X przestrzeń topologiczna, $A \subseteq X$ podprzestrzeń, to $C_n(A) \hookrightarrow C_n(X)$.

Definicja 1 (homologie relatywne). $C_n(X,A) = C_n(X)/C_n(A)$

Definicja 2 (operator brzegu). $\partial: C_n(X) \to C_{n-1}(X)$ przeprowadza $C_n(A)$ w $C_{n-1}(A)$, czyli indukuje $\partial: C_n(X,A) \to C_{n-1}(X,A)$.

Definicja 3 (relatywne homologie). $H_n(X,A) = H_n(C_n(X,A), \partial)$

Wniosek 4. Elementy $H_n(X, A)$ są reprezentowane przez n-łańcuchy $\alpha \in C_n(X)$, dla których $\partial \alpha \in C_{n-1}(A)$.

Wniosek 5. Relatywny cykl α jest trywialny, jeśli jest relatywnym brzegiem: $\alpha = \partial \beta + \gamma$ dla pewnych $\beta \in C_{n+1}(X), \gamma \in C_n(A)$.

Twierdzenie 6. Ciąg ... $\rightarrow H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{j_*} H_n(X,A) \xrightarrow{\tau} H_{n-1}(A) \rightarrow ...$ jest dokładny.

Weźmy $[c] \in C_n(X, A)$ dla $c \in C_n(X)$, takie, że $\partial[c] = 0$, wtedy $\tau([c]) = \partial c \subset C_{n-1}(A)$.

Twierdzenie 7. $f:(X,A) \to (Y,B)$ indukuje $f_*:H_n(X,A) \to H_n(Y,B)$ i f_* są przemienne $z \tau$, czyli τ jest naturalną transformacją $z H_n(X,A)$ do $H_{n-1}(A)$.

Twierdzenie 8. Kanoniczny homeomorfizm $H_n^{\Delta}(X) \to H_n(X)$ jest izomorfizmem dla każdego n i dla każdego Δ -kompleksu X.

Ćwiczenie 9. Udowodnić równość ℓ_2 -homologii zredukowanych dla różnych struktur Δ -kompleksu. Ogólniej: homotopijną niezmienniczośc ℓ_2 -homologii zredukowanych.

Ćwiczenie 10. $Y = \mathbb{R}^n, G = \mathbb{Z}^n, X = T^n = (S^1)^n$ Udowodnij, że $\mathcal{N}(\mathbb{Z}^n) \simeq L_{\infty}(T^n)$ i znajdź wzór na $\operatorname{tr}_G : L_{\infty}(T^n) \to \mathbb{R}$. Podpowiedź w notatkach.