- 一、單選題: (12 分, 每題 6 分)
- 1. () 已知兩向量 $\overrightarrow{u} = (3,4)$, $\overrightarrow{v} = (2,1)$, 求內積 $\overrightarrow{u} \cdot \overrightarrow{v} =$
 - (1) (6,4) (2) (-4,-3) (3) 5√5 (4) 10 (5)以上皆非
- 2. () $\triangle ABC$ 內接於圓心為O之單位圓。若 $\overrightarrow{OA} + \overrightarrow{OB} + \sqrt{3}\overrightarrow{OC} = \overrightarrow{0}$,則 $\angle BAC$ 之度數為何? (1)30° (2)45° (3)60° (4)75° (5)90°
- 二、多選題:(20分,每題10分。每題全對給10分,錯一個選項給6分,錯兩個選項給2分,其他不給分。)
- 3. () 一物體由坐標平面中的點(-4,3)出發,沿著向量 \overrightarrow{v} 所指的方向持續前進,可以進入第一象限。請選出正確的選項: (1) \overrightarrow{v} = (4,-3) (2) \overrightarrow{v} = (1,-1) (3) \overrightarrow{v} = (0.01,0) (4) \overrightarrow{v} = (0.01,1) (5) \overrightarrow{v} = (-0.01,1)
- 4. () 如圖,設 P 為△ABC 內部一點,且 $\overrightarrow{AP} = \frac{1}{5}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$, $\overrightarrow{BE} = \frac{3}{5}\overrightarrow{BA}$, \overrightarrow{AP} 的延長線交 \overrightarrow{BC} 於 D,則下列敘述何者正確?

- (1) \overline{BD} : $\overline{DC} = 5:4$ (2) \overline{AP} : $\overline{AD} = 9:20$ (3) $\overline{AD} = \frac{4}{9}\overline{AB} + \frac{5}{9}\overline{AC}$ (4) $\frac{\triangle ACP}{\triangle ABC}$ 的面積 $=\frac{1}{5}$ (5) $\frac{\triangle AEP}{\triangle ABC}$ 的面積 $=\frac{2}{25}$
- 三、 選填題: (68分, 5~6題每題6分, 7~14題每題7分)
- 5.如下圖,正方形EFGH内接於正方形ABCD,若 \overrightarrow{AF} · \overrightarrow{AG} =168,則正方形ABCD的面積為 \bigcirc \bigcirc \bigcirc

6. $\triangle ABC$,角 A 為直角, A(0,0) , B(4,3) , $\overline{AC}=10$, C 在第二象限,求 $\overrightarrow{BC}=$ (8 9 ① , ① , ①) 。

7.設 \overrightarrow{AB} = (12,-5) , \overrightarrow{AC} = (-5,-12) ,若 \overrightarrow{AD} = \overrightarrow{AB} + $t\overrightarrow{AC}$ 且 \overrightarrow{AD} 平分 \angle BAC,則 \overrightarrow{AD} = (12) , 13 14 15) 。

8.坐標平面上,若向量 $\overrightarrow{AB}=(3,-1)$, $\overrightarrow{n}=(2,1)$,且 $\overrightarrow{n}\cdot\overrightarrow{AC}=7$,則 $\overrightarrow{n}\cdot\overrightarrow{BC}=$ ① 。

9.坐標平面上 O 為原點,設 $\overrightarrow{u}=(3,0)$ 、 $\overrightarrow{v}=(3,2)$ 。令 Ω 為滿足 $\overrightarrow{OP}=x\overrightarrow{u}+y\overrightarrow{v}$ 的所有點 P 所形成的區域,其中 $-1 \le x \le 2$, $-2 \le y \le 3$ 則 Ω 的面積為 $\boxed{17}$ $\boxed{18}$ 平方單位。

10.如右圖,O,P,A,Q 四點共線,若 \overrightarrow{OB} 在 \overrightarrow{OA} 上的正射影為 \overrightarrow{OP} , \overrightarrow{OC} 在 \overrightarrow{OA} 上的正射影為 \overrightarrow{OQ} ,且 $\overrightarrow{OQ} = 3\overrightarrow{OP}$, 已知內積 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 15$,則內積 $\overrightarrow{OA} \cdot \overrightarrow{OC}$ 之值為 ① ② 。

11.如圖,L 為坐標平面上通過原點 O 的直線, Γ 是以 O 為圓心的圓,且 L 與 Γ 有一個交點 A(6,8)。

已知 B, C 為 Γ 上的相異兩點滿足 $\overrightarrow{BC} = \overrightarrow{OA}$,試求 $\triangle ABC$ 的面積為 ②1 ② $\sqrt{23}$ 。

12.坐標平面上有一個半徑為7的圓,其圓心為O點。已知圓上有A、B兩點,且 $\overline{AB}=6$,則內積 $\overline{OA}\cdot\overline{OB}=$ ② ② 。

13. 平行四邊形 ABCD 中,E 為 \overline{AB} 中點,F 在 \overline{BC} 上,且 \overline{BF} : \overline{FC} = 2 : 1, 若 \overline{EF} = $\alpha \overrightarrow{AB}$ + $\beta \overrightarrow{AC}$,

則數對
$$(\alpha, \beta) = ($$
 $\frac{20}{28}$ $\frac{29}{30}$ $)$ \circ

14.菱形 ABCD,邊長為 2, $\angle A = 120^{\circ}$, $E \, \overline{ABC}$ 邊上,且 $\overline{BE} = h\overline{BC}$, $F \, \overline{ABC}$ 邊上,

且
$$\overline{DF} = k\overline{DC}$$
 , 若 $\overline{AE} \cdot \overline{AF} = 1$, $\overline{CE} \cdot \overline{CF} = -\frac{2}{3}$, 求 $h + k = \frac{3}{32}$ 。

1. (4) 2. (4) 3. (3)(4) 4.(1)(2)(3)(4) 5.168 6. (-10,5) 7. (7,-17) 8. 2 9. 90 10. 45 11. $25\sqrt{3}$ 12. 31 13. $(-\frac{1}{6},\frac{2}{3})$ 14. $\frac{5}{6}$