

高中数学讲义

作者: zhang yang 时间: May 24, 2024

版本: 0.1

目录

第1章	命题和集合	1
1.1	命题	1
	1.1.1 命题的定义	1
	1.1.2 命题的逆和否	1
	1.1.3 充分条件和必要条件	2
	1.1.4 逻辑量词	2
1.2	集合	2
	1.2.1 集合的定义	2
	1.2.2 集合表示法	3
	1.2.3 集合间的关系	3
	1.2.4 集合的运算	4
第1	章 练习	4
笙2音	不等式	6
2.1	不等式	6
	2.1.1 不等式的定义	
	2.1.2 不等式的性质	6
	2.1.3 不等式的解集	6
2.2	基本不等式	7
2.3	有理不等式	7
	2.3.1 有理函数	7
	2.3.2 有理不等式的解法	8
2.4	无理不等式	8
2.5	绝对值不等式	8
2.6	不等式证明	9
第2	章 练习	10
松口水	元·米/ 十九	11
ポッ 早 3.1	函数基础 映射和函数	11
3.1	3.1.1 映射	
	3.1.2 函数	
	3.1.3 函数的图像	
	3.1.4 函数图像的变换	
	3.1.5 函数的性质	
3.2	反函数	
3.3	一元二次函数	
3.3	3.3.1 一元二次方程	13
	3.3.2 一元二次函数的定义	
	3.3.3 一元二次函数的图像	14
	3.3.4 一元二次不等式	
第 3	章 练习	

<i>kk</i> : 4 →:	(n) N·→1. → N/.	1.5
-	幂指对函数 	15
4.1	幂函数	
	4.1.1 幂函数的定义	
	4.1.2 幂函数的图像	
4.2	指数函数	17
	4.2.1 指数函数的定义	17
	4.2.2 指数函数的图像	17
4.3	对数函数	18
	4.3.1 对数函数的定义	18
	4.3.2 对数的性质	18
	4.3.3 对数函数的图像	19
	4.3.4 指数函数和对数函数	20
4.4	双钩函数	20
第4	章 练习	21
第5章	三角函数	22
5.1	三角函数的定义	
	5.1.1 任意角	
	5.1.2 三角比	23
	5.1.3 诱导公式	
5.2	同角三角关系	
5.3	异角三角关系	25
	5.3.1 倍角公式	25
	5.3.2 积化和差	26
	5.3.3 和差化积	26
5.4	正、余弦定理	27
5.5	$y = A\sin(\omega x + \phi)$	27
5.6	反三角函数	27
第5	章 练习	27
	平面向量	28
6.1	向量	28
6.2	向量的运算	28
	6.2.1 加减法和数乘	28
	6.2.2 内积	29
6.3	向量的坐标表示	30
	6.3.1 定比分点	30
	6.3.2 三角形五心的向量表示	31
• • · · · · · · · · · · · · · · · · · ·	A Later	
第7章		33
7.1	我们为什么需要复数	33
	· · · · ·	33
7.2	一般形式	33
7.3	复数的运算	33
7.4	三角形式	33
7.5	找粉形式	33

第8章	ASIN:	34
		34
8.1	.,	
8.2	行列式	
8.3	线性变换	34
第9章	立体几何	35
9.1	几何体	35
9.2	立体几何公理体系	35
9.3	空间向量	35
9.4		35
第 10 章		36
10.1	数列通项	36
10.2	递推数列	36
10.3	等差等比数列	36
10.4	求和	36
第 11 音	:解析几何	37
	- MI DI X = 14	37
	直线和方程	
	— 1771	
	曲线和方程	
11.4	圆锥曲线	37
第 12 章	注排列组合	38
12.1	计数原理	38
12.2	排列问题	38
12.3	组合问题	38
笙 13 音	· 概率和统计	39
	古典概型	
	几何概型	
13.3	统计基础	35
第 14 章	: 极限和导数	40
14.1	极限	40
1/1/2	导 粉	40

第1章 命题和集合

内容提要

- □ 命题
- □ 命题的逆和否
- □ 充分条件和必要条件
- □ 逻辑量词

- □ 集合
- □ 集合间的关系
- □ 集合的运算

1.1 命题

命题不仅仅是数学上的概念,也是逻辑学、哲学研究的对象。

1.1.1 命题的定义

定义 1.1 (命题)

一个陈述句就是一个命题 (proposition)。

如果一个命题陈述的内容可以判断为真,即为真命题。如果可以判断为假,即为假命题。

定义 1.2 (逻辑蕴含)

对于两个命题 p 和 q,如果 p 为真的时候 q 一定为真,那么我们称他们之间存在逻辑蕴涵关系(imply),记作 $p \implies q$,读作 p 推出 q 或者 p 蕴含了 q。

如果两个命题相互蕴涵, 称为等价命题。

🕏 笔记:逻辑蕴含本身也是一个命题

对于两个命题 p 和 q,如果 p 为真的时候 q 一定为真。或者用符号来表达: $p \implies q$ 。这句话显然是一个陈述句,从而也是一个命题。

1.1.2 命题的逆和否

定义 1.3 (否命题)

命题 p 的否为 $\neg p$; 命题 $p \Longrightarrow q$ 的否为 $\neg p \Longrightarrow \neg q$ 。

定义 1.4 (逆命题)

命题 $p \implies q$ 的逆为 $q \implies p$ 。

同时进行逆和否的操作得到的即为逆否命题。

定义 1.5 (逆否命题)

命题 $p \Longrightarrow q$ 的逆否为 $\neg q \Longrightarrow \neg p$ 。

△ 练习 1.1 逆否命题的真假 逆否命题和原命题为等价命题,也即他们同时为真或者同时为假。

 \mathbf{R} 命题 $p \implies q$ 和 $\neg q \implies \neg p$ 互为逆否命题。

假设 $p \implies q$ 为真,如果 q 是假命题,那么 p 一定也是假命题,否则通过 $p \implies q$ 可以推出 q 是真命题从而矛盾。所以 $\neg q \implies \neg p$ 。

1.1.3 充分条件和必要条件

充分条件和必要条件是逻辑蕴涵关系中对命题的叫法。

定义 1.6 (充分条件和必要条件)

在逻辑蕴含关系 $p \implies q$ 中, p 是 q 的充分条件, q 是 p 的必要条件。

定义 1.7 (充要条件)

如果p既是q的充分条件,又是必要条件,那么称为充分必要条件,记作

$$p \iff q$$

也称这两个命题等价。

1.1.4 逻辑量词

定义 1.8 (存在和任意)

存在量词"存在"的意思是有一个满足条件即可,符号为∃,全称量词"任意"的意思是对于所有考虑的对象都满足条件,符号为∀。他们都是对命题的修饰,是逻辑量词的一种。

△ 练习 1.2 逻辑量词的否定

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \quad x + y = 0$

写出这一命题的否定形式。

解

 $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x + y = 0$

做否命题的时候、存在量词要改为全称量词、全称量词要改为存在量词。

1.2 集合

集合是数学中最重要、最基础的概念之一。它太过于基础以至于产生了一些数学范畴无法解决的问题。

现代集合论的研究开始于 1870 年代由康托尔。一般数学主题的出现及发展都是由多名研究者的互动中产生的,但朴素集合论的开始是 1874 年康托尔的一篇论文《On a Characteristic Property of All Real Algebraic Numbers》。而在稍早的 1873 年 12 月 7 日,康托尔写信给戴德金,说他已能成功地证明实数的"集体"是不可数的了,这一天也因此成为了集合论的诞生日。

从公元前五世纪时,数学家们就在研究有关**无穷**的性质,最早期是希腊数学家芝诺和印度数学家,十九世纪时伯纳德·波尔查诺在此领域有相当的进展。现在对于无限的了解是从 1867-71 年康托尔在数论上的研究开始,1872 年康托尔和理查德·戴德金的一次聚会影响了康托尔的理念,最后产生了 1874 年的论文。

1.2.1 集合的定义

定义 1.9 (集合)

集合是就是若干个互不相同的元素的无序组合。

集合的关键性质在于其元素具有:

- 互异性
- 无序性

2

确定性

1.2.2 集合表示法

定义 1.10 (列举法)

对于有限的集合, 我们总可以把所有的元素列举出来, 从而表示这个集合。例如 {1,2,3}。

定义 1.11 (描述法)

对于无限的集合, 我们可以通过描述他的性质来表示这个集合。例如偶数集合: $\{x | x = 2n, n \in \mathbb{Z}\}$ 。

△ 练习 1.3 罗素悖论: 描述法带来的问题

理发师 Tony 放出豪言:他只为,而且一定要为,城里所有不为自己理发的人理发。

那么: Tony 该为自己理发吗?如果他为自己理发,那么按照他的豪言"只为城里所有不为自己理发的人理发"他不应该为自己理发;但如果他不为自己理发,同样按照他的豪言"一定要为城里所有不为自己理发的人理发"他又应该为自己理发。悖论就此产生。

用更加数学的语言来描述这个悖论就是:我们构造一个特殊的**集合的**集合:

$$S = \{s | s \notin s\}$$

也就是说,S 是那些不属于自身的集合的集合。那么悖论在于,对于一个特定的集合 A,它属于 S 吗? 值得一提的是,在公理化集合论中我们通过引入内涵公理来解决这样的悖论。

1.2.3 集合间的关系

定义 1.12 (包含 (子集))

 $\forall x \in A, \quad x \in B \iff A \subset B$

定义 1.13 (真包含(真子集))

$$A\subset B, B\not\subset A\iff A\subsetneqq B$$

定义 1.14 (相等)

$$A \subset B, B \subset A \iff A = B$$

*

练习 1.4 子集个数 有 n 个元素的集合,恰有 2^n 个子集。

 \mathbf{W} 不妨考虑集合 $A = \{1, 2, 3, \dots, n\}$, 设其的子集个数为 f(n)。

那么 A 的所有子集中不含有元素 n 的子集刚好就是 $\{1,2,3,\cdots,n-1\}$ 的所有子集; 并且 A 的所有子集中含有元素 n 的子集刚好对应 $\{1,2,3,\cdots,n-1\}$ 的所有子集添加一个额外元素 n。

所以有递推关系:

$$f(n) = f(n-1) + f(n-1)$$

考虑 n=0 的情况,也即是 $A=\emptyset$ 。显然它的子集只有空集一个,也即是 f(0)=1。根据上述递推关系可知 $f(1)=2,\ f(2)=4$ 。依此类推即可得到 $f(n)=2^n$ 。

1.2.4 集合的运算

定义 1.15 (交)

$$A\cap B=\{x|x\in A,x\in B\}$$

定义 1.16 (并)

$$A \cup B = \{x | x \in A \quad or \quad x \in B\}$$

定义 1.17 (补)

$$\mathsf{C}_BA = \{x | x \in B, x \notin A\}$$

定义 1.18 (差)

$$A - B = \{x | x \in A, x \notin B\}$$

定理 1.1 (De Morgan 定理)

集合版:

$$(A \cap B)^C = A^C \cup B^C$$

命题版:

$$\neg(p \land q) \iff \neg p \lor \neg q$$

△ 练习 1.5 容斥原理 用记号: card(A) 来表示 A 中的元素个数,那么有:

$$\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B)$$

证明 要证明上式,首先要说明:

$$A \cap B = \emptyset \implies \operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B)$$

和

$$B \subset A \implies \operatorname{card}(A - B) = \operatorname{card}(A) - \operatorname{card}(B)$$

对于有限集合,这两个式子是显然成立的,无限集合我们不做考虑。 其次,要理解:

$$A \cup B = (A - A \cap B) + (B - A \cap B) + A \cap B$$

并且上式出现的三个集合 $A-A\cap B$, $B-A\cap B$, $A\cap B$ 是互不相交的。 最后就可以得到:

$$\operatorname{card}(A \cup B)$$

$$= \operatorname{card}((A - A \cap B) + (B - A \cap B) + A \cap B)$$

$$=$$
card $(A - A \cap B) +$ card $(B - A \cap B) +$ card $(A \cap B)$

$$=$$
card (A) - card $(A \cap B)$ + card (B) - card $(A \cap B)$ + card $(A \cap B)$

=card(A) +card(B) -card $(A \cap B)$

●第1章练习◎

1. 考虑以下集合的表示方法: 自然数集 \mathbb{N} ,整数集 \mathbb{Z} ,有理数集 \mathbb{Q} ,实数集 \mathbb{R} ,复数集 \mathbb{C}

- 2. 证明:集合的交并补运算只需要两个就可以表示出第三者。
- 3. 请问 {1,2,…,n} 有多少个子集?

第2章 不等式

内容提要

- □ 不等式
- □ 基本不等式
- □ 有理不等式

- □ 无理不等式
- □ 绝对值不等式
- □ 不等式证明

2.1 不等式

不等式是比大小的艺术, 是数学中最重要的技术之一。

2.1.1 不等式的定义

定义 2.1 (不等式)

形如 a>1 的,描述一种不等关系的式子称作不等式。常见的不等关系有大于 (>)、小于 (<)、大于等于 (\geq) 、小于等于 (\leq) 。

不等式可以是常量之间的: $\pi > 1$,也可以是变量和常量的 x > 1,又或者是变量之间的: x > y。

2.1.2 不等式的性质

不等式具有以下基本的性质:

• 对称性: $a > b \iff b < a$

• 传递性: $a > b, b > c \implies a > c$

• 加法原则: $a > b \implies a + c > b + c$

• 乘法原则: $a > b, c > 0 \implies ac > bc$

2.1.3 不等式的解集

定义 2.2 (解集)

对于含有未知数x的不等式,所有满足该不等式的x的取值的集合叫做该不等式的解集。例如|x|>1的解集为 $\{x|x>1$ or $x<-1\}$ 。

定义 2.3 (区间)

形如 [1,2] 和 (0,3] 的数集的表示方法称为区间。其中"("和")"表示开(不包含端点),"["和"]"表示闭(包含端点), ∞ 表示无穷大。

例如: $[1,3) = \{x | 1 \le x < 3\}$ 。

再如: $(0,+\infty) = \{x|x>0\}$ 。

▲ 练习 2.1 解不等式:

$$\frac{1}{x} > -1$$

解 解集为 $(-\infty, -1) \cup (0, +\infty)$

2.2 基本不等式

定理 2.1 (基本不等式)

a > 0, b > 0 那么有:

$$\frac{a+b}{2} \ge \sqrt{ab}$$

当且仅当a=b时不等式取等号。

证明 法一

$$(\sqrt{a} - \sqrt{b})^2 \ge 0$$

$$\iff a + b - 2\sqrt{ab} \ge 0$$

$$\iff \frac{a + b}{2} \ge \sqrt{ab}$$

当且仅当 $\sqrt{a} = \sqrt{b}$ 也即 a = b 时取等号。

证明 法二

图 2.1: 基本不等式图解

如图所示,在 $\triangle ABC$ 的外接圆 $\odot O$ 中,作 $CH \perp AB$ 。如果设 BH = b, AH = a,那么显然有外接圆半径

$$OC = \frac{a+b}{2}$$

并且由相似三角形 $\triangle BCH \sim \triangle CAH$ 可得:

$$\frac{BH}{CH} = \frac{CH}{AH}$$

于是

$$CH = \sqrt{BH \times AH} = \sqrt{ab}$$

在 $\triangle OCH$ 内, 斜边大于直角边: OC > CH, 也即基本不等式:

$$\frac{a+b}{2} \ge \sqrt{ab}$$

当且仅当 H 和 O 重合的时候 a=b, 有

$$\frac{a+b}{2} = \sqrt{ab}$$

2.3 有理不等式

2.3.1 有理函数

类比有理数的定义

定义 2.4 (有理函数)

形如:

$$f(x) = \frac{p(x)}{q(x)}$$

其中 p(x), q(x) 都是多项式。

例如:

$$f(x) = \frac{2x}{1 - x^2}$$

2.3.2 有理不等式的解法

首先我们很容易知道:

$$\frac{p(x)}{q(x)} > 0 \iff p(x)q(x) > 0, \quad q(x) \neq 0$$

所以我们只需要解一个多项式不等式即可:

$$a_0 + a_1 x + \dots + a_n x^n > 0$$

解决这样的不等式需要代数基本定理:

定理 2.2 (代数基本定理)

任何一个首一n 阶多项式都可以分解成若干个一次(实系数)多项式和二次(实系数)多项式的乘积。也就是:

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} = \prod_{i=1}^{n-2d} (x - r_{i}) \prod_{j=1}^{d} (x^{2} + u_{j}x + v_{j})$$

其中 u_j, v_j 满足

$$u_i^2 - 4v_i \le 0$$

所以原多项式的(实数)零点只有 $r_1, r_2 \cdots r_{n-2d}$

求出这些实数根后,我们只要使用**穿根法**即可求解多项式不等式了。

▲ 练习 2.2 验证下列因式分解:

- 1. $x^3 + 1 = (x+1)(x^2 x + 1)$
- 2. $x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 \sqrt{2}x + 1)$
- 3. $x^5 + 1 = (x+1)((1-x)(1+x^2) + x^4)$

2.4 无理不等式

无理不等式通常需要基于对函数的理解、结合函数的图像来求解、属于后续内容。

2.5 绝对值不等式

绝对值不等式是一类特殊的无理不等式。例如

$$|a| > 1 \iff a \in (-\infty, -1) \cup (1, \infty)$$

绝对值不等式有一个重要的性质:

定理 2.3 (三角不等式)

$$|a| - |b| \le |a + b| \le |a| + |b|$$

 $^{\circ}$

2.6 不等式证明

定理 2.4 (均值不等式)

$$H_n \le G_n \le A_n \le Q_n \quad \forall n \in \mathbb{N}^+$$

其中

$$H_n = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

$$G_n = \sqrt[n]{x_1 x_2 \cdots x_n}$$

$$A_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$Q_n = \sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n}}$$

分别是正数 x_1, x_2, \dots, x_n 的调和平均值,几何平均值,算数平均值和平方平均值,当且仅当 $x_1 = x_2 = \dots = x_n$ 的时候,所有的不等式都取等号。

定理 2.5 (Cauchy 不等式)

$$(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2)$$

当且仅当 a_i 全为 0 或 $b_i = ka_i$, $i = 1, 2, \dots, n$ 时取等号。

 \sim

证明 考虑二次函数

$$f(x) = (a_1x + b_1)^2 + (a_2x + b_2)^2 + \dots + (a_nx + b_n)^2 > 0 \quad \forall x$$

展开得到:

$$f(x) = (a_1^2 + a_2^2 + \dots + a_n^2)x^2 + 2(a_1b_1 + a_2b_2 + \dots + a_nb_n)x + (b_1^2 + b_2^2 + \dots + b_n^2)$$

使用二次函数恒大于 0 的充分必要条件 (判别式 $\Delta \leq 0$) 即可得到 Cauchy 不等式。

定理 2.6 (排序不等式)

对于两组实数 $x_1 \le x_2 \le \cdots \le x_n$ 和 $y_1 \le y_2 \le \cdots \le y_n$, 有如下不等式成立: (正序和 \ge 乱序和 \ge 逆序和)

$$x_1y_1 + x_2y_2 + \dots + x_ny_n$$

$$\geq x_{\sigma(1)}y_1 + x_{\sigma(2)}y_2 + \dots + x_{\sigma(n)}y_n$$

$$\geq x_1y_n + x_2y_{n-1} + \dots + x_ny_1$$

其中 $\sigma(1), \sigma(2), \cdots, \sigma(n)$ 是 $\{1, 2, \cdots, n\}$ 按照某一顺序的排列。

 \sim

定理 2.7 (Jensen 不等式)

如果 f 是凸函数, 那么 $\forall a \in (0,1)$

$$f(ax + (1-a)y) \le af(x) + (1-a)f(y)$$

●第2章练习●

1. 尝试用排序不等式证明: 算术均值 ≥ 几何均值。

第3章 函数基础

内容提要

- □ 映射
- □ 函数
- □ 函数图像

- □ 函数的性质
- □ 反函数
- □ 一元二次函数

3.1 映射和函数

3.1.1 映射

定义 3.1 (映射)

两个非空集合 X,Y 之间的元素存在对应,并且对于 X 中的每个元素 a, Y 中都有唯一的元素 b 与之对应。那么这种对应关系称为映射,记作 $f:X\to Y$ 。其中 f 称为对应关系,b 称为像,a 称为原像,X 称为定义域(或称为原像集),Y 称为陪域,所有像的集合称为值域。

△ 练习 3.1 如图所示为一个映射,写出定义域、陪域、值域。

解定义域为: $\{a,b,c,d\}$, 陪域为: $\{1,2,3,4\}$, 值域为: $\{1,2,4\}$ 。

3.1.2 函数

定义 3.2 (函数)

函数是定义域和陪域都为数集的映射,例如: $f: \mathbb{R} \to \mathbb{R}$ 。由于都是数值,习惯把像称为因变量 y,把原像称为自变量 x,记作: y=f(x)。

3.1.3 函数的图像

函数的图像可以帮助我们更好的理解函数,但也不要完全信任图像,因为你的眼睛会骗人。

定义 3.3 (函数图像)

对于定义域为 D 函数 y = f(x), 点集:

$$\{(x,y)|y=f(x),x\in D\}$$

在平面直角坐标系中的图像即为函数的图像。

4

练习 3.2 反比例函数的图像 画出 $y = \frac{1}{x}$ $D = \{x | x \neq 0\}$ 图像。

3.1.4 函数图像的变换

- 1. 平移
 - 水平平移: y = f(x) 到 y = f(x + a)
 - 水平平移: y = f(x) 到 y = f(x) + a
- 2. 对称
 - 关于 y 轴对称: y = f(x) 到 y = f(-x)
 - 关于 x 轴对称: y = f(x) 到 y = -f(x)
 - 关于原点对称: y = f(x) 到 y = -f(-x)
 - 关于 x = m 对称: y = f(x) 到 y = f(2m x)
 - 关于 y = n 对称: y = f(x) 到 y = 2n f(x)
 - 关于点 (m,n) 对称: y = f(x) 到 y = 2n f(2m x)
- 3. 翻折
 - 把 x 轴下侧的翻折上去: y = f(x) 到 y = |f(x)|
 - 把 y 轴右侧的翻折到左侧: y = f(x) 到 y = f(|x|)
- 4. 伸缩
 - 横坐标伸缩: y = f(x) 到 y = f(kx)
 - 纵坐标伸缩: y = f(x) 到 y = kf(x)
- 5. 旋转*

使用矩阵的知识。(x,y) 绕着原点逆时针旋转 θ 角度变为:

$$(\cos\theta x - \sin\theta y, \sin\theta x + \cos\theta y)$$

那么函数图像就是每个点都旋转:

$$(\cos\theta x - \sin\theta f(x), \sin\theta x + \cos\theta f(x))$$

3.1.5 函数的性质

定义 3.4 (单调性)

如果 $\forall x,y \in I$ 当 x > y 的时候,都有 f(x) > f(y),那么我们称 f 在 I 上严格单调增。如果 $\forall x,y \in I$ 当 x > y 的时候,都有 $f(x) \geq f(y)$,那么我们称 f 在 I 上单调增。如果 $\forall x,y \in I$ 当 x > y 的时候,都有 f(x) < f(y),那么我们称 f 在 I 上严格单调减。

如果 $\forall x, y \in I$ 当 x > y 的时候,都有 $f(x) \leq f(y)$,那么我们称 f 在 I 上单调减。

4

定义 3.5 (奇偶性)

如果 $f(x) = f(-x) \quad \forall x \in D$, 其中 $D \in f$ 的定义域, 那么我们称 f 是偶函数。 如果 $f(x) = -f(-x) \quad \forall x \in D$, 其中 $D \in f$ 的定义域, 那么我们称 f 是奇函数。 偶函数的图像关于 x 轴轴对称。奇函数的图像关于原点中心对称。

练习 3.3 证明 f(x) = x 是在其定义域上严格单调增的奇函数, $g(x) = x^2$ 是偶函数。

 $\mathbf{f}(-x) = -x = -f(x)$, 所以 f(x) 是奇函数。

 $\forall x,y \in \mathbb{R}$,如果 x < y 那么 f(x) < f(y),所以 f(x) 在 \mathbb{R} 上是严格单调增的。 $g(-x) = x^2 = g(x)$,所以 g(x) 是偶函数。

定义 3.6 (周期性)

如果 f(x) = f(x+T) $\forall x \in D$, 其中 $D \in f$ 的定义域, 那么我们称 f 是周期为 T 的周期函数。

定义 3.7 (最小正周期)

显然,如果 T 是 f 的周期,那么 $\pm 2T, \pm 3T, \cdots, \pm nT$ 都是 f 的周期。我们称所有为正数的周期中最小那一为最小正周期。

3.2 反函数

定义 3.8 (反函数)

如果函数 y=f(x) 在区间 I 上自变量和因变量是一一对应的,那么该函数存在由关系式: x=f(y) 确定的反函数: f^{-1} 。

例如 $y = f(x) = x^2$ 在 $(0, \infty)$ 上满足一一对应,存在由 $x = f(y) = y^2$ 确定的反函数 $y = \sqrt{x}$ 。

从函数图像上来看,反函数的图像和原函数的图像恰是关于y = x 这条直线对称的。

3.3 一元二次函数

3.3.1 一元二次方程

定义 3.9 (一元二次方程)

形如 $ax^2 + bx + c = 0$ $(a \neq 0)$ 的,关于 x 的方程称为一元二次方程。

定理 3.1 (一元二次方程的解)

$$ax^{2} + bx + c = 0 \ (a \neq 0)$$
 的解为

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

证明 $ax^2 + bx + c = 0$ $(a \neq 0)$ 变形为:

$$a(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}}) = 0$$

也即

$$a(x + \frac{b}{2a})^2 = \frac{b^2}{4a} - c$$

也即是

$$(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2}$$

如果 $\Delta = b^2 - 4ac \ge 0$, 此时方程有实数解:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

否则无实数解。

3.3.2 一元二次函数的定义

定义 3.10 (一元二次函数)

形如 $y = ax^2 + bx + c = 0$ $(a \neq 0)$ 的函数称为一元二次函数。

3.3.3 一元二次函数的图像

3.3.4 一元二次不等式

定义 3.11 (一元二次不等式)

形如 $ax^2 + bx + c > 0$ $(a \neq 0)$ 的不等式称为一元二次不等式。

根据一元二次函数的图像我们可以轻松求得一元二次不等式的解集。

❤ 第3章练习 ❤

1. TBD

第4章 幂指对函数

内容提要

□ 幂函数

□ 对数函数

□ 指数函数

□ 双钩函数

4.1 幂函数

4.1.1 幂函数的定义

定义 4.1 (幂函数)

形如 $f(x) = x^k$ (其中 $k \in \mathbb{Q}$ 为常数)的函数称为幂函数。

室记: 幂运算 从小学到初中我们依次学会了 正整数幂:

$$x^2 = x \times x$$

负整数幂:

$$x^{-n} = \frac{1}{x^n}$$

分数幂:

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

于是我们可以算出所有的有理数幂:

$$x^{\frac{p}{q}} = \sqrt[q]{x^p}$$

4.1.2 幂函数的图像

幂函数的性质取决于 k 的取值。 k=0 时为常函数:

k 为正整数时:

图 4.2: 正整数

k 为负整数:

k 为分数:

分数的情况较为复杂,如果分母是偶数那么根据分数幂的定义,自变量不能取负值。

4.2 指数函数

4.2.1 指数函数的定义

定义 4.2 (指数函数)

形如 $f(x) = a^x$ (其中 a > 0 为常数)的函数称为指数函数。

4.2.2 指数函数的图像

指数函数的图像较为简单,不考虑 a = 1 这种非平凡情况。 当 a > 1 时,函数单调增:

当a < 1时,函数单调增:

4.3 对数函数

4.3.1 对数函数的定义

定义 4.3 (对数函数)

形如 $y = \log_a x$ (其中 $a \in (0,1) \cup (1,\infty)$) 的函数称为对数函数。

奎记:对数在数学的应用中我们常常需要解决这样的问题:

$$2^{x} = 3$$

也就是回答这样一个问题: 2的多少次方是 3。

这个问题的答案不是一个简单的有理数,而是一个无理数。为了方便表达,我们把这个数记作 $\log_2 3$,读作以 2 为底 3 的对数。其中的 \log 是英语 Logarithm 的前三个字母。

我们常用的对数有

- 1. 以 2 为底的 log₂ x
- 2. 以 10 为底的 $\log_{10} x$,也写作 $\lg x$
- 3. 以 e 为底的 $\log_e x$, 也写作 $\ln x$, 称为自然对数。其中 $e \approx 2.71828$, 称作自然对数的底数。和 π 一样是一个无理数。

定义 4.4 (自然对数的底数)

e和 π 类似,是数学中最重要的常数之一。

圆周率π的定义大家都知道,"周三径一",也就是:

$$\pi = \frac{BK}{\underline{1}}$$

这里也给出一个e的定义:

$$e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

其中 $n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$ 称为阶乘。读者可以用计算器验证 $e \approx 2.71828$ 。

4.3.2 对数的性质

1. 吸收乘数

$$n \log_a b = \log_a b^n$$

2. 分裂

$$\log_a(xy) = \log_a x + \log_a y$$

3. 负数

$$-\log_a x = \log_{1/a} x$$

4. 换底公式

$$\log_a b = \frac{\log_c b}{\log_c a}$$

利用幂运算的性质可以比较容易地证明以上性质。

△ 练习 4.1 无理数证明 证明: log₂ 3 是无理数。

证明 假设 log₂ 3 是有理数,那么

$$\exists m, n \in \mathbb{N} \quad \log_2 3 = \frac{m}{n}$$

也就是

$$n \log_2 3 = m$$

根据对数的性质可以得到

$$\log_2 3^n = \log_2 2^m$$

于是

$$3^n = 2^m$$

这个等式左侧是奇数,右侧是偶数,显然矛盾。所以假设不成立,也即 $\log_2 3$ 是无理数。

4.3.3 对数函数的图像

对数函数的图像也比较简单。

当 a > 1 时,函数单调增:

当a < 1时,函数单调减:

4.3.4 指数函数和对数函数

不难发现指数函数和对数函数是存在反函数对应关系的。 例如 $y=e^x$ 和 $y=\ln x$ 互为反函数,他们的图像关于直线 y=x 对称。

4.4 双钩函数

这里我们特别介绍一个函数:

$$y = x + \frac{1}{x}$$

它的图像为:

酷似两个对勾,因此俗称双钩函数。 根据基本不等式,在第一象限

$$y = x + \frac{1}{x} \ge 2$$

当且仅当 x=1 的时候取等号。

并且 $y=x+\frac{1}{x}$ 中,1/x 随着 x 的增大快速减小,最终由 x 主导整个函数的取值,所以不难想象该函数图像会越来越向 y=x 靠近,这种行为我们称为渐进,y=x 称为 $y=x+\frac{1}{x}$ 的**渐近线**。

❤ 第4章练习 ❤

1. 解方程: $3^x + 4^x + 5^x = 6^x$

第5章 三角函数

内容提要

- □ 任意角
- □ 三角函数
- □ 诱导公式
- □ 两角和的正弦

- □ 正弦定理
- □ 余弦定理
- $y = A\sin(\omega x + \phi)$
- □ 反三角函数

5.1 三角函数的定义

5.1.1 任意角

初中阶段,所谓的角是两条射线共顶点形成的图形,它的大小范围是 0° 到 360°。现在,为了方便函数处理,我们重新给角下一个定义以扩展它的范围到 $(-\infty, +\infty)$:

定义 5.1 (角)

角是由两条射线共顶点、其中一条射线固定(称为角的始边),另外一条射线(称为角的终边)逆时针旋转形成的图形。逆时针旋转经过的角度称为角的大小,如果顺时针旋转则认为角的大小是负值。图5.1展示了一个大小为 θ 的角。

此外,为了方便计算弧长,我们重新定义角度的单位:

定义 5.2 (弧度制)

角度制下,在半径为r的圆中,大小为x的圆心角对应的弧长为

$$l = \frac{x}{360} 2\pi r$$

其中360是周角对应的大小。现在我们重新定义一个角度单位,使得角的大小为 α 的时候

$$l = \alpha r$$

那么, 周角对应的角度大小就是 2π。这样的角单位制称为弧度制, 单位写作 rad。

5.1.2 三角比

定义 5.3 (有限角三角比)

在直角三角形中, 我们定义了一系列的三角比。具体来说有:

1. 正弦:

$$\sin\theta = \frac{\mathbf{\pi}\,\dot{\mathbf{D}}}{\mathbf{\pi}\,\dot{\mathbf{D}}}$$

2. 余弦:

$$\cos\theta = \frac{\Im \dot{\upsilon}}{ \upmu \dot{\upsilon}}$$

3. 正切:

$$\tan \theta = \frac{\overrightarrow{y}}{\cancel{3}}$$

以及其他的不是很常用的三角比:

4. 正割:

$$\sec \theta = 1/\cos \theta$$

5. 余割:

$$\csc \theta = 1/\sin \theta$$

6. 余切:

$$\cot\theta=1/\tan\theta$$

在将角推广到旋转角后, 角的大小就是任意值了。因此原有的三角比定义不再成立, 需要做相应的推广。

定义 5.4 (任意角三角比)

如图所示,直角坐标系内大小为 θ 的角的终边和单位圆的交点为P,分别作出图中的三条有向线段即为三角函数线。

他们的大小由 P(x,y) 的坐标决定:

$$\sin \theta = x$$

$$\cos \theta = y$$

$$\tan \theta = \frac{x}{y}$$

如此一般,即便角大于π也可以表示出它的三角比。

定义 5.5 (三角函数)

使用上述三角函数线的定义, 我们有:

正弦函数:

$$y = \sin x \quad x \in \mathbb{R}$$

余弦函数:

$$y = \cos x \quad x \in \mathbb{R}$$

正弦函数:

$$y = \tan x = \frac{\sin x}{\cos x} \quad \cos x \neq 0$$

统称为三角函数。

5.1.3 诱导公式

根据任意角三角比的三角函数线定义,我们知道三角函数是存在周期性(旋转一周,所有三角函数长度方向都不变)的:

$$\sin(x + 2\pi) = \sin x$$

$$\cos(x + 2\pi) = \cos x$$

$$\tan(x + 2\pi) = \tan x$$

半周期(旋转半周,所有三角函数线长度不变,方向相反)则会使三角函数变为相反数:

$$\sin(x+\pi) = -\sin x$$

$$\cos(x+\pi) = -\cos x$$

$$\tan(x+\pi) = -\tan x$$

并且根据坐标定义,不难得出他们的奇偶性:

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\tan(-x) = -\tan x$$

最后,根据坐标定义。 θ 和它的余角 $\frac{\pi}{2}-\theta$ 的终边是关于 $\frac{\pi}{4}$ 对称的,从而横纵坐标交换的。它们的三角函数存在以下关系:

$$\sin(\frac{\pi}{2} - x) = \cos x$$

$$\cos(\frac{\pi}{2} - x) = \sin x$$

5.2 同角三角关系

根据任意角三角比的坐标定义,显然有:

1. 商数关系:

$$\tan x = \frac{\sin x}{\cos x}$$

2. 平方关系:

$$\sin^2 x + \cos^2 x = 1$$

5.3 异角三角关系

异角三角关系的一切基于下面的定理:

定理 5.1 (两角差的余弦)

$$\cos(a-b) = \cos a \cos b + \sin a + \sin b$$

0

证明 a-b 终边和单位圆的交点记作 $P(\cos(a-b),\sin(a-b))$, a 和 b 的终边和单位圆的交点分别记作 $A(\cos a,\sin a)$ 和 $B(\cos b,\sin b)$ 。并且记 (1,0) 点为 T。那么根据图像的旋转不变性显然有

$$AB = PT$$

带入坐标之间的距离公式得到:

$$\sqrt{(\cos a - \cos b)^2 + (\sin a - \sin b)^2} = \sqrt{(\cos(a - b) - 1)^2 + \sin^2(a - b)}$$

展开整理得到:

$$2 - 2\cos a\cos b - 2\sin a\sin b = 2 - 2\cos(a - b)$$

也即是

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

把 b 替换为 $b + \frac{\pi}{2}$, 再结合诱导公式我们可以得到两角差的正弦公式:

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

再根据三角函数的奇偶性, 把 b 替换为 -b 可以得到两角和的正余弦公式:

$$\sin(a+b) = \sin a \cos b + \cos b \sin a$$

$$\cos(a+b) = \cos a \cos b - \sin b \sin a$$

从而根据商数关系得到:

$$\tan(a+b) = \frac{\sin a \cos b + \cos b \sin a}{\cos a \cos b - \sin b \sin a}$$

分子分母同除以 $\cos a \cos b$ 得到:

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

根据奇偶性,把 b 替换为 -b 得到:

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

5.3.1 倍角公式

二倍角公式较为常用,实际上就是两角和的正余弦和正切公式的简单应用:

1. 正弦二倍角:

$$\sin(2x) = 2\sin x \cos x$$

2. 余弦二倍角:

$$\cos(2x) = \cos^2 x - \sin^2 x$$

3. 正切二倍角:

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

二倍角公式把一次项转化成了二次项, 所以也常叫升幂公式。与此相对的还有降幂公式:

1. 交叉项降幂:

$$\sin x \cos x = \frac{1}{2}\sin(2x)$$

2. 平方降幂:

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

最后,根据以上倍角公式可知,x的所有三角函数都可以由 $t = \tan(x/2)$ 表示,这也称为万能代换:

1. 正弦代换

$$\sin x = \frac{2t}{1+t^2}$$

2. 余弦代换

$$\cos x = \frac{1 - t^2}{1 + t^2}$$

3. 正切代换

$$\tan x = \frac{2t}{1 - t^2}$$

这样一来所有的三角函数都可以表示为 tan(x/2) 的有理函数,大大简化了问题。

5.3.2 积化和差

很容易验证:

$$\sin a \sin b = -\frac{1}{2} \left[\cos(a+b) - \cos(a-b) \right]$$
$$\cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$
$$\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

以上三个公式是把三角函数的乘积转化为和差的公式,简称积化和差公式。

5.3.3 和差化积

很容易验证:

$$\sin a + \sin b = 2\sin\frac{a+b}{2}\cos\frac{a-b}{2}$$

$$\sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}$$

$$\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$$

$$\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$$

以上三个公式是把三角函数的和差转化为乘积的公式,简称和差化积公式。

5.4 正、余弦定理

定理 5.2 (正弦定理)

在 $\triangle ABC$ 中,A、B、C 三个角对应的三边长分别为 a、b、c。R 是三角形外接圆的半径,那么

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

证明 在外接圆中利用同弦所对圆周角相等,此定理很容易证明。

定理 5.3 (余弦定理)

在 $\triangle ABC$ 中, A、B、C 三个角对应的三边长分别为 a、b、c。那么

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

证明 把三角形摆在直角坐标系中,利用距离公式立即得证。

5.5 $y = A \sin(\omega x + \phi)$

这个函数的性质根据诱导公式以及我们前面提到的函数图像变换3.1.4可以很容易得出。 值得一提的是,这个函数有很强的物理背景,简谐运动的轨迹就是这个函数的图像。

5.6 反三角函数

由于三角函数的函数值和自变量都不是一一对应的,然而我们经常需要问"正弦为 x 的角是多大?"这样的问题。所以我们在一个特定的区间上规定反三角函数:

1. 反正弦函数

$$y = \arcsin x \quad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

2. 反余弦函数

$$y = \arccos x \quad x \in [0, \pi]$$

3. 反正切函数

$$y = \arctan x \quad x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

❤ 第5章练习 ❤

1. 求 n 倍角 sin(nx) 的一般公式

第6章 平面向量

内容提要

□ 向量

□ 坐标表示

□ 向量的运算

□ 定比分点

6.1 向量

本章我们只讨论平面向量,后续章节还会涉及空间向量。

向量有三条理解路径。其一是物理的方式,我们都知道物理中有一个**矢量**的概念,我们可以从这个角度定义有大小和方向的东西是向量。其二是数学的方式,我们经常遇到多个数字的组合作为一个整体,例如直角坐标系中的坐标,再例如地球的经纬度,于是我们可以定义这样的**多元数组**是向量。其三是完全抽象的数学理解,我们定义满足某些性质的数学对象的集合是**向量空间**。

但不论哪种理解路径,有一套殊途同归的数学理论。我们暂且借用物理的矢量来定义:

定义 6.1 (向量)

既有大小又有方向的量称为向量。

.

不同于之前研究的量,向量之间的关系更复杂:

- 1. 相等: 大小和方向都相等
- 2. 平行或者说是共线: 方向相等或者相反

特别地我们定义零向量: 0 是大小为 0, 方向任意的向量。此外我们定义大小为 1 的向量都是单位向量。

6.2 向量的运算

6.2.1 加减法和数乘

向量之间的运算也和一般的量截然不同:

1. 加法: 平行四边形定则

图 6.1: 平行四边形定则

2. 减法: 三角形定则

图 6.2: 三角形定则

3. 数乘

不难验证,这样定义的向量运算满足:

1. 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

2. 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$

3. 加法有零元: $\vec{a} + \vec{0} = \vec{a}$

4. 数乘向量分配律: $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$

5. 数乘标量分配律: $(\lambda_1 + \lambda_2)\vec{a} = \lambda_1\vec{a} + \lambda_2\vec{a}$

6. 数乘结合律: $\lambda_1(\lambda_2\vec{a}) = (\lambda_1\lambda_2)\vec{a}$

7. 数乘有单位元: $1\vec{a} = \vec{a}$

实际上,这些性质就是向量空间(线性空间)的要求。

6.2.2 内积

内积也叫数量积。

定义 6.2 (内积)

$$a \cdot b = |a||b|\cos\langle a, b\rangle$$

其中 $\langle a,b\rangle\in[0,\pi]$ 是两向量的夹角,|a| 是向量的模长。此外,规定任何向量和零向量的内积都是 0。

这个定义有很强的物理背景,最简单的一个理解是求**不共线的力在给定位移下的做功大小**。不严谨地说,物理上的做法是先求力在位移方向上的分量,然后同方向的矢量就可以做乘法了。

求分量这个过程数学上也常用:

定义 6.3 (投影)

定义 \vec{a} 在 \vec{b} 上的投影为:

$$\vec{p} = \frac{|b|\cos\langle a, b\rangle}{|a|}\vec{a}$$

最后,不难验证内积满足下列运算律:

1. 交換律: $a \cdot b = b \cdot a$

2. 分配律: $a \cdot (b+c) = a \cdot b + a \cdot c$ 3. 数乘结合律: $(\lambda a) \cdot b = \lambda (a \cdot b)$

6.3 向量的坐标表示

直观地说,我们可以把向量放在平面直角坐标系坐标系中,在有大小方向的量和二元坐标之间建立——对应的关系。

数学上, 我们有向量基本定理:

定理 6.1

如果 $\vec{e_1}$, $\vec{e_2}$ 是平面内两个不共线的向量,那么该平面内任何一个向量都可以被他们俩唯一地线性表示:

$$\vec{a} = x\vec{e_1} + y\vec{e_2}$$

我们称 $\vec{e_1}$, $\vec{e_2}$ 是平面内的一组基。称二元组 (x,y) 是 \vec{a} 在这组基下的坐标。特别地,如果它们的都是单位向量,并且夹角是 $\pi/2$,称为单位正交基。

定义 6.4 (平面直角坐标)

给定一组标准正交基 \vec{i}, \vec{j} , 那么前面定理中的(x, y)的计算就变得容易:

$$x = \vec{a} \cdot \vec{i}, \quad y = \vec{a} \cdot \vec{j}$$

向量在这组正交基下的坐标就称为向量的坐标表示。

有了这个定义,我们此前定义的所有运算(加减法、数乘、内积、投影)都可以在坐标的视角下进行。这里 不再赘述。

特别的,我们有一个定理,注意这个定理在前面的不等式章节2.5出现过:

定理 6.2 (Cauchy 不等式)

$$-|\vec{a}||\vec{b}| \le \vec{a} \cdot \vec{b} \le |\vec{a}||\vec{b}|$$

使用坐标表示则是:

$$-\sqrt{x_1^2 + y_1^2}\sqrt{x_2^2 + y_2^2} \le x_1 x_2 + y_1 y_2 \le \sqrt{x_1^2 + y_1^2}\sqrt{x_2^2 + y_2^2}$$

更一般的,实际上这个结论对n维向量都成立,这也就是我们之前证明的Cauchy不等式。

6.3.1 定比分点

定理 6.3 (定比分点)

设A、B不重合, C是直线AB上动点, 并且

$$\frac{AC}{AB} = \lambda$$

那么

$$\vec{PC} = (1 - \lambda)\vec{PA} + \lambda \vec{PB}$$

§ 6.4: $\lambda > 1$

这是前述的向量基本定理的一个应用。 $A \times B$ 不重合的条件下, $PA \times PB$ 显然构成一组基,那么 PC 一定可以用 $PA \times PB$ 线性表示,而这个定理给出了该表示的坐标。

6.3.2 三角形五心的向量表示

以下设a,b,c是三角形ABC的三边长。O是三角形所在平面的一点。

定理 6.4

O 是外心
$$\iff |\vec{OA}| = |\vec{OB}| = |\vec{OC}|$$

证明 这是显然的, OA、OB、OC 就是外接圆半径, 长度自然相等。

定理 6.5

O 是重心
$$\iff \vec{OA} + \vec{OB} + \vec{OC} = \vec{0}$$

证明 设 M 是 AB 中点,根据定比分点, $\vec{OA} + \vec{OB} = 2\vec{OM}$,结合我们的条件也就是:

$$2\vec{OM} = -\vec{OC}$$

也就是说 O 是 CM 的靠近 M 的三等分点,这显然就是重心。

定理 6.6

O 是垂心
$$\iff \vec{OA} \cdot \vec{OB} = \vec{OA} \cdot \vec{OC} = \vec{OC} \cdot \vec{OB}$$

证明 这是显然的:

$$\vec{OA} \cdot \vec{OB} = \vec{OA} \cdot \vec{OC} \iff \vec{OA} \cdot \vec{CB} = 0 \iff OA \perp CB$$

定埋 6.7

〇是内心
$$\iff a\vec{OA} + b\vec{OB} + c\vec{OC} = \vec{0}$$

证明 ← : 这是比较容易的

$$a\vec{OA} + b\vec{OB} + c\vec{OC} = \vec{0}$$

$$\implies (a+b+c)\vec{OA} + b\vec{AB} + c\vec{AB} = \vec{0}$$

$$\implies \vec{AO} = \frac{1}{a+b+c}(b\vec{AB} + c\vec{AC})$$

$$\implies \vec{AO} = \frac{bc}{a+b+c}(\frac{1}{c}\vec{AB} + \frac{1}{b}\vec{AC})$$

其中

$$\frac{1}{c}\vec{AB}$$
, $\frac{1}{b}\vec{AC}$

分别是 AB、AC 方向的单位向量,根据平行四边形定则(这里由于都是单位向量,因此是一个菱形),它们相加得到的 AO 就一定在角平分线上了。

⇒: 这就不那么显然了。 我们首先介绍两个引理

引理 6.1 (角平分线)

在三角形 ABC 中, D在 BC上,设 AD 是角 A 的平分线,那么:

$$\frac{DB}{DC} = \frac{c}{b}$$

此引理使用正弦定理很容易证明。

 \odot

引理 6.2 (内心)

在三角形 ABC 中, D在 BC上,设 AD 是角 A 的平分线, O 是内心那么:

$$\frac{OD}{OA} = \frac{a}{b+c}$$

此引理使用正弦定理很容易证明。

 $^{\circ}$

那么我们就有

$$\begin{split} a\vec{OA} + b\vec{OB} + c\vec{OC} \\ \Longrightarrow a\vec{OA} + b(\vec{OD} + \vec{DB}) + c(\vec{OD} + \vec{DC}) \\ \Longrightarrow a\vec{OA} + (b+c)\vec{OD} + b\vec{DB} + c\vec{DC} \end{split}$$

根据第一个引理

$$\vec{bDB} + \vec{cDC} = \vec{0}$$

根据第二个引理

$$\vec{aOA} + (b+c)\vec{OD} = \vec{0}$$

至此原命题证毕。

定理 6.8

O 是关于 A 的旁心 \iff $a\vec{OA} = b\vec{OB} + c\vec{OC}$

 \sim

证明 结论见过就行了, 证明不要求

第7章 复数

内容提要

- □ 我们为什么需要复数
- □ 一般形式
- □ 复数的运算

- □ 三角形式
- □ 指数形式

7.1 我们为什么需要复数

和一般情况下讲述的故事不同,历史上复数的引入是为了解决一个现实的实数的问题。

7.1.1 三次方程

Cardano 公式。

- 7.2 一般形式
- 7.3 复数的运算
- 7.4 三角形式
- 7.5 指数形式

第8章 矩阵

内容提要

- □ 线性方程组
- □ 行列式

■ 线性变换

- 8.1 线性方程组
- 8.2 行列式
- 8.3 线性变换

第9章 立体几何

内容提要

□ 几何体

□ 空间向量

□ 立体几何公理体系

□ 空间解析几何

- 9.1 几何体
- 9.2 立体几何公理体系
- 9.3 空间向量
- 9.4 空间解析几何

第10章 数列

内容提要

□ 数列通项

□ 等差等比数列

□ 递推数列

□ 求和

- 10.1 数列通项
- 10.2 递推数列
- 10.3 等差等比数列
- 10.4 求和

第11章 解析几何

内容提要

□ 坐标系

□ 曲线和方程

□ 直线和方程

□ 圆锥曲线

- 11.1 坐标系
- 11.2 直线和方程
- 11.3 曲线和方程
- 11.4 圆锥曲线

第12章 排列组合

内容提要

- □ 计数原理
- □ 排列问题

□ 组合问题

- 12.1 计数原理
- 12.2 排列问题
- 12.3 组合问题

第13章 概率和统计

内容提要

□ 古典概型

□ 统计基础

- □ 几何概型
- 13.1 古典概型
- 13.2 几何概型
- 13.3 统计基础

第14章 极限和导数

内容提要□ 极限

- 14.1 极限
- 14.2 导数