

### (19) BUNDESREPUBLIK **DEUTSCHLAND**



**DEUTSCHES PATENT- UND MARKENAMT** 

# **® Offenlegungsschrift**

<sub>®</sub> DE 100 50 641 A 1

Aktenzeichen: 100 50 641.0 (2) Anmeldetag: 12. 10. 2000 (3) Offenlegungstag: 19. 4. 2001

(5) Int. Cl.7: H 03 B 5/36

(30) Unionspriorität:

11-289298

12. 10. 1999 JP

(1) Anmelder:

Toyo Communication Equipment Co., Ltd., Kanagawa, JP

(74) Vertreter:

Herrmann-Trentepohl und Kollegen, 81476

(72) Erfinder:

Ishikawa, Masayuki, Kanagawa, JP; Naito, Yukio, Kanagawa, JP; Kohzu, Hideaki, Kanagawa, JP

#### Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Piezoelektrischer Oszillator
- Beschrieben ist ein piezoelektrischer Oszillator, der in die Kategorie eines Oszillators fällt, der enthält einen piezoelektrischen Resonator, einen Verstärker und ein einstellbares Kapazitätselement. Das einstellbare Kapazitätselement ist ein Kapazitätselement vom MOS-Typ, dessen einer Anschluß auf eine V-Volt-Spannung fixiert ist, und dessen anderer Anschluß mit einer Steuerspannung beaufschlagt ist, die in einen Bereich fällt, dessen mittlerer Wert die V-Volt-Spannung ist. Als Ergebnis wird ein piezoelektrischer Oszillator verwirklicht, der seine Frequenz über einen weiten Bereich variieren kann, auch ohne die Benutzung einer negativen Versorgungsspannung.



#### Beschreibung

#### HINTERGRUND DER ERFINDUNG

#### Gebiet der Erfindung

Die vorliegende Ersindung bezieht sich auf einen piezoelektrischen Oszillator und speziell auf einen piezoelektrischen Oszillator, der ein MOS-Kapazitätselement benutzt.

Beschreibung des verwandten Stands der Technik

Verschiedene Arten von Schaltkreisen sind bislang vorgeschlagen worden und zum praktischen Einsatz als Oszillator gelangt, die einen piezoelektrischen Resonator benutzen, 15 der durch einen Kristallresonator dargestellt wird. Diese werden in einer breiten Vielfalt elektronischer Geräte benutzt, z. B. als Signalquellen in tragbaren Telefonen, Computern usw.

Auf der anderen Seite ist es in jedem solchen Oszillator 20 unerläßlich, ein einstellbares Kapazitätselement zu benutzen, um verschiedene Ziele zu erreichen, einschließlich dem Vornehmen von Einstellungen der Frequenz zum Zeitpunkt der Herstellung, dem Bereitstellen der Kanal-Frequenz-Einstellfunktion oder AFC- (Automatische Frequenzsteuerung) 25 Funktion usw., und die weiter einschließen das Vornehmen von Kompensationen für die Frequenz im Zusammenhang mit den Temperaturen, das Anpassen des Oszillators an eine große Zahl von Kanalfrequenzen usw.

Als ein Schaltkreis, der solche Ziele erreichen kann, wird 30 im allgemeinen ein Schaltkreis benutzt, wie er z. B. in Fig. 6 dargestellt ist.

Der in der Figur dargestellte Schwingkreis ist ein gewöhnlicher Schaltkreis des Kristalloszillators unter Benutzung eines invertierenden Verstärkers. In diesem Schwingkreis ist zwischen einem Eingang und einem Ausgang eines invertierenden Verstärkers 101 ein Parallelkreis eingefügt, umfassend einen Kristall-Resonator 102 und einen Rückkopplungswiderstand R1. Auch sind zwischen dem Eingang und dem Ausgang desselben und Erde jeweils ein Konden- 40 sator C1 und ein Kondensator C2 eingefügt. Zugleich ist an einem von dem Kondensator C1 und dem Kondensator C2 (in diesem Beispiel an dem Kondensator C1) eine einstellbare Kapazitätsdiode D1 angeschlossen, die als einstellbares Kapazitätselement dient. Eine Kathode der einstellbaren 45 Kapazitätsdiode D1 und ein Steueranschluß Vcont sind miteinander über einen Widerstand R2 verbunden, um das Flie-Ben von Gleichströmen zu verhindern.

Weil die Wirkungsweise dieses Schwingkreises wohlbekannt ist, wird es für unnötig gehalten, erneut eine Erklärung 50 desselben zu geben. Kurz erklärt jedoch, ändert sich in diesem Schwingkreis nach Maßgabe einer Gleichspannung, die an den Steueranschluß Vcont angelegt ist, der Kapazitätswert der einstellbaren Kapazitätsdiode D1. Daher ist es durch die Steuerung dieser Steuerspannung möglich, ver- 55 schiedene Arten von Einstellung der Frequenz vorzunehmen, beispielsweise AFC usw., wie oben erwähnt.

Auf der anderen Seite gibt es im Hinblick auf gegenwärtige Anforderungen zur Miniaturisierung und zur Verringescher Geräte, auch das Verlangen, den oben beschriebenen Oszillator in eine IC-Version umzuwandeln.

Jedoch wird der Schwingkreis mit der einstellbaren Kapazitätsdiode D1, wie etwa in Fig. 6 illustriert, in eine IC-Version umgewandelt, muß diese Diode durch einen Prozeß- 65 schritt gebildet werden, der verschieden ist von denen zum Ausbilden anderer Halbleiter-Schaltkreise. Daher hat diese Diode ein Hindernis dargestellt, um den Schwingkreis preisgünstig in eine IC-Version umzuwandeln.

Die einstellbare Kapazitätsdiode D1, die ein bipolarer Halbleiter ist, muß nämlich ausgebildet werden mit einem Prozeßschritt, der getrennt von dem zum Ausbilden des invertierenden Verstärkers 101 ist, der im allgemeinen ein CMOS-Halbleiter ist. Daher ist der Herstellungsprozeß für solche Gestaltungen nicht nur komplex, sondern die Kosten für das IC-Produkt waren hoch.

Auf der anderen Seite ist als einstellhares Kapazitätsele-10 ment, das zur Umwandlung in eine IC-Version geeignet ist, ein einstellbares Kapazitätselement vom MOS-Typ bekannt, dessen Einsatz erwartet wurde.

Als ein Kristalloszillator, der solch ein einstellbares Kapazitätselement vom MOS-Typ benutzt, gibt es einen, der offenbart ist, z. B. in der japanischen Patentanmeldung Offenlegungsnummer 10-13155 mit dem Titel "Crystal Resonator with Frequency Adjusting Function".

Dieser Kristalloszillator ist wie folgt aufgebaut. Wie in Fig. 7 dargestellt, ist zwischen einem Eingang und einem Ausgang des invertierenden Verstärkers 101 ein Parallelschaltkreis eingefügt, umfassend einen Kristallresonator 102 und einen Rückkopplungswiderstand R1. Ein einstellbares Kapazitätselement 103 vom MOS-Typ ist mit dem Eingang des invertierenden Verstärkers verbunden. Zugleich ist der Injektionsanschluß TI für elektrische Ladung des einstellbaren Kapazitätselements 103 vom MOS-Typ und ein Steueranschluß Vcont miteinander verbunden.

Als einstellbares Kapazitätselement 103 vom MOS-Typ ist, obwohl es lediglich ein Beispiel darstellt, das in Fig. 8 dargestellte bekannt. In diesem Element 103 ist eine positive oder negative Spannung an dem Steueranschluß Vcont angelegt, wobei das n-Typ-Substrat als Basis fungiert und dadurch den Fluß eines Tunnelstroms durch das Innere des SiO<sub>2</sub> zu bewirken und dadurch zu bewirken, daß Elektronen in eine schwebende Elektrode 104 injiziert werden oder aus dieser herauskommen.

Zum Beispiel, im Fall, daß eine positive Spannung an den Steueranschluß Vcont angelegt ist, fließen Elektronen aus der schwebenden Elektrode 104 heraus. Daher wird die Dicke einer Verarmungsschicht 105, die nahe der schwebenden Elektrode 104 liegt, schmal, mit der Folge, daß mit der Abnahme der Dicke der Verarmungsschicht die Kapazität anwächst.

Im Fall wo eine negative Spannung an den Steueranschluß Vcont angelegt wurde, treten zu den oben erwähnten umgekehrte Vorgänge auf. Eine Erklärung derselben ist da-

Jedoch kann, wie unten erklärt wird, grundsätzlich das einstellbare Kapazitätselement vom MOS-Typ seinen Kapazitätswert über einen weiten Bereich variieren, nur unter Benutzung einer positiven Versorgungsspannung oder einer negativen Versorgungsspannung. Aus diesem Grund bestand der Nachteil, daß fast keine Änderung des Kapazitätswerts auftrat, und lediglich nur entweder eine positive oder eine negative Versorgungsspannung einer einzigen Polarität allein benutzt wurde.

Dies wird nachfolgend in etwas größerer Ausführlichkeit

Fig. 9 ist eine Darstellung, die ein Beispiel der Beziehung rung des Energieverbrauchs verschiedener Arten elektroni- 60 einer Zwischenelektrodenspannung und eines Kapazitätswerts des einstellbaren Kapazitätselements vom MOS-Typ

> Wie aus dieser Figur klar ist, ändert sich bei diesem Beispiel, wenn die Anschluß-zu-Anschluß-Spannung in einem Bereich von -1,5 V bis +0,5 V variiert unter Einschlusses des Wertes von 0 V dazwischen, der Kapazitätswert über einen Bereich, der ungefähr 80 pF abdeckt.

Jedoch, während der Bereich, in dem die Frequenz varia-

4

bel ist, im allgemeinen breit sein soll, ist es auf der anderen Seite in dem Kristalloszillator vorteilhafter, daß sich der Kapazitätswert mit der Veränderung in der Steuerspannung allmählich ändert, als daß er sich sprunghast ändert, um eine hochgenaue Frequenzsteuerung durchführen zu können.

Aus diesem Grund gab es ein Bedürfnis nach einem einstellbaren Kapazitätselement, dessen Kapazitätswert über einen weiten Bereich der Steuerspannung variiert. Dementsprechend ist es im Fall des Kristalloszillators, wie etwa dem in Fig. 7 illustrierten, zum Erreichen eines breiten Bereiches einstellbarer Kapazität bei Benutzung des einstellbaren Kapazitätselements 103 vom MOS-Typ notwendig, Steuerspannungsquellen zum Anlegen sowohl positiver als auch nogativer Spannung an den Steueranschluß Vcont. Daher gab es das Problem, daß die Konstruktion des Systems, 15 das die Steuerung der Frequenz durchführte, komplex wurde.

#### Zusammenfassung der Erfindung

Die vorliegende Erfindung wurde gemacht, um die oben beschriebenen Probleme zu lösen und hat als Aufgabe, einen piezoelektrischen Oszillator kleiner Größe bereitzustellen, der, während er ein MOS-Kapazitätselement geeignet zur Umwandlung in eine IC-Version benutzt, ermöglicht, einen 25 weiten Bereich von Veränderungen in der einstellbaren Kapazität zu erhalten, sogar unter Benutzung von entweder einer positiven oder einer negativen Versorgungsspannung einer einzigen Polarität, und der die Frequenzsteuerung erleichtert.

Um die oben genannte Aufgabe zu lösen, wird nach einem ersten Aspekt der Erfindung ein piezoelektrischen Oszillator bereitgestellt, bei dem in einem Oszillator, enthaltend einen piezoelektrischer Resonator, einen Verstärker und ein einstellbares Kapazitätselement, das einstellbare 35 Kapazitätselement ein Kapazitätselement vom MOS-Typ ist, ein Anschluß desselben mit einer Wechselspannung beaufschlagt ist, dessen mittlere Spannung eine Spannung V ist und dessen anderer Anschluß mit einer Steuerspannung beaufschlagt ist, die in einen Bereich fällt, dessen mittlerer 40 Wert die Spannung V ist.

Nach einem zweiten Aspekt der Erfindung wird ein piezoelektrischer Oszillator bereitgestellt, bei dem in einem piezoelektrischen Inverteroszillator, in dem ein piezoelektrischer Resonator verbunden ist, zwischen dem Eingang und 45 dem Ausgang eines invertierenden Verstärkers; und teilende Kondensatoren C1 und C2 zwischen die jeweiligen Enden des piezoelektrischen Resonators und der Erde verbunden sind, durch Einfügen eines Kapazitätselements vom MOS-Typ in Reihe mit dem piezoelektrischen Resonator, ein Ende des Kapazitätselements vom MOS-Typ in Reihe mit dem piezoelektrischen Resonator, ein Ende sous Kapazitätselements vom MOS-Typ mit einer Vorspannung beaufschlagt wird, die die Spannung V an einem Ausgang oder Eingang des invertierenden Verstärkers ist, und das andere Ende desselben mit einer Steuerspannung versorgt wird, die in einem Bereich variiert, dessen mittlerer 55 Wert die Spannung V ist.

Nach einem dritten Aspekt der Erfindung ist ein piezoelektrischer Oszillator bereitgestellt, bei dem in einem piezoelektrischen Inverteroszillator, in dem ein piezoelektrischer Resonator zwischen einem Eingang und einem Ausgang eines invertierenden Verstärkers verbunden ist; und teilende Kondensatoren C1 und C2 zwischen die jeweiligen Enden des piezoelektrischen Resonators und Erde verbunden sind, zwei MOS-Kapazitätselemente jeweils auf beiden Seiten des piezoelektrischen Resonators eingefügt sind; ein 65 Ende jedes der MOS-Kapazitätselemente mit einer Wechselspannung beaufschlagt ist, deren mittlerer Wert eine Spannung V ist; und das andere Ende desselben mit einer

Steuerspannung beaufschlagt ist, die in einem Bereich variiert, dessen mittlerer Wert die Spannung V ist.

Nach einem vierten Aspekt der Erfindung ist ein piezoelektrischer Oszillator bereitgestellt, bei dem, in einem Inverteroszillator, in dem ein piezoelektrisches Element mit einem Eingang oder Ausgang eines invertierenden Verstärkers verbunden ist; und teilende Kondensatoren C1 und C2 zwischen die jeweiligen Enden des piezoelektrischen Elements und Erde verbunden sind, ein MOS-Kapazitätselement zwischen den piezoelektrischen Resonator und einem Eingang des invertierenden Verstärkers oder zwischen dem piezoelektrischen Resonator und einem Ausgang des invertierenden Verstärkers eingefügt ist; eine Steuerspannung Vcont eingeprägt wird dem Anschluß auf einer Verbindung zur piezoelektrischen Resonatorseite des MOS-Kapazitätselements; und, wenn angenommen wird, daß V die Spannung darstellt, die eine Gleichstromvorspannung an dem Eingang oder Ausgang des invertierenden Verstärkers darstellt, und die einem Ende des MOS-Kapazitätselements eingeprägt wird, ist es so ausgestaltet, daß besagte Spannung eine mittlere Spannung der Steuerspannung Vcont wird.

Nach einem fünften Aspekt der Erfindung ist ein piezoelektrischer Oszillator bereitgestellt, bei dem, in einem Inverteroszillator, in dem ein piezoelektrisches Element mit einem Eingang und Ausgang eines invertierenden Verstärkers verbunden ist; und teilende Kondensatoren C1 und C2 zwischen die jeweiligen Enden des piezoelektrischen Elements und Erde verbunden sind, ein MOS-Kapazitätselement zwischen dem piezoelektrischen Resonator und einem Eingang des invertierenden Verstärkers oder zwischen dem piezoelektrischen Resonator und einem Ausgang des invertierenden Verstärkers eingefügt ist und eine Steuerspannung Voont eingeprägt wird dem Anschluß auf der Verbindungzum-piezoelektrischen Resonator-Seite des MOS-Kapazitätselements; ein Gleichspannungsstromkreis eines Widerstands und eines Kondensators eingefügt ist und verbunden ist zwischen dem Anschluß auf der invertierenden Verstärkerseite des MOS-Kapazitätselements und dem Eingang oder Ausgang des invertierenden Verstärkers; und weiter eine Gleichstromvorspannung eingeprägt ist im Anschluß auf der invertierenden Verstärkerseite des MOS-Kapazitätselements.

Nach einem sechsten Aspekt der Erfindung ist ein piezoelektrischer Oszillator nach dem fünften Aspekt der Erfindung bereitgestellt, bei dem der Amplitudenpegel des Wechselstroms, der dem MOS-Kapazitätselement zugeführt wird, geregelt wird nach dem Wert des Widerstands des Gleichspannungskreises; und wenn angenommen wird, daß V die Gleichstromvorspannung darstellt, die dem Anschluß der invertierenden Verstärkerseite des MOS-Kapazitätselements zugeführt wird, ist es so eingerichtet, daß die Gleichstromvorspannung V eine mittlere Spannung der Steuerspannung Vcont wird.

#### Kurze Beschreibung der Zeichnungen

Fig. 1 ist ein Schaltungsdiagramm, das eine Ausführungsform eines Kristalloszillators nach der vorliegenden Erfindung illustriert;

Fig. 2(A) und Fig. 2(B) illustrieren ein Verfahren zum Steuern der Empfindlichkeit des Kristalloszillators auf veränderliche Kapazität nach der vorliegenden Erfindung; Fig. 2(A) dient dabei zur Illustration des Falles, in dem keine Steuerung der Empfindlichkeit auf veränderliche Kapazität durchgeführt wird und Fig. 2(B) dient der Illustration des Falles, wo eine Steuerung der veränderlichen Kapazitätsempfindlichkeit durchgeführt ist.

Fig. 3 (A) und Fig. 3(B) sind Schaltdiagramme, die andere Ausführungsformen des Kristalloszillators nach der vorliegenden Erfindung illustrieren; Fig. 3(A) ist ein Schaltdiagramm, das die eine besagter anderer Ausführungsformen des Kristalloszillators nach der vorliegenden Erfindung illustriert und Fig. 3(B) ist ein Schaltdiagramm, das die andere besagter anderer Ausführungsformen des Kristalloszillators nach der vorliegenden Erfindung illustriert;

Fig. 4 ist ein Schaltdiagramm, das eine weitere Ausführungsform des Kristalloszillators nach der vorliegenden Erfindung illustriert;

Kap
tungsform des Kristalloszillators nach der vorliegenden Erfindung illustriert;

Fig. 5(A) und Fig. 5(B) sind Schaltdiagramme, die weitere Ausführungsformen des Kristalloszillators nach der vorliegenden Erfindung illustrieren.

Fig. 6 ist ein Schaltdiagramm, das einen herkömmlichen 15 Kristalloszillator illustriert;

Fig. 7 ist ein Schaltdiagramm, das einen herkömmlichen Kristalloszillator illustriert, der ein einstellbares Kapazitätselement vom MOS-Typ benutzt;

Fig. 8 ist eine Ansicht einer Schnittstruktur des einstellba- 20 ren Kapazitätselements vom MOS-Typ; und

Fig. 9 illustriert die Bezichung zwischen einer Anschlußzu-Anschluß-Spannung und dem Kapazitätswert eines einstellbaren Kapazitätselements vom MOS-Typ.

## Ausführliche Beschreibung der bevorzugten Ausführungsformen

Die vorliegende Erfindung wird nachfolgend ausführlich erklärt auf Grundlage ihrer dargestellten Ausführungsformen.

Fig. 1 ist ein Schaltdiagramm, das eine Ausführungsform eines spannungsgesteuerten Kristalloszillators nach der Erfindung illustriert.

Der in Fig. 1 veranschaulichte Kristalloszillator hat fol- 35 genden Aufbau. Zwischen den Eingangs- und Ausgangsanschlüssen eines invertierenden Verstärkers 1, dessen Versorgungsspannung Vcc ist, sind jeweils eingefügt in Parallelschaltung, ein Rückkopplungswiderstand R1 und ein Reihenschaltkreis bestehend aus dem Kristallresonator 2 und 40 einem Widerstand R2. Zwischen dem Eingangsanschluß des invertierenden Verstärkers 1 und Erde ist ein Kondensator C1 eingefügt, während auf der anderen Seite zwischen einem Ende des Kristallresonators 2 und Erde ein Kondensator C2 eingefügt ist. Zwischen dem anderen Ende des Kri- 45 stallresonators 2 und Erde ist über den Kondensator C3 ein einstellbares Kapazitätselement 3 vom MOS-Typ geerdet, während auf der anderen Seite ein Verbindungspunkt zwischen dem variablen Kapazitätselement vom MOS-Typ 3 und dem Kondensator C3 mit einem Steueranschluß Vcont 50 über einen Widerstand R3 verbunden ist.

Nachfolgend wird die Funktionsweise des Kristalloszillators mit oben beschriebenem Aufbau erklärt.

Es soll angemerkt werden, daß, weil die Funktionsweise des Inverterschwingkreises wohl bekannt ist, eine Erklärung 55 derselben unterlassen wird.

Wie auch aus der oben beschriebenen Erklärung offensichtlich wird, ist der in Fig. 1 gezeigte Kristalloszillator in einer solchen Form ausgebildet, in der ein Anschluß des MOS einstellbaren Kapazitätselements 3 verbunden ist mit 60 dem Eingangsanschluß des invertierenden Verstärkers 1. Daher, als Folge dessen, ist dem anderen Ende des MOS einstellbaren Kapazitätselements 3 eine Spannung eingeprägt, deren Pegel Vcc/2 ist, was die Schwellenspannung Vref des invertierenden Verstärkers 1 darstellt.

Im Fall, in dem eine Gleichstromsteuerspannung angelegt worden ist, deren Pegel zwischen 0 V und Vcc liegt, an den Steueranschluß Vcont, ändert sich die Anschluß-zu-An-

schluß-Spannung des MOS einstellbaren Kapazitätselements 3 in einem Bereich von -Vcc/2 bis Vcc/2 mit dem Potential an einem Verbindungspunkt zwischen dem Steueranschluß Vcont und dem Eingangsanschluß des invertierenden Verstärkers 1 als Bezugsbasis. Daher werden als Folge sowohl eine positive wie eine negative Spannung dem MOS einstellbaren Kapazitätselement 3 eingeprägt, wie zuvor unter Benutzung von Fig. 9 erklärt, mit dem Ergebnis, daß der Kapazitätswert desselben über einen weiten Bereich vari-

Zum Beispiel, im Fall, daß der invertierende Verstärker 1 mit einer Versorgungsspannung Vcc = 5 V betrieben wird, wird einem Anschluß des MOS einstellbaren Kapazitätselements 3 die Schwellenspannung Vref des invertierenden Verstärkers 1 eingeprägt, deren Pegel Vref = 2,5 V ist. Weiter, wenn eine Steuerspannung (Vcont), die in den Bereich von 0 V bis 5 V fällt, dem Steueranschluß Vcont zugeführt wird, als positive Spannung, ist die Anschlußspannung Vcont – Vref des MOS einstellbaren Kapazitätselements 3 in einem Bereich von 2,5 V bis +2,5 V gesteuert. Daher ist es möglich, den Wert der Kapazität über einen weiten Bereich zu steuern, ohne eine negative Spannungsversorgung zu benutzen, wie in dem herkömmlichen Beispiel.

Der Schwingkreis nach der Erfindung hat die Wirkung, die unten zusätzlich zu den oben beschriebenen Funktionen und Wirkung erklärt werden.

In der oben beschriebenen Gestaltung ist das MOS einstellbare Kapazitätselement 3 innerhalb einer Oszillationsleiste eingefügt. Daher ist an den Anschluß auf der invertierenden Verstärkerseite 1 eine Wechselstromspannung eingeprägt, die als Oszillationssignal fungiert, und deren mittlere Spannung die Schwellenspannung Vref ist, deren Pegel Vref = 2,5 V ist.

Dazu gibt es das Phänomen, daß der Amplitudenpegel der Gleichstromspannung die Empfindlichkeit des MOS einstellbaren Kapazitätselements auf veränderliche Kapazität beeinflußt. Durch positives Ausnutzen dieser Eigenschaft ist es möglich, die Empfindlichkeit des MOS einstellbaren Kapazitätselements auf variable Kapazitäten auf einen beliebigen Wert zu unterdrücken. Dies wird nachfolgend im Detail erklärt.

Hier ist es für ein besseres Verständnis der Sache angenommen, daß die Beziehung zwischen der Anschluß-zu-Anschluß-Spannung und dem Kapazitätswert des MOS einstellbaren Kapazitätselement so festgesetzt ist, daß, wie in Fig. 2(A) und 2(B), sich der Kapazitätswert ändert in Antwort auf einen Kontrollspannungsbereich von 0,5 V bis +0,5 V, mit der Intraanschlußspannung von 0 V als Mitte.

In Fig. 2(A) veranschaulicht die durchgezogene Linie A die Beziehung zwischen der Intraanschlußspannung und dem Wert der Intraanschlußkapazität, die gilt, wenn eine Gleichstromspannung Vref = 2,5 V, die dem Pegel der Schwellenspannung gleich ist, an einen Anschluß des MOS einstellbaren Kapazitätselements angelegt wird, und eine Gleichstromsteuerspannung positiver Polarität mit etwa 2,5 V als Mittelpunkt an den anderen Anschluß desselben angelegt ist. Wie man sicht, wird in einem nicht gesättigten Bereich, in dem der Kapazitätswert linear stark vaniert, eine hohe Empfindlichkeit auf variable Kapazität von 80 pF pro V oder so erreicht.

Bei Betrachtung eines solchen MOS einstellbaren Kapazitätselements, unter der Annahme, daß die Spannung Vref, die daran angelegt ist, eine Vorspannung von 2,5 V angelegt an den Eingangsanschluß des invertierenden Verstärkers 1 ist, betrachte man einen Fall, in dem die Spannung Vref eine Oszillationswechselstromspannung ist, die um eine Mittelspannung von 2,5 V variiert, und die an die Eingangsseite des invertierenden Verstärkers 1 rückgekoppelt ist.

Zuerst, unter der Annahme, daß eine solche Oszillationswechselstromspannung eine Wechselstromspannung B ist, deren Amplitudenpegel viel kleiner ist als die Amplitudenbreite der Spannung in den nicht gesättigten Bereich (F), wie in Fig. 2(A) illustriert, ändert sich der Anschluß-zu-Anschluß-Kapazitätswert mit einer Änderung der Halbwelle auf der Plusseite und auf der Minusseite der Gleichstromwechselspannung B. Jedoch ergibt sich, daß der Anschluß-zu-Anschluß-Xapazitätswert ungefähr ein Mittelwert der sich so ändernden Werte wird.

Wenn in diesem Zustand die Steuerspannung Vcont abnimmt, z. B. über eine gepunktete Linie (a) in der Figur hinaus, erreicht die Halbwelle auf der Minusseite der Wechselstromspannung B den Sättigungsbereich (f). Dadurch nimmt die Größe der Änderung in der Kapazität entsprechend der Halbwelle auf der Minusseite ab. Und die Größe der Änderung in der Kapazität aufgrund einer Änderung in der Spannung der Halbwelle auf der Plusseite wird vorherrschend. Als Ergebnis wird die Intraanschlußempfindlichkeit auf den Kapazitätswert niedrig bei einer Position, wo die Wechselstromspannung B den Sättigungsbereich erreicht, wie durch eine gepunktete Linie A' angezeigt. Als Ergebnis vergrößert sich der Bereich der Steuerspannung Vcont, der zu einer Änderung in der Kapazität führt.

Auf der anderen Seite, wenn der Amplitudenpegel der 25 Oszillationswechselstromspannung auf einen Wechselstromspannungswert C gesetzt wird, der ungefähr gleich ist der Breite des nicht gesättigten Spannungsbereichs, wie in Fig. 2(B) veranschaulicht, ergibt sich lediglich eine kleine Abnahme der Anschluß-zu-Anschluß-Spannung z. B. durch 30 das Gelangen der Halbwelle auf der Minusseite der Wechselstromspannung C an den gesättigten Bereich. Daher wird die Größe der Änderung der Kapazität, die der Halbwelle auf der Minusseite entspricht, in dem Bereich der Anschlußzu-Anschluß-Spannung, deren Pegel niedriger ist als der ei- 35 ner solchen leicht erniedrigten Anschluß-zu-Anschluß-Spannung, klein. Umgekehrt, wird der Pegel der Spannung Vcont höher als 0 V gemacht, arbeitet das einstellbare Kapazitätselement vom MOS-Typ ebenfalls ähnlich. Daher wird die Kapazitätsempfindlichkeit auf die Anschluß-zu- 40 Anschluß-Spannung in ihrem Bereich breit, wie durch die gepunktete Linie C angezeigt, nämlich eine breite Änderung abhängig von der Anschluß-zu-Anschluß-Spannung. Im Ergebnis ist es möglich, die einstellhare Kapazitätsempfindlichkeit auf 40 pF pro V zu bringen.

Nebenbei bemerkt, in der vorgehenden Erklärung wurde die Erklärung unter der Voraussetzung durchgeführt, daß die Wechselstromspannung C einen Amplitudenpegel hat, der im wesentlichen gleich der Breite der Spannung in dem nicht gesättigten Bereich (F) ist. Jedoch, wenn eine solche 50 Wechselstromspannung C einen Amplitudenpegel hat, der bezogen auf den nicht gesättigten Bereich ungefähr 50% oder mehr des diesen entsprechenden Spannungspegels hat, ist es möglich, eine praktisch ausreichende einstellbare Kapazitätsempfindlichkeit zu erhalten.

Auch die Steuerung des Amplitudenpegels der Wechselstromspannung kann leicht realisiert werden, durch ein Einstellen des Widerstandswerts von z. B. dem Widerstand R2.

Fig. 3(A) und 3(B) sind Schaltungsdiagramme, die andere Ausführungsformen des Kristalloszillators nach der 60 vorliegenden Erfindung illustrieren.

Der Punkt, in dem der Kristalloszillator, der in jeder der Fig. 3(A) und 3(B) illustriert ist, sich von dem, der in Fig. 1 illustriert ist, unterscheidet, ist, daß das einstellbare Kapazitätselement 3 vom MOS-Typ eingefügt ist zwischen dem 65 Kristallresonator 2 und dem Kondensator C1 oder zwischen dem Kristallresonator 2 und dem Kondensator C2. Der Schaltkreis von Fig. 3(A) ist in einer solchen Form ausgebil-

det, daß ein Anschluß des einstellbaren Kapazitätselements vom MOS-Typ verbunden ist zu dem Ausgang des invertierenden Verstärkers 1, während der Schaltkreis von Fig. 3(B) in einer solchen Weise ausgebildet ist, daß ein Anschluß des einstellbaren Kapazitätselements vom MOS-Typ verbunden ist mit dem Eingang des invertierenden Verstärkers und dessen anderer Anschluß mit dem Steueranschluß Vcont über einen Widerstand R3 verbunden ist.

Weiter, wie in Fig. 3(A) illustriert, ist ein fester Widerstand oder ein variabler Widerstand Rc eingefügt, zwischen dem Punkt E in den Schaltkreis und Erde, wodurch der Wert dieses Widerstands Rc beliebig festsetzbar gemacht wird, und die Spannung am Punkt E kontrollierbar wird. Als Ergebnis wird die Anschluß-zu-Anschluß-Spannung des einstellbaren Kapazitätselements vom MOS-Typ gesteuert, was ein Einstellen der Frequenz des Schwingkreises ermöglicht.

Fig. 4 ist ein Schaltdiagramm, das eine weitere Ausführungsform des Kristalloszillators nach der vorliegenden Erfindung illustriert.

Die Beziehung, in der der Kristalloszillator, der in Fig. 4 dargestellt ist, sich von der in Fig. 3 dargestellten unterscheidet, ist, daß das einstellbare Kapazitätselement vom MOS-Typ 4 eingefügt ist zwischen den Kristallresonator 2 und den Kondensator C1 und daß das einstellbare Kapazitätselement vom MOS-Typ eingefügt ist zwischen dem Kristallresonator 2 und dem Kondensator C2. Dadurch ist eingerichtet, daß jedes solcher einstellbaren Kapazitätselemente vom MOS-Typ einen Anschluß verbunden hat, mit einer der Eingangs- und Ausgangsanschlüsse des invertierenden Verstärkers 1 und daß dessen anderer Anschluß verbunden ist mit dem Steueranschluß Vcont über einen Widerstand R3 oder R4.

Es ist klar, daß mit einer solchen Gestaltung ein breiterer Bereich variabler Kapazitätswerte erreicht wird. Daher wird unterlassen, erneut eine Erklärung dessen zu geben.

Fig. 5Λ und 5B sind Schaltdiagramme, die weitere Λusführungsformen des Kristalloszillators nach der vorliegenden Erfindung illustrieren.

Die Hinsicht, in der sich der Kristalloszillator, der in jeder dieser Figuren illustriert ist, auszeichnet, ist, daß der Amplitudenpegel einer Wechselstromspannung und eine Gleichstromvorspannung, die eine Referenzspannung ist, die dem einstellbaren Kapazitätselement 3 vom MOS-Typ zugeführt wird, jeweils einzeln einstellbar gemacht sind.

Der Kristalloszillator ist wie folgt aufgebaut. Wie in jeder der Figuren illustriert, ist das einstellbare Kapazitätselement 3 vom MOS-Typ eingefügt zwischen den Kristallresonator 2 und den Kondensator C1, oder zwischen den Kristallresonator 2 und den Kondensator C2. Ein Mittelpunkt der Verbindung zwischen dem Kristallresonator 2 und dem einstellbaren Kapazitätselement 3 vom MOS-Typ ist verbunden mit dem Steueranschluß Vcont über einen Widerstand R3. Weiter, der andere Anschluß des einstellbaren Kapazitätselements 3 vom MOS-Typ ist verbunden mit einem Mittelpunkt der Verbindung einer Reihenschaltung eines Widerstands R5 und eines Widerstands R6, der zwischen einer Versorgungsspannung Vee und Erde verbunden ist. Auf der anderen Seite, besagter anderer Anschluß des einstellbaren Kapazitätselements 3 vom MOS-Typ, wie in (a) der Figuren illustriert, ist verbunden mit der Ausgangsseite des invertierenden Verstärkers 1 und, wie in (b) der Figuren illustriert, ist verbunden mit der Eingangsseite des invertierenden Verstärkers 1 über eine Reihenschaltung aus einem Widerstand R2 und einem Kondensator C4.

Durch das Ausbilden des Schaltkreises in dieser Weise wird anfänglich, entsprechend der Beziehung Vref (DC) = R6 × Vcc/(R5 + R6), die Einstellung durchgeführt des Referenzspannungswertes Vref für die Gleichstromvorspannung,

die an das einstellhare Kapazitätselement 3 vom MOS-Typ angelegt ist, um dadurch den Referenzkapazitätswert dieses Elements 3 einzustellen. Danach wird, nach der Beziehung Vref (AC) = R5 × R6 × V0/((R5 + R6) × (R2 + R5 × R6/(R5 + R6)), die Einstellung durchgeführt nur des Widerstandswerts des Widerstands R2 allein. Dadurch wird die Amplitude der Wechselstromspannung festgesetzt, die dem einstellbaren Kapazitätselement vom MOS-Typ 3 zugeführt wird. Wird dadurch die Empfindlichkeit der Kapazität des einstellbaren Kapazitätselements 3 vom MOS-Typ eingestellt, hat diese Einstellung der Empfindlichkeit auf Kapazität keine Auswirkung auf den festgesetzten Wert der Referenzkapazität. Im Ergebnis wird der Prozeß des Einstellens des Kristalloszillators vereinfacht.

Es soll festgestellt werden, daß V() den Amplitudenpegel 15 der Wechselstromkomponente der Eingangs-/Ausgangsspannung des invertierenden Verstärkers 1 darstellt.

In der vorangehenden Beschreibung wurde die vorliegende Erfindung erklärt unter Benutzung einer Gestaltung, bei der die Schwellenspannung des invertierenden Verstärkers 1 an einen Anschluß des einstellbaren Kapazitätselements 3 vom MOS-Typ angelegt wurde. Jedoch ist die Erfindung nicht auf eine solche Ausgestaltung beschränkt. Vielmehr kann die Erfindung eine Ausgestaltung haben, in der eine feste Spannung einen Anschluß des einstellbaren Kapazitätselements 3 vom MOS-Typ zugeführt wird, unter Benutzung einer Spannung, die durch einen anderen Spannungserzeugungskreis erzeugt wird, usw.

Weiter, obwohl in der vorangehenden Beschreibung die vorliegende Erfindung erklärt wurde unter Benutzung eines Kristallresonators als ein Beispiel für den Oszillator, ist die Erfindung nicht auf einen solchen Oszillator beschränkt. Vielmehr ist offensichtlich, daß die Erfindung auf einen anderen Oszillator angewendet werden kann, der einen anderen piezoelektrischen Resonator als einen Kristallresonator benutzt.

Wie oben erklärt worden ist, ist der piezoelektrische Oszillator nach der vorliegenden Erfindung wie oben beschrieben ausgebildet. Vorteilhaft wird es daher möglich, die Oszillationsfrequenz breit und hoch präzise zu steuern, ohne daß eine komplexsystematische Gestaltung zum Steuern der Frequenz notwendig ist.

#### Patentansprüche

45

1. Ein piezoelektrischer Oszillator, bei dem in einem Oszillator, enthaltend einen piezoelektrischen Resonator, einen Verstärker und ein einstellbares Kapazitätselement, das einstellbare Kapazitätselement ein Kapazitätselement vom MOS-Typ ist, ein Anschluß desselben mit einer Wechselspannung beaufschlagt ist, dessen mittlere Spannung eine Spannung V ist und dessen anderer Anschluß mit einer Steuerspannung beaufschlagt ist, die in einen Bereich fällt, dessen mittlerer 55 Wert die Spannung V ist.

2. Ein piczoelektrischer Oszillator, bei dem in einem piezoelektrischen Inverteroszillator, in dem ein piezoelektrischer Resonator verbunden ist, zwischen dem Eingang und dem Ausgang eines invertierenden Verstärkers; und teilende Kondensatoren C1 und C2 zwischen die jeweiligen Enden des piezoelektrischen Resonators und der Erde verbunden sind, durch Einfügen eines Kapazitätselements vom MOS-Typ in Reihe mit dem piezoelektrischen Resonator, ein Ende des Kapazitätselements vom MOS-Typ mit einer Vorspannung beaufschlagt ist, die die Spannung V an einem Ausgang oder Eingang des invertierenden Verstärkers ist,

und das andere Ende desselhen mit einer Steuerspannung versorgt ist, die in einem Bereich variiert, dessen mittlerer Wert die Spannung V ist.

3. Ein piezoelektrischer Oszillator, bei dem in einem piezoelektrischen Inverteroszillator, in dem ein piezoelektrischer Resonator zwischen einem Eingang und einem Ausgang eines invertierenden Verstärkers verbunden ist; und teilende Kondensatoren C1 und C2 zwischen die jeweiligen Enden des piezoelektrischen Resonators und Erde verbunden sind, zwei MOS-Kapazitätselemente jeweils auf beiden Seiten des piezoelektrischen Resonators eingefügt sind; ein Ende jedes der MOS-Kapazitätselemente mit einer Wechselspannung beaufschlagt ist, deren mittlerer Wert eine V-Spannung ist; und das andere Ende desselben mit einer Steuerspannung beaufschlagt ist, die in einem Bereich variiert, dessen mittlerer Wert die Spannung V ist.

4. Ein piezoelektrischer Oszillator, bei dem, in einem Inverteroszillator, in dem ein piezoelektrisches Element mit einem Eingang oder Ausgang eines invertierenden Verstärkers verbunden ist; und teilende Kondensatoren C1 und C2 zwischen die jeweiligen Enden des piezoelektrischen Elements und Erde verbunden sind, ein MOS-Kapazitätselement zwischen den piezoelektrischen Resonator und einem Eingang des invertierenden Verstärkers oder zwischen dem piezoelektrischen Resonator und einem Ausgang des invertierenden Verstärkers eingefügt ist; eine Steuerspannung Vcont eingeprägt ist dem Anschluß auf einer Verbindung zur piezoelektrischen Resonatorseite des MOS-Kapazitätselements; und, wenn angenommen wird, daß V die Spannung darstellt, die eine Gleichstromvorspannung an dem Eingang oder Ausgang des invertierenden Verstärkers darstellt, und die einem Ende des MOS-Kapazitätselements eingeprägt wird, ist es so ausgestaltet, daß besagte Spannung eine mittlere Spannung der Steuerspannung Voont wird.

5. Ein piezoelektrischer Oszillator, bei dem, in einem Inverteroszillator, in dem ein piezoelektrisches Element mit einem Eingang und Ausgang eines invertierenden Verstärkers verbunden ist; und teilende Kondensatoren C1 und C2 zwischen die jeweiligen Enden des piezoelektrischen Elements und Erde verbunden sind, ein MOS-Kapazitätselement zwischen dem piezoelektrischen Resonator und einem Eingang des invertierenden Verstärkers oder zwischen dem piezoelektrischen Resonator und einem Ausgang des invertierenden Verstärkers eingefügt ist und eine Steuerspannung Vcont eingeprägt ist dem Anschluß auf der Verbindung-zum-piezoelektrischen Resonator-Seite MOS-Kapazitätselements; ein Gleichspannungsstromkreis eines Widerstands und eines Kondensators eingefügt ist und verbunden ist zwischen dem Anschluß auf der invertierenden Verstärkerseite des MOS-Kapazitätselements und dem Eingang oder Ausgang des invertierenden Verstärkers; und weiter eine Gleichstromvorspannung eingeprägt ist im Anschluß auf der invertierenden Verstärkerseite des MOS-Kapazitätselements.

6. Ein piczoclektrischer Oszillator nach Anspruch 5, bei dem der Amplitudenpegel des Wechselstroms, der dem MOS-Kapazitätselement zugeführt wird, geregelt wird nach dem Wert des Widerstands des Gleichspannungskreises; und wenn angenommen wird, daß V die Gleichstromvorspannung darstellt, die dem Anschluß der invertierenden Verstärkerseite des MOS-Kapazitätselements zugeführt wird, ist es so eingerichtet, daß die Gleichstromvorspannung V eine mittlere Spannung

der Steuerspannung Vcont wird.

Hierzu 7 Seite(n) Zeichnungen

DE 100 50 641 A1 H 03 B 5/36 19. April 2001

FIG. 1



Nummer: Int. Cl.<sup>7</sup>:

Offenlegungstag:







DE 100 50 641 A1 H 03 B 5/36 19. April 2001

FIG. 4



Nummer: Int. Cl.<sup>7</sup>:

Offenlegungstag:

FIG. 5





;

Nummer: Int. Cl.<sup>7</sup>: Offenlegungstag:

FIG. 6



FIG. 7



FIG. 8



FIG. 9

