Тестирование методом белого ящика

Лекция по курсу «Основы тестирования ПО»

© 2017–2019 Парамонов Илья Вячеславович

Повторение

Определение

Тестирование методом белого ящика— это тип тестирования, основанный на использовании структуры исходного кода тестируемой программы

При тестировании методом белого ящика тестировщик выделяет пути выполнения кода в объекте тестирования (software under test, SUT) и оценивает правильность выполнения кода вдоль этих путей

Область применимости

Тестирование методом белого ящика применимо, когда в тестируемом объекте можно выделить пути:

- модульное тестирование
- интеграционное тестирование (очень ограниченно)

Преимущества и недостатки

Преимущества

- Можно увидеть особенности реализации, требующие тестирования, но невидимые снаружи
- Можно быть уверенным, что тесты выполняются вдоль всех протестированных путей выполнения кода

Недостатки

- Часто невозможно протестировать все пути
- Невозможно протестировать несуществующие пути
- Отклонения от спецификации могут быть не видны
- Не может применяться при отсутствии навыков программирования у тестировщика

Граф потока управления

Определение

Графом потока управления называется называется граф, вершины которого соответствуют линейным участкам кода, а рёбра — возможным переходам между этими линейными участками

Пути выполнения кода соответствуют путям в графе потока управления

Пример графа потока управления

```
q = 1;
b = 2;
c = 3;
if (a == 2 \&\& r > 0) {
  x = x + 2;
} else {
  x = x / 2;
p = q / r;
if (b/c > 3) {
  z = x + y;
```


Критерии покрытия

• Покрытие операторов

Каждый оператор программы должен выполняться хотя бы в одном тесте

• Покрытие рёбер графа потока управления

По каждому ребру графа управление должно передаваться хотя бы в одном тесте

• Покрытие условной логики

По каждому ребру графа управление должно передаваться хотя бы в одном тесте при выполнении каждого условия

• Покрытие путей

Все пути в графе управления должны проходиться при выполнении каждого условия (обычно недостижимо)

Цикломатическая сложность и базовые пути

Определение

Цикломатическая сложность — это величина, равная количеству независимых путей в графе потока управления. Пути считаются независимыми, если каждый из них содержит дугу, не входящую в другие пути

Цикломатическая сложность для связного графа потока управления:

$$C = E - N + 2$$
,

где E — число дуг, N — число узлов графа

Метод базового пути для покрытия операторов и рёбер графа потока управления

Утверждение

Базовые пути в совокупности обеспечивают покрытие операторов и рёбер программы

Алгоритм

- 1. Выберите первый базовый путь произвольно (иногда рекомендуют выбирать самый «типичный» путь в графе потока управления)
- 2. Перебирая точки ветвления сверху вниз и слева на направо по одной, постройте новый путь, принимая противоположное решение в одной точке ветвления, по возможности сохраняя выбор остальных дуг вдоль пути неизменным
- 3. Постройте тест-кейсы в соответствии с построенными путями

$$C = 24 - 19 + 2 = 7$$

11

