Spring 2018 Precalculus' Final Examination

nth Semester Section 000

Objective: Assess understanding of function behavior and calculus readiness. This exam also aims to provide a comprehensive assessment on concepts and definitions that are necessary to be successful in further Mathematics courses.)

General Instructions: Read carefully each exercise. Fill in your *scantron* with a pencil and circle the correct answer on paper as well. Scratch paper is not allowed under any circumstances. All your work must be done in these pages.

- You have up to 120 minutes.
- Every item on the test awards 2 points for each correct answer, for a maximum possible score of 100 points.
- Non-graphing calculators are allowed. TI-84 or similar, including smart devices, are prohibited.
- One half-page formula sheet printed in black ink and showing the instructor's authorization may be used. Any other form of aid is not allowed.
- Mere suspicion of cheating, sharing calculators or using any unfair means of aid is enough to get your test withdrawn.
- When you are done, turn in the examination, your *scantron* and your formula sheet. Failure to do so will result in an automatic failing grade.

Part I. True or False Questions.

1. Differential Calculus is the branch of mathematics dedicated to the study of rates of change.

A. True B. False

2. The domain of a function f(x) is the set of all the values of x for which f(x) is defined.

A. True B. False

3. The base of a natural logarithm, \ln , is e.

A. True B. False

4. $\sqrt{3}$ is an irrational number

A. True B. False

5. f(x) = |x| is continuous for all real numbers.

A. True B. False

6. If (x + a) is a factor of p(x), then x = a is a solution to p(x)

A. True B. False

7. If $f(x) = g^{-1}(x)$, then f(x) has the same domain of g(x) and $g^{-1}(x)$ has the same range of $f^{-1}(x)$

A. True B. False

8. All continuous functions are differentiable over their domain

A. True B. False

9. Polynomial functions are differentiable on $(-\infty, \infty)$.

A. True B. False

10. If $\lim_{x\to a} = \text{does not exist}$, then x=a must be undefined.

A. True B. False

Part II. MULTIPLE CHOICE QUESTIONS.

11. Simplify $\sqrt{500} - \sqrt{80}$

A. $5\sqrt{5}$

B. $6\sqrt{5}$

C. $10\sqrt{5}$

D. $16\sqrt{5}$

E. 25

12. The vertex of the parabola $y = (x-2)^2$ is located at

A. (-2,0)

B. (2,0)

C. (-2, -2)

D. (0,0)

E. none of the above

- 13. If a polynomial function of degree 2 has an absolute maximum, then this point must also be a
 - A. tangent line
 - B. vertex
 - C. inflection point
 - D. absolute minimum
 - E. none of the above
- 14. Find the vertical asymptote of $f(x) = \frac{x}{-x^2 2x}$.
 - A. x = 1/2
 - B. x = -2
 - C. x = 4
 - D. x = -1/4
 - E. x = 2
- 15. Which of the following has a vertical asymptote at x = 0?
 - A. e^x
 - B. $\ln x$
 - C. |x|
 - D. $\sin x$
 - E. x
- 16. Which of the following best describes the function $f(x) = \frac{3x^2}{5x + 25}$
 - A. polynomial
 - B. rational
 - C. quadratic
 - D. asymptotic
 - E. transcendental
- 17. Consider $f(x) = \frac{x}{x^2 + 8x + 16}$. Determine the values of x where f(x) is discontinuous.
 - A. x = 0
 - B. x = 0, 4
 - C. x = 4
 - D. x = 3, 4
 - E. x = 1, 4
- 18. The domain of $f(x) = \frac{1}{x^2}$ is:
 - A. $(-\infty,0) \cup (0,\infty)$
 - B. $[0, \infty)$
 - C. $(-\infty, 0]$
 - D. $(-\infty, 1]$
 - E. $\mathbb{R}, x \neq 0$
- 19. The domain of $f(x) = \frac{1}{1+x^2}$ is:
 - A. $(-\infty, \infty)$
 - B. $[0, \infty)$
 - C. $(-\infty, 0]$
 - D. $(-\infty, 1]$
 - E. $\mathbb{R}, x \neq 0$

- 20. Classify the discontinuity in $\frac{(x+1)(x-3)}{(x-4)}$
 - A. infinite at x = 3, removable at x = 4
 - B. removable at x = 3 and x = 4
 - C. infinite at x = 4
 - D. removable at x = 3, infinite at x = 1
 - E. jump at x = 4 and x = 1
- 21. if $f = e^x$ and $g = x^2$, then $e^{x^2} =$
 - A. $f \circ f$
 - B. $g \circ f$
 - C. $f \circ g$
 - D. f/g
 - E. fg
- 22. The inverse function of $f(x) = (x+3)^2$ is $f^{-1}(x) =$
 - A. $\sqrt{x+3} + 2$
 - B. $\sqrt{x-3}$
 - C. $x^2 3$
 - D. $\sqrt{x}-3$
 - E. $\sqrt{x-2} + 3$
- 23. All of the following are characteristic of non-polynomial functions, except:
 - A. Minima and maxima
 - B. Asymptotes
 - C. Sharp turns
 - D. Jumps or gaps
 - E. none is correct
- 24. Find the derivative of a polynomial p(x) with roots x = 0, x = 1 and x = 3; p'(x) = 0
 - A. $3x^2 8x 3$
 - B. $3x^3 + 8x$
 - C. $3x^2 8x + 3$
 - D. $x^2 3x$
 - E. $x^2 + x + 3$
- 25. Find $\lim_{x\to\infty} e^{-\sqrt{x}}$
 - A. ∞
- B. $-\infty$
- C. 0 D. e
- E. Does not exist

- 26. Find $\lim_{x\to 0} 3\sqrt{2x+3}$
 - A. $3\sqrt{3}$
- B. 9 C. $-\sqrt{3}$ D. 0
- E. Does not exist
- 27. Find $\lim_{x\to 0} \frac{x^2 + 3x}{3x^2 + 4x}$ A. $\frac{3}{4}$ B. $-\infty$ C. $\frac{1}{3}$ D. ∞

- E. 1

- Consider function f below: 28. For what values of x is f(x) discontinuous? A. 0, 2, 3B. 0, 2, 4C. -2, 2, 3D. -2, 2E. 3,5 29. Find f(2)A. 2 B. 1 C. -1D. 0 E. Undefined 30. Find the $\lim_{x\to 3} f(x)$
- - A. 3
 - B. 2
 - C. ∞
 - D. 0
 - E. undetermined
- 31. Find $\lim_{x\to 2^+} f(x)$
 - A. 0
 - B. 1
 - C. 1
 - D. ∞
 - E. 2
- 32. Find $\lim_{x\to 2} f(x)$
 - A. 0

 - C. Does not exist
 - D. ∞
 - E. 2
- 33. A right triangle has a hypotenuse of length 6 and one leg of length $\sqrt{5}$. What is the length of the other leg?
 - A. $\sqrt{31}$
 - B. 21
 - C. $\sqrt{41}$
 - D. 31
 - E. $\sqrt{10}$
- 34. Which of the following angles is coterminal to 325°
 - A. -45°
 - B. -25°

- C. -35° D. 75°
- E. 125°
- 35. A triangle in the unit circle has a terminal point $(\frac{1}{2}, \frac{\sqrt{3}}{2})$. What is θ ?
 - A. 30^o
 - B. 120°
 - C. 45°
 - D. 60°
 - E. 210°
- 36. Where does the terminal side of the angle -320° lie, if drawn in standard position?
 - A. Quadrant I
 - B. Quadrant II
 - C. Quadrant III
 - D. Quadrant IV
 - E. Standard position angles can't be negative
- 37. Find the length of the arc, in cm, formed by an angle of $\theta=45^{\circ}$ if the distance from the terminal point to the center is r = 2 cm
- B. $\frac{\pi}{3}$
- C. $\frac{4\pi}{3}$
- D. $\frac{2\pi}{3}$ E. $\frac{3\pi}{2}$
- 38. Find the area of a sector of a circle with radius 10 centimeters formed by the arc subtended from the angle $\theta = \frac{\pi}{5}$ rad.
 - A. 5π cm²
 - B. $50\pi \ cm^2$
 - C. 25π cm²
 - D. $10\pi \ cm^2$
 - E. $12.5\pi \ cm^2$

- 39. Which of the following best describes what a derivative is?
 - A. The slope of the tangent line or instantaneous rate of change
 - B. The slope of the secant line or average rate of change
 - C. The equation of a tangent line at a point
 - D. The equation of the tangent line anywhere on the curve
 - E. none of the above
- 40. Find the derivative of $f(x) = x \ln x$
 - A. $x + x \ln x$
 - B. $\ln x + 1$
 - C. $\ln x$
 - D. $\ln x + \frac{1}{x}$
 - E. $1 + \frac{1}{x}$
- 41. Find the derivative of $f(x) = x \frac{1}{x^2}$
 - A. $1 + x^3$
 - B. $\frac{1}{x^3}$
 - C. $1 + \frac{1}{x^3}$
 - D. $\frac{1}{x^{-3}}$
 - E. $1 \frac{1}{2x}$
- 42. Differentiate $f(x) = 2\sqrt{x}$
 - A. $\frac{1}{2\sqrt{x}}$
 - $B. -\frac{\sqrt{x}}{2x}$
 - C. $\frac{1}{\sqrt{x}}$
 - D. 1/2x
 - E. $2\sqrt{x}$
- 43. Find the slope of the line tangent to $y = -x^{-3}$ at x = 1
 - A. m = 3/2
 - B. m = -3
 - C. m = 3/4
 - D. m = -3/4
 - E. m = 3
- 44. Find the equation of the line which at the point (1,6) is tangent to the graph of $y = -4x^3 + 7x^2 9x + 12$
 - A. y = 5x + 1
 - B. y = -12x 9
 - C. y = -7x + 13
 - D. y = -4x + 12
 - E. y = -24x 14

45. Find f'(2) given

$$f(x) = 3x^3 - 2x - 5$$

- A. 64
- B. 34
- C. 3
- D. -3
- E. 72
- 46. The trajectory of a body in motion is modeled by

$$p(t) = 3t^3 - 2t^2 - 18$$

- Find the position of the body after 2 seconds.
 - A. -9m m
 - B. $-18 \ m$
 - C. -2 m
 - D. 12 m
 - E. 18 m
- 47. Find the total displacement of this particle from the moment motion begins and t = 3s
 - A. 41 m
 - B. 39 m
 - C. 28 m
 - D. 43 m
 - E. 45 m
- 48. Find an equation for the velocity of the body
 - A. $6t^2 8t 18 \ m/s$
 - B. $3t^2 4t \ m/s$
 - C. $9t^2 4t \ m/s$
 - D. $9t^2 + 4t 18 \ m/s$
 - E. $9t^2 4$
- 49. Find the exact time at which the body's acceleration is $0 m/s^2$
 - A. $\frac{1}{2} s$
 - B. $\frac{2}{3}$ s
 - C. $\frac{9}{2}$ s
 - D. $\frac{1}{9} s$
 - E. $\frac{5}{3} s$
- 50. What is the best team in the world?
 - A. Atletico Madrid
 - B. Real Madrid
 - C. Barcelona
 - D. Tigres
 - E. none of the above