Компьютерное моделирование кинетического и гидродинамического приближения сложных статистических систем

Отчет о выполненных работах

Ернур Байболатов

STEM парк, КазНПУ им. Абая

Содержание

- 1. Введение
- 2. Кинетическое описание
- 3. Гидродинамическое описание
- 4. Conclusion

Введение

Гранулярные газы

Гранулярными называются вещества состоящие из отдельных макроскопических тел

Особенности

Основное свойство — диссипативность. При каждом столкновении частиц, энергия системы понижается

Коэффициент реституции

$$\mathbf{g}_{12}' = -\varepsilon \mathbf{g}_{12} \tag{1}$$

где $0 \leq \varepsilon \leq 1$.

Гранулярная температура

По аналогии с термодинамической температурой

$$\frac{3}{2}T = \frac{1}{N} \sum_{i=1}^{N} \frac{m\mathbf{v}_i^2}{2} \tag{2}$$

Закон Хаффа

По причине постоянной диссипации, предоставленный самому себе гранулярный газ постепенно охлаждается

$$T(t) = \frac{T_0}{(1 + t/\tau_0)^2}$$
, (3)

где

$$\tau_0^{-1} \propto n\sigma^2 \left(1 - \varepsilon^2\right) \sqrt{T_0} \tag{4}$$

Кольца Сатурна

Природным примером массивных гранулярных газов являются планетарные кольца

Полидисперсность

Материал колец Сатурна в основном состоит из водяного льда, и варьируется в размерах от нескольких микрометров до нескольких десятков метров

Кинетическое описание

Функция распределения

Статистическая система описывается функцией распределения $f(t,m,\pmb{r},\pmb{v})$ в фазовом пространстве $\pmb{r},\;\pmb{v}$ и имеет следующее свойство

$$dN(t, m, \mathbf{r}, \mathbf{v}) = f(t, m, \mathbf{r}, \mathbf{v}) dv_x dv_y dv_z$$
 (5)

где $dN(t,m,\pmb{r},\pmb{v})$ — число частиц локализованных вокруг координаты \pmb{r} и имеющих скорости в диапазоне от \pmb{v} до $\pmb{v}+d\pmb{v}$

Уравнение Больцмана

Эволюция функции распределения подчиняется уравнению Больцмана

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{r}} + \mathbf{w} \frac{\partial f}{\partial \mathbf{v}} = I_c(t, m, \mathbf{r}, \mathbf{v}), \qquad (6)$$

где $I_c(t,m,\pmb{r},\pmb{v})$ — интеграл столкновений

Механика столкновений

Скорости частиц после столкновения

$$\mathbf{v}_{i}' = \mathbf{v}_{i} - \frac{\mu}{m_{i}} (1 + \varepsilon) (\mathbf{g} \cdot \mathbf{n}) \mathbf{n} ,$$

$$\mathbf{v}_{j}' = \mathbf{v}_{j} + \frac{\mu}{m_{i}} (1 + \varepsilon) (\mathbf{g} \cdot \mathbf{n}) \mathbf{n} ,$$
(7)

где
$$\mu = \frac{m_i m_j}{m_i + m_i}$$
 — эффективная масса столкновения

Механика столкновений

Изменение кинетической энергии при столкновении

$$\delta E_{i} = -\mu (1 + \varepsilon) (\mathbf{g} \cdot \mathbf{n}) (\mathbf{v}_{C} \cdot \mathbf{n}) - \frac{1 - \varepsilon^{2}}{2} \frac{\mu^{2}}{m_{i}} (\mathbf{g} \cdot \mathbf{n})^{2} ,$$

$$\delta E_{j} = +\mu (1 + \varepsilon) (\mathbf{g} \cdot \mathbf{n}) (\mathbf{v}_{C} \cdot \mathbf{n}) - \frac{1 - \varepsilon^{2}}{2} \frac{\mu^{2}}{m_{j}} (\mathbf{g} \cdot \mathbf{n})^{2} ,$$
(8)

где $(m_i+m_j) {m v}_C = m_i {m v}_i + m_j {m v}_j$ — скорость центра масс

Нарушение равнораспределения энергии

Частицы с разными массами диссипируют разное количество энергии

$$\left(\frac{\delta E_i}{\delta E_j}\right)_{diss} = \frac{m_j}{m_i} \tag{9}$$

чем меньше масса частицы, тем больше энергии она теряет. Полная потеря энергии

$$\delta E_i + \delta E_j = -\frac{1 - \varepsilon^2}{2} \mu (\mathbf{g} \cdot \mathbf{n})^2$$
 (10)

Интеграл столкновений

В общем виде интеграл столкновений для гранулярных газов имеет вид

$$I_{c}(t, m_{i}, \mathbf{r}, \mathbf{v}_{i}) = \int dm_{j} \eta(m_{j}) \sigma_{ij} \int d\mathbf{v}_{j} \int d\mathbf{n} \Theta(-\mathbf{g} \cdot \mathbf{n}) |\mathbf{g} \cdot \mathbf{n}| \times \left(\frac{1}{\varepsilon^{2}} f(t, m_{i}, \mathbf{r}, \mathbf{v}_{i}'') f(t, m_{j}, \mathbf{r}, \mathbf{v}_{j}'') - f(t, m_{i}, \mathbf{r}, \mathbf{v}_{i}) f(t, m_{j}, \mathbf{r}, \mathbf{v}_{j}) \right)$$
(11)

где $\mathbf{v}_{i}^{''}$ и $\mathbf{v}_{j}^{''}$ — скорости обратных столкновений

Гидродинамическое описание

Условия применимости

Гидродинамическое приближение подразумевает описание системы только через его макроскопические параметры. Для существования возможности такого описания необходимы условия

$$\sigma \ll \ell \ll L \tag{12}$$

Макроскопические переменные

Все макропараметры определяются как моменты вектора скорости частиц

$$\rho(t, m, \mathbf{r}) = \int mf(t, m, \mathbf{r}, \mathbf{r}) d\mathbf{v} ,$$

$$\rho \mathbf{u}(t, m, \mathbf{r}) = \int m\mathbf{v} f(t, m, \mathbf{r}, \mathbf{v}) d\mathbf{v} ,$$

$$\frac{3}{2} nT(t, m, \mathbf{r}) = \int \frac{m\mathbf{c}^2}{2} f(t, m, \mathbf{r}, \mathbf{v}) d\mathbf{v} ,$$
(13)

где $oldsymbol{c} = oldsymbol{v} - oldsymbol{u}(t,m,oldsymbol{r})$ — локальная скорость частиц

Уравнения переноса

Интегрируя уравнение Больцмана по соответствующим моментам скоростей частиц получаем

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial r_{\alpha}} (\rho u_{\alpha}) = 0 ,$$

$$\frac{\partial (\rho u_{\alpha})}{\partial t} + \frac{\partial}{\partial r_{\beta}} (\rho u_{\alpha} u_{\beta}) = -\frac{\partial (nT)}{\partial r_{\alpha}} - \frac{\partial \pi_{\alpha\beta}}{\partial r_{\beta}} + \rho w_{\alpha} ,$$

$$\frac{\partial}{\partial t} \left(\frac{3}{2} nT + \frac{\rho \mathbf{u}^{2}}{2} \right) + \frac{\partial}{\partial r_{\alpha}} u_{\alpha} \left(\frac{5}{2} nT + \frac{\rho \mathbf{u}^{2}}{2} \right) +$$

$$+ \frac{\partial}{\partial r_{\alpha}} (\pi_{\alpha\beta} u_{\beta}) + \frac{\partial q_{\alpha}}{\partial r_{\alpha}} = \rho \mathbf{w} \cdot \mathbf{u} - T \cdot \boldsymbol{\xi} .$$
(14)

Охлаждения системы

Скорость охлаждения системы

$$\xi(t, m_i, \mathbf{r}, T_i) = -\frac{n_i}{T_i} \int d\chi_i \omega_{ij} (-A_{ij} T_i + B_{ij} (T_j - T_i)) ,$$

$$A_{ij} = (1 - \varepsilon^2) \frac{\mu}{m_i} ,$$

$$B_{ij} = (1 + \varepsilon)^2 \frac{\mu^2}{m_i m_j} .$$
(15)

где ω_{ij} — частота столкновений частиц.

Figures

Рис. 1: Rotated square from texample.net.

Tables

Таблица 1: Largest cities in the world (source: Wikipedia)

City	Population
Mexico City	20,116,842
Shanghai	19,210,000
Peking	15,796,450
Istanbul	14,160,467

Blocks

Three different block environments are pre-defined and may be styled with an optional background color.

Default

Block content.

Alert

Block content.

Example

Block content.

Default

Block content.

Alert

Block content.

Example

Block content.

Math

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Line plots

Bar charts

Quotes

Veni, Vidi, Vici

Frame footer

metropolis defines a custom beamer template to add a text to the footer. It can be set via

\setbeamertemplate{frame footer}{My custom footer}

My custom footer 25

References

Some references to showcase [allowframebreaks] [4, 2, 5, 1, 3]

Conclusion

Summary

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Questions?

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides.

metropolis will automatically turn off slide numbering and progress bars for slides in the appendix.

References i

P. Erdős.

A selection of problems and results in combinatorics.

In Recent trends in combinatorics (Matrahaza, 1995), pages 1–6. Cambridge Univ. Press, Cambridge, 1995.

R. Graham, D. Knuth, and O. Patashnik.

Concrete mathematics.

Addison-Wesley, Reading, MA, 1989.

G. D. Greenwade.

The Comprehensive Tex Archive Network (CTAN).

TUGBoat, 14(3):342–351, 1993.

D. Knuth.

Two notes on notation.

Amer. Math. Monthly, 99:403-422, 1992.

References ii

H. Simpson.

Proof of the Riemann Hypothesis.

preprint (2003), available at

http://www.math.drofnats.edu/riemann.ps, 2003.