

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problems Mailbox.**

**THIS PAGE BLANK (USPTO)**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
4 October 2001 (04.10.2001)

PCT

(10) International Publication Number  
WO 01/73530 A2

(51) International Patent Classification: G06F 1/00

(21) International Application Number: PCT/US01/09631

(22) International Filing Date: 26 March 2001 (26.03.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:  
09/536,203 27 March 2000 (27.03.2000) US

(71) Applicant: SECURIT-E-DOC, INC. (US/US); 1689 Forum Place, West Palm Beach, FL 33401 (US).

(72) Inventor: BARRON, Robert, H.; 1025 Morse Blvd., Singer Island, FL 33404 (US).

(74) Agent: SLAVIN, Michael; McHale & Slavin, P.A., 4440 PGA Blvd., Suite 402, Palm Beach Gardens, FL 33410 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARJPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CE, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/73530 A2

(54) Title: METHOD, APPARATUS, AND SYSTEM FOR SECURE DATA TRANSPORT

(57) Abstract: A platform allowing for the secure file transfer from one location to another (internet or intranet) with virtually impregnable encryption, secure data storage, and a simple web-based user interface. A user accesses the system by a data-base authentication system requiring user name and password. The program residing on the server then generates an encryption sequence. A temporary file is created on the users' machine upon which the user uploads the information to be sent. The information is automatically encrypted by the program and transferred to the server and the user's temporary file deleted. The information is securely stored in the program on the server until the recipient downloads it. The recipient also accesses the server by a user name and password. The program generates a decryption program. The recipients machine receives the applet program to decrypt the file and a copy of the encrypted file. After decryption is complete, the program saves the files to a specified recipient folder, and can be automatically deleted or archived.

## 1       METHOD, APPARATUS, AND SYSTEM FOR SECURE DATA TRANSPORT

2       FIELD OF THE INVENTION

3           This invention relates generally to the field of data  
4           transmission over computer networks and more particularly  
5           to a universally adaptable server-side software system for  
6           an automatically encrypted and decrypted, password  
7           controlled secure transfer of data from a source host to a  
8           destination host across any internetwork.

9

10      BACKGROUND OF THE INVENTION

11       In recent years, the widespread adoption of public  
12       and private networks has modernized the manner in which  
13       organizations communicate and conduct business. Advanced  
14       networks provide an attractive medium for communication  
15       and commerce because of their global reach, accessibility,  
16       use of open standards, and ability to permit interactions  
17       on a concurrent basis. Additionally, networks allow  
18       businesses a user-friendly, low cost way to conduct a wide  
19       variety of commercial functions electronically.

20       A computer network is basically a collection of  
21       computers that are physically and logically connected  
22       together to exchange data or "information." The network  
23       may be local area network, connected by short segments of  
24       ethernet or to the same network hub, or wide area network,  
25       separated by a considerable distance. An internetwork is  
26       a network of computer networks, of which the Internet is  
27       commonly acknowledged as the largest.

28       The Internet is based on standard protocols that  
29       allow computers to communicate with each other even if  
30       using different software vendors, thus allowing anyone  
31       with a computer easy accessibility to everything else  
32       connected to the Internet world wide. As a result of this  
33       global access, it is becoming increasingly useful for  
34       businesses and individuals to transmit information via  
35       networks and internetworks from one site to another.

-2-

1       The interconnected computers exchange information  
2       using various services, for example, the World Wide Web  
3       (WWW) and electronic mail. The WWW created a way for  
4       computers in various locations to display text that  
5       contained links to other files. The WWW service allows a  
6       server computer system (Web server or Web site) to send  
7       graphical Web pages of information to a remote client  
8       computer system. The remote client computer system can  
9       then display the Web pages.

10      In a standard e-mail system, a user's computer is  
11      connected to a provider of Internet services, and the  
12      user's computer provides an e-mail password when polling  
13      the provider's computer for new mail. The mail resides on  
14      the provider's computer in plain text form where it can be  
15      read by anyone. In both examples, the information, if  
16      unsecured, is replicated at many sites in the process of  
17      being transmitted to a destination site and thereby is  
18      made available to the public.

19      Organizations are increasingly utilizing these  
20      networks, to improve customer service and streamline  
21      business communication through applications such as e-  
22      mail, messaging, remote access, intranet based  
23      applications, on-line support and supply chain  
24      applications. The very openness and accessibility that  
25      has stimulated the use of public and private networks has  
26      also driven the need for network security.

27      Presently, to provide for a secure transfer of  
28      information, it may be encrypted at the sending host's end  
29      and decrypted at the receiver's end. Encryption  
30      algorithms transform written words and other kinds of  
31      messages so that they are unintelligible to unauthorized  
32      recipients. An authorized recipient can then transform  
33      the words or messages back into a message that is  
34      perfectly understandable. Currently, there are two basic  
35      kinds of encryption algorithms (1) symmetric key

-3-

1 algorithms and (2) public key algorithms.

2 Symmetric (or private) key algorithms use the same  
3 key to encrypt and decrypt the message. Generally, they  
4 are faster and easier to implement than public keys.  
5 However, for two parties to securely exchange information,  
6 those parties must first securely exchange an encryption  
7 key. Examples of symmetric key algorithms include DES,  
8 DESX, Triple-DES, Blowfish, IDEA, RC2, RC4, and RC5.

9 Public key algorithms use one key (public key) to  
10 encrypt the message and another key (private key) to  
11 encrypt it. The public key is made public and is used by  
12 the sender to encrypt a message sent to the owner of the  
13 public key then the message can only be decrypted by the  
14 person with the private key. Unfortunately, public keys  
15 are very slow, require authentication, and do not work  
16 well with large files.

17 A third type of system is a hybrid of the public and  
18 private systems. The slower public key cryptography is  
19 used to exchange a random session key, which is then used  
20 as the basis of a symmetric (private) key algorithm. The  
21 session key is used only for a single encryption session  
22 and is then discarded. Nearly all practical public key  
23 cryptography implementations in use today are actually  
24 hybrid systems.

25 Finally, message digest functions are used in  
26 conjunction with public key cryptography. A message  
27 digest function generates a unique pattern of bits for a  
28 given input. The digest distills the information  
29 contained in a file into a single large number, typically  
30 128 and 256 bits in length. The digest value is computed  
31 in such a way that finding an input that will exactly  
32 generate a given digest is computationally infeasible.

33 Message digest algorithms are not used for encryption  
34 or decryption but for creation of digital signatures,  
35 messages authentication codes (MAC), and the creation of

-4-

1        encryption keys from passphrases. For example, Pretty  
2        Good Privacy (PGP) uses message digests to transform a  
3        passphrase provided by a user in to an encryption key that  
4        is used for symmetric encryption. (PGP uses symmetric  
5        encryption for its "conventional encryption" function as  
6        well as to encrypt the user's private key). A few digest  
7        in use are HMAC, MD2, MD4, MD5, SHA, and SHA-1.

8        Working cryptographic systems can be divided into two  
9        categories; (1) programs and protocols that are used for  
10      encryption of e-mail messages such as PGP and S/MIME and  
11      (2) cryptographic systems used for providing  
12      confidentiality, authentication, integrity, and  
13      nonrepudiation in a network environment. The latter  
14      requires real-time interplay between a client and a server  
15      to work properly. Examples include Secure Socket Layer  
16      (SSL) a general-purpose cryptographic protocol that can be  
17      used with any TCP/IP service and PCT a transport layer  
18      security protocol for use with TCP/IP service, PCT, S-  
19      HTTP, SET, Cybersafe, DNSSEC, Ipsec, IPv6, Kerberos, and  
20      SSH.

21       Although the present means of securing the electric  
22      transfer of information provides a level of security, the  
23      security provided can be easily breached. Symmetric  
24      encryption algorithms are vulnerable to attack by (1) key  
25      search or brute force attacks, (2) cryptanalysis, and (3)  
26      systems-based attacks. First, in a key search, the cracker  
27      simply tries every possible key, one after another, until  
28      the he/she is allowed into the system or the ciphertext is  
29      decrypted. There is no way to defend against this but a  
30      128 bit key is highly resistant because of the large  
31      number of possible keys to be tried.

32       Second, in cryptanalysis, the algorithm can be  
33      defeated by using a combination of sophisticated  
34      mathematics and computer power. Many encrypted messages  
35      can be deciphered without knowing the key. Finally, the

-5-

1     cryptographic system itself is attacked without actually  
2     attacking the algorithm.

3         Public key algorithms are theoretically easier to  
4     attack than symmetric key algorithms because the attacker  
5     has a copy of the public key that was used to encrypt the  
6     message. Also, the message presumably identifies which  
7     public key encryption algorithm was used to encrypt the  
8     message. These attacks are (1) factoring attacks and (2)  
9     algorithmic attacks. First, factoring attacks attempt to  
10    derive a private key from its corresponding public key.  
11    This attack can be performed by factoring a number that is  
12    associated with the public key.

13         Second, an algorithm attack consists of finding a  
14    fundamental flaw or weakness in the mathematical problem  
15    on which the encryption system is based. Although not  
16    often done, it has been accomplished.

17         Message digest functions can be attacked by (1)  
18    finding two messages-any two messages-that have the same  
19    message digest and (2) given a particular message, find a  
20    second message that has the same message digest code.

21         Thus, what is needed is a system for securing the  
22    electronic transfer of information that circumvents  
23    decryption. Also, needed is one system that can be used  
24    for both e-mail and internet security. Finally, needed is  
25    a widely available, user-friendly system for securing  
26    electronic transfer and storage of information.

27

28         SUMMARY OF THE INVENTION

29         The present invention provides a universally  
30    adaptable server-side software system designed to  
31    administrate access and facilitate virtually impregnable  
32    security for the delivery, storage, and sharing of  
33    documents and files utilizing any compatible network as a  
34    secure communications forum.

35         In general, the instant invention is a method and

-6-

1 apparatus for encrypting data with a either a random  
2 automatic mode of encryption, and a client selected  
3 private key, that does not travel with the document. The  
4 method and apparatus, writes the encryption algorithm  
5 creating a packaged application. The encryption program  
6 generates random sequences or encryption algorithms, with  
7 respect to time sensitivity, to be used in the packaged  
8 application that it creates. No two algorithms will ever  
9 be the same.

10 In the basic embodiment, the client accesses the  
11 server using a data-base authentication system requiring  
12 User name and Password. Once access is granted, the  
13 packaged application is sent to the client machine as a  
14 temporary file to encrypt the files being sent or uploaded  
15 to the server. The application package breaks the files  
16 down into binary form, reads the binary form, and then  
17 rewrites the data to the temporary file it created. On a  
18 binary level, the code is rewritten and saved for transfer  
19 in a file format only decodable by the end recipient.  
20 Once this process is complete, the application packet then  
21 sends the encrypted data to the server via SSL protocol  
22 connection.

23 The data resides on the server waiting for an  
24 intended recipient to download and unlock it. When file  
25 retrieval is requested, the server authenticates the user  
26 and password via a log-on system. Once access is granted,  
27 the server generates a new application packet designed to  
28 decrypt the file being requested, based on the original  
29 encryption algorithm. The server retrieves its original  
30 entry, sets into motion the sequence of creating a  
31 decryption program, saves the generated program, and then  
32 sends the application packet to the requesting client  
33 machine.

34 The client machine receives the application packet to  
35 decrypt the file from the server and a copy of the file to

1       be decrypted is downloaded. The application program now  
2       runs the calculations it needs to decrypt the data with  
3       the sequence it was given. The application program opens  
4       the file, reads the binary data, and writes the data to a  
5       new temporary file created for its reception. When the  
6       file is decrypted, the program saves the file to a folder  
7       specified by the recipient and then deletes itself  
8       providing a secure transfer. Upon completion of the  
9       transfer, the original encrypted file located on the  
10      server can be deleted or retained archival.

11      Accordingly, it is an objective of the instant  
12      invention to provide a method and apparatus that provides  
13      secure electronic transfer of information by using a  
14      random and automatic mode of encryption wherein no two  
15      algorithms are ever repeated.

16      Still another objective of the instant invention to  
17      provide a method and apparatus that allows for secure data  
18      transportation that encrypts at the 128 bit level,  
19      transports and stores data encrypted, and decrypted only  
20      to an authorized user.

21      A further objective of the instant invention to  
22      provide a basic level of security wherein data is  
23      transported via an SSL protocol and automatically  
24      encrypted. In this mode only authorized user on a network  
25      can decrypt data for review or modification. Separately  
26      and in addition, a secure e-mail notification is  
27      dispatched to the intended recipient(s) to inform them of  
28      secure data waiting for retrieval.

29      Another objective of the instant invention to provide  
30      a heightened level of security wherein a private and  
31      secondary key or digital file lock can be employed  
32      providing a unique secondary data lock.

33      Still another objective of the instant invention to  
34      provide a client-side locking device or biometric  
35      interface. In such a locking device, a retinal scanner,

--8-

1 finger print scanner, smart card reader or the like and be  
2 implemented in order to send or retrieve information.

3 Yet another objective of the instant invention is to  
4 provide virtually impregnable security for the delivery,  
5 storage, and sharing of documents and files utilizing any  
6 compatible network as a secure communications forum.

7 Other objects and advantages of this invention will  
8 become apparent from the following description taken in  
9 conjunction with the accompanying drawings wherein are set  
10 forth, by way of illustration and example, certain  
11 embodiments of this invention. The drawings constitute a  
12 part of this specification and include exemplary  
13 embodiments of the present invention and illustrate  
14 various objects and features thereof.

15

16 BRIEF DESCRIPTION OF THE FIGURES

17 Figure 1 is a block diagram of the client file  
18 encryption transfer request of the instant invention;

19 Figure 2 is a block diagram of the encryption  
20 transfer;

21 Figure 3 is a block diagram of the recipient file  
22 request; and

23 Figure 4 is a block diagram of the decryption  
24 transfer.

25

26 DETAILED DESCRIPTION OF THE INVENTION

27 Although the invention will be described in terms of  
28 a specific embodiment, it will be readily apparent to  
29 those skilled in this art that various modifications,  
30 rearrangements, and substitutions can be made without  
31 departing from the spirit of the invention. The scope of  
32 the invention is defined by the claims appended hereto.

33 Now, referring to Fig. 1, shown is flow chart  
34 depicting the steps required for encrypting data allowing  
35 for secure transfer of electronic data. A client 10 opens

-9-

1       a web browser and accesses a qualified server 12 therein  
2       requesting data transfer. The server 12 provides login  
3       account qualifier data requiring either user name and a  
4       password 14 or a biometric interface 16 such as a retinal  
5       scanner, finger print scanner, smart card reader and the  
6       like for the purpose of seeking data-base authentication  
7       18. If login fails, the user has three attempts 20  
8       before the account is locked 22 and the administrator and  
9       the account holder 24 is alerted. Upon a successful login  
10      26, a transfer request 28 is sent to the control program  
11      on the server to open a transfer information page inquiry  
12      page.

13           Referring now to Figure 2, when data is to be  
14       transferred 30, an applet is compiled on the server and  
15       sent to the client 32. The applet is a temporary file  
16       allowing the client to select 34 the data files that are  
17       to be transferred. The user adds the file(s) to be  
18       transferred to the application window 46. If the user  
19       account allows, the client has the option of entering via  
20       the keyboard, a secondary security key 36. It should be  
21       noted that even if two separate people encrypted the exact  
22       same file with the same key, they will have encrypted two  
23       uniquely different sequences. If one attempts to "crack"  
24       the application sequence, they would not be able to  
25       decrypt it because each applet is embedded with a unique  
26       encryption sequence. The encryption sequence generated is  
27       added to the applet template and compiled 38 and  
28       transferred to the server 40 with notification sent to the  
29       recipient 42.

30           The applet breaks the code of the files down into its  
31       binary form during execution. It reads the binary data  
32       and then rewrites the data to the temporary file that was  
33       previously created. The running program changes the  
34       entire code sequence of the client file to a randomly

-10-

1 generated sequence specified by the particular and  
2 customized applet. The sequence is also designed to  
3 replace every other matching bit of binary code with a  
4 unique string. Thus, with this method, an "a", for  
5 example, will never be represented twice in the same file  
6 structure. This is designed to deter the common method of  
7 cracking encrypted code by repeated or pattern data. On  
8 a binary level, the code is rewritten and saved for  
9 transfer in a file format only decodable by the recipient.  
10 The applet then sends the encrypted data to the server via  
11 SSL protocol. Once the transfer is complete, the applet  
12 deletes any trace of the file encrypted. With the  
13 destruction of the applet, no two applications are ever  
14 the same because each application contains it's own  
15 encryption sequence that cannot be replicated.

16 The encrypted data resides on the server 12 waiting  
17 for an intended recipient to download and unlock it. This  
18 creates the ability to maintain completely encrypted and  
19 secure data archives. When file retrieval is requested by  
20 a recipient, the server then accesses the original record  
21 information of the sequence or algorithm that it  
22 originally gave to the applet that the server created to  
23 encrypt the file.

24 Now referring to Fig. 3, shown is the flow chart  
25 depicting the steps for decrypting data for a secure  
26 receipt of electronic data. A recipient 50 opens a web  
27 browser and accesses a qualified server 12 therein  
28 requesting data transfer. The server 12 provides login  
29 account qualifier data requiring either user name and a  
30 password 52 or a biometric interface 54 such as a retinal  
31 scanner, finger print scanner, smart card reader and the  
32 like for the purpose of seeking data-base authentication  
33 56. If login fails, the user has three attempts 58  
34 before the account is locked 60 and the administrator and  
35 the account holder 62 is alerted.

-11-

1        If the login is successful, the server 12 depicts  
2        those files available to the recipient 66. The recipient  
3        chooses which file to retrieve and the server generates a  
4        new applet designed to decrypt the file requested 69,  
5        based on the original encryption sequence. The file is  
6        retrieved 70 and stored in a temporary file. The program  
7        now prompts the user for any secondary key 71 that was  
8        originally entered by the sender. Once the key sets the  
9        sequence, the applet calculates the sequence that was  
10      originally written on the fly. The applet resumes  
11      decryption with the new sequence of the temporary file  
12      wherein decryption is executed 72 and the decrypted file  
13      saved to a selection location. When the data decryption  
14      is complete, the program saves the file 73 with original  
15      extensions, to a folder specified by the recipient. Then  
16      the applet deletes itself 74 and any data related to the  
17      secure transfer. Upon completion of the transfer and  
18      decryption process, the original encrypted file located on  
19      the server can be triggered to be automatically deleted or  
20      retained for manual deletion.

21       It is to be understood that while a certain form of  
22       the invention is illustrated, it is not to be limited to  
23       the specific form or arrangement of parts herein described  
24       and shown. It will be apparent to those skilled in the  
25       art that various changes may be made without departing  
26       from the scope of the invention and the invention is not  
27       to be considered limited to what is shown and described in  
28       the specification and drawings.

29

30

31

32

33

34

-12-

1                   CLAIMS

2       What is claimed is:

3           Claim 1. A method of encrypting data for secure  
4       transfer and storage of electronic data comprising the  
5       steps of:

6           accessing a conventional web browser;

7           logging onto a qualified server and providing account  
8       qualifier data;

9           reading a transfer information inquiry page upon  
10      verification of account qualifier;

11       obtaining a first applet compiled on said server in  
12      response to said inquiry page, said first applet used to  
13      create a temporary file for the upload of data;

14       submitting a file for encryption to said applet;

15       encrypting said file and forming an encrypted data  
16      packet;

17       forwarding said data packet to said qualified server  
18      for storage;

19       providing a means for decrypting said encrypted data  
20      packet.

21

22       Claim 2. The method according to claim 1 wherein  
23      said account qualifier is a user name and password.

24

25

26       Claim 3. The method according to claim 1 wherein  
27      said account qualifier is a smart card reader.

28

29       Claim 4. The method according to claim 1 wherein  
30      said account qualifier is a biometric interface.

31

32       Claim 5. The method according to claim 4 wherein  
33      said biometric interface is a retinal scanner.

34

35

-13-

1           Claim 6. The method according to claim 4 wherein  
2        said biometric interface is a finger print scanner.

3

4           Claim 7. The method according to claim 1 including  
5        the step of entering a secondary security key to said  
6        applet.

7

8           Claim 8. The method according to claim 7, wherein  
9        said secondary key is a digital file lock.

10

11          Claim 9. The method according to claim 1 including  
12        the step of destroying said first applet.

13

14          Claim 10. The method according to claim 1 wherein a  
15        recipient is notified of an encrypted data file by an e-  
16        mail message sent via the open SSL protocol upon  
17        submittal of said data packet to said server.

18

19          Claim 11. The method according to claim 1 wherein  
20        said means for decrypting said encrypted data packet  
21        comprising the steps of:

22           accessing a conventional web browser;

23           logging onto a qualified server and providing account  
24        qualifier data;

25           reading a transfer information inquiry page upon  
26        verification of account qualifier;

27           obtaining a second applet compiled on said server in  
28        response to said inquiry page, said second applet used to  
29        create a temporary file for the download of data;

30           submitting a file for decryption to said second  
31        applet;

32           decrypting said file.

33

34          Claim 12. The method according to claim 10 wherein  
35        said second applet is destroyed.

-14-

1  
2       Claim 13. The method according to claim 1 wherein  
3       said account qualifier is compared against a stored  
4       database.

5  
6       Claim 14. The method according to claim 1 said  
7       encrypting of said file occurs during a transfer to said  
8       server.

9  
10      Claim 15. A method of encrypting data for secure  
11      transfer and storage of electronic data comprising the  
12      steps of:

13       accessing a conventional web browser;  
14       logging onto a qualified server and providing account  
15       qualifier data;  
16       reading a transfer information inquiry page upon  
17       verification of account qualifier;  
18       obtaining a first applet compiled on said server in  
19       response to said inquiry page, said first applet used to  
20       create a temporary file for the upload of data;  
21       submitting a file for encryption to said applet;  
22       encrypting said file and forming an encrypted data  
23       packet;  
24       forwarding said data packet to said qualified server  
25       for storage and destroying said first applet;  
26       obtaining a second applet compiled on said server in  
27       response to said inquiry page, said second applet used to  
28       create a temporary file for the download of said encrypted  
29       data;  
30       decrypting said file and destroying said second  
31       applet.

32  
33       Claim 16. The method according to claim 15 wherein  
34       said account qualifier is a user name and password.

35

-15-

1       Claim 17.. The method according to claim 15 wherein  
2       said account qualifier is a smart card reader.

3

4       Claim 18. The method according to claim 15 wherein  
5       said account qualifier is a biometric interface.

6

7       Claim 19.. The method according to claim 18 wherein  
8       said biometric interface is a retinal scanner.

9

10      Claim 20. The method according to claim 18 wherein  
11      said biometric interface is a finger print scanner.

12

13      Claim 21. The method according to claim 15 including  
14      the step of entering a secondary security key to said  
15      applet.

16

17      Claim 22. The method according to claim 21, wherein  
18      said secondary key is a digital file lock.

19

20      Claim 23. The method according to claim 15 wherein a  
21      recipient is notified of an encrypted data file by an e-  
22      mail message sent by SSL protocol upon submittal of said  
23      data packet to said server.

24

25      Claim 24. A system for secure transfer, storage and  
26      access of electronic data comprising;

27            a software system program residing on a server having  
28            a login entry sequence, means for generating a program  
29            for encrypting data selected by a sender to create a first  
30            applet, said first applet used to create a temporary file  
31            on said sender's computer for the upload of data to be  
32            transferred forming an encrypted data file, means for  
33            transporting and storing of said encrypted data file,  
34            means for generating a second applet to retrieve and  
35

-16-

1       decrypt said data file, said second applet allowing for  
2       the downloading and decryption of said data file.  
3

4              Claim 25. The system according to claim 24, wherein  
5       said applets are controlled by a user name and password.  
6

7              Claim 26. The system according to claim 24, wherein  
8       said sender selects a secondary private key to layer said  
9       encryption.

10

11             Claim 27. The system according to claim 26, wherein  
12       said secondary key is a digital file lock.  
13

14

15             Claim 28. The system according to claim 26, wherein  
16       said secondary key biometric interface.  
17

18

19             Claim 29. The system according to claim 24 wherein  
20       the recipient is notified of an encrypted data file by an  
21       e-mail message generated by said system and directed to  
22       said recipient.  
23

24

25             Claim 30. The system according to claim 29 wherein  
26       said e-mail is sent by SSL protocol.  
27



Fig 1



Fig 2



Fig 3



Fig 4.

**THIS PAGE BLANK (USPTO)**