Algorithms.

Definitions An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

Searching Algorithms.

Linear Search, Algorithm

Procedure Unear search (x: Int, a, ..., an: (distinct) int)

i:=1

Unile (i \(\)

if $i \le n$ then location i = nelse location i = 0

return location (i if x=a;
O if x is not found)

Definition (Big-O notation)

Let f and g be functions from IR to IR. We write $f_{CN7} = O(g_{CN})$ if there are constants C, K such that $|f_{CN}| \le C|g_{CN}|$ whenever $x_1 > K$.

Discussions. O) In the worst case scenarlo, now many comparisons

2 of the input array may have some identical numbers, which index does the algorithm Find?

```
Binary Search Algorithm ( Python - bisect-left)
     det bisect_left (a, x) # a= (ao, a,, -, an)
        lo=0
        hi = len(a) - l # n-l
        while lochit
           mid = (10 + hi) //2
            4 a[mid] < x;
             lo = mid +1
            else:
             hi= mid
        return lo.
     det bisect right (a, x) # a= [ao, a1, ..., an-1]
        10 = 0
         n; = (en(a) - | # n-1
        while lo < hi:
           mid = (10 + hi) 1/2
           if x < a [mid]:
            hi= mid
           else:
             lo = mid tl
         return In
  Discussions. 1) How many comparisons?
```

2) If the input array may have some identical numbers, which index does the algorithm find?

Sorting Algorithms

Bubble sort i Array of numbers into increasing order by successively comparing adjacent elements, interchanging them if they are in the arrang order procedure bubblesort $(a_i,...,a_n; real numbers, n \ge 2)$ for i=1 to n-1

for j=1 to n-i

4 a, > a; +1 then interchange a; and a; +1

Insertion Sort: Array of numbers into increasing order by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list procedure insertionsort (ao, --, en-, i real number, 1932)

For i = 0 to n-1 $key = a_i$

while j = 0 and key < 0; intercharge 0, 0, 0, +1 j := j-1

1) Is cussions (1) How many comparisons?

(2) How many swaps?