Chapter 5 Introduction to Factorial Designs

Factorial Designs

- So far we discussed experiments involving one factor
 - □ Compare two conditions; t-tests (Ch 2)
 - □ Compare many conditions; F-tests, one-way ANOVA (Ch 3)
 - □ Compare many conditions while blocking for nuisance factors; two-way ANOVA, general linear model (Ch 4)
- Many experiments involve studying two or more factors
 - ☐ Factorial designs; multi-factor ANOVA, general linear model (Ch 5);

Factorial Designs

- Factorial design is an experimental design in which in each complete replication of the experiment all possible combinations of the levels of the factors are investigated
 - ☐ Factor levels are varied "simultaneously"
 - ■When factors are arranged in a factorial design the factors are said to be crossed
- Factorial designs allow studying the joint (or interaction) effects of multiple factors

Factorial Designs: Interactions

- Interaction between factors (from Chapter 1):
 - ■Synergy between factors
 - combined effect of factor levels that is above and beyond the sum of the individual effects of the factors
- Example: Sales of a product in a store
 - ■Adding a certain amount of shelf space adds 10 units of sales.
 - ☐ Adding a certain amount of money to promotion adds 8 units of sales.
 - ■Add both shelf space and promotion \$s→ 18 units of sales?
 - \Box If the gain is > 18 units \rightarrow Positive interaction

Factorial Designs: A two- factor, two-level experiment

- Two factors, A and B, have potential effects on response y.
 - ☐ In the experiment, both factors are tested at two levels
 - \square # of levels, a = 2, b = 2.
 - □ Denote the two levels as "High" and "Low" or "+" and "-"

Factorial Designs: A two- factor, two-level experiment

- Two factors, A and B, have potential effects on response y.
 - ☐ In the experiment, both factors are tested at two levels
 - \square # of levels, a = 2, b = 2.
 - □Denote the two levels as "High" and "Low" or "+" and "-"
- Effect of a factor A (denoted "A")
 - ☐ Change in the response y produced by a change in the level of the factor A
 - ☐ Main effect (m.e.) of factor A
- Interaction between A and B (denoted "AB")
 - □Change in the response due to change in A not same at all levels of B→ an interaction between A and B
 - ☐ Two factor interaction (2 f.i.) between A and B
- Higher order interactions (e.g., 3 f.i., 4 f.i.) may exist

Factorial Designs: Two- factor, two-level experiment

Example: A two- factor, two-level experiment

- Factors A and B tested at twolevels
 - ☐ 4 combinations. Response is measured at each combination once
- Main effect of A: (avg response at High level of A) (avg response at Low level of A) $A = \bar{y}_{A^+} \bar{y}_{A^-}$
- Similarly, main effect of B:

$$B = \bar{y}_{B^+} - \bar{y}_{B^-}$$

Example: A two- factor, two-level experiment

- Factors A and B tested at twolevels
 - □ 4 combinations. Response is measured at each combination once
- Interaction between A and B:

[(Main effect of A when B is high)-(Main effect of A when B is low)]/2

$$AB = \frac{A \ at \ B^+ - A \ at \ B^-}{2}$$

Example 1 (Fig 5.1)

Main Effect of A---
$$A = \bar{y}_{A^{+}} - \bar{y}_{A^{-}} = \frac{40+52}{2} - \frac{20+30}{2}$$

= $46 - 25 = 21$

Main Effect of B---
$$B = \bar{y}_{B^+} - \bar{y}_{B^-} = \frac{30+52}{2} - \frac{20+40}{2}$$

= $41 - 30 = 11$

Example 1 (Fig 5.1)

Two factor interaction plot

Main Effect of A---
$$A = \overline{y}_{A^+} - \overline{y}_{A^-} = \frac{40+52}{2} - \frac{20+30}{2}$$

= $46-25=21$

Main Effect of B---
$$B = \bar{y}_{B^+} - \bar{y}_{B^-} = \frac{30+52}{2} - \frac{20+40}{2}$$

= $41 - 30 = 11$

Interaction between A and B

$$A at B^{+} = 52 - 30 = 22$$

$$A at B^{-} = 40 - 20 = 20$$

$$AB = \frac{A at B^{+} - A at B^{-}}{2} = \frac{22 - 20}{2} = 1$$

Interaction is small

Example 2 (Fig 5.2)

Main Effect of A----
$$A = \overline{y}_{A^+} - \overline{y}_{A^-} = \frac{50+12}{2} - \frac{20+40}{2}$$
$$= 31 - 30 = 1$$

Main Effect of B---
$$B = \bar{y}_{B^+} - \bar{y}_{B^-} = \frac{40+12}{2} - \frac{20+50}{2}$$

= $26 - 35 = -11$

Example 2 (Fig 5.2)

Two factor interaction plot

Main Effect of A----
$$A = \overline{y}_{A^+} - \overline{y}_{A^-} = \frac{50+12}{2} - \frac{20+40}{2}$$
$$= 31 - 30 = 1$$

Main Effect of B---
$$B = \bar{y}_{B^+} - \bar{y}_{B^-} = \frac{40+12}{2} - \frac{20+50}{2}$$

= $26 - 35 = -11$

Interaction between A and B

$$A at B^{+} = 12 - 40 = -28$$

$$A at B^{-} = 50 - 20 = 30$$

$$AB = \frac{A at B^{+} - A at B^{-}}{2} = \frac{-28 - 30}{2} = -29$$

Interaction is large

Interpretation of Interaction Effect

- When interaction is significant main effects are not meaningful
 - ☐ In the case of Fig 5.2: if we consider only main effects, we may conclude that effect of A is not important
 - ☐ However, factor A has an effect, but it depends on the level of factor B
 - ☐ Significant interactions may mask the importance of main effects

5.3. Two-Factor Factorial Design

- General two-factor factorial design
 - \square Factor A has α levels. Factor B has b levels.
 - $\square ab$ treatment combinations. Each combination is replicated n times
 - \square all abn observations taken in random order (Completely randomized design)
- Two-way layout for observations: y_{ijk}

Factor B (Column treatments)

		1	2	 D
	1	y ₁₁₁ , y ₁₁₂ ,	y ₁₂₁ , y ₁₂₂ ,	y _{1b1} , y _{1b2} ,
	ļ	\dots, y_{11n}	\dots, y_{12n}	\dots, y_{1bn}
	2	$y_{211}, y_{212},$	$y_{221}, y_{222},$	$y_{2b1}, y_{2b2},$
Factor A		\dots, y_{21n}	\dots, y_{22n}	\dots, y_{2bn}
(Row treatments)	:			
	а	$y_{a11}, y_{a12}, \dots, y_{a1n}$	$y_{a21}, y_{a22}, \dots, y_{a2n}$	$y_{ab1}, y_{ab2}, \dots, y_{abn}$

Example: battery life experiment (p. 187)

- Design of a battery with maximum life that will be subject to extreme temperatures. Test 3 plate materials at 3 temperature levels. Take n=4 replications
 - ☐ Factors: Material type (A) and Temperature (B)
 - ☐ Response: Battery life (hours)
 - $\square 3^2$ factorial design.
- What effects do material type & temperature have on life? Main effects and Joint effects? Choice of material that would give long life regardless of temperature (a robust product)?

■ TABLE 5.1 Life (in hours) Data for the Battery Design Example

Material			Temperat	ture (°F)		
Туре	1	.5	7	0	1	25
1	130	155	34	40	20	70
	74	180	80	75	82	58
2	150	188	136	122	25	70
	159	126	106	115	58	45
3	138	110	174	120	96	104
	168	160	150	139	82	60

General Statistical Model for a Two-Factor Factorial Experiment

A statistical model for the two-factor experiment

$$y_{ijk} = \mu + \tau_i + \beta_j + \tau \beta_{ij} + \epsilon_{ijk}$$

$$\begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \\ k = 1, 2, ..., n \end{cases}$$

Effects of factors A and B

defined as deviations from μ

lacksquare :overall mean

 $\Box \tau_i$:effect of *i*-th level of factor A

 $\square \beta_i$:effect of j-th level of factor B

 $\Box \tau \beta_{ij}$:effect of interaction between i-th level of factor A and j-th level of factor B

 $\Box \epsilon_{ijk} \sim NID(0, \sigma^2)$ experimental error

General Statistical Model for a Two-Factor Factorial Experiment

- We are interested in testing 3 hypotheses:
- Factor A does not have effect on response (Response has equal means under different levels of factor A)

$$H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0$$

 $H_1:$ at least one $\tau_i \neq 0$

 Factor B does not have effect on response (Response has equal means under different levels of factor B)

$$H_0: \beta_1 = \beta_2 = \dots = \beta_b = 0$$

 $H_1:$ at least one $\beta_i \neq 0$

 Interaction of the levels of factor A and factor B does not have effect on the response

$$H_0: \tau \beta_{ij} = 0$$
 for all i and j
 $H_1:$ at least one $\tau \beta_{ij} \neq 0$

5.3.2. Statistical Analysis of the Factorial Design

To estimate the model parameters, define row, column, cell and grand averages

$$\bar{y}_{i..} = \frac{1}{bn} \sum_{i=1}^{b} \sum_{k=1}^{n} y_{ijk}$$
, $i = 1, 2, ..., a$

$$\bar{y}_{.j.} = \frac{1}{an} \sum_{i=1}^{a} \sum_{k=1}^{n} y_{ijk}$$
, $j = 1, 2, ..., b$

$$\bar{y}_{ij.} = \frac{1}{n} \sum_{k=1}^{n} y_{ijk}, \qquad \forall i, j$$

$$\bar{y}_{...} = \frac{1}{abn} \sum_{j=1}^{b} \sum_{i=1}^{a} \sum_{k=1}^{n} y_{ijk}$$

Row, column and cell averages

5.3.4 Estimates of model parameters

Overall mean

$$\hat{\mu} = \bar{y}_{...}$$

Effect of i-th level of factor A

$$\hat{\tau}_i = \bar{y}_{i..} - \bar{y}_{...}$$

Effect of j-th level of factor B

$$\hat{\beta}_i = \bar{y}_{.j.} - \bar{y}_{...}$$

Interaction between i-th level of A and j-th level of B

$$\widehat{\tau \beta}_{ij} = \bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}$$

ullet The fitted values of y_{ij}

$$\hat{y}_{ijk} = \hat{\mu} + \hat{\tau}_i + \hat{\beta}_j + \widehat{\tau} \hat{\beta}_{ij} = \overline{y}_{ij}.$$

Residuals

$$e_{ijk} = y_{ijk} - \hat{y}_{ijk}$$

5.3.2. Statistical analysis - Decomposition of the total sum of squares

ANOVA model can be written in terms of the estimated parameters

$$y_{ij} = \hat{\mu} + \hat{\tau}_i + \hat{\beta}_j + \widehat{\tau}\widehat{\beta}_{ij} + e_{ijk}$$

• Substitute estimates, bring $\bar{y}_{...}$ to the left side, take square of both sides, sum over i, j, k

$$y_{ijk} - \bar{y}_{...} = (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i...} - \bar{y}_{i...}) + (\bar{y}_{ij.} - \bar{y}_{i...} - \bar{y}_{ij.})$$

5.3.2. Statistical analysis - Decomposition of the total sum of squares

• Take square of both sides, sum over i, j, k

$$y_{ijk} - \bar{y}_{...} = (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i...}) + (\bar{y}_{ij.} - \bar{y}_{i...} - \bar{y}_{i...}) + (\bar{y}_{ijk} - \bar{y}_{ij.})$$

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{...})^{2} = bn \sum_{i=1}^{a} (\overline{y}_{i..} - \overline{y}_{...})^{2} + an \sum_{j=1}^{b} (\overline{y}_{.j.} - \overline{y}_{...})^{2}$$

$$+ n \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{y}_{...})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{ij.})^{2}$$

$$SS_T = SS_A + SS_B + SS_{AB} + SS_E$$

• Degree of freedom breakdown abn - 1 = (a - 1) + (b - 1) + (a - 1)(b - 1) + ab(n - 1)

5.3.2. Statistical analysis - Decomposition of the total sum of squares

• Effect of A: If large differences between row treatment means, MS_A will be larger than MS_E

$$F_{0.A} = MS_A/MS_E$$

- ☐ If the F statistic is large enough, then the effect of A is significant
- Effects of B and AB use $F_{0,B} = MS_B/MS_E$ and $F_{0,AB} = MS_{AB}/MS_E$

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{...})^{2} = bn \sum_{i=1}^{a} (\overline{y}_{i..} - \overline{y}_{...})^{2} + an \sum_{j=1}^{b} (\overline{y}_{.j.} - \overline{y}_{...})^{2}$$

$$+ n \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{y}_{...})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{ij.})^{2}$$

$$SS_{T} = SS_{A} + SS_{B} + SS_{AB} + SS_{E}$$

Variability between row means

Variability / between column means

Variability between cell means(interaction)

Variability within cells

ANOVA Table for Two-Factor Factorial Fixed Effects Model

■ TABLE 5.3

The Analysis of Variance Table for the Two-Factor Factorial, Fixed Effects Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	${F}_0$
A treatments	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
B treatments	SS_B	b - 1	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
Interaction	SS_{AB}	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$
Error	SS_E	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$	
Total	SS_T	abn - 1		

NOTE: We must have at least two replications (n>=2) if all possible interactions are included, to determine SSE

Example 5.1: battery life experiment (two-factor experiment)

 Design of a battery with maximum life that will be subject to extreme temperatures. Test 3 plate materials at 3 temperature levels

 \square Factors : A = Material type; B = Temperature

Response: battery life (hours)

 $\square 3^2$ factorial design. With replications n=4

What effects do material type & temperature have on life?
 Main effects and Joint effects? Choice of material that would give long life regardless of temperature (a robust product)?

■ TABLE 5.1 Life (in hours) Data for the Battery Design Example

Material			Temperat	ture (°F)		
Туре	1	5	7	0	1	25
1	130	155	34	40	20	70
	74	180	80	75	82	58
2	150	188	136	122	25	70
	159	126	106	115	58	45
3	138	110	174	120	96	104
	168	160	150	139	82	60

■ TABLE 5.4

Life Data (in hours) for the Battery Design Experiment

Material					Tempera	ture (°F)			
Туре		15	y_{ij} – \bar{y}_{ij}	7	0		125		y
	130	155	$y_{ij.} - y_{ij.}$	34	40	57.25 20	70	57.5	
1	74	180	639.5	80	75	229 37.23 20 82	58	(230)	998
	150	188	(G)	136	122	(479) 119.75 ²⁵	70	(198) ^{49.5}	
2	159	126	623)155.75	106	115	58	45	150	1300
	138	110	676)	174	120	(583) 145,75 00	104	(342) 85.5	
3	168	160	0/0/144	150	139	145.75 82	60	(42) 65.5	1501
$y_{j.}$		1738			1291		770		$3799 = y_{}$

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{...})^{2} = bn \sum_{i=1}^{a} (\overline{y}_{i..} - \overline{y}_{...})^{2} + an \sum_{j=1}^{b} (\overline{y}_{.j.} - \overline{y}_{...})^{2}$$

$$+ n \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{y}_{...})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{ij.})^{2}$$

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}^2 - \frac{y_{...}^2}{abn}$$
$$= (130)^2 + (155)^2 + (74)^2 + \cdots$$
$$(3799)^2$$

$$+ (60)^2 - \frac{(3799)^2}{36} = 77,646.97$$

$$SS_{\text{Material}} = \frac{1}{bn} \sum_{i=1}^{a} y_{i..}^2 - \frac{y_{...}^2}{abn}$$

$$= \frac{1}{(3)(4)} [(998)^2 + (1300)^2 + (1501)^2]$$
$$-\frac{(3799)^2}{36} = 10,683.72$$

$$SS_{\text{Temperature}} = \frac{1}{an} \sum_{j=1}^{b} y_{.j.}^2 - \frac{y_{...}^2}{abn}$$

$$= \frac{1}{(3)(4)} [(1738)^2 + (1291)^2 + (770)^2]$$
$$-\frac{(3799)^2}{36} = 39,118.72$$

 $SS_{\text{Interaction}} = \frac{1}{n} \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}^2 - \frac{y_{...}^2}{abn} - SS_{\text{Material}}$ $- SS_{\text{Temperature}}$

$$= \frac{1}{4} [(539)^2 + (229)^2 + \dots + (342)^2]$$
$$- \frac{(3799)^2}{36} - 10,683.72$$

$$-39,118.72 = 9613.78$$

and

 $SS_E = SS_T - SS_{\text{Material}} - SS_{\text{Temperature}} - SS_{\text{Interaction}}$ = 77,646.97 - 10,683.72 - 39,118.72 - 9613.78 = 18,230.75

■ TABLE 5.5

Analysis of Variance for Battery Life Data

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	<i>P</i> -Value
Material types	10,683.72	2		2000	
Temperature	39,118.72	2			
Interaction	9,613.78	4			
Error	18,230.75	27			
Total	77,646.97	35			

 Threshold value to test effect of Material Type and Temperature

$$F_{0.05,2,27} = 3.35$$

• Threshold value to test effect of interaction

$$F_{0.05.4.27} = 2.73$$

■ TABLE 5.5

Analysis of Variance for Battery Life Data

Source of	Sum of	Degrees of	Mean	22	
Variation	Squares	Freedom	Square	\boldsymbol{F}_0	P-Value
Material types	10,683.72	2	5,341.86		
Temperature	39,118.72	2	19,559.36		
Interaction	9,613.78	4	2,403.44		
Error	18,230.75	27	675.21		
Total	77,646.97	35			

 Threshold value to test effect of Material Type and Temperature

$$F_{0.05,2,27} = 3.35$$

• Threshold value to test effect of interaction

$$F_{0.05.4.27} = 2.73$$

■ TABLE 5.5 Analysis of Variance for Battery Life Data

Source of	Sum of	Degrees of	Mean		00.00-00.00
Variation	Squares	Freedom	Square	\boldsymbol{F}_0	P-Value
Material types	10,683.72	2	5,341.86	7.91	0.0020
Temperature	39,118.72	2	19,559.36	28.97	0.0001
Interaction	9,613.78	4	2,403.44	3.56	0.0186
Error	18,230.75	27	675.21		
Total	77,646.97	35			

 Threshold value to test effect of Material Type and Temperature

$$F_{0.05,2,27} = 3.35$$

• Threshold value to test effect of interaction

$$F_{0.05.4.27} = 2.73$$

- Two factor interaction plot
 - ☐ Average response at each treatment combination
 - ☐ Long life attained at low temperatures regardless of material
 - ☐ Material 3 gives smallest loss of life with temperature
 - Lines are not parallel: interaction effect is significant
 - ☐ formal test of significance: use p-values in ANOVA table

Classwork

• Problem 5.8

5.4. Factorials with More Than Two Factors

- General case:
 - \square Factor A has α levels,
 - \square Factor B has b levels,
 - \square Factor C has c levels, ...,
 - \square Factor K has k levels
 - \square Run n replications of each combinations
 - □All *abc* ... *kn* treatment combinations are run in random order
- ANOVA identity is

$$SS_{T} = SS_{A} + SS_{B} + \dots + SS_{K} + SS_{AB} + SS_{AB} + \dots + SS_{ABC} + SS_{ABD} + \dots + SS_{AB...K} + SS_{AB...K} + SS_{AB}$$

Three factor factorial experiment

A statistical model for the three-factor experiment

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_k + \tau_{ijk} + \tau$$

$$\begin{cases}
i = 1, 2, ..., a \\
j = 1, 2, ..., b \\
k = 1, 2, ..., c \\
l = 1, 2, ..., n
\end{cases}$$

■ TABLE 5.12
The Analysis of Variance Table for the Three-Factor Fixed Effects Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
A	SS_A	a-1	MS_A	$F_0 = rac{MS_A}{MS_E}$
В	SS_B	b-1	MS_B	$F_0 = rac{MS_B}{MS_E}$
C	SS_C	c = 1	MS_C	$F_0 = rac{MS_C}{MS_E}$
AB	SS_{AB}	(a-1)(b-1)	MS_{AB}	$F_0 = \frac{MS_{AB}}{MS_E}$
AC	SS_{AC}	(a-1)(c-1)	MS_{AC}	$F_0 = \frac{MS_{AC}}{MS_E}$
BC	SS_{BC}	(b-1)(c-1)	MS_{BC}	$F_0 = rac{MS_{BC}}{MS_E}$
ABC	SS_{ABC}	(a-1)(b-1)(c-1)	MS_{ABC}	$F_0 = rac{MS_{ABC}}{MS_E}$
Error Total	SS_E SS_T	abc(n-1) $abcn-1$	MS_E	

NOTE: We must have at least two replications (n>=2) to determine SSE if all possible interactions are included in the model