PHY2111

Max Kiene

Spring 2025

Contents

1	Vec	tors ar	and Coordinate Systems		2
	1.1	3.1-3.4	1		2
		1.1.1	Problem	Set	2
			1.1.1.1	(Problem 1) ± Resolving Vector Components	
				with Trigonometry	2
			1.1.1.2	(Problem 2) Problem 3.3 – Enhanced – with	
				Hints and Feedback	4
			1.1.1.3	(Problem 3) Problem 3.7 - Enhanced - with	
				Hints and Feedback	5
			1.1.1.4	(Problem 4) \pm Vector Addition and Subtraction	6
			1.1.1.5	(Problem 5) Problem 3.10	7
			1.1.1.6	(Problem 6) Problem 3.12 – Enhanced – with	
				Expanded Hints	8
			1.1.1.7	(Problem 7) Problem 3.14	9
			1.1.1.8	(Problem 8) Problem 3.14	10
			1.1.1.9	(Problem 9) Problem 3.20 – Enhanced – with	
				Hints and Feedback	11
			1.1.1.10	(Problem 10) Problem 3.27	12
			1.1.1.11	(Problem 11) Problem 3.34	13
			1.1.1.12	(Problem 12) Problem 3.40	14
			1.1.1.13	(Problem 13) Problem 3.23	16
			1.1.1.14	(Problem 14) Problem 3.25 – Enhanced – with	
				Expanded Hints	17
			1.1.1.15	(Problem 15) Problem 3.45 – Enhanced – with	
				Expanded Hints	18

Chapter 1

Vectors and Coordinate Systems

1.1 3.1-3.4

1.1.1 Problem Set

1.1.1.1 (Problem 1) \pm Resolving Vector Components with Trigonometry

Part A Find the components of the vector \vec{A} with length a=1.00 and angle $\alpha=15.0^\circ$ with respect to the x-axis as shown in the figure below.

 \hookrightarrow Solution. $A_x = 1.00\cos 15.0 = 0.965925826289$ $A_y = 1.00\sin 15.0 = 0.258819045103.$

Part B Find the components of the vector \vec{B} with length b=1.00 and angle $\beta=10.0^{\circ}$ with respect to the x axis as shown in the figure.

 \hookrightarrow Solution.

$$B_x = 1.00 \cos 10.0 = 0.984807753012$$

 $B_y = 1.00 \sin 10.0 = 0.173648177667.$

Part C Find the components of the vector \vec{C} with length c=1.00 and angle $\phi=35.0^\circ$ as shown in the figure.

 \hookrightarrow Solution. The angle with respect to the x axis would be

$$90 + 35 = 125$$
.

$$C_x = 1.00 \cos 125 = -0.573576436351$$

 $C_y = 1.00 \sin 125 = 0.819152044289.$

1.1.1.2 (Problem 2) Problem 3.3 - Enhanced - with Hints and Feed-

Parts A-B What are the x and y components of the vector \vec{E} in terms of the angle θ and the magnitude E shown in the figure above? Express your answers in terms of some or all of the variables θ , E.

 \hookrightarrow Solution.

$$E_x = E \cos \left(\frac{3\pi}{2} + \theta\right)$$
$$E_y = E \sin \left(\frac{3\pi}{2} + \theta\right).$$

Parts C-D For the same vector, what are the x and y components in terms of the angle ϕ and the magnitude E? Express your answers in terms of some or all of the variables ϕ , E.

 \hookrightarrow Solution.

$$E_x = E \cos (2\pi - \phi)$$

$$E_y = E \sin (2\pi - \phi).$$

1.1.1.3 (Problem 3) Problem 3.7 - Enhanced - with Hints and Feed-

Parts A-B Find the x and y components of $\vec{v} = 9.5 \frac{\text{m}}{\text{s}}$, 30° clockwise from the positive y axis.

 \hookrightarrow Solution.

$$v_x = 9.5 \frac{\text{m}}{\text{s}} \cos(90^\circ - 30^\circ) = 4.75 \frac{\text{m}}{\text{s}}$$

 $v_y = 9.5 \frac{\text{m}}{\text{s}} \sin(90^\circ - 30^\circ) = 8.23 \frac{\text{m}}{\text{s}}.$

Parts C-D Find the x and y components of $\vec{a} = 1.7 \frac{\text{m}}{\text{s}^2}$, 30° above the negative x-axis. \hookrightarrow Solution.

$$a_x = 1.7 \frac{\text{m}}{\text{s}^2} \cos(180^\circ - 30^\circ) = -1.47 \frac{\text{m}}{\text{s}^2}$$

 $a_y = 1.7 \frac{\text{m}}{\text{s}^2} \sin(180^\circ - 30^\circ) = 0.85 \frac{\text{m}}{\text{s}^2}.$

Parts E-F Find the x and y components of $\vec{F} = 60.0 \,\mathrm{N}, \, 36.9^{\circ}$ counterclockwise from the positive y-axis.

 \hookrightarrow Solution.

$$F_x = 60.0 \,\mathrm{N}\cos(90^\circ + 36.9^\circ) = -36.03 \,\mathrm{N}$$

 $F_y = 60.0 \,\mathrm{N}\sin(90^\circ + 36.9^\circ) = 47.98 \,\mathrm{N}.$

1.1.1.4 (Problem 4) \pm Vector Addition and Subtraction

Let vectors

$$\vec{A} = (1,0,-3)$$

$$\vec{B} = (-2, 5, 1)$$

$$\vec{C} = (3, 1, 1)$$
.

Calculate the following, and express your answers as ordered triplets of values separated by commas.

Parts A-F

 \hookrightarrow Solution.

A.
$$\vec{A} - \vec{B}$$

We can simply subtract the x, y, and z components (vector subtraction):

$$\vec{A} - \vec{B} = (A_x - B_x, A_y - B_y, A_z - B_z)$$

= $(3, -5, -4)$.

B.
$$\vec{B} - \vec{C}$$

$$(-5,4,0)$$
.

C.
$$-\vec{A} + \vec{B} - \vec{C}$$

$$(-6,4,3)$$
.

D.
$$3\vec{A} - 2\vec{C}$$

$$(-3, -2, -11)$$
.

$$E. -2\vec{A} + 3\vec{B} - \vec{C}$$

$$(-11, 14, 8)$$
.

$$F. \ 2\vec{A} - 3\left(\vec{B} - \vec{C}\right)$$

$$(17, -12, -6)$$
.

1.1.1.5 (Problem 5) Problem 3.10

Part A Part A was just graphing the vector.

Part B Find the magnitude of $\vec{A} = 3.0\hat{i} + 7.0\hat{j}$.

 \hookrightarrow Solution. \hat{i} and \hat{j} are unit components, i.e. (1,1). Therefore,

$$A = \sqrt{3.0^2 + 7.0^2}$$
$$= \sqrt{58}.$$

Part C Find the direction angle of $\vec{A} = 3.0\hat{i} + 7.0\hat{j}$ measured clockwise from the positive x axis.

 \hookrightarrow Solution.

$$\theta = \arctan\left(\frac{7.0}{3.0}\right) = 66.8^{\circ}.$$

Remark. Parts E-L were solved in the exact same way.

Let

$$\begin{split} \vec{A} &= 6\hat{i} - 2\hat{j} \\ \vec{B} &= -2\hat{i} + 6\hat{j} \\ \vec{C} &= \vec{A} + \vec{B}. \end{split}$$

Parts A-C

 \hookrightarrow Solution.

A. What is the component form of vector \vec{C} ?

$$C_x = A_x + B_x = 6\hat{i} + (-2\hat{i}) = 4\hat{i}$$

 $C_y = A_y + B_y = -2\hat{j} + 7\hat{j} = 5\hat{j}$
 $\vec{C} = 4\hat{i} + 5\hat{j}$.

B. What is the magnitude of vector \vec{C}

$$C = \sqrt{4^2 + 5^2} = \sqrt{41}.$$

C. What is the direction of vector \vec{C} ?

$$\theta_C = \arctan\left(\frac{5}{4}\right) = 51.3^{\circ}.$$

1.1.1.7 (Problem 7) Problem 3.14

Let

$$\vec{A} = 4\hat{i} - 2\hat{j}$$

$$\vec{B} = -3\hat{i} + 5\hat{j}$$

$$\vec{C} = 2\vec{A} + 3\vec{B}.$$

 \hookrightarrow Solution. This was solved in a similar way to problem 6.

$1.1.1.8 \quad (Problem~8)~Problem~3.14$

Let

$$\vec{E} = \hat{i} + 2\hat{j}$$

$$\vec{F} = 2\hat{i} - \hat{j}.$$

 \hookrightarrow Solution. This was solved in a similar way to problem 7.

1.1.1.9 (Problem 9) Problem 3.20 – Enhanced – with Hints and Feedback

A velocity vector is shown below.

Parts A-B What are the x and y components of the velocity vector?

 \hookrightarrow Solution. First, we can make it relative to the axis by

$$\vec{v}_{rel} = 90^{\circ} - 30^{\circ} = 60^{\circ}.$$

Then, we can figure out the angle from the x axis by

$$180^{\circ} + 60^{\circ} = 240^{\circ}$$
.

Compute the x component by

$$v_x = 100\cos 240 = -50^{\circ}$$
.

Compute the y component by

$$v_y = 100 \sin 240 = -866^{\circ}.$$

1.1.1.10 (Problem 10) Problem 3.27

Part A Find a vector that points in the same direction of the vector $(\hat{i} + \hat{j})$ and whose magnitude is 1.

 \hookrightarrow **Solution.** The magnitude of \hat{i} is 1, and similar with \hat{j} .

We can simply find the normalized vector v_n by taking the sum of the magnitudes of the unit vectors \hat{i} and \hat{j} (which are both 1) and dividing each by the root of the sum M:

$$M = \sqrt{1+1}$$

$$v_n = \frac{\hat{i}}{M} + \frac{\hat{j}}{M}$$

$$= \frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}}.$$

1.1.1.11 (Problem 11) Problem 3.34

You are fixing the roof of your house when a hammer breaks loose and slides down. The roof makes an angle of 25° with the horizontal, and the hammer is moving at $7.5\,\mathrm{m/s}$ when it reaches the edge. Assume that the hammer is moving from the top of the roof to its right edge.

Parts A-B What are the horizontal and vertical components of the hammer's velocity just as it leaves the roof?

 \hookrightarrow **Solution.** Given the angle and the magnitude of the hammer's velocity, this is a simple problem.

First, the hammer is sliding downwards, so

$$\theta = 360^{\circ} - 26^{\circ} = 335^{\circ}.$$

Since $\cos \theta = \frac{\text{adj}}{\text{hyp}}$ where the hypotenuse is the magnitude of the velocity and the adjacent side is the desired horizontal component, we can simply solve for the adjacent:

$$\cos 335^{\circ} = \frac{v_x}{7.5 \frac{\text{m}}{\text{s}}}$$
$$v_x = 7.5 \frac{\text{m}}{\text{s}} \cos 335^{\circ}$$
$$= 6.8 \frac{\text{m}}{\text{s}}.$$

Similarly,

$$v_y = 7.5 \frac{\text{m}}{\text{s}} \sin 335^{\circ}$$
$$= -3.2 \frac{\text{m}}{\text{s}}.$$

1.1.1.12 (Problem 12) Problem 3.40

Tom is climbing a 3.0 m long ladder that leans against a vertical wall, contacting the wall 2.1 m above the ground. His weight of 680 N is a vector pointing vertically downward. (Weight is measured in newtons, abbreviated N.)

Part A What is the magnitude of the component of Tom's weight parallel to the ladder?

\hookrightarrow Solution.

We can draw a picture of the triangle formed by the ladder and the wall:

We can find theta by using $\cos \theta = \frac{\text{adj}}{\text{hyp}}$:

$$\cos \theta = \frac{2.1}{3}$$

$$\theta = \arccos \left(\frac{2.1}{3}\right) = 45.572\,995\,999\,2^{\circ}.$$

Then we can figure out the angle relative to the ladder:

$$a = -45.5729959992^{\circ}$$
.

Therefore, the magnitude of his weight parallel to the ladder is

$$|680 \,\mathrm{N}\cos(-45.572\,995\,999\,2^{\circ})| = 476 \,\mathrm{N}.$$

Part B What is the magnitude of the component of Tom's weight perpendicular to the ladder?

 \hookrightarrow Solution. Similarly, his perpendicular component is simply the y com-

• • •

. . .

ponent relative to the ladder:

 $|680 \,\mathrm{N} \sin{(-45.572\,995\,999\,2^{\circ})}| = 485.61 \,\mathrm{N}.$

1.1.1.13 (Problem 13) Problem 3.23

The position of a particle as a function of time is given by $\vec{r} = \left(6.6\hat{i} + 4.0\hat{j}\right)t^2$ m, where t is in seconds.

Parts A-F

 \hookrightarrow Solution. We can find the magnitude m and scale by the time:

$$m = \sqrt{6.6^2 + 4.0^2} = 7.717\,512\,552\,63\,\mathrm{m}$$

$$d(t) = mt^2.$$

A.
$$d(0) = 0 \,\text{m}$$

B.
$$d(2.5) = 48.2344534539 \,\mathrm{m}$$

C.
$$d(5.7) = 48.2344534539 \,\mathrm{m}$$

The particle's speed at t is given by

$$s(t) = |d'(t)| = |2mt|.$$

D.
$$s(0) = 0 \frac{m}{s}$$

E.
$$s(2.5) = 38.5875627631 \frac{\text{m}}{\text{s}}$$

F.
$$s(0) = 87.9796431 \frac{\text{m}}{\text{s}}$$

1.1.1.14 (Problem 14) Problem 3.25 – Enhanced – with Expanded Hints

Part A Find vector \vec{C} such that $\vec{A} + \vec{B} + \vec{C} = \vec{0}$. Write your answer in component form.

 \hookrightarrow Solution. First, the components of vectors \vec{A} and \vec{B} :

$$A_x = 4\cos 60 = 2$$

$$A_y = 4\cos 60 = 3.46410161514$$

$$B_x = 3\cos{-20} = 2.81907786236$$

$$B_y = 3\cos -20 = -1.02606042998.$$

Now, we can solve for \vec{C} :

$$\vec{C} = -\vec{A} - \vec{B}$$

= -(2, 3.46410161514) - (2.81907786236, -1.02606042998)

= (-4.81907786236, -2.43804118516)

 $= -4.81907786236\hat{i} - 2.43804118516\hat{j}.$

1.1.1.15 (Problem 15) Problem 3.45 – Enhanced – with Expanded Hints

Four forces are exerted on the object shown in the figure below. The net force on the object is $\vec{F}_{\rm net} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \vec{F}_4 = 4.0 \hat{i} N$.

Parts A-B What are the components of \vec{F}_3 and \vec{F}_4 ?

\hookrightarrow Solution.

First we will write out the components of the known vectors.

$$\vec{F}_1 = (0, -5)$$

 $\vec{F}_2 = (6\cos 20, 6\sin 20)$.

Since the horizontal component of the net force is zero, we can see that the vertical component of \vec{F}_3 must be equal and opposite to the sum of the vertical components of \vec{F}_1 and \vec{F}_2 .

$$\begin{split} 0 &= \vec{F}_{3y} + \vec{F}_{1y} + \vec{F}_{2y} \\ \vec{F}_{3y} &= -\vec{F}_{1y} - \vec{F}_{2y} \\ &= -(-5) - (6\sin 20) = 2.94787914005. \end{split}$$

Therefore, $\vec{F}_3 = (0, 2.94787914005)$.

We can do something similar for \vec{F}_4 .

$$4 = \vec{F}_{4x} + \vec{F}_{2x}$$

$$\vec{F}_{4x} = 4 - \vec{F}_{2x}$$

$$= -1.63815572472.$$

Therefore, $\vec{F}_4 = (-1.63815572472, 0)$.