/ecinătăți Mulțimi deschise

Elemente de topologie - sinteză-

Lect. univ. dr.**Anca GRAD** 10 noiembrie 2017

$$B(x,r) := \{ y \in \mathbb{R} : x - r < y < x + r \} = (x - r, x + r).$$

Definiție: Fie $x\in\mathbb{R}$ și $V\subseteq\mathbb{R}$. Mulțimea V se numește vecinătate a punctului x dacă

$$\exists r > 0$$
 astfel încât $B(x, r) \subseteq V$.

- ightharpoonup x fixat, vom nota $\vartheta(x)$ mulţimea tuturor vecinătăţilor sale;
- $lacktriangleright \mathbb{R}$ este vecinătate pentru fiecare punct al său;
- ▶ oricare ar fi r > 0, $B(x, r) \in \vartheta(x)$;
- $\triangleright \vartheta(x)$ are o infinitate de elemente;
- ▶ ∅ nu este vecinătate pentru nici un punt.

$$B(x,r) := \{ y \in \mathbb{R} : x - r < y < x + r \} = (x - r, x + r).$$

Definiție: Fie $x \in \mathbb{R}$ și $V \subseteq \mathbb{R}$. Mulțimea V se numește vecinătate a punctului x dacă

$$\exists r > 0$$
 astfel încât $B(x, r) \subseteq V$.

- ightharpoonup x fixat, vom nota $\vartheta(x)$ mulţimea tuturor vecinătăţilor sale;
- $lacktriangleright \mathbb{R}$ este vecinătate pentru fiecare punct al său;
- ▶ oricare ar fi r > 0, $B(x, r) \in \vartheta(x)$;
- $\triangleright \vartheta(x)$ are o infinitate de elemente;
- ▶ ∅ nu este vecinătate pentru nici un punt.

$$B(x,r) := \{ y \in \mathbb{R} : x - r < y < x + r \} = (x - r, x + r).$$

Definiție: Fie $x \in \mathbb{R}$ și $V \subseteq \mathbb{R}$. Mulțimea V se numește vecinătate a punctului x dacă

$$\exists r > 0$$
 astfel încât $B(x, r) \subseteq V$.

- ightharpoonup x fixat, vom nota $\vartheta(x)$ mulţimea tuturor vecinătăţilor sale;
- R este vecinătate pentru fiecare punct al său;
- ▶ oricare ar fi r > 0, $B(x, r) \in \vartheta(x)$;
- $\triangleright \vartheta(x)$ are o infinitate de elemente;
- ▶ ∅ nu este vecinătate pentru nici un punt.

$$B(x,r) := \{ y \in \mathbb{R} : x - r < y < x + r \} = (x - r, x + r).$$

Definiție: Fie $x \in \mathbb{R}$ și $V \subseteq \mathbb{R}$. Mulțimea V se numește vecinătate a punctului x dacă

$$\exists r > 0$$
 astfel încât $B(x, r) \subseteq V$.

- ightharpoonup x fixat, vom nota $\vartheta(x)$ mulţimea tuturor vecinătăţilor sale;
- ▶ R este vecinătate pentru fiecare punct al său;
- ▶ oricare ar fi r > 0, $B(x, r) \in \vartheta(x)$;
- $\triangleright \vartheta(x)$ are o infinitate de elemente;
- ▶ ∅ nu este vecinătate pentru nici un punt.

$$B(x,r) := \{ y \in \mathbb{R} : x - r < y < x + r \} = (x - r, x + r).$$

Definiție: Fie $x \in \mathbb{R}$ și $V \subseteq \mathbb{R}$. Mulțimea V se numește vecinătate a punctului x dacă

$$\exists r > 0$$
 astfel încât $B(x, r) \subseteq V$.

- ightharpoonup x fixat, vom nota $\vartheta(x)$ mulţimea tuturor vecinătăţilor sale;
- R este vecinătate pentru fiecare punct al său;
- oricare ar fi r > 0, $B(x, r) \in \vartheta(x)$;
- $\triangleright \vartheta(x)$ are o infinitate de elemente;
- ▶ ∅ nu este vecinătate pentru nici un punt.

$$B(x,r) := \{ y \in \mathbb{R} : x - r < y < x + r \} = (x - r, x + r).$$

Definiție: Fie $x \in \mathbb{R}$ și $V \subseteq \mathbb{R}$. Mulțimea V se numește vecinătate a punctului x dacă

$$\exists r > 0$$
 astfel încât $B(x, r) \subseteq V$.

- ightharpoonup x fixat, vom nota $\vartheta(x)$ mulţimea tuturor vecinătăţilor sale;
- R este vecinătate pentru fiecare punct al său;
- oricare ar fi r > 0, $B(x, r) \in \vartheta(x)$;
- $\vartheta(x)$ are o infinitate de elemente;
- Ø nu este vecinătate pentru nici un punt.

Teorema 1: Fie $x \in \mathbb{R}$. Următoarele afirmații sunt adevărate:

- a) $V \in \vartheta v(x) \Longrightarrow x \in V;$
- b) $V\in \vartheta(x)$ și $W\subseteq \mathbb{R}$ a.î. $V\subseteq W$, atunci $W\in \vartheta(x)$;
- c) $V, W \in \vartheta(x) \Longrightarrow V \cap W \in \vartheta(x)$
- d) $V \in \vartheta(x) \Longrightarrow \exists W \in \vartheta(x) \text{ a.i. } V \in \vartheta(y), \forall y \in W.$

Teorema 2: Fie $x, y \in \mathbb{R}$ a.î. $x \neq y$. Atunci

$$\exists V \in \vartheta(x) \text{ și } \exists W \in \vartheta(y) \text{ a.î. } V \cap W = \emptyset$$

Teorema 1: Fie $x \in \mathbb{R}$. Următoarele afirmații sunt adevărate:

- a) $V \in \vartheta v(x) \Longrightarrow x \in V$;
- b) $V\in \vartheta(x)$ și $W\subseteq \mathbb{R}$ a.î. $V\subseteq W$, atunci $W\in \vartheta(x)$;
- c) $V, W \in \vartheta(x) \Longrightarrow V \cap W \in \vartheta(x)$;
- d) $V \in \vartheta(x) \Longrightarrow \exists W \in \vartheta(x) \text{ a.i. } V \in \vartheta(y), \forall y \in W.$

Teorema 2: Fie $x, y \in \mathbb{R}$ a.î. $x \neq y$. Atunci

$$\exists V \in \vartheta(x) \text{ și } \exists W \in \vartheta(y) \text{ a.î. } V \cap W = \emptyset$$

Teorema 1: Fie $x \in \mathbb{R}$. Următoarele afirmații sunt adevărate:

- a) $V \in \vartheta v(x) \Longrightarrow x \in V$;
- b) $V \in \vartheta(x)$ și $W \subseteq \mathbb{R}$ a.î. $V \subseteq W$, atunci $W \in \vartheta(x)$;
- c) $V, W \in \vartheta(x) \Longrightarrow V \cap W \in \vartheta(x)$
- d) $V \in \vartheta(x) \Longrightarrow \exists W \in \vartheta(x) \text{ a.i. } V \in \vartheta(y), \forall y \in W.$

Teorema 2: Fie $x, y \in \mathbb{R}$ a.î. $x \neq y$. Atunci

$$\exists V \in \vartheta(x) \text{ și } \exists W \in \vartheta(y) \text{ a.î. } V \cap W = \emptyset.$$

Teorema 1: Fie $x \in \mathbb{R}$. Următoarele afirmații sunt adevărate:

- a) $V \in \vartheta v(x) \Longrightarrow x \in V$;
- b) $V \in \vartheta(x)$ și $W \subseteq \mathbb{R}$ a.î. $V \subseteq W$, atunci $W \in \vartheta(x)$;
- c) $V, W \in \vartheta(x) \Longrightarrow V \cap W \in \vartheta(x)$;
- d) $V \in \vartheta(x) \Longrightarrow \exists W \in \vartheta(x) \text{ a.i. } V \in \vartheta(y), \forall y \in W.$

Teorema 2: Fie $x, y \in \mathbb{R}$ a.î. $x \neq y$. Atunci

$$\exists V \in \vartheta(x) \text{ și } \exists W \in \vartheta(y) \text{ a.î. } V \cap W = \emptyset.$$

Teorema 1: Fie $x \in \mathbb{R}$. Următoarele afirmații sunt adevărate:

- a) $V \in \vartheta v(x) \Longrightarrow x \in V$;
- b) $V \in \vartheta(x)$ și $W \subseteq \mathbb{R}$ a.î. $V \subseteq W$, atunci $W \in \vartheta(x)$;
- c) $V, W \in \vartheta(x) \Longrightarrow V \cap W \in \vartheta(x)$;
- d) $V \in \vartheta(x) \Longrightarrow \exists W \in \vartheta(x) \text{ a.i. } V \in \vartheta(y), \forall y \in W.$

Teorema 2: Fie $x, y \in \mathbb{R}$ a.î. $x \neq y$. Atunci

$$\exists V \in \vartheta(x) \text{ și } \exists W \in \vartheta(y) \text{ a.î. } V \cap W = \emptyset.$$

Teorema 1: Fie $x \in \mathbb{R}$. Următoarele afirmații sunt adevărate:

- a) $V \in \vartheta v(x) \Longrightarrow x \in V$;
- b) $V \in \vartheta(x)$ și $W \subseteq \mathbb{R}$ a.î. $V \subseteq W$, atunci $W \in \vartheta(x)$;
- c) $V, W \in \vartheta(x) \Longrightarrow V \cap W \in \vartheta(x)$;
- d) $V \in \vartheta(x) \Longrightarrow \exists W \in \vartheta(x) \text{ a.i. } V \in \vartheta(y), \forall y \in W.$

Teorema 2: Fie $x, y \in \mathbb{R}$ a.î. $x \neq y$. Atunci

$$\exists V \in \vartheta(x)$$
 și $\exists W \in \vartheta(y)$ a.î. $V \cap W = \emptyset$.

Teorema 1: Fie $x \in \mathbb{R}$. Următoarele afirmații sunt adevărate:

- a) $V \in \vartheta v(x) \Longrightarrow x \in V$;
- b) $V \in \vartheta(x)$ și $W \subseteq \mathbb{R}$ a.î. $V \subseteq W$, atunci $W \in \vartheta(x)$;
- c) $V, W \in \vartheta(x) \Longrightarrow V \cap W \in \vartheta(x)$;
- d) $V \in \vartheta(x) \Longrightarrow \exists W \in \vartheta(x) \text{ a.i. } V \in \vartheta(y), \forall y \in W.$

Teorema 2: Fie $x, y \in \mathbb{R}$ a.î. $x \neq y$. Atunci

$$\exists V \in \vartheta(x)$$
 și $\exists W \in \vartheta(y)$ a.î. $V \cap W = \emptyset$.

Definiție: Submulțimea $A \subseteq \mathbb{R}$ se numește **deschisă** dacă

$$\forall x \in A, \exists V_A \in \vartheta(x) \text{ a.i. } V_A \subseteq A.$$

Exemple: Fie $x, y \in \mathbb{R}$ a.î. x < y, arbitrar alese.

- ▶ Intervalele deschise (x, y) sunt mulțimi deschise;
- ▶ intervalele de forma $(-\infty, x)$ și (x, ∞) sunt mulțimi deschise;
- ▶ intervalele de forma (x, y], [x, y) și [x, y] nu sunt mulțimi deschise.

Teorema 3 Următoarele afirmații sunt adevărate:

- 1) \emptyset și \mathbb{R} sunt mulțimi deschise.
- 2) Reuniunea oricărei familii de mulțimi deschise este deschisă.
- Intersecția oricărei familii finite de mulțimi deschise este o mulțime deschisă.

Intersecția unei familii infinite de mulțimi deschise poate să nu fie o mulțime deschisă. Fie $A=\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right)$. După cum am demonstrat la seminar $A=\{0\}$, care nu este deschisă.

Definiție: Fie A o submulțime a lui \mathbb{R} și fie $x \in \mathbb{R}$. Atunci punctul x se numește:

- ▶ punct interior al mulțimii A dacă $\exists V \in \vartheta(x)$ a.î. $V \subseteq A$;
- ▶ punct exterior mulțimii A dacă $\exists V \in \vartheta(x)$ a.î. $V \subseteq \mathbb{R} \setminus A$;
- ▶ punct de frontieră al mulțimii A dacă

$$\forall V \in \vartheta(x), V \cap A \neq \emptyset \text{ și } V \cap (\mathbb{R} \setminus A) \neq \emptyset;$$

punct de aderență(închidere) al mulțimii A dacă

$$\forall V \in \vartheta(x), V \cap A \neq \emptyset;$$

punct de acumulare al mulțimii A dacă

$$\forall V \in \vartheta(x), V \cap (A \setminus \{x\}) \neq \emptyset;$$

punct izolat al mulțimii A dacă

$$\exists V \in \vartheta(x) \text{ a.î. } V \cap A = \{x\}.$$

Fie $A \subseteq \mathbb{R}$. Ei îi asociem mulțimile

interiorul lui A

int
$$D = \{x \in \mathbb{R} : \exists V \in \vartheta(x) \text{ a.î. } V \subseteq A\}$$

exteriorul lui A

ext
$$D = \{x \in \mathbb{R} : \exists V \in \vartheta(x) \text{ a.î. } V \subseteq (\mathbb{R} \setminus A) ;$$

▶ frontiera lui A

$$\mathsf{bd}\, A = \{ x \in \mathbb{R} : \forall \, V \in \vartheta(x), \, V \cap A \neq \emptyset \,\, \mathsf{si} \,\, V \cap (\mathbb{R} \setminus A) \neq \emptyset; \,\,$$

aderenţa (închiderea) lui A

$$\mathsf{cl}\, A = \{ x \in \mathbb{R} : \forall V \in \vartheta(x), V \cap A \neq \emptyset \}$$

▶ derivata lui A

$$A' = \{x \in \mathbb{R} : \forall V \in \vartheta(x), V \cap A = \{x\}\}.$$