2.6 Markov Chains

Markov chains are stochastic processes in which the probability that the process will be in state j at time t depends only on the state i at time t-l. A "state" of a finite-population GA is simply a particular finite population. The behavior of certain GAs may be modeled by a Markov chain. In what follows we give a brief description of the basic concepts.

2.6.1 Definitions and Theorems¹

FIXED VECTORS

If \vec{u} is a vector with *n* components we call $\vec{u} \neq 0$ a fixed vector (or *fixed point*) of **A** if \vec{u} is left "fixed" (not changed) when multiplied by **A**: \vec{u} **A** = \vec{u} .

THEOREM 2.6.1.1

If \vec{u} is a fixed vector of matrix **A**, then every nonzero scalar multiple $k\vec{u}$ is also a fixed vector of **A**.

EXAMPLE E.2.6.1.1

Let
$$A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$$
. Then the vector $\vec{u} = (2, -1)$ is a fixed point of **A**. For, \vec{u} **A** = $(2, -1)$ $\begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$ = $(2 \cdot 2 - 1 \cdot 2, 2 \cdot 1 - 1 \cdot 3)$ = $(2, -1)$ = \vec{u} .

PROBABILITY VECTOR

A vector $\vec{u} = (u_1, ..., u_n)$ is called a *probability vector* if its components are nonnegative and their sum is 1.

STOCHASTIC MATRICES

A square matrix $\mathbf{P} = (\mathbf{p}_{ij})$ is called a *stochastic matrix* if each of its rows is a probability vector.

THEOREM 2.6.1.2

If **A** and **B** are stochastic matrices then the product **AB** is a stochastic matrix.

¹The reader may consult [FELL70].

COROLLARY 2.6.1.2

All powers A^n of a stochastic matrix A are stochastic matrices.

REGULAR MATRICES

A stochastic matrix P is said to be *regular* if all the entries of some power P^m are positive.

EXAMPLE E.2.6.1.3

The stochastic matrix $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ is regular since $\mathbf{A}^2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$ is positive in every entry.

THEOREM 2.6.1.3

Let P be a regular stochastic matrix. Then:

- a) **P** has a unique fixed probability vector \vec{t} , and the components of \vec{t} are all positive.
- b) The sequence P, P^2 , ... of powers of P approaches the matrix T whose rows are all equal to the fixed point \vec{t} .
- c) If \vec{p} is any probability vector, then the sequence of vectors $\vec{p} \mathbf{P}$, $\vec{p} \mathbf{P}^2$, ... approaches the fixed point \vec{t} .

EXAMPLE E.2.6.1.4

Consider the regular stochastic matrix $\mathbf{P} = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$. We seek a probability vector which

we can denote by $\vec{t} = (x, 1 - x)$, such that $\vec{t} \mathbf{P} = \vec{t}$. Thus,

$$(x, 1-x)$$
 $\begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = (x, 1-x)$

from which we obtain

$$(\frac{1}{2} - \frac{1}{2}x, \frac{1}{2} + \frac{1}{2}x) = (x, 1 - x) \text{ or } \begin{cases} \frac{1}{2} - \frac{1}{2}x = x \\ \frac{1}{2} + \frac{1}{2}x = 1 - x \end{cases} \text{ or } x = \frac{1}{3} \rightarrow \vec{t} = (\frac{1}{3}, \frac{2}{3}) \approx (.33, .67)$$

This is the unique fixed point of **P**. From theorem 2.6.1.3., the sequence **P**, \mathbf{P}^2 ,... approaches **T**, whose rows are each equal to the fixed point \vec{t} .

$$T = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \approx \begin{pmatrix} .33 & .67 \\ .33 & .67 \end{pmatrix} \rightarrow \vec{t} \approx (.33, .67)$$

DEFINITION

A square matrix \mathbf{A} : $\mathbf{n} \times \mathbf{n}$ is said to be:

- a) *Positive* (**A** > **0**), if $a_{ij} > 0$ for $i, j \in \{1, ..., n\}$.
- b) Nonnegative $(\mathbf{A} \ge \mathbf{0})$, if $\mathbf{a}_{ij} \ge 0$ for all $i, j \in \{1, ..., n\}$.

A nonnegative matrix is said to be:

- c) Regular, if there exists a $k \in \mathbb{N}$ such that \mathbf{A}^k is positive.
- d) Reducible, if A can be brought into the form

$$\begin{pmatrix}
C & 0 \\
R & T
\end{pmatrix}$$

by applying the same permutations to rows and columns².

- e) Irreducible, if it is nor reducible.
- f) Stochastic, if $\sum_{i=1}^{n} a_{ij} = 1$ for all $i \in \{1, ..., n\}$.

A stochastic matrix is said to be:

- g) Stable, if it has identical rows.
- h) *Column allowable* (*c-allowable*), if it has at least one positive entry in each column.

Note that every positive matrix is also regular.

LEMMA 2.6.1

Let C, M and S be stochastic matrices, where M is positive and S is c-allowable. Then the product CMS is positive.

THEOREM 2.6.1.4

Let **P** be a reducible stochastic matrix, where $C: m \times m$ is a regular stochastic matrix and $R, T \neq 0$. Then

$$P^{\infty} = \lim_{k \to \infty} P^{k} = \lim_{k \to \infty} \begin{pmatrix} C^{k} & 0 \\ \sum_{i=0}^{k-1} T^{i} R C^{k-i} & T^{k} \end{pmatrix} = \begin{pmatrix} C^{\infty} & 0 \\ R^{\infty} & 0 \end{pmatrix}$$

²C and T are square matrices.

is a stable stochastic matrix with $\mathbf{P}^{\infty} = \mathbf{I}'$ \vec{p}^{∞} , where $\vec{p}^{\infty} = \vec{p}^{0}$ \mathbf{P}^{∞} is unique regardless of the initial configuration and \vec{p}^{∞} satisfies: $\vec{p}_{i}^{\infty} > 0$ for $1 \le i \le m$ and $\vec{p}_{i}^{\infty} = 0$ for $m < i \le n$.

2.6.2 Finite Markov Chains

Consider a sequence of trials whose outcomes X_1 , X_2 ,... satisfy:

- a) Each outcome belongs to a *finite* set of outcomes $\{a_i, a_2,...,a_m\}$ called the *state* space of the system. If the outcome of the *n*-th trial is a_i we say that the system is in state a_i at time n or at the n-th step.
- b) The outcome of any trial depends, at most, upon the outcome of the immediately preceding trial, i.e. there is a given probability p_{ij} that a_j occurs immediately after a_i occurs for every pair (a_i, a_j) .

Such a stochastic process is called a finite Markov chain. The numbers p_{ij} are called the *transition probabilities* and may be arranged in a matrix called the *transition matrix*, thus:

$$\mathbf{P} = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1m} \\ p_{21} & p_{22} & \dots & p_{2m} \\ \dots & \dots & \dots & \dots \\ p_{m1} & p_{m2} & \dots & p_{mn} \end{pmatrix}$$

If the system is in state a_i the *i*-th row vector represents the probabilities of all the possible outcomes of the next trial. It is, therefore, a probability vector. Hence,

THEOREM 2.6.2.1

The transition matrix ${\bf P}$ of a Markov chain is a stochastic matrix.

The entry p_{ij} of the transition matrix **P** of a Markov chain is the probability that the system changes from state a_i to state a_j in one step: $a_i \rightarrow a_j$. We want to know what is the probability, denoted by $p_{ij}^{(n)}$, that the system changes from state a_i to state a_j in exactly n steps:

$$a_i {\rightarrow} a_{k_1} {\rightarrow} ... {\rightarrow} a_{k_{n-1}} {\rightarrow} a_j$$

The next theorem answers this question. Here the $P_{ij}^{(n)}$ are arranged in a matrix $\mathbf{P}^{(n)}$ called the *n-step transition matrix*.

THEOREM 2.6.2.2

The *n*-step transition matrix of a Markov chain **P** is equal to the *n*-th power of **P**. That is $\mathbf{P}^{(n)} = \mathbf{P}^{n}$.

Assume the probability that the system at time t is in state a_i is p_i . We denote these probabilities with the vector $\vec{p} = (p_1, p_2, ..., p_m)$ which is called the *probability distribution* vector of the system at time t. Let $\vec{p}^{(0)} = \vec{p} p^{(0)} = (p_1^{(0)}, p_2^{(0)}, ..., p_m^{(0)})$ denote the *initial* probability distribution of the system at time t = 0. Let $\vec{p}^{(n)} = (p_1^{(n)}, p_2^{(n)}, ..., p_m^{(n)})$ denote the n-th step probability distribution. The following theorem applies.

THEOREM 2.6.2.3

Let **P** be the transition matrix of a Markov chain process. If $\vec{p} = (p_i)$ is the probability distribution at some time t, then $\vec{p} \mathbf{P}^n$ is the probability distribution of the system n steps later.

For example, $\vec{p}^{(1)} = \vec{p}^{(0)} \mathbf{P}$ and $\vec{p}^{(n)} = \vec{p}^{(0)} \mathbf{P}^n$.

THEOREM 2.6.2.4

If the transition matrix of a Markov chain is regular then $\lim_{t\to\infty} p(a_j) = \vec{t_j}$, where \vec{t} is the fixed point of **P**.