Szilárd testek hőtágulási együtthatójának mérése

Minta Mónika (neptun) és Példa Pál (plpp01) Mérésvezető: Dr. Vankó Péter

2004. 09. 29.

Kivonat

A laboratóriumi gyakorlat során egy fémminta lineáris hőtágulási együtthatóját határoztuk meg a minta hőmérsékletének kontrollált változtatásával és az adott hőmérsékletekhez tartozó minta hosszúság mérésével. Az ezrelék alatti relatív megnyúlás tartományában igazoltuk a hőmérséklet-változás és a megnyúlás között feltételezett lineáris kapcsolatot, valamint a hőtágulási együttható értéke alapján azonosítottuk a vizsgált mintát.

1. Elméleti összefoglaló

Kísérletek bizonyítják, hogy a nem túl nagy $\Delta t = t - t_0$ hőmérséklet-változás hatására fellépő $\Delta \ell = \ell - \ell_0$ hosszúságváltozás a $\Delta \ell = \alpha \ell_0 \Delta t$ összefüggés szerint arányos a test t_0 hőmérsékleten mért ℓ_0 hosszával és a hőmérséklet-változással, ahol α a vizsgált anyag lineáris hőtágulási együtthatója [1]. A lineáris hőtágulási együttható tehát a mért hosszés hőmérséklet-változásokból számítható.

A valóságban a hőtágulás csak kicsiny hőmérséklet-változások, illetve mérsékelt pontosság esetében közelíthető lineárisan. Abban az esetben, ha tágabb hőmérséklet-intervallumban vagy nagyobb pontossággal vizsgáljuk a hőtágulást, akkor az $\ell = \ell_0(1 + \alpha \Delta t + \beta \Delta t^2 + \dots)$ sorfejtés szerinti további állandókat is be kell vezetni.

2. A mérési elrendezés és a mérés menete

A mérés célja α meghatározása. A kísérlet során egy hosszú fémcsövet vizsgálunk. A cső belsejében termosztát segítségével szabályozható hőmérsékletű vizet keringetünk. A minta egyik vége csavarmikrométerhez, másik vége pedig a kis hosszváltozások észlelését egyszerűsítő mechanikai áttételhez csatlakozik, amit az 1. ábrán mutatunk meg.

A hőmérséklet mérése termopárral történik, amelynek referencia pontját olvadó jégbe helyezzük. A termopár hőfoktényezője $\kappa = 37 \, \mu \text{V/K}$. Ez alapján a cső hőmérséklete a $t = U/\kappa$ összefüggés szerint határozható meg.

A mérés során először meggyőződtünk arról, hogy valóban van-e jég a termopár megfelelő végénél. Ezután megmértük a cső hosszát, amire $t_0=21,\!62\,^{\circ}\mathrm{C}$ hőmérsékleten

1. ábra. A kísérleti elrendezés vázlata. A nyilak a szabályozható hőmérsékletű víz áramlási irányát jelzik a vizsgált mintadarabban. A mintadarab bal oldalán a mikrométercsavaros rögzítés, jobb oldalon a hosszmérés elrendezése látható.

 $\ell_0=(0.530\pm0.002)\,\mathrm{m}$ adódott. A hiba oka, hogy a cső nehezen hozzáférhető volt. Ezt követően bekapcsoltuk az áramoltatót és a fűtést, majd 2-3 perc hőmérséklet-stabilizálódás után leolvastuk a termofeszültség értékét és a minta hosszváltozását. A mérést nagyjából $t=40\,\mathrm{^{\circ}C}$ -nak megfelelő feszültségértékig végeztük. A termofeszültséget $1\,\mu\mathrm{V}$ pontossággal mértük, de mivel a cső hőmérséklete nem volt mindenhol egyforma, a hőmérsékletmérés hibáját $0.1\,\mathrm{^{\circ}C}$ -ra becsüljük.

3. Mérési eredmények és kiértékelésük

A mért termofeszültség-, a hosszváltozás- valamint a származtatott hőmérséklet-adatokat az 1. táblázat tartalmazza.

1. táblázat. A mért termofeszültség- és megnyúlásadatok, valamint a származtatott hő-mérsékletértékek.

U (mV)	t (°C)	$\Delta t (^{\circ}\mathrm{C})$	$\Delta \ell \left(\mu \mathrm{m} \right)$
0,80	21,6	0,0	0
0,85	23,0	1,4	14
0,90	24,3	2,7	28
0,95	25,7	4,1	43
1,00	27,0	5,4	57
1,05	28,4	6,8	70
1,10	29,7	8,1	83
1,15	31,1	9,5	94
1,20	32,4	10,8	109
1,25	33,8	12,2	123
1,30	35,1	13,5	141
1,35	36,5	14,9	166
1,40	37,8	16,2	179
1,45	39,2	17,6	194
1,50	40,5	18,9	210

Az egyes Δt hőmérséklet-változásokhoz tartozó $\Delta \ell$ hosszváltozás, valamint a rájuk legkisebb négyzetek módszerével illesztett $\Delta \ell = b \Delta t$ egyenes a 2. ábrán láthatóak. Az

illesztett egyenes b meredekségéből

$$\alpha = \frac{\Delta \ell}{\Delta t} \cdot \frac{1}{\ell_0} = \frac{b}{\ell_0} = 1,89 \cdot 10^{-5} \,\mathrm{K}^{-1}.$$

2. ábra. A mért megnyúlás értékek a referencia hőmérséklettől való eltérés függvényében. A folytonos vonal a mérési adatokra a legkisebb négyzetek módszerével illesztett, origón áthaladó egyenes.

A hőtágulási együttható relatív hibája

$$\frac{\Delta \alpha}{\alpha} = \frac{\Delta b}{b} + \frac{\Delta \ell}{\ell_0} = \frac{0.012}{1.00} + \frac{0.002}{0.53} \approx 0.016,$$

azaz $\alpha = (1.89 \pm 0.03) \cdot 10^{-5} \,\mathrm{K}^{-1}$.

Ez az érték közel esik az ón lineáris hőtágulási együtthatójához ($\alpha_{\rm Sn}=2,20\cdot 10^{-5}\,{\rm K}^{-1}$) [2], de az alumíniumétól sincs messze ($\alpha_{\rm Al}=2,31\cdot 10^{-5}\,{\rm K}^{-1}$) [2]. A cső jó eséllyel alumíniumból készült. Az irodalmi értékhez képest nagy, hibahatáron túli eltérés egyik lehetséges oka, hogy egyéb fémekkel is ötvözték a mintánkat.

4. Az eredmények összefoglalása

A laboratóriumi gyakorlat során egy fémminta lineáris hőtágulási együtthatóját határoztuk meg a minta hőmérsékletének kontrollált változtatásával és az adott hőmérsékletekhez tartozó mintahosszúság mérésével. Az ezrelék alatti relatív megnyúlás tartományában igazoltuk a hőmérséklet-változás és a megnyúlás között feltételezett lineáris kapcsolatot. A feltételezésünk szerint alumínium ötvözet minta hőtágulási együtthatójának általunk mért és a szakirodalomban elfogadott értékei között jó, nagyságrendi egyezést találtunk.

Hivatkozások

- [1] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, 1976.
- [2] WebElements: Periodic Table of The Elements (www.webelements.com)