

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004 Contact No.: +91-175-2393201

Email: info@thapar.edu

Is this due to different number of atoms along different directions?

	Modulus of Elasticity (GPa)			
Metal	[100]	[110]	[111]	
Aluminum	63.7	72.6	76.1	
Copper	66.7	130.3	191.1	
Iron	125.0	210.5	272.7	
Tungsten	384.6	384.6	384.6	

YES

The density of atoms along a direction called as linear density.

The density of atoms in a plane called as planar density.

Remember

- Only atoms whose center of mass lies on the plane has to be count.
- o In the BCC crystal, the (111) plane partially intersects the atom at the body center (½,½,½). This atom has to be excluded from the calculation.

Linear Density (LD)

LD = No. of atoms along a particular direction

The density of atoms along a direction

$$LD = \frac{No. \text{ of atoms along a direction}}{Unit \text{ Length}}$$

Linear density (LD)

Simple Cubic (top view)

Linear density (LD)

Find out LD for the following directions.

Structure	LD [100]	LD [110]	LD [111]
SC	1/a	1/a√2	1/a√3
BCC			
FCC			

The density of atoms in a plane

$$PD = \frac{No. \text{ of atoms lying in a plane}}{Area \text{ of the plane}}$$

Planar Density (PD)

Simple Cubic (100)

$$PD = 1/a^2$$

Planar Density (PD)

Simple Cubic (11)

$$PD = \frac{\frac{1}{6} \times 3}{\frac{1}{2} \times a\sqrt{2} \times a\sqrt{\frac{3}{2}}}$$

Area of equilateral triangle =1/2*b*h

$$PD = 1/\sqrt{3} a^{2}$$

Planes showing atomic fractions

Planar Density

Find out the planar density for following planes.

Structure	PD (100)	PD (110)	PD (111)
SC	1/a ²	$1/a^2\sqrt{2}$	$1/a^2\sqrt{3}$
BCC			
FCC			

Summary

- 1. Linear density and planar density are the analogous to atomic packing fraction in one dimension and two dimension respectively.
- 2. Linear density varies with the direction. This is the origin of anisotropic properties.

Assignments

- 1. Compute and compare the linear densities for [100], [110] and [111] for copper. Given a = 0.3615 nm.
- 2. Calculate the linear atomic density in the [110] direction in the copper crystal lattice in atoms per square millimeter. The lattice constant of copper is 0.361 nm.
- 3. A metal crystalizes in the FCC structure. Calculate the linear atomic density along [110] and [111] direction. Assume lattice constant a = 0.3923 nm.
- 4. Compute the planar density for the BCC and FCC (100), (111) and (110) planes in terms of atomic radius *r*.
- 5. Calculate the planar density for (110) plane of BCC iron lattice in atoms per square millimeter. The lattice constant of iron is 0.287 nm.

