CS Lee 27 Graphs Graphs = generalization of L.L., maps, etc. L) is a set of nodes commence privarise by edges. Undirected w/ edge labels: & Aaydic Directed 6-e 1 b 3 e of by and edges = pair of vertices. Vertice ul an edge between are adjacent. L) can have labely (weights. Path = sequence of vertices ownered by edges. Cyclez part were the first & last verrices are same. - a graph v1 at least l cylle is cydic. 2 vertices are connected if there is a path between them. If all vertices are connected, the graph is ameeted. Degree of vertix: how many edges tuch it. Graph Representation Common convenien: Number notes, we the number. To looking a vertex by pilel, use a map Claber, I ntegers Api useds Thrughm Graph (int V) -> creates graph w/ V vertices. add Edge (int v, ivr w):) add an eage v-w Thrash adj (int v) -> vertices adjust to V INT V() -) IT of vertice)

int E() st of edges.

Representation #1:
Minana matric.
-place" true"/ I wherever There's a connection.
For undirected graph: each edge is represented ruise in marrix. Simplicity for space.
Simplicity for Space.
for (int U=0; VZG.VC); NTT) { Confirm is V2 interns.
print (v="+v); fix couh = V, outer = V.
prim (v="+u); (v couh = V, outer = V.
Most Graph Representations:
Adjaceny Lists.
- Maintain array of lists indused by verek #.
- Must popular Representation
$ \begin{array}{c} $
Runtime of for each = D(1), O(V)
How many times is for each run? U times.
Berr curi: O(U) worst: O(U2)
Runtine overall = $\theta(V+E)$ E can grow quidely is V^2 time. E can grow slowly is V time.

Some Martines:

Telen.	add Edge (S,T)	for(w:adj(v))	printympu()	hus Edge (s, t)	Space and
Abjaceny matrix	6(1)	9(v)	6(12)	6(1)	4(v2)
crojn list of edges	6(1)	O(F)	O(E)	⊕(₺)	&(E)
adjacency list	6(1)	6(1) to 8(U)	B(UtE)	O(dgre(v))	A(E+V)

Adjaceny lists are most common became

- 1) Many algorishms use adj (s)
- 2) Most graphs are spase (mt many edges in Lucket)

Depth First Traversal

Dayre is (s connected tot?)

- Mara S.
- Does 5==+? if so, remon true.
- Check all of sis unmarked neighbors for correctivity to t.
 Depth-first > go deep instead it wide.

Common way to do things w/ graphs.

Pass graph into another object that records & holds data.

Paths 2

patho(araph a, int) → Does all the work, find all paths from b. boolean has Path to (int v) → is there a path from y to v? I therebe pathor Cint v) → path from s to v if any.

Missed some none at end of lecture