

Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

96
1 Fsm

b2

LIBRARY
CURRENT SERIAL PERIODICALS

OCT 7 1948

U. S. DEPARTMENT OF AGRICULTURE

"Western Treasure -- Deep, Wet Snow"

FEDERAL-STATE COOPERATIVE
SNOW SURVEYS AND IRRIGATION WATER FORECASTS

for

MISSOURI and ARKANSAS DRAINAGE BASINS

MAY 1, 1948

By

Division of Irrigation, Soil Conservation Service

United States Department of Agriculture

and

Colorado Agricultural Experiment Station

Data included in this report were obtained by the agencies named above in cooperation with the U. S. Forest Service, National Park Service, State Engineers of Colorado, Wyoming and New Mexico and other Federal, State and local organizations.

WATER SUPPLY OUTLOOK

MISSOURI-ARKANSAS DRAINAGE BASINS

May 1, 1948

The water supply outlook for the Missouri River and its tributaries in Montana remains favorable. Snow water content on practically all snow courses has been above normal throughout the winter season. In Wyoming the discharge of all streams will be average or above but will generally be under the summer of 1947. The discharge of the Shoshone will be as much as and may exceed last year. For the Wind River and its tributaries the summer flow will be considerably less than last year and about normal. Along the lower Bighorn in Wyoming summer flow should be slightly better than average. Snow cover on the headwaters of the North Platte is above normal and snow has covered the ground most of the winter at medium elevations. Summer flow is expected to be a little less than last year. Reservoir Storage on the Platte totals about one-half million acre-feet above May 1, 1947. Soil moisture conditions throughout Wyoming are generally good. In the South Platte drainage the water supply outlook continues favorable but declined slightly during April because of the lack of normal snow accumulation. Reservoir storage is near capacity in many districts. Snow cover on the headwaters of the Arkansas River is above normal and the summer flow is expected to be about the same as the 1947 season.

Missouri River and Tributaries in Montana

From limited snow surveys in Montana May 1, the water supply outlook continues to be favorable. Summer flow in the Missouri River tributaries is expected to be slightly under last year. Exceptions are the Gallatin where the snow cover April 1 was unusually heavy and the Madison where the snow cover on its headwater in Yellowstone Park was below normal. Recent precipitation has been below normal in eastern and central Montana and in the central Montana plains the soil is dry. Stream flow is above normal. The planting season has been somewhat delayed. Reservoir storage is on the average about the same as last year.

Wyoming

Shoshone: Storage in Buffalo Bill reservoir is now 310,000 acre-feet which is slightly above last year and 7 percent above average. The snow water content on the headwaters of the Shoshone as shown by May 1 surveys is 20 inches which is 35 percent above normal but less than a year ago. Precipitation during April has been near average and stream flow is good. Range and crop conditions along this stream are reported as excellent.

Bighorn: The estimates of summer discharge of the Wind River and its tributaries above Riverton are practically unchanged since April 1. For the Wind River at Riverton the April-September discharge is expected to be 475,000 acre feet and

DIRECTORIAL NOTES

SUGGESTIONS

1. The first section of the film should be a "talking head" sequence. It should begin with a shot of the Director of the FBI, J. Edgar Hoover, sitting at his desk in the Bureau's office. He should be wearing a suit and tie, and he should be looking directly at the camera. He should be speaking, and his speech should be clear and concise. He should be discussing the importance of the FBI's work and the role it plays in maintaining national security. He should also be discussing the challenges faced by the FBI in its mission to protect the United States. This sequence should last approximately one minute.

INTRODUCING THE SUSPECT

2. The second section of the film should introduce the suspect. This sequence should begin with a shot of the suspect, who is a man in his late 20s or early 30s. He should be wearing a dark shirt and pants, and he should be standing in front of a plain white wall. He should be looking directly at the camera, and his expression should be neutral. This sequence should last approximately one minute.

CUT TO:

3. The third section of the film should show the suspect being interrogated. This sequence should begin with a shot of the suspect, who should be sitting in a chair and looking directly at the camera. He should be wearing a dark shirt and pants. The background should be a plain white wall. The lighting should be bright, and the camera should be positioned at eye level. The suspect should be asked a series of questions, and his answers should be recorded. The questions should be designed to elicit information about the suspect's past, his current whereabouts, and his intentions. The suspect should be allowed to respond to each question, and his answers should be recorded. The entire sequence should last approximately two minutes.

for the Popo Agie at Riverton 400,000 acre-feet. These flow forecasts are near average for the streams. This year's flow will be substantially under the 1947 season because of late spring snows at high elevations on the watershed last year. The flow of the Greybull River will be about 25 percent above average. In the Bighorn mountains snow cover is slightly above normal and tributaries originating here should have a good summer flow. Soil moisture and range conditions at Riverton and adjacent districts are reported as only fair. Storage in Bull Lake and Pilot Butte reservoirs now totals 91,000 acre feet, practically the same as for May 1, 1947. Along the lower Bighorn soil moisture is good and streamflow slightly low at this time.

Sweetwater: Snow conditions on the headwaters of this stream are very similar to a year ago and summer flow should be comparable. Snow water content is 15 percent above normal.

Cheyenne: The outlook for irrigation water supply is excellent. Soil moisture and crop conditions on the Belle Fourche project are very good at this time. Storage in the reservoir is now 162,500 acre-feet as compared to 156,000 on May 1, 1947. Stream flow is currently about one-half of normal.

Powder: From limited snow surveys at high elevations on this stream, the runoff from melting snow should be somewhat better than average but not as much as for 1947.

Tongue: Snow water content at the Big Goose Ranger Station is 25 percent above average for May 1. Recent as well as seasonal precipitation has been very high in the Sheridan district. Soil moisture, range and crop conditions are reported as very good. Storage in the Tongue River reservoir in Montana is 25,000 acre-feet as compared to 9,000 a year ago at this time.

North Platte: On the North Platte headwaters in Colorado and Wyoming the snow water content measured on ten courses May 1 is 84 percent of last year and 98 percent of normal. Because of considerably low snow during the winter months and current high stream flow, the summer flow of this stream is expected to be well above normal but less than for the 1947 season. Soil moisture is good in the valley in Wyoming but in western Nebraska the topsoil is dry. The flow of the North Platte at Saratoga, Wyoming is expected to be 700,000 acre-feet for the April-September period. Storage in the four major reservoirs on the Platte in Wyoming now totals 1,536,000 acre-feet which is substantially above normal and one-half million above a year ago. In Kingsley and Sutherland reservoirs there is now in storage 1,751,000 acre-feet as compared to 1,314,000 on May 1, 1947.

Laramie: The outlook for irrigation water supplies on this stream is excellent. Snow conditions are very similar to this time a year ago. The April-September flow of the Laramie at Jelm should be about 115,000 acre-feet. Because of a deficiency of precipitation during April stream flow is slightly below normal. Wheatland reservoirs now contain 91,000 acre-feet as compared to 36,000 a year ago. Soil moisture conditions in the Wheatland area are reported as good.

South Platte River Basin

Cache la Poudre: The outlook for irrigation water supply on this stream declined slightly during April. There was very little additional snow at high elevations and considerable melting occurred. The summer flow is expected to be

and the number of the most prominent biological entities in the world and that the total number of different species of plants and animals is still increasing. And because there are so many species, the most common ones will be found in a variety of environments, from deserts to forests, from oceans to land, from arctic regions to tropics. This means that there are many different types of ecosystems, each with its own unique set of species and interactions between them. In addition, the world's ecosystems are interconnected, which means that changes in one ecosystem can affect others, both near and far away.

Overall, the study of ecology is important for understanding the complex relationships between living organisms and their environment, and for developing effective ways to protect and conserve these valuable resources for future generations.

Ecology is also a field of study that is closely related to other disciplines, such as biology, chemistry, physics, and mathematics. By combining knowledge from these fields, ecologists can gain a deeper understanding of the complex systems that make up our planet and how they interact with each other.

Finally, the study of ecology is important for addressing some of the most pressing issues facing society today, such as climate change, biodiversity loss, and environmental degradation. By understanding the complex relationships between living organisms and their environment, ecologists can help develop effective solutions to these challenges and work towards a more sustainable future for all.

While ecology is a multidisciplinary field of study, it is also a discipline in its own right, with its own unique set of concepts and methods. One of the key concepts in ecology is the idea of interdependence, which refers to the way in which different species and different parts of an ecosystem are interconnected and rely on each other for survival. Another important concept is adaptation, which refers to the way in which living organisms change over time to better suit their environment. Finally, the study of ecology also involves the use of various methodologies, such as field surveys, laboratory experiments, and computer modeling, to gain a deeper understanding of the complex systems that make up our planet.

In conclusion, the study of ecology is a multidisciplinary field of study that is essential for understanding the complex relationships between living organisms and their environment. By combining knowledge from biology, chemistry, physics, and mathematics, ecologists can gain a deeper understanding of the systems that make up our planet and how they interact with each other. The study of ecology is also important for addressing some of the most pressing issues facing society today, such as climate change, biodiversity loss, and environmental degradation. By understanding the complex relationships between living organisms and their environment, ecologists can help develop effective solutions to these challenges and work towards a more sustainable future for all.

Overall, the study of ecology is a multidisciplinary field of study that is essential for understanding the complex relationships between living organisms and their environment. By combining knowledge from biology, chemistry, physics, and mathematics, ecologists can gain a deeper understanding of the systems that make up our planet and how they interact with each other. The study of ecology is also important for addressing some of the most pressing issues facing society today, such as climate change, biodiversity loss, and environmental degradation. By understanding the complex relationships between living organisms and their environment, ecologists can help develop effective solutions to these challenges and work towards a more sustainable future for all.

Conclusion

In conclusion, the study of ecology is a multidisciplinary field of study that is essential for understanding the complex relationships between living organisms and their environment. By combining knowledge from biology, chemistry, physics, and mathematics, ecologists can gain a deeper understanding of the systems that make up our planet and how they interact with each other. The study of ecology is also important for addressing some of the most pressing issues facing society today, such as climate change, biodiversity loss, and environmental degradation. By understanding the complex relationships between living organisms and their environment, ecologists can help develop effective solutions to these challenges and work towards a more sustainable future for all.

above average but somewhat less than for the 1947 season. At Cameron Pass snow water content is now $21\frac{1}{2}$ inches as compared to an average of $23\frac{1}{2}$. Conditions are some better on the North Poudre and the Big South. Recent precipitation has been slightly deficient. Soil moisture conditions are good. Reservoir storage is generally the same as last year.

Big Thompson: Snow cover on the headwaters of this stream reflect a condition similar to April 1. Summer flow will be above normal but under last year. Late summer flow will be near average. Recent precipitation has been about normal and soil moisture conditions are good. Storage in Boyd Lake and Lake Loveland is well above last year. In Boyd Lake there is now stored 30,000 acre-feet as compared to 12,000 a year ago.

Saint Vrain: The water content of the snow at Wild Basin is 12 inches as compared to an average of 13. Due to earlier and lower elevation snow the summer flow should be slightly above average but substantially under the 1947 season. April precipitation was deficient. Soil moisture conditions are described as good and stream flow as normal.

Boulder Creek: Snow cover on the headwaters of the Boulder Creeks is above the average, but following the pattern of other South Platte tributaries is below last year. The April-September flow is expected to be 65,000 acre feet. Last year it was 74,000. Recent precipitation and stream flow have been normal or above. Soil moisture conditions are excellent. Barker Meadow reservoir is nearly empty but is expected to fill this season.

Clear Creek: The water supply outlook on this stream improved somewhat during April. Snow water content at Loveland Pass course is now 14.6 inches as compared to an average of 13. Stream flow is above normal and soil moisture and crop conditions are reported as excellent. Reservoir storage is about the same as a year ago and near capacity.

South Platte above Denver: Storage in the Denver Municipal reservoirs in South Park above Denver is now 197,000 acre-feet as compared to 159,000 for a past ten year average. On May 1, 1947, 193,000 acre-feet was stored. Stream flow at Denver is unusually high due to melting of snow in South Park during April. Snow water content measured on snow courses May 1 was 7.7 inches. The average is 5.5 and last year it was 8.5. The summer flow of this stream should equal the 1947 season.

In the lower South Platte Valley in Colorado the water supply outlook is favorable. Soil moisture conditions from Fort Morgan west are very good. Reservoir storage is near capacity and practically the same as a year ago. In the Sterling district, soil moisture, range and crop conditions are described as fair due to recent lack of precipitation. Here reservoirs are also near capacity and the amount of water in storage is similar to May 1, 1947.

The ground-water table in the areas adjacent to the South Platte River rose 1 to 4 feet during the year, the maximum occurring near Gilcrest. Gains were made throughout the Cache La Poudre valley with a maximum of 2 feet near Wellington. There was a general rise in the Lone Tree valley, the greatest being about 2 feet near Eaton. A general rise occurred along Box Elder creek with a maximum of 3 feet near Hudson. A rise of 1 to 7 feet occurred in the Prospect valley being greatest at the south end. The Bijou creek pumping area suffered an average lowering of about 1 feet. In Beaver creek valley there were no important changes except for a lowering of about one foot near Gary.

and 1955 against the average 1950-54 and 1954-55 growth rates of 2.7 percent and 3.1 percent. The 1955 rate was the highest since 1950, and the 1954 rate was the lowest since 1950.

Estimates of the final output levels for 1955 and 1956 are available for 20 countries, and estimates for 1955 are available for 22 countries. The 1955 estimates for the Soviet Union, Czechoslovakia, Poland, Hungary, and Bulgaria are available only for December or January. The 1956 estimates for the Soviet Union, Poland, and Hungary are available only for January.

Estimated final output for 1955 in the Soviet Union, Poland, and Hungary is 1.5 percent above the 1954 level. Estimated final output for 1956 in the Soviet Union, Poland, and Hungary is 1.8 percent above the 1955 level.

Estimated final output for 1955 in Czechoslovakia, Hungary, and Bulgaria is 2.5 percent above the 1954 level. Estimated final output for 1956 in these three countries is 2.7 percent above the 1955 level. Estimated final output for 1955 in Yugoslavia is 2.2 percent above the 1954 level. Estimated final output for 1956 in Yugoslavia is 2.5 percent above the 1955 level.

Estimated final output for 1955 in East Germany is 2.0 percent above the 1954 level. Estimated final output for 1956 in East Germany is 2.2 percent above the 1955 level. Estimated final output for 1955 in Romania is 2.0 percent above the 1954 level. Estimated final output for 1956 in Romania is 2.2 percent above the 1955 level.

Estimated final output for 1955 in Bulgaria is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level.

Estimated final output for 1955 in Czechoslovakia is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level. Estimated final output for 1955 in Hungary is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level.

Estimated final output for 1955 in Poland is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level. Estimated final output for 1955 in Bulgaria is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level. Estimated final output for 1955 in Romania is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level.

Estimated final output for 1955 in Yugoslavia is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level. Estimated final output for 1955 in East Germany is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level.

Estimated final output for 1955 in Czechoslovakia is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level. Estimated final output for 1955 in Hungary is 1.8 percent above the 1954 level, and estimated final output for 1956 is 2.0 percent above the 1955 level.

•14•

Arkansas River

The outlook for irrigation water supply in the Arkansas Valley is excellent. The summer flow of the Arkansas at Salida should be about 450,000 acre-feet or the same as last year. On the tributary streams to the south, the Cucharas and Purgatoire Rivers, prospective summer flow has declined slightly during April. Heavy melting occurred on these streams and stream flow is above normal. On the Arkansas River stream flow has also been above normal. Soil moisture conditions throughout the valley are reported as good except for drying topsoil. At Pueblo April precipitation was normal but elsewhere there were varying amounts of deficiency. On Fountain creek stream flow was normal. Reservoir storage throughout the valley is substantially above the 1947 season and the past ten year average.

The groundwater table in the Arkansas Valley from Pueblo to Fowler generally rose from 1 to 2 feet during the past year. Between Fowler and Rocky Ford very little change occurred. On Fountain Creek the water table a few miles south of Fountain is 4 feet higher while between Fountain and Colorado Springs there was little change from last year.

Another school of thought, however, believes that the best way to deal with such a situation is to let the market decide. In this view, the government should not interfere with the market mechanism, which is considered to be the most efficient way to allocate resources. This approach is often referred to as "laissez-faire" or "free market" economics. Advocates of this view argue that the market is better suited than the government to determine the price of a good or service based on supply and demand. They believe that the government's intervention in the market can lead to inefficiencies, such as price controls or subsidies, which can distort the market and harm consumers and producers.

The third approach to dealing with a shortage is to implement a rationing system. This involves setting limits on the amount of a particular good or service that can be purchased by individual consumers. Rationing can be achieved through various methods, such as排队 (queueing), lottery systems, or配额 (quotas). The goal of rationing is to ensure that limited resources are distributed fairly among the population. Advocates of this approach argue that it is a more effective way to manage shortages than other methods, as it prevents individuals from hoarding resources and ensures that everyone has access to basic necessities.

MISSOURI-ARKANSAS DRAINAGE BASINS

STREAM FLOW FORECASTS, May 1, 1948

Basin and Stream	Apr.-Sept., incl., Streamflow, Acre Feet				
	Forecast 1948	Measured 1947	Runoff 1946	1945	10-yr.Avg. 1937-1946
<u>YELLOWSTONE</u>					
Shoshone below Buffalo Bill Res.	800,000	757,000	436,000	614,000	675,000
Wind River at Riverton	475,000	753,000	352,000	520,000	456,000
Popo Agie at Riverton	400,000	566,000	333,000	423,000	420,000
<u>NORTH PLATTE</u>					
Sweetwater at Alcova	70,000	85,000	49,000	---	58,300
North Platte at Saratoga	700,000	761,000	510,000	841,600	564,000
Laramie at Jelm	115,000	123,000	91,840	100,660	87,600
<u>SOUTH PLATTE</u>					
Poudre at Canon	275,000	298,000	200,000	253,000	237,000
Big Thompson at Drake	135,000	168,000	67,000	136,000	102,000
St. Vrain at Lyons	90,000	126,000	52,000	88,000	79,000
Boulder at Orodell	65,000	74,000	41,000	51,000	50,700
Clear Creek at Golden	175,000	203,700	---	143,000	142,000
<u>ARKANSAS</u>					
Arkansas at Salida	450,000	451,000	326,000	316,000	322,000
Purgatoire at Trinidad	80,000		16,600	43,000	64,000

STATUS OF RESERVOIR STORAGE,⁻⁶ MISSOURI-ARKANSAS BASIN, May 1, 1948

BASIN AND STREAM	RESERVOIR	USABLE CAPACITY (Thous. A. F.)	THOUSANDS OF ACRE FEET IN STORAGE						Cap.	% Avg.
			1948	1947	About May 1	1946	1945	10-yr. Avg.		
MISSOURI RIVER										
Missouri River	Fort Peck	19000.0	13790.0	15225.0	13270.0	11440.0	7948.1	73	174	
"	Canon Ferry	37.8	23.7	35.4	36.6	19.2	23.6	63	100	
"	Hauser Lake	52.7	31.4	39.7	42.9	50.2	44.0	60	72	
"	Holter	73.6	51.2	59.5	61.7	47.3	47.3	70	108	
"	Gibson	105.0	71.5	64.6	76.7	71.6	70.8	68	101	
"	Willow Creek	32.4	19.1	16.9	11.6	22.6	9.7	59	197	
"	Pishkun	32.0	20.8	17.2	22.4	17.0	15.8	65	132	
Marias River	Four Horns	20.0	7.4	11.8	5.8	5.3	8.2	37	90	
"	Birch Creek	30.0	27.2	28.4	26.3	27.5	21.3	91	128	
Lake Francis	112.0	107.9	105.1	103.9	100.7	55.6	96	—	184	
Musselshell River	Deadmans Basin	52.5	—	—	50.5	—	—	—	—	
"	Martinsdale	23.0	—	12.1	12.1	10.9	—	—	—	
Yellowstone River	Tongue River	73.9	24.9	9.1	8.6	13.4	18.1	39	59	
Tongue River	Fresno	127.2	131.9	131.0	18.6	10.1	17.6	34	141	
Milk River	Nelson	60.3	33.9	34.7	62.0	50.0	58.3	103	226	
St. Marys River	Sherburne	66.0	35.8	17.6	26.6	37.0	32.2	51	105	
Gallatin River	Mystic Lake	20.8	2.3	3.3	10.7	20.8	19.9	54	180	
Madison River	Madison	41.0	36.4	38.5	9.6	3.7	3.1	11	75	
"	Hebgen	345.0	185.3	179.1	37.4	33.8	28.6	89	127	
Jefferson River	Eddy	39.0	—	191.7	191.7	246.6	255.1	54	73	
Cheyenne River	Belle Fourche	177.5	162.6	156.2	37.5	28.0	30.3	—	—	
Shoshone River	Buffalo Bill	456.6	309.9	293.8	151.9	146.2	108.7	92	150	
Wind River	Pilot Butte	30.0	21.6	20.2	38.7	258.3	289.6	68	107	
"	Bull Lake	155.0	69.4	68.4	52.4	20.4	21.0	72	103	
Greybull River	Sunshine	52.0	—	36.0	37.0	50.6	49.3	45	140	
North Platte River	Kingsley-Sutherland	2180.0	1751.5	1314.0	1280.0	881.6	784.2	81	224	
"	Minatare	60.8	48.0	54.2	51.5	44.7	33.7	79	142	
"	Alcova	190.0	166.5	150.4	143.1	124.8	112.9	87	147	
"	Seminole	1025.0	646.5	405.3	610.7	145.2	210.0	63	308	
"	Guernsey	46.0	22.5	41.8	21.9	31.8	40.4	49	56	
"	Pathfinder	1045.5	700.6	470.4	292.5	293.4	293.4	67	239	
Laramie River	Wheatland				54.0	28.1	33.5	—	270	

*Some for shorter periods

-7-
RESERVOIR STORAGE, Cont.

BASIN AND STREAM	RESERVOIR	USABLE CAPACITY (Thous. A.F.)	THOUSANDS OF ACRE FEET IN STORAGE						May 1, 1947	
			1948	1947	About May 1	1946	1945	16-yr. Ave.	1937-46	% Cap.
MISSOURI RIVER										
Poudre River	Windsor	18.6	14.7	12.2	13.3	11.9	12.9	79	114	
"	Cache la Poudre	9.5	9.5	8.7	8.9	6.6	8.0	100	119	
"	Fossil Creek	11.6	10.8	11.0	10.3	4.2	8.0	93	135	
"	Terry Lake	3.2	6.1	5.1	5.3	4.1	5.0	75	122	
"	Halligan	6.4	2.5	2.4	0.0	0.0	2.9	39	86	
"	Chamber's Lake	5.8	2.7	2.7	2.8	2.2	3.3	31	82	
"	Cobb Lake	34.3	5.0	0.6	4.2	3.4	3.8	15	132	
"	Black Hollow	35.0	4.2	4.6	4.1	2.0	3.0	52	140	
"	Lake Loveland	14.3	10.3	2.4	3.2	3.6	6.9	72	149	
"	Boyd Lake	34.3	30.1	12.1	24.3	25.7	13.3	85	226	
"	Lone Tree	9.2	9.3	9.3	8.1	4.7	8.0	101	115	
"	Mariano	4.6	4.6	4.6	3.6	3.6	3.5	100	131	
Big Thompson River	Union	12.7	12.7	6.9	3.6	5.7	5.7	100	223	
"	Barker Meadow	11.7	0.1	0.7	5.5	0.4	3.4	1	3	
"	Eleven Mile	81.9	81.9	81.9	81.9	61.9	67.2	100	122	
St. Vrain River	Cheeseman	79.0	79.0	59.0	73.7	62.5	63.6	100	124	
Boulder Creek	Marston	17.0	15.5	16.7	15.2	14.9	15.6	91	99	
South Platte River	Barr Lake	32.2	28.5	28.0	25.8	26.0	21.7	68	131	
"	Milton	24.4	20.3	20.2	16.3	12.2	12.4	85	168	
"	Standley	18.5	17.8	12.8	17.4	13.7	14.3	96	124	
"	Marshall	10.3	5.4	5.2	5.3	3.6	5.2	52	104	
"	Antero	33.0	21.0	20.1	20.1	16.1	11.7	64	179	
"	Horse Creek	20.6	12.5	14.2	12.3	10.4	8.0	61	156	
"	Riverside	57.5	59.4	59.4	53.9	53.9	46.1	103	129	
"	Empire	37.7	34.5	34.9	32.2	33.8	29.7	92	116	
"	Jackson Lake	35.4	35.4	34.4	34.4	35.4	34.2	100	104	
"	Prewitt	32.8	31.2	28.7	27.6	26.4	21.3	95	146	
"	Point of Rocks	70.0	67.3	72.0	67.0	70.3	59.2	77	114	
"	Julesburg	25.2	21.7	22.7	21.9	22.3	22.3	77	97	

*Some for shorter periods

-8-
RESERVOIR STORAGE, Cont.

BASIN AND STREAM	RESERVOIR	USABLE CAPACITY (Thous. A. F.)	THOUSANDS OF ACRE FEET IN STORAGE					May 1, 1948 % Cao. Avg.
			1948	1947	1946	1945	10-yr. Avg. 1937-46*	
ARKANSAS								
Arkansas River	Twin Lakes	57.9	38.8	15.2	29.5	14.0	21.7	67
" " "	Sugar Loaf	17.4	11.1	8.0	10.0	6.1	7.8	64
" " "	Clear Creek	11.4		4.4	8.6	7.7	3.9	142
" " "	Meredith	41.9	31.6	26.7	23.2	33.2	17.9	70
" " "	Horse Creek	26.9	17.2	16.0	14.0	11.8	9.5	205
" " "	Adobe Creek	61.6	56.8	38.0	41.0	34.3	23.9	64
" " "	Cucharares	40.0	20.0	2.4	5.3	10.0	7.9	92
" " "	Two Buttes	40.9	4.0	7.9	0.3	0.6	12.7	50
" " "	John Martin	65.0	99.7	64.9	49.9	45.9	49.5	10
" " "	Great Plains	150.0	132.1	96.3	90.3	118.2	49.0	15
Purgatoire River	Model**	6.2	4.3	3.4	3.6	5.0	5.0	201

* Some for shorter periods.
** Resurveyed in 1946

SNOW SURVEYS AND IRRIGATION WATER FORECASTS FOR
MISSOURI AND ARKANSAS RIVERS
May 1, 1948

PRECIPITATION DATA

WATERSHED	STATE	Precipitation		Departure from Normal	Precipitation April*	Departure from Normal
		October 1 to April 30	Inches			
Missouri	East. Mont.	4.03	-0.72	1.25	1.25	+0.17
Missouri	Cent. Mont.	5.44	-0.31	0.87	0.87	-0.40
Missouri	North Wyo.	2.58	+0.97	1.39	1.39	-0.35
North Platte	Wyoming	6.09	-0.04	1.08	1.08	-0.30
South Platte	Colorado	11.77	+3.20	1.99	1.99	-0.54
Arkansas	Colorado	11.41	+3.34	1.30	1.30	-0.34

April precipitation was below normal except in central Montana. The accumulated precipitation was above normal except in Montana and in the North Platte in Wyoming.

*April precipitation tentative.

卷之三

SUMMARY OF MAY 1 SNOW SURVEYS AND COMPARISON OF DATA WITH
THAT OF PREVIOUS YEARS BY WATERSHEDS

WATERSHEDS	Snow Depth				Water Content			Number Courses in Average			Snow Density			1948 Water Content in percent of		
	Thirteen Year Avg.*	1947	1948	1948 Year Avg.*	Thirteen	1947	1948	1947	1947	1948	1947	1947	1948	1947	1947	
MISSOURI RIVER	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.
Jefferson River	44.3	56.4	52.1	18.5	25.4	21.3	1.1	42	45	41	115	84	115	115	84	
Madison River	12.5	14.7	24.0	4.9	6.6	8.2	3	39	45	34	166	124	166	166	124	
Gallatin River	31.7	41.2	48.6	11.6	16.7	17.3	3	37	40	36	149	104	149	149	104	
Missouri River**	15.2	21.1	23.9	5.1	7.6	7.7	5	34	36	32	151	101	151	151	101	
Marias River	16.5	22.4	36.9	7.5	11.5	15.3	1	45	51	42	204	133	204	204	133	
Yellowstone River	24.6	34.4	38.0	5.1	10.7	11.7	1	33	31	31	145	109	145	145	109	
Shoshone River	38.9	55.2	52.4	14.7	21.1	19.9	2	38	38	38	135	94	135	135	94	
Bighorn River	22.5	30.8	25.2	7.5	9.9	8.8	10	33	32	35	117	89	117	117	89	
Tongue River	9.5	12.7	12.5	3.1	4.5	3.9	1	33	35	31	126	87	126	126	87	
Powder River	18.7	21.5	17.0	5.5	6.6	6.3	1	29	31	37	114	96	114	114	96	
North Platte River	46.3	57.2	46.2	18.0	20.9	17.6	10	39	36	38	98	84	98	98	84	
Sweetwater River	34.9	42.3	35.0	12.0	13.7	13.8	2	34	32	40	115	101	115	115	101	
Laramie River	31.0	41.2	35.4	11.0	14.5	12.3	5	35	35	35	112	85	112	112	85	
Crow Creek	8.2	14.0	2.7	2.5	4.7	1.0	1	30	34	37	40	21	40	40	21	
South Platte ***	17.7	26.6	34.1	5.5	8.5	7.7	3	31	32	32	140	91	140	140	91	
Poudre River	34.6	43.7	36.6	12.5	15.3	12.2	6	36	35	34	98	80	98	98	80	
Big Thompson River	53.6	61.0	52.6	18.0	21.6	18.4	2	34	35	35	102	85	102	102	85	
St. Vrain River	37.4	45.4	36.1	13.2	15.6	12.1	1	35	35	35	92	78	92	92	78	
Boulder Creek	31.2	38.4	32.1	11.6	15.1	13.1	2	37	39	41	113	87	113	113	87	
Clear Creek	46.7	58.5	49.5	15.8	21.2	17.6	2	34	36	36	111	83	111	111	83	
ARKANSAS RIVER	25.2	32.0	28.0	8.6	11.0	9.7	10	34	35	35	113	88	113	113	88	

*Some for shorter periods. **Between Helena and Great Falls ***Above Denver, Colo.

MISSOURI-ARKANSAS RIVERS SNOW SURVEYS, May 1, 1948

SNOW COURSE MEASUREMENTS

MISSOURI-ARKANSAS RIVERS SNOW SURVEYS, May 1, 1948

SOME COUSIN RELATIONS

No. an. and State	Sec., Twp.	Range	Elev.	Date of Survey	Snow Depth (Inches)	Water Content (Inches)	Past Record	
							1948	1947
<u>MISSOURI RIVER</u>								
SHO SHONE RIVER Sylvan Pass	32 Wyo. " 23	52N 44N	110W 110W	5/1 4/30	39.7 65.0 52.4	14.1 25.7 19.9	4.0 13.4 8.7	12 13
Brooks Lake #2*	50 " 23	Average for drainage						
BIG HORN RIVER Tensleep R.S. Banger Creek	12 Wyo. " 32	49N 53N	86W 88W	8300 4/30	15.2 26.0	7.4 6.4	0.6 2.7	13 13
Sawmill Glade	45 " 3	31N	101W	8500 4/30	15.7 34.3	6.3 13.4	0.0 12.7	6.1 9
Blue Ridge	46 " 23	31N	101W	9500 4/30	34.3 36.2	14.2 14.7	3.3 3.6	11.5 9
South Pass	47 " 13	30N 46N	101W 103W	9000 8000	29 27	5.8 5.5	0.7 0.7	12.2 8
Wood River	48 " 28	42N	109W	7500 4/30	16.0 11.0	2.3 2.3	— —	3.6 10
Sheridan Cr.R.S. Brooks Lake #3	49 " 50	44N 23	110W	9200 4/30	65.0	25.7	28.4	13.4
St.Lawrence R.S. Mosquito Park R.S.	51 " 26	21N 25	4W 3W	9000 9500			5.7 7.7	— 1.8
DuNoir	52 " 23	42N	108W	8760 4/29		6.4 4.2	10.9 4.5	1.0 0.0
T-Cross Ranch	53 " 27	47N 1	107W	8000 4/29		8.2 25.2	9.9	8 2.8
<u>POWDER RIVER</u>								
Red Fork	30 Wyo. " 18	43N	85W	7500			10.0	0.0
Sour Dough	31 " 17	49N	84W	8500 Average for drainage	4/29	17.0	6.6	0.0
<u>TONGUE RIVER</u>								
Big Goose Cr.R.S.	17 Wyo. " 4	53N	86W	7700 4/30			4.5	0.0
<u>SWEETWATER RIVER</u>								
Grannier Meadows	19 Wyo. " 19	30N	100W	9000 4/29		33.7	12.7	12
South Pass*	47 " 13	30N	101W	9000 Average for drainage	4/29	36.2 13.7	14.7 13.0	8 3.0

*On Adjacent Drainage

$\frac{d}{dx} \left(\frac{1}{x^2} \right) = -\frac{2}{x^3}$

MISSOURI-ARKANSAS RIVERS SNOW SURVEYS, May 1, 1948

DRAINAGE BASIN and SNOW COURSE	No. and State	LOCATION		Range Two.	Elev. Sec.	Date of Survey	Snow Depth (Inches)	MISSOURI RIVER			SNOW COURSE MEASUREMENTS		
		Two.	Years of Record					Water Content (Inches)	1948	1947	1946	Years of Record	Past Record
NORTH PLATTE RIVER													
Cameron Pass	1 Colo.	2	6N	76W	10300	5/1	58.2	21.4	25.9	28.5	13	23.6	
Park View	7 "	24	5N	78W	9200	4/30	19.7	6.3	10.9	1.8	13	6.8	
Columbine Lodge	8 "	21	5N	82W	9300	4/30	52.5	22.4	20.0	10.9	13	19.0	
Willow Cr. Pass*	62 "	1	4N	78W	9500	4/30	34.0	10.4	16.1	5.0	11	12.2	
Bottle Creek	7 Wyo.	24	14N	85W	8200	4/29	32.0	11.7	10.8	1.0	13	8.5	
Webber Spring	8 "	27	14N	85W	9000	4/29	42.8	16.0	16.1	7.6	13	16.7	
Old Battle	9 "	29	14N	85W	9800	4/29	84.0	34.9	36.2	24.9	13	32.5	
N. French Creek	37 "	27	16N	80W	10200	5/1	70.5	27.5	36.1	29.4	11	32.5	
N. Barrett Creek #2	38 "	30	16N	80W	9400	5/1	49.3	15.9	25.2	13.9	13	20.9	
Ryan Park #2	39 "	34	16N	81W	8400	5/1	18.9	7.0	12.5	0.0	13	6.9	
Average for drainage													18.0
LARAMIE RIVER													
Brooklyn Lake	3 Wyo.	11	16N	79W	10200	5/1	59.5	22.3	27.7	14.7	13	22.1	
Fox Park	21 "	21	13N	78W	9200	4/30	23.2	10.5	11.1	0.6	13	7.9	
Pole Mtn. #2*	34 "	35	12N	72W	8700	4/30	2.7	1.0	4.7	0.0	12	2.5	
Libby Lodge #2	35 "	29	16N	78W	8700	5/1	23.4	7.7	9.1	0.6	13	4.6	
Hairpin Turn #2	36 "	24	16N	79W	9500	5/1	36.3	12.6	13.2	5.0	13	10.3	
W. Port. G...P. Tun.	36 "	7	8N	75W	8600	5/2	14.7	4.6	6.3	1.0	12	4.1	
Deadman Hill*	4 Colo.	4	10N	75W	10200	4/26	57.7	15.0	20.7	11.6	10	16.5	
Roach	50 "	26	10N	75W	9800	5/1	65.7	24.0	23.4	12.8	8	19.6	
Average for drainage													11.0
CROW CREEK													
Pole Mtn. #2	34 Wyo.	35	15N	72W	8700	4/30	2.7	1.0	4.7	0.0	12	2.5	
POUDRE RIVER													
Cameron Pass	1 Colo.	2	6N	76W	10300	5/1	58.2	21.4	25.9	28.5	13	23.6	
Chambers Lake	2 "	6	7N	75W	9000	4/30	13.3	4.9	8.0	0.4	13	3.9	
Big South	3 "	33	8N	75W	8600	5/2	1.0	0.3	2.1	0.0	13	0.6	
Deadman Hill	50 "	26	10N	75W	10200	4/26	57.7	16.0	20.7	11.6	10	16.5	
Lake Irene*	65 "	8	5N	75W	10600	4/30	63.9	24.2	27.1	15.2	11	23.4	
Hour Glass Lake	68 "	18	7N	73W	9500	5/1	66.6	6.6	8.1	1.0	9	6.8	
Average for drainage													12.2

*On adjacent drainage

MISSOURI-ARKANSAS RIVERS SNOW SURVEYS, May 1, 1948

SNOW COURSE MEASUREMENTS

The following organizations cooperate in the snow surveys and irrigation water supply forecasts for the Colorado, Missouri-Arkansas and Rio Grande watersheds by furnishing funds or services.

STATE

Colorado State Engineer
Wyoming State Engineer
Utah State Engineer
New Mexico State Engineer
Montana State Engineer
Nebraska State Engineer
Colorado Experiment Station
Colorado Extension Service
Montana Experiment Station
Utah Experiment Station

FEDERAL

Department of Agriculture
Forest Service
Soil Conservation Service
Department of Interior
Bureau of Reclamation
Geological Survey
National Park Service
Department of Commerce
Weather Bureau
War Department
Army Engineer Corps

PUBLIC UTILITIES

Colorado Public Service Company
Western Colorado Power Company
Montana Power Company
Public Service Company of New Mexico
Denver and Rio Grande Western R. R. Company

MUNICIPALITIES

City of Bozeman
City of Denver
City of Boulder

WATER USERS ORGANIZATIONS

Poudre Valley Water Users' Association
Arkansas Valley Ditch Association
Colorado River Water Conservation District

IRRIGATION PROJECTS

Farmers Reservoir and Irrigation Company
San Luis Valley Irrigation District
Santa Maria Reservoir Company
Costilla Land Company
Uncompahgre Valley Water Users' Association
Wyoming Development Company
Goshen Irrigation District
Kendrick Project
Pathfinder Irrigation District
Salt River Valley Water Users' Association
San Carlos Irrigation and Drainage District
Twin Lakes Reservoir and Canal Company

Many other organizations and individuals furnish valuable information for the snow survey reports. Their cooperation is gratefully acknowledged.

