

Department of Computer Applications, I	₹. C.	A.

Course Title:	Mathematics I	Semester:	1	Date:	18.07.2022
Subject Module:	1	Subject Code:	05BH0101	Faculty:	Keshavi Mehta

UNIT 1: SET THEORY

COURSE CONTENT:

- 1) Introduction
- 2) Methods of describing a set
- 3) Types of Sets (Null Set, Singleton Set, Finite Set, Infinite Set, Equal Set, Equivalent Set, Subset, Proper Subset, Power Set, Universal Set)
- 4) Operation on Sets (Union, Intersection, Difference, Symmetric Difference, Complement of a set)
- 5) Algebra of Sets (Commutative Laws, Associative Laws, Distributive Laws)
- 6) De Morgan's Laws
- 7) Venn Diagrams
- 8) Cardinality of sets
- 9) Cartesian Product of two sets

Department of Computer Applications, F. C. A.

\triangleright A Set:

A set is a collection of elements without repetition. A set can be finite or infinite. Following are some examples of sets.

$$A = \{1, 2, 3\}, B = \{a, b, c\}, C = \{-1, 0, 1\} \text{ etc.}$$

The above sets are all finite sets. We say that a member/element 'belongs to' that set, and this is denoted using the $symbol \in$.

Thus, mathematically we write

$$1, 2, 3 \in A$$

 $a, b, c \in B$
 $-1, 0, 1 \in C$

SET :- A set is a any collection of distinct objects of our thoughts.

Some Standard Set Notations:

• Natural numbers (Counting numbers):

$$N = \{1, 2, 3, 4, 5, \dots \}$$

• Integers:

$$Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

• Rational numbers (Fractions):

The rational numbers cannot be listed as above, but are defined by their property.

Q =
$$\left\{ x / x = \frac{p}{q}, \text{ where } p, q \in \mathbb{Z}, q \neq 0 \right\}$$

-3, 0, 1/3, -5/2 etc. are some examples of rational numbers.

• Irrational numbers :

The irrational numbers are those which are not rational. That is,

$$I = \left\{ x / x \neq \frac{p}{q}, \text{ where } p, q \in \mathbb{Z}, q \neq 0 \right\}$$

$$\sqrt{2}, \sqrt{3}, \pi \text{ etc. are irrational numbers.}$$

Real numbers :

The union of the rational and the irrational numbers is called the set of real

Department of	Computer Api	plications, l	F. C	C. A.
---------------	--------------	---------------	------	-------

numbers, denoted by R. Thus mathematically, $\mathbf{R} = \mathbf{Q} \cup \mathbf{I}$

> Methods to denote a set :

• Listing method:

In this method we simply list out all the members of the set separated by a comma enclosed within a pair of curly brackets.

As, $A = \{1, 2, 3, 4, 5\}$ Listing method :- In this method a set is described by listing elements seprated by comma within braces $\{\}$.

• Property method:

In this method, instead of Explicitly mentioning each member of the set, we use their mathematical property using some standard set notations and some algebraic conditions.

The above set A shown in 'Listing method' can be demonstrated using 'Property method' as,

$$A = \{ x / x \in \mathbb{N}, \ x \le 5 \}$$

Property method: In this method a set is described by characterizing property.

Null Set or Empty Set:

A set which has no elements is called an empty set or a null set, and is denoted using $\{\ \}$ or $\phi(phi)$. Thus, if A is an empty set, we write $A=\{\ \}$ or $A=\phi$

(Note that $A = \{\phi\}$ is not a correct notation for a null set.)

Null set: - A set in which there is no element is called null set.

Singleton Set:

A set having only one element is called singleton set.

Examples:

$$A = \{2\}$$

 $B = \{x \in \mathbb{N} \mid x \text{ is an even prime number}\}\$

 $C = \{x \mid x \text{ is least positive integer}\} = \{1\}$

D = $\{x / x \text{ is a perfect square of an integer } 60 < x < 70\}$

Finite Set :

A set is called finite set if it is either null set or its elements can be counted by natural numbers or process of listing terminates at a certain natural number.

Examples : $A = \{x \in N / 1 < x < 100\}$

Finite set :- If total number of element in a set can be counted by natural number that it is called finite set.

Prof. Keshavi Mehta

Department of Computer App	olications.	F. C.	A.
----------------------------	-------------	-------	----

$$B = \{a, e, i, o, u\}$$

• Cardinality or Order of a Finite Set:

The total number of element in a finite set is called Cardinality or Order of a finite set. It is denoted by n(A) or |A|.

Examples:

$$A = \{a, e, i, o, u\}$$

Here
$$n(A) = 5$$

$$B = \{x \in \mathbb{Z} / -4 < x < 4\}$$

Thus,
$$B = \{-3, -2, -1, 0, 1, 2, 3\}$$

Here
$$n(B) = 7$$

► Infinite Set :

If the elements of a set cannot be counted in a finite number, then the set is called an infinite

set. Infinite set :- If total number of element in a set can not be counted by natural number that it is called infinite set.

Examples:

$$A = \{1, 2, 3, 4, \dots\}$$

 $B = \{x / x \text{ is an even natural number}\}\$

Also, N, Z, Q, R, Z⁺, Q⁺, R⁺ all are infinite sets.

Subset of a Set:

For any two sets A and B, if all the elements of set A are also present in set B, then we say that, set A is a subset of set B. And we denote this as $A \subset B$. Consider the following example.

If
$$A = \{1, 2, 3\}$$
 and $B = \{0, 1, 2, 3, 4\}$ then $A \subset B$.

• Notes:

A null set is a subset of every set.

Any set can be regarded as a subset of itself.

Thus, any non - empty set has atleast two subsets; the null set and the set itself.

Unit 1 : Set Theory

Also, if A is a subset of B, then B is called a 'superset' of A.

Union and intersection of sets:

• Union of sets:

Consider two sets A and B. Then the union of sets A and B is a set which contains all the elements of set A and set B, and this is denoted as $A \cup B$.

• Intersection of sets:

Consider two sets A and B. Then the intersection of sets A and B is a set which contains only the elements which are common to both sets A and B, and this is denoted as $A \cap B$.

Example: Consider the following sets.

$$A = \{0, 1, 2, 3\}, B = \{2, 3, 4, 5\} \text{ and } C = \{6, 7\}$$

Here, observe that

$$A \cup B = \{0, 1, 2, 3, 4, 5\}$$

$$A \cap B = \{2, 3\}$$

$$B \cap C = \{ \}$$

NOTE:

For the above defined sets, observe the inclusion relation

$$N\subset Z\subset Q\subset R$$

$$I \subset R$$

$$\mathbf{Q} \cap \mathbf{I} = \{ \}$$

Equal Sets:

Two sets A and B are said to be equal sets if every element of set A is also an element of set B and every element of set B is an element of set A.

Notation : A = B

Examples:

(1)
$$A = \{-1, 1\}, B = \{x \in \mathbb{Z} / x^2 - 1 = 0\}$$

Here A = B

(2)
$$C = \{2, 3, 4, 5\}, D = \{x \in \mathbb{N} / 1 < x < 6\}$$

Department of Computer A	Applications,	F.	C. 1	A.
--------------------------	---------------	----	------	----

Here C = D

Equivalent Sets:

Two finite sets A and B are said to be equivalent sets if they have same number of elements. In other words, two finite sets A and B are said to be equivalent sets if n(A) = n(B).

Notation: $A \equiv B$

Examples:

(1)
$$A = \{a, e, i, o, u\}$$
 and $B = \{1, 2, 3, 4, 5\}$

Here n(A) = n(B) = 5.

Therefore $A \equiv B$

(2) $A = \{x \in \mathbb{N} / x \text{ is a factor of } 4\}$ and $B = \{x \in \mathbb{N} / x \text{ is a factor of } 9\}$

Here $A = \{1, 2, 4\}$ and $B = \{1, 3, 9\}$

So, n(A) = n(B) = 3

Therefore $A \equiv B$

Note: Two equal sets are always equivalent, but two equivalent sets may not be equal sets.

Power set of a set :

The set of all subsets of a given set is known as the 'power set' of that set.

Notation : The power set of a set A is denoted as P(A).

Example: Write the power set of set $A = \{a, b\}$

Subsets of $A = \emptyset, \{a, b\}, \{a\}, \{b\}$

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

Example: Write power set of a set B = $\{x \in \mathbb{N} / x \text{ is a factor of } 9\}$

Here $B = \{1, 3, 9\}$

$$P(B) = \{\emptyset, \{1\}, \{3\}, \{9\}, \{1, 3\}, \{1, 9\}, \{3, 9\}, \{1, 3, 9\}\}\$$

Example: Write power set of a set $C = \{x \in \mathbb{N} \mid x \text{ is a factor of } 8\}$

Here $C = \{1, 2, 4, 8\}$

$$P(C) = \{\emptyset, \{1\}, \{2\}, \{4\}, \{8\}, \{1, 2\}, \{1, 4\}, \{1, 8\}, \{2, 4\}, \{2, 8\}, \{4, 8\}, \{1, 2, 4\}, \{1, 2, 8\}, \{1, 4, 8\}, \{2, 4, 8\}, \{1, 2, 4, 8\}\}$$

No. of	Set	Subsets	No. of
Elements			subsets = 2 ⁿ
(n)			
0	A = { }	{ }	$2^0 = 1$
1	$A = \{a\}$	{ }, {1}	$2^1 = 2$
2	$A = \{a, b\}$	{ }, {a}, {b}, {a, b}	$2^2 = 4$
3	$A = \{a, b, c\}$	{ }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}	$2^3 = 8$
4	$A = \{a, b, c, d\}$	{ }, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d},	2 ⁴ = 16
		{b, c}, {b, d}, {c, d},	
		{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}	

Note: Observe that, for a set with n members, its power set will have 2ⁿ members

i.e., if
$$n(A) = n$$
, then $n\{P(A)\} = 2^n$

Exercise:

(1) Write power set of a set $A = \{x \in \mathbb{N} / x \text{ is a factor of } 25\}$

(2) Write all proper subsets of set $A = \{x \in \mathbb{N} / x \text{ is a factor of } 15\}$

Example: Find total number of subsets of a set $A = \{x \in \mathbb{N} \mid x \text{ is a factor of } 4\}$. Also write all subsets of set A.

Solution : Here $A = \{1, 2, 4\}$

So, n(A) = 3

Total number of subsets of $A = 2^3 = 8$

Also,
$$P(A) = \{\emptyset, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}\}$$

Example: Find total number of subsets of the set $A = \{x \in \mathbb{N} \mid x \text{ is a factor of } 27\}$.

Solution : Here $A = \{1, 3, 9, 27\}$

So,
$$n(A) = 4$$

Total number of subsets of set $A = 2^4 = 16$

Also,
$$P(A) = \{\emptyset, \{1, 3, 9, 27\}, \{1\}, \{3\}, \{9\}, \{27\}, \{1, 3\}, \{1, 9\}, \{1, 27\}, \{3, 9\}, \{3, 27\}, \{9, 27\}, \{1, 3, 9\}, \{1, 3, 27\}, \{1, 9, 27\}, \{3, 9, 27\}\}$$

Universal Set:

A set which is the superset of all the sets under consideration is known as Universal Set and is denoted as U.

Disjoint Sets:

Two sets A and B are called disjoint sets if they have no elements in common, i.e., their intersection is an empty set. Mathematically, if $A \cap B = \phi$, then we say that A and B are disjoint sets.

Example : If $A = \{-1, 0, 1\}$ and $B = \{2, 4, 6, 8, 10\}$, then A and B are disjoint.

Complement of a Set :

The complement of a set is a set all the member of the Universal set, which are not present in the given set.

Notation : The complement of a set A is denoted as A' or A^C.

Example: Let $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $A = \{2, 4, 6, 8\}$. Then find A'.

Here $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $A = \{2, 4, 6, 8\}$

Therefore $A' = \{1, 3, 5, 7\}$

> Venn Diagrams:

A Venn Diagram is a pictorial representation of sets where the Universal set is shown as the interior of a rectangle, and all other sets are demonstrated as the interiors of circles within the rectangle.

Let us consider the following cases for two sets A and B. And then represent them in Venn diagrams.

(i) Intersecting Sets ($A \cap B \neq \phi$) :

U

(ii) Disjoint Sets ($A \cap B = \phi$):

U

(iii) A is a subset of B ($A \subset B$):

Department of Computer A	Applications,	F.	C. 1	A.
--------------------------	---------------	----	------	----

U

(iv) A and B are equal (A = B):

U

> Demonstrating set operations using Venn Diagrams :

(i) Union of sets A and B (A \cup B) :

(ii) Intersection of A and B (A \cap B) :

(iii) Complement of a set A (i.e. A'):

Example : Let $\mathbb{U}=\{1,2,3,...,8,9,10\}$ and $A=\{1,2,4,5,9\}$. Then, find A' and represent it using a Venn Diagram.

Unit 1 : Set Theory

Solution : Here $A = \{1, 2, 4, 5, 9\}$

Thus, $A' = \{3, 6, 7, 8, 10\}$

Venn Diagram for A' is shown below.

Example : Let $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 3, 4, 5\}$ and

 $B = \{3, 5, 7, 9\}$. Then find $A \cup B$ and $A \cap B$. And represent their Venn diagrams.

Solution : Here $A = \{1, 2, 3, 4, 5\}$ and $B = \{3, 5, 7, 9\}$

Therefore, $A \cup B = \{1, 2, 3, 4, 5, 7, 9\}$

Venn diagram for A U B is shown below.

Department of Computer App	olications.	F. C.	A.
----------------------------	-------------	-------	----

Unit 1 : Set Theory

J

AUB

Again, $A = \{1, 2, 3, 4, 5\}$ and $B = \{3, 5, 7, 9\}$

Therefore $A \cap B = \{1, 2, 3, 4, 5\} \cap \{3, 5, 7, 9\}$

$$= \{3, 5\}$$

Venn diagram for $A \cap B$ is shown below.

 $A \cap B$

Example: Let $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{x \in \mathbb{N} / x \text{ is a factor of } 10\}$ and

B = $\{x \in \mathbb{N} / x \text{ is a factor of 8}\}$. Then, find $A \cup B$ and represent its Venn Diagram:

Solution : $A = \{1, 2, 5, 10\}, B = \{1, 2, 4, 8\}$

Department of Computer Applications, F. C. A.

Program: B.C.A.(Hons) (Sem 1) Unit 1: Set Theory

Thus, $A \cup B = \{1, 2, 4, 5, 8, 10\}$

Venn Diagram: Try yourself.

Exercise:

- (1) Let $\mathbb{U}=\{1,2,3,...,9,10,11\}$, $A=\{1,2,4,5,10\}$ and $B=\{2,6,9,11\}$. Then determine the following.
- (i) A' and its Venn Diagram
- (ii) B' and its Venn Diagram
- (iii) A ∪ B and its Venn Diagram
- (iv) $A \cap B$ and its Venn Diagram
- (2) Let $\mathbb{U} = \{1, 2, 3, ..., 9, 10, 11, 12\}$, $A = \{x \in \mathbb{N} / x \text{ is factor of } 12\}$ and

 $B = \{x \in \mathbb{N} \mid x \text{ is factor of } 10\}$. Then, determine the following:

- (i) A' and its Venn Diagram
- (ii) B' and its Venn Diagram
- (iii) A ∪ B and its Venn Diagram
- (iv) A ∩ B and its Venn Diagram

Notes:

- (i) (A')' = A
- (ii) $\phi' = \mathbb{U}$ and $\mathbb{U}' = \phi$
- (iii) For any set A, A \cup A' = \mathbb{U} and A \cap A' = ϕ
- (iv) For any set A, A $\cup \phi = A$ and A $\cap \phi = \phi$
- (v) For any set A, A \cup U = U and A \cap U = A
- (vi) For sets A and B, if $A \subset B$, then $A \cup B = B$ and $A \cap B = A$ Example : $N \cup Z = Z$, $N \cap Q = N$ etc.

Difference of two sets:

Department	of Computer	Applications,	F.	C.	A.

Unit 1 : Set Theory

Let A and B be two sets. Then the 'Difference set' A – B is a set of all elements which belong to A but do not belong to B.

Venn Diagram for Difference set A – B:

Venn Diagram for Difference set B - A:

Example : $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 4, 6, 7\}$. Then, find A - B and B - A.

$$A - B = \{1, 2, 3, 4, 5\} - \{2, 4, 6, 7\} = \{1, 3, 5\}$$

$$B - A = \{2, 4, 6, 7\} - \{1, 2, 3, 4, 5\} = \{6, 7\}$$

Exercise:

For $A = \{1, 3, 5, 7, 9\}$, $B = \{2, 4, 6, 8, 9, 10\}$. Then find A - B and B - A.

.

Unit 1 : Set Theory

> Note:

If A and B are disjoint sets, then A - B = A and B - A = B

Example : $A = \{1, 2, 3\} B = \{4, 5\}$

$$A - B = \{1, 2, 3\} - \{4, 5\} = \{1, 2, 3\} = A$$

$$B - A = \{4, 5\} - \{1, 2, 3\} = \{4, 5\} = B$$

Example: Let $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{2, 3, 5, 7, 8\}$ and $B = \{1, 2, 4, 8, 9\}.$

Then find A - B and B - A and draw their Venn Diagrams.

Solution : Here $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{2, 3, 5, 7, 8\} \text{ and } B = \{1, 2, 4, 8, 9\}$

Now
$$A - B = \{2, 3, 5, 7, 8\} - \{1, 2, 4, 8, 9\} = \{3, 5, 7\}$$

Venn diagram for A – B:

A - E

And
$$B - A = \{1, 2, 4, 8, 9\} - \{2, 3, 5, 7, 8\} = \{1, 4, 9\}$$

Venn diagram for B - A:

B - A

Symmetric Difference of Two Sets:

Let A and B are two sets. A set containing all those element which belongs to set A but do not belongs to set B or all those elements which belongs to set B but do not belongs to set A is called symmetric difference of two sets.

Notation : A \Delta B (A delta B)

$$A \Delta B = (A \cup B) - (A \cap B)$$

OR
$$A \triangle B = (A - B) \cup (B - A)$$

Consider A = $\{1, 2, 3, 4, 5\}$ and B = $\{2, 5, 6\}$ then find A Δ B.

$$A \Delta B = (A - B) \cup (B - A)$$

So,
$$A - B = \{1, 2, 3, 4, 5\} - \{2, 5, 6\} = \{1, 3, 4\}$$

And
$$B - A = \{ 2, 5, 6 \} - \{ 1, 2, 3, 4, 5 \} = \{ 6 \}$$

Therefore, A \triangle B = { 1, 3, 4} \cup { 6} = {1, 3, 4, 6}

Venn diagram for Symmetric Differen+ce Set A Δ B:

U

ΑΔΒ

Example : Let $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{2, 3, 5, 7, 8\}$ and

 $B = \{1, 2, 4, 8, 9\}$. Then find A \triangle B and draw its Venn Diagram.

Solution : $A \Delta B = (A \cup B) - (A \cap B)$

$$A \cup B = \{2, 3, 5, 7, 8\} \cup \{1, 2, 4, 8, 9\} = \{1, 2, 3, 4, 5, 7, 8, 9\}$$

$$A \cap B = \{2, 3, 5, 7, 8\} \cap \{1, 2, 4, 8, 9\} = \{2, 8\}$$

Therefore, $A \triangle B = (A \cup B) - (A \cap B)$

Unit 1 : Set Theory

$$= \{1, 2, 3, 4, 5, 7, 8, 9\} - \{2, 8\}$$
$$= \{1, 3, 4, 5, 7, 9\}$$

OR:
$$A \Delta B = (A - B) \cup (B - A)$$

Now
$$A - B = \{2, 3, 5, 7, 8\} - \{1, 2, 4, 8, 9\}$$

$$A - B = \{3, 5, 7\}$$
 and

$$B - A = \{1, 2, 4, 8, 9\} - \{2, 3, 5, 7, 8\}$$
$$= \{1, 4, 9\}$$

Therefore A
$$\triangle$$
 B = (A – B) \cup (B – A)
= {3, 5, 7} \cup {1, 4, 9}
= {1, 3, 4, 5, 7, 9}

Venn Diagram for A \triangle B:

 $A \Delta B$

Exercise : Let $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{3, 2, 4, 7, 8, 9\}$, then determine $A \triangle B$.

(**Solution :** A \triangle B = {1, 5, 6, 7, 8, 9})

Examples:

Let $\mathbb{U} = \{x \in \mathbb{N} \mid x \text{ is a factor of } 48\}, A = \{x \in \mathbb{N} \mid x \text{ is a factor of } 24\},\$

B = $\{x \in \mathbb{N} / x \text{ is a factor of } 12\}$ and C = $\{x \in \mathbb{N} / x \text{ is a factor of } 8\}$.

Unit 1 : Set Theory

Then find the following:

- (1) A'(2) B'(3) C'
- (4) A ∪ B and its Venn Diagram
- (5) $A \cap B$ and its Venn Diagram
- (6) A Δ B and its Venn Diagram
- (7) P(C) (8) $(B \cup C)$ ' (9) $B' \cap C'$

Solution : Here $\mathbb{U} = \{1, 2, 3, 4, 6, 8, 12, 16, 24, 48\}$

$$A = \{1, 2, 3, 4, 6, 8, 12, 24\}, B = \{1, 2, 3, 4, 6, 12\}$$
and $C = \{1, 2, 4, 8\}$

- $(1) A' = \{16, 48\}$
- (2) $B' = \{8, 16, 24, 48\}$
- $(3) C' = \{3, 6, 12, 16, 24, 48\}$

(4) A
$$\cup$$
 B = {1, 2, 3, 4, 6, 8, 12, 24} \cup {1, 2, 3, 4, 6, 12}
= {1, 2, 3, 4, 6, 8, 12, 24}

Venn Diagram:

(5) A
$$\cap$$
 B = {1, 2, 3, 4, 6, 8, 12, 24} \cap {1, 2, 3, 4, 6, 12}
= {1, 2, 3, 4, 6, 12}

Venn Diagram:

U

U

Department of Computer Applications, F. C. A.

Program: B.C.A.(Hons) (Sem 1) Unit 1: Set Theory

(6)
$$A \Delta B = (A - B) \cup (B - A)$$

Now
$$A - B = \{1, 2, 3, 4, 6, 8, 12, 24\} - \{1, 2, 3, 4, 6, 12\}$$

= $\{8, 24\}$

And B – A =
$$\{1, 2, 3, 4, 6, 12\}$$
 – $\{1, 2, 3, 4, 6, 8, 12, 24\}$ = \emptyset

Therefore A \triangle B = {8, 24} \cup Ø = {8, 24}

Venn Diagram:

(7) **P(C)**

Here $C = \{1, 2, 4, 8\}$

Therefore
$$P(C) = \{\emptyset, \{1\}, \{2\}, \{4\}, \{8\}, \{1, 2\}, \{1, 4\}, \{1, 8\}, \{2, 4\}, \{2, 8\}, \{4, 8\}, \{2, 4\}, \{1, 2, 8\}, \{1, 4, 8\}, \{2, 4, 8\}, \{1, 2, 4, 8\}\}$$

Prof. Keshavi Mehta

Department of Computer Applications, F. C. A.

Program: B.C.A.(Hons) (Sem 1) Unit 1: Set Theory

(8) $(B \cup C)$

$$B \cup C = \{1, 2, 3, 4, 6, 12\} \cup \{1, 2, 4, 8\} = \{1, 2, 3, 4, 6, 8, 12\}$$

$$(B \cup C)' = \{16, 24, 48\}$$

9) **B'**
$$\cap$$
 C' = {8, 16, 24, 48} \cap {3, 6, 12, 16, 24, 48}
= {16, 24, 48}

Example : Let $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 4, 5\}$, $B = \{6, 7, 9, 10\}$ and $C = \{1, 2, 9, 10\}$. Then find the following :

- (1) A' (2) B' (3) C' (4) A \cup B and its Venn Diagram (5) A \cap B and its Venn Diagram
- (6) A \triangle B and its Venn Diagram (7) Verify (B \cup C)' = B' \cap C'

Solution : Here $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = \{1, 2, 4, 5\}, B = \{6, 7, 9, 10\} \text{ and } C = \{1, 2, 9, 10\}$$

$$(1) A' = \{3, 6, 7, 8, 9, 10\}$$

(2)
$$B' = \{1, 2, 3, 4, 5, 8\}$$

(3)
$$C' = \{3, 4, 5, 6, 7, 8\}$$

$$(4) A \cup B = \{1, 2, 4, 5\} \cup \{6, 7, 9, 10\} = \{1, 2, 4, 5, 6, 7, 9, 10\}$$

Venn Diagram:

 $A \cup B$

(5)
$$A \cap B = \{1, 2, 4, 5\} \cap \{6, 7, 9, 10\} = \emptyset$$

Venn Diagram:

U

Unit 1 : Set Theory

 $A \cap B$

(6)
$$\mathbf{A} \Delta \mathbf{B} = (\mathbf{A} - \mathbf{B}) \cup (\mathbf{B} - \mathbf{A})$$

Now
$$A - B = \{1, 2, 4, 5\} - \{6, 7, 9, 10\}$$

$$= \{1, 2, 4, 5\} = A$$

And
$$B - A = \{6, 7, 9, 10\} - \{1, 2, 4, 5\}$$

$$= \{6, 7, 9, 10\} = B$$

Therefore A \triangle B = (A – B) \cup (B – A) = A \cup B = {1, 2, 4, 5} \cup {6, 7, 9, 10}

$$= \{1, 2, 4, 5, 6, 7, 9, 10\}$$

Venn Diagram:

U

Unit 1 : Set Theory

(7) Verify $(B \cup C)' = B' \cap C'$

$$L.H.S. = (B \cup C)$$

Now, B
$$\cup$$
 C = {6, 7, 9, 10} \cup {1, 2, 9, 10}
= {1, 2, 6, 7, 9, 10}

Therefore $(B \cup C)' = \{3, 4, 5, 8\}$

R.H.S = B'
$$\cap$$
 C'
= {1, 2, 3, 4, 5, 8} \cap {3, 4, 5, 6, 7, 8}
= {3, 4, 5, 8}

Thus, $(B \cup C)' = B' \cap C'$

Example : Let $\mathbb{U} = \{11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$, $A = \{11, 13, 15, 18\}$, $B = \{12, 14, 16, 17, 18\}$, $C = \{18, 19, 20\}$. Then find the following:

- (i) A U B and its Venn Diagram (ii) B U C and its Venn Diagram
- (iii) P(A) (iv) P(C) (v) A' B' (vi) B' C' (vii) A Δ B (viii) C Δ B (ix) B \cap C

Solution:

(i) A U B =
$$\{11, 13, 15, 18\}$$
 U $\{12, 14, 16, 17, 18\}$ = $\{11, 13, 15, 18, 12, 14, 16, 17\}$

(iii)
$$P(A) = \{\{\}, \{11\}, \{13\}, \{15\}, \{18\}, \{11, 13\}, \{11, 15\}, \{11, 18\}, \{13, 15\}, \{13, 18\}, \{15, 18\}, \{11, 13, 15\}, \{11, 13, 18\}, \{13, 15, 18\}, \{11, 15, 18\}, \{11, 13, 15, 18\}\}$$

(v)
$$A' = \{12, 14, 16, 17, 19, 20\}$$
 and $B' = \{11, 13, 15, 19, 20\}$
 $C' = \{11, 12, 13, 14, 15, 16, 17\}$
 $A' - B' = \{12, 14, 16, 17, 19, 20\} - \{11, 13, 15, 19, 20\} = \{12, 14, 16, 17\}$
 $B' - A' = \{11, 13, 15\}$

(vi) B' - C' =
$$\{11, 13, 15, 19, 20\}$$
 - $\{11, 12, 13, 14, 15, 16, 17\}$ = $\{19, 20\}$

(vii)
$$A \Delta B = (A - B) \cup (B - A)$$

Unit 1 : Set Theory

$$A - B = \{11, 13, 15, 18\} - \{12, 14, 16, 17, 18\} = \{11, 13, 15\}$$

$$B - A = \{12, 14, 16, 17, 18\} - \{11, 13, 15, 18\} = \{12, 14, 16, 17\}$$

A
$$\triangle$$
 B = {11, 13, 15} \cup {12, 14, 16, 17} = {11, 13, 15, 12, 14, 16, 17}

(viii)
$$C \Delta B = (C - B) \cup (B - C)$$

$$C - B = \{18, 19, 20\} - \{12, 14, 16, 17, 18\} = \{19, 20\}$$

$$B - C = \{12, 14, 16, 17, 18\} - \{18, 19, 20\} = \{12, 14, 16, 17\}$$

$$C \Delta B = (C - B) \cup (B - C)$$

$$= \{19, 20\} \cup \{12, 14, 16, 17\}$$

$$= \{19, 20, 12, 14, 16, 17\}$$

> Algebras Of Sets

(1) **Commutative Laws:**

(i) Union is commutative : $A \cup B = B \cup A$

Let
$$A = \{1, 2, 3\}$$
 and $B = \{3, 4, 5\}$

$$L.H.S. = A \cup B$$

$$= \{1, 2, 3\} \cup \{3, 4, 5\}$$

$$= \{1, 2, 3, 4, 5\}$$

$$R.H.S. = B \cup A$$

$$= \{3, 4, 5\} \cup \{1, 2, 3\}$$

$$= \{1, 2, 3, 4, 5\}$$

Thus, $A \cup B = B \cup A$

i.e., Union is commutative.

(ii) Intersection is commutative : $A \cap B = B \cap A$

Let
$$A = \{1, 2, 3\}$$
 and $B = \{3, 4, 5\}$

$$L.H.S. = A \cap B$$

$$= \{1, 2, 3\} \cap \{3, 4, 5\}$$

$$= \{3\}$$

 $R.H.S. = B \cap A$

$$= \{3, 4, 5\} \cap \{1, 2, 3\}$$

 $= {3}$

Thus, $A \cap B = B \cap A$

i.e., Intersection is commutative

(2) Associative Laws:

(i) Union is associative : $A \cup (B \cup C) = (A \cup B) \cup C$

Consider
$$A = \{1, 2, 3, 4\}, B = \{2, 3, 5, 6\} \text{ and } C = \{2, 4, 7\}$$

$$L.H.S. = A \cup (B \cup C)$$

$$= \{1, 2, 3, 4\} \cup [\{2, 3, 5, 6\} \cup \{2, 4, 7\}]$$

$$= \{1, 2, 3, 4\} \cup \{2, 3, 4, 5, 6, 7\}$$

$$= \{1, 2, 3, 4, 5, 6, 7\}$$

$$R.H.S. = (A \cup B) \cup C$$

$$= [\{1, 2, 3, 4\} \cup \{2, 3, 5, 6\}] \cup \{2, 4, 7\}$$

$$= \{1, 2, 3, 4, 5, 6\} \cup \{2, 4, 7\}$$

$$= \{1, 2, 3, 4, 5, 6, 7\}$$

Thus,
$$A \cup (B \cup C) = (A \cup B) \cup C$$

i.e., Union is associative.

(ii) Intersection is associative : $A \cap (B \cap C) = (A \cap B) \cap C$

Consider
$$A = \{1, 2, 3, 4\}, B = \{2, 3, 5, 6\}$$
 and $C = \{2, 4, 7\}$

$$L.H.S. = A \cap (B \cap C)$$

$$= \{1, 2, 3, 4\} \cap [\{2, 3, 5, 6\} \cap \{2, 4, 7\}]$$

$$= \{1, 2, 3, 4\} \cap \{2\}$$

$$= \{2\}$$

$$R.H.S. = (A \cap B) \cap C$$

$$= [\{1, 2, 3, 4\} \cap \{2, 3, 5, 6\}] \cap \{2, 4, 7\}$$

Department of Computer Applications, F. C. A.

Program: B.C.A.(Hons) (Sem 1) Unit 1: Set Theory

$$= \{2, 3\} \cap \{2, 4, 7\}$$

 $= \{2\}$

Thus, $A \cap (B \cap C) = (A \cap B) \cap C$

i.e., Intersection is associative.

(3) Distributive Laws:

(i) Union is distributive over intersection : $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Consider
$$A = \{1, 2, 3, 4\}, B = \{2, 4, 5, 6\}, C = \{4, 5, 7\}$$

$$L.H.S. = A \cup (B \cap C)$$

$$= \{1, 2, 3, 4\} \cup [\{2, 4, 5, 6\} \cap \{4, 5, 7\}]$$

$$= \{1, 2, 3, 4\} \cup \{4, 5\}$$

$$= \{1, 2, 3, 4, 5\}$$

$$R.H.S. = (A \cup B) \cap (A \cup C)$$

$$= [\{1, 2, 3, 4\} \cup \{2, 4, 5, 6\}] \cap [\{1, 2, 3, 4\} \cup \{4, 5, 7\}]$$

$$= \{1, 2, 3, 4, 5, 6\} \cap \{1, 2, 3, 4, 5, 7\} = \{1, 2, 3, 4, 5\}$$

Thus, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

i.e., Union is distributive over intersection.

(ii) Intersection is distributive over union : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Consider
$$A = \{1, 2, 3, 4\}, B = \{2, 4, 5, 6\}, C = \{4, 5, 7\}$$

$$L.H.S. = A \cap (B \cup C)$$

$$= \{1, 2, 3, 4\} \cap [\{2, 4, 5, 6\} \cup \{4, 5, 7\}]$$

$$= \{1, 2, 3, 4\} \cap \{2, 4, 5, 6, 7\}$$

$$= \{2, 4\}$$

R.H.S. =
$$(A \cap B) \cup (A \cap C)$$

$$= [\{1, 2, 3, 4\} \cap \{2, 4, 5, 6\}] \cup [\{1, 2, 3, 4\} \cap \{4, 5, 7\}]$$

$$= \{2, 4\} \cup \{4\}$$

$$= \{2, 4\}$$

Prof. Keshavi Mehta

Department of	Computer	Applications	F	CA
Department of	Computer	ADDITUATIONS.		C. A.

Thus, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

i.e., Intersection is distributive over union.

• De Morgan's Laws:

Let $\mathbb U$ be the Universal set and A and B are any two subsets of $\mathbb U$ then,

(i)
$$(A \cup B)' = A' \cap B'$$

Consider
$$\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7\}, A = \{1, 2, 3, 4\} \text{ and } B = \{3, 4, 5\}$$

$$A \cup B = \{1, 2, 3, 4\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}$$

$$L.H.S. = (A \cup B)$$

$$= \mathbb{U} - (A \cup B)$$

$$= \{1, 2, 3, 4, 5, 6, 7\} - \{1, 2, 3, 4, 5\}$$

$$= \{6, 7\}$$

$$A' = \{5, 6, 7\}$$
 and $B' = \{1, 2, 6, 7\}$

$$R.H.S. = A' \cap B'$$

$$= \{5, 6, 7\} \cap \{1, 2, 6, 7\}$$

$$= \{6, 7\}$$

Thus, $(A \cup B)' = A' \cap B'$

(ii) $(A \cap B)' = A' \cup B'$

Consider
$$\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7\}, A = \{1, 2, 3, 4\} \text{ and } B = \{3, 4, 5\}$$

$$A \cap B = \{1, 2, 3, 4\} \cap \{3, 4, 5\} = \{3, 4\}$$

L.H.S. =
$$(A \cap B)$$
'

$$= \mathbb{U} - (A \cap B)$$

$$= \{1, 2, 3, 4, 5, 6, 7\} - \{3, 4\}$$

$$= \{1, 2, 5, 6, 7\}$$

$$A' = \{5, 6, 7\}, B' = \{1, 2, 6, 7\}$$

$$R.H.S. = A' \cup B'$$

Unit 1 : Set Theory

$$= \{5, 6, 7\} \cup \{1, 2, 6, 7\}$$
$$= \{1, 2, 5, 6, 7\}$$

Thus, $(A \cap B)' = A' \cup B'$

Example : If A, B and C are three sets such that $A \subseteq B$ then prove that $C \subseteq B \subseteq C \subseteq A$

Solution :
$$A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5\}$$
 and $C = \{1, 4, 6, 7\}$

L.H.S. =
$$C - B$$

= $\{1, 4, 6, 7\} - \{1, 2, 3, 4, 5\}$
= $\{6, 7\}$ ----- (1)

R.H.S. =
$$C - A$$

= $\{1, 4, 6, 7\} - \{1, 2, 3\}$
= $\{4, 6, 7\} - \cdots (2)$

Now, $\{7, 6\} \subset \{4, 6, 7\}$

Thus, from (1) and (2), $C - B \subset C - A$

Example: If A, B and C are any three sets then prove the following.

$$A - (B \cup C) = (A - B) \cap (A - C)$$

Solution : Let
$$A = \{1, 2, 3, 4\}, B = \{1, 3, 5\}$$
 and $C = \{1, 5, 6\}$

L.H.S. =
$$A - (B \cup C)$$

= $\{1, 2, 3, 4\} - [\{1, 3, 5\} \cup \{1, 5, 6\}]$
= $\{1, 2, 3, 4\} - \{1, 3, 5, 6\}$
= $\{2, 4\}$

R.H.S. =
$$(A - B) \cap (A - C)$$

= $[\{1, 2, 3, 4\} - \{1, 3, 5\}] \cap [\{1, 2, 3, 4\} - \{1, 5, 6\}]$
= $\{2, 4\} \cap \{2, 3, 4\}$
= $\{2, 4\}$

Thus,
$$A - (B \cup C) = (A - B) \cap (A - C)$$

Example: If A, B and C are any three sets then prove the following.

Unit 1 : Set Theory

$$A - (B \cap C) = (A - B) \cup (A - C)$$

Solution :
$$A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\} \text{ and } C = \{1, 5, 7\}$$

$$L.H.S. = A - (B \cap C)$$

$$= \{1, 2, 3, 4\} - [\{3, 4, 5, 6\} \cap \{1, 5, 7\}]$$

$$= \{1, 2, 3, 4\} - \{5\}$$

$$= \{1, 2, 3, 4\}$$

$$R.H.S. = (A - B) \cup (A - C)$$

$$= [\{1, 2, 3, 4\} - \{3, 4, 5, 6\}] \cup [\{1, 2, 3, 4\} - \{1, 5, 7\}]$$

$$= \{1, 2\} \cup \{2, 3, 4\}$$

$$= \{1, 2, 3, 4\}$$

Thus,
$$A - (B \cap C) = (A - B) \cup (A - C)$$

• Some Important Results on Cardinality of finite sets :

(1)
$$n (A \cup B) = n (A) + n (B) - n (A \cap B)$$

Example :
$$A = \{1, 2, 3, 4\} B = \{3, 4, 5, 6\}$$

Thus,
$$A \cap B = \{3, 4\}$$
 and $A \cup B = \{1, 2, 3, 4, 5, 6\}$

$$n (A \cup B) = 6$$

$$n(A) + n(B) - n(A \cap B) = 4 + 4 - 2 = 6$$

(2) $n(A \cup B) = n(A) + n(B)$ if A and B are disjoint sets

Example :
$$A = \{1, 2, 3\}$$
 and $B = \{4, 5\}$ so $A \cup B = \{1, 2, 3, 4, 5\}$

$$n (A \cup B) = 5$$

$$n(A) + n(B) = 3 + 2 = 5$$

(3)
$$n (A - B) = n (A) - n (A \cap B)$$

Example :
$$A = \{1, 2, 3, 4, 5\}$$
 and $B = \{3, 5, 7, 8\}$

$$A - B = \{1, 2, 3, 4, 5\} - \{3, 5, 7, 8\} = \{1, 2, 4\}, A \cap B = \{3, 5\}$$

$$n(A-B)=3$$

Department of Computer App	olications.	F. C.	A.
----------------------------	-------------	-------	----

$$n(A) - n(A \cap B) = 5 - 2 = 3$$

 $\mathbf{n} (\mathbf{B} - \mathbf{A}) = \mathbf{n} (\mathbf{B}) - \mathbf{n} (\mathbf{A} \cap \mathbf{B})$

• Cartesian product of two sets: (Cross Product)

Let A and B are two sets. A set containing all possible pairs (x, y) where $x \in A$ and $y \in B$ is called Cartesian product of A and B.

Notation: $A \times B$

$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$$

Note: (i) If A and B are different sets then $A \times B \neq B \times A$ but $n(A \times B) = n(B \times A)$.

(ii)
$$n(A \times B) = n(B \times A) = n(A) \times n(B)$$

Example: Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. Then find $A \times B$ and $B \times A$.

$$A \times B = \{1, 2, 3\} \times \{a, b, c, d\}$$

$$= \{(1, a), (1, b), (1, c), (1, d), (2, a), (2, b), (2, c), (2, d), (3, a), (3, b), (3, c), (3, d)\}$$

$$B \times A = \{a, b, c, d\} \times \{1, 2, 3\}$$

$$= \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3), (d, 1), (d, 2), (d, 3)\}$$

Example: Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 4, 5\}$ then find

(i)
$$A \times B$$
 (ii) $B \times A$ (iii) $(A \times B) \cap (B \times A)$

(i)
$$A \times B = \{1, 2, 3, 4\} \times \{1, 4, 5\}$$

$$=\{(1,1),(1,4),(1,5),(2,1),(2,4),(2,5),(3,1),(3,4),(3,5),(4,1),(4,4),(4,5)\}$$

(ii)
$$B \times A = \{1, 4, 5\} \times \{1, 2, 3, 4\}$$

$$= \{(1, 1), (1, 2), (1, 3), (1, 4), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4)\}$$

(iii)
$$(A \times B) \cap (B \times A) = \{(1, 1), (1, 4), (4, 1), (4, 4)\}$$

• Multiple Choice Questions :

1) Which of the following is a singleton set?

a)
$$A = \{x \in \mathbb{N} / 1 < x < 4\}$$

b)
$$A = \{x \in N / 1 < x < 2\}$$

Prof. Keshavi Mehta

Unit 1 : Set Theory

c)
$$A = \{x \in Q / 1 < x < 2\}$$

d) None of these

2) Which of the following is a null set?

a)
$$\{x \in \mathbb{N} / 1 < x < 2\}$$

b)
$$\{x \in \mathbb{N} / 1 \le x < 2\}$$

c)
$$\{x \in N / 1 < x \le 2\}$$

d)
$$\{x \in \mathbb{N} / 1 \le x \le 2\}$$

3) Which of the following is a finite set?

a)
$$\{x \in Q / 1 < x < 2\}$$

b)
$$\{x \in \mathbb{R} / 1 < x < 2\}$$

c) $\{x \in \mathbb{N} / 1 \le x < 2\}$

d) None of these

4) Which of the following is an infinite set?

a) $\{x \in Q / 1 < x < 2\}$

b)
$$\{x \in N / x < 2\}$$

c)
$$\{x \in N / x < 200\}$$

d)
$$\{x \in \mathbb{Z} / 1 < x < 100\}$$

5) If $A \subset B$, then $A - B = \underline{\hspace{1cm}}$.

a) Ø

- b) A
- c) B

d) None of these

6)
$$A \cap A' =$$

a) Ø

- b) A
- c) A'
- d) None of these
- **7**) **A** ∪ **A**' = _____
- a) Ø
- b) A
- c) A'
- d) U
- 8) Let $U = \{a, e, i, o, u\}$ and $A = \{a, i, e\}$. Then $A' = \underline{\hspace{1cm}}$
- a) {a, i, e}
- b) {o, u}
- c) $\{a, o, u\}$
- d) {a, e, u}
- 9) If n(A) = 3 and n(B) = 4, then $n(A \times B) = ____.$
- a) 7
- b) 27
- c) 12
- d) None of these
- 10) If n (A) = 4, then A has _____ subsets.
- a) 16
- b) 15
- c) 8
- d) 7