

Machine Learning: Yoshinari Fujinuma University of Colorado Boulder

Slides adapted from Chenhao Tan, Jordan Boyd-Graber, Chris Ketelsen

Learning objectives

• How to learn weights β for logistic regression

Outline

Objective function

Gradient Descent

Regularization

Outline

Objective function

Gradient Descent

Regularization

Reminder: Logistic Regression

Logistic (sigmoid) function σ is defined as

$$\sigma = \frac{1}{1 + \exp{-\beta^T x}} \tag{1}$$

$$P(Y=1 \mid \mathbf{x}) = \sigma \tag{2}$$

$$P(Y=0 \mid \mathbf{x}) = 1 - \sigma \tag{3}$$

- Discriminative prediction: $P(y \mid x)$
- What we didn't talk about is how to learn β from data

Find the parameter that maximize the likelihood of observing the training data with N examples i.e., $(x, y) = \{(x_0, y_0), (x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}.$

Find the parameter that maximize the likelihood of observing the training data with N examples i.e., $(x,y) = \{(x_0,y_0), (x_1,y_1), (x_2,y_2), ..., (x_N,y_N)\}.$

$$\begin{split} \mathsf{Likelihood} &= P(Y \mid X, \beta) \\ &= \prod_{i} P(y_i \mid \pmb{x}_i, \beta) \\ &= \prod_{i} \begin{cases} \sigma_i & \text{if } y_i = 1 \\ 1 - \sigma_i & \text{if } y_i = 0 \end{cases} \end{split}$$

What is the problem of this likelihood function?

• Especially, considering $0 < \sigma < 1$?

Idea: Use the log-likelihood

Idea: Use the log-likelihood

$$\begin{aligned} \mathsf{Log\text{-}Likelihood} \; (\mathsf{LL}) &= \log P(Y \mid X, \beta) \\ &= \sum_i \log P(y_i \mid \pmb{x}_i, \beta) \\ &= \sum_i \begin{cases} \log \sigma_i & \text{if } y_i = 1 \\ \log (1 - \sigma_i) & \text{if } y_i = 0 \end{cases} \end{aligned}$$

Maximize the log-likelihood or Minimize negative log likelihood (NLL) $\mathscr L$ is

$$\mathcal{L}(\beta) = -\sum_{i} \log P(y_i \mid \mathbf{x}_i, \beta)$$

Maximize the log-likelihood or Minimize negative log likelihood (NLL) $\mathscr L$ is

$$\mathcal{L}(\beta) = -\sum_{i} \log P(y_i \mid \boldsymbol{x}_i, \beta)$$

So back to the main question today.

What values should β be?

Maximize the log-likelihood or Minimize negative log likelihood (NLL) $\mathscr L$ is

$$\mathscr{L}(\beta) = -\sum_{i} \log P(y_i \mid \boldsymbol{x}_i, \beta)$$

So back to the main question today. What values should β be?

$$\beta^* = \operatorname*{arg\,min}_{\beta} \mathscr{L}(\beta)$$

Outline

Objective function

Gradient Descent

Regularization

Given a paramter w and the loss function L we want to optimize

$$L(w) = w^2$$

Assume w = 20, which way should I move to miminize the loss?

Given a paramter w and the loss function L we want to optimize

$$L(w) = w^2$$

Assume w = 20, which way should I move to miminize the loss?

Answer: Downhill, but the derivative $\frac{\partial L}{\partial w} = 2w$ tells you uphill. So let's take the negative i.e., -2w.

We now know which way is downhill, but how far we want to go?

We now know which way is downhill, but how far we want to go? Another hyperparameter: a small step size called **learning rate** η to go.

- $-\frac{\partial L}{\partial w} = -2w$ tells you the direction
- learning rate η tells you how far you want to go to minimize the loss

We update the parameter w to the updated parameter w' by

$$w' \leftarrow w - \eta \frac{\partial L}{\partial w}$$

Convexity

- NLL is convex
- Doesn't matter where you start, if you go down along the gradient

Image from https://automaticaddison.com/

 $\verb|how-to-choose-an-optimal-learning-rate-for-gradient-descent||$

Gradient for Logistic Regression

Again, σ is defined as

$$\sigma_i = \frac{1}{1 + \exp{-\beta^T x_i}} \tag{4}$$

Our objective function is

$$\mathcal{L}(\beta) = -\sum_{i} \log p(y_i \mid x_i) = \sum_{i} \begin{cases} -\log \sigma_i & \text{if } y_i = 1\\ -\log(1 - \sigma_i) & \text{if } y_i = 0 \end{cases}$$
 (5)

Taking the Derivative

Apply chain rule:

$$\frac{\partial \mathcal{L}}{\partial \beta_j} = \sum_{i} \begin{cases} -\frac{1}{\sigma_i} \frac{\partial \sigma_i}{\partial \beta_j} & \text{if } y_i = 1\\ -\frac{1}{1 - \sigma_i} \left(-\frac{\partial \sigma_i}{\partial \beta_j} \right) & \text{if } y_i = 0 \end{cases}$$
 (6)

The derivative of logistic/sigmoid function σ with respect to β_j is,

$$\frac{\partial \sigma_i}{\partial \beta_j} = \sigma_i (1 - \sigma_i) x_{ij},\tag{7}$$

we can merge two cases of $y_i = 0$ or $y_i = 1$ as

$$\frac{\partial \mathcal{L}_i}{\partial \beta_i} = -(y_i - \sigma_i) x_{ij}. \tag{8}$$

Gradient for Logistic Regression

Gradient

$$\nabla_{\beta} \mathcal{L}(\vec{\beta}) = \left[\frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_0}, \dots, \frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_n} \right] \tag{9}$$

Update

$$\Delta \beta = \eta \nabla_{\beta} \mathcal{L}(\vec{\beta}) \tag{10}$$

$$\Delta \beta = \eta \nabla_{\beta} \mathcal{L}(\vec{\beta}) \tag{10}$$

$$\beta_i' \leftarrow \beta_i - \eta \frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_i} \tag{11}$$

Overfitting

Maximize the likelihood of training data can have the risk of overfitting

Overfitting

- Maximize the likelihood of training data can have the risk of overfitting
 - When to stop?
 - \circ Simple models (avoid β to get too big)

Overfitting

- Maximize the likelihood of training data can have the risk of overfitting
 - When to stop?
 - Simple models (avoid β to get too big) **Regularization**

Outline

Objective function

Gradient Descent

Regularization

Regularized Conditional Log Likelihood

Unregularized

$$\beta^* = \underset{\beta}{\operatorname{arg\,min}} - \sum_{i} \log \left[p(y_i \,|\, \boldsymbol{x}_i, \beta) \right] \tag{12}$$

Regularized

$$\beta^* = \underset{\beta}{\operatorname{arg\,min}} - \sum_{i} \log \left[p(y_i \mid \boldsymbol{x}_i, \beta) \right] + \frac{1}{2} \lambda \sum_{j} \beta_j^2$$
 (13)

Regularized Conditional Log Likelihood

Unregularized

$$\beta^* = \underset{\beta}{\operatorname{arg\,min}} - \sum_{i} \log \left[p(y_i | \boldsymbol{x}_i, \beta) \right]$$
 (12)

Regularized

$$\beta^* = \underset{\beta}{\operatorname{arg\,min}} - \sum_{i} \log \left[p(y_i \mid \boldsymbol{x}_i, \beta) \right] + \frac{1}{2} \lambda \sum_{j} \beta_j^2$$
 (13)

 λ is the "regularization" parameter (a hyperparameter) that trades off between likelihood and having small parameters

Overview

$$\min_{\beta} \sum_{i} \ell(y_i, h_{\beta}(x_i)) + \lambda R(\beta)$$

Overview

$$\min_{eta} \sum_{i} \ell(y_i, h_{eta}(x_i)) + \lambda R(eta)$$

Loss functions (ℓ)

Describe how well the model fits the training data

- $y \log \hat{y} + (1 y) \log(1 \hat{y})$
- $(y \hat{y})^2$

Regularization (R)

Control the complexity of the model

- $||\beta||^2 = \sum_j \beta_j^2$
- ℓ_1 -regularization: $\sum_j |\beta_j|$

Summary

- Follow the gradient to fit the logistic regression model
- Most machine learning methods fall into the framework of (loss + regularization)