上 海 交 通 大 学 试 卷 (_A_卷) (2010 至 2011 学年 第 一 学期)

	班级号	学号_			姓名
	— 课程名称	《数据结构	(A 类)》		成绩
	_				
1.	填空题(每格2分				
1.		序遍历的第一个结点 fir	stPost():		
	bnode* firstPost (b				
	bnode *ptr = r_0				
		JLL) return NULL;			
)			
) p	tr = ptr -> llink;		
	-	ptr -> rlink;			
	return ptr;				
	}				
	<pre>int i, j; j = i = 1 while (hashtal { j = (</pre>	k % p; ble[j].key != k && hashta) % m; return (-1);			
3.		全二叉树中最少有 10)		个结点。 9	A 5 B 6
4.		Prim 算法求从结点 A 添 加 的	出发的最小生成树 结 点 类	5 .	D 2 F

佑	人:							
5.		口果初始数据基本接近于正序,则选用						
		方法为好,如果初始无序,则选用						
	方法为好。							
6.	已知一棵二叉查找树的前序遍历的序列	列为: HEDACBGF, 则该树的后序遍历的序列为:						
		o						
2	外 招 所 (
2. 1.	选择题(每题2分,共20分):	到市 · · · · 邓山珂左· · · · · · · · · · · · · · · · · · ·						
1.	在二叉树的前序遍历和中序遍历的序列中, x 都出现在 y 之前, 则。							
	A) x 是 y 的祖先	B)y是x的祖先						
	C) x 是 y 的兄弟	D)不能确定 x 与 y 的关系						
2.	若某线性表中最常用的操作是在最后一个元素之后插入一个元素和删除最后一个元素,则采用							
	如下哪一种存储方式最节省运算时间。							
	A)单链表	B) 双链表						
	C) 带头结点的双循环链表	D) 容量足够大的顺序表						
3.	若元素 ABCDEF 依次进栈,允许进栈、退栈操作交替进行。但不允许连续三次进行退栈工作,							
	则不可能得到的出栈序列是	°						
	A) DCEBFA	B) CBDAEF						
	C) BDCEAF	D) AFEDCB						
4.	判断一个有向图中是否存在回路,下列	列选项中两种算法均可行的是。						
	A) Dijkstra 算法和深度优先遍历算法	B) 深度优先遍历算法和拓扑排序方法						
	C) 拓扑排序方法和 Kruskal 質法	D) Kruskal 質注和 Floyd 質注						

5.		对某个无向图的邻接矩	库来说,下列说 治	去错误的是	°			
	A)) 第 i 行上非零元素个数和第 i 列上非零元素个数一定相等) 任一行上的元素不可能全都是零						
	B)							
	C)	矩阵中非零元素个数等	于图中边数的2倍	<u> </u>				
	D)	矩阵的列数等于图中的						
6.		磁盘文件有m个初始归	并段,采用 k 路り	归并时,所需要的归	并遍数是。			
	A)	$\log_2 k$ B) $\log_2 k$	n	C) $\lceil \log_k m \rceil$	$D) log_k m$			
7.		下列说法错误的是	o					
	A))求最短路径的 Dijkstra 算法中边的权值不可以为负						
	B)	Dijkstra 算法允许图中有回路						
	C)	Prim 算法允许图中有回路						
	D)	Floyd 算法中边的权值不	可以为负					
8.		简单插入排序、冒泡排序	序、快速排序、选择	¥排序、归并排序、增	排序在平均情况下的时间复杂度分别			
	是	0						
	A)	$O(n^2), O(n^2), O(n^2), O(n^2), O(n\log_2 n), O(n\log_2 n)$						
	B)	$O(n^2), O(n^2), O(nlog_2n), O(n^2), O(nlog_2n), O(nlog_2n)$						
	C)	$O(n^2)$, $O(n^2)$, $O(n^2)$, $O(nlog_2n)$, $O(nlog_2n)$						
	D)	$O(n^2),O(n^2),O(n^2),O(nlog_2n),O(nlog_2n),O(log_2n)$						
9.		以下序列中,	是最大化均	能 。				
	A)	75, 65, 30, 15, 25, 45, 20,	10 B)	75, 65, 45, 10, 30, 2	5, 20, 15			
	C)	75, 45, 65, 30, 15, 25, 20,	10 D) 75,	45, 65, 10, 25, 30, 20	, 15			
10.		设有序顺序表中有n个	数据元素,则利	月用二分查找法查找	数据元素 X 的最多比较次数不超过			
	。 A)	$\log_2 n+1$		B) log ₂ n-1				
		$\log_2 n$		D) $\log_2(n+1)$				
		-		= ` ′				

- 3. 简答题 (每题 6 分, 共 12 分):
- 1. 己知字母使用频率(见下表),求这 8 个字符的 Huffman 编码值。要求写出 Huffman 树的建立过程,约定在子树合并时,根的权值小的子树为左子树,大的为右子树。

字母	C1	C2	C3	C4	C5	C6	C7	C8
使用频率(%)	5	25	3	6	9	12	36	4

2. 简述如何利用邻接表和邻接矩阵判断有向图是否存在环。

```
4. 程序分析题(8分):
     void swap ( int ary[ ], int i, int j ) {
          int temp = ary[i];
          ary[i] = ary[j];
          ary[j] = temp;
     void push_down ( int ary[ ], int first, int last ) {
          int r = first, temp;
          while ( 2*r \le last ) {
             if ( 2*r == last ) {
                   if ( ary[r] > ary[2*r] ) swap ( ary, r, 2*r );
                   break;
              } else
                   if ( ary[r] > ary[2*r] && ary[2*r] \le ary[2*r+1] ) {
                        swap ( ary, r, 2*r );
                        r = 2*r;
                   else\ if\ (ary[r] > ary[2*r+1] & ary[2*r+1] <= ary[2*r]\ )
                        swap ( ary, r, 2*r+1 );
                        r = 2*r+1;
               } else
                    break;
          }
     void bubble_up ( int array[ ], int i )
     { int j, temp;
          while (i \ge 2) {
               j = i/2;
               if ( array[j] <= array[i] ) break;</pre>
                    swap ( array, i, j );
                    i = j;
          }
     int heapDelete ( int Array[ ], int i, int n ) {
          int elem = Array[i];
          Array[i] = Array[n];
          if (i > 1 \&\& Array[i] < Array[i/2])
               bubble_up ( Array, i );
          else
               if (Array[i] > Array[2*i] || Array[i] > Array[2*i+1])
                    push_down ( Array, i, n-1 );
          return elem;
     试分析上述程序的功能,包括时间复杂度。
```

- 5. 算法设计题(每题8分,共16分):
- 1. 求元素按递增排列的单链表 A 和 B 的交集,并利用原结点空间存放。

2.	给出一系列表示父子关系的结点对,如何判断这些结点是否组成一棵树。
	和京斯(有斯12八) 世24八)
6. 1.	程序题(每题 12 分, 共 24 分): 试编写一个完整程序,用于删除非递减排列的单链表 L 中所有值相同的元素(只保留一个值相同
2.	的元素)。
۷.	已知一棵完全二叉树以顺序存储的方式保存在一个数组 Array[1n]中,写出在其上按中序遍历的方式打印结点的程序代码: void print_in_order (char Array[], int n)。
7.	附加题 (8分)
	设计算法求有向图任意两结点之间是否存在道路。设图的邻接矩阵为A,结点标号为0,1,N。