New Architecture

TA: 紀伯翰

Review

Review

Fully Connected Network

Convolutional Neural Network

Recurrent Neural Network

Basic Module - (1)

Fully Connected Network Lots of Model

Basic Module - (2)

Convolutional Neural Network ResNet DenseNet Inception Network

Basic Module - (3)

Recurrent Neural Network Seq2seq LSTM Pointer Network ...

Stack them and hope the new model will be better!

End

Follow up SOTA structure

Stable and explore faster

Why New Architecture?

- 1. Increase Performance!
- 2. Extract better feature from data
- 3. Generalization
- 4. Reduce Parameters or explainable

Today's New Architecture

The variant structure design from the old module in 2019.

The cool application of architecture in 2019.

The SOTA models in the trend for 2019.

Outline

- RNN less structure
 - Transformer
 - Sandwich transformers
 - Universal Transformer
 - Residual Shuffle Exchange Network
 - BERT
 - ALBERT, Reformer
- StyleGAN

Transformer

Transformer - Encoding & Decoding

Transformer

Transformer - Encoding & Decoding

Transformer - Decoding

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax Kencdec Vencdec **ENCODERS DECODERS EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS PREVIOUS** étudiant suis INPUT **OUTPUTS**

Sandwich Transformers

Motivation

Designing a Better Transformer

Reorder the sublayer?

Could we increase the performance just by reorder the sublayer module?

Highlight

- 1. models with more self-attention toward the bottom and more feedforward sublayers toward the top tend to perform better in general.
 - 2. No extra parameters, memory requirement.

Sandwich transformer

Same parameters but different order

Model	PPL
sfffssfsfsffffsfsffffff	22.80
sffssfsssssssssssfsfsssfsffsssfsssfs	21.02
ssssssffsffffssffffsssfsfsssssssss	20.98
ffffffffffsffssffsfsssfsfsssf	20.75
fssfsssffffffssfsssfsfffssssfsfss	20.43
sffsfffffsfsfssfsssfsfsfssfssfs	20.28
sffssffsfsfsssssffffffssssff	20.02
fsffsfssfffsfffssfffss	19.93
sffsffssffsfsffsssfsssssf	19.85
ssfffffffssffssfssffsfsf	19.82
sfsfsfffsffssfsffsffssfsfss	19.77
sfsffsssffsssfssfffffssssfsssf	19.55
sffsfssffsfssssfsfsfffsfsss	19.49
sffffsffssssfsssfssfffsssfssssfsfs	19.47
fsssffssssssfsfsffsffffssfsfssss	19.25
sfsfsfsfsfsfsfsfsfsfsfsfsf	19.13
fssssssfsfsfsffsfsssfssffssssfsff	18.86
sfsfsfsfsfsfsfsfsfsfsfsfsf	18.83
ssfsfsssfsssssffsfsssfssfssfsssssssf	18.62
sfsfsfsfsfsfsfsfsfsfsfsfsfsf	18.54
sfsfsfsfsfsfsfsfsfsfsfsfsfsf	18.49
sssfsffsfssfssffsffffffssfsfff	18.34
sssfsfsfsssfsffffsfsffffsssff	18.31
sfsfsfsfsfsfsfsfsfsfsfsfsf	18.25
ssssssfsssffffsfsfffffffffff	18.12

Are Balanced Architectures Better?

Sandwich Coefficient

Sandwiching Coefficient

0	sfsfsfsfsfsfsfsfsfsfsfsfsf
1	ssfsfsfsfsfsfsfsfsfsfsfsf
2	sssfsfsfsfsfsfsfsfsfsfsfff

sssssssssssss<mark>ffffffffffffff</mark>

Model

Sandwiching Coefficient

15

Experiment

Universal Transformer

Motivation

Transformer: Translation Good! / algorithmic task bad! Neural GPU: Translation Bad! / algorithmic task Good!

Neural Turing Machine: Translation Bad! / algorithmic task Good!

Universal Transformer born!

Universal Transformer

Dynamic Halting

Experiment(s)

- 1. Lambda Question Answering Dataset
- 2. WMT 14 En-De translation task

Lambda Question Answering Dataset

Context: "Why?" "I would have thought you'd find him rather dry," she said. "I don't know about that," said Gabriel. "He was a great craftsman," said Heather. "That he was," said Flannery.

Target sentence: "And Polish, to boot," said ____.

Target word: Gabriel

Context: Preston had been the last person to wear those chains, and I knew what I'd see and feel if they were slipped onto my skin-the Reaper's unending hatred of me. I'd felt enough of that emotion already in the amphitheater. I didn't want to feel anymore. "Don't put those on me," I whispered. "Please."

Target sentence: Sergei looked at me, surprised by my low, raspy please, but he put down the ____.

Target word: chains

Context: They tuned, discussed for a moment, then struck up a lively jig. Everyone joined in, turning the courtyard into an even more chaotic scene, people now dancing in circles, swinging and spinning in circles, everyone making up their own dance steps. I felt my feet tapping, my body wanting to move.

Target sentence: Aside from writing, I've always loved ____.

Target word: dancing

Result(s)

Model	LM Per	RC Accuracy				
1,1000	control	dev	test	control	dev	test
Neural Cache (Grave et al., 2016)	129	139	¥	=		_
Dhingra et al. (2018)	-	-	-	-	-	0.5569
Transformer	142 (0.19)	5122 (0.0)	7321 (0.0)	0.4102	0.4401	0.3988
LSTM	138 (0.23)	4966 (0.0)	5174 (0.0)	0.1103	0.2316	0.2007
UT base, 6 steps (fixed)	131 (0.32)	279 (0.18)	319 (0.17)	0.4801	0.5422	0.5216
UT w/ dynamic halting	130 (0.32)	134 (0.22)	142 (0.19)	0.4603	0.5831	0.5625
UT base, 8 steps (fixed)	129(0.32)	192 (0.21)	202 (0.18)	-	-	- (*)
UT base, 9 steps (fixed)	129(0.33)	214 (0.21)	239 (0.17)		· -	- +

WMT 14 En-De translation task

Model	BLEU
Universal Transformer small	26.8
Transformer base (Vaswani et al., 2017)	28.0
Weighted Transformer base (Ahmed et al., 2017)	28.4
Universal Transformer base	28.9

Residual Shuffle Exchange Network

Residual Shuffle Exchange Network

HighLight:

- 1. Less parameters compare to other models for the same tasks.
- 2. Sequence processing in O(n log n) Time, specialize application on long sequence.
- 3. Shuffle & Exchange operators capture distant informations replace attention.

Shuffle-Exchange Network

Figure 1: Shuffle-Exchange network.

Shuffle, Exchange

Perfect shuffle:

	1	
1	2	1
	2 3 4	5
2 3 4 5 6 7 8	4	5 2 6
4		 6
5		3 7
6	5	
7	5 6	4
8	7	8
	8	

Figure 1: Shuffle-Exchange network.

????

Shuffle

Shuffle Layer

Neural Shuffle Exchange Network - Switch Unit

Exchange

Neural Shuffle Exchange Network - Switch Unit

Residual Shuffle Exchange Network

Shuffle-Exchange Network, Benes network

Figure 1: Shuffle-Exchange network.

Figure 2: Beneš network.

Residual Shuffle Exchange Network

Experiment(s)

5 Experiment Environments (mention 1)

- 1. Lambda Question Answering Dataset ✓
- 2. MusicNet Dataset
- 3. Multiplication Task
- 4. Sort Task
- 5. Adding Task

Experiment(s)

Table 1. Accuracy on LAMBADA word prediction task

Model	Learnable parameters (M)	Test accuracy (%)	
Random word from passage (Paperno et al., 2016)	=	1.6	
Gated-Attention Reader (Chu et al., 2017)	unknown	49.0	
Neural Shuffle-Exchange network (Freivalds et al., 2019)	33	52.28	
Residual Shuffle-Exchange network (this work)	11	54.34	
Universal Transformer (Dehghani et al., 2018)	152	56.0	
GPT-2 (Radford et al., 2019)	1542	63.24	
Human performance (Chu et al., 2017)	-	86.0	

Experiment(s)

Memory Requirement

Evaluation: 11G GPU memory:
 4x longer sequence than Neural Shuffle-Exchange Network.
 128x longer sequence than Universal Transformer.

BERT

BERT

Bert: Pre-training Task

Mask Language Model:

Input: [CLS] 劉碩他要簽 [MASK] → [CLS] 劉碩他要簽博

Next Sentence Prediction:

Input: X [CLS] 我要當老師 [SEP] 人民的法槌

Input: ✓ [CLS] 這隻手是人民的意志 [SEP] 人民的法槌

Model		Parameters	Layers	Hidden	Embedding	Parameter-sharing
	base	108M	12	768	768	False
BERT	large	334M	24	1024	1024	False
ALBERT	base	12M	12	768	128	True
	large	18 M	24	1024	128	True
	xlarge	60M	24	2048	128	True
	xxlarge	235M	12	4096	128	True

1.Factorize Embedding Matrix

Original BERT: 30000 x 768 = 23.04M

ALBERT:

30000 x 128 = 3.8M128 x 768 = 0.098M

Total: 3.898M

Reduce Parameters!

2. Shared Same Parameters across Layer

1/12 BERT Parameters

Reduce Parameters !!!

Share Parameters Experiment(s)

	Model	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
ALBERT base E=768	all-shared	31M	88.6/81.5	79.2/76.6	82.0	90.6	63.3	79.8
	shared-attention	83M	89.9/82.7	80.0/77.2	84.0	91.4	67.7	81.6
	shared-FFN	57M	89.2/82.1	78.2/75.4	81.5	90.8	62.6	79.5
	not-shared	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3
ALBERT base E=128	all-shared	12M	89.3/82.3	80.0/77.1	82.0	90.3	64.0	80.1
	shared-attention	64M	89.9/82.8	80.7/77.9	83.4	91.9	67.6	81.7
	shared-FFN	38M	88.9/81.6	78.6/75.6	82.3	91.7	64.4	80.2
	not-shared	89M	89.9/82.8	80.3/77.3	83.2	91.5	67.9	81.6

ALBERT: Pre-training Task

Mask Language Model:

Input: [CLS] 劉碩他要簽 [MASK] → [CLS] 劉碩他要簽博

Sentence Order Prediction:

Input: X[CLS] 人民的法槌 [SEP] 這隻手是人民的意志

Input: ✓ [CLS] 這隻手是人民的意志 [SEP] 人民的法槌

Reformer

Attention Layer - Prepare Q, K, V

Attention Layer - Attention Mechanism

N = 4

New Representation
$$1 = 0.7 \ 1 + 0.1 \ 2 + 0.1 \ 3 + 0.1 \ 4$$

$$0.70.10.10.1$$

$$70 \ 10 \ 10 \ 1$$

$$1 \ 2 \ 3 \ 4$$

$$Query Key Value$$

$$Complexity: O(n2)$$

Concatenation - pass a FFN

Attention Layer - Attention Mechanism

N = 8k?

Complexity: $O(n^2)$

Hash Function

Reformer: Find a small set of candidates by hash function

Reversible Layer

Style GAN

This Waifu Does Not Exist

"This waifu does not exist."

(Model & site by Gwern Branwen.)

of Dragon Balls". "The Dragon Ball Gods Academy, will be called out.

interesting mystery. When the group of students is given some food, a

behind you?". A strange and beautiful blond girl named Kami (Kakumi)

girl named Tatsuya. 『Sakura Fairy King』 will be a group that tries to find "Gimme the Time Machine", and in doing so, "the girl in power of the Demon King's castle will meet this kid who is called Shuri's daughter. They must all be careful." The Love Story will focus on the two main characters. The Hero of the Year Award, will be given to a young girl named Hana. "Sakura Princess," will be the protagonist of the school that is supposed to be the first in the series. These girls have to protect Princess Hibiki who is supposed to have gone to the Kingdom of the White Goddess. However, during some battles, she lost her arm and was thrown into an alleyway. When she comes back from the hospital, her friends call her "Miss" which will be how she is called later in the series. "I wanna meet the people who will be there with

The final installment of the anime from the Shogakukan manga series from the series manga adaptation and the one from the anime is now in development

The anime anime has been adapted to the English dub for English subtitles (which have been created to fit different characters). The manga was written by Hirokyou Miyoshi (Oriental Literature) from the anime and produced for Yabutta and Oda. The story takes place in the "Takashi, a man's house", the country where the famous Hyouko's

