

第38讲

DS18B20数字温度传感器

公众号

淘宝店铺

主讲内容

理论学习

DS18B20数字温度传感器

DS18B20是DALLAS半导体公司生产的单总线数字温度传感器,其输出的是数字信号,具有体积小,功耗低,抗干扰能力强,精度高的特点。

DS18B20特点

采用单总线接口方式	供电方式灵活
测温范围宽、测量精度高	」 测量分辨率可调节,采集精度转 换时间短
一 无需外围元件	负压特性
□ 支持多点组网功能 , 可实现多点 测温	掉电保护功能
可进行温度报警设置	

DS18B20特点

DS18B20内部结构

64位光刻ROM编码

每个DS18B20的片内ROM都存有一个独一无二的64位编码。

在该ROM编码的低8位保存有DS18B20的分类编码:28h;中间的48位是独一无二的序列号;最高8位是前面56位的CRC 循环冗余校验码(CRC=X8+X5+X4+1)。

因为每个DS18B20的序列号都不一样,所以一条总线上可以控制多个DS18B20。

◆ 野火° | 嵌入式教育专家⋅为初学而生

高速缓存器

温度测量

DS18B20中的温度传感器可完成对温度的测量,他的温度转换精度用户可自定义为9、10、11、12位,精度分别为0.5℃、0.25℃、0.125℃、0.0625℃分辨率。

符号标志位(S)表示温度的正负极性:若S=0,则为正数;若S=1,则为负数。

温度 (℃)	数据输出(二进制)	数据输出(十六进制)
+125	0000 0111 1101 0000	07D0h
+85	0000 0101 0101 0000	0550h
+25.0625	0000 0001 1001 0001	0191h
+10.125	0000 0000 1010 0010	00A2h
+0.5	0000 0000 0000 1000	0008h
0	0000 0000 0000 0000	0000h
-0.5	1111 1111 1111 1000	FFF8h
-10.125	1111 1111 0101 1110	FF5Eh
-25.0625	1111 1110 0110 1111	FF6Fh
-55	1111 1100 1001 0000	FC90h

2^3	2^2	2 ¹	2 ⁰	2-1	2-2	2-3	2-4	LSB
MSb			(ur	nit =	°C)		LSb	
S	S	S	S	S	2 ⁶	2 ⁵	24	MSB

配置寄存器

高速缓存器中第五个字节即为配置寄存器,用户通过改变R1和R0的值来配置DS18B20的分辨率。

R1	R0	转换位数	最大转换时间
0	0	9	93.75ms (t _{conv} /8)
0	1	10	187.5ms (t _{conv} /4)
1	0	11	375ms (t _{conv} /2)
1	1	12	750ms (t _{conv})

DS18B20实现温度转换

主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行初始化操作,初始化成功后发送一条ROM命令,最后发送RAM命令,这样才能对DS18B20进行预定的操作。

● 初始化

单总线上的所有操作都必须以初始化为开始。初始化序列由总线上的主设备 发出的复位脉冲以及紧跟着从设备回应的存在脉冲构成。该存在脉冲是让总线主 设备知道DS18B20在总线上并准备好运行。

● ROM命令

搜索ROM[F0h]、读ROM[33h]、匹配ROM[55h]、跳过ROM[CCh]、 警报搜索ROM[ECh]

● RAM命令

温度转换[44h]、写入暂存器[4Eh]、读取高速缓存器[BEh]、 复制高速缓存器[48h]、召回EEPROM[B8h]、读取供电模式[B4h]

初始化时序

与DS18B20所有的通信都是由初始化开始的,初始化由主设备发出的复位脉冲及从设备响应的存在脉冲组成。

写时序

主设备通过写时序将命令写入DS18B20中,写时序有两种情况:写"1"和写"0"时序。

读时序

当我们发送完读取供电模式[B4h]或读高速缓存器[BEh] 命令时,必须及时地生成读时序,只有在读时隙从设备才能向主设备传送数据。

实战演练

[野火]《FPGA Verilog开发实战指南》

谢谢

公众号

淘宝店铺