Project description

Yoichi Mieda

0 Outline

The Grothendieck-Ogg-Shafarevich (GOS) formula (cf. [SGA5, Exposé X]) is one of the most classical results in geometric ramification theory. It describes the Euler characteristic of a smooth ℓ -adic sheaf \mathcal{F} on a smooth curve over an algebraically closed field in terms of a local ramification invariant of \mathcal{F} called the Swan conductor. In [KS08], Kato and Saito obtained a higher-dimensional generalization of it. The first aim of this project is to find some concrete examples of their rather abstract formula (for a detailed plan, see Section 1).

The second and main theme of our project is to consider an arithmetic variant of the GOS formula. Let V be a complete discrete valuation ring with algebraically closed residue field. Put $S = \operatorname{Spec} V$ and consider a scheme X separated of finite type over S whose generic fiber X_{η} is smooth. For a smooth ℓ -adic étale sheaf \mathcal{F} on X_{η} , we can attach the nearby cycle complex $R\psi\mathcal{F}$, which is an object of the derived category $D_c^b(X_s, \mathbb{Q}_{\ell})$ of ℓ -adic sheaves over the special fiber of X (cf. [SGA7, Exposé XIII]). In our project, we will study the compactly supported cohomology $H_c^i(X_s, R\psi\mathcal{F})$, especially its Euler characteristic $\chi_c(X_s, R\psi\mathcal{F}) = \sum_i (-1)^i \dim_{\mathbb{Q}_{\ell}} H_c^i(X_s, R\psi\mathcal{F})$. If X is proper over S, the proper base change theorem tells us that $H_c^i(X_s, R\psi\mathcal{F})$ is isomorphic to $H^i(X_{\overline{\eta}}, \mathcal{F}_{\overline{\eta}})$, the ℓ -adic cohomology of the generic fiber. In this case, no contribution of ramification of \mathcal{F} appears. However, if X is not proper over S, the nearby cycle cohomology $H_c^i(X_s, R\psi\mathcal{F})$ should reflect arithmetic ramification of \mathcal{F} . Note that $H_c^i(X_s, R\psi\mathcal{F})$ is not necessarily isomorphic to $H_c^i(X_{\overline{\eta}}, \mathcal{F}_{\overline{\eta}})$. The Euler characteristic $\chi_c(X_{\overline{\eta}}, \mathcal{F}_{\overline{\eta}})$ of the latter can be described by the classical GOS formula, and only reflects ramification of \mathcal{F} on the generic fiber.

In the language of rigid geometry, the nearby cycle cohomology $H_c^i(X_s, R\psi\mathcal{F})$ can be interpreted as follows. Let X^{\wedge} be the formal completion of X along X_s and \mathfrak{X} the rigid generic fiber of X^{\wedge} in the sense of Raynaud. Then, $H_c^i(X_s, R\psi\mathcal{F})$ is naturally isomorphic to the étale cohomology $H_c^i(\mathfrak{X}_{\overline{\eta}}, \mathcal{F}_{\overline{\eta}}^{rig})$ of the rigid space \mathfrak{X} with a naturally induced coefficient. In this context, when dim $X_{\eta} = 1$, Huber [Hub01] proved a formula of GOS type¹:

$$\chi_c(X_s, R\psi\mathcal{F}) = \chi_c(\mathfrak{X}_{\overline{\eta}}, \mathcal{F}_{\overline{\eta}}^{\mathrm{rig}}) = \operatorname{rank} \mathcal{F} \cdot \chi_c(\mathfrak{X}_{\overline{\eta}}, \mathbb{Q}_{\ell}) - \sum_{x \in \mathfrak{X}_{\overline{\eta}}^c \setminus \mathfrak{X}_{\overline{\eta}}} \operatorname{Sw}_x \mathcal{F}.$$

¹Precisely speaking, Huber considered a locally constant torsion sheaf \mathcal{F} .

Here $\mathfrak{X}_{\overline{\eta}}^c$ is the so-called universal compactification of $\mathfrak{X}_{\overline{\eta}}$. To a point x on the boundary $\mathfrak{X}_{\overline{\eta}}^c \setminus \mathfrak{X}_{\overline{\eta}}$ of the universal compactification, a valuation field $\kappa(x)$ of rank 2 is naturally attached, and a local ramification invariant $\operatorname{Sw}_x \mathcal{F}$ at x, an analogue of the Swan conductor, is defined in a similar way as in the classical case (for example, we can use the natural ramification filtration on the Galois group of $\kappa(x)$). This formula provides a powerful method to study the cohomology of some arithmetic curves, such as the Lubin-Tate tower for $\operatorname{GL}(2)$ (cf. [Wew05]).

In this project, we will try to understand the formula above in the style of Kato-Saito's ramification theory, and generalize it to a higher-dimensional case. For a detail, see Section 2.

1 The case over a field

Throughout this section, let k be an algebraically closed field with characteristic p > 0. Fix a prime number ℓ different from p.

1.1 Warming up: one-dimensional case

Let X be an irreducible proper smooth curve over k and U a non-empty open subset of X. To a smooth $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathcal{F} on U and a point $x \in X \setminus U$, we can attach a ramification invariant $\operatorname{Sw}_x(\mathcal{F}) \in \mathbb{Z}$ called the Swan conductor (for the definition, see Saito's lecture notes). By using this invariant, the Euler characteristic $\chi_c(U,\mathcal{F}) = \sum_{i=0}^2 (-1)^i \dim_{\overline{\mathbb{Q}}_{\ell}} H_c^i(U,\mathcal{F})$ can be computed as follows:

Theorem 1.1 (The Grothendieck-Ogg-Shafarevich formula)

$$\chi_c(U, \mathcal{F}) = \operatorname{rank}(\mathcal{F}) \cdot \chi_c(U, \overline{\mathbb{Q}}_{\ell}) - \sum_{x \in X \setminus U} \operatorname{Sw}_x(\mathcal{F}).$$

Problem 1.2 Fix an integer $m \geq 1$ which is prime to p. We have an étale covering of $\mathbb{G}_m = \operatorname{Spec} k[T, T^{-1}]$ defined by the equation $S^m = T$ (the Kummer covering). It is a Galois covering with Galois group $\mathbb{Z}/m\mathbb{Z}$. Therefore, a non-trivial character $\chi \colon \mathbb{Z}/m\mathbb{Z} \longrightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$ gives rises to a smooth sheaf \mathcal{L}_{χ} of rank 1 over \mathbb{G}_m .

- i) Consider the compactification $\mathbb{G}_m \hookrightarrow \mathbb{P}^1$ of \mathbb{G}_m (namely, consider the case where $X = \mathbb{P}^1$ and $U = \mathbb{G}_m$). For the points $0, \infty \in \mathbb{P}^1 \setminus \mathbb{A}^1$, compute the Swan conductors $\operatorname{Sw}_0(\mathcal{L}_\chi)$, $\operatorname{Sw}_\infty(\mathcal{L}_\chi)$.
- ii) By using the GOS formula, compute the Euler characteristic $\chi_c(\mathbb{G}_m, \mathcal{L}_{\chi})$. Observe that $H_c^i(\mathbb{G}_m, \mathcal{L}_{\chi}) = 0$ for $i \neq 1$, and determine the dimension of $H_c^i(\mathbb{G}_m, \mathcal{L}_{\chi})$.

Problem 1.3 We have an étale covering of $\mathbb{A}^1 = \operatorname{Spec} k[T]$ defined by the equation $S^p - S = T$ (the Artin-Schreier covering). It is a Galois covering with Galois group $\mathbb{Z}/p\mathbb{Z}$. Therefore, a non-trivial character $\psi \colon \mathbb{Z}/p\mathbb{Z} \longrightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$ gives rises to a smooth sheaf \mathcal{L}_{ψ} of rank 1 over \mathbb{A}^1 .

- i) Consider the compactification $\mathbb{A}^1 \hookrightarrow \mathbb{P}^1$ of \mathbb{A}^1 (namely, consider the case where $X = \mathbb{P}^1$ and $U = \mathbb{A}^1$). For the point $\infty \in \mathbb{P}^1 \setminus \mathbb{A}^1$, compute the Swan conductor $\operatorname{Sw}_{\infty}(\mathcal{F})$.
- ii) By using the GOS formula, compute the Euler characteristic $\chi_c(\mathbb{A}^1, \mathcal{L}_{\psi})$. Observe that $H_c^i(\mathbb{A}^1, \mathcal{L}_{\psi}) = 0$ for $i \neq 1$, and determine the dimension of $H_c^i(\mathbb{A}^1, \mathcal{L}_{\psi})$.
- iii) More generally, for $f \in k[T]$, we can consider the smooth sheaf of rank 1 over \mathbb{A}^1 associated with the étale covering defined by $S^p S = f$. If we identify f with the morphism $f : \mathbb{A}^1 \longrightarrow \mathbb{A}^1$, then this sheaf is nothing but the pull-back $f^*\mathcal{L}_{\psi}$. Can you compute $\operatorname{Sw}_{\infty}(f^*\mathcal{L}_{\psi})$ and $\chi_c(\mathbb{A}^1, f^*\mathcal{L}_{\psi})$?

Problem 1.4 (cf. [SGA4 $\frac{1}{2}$, Sommes trig.]) Here we assume that $k = \overline{\mathbb{F}}_q$, where $q = p^n$ is a power of p. Fix a non-trivial multiplicative (resp. additive) character $\chi \colon \mathbb{F}_q^{\times} \longrightarrow \overline{\mathbb{Q}}_{\ell}$ (resp. $\psi \colon \mathbb{F}_q \longrightarrow \overline{\mathbb{Q}}_{\ell}$). Then, the étale covering $\mathbb{G}_{m,\mathbb{F}_q} \longrightarrow \mathbb{G}_{m,\mathbb{F}_q}$; $x \longmapsto x^{q-1}$ and χ give a smooth sheaf \mathcal{L}_{χ} of rank 1 over $\mathbb{G}_{m,\mathbb{F}_q} = \operatorname{Spec} \mathbb{F}_q[T, T^{-1}]$. Similarly, the étale covering $\mathbb{A}^1_{\mathbb{F}_q} \longrightarrow \mathbb{A}^1_{\mathbb{F}_q}$; $x \longmapsto x^q - x$ and ψ give a smooth sheaf \mathcal{L}_{ψ} of rank 1 over $\mathbb{A}^1_{\mathbb{F}_q} = \operatorname{Spec} \mathbb{F}_q[T]$. We denote the pull-back of \mathcal{L}_{χ} and \mathcal{L}_{ψ} to $\mathbb{G}_m = \operatorname{Spec} k[T, T^{-1}]$ by the same symbols.

- i) Compute $\chi_c(\mathbb{G}_m, \mathcal{L}_{\psi} \otimes \mathcal{L}_{\chi})$ and $\dim_{\overline{\mathbb{Q}}_{\ell}} H_c^1(\mathbb{G}_m, \mathcal{L}_{\psi} \otimes \mathcal{L}_{\chi})$ by the GOS formula.
- ii) Use the Grothendieck-Lefschetz trace formula (*cf.* [SGA4 $\frac{1}{2}$, Rapport, Théorème 3.2]) to prove the following:

$$G(\chi, \psi) := \sum_{a \in \mathbb{F}_q^{\times}} \psi(a) \chi(a) = \sum_{i=0}^{2} (-1)^{i} \operatorname{Tr} \left(\operatorname{Frob}_q; H_c^{i}(\mathbb{G}_m, \mathcal{L}_{\psi} \otimes \mathcal{L}_{\chi}) \right).$$

The left hand side is called the Gauss sum.

iii) Observe that the natural map $H^1_c(\mathbb{G}_m, \mathcal{L}_{\psi} \otimes \mathcal{L}_{\chi}) \longrightarrow H^1(\mathbb{G}_m, \mathcal{L}_{\psi} \otimes \mathcal{L}_{\chi})$ is an isomorphism. By this and the Weil conjecture, we may conclude that every eigenvalue α of Frob_q on $H^i_c(\mathbb{G}_m, \mathcal{L}_{\psi} \otimes \mathcal{L}_{\chi})$ satisfies $|\iota(\alpha)| = q^{1/2}$ for an arbitrary isomorphism of fields $\iota \colon \overline{\mathbb{Q}}_{\ell} \xrightarrow{\cong} \mathbb{C}$. Together with i), we obtain a well-known identity $|\iota G(\chi, \psi)| = q^{1/2}$.

1.2 Higher-dimensional case

In [KS08], the GOS formula has been generalized to the higher-dimensional case. We would like to give some concrete examples of their theory. Here we consider $\overline{\mathbb{F}}_{\ell}$ -sheaves instead of $\overline{\mathbb{Q}}_{\ell}$ -sheaves. In fact, the definition of the Swan conductor for $\overline{\mathbb{Q}}_{\ell}$ -sheaves in [KS08] is reduced to that for $\overline{\mathbb{F}}_{\ell}$ -sheaves. Fix a non-trivial character $\psi \colon \mathbb{Z}/p\mathbb{Z} \longrightarrow \overline{\mathbb{F}}_{\ell}^{\times}$. For the definition of the Swan divisor and the refined Swan conductor, see

Put $U = \mathbb{G}_m^2 = \operatorname{Spec} k[S, T, S^{-1}, T^{-1}]$. For $a, b \in \mathbb{Z}$, consider the morphism $f_{a,b} \colon U \longrightarrow \mathbb{A}^1$; $(x,y) \longmapsto x^a y^b$. We want to compute $\chi_c(U, f_{a,b}^* \mathcal{L}_{\psi})$ by the GOS formula

Problem 1.5 Consider the case where (a,b) = (1,-1). Write $f = f_{1,-1}$.

- i) Let X be the blow-up of \mathbb{P}^2 at the origin. Then $f \colon U \longrightarrow \mathbb{A}^1$ extends to $\overline{f} \colon X \longrightarrow \mathbb{P}^1$, which gives a compactification of f. Compute the Swan divisor $\mathrm{sw}(f^*\mathcal{L}_{\psi})$ of $f^*\mathcal{L}_{\psi}$ and the refined Swan conductor with respect to this compactification (cf. [Kat89], [Kat94], [KS08, §5], [AS09]. Especially, [AS09, §9, 10] is a very useful reference). Observe that $f^*\mathcal{L}_{\psi}$ is clean with respect to $U \subset X$.
- ii) Use the GOS formula to obtain $\chi_c(U, f^*\mathcal{L}_{\psi})$.
- iii) Compute $\chi_c(U, f^*\mathcal{L}_{\psi})$ directly, and compare with the result of ii). (Hint: use the change of coordinates $\mathbb{G}_m^2 \cong \mathbb{G}_m^2$; $(x, y) \longmapsto (x, xy^{-1})$)

Problem 1.6 Next consider the case where (a,b) = (1,-2). Write $f = f_{1,-2}$.

- i) Let W be the blow-up of $\mathbb{A}^2 = \operatorname{Spec} k[S,T]$ along the ideal (S,T^2) . Since W is not smooth over k, we take a toric resolution \widetilde{W} of W. In this case, \widetilde{W} is the blow-up of W along the strict transform of the ideal (S,T). Then $f:U\longrightarrow \mathbb{A}^1$ extends to $\overline{f}:\widetilde{W}\longrightarrow \mathbb{P}^1$, which gives a partial compactification of f. Compute the Swan divisor $\operatorname{sw}(f^*\mathcal{L}_{\psi})$ of $f^*\mathcal{L}_{\psi}$ and the refined Swan conductor with respect to this partial compactification. Is $f^*\mathcal{L}_{\psi}$ clean with respect to \widetilde{W} ?
- ii) Find a nice compactification $U \hookrightarrow X$ so that $f^*\mathcal{L}_{\psi}$ is clean with respect to it. Compute the Swan divisor.
- iii) Use the GOS formula to obtain $\chi_c(U, f^*\mathcal{L}_{\psi})$. To compute the intersection number, it will be convenient to use the intersection theory on toric varieties (cf. [Ful93, Chapter 5]).

Problem 1.7 Extend the arguments in Problem 1.5 and Problem 1.6 to $f_{a,b}^* \mathcal{L}_{\psi}$ for general (a,b). Is it possible to apply a similar method to the case of dimension greater than 2?

Problem 1.8 A similar but slightly different case is considered by Denef and Loeser ([DL91]). Can we recover their result [DL91, Theorem 1.2] by using the GOS formula (at least in the 2-dimensional case)?

2 Arithmetic case

In this section, let K be a complete discrete valuation field of mixed characteristic (0,p). Denote by \mathcal{O}_K the ring of integers of K. We write v_K for the normalized valuation $K^{\times} \longrightarrow \mathbb{Z}$. Assume that the residue field k of \mathcal{O}_K is algebraically closed.

Let us recall Huber's GOS formula for rigid curves ([Hub01]). Here we use terminology in rigid geometry. Let \mathfrak{U} be a quasi-compact rigid curve which is separated and smooth over K, and \mathcal{F} a smooth $\overline{\mathbb{F}}_{\ell}$ -sheaf on \mathfrak{U} . We have the universal compactification \mathfrak{U}^c of \mathfrak{U} (cf. [Hub01, 5.9, Example 5.10]). For each $x \in \mathfrak{U}^c \setminus \mathfrak{U}$, a

Project description

2-dimensional henselian valuation field $\kappa(x)$ with valuation $v_x : \kappa(x)^{\times} \longrightarrow \Gamma_x$ is naturally attached. The field $\kappa(x)$ is an extension field of K and we have the following commutative diagram:

$$K^{\times} \xrightarrow{v_{K}} \mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow m \mapsto (m,0)$$

$$\kappa(x)^{\times} \xrightarrow{v_{x}} \Gamma_{x} \xleftarrow{\cong} \mathbb{Z} \times \mathbb{Z},$$

where $\mathbb{Z} \times \mathbb{Z}$ is considered as a totally ordered commutative group by the lexicographic order, and (*) is an ordered isomorphism (in fact, (*) is uniquely determined by the commutative diagram above).

By using ramification theory for $G_{\kappa(x)} = \operatorname{Gal}(\kappa(x)^{\operatorname{sep}}/\kappa(x))$, we can define the Swan conductor $\operatorname{Sw}_x(\mathcal{F}) \in \mathbb{Z}$. As in the classical GOS formula, this ramification-theoretic invariant is related to the Euler characteristic $\chi_c(\mathfrak{U}_{\overline{K}}, \mathcal{F})$:

$$\chi_c(\mathfrak{U}_{\overline{K}}, \mathcal{F}) = \operatorname{rank}(\mathcal{F}) \cdot \chi_c(\mathfrak{U}_{\overline{K}}, \overline{\mathbb{F}}_{\ell}) - \sum_{x \in \mathfrak{U}^c \setminus \mathfrak{U}} \operatorname{Sw}_x(\mathcal{F}).$$

See [Hub01, Theorem 10.2]. Here we call it Huber's GOS formula.

Recall the definition of $\operatorname{Sw}_x(\mathcal{F})$. Let $j\colon \mathfrak{U} \hookrightarrow \mathfrak{U}^c$ be the natural open immersion. Then, the stalk of $j_*\mathcal{F}$ at x gives an $\overline{\mathbb{F}}_{\ell}$ -representation $\rho_{\mathcal{F},x}$ of $G_{\kappa(x)}$. Take a finite Galois extension $L/\kappa(x)$ such that $\rho_{\mathcal{F},x}$ factors through $\operatorname{Gal}(L/\kappa(x))$. The valuation v_x canonically extends to a valuation $v_x\colon L^\times \longrightarrow \Gamma_L$ on L, where $\Gamma_L \subset \Gamma_x \otimes_{\mathbb{Z}} \mathbb{Q}$ is again naturally isomorphic to $\mathbb{Z} \times \mathbb{Z}$.

Definition 2.1 Let γ_L be the minimal element in $\{\gamma \in \Gamma_L \mid \gamma > 0\}$ (it corresponds to $(0,1) \in \mathbb{Z} \times \mathbb{Z}$). Let $\# \colon \Gamma_L \longrightarrow \mathbb{Z}$ be the map $\Gamma_L \cong \mathbb{Z} \times \mathbb{Z} \xrightarrow{\operatorname{pr}_2} \mathbb{Z}$. It is characterized by $\#v_K(a) = 0$ for $a \in K^{\times}$ and $\#\gamma_L = 1$.

For $\sigma \in \operatorname{Gal}(L/\kappa(x))$ with $\sigma \neq 1$, put

$$h_{L/\kappa(x)}(\sigma) = \min \left\{ v_x \left(\frac{\sigma(a) - a}{a} \right) \mid a \in L^{\times} \right\} \in \Gamma_x.$$

It is known that if $\varpi_L \in L^{\times}$ satisfies $v_x(\varpi_L) = \gamma_L$, then

$$h_{L/\kappa(x)}(\sigma) = v_x \left(\frac{\sigma(\varpi_L) - \varpi_L}{\varpi_L}\right).$$

Define $s_{L/\kappa(x)}$: Gal $(L/\kappa(x)) \longrightarrow \mathbb{Z}$ by

$$s_{L/\kappa(x)}(\sigma) = -\# h_{L/\kappa(x)}(\sigma) \ (\sigma \neq 1), \quad s_{L/\kappa(x)}(1) = \sum_{\sigma \neq 1} \# h_{L/\kappa(x)}(\sigma).$$

Then, there exists a virtual representation $\operatorname{Sw}_{L/\kappa(x)}$ of $\operatorname{Gal}(L/\kappa(x))$ over \mathbb{Z}_{ℓ} whose character coincides with $s_{L/\kappa(x)}$ (cf. [Hub01, Theorem 4.1]). Now we put

$$\operatorname{Sw}_{x}(\mathcal{F}) = \operatorname{Sw}_{\kappa(x)}(\rho_{\mathcal{F},x}) = \dim_{\overline{\mathbb{F}}_{\ell}} \operatorname{Hom}_{\operatorname{Gal}(L/\kappa(x))}(\operatorname{Sw}_{L/\kappa(x)} \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{F}}_{\ell}, \rho_{\mathcal{F},x}).$$

Remark 2.2 We can also define the Swan conductor by using the upper ramification filtration of $G_{\kappa(x)}$ (cf. [Hub01, §2]), as in the classical case.

Huber's GOS formula can also be formulated within the framework of scheme theory. For given rigid curve \mathfrak{U} , we can always find

- a regular scheme X which is proper, flat and relatively one-dimensional over \mathcal{O}_K ,
- and an open subscheme U of X such that $X_s \setminus U_s$ consists of finite points and the special fiber X_s is smooth at every point in $X_s \setminus U_s$

such that the rigid generic fiber of the formal completion of U along U_s is isomorphic to \mathfrak{U} . Assume moreover that our $\overline{\mathbb{F}}_{\ell}$ -sheaf \mathcal{F} on \mathfrak{U} is induced from a smooth $\overline{\mathbb{F}}_{\ell}$ -sheaf, also denoted by \mathcal{F} , on the generic fiber U_{η} of U. Then,

- we have $\chi_c(\mathfrak{U}_{\overline{K}}, \mathcal{F}) = \chi_c(U_s, R\psi \mathcal{F})$, and
- there exists a canonical bijection $\mathfrak{U}^c \setminus \mathfrak{U} \cong X_s \setminus U_s$.

For $x \in \mathfrak{U}^c \backslash \mathfrak{U} = X_s \backslash U_s$, the 2-dimensional valuation field $(\kappa(x), v_x)$ can be described as follows. Let Y be the unique irreducible component of X_s containing x and ξ the generic point of Y. Then, ξ gives a prime ideal \mathfrak{p} of the henselian local ring $A = \mathcal{O}_{X,x}^h$. Let V_x be the inverse image of A/\mathfrak{p} under the canonical surjection $A_{\mathfrak{p}} \longrightarrow A_{\mathfrak{p}}/\mathfrak{p} = \operatorname{Frac} A/\mathfrak{p}$. It is a two-dimensional valuation ring; indeed, $A_{\mathfrak{p}}$ and A/\mathfrak{p} are discrete valuation rings, and the construction above is a well-known process to compose two valuation rings. For an arbitrary lift $\tilde{t} \in \mathcal{O}_{X,x}$ of a local coordinate t of Y at x, the valuation v_x : Frac $A_{\mathfrak{p}} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ corresponding to V_x can be characterized by the formula $v_x(a\tilde{t}^m) = (v_K(a), m)$, where $a \in K$ and $m \in \mathbb{Z}_{\geq 0}$. We can identify (Frac $A_{\mathfrak{p}}, v_x$) with the valuation field $(\kappa(x), v_x)$. The representation $\rho_{\mathcal{F},x}$ of $G_{\kappa(x)}$ is the pull-back of the $\pi_1(U_{\eta})$ -representation attached to \mathcal{F} under the natural homomorphism $G_{\kappa(x)} = \pi_1(\operatorname{Frac} A_{\mathfrak{p}}) \longrightarrow \pi_1(U)$.

Problem 2.3 Consider the case where $X = \mathbb{P}^1_{\mathcal{O}_K}$ and $U = \operatorname{Spec} \mathcal{O}_K[T, T^{-1}]$. For an integer $m \geq 0$, we have a covering of U defined by the equation $S^m = T$, which is étale over the generic fiber. This covering and a non-trivial character $\chi \colon \mathbb{Z}/m\mathbb{Z} \longrightarrow \overline{\mathbb{F}}_{\ell}^{\times}$ give rises to a smooth sheaf \mathcal{L}_{χ} of rank 1 over U_{η} . Compute $\chi_c(U_s, R\psi \mathcal{L}_{\chi})$ by using Huber's GOS formula. More generally, consider the case of a covering defined by the equation $S^m = f$, where $f \in \mathcal{O}_K[T]$.

Problem 2.4 Assume that K contains a primitive p-th root of unity ζ_p . We put $z = \zeta_p - 1$ and consider a covering of $\mathbb{A}^1_{\mathcal{O}_K} = \operatorname{Spec} \mathcal{O}_K[T]$ defined by the equation

$$\frac{(1-zS)^p - 1}{z^p} = -f,$$

where $f \in \mathcal{O}_K[T]$ (cf. [KS10, §8.1]). On the generic fiber, it is a Kummer covering of degree p; on the other hand, it induces an Artin-Schreier covering $T^p - T = \overline{f}$ on

²Actually they are slightly different (we need certain completion of Frac $A_{\mathfrak{p}}$), but it does not affect computations of the Swan conductor.

Project description

the special fiber. Let $U \subset \mathbb{A}^1_{\mathcal{O}_K}$ be the étale locus of this covering, and $X = \mathbb{P}^1_{\mathcal{O}_K}$. This covering and a non-trivial character $\psi \colon \mathbb{Z}/p\mathbb{Z} \longrightarrow \overline{\mathbb{F}}_{\ell}^{\times}$ give a smooth sheaf $\mathcal{L}_{f,\psi}$ of rank 1 over U_{η} . Compute $\chi_c(U_s, R\psi \mathcal{L}_{f,\psi})$ by using Huber's GOS formula.

If the rank of \mathcal{F} is one, $\operatorname{Sw}_x(\mathcal{F})$ can be described by means of the class field theory for higher dimensional local fields (*cf.* [Kat87, §4]). This suggests us that $\operatorname{Sw}_x(\mathcal{F})$ is related to the refined Swan conductor in [Kat89] and [Kat94].

Problem 2.5 In the cases of Problem 2.3 and Problem 2.4, compute the refined Swan conductor of \mathcal{L}_{χ} and $\mathcal{L}_{f,\psi}$, respectively (to do it, [Kat89, §4] and [KS10, §8] will be useful). Find a relationship between Sw_x and the refined Swan conductor.

Problem 2.6 Consider a higher-dimensional generalization of Huber's GOS formula in the rank 1 case by using the refined Swan conductor.

Problem 2.7 A proof of Huber's GOS formula is based on the Lefschetz trace formula [Hub01, Theorem 6.3]. Instead of this formula, use the log Lefschetz trace formula of Kato-Saito [KS10, §1] to obtain another GOS formula. Note that, in general if X is a proper strictly semistable \mathcal{O}_K -scheme and U is an open subscheme of X such that $H = X \setminus U$ is flat over \mathcal{O}_K and $(X, X_s \cup H)$ is a strictly semistable pair (cf. [dJ96, 6.3]), then the nearby cycle cohomology $H_c^i(U_s, R\psi\mathbb{Q}_\ell)$ is isomorphic to $H_c^i(U_{\overline{K}}, \mathbb{Q}_\ell)$. This makes it possible to apply the log Lefschetz formula to $H_c^i(U_s, R\psi\mathbb{Q}_\ell)$.

Problem 2.8 Try to find a higher-dimensional generalization of the formula developed in Problem 2.7 by using a similar method as in [KS08]. Compare it with the rank 1 case considered in Problem 2.6.

References

- [AS09] A. Abbes and T. Saito, Analyse micro-locale l-adique en caractéristique p>0: le cas d'un trait, Publ. Res. Inst. Math. Sci. **45** (2009), no. 1, 25-74
- [dJ96] A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. (1996), no. 83, 51–93.
- [DL91] J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology, and Newton polyhedra, Invent. Math. 106 (1991), no. 2, 275–294.
- [Ful93] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry.
- [Hub01] R. Huber, Swan representations associated with rigid analytic curves, J. Reine Angew. Math. **537** (2001), 165–234.

Yoichi Mieda

- [Kat87] K. Kato, Vanishing cycles, ramification of valuations, and class field theory, Duke Math. J. **55** (1987), no. 3, 629–659.
- [Kat89] ______, Swan conductors for characters of degree one in the imperfect residue field case, Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 101–131.
- [Kat94] _____, Class field theory, D-modules, and ramification on higherdimensional schemes. I, Amer. J. Math. 116 (1994), no. 4, 757–784.
- [KS08] K. Kato and T. Saito, Ramification theory for varieties over a perfect field, Ann. of Math. (2) **168** (2008), no. 1, 33–96.
- [KS10] _____, Ramification theory for varieties over a local field, preprint, arXiv:1007.0310, 2010.
- [Wew05] S. Wewers, Swan conductors on the boundary of Lubin-Tate spaces, preprint, arXiv:math/0511434, 2005.
- $[SGA4\frac{1}{2}]$ P. Deligne, *Cohomologie étale*, Lecture Notes in Mathematics, Vol. 569, Springer-Verlag, Berlin, 1977.
- [SGA5] Cohomologie l-adique et fonctions L (SGA5), Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin, 1977.
- [SGA7] Groupes de monodromie en géométrie algébrique (SGA7), Lecture Notes in Mathematics, Vol. 288, 340, Springer-Verlag, Berlin, 1972.