KELOMPOK 5 KALKULUS II

Hilmi Awfa Abrar	G1401211089
Raziqizzan Putrandi	G1401211040
Windi Gunawan	G1401211082
Cahyani Dyah Rofiana	G1401211005
Farhan Abdillah Harahap	G1401211007
Syifa Khairunnisa	G1401211012
Reyzha Siva Dewi	G1401211074
Akmal Basis Jatining Kusumah	G1401211036
Rani Yasmin Azzahra	G1401211100

$$\frac{\text{lim}}{\text{N} \rightarrow \infty} \frac{\text{N}}{3 \text{ N} - 1} = \frac{1}{3}$$

:. Konvergen Ke
$$\frac{1}{3}$$

* Kemonotonan

$$N - (N+1)$$

$$N(3N+2) - (3N-1)(N+1)$$

$$(3N-1)(3N+2)$$

$$a = 3 n^2 + 2n - (-3n^2 + 2n - 1)$$

$$9n^{2} + 3n - 2$$

$$\frac{9 \, (\eta + 1)^3}{(\eta + 1)^3}$$

$$\frac{\eta^{3} + 3 \eta^{2} + 3 \eta}{(\eta + 1)^{3}} = -\frac{(\eta + 1)^{3} + 3 (\eta + 1)^{2} + 3 (\eta + 1)}{(\eta^{2} + 3 \eta + 2)^{2}}$$

$$= -\frac{3 \eta^{2} - 9 \eta - 7}{(\eta^{2} + 3 \eta + 2)^{2}} = 0$$

1

$$-1 \leq \cos(n\pi) \leq 1$$

$$\frac{-1}{N} \leq \frac{\cos(n\pi)}{n} \leq \frac{1}{n}$$

$$\lim_{N \to \infty} \frac{-1}{n} = 0$$

$$\lim_{N \to \infty} \frac{1}{n} = 0$$

$$\lim_{N \to \infty} \frac{1}{n} = 0$$

* Kemonotonan

$$\frac{\cos n\pi}{n} - \frac{\cos (n+1)\pi}{n+1}$$

$$= (N+1) \cos N \Psi - U \cos (N+1) \Psi$$

$$n^2 + n$$

$$\lim \frac{\sin n}{\sin n} = 0$$

* Kemonotonan

$$\sqrt{M} - \sqrt{M+1} = \left(6_{-M} \operatorname{2iM} M\right) - \left(6_{-(M+1)} \operatorname{2iM} (M+1)\right)$$

$$\mathbb{N} \to \emptyset$$
 \mathbb{N}_3

* Ke monoton an

$$\bigcap^{3} \qquad (\bigcap \dagger I)^{3}$$

$$= \frac{(\eta + 1)^3 - \Omega^5}{2} > 0$$

.. Monoton turun

$$\frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}$$

$$\frac{\lim}{n \to \infty} \frac{1}{2^{n+1}} = 0 \qquad \therefore \text{ Konvergen Ke } 0$$

$$\bigcirc$$
 SIN 1, \bigcirc Sin $\frac{1}{2}$, \bigcirc Sin $\frac{1}{3}$, \bigcirc Sin $\frac{1}{4}$, ...

$$\Omega_n = \eta \sin \underline{l}$$
; $\eta = 1, 2, 3, ...$ rumus exsplisit

$$0 = \frac{10^{n} - 1}{0.10^{n}}$$
; $n = 1.2.3...$

$$\lim_{N \to \infty} \frac{10^{n} - 1}{9 \cdot 10^{n}} = \frac{10^{n} - 1}{10^{n}} = 1$$

... Konvergen ke $\frac{1}{9}$