# Data Mining

# Descriptive Modelling

Raquel Sebastião

Departamento de Eletrónica, Telecomunicações e Informática

Universidade de Aveiro

raquel.sebastiao@ua.pt





#### Contents

- Descriptive analytics
- Cluster analysis
- Main categories of clustering methods
- Clustering validation
- Summary



### **Descriptive Analytics**

#### Goals:

- Describe/summarize or discover structure in collections of data
  - Data summarization and visualization are simple forms of descriptive analytics
  - Cluster analysis is frequently used for discovering **structure/groups** in data
  - Clustering the data into similar groups helps greatly in summarizing the data and understanding it



### Contents

- Descriptive analytics
- Cluster analysis
- Main categories of clustering methods
- Clustering validation
- Summary



## Cluster analysis (clustering)

- Process of grouping data objects (or observations) into subsets
  - exploitation of similarities (or differences) between objects (or observations, data points)
  - Objects within a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups
- Unsupervised technique no labeled data
  - finds groups based only on information in the data that describes the objects and their relationships



## Cluster analysis (clustering)

- Process of grouping data objects (or observations) into subsets
  - Objects within a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups





## Cluster analysis (clustering): goals

- Find some structure on the data set (obtaining "natural" groups)
- Provide some abstraction of the found groups
  - representation of their main features
  - a prototype for each group
- Gain novel insights of data



## Cluster analysis (clustering): motivation

- Data reduction
  - All objects within a cluster/group are substituted (represented) by the corresponding cluster representative
- Hypothesis generation
- Hypothesis testing
- Prediction based on groups
  - a cluster/group of data objects can be treated as an implicit class
  - clustering is a form of **learning by observation**, rather than *learning by examples*



## Cluster analysis (clustering): applications

- Business and Marketing
  - group clients with similar buying behavior
  - describe different market segments from a set of potential clients
  - group stocks with similar price fluctuations
- Medical
  - find patients with similar symptoms
  - provide treatment recommendations based on groups of similiar patients
  - identify groups of diseases
  - Group diagnostic imaging techniques with similar characteristics



## Cluster Analysis (clustering): applications

- Document retrieval
  - find documents with similar contents (travels, economy, ...).
- Image retrieval
  - find images with similar contents (sport, landscapes, ...)
- Biology
  - describe spatial and temporal communities of organisms
  - group genes or proteins that have similar functionality
- Web Mining
  - find communities in social networks
  - build recommendation systems



## Cluster analysis (clustering): subjectivity

#### Different clusters may result, depending on

- the proximity measure
- the clustering criterion
- the clustering algorithm

#### How many clusters?











### Contents

- Descriptive analytics
- Cluster analysis
- Main categories of clustering methods
- Clustering validation
- Summary



### Clustering: main categories

**Partitional**: divide the observations in *k* partitions according to some criterion

- Representative based: identify cluster representatives (centroids)
- <u>Density based</u><sup>1</sup>: locate regions of high density in the feature space
- Model based: assume a probability model for the data
- Grid based: discretize the data into p intervals (typically equal-width)
- Neural-Network Based: Self Organizing Maps (SOM) consider an underlying "topology" that relates cluster centroids to one another

<u>Hierarchical</u>: successive development of clusters by generating a hierarchy of groups

- Agglomerative: generate a hierarchy from bottom-up (from n to 1 group)
- Divisive: create a hierarchy in a top-down way (from 1 to n groups)

<sup>&</sup>lt;sup>1</sup> can be considered two-level hierarchical agglomerative



## Clustering: task stages

- Proximity measure
  - quantifies the term similar or dissimilar
- Clustering criterion
  - cost function or some type of rules
- Clustering algorithm
  - steps followed to reveal the structure, based on the proximity measure and the adopted criterion
- Validation of the results
- Interpretation of the results



### Clustering: partitional methods

#### Representative based

Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions

#### Cluster compactness

- how similar are objects within the same cluster
- Cluster separation
  - how far is the cluster from the other clusters
- A clustering solution assigns all the objects to a cluster
  - hard clustering: an object belongs to a single cluster
  - fuzzy clustering: each object has a probability of belonging to each cluster



### K-means clustering

- Partitional clustering method
- Number of clusters, K, must be specified
  - Methods to determine the "best" K
- Each cluster is represented by the centroid/representative (center point)
- Each object is assigned to the cluster with the closest centroid
- Different kind of proximity measures can be used
  - Manhattan distance (L<sub>1</sub> norm), Euclidean distance (L<sub>2</sub> norm), Cosine similarity,
     Correlation
- Simple iterative algorithm



## K-means clustering

Consider the cluster  $C_k = \{x_1, x_2, ..., x_{n_k}\}$ , the **centroid** of  $C_k$  is given by

$$c_k = \frac{1}{n_k} \sum_{x_i \in C_k} x_i$$

Goal: obtain a set of clusters C that minimize the criterion

$$h(C) = \sum_{j=1}^{K} \sum_{x_i \in C_j} d(x_i, c_j)$$

#### Usual criteria for numerical data

- Sum of square errors (SSE):  $d(x_i, c_j) = (x_i c_j)^2$
- L1 measure:  $d(x_i, c_j) = |x_i c_j|$
- Cosine:  $d(x_i, c_j) = 1 \frac{x_i \cdot c_j}{||x_i|| \times ||c_j||}$

### K-means clustering

#### Execution of the K-means clustering algorithm:

- Select K points as the initial centroids/representatives (often randomly chosen)
- Repeat
  - assign each object/observation to the group with the nearest centroid
  - re-compute cluster centroids (i.e., **mean** point) of each cluster
- Until convergence criterion is satisfied (i.e., the centroids stop changing)









### K-means clustering: details

- Initial centroids are often chosen randomly
- minimize intra-cluster distance and maximize inter-cluster distances

#### **Advantages:**

- Stochastic approach that frequently works well. It tends to identify local minima
- Most of the convergence happens in the first few iterations
  - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity: O(n\*K\*I\*d) where n: # of objects, K: # of clusters, I: # of iterations, and d: # attributes
  - Normally, K, I << n; thus, an efficient method</li>



### K-means clustering: details

#### **Disadvantages:**

- Different initializations may generate rather different final clusters
- Sensitive to noisy data and outliers
  - Possible solution: remove outliers prior to clustering
  - Alternatives: K-medians, K-medoids, ...
- K-means is applicable only to numerical data
  - Alternatives: **K-modes** (categorical data)
- Not suitable to discover clusters:
  - with different sizes
  - with different densities
  - with non-convex/non-globular shapes
  - Alternatives: kernel K-means, density-based clustering, ...



Different initializations may generate rather different final clusters











#### Solutions

- Multiple runs with K seeds randomly selected
  - Helps, but probability is not on your side
- K-means++: select the most widely separated centroids
  - The first centroid is selected at random
  - The next centroid selected is the one that is farthest from the currently selected (selection is based on a weighted probability score)
  - The selection continues until K centroids are obtained
- Use hierarchical clustering to determine initial centroids
- Bisecting K-means
  - Not as susceptible to initialization issues



## K-medians clustering: handling outliers

Medians are **less sensitive to outliers** than means

K-medians: Instead of taking the mean value of the object in a cluster as a reference point, medians are used

#### Execution of the K-medians clustering algorithm:

- Select K points as the initial centroids/representatives (i.e., as initial K medians)
- Repeat
  - assign each object/observation to the group with the nearest centroid
  - re-compute cluster centroids (i.e., median point) of each cluster
- Until convergence criterion is satisfied (i.e., the centroids stop changing)



## K-medoids clustering: handling outliers

K-medoids: Instead of taking the mean value of the object in a cluster as a representative/centroid, medoids are used, which is the most centrally located object in a cluster

Is more robust to the presence of outliers because it uses original objects as centroids instead of averages that may be subject to the effects of outliers



### K-medoids clustering: handling outliers

#### Execution of the K-medoids clustering algorithm:

- Select K points as the initial centroids/representatives (i.e., as initial K medoids)
- Repeat
  - assign each object/observation to the group with the nearest medoid
  - Randomly select a non-representative object o<sub>i</sub>
  - Compute the total cost S of swapping the medoid m with  $o_i$
  - If S < 0, then swap m with  $o_i$  to form the new set of medoids
- Until convergence criterion is satisfied (i.e., the centroids stop changing)



### K-medoids clustering: PAM (Partitioning Around Medoids)



Arbitrary choose *K* object as initial medoids



Assign each remaining object to nearest medoid (*m*)



K = 2

Select initial K medoids randomly

#### Repeat

Object re-assignment

If quality is improved

Swap medoid m with  $o_i$ 

Until convergence criterion is satisfied



Compute total cost of swapping

If quality is improved:

swap  $\emph{m}$  and  $\emph{O}_{\textit{ramdom}}$ 



Randomly select a non-

### K-medoids clustering: discussion

#### **PAM** (Partitioning Around Medoids)

- Computational complexity: O(K(n K)<sup>2</sup>) (quite expensive!)
- PAM works effectively for small data sets but does not scale well for large data sets (due to the computational complexity)

#### Efficient improvements on PAM

- CLARA (Clustering Large Applications)
  - PAM on samples;  $O(Ks^2 + K(n K))$ , s is the sample size
- CLARANS (Clustering Large Applications based on RANdomized Search)
  - randomized re-sampling
  - ensure efficiency & quality



### K-modes clustering: categorical data

- K-Means cannot handle non-numerical (categorical) data
  - Mapping categorical value to 1/0 cannot generate quality clusters
- K-Modes: an extension to K-Means by replacing means of clusters with modes as representatives/centroids
- Dissimilarity measure for categorical data: frequency-based

Algorithm is still based on iterative *object cluster assignment* and *centroid update* 



K-Means can only detect clusters that are linearly separable

Kernel K-Means can be used to detect non-convex clusters

- A region is **convex** if it contains all the line segments connecting any pair of its points. Otherwise, it is **concave**
- Idea: Project data onto the high-dimensional kernel space, and then perform K-Means clustering



- Idea: Project data onto the high-dimensional kernel space, and then perform K-Means clustering
  - Map data points in the input space onto a high-dimensional feature space using the kernel function
  - Perform K-Means on the mapped feature space
- Computational complexity is higher than K-Means
  - Need to compute and store n x n kernel matrix generated from the kernel function on the original data, where n is the number of points
- Spectral clustering can be considered as a variant of Kernel K-Means clustering



#### Typical Kernel functions

- Polynomial kernel of degree
- Gaussian radial basis function (RBF) kernel:
- Sigmoid kernel
- The formula for **kernel matrix K** for any two points  $x_i$ ,  $x_i \in C_k$ :

$$K_{x_i x_j} = \phi(x_i) \bullet \phi(x_j)$$

- All steps of K-means are based on dot product, but the centroid is never explicitly computed
- Clustering can be performed without the actual individual projections  $\phi(x_i)$  and  $\phi(x_j)$  for the data points  $x_i, x_j \in C_k$





- This data set cannot generate quality clusters by K-Means since it contains nonconvex clusters
- Kernel transformation maps data to a kernel matrix **K** for any two points  $x_i, x_j$ :

$$K_{x_i x_j} = \phi(x_i) \bullet \phi(x_j)$$

- Gaussian kernel:  $K(X_i, X_j) = e^{-\frac{||X_i X_j||^2}{2\sigma^2}}$
- K-Means clustering is conducted on the mapped data, generating quality clusters

### K-means "variations" limitations

Clusters of diferente sizes, densities and with non-convex/non-globular shapes



• Data with outliers/noise



## Density based clustering

**DBSCAN** (Density-Based Spatial Clustering of Applications with Noise)

- Clusters are regions of high density that are separated from one another by regions on low density
- The density of a single observation is estimated by the number of observations that are within a specified radius (eps - parameter of the method)

- It does not require the user to specify the number of groups
- Input the radius (eps) and the minimum number of points (MinPts)



## Density based clustering

#### Observations are identified as:

- core point: if it has at least a specified number of points (MinPts)
  within eps radius
  - These are points that are at the interior of a cluster
  - Counts the point itself
- border point: if the number of observations within its radius does not reach the threshold but it is within the radius of a core point
- noise point: does not have enough observations within their radius, nor is sufficiently close to any core point (any point that is not a core point or a border point)



Core, border and noise points







**Original Points** 

Point types: core, border and noise



Form clusters using core points, and assign border points to one of its neighboring clusters

- Identify all points as core, border, or noise points
- Eliminate noise points
- Put an edge between all core points within a distance *Eps* of each other
- Make each group of connected core points into a separate cluster
- Assign each border point to one of the clusters of its associated core points



#### Advantages:

- Can handle clusters with different shapes and sizes
- Resistant to noise

#### Disadvantages:

- Varying densities
- High-dimensional data



Clusters (dark blue points indicate noise)













- Obtain a set of nested clusters organized as a hierarchical tree
  - each level represents a possible solution with x groups
- Can be visualized as a dendrogram
  - A tree like diagram that records the sequences of merges or splits
- Additional visualization: combine the dendogram with heat maps









- Do not have to assume a pre-defined number of clusters
  - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level (the user can specify the desired number of clusters)
- More deterministic
- No iterative refinement
- Two categories of algorithms: Agglomerative and Divisive
- Key operation is the computation of the proximity of two clusters
- Different approaches to defining the distance between clusters distinguish the different algorithms



- Dendrogram: Decompose a set of data objects into a tree of clusters by multi-level nested partitioning
- A clustering of the data objects is obtained by cutting the dendrogram at the desired level, and each connected component forms a cluster



Hierarchical clustering generates a dendrogram (a hierarchy of clusters)



#### Two main types of hierarchical clustering

- Agglomerative: bottom-up, from n to 1 group
  - Start with as many clusters as there are objects
  - At each step, merge the closest pair of clusters into a single cluster
    - The chosen pair is formed by the groups that are more similar
  - Until only one cluster (or k clusters) left
- Divisive: top-down (less used), from 1 to n groups
  - Start with a single, all-inclusive, cluster
  - At each step, split a cluster into two
    - The selected cluster is the one with smallest uniformity
  - Until each cluster contains only one object (or there are k clusters)

#### Traditional hierarchical algorithms use a proximity matrix

Merge or split one cluster at a time



## Hierarchical clustering: Inter-cluster proximity



- Single Linkage (MIN):  $d(C_1, C_2) = \min_{x_i \in C_1, x_j \in C_2} d(x_i, x_j)$  dissimilarity between the two most similar objects of the two clusters



- Complete Linkage (MAX):  $d(C_1, C_2) = \max_{x_i \in C_1, x_j \in C_2} d(x_i, x_j)$ 
  - dissimilarity between the two most dissimilar objects of the two clusters



- Average Linkage:  $d(C_1, C_2) = \frac{1}{n_1 n_2} \sum_{x_i \in C_1, x_j \in C_2} d(x_i, x_j)$  dissimilarity between all pairs of objects of the two clusters



- Distance between centroids
- Ward's method: takes into account the number of objects of the clusters

### Hierarchical clustering: agglomerative methods

#### Algorithm:

- Compute the proximity matrix: matrix with value of proximity measure between pairs of points
- Let it each data point be a cluster
- Repeat
  - Merge the two closest clusters
  - Update the proximity matrix to reflect the proximity between the new cluster and original clusters
- Until only a single cluster remains



## Hierarchical clustering: agglomerative methods

#### **Example**: consider the following distance matrix

Use Agglomerative Hierarchical Clustering to obtain the single-link dendogram





# Hierarchical clustering: agglomerative methods





Different inter-cluster proximity schemes yield to different types of clusters

Original Points

Two Cluster

• Single-linkage

- follows chains on the data
- can handle non-elliptical shapes
- uses a local merge criterion
- distant parts of the cluster and the clusters' overall structure are not taken into account
- sensitive to noise





Different inter-cluster proximity schemes yield to different types of clusters

Original Points

Two Clusters

#### Complete-linkage

- Tends to break large groups in data
- biased towards globular clusters
- uses a non-local merge criterion
- chooses the pair of clusters whose merge has the smallest diameter
- the similarity of two clusters is the similarity of their most dissimilar members
- sensitive to outliers
- less susceptible to noise



**Different inter-cluster proximity** schemes yield to **different types of clusters** 

- Average-linkage
  - it is a compromise between single and complete linkage
  - biased towards globular clusters
  - less susceptible to noise

- Complete and Average linkage
  - lead to compact clusters



## Hierarchical clustering: problems and limitations

Different proximity measures yield to different types of clusters



## Hierarchical clustering: divisive methods

#### Algorithm:

- Compute the proximity matrix: matrix with value of proximity measure between pairs of points
- Start with a single cluster that contains all data points
- Repeat
  - choose a cluster based on a pre-defined criterion
  - use flat-algorithm A<sup>1</sup> to split the cluster into L clusters
- Until each data point constitutes a cluster

<sup>1</sup> algorithm *A* can be any arbitrary clustering algorithm, and not just a distance-based one







### Hierarchical clustering: remarks and constraints

- Time and space requirements:
  - Storage: O(n²) space, n is the number of points
  - Time:  $O(n^3)$ , there are **n** steps and at each step the proximity matrix (with size  $n^2$ ) must be updated and searched
- Once a decision is made to merge two clusters or divide one cluster, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
  - Sensitivity to noise
  - Difficulty handling clusters of different sizes and non-globular shapes
  - Breaking large clusters



#### Contents

- Descriptive analytics
- Cluster analysis
- Main categories of clustering methods
- Clustering validation
- Summary



### Clustering validation

How to validate/evaluate/compare the results obtained by some clustering method?

#### 1. Clustering tendency

- Assess the suitability of clustering, i.e., whether the data has any inherent grouping structure
  - Is the found grouping structure random?

#### 2. Clustering stability

- Understand the sensitivity of the clustering result to various algorithm parameters, e.g., # of clusters
  - What is the "correct" number of clusters?

#### 3. Clustering evaluation

Evaluating the goodness of clustering results



# Clustering validation: types of evaluation measures

#### 3. Clustering evaluation: evaluating the goodness of clustering results

Evaluating the entire clustering or just individual clusters

#### 3.1. Unsupervised

How to evaluate the result of a clustering algorithm without external information?

#### 3.2. Supervised

How to compare the results obtained by different methods when external information exists (such as class labels)?

**3.3 Relative** (supervised or unsupervised)

How to compare clustering or clusters?



## Clustering validation: unsupervised

Measure the quality of the clustering without any external information

- Cluster Cohesion
- Cluster Separation
- Silhouette coefficient









# Clustering validation: unsupervised Cohesion and separation

• Cluster Cohesion: Measures how cohesive/close/compact are the elements in a cluster (Intra-cluster distances)

• Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters (Inter-cluster distances)







# Clustering validation: unsupervised Cohesion and separation

Example: Squared error (SSW + SSB is constant)

• Cluster Cohesion: is measured by the within cluster sum of squares

$$SSW = \sum_{i=1}^{n} \sum_{x \in C_i} (x_i - m_j)^2$$

 Cluster Separation: is measured by the between cluster sum of squares

$$SSB = \sum_{j=1}^{K} |C_j| (m - m_j)^2$$

where m is the mean of all points,  $m_j$  is the center/centroid of cluster  $C_j$  , and  $\left|C_j\right|$  is the size of cluster  $C_j$ 



## Clustering validation: unsupervised Example: Cohesion and separation



| • | Centroids: | m1 -   | 15 25  | m2-  | 25  |
|---|------------|--------|--------|------|-----|
|   | centrolas: | rrii = | 15.25. | m/ = | 7.7 |

- Mean of all points: m = 19.43

$$SSB = 162.97,$$

• 
$$SSW = 70.75$$
,  $SSB = 162.97$ ,  $SST = 233.71$ \*



| Obj. | K=2 | K=3 |
|------|-----|-----|
| 11   | 1   | 1   |
| 13   | 1   | 1   |
| 18   | 1   | 2   |
| 19   | 1   | 2   |
| 21   | 2   | 2   |
| 26   | 2   | 3   |
| 28   | 2   | 3   |
|      |     |     |

- Centroids: *m1* = 12, *m2* = 19.3, *m3* = 27
- Mean of all points: m = 19.43
- SSW = 8.7, SSB = 225.05, SST = 233.71\*

#### The case *K*=3 is better:

higher cohesion (SSW is lower) & higher separation (SSB is higher)

the sum SST = SSW + SSB is constant



## Clustering validation: unsupervised Example: Cohesion and separation

#### K=2 clusters



**Centroids:** m1 = (4/3, 2), m2 = (11/3, 2)

Mean of all points: m = (2.5, 2)

$$SSW = 5.333$$
,  $SSB = 8.16$ ,  $SST = 13.5$ \*

$$SSB = 8.16,$$

$$SST = 13.5^*$$

K=3 clusters



**Centroids:** m1 = (1, 2), m2 = (2.5, 2), m3 = (4,2)

Mean of all points: m = (2.5, 2)

$$SSW = 4.5,$$

$$SSB = 9$$
,

$$SSW = 4.5$$
,  $SSB = 9$ ,  $SST = 13.5$ \*

#### The case K=3 is better:

higher cohesion (SSW is lower) & higher separation (SSB is higher)

<sup>\*</sup> the sum SST = SSW + SSB is constant



# Clustering validation: unsupervised Silhouette coefficient

#### Silhouette coefficient: check cluster cohesion and separation

- For each object x<sub>i</sub>:
  - compute  $a_i$  = average distance of  $x_i$  to the points in its cluster
  - compute  $b_i$  = min (average distance of  $x_i$  to the points in other clusters)
  - the silhouette coefficient is  $s_i = (b_i a_i) / \max(a_i, b_i)$
- Silhouette coefficient (SC) is the mean values of  $s_i$  across all the objects:

$$SC = \frac{1}{n} \sum_{i=1}^{n} s_i$$

- SC can vary between -1 and 1
  - close to +1 signifies good clustering: objects are close to their own clusters but far from other clusters



# Clustering validation: unsupervised Silhouette coefficient

**Example**: iris data set silhouette coefficients  $s_i$  with k = 3 clusters

- Large s<sub>i</sub> (almost 1) means that the object is very well clustered
- Small s<sub>i</sub> (around 0) means that the object lies between two clusters
- Negative s<sub>i</sub> means that the object is probably placed in the wrong cluster

The closer SC to 1, the better





## Clustering validation: supervised

Compare the results obtained by different methods when external

information exists

- Pairwise measures
- Matching-based measures
- Entropy-Based Measures
- Correlation measures





# Clustering validation: supervised Pairwise measures

- $f_{00}$  = number of pairs of objects having a different class and a different cluster
- $f_{01}$  = number of pairs of objects having a different class and the same cluster
- $f_{10}$  = number of pairs of objects having the same class and a different cluster
- $f_{11}$  = number of pairs of objects having the same class and the same cluster

Two-way contingency table for determining whether pairs of objects are in the same class and same cluster

|                 | Same cluster | Different cluster |
|-----------------|--------------|-------------------|
| Same class      | $f_{11}$     | $f_{10}$          |
| Different class | $f_{O1}$     | $f_{00}$          |



# Clustering validation: supervised Matching-based measures

- Precision: the fraction of a cluster that consists of objects of a specified class
- Recall: the extent to which a cluster contains all objects of a specified class
- F-measure: A combination of both precision and recall that measures the extent to which a cluster contains *only* objects of a particular class and *all* objects of that class



## Clustering validation: best number of clusters

How to select the right **K** for k-means?

- An inappropriate choice of K can result in a clustering with poor performance
- What happens when selecting a K that is too high? When the K is too low?

Ideally: some a priori knowledge on the real structure of the data

• If no a priori value is known start with  $K=\sqrt{n/2}$  as a rule of thumb, where n is the number of attributes.



### Clustering validation: best number of clusters

#### Silhouette coefficient method

For several possible number of clusters **K**:

Calculate the SC and choose the K that yields to the highest value





### Clustering validation: best number of clusters

#### Elbow method

For several possible number of clusters *K*:

Calculate the SSE (Sum of Squared Error), also called distortion, and choose the K so that adding another cluster doesn't yield to a much smaller SSE.
 Optimal number of clusters





### Clustering validation: tendency

#### Assess if the data has any inherent grouping structure

- Cluster the data set
  - Use multiple algorithms and evaluate the quality of the resulting clusters
  - If the clusters are uniformly poor, then this may indeed indicate that there are no clusters in the data

#### Focus of measures of clustering tendency

- try to evaluate whether a data set has clusters without clustering
  - use statistical tests for spatial randomness
  - However, choosing the correct model, estimating the parameters, and evaluating the statistical significance of the hypothesis that the data is nonrandom can be quite challenging
  - many approaches have been developed, most of them for points in lowdimensional Euclidean space
    - Hopkins statistic



### Clustering validation: tendency

#### Hopkins statistic H

- generate p points randomly distributed across the data space
- sample p actual data points from the data set
- For both sets of points find the distance to the nearest neighbor in the original data set
  - ui nearest neighbor distances of the artificially generated points
  - wi nearest neighbor distances of the samples from the original data set

$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} u_i \sum_{i=1}^{p} w_i}$$



### Clustering validation: Hopkins statistic H

- *H* ~ 0.5: randomly generated points and the samples of the data set have roughly the same nearest neighbor distances
- H~0: whole data (random + sampled) is highly clustered
- H ~ 1: whole data is regularly distributed in the data space







#### Contents

- Descriptive analytics
- Cluster analysis
- Main categories of clustering methods
- Clustering validation
- Summary



### Summary

- Descriptive analytics
- Cluster analysis
- Main categories of clustering methods
  - Partitional
    - Representative based
    - Density based
  - Hierarchical
    - Agglomerative
    - Divisive
- Clustering validation



## What is good clustering?

A good clustering method will produce high quality clusters which should have

- High intra-class similarity: Cohesive within clusters
- Low inter-class similarity: Distinctive between clusters



## Clustering methods: comparison

Overall, we can compare clustering methods w.r.t

- Algorithm:
  - complexity and scalability
  - proximity measures that can be employed
  - robustness to noise
  - it is able to find clusters on sub-spaces
  - different runs lead to different results
  - it is incremental



### Clustering methods: comparison

#### • Data:

- it is able to handle different types of data (continuous, categorical, binary)?
- is there dependency on the order of data points?

#### Domain:

- does the algorithm finds the number of clusters, or needs it as input?
- how many parameters are necessary?
- what is the required domain knowledge for that?

#### • Results:

- shape of clusters that is able to find
- interpretability



## Clustering: toy example

#### Two versus three clusters

• The optimal number of clusters according Elbow method is three





• The silhouette values and clusters









# Toy exemple: K-mean, DBSCAN, Hierarchical





## Bibliography

Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar, *Pearson*, 2019 (chap 5)

**Data Mining, the Textbook**, Charu C. Aggarwal, *Springer*, 2015 (chap 6) XindongWu, et al.. Top 10 algorithms in data mining. *Knowl Inf Syst*, 14:1-37, 2008

- R. Ng and J. Han. Efficient and Effective Clustering Method for Spatial Data Mining. VLDB'94, 1994
- B. Schölkopf, A. Smola, and K. R. Müller. **Nonlinear Component Analysis** as a Kernel Eigenvalue Problem. *Neural computation*, 10(5):1299–1319, 1998
- I. S. Dhillon, Y. Guan, and B. Kulis. **Kernel K-Means: Spectral Clustering and Normalized Cuts**. *KDD'04*, 2004