Sous-partie 3

Analyse du fonctionnement du bras robotisé dans son espace « articulaire ».

L'objectif de cette sous-partie est de valider plus spécifiquement les performances du bras n°1 sur le respect des critères de vitesse, d'accélération, ainsi que sur le choix de sa motorisation. On s'attachera également à montrer les qualités de l'asservissement associé à ce bras en accord avec le cahier des charges (diagramme des exigences).

Question 1.16 À partir du diagramme de définition de blocs internes de la figure 23, compléter le document réponse DR4 :

- en indiquant précisément la nature des puissances repérées 0,
 et 3 :
- ➤ en nommant les éléments structurels ① et ⑤ réalisant les deux blocs fonctionnels « convertir » et « transmettre » ;
- en précisant la nature de la valeur ajoutée 6 en sortie du système.

Figure 23 : chaîne de puissance du mécanisme de déplacement de la sonde réelle

Le déplacement de précession figure 24 consiste en une rotation d'un peu plus d'un demitour autour de l'axe Z vertical. Cette opération (initiée à distance par la sonde fictive) permet le balayage complet d'une zone à analyser.

Figure 24:

vue de dessus du robot Melody lors d'un déplacement de précession (rotation autour de l'axe 1).

Un point de repère P placé sur le support de la sonde réelle a permis d'obtenir les caractéristiques de sa trajectoire circulaire.

On peut remarquer sur la figure 25, qu'une loi de commande en vitesse de type « trapézoïdal » (en 3 phases) a été implantée afin d'assurer un démarrage et une fin de mouvement progressifs.

Question 1.17 **Caractériser** les natures des mouvements de la sonde réelle pendant la phase 1 (0 < t < 0,334 s), la phase 2 (0,334 s < t < 1,5 s) et la phase 3 (1,5 s < t < 2 s).

Les caractéristiques du mouvement du point de repère P permettent de déterminer les caractéristiques du mouvement de rotation de la sonde réelle afin de déterminer le couple nécessaire en sortie du motoréducteur du bras 1.

Question 1.18 À partir de la vitesse V_P du point P, pendant la phase 2 et de sa position :

- calculer la vitesse angulaire de rotation maximale (ω_max en degré·s-1), ainsi que la fréquence de rotation maximale (N_max en tr·min-1) de la sonde réelle ;
- \blacktriangleright **déterminer** également la valeur maximale de l'accélération angulaire α_s au cours de la phase 1.

On rappelle, qu'en négligeant les frottements sec ou fluide, le couple en sortie du motoréducteur est déterminé par la relation : $C_m = J_G \times \alpha_S$ avec :

- ➤ C_m: couple du motoréducteur en N·m;
- > J_G: moment d'inertie ramené sur l'axe du motoréducteur ;
- $\triangleright \alpha_s$: accélération angulaire en rad·s⁻².

On donne : $J_G = 0.356 \text{ kg} \cdot \text{m}^2$.

Question 1.19 **Déterminer** la valeur du couple C_m en sortie du motoréducteur nécessaire lors de la phase 1.

Choisir, en la justifiant, la référence du motoréducteur qui vous semble la mieux adaptée parmi les trois caractéristiques figure 26.

Figure 26 : caractéristiques couple-vitesse de motoréducteurs

0	:
0	:
€	:
4	:
6	:
A	