Following are the marks obtained by 13 students in business statistics.

Marks	formula					
24	n	13	standard	deviation	22.16835	
27	Σχ	734				
36	mean	56.46154	CV		39.26275	
48	median	54				
52	mode	52	karls pear	rson skewnes	SS	
52	25th per	48	sk(p)	0.201257		
54	Q1	48	s(b)	0		
55	Q3	60				
56						
60			p90	89		12
85			p10	28.8		120.4
90			kurtosis	0.099668		
95						

box and whishker plot

x	formula			diffe	erence
9	xmin	9	0 xmin	9	9
33	xmax	50	1 Q1	16	7
47	Q1	16	2 md	25	9
15	Q3	30	3 Q2	30	5
22	md	25	4 xmax	50	20
17					
18					
45					
50					
26					
25					
27					
9					
27					
10					

compute mean , median and modde using the following data

milage 400-419 420-439 440-459 460-479 480-499 500-519 frequency 12 27 34 24 15 8

the given class interval is inclusive and we have to change to exclusive and also calculate mid values

LCB		UCB		mid(x)	frequency	fx		CF	;	χ^2	FX^2
	399.5		419.5	409.5	12		4914		12	167690.3	2012283
	419.5		439.5	429.5	27	1	1596.5		39	184470.3	4980697
	439.5		459.5	449.5	34		15283		73	202050.3	6869709
	459.5		479.5	469.5	24		11268		97	220430.3	5290326
	479.5		499.5	489.5	15		7342.5		112	239610.3	3594154
	499.5		519.5	509.5	8		4076		120	259590.3	2076722
					120		54480		120	1273842	24823890

mean	454			f	m-f1	7
median	60	0.617647	451.8529	f	n-f2	10
mode	447.7353			C	Q1	30
sd				C	Q 3	90
				9	0th posit	108
				1	.0th	12
p25	30					
	432.8333					
Q1	432.8333					
Q3						

Draw a scatter diagram of daily rainfall and particular level in kathmandu valley using excel

Daily rainfall(x)	particularlevel(y)	XY	χ^2	γ^2			
4.1		122	500.2	16.81	14884		
4.3		117	503.1	18.49	13689	n	1
5.7		112	638.4	32.49	12544	N	YXY
5.4		114	615.6	29.16	12996	S	sumX*sum
5.9		110	649	34.81	12100	r	n*sumX ²
5		114	570	25	12996	(1)	sumX) ²
3.6		128	460.8	12.96	16384	r	n*sumy2
1.9		137	260.3	3.61	18769	(2	sumy)
7.3		104	759.2	53.29	10816		
43.2	1	.058	4956.6	226.62	125178		

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.978658					
R Square	0.957772					
Adjusted R Square	0.95174					
Standard Error	2.202613					
Observations	9					

ANOVA

	df		SS	MS	F	ignificance F
Regression		1	770.2617	770.2617	158.7676	4.58E-06
Residual		7	33.96054	4.851506		
Total		8	804.2222			

	Coefficientsandard Err	c t Stat	P-value	Lower 95% l	Upper 95%
Intercept	147.9107 2.518477	58.73021	1.09E-10	141.9554	153.8659
X Variable 1	-6.32399 0.501892	-12.6003	4.58E-06	-7.51077	-5.1372

RESIDUAL OUTPUT

PROBABILITY OUTPUT

Observation	I	Predicted Y	Residuals	<u>'</u>	Percentile	Υ
	1	121.9823	0.017653		5.55556	104
	2	120.7175	-3.71755		16.66667	110
	3	111.864	0.136033		27.77778	112
	4	113.7612	0.238837		38.88889	114
	5	110.5992	-0.59917		50	114
	6	116.2908	-2.29076		61.11111	117

7	125.1443	2.855659	72.22222	122
8	135.8951	1.104881	83.33333	128
9	101.7456	2.254413	94.44444	137

9	У	85.07644
44609.4	∑x2.n-∑x2	13.16586
45705.6	r	-0.97866
2039.58	se	0.014076
1866.24	b	-6.32399
1126602	a	147.9107
1119364	y=147.91-6	5.32X

ower 95.0%pper 95.0% 141.9554 153.8659 -7.51077 -5.1372

Column 1 Column 2

Column 1 1

Column 2 0.988602 1

A random variable follows normal distribution with parameter μ =2.5 and σ =1.5 Find the probability of 1<X<2, x<5 and x>3

cases	symbol	value	
mean	μ	2.5	
S.D	σ	1.5	

cases	lower limit upp li	imite prob	
1 <x<2< td=""><td>1</td><td>2 0.210786086</td><td>36</td></x<2<>	1	2 0.210786086	36
x<5		4 0.841344746	16
x>3	3	0.36944134	34

Panchakanya group of industries produces tube. The length of a tube of found to be normal distribution w (a) Caculate prob that a random sample of one tube will have a length at least 110 (b)p(85 <= x <= 105)

(b)	p(85<=x<=105)	0.839994848
x1	85	0.001349898
x2	105	0.841344746

Find the expected mean

Х	р	(X=x) x.p	(X=x) x	^2*p(X=x)	х	(p(X=x)
	0	0.1	0	0		0	0.1
	1	0.2	0.2	0.2		1	0.2
	2	0.45	0.9	1.8		2	0.45
	3	0.15	0.45	1.35		3	0.15
	4	0.05	0.2	0.8		4	0.05
	5	0.05	0.25	1.25		5	0.05
	15	1	2	5.4		15	1

(A) mean	Ex		15
(b)E(x)^2		5.4	
© var		1.4	
E(4x+7)		15	
v(4x+7)		22.4	

calculate Spearman's r	ank correlation	coefficient
------------------------	-----------------	-------------

Α	В	rankA	rankB	d	d^2				
	67	31	9	5	4	16			
	41	29	2	4	-2	4		r(s)=1-6	∑d²/n(n^2-1)
	52	70	4	9	-5	25			
	60	79	7	10	-3	9		0.3696	97
	42	21	3	2	1	1			
	39	19	1	1	0	0			
	56	68	6	8	-2	4			
	61	25	8	3	5	25			
	53	40	5	7	-2	4			
	69	37	10	6	4	16			
n=10						104			
Angor		6	7	5	21	13	5	13	14
Anger Vigor		30	23	29	22	19	19		19
					las				
Anger	Vigor	r1	r2	d 1	d^2				
	6 7	30	6	1 4	5 1	25			
	5	23	5 7.5	2		20.25			
	21	29 22	1	5	5.5 -4	30.25 16			
	13	19	3.5	3 7	-3.5	12.25			
	5	19	7.5	7	0.5	0.25			
	13	28	3.5	3	0.5	0.25			
	14	19	2	7	-5	25			
	14	13	2	,	-5	110			
						110			
	13 rep	eated 2 tim	es m1		2	0.5		n(n^2 -1	1) 504
	-	ated 2 time			2	0.5		•	•
		eated 3 tim			3	2			
					r(s))	-0.34524		

hence rank correlation is negative so it is low degree corelation betwwen angor and vigor

n(n^2-) 990

A card is drawn at random fgetting rom a well shuffled pack cards .what is the probability of (a) red card (b) black

cases	no of case	probability
red card	26	0.5
black carrd	26	0.5
total	52	1

you are hgiven below the income distribution of 1000 person, find the probability that a person selected has (a) in

income	0-500	5	00-1000	1000-1500	1500-2000	2000-2500	2500-3000	3000-3500 N	J
no.person		150	250	300	100	80	70	50	1000

income	no.person	probability	prob income below 2000
0-500	150	0.15	0.8
500-1000	250	0.25	prob income 2500 or more
1000-1500	300	0.3	0.2
1500-2000	100	0.1	
2000-2500	80	0.08	
2500-3000	70	0.07	
3000-3500	50	0.05	

the following table shows the suvery regarding the empoyment status and gender in a sample of 209 manageme

	employed status		
gender	employed anot	total	
male	83	28	111
female	64	34	98
	147	62	209

what is the prob that a graduate chosen at random

a.is current employed

b.is a female and currently employed

c.is female or currently employed

d.suppose the garduate chosen is a female, what is the prob that she is currently employed?

employed status

a	0.703349
b	2/7
С	0.346939
d	0.435374

< card
ncome below 2000 (b) income 2500 or more.
ent graduate

A random varaible follows binomial distribution with parameter n=6 and p=0.4, find the probability of x=2, x<5 ar

n 6 p 0.4 q 0.6

 cases
 X=x
 probability

 x=2
 2
 0.31104

 x<5</td>
 4
 0.95904

 x>3
 3
 0.1792

A person shoots three round at target .The probability of hitting a target successfully is 0.3.Compute the probabil

]

1

n 3 p 0.3 q 0.7

probability p(x)

0 0.343

1 0.441

2 0.1893 0.027

1d x>3.

ity of hitting targets where x=0,1,2,3

calculate spearman's correlation coefficent between statistics and mathematics

X1	X2	d=X	1-X2 d ²					
	2	1	1	1				
	1	3	-2	4				
	4	7	-3	9				
	6	5	1	1		n	7 n(r	12-1)
	5	6	-1	1		d^2	26	156
	3	2	1	1		r(s)	0.535714	
	7	1	3	q				

In a chips factory machine A,B and C manufactured respectively 25%,35% and 40% of the total of their output 5,4 bolts. A chips is drawn at random from the product and is found to be defective. What is the probability that it was

P(A)	0.25
p(B)	0.35
P©	0.4
p(D/A)	0.05
P(D?B)	0.04
P(D/C)	0.02
P(A/D)	0.362319
P(B/D)	0.405797
P(C/D)	0.231884

l and 2 percent defective is manufactured by machine A,B and C?

Fit binomial distribution and find the probability of less than 3, less than equal to 3, exactly 3,not equal to

Χ	f		p(x)	expected	rounded	fx
	0	20	0.003565	5.642978	6	0
	1	100	0.029174	46.18228	46	100
	2	190	0.104457	165.3562	165	380
	3	280	0.213721	338.3198	338	840
	4	350	0.273296	432.6277	433	1400
	5	300	0.223666	354.0637	354	1500
	6	220	0.114406	181.1041	181	1320
	7	120	0.033439	52.93431	53	840
	8	3	0.004276	6.768996	7	24
total		1583			1583	6404
n		8				mean 4.045483
mean	4	4.045483				
р	(0.505685				
q	(0.494315				
	,					
Χ	f	20	•	rounded		
	0	20	5.6429	6		
	1	100	46.1822	46		
	2	190	165.3562	165		
	3	280	338.3198	338		
	4	350	432.6277	433		
	5	300	5.642978	6		
	6	220	181.1041	181		
	7	120	52.93431	53		
	8	3	6.768996	7		

for finding poision distribution

Χ	f		p(x)	expected	rounded
	0	20	0.017501	27.70448	28
	1	100	0.070801	112.078	112
	2	190	0.143212	226.7048	227
	3	280	0.193121	305.7102	306
	4	350	0.195317	309.1863	309
	5	300	0.15803	250.1616	250
	6	220	0.106551	168.6707	169
	7	120	0.061579	97.47923	97
	8	3	0.031139	49.29382	49

V	r		
Χ	f	exp	pected
	0	20	28
	1	100	112
	2	190	227
	3	280	306
	4	350	309
	5	300	250
	6	220	169
	7	120	97
	8	3	49