(1) Consider the unit vector $\hat{\mathbf{n}} = \sin \theta \hat{\mathbf{i}} + \cos \theta \hat{\mathbf{k}}$ and its associated spin operator

$$S_{\hat{\mathbf{n}}} = \vec{S} \cdot \hat{\mathbf{n}} = \sin \theta \, S_{\mathcal{X}} + \cos \theta \, S_{\mathcal{Z}}.$$

We'll work with spin-1/2 for the time being.

- (a) What physical quantity does $S_{\hat{\mathbf{n}}}$ represent?
- (b) Write down the representation of $S_{\hat{n}}$ in the *z*-state basis, $\{|+_z\rangle, |-_z\rangle\}$.
- (c) Find the eigenvalues and eigenvectors of $S_{\hat{n}}$. (Call them $|+_{\hat{n}}\rangle$ and $|-_{\hat{n}}\rangle$.) Again, express your answers in the *z*-state basis.
- (d) If the state of the system is $|+_x\rangle$ and you measured the physical quantity associated with $S_{\hat{n}}$, what values could you measure and with what probabilities?