# GE 46I – Data Stream Mining Assignment

### Batıhan Akça Industrial Engineering Bilkent University

Ankara, Çankaya, Turkey, <u>akcabatihan@gmail.com</u>

# Separate Online Single Classifiers

Figure I Single Classifiers for RBF Data Stream



Figure 2 Single Classifiers for RBF10 Data Stream



Figure 3
Single Classifiers for RBF70 Data Stream

#### Ensemble Online Classifiers

|        | APPROACH | ACCURACY |
|--------|----------|----------|
| RBF    | MV       | 0.884    |
| RBF IO | MV       | 0.6177   |
| RBF 70 | MV       | 0.5932   |
| RBF    | WMV      | 0.8913   |
| RBF IO | WMV      | 0.6146   |
| RBF 70 | WMV      | 0.478    |

## Separate Batch Classifiers

| HT  | 0.849 |
|-----|-------|
| NB  | 0.706 |
| MLP | 0.949 |

RBF Dataset Accuracies

| HT  | 0.65   |
|-----|--------|
| NB  | 0.5185 |
| MLP | 0.765  |

RBF10 Dataset Accuracies

| HT  | 0.542  |
|-----|--------|
| NB  | 0.5105 |
| MLP | 0.5435 |

RBF70 Dataset Accuracies

# Batch Ensemble Classifiers

|        | APPROACH | ACCURACY |
|--------|----------|----------|
| RBF    | MV       | 0.846    |
| RBF IO | MV       | 0.549    |
| RBF 70 | MV       | 0.5525   |
| RBF    | WMV      | 0.8465   |
| RBF IO | WMV      | 0.547    |
| RBF 70 | WMV      | 0.544    |

For the RBF data, MLP gives the best accuracy with 0.87 (Figure I) among the single online classifiers where both of the online classifier methods overperform compared to MLP with 0.884 for MV method and 0.8913 for WVM.

For the RBF 10 data, MLP gives the best accuracy but the result is not as good as for the RBF data and the accuracy score is 0.6449 which is better than both of the online classifiers. Online classifies results are around 0.61 for both of the methods.

For the RBF 70 data, HT gives the best accuracy with 0.524I among the single online classifiers. WMV method performs worse than every single online classifier but MV method beats HT accuracy by 0.5932.

Except RBF 10 data, ensemble method improves the accuracy most of the time and gives better results than single online classifiers.

If batch classifiers are examined, in overall results are worse than the online classifiers and in comparison, with batch classifiers and their ensemble methods, single batch classifiers overperform the ensemble methods and for the two MV and WMV methods, its ensemble methods gives very similar results.

For RBF data MLP single batch method gives 0.949 accuracy which is the highest among every instance of the assignment. Its batch ensemble method gives 0.846 for MV method and 0.8465 for WMV method.

For RBF10 data again the MLP gives the best accuracy with 0.765 with a huge difference between the other two single batch methods, 0.65 for HT and 0.5185 FOR NB. The ensemble methods for this data do not improve very much, two of the methods gives accuracy score around 0.55.

For RBF70 data any of the methods reach pass above the accuracy 0.55. It may be claimed that for such a data with a huge drift in it, online ensemble methods can give better results.

In overall the examination shows that ensemble methods increase the prediction accuracy for online learning methods, and they are better for online learning. For batch classifiers this is not the case most of the time.

#### REFERENCES

Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... others. (2011). Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, *12*(Oct), 2825–2830.