Mobile Vendor Market Share Prediction

5/25/2021

George Bi, Nick Lesh, Akhil Ranjan, Justin Sun

Agenda

- 1. Business statement
- 2. EDA & base models
- 3. Model performance (Exponential Smoothing, ARIMA, ARFIMA, Regression with ARIMA errors)
- 4. Model selection
- 5. Future work and conclusion

Business Statement

3.80Billion smartphone users in the world today

48.33% of people have smartphones today

4.88 Billion mobile phone users in the world today

62.07% of people own mobile phones today

By 2025, 72% of all internet users will solely use smartphones to access the web

Ecosystem

They are connected and kept updated through Apple's software.

Top 4 Mobile Vendor Market Share Trend

EDA & Base Model

Data:

- Mobile vendor market share data by month from April 2010 to April 2021 selected top 4 vendors
- Test (April 2010 April 2020) and train (May 2020 April 2021) split

Base models:

- For comparison purposes, created the following models for each phone manufacturer:
 - Drift
 - Naive
 - Seasonal Naive
 - 0 Mean
- Of the base models, Naive and Drift performed the best, which we will use for comparison purposes

> driftdf

Phone Drift_MAPE Drift_RMSE Drift_MAE 1 Samsung 0.07482148 2.799140 2.1642778 Apple 0.08026869 2.383487 2.0730000 Huawai 0.09283719 1.218398 0.8925773 Xaomi 0.14668943 1.482076 1.4234929

> naivedf

Phone Naive MAPE Naive RMSE Naive MAE 1 Samsung 0.03258067 1.2188588 0.945000 Apple 0.08907264 2.5537048 2.309167 Huawai 0.04935184 0.5702046 0.485000 Xaomi 0.19985332 2.0638677 1.948333 5

Exponential Smoothing

Competing Models

- Holt-Winters(HW) forecasts with additive seasonality and box-cox transformation Additive
- Holt-Winters forecasts with multiplicative seasonality Multiplicative
- Holt-Winters forecasts with additive seasonality, box-cox transformation, and damping Damped
 Additive
- Holt-Winters forecasts with multiplicative seasonality and damping Damped Multiplicative
- Results from the ETS() function in R forecast package ETS

Samsung

	Additive	Multiplicative	Damped Additive	Damped Multiplicative	ETS
ME	-0.0968018	-0.1072325	0.1076610	0.1044767	-0.0322397
RMSE	0.8296303	0.7627181	0.8344323	0.7221548	0.7109405
MAE	0.6361524	0.5766414	0.6363024	0.5046448	0.5074476
MPE	-0.2056028	-0.8724200	1.0416348	0.7301974	-0.9816462
MAPE	3.5382349	3.1102522	3.2295828	2.6988076	3.0333246
MASE	0.1681718	0.1524396	0.1682115	0.1334068	0.1341477
ACF1	0.3160245	0.0698938	0.4397601	0.0715306	0.0906201

RMSE	MAPE
1.023161	0.0281012

Prediction VS Actual (Samsung)

Apple

	Additive	Multiplicative	Damped Additive	Damped Multiplicative	ETS
ME	0.1640988	0.2887990	0.0944054	0.0914446	-0.0360656
RMSE	1.6574629	1.2723657	1.6504858	1.2002414	1.2756479
MAE	1.2202692	0.9250721	1.2858457	0.8674287	0.9089614
MPE	0.4497848	1.0382610	0.1486160	0.2719057	-0.2536703
MAPE	5.1466273	3.8924043	5.3976419	3.6776473	3.8487030
MASE	0.5216871	0.3954850	0.5497222	0.3708414	0.3885974
ACF1	0.6320179	0.1386586	0.4946336	0.0270804	0.0804956

RMSE	MAPE
2.241231	0.0794261

Huawei

	Additive	Multiplicative	Damped Additive	Damped Multiplicative	ETS
ME	-0.0026693	0.0533919	0.0816406	0.045468	0.0236444
RMSE	0.3304171	0.2401211	0.2901033	0.228353	0.2672924
MAE	0.2109366	0.1778509	0.1807883	0.155500	0.1425588
MPE	0.3945302	-3.1026326	1.0926761	-2.2176920	-0.3528384
MAPE	7.7634540	12.3712676	8.1070371	10.5926478	5.0299007
MASE	0.1624769	0.1369922	0.1392548	0.119776	0.1098079
ACF1	0.0999539	0.4504938	0.1194950	0.3123769	-0.2278620

RMSE	МАРЕ
0.5304951	0.0450366

Xiaomi

	Additive	Multiplicative	Damped Additive	Damped Multiplicative	ETS
ME	-0.0320599	-0.0296376	-0.0054650	0.0204482	-0.0328288
RMSE	0.2480692	0.5827801	0.2386730	0.2612921	0.2590589
MAE	0.1479506	0.3605984	0.1355022	0.1659148	0.1527657
MPE	-0.8698816	2.8457707	2.5417860	-29.8512481	-1.4438212
MAPE	12.9650513	20.1121253	10.7331509	41.5312487	11.3110566
MASE	0.1283569	0.3128428	0.1175571	0.1439419	0.1325343
ACF1	0.2954034	0.8103795	0.1540126	0.3634125	0.0132195

RMSE	МАРЕ
1.710777	0.1676948

ARIMA MODELS STEPS:

ARIMA - Samsung

- As we can see, there is no seasonal pattern, but clearly there is a trend inside our dataset.
- The 2nd order difference of the data results in a stationary dataset. After box cox transformation, second order difference is stationary as well.
- ARIMA suggested ARIMA(0, 2, 1)
- White noise from Ljung-Box test

```
Series: train_samsung_ts
ARIMA(0,2,1)
Box Cox transformation: lambda= 1.328032
Coefficients:
          ma1
      -0.9365
       0.0317
sigma^2 estimated as 4.346: log likelihood=-256.82
ATC=517.64 ATCc=517.75 BTC=523.2
Training set error measures:
                              RMSE
Training set -0.04085252 0.7069441 0.4991125 -0.1123275 2.358318 0.1319443 0.03256798
```


p-value greater than printed p-value KPSS Test for Level Stationarity

ACF1

data: samsung_diff2 KPSS Level = 0.022389, Truncation lag parameter = 4, p-value = 0.1

ARIMA - Apple

- As we can see, there is no seasonal pattern, but clearly there is a trend inside our dataset.
- The 2nd order difference of the data results in a stationary dataset. After box cox transformation, both first and second order difference is stationary.
- ARIMA suggested ARIMA(0, 1, 0)
- Ljung-Box test: P-value = 0.6212

Series: train_apple_ts

ARIMA(0,1,0)

Box Cox transformation: lambda= -0.8999268

sigma^2 estimated as 9.166e-06: log likelihood=525.79

AIC=-1049.58 AICc=-1049.55 BIC=-1046.8

Training set error measures:

ME RMSE MAE MPE

Training set -0.02938531 1.277733 0.9155734 -0.2335089

p-value greater than printed p-value
 KPSS Test for Level Stationarity

data: apple_diff2
KPSS Level = 0.030629, Truncation lag parameter = 4, p-value = 0.1

ARIMA - Huawei

- As we can see , there is no seasonal pattern, but clearly there is a trend inside our dataset. 5
- The 2nd order difference of the data results in a stationary dataset. After box cox transformation, second order difference is stationary as well.
- ARIMA suggested ARIMA(0, 1, 0) with drift
- White noise from Ljung-Box test

Series: train_huawei_ts ARIMA(0,1,0) with drift

Box Cox transformation: lambda= 0.6416207

Coefficients: drift

0.0579 s.e. 0.0111

sigma^2 estimated as 0.01488: log likelihood=82.69 ATC=-161.38 ATC=-161.28 BTC=-155.81

Training set error measures:

ME RMSE MAE MPE MAPE
Training set 0.01482531 0.2167977 0.1100728 -Inf Inf

2010 2012 2014 2016 2018 2020

p-value greater than printed p-value
 KPSS Test for Level Stationarity

2012

2014

data: huawei_diff2

2010

KPSS Level = 0.065137, Truncation lag parameter = 4, p-value = 0.1

2016

2018

2020

ARIMA - Xiaomi

- As we can see, there is no seasonal pattern, but clearly there is a trend inside our dataset.
- The 2nd order difference of the data results in a stationary dataset. After box cox transformation, both first and second order difference is stationary.
- ARIMA suggested ARIMA(0, 1, 0) with drift
- White noise from Ljung-Box test

```
Series: train_xiaomi_ts
ARIMA(0,1,0) with drift
Box Cox transformation: lambda= 0.1874663

Coefficients:
    drift
    0.0650
s.e. 0.0208

sigma^2 estimated as 0.05228: log likelihood=7.3
AIC=-10.6 AICc=-10.5 BIC=-5.03

Training set error measures:
    ME RMSE MAE MPE MAPE
Training set -0.04365456 0.250541 0.1272362 -Inf Inf
```


data: xiaomi_diff2
KPSS Level = 0.035336, Truncation lag parameter = 4, p-value = 0.1

ARIMA - Final Results/Conclusions

- ARIMA models overall performed ok with this dataset.
- Apple and Xiaomi models performed better than Huawai and Samung models, with mean absolute percentage error around 7 and 8%. Huawei performed a little worse with 11% MAPE while Samsung's MAPE is very bad with 78% MAPE.

Phone <chr></chr>	MSE <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>	MAPE <dbl></dbl>
Samsung	0.8070207	0.8983433	0.7892179	0.78921790
Apple	6.5214083	2.5537048	2.3091667	0.08907264
Huawei	2.0596719	1.4351557	1.0625636	0.11038630
Xiaomi	1.0597953	1.0294636	0.7709275	0.07729281

ARFIMA Models

- Some datasets have 'long memory' where the ACF is decaying at a slow rate
- ARFIMA models solve for this issue by utilizing fractional differencing
- The d parameter is estimated in the ARFIMA model
 - o d = 0, model exhibits short term memory
 - \circ 0 < d < 0.5, model exhibits long memory
 - d >= 0.5, process is nonstationary
- Fitted multiple ARFIMA models and chose model with lowest AIC score for forecasting purposes

Series samtrain

ARFIMA - Samsung

- Samsung gained market share rapidly until 2014, and then market share started to stabilize
- In order to stabilize model, we truncated the dataset to only include 2014 and later data
- Used the logarithmic function to further stabilize the variance
- ARFIMA suggested a model with a (p,d,q) of (1,0,0)

ARFIMA - Apple

- Apple started losing market share until 2016, but then started to regain market share
- Used the logarithmic function to further stabilize the variance
- ARFIMA suggested a model with a (p,q,d) of (1,0,0)

ARFIMA - Huawei

- Huawei did not sell phones until March 2012
- Used the logarithmic function to further stabilize the variance
- ARFIMA suggested a model with a (p,d,q) of (2,0.33,0)

ARFIMA - Xiaomi

- Xiaomi did not sell phones until June 2012
- Truncated the model further to only include data after January 2017 where growth stabilized
- Used the logarithmic function to further stabilize the variance
- ARFIMA suggested a model with a (p,d,q) of (0,0.49,0)

ARFIMA - Final Results/Conclusions

- ARFIMA models overall performed poorly with this dataset.
- Apple and Samsung models performed better than Huawei and Xiaomi models, however Samsung and Apple models exhibited short memory with d value = 0
- Results and data plots indicate dataset is more suited for a standard ARIMA model
- Ljung Box Results

Samsung: 0.5139
Apple: 0.39014

Huawai: 0

Xiaomi: 0.001

ARFIMA Results

Phone	МАРЕ	RMSE	MAE	
Samsung	0.0518846	1.963128	1.499242	
Apple	0.0589439	1.842285	1.520067	
Huawai	0.1975295	2.058276	1.982254	
Xaomi	0.7961826	7.647637	7.614589	

Naive Base Model Results

Phone	Naive_MAPE	Naive_RMSE	Naive_MAE
Samsung	0.0325807	1.2188588	0.945000
Apple	0.0890726	2.5537048	2.309167
Huawai	0.0493518	0.5702046	0.485000
Xaomi	0.1998533	2.0638677	1.948333

Regression with ARIMA errors

To forecast the regression model with ARIMA errors, we will be forecasting the two parts of the equation:

- The regression part of the model
- The ARIMA part of the model

and combine the results.

For xreg part of the model, we will be using the **interest over time from Google Trends** and **stocks** (Samsung and Apple)

Regression with ARIMA errors - Apple stocks

- In the ARIMA part of the model, we will be using Apple stocks as xreg
- Tried to fit ARIMA models:

Model	AICc
Regression with ARIMA(2,1,2) errors	413.6789
Regression with ARIMA(0,1,0) errors	406.06
Regression with ARIMA(1,1,0) errors	409.3955
Regression with ARIMA(0,1,1) errors	409.091
Regression with ARIMA(0,1,0) errors	404.0327

Residuals from Regression with ARIMA(0,1,0) errors

Forecasts from Regression with ARIMA(0,1,0) errors

Ljung-	-Box	test
--------	------	------

Lag

data: Residuals from Regression with ARIMA(0,1,0) errors $Q^* = 27.584$, df = 23, p-value = 0.2319

residuals

Model df: 1. Total lags used: 24

MAPE	MAE	RMSE
7.567 %	1.95313	2.26219

Regression with ARIMA errors - Apple Interest over time

- In the ARIMA part of the model, we will be using Apple's Interest over time from Google Trends as xreg
- Tried to fit ARIMA models:

Model	AICc
Regression with ARIMA(2,1,2) errors	413.3203
Regression with ARIMA(0,1,0) errors	405.8281
Regression with ARIMA(1,1,0) errors	409.1159
Regression with ARIMA(0,1,1) errors	408.7968
Regression with ARIMA(0,1,0) errors	403.8174

Ljung-Box test

Lag

data: Residuals from Regression with ARIMA(0,1,0) errors $Q^* = 27.878$, df = 23, p-value = 0.2204

residuals

Model df: 1. Total lags used: 24

MAPE	MAE	RMSE
8.8332%	2.28981	2.53441

Regression with ARIMA errors - Samsung stocks

- In the ARIMA part of the model, we will be using Samsung stocks as xreg
- Tried to fit ARIMA models:

Model	AICc
Regression with ARIMA(1,2,2) errors	268.8425
Regression with ARIMA(0,2,0) errors	331.7893
Regression with ARIMA(1,2,0) errors	312.1221
Regression with ARIMA(0,2,1) errors	265.566
Regression with ARIMA(0,2,2) errors	267.4893

Residuals from Regression with ARIMA(0,2,1) errors

Ljung-Box test

data: Residuals from Regression with ARIMA(0,2,1) errors $Q^* = 14.827$, df = 22, p-value = 0.8695

Model df: 2. Total lags used: 24

Forecasts from Regression with ARIMA(0,2,1) errors

MAPE	MAE	RMSE
3.564 %	1.03488	1.32681

Regression with ARIMA errors - Samsung Interest over time

- In the ARIMA part of the model, we will be using Samsung's Interest over time from Google Trends as xreg
- Tried to fit ARIMA models:

Model	AICc
Regression with ARIMA((0,1,0)(1,1,0)	290.0806
Regression with ARIMA(0,1,0)(0,1,0)	313.7806
Regression with ARIMA(1,1,0)(1,1,0)	291.7907
Regression with ARIMA((0,1,1)(0,1,1)	278.477
Regression with ARIMA(0,1,0)(1,1,1)	280.0724

Ljung-Box test

data: Residuals from Regression with ARIMA(0,1,0)(0,1,1)[12] errors $Q^* = 16.789$, df = 22, p-value = 0.7749

Model df: 2. Total lags used: 24

MAPE	MAE	RMSE
3.6820%	1.06413	1.41996

Regression with ARIMA errors - Huawei Interest over time

• In the ARIMA part of the model, we will be using Huawei's Interest over time from Google Trends as xreg

Tried to fit ARIMA models:

Model	AICc
Regression with ARIMA(0,0,0)	377.818
Regression with ARIMA(0,0,1)(0,0,1)	286.6336
Regression with ARIMA(0,0,2) errors	255.6123
Regression with ARIMA(0,0,2)(2,0,0)	230.2831
Regression with ARIMA(0,0,1)(2,0,0)	285.9782

Residuals from Regression with ARIMA(0,0,2)(2,0,0)[12] errors

Ljung-Box test

Residuals from Regression with ARIMA(0,0,2)(2,0,0)[12] errors Q* = 149.1, df = 18, p-value < 2.2e-16

Total lags used: 24 Model df: 6.

	Forecasts from Regres	sion with ARIM	A(0,0,2)(2,0,0)[12] errors
				AA
	10 -			
htrain			\wedge	
	5 -		/	
			<i></i>	

2016 Time

MAPE	MAE	RMSE
15.069%	1.48149	1.75348

2013

2010

2019

Regression with ARIMA errors - Xiaomi Interest over time

• In the ARIMA part of the model, we will be using Xiaomi's Interest over time from Google Trends as xreg

Tried to fit ARIMA models:

Model	AICc
Regression with ARIMA(0,1,0)	-13.13368
Regression with ARIMA(1,1,0)(1,0,0)	-9.291821
Regression with ARIMA(2,1,2)	-14.20796
Regression with ARIMA(3,1,2)	-11.92446
Regression with ARIMA(1,1,3) errors	-15.47369

Ljung-Box test

data: Residuals from Regression with ARIMA(1,1,3) errors $Q^* = 31.2$, df = 18, p-value = 0.02729

Model	df:	6.	Total	lags	used:	24	
-------	-----	----	-------	------	-------	----	--

MAPE	MAE	RMSE
16.57%	1.61387	1.70444

Time

Model Selection

	Model	MAPE	RMSE
Samsung	Exponential Smoothing	2.81%	1.023
Apple	ARIMA(1,0,0) lambda=0	5.65%	1.957
Huawei	Exponential Smoothing	4.50%	0.530
Xiaomi	ARIMA(0, 1, 0) with drift	7.73%	1.029

Next Steps/Future Work

- Continue to obtain new data for fitting our best model
- Utilize cross validation such as sliding or expanding windows to ensure our models are a good fit and are not being over or underfit
- Train additional models such as Neural
 Networks, ARCH, GARCH, etc. to see if results
 can further be improved

Thank you!

Questions?