STATISTICAL ANALYSIS USING SAS ENTERPRISE GUIDE AND DASHBOARD DEVELOPMENT USING TABLEAU

Ву

TAIWO OLORUNTELE

(Student id @00609735)

Principle of Data Science Module

School of Computing, Science & Engineering
University of Salford, Manchester.

January 13, 2022

1. INTRODUCTION:

In this project, I shall examine the economic health of various countries and how this impacts their citizens using data from the World Development indicators in the World Bank database (Worldbank.org 2015) for a period of 15 years from 2006 to 2020 which I believe is a good metric since the world has changed significantly during from the last decade.

For the selection of my countries, I have gone with picking based on GDP as my main target as I believe is a great metric for determining how well a country is doing. On this basis, I looked at Statista and found 5 of the best performing European countries, 4 of the worst African countries, and 4 of the best African countries, which happen to be from the MENA (Middle East and North Africa) region.

These countries are listed below as well as a chart showing the GDP metrics over 15 years.

- 1. Germany
- 2. France
- 3. Spain
- 4. Netherlands
- 5. Italy
- 6. Algeria
- 7. Tunisia
- 8. Morocco
- 9. Egypt

- 10.Burundi
- 11.Gambia
- 12.Lesotho
- 13.Guinea-Bissau

The data reveals that Germany leads, as well as the European countries, with Egypt being the best performer in Africa and Gambia being the worst.

2. BACKGROUND RESEARCH:

What is a dashboard? Essentially, a dashboard is a tool that tracks, analyzes, and displays KPIs, metrics, and critical data points. The goal of displaying these data points is to make the information more easily understandable to the average user. Dashboards are a great business intelligence tool that can be used to make well informed decisions (Computing 2020). In this manner, various trends over a particular time period or various attributes can be analyzed at a glance, for instance data over a specified period of time, top performing ads on a site, monthly visitors on a site, etc. As I have shown above, I can also easily calculate the GDP of my selected countries.

There are various software used for dashboard creation including Tableau, Microsoft Power BI, Microsoft Excel but for this project, I have utilized Tableau which I found to be the best and most interactive to use.

What makes a good dashboard? You must create dashboards that are easily readable and easy to use. If your audience has trouble making sense of them, the entire purpose is defeated. To avoid confusing the audience, you must be explicit with the outcome you are aiming for. You also need to pay attention to the colors because you don't want to blind your audience. Colors play an enormous role in your presentation, picking the right blend enables your audience with easy identification.

Dashboard methodologies:

It is also critical to plan your dashboard well in advance. You need to be familiar with the different types of charts and pick the one that best suits the story you're telling. If you want to show trends, you'll most likely want to use a bar chart or line chart while if you want to show composition, then a pie chart is more appropriate. Noting as well, use of a bar chart for too much

components of a total value can make your chart look jumbled up and unreadable.

Numbers:- Giving context to your numbers matter a lot. For example, you'd want to highlight bad numbers as Red and good numbers as Green since Red is known to be a colour to depict danger and Green for prosperity.

Grouping:- Having similar KPIs together is key, if you have to work with multiple. You could have sales numbers on one dashboard and region related numbers on another dashboard, it wouldn't make much sense during presentation to switch from dashboard to dashboard, when you could simply have related ones on single dashboard.

Labels:- Use of labels is also important, as you do not want to start to figure out what numbers relate to what after you're done building, when you could easily have done so from the start.

Animations:- An overlooked chart method is the animated bar chart, which could show movement over the years, for example plotting sales number of artistes over 10-20 years, it would be useful to see how they performed overtaking eachother and when it happened.

3. EXPLORATION OF DATASET:

As stated earlier, this project is based on economic health situation of various companies and its impact on its citizens. After carefully going through the databases available on the World Bank side, I decided to go with a mix of the Jobs section and Health section as I believe those are two major components of the economy. Jobs focus on contributing to the GDP majorly and Health on how much the government is committed to keeping its citizens in good condition. All variables I picked ranged over 15 years from 2016 to 2020 and are listed below:

- 1. GDP (current US\$)
- 2. Access to electricity, urban (% of urban population)
- 3. Access to electricity (% of population)
- 4. Antiretroviral therapy coverage (% of people living with HIV)
- 5. Children (0-14) living with HIV
- 6. Children (ages 0-14) newly infected with HIV
- 7. Current health expenditure (% of GDP)
- 8. Incidence of tuberculosis (per 100,000 people)
- 9. Incidence of malaria (per 1,000 population at risk)
- 10.International tourism, number of arrivals
- 11. Newborns protected against tetanus (%)
- 12.Labor force, female (% of total labor force)
- 13. Labor force, total
- 14. Exports of goods and services (% of GDP)
- 15. Fixed telephone subscriptions
- 16. Fixed broadband subscriptions
- 17. Mobile cellular subscriptions
- 18. Urban population
- 19. Individuals using the Internet (% of population)

For proper analysis, I have had to Transpose the data in SAS Enterprise Guide, to get the columns in a better format. Also, a few data was missing for some years which I imputed based on the Average of the last 3 years after my preparation and cleaning, I was left with no empty spaces. Here's an excerpt of the data after Transposing, which I saved as an Excel file then imported to Tableau:

	Country Name		Years	GDP (current US\$)	Access to electricity, urban (%	Access to electricity (% of popu	coverage	Ohildren (0-14) living with HIV	infec	(% of	Incidence of tuberculosis (per 1	Incidence of malaria (per 1,000	Intern toui num	^
1	Algeria	2006		117027000000	99	99	22		100	3.35510325	79	0.000506097	1	
2	Algeria	2007		134977000000	99	99	23		100	3.82141781	78	0.012955969		
3	Algeria	2008		171001000000	100	99.3	23		100	4.20188236	74	0.001470659		
4	Algeria	2009		137211000000	99.50669098	98.81757355	29		100	5.35939837	77	0	1	
5	Algeria	2010		161207000000	99.55960083	98.82183838	38		100	5.11716986	78	0.000473231	2	
6	Algeria	2011		200013000000	99.61138916	98.84799194	41	500	100	5.26748085	73	0.000464402	2	
7	Algeria	2012		209059000000	99.25673759	98.76466047	47		100	6.00050974	73	0.025048469	2	
8	Algeria	2013		209755000000	99.70097351	98.97725677	56		100	6.03576279	68	0.003571173	. 2	
9	Algeria	2014		213810000000	99.73947906	99.07403564	64		100	6.54721403	72	0	2	
10	Algeria	2015		165979000000	99.77484894	99.18688965	71		200	6.97849178	75	0	1	
11	Algeria	2016		160034000000	99.8078537	99.40287018	77		200	6.60778189	70	0	2	
12	Algeria	2017		170097000000	99.83929443	99.61513519	79		200	6.38032866	70	0	2	
13	Algeria	2018		174911000000	99.8981781	99.641922	83		200	6.2184267	69	0	2	
14	Algeria	2019		171767000000	99.8	99.5	85		200	6.2	61	0	2	
15	Algeria	2020		145009000000	99	99	85	850	200	6.346	59	0	2	
16	Burundi	2006		1273375020	51.59951782	2.66	7	26000	2900	9.94232273	181	235.6769652		
17	Burundi	2007		1356199365	51.80656433	4.775167942	11	25000	2800	10.5808115	169	222.9154949		
18	Burundi	2008		1611835902	39.6	4.8	14	23000	2500	9.23542786	160	222.7746531		
19	Burundi	2009		1781455092	52.25225067	5.40973711	18		2400	10.35023212	152	220.6495356		
20	Burundi	2010		2032135247	49	5.3	24	20000	1900	11.27638912	144	210.1978813		
21	Burundi	2011		2235820868	52.71091843	6.106936455	28		1800	10.06996346	138	184.1450365		
22	Burundi	2012		2333308099	58.5	6.5	32	18000	1700	8.52668476	133	153.9276694		
23	Burundi	2013		2451625333		6.9	36	16000	1500	8.14256191	128	140.5884216		
24	Burundi	2014		2705783272	52.1	7	42	15000	1300	6.88927555	126	141.5075585		
25	Burundi	2015		3104394858	57.14767456	8.403089523	48	14000	1200	6.57857561	122	165.5009225		
26	Burundi	2016		2732808557	58.69766998	9.251799583	60	13000	930	7.49265718	118	225.743378		
27	Burundi	2017		2748180474	61.8	9.3	71		960	7.51763725	114	250.2725129		
28	Burundi	2018		2668495743	61.54690933	10.59861469	78	11000	980	7.74165535	111	250.2724964		
29	Burundi	2019		2631434363	62.74242401	11.0647974	86	10000	920	7.8	107	241.677		
30	Burundi	2020		2841786382	65.433	13.654	88	9700	950	7.9333	103	247		v

4. INVESTIGATION OF DATA WORKFLOWS & PROPOSAL FOR DESIGN OF DASHBOARD

Dashboard aim:

- 1. To find relationship between Export of Goods and Services and GDP
- 2. To find relationship between International Tourism and GDP
- 3. To find the gender gap occurrence between countries
- 4. To find how much of the GDP is spent towards Health matters
- 5. To find the relationship between Antiretroviral Therapy offered to children and their HIV rates

Selection of Charts: for most of this research I have had to use bar charts and line graphs, as most of the data operates on time series spread over years. I made use of the dual axis charts for my comparisons what I wanted to see the relationship between GDP and current health expenditure, GDP and international tourism, GDP and exports of goods and services, antiretroviral therapy and the prevalence of HIV in children ages 0 to 14. I have also made use of the map to show the positions of my selected countries and get some data off the specified KPI.

KPIs used: as specified earlier above the variables I picked she used as my kpi I will further go on with the explanation of my most important ones.

Dashboard structure: For my dashboards, I have decided to create two(one representing Health and the other based on economy) as I have examined my data and as said earlier, it wouldn't make too much sense to have a cluttered dashboard, which is why I decided to go with two. For both, I have decided to apply a Country Name filter to easily scan through trends of the countries year by year. By doing this, a country is selected one by one and the values change along with it to represent.

1. GDP: Known as gross domestic product is one of the major indicators to determine how well a country is doing economically. When this is growing, workers and businesses are generally better off than when it is

slowing down. It's constantly be defined how's the total value created in an economy over a particular time.

2. Access to electricity, urban (% of urban population): This specifies the percentage of the urban population that has access to electricity. Access to electricity has proven to be a great indicator of how well a country has progressed because this enables its people to healthier living, internet and televisions which is key to getting more information and has helped boost businesses. We have seen more startups and businesses go online. Only with constant supply of electricity they can thrive. Globally, the percentage of people with access to electricity has been steadily increasing over the last few decades. In 1990, around 71% of the world's population had access and increased to 87% in 2016. (Data 2020)

Electricity

3. Antiretroviral therapy coverage (% of people living with HIV): this specifies the percentage of the total amount of people Living with HIV that's how access to antiretroviral therapy. I believe the government has a lot to do with providing as this is not something that can easily be gotten. The more people who have access to this , the more they can save the lives of the infected As HIV still seems to be a major cause of death. On the global front, between 55.9 million—110 million people have become infected with HIV since inception and between 27.2 million—47.8 million of this number have died from AIDS-related illnesses. In 2020, 73% of all people living with HIV were accessing treatment. 74% of adults aged 15 years and older living with HIV had access to treatment, as well as 54% of children aged 0—14 years with a suppression rate of 90% (Unaids.org 2021)

- 4. Children (0-14) living with HIV: this is the number of children who happens to be infected with HIV within the age range of 0-14. This number encompasses the children who were born with the virus and those who happens to have contacted it's one way or the other.
- 5. Children (ages 0-14) newly infected with HIV: This metric shows how fast or how slow children are being infected and would help with identifying what attention needs to be transferred to. This has to be kept at a very low rate as children are more or less the backbone of the future economy. The UN Joint Program on HIV/AIDS (UNAIDS) estimates that about 85% of 2.6 million children born with the infection are from sub-Saharan Africa e.g Burundi, Lesotho, Guinea etc . About 650,000 children are living with HIV/AIDS and approximately 1000 infected infants are born every day in Africa, which is a staggering rate and has to be looked into by the government. (Marum 2022)

Newly HIV Infected Children

6. Current health expenditure (% of GDP): this shows how much of the GDP the Government is dedicating through the healthcare system. As I believe with more people healthy they will be able to work and give their best to the economy. An analysis was carried out with data collected from the Bureau of Economic Analysis and the Bureau of Labor Statistics for the years 2003–2014 and suggested a positive correlation between health expenditure, GDP and labor productivity as expected. An increase in healthcare expenditure has a positive relationship with economic performance. (Raghupathi 2020)

7. International tourism, number of arrivals: Tourism is perceived to be a great indicator of foreign exchange, certain countries have leveraged the influx of foreigners into their countries and used it as a measure to generate more income for the government. It does make sense so use it as an extra source and also promotes exposure about the country. Taking a look at 2016, Tourism contributed to GDP growth of 3.1% and created 6 million additional jobs in the sector, totalling 292 million which is equal to 1 in 10 jobs in the economy. It also generated US\$7.6 trillion (10.2% of global GDP. (Destinationsinternational.org 2018)

Tourism numbers for 2016

8. Labor force, female (% of total labor force): This focuses on gender gap, it is believed it is very wide in most countries but as varies due to different factors. Also, there have been debates about how hiring more females professionally has helped GDP significantly

Female labor over years

9. Exports of goods and services (% of GDP): This is one of the major components of a country's GDP. Most countries rely on this as not one single country has everything they need. For example, Nigeria exports a lot of crude oil to other countries and this account for a great percentage of their GDP. Exports typically facilitate international trade and stimulate domestic economic activity by creating employment, production, and revenues. When there are more exports, it means that there is a high level of output from a country's factories and industrial facilities, as well as a greater number of people that are being employed in order to keep these factories in operation

10. Urban population: This accounts for the number of people that do not live in rural settlements and this is a great indicator for growth as we have more people living in urban settlements in developed countries which their GDP is higher than those of poor countries with more people living in rural settlements. As at 2020, averagely 55% of the world's population live in urban settlements. It is estimated that by 2050, the number of urban population would've doubled to about 7 of 10 people living in cities. It is seen that 80% of global GDP is generated in cities and some governments have realised this, thereby ramping up urbanization to in turn continue to contribute to sustainable growth if managed well by increasing productivity, allowing innovation and new ideas to emerge.

4.DISCUSSION:

Going through my dashboards and looking at both Tourism and Exports from Gambia, I was able to take note of an uptick in International Tourism from 2015 which drove the GDP higher significantly and how the export value also fell drastically from 2020. On to do more research on Tourism, I discovered the government has had a role to play as they have been most interested in the construction of hotels in the 4- and 5- star class ranges. The River Gambia is also open for the development of cruising, sport fishing, and eco-tourism resorts. International flight options are growing, with Air Senegal, TAP and Turkish Airlines expanding their routes to include The Gambia in the past two years, joining Brussels Airlines and Royal Air Maroc as the major international operators in The Gambia. I also went on to gather more information about why its exports fell so bad and I could relate it to Covid outbreak in which there was not much access to the outside world, of which its Export value wasn't so strong beforehand.

Export comparison with GDP

Going through the other dashboard, I also noticed that the amount of access to Anti Retroviral Therapy kept increasing year by year as the number of children who are HIV positive kept increasing, which shows the government's awareness to the situation and will to battle it but for Burundi and Lesotho, the Anti Retroviral Therapy and number of infected children was inversely proportional. The ART coverage was steady increasing while the number kept reducing, which shows that despite the rates reducing, the government didn't relent on efforts to increase the ART coverage. Once again, I went on to do some research on this and found out that Burundi launched a National HIV/AIDs Strategy (NHAS). The project's main aim in relation to this was "increase the utilization of a selected set of preventive services, among groups highly vulnerable to, or affected by HIV/AIDS." Commercial sex workers, Burundians aged 15-49 with multiple sex partners in the past year, and pregnant women with HIV were all targeted by the project.

Dashboard:

With this dashboard, I am able to inspect four aspects at the same time. The female labor force over time, the amount of individuals using the internet in

2006, the relationship between GDP and Tourism over the years and Export comparison with GDP over the years.

I set this up in such a way that changing the country name on the top right corner would apply to all worksheets asides the Individuals Using the Internet. This way, I would be able to view each country at a go and look at their variations, rather than having to go select each country image one by one as that would take more time and effort.

For my forecast, I have decided to go with GDP based on the next 5 years and it is shown below:

GDP Forecast until 5 years

CONCLUSION

At the end of this, I have been able to create various dashboards with which a user can play around with to get different insights on most of my KPIs used. The user can easily switch from the health of the citizens to the GDP impacts. With dual axis, I was able to find out how the number of international tourists have added to its GDP, correlation between the country's exports of goods, its female labor contribution all over 10 years. To get the exact figures for the percentages of female labor and access to electricity, I made use of calculated fields.

Understanding each KPI used was very key and I made sure to do a thorough research on each of them. Doing this, I was able to get extra information for myself that I had no idea about before I took on the project.

STATISTICAL ANALYSIS

1. INTRODUCTION

This task focuses on the same specified data as visualized above, from the World Bank database. Statistics embodies the collection and analysis of large amounts of data to discover certain patterns with the numbers. Statistics is applied in everyday use in retail, health, aviation, education.

For proper Statistical analysis, the following needs to be done. You must understand the nature of the data to be analyzed, to know what analysis that could be done and set your objectives beforehand. As well, you would need to explore the relationship between the various aspects of the data.

2. BACKGROUND RESEARCH

In Statistics, there are very many terms and definitions one needs to be familiar with so below, I have explained the major parameters used.

MEAN:

This can easily be defined as the mathematical average of two or more numbers.

MEDIAN:

This can be defined as the midpoint of a range of variables sorted in a descending or ascending order

SKEWNESS:

This can be defined as a measure of the symmetry of a distribution with the highest point of its distribution being its mode. It should be noted if its unimodal i.e it has one mode. If so, it can then be skewed towards the right(positive) or towards the left(negative) as represented with images below.

If skewness is less than -1 or greater than +1, the distribution is highly skewed.

If skewness is between -1 and $-\frac{1}{2}$ or between $+\frac{1}{2}$ and +1, the distribution is moderately skewed.

If skewness is between $-\frac{1}{2}$ and $+\frac{1}{2}$, the distribution is approximately symmetric.

KURTOSIS:

This provides information for the degree of peakedness of a data distribution. Peakedness can simply be defined as the measure which data values are concentrated around the mean.

A normal distribution has kurtosis exactly 3 (excess kurtosis exactly 0). Any distribution with kurtosis ≈3 (excess ≈0) is called mesokurtic.

A distribution with kurtosis <3 (excess kurtosis <0) is called platykurtic. Compared to a normal distribution, its tails are shorter and thinner, and often its central peak is lower and broader.

A distribution with kurtosis >3 (excess kurtosis >0) is called leptokurtic. Compared to a normal distribution, its tails are longer and fatter, and often its central peak is higher and sharper.

STANDARD DEVIATION:

This can simply be defined as the level of dispersion of data in relation to the mean. Low standard deviation relates to the data being clustered around the mean while high standard deviation relates to the data being more spread out.

REGRESSION ANALYSIS:

This concept is basically used to measure the strength of relationship between a dependent and independent variable and also can be used to forecast the future relationship.

Dependent Variable: Also known as the outcome, is the main factor that you're trying to understand or predict.

Independent Variables: These are the KPIs which impact the variable dependent variable.

For example, we could decide to use the basic income and expenditure. As for you to be able to spend, you need to have an income so in this case, the expenditure is your Dependent variable and Income is your independent variable.

There are three main types of regression namely Linear regression, Multiple regression and Nonlinear regression.

CORRELATION ANALYSIS:

This concept helps to identify the relationship between data of two KPIs collected, a dependent variable and independent variable same as Regression.

A positive correlation result means that both variables increase in relation to each other, while a negative correlation means that as one variable decreases, the other increases. And is measured on a scale of -1 to +1

As seen from the image above, a value of 1 meets the follows the lines with no dispersion but with 0.5 and 0.1, there is a level of dispersion and expands more as it goes from 0.5 to 0.1.

Hypothesis Testing:

This is used to test a hypothesis in relation to a statistical parameter. It is basically verification of an assumption that could help develop a statistical parameter

After analysis of data, you get results that establishes whether the alternative hypothesis stands true or not. When the P-value is less than the significance level, 0.05 the null hypothesis is rejected and the alternative hypothesis fails to be rejected i.e above 0.5

3. EXPLORATION OF DATASET

Same as my visualization earlier, I have used the same variables. All variables I picked ranged over 15 years from 2016 to 2020 and are listed below:

- 1. GDP (current US\$)
- 2. Access to electricity, urban (% of urban population)
- 3. Access to electricity (% of population)
- 4. Antiretroviral therapy coverage (% of people living with HIV)
- 5. Children (0-14) living with HIV
- 6. Children (ages 0-14) newly infected with HIV
- 7. Current health expenditure (% of GDP)
- 8. Incidence of tuberculosis (per 100,000 people)
- 9. Incidence of malaria (per 1,000 population at risk)
- 10.International tourism, number of arrivals
- 11. Newborns protected against tetanus (%)
- 12.Labor force, female (% of total labor force)
- 13. Labor force, total
- 14.Exports of goods and services (% of GDP)
- 15. Fixed telephone subscriptions
- 16. Fixed broadband subscriptions
- 17. Mobile cellular subscriptions
- 18. Urban population
- 19. Individuals using the Internet (% of population)

These countries used are listed below:

- 1. Germany
- 2. France
- 3. Spain
- 4. Netherlands
- 5. Italy
- 6. Algeria
- 7. Tunisia

- 8. Morocco
- 9. Egypt
- 10.Burundi
- 11.Gambia
- 12.Lesotho
- 13.Guinea-Bissau

Before importing, I cleaned the data in Microsoft Excel. By cleaning, I noticed empty rows within the data and I filled them by calculating mean values. After this, I then imported the data into SAS Enterprise Guide and ran the general distribution analysis on the data to check for Extreme Rows and observations. As there was none, I went further to transpose to make better sense of the data as to have the variables I needed as columns so I would be able to run the analysis by Variable, rather than by Country.

4. ANALYSIS

4.1 DESCRIPTIVE ANALYSIS:

For my descriptive analysis, I ran for all variables of each country to get the full perspective with the below code and the results coming after:

Country Name=Algeria

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	1.69457E+11	1.70097E+11	-0.6748315	0.0293699	29124384896
Access to electricity, urban (%	99.5663364	99.7009735	-0.7265554	-0.8066971	0.3423549
Access to electricity (% of popu	99.1300116	99	-0.9888342	0.5839373	0.2956413
Antiretroviral therapy coverage	54.8666667	56	-1.6877015	-0.1055347	24.4127211
Children (0-14) living with HIV	456	500	-0.8567234	0.1151989	213.4679635
Children (ages 0-14) newly infec	140	100	-2.0940171	0.4550831	50.7092553
Current health expenditure (% of	5.6291312	6.0357628	-0.0676158	-0.9754577	1.0894874
Incidence of tuberculosis (per 1	71.7333333	73	0.5358288	-0.9402653	5.8732647
Incidence of malaria (per 1,000	0.002966	0	7.8414755	2.8082813	0.0069639
International tourism, number of	2175066.67	2200000	-1.3382402	-0.000118272	367051.86
Newborns protected against tetan	87.4	90	-0.9149332	-0.8495951	11.0375981
Labor force, female (% of total	18.3310671	18.8328168	-1.2658337	-0.4103451	1.7330291
Labor force, total	11569925.27	11584915	-1.1719457	-0.2698714	817295.8
Exports of goods and services (%	32.6864599	33.2098979	-1.2178437	0.2420557	10.3295064
Fixed telephone subscriptions	3430118.8	3132829	-0.0769667	1.0413416	671209.99
Fixed broadband subscriptions	1763642.2	1280000	-1.4170735	0.39427	1250855.86
Mobile cellular subscriptions	38087405.53	39517045	-0.6405187	-0.680129	8350176.35

Urban population	26735437.93	26536380	-1.226594	0.1484345	3432109.16
Individuals using the Internet (29.0141484	22.5	-1.2331248	0.5176208	19.3042922

Country Name=Burundi

				0.1	0.15
Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	2300575905	2451625333	-0.7753477	-0.6312425	568595562
Access to electricity, urban (%	55.1557953	52.7109184	0.7843845	-0.572462	6.6059884
Access to electricity (% of popu	7.4482762	6.9	0.0014875	0.5420644	2.9052328
Antiretroviral therapy coverage	42.8666667	36	-1.1918469	0.4400587	27.697
Children (0-14) living with HIV	16913.33	16000	-1.1999008	0.2839721	5432.56
Children (ages 0-14) newly infec	1649.33	1500	-1.0478601	0.6133316	710.6985162
Current health expenditure (% of	8.671833	8.1425619	-1.1534282	0.3773889	1.461049
Incidence of tuberculosis (per 1	133.7333333	128	-0.4572769	0.6499946	23.4047207
Incidence of malaria (per 1,000	207.5233017	222.7746531	-1.0504124	-0.6968783	39.8001437
International tourism, number of	207333.33	205000	-0.6357012	0.3112096	53677.17
Newborns protected against tetan	84.6666667	85	1.7855067	-1.1353399	7.3452284
Labor force, female (% of total	52.0926927	52.1158569	1.982059	0.5059322	0.1383239
Labor force, total	4138369.07	4085944	-1.0841056	0.1953817	593915.32
Exports of goods and services (%	7.9633409	7.6034188	-1.0146077	-0.2059395	1.6368081
Fixed telephone subscriptions	24799	23409	-0.9967357	0.3879024	5334.78
Fixed broadband subscriptions	1820.73	1534	-1.7667218	0.3458928	1658.34
Mobile cellular subscriptions	3279896.27	2536831	-1.6728247	0.1863942	2439005.47
Urban population	1128071.07	1095417	-1.0756513	0.313001	286221.85
Individuals using the Internet (2.1281706	1.2642181	0.0845385	1.2484808	1.7169368

Country Name=Egypt, Arab Rep.

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	2.48903E+11	2.49713E+11	-0.6782126	-0.4177347	76477093641
Access to electricity, urban (%	99.7340763	99.8602829	-0.1078616	-0.8890667	0.2851962
Access to electricity (% of popu	99.5847392	99.8	0.3987928	-1.1168831	0.4709195
Antiretroviral therapy coverage	19.3333333	14	-0.5466628	0.8897323	12.6923299
Children (0-14) living with HIV	260	200	-1.6382556	0.6124171	180.4755623
Children (ages 0-14) newly infec	106.6666667	100	15	3.8729833	25.819889
Current health expenditure (% of	4.8571413	4.9173093	-0.9110237	0.0657465	0.4338413
Incidence of tuberculosis (per 1	15.9333333	16	-1.1378676	-0.0258894	3.1274514
Incidence of malaria (per 1,000	0	0			0
International tourism, number of	10692400	11091000	0.8238308	-0.5032783	2297054.88
Newborns protected against tetan	85.4	86	12.481685	-3.4420607	1.5491933
Labor force, female (% of total	22.6081397	22.9805424	-0.3351537	-1.0019719	1.182438
Labor force, total	28130880.47	29077255	-0.3011177	-0.9725991	1915542.74
Exports of goods and services (%	19.7761375	17.5006107	-0.4975934	0.7402567	6.9036455

Fixed telephone subscriptions	8644708.2	8714286	-1.3091966	0.1127914	1937994.82	
Fixed broadband subscriptions	3401017.27	2676263	-0.0895465	0.881215	2763500.4	
Mobile cellular subscriptions	77992507.2	94016152	0.0143065	-1.1954082	28139394.27	
Urban population	38103249.53	37919407	-1.2328377	0.1567834	3454279.02	
Individuals using the Internet (33.6489108	29.4	0.4828367	0.9308547	16.5256615	

Country Name=France

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	2.67E+12	2.68E+12	-0.0672976	-0.5862206	1.68079E+11
Access to electricity, urban (%	100	100			0
Access to electricity (% of popu	100	100			0
Antiretroviral therapy coverage					
Children (0-14) living with HIV					
Children (ages 0-14) newly infec					
Current health expenditure (% of	11.1648766	11.2967053	0.5965944	-1.3971901	0.4061302
Incidence of tuberculosis (per 1	9.2066667	9	1.4604991	1.3896443	0.8302036
Incidence of malaria (per 1,000					
International tourism, number of	200580600	203000000	-1.2234805	0.1493093	7225120.74
Newborns protected against tetan					
Labor force, female (% of total	47.5463955	47.5527074	0.275912	0.4018998	0.4769443
Labor force, total	29891375	30033626	0.0238279	-0.87993	442356.82
Exports of goods and services (%	29.0103661	29.2030272	0.2011463	-0.474763	1.8832388
Fixed telephone subscriptions	38259800	38805000	-0.0489583	-0.8841179	2087610.12
Fixed broadband subscriptions	23842133.33	24940000	-0.4001434	-0.7037246	5403436.38
Mobile cellular subscriptions	63333540	63324000	-1.040032	-0.1436041	6452047
Urban population	52093921.13	52228059	-1.2259197	-0.1875325	1725917.51
Individuals using the Internet (76.4038692	79.2698113	5.7360781	-2.2178128	9.7717235

Country Name=Gambia, The

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	1469182483	1450140386	0.4194086	0.1699523	210901276
Access to electricity, urban (%	69.5915412	67.7480011	-1.1391209	0.2341864	7.6086236
Access to electricity (% of popu	50.6955555	51.5	-1.0820726	-0.2953768	7.6831259
Antiretroviral therapy coverage	17.1333333	17	-1.3596225	-0.1300961	10.2877643
Children (0-14) living with HIV	2213.33	2200	1.95671	-1.1272802	83.3809388
Children (ages 0-14) newly infec	500	500			0
Current health expenditure (% of	3.9341297	3.9137487	-0.6916209	0.5417544	0.7299767
Incidence of tuberculosis (per 1	173.8666667	176	-0.6326	-0.4854045	9.5683008
Incidence of malaria (per 1,000	201.3645316	236.9934838	-1.7188309	-0.3060481	104.0177864
International tourism, number of	292933.33	157000	-1.7058356	0.5539074	201952.42
Newborns protected against tetan	91.0666667	92	11.2802061	-3.1360076	2.6583203

Labor force, female (% of total	43.5485626	43.6193298	2.272677	0.8636862	0.6872708
Labor force, total	641903.07	639157	-1.3239038	0.0293048	93946.14
Exports of goods and services (%	17.4898365	18.0329575	2.5158948	-1.2502592	3.5588072
Fixed telephone subscriptions	47386	48451	0.0573655	0.4290853	9148.48
Fixed broadband subscriptions	1971.2	500	-2.101984	0.2592076	1824.84
Mobile cellular subscriptions	1945722.13	1848854	-1.2003907	-0.1827423	862390.93
Urban population	1150968.67	1135416	-1.1714915	0.1950712	215653.25
Individuals using the Internet (20.7821505	14	0.1722156	1.1594432	16.6111211

Country Name=Germany

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	3.60E+12	3.68E+12	0.2559656	-0.6524993	2.66364E+11
Access to electricity, urban (%	100	100			0
Access to electricity (% of popu	100	100			0
Antiretroviral therapy coverage	70.7333333	71	-1.1427787	-0.0372484	10.0104707
Children (0-14) living with HIV					
Children (ages 0-14) newly infec					
Current health expenditure (% of	10.9805231	11.0968647	-0.2506202	-0.8579242	0.4819564
Incidence of tuberculosis (per 1	6.5066667	6.1	-1.0656283	0.6861308	0.8647598
Incidence of malaria (per 1,000					
International tourism, number of	31581266.67	31545000	-1.5466622	0.0314463	5975740.25
Newborns protected against tetan					
Labor force, female (% of total	45.8979187	46.0871645	-1.1395646	-0.644243	0.4764875
Labor force, total	42459795.07	42104556	-1.1588646	0.6393626	769957.27
Exports of goods and services (%	44.6094437	45.4186779	1.6663018	-1.2698134	2.5380459
Fixed telephone subscriptions	47858066.67	48700000	-0.8497525	-0.4474087	5037351.66
Fixed broadband subscriptions	28204720.07	28641961	0.3689741	-0.7791513	5875267.51
Mobile cellular subscriptions	99693466	100034000	-1.0702931	-0.4626472	7714658.19
Urban population	63094461.27	62877220	-0.8988602	0.3861899	799201.04
Individuals using the Internet (82.7622485	84.1652066	-0.0403747	-0.6966126	4.9894822

Country Name=Guinea-Bissau

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	1065397837	1048229629	-0.8137646	0.0932797	276355433
Access to electricity, urban (%	34.92342	33.1	-0.3537907	0.2466317	12.2473241
Access to electricity (% of popu	17.7877111	16.2006149	-0.9284366	0.314462	9.1509642
Antiretroviral therapy coverage	22.1333333	18	0.0706885	0.7799356	16.6727608
Children (0-14) living with HIV	4126.67	4100	-1.320949	-0.0914459	376.9552203
Children (ages 0-14) newly infec	674.6666667	580	-1.8804267	0.3387485	182.1642378
Current health expenditure (% of	7.1580444	7.000968	2.6255532	1.302386	0.9118359
Incidence of tuberculosis (per 1	361	361			0

Incidence of malaria (per 1,000	100.2892883	93.899729	-1.2852129	0.421737	23.5337501
International tourism, number of	34740	36100	-1.3566627	-0.2973587	14643.86
Newborns protected against tetan	82.6	80	0.8767154	0.3194942	6.5224886
Labor force, female (% of total	47.8474983	47.8708377	-1.478086	-0.3714524	0.0999187
Labor force, total	679228.93	676792	-1.3596251	0.032933	83018.48
Exports of goods and services (%	20.5357173	20.1910356	-1.2503224	0.1104247	4.99306
Fixed telephone subscriptions	5341.67	5300	2.2843746	1.1607276	554.9265932
Fixed broadband subscriptions	1149.8	1001	7.0970581	2.431294	393.0732756
Mobile cellular subscriptions	997688.8	1049193	-0.7788925	0.0098869	505964.48
Urban population	688308.6	680896	-1.1913256	0.1840866	108983.47
Individuals using the Internet (10.1571773	3.1	0.0217397	1.1432448	10.8613875

Country Name=Italy

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	2.08E+12	2.09E+12	-0.5286984	0.2044191	1.61354E+11
Access to electricity, urban (%	100	100			0
Access to electricity (% of popu	100	100			0
Antiretroviral therapy coverage	72.2666667	72	-0.9496188	0.1719438	11.1064117
Children (0-14) living with HIV					
Children (ages 0-14) newly infec					
Current health expenditure (% of	8.7279714	8.7754383	2.7133668	-1.5517084	0.2203929
Incidence of tuberculosis (per 1	6.9466667	6.6	-0.7460449	0.2837778	0.9869626
Incidence of malaria (per 1,000					
International tourism, number of	79561773.44	76762000	-1.026632	0.4667115	9109861.44
Newborns protected against tetan					
Labor force, female (% of total	41.7909479	42.1307632	-1.1112559	-0.6304633	0.8483066
Labor force, total	25129545.07	25080671	-1.6401273	0.1426661	618747.04
Exports of goods and services (%	28.2010315	28.6332431	0.7218709	-0.7809213	2.4778429
Fixed telephone subscriptions	21505525.4	21098033	4.7835167	1.8113499	1837072.66
Fixed broadband subscriptions	14019316.47	14012976	-0.3413632	-0.4308156	2731718.59
Mobile cellular subscriptions	88160333	89801000	-1.0292209	-0.1176648	6285254.37
Urban population	41294439.33	41548775	-1.5722662	-0.3424349	1109494.35
Individuals using the Internet (57.5512183	55.829998	-0.3342547	0.3388423	12.3134483

Country Name=Lesotho

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	2175087696	2306843529	-1.4912315	-0.455909	316428719
Access to electricity, urban (%	58.247867	60.650074	-0.8509931	-0.3908597	13.6818169
Access to electricity (% of popu	27.3479741	26.7335815	-1.0136272	0.4030686	12.2198526
Antiretroviral therapy coverage	45.2	42	-1.0200011	0.0821407	23.0997835
Children (0-14) living with HIV	16440	17000	-1.4391479	-0.249725	4732.83

Children (ages 0-14) newly infec	1432.67	980	0.4962269	1.2971733	1118.12
Current health expenditure (% of	8.4382935	8.5781899	0.692699	-0.2755191	1.2861893
Incidence of tuberculosis (per 1	947.7333333	948	-1.8817179	-0.006497	244.1508511
Incidence of malaria (per 1,000					
International tourism, number of	721137.07	433000	-2.1959406	0.1443633	390500.3
Newborns protected against tetan	83.2666667	83	1.5177289	-0.5628461	1.3345233
Labor force, female (% of total	46.0343241	45.6991737	-1.154217	0.6375278	0.8150586
Labor force, total	915811.73	902728	-1.3447077	0.5405571	34940
Exports of goods and services (%	45.0052809	45.4016068	-0.4571822	0.0505502	4.9929454
Fixed telephone subscriptions	35676.2	40570	-0.8896148	-0.8694798	16210.86
Fixed broadband subscriptions	2311.14	1849	-1.0292746	0.6332522	1962.77
Mobile cellular subscriptions	1427904.6	1562648	-1.2526328	-0.2401679	679225.67
Urban population	532547.4	529466	-1.1746461	0.1564416	53806.16
Individuals using the Internet (19.7936487	15	-1.5858663	0.4203477	16.455892

Country Name=Morocco

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	1.00648E+11	1.0137E+11	0.626912	-0.8086374	14059341456
Access to electricity, urban (%	98.0733066	98.7	-1.3353104	-0.4259568	1.6875563
Access to electricity (% of popu	93.9683869	96.5	-0.1110644	-1.0175739	5.9191357
Antiretroviral therapy coverage	36.0666667	32	-1.1750202	0.4535639	22.7548006
Children (0-14) living with HIV	809.3333333	820	-0.4834957	-0.733556	63.6358689
Children (ages 0-14) newly infec	180	200	0.8974359	-1.6720819	41.4039336
Current health expenditure (% of	5.4476029	5.42	-0.9923574	-0.0341212	0.2836501
Incidence of tuberculosis (per 1	99.1333333	99	0.9062617	-0.4591394	2.2318047
Incidence of malaria (per 1,000	0	0			0
International tourism, number of	10155133.33	10349000	-0.4416451	-0.1611399	1804228.01
Newborns protected against tetan	88.6666667	88	2.0241758	1.1831751	1.2909944
Labor force, female (% of total	25.5650645	25.8445293	-1.6163835	-0.2439117	0.9850515
Labor force, total	11581137.93	11742460	0.0053514	-0.9768143	379750.9
Exports of goods and services (%	34.7161171	34.8000405	1.8835789	-0.6120157	2.7303114
Fixed telephone subscriptions	2608288.13	2393767	-0.5833273	0.1021766	701724.05
Fixed broadband subscriptions	977119.2	843940	-0.4459189	0.7647665	535111.66
Mobile cellular subscriptions	36505779.8	41513933	-0.7282125	-0.8146352	10640971.06
Urban population	20196855.47	20128276	-1.2460295	0.0921381	2031060.15
Individuals using the Internet (52.1605812	56	0.1056136	-0.359766	17.6927794

Country Name=Netherlands

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	8.58178E+11	8.68077E+11	-0.1704555	-0.6775748	60758298452
Access to electricity, urban (%	100	100			0

Access to electricity (% of popu	100	100			0
Antiretroviral therapy coverage	72.4666667	74	-1.3223113	-0.2516885	11.3883817
Children (0-14) living with HIV					
Children (ages 0-14) newly infec					
Current health expenditure (% of	10.0381827	10.1550875	0.1986233	-1.1244381	0.5060993
Incidence of tuberculosis (per 1	6.04	5.9	-0.0835764	-0.1326946	0.9590174
Incidence of malaria (per 1,000					
International tourism, number of	13891292.93	12783000	-1.2599632	0.5516056	3528079.56
Newborns protected against tetan					
Labor force, female (% of total	45.8406672	45.9762201	2.0288856	0.5554623	0.70556
Labor force, total	8962849.53	8966340	0.1857597	-0.1735957	259586.15
Exports of goods and services (%	76.3279573	79.5033738	-0.7066274	-0.6899147	6.8642583
Fixed telephone subscriptions	6781300.93	7125486	1.6277576	-1.5541419	743186.5
Fixed broadband subscriptions	6645958	6792000	-0.5306077	-0.6618406	730809.05
Mobile cellular subscriptions	20108490.87	20149000	1.6588277	-0.9131258	1114355.7
Urban population	14935595.2	14987369	-1.082774	-0.1595461	764238.87
Individuals using the Internet (90.6026164	91.4199958	1.1757733	-1.2920758	2.8932152

Country Name=Spain

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	1.37E+12	1.37E+12	0.167735	0.436488	1.1392E+11
Access to electricity, urban (%	100	100			0
Access to electricity (% of popu	100	100			0
Antiretroviral therapy coverage	73	73	-1.0614363	-0.2500089	10.0356507
Children (0-14) living with HIV					
Children (ages 0-14) newly infec					
Current health expenditure (% of	8.8722024	9.0673771	1.8569993	-1.7600034	0.4508761
Incidence of tuberculosis (per 1	13.9466667	13	-1.2406905	0.1265991	3.9610364
Incidence of malaria (per 1,000					
International tourism, number of	106253333	103231000	-0.9411929	0.6023442	11334896.73
Newborns protected against tetan					
Labor force, female (% of total	45.0721063	45.8662231	-0.3963494	-1.0114173	1.5317454
Labor force, total	23092407.6	23116192	2.9019093	-1.524277	442293.54
Exports of goods and services (%	30.4461984	31.4552725	-1.4009076	-0.4592321	4.2173919
Fixed telephone subscriptions	19763378	19639778	-0.3951633	0.6784421	387528.7
Fixed broadband subscriptions	12086724.8	12252061	-0.8405874	-0.3783546	2827549.87
Mobile cellular subscriptions	51377356	51067770	0.8348962	-0.256199	2551814.92
Urban population	36725355	36891840	0.9676256	-0.854064	1006497.11
Individuals using the Internet (72.7926505	71.635	-0.9283122	-0.0677997	12.957635

Country Name=Tunisia

Variable	Mean	Median	Kurtosis	Skewness	Std Dev
GDP (current US\$)	44033524752	44360775649	0.9471604	-0.7372321	4077627631
Access to electricity, urban (%	99.9030826	99.93	-0.2965922	-0.9517505	0.1059793
Access to electricity (% of popu	99.6933333	99.7	-1.820711	0.1212947	0.246306
Antiretroviral therapy coverage	18.9333333	18	-0.7594867	0.1892166	7.4590948
Children (0-14) living with HIV	100	100			0
Children (ages 0-14) newly infec	100	100			0
Current health expenditure (% of	6.5192764	6.8073964	-1.4415084	-0.4798371	0.7610328
Incidence of tuberculosis (per 1	32.8666667	35	-1.3924018	-0.6072513	4.4700059
Incidence of malaria (per 1,000					
International tourism, number of	7158000	7052000	0.1387988	0.2091139	1083307.44
Newborns protected against tetan	95.6666667	96	13.7691184	-3.6271041	1.8771813
Labor force, female (% of total	27.1769244	27.1093015	-1.3151974	0.1212775	0.485252
Labor force, total	3894750	3962506	-0.5367565	-0.8365727	203399.04
Exports of goods and services (%	45.4262816	45.6782556	1.2078219	0.4496696	4.4369447
Fixed telephone subscriptions	1197163.93	1239074	-0.5711286	0.1296768	177495.08
Fixed broadband subscriptions	596856.6	559358	0.0523938	0.5571458	367052.09
Mobile cellular subscriptions	12301875.8	12843889	-0.8400783	-0.8179706	2703064.09
Urban population	7418249.93	7392693	-1.1380095	0.1312801	487989.64
Individuals using the Internet (43.4608108	43.8	-0.3546401	-0.1537282	16.7536671

With the data being excessively much, I would be picking four countries, based on their GDP and go deeper with the most important statistical parameters, two rich countries and two poor countries namely: Burundi, Gambia, France and Germany with the below code:

```
proc means data=WORK.TRNSTRANSPOSED Mean Median skew kurt stddev;
    VAR "GDP (current US$)"n;
    BY "Country Name"n;
    WHERE 'Country Name'n = 'Burundi'OR 'Country Name'n =
'Lesotho' OR 'Country Name'n = 'France' OR 'Country Name'n =
'Germany';
Title 'Distribution Analysis by Country Name';
run;
```

Country Name=Burundi

Analysis Variable: GDP (current US\$)

Mean	Median	Skewness	Kurtosis	Std Dev
2300575905	2451625333	-0.6312425	-0.7753477	568595562

Country Name=France

Analysis Variable : GDP (current US\$)						
Mean Median Skewness Kurtosis Std De						
2.67E+12	2.68E+12	-0.5862206	-0.0672976	1.68079E+11		

Country Name=Germany

Analysis Variable : GDP (current US\$)						
Mean Median Skewness Kurtosis Std De						
3.60E+12	3.68E+12	-0.6524993	0.2559656	2.66364E+11		

Country Name=Lesotho

Analysis Variable : GDP (current US\$)					
Mean Median Skewness Kurtosis Std De					
2175087696	2306843529	-0.455909	-1.4912315	316428719	

Burundi can be seen to have an average of GDP of \$2.3b dollars with a skewness of and a -0.6 skewness meaning its moderately skewed to the left and a kurtosis of -0.7 making it platykurtic.

Lesotho can also be seen to have an average of \$2.1b in GDP, a skewness of -0.4 indicating moderate skewness to the left as well and a kurtosis of -1.49 which is also platykurtic.

Germany comes with a mean of \$3.6 in GDP and a skewness of -0.65 which indicates moderate skewness to the left as well but a positive kurtosis of 0.25 which is also platykurtic.

France also has a high mean of \$2.6T, skewness of -0.58 and a negative kurtosis of -0.06 indicating a platykurtic one as well.

From the above data, it can easily be seen that all countries are moderately skewed and platykurtic indicating its more uniform than it is being leptokurtic as they are no way close to 3, Germany being the richest country by its mean and Lesotho is the poorest.

4.2 CORRELATION ANALYSIS:

As I have done earlier with the Descriptive Statistics, I ran the analysis with GDP as my dependent variable in correlation with International Tourism, Female Labor Force, Exports of goods and services and Individuals using the Internet for all the countries with the code below:

```
ods graphics on;
proc corr data=WORK.TRNSTRANSPOSED rank
     PLOTS=(SCATTER MATRIX);
var 'qdp (current us$)'n;
with "Current health expenditure (% of"n "International tourism,
number of"n "Labor force, female (% of total"n "Exports of goods and
services (%"n "Individuals using the Internet ("n;
by 'Country Name'n;
title "Correlations of key KPIs with GDP";
run;
I then filtered to another set of four
countries (Algeria, Morocco, Italy, Spain) for my
explanation using the following code:
ods graphics on;
proc corr data=WORK.TRNSTRANSPOSED rank
     PLOTS=(SCATTER MATRIX);
var 'gdp (current us$)'n;
with "Current health expenditure (% of"n "International tourism,
number of"n "Labor force, female (% of total"n "Exports of goods and
services (%"n "Individuals using the Internet ("n;
by 'Country Name'n;
     WHERE 'Country Name'n = 'Algeria'OR 'Country Name'n =
'Morocco' OR 'Country Name'n = 'Italy' OR 'Country Name'n = 'Spain';
title "Correlations of key KPIs with GDP";
run;
```

Below are my results and necessary scatter plots to go with it

Country Name=Algeria

Pearson Correlation Coefficients, N = 15 Prob > r under H0: Rho=0	
Current health expenditure (% of	GDP (current US\$)
, ,	0.51012
	0.052
International tourism, number of	GDP (current US\$)
	0.73696
	0.0017
#Labor force, female (% of total	GDP (current US\$)
	0.41116
	0.1279
Exports of goods and services (%	GDP (current US\$)
	-0.17535
	0.5319
Individuals using the Internet (GDP (current US\$)
	0.07084
	0.8019

For Algeria, I have decided to show the Scatter Plot of the correlation based on GDP and International Tourism as it has the most positive correlation of 0.73 and also a p-value of 0.0017 which makes the correlation very significant as it is very much below 0.05 based on the prediction with 95% prediction ellipse.

Country Name=Italy

Pearson Correlation Coefficients, N = 15	
Prob > r under H0: Rho=0	
Current health expenditure (% of	GDP (current US\$)
	-0.24333
	0.3822
International tourism, number of	GDP (current US\$)
	-0.50217
	0.0564
Labor force, female (% of total	GDP (current US\$)
	-0.47142
	0.0761
Exports of goods and services (%	GDP (current US\$)
	-0.4665
	0.0796
Individuals using the Internet (GDP (current US\$)
	-0.45815
	0.0859

For Italy, I have decided to go with International Tourism and GDP once more as it provides the most negative correlation of 0.50 which means that there was a decline in GDP as well as International Tourism. It also shows a significance p-value of 0.0564. Looking at this data, one can deduce that the GDP of Italy was decreasing steadily and as this the health expenditure reduced as well as there was less money to spend. This also mirrored on its Exports of Goods and Services as it reduced, the GDP was bound to reduce as well.

Pearson Correlation Coefficients, N = 15		
Prob > r under H0:	Rho=0	
Current health expenditure (% of	GDP (current US\$)	
	0.14034	
	0.6179	
International tourism, number of	GDP (current US\$)	
	0.95685	
	<.0001	
Labor force, female (% of total	GDP (current US\$)	
	-0.82272	
	0.0002	
Exports of goods and services (%	GDP (current US\$)	
	0.5608	
	0.0296	
Individuals using the Internet (GDP (current US\$)	
	0.91838	
	<.0001	

Looking at Morocco, I can see a correlation value of -0.823 which shows a negative correlation between the female labor force and GDP, with a p-value of 0.002 indicating a strong significance between both variables. Also with Individuals using there internet, there was a 0.91 correlation indicating a positive relationship between them which could suggest that as Moroccans got more access to the internet, they probably digitalized their businesses to generate more profit, thereby boosting the economy's GDP.

Pearson Correlation Coefficients, N = 15		
Prob > r under H0:	Rho=0	
Current health expenditure (% of	GDP (current US\$)	
	-0.18709	
	0.5044	
International tourism, number of	GDP (current US\$)	
	-0.34728	
	0.2047	
Labor force, female (% of total	GDP (current US\$)	
	-0.45674	
	0.087	
Exports of goods and services (%	GDP (current US\$)	
	-0.50048	
	0.0574	
Individuals using the Internet (GDP (current US\$)	
	-0.39974	
	0.1399	

For Spain, I'll be looking at its Exports of Goods and Services in correlation with GDP as it's the most negatively correlated with a value of -0.5 and has p-value closest to 0.05

4.3 REGRESSION ANALYSIS:

For this analysis, I have decided to go with Access to Electricity of total people against Access to electricity of urban population as I believe Urban population has more access to electricity than the rural regions so they're the main component of the total people with access to Electricity. With the below code, I have picked four countries namely Algeria, Burundi, Lesotho and Morocco which are all African countries.

Country Name=Algeria

Number of Observations	15
Read	13
Number of Observations	15
Used	15

	Anal	ysis of Variance			
		Sum of	Mean	F	
Source	DF	Squares	Square	Value	Pr > F
Model	1	0.44235	0.4423 5	7.36	0.017 7
Error	13	0.7813	0.0601		
Corrected Total	14	1.22365			

Poot MCE	0.24515	R-	0.361
Root MSE	0.24515	Square	5
Dependent	99.13001	Adj R-	0.312
Mean	99.13001	Sq	4
Coeff Var	0.2473		

Parameter Estimates						
Standa						
		Parameter	rd	t	Pr >	
Variable	DF	Estimate	Error	Value	t	
Intercept	1	47.43401	19.055 1	2.49	0.027	
Access to electricity, urban (%	1	0.51921	0.1913	2.71	0.017 7	

As seen, there's an R-Square value of 0.36% which means that 36% of the variation between both variations can be explained by the sample, there's also a p-value of 0.0177 which shows the level of significance.

Country Name=Burundi

Number of Observations Read	15
Number of Observations	15
Used	15

Analysis of Variance					
		Sum of	Mean	F	
Source	DF	Squares	Square	Value	Pr > F
Model	1	80.12511	80.125	27.38	0.000
Wodel	1	80.12311	11	27.36	2
Error	13	38.04017	2.9261		
EITOI	15	38.04017	7		
Corrected Total	14	118.16529			

Root MSE		R-	0.678
	1.7106	Square	1
Dependent	7.44828	Adj R-	0.653
Mean	7.44828	Sq	3
Coeff Var	22.96645		

Parameter Estimates						
			Standar			
		Parameter	d	t	Pr>	
Variable	DF	Estimate	Error	Value	t	
Intercent	1	12 52612	3.8426	2.26	0.006	
Intercept	1	-12.52612	1	-3.26	2	
Access to electricity,	1	0.36215	0.0692	5.23	0.000	
urban (%	1	0.36215	1	5.23	2	

For Burundi, an R-Square value of 0.67 can be seen, which means that 67% of the variation can be defined by the data available and a p-value of 0.0002 indicates a high level of significance between both variable selected.

Country Name=Lesotho

Number of Observations Read	15
Number of Observations Used	15

Analysis of Variance					
		Sum of	Mean	F	
Source	DF	Squares	Square	Value	Pr > F
Model	1	1823.1331	1823.13 31	88.63	<.000 1
Error	13	267.41406	20.5703		
Corrected Total	14	2090.54716			

Root MSE	4.53545	R-	0.872
		Square	1
Dependent	27.34797	Adj R-Sq	0.862
Mean	27.54797		2
Coeff Var	16.58423		

Parameter Estimates						
			Standar			
		Parameter	d	t	Pr >	
Variable	DF	Estimate	Error	Value	t	
Intercept	1	-21.2347	5.29171	-4.01	0.001	
Access to electricity, urban (%	1	0.83407	0.0886	9.41	<.000 1	

For Lesotho, R-square can be seen as 0.87 meaning 87% of the variation can be explained by the data. Also, the p-value being 0.0001 indicates a high level of significance.

Country Name=Morocco

Number of Observations Read	15
Number of Observations Used	15

Analysis of Variance					
		Sum of	Mean	F	
Source	DF	Squares	Square	Value	Pr > F
Model	1	390.0258	390.02 58	50.46	<.000 1
Error	13	100.48054	7.7292 7		
Corrected Total	14	490.50634			

Root MSE	2.78016	R-	0.795
		Square	1
Dependent	93.96839	Adj R-	0.779
Mean	93.90639	Sq	4
Coeff Var	2.95861		

Parameter Estimates						
			Standar			
		Parameter	d	t	Pr >	
Variable	DF	Estimate	Error	Value	t	
Intercent	1	-212.775	43.187	-4.93	0.000	
Intercept	1	-212.775	48	-4.93	3	
Access to electricity,	1	3.12769	0.4403	7 1	<.000	
urban (%	1	5.12/09	0.4403	7.1	1	

4.4 Hypothesis Testing:

For this part, I have decided to go with the one sample t test with the GDP of all countries. The One Sample t Test examines whether the mean of the GDP is statistically different from the hypothesized value(Ho) of 2300575905, which happens to be the mean GDP of Burundi.

```
ods graphics;
/*Calculating one sample T Test testing if the mean GDP is
2300575905*/
proc ttest data=work.trnstransposed side=u
plots(shownull)=interval
H0=2300575905;
var 'gdp (current us$)'n;
title "One-Sample t-test testing whether mean GDP across 10
countries is 2300575905";
by 'Country Name'n;
run;
```

I was able to get the results but I shall be showing results from Gambia and Italy to make for one poor country and one rich country.

Country Name=Gambia, The

N	Mean	Std Dev	Std Err	Minimum	Maximum
15	1.47E+09	2.11E+08	54454475	1.05E+09	1.87E+09

Mean	95% CI	Mean	Std Dev	95% CL	Std Dev
1.47E+09	1.37E+09	Infty	2.11E+08	1.54E+08	3.33E+08

DF	t Value	Pr > t
14	-15.27	1

Based on the above data, it can be seen that the p value exceeds the significance value (0.05), therefore we fail to reject the null hypothesis that the GDP over time is less than the assumed number.

Country Name=Italy

N	Mean	Std Dev	Std Err	Minimum	Maximum
15	2.08E+12	1.61E+11	4.17E+10	1.84E+12	2.40E+12

Mean	95% CL Mean		Std Dev	95% CL	Std Dev
2.08E+12	2.01E+12	Infty	1.61E+11	1.18E+11	2.55E+11

DF	t Value	Pr > t
14	49.9	<.0001

Based on the table above, we can reject the null hypothesis as the p value is below 0.05 as the GDP is higher than the assumed number.

4. DISCUSSION AND CONCLUSION

After all analysis carried out, I was able to make many inferences from the Descriptive Analysis, Correlation analysis, Regression Analysis and Hypothesis analysis.

- 1. **Descriptive analysis**: With this, I was able to find the Minimum, Maximum Mean, Median, Standard Deviation, Skewness and Kurtosis. I also used it to find extreme observations for outliers but was not included in this report. In general, these were my observations:
 - Most of the data was moderately skewed to the left and right, with just one or two variable skewed to both sides

- A little percentage of Kurtosis values had values above 3
- 2. **Correlation Analysis**: With this, I was able to establish relationships between the effects of exports of good and services, female labor, number of Invidiaul tourists and number of indivduals using the internet on GDP. Also, the effect health expenditure as a measure of the GDP of some countries.
- I was able to use the p-value to evaluate the significance between the variables, with some being above 0.05 and some below 0.05 which isn't surprisng as no model is perfect. From my sample cut out of the original large size, I found the number of international tourists to be the most significant as it had the least above 0.05
- I was also able to spot Female Labor Force as the most negative correlated as this occurred three of four times
- I was also able to identify International Tourism as the most correlated with GDP and this makes sense as this usally generates a huge chunk. It went as high as a 95% correlation for Morocco.
- 3. **Regression Analysis**: Also a relationship parameter, I was also able to find a relationship between Access to Electricity for Urban people compared with Access to Electricity for total population. My observations go thus:
 - In Morocco, for every 3.12% increase in Access to Electricity for the urban population, the Access to electricity of total population increased by 1.
 - In Lesotho, for every 0.18% increase in Access to Electricity for the urban population, the Access to electricity of total population increased by 1.
 - In Burundi, for every 0.36% increase in Access to Electricity for the urban population, the Access to electricity of total population increased 1.
 - In Algeria, for every 0.51% increase in Access to Electricity for the urban population, the Access to electricity of total population increased 1.

- There were pretty much high values for R-Square asides for Algeria with 0.367, indicating only 36.7% of the data could be explained by the variation and Lesotho being the highest with 0.872 indicating 87.2% of the variation could be xplained by the data.
- 4. **Hypothesis Testing**: Based on my one sample t-test, Italy rejected the null hypothessis while Gambia failed to reject the hypothesis. I also decided to take an extra look at another African country, Egypt and got the following results:

Country Name=Egypt, Arab Rep.

N	Mean	Std Dev	Std Err	Minimum	Maximum
15	2.49E+11	7.65E+10	1.98E+10	1.07E+11	3.65E+11

Mean	95% CL Mean		Std Dev	95% CL	Std Dev
2.49E+11	2.14E+11	Infty	7.65E+10	5.60E+10	1.21E+11

DF	t Value	Pr > t
14	12.49	<.0001

Once again, the hypothesis was rejected by Egypt as well as the GDP was higher than the assumed

REFERENCES:

Computing, S. (2020). "How to Build Data Visualization Dashboards | Sigma Computing." Retrieved 2020/01/03, from https://www.sigmacomputing.com/blog/how-to-build-data-visualization-dashboards/.

Data, O. W. i. (2020). "Energy." Retrieved 2022/04/01.

Destinationsinternational.org (2018). "World Travel & Tourism Economic Impact Report | Destinations International." Retrieved 2022/01/04, from https://destinationsinternational.org/industry-reports/world-travel-tourism-economic-impact-report.

Marum (2022). "Care of children with HIV infection and AIDS in Africa." from https://pubmed.ncbi.nlm.nih.gov/9416374/.

Raghupathi, V. (2020). "Healthcare Expenditure and Economic Performance: Insights From the United States Data." Retrieved 2022/01/04, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237575/.

Unaids.org (2021). "Global HIV & AIDS statistics — Fact sheet." 2021/01/04, from https://www.unaids.org/en/resources/fact-sheet.