Supporting information

Tables

Table S1: Model 1: Raced $(0/1) \sim \text{Froh} + \text{sex} + (1|\text{birth}_{year})$.

Model estimates for a binomial mixed model for the response variable "raced" (0/1 for whether a horses has ever raced).

term	estimate (log-OR)	CI (2.5%)	CI (97.5%)	z-value	p-value	Info	
Intercept	1.021	-1.316	3.358	0.856	0.392		
Fixed effe	cts						
F _{ROH}	2.776	-5.642	11.194	0.646	0.518	continuous	
Sex	0.181	-0.301	0.663	0.735	0.462	categorical (0=female, 1=male)	
Random effects (standard deviation)							
Birth year	0.558					n = 9	

Table S2: Model 2: Raced $(0/1) \sim FrohLong + FrohShort + sex + (1|birth_year)$. Model estimates for a binomial mixed model for the response variable "raced" (0/1) for whether a horses has ever raced for FROHlong and FROHshort.

term	estimate (log-OR)	CI (2.5%)	CI (97.5%)	z-value	p-value	Info	
Intercept	2.103	-0.93	5.137	1.359	0.174		
Fixed effe	cts						
F _{ROHlong}	3.611	-4.944	12.166	0.827	0.408	continuous	
F _{ROHshort}	-2.954	-16.184	10.275	-0.438	0.662	continuous	
Sex	0.179	-0.303	0.661	0.729	0.466	categorical (0=female, 1=male)	
Random effects (standard deviation)							
Birth year	0.552					n = 9	

Table S3: Model 3: Races (> 0) ~ FrohLong + FrohShort + sex + (1|birth_year) + (1|olre). Model estimates for a Poisson mixed model with the response variable 'races' (number of races), for horses that had at least one racecourse start.

term	estimate (log-OR)	CI (2.5%)	CI (97.5%)	z-value	p-value	Info
Intercept	3.491	2.625	4.356	7.902	0	
Fixed effects						
FROHlong	-3.664	-6.143	-1.184	-2.896	0.004	continuous
F _{ROHshort}	-5.025	-8.852	-1.198	-2.574	0.01	continuous
Sex	0.387	0.247	0.528	5.394	0	categorical (0=female, 1=male)
Random effects (standard deviat	ion)					
Observation-level random effect	0.676					n = 768
Birth year	0.137					n = 9

Table S4: Predicted number of races for horses with varying inbreeding coefficients F_{ROH} relative to the average inbreeding coefficient.

FROH	Relative	Predicted number of races	CI (2.5%)	CI (97.5%)
0.18	-10%	16.026	12.399	20.715
0.23	-5%	13.201	11.263	15.473
0.28	mean	10.874	9.668	12.23
0.33	+5%	8.957	7.498	10.7
0.38	+10%	7.378	5.574	9.766

Figures

Figure S1: F_{ROH} distribution among North American horses

Fig. S2: Principal component analysis plots. Plots showing 6,128 horses from Europe (EU) and Australasia (AusNZ) (Hill *et al.* 2022) and the 768 North American (Nam) horses used in this study along the three first principal components (PC1 *vs* PC2, top; PC2 *vs* Pc3, bottom) with region of origin for each horse colour-coded.

Fig. S3: Model 1: Raced (0/1) ~ froh + sex + (1|birth_year). As shown in Table S1, there is no association between inbreeding and probability of racing. The plot shows predicted probability (and 95% confidence intervals) of racing for different inbreeding coefficients (F_{ROH}) alongside raw data (horses that have raced at 1 and those that have not raced at 0). As shown in Table S1, there is no association between inbreeding and probability of racing.

Fig. S4: Model 2: Raced $(0/1) \sim$ FrohLong + FrohShort + sex + (1) birth_year). The plots show predicted probability (and 95% confidence intervals) of racing for different inbreeding coefficients (FROHlong on the left and FROHshort on the right) alongside raw data (horses that have raced at 1 and those that have not raced at 0).

Fig. S5: Predicted counts of race starts for different inbreeding coefficients F_{ROH} using the model: races (> 0) ~ Froh + sex + (1| birth year) + (1|olre). Individual horses are colour coded by year of birth and shapes indicate sex of the animal (F - female, M - male).

Fig. S6: Model 3: Races (> 0) ~ FrohLong + FrohShort + sex + (1| birth_year) + (1|olre). Poisson model for number of races among horses that raced for different inbreeding coefficients (FROHlong on the left and FROHshort on the right). Plots show the same prediction lines with and without raw data plotted on top.

