Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 15: Karhunen-Loeve expansion

15.1 Integral equation

Karhune-Loeve expansion provides a finite dimensional approximation of a stochastic process.

In this lecture note, we consider a real-valued stochastic process.

- ▶ For $t \in T$, let $u(\omega, t)$ be a real-valued stochastic process with a finite covariance $R(t_1, t_2)$.
- $ightharpoonup u(\omega,t)$ has the following decomposition

$$u(\omega, t) = m(t) + \tilde{u}(\omega, t)$$

with $E[\tilde{u}(\omega, t)] = 0$.

- Assume that we know m(t) and $R(t_1, t_2)$.
- Before we continue, we need some facts from integral equations

15.1 Integral equation

Fredholm integral equations of the second kind

$$\int_{T} R(s_1, s_2) \psi(s_2) ds_2 = \lambda \psi(s_1)$$

- ► The above equation is a homogeneous Fredholm integral equation of the second kind.
- This is an eigenvalue problem.
- As the kernel, or the covariance function $R(t_1, t_2)$ is bounded, symmetric, and positive definite, the integral equation has eigenfunctions $\{\psi_i\}$ such that
 - 1. The set $\{\psi_i\}$ of eigenfunctions is orthogonal and complete.
 - 2. For each eigenvalue λ_k , there correspond at most a finite number of linearly independent eigenfunctions.
 - 3. There are at most a countably infinite set of eigenvalues.
 - 4. The eigenvalues are all positive real numbers.
 - 5. The kernel admits of the following uniformly convergent expansion

$$R(s_1, s_2) = \sum_{i=1}^{\infty} \lambda_k \psi_i(s_1) \psi_i(s_2).$$

Karhunen-Loeve expansion of $u(\omega,t)$

$$u(\omega, t) = \sum_{i}^{\infty} \xi_{i}(\omega) \sqrt{\lambda_{i}} \psi_{i}(t)$$

where $\{\psi_i\}$ are orthonormal functions, λ_i are constant, and $E[\xi_i] = \text{and } E[\xi_i \xi_j] = 0$ for $i \neq j$.

- ► The process is not necessarily stationary; we assume that we know only the mean and the covariance function.
- The set of ψ_i is the eigenfunctions of the following eigenvalue problem $\int_T R(s_1, s_2) \psi(s_2) ds_2 = \lambda \psi(s_1)$ where λ_i is the corresponding eigenvalue of ψ_i .
- $\xi(\omega) = \frac{1}{\sqrt{\lambda}} \int_T u(\omega, s) \psi_i(s) ds.$
- \triangleright A finite dimensional approximation of u is given by

$$u(\omega, t) \approx \sum_{i}^{N} \xi_{i}(\omega) \sqrt{\lambda_{i}} \psi_{i}(t).$$

Example (uncorrelated process). $R(t,s) = \delta(t-s)$ (white noise)

Any orthogonal functions are eigenfunctions with $\lambda_i = 1$ for all i. That is, there is no decay in the magnitude of λ_i .

Example (uncorrelated process). $R(t,s) = \delta(t-s)$ (white noise)

Any orthogonal functions are eigenfunctions with $\lambda_i=1$ for all i. That is, there is no decay in the magnitude of λ_i .

Example (fully correlated process). R(t,s)=1 There is only one eigenfunction $\psi=1$ with $\lambda=1$. Thus, we need

to specify only one random variable ξ .

Example (exponential covariance function).

For $t \in T = [-b, b]$, let $R(t, s) = \exp(-|t - s|/a)$ for a > 0. a is called **correlation length**. Note that this is a stationary process in the wild sense.

The eigenvalues are

$$\lambda_i = \begin{cases} \frac{2a}{1+a^2w_i^2} & \text{i: even} \\ \frac{2a}{1+a^2v_i^2} & \text{i: odd} \end{cases}$$

and the corresponding eigenfunctions are

$$\psi_i = \begin{cases} \frac{\sin(w_i t)}{\sqrt{b - \frac{\sin(2w_i b)}{2w_i}}} & \text{i: even} \\ \frac{\cos(w_i t)}{\sqrt{b - \frac{\sin(2v_i b)}{2v_i}}} & \text{i: odd} \end{cases}$$

where w_i and v_i are the solutions of the transcendental equations

$$\begin{cases} aw + \tan(wb) = 0 \\ 1 - av + \tan(vb) = 0 \end{cases}$$

Example (exponential covariance function).

15.3 Properties of Karhunen-Loeve expansion

Claim. A finite-term Karhunen-Loeve expansion is optimal in terms of the mean-square error.

Claim. The random variable coefficients ξ_i satisfies

$$E[\xi_i] = 0,$$
 $E[\xi_i \xi_j] = 0$ $i \neq j$

15.3 Properties of Karhunen-Loeve expansion

Claim. A finite-term Karhunen-Loeve expansion is optimal in terms of the mean-square error.

Proof.

Claim. The random variable coefficients ξ_i satisfies

$$E[\xi_i] = 0,$$
 $E[\xi_i \xi_j] = 0$ $i \neq j$

Proof.

Homework

Go to https://archive.siam.org/meetings/uq18/invited.php and view a talk of your choice. Make a one-page report. SIAM Conference on Uncertainty Quantification 2018 invited talks

- Merlise A. Clyde, Duke University, USA Model Uncertainty and Uncertainty Quantification
- Omar Ghattas, The University of Texas at Austin, USA Scalable Algorithms for PDE-constrained Optimization Under Uncertainty
- Michael I. Jordan, University of California, Berkeley, USA On Gradient-Based Optimization: Accelerated, Stochastic and Nonconvex
- Fabio Nobile, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland Multi-level and Multi-index Monte Carlo Methods in Practice
- Sebastian Reich, Universität Potsdam, Germany and University of Reading, United Kingdom Data Assimilation and Uncertainty Quantification — A Lagrangian Interacting Particle Perspective
- Johannes O. Royset, Naval Postgraduate School, USA Good and Bad Uncertainty: Consequences in UQ and Design
- Ian H. Sloan, The University of New South Wales, Australia A Contemporary View of High-dimensional Quasi Monte Carlo
- Bin Yu, University of California, Berkeley, USA Three Principles of Data Science: Predictability, Stability, and Computability