Practical Intro-1

Dr. Osama Mahmoud
05/07/2019

Exercise 1:

Data on heights, weights and gender were collected for 10 individuals in early-adulthood. The data were reported in the table below (heights measured in cm, weights in Kg and m refers to a male gender):

id	ht	wt	gender
1	155	80	m
2	152	85	m
3	164	72	f
4	175	69	m
5	193	86	f
6	203	110	f
7	190	106	f
8	183	96	\mathbf{m}
9	155	90	f
10	169	89	m

- a) Create vectors for height, weight and gender and assigned them to the names: ht; wt; gender respectively.
- b) Using ht and wt vectors, creat a new variable for the BMI (Hint: BMI is calculated by dividing weight measured in Kg by the squared height measured in meters)
- c) Show the length of the ht vector.
- d) Use R to count how many subjects with weights over 80 Kg.
- e) Show a frequency table for the gender variable (Hint: search the help for the table function by typing in ?table)
- f) Round the calculated BMI values to 2 decimel digits only.
- g) Extract the BMI for the 3rd and 5th individuals.

Exercise 2

- a) Generate a vector x consisting of the values 0.70, 3.26, 4.48, and 5.05.
- b) Append x with a sequence of length 6 of equidistant values starting with 2 and ending with 9. The vector should now consist of 10 values.
- c) Use x to generate three more vectors: (x1) represents x divided by 4; (x2) is x multiplied by 2.5; (x3) is x to the power 2.5.
- d) Generate a vector y consisting of these three vectors, x1, x2 and x3. Make sure that y has a length 30.
- e) Calculate the maximum, minimum, and mean of y.