

Langages quelconques

I Définitions

	Définition : Grammaire non-contextuelle	
•		•
•		

Remarques :

- Par convention, on note les variables en majuscules et les terminaux en minuscules.
- On peut noter $X \to \alpha \mid \beta$ au lieu de $X \to \alpha, X \to \beta$.
- Il existe des grammaires plus générales (contextuelles) mais nous nous limiterons aux grammaires non-contextuelles, qu'on appellera simplement grammaires.

Définition: Dérivation

Soient $\alpha, \beta \in (V \cup \Sigma)^*$.

- On note $\alpha \Rightarrow \beta$ s'il existe une règle $X \to \gamma$ telle que $\alpha = \alpha_1 X \alpha_2$ et $\beta = \alpha_1 \gamma \alpha_2$ avec $\alpha_1, \alpha_2 \in (V \cup \Sigma)^*$. On dit alors qu'on a une dérivation immédiate de α en β .
- On note $\alpha \Rightarrow^n \beta$ s'il existe des mots $\gamma_0 = \alpha, \gamma_1, \dots, \gamma_n = \beta$ tels que $\gamma_0 \Rightarrow \gamma_1 \Rightarrow \dots \Rightarrow \gamma_n$. On dit alors qu'on a une dérivation de longueur n de α en β .
- On note $\alpha \Rightarrow^* \beta$ si $\alpha \Rightarrow^n \beta$ pour un certain $n \in \mathbb{N}$. On parle alors de dérivation de α en β .

Définition: Langage engendré

Soit $G = (\Sigma, V, R, S)$ une grammaire.

- On dit que G génère un mot $w \in \Sigma^*$ si $S \Rightarrow^* w$.
- L'ensemble $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$ est le langage engendré par G.
- Un langage L est dit non-contextuel (ou : algébrique, hors-contexte) s'il existe une grammaire hors-contexte G telle que L = L(G).

Exemples:

- Soit $G = (\Sigma = \{a, b\}, V = \{S\}, R = \{S \to aaS \mid b\}, S)$. $L(G) = \underline{\hspace{1cm}}$
- Soit $G = (\{a, b\}, \{S\}, \{S \rightarrow aSb \mid \varepsilon\}, S)$. $L(G) = \underline{\hspace{1cm}}$
- Soit $G = (\{x, y, \top, \bot, \lor, \land, \neg\}, \{S\}, R, S)$ avec P contenant les règles suivantes : $S \to \top \mid \bot \mid x \mid y \mid \neg S \mid S \lor S \mid S \land S$. L(G) est ______

Exercice 1.

Donner des grammaires engendrant les langages suivants sur $\{a, b\}$:

- 1. $L_1 = ab^*a$.
- 2. L_2 = ensemble des mots dont la taille est un multiple de 3.
- 3. L_3 = ensemble des mots ayant bbb comme facteur.
- 4. L_4 ensemble des expressions arithmétiques bien formées, comme $4+3\times 2$.
- 5. L_5 = ensembles des palindromes, c'est-à-dire des mots qui se lisent de la même façon de gauche à droite et de droite à gauche.
- 6. L_6 = ensembles des mots qui ne sont pas des palindromes.

Méthode: Si G une une grammaire et L un langage, on peut montrer $L(G) = L$ par double inclusi	Méthode :	Si (${\cal F}$ une un ϵ	grammaire et	L un	ı langage.	on 1	peut montrer .	L(C	(r) = L	par	double inclusion
--	-----------	------	------------------------------	--------------	------	------------	------	----------------	-----	---------	-----	------------------

- $L(G) \subset L$: montrer que si $S \Rightarrow^n u$ alors $u \in L$, par récurrence sur n.
- $L \subset L(G)$: montrer que si $u \in L$ alors $u \in L(G)$, par récurrence sur |u|.

On utilise alors souvent le théorème « évident » suivant :

Théorème							
Soit $G = (\Sigma, V, R, S)$ une grammaire, $\alpha_1, \alpha_2, \beta \in (V \cup \Sigma)^*$ et $n \in \mathbb{N}$.							
Si $\alpha_1 \alpha_2 \Rightarrow^n \beta$ alors il existe $\beta_1, \beta_2 \in (V \cup \Sigma)^*, k, p \in \mathbb{N}$ tels que :							
• $\beta = \beta_1 \beta_2$							
$ \bullet \alpha_1 \Rightarrow^k \beta_1 \\ \bullet \alpha_2 \Rightarrow^p \beta_2 $							
$\bullet n = k + p$							
Exercice 2. Soit G la grammaire définie par les règles $S \to aSbS \mid bSaS \mid \varepsilon$. Déterminer $L(G)$, en le démontrant.							
II Langages non-contextuels et langages réguliers Théorème L'ensemble des langages non-contextuels est stable par union, concaténation et étoile.							
C'est-à-dire : si L_1 et L_2 sont des langages non-contextuels alors $L_1 \cup L_2$, L_1L_2 et L_1^* sont des langages non-contextuels.							
Preuve:							
Remarque : les langages non-contextuels ne sont pas stables par intersection, différence, complémentaire.							
Théorème							
Tout langage régulier est algébrique.							
<u>Preuve</u> :							
Remarque : la réciproque est fausse, car $\{a^nb^n\mid n\in\mathbb{N}\}$ est algébrique mais pas régulier.							
Définition : Grammaire régulière (HP)							
Une grammaire est dite régulière (à droite) si chaque règle est de la forme $X \to aY, X \to a$ ou $X \to \varepsilon$.							
Théorème							
Un langage est régulier si et seulement s'il est engendré par une grammaire régulière.							

 $\underline{\text{Preuve}}$: