Problem Set 2, Solutions

August 25, 2020

1. Consider the set $A = \{\frac{1}{n}\}_{n \in \mathbb{N}} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$. Does there exist $S \subset \mathbb{R}$ such that the set of S's limit points equals A?

Assume such a set S exists. This means that for any $a \in A$, for all $\epsilon > 0$, $(a - \epsilon, a + \epsilon) \cap S$ is nonempty. Observe that $0 \not\in A$. Now, consider a neighborhood around 0, for some $\epsilon > 0$. Now, for large enough n, we can find $0 < \frac{1}{n} < \epsilon$. Since $\frac{1}{n} \in A$, $\frac{1}{n}$ is a limit point of S. This means that for any $\delta > 0$, $\left(\frac{1}{n} - \delta, \frac{1}{n} + \delta\right) \cap S$ is nonempty. Let δ be small enough such that $\left(\left(\frac{1}{n} - \delta, \frac{1}{n} + \delta\right) \cap S\right) \subset \left((0, \epsilon) \cap S\right)$, we have that $(0, \epsilon) \cap S$ is nonempty, and therefore 0 must be a limit point of S, a contradiction. Thus, no such S exists.

2. Prove that $f(x) = \cos x^2$ is not uniformly continuous on \mathbb{R} .

Plotting f(x) gives the intuition that the problem will arise for |x| large. Consider $\epsilon = \frac{1}{2}$. Let $\delta > 0$. Let $x = \sqrt{(2k+1)\pi}$, $x_0 = \sqrt{2k\pi}$, for k > 1, $k \in \mathbb{N}$. Thus, $\left|\cos x^2 - \cos x_0^2\right| = 2$, for all k. If $k > \frac{\pi}{8\delta^2}$, then $|x - x_0| = \left|\sqrt{(2k+1)\pi} - \sqrt{2k\pi}\right| = \frac{(2k+1)\pi - 2k\pi}{\sqrt{2k\pi} + \sqrt{(2k+1)\pi}} = \frac{\sqrt{\pi}}{\sqrt{2k+\sqrt{2k+1}}} < \frac{\sqrt{\pi}}{2\sqrt{2k}} < \delta$. Thus, f(x) is not uniformly continuous.

3. Show that if the function $f: \mathbb{R} \to \mathbb{R}_{++}$ is continuous on an interval [a, b], where $\mathbb{R}_{++} := \{x \in \mathbb{R} \mid x > 0\}$, then the reciprocal of this function $(\frac{1}{f})$ is bounded on the same interval.

Since f is continuous on a compact set, there exists M such that $f(x) \leq M$ for all $x \in [a, b]$. Similarly, there is an m such that $f(x) \geq m$ for all $x \in [a, b]$. This means that $m \leq f(x) \leq M$ for all $x \in [a, b]$. Thus, $\frac{1}{M} \leq \frac{1}{f(x)} \leq \frac{1}{m}$. Thus, the reciprocal function is bounded.

Alternative: observe that in the reciprocal mapping ρ is a continuous mapping $\rho : \mathbb{R}_{++} \to \mathbb{R}_{++}$. Thus, $\frac{1}{f} \equiv \rho \circ f$, and therefore we can apply the extreme value theorem, since the composition of continuous functions is continuous.

- 4. Bisection Method. Let $f : [a, b] \to \mathbb{R}$ be a continuous function, a < b, $a, b \in \mathbb{R}$. Assume that f(a) < 0 < f(b). We want to show that $\exists c \in (a, b)$ such that f(c) = 0. To do this, construct the following sequences:
 - (I): Set $l_1 = a$, $u_1 = b$.
 - (II): For each n, let $m_n = (l_n + u_n)/2$.
 - if $f(m_n) > 0$, then set $l_{n+1} = l_n$, $u_{n+1} = m_n$;
 - if $f(m_n) < 0$, then set $l_{n+1} = m_n$, $u_{n+1} = u_n$;
 - if $f(m_n) = 0$, then set $l_{n+1} = u_{n+1} = m_n$, and we are done (each sequence can be technically assumed constant for all future n.

Using what you have learned about the limits of real sequences, prove

- (a) Sequences $\{l_n\}$ and $\{u_n\}$ both converge. Consider $a \leq l_n < u_n \leq b$ for all n. Thus, each sequence $\{l_n\}$, $\{u_n\}$ is bounded. Consider, for a moment, that for all n, $u_{n+1} \leq u_n$. Thus, $\{u_n\}$ is a decreasing sequence bounded below. Thus, by the Bolzano-Weierstrass Theorem and resulting lemma, $u_n \to \bar{u}$. A similar argument holds for $l_n \to \bar{l}$.
- (b) Both sequences converge to the same limit, i.e. $\lim_{n\to\infty} l_n = \lim_{n\to\infty} u_n$. Hint: Show that $\{u_n - l_n\} \to 0$. Consider the sequence, $u_n - l_n$. This is a decreasing sequence, bounded below by 0. Thus, again using Bolzano-Weierstrass, $u_n - l_n$ converges. Assume the limit is not 0. Consider now that it must be the case that $u_n - l_n \to \bar{u} - l > 0$. Let $\epsilon > 0$. Thus, there exists N s.t. for all n > N, $|u_n - \bar{u} + \bar{l} - l_n| < \epsilon$. Since u_n is decreasing and l_n is increasing, this is the same as $0 < u_n - \bar{u} + \bar{l} - l_n < \epsilon$, or $\bar{u} - \bar{l} < u_n - l_n < \bar{u} - \bar{l} + \epsilon$. Consider another update. If $f(m_n) = 0$ for any n > N, this would be a contradiction since then $l_n = u_n$ for all n after some point. First, consider what happens whenever $f(m_n) < 0$. Then, $l_{n+1} = \frac{l_n + u_n}{2}$, $u_{n+1} = u_n$. Then, consider that the above inequality must be satisfied for n+1, therefore $\bar{u}-\bar{l}<\frac{u_n-l_n}{2}<\bar{u}-\bar{l}+\epsilon$. Similarly, for $f(m_n) > 0$, $l_{n+1} = l_n$ and $u_{n+1} = \frac{l_n + u_n}{2}$, therefore the inequality above is now $\bar{u} - \bar{l} < \frac{u_n - l_n}{2} < \bar{u} - \bar{l} + \epsilon$. Since m_n cannot be 0 after N, it must be that infinitely many times, we update by a factor of 1/2, so for any $k, \bar{u} - \bar{l} < \frac{u_n - l_n}{2^k} < \bar{u} - \bar{l} + \epsilon$, a contradiction, as the middle term can be made arbitrarily small, since $u_n - l_n < b - a$. Thus $\bar{u} - \bar{l} = 0$.
- (c) Define the common limit of two sequences c and show that f(c) = 0.
 Hint: use the continuity of f and the fact that taking limits preserves weak inequalities
 We have that u_n → c and l_n → c. Thus, we have that f(u_n) → f(c) and f(l_n) → f(c), by continuity of f. Now, f(u_n) ≥ 0 for all n, and f(l_n) ≤ 0 for all n. Therefore, f(l_n) ≤ 0 ≤ f(u_n) for all n, which implies that f(c) ≤ 0 ≤ f(c), and therefore f(c) = 0.
- 5. Prove that at any time there are two antipodal points (diametrically opposite) on Earth that share the same temperature.

Hint: Use the Intermediate Value Theorem

Consider any point x and its (unique) antipodal point x_0 . Define a function f as the difference in temperature between a point and its antipodal point; if the temperature at a point a is T_a , then $f(x) = T_x - T_{x_0}$. Now, we choose a point x. If $T_x = T_{x_0}$ we are done. Assume $T_x \neq T_{x_0}$. Note that $f(x) = -f(x_0)$. If temperature is a continuous function in space, f is as well. Thus, by the intermediate value theorem, as we move from x to x_0 in a straight line across the globe, we go from f(x) to $-f(x_0)$, and thus we must pass through 0 by the IVT.