

US007848381B2

(12) **United States Patent**
Barnes et al.

(10) **Patent No.:** US 7,848,381 B2
(45) **Date of Patent:** Dec. 7, 2010

(54) **MULTIPLE-WAVELENGTH TUNABLE LASER**

(75) Inventors: **Norman P. Barnes**, Yorktown, VA (US);
Brian M. Walsh, Poquoson, VA (US);
Donald J. Reichle, Seaford, VA (US)

(73) Assignee: **The United States of America as represented by the Administrator of the National Aeronautics and Space Administration**, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 149 days.

(21) Appl. No.: 12/366,722

(22) Filed: Feb. 6, 2009

(65) **Prior Publication Data**

US 2009/0207868 A1 Aug. 20, 2009

Related U.S. Application Data

(60) Provisional application No. 61/029,020, filed on Feb. 15, 2008.

(51) **Int. Cl.**

H01S 3/10 (2006.01)
H01S 3/08 (2006.01)
H01S 3/082 (2006.01)

(52) **U.S. Cl.** 372/97; 372/20; 372/92

(58) **Field of Classification Search** 372/20, 372/21, 22, 92, 97, 99, 101, 108

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

3,947,688 A 3/1976 Massey

4,734,912 A	3/1988	Scerbak et al.
4,864,584 A	9/1989	Martins
5,022,041 A	6/1991	Jacobs
5,058,980 A	10/1991	Howerton
5,295,143 A	3/1994	Rao et al.
5,333,142 A	7/1994	Scheps
5,408,481 A	4/1995	Scheps
5,457,707 A	10/1995	Sobey et al.
5,471,493 A	11/1995	Mirov et al.
5,577,060 A	11/1996	Nighan et al.
5,633,883 A	5/1997	Shi et al.
5,661,595 A	8/1997	Stamm et al.
5,764,662 A	6/1998	Pinto
6,654,391 B2	11/2003	Adams

FOREIGN PATENT DOCUMENTS

JP	63184383	7/1988
JP	04111484	4/1992
JP	06077577	3/1994
JP	08240528	9/1996

Primary Examiner—Armando Rodriguez

(74) Attorney, Agent, or Firm—Andrea Z. Warmbier; Helen M. Galus

(57) **ABSTRACT**

A tunable laser includes dispersion optics for separating generated laser pulses into first and second wavelength pulses directed along first and second optical paths. First and second reflective mirrors are disposed in the first and second optical paths, respectively. The laser's output mirror is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.

26 Claims, 2 Drawing Sheets

FIG. 1

FIG. 2

FIG. 3

1**MULTIPLE-WAVELENGTH TUNABLE LASER**

Pursuant to 35 U.S.C. §119 the benefit of priority from provisional application 61/029,020, with a filing date of Feb. 15, 2008, is claimed for this non-provisional application

ORIGIN OF THE INVENTION

The invention was made by employees of the United States Government and may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

BACKGROUND OF THE INVENTION**1. Field of the Invention**

This invention relates to tunable lasers. More specifically, the invention is a tunable laser that can simultaneously produce multiple synchronized laser beams at unique wavelengths using a single laser source.

2. Description of the Related Art

High-peak pulsed laser sources are needed at various wavelengths throughout the visible and ultraviolet region. Many applications also require a pulsed laser source to be tunable. Among the applications requiring tunable lasers are remote sensing applications (e.g., remote ozone sensing), color displays, and lithography.

Although there are some lasers that can possibly address the needed spectral regions, most present serious drawbacks. For example, dye lasers can be used to produce laser wavelengths throughout much of the visible spectrum. However, the dyes have a short lifetime and must be replaced frequently. Furthermore, some of the dyes and solvents are carcinogenic thereby complicating their replacement and disposal. In addition, the high-gain and short upper laser level lifetime lasers associated with dye lasers makes it difficult for these lasers to provide good beam quality.

With respect to the ultraviolet spectrum, rare gas halogen excimer lasers provide coverage for some of this wavelength spectrum. However, the halogens corrode the laser chamber and simultaneously deplete themselves. Halogens also pose a health hazard. Still further, the short upper laser level lifetimes associated with excimer lasers require the use of high-voltage, high-current electrical discharges. These discharges cause reliability concerns and may affect other electronic instruments.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a tunable laser.

Another object of the present invention is to provide a tunable laser that can produce multiple wavelengths in a variety of spectral regions.

Still another object of the present invention is to provide a tunable laser that can produce multiple wavelengths in a variety of spectral regions in a simple and safe manner.

Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.

In accordance with the present invention, a tunable laser has a laser resonator that includes dispersion optics for separating generated laser pulses into processed laser pulses having first and second wavelengths where the processed laser pulses are directed for travel along first and second optical paths. The laser resonator is defined at one end thereof by first

2

and second mirrors with the first mirror being disposed in the first optical path and designed to be reflective at the first wavelength. In a similar fashion, the second mirror is disposed in the second optical path and is designed to be reflective at the second wavelength. The laser resonator is defined at another end thereof by an output mirror that is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.

15 BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a multiple-wavelength tunable laser that produces simultaneous and synchronous laser pulses at two infrared wavelengths in accordance with an embodiment of the present invention;

FIG. 2 is a block diagram of a laser wavelength converter for converting the infrared wavelength laser pulses to laser pulses having visible wavelengths; and

FIG. 3 is a block diagram of a laser wavelength converter for converting the visible wavelength laser pulses to laser pulses having ultraviolet wavelengths.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings and more particularly to FIG. 1, a multiple-wavelength tunable laser in accordance with an embodiment of the present invention is shown and is referenced generally by numeral 10. In the illustrated embodiment, tunable laser 10 simultaneously produces synchronous laser pulses at two distinct wavelengths W_1 and W_2 that can be in the infrared spectrum. However, as will be apparent to one of ordinary skill in the art, the principles of the present invention can be readily extended to simultaneously produce synchronous laser pulses at more than two wavelengths.

Tunable laser 10 includes a laser head 12 and a number of optical components that define a laser resonator. Laser head 12 typically includes a rod 12A of lasing material and a pump source 12B (e.g., a flash lamp) as would be understood in the art. For example, in terms of generating laser pulses at multiple infrared wavelengths, rod 12A is typically a neodymium-doped yttrium aluminum garnet (Nd:YAG) and pump source 12B can be, for example, a flash lamp or a diode laser. However, it is to be understood that the particular construction of laser head 12 to include the choice of lasing material and pump source are not limitations of the present invention.

Tunable laser 10 essentially defines two laser resonator paths, one for each of the two wavelengths being produced. In general, the two resonator paths share common elements and path portions, and have distinct elements and path portions. More specifically, laser head 12 generates laser pulses (i.e., when rod 12A is pumped by source 12B) that are output to an optical switch 14 (e.g., a Q-switch) as indicated by arrow 100 in accordance with conventional laser principles. The laser pulses are then passed to dispersion optics 16 as indicated by arrow 102. Dispersion optics 16 tune and separate the incoming laser pulses 102 into two distinct wavelengths by creating angular separation of the laser pulses at selected lasing transitions inherent in rod 12A. That is, dispersion optics 16 serves as the starting point for the distinct portions of the two laser resonator paths.

3

The angular separation of laser pulses 102 can be achieved in a variety of ways. By way of example, dispersion optics 16 can be an arrangement of dispersive prisms (e.g., Brewster angle prisms arranged for low loss) positioned to polarize laser pulses 102 at the desired transitions and to create a desired amount of angular separation. The laser pulses at the two distinct wavelengths are output from dispersion optics 16 along spatially separated paths as indicated by arrows 104 and 106.

Positioned unique distances from dispersion optics 14 and in the paths of respective laser pulses 104 and 106, are reflective mirrors 18 and 20. Reflective mirror 18 should be totally reflective with respect to light at wavelength W_1 , while reflective mirror 20 should be totally reflective with respect to light at wavelength W_2 . Typically, each of reflective mirrors 18 and 20 is a curved mirror as would be understood in the art. The particular positioning of mirrors 18 and 20 will be explained further below. The reflected laser pulses 104R and 106R are passed back through dispersion optics 16 where the laser pulses are re-collimated and output as laser pulses 108.

In accordance with conventional laser resonator designs, laser pulses 108 are next directed back to/through Q-switch 14 and laser head 12 before impinging on an output mirror 22. In general and as is known in the art of laser resonators, an output mirror is partially reflective and partially transmissive with respect to the laser resonator's lasing wavelength. In the present invention, output mirror 22 (e.g., a flat mirror) must be partially reflective/transmissive with respect to both wavelengths W_1 and W_2 . The transmitted output pulses are indicated by arrow 108T and the pulses reflected back into the laser resonator are indicated by arrow 108R. The method for determining the reflective properties of output mirror 22 to achieve multiple wavelength reflection/transmission will be explained further below.

A great advantage of the present invention is that a single laser source can be used to produce multiple wavelengths. Since the multiple wavelength pulses use the same flat output mirror 22, the transmitted output pulses 108T at the multiple wavelengths are automatically parallel. Further, since both wavelengths are generated in the same laser rod 12A, transmitted output pulses 108T have the same pulse initiation time. In addition, tunable laser 10 is designed such that its laser resonators have the same pulse evolution time interval. This is accomplished in the present invention by adjusting the lasers and laser resonator lengths so that the pulse evolution time for each resonator is the same.

Each laser resonator is defined by common elements (i.e., laser head 12, optical switch 14, dispersion optics 16 and output mirror 22) and unique elements (i.e., reflective mirror 18 and reflective mirror 20). That is, one laser resonator has its path length defined between output mirror 22 and reflective mirror 18, while the other laser resonator has its path length defined between output mirror 22 and reflective mirror 20.

The present invention provides novel criteria to set laser resonator path length and output mirror reflectivity. Specifically, the mirror reflectivities R_1 and R_2 for output mirror 22 at wavelengths W_1 and W_2 , respectively, satisfy the following relationship

$$R_2 = \exp\{2L[\alpha - \alpha'(\sigma/\sigma')] + (\sigma/\sigma')\ln(R_1)\}$$

where α' is intrinsic losses of the laser resonator defined between mirrors 18 and 22, i.e., laser resonator associated with the first wavelength W_1 ; α is intrinsic losses of the laser resonator defined between mirrors 20 and 22, i.e., laser resonator associated with the second wavelength W_2 ; σ' is the emission cross-section associated with the laser pulses at the

4

first wavelength W_1 (i.e., the emission cross-section of the photon transition associated with the laser pulses at the first wavelength); and σ is the emission cross-section associated with said laser pulses at said second wavelength (i.e., the emission cross-section of the photon transition associated with the laser pulses at the second wavelength).

The two resonator path lengths L_1 (between output mirror 22 and reflective mirror 18) and L_2 (between output mirror 22 and reflective mirror 20) satisfy the relationship

$$L_2 \approx (\sigma/\sigma')L_1.$$

As mentioned above, tunable laser 10 simultaneously produces two unique-wavelength laser pulses that can be in the infrared spectrum. The transmitted laser pulses 108T can be further processed to produce laser pulses in one or both of the visible and ultraviolet spectrums. For example, transmitted laser pulses 108T (e.g., at infrared wavelengths W_1 and W_2 in the illustrated example) can be provided to a laser wavelength converter 30 illustrated in FIG. 2. Laser wavelength converter 30 can include a telescope 32 that collects and focuses laser pulses 108T onto non-linear crystal optics 34 that convert the infrared-spectrum laser pulses 108T into laser pulses at one or more visible-spectrum wavelengths. In tests of the present invention, a single crystal oriented for phase matching has been used to achieve wavelength conversion. For a laser rod 12A made from Nd:YAG, a single Beta Barium Borate (BBO) crystal ($\beta\text{-Ba}_2\text{O}_4$) was used.

For efficient non-linear interactions, the above-mentioned phase matching condition must be satisfied. Such phase matching is usually achieved by rotating the non-linear crystal in order to change the phase velocity of the interacting beams/pulses. In this way, optics 34 provides for harmonic generation as well as mixing so that optics 34 outputs laser pulses 110 in the visible spectrum.

Depending on the attributes and positioning of optics 34, the wavelength of laser pulses 110 can be

$$W_3 = (W_1 + W_2)/(W_1 + W_2)$$

$$W_4 = (W_1)/2, \text{ or}$$

$$W_5 = (W_2)/2.$$

It is to be understood that additional ones of optic 34 could be used to simultaneously provide two or all three of the visible-wavelength laser pulses without departing from the scope of the present invention.

In terms of producing simultaneous and synchronous pulses in the ultraviolet spectrum, one or more of the visible-wavelength laser pulses 110 can be provided to another laser wavelength converter 40 illustrated in FIG. 3. As shown, laser wavelength converter 40 can include a waveplate 42 that rotates the polarization of laser pulses 110. The rotated laser pulses 110R are provided to non-linear crystal optics 44 that are similar to optics 34. Optics 44 converts laser pulses 110R at one or more of wavelengths W_3 , W_4 , and W_5 into laser pulses 112 having wavelengths

$$W_6 = (W_3)/2$$

$$W_7 = (W_4)/2 \text{ and/or}$$

$$W_8 = (W_5)/2.$$

The advantages of the present invention are numerous. Simultaneous and synchronous laser pulses at multiple wavelengths can be generated with a single lasing medium (e.g., a laser rod). The multiple wavelengths can include the infrared, visible, and ultraviolet spectrums. The laser can be readily tuned for specific wavelengths in accordance with the pro-

vided output mirror reflectivity and resonator path length criteria. The choice of visible and ultraviolet wavelengths can be adjusted by simple re-orientation of a single non-linear crystal type of laser wavelength converter.

Although the invention has been described relative to a specific embodiment thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described.

What is claimed as new and desired to be secured by Letters Patent of the United States is:

1. A tunable laser comprising:

a laser resonator including dispersion optics for separating generated laser pulses into processed laser pulses having first and second wavelengths traveling along first and second optical paths, respectively,

said laser resonator defined at one end thereof by first and second mirrors with said first mirror being disposed in said first optical path and reflective at said first wavelength, and said second mirror being disposed in said second optical path and reflective at said second wavelength,

said laser resonator defined at another end thereof by an output mirror that is partially reflective and partially transmissive with respect to said first wavelength and said second wavelength, wherein a first resonator length is defined between said output mirror and said first mirror, and wherein a second resonator length is defined between said output mirror and said second mirror, said second resonator length being a function of said first resonator length.

2. A tunable laser as in claim 1 wherein said laser resonator includes a single lasing medium.

3. A tunable laser as in claim 2 wherein said lasing medium is a neodymium-doped material.

4. A tunable laser as in claim 1 wherein said first wavelength and said second wavelength are in the infrared spectrum, said tunable laser further comprising means for converting said first wavelength and said second wavelength of said processed laser pulses transmitted by said output mirror to laser pulses having at least one wavelength in the visible spectrum.

5. A tunable laser as in claim 4, further comprising second means for converting said laser pulses having at least one wavelength in the visible spectrum to laser pulses having at least one wavelength in the ultraviolet spectrum.

6. A tunable laser as in claim 1 wherein said dispersion optics comprises a plurality of prisms.

7. A tunable laser as in claim 1 wherein said function is defined as a ratio of emission cross-section associated with said laser pulses at said second wavelength to emission cross-section associated with said laser pulses at said first wavelength.

8. A tunable laser as in claim 1 wherein said output mirror comprises a flat mirror.

9. A tunable laser as in claim 4 wherein said means for converting comprises non-linear crystal optics.

10. A tunable laser as in claim 5 wherein said second means comprises non-linear crystal optics.

11. A tunable laser comprising:

a laser resonator including
(i) an output mirror,
(ii) a laser rod of length L,
(iii) dispersion optics for separating laser pulses generated from said laser rod into laser pulses having first and

second wavelengths traveling along first and second optical paths, respectively, and

(iv) first and second wavelength-sensitive reflective mirrors disposed in said first and second optical paths, respectively,

wherein a first resonator of path length L_1 is defined between said output mirror and said first reflective mirror, and a second resonator of path length L_2 is defined between said output mirror and said second reflective mirror;

said output mirror having a reflectivity R_1 at said first wavelength and a reflectivity R_2 at said second wavelength defined by

$$R_2 = \exp\{2L[\alpha - \alpha'(\sigma/\sigma')] + (\sigma/\sigma')\ln(R_1)\}$$

where α' is intrinsic losses of said first resonator, α is intrinsic losses of said second resonator, σ' is emission cross-section associated with said laser pulses at said first wavelength, σ is emission cross-section associated with said laser pulses at said second wavelength; and said path length L_1 and said path length L_2 defined by

$$L_2 \approx (\sigma/\sigma')L_1.$$

12. A tunable laser as in claim 11 wherein said laser rod comprises a neodymium-doped material.

13. A tunable laser as in claim 11 wherein said first wavelength and said second wavelength are in the infrared spectrum, said tunable laser further comprising means for converting said first wavelength and said second wavelength of laser pulses transmitted by said output mirror to laser pulses having at least one wavelength in the visible spectrum.

14. A tunable laser as in claim 13, further comprising second means for converting said laser pulses having at least one wavelength in the visible spectrum to laser pulses having at least one wavelength in the ultraviolet spectrum.

15. A tunable laser as in claim 11 wherein said dispersion optics comprises a plurality of prisms.

16. A tunable laser as in claim 11 wherein said output mirror comprises a flat mirror.

17. A tunable laser as in claim 13 wherein said means for converting comprises non-linear crystal optics.

18. A tunable laser as in claim 14 wherein said second means comprises non-linear crystal optics.

19. A tunable laser comprising:

a first laser resonator having a first resonator path that includes an output mirror, a laser rod of length L, a Q-switch and a first reflective mirror that reflects light at a first wavelength;

a second laser resonator having a second resonator path that includes said output mirror, said laser rod, said Q-switch and a second reflective mirror that reflects light at a second wavelength;

dispersion optics disposed between said Q-switch and each of said first reflective mirror and said second reflective mirror, said dispersion optics separating laser pulses generated from said laser rod and passed through said Q-switch into laser pulses having said first and second wavelengths with said laser pulses at said first wavelength being directed to said first reflective mirror and said laser pulses at said second wavelength being directed to said second reflective mirror,

wherein said output mirror has a reflectivity R_1 at said first wavelength and a reflectivity R_2 at said second wavelength defined by

$$R_2 = \exp\{2L[\alpha - \alpha'(\sigma/\sigma')] + (\sigma/\sigma')\ln(R_1)\}$$

where α' is intrinsic losses of said first laser resonator,
 α is intrinsic losses of said second laser resonator,
 σ' is emission cross-section associated with said laser
 pulses at said first wavelength,
 σ is emission cross-section associated with said laser
 pulses at said second wavelength; and
 a length L_1 of said first resonator and a length L_2 of said
 second resonator are governed by

$$L_2 \approx (\sigma/\sigma')L_1.$$

20. A tunable laser as in claim **19** wherein said laser rod
 comprises a neodymium-doped material.

21. A tunable laser as in claim **19** wherein said first wave-
 length and said second wavelength are in the infrared spec-
 trum, said tunable laser further comprising means for con-
 verting said first wavelength and said second wavelength of

5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580
 6585
 6590
 6595
 6600
 6605
 6610
 6615
 6620
 6625
 6630
 6635
 6640
 6645
 6650
 6655
 6660
 6665
 6670
 6675
 6680
 6685
 6690
 6695
 6700
 6705
 6710
 6715
 6720
 6725
 6730
 6735
 6740
 6745
 6750
 6755
 6760
 6765
 6770
 6775
 6780
 6785
 6790
 6795
 6800
 6805
 6810
 6815
 6820
 6825
 6830
 6835
 6840
 6845
 6850
 6855
 6860
 6865
 6870
 6875
 6880
 6885
 6890
 6895
 6900
 6905
 6910
 6915
 6920
 6925
 6930
 6935
 6940
 6945
 6950
 6955
 6960
 6965
 6