## CS21001: Discrete Structures (Autumn 2020)

Coding Assignment 1: Propositional Logic – Representation and Deduction Due Date: 01-November-2020, 11:59PM (IST) Total Marks: 30

#### **Notations:**

**Propositions.** Boolean variables with True  $(\top)$  and False  $(\bot)$  values

**Literals.** Propositions (p) or negated propositions  $(\neg p)$ 

**Connectives.** Binary operators ( $\bowtie$ ) such as, AND ( $\land$ ), OR ( $\lor$ ), IMPLY ( $\rightarrow$ ) and IFF ( $\leftrightarrow$ )

**Propositional Formula.** Recursively defined as,  $\varphi = p \mid (\varphi) \mid \neg \varphi \mid \varphi \bowtie \varphi$ , where  $\bowtie \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ 

#### **Problem Statement:**

**Input.** Propositional Formula  $(\varphi)$  as strings with propositions, negations, connectives and brackets, '(' and ')'

**Postfix Formula Representation.** Propositional Formula  $(\varphi)$  as strings with propositions, negations, connectives in Postfix format (this will made available to you in code as a string for ready-made processing!)

Output. You will be asked to write separate functions for the following parts (in the already supplied code):

- 1. Represent the postfix propositional formula  $(\varphi)$  as a binary tree  $(\tau)$  data structure, known as *expression tree*, which contains propositions as leaf nodes and operators  $\{\land, \lor, \neg, \rightarrow, \leftrightarrow\}$  as internal nodes (refer to the left expression tree in Figure 1) (Marks: 5)
- 2. Print the expression tree (using in-order traversal of  $\tau$ ) and generate the formula ( $\varphi$ ) (Marks: 2)
- 3. Given  $\top/\bot$  values for all the propositions, find the outcome of the overall Formula  $(\varphi)$  from its expression tree  $(\tau)$  (Marks : 4)
- 4. Transformation of the formula step-wise  $(\varphi \leadsto \varphi_I \leadsto \varphi_N \leadsto \varphi_C/\varphi_D)$  using the expression tree data structure  $(\tau \leadsto \tau_I \leadsto \tau_N \leadsto \tau_C/\tau_D)$  as follows:
  - (a) Implication-Free Form (IFF): Formula  $(\varphi_I)$  after elimination of  $\to$  and  $\leftrightarrow$  Procedure: Transform  $\tau$  to  $\tau_I$  and then print  $\varphi_I$  from  $\tau_I$  (Marks : 4)
  - (b) Negation Normal Form (NNF): Formula  $(\varphi_N)$  where  $\neg$  appears only before propositions Procedure: Transform  $\tau_I$  to  $\tau_N$  and then print  $\varphi_N$  from  $\tau_N$  (Marks : 4)
  - (c) Conjunctive Normal Form (CNF): Formula  $(\varphi_C)$  with conjunction of disjunctive-clauses where each disjunctive-clause is a disjunction of literals

    Procedure: Transform  $\tau_N$  to  $\tau_C$  and then print  $\varphi_C$  from  $\tau_C$  (Marks: 3)
  - (d) Disjunctive Normal Form (DNF): Formula  $(\varphi_D)$  with disjunction of *conjunctive-clauses* where each conjunctive-clause is a conjunction of literals

Procedure: Transform  $\tau_N$  to  $\tau_D$  and then print  $\varphi_D$  from  $\tau_D$  (Marks : 3)

- 5. Given the expression tree  $(\tau)$ , using exhaustive search, check for the following (Marks: 5)
  - (a) the validity  $(\top)$  or the invalidity of the formula (whether it is a tautology or not), or
  - (b) the satisfiability or the unsatisfiability  $(\bot)$  of the formula (whether it is a contradiction or not)

### Algorithms:

**Expression Tree Formation.** Let the generated postfix string from the propositional formula  $(\varphi)$  be PS[1..n]. The recursive function ETF, i.e.  $\tau \leftarrow \text{ETF}(PS[1..n])$ , is as follows:

- If n=1 (i.e. PS[1] is a proposition), then  $\tau = \texttt{CREATENODE}(\varphi)$ ;
- If n > 1 and  $PS[n] = \neg$ , then  $\tau = CREATENODE(\neg); \tau \mapsto rightChild = ETF(PS[1..(n-1)]);$
- If n > 2 and  $PS[n] = \bowtie$ , then  $\tau = CREATENODE(\bowtie); \tau \mapsto leftChild = ETF(PS[1..(k-1)]); \tau \mapsto rightChild = ETF(PS[k..(n-1)]); \tau \mapsto rightCh$
- return  $\tau$ ;

Here, the primary question is – how to find k for the last step? (this will be explained to you!)

**Printing Expression Tree.** The recursive function  $ETP(\tau)$  is as follows:

• If  $\tau \mapsto$  element is not NULL, then PRINT((); ETP( $\tau \mapsto$  leftChild); PRINT( $\tau \mapsto$  element); ETP( $\tau \mapsto$  rightChild); PRINT());

Here, the PRINT subroutine displays the respective charater as output.

**Formula Evaluation.** The recursive function EVAL, i.e.  $\{\top, \bot\} \leftarrow \text{EVAL}(\tau, v_1, v_2, ..., v_n)$  (assuming n propositions where each proposition  $p_i$   $(1 \le i \le n)$  is assigned a value  $v_i \in \{\top, \bot\}$ ), is as follows:

- If  $\tau \mapsto$  element is proposition  $p_i$ , then return  $(\mathbf{v_i} = \top)$ ?  $\top : \bot$ ;
- If  $\tau \mapsto \text{element}$  is  $\neg$ , then return (EVAL( $\tau \mapsto \text{rightChild}$ ) =  $\top$ )?  $\bot : \top$ ;
- If  $\tau \mapsto \text{element}$  is  $\wedge$ , then return  $\text{EVAL}(\tau \mapsto \text{leftChild}) \wedge \text{EVAL}(\tau \mapsto \text{rightChild})$ ;
- If  $\tau \mapsto \text{element}$  is  $\vee$ , then return  $\text{EVAL}(\tau \mapsto \text{leftChild}) \vee \text{EVAL}(\tau \mapsto \text{rightChild})$ ;
- If  $\tau \mapsto \text{element is} \rightarrow$ , then return  $((\text{EVAL}(\tau \mapsto \text{leftChild}) = \top) \text{ and } (\text{EVAL}(\tau \mapsto \text{rightChild}) = \bot))? \bot : \top;$
- If  $\tau \mapsto \texttt{element}$  is  $\leftrightarrow$ , then return  $\big(((\texttt{EVAL}(\tau \mapsto \texttt{leftChild}) = \top) \text{ and } (\texttt{EVAL}(\tau \mapsto \texttt{rightChild}) = \top)\big)$  or  $\big((\texttt{EVAL}(\tau \mapsto \texttt{leftChild}) = \bot) \text{ and } (\texttt{EVAL}(\tau \mapsto \texttt{rightChild}) = \bot)\big)$ ?  $\top : \bot$ ;

IFF Transformation. The recursive function IFF, i.e.  $\tau_{\rm I} \leftarrow {\rm IFF}(\tau)$ , is as follows:

```
• If \tau \mapsto element is \neg, then / * IFF(\neg \varphi) = \negIFF(\varphi) */
• If \tau \mapsto element is \{\land, \lor\}, then / * IFF(\varphi_1 \land \varphi_2) = IFF(\varphi_1) \land IFF(\varphi_2) IFF(\varphi_1 \lor \varphi_2) = IFF(\varphi_1) \lor IFF(\varphi_2) */
• If \tau \mapsto element is \rightarrow, then / * IFF(\varphi_1 \to \varphi_2) = \negIFF(\varphi_1) \lor IFF(\varphi_2) */
• If \tau \mapsto element is \leftrightarrow, then / * IFF(\varphi_1 \leftrightarrow \varphi_2) = IFF(\varphi_1 \to \varphi_2) \land IFF(\varphi_1 \to \varphi_2) */
• return \tau:
```

Here,  $\varphi_I$  can be obtained (as a string expression) by calling ETP( $\tau_I$ ).

**NNF Transformation.** The recursive function NNF, i.e.  $\tau_{N} \leftarrow \text{NNF}(\tau_{I})$ , is as follows:

```
• If \tau_{\mathbf{I}} \mapsto \mathtt{element} is \neg, then  -\mathrm{if} \ (\tau_{\mathbf{I}} \mapsto \mathtt{rightChild}) \mapsto \mathtt{element} \ \mathrm{is} \ \neg, \ \mathrm{then}   /* \ \mathtt{NNF}(\neg\neg\varphi) = \mathtt{NNF}(\varphi) \ */   -\mathrm{if} \ (\tau_{\mathbf{I}} \mapsto \mathtt{rightChild}) \mapsto \mathtt{element} \ \mathrm{is} \ \wedge, \ \mathrm{then}   /* \ \mathtt{NNF}(\neg(\varphi_1 \wedge \varphi_2)) = \neg\mathtt{NNF}(\varphi_1) \vee \neg\mathtt{NNF}(\varphi_2) \ */   -\mathrm{if} \ (\tau_{\mathbf{I}} \mapsto \mathtt{rightChild}) \mapsto \mathtt{element} \ \mathrm{is} \ \vee, \ \mathrm{then}   /* \ \mathtt{NNF}(\neg(\varphi_1 \vee \varphi_2)) = \neg\mathtt{NNF}(\varphi_1) \wedge \neg\mathtt{NNF}(\varphi_2) \ */   \cdot \ \mathrm{If} \ \tau_{\mathbf{I}} \mapsto \mathtt{element} \ \mathrm{is} \ \{\wedge, \vee\}, \ \mathrm{then}   /* \ \mathtt{NNF}(\varphi_1 \wedge \varphi_2) = \mathtt{NNF}(\varphi_1) \wedge \mathtt{NNF}(\varphi_2)   \ \mathtt{NNF}(\varphi_1 \vee \varphi_2) = \mathtt{NNF}(\varphi_1) \vee \mathtt{NNF}(\varphi_2) \ */
```

Here,  $\varphi_N$  can be obtained (as a string expression) by calling ETP( $\tau_N$ ).

• return  $\tau_{\rm I}$ ;

• return  $\tau_N$ ;

**CNF** Transformation. The recursive function CNF, i.e.  $\tau_{\mathbb{C}} \leftarrow \text{CNF}(\tau_{\mathbb{N}})$ , is as follows:

```
• If \tau_{\text{N}} \mapsto \text{element} is \land, then /* \ \text{CNF}(\varphi_1 \land \varphi_2) = \text{CNF}(\varphi_1) \land \text{CNF}(\varphi_2) \quad */
• If \tau_{\text{N}} \mapsto \text{element} is \lor, then /* \ \text{Distribution Law enforcement} \ */
- \ \text{if} \ (\tau_{\text{N}} \mapsto \text{leftChild}) \mapsto \text{element} \ \text{is} \ \land, \ \text{then}
/* \ \text{CNF}((\varphi_{11} \land \varphi_{1r}) \lor \varphi_2) = \text{CNF}(\varphi_{11} \lor \varphi_2) \land \text{CNF}(\varphi_{1r} \lor \varphi_2) \quad */
- \ \text{if} \ (\tau_{\text{N}} \mapsto \text{rightChild}) \mapsto \text{element} \ \text{is} \ \land, \ \text{then}
/* \ \text{CNF}(\varphi_1 \lor (\varphi_{21} \land \varphi_{2r})) = \text{CNF}(\varphi_1 \lor \varphi_{21}) \land \text{CNF}(\varphi_1 \lor \varphi_{2r}) \quad */
```

Here,  $\varphi_C$  can be obtained (as a string expression) by calling  $\text{ETP}(\tau_C)$ . The subroutine  $\text{DUPLICATE}(\tau)$  creates another exact replica of the expression tree rooted at  $\tau$ .

**DNF** Transformation. The recursive function DNF, i.e.  $\tau_D \leftarrow \text{DNF}(\tau_N)$ , is as follows:

• If  $\tau_{\rm N}\mapsto {\rm element}$  is  $\vee$ , then  $/* \ \ \, {\rm DNF}(\varphi_1\vee\varphi_2)={\rm DNF}(\varphi_1)\vee {\rm DNF}(\varphi_2) \quad */$ • If  $\tau_{\rm N}\mapsto {\rm element}$  is  $\wedge$ , then  $/* \ \, {\rm Distribution} \ \, {\rm Law} \ \, {\rm enforcement} \ \, */$   $- \ \, {\rm if} \ \, (\tau_{\rm N}\mapsto {\rm left}{\rm Child})\mapsto {\rm element} \ \, {\rm is} \ \, \vee, \ \, {\rm then}$   $/* \ \, {\rm DNF}((\varphi_{11}\vee\varphi_{1r})\wedge\varphi_2)={\rm DNF}(\varphi_{11}\wedge\varphi_2)\vee {\rm DNF}(\varphi_{1r}\wedge\varphi_2) \quad */$   $- \ \, {\rm if} \ \, (\tau_{\rm N}\mapsto {\rm right}{\rm Child})\mapsto {\rm element} \ \, {\rm is} \ \, \vee, \ \, {\rm the}$   $/* \ \, {\rm DNF}(\varphi_1\wedge(\varphi_{21}\vee\varphi_{2r}))={\rm DNF}(\varphi_1\wedge\varphi_{21})\vee {\rm DNF}(\varphi_1\wedge\varphi_{2r}) \quad */$ • return  $\tau_{N}$ ;

Here,  $\varphi_D$  can be obtained (as a string expression) by calling  $\mathtt{ETP}(\tau_{\mathtt{D}})$ . The subroutine  $\mathtt{DUPLICATE}(\tau)$  creates another exact replica of the expression tree rooted at  $\tau$ .

Exhaustive Search for Validity/Satisfibility. The function  $CHECK(\tau)$  is as follows:

- For every value tuple  $\{v_1, v_2, \dots, v_n\}$  corresponding to n propositions  $\{p_1, p_2, \dots, p_n\}$ , if  $EVAL(\tau, v_1, v_2, \dots, v_n) = \top$ , then print " $\langle VALID + SATISFIABLE \rangle$ "
- For every value tuple  $\{\mathbf{v_1'}, \mathbf{v_2'}, \dots, \mathbf{v_n'}\}$  corresponding to n propositions  $\{p_1, p_2, \dots, p_n\}$ , if  $\mathrm{EVAL}(\tau, \mathbf{v_1'}, \mathbf{v_2'}, \dots, \mathbf{v_n'}) = \bot$ , then print " $\langle \mathrm{INVALID} + \mathrm{UNSATISFIABLE} \rangle$ "
- Otherwise, for any pair of value tuples  $\{v_1, v_2, \dots, v_n\}$  and  $\{v'_1, v'_2, \dots, v'_n\}$  corresponding to n propositions  $\{p_1, p_2, \dots, p_n\}$  such that,  $\text{EVAL}(\tau, v_1, v_2, \dots, v_n) = \top$  and  $\text{EVAL}(\tau, v'_1, v'_2, \dots, v'_n) = \bot$ , then print "(SATISFIABLE + INVALID)", for  $\{v_1, v_2, \dots, v_n\}$  and  $\{v'_1, v'_2, \dots, v'_n\}$ , respectively

# Example:

Input Propositional Formula.  $\varphi = (\neg p \land q) \rightarrow (p \land (r \rightarrow q))$ 

*Postfix Formula Representation.*  $p \neg q \land p \ r \ q \rightarrow \land \rightarrow$  (YOUR INPUT STRING)

**Expression Tree Formation.** Depending on the recursive call, two types of parse tree  $(\tau)$  can be formed. Figure 1 shows the representation of such expression trees.



Figure 1: Expression Tree Structure for Original Formula and the Corresponding CNF

 $\textbf{\textit{Formula Evaluation.}} \quad \{p = \bot, q = \top, r = \top\} \quad \Rightarrow \quad \varphi = \bot \quad ; \quad \{p = \bot, q = \bot, r = \bot\} \quad \Rightarrow \quad \varphi = \top$ 

Formula Transformations. The path through which you shall be doing this is as follows:

$$\varphi \quad \rightsquigarrow \quad \mathsf{PostFix} \quad \rightsquigarrow \quad \tau \; (\mathsf{Print} \; \varphi) \quad \rightsquigarrow \quad \tau_{\mathsf{I}} \; (\mathsf{Print} \; \varphi_{\mathsf{I}}) \quad \rightsquigarrow \quad \tau_{\mathsf{N}} \; (\mathsf{Print} \; \varphi_{\mathsf{N}}) \quad \rightsquigarrow \quad \tau_{\mathsf{C}}/\tau_{\mathsf{D}} \; (\mathsf{Print} \; \varphi_{\mathsf{C}}/\varphi_{\mathsf{D}})$$
 
$$IFF \; : \; \varphi_{I} \; = \; \mathsf{IFF}(\varphi) \; = \; \mathsf{IFF}((\neg p \land q) \rightarrow (p \land (r \rightarrow q))) = \cdots = \neg(\neg p \land q) \lor (p \land (\neg r \lor q))$$
 
$$NNF \; : \; \varphi_{N} \; = \; \mathsf{NNF}(\varphi_{I}) \; = \; \mathsf{NNF}(\neg(\neg p \land q) \lor (p \land (\neg r \lor q)))) = \cdots = (p \lor \neg q) \lor (p \land (\neg r \lor q))$$
 
$$CNF \; : \; \varphi_{C} \; = \; \mathsf{CNF}(\varphi_{N}) \; = \; \mathsf{CNF}((p \lor \neg q) \lor (p \land (\neg r \lor q))) = \cdots = (p \lor \neg q \lor p) \land (p \lor \neg r) \lor (p \land q)$$
 
$$DNF \; : \; \varphi_{D} \; = \; \mathsf{DNF}(\varphi_{N}) \; = \; \mathsf{DNF}((p \lor \neg q) \lor (p \land (\neg r \lor q))) = \cdots = (p) \lor (\neg q) \lor (p \land \neg r) \lor (p \land q)$$

Check for Validity/Satisfibility.

$$\begin{split} \text{INVALID:} &\quad \{p=\bot, q=\top, r=\times\} \quad (\times \ denotes \ don't \ care \ term) \\ \text{SATISFIABLE:} &\quad \{p=\top, q=\times, r=\times\} \quad OR \quad \{p=\times, q=\bot, r=\times\} \end{split}$$

## Sample Execution:

```
(C++ Code) g++ ROLLNO_CT1.cpp -lm
                                                 (Please follow the filename convention given!)
Execution:
              ./a.out
Sample Run:
    Enter Propositional Logic Formula: (!p & q) -> (p & (r -> q))
    Postfix Representation of Formula: p ! q & p r q -> & ->
    ++++ PostFix Format of the Propositional Formula ++++
    ('-' used for '->' and '~' used for '<->')
    YOUR INPUT STRING: p!q&prq-&-
    ++++ Expression Tree Generation ++++
    Original Formula (from Expression Tree): ( ( ! p & q ) -> ( p & ( r -> q ) ) )
    ++++ Expression Tree Evaluation ++++
    Enter Total Number of Propositions: 3
    Enter Proposition [1] (Format: Name <SPACE> Value): p 0
    Enter Proposition [2] (Format: Name <SPACE> Value): q 1
    Enter Proposition [3] (Format: Name <SPACE> Value): r 1
    The Formula is Evaluated as: False
    ++++ IFF Expression Tree Conversion ++++
    Formula in Implication Free Form (IFF from Expression Tree):
    (!(!p&q)|(p&(!r|q)))
    ++++ NNF Expression Tree Conversion ++++
    Formula in Negation Normal Form (NNF from Expression Tree):
    ((p|!q)|(p&(!r|q)))
    ++++ CNF Expression Tree Conversion ++++
    Formula in Conjunctive Normal Form (CNF from Expression Tree):
    (((p|!q)|p)&((p|!q)|(!r|q)))
    ++++ DNF Expression Tree Conversion ++++
    Formula in Disjunctive Normal Form (DNF from Expression Tree):
    ((p|!q)|((p&!r)|(p&q)))
    ++++ Exhaustive Search from Expression Tree for Validity / Satisfiability Checking ++++
    Enter Number of Propositions: 3
    Enter Proposition Names (<SPACE> Separated): p q r
    Evaluations of the Formula:
        \{ (p = 0) (q = 0) (r = 0) \} : 1
        { (p = 0) (q = 0) (r = 1) } : 1
        \{ (p = 0) (q = 1) (r = 0) \} : 0
        \{ (p = 0) (q = 1) (r = 1) \} : 0
        \{ (p = 1) (q = 0) (r = 0) \}
        \{ (p = 1) (q = 0) (r = 1) \}
        \{ (p = 1) (q = 1) (r = 0) \}
        \{ (p = 1) (q = 1) (r = 1) \}
    The Given Formula is: < INVALID + SATISFIABLE >
```

Compile: (C Code) gcc ROLLNO CT1.c - lm (Please follow the filename convention given!)

Submit a single C/C++ source file following proper naming convention [ROLLNO\_CT1.c(.cpp)]. Do not use any global/static variables. Use of STL is allowed.