PATENTEI- JA REKIST THALLITUS
NATIONAL BOARD OF PATENTS AND REGISTRATION

Helsinki 5.10.2000

E T U O I K E U S T O D I S T U S P R I O R I T Y D O C U M E N T

Hakija VLSI Solution Oy
Applicant Tampere

Patenttihakemus nro 20000519 Patent application no

Tekemispäivä 07.03.2000 Filing date

Etuoikeushak. no FI 19992209 Priority from appl.

Tekemispäivä 13.10.1999 Filing date

Kansainvälinen luokka International class H04B

Keksinnön nimitys Title of invention

"Korrelaattori"

Täten todistetaan, että oheiset asiakirjat ovat tarkkoja jäljennöksiä patentti- ja rekisterihallitukselle alkuaan annetuista selityksestä, patenttivaatimuksista, tiivistelmästä ja piirustuksista.

This is to certify that the annexed documents are true copies of the description, claims, abstract and drawings originally filed with the Finnish Patent Office.

Pirjo Kaila Tutkimussihteeri

CERTIFIED COPY OF PRIORITY DOCUMENT

Maksu 300,- mk Fee 300,- FIM

Osoite: Arkadiankatu 6 A Puhelin: 09 6939 500 Telefax: 09 6939 5328

1

Korrelaattori

٠,

Keksinnön tausta

Keksintö liittyy korrelaattoriin hajaspektrisignaalin vastaanottimessa ja erityisesti hajotuskoodin seurannassa tarvittavien eri koodivaiheiden tuottamiseen korrelaattorissa.

Hajaspektrijärjestelmissä käytetään signaalin lähettämiseen oleellisesti laajempaa kaistanleveyttä kuin olisi tarpeen tiedon välittymiseksi. Signaalin spektrin hajottaminen suoritetaan lähettimessä alkuperäisestä datasta riippumattoman valesatunnaisen hajotuskoodin avulla. Vastaanottimessa käytetään signaalin spektrin kaventamiseen koodireplikaa, joka on mainitun hajotuskoodin identtinen kopio. Hajaspektrijärjestelmät voidaan jakaa karkeasti suorasekvenssihajaspektrijärjestelmiin (direct sequence = DS) ja taajuushyppelyhajaspektrijärjestelmiin (frequency hopping = FH). Taajuushyppelyjärjestelmissä vaihdellaan lähetystaajuutta valesatunnaisen hajotuskoodin mukaisesti käytettävissä olevan kaistanleveyden rajoissa, eli hypellään taajuudelta toiselle. Suorasekvenssijärjestelmissä spektrin hajotus käytettävissä olevalle kaistanleveydelle suoritetaan kääntämällä kantoaallon vaihetta valesatunnaisen hajotuskoodin mukaisesti. Hajotuskoodin bittejä kutsutaan yleisesti chipeiksi erotuksena varsinaisista databiteistä.

Jotta spektrin kaventaminen suorasekvenssivastaanottimessa onnistuisi, on vastaanottimen pystyttävä synkronoitumaan vastaanotettuun signaaliin mahdollisimman tarkasti ja pystyttävä säilyttämään synkronointi. Tämän synkronoinnin nopea toteuttaminen on erityisen tärkeää useissa sovelluksissa.

Hajaspektrijärjestelmien etuna on mm. niiden vastustuskyky häirinnälle, minkä vuoksi niitä on käytetty yleisesti sotilassovelluksissa. Suorasekvenssijärjestelmissä pystytään lisäksi mittaamaan tarkasti signaalin kulkuaika lähettimen ja vastaanottimen välillä, mikä mahdollistaa etäisyyden mittausta hyödyntävät sovellukset, kuten paikannusjärjestelmät. Etäisyyden mittaus perustuu hajotuskoodin synkronointiin, joka voidaan tehdä hyvin tarkasti, yleensä tarkemmin kuin 1/10 chipin tarkkuudella. Kun koodin taajuus on lisäksi suuri, saavutetaan hyvä mittaustarkkuus. Kun tiedetään koodin lähetysaika, voidaan laskea signaalin matkaan kulunut aika, josta saadaan valonnopeudella jakamalla lähettimen ja vastaanottimen välinen etäisyys.

Kuviossa 1 on esitetty suorasekvenssiin perustuva hajaspektrijärjestelmä, jossa lähettimessä 101 on datamodulaattorin 104 lisäksi hajotuskoo-

20

25

30

··:

2

dimodulaattori 106, joka levittää lähetetyn spektrin hajotuskoodin avulla. Vastaanotin 102 sisältää mainitun hajotuskoodin kanssa identtisellä hajotuskoodireplikalla toimivan hajotuksenpurkumodulaattorin 108, joka korreloi vastaanotetun signaalin mainitulla hajotuskoodireplikalla. Mikäli hajotuskoodi ja vastaanottimessa generoitu hajotuskoodireplika ovat identtiset ja hajotuskoodireplika on samassa vaiheessa vastaanotettuun signaaliin sisältyvän hajotuskoodin kanssa, saadaan hajotuksenpurkumodulaattorin 108 lähdöstä hajotusta edeltävä datamoduloitu signaali. Samalla saadaan hajotettua mahdolliset häiriösignaalit. Hajotuksenpurkumodulaattoria 108 seuraava suodatin 110 päästää datamoduloidun signaalin läpi, mutta poistaa suurimman osan häiriösigsignaalisignaalin vastaanotetun parantaa mikä tehosta, naalin kohinasuhdetta. Jotta järjestelmä toimisi, täytyy vastaanottimessa generoidun hajotuskoodireplikan olla ja pysyä samassa vaiheessa vastaanotettuun signaaliin sisältyvän hajotuskoodin kanssa. Tämän vuoksi tarvitaan tavallisen kantoaalto- ja datasynkronointien lisäksi oma synkronointialgoritmi hajotuskoodia varten.

Eräs tunnettu tapa toteuttaa hajotuskoodin seuranta on käyttää kuvion 2 mukaista korrelaattoria, joka käsittää kaksi haaraa 202 ja 204, joissa korreloidaan sisääntulevaa signaalia S_{in} generointivälineillä 209 paikallisesti generoidun aikaistetun C_e ja viivästetyn C_I hajotuskoodireplikan kanssa. Kumpikin haara sisältää kertojan 205, 206 signaalin korreloimiseksi, suodattimen 207, 208 ja neliöllisen ilmaisimen 210, 211 korrelointituloksen ilmaisemiseksi. Haaroista 202 ja 204 saadut korrelointitulokset 214 ja 216 vähennetään toisistaan summaimella 212. Summaimen 212 lähdöstä saadaan paikallisen hajotuskoodireplikan ja sisääntulevaan signaaliin S_{in} sisältyvän koodin vaiheerosta sekä käytetyn detektorin funktiosta riippuva diskriminointifunktio, jonka perusteella hajotuskoodireplikan vaihetta voidaan säätää oikeaan suuntaan.

Kuviossa 3 on esitetty erään diskriminointifunktion kuvaaja, joka on normalisoitu siten, että signaalin maksimiamplitudi on ±1.

Eräs toinen tunnettu korrelaattorirakenne hajotuskoodin seuraamiseksi on kuviossa 4A esitetty tau-dither -korrelaattori, jossa samaa korrelaattoria 402 käytetään vuoron perään generointivälineillä 407 paikallisesti generoidun aikaistetun C_e ja viivästetyn C_I hajotuskoodireplikan kanssa. Silmukkasuodatin (loop filter) 404 keskiarvottaa vuorottaisten korrelaatioiden eron 405, ja tulokseksi 406 saadaan samankaltainen diskriminointifunktio kuin kuvion 2 toteutuksella. Kuvioissa 4B, 4C ja 4D on esitetty vastaavasti kuvion 4A tau-

30

25

10

dither -korrelaattorin ohjaussignaalit g(t), $\overline{g}(t)$ ja g'(t). Koska kumpaakin korrelaatiota lasketaan tau-dither -korrelaattorissa vain puolet ajasta, hävitään signaalin signaali-kohinasuhteessa, mutta koska tarvittavien komponenttien määrä on kuvion 2 toteutusta pienempi, on tämäkin rakenne ollut suosittu varsinkin analogisena toteutuksena. Nykyisissä digitaalisissa korrelaattoreissa tätä rakennetta ei kuitenkaan enää juuri käytetä.

Eräs kolmas tunnettu rakenne hajotuskoodin seuraamiseksi on esitetty kuviossa 5. Tässä generointivälineillä 509 paikallisesti generoidun hajotuskoodireplikan aikaistettu $C_{\rm e}$ ja viivästetty $C_{\rm l}$ versio vähennetään ensin toisistaan summaimella 506 ja saatu tulos 508 korreloidaan sisääntulevan signaalin $S_{\rm in}$ kanssa. Tämä toteutus on likimäärin ekvivalentti kuvion 2 toteutuksen kanssa, mutta vaatii kuvion 2 toteutusta vähemmän komponentteja.

Eräs tunnettu rakenne vaiheistetun koodireplikan tuottamiseksi on kuviossa 6 esitetty kolme-asteinen siirtorekisteri 604. Kuvion 6 rakenne voidaan sijoittaa kuvioiden 2, 4 ja 5 generointivälinelohkon tilalle. Kellosignaalilla $\mathsf{CLK}_\mathsf{gen}$ ohjatulla koodigeneraattorilla 602 tuotettu koodireplika C_in kellotetaan siirtorekisteriin 604 kellosignaalilla CLK_{sr} . Aikaistettu C_e , oikea-aikainen C_p ja viivästetty C_I koodireplika saadaan vastaavasti siirtorekisterin rekistereiden lähdöistä 606, 608 ja 610. Kahden rekisteri-elementin välinen koodireplikan vaihe-ero on 1/F, missä F on siirtorekisterin kellotaajuus. Tämä vaihe-ero vaihtelee yleensä yhden chipin pituudesta 1/10 chipin pituuteen. Yleisesti käytetyin vaihe-ero on ±1/2 chip:ä, joka tuottaa diskriminoinnin kannalta parhaan tuloksen. Pienempiä vaihe-eroja käytetään haluttaessa tarkempi hajotuskoodivaiheen seuranta, joka on tärkeää erityisesti etäisyydenmittaussovel-Pieni hajotuskoodin vaihe-ero tuottaa heikomman kohinasuhteen hajotuskoodireplikan seurannassa käytetylle diskriminointisignaalille, mutta lopputuloksena saatu hajotuskoodivaiheen seurannan virhe on yleensä pienempi kuin käytettäessä suurempaa hajotuskoodin vaihe-eroa. Yleensä vaihe-ero tuotetaan siten, että siirtorekisterin kellosignaali CLK_{sr} saadaan kellogeneraattorista, jota ohjataan hajotuskoodin seuranta-algoritmin mukaisesti ja koodigeneraattorin kellosignaali CLK_{gen} generoidaan jakamalla jollakin positiivisella kokonaisluvulla (yleensä 2-10) kellogeneraattorin tuottamaa kellosignaalia. Jos jakosuhde on suurempi kuin kaksi, puhutaan ns. "kapeasta" korrelaattorista, joka on hyödyllinen pyrittäessä vähentämään monitie-etenemisestä aiheutuvaa hajotuskoodiseurannan vaihevirhettä. Diskriminointifunktiota voidaan muuttaa tällaisessa toteutuksessa muuttamalla sekä 35

kellogeneraattorin taajuutta että jakosuhdetta siten, että koodigeneraattorin kellotaajuus pysyy muuttumattomana. Ongelmana tällaisessa säätämisessä on se, että kellotaajuutta muutettaessa siirtorekisterin ajallinen pituus muuttuu, mikä muuttaa generoidun hajotuskoodireplikan ajoitusta. Kolme-asteisella siirtorekisterillä ei voida myöskään toteuttaa yli ±1 chipin levyisiä "leveitä" diskriminointifunktioita hajotuskoodin autokorrelaation ominaisuuksien vuoksi, sillä diskriminointifunktioon tulee pienillä koodivaihevirheillä ns. kuollut kohta, jossa funktion arvo on nolla.

4

On tunnettua käyttää myös pidempää kuin kolme-asteista siirtore-kisteriä eri koodivaiheiden ja monimutkaisempien diskriminointifunktioiden tuottamiseen siten, että siirtorekisterin jokainen lähtö on kytketty erikseen erilliseen korrelaattoriin. Tällainen rakenne vaatii kuitenkin enemmän komponentteja kuin kuviossa 6 esitetty rakenne.

Keksinnön lyhyt selostus

Keksinnön tavoitteena on kehittää laite eri koodivaiheiden tuottamiseksi siten, että mahdollistetaan diskriminointifunktion muuttaminen muuttamatta siirtorekisterin ja koodigeneraattorin kellotaajuuksien suhdetta ja mahdollistetaan erilaisten vaihe-erojen ja erilevyisten/monimutkaisten diskriminointifunktioiden toteuttaminen yksinkertaisella rakenteella. Keksinnön tavoitteet saavutetaan laitteella, jolle on tunnusomaista se, mitä sanotaan itsenäisissä patenttivaatimuksissa. Keksinnön edulliset suoritusmuodot ovat epäitsenäisten patenttivaatimusten kohteena.

Keksinnössä haluttu koodivaihe muodostetaan yhdistelemällä moniasteisen siirtorekisterin halutut lähdöt sopivana lineaarisena kombinaationa erityisellä logiikkahaaralla. Kullakin koodivaiheella (esim. aikaistettu, oikeaaikainen tai viivästetty) on edullisesti oma logiikkahaara, tai koodivaiheita voidaan ottaa suoraan siirtorekisterin lähdöistä. Tällaisia koodivaiheita tuottavia logiikkahaaroja voi olla yksi tai useampia ja siirtorekisterin kukin lähtö voidaan yhdistää edullisesti useampaan kuin yhteen logiikkahaaraan.

Keksinnön eräässä suoritusmuodossa eri koodivaiheita tuotetaan kombinoimalla siirtorekisterin lähtöjä ja ottamalla koodivaiheita suoraan siirtorekisterin lähdöistä.

Keksinnön eräässä toisessa suoritusmuodossa kuhunkin logiikkahaaraan on kytketty siirtorekisterin kaikki lähdöt. Näin vastaavat koodivaiheet voidaan ohjata muodostumaan mistä tahansa siirtorekisterin lähtöjen kombinaatiosta.

30

35

25

5

10

Keksinnön eräässä kolmannessa suoritusmuodossa logiikkahaaroihin kytketään siirtorekisterin ulostuloja lomittain siten, että saadaan esimerkiksi kaksi aikaistettua koodivaihetta ja kaksi viivästettyä koodivaihetta.

Keksinnön vielä erään suoritusmuodon mukaan kombinointia ohjataan logiikkahaaroissa ainakin yhdellä kombinointiohjaussignaalilla. Näin koodivaihe on helposti asetettavissa ja muutettavissa kombinointiohjaussignaalia/signaaleja muuttamalla.

Keksintö soveltuu edullisesti hajotuskoodin seurannassa tarvittavien erivaiheisten koodivaiheiden tuottamiseen korrelaattorissa, joka on toteutettu esimerkiksi jollakin edellä kuviossa 2, 3 tai 5 esitetyllä korrelaattorirakenteella. Tällaisen koodiseurannan toteuttaminen on puolestaan tarpeellista esimerkiksi hajaspektrivastaanottimissa.

Keksinnön mukaisen laitteen etuina ovat mahdollisuus muuttaa generoitavia koodivaiheita ohjelmallisesti sekä mahdollisuus yhdistellä lineaarisesti siirtorekisterin eri lähdöistä saatavia erivaiheisia koodireplikoita monipuolisten diskriminointifunktioiden toteuttamiseksi. Lisäksi keksinnön mukaisella laitteella voidaan toteuttaa "leveitäkin" diskriminointifunktioita.

Kuvioiden lyhyt selostus

Keksintöä selostetaan nyt lähemmin edullisten suoritusmuotojen yhteydessä, viitaten oheisiin piirroksiin, joista:

Kuvio 1 esittää suorasekvenssiin perustuvan hajaspektrijärjestel-

män; Kuvio 2 esittää erään tekniikan tason mukaisen korrelaattorirakenteen;

Kuvio 3 esittää erään diskriminointifunktion kuvaajan;

Kuvio 4A esittää erään toisen tekniikan tason mukaisen korrelaattorirakenteen;

Kuviot 4B, 4C ja 4D esittävät kuvion 4A korrelaattorirakenteen ohjaussignaalit;

Kuvio 5 esittää erään kolmannen tekniikan tason mukaisen korrelaattorirakenteen;

Kuvio 6 esittää erään tekniikan tason mukaisen rakenteen aikaistetun, oikea-aikaisen ja viivästetyn koodivaiheen tuottamiseksi;

Kuvio 7 esittää erään keksinnön mukaisen toteutuksen;

Kuvio 8 esittää yksibittisen toteutuksen kuvion 7 toteutuksesta;

Kuvio 9A esittää erään toisen keksinnön mukaisen toteutuksen;

25

10

•

30

Kuvio 9B esittää erään kolmannen keksinnön mukaisen toteutuksen; ja

Kuviot 10A - 13D esittävät eräiden keksinnön mukaisella rakenteella saatujen diskriminointifunktioiden kuvaajat.

5 Keksinnön yksityiskohtainen selostus

30

35

Kuviossa 7 on esitetty eräs keksinnön mukainen toteutus, joka sisältää 9-asteisen siirtorekisterin 702 sekä aikaistetun 722, viivästetyn 723 ja oikea-aikaisen 724 haaran vastaavasti aikaistetun $C_{\rm e}$, oikea-aikaisen $C_{\rm p}$ ja viivästetyn C_l koodivaiheen tuottamiseksi. Kellosignaalilla CLK_{gen} ohjatulla koodigeneraattorilla 602, joka on vastaava kuin kuviossa 6 esitetty koodigeneraattori, tuotettu koodi C_{in} syötetään rekisterit 703-711 sisältävään siirtorekisteriin 702, jota ohjataan kellosignaalilla CLK_{sr}. Haara 722 sisältää neljä kertojaa 712-715 ja 4-tuloisen summaimen 720 ja haara 723 sisältää neljä kertojaa 716-719 ja 4-tuloisen summaimen 721. Haaran 722 kertojien 712-715 tuloihin on kytketty vastaavasti rekistereiden 703-706 lähdöt ja kombinointiohjaussignaalit ec0-ec3, joilla asetetaan rekistereiden 703-706 lähdöille painokertoimet. Kertojien 712-715 lähdöt on kytketty summaimen 720 tuloihin ja summaimen 720 lähdöstä saadaan aikaistettu koodivaihe $C_{\rm e}$. Haaran 723 kertojien 716-719 tuloihin on kytketty vastaavasti rekistereiden 708-711 lähdöt ja kombinointiohjaussignaalit lc0-lc3, joilla asetetaan rekistereiden 708-711 lähdöille painokertoimet. Kertojien 716-719 lähdöt on kytketty summaimen 721 tuloihin ja summaimen 721 lähdöstä saadaan viivästetty koodivaihe C_I. Rekisterin 707 lähtö on kytketty haaraan 724, jonka lähdöstä saadaan oikea-aikainen koodivaihe C_p. Kuvion 7 toteutusta voidaan käyttää edullisesti myös ilman oikea-aikaista haaraa 724 esimerkiksi kuviossa 5 esitetyn kaltaisessa korrelaattorirakentees-25 sa.

Kuviossa 8 on esitetty kuvion 7 rakenteen 1-bittinen toteutus, jossa kertojat 712-719 ja summaimet 720 ja 721 on toteutettu vastaavasti AND-komponenteilla 812-819 ja OR-komponenteilla 820 ja 821. Ohjaussignaaleja ec0-ec3 ja lc0-lc3 vastaa 8-bittinen kontrollisignaali ctrl. Tämä kytkentä on käyttökelpoinen silloin, kun haaraan 722 valitaan yksi rekistereiden 703-706 lähdöistä ja haaraan 723 valitaan yksi rekistereiden 708-711 lähdöistä.

Kuviossa 9A on esitetty eräs toinen keksinnön mukainen toteutus, joka sisältää kuvion 7 toteutusta vastaavat koodigeneraattorin 602, 9-asteisen siirtorekisteriin 702 ja haarat 722, 723 ja 724 vastaavasti aikaistetun $C_{\rm e}$, oikeaaikaisen $C_{\rm p}$ ja viivästetyn $C_{\rm l}$ koodivaiheen tuottamiseksi. Nyt haara 722 sisäl-

tää yhdeksän kertojaa 901-909 ja 9-tuloisen summaimen 910, haara 723 sisältää yhdeksän kertojaa 911-919 ja 9-tuloisen summaimen 920 ja haara 724 sisältää yhdeksän kertojaa 921-929 ja 9-tuloisen summaimen 930. Haaran 722 kertojien 901-909 tuloihin on kytketty vastaavasti rekistereiden 703-711 lähdöt ja kombinointiohjaussignaalit ec0-ec8, joilla asetetaan rekistereiden 703-711 lähdöille aikaistetun haaran painokertoimet. Kertojien 901-909 lähdöt on kytketty summaimen 910 tuloihin ja summaimen 910 lähdöstä saadaan aikaistettu koodivaihe C_e. Haaran 723 kertojien 911-919 tuloihin on kytketty rekistereiden 703-711 lähdöt ja kombinointiohjaussignaalit lc0-lc8, joilla asetetaan rekistereiden 703-711 lähdöille viivästetyn haaran painokertoimet. Kertojien 911-919 lähdöt on kytketty summaimen 920 tuloihin ja summaimen 920 lähdöstä saadaan viivästetty koodivaihe C_I. Haaran 724 kertojien 921-929 tuloihin on kytketty rekistereiden 703-711 lähdöt ja kombinointiohjaussignaalit pc0-pc8, joilla asetetaan rekistereiden 703-711 lähdöille oikea-aikaisen haaran painokertoimet. Kertojien 921-929 lähdöt on kytketty summaimen 930 tuloihin ja summaimen 930 lähdöstä saadaan oikea-aikainen koodivaihe $C_{\rm p}$.

10

25

30

Kuviossa 9B on esitetty eräs kolmas keksinnön mukainen toteutus, jossa generoidaan kaksi aikaistettua C_{e1} ja C_{e2} ja kaksi viivästettyä C_{I1} ja C_{I2} koodivaihetta. Toteutus sisältää kuvion 7 toteutusta vastaavat koodigeneraattorin 602 ja 9-asteisen siirtorekisteriin 702. Lisäksi toteutus sisältää neljä logiikkahaaraa 951-954 mainittujen kahden aikaistetun C_{e1} ja C_{e2} ja kahden viivästetyn C_{I1} ja C_{I2} koodivaiheen generoimiseksi. Kombinointia ohjataan 16-bittisellä kombinointiohjaussignaalilla CTRL. Logiikkahaara 951 sisältää neljä logiikkaporttia 931-934 ja neljä-tuloisen summaimen 947, logiikkahaara 952 sisältää neljä logiikkaporttia 935-938 ja neljä-tuloisen summaimen 948, logiikkahaara 953 sisältää neljä logiikkaporttia 939-942 ja neljä-tuloisen summaimen 949 ja logiikkahaara 954 sisältää neljä logiikkaporttia 943-946 ja neljä-tuloisen summaimen 950. Logiikkaportit 931-946 ovat kolmitasoisia logiikkaportteja, jotka käsittävät kontrollitulon ctrl, datatulon data_in ja lähdön data_out ja jotka toteuttavat taulukon 1 mukaisen totuustaulukon.

Taulukko 1. Logiikkaporttien 931-946 totuustaulukko

ctrl	data_in	data_out
0	-1	0
0	0	0
0	+1	0
1	-1	-1
1	0	0
1	+1	+1

Haaran 951 logiikkaporttien 931-934 data- ja kontrollituloihin on kytketty vastaavasti rekistereiden 703-706 lähdöt ja kombinointiohjaussignaalin CTRL bitit 0-3, joilla voidaan valita, mitkä rekistereiden 703-706 lähdöistä kytketään tähän haaraan 951. Logiikkaporttien 931-934 lähdöt on kytketty summaimen 947 tuloihin ja summaimen 947 lähdöstä saadaan ensimmäinen aikaistettu koodivaihe C_{e1}. Haaran 953 logiikkaporttien 939-942 data- ja kontrollituloihin on kytketty vastaavasti rekistereiden 704-707 lähdöt ja kombinointiohjaussignaalin CTRL bitit 4-7, joilla voidaan valita, mitkä rekistereiden 704-707 lähdöistä kytketään tähän haaraan 953. Logiikkaporttien 939-942 lähdöt on kytketty summaimen 949 tuloihin ja summaimen 949 lähdöstä saadaan toinen aikaistettu koodivaihe C_{e2}. Haaran 952 logiikkaporttien 935-938 data- ja kontrollituloihin on kytketty vastaavasti rekistereiden 707-710 lähdöt ja kombinointiohjaussignaalin CTRL bitit 8-11, joilla voidaan valita, mitkä rekistereiden 707-710 lähdöistä kytketään tähän haaraan 952. Logiikkaporttien 935-938 lähdöt on kytketty summaimen 948 tuloihin ja summaimen 948 lähdöstä saadaan ensimmäinen viivästetty koodivaihe C₁₁. Haaran 954 logiikkaporttien 943-946 data- ja kontrollituloihin on kytketty vastaavasti rekistereiden 708-711 lähdöt ja kombinointiohjaussignaalin CTRL bitit 12-15, joilla voidaan valita, 20 mitkä rekistereiden 708-711 lähdöistä kytketään tähän haaraan 954. Logiikkaporttien 943-946 lähdöt on kytketty summaimen 950 tuloihin ja summaimen 950 lähdöstä saadaan toinen viivästetty koodivaihe $C_{\rm e2}$.

Kuviot 10A - 13D esittävät eräitä kuvion 7 rakenteella erilaisten kombinointiohjaussignaalien avulla saaduista erilaisista koodivaiheista muodostettuja diskriminointifunktiota. Kuvaajat on normalisoitu samalla tavalla kuin kuvion 3 kuvaaja, eli maksimiamplitudi on ±1. Näin ollen kuvaajat eivät ole suoraan vertailukelpoisia, vaan ilmaisevat pikemmin diskriminointifunktion

muodon ja leveyden kussakin tapauksessa. Diskriminointifunktion muoto riippuu sekä siirtorekisterin 702 vaiheistuksesta että korrelointituloksen ilmaisuun käytetyn ilmaisimen funktiosta. Käytettäessä lineaarista ilmaisua joudutaan käyttämään koherenttia vastaanottoa ja ilmaisu suoritetaan I/Q-signaalin I-haarasta. Käytettäessä neliöllistä ilmaisinta ilmaisu suoritetaan sekä I että Q -haarasta ja saadut tulokset summataan. Diskriminointifunktiot ovat yleisesti muotoa:

 $D(\tau)$ = Re (det (C (τ ,dout_e, in))) - Re (det (C (τ ,dout_l, in))),

10

15

20

25

30

missä

det () = detektorin funktio, joka on

lineaariselle detektorille: det (I + jQ) = I, ja neliölliselle detektorille: det $(I + jQ) = I^2 + Q^2$,

C (τ , x, y) = korrelaatiofunktio vaihe-erolle τ :

 $C(\tau, x, y) = \int x(t)y(t+\tau),$

 τ = sisääntulevan signaalin ja oikea-aikaisen koodivaiheen välinen vaihe-ero,

dout_e = aikaistettu koodivaihe,

dout_I = viivästetty koodivaihe,

in = vastaanottimeen sisääntuleva signaali.

Kuvioissa 10A - 10D on esitetty "kapean" korrelaattorin diskriminointifunktioita, jotka on saatu käyttämällä lineaarista ilmaisua. Aikaistettuun 722 ja viivästettyyn 723 haaraan on valittu yksi siirtorekisterin 702 lähtö. Käytetty siirtorekisterin 702 kellotaajuus on 8*chiptaajuus (= 8*koodigeneraattorin kellotaajuus) eli siirtorekisterin 702 kahden peräkkäisen rekisterin lähtöjen välinen vaihe-ero on 1/8 chip:n pituinen. Kuviossa 10A aikaistettuun haaraan 722 on valittu rekisterin 706 lähtö ja viivästettyyn haaraan 723 on valittu rekisterin 708 lähtö. Kuvioissa 10B, 10C ja 10D vastaavat rekisterit ovat vastaavasti 705 ja 709, 704 ja 710 sekä 703 ja 711.

Kuvioissa 11A - 11D on esitetty "leveän" korrelaattorin diskriminointifunktioita, jotka on saatu käyttämällä lineaarista ilmaisua. Käytetty siirtorekisterin 702 kellotaajuus on sama kuin chiptaajuus eli siirtorekisterin 702 kahden peräkkäisen rekisterin lähtöjen välinen vaihe-ero on 1 chip:n pituinen. Kuviossa 11A aikaistettuun haaraan 722 on valittu rekisterin 706 lähtö ja viiväs-

tettyyn haaraan 723 on valittu rekisterin 708 lähtö. Kuviossa 11B vastaavat rekisterit ovat 705 ja 709. Kuviossa 11C aikaistettuun haaraan on valittu rekistereiden 703-706 lähdöt summattuna yhteen ja viivästettyyn haaraan on valittu rekistereiden 708-711 lähdöt summattuna yhteen. Kuviossa 11D aikaistettuun haaraan on valittu rekistereiden 703, 704, 705 ja 706 lähtöjen summa painotettuna vastaavasti painokertoimilla 4, 3, 2 ja 1 ja viivästettyyn haaraan on valittu rekistereiden 708, 709, 710 ja 711 lähtöjen summa painotettuna vastaavasti painokertoimilla 1, 2, 3 ja 4.

5

10

25

30

Kuvioissa 12A - 12D on esitetty "kapean" korrelaattorin diskriminointifunktioita, jotka on saatu käyttämällä neliöllistä ilmaisua. Aikaistettuun 722 ja viivästettyyn 723 haaraan on valittu yksi siirtorekisterin 702 lähtö. Käytetty siirtorekisterin 702 kellotaajuus on 8*chiptaajuus eli siirtorekisterin 702 kahden peräkkäisen rekisterin lähtöjen välinen vaihe-ero on 1/8 chip:n pituinen. Kuviossa 12A aikaistettuun haaraan 722 on valittu rekisterin 706 lähtö ja viivästettyyn haaraan 723 on valittu rekisterin 708 lähtö. Kuvioissa 12B, 12C ja 12D vastaavat rekisterit ovat vastaavasti 705 ja 709, 704 ja 710 sekä 703 ja 711.

Kuvioissa 13A - 13D on esitetty "leveän" korrelaattorin diskriminointifunktioita, jotka on saatu käyttämällä neliöllistä ilmaisua. Käytetty siirtorekiste-20 rin 702 kellotaajuus on 2*chiptaajuus eli siirtorekisterin 702 kahden peräkkäisen rekisterin lähtöjen välinen vaihe-ero on 1/2 chip:n pituinen. Kuviossa 13A aikaistettuun haaraan 722 on valittu rekisterin 706 lähtö ja viivästettyyn haaraan 723 on valittu rekisterin 708 lähtö. Kuviossa 13B vastaavat rekisterit ovat 705 ja 709. Kuviossa 13C aikaistettuun haaraan on valittu rekistereiden 703-706 lähdöt summattuna yhteen ja viivästettyyn haaraan on valittu rekistereiden 708-711 lähdöt summattuna yhteen. Kuviossa 13D aikaistettuun haaraan on valittu rekistereiden 703, 704, 705 ja 706 lähtöjen summa painotettuna vastaavasti painokertoimilla 4, 3, 2 ja 1 ja viivästettyyn haaraan on valittu rekistereiden 708, 709, 710 ja 711 lähtöjen summa painotettuna vastaavasti painokertoimilla 1, 2, 3 ja 4.

Keksinnön mukainen rakenne ei rajoitu pelkästään kolmehaaraiseen toteutukseen. Oikea-aikainen koodivaihe voidaan generoida aikaistetun ja viivästetyn koodivaiheen kombinaationa, jolloin voidaan käyttää keksinnön mukaista rakennetta kaksihaaraisena. Yksihaaraisena keksinnön mukaista rakennetta voidaan käyttää esimerkiksi kuviossa 5 esitetyssä korrelaattorissa, jossa aikaistettu ja viivästetty koodivaihe summataan keskenään ennen korrelointia, korvaamalla generaattori 509 ja summain 506 keksinnön mukaisella yksihaaraisella rakenteella ja koodigeneraattorilla. Lisäksi keksinnön mukaiset yli kolmehaaraiset rakenteet ovat toteutuskelpoisia.

Keksinnön mukaista rakennetta yhdistettynä koodigeneraattoriin voidaan käyttää esimerkiksi kuvioissa 2, 4 tai 5 esitetyssä korrelaattorissa korvaamalla generaattori 209, 407 tai vastaavasti 509 keksinnön jonkin suoritusmuodon mukaisella rakenteella ja koodigeneraattorilla. Korrelaattoreiden rakenne ja toiminta ovat muutoin kuvioissa esitetyn mukaisia. Tällaista korrelaattoria voidaan puolestaan käyttää esimerkiksi kuvion 1 mukaisessa hajaspektrivastaanottimessa 102. Keksintö kohdistuukin myös keksinnön mukaista rakennetta käyttävään korrelaattoriin ja/tai hajaspektrivastaanottimeen tai muuhun vastaavaan laitteeseen.

10

15

Alan ammattilaiselle on ilmeistä, että tekniikan kehittyessä keksinnön perusajatus voidaan toteuttaa monin eri tavoin. Keksintö ja sen suoritusmuodot eivät siten rajoitu yllä kuvattuihin esimerkkeihin vaan ne voivat vaihdella patenttivaatimusten puitteissa.

Patenttivaatimukset

5

10

20

30

35

1. Laite ainakin yhden koodivaiheen (C_e , C_p , C_i ; C_{e1} , C_{e2} , C_{l1} , C_{l2}) tuottamiseksi, käsittäen

siirtorekisterin (702), joka sisältää N lähtöä ja johon syötetään vaiheistettava koodisekvenssi (C_{in}), N:n ollessa kakkosta suurempi kokonaisluku,

t u n n e t t u siitä, että mainittu laite lisäksi käsittää

ainakin yhden logiikkahaaran (722, 723, 724; 951-953), jota ohjataan vähintään yhdellä kombinointiohjaussignaalilla (ctrl; ec0-ec8, pc0-pc8, lc0-lc8), jonka perusteella logiikkahaara kombinoi siirtorekisterin (702) i:stä lähdöstä koodivaiheen (C_e , C_p , C_l ; C_{e1} , C_{e2} , C_{l1} , C_{l2}), i:n ollessa kokonaisluku väliltä 2 ... N.

2. Patenttivaatimuksen 1 mukainen laite, tunnettu siitä, että mainittu ainakin yksi logiikkahaara (722, 723, 724; 951-953) käsittää

i kaksituloista valitsijaa (712-719; 812-819; 901-909, 911-919, 921-929; 931-946), joista jokaisen ensimmäiseen tuloon on kytketty siirtorekisterin (702) yksi lähtö ja toiseen tuloon on kytketty yksi kombinointiohjaussignaali, ja

i-tuloisen yhdistäjän (720, 721; 820, 821; 910, 920, 930; 947-950), jonka tuloihin on kytketty mainittujen i:n valitsijan lähdöt ja jonka lähdöstä saadaan mainittu koodivaihe (C_e , C_p , C_l ; C_{e1} , C_{e2} , C_{l1} , C_{l2}).

3. Patenttivaatimuksen 1 mukainen laite, tunnettu siitä, että N ≥ (M1, M2), jossa M1 ja M2 ovat ykköstä suurempia kokonaislukuja, ja että laite käsittää

ensimmäisen logiikkahaaran (722), joka sisältää M1 kaksituloista valitsijaa (712-715; 812-815), joihin on kytketty siirtorekisterin (702) M1:n rekisterin lähdöt ja M1 kombinointiohjaussignaalia siten, että jokaisen valitsijan tuloihin on kytketty siirtorekisterin yksi lähtö ja yksi kombinointiohjaussignaali, ja M1-tuloisen yhdistimen (720; 820), jonka tuloihin on kytketty mainittujen M1:n valitsijan lähdöt ja jonka lähdöstä saadaan ensimmäinen koodivaihe (C_e) ,

toisen logiikkahaaran (723), joka sisältää M2 kaksituloista valitsijaa (716-719; 816-819), joihin on kytketty siirtorekisterin (702) M2:n rekisterin lähdöt ja M2 kombinointiohjaussignaalia siten, että jokaisen valitsijan tuloihin on kytketty siirtorekisterin yksi lähtö ja yksi kombinointiohjaussignaali, ja M2-tuloisen yhdistimen (721; 821), jonka tuloihin on kytketty mainittujen M2:n valitsijan lähdöt ja jonka lähdöstä saadaan toinen koodivaihe (C_I).

4. Patenttivaatimuksen 3 mukainen laite, tunnettu siitä, että laite käsittää

kolmannen haaran (724), joka on kytketty suoraan siirtorekisterin (702) yhden rekisterin lähtöön ja josta saadaan kolmas koodivaihe (C_p).

5. Patenttivaatimuksen 1 mukainen laite, tunnettu siitä, että i = N, ja että laite käsittää

ensimmäisen logiikkahaaran (722), joka sisältää N kaksituloista (901-909) valitsijaa, joihin on kytketty siirtorekisterin (702) lähdöt ja N kombinointiohjaussignaalia (ec0-ec8) siten, että jokaisen valitsijan (901-909) tuloihin on kytketty siirtorekisterin yksi lähtö ja yksi kombinointiohjaussignaali, ja Ntuloisen yhdistimen (910), jonka tuloihin on kytketty mainittujen N:n valitsijan lähdöt ja jonka lähdöstä saadaan ensimmäinen koodivaihe (C_e),

toisen logiikkahaaran (723), joka sisältää N kaksituloista valitsijaa (911-919), joihin on kytketty siirtorekisterin (702) lähdöt ja N kombinointiohjaussignaalia (lc0-lc8) siten, että jokaisen valitsijan (911-919) tuloihin on kytketty siirtorekisterin yksi lähtö ja yksi kombinointiohjaussignaali, ja N-tuloisen yhdistimen (920), jonka tuloihin on kytketty mainittujen N:n valitsijan lähdöt ja jonka lähdöstä saadaan toinen koodivaihe (C₁), ja

kolmannen logiikkahaaran (724), joka sisältää N kaksituloista valitsijaa (921-929), joihin on kytketty siirtorekisterin (702) lähdöt ja N kombinointiohjaussignaalia (pc0-pc8) siten, että jokaisen valitsijan (921-929) tuloihin on kytketty siirtorekisterin yksi lähtö ja yksi kombinointiohjaussignaali, ja N-tuloisen yhdistimen (930), jonka tuloihin on kytketty mainittujen N:n valitsijan lähdöt ja jonka lähdöstä saadaan kolmas koodivaihe (C_p).

6. Patenttivaatimuksen 3, 4 tai 5 mukainen laite, t u n n e t t u n n e t t u siitä, että ensimmäisen (722), toisen (723) ja kolmannen (724) logiikkahaaran lähdöstä vastaavasti saatavat ensimmäinen (C_e), toinen (C_l) ja kolmas (C_p) koodivaihe ovat vastaavasti aikaistettu, viivästetty ja oikea-aikainen koodivaihe.

7. Patenttivaatimuksen 1 mukainen laite, tunnettu siitä, että N ≥ (M1, M2, M3, M4), jossa M1, M2, M3 ja M4 ovat ykköstä suurempia kokonaislukuja, ja että laite käsittää

ensimmäisen logiikkahaaran (951), joka sisältää M1 kaksituloista valitsijaa (931-934), joihin on kytketty siirtorekisterin (702) mitkä tahansa M1 lähtöä ja M1 kombinointiohjaussignaalia siten, että jokaisen valitsijan (931-934) tuloihin on kytketty siirtorekisterin (702) yksi lähtö ja yksi kombinointiohjaussignaali, ja M1-tuloisen yhdistimen (947), jonka tuloihin on kytketty mai-

25

5

10

nittujen M1:n valitsijan lähdöt ja jonka lähdöstä saadaan ensimmäinen koodivaihe (C_{e1}),

toisen logiikkahaaran (953), joka sisältää M2 kaksituloista valitsijaa (939-942), joihin on kytketty siirtorekisterin (702) mitkä tahansa M2 lähtöä ja M2 kombinointiohjaussignaalia siten, että jokaisen valitsijan (939-942) tuloihin on kytketty siirtorekisterin (702) yksi lähtö ja yksi kombinointiohjaussignaali, ja M2-tuloisen yhdistimen (949), jonka tuloihin on kytketty mainittujen M2:n valitsijan lähdöt ja jonka lähdöstä saadaan toinen koodivaihe (C_{e2}) ,

kolmannen logiikkahaaran (952), joka sisältää M3 kaksituloista valitsijaa (935-938), joihin on kytketty siirtorekisterin (702) mitkä tahansa M3 lähtöä ja M3 kombinointiohjaussignaalia siten, että jokaisen valitsijan (935-938) tuloihin on kytketty siirtorekisterin (702) yksi lähtö ja yksi kombinointiohjaussignaali, ja M3-tuloisen yhdistimen (948), jonka tuloihin on kytketty mainittujen M3:n valitsijan lähdöt ja jonka lähdöstä saadaan kolmas koodivaihe

10

15

25

30

35

(C₁₁), ja neljännen logiikkahaaran (954), joka sisältää M4 kaksituloista valitsijaa (943-946), joihin on kytketty siirtorekisterin (702) mitkä tahansa M4 lähtöä ja M4 kombinointiohjaussignaalia siten, että jokaisen valitsijan (943-946) tuloihin on kytketty siirtorekisterin (702) yksi lähtö ja yksi kombinointiohjaussignaa-20 li, ja M4-tuloisen yhdistimen (950), jonka tuloihin on kytketty mainittujen M4:n valitsijan lähdöt ja jonka lähdöstä saadaan neljäs koodivaihe (C₁₂).

- 8. Patenttivaatimuksen 7 mukainen laite, tunnettu siitä, että ensimmäisen (951), toisen (953), kolmannen (952) ja neljännen (954) logiikkahaaran lähdöstä vastaavasti saatavat ensimmäinen (C_{e1}) , toinen (C_{e2}) , kolmas $(C_{_{11}})$ ja neljäs $(C_{_{12}})$ koodivaihe ovat vastaavasti ensimmäinen aikaistettu, toinen aikaistettu, ensimmäinen viivästetty ja toinen viivästetty koodivaihe.
- 9. Jonkin patenttivaatimuksen 1-8 mukainen laite, tunnettu siitä, että logiikkahaarojen lähdöistä saatavia koodivaiheita ($C_{\rm e},~C_{\rm p},~C_{\rm l};~C_{\rm e1},~C_{\rm e2},$ C_{11} , C_{12}) muutetaan ohjelmallisesti muuttamalla kombinointiohjaussignaaleja (ctrl; ec0-ec8, pc0-pc8, lc0-lc8).
- 10. Jonkin patenttivaatimuksen 1-9 mukainen laite, tunnettu siitä, että valitsijat (712-719; 812-819; 901-909, 911-919, 921-929; 931-946) ovat kertojia ja/tai AND-portteja.
- 11. Jonkin patenttivaatimuksen 1-10 mukainen laite, tunnettu siitä, että yhdistimet (720, 721; 820, 821; 910, 920, 930; 947-950) ovat summaimia ja/tai OR-portteja.

12. Jonkin patenttivaatimuksen 1-11 mukainen laite, tunnettu siitä, että kombinointiohjaussignaalit ovat painokertoimia.

13. Korrelaattorirakenne, joka käsittää

generointivälineet (209, 407, 509), jotka käsittävät koodigeneraattorin (602) paikallisen koodin (C_{in}) generoimiseksi ja siirtorekisterin (702) ja jotka generointivälineet generoivat ainakin yhden koodivaiheen (C_e , C_p , C_l , C_{e1} , C_{e2} , C_{l1} , C_{l2}) mainitusta paikallisesta koodista (C_{in}), ja

ainakin yhden korrelaattorin (205, 206, 402) korrelaattorirakenteeseen syötetyn signaalin (S_{in}) korreloimiseksi mainitun ainakin yhden paikallisesti generoidun koodivaiheen (C_e , C_p , C_l , C_{e1} , C_{e2} , C_{l1} , C_{l2}) kanssa,

t u n n e t t u siitä, että mainitut generointivälineet (209, 407, 509) käsittävät lisäksi

ainakin yhden logiikkahaaran (722, 723, 724; 951-953), jota ohjataan vähintään yhdellä kombinointiohjaussignaalilla (ctrl; ec0-ec8, pc0-pc8, lc0-lc8), jonka perusteella logiikkahaara kombinoi siirtorekisterin (702) i:stä lähdöstä koodivaiheen (C_e , C_p , C_l , C_{e1} , C_{e2} , C_{l1} , C_{l2}), i:n ollessa kokonaisluku väliltä 2 ... N.

14. Patenttivaatimuksen 13 mukainen korrelaattorirakenne, tunnnet tu siitä, että mainittujen generointivälineiden (209, 407, 509) ainakin yksi logiikkahaara käsittää

i kaksituloista valitsijaa (712-719; 812-819; 901-909, 911-919, 921-929; 931-946), joista jokaisen ensimmäiseen tuloon on kytketty siirtorekisterin (702) yksi lähtö ja toiseen tuloon on kytketty yksi kombinointiohjaussignaali, ja

i-tuloisen yhdistäjän (720, 721; 820, 821; 910, 920, 930; 947-950), jonka tuloihin on kytketty mainittujen i:n valitsijan lähdöt ja jonka lähdöstä saadaan mainittu koodivaihe (C_e , C_p , C_l , C_{e1} , C_{e2} , C_{l1} , C_{l2}).

25

- 15. Patenttivaatimuksen 13 tai 14 mukainen korrelaattorirakenne, t u n n e t t u siitä, että mainittujen generointivälineiden (209, 407, 509) logiik-kahaaran/haarojen (722, 723, 724; 951-953) lähdöistä saatavia koodivaiheita (C_e , C_p , C_i ; C_{e1} , C_{e2} , C_{11} , C_{12}) muutetaan ohjelmallisesti muuttamalla kombinointiohjaussignaaleja (ctrl; ec0-ec8, pc0-pc8, lc0-lc8).
- 16. Hajaspektrivastaanotin hajaspektrisignaalin vastaanottamiseksi, joka hajaspektrivastaanotin käsittää

generointivälineet (209, 407, 509), jotka käsittävät koodigeneraatto-35 rin (602) paikallisen koodin (C_{in}) generoimiseksi ja siirtorekisterin (702) ja jotka generointivälineet generoivat ainakin yhden koodivaiheen (C_e , C_p , C_l , C_{e1} , C_{e2} , C_{l1} , C_{l2}) mainitusta paikallisesta koodista (C_{in}), ja

ainakin yhden korrelaattorin (205, 206, 402) vastaanotetun hajaspektrisignaalin (S_{in}) korreloimiseksi mainitun ainakin yhden paikallisesti generoidun koodivaiheen (C_e , C_p , C_l , C_{e1} , C_{e2} , C_{l1} , C_{l2}) kanssa,

t u n n e t t u siitä, että mainitut generointivälineet käsittävät lisäksi ainakin yhden logiikkahaaran (722, 723, 724; 951-953), jota ohjataan vähintään yhdellä kombinointiohjaussignaalilla (ctrl; ec0-ec8, pc0-pc8, lc0-lc8), jonka perusteella logiikkahaara kombinoi siirtorekisterin (702) i:stä lähdöstä koodivaiheen (C_e, C_p, C_l; C_{e1}, C_{e2}, C_{l1}, C_{l2}), i:n ollessa kokonaisluku väliltä 2 ... N.

17. Patenttivaatimuksen 16 mukainen hajaspektrivastaanotin, tunnettu siitä, että mainittujen generointivälineiden (209, 407, 509) ainakin yksi logiikkahaara (722, 723, 724; 951-953) käsittää

i kaksituloista valitsijaa (712-719; 812-819; 901-909, 911-919, 921-929; 931-946), joista jokaisen ensimmäiseen tuloon on kytketty siirtorekisterin (702) yksi lähtö ja toiseen tuloon on kytketty yksi kombinointiohjaussignaali, ja

15

25

i-tuloisen yhdistäjän (720, 721; 820, 821; 910, 920, 930; 947-950), jonka tuloihin on kytketty mainittujen i:n valitsijan lähdöt ja jonka lähdöstä saadaan mainittu koodivaihe (C_e , C_p , C_i ; C_{e1} , C_{e2} , C_{l1} , C_{l2}).

18. Patenttivaatimuksen 16 tai 17 mukainen hajaspektrivastaanotin, t u n n e t t u siitä, että mainittujen generointivälineiden (209, 407, 509) logiik-kahaaran/haarojen (722, 723, 724; 951-953) lähdöistä saatavia koodivaiheita (C_e , C_p , C_l , C_{e1} , C_{e2} , C_{l1} , C_{l2}) muutetaan ohjelmallisesti muuttamalla kombinointiohjaussignaaleja (ctrl; ec0-ec8, pc0-pc8, lc0-lc8).

19. Jonkin patenttivaatimuksen 16-18 mukainen hajaspektrivastaanotin, tunnettu siitä, että mainittu koodivaihe (C_e , C_p , C_l ; C_{e1} , C_{e2} , C_{l1} , C_{l2}) on vaiheistettu hajotuskoodireplika.

(57) Tiivistelmä

Tämän keksinnön kohteena on laite ainakin yhden koodivaiheen (Ce, Cp, Cl) tuottamiseksi, joka laite käsittää siirtorekisterin (702), joka sisältää N lähtöä ja johon syötetään vaiheistettava koodisekvenssi (Cin), ja ainakin yhden logiikkahaaran (722, 723, 724), jota ohjataan vähintään yhdellä kombinointiohjaussignaalilla, jonka perusteella logiikkahaara kombinoi siirtorekisterin (702) i:stä lähdöstä koodivaiheen. N on kakkosta suurempi kokonaisluku ja i on kokonaisluku väliltä 2 ... N. Mainittu ainakin yksi logiikkahaara käsittää edullisesti i kaksituloista valitsijaa (901-909, 911-919, 921-929), joista jokaisen ensimmäiseen tuloon on kytketty siirtorekisterin (702) yksi lähtö ja toiseen tuloon on kytketty yksi kombinointiohjaussignaali (ec0-ec8, pc0-pc8, lc0-lc8), ja i-tuloisen yhdistäjän (910, 920, 930), jonka tuloihin on kytketty mainittujen i:n valitsijan lähdöt ja jonka lähdöstä saadaan mainittu koodivaihe.

(Kuvio 9A)

Fig 1

Fig 2

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9A

Fig 9B

