

# Twitter Pluviometer

Student: Vitor Yuichi Hossaki

Supervisor: Prof. Dr. Leonardo Bacelar Lima Santos

Collaborator: Prof. Dr. Rogério Galante Negri



#### Introduction

- Relate data from tweets and rain gauges
- Spatial/temporal Radius
- Data processing with Python



Legend

- Radius
- Posts
- Flooding spots
- Rain gauge

Spatial Radius: 2000 m Temporal window: 01/03/2019 to 12/03/2019



#### **Phases**

- 1. Filtering tweets and flood data
- Select tweets that contain the context linked to the floods
- Tweet and flood frequence calculation
- 4. Fidelity/strength
- 5. Plots

Importing tweets archive

First Temporal Window

Adjusting and filtering the date

Filtering for the word list associate to flood (HIDRO/METEO)

Importing the flood data and adjusting the date for the first temporal window

Strength and Fidelity tweets

Fidelity

Strength

Dispersion plots, Frequency of flood x Frequency of tweets

Strength Dispersion

Fidelity Dispersion

Duration of flood x frequency of tweets

Fidelity Dispersion

Words Fidelity Frequence



### **Some information**





### **Plot Strength**

- Tweets on no flood-day
- These days it may possibly have rained
- Metaphorically used words





## **Plot Fidelity**

- There were tweets on flooding days
- Considerable amount of tweets





### Words

- List of words associate with flood
- How users type the words associated to flood
- Prevalence of Metereological class words
- Potential to research

|    | Words         | Frequence_x | F |
|----|---------------|-------------|---|
| 0  | chuva         | 13          |   |
| 1  | #chuva        | 3           |   |
| 2  | #rain         | 2           |   |
| 3  | CHUVA         | 1           |   |
| 4  | #train        | 1           |   |
| 5  | chuva.        | 1           |   |
| 6  | lightning!    | 1           |   |
| 7  | Chuvaaaa      | 1           |   |
| 8  | rain          | 1           |   |
| 9  | chuva!        | 1           |   |
| 10 | tempestade    | 1           |   |
| 11 | #Lightning    | 1           |   |
| 12 | chuva).       | 1           |   |
| 13 | #dianublado   | 1           |   |
| 14 | #rainy        | 1           |   |
| 15 | chuva!! 😂 😂 😂 | 1           |   |
| 16 | rain          | 1           |   |
| 17 | chuva 😋 😋 😁 🌧 | 1           |   |
| 18 | Chuva         | 1           |   |



### Scatter plot, Strength

- Tweets on no flood-days
- Considerable amount of tweets for zero floods
- it is not possible to look for patterns





# Scatter plot, Fidelity

- Lowest frequence of flood
- Higher number of tweets
- Linked to others parameters





### Scatter plot, flood duration

- Implicit relation between flood and tweet
- One of the shortest floods had a higher frequency of tweets
- The impact of flooding
- The duration is expressed by the time the road was closed





### **General considerations**

- The time window is short, more data is needed for reliable inferences and patterns in scatter and bars plots.
- Spatial radius cut
- Analyze in the future, how many tweets per millimeter of rain is needed to cause a possible flooding



### What I've learned

- Better understanding of programming
- Python libraries (matplotlib/pandas)
- Excel
- QGIS
- Special thanks to:
  - Wilson Ceron
  - Jeferson F. Mendes
  - Lívia Tomás



### Contact

Email: vitor.yuichi@unesp.br

