ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 2.5.1 Измерение коэффициента поверхностного натяжения жидкости

Серебренников Даниил Группа Б02-826 **Цель работы:** 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

1 Теоретическая часть

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = \frac{2\sigma}{r},\tag{1}$$

где σ – коэффициент поверхностного натяжения, ΔP – разница давлений внутри и снаружи пузырька, r – радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости.

2 Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В (рис. $\frac{1}{2}$). Тестовая жидкость (этиловый спирт) наливается в сосуд **E**. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе иглы). Разряжение в системе создается с помощью аспиратора А. Кран К2 разделяет две полости аспиратора. Верхняя полость при закрытом кране **К2** заполняется водой. Затем кран **К2** открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана К1, когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Рис. 1: Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения.

3 Экспериментальные данные

В таблице 1 приведены константы, используемые в лабораторной работе.

Таблица 1: Постоянные величины.

Плотность этанола ρ_0 , кг/м ³	Плотность воды ρ , кг/м ³	Ускорение свободного падения $g, { m M/c^2}$	Пересчетный коэффициент k	Коэффициент поверхностного натяжения этанола ($T=20^{\circ}C$) σ_0 , м $H/м$
809,5	1000,0	9,81	0,2	22,75

В таблице 2 приведены значения и случайные ошибки измерения величин, определяемых в ходе эксперимента.

Таблица 2: Некоторые величины и их погрешность.

	Томпоражира	Длина столба спирта	Пересчитанные показания		
	Температура Т. К	в микроманометре	микроманометра		
	I, K	h, mm	P , Π a		
Величина	293,0	175,0	277,9		
Погрешность	0,1	0,5	0,8		
ε , %	0,03	0,3	0,3		

Результаты измерений радиуса иглы приведены в таблице 3. Для проверки достоверности полученного результата диаметр иглы был измерен дополнительно на микроскопе: d=1,34.

Таблица 3: Радиус используемой иглы.

ĺ	T, °C	h, mm	ΔP , Πa	r, MM	σ_r , mm	$\sigma_r/r, \%$
	22,7	43	$68,\!29$	0,666	0,008	1,2

В таблице 4 приведены результаты измерений , позволяющих исследовать зависимость $\sigma = \sigma(T)$.

Таблица 4: Результаты измерений.

T, °C	h, mm	ΔP , Πa	σ , м H /м	σ_{σ} , м $H/$ м	σ_{σ}/σ , %
23,0	181,0	194,3	65,1	0,8	1,3
25,6	179,0	191,1	64,0	0,8	1,3
30,5	180,0	192,7	64,6	0,8	1,3
35,3	177,0	187,9	63,0	0,8	1,3
40,1	176,6	187,3	62,7	0,8	1,3
45,0	175,0	184,7	62,0	0,8	1,3
50,0	172,6	180,9	60,6	0,8	1,3
55,0	172,0	180,0	60,3	0,8	1,3
60,0	171,0	178,4	59,8	0,8	1,3

По полученным данным построим график зависимости $\sigma = \sigma(T)$ (рис. 2) и проанализируем его (5).

Рис. 2: Зависимость $\sigma = \sigma(T)$.

Таблица 5: Анализ зависимости $\sigma = \sigma(T)$.

$d\sigma/dT$, MH/M·°C	Погрешность, мН/м·°С	ϵ , %
-0,15	0,01	6,7

 $^{^{-1}\}Delta P=\Delta ilde{P}ho g\Delta h$, где $\Delta ilde{P}$ — давление, измеренное манометром; $ho g\Delta h$ — гидростатические давление воды ($\Delta h=95$ мм).

Дополнительно найдем зависимость теплоты образования единицы поверхности жидкости $q=-T\frac{d\sigma}{dT}$ и поверхностной энергии единицы площади $U/\Pi=\sigma-q$ от температуры. Результаты вычислений представлены в таблице 6, а графики на рис. 3 и рис. 4.

Таблица 6: Результаты дополнительных вычислений.

T, K	296	298,6	303,5	308,3	313,1	318	323	328	333
q , мДж/м 2	44	45	46	46	47	48	48	49	50
U/Π , мДж/м ²	109	109	110	109	110	110	109	109	110

Рис. 3: Зависимость q = q(T).

Рис. 4: Зависимость U/Π от T.

Обсуждение результатов

В ходе данной лабораторной работы мы исследовали температурную зависимость коэффициента поверхностного натяжения дистиллированной воды от температуры. Полученная зависимость оказалась линейной в интервале рабочих температур от 23°C до 60°C с коэффициентом наклона $d\sigma/dT=(-0,15\pm0,01)~\text{мH/m·°C}$. Мы получили вполне естественный результат, потому что с увеличением температуры интенсивность межмолекулярного взаимодействия уменьшается, поэтому снижается и поверхностное натяжение жидкостей на границе с воздухом или с собственным паром. Вдали от критической температуры поверхностное натяжение уменьшается прямо пропорционально росту температуры. Стоит отметить, что наш результат в пределах погрешности совпадает с табличным значением $d\sigma/dT\approx -0,16$.

Зная температурный коэффициент поверхностного натяжения, можно исследовать зависимость теплоты образования единицы поверхности жидкости q=q(T) и поверхностной энергии единицы площади U/Π от температуры. Если коэффициент поверхностного натяжения линейно зависит от температуры, то очевидно, что функция $q=-T\frac{d\sigma}{dT}$ является линейной. Менее тривиальным является вопрос о независимости внутренней энергии поверхности U/Π от температуры. Для теоретического подтверждения экспериментального результата запишем уравнение Гиббса-Гельмгольца для поверхностного слоя $U/\Pi=\sigma-T\frac{d\sigma}{dT}$ и продифференцируем его по температуре: $\frac{\partial U/\Pi}{\partial T}=-T\frac{\partial^2\sigma}{\partial T^2}$, но так как первая производная σ по T есть величина постоянная, то вторая производная обнуляется, следовательно, внутренняя энергия поверхностного слоя не зависит от температуры.

Выводы

- В интервале температур от 23°C до 60°C зависимость $\sigma = \sigma(T)$ является линейной с коэффициентом наклона $d\sigma/dT = (-0, 15 \pm 0, 01)$ мH/м·°C.
- Теплоты образования единицы поверхности жидкости q=q(T) линейно зависит от температуры вдали от критической точки.
- Внутренняя энергия поверхности U/Π не зависит от температуры и есть константа $U = 109, 5 \text{ мДж/м}^2$.