

summarize Compute summary variable

summarize - Create new aggregated variables

summarize(., new_variable = function(_), ...)

Computation of new variable

Function that returns one value (e.g. mean(), median(), max())

summarize - Create new aggregated variables

summarize() computes a single value or column

mutate() adds a variable to existing dataset

summarize - Compute mean of dataset

data %>% summarize(HW_mean = mean(HW))

Name	HW
Matt	60
Mary	90
Bill	85
Brie	87

Calculate mean HW score

summarize - Count total number of observations

data %>% summarize(Count = n())

Name	HW
Matt	60
Mary	90
Bill	85
Brie	87

Calculate number of observations

Count

The Fundamental Functions

select Select columns

filter Filter rows

mutate Create new variables

summarize Compute summary variable

The Fundamental Functions

select Select columns

filter Filter rows

mutate Create new variables

summarize Compute summary variable

group_by Split data by groups

group_by(., `id_var`, ...)

Split dataset by `id_var` (or multiple variables)

Dataset split based on unique values of 'id_var'

data %>% group_by(., Major)

Major	HW
math	60
math	90
biology	85
biology	87

data %>% group_by(., Major)

Major	HW	
math	60	
math	90	
biology	85	
biology	87	

Major	HW
math	60
math	90

Major	HW
biology	85
biology	87

data %>% group_by(., Major)

Major	HW	
math	60	
math	90	
biology	85	
biology	87	

Major	HW
math	60
math	90

Major	HW
biology	85
biology	87

Major	HW
math	60
math	90
biology	85
biology	87

group_by(., Major)

Major	HW
math	60
math	90
biology	85
biology	87

Major	HW
math	60
math	90

Major	HW
biology	85
biology	87

group_by() - split data by groups

group_by(., Major) %>% summarize(hw_m = mean(HW))

Major	HW
math	60
math	90
biology	85
biology	87

Major	HW
math	60
math	90

Major	HW
biology	85
biology	87

	Ν
7	m

Major	hw_m
math	75

Major	hw_	_m
biology		86

Major	hw_m
math	75
biology	86

group_by() - split data by groups

group_by(., Major)

Major	HW
math	60
math	90
biology	85
biology	87

Major	HW
math	60
math	90

Major	HW
biology	85
biology	87

group_by() - split data by groups

Take top HW value

group_by(., Major) %>% top_n(1, HW)

Major	HW
math	60
math	90
biology	85
biology	87

Major	HW
math	60
math	90

	Major	HW
•	math	90

Major	HW
biology	85
biology	87

Major	HW
biology	87

Major	HW
math	90
biology	87

summarize() and group_by() - Titanic Exercises

- 1. What was the average `Fare` cost?
- > titanic %>% summarize(FareMean = mean(_____))

- 2. What was the average 'Age' for each 'Pclass'? Store the results in 'ClassAge'.
- > ClassAge <- titanic %>%
- 3. What percent of each `Pclass` survived? (Hint: sum() and n() are helpful).

summarize() and group_by() - Titanic Exercise Solutions

- 1. What was the average `Fare` cost?
- > titanic %>% summarize(FareMean = mean(Fare))

summarize() and group_by() - Titanic Exercise Solutions

- 1. What was the average `Fare` cost?
- > titanic %>% summarize(FareMean = mean(Fare))

- 2. What was the average 'Age' for each 'Pclass'? Store the results in 'ClassAge'.
- > ClassAge <- titanic %>%
- > group_by(Pclass) %>%
- > summarize(AgeM = mean(Age))

summarize() and group_by() - Titanic Exercises

- 3. What percent of each 'Pclass' survived? (Hint: sum() and n() are helpful).
- > titanic %>%
- > group_by(Pclass) %>%
- > summarize(pct = sum(Survived)/n())

The Fundamental Functions

select Select columns

filter Filter rows

mutate Create new variables

summarize Compute summary variable

group_by Split data by groups

The Fundamental Functions

select Select columns

filter Filter rows

mutate Create new variables

summarize Compute summary variable

group_by Split data by groups

left join Combine datasets

left_join(df_left, df_right, ...)

The two datasets to combine together

Join two tables, matching on a key column

All values in the left dataset are kept

Only matching values in the right dataset are kept

Student <- left_join(Majors, Grades)

Ma	jors	Grades				Student		
Name	Major		Name	HW		Name	Major	HW
Matt	math	_	Matt	60		Matt	math	60
Mary	math	+	Mary	90		Mary	math	90
Bill	biology		Bill	85	r	Bill	biology	85
Brie	biology		Brie	87		Brie	biology	87

Student <- left_join(Majors, Grades)

Majors Grades Student Major Major HW Name HW Name Name Matt 60 Matt math Matt 60 math Mary 90 Mary math Mary 90 math Bill biology Bill NA biology Brie biology biology Brie NA

Student <- left_join(Majors, Grades)

Majors

Name	Major
Matt	math
Mary	math

Grades

Name	HW
Matt	60
Mary	90
Bill	85
Brie	87

Student

Name	Major	HW
Matt	math	60
Mary	math	90

If matching columns have different names

Student <- left_join(Grades, Majors, by = c("NX" = "NY")

Ma	jors	Grades			5	Student		
NX	Major		NY	HW		NX	Major	HW
Matt	math		Matt	60		Matt	math	60
Mary	math	+	Mary	90		Mary	math	90
Bill	biology		Bill	85	r	Bill	biology	85
Brie	biology		Brie	87		Brie	biology	87

Other joins

Function	Description
left_join	Keep all left
right_join	Keep all right
inner_join	Match left and right
full_join	Keep all values
nest_join	Create list with match
anti_join	Keep non-matching

left_join() - Titanic Exercise

- 1. Split the titanic dataset accordingly:
- > titanic1 <- titanic %>% select(1:3)
- > titanic2 <- titanic %>% select(3:5)
- 2. Combine the datasets back together based on 'Name'
- > titanic3 <- left_join(____, ____)

left_join() - Titanic Exercise

- 1. Split the titanic dataset accordingly:
- > titanic1 <- titanic %>% select(1:3)
- > titanic2 <- titanic %>% select(3:5)
- 2. Combine the datasets back together based on 'Name'
- > titanic3 <- left_join(titanic1, titanic2)</pre>

Exporting Data

Name in R

write_csv(dataset, file = "dataset.csv")

Output name and path to location

NOTE: MUST INCLUDE .CSV

Exporting Data - Titanic Exercises

1. Store the first four columns in 'TitanicReduced'

> TitanicReduced <- titanic %>% select(____)

2. Export the previously created dataset

> write_csv(_____, "RTitanic.csv")

Exporting Data - Titanic Exercise Answers

- 1. Store the first four columns in 'TitanicReduced'
- > TitanicReduced <- titanic %>% select(1:4)

- 2. Export the previously created dataset
- > write_csv(TitanicReduced, "RTitanic.csv")

Additional Exercises - NYC Flights

Read in the NYC Flights Dataset into 'nyflights'

- > install.packages("nycflights13")
- > library(nycflights13)
- > nycflights <- flights # flights is the default dataset
- 1. What was the average `arr_delay` by `carrier`?
- 2. What was the longest `dep_delay` value?
- 3. How many times did planes depart early? (Negative `dep_delay` value)
- 4. Export the dataset with only JFK 'origin'

Additional Exercises - NYC Flights Solutions

- 1. What was the average `arr_delay` by `carrier`?
- > nycflights %>% group_by(carrier) %>% summarize(avg_delay = mean(arr_delay))
- 2. What was the longest 'dep_delay' value?
- > nycflights %>% summarize(long_delay = min(dep_delay))
- 3. How many times did planes depart early? (Negative `dep_delay` value)
- > nycflights %>% filter(dep_delay < 0) %>% nrow()
- 4. Export the dataset with only JFK 'origin'
- > ny_jfk <- nycflights %>% filter(origin == "JFK") # Then use write_csv(ny_jfk,...)