Ministero dell'Istruzione, dell'Università e della Ricerca

Istituto di Istruzione Superiore "Decio Celeri" Lovere (BG)

Liceo Classico - Scientifico - Artistico

CLASSE 2 ^a C LICEO SCIENTIFICO					16 Aprile 2016				Le forze e il moto	
		COGNOMI	E	 		NOME				_
1.	Un blocco su un piano inclinato, che forma un angolo α con l'orizzontale, è fermo grazie alla forza d'attrito. Determina il coefficiente d'attrito in funzione dell'angolo α .									/ 1,5
2.	Un oggetto viene lanciato su per un piano inclinato di 23° con velocità iniziale di 3,8 m/s. Il blocco si ferm dopo 1,4 s. Calcola il coefficiente di attrito dinamico tra l'oggetto e il piano.								co si ferma	/ 2,5
3.	Un'automobile a trazione anteriore accelera costantemente da 0 km/h a 99 km/h in 12 s lungo una strada piana. Calcola il minimo coefficiente d'attrito necessario tra la strada e gli pneumatici, supponendo che le ruote non slittino.									/ 1,5
4.	Due sfere di identico diametro vengono lasciate cadere in aria. La velocità limite di una è il doppio dell'al Quanto vale il rapporto tra le loro masse? Una molla è appesa al soffitto. Al suo estremo libero è fissata una massa di 0,75 kg. Quando la massa vie tolta, la molla si accorcia di 0,23 m. Calcola la costante elastica della molla.								o dell'altra.	/ 1,5
5.									assa viene ——	/ 1,5
6.	All'aeroporto una valigia di 25 kg, posta su una piattaforma in rotazione su un piano orizzontale, si muove di moto circolare uniforme. Il raggio della traiettoria è 2,8 m e l'accelerazione centripeta è 8,3 m/s². Calcola il valore della forza che agisce sulla valigia e la sua velocità. Si deve costruire una curva su una strada in cui c'è un limite di velocità di 50 km/h. Il coefficiente di attrito è 0,85. Quale deve essere il raggio della curva affinché le auto che la percorrono non escano di strada?									/ 1,5
7.										/ 1,5
8.	In un circo un acrobata di 55 kg salta su un tappeto elastico che oscilla con moto armonico. Il periodo dell'oscillazione è 2,3 s. Calcola la costante elastica del tappeto.								/ 1,5	
9.	Riassumi brevemente "Breve storia della scienza" di Eirik Newth.								_	/2
	1	2	3	4	5	6	7	8	9	10

x=0

0<x<2,6

2,6<u><</u>x<4,3

BUON LAVORO!!!

12,6<u><</u>x<15

10,9<u><</u>x<12,6

8<<u>x</u><9,3

9,3<u><</u>x<10,9

5,9<u><</u>x<8

4,3<u><</u>x<5,9