Appl. No. 10/069,346 Amdt. dated [insert date] Reply to Office Action of August 6, 2003

## Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Ŋ

## **Listing of Claims:**

Claims 1-10 (Canceled).

(Currently amended) A hybrid riser configuration having a submerged 1 11. 2 tower comprising a plurality of riser pipes substantially inserted in guide conduits, and also having buoyancy means and tethering tension acting as tower tensioning means, the riser pipes 3 and guide conduits being connected to a base anchored to the ocean floor, wherein a plurality of 4 the guide conduits are acting as multiple tethers, each guide conduit further acting as a radial 5 constraint in elastic spiral deformation of the riser pipe inside, wherein during tow-out and 6 installation, the guide conduits provide necessary buoyancy to make the riser configuration, 7 8 except the base and buoyancy means, nearly neutrally buoyant. 1 12. (Previously presented) A hybrid riser configuration according to claim 11, wherein the riser pipes and guide conduits are rigidly connected both to the base and the 2 buoyancy means of the riser configuration. 1 13. (Previously presented) A hybrid riser configuration according to claim 11, wherein the material of the guide conduits comprises aluminium or a similar light metal. 2 1 14. (Previously presented) A hybrid riser configuration according to claim 11, 2 wherein the riser configuration is protected by sacrificial anodes. 1 Claim 15 (Canceled). 1 16. (Previously presented) A hybrid riser configuration according to claim 12, wherein the material of the guide conduits comprises aluminium or a similar light metal. 2



| 15 | towing the structure to the offshore location for its installation as a sub-                                                                                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | surface tow while maintaining sufficient angle and tension in the towing wires to maintain                                                                           |
| 17 | substantial tension in the pipe bundle,                                                                                                                              |
| 18 | - lowering the base end of the structure by paying out the towing wire                                                                                               |
| 19 | connected to the base,                                                                                                                                               |
| 20 | - permitting water to enter the spaces formed between the riser pipes and                                                                                            |
| 21 | their respective guide conduit when the base has reached a predetermined depth in order to limit                                                                     |
| 22 | the differential pressure across the wall of the guide conduits,                                                                                                     |
| 23 | - continuing to lower[[ing]] the base end of the structure until the structure                                                                                       |
| 24 | is perpendicular and suspended from the towing wire connected to the buoyancy tank, and                                                                              |
| 25 | - lowering the structure to allow the base to penetrate the bottom mud-line                                                                                          |
| 26 | and anchoring the base to the ocean floor, and removing the water ballast and towing wire from                                                                       |
| 27 | the buoyancy tank, thus providing tension in the guide conduits.                                                                                                     |
| 1  | 22. (Previously presented) A method according to claim 21, wherein a motion                                                                                          |
| 2  | 22. (Previously presented) A method according to claim 21, wherein a motion compensating system is employed in the towing wire between the buoyancy tank and surface |
| 3  | vessel.                                                                                                                                                              |
|    |                                                                                                                                                                      |
| 1  | 23. (Previously presented) A method according to clam 21, wherein the guide                                                                                          |
| 2  | conduits are fabricated by welding together sections of aluminium pipe using friction stir                                                                           |
| 3  | welding.                                                                                                                                                             |
| 1  | 24. (Previously presented) A method according to claim 21, wherein said                                                                                              |
| 2  | guide conduits are made by joining sections of aluminium pipe which are made with a                                                                                  |
| 3  | longitudinal seam welded by means of friction stir welding.                                                                                                          |
|    |                                                                                                                                                                      |
| 1  | 25. (Previously presented) A method according to claim 21, wherein at least                                                                                          |
| 2  | some of the annular spaces between the riser pipers and the corresponding guide conduits are                                                                         |
| 3  | filled with a gel after expelling any water having entered said spaces during installation of the                                                                    |
| 4  | structure.                                                                                                                                                           |

26. 1 (Previously presented) A method according to claim 22, wherein the guide conduits are fabricated by welding together sections of aluminium pipe using friction stir 2 3 welding. 1 27. (Previously presented) A method according to claim 22, wherein said 2 guide conduits are made by joining sections of aluminium pipe which are made with a longitudinal seam welded by means of friction stir welding. 3 28. 1 (Previously presented) A method according to claim 22, wherein at least some of the annular spaces between the riser pipes and the corresponding guide conduits are 2 3 filled with a gel after expelling any water having entered said spaces during installation of the 4 structure. 1 29. (Previously presented) A method according to claim 23, wherein said 2 guide conduits are made by joining sections of aluminium pipe which are made with a longitudinal seam welded by means of friction stir welding. 3 1 30. (Previously presented) A method according to claim 23, wherein at least some of the annular spaces between the riser pipes and the corresponding guide conduits are 2 filled with a gel after expelling any water having entered said spaces during installation of the 3 4 structure.