

Integrating Exact Simulation into Sweeping for Datapath Combinational Equivalence Checking

Zhihan Chen, Xindi Zhang, Yuhang Qian, Qiang Xu, Shaowei Cai* 2023.09.30

Integrating EPS into Sweeping for Datapath CEC

Department of Computer Science and Engineering The Chinese University of Hong Kong

Outlin

- **Background and Related Works**
- Methods
 - Motivating Example
 - Main Framework
 - Improved Exact Simulation
 - **Engine Selection Heuristic**
 - Identical Structure Detection
- Experiments
- Conclusions

Combinational Equivalence Checking

Truth Table

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	0

Circuit 2:
$$C = (\bar{A} + \bar{B})(A + B)$$

Truth Table

D	Е	F
0	0	0
0	1	1
1	0	1
1	1	0

Datapath Circuits & AIG & Miter

Datapath Circuit with many XOR chains

And Inverter Graph(AIG)

Backgroun

Reasoning tools

Miter Circuit AIG

09/30, 2023

Tseitin Transformation

Boolean Formula

Conjunctive Normal Form (CNF)

SAT solver

The Satisfiability Problem

BDD solver

The Binary Decision Diagram

EPS Tool

Exact probability—based simulation

Simulation & EPS

Logic Simulation & Exhaustive Search

• EPS (Shih-Chieh Wu, et al. ATS 2006)

Compare the number of pairwise output

SAT/BDD - Sweeping Flow

Integrating EPS into Sweeping for Datapath CEC

Outlin

- Background and Related Works
- Methods
 - Motivating Example
 - Main Framework
 - Improved Exact Simulation
 - Engine Selection Heuristic
 - Identical Structure Detection

Integrating EPS into Sweeping for Datapath CEC

- Experiments
- Conclusion

Motivating Example

- ec_h1: an industrial instance from designing long bit-wise arithmetic circuits.
- ABC &cec cannot solve this instance.

- 2²⁰ rounds logic simulation randomly.
- 113 potential-equivalent node pairs.
- 48 different structure

SAT solver kissat-MAB vs. EPS

SAT and EPS are complementary

ID	Cata	DI.	Reasonii	ng Tools
ID	Gates	PIs	SAT	EPS
17	268	32	< 0.01	9.67
18	353	18	1.75	< 0.01
19	360	36	< 0.01	TO
20	452	20	5.47	< 0.01
21	556	22	29.40	0.02
22	468	40	< 0.01	TO
23	548	44	< 0.01	TO
24	678	24	137.32	0.08
25	658	48	< 0.01	TO
26	807	26	903.51	0.65
27	768	52	< 0.01	TO
28	1097	30	TO	13.30
29	950	28	TO	2.94
30	1423	32	TO	66.41
31	1310	64	< 0.01	TO
32	1022	60	< 0.01	TO
33	896	56	< 0.01	TO
34	1259	32	TO	59.64
35	2018	32	TO	90.56
36	1734	32	TO	79.45
37	1580	32	TO	73.27
38	1832	64	< 0.01	TO
39	1580	64	< 0.01	TO
40	1446	64	< 0.01	TO
41	1168	64	< 0.01	TO
42	2262	32	TO	132.24
43	2144	32	TO	122.90
44	1879	32	TO	84.97
45	2046	64	< 0.01	TO
46	1942	64	< 0.01	TO
47	1708	64	< 0.01	TO
48	4280	96	< 0.01	TO

Framework of hybridCEC

Fig. 4. Main Framework for Our CEC Algorithm.

Methods

Improved Exact Simulation

- EPS algorithm in assigns $1/\theta_i$ for the *i*-th PI. For a circuit with N PIs, the value *i*-th becomes a large integer $\theta_1\theta_2...\theta_N/\theta_i$ after reducing to a same denominator and eliminating the denominator.
- Each PI needs 2^N bits width because of the there are 2^N possible assignment patterns, which is memory costing.

Fig. 5. Truncate the PI values into K blocks of small values.

Integrating EPS into Sweeping for Datapath CEC

Selection Heuristic

SAT

EPS

- Large but with simple structures
- Inefficient for circuits with many XOR chains
- Runtime can be considered as the time to refute XOR blocks

$$\sum_{b \in BS} 2^{|b|}$$

• The runtime is determined by the number of PIs

$$score_{XOR}(M) = log_2(\sum_{b \in BS} 2^{|b|})/N$$

- B is one XOR block
- BS is the set of XOR blocks
- N is the number of Pls

Selection Heuristic

EPS

$$score_{XOR}(M) = log_2(\sum_{b \in BS} 2^{|b|})/N$$

Score > 0.15, pick EPS; Score < 0.15, pick SAT

Identical Structure Detection (ISD)

Sweeping: SAT checking $x \leftrightarrow y$

SAT checking $x' \leftrightarrow y'$ (slow)

ISD: SAT checking $x \leftrightarrow y$

because $x \cong x', y \cong y'$ (fast!)

so $x' \leftrightarrow y'$

Outlin

- **Background and Related Works**
- **Methods**
 - **Motivating Example**
 - **Main Framework**
 - **Improved Exact Simulation**
 - **Engine Selection Heuristic**
 - **Identical Structure Detection**
- **Experiments**
- Conclusions

Settings

- 50 industrial datapath circuits, which are AIG miters:
 - datapath circuits with multiply—add hybrid arithmetic units • dp:
 - small datapath circuits with mainly multipliers
 - mixed of dp and dpm. • ec:
- AMD EPYC 7763 CPU @ 2.45Ghz, 64 cores*2, 1T RAM, Ubuntu 20.04 LTS (64bit).
- CUTOFF = 3600s, 'TO' is stand for timeout
- Competitors of hybridCEC:
 - ABC &cec (state-of-the-art CEC SAT-sweeping tool)
 - Pure SAT (state-of-the-art SAT solver kissat-MAB)
 - (state-of-the-art BDD solver KCBOX) Pure BDD

09/30, 2023

16

Comparison with SOTA

Instance	Gates		Solver Name					
Histalice	Gaics	HYBRIDCEC	ABC &cec	SAT	BDD			
dpm_1_1	386	0.01	0.18	0.14	0.46			
dpm_2_1	867	0.02	1.46	0.86	1.16			
dpm_3_1	696	0.01	5.44	3.07	11.24			
dpm_3_2	975	0.02	13.15	5.77	15.32			
dpm_4_1	877	0.02	24.77	19.08	88.98			
dpm_4_2	1333	0.04	60.11	21.97	81.06			
dpm_4_3	1628	0.08	4.88	2.82	8.67			
dpm_5_1	703	0.01	6.08	6.02	17.33			
dpm_5_2	1319	0.34	1576.8	834.81	TO			
dpm_5_3	2068	0.84	2198.41	491.28	2207.7			
dpm_6_1	963	64.02	116.79	57.55	252.5			
	•	•••	• • •		•			
ec_e1	280	< 0.01	0.06	0.03	0.26			
ec_e2	492	0.01	0.51	0.35	0.6			
ec_m1	612	< 0.01	0.04	0.1	0.53			
ec_m2	1256	0.02	0.41	2.17	50.37			
	1//1	0.0=	0 55	10 51	10117			

ec_e1	280	< 0.01	0.06	0.03	0.26
ec_e2	492	0.01	0.51	0.35	0.6
ec_m1	612	< 0.01	0.04	0.1	0.53
ec_m2	1256	0.02	0.41	2.17	50.37
ec_m3	1664	0.05	2.55	12.54	1314.76
ec_h1	12499	1464.17	TO	TO	TO
ec_h2	13675	3543.39	TO	TO	TO
ec_h3	14152	TO	TO	TO	TO
ec_h4	15604	2497.91	TO	TO	TO
#Solv	ed	45	25	26	23
#Bes	st	42	1	3	0

Instance	Gates		Solver Nan	ne	
Histalice	Gaics	HYBRIDCEC	ABC &cec	SAT	BDD
dp1_1	681	82.45	13.93	70.67	215.29
dp2_1	460	1.14	2.55	0.59	1.19
dp3_1	2116	0.05	10.98	218.8	TO
dp3_2	2647	0.09	TO	538.21	TO
dp3_3	7118	25.7	TO	TO	TO
dp3_4	8574	47.98	TO	TO	TO
dp3_5	10182	42.63	TO	TO	TO
dp4_1	1646	0.05	2.52	16.93	1951.42
dp4_2	5332	24.32	TO	TO	TO
dp4_3	10448	171.28	TO	TO	TO
dp4_4	11256	267.02	TO	TO	TO
dp4_5	12360	487.97	TO	TO	TO
dp5_1	18	< 0.01	0.02	< 0.01	0.18
dp5_2	1646	0.03	2.56	12.35	459.65
dp5_3	9798	424.6	TO	TO	TO
dp5_4	11484	541.12	TO	TO	TO
dp5_5	13617	937.57	TO	TO	TO
dp6_1	4585	2.41	TO	TO	TO
dp6_2	5332	5.85	TO	TO	TO
dp6_3	6128	26.72	TO	TO	TO
dp6_4	8690	297.69	TO	TO	TO
dp6_5	15787	TO	TO	TO	TO
dp7_1	1238	0.03	0.36	2.41	50.3
dp8_1	2116	0.14	10.11	104.41	2532.35
dp9_1	6128	26.78	TO	TO	TO
dp10_1	14049	TO	TO	TO	TO
dp11_1	20091	TO	TO	TO	TO
dp12_1	24773	TO	TO	TO	TO
dp13_1	378	< 0.01	0.02	0.02	0.3
dp14_1	7061	445.1	TO	TO	TO

Behavior Analysis

Instance	Gates	Pairs	ISD	#SAT	T_{SAT}	#EPS	T_{EPS}
dpm_1_1	386	3	0	2	< 0.01	1	< 0.01
dpm_2_1	867	6	1	4	< 0.01	1	< 0.01
dpm_3_1	696	5	0	4	< 0.01	1	< 0.01
dpm_3_2	975	6	1	4	< 0.01	1	< 0.01
dpm_4_1	877	6	1	4	< 0.01	1	0.02
dpm_4_2	1333	7	1	5	< 0.01	1	0.03
dpm_4_3	1628	8	3	4	< 0.01	1	0.05
dpm_5_1	703	5	0	4	< 0.01	1	0.02
dpm_5_2	1319	9	4	4	< 0.01	1	0.34
dpm_5_3	2068	13	7	5	< 0.01	1	0.80
dpm_6_1	963	1	0	1	64.23	0	< 0.01

ec_e1	280	3	0	2	< 0.01	1	< 0.01
ec_e2	492	3	0	2	< 0.01	1	< 0.01
ec_m1	612	20	10	8	0.01	2	< 0.01
ec_m2	1256	30	16	10	< 0.01	4	< 0.01
ec_m3	1664	35	18	11	0.02	6	< 0.01
ec_h1	12499	113	65	28	0.06	20	1465.44
ec_h2	13675	129	76	31	0.07	22	3548.04
ec_h4	15604	163	98	38	0.14	27	2497.60

- The number of pairs (Pairs)
- The number of pairs reduced by ISD (ISD)
- The number of SAT calls (#SAT), EPS (#EPS), and the time used in SAT solver (T_{SAT}) and EPS (T_{EPS})

Instance	Gates	Pairs	ISD	#SAT	T_{SAT}	#EPS	T_{EPS}
dp1_1	681	1	0	1	82.77	0	< 0.01
dp1_1 dp2_1	460	1	0	1	1.13	0	< 0.01
	2116	40	22	12	0.01	6	
dp3_1		100		12.750		7	< 0.01
dp3_2	2647	45	25	13	0.02	5.7	0.02
dp3_3	7118	83	47	22	0.04	14	25.58
dp3_4	8574	101	59	25	0.06	17	47.81
dp3_5	10182	143	83	37	0.15	23	42.12
dp4_1	1646	35	19	11	0.01	5	< 0.01
dp4_2	5332	65	37	17	0.02	11	24.16
dp4_3	10448	114	66	29	0.06	19	170.91
dp4_4	11256	127	75	31	0.21	21	266.83
dp4_5	12360	159	95	39	0.25	25	487.43
dp5_1	18	1	0	1	< 0.01	0	< 0.01
dp5_2	1646	35	19	11	0.01	5	< 0.01
dp5_3	9798	98	57	24	0.16	17	424.23
dp5_4	11484	119	69	30	0.08	20	540.56
dp5_5	13617	171	100	44	43.60	27	893.61
dp6_1	4585	60	34	16	0.01	10	2.23
dp6_2	5332	65	37	17	0.02	11	5.73
dp6_3	6128	70	40	18	0.02	12	26.60
dp6_4	8690	85	48	22	0.04	15	297.50
dp7_1	1238	30	15	11	0.01	4	< 0.01
dp8_1	2116	40	22	12	0.01	6	0.01
dp9_1	6128	70	40	18	0.02	12	26.64
dp13_1	378	15	7	6	< 0.01	2	< 0.01
dp14_1	7061	75	43	19	0.04	13	445.30

Strategy Assessments

Instance	Gates	Solver Name					
Ilistance	Gaics	HYBRIDCEC	V_1	V_2	V_3	V_4	
dpm_1_1	386	0.01	0.12	0.02	0.03	0.01	
dpm_2_1	867	0.02	0.89	0.17	0.07	0.02	
dpm_3_1	696	0.01	2.82	0.08	0.04	0.01	
dpm_3_2	975	0.02	5.55	0.13	0.07	0.01	
dpm_4_1	877	0.02	23.42	0.2	0.14	0.03	
dpm_4_2	1333	0.04	27.16	0.07	0.24	0.05	
dpm_4_3	1628	0.08	2.9	0.12	0.28	0.09	
dpm_5_1	703	0.01	6.43	0.06	0.11	0.03	
dpm_5_2	1319	0.34	1334.05	5.04	3.85	0.96	
dpm_5_3	2068	0.84	681.02	0.31	4.84	1.09	
dpm_6_1	963	64.02	64.77	0.79	70.36	191.45	

...

ec_e1	280	< 0.01	0.04	0.02	0.03	0.01
ec_e2	492	0.01	0.28	0.06	0.03	0.01
ec_m1	612	< 0.01	0.02	29.89	0.05	0.01
ec_m2	1256	0.02	0.1	TO	0.1	0.05
ec_m3	1664	0.05	0.44	TO	0.19	0.05
ec_h1	12499	1464.17	TO	TO	TO	1061.78
ec_h2	13675	3543.39	TO	TO	TO	TO
ec_h3	14152	TO	TO	TO	TO	TO
ec_h4	15604	2497.91	TO	TO	TO	3161.23
#Solv	ed	45	27	18	39	44
#Be	st	35	1	3	2	13

- V_1 : using only SAT solver in sweeping.
- V_2 : using only EPS to prove in sweeping.
- V_3 : disable the ISD technique.

Instance	Gates		Solv	er Name		100
Histance	Gales	HYBRIDCEC	V_1	V_2	V_3	V_4
dp1_1	681	82.45	109.91	1469.39	89.57	307.97
dp2_1	460	1.14	1.15	10.27	1.11	2.51
dp3_1	2116	0.05	1.98	TO	0.22	0.13
dp3_2	2647	0.09	7.21	TO	0.35	0.2
dp3_3	7118	25.7	TO	TO	120.24	64.11
dp3_4	8574	47.98	TO	TO	233.99	98.52
dp3_5	10182	42.63	TO	TO	471.04	50.28
dp4_1	1646	0.05	0.53	TO	0.12	0.08
dp4_2	5332	24.32	TO	TO	103.58	19.81
dp4_3	10448	171.28	TO	TO	1271.06	85.0
dp4_4	11256	267.02	TO	TO	2500.96	113.66
dp4_5	12360	487.97	TO	TO	3387.28	879.55
dp5_1	18	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
dp5_2	1646	0.03	0.74	TO	0.15	0.11
dp5_3	9798	424.6	TO	TO	2813.27	1104.36
dp5_4	11484	541.12	TO	TO	TO	1535.88
dp5_5	13617	937.57	TO	TO	TO	2722.96
dp6_1	4585	2.41	1220.27	TO	27.9	3.14
dp6_2	5332	5.85	TO	TO	169.79	21.32
dp6_3	6128	26.72	TO	TO	588.2	232.32
dp6_4	8690	297.69	TO	TO	TO	1765.74
dp6_5	15787	TO	TO	TO	TO	TO
dp7_1	1238	0.03	0.2	TO	0.09	0.08
dp8_1	2116	0.14	2.0	TO	0.47	0.16
dp9_1	6128	26.78	TO	TO	889.63	24.9
dp10_1	14049	TO	TO	TO	TO	TO
dp11_1	20091	TO	TO	TO	TO	TO
dp12_1	24773	TO	TO	TO	TO	TO
dp13_1	378	< 0.01	0.02	0.42	0.01	0.02
dp14_1	7061	445.1	TO	TO	3330.51	157.6

• V_4 : replacing the SAT solver with MINISAT [26].

Conclusio

• A hybrid CEC algorithm called hybridCEC for Datapath circuits.

• In the future, we plan to develop a parallel version of hybridCEC.

Thank You!

Q&A