Ch10: T-tests

6 Mar 2012 Dr. Sean Ho

busi275.seanho.com

- Please download: 08-TTests.xls
- HW5 this week
- Projects

- Preview of statistical tests for your projects
- T-tests (comparing two groups of values):
 - Standard error
 - When σ₁, σ₂ are known
 - ♦ When s₁, s₂ are known, heteroscedastic
 - ♦ When s₁, s₂ are known, homoscedastic
 - Using Excel's TTEST() function on data
 - Types of t-test
 - Independent groups
 - Binomial proportions (σ known)
 - Paired data

Exploratory analysis

- Choosing good research questions:
- Start with the outcome variable (DV)
 - e.g., sales volume
- Research background (prior literature) on the DV to find likely predictors
 - e.g., marketing budget, consumer trends, new products from competitors, etc.
- Select some effect/predictor(s) to examine
 - In your analysis, control for other covariates
- Correlation ≠ causation: look for hidden vars
 - e.g., ice cream correlates with drownings!
 - Why? What are they both correlated with?

Analysis Types by IV/DV

- DV quantitative, IV categorical:
 - IV dichotomous (two groups): t-test
 - IV has many groups: ANOVA
 - Multiple categorical IVs: Factorial ANOVA
 - Controlling for covariates: ANCOVA
- DV quantitative, IV quantitative:
 - One IV: Simple Regression
 - Multiple IVs: Multiple Regression
 - Also if mix of categorical/quant IVs
- DV dichotomous: Logistic Regr. (survival an.)
- DV ordinal: Ordinal Regr.
 - , ... and much more!

Comparing two groups

- Assume: quantitative DV
- Assume: two independent groups
 - IV is dichotomous (nominal w/ 2 categories)
 - Each participant goes in only one group
- Look at difference between pop means: $\mu_1 \mu_2$.
- E.g., is CEO salary in US higher than in Can?
 - DV: salary. IV: country (US vs. Can)
 - H_A : $\mu_{US} \mu_{Can} > 0$
- E.g., does gender affect invest. risk tolerance?
 - DV: risk tolerance. IV: gender (M vs. F)
 - H_A : $\mu_M \mu_F \neq 0$

Hypothesis testing

- As before, we can either:
 - Estimate a confidence interval on μ_1 μ_2
 - If 0 is not in the interval, then there is a significant difference between groups
 - Or do a hypothesis test on μ_1 μ_2
 - $\bullet \overline{X}_1 \overline{X}_2$ is a threshold: p-val is area in tail
- Key components to calculate:
 - Point estimate $(\overline{X}_1 \overline{X}_2)$,
 - t-score, and
 - Standard error
 - T-distribution also needs a df

How to approach a t-test

- What format do you want the output in?
 - Hypothesis test (p-value) or conf. interval?
- What info on the data do you have?
 - Full dataset: use Excel's TTEST() function
 - Only means/SD: calculate manually
 - Standard error (SE) is key ingredient
- What type of t-test?
 - Independent groups
 - Homoscedastic or heteroscedastic?
 - Binomial proportions
 - Paired data

- Preview of statistical tests for your projects
- T-tests (comparing two groups of values):
 - Standard error
 - When σ_1 , σ_2 are known
 - ♦ When s₁, s₂ are known, heteroscedastic
 - ◆ When s₁, s₂ are known, homoscedastic
 - Using Excel's TTEST() function on data
 - Types of t-test
 - Independent groups
 - Binomial proportions (σ known)
 - Paired data

Standard error: o known

- SE is a "yardstick" by which we measure the group difference to see if it is significant
 - Larger SE ⇒ wider confidence interval, less precision in our estimate
- If we have σ_1 and σ_2 : the SE is a combination of SE₁ and SE₂ from each of the two groups:

Standard error: using s

- More realistically, we would only have s_1 , s_2
 - As well as n_1 , n_2 , \overline{x}_1 , \overline{x}_2
- SE is the same: $SE = \sqrt{SE_1^2 + SE_2^2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- But the t-dist needs a df, and it is messy:

$$df = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

- In general, df is somewhere in between
 - \bullet min($n_1 1$, $n_2 1$) (lower bound), and
 - \bullet $n_1 + n_1 2$ (upper bound)

Standard error: homoscedastic

- If s₁, s₂ are similar, we can try another method:
 - Homoscedasticity: same variance
 - Rule of thumb: s₁, s₂ are within a factor of 2
- df is simpler: $df = df_1 + df_2 = n_1 + n_2 2$
- The pooled variance s_p² is a weighted sum:

$$s_p^2 = \left(\frac{df_1}{df}\right) s_1^2 + \left(\frac{df_2}{df}\right) s_2^2$$

So the pooled SD is:

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Then the SE simplifies to:
$$\frac{SE}{n_1} = \frac{1}{n_1} + \frac{1}{n_2}$$

- Preview of statistical tests for your projects
- T-tests (comparing two groups of values):
 - Standard error
 - When σ_1 , σ_2 are known
 - ♦ When s₁, s₂ are known, heteroscedastic
 - When s₁, s₂ are known, homoscedastic
 - Using Excel's TTEST() function on data
 - Types of t-test
 - Independent groups
 - Binomial proportions (σ known)
 - Paired data

Example: household income

- RQ: did US household income decrease between 2001 and 2004?
- Data: income for each of 100 hholds in 2001; another sample of 100 households in 2004
- What format output? (p-value or conf. int.?)
- What format input? (raw data or just mean/SD?)
- What kind of t-test?
 - Indep. groups, proportions, or paired data?
 - Homoscedastic or heteroscedastic?
 - How can we check?
- See "Income" in 08-TTests.xls

Example: risk tolerance

- RQ: do M have higher risk tolerance than F?
 - Data: 15 males, avg tol 7.8, SD=2
 12 females, avg tolerance 7.2, SD=2.5
- Point estimate: difference in tol is $\overline{X}_1 \overline{X}_2 = 0.6$
- Standard error: using s, try heteroscedastic
 - $SE_1 = 2/\sqrt{15} \approx 0.5164$, $SE_2 = 2.5/\sqrt{12} \approx 0.7217$ • $SE = \sqrt{(SE_1^2 + SE_2^2)} \approx 0.8874$
 - Messy df ≈ 20.8
- \rightarrow t-score is t = (0.6 0)/SE = 0.6/0.8874 \approx 0.68
- **■** p-val: TDIST(0.68, 20.8, 1) \rightarrow 25.3%
- Fail to reject H₀: M tol. not significantly higher

- Preview of statistical tests for your projects
- T-tests (comparing two groups of values):
 - Standard error
 - When σ_1 , σ_2 are known
 - ♦ When s₁, s₂ are known, heteroscedastic
 - When s₁, s₂ are known, homoscedastic
 - Using Excel's TTEST() function on data
 - Types of t-test
 - Independent groups
 - Binomial proportions
 - Paired data

T-test on proportions

- e.g., customer satisfaction vs. bank branch:
 - See "Banks" in 08-TTests.xls
 - At Langley, 160/200 customers satisfied
 - At Abbt., 210/300 satisfied
 - Is there a significant difference?
- Use normal approximation to binomial:
 - When both np, nq > 5 (for both groups)
- For confidence intervals, $SE = \sqrt{(SE_1^2 + SE_2^2)}$
 - Where each $SE_i = \sqrt{(p_i q_i/n_i)}$
- For hypothesis tests, use a different SE
 - Uses pooled proportion:

SE for hyp. tests on proportion

The textbook offers a second form of the SE for hypothesis tests on binomial proportions:

$$SE = \sqrt{\overline{p}\,\overline{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Where p is the pooled proportion:

$$\overline{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

- This is equivalent to the "x² test of goodness-of-fit" we will learn in ch13
 - Most stats software uses this method

Proportions: bank example

- **Langley**: $x_1 = 160$, $n_1 = 200$
- Abbt.: $x_A = 210$, $n_A = 300$
- Pooled $\overline{p} = (160+210) / (200+300) = 74\%$
- SE = $\sqrt{pq} (1/n_L + 1/n_A) \approx 4.0042\%$
- Sample difference of proportions is $p_L p_A = (160/200) (210/300) = 10\%$
- This means a z-score of $z = ((p_1 p_A) 0) / SE$
 - $\bullet \approx 10\% / 4.0042\% \approx 2.497$
- Find the p-value (2-tailed):
 - = 2*NORMSDIST(-2.497) → 0.0125
 - Reject H₀: yes, there is a difference

- Preview of statistical tests for your projects
- T-tests (comparing two groups of values):
 - Standard error
 - When σ_1 , σ_2 are known
 - ♦ When s₁, s₂ are known, heteroscedastic
 - When s₁, s₂ are known, homoscedastic
 - Using Excel's TTEST() function on data
 - Types of t-test
 - Independent groups
 - Binomial proportions
 - Paired data

Repeated measures

- Apply same measurement to same subjects, but at different points in time:
 - e.g., annual revenue, 2000-2010
 - Time series / longitudinal data
- Or under different conditions:
 - e.g., highway vs. city mileage (on same car!)
 - e.g., wife's income, husband's income
 - (What is the unit of observation?)
- The measurements are linked to each other
 - Not independent
- Paired data is the simplest repeated measure
 - Use a t-test on the pairwise differences

Types of t-test (as in Excel)

- Type 3: two indep groups, most general:
 - H_A : $\mu_1 \mu_2 \neq 0$ (or >0)
 - $SE = \sqrt{(SE_1^2 + SE_2^2)}$, df is messy

- SE = $s_p \sqrt{(1/n_1 + 1/n_2)}$, df = df₁ + df₂
- Type 1: paired observations:
 - Form pairwise diffs: n = # pairs
 - H_A : $\mu_d \neq 0$ (or >0)
 - SE = s_d / \sqrt{n} , df = n-1

Paired data t-test

- e.g., "Mileage" in 08-TTests.xls
- Calculate the pairwise differences: =A2-B2, fill
- Find n, mean (\overline{d}) , and $SD(s_d)$ of pairs:
 - COUNT(), AVERAGE(), STDEV()
 - SD of diffs is not the same as diff of SDs!
- Calculate standard error: $SE = s_d/\sqrt{n}$
- Find t-score: (d 0) / SE
- Use TDIST() to find p-value, compare w/α
 - TDIST(*t*, *n*-1, *tails*)
- Or use all-in-one Excel function: TTEST(before, after, tails, 1)

TODO

- HW5 due Thu
- Projects: be pro-active and self-led
 - If waiting on REB approval: generate fake (reasonable) data and move forward on analysis, presentation
 - Remember your potential clients: what questions would they like answered?
 - Tell a story/narrative in your presentation

