Réseaux locaux Ethernet & 802.3

David Bromberg

Plan

- La norme IEEE 802.3
 - Historique, Introduction et Principes
 - Position dans le modèle OSI
 - Format d'une trame
 - Adresses IEEE802.3 ou Ethernet
 - Couche liaison (MAC) (émission/réception)
 - Couche physique (mécanismes)
 - Collision (mode opératoire)
 - Différences avec le standard Ethernet
- Conclusion

Ethernet & 802.3

Présentation

- 802.3 et Ethernet :
 - Protocoles à compétition.
 - Incompatibles entre eux.
- Ethernet est actuellement le réseau le plus employé.

http://david.bromberg.fr

Ethernet

IEEE802.3

Historique (1) Origine

Origine :

- Dans les îles Hawaï au début des années 1970.
- Université répartie sur 6 îles différentes.
- ⇔ Problématique :
 - ⇔ Interconnecter les différents sites utilisant la
 - « transmission de données par émission d'ondes radioélectriques. »

Historique (2)

Naissance du concept

- Système ALOHA (Bonjour en Hawaïen) d'Abramson exploité à Hawaï en 1970.
 - Bloc de données reçu par tout le monde.
 - Emis par ondes radio sur une même fréquence.
 - Identifié par une entête déterminant l'@ du destinataire.
 - Lorsque plusieurs stations émettent en même temps :
 - Collisions entre blocs de données.
 - Emission brouillée.
 - Données perdues.

Historique (3) Création 1973

- Alto Aloha Network: (1973) Conçus et mis en œuvre par XEROX.
 - Débit : 3 Mb/s (Experimental Ethernet)
 - Médium : Coaxial de 1000 mètres
 - Nombre maximum de stations : 100
- Utilisé pour relier les ordinateurs personnels du Xerox-Labs de Palo-Alto.

Historique (4) 1976-1980

- (1976), document révélé au public.
- (1979), Collaboration avec Digital.
- (1980), Intel se joint aux travaux.
 - Intégration électronique des composants du standard.
 - Promotion comme standard industriel
 - ⇔ Sous le nom de *DIX Ethernet V1.0.*
- Standard soumis à l'IEEE et à ECMA.

Historique (5) 1982-1983

- (1982), DIX Version 2 ou ETERNET II adoptée par l'ECMA.
- (1983), DIX Version 2 modifiée adoptée par l'ANSI/IEEE sous le nom de 802.3.
 - ⇔ Standards incompatibles.

Introduction (1) Collisions

- Les stations émettent quand elles le désirent.
 - ⇔ Accés aléatoire au canal.
 - ⇔ Collision possible si deux stations souhaitent émettre en même temps.

Introduction (2) CSMA/CD

- Basé sur la méthode d 'accès CSMA/CD
 - CSMA : Carrier Sense Multiple Access (Accès multiple avec écoute de la porteuse).
 - Accés multiple après écoute de la porteuse.
 - ⇔ Permet de réduire le nombre de collisions.
 - CD : Collision Detection (Détection de collision)
 - ⇔ Détection de collisions
 - ⇔ Si une station émettrice se rend compte que son message participe à une collision :
 - ⇔ Elle arrête l'émission du message

Introduction (3) <u>Limites</u>

- CSMA non adapté pour tous les types de réseaux locaux sur un support à diffusion.
 - Exemples :
 - La détection de collisions ne peut s'appliquer au réseaux :
 - Sans fils (802.11).
 - ⇔ La puissance d'émission d'un équipement brouille toute réception.
 - Réseaux de télévision câblés (802.14)
 - ⇔ Les délais de propagation sont trop importants.

Introduction (4) Objectifs initiaux

- Simple Faible coût.
- Peu de fonctions optionnelles.
- Pas de priorité.
- On ne peut pas faire taire son voisin.
- Débit : 10 Mb/s.
- Performances peu dépendantes de la charge.

Introduction (4) Objectifs non prévus

Non Prévus

- Full duplex
- Contrôle d'erreur (minimal, pas d'acquittement => simplicité)
- Sécurité et confidentialité
- Vitesse variable (auto-négociation)
- Priorité (Token Ring)
- Protection contre un utilisateur malveillant (FDDI)
- Déterminisme (capacité de borner en temps des transmissions de données)

Principes (1)

- Support de transmission
 - Segment = Bus = Câble coaxial
 - Bus Passif
 - Pas de boucle, pas de sens de circulation
 - Diffusion de l'information, écoute sélective
 - Transmission en Bande de Base
- Équipement raccordé sur ce câble par un transceiver transmitter + receiver = transceiver
- Un équipement Ethernet a une adresse unique au monde (adresse ethernet ou adresse MAC).

Principes (2)

- Sur le câble circulent des **trames**:
 - Suites d'éléments binaires (trains de bits)
- À un instant donné, une seule trame circule sur le câble
 - Pas de multiplexage en fréquence.
 - Pas de full duplex.
- Trame émise par un équipement est reçue par tous les <u>transceivers</u> du segment Ethernet
- Trame contient l'adresse de l'émetteur et du destinataire

Principes (3)

- Un coupleur est à l'écoute de la totalité des trames qui circulent sur le câble
 - Si une trame lui est destinée :
 - Adresse destinataire = Sa propre adresse physique
 - Il la prend, la traite et la délivre à la couche supérieure
 - Sinon, le coupleur ne fait rien

Principes (4)

- Une station qui veut émettre
 - Regarde si le câble est libre
 - Si oui, elle envoie sa trame
 - Si non elle attend que le câble soit libre
- Si 2 stations émettent ensemble, il y a collision
 - Les 2 trames sont inexploitables
 - Les 2 stations détectent la collision, elles réémettront leur trame ultérieurement

Principes (5)

- Ethernet est un réseau
 - Probabiliste
 - Sans chef d'orchestre
 - Égalitaire
- Comparaison avec une réunion sans animateur entre gens polis

Modèle OSI et IEEE 802

Modèle OSI et IEEE 802

Format d'une trame IEEE 802.3

7	1	6	6	2	de 46 à 1500	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- Débit d'émission / réception : 10 Mb/s
 - 10 bits par μs
- Longueur des trames (avec préambule et SFD) :
 - 26 octets réservés au protocole
 - Longueur minimale : **72 octets**
 - Longueur maximale : 1526 octets

Format d'une trame IEEE 802.3

- Sens de circulation des octets
 - Premier: premier octet du préambule
 - Dernier : dernier octet de la séquence de contrôle
- Sens de circulation des bits pour un octet
 - Premier: bit de poids faible (bit 0)
 - Dernier : bit de poids fort (bit 7)
 - Inverse pour Token Ring (IEEE 802.5) par exemple

Format d'une trame IEEE 802.3

- Espace inter-trames minimal de 9.6 μs
 - Espace inter-trames 9.6 μs = 96 bits time soit 12 octets
 - Utilisation du réseau dans un délai relativement faible.
 - Une machine ne peut émettre toutes ses trames en même temps : seulement les unes à la suite des autres.
 - Cet espace inter-trames permet :
 - Aux circuits électroniques de récupérer l'état de repos du média.
 - Aux autres machines de reprendre la main à ce moment là

Préambule

 Taille du Champs en octet

 7
 1
 6
 6
 2
 de 46 à 1500
 4

 Préambule
 SFD
 @ DEST
 @ SRC
 Lg DATA
 DATA
 FCS

- Taille: 7 octets identiques (10101010) <=> Simple suite continue de bit à 0 et de bit à 1
- Assez long pour servir à la synchronisation de l'horloge locale.

Trame IEEE 802.3 SFD

7	1	6	6	2	de 46 à 1500	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- SFD : Start Frame Delimitor
- Marque le début de la trame
- Taille: 1 octet
- SFD = 10101011

Adresses

١.	7	1	6	6	2	de 46 à 1500	4	
	Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS	

- Détails dans RFC 1700
- Adresses IEEE 802.3 ou Ethernet : 48 bits (6 octets).
 - syntaxe: 08:00:20:05:B3:A7 ou 8:0:20:5:B3:A7

Adresses

Taille du Champs en octet

7	1	6	6	2	de 46 à 1500	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

• Exemples :

- Broadcast (diffusion) : FF:FF:FF:FF:FF
- Multicast (groupe): 1er Bit à 1 (1er octet d'adresse impair):
- Individuelle : 1er Bit à 0 (1er octet d'adresse pair) :
 - 08:00:20:09:E3:D8 ou 00:01:23:09:E3:D5

Adresses

7	1	6	6	2	de 46 à 1500	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- Plus généralement avec les 2 premiers octets à 0
- Attribuées aux fabricants de coupleur Ethernet pour définir l'adresse physique de leur coupleur
- Les 3 derniers octets étant librement alloués par le fabricant
 - $(256)^3$ = **16.78 millions** de possibilités pour le fabricant
 - Cisco 00:00:0C:XX:XX:XX Sun 08:00:20:XX:XX:XX
 Cabletron 00:00:1D:XX:XX:XX HP 08:00:09:XX:XX:XX

Adresses

7	1	6	6	2	de 46 à 150	00
4 Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- L'adresse destinataire peut donc représenter :
 - L'adresse physique d'une machine locale
 - L'adressage d'un groupe de machines (multicast)
 - Toutes les machines du réseau local (broadcast)
- L'adresse source représente seulement :
 - L'adresse physique de la station émettrice

<u>Longueur</u>

7	1	6	6	2	de 46 à 1500	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- Taille : 2 octets (valeur ≤ 1500)
- Donne le nombre d'octets utilisé par les données dans I trame
- Ce champ est différent dans un trame Ethernet

Trame Ethernet Type données

7	1	6	6	2	<u>de 46 à 1500</u>	4
Préambule	SFD	@ DEST	@ SRC	ГҮРЕ Data	DATA	FCS

- Taille: 2 octets
- Norme: "Si la valeur du champ taille > 1500 alors la trame peut être ignorée, détruite ou utilisée à d'autres fins que IEEE802.3"
 => permet la compatibilité avec Ethernet.

Données

- 1 < Taille du champs de données utiles < 1500 octets
- <u>Padding</u>: Ajout d'octet(s) sans signification pour envoyer moins de 46 octets de données
- => Longueur minimale de la trame : 72 octets

Trame IEEE 802.3: FCS

7	1	6	6	2	<u>de 46 à 1500</u>	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- FCS: Frame Check Sequence
- Contrôle à la réception de la trame par calcul
 - Calcul = CRC (Cyclic Redundancy Check) (Division polynomiale)
 - CRC sur champs destination, source, longueur et données
- Taille : 4 octets

Sous Couche LLC (1)

Sous Couche LLC (1)

- LLC: Logical Link Control
- Pour réseau IEEE 802.3 (et d'autres), mais pas pour le réseau Ethernet (champ type déjà dans la couche MAC).
- Contrôle la transmission de données
 - Type 1 : Mode datagramme (aiguillage (3 octets) vers protocoles de niveau 3 développés à l'origine pour ethernet) (modèle ISO non respecté)
 - Ex: Token Ring (IEEE 802.5), FDDI
 - Type 2 : Mode connecté (contrôle d'erreur et de flux Ex: X25 HDLC)
 - Type 3 : Mode datagramme acquitté (réseaux industriels)

Sous Couche LLC (2)

- En-tête (3 octets):
 - DSAP : Destination Service Access Point (1 octet)
 - SSAP : Source Service Access Point (1 octet)
 - Control : Contrôle d'erreur et de séquencement (1 octet)
- DSAP = 0xAA => Va vers la sous couche SNAP
- SSAP = 0xAA => Provient de la sous couche SNAP
- Principe de fonctionnement dans IEEE 802.2

Sous Couche SNAP

- SNAP : Sub-Network Access Protocol
- En-tête: 5 octets
 - 3 octets : Organizational Unit Identifier (OUI)
 - 2 octets : Code du protocole de niveau 3
- En-tête LLC + SNAP = 8 octets => résoud pb alignement
- Permet au protocole de niveau 3 de travailler avec X25, FDDI, ATM, Frame Relay ...

MAC

Transmission d'une trame

- La sous-couche LLC a fait un appel "transmettrame".
- La couche MAC :
 - Ajoute préambule, SFD, padding si nécessaire
 - Assemble les champs : @source, @destinataire, taille, données et padding
 - Calcule le FCS et l'ajoute à la trame
 - Transmet la trame à la couche physique :
 - Si "écoute porteuse" faux depuis 9.6 µs au moins, la transmission s'effectue.
 - Sinon, elle attend que "écoute porteuse" devienne faux,
 - Attend 9.6 µs et commence la transmission (suite de bits).

MAC

Transmission d'une trame

MAC: Réception d'une trame (1)

- La sous-couche LLC a fait un appel "reçoit-trame".
- La couche MAC est à l'écoute du signal "écoute porteuse",
 - Reçoit tous les trains de bits qui circulent sur le câble :
 - Les limites des trames sont indiquées par le signal "écoute porteuse"
 - Ôtes le préambule et le SFD
 - Analyse l'adresse du destinataire dans la trame
 - Si l'adresse de destination de la trame est différente de l'adresse de la station => poubelle

-

MAC : Réception d'une trame (2) garder vocabulaire

- Si l'adresse destination est ou inclue la station :
 - Elle découpe la suite de bits reçus en octet, puis en champs
 - Transmet à la sous-couche LLC les champs :
 - @destination, @source, taille et données
 - Calcule le FCS et indique une erreur à la couche LLC si :
 - FCS incorrect
 - Trame trop grande: >1526 octets (avec préambule et SFD)
 (giants)
 - Longueur de la trame n'est pas un nombre entier d'octets (erreur d'alignement)
 - Trame trop petite: < 72 octets (trame avec collision) (runts)

MAC

Réception d'une trame

Couche Physique

- Fonctions de la couche physique
 - Permet de recevoir et d'émettre des suites d'éléments binaires
 - Détecte la transmission par une autre station,
 - Pendant que la station n'émet pas : écoute porteuse
 - Pendant que la station émet : détection de collision

Collisions CSMA

- Plusieurs stations peuvent accéder simultanément au support. (

 Multiple Access)
 - ⇔ Chaque station peut:
 - Ecouter et détecter le signal sur le réseau.
 - ⇔ Carrier Sense.
- Les collisions sont elles évitées ?

Collision Exemple

45

Collision détection

Exemple

46

Collisions Détection

- Réseau probabiliste
- Émetteur :
 - Émet au minimum après 9.6µs
 - Écoute le signal "détection de collision" pendant
 51.2 µs (64 octets) à partir du début d'émission
 - S'arrête d'émettre quand il détecte une collision
- Récepteur :
 - réception d'une trame < 72 octets => collision

Collisions

En envoi de trame

- Couche MAC transmet la suite de bits à la couche physique
 - Pendant le début de la transmission (Slot Time = 512 bits), elle teste le signal "détection de collision" que lui fournit la couche physique
 - S'il y a collision, la station commence par <u>renforcer</u> cette collision en envoyant un flot de 4 octets (jam) pour prévenir toutes les machines du réseau

Collisions: En réception de trame

- Si la trame est de taille erronée :
 - Longueur minimale trame correcte : 72 octets
 - Longueur maximale trame erronée : 64 octets
- Donc toutes trames reçues de longueur < 72 octets est rejetée

Collisions

Ré-émission

- La station attend = R x 51,2 μs = R x "Slot Time"
- R entier, 0 < R < 2^K avec K = min (n,10)
 - n = nombre de ré-émissions <u>déjà</u> faites (modulo 10)
- Elle émet à nouveau, <u>15 ré-émissions maximum</u>
- Si la 15ième ré-émission échoue, la couche physique retourne le statut "Trop d'erreurs de collision" à la couche directement supérieure
- Exemples de valeur de R :
 - 1) 0 ou 1
 - 2) 0.1.2.3
 - 3) 0.1.2.3.4.5.6.7
 -

Différences IEEE802.3/ Ethernet (1)

- Ethernet Version 1: DIX (Blue Book) 1980
 - 10 Mb/s, 1024 stations, champ "type" dans la trame
 - segment coaxial : 500 m, entre 2 stations : 2
 répéteurs maximum (soit 1500 mètres)
- Ethernet Version 2: 1982
 - SQE test, mode moniteur optionnel (voir IEEE 802.3)

Différences IEEE802.3/Ethernet (2)

- IEEE 802.3 (1985)
 - Câbles (couleur grise) de transceiver à 4 ou 5 paires (gris)
 - Champ "longueur de données" à la place de "type"
 - Entre 2 stations: 4 répéteurs maximum (2500 mètres)
 - SQE (Signal Quality Error) test (vérification interne du circuit de détection de collision (sur AUI))
 - Fonction jabber
 - Transceiver contrôle la durée d'émission de la station
 - Arrête l'émission continue d'une machine entre 20 ms et 150 ms
 - Mode moniteur (écoute seule)

Différences IEEE802.3/Ethernet (2)

- Ethernet : Pas de couche LLC
 - Padding non supprimable par MAC (taille données inconnue)
 - Niveau 3 possède un champ (IP : longueur)
- Plus de problème pour utiliser IEEE802.3 et Ethernet :
 - Les stations parlent entre elles.
 - Si problème, regarder le SQE test qui peut être enlevé sur certains transceivers.

Différences IEEE802.3/ Ethernet (3)

- Champ "type" des trames Ethernet
 - 2 octets représentés en hexadécimal
 - Champs types connus (protocole de niveau 3 utilisé)

• 0800 IF

• 0806 ARP

6000 à 6009 DEC (6004 LAT)
 8019 DOMAIN Apollo

• 8035 RARP

- Champ "taille" dans la trame IEEE802.3
 - Problème de compatibilité
 - Mais tous les numéros de protocole sont supérieurs à la longueur maximale de la zone de données d'une trame (1500)
 - Une station reconnaît les trames Ethernet et IEEE802.3

Conclusion

- Ethernet/IEEE 802.3 fonctionne très bien
- C'est le protocole de réseau local de loin le plus répandu (80% environ)
- Il y a tous les éléments nécessaires (mécano)
- Les problèmes qui restent sont connus
 - Sécurité, confidentialité et priorité
 - Le travail n'est plus sur Ethernet mais sur les protocoles et les applications des couches supérieures