Análise Exploratória da Qualidade dos Vinhos Tinto com Base em Propriedades Físico-Químicas e Sensoriais

1st Marina Vasques Rodrigues Dept. de TeleInformática Universidade Federal do Ceará Fortaleza, Brazil marinavasq18@alu.ufc.br 2nd Fábio Gabriel Esteves Ivo Gomes

Dept. de TeleInformática

Universidade Federal do Ceará

Fortaleza, Brazil
fabiogabriel@alu.ufc.br

3rd Caio Vinícius Pessoa Freires Dept. de TeleInformática Universidade Federal do Ceará Fortaleza, Brazil caiopessoa145@gmail.com

4th Fábio Agostinho da Silva Nascimento Filho

Dept. de TeleInformática

Universidade Federal do Ceará

Fortaleza, Brazil
fabinhosnf@gmail.com

Abstract—Este trabalho apresenta uma análise exploratória do conjunto de dados "Wine Quality", focada em vinhos tintos. Foram avaliadas propriedades físico-químicas e sensoriais, considerando seus principais valores estatísticos. A análise inclui quatro abordagens: univariada incondicional, univariada condicional por classe, bivariada incondicional e multivariada incondicional. O objetivo é compreender e identificar relações entre os preditores e a qualidade dos vinhos tintos, fornecendo insights para possíveis modelos preditivos.

Index Terms—análise exploratória de dados, vinhos tintos, estatística descritiva, boxplot, histogramas

I. INTRODUÇÃO

O estudo da qualidade dos vinhos é relevante para a indústria e para consumidores. Este trabalho realiza uma análise exploratória do dataset "Wine Quality", avaliando variáveis físico-químicas e sensoriais.

II. MÉTODOS

A. Descrição do Dataset

O dataset "Wine Quality" [1] contém 6.497 amostras, sendo 1.599 vinhos **tintos** e 4.898 vinhos **brancos**. As variáveis de entrada são fatores físico-químicos (como pH e densidade), enquanto a saída representa a avaliação sensorial, obtida pela média de pelo menos três especialistas, em uma escala de 0 a 10. Para esta análise, serão considerados apenas os dados referentes aos vinhos **tintos**, uma vez que pesquisas indicam que eles são os mais consumidos e preferidos pelos brasileiros. [2]

As 11 variáveis de entrada são:

- 1) Acidez fixa (g/L): ácidos naturais predominantes, influenciam frescor e aroma [3].
- 2) Acidez volátil (g/L): ácidos que evaporam facilmente, impactam sabor e aroma [4].

- 3) Ácido cítrico (g/L): presente em menor quantidade, equilibra acidez [3],[6].
- 4) Açúcar residual (g/L): açúcar restante após fermentação, influencia doçura [4].
- 5) Cloretos: teor de cloretos, maior próximo ao mar [5].
- 6) Dióxido de enxofre livre (mg/L): influência na preservação e estabilidade do vinho.
- 7) **Dióxido de enxofre total (mg/L):** soma do livre e ligado, afeta conservação.
- Densidade: concentração de ácidos, açúcares e outros compostos.
- 9) **pH:** nível de acidez total, influencia sabor e estabilidade.
- Sulfatos (g/L): contribuem para sabor e antioxidante natural.
- 11) **Álcool** (% vol): impacto na percepção de corpo e sabor.

B. Análise Monovariada Incondicional

A análise monovariada incondicional avalia cada preditor X_d individualmente, usando todas as N observações. Os passos são:

- 1) Plotagem de histogramas (incondicional)
- 2) Cálculo da média μ_d :

$$\mu_d = \frac{1}{N} \sum_{i=1}^{N} X_{i,d}$$

3) Cálculo do desvio padrão populacional σ_d :

$$\sigma_d = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_{i,d} - \mu_d)^2}$$

4) Cálculo da assimetria (skewness) γ_d :

$$\gamma_d = \frac{\frac{1}{N} \sum_{i=1}^{N} (X_{i,d} - \mu_d)^3}{\sigma_d^3}$$

III. RESULTADOS

A. Descrição do Dataset

A Tabela 1 apresenta um resumo estatístico das variáveis do dataset de vinhos tintos. Observa-se que as médias de atributos como ácido fixo, açúcar residual, dióxido de enxofre livre e dióxido de enxofre total possuem variações relevantes. Esses valores indicam diferenças importantes nas características físico-químicas dos vinhos, que podem influenciar diretamente a avaliação de sua qualidade. Por exemplo, a média da qualidade dos vinhos tintos é 5,87, com valor máximo observado de 8,0, mostrando que há uma faixa relativamente limitada de variação na avaliação em comparação a outros tipos de vinho.

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	per	sulphates	alcohol	qualit
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	2.208702	3.311113	0.658149	10.397805	5.6360
atd	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	9.664060	0.154386	0.169507	1.159925	0.8075
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	1.000000	3.0000
26%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000	5.0000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000	6.0000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000	6.0000
	10.000000	4.535000	1.000000	45 500000	0.011000	77 000000	202 002002	400 200000	4.010000	2.000000	44.000000	0.000

Fig. 1: Resumo estatístico das variáveis do Vinho Tinto

B. Análise Monovariada Incondicional

A análise monovariada incondicional permite estudar estatisticamente cada preditor individualmente. Para os vinhos tintos, observamos os histogramas de frequência, gráficos de assimetria e os valores de média, desvio padrão e assimetria apresentados na Tabela 1.

A partir desses resultados, podemos destacar:

- Média: Os preditores com maiores valores médios nos vinhos tintos são o Ácido Fixo e o Álcool, indicando que, em geral, esses atributos apresentam níveis mais altos nos vinhos tintos.
- 2) Desvio Padrão: O Dióxido de Enxofre Livre e o Dióxido de Enxofre Total apresentam desvio padrão elevado, o que indica grande variabilidade entre os vinhos tintos para esses preditores.
- 3) Assimetria: O preditor Sulfatos apresenta a maior assimetria, sugerindo a presença de alguns vinhos com valores de cloreto significativamente maiores que a maioria. Além disso, a Densidade apresenta um valor de assimetria elevado, indicando que há vinhos tintos com densidade muito acima da média, o que contribui para a dispersão dos dados.

Preditor	Média (μ)	Desvio Padrão (σ)	Assimetria (γ)
fixed acidity	8.3196	1.7411	0.9828
volatile acidity	0.5278	0.1791	0.6716
citric acid	0.2710	0.1948	0.3183
residual sugar	2.5388	1.4099	4.5407
chlorides	0.0875	0.0471	5.6803
free sulfur dioxide	15.8749	10.4602	1.2506
total sulfur dioxide	46.4678	32.8953	1.5155
density	2.2087	9.6641	9.8039
pH	3.3111	0.1544	0.1937
sulphates	0.6581	0.1695	2.4287
alcohol	10.3978	1.1599	-0.5768

Fig. 2: Média, desvio padrão e assimetria das variáveis

(a) Histograma de frequência dos preditores do Vinho Tinto

(b) Assimetria das variáveis do Vinho Tinto

Fig. 3: Análise gráfica do Vinho Tinto

A análise dos vinhos tintos considerou tanto os histogramas de frequência quanto os gráficos de assimetria das variáveis físico-químicas, permitindo uma avaliação mais detalhada das distribuições e do comportamento dos dados.

Acidez Fixa: Os histogramas indicam que a acidez fixa está concentrada entre 6 e 9, com leve assimetria à direita, mostrada pelos gráficos de assimetria. Isso evidencia que a maioria dos vinhos possui acidez moderada, com poucos casos de valores mais elevados.

Acidez Volátil: A distribuição concentra-se entre 0,3 e 0,7, com assimetria à direita observada tanto nos histogramas quanto nos gráficos de assimetria. Valores muito altos são raros, indicando que altos níveis de acidez volátil não são comuns em vinhos tinto.

Ácido Cítrico: A distribuição apresenta muitos valores próximos a zero, e a assimetria reforça que alguns vinhos possuem ácido cítrico significativamente mais alto, embora não sejam a maioria.

Açúcar Residual: O histograma mostra forte concentração em valores muito baixos, entre 0 e 2, caracterizando vinhos predominantemente secos (até 4g de açucar por litro, na lesgislação brasielira) [8] . Os gráficos de assimetria confirmam que há poucos vinhos tinto com açúcar residual mais elevado.

Cloretos: Distribuição extremamente concentrada e próxima a zero, com baixa assimetria, indica baixo teor de cloretos na maioria dos vinhos.

Dióxido de Enxofre Livre: Os histogramas e gráficos de assimetria indicam distribuição à direita, com a maioria dos vinhos até 20 mg/L e poucos valores elevados.

Dióxido de Enxofre Total: Apresenta padrão semelhante ao enxofre livre, mas com maior variabilidade; gráfico de assimetria confirma a tendência de valores extremos mais raros.

Densidade: Distribuição altamente concentrada em valores próximos de zero, com assimetria praticamente nula, evidenciando pequenas diferenças entre os vinhos.

pH: Distribuição aproximadamente normal, centrada entre 3 e 3,5, com gráficos de assimetria, indicando simetria da variável, ou seja, a maioria dos dados está concentrada próximo a média.

Sulfatos: Distribuição assimétrica à direita, concentrada entre 0,4 e 0,8. Alguns vinhos apresentam valores maiores, como evidenciado pela cauda à direita nos gráficos de assimetria.

Álcool: Distribuição levemente assimétrica à direita, concentrando-se entre 9 e 12%, indicando teor alcoólico moderado na maioria das amostras.

Conclusão: A análise conjunta dos histogramas e dos gráficos de assimetria mostra que os vinhos tintos da amostra são predominantemente secos, apresentando baixos teores de acidez volátil, cloretos e dióxido de enxofre, além de um teor alcoólico moderado. A assimetria à direita observada na maioria das variáveis indica a presença de alguns vinhos com valores atípicos, ainda que a maior parte das amostras se mantenha dentro de um perfil físico-químico consistente. Essa visão integrada permite compreender com mais clareza as características desses vinhos, sendo útil tanto para análises comparativas quanto para orientar decisões relacionadas à produção.

IV. REFERÊNCIAS

- [1] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, "Modeling wine preferences by data mining from physicochemical properties," *Decision Support Systems*, vol. 47, no. 4, pp. 547–553, 2009.
- [2] PORTAL INSIGHTS. Qual o vinho preferido dos brasileiros? Disponível em: https://www.portalinsights.com.br/perguntas-frequentes/qual-o-vinho-preferido-dos-brasileiros. Acesso em: 19 out. 2025.
- [3] Caveroyale, "Ácido Cítrico: Importância e Aplicações em Vinhos Premium," [Online]. Available: https://www.caveroyale.com.br/glossario/ acido-citrico-importancia-aplicacoes-vinhos-premium/, acesso em: 28 set. 2025.
- [4] Caveroyale, "Acidez Volátil: Entenda seu Impacto nos Vinhos Premium," [Online]. Available: https://www.caveroyale.com.br/glossario/ acidez-volatil-vinhos-premium/, acesso em: 28 set. 2025.
- [5] Agrovin, "Técnicas para corrigir a acidez do vinho," [Online]. Available: https://agrovin.com/pt-pt/ tecnicas-para-corrigir-a-acidez-do-vinho/, acesso em: 28 set. 2025.
- [6] Embrapa, "Metodologia de Análise de Vinho Tinto," [Online]. Available: https://www.infoteca. cnptia.embrapa.br/infoteca/bitstream/doc/887323/1/ Metodologiaanalisevinhotintoed012010.pdf, acesso em: 28 set. 2025.
- [7] Famiglia Valduga, "A importância da acidez no vinho," [Online]. Available: https://blog.famigliavalduga.com.br/ qual-a-importancia-da-acidez-no-vinho/, acesso em: 28 set. 2025.