

# **CUDA Programming - CPU vs GPU**

by
Dr. Nileshchandra Pikle
Assistant Professor
&
"Certified CUDA instructor by NVIDIA"

Email ID: nilesh.pikle@gmail.com

**Mob. No:** +91 7276834418

#### **Contents**

- Limitations of Multi-core CPU
- Introduction to Graphics Processing Unit (GPU)
- GPU Accelerated Applications
- CPU vs GPU
- GPU Hardware Architecture

#### **Multi-core CPUs**



Intel Xeon E7- 8855 v4

14 cores @ 2.80 GHz

Intel Xeon E7- 8880 v4

22 cores @ 3.3 GHz



Intel Xeon E7- 4850 v4

16 cores @ 2.80 GHz

Intel Xeon E7- 8890 v4

24 cores @ 3.4 GHz



Intel Xeon E7- 8867 v4

18 cores @ 3.3 GHz

Intel Core i7-9700k 8-cores

@4.9 GHz



Intel Xeon E7- 8870 v4

20 cores @ 3.0 GHz

And so on...

#### Why only few tens?















# Other solution!



# **History of GPU**

- The term GPU has been used from 1980s
- Popularised by NVIDIA in 1999 who marketed the Geforece 256 as "The world's first GPU"
- Initially intended for graphics related computing
  - To accelerate the gaming and animation performance
- In 2007 NVIDIA launched **Compuet Unified Device Architecture** (CUDA) which enabled General Purpose Computing.
- Now it is referred as General Purpose GPU (GPGPU)

**GPU** 

Accelerator

**GPU** 

Accelerator

Not a Standalone

**GPU** 

Accelerator

Not a Standalone

**GPU** 

Throughput oriented

Accelerator **GPU** Not a Standalone Co-Processor Throughput oriented

# Some of the GPU application areas



Games & Movies



**CFD** 

**GPU Applications** 

Molecular Modeling



Artificial Intelligence



Acts as an accelerator/Co-processor



- Acts as an accelerator/Co-processor
- Heterogeneous Computing Architecture



- Acts as an accelerator/Co-processor
- Heterogeneous Computing Architecture
- Not an intelligent device



Takes orders from the CPU

- Acts as an accelerator/Co-processor
- Heterogeneous Computing Architecture
- Not an intelligent device
- Contains thousands of cores over millions of threads can be launched



- Acts as an accelerator/Co-processor
- Heterogeneous Computing Architecture
- Not an intelligent device
- Contains thousands of cores over millions of threads can be launched
- Not a standalone device

Cannot replace CPU by GPU

#### A single core CPU

- 1. Powerful
- 2. Need a lot of power
- 3. Complex control hardware
- 4. Good performance

#### Many-core GPU

- 1. Less powerful but lot many cores
- 2. Require less power
- 3. Simple control hardware
- 4. Good throughput

- Task (TA)=> 400 meter Hole
- Efficiency (E)
- Time (T)

Ideal multi-core CPU



$$\mathbf{E} = 2 \text{ Meter/Hrs}$$
  
 $\mathbf{T} = ?$ 



$$E = 6$$
 Meter/Hrs  $T = ?$ 



$$\mathbf{E} = 4 \text{ Meter/Hrs}$$
  
 $\mathbf{T} = ?$ 



$$\mathbf{E} = 8 \text{ Meter/Hrs}$$
  
 $\mathbf{T} = ?$ 

Note: These are very Powerful cores In terms of frequency, transistors, IPC, branch prediction etc.

- Task (TA)=> 400 meter Hole
  Efficiency (E)
  Time (T)

Ideal multi-core **CPU** 









- Task (TA)=> 400 meter Hole
  Efficiency (E)
  Time (T)

Ideal multi-core **CPU** 









- Task (TA)=> 400 meter Hole
- Efficiency (E)Time (T)

Ideal multi-core **CPU** 







**E** = 6 Meter/Hrs **T** = 66.66 Hrs



- Task (TA)=> 400 meter Hole
- Efficiency (E)
- Time (T)

Ideal multi-core CPU







**E** = 6 Meter/Hrs **T** = 66.66 Hrs



**E** = 8 Meter/Hrs **T** = 50 Hrs

- Task (TA)=> 400 meter Hole
- Efficiency (E)
- Time (T)

Ideal multi-core CPU





**E** = 6 Meter/Hrs **T** = 66.66 Hrs





**E** = 8 Meter/Hrs **T** = 50 Hrs

**Latency Oriented CPUs!!!** 



Ideal many-core GPU

 $\mathbf{E} = 0.25 \text{ Meter/Hrs for one } \mathbf{T}$   $\mathbf{T} = ?$ 



Ideal many-core GPU

E = 0.25 Meter/Hrs for one

 $T = 400 / (64 \times 0.25) = 25 Hrs$ 

Instead of making CPU faster and complex Use smaller, lightweight cores

Note: These are very light weight cores In terms of frequency, transistors, IPC, branch prediction etc.

**Throughput Oriented GPUs!!!** 

# **GPU**



GPU is a throughput oriented device





|                  | CPU                    | GPU                 |
|------------------|------------------------|---------------------|
| Number or cores  | 1, 2, 8 or Few hundred | Thousands           |
| Intelligence     | More                   | Less                |
| Standalone       | Yes                    | No                  |
| Intends          | Latency oriented       | Throughput oriented |
| Core clock rates | Higher Eg. 2.3 GHz     | Lower Eg. 900 MHz   |
| Efficiency       | Sequential             | Parallel            |
| Power            | More powerful cores    | Less powerful       |
| Usage            | General purpose        | Special purpose     |
| Role             | Processor              | Co-processor        |



- Sophisticated control unitLarger cache
- Less area for cores
- More DRAM



- Less Sophisticated control unitSmaller cache
- More area for cores
- Often less VRAM than CPU

### **GPU Hardware Architecture**



### **GPU Hardware Architecture**



## **GPU Hardware Architecture**



Fermi Streaming Multiprocessor (SM)



#### We can dive into CUDA programming

