```
In [12]: import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
In [11]: p=pd.read_csv("G:/My Drive/INNO_INTERN/DATASETS/project2.csv")
 In [3]: p.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 112634 entries, 0 to 112633
         Data columns (total 17 columns):
              Column
                                                                Non-Null Count
         type
              -----
                                                                 -----
         ----
          0 VIN (1-10)
                                                                112634 non-null o
         bject
                                                                112634 non-null o
          1
             County
         bject
                                                                112634 non-null o
          2
              City
         bject
              State
                                                                112634 non-null o
          3
         bject
          4
              Postal Code
                                                                112634 non-null i
         nt64
          5
              Model Year
                                                                112634 non-null i
         nt64
                                                                112634 non-null o
          6
              Make
         bject
                                                                112614 non-null o
          7
              Model
         bject
                                                                112634 non-null o
          8
              Electric Vehicle Type
         bject
              Clean Alternative Fuel Vehicle (CAFV) Eligibility 112634 non-null o
         bject
          10 Electric Range
                                                                112634 non-null i
         nt64
                                                                112634 non-null i
          11 Base MSRP
         nt64
                                                                112348 non-null f
          12 Legislative District
         loat64
          13 DOL Vehicle ID
                                                                112634 non-null i
         nt64
          14 Vehicle Location
                                                                112610 non-null o
         bject
          15 Electric Utility
                                                                112191 non-null o
         bject
          16 2020 Census Tract
                                                                112634 non-null i
         nt64
         dtypes: float64(1), int64(6), object(10)
         memory usage: 14.6+ MB
```

In [4]: p.head()

Out[4]:

	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type
0	JTMEB3FV6N	Monroe	Key West	FL	33040	2022	ТОУОТА	RAV4 PR I ME	Plug-in Hybrid Electric Vehicle (PHEV)
1	1G1RD6E45D	Clark	Laughlin	NV	89029	2013	CHEVROLET	VOLT	Plug-in Hybrid Electric Vehicle (PHEV)
2	JN1AZ0CP8B	Yakima	Yakima	WA	98901	2011	NISSAN	LEAF	Battery Electric Vehicle (BEV)
3	1G1FW6S08H	Skagit	Concrete	WA	98237	2017	CHEVROLET	BOLT EV	Battery Electric Vehicle (BEV)
4	3FA6P0SU1K	Snohomish	Everett	WA	98201	2019	FORD	FUSION	Plug-in Hybrid Electric Vehicle (PHEV)
4									•

In [5]: p.tail()

Out[5]:

	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type
112629	7SAYGDEF2N	King	Duvall	WA	98019	2022	TESLA	MODEL Y	Battery Electric Vehicle (BEV)
112630	1N4BZ1CP7K	San Juan	Friday Harbor	WA	98250	2019	NISSAN	LEAF	Battery Electric Vehicle (BEV)
112631	1FMCU0KZ4N	King	Vashon	WA	98070	2022	FORD	ESCAPE	Plug-in Hybrid Electric Vehicle (PHEV)
112632	KNDCD3LD4J	King	Covington	WA	98042	2018	KIA	NIRO	Plug-in Hybrid Electric Vehicle (PHEV)
112633	YV4BR0CL8N	King	Covington	WA	98042	2022	VOLVO	XC90	Plug-in Hybrid Electric Vehicle (PHEV)
4									•

In [7]: p.describe()

Out[7]:

	Postal Code	Model Year	Electric Range	Base MSRP	Legislative District	DOL Vel
count	112634.000000	112634.000000	112634.000000	112634.000000	112348.000000	1.126340
mean	98156.226850	2019.003365	87.812987	1793.439681	29.805604	1.994567
std	2648.733064	2.892364	102.334216	10783.753486	14.700545	9.3984276
min	1730.000000	1997.000000	0.000000	0.000000	1.000000	4.777000€
25%	98052.000000	2017.000000	0.000000	0.000000	18.000000	1.4841426
50%	98119.000000	2020.000000	32.000000	0.000000	34.000000	1.923896
75%	98370.000000	2022.000000	208.000000	0.000000	43.000000	2.1918996
max	99701.000000	2023.000000	337.000000	845000.000000	49.000000	4.7925486
4						>

C:\Users\sadgu\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: Futur
eWarning: use_inf_as_na option is deprecated and will be removed in a futu
re version. Convert inf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):


```
In [17]: # 2. Distribution of Electric Vehicle Type
plt.figure(figsize=(10, 6))
sns.countplot(data=p, x='Electric Vehicle Type', palette='Set3')
plt.title('Count of Electric Vehicle Types')
plt.xlabel('Electric Vehicle Type')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.show()
```



```
In [18]: # 3. Distribution of Electric Range
    plt.figure(figsize=(10, 6))
        sns.histplot(p['Electric Range'], kde=True, bins=30, color='red')
        plt.title('Distribution of Electric Range')
        plt.xlabel('Electric Range (miles)')
        plt.ylabel('Count')
        plt.show()
```

C:\Users\sadgu\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: Futur
eWarning: use_inf_as_na option is deprecated and will be removed in a futu
re version. Convert inf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):


```
In [22]: # 5. Electric Range by Make
  plt.figure(figsize=(10, 6))
    sns.boxplot(data=p, x='Make', y='Electric Range', palette='Set1')
    plt.title('Electric Range by Vehicle Make')
    plt.xlabel('Make')
    plt.ylabel('Electric Range (miles)')
    plt.xticks(rotation=90)
    plt.show()
```



```
In [23]: # 6. Base MSRP vs Electric Range
plt.figure(figsize=(10, 6))
sns.scatterplot(data=p, x='Base MSRP', y='Electric Range', hue='Electric Ve
plt.title('Base MSRP vs Electric Range')
plt.xlabel('Base MSRP (USD)')
plt.ylabel('Electric Range (miles)')
plt.legend(title='Electric Vehicle Type')
plt.show()
```



```
In [24]: # 7. Count of Clean Alternative Fuel Vehicle Eligibility
    plt.figure(figsize=(10, 6))
    sns.countplot(data=p, x='Clean Alternative Fuel Vehicle (CAFV) Eligibility'
    plt.title('Count of CAFV Eligibility')
    plt.xlabel('CAFV Eligibility')
    plt.ylabel('Count')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [26]: # Missing Data Check
print(p.isnull().sum())
```

VIN (1-10)	0
County	0
City	0
State	0
Postal Code	0
Model Year	0
Make	0
Model	20
Electric Vehicle Type	0
Clean Alternative Fuel Vehicle (CAFV) Eligibility	0
Electric Range	0
Base MSRP	0
Legislative District	286
DOL Vehicle ID	0
Vehicle Location	24
Electric Utility	443
2020 Census Tract	0
dtype: int64	

```
In [27]: import seaborn as sns
import matplotlib.pyplot as plt

# Heatmap to visualize missing data
plt.figure(figsize=(10, 6))
sns.heatmap(p.isnull(), cbar=False, cmap='viridis')
plt.title('Missing Data Heatmap')
plt.show()
```



```
In [29]: # Boxplot for outlier detection in Electric Range
plt.figure(figsize=(10, 6))
sns.boxplot(data=p, y='Electric Range')
plt.title('Boxplot of Electric Range (Outlier Detection)')
plt.show()

# Boxplot for outlier detection in Base MSRP
plt.figure(figsize=(10, 6))
sns.boxplot(data=p, y='Base MSRP')
plt.title('Boxplot of Base MSRP (Outlier Detection)')
plt.show()
```


In [31]: # Correlation matrix and heatmap
 plt.figure(figsize=(10, 6))
 corr_matrix = p[['Electric Range', 'Model Year', 'Base MSRP']].corr()
 sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
 plt.title('Correlation Heatmap')
 plt.show()

In [32]: # Boxplot for Electric Range by CAFV Eligibility plt.figure(figsize=(10, 6)) sns.boxplot(data=p, x='Clean Alternative Fuel Vehicle (CAFV) Eligibility', plt.title('Electric Range by CAFV Eligibility') plt.xlabel('CAFV Eligibility') plt.ylabel('Electric Range (miles)') plt.xticks(rotation=45) plt.show()


```
In [34]: # Electric Range by City (Top 10 Cities)
top_cities = p['City'].value_counts().nlargest(10).index
filtered_data = p[p['City'].isin(top_cities)]

plt.figure(figsize=(10, 6))
sns.boxplot(data=filtered_data, x='City', y='Electric Range', palette='Set3
plt.title('Electric Range by City (Top 10 Cities)')
plt.xlabel('City')
plt.ylabel('Electric Range (miles)')
plt.xticks(rotation=90)
plt.show()
```


Task 2: Create a Choropleth using plotly.express to display the number of EV vehicles based on location.

```
In [35]: !pip install plotly

Requirement already satisfied: plotly in c:\users\sadgu\anaconda3\lib\site
-packages (5.9.0)
Requirement already satisfied: tenacity>=6.2.0 in c:\users\sadgu\anaconda3
\lib\site-packages (from plotly) (8.2.2)
In [36]: import plotly.express as px
```

```
In [37]: scatter_plot = px.scatter(p, x="Electric Range", y="Base MSRP", title="Scat
scatter_plot.show()
```

Scatter Plot: Electric Range vs Base MSRP


```
In [39]: box_plot = px.box(p, x="Electric Vehicle Type", y="Electric Range", title="
box_plot.show()
```

Box Plot: Electric Vehicle Type vs Electric Range


```
In [40]: vehicle_type_count = p['Electric Vehicle Type'].value_counts().reset_index(
    vehicle_type_count.columns = ['Electric Vehicle Type', 'Count']
    pie_chart = px.pie(vehicle_type_count, names='Electric Vehicle Type', value
    pie_chart.show()
```

Pie Chart: Distribution of Electric Vehicle Types

Choropleth Map: Number of EV Vehicles by State

C:\Users\sadgu\anaconda3\Lib\site-packages\plotly\express_core.py:1979: F
utureWarning:

When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead o f `name` to silence this warning.

Animated Choropleth: Electric Range over Model Year by Stat

Task 3: Create a Racing Bar Plot to display the animation of EV Make and its count each year.

00:00

```
Collecting bar_chart_race
  Obtaining dependency information for bar chart race from https://files.p
ythonhosted.org/packages/09/01/f6d1a1a0978b39560843c54be7349804d7d2faef0a8
69acd7c8a6fc920b0/bar_chart_race-0.1.0-py3-none-any.whl.metadata (https://
files.pythonhosted.org/packages/09/01/f6d1a1a0978b39560843c54be7349804d7d2
faef0a869acd7c8a6fc920b0/bar_chart_race-0.1.0-py3-none-any.whl.metadata)
  Downloading bar_chart_race-0.1.0-py3-none-any.whl.metadata (4.2 kB)
Requirement already satisfied: pandas>=0.24 in c:\users\sadgu\anaconda3\li
b\site-packages (from bar chart race) (2.2.3)
Requirement already satisfied: matplotlib>=3.1 in c:\users\sadgu\anaconda3
\lib\site-packages (from bar_chart_race) (3.7.2)
Requirement already satisfied: contourpy>=1.0.1 in c:\users\sadgu\anaconda
3\lib\site-packages (from matplotlib>=3.1->bar_chart_race) (1.2.1)
Requirement already satisfied: cycler>=0.10 in c:\users\sadgu\anaconda3\li
b\site-packages (from matplotlib>=3.1->bar chart race) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\sadgu\anacond
a3\lib\site-packages (from matplotlib>=3.1->bar_chart_race) (4.25.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\sadgu\anacond
a3\lib\site-packages (from matplotlib>=3.1->bar_chart_race) (1.4.4)
Requirement already satisfied: numpy>=1.20 in c:\users\sadgu\anaconda3\lib
\site-packages (from matplotlib>=3.1->bar_chart_race) (1.24.3)
Requirement already satisfied: packaging>=20.0 in c:\users\sadgu\anaconda3
\lib\site-packages (from matplotlib>=3.1->bar_chart_race) (23.1)
Requirement already satisfied: pillow>=6.2.0 in c:\users\sadgu\anaconda3\l
ib\site-packages (from matplotlib>=3.1->bar_chart_race) (9.4.0)
Requirement already satisfied: pyparsing<3.1,>=2.3.1 in c:\users\sadgu\ana
conda3\lib\site-packages (from matplotlib>=3.1->bar_chart_race) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7 in c:\users\sadgu\anac
onda3\lib\site-packages (from matplotlib>=3.1->bar_chart_race) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\sadgu\anaconda3\li
b\site-packages (from pandas>=0.24->bar_chart_race) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.7 in c:\users\sadgu\anaconda3
\lib\site-packages (from pandas>=0.24->bar_chart_race) (2023.3)
Requirement already satisfied: six>=1.5 in c:\users\sadgu\anaconda3\lib\si
te-packages (from python-dateutil>=2.7->matplotlib>=3.1->bar chart race)
(1.16.0)
Downloading bar_chart_race-0.1.0-py3-none-any.whl (156 kB)
   ----- 0.0/156.8 kB ? eta -:--:--
      ----- 71.7/156.8 kB 4.1 MB/s eta 0:0
0:01
                    ----- 71.7/156.8 kB 4.1 MB/s eta 0:0
0:01
   ----- 71.7/156.8 kB 4.1 MB/s eta 0:0
0:01
   ----- 92.2/156.8 kB 655.4 kB/s eta 0:
00:01
   ------ 92.2/156.8 kB 655.4 kB/s eta 0:
00:01
```

----- 156.8/156.8 kB 672.4 kB/s eta 0:

Installing collected packages: bar_chart_race
Successfully installed bar_chart_race-0.1.0

```
In [47]: # Assuming you have already loaded your dataset
# Create a pivot table with counts of vehicles by 'Make' and 'Model Year'
pivot_data = p.pivot_table(index="Model Year", columns="Make", aggfunc="siz
# Sort the columns by sum of vehicle counts
pivot_data = pivot_data.loc[:, pivot_data.sum(axis=0).sort_values(ascending)
In [46]: import bar_chart_race as bcr
```

```
In [49]: # Create a pivot table with counts of vehicles by 'Make' and 'Model Year'
         pivot_data = p.pivot_table(index="Model Year", columns="Make", aggfunc="siz")
         # Reset index to make 'Model Year' a column
         pivot_data.reset_index(inplace=True)
         melted_data = pivot_data.melt(id_vars=["Model Year"], var_name="Make", valu
         # Create an animated bar plot
         fig = px.bar(melted_data,
                      x='Count',
                      y='Make',
                      color='Make',
                      animation_frame='Model Year',
                      range_x=[0, melted_data['Count'].max() + 10], # Adjust range
                      title='Year-wise EV Make Sales Animation',
                      orientation='h')
         fig.update_layout(
             title_font=dict(size=30),
             xaxis_title_font=dict(size=20),
             yaxis title font=dict(size=20),
             width=1000,
             height=600,
             bargap=0.1,
```

Year-wise EV Make Sales Animation

