STA 371G: Statistics and Modeling

Time Series: Modeling Seasonality

Mingyuan Zhou McCombs School of Business The University of Texas at Austin

http://mingyuanzhou.github.io/STA371G

- Many time-series data exhibit some sort of seasonality
- ► The simplest solution is to add a set of dummy variables to deal with the "seasonal effects"

 $Y_t = \text{monthly U.S. beer production (in millions of barrels)}.$

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.959010553					
R Square	0.919701241					
Adjusted R Square	0.904979802					
Standard Error	0.588667988					
Observations	72					

ANOVA

	df	SS	MS	F	Significance F
Regression		11 238.138728	21.649	62.47359609	1.20595E-28
Residual		60 20.7918	0.34653		
Total		71 258.930528			

	0#:-:	Named From	1.01-1	D	1 050/	11050/
	Coefficients	Standard Erro	t Stat	P-value	Lower 95%	Upper 95%
Intercept	13.24166667	0.2403227	55.0995	4.32368E-53	12.7609497	13.72238
X Variable 1	1.911666667	0.33986762	5.62474	5.15088E-07	1.23183021	2.591503
X Variable 2	1.693333333	0.33986762	4.98233	5.64079E-06	1.013496877	2.37317
X Variable 3	3.936666667	0.33986762	11.5829	6.13313E-17	3.25683021	4.616503
X Variable 4	3.983333333	0.33986762	11.7202	3.74305E-17	3.303496877	4.66317
X Variable 5	5.083333333	0.33986762	14.9568	6.59589E-22	4.403496877	5.76317
X Variable 6	5.19	0.33986762	15.2707	2.44866E-22	4.510163543	5.869836
X Variable 7	4.978333333	0.33986762	14.6479	1.77048E-21	4.298496877	5.65817
X Variable 8	4.581666667	0.33986762	13.4807	8.22861E-20	3.90183021	5.261503
X Variable 9	2.016666667	0.33986762	5.93368	1.58522E-07	1.33683021	2.696503
X Variable 10	1.923333333	0.33986762	5.65907	4.52211E-07	1.243496877	2.60317
X Variable 11	0.118333333	0.33986762	0.34817	0.728927584	-0.561503123	0.79817

What would our future predictions look like?

Okay... good enough.

Still, no obvious problems...

Fisher river daily temperatures Jan.1988-Dec.1991

Residual plot for a seasonal model

$$Y_t = \beta_0 + \beta_1 * Jan + \cdots + \beta_{11} * Nov + \epsilon_t$$

Fitted results

Residual plot for a seasonal & autoregressive model

$$Y_t = \beta_0 + \beta_1 * Jan + \cdots + \beta_{11} * Nov + \beta_{12} Y_{t-1} + \epsilon_t$$

Fitted results

Milk production in lbs per cow per month Jan 1962 - Dec 1975

Milk (lbs) per cow per month Jan.1962-Dec.1975

Residual plot for a trend model $Y_t = \beta_0 + \beta_1 t + \epsilon_t$

Residual plot for a trend & seasonal model

$$Y_t = \beta_0 + \beta_1 t + \beta_2 * Jan + \cdots + \beta_{12} * Nov + \epsilon_t$$

The residuals are still highly autocorrelated!

Series model\$res

Residual plot for a trend & seasonal & autoregressive model $Y_t = \beta_0 + \beta_1 t + \beta_2 * Jan + \cdots + \beta_{12} * Nov + \beta_{13} Y_{t-1} + \epsilon_t$

Can we further improve the model?

Can you guess what are these plots? How shall we improve the model?

Fitted values for a trend & seasonal & autoregressive model $Y_t = \beta_0 + \beta_1 t + \beta_2 * Jan + \cdots + \beta_{12} * Nov + \beta_{13} Y_{t-1} + \epsilon_t$

Monthly passengers in the U.S. airline industry (in 1,000 of passengers) from 1949 to 1960... we need to predict the number of passengers in the next couple of months.

Any ideas?

How about a "trend model"? $Y_t = \beta_0 + \beta_1 t + \epsilon_t$

What do you think?

Let's look at the residuals...

Is there any obvious pattern here? YES!!

The variance of the residuals seems to be growing in time... Let's try taking the log. $\log(Y_t)=\beta_0+\beta_1 t+\epsilon_t$

Any better?

Residuals...

Still we can see some obvious temporal/seasonal pattern....

Okay, let's add dummy variables for months (only 11 dummies)... $log(Y_t) = \beta_0 + \beta_1 t + \beta_2 Jan + ... \beta_{12} Nov + \epsilon_t$

Much better!!

Residuals...

I am still not happy... it doesn't look normal iid to me...

I was right! The residuals are dependent on time...

We have one more tool... let's add one legged term.

$$\log(Y_t) = \beta_0 + \beta_1 t + \beta_2 Jan + ...\beta_{12} Nov + \beta_{13} \log(Y_{t-1}) + \epsilon_t$$

Okay, good...

Residuals...

Much better!!

Much better indeed!!

Summary

Whenever working with time series data we need to look for dependencies over time.

We can deal with lots of types of dependencies by using regression models... our tools are:

- trends
- lags
- seasonal dummies