

TRABAJO CICLO TERMODINÁMICO

Motores Alternativos Grado de Ingeniería Aeroespacial

Autor: Cambra Valcárcel, Pablo

Del Toro Armas, Mario Gómez Jiménez, Paula Pérez Trias Daniel Serrano Vega, Carmen

Madrid, 28 de diciembre de 2024

Índice

Índice de fig	guras	Ι
Índice de ta	blas	II
Acrónimos		III
1. Sección		1
1.1. Subs	eccion	1
1.1.1	. Citar referencias y acrónimos	1
1.1.2	Enumeraciones	1
1.1.3	. Figuras	1
1.1.4	Ecuaciones	3
1.1.5	. Tablas	3
1.1.6	. Código	5
Referencias		6
Anexos		6
Anexos		6
A Título de	l anovo	G

Índice de figuras

1.	Motherboard Duet 3 6HC	2
2.	Montaje del sistema de transmisión del eje X $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	2
3.	Eiemplos de perfilería de aluminio.	3

Índice de tablas

1. Sección

En este capítulo se muestran varios ejemplos.

Negrita cursiva

Hacer una referencia, en este caso al Sección 1.

1.1. Subsection

1.1.1. Citar referencias y acrónimos

[?], MC, Materiales Compuestos (MC).

1.1.2. Enumeraciones

Enumeración.

- 1. La impresora debe contar con un sistema de nivelación de la base de impresión.
- 2. El sistema de extrusión de filamento debe asegurar que no se producirán inconsistencias durante los periodos largos de trabajo.

Enumeración cambiando los items.

- R-1 La impresora debe contar con un sistema de nivelación de la base de impresión.
- R-2 El sistema de extrusión de filamento debe asegurar que no se producirán inconsistencias durante los periodos largos de trabajo.

Referenciar un item: R-2, Elemento R-2.

Ejemplo de bulletpoints.

• Perfilería de aluminio.

1.1.3. Figuras

Las figuras se pueden fijar en el texto con H, posicionarlas lo mejor posible con h!, arriba con t, etc.

Figura 1: Motherboard Duet 3 6HC.

Subfiguras en paralelo.

(a) Vista frontal del montaje.

(b) Vista trasera del montaje.

Figura 2: Montaje del sistema de transmisión del eje X

Ejemplo dos figuras en paralelo centradas verticalemtne.

Figura 3: Ejemplos de perfilería de aluminio.

Barrera que no pueden atravesar las figuras.

1.1.4. Ecuaciones

Ejemplo de ecuación, Ecuación 1

$$l = \frac{\pi \cdot 1.8}{180 \cdot P} \cdot r = \frac{\pi \cdot 1.8}{180 \cdot 16} \cdot 6 = 0.0117 \quad [mm]. \tag{1}$$

1.1.5. Tablas

Ejemplo de tabla de grandes dimensiones e introducir una página apaisada. También se muestra como poner en negrita letras griegas, que a veces dan problemas.

Motores Alternativos

Tabla 1: Resultados	del estudio	paramétrico	del modelo	de localización	(2 de 2).

Id	Parámetros		Distancia		X			Y				
Id	outFE	compFE	compReg	μ [%]	σ [%]	Distribución	μ [%]	σ [%]	Distribución	μ [%]	σ [%]	Distribución
25	175	150	100	0.141	0.096	Generalized Extreme Value	0.104	0.094	Weibull	0.074	0.063	Weibull
26	175	150	150	0.174	0.124	Generalized Extreme Value	0.124	0.117	Exponential	0.097	0.085	Weibull
27	175	200	100	0.15	0.104	Generalized Extreme Value	0.108	0.098	Weibull	0.083	0.073	Weibull
28	175	200	150	0.188	0.136	Generalized Extreme Value	0.131	0.126	Gamma	0.108	0.097	Generalized Pareto
29	175	250	100	0.158	0.109	Generalized Extreme Value	0.113	0.104	Weibull	0.087	0.075	Weibull
30	175	250	150	0.2	0.149	Generalized Extreme Value	0.138	0.137	Gamma	0.116	0.104	Weibull
31	175	300	100	0.162	0.108	Generalized Extreme Value	0.116	0.102	Weibull	0.09	0.078	Weibull
32	175	300	150	0.211	0.148	Generalized Extreme Value	0.145	0.136	Generalized Pareto	0.124	0.108	Generalized Pareto
33	200	150	100	0.128	0.084	Generalized Extreme Value	0.091	0.081	Weibull	0.071	0.06	Generalized Pareto
34	200	150	150	0.159	0.108	Generalized Extreme Value	0.113	0.101	Generalized Pareto	0.089	0.077	Weibull
35	200	200	100	0.17	0.116	Generalized Extreme Value	0.118	0.108	Weibull	0.098	0.083	Weibull
36	200	200	150	0.174	0.118	Generalized Extreme Value	0.12	0.109	Generalized Pareto	0.101	0.087	Weibull
37	200	250	100	0.151	0.099	Generalized Extreme Value	0.109	0.094	Weibull	0.083	0.07	Generalized Pareto
38	200	250	150	0.175	0.126	Generalized Extreme Value	0.126	0.119	Gamma	0.097	0.085	Weibull
39	200	300	100	0.147	0.094	Gamma	0.105	0.091	Weibull	0.082	0.068	Weibull
40	200	300	150	0.178	0.127	Generalized Extreme Value	0.121	0.116	Gamma	0.106	0.092	Weibull
41	225	150	100	0.156	0.107	Generalized Extreme Value	0.115	0.104	Weibull	0.083	0.071	Weibull
42	225	150	150	0.139	0.097	Generalized Extreme Value	0.1	0.091	Weibull	0.077	0.066	Weibull
43	225	200	100	0.166	0.109	Generalized Extreme Value	0.12	0.105	Generalized Pareto	0.09	0.076	Weibull
44	225	200	150	0.161	0.116	Generalized Extreme Value	0.113	0.109	Gamma	0.093	0.079	Weibull
45	225	250	100	0.143	0.094	Generalized Extreme Value	0.1	0.089	Weibull	0.082	0.068	Weibull
46	225	250	150	0.161	0.112	Generalized Extreme Value	0.115	0.107	Gamma	0.09	0.075	Weibull
47	225	300	100	0.153	0.104	Generalized Extreme Value	0.114	0.103	Weibull	0.08	0.066	Weibull

1.1.6. Código

```
1 M303 H0 S60; auto tune heater 0, default PWM (100%), 60C target
2 M303; report the auto-tune status or last resulM303; report the ...
auto-tune status or last result
3 M500; save parameters
```

```
1 function [R] = Metodo_Euler(ro, vo, mu, tf, N)
_3 h = 1./(2.^N); %Delta de integracion
4 k = 1;
6 %Integracion
8 %Posicion y velocidad inicial
9 r = ro;
10 \quad v = vo;
11 R(1,:) = ro;
12 \ V(1,:) = vo;
14 for i = 1:tf/h
     r = r + v*(h^k);
15
16
      v = v - mu*r*(h^k)/(norm(r))^3;
     R(i+1,:) = r;
17
18
      V(i+1,:) = v;
19 end
21 end
```


Anexos

A. Título del anexo

Aquí puedes meter la información que no sea imprescindible en el cuerpo del trabajo pero si que interese que esté en el documento.