1. Fie s suma pătratelor lungimilor laturilor unui paralelogram și d suma pătratelor lungimilor diagonalelor sale. Atunci

a)
$$s = 2d$$
; b) $s < d$; c) $s = 4d$; d) $s > d$; e) $s = 3d$; f) $s = d$.

Soluție. Fie ABCD paralelogramul din enunț, iar O punctul de intersecție al diagonalelor. Atunci, O fiind mijlocul diagonalei BD, folosind teorema medianei în $\triangle ABD$ pentru mediana OA rezultă

$$OA^2 = \frac{AB^2 + AD^2}{2} - \frac{BD^2}{4} \Leftrightarrow \frac{AC^2}{4} = \frac{AB^2 + AD^2}{2} - \frac{BD^2}{4} \Leftrightarrow$$

$$AC^{2} + BD^{2} = 2(AB^{2} + AD^{2}) = AB^{2} + AD^{2} + BC^{2} + CD^{2}.$$

Prin urmare s = d.

Altfel. Aplicăm teorema cosinusului în triunghiurile ΔABC și ΔBCD . Obținem

$$AB^2 + BC^2 = AC^2 - 2 \cdot AB \cdot BC \cdot \cos \hat{B}$$

și respectiv

$$BC^2 + CD^2 = BD^2 - 2 \cdot BC \cdot CD \cdot \cos \hat{C}.$$

Dar $\hat{B} = \pi - \hat{C}$, deci $\cos \hat{C} = -\cos \hat{B}$, iar AB = CD și BC = DA, deci a doua egalitate devine

$$CD^2 + DA^2 = BD^2 + 2 \cdot BC \cdot AB \cdot \cos \hat{C}.$$

Adunând această egalitate cu prima (termen cu termen), obținem

$$AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2$$
.

deci s = d.

2. Într-un triunghi dreptunghic ($\hat{A}=90^{\circ}$) se cunoaște cateta AB=3 și $\hat{C}=60^{0}$. Calculați perimetrul triunghiului.

a)
$$4 - \sqrt{3}$$
; b) $4\sqrt{3}$; c) $1 + \sqrt{3}$; d) $3(1 + \sqrt{3})$; e) $3(4 - \sqrt{3})$; f) 10.

Soluție. Avem $AC = 3\operatorname{ctg} 60^\circ = \sqrt{3}$ și $BC = \frac{AB}{\sin 60^\circ} = 2\sqrt{3}$, deci perimetrul este $3 + \sqrt{3} + 2\sqrt{3} = 3(1+\sqrt{3})$. Observație. Precizarea din enunț $\hat{A} = 90^\circ$ nu este esențială. Triunghiul fiind dreptunghic, singura alternativa $\hat{B} = 90^\circ$ conduce la același rezultat.

- 3. Unghiurile exterioare ale unui triunghi au măsurile α, β, γ . Dacă $\alpha + \beta = 3\gamma$, atunci triunghiul este
 - a) echilateral; b) cu laturile în progresie aritmetică; c) isoscel; d) cu un unghi de 120°; e) ascuţitunghic; f) dreptunghic.

Soluție. Fie A,B,C măsurile interioare ale unghiurilor triunghiului. Atunci $\gamma=A+B,\beta=A+C,\alpha=B+C$. Sumând cele trei egalități termen cu termen, obținem $\alpha+\beta+\gamma=2(A+B+C)=360^\circ$. Folosind relația din enunț $\alpha+\beta=3\gamma$, rezultă $4\gamma=360^\circ\Rightarrow\gamma=90^\circ$, deci triunghiul este dreptunghic.

4. Dacă $\alpha \in (\frac{\pi}{2}, \pi)$ și sin $\alpha = \frac{1}{3}$, atunci tg α este

a)
$$-\frac{1}{2}$$
; b) $\frac{\sqrt{2}}{4}$; c) $-\frac{\sqrt{2}}{4}$; d) $\sqrt{3}$; e) $-\sqrt{3}$; f) $\sqrt{2}$.

Soluţie. Cum
$$\alpha \in (\frac{\pi}{2}, \pi) \Rightarrow \cos \alpha < 0$$
. Avem $\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\frac{2\sqrt{2}}{3}$ si $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{\sqrt{2}}{4}$.

5. Prin secționarea unei piramide patrulatere regulate cu un plan paralel cu baza se obține un trunchi de piramidă în care raportul dintre lungimile laturilor bazei mici și bazei mari este $\frac{3}{5}$. Știind că volumul piramidei este 125, volumul trunchiului de piramidă este

a) 105; b) 98; c)
$$48\sqrt{2}$$
; d) 96; e) 102; f) 100.

Soluție. Notăm volumul piramidei mari (al piramidei inițiale care este secționată) cu V_M , iar volumul piramidei mici (piramida rezultată prin secționare) cu V_m . Cele două piramide sunt asemenea și raportul volumelor este $\frac{V_m}{V_M} = \left(\frac{3}{5}\right)^3$. Dacă $V_M = 125$, rezultă $V_m = 27$, deci volumul trunchiului de piramidă este $V_M - V_m = 98$.

- 6. Să se determine suma lungimilor bazelor unui trapez, știind că linia sa mijlocie are lungimea 15.
 - a) 18; b) 20; c) 16; d) 30; e) 15; f) 24.

Soluţie. Avem $m = \frac{b+B}{2} = 15$ (unde m = linia mijlocie, b = baza mică, B = baza mare), deci b + B = 30.

7. Dacă $\sin^2 15^0 + \cos^2 15^0 = (y+1)(y-2), y > 0$, atunci y este egal cu

a)
$$\frac{1-\sqrt{13}}{2}$$
; b) $\frac{1}{7}$; c) $\frac{\sqrt{2}}{2}$; d) $\sqrt{13}$; e) $\sin 15^0$; f) $\frac{1+\sqrt{13}}{2}$

Soluţie. Avem $(y+1)(y-2)=1 \Leftrightarrow y^2-y-3=0 \Leftrightarrow y=\frac{1\pm\sqrt{13}}{2}$. Cum y>0, rezultă $y=\frac{1+\sqrt{13}}{2}$.

- 8. Un con și un cilindru au același volum. Știind că înălțimile lor sunt egale, calculați raportul dintre raza conului și raza cilindrului.
 - a) $\frac{4}{3}$; b) $\frac{5}{4}$; c) $\sqrt{3}$; d) $\frac{3}{2}$; e) $\sqrt{5}$; f) $\sqrt{2}$.

Soluție. Avem R_1 =raza conului, R_2 =raza cilindrului $\Rightarrow V_1 = \frac{\pi R_1^2 h}{3} = \pi R_2^2 h \Rightarrow \left(\frac{R_1}{R_2}\right)^2 = 3 \Rightarrow \frac{R_1}{R_2} = \sqrt{3}$.

- 9. Aflați aria unui trapez isoscel având baza mică 6, baza mare 8 și diagonalele perpendiculare.
 - a) $14\sqrt{2}$; b) 25; c) 49; d) 36; e) 64; f) $12\sqrt{3}$.

Soluție. Fie M si N mijloacele bazelor mici și respectiv mari $(AD \ si \ BC)$ ale trapezului isoscel ABCD. Dacă O este punctul de intersecție al diagonalelor, atunci M, O, N sunt coliniare, iar triunghiurile AOD și BOC sunt triunghiuri dreptunghice isoscele cu vârful unghiului drept in O. Avem $OM = \frac{AD}{2} = 3, ON = \frac{BC}{2} = 4$. Deci MN = 7. Cum MN este înăltime, rezultă

$$S = \frac{(AB + DC)}{2}MN = 7 \cdot 7 = 49.$$

10. Valoarea expresiei $E = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$ este

a)
$$-\frac{\sqrt{2}}{2}$$
; b) $-\frac{1}{2}$; c) $\frac{\sqrt{2}}{2}$; d) $\sqrt{3}$; e) $\frac{1}{2}$; f) 1.

Solutie. Avem

$$\begin{split} 2E\sin\frac{\pi}{7} &= 2\sin\frac{\pi}{7}\cos\frac{2\pi}{7} + 2\sin\frac{\pi}{7}\cos\frac{4\pi}{7} + 2\sin\frac{\pi}{7}\cos\frac{6\pi}{7} = \\ &= \sin\frac{3\pi}{7} - \sin\frac{\pi}{7} + \sin\frac{5\pi}{7} - \sin\frac{3\pi}{7} + \sin\pi - \sin\frac{5\pi}{7} = \\ &= -\sin\frac{\pi}{7} + \sin\pi = -\sin\frac{\pi}{7}. \end{split}$$

Deci $2E\sin\frac{\pi}{7} = -\sin\frac{\pi}{7} \Rightarrow E = -\frac{1}{2}$.

- 11. Se consideră un patrulater convex ABCD în care $AB \equiv CD$. Se cere locul geometric al punctelor M din planul patrulaterului ce satisfac relația $MA^2 + MB^2 = MC^2 + MD^2$.
 - a) un cerc tangent la AB și CD; b) o semidreaptă; c) o dreaptă; d) două drepte paralele; e) un singur punct; f) mulțimea vidă.

Soluţie. Fie E mijlocul lui AB, F mijlocul lui CD. Din teorema medianei pentru mediana ME în triunghiul MAB şi mediana MF în triunghiul MCD, avem

$$ME^2 = \frac{MA^2 + MB^2}{2} - \frac{AB^2}{4}, MF^2 = \frac{MC^2 + MD^2}{2} - \frac{CD^2}{4}.$$

Dar $MA^2 + MB^2 = MC^2 + MD^2$ si AB = DC, deci ME = MF. Reciproc, pentru un punct M ales astfel încât ME = MF se arată că are loc egalitatea din enunţ. Prin urmare locul geometric căutat este mediatoarea segmentului EF.

- 12. Fie O intersecția diagonalelor AC și BD ale patrulaterului convex ABCD. Dacă AO = 2OC și OB = 2OD, să se calculeze raportul $\frac{\text{aria }(ABCD)}{\text{aria }(DOC)}$.
 - a) 5; b) 7; c) 8; d) 4; e) 9; f) 3.

Soluție. Avem $\widehat{AOB}=\alpha,\ OC=x,\ OD=y.$ Rezultă $m(\widehat{AOD})=\pi-\alpha$ și $S_{AOB}=\frac{2x2y\sin\alpha}{2}=2xy\sin\alpha,$ $S_{AOD}=S_{BOC}=xy\sin\alpha,\ S_{DOC}=\frac{xy\sin\alpha}{2}.$ In final obținem $S_{ABCD}=\frac{9}{2}xy\sin\alpha=9S_{DOC},$ deci $\frac{S_{ABCD}}{S_{DOC}}=9.$

13. Într-un cerc de rază R se înscrie un triunghi echilateral. Aria triunghiului este

a)
$$\frac{R^2\sqrt{3}}{6}$$
; b) $\frac{3R^2\sqrt{3}}{4}$; c) $\frac{R^2\sqrt{3}}{2}$; d) $\frac{3R^2\sqrt{3}}{2}$; e) $3R^2\sqrt{3}$; f) $\frac{2R^2\sqrt{3}}{3}$.

Soluţie. Latura triunghiului echilateral înscris în cercul de rază R este $a=R\sqrt{3}$, deci rezultă aria triunghiului $S=\frac{a^2\sqrt{3}}{4}=\frac{3\sqrt{3}R^2}{4}$. Altfel. Considerăm punctele A',B',C' pe cerc astfel încât AA'BB'CC' să fie hexagon regulat. Dacă O este centrul cercului, atunci au loc congruențele de triunghiuri (cazul LUL): $\Delta OAB \equiv \Delta A'AB$, $\Delta OBC \equiv \Delta B'BC$ și $OCA \equiv \Delta C'CA$. Triunghiurile din ştânga partiționează triunghiul dat, iar toate cele 6 triunghiuri - hexagonul. Deci aria triunghiului dat ΔABC este jumătate din aria hexagonului AA'BB'CC'. O altă partiție a hexagonului este realizată de triunghiurile echilaterale congruente $\Delta OAA'$, $\Delta OA'B$, $\Delta OBB'$, $\Delta OB'C$, $\Delta OCC'$, $\Delta OC'A$, care au toate laturile egale cu R, deci aria $\frac{R^2\sqrt{3}}{4}$. Atunci aria hexagonului este $6 \cdot \frac{R^2\sqrt{3}}{4} = \frac{3R^2\sqrt{3}}{2}$ și prin urmare aria triunghiului ΔABC este $\frac{1}{2} \cdot \frac{3R^2\sqrt{3}}{2} = \frac{3R^2\sqrt{3}}{4}$.

- 14. Fie O punctul de intersecție al mediatoarelor unui triunghi oarecare. Atunci O este
 - a) ortocentrul; b) situat în exteriorul triunghiului; c) un vârf al triunghiului;
 - d) egal depărtat de laturile triunghiului; e) centrul de greutate; f) egal depărtat de vârfurile triunghiului.

Soluție. Punctul O este egal depărtat de vârfurile triunghiului.

15. Raportul dintre măsura unui unghi înscris într-un cerc și măsura arcului cuprins între laturile sale este

a)
$$\frac{1}{3}$$
; b) $\frac{1}{4}$; c) $\frac{3}{4}$; d) 1; e) $\frac{1}{2}$; f) $\frac{2}{3}$.

Soluție. Fie \widehat{MAN} acest unghi. Măsura sa este jumătate din măsura arcului de cerc MN opus vârfului A, care prin definiție este măsura unghiului la centru \widehat{MON} care subântinde acest arc. Prin urmare, raportul este $\frac{1}{2}$.

16. Volumul piramidei determinate de trei muchii concurente ale unui cub de latură a este

a)
$$\frac{a^3\sqrt{3}}{3}$$
; b) $\frac{2a^3}{3}$; c) $\frac{a^3}{2}$; d) $a^3\sqrt{2}$; e) $\frac{a^3}{6}$; f) $\frac{a^3}{3}$.

Soluţie. Volumul este $V = \frac{\frac{a^2}{2}a}{3} = \frac{a^3}{6}$.

17. Dacă în triunghiul ABC avem $AB = \sqrt{13}$, BC = 3, $\hat{C} = 60^{\circ}$, atunci

a)
$$AC = 2$$
; b) $AC = 3\sqrt{3}$; c) $AC = 4\sqrt{2}$; d) $AC = 3\sqrt{2}$; e) $AC = 4\sqrt{3}$;

f) AC = 4

Soluție. Din teorema cosinusului pentru unghiul \widehat{C} în triunghiul ABC, obținem $AB^2 = AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos 60^\circ$, deci notând AC = x > 0, rezultă

$$13 = x^2 + 9 - 3x \Leftrightarrow x^2 - 3x - 4 = 0 \Leftrightarrow x \in \{-1, 4\}.$$

Convine doar soluţia pozitivă, deci AC = x = 4.

18. Să se calculeze $z = \left(\frac{1+i\sqrt{3}}{1-i}\right)^6$.

a)
$$z = -8i$$
; b) $z = 2^3$; c) $z = 2^3(1+i)$; d) $z = 2^5\sqrt{2}(1+i)$; e) $z = 2^3(1+i\sqrt{3})$; f) $z = 2^3(1-i)$.

Soluție. Scriem numărătorul și numitorul fracției in forma trigonometrică:

$$1 + i\sqrt{3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right), \ 1 - i = \sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right),$$

deci folosind formula lui Moivre, rezultă

$$z = \frac{2^6(\cos 2\pi + i\sin 2\pi)}{\sqrt{2}^6(\cos(-\frac{3\pi}{2}) + i\sin(-\frac{3\pi}{2}))} = \frac{8}{i} = -8i.$$

Altfel, algebric, folosim binomul lui Newton, avem $(1+i\sqrt{3})^3 = -8$, iar $(1-i)^2 = -2i$. Atunci $\left[\frac{(1+i\sqrt{3})}{1-i}\right]^6 = \frac{(-8)^2}{(-2i)^3} = \frac{64}{8i} = \frac{8}{i} = -8i$.