

What Is Claimed Is:

- 1 1. A system for providing high frequency data
2 communications in a satellite-based communications network, the system
3 comprising:
4 a plurality of communications satellites each having uplink and
5 downlink antennas capable of receiving and transmitting a plurality of signals,
6 each of said satellites having a communication control circuit;
7 at least one of said satellites being a reconfigurable satellite having,
8 a programmable frequency synthesizer coupled to a
9 communications control circuit;
10 a controller located on said satellite coupled to said
11 communications control circuit, said controller controlling a frequency
12 reconfiguration of said communications control circuit through said
13 programmable frequency synthesizer.
- 1 2. A system as recited in claim 1 wherein each of said satellites
2 further comprising a beam forming network coupled to said uplink and downlink
3 antennas.
- 1 3. A system as recited in claim 1 wherein said communications
2 control circuit comprises an up converter and a down converter.
- 1 4. A system as recited in claim 1 wherein said communications
2 control circuit comprises a transponder.
- 1 5. A system as recited in claim 4 wherein said transponder comprises
2 an up converter and a down converter.
- 1 6. A system as recited in claim 1 wherein said communications
2 control circuit comprises a time division multiple access switch.

1 7. A system as recited in claim 1 wherein said communications
2 control circuit comprises a packet switch.

1 8. A system as recited in claim 1 wherein said plurality of
2 communications satellites have an orbit selected from the group consisting of a
3 LEO, MEO and GSO.

1 9. A payload circuit for a satellite comprising:
2 a receive array;
3 a receive beam forming network;
4 a transmit array;
5 a transmit beam forming network;
6 a communications control circuit for controlling communications
7 of satellite; and
8 a reconfiguration circuit coupled to the communications control
9 circuit for reconfiguring the communications control circuit.

1 10. A payload circuit as recited in claim 9 wherein said
2 communications control circuit comprises an up converter and a down converter.
Sus

1 11. A payload circuit as recited in claim 9 wherein said
2 communications control circuit comprises a transponder.

1 12. A payload circuit as recited in claim 11 wherein said transponder
2 comprises an up converter and a down converter.
10

1 13. A payload circuit as recited in claim 9 wherein said
2 reconfiguration circuit comprises a programmable frequency synthesizer coupled
3 to said up converter and said down converter.
Gulf AB

1 14. A payload circuit as recited in claim 9 wherein said
 2 reconfiguration circuit comprises an on-board computer.

1 15. A payload circuit as recited in claim 14 wherein said
 2 reconfiguration circuit comprises a routing table, said on-board computer
 3 updating said routing table with reconfiguration data.

1 16. A payload circuit as recited in claim 9 wherein said
 2 communications control circuit comprises a time division multiple access switch.

1 17. A payload circuit as recited in claim 9 wherein said
 2 communications control circuit comprises a packet switch.

1 *JNO R&T* 18. A method of configuring a satellite system having a plurality of
 2 satellites comprising the steps of:

3 deploying a reconfigurable satellite;
 4 transmitting reconfiguration instructions to said satellite;
 5 reconfiguring the payload of the reconfigurable satellite;
 6 repositioning a satellite from a network position; and
 7 moving the reconfigurable satellite into the network position.

1 19. A method as recited in claim 18 wherein the step of reconfiguring
 2 a satellite comprises the step of changing the up converter frequency and down
 3 converter frequency.

1 20. A method as recited in claim 19 wherein the step changing the up
 2 converter frequency and down converter frequency comprises the step of
 3 changing a frequency in a programmable frequency synthesizer.

1 21. A method as recited in claim 18 wherein the step of reconfiguring
 2 a satellite comprises changing the amplitude or phase coefficients of a transmit
 3 and receive beam.