Maintenance Scheduling System

Christian Brunbjerg Jespersen

Technical University of Denmark

January 1, 1980

Agenda

- ► Introduction to Maintenance Scheduling
- ► Architecture of a Scheduling System
- Possible Contributions to Operation Research

$\underset{a}{\mathsf{Mathematical}} \ \mathsf{Notation} \colon \mathsf{Sets}$

 $A_{b,c}^m(t,x,y)$

▶ a: set element

A: set itself

b: set element from set B

c: set element from set C

m: model formulation m

t: time

x: value of decision variable from a different model

y: value of decision variable from a different model

Mathematical Notation: Parameters

 $name_of_parameter_{a,b}(t, x, y)$

- parameters are functions of set elements and input parameters
- ▶ a: set element from A
- b: set element from B
- t: time
- x: value of decision variable from another model
- y: value of decision variable from another model

Mathematical Notation: Variables

$x_{a,b}^m(t)$

- variables are functions of set elements, specified model, and time
- x: decision variable
- a: set element from A
- b: set element from B
- m: specifying the model
- t: time
- Notice: decision variables cannot depend on other decision variables as it would make them belong to the same model.

Strategic

Meta variables: s = 5 $\tau \in [0, \infty]$ (2) Minimize: $+ \sum_{w \in W(\tau)} \sum_{p \in P(\tau)} strategic_urgency_{wp}(\tau) \cdot \alpha_{wp}(\tau)$ $+\sum_{p \in P(\tau)} \sum_{p \in R(\tau)} strategic_resource_penalty \cdot \epsilon_{pr}(\tau)$ $-\sum_{p \in P(\tau)} \sum_{w \in W(\tau)} \sum_{w \geq eW(\tau)} clustering_value_{w1,w2} \cdot \alpha_{w1p}(\tau) \cdot \alpha_{w2p}(\tau)$ (3) Subject to: $\sum_{\mathbf{w} \in \mathcal{W}(\tau)} \mathit{work_order_workload}_{\mathbf{wr}} \cdot \alpha_{\mathbf{wp}}(\tau) \leq \sum_{t \in T(\tau)} \psi_{\mathit{prt}}(\tau) + \epsilon_{\mathit{pr}}(\tau)$ $\forall p \in P(\tau) \quad \forall r \in R(\tau)$ (4) $\sum_{\mathbf{r} \in R(\tau)} \psi_{prt}(\tau) \leq technician_work_{pt}(\tau, \beta(\tau)) \quad \forall p \in P(\tau) \quad \forall t \in T(\tau)$ (5) $\sum_{p \in P(\tau)} \psi_{prt}(\tau) \leq technician_skills_{rt}(\tau) \quad \forall r \in R(\tau) \quad \forall t \in T(\tau)$ (6) $\sum_{w \in W(\tau)} \alpha_{wp}(\tau) = 1 \quad \forall p \in P(\tau)$ (7) $\alpha_{WP}(\tau) = 0$, if $exclude_{WP}(\tau) \ \forall w \in W(\tau) \ \forall p \in P(\tau)$ (8) $\alpha_{wp}(\tau) = 1$, if $include_{wp}(\tau) \ \forall w \in W(\tau) \ \forall p \in P(\tau)$ (9) $\alpha_{wp}(\tau) \in \{0, 1\} \quad \forall w \in W(\tau) \quad \forall p \in P(\tau)$ (10) $\psi_{prt}(\tau) \in \mathbb{R}^+ \quad \forall p \in P(\tau) \quad \forall r \in R(\tau) \quad \forall t \in T(\tau)$ (11) $\epsilon_{pr}(\tau) \in \mathbb{R}^+ \quad \forall p \in P(\tau) \quad \forall r \in R(\tau)$

Meta variables:

$$s \in S$$
 (13) $\alpha(\tau)$ (14)

$$\tau \in [0, \infty]$$
 (15)

Minimize

$$+ \sum_{o \in O(\tau, \alpha(\tau))} \sum_{d \in D(\tau)} \textit{tactical_value}_{\textit{do}}(\tau) \cdot \beta_{\textit{do}}(\tau)$$

$$+ \sum_{r \in R(\tau)} \sum_{\textit{d} \in D(\tau)} \textit{tactical_penalty} \cdot \mu_{\textit{rd}}(\tau)$$

Subject to:

$$\sum_{o \in O(\tau, \alpha(\tau))} work_o(\tau) \cdot \beta_{do}(\tau) \le \Psi_{drt}(\tau) + \mu_{rd}(\tau) \quad \forall d \in D(\tau) \quad \forall r \in R(\tau)$$
(17)

$$\sum_{r \in R(\tau)} \Psi_{drr}(\tau) \le tactical_resource_{dr}(\tau) \quad \forall d \in D(\tau) \quad \forall t \in T(\tau)$$
(18)

$$\sum_{\sigma \in \mathcal{D}(r)} \Psi_{drt}(\tau) \le \operatorname{technician_skills}_{rt}(\tau) \quad \forall r \in R(\tau) \quad \forall t \in T(\tau)$$
(19)

$$\beta_{do}(\tau) \le number_o(\tau) \cdot operating_time_o \cdot \sigma_{do}(\tau) \quad \forall d \in D(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$$
 (20)

$$\sum_{\sigma do(\tau) = duration_0(\tau)}^{latest_{\sigma} finish_0(\tau)} \sigma_{do}(\tau) = duration_0(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$$

$$\sum_{d' \in D_{dentific_{\sigma}(x)}} \sigma_{d'} \circ (\tau) = duration_{\sigma}(\tau) \cdot \eta_{do}(\tau) \quad \forall o \in O(\tau, \alpha(\tau)) \quad \forall d \in D(\tau)$$
(22)

$$d^* \in D_{duration_0(\tau)}(\tau)$$

$$\sum_{q \in O(\tau, \alpha(\tau))} \eta_{do}(\tau) = 1, \forall d \in D(\tau)$$

$$\sum_{d \in D(\tau)} d \cdot \sigma_{d \circ l}(\tau) + \Delta_{o}(\tau) = \sum_{d \in D(\tau)} d \cdot \sigma_{d \circ l}(\tau) \quad \forall (o1, d2) \in \mathit{finish_start}_{ol, o2}$$

$$\sum_{d \in D(\tau)} d \cdot \sigma_{do1}(\tau) = \sum_{d \in D(\tau)} d \cdot \sigma_{do2}(\tau) \quad \forall (o1, o2) \in start_start_{o1,o2}$$
(24)

$$\delta d_0(\tau) \in \mathbb{R} \quad \forall d \in D(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$$
 (25)

$$\mu_{rot}(\tau) \in \mathbb{R} \quad \forall r \in R(\tau) \quad \forall d \in D(\tau)$$
(26)

$$\mu_{rd}(\tau) \in \mathbb{R} \quad \forall r \in R(\tau) \quad \forall a \in D(\tau)$$
 (20)

$$\sigma_{do}(\tau) \in \{0,1\} \qquad \forall d \in D(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$$

$$(27)$$

$$\eta_{do}(\tau) \in \{0,1\} \qquad \forall d \in D(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$$
 (28)

$$\Delta_o(\tau) \in \{0,1\} \quad \forall o \in O(\tau, \alpha(\tau))$$
 (29)

(16)

(21)

Supervisor

 $\rho_a(\tau) \in [lower_activity_work_a(\tau), work_a(\tau)] \quad \forall a \in A(\tau, \alpha(\tau))$

Meta variables:	
$z \in Z$	(30)
$\alpha(au)$	(31)
$\theta(au)$	(32)
$ au \in [0,\infty]$	(33)
Maximize:	
$\sum_{x \in A(\tau, \alpha(\tau))} \sum_{t \in T(\tau)} supervisor_value_{xt}(\tau, \lambda_t(\tau), \Lambda_t(\tau)) \cdot \gamma_{xt}(\tau)$	(34)
Subject to:	
$\sum \rho_a(\tau) = work_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(35)
$a \in A_0(\tau, \alpha(\tau))$	
$\sum_{t \in T(\tau)} \sum_{\mathbf{z} \in A_{\mathbf{o}}(\tau, \alpha(\tau))} \gamma_{at}(\tau) = \phi_{\mathbf{o}}(\tau) \cdot number_{\mathbf{o}}(\tau) \forall \mathbf{o} \in O(\tau, \alpha(\tau))$	(36)
$\sum_{\mathbf{o} \in O_{\mathbf{w}}(\tau,\alpha(\tau))} \phi_{\mathbf{o}}(\tau) = O_{\mathbf{w}}(\tau,\alpha(\tau)) \cdot \Phi_{\mathbf{w}}(\tau) \forall \mathbf{w} \in \mathit{W}(\tau,\alpha(\tau))$	(37)
$\sum_{\mathbf{z} \in A_{\mathbf{z}}(\tau,\alpha(\tau))} \gamma_{\mathbf{z}t}(\tau) \leq 1 \forall o \in O(\tau,\alpha(\tau)) \forall t \in T(\tau)$	(38)
$\gamma_{at}(\tau) \leq feasible_{at}(\theta(\tau)) \forall a \in A_o(\tau, \beta) (\tau) \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(39)
$\gamma_{st}(\tau) \in \{0, 1\} \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(40)
$\phi_o(\tau) \in \{0, 1\} \forall o \in O(\tau, \alpha(\tau))$	(41)
$\Phi_{\mathbf{w}}(\tau) \in \{0, 1\} \forall \mathbf{w} \in W(\tau, \alpha(\tau))$	(42)

(43)

Operational

Meta variables:	
$t \in T(\tau)$	(44)
$\alpha(\tau)$	(45)
$\gamma(\tau)$	(46)
$ au \in [0,\infty]$	(47)
Maximize:	
$\sum_{a \in A(\tau, \gamma_{t}(\tau))} \sum_{k \in K(\gamma(\tau))} \delta_{ak}(\tau)$	(48)
Subject to:	
$\sum_{k \in K(\gamma(\tau))} \delta_{ak}(\tau) \cdot \pi_{ak}(\tau) = activity_work_{a}(\tau, \rho(\tau)) \cdot \theta_{a}(\tau) \forall a \in A(\tau, \gamma_{t}(\tau))$	(49)
$\lambda_{a21}(\tau) \ge \Lambda_{a1 last(a1)}(\tau) + preparation_{a1, a2} \forall a1 \in A(\tau, \gamma_t(\tau)) \forall a2 \in A(\tau, \gamma_t(\tau))$	(50)
$\lambda_{ak}(\tau) \ge \Lambda_{ak-1}(\tau) - constraint_limit \cdot (2 - \pi_{ak}(\tau) + \pi_{ak-1}(\tau))$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(51)
$\delta_{ak}(\tau) = \Lambda_{ak}(\tau) - \lambda_{ak}(\tau) \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(52)
$\lambda_{ak}(\tau) \ge event_{ie} + duration_{ie} - constraint_limit \cdot (1 - \omega_{akie}(\tau))$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(53)
$\Lambda_{ak}(\tau) \le event_{ke} + constraint_limit \cdot \omega_{akie}(\tau)$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(54)
$\lambda_{a1}(\tau) \ge time_window_start_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(55)
$\Lambda_{alast(a)}(\tau) \le time_window_finish_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(56)
$\pi_{ak}(\tau) \in \{0,1\}$ $\forall a \in A(\tau, \gamma_t(\tau))$ $\forall k \in K(\gamma(\tau))$	(57)
$\lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(58)
$\Lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(59)
$\delta_{ak}(\tau) \in [0, work_{a_to_o(a)}(\tau)] \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(60)
$\omega_{akie}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(61)
$\theta_2(\tau) \in \{0, 1\} \forall a \in A(\tau, \gamma_t(\tau))$	(62)

Architecture

Architecture

- 1. Reactive Versus Static Constraints
- 2. Dynamic
- 3. Business
- 4. Technical
- 5. Academic

Dynamic versus Static Models

- Mathematical models guide direction but does not provide direct solutions.
- ► Static solutions are rarely fully executable.
- Dynamic models are less constrained and ensure a contained optimal solution.
- Remember: The real optimal solution is ever knowable at time

The Story of Zaabalawi

Quality of Solutions

Atomic Pointer Swapping Atomic Pointer Swapper Thread/Metaheuristic 1 Thread/Metaheuristic 2 Thread/Metaheuristic 3

Thread one finds a better solution and swaps it in
Atomic Pointer Swapper
Thread/Metaheuristic 1

Shared Solution 2

Thread/Metaheuristic 2

Thread/Metaheuristic 3

Thread two and three loads the new Shared Solution at the top of their optimization loop

Shared Solution 1 is dropped from memory when is it no longer referenced by any threads

