演習問題その8常微分方程式(3)

1.

次の1階高次の微分方程式を解け. ただし、dy/dx=y' とする.

$$y = xy' - y^2/4$$

次の微分方程式の一般解を求めよ.

$$(1) \quad y'' + 4y = x$$

(2) $y'' - 5y' + 6y = e^{-x}$

次の高階線形微分方程式を解け.

$$(1) \quad y''' + y'' - 21y' - 45y = 0$$

 $(2) \quad y''' + y'' - 5y' + 3y = 0$

次の微分方程式を解け.

(1)
$$y = x(y'+1) + y'$$

(2) $y = xy'^2 + y'^2$

p=y'とおいて階数の引き下げを行うことにより、次の微分方程式を解け.

(1)
$$xy'' - 3y' = 0$$

(2) $x^2y'' = 2xy' + x^2$

次の高階同次形の微分方程式を解け.

$$(1) \quad x^2y'' + xy' + 3y = 0$$

 $(2) \quad yy'' - y'^2 - 6xy^2 = 0$

7. $+\alpha$ 問題

(1) 単振り子

振り子の最下点からの円弧に沿った長さをsをすると、単振り子の運動方程式は、

$$m\frac{d^2s}{dt^2} = -mg\sin\theta \sim -mg\frac{s}{l}$$

ここで $\theta \ll 1$ である。ある時刻 t における変位 s(t) を求めよ。ここで t=0 のときの質点は最下点 s=0 で速度 v_0 とする。

(2) 強制振動

$$\frac{d^2y}{dt^2} + \omega_0^2 y = F\cos\omega t$$

は固有角周波数 ω_0 の振動子に外力 $F\cos\omega t$ を加えたときの振動子の運動を記述する方程式である。このとき、以下の問いに答えよ。

- (1) $\omega \neq \omega_0$ の場合の微分方程式の一般解を求めよ。
- (2) $\omega = \omega_0$ の場合の微分方程式の一般解を求めよ。