

TSV611, TSV611A, TSV612, TSV612A

Rail-to-rail input/output 10 µA, 120 kHz CMOS operational amplifiers

Datasheet - production data

Applications

- Battery-powered applications
- Smoke detectors
- · Proximity sensors
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV61x family of single and dual operational amplifiers offers low voltage, low power operation, and rail-to-rail input and output.

The devices also feature an ultra-low input bias current as well as a low input offset voltage.

The TSV61x have a gain bandwidth product of 120 kHz while consuming only 10 µA at 5 V.

These features make the TSV61x family ideal for sensor interfaces, battery supplied and portable applications, as well as active filtering.

Features

Rail-to-rail input and output

Low power consumption: 10 μA typ at 5 V

Low supply voltage: 1.5 to 5.5 V
Gain bandwidth product: 120 kHz typ

Gairi baridwidtir product. 12

Unity gain stable

Low input offset voltage: 800 μV max

(A version)

Low input bias current: 1 pA typ
 Temperature range: -40 to 85 °C

Contents

1	Abs	olute maximum ratings and operating conditions 3
2	Elec	trical characteristics4
3	Арр	lication information
	3.1	Operating voltages
	3.2	Rail-to-rail input
	3.3	Rail-to-rail output
	3.4	Driving resistive and capacitive loads
	3.5	PCB layouts 13
	3.6	Macromodel
4	Pack	kage information
	4.1	SOT23-5 package information
	4.2	SC70-5 (SOT323-5) package information
	4.3	SO8 package information
	4.4	MiniSO8 package information
5	Orde	ering information
6	Revi	sion history

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ⁽¹⁾	6	
V _{id}	Differential input voltage (2)	±V _{CC}	V
V _{in}	Input voltage (3)	(V_{CC-}) - 0.2 to (V_{CC+}) + 0.2	
T _{stg}	Storage temperature	-65 to 150	°C
	Thermal resistance junction to ambient ^{(4) (5)}		
	SC70-5	205	
R _{thja}	SOT23-5	250	°C/W
	MiniSO8	190	
	SO8	125	
T _j	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁶⁾	4	kV
ESD	MM: machine model ⁽⁷⁾	200	V
	CDM: charged device model ⁽⁸⁾	1.5	kV
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. Vcc-Vin must not exceed 6 V.
- 4. Short-circuits can cause excessive heating and destructive dissipation.
- 5. Rth are typical values.
- 6. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 7. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	1.5 to 5.5	V
V _{icm}	Common mode input voltage range	(V_{CC-}) - 0.1 to (V_{CC+}) + 0.1	V
T _{oper}	Operating free air temperature range	-40 to 85	°C

2 Electrical characteristics

Table 3. Electrical characteristics at V_{CC+} = 1.8 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	ormance			•	•	
V _{io}	Offset voltage	TSV61x TSV61xA $T_{min.} < T_{op} < T_{max.}$ TSV61x			4 0.8 5	mV
ΔVio/ΔΤ	Input offset voltage drift	$T_{min.} < T_{op} < T_{max}TSV61xA$		2	2	μV/°C
Z V 10/Z 1	Input offset current			1	10 ⁽¹⁾	μνισ
I _{io}	$(V_{\text{out}} = V_{\text{cc}}/2)$	$T_{min.} < T_{op} < T_{max.}$		1	100	
	Input bias current			1	10 ⁽¹⁾	рA
l _{ib}	$(V_{\text{out}} = V_{\text{cc}}/2)$	T _{min.} < T _{op} < T _{max.}		1	100	
CMR	Common mode rejection	0 V to 1.8 V, V _{out} = 0.9 V	55	71		
CIVIR	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min.} < T_{op} < T_{max.}$	53			
A_{vd}	A _{vd} Large signal voltage gain	R_L = 10 kΩ Vout = 0.5 V to 1.3 V	78	83		dB
		$T_{min.} < T_{op} < T_{max.}$	74			
V_{OH}	High level output voltage $(V_{OH} = V_{CC} - V_{out})$	$R_{L} = 10 \text{ k}\Omega$ $T_{\text{min.}} < T_{\text{op}} < T_{\text{max.}}$		4	35 50	m\/
V _{OL}	Low level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{\text{min.}} < T_{\text{op}} < T_{\text{max.}}$		7	35 50	mV
	Isink	$V_o = 1.8 \text{ V}$ $T_{\text{min.}} < T_{op} < T_{\text{max.}}$	9 9	13		
l _{out}	Isource	$V_0 = 0 V$ $T_{min.} < T_{op} < T_{max.}$	8 8	10		mA
	Supply current	No load, V _{out} = V _{cc} /2	6.5	9	12	
I _{CC}	(per operator)	$T_{min.} < T_{op} < T_{max.}$	6		12.5	μA
AC perfo	ormance					
GBP	Gain bandwidth product			100		kHz
φm	Phase margin	R_L = 10 kΩ, C_L = 20 pF		60		Degrees
G _m	Gain margin			9.5		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, $V_{out} = 0.5 \text{ V to } 1.3 \text{ V}$		0.03		V/µs

Table 3. Electrical characteristics at V_{CC+} = 1.8 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, V_{cm} = 25 °C, and V_{cc} connected to $V_{cc}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
e _n	Equivalent input noise voltage	f = 1 kHz		110		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+N	Total harmonic distortion + noise	$F_{in} = 1 \text{ kHz}, \text{ Av} = 1,$ $V_{out} = 1 \text{ V}_{pp}, \text{R}_{L} = 100 \text{ k}\Omega,$ BW = 22 kHz		0.07		%

^{1.} Guaranteed by design.

Table 4. Electrical characteristics at V_{CC+} = 3.3 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol		ected to V _{CC} /2 (unless of	Min.	Тур.	Max.	Unit				
DC performance										
V _{io}	Offset voltage	TSV61x TSV61xA			4 0.8	mV				
		T_{min} < T_{op} < T_{max} TSV61x T_{min} < T_{op} < T_{max} TSV61xA			5 2					
ΔVio/ΔΤ	Input offset voltage drift			2		μV/°C				
ı.	Input offset current			1	10 ⁽¹⁾					
l _{io}	input onset current	$T_{min.} < T_{op} < T_{max.}$		1	100	pА				
	Input bigs current			1	10 ⁽¹⁾	pΑ				
l _{ib}	Input bias current	$T_{min.} < T_{op} < T_{max.}$		1	100					
CMR	Common mode rejection	0 V to 3.3 V, V _{out} = 1.75 V	61	76						
CIVIN	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min.} < T_{op} < T_{max.}$	58							
A _{vd}	A _{vd} Large signal voltage gain	R_L = 10 kΩ Vout = 0.5 V to 2.8 V	85	92		dB				
		$T_{min.} < T_{op} < T_{max.}$	83							
V _{OH}	High level output voltage (V _{OH} = V _{CC} - V _{out})	$R_L = 10 \text{ k}\Omega$ $T_{\text{min.}} < T_{\text{op}} < T_{\text{max.}}$		5	35 50					
V _{OL}	Low level output voltage	$R_L = 10 \text{ k}\Omega$ $T_{\text{min.}} < T_{\text{op}} < T_{\text{max.}}$		10	35 50	mV				
	Isink	$V_0 = V_{CC}$ $T_{min.} < T_{op} < T_{max.}$	37 35	44		A				
I _{out}	Isource	$V_0 = 0 \text{ V}$ $T_{\text{min.}} < T_{\text{op}} < T_{\text{max.}}$	32 30	38		mA				
	Supply current	No load, V _{out} = V _{CC} /2	6.5	9.5	12.5					
I _{CC}	(per operator)	$T_{min.} < T_{op} < T_{max.}$	6		13	μΑ				
AC perfo	ormance									
GBP	Gain bandwidth product			110		kHz				
φm	Phase margin	R_L = 10 kΩ, C_L = 20 pF		60		Degrees				
G _m	Gain margin	1		9.5		dB				
SR	Slew rate	$R_L = 10 \text{ k}\Omega \text{ C}_L = 20 \text{ pF},$ $V_{out} = 0.5 \text{V to } 2.8 \text{V}$		0.035		V/μs				
e _n	Equivalent input noise voltage	f = 1 kHz		110		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$				

^{1.} Guaranteed by design.

DocID15768 Rev 3 6/21

Table 5. Electrical characteristics at V_{CC+} = 5 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	<u>-</u>	V _{CC} /2 (unless otherwise	Min.	Тур.	Max.	Unit					
DC perfo	DC performance										
V _{io}	Offset voltage	TSV61x TSV61xA T _{min} <t<sub>op<t<sub>max TSV61x</t<sub></t<sub>			4 0.8 5	mV					
A) (, , A T	land to the second side	T _{min} <t<sub>op<t<sub>max TSV61xA</t<sub></t<sub>		0	2	\//°C					
ΔVio/ΔΤ	Input offset voltage drift			2	40 (1)	μV/°C					
l _{io}	Input offset current	$T_{\text{min.}} < T_{\text{op}} < T_{\text{max.}}$		1	10 ⁽¹⁾						
				1	10 ⁽¹⁾	рA					
l _{ib}	Input bias current	T _{min.} < T _{op} < T _{max.}		1	100						
CMR	Common mode rejection	0 V to 5 V, V _{out} = 2.5 V	64	80							
CIVIN	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min.} < T_{op} < T_{max.}$	63								
SVR	Supply voltage rejection	Vcc = 1.8 to 5 V	76	93							
SVR	ratio 20 log ($\Delta V_{cc}/\Delta V_{io}$)	$T_{min.} < T_{op} < T_{max.}$	74			dB					
A _{vd}	Large signal voltage gain	R_L = 10 kΩ Vout = 0.5 V to 4.5 V	88	93							
Vu		T _{min} <t<sub>op<t<sub>max</t<sub></t<sub>	85								
V _{OH}	High level output voltage (V _{OH} = V _{CC} - V _{out})	$R_{L} = 10 \text{ k}\Omega$ $T_{\text{min.}} < T_{\text{op}} < T_{\text{max.}}$		7	35 50	>/					
V _{OL}	Low level output voltage	$R_L = 10 \text{ k}\Omega$ $T_{\text{min.}} < T_{\text{op}} < T_{\text{max.}}$		16	35 50	mV					
	Isink	$V_o = V_{CC}$ $T_{min.} < T_{op} < T_{max.}$	52 42	57		_					
I _{out}	Isource	$V_{o} = 0 V$ $T_{min.} < T_{op} < T_{max.}$	58 49	63		mA					
	Supply current	No load, V _{out} = V _{CC} /2	7.5	10.5	14	μA					
I _{CC}	(per operator)	$T_{min.} < T_{op} < T_{max.}$	7		15	μΑ					
AC perfo	ormance										
GBP	Gain bandwidth product			120		kHz					
φm	Phase margin	R_L = 10 kΩ, C_L = 20 pF		62		Degrees					
G _m	Gain margin			10		dB					
SR	Slew rate	$R_L = 10 \text{ k}\Omega \text{ C}_L = 20 \text{ pF, V}_{out}$ = 0.5V to 4.5V		0.04		V/μs					

Table 5. Electrical characteristics at V_{CC+} = 5 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, R_L connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter		Min.	Тур.	Max.	Unit
e _n	Equivalent input noise voltage	f = 1 kHz		105		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+N	Total harmonic distortion + noise	$F_{in} = 1 \text{ kHz, Av} = 1,$ $V_{out} = 1 \text{ V}_{pp, R_L} = 100 \text{ k}\Omega,$ BW = 22kHz		0.02		%

^{1.} Guaranteed by design.

Figure 1. Supply current vs. supply voltage at $V_{icm} = V_{CC}/2$ 12 T=85°C 10 T=25°C Supply Current (µA) T=-40°C 7 5 3 Vicm=Vcc/2 0 2 3 Supply voltage (V) 0 1 5

Figure 2. Output current vs. output voltage at $V_{CC} = 1.5 V$ T=-40°C 8 T=25°C 5 Source Output Current (mA) T=85°C Vid=1V Vcc=1.5V T=85°C T=25°C T=-40°C Vid=-1V ا ₁₀0 0.0 0.2 0.6 8.0 1.4 0.4 1.0 1.2 Output Voltage (V)

Figure 3. Output current vs. output voltage at $V_{CC} = 5 V$ T=-40°C 63 T=25°C 50 38 Source Output Current (mA) T=85°C Vid=1V 25 13 0 Vcc=5V -13 -25 T=85°C Sink -38 Vid= -1V -50 T=25°C -63 T=-40°C -75 0.5 2.0 3.0 3.5 4.0 4.5 Output Voltage (V)

Figure 8. Negative slew rate vs. time, V_{CC} = 1.5 V, $\mathbf{C}_{\mathsf{Load}}$ = 100 pF, $\mathbf{R}_{\mathsf{Load}}$ = 10 $\mathbf{k}\Omega$ 0.4 $V_{CC} = 1.5V, V_{icm} = V_{CC}/2,$ 0.3 $R_{Load} = 10k\Omega, C_{Load} = 100pF$ 0.2 Output voltage (V) V_{Load}=V_{CC}/2 0.1 T=-40°C 0.0 -0.1 -0.2 T=85°C -0.3 T=25°C Time (µs)

Figure 9. Positive slew rate vs. time, V_{CC} = 5.5 V, C_{Load} = 100 pF, R_{Load} = 100 k Ω 2 T=85°C Output Voltage (V) T=-40°C 0 T=25°C -1 V_{CC}=5.5V, V_{icm}=V_{CC}/2 C_{Load} = 100pF, V_{rl}=V_{CC}/2, = 100kΩ -3 50 75 150 25 100 125 Time (µs)

Figure 15. Voltage gain and phase vs. frequency | Figure 16. Voltage gain and phase vs. frequency at V_{CC} = 1.8 V (based on simulation results) Phase 100 T=-40°C 20 Phase margin (°) Gain (dB) T=85°C Vcc=1.8V, Vicm=0.9V RI=10kohms, CI=20pF, VrI=Vcc/2 -20 **└** 1000 Frequency (Hz)

3 Application information

3.1 Operating voltages

The TSV61x can operate from 1.5 to 5.5 V. The parameters are fully specified for 1.8, 3.3, and 5 V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSV61x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 85 °C.

3.2 Rail-to-rail input

The TSV61x are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from (V_{CC-}) - 0.1 V to (V_{CC+}) + 0.1 V. The transition between the two pairs appears at (V_{CC+}) - 0.7 V. In the transition region, the performance of CMRR, PSRR, V_{io} and THD is slightly degraded (as shown in *Figure 17* and *Figure 18* for V_{io} vs. V_{icm}).

The device is guaranteed without phase reversal.

3.3 Rail-to-rail output

The operational amplifiers' output levels can go close to the rails: less than 35 mV above GND rail and less than 35 mV below V_{CC} rail when connected to 10 k Ω load to $V_{CC}/2$.

3.4 Driving resistive and capacitive loads

These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 10 k Ω For lower resistive loads, the THD level may significantly increase.

In a follower configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding an in-series resistor at the output can improve the stability of the devices (see *Figure 19* for recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model.

Figure 19. In-series resistor vs. capacitive load

3.5 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

3.6 Macromodel

An accurate macromodel of the TSV61x is available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV61x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 SOT23-5 package information

Figure 20. SOT23-5 package outline

Table 6. SOT23-5 mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.90	1.20	1.45	0.035	0.047	0.057			
A1			0.15			0.006			
A2	0.90	1.05	1.30	0.035	0.041	0.051			
В	0.35	0.40	0.50	0.013	0.015	0.019			
С	0.09	0.15	0.20	0.003	0.006	0.008			
D	2.80	2.90	3.00	0.110	0.114	0.118			
D1		1.90			0.075				
е		0.95			0.037				
Е	2.60	2.80	3.00	0.102	0.110	0.118			
F	1.50	1.60	1.75	0.059	0.063	0.069			
L	0.10	0.35	0.60	0.004	0.013	0.023			
K	0 degrees		10 degrees						

4.2 SC70-5 (SOT323-5) package information

Figure 21. SC70-5 (SOT323-5) package outline

Table 7. SC70-5 (SOT323-5) mechanical data

	Dimensions								
Ref		Millimeters		Inches					
	Min	Тур	Max	Min	Тур	Max			
Α	0.80		1.10	0.315		0.043			
A1			0.10			0.004			
A2	0.80	0.90	1.00	0.315	0.035	0.039			
b	0.15		0.30	0.006		0.012			
С	0.10		0.22	0.004		0.009			
D	1.80	2.00	2.20	0.071	0.079	0.087			
Е	1.80	2.10	2.40	0.071	0.083	0.094			
E1	1.15	1.25	1.35	0.045	0.049	0.053			
е		0.65			0.025				
e1		1.30			0.051				
L	0.26	0.36	0.46	0.010	0.014	0.018			
<	0°		8°						

4.3 SO8 package information

D hx45'

SEATING PLANE

C GAGE PLANE

1 4 4

Figure 22. SO8 package outline

Table 8. SO8 mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α			1.75			0.069			
A1	0.10		0.25	0.004		0.010			
A2	1.25			0.049					
b	0.28		0.48	0.011		0.019			
С	0.17		0.23	0.007		0.010			
D	4.80	4.90	5.00	0.189	0.193	0.197			
Е	5.80	6.00	6.20	0.228	0.236	0.244			
E1	3.80	3.90	4.00	0.150	0.154	0.157			
е		1.27			0.050				
h	0.25		0.50	0.010		0.020			
L	0.40		1.27	0.016		0.050			
L1		1.04			0.040				
k	1°		8°	1°		8°			
ccc			0.10			0.004			

4.4 MiniSO8 package information

Figure 23. MiniSO8 package outline

Table 9. MiniSO8 mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α			1.1			0.043			
A1	0		0.15	0		0.006			
A2	0.75	0.85	0.95	0.030	0.033	0.037			
b	0.22		0.40	0.009		0.016			
С	0.08		0.23	0.003		0.009			
D	2.80	3.00	3.20	0.11	0.118	0.126			
E	4.65	4.90	5.15	0.183	0.193	0.203			
E1	2.80	3.00	3.10	0.11	0.118	0.122			
е		0.65			0.026				
L	0.40	0.60	0.80	0.016	0.024	0.031			
L1		0.95			0.037				
L2		0.25			0.010				
k	0°		8°	0°		8°			
ccc			0.10			0.004			

DocID15768 Rev 3

5 Ordering information

Table 10. Order codes

Order code	Temperature range	Package	Packing	Marking
TSV611ILT	40 °C to 85 °C	SOT23-5	Tape and reel	K12
TSV611AILT				K11
TSV611ICT		SC70-5		K12
TSV611AICT				K11
TSV612IDT		SO-8		V612I
TSV612AIDT				V612AI
TSV612IST		MiniSO-8		K113
TSV612AIST				K115

6 Revision history

Table 11. Document revision history

Date	Revision	Changes	
28-May-2009	1	Initial release.	
18-Jan-2010	2	Full datasheet for product now in production. Added Figure 1 to Figure 19.	
11-May-2017	3	Table 3, Table 4, and Table 5: changed "DVio to ΔVio/ΔT, updated VoH parameter information, changed min. values of VoH parameter to max. values. Table 10: Order codes: removed obsolete order codes TSV612ID and TSV612AID	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

