UE UTC501 - Outils mathématiques pour l'informatique Cours 0 - Outils mathématiques - Introduction

Alain Faye

Cnam

2024-2025

Plan du cours

- 1 Éléments de logique
- Relations et ordres
- 3 Éléments d'arithmétique
- Calcul matriciel et analyse
- Suites et séries

- 1 Éléments de logique
- Relations et ordres
- Éléments d'arithmétique
- Calcul matriciel et analyse
- Suites et séries

Quelques éléments de logique

Proposition, relation unaire, relation binaire

- Proposition P prend la valeur Vrai = 1 ou Faux = 0
- Relation unaire : négation :=]

Р]P
1	0
0	1

Relations binaires : et := ∧, ou := ∨,

Р	Q	$P \wedge Q$	$P \lor Q$
1	1	1	1
1	0	0	1
0	1	0	1
0	0	0	0

Quelques éléments de logique Implication

- Implication
 - 2 propositions P et Q
 - ▶ $P \Rightarrow Q$ est défini par la formule $(P) \lor Q$

Р	Q	$P \lor Q$
1	1	1
1	0	0
0	1	1
0	0	1

$$\blacktriangleright \ \mathsf{P} {\Rightarrow} \mathsf{Q} = (\lceil \mathsf{P}) \vee \mathsf{Q} = \mathsf{Q} \vee (\lceil \mathsf{P}) = (\lceil \rceil \mathsf{Q}) \vee (\lceil \mathsf{P}) = (\lceil \mathsf{Q}) {\Rightarrow} (\lceil \mathsf{P})$$

(ロ) (리) (토) (토) (B) (C)

Quelques éléments de logique

Equivalence de 2 propositions

- Equivalence
 - ▶ 2 propositions P et Q
 - ▶ $P \Leftrightarrow Q$ est défini par $(P \Rightarrow Q) \land (Q \Rightarrow P)$

Р	Q	$P\RightarrowQ$	$Q \Rightarrow P$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$
1	1	1	1	1
1	0	0	1	0
0	1	1	0	0
0	0	1	1	1

Quelques éléments de logique

Quelques opérations

2 propositions P et Q

Exemple de calcul : la négation d'une implication

•
$$\rceil(P \Rightarrow Q) = \rceil((\rceil P) \lor Q) = (\rceil \rceil P) \land (\rceil Q) = P \land (\rceil Q)$$

Quantificateur

Quantificateur

- quelque soit, pour tout ∀
- il existe ∃
- il n'existe pas ∄
- il existe un seul ∃!

Exemples:

- soit $E = \{2, 4, 6, 8\}, \forall x \in E \ x \text{ est pair}$
- soit $E = \{1, 3, 6, 8\}$, $\exists x \in E$ tel que x est pair
- soit $E = \{1, 3, 6, 7\}$, $\exists ! x \in E$ tel que x est pair
- soit $E = \{1, 3, 5, 7\}$, $\nexists x \in E$ tel que x est pair

Par implication

- Hypothèses : P proposition de départ (supposée Vrai)
- Conclusion : Q proposition finale que l'on veut montrer Vrai
- Il faut montrer que P⇒Q prend la valeur Vrai

Il est équivalent de montrer que $(]Q) \Rightarrow (]P)$ est Vrai. C'est la preuve par l'absurde. Parfois cette approche est plus simple.

Par l'absurde

Exemples:

- P = la somme des angles d'un triangle est 180°
- Q = dans un triangle il y a au plus un angle obtus (i.e.>90°)

Montrons $(]Q) \Rightarrow (]P)$.

- Q = dans un triangle il y a au moins 2 angles obtus
- On additionne les angles et on obtient une somme $> 180^\circ$. Donc P est Faux (i.e. $\ \ P$ est Vrai).

Par récurrence

Soit une suite de propositions P_n qui dépendent d'un entier naturel n. On veut montrer que P_n pend la valeur Vrai $\forall n$.

Il est souvent plus simple de faire cette démonstration progressivement.

- Montrer que P₀ est Vrai
- ② Supposer P_n Vrai (Hypothèse de récurrence) et démontrer P_{n+1} c'est-à-dire montrer que $P_n \Rightarrow P_{n+1}$ est Vrai.

Par récurrence

Exemple : Monter que la somme des n premiers entiers vaut $\frac{n(n+1)}{2}$ pour $n \ge 1$. Ici $P_n = I$ a somme des n premiers entiers vaut $\frac{n(n+1)}{2}$.

- n = 1. La somme vaut 1 et $\frac{n(n+1)}{2}$ vaut 1 aussi. P_1 a bien pour valeur Vrai.
- Hypothèse de récurrence : P_n Vrai c'est-à-dire la somme des n premiers entiers vaut $\frac{n(n+1)}{2}$. Montrons P_{n+1} c'est-à-dire montrons que la somme des n+1 premiers entiers vaut $\frac{(n+1)(n+2)}{2}$.
- Démonstration. La somme des n+1 premiers entiers est égale à la somme des n premiers entiers plus n+1. Ce qui donne en utilisant l'hypothèse de récurrence :

$$\frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

◆ロ > ◆昼 > ◆昼 > ・昼 ・ 夕 < ○

- Éléments de logique
- 2 Relations et ordres
- Éléments d'arithmétique
- 4 Calcul matriciel et analyse
- Suites et séries

- Éléments de logique
- Relations et ordres
- 3 Éléments d'arithmétique
- 4 Calcul matriciel et analyse
- Suites et séries

- Éléments de logique
- Relations et ordres
- 3 Éléments d'arithmétique
- 4 Calcul matriciel et analyse
- 5 Suites et séries

- Éléments de logique
- Relations et ordres
- 3 Éléments d'arithmétique
- 4 Calcul matriciel et analyse
- 5 Suites et séries