1 Diffie-Hellman

- \bullet Elegir un Primo py una base g,donde $\langle g \rangle$ genera \mathbb{Z}_p^* (orden de $g \bmod p$ debe ser p-1)
- Claves privadas a y b donde 1 < a, b < p.
- Publicas: $A = g^a \mod p$, $B = g^b \mod p$
- Secreto compartido: $S_A = B^a = S_B = A^b$

2 RSA

- Elegir primos p y q. Calcular n = pq, $\phi(n) = (p-1)(q-1)$
- Escoger exponente publico e con $1 < e < \phi(n)$, $\gcd(e, \phi(n)) = 1$
- Calcular $d = e^{-1} \mod \phi(n) \implies d \cdot e \equiv 1 \mod \phi(n)$. Buscar la forma: $e \cdot x + \phi(n) \cdot y = 1$ Llave publica = (n, e)Llave privada = (n, d).
- Cifrado de mensajes: $C = m^e \mod n$. Se envia (n, C)
- Descifrado de mensaje: $\hat{m} = C^d \mod n$, Comprobar: $\hat{m} = m$
- Cifrado de firmas: h = hash(m), Firma $s = h^d \mod n$. Se envía (m, s)
- Verificación de firma: $\hat{h} = s^e \mod n$, Comprobar: $\hat{h} = h$

3 ElGamal

- Elegir un primo p y una base g, donde $\langle g \rangle$ genera \mathbb{Z}_p^* (orden de g mod p debe ser p-1)
- \bullet Clave privada x, publica $y=g^x \bmod p$
- ullet Mensaje m y valor aleatorio k
- Par cifrado (c_1, c_2) : $c_1 = g^k \mod p$, $c_2 = m \cdot y^k \mod p$
- Desencriptar mensaje: Calcular $s=(c_1)^x \mod p$, despues calcular $s^{-1} \mod p$, finalmente $\hat{m}=c_2\cdot s^{-1} \mod p$. Comprobar: $\hat{m}=m$