Data Wrangling II Create an "Academic performance" dataset of students and perform the following operations using Python.

- 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- 3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.

```
import pandas as pd
import numpy as np

df = pd.read_csv("StudentsPerformance.csv")
df
```

₽		gender	math score	reading score	writing score	Placement Score	placement offer count	Region
	0	female	72	72	74.0	78.0	1	Pune
	1	female	69	90	88.0	NaN	2	na
	2	female	90	95	93.0	74.0	2	Nashik
	3	male	47	57	NaN	78.0	1	Na
	4	male	na	78	75.0	81.0	3	Pune
	5	female	71	Na	78.0	70.0	4	na
	6	male	12	44	52.0	12.0	2	Nashik
	-		KI KI	65	67.0	49.0	1	Pune
Sav	ed sı	uccessfully!		× 77	89.0	55.0	0	NaN

df.isnull()

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	False	False	False	False	False	False	False
1	False	False	False	False	True	False	False
2	False	False	False	False	False	False	False
3	False	False	False	True	False	False	False
4	False	False	False	False	False	False	False
5	False	False	False	False	False	False	False
6	False	False	False	False	False	False	False
7	False	True	False	False	False	False	False
8	False	False	False	False	False	False	True

```
from sklearn import preprocessing
x = preprocessing.LabelEncoder()
df['gender'] = x.fit_transform(df['gender'])
df
```


import matplotlib.pyplot as plt
boxplot = df.boxplot()
plt.show()


```
meanv = df['writing score'].mean()
df['writing score'].fillna(value = meanv, inplace = True)
df
```

Saved	successfull	ly!	× score	writing score	Placement Score	placement offer count	Region
0	0	72	72	74.0	78.0	1	Pune
1	0	69	90	88.0	NaN	2	na
2	0	90	95	93.0	74.0	2	Nashik
3	1	47	57	77.0	78.0	1	Na
4	1	na	78	75.0	81.0	3	Pune
5	0	71	Na	78.0	70.0	4	na
6	1	12	44	52.0	12.0	2	Nashik
7	1	NaN	65	67.0	49.0	1	Pune
8	1	5	77	89.0	55.0	0	NaN

```
import scipy.stats as stats
mean = df['writing score'].mean()
std = df['writing score'].std()
zscores = stats.zscore(df['writing score'])
zscores
     0
        -0.253546
         0.929670
     2
         1.352247
     3
         0.000000
        -0.169031
     4
         0.084515
        -2.112886
     6
     7
        -0.845154
         1.014185
     Name: writing score, dtype: float64
threshold = 0
```

mean = df['writing score'].mean()
std = df['writing score'].std()

for i in df['writing score']:
 z=(i-mean)/std

outlier=[]

```
if z>threshold:
  outlier.append(i)
print('outlier is ',outlier)

outlier is [88.0, 93.0, 78.0, 89.0]
```

import matplotlib.pyplot as plt
df['writing score'].plot(kind='hist')

df['log_math']=np.log10(df['writing score'])
df['log_math'].plot(kind='hist')

df

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region	log_math
0	0	72	72	74.0	78.0	1	Pune	1.869232
1	0	69	90	88.0	NaN	2	na	1.944483
2	0	90	95	93.0	74.0	2	Nashik	1.968483
3	1	47	57	77.0	78.0	1	Na	1.886491
4	1	na	78	75.0	81.0	3	Pune	1.875061
5	0	71	Na	78.0	70.0	4	na	1.892095
6	1	12	44	52.0	12.0	2	Nashik	1.716003
7	1	NaN	65	67.0	49.0	1	Pune	1.826075
8	1	5	77	89.0	55.0	0	NaN	1.949390

Oalah maid	and almost a	Canaal	 la a u a

->

Saved successfully!