PCIe Logical Driver API

Copyright (c) 2020, Vayavya Labs Pvt. Ltd. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of Vayavya Labs Pvt. Ltd. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL VAYAVYA LABS PVT. LTD. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1. Introduction

The Document describes the Generic APIs for the logical driver of PCIe RC and EP controller. These abstracted APIs will hide the datatype complexity defined at Physical level device driver(PDD) and helps users to build PCIe applications with reduced data type complexity and also aid in adopting the APIs in test automation framework like Open Hardware Software Interface standard(OpenHSI).

2.RC LDD WRAPPER API

2.1 pcieRcInit

Synopsis:

status_t pcieRcInit(pcieRootcompDataHandle_t *pdata);

Purpose: Initialize RC

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

Return Value:

0 on success and -1 on failure

2.2 pcieRcCfg

Synopsis:

status_t pcieRcCfg(pcieRootcompDataHandle_t *pdata,

unsigned long pcieAddr,

unsigned long cpuAddr,

 $unsigned\ long\ epCfgAddr,$

unsigned long rcCfgAddr,

unsigned long addrSpaceSize,

unsigned char numRdDmaChnls,

unsigned char numWrDmaChnls,

unsigned char numObRegions,

unsigned char numIbRegions);

Purpose: Configure RC

Arguments:

pcieAddr PCIe Address cpuAddr CPU Address

epCfgAddr EP configuration Address rcCfgAddr RC configuration Address

addrSpaceSize Address space size

numRdDmaChnls
numWrDmaChnls
numObRegions
Number of read DMA channels
Number of write DMA channels
Number of outbound regions
Number of inbound regions

Return Value:

0 on success -1 on failure

2.3 pcieRcConfigAtuIbRegion

Synopsis:

 $status_t\ pcieRcConfigAtuIbRegion(pcieRootcompDataHandle_t\ ^*pdata,$

unsigned long baseAddr, unsigned long trgtAddr,

unsigned long len,

unsigned int type,

unsigned int ibRgn,

unsigned char barNum);

Purpose: Configure RC ATU inbound region

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

baseAddr Base address trgtAddr Target address

len Length type Type

ibRgn Inbound region barNum BAR number

Return Value:

0 on success and -1 on failure

2.4 pcieRcConfigAtuObRegion

Synopsis:

status_t pcieRcConfigAtuObRegion(pcieRootcompDataHandle_t *pdata,

unsigned long baseAddr,

unsigned long trgtAddr,

unsigned long len,

unsigned int type,

unsigned int obRgn);

Purpose: Configure RC ATU outbound region

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

baseAddr Base address trgtAddr Target address

len Length type Type

obRgn Outbound region

barNum BAR number

Return Value:

0 on success and -1 on failure

2.5 pcieRcConfigReadWrite

Synopsis:

status_t pcieRcConfigReadWrite(pcieRootcompDataHandle_t *pdata,

unsigned int regOffset,

unsigned int *buffer,

unsigned int capld,

unsigned char configSpaceSelect,

unsigned char accessSize,

readWriteFlag rw);

Purpose: read or write RC configuration area

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

regOffset Offset to the register

*buffer Output buffer into which data is read or whose content is used for write

capId Capability ID

configSpaceSelect Selection of configuration space

accessSize Access size

rw Read or write action specifier

Return Value:

0 success and -1 on failure

2.6 pcieRcDeinit

Synopsis:

void pcieRcDeinit(pcieRootcompDataHandle_t *pdata);

Purpose: Deinitialize RC and release relevant memory

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

Return Value:

2.7 pcieRcDeinitprint

Synopsis:

void pcieRcDeinitprint(pcieRootcompDataHandle_t *pdata);

Purpose: Deinitialize print API link

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

Return Value:

2.8 pcieRcEnumerate

Synopsis:

status_t pcieRcEnumerate(pcieRootcompDataHandle_t *pdata);

Purpose:

PCIe enumeration of entire fabric under RC

Arguments:

*pdata

Pointer to RC private data structure of PCIe stack

Return Value:

0 on success and -1 on failure

2.9 pcieRcGetEpMemDetails

Synopsis:

```
status_t pcieRcGetEpMemDetails(pcieRootcompDataHandle_t *pdata, unsigned short vendorld, unsigned short pcieDeviceId, unsigned char barNum, unsigned char bus, unsigned char dev, unsigned char fun, unsigned int *addr, unsigned int *size);
```

Purpose:

Get EP memory details. This will provide the base address and size of the memory relative to the asked BAR number of the device.

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

vendorld EP Vendor ID
pcieDeviceId EP Device ID
barNum BAR number
bus Bus number
dev Device number
fun Function number

*addr Address pointer to EP memory

*size Pointer to size value

Return Value:

0 on success and -1 on failure

2.10 pcieRcPreInit

Synopsis:

status_t pcieRcPreInit(pcieRootcompDataHandle_t **tmp_pdata);

Purpose:

Allocate private data structures and get driver API pointers

Arguments:

**tmp_pdata Pointer to RC private data structure of PCIe stack pointer

Return Value:

0 on success and -1 on failure

2.11 pcieRcProgConfigRegion

Synopsis:

status_t pcieRcProgConfigRegion(pcieRootcompDataHandle_t *pdata);

Purpose:

Program RC configuration region

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

Return Value:

0 on success and -1 on failure

2.12 pcieRcProgPrefetchIoLimit

Synopsis:

status_t pcieRcProgPrefetchIoLimit(pcieRootcompDataHandle_t *pdata, unsigned int rcBarConfigReg , unsigned int type1BaseLmtCntrl, unsigned int enableOrDisable);

Purpose:

Program prefetch IO limit

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

rcBarConfigReg RC BAR configuration register

type1BaseLmtCntrl type 1 base lmt cntrol enableOrDisable Enable or Disable

Return Value:

Value on success and ERRORINVAL on failure

2.13 pcieRcReadEpConfig

Synopsis:

status_t pcieRcReadEpConfig(pcieRootcompDataHandle_t *pdata,

unsigned int *buffer,

unsigned short offset,

unsigned char size,

unsigned char bus,

unsigned char pcieDevice,

unsigned char function);

Purpose:

Read EP configuration area

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

*buffer Pointer to output buffer into which data will be read

offset Register offset

size size

bus Bus number

pcieDevice Device number

function) Function number

Return Value:

2.14 pcieRcReadEpMem

Synopsis:

status_t pcieRcReadEpMem(pcieRootcompDataHandle_t *pdata, unsigned int offset, unsigned char *dataPtr, unsigned int *addrPtr, unsigned int numOfBytes);

Purpose: Read EP memory

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

offset Offset

*dataPtr Pointer to output data buffer *addrPtr Pointer to memory address numOfBytes Number of bytes to be read

Return Value:

0 on success and -1 on failure

2.15 pcieRcWriteEpConfig

Synopsis:

status_t pcieRcWriteEpConfig(pcieRootcompDataHandle_t *pdata, unsigned short offset, unsigned char size, unsigned char bus, unsigned char pcieDevice, unsigned char function, unsigned int value);

Purpose:

Write EP configuration area

Arguments:

*pdata Pointer to RC private data structure of PCIe stack *buffer Pointer to input buffer from which data will written

offset Register offset

size size

bus Bus number pcieDevice Device number

function Function number

Return Value:

0 on successful read and EINVAL on failure

2.16 pcieRcWriteEpMem

Synopsis:

status_t pcieRcWriteEpMem(pcieRootcompDataHandle_t *pdata, unsigned int offset, unsigned char *dataPtr, unsigned int *addrPtr, unsigned int numOfBytes);

Purpose:

Write EP memory

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

offset Offset

*dataPtr Pointer to input data buffer *addrPtr Pointer to memory address numOfBytes Number of bytes to be written

Return Value:

0 on success and -1 on failure

2.17 pcieRcAtuObCfgTlpInfo

Synopsis:

status_t pcieRcAtuObCfgTlpInfo(pcieRootcompDataHandle_t *pdata, unsigned int ob_rgn,unsigned int format, unsigned int tlp_type, unsigned int traffic_class, unsigned int is_id_order, unsigned int tlp_hints, unsigned int tlp_digest, unsigned int poisoned_data, unsigned int attr, unsigned int address_type, unsigned int length, unsigned int tag, unsigned int processing_hints);

Purpose:

Configure ATU outbound TLP information

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

ob_rgn Outbound region

format Format tlp_type TLP type traffic_class Traffic class

is id order Indicates if the ID is ordered ID

tlp_hints TLP hints tlp_digest TLP digest

attr Attribute
address_type Address type
length Length
tag Tag

Return Value:

0 on success and -1 on failure

2.18 pcieRcRegWrite

Synopsis:

status_t pcieRcRegWrite (pcieRootcompDataHandle_t *pdata, uint32_t size, uint32_t offset, uint32_t data);

Purpose: Register write

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

size Size

offset Offset address data Data to be written

Return Value:

0

2.19 pcieRcRegRead

Synopsis:

status_t pcieRcRegRead (pcieRootcompDataHandle_t *pdata, uint32_t size, uint32_t offset, void *data);

Purpose:

Register write

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

size Size

offset Offset address data Data to be written

Return Value:

O

2.20 pcieRcResizeLink

Synopsis:

status_t pcieRcResizeLink(pcieRootcompDataHandle_t *pdata, int link_width);

Purpose: Alter the PCle link size

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

link_width Target link width

Return Value:

0 on success and -1 on failure

2.21 pcieRcUnusedTieOffLanes

Synopsis:

status_t pcieRcUnusedTieOffLanes(pcieRootcompDataHandle_t *pdata, int lanes);

Purpose: Tie off unused lanes

Arguments:

*pdata Pointer to RC private data structure of PCIe stack

lanes Lanes

Return Value:

0 on success and -1 on failure

2.22 pcieRcSpeedChangeRequest

Synopsis:

status_t pcieRcSpeedChangeRequest(pcieRootcompDataHandle_t *pdata, unsigned int target_speed_req);

Purpose:

Change PCIe link speed

Arguments:

*pdata Pointer to RC private data structure of PCIe stack target_speed_req Target link speed to be requested

Return Value:

0 on success and -1 on failure

3.EP LDD WRAPPER API

3.1 pcieEpPreInitDev

Synopsis:

status_t pcieEpPreInitDev(struct pcie_dev_ep_prv_data **tmp_drv_data);

Purpose:

Allocate memory for device private data structure

Arguments:

**tmp_drv_data Pointer to RC private data structure pointer of device

Return Value:

0 on success, -1 on failure

3.2 pcieEpCfgDev

Synopsis:

Purpose:

configure EP device

Arguments:

*drv_data Pointer to RC private data structure of device

ep_base EP base address pcie_axi_addr AXI address

num_of_funcs Number of functions

num_ob_regionsNumber of outbound regionsnum_ib_regionsNumber of inbound regionsnum_rd_dma_channelsNumber of read dma channelsNum_wr_dma_channelsNumber of write dma channels

Return Value:

0 on success, -1 on failure

3.3 pcieEpConfigObDev

Synopsis:

status_t pcieEpConfigObDev(struct pcie_dev_ep_prv_data *drv_data, unsigned long base_addr, unsigned long trgt_addr,unsigned long len,unsigned int type, unsigned int ob_rgn);

Purpose:

configure device outbound region

Arguments:

*drv_data Pointer to RC private data structure of device

base_addr EP base address trgt_addr Target address

len Length type Type

ob_rgn Outbound region

Return Value:

0 on success, -1 on failure

3.4 pcieEpInitDev

Synopsis:

status_t pcieEpInitDev(struct pcie_dev_ep_prv_data *drv_data);

Purpose:

EP device initialize

Arguments:

*drv_data Pointer to RC private data structure of device

Return Value:

0 on success, -1 on failure

3.5 pcieEpInitSetUpLdd

Synopsis:

int pcieEpInitSetUpLdd(struct ep_prv_data **pdata_pro,

struct pcie_dev_ep_prv_data **drv_data,

unsigned long ep_base, unsigned long pcie_axi_addr, unsigned int num_of_funcs,

unsigned char num_rd_dma_channels, unsigned char num_wr_dma_channels,

unsigned long base_addr, unsigned long trgt_addr,

unsigned long len, unsigned int type,

unsigned long atu_ob_base_addr, unsigned long atu_ob_trgt_addr, unsigned long atu_ob_len, unsigned int atu_ob_type);

Purpose:

Configure PCIe stack Idd layer values

Arguments:

**pdata_pro Pointer to EP private data structure of device **drv_data Pointer to RC private data structure of device

ep_base EP base address pcie_axi_addr AXI address

num_of_funcs Number of functions

num_rd_dma_channels Number of read dma channels num_wr_dma_channels Number of write dma channels

base_addr Base address trgt_addr Target address

len Length type Type

atu_ob_base_addr ATU outbound base address atu_ob_trgt_addr ATU outbound target address

atu_ob_lenATU outbound lengthatu_ob_typeATU outbound type

Return Value:

0 on success, -1 on failure

3.6 pcieEpDeinitDev

Synopsis:

status_t pcieEpDeinitDev(struct pcie_dev_ep_prv_data *drv_data);

Purpose:

Deinitialize device

Arguments:

*drv_data Pointer to RC private data structure of device

Return Value:

0 on success, -1 on failure

3.7 pcieEpDeinitialize

Synopsis:

status_t pcieEpDeinitialize(struct pcie_dev_ep_prv_data *drv_data,struct ep_prv_data *pdata);

Purpose:

Deinitialize memory allocated for device private data structures

Arguments:

*drv_data Pointer to RC private data structure of device

*pdata Pointer to the PCIe EP stack

Return Value:

0 on success, -1 on failure