Relatório de Trabalho Modelagem do problema do fluxo máximo

Lucas Lima de Araújo Carlos Augusto Pereira Maia Matheus Fernandes de Souza

CENTRO DE INFORMÁTICA UNIVERSIDADE FEDERAL DA PARAÍBA

LISTA DE FIGURAS

1	Descrição do problema 9-4-3	6
2	Descrição do problema 9-4-3	6
3	Grafo do modelo PFM	7
4	Grafo do modelo PFCM	8
5	Formato do arquivo com entrada de dados	9
6	Descrição da letra 'a'	14
7	Grafo do modelo do PFM	14

Sumário

1	INT	CRODUÇÃO	5
2	DE	FINIÇÃO DO PROBLEMA	6
3	MO	DELAGEM	7
	3.1	Modelagem do PFM	7
	3.2	Transformando o PFM para PFCM	7
	3.3	Modelagem matemárica do PFCM	8
4	INS	TRUÇÕES	9
	4.1	Instalando o OR-Tools	9
	4.2	Utilizando o código	9
	4.3	O código	10
5	EX	ERCÍCIO	14
	5.1	Resolução da questão 9-4-3	14
	5.2	Identificando os vértices	14
	5.3	Modelagem matemática do PFM	15
\mathbf{R}	EFE]	RÊNCIAS	16
A	NEX	O A - ANEXOS E APÊNDICES 1	17

1 INTRODUÇÃO

O Problema de Fluxo Máximo é um clássico problema de modelagem da área da Pesquisa Operacional. Amplamente presente em situações do cotidiano (fluxo de mercadorias, por exemplo), o PFM consiste na elaboração de um modelo que represente o fluxo máximo em uma rede de fluxo. Um caso particular do PFM é o Problema de Fluxo de Custo Mínimo, amplamente utilizado em diversas áreas da sociedade para reduzir custos no transporte de bens, por exemplo. Este relatório possui o fim de apresentar a definição de um PFCM, bem como sua resolução através da modelagem matemática e da programação linear.

2 DEFINIÇÃO DO PROBLEMA

O problema 9-4-3 do livro "Introdução à Pesquisa Operacional" (LIEBERMAN, p.395) possui a seguinte descrição:

9.4-3 O diagrama a seguir representa um sistema de aquedutos que se origina em três rios (nós R1, R2 e R3) e termina em uma cidade importante (nó T), onde os demais nós são pontos de junção nesse sistema.

Figura 1: Descrição do problema 9-4-3

Usando unidades de milhares de pés-acre, as tabelas abaixo mostram a quantidade máxima de água que pode ser bombeada diariamente por meio de cada aqueduto.

De Para	A	В	c	De Para	D	E	F	De Para	т
R1	130	115	57	A	110	85	-	D	220
R2	70	90	110	В	130	95	85	E	330
R3	_	140	120	С	_	130	160	F	240

O gerente da companhia de águas da cidade quer estabelecer um plano de fluxo que vai maximizar o fluxo de água para a cidade.

Figura 2: Descrição do problema 9-4-3

Com esses dados, é possível modelar o problema para um PFM e em seguida PFCM.

3 MODELAGEM

Nesta seção é descrita os passos necessários paraa efetuar a modelagem do problema.

3.1 Modelagem do PFM

Modelando o problema como um PFM obtém-se o seguinte grafo:

Figura 3: Grafo do modelo PFM

3.2 Transformando o PFM para PFCM

Segundo [1] para transformar um PFM em um PFCM deve-se fazer as seguintes alterações no problema original:

- 1. Atribuir um custo c = 0 para todos os arcos existentes
- 2. Atribuir a todos os nós ,de origem, escoadouro e transbordo, demanda de valor 0
- 3. Estabelecer um valor \overline{F} de fluxo viável máximo para a rede
- 4. Criar um arco que vai diretamente do nó de suprimento para o nó de demanda, e atribuir uma oferta e uma demanda de valor \bar{F} para os nós de suprimento e demanda, respectivamente. Atribuir um valor de custo M grande.

Efetuando as devidas alterações, obtém-se o seguinte grafo

Figura 4: Grafo do modelo PFCM

3.3 Modelagem matemárica do PFCM

As fórmulas que descreve o PFCM acima são as seguintes

Min.

$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$

S.a.

$$\sum_{(j,i)\in A} x_{ji} - \sum_{(i,j)\in A} x_{ij} = b_i; \ \forall \ i \in A$$
$$0 \le x_{ij} \le u_{ij} \ \forall \ i, j \in A$$

4 INSTRUÇÕES

Nesta seção será descrito como instalar o pacote de ferramentas com o solver utilizado, e também como utilizar o código desenvolvido.

4.1 Instalando o OR-Tools

Os comandos abaixo foram utilizados e testados no sistema operacional Ubuntu 20.04 LTS.

Instalando python 3.6:

```
$ sudo apt-get install python3-dev python3-pip python3-venv python3-six
```

Instalando o OR-Tools:

```
$ python3 -m pip install -U --user ortools
```

4.2 Utilizando o código

Para utilizar o código desenvolvido é necessário definir um arquivo no seguinte formato:

```
Formato do arquivo

n #numero de vertices (vertices numerados de 1 a n)

m #numero de arcos (arcos numerados de 1 a m)

s #indice da origem

t #indice do escoadouro

i j c_1 #dados do arco 1

...

i j c_m #dados do arco m
```

Figura 5: Formato do arquivo com entrada de dados

Em seguida, deve-se abrir o arquivo com o código python e alterar a sexta linha que contém uma variável String de nome fileName que receberá o caminho e o nome do arquivo definido como entrada de dados.

Por exemplo:

```
fileName = 'instancias/instance1.txt'
```

Por fim, basta rodar o comando que vai executar o script python:

\$ python3 [nomeDoArquivoDeCodigo].py

```
4.3 O código
from __future__ import print_function
from ortools.graph import pywrapgraph
# Nome e caminho do arquivo:
fileName = 'instancias/instance1.txt'
def main():
  # LEITURA DO ARQUIVO
  arq = open(fileName)
  verticesNumber = int(arq.readline())
  arcsNumber
               = int(arq.readline())
  sourceNode
               = int(arq.readline())
  sinkNode
                 = int(arq.readline())
  lines = [0]*arcsNumber
  for i in range(arcsNumber):
      lines[i] = arq.readline().split(' ')
  arq.close()
  #
  # FIM DA LEITURA DO ARQUIVO
  #
  #
```

```
# INÍCIO DA MODELAGEM
# Somando +1 para considerar uma das etapas da modelagem de PFM para PFCM
# em que se adiciona um arco da origem ao escoadouro
totalArcs = arcsNumber + 1
totalVertices = verticesNumber + 1
# Declaração dos arrays que o Solver usa como entrada de dados
start_nodes = [0]*totalArcs
end_nodes = [0]*totalArcs
capacities = [0]*totalArcs
unit_costs = [0]*totalArcs
supplies = [0]*totalVertices
# Declaração de variáveis que vão auxiliar no processo de modelagem
capacitiesSum = 0
# Atribuindo os valores lidos do arquivo aos arrays de entrada
# de dados do Solver
for i in range(arcsNumber):
    start_nodes[i] = int(lines[i][0])
    end_nodes[i] = int(lines[i][1])
    capacities[i] = int(lines[i][2])
    # PRIMEIRA ETAPA DA MODELAGEM ONDE Cij = O
    unit_costs[i] = 0
    # Somatório utilizado para dar o chute dos valores de capacidade,
    # custo e suprimento do arco da modelagem
    capacitiesSum += capacities[i]
# SEGUNDA ETAPA DE MODELAGEM, ATRIBUINDO CUSTO ZERO A TODOS OS ARCOS
```

E ATRIBUINDO UM LIMITE SUPERIOR SEGURO COMO OFERTA E DEMANDA DO NÓ

DE INÍCIO E NÓ ESCOADOURO.

```
for i in range(verticesNumber):
    supplies[i] = 0
supplies[sourceNode] = capacitiesSum
supplies[sinkNode] = -capacitiesSum
# TERCEIRA ETAPA DA MODELAGEM, ADICIONANDO UM ARCO QUE VAI DO NÓ INICIAL
# AO NÓ ESCOADOURO
start_nodes[totalArcs - 1] = sourceNode
end_nodes[totalArcs - 1] = sinkNode
# CONTINUANDO TERCEIRA ETAPA DE MODELAGEM, ATRIBUINDO CAPACIDADE "INFINITA"
# E CUSTO ALTO AO ARCO ADICIONADO ANTERIORMENTE
capacities[totalArcs - 1] = capacitiesSum*3
unit_costs[totalArcs - 1] = capacitiesSum*3
print('Start Nodes:')
print(start_nodes)
print('End Nodes:')
print(end_nodes)
print('Capacities:')
print(capacities)
print('Unit Costs:')
print(unit_costs)
print('Supplies:')
print(supplies)
# FIM DA MODELAGEM
# Instanciando o solver SimpleMinCostFlow.
min_cost_flow = pywrapgraph.SimpleMinCostFlow()
# Adicionando os arcos
for i in range(0, len(start_nodes)):
  min_cost_flow.AddArcWithCapacityAndUnitCost(start_nodes[i], end_nodes[i],
                                              capacities[i], unit_costs[i])
```

```
# Adicionando os nós
 for i in range(0, len(supplies)):
   min_cost_flow.SetNodeSupply(i, supplies[i])
 # Variável usada para calcular Z
 z = 0
 # Encontrando o fluxo de custo mínimo
  if min_cost_flow.Solve() == min_cost_flow.OPTIMAL:
   print('')
                    Flow / Capacity Cost')
   print(' Arc
   for i in range(min_cost_flow.NumArcs()):
     cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i)
      if(not(min_cost_flow.Tail(i) == sourceNode and min_cost_flow.Head(i) == sinkN
       print('%1s -> %1s
                                             %3s' % (
                           %3s / %3s
            min_cost_flow.Tail(i),
            min_cost_flow.Head(i),
            min_cost_flow.Flow(i),
            min_cost_flow.Capacity(i),
            cost))
     if(min_cost_flow.Head(i) == sinkNode):
        if(min_cost_flow.Tail(i) != sourceNode):
          z += min_cost_flow.Flow(i)
 else:
   print('There was an issue with the min cost flow input.')
 print('')
 print('Z = ', z)
 print('')
if __name__ == '__main__':
 main()
```

5 EXERCÍCIO

5.1 Resolução da questão 9-4-3

Nesta seção iremos apresentar a solução do item "a"referente a questão 9-4-3 do livro "Introdução à Pesquisa Operacional" (LIEBERMAN, p.395).

(a) Formule esse problema como um problema do fluxo máximo identificando uma origem, um escoadouro e os nós de transbordo, e depois desenhe a rede completa que mostra a capacidade de cada arco.

Figura 6: Descrição da letra 'a'

Modelando o problema como um PFM obtém-se o seguinte grafo:

Figura 7: Grafo do modelo do PFM

5.2 Identificando os vértices

De acordo com a figura 6, os nós possuem a identificação que segue:

• Os nós R1,R2 e R3 são nós de origem

- O nó T é o nó de transbordo
- Os demais nós são escoadouros

5.3 Modelagem matemática do PFM

Dado um grafo G = (V,A), onde:

- $\bullet\,$ Ao conjunto de arcos do grafo G
- ullet V o conjunto de vértices do grafo G
- 'o' é a origem
- 't' é a origem

As fórmulas que descrevem o PFM são as seguintes:

$$\mathbf{Max.} \sum_{(o,j)\in A} x_{oj}$$

Sa.
$$\sum_{(j,i)\in A} x_{ji} - \sum_{(i,j)\in A} x_{ij} = 0; \ \forall \ i \in \ V/\{o,t\}$$

REFERÊNCIAS

biblatex references.bib

ANEXO A