Avanzamento tesi

Antoine Géré

Relatore: Nicola Pinamonti

Gruppo di Fisica Matematica

Dipartimento di Matematica, Università degli Studi di Genova

Lunedì 2 dicembre 2013

Dimensional Regularisation in AQFT

General picture

Perturbative Quantum Field Theory.

Framework with which appear **powers of distributions**, in general **ill defined**.

To look at this isue we chose to work with the analytic regularisation, used with success on Minkowski spacetime (see [?] & [?]).

- We will look at this issue on **curved space time** .
- Classical field theory.
- Quantum level, then pertubative theory.
- Overview of the existing tools.

Scalar field theory [?] [?]

Classical scalar field theory

(M,g): Minkowski spacetime.

Lagrangian: $L = g^{ab} \partial_a \phi \partial_b \phi + m^2 \phi^2$.

Eq. of motion: $P\phi \doteq (\Box + m^2)\phi = 0$.

 $\Delta = (\Delta_{adv} - \Delta_{ret}) \in D'(M^2).$

 Δ : causal propagator.

 $\forall \phi \in \mathcal{S}(M), \ \phi = \Delta f, \ f \in D(M, \mathbb{R}).$

 $(S(M), \sigma)$: Symplectic space.

 $\sigma(\phi_f,\phi_g)=\langle f,\Delta g\rangle \doteq \Delta(f,g).$

To implemente dynamic: $\phi(Pf) = 0$.

Quantum scalar field theory

To promote $\phi(f)$ to a proper quantum field: $[\phi(f_1), \phi(f_2)] = i\Delta(f_1, f_2)\mathbb{I}$.

We have a *-algebra over the fields.

Perturbative theory \rightarrow powers of distributions ill defined at the origin.

$$\begin{array}{llll} \text{e.g.} & L(x) = L_{free} + L_{int}, & \text{with} & L_{int} = -: \phi^4(x): \\ & : \phi(x)^4: \ \star \ : \phi(y)^4: = : \phi(x)^4 \phi(y)^4: \\ & : + 16: \phi(x)^3 \phi(y)^3: \ \Delta^+(x,y) \\ & + 72: \phi(x)^2 \phi(y)^2: \left(\Delta^+(x,y)\right)^2 + \dots \end{array} \\ \end{array}$$

$$u: C_0^\infty(\mathbb{R}^n) \to \mathbb{R}$$
 distribution : $\mathcal{D}'(\mathbb{R}^n)$

Singular support

$$singsupp(u) \doteq \{x \in \mathbb{R}^n \mid \exists U_x \ni x : u|_{U_x} \notin C^{\infty}(U_x)\}$$

Wave Front set

$$WF(u) = \left\{ (x, k) \in T^* \mathbb{R}^n \setminus \{0\} \mid x \in singsupp(u), \ \forall f : \ \hat{fu} \ \ \text{does not decay} \\ \text{rapidely in direction k} \ \right\}$$

Microlocal Analysis

if
$$u, v \in \mathcal{D}'(\mathbb{R}^n)$$
 and $WF(u) \oplus WF(v) \neq 0$,
then $\exists ! \ u.v \in \mathcal{D}'(\mathbb{R}^n)$.

with
$$WF(u) \oplus WF(v) = \{(x, k_1 + k_2) \mid (x, k_1) \in WF(u) ; (x, k_2) \in WF(v)\}.$$

$$u: C_0^\infty(\mathbb{R}^n) \to \mathbb{R}$$
 distribution : $\mathcal{D}'(\mathbb{R}^n)$

Scaling degree

$$u \in \mathcal{D}'(\mathbb{R}^n)$$

$$sd(u) \doteq inf \left\{ \omega \in \mathbb{R}^n \mid \lim_{
ho \to 0}
ho^\omega u_
ho = 0
ight\}, \quad u_
ho(f) = \int_{\mathbb{R}^d} dx \ u(
ho x) f(x).$$

Theorem

 $v \in D'(\mathbb{R}^d \setminus \{0\})$ distribution not define in 0.

- ▶ $sd(v) < d \Rightarrow \exists !$ extension $\tilde{v} \in \mathcal{D}'(\mathbb{R}^d)$ of $v : sd(\tilde{v}) = sd(v)$.
- ▶ $sd(v) \ge d \Rightarrow \exists$ extensions $\tilde{v} \in \mathcal{D}'(\mathbb{R}^d)$ of $v: sd(\tilde{v}) = sd(v)$, uniquely defined on a finite set of test functions.

Goal

Using the analytic regularisation , develop a way to compute these extended distributions in curved spacetime .

Analytic regularisation , e.g. regularise $\Delta_F(x,y)^{n+\lambda}$, $n\in\mathbb{N},\lambda\in\mathbb{C}$

$$\tilde{\Delta}_F(x,y)^n = \lim_{\lambda \to 0} \Delta_F(x,y)^{n+\lambda} - (poles).$$

Quantum gauge models on noncommutative 3-d space

The noncommutative algebra \mathbb{R}^3_{λ} , [?]

 \mathbb{R}^3_λ is a Poisson algebra of function on \mathbb{R}^3 endowed with the Wick-Voros product,

$$\phi \star \psi(x) = \exp\left[\frac{\lambda}{2} (\delta_{\mu\nu} x_0 + i\epsilon_{\mu\nu\rho} x_\rho) \frac{\partial}{\partial y_\mu} \frac{\partial}{\partial z_\nu}\right] \phi(y) \psi(z) \Big|_{y=z=x},$$

with the coordinate functions x_{μ} , $[x_{\mu}, x_{\nu}]_{\star} = i\lambda \epsilon_{\mu\nu\rho} x_{\rho}$, $(\mu = 1, 2, 3)$.

Gauge action, [?]

The vector fields are the derivations of the algebra \mathbb{R}^3_λ ,

$$Der(\mathbb{R}^3_{\lambda}) = \left\{ D_{\mu} = \frac{i}{\kappa^2} [x_{\mu}, .], \ \mu = 1, 2, 3 \right\}.$$

Connection , linear map $\nabla: \mathbb{R}^3_\lambda \times Der(\mathbb{R}^3_\lambda) \to \mathbb{R}^3_\lambda$, $\nabla_{D_\mu} = D_\mu + A_\mu$, with

$$A_{\mu} = \nabla_{D_{\mu}}(\mathbb{I})$$
, and $A_{\mu}^{cov} = A_{\mu} + \frac{i}{\kappa^2} x_{\mu}$.

Curvature (of ∇), linear map $F: \mathbb{R}^3_{\lambda} \to \mathbb{R}^3_{\lambda}$,

$$F_{\mu\nu} = (D_{\mu}A_{\nu} - D_{\nu}A_{\mu}) + [A_{\mu}, A_{\nu}] + \frac{\lambda}{\kappa^2} \epsilon_{\mu\nu\rho}A_{\rho}.$$

Action (massless),

$$S_{\rm cl} = {\rm Tr} \left[F_{\mu\nu}^\dagger F_{\mu\nu} + \gamma \epsilon_{\mu\nu\rho} \Big(A_\mu^{\rm cov} F_{\nu\rho} + \zeta A_\mu^{\rm cov} A_\nu^{\rm cov} A_\rho^{\rm cov} \Big) + \mu A_\mu^{\rm cov} A_\mu^{\rm cov} \right]$$

(vacuum $A_{\mu} = 0$).

References

A. Géré, P. Vitale, and J.-C. Wallet. Quantum gauge models on noncommutative 3-d space. (2013) [?]

Gauge fixed action

$$\begin{array}{lcl} S & = & S_{free} + S_{int} \\ S_{free} & = & Tr \left(A_{\mu} \Big[-2\delta_{\mu\nu} D^2 \Big] A_{\nu} - \overline{c} D^2 c \right) \\ S_{int}^3 & = & Tr \left(4iA_{\mu} A_{\nu} (D_{\mu} A_{\nu}) - 4iA_{\mu} A_{\nu} (D_{\nu} A_{\mu}) - \frac{8i\lambda}{3\kappa^2} \epsilon_{\mu\nu\rho} A_{\mu} A_{\nu} A_{\rho} - i(D_{\mu} \overline{c}) [A_{\mu}, c] \right) \end{array}$$

One point function

Conclusion

Classical vacuum not stable against the quantum fluctuation.

We cannot keep the masslessness imposed at classical level.

No infrared divergence.

Seminar on the Weyl quantization

Prof. Claudio Bartocci and Prof. Nicola Pinamonti.

[?]

Seminar on representation theory

Workshop on Applied Harmonic Analysis - Genova, sept. 2013.

Prof. Filippo De Mari and Prof. Ernesto De Vito.

[?]

Workshop - Foundations and Constructive Aspects of QFT University of Wuppertal,

Germany, May 31 - June 1, 2013

Financial support from the University of Wuppertal.

Summer Graduate School - Mathematical General Relativity Cortona, Italy, July 29 - August 9, 2013 Granted full support for accommodation and board.

Workshop - Noncommutative Field Theory and Gravity Corfu, Greece, September 8 - 15, 2013 Financial support from the State Scholarships Foundation and the University of Genova.

References