Linear Regression

Linear Regression with One Variable

size in feet ²	price in \$1000's	
2104	400	price i
1416	232	
1534	315 178	,
852		
3210	870	

Terminology

Training Data used to train the model set: price in \$1000's size in feet2 2104 400 (2) 1416 232 m = 47315 (3) 1534 (4) 178 852 870) = (2104,400) -400

Notation:

x = ``input'' variable'

y = "output" variable "target" variable

m = number of training examples

(x, y) = single training example

$$(x^{(i)}, y^{(i)})$$

 $(x^{(i)}, y^{(i)}) = i^{th}$ training example
 $(1^{st}, 2^{nd}, 3^{rd} ...)$

How to represent f?

Linear regression with one variable.

size

Univariate linear regression.

one variable

$$\hat{y} = \hat{f}(\omega,b)(x^{i})$$

$$\hat{y}^{(i)} = f_{w,b}(x^{(i)})$$

$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Cost function: Squared error cost function

$$\overline{J}(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$

m = number of training examples

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2}$$

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

model:

$$f_{w,b}(x) = wx + b$$

parameters:

cost function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

goal:

minimize J(w, b)

simplified

goal of linear regression:

 $\min_{w} \operatorname{imize} J(w)$

general case:

 $\min_{w,b} ize J(w,b)$

