Age => 10-19, 20-29, 36-39, 40-49[ficome =) $\leq 20,000$, 20,001-39, 999, 40000-59999, 60000-80000

Applicant ID	Age	Income	Education Level	Defaulted	Ţ
1	20 - 29	€ 20,000	High school	No	-
2	30-39	40,000-50,000	Bacheloris	N ₀	
3	40-49	60,000 - 80,000	Master's	No	
4	20-29	20,001 - 39,999	High School	No	1
5	30-39	40,000-59,999	Bacheloris	Yes	
6	40-49	60,000 - 80,000	Moster's	No	
7	20 - 29	€ 80,000	High School	Yes	
9	30-39	60,000-80,000	Bachelor's		
9	3 () - 3q	40,000 - 59,999	Bachelor's	No No	
10	20 - 29	20,001-39,900	High School	Yes	
				103	

30-39 40,000 - 59,999 Bachelor's?

P(XIH) => P(Defaulted = Yes | Age = 30-39,

P(Ci) = P(Defaulted = "Yes") = 3/10 = 0.3

P(Defaulted = "No) = 7/10 = 0.7

P(XICi) for each class

P(Age =