Performance Benchmarks for GNN Models in Drug Discovery

Abstract:

This paper presents comprehensive performance benchmarks comparing different Graph Neural Netw

Introduction:

With the proliferation of GNN architectures, systematic benchmarking is essential for guiding model se

Benchmark Tasks:

1. Molecular Property Prediction:

- Solubility prediction
- Toxicity classification
- Bioactivity prediction
- ADMET properties

2. Model Architectures Tested:

- Graph Convolutional Networks (GCN)
- Graph Attention Networks (GAT)
- GraphSAGE
- Graph Transformer Networks

Performance Results:

GCN Performance:

Solubility: 0.89 AUCToxicity: 0.92 AUCBioactivity: 0.87 AUC

GAT Performance:

Solubility: 0.91 AUCToxicity: 0.94 AUCBioactivity: 0.89 AUC

GraphSAGE Performance:

Solubility: 0.88 AUCToxicity: 0.91 AUCBioactivity: 0.86 AUC

Key Findings:

- GAT consistently outperforms other architectures
- Attention mechanisms improve performance by 2-3%
- Computational cost scales with attention complexity
- Ensemble methods provide additional 1-2% improvement

Conclusion:

GAT models provide the best	performance-cost t	rade-off for most di	rug discovery appli	cations, with att