Set Theory

9/2023 © PREPARED BY KYLE CHUN

Set Theory

A *set* is a well-defined collection of distinct objects. The objects of a set are called *elements* or *members* of the set.

Example.

- $\mathbb{N} = \{1, 2, 3, 4, 5, ...\}$: set of natural numbers;
- ℤ : set of integers;
- \mathbb{Z}^+ : set of positive integers (i.e. $\mathbb{Z}^+ = \mathbb{N}$);
- Z⁻: set of negative integers;
- Q: set of rational numbers;
- $\mathbb{R} = \{ x \text{ is real } | -\infty < x < \infty \} : \text{ set of real numbers};$
- $\mathbb{R}^* = \{ x \text{ is real } | -\infty \le x \le \infty \} : \text{ set of extended real numbers;}$
- C: set of complex numbers;

/2023 © PREPARED BY KYLE CHUNG

Set Theory

Let A and B be two sets, we define

- sum of two sets: $A + B = \{ a + b \mid a \in A, b \in B \};$
- product of two sets: $A \times B = \{(a, b) | a \in A, b \in B\}.$

If set A has m elements and set B has n elements, then $A \times B$ will have $m \times n$ elements.

Two finite sets A and B are said to be equivalent if they have the same cardinality, i.e. n(A) = n(B).

.6/9/2023 © PREPARED BY KYLE CHUNG

Functions

$$f: X \to Y$$
 (X: domain, Y: codomain)

 $x \mapsto y$ (x: preimage, y: image)

© DEEDAGEN BY VYI E CHING

Functions

	Subjective	Non-Subjective
Injective	X Y Y	X Y Y
Non-Injective		X Y Y

9/2023 © PREPARED BY KYLE CHUNG

Functions

A function is said to be

- injective (or one-to-one) if distinct elements of the domain map to distinct elements in the codomain, i.e. $\forall x_1, x_2 \in X$, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$;
- *subjective* (or *onto*) if every element in the codomain has a pre-image in domain, i.e. $\forall y \in Y$, $\exists x \in X$ s.t. y = f(x).

A function is *bijective* (*one-to-one and onto*, *one-to-one correspondence*, or *invertible*) if the function is both injective and surjective.

Note that

- an injective function is called an injection (單射);
- a subjective function is called a *surjection* (滿射);
- a bijective function is called a bijection (對射).

© DEEDAGED BY LYLE CHING