Nombres complexes et Géométrie

April 21, 2025

Dans le programme de :

Terminale Maths Expertes et Terminales STI2D

Prérequis:

Construction de l'ensemble \mathbb{C} des nombres complexes, forme algébrique (opérations, propriétés, conjugué), forme trigonométrique (module, argument), suites numériques, transformations géométriques, trigonométrie.

Représentation des nombres complexes

1 Forme algébrique

Propriété : Tout élément de \mathbb{C} s'écrit de manière unique sous la forme a+ib avec $a,b\in\mathbb{R}$.

- a est appelé partie réelle de z, on note a = Re(z).
- b est appelé partie imaginaire de z, on note b = Im(z).

Remarque:

- Si a = 0, on dit alors que z est imaginaire pur.
- Si b = 0, alors $z = a \in \mathbb{R}$, z est un **nombre réel**.

1.1 Exemples:

- Soit z_1 le nombre complexe tel que $z_1 = 5 4i$.
 - La partie réelle de z_1 : Re $(z_1) = 5$.
 - La partie imaginaire de z_1 : $Im(z_1) = -4$.
- Soit z_2 le nombre complexe tel que $z_2 = 3,79i$.
 - La partie réelle de z_2 : Re $(z_2) = 0$.
 - La partie imaginaire de z_2 : Im $(z_2) = 3,79$.
 - $-z_2$ est imaginaire pur.

1.2 Définition :

Soit z un nombre complexe tel que z = a + ib, avec a et b deux nombres réels. Alors, le **conjugué** de z, noté \overline{z} , est le nombre complexe défini par

$$\overline{z} = a - ib$$
.

1.3 Exemple:

Soit z le nombre complexe tel que z = 3 - 7i.

• Le conjugué de z est $\overline{z} = 3 + 7i$.

2 Forme trigonométrique

2.1 Définition :

Soit z un nombre complexe non nul et M le point d'affixe z (voir figure). On appelle **argument** de z toute mesure en radians de l'angle $(\overrightarrow{u}, \overrightarrow{OM})$, avec \overrightarrow{u} le vecteur unitaire de l'axe des réels positifs.

On le note $\arg(z)$. L'argument est défini à $2k\pi$ près $(k \in \mathbb{Z})$.

2.2 Remarques:

- 1. Si z est un réel, c'est-à-dire z=a :
 - si a > 0, alors |z| = a et arg(z) = 0.
 - si a < 0, alors |z| = -a et $\arg(z) = \pi$.
- 2. Si z est un imaginaire pur, c'est-à-dire z = ib:
 - si b > 0, alors |z| = b et $\arg(z) = \frac{\pi}{2}$.
 - si b < 0, alors |z| = -b et $\arg(z) = -\frac{\pi}{2}$.

Figure 1: Module et argument de l'opposé et du conjugué

2.3 Propriété : Module et argument de l'opposé et du conjugué

Soit z un complexe non nul et M_1 , M_2 , M_3 , et M_4 les points d'affixes respectives z, \overline{z} , -z et $-\overline{z}$.

Comme on peut le remarquer sur la figure ??, on a les propriétés suivantes :

$$|z| = |\overline{z}| = |-z| = |-\overline{z}|$$

$$\arg(\overline{z}) = -\arg(z) [2\pi]$$

$$\arg(-z) = \pi + \arg(z) [2\pi]$$

$$\arg(-\overline{z}) = \pi - \arg(z) [2\pi]$$

3 Forme exponentielle

3.1 Théorème : Fonction exponentielle complexe

Soit f la fonction définie sur \mathbb{R} par $f(\theta) = \cos(\theta) + i\sin(\theta)$.

• En utilisant les formules d'addition du cosinus et du sinus, on montre que, pour tous réels θ et θ' :

$$f(\theta + \theta') = f(\theta) \times f(\theta').$$

En effet, on a:

$$f(\theta + \theta') = \cos(\theta + \theta') + i\sin(\theta + \theta')$$

$$= \cos(\theta)\cos(\theta') - \sin(\theta)\sin(\theta') + i(\cos(\theta)\sin(\theta') + \sin(\theta)\cos(\theta'))$$

$$= (\cos(\theta) + i\sin(\theta))(\cos(\theta') + i\sin(\theta'))$$

$$= f(\theta) \times f(\theta').$$

De plus, f(0) = 1.

• Par analogie avec la fonction exponentielle dans \mathbb{R} , on pose $f(\theta) = e^{i\theta}$, soit :

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$

• On a :

$$|e^{i\theta}| = 1$$
 et $\arg(e^{i\theta}) = \theta$ [2 π].

3.2 Exemple

$$e^{i\frac{\pi}{2}} = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = i.$$

3.3 Définition : Forme exponentielle d'un nombre complexe

Tout nombre complexe z non nul s'écrit sous la forme :

$$z = re^{i\theta}$$
 avec $r = |z|$ et $\theta = \arg(z) [2\pi]$.

Cette écriture est appelée forme exponentielle de z.

Réciproquement, si z est un nombre complexe tel que $z=re^{i\theta}$ avec r>0, alors r=|z| et $\theta=\arg(z)$ $[2\pi]$.

3.4 Exemple

Soit z = 1 + i. On a:

$$|z| = \sqrt{2}$$
 et $\arg(z) = \frac{\pi}{4} [2\pi].$

Donc, la forme exponentielle de z est :

$$z = \sqrt{2}e^{i\frac{\pi}{4}}.$$

Caractérisations d'ensembles de points

4 Cercles, distance à un point

• Déterminer l'ensemble des points z complexes tels que |z-4|=5.

C'est l'ensemble des points z tels que la distance de z à 4 est égale à 5. C'est donc le cercle de centre 4 et de rayon 5.

5 Médiatrices

• Déterminer l'ensemble des points z complexes tels que |z-2|=|z-2i|.

C'est l'ensemble des points z tels que la distance de z à 2 est égale à la distance de z à 2i. C'est donc la médiatrice du segment suivant :

6 Utilisation des nombres complexes en géométrie

6.1 Formule de Moivre

Formule de Moivre: Pour tous réels r et θ et tout entier naturel n, on a : $(e^{i\theta})^n = e^{in\theta}$. Que l'on peut également écrire: $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.

6.2 Formule d'Euler:

Pour tout réel θ , on a : $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

7 Racines n-ièmes de l'unité

7.1 Définition :

Les racines n-ièmes de l'unité sont les solutions de l'équation $z^n = 1$.

7.2 Propriété:

Les racines n-ièmes de l'unité sont les nombres complexes de la forme $e^{i\frac{2k\pi}{n}}$ avec $k \in \{0, 1, 2, \dots, n-1\}$.

7.3 Exemple:

Les racines 4-ièmes de l'unité sont les nombres complexes de la forme $e^{i\frac{k\pi}{2}}$ avec $k \in \{0,1,2,3\}$.