Règles Existentielles

Théorie des bases de données et de connaissances

HAI933I

Cours de ML MUGNIER

EXAMPLE: PART OF A "KNOWLEDGE GRAPH"

Facts

Prof(Bob)
PHS(#1)
Comp(C)
Pest(x)
involvedIn(Bob,#1)
fundedBy(Bob,C)
about(#1,P)
produces(C,x)
contains(x,P)

+ Basic ontological knowledge

PublicHealthStudy **subclass of** PublicInterestStudy fundedBy **subproperty of** relatedTo

Rules

 $\forall x (PHS(x) \rightarrow PIS(x))$ $\forall x \forall y (fundedBy(x,y) \rightarrow relatedTo(x,y))$

Allow to infer:

PIS(#1), relatedTo(Bob,C)

How to Infer Conflicts of Interest (CoI)?

Query: "Find all x, y, z such that x has a conflict for study y because of its relationships with company z" What kind of **ontological knowledge** would allow to infer conflicts of interest?

Col pattern

DEFINING CONFLICTS OF INTEREST

 R_1 : $\forall x \forall y \forall z \text{ (produces(x,y) } \land \text{ contains(y,z)}$ $\rightarrow \text{hasInterest(x,z))}$

 R_2 : $\forall x \forall y \forall z \forall u \ (involved In(x,y) <math>\land$ PIS(y) \land about(y,u) \land related To(x,z) \land Company(z) \land has Interest(z,u)

 \rightarrow Col(x,y,z))

What if we only have unary and binary predicates ie graphs and not hypergraphs?

Reification: new object of type Col

R₂: $\forall x \forall y \forall z \forall u \ (body[x,y,z,u] \rightarrow \exists o$ (Col(o) \land in(x,o) \land on(o,y) \land with(o,z))

CREATING NEW OBJECTS

 R_2 : $\forall x \forall y \forall z \forall u \ (body[x,y,z,u] \rightarrow \exists o \ (Col(o) \land in(x,o) \land on(o,y) \land with(o,z)))$

Interest of creating a new object:

- Flexible description of Col instead of a fixed arity predicate
 Not all Col need to be described by the same properties
- Ability to talk about Col because they become objects (reification)

E.g. R₃: $\forall x \forall z \ (Col(x) \land with(x,z) \land ChemicalCompany(z) \rightarrow toBeInvestigated(x))$

INFERRING CONFLICTS OF INTEREST

Prof(Bob), PHS(#1), Comp(C), Pest(x)
involvedIn(Bob,#1), fundedBy(Bob,C)
about(#1,P), produces(C,x), contains(x,P)

Rules (universal quantifiers omitted)

 $PHS(x) \rightarrow PIS(x)$ fundedBy(x,y) \rightarrow relatedTo(x,y)

 R_1 : produces(x,y) \land contains(y,z) \rightarrow hasInterest(x,z)

R₂: involvedIn(x,y) \land PIS(y) \land about(y,u) \land relatedTo(x,z) \land Company(z) \land hasInterest(z,u)

 $\rightarrow \exists o Col(o) \land in(x,o) \land on(o,y) \land with(o,z)$

Inferred facts

PIS(#1), relatedTo(Bob,C), hasInterest(C,P) Col(o₁), in(Bob,o₁), on(o₁,#1), with(o₁,C)

Query: find (x,y,z) such that $\exists o Col(o) \land in(x,o) \land on(o,y) \land with(o,z)$

Answer: (Bob,#1,C)

EXISTENTIAL RULES

$$\forall X \ \forall Y \ (Body [X,Y] \rightarrow \exists Z \ Head [X,Z])$$

X, Y, Z:

(possibly empty) sets of variables

any positive conjunction (without functional symbols)

$$\forall x \ (actor(x) \rightarrow \exists z \ (movie(z) \land play(x,z))$$

 $\forall x \forall y \text{ (siblingOf(x,y) } \rightarrow \exists z \text{ (parentOf(z,x) } \land \text{ parentOf(z,y)))}$

Key point: ability to assert the existence of unknown entities

Crucial for representing ontological knowledge in « open domains »

[Open domain: we do not assume that the only existing objects are those known in the factbase]

GRAPH VIEW OF (EXISTENTIAL) RULES

$$\forall X \ \forall Y \ (Body [X,Y] \rightarrow \exists Z \ Head [X,Z])$$
graph
graph

 $\forall x \ \forall y \ (siblingOf(x,y) \rightarrow \exists z \ (parentOf(z,x) \land parentOf(z,y)) \)$

The rule head has 2 kinds of variables (or unlabelled term nodes):

- frontier: shared with the body (X) {x,y} on the example

- existential: (Z) {z} on the example

GENERATION OF FRESH (UNKNOWN) INDIVIDUALS

 $R = \forall x \forall y \text{ (siblingOf}(x,y) \rightarrow \exists z \text{ (parentOf}(z,x) \land parentOf(z,y)))$

F = siblingOf(a,b)

R is **applicable** to F if there is a **homomorphism** h

from body(R) to F

$$x \rightarrow a$$

 $y \rightarrow b$

Applying R to F w.r.t. h produces $F \cup h(head(R))$

where a fresh variable (a « null ») is created for each existential variable in R

$$F' = \exists z0 \text{ (siblingOf(a,b) } \land \text{parentOf(z0,a) } \land \text{parentOf(z0,b))}$$

Notation (when needed) : $F \cup h^{safe}(head(R))$

where **h**^{safe} is a substitution of variables(head(R))

such that: $h^{safe}(x) = h(x)$ if x is in frontier(R)

otherwise h^{safe}(x) is a fresh variable (a null)

RETOUR SUR DATALOG

Les règles Datalog sont un cas particulier de règles existentielles

$$\forall X \ \forall Y \ (Body [X,Y] \rightarrow \exists Z Head [X,Z]) avec Z = \emptyset$$

o Soit une base de connaissances $K = (F, \mathcal{R})$ où F est une base de faits sans variables et \mathcal{R} est un ensemble de règles Datalog.

Alors:

- K possède un unique plus petit modèle qui est l'intersection de tous ses modèles
- Donc, étant donnée une CQ Booléenne q, pour déterminer si K ⊨ q
 il suffit de vérifier si le plus petit modèle de K est un modèle de q
- Le plus petit modèle de K se calcule en saturant F avec \mathcal{R} (« chainage avant »)

Qu'est-ce qui change quand on passe aux règles existentielles?

Modèle canonique d'une base de faits (sans variables)

Vocabulaire
$$\mathcal{V} = (\mathcal{P}, C)$$

Base de faits F (sans variables) sur \mathcal{V}

RAPPEL

Modèle canonique de F

$$M: D^M = C$$

pour tout $p \in \mathcal{P}$ d'arité k, $p^M = \{ (c_1, ..., c_k) \mid p(c_1, ..., c_k) \in F \}$

Le modèle canonique de F correspond à l'intersection de tous les modèles de F

$$\mathcal{V} = (\{r_{/3}, p_{/2}, q_{/1}\}, \{a, b, c, d, e\})$$

$$F = \{ p(a,b), p(b,c), q(c) \}$$

$$\mathcal{M}$$
: $D_{\mathcal{M}} = \{a,b,c,d,e\}$
 $p^{M} = \{ (a,b), (b,c) \}$
 $q^{M} = \{ c \}$
 $r^{M} = \emptyset$

Qu'est-ce qui change quand la base de faits peut avoir des variables ?

Model "isomorphic" to a closed $FOL(\exists, \land)$ formula

To a closed formula f in FOL(\exists , \land), we assign its **isomorphic model** (also called **canonical model**):

M:

- $D^M = C U terms(f)$ We add a domain element for each variable
- for all p in \mathcal{P} , $p^M = \{(t_1 ... t_k) \mid p(t_1 ... t_k) \text{ in } f\}$,

$$V = (\{s_{/1}, p_{/2}, r_{/3}\}, \{a, b\})$$

$$f = \exists x \exists y \exists z \ (p(x, y) \land p(y, z) \land r(x, z, a))$$

$$M_{f}: \qquad D = \{a, b, x, y, z\}$$

$$p^{Mf} = \{(x, y), (y, z)\}$$

$$r^{Mf} = \{(x, z, a)\}$$

$$s^{Mf} = \emptyset$$

Reciprocally, any interpretation / can be seen as a closed FOL(∃,∧) formula

Each element from $D_1 \setminus C$ is translated into a new variable

Modèles Universels

Le modèle canonique d'une base de faits avec variables n'est plus un « plus petit modèle » 🙁

$$V = (\{p_{/2}\}, \{a,b\})$$

$$f = \exists x \exists y \exists z \ (p(x,y) \land p(y,z))$$

$$M_f: \qquad D = \{a, b, x, y, z\}$$

$$p^{Mf} = \{ (x,y), (y,z) \}$$

Quels plus petits modèles de f?

D'ailleurs, il n'y a pas d'unique plus petit modèle 🕾

Mais ...

Le modèle canonique d'une formule close f de FOL(\exists , \land) est un modèle **universel** de f: il s'envoie par homomorphisme dans tous les modèles de f

HOMOMORPHISMS AGAIN AND AGAIN

One can define homomorphisms between interpretations

Homomorphism h from I_1 =(D₁, . I_1) to I_2 = (D₂, . I_2): mapping from D₁ to D₂ such that:

for all c in C, h(c) = cfor all p in P and $(t_1 ... t_k)$ in p^{I_1} , $(h(t_1) ... h(t_k))$ in p^{I_2}

- Homomorphisms between interpretations correspond to homomorphisms between the associated factbases
- If I_1 maps by homomorhism to I_2 then, for any f in FOL(\exists , \land), I_1 model of f \Rightarrow I_2 model of f

Indeed: f maps to I_1 and I_2 maps to I_2 , hence f maps to I_2

NICE SEMANTIC PROPERTIES OF $FOL(\exists, \land)$

- For any f in FOL(\exists , \land), the canonical model of f is universal: for all M' model of f, M_f maps by homomorphism to M'
- o $g \models f$ (i.e., every model of g is a model of f) iff $M_g \text{ is a model of } f \text{ (the canonical model of } g \text{ is a model of } f) \text{ iff}$ f maps to g (there is a homomorphism from f to g)

Donc : pour déterminer si **F** ⊨ **q** lorsque F a des variables, on peut toujours se reposer sur l'homomorphisme

Ajoutons un ensemble ${\cal R}$ de règles existentielles :

- peut-on saturer F avec ${\cal R}$?
- le résultat correspond-il à un modèle universel de (F, \mathcal{R}) ?

KNOWLEDGE BASES WITH EXISTENTIAL RULES

 $\mathcal{K} = (F, \mathcal{R})$ where

 \mathcal{R} is a set of existential rules

F is a set of facts (rules with an empty body): existential conjunctions of atoms

Forward chaining called α chase α (we still denote by α the result of the chase)

Main change with respect to Datalog rules: F* can be infinite

$$R = person(x) \rightarrow \exists y hasParent(x,y) \land person(y)$$

F = person(a)

 \wedge hasParent(a, y0) \wedge person(y0)

 \land hasParent(y0, y1) \land person(y1)

Etc.

but it remains a universal model

Hence, for Boolean CQs: $K \models q$ iff q maps to F^*

Other changes: **F* is not unique** (but all F*we will see are logically **equivalent**)

DIFFERENT VARIANTS OF THE CHASE

All chase variants we will see compute **universal models** of the KB but they differ on how they handle **redundancies** possibly caused by nulls

Core: set of atoms without homomorphism to one of its strict subsets

DERIVATION

- Trigger for a factbase F: (R,h) | h homomorphism from body(R) to F
- Derivation: $(F_0 = F) (R_1, h_1) F_1 (R_2, h_2) F_2$, ... where for all i, (h_i, R_i) trigger for F_{i-1} and $F_i = F_{i-1} \cup h_i^{safe}(head(R_i))$

When the triggers are not needed, we note $(F_0=F)$, F_1 , F_2 , ...

- Different chase variants with their own rule application criteria
- → different notions of active trigger (R_i, h_i)

A chase variant considers only derivations with active triggers

OBLIVIOUS CHASE

Oblivious (or naive): « performs all rule applications according to all new triggers »

A trigger (R,h) to F_i is active on F_i iff this trigger has not already been used in the derivation from F_0 to F_{i-1}

$$R = p(x,y) \rightarrow \exists z p(x,z)$$

$$F = p(a,b)$$

 $p(a,z_0)$

 $p(a,z_1)$

. . .

stupid rules to keep examples simple!

infinite derivation

SEMI-OBLIVIOUS = SKOLEM CHASE

Semi-oblivious: consider only homomorphisms that differ on the rule frontier (x)

A trigger (R,h) to F_i is active on F_i iff there is no trigger (R,h') such that h'(x) = h(x) for all x in frontier(R) in the derivation from F_0 to F_{i-1}

$$F = p(a,b)$$

$$F = p(a,b)$$
 $R = p(x,y) \rightarrow \exists z p(x,z)$

Skolem chase: similar behavior

- (1) skolemize rules: in R, replace each existential variable z by a function f_R^z (frontier(R))
- (2) perform the oblivious chase on skolemized rules

$$R = p(x,y) \rightarrow p(x,f(x))$$

Skolemization can be seen as a way of naming existential variables and « tracking » the nulls created during the semi-oblivious chase

RESTRICTED (ALSO KNOWN AS STANDARD) CHASE

Restricted: do not perform a rule application that brings *only* redundant information

A trigger (R,h) to F_i is *active on* F_i iff h *cannot* be extended to homomorphism h': body U head \rightarrow F_i

(semi-) oblivious chase: infinite

restricted chase:

halts after one rule application

RESTRICTED CHASE: NATURAL BUT TRICKY

• For the same KB, some derivations may halt while others may not

$$F: p(a,b)$$
 $R_1: p(x,y) \rightarrow \exists z p(y,z)$
 $R_2: p(x,y) \rightarrow p(y,y)$

If R_1 is always applied before R_2 for a given homomorphism of p(x,y):

If R₂ is applied first:

CORE CHASE

Iterate:

- (1) perform a finite number of rule applications as in the restricted chase
- (2) compute the core of the result

where z is a variable

$$R_1: p(x,y) \rightarrow q(x,y)$$

$$R_2$$
: $q(x,y) \rightarrow \exists z \ q(y,z)$

The restricted chase only checks redundancy of **newly** added atoms ⇒ infinite here

The core chase outputs { p(a,b), q(b,b), q(a,b) }

The core chase allows to detect **global** redundancies

WHEN DOES A CHASE HALT?

- Terminating derivation:
 - (1) finite and (2) there is no active trigger on the last factbase
- A chase derivation has to be fair: no active trigger is indefinitely delayed Formally: if (R,h) is an active trigger on F_i

then there is F_j with j > i such that F_j is obtained by applying (R,h) or (R,h) is not active anymore on F_j

Terminating = finite and fair

$$R_1$$
: $p(x,y) \rightarrow \exists z \ p(y,z)$

 $R_2: p(x,y) \rightarrow p(y,y)$

$$F = p(a,b)$$

unfair infinite derivation: apply only R₁ ...

(semi-) oblivious: all fair derivations are infinite

restricted: some terminating derivations, some infinite fair derivations

core: all fair derivations are terminating

For a chase variant C, C halts on a KB K if all fair derivations on K are finite

IN SHORT

All previous chase variants compute universal models of a KB

They can be strictly ordered wrt termination:

oblivious < semi-oblivious = skolem < restricted < core

[X < Y means that: for any KB K, if X-chase halts on K then Y-chase halts on K and there is a KB on which Y-chase halts but not X-chase]

Only the **core** chase halts if and only if the KB admits a **finite** universal model but it is **costly** (involves homomorphisms from the whole factbase)

The **O**, **S-O** and **core** chases yield a **unique** result (up to the name of nulls): all fair derivations for a given chase variant yield the same result on a given KB but not the **R** chase: we can even have finite and infinite fair derivations

The **R chase** seems to achieve a good tradeoff redundancy elimination / efficiency of computation (when it stops) but its behavior is difficult to control

TRICKY RESTRICTED CHASE

Open question:

is there an ordering strategy that terminates more often than the others?

- Breadth-first ordering is a natural candidate (iterate:
 - (1) compute all rule body homomorphisms to the current factbase,
 - (2) apply all active triggers according to these homomorphisms)
- however, it is not optimal for restricted chase termination

$$R_1: p(x,y) \rightarrow \exists z \ p(y,z)$$

$$R_2: p(x,y) \rightarrow h(y)$$

$$R_3: h(x) \rightarrow p(x,x)$$

$$F = p(a,b)$$

$$p(b,z_0), h(b)$$

$$\{R_1, R_2\}$$

$$p(z_0,z_1), h(z_0), p(b,b)$$

$$\{R_1, R_2, R_3\}$$

Optimal order: apply R_2 then R_3 (ie delay application of R_1) a \longrightarrow b

- Usual heuristic: at each step, first saturate with all datalog rules, then apply an
 existential rule
- → would be optimal on this example, is it always the case?