

UniHD at TSAR-2022 Shared Task: Is Compute All We Need for Lexical Simplification?

Dennis Aumiller and Michael Gertz

Heidelberg University
Institute of Computer Science
Database Systems Research Group
aumiller@informatik.uni-heidelberg.de

Complex Word

*: requires external knowledge/tooling

*: requires external knowledge/tooling

Wishful Thinking

- A **simple pipeline**, that could do all of that (but better)?
 - No domain-specific resources required
 - No tedious adaptation to new domains/languages

Wishful Thinking

- A **simple pipeline**, that could do all of that (but better)?
 - No domain-specific resources required
 - No tedious adaptation to new domains/languages

Source: https://freecontent.manning.com/neural-network-architectures/

Contributions

- Consider very large LMs as zero-shot recommenders for few-shot (contextualized) Lexical Simplification
- Improve prediction diversity and coverage by sampling from multiple system prompts

The Magical World of Prompt Design

Task Setup

- Shared task trial data: only 10 labeled samples
 - Require great zero-shot performance
- Post-filtering as quality control

Task Setup

- Shared task trial data: only 10 labeled samples
 - Require great zero-shot performance
- Post-filtering as quality control

Model Considerations

- Large enough to exhibit emergent behavior
 - >60B parameters
- Provide reasonable API or inference endpoints
- Explicitly trained on (at least) one shared task lang
 - Consider "parameters per language" in train data

Model Considerations

- Large enough to exhibit emergent behavior
 - >60B parameters
- Provide reasonable API or inference endpoints
- Explicitly trained on (at least) one shared task lang
 - Consider "parameters per language" in train data
- Went with GPT-3 (text-davinci-002)

- Finding the "best" prompt is difficult
 - No observable gradients
 - Inference costs
- Bigger models -> higher prompt tolerance

- Finding the "best" prompt is difficult
 - No observable gradients
 - Inference costs
- Bigger models -> higher prompt tolerance

Give me five easier to understand synonyms for the following word: instilled A: imparted, injected, infused, permeated, steeped

- Finding the "best" prompt is difficult
 - No observable gradients
 - Inference costs
- Bigger models -> higher prompt tolerance

Give me five easier to understand synonyms for the following word: instilled A: imparted, injected, infused, permeated, steeped

Give me five easier to understand synonyms for the following word: instilled

1. implanted

2. inserted

3. infused

4. permeated

5. saturated

- Finding the "best" prompt is difficult
 - No observable gradients
 - Inference costs
- Bigger models -> higher prompt tolerance

Give me five easier to understand synonyms for the following word: instilled A: imparted, injected, infused, permeated, steeped

Give me five easier to understand synonyms for the following word: instilled

1. implanted

2. inserted

3. infused

4. permeated

5. saturated

Ensuring Structured Outputs

- "Exam question trick"
 - Adding explicit cues improves consistency
 - Still no guarantee for consistency!

Question: List ten alternatives for the word "instilled" that are easier to understand. Answer:

- 1. Taught
- 2. Trained
- 3. Educated
- 4. instructed
- 5. imparted
- 6. conveyed
- 7. communicated
- 8. imparted
- 9. introduced
- 10. implanted

Incorporating Context

Context: Rajoy's conservative government had instilled markets with a brief dose of confidence by stepping into Bankia, performing a U-turn on its refusal to spend public money to rescue banks.

Question: Given the above context, list ten alternative words for "instilled" that are easier to understand.

Answer:

- 1. planted
- 2. sowed
- 3. introduced
- 4. infused
- 5. instilled
- 6. imparted
- 7. injected
- 8. communicated
- 9. conveyed
- 10. transferred
- Downside: More context -> higher inference cost

Filtering

- Merge different output formats
- Filter identity predictions & repetitions
- Remove verbose substitutes

Question: List ten alternatives for the word "maniacs" that are easier to understand. Answer:

- 1. people who are out of control
- 2. people who are crazy
- 3. people who are insane
- 4. people who are demented
- 5. people who are deranged
- 6. people who are disturbed
- 7. people who are erratic
- 8. people who are wild
- 9. people who are uncontrolled
- 10. people who are unhinged

Official Results

- Particularly impressive @1 & @3 performance
- @10 performance drops of

		Acc@k@Top1				MAP@l		Potential@k			
Run	ACC@1	k=1	k = 2	k = 3	k=3	k = 5	k = 10	k=3	k = 5	k = 10	
Single (Ours)	0.7721	0.4262	0.5335	0.5710	0.5090	0.3653	0.2092	0.8900	0.9302	0.9436	
MANTIS-1	0.6568	0.319	0.4504	0.5388	0.473	0.3599	0.2193	0.8766	0.9463	0.9785	
UoM&MMU-1	0.6353	0.2895	0.4530	0.5308	0.4244	0.3173	0.1951	0.8739	0.9115	0.9490	
LSBert	0.5978	0.3029	0.4450	0.5308	0.4079	0.2957	0.1755	0.8230	0.8766	0.9463	
TUNER	0.3404	0.1420	0.1689	0.1823	0.1706	0.1087	0.0546	0.4343	0.4450	0.4450	

Improving Coverage of Predictions

Improving Coverage

- Filtering removes "too many" candidates
- Candidate sets can be homogenous
- Order of candidates suboptimal

Improving Coverage

- Filtering removes "too many" candidates
- Candidate sets can be homogenous
- Order of candidates suboptimal

Idea: Query with multiple (different) prompts!

- Add few-shot examples
- With/Without context sentence

Merging Predictions

- Assign scores to each prompt-specific result set
- Aggregate & re-rank based on total score
- Cut down to k predictions

Merging Predictions

- Assign scores to each prompt-specific result set
- Aggregate & re-rank based on total score
- Cut down to k predictions

Merging Predictions

- Assign scores to each prompt-specific result set
- Aggregate & re-rank based on total score
- Cut down to k predictions

Aumiller and Gertz: "UniHD at TSAR-2022: Is Compute All We Need for Lexical Simplification?"

15

Updated Results

- Slight improvements @1
- Drastically improved @10 performance

		Acc@k@Top1]	MAP@l	ζ.	Potential@k			
Run	ACC@1	k=1	k = 2	k = 3	k = 3	k = 5	k = 10	k=3	k = 5	k = 10	
Ensemble (Ours)	0.8096	0.4289	0.6112	0.6863	0.5834	0.4491	0.2812	0.9624	0.9812	0.9946	
Single (Ours)	0.7721	0.4262	0.5335	0.5710	0.5090	0.3653	0.2092	0.8900	0.9302	0.9436	
MANTIS-1	0.6568	0.319	0.4504	0.5388	0.473	0.3599	0.2193	0.8766	0.9463	0.9785	
UoM&MMU-1	0.6353	0.2895	0.4530	0.5308	0.4244	0.3173	0.1951	0.8739	0.9115	0.9490	
LSBert	0.5978	0.3029	0.4450	0.5308	0.4079	0.2957	0.1755	0.8230	0.8766	0.9463	
TUNER	0.3404	0.1420	0.1689	0.1823	0.1706	0.1087	0.0546	0.4343	0.4450	0.4450	

Bonus: Multilingual Extension

Language Transfer with LLMs

What if we "ask nicely"?

Language Transfer with LLMs

What if we "ask nicely"?

Context: Además de partidos de fútbol americano, el estadio ha sido utilizado para una gran variedad de eventos, entre los que se destacan varios partidos de la selección nacional de fútbol de los Estados Unidos, y fue el hogar del ahora difunto club de la MLS, el Tampa Bay Mutiny. Question: Given the above context, list ten alternative words for "difunto" that are easier to understand.

Answer:

1. deceased

2. late

3. departed

4. gone

5. lost

6. forgotten

7. unlamented

8. dead

9. defunct

10. extinct

Language Transfer with LLMs

What if we "ask nicely"?

Context: Además de partidos de fútbol americano, el estadio ha sido utilizado para una gran variedad de eventos, entre los que se destacan varios partidos de la selección nacional de fútbol de los Estados Unidos, y fue el hogar del ahora difunto club de la MLS, el Tampa Bay Mutiny.

Question: Given the above context, list ten alternative words for "difunto" that are easier to understand.

Answer:

1. deceased

2. late

3. departed

4. gone

5. lost

6. forgotten

7. unlamented

8. dead

9. defunct

10. extinct

Context: Además de partidos de fútbol americano, el estadio ha sido utilizado para una gran variedad de eventos, entre los que se destacan varios partidos de la selección nacional de fútbol de los Estados Unidos, y fue el hogar del ahora difunto club de la MLS, el Tampa Bay Mutiny.

Question: Given the above context, list ten alternative Spanish words for "difunto" that are easier to understand.

Answer: 1. Fallecido

2. Difunto

3. Muerto

4. Falecido

5. Difunto

6. Fallecido

7. muerto

8. desaparecido

9. extinto

10. finado

Spanish and Portuguese Results

A aa@k@Ton1

Detential@lz

Spanish:

	ACC		obī	WAP @ K			Potentiai@k			
ACC@1	k=1	k = 2	k = 3	k = 3	k = 5	k = 10	k = 3	k = 5	k = 10	
0.6521	0.3505	0.5108	0.5788	0.4281	0.3239	0.1967	0.8206	0.8885	0.9402	
0.5706	0.3070	0.3967	0.4510	0.3526	0.2449	0.1376	0.6902	0.7146	0.7445	
0.3695	0.2038	0.2771	0.3288	0.2145	0.1499	0.0832	0.5842	0.6467	0.7255	
0.3668	0.1603	0.2282	0.269	0.2128	0.1506	0.0899	0.5326	0.6005	0.6929	
0.2880	0.0951	0.1440	0.1820	0.1868	0.1346	0.0795	0.4945	0.6114	0.7472	
0.1195	0.0625	0.0788	0.0842	0.0575	0.0356	0.0184	0.144	0.1467	0.1494	
	0.6521 0.5706 0.3695 0.3668 0.2880	ACC@1 $k = 1$ 0.65210.35050.57060.30700.36950.20380.36680.16030.28800.0951	ACC@1 $k = 1$ $k = 2$ 0.65210.35050.51080.57060.30700.39670.36950.20380.27710.36680.16030.22820.28800.09510.1440	0.6521 0.3505 0.5108 0.5788 0.5706 0.3070 0.3967 0.4510 0.3695 0.2038 0.2771 0.3288 0.3668 0.1603 0.2282 0.269 0.2880 0.0951 0.1440 0.1820	ACC@1 $k = 1$ $k = 2$ $k = 3$ $k = 3$ 0.65210.35050.51080.57880.42810.57060.30700.39670.45100.35260.36950.20380.27710.32880.21450.36680.16030.22820.2690.21280.28800.09510.14400.18200.1868	ACC@1 $k = 1$ $k = 2$ $k = 3$ $k = 3$ $k = 5$ 0.65210.35050.51080.57880.42810.32390.57060.30700.39670.45100.35260.24490.36950.20380.27710.32880.21450.14990.36680.16030.22820.2690.21280.15060.28800.09510.14400.18200.18680.1346	ACC@1 $k = 1$ $k = 2$ $k = 3$ $k = 3$ $k = 5$ $k = 10$ 0.65210.35050.51080.57880.42810.32390.19670.57060.30700.39670.45100.35260.24490.13760.36950.20380.27710.32880.21450.14990.08320.36680.16030.22820.2690.21280.15060.08990.28800.09510.14400.18200.18680.13460.0795	ACC@1 $k = 1$ $k = 2$ $k = 3$ $k = 3$ $k = 5$ $k = 10$ $k = 3$ 0.65210.35050.51080.57880.42810.32390.19670.82060.57060.30700.39670.45100.35260.24490.13760.69020.36950.20380.27710.32880.21450.14990.08320.58420.36680.16030.22820.2690.21280.15060.08990.53260.28800.09510.14400.18200.18680.13460.07950.4945	ACC@1 $k = 1$ $k = 2$ $k = 3$ $k = 3$ $k = 5$ $k = 10$ $k = 3$ $k = 5$ 0.65210.35050.51080.57880.42810.32390.19670.82060.88850.57060.30700.39670.45100.35260.24490.13760.69020.71460.36950.20380.27710.32880.21450.14990.08320.58420.64670.36680.16030.22820.2690.21280.15060.08990.53260.6005	

MADOL

Spanish and Portuguese Results

			Acc@k@Top1			MAP@k			Potential@k		
Spanish:	Run	ACC@1	k=1	k = 2	k = 3	k = 3	k = 5	k = 10	k = 3	k = 5	k = 10
	Ensemble (Ours)	0.6521	0.3505	0.5108	0.5788	0.4281	0.3239	0.1967	0.8206	0.8885	0.9402
	Single (Ours)	0.5706	0.3070	0.3967	0.4510	0.3526	0.2449	0.1376	0.6902	0.7146	0.7445
	PresiUniv-1	0.3695	0.2038	0.2771	0.3288	0.2145	0.1499	0.0832	0.5842	0.6467	0.7255
	UoM&MMU-3	0.3668	0.1603	0.2282	0.269	0.2128	0.1506	0.0899	0.5326	0.6005	0.6929
	LSBert	0.2880	0.0951	0.1440	0.1820	0.1868	0.1346	0.0795	0.4945	0.6114	0.7472
	TUNER	0.1195	0.0625	0.0788	0.0842	0.0575	0.0356	0.0184	0.144	0.1467	0.1494

			Acc@k@Top1]	MAP@l	ζ.	Potential@k		
Portuguese:	Run	ACC@1	k = 1	k = 2	k = 3	k = 3	k = 5	k = 10	k=3	k = 5	k = 10
	Ensemble (Ours)	0.7700	0.4358	0.5347	0.6229	0.5014	0.3620	0.2167	0.9171	0.9491	0.9786
	Single (Ours)	0.6363	0.3716	0.4625	0.5160	0.4105	0.2889	0.1615	0.7860	0.8181	0.8422
	GMU-WLV-1	0.4812	0.2540	0.3716	0.3957	0.2816	0.1966	0.1153	0.6871	0.7566	0.8395
	Cental-1	0.3689	0.1737	0.2433	0.2673	0.1983	0.1344	0.0766	0.524	0.5641	0.6096
	LSBert	0.3262	0.1577	0.2326	0.286	0.1904	0.1313	0.0775	0.4946	0.5802	0.6737
	TUNER	0.2219	0.1336	0.1604	0.1604	0.1005	0.0623	0.0311	0.2673	0.2673	0.2673

Take Away and Limitations

Is Compute All We Need?

- Maybe?
 - Great performance
 - Expensive inference
 - Hard to steer generation

Useful for silver labels?

Thank you for your attention!

Code: https://github.com/dennlinger/TSAR-2022-Shared-Task

Any questions?

Alternative Models:

Smaller models struggle with coherence

Name ten alternative words for "instilled" that are easier to understand.

instructed, instilled, ingrained, ingrained, implanted, implanted, implanted, implanted, implanted

All Promts:

• TODO