foieGras an R package for rapid quality control, behavioural estimation and simulation of animal track data

lan D. Jonsen^{1,*} and Toby A. Patterson²

¹Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
²CSIRO Ocean and Atmosphere Research, Hobart, TAS, Australia

*corresponding author, ian.jonsen@mg.edu.au

Abstract

9 text...

2

10 1 | Introduction

The R package foieGras, pronounced "fwah grah," ...

12 2 | foieGras Overview

The workflow for foieGras is deliberately simple, with much of the usual track data processing checks and formatting handled automatically. The main functions are listed in Table 1. When fitting a model, foieGras automatically detects the type of tracking data location quality classes designations that are typical of Argos data and that can be added to the data by the researcher for other types of track data. Based on the location quality classes and other, optional information on observation errors contained in the data, foieGras chooses an appropriate measurement error model for each observation. This capability allows for combinations of different tracking data types, e.g., Argos and GPS, in a single input data frame and to be fit in a single state-space model.

2.1 Data preparation

35

Animal tracking data, consisting of a time-series of location coordinates, can be read into R as a data frame using standard functions such as read.csv. The canonical data format for Argos tracks consists of a data frame with 5 columns corresponding to the following named variables: id (individual id), date (date and time), 1c (location class), 1on (longitude), 1at (latitude). Optionally, an additional 3 columns, smaj (semi-major axis), smin (semi-minor axis), eor (ellipse orientation), providing Argos error ellipse information may be included.

Other types of track data can be accommodated, for example, by including the 1c column where
all 1c = "G" for GPS data. In this case, measurement error in the GPS locations is assumed to
have a standard deviation of 0.1 x Argos class 3 locations (approximately 30 m). Other types of
track data can be considered in a similar manner (see the package vignette for further details).

2.2 | State-space model fitting - fit_ssm

State-space models are fit using fit_ssm. There are a large number of options that can be set in fit_ssm (see Suppl for details). We focus only the essential options here:

• data the input data structured as described in 2.1

Table 1: Main functions for the R package foieGras

Function	Description
fit_mpm	Fit a Move Persistence Model to location data
fit_ssm	Fit a State-Space Model to location data
fmap	Plot fitted/predicted locations on a map with or without a defined projection
grab	Extract fitted/predicted/observed locations from a foieGras model, with or without projection information
osar	Estimate One-Step-Ahead Residuals from a foieGras SSM
plot.fG_mpm	Plot move persistence estimates as 1-D or 2-D (along track) time-series
<pre>plot.fG_osar plot.fG_ssm</pre>	Plot One-Step-Ahead Residuals from a foieGras SSM Visualise the fit of a foieGras SSM to data

- vmax a maximum threshold speed (ms⁻¹) to help identify potential outlier locations
- model the process model to be used

36

37

38

39

40

41

42

43

45

46

47

48

49

50

53

54

55

• time.step the prediction time interval (h)

The function first invokes an automated data processing stage where the following occurs: 1) data type (Argos Least-Squares, Argos Kalman Filter/Smoother, GPS, or General (e.g., processed light-level geolocations, acoustic telemetry, coded VHF telemetry) is determined; 2) datetimes are converted to POSIXt format, chronological order is ensured, and duplicate datetime records are removed; 3) observations occurring less than min.dt seconds after a prior observation are removed; 4) a speed filter (sda from the trip R package; Sumner et al., 2009) is used to identify potential outlier locations; 5) locations are projected from spherical lon-lat coordinates to planar x,y coordinates in km.

The function then fits a state-space model to the processed data, where the process model (currently, either a continuous-time rw or a continuous-time crw) is specified by the user and the measurement model(s) are selected automatically (see I. D. Jonsen et al., 2020 for model details). The model is fit by numerical optimization of the likelihood using either the optim or nlminb R function. The R package TMB, Template Model Builder (Kristensen et al., 2016), is used to compute the gradient function in C++ via reverse-mode auto-differentiation and the Laplace Approximation is used to integrate out the latent states (random effects). Fits to a single versus multiple individuals are handled automatically, with sequential SSM fits occurring in the latter case. No hierarchical or pooled estimation among individuals is currently available.

fit_ssm returns a foieGras fit object (a nested data frame with class fG_ssm). The outer data frame lists the individual id(s), basic convergence information and a list with class ssm. This list contains dense information on the model parameter and state estimates, predictions, processed data, optimizer results, and other diagnostic and contextual information. Users can extract a simple data frame of SSM fitted (location estimates corresponding to the, typically irregular, observation times) or predicted values (locations predicted at regular time.step intervals) using the grab function.

2.3 | Model checking and visualisation - osar, plot, fmap

Before using fitted or predicted locations, a model fit should be checked and visualised to confirm that the model adequately describes the data. In linear regression and a variety of analogous methods, goodness-of-fit can be assessed by calculating standard residuals such as Pearson or deviance residuals. There is no simple way to calculate residuals for latent variable models that have non-finite state-spaces and that may be nonlinear, but they can be computed based on iterative forecasts of the model (Thygesen et al., 2017). The osar function computes one-step-ahead (prediction) residuals and uses the oneStepPredict function from the TMB R package to make this as efficient as possible. A set of residuals are calculated for the x and y values corresponding to the fitted values from the SSM and returned as an fG_osar object.

A generic plot method provides an easy way to visualise the fG_osar residuals. Time-series plots of the prediction residuals can be used to detect temporal changes in goodness-of-fit. Quantile-quantile plots of residuals against standard normal quantiles can be used to detect departures from normality. Sample autocorrelation function plots of the residuals are useful for detecting autocorrelation not accounted for by the model. Assessing residual autocorrelation can be particularly important as Argos locations, for example, are themselves derived from a time-series model (Lopez et al., 2015) which can introduce additional autocorrelation in the location errors.

State-space model fits to data can also be visualised by using the generic plot function on an fG_ssm data frame. Options exist to plot fitted or predicted values along with observations as either paired, 1-dimensional time-series or as 2-D tracks with confidence intervals or ellipses, respectively. These plots provide a more intuitive and rapid method for assessing SSM fits to data, however, they do not replace the residual diagnostics. Fitted fG_ssm data frames can be mapped using the fmap function for single or multiple individuals. Estimated tracks can be displayed with or without confidence ellipses, observations, and/or a projection and maps of single tracks can be coloured by date.

87 2.4 | Behavioural estimation

The fit_mpm function fits a simple move persistence model to estimate a continuous-valued, time-varying latent variable that indexes changes in movement behaviour (I. Jonsen et al., 2019). This variable measures the autocorrelation in speed and direction between consecutive pairs of movements such that high values correspond to fast, directed movements at one end of the continuum and low values correspond to slow, tortuous movements at the other end. It's important to note that this approach is unlike hidden Markov models (McClintock & Michelot, 2018; Michelot et al., 2016) and some state-space models (I. D. Jonsen, 2016) as there is no notion of discrete behavioural states that animals periodically switch between. Nonetheless, move persistence can be used to identify objectively places where animals spend disproportionately more or less time, and with extensions be correlated with environment or other covariates (See Examples 3.x)

98 2.5 | Simulation

99 3 | Examples

100 Southern Elephant seal

something quick about the data here. Sentence about fitting rw and crw models then show code for fitting:

```
fit.rw <- fit_ssm(ellie, vmax=4, model="rw", time.step=12, verbose=0)
res.rw <- osar(fit.rw)
fit.crw <- fit_ssm(ellie, vmax=4, model="crw", time.step=12, verbose=0)
res.crw <- osar(fit.crw)</pre>
```


Figure 1: Ellie ex.

$_{103}$ 3.x | Extending the behavioural model using mpmm

104 4 | Discussion

105 Acknowledgements

We thank xx, xx for providing data used in the examples, and xx, xx for helpful comments on an earlier draft of this manuscript. We thank Marie Auger-Méthé for contributing code to the movement persistence models. IDJ acknowledges support from a Macquarie University co-Funded Fellowship and from partners: the US Office of Naval Research, Marine Mammal Program (grant N00014-18-1-2405); the Integrated Marine Observing System (IMOS); Taronga Conservation Society; the Ocean Tracking Network; Birds Canada; and Innovasea/VEMCO. TAP was supported by CSIRO Oceans & Atmosphere internal research funding scheme.

113 Author's Contributions

114 IDJ developed the R package; IDJ and TAP developed the state-space models and wrote the 115 manuscript.

116 Data Accessibility

All code mentioned here is provided in the foieGras package for R available on CRAN at https: //CRAN.R-project.org/package=foieGras. The development version of the package is available on GitHub at https://github.com/ianjonsen/foieGras. Data used in the examples are available at...

120 ORCID

lan D Jonsen https://orcid.org/0000-0001-5423-6076
 Toby A Patterson https://orcid.org/0000-0002-7150-9205

123 References

- Jonsen, I. D. (2016). Joint estimation over multiple individuals improves behavioural state inference from animal movement data. *Scientific Reports*, 6, 20625.
- Jonsen, I. D., Patterson, T. A., Costa, D. P., Doherty, P. D., Godley, B. J., Grecian, W. J., Guinet, C., Hoenner, X., Kienle, S. S., Robinson, P. W., Votier, S. C., Whiting, S., Witt, M. J., Hindell, M. A., Harcourt, R. G., & McMahon, C. R. (2020). A continuous-time state-space model for rapid quality control of Argos locations from animal-borne tags. *Movement Ecology*, 8, 31.
- Jonsen, I., McMahon, C. R., Patterson, T. A., Auger-Méthé, M., Harcourt, R., Hindell, M. A., & Bestley, S. (2019). Movement responses to environment: Fast inference of variation among southern elephant seals with a mixed effects model. *Ecology*, *100*, e02566.
- Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic differentiation and Laplace approximation. *Journal of Statistical Software*, 70, 1–21.
- Lopez, R., Malardé, J.-P., Danès, P., & Gaspar, P. (2015). Improving Argos Doppler location using multiple-model smoothing. *Animal Biotelemetry*, *3*, 32.
- McClintock, B. T., & Michelot, T. (2018). MomentuHMM: R package for generalized hidden Markov
 models of animal movement. *Methods in Ecology and Evolution*, 9, 1518–1530.

- Michelot, T., Langrock, R., & Patterson, T. A. (2016). MoveHMM: An R package for the statistical
 modelling of animal movement data using hidden Markov models. *Methods in Ecology and Evolution*, 7, 1308–1315.
- Sumner, M. D., Wotherspoon, S. J., & Hindell, M. A. (2009). Bayesian estimation of animal movement from archival and satellite tags. *PLoS ONE*, *4*(10). https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007324
- Thygesen, U. H., Albertsen, C. M., Berg, C. W., Kristensen, K., & Neilsen, A. (2017). Validation of
 ecological state space models using the Laplace approximation. *Environmental and Ecological* Statistics. https://doi.org/DOI:%2010.1007/s10651-017-0372-4