SMART CAP

A mini-project report submitted for **Internet of Things(Semester V)**

by

Nimisha Bhoir(8412)

Rincy Pereira (8488)

Sanil Rodrigues(8489)

Under the guidance of

Prof. Garima Tripathi

(sign with date)

DEPARTMENT OF INFORMATION TECHNOLOGY

Fr. Conceicao Rodrigues College of Engineering

Bandra (W), Mumbai - 400050

University of Mumbai

Approval Sheet

Project Report Approval

This	projec	t report	entitled	by	Sm	art Cap	usin	g by	Nimisha	Bhoir,	Rincy
Perei	ra an	d Sani	l Rodrig	gues	is	approved	as	mini	project	in Thire	d year
Engir	neering	, Inform	ation Tec	hnol	ogy.						

	Examiners
	1.
	2.—
Date:	
Place:	

Abstract

In today's era, where diseases like heart-attacks, cancer, TB etc are affecting human health in great proportion, new trend of heat-stroke has come up which is very harmful for human health. Due to pollution, global-warming various harmful UV rays are generated. As technology is upgrading day-by-day, man is also trying to upgrade his lifestyle, needs day-by-day. This leads to Competition. Due to this he has become busy in his daily routine and neglecting his health. To prevent human health and such dangerous situation the proposed device is designed with early notification ability. In addition if any dangerous situation is detected the device is designed in such a way a buzzer that will activate alert function to remind or alert the user to respond adequately to avoid heat-stroke. The device is capable to send temperature data to cloud ad plot a graph based on temperature readings which will give graphical representation of rates in which heat-stroke is occuring.

Keywords:-heat-stroke, Thing Speak, buzzer, notification ability, WHDD.

Table of Content

Sr.no	Topic	Page no
1.	Introduction	
2.	Problem Definition	
3.	Literature Survey	
4.	Hardware & Software Components of Project	
5.	Project Implementation	
6.	Testing & Debugging of Project	
7.	Results	
8.	Future Scope	
9.	References	
10.	Appendix	

Lab Outcomes

LO1: Identify the requirements for the real world problems.

LO2: Conduct a survey of several available literatures in the preferred field of study.

LO3: Study and enhance software/hardware skills.

LO4: Demonstrate and build the project successfully by hardware requirements, coding, emulating and testing.

LO5: To report, present and demonstrate an ability to work in teams and manage the conduct of the research study.

Rubrics for the assessment (LO1):

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline	More than	More than a	More than a	More than a	Early or on
(2)	a 3session	2session late	2session late	1session late	time (2)
	late (0)	(0.5)	(1)	(1.5)	
Identify	NA	Very poor	Poor	Good	Accurate
real world	(0)	identification	identification	identification	identification
problems(4		of real world	of real world	of real world	of the real
)		problems(1)	problems(2)	problems.(3)	world
					problems. (4)
Design the	No	Very poor	Poor	Good	Requirement
problem	requiremen	requirement	requirement	requirement	analysis
solution	t analysis is	analysis is	analysis is	analysis is	done with
(4)	done(0)	done(1)	done(2)	done(3)	best solution
					design(4)

Marks:

Rubrics for the assessment (LO2):

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline	More than a	More than a	More than a	More than a	Early or on
(2)	3session late	2session late	2session late	1session	time (2)
	(0)	(0.5)	(1)	late (1.5)	
	3.T	Information	Sources rely		Information is
Selection of		is gathered	heavily on	is gathered	gathered
Sources(8)	information	from a	a small	from a	from a wide
	is gathered from a	limited	number of	range of	range of journals,
	range of	number of	sources and	sources but	books and
	sources.(0)	sources.(2)	are not	do not	related
			considered	entirely	authoritative
			to be from	reflect the	research
			authoritative	breadth of	materials.(8)
			sources(4)	the	
				debate(6)	

Formatting and Presentation of Assignment (4)	Document contains man y errors in formatting, punctuation and writing was incoherent. (0)	Document contains many errors in punctuation and formatting. Referencing is not consistent with chosen style guide. Writing style lacks clarity.(1)	Document contains few errors in formatting and punctuati on . Style of referencing is generally consistent with chosen style guide. Writing style is coherent(2)	style guide.	Document is professionally presented with virtually no errors in punctuation and is in the correct format. The style of referencing is consistent with chosen style guide. Writing style is clear and
					I

Marks:

LO3: Study and enhance software/hardware skills.

Rubrics for the assessment:

Indicator	Very	Poor	Average	Good	Excellent
	Poor				
Timeline	More	More than a	More than	More than a	Early or
(2)	than a	2session late	a 2session	1session late	on
	3sessio	(0.5)	late (1)	(1.5)	time (2)
	n late				
	(0)				
Installation of	NA(0)	Installation not	Installation	Installation	Installatio
Arduino		done(1)	With some	without	n with
IDE/Raspbian			drivers(2)	drivers(3)	drivers
OS(4)					done(4)
Programming					
Interfacing of	NA(0)	Unable to do	Able to do	Able to do	Able to do
sensors to		connection and	connection	connection	connection
Arduino/Raspberr		but required	and but	and required	and
y board		output not	required	output is	required
		obtained.(1)	output not	obtained and	output is
			obtained(2	no libraries	obtained
)	are	and
				installed(3)	libraries
					are
					installed(4
)
Sending data on	NA(0)	No data sent	Data sent	Data sent	Data sent
ThingSpeak		onthingspeak(1	on	onthingspea	on
,Analysis of Data)	thingspeak	k and some	thingspeak
			and no	analysis	and
			analysis	notdone(3)	analysis
			done(2)		done(4)

1		۲_	1	۔۔ا	
ı	VI	เล	r	25	٠

LO4: Demonstrate and build the project successfully by hardware requirements, coding, emulating and testing.

Rubrics for the assessment (LO4):

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline	More than	More than a	More than a	More than a	Early or on
(2)	a 3session	2session late	2session late	1session late	time (2)
	late (0)	(0.5)	(1)	(1.5)	
Code	NA	Very poor	Poor code	Design with	Accurate
design(4)	(0)	code design	design with	good coding	design with
		with no	very	standards	better coding
		comments	comments	(3)	standards (4)
		and	and		
		indentation(1	indentation		
)	(2)		
Demo	No system	Incomplete	Partially	Almost	Complete set
	set up was	System set up	Complete	Complete	up shown
	shown(0)	was	set up	set up	with
		shown.(1)	shown with	shown with	working(4)
			working(2)	working(3)	

Marks:

LO5: To report, present and demonstrate an ability to work in teams and manage the conduct of the research study.

Rubrics for the assessment (L04):

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline	More than a	More than a	More than	More than	Early or on
(2)	3session	2session	a 2session	a 1session	time (2)
	late (0)	late (0.5)	late (1)	late (1.5)	
Teamwork and	The project) The	. The	The	The project
cooperation(4)	appears to	project	project was	project was	was carried
	have been	appears to	carried out	carried out	out by all
	carried out	have been	by most	by most	members.
	by only	carried out	(3-4)	(3-4)	
	minimal	by only by	members	members	
	(1-2)	2) members			
	members				
	for different				
	tasks. (0)				
Formatting	Document	Document	Document	Document	Document
andPresentatio	contains	contains	contains	contains	is
n of Report	man	many	few	few	professionally
(4)	y errors in	errors in	errors in	errors in	presented
	formatting,	punctuation	formatting	formatting	with virtually
	punctuation	and	and	and	no
	and writing	formatting.	punctuati	punctuati	errors
	was	Referencing	on	on	in
	incoherent.	is not	. Style of	. Style of	punctuation
	(0)	consistent	_	referencing	and
		with	is generally		is
		chosen style	consistent	consistent	in the correct
		guide.	with	with	format. The
			chosen	chosen	

Marks:

Introduction

In today's era of technology, Internet application Technology development demand is very high. These applications and technologies have made everything available for our humans at the tip of our hands. In one click we can buy various useful things we want, we can control even our home through various technologies. Such major technology is IoT i.e (Internet of Things).

Internet of Things is basically a network that connects all the physical objects to the internet through network devices or router and exchange data. IoT is a very good and smart technique that reduces human effort as well as easy access to physical devices. "Things" in IoT sense, is a combination of hardware software and services.

In early 1982, the concept of network of smart devices was introduced by a modified coke machine. This machine was modified at "Carnegie Mellon University" and became the first Internet-connected appliances. In 1994 the idea of IoT was highlighted by Reza Raji as small packets of data to a large set of nodes, to integrate and automate everything from home appliances to entire factories. The thought of IoT first became popular in 1999. The term Internet of Things was first used by a British entrepreneur Kevin Ashton during he worked at Auto-ID labs. In the present scenario, near field communication, barcode scanners, QR code scanners, and digital watermarking are the various devices that are working on IoT. [6]

The picture given below depicts the growth of IoT in recent years.

Various practical applications of IoT are as follows:-

1. Wemo Switch Smart Device:

It is the most useful devices which connected home devices in a Switch smart plug. It accepts the power cable from any device and can be used to turn it on and off on a hit button on the smartphone.

2. Enterprise:

In the enterprise field many applications are there like environmental monitoring system, smart environment etc.

3. Utilities:

Smart metering, smart grid and water monitoring are the most helpful applications in utility area.

4. Transportation:

Electronic Toll Collection is best example in this field. Another examples of this field includes 2-Way Intersection with Pedistrian walk cycle, Bluetooth Enabled Bicycle Turn Signal, Voice Controlled car etc. [6]

5. Medical and Healthcare:

Remote health monitoring system with emergency notiifcation ability is an example of IoT in medical field. Health patch Health Monitor machine can be used for the patient who cannot go to doctors, letting them get ECG, heartrate body posture, temperature avd activity readings remotely. IoT can be used for patients, Physicians, Hospitals etc.

IoT for Patients - Devices in the form of wearables like fitness bands and other wirelessly connected devices like blood pressure and heart rate monitoring cuffs, glucometer etc. give patients access to personalized attention. These devices can be tuned to remind calorie count, exercise check, appointments, blood pressure variations and much more.IoT has changed people's lives, especially elderly patients, by enabling constant tracking of health conditions. This has a major impact on people living alone and their families. On any disturbance or changes in the routine activities of a person, alert mechanism sends signals to family members and concerned health providers.

IoT for Physicians - By using wearables and other home monitoring equipment embedded with IoT, physicians can keep track of patients' health more effectively. They can track patients' adherence to treatment plans or any need for immediate medical attention. IoT enables healthcare professionals to be more watchful and connect with the patients proactively. Data collected from IoT devices can help physicians identify the best treatment process for patients and reach the expected outcomes.

IoT for Hospitals - Apart from monitoring patients' health, there are many other areas where IoT devices are very useful in hospitals. IoT devices tagged with sensors are used for tracking real time location of medical equipment like wheelchairs, defibrillators, nebulizers, oxygen pumps and other monitoring equipment. Deployment of medical staff at different locations can also be analyzed real time. The spread of infections is a major concern for patients in hospitals. IoT-enabled hygiene monitoring devices help in preventing patients from getting infected. IoT devices also help in asset management like pharmacy inventory control, and environmental monitoring, for instance, checking refrigerator temperature, and humidity and temperature control.[9]

Problem Definition

Construct a Smart Cap that prevents heat stroke with early notification ability. The device is able to give graphical view regarding amount of time the user has been in heat or hot area and also store previous years database of users who suffered from heat stroke. Blynk app notifies user about the Heat Stroke Alert. A buzzer beeps for 15 seconds if the temperature of user matches with temperature at which heat stroke occurs.

.

Literature Survey

Workers in many fields – construction, landscaping, oil and gas extraction, emergency response, firefighters among others – toil in high heat stress conditions. These tasks can lead to rapid increases in body temperature that raise the risk of heat related illnesses. Wearable technology advances have made it possible to monitor one or more physiological factors of heat strain. R&D trials and pilots come from sports performance, the military, NASA, and start-up companies. After all, many workers are considered industrial athletes, and many wear heavy personal protective equipment (PPE) akin to soldiers. One technological example: a wearable heat-stroke-detection-device has early notification capability. Physical sensors, such as galvanic skin response, heart beat, and body temperature, collect medical data from working individuals. A risk evaluation functional component detects the signals of heat stroke for users. If a dangerous situation is detected, the device activates an alert function to remind the user to respond appropriated – add safely – to avoid heat stroke. Technology developers are also focusing on resolving the trade-off between sensor accuracy and user comfort. The goal is to have an accurate sensor that is still comfortable to wear for long periods of intensive use. Much trial and testing is ongoing to tackle this challenge.[1]

There are a few studies and research done on the development of a device to alert the parents of an unattended child left in a car in recent years. However, all the inventions are yet to provide an effective and comprehensive warning and feedback system for the unattended child in the car. There are also some products being sold in the market that parents can buy to prevent such a death-defying situation from occurring, but they are mostly unreliable and inconsistent. Types of product that are currently available in the market can be divided into three categories i.e. seat based reminder system, buckle based reminder system, and reminder system installed in car. The first kind of heatstroke detection system is through attaching the device to the car seat. The device is placed at the base of the seat which usually makes use of pressure sensor to determine the presence of a child. It comes with an alarm system that can be hooked as a keychain or installed on a phone. The alarm device is connected to the sensor on the seat via a communication medium such as radio frequency, Wi-Fi or Bluetooth. The alarm device alerts the driver when the device is set apart and a weight is detected on the seat. A study that reported the problem with pressure sensing products was due to positioning of the pressure sensors. There are also products that are attached to a baby seatbelt buckle to determine the presence of the child. It uses a sensor to sense if the seatbelt tongue is connected to the buckle. The alarm system functions similarly to the pressure type detection system where the alarm system will go off if the child is left buckled to the seat and the parents has gone off to a certain distance away from

the car. There are also some problems with this type of system as it works with the condition that the child is buckled up to the seat. The weakness of this type of detection system is that if the child is unbuckled or the child unbuckles by himself from the seat, it will fail to trigger. There is also a type of heatstroke detection system that is installed within the car. This kind of device usually uses a human presence sensor to determine if a child is being left unattended in the car. The examples of sensors that can sense the presence of a human being are thermal sensor, carbon dioxide sensor, motion sensor, facial recognition. [2]

The paper presented a novel application, HeatWatch, which predicts heatstroke and prevents heatstroke by ensuring users breaking and water intake. The application estimates user's core temperature based on human thermal mode land vital sensors equipped with smart watches. The device tracks user's water intake by assuming to apply existing activity recognition technique to acceleration sensors inside a smart watch. Application is used to detect heatstroke sign and evaluated its performance through a real data set over100 hours. Finally, the result showed that our method is able to instantly notify high temperature states with more than 0.9recall and 0.53 precision by allowing early/late notification within 6 minutes.[3]

Hardware and Software Components used in Project

Hardware Components

- 1. LM35 Temperature Sensor
- 2. DHT11 Temperature and Humidity Sensor
- 3. Jumper Wires
- 4. Buzzer
- 5. LED
- 6. Arduino
- 7. ESP-8266
- 8. Breadboard

Software Components

- 1. Arduino IDE
- 2. ThingSpeak
- 3. Ifttt

Project Implementation

The interfacing diagram, explanation and connections-

Fig.5.1

Flowchart Diagram

Fig.5.2

Connections:-

```
Arduino Mega -> LM35 (Analog Temp Sensor):-
5v
        -> Vcc (Left Pin - Flat side facing towards you)
         -> Analog Out (Middle Pin) (10mV / degree Celcious)
A1
Gnd
         -> Gnd (Right Pin - Flat side facing towards you)
Arduino Mega -> DHT-11 (Temp and Humidity Sensor):-
5v
        -> Vcc (Left Pin)
A0
         -> Analog Out (Middle Pin)
Gnd
         -> Gnd (Right Pin)
ESP01 -> Arduino:-
Vcc -> 3.3V
GND -> GND
TxD
      -> Rx1 (Pin 19)
RxD
     -> Tx1 (Pin 18)
CH PD -> 3.3V
Arduino -> Buzzer:-
Pin 9 -> Buzzer +
Gnd
      -> Buzzer -
```

Working of smart cap:-

When the system is switched on the lm35 sensor will sense the body temperature and dht11 will sense the external temperature then the temperatures will be matched before that a threshold value will be set in program for eg:-here we are keeping it above 20.so if the temperature rises above the value the buzzer will beep and user will get a notification on his mobile via

IFTTT,When the user clicks on notification he will get the graph of the data uploaded to thingspeak the data goes through the wifi module esp-8266 connected to the internet.

Testing & Debugging

Test Case ID	Test Scenario	Test Steps	Test Data	Expecte d Results	Actual Result s	Pass/Fail
TU01	Check for the temperature readings	Open the code Compile and upload Open serial monitor	Temperature present around.	User should see the temperature on Serial Monitor.	As Expected	Pass
TU02	To check the data is uploaded on cloud	Open the code Compile and upload Open thingspeak and check	The data which is collected by sensor	The data should be updated on thingspeak.	As Expected	Pass
TU03	Check if notification arrives	Open the code Compile and upload Login into your ifttt account in mobile	Temperature exceeding threshold value	Notification should arrive on mobile	As Expected	Pass

Problems that we faced:-

1. Our biggest problem was to Implement all the things in a small space and fit it on a cap.as the cap is small and the setup was too big .so fitting everything in a small space was a challenge.

Solution:-

To fit this setup in a cap firstly the breadboard has to be removed and for that reason we made use of digital pins on arduino to give the sensors +5 or ground.

2. Secondly we faced problem while dealing with the notification part, as we were not getting an appropriate platform to send notifications.

Solution:-

Instead of using lot of third party app we created the HTTPS trigger in Thingspeak itself and also the react using thingspeak after that we used IFTTT platform to make sure that the react which is created in thingspeak is shown as a notification on a mobile phone.

Results

Smart Cap Device

Fig.7.1
Heat-Stroke alert notification

Fig.7.2
Graphical Representation of data on Cloud

Fig.7.3

Database of previous heatstroke cases

Futurescope

Smart Cap device designed can be enhanced in future in following ways:-

- Various sensors can be used to make the device more useful detecting various things.
- Pulse sensor can also be added to the device for getting the accurate results for detecting a stroke.
- A current location can also be sent to the user relative if the user wearing the device is about to have a stroke.

Applications:-

- Useful for children
- Helpful for patients
- Useful for animals
- Helpful for senior citizens
- Can be preferred for other alerting systems

References

- 1. Mizota Nakashima, Zhang Serikawa and Kitazono "Proposal of alert system for prevention of heat stroke" IEEE Int. Symp,September 2012.
- 2. https://www.ncbi.nlm.nih.gov
- 3. https://userpages.umbc.edu
- 4. https://www.electronicwings.com
- 5. https://www.robot-r-us.com
- 6. https://en.wikipedia.org
- 7. https://www.researchgate.net
- 8. Zeller, Novack Barski Almog, Exertional "heatstroke: Clinical characteristics, diagnostic and therapeutic considerations." Eur. J. Intern. Med,December 2013.
- 9. https://www.wipro.com
- 10. https://iopscience.iop.org/article/10.1088/1757-899X/429/1/012056/pdf

Appendix

```
#include "dht.h"
#define dht apin A0
#include <dht.h>
dht DHT;
const int lm35 pin = A1; //declare of output pin of temp
String apiKey = "QC88N8MC44NNNVNE"; //API key
void setup() {
 Serial.begin(9600);
                     // PC Arduino Serial Monitor
 Serial1.begin(115200);// Arduino to ESP Communication
                      // To connect to Wifi
 connectWiFi();
void loop() {
 DHT.read11(dht_apin);
  Serial.print("Current humidity = ");
  Serial.print(DHT.humidity);
  Serial.print("% ");
  Serial.print("temperature = ");
  Serial.print(DHT.temperature);
  Serial.println("C ");
```

```
delay(1000);
int temp adc val;
float temp val;
temp_adc_val = analogRead(lm35_pin); // Read Temperature
temp val = (temp adc val * 4.88); // Convert adc value to equivalent voltage
temp val = (temp val/10); // LM35 gives output of 10mv/°C
Serial.print("Temperature = ");
Serial.print(temp val);
Serial.print(" Degree Celsius\n");
delay(1000);
if (temp val \ge 20 \&\& temp val \le 30) { //logic
  delay (9000);
  digitalWrite(9,HIGH);
  delay(15000);
  digitalWrite(9,LOW);
Serial1.println("AT+CIPMUX=0\r\n"); // To Set MUX = 0
delay(2000);
                            // Wait for 2 sec
// TCP connection
String cmd = "AT+CIPSTART=\"TCP\",\""; // TCP connection with thingspeak server
cmd += "184.106.153.149";
                                   // IP addr of api.thingspeak.com
cmd += "\",80\r\n\r\";
                       // Port No. = 80
Serial1.println(cmd);
                               // Display above Command
Serial.println(cmd);
                              // Send above command to Rx1, Tx1
```

```
delay(20000);
                             // Wait for 20 Sec
if(Serial1.find("ERROR"))
                                   // If returns error in TCP connection
 Serial.println("AT+CIPSTART error"); // Display error msg
 //return;
// prepare GET string
String getStr = "GET /update?api key=";
getStr += apiKey;
getStr +="&field1=";
getStr += temp val;
getStr +="&field2=";
getStr += DHT.humidity;
getStr +="&field3=";
getStr += DHT.temperature;
getStr += "\r\n\r\n";
Serial.println(getStr); // Display GET String
cmd = "AT+CIPSEND=";
                                    // send data length
cmd += String(getStr.length());
cmd+="\r\n";
Serial.println(cmd);
                             // Display Data length
                              // Send Data length command to Tx1, Rx1
Serial1.println(cmd);
delay(20000);
                            // wait for 20sec
if(Serial1.find(">"))
                               // If prompt opens verify connection with cloud
```

```
{
  Serial.println("connected to Cloud"); // Display confirmation msg
  Serial1.print(getStr);
                               // Send GET String to Rx1, Tx1
 }
 else
  Serial1.println("AT+CIPCLOSE\r\n"); // Send Close Connection command to Rx1, Tx1
  Serial.println("AT+CIPCLOSE"); // Display Connection closed
 delay(16000);
                             // wait for 16sec
boolean connectWiFi() {
                               // Connect to Wifi Function
 Serial1.println("AT+CWMODE=1\r\n"); // Setting Mode = 1
 delay(100);
                          // wait for 100 mSec
 String cmd = "AT+CWJAP=\"";
                                   // Connect to WiFi
 cmd += "Op";
                          // ssid name
 cmd += "\",\"";
                              // password
 cmd += "12345678";
 cmd += "\"\r\n";
                      // Display Connect Wifi
 Serial.println(cmd);
 Serial1.println(cmd);
                            // send Connect WiFi command to Rx1, Tx1
 delay(10000);
                           // wait for 10 sec
 Serial1.println("AT+CWJAP?"); // Verify Connected WiFi
 if(Serial1.find("+CWJAP"))
```

```
Serial.println("OK, Connected to WiFi."); // Display Confirmation msg ......first time return true;
}
else
{
Serial.println("Can not connect to the WiFi."); // Display Error msg return false;
}
```