

Formularium

Academiejaar 2024 - 2025

Timo Vandevenne

Dit document is nog niet klaar, als we nieuwe formules zien zal ik deze toevoegen.

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
Wet van Dalton: $P_i = y_i P_{tot}$	P _i Partieeldruk
	y _i Molfractie gas [%]
PV = nRT	P Druk
	V Volume
	R Gasconstante
	T Temperatuur [K]
$\Delta U = q + w$	ΔU Verandering van interne energie
	q warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
	(w>0: arbeid op systeem)
$w = -P\Delta V$	ΔV Volumeverandering
Wet van Hess:	$\Delta H_{\rm rxn}^0$ Reactieenthalpie
$\Delta H_{rxn}^0 = \sum_{i} i\Delta H_f^0(prod.) - \sum_{i} j\Delta H_f^0(reag.)$	$(\Delta H_{rxn}^0 > 0)$: endotherme reactie)
$\Delta \Pi_{rxn} = \sum_{i} i \Delta \Pi_{f}(prow.) = \sum_{j} j \Delta \Pi_{f}(rewg.)$	$\mathbf{H}_{\mathbf{f}}^{0}$ Standaardvormingsenthalpie
	i, j coefficiënten in reactievergelijking
$q = ms\Delta T$	m massa [g]
$q = ms\Delta I$	
CAT	s Specifieke warmte $\left[\frac{J}{g^{\circ}C}\right]$
$q = C\Delta T$	ΔT Temperatuurverandering
	C Warmtecapaciteit
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$	
$q_{rxn} = n\Delta H_{rxn}$	
$q_{rxn} = n\Delta H_{rxn}^0$ $E = h\mathbf{v} = h\frac{c}{\lambda}$	E Energie [J]
^	\mathbf{h} constante van Planck = $6.62 \cdot 10^{-34} \mathrm{Js}$
	$ \mathbf{v} $ frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
	λ Golflengte [m]
$E_{kin,e^-} = h\mathbf{v} - W$	W Werkfunctie: maat voor hoe sterk e^- in metaal worden
,	vastgehouden
De Broglie: $\lambda = \frac{h}{p} = \frac{h}{mu}$	\mathbf{p} Impuls $\left[\frac{kg \cdot m}{s}\right]$
\sim p mu	m Massa bewegend deeltje [kg]
	u Snelheid
$K = [C]^c[D]^d$	$aA+bB \rightleftharpoons cC+dD$
$K = \frac{[C]^c [D]^d}{[A]^a [B]^b}$	
	K Evenwichtsconstante (K>1: Evenwicht naar rechts)
Duin aire a come I a Clack 1'	[X] Concentratie van stof X
Principe van Le Châtelier	Systeem compenseert uitwendige stress gedeeltelijk
	• Concentratieverandering
	• Druk & volumeverandering
	Temperatuursverandering