Ring Counters

Example: A 6-bit (MOD-6) ring counter.

At starting PRE = 0, CLR=0
In Normal Condition PRE=1, CLR= 1

Clock	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5
→ 0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
<u></u>	0	0	0	0	0	1

Johnson Counters

- The complement of the output of the last stage is connected back to the D input of the first stage.
- Also called the twisted-ring counter.
- Require fewer flip-flops than ring counters but more flip-flops than binary counters.
- An *n*-bit Johnson counter cycles through 2*n* states.
- Require more decoding circuitry than ring counter but less than binary counters.

Johnson Counters

Example: A 4-bit (MOD-8) Johnson counter.

At Starting CLR= 0_______
Normal Condition CLR= 1

Clock	Q_0	Q_1	Q_2	Q_3
O	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
<u>7</u>	0	0	0	1

Registers

- A register is a digital device used for storage.
- Register is a group of Flip flop to store a data (0 or 1).
- To store 'n' no. of data, 'n' bit register is required which consist of 'n' no. of flip flop.
- Types of registers:

Buffer Register Shift Register

Buffer Register

- An 'n' bit registers has group of 'n' flip flop and capable to store any binary information, which contains 'n' numbers of bits.
- This type of register is also called storage registers
- These are used for temporary storage of data

Buffer Register

Shift Registers

- Another function of a register, besides storage, is to provide for data movements.
- Each *stage* (flip-flop) in a shift register represents one bit of storage, and the shifting capability of a register permits the movement of data from stage to stage within the register, or into or out of the register upon application of clock pulses.

Types of Shift Registers

Basic data movement in shift registers (four bits are used for illustration).

Serial In/Serial Out Shift Registers

 Accepts data serially – one bit at a time – and also produces output serially.

Output waveform for shift Register

Serial In/Parallel Out Shift Registers

- Accepts data serially.
- Outputs of all stages are available simultaneously.

Parallel In/Serial Out Shift Registers

Bits are entered simultaneously, but output is serial.

Parallel In/Parallel Out Shift Pogistors

Registers

Simultaneous input and output of all data bits.

Parallel data inputs

