

北京市十一学校

机器学习课程概览

2023年7月

郑子杰 北京市十一学校 韩思瑶 北京市十一学校 张炜其 北京市十一学校 汪星明 北京市十一学校 龚超 清华大学

北京市十一学校 机器学习 课程设计与实施目录

中学机器学习十五讲 课程框架 面向对象与课程目标 课程参考书目

第一讲 人工智能的定义

第二讲 人工智能发展简史

第三讲 连接主义与机器学习

第四讲 面向对象的编程与机器学习标准库

第五讲 机器学习训练模型的数学范式

第六讲 监督学习与逻辑斯蒂回归

第七讲 求解机器学习问题——优化理论

第八讲 神经网络与反向传播算法

第九讲 距离与 K 近邻算法

第十讲 支持向量机

第十一讲 贝叶斯理论

第十二讲 信息熵与决策树

第十三讲 多分类问题与集成学习

第十四讲 无监督学习与强化学习

第十五讲 深度神经网络

中学机器学习十五讲 课程框架

- 面向对象(可调整): 具有高一数学基础+python编程基础的人
- ① 学过函数(一次函数、二次函数、反比例函数、幂函数、指数函数、对数函数)
- ② 知道平均变化率的概念或导数的概念
- ③ 了解概率的基本概念(至少知道概率的定义、平均值、方差等统计量)
- ④ 掌握平面向量的基本定义和运算法则
- ⑤ 会Python的基本语法,知道如何调用Python OS\math\numpy等库
- 通过学习这门课,你能掌握:
- ① 机器学习的基本概念和流程
- ②一些典型的基础思想/算法/模型
- ③ 基于Python的机器学习库的常见使用方式
- ④ 数据意识——用数据建立模型,并解决问题的基本意识和方法(与传统中学教学有所区别)

本课程参考文献 (面向学生的措辞)

- 0. 如果你只想了解人工智能:《人工智能(高中版)》
 - 姚期智版、汤晓鸥版、李国良版均可
- 1. 如果你只想看专业的段子:尼克《人工智能简史》
- 2. 如果你想应用,玩花活,快速形成展示项目,不用搞清楚原理: sklearn中文文档 + pytorch
- <1>https://www.scikitlearn.com.cn/
- <2>https://tensorflow.google.cn/
- <3>https://pytorch.org/docs/stable/

算法都是现成的,直接调库就可以了。

- 3. 如果你想简单了解机器学习算法: 李航 《统计学习方法》或 周志华《机器学习》
- 4. 如果你想入门机器学习算法: Bishop 《Pattern Recognition & Machine Learning》

- 5. 如果你真的想学习人工智能(机器学习)算法,并可以讲给别人听:
 - ① 你可以把高中数学讲给别人听
 - ② 你可以把高等数学 & 线性代数 & 概率统计讲给别人听
 - ③ 你可以把随机过程 & 信号与系统 & 信息论讲给别人听
 - ④ 你可以把数值优化理论(凸优化、遗传算法等)讲给别人听
 - ⑤ 你可以把Theodoridis的《模式识别》Pattern Recoginition讲给别人听
- 6. 如果你真的想从<mark>事人工智能相关领域的研究</mark>,选至少一个应用方向读论文、写论文;选至少一个理论方向进行深入研究。
 - ① 计算机视觉 Computer Vision (CV)
 - ② 自然语言处理 Natural Language Processing (NLP)
 - ③ …

第一讲 人工智能的定义

学习目标:了解人工智能的应用,了解人工智能这个词的诞

生与图灵测试

- 1956年, 达特茅斯会议
- In Dartmouth College in 1956
- John McCarthy (发起人)、 Marvin Minsky、Oliver Selfridge、Allen Newell、 Claude Shannon、Hebert Simon
- 讨论每个人理解的人工智能, 虽在理解上分歧,但也产生了 一个新的名词Artificial Intelligence

- 来自英国的天才——Alan Turing艾伦·图灵
- 1950年发表的"计算原理与智能"(Computing Machinery and Intelligence)论文中提出了关于AI 如何定义——图灵测试。
- 有一个屋子,如果在屋外的一个人类,在屋内有一台计算机或者一个人。屋外的人在提出一些书面问题之后,无法分辨这些书面回答究竟是来自于人还是一台计算机,则认为计算机通过了图灵测试。

第二讲 人工智能发展简史

学习目标: 了解人工智能的关键结束诞生的历史节点,区分业界的人工智能与学术圈的人工智能发展的节奏差异

2006标志性事件

G. E. Hinton团队改进了神经网络的训练算法,用深度神经网络实现了图像压缩与重构

深度神经网络就是增加网络层数,其核心贡献是改进了训练算法验证了增加层数的有效性,与思维深度之类的含义无关,请不要过度解读!

数据集的扩大

例: 图像处理 Image Processing 2009, ImageNet, Feifei Li 14,197,122 图片 21841 种类

第三讲 连接主义与机器学习

学习目标:了解人工智能三大学派,掌握机器学习的基本流

程,明确机器学习的关键要素为数据、模型、应用

以神经网络为代表的、基于大量数据生成数学模型并进行预测的人工智能实现过程, 计算机基于数据建立模型的流程、范式和算法一般被叫作机器学习 (Machine Learning).

- 机器学习(例) Example
- 碑文修复 Rubbing Restoration using Machine Learning

第四讲 面向对象的编程与机器学习标准库

学习目标:老师配置环境,学生能够理解并实践使用 Python 快速实现流程,同时明确实践只是操作,原理需要学习

机器学习的入门标准库: scikit-learn(sklearn) 英文版文档: https://scikit-learn.org/ 中文版文档: https://www.scikitlearn.com.cn/ 中文文档<mark>只是原理部分是中文的</mark>,函数文档部分还是英文的 sklearn标准三行: ① 定义一个叫做clf的模型: clf = neighbors.KNeighborsClassifier(15) #选择sklearn里面一个自带的KNN模型 ② 用训练数据训练clf模型: clf.fit(X_train,y_train) #使用训练数据训练 ③ 用测试数据进行预测,返回准确率等指标: accuracy = clf.score(X_test,y_test) #使用测试数据测试准确率 使用matplotlib库进行科学画图 https://matplotlib.org/ 导入matplotlib的一般绘图模块pyplot: import matplotlib.pyplot as plt 导入matplotlib染色模块: from matplotlib.colors import ListedColormap 使用matplotlib进行画图: plt.figure(2) #第几张图 3.0 plt.pcolormesh(xx, yy, y_predict, cmap=cmap_light) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xlabel("Sepal.Length") plt.ylabel("Sepal.Width") plt.title("KNN, Iris")

第五讲 机器学习训练模型的数学范式

学习目标:了解机器学习进行训练的关键概念,明确决策函

数、损失函数、优化目标、优化方法

机器学习训练模型的数学范式 Mathematical Paradigm

- ① 选择一个模型的基本形式 Find a basic form of model $f_{\theta}(x) = \theta_0 + \theta_1 x$ 决策函数 Decision Function
- ② 定义拟合好坏的判定函数 (距离远近) Define the judgment function of good or bad fitting (the distance between training data and model) $L(f_{\theta}(x), y) = (f_{\theta}(x) - y)^2$ 损失函数 Loss Function
- ③ 参数确定: 最小化损失和 Objective: minimize the sum loss of the data $\min \sum L(f_{\theta}(x_i), y_i) \longrightarrow \{\theta_0, \theta_1, \ldots\}$
- ④ 求解: 随机优化 凸优化 (本节课不讲)

- 我们从美国疾病预防控制中心的官网下载了2020年三月下旬CDC报告的全美每日感染人数的报告。
- 任务: 根据3月份数据(训练集)建立模型,预测美国4月(测试集)的新冠感染人数变化。

欠拟合 Under-fitting: 对训练数据拟合的不够, 型不够精确,自然对测试数 据预测也会有一定偏离

 $f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$

较好的拟合 Proper-fitting: ① 对训练数据拟合准确 ②能预测测试数据,有泛化能力

 $f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots$

过拟合 Over-fitting: 对训练数据拟合的过分了, 导致看不出趋势,无法预测

测试数据 (失去泛化能力)

第六讲 监督学习与逻辑斯蒂回归

学习目标:了解监督学习的基本概念,了解逻辑斯蒂回归的 原理与推导过程,使用 Sklearn 实现逻辑斯蒂回归

问题一: 衡量模型进行分类好坏的指标是什么?

问题二:每个样本特征(Feature),也就是模型中的x,必须是一个数么?问题三:样本的种类,或者说标签(Label),有超过两种,怎么办?

问题四: 样本没有标签 (Label) , 就不能建立模型进行分类了么?

第七讲 求解机器学习问题——优化理论

学习目标:基于最简单的例子,了解优化算法的两种主要思

路,随机优化方法与凸优化方法

凸优化 Convex Optimization

- 回顾我们数学课上学的单调性
- 在有导数工具之后, 我们可以求一阶导数的方法代替差分

$$\frac{f(x_{k} + \Delta_{2}) - f(x_{k} - \Delta_{1})}{x_{k} + \Delta_{2} - (x_{k} - \Delta_{1})} > 0$$

$$\frac{\mathrm{d}f(x_k)}{\mathrm{d}x} = \lim_{\Delta \to 0} \frac{f(x_k + \Delta) - f(x_k)}{\Delta} = \lim_{\Delta \to 0} \frac{f(x_k) - f(x_k - \Delta)}{\Delta} > 0$$

- 注意: 实际问题中为了数值处理,有时候可以用差分代替导数。这两者在优化思想上没有本质区别,都是利用单调性
- 所以一个找下一步让函数值最小的点的一般方法

$$x_{k+1} = x_k - \alpha \frac{\mathrm{d}f(x_k)}{\mathrm{d}x} \quad \sharp + \alpha > 0$$

梯度下降法(Gradient Descent Method)

第八讲 神经网络与反向传播算法

学习目标:了解神经网络的基本结构,明确神经网络出现逻

辑为:数据的复杂导致模型不得不复杂

简化后的iris数据集:包含100个数据样本,分为2类,每类50个数据,每个数据包含2个属性。 可通过**花萼长度(Sepal.Length),花萼宽度(Sepal.Width)2个属性**预测鸢尾花卉属于 (Sentosa 0, Versicolor 1) 两个种类中的哪一类。 如果使用sklearn库,可以直接调用现成的分类器模型: 含有一个隐含层(一共两层)、隐含层神经元个为5的神经网络模型 sklearn自带的神经网络模型对testing set实现分类 clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5), random_state=1) 俯视 这个分 4.5 线是怎 4.0 画出来 3.5 3.0 2.5 0.2 40 45 5.0 6.5 $x^{(1)}$

(以上 PPT 均来自于本章实际授课课件)

第九讲 距离与 K 近邻算法

学习目标: 了解距离可以测量相似性, 了解 K 近邻算法的设

计逻辑和基本实现方法

简化后的iris数据集:包含100个数据样本,分为2类,每类50个数据,每个数据包含2个属性。 可通过<mark>花萼长度(Sepal.Length),花萼宽度(Sepal.Width)2个属性</mark>预测鸢尾花卉属于 (Sentosa 0, Versicolor 1)两个种类中的哪一类。

红点: Sentosa, 0 蓝点: Versicolor, 1

K越大,分界线倾向于越平滑 但是K太大会增加不必要的计算量

• 问题二: 如何定义"近"

直观上可以用"距离"来度量

- 欧几里得距离: d_{i,j} =
- 曼哈顿距离 Manhattan Distance:

起源于城市之间的距离,因为城市之间的路 多是正南正北或者正东正西走向的, 所以曼哈 顿距离相当于各维度上分别求距离然后再求和

$$d_{i,j} = \sum_{m=1}^{M} \left| x_i^{(m)} - x_j^{(m)} \right|$$

第十讲 支持向量机

学习目标:了解支持向量机的核心思想——最大间隔,明确 支持向量机的优化目标, 简单了解如何求解(不要求)

- 支持向量机的大致想法:
- 由画"线"变成画"沟",也就是用两条平行的直线将两类数 据分隔开
- 找到两条平行直线(超平面),让这两条平行直线之间的 距离最大,也就是沟最宽。

- ① 决策函数 Decision Function: 两条直线
- ② 损失函数 Loss Function: 两条直线之间的间隔
- ③ 优化目标 Objective: 间隔最大

$$\left(x^{(1)}, x^{(2)}\right)$$

① 在平面解析几何中, 两条平行直线的方程?

两条平行直线的方程为:

$$Px^{(1)} + Qx^{(2)} + M_1 = 0$$

$$Px^{(1)} + Qx^{(2)} + M_2 = 0$$

② 经过<mark>简单的代数变形,两条平行</mark>直线的解析式可以写成 (只是解析式的形式发生改变,直线还是那两条直线)

$$Ax^{(1)} + Bx^{(2)} + C = 1$$

$$Ax^{(1)} + Bx^{(2)} + C = -1$$

$$Fx + Qx + M_2 = 0 \qquad \frac{2}{M_1 - M_2}$$

$$\frac{2P}{M_1 - M_2} x^{(1)} + \frac{2Q}{M_1 - M_2} x$$

$$\frac{2P}{M_1 - M_2} x^{(1)} + \frac{2Q}{M_1 - M_2} x^{(2)} + \frac{2M_1}{M_1 - M_2}$$

$$\frac{M_1 - M_2}{M_1 - M_2} x^{(1)} + \frac{2Q}{M_1 - M_2} x^{(2)} + \frac{2M_2}{M_1 - M_2} = 0$$

$$A = \frac{2P}{M_1 - M_2}$$

$$B = \frac{2Q}{M_1 - M_2}$$

 $Ax^{(1)} + Bx^{(2)} + C = 1$

 $Ax^{(1)} + Bx^{(2)} + C = -1$

$$C = \frac{M_1 + M_2}{M_1 - M_2}$$

③ 红色的点: label y = 1, 蓝色的点: label y =-1

红色的点在上面直线的上方:
$$x^{(2)} \ge \frac{1 - C - Ax^{(1)}}{B}$$

蓝色的点在下面直线的上方:
$$x^{(2)} \leq \frac{-1-C-Ax^{(1)}}{B}$$
 \longrightarrow $Ax^{(1)}+Bx^{(2)}+C \leq -1$

$$Ax^{(1)} + Bx^{(2)} + C \ge 1$$

$$Ax^{(1)} + Bx^{(2)} + C \le -$$

第十一讲 贝叶斯理论

学习目标: 学会用概率的眼光看世界, 了解朴素贝叶斯算法 的基本原理

• 条件概率的常见公式:

• 贝叶斯公式的应用:
$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

·A事件已经发生的条件下,B发生的概率

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

A: 核酸检测为阳性

B: 患有新冠

新冠患者中核酸检测为阳性的比例

 $P(A) = P(A|B)P(B) + P(A|\overline{B})P(\overline{B})$

• 贝叶斯公式(逆概公式):

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A \mid B)P(B)}{P(A)}$$

 $\vec{\mathcal{R}} \quad P(B \mid A) = \frac{P(AB)}{P(AB)} = \frac{P(A \mid B) P(B)}{P(B)}$

P(A) 总人群中核酸检测为阳性的比例 (?)

全概率公式

$$\begin{split} P\left(A\right) &= P\left(AB\right) + P\left(A\overline{B}\right) \\ &= P\left(A\mid B\right)P\left(B\right) + P\left(A\mid \overline{B}\right)P\left(\overline{B}\right) \end{split}$$

 $1 - P(\overline{A} \mid \overline{B})$ 非患者中核酸阴性的比例

非患者中核酸阳性的比例

*以上数据均非真实数据

朴素贝叶斯方法 Naïve Bayes Model

• 在体温为x时, 计算生病(1)和不生病(0)的概率的概率, 哪个大, 则归在哪一类。

$$y = f_{\theta}(x) = \underset{c \in \{0,1\}}{\arg \max} P(c \mid x) = \begin{cases} 1, P(1 \mid x) \ge P(0 \mid x) \\ 0, P(1 \mid x) < P(0 \mid x) \end{cases}$$

模型的关键: 根据训练集数据计算 P(c|x) 的方法

由以叶斯公式: 类别
$$c$$
 (例如 c =1生病) 中,体温为 x 的概率
$$P(c \mid x) = \frac{P(cx)}{P(x)} = \frac{P(x)P(c)}{P(x)} \rightarrow$$
 类别 c (例如 c =1生病) 出现的概率,可以直接用 c 类样本在总样本中的占比估计: $P(c) = \frac{D_c}{D}$

不依赖于类别,代表全体人群中体温为x的概率,<u>所以可以去掉</u>

决策函数相应的变为:

$$f_{\theta}(x) = \underset{c \in \{0,1\}}{\operatorname{arg\,max}} P(x \mid c) P(c) = \underset{c \in \{0,1\}}{\operatorname{arg\,max}} P(x \mid c) \frac{D_{c}}{D}$$

第十二讲 信息熵与决策树

学习目标: 了解信息熵作为损失函数的精髓,以决策树作为 载体体会信息熵

- 假定当前样本集合 \mathbf{D} 中(共 $D=|\mathbf{D}|$ 个样本)第k类样本的个数为 D_k ,相应的占比为: $P_k=\frac{D_k}{D}$
- 信息熵: $E(\mathbf{D}) = -\sum_{k=1}^{K} p_k \log_2 p_k$

例 {0,1,0,1,0,0,0,0}

$$E(\mathbf{D}) = -\sum_{k=1}^{K} p_k \log_2 p_k = \underbrace{\left(-\frac{2}{8}\log_2 \frac{2}{8}\right)}_{\mathbf{2} \uparrow \mathbf{1}} + \underbrace{\left(-\frac{6}{8}\log_2 \frac{6}{8}\right)}_{\mathbf{6} \uparrow \mathbf{0}} \approx 0.8113$$

例 (最纯)
$$\{0,0,0,0,0,0,0,0,0\}$$
 $E(\mathbf{D}) = -\sum_{k=1}^{K} p_k \log_2 p_k = -\frac{8}{8} \log_2 \frac{8}{8} = 0$

例(最不纯,样本均分)
$$\{0,0,1,1,1,1,0,0\}$$
 $E\left(\mathbf{D}\right) = -\sum_{k=1}^{K} p_k \log_2 p_k = -\frac{4}{8} \log_2 \frac{4}{8} + \left(-\frac{4}{8} \log_2 \frac{4}{8}\right) = 1$

最纯,只含一类: 熵最小=0; 最不纯,各类均分,熵最大

第十三讲 多分类问题与集成学习

学习目标:了解多分类问题如何处理,了解如何进行数据降

维,了解如何组成复杂分类器

主成分分析 Principal Component Analysis, PCA

- 特征值(Eigenvalue)与特征向量(Eigenvector)(大一:线性代数)
- 假如一个矩阵能对角化,其不同特征值的绝对值大小对矩阵的特征表示的影响是不一样大的, 特征值越大,影响越大
- 只保留较大的特征值,去掉某些小的特征值(变为0),重构的矩阵可以对原矩阵有很好的近似

- 为了画图方便,我们还是选择前两个feature进行3分类模型的建立:花萼宽度,花瓣长度
- clf = AdaBoostClassifier(n_estimators=100) #adaboost算法, 1+99个分类器合成

第十四讲 无监督学习与强化学习

学习目标:了解无监督学习和强化学习的基本概念(不作为

重点)

- · K-Means 算法
- 基本思想分为两步:
- ① 自己看完数据后,通过直观拍脑袋决定分为k类;
- ② 随机选择k个中心,作为起始的k类的中心
- <i> 样本与哪个中心近就归在哪一类;
 <ii> 把每一类的样本的几何位置求个平均,作为这一类的 新中心

重复②直到停止。

- K均值算法的收敛性:
- 可以很轻松的证明,随着K均值算法的迭代,总距离和一 定是越来越小
- 最后一定是聚类聚的越来越好(更靠近的点被分在了一 类里)

满足以下两点: A. 目标函数有下界; B. 每一步一定是严格递减

• 马尔可夫决策 Markov Decision Process: 转移概率不仅仅是客观因素还跟人为干预/行动(Action)有关

$$G_t = \sum_{u=t}^{\infty} \gamma^{u-t} R(u) = R(t) + \gamma R(t+1) + \gamma^2 R(t+1) + \dots$$
 把后续收益也考虑进去,考虑贴现因

第十五讲 深度神经网络

学习目标:了解深度神经网络的核心改进,了解卷积神经网

络的基本结构和设计思路

深度神经网络 Deep Neural Network

- 其解决的问题是一个无监督学习问题(图像压缩问题):
- 一个2000 feature 的图片用30个label表示,然后再用30个label将图片重新恢复
- 使用神经网络的结构进行压缩,目标是让重构错误率最小:

- 每一层的训练:
- · 受限玻尔兹曼机 Restricted Boltzmann Machine, RBM
- 激活函数 Activation Function,选用Softmax函数

- 生成方式采用模拟玻尔兹曼分布的生成方式:
 *吉布斯抽样 Gibbs Sampling
- 每一层的训练完再把各层拼起来

卷积神经网络 Convolutional Neural Network

• 例: LeNet-5, LeCun Yann et al., 1998

