A lineáris erőtörvény vizsgálata, és a rugóállandó mérése

Mérést végezte: Bódy Lőrinc András 2020. február 24.

1. A mérés célja

Célom a siprálrugókra érvényes $F=D\Delta x$ (ahol F a rugóban ébredő erő, és Δx a megnyúlás) lináris erőtörvény igazolása volt, illetve a mérésben felhasznált két rugóra a D rugóállandó meghatározása. Ehhez kétféle kisérletet végeztem el: Egyszer közvetlenül mértem a megnyúlást a sztatikus terhelés függvényében, egyszer pedig a rugóból épített lineáris oszcillátor periódusidejét vizsgáltam.

2. Mérőeszközök

- Mérőállvány
- Két spirálrugó a végükön mutatókkal
- Az állványra rögzített vonalzó
- Csúsztatható plexi helyzetjelzők a leolvasás megkönnyítésére
- 0.05 kg-os súlyok készlete
- Stopperóra

3. A mérés rövid leírása

A rugó terhelését a végére akasztott (maximum 6 darab) súlyal lehet beállítani. A mérőállványon lógó rugó melett ott függ a vonalzó, azonban a rugó rögzítési pontja nem esik egybe a vonalzó nullpontjával, és a vonalzón az értékek felfelé növekednek. Ezért először feljegyeztem a mutató által terheletlen rugó melett jelzett értéket x_0 , majd fokozatosan növekvő súlyokat adva hozzá, megvártam amíg beáll az egyensúly, és feljegyeztem az új értéket (x_i) . A megnyúlás így $\Delta x_i = x_0 - x_i$ alakban adódik.

A dinamikus méréshez eltávolítottam a vonalzót és a helyzetjelzőket, és a rugót kézzel enyhén megfeszítve rezgésbe hoztam. Ezután minden tömegre háromszor lemértem 10 periódus idejét a stopperórával.

4. Mérési adatok

Az első rugó, $x_0=0.436\,\mathrm{m}$

$m (\mathrm{kg})$	0.050	0.100	0.150	0.200	0.250	0.300
x_i (m)	0.382	0.328	0.275	0.221	0.167	0.114
T_{0i} (s)	4.220	6.590	7.970	9.500	10.220	11.350
T_{1i} (s)	4.310	6.560	8.160	9.190	10.220	11.350
T_{2i} (s)	4.250	6.560	8.150	9.150	10.370	11.250

A második rugó, $x_0=0.427\,\mathrm{m}$

$m (\mathrm{kg})$	0.050	0.100	0.150	0.200	0.250	0.300
x_i (m)	0.410	0.393	0.375	0.357	0.340	0.322
T_{0i} (s)	2.880	3.780	4.660	5.250	5.970	6.560
T_{1i} (s)	3.000	3.400	4.720	5.280	5.410	6.440
T_{2i} (s)	3.000	3.750	4.650	5.350	6.030	6.600

5. Számítások

5.1. A közvetlen mérés eredményei

A sztatikus mérések feldolgozása során kiszámítottam a rugó megnyúlását (Δx_i), majd a felakasztott tömegekhez tartozó súlyokat ($g=9.81\,\frac{\mathrm{m}}{\mathrm{s}^2}$ -et használva). Az $F(\Delta x)$ összefüggést ezután grafikonon ábrázoltam, és a legkisebb négyzetek módszerével egy egyenessel ($f(x_i)$) illesztettem meg.

$m ext{ (kg)}$	0.050	0.100	0.150	0.200	0.250	0.300
$x_i(N)$	0.382	0.328	0.275	0.221	0.167	0.114
$\Delta x_i = x_0 - x_i \text{ (m)}$	0.054	0.108	0.161	0.215	0.269	0.322
$gm_i = F_i(N)$	0.491	0.981	1.472	1.962	2.453	2.943
$f(x_i)$ (N)	0.488	0.982	1.471	1.965	2.455	2.939
$\Delta F_i = f(x_i) - F_i(N)$	-0.002	0.001	-0.000	0.003	0.002	-0.004

$m ext{ (kg)}$	0.050	0.100	0.150	0.200	0.250	0.300
x_i (m)	0.410	0.393	0.375	0.357	0.340	0.322
$\Delta x_i = x_0 - x_i \text{ (m)}$	0.017	0.034	0.052	0.070	0.087	0.105
$gm_i = F_i(N)$	0.491	0.981	1.472	1.962	2.453	2.943
$f(x_i)$ (N)	0.492	0.980	1.468	1.970	2.444	2.946
$\Delta F_i = f(x_i) - F_i(N)$	0.001	-0.001	-0.003	0.008	-0.008	0.003

A lineáris erőtörvény igen jó pontosságal teljesül ezekben a mérésekben, a rugóállandót pedig az egyenesek meredeksége adja meg. Ezt az első rugóra $D_1=9.15\,\frac{\rm N}{\rm m}$ -nek, a másodikra $D_2=27.9\,\frac{\rm N}{\rm m}$ -nek adódott.

5.2. Hibaszámítások

Amennyiben megvárom, amíg a súly nyugalomba kerül, a sztatikus mérés fő hibaforrása a vonalzó leolvasása. Ennek beosztása 0.5 mm-es volt, és a plexi helyzetjelzőkbe karcolt vonalak segítségével valószínűleg le is olvasható ilyen pontossággal.

A mérési leírásnak megfelelően az eredmények hibáját a szimmetrikus téglalapmódszerrel becsültem meg, a $\Delta D = \frac{2max(|\Delta F_i|)}{max(\Delta x_i) - min(\Delta x_i)}$ képlet használatával, ahol $\Delta F_i = f(x_i) - F_i$, a mért és az illesztet erő-érteke különbsége.

Ez alapján az első rugállandó hibája $\Delta D_1=0.0277\,\frac{\rm N}{\rm m},$ a másodiké pedig $\Delta D_2=0.187\,77\,\frac{\rm N}{\rm m}$

5.3. A periódusidő alapú mérés

A rugóra függesztett súlyból épített lineáris oszcillátor periódusideje $T=2\pi\sqrt{\frac{\mu}{D}}$, ahol $\mu=m+m_{eff}$ és m_{eff} a rugó effektív tömege. Átalakítva (a mérési leírás jelöléseit követve) $m=\frac{DT^2}{4\pi^2}-m_{eff}=D\xi-m_{eff}$ -et kapunk. Ennek megfelelően miután a

$$T_i = \frac{\sum_j \frac{T_{ji}}{10}}{3}$$

összefüggéssel kiszámtottam az átlagos periódusidőt, a $m(\xi)$ függvényt ábrázoltam, és illesztettem meg egyenessel.

A lineáris erőtörvény jó pontosságal teljesül ezekben a mérésekben, a rugóállandót pedig az egyenesek meredeksége adja meg. Ezt az első rugóra $D_1=9.11\,\frac{\rm N}{\rm m}$ -nek, a másodikra $D_2=28.96\,\frac{\rm N}{\rm m}$ -nek adódott.

$m ext{ (kg)}$	0.050	0.100	0.150	0.200	0.250	0.300
T_i (s)	0.426	0.657	0.809	0.928	1.027	1.132
$\frac{T_i^2}{4\pi^2} = \xi_i \left(s^2 \right)$	0.005	0.011	0.017	0.022	0.027	0.032
$m(\xi_i)$ (kg)	0.045	0.103	0.154	0.202	0.247	0.299
$\Delta m_i = m(\xi_i) - m_i \text{ (kg)}$	-0.005	0.003	0.004	0.002	-0.003	-0.001

$\frac{T_i^2}{4\pi^2} = \xi_i \text{ (s}^2)$ $m(\xi_i) \text{ (kg)}$ 0.058 0.091 0.199 0.241 0.307 0.154-0.009 $\Delta m_i = m(\xi_i) - m_i \, (\text{kg})$ 0.008-0.009 0.004-0.001 0.007

5.4. Hibaszámítások

A dinamikus mérés hő hibaforrása az emberi reakcióidőből eredő időmérési hiba. A mérési leírásnak megfelelően, az eredmények hibáját a szimmetrikus téglalapmódszerrel becsültem meg, a $\Delta D = \frac{2max(|\Delta m_i|)}{max(\Delta \xi_i) - min(\Delta \xi_i)}$ képlet használatával, ahol $\Delta m_i = m(\xi_i) - m_i$, a felakasztott súlyok tömege és az illesztett fügvényből számolt tömegérték különbsége.

Ez alapján az első rugállandó hibája $\Delta D_1=0.347\,\frac{\rm N}{\rm m},$ a másodiké pedig $\Delta D_2=2.153\,\frac{\rm N}{\rm m}$

6. Konklúzió

A mérés során igazoltam a rugó lineáris erőtörvényét. A két független módszerrel mért rugóállandó mérési hibán belül megegyezik. A sztatikus módszer téglalapmódszerrel becsült hibája várakozásainknak megfelelően jelentősen kisebbnek bizonyult a dinamikus méréshez képest, megfigyelhető továbbá, hogy az erősebb rugóra vonatkozó mérések pontatlanabbak. Ennek oka, hogy adott terhelés alatt kevésbé nyúlik meg, így ugyanakkora leolvasási hiba nagyobb relatív hibát jelent, továbbá a rezgésidők is rövidebbek, itt is megnövelve a relatív hibát.

Az eredmények táblázatos formában:

$D\left(\frac{N}{m}\right)$	Sztatikus mérés	Dinamikus mérés		
Első rugó	9.146 ± 0.027	9.11 ± 0.35		
Második rugó	27.89 ± 0.188	28.96 ± 2.15		