$S = \iiint \left(\frac{1}{3} \left(3 t_{1} \mathcal{A}^{\alpha_{1}}_{\alpha} \mathcal{A}^{\theta}_{\beta} + 3 \mathcal{A}^{\alpha \beta \chi}_{\alpha} \sigma_{\alpha \beta \chi} + 3 f^{\alpha \beta}_{\alpha} \tau_{(\Delta + \mathcal{K})_{\alpha \beta}} - 6 t_{1} \mathcal{A}^{\theta}_{\alpha} \partial_{\beta} f^{\alpha_{1}} + 6 t_{1} \mathcal{A}^{\theta}_{\beta} \partial_{\beta} f^{\alpha_{2}}_{\alpha} - 3 t_{1} \partial_{\beta} f^{\alpha_{3}}_{\alpha} - 3 t_{1} \partial_{\beta} f^{\alpha_{1}}_{\alpha} + 6 t_{1} \partial_{\beta} f^{\alpha_{1}}_{\alpha} \partial_{\beta} f^{\beta_{1}}_{\alpha} - 4 r_{1} \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\beta} + 2 r_{1} \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 2 r_{1} \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 2 r_{1} \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 2 r_{1} \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 3 r_{2} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} - 3 r_{2} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} - 3 r_{2} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 2 r_{1} \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 2 r_{1} \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 3 r_{2} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 3 r_{2} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} - 3 r_{2} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 2 r_{1} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 2 r_{1} \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \partial_{\beta} \mathcal{A}^{\alpha \beta_{1}}_{\alpha} + 3 r_{2} \partial_{\beta} \mathcal$

Wave operator $0^{\circ}_{\mathcal{A}^{\parallel}}$ $0^{\circ}_{f}^{\parallel}$

• 31"	1	1	O	U											
° f † †	$-i \sqrt{2} kt$	$-2k^2t$	0	0											
${\overset{0^+}{\scriptstyle{\bullet}}}f^\perp$ †	Θ	Θ	0	0											
^o -̂ <i>A</i> [∥] †	Θ	Θ	0	0	${}^{1^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{A}^{\parallel}_{lphaeta}$	${}^{1^{\scriptscriptstyle +}}_{\bullet}\mathcal{A}^{\scriptscriptstyle \perp}{}_{\alpha\beta}$	$\ f\ _{\alpha\beta}$	${}^{1^{-}}_{\bullet}\mathcal{A}^{\parallel}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}^{\perp}{}_{\alpha}$	$ f _{\alpha}$	$^{1^{-}}_{\bullet}f^{\perp}_{\alpha}$				
				\mathcal{A}^{\parallel}	$k^2 \left(2 r_1 + r_5\right) + \frac{t_1}{6}$	$-\frac{t_{\frac{1}{1}}}{3\sqrt{2}}$	$-\frac{i k t_{\frac{1}{1}}}{3 \sqrt{2}}$	0	0	Θ	0				
					$-\frac{t_1}{3\sqrt{2}}$			0	Θ	0	Θ				
				$f^{\dagger}f^{\dagger}$	$\frac{i k t_{1}}{3 \sqrt{2}}$	$-\frac{1}{3} ikt_{1}$		0	0	Θ	0				
				$^{1^{-}}_{\bullet}\mathcal{A}^{\parallel}\uparrow^{lpha}$	0	0	0	$k^2 \left(r_{\stackrel{\bullet}{1}} + r_{\stackrel{\bullet}{5}}\right) - \frac{t_{\stackrel{\bullet}{1}}}{2}$	$\frac{t_1}{\sqrt{2}}$	0	i k t . 1				
				$^{1}_{\cdot}\mathcal{A}^{\perp}\dagger^{\alpha}$	0	0	Θ	$\frac{t_1}{\sqrt{2}}$	Θ	0	0				
				$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0				
				$\frac{1}{\cdot}f^{\perp}\uparrow^{\alpha}$	0	0	Θ	- i k t . 1	Θ	0	0	${}^{2^{+}}_{\bullet}\mathcal{H}^{\parallel}_{\alpha\beta}$	$2^{+}_{\bullet}f^{\parallel}_{\alpha\beta}$	${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}{}_{\alpha\beta\chi}$	
											$\mathcal{A}^{\downarrow}\mathcal{A}^{\parallel}\uparrow^{\alpha\beta}$				I
											$f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t_{\frac{1}{2}}}{\sqrt{2}}$	$k^2 t$	0	
											${}^{2^{-}}\mathcal{A}^{\parallel}$ † $^{\alpha\beta\chi}$		0	$k^2 r_{\bullet} + \frac{t_{\bullet}}{\frac{1}{2}}$	
Sat	urated	nrona	ada	ator											

ζ τ" †	$(1+2 k^2)^2 t$	$(1+2 k^2)^2 t_1$	Θ	Θ										
0⁺τ⁴ †	0	0	0	0										
⁰⁻ σ †	0	0	0	0	${\stackrel{1^{+}}{\cdot}}\sigma^{\parallel}{}_{lphaeta}$	${\stackrel{1^{+}}{\cdot}}\sigma^{\perp}{}_{\alpha\beta}$	$\left. \begin{smallmatrix} 1^+ \\ \bullet \end{smallmatrix} _{\tau} \right\ _{lpha eta}$	$^{1^{-}}_{\bullet}\sigma^{\parallel}{}_{\alpha}$	$^{1}_{\scriptstyle{ullet}}\sigma^{\!\!\perp}_{lpha}$	$1^{-}_{\bullet}\tau^{\parallel}_{\alpha}$	1 ⁻ τ [±] α			
_				$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{1}{k^2\left(2r_1+r_5\right)}$	$\frac{1}{\sqrt{2} (k^2 + k^4) \left(2 r_1 + r_5\right)}$	$\frac{i}{\sqrt{2} (k+k^3) \left(2 r_1 + r_5\right)}$	0	0	0	0			
				$^{1^{+}}_{\bullet}\sigma^{\perp}$ † $^{\alpha\beta}$	$\frac{1}{\sqrt{2} (k^2 + k^4) \left(2 r_1 + r_5\right)}$	$\frac{6 k^2 \left(2 r_1 + r_5\right) + t_1}{2 \left(k + k^3\right)^2 \left(2 r_1 + r_5\right) t_1}$	$\frac{i\left(6k^{2}\left(2r_{1}+r_{5}\right)+t_{1}\right)}{2k\left(1+k^{2}\right)^{2}\left(2r_{1}+r_{5}\right)t_{1}}$	0	0	0	0			
				$^{1^{+}}\tau^{\parallel}\uparrow^{lphaeta}$	$-\frac{i}{\sqrt{2} (k+k^3) \left(2 r \cdot + r \cdot 5\right)}$	$-\frac{i\left(6k^{2}\left(2r_{1}+r_{5}\right)+t_{1}\right)}{2k\left(1+k^{2}\right)^{2}\left(2r_{1}+r_{5}\right)t_{1}}$	$\frac{6 k^{2} \left(2 r_{1} + r_{5}\right) + t_{1}}{2 \left(1 + k^{2}\right)^{2} \left(2 r_{1} + r_{5}\right) t_{1}}$	0	0	0	0			
				$^{1^{-}}\sigma^{\parallel}$ † $^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2 k^2 t_1}$	0	$\frac{2 i k}{t_1 + 2 k^2 t_1}$			
				$\frac{1}{\cdot}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_{i}+2 k^2 t_{i}}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0 -	$\frac{i \sqrt{2} k \left(2 k^2 \left(r_{1} + r_{5}\right) - t_{1}\right)}{\left(t_{1} + 2 k^2 t_{1}\right)^2}$			
				$1^{-}_{\bullet}\tau^{\parallel}+^{\alpha}$	0	0	0	0	0	0	0			
				$1 \bar{\tau}^{\perp} \uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i \sqrt{2} k \left(2 k^2 \left(r_1 + r_5\right) - t_1\right)}{\left(t_1 + 2 k^2 t_1\right)^2}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$	$2^{+}_{\bullet} \tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$
				•							2 ⁺ σ † ^{αβ}	$\frac{2}{\left(1+2k^2\right)^2t_{\mathbf{i}}}$	$-\frac{2 i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$	0
											$\overset{2^+}{\cdot} \tau^{\parallel} + \overset{\alpha\beta}{\cdot}$	$\frac{2 i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$	$\frac{4 k^2}{\left(1+2 k^2\right)^2 t_{1}}$	0
											$^{2^{-}}\sigma^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
^{0−} σ == 0	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} = 0$	1
⁰⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = 0$	1
$-2 i k \cdot 0^+ \sigma^{\parallel} + 0^+ \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- ₇ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k \frac{1}{\cdot} \sigma^{\perp} \alpha^{\beta} + \frac{1}{\cdot} \tau^{\parallel} \alpha^{\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$-2 i k \cdot 2^+ \sigma^{\parallel}^{\alpha\beta} + 2^+ \tau^{\parallel}^{\alpha\beta} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi}_{\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\gamma}_{\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{ \delta} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} +$	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi\tau} \left(\Delta + \mathcal{K} \right)^{\chi\delta} - 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} - 4 \ i \ \eta^{\alpha\beta} \ k^{\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$	
Total expected gauge	generators:	17

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{i}} > 0$
Square mass:	$-\frac{t_1}{2r_1} > 0$
Spin:	2
Parity:	Odd

Massless spectrum

$2 p^{2} (t_{1} + (2 r_{1} + r_{2}) p^{2})$

Pole residue:	$\frac{9}{2r.+r.}$ +	 t. ²	5	— > 0
Polarisations:	2			

Unitarity conditions

r. < 0 &&r. > -2 r. &&t. > 01 1 1