Recorrências: Método Mestre

Prof. Daniel Kikuti

Universidade Estadual de Maringá

Aquecimento

Resolva por árvore de recursão as seguintes recorrências:

- 1. T(n) = 4T(n/2) + n
- 2. $T(n) = 4T(n/2) + n^2$
- 3. $T(n) = 4T(n/2) + n^3$

Método Mestre

O que é?

"Livro de receitas" para recorrências do tipo:

$$T(n) = aT(n/b) + f(n),$$

onde: $a \ge 1$, b > 1 são constantes; e f é alguma função de n.

Legenda

- a é o número de subproblemas na recursão.
- ightharpoonup n/b é o tamanho de cada subproblema.
- \blacktriangleright f(n) é uma função assintoticamente positiva que representa o custo de dividir e combinar os resultados.

O método visto como uma árvore de recorrência

- ightharpoonup Raiz com custo f(n).
- Nível 1 com a nós, cada um com custo f(n/b). Nível 2 com a^2 nós, cada um com custo $f(n/b^2)$. E assim sucessivamente.
- A altura da árvore é $\log_b n$ (há $\log_b n + 1$ níveis), portanto, existem $a^{\log_b n} = n^{\log_b a}$ folhas.
- ▶ A soma do custo no i-ésimo nível é $a^i f(n/b^i)$.
- A complexidade total é:

$$T(n) = \sum_{i=0}^{(\log_b n) - 1} a^i f(n/b^i) + \Theta(n^{\log_b a}).$$

Teorema mestre

Sejam $a \ge 1$, b > 1 constantes, f(n) uma função e T(n) a recorrência definida sobre os inteiros não negativos:

$$T(n) = aT(n/b) + f(n),$$

onde interpretamos n/b como $\lceil n/b \rceil$ ou $\lfloor n/b \rfloor$.

- ▶ Caso 1: Se $f(n) = O(n^{(\log_b a) \epsilon})$ para constante $\epsilon > 0$, então $T(n) = \Theta(n^{\log_b a})$.
- ▶ Caso 2: Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \lg n)$.
- ▶ Caso 3: Se $f(n) = \Omega(n^{(\log_b a) + \epsilon})$ para constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ (condição de regularidade) para alguma constante c < 1 e para todo n suficientemente grande, então $T(n) = \Theta(f(n))$.

Como aplicar o método?

Dada uma recorrência T(n)=aT(n/b)+f(n), com $a\geq 1$ (inteiro), b>1 e f(n) positiva.

- 1. Compute $n^{\log_b a}$ e compare com f(n).
- 2. Se há um vencedor claro (polinomialmente maior), $T(n) = \Theta(vencedor)$.
- 3. Se são da mesma ordem, $T(n) = \Theta(n^{\log_b a} \lg n)$.

Existe uma lacuna entre os casos 1 e 2; e os casos 2 e 3. Se não há um "vencedor claro" entre f(n) e $n^{\log_b a}$, então o método não se aplica.

Exemplo

$$T(n) = 4T(n/2) + n$$

- \bullet a = 4; b = 2; f(n) = n; $n^{\log_b a} = n^{\log_2 4} = n^2$.
- $f(n) = O(n^{2-\epsilon})$ para $\epsilon = 1$.
- ▶ Portanto, $T(n) = \Theta(n^2)$. (Caso 1)

$$T(n) = 4T(n/2) + n^2$$

► $f(n) = \Theta(n^2)$, portanto, $T(n) = \Theta(n^2 \lg n)$. (Caso 2)

$$T(n) = 4T(n/2) + n^3$$

- \bullet a = 4; b = 2; $f(n) = n^3$; $n^{\log_b a} = n^{\log_2 4} = n^2$.
- $f(n)=\Omega(n^{2+\epsilon})$ para $\epsilon=1$; além disso, $4(n/2)^3 \leq cn^3$ para c=1/2 (condição de regularidade).
- ▶ Portanto, $T(n) = \Theta(n^3)$.

(Caso 3)

Exemplos quando NÃO se aplica o Método Mestre

a não é uma constante:

$$T(n) = 2^n T\left(\frac{n}{2}\right) + n^n.$$

▶ diferença não polinomial entre f(n) e $n^{\log_b a}$:

$$T(n) = 4T\left(\frac{n}{2}\right) + \frac{n^2}{\log n}.$$

a precisa ser inteiro:

$$T(n) = 0.5T\left(\frac{n}{2}\right) + n.$$

▶ f(n) não é positiva:

$$T(n) = 64T\left(\frac{n}{8}\right) - n^2 \log n.$$

caso 3, mas viola restrição de regularidade:

$$T(n) = T\left(\frac{n}{2}\right) + n(2 - \cos n).$$

Exercício

1.
$$T(n) = 9T(n/3) + n$$
.

2.
$$T(n) = T(2n/3) + 1$$
.

3.
$$T(n) = 3T(n/4) + n \lg n$$
.

4.
$$T(n) = 2T(n/2) + n \lg n$$
.

5.
$$T(n) = 2T(n/2) + n/\lg n$$
.

Exercício

1.
$$T(n) = 9T(n/3) + n$$
.

$$T(n) = \Theta(n^2).$$

2.
$$T(n) = T(2n/3) + 1$$
.

$$T(n) = \Theta(\lg n).$$

3.
$$T(n) = 3T(n/4) + n \lg n$$
.

$$T(n) = \Theta(n \lg n).$$

4.
$$T(n) = 2T(n/2) + n \lg n$$
.

Não se aplica (entre 2 e 3).

5.
$$T(n) = 2T(n/2) + n/\lg n$$
.

Não se aplica (entre 1 e 2).

Leitura

Ler o Capítulo 4 do Cormen. Os métodos para resolução de recorrência encontram-se nas Seções 4.3, 4.4 e 4.5.

Referêcias

- ► Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms.
- https://en.wikipedia.org/wiki/Master_theorem
- ► Massachusetts Institute of Technology (MIT), "Master Theorem: Practice Problems and Solutions", http://www.csail.mit.edu/~thies/6.046-web/master.pdf