Curso de Métodos Numéricos DEMAT, Universidad de Guanajuato

Clase 2: Error de redondeo y propagación de errores

- Épsilon de la máquina
- Error absoluto y relativo
- Error en la representación de números
- Propagación de errores por la aritmética

MAT-251

Dr. Joaquín Peña Acevedo CIMAT A.C.

e-mail: joaquin@cimat.mx

Resumen (I

Entre las propiedades que son deseables para la representación de los

Deseamos que la computadora maneje los números con

- Rapidez
- Exactitud
- Rango: se necesita representar tanto números grandes como pequeños
- Portabilidad: Los programas escritos en una máquina dada deben correr sobre diferentes máquinas sin requerir modificaciones.
- Facilidad de implementación y uso

Vimos que:

- En la computadora sólo se puede representar una cantidad finita de números.
- Se adopta el estándar de la IEEE.
- La limitante es la cantidad de bits que se usan para almacenar las representaciones de los números.

Emplo

Al convertir de decimal a binario vemos que

sos del algoritmo	Resultad
0.5	$(0.)_2$
0.9 × <u>2</u> 1 8	(0
$0.8 \times 2 = 1$	1 1) ₂
$0.6 \times 2 = 1.2$	$(0.111)_2$
$0.2 \times 2 = 0.4$	$(0.1110)_2$
$0.4 \times 2 = 0.8$	$(0.11100)_2$
$0.8 \times 2 = 1$	$(0.111001)_2$
	/=

Ejemplo

Al convertir 0.9 de decimal a binario vemos que

Pasos del algoritmo	Resultado
0.9	(0.)2
$0.9 \times 2 = 1.8$	$(0.1)_2$
$0.8 \times 2 = 1.6$	(0.11)2
$0.6 \times 2 = 1.2$	$(0.111)_2$
$0.2 \times 2 = 0.4$	(0.1110)2
$0.4 \times 2 = 0.8$	$(0.11100)_2$
$0.8 \times 2 = 1.6$	$(0.111001)_2$
:	

De modo que $0.9 = (0.1\overline{1100})_2$

Así, algunos números que tienen una expresión finita en base 10, su expresión en base 2 no es finita.

Notación f(x) (I)

Supongamos que tenemos las cantidades

$$x = (1.101101)_2 \times 2^4$$
, $y = (1.0101)_2 \times 2^{-1}$.

Para calcular la suma de estos valores tenemos que expresarlos de modo que la base tenga el mismo exponente:

$$\begin{array}{rcl}
x & = & (1.1011010000)_2 \times 2^4 \\
y & = & (0.0000010101)_2 \times 2^4 \\
x + y & = & (1.1011100101)_2 \times 2^4
\end{array}$$

Denotamos por f(x) a la representación de un número x en la computadora.

Entonces si tenemos una máquina que puede representar sólo 5 dígitos para la fracción y que realiza truncamiento, tenemos

$$fl(x) = (1.10110)_2 \times 2^4$$
, $fl(y) = (1.01010)_2 \times 2^{-1}$.

Notación f(x) (II)

Y la suma de estas cantidades es

$$\begin{array}{c} (1.10110)_2 \times 2^4 \\ + (0.00000)_2 \times 2^4 \\ \hline (1.10110)_2 \times 2^4 \end{array}$$

Por lo que en este caso fl(fl(x) + fl(y)) = fl(x).

Así, en la computadora si tenemos que x + y = x, esto no implica que y = 0.

Se define el épsilon de la máquina como el número $\epsilon_m > 0$ que se puede representar en la computadora y que es el más pequeño tal que es verdadero que

$$fl(1.0 + \epsilon_m) = 1.0 + \epsilon_m > 1.0 = fl(1.0)$$

Se puede decir que el épsilon de la máquina es la distancia entre el número 1.0 y el siguiente número de punto flotante más grande.

Si p es la cantidad de bits para representar la parte fraccionaria de la mantisa,

$$fl(1.0) = (1.0000 \cdots 00)_2 \times 2^0$$

$$fl(1.0 + \epsilon_m) = (1.\underbrace{0000 \cdots 01}_{p \text{ dígitos}})_2 \times 2^0$$

Por tanto,

Epsilon de la máquina (II)

$$\epsilon_m = fl(1.0 + \epsilon_m) - fl(1.0) = (0.00 \cdot \cdot \cdot 01)_2 \times 2^0 = (1.0)_2 \times 2^{-p}$$

Dado que

	signo	exponente	fracción
32 bits	1	8	p = 23
64 bits	1	11	p = 52

Para número de punto flotante de 32 bits, $\epsilon_m = 2^{-23} = 1.19 \times 10^{-7}$,

Para 64-bits, se tiene que $\epsilon_m = 2^{-52} = 2.2204 \times 10^{-16}$.

Epsilon de la máquina (III)

	(-1) (1.000000000000000000000000000000000000			
IEEE 754 Converter (JavaScript), V0.22				
Sign	Exponent		Mantissa	
+1	20		1.0	
0	127		0	
				
D	Decimal representation 1.0			
Va	Value actually stored in float: 1			
E	Error due to conversion:			
		00444	-1	
Binary Representation 0011111111000000000000000000000000000				
	IEE	E 754	4 Converter (JavaScript), V0.22	
Sign	IEE Exponent	E 754	4 Converter (JavaScript), V0.22 Mantissa	
Sign +1	Exponent	E 754		
_		E 754	Mantissa	
+1	Exponent 2^0	E 754	Mantissa	
+1	Exponent 2^0	☑	Mantissa 1.0000001192092896 1 00011921	
+1 0 De	Exponent 20 127 127 cerimal representation	1.0000	Mantissa 1.0000001192092896 1 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
+1 0 De	Exponent 20 127 127 cerimal representation	1.0000	Mantissa 1.0000001192092896 1 00011921	
+1 0 De Va	Exponent 20 127 27 20 127 20 100 100 100	1.0000	Mantissa 1.0000001192092896 1 00011921	

Epsilon de la máquina (IV)

Para 32 bits el épsilon de la máquina es: $2^{-23} = (-1)^0 \; (1.0000000000000000000000)_2 \times 2^{104-127}$

IEEE 754 Converter (JavaScript), V0.22			
Sign	Exponent	Mantissa	
+1	2-23	1.0	
0	104	0	
Decimal representation 1.19209289551e-07			
Value actually stored in float: 1.1920928955078125E-7			
E	rror due to conversion:	1	
В	Binary Representation 0011010000000000000000000000000000000		

El <u>número p</u> de dígitos determina la <u>precisión</u> de la representación.

En caso de desconocer p, se puede calcular el épsilon de la máquina con el siguiente algoritmo.

Algoritmo 1: Cálculo del epsilon de la máquina

```
epsilon = 0.5;
unidad = 1.0;
valor = unidad + epsilon;
while valor > unidad,
    epsilon = epsilon/2;
    valor = unidad + epsilon;
end
epsilon = epsilon*2;
```

Observaciones

• Cuando se trabaja con precisión finita, 0 no es la única solución de la ecuación 1+x=1.

Observaciones

• Ca ndo se trabaja con precisión finita, 0 no es la única solución de la ecuación 1+x=1.

Por ejemple cualquier número en la computadora en el intervalo $[0,\epsilon_m)$ cumple la igualdad.

Observaciones

- Cuando se trabaja con precisión finita, 0 no es la única solución de la ecuación 1 + x = 1.
 Por ejemplo, cualquier número en la computadora en el intervalo [0, €m).
 - Por ejemplo, cualquier número en la computadora en el intervalo $[0, \epsilon_m)$ cumple la igualdad.
- El orden en que se realizan las operaciones es importante. Ejemplo:

 $rac{\epsilon_m}{2}$ es representable en la computadora y queremos calcular la suma

$$1+\frac{\varepsilon_m}{2}+\frac{\varepsilon_m}{2}$$

Entonces dependiendo del orden en que se realicen las operaciones se tienen diferentes resultados:

$$\mathit{fl}\!\left(\mathit{fl}\!\left(1+\frac{\varepsilon_{\mathit{m}}}{2}\right)\!+\frac{\varepsilon_{\mathit{m}}}{2}\right)\!\neq\mathit{fl}\!\left(1+\mathit{fl}\!\left(\frac{\varepsilon_{\mathit{m}}}{2}+\frac{\varepsilon_{\mathit{m}}}{2}\right)\right)$$

Error absoluto y error relativo

El *error absoluto* entre dos números reales *x* y *y* es

$$|x-y|$$
.

Supongamos que $y \neq 0$ es el verdadero valor y x es una aproximación. El error relativo es

$$\frac{|x-y|}{|y|}.$$

El <u>error de redondeo</u> es el <u>error que se produce entre el valor real x y su representación en la computadora f(x), sin importar si se produce por redondeo o truncamiento.</u>

Error absoluto y error relativo

¿Hay 10 u 11 rostros? ¿Hay 1200 ó 1201 arcos? ¿En caso se comete el mayor error?

El número máquina anterior a fl(1.0) es

$$(1.\underbrace{11\cdots 11}_{p \text{ digitos}})_2 \times 2^{-1} = 2(1-2^{-p-1}) \times 2^{-1} = 1-2^{-p-1} = 1-\frac{\epsilon_m}{2}$$

De este modo <u>las distancias entre</u> el número que <u>antecede a 1.0 y el que lo</u> precede son

$$\frac{\epsilon_m}{2}$$
 y ϵ_m

De este modo, lo que observamos es que la distancia entre 1.0 y los dos números máguina más cercanos es diferente.

Queremos ver lo que ocurre en el caso general:

Error en la representación numérica (II)

Sea x un número real positivo. Su representación en base 2 es:

$$x = (1.d_1d_2...d_pd_{p+1}...)_2 \times 2^e$$
,

los números de máquina más cercanos a x son

$$x_{-} = (1.d_1d_2...d_p)_2 \times 2^e,$$

 $x_{+} = [(1.d_1d_2...d_p)_2 + 2^{-p}] \times 2^e.$

Si x_ es el más cercano. el error absoluto es

$$|x-x_{-}| = (0.0...0d_{p+1}...)_2 \times 2^e = (0.d_{p+1}...)_2 \times 2^{e-p} \le 2^{e-p}.$$

Entonces el error relativo es

$$\left| \frac{x - x_{-}}{x} \right| \leq \frac{2^{e-p}}{(1.d_{1}...d_{p+1}...)_{2} \times 2^{e}} = \frac{2^{-p}}{(1.d_{1}...d_{p+1}...)_{2}} \leq \frac{2^{-p}}{1} = 2^{-p} = \epsilon_{m}.$$

Por otra parte, si x_+ es el más cercano, entonces

Error en la representación numérica (III)

$$|x-x_+| \le \frac{1}{2}|x_+-x_-| \le \frac{1}{2}2^{-p} \ 2^e$$
,

por lo que

$$\frac{|x - x_+|}{|x|} \le \frac{1}{2} \cdot \frac{2^{-p} \cdot 2^e}{1.0 \times 2^e} = \frac{2^{-p}}{2} = \frac{\epsilon_m}{2}$$

Definimos la *unidad de error de redondeo <u>u</u>* como

$$u = \begin{cases} \epsilon_m & \text{para redondeo hacia abajo} \\ \frac{\epsilon_m}{2} & \text{para redondeo hacia arriba} \end{cases}$$

Error de redondeo

La relación entre un número real y el número de máquina que lo representa está dada por $f(x) = x(1 + \delta)$, donde $|\delta| \le u$.

Dados dos números máquina a y b, en el modelo estándar de aritmética de punto flotante se tiene que

$$fl(a \circ b) = (a \circ b)(1 + \delta)$$

donde \circ es uno de los operadores $\{+,-,\times,/\}$, y $|\delta| < u$.

Con este modelo podemos ver que

$$fl(a+b) = fl(b+a),$$

pero si queremos calcular la suma a + b + c, entonces

$$fl(fl(a+b)+c) \neq fl(a+fl(b+c))$$

rrores al realizar operaciones aritméticas (I)

- La asociatividad en la suma puede no ser válida
- Hay que especificar el tipo de redor eo que se afectúa.

Al calcular 521000 × 0.0365 usand a dígitos de precisión, tenemos que

Errores al realizar operaciones aritméticas (I)

- La asociatividad en la suma puede no ser válida.
- Hay que especificar el tipo de redondeo que se afectúa.

Al calcular 521000×0.0365 usando tres dígitos de precisión, tenemos que

$$a = 525000 = 0.525 \times 10^6, \qquad b = 0.365 \times 10^{-1}$$

$$fl(ab) = fl(0.191625 \times 10^5) = \begin{cases} 0.192 \times 10^5 & \text{Redondeo hacia arriba} \\ 0.191 \times 10^5 & \text{Redondeo hacia abajo} \end{cases}$$

rores al realizar operaciones aritméticas (II)

• Errores po. sustracción.

Sea $f(x) = (1 - \cos x)(x^2)$. Para $x = 1.2 \times 10^{-5}$ y una precisión a 10 decimales, se tiene que

Errores al realizar operaciones aritméticas (II)

• Errores por sustracción.

Sea $f(x) = (1-\cos x)/x^2$. Para $x = 1.2 \times 10^{-5}$ y una precisión a 10 decimales, se tiene que

El resultado es incorrecto. Resulta que $0 \le f(x) < 0.5$ para todo $x \ne 0$.

Errores al realizar operaciones aritméticas (III)

Para evitarlo, podemos usar $\cos x = 1 - 2\sin^2(x/2)$.

$$f(x) = \frac{1}{2} \left(\frac{\sin(x/2)}{x/2} \right)^2.$$

$$x = 1.2 \times 10^{-5}$$
 \implies $f(x) = \frac{1}{2} \left(\frac{0.000006}{0.000006} \right)^2 = 0.5$

ropagación del error en la suma

Supongamos que tenemos dos números reales x,y con x mismo signo, y que

$$fl(x) = (1 + \delta_x), \qquad fl(y) = (1 + \delta_y),$$

con $|\delta_X| \le u$ y $|\delta_Y| \le u$.

El error relativo de la suma x + y

Propagación del error en la suma

Supongamos que tenemos dos números reales x,y con el mismo signo, y que

$$fI(x) = x(1 + \delta_x), \qquad fI(y) = y(1 + \delta_y),$$

con $|\delta_X| \le u$ y $|\delta_V| \le u$.

El error relativo de la suma x + y es

$$\delta_{x+y} = \frac{[f(x) + f(y)] - (x+y)}{x+y} = \frac{f(x) - x}{x+y} + \frac{f(y) - y}{x+y} = \delta_x \frac{x}{x+y} + \delta_y \frac{y}{x+y}$$

$$\left|\delta_{X+y}\right| \le u \frac{|x| + |y|}{|x + y|} = u$$

Propagación del error en la resta

Para la resta x - y, con $x \neq y$, se tiene lo siguiente:

$$\delta_{x-y} = \frac{[fl(x) - fl(y)] - (x - y)}{x - y} = \delta_x \frac{x}{x - y} - \delta_y \frac{y}{x - y}$$
$$|\delta_{x-y}| \le |\delta_x| \frac{|x|}{|x - y|} + |\delta_y| \frac{|y|}{|x - y|} \le u \frac{|x| + |y|}{|x - y|}$$