PROBLEM SET 2

* Chapter 1-2

Ly Assignment 1

* PARAMETRIC FORM:

$$x(t) = a + pt$$

$$= \xi(t) = c + rt$$

1)
$$(1,2,-1)$$
 k $(2,0,3)$
(a) $f(t) = (2,0,3) + t(-2,0,3)$

$$(u_1v)=(0,0)$$
 $(u_1v)=(1$

$$(v) = (0,0)$$
 $(u,v) = (1,0)$
 $0 = 1 + p$
 $0 = 2 + a$
 $0 = 1 + r$
 $0 = 1 + r$
 $0 = 1 + r$
 $0 = 1 + r$

$$\begin{pmatrix} \frac{1}{2} \\ -\frac{1}{4} \end{pmatrix} - \begin{pmatrix} \frac{2}{0} \\ \frac{3}{3} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{4}{4} \end{pmatrix}$$

$$(\frac{3}{2}) = (\frac{3}{3}) + t(\frac{7}{3})$$

PARAMETRIC :

$$X(u_1v) = 1+u$$

 $Y(u_1v) = 2-2u$
 $Z(u_1v) = -1+4u$

(b) distance, (1,0,1)

r = 4

2)
$$(112,-1)$$
; $(2,0,3)$; $(-1,-1,0)$
0=1
6:2
0=2+q
0=2+m
0=-1+n
0=-1+n
0=-1+n
0=-1+n
0=-2
r=4

$$X(u_1v) = 1 + u - 2v$$

 $Y(u_1v) = 2 - 2u - 3v$
 $Y(u_1v) = -1 + 4u + v$

? PARAMETRZC FORM

3)
$$3x + 4y - z = 2 \times x(t) = 2 - 2t$$

 $y(t) = -1 + 3t$
 $y(t) = -t$
 $y(t) = -t$
 $y(t) = -t$

(a)
$$3(2-2t) + 4(-1+3t) - (-t) = 2$$

 $6-6t + (-4+12t) + t = 2$ $\neq (0) = -(0)$
 $6-4+6t+t=2$ $\neq z = 0$
 $2+7t=0$ $x = 2$ $x = 0$
 $t = 0$ $y = -1+3(0)$
 $y = -1$

$$(p) \left(\frac{0}{3}\right)$$

(use dot product)

4) minimum distance between

$$\chi(t) = 1+t$$
 $\chi(s) = 3s$
 $\gamma(t) = 1-3t$ $\chi(s) = 3s$
 $\gamma(t) = 1-2s$
 $\gamma(t) = 1-2s$
 $\gamma(t) = 2-s$

(use scalar projection)

5) distance between parallel planes 2x-y+32 =-4 k 2x-y+32=24

- 6) 32+4y-Z=2 k -22+y+2Z=6
 - (a) unere intersect x, y, z axis
 - (b) normal vector (perpendicular)
- (c) line equation of planes intersection (use normal vector)
- (d) angle between 2 planes

Pythagoras' Theorum: a2+b2=c2

$$q = \sqrt{(12)_{5} - (4)^{121}}_{5}$$

$$q = \sqrt{101_{5} - 10^{15}}_{5}$$