Mathematics of Reinforcement Learning

Exercise Class 5

Exercise 1.

Let (S, A, D, p, r, γ) be a Markov Decision Model, π a policy and μ a probability measure on S. From the *Ionescu-Tulcea Theorem for Markov Decision Models*, let \mathbb{P}^{π}_{μ} be the unique probability measure on (Ω, \mathcal{A}) , with the property

$$\mathbb{P}^{\pi}_{\mu} \big[B \times \bigotimes_{k=n+1}^{\infty} (S \times A) \big] = \sum_{(s_0, a_0, \dots, s_n, a_n) \in B} \mu[\{s_0\}] \pi(a_0 | s_0) \prod_{k=1}^n p(s_k | s_{k-1}, a_{k-1}) \pi(a_k | s_k),$$

for all $B \subseteq (S \times A)^{n+1}$ and $n \in \mathbb{N}_0$.

Prove that \mathbb{P}^{π}_{μ} satisfies the following properties

1. For all $n \in \mathbb{N}_0$ and $(s, a) \in S \times A$

$$\mathbb{P}^{\pi}_{\mu}[A_n = a \mid S_n = s] = \pi(a \mid s).$$

2. For all $n \in \mathbb{N}_0$ and $(s_k, a_k)_{k=0,\dots,n+1} \in (S \times A)^{n+2}$

$$\mathbb{P}^{\pi}_{\mu}[S_{n+1} = s_{n+1}, A_{n+1} = a_{n+1} \mid S_0 = s_0, A_0 = a_0, \dots, S_n = s_n, A_n = a_n]$$
$$= \mathbb{P}^{\pi}_{\mu}[S_{n+1} = s_{n+1}, A_{n+1} = a_{n+1} \mid S_n = s_n, A_n = a_n].$$

Exercise 2 (Bellman equation). In the setting of exercise class 2 task 4, show that for any deterministic policy $\pi \colon S \to A, \ t = 0, 1, 2$ and $s = (t, p, w) \in S$ the following equation holds

$$V^{\pi}(t, p, w) = \gamma \sum_{(t+1, p', w') \in S} p(t+1, p', w' \mid s, \pi(s)) V^{\pi}(t+1, p', w').$$

 \Diamond

Compute for all $s = (3, p, w) \in S$ the value $V^{\pi}(s)$.

Exercise 3 (Programming exercises).

Complete the programming exercises given in the Jupyter notebook file.