Zahlensysteme

$\mathbf{Dezimal} \to \mathbf{Bin\ddot{a}r}$

1. Methode:

$$314_{10} = 256 + 32 + 16 + 8 + 2 = 100111010_2$$

	256	128	64	32	16	8	4	2	1
ĺ	1	0	0	1	1	1	0	1	0

2. Methode:

Dezimal $(\rightarrow Bin\ddot{a}r) \rightarrow Hexadezimal$

1. Methode:

$$314_{10} = 13A_{16}$$

$$314 : 16 = 19 R 10$$
 $19 : 16 = 1 R 3$
 $1 : 16 = 0 R 1$

- 2. Methode:
- Zuerst Dezimal in Binär umwandeln

$$314_{10} = 100111010_2$$

- Binär in Hexadezimal umwandeln

 100111010_2 in Viererblöcke umschreiben (links ggfs. mit Nullen auffüllen). Die Viererblöcke in ihre entsprechende Dezimaldarstellung umrechnen und diese dann in die entsprechende Hexadezimalddarstellung.

Binär:	0001	0011	1010
Dezimal:	1	3	10
Hexadezimal:	1	3	A

$$100111010_2 = 13 A_{16}$$

$Bin\ddot{a}r \to Dezimal$

$$100111010_2 = 2^8 \cdot 1 + 2^7 \cdot 0 + 2^6 \cdot 0 + 2^5 \cdot 1 + 2^4 \cdot 1 + 2^3 \cdot 1 + 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0$$

= 256 + 32 + 16 + 8 + 2
= 314₁₀

$Hexadezimal \rightarrow Dezimal$

$$13A_{16} = 16^{2} \cdot 1 + 16^{1} \cdot 3 + 16^{0} \cdot 10$$
$$= 256 + 48 + 10$$
$$= 314_{10}$$

Addition und Subtraktion: Binär

Addition:

\boldsymbol{x}	y	sum	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Subtraktion:

\boldsymbol{x}	y	div	carry
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0