The points below are what I consider to be the important theoretical aspects covered since the previous test, and the things that could be expected of you in the test on **Saturday 16 November at 14:00 in A203**.

Depth from two views

- the previous test covered theory up to the end of slide 7 of Lecture 17, but this test also won't cover image rectification so you may skip Lecture 17 entirely
- o remind yourself of the overall process on slides 2 and 3 of Lecture 18, and how elements in this chapter come together (the test won't cover specific details of any of those components)
- \circ know what the projective ambiguity is, when attempting to recover P and P' from F
- o be aware of normalized image coordinates and how we reduce the camera matrix pair to canonical form
- o know what the essential matrix is, and its relation to the fundamental matrix (slide 8 of Lecture 18)
- \circ know about the four possible solutions to P' extractable from E, and be able to explain how triangulation can be used to pick the correct one (the details behind slide 5 of Lecture 19)
- understand how to reconstruct 3D points from two images and calibration matrices (slide 6 of Lecture 19)

Basic intro to machine learning

- o our focus is on supervised learning: fitting a model to training data consisting of input-output pairs
- have a good understanding of the two (often conflicting) requirements on this model: describe the training data, and generalize to new data
- o you may skip the details on slide 6 of Lecture 20
- have an idea of how a deep feed-forward neural network is built from simple linear perceptrons and activation functions (we return to it in the last chapter)
- o glance over slide 9 of Lecture 20, but no need to memorize any of the detail
- be aware of the problems of over- and underfitting, and how to implement early stopping
- know what is meant by training data, validation data and test data, and the purpose of each in the framework of supervised learning

Image classification

- o explain how an image classification model can be built with supervised learning
- understand the process of feature engineering, where raw image data is converted to a lower-dimensional (and ideally more class discriminative) feature vector, before classification is performed
- \circ know about tiny image features, the motivation for using them, and how they are computed
- o be aware of the limitations of using histograms as feature vectors (as illustrated on slide 7 of Lecture 21)
- know how GIST descriptors are computed, but skip the technical details of what Gabor filters are
- be aware of how k-means clustering works, and take note of its limitations (slide 6 of Lecture 22)
- know how a visual dictionary can be learned from a set of images, and how an image can then be converted
 to a bag-of-words representation
- know and understand the SVD-based method of dimensionality reduction, and how we can use it to learn
 a lower-dimensional representation for a class of images (like faces) in an unsupervised manner

- have an idea of how we can use these lower-dimensional representations in a simple image recognition system (summarized on slide 8 of Lecture 23)
- o know the details of kNN classification, but skip the probabilistic view on slide 4 of Lecture 24
- have a clear understanding of the binary classification problem and linear classifier (slide 3 of Lecture 25)
- have an understanding of the notion of maximum margin solutions for linearly separable data (in many dimensions, not only 2D)
- understand what all the components in the two optimization problems on slide 7 of Lecture 25 mean, and what each problem means as a whole (but you need not memorize these two problems)
- \circ understand the presence and effect of the regularization parameter C in the optimization problem on slide 10 of Lecture 25
- o know how multiple 2-class SVM classifiers can be combined to perform multi-class classification
- the test won't cover the kernel trick (for separating classes that are not linearly separable)

Deep learning

- have an idea of how deep learning revolutionized the feature-engineering approach to image classification
- know the mathematical details behind the basic perceptron, a layer of perceptrons, and a composition of layers (slides 5,6,7 of Lecture 26)
- o glance over the universal approximation theorem
- understand why we need a nonlinear activation function and why the sign function is not that good of an option, and know about the sigmoid, hyperbolic and ReLU activation functions
- have an idea of what learning in a neural network entails: picking optimal values for all the weights across all the layers that result in a minimum classification error on the training samples
- understand the concept of convolution, as a special restricted case of the general neural network layer, the
 concepts of weight sharing and stationarity, what convolutions typically pick up, and how a hierarchy of
 convolutions can lead to good feature extraction for the task of image classification
- know the operations, learnable parameters and hyperparameters involved in: convolutional layers, pooling layers, activation layers, fully connected layers, and the final softmax output layer; also be able to argue the purpose of each of these types of layers
- o know about one-hot encoding: how it works and where it's used
- be aware of the log loss as defined on slide 6 of Lecture 28, and how gradient descent with a pre-specified learning rate can be used to minimize this loss
- know what backpropagation is and where in the learning process it is used (it will not be expected of you to perform calculations like those on slide 5 of Lecture 29)
- be aware of the stochastic form of gradient descent, as well as batching, and understand the statements and calculations on slide 4 of Lecture 30
- \circ be aware of potential problems with a too large or too small learning rate, but you may skip the heuristic strategies on slide 5 of Lecture 30
- have a broad understanding of transfer learning, as summarized on slide 7 of Lecture 30 and implemented in Assignment 6
- o the test will not cover Lecture 31

Willie Brink October 2019