UTN – 2° Parcial	Sistemas Operativos	18/11/2017
OTIN - Z Parcial	Sistemas Operativos	10/11/2017

Nombre y Apellido: Curso:

TEORÍA			PRÁCTICA			NOTA		
1	2	3	4	5	1	2	3	

TEORÍA: Responda brevemente las siguientes preguntas. Justifique.

- Explique qué utilidad tiene la TLB y en qué momentos se lee y se escribe. ¿Por qué es muy importante en la paginación jerárquica?
- 2. ¿En qué se parecen y en qué se diferencian las técnicas de Evasión y Prevención de deadlocks? Proponga una situación en la que sea mejor usar una que otra (justificando por qué)
- 3. V o F
 - a. En una E/S no bloqueante, en caso de no estar listo el resultado, se devolverá el control al proceso y luego se le avisará cuando el mismo esté listo.
 - b. El uso de algoritmos de planificación de disco buscan minimizar el tiempo de búsqueda
- 4. Indique qué opciones existen a la hora de asignar frames de memoria, en paginación por demanda, teniendo en cuenta las variables "tipo de asignación frames" y "tipo de sustitución de páginas". Explique cuáles combinaciones son posibles y cuáles no.
- 5. Compare Buddy System, segmentación y paginación usando los criterios: fragmentación interna, fragmentación externa, asignación contigua y complejidad asignación de memoria.

<u>PRÁCTICA:</u> Resuelva los siguientes ejercicios <u>justificando</u> las conclusiones obtenidas.

Ejercicio 1

Un sistema de alta criticidad utiliza evasión de deadlocks con el algoritmo del banquero. En un momento un Proceso 1 (P1) pide una instancia del Recurso 1 (R1) y el estado del sistema es el siguiente:

_	. •					_			
υ	Δtı	\sim 1	α n	es	m	21	/11	\mathbf{r}	20

	R1	R1	R3
P1	3	1	1
P2	2	1	0
Р3	0	1	2

Recursos asignados

	R1	R1	R3
P1	1	0	1
P2	1	1	0
Р3	0	1	1

Recursos totales

R1	R2	R3
3	2	3

- 1. Indique por qué la técnica usada no asignaría dicha petición inmediatamente. Justifique
- 2. Muestre en este caso particular por qué la técnica es pesimista.
- 3. Indique cuál debería ser el vector de recursos totales mínimo para que la petición original pueda ser asignada inmediatamente.

Ejercicio 2

Un sistema utiliza un esquema de paginación bajo demanda con una asignación fija de 3 frames por proceso y reemplazo local. Dada la siguiente tabla del proceso X en ejecución, responda los siguientes puntos:

Pagina	Frames	Referencia	Bit Uso	Bit Modificado	Bit Presencia
2	15	160	0	0	0
10	11	20	1	0	0
14	12	155	0	1	0
3>	11	10	1	0	1
5	12	150	0	1	1
8	15	200	0	0	1

 La dirección física B31E h, la cual hace referencia al frame 11, contiene una página del proceso X (dando lugar al estado actual). Indique la dirección lógica que generó dicha dirección física.

Posteriormente se referencian las siguientes direcciones lógicas del proceso X: B1AOh (L) – C451h (L) – A11Eh (L) – B0EOh (E) – 3EA1h (E) – 510Oh (L) y aplicando un algoritmo de reemplazo de páginas se llega al siguiente estado final:

Pagina	Bit Uso	Bit Modificado
5	1	0
3>	1	1
11	0	1
	5 3>	Pagina Bit Uso 5 1 3> 1 11 0

Indique: ¿Cuál/es algoritmos se puede/n haber utilizado y cual/es no? Justifique

Nota:

- * Referencia: indica el último instante de referencia de dicha página.
- * Las direcciones son de 16 bits.
- * -->Indica el puntero de próxima víctima, en caso de que el algoritmo lo requiera. Los frames asignados se ordenan en forma creciente.

Ejercicio 3

Se tiene un disco de 32 sectores por pista con una velocidad de 12000 RPM, tiempo entre pistas 2ms y tiempo de transferencia 300k por seg. El cabezal se encuentra en t= 0 en sector lógico 15400, viniendo del 13100. La configuración del disco es CHS = (200, 4, 32).

Indique en qué orden se atenderán los siguientes pedidos (sectores físicos) según los algoritmos:

Instante	0	40	200	240	320	600
Sector físico	(11, 1, 2)	(129, 2, 10)	(12, 0, 30)	(100, 0, 1)	(11, 3, 3)	(110, 2, 2)

- 1) SCAN
- 2) SSTF
- 3) N-STEP-SCAN (con N=3)

Nota: Tener en cuenta únicamente tiempo de búsqueda (entre pistas)

Condiciones de aprobación: 3 preguntas correctamente respondidas y 2 ejercicios correctamente resueltos.