Worksheets

3D matching engine for FPGA

By Tomas Brandt Trillingsgaard April 7, 2016

Contents

1	Introduction	5
2	Algorithms 2.1 Efficient Edge-Preserving Stereo Matching	7 7
	2.2 Fast Cost Volume	9
3	Literature	11

Chapter 1

Introduction

This document is the worksheets which supports the report written for master thesis on AAU.

It will contain a different chapter for each subject (approximate 1 subject per week). When this document is sent to the supervisor it will only contain the newest chapter/subject. All other chapters will be commented in LATEX.

Chapter 2

Algorithms

2.1 Efficient Edge-Preserving Stereo Matching

This algorithm uses a combination of Sum of Absolute Differences and Census transform as cost for each pixel and a corresponding disparity. Then these costs are aggregated using successive weighted sum and permeability.

Steps:

- 1. Calculate cost for each pixel and each disparity
- 2. Calculate permeability for each pixel
- 3. Calculate left scan order (right to left direction) for each pixel and disparity
- 4. Calculate right scan order (left to right direction) and combine it and left scan into horizontal aggregation for each pixel and disparity.
- 5. Calculate top scan order using horizontal data for each pixel and disparity
- 6. Calculate bottom scan order using horizontal data and combine it and to scan into total aggregation for each pixel and disparity.
- 7. Find minimum among disparity values for each pixel

complexity

N = number of pixels and d = max disparity value. 0 = multiplications and division and $\Theta =$ additions and subtractions

The cost calculation requires: $(3 \times subtraction + 2 \times additions)$ for each SAD cost.

 $((Cen_{size} \times Cen_{size} - 1) \times comparisons)$ for each census transform.

 $(Cen_{size} \times XOR + 1 \times sum)$ for each hamming distance calculation.

 $2 \times multiplication + 1 \times addition$ for combining costs.

step 1 total: $(3 \times subtraction + 2 \times addition) \times (d+1) \times N + ((Cen_{size} \times Cen_{size} - 1) \times comparisons) \times (d+2) \times N + (Cen_{size} \times XOR + 1 \times sum) \times (d+1) \times N + (2 \times multiplication + 1 \times addition) \times (d+1) \times N = O(2N \times d) + \Theta(6N \times d)$

Permeability requires: $4 \times (1 \times minimization + 3 \times (exp + subtraction + div)$ for each pixel

Step 2 total:
$$4 \times (1 \times minimization + 3 \times (exp + subtraction + div) \times N$$

= $O(12N) + \Theta(12N) + 12 \times exp \times N$

Left scan order requires: $1 \times add + 1 \times mult$ for each pixel and disparity

Step 3 total:
$$(1 \times add + 1 \times mult) \times N \times (d+1)$$

= $O(N \times d) + \Theta(N \times d)$

Horizontal + right scan order requires: $2 \times add + 1 \times mult$ for each pixel and disparity

Step 4 total:
$$(2 \times add + 1 \times mult) \times N \times (d+1)$$

= $O(N \times d) + \Theta(2N \times d)$

Top scan order requires: $1 \times add + 1 \times mult$ for each pixel and disparity

Step 3 total:
$$(1 \times add + 1 \times mult) \times N \times (d+1)$$

= $O(N \times d) + \Theta(N \times d)$

Vertical + bottom scan order requires: $2 \times add + 1 \times mult$ for each pixel and disparity

Step 4 total:
$$(2 \times add + 1 \times mult) \times N \times (d+1)$$

= $O(N \times d) + \Theta(2N \times d)$

Total cost: $= O(6N \times d + 12N) + \Theta(12N \times d + 12N) + 12 \times exp \times N$

Memory

```
input requires: 2 \times N \times d \times 3 \times 8bit + 2 \times N \times d \times 8bit = N \times d \times 64bit step 1 requires: N \times \times d32bitfloat = N \times d \times 32bit step 2 requires: N \times 4 \times 32bitfloat = N \times 128bit step 3 requires: N \times d \times 32bitfloat = N \times d \times 32bit step 4 requires: (N \times d + 1) \times 32bitfloat = (N \times d + 1) \times 32bit step 5 requires: (N \times d + 1) \times 32bitfloat = (N \times d + 1) \times 32bit step 6 requires: (N \times d + 1) \times 32bitfloat = (N \times d + 1) \times 32bit output requires: (N \times d + 1) \times 32bitfloat = (N \times d + 1) \times 32bit
```

simulation:

I have coded a simulation of this algorithm in python. Runtime: 184 secs for tsukuba test set (384 x 288 pixels, max disparity value of 30)

Figure 2.1: Tsukuba result from EEPSM algorithm

2.2 Fast Cost Volume

This algorithm uses a combination of Sum of Absolute Differences and Gradient as cost for each pixel and a corresponding disparity. Then these costs are weighted by a guided image filter.

complexity

guided filter is O(N) according to articles.

memory

mem for

input requires: $2 \times N \times d \times 3 \times 8bit + 2 \times N \times d \times 8bit = N \times d \times 64bit$

simulation

My own python implementation: runtime: 62 for tsukuba test set (384x288 pixels, max disparity value of 30).

Matlab implementation by authors: runtime: 51 seconds for tsukuba test set (384x288 pixels, max disparity value of 15) and 93 seconds for tsukuba test set (384x288 pixels, max disparity value of 30)

Figure 2.2: pyt test 30

Figure 2.3: mat test 15 disp

Figure 2.4: mat test 30 disp

Chapter 3

Literature

This chapter contains a list of literature I have read or expect to read during the master thesis:

- A Fast Binocular Vision Stereo Matching Algorithm, 2012, Hui Zhang, LingTao Zhang, Ming Zhao, and Jian Liu, article
- Stereo Vision in Structured Environments by Consistent Semi-Global Matching, 2006, *Heiko Hirschmüller*, article
- Structured-light stereo: Comparative analysis and integration of structured-light and active stereo for measuring dynamic shape, 2013, Wonkwi Jang, Changsoo Je, Yongduek Seo, Sang Wook Lee, article
- Active Animate Stereo Vision, 1993, C.W. Urquhart, J.P. Siebert, J.P. McDonald and R.J. Fryer, article