7.5有向无环图及其应用--关键路径

有向图表示工程计划,顶点表示事件, 孤表示活动,弧上的权值表示完成一项活动需要的时间--AOE网

AOE网的性质

- 只有在某顶点代表的事件发生后,从该顶点发出去的弧所代表的各项活动才能 开始
- 只有进入某顶点的各条弧所代表的活动 都已经结束,该顶点所代表的事件才能 发生

表示实际工程计划的AOE网应该是无环的,在正常情况下存在唯一的开始顶点(源点)和唯一的完成顶点(汇点)。

有9个事件 $(v_1,v_2,...,v_9)$ 、11项活动 $(a_1,a_2,...,a_{11})$ AOE网。 v_1 表示整个工程的开始, v_9 表示整个工程的结束。 v_5 表示活动 a_4 和 a_5 已经完成,活动 a_7 和 a_8 可以开始。AOE网中有些活动可以并行进行,如 a_1 、 a_2 、 a_3 。但有些活动却不能并行进行,如 a_1 和 a_4 ,只有在 a_1 活动完成之后, a_4 才可以开始。

AOE网的路径长

度等于这条路径上 完成各个活动所需 的时间之和。

AOE网有待研究的问题完成各的时间

- 完成整项工程至少需要多少时间?
- ■哪些活动是影响工程进度的关键? AOE网中的某些活动可以并行进行, 完成工程的最短时间是从开始顶点到 完成顶点的最长路径长度。路径长度 最长的路径为关键路径。关键路径上 所有活动都叫做关键活动。

求解关键路径和关键活动通过事件的最早、最迟发生时间、活动的最早、最迟发生时间完成。

事件的最早发生时间

- 一维数组ve[]保存每一事件的最早发生时间
- 事件v_i的最早发生时间ve[i]是从开始顶点v₁到顶点v_i的最长路径长度。
- 各事件(顶点)最早发生时间的计算方法:
- 》从开始顶点 v_1 出发,令ve[1]=0,按<mark>柘扑有序求</mark> 其余各顶点的最早发生时间ve[k]($2\leq k\leq n$)
- $ve[k]=\max\{ve[j]+\operatorname{dut}(\langle j,k\rangle)\}$
- > dut(<j,k>)表示活动<j,k>的所需的时间

事件允许的最晚发生时间

- 一维数组v/[]保存每一事件允许的最晚发生时间
- 事件 v_i 允许的最晚发生时间v'[i]是在保证完成顶点 v_n 在ve[n]时刻发生的前提下,事件 v_i 允许发生的最晚时间,它等于ve[n]减去 v_i 到 v_n 的最长路径长度。
- 事件允许的最晚发生时间的计算方法:
- 》从完成顶点 v_n 出发,令vl[n]=ve[n],按逆拓扑有序求其余各顶点的允许的最晚发生时间vl[i] $(n-1\geq i\geq 1)$
- $vl[i]=\min\{vl[k]-\text{dut}(\langle i,k \rangle): \langle i,k \rangle \in S\}$
- ▶ 其中S是以顶点v_i为弧尾的所有弧的集合。

活动最早发生时间

- 一维数组e []保存每一活动的最早发生时间
- 设活动 a_i 用弧 $\langle v_j, v_k \rangle$ 表示,与 a_i 相联系的权值 $\mathrm{dut}(\langle j,k \rangle)$ 用表示,则 a_i 的可能的最早开始时间e[i]等于事件 v_j 可能的最早发生时间ve[j]。

活动允许的最晚开始时间

■ 设活动 a_i 用弧 $\langle v_j, v_k \rangle$ 表示,与 a_i 相联系的权值 $\operatorname{dut}(\langle j,k \rangle)$ 用表示,则活动 a_i 允许的最晚开始时间l[i]等于事件 v_k 允许的最晚发生时间vl[k]- $\operatorname{dut}(\langle j,k \rangle)$ 。

- *l[i]-e[i]*就是在不增加完成工作所需的总时间的情况下,活动可以延迟的时间。若*l[i]=e[i]*,则活动*a_i*为关键活动。
- *l[i]-e[i]>0*的活动不为关键活动。

顶点	Ve[i]	4 Vl[i]
1	0	0
2	6	6
3	4	6
4	5	8
5	7	7
6	7	10
7	16	16
8	14	14
9	18	18

关键话

动: $a_1.a_4,a_7,a_8,a_{10},$

 a_{11} .

关键路径:

 $(v_1, v_2, v_5, v_7, v_9)$ 和 $(v_1, v_2, v_5, v_8, v_9)$ 。 完成整个工程至少需要18

活动	e[i]	l[i]	l-e
\mathbf{a}_1	0	0	0
$\mathbf{a_2}$	0	2	2
\mathbf{a}_3	0	3	3
$\mathbf{a_4}$	6	6	0
\mathbf{a}_{5}	4	6	2
\mathbf{a}_6	5	8	3
a ₇	7	7	0
$\mathbf{a_8}$	7	7	0
\mathbf{a}_9	7	10	3
a ₁₀	16	16	0
a ₁₁	14	14	0

说明

- (1)关键路径上所有的活动都是关键活动。因此提前完成非关键活动并不能加快工程的速度。
 - (2) 网络中的关键路径并不唯一,对于有几条关键路径的网来说,仅仅提高某一条关键路径上关键活动的速度,是不能缩短整个工程工期的,而必须同时提高几条关键路径上关键活动的速度。

所以,并不是网中任何一个关键活动的提前完成,整个工程都能提前完成。