Классификация точек покоя. Будем рассматривать СДУ (автономную)

$$\begin{cases} \frac{dx}{dt} = ax + by \\ \frac{dy}{dt} = kx + my \end{cases} \dot{X} = AX \Longrightarrow \det(A - \lambda E) = 0$$

Заметим, что функции x = 0 и y = 0 являются решениями (подстановка)

Причем, точка (0,0) – особая, так как СДУ $\rightarrow \frac{dy}{dx} = \frac{kx + my}{ax + bu}$

Рассмотрим различные случаи значений $\lambda_{1,2}$:

1) $\lambda_1 \neq \lambda_2, \lambda_{1,2} \in \mathbb{R}^-$

Тогда решения СДУ будут $x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$, $\dot{x}(t) = C_1 \lambda_1 e^{\lambda_1 t} + C_2 \lambda_2 e^{\lambda_2 t}$ Подставляем в первое уравнение, из него получаем $y(t) = \frac{1}{h}(C_1(\lambda_1 - a)e^{\lambda_1 t} + C_2(\lambda_2 - a)e^{\lambda_2 t})$ Введем начальные условия $y(0) = y_0, x(0) = y_0$

Решение задачи Коши: $\begin{cases} x(t) = \frac{ax_0 + by_0 - x_0 \lambda_2}{\lambda_1 - \lambda_2} e^{\lambda_1 t} + \frac{x_0 \lambda_1 - ax_0 - by_0}{\lambda_1 - \lambda_2} e^{\lambda_2 t} \\ y(t) = \frac{1}{b} \left(\frac{ax_0 + by_0 - x_0 \lambda_2}{\lambda_1 - \lambda_2} (\lambda_1 - a) e^{\lambda_1 t} + \frac{x_0 \lambda_1 - ax_0 - by_0}{\lambda_1 - \lambda_2} (\lambda_2 - a) e^{\lambda_2 t} \right) \end{cases}$ При $t \to +\infty$ $|e^{\lambda_i t}| < 1$ и $\forall \varepsilon > 0$ $\begin{cases} |\tilde{x}_0 - x_0| < \delta \\ |\tilde{y}_0 - y_0| < \delta \end{cases} \Longrightarrow \begin{cases} |\tilde{x}(t) - x(t)| < \varepsilon \\ |\tilde{y}(t) - y(t)| < \varepsilon \end{cases}$ $\lim_{t \to +\infty} x(t) = 0, \lim_{t \to +\infty} y(t) = 0, \text{ то есть } (0,0) - \text{устойчивое решение} \end{cases}$

Ex. 1.
$$\begin{cases} \dot{x} = -x \\ \dot{y} = -2y \end{cases} \iff \begin{cases} \frac{dx}{x} = -dt \\ \frac{dy}{y} = -2dt \end{cases} \iff \begin{cases} x = C_1 e^{-t} \\ y = C_2 e^{-2t} \end{cases} + \text{H.Y.} \Longrightarrow \begin{cases} x = x_0 e^{-t} \\ y = y_0 e^{-2t} \end{cases}$$

Изобразим интегральные кривые (фазовый портрет системы): СДУ $\Longrightarrow \frac{dy}{dx} = \frac{2y}{x} \Longrightarrow y = 0$ Cx^2

В этом примере получается семейство парабол, при $t \to +\infty$ они все стремятся к (0,0) – устойчивому узлу

2) $\lambda_1 \cdot \lambda_2 < 0, \lambda_{1,2} \in \mathbb{R}$

$$Ex.\ 2.\ \begin{cases} \dot{x}=x \\ \dot{y}=-2y \end{cases} \begin{cases} x=x_0e^t \\ y=y_0e^{-2t} \end{cases}$$
 Фазовый портрет $\frac{dy}{dx}=\frac{-2y}{x}\Longrightarrow y=\frac{C}{x^2}$

Гиперболы при $t \to \infty$ стремятся к точками $(\pm \infty, 0)$ и образуют так называемое седло неустойчивости

3) $\lambda_{1,2} = \alpha \pm i\beta$, $\alpha < 0$

Ex. 3.
$$\begin{cases} \dot{x} = -x + y \\ \dot{y} = -x - y \end{cases} \quad \lambda_{1,2} = -1 \pm i$$

$$\begin{cases} x(t) = e^{-t}(x_0\cos t + y_0\sin t) \\ y(t) = e^{-t}(y_0\cos t - x_0\sin t) \end{cases}$$
 — устойчивая

$$\begin{cases} x(t) = e^{-t}(x_0\cos t + y_0\sin t) & -\text{ устойчивая} \\ y(t) = e^{-t}(y_0\cos t - x_0\sin t) & \\ \Phi \text{азовый портрет: перейдем в ПСК} & x = \rho\cos\varphi & x_0 = A\cos\varphi_0 \\ y = \rho\sin\varphi & y_0 = A\sin\varphi_0 \end{cases}$$
 Тогда
$$\begin{cases} \rho\cos\varphi = e^{-t} = A\cos(t-\varphi_0) \\ \rho\sin\varphi = e^{-t} = A\sin(t-\varphi_0) \end{cases} \Longrightarrow \rho^2 = A^2e^{-2t} \Longrightarrow \rho = Ae^{-t}$$
 Выразим t через φ : $\tan\varphi = \tan(t-\varphi_0)$

Получаем $\rho = Ae^{-(\varphi + \varphi_0 + \pi n)}$

Получается семейство логарифмических спиралей $(\rho = Ae^{\varphi})$

3')
$$\lambda_{1,2} = \pm i\beta(\alpha = 0)$$
$$\begin{cases} x(t) = x_0 \cos \beta t + y_0 \sin \beta t \\ y(t) = y_0 \cos \beta t - x_0 \sin \beta t \end{cases}$$

Фазовый портрет – семейство соосных и концентрических эллипсов. Центр этих эллипсов устойчивый

4)
$$\lambda_{1,2} \in \mathbb{R}, \lambda_1 \cdot \lambda_2 = 0$$

$$\frac{\text{Lab.}}{1}.\begin{cases} \dot{x} = 0 \\ \dot{y} = -y \end{cases}$$
2.
$$\begin{cases} \dot{x} = -x \\ \dot{y} = -y \end{cases}$$
3.
$$\begin{cases} \dot{x} = y \\ \dot{y} = -0 \end{cases}$$

$$\begin{cases}
\dot{y} = -y \\
\dot{x} = y
\end{cases}$$
3.
$$\begin{cases}
\dot{x} = y \\
\dot{x} = y
\end{cases}$$

Обобщим. Если хотя бы один $\lambda \neq 0$ и лежит слева от $Im\lambda$, то решение устойчивое