

Epilepsia en pacientes con síndrome INVDUP15

Dr. Juan-José García Peñas Unidad de Epilepsia. Sección de Neurología Pediátrica. Hospital Infantil Universitario Niño Jesús. Madrid. España. Unidad de Epilepsia y Neurodesarrollo. Hospital San Rafael. Madrid. España.

Jornadas INVDUP15 HIUNJ. Madrid 31/05/2025

Introducción:

Escenarios Genéticos en Epilepsia:

- ➤ <u>Variaciones genómicas estructurales que se asocian con epilepsia</u> (deleciones y duplicaciones cromosómicas, cromosomas en anillo, translocaciones).
- Genes y loci cromosómicos en asociación con diversas epilepsias, síndromes epilépticos y encefalopatías epilépticas (principalmente, en el grupo de las encefalopatías epilépticas precoces).
- Genes y loci cromosómicos descubiertos en el contexto de trastornos del neurodesarrollo que están asociados con epilepsia (Discapacidad Intelectual, Trastornos del Espectro Autista, síndrome de Rett...).
- Genes asociados con malformaciones cerebrales que generan epilepsia (malformaciones del desarrollo cortical, displasias corticales focales...).
- Genes asociados con síndromes neurocutáneos que presentan frecuentemente epilepsia: por ejemplo, TSC (genes TSC1 y TSC2).
- Genes asociados con EMC y EHD-SNC que presentan epilepsia (piridoxindependencia, deficiencia del transportador de la glucosa tipo 1, ceroidolipofuscinosis neuronales, enfermedad de Lafora, etc.).

Etiologías Genéticas en Epilepsia Infantil:

• Cromosomopatías: 5-15%

• Malformaciones Congénitas del SNC: 5-15%

• Genes específicos de epilepsia: 20-40% (EEP)

• ECM y EHD del SNC: 3-5%

Epilepsia en las Anomalías Cromosómicas: 条

Síndromes	Cromosomopatía	Epilepsia
Síndrome de Down	Trisomía 21	12-40%
Síndrome Frágil X	Xq27.3	28-45%
Inv-Dup 15	15q tetrasomía	90-100%
Síndrome de Angelman	15q11-q13	90-100%
Cromosoma 14 en anillo	14 anillo	100%
Cromosoma 20 en anillo	20 anillo	100%
Síndrome de Wolf-Hirschhorn	Deleción 4p-	100%
Síndrome de Klinefelter	47 XXY	2-10%

Frecuencia: 1/30.000 RNV.

En pacientes con problemas del neurodesarrollo: 1/253-584.

Se observa un predominio masculino de 2 : 1 (+/-).

Tetrasomía 15q centrómero-BP4: 40-50%.

Trisomía 15q BP4-BP5: 50-60%.

Región 15q11-q13 (PWS/AS)

Se altera el desarrollo de las minicolumnas:

- Se reduce el tamaño global de las minicolumnas.
- Se reduce el tamaño del neuropilo.
 - Pérdida de interneuronas gabaérgicas

 Interneuronopatía.
 - Poca inhibición global mediada por GABA → Epilepsia.

- Como trisomías o tetrasomías de genes del locus 15q11-q13.
- Estas duplicaciones son de origen materno.
- Sobreexpresión de productos de la región cromosómica de origen materno no sometida al "imprinting" / "no silenciada".
- Fenotipo clínico:
 - Dismorfia facial no siempre específica.
 - Retraso lenguaje / Ausencia de lenguaje.
 - Rasgos evolutivos TEA / Regresión autista.
 - Discapacidad Intelectual moderada a grave.
 - o Epilepsia: suele ser refractaria.
 - EEG paroxístico evocador.
- Incluye genes receptores GABA: conexión TEA-epilepsia.

Minor facial dysmorphisms:

- Downslanting palpebral fissures.
- Epicanthal folds.
- Deep-set eyes.
- Low-set and/or posteriorly rotated ears.
- Broad nose and anteverted nares.
- Short philtrum
- Highly arched palate. Cleft palate.
- 5th finger clinodactyly. Brachydactyly.
- Partial 2nd–3rd toe syndactyly.
- Brachycephaly, frontal bossing, synophrys.
- Areas of increased and reduced skin pigmentation.

Neurológico:

- \circ RGD \rightarrow DI en el 100% \rightarrow moderada (20%) o grave (80%).
- Lenguaje ausente o muy escaso (80-90%).
- Frecuente TEA (90-100%).
- Potencial regresión autista (30-35%).
- Trastorno de conducta (50-75%)
- Fascinación por el agua (80-90%).
- Frecuentes manierismos (50-65%).
- Frecuente TDAH secundario (80-90%).
- Hipotonía central / Hiperlaxitud articular (90-100%).
- Frecuente trastorno de coordinación / ataxia (70-80%).

Somático:

- Microcefalia: 10-20%.
- Macrocefalia: 2-3%
- Dismorfia facial poco específica: 40-70%
- Alteración pigmentación cutánea: 50-60%.
- Talla baja: 25-35%.
- Alteraciones puberales: 25-30%.
- Malformaciones menores:
 - Sindactilia dedos pies: 20-25%.
- Malformaciones mayores:
 - Cardiacas: 10-15%.

Epilepsia:

- Presente en casi todos los pacientes (60-100%).
- Debut: 6 meses-9 años (rara vez puberal).

Crisis al inicio:

- Espasmos epilépticos
- Crisis Focales
- Ausencias atípicas
- Crisis mioclónicas

Riesgo SUDEP: 0,5-1%

- Epilepsia: muchos casos cursan como EED.
 - Síndromes epilépticos evolutivos: Crisis en sueño frecuentes.
 - Espasmos Infantiles.
 - Síndrome de West.
 - Síndrome de Lennox-Gastaut y SLG-like.
 - Epilepsia mioclónica.
 - Epilepsia focal con CPS / CPC / CPSG.
 - Epilepsia con ausencias mioclónicas con componente reflejo
 - o Estímulos gratificantes: besos, emociones...
 - Epilepsia mioclónico-astática.
 - Epilepsia generalizada: CTCG, AUS, MC → fenotipo menos grave.
 - Curso refractario en casi todos los pacientes (80-100%).

Epilepsia:

- Tratamiento:
 - Según crisis. Según síndrome evolutivo.
 - Actuar sobre GABA o actuar sobre BNaCVD / SCB
- Mejores FAC: algunos responden a Gabaérgicos y otros a SCB
 - VPA, LTG, CLB. ZNS, TPM, ESM, RFM.
 - o CBZ, OXC, ESL, LCM, CEN.
 - CBD / FFA: Poca experiencia.
 - Dieta cetogénica: respuesta irregular.

OJO! Hiperamoniemia VPA + TPM VPA + ZNS VPA + CBD.

Epilepsia-Patrones EEG:

- Enlentecimiento de la actividad basal.
- Pérdida de la reactividad del ritmo posterior (OC/OA).
- Trazado epileptiforme multifocal.
- Descargas generalizadas hipervoltadas de OL / POL en vigilia (con o sin correlato de ausencias atípicas).
- Frecuentes descargas generalizadas de ritmos rápidos hipervoltados durante el sueño (con o sin clínica).
- Pérdida de la normal estructura del sueño.
- Otros: brotes generalizados de PO, descargas de PPOL, puntas y polipuntas, puntas centrales bifásicas, etc.

Neuroimagen:

Normal: 60-80%

Patológica: 20-40%

- Hipoplasia cerebelosa.
- Disgenesia de cuerpo calloso.
- Atrofia cerebral supratentorial.

Conclusiones

Conclusiones:

- Se debe sospechar un posible INVDUP15 en pacientes con DI-TEA y epilepsia refractaria de debut precoz, aún en ausencia de signos dismórficos definidos.
- La semiología de las crisis es muy polimorfa.
- El patrón de vídeo-EEG de sueño característico puede orientar hacia un estudio dirigido de esta cromosomopatía.
- El mejor conocimiento de la fisiopatología del INVDUP15 puede orientar mejor nuestro tratamiento (medicina de precisión) con el fin de intentar modificar la evolución natural de la enfermedad.

Gracias por vuestra atención

