Nome: Matrícula:	1.	
2ª Prova - MTM1049 - T 10	2.	
27 de Outubro de 2016	3.	
	4.	
Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Respostas sem justificativas ou que não incluam os cálculos necessários não	5.	
resposite sem justimentivas ou que mas incluain os calculos necessarios nas		

Questão 1. (2pts)

serão consideradas.

(i) Defina (de modo geral) independência linear (LI) para um conjunto $\{V_1, V_2, \dots, V_k\}$ de k vetores do \mathbb{R}^n .

 $\sum |$

(ii) Para quais valores de $a \in \mathbb{R}$ os vetores $V_1 = (1, 2, 2)$, $V_2 = (1, 3, 3)$ e $V_3 = (1, 3, a^2 - 1)$ formam um conjunto LI do \mathbb{R}^3 ?

Questão 2. (1,5pts) Encontre vetores W_1 e W_2 no \mathbb{R}^3 , com W_1 múltiplo do vetor U=(0,1,2) e W_2 ortogonal a U, tais que $W_1+W_2=(5,10,-10)$. (Sugestão: faça um desenho para visualizar a situação. Use projeção ortogonal.)

Questão 3. (3pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa:

- i-() Se $\{V_1, V_2, V_3\} \subseteq \mathbb{R}^n$ é LD, então V_2 é combinação linear de V_1 e V_3 ;
- ii-() Se $\{V_1, V_2, V_3\} \subseteq \mathbb{R}^n$ é LD, então $\{V_1, V_2\}$ é LD;
- iii-() Se $\{V_1, V_2, V_3\} \subseteq \mathbb{R}^n$ é LI, então $\{V_1, V_2\}$ é LI;
- iv-() Se V e W são dois vetores de \mathbb{R}^n satisfazendo $V \cdot W = 0$, então $V = \bar{0}$ ou $W = \bar{0}$;
- v-() Se existe um subconjunto com 3 vetores LI em um subespaço $\mathbb{W} \leqslant \mathbb{R}^{10}$, então dim $\mathbb{W} \neq 2$.

Questão 4. (1,5pts) Mostre que o conjunto de todos os vetores do \mathbb{R}^n ortogonais a um dado vetor $V = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ fixado,

$$\mathbb{W} = \{X = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | X \cdot V = 0\}$$

é um subespaço do \mathbb{R}^n .

Questão 5. (2pts) Considere a matriz
$$A = \begin{bmatrix} 2 & -1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Determine os valores reais λ , tais que existe $X^t = \begin{bmatrix} x & y & z & w \end{bmatrix} \neq \bar{0}$ que satisfaz $AX = \lambda X$:
- (b) Para cada um dos valores de λ encontrados no item anterior, determine uma base para o subespaço \mathbb{S}_{λ} de \mathbb{R}^4 dos $X^t = [\begin{array}{ccc} x & y & z & w \end{array}]$ tais que

$$(A - \lambda \operatorname{Id})X = \overline{0};$$

(c) Use o processo de ortogonalização de Gram-Schmidt na base de cada \mathbb{S}_{λ} encontrada no item (b) anterior para obter uma base ortogonal.