Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Buchelnikov Artyom Гр. 320207

Вариант 15

Часть І. Планирование адресного пространства IPv6

Задание 1.1: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:4172:7479:6f00:0/104

Задание 1.2: разбить сеть из п.1.1 на 8 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\'\Gamma C,}$	$2001: \mathtt{db8}: 0: 4 \mathtt{eef}: 4172: 7479: 6 \mathtt{f} 00: 0/107$
Префикс $N_{\mathrm{C,P\ddot{e}PS}}$	2001:db8:0:4eef:4172:7479:6fe0:0/107

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (15*16)/256+10=10

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (15*16)/256=240

Дано: Сеть 10.240.0.0/12

Задание 2.1.1: разбить сеть на 2048 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	240	0	0
Адрес сети	00001010	11110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 7 бит из 2-го октета.

3. Итого, получается, что сеть 10.240.0.0/12 мы разбили на 2048 подсети, в каждой из которых по 510 узлов, указываем первые 5 подсетей:

	10	240	0	0
Адрес сети дв.с	00001010	11110000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

200	200	404
$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.240.0.0/2	3
Адрес первого узла N_1	10.240.0.1	
Адрес последнего узла N_1	10.240.1.254	:
Широковещательный адрес N_1	10.240.1.255	
Адрес сети $N_2/$ Префикс N_2	10.240.2.0/2	3
Λ дрес первого узла N_2	10.240.2.1	
Адрес последнего узла N_2	10.240.3.254	:
Широковещательный адрес N_2	10.240.3.255	
Адрес сети $N_3/$ Префикс N_3	10.240.4.0/2	3
Λ дрес первого узла N_3	10.240.4.1	
Адрес последнего узла N_3	10.240.5.254	
Широковещательный адрес N_3	10.240.5.255	
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	10.240.6.0/2	3
Λ дрес первого узла N_4	10.240.6.1	
Адрес последнего узла N_4	10.240.7.254	
Широковещательный адрес N_4	10.240.7.255	
Адрес сети $N_5/$ Префикс N_5	10.240.8.0/2	3
Адрес первого узла N_5	10.240.8.1	
Адрес последнего узла N_5	10.240.9.254	
Широковещательный адрес N_5	10.240.9.255	

Дано: Сеть 10.240.0.0/12

Задание 2.1.2: разбить сеть на 80 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(80\leqslant 2^7=128)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 3 бит из 2-го октета (получается, что сеть можно разбить на 128 подсетей: $2^7=128$; оставшиеся 13 бит идут под узлы: $2^{13}-2=8190$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	$\fbox{10.240.0.0/19}$
Адрес первого узла N_1	10.240.0.1
Адрес последнего узла N_1	10.240.31.254
Широковещательный адрес N_1	10.240.31.255

$igcap_{\Delta}$ Адрес сети $N_2/$ Префикс N_2	10.249.224.0/19
Адрес первого узла N_2	10.249.224.1
Адрес последнего узла N_2	10.249.255.254
Широковещательный адрес N_2	10.249.255.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 16384 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	240	0	0
Адрес сети	00001010	11110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=14, т.к. $2^{14}-2=16382$. Т.е. нужно выбрать такую маску, которря выделит ровно 14 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^6=2048$ подсетей по 16382 узла(08) в каждой.

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.254.192.0/18
Адрес первого узла N_1	10.254.192.1
${ m A}$ дрес последнего узла N_1	10.254.255.254
Широковещательный адрес N_1	10.254.255.255
Λ дрес сети $N_2/$ Префикс N_2	10.255.0.0/18
${ m A}$ дрес первого узла N_2	10.255.0.1
Адрес последнего узла N_2	10.255.63.254
Широковещательный адрес N_2	10.255.63.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	10.255.64.0/18
Адрес первого узла N_3	10.255.64.1
Адрес последнего узла N_3	10.255.127.254
Широковещательный адрес N_3	10.255.127.255

$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	$ \left \ 10.255.128.0/18 \ \right $
Адрес первого узла N_4	10.255.128.1
Адрес последнего узла N_4	10.255.191.254
Широковещательный адрес N_4	10.255.191.255
Адрес сети $N_5/$ Префикс N_5	10.255.192.0/18
Адрес первого узла N_5	10.255.192.1
Адрес последнего узла N_5	10.255.255.254
Широковещательный адрес N_5	10.255.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 400 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	240	0	0
Адрес сети	00001010	11110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510 \geqslant 400$.

	10	240	U	U
Адрес сети дв.с	00001010	11110000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	10.240.0.0/23
Адрес первого узла N_1	10.240.0.1
Адрес последнего узла N_1	10.240.1.254
Широковещательный адрес N_1	10.240.1.255

Адрес сети $N_2/$ Префикс N_2	10.255.254.0/23
Адрес первого узла N_2	10.255.254.1
Адрес последнего узла N_2	10.255.255.254
Широковещательный адрес N_2	10.255.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 120 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	240	0	0
Адрес сети	00001010	11110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=7, т.к. $2^7-2=126$.

	10	240	0	0
Адрес сети дв.с	00001010	11110000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	10000000
	255	255	255	128

3. Указываем последние 5 подсетей:

$oxed{A}$ дрес сети $N_1/$ Префикс N_1	10.255.253.128/25
${ m A}$ дрес первого узла N_1	10.255.253.129
Адрес последнего узла N_1	10.255.253.254
Широковещательный адрес N_1	10.255.253.255
$oxed{A$ дрес сети $N_2/$ Префикс N_2	10.255.254.0/25
Адрес первого узла N_2	10.255.254.1
Адрес последнего узла N_2	10.255.254.126
Широковещательный адрес N_2	10.255.254.127

$ \boxed{ 10.255.254.128/25 } $		
10.255.254.129		
10.255.254.254		
10.255.254.255		
$\fbox{10.255.255.0/25}$		
10.255.255.1		
10.255.255.126		
10.255.255.127		
$\fbox{10.255.255.128/25}$		
10.255.255.129		
10.255.255.254		
10.255.255.255		