

三、显示译码器

1. 七段字符显示器

共阴极驱动: (七段字符显示器的驱动方式1)

共阳极驱动:

(七段字符显示器的驱动方式2)

2. BCD—七段显示译码器的使用方式

根据功能关系,可列出显示译码器真值表

BCD—七段显示译码器真值表

输	À		输						出
$A_3 A$	$\mathbf{A}_{2} \mathbf{A}_{1}$	$\mathbf{A_0}$	Ya	$\overline{\mathbf{Y}_{b}}$	Y _c	$\overline{\mathbf{Y}_{d}}$	Y _e	Y _f	$\overline{\mathbf{Y_g}}$
0 0	0	0	1	1	1	1	1	1	0
0 0	0	1	0	1	1	0	0	0	0
0 0	1	0	1	1	0	1	1	0	1
0 0	1	1	1	1	1	1	0	0	1
0 1	0	0	0	1	1	0	0	1	1
0 1	0	1	1	0	1	1	0	1	1
0 1	1	0	0	0	1	1	1	1	1
0 1	1	1	1	1	1	0	0	0	0
1 0	0	0	1	1	1	1	1	1	1
1 0	0	1	1	1	1	0	0	1	1

3. 中规模集成BCD—七段显示译码器(7448)

合作進取求實創新

4.7448的应用

可实现多位数码显示的灭零控制

3.4.3 加法器

- 一、1位加法器
- 1. 半加器

二进制之间的算术运算都是化做 若干步加法<u>运算进行,因此</u>加法

	不考虑来	自低位的进位	훾	算器	输
		制相加	A	В	S
A ——		S	0	0	0
B	HA	CO	0	1	1
			1	0	1

$$S = \overline{A}B + A\overline{B} = A \oplus B$$

CO=AB

的

$$S = A \oplus B \oplus CI$$

$$CO = \overline{AB} \cdot \overline{(A \oplus B)CI}$$

*全加器表达式和逻辑电路

(b) 符号

二、多位加法器

1. 串行进位加法器

$A_3A_2A_1A_0+B_3B_2B_1B_0=S_3S_2S_1S_0$

2. 超前进位加法器

Si直接由Ai与Bi构成,不由各进位信号产生,可 提高运算速度。

$$S_i = A_i \oplus B_i \oplus CI_i$$

$$S_i = A_i \oplus B_i \oplus CI_i$$
 $CO_i = A_iB_i + (A_i \oplus B_i)CI_i$

定义进位生成函数 $G_i = A_i B_i$

进位传送函数 $P_i = A_i \oplus B_i$

$$S_0 = A_0 \oplus B_0 \oplus CI_0 = P_0 \oplus CI_0$$

$$S_1 = A_1 \oplus B_1 \oplus CI_1 = P_1 \oplus (G_0 + P_0CI_0)$$

$$S_2 = A_2 \oplus B_2 \oplus CI_2 = P_2 \oplus (G_1 + P_1CI_1)$$

= $P_2 \oplus (G_1 + P_1(G_0 + P_0CI_0))$
= $P_2 \oplus (G_1 + P_1G_0 + P_1P_0CI_0)$

$$S_3 = P_3 \oplus (G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0 CI_0)$$

$$CO_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0CI_0$$

见教材逻辑图

三、中规模集成四位超前进位加法器

(74LS283, 74LS83)

四、中规模集成四位超前进位加法器的应用

1. 设计组合逻辑电路

例: 试设计一个代码转换电路,将 BCD 8421码 转换为余3码。

 $Y_3Y_2Y_1Y_0 = DCBA + 0011$

2. 构成四位减法器

$$X_3X_2X_1X_0-Y_3Y_2Y_1Y_0$$

$$=X_3X_2X_1X_0+[-Y_3Y_2Y_1Y_0]$$
 补码

$$= X_3 X_2 X_1 X_0 + \overline{Y_3} \overline{Y_2} \overline{Y_1} \overline{Y_0} + 1$$

合作進取求實創新

3.4.4 数值比较器

— ,	1位数值比较器
•	

ויחוץ	北较两个 数的大小			个二进制数的 逻辑电路
A B	(A>B)		* (A <b)< td=""><td></td></b)<>	
0 0	0	1	0	
0 1	0	0	1	
1 1 0	1	0	0	
	0	1	0	

$$Y_{(A>B)} = A\overline{B}$$
 $Y_{(A$

$$Y_{(A=B)} = \overline{AB} + AB = A \circ B = \overline{Y_{(A>B)} + Y_{(A$$

$$Y_{(A>B)} = A\overline{B} \quad Y_{(A
$$Y_{(A=B)} = \overline{Y_{(A>B)}} + Y_{(A$$$$

二、多位数值比较器

输			入	输		出
A3 B3	A2 B2	A1 B1	A0 B0	$Y_{(A>B)}$	$Y_{(A=B)}$	Y _{(A<b)< sub=""></b)<>}
A3>B3	×	×	×	1	0	0
A3=B3	A2>B2	×	×	1	0	0
A3=B3	A2=B2	A1>B1	×	1	0	0
A3=B3	A2=B2	A1=B1	A0>B0	1	0	0
A3=B3	A2=B2	A1=B1	A0=B0	0	1	0
A3=B3	A2=B2	A1=B1	A0 <b0< th=""><th>0</th><th>0</th><th>1</th></b0<>	0	0	1
A3=B3	A2=B2	A1 <b1< th=""><th>×</th><th>0</th><th>0</th><th>1</th></b1<>	×	0	0	1
A3=B3	A2 <b2< th=""><th>×</th><th>×</th><th>0</th><th>0</th><th>1</th></b2<>	×	×	0	0	1
A3 <b3< th=""><th>×</th><th>×</th><th>×</th><th>0</th><th>0</th><th>1</th></b3<>	×	×	×	0	0	1

三、中规模集成四位数值比较器(CC14585)

*注意:三个扩展输入端的使用

自学材料: 组合逻辑电路的 竞争与冒险

$$Y = A + \overline{A} = 1$$

习题课: MSI组合逻辑电路的 应用