Комбинаторика и теория графов. Лекция 9 Шаруева Полина Петровна студентка группы 0371

Алгоритм Форда-Беллмана

A: 3B, 1C B: 4C C: 1B

пути из А:	Α	В	C
v	0	∞	\propto
1 шаг - релаксируем:	0	3	\propto
длина пути из А в В: 3	0	3	1
$0+3<\infty\Rightarrow$ записываем в таблицу	0	2	1

2 шаг - релаксируем: длина пути из A в C: 1 $0{+}1 < \infty \Rightarrow$ записываем в таблицу

3 шаг: длина пути из B в C: 4 $4{+}3 < 1$ - не верно \Rightarrow не записываем в таблицу

4 шаг - релаксируем: длина пути из С в В: 3 $1+1 < 3 \Rightarrow$ записываем в таблицу

 $n=3\Rightarrow n$ - 1=2 раза цикл релаксации AB, AC, BC, CB - нет улучшений

Ответ: A - 0, B - 2, C - 1

Алгоритм Форда-Беллмана

Теорема: В конце массива d содержит расстояния от A

Доказательство: После і-го релаксации всех рёбер, d хранит $d(v) \leqslant \min$ длин путей, в которых \leqslant і рёбер

Действительно. \emph{B} аза: i=0 min (пути из 0 рёбер) - только A-A d(A)=0 $d(u)=\infty$

 Π ереход: \square есть оптимальный путь из i+1 ребра

По предположению:

$$d(C) = d(B) + (A, C)$$

- длина пути A - C - B = $\operatorname{dist}(C) + \operatorname{Bec}(CB)$ * $\operatorname{d}(C) = \operatorname{dist}(C)$

Проверка:

 $d(C) + веc(CB) \leqslant d(B)$ - верно, т.к. путь оптимальный $\Rightarrow d(B) = d(C) + веc(CB)$

(путь после второй релаксации будет равен 2)

Почему n - 1 этап?

Оптимальный путь не содержит цикл

Замечание:

Мы вычисляем только расстояния, но путь неизвестен. Как восстанавливать пути?

Будем сохранять информацию об успешных релаксациях Prev - массив вершин

Если релаксация $\overset{\bullet}{\mathsf{u}}\overset{\bullet}{\mathsf{v}}$ успешная, то $\mathrm{Prex}[\mathsf{v}]=\mathsf{u}$ (оптимальный путь в v лежит через u)

Восстанавливаем путь в В

$$A \rightarrow C \rightarrow B$$

*
$$A - prev(C) ; C - prev(B)$$

В общем случае путь $A \to v$ это:

$$A \rightarrow ... \rightarrow prev(prev) \rightarrow prev(v) \rightarrow v$$

Алгоритм Дейкстры

В отличие от ФБ требует, чтобы все веса $w(e) \geqslant 0$

Алгоритм:

Дан граф
$$G = (V, E), A \in V$$

Найти расстояние до всех вершин d(u) = dist(A, u)

$$d(A)=0$$
 $d(u \neq A)=\infty$ - обработанные вершины

Повторяем n раз: (n = V) - вершины

Выбрать $u \in V \setminus P$, где $d(u) \to \min$ (из необработанных $\min(d)$) for $e \in$ ребра из U, e(u, v) релаксируем ребро e $P = P_v \{U\}$

Пример:

Эффективность: IVI*IEI*logIVI

Корректность:

Идея: на каждом шаге $d(u) = \min$ путей

База:

Шаг =
$$0 d(A) = 0 d(u) = \infty$$

Переход:

Р - обработанные

А
О
О
необработанные вершины

Выбираем $u=\min$ вершин из $V\smallsetminus\{P\}$

 \sqsupset есть оптимальный путь в u: A - ... - \overline{u} - ... - u

По предположению, $\begin{aligned} \operatorname{dist}(\overline{u}) &= \operatorname{d}(\overline{u}) \\ \uparrow \\ \operatorname{dist}(u) \\ \uparrow \\ \operatorname{d}(u) &\Rightarrow \operatorname{d}(u) > \operatorname{d}(\overline{u}) \Rightarrow ?? \text{- противоречие} \\ \operatorname{d}(u) \text{ был min} \end{aligned}$

 \sqsupset оптимальный путь в V идет $\operatorname{dist}(A,\,u)=w(u,\,v)=\operatorname{dist}(A,\,v)$ через u

 \Rightarrow релаксация u \rightarrow v успешная, и d(v) получит расстояние. Ч.т.д.

Для восстановления пути.

Нужен аналогичный Prev.

- успешная релаксация
$$\stackrel{\bullet}{\mathsf{u}}$$
 $\overset{\bullet}{\mathsf{v}}$ $\mathsf{Prev}[\mathsf{v}] = \mathsf{u}$