MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2016 SOLUTION KEY

Round 1

- A) Since a cube has 12 edges, each edge has length 5. Thus, each face of the cube is a square of side 5 and the surface area is $6(5^2) = 150$.
- B) In $\triangle BFC$, $BF^2 = (xy)^2 + x^2$. In $\triangle BEF$, $BE^2 = BF^2 + FE^2 = x^2y^2 + x^2 + y^2$. Equating, $x^2y^2 + x^2 + y^2 = (xy+1)^2$ $\Rightarrow x^2y^2 + x^2 + y^2 = x^2y^2 + 2xy + 1$ $\Rightarrow x^2 - 2xy + y^2 = (x-y)^2 = 1$ $\Rightarrow x - y = \pm 1 \Rightarrow y = x + 1$ or y = x - 1

Relationship discovered by Grant Landon (Miles River Middle School in Hamilton, MA)

<u>FYI</u>: Generalization - If the dimensions of a rectangular solid are x, y and $\frac{xy}{k}$ and the interior

diagonal has length $\frac{xy}{k} + k$ then y = x + k or y = x - k.

Proof of the generalization is left to you. Here is a numerical check.

- 1) Suppose a solid has dimensions 9, 12 and 36. How long is the interior diagonal? $\frac{9 \cdot 12}{3} = 36 \text{ and } 12 = 9 + 3 \Rightarrow \text{interior diagonal} = 36 + 3 = 39.$
- 2) If a solid has dimensions 5, 8, and $\frac{40}{3}$, then (x, y, k) = (5, 8, 3) and the interior diagonal has length $\frac{40}{3} + 3 = \frac{49}{3}$.
- C) Assume the dimensions of the solid are L, W and H. Then: $\begin{cases} (1) & LW = 864 \\ (2) & LH = 1440 \\ (3) & WH = 2160 \end{cases}$

Dividing (3) and (2),
$$\frac{W}{L} = \frac{216}{144} = \frac{72(3)}{72(2)} \Rightarrow W = \frac{3}{2}L$$
.

Substituting in (1), $\frac{3}{2}L^2 = 864 \Rightarrow \frac{L^2}{2} = 288 \Rightarrow L^2 = 2^2 (144) \Rightarrow L = 24 \Rightarrow W = 36$, H = 60

Since the GCF(24,36,60) is 12, the largest cube that can be packed inside the original solid has edge 12. Thus, we will need $2 \cdot 3 \cdot 5 = 30$ of these cubes and (k, E) = (30,12).

The diameter of each sphere will be the diagonal of the cube (which has length $12\sqrt{3}$). Thus, the total volume of the 30 spheres is

$$30 \cdot \frac{4}{3} \pi \left(6\sqrt{3} \right)^3 = 40\pi \cdot 216 \left(3\sqrt{3} \right) = 25920\pi \sqrt{3} \Rightarrow (A, B) = \underline{\left(25920, 3 \right)}.$$