Análise Matemática Gleberson Antunes

22 de Setembro de 2023

Compilado de todas as minhas soluções, da parte de Análise Real, das Provas de Admissão ao Mestrado em Matemática na UFSM. As resoluções são desprentesiosas e são sujeitas à erros.

Sugestões e correções são bem-vindas e podem ser enviadas para glebersonset@gmail.com. Outras soluções podem ser encontradas em minha página Gleberson Antunes.

Sumário

Sumário		
1	Prova de Seleção para o Mestrado em Matemática 2009.1	2
2	Prova de Seleção para o Mestrado em Matemática 2010.1	9
3	Prova de Seleção para o Mestrado em Matemática 2011.1	13
4	Prova de Seleção para o Mestrado em Matemática 2011.1 (Curso de	
	Verão - Prova 1)	19
5	Prova de Seleção para o Mestrado em Matemática 2011.1 (Curso de	
	Verão - Prova 2)	29
6	Prova de Seleção para o Mestrado em Matemática 2012.1	34
7	Prova de Seleção para o Mestrado em Matemática 2013.1	42

1 Prova de Seleção para o Mestrado em Matemática 2009.1

22 de Setembro de 2023

Exercício 1. Responda Verdadeiro (V) ou Falso (F) nos intens abaixo, justificando suas respostas.

- (a) Seja $A \subset \mathbb{R}$ tal que A possui um elemento máximo a. Então sup A = a.
- (b) A sequência $a_n = \sqrt{n+1} \sqrt{n}, n \ge 1, n \in \mathbb{N}$ é convergente.
- (c) Seja $f:[-L,L] \longrightarrow \mathbb{R},\, L>0$ uma função par. Então

$$\int_{-L}^{L} f(x)dx = 2\int_{0}^{L} f(x)dx.$$

(d)
$$\lim_{x \to 0^+} \left[\cos\left(\frac{1}{x}\right) \right] = 1.$$

Demonstração.

- (a) Verdadeiro. Óbvio.
- (b) Verdadeiro. Basta notar que, para todo $n \in \mathbb{N}$, temos

$$\sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \longrightarrow 0.$$

(c) Sabemos que

$$\int_{-L}^{L} f(x)dx = \int_{-L}^{0} f(x)dx + \int_{0}^{L} f(x)dx$$
$$= \int_{-L}^{0} f(-x)dx + \int_{0}^{L} f(x)dx$$

Tomando u=-x, obtemos du=-dx. Note que $x=-L \Rightarrow u=L.$ Assim, temos

$$\int_{-L}^{L} f(x)dx = -\int_{L}^{0} f(u)du + \int_{0}^{L} f(x)dx$$
$$= \int_{0}^{L} f(u)du + \int_{0}^{L} f(x)dx$$
$$= 2\int_{0}^{L} f(x)dx.$$

(d) Falso. Suponhamos que a afirmação seja verdade. Então, para toda sequência de pontos $x_n \in [0, \infty) - \{0\}$ que é tal que $x_n \longrightarrow 0$, $\cos\left(\frac{1}{x_n}\right) \longrightarrow 1$. Considere então as sequências $\left(\frac{1}{2n\pi}\right)$ e $\left(\frac{2}{\pi + 4n\pi}\right)$, que claramente convergem para 0. Note porém que

$$cos\left(\frac{1}{\frac{1}{2n\pi}}\right) = cos(2n\pi) \longrightarrow 1,$$

 \mathbf{e}

$$cos\left(\frac{1}{\frac{2}{\pi+4n\pi}}\right) = cos\left(\frac{\pi}{2} + 2n\pi\right) \longrightarrow 0,$$

o que é absurdo. $\hfill\Box$

Exercício 2.

(a) Prove que

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \frac{3}{4}$$

.

(b) Prove que $\forall a, b \in \mathbb{R}$ vale $|\sin b - \sin a| \le |b - a|$.

Demonstração.

(a) Podemos decompor $\frac{1}{n(n+2)}$ em frações parciais. Nesse caso teríamos

$$\frac{1}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2}$$

$$\Rightarrow \frac{1}{n(n+2)} = \frac{A(n+2) + Bn}{n(n+2)} = \frac{(A+B)n + 2A}{n(n+2)}$$

$$A + B = 0$$

$$A = \frac{1}{2}$$

$$\Rightarrow B - \frac{1}{2}.$$
(1)

Assim

$$\frac{1}{n(n+1)} = \frac{1}{2n} - \frac{1}{2(n+2)}.$$

Notemos que

$$\left(\frac{1}{2} - \frac{1}{6}\right) + \left(\frac{1}{4} - \frac{1}{8}\right) + \left(\frac{1}{6} - \frac{1}{10}\right) + \left(\frac{1}{8} - \frac{1}{12}\right) + \dots + \left(\frac{1}{2(n-2)} - \frac{1}{2n}\right) + \left(\frac{1}{2(n-1)} - \frac{1}{2(n+1)}\right) \\ + \left(\frac{1}{2n} - \frac{1}{2(n+2)}\right) + \left(\frac{1}{2(n+1)} - \frac{1}{2(n+3)}\right)$$

$$= \frac{1}{2} + \frac{1}{4} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)}.$$

Segue daí que

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \lim_{x \to \infty} \frac{1}{2} + \frac{1}{4} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}.$$

(b) Sabemos que a função

$$sin: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto sin(x),$$

é derivável em toda reta. Escolhamos dois números reais a e b arbitrários. Tome então o intervalo fechado [a,b] (poderá ser [b,a] ou consitirá em um único ponto, dependendo da escolha desses números). O **Teorema do Valor Médio** nos garante que existe $c \in (a,b)$ tal que

$$\frac{\sin b - \sin a}{b - a} = \cos c.$$

Em módulo temos que

$$\left| \frac{\sin b - \sin a}{b - a} \right| = |\cos c| \le 1$$

$$\Rightarrow |sin \ b - sin \ a| \le |b - a|,$$

como queríamos provar.

Exercício 3.

- (a) Mostre que $e^x \ge 1 + x$, para todo x real não negativo.
- (b) Mostre que a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por

$$f(x) = \begin{cases} x^3 sin(\frac{1}{x}), & \text{se } x \neq 0. \\ 0, & \text{se } x = 0. \end{cases}$$

é derivável com derivada primeira contínua.

(c) Seja $f:[a,b] \longrightarrow \mathbb{R}$ contínua. Mostre que existe $c \in (a,b)$ tal que

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Demonstração.

(a) Notemos que

$$e^x \ge 1 + x \Leftrightarrow x \ge ln(1+x).$$

Provaremos a segunda afirmação, e portanto, a equivalência. Sabemos que a função

$$ln: (0, \infty) \longrightarrow \mathbb{R}$$

 $x \longmapsto \int_{1}^{x} \frac{1}{t} dt,$

é monótona crescente e derivável. Para todo $x \in (0, \infty)$ o **Teorema do Valor Médio** nos garante que existe $c \in (1, 1+x)$ tal que

$$\frac{ln(1+x) - ln(1)}{(x+1) - 1} = \frac{1}{c} < 1.$$

$$\frac{\ln(1+x)}{x} = \frac{1}{c} < 1.$$

$$\Rightarrow ln(1+x) < x.$$

Segue daí que

$$1 + x < e^x,$$

para todo $x \in (0, \infty)$.

(b) Se $x \neq 0$, então

$$f'(x) = -x \cdot cos\left(\frac{1}{x}\right) + 3x^2 \cdot sin\left(\frac{1}{x}\right)$$

Se x = 0, então

$$\lim_{x \to 0} \frac{x^3 \cdot \sin\left(\frac{1}{x}\right)}{x - 0} = \lim_{x \to 0} \frac{x^3 \cdot \sin\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} x^2 \cdot \sin\left(\frac{1}{x}\right) = 0.$$

Provaremos agora que f'(x) é contínua. Considere então a função

$$f'(x) = \begin{cases} -x \cdot \cos\left(\frac{1}{x}\right) + 3x^2 \cdot \sin\left(\frac{1}{x}\right), & \text{se } x \neq 0. \\ 0, & \text{se } x = 0. \end{cases}$$

Se $x \neq 0$, então

$$f''(x) = \frac{\sin\left(\frac{1}{x}\right)}{x} - 4 \cdot \cos\left(\frac{1}{x}\right) + 6x \cdot \sin\left(\frac{1}{x}\right).$$

Se x=0, então

$$\lim_{x \to 0} -x \cdot \cos\left(\frac{1}{x}\right) + 3x^2 \cdot \sin\left(\frac{1}{x}\right) - f'(0) = 0,$$

uma fez que $\sin\left(\frac{1}{x}\right)$ e $\cos\left(\frac{1}{x}\right)$ são funções limitadas. Logo f' é contínua em \mathbb{R} . Isso se dá pois f' é derivável em todo ponto $x \neq 0$, e daí ela será contínua em $\mathbb{R} - 0$. Por outro lado, $\lim_{x\longrightarrow 0} f'(x) = f'(0)$ nos garante a continuidade de f' no ponto x = 0.

(c) Sabemos que toda função contínua é integrável. Pelo **Teorema Fundamental do Cálculo**, sabemos que toda função contínua possui uma primitiva. Considere então a função

$$F: [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_{a}^{x} f(x) dx.$$

Essa função é contínua e derivável, com F'(x) = f(x), para todo $x \in [a, b]$. Pelo **Teorema do Valor Médio**, existe $c \in (a, b)$ tal que

$$\frac{1}{b-a} \cdot \left(\int_a^b f(x) dx - \int_a^a f(x) dx \right) = F'(c)$$

$$\Rightarrow \frac{1}{b-a} \cdot \left(\int_a^b f(x)dx - 0 \right) = f(c)$$

$$\Rightarrow \int_{a}^{b} f(x)dx = f(c)(b-a).$$

2 Prova de Seleção para o Mestrado em Matemática 2010.1

Exercício 1. Seja $\{a_n\}$ uma sequência dada recursivamente por $a_1 = \sqrt{3}$ e $a_n = \sqrt{3 + a_{n-1}}$, n > 1. Mostrar que $\{a_n\}$ é convergente. Calcule $\lim_{n \to \infty} a_n$.

Demonstração. Facilmente verificamos que (a_n) é uma sequência monótona crescente. Provaremos agora que ela é limitada e, portanto, é convergente. Por indução, temos que:

Para $n=1,\ a_1=\sqrt{3}<10.$ Suponhamos então que essa afirmação é válida para um certo n>1, isto é, $a_n<10.$ Então

$$3 + a_n < 3 + 10$$

 $\Rightarrow a_{n+1} = \sqrt{3 + a_n} < \sqrt{3 + 10} < 10.$

Logo (a_n) é limitada. Seja $S=\lim a_n=\sqrt{3+\sqrt{3+\sqrt{3+\sqrt{\dots}}}}\;$. Note que

$$S^2 = 3 + \underbrace{\sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{\dots}}}}}_{S} .$$

Então

$$S^2 - S - 3 = 0,$$

e daí as possíveis soluções são:

$$S_{1,2} = \frac{1 \pm \sqrt{13}}{2}.$$

Como (a_n) é uma sequência estritamente positiva, temos que $S = \frac{1 + \sqrt{13}}{2}$.

Exercício 2.

- (a) Seja A um subconjunto de \mathbb{R} , caracterize ponto interior e ponto de fronteira de A.
- (b) Sejam A = [a, b] um intervalo fechado e $f : A \longrightarrow A$ um função contínua. Mostre que f tem um ponto fixo em A, ou seja, existe $c \in A$ tal que f(c) = c.
- (c) Sejam $I \subset \mathbb{R}$ um intervalo de \mathbb{R} e $f: I \longrightarrow \mathbb{R}$ uma função contínua. Mostre que se f'(x) = 0 para todo x no interior de I, então f é constante.

Demonstração.

(a)

Definição. Diremos que $a \in A$ é um ponto interior de A quando existe $\varepsilon > 0$ tal que

$$(a - \varepsilon, a + \varepsilon) \subset A$$
.

Definição. Diremos que $a \in \mathbb{R}$ é um ponto de fronteira de A quando para todo $\varepsilon > 0$, temos que

$$(a-\varepsilon, a+\varepsilon) \cap A \neq \emptyset$$
 e $(a-\varepsilon, a+\varepsilon) \cap (\mathbb{R}-A) \neq \emptyset$.

(b) Consideremos a função contínua

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x - f(x).$$

Como $a \leq f(a)$ e $f(b) \leq b$, devemos ter

$$a - f(a) \le 0 \le b - f(b).$$

Se for a-f(a)=0 ou b-f(b)=0, então f possui um ponto fixo. Do contrário, sendo a-f(a)<0< b-f(b), o **Teorema do Valor Intermediário** nos garante que existe um ponto $c\in [a,b]$ tal que

$$c - f(c) = 0$$

$$\Rightarrow f(c) = c.$$

Logo f possui um ponto fixo.

(c) Para todo $x \in [a, b)$, o **Teorema do Valor Médio**, nos garante que existe $d \in (a, x)$ tal que

$$\frac{f(x) - f(a)}{x - a} = f'(d) = 0$$

$$\Rightarrow f(x) - f(a) = 0$$

$$\Rightarrow f(x) = f(a).$$

Como f(a) = f(b) por esse mesmo teorema, temos que f deve ser constante.

Exercício 3. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{1}{2} + |x|^3 \sin\left(\frac{1}{x}\right), & \text{se } x \neq 0.\\ k, & \text{se } x = 0. \end{cases}$$

- (a) Qual o valor de k que torna f contínua.
- (b) A função f, como k escolhido no item anterior, é derivável?

Demonstração.

(a) f será contínua quando $\lim_{x\to 0} f(x) = f(0)$. Nesse caso, se tomarmos $k=\frac{1}{2}$, teríamos

$$\lim_{x \to 0} \frac{1}{2} + |x|^3 \sin\left(\frac{1}{x}\right) = \lim_{x \to 0} \frac{1}{2} + \lim_{x \to 0} |x|^3 \sin\left(\frac{1}{x}\right) = \frac{1}{2} = f(0).$$

(b) Se $x \neq 0$, então

$$f'(x) = -|x|^3 \cdot \cos\left(\frac{1}{x}\right) \cdot \frac{1}{x^2} + \sin\left(\frac{1}{x}\right) \cdot \frac{3x^5}{|x|^3}$$
$$= -|x| \cdot \cos\left(\frac{1}{x}\right) + |x| \cdot x \cdot \sin\left(\frac{1}{x}\right).$$

Se x=0, então

$$\lim_{x \to 0} \frac{\frac{1}{2} + |x|^3 sin\left(\frac{1}{x}\right) - \frac{1}{2}}{x - 0} = \lim_{x \to 0} \frac{|x|^3 sin\left(\frac{1}{x}\right)}{x}$$

$$= \lim_{x \to 0} \frac{x^2 \cdot |x| sin\left(\frac{1}{x}\right)}{x}$$

$$= \lim_{x \to 0} x \cdot |x| sin\left(\frac{1}{x}\right)$$

$$= 0.$$

Logo f será derivável.

3 Prova de Seleção para o Mestrado em Matemática 2011.1

Exercício 1. Faça o gráfico da função $y = \frac{x}{\sqrt{x^2 + 1}}$. Prove que sua imagem é o intervalo |y| < 1. Prove que ela é injetiva e calcule sua inversa.

Demonstração. Sabemos que uma função é injetiva se, e somente se, possui inversa à esquerda. Consideremos a função

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{x}{\sqrt{x^2 + 1}}.$$

Note que

$$y = \frac{x}{\sqrt{x^2 + 1}}$$

$$\Rightarrow y^2(x^2 + 1) = x^2$$

$$\Rightarrow y^2 = x^2 - y^2x^2$$

$$\Rightarrow y^2 = (1 - y^2)x^2$$

$$\Rightarrow x^2 = \frac{y^2}{1 - y^2}$$

$$\Rightarrow x = \frac{y}{\sqrt{1 - y^2}}.$$

Daí

$$\frac{\frac{x}{\sqrt{x^2 + 1}}}{\sqrt{1 - \left(\frac{x}{\sqrt{x^2 + 1}}\right)^2}} = \frac{\frac{x}{\sqrt{x^2 + 1}}}{\sqrt{\frac{1}{x^2 + 1}}}$$

$$= \frac{\frac{x}{\sqrt{x^2 + 1}}}{\frac{1}{\sqrt{x^2 + 1}}}$$

$$= \frac{x}{\sqrt{x^2 + 1}} \cdot \frac{\sqrt{x^2 + 1}}{1}$$

$$= x.$$

Logo a função

$$g: (-1,1) \longrightarrow \mathbb{R}$$

$$y \longmapsto \frac{y}{\sqrt{1-y^2}},$$

é a inversa à esquerda de f. Consequentemente, Im f = (-1, 1).

Exercício 2. Considere o conjunto $X = \left\{1 - \frac{1}{3n^2}; n \in \mathbb{N}\right\}$.

- (a) Mostre que sup X = 1.
- (b) Mostre que a sequência $x_n = 1 \frac{1}{3n^2}$ converge para 1.

(c) O conjunto X é compacto em \mathbb{R} ? Justifique.

Demonstração. Provarei primeiramente (b) e depois (a).

(b) Sabemos que a sequência $z_n=\frac{1}{n}$ converge para 0. Daí

$$-\frac{1}{3n^2} = -\frac{1}{3} \cdot \left[\frac{1}{n} \cdot \frac{1}{n} \right] = -\frac{1}{3} \cdot [z_n \cdot z_n] \longrightarrow -\frac{1}{3} \cdot 0 \cdot 0 = 0.$$

Como a sequência constante $y_n = 1$ converge para 1, temos que

$$x_n = y_n - z_n = 1 - \frac{1}{3n^2} \longrightarrow 1 - 0 = 1.$$

(a) Notemos, inicialmente, que a sequência x_n é monótona limitada. Dados $m, n \in \mathbb{N}$, com m < n, teremos que

$$m < n \Rightarrow m^{2} < n^{2}$$

$$\Rightarrow \frac{1}{n^{2}} < \frac{1}{m^{2}}$$

$$\Rightarrow -\frac{1}{3m^{2}} < -\frac{1}{3n^{2}}$$

$$\Rightarrow 1 - \frac{1}{3m^{2}} < 1 - \frac{1}{3n^{2}}$$

$$= x_{m} < x_{n},$$

Logo (x_n) é monótona crescente. Como ela converge pelo item (b), temos que $1 = \sup X$, pois o conjunto X corresponde a imagem da sequência (x_n) e, como sabemos, toda sequência monótona crescente converge para o supremo do conjunto da sua imagem.

(c) Sabemos, pelo **Teorema de Heine-Borel**, que um conjunto é compacto em \mathbb{R} se, e somente se, é fechado e limitado. Notemos que

$$\overline{X} = X \cup \{1\}.$$

Note que X sequer é fechado. Logo não pode ser compacto.

Exercício 3. Prove que toda coleção de abertos dois a dois disjuntos e não vazio de \mathbb{R} é enumerável.

Demonstração. Seja $\{A_{\lambda}\}_{{\lambda}\in I}$ uma coleção arbitrária de abertos dois a dois disjuntos. Para cada $a\in A_{\lambda}$, existe um intervalo aberto $(a-\varepsilon,a+\varepsilon)$, com $\varepsilon>0$, tal que $a\in (a-\varepsilon,a+\varepsilon)\subset A_{\lambda}$.

Como \mathbb{Q} é denso em \mathbb{R} , todo intervalo aberto em \mathbb{R} contém um número racional. Para cada A_{λ} escolhamos um número racional $\lambda_r \in A_{\lambda}$. A aplicação

$$f \colon \{A_{\lambda}\}_{{\lambda} \in I} \longrightarrow \mathbb{Q}$$

 $A_{\lambda} \longmapsto \lambda_r,$

é injetiva. Logo $\{A_{\lambda}\}_{{\lambda}\in I}$ é enumerável.

Exercício 4. Identifique se as afirmações abaixo são verdadeiras ou falsas, justicando sua resposta:

- (a) Toda sequência monótona limitada é convergente.
- (b) Se $\sum_{n=1}^{\infty} |x_n|$ converge então $\sum_{n=1}^{\infty} x_n$ converge.
- (c) Se a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ é derivável em um ponto $c \in (a, b)$, e f'(c) = 0 então f tem um extremo relativo em c.
- (d) Se $X \subset \mathbb{Q}$ e X é limitado, então existe $b \in \mathbb{Q}$ tal que $b = \sup X$.
- (e) Toda função integrável à Riemann em [a, b] possui primitiva em [a, b].

Demonstração.

(a). Verdade. Isso se dá pelo **Teorema de Convergência Monótona**.

- (b). Verdade. Isso se dá pelo Critério de Cauchy para convergência de séries.
- (c). Falso. Considere a aplicação

$$f \colon [-1, 1] \longrightarrow \mathbb{R}$$

 $x \longmapsto x^3$.

Note que f'(0) = 0, mas f náo possui um extremo relativo em 0.

(e). Falso. Seja X a imagem da sequência

$$x_n = \left(1 + \frac{1}{n}\right)^n.$$

Essa sequência é monótona crescente e limitada. Portanto, converge, pelo **Teorema** de Convergência Monótona. Note que $x_n \longrightarrow e = \sup X$, mas $e \notin \mathbb{Q}$.

(e). Sabemos que: Se $f:I\longrightarrow\mathbb{R}$ é derivável em I então f' não admite descontinuidades de primeira espécie. Considere então a função $f:[1,3]\longrightarrow\mathbb{R}$ dada por

$$f(x) = \begin{cases} 0, & \text{se } x \notin \mathbb{N}. \\ 1, & \text{caso contrário.} \end{cases}$$

Não pode existir uma função $g:[a,b]\longrightarrow \mathbb{R}$ tal que g'=f, pois f admite descontinuidades de primeira espécie.

Exercício 5. Seja $f:[a,b] \longrightarrow \mathbb{R}$ derivável em (a,b) e contínua em [a,b], com f(a)=f(b). Mostre que existe um $c \in (a,b)$ tal que $f(c) \cdot f'(c)=0$.

Demonstração. O **Teorema do Valor Médio** nos garante que existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$\Rightarrow f(c) \cdot f'(c) = f(c) \cdot \frac{0}{b - a} = 0,$$

como queríamos.

4 Prova de Seleção para o Mestrado em Matemática 2011.1 (Curso de Verão - Prova 1)

Exercício 1. Mostre que o conjunto \mathbb{Q} dos números racionais é denso em \mathbb{R} .

Demonstração. Seja $(a,b)\subset \mathbb{R}$ não-degenerado. Como b-a>0, existe $p\in \mathbb{N}$ tal que

$$0 < \frac{1}{p} < b - a,$$

pois \mathbb{R} é arquimediano. Consideremos o conjunto

$$S = \left\{ m \in \mathbb{Z} \mid \frac{m}{p} \ge b \right\}.$$

Sabemos que: Todo conjunto de números inteiros limitado inferiormente possui um elemento mínimo.

No caso do conjunto S é fácil ver que se m pertence a S, então $m \ge bp$. Logo S é limitado inferiormente por bp (Isso não significa que bp é o elemento mínimo do conjunto S). Seja $m_0 = \min S$. Como $m_0 - 1 < m_0$, temos que

$$\frac{m_0 - 1}{p} < b.$$

Se fosse

$$\frac{m_0 - 1}{p} < a < b \le \frac{m_0}{p},$$

então

$$b - a < \frac{m_0}{p} - \frac{m_0 - 1}{p} = \frac{1}{p},$$

o que é absurdo. Logo

$$a < \frac{m_0 - 1}{p} < b$$

 $\Leftrightarrow \frac{m_0 - 1}{p} \in (a, b).$

Ou seja, todo intervalo aberto não-degenerado contém um número racional. Assim, \mathbb{Q} é denso em \mathbb{R} .

Exercícios 2. Considere $f, g: X \longrightarrow \mathbb{R}$ definidas em $X \subset \mathbb{R}$, com $X \neq \emptyset$.

- (a) Mostre que se f e g são não-negativas e limitadas superiormente, então fg: $X \longrightarrow \mathbb{R} \text{ \'e limitada superiormente e sup } (fg) \leq \sup f \cdot \sup g.$
- (b) Dê exemplos mostrando que pode ocorrer sup $(fg) < \sup f \cdot \sup g$.

Demonstração.

(a) Sejam $f, g: X \longrightarrow \mathbb{R}$ não-negativas e limitadas e $\alpha = \sup f(X)$ e $\beta = \sup g(X)$. Então

$$f(x) < \alpha \quad e \quad g(x) < \beta,$$

para todo $x \in X$. Segue daí que

$$fg(x) = f(x) \cdot g(x)$$

 $< \alpha \cdot \beta$
 $= \sup f \cdot \sup g$

Logo fg é limitada superiormente e sup $fg < \sup f \cdot \sup g$, como queríamos mostrar.

(b) Considere as funções $f,g:[0,1] \longrightarrow \mathbb{R}$ dadas por

$$f(x) = \begin{cases} 0, & \text{se } x \in [0, 1). \\ 1, & \text{se } x = 1. \end{cases}$$

e

$$g(x) = \begin{cases} 0, & \text{se } x \in (0, 1]. \\ 1, & \text{se } x = 0. \end{cases}$$

Note que sup $f = \sup g = 1 \text{ mas sup } fg = 0.$

Exercício 3. Seja (a_n) a sequência definida indutivamente por:

$$a_1 = \sqrt{2}$$
 e $a_{n+1} = \sqrt{2 + a_n}$, para $n > 1$.

- (a) Mostre, por indução, que $a_n < 2, \forall n \in \mathbb{N}$.
- (b) Mostre que (a_n) é crescente (sugestão: verifique que $a_{n+1}^2 a_n^2 = (2 a_n)(1 + a_n) > 0$, para $n \ge 1$, então $a_{n+1} > a_n$).
- (c) Conclua, pelos itens anteriores, que (a_n) é convergente e calcule seu limite.

Demonstração.

(a) Por indução, para n = 1, temos que

$$a_1 = \sqrt{2} < 2.$$

Suponhamos que a afirmação é válida para um certo n > 1, isto é,

$$a_n = \sqrt{2 + a_{n-1}} < 2.$$

Então

$$2 + a_n = 2 + \sqrt{2 + a_{n-1}} < 4,$$

o que implica que

$$a_{n+1} = \sqrt{2 + a_n} < \sqrt{4} = 2,$$

como queríamos provar.

(b) Notemos que, para todo $n \in \mathbb{N}$

$$a_{n+1}^2 - a_n^2 = 2 + a_n - a_n^2$$

= $(2 - a_n) \cdot (1 + a_n)$
> 0,

pois $0 < a_n < 2$. Como todos os termos da sequência (a_n) são positivos, segue daí que $a_n < a_{n+1}$.

(c) Os itens (a) e (b) nos garantem que a sequência (a_n) é monótona limitada. Segue do **Teorema de Convergência Monótona** que (a_n) é convergente. Seja

$$S = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\dots}}}}$$

$$\Rightarrow S^2 = 2 + \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\dots}}}}}_{S}.$$

Obtemos então a equação

$$S^2 - S - 2 = 0,$$

cujas soluções são: $S_1=-1$ e $S_2=2$. Como os termos da sequência são números positivos, devemos ter S=2. Logo lim $a_n=2$.

Exercício 4. Dizemos que (a_n) é uma sequência de Cauchy quando para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que

$$m, n > n_0 \Rightarrow |a_m - a_n| < \varepsilon.$$

- (a) Mostre que toda sequência convergente é de Cauchy.
- (b) Mostre que se uma sequência de Cauchy tem uma subsequência convergente então a sequência é convergente.
- (c) Mostre que toda sequência de Cauchy é limitada.
- (d) Conclua que uma sequência é convergente se, e somente se, a sequência é de Cauchy.

Demonstração.

(a) Seja $a = \lim a_n$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow |a_n - a| < \frac{\varepsilon}{2}.$$

Então, para todos $m, n > n_0$ temos que

$$|a_m - a_n| \le |a_m - a| + |a_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo (a_n) é uma sequência de Cauchy.

(b) Sejam (a_n) uma sequência de Cauchy e (a_{n_k}) uma subsequência de (a_n) convergente. Seja $a = \lim a_{n_k}$. Como (a_n) uma sequência de Cauchy, dado $\varepsilon > 0$, existe $n_1 \in \mathbb{N}$ tal que

$$m, n > n_1 \Rightarrow |a_m - a_n| < \frac{\varepsilon}{2}.$$

Da mesma maneira, como lim $a_{n_k}=a,$ dado $\varepsilon>0,$ existe $n_2\in\mathbb{N}$ tal que

$$n_k > n_2 \Rightarrow |a_{n_k} - a| < \frac{\varepsilon}{2}.$$

Tomando $n_0 = \max \{n_1, n_2\}$ teremos que

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo (a_n) converge para a.

(c) Seja (a_n) uma sequência de Cauchy. Tomando $\varepsilon=1,$ existirá $n_0\in\mathbb{N}$ tal que

$$m, n > n_0 \Rightarrow |a_m - a_n| < 1.$$

Fixando $n_0 + 1$ teremos que, para todo $n > n_0$

$$|a_n - a_{n0+1}| < 1$$

 $\Leftrightarrow a_n \in (a_{n0+1} - 1, a_{n0+1} + 1).$

Sejam α e β o maior e menor valor, respectivamente, do conjunto

$$X = \{a_1, a_2, ..., a_{n0}, a_{n0+1} - 1, a_{n0+1} + 1\}.$$

Então $a_n \in [\beta, \alpha]$ para todo $n \in \mathbb{N}$. Portanto (a_n) é uma sequência limitada.

- (d) Provaremos a recíproca do item (a). Seja (a_n) uma sequência de Cauchy. Pelo item
- (c), toda sequência de Cauchy é limitada. Pelo **Teorema de Bolzano Weierstrass**, toda sequência limitada admite uma subsequência convergente. Pelo item (b) temos que (a_n) é uma sequência convergente, pois admite uma subsequência convergente.

Exercício 5.

- (1) Considere duas sequências de números reais não-negativos (a_n) e (b_n) tais que $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, para algum c > 0. Mostre que $\sum a_n$ converge se, e somente se, $\sum b_n$ converge.
- (2) Use o resultado anterior para estudar a convergência das séries $\sum \frac{2n+1}{(n+1)^2}$ e $\sum \frac{1}{2^n-1}$.

Demonstração.

(1). Tomemos $\varepsilon = \frac{c}{2}$. Existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow \left| \frac{a_n}{b_n} - c \right| < \frac{c}{2}$$

$$\Leftrightarrow \frac{c}{2} < \frac{a_n}{b_n} < \frac{3c}{2}. *$$

 (\Rightarrow) Suponhamos que $\sum a_n$ converge. Então, invertendo a desigualdade * temos que

$$\frac{b_n}{a_n} < \frac{2}{c}$$

$$\Rightarrow b_n < \frac{2}{c} \cdot a_n$$

Como $\sum a_n$ converge, temos que $\sum \frac{2}{c} \cdot a_n$ também convergirá. Segue do **Teste da** Comparação que $\sum b_n$ converge.

- (⇐) Análogo.
- (2) Não consegui resolver manualmente. Olhando o WolframAlpha verificamos que

Limit
$$\lim_{n \to \infty} \frac{(n+1)^2}{(2^n-1)(2n+1)} = 0$$

$$\lim_{n \to \infty} \frac{(2n+1)(2^n-1)}{(n+1)^2} = \infty$$

o que, salvo o melhor juízo, não nos dá nenhuma informação. Note também que

Input

$$\sum_{n=1}^{\infty}\frac{1}{2^n-1}$$

Infinite sum

$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1} = \frac{\log(2) - \psi_{\frac{1}{2}}^{(0)}(1)}{\log(2)} \approx 1.6066$$

Sum convergence

$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$
 converges

Infinite sum

$$\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$$
 diverges to ∞

(Não entendi nada.)

Exercício 6.

- (a) Considere o conjunto $Y=(1,2)\cup\{0,3,4\}\cup\{\frac{1}{n}:n\in\mathbb{N}\}$. Encontre int $Y\in\overline{Y}$. Além disso diga se Y é aberto, fechado ou nem aberto nem fechado. Justifique.
- (b) Prove que se $K \subset \mathbb{R}$ é compacto então o conjunto

$$S = \{x + y : x, y \in K\}$$

também é compacto.

(c) Dados $A, B \subset \mathbb{R}$ mostre que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Dê um exemplo em que $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

Demonstração.

(a) Por definição, int Y é o maior aberto que está contido em Y. Nesse sentido, temos que int Y = (1,2). Sabemos que

$$\overline{A \cup B} = \overline{A} \cup \overline{B}.$$

Então

$$\overline{Y} = \overline{(1,2) \cup \{0,3,4\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}} = \overline{(1,2)} \cup \overline{\{0,3,4\}} \cup \overline{\left\{\frac{1}{n} : n \in \mathbb{N}\right\}}$$

$$= [1,2] \cup \{0,3,4\} \cup \left\{\left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0\}\right\}$$

$$= [1,2] \cup \{0,3,4\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}.$$

Note que Y não é aberto nem fechado.

(b) Sabemos que: Um conjunto S é compacto se, e somente se, toda sequência de pontos de S admite uma subsequência que converge para um ponto de S.

Seja (a_n) uma sequência de pontos de S. Para todo $n \in \mathbb{N}$ temos que

$$a_n = x_n + y_n$$

onde $x_n, y_n \in K$. Considere então as sequências (x_n) e (y_n) . Como elas são sequências de um conjunto compacto K, ambas admitem subsequências (x_{n_k}) e (y_{n_k}) , respectivamente, que convergem para algum ponto de K. Segue daí que

$$a_{n_k} = x_{n_k} + y_{n_k},$$

é uma subsequência de (a_n) que converge para algum ponto de S. Logo S é compacto.

(c) Consideremos os conjuntos (0,1) e (1,2). Note que

$$\overline{(0,1) \ \cap \ (1,2)} \ = \ \overline{\emptyset} \ = \ \emptyset,$$

e

$$\overline{(0,1)} \ \cap \ \overline{(1,2)} \ = \ [0,1] \ \cap \ [1,2] \ = \ \{1\}.$$

5 Prova de Seleção para o Mestrado em Matemática 2011.1 (Curso de Verão - Prova 2)

Exercício 1. Seja $f: X \longrightarrow \mathbb{R}$ definida em $X \subset \mathbb{R}$ e $a \in X'$.

Demonstração. Suponhamos que não exista

$$L = \lim_{x \to a} f(x).$$

Fixemos $L \in \mathbb{R}$. Existe então $\varepsilon > 0$ tal que para todo $n \in \mathbb{N}$ podemos obter $x_n \in X$ com

$$0 < |x_n - a| < \frac{1}{n}$$
 e $|f(x_n) - L| \ge \varepsilon$.

Então $x_n \longrightarrow a$ e $f(x_n) \not\longrightarrow L$. Como L é arbitrário, essa sequência diverge.

Exercício 2. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua que se anula nos racionais. Prove que f é identicamente nula.

Demonstração. Seja $a \in \mathbb{R}$. Como \mathbb{Q} é denso em \mathbb{R} , podemos montar uma sequência (x_n) de números racionais que converge para a. Segue da continuidade de f que

$$x_n \longrightarrow a \Rightarrow 0 = f(x_n) \longrightarrow f(a).$$

Como o limite de uma sequência sempre é único, e $f(x_n) = 0$, para todo $x_n \in \mathbb{Q}$, temos que f(a) = 0. Logo f é identicamente nula.

Exercício 3. Seja $f: I \longrightarrow \mathbb{R}$ uma função com derivada crescente (decrescente) no intervalo I de \mathbb{R} . Prove que qualquer reta tangente ao gráfico de f só toca esse gráfico no ponto de tangência.

Demonstração. Suponhamos que dado um ponto $a \in I$, a reta g, tangente ao ponto (a, f(a)), corta o gráfico de f em um outro ponto (b, f(b)). SPG, suponhamos a < b. Temos então que

$$f'(a) = \frac{g(b) - g(a)}{b - a} = \frac{f(b) - f(a)}{b - a}.$$

Como f é contínua em [a,b] e derivável em (a,b), o **Teorema do Valor Médio** nos garante que existe um ponto $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Mas aí f'(a) = f'(c) com a < c. Isso é um absurdo pois a derivada é crescente (o mesmo argumento serve para o caso em que a derivada é decrescente).

Exercício 4. Considere uma função contínua $f:I\longrightarrow\mathbb{R}$ definida no intervalo $I\subset\mathbb{R}$. Mostre que se a imagem de f é conjunto enumerável então f é constante.

Demonstração. Suponhamos, por absurdo, que f não seja constante. Então Im(f) consta de pelo menos dois elementos. Sejam $f(\alpha), f(\beta) \in Im(f)$ distintos. SPG, suponhamos $f(\alpha) < f(\beta)$. Segue da continuidade de f e do **Teorema do Valor Intermediário** que o intervalo

$$[f(\alpha), f(\beta)] \subset Im(f).$$

O que é absurdo, uma vez que Im(f) é um conjunto enumerável e, consequentemente, todos os seus subconjuntos são enumeráveis.

Exercício 5. Encontre um contra exemplo para cada uma das seguintes afirmações, justificando sua resposta. Aqui I é um intervalo de \mathbb{R} .

- (a) Se $f: I \longrightarrow \mathbb{R}$ é tal que para algum $a \in \operatorname{int}(I)$ tem-se f'(a) = 0, então a é um ponto máximo ou mínimo local de f.
- (b) Se $f: I \longrightarrow \mathbb{R}$ tal que f tem um ponto de máximo ou mínimo local em $a \in I$ e f é derivável em a, então f'(a) = 0.
- (c) Se $f: I \longrightarrow \mathbb{R}$ é tal que f tem um ponto de máximo ou de mínimo local em $a \in \text{int}(I)$ e f é derivável em a, então f'(a) = 0.
- (d) Se $f: I \longrightarrow \mathbb{R}$ é derivável e crescente então f'(x) > 0 para todo $x \in I$.
- (e) Se $f:[a,b] \longrightarrow \mathbb{R}$ é integrável então existe $g:[a,b] \longrightarrow \mathbb{R}$ tal que g'=f.

Demonstração.

- (a) Consideremos a função $f: [-1,1] \longrightarrow \mathbb{R}$ dada por $f(x) = x^3$. Note que f'(0) = 0, mas 0 não é um mínimo local de f.
- (b) $f: [-1,1] \longrightarrow \mathbb{R}$ dada por $f(x) = x^3$. Note que -1 é um mínimo local de f e f'(-1) = 3.
- (c) Isso aqui é verdade.
- (d) Consideremos a função $f:[0,1] \longrightarrow \mathbb{R}$ dada por $f(x)=x^3$. Note que f é crescente mas f'(0)=0.
- (e). Sabemos que: Se $f:I\longrightarrow\mathbb{R}$ é derivável em I então f' não admite descontinuidades de primeira espécie. Considere então a função $f:[1,3]\longrightarrow\mathbb{R}$ dada por

$$f(x) = \begin{cases} 0, & \text{se } x \notin \mathbb{N}. \\ 1, & \text{caso contrário.} \end{cases}$$

Não pode existir uma função $g:[a,b]\longrightarrow \mathbb{R}$ tal que g'=f, pois f admite descontinuidades de primeira espécie. \Box

Exercício 6. Mostre que se $f:[a,b]\longrightarrow \mathbb{R}$ é contínua, $f\geq 0$ e f(c)>0 para algum $c\in [a,b]$ então $\int\limits_a^b f(x)dx>0$.

Demonstração. Sendo f contínua em ce sendo f(c)>0,existe uma vizinhança de c de raio $\delta>0$ tal que

$$|x-c| < \delta \Rightarrow f(x) > \frac{f(c)}{2},$$

pelo Teorema da Conservação de Sinal. Seja $[\beta_1, \beta_2] \subset (c - \delta, c + \delta) \subset [a, b]$. Então

$$0 < \frac{f(c)(\beta_2 - \beta_1)}{2} \le \int_{\beta_1}^{\beta_2} f(x) dx.$$

Daí

$$\int_{a}^{b} f(x)dx = \int_{a}^{\beta_{1}} f(x)dx + \int_{\beta_{1}}^{\beta_{2}} f(x)dx + \int_{\beta_{2}}^{b} f(x)dx > 0,$$

uma vez que

$$\int_{a}^{\beta_1} f(x)dx, \int_{\beta_2}^{b} f(x)dx \ge 0$$

.

Exercício 7. Seja $f:[a,b] \longrightarrow \mathbb{R}$ derivável, com f' integrável. Prove que para quaisquer $x,c \in [a,b]$ tem-se

$$f(x) = f(c) + \int_{c}^{x} f'(t)dt.$$

Demonstração. Fixado $c \in [a, b]$, considere a função

$$g: [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto f(c) + \int_{c}^{x} f'(t)dt.$

Sabemos que duas funções são iguais se, e somente se, possuem o mesmo domínio, o mesmo contradomínio e a mesma lei de formação. Note agora que, para todo $\alpha \in [a,b]$, temos

$$f(\alpha) = f(c) + \int_{c}^{\alpha} f'(t)dt$$

$$= f(c) + f(\alpha) - f(c) \text{ (Pelo Teorema Fundamental do Calculo)}$$

$$= f(\alpha).$$

Logo f = g. Assim,

$$f(x) = f(c) + \int_{c}^{x} f'(t)dt,$$

para quaisquer $x, c \in [a, b]$.

6 Prova de Seleção para o Mestrado em Matemática 2012.1

Exercício 1.

- (a) Defina o que vem a ser um conjunto enumerável em \mathbb{R} .
- (b) Mostre que se A e B são conjuntos enumeráveis de \mathbb{R} então $A \cup B$ é enumerável.

Demonstração.

- (a) Um conjunto $X\subset\mathbb{R}$ é dito enumerável se é finito ou se está em bijeção com o conjunto \mathbb{N} dos números naturais.
- (b) Sabemos que
 - (a) Se X é um conjunto enumerável e $f: X \longrightarrow Y$ é uma função sobrejetiva, então Y é enumerável.
 - (b) O produto cartesiano finito de conjuntos enumeráveis é enumerável.

Como A e B são conjuntos enumeráveis, existem funções sobrejetivas $f_1: \mathbb{N} \longrightarrow A$ e $f_2: \mathbb{N} \longrightarrow B$. Como $\{1,2\}$ e \mathbb{N} são conjuntos enumeráveis, o conjunto $\{1,2\} \times \mathbb{N}$ é enumerável. Considere então a função

$$f: \{1, 2\} \times \mathbb{N} \longrightarrow A \cup B$$

 $(m, n) \longmapsto f_m(n).$

Notemos que essa função é sobrejetiva. Se tomarmos $x \in A \cup B$ então $x \in A$ ou $x \in B$. Se $x \in A$ então existe $n \in \mathbb{N}$ tal que

$$f(1,m) = f_1(n) = x.$$

Da mesma maneira, se $x \in B$ então existe $m \in \mathbb{N}$ tal que

$$f(2,m) = f_2(m) = x.$$

Logo f é sobrejetiva. Segue do item (a) que $A \cup B$ é um conjunto enumerável.

Provaremos os seguintes lemas antes de darmos início a resolução da questão 2.

Lema 1. Toda sequência de Cauchy é limitada.

Demonstração. Seja (a_n) uma sequência de Cauchy. Tomando $\varepsilon=1$, existirá $n_0\in\mathbb{N}$ tal que

$$m, n > n_0 \Rightarrow |a_m - a_n| < 1.$$

+ Fixando $n_0 + 1$ teremos que, para todo $n > n_0$

$$|a_n - a_{n0+1}| < 1$$

 $\Leftrightarrow a_n \in (a_{n0+1} - 1, a_{n0+1} + 1).$

Sejam α e β o maior e menor valor, respectivamente, do conjunto

$$X = \{a_1, a_2, ..., a_{n0}, a_{n0+1} - 1, a_{n0+1} + 1\}.$$

Então $a_n \in [\beta, \alpha]$ para todo $n \in \mathbb{N}$. Portanto (a_n) é uma sequência limitada.

Lema 2. Se uma sequência de Cauchy admite uma subsequência convergente, então ela própria é convergente.

Demonstração. Sejam (a_n) uma sequência de Cauchy e (a_{n_k}) uma subsequência de (a_n) convergente. Seja $a=\lim a_{n_k}$. Como (a_n) uma sequência de Cauchy, dado $\varepsilon>0$, existe $n_1\in\mathbb{N}$ tal que

$$m, n > n_1 \implies |a_m - a_n| < \frac{\varepsilon}{2}.$$

Da mesma maneira, como lim $a_{n_k}=a,$ dado $\varepsilon>0,$ existe $n_2\in\mathbb{N}$ tal que

$$n_k > n_2 \implies |a_{n_k} - a| < \frac{\varepsilon}{2}.$$

Tomando $n_0 = \max \{n_1, n_2\}$ teremos que

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo (a_n) converge para a.

Exercício 2. Uma sequência $(x_n)_n \subset \mathbb{R}$ é dita sequência de Cauchy se para cada $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que se $n, m \ge n_0$ então $|x_n - x_m| < \varepsilon$.

- (a) Mostre que se $(x_n)_n$ é convergente então $(x_n)_n$ é uma sequência de Cauchy.
- (b) Mostre que se $(x_n)_n$ é uma sequência de Cauchy então $(x_n)_n$ é convergente.

Demonstração.

(a) Seja $a = \lim a_n$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow |a_n - a| < \frac{\varepsilon}{2}.$$

Então, para todos $m, n > n_0$ temos que

$$|a_m - a_n| \le |a_m - a| + |a_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo (a_n) é uma sequência de Cauchy.

(b) Provaremos a recíproca do item (a). Seja (a_n) uma sequência de Cauchy. Pelo **Lema 1** temos que toda sequência de Cauchy é limitada. Pelo **Teorema de Bolzano** - **Weierstrass**, toda sequência limitada admite uma subsequência convergente. Pelo **Lema 2** temos que (a_n) é uma sequência convergente, pois admite uma subsequência convergente.

Exercício 3. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 + \frac{1}{q}, & \text{se } x = \frac{p}{q} \in \mathbb{Q}. \\ 1, & \text{caso contrário.} \end{cases}$$

- (a) Mostre que f é contínua em $\mathbb{R} \setminus \mathbb{Q}$ e é descontínua em \mathbb{Q} .
- (b) A função f é integrável em [0,1]? Justifique!

Demonstração.

(a) Seja $\frac{p}{q}$ um número racional. Consideremos a sequência $\frac{p}{q}+\frac{1}{n}.$ É claro que

$$\frac{p}{q} + \frac{1}{n} \longrightarrow \frac{p}{q},$$

e

$$f\left(\frac{p}{q} + \frac{1}{n}\right) = f\left(\frac{np+q}{qn}\right) = 1 + \frac{1}{qn} \longrightarrow 1.$$

Note porém que

$$f\left(\frac{p}{q}\right) = 1 + \frac{1}{q}.$$

Logo f é descontínua em $\frac{p}{q}$. Como f é arbitrário, temos que f é descontínua em \mathbb{Q} .

Sabemos que se $x \in \mathbb{R} \setminus \mathbb{Q}$ e $\left(\frac{p_n}{q_n}\right) \subset \mathbb{Q}$ é tal que $\frac{p_n}{q_n} \longrightarrow x$, então $q_n \longrightarrow \infty$.

Sejam i um número irracional e (x_n) uma sequência de pontos em \mathbb{R} que converge para i. Se (x_n) constar apenas de números irracionais, então

$$1 = f(x_n) \longrightarrow f(i) = 1.$$

Se (x_n) for da forma $x_n = \frac{p_n}{q_n}$ onde p_n e q_n são inteiros , então

$$f\left(\frac{p_n}{q_n}\right) = 1 + \frac{1}{q_n} \longrightarrow 1.$$

Por fim, se (x_n) consta de termos racionais e irracionais, então para n suficientemente grande, a sequência congervirá para 1. Logo f é contínua em $\mathbb{R} \setminus \mathbb{Q}$.

(b) Sabemos que uma função $f:[a,b] \longrightarrow \mathbb{R}$ é integrável se, e somente se, o conjunto dos seus pontos de descontinuidade tem medida nula. Como sabemos, \mathbb{Q} é enumerável e, portanto, tem medida nula. Como f é descontínua em \mathbb{Q} , temos que f é integrável.

Exercício 4. Suponha que $f:[0,\infty)\longrightarrow\mathbb{R}$ seja derivável, com f(0)=0, e que $f':(0,\infty)\longrightarrow\mathbb{R}$ seja crescente. Mostre que a função $g:(0,\infty)\longrightarrow\mathbb{R}$ definida por $g(x)=\frac{f(x)}{x}$ é crescente em $(0,\infty)$.

Demonstração. Sabemos que se uma função possui derivada positiva em todos os pontos de um intervalo I então ela é crescente em I. Provaremos agora que a derivada da função g é positiva no intervalo $(0, \infty)$.

Dado x > 0, existe $c \in (0, x)$ tal que

$$\frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0} = f'(c).$$

Como f' é crescente, e x > c, temos que

$$f'(x) > f'(c)$$

$$f'(x) > \frac{f(x)}{x}$$

$$\Rightarrow f'(x) \cdot x > f(x)$$

$$\Rightarrow f'(x) \cdot x - f(x) > 0$$

$$\Rightarrow \frac{f'(x) \cdot x - f(x)}{x^2} > 0,$$

para todo $x \in (0, \infty)$. Como

$$g'(x) = \frac{f'(x) \cdot x - f(x)}{r^2},$$

g é uma função crescente. Exercício 5.

- (a) Sejam $f, g : [a, b] \longrightarrow \mathbb{R}$ contínuas, com g(a) < f(a) e f(b) < g(b). Mostre que existe $c \in (a, b)$ tal que f(c) = g(c).
- (b) Sendo $D = \mathbb{R} \setminus \{\pm k\pi : k \in \mathbb{N}\}$, através do item (a) mostre que a função $h: D \longrightarrow \mathbb{R}$ definida por $h(x) = x \cot g(x)$ possui infinitas raízes.

Demonstração.

(a) Consideremos a função contínua

$$g - f \colon [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto g(x) - f(x).$$

Notemos que

Plots

$$g(a) - f(a) < 0$$
 e $g(b) - f(b) > 0$.

Segue do **Teorema do Valor Intermediário** que existe $c \in (a, b)$ tal que

$$g(c) - f(c) = 0$$

 $\Leftrightarrow g(c) = f(c).$

(b) (Não consegui resolver essa). Olhando o Wolfram Alpha vemos que de fato existem infinitas raízes

Posso estar enganado, mas essa questão parecer ser do tipo que foi elaborada para ninguém acertar, com base nesse link: Closed form of cotx = x.

Exercício 6. Seja $f:[a,b]\longrightarrow \mathbb{R}$ contínua. Mostre que f é integrável em [a,b].

Demonstração. O Critério de Riemann para integrabilidade nos garante que uma função limitada $f:[a,b] \longrightarrow \mathbb{R}$ é Riemann-integrável se, e somente se, para qualquer $\varepsilon > 0$ existe uma partição P de [a,b] (que pode depender de ε) que é tal que $S(f;P) - s(f;P) < \varepsilon$. Sabemos também que toda função $f:[a,b] \longrightarrow \mathbb{R}$ contínua é uniformemente contínua.

Dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{b-a}.$$

Seja $P = \{a = a_1, a_2, ..., a_n = b\}$ uma partição de [a, b] tal que todos os intervalos $[a_{i-1}, a_i]$ tem comprimento menor que δ . Como f é contínua, o **Teorema de Weierstrass** nos garante que f atinge seus extremos em cada um desses intervalos $[a_{i-1}, a_i]$. Sejam $m_i = \min f([a_{i-1}, a_i])$ e $M_i = \max f([a_{i-1}, a_i])$ e $w_i = M_i - m_i$. Segue daí que

$$S(f; P) - s(f; P) = \sum_{i=1}^{n} w_i(t_i - t_{i-1})$$

$$< \sum_{i=1}^{n} \frac{\varepsilon}{b - a} \cdot (t_i - t_{i-1})$$

$$= \varepsilon.$$

Logo f é integrável.

7 Prova de Seleção para o Mestrado em Matemática 2013.1

Exercício 1.

- (a) Dê a definição de conjunto aberto em \mathbb{R} e de conjunto fechado em \mathbb{R} .
- (b) Mostre que se $A \subset \mathbb{R}$ é aberto, então $\mathbb{R} A$ é fechado.
- (c) O que é a fronteira ∂X de um conjunto $X \subset \mathbb{R}$?
- (d) Dê exemplo de um conjunto X em que ∂X é aberto em \mathbb{R} .

Demonstração.

(a) **Definição 1.** Seja $X \subset \mathbb{R}$. Diremos que $x \in X$ é um ponto interior de X quando existe $\varepsilon > 0$ tal que

$$(x-\varepsilon,x+\varepsilon)\subset X.$$

Definição 2 (Conjunto aberto) Um conjunto $X \subset \mathbb{R}$ é dito aberto quando todos os seus pontos são pontos interiores.

Definição 3 (Conjunto fechado) Um conjunto $F \subset \mathbb{R}$ é dito fechado quando toda sequência convergente de pontos de F converge para algum ponto de F.

(b) Suponhamos que $\mathbb{R} - A$ não é fechado. Então existe uma sequência (f_n) de pontos de F que converge para algum ponto fora de F. Seja $x = \lim_n f_n$. Então $x \in A$. Como A é aberto, existe $\varepsilon > 0$ tal que

$$(x-\varepsilon,x+\varepsilon)\subset A.$$

Como (f_n) é convergente, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \implies |f_n - x| < \varepsilon$$

 $\Leftrightarrow f_n \in (x - \varepsilon, x + \varepsilon) \subset A,$

o que é absurdo. Logo $\mathbb{R} - A$ é fechado.

(c) Seja $X\subset\mathbb{R}$. Diremos que $x\in\mathbb{R}$ é um ponto de ponto de fronteira de X quando, para todo $\varepsilon>0$, temos que

$$(x - \varepsilon, x + \varepsilon) \cap X \neq \emptyset$$
 e $(x - \varepsilon, x + \varepsilon) \cap X^c \neq \emptyset$.

Denotamos por ∂X o conjunto de todos os pontos de fronteira de X e o chamaremos de fronteira de X.

(d) Sabemos que um conjunto A é aberto se, e somente se, $A \cap \partial A = \emptyset$. Como \mathbb{R} é aberto, temos que

$$\mathbb{R} \cap \partial \mathbb{R} = \emptyset$$
$$\Rightarrow \partial \mathbb{R} = \emptyset.$$

uma vez que $\partial \mathbb{R} \subset \mathbb{R}$. Como sabemos, \emptyset é um aberto de \mathbb{R} .

Exercício 2.

- (a) Prove que toda sequência de números reais monótona e limitada é convergente.
- (b) Considere a sequência $(a_n)_{n\in\mathbb{N}}$ definida recursivamente por

$$a_1 = \sqrt{2}, \ a_n = \sqrt{2 + a_{n-1}}, \ n > 1$$

Prove que $(a_n)_{n\in\mathbb{N}}$ é convergente e calcule o seu limite.

Demonstração.

(a) Sem perda de generalidade, suponhamos que $(a_n)_{n\in\mathbb{N}}$ é uma sequência nãodecrescente. Seja $\alpha = \sup\{a_n; n \in \mathbb{N}\}$. Afirmamos que $\alpha = \lim a_n$. Dado $\varepsilon > 0$, temos que $\alpha - \varepsilon$ não é cota superior de $\{a_n; n \in \mathbb{N}\}$. Sendo assim, existe $n_0 \in \mathbb{N}$ tal que

$$\alpha - \varepsilon < a_{n0}$$
.

Como $(a_n)_{n\in\mathbb{N}}$ é uma sequência não-decrescente, temos que

$$\alpha - \varepsilon < a_n < a < a + \varepsilon$$

para todo $n > n_0$. Ou seja

$$n > n_0 \Rightarrow |a_n - \alpha| < \varepsilon.$$

Logo $a_n \longrightarrow \alpha$.

- (b) Provaremos os itens (c) e (d) para concluir que $(a_n)_{n\in\mathbb{N}}$ é convergente.
- (c) $a_n < 2$, para todo $n \in \mathbb{N}$.

Por indução, para n=1, temos que

$$a_1 = \sqrt{2} < 2.$$

Suponhamos que a afirmação é válida para um certo n > 1, isto é,

$$a_n = \sqrt{2 + a_{n-1}} < 2.$$

Então

$$2 + a_n = 2 + \sqrt{2 + a_{n-1}} < 4,$$

o que implica que

$$a_{n+1} = \sqrt{2 + a_n} < \sqrt{4} = 2,$$

como queríamos provar.

(d) $(a_n)_{n\in\mathbb{N}}$ é uma sequência crescente.

Notemos que, para todo $n \in \mathbb{N}$

$$a_{n+1}^2 - a_n^2 = 2 + a_n - a_n^2$$

= $(2 - a_n) \cdot (1 + a_n)$
> 0,

pois $0 < a_n < 2$. Como todos os termos da sequência $(a_n)_{n \in \mathbb{N}}$ são positivos, segue daí que $a_n < a_{n+1}$. Os itens (c) e (d) nos garantem que a sequência $(a_n)_{n \in \mathbb{N}}$ é monótona limitada. Segue do item (a) que $(a_n)_{n \in \mathbb{N}}$ é uma sequência convergente. Seja

$$S = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\dots}}}}$$

$$\Rightarrow S^2 = 2 + \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{\dots}}}}_{S}.$$

Obtemos então a equação

$$S^2 - S - 2 = 0,$$

cujas soluções são: $S_1=-1$ e $S_2=2$. Como os termos da sequência são números positivos, devemos ter S=2. Logo lim $a_n=2$.

Exercício 3. Sejam $f, g: [a, b] \longrightarrow \mathbb{R}$ funções contínuas e deriváveis em [a, b]. Mostre que:

- (a) Se f(a) = f(b), então existe $c \in (a, b)$ onde f'(c) = 0.
- (b) Se f(a) = g(a) e f(b) = g(b), então existe $c \in (a, b)$ onde f'(c) = g'(c).

Demonstração.

(a) Se f é contínua e derivável em [a,b] então existe, pelo **Teorema do Valor** Médio, $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$= \frac{f(a) - f(a)}{b - a}$$
$$= 0.$$

(b) Novamente, pelo **Teorema do Valor Médio**, existe $c \in (a, b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$= \frac{g(b) - g(a)}{b - a}$$
$$= g'(c).$$

Exercício 4. Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função limitada integrável. Defina

$$F(x) = \int_{a}^{x} f(t)dt, \ x \in [a, b].$$

- (a) Mostre que F é contínua em [a, b].
- (b) Prove que se f é contínua em $x_0 \in (a, b)$ então F é derivável em x_0 e $F'(x_0) = f(x_0)$.

(c) Seja $g:[0,\infty)\longrightarrow \mathbb{R}$ definida por $g(x)=\int_0^x e^{-t^2}dt$. Mostre que g é estritamente crescente.

Demonstração.

(a) Seja $\alpha > 0$ tal que $|f(x)| < \alpha$, para todo $x \in [a, b]$. Dados $x, y \in [a, b]$ temos que

$$\begin{vmatrix}
F(x) - F(y) &| = \left| \int_{a}^{x} f(t)dt - \int_{a}^{y} f(t)dt \right| \\
&= \left| \int_{y}^{x} f(t)dt \right| \\
&\leq \int_{y}^{x} \left| f(t)dt \right| \\
&\leq \alpha \cdot |x - y|.$$

Ou seja, F é lipschitiziana e, portanto, é contínua.

(b) Dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|t-c| < \delta \Rightarrow |f(t)-f(c)| < \varepsilon.$$

Então, se $0 < h < \delta$ e $c + h \in [a, b]$ temos que

$$\int_{c}^{c+h} f(t)dt = F(c+h) - F(c)$$
 e $hf(c) = \int_{c}^{c+h} f(c)dt$.

Note que

$$\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| = \frac{1}{h} \cdot \left| \int_{c}^{c+h} \left[f(t) - f(c) \right] dt \right|$$

$$\leq \frac{1}{h} \cdot \int_{c}^{c+h} \left| f(t) - f(c) \right| dt$$

$$\leq \frac{1}{h} \cdot \varepsilon \cdot h$$

$$= \varepsilon.$$

Logo F é derivável a direita e vale $F'_{+}(c) = f(c)$. De forma análoga provamos que F e derivável a esquerda e vale $F'_{-}(c) = f(c)$. Assim, concluimos que F'(c) = f(c).

(c) Sabemos, pelo Teorema Fundamental do Cálculo, que

$$g'(x) = e^{-x^2} = \frac{1}{e^{x^2}}.$$

Como g'(x) > 0 para todo $x \in [a, b]$, temos que g é estritamente crescente.

Exercício 5.

(a) Prove que é uniformemente convergente, em $[0,\infty)$, a série

$$\sum_{n=1}^{\infty} x^n e^{-nx}.$$

(b) O que se pode afirmar da função $g(x) = \sum_{n=1}^{\infty} x^n e^{-nx}$?

De monstração.

(a) Sabemos que

$$e^x > 1 + x$$
.

Sendo assim

$$1 > \frac{x}{e^x},$$

para todo $x \in [0, \infty)$. Podemos escrever a série como sendo

$$\sum_{n=1}^{\infty} x^n e^{-nx} = \sum_{n=1}^{\infty} \frac{x^n}{e^{nx}}$$

$$= \sum_{n=1}^{\infty} \left[\frac{x}{e^x} \right]^n$$

$$= \sum_{n=1}^{\infty} \frac{x}{e^x} \cdot \left[\frac{x}{e^x} \right]^{n-1}$$

$$= \frac{x}{e^x} \cdot \frac{1}{1 - \frac{x}{e^x}}$$

$$= \frac{x}{e^x - x}.$$

Como é uma série de termos positivos e claramente converge, então é uma série uniformemente convergente.

(b) É contínua. Consequentemente, é integrável.