MASHROR SAFIR SHABAB AB 20241037

Tutorial: 01

BRAC University

Semster: Fall 2023 Course No: CSE481

Course Title: QUANTUM COMPUTING

Section: 01

Faculty: JMD, RMT

Lecture: 1

Week: 1 Time: 30 minutes

Date: October 4, 2023

Question 1

In physics, we often use vectors. Does this definition of vector spaces fit what we call vectors in physics? For example, Force is a vector quantity and it can be described using 3 co-ordinates (x, y, z). Does the set of all the forces form a vector space?

$$ec{F} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} \quad ext{where } a_x, a_y, a_z \in \mathbb{R}$$

Question 2

Does the set of all 3×1 matrix containing complex numbers form a vector space?

$$\mathcal{S} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 where $a, b, c \in \mathbb{C}$

Question 3

Does the set of all 3×1 matrix whose sum of elements is zero, form a vector space?

$$\mathcal{S} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : \text{ where, } a+b+c=0 ; \text{ as } b \in \mathbb{C} \right\}$$

Question 4

Does the set of all 3×1 matrix whose sum of elements is one, form a vector space?

$$\mathcal{S} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : \text{ where, } a+b+c=1 ; a,b,c \in \mathcal{C} \right\}$$

Question 5

Are these vectors independent? And what's the dimension of vector space they form?

$$u = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 3 \\ -4 \\ -2 \end{bmatrix}, w = \begin{bmatrix} 5 \\ -10 \\ -8 \end{bmatrix}$$

Question 6

Calculate the inner product between the following vectors: (u,v) and (v,u). Can you find a relation between these values? If so, can you justify that?

$$10 = \begin{bmatrix} 0.5 - 3i \\ 4 + i \\ 2 + 0.2i \end{bmatrix} \text{ and } = \begin{bmatrix} -3i \\ 2 - i \\ 2.5 \end{bmatrix}$$

Tutorial: 01

Tutorial: 01

Tutorial: 01

Question 7

What's the norm of this vector?

$$v = \begin{bmatrix} -3i \\ 2-i \\ 2.5 \end{bmatrix}$$

Question 8

Check if the following vectors orthogonal:

- $\bullet \ \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 4i \\ 0 \end{bmatrix}$
- $\bullet \ \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 4i \end{bmatrix}$
- $\bullet \ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1.5i \\ -1.5i \end{bmatrix}$

under addition atlel : Closed bte E 1

CHFEC

Since. CAEC

Cb EC . : Closed under bodan Multiplication

cc ec cerle

Thus, I form a rector space.

$$=>$$
 $\begin{bmatrix} -5 \\ -4 \end{bmatrix}$ $\in S$ Since $5+(-1)+(-4)=0$ and $5, -1, -4 \in C$

closed under addition.

5

$$\begin{bmatrix} -2c_1 + 3c_2 + 5c_3 \\ -c_1 - 4c_2 - 10c_3 \\ -c_1 - 2c_2 - 8c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

2	3	5	0	B1=R3-(1/2)R1	12	3	5	10-
0	-3/2	-10	0	13213 D	0	-2/2	2	0
1	-2	-8	0		0	-3	- 17	0

- 2	3	5	0	Ry R3-(-3/4) R2	2	3	5	0
0	-5/2	-15/2	0	D	0	-5/2	-15/2	0
-0	-34	-17/4] 0 -		0	0	-2	0

00000	1 51 - 151	The fide of the
-86828	-5/202-15/2 C3=0	201+0+030
-: 03 20	13-01202-0/20	1. C120
	D (220)	Ku oti.

-2	3	5	10	Rz-0 R3/-2	2	3	5	107
D	-5/2	- 15/2	0	- 0	0	-5/2	-15/2	0
10	0	-2	10 -		0	0	0	0 1

- 5 c2 - 15 c3 20	2c1 + 3c2 +5c3 = 0	1 2ci+3c2+5c3 =0
2 2 2 3	1 1c1 + 3c1 = 0	1 2 Ca + 3 C2 + 5 (- 43 g
+ -5c2-15c3 z 0	+2c1 +3(303) +5c3 =0	32c1+4/3c220
2	=> 2C1 + 14C3 = 0	
-> - C2 - 3C3 2 0		
+> C2 + 3C3 20		

