L1-MATH - STATISTIQUES DESCRIPTIVES

FEUILLE DE TRAVAUX DIRIGÉS N° 2

A.U.: 2014-2015

Enseignants: H. El-Otmany & V. Darrigrand

1. Variables non-numériques

Exercice n°1 L'étude palynologique d'un échantillon du Mésozoïque d'Aquitaine a permis de construire la table de contingence suivante :

Couleur Richesse	Gris foncé	Grisâtre	Rougeâtre	
Non fossilifère	26	19	18	
Fossilifère	34	9	4	

- 1. Préciser la population étudiée et la nature des deux variables.
- 2. Calculer les effectifs marginaux des deux distributions. Calculer l'effectif total.
- 3. Déterminer la distribution de la richesse des roches conditionnellement au fait que la couleur des roches est gris foncé.
- 4. Déterminer la distribution de la couleur des roches conditionnellement au fait qu'elles ne sont pas fossilifères.
- 5. Déterminer le mode de la distribution bivariée.
- 6. Peut-on considérer que les deux variables étudiées sont indépendantes?

Exercice n°2 Une distribution de fréquences $\{(x_i, y_i), f_{ij} ; i = 1, 2 ; j = 1, ..., 4\}$ de deux caractères non numériques observés sur une population est représentée par le tableau ci-dessous. On suppose que les modalités ont été codées : $E = \{20, 40\}$ (pour la variable x) et $F = \{10, 20, 30, 40\}$ (pour la variable y).

x	10	20	30	40
20	0.04	0.08	0.08	0.05
40	0.12	0.24	0.24	0.15

Les deux variables sont-elles indépendantes? Était-il possible de le voir rapidement sur le tableau?

Exercice n°3 Le tableau ci-dessous indique pour chaque couple de modalités de deux caractères non numériques, la fréquence d'apparition de ce couple dans une population donnée. On suppose que les modalités ont été codées : $E = \{5, 15, 25\}$ (pour la variable x) et $F = \{10, 20, 30\}$ (pour la variable y). Certaines de ces données ont été remplacées par les paramètres a, b et c.

x	10	20	30
5	0.09	a	0.06
15	0.15	0.25	b
25	С	0.10	0.04

- 1. Calculer le coefficient de Pearson Φ^2 en fonction de a, b et c.
- 2. Déterminer les réels a, b et c sachant que les deux variables x et y sont indépendantes.
- 3. Donner la distribution conditionnelle de y sachant x = 5.

2. Variables numériques

Exercice n°4 Une population de n ménages où les deux conjoints occupent un emploi est étudiée. Les variables x et y désignent respectivement les revenus du mari et de la femme. Une étude a montré que $\sigma_x^2 = 16$, $\sigma_y^2 = 10$ et $\sigma_{xy} = 8$. Calculer la variance du revenu total s = x + y et du revenu disponible après impôt w = 0.8x + 0.7y.

Exercice $n^{\circ}5$ On considère une automobile roulant sur une route mouillée à une certaine vitesse v. Cette automobile freine brusquement pour simuler un freinage d'urgence. On note d la distance de freinage qui est fonction de la vitesse v. Les données recueillies sont les suivantes :

Vitesse v (Km/h)							
Distance d (m)	10	21	34	49	66	85	106

- 1. Quelles sont les natures des deux variables étudiées?
- 2. Tracer le nuage de points. Le nuage de points vous semble-t-il aligné le long d'une droite? Quel est le signe du coefficient de corrélation linéaire (sans effectuer de calculs)?
- 3. On suppose qu'il existe une relation quadratique entre les deux variables, i.e. une relation de la forme $d = av^2 + b$.
 - (a) Quelles sont les unités de a et b.
 - (b) Déterminer a et b par la méthode des moindres carrés.
 - (c) Représenter la courbe obtenue sur le graphique précédent.
 - (d) Quelle est la distance estimée de freinage si la vitesse est de 95 Km/h? 130 Km/h? 150 Km/h?
 - (e) Que deviennent a et b si on exprime la distance en kilomètres et non pas en mètres?
 - (f) Que vaut le coefficient de corrélation linéaire ? le coefficient de détermination ?
- 4. Trois autres expériences supplémentaires ont été menées :

Vitesse v (Km/h)	110	120	130
Distance d (m)	129	154	181

- (a) Déterminer les nouvelles valeurs de a et de b par la méthode des moindres carrés, en limitant le nombre de calculs. On expliquera la démarche adoptée.
- (b) Que vaut le coefficient de détermination ? Comparer avec celui précédemment obtenu et commenter.
- (c) Quelle est la distance estimée de freinage si la vitesse est de 95 Km/h? 130 Km/h? 150 Km/h? Comparer avec les résultats obtenus précédemment et commenter.

Exercice n°6 On donne pour les six premiers mois de l'année 1982 les nombres d'offres d'emploi (concernant les emplois durables et à plein temps) et le nombre des demandes d'emploi (déposées par des personnes sans emploi, immédiatement disponibles et à la recherche d'un emploi durable et à plein temps). Les données sont exprimées en milliers d'individus.

Offres (x)						87.2
Demandes (y)	2034	2003.8	1964.5	1928.2	1885.3	1867.1

- 1. Représenter le nuage de points. Le nuage de points vous semble-t-il aligné le long d'une droite?
- 2. Trouver la droite de régression des demandes d'emploi en fonction des offres d'emploi et la tracer sur le graphique précédent.
- 3. Calculer le coefficient de corrélation entre x et y. Commenter.

Exercice $n^{\circ}7$ On donne pour les années 1975 à 1983, le prix du ticket de métro à Paris acheté à l'unité en août (x) et le prix moyen annuel du kilogramme de bananes dans la région parisienne (y).

` ′	2.2.	l			l				
Prix Kg de bananes (y)	3.72	3.95	4.27	4.52	5.01	5.41	6.17	7.03	8.42

Répondre aux mêmes questions qu'à l'exercice précédent. Commenter.

Exercice n°8 Le tableau ci-dessous donne les valeurs expérimentales du volume V (en cm³) et de la pression P (en Kg par cm³) d'un gaz. D'après les lois de la thermodynamique de Laplace pour un gaz parfait, on a la relation $PV^{\gamma} = C$ où γ et C sont des constantes.

Volume (v)								
Pression (p)	6.7	4.3	3.48	2.644	1.997	1.35	1.1	0.71

- 1. Transformer le modèle pour obtenir un modèle linéaire.
- 2. Déterminer la droite de régression linéaire pour le modèle transformé. En déduire une estimation $\hat{\gamma}$ et \hat{C} des constantes γ et C.
- 3. Estimer P lorsque le volume $v = 1000 \text{ cm}^3$.
- 4. Soit $\hat{u}_i = p_i \hat{p}_i$ les écarts entre les observations et les valeurs ajustées. Montrer que u_i est approximativement égale à $\hat{p}_i \hat{\varepsilon}_i$ où $\hat{\varepsilon}_i$ désigne l'erreur pour le modèle transformé. Vérifier numériquement sur les données.

Exercice $n^{\circ}9$ Le taux d'équipement des ménages en matériel informatique est une variable y_t où t représente l'année de l'observation. On fait l'hypothèse d'un modèle logistique :

$$y_t = \frac{1}{1 + ae^{-bt}} \;,$$

avec a une constante positive.

- 1. Identifier les individus de cette étude.
- 2. Par un changement de variable approprié, montrer que le modèle logistique peut être transformé en un modèle linéaire que l'on précisera.
- 3. Appliquer la méthode des moindres carrés sur le modèle transformé en utilisant les données cidessous :

Années	1988	1989	1990	1991	1992	1993	1994
t	1	2	3	4	5	6	7
y	0.45	0.57	0.69	0.78	0.86	0.91	0.93

- 4. Tracer la droite de régression du modèle transformé ainsi que le nuage de points correspondant.
- 5. En déduire une estimation des paramètres a et b. Sur un autre graphique, tracer la courbe estimée et le nuage de points des données initiales. Le modèle logistique vous semble-t-il bien spécifié?
- 6. Prévoir le taux d'équipement en 1996. En quelle année le taux d'équipement sera-t-il de 99%?

Exercice n°10 Une étude de marché a permis de relever le volume (y) des ventes (en milliers d'euros) d'un produit en fonction de son prix (x) de vente (en euros) :

x	95	130	146	210	250	280	330	350
y	104	58	37	22	12	12	9	7

- 1. Donner le signe du coefficient de corrélation linéaire ρ_{xy} sans effectuer de calculs. En déduire le signe du coefficient de corrélation linéaire $\rho_{\ln(x)\ln(y)}$, toujours sans effectuer de calculs. Calculer le coefficient de corrélation de Spearman.
- 2. On fait l'hypothèse d'un modèle de la forme $y = kx^{-m}$ (k > 0). Le coefficient m s'appelle, en économie, le coefficient d'élasticité. Estimer ce coefficient en se ramenant à un modèle linéaire. Prévoir le volume des ventes si le prix de vente est fixé à 360 euros.
- 3. Quel aurait été l'effet sur l'estimation des coefficients k et m pour la même étude mais avec des prix exprimés en francs?

Exercice n°11 Dans douze familles, on a relevé le quotient intellectuel du père (x) et celui du fils (y):

	123											
y	102	138	126	133	95	146	115	100	142	105	130	120

- 1. Représenter le nuage de points.
- 2. Existe-t-il une relation linéaire entre les deux variables? Si oui, tracer la droite de régression.
- 3. Existe-t-il une relation non linéaire entre les deux variables?

Exercice n°12 Un professeur émet l'hypothèse d'une liaison entre les notes à un test (x) et le temps (y) en minutes consacré au travail effectué quotidiennement à la maison. Sur huit élèves, les résultats sont les suivants :

	8							
y	14	15	8	7	20	11	10	17

- 1. Existe-t-il une relation linéaire entre les deux variables?
- 2. Existe-t-il une relation non linéaire entre les deux variables?

3. Variables numériques et variables non-numériques

Exercice n°13 On a mesuré (en mm) la longueur des œufs de coucous trouvés dans les nids de deux espèces d'oiseaux. On a obtenu les résultats suivants :

— nids de petite taille (roitelets):

— nids de grande taille (fauvettes):

- 1. Quelle est la population étudiée ? Quelles sont les deux variables étudiées ? Préciser leur nature.
- 2. Représenter les deux distributions par deux histogrammes sur le même graphique.
- 3. Représenter les deux distributions à l'aide de boîtes à moustaches.
- 4. Calculer la variance intra-classe et la variance inter-classe.
- 5. Commenter.