IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Hiroshi KIGUCHI, Sadao KANBE and Shunichi SEKI

Application No.: New U.S. Patent Application

Filed:

July 8, 1998

Docket No.:

101111

For:

COMPOSITION FOR AN ORGANIC EL ELEMENT AND METHOD OF

MANUFACTURING THE ORGANIC EL ELEMENT

CLAIM FOR PRIORITY

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

The benefit of the filing dates of the following prior foreign applications filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 9-191681 filed July 16, 1997 Japanese Patent Application No. 9-204697 filed July 30, 1997

In support of this claim, certified copies of said original foreign applications:

X	are filed herewith.			
	were filed on	_ in Parent Application No	_ filed _	

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of these documents.

Respectfully submitted,

Registration No. 27,075

A. Stelacone

Registration No. P-42,168

JAO:JAS/kmg

OLIFF & BERRIDGE, PLC P.O. Box 19928 Alexandria, Virginia 22320 Telephone: (703) 836-6400

DEPOSIT ACCOUNT USE **AUTHORIZATION**

Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461

日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1997年 7月16日

出 願 番 号 Application Number:

平成 9年特許顯第191681号

出 願 人 Applicant (s):

セイコーエプソン株式会社

1997年12月19日

特許庁長官 Commissioner, Patent Office 荒井 寿 郷 順

特平 9-191681

【書類名】

特許願

【整理番号】

P0S58234

【提出日】

平成 9年 7月15日

【あて先】

特許庁長官

殿

【国際特許分類】

G02F 1/00

【発明の名称】

有機EL素子用組成物および有機EL素子の製造方法

【請求項の数】

13

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

木口 浩史

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

神戸 貞男

【特許出願人】

【識別番号】

000002369

【氏名又は名称】 セイコーエプソン株式会社

【代表者】

安川 英昭

【代理人】

【識別番号】 100093388

【弁理士】

【氏名又は名称】 鈴木 喜三郎

【連絡先】

3348-8531内線2610-2615

【選任した代理人】

【識別番号】 100095728

【弁理士】

【氏名又は名称】 上柳 雅誉

【選任した代理人】

【識別番号】 100107261

【弁理士】

【氏名又は名称】 須澤 修

【手数料の表示】

【予納台帳番号】 013044

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9603594

【プルーフの要否】 要

【発明の名称】 有機EL素子用組成物および有機EL素子の製造方法 【特許請求の範囲】

【請求項1】 インクジェット方式によりパターン形成される有機EL素子用 組成物であって、

主として、発光層を形成する共役系高分子有機化合物の前駆体と、

前記発光層の発光特性を変化させるための少なくとも1種の蛍光色素とを含む ことを特徴とする有機EL素子用組成物。

【請求項2】 前記発光特性は、光吸収極大波長である請求項1に記載の有機 E L 素子用組成物。

【請求項3】 前記前駆体はポリアリレンビニレン前駆体である請求項1または2に記載の有機EL素子用組成物。

【請求項4】 前記ポリアリレンビニレン前駆体はポリパラフェニレンビニレンまたはその誘導体の前駆体である請求項3に記載の有機EL素子用組成物。

【請求項5】 前記蛍光色素はローダミンまたはローダミン誘導体である請求項1ないし4のいずれかに記載の有機EL素子用組成物。

【請求項6】 前記蛍光色素はジスチリルビフェニルおよびその誘導体である 請求項1ないし4に記載の有機EL素子用組成物。

【請求項7】 前記蛍光色素はクマリンまたはクマリン誘導体である請求項1ないし4に記載の有機EL素子用組成物。

【請求項8】 前記蛍光色素はテトラフェニルブタジエン(TPB)またはテトラフェニルブタジエン誘導体である請求項1ないし4に記載の有機EL素子用組成物。

【請求項9】 前記蛍光色素はキナクリドンまたはキナクリドン誘導体である。 請求項1ないし4に記載の有機EL素子用組成物。

【請求項10】 前記前駆体および前記蛍光色素が極性溶媒に溶解または分散された状態で存在する請求項1ないし4のいずれかに記載の有機EL素子用組成物。

【請求項11】 前記蛍光色素の添加量は、前記共役系高分子有機化合物の前 駆体固型分に対し0.5~10wt%である請求項1ないし8のいずれかに記載の 有機EL素子用組成物。

【請求項12】 前記組成物中には潤滑剤が含まれている請求項1ないし11 のいずれかに記載の有機EL素子用組成物。

【請求項13】 前記請求項1ないし12のいずれかの組成の有機EL素子用組成物を用いて、

インクジェット方式により前記組成物をヘッドから噴出させてパターンを形成 する工程と、

加熱処理により前記組成物中の前記前駆体を高分子化させて発光層を形成する工程とを有することを特徴とする有機EL素子の製造方法。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】

本発明は、EL素子用組成物、特に有機EL素子用組成物に関するものである

[0002]

【従来の技術】

有機EL素子は、蛍光性有機化合物を含む固体薄膜の両面に陰極と陽極とを取り付けた構成を有している。電極間に電圧を印加すると、薄膜に電子及び正孔((ホール)が注入され、それらは印加された電場により薄膜中を移動し再結合する。この再結合に際し放出されたエネルギーによりエキシトン(励起子)が生成し、このエキシトンが基底状態へ戻る際にエネルギー(蛍光・リン光)を放出する現象をEL発光という。

[0003]

この有機EL素子の特徴は、10V以下の低電圧で100~10000cd/m²程度の高輝度の面発光が可能となることである。また、有機化合物を用いれば、材料選択に無限の可能性があるという他の材料系にはない優位性を有している。すなわち、蛍光物質の種類を適宜選択することにより青色から赤色までのあら

ゆる可視光の発光が可能になる。

[0004]

ここで、素子の発光効率と安定性の重要な部分を担うのが発光層である。これまでに発光効率の向上と発光波長の変換を目的として、発光層に高効率の蛍光色素をドーピングすることが行われてきた。

[0005]

従来の有機EL素子は、主として低分子系色素(ホスト材料)を使用し、これを薄膜に形成して積層型有機薄膜EL素子としたものである。このような有機薄膜EL素子は、低分子量のホスト材料に対して蛍光色素が添加されたものであり、例えば、アルミキノリノール錯体(Alq3)、ジスチリルビフェニル等のホスト材料に、ペリレン、ジスチリルビフェニル等の蛍光色素を添加するもの等が挙げられる。

[0006]

このような低分子系色素を薄膜に形成するためには、真空蒸着法が用いられているが、真空蒸着法の場合、均質で欠陥がない薄膜を得ることは困難であり、形成された薄膜は安定性や強度の点で問題がある。すなわち、素子を昇温した場合に有機分子の結晶化、凝集が生じ、結晶化した部分は電極と接触できず、非発光部分(いわゆるダークスポット)を生じる問題がある。また、真空蒸着法によって数層もの有機層を形成するには長時間を要するため、効率的な素子の製造方法とは言えないものであった。

[0007]

【発明が解決しようとする課題】

本発明の目的は、簡便にかつ短時間で精度の高いパターニングを行うことができるとともに、膜設計や発光特性の最適化を簡単に行うことができ、また発色効率の調整が容易であるとともに、薄膜の耐久性が優れた有機EL素子用組成物および有機EL素子の製造方法を提供することにある。

[0008]

【課題を解決するための手段】

このような目的は、下記(1)~(13)の本発明により達成される。

[0009]

(1) インクジェット方式によりパターン形成される有機EL素子用組成物であって、

主として、発光層を形成する共役系高分子有機化合物の前駆体と、

前記発光層の発光特性を変化させるための少なくとも1種の蛍光色素とを含む ことを特徴とする有機EL素子用組成物。

[0010]

(2) 前記発光特性は、光吸収極大波長である上記(1)に記載の有機EL 素子用組成物。

[0011]

(3) 前記前駆体はポリアリレンビニレン前駆体である上記(1)または(2)に記載の有機EL素子用組成物。

[0012]

(4) 前記ポリアリレンビニレン前駆体はポリパラフェニレンビニレンまたはその誘導体の前駆体である上記(3)に記載の有機EL素子用組成物。

[0013]

(5) 前記蛍光色素はローダミンまたはローダミン誘導体である上記(1) ないし(4)のいずれかに記載の有機EL素子用組成物。

[0014]

(6) 前記蛍光色素はジスチリルビフェニルおよびその誘導体である上記(1)ないし(4)のいずれかに記載の有機EL素子用組成物。

[0015]

(7) 前記蛍光色素はクマリンまたはクマリン誘導体である上記(1)ないし(4)に記載の有機EL素子用組成物。

[0016]

(8) 前記蛍光色素はテトラフェニルブタジエン(TPB) またはテトラフェニルブタジエン誘導体である上記(1)ないし(4)のいずれかに記載の有機 EL素子用組成物。

(9) 前記蛍光色素はキナクリドンまたはキナクリドン誘導体である上記(1)ないし(4)に記載の有機EL素子用組成物。

[0018]

[0017]

(10) 前記前駆体および前記蛍光色素が極性溶媒に溶解または分散された状態で存在する上記(1)ないし(4)のいずれかに記載の有機EL素子用組成物

[0019]

(11) 前記蛍光色素の添加量は、前記共役系高分子有機化合物の前駆体固型分に対し0.5~10wt%である上記(1)ないし(8)のいずれかに記載の有機EL素子用組成物。

[0020]

(12) 前記組成物中には潤滑剤が含まれている上記(1)ないし(11)のいずれかに記載の有機EL素子用組成物。

[0021]

(13) 上記(1) ないし(12) のいずれかの組成の有機 E L 素子用組成物を 用いて、

インクジェット方式により前記組成物をヘッドから噴出させてパターンを形成 する工程と、

加熱処理により前記組成物中の前記前駆体を高分子化させて発光層を形成する工程とを有することを特徴とする有機EL素子の製造方法。

[0022]

【発明の実施の形態】

以下、本発明の有機EL素子用組成物を詳細に説明する。

[0023]

本発明の有機EL素子用組成物は、インクジェット方式によりパターン形成される有機EL素子用組成物であって、主として発光層を形成する共役系高分子有機化合物の前駆体(以下「前駆体」という)と、前記発光層の発光特性を変化させるための少なくとも1種の蛍光色素とを含むものである。

[0024]

前記前駆体は、蛍光色素等とともに有機EL素子用組成物として薄膜に成形された後、例えば化学式(I)に示すように、加熱硬化させることによって共役系高分子有機EL層を生成し得るものをいい、例えば前駆体のスルホニウム塩の場合、加熱処理されることによりスルホニウム基が脱離し、共役系高分子有機化合物となるもの等である。

[0025]

【化1】

[0026]

かかる共役系高分子有機化合物は固体で強い蛍光を持ち、均質な固体超薄膜を 形成することができる。しかも形成能に富みITO電極との密着性も高い。さら に、このような化合物の前駆体は、硬化した後は強固な共役系高分子膜を形成す ることから、加熱硬化前においては前駆体溶液(エマルジョン)を後述するイン クジェットパターニングに適用可能な所望の粘度に調整することができ、簡便か つ短時間で最適条件の膜形成を行うことができる。

[0027]

このような前駆体としては、例えばポリアリレンビニレン前駆体が好ましい。 ポリアリレンビニレン前駆体は水溶性あるいは有機溶媒に可溶であり、ポリマー 化が可能であるため、光学的にも高品質の薄膜を得ることができる。

[0028]

このようなポリアリレンピニレン前駆体としては、PPV (ポリ (パラーフェニレンピニレン)) 前駆体、MO-PPV (ポリ (2,5-ジメトキシ-1,4-フェニレンピニレン)) 前駆体、CN-PPV (ポリ (2,5-ビスヘキシルオキシ-1,4-フェニレン-(1-シアノビニレン))) 前駆体、MEH-PPV (ポリ [2-メトキシ-5-(2'-エチルヘキシルオキシ)]ーパラーフェニレンピニレン) 前駆体、等のPPV誘導体の前駆体、PTV (ポリ (2,5-チエニレンビニレン)) 前駆体等のポリ (アルキルチオフェン) 前駆体、PFV (ポリ (2,5-フリレンビニレン)) 前駆体、ポリ (パラフェニレン) 前駆体、ポリアルキルフルオレン前駆体等が挙げられるが、なかでも化学式 (II) に示すPPVまたはその誘導体の前駆体が特に好ましい。

[0029]

【化2】

MEH-PPV

(II)

[0030]

PPVまたはPPV誘導体の前駆体は水に可溶であり、成膜後の加熱により高

分子化してPPV層を形成する。さらに、PPVは強い蛍光を持ち、また二重結合のπ電子がポリマー鎖上で非極在化している導電性高分子でもあるため、高性能の有機EL素子を得ることができる。

[0031]

前記PPV前駆体に代表される前駆体の含有量は、組成物全体に対して0.0 1~10.0wt%が好ましく、0.1~5.0wt%がさらに好ましい。前駆体の 添加量が少な過ぎると共役系高分子膜を形成するのに不十分であり、多過ぎると 組成物の粘度が高くなり、インクジェット方式による精度の高いパターニングを 行うのに適さない場合がある。

[0032]

さらに、本発明の有機EL素子用組成物は少なくとも1種の蛍光色素を含む。 これにより、発光層の発光特性を変化させることができ、例えば、発光層の発光 効率の向上、または光吸収極大波長(発光色)を変えるための手段としても有効 である。

[0033]

すなわち、蛍光色素は単に発光層材料としてではなく、発光機能そのものを担う色素材料として利用することができる。例えば、共役系高分子有機化合物分子上のキャリア再結合で生成したエキシトンのエネルギーをほとんど蛍光色素分子上に移すことができる。この場合、発光は蛍光量子効率が高い蛍光色素分子からのみ起こるため、EL素子の電流量子効率も増加する。したがって、EL素子用組成物中に蛍光色素を加えることにより、同時に発光層の発光スペクトルも蛍光分子のものとなるので、発光色を変えるための手段としても有効となる。

[0034]

なお、ここでいう電流量子効率とは、発光機能に基づいて発光性能を考察する ための尺度であって、下記式により定義される。

[0035]

 $\eta_E =$ 放出されるフォトンのエネルギー/入力電気エネルギー

そして、蛍光色素のドープによる光吸収極大波長の変換によって、例えば赤、 青、緑の3原色を発光させることができ、その結果フルカラー表示体を得ること が可能となる。

[0036]

さらに蛍光色素をドーピングすることにより、EL素子の発光効率を大幅に向上させることができる。

[0037]

蛍光色素としては、赤色の発色光を有するローダミンまたはローダミン誘導体であることが好ましい。これらの蛍光色素は、低分子であるため水溶液に可溶であり、またPPVと相溶性がよく、均一で安定した発光層の形成が容易である。

[0038]

このような蛍光色素として、例えばローダミンB、ローダミンBベース、ローダミン6G、ローダミン101過塩素酸塩等が挙げられ、これらを2種以上混合したものであってもよい。

[0039]

また、蛍光色素としては、緑色の発色光を有するキナクリドンおよびその誘導体であることが好ましい。これらの蛍光色素は上記赤色蛍光色素と同様、低分子であるため水溶液に可溶であり、またPPVと相溶性がよく発光層の形成が容易である。

[0040]

さらに、蛍光色素としては、青色の発色光を有するジスチリルビフェニルおよびその誘導体であることが好ましい。これらの蛍光色素は上記赤色蛍光色素と同様、水溶液に可溶であり、またPPVと相溶性がよく発光層の形成が容易である

[0041]

また、青色の発色光を有する他の蛍光色素としては、クマリンおよびその誘導体であることが好ましい。これらの蛍光色素は上記赤色蛍光色素と同様、低分子であるため水溶液に可溶であり、またPPVと相溶性がよく発光層の形成が容易である。

[0042]

このような蛍光色素としては、例えばクマリン、クマリン-1、クマリン-6

、クマリン-7、クマリン120、クマリン138、クマリン152、クマリン 153、クマリン311、クマリン314、クマリン334、クマリン337、 クマリン343等が挙げられる。

[0043]

さらに別の青色の発色光を有する蛍光色素としては、テトラフェニルブタジエン (TPB) またはTPB誘導体であることが好ましい。これらの蛍光色素は上記赤色蛍光色素等と同様、低分子であるため水溶液に可溶であり、またPPVと相溶性がよく発光層の形成が容易である。

[0044]

以上のような蛍光色素は、1種または2種以上を混合して用いることができる

[0045]

これらの蛍光色素は、前記共役系高分子有機化合物の前駆体固型分に対し、0.5~10wt%添加されることが好ましく、1.0~5.0wt%添加されることがより好ましい。蛍光色素の添加量が多過ぎると発光層の耐候性および耐久性の維持が困難となり、一方、添加量が少な過ぎると、上述したような蛍光色素を加えることによる効果が十分に得られない。

[0046]

また、上記前駆体および蛍光色素は極性溶媒に溶解または分散していることが 好ましい。極性溶媒は、上記前駆体、蛍光色素等を容易に溶解または均一に分散 させることができるため、インクジェット用ノズルロでの有機E L 組成物中の固 型分が付着したり目詰りを起こすことを防止するとともに、ノズルロにおけるイ ンクの接触角を高く維持することに寄与し、これによってインクの飛行曲りを防 止することができる。

[0047]

このような極性溶媒とは、例えば、水、メタノール、エタノール等の水と相溶性のあるアルコール、N, Nージメチルホルムアミド(DMF)、Nーメチルピロリドン(NMP)、ジメチルイミダゾリン(DMI)、ジメチルスルホキシド(DMSO)等の有機溶媒または無機溶媒が挙げられ、これらの溶媒を2種以上

適宜混合したものであってもよい。

[0048]

さらに、前記組成物中に潤滑剤が含まれていることが好ましい。これにより、 組成物がインクジェットノズル口で乾燥・凝固することを有効に防止することが できる。かかる潤滑剤としては、例えばグリセリン、ジエチレングリコール等の 多価アルコールが挙げられ、これらを2種以上混合したものであってもよい。

[0049]

潤滑剤の添加量としては、組成物全体量に対し5~20wt%程度が好ましい。

[0050]

なお、その他の添加剤や被膜安定化材料を添加してもよく、例えば、安定剤、 老化防止剤、p H調整剤、防腐剤、樹脂エマルジョン、レベリング剤等を用いる ことができる。

[0051]

上記の前駆体と蛍光色素とを含む有機EL素子用組成物は、インクジェット方式によりパターン形成される。

[0052]

ここで、インクジェットプリンティングによるEL素子の製造法とは、前記組成物を溶媒に溶解または分散させて吐出液としてヘッドから吐出させて、赤色、緑色、青色のような3原色またはその中間色のうち少なくとも1色の画素を形成することをいう。

[0053]

かかるインクジェットプリンティング方式によれば、微細なパターニングを簡便にかつ短時間で行うことができる。また、吐出量の増減により膜厚の調整が容易になるため、それによって膜の性状や発色バランス、輝度等の発色能を容易かつ自由に制御することができる。

[0054]

本発明の有機EL素子の製造方法は、EL素子用組成物をインクジェット方式 により前記組成物をヘッドから噴出させてパターンを形成する工程と、加熱処理 により前記組成物中の前記前駆体を高分子化させて発光層を形成する工程とを有 することを特徴とするものである。これによれば、高分子化させる前の共役系高分子有機化合物の前駆体組成物を材料として用いるため、組成物材料の粘度の自由度が大きく、インクジェット方式を採用することが可能になる。したがって、組成物溶液を任意の位置に任意の量を噴出させることができ、発光層の発光特性や膜性状を容易に制御することができる。

[0055]

本発明の有機EL素子の製造方法において使用されるインクジェット用ヘッド の構造を図2に示す。

[0056]

当該インクジェット用ヘッド10は、例えばステンレス製のノズルプレート1 1と振動板13とを備え、両者は仕切部材(リザーバプレート)15を介して接 合されている。

[0057]

ノズルプレート11と振動板13との間には、仕切部材15によって複数の空間19と液溜り21とが形成されている。各空間19および液溜り21の内部は本発明の組成物で満たされており、各空間19と液溜り21とは供給口23を介して連通している。

[0058]

さらに、ノズルプレート11には、空間19から組成物をジェット状に噴射するためのノズル孔25が設けられている。一方、振動板13には、液溜り21に組成物を供給するための孔27が形成されている。

[0059]

また、振動板13の空間19に対向する面と反対側の面上には、前記空間19 の位置に対応させて圧電素子29が接合されている。

[0060]

この圧電素子29に通電すると圧電素子29が外側に突出するように撓曲し、 同時に圧電素子29が接合している振動板13も一体となって外側に撓曲する。 これによって空間19の容積が増大する。したがって、空間19内に増大した容 積分に相当する組成物が液溜り21から供給口23を介して流入する。 [0061]

次に、圧電素子29への通電を解除すると、該圧電素子29と振動板13はと もに元の形状に戻る。これにより空間19も元の容積に戻るため空間19内部の 組成物の圧力が上昇し、ノズル孔25から基板に向けて組成物が噴出する。

[0062]

なお、ノズル孔25の内壁やその周辺部には、組成物の飛行曲がり・孔詰まり を防止するためにテフロンコーティング等による撥水処理が施されていることが 好ましい。

[0063]

このようなヘッドを用いて、例えば赤・青・緑の3原色に対応する組成物を所 定のパターンで吐出することにより、有機発光層をそれぞれ設け、画素を形成す ることができる。

[0064]

このようなインクジェット方式によれば、任意の組成物量、組成物の噴射回数、形成パターンを容易かつ簡便に調整することができ、これにより発光層の発光 特性、膜厚等の膜性状を制御することが可能となる。

[0065]

また、これにより形成された薄膜には真空蒸着法において問題となるダークスポットの発生等の問題もなく、優れたEL素子を得ることができる。

[0066]

(実施例)

以下、本発明の具体的実施例について説明する。

[0067]

1. 有機EL素子の作成

(実施例1)

各色について表1に示す組成からなる有機EL素子用組成物を用いて、これらを図1に示すような方法で有機EL素子を作成した。

[0068]

【表1】

	赤色発	光層		青 色発光層	光圖	<u> </u>	綠色路光層	北画	
4	粗成	合有量(wt%)		報	合有量(wt%)	<u> </u>	整	台有数 (▼1%)	T_
問題体	PPV前駆体	0.375	哲既体	PV前駆体	0.376	哲殿森	PPV前駆体	0.375	γ —
題ま	グリセリン	ខ្	顯明	グリセリン	ເດ	题	グリセリン	េ	7
展	ターニリクくハチュウ	1.0	医底	タニチレンクリコール	10	差层	ターこじがくひもこか	10	T
商事	*	1.231	翻:	*	1.231	窟:	*	1.231	7
控制	メチノール	23.394	世 架 章	メタノール	23.394	世次	メタノール	23.394	T-
ş	DMF	0 9	*	DMF	0 9	镁	DMF	0 9	
细光色素	日ンボゲーロ	0.0075 (前駆体固型分比 :2mt%)	蛍光色紫	シスチリルピフェニル	0.0075 (前駆体固型分比:2wt%)	笛光色素	1 to		1

[0069]

図1に示すように、ガラス基板104上にITO透明画素電極101、102、および103をフォトリソグラフィーにより、100μmピッチ、0.1μm厚のパターンを形成する。次に、ITO透明画素電極間を埋め、光遮断層とインク垂れ防止用壁とを兼ねた樹脂ブラックレジスト105をフォトリソグラフィーにより形成する。ブラックレジストは幅20μm、厚さ2.0μmとした。

[0070]

さらに、インクジェットプリント用装置109のヘッド110から上記の組成物を噴出させることにより各色発光材料をパターニング塗布した後、窒素雰囲気下で150℃、4時間加熱処理し、組成物中の前駆体を高分子化させることにより赤色、緑色、青色を発色する各発光層106(赤)、107(緑)、108(青)を形成した。

[0071]

次に、ドーピングしていないアルミニウムキノリノール錯体を真空蒸着することにより0.1μmの電子輸送層111を形成した。この電子輸送層111は、 陰極からの電子注入を容易にし、また、陰極から発光部分を遠ざけることにより 電極消光を防ぎ、陰極との良いコンタクトを形成することに寄与する。

[0072]

最後に、対向電極として厚さ0.8μmのAlLi反射電極112を蒸着法により形成し、有機EL素子を作成した。

[0073]

(実施例2)

緑色組成物中に蛍光色素としてキナクリドンを0.0075wt%(PPV前駆体固型分比:2%)添加した以外は上記実施例1と同様にして有機EL素子を作成した。

[0074]

【表2】

敝

(奥猫例2)

8

	赤色発光層	光 瀰		車色路光層	光面		綠色発光層	光層
	粗成	合有量 (射光)		描版	合有量(srt%)		報	合有量(wt%)
前隔体	PPV前駆体	0.375	們 张	PPV前駆体	0.375	世 爾	PPV前駆体	0.375
題:	くりもりと	. 9	題等	グリセリン	េ	庭:	グリセリン	ເວ
展	4-ch41414	1.0	医凝	カーエリウくンチェダ	1.0	医层	かっていかいりょール	10
福丰	*	1.231	繭丰	¥	1.231	簡:	*	1. 231
使者	メタノール	23.394	世施士	メタノール	23.394	世紀	メタノール	23.394
ž	DMF	09	*	DMF	80	*	DMF	80
蛍光色素	ローダミンB	0.0075 (前駆体固型分比 :2***)	蛍光色素	ジスチリルピフェニル	0.0075 (前駆体固型分比 :2wt%)	蛍光色素	キナクリドン	0.0075 (前駆体固型分比 :2町%)

[0075]

(実施例3)

赤色組成物中に蛍光色素としてローダミン101を添加した以外は、上記実施 例1と同様にして有機EL素子を作成した。 [0076]

【表3】

数

(実施例3)

	亦色発光層	光面		有色彩光面	光面		黎色発光層	光画
	植成	合有量 (元光)		五	含有量(wt%)		超	合有量(vt%)
簡關体	PPV前駆体	0.375	前原体	PPV前駆体	0.375	哲關來	PPV前駆体	0.375
題:	グリセリン	ιΩ	篦	グリセリン	ю	題:	グリセリン	ယ
医医	4-516144516	01	医灰	919V7993-B	10	医医	4-こいんくりもても	10
題:	*	1.231	簡章	*	1.231	福丰	*	1.231
が控集	ルーノチャ	23. 394	世際ま	メタノール	23, 394	世換章	ルーノチャ	23.394
\$	DMF	0 9	\$	DMF	6.0	*	DMF	8.0
蛍光色素	ローグミン101	0.0075 (前駆体固型分比 :2wt%)	蛍光色素	ジスチリルピフェニル	0.0075 (前駆体固型分比 :2#t%)	蛍光色素	つな	

[0077]

(実施例4)

青色組成物中に蛍光色素としてクマリン6およびジスチリルピフェニルを各0.00375wt%(PPV前駆体固型分比:各1wt%)添加し、潤滑剤をグリセリン3wt%およびジエチレングリコール12wt%とした以外は、上記実施例1と同様にして有機EL素子を作成した。

[0078]

【表4】

₩

	赤色発光層	光層		青色発光層	光圃		綠色発光層	出
	翻	含有量 (#t%)		粗成	含有量(wt%)		植成	含有量(wt%)
前眼体	予 P V 前駆体	0.375	世既存	PPV前駆体	0.376	前既体	PPV前駆体	0.375
艱リ	グリセリン	က	題:	グリセリン	က	駆射	グリセリン	က
医医	グニチレングリコール	1.2	医盔	タエチレングリコール	1.2	医医	ダニケレンクリコール	12
窗书	*	1.231	簡章	¥	1.231	簡章	¥	1.231
世絶き	パーノをメ	23.394	世經史	メラノール	23.394	世族等	メクノール	23.394
\$	DMF	09	*	DMF	. 09	*	DMF	09
蛍光	日へきを一口	0.0075	笛光色	941176	0.00375 (1#t%)	笛光点	つな	-
0 🗱		(5) 数字回到分元 : 2 叶%)		シスチリルビフェニル	0.00375 (1#t%)	0 k k	:	

[0079]

(実施例5)

青色組成物中に蛍光色素としてTPB(テトラフェニルブタジエン)を、さらに緑色組成物中に蛍光色素としてキナクリドンを 0.0075 wt%(PPV前駆体固型分比:2 wt%)を添加し、潤滑剤をグリセリン3 wt%およびジエチレングリコール12 wt%とした以外は、上記実施例1と同様にして有機EL素子を作成した。

[0080]

【表5】

瞅

(実施例5)

ß

	赤色発光層	光層		审色発光層	光圖		綠色発光層	光画
	相成	合有量(机%)		粗成	含有量 (wt%)		相及	合有量(wt%)
前配体	PPV前庭体	0.375	前期体	か か が 敬 体	0.375	世閣	PPV前駆体	0.375
腹非	ていそいん	3	興力	くりもりと	ဇ	競馬	グリセリン	က
医灰	4	12	き羅	4-こんくへんてん	1.2	医医	かってりろくいった	12
福本	*	1.231	題:	*	1.231	日本	*	1.231
世經報	ルーノチャ	23.394	地施士	ルーノチャ	23.394	世來	メチノール	23.394
ŧ	DMF	09	\$	DMF	09	*	DMF	0 9
蛍光色素	ローダミンB	0.0075 (前駆体固型分比 :2 #t%)	蛍光色素	TPB: テトラフェニル ブタジエン	0.0075 (前駆体固型分比 :2*t%)	笛光色紫	キナクリドン	0.0075 (前駆体固型分比 :2 wt%)

[0081]

(実施例6)

青色組成物中に蛍光色素としてクマリン138を添加した以外は、上記実施例 1と同様にして有機EL素子を作成した。 [0082]

【表6】

璐

	赤色発光層	光層		青色発光層	光層		粮色発光層	光層
	相成	(%1A) 暑 阜		粗成	(%74) 夏阜亭		粗成	合有量(#1%)
前眼体	PPV前駆体	0.375	作 駅 床	PPV前駆体	978.0	哲閱存	お取削 A d d	0.375
展場	グリセリン	വ	題:	グリセリン	വ	題	イルセルン	ច
医医	4-5(1/67)	1.0	医医	かっていかいり ール	1.0	医底	#-E4/27416	1.0
商丰	*	1.231	商丰	*	1.231	腐丰	*	1.231
世紀 \$	ルーノチャ	23.394	世紀章	メチノール	23.394	世紀章	ルーノチ ド	23.394
\$	DMF	09	*	DMF	60	₹	DMF	0.8
笛光色紫	ローダミンB	0.0075 (前駆体固型分比 :2#t%)	笛光色素	クマリン138	0.0075 (前駆体固型分比 :2 ft%)	蛍光色素	14	

[0083]

(実施例7)

PPV前駆体の代わりに赤色発色光を有するCN-PPV前駆体を添加し、赤色蛍光色素を添加せず、さらに、緑色組成物中に蛍光色素としてキナクリドンを 0.0075wt%(PPV前駆体固型分比:2wt%)添加した以外は、上記実施例1と同様にして有機EL素子を作成した。

[0084]

【表7】

軟

	赤色発光層	光層		青色発光層	光屬		粮色発光層	光層
	粗成	含有量(吡%)		粗成	(%74) 要单导		粗成	含有量 (wt%)
問題体	CN-PPV前级体	0.375	前駆体	CN-PPV前版体	0.375	問題体	沖強順∧dd-N⊃	0.375
駆射	べんみんぞ	ಬ	戸	グリセリン	വ	題:	グリセリン	ശ
医灰	4-51647416	0 1	2 展	ダニナレングリコール	1.0	医板	が一てんじれから	1.0
商羊	*	1.231	簡章	*	1.231	題:	*	1.231
世級ま	ルーノチャ	23.394	世変き	ルーノをメ	23.394	世紀ま	ルーノチャ	23.394
5	DMF	09	*	DMF	0 9	\$	DMF	0 9
蛍光色紫	าช		蛍光色素	ジスチリルピフェニル	0.0075 (前駆体固型分比 :2 #t%)	蛍光色素	キナクリドン	0.0075 (前駆体固型分比 :2 wt%)

[0085]

(比較例1)

表8に示す組成からなる有機EL素子用組成物を調整し、真空蒸着法により有機EL素子を作製した。

[0086]

【表8】

	3	ص	ю					
6米面	含有量 (nt%)	98.95	1.05		.	İ		
凝色路光層	粗成	Algı	クマリン6					
·		ホスト	ホー よソマ	壓馬	医医	簡章	出腔等	\$
神色笼光	含有量 (wt%)	82. 1	17.9		ļ			1
中色色	植成	Alqı	ТРВ				1	
		ホスト	ドー よソマ	興明	定 经	商丰	世施幸	¥
音光圖	(%tA) 事单号	0 .66	1.0	-		1		
赤色発光層	粗成	A19.	D CM-1		1	1		1
		ホスト	ネーメゾ マ	題非	₹ 戻	簡和	地控制	ğ.

[0087]

(比較例2)

嵌

各色について表9に示す組成からなる有機EL素子用組成物を調整し、実施例

1と同様の方法により有機EL素子を作製した。

[0088]

【表9】

ъж СО

	赤色多	赤色発光層		青色発光層	色光層		微色多	綠色発光層	
	粗成	含有量 (#1%)		粗成	合有量 (vt%)		相成	各有量 (#1%)	
ホスト	Alq.	24.0	ホスト	A19.	7. 1	ホスト	A19*	23.95	
ネードソ ト	DCM-1	1.0	ネー ズソイ	трв	17.9	エー ギン エ	クマリン8	1.05	
爽泉	グリセリン	٥	庭康	イリセリン	ស	趣事	くりせりと	ဖ	
展	DEG	10	展	DEG	10	英	DEG	10	
梅丰	クロロホルム	10	福丰	クロロホルム	1 0	極本	クロロホルム	1.0	
世際基	DMF	50	世絶報	DMF	5.0	拉袋草	DMF	60	
£			ŧ			¥			

[0089]

2. 発光層の発光特性および膜特性の評価

前述の実施例1~7および比較例1、2で作製した有機EL素子の発光層の発 光特性および膜特性について下記の方法により評価をした。

[0090]

①発光開始電圧

所定の電圧を素子に印加し、 1 cd/m^2 の発光輝度を観測したときの印加電圧を発光開始電圧 $[V_{th}]$ とした。

[0091]

②発光寿命

安定化処理後の初期輝度を100%とし、標準波形で一定の電流を印加して連続的に発光させ、輝度の変化を測定し、初期輝度に対し50%に低下するまでの時間を発光寿命とする。

[0092]

なお、駆動条件は、室温:40℃、湿度:23%、電流値:20mA/cm²である

[0093]

3発光輝度

電流値を 20 mA/cm^2 としたときの輝度を観測する。

[0094]

④吸収極大波長

各発光層の吸収極大波長を測定した。

[0095]

図3は実施例1の有機EL素子の発光層におけるスペクトルを示すものである

[0096]

⑤成膜安定性

発光層を200℃で60分間加熱した後、発光層のクラックや変形等の発生状況を顕微鏡で観察した。

[0097]

これらの結果を表10、11に示す。

[0098]

【表10】

415 30 410 0 0 **@** Ñ Ñ N ~ ß 4 4 4 4 吸収極大波英 [nm] 0 0 0 0 ഥ 0 0 Ç က က က က က က ~ Ø B മ ß മ ഥ 6 600 0 0 0 0 0 0 0 62 82 69 69 œ Ø ~ ம ັດ 8 S 2000 2000 2000 2000 0 00 00 00 00 8 宏光哲版[cd/m"] ~ 8 ~ 2000 2000 2000 2000 2000 2000 2000 0 0 G 12(2000 000 0 0 0 0 0 1400 200 200 00 200 00 ĸ 恕 N K 5000 桵 000 000 000 000 1000 0 000 00 彩 Ø ٤., λ ഥ ល <u>م</u> 1 0009 1000 5000 00 00 5000 0 5000 A 00 告 G 50 00 × 歡 ۵ *000 0 0 0 0 0 0 0 009 00 00 009 00 00 00 発 œ B മ Ø 8 ťΩ മ ß വ 光光照始属压[Ven] 0 G က က က က က က 4 0 œ က 4 4 4 4 4 4 東語宮4 東協包1 班協室2 東施例 5 東協図6 玻箔包7 比較例2 **北教图**1

C - 校 [0099]

【表11】

表11

	Į.	龙膜安定	±
	R	G	В
実施例 1	0	0	0
実施例2	0	0	0
実施例3	0	0	0
実施例4	0	0	0
実施例 5	0	0	0
実施例 6	0	0	0
実施例7	0	0	0
比較例1	0	Δ	×
比較例 2	. K3	アーン形成る	R能

[0100]

表10、11に示すように、実施例1~7は、いずれも発光層の発光特性および発光層の膜性状に優れたものであった。これに対し、比較例1は成膜安定性に劣り、また発光層中にダークスポットが観察された。また比較例2については、組成物の溶剤特に、クロロホルムがヘッドの構成部品を侵食し、また、沸点が低いため組成物が乾固して固型分が付着し、ノズル詰まりが生じてパターンの形成ができなかった。

[0101]

以上、本発明の有機EL素子用組成物および有機EL素子の製造方法について、図示の各実施例にしたがって説明したが、本発明はこれらに限定されるものではなく、例えば各層の間に任意の機能性中間層を設ける工程があってもよい。また、発光特性を変化させるために添加される蛍光色素は極性溶媒に溶解または均一に分散し得るものであれば、これらに限られるものではない。

[0102]

【発明の効果】

以上述べたように、本発明の有機EL素子用組成物によれば、発光材料の幅広い選択によりEL発光素子の合理的設計が可能となる。すなわち、共役高分子系有機化合物と蛍光色素との組合せにより、種々の表示光を得ることができるためフルカラー表示が可能となる。したがって、高輝度・長寿命で多種多様なEL素子設計を展開することができる。

[0103]

また、発光層材料として加熱硬化させることにより高分子化する前駆体を含む ものであるため、粘度等の条件設定の自由度が大きく、インクジェット用の吐出 液として適した条件に容易に調製することができる。

[0104]

さらに、本発明の有機EL素子用組成物の製造法によれば、膜厚、ドット数等の条件を任意に調整可能であるため発光層の発光特性を容易に制御することができる。そして、発光素子のサイズやパターンも任意に設定することができる。

【図面の簡単な説明】

【図1】

本発明の有機EL素子の製造方法の工程を示す断面図である。

【図2】

有機EL素子の製造に用いられるインクジェット用プリンタヘッドの構成例を 示す平面斜視図である。

【図3】

本発明により得られた有機EL素子(実施例1)の各発光層の光吸収波長を示

す図である。

【符号の説明】

1 0	インクジェット用ヘッド
1 1	ノズルプレート
1 3	振動板
1 5	仕切り部材
1 9	空間
2 1	液溜り
2 3	供給口
2 5	ノズル孔
2 7	孔
2 9	圧電素子
1 0 1	透明画素電極
1 0 2	透明画素電極
1 0 3	透明画素電極
1 0 4	ガラス基板
1 0 5	樹脂ブラックレジスト
1 0 6	有機発光層(赤)
1 0 7	有機発光層(緑)
1 0 8	有機発光層(青)
1 0 9	インクジェットプリント装置
1 1 0	ヘッド
1 1 1	電子輸送層
1 1 2	対向電極

【図2】

【書類名】 要約書

【要約】

【課題】簡便にかつ短時間で精度の高いパターニングを行うことが可能で、膜設計や発光特性の最適化を簡単に行うことができ、また、発色効率の調整が容易である。

【解決手段】インクジェット方式によりパターン形成される有機EL素子用組成物であって、主として発光層106~108を形成する共役系高分子有機化合物の前駆体と、発光層の発光特性を変化させるための少なくとも1種の蛍光色素とを含む。前記前駆体としては、例えばポリビニレンフェニレンまたはその誘導体が挙げられる。蛍光色素としては、例えばローダミンB、ジスチリルビフェニル、クマリン、テトラフェニルブタジエン、キナクリドンおよびそれらの誘導体が挙げられる。

【選択図】 図1

特平 9-191681

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【提出日】

平成 9年 7月16日

【特許出願人】

【識別番号】

000002369

【住所又は居所】

東京都新宿区西新宿2丁目4番1号

【氏名又は名称】

セイコーエプソン株式会社

【代理人】

申請人

【識別番号】

100093388

【住所又は居所】

東京都新宿区西新宿2丁目4番1号 セイコーエプ

ソン株式会社内

【氏名又は名称】

鈴木 喜三郎

【選任した代理人】

【識別番号】

100095728

【住所又は居所】

東京都新宿区西新宿2-4-1 セイコーエプソン

株式会社 特許室

【氏名又は名称】

上柳 雅誉

【選任した代理人】

【識別番号】

100107261

【住所又は居所】

東京都新宿区西新宿2丁目4番1号 セイコーエプ

ソン株式会社内

【氏名又は名称】

須澤 修

出 願 人 履 歴 情 報

識別番号

[000002369]

1. 変更年月日 1990年 8月20日

[変更理由] 新規登録

住 所 東京都新宿区西新宿2丁目4番1号

氏 名 セイコーエプソン株式会社