ASSIGNMENT 8

Neeraj Pandey

Discrete Mathematics

Q1: Prove that \sqrt{p} is an irrational number for any prime p.

Solution: Let us consider \sqrt{p} as rational. Every rational number is of the form $\frac{a}{b}$ Squaring both the sides:

$$p = a^{2} + b^{2}$$

$$\implies a^{2} = p \cdot b^{2}$$

$$\implies b|a^{2}|$$

Using the fundamental theorem of arithmetic, there exists a prime number k which divides b. If x|b then $x|a^2$ and if $x|a^2$ then x|a.

x|gcd(a,b)=1 is a contradiction unless b = 1 and a = 1.

Now, if b=1, there is no integer for which $a^2 = p$ and same for a = 1. (where p is prime)

Therefore, \sqrt{p} is irrational.

Q1: Prove that $2^n \nmid n!$ for all $n \geq 1$.

Solution: According to Fundamental Theorem of Arithmetic:

$$n! = 2^{a_1} \cdot k_2^{k_2} \cdot \dots \cdot k_a^{a_a}$$

where $k_1, k_2....k_k$ are prime divisors, a_1 should be $\geq n$:

$$a_1 = \left[\frac{n}{2}\right] + \left[\frac{n}{2^2}\right] + \dots$$
$$\left[\frac{n}{2}\right] + \left[\frac{n}{4}\right] + \dots$$
$$< \frac{n}{2} \cdot \frac{1}{1 - \frac{1}{2}}$$
$$\implies < n$$

Hence proved.