

AD-A102 667

NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON F/B 13/13  
NATIONAL DAM SAFETY PROGRAM, UPPER HIGHLAND LAKE DAM (NJ00797),--ETC(U)  
AUG 81 A PERERA DACW61-79-C-0011

DAEN/NAP-53842/NJ00797-81/ ML

UNCLASSIFIED

1 of 1  
A02667



END  
DATE ISSUED  
9-81  
DTIC

DA102667

LEVEL 1

HUDSON RIVER BASIN  
TRIBUTARY TO HIGHLAND LAKE  
SUSSEX COUNTY  
NEW JERSEY

UPPER HIGHLAND LAKE  
DAM  
NJ 00797 S

DTI  
ELEC  
AUG 11 1981

D

PHASE 1 INSPECTION REPORT  
NATIONAL DAM SAFETY PROGRAM

DOCUMENTS OF THIS QUALITY PRACTICABLY  
COPY WHICH IS CONTAINED A  
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT  
RENDENCE IS UNLIMTED.



APPROVED FOR PUBLIC RELEASE;  
DISTRIBUTION UNLIMITED.

DEPARTMENT OF THE ARMY

Philadelphia District  
Corps of Engineers  
Philadelphia, Pennsylvania

818 10 089

AUGUST 1981

REPT. NO : DAEN|NAP- 53842| NJ 00797-81/07

**NOTICE**

**THIS DOCUMENT HAS BEEN REPRODUCED  
FROM THE BEST COPY FURNISHED US BY  
THE SPONSORING AGENCY. ALTHOUGH IT  
IS RECOGNIZED THAT CERTAIN PORTIONS  
ARE ILLEGIBLE, IT IS BEING RELEASED  
IN THE INTEREST OF MAKING AVAILABLE  
AS MUCH INFORMATION AS POSSIBLE.**

## **DISCLAIMER NOTICE**

**THIS DOCUMENT IS BEST QUALITY  
PRACTICABLE. THE COPY FURNISHED  
TO DTIC CONTAINED A SIGNIFICANT  
NUMBER OF PAGES WHICH DO NOT  
REPRODUCE LEGIBLY.**

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| <b>19 REPORT DOCUMENTATION PAGE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  | <b>READ INSTRUCTIONS BEFORE COMPLETING FORM</b>     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1. REPORT NUMBER<br><i>DAEN/NAP 53842/NJ00797-81/08</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. GOVT ACCESSION NO.<br><i>AD-A102 667</i>                                                                                                                                                                                                      | 3. RECIPIENT'S CATALOG NUMBER                       |
| 4. TITLE (and Subtitle)<br>Phase I Inspection Report<br>National Dam Safety Program<br>Upper Highland Lake Dam, NJ00797<br>Sussex County, NJ                                                                                                                                                                                                                                                                                                                                                                                                                     | 5. TYPE OF REPORT & PERIOD COVERED<br>FINAL                                                                                                                                                                                                      | 6. PERFORMING ORG. REPORT NUMBER                    |
| 7. AUTHOR(s)<br>Perera, Abraham, P.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8. CONTRACT OR GRANT NUMBER(S)<br>DACPW61-79-C-0011                                                                                                                                                                                              |                                                     |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Louis Berger Assoc.<br>100 Halstead St.<br>East Orange, NJ 07019                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS                                                                                                                                                                                      |                                                     |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>NJ Department of Environmental Protection<br>Division of Water Resources<br>P.O. Box CN029<br>Trenton, NJ 08625                                                                                                                                                                                                                                                                                                                                                                                                       | 12. REPORT DATE<br>August, 1981                                                                                                                                                                                                                  | 13. NUMBER OF PAGES<br>50                           |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)<br>U.S. Army Engineer District, Philadelphia<br>Custom House, 2d & Chestnut Streets<br>Philadelphia, PA 19106                                                                                                                                                                                                                                                                                                                                                                        | 15. SECURITY CLASS. (of this report)<br>Unclassified                                                                                                                                                                                             | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE          |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17. DISTRIBUTION STATEMENT (of the abstract entered in 15b)<br>National Dam Safety Program. Upper<br>Highland Lake Dam (NJ00797), Hudson<br>River Basin, Tributary to Highland Lake,<br>Sussex County, New Jersey. Phase<br>I Inspection Report. |                                                     |
| 18. SUPPLEMENTARY NOTES<br>Copies are obtainable from National Technical Information Service,<br>Springfield, Virginia 22151.                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                  |                                                     |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |                                                     |
| Dams<br>Embankments<br>Visual Inspection<br>Structural Analysis<br>Erosion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | National Dam Safety Program<br>Upper Highland Lake Dam, NJ<br>Sussex County, NJ<br>Hudson River Basin, NJ<br>Highland Lake, NJ                                                                                                                   | Spillways<br>Riprap<br>Sussex County, NJ<br>Erosion |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report. |                                                                                                                                                                                                                                                  |                                                     |

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)



IN REPLY REFER TO  
NAPEN-N

DEPARTMENT OF THE ARMY  
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS  
CUSTOM HOUSE-2 D & CHESTNUT STREETS  
PHILADELPHIA, PENNSYLVANIA 19106

Honorable Brendan T. Byrne  
Governor of New Jersey  
Trenton, New Jersey 08621

Dear Governor Byrne:

|                          |                                     |
|--------------------------|-------------------------------------|
| Accession For            |                                     |
| NTIS GRA&I               | X                                   |
| DTIC TAB                 | <input type="checkbox"/>            |
| Unannounced              | <input checked="" type="checkbox"/> |
| Justification _____      |                                     |
| By _____                 |                                     |
| Distribution/ _____      |                                     |
| Availability Codes _____ |                                     |
| Dist                     | Aveil end/or<br>Special             |
| A                        | 23<br>X                             |

22 JUL 1981

DTIC  
ELECTED  
S AUG 11 1981

D

Inclosed is the Phase I Inspection Report for Upper Highland Lake Dam, Sussex County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Upper Highland Lake Dam, a high hazard potential structure, is judged to be in good overall condition. The dam's spillway is considered inadequate, as 59 percent of the Spillway Design Flood (SDF) would cause the dam to be overtopped. The SDF, in this instance, is one half of the Probable Maximum Flood (PMF). Additional hydraulic and hydrologic studies are believed unnecessary since removal of one of three flashboards at the spillway will increase its capacity sufficiently to accommodate the design flood. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. It is recommended that monitoring of the leak begin immediately along with investigations to determine its cause and the remedial action that might be required. In addition, it is recommended that one of the flashboards be permanently removed or that a method be developed which will absolutely guarantee the removal of at least one flashboard for any discharge condition that may be encountered at the spillway.

b. Within twelve months from the date of approval of this report the following remedial actions should be initiated:

(1) Filling and seeding the eroded areas on the crest and downstream slope of the dam. The upstream face should be protected against wave action by the emplacement of riprap along the crest at the water line.

(2) Tree and brush growing on the downstream side of the embankment should be removed.

APPROVED FOR PUBLIC RELEASE;  
DISTRIBUTION UNLIMITED.

NAPEN-N

Honorable Brendan T. Byrne

(3) If the source of the seep at the toe of the dam cannot be determined, the area should be brought up to the prevailing elevation of the toe utilizing a graded filter material designed to retard flow and prevent the movement of fine material.

(4) All spalled and deteriorated concrete at the spillway should be repaired and the siltation on the upstream side of the weir should be removed.

c. It is recommended that the association's existing work program be expanded to include periodic maintenance of the dam and the development of operational procedures.

d. The owners should develop an emergency action plan and downstream warning system to minimize the potential for flood damage downstream.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Courter of the Thirteenth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,



ROGER L. BALDWIN  
Lieutenant Colonel, Corps of Engineers  
Commander and District Engineer

1 Incl  
As stated

Copies furnished:

Mr. Dirk C. Hofman, P.E., Deputy Director  
Division of Water Resources  
N.J. Dept. of Environmental Protection  
P.O. Box CN029  
Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief  
Bureau of Flood Plain Regulation  
Division of Water Resources  
N.J. Dept. of Environmental Protection  
P.O. Box CN029  
Trenton, NJ 08625

UPPER HIGHLAND LAKE DAM (NJ00797)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 24 March 1981 by Louis Berger and Associates, Inc., under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Upper Highland Lake Dam, a high hazard potential structure, is judged to be in good overall condition. The dam's spillway is considered inadequate, as 59 percent of the Spillway Design Flood (SDF) would cause the dam to be overtopped. The SDF, in this instance, is one half of the Probable Maximum Flood (PMF). Additional hydraulic and hydrologic studies are believed unnecessary since removal of one of three flashboards at the spillway will increase its capacity sufficiently to accommodate the design flood. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. It is recommended that monitoring of the leak begin immediately along with investigations to determine its cause and the remedial action that might be required. In addition, it is recommended that one of the flashboards be permanently removed or that a method be developed which will absolutely guarantee the removal of at least one flashboard for any discharge condition that may be encountered at the spillway.

b. Within twelve months from the date of approval of this report the following remedial actions should be initiated:

(1) Filling and seeding the eroded areas on the crest and downstream slope of the dam. The upstream face should be protected against wave action by the emplacement of riprap along the crest at the water line.

(2) Tree and brush growing on the downstream side of the embankment should be removed.

(3) If the source of the seep at the toe of the dam cannot be determined, the area should be brought up to the prevailing elevation of the toe utilizing a graded filter material designed to retard flow and prevent the movement of fine material.

(4) All spalled and deteriorated concrete at the spillway should be repaired and the siltation on the upstream side of the weir should be removed.

c. It is recommended that the association's existing work program be expanded to include periodic maintenance of the dam and the development of operational procedures.

d. The owners should develop an emergency action plan and downstream warning system to minimize the potential for flood damage downstream.

APPROVED:

  
ROGER L. BALDWIN

Lieutenant Colonel, Corps of Engineers  
Commander and District Engineer

DATE:



U.S. DEPARTMENT OF AGRICULTURE  
NATIONAL DAM INSPECTION PROGRAM

Name of Dam Upper Highland Lake Dam Fed ID# NJ 00797

|                    |                                    |
|--------------------|------------------------------------|
| State Located      | New Jersey                         |
| County Located     | Sussex                             |
| Coordinates        | Lat. 41° 11' - Long. 74° 28'       |
| Stream             | Unnamed tributary to Highland Lake |
| Date of Inspection | March 34, 1981                     |

ASSESSMENT OF  
GENERAL CONDITIONS

Upper Highland Lake Dam is considered to be in a generally good overall condition although its spillway capacity can accommodate only 58% of the 1/2 PMF design storm. It is recommended that the dam be evaluated within the framework of the high hazard classification due to the high potential for severe property damage and loss of life immediately downstream of the dam. Additional hydraulic and hydrologic studies are believed unnecessary since removal of one of three flashboards at the spillway will increase its capacity sufficiently to accommodate the design flood. Investigations to determine the source of a seep at the downstream toe, and its repair, should begin immediately as should an evaluation of methods to provide for drawdown of the lake. It is recommended that one of the flashboards be removed immediately or that a method be provided that would guarantee removal of a flashback during periods of high discharge at the spillway. Remedial measures to be undertaken in the near future include the repair of the concrete at the spillway, removal of brush and trees from the embankment, emplacement of riprap on the upstream slope of the dam, repair of the eroded areas on the embankment, and removal of the sedimentation on the upstream side of the spillway weir. It is further recommended that the owner develop an emergency action plan and warning system to reduce the downstream hazard potential.

  
\_\_\_\_\_  
Abraham Perera P.E.  
Project Manager



OVERVIEW OF UPPER HIGHLAND LAKE DAM  
MARCH, 1981

## TABLE OF CONTENTS

|                                                              | <u>Page</u> |
|--------------------------------------------------------------|-------------|
| Assessment of General Conditions                             |             |
| Overall View of Dam                                          |             |
| Table of Contents                                            |             |
| Preface                                                      |             |
| Section 1 - Project Information                              | 1-4         |
| Section 2 - Engineering Data                                 | 5-6         |
| Section 3 - Visual Inspection                                | 7-8         |
| Section 4 - Operational Procedures                           | 9           |
| Section 5 - Hydraulic/Hydrologic                             | 10-11       |
| Section 6 - Structural Stability                             | 12-13       |
| Section 7 - Assessments/Recommendations/<br>Remedial Actions | 14-15       |

## FIGURES

- Figure 1 - Regional Vicinity Map
- Figure 2 - Plan of Dam
- Figure 3 - Spillway and Dam Sections

## APPENDIX

|                                                            |         |
|------------------------------------------------------------|---------|
| Check List - Visual Inspection                             | i-vii   |
| Check List - Engineering Data                              | viii-xi |
| Photographs                                                |         |
| Check List - Hydrologic and Hydraulic Data<br>Computations | A1-A14  |

## PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines can be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of Phase I investigations is to identify expeditiously those dams that may pose hazards to human life or property. The assessment of the general condition of the dam is based on available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In the review of this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions will be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the spillway test flood is based on the estimated "probable maximum flood" for the region (greatest reasonable possible storm runoff) or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition, and the downstream damage potential.

DAE-81 INSPECTION REPORT  
NATIONAL DAM INSPECTION PROGRAM  
NAME OF DAM: UPPER HIGHLAND LAKE DAM  
FED. I.D.# NJ 10797

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

This report is authorized by the Dam Inspection Act, Public Law 92-367, and has been prepared in accordance with Contract FPM-36 between Louis Berger & Associates, Inc. and the State of New Jersey and its Department of Environmental Protection, Division of Water Resources. The State, in turn, is under agreement with the U.S. Army Corps of Engineers, Philadelphia to have this inspection performed.

b. Purpose of Inspection

The purpose of this inspection is to evaluate the structural and hydraulic condition of the Upper Highland Lake Dam and appurtenant structures and to determine if the dam constitutes a hazard to human life or property.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances

Upper Highland Lake Dam is a 311-foot-long earth structure with a concrete spillway located at the left abutment. The embankment has a maximum height of 17.6 feet, a crest width of 15 feet, and a downstream slope of 2H:1V. A 15-foot-wide, 48-foot-long concrete and wooden docking and deck structure extends 21 feet into the lake about 100 feet from the right abutment. The 16.75-foot-wide concrete weir has 2 wooden and 1 steel 8-inch-high flashboards and a steel-truss-supported concrete foot bridge extending between the spillway sidewalls. The clear opening at the spillway is presently 19 inches by 16.75 feet. Discharge over the weir drops 6 feet 10 inches to a 20-foot-long concrete apron before entering a small rock-lined stream channel and flowing about 100 feet to a 3-foot by 2-foot oval pipe culvert extending under the community tennis courts.

c. Location

The dam is situated in a small depression on the slopes bordering the west side of Highland Lake; it is located near Highland Lake Road about 500 feet north of its junction with Algonquian Road in Vernon Township, Sussex County, New Jersey. The reservoir is about 175 feet below the crest of Wawayanda Mountain in the north central portion of the community of Highland Lakes and may be reached via Route 516 and Highland Lake Road.

c. Size Classification

The dam has a maximum height of 17.6 feet and a maximum storage capacity of 106 acre-feet. Accordingly, this dam is in the small size category as defined by the criteria in the Recommended Guidelines for Safety Inspection of Dams (storage less than 1,000 acre-feet and height less than 40 feet).

d. Hazard Classification

The dam is located in the middle of extensive residential development in the community of Highland Lakes. The downstream channel decreases in size as it descends the mountain slope and meanders between homes and the residential street system. Community tennis courts are located at the toe of the dam and two homes are situated immediately across the road from the downstream end of the courts. A failure could cause extensive damage to these and other homes and could result in a significant loss of life particularly if the tennis courts were occupied at the time of the failure. Accordingly, it is recommended that this dam be classified as high hazard.

e. Owner

This dam is owned by the Highland Lakes Country Club and Community Association Inc., Highland Lakes, New Jersey.

f. Purpose of Dam

The dam was constructed for the purpose of creating a recreational lake.

g. Design and Construction History

Although there are no engineering or construction records available, other dams created by the same developer in the Highland Lakes community were designed by Newell C. Harrison, Butler, N.J. and constructed by Dollar & VanBlackon, General Contractors of Vernon, N.J. It is possible that the same firms erected this structure.

h. Normal Operating Procedures

There are no formal operating procedures that are applicable to this dam. However, a full-time maintenance staff is employed by the Lake Association for the purpose of groundskeeping and repair.

1.3 PERTINENT DATA

a. Drainage Area

Upper Highland Lake Dam has a drainage area of 0.12 square miles, which consists primarily of woodland and suburban residential development.

b. Total spillway capacity at maximum pool elevation  
(top of dam) - 162 cfs

c. Elevations (feet above MSL)

Top of dam - 1,272

Spillway crest - 1,269.8

Streambed at centerline of dam - 1,254.4

d. Reservoir

Length of maximum pool (top of dam) -  
820 feet

Length of recreational pool (spillway crest) -  
800 feet

e. Storage (acre-feet)

Top of dam - 106.0  
Recreation pool - 84.2

f. Reservoir Surface (acres)

Top of dam - 10.6  
Recreational pool - 9.2

f. Dam

Type - Earth with concrete spillway at left abutment.

Length - 311 feet

Height - 17.6 feet

Top Width - 15 feet

Side Slopes - SH:IV downstream; unknown upstream.

Zoning - Unknown

Impervious Core - Unknown

Cutoff - Unknown

Grout Curtain - Unknown

h. Diversion and Regulating Tunnel - None

i. Spillway

Type - Concrete weir with wood and metal flashboards. Trapezoidal channel at right abutment.

Weir Length - 16.75 feet

Gates - None

U/S Channel - Eight-foot-long sand and gravel approach channel.

D/S Channel - Concrete spillway apron about 20 feet long.

j. Regulating Outlets

None - no draw down facilities.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

A search of various agencies and discussions with the owner's representatives failed to produce any design details, reports, or drawings. All dimensions depicted herein were measured in the field.

2.2 CONSTRUCTION

Although it is believed this dam was constructed by the same contractor that built the other dams in this region, no construction details were available to the inspection team. The contractor could not be located nor were as-built plans available. There are no records of the construction plans having been filed with the NJDEP or of any inspections made by State engineers.

The dam is located in a region underlain by the Pre-Cambrian age Byram gneiss, a dense, hard, and characteristically banded metamorphic granitoid. The reservoir occupies a small, rock-bound depression caused by glacial scouring. The thin overburden in this area consists primarily of silt and organic material.

2.3 OPERATION

No data pertaining to the operation at this dam was obtained (see Section 4).

2.4 EVALUATION

a. Availability

Although the hydraulic and hydrologic conditions could be determined from field measurements and observations, several design criteria could not be evaluated due to a lack of engineering data, including the depth to bedrock, condition of foundation, existence and configuration of a cutoff or corewall, and the relative permeability of the embankment.

c. Adequacy

Although no information pertaining to the dam's internal makeup was obtained, field observations complimented by hydraulic and hydrologic calculations performed by the inspection team, provided sufficient data on which to base an assessment of the dam's overall safety within the purview of PL 92-367.

c. Validity

No design data are available for assessment.

## SECTION - VISUAL INSPECTION

### 3.1 FINDINGS

#### a. General

Visual inspection of Upper Highland Lake Dam (a.k.a. Lake One Dam) was performed on March 24, 1981 at which time the lake level was about 5 inches below the top of the flashboards since the flashboards were wedged open slightly to keep the lake at a lower elevation during the winter. The dam appears to be in generally good condition although some light erosion was noted on the downstream embankment and a substantial seep was observed at the toe of the dam about 100 feet to the right of the spillway.

#### b. Dam

The dam's embankment is in fairly good condition, although it is slightly uneven horizontally. The back portion of the crest is generally 4 to 6 inches higher than the front as a result of pedestrian traffic. Minor erosion was noted along the upstream edge of the crest, presumably due to wave action, and at two locations on the downstream slope, which appear to be paths. Erosion was also noted adjacent to the spillway wingwall and the concrete portion of the dock and deck structure. While the downstream slope of the embankment has a substantial grass cover, it also supports numerous pine trees, some as large as 18 inches in diameter. A substantial seep was observed slightly beyond the toe of the dam and about 100 feet to the right of the spillway. The seepage area contains a 1-foot-deep standing pool of water that is about 6 feet by 15 feet in areal extent and appears to be about 3 feet lower in elevation than the prevailing dam toe elevation. A wet, leaf-covered channel extends from the seep and intersects the spillway outlet channel near the oval pipe culvert. The water in the seepage pool contains a thick orange precipitate, suggesting the possibility of iron piping in this area, although none was observed or reported at this location.

c. Appurtenant structures

The spillway and sidewalls are in fair overall condition; although some concrete deterioration, consonant with the age of the structure, was observed. Spalling and cracking of the spillway apron was observed, and a horizontal crack extended the width of the spillway about 18 inches below the top of the weir. Spalling was also somewhat more severe at the junction of the spillway slab and apron.

d. Reservoir Area

The terrain surrounding the lake is gently sloping with extensive suburban development to the east and west and less densely developed woodlands to the north. A sandy beach is located at the right abutment and several docks dot the shoreline of the lake. Although not discernible along the face of the dam, there is a sediment build-up at the spillway that extends to within 3 feet of the top of the wingwall. This level is about 7 inches higher than the concrete weir crest and seems to indicate that the lake is always lowered by placing edges between the two lowest flashboards, causing the siltation level to remain at that elevation.

e. Downstream Channel

The downstream channel is small and narrow, extending diagonally from the spillway to the edge of the tennis courts, where it enters a 2-foot by 3-foot CMP culvert that extends under the courts and a road another 150 feet downstream. The terrain surrounding the channel is relatively flat and lightly wooded. The tennis courts located to the right of the channel are 6.1 feet higher in elevation than the culvert invert. The culvert invert is also 4.3 feet lower than the toe of the dam. During extremely high discharges, the area between the tennis courts and the left abutment area must flood due to the relatively small discharge capacity of the culvert. A 6-foot, 8-inch-high timber retaining wall is located at the downstream end of the tennis courts. A local road extends along the bottom of the retaining wall and two homes are located on the opposite side of the road. The channel on the downstream side of the road is deeper and wider with steep side slopes. Several homes are situated near the top of the channel 500 to 700 feet downstream.

## SECTION 4 - OPERATIONAL PROCEDURES

### 4.1 PROCEDURES

There are no formal operating procedures presently in existence although the Lake Association employs a permanent maintenance crew in addition to seasonal part-time help. This staff is responsible for groundskeeping, preventive maintenance, lake operations, and repairs to the community property, but present operations are restricted by funding limitations.

### 4.2 MAINTENANCE OF DAM

While the primary responsibility of the maintenance staff centers around groundskeeping, their duties also extend to repair work within their capability. It appears that the dam is presently maintained in an adequate manner, although attention could be concentrated in the area of the growth and light erosion on the embankment backslope.

### 4.3 MAINTENANCE OF OPERATING FACILITIES

The only regulatory components at the dam are the spillway flashboards. While no formal maintenance procedures exist for this facility, it is apparently repaired on an as-needed basis and does not appear to exhibit any obvious signs of neglect.

### 4.4 DESCRIPTION OF WARNING SYSTEM IN EFFECT

No formal warning system is presently in effect. Although residents living near the dam might observe hazardous conditions during heavy storms and notify local authorities, it was observed that the downstream homes are situated in very vulnerable locations with respect to flood flows. It is believed that only an automated warning system could provide sufficient advance notice downstream in the event of a dam failure.

### 4.5 EVALUATION OF OPERATIONAL ADEQUACY

The present operational procedures and community safeguards are deemed to be inadequate in view of the location and position of the dam and the potential to downstream damage. A general community warning system and emergency action plan should be developed along with a more intensive program of inspection and maintenance.

## SECTION 5 - HYDRAULIC/HYDROLOGIC

### 5.1 EVALUATION OF FEATURES

#### a. Design Data

In accordance with the criteria presented in the Recommended Guidelines for Safety Inspection of Dams, it has been determined that the Upper Highland Lake Dam is small in size and falls within the high hazard category. Accordingly, the spillway design flood (SDF) was determined by the inspection team to be one-half the probable maximum flood (PMF). The inflow hydrograph was calculated using precipitation data from Technical Paper 40 and Technical Memo NWS Hydro-35. In accordance with Corps of Engineers directives, the inflow hydrograph and flood routing were performed utilizing the HEC-1 computer program. Peak inflow to the reservoir for the 1/2 PMF was 578 cfs. When routed through the reservoir, this flow was reduced to 279 cfs. The spillway capacity before overtopping occurs is 162 cfs and therefore can only accommodate 53% of the design flood. In its present configuration, the spillway capacity is inadequate although not seriously inadequate since the short duration and low velocity of overtopping during the design storm would probably not result in a dam failure. (See paragraph 5.1 d, Overtopping Potential).

#### b. Experience Data

There were no operational records or experience information available to the inspection team concerning this dam.

#### c. Visual Observations

There are no indications that the dam has ever been overtopped, although hydraulic calculations indicate overtopping is possible with the 1/2 PMF design storm. The inspection team noted that the spillway flashboards limit the discharge capacity considerably and the steel bridge truss could serve to entrap debris during severe storms, further reducing the ability of the spillway to accommodate heavy storm runoff.

d. Overtopping Potential

Based on the hydraulic evaluation, it appears that the dam would be overtopped by 2.0 inches for approximately 30 minutes during the 1/2 PMF design storm. The maximum velocity of the discharge over the dam would be about 2.25 feet per second which, due to the short duration of the overtopping, would probably not cause significant damage to the dam or result in a dam failure. However it is recommended that the overtopping potential be completely eliminated by the removal of one of the three 3-inch flashboards. This would increase the spillway capacity to 260 cfs and reduce the routed outflow to 220 cfs enabling the spillway to transmit the design storm without overtopping the dam.

e. Drawdown

No draw down facilities were observed at this dam. This is considered a serious deficiency and if, in fact, no blowoff exists, studies should be implemented to determine a feasible method of draining the lake during emergency conditions.

## SECTION 6 - STRUCTURAL STABILITY

### 6.1 EVALUATION OF STRUCTURAL STABILITY

#### a. Visual Observations

No deficiencies of a structural nature were noted during the inspection of this dam. The crest is relatively uniform in a horizontal plane, and although the width of the dam crest varies slightly, the maximum height-to-width ratio is relatively modest (1.1:1). No indications of mass movement of material, such as settlement, sloughing, or cracking, were noted. However, the leak observed 100 feet to the right of the spillway has the potential to develop into a more serious problem if left uncorrected.

#### b. Design and Construction Data

As indicated in Section 2, no information is available regarding the design or construction history of the dam. However, the field observations are considered adequate to render an evaluation of this dam's structural integrity.

#### c. Operating Records

While no formal operating records are maintained by the lake association, the dam appears to have performed satisfactorily since its construction.

#### d. Post Construction Changes

There are no records of any structural modifications performed at this dam nor do field observations suggest there have been structural changes since the original construction.

#### e. Seismic Stability

Upper Highland Lake Dam is located in Seismic Zone 1, where seismic activity is slight and additional structural loading imparted thereby is generally insignificant. Experience indicates that earthen dams in Zone 1 that are stable under static loading conditions will maintain their structural integrity

when subjected to the negligible dynamic loads imposed by the weak seismicity characteristic of this area. As indicated in the preceding paragraphs, this dam is considered statically stable within its present configuration, and it is assumed that it will remain stable during seismic loading.

SECTION 7 - ASSESSMENTS/RECOMMENDATIONS /  
REMEDIAL ACTIONS

7.1 DAM ASSESSMENT

a. Safety

Subject to the inherent limitations of the Phase I visual inspection, Upper Highland Lake Dam is judged to be in a generally good condition. However, the spillway is capable of accommodating only 58% of the 1/2 PMF design storm with the flashboards in place. The spillway capacity can be increased to 260 cfs by providing for removal of the top flashboard during periods of high inflow. It is recommended that this dam be placed in the high hazard category due to the high potential for loss of life and severe property damage immediately downstream of the dam.

b. Adequacy of Information

With the exception of visual observations, no information was available for use in evaluating the condition of this dam. Although no data, relative to the composition or construction of the embankment was located, field observations revealed nothing of concern with respect to the condition of the dam. The geometry of the structure is quite uniform and it has a generally well-tended appearance. Accordingly, the information gathered in the field is considered adequate to render an evaluation of the dam's condition within the purview of PL 92-367.

c. Urgency

While implementation of the recommendations pertaining to routine maintenance may be undertaken in the near future, it is felt that monitoring of the leak should begin immediately.

d. Necessity for Further Study

Since removal of one of the three 8-inch flashboards will increase the spillway capacity sufficiently to accommodate the 1/2 PMF design storm, no additional H&H studies are recommended at this

time. However, the source of the leak at the toe of the dam should be investigated to determine if this is, in fact, the location of a low-level blowoff pipe drain. If no drain can be located at the dam, it is recommended that studies be implemented to determine the most feasible manner of providing adequate draw down facilities at the dam.

## 7.2 RECOMMENDATIONS/REMEDIAL MEASURES

### a. Recommendations

It is recommended that monitoring of the leak begin immediately along with investigations to determine its cause and the remedial action that might be required. In addition, it is recommended that one of the flashboards be permanently removed or that a method be developed which will absolutely guarantee the removal of at least one flashback for any discharge condition that may be encountered at the spillway. Remedial actions to be performed in the near future include:

- (1) Filling and seeding the eroded areas on the crest and downstream slope of the dam. The upstream face should be protected against wave action by the emplacement of riprap along the crest at the water line.
- (2) Tree and brush growing on the downstream side of the embankment should be removed.
- (3) If the source of the seep at the toe of the dam cannot be determined, the area should be brought up to the prevailing elevation of the toe utilizing a graded filter material designed to retard flow and prevent the movement of fine material.
- (4) All spalled and deteriorated concrete at the spillway should be repaired and the siltation on the upstream side of the weir should be removed.

### b. O&M Maintenance and Procedures

It is recommended that the association's existing work program be expanded to include periodic maintenance of the dam and the development of operational procedures. The owners should develop an emergency action plan and downstream warning system to minimize the potential for flood damage downstream.





PLAN OF UPPER  
HIGHLAND LAKE DAM  
NOT TO SCALE



SECTION A-A  
SPILLWAY ELEVATIONS  
NOT TO SCALE



SECTION B-B  
EMBANKMENT ELEVATIONS  
NOT TO SCALE

UPPER HIGHLAND LAKE DAM

FIGURE 3

Check List  
Visual Inspection  
Phase 1

Name Dam Upper Highland Lake County Sussex State New Jersey Coordinators MDEP

Date(s) Inspection 3-24-81 Weather Sunny Temperature 40°

Pool Elevation at Time of Inspection 1269.4 M.S.L. Tailwater at Time of Inspection 1260.7 M.S.L.

Inspection Personnel:

T. chapter

A. Perera

Representative of owner not present.

A. Perera Recorder

## EMBANKMENT

| VISUAL EXAMINATION OF                                    | OBSERVATIONS                                             | REMARKS OR RECOMMENDATIONS                                                                                                                         |
|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| SURFACE CRACKS                                           | None observed                                            |                                                                                                                                                    |
| VERTICAL MOVEMENT OR<br>CRACKING AT OR BEYOND<br>THE TOE | None observed                                            |                                                                                                                                                    |
| MORTAR OR EROSION OF<br>JACKET AND ABUTMENT<br>TOPS      | Light erosion downstream.                                | Appear to be paths. Should be filled.                                                                                                              |
| VERTICAL AND HORIZONTAL<br>MORTAR OF THE CREST           | Horizontal and vertical alignment slightly<br>irregular. | Vertical alignment irregularity<br>apparently due to wear from foot traffic.<br>Horizontal alignment irregularities due<br>to wave and ice action. |
| RIPRAP FAILURES                                          | N/A                                                      | No riprap observed                                                                                                                                 |

**EMBANKMENT**

| <b>VISUAL EXAMINATION OF<br/>EMBANKMENT</b> | <b>OBSERVATIONS</b>                                                                                                                                           | <b>REMARKS OR RECOMMENDATIONS</b>                                                                            |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| EXCAVATION                                  | Numerous tall pines up to 18" in diameter on the downstream slope.                                                                                            | Should be removed.                                                                                           |
| JUNCTION OF EMBANKMENT AND SPILLWAY AND DAM | Embankment grades uniformly into adjacent slopes.                                                                                                             | No cracking or separations observed.                                                                         |
| NOTICEABLE SEEPAGE                          | Heavy seepage at toe of dam approximately 100 feet from left abutment. Seepage pool approximately 15 x 6 feet and 1 foot deep. Orange precipitate in seepage. | Site of seepage is approximately 3 feet lower than prevalent dam toe elevation. Seepage should be monitored. |
| STAFF GAGE AND RECORDER                     | None observed                                                                                                                                                 |                                                                                                              |
| DRYADS                                      | None observed                                                                                                                                                 | Strong surface wind could cause of tumbling court.                                                           |

| UNGATED SPILLWAY      |                                                                                                                                 |                                                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| VISUAL EXAMINATION OF | OBSERVATIONS                                                                                                                    | REMARKS OR RECOMMENDATIONS                                                                                                  |
| CONCRETE WEIR         | Downstream face of weir scaling. Light spalling and efflorescence on left downstream wingwall; others satisfactory.             | Repair deteriorated concrete.                                                                                               |
| APPROACH CHANNEL      | Lake bottom sandy silt and gravel.                                                                                              | Silted to within 3 feet of top of wingwalls. Should be cleaned.                                                             |
| DISCHARGE CHANNEL     | Channel is narrow (3 to 5 feet wide), approximately 2 feet deep, and filled with small boulders; banks are wooded.              | Channel cuts in 2' x 3' oval culvert, which appears to be a major constriction during heavy storms.                         |
| BRIDGE AND PIERS      | Steel truss of concrete footbridge may collect debris and constrict discharge. Bridge appears to hamper removal of flashboards. | Spillway should be monitored during heavy storms and kept free of debris. Method of removing flashboards should be devised. |

| INSTRUMENTATION         |              | REMARKS OR RECOMMENDATIONS |
|-------------------------|--------------|----------------------------|
| VISUAL EXAMINATION      | OBSERVATIONS |                            |
| INSTRUMENTATION/SURVEYS | None         |                            |
| OBSERVATION WELLS       | None         |                            |
| WEIRS                   | None         |                            |
| PIEZOMETERS             | None         |                            |
| OTHER                   |              | v                          |



| DOWNSTREAM CHANNEL                                                     |                                                                                                                                                                                                        |                                                                                                                                       |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| VISUAL EXAMINATION OF<br>CONDITION<br>(CONSTRUCTIONS,<br>DEBRIS, ETC.) | OBSERVATIONS                                                                                                                                                                                           | REMARKS OR RECOMMENDATIONS                                                                                                            |
| DEBRIS, ETC.                                                           | Narrow, rocky channel in flat area adjoining tennis courts. Channel enters 2' x 3' oval culvert about 100 feet downstream. Road about 250 feet downstream 6'-7' lower in elevation than tennis courts. | Road and tennis courts would be inundated in event of dam failure.                                                                    |
| SLOPES                                                                 | Very flat downstream area about 300 feet wide. Side slopes gentle.                                                                                                                                     |                                                                                                                                       |
| APPROXIMATE NO.<br>OF HOUSES AND<br>POPULATION                         | Two homes located directly across street from tennis court. Several homes adjacent to stream channel 500-700 feet downstream.                                                                          | Tennis courts and homes adjacent to road would be seriously damaged by flood. Homes near downstream channel could also be endangered. |
|                                                                        |                                                                                                                                                                                                        |                                                                                                                                       |
|                                                                        |                                                                                                                                                                                                        |                                                                                                                                       |

CHECK LIST  
ENGINEERING DATA  
DESIGN, CONSTRUCTION, OPERATION

| REMARKS                   |                                         |
|---------------------------|-----------------------------------------|
| PLAN OF DAM               | None Available                          |
| REGIONAL VICINITY MAP     | USGS Quadrangle - Wawayanda N.J. - N.Y. |
| CONSTRUCTION HISTORY      | None Available                          |
| TYPICAL SECTIONS OF DAM   | None Available                          |
| HYDROLOGIC/HYDRAULIC DATA | None Available                          |
| OUTLETS - PLAN            | None Available                          |
| - DETAILS                 | None Available                          |
| - CONSTRAINTS             | None Available                          |
| - DISCHARGE RATINGS       | None Available                          |
| INFALL/RESERVOIR RECORDS  | None Available                          |

| ITEM             | REMARKS        |
|------------------|----------------|
| STRAIGHTWAY PLAN | None Available |
| SECTIONS         | None Available |
| DETAILS          | None Available |

OPERATING EQUIPMENT  
PLAN & DETAILS

None Available  
None Available

| ITEM                             | REMARKS        |
|----------------------------------|----------------|
| DESIGN REPORTS                   | None Available |
| GEOTECHNICAL REPORTS             | None Available |
| HYDRAULIC COMPUTATIONS           | None Available |
| HYDRAULICS & HYDRAULICS          | None Available |
| HYDRAULIC STABILITY              | None Available |
| HYDRAULIC STUDIES                | None Available |
| INVESTIGATIONS                   | None Available |
| LABORATORY RECORDS               | None Available |
| LABORATORY                       | None Available |
| FIELD                            | None Available |
| POST-CONSTRUCTION SURVEYS OF DAM | None Available |
| BORROW SOURCES                   | Unknown        |

| ITEM                                              | REMARKS                                                                             |
|---------------------------------------------------|-------------------------------------------------------------------------------------|
| MONITORING SYSTEMS                                | None                                                                                |
| MODIFICATIONS                                     | Information Not Available                                                           |
| HIGH POOL RECORDS                                 | Information Not Available                                                           |
| LOSS CONSTRUCTION ENGINEERING STUDIES AND REPORTS | Information Not Available<br>Information Not Available<br>Information Not Available |
| DISASTER ACTION OR FAILURE OF DAM REPORTS         | Information Not Available<br>Information Not Available<br>Information Not Available |
| Maintainance Operations Records                   | Information Not Available<br>Information Not Available<br>Information Not Available |



March, 1981  
Dam Crest Looking Southwest



March, 1981  
Dam Crest Looking Northeast



March, 1981  
Upstream View of Spillway



March, 1981  
Downstream View of Spillway



March, 1981  
Seepage at Downstream Toe



March, 1981  
Downstream Channel and Pipe Culvert

CHECK LIST  
HYDROLOGIC AND HYDRAULIC DATA  
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: 0.12 sq. mi.

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 1269.8 NGVD (24.0 ac.ft.)

ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): -

ELEVATION MAXIMUM DESIGN POOL: -

ELEVATION TOP DAM: 1272 NGVD (106.0 acre-feet)

CREST: Spillway

- a. Elevation 1267.8 NGVD (Top of concrete weir)
- b. Type Concrete Weir
- c. Width Approximately 24 inches
- d. Length 16.75 feet
- e. Location Spillover Left Abutment
- f. Number and Type of Gates Three 8-inch-high flashboards

OUTLET WORKS: None observed

- a. Type
- b. Location
- c. Entrance inverts
- d. Exit inverts
- e. Emergency draindown facilities

HYDROMETEOROLOGICAL GAGES: None

- a. Type
- b. Location
- c. Records

MAXIMUM NON-DAMAGING DISCHARGE: 162 cfs

BY \_\_\_\_\_ DATE \_\_\_\_\_  
CHKD. BY \_\_\_\_\_ DATE \_\_\_\_\_  
SUBJECT \_\_\_\_\_

LOUIS BERGER & ASSOCIATES INC.

SHEET NO. 1 OF 1  
PROJECT \_\_\_\_\_

Engineering Data - Tidal Flows - Hudson River - New York Harbor

Notes:

$$\Delta t = \text{Time of flow} = 100 \text{ sec} = 1.67 \text{ min}$$

$$A = 300 - 20,570 \text{ ft}^2 = 7,610 \text{ ft}^2 \quad L = 6.7 \text{ mi}$$

From Dams at Sandy Hook & Bayonne

Average Current Velocity = 4 ft/sec. Tides = 3 ft.

Downstream Flow

$$\text{length} = 600'$$

$$\Delta t = 100 + 100 = 100 \text{ sec}, \text{ Slope} = 1/600 = 1.67 \text{ sec/m}$$

From Dam at Sandy Hook, Fig. 21

Average current = Flow rate / width = 3 ft/sec. 3 ft = 1 m

$$T_{av} - T_c = 5 + 3 = .13 \text{ min}$$

Method 2: SCS Method (continued)

$$\text{Runoff coefficient } t_c = \frac{(100)^{1.5}}{20,570} = \frac{100^{1.5}}{20,570} = .0341$$

$$\text{Storage } t_c = 3 \text{ min} = .05 \text{ hr}$$

$$T_{av} - T_c = .13 \text{ hr}$$

Method 3: SCS Method (continued)

Runoff coefficient =  $\frac{1}{2} \left( 1 + \frac{1}{C_N} \right) = \frac{1}{2} \left( 1 + \frac{1}{66} \right) = .50$

$$C_N = 66$$

$$\text{Sh. } \sqrt{L} = 1.5$$

$$S = \frac{1000 - 10}{1000} = \frac{990}{1000} = .99$$

$$J = \text{hydraulic head} = 1500'$$

$$L = \text{Length} = \frac{1500^{1.5} \cdot 1.5}{1000 \cdot 1.5} = \frac{1500^{1.5} \cdot 1.5}{1000} = \frac{1500^{1.5}}{666.67} = 21.002$$

$$t_c = L \cdot \sqrt{L} = 21.002 \cdot 1.5 = .35$$

$$T_{av} - T_c = \frac{1000 - 10}{2} + .35 = .5 \text{ min}$$

$$T_{av} - T_c = .5 \text{ min} = .083 \text{ hr} \text{ or } 5 \text{ min in SCS units.}$$

BY ..... DATE 12/15  
CHKD. BY ..... DATE .....  
SUBJECT .....

LOUIS BERGER & ASSOCIATES INC.

SHEET NO 4 OF 10  
PROJECT 42-116

VALIDATED ON DATA

FROM MANAGEMENT REPORT FOR LOU BERGER INC  
AND CO. INC. (in inches)

Avg. in inches 2.0

Total hours Avg. 12.50 hr.

Min. min. 6 hour percentage = 111%

Max. min. 12 hour percentage = 23%

Max min. 24 hour percentage = 134%

BY \_\_\_\_\_ DATE \_\_\_\_\_  
CHKD. BY \_\_\_\_\_ DATE \_\_\_\_\_  
SUBJECT \_\_\_\_\_

# LOUIS BERGER & ASSOCIATES INC.

SHEET NO. 1 OF 217  
PROJECT 10-17

|                                                                                                                                                                                                                |  |                 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------|--|--|--|--|--|
| S1.1271.4                                                                                                                                                                                                      |  | T-17 500000 111 |  |  |  |  |  |
| 16.15'                                                                                                                                                                                                         |  |                 |  |  |  |  |  |
| <p style="text-align: center;">SHELL-1 CAL T.E. 401</p> <p style="text-align: center;">FLIGHT NO. 1269.8</p>                                                                                                   |  |                 |  |  |  |  |  |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;"></td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> </tr> </table> |  |                 |  |  |  |  |  |
|                                                                                                                                                                                                                |  |                 |  |  |  |  |  |
| C-100-1407-CH-3 127.42                                                                                                                                                                                         |  |                 |  |  |  |  |  |

$$E(\theta) = \sin(\theta) = -\epsilon$$

|                                |             |             |      |
|--------------------------------|-------------|-------------|------|
| Flon over Stanley              | Flon over   | Flon over   | Tell |
| - - - - - Stan Foster 4000 ft. | Foster 4000 | Foster 4000 | Tell |
| - = 6.75'                      | 27.165      | 27.25       |      |
| - 27.25                        | 27.25       | 27.25       |      |
| 27.25 - 6.75 = 20.50           | 27.25       | 27.25       |      |
| 27.25 - 6.75 = 20.50           | 27.25       | 27.25       |      |
| 27.25 - 6.75 = 20.50           | 27.25       | 27.25       |      |

BLANTON FOR CHILDREN

## THE SERVICE

卷之三



A. V. ST. JOHN

Spring Hill and Lake Dame  
S. T. A. G. - Miss Maggie Gove



BY T.S. DATE 2/12/67  
CHKD. BY W.H.B. DATE 2/12/67  
SUBJECT STORAGE

## LOUIS BERGER &amp; ASSOCIATES INC.

SHEET NO. 4 OF 4  
PROJECT SAFETY4.000' ASL 1260'4.000'  
1265'A = 15.6A TOP OF DAM

1260' 4.000' ASL 1265' 4.000' ASL  
1260' 4.000' ASL 1265' 4.000' ASL

(Bottom) 1256 (4.000' ASL)

| ELEVATION<br>IN FEET | FT. ABOVE<br>STORAGE | FACE OF DAM | TOP OF DAM | FT. ASL |
|----------------------|----------------------|-------------|------------|---------|
| 1256.0               | 4.0                  | (ASL)       | (ASL)      | 0       |

| ELEVATION<br>IN FEET | FT. ABOVE<br>STORAGE | FACE OF DAM | TOP OF DAM | FT. ASL |
|----------------------|----------------------|-------------|------------|---------|
| 1260.0               | 0.0                  | 9.2         | 12.2       | 54.2    |
| 1261.0               | -1.0                 | 9.3         | 11.3       | 53.1    |
| 1262.0               | -2.0                 | 9.3         | 11.3       | 52.1    |
| 1263.0               | -3.0                 | 9.2         | 11.2       | 51.7    |
| 1264.0               | -4.0                 | 10.5        | 12.5       | 50.7    |
| 1265.0               | -5.0                 | 10.6        | 12.6       | 49.6    |
| 1266.0               | -6.0                 | 10.6        | 12.6       | 48.5    |
| 1267.0               | -7.0                 | 11.8        | 13.8       | 47.3    |

1269.1 2.89 AC. -7.8

W. H. Dyer  
State Society



BY DATE 7/21

## LOUIS BERGER &amp; ASSOCIATES INC.

SHEET NO. 1 OF 6

CHKD. BY DATE 7/21

PROJECT NO. 1000

SUBJECT

A1 UPPER HIGHLAND LAKE DEM

A2 J. CERAVOLO

A3 APRIL 30 1981

C 10 0 0 0 0 0 0 0

B1

B2

B3

B4

K1

K2

W1

F1 INFLOW HYDROGRAPH TO RESERVOIR

M 1 0 12 12

P 0 21 9 111 23 134

T

W2

X1

K3

K4 ROUTED FLOW THROUGH RESERVOIR

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Y12

Y13

Y14

Y15

Y16

Y17

Y18

Y19

Y20

Y21

Y22

Y23

Y24

Y25

Y26

Y27

Y28

Y29

Y30

Y31

Y32

Y33

Y34

Y35

Y36

Y37

Y38

Y39

Y40

Y41

Y42

Y43

Y44

Y45

Y46

Y47

Y48

Y49

Y50

Y51

Y52

Y53

Y54

Y55

Y56

Y57

Y58

Y59

Y60

Y61

Y62

Y63

Y64

Y65

Y66

Y67

Y68

Y69

Y70

Y71

Y72

Y73

Y74

Y75

Y76

Y77

Y78

Y79

Y80

Y81

Y82

Y83

Y84

Y85

Y86

Y87

Y88

Y89

Y90

Y91

Y92

Y93

Y94

Y95

Y96

Y97

Y98

Y99

Y100

Y101

Y102

Y103

Y104

Y105

Y106

Y107

Y108

Y109

Y110

Y111

Y112

Y113

Y114

Y115

Y116

Y117

Y118

Y119

Y120

Y121

Y122

Y123

Y124

Y125

Y126

Y127

Y128

Y129

Y130

Y131

Y132

Y133

Y134

Y135

Y136

Y137

Y138

Y139

Y140

Y141

Y142

Y143

Y144

Y145

Y146

Y147

Y148

Y149

Y150

Y151

Y152

Y153

Y154

Y155

Y156

Y157

Y158

Y159

Y160

Y161

Y162

Y163

Y164

Y165

Y166

Y167

Y168

Y169

Y170

Y171

Y172

Y173

Y174

Y175

Y176

Y177

Y178

Y179

Y180

Y181

Y182

Y183

Y184

Y185

Y186

Y187

Y188

Y189

Y190

Y191

Y192

Y193

Y194

Y195

Y196

Y197

Y198

Y199

Y200

Y201

Y202

Y203

Y204

Y205

Y206

Y207

Y208

Y209

Y210

Y211

Y212

Y213

Y214

Y215

Y216

Y217

Y218

Y219

Y220

Y221

Y222

Y223

Y224

Y225

Y226

Y227

Y228

Y229

Y230

Y231

Y232

Y233

Y234

Y235

Y236

Y237

Y238

Y239

Y240

Y241

Y242

Y243

Y244

Y245

Y246

Y247

Y248

Y249

Y250

Y251

Y252

Y253

Y254

Y255

Y256

Y257

Y258

Y259

Y260

Y261

Y262

Y263

Y264

Y265

Y266

Y267

Y268

Y269

Y270

Y271

Y272

Y273

Y274

Y275

Y276

Y277

Y278

Y279

Y280

Y281

Y282

Y283

Y284

Y285

Y286

Y287

Y288

Y289

Y290

Y291

Y292

Y293

Y294

Y295

Y296

Y297

Y298

Y299

Y300

Y301

Y302

Y303

BY \_\_\_\_\_ DATE \_\_\_\_\_  
CHKD. BY \_\_\_\_\_ DATE \_\_\_\_\_  
SUBJECT \_\_\_\_\_

## LOUIS BERGER & ASSOCIATES INC.

SHEET NO. 1 OF 10  
PROJECT



# LOUIS BERGER & ASSOCIATES INC.

BY ..... DATE .....  
CHKD. BY ..... DATE .....  
SUBJECT .....

SHEET NO. 4 OF 17  
PROJECT E-27

BY LC DATE 5/25/65  
CHKD. BY LC DATE 5/25/65  
SUBJECT \_\_\_\_\_

# LOUIS BERGER & ASSOCIATES INC.

SHEET NO. 1 OF 400  
PROJECT 75-100

| ITEM | DESCRIPTION | QTY | UNIT | AMOUNT |
|------|-------------|-----|------|--------|
| 1.01 | 1 54        | 1   | PC   |        |
| 1.01 | 2 52        | 1   | PC   |        |
| 1.01 | 2 53        | 1   | PC   |        |
| 1.01 | 2 54        | 1   | PC   |        |
| 1.01 | 2 55        | 1   | PC   |        |
| 1.01 | 2 56        | 1   | PC   |        |
| 1.01 | 2 57        | 1   | PC   |        |
| 1.01 | 2 58        | 1   | PC   |        |
| 1.01 | 2 59        | 1   | PC   |        |
| 1.01 | 2 60        | 1   | PC   |        |
| 1.01 | 2 61        | 1   | PC   |        |
| 1.01 | 2 62        | 1   | PC   |        |
| 1.01 | 2 63        | 1   | PC   |        |
| 1.01 | 2 64        | 1   | PC   |        |
| 1.01 | 2 65        | 1   | PC   |        |
| 1.01 | 2 66        | 1   | PC   |        |
| 1.01 | 2 67        | 1   | PC   |        |
| 1.01 | 2 68        | 1   | PC   |        |
| 1.01 | 2 69        | 1   | PC   |        |
| 1.01 | 2 70        | 1   | PC   |        |
| 1.01 | 2 71        | 1   | PC   |        |
| 1.01 | 2 72        | 1   | PC   |        |
| 1.01 | 2 73        | 1   | PC   |        |
| 1.01 | 2 74        | 1   | PC   |        |
| 1.01 | 2 75        | 1   | PC   |        |
| 1.01 | 2 76        | 1   | PC   |        |
| 1.01 | 2 77        | 1   | PC   |        |
| 1.01 | 2 78        | 1   | PC   |        |
| 1.01 | 2 79        | 1   | PC   |        |
| 1.01 | 2 80        | 1   | PC   |        |
| 1.01 | 2 81        | 1   | PC   |        |
| 1.01 | 2 82        | 1   | PC   |        |
| 1.01 | 2 83        | 1   | PC   |        |
| 1.01 | 2 84        | 1   | PC   |        |
| 1.01 | 2 85        | 1   | PC   |        |
| 1.01 | 2 86        | 1   | PC   |        |
| 1.01 | 2 87        | 1   | PC   |        |
| 1.01 | 2 88        | 1   | PC   |        |
| 1.01 | 2 89        | 1   | PC   |        |
| 1.01 | 2 90        | 1   | PC   |        |
| 1.01 | 2 91        | 1   | PC   |        |
| 1.01 | 2 92        | 1   | PC   |        |
| 1.01 | 2 93        | 1   | PC   |        |
| 1.01 | 2 94        | 1   | PC   |        |
| 1.01 | 2 95        | 1   | PC   |        |
| 1.01 | 2 96        | 1   | PC   |        |
| 1.01 | 2 97        | 1   | PC   |        |
| 1.01 | 2 98        | 1   | PC   |        |
| 1.01 | 2 99        | 1   | PC   |        |
| 1.01 | 2 100       | 1   | PC   |        |
| 1.01 | 3 1         | 1   | PC   |        |
| 1.01 | 3 2         | 1   | PC   |        |
| 1.01 | 3 3         | 1   | PC   |        |
| 1.01 | 3 4         | 1   | PC   |        |
| 1.01 | 3 5         | 1   | PC   |        |
| 1.01 | 3 6         | 1   | PC   |        |
| 1.01 | 3 7         | 1   | PC   |        |
| 1.01 | 3 8         | 1   | PC   |        |
| 1.01 | 3 9         | 1   | PC   |        |
| 1.01 | 3 10        | 1   | PC   |        |
| 1.01 | 3 11        | 1   | PC   |        |
| 1.01 | 3 12        | 1   | PC   |        |
| 1.01 | 3 13        | 1   | PC   |        |
| 1.01 | 3 14        | 1   | PC   |        |
| 1.01 | 3 15        | 1   | PC   |        |
| 1.01 | 3 16        | 1   | PC   |        |
| 1.01 | 3 17        | 1   | PC   |        |
| 1.01 | 3 18        | 1   | PC   |        |
| 1.01 | 3 19        | 1   | PC   |        |
| 1.01 | 3 20        | 1   | PC   |        |
| 1.01 | 3 21        | 1   | PC   |        |
| 1.01 | 3 22        | 1   | PC   |        |
| 1.01 | 3 23        | 1   | PC   |        |
| 1.01 | 3 24        | 1   | PC   |        |
| 1.01 | 3 25        | 1   | PC   |        |
| 1.01 | 3 26        | 1   | PC   |        |
| 1.01 | 3 27        | 1   | PC   |        |
| 1.01 | 3 28        | 1   | PC   |        |
| 1.01 | 3 29        | 1   | PC   |        |
| 1.01 | 3 30        | 1   | PC   |        |
| 1.01 | 3 31        | 1   | PC   |        |
| 1.01 | 3 32        | 1   | PC   |        |
| 1.01 | 3 33        | 1   | PC   |        |
| 1.01 | 3 34        | 1   | PC   |        |
| 1.01 | 3 35        | 1   | PC   |        |
| 1.01 | 3 36        | 1   | PC   |        |
| 1.01 | 3 37        | 1   | PC   |        |
| 1.01 | 3 38        | 1   | PC   |        |
| 1.01 | 3 39        | 1   | PC   |        |
| 1.01 | 3 40        | 1   | PC   |        |
| 1.01 | 3 41        | 1   | PC   |        |
| 1.01 | 3 42        | 1   | PC   |        |
| 1.01 | 3 43        | 1   | PC   |        |
| 1.01 | 3 44        | 1   | PC   |        |
| 1.01 | 3 45        | 1   | PC   |        |
| 1.01 | 3 46        | 1   | PC   |        |
| 1.01 | 3 47        | 1   | PC   |        |
| 1.01 | 3 48        | 1   | PC   |        |
| 1.01 | 3 49        | 1   | PC   |        |
| 1.01 | 3 50        | 1   | PC   |        |
| 1.01 | 3 51        | 1   | PC   |        |
| 1.01 | 3 52        | 1   | PC   |        |
| 1.01 | 3 53        | 1   | PC   |        |
| 1.01 | 3 54        | 1   | PC   |        |
| 1.01 | 3 55        | 1   | PC   |        |
| 1.01 | 3 56        | 1   | PC   |        |
| 1.01 | 3 57        | 1   | PC   |        |
| 1.01 | 3 58        | 1   | PC   |        |
| 1.01 | 3 59        | 1   | PC   |        |
| 1.01 | 3 60        | 1   | PC   |        |
| 1.01 | 3 61        | 1   | PC   |        |
| 1.01 | 3 62        | 1   | PC   |        |
| 1.01 | 3 63        | 1   | PC   |        |
| 1.01 | 3 64        | 1   | PC   |        |
| 1.01 | 3 65        | 1   | PC   |        |
| 1.01 | 3 66        | 1   | PC   |        |
| 1.01 | 3 67        | 1   | PC   |        |
| 1.01 | 3 68        | 1   | PC   |        |
| 1.01 | 3 69        | 1   | PC   |        |
| 1.01 | 3 70        | 1   | PC   |        |
| 1.01 | 3 71        | 1   | PC   |        |
| 1.01 | 3 72        | 1   | PC   |        |
| 1.01 | 3 73        | 1   | PC   |        |
| 1.01 | 3 74        | 1   | PC   |        |
| 1.01 | 3 75        | 1   | PC   |        |
| 1.01 | 3 76        | 1   | PC   |        |
| 1.01 | 3 77        | 1   | PC   |        |
| 1.01 | 3 78        | 1   | PC   |        |
| 1.01 | 3 79        | 1   | PC   |        |
| 1.01 | 3 80        | 1   | PC   |        |
| 1.01 | 3 81        | 1   | PC   |        |
| 1.01 | 3 82        | 1   | PC   |        |
| 1.01 | 3 83        | 1   | PC   |        |
| 1.01 | 3 84        | 1   | PC   |        |
| 1.01 | 3 85        | 1   | PC   |        |
| 1.01 | 3 86        | 1   | PC   |        |
| 1.01 | 3 87        | 1   | PC   |        |
| 1.01 | 3 88        | 1   | PC   |        |
| 1.01 | 3 89        | 1   | PC   |        |
| 1.01 | 3 90        | 1   | PC   |        |
| 1.01 | 3 91        | 1   | PC   |        |
| 1.01 | 3 92        | 1   | PC   |        |
| 1.01 | 3 93        | 1   | PC   |        |
| 1.01 | 3 94        | 1   | PC   |        |
| 1.01 | 3 95        | 1   | PC   |        |
| 1.01 | 3 96        | 1   | PC   |        |
| 1.01 | 3 97        | 1   | PC   |        |
| 1.01 | 3 98        | 1   | PC   |        |
| 1.01 | 3 99        | 1   | PC   |        |
| 1.01 | 3 100       | 1   | PC   |        |
| 1.01 | 4 1         | 1   | PC   |        |
| 1.01 | 4 2         | 1   | PC   |        |
| 1.01 | 4 3         | 1   | PC   |        |
| 1.01 | 4 4         | 1   | PC   |        |
| 1.01 | 4 5         | 1   | PC   |        |
| 1.01 | 4 6         | 1   | PC   |        |
| 1.01 | 4 7         | 1   | PC   |        |
| 1.01 | 4 8         | 1   | PC   |        |
| 1.01 | 4 9         | 1   | PC   |        |
| 1.01 | 4 10        | 1   | PC   |        |
| 1.01 | 4 11        | 1   | PC   |        |
| 1.01 | 4 12        | 1   | PC   |        |
| 1.01 | 4 13        | 1   | PC   |        |
| 1.01 | 4 14        | 1   | PC   |        |
| 1.01 | 4 15        | 1   | PC   |        |
| 1.01 | 4 16        | 1   | PC   |        |
| 1.01 | 4 17        | 1   | PC   |        |
| 1.01 | 4 18        | 1   | PC   |        |
| 1.01 | 4 19        | 1   | PC   |        |
| 1.01 | 4 20        | 1   | PC   |        |
| 1.01 | 4 21        | 1   | PC   |        |
| 1.01 | 4 22        | 1   | PC   |        |
| 1.01 | 4 23        | 1   | PC   |        |
| 1.01 | 4 24        | 1   | PC   |        |
| 1.01 | 4 25        | 1   | PC   |        |
| 1.01 | 4 26        | 1   | PC   |        |
| 1.01 | 4 27        | 1   | PC   |        |
| 1.01 | 4 28        | 1   | PC   |        |
| 1.01 | 4 29        | 1   | PC   |        |
| 1.01 | 4 30        | 1   | PC   |        |
| 1.01 | 4 31        | 1   | PC   |        |
| 1.01 | 4 32        | 1   | PC   |        |
| 1.01 | 4 33        | 1   | PC   |        |
| 1.01 | 4 34        | 1   | PC   |        |
| 1.01 | 4 35        | 1   | PC   |        |
| 1.01 | 4 36        | 1   | PC   |        |
| 1.01 | 4 37        | 1   | PC   |        |
| 1.01 | 4 38        | 1   | PC   |        |
| 1.01 | 4 39        | 1   | PC   |        |
| 1.01 | 4 40        | 1   | PC   |        |
| 1.01 | 4 41        | 1   | PC   |        |
| 1.01 | 4 42        | 1   | PC   |        |
| 1.01 | 4 43        | 1   | PC   |        |
| 1.01 | 4 44        | 1   | PC   |        |
| 1.01 | 4 45        | 1   | PC   |        |
| 1.01 | 4 46        | 1   | PC   |        |
| 1.01 | 4 47        | 1   | PC   |        |
| 1.01 | 4 48        | 1   | PC   |        |
| 1.01 | 4 49        | 1   | PC   |        |
| 1.01 | 4 50        | 1   | PC   |        |
| 1.01 | 4 51        | 1   | PC   |        |
| 1.01 | 4 52        | 1   | PC   |        |
| 1.01 | 4 53        | 1   | PC   |        |
| 1.01 | 4 54        | 1   | PC   |        |
| 1.01 | 4 55        | 1   | PC   |        |
| 1.01 | 4 56        | 1   | PC   |        |
| 1.01 | 4 57        | 1   | PC   |        |
| 1.01 | 4 58        | 1   | PC   |        |
| 1.01 | 4 59        | 1   | PC   |        |
| 1.01 | 4 60        | 1   | PC   |        |
| 1.01 | 4 61        | 1   | PC   |        |
| 1.01 | 4 62        | 1   | PC   |        |
| 1.01 | 4 63        | 1   | PC   |        |
| 1.01 | 4 64        | 1   | PC   |        |
| 1.01 | 4 65        | 1   | PC   |        |
| 1.01 | 4 66        | 1   | PC   |        |
| 1.01 | 4 67        | 1   | PC   |        |
| 1.01 | 4 68        | 1   | PC   |        |
| 1.01 | 4 69        | 1   | PC   |        |
| 1.01 | 4 70        | 1   | PC   |        |
| 1.01 | 4 71        | 1   | PC   |        |
| 1.01 | 4 72        | 1   | PC   |        |
| 1.01 | 4 73        | 1   | PC   |        |
| 1.01 | 4 74        | 1   | PC   |        |
| 1.01 | 4 75        | 1   | PC   |        |
| 1.01 | 4 76        | 1   | PC   |        |
| 1.01 | 4 77        | 1   | PC   |        |
| 1.01 | 4 78        | 1   | PC   |        |
| 1.01 | 4 79        | 1   | PC   |        |
| 1.01 | 4 80        | 1   | PC   |        |
| 1.01 | 4 81        | 1   | PC   |        |
| 1.01 | 4 82        | 1   | PC   |        |
| 1.01 | 4 83        | 1   | PC   |        |
| 1.01 | 4 84        | 1   | PC   |        |
| 1.01 | 4 85        | 1   | PC   |        |
| 1.01 | 4 86        | 1   | PC   |        |
| 1.01 | 4 87        | 1   | PC   |        |
| 1.01 | 4 88        | 1   | PC   |        |
| 1.01 | 4 89        | 1   | PC   |        |
| 1.01 | 4 90        | 1   | PC   |        |
| 1.01 | 4 91        | 1   | PC   |        |
| 1.01 | 4 92        | 1   | PC   |        |
| 1.01 | 4 93        | 1   | PC   |        |
| 1.01 | 4 94        | 1   | PC   |        |
| 1.01 | 4 95        | 1   | PC   |        |
| 1.01 | 4 96        | 1   | PC   |        |
| 1.01 | 4 97        | 1   | PC   |        |
| 1.01 | 4 98        | 1   | PC   |        |
| 1.01 | 4 99        | 1   | PC   |        |
| 1.01 | 4 100       | 1   | PC   |        |
| 1.01 | 5 1         | 1   | PC   |        |
| 1.01 | 5 2         | 1   | PC   |        |
| 1.01 | 5 3         | 1   | PC   |        |
| 1.01 | 5 4         | 1   | PC   |        |
| 1.01 | 5 5         | 1   | PC   |        |
| 1.01 | 5 6         | 1   | PC   |        |
| 1.01 | 5 7         | 1   | PC   |        |
| 1.01 | 5 8         | 1   | PC   |        |
| 1.01 | 5 9         | 1   | PC   |        |
| 1.01 | 5 10        | 1   | PC   |        |
| 1.01 | 5 11        | 1   | PC   |        |
| 1.01 | 5 12        | 1   | PC   |        |
| 1.01 | 5 13        | 1   | PC   |        |
| 1.01 | 5 14        | 1   | PC   |        |
| 1.01 | 5 15        | 1   | PC   |        |
| 1.01 | 5 16        | 1   | PC   |        |
| 1.01 | 5 17        | 1   | PC   |        |
| 1.01 | 5 18        | 1   | PC   |        |
| 1.01 | 5 19        | 1   | PC   |        |
| 1.01 | 5 20        | 1   | PC   |        |
| 1.01 | 5 21        | 1   | PC   |        |
| 1.01 | 5 22        | 1   | PC   |        |
| 1.01 | 5 23        | 1   | PC   |        |
| 1.01 | 5 24        | 1   | PC   |        |
| 1.01 | 5 25        | 1   | PC   |        |
| 1.01 | 5 26        | 1   | PC   |        |
| 1.01 | 5 27        | 1   | PC   |        |
| 1.01 | 5 28        | 1   | PC   |        |
| 1.01 | 5 29        | 1   | PC   |        |
| 1.01 | 5 30        | 1   | PC   |        |
| 1.01 | 5 31        | 1   | PC   |        |
| 1.01 | 5 32        | 1   | PC   |        |
| 1.01 | 5 33        | 1   | PC   |        |
| 1.01 | 5 34        | 1   | PC   |        |
| 1.01 | 5 35        | 1   | PC   |        |
| 1.01 | 5 36        | 1</ |      |        |

BY DATE 1/25/67

## LOUIS BERGER &amp; ASSOCIATES INC.

SHEET NO. 1 OF 100

CHKD. BY DATE

PROJECT NO. 1000

SUBJECT

|      |       |           |     |     |     |        |
|------|-------|-----------|-----|-----|-----|--------|
| 1 01 | 0 54  | 10 9 90   | 13  | 9   | 87  | 1270 1 |
| 1 01 | 1 0 0 | 100 10 00 | 13  | 10  | 87  | 1270 1 |
| 0 00 | 0 00  | 101 10 10 | 13  | 10  | 87  | 1270 1 |
| 0 00 | 0 00  | 102 10 20 | 13  | 10  | 87  | 1270 1 |
| 0 00 | 0 00  | 103 10 30 | 13  | 10  | 87  | 1270 1 |
| 0 00 | 0 00  | 104 10 40 | 13  | 10  | 87  | 1270 1 |
| 0 00 | 0 00  | 105 10 50 | 13  | 10  | 87  | 1270 1 |
| 0 00 | 0 00  | 106 10 60 | 13  | 11  | 87  | 1270 1 |
| 0 00 | 0 00  | 107 10 70 | 13  | 11  | 87  | 1270 1 |
| 0 00 | 0 00  | 108 10 80 | 13  | 11  | 87  | 1270 1 |
| 0 00 | 0 00  | 109 10 90 | 13  | 11  | 87  | 1270 1 |
| 0 00 | 0 00  | 110 11 00 | 13  | 11  | 87  | 1270 1 |
| 0 00 | 0 00  | 111 11 10 | 13  | 11  | 87  | 1270 1 |
| 0 00 | 0 00  | 112 11 20 | 13  | 11  | 87  | 1270 1 |
| 0 00 | 0 00  | 113 11 30 | 13  | 11  | 87  | 1270 1 |
| 0 00 | 0 00  | 114 11 40 | 13  | 11  | 87  | 1270 1 |
| 0 00 | 0 00  | 115 11 50 | 13  | 12  | 87  | 1270 1 |
| 0 00 | 0 00  | 116 11 60 | 13  | 12  | 87  | 1270 1 |
| 0 00 | 0 00  | 117 11 70 | 13  | 12  | 87  | 1270 1 |
| 0 00 | 0 00  | 118 11 80 | 13  | 12  | 87  | 1270 1 |
| 0 00 | 0 00  | 119 11 90 | 13  | 12  | 87  | 1270 1 |
| 0 00 | 0 00  | 120 12 00 | 13  | 12  | 87  | 1270 1 |
| 0 00 | 0 00  | 121 12 10 | 30  | 12  | 87  | 1270 1 |
| 0 00 | 0 00  | 122 12 20 | 54  | 14  | 87  | 1270 1 |
| 0 00 | 0 00  | 123 12 30 | 65  | 16  | 88  | 1270 2 |
| 0 00 | 0 00  | 124 12 40 | 69  | 19  | 88  | 1270 2 |
| 0 00 | 0 00  | 125 12 50 | 70  | 21  | 89  | 1270 3 |
| 0 00 | 0 00  | 126 12 60 | 71  | 25  | 89  | 1270 3 |
| 0 00 | 0 00  | 127 12 70 | 71  | 27  | 89  | 1270 3 |
| 0 00 | 0 00  | 128 12 80 | 71  | 29  | 90  | 1270 4 |
| 0 00 | 0 00  | 129 12 90 | 71  | 33  | 90  | 1270 4 |
| 0 00 | 0 00  | 130 13 00 | 71  | 34  | 90  | 1270 4 |
| 0 00 | 0 00  | 131 13 10 | 74  | 35  | 91  | 1270 5 |
| 0 00 | 0 00  | 132 13 20 | 62  | 35  | 91  | 1270 5 |
| 0 00 | 0 00  | 133 13 30 | 65  | 41  | 91  | 1270 6 |
| 0 00 | 0 00  | 134 13 40 | 86  | 43  | 92  | 1270 6 |
| 0 00 | 0 00  | 135 13 50 | 65  | 46  | 92  | 1270 6 |
| 0 00 | 0 00  | 136 13 60 | 86  | 48  | 92  | 1270 7 |
| 0 00 | 0 00  | 137 13 70 | 62  | 50  | 93  | 1270 7 |
| 0 00 | 0 00  | 138 13 80 | 86  | 52  | 93  | 1270 7 |
| 0 00 | 0 00  | 139 13 90 | 68  | 54  | 93  | 1270 7 |
| 0 00 | 0 00  | 140 14 00 | 62  | 55  | 94  | 1270 8 |
| 0 00 | 0 00  | 141 14 10 | 73  | 57  | 94  | 1270 8 |
| 0 00 | 0 00  | 142 14 20 | 102 | 59  | 94  | 1270 8 |
| 0 00 | 0 00  | 143 14 30 | 106 | 61  | 95  | 1270 9 |
| 0 00 | 0 00  | 144 14 40 | 108 | 63  | 95  | 1270 9 |
| 0 00 | 0 00  | 145 14 50 | 109 | 67  | 95  | 1270 9 |
| 0 00 | 0 00  | 146 14 60 | 109 | 67  | 96  | 1271 0 |
| 0 00 | 0 00  | 147 14 70 | 109 | 72  | 96  | 1271 0 |
| 0 00 | 0 00  | 148 14 80 | 109 | 74  | 96  | 1271 0 |
| 0 00 | 0 00  | 149 14 90 | 109 | 77  | 96  | 1271 1 |
| 0 00 | 0 00  | 150 15 00 | 109 | 77  | 97  | 1271 1 |
| 0 00 | 0 00  | 151 15 10 | 109 | 82  | 97  | 1271 1 |
| 0 00 | 0 00  | 152 15 20 | 115 | 84  | 97  | 1271 1 |
| 0 00 | 0 00  | 153 15 30 | 150 | 97  | 98  | 1271 2 |
| 0 00 | 0 00  | 154 15 40 | 172 | 92  | 98  | 1271 2 |
| 0 00 | 0 00  | 155 15 50 | 184 | 103 | 98  | 1271 3 |
| 0 00 | 0 00  | 156 15 60 | 186 | 125 | 102 | 1271 6 |
| 0 00 | 0 00  | 157 15 70 | 176 | 155 | 105 | 1271 9 |
| 0 00 | 0 00  | 158 15 80 | 194 | 140 | 107 | 1272 1 |
| 0 00 | 0 00  | 159 15 90 | 256 | 279 | 108 | 1272 2 |
| 0 00 | 0 00  | 160 16 00 | 162 | 206 | 108 | 1272 1 |
| 0 00 | 0 00  | 161 16 10 | 136 | 218 | 107 | 1272 1 |
| 0 00 | 0 00  | 162 16 20 | 115 | 180 | 106 | 1272 0 |
| 0 00 | 0 00  | 163 16 30 | 106 | 181 | 106 | 1272 0 |
| 0 00 | 0 00  | 164 16 40 | 103 | 157 | 105 | 1271 9 |
| 0 00 | 0 00  | 165 16 50 | 102 | 154 | 105 | 1271 9 |
| 0 00 | 0 00  | 166 16 60 | 101 | 150 | 105 | 1271 9 |
| 0 00 | 0 00  | 167 16 70 | 101 | 151 | 104 | 1271 6 |
| 0 00 | 0 00  | 168 16 80 | 101 | 144 | 104 | 1271 8 |
| 0 00 | 0 00  | 169 16 90 | 101 | 144 | 103 | 1271 8 |
| 0 00 | 0 00  | 170 17 00 | 101 | 134 | 103 | 1271 7 |
| 0 00 | 0 00  | 171 17 10 | 101 | 130 | 103 | 1271 7 |
| 0 00 | 0 00  | 172 17 20 | 101 | 130 | 103 | 1271 7 |
| 0 00 | 0 00  | 173 17 30 | 101 | 131 | 103 | 1271 6 |
| 0 00 | 0 00  | 174 17 40 | 101 | 131 | 103 | 1271 6 |
| 0 00 | 0 00  | 175 17 50 | 101 | 131 | 103 | 1271 6 |
| 0 00 | 0 00  | 176 17 60 | 101 | 131 | 103 | 1271 6 |
| 0 00 | 0 00  | 177 17 70 | 101 | 131 | 103 | 1271 6 |
| 0 00 | 0 00  | 178 17 80 | 101 | 131 | 103 | 1271 6 |
| 0 00 | 0 00  | 179 17 90 | 101 | 131 | 103 | 1271 6 |

279

BY L.S. DATE 12-15-67  
CHKD. BY L.S. DATE 12-15-67  
SUBJECT W.E.

# LOUIS BERGER & ASSOCIATES INC.

SHEET NO. 1 OF 10  
PROJECT LAKE DIAZ

|      |      |     |       |    |     |     |        |
|------|------|-----|-------|----|-----|-----|--------|
| 0 00 | 0 00 | 179 | 17 70 | 74 | 111 | 100 | 1271 4 |
| 0 00 | 0 00 | 180 | 18 00 | 75 | 105 | 100 | 1271 4 |
| 0 00 | 0 00 | 181 | 18 10 | 57 | 106 | 79  | 1271 4 |
| 0 00 | 0 00 | 182 | 18 20 | 20 | 101 | 77  | 1271 3 |
| 0 00 | 0 00 | 183 | 18 30 | 10 | 78  | 76  | 1271 3 |
| 0 00 | 0 00 | 184 | 18 40 | 5  | 80  | 96  | 1271 2 |
| 0 00 | 0 00 | 185 | 18 50 | 0  | 82  | 97  | 1271 1 |
| 0 00 | 0 00 | 186 | 18 60 | 0  | 76  | 98  | 1271 1 |
| 0 00 | 0 00 | 187 | 18 70 | 2  | 70  | 98  | 1271 6 |
| 0 00 | 0 00 | 188 | 18 80 | 0  | 65  | 95  | 1270 9 |
| 0 00 | 0 00 | 189 | 18 90 | 0  | 83  | 95  | 1270 9 |
| 0 00 | 0 00 | 190 | 19 00 | 0  | 80  | 94  | 1270 8 |
| 0 00 | 0 00 | 191 | 19 10 | 0  | 58  | 94  | 1270 8 |
| 0 00 | 0 00 | 192 | 19 20 | 0  | 50  | 93  | 1270 7 |
| 0 00 | 0 00 | 193 | 19 30 | 0  | 51  | 93  | 1270 7 |
| 0 00 | 0 00 | 194 | 19 40 | 0  | 48  | 92  | 1270 7 |
| 0 00 | 0 00 | 195 | 19 50 | 0  | 45  | 92  | 1270 6 |
| 0 00 | 0 00 | 196 | 19 60 | 0  | 43  | 92  | 1270 6 |
| 0 00 | 0 00 | 197 | 19 70 | 0  | 41  | 91  | 1270 6 |
| 0 00 | 0 00 | 198 | 19 80 | 0  | 39  | 91  | 1270 5 |
| 0 00 | 0 00 | 199 | 19 90 | 0  | 32  | 91  | 1270 5 |
| 0 00 | 0 00 | 200 | 20 00 | 0  | 35  | 90  | 1270 5 |
| 0 00 | 0 00 | 201 | 20 10 | 0  | 34  | 90  | 1270 4 |
| 0 00 | 0 00 | 202 | 20 20 | 0  | 31  | 90  | 1270 4 |
| 0 00 | 0 00 | 203 | 20 30 | 0  | 30  | 90  | 1270 4 |
| 0 00 | 0 00 | 204 | 20 40 | 0  | 28  | 89  | 1270 4 |
| 0 00 | 0 00 | 205 | 20 50 | 0  | 27  | 89  | 1270 3 |
| 0 00 | 0 00 | 206 | 20 60 | 0  | 25  | 89  | 1270 3 |
| 0 00 | 0 00 | 207 | 20 70 | 0  | 24  | 89  | 1270 3 |
| 0 00 | 0 00 | 208 | 20 80 | 0  | 23  | 89  | 1270 3 |
| 0 00 | 0 00 | 209 | 20 90 | 0  | 22  | 89  | 1270 3 |
| 0 00 | 0 00 | 210 | 21 00 | 0  | 20  | 86  | 1270 2 |
| 0 00 | 0 00 | 211 | 21 10 | 0  | 19  | 88  | 1270 2 |
| 0 00 | 0 00 | 212 | 21 20 | 0  | 18  | 88  | 1270 2 |
| 0 00 | 0 00 | 213 | 21 30 | 0  | 17  | 88  | 1270 2 |
| 0 00 | 0 00 | 214 | 21 40 | 0  | 17  | 88  | 1270 2 |
| 0 00 | 0 00 | 215 | 21 50 | 0  | 16  | 88  | 1270 2 |
| 0 00 | 0 00 | 216 | 21 60 | 0  | 15  | 88  | 1270 2 |
| 0 00 | 0 00 | 217 | 21 70 | 0  | 14  | 87  | 1270 1 |
| 0 00 | 0 00 | 218 | 21 80 | 0  | 12  | 92  | 1270 1 |

PEAK OUTFLOW IS 279 cfs AT TIME 15 90 HOURS

|                |        |        |        |        |      |
|----------------|--------|--------|--------|--------|------|
| CFS            | 280    | 105    | 33     | 33     | 7923 |
| CUFS           | 2      | 3      | 1      | 1      | 224  |
| INCHES         | 8 16   | 10 24  | 10 24  | 10 24  |      |
| MM             | 207 29 | 260 01 | 260 01 | 260 01 |      |
| AC-FT          | 52     | 65     | 65     | 65     | 65   |
| THOUS. CU. FT. | 64     | 81     | 81     | 81     | 81   |

PEAK FLOW AND STORAGE VENDE THE FOLLOWING SUMMARY FOR MULTIPLE PERIODIC ECONOMIC COMPUTATIONS  
FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)  
AREA IN SQUARE MILES (SQUARE KILOMETERS)

| OPERATION     | STATION | AREA | PLAN | RATIO APPLIED TO FLOWS |           |
|---------------|---------|------|------|------------------------|-----------|
|               |         |      |      | RATIO                  | 1<br>0.80 |
| HYDROGRAPH AT | 1       | 0 12 | 1    | 0.78                   |           |
| (             | (       | 0 31 | )    | 1.00                   | 1.00      |
| ROUTED TO     | 2       | 0 12 | 1    | 0.60                   |           |
| (             | (       | 0 31 | )    | 0.74                   | 0.74      |

### SUMMARY OF DAM SAFETY ASSESSMENT

| ELEVATION<br>STORAGE<br>UNITS/ft | INITIAL VALUE |    | SPILLWAY CREST<br>12ft EO<br>54 | TOP OF DAM<br>1272 00<br>106<br>162 |
|----------------------------------|---------------|----|---------------------------------|-------------------------------------|
|                                  | 1600 ft       | 82 |                                 |                                     |
|                                  | 5             | 0  |                                 |                                     |

| RATIO<br>OF<br>FPP<br>TO<br>CFS | MAX. FLOW |                                      | TIME OF<br>OUTFLOW<br>HOURS<br>15 90 | TIME OF<br>FAILURE<br>HOURS<br>0 00 |
|---------------------------------|-----------|--------------------------------------|--------------------------------------|-------------------------------------|
|                                 | MAX. FLOW | TIME OF<br>OUTFLOW<br>HOURS<br>15 90 |                                      |                                     |
| 0.74                            | 279       | 0.74                                 | 15 90                                | 0 00                                |

BY \_\_\_\_\_ DATE \_\_\_\_\_  
CHKD. BY \_\_\_\_\_ DATE \_\_\_\_\_  
SUBJECT \_\_\_\_\_

# LOUIS BERGER & ASSOCIATES INC.

SHEET NO. 1 OF 1  
PROJECT

#### **SUMMARY OF 1969 SAFETY CHANGES**

| INITIAL VALUE | SURFACE FREST | TOP OF DAM |
|---------------|---------------|------------|
| 1245 80       | 1259 80       | 1272 00    |
| 84            | 82            | 10e        |
| 0             | 0             | 162        |
|               |               |            |

  

| RATIO | MAX FREST | MAX DEPTH | MAXIMUM SURFACE | MAXIMUM OUTFLOW | DURATION | TIME OF FAILURE | TIME OF FAILURE |
|-------|-----------|-----------|-----------------|-----------------|----------|-----------------|-----------------|
| 0.75  | 1259 80   | 1259 80   | 1259 80         | 150             | 0.00     | 16 00           | 16 00           |
| 0.50  | 1245 80   | 1245 80   | 1245 80         | 150             | 0.00     | 16 00           | 16 00           |
| 0.25  | 1231 80   | 1231 80   | 1231 80         | 150             | 0.00     | 16 00           | 16 00           |

PLAN 1 STATION 3 (353 DOWNSTREAM)  
 LATITUDE 41° 10' 47" ELEV. OF TENN. SITE.  
 LONGITUDE 81° 00' 47" HOURS 16.10  
 1253.2

PLATE 11 STATION 4 (650' CONNEX-SON) ELEVATION OF STATION  
 LAT 40° 15' 15" LONG 120° 16' 10" TIME 10:10

BY \_\_\_\_\_ DATE \_\_\_\_\_  
CHKD. BY \_\_\_\_\_ DATE \_\_\_\_\_  
SUBJECT \_\_\_\_\_

**LOUIS BERGER & ASSOCIATES INC.**

SHEET NO. 1 OF 14  
PROJECT

DAM BREAK DATA



1. 776 of 300  
256

## Domestic Corporation

PEACH E-3 - 350 Double decker include TWIN CO.



Ref. 3-4-652 Oneway



