

Química Nivel medio Prueba 1

Miércoles 7 de noviembre de 2018 (tarde)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

1. ¿Cuántos moles de FeS_2 se necesitan para producir 32 g de SO_2 ? (A_r : S=32, O=16)

$$4FeS_2(s) + 11O_2(g) \rightarrow 2Fe_2O_3(s) + 8SO_2(g)$$

- A. 0,25
- B. 0,50
- C. 1,0
- D. 2,0
- **2.** El volumen de una muestra de un gas medido a 27°C es 10,0 dm³. ¿A qué temperatura el volumen se reducirá a 9,0 dm³ a la misma presión?
 - A. −3,0°C
 - B. 24,3°C
 - C. 29,7°C
 - D. 57,0°C
- 3. 16 g de bromo reaccionan con 5,2 g de metal, M, para formar MBr_2 . ¿Cuál es la masa atómica relativa del metal M? (A_r : Br = 80)
 - A. 13
 - B. 26
 - C. 52
 - D. 104
- 4. Un comprimido de antiácido que contiene $0,50\,\mathrm{g}$ de NaHCO₃ ($M_\mathrm{r}=84$) se disuelve en agua hasta un volumen de $250\,\mathrm{cm}^3$. ¿Cuál es la concentración, en mol dm⁻³, de HCO₃ en esta solución?
 - A. $\frac{0,250 \times 84}{0,50}$
 - B. $\frac{0,50}{84 \times 0,250}$
 - C. $\frac{250 \times 84}{0,50}$
 - D. $\frac{0,50}{84 \times 250}$

- 5. ¿Qué enunciados son correctos para el espectro de emisión del hidrógeno?
 - I. Las líneas convergen a mayores frecuencias.
 - II. Las transiciones electrónicas a n = 2 son las responsables de las líneas en la región visible.
 - III. Las líneas se producen cuando los electrones se desplazan de niveles de energía menores a niveles de energía mayores.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **6.** ¿Qué enunciado sobre ⁵⁶Fe³⁺ y ⁵⁴Fe²⁺ es correcto?
 - A. Ambos tienen el mismo número de protones y electrones.
 - B. Ambos tienen el mismo número de protones.
 - C. Ambos tienen el mismo número de neutrones.
 - D. Ambos tienen el mismo número de protones y neutrones.
- 7. ¿Qué óxidos producen una solución ácida cuando se añaden al agua?
 - I. Al_2O_3 y SiO_2
 - II. P_4O_6 y P_4O_{10}
 - III. NO, y SO,
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 8. ¿Qué especie requerirá menor energía para extraerle un electrón?
 - A. Na⁺
 - B. Mg⁺
 - C. Al^{2+}
 - D. C³⁺

- 9. ¿Qué especie tiene la misma geometría molecular que el SO₃²⁻?
 - A. BF₃
 - B. SO₃
 - C. PF₃
 - D. CO₃²⁻
- **10.** ¿Cuántos pares de electrones solitarios y enlazantes rodean al átomo central de cloro en el ClF₂⁺?

	Pares solitarios	Pares enlazantes
A.	0	2
B.	0	4
C.	2	4
D.	2	2

- 11. ¿Qué compuesto tiene mayor punto de ebullición?
 - A. CH₃CHO
 - B. CH₃CH₂F
 - C. CH₃OCH₃
 - D. CH₃CH₂NH₂
- 12. ¿Qué molécula es polar?
 - A. BeCl₂
 - B. BCl₃
 - C. NCl₃
 - D. CCl₄

13. Considere las siguientes reacciones:

$$\begin{aligned} &\text{Fe}_2\text{O}_3(\text{s}) + \text{CO}(\text{g}) \rightarrow 2\text{FeO}(\text{s}) + \text{CO}_2(\text{g}) & \Delta H^\ominus = -3\,\text{kJ} \\ &\text{Fe}(\text{s}) + \text{CO}_2(\text{g}) \rightarrow \text{FeO}(\text{s}) + \text{CO}(\text{g}) & \Delta H^\ominus = +11\,\text{kJ} \end{aligned}$$

¿Cuál es el valor de ΔH^{\ominus} , en kJ, para la siguiente reacción?

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

- A. -25
- B. -14
- C. +8
- D. +19
- 14. ¿Qué es correcto cuando el Ba(OH)₂ reacciona con NH₄Cl?

$$Ba(OH)_{2}(s) + 2NH_{4}Cl(s) \rightarrow BaCl_{2}(aq) + 2NH_{3}(g) + 2H_{2}O(l)$$
 $\Delta H^{\Theta} = +164 \text{ kJ mol}^{-1}$

	Temperatura	Entalpía	Estabilidad
A.	aumenta	la entalpía de los productos es menor que la de los reactivos	los productos son menos estables que los reactivos
B.	disminuye	la entalpía de los productos es menor que la de los reactivos	los productos son más estables que los reactivos
C.	disminuye	la entalpía de los productos es mayor que la de los reactivos	los productos son menos estables que los reactivos
D.	aumenta	la entalpía de los productos es mayor que la de los reactivos	los productos son más estables que los reactivos

15. Considere la siguiente reacción:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

	Entalpías de enlace / kJ mol ⁻¹ (a 298 K)
H–H	x
N≡N	y
N–H	Z

¿Qué cálculo nos da ΔH^{\ominus} , en kJ, para la reacción directa?

- A. 2z y 3x
- B. y + 3x 2z
- C. y + 3x 6z
- D. 6z y 3x

16. Muestras de carbonato de sodio en polvo se hicieron reaccionar por separado con muestras de ácido clorhídrico en exceso.

$$Na_2CO_3(s) + 2HCl(aq) \rightarrow CO_2(g) + 2NaCl(aq) + H_2O(l)$$

Reacción I: se añadió $1.0 \,\mathrm{g} \,\mathrm{Na_2CO_3}(\mathrm{s})$ a HCl (aq) $0.50 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ Reacción II: se añadió $1.0 \,\mathrm{g} \,\mathrm{Na_2CO_3}(\mathrm{s})$ a HCl (aq) $2.0 \,\mathrm{mol}\,\mathrm{dm}^{-3}$

¿Qué es igual para las reacciones I y II?

- A. La velocidad inicial de reacción
- B. La masa total de CO₂ producido
- C. El tiempo total de reacción
- D. La velocidad media de producción de CO₂

- 17. ¿Qué disminuye la energía de activación de una reacción?
 - A. Aumento de la temperatura
 - B. Añadido de un catalizador
 - C. Añadido de más reactivos
 - D. Aumento de la frecuencia de colisión de los reactivos
- 18. Considere la reacción:

$$2N_2O(g) \rightleftharpoons 2N_2(g) + O_2(g)$$

Los valores de $K_{\rm c}$ a diferentes temperaturas son:

Temperatura / K	K _c
838	$1,10 \times 10^{-3}$
1001	$3,80 \times 10^{-1}$
1030	$8,71 \times 10^{-1}$
1053	1,67

¿Qué enunciado es correcto a mayor temperatura?

- A. Se favorece la reacción directa.
- B. Se favorece la reacción inversa.
- C. La velocidad de la reacción inversa es mayor que la velocidad de la reacción directa.
- D. La concentración de ambos, reactivos y productos, aumenta.
- 19. ¿Qué dos especies actúan como ácidos de Brønsted-Lowry en la reacción?

$$H_2PO_4^-(aq) + OH^-(aq) \rightleftharpoons HPO_4^{2-}(aq) + H_2O(l)$$

- A. $HPO_4^{2-}(aq) y OH^-(aq)$
- B. $H_2PO_4^-(aq) y HPO_4^{2-}(aq)$
- C. $HPO_4^{2-}(aq) y H_2O(l)$
- D. $H_2PO_4^-(aq) y H_2O(l)$

20. ¿Cuál es el orden creciente de pH para las siguientes soluciones de la misma concentración?

A.
$$HCl(aq) < NH_3(aq) < NaOH(aq) < CH_3COOH(aq)$$

B.
$$CH_3COOH(aq) < HCl(aq) < NH_3(aq) < NaOH(aq)$$

C.
$$HCl(aq) < CH_3COOH(aq) < NH_3(aq) < NaOH(aq)$$

D.
$$NaOH(aq) < NH_3(aq) < CH_3COOH(aq) < HCl(aq)$$

21. ¿Qué es correcto para la reacción?

$$P_4(s) + 3H_2O(l) + 3OH^-(aq) \rightarrow PH_3(g) + 3H_2PO_2^-(aq)$$

	Agente oxidante	Agente reductor
A.	H ₂ O	P_4
B.	$P_{\scriptscriptstyle{4}}$	OH⁻
C.	OH ⁻	P ₄
D.	P ₄	P ₄

22. ¿Cuál describe el flujo de electrones en una pila voltaica?

- A. Desde el cátodo (electrodo positivo) hacia el ánodo (electrodo negativo) a través del circuito externo
- B. Desde el ánodo (electrodo negativo) hacia el cátodo (electrodo positivo) a través del circuito externo
- C. Desde el agente oxidante hacia el agente reductor a través del puente salino
- D. Desde el agente reductor hacia el agente oxidante a través del puente salino

23. ¿Cuál representa una reducción?

A.
$$SO_3 a SO_4^{2-}$$

B.
$$Mn_2O_3$$
 a MnO_2

C.
$$H_2O_2$$
 a OH^-

- **24.** ¿Qué compuestos provocan la variación de color de púrpura a incoloro en el manganato (VII) de potasio acidificado?
 - I. CH₃CH₂CH₂CH₃OH
 - II. (CH₃)₃CCH₂OH
 - III. CH₃CH₂CH(OH)CH₃
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **25.** ¿Cuál es el orden creciente de puntos de ebullición para los isómeros del C₅H₁₂?
 - A. $CH_3CH_2CH_2CH_3 < CH_3CH(CH_3)CH_2CH_3 < CH_3C(CH_3)_3$
 - B. $CH_3C(CH_3)_3 < CH_3CH(CH_3)CH_2CH_3 < CH_3CH_2CH_2CH_2CH_3$
 - C. $CH_3C(CH_3)_3 < CH_3CH_2CH_2CH_2CH_3 < CH_3CH(CH_3)CH_2CH_3$
 - D. $CH_3CH(CH_3)CH_2CH_3 < CH_3C(CH_3)_3 < CH_3CH_2CH_2CH_2CH_3$
- 26. ¿Qué es correcto para el benceno?
 - A. Sufre fácilmente reacciones de adición y decolora al agua de bromo.
 - B. Contiene enlaces carbono-carbono simples y dobles alternos y es plano.
 - C. Su espectro de RMN de ¹H presenta seis señales y sufre fácilmente reacciones de sustitución.
 - D. Su espectro de RMN de ¹H presenta una única señal y forma un único isómero C_eH_eBr.
- 27. ¿Qué compuestos reaccionan para formar CH₃CH₂CH₂COOCH(CH₃)₂?
 - A. ácido propanoico y 2-propanol
 - B. ácido propanoico y 2-butanol
 - C. ácido butanoico y 1-propanol
 - D. ácido butanoico y 2-propanol

- **28.** ¿Qué es correcto para los espectros de los compuestos orgánicos?
 - A. La espectroscopía de masas proporciona información sobre las vibraciones de los enlaces.
 - B. La espectroscopía de RMN de ¹H proporciona los valores de las longitudes de enlace carbono-hidrógeno.
 - C. La espectroscopía infrarroja proporciona el número de átomos de hidrógeno.
 - D. La espectroscopía de masas proporciona información sobre la estructura.
- **29.** ¿Cuál es la relación de las áreas debajo de cada señal en el espectro de RMN de ¹H del 2-metilbutano?
 - A. 6:1:2:3
 - B. 3:3:1:5
 - C. 6:1:5
 - D. 3:3:1:2:3
- **30.** ¿Cuáles son las incertidumbres absoluta y porcentual para el cambio de masa?

Masa inicial: $22,35 \pm 0,05 g$ Masa final: $42,35 \pm 0,05 g$

	Incertidumbre absoluta / g	Incertidumbre porcentual
A.	±0,05	0,1%
B.	±0,10	0,5%
C.	±0,05	0,5%
D.	±0,10	0,1%