UES103 Programming for Problem Solving Saif Nalband, PhD 1A27-31/1A42-46 cslab768

Topics covered

Introduction to Computer Fundamentals- Computer Memory Hierarchy, Types of Software Binary number system, Algorithm, Flowchart, Formulate simple algorithms for logical and arithmetic problems.

About Myself

- 90's Kid From Mumbai
- Completed my PhD BITS-Pilani, Goa Campus (YUP, I studied in GOA!)
- Taught at IIIT Pune
- Went for Post-Doctoral Researcher at Cork, Ireland for a year.
- Pandemic→DYPIU→IIIT Pune→TIET
- Social Acitve on Linkdin, twitter
- Hobbies; Football, MUFC, binge watch some series, courses

I can be found on (Contact)

Preference on EMAILS:

- 1. Email: saif.nalband@thapar.edu
- 2. Mob: 9322317570
- 3. Avoid WhatsApp unless its emergency!!!
- 4. Chamber No: 710, CSED Building /
- 5. Venue: Activity Space -1

OutCome of Course

- Programming paradigm → First Step
- 2. Initial Steps for Software development.

How to pass this course

- Will keep you update on this. Regarding the weightage of marking scheme
- 2. Attendance is MUST!!!
- 3. DO NOT MUG THE PROGRAMS.
- 4. PRACTICE CODING .. It's FUN.

Weightage Scheme: Theory: 100 marks

Modules	Weightage	
MST	40*	
EST	40*	
Lab Sessional(x2)	(10+10) 20	

Lecture (1A42 -- 46)

- Tuesday :-- 9:40 AM 10:30 AM \rightarrow LP103
- Wednesday :-- 12:10 PM − 1:00 PM → LP102
- Thursday :-- 10:30 AM 11:20 AM \rightarrow LP104
- Office Hours :
 - Monday 3:30 PM \rightarrow 5:10 PM
 - Tuesday Tuesday 2:40 PM → 5:10 PM

Lecture (1A27-- 31)

- Monday :-- 2:40 PM 3:30 PM → LP102
 Wednesday :-- 4:20 PM 5:10 PM → LP102
 Friday :-- 8:00 AM 8:50 AM → LP102
- Office Hours :
 - . Monday − $3:30 \text{ PM} \rightarrow 5:10 \text{ PM}$
 - Tuesday -2:40 PM → 5:10 PM

Lecture

- & Keeping the class interesting
- & Humor breaks
 - Actually helps with attention span!
 - Not surprisingly, most of it will be computer humor!
- & Lecture etiquette
 - Please don't use electronic devices during lectures
 - Plus no earbuds

Books

Text Books

- C Programming Language, Brian W. Kernighan Dennis M. Ritchie, 2nd ed, 2012.
- Programming in ANSI C, Balagurusamy G., 8th ed., 2019

Reference Books

- 1. Let Us C, Kanetkar Y., 16th ed., 2017
- Programming with C, Byron S Gottfried, McGraw Hill Education, Forth edition, 2018

Let Cook some codes

Programming? why

Why Do we Write codes ?

Computer Memory

Memory is the electronic holding place for the instructions and data a computer needs to reach quickly.

Two types of memory - primary and secondary Need for memory hierarchy – To minimize the memory access time

Memory hierarchy

Register – Memory that is built directly into the CPU Cache – Chip based memory closest to CPU RAM – Random access memory (main memory for computer calculations or temporary storage ROM – Read only memory; permanent memory; stores booting instructions for smooth computer operations Removable memory - pen drive or external hard drive)

The C Programming Language

Who? Dennis Ritchie

When? ~1972

Where? Bell Labs

Why? Develop the Unix OS

C: Details

C

```
hello.c:
#include <stdio.h>
int main(void)
{ printf("hello, world\n");
   return 0;
$ gcc217 hello.c -o hello
$ hello
hello, world
$
```

Types of Errors

There are five different types of errors in C.

- 1.Syntax Error
- 2.Run Time Error
- 3.Logical Error
- 4. Semantic Error
- 5.Linker Error

Computer Software

```
The instructions that control what a computer does;
computer programs. For example:
Operating system (System software)
C compiler (application software)
MS office – (which type of software)
Python (Anaconda, Pycharm, Jupiter) - ?
WhatsApp - ?
MAC - ?
```

Why!!

A power programmer must know number systems and data representation to fully understand C's primitive data types

Number Systems

Number Systems
Finite representation of unsigned integers
Finite representation of signed integers
Finite representation of rational numbers (if time)

The Decimal Number System Name

```
"decem" (Latin) => ten
```

Characteristics •

Ten symbols • 0 1 2 3 4 5 6 7 8 9

Positional

 $2945 \neq 2495$

2945 = (2*103) + (9*102) + (4*101) + (5*100) (Most) people use the decimal number system

The Binary Number System

```
Name • "binarius" (Latin) => two
Characteristics
Two symbols
```

Positional

1010B ≠ 1100B

Most (digital) computers use the binary number system

Terminology

Bit: a binary digit Byte: (typically) 8 bits

Binary number system

A system in which every number is represented in two digits (either 0 or 1).

For example, 1100 0111 is an 8-bit binary number or binary string.

Digital computer only understands only two signals (on and off) and thus only two alphabets (0 and 1)

Decimal to binary

Binary number: 10001

Binary to decimal

Binary number - 1010

Notation

 $(1010)_2$ or 1010 (base 2) means that 1010 is in binary

COUNTING IN BINARY NUMBERS

Decimal	Binary	Decimal	Binary
0	0	12	1100
1	1	13	1101
2	10	14	1110
3	11	15	1111
4	100	16	10000
5	101	17	10001
6	110	18	10010
7	111	19	10011
8	1000	20	10100
9	1001	21	10101
10	1010	22	10110
11	1011	23	10111

Signed binary numbers

```
In case of 4 bits we have 2<sup>4</sup> permutations
(why?)
So we have total 16 representations
{0000,...,1111} (why?)
If all positives then we have {0, 1, ..., 15} (why?)
If we have negatives then {-8,-7,...,-1, 0,...7}
(why)
```

First type of notation - sign bit

Q: Use sign bit to find the range of 4-bit binary numbers

All possibilities of 4-bit numbers

```
0000, 0001, 0010, 0011
0100, 0101, 0110, 0111
1000, 1001, 1010, 1011
1100, 1101, 1110, 1111
```

Use sign bit to find the range of 4-bit binary numbers

ANS: Problem in representing 0

```
1111 = -7
1000 = -0
0000 = +0
0111 = 7
```

Second type of notation – 2's complement

It resolves the the limitation of the signed bit representation.

Negative binary numbers: 2's complement

Flip zeros and ones and add 1

decade	binary
number	II K
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
0	0000
1 2 3 4 5 6 7	0001 0010 0011 0100 0101 0110

1101 into unsigned and signed

Unsigned (+): So 1101 = 13 in decimal

Signed (+/-): If the most significant bit (MSB) is 1 then number is negative. So 1101 means a negative number. Then find its 2's complement to find its value which is 0011. So 1101 = -3.

Find *signed* decimal values for 10100101 and 01111111.

Algorithm

Finite sequence of explicit and unambiguous instructions, which when provided with a set of input values produces an output and then terminates.

Pseudo code

(1) Pseudo code is a generic way of describing an algorithm without using any specific programming language-related notations.

(2) It is an outline of a program, written in a form, which can easily be converted into real programming statements.

Examples Of Algorithms

Write an algorithm to add two numbers entered by user.

Flowchart

It is a pictorial form of an algo

Boxes represent operations and arrows represent sequence in which the operations are executed

Flowchart – types of boxes

Start/end	An oval represents a start or end point
 Arrows	A line is a connector that shows relationships between the representative shapes
Input/Output	A parallelogram represents input or output
Process	A rectangle represents a process
Decision	A diamond indicates a decision

Practice

Write and algorithm to input a positive integer and print its multiplication table from 1 to 10. For example if input n = 4 then the table should print $4 \times 1 = 4 \dots 4 \times 10 = 40$.

Draw the flow chart for the above algorithm