MoskaliovYV 11012025-105809

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой R=17 Ом. Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=1.9~\Gamma\Gamma$ ц и $f_{\rm B}=5.9~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен -0.18+j0; 3 использован наикратчайший отрезок, удовлетворяющий вышеупомяну-
- тым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\text{\tiny H}}, f_{\text{\tiny B}}]$?

Варианты ОТВЕТА:

- 1) 0.7 дБ
- 2) 1.9 дБ
- 3) 0.4 дБ
- 4) 1.5 дБ

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon = 3, 55$):

- 1 толщиной 0.203 мм и с волновым сопротивлением 45 Ом;
- 2 толщиной 0.305 мм и с волновым сопротивлением 85 Ом;
- 3 толщиной 0.508 мм и с волновым сопротивлением 96 Ом;
- 4 толщиной 0.406 мм и с волновым сопротивлением 79 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте 8.7 ГГц с помощью калибровочной меры с названием "короткое замыкание". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения:

-0.94 + 0.35i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 12.7 cm
- 2) 8 см
- 3) 15.5 cm
- 4) 14.7 cm

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 2 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 2 — Различные реализаци и Γ -образной цепи согласования

Даны значения s-параметров:

-	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.2	0.379	173.2	5.762	71.6	0.075	64.2	0.176	-93.6

Выбрать Г-образный четырёхполюсник (см. рисунок 3), который *не может* обеспечить согласование со стороны плеча 1 на частоте 2.2 ГГц при наложении следующих ограничений:

- 1 W_T больше 34 Ом;
- 2 θ_{Π} меньше $\frac{\pi}{2}$.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\rm H}=0.59f_{\rm B}$:

```
s_{11} = -0.343 + 0.093і. (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 34 O_M
- 2) 74 Om
- 3) 89 O_M
- 4) 40 O_M