ECS 122A: Algorithm Design and Analysis Week 8 Discussion

Ji Wang

Fall 2020

Logistics

- Quiz 4 will be up this week.
- Regrades must be submitted on Gradescope within two lectures of the day the work was first returned to the whole class.
- ▶ No discussion next week, but TAs' office hours remain as usual up to and including Wednesday.

Outline

- Divide and Conquer VS Dynamic Programming
- Variant of LCS: Edit Distance¹
- Graph Basics: Appendix B.4 and Section 22.1

¹by courtesy of Professor Z. Bai

Divide and Conquer VS Dynamic Programming

Dynamic Programming

- Subproblems usually overlap
- Use a lookup table and backtrace this table (memoization) in a bottom-up (iteration) manner

Divide and Conquer

- Subproblems are disjoint, mostly smaller instances of the same type
- Solve the subproblems recursively in a top-down (recursion) fashion

Divide and Conquer VS Dynamic Programming

Dynamic Programming

- Subproblems usually overlap
- Use a lookup table and backtrace this table (memoization) in a bottom-up (iteration) manner

Divide and Conquer

- Subproblems are disjoint, mostly smaller instances of the same type
- Solve the subproblems recursively in a top-down (recursion) fashion

A "Recipe" for Dynamic Programming

- Characterize the structure of an optimal solution, and recursively define the value of an optimal solution. In other word, come up with a formula
- Compute the value of an optimal solution in a bottom-up fashion, and make use of the computed information (momoization)

▶ An **alignment**, or matched up, of two strings is simply a way of writing the strings one above the other.

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

```
example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

"-" indicates a "gap"
```

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

```
example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

"-" indicates a "gap"
```

The cost of an alignment is the number of columns in which the letters differ.

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

```
example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

"-" indicates a "gap"
```

The cost of an alignment is the number of columns in which the letters differ.

```
example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5
```

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

```
example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

"-" indicates a "gap"
```

The cost of an alignment is the number of columns in which the letters differ.

example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5

▶ Edit distance between two strings is the minimum cost of their alignment, i.e., the best possible alignment

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

```
example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

"-" indicates a "gap"
```

The cost of an alignment is the number of columns in which the letters differ.

```
example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5
```

- ▶ Edit distance between two strings is the minimum cost of their alignment, i.e., the best possible alignment
- ▶ Edit distance is the minimum number of *edits* insertions, deletions and substitutions of characters need to transform the first string into the second.

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

```
example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

"-" indicates a "gap"
```

The cost of an alignment is the number of columns in which the letters differ.

```
example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5
```

- ▶ Edit distance between two strings is the minimum cost of their alignment, i.e., the best possible alignment
- ► Edit distance is the minimum number of *edits* insertions, deletions and substitutions of characters need to transform the first string into the second. *e.g. a spell checker*.

 \blacktriangleright Given strings $x[1\cdots m]$ and $y[1\cdots n].$

▶ Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

e(m,n)= the edit distance between x and y

▶ Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

 $e(m,n)=\mbox{the edit distance between }x\mbox{ and }y$

Our objective is to compute e(m,n) efficiently

▶ Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

e(m,n)= the edit distance between x and y

Our objective is to compute e(m,n) efficiently

Subproblem:

▶ Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

$$e(m,n)=$$
 the edit distance between x and y

Our objective is to compute e(m, n) efficiently

► Subproblem:

```
edit distance e(i,j) between x[1\cdots i] and y[1\cdots j]
```

▶ Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

$$e(m,n)=\mbox{the edit distance between }x\mbox{ and }y$$

Our objective is to compute e(m, n) efficiently

Subproblem:

edit distance e(i,j) between $x[1\cdots i]$ and $y[1\cdots j]$

lackbox How to express e(i,j) in terms of its subproblems, *recursively*?

▶ Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

$$e(m,n)=\mbox{the edit distance between }x\mbox{ and }y$$

Our objective is to compute e(m, n) efficiently

► Subproblem:

edit distance
$$e(i,j)$$
 between $x[1\cdots i]$ and $y[1\cdots j]$

- ▶ How to express e(i, j) in terms of its subproblems, *recursively*?
- **key observation:** the rightmost column of an alignment of $x[1\cdots i]$ and $y[1\cdots j]$ can only be one of the following three cases:

Case 1		Case 2		Case 3
x[i]	or	_	or	x[i]
_		y[j]		y[j]

▶ By the above key observation, then

$$e(i,j) = \min\{\underbrace{1 + e(i-1,j)}_{\text{case } 1}, \ \underbrace{1 + e(i,j-1)}_{\text{case } 2}, \ \underbrace{\operatorname{diff}(i,j) + e(i-1,j-1)}_{\text{case } 3}\}$$

where

$$\mathbf{diff}(i,j) = \begin{cases} 0 & \text{if } x[i] = y[j] \\ 1 & \text{if } x[i] \neq y[j] \end{cases}$$

Question: how to find the corresponding optimal alignment?

▶ The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).

- ▶ The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- Initialization:

$$e(0,0) = 0;$$

 $e(i,0) = i \text{ for } i = 1, \dots, m$
 $e(0,j) = j \text{ for } j = 1, \dots, n$

- ▶ The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- ► Initialization:

$$e(0,0) = 0;$$

 $e(i,0) = i \text{ for } i = 1, \dots, m$
 $e(0,j) = j \text{ for } j = 1, \dots, n$

▶ Pseudocode

- ▶ The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- Initialization:

$$e(0,0) = 0;$$

 $e(i,0) = i \text{ for } i = 1, \dots, m$
 $e(0,j) = j \text{ for } j = 1, \dots, n$

- ► Pseudocode
- **Example 1.** x = 'snowy', y = 'sunny'

- ▶ The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- Initialization:

$$e(0,0) = 0;$$

 $e(i,0) = i \text{ for } i = 1, \dots, m$
 $e(0,j) = j \text{ for } j = 1, \dots, n$

- ► Pseudocode
- **Example 1**. x = 'snowy', y = 'sunny'

		S	u	n	n	У
	0	1	2	3	4	5
S	1	0	1	2	3	4
n	2	1	1	1	2	3
0	3	2	2	2	2	3
W	4	3	3	3	3	3
У	5	4	4	3 2 1 2 3 4	4	3

- ▶ The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- ▶ Initialization:

$$\begin{split} &e(0,0)=0;\\ &e(i,0)=i \text{ for } i=1,\ldots,m\\ &e(0,j)=j \text{ for } j=1,\ldots,n \end{split}$$

- ► Pseudocode
- **Example 1.** x = 'snowy', y = 'sunny'

3 . 0			,				
		S	u	n	n	У	
	0	1	2	3	4	5	
S	1	0	1	2	3	4	
n	2	1	1	1	2	3	
0	3	2	2	2	2	3	
W	4	3	3	3	3	3	
у	5	1 0 1 2 3 4	4	4	4	3	

Therefore, the edit distance between x and y = e(5, 5) = 3.

Example 2. x = 'heroically', y = 'scholarly'

Example 2. x = 'heroically', y = 'scholarly'

		S	С	h	0	-	а	r	I	у
	0	1	2	3	4	5	6	7	8	9
h	1	1	2	2	3	4	5	6	7	8
е	2	2	2	3	3	4	5	6	7	8
r	3	3	3	3	4	4	5	5	6	7
0	4	4	4	4	3	4	5	6	6	7
i	5	5	5	5	4	4	5	6	7	7
С	6	6	5	6	5	5	5	6	7	8
а	7	7	6	6	6	6	5	6	7	8
- 1	8	8	7	7	7	6	6	6	6	7
- 1	9	9	8	8	8	7	7	7	6	7
у	10	10	9	9	9	8	8	8	7	6

Example 2. x = 'heroically', y = 'scholarly'

		S	С	h	0	1	а	r	I	у
	0	1	2	3	4	5	6	7	8	9
h	1	1	2	2	3	4	5	6	7	8
е	2	2	2	3	3	4	5	6	7	8
r	3	3	3	3	4	4	5	5	6	7
0	4	4	4	4	3	4	5	6	6	7
i	5	5	5	5	4	4	5	6	7	7
С	6	6	5	6	5	5	5	6	7	8
a	7	7	6	6	6	6	5	6	7	8
I	8	8	7	7	7	6	6	6	6	7
I	9	9	8	8	8	7	7	7	6	7
У	10	10	9	9	9	8	8	8	7	6

Therefore, the edit distance between x and y = e(10, 9) = 6

Example 2. x = 'heroically', y = 'scholarly'

		S	С	h	0	1	а	r	1	у
	0	1	2	3	4	5	6	7	8	9
h	1	1	2	2	3	4	5	6	7	8
е	2	2	2	3	3	4	5	6	7	8
r	3	3	3	3	4	4	5	5	6	7
0	4	4	4	4	3	4	5	6	6	7
i	5	5	5	5	4	4	5	6	7	7
С	6	6	5	6	5	5	5	6	7	8
а	7	7	6	6	6	6	5	6	7	8
- 1	8	8	7	7	7	6	6	6	6	7
- 1	9	9	8	8	8	7	7	7	6	7
у	10	10	9	9	9	8	8	8	7	6

Therefore, the edit distance between \boldsymbol{x} and $\boldsymbol{y} = e(10,9) = 6$

Note: LCS(x, y) = 5

Edit Distance: Suboptimality Proof

Given that O is optimal for $e(x_m, y_n)$, we want to show O' is optimal for $e(x_{m-1}, y_n)$.

Proof.

Assume that O' is not an optimal solution to $e(x_{m-1}, y_n)$.

 $\implies \exists$ an optimal solution A to $e(x_{m-1}, y_n)$ such that |A| < |O'|.

$$\implies |A| + 1 < |O'| + 1$$

$$\implies |A| + 1 < |O|$$

This contradicts with the fact that *O* is optimal.

$$\implies$$
 O' is optimal for aligning x_{m-1} and y_n .

Undirected Graph and Directed Graph

3 U

Figure: An undirected graph G_1 with 5 vertices and 7 edges

Figure: A directed graph G_2 with 5 vertices and 7 edges.

Self-loops—edges from a vertex to itself—are possible in a directed graph, but are forbidden in an undirected graph.

Figure: An undirected graph G_1 with 5 vertices and 7 edges

Figure: A directed graph G_2 with 5 vertices and 7 edges.

- 1. If (u, v) is an edge in an undirected graph G, we say that (u, v) is **incident** on vertices u and v.
- 2. If (u, v) is an edge in a directed graph G, we say that (u, v) is incident from or leaves vertex u and is incident to or enters vertex v.

Figure: An undirected graph G_1 with 5 vertices and 7 edges

Figure: A directed graph G_2 with 5 vertices and 7 edges.

- 1. The **degree** of a vertex in an undirected graph is the number of edges incident on it. $\sum_{u \in V} \text{degree}(u) = 2|E|$.
- 2. In a directed graph, the **out-degree** of a vertex is the number of edges leaving it, and the **in-degree** of a vertex is the number of edges entering it. The degree of a vertex in a directed graph is its in-degree plus its out-degree. The whole graph has $\sum_{u \in V}$ out-degree(u) = $\sum_{u \in V}$ in-degree(u) = |E|.
- 3. A vertex whose degree is 0 is **isolated**.

Figure: A directed graph G_2 with 5 vertices and 7 edges.

- 1. A **path** of length k from a vertex u to a vertex u' in a graph G is a sequence $\langle v_0, v_1, \dots, v_k \rangle$ of vertices such that $u = v_0, u' = v_k$, and $(v_i, v_{i+1}) \in E$ for $i = 1, 2, \dots, k-1$.
- 2. If there is a path p from u to u', we say that u' is **reachable** from u via p.
- 3. In a directed graph, a path $\langle v_0, v_1, \cdots, v_k \rangle$ forms a **cycle** if $v_0 = v_k$ and the path contains at least one edge. In an undirected graph, a path $\langle v_0, v_1, \cdots, v_k \rangle$ forms a cycle if $k \geq 3$ and $v_0 = v_k$. Any graph with no cycles is **acyclic**.

Adjacency List and Adjacency Matrix

Figure: Graph G₁

Adjacency List and Adjacency Matrix

Figure: Graph G₁

Figure: Adjacency list and adjacency matrix representation of G_1

How about G_2 ? It's your turn now!

Figure: Graph G₂

How about G_2 ? It's your turn now!

Figure: Graph G₂

- 1. Adjacency list is of size $\Theta(|V| + |E|)$ while adjacency matrix needs $|V| \times |V|$ space.
- If G is undirected, its adjacency matrix A is symmetric.
 Namely, A^T = A. Further, the main diagonal entries of A are all zeros.