Week 7: Loony Automata Tune

Response by: Benjamin (aqn9yv, dlb2ru, ht6xd, iad4de, jmn4fms, lw7jz)

Problem 1 NFA Size

Theorem 1 The language represented by a regular expression that is n characters long can be computed by a non-deterministic finite automaton of O(n) states.

Proof. A regular expression consisting only of the empty string can be represented by a NFA of 1 state. The language represented by a regular expression consisting of one literal character can be computed by a NFA of 2 states.

Note that the burden of proof of the following results was achieved in lecture.

Let R_1 and R_2 be regular expressions such that R_1 is n_1 characters long and computed by an NFA with $n_1 + c_1$ states and R_2 is n_2 characters long and computed by an NFA with $n_2 + c_2$ states.

The NFA which computes $(R_1|R_2)$ requires one additional state with ε transitions to each of the start states for R_1 and R_2 . Thus $(R_1|R_2)$ requires $n_1+n_2+c_1+c_2+1$ states, where $(R_1|R_2)$ is n_1+n_2+1 characters long. This can be simplified by stating the Regex $(R_1|R_2)$ which is n bits long is computed in n+c states where $n=n_1+n_2$ and c is some constant.

The concatenation of R_1 and R_2 , represented by R_1R_2 , is formed by simply adding an epsilon transition from the final states of R_1 to the start states of R_2 , and thus does not require any additional states besides those used to compute R_1 and R_2 . Thus for the FSA which computes the expression R_1R_2 of length n requires n states, where $n = n_1 + n_2$.

The Kleene star * adds one character to the regular expression, R_1^* , and adds a new start state to the NFA for the empty string that has an ε transition to the original start state. Thus R_1^* will be $n_1 + 1$ characters long, and take $n_1 + c + 1$ states to compute, where R_1 took $n_1 + c$ states.

Any regular expression is a combination of the empty string, literal characters, unions or Kleene stars, and as shown above any regular expression of length n composed of these elements will be computed by an FSA with n+c states, where c is some constant resulting from the operations of alternation and Kleene star.

Let R be a regular expression with n characters, and computed by an FSA with n+c states. To show that the number of states of a regular expression, R, is in O(n) where n is the number of characters in R, we need to show that for some constant C, that the number of states is at most C*n.

From our results above we have that the number of states is n+c for some constant c, and thus it suffices to show that $n+c \le C*n$, $\forall n \ge n_0$ for some $n_0 \in \mathbb{N}$.

```
Let n_0 = c/(C-1), then for n \ge n_0, n \ge c/(C-1)
\implies (C-1) \cdot n \ge c
\implies C \cdot n - n \ge c
\implies C \cdot n \ge n + c \iff n + c \le Cn
\implies n + c \in O(n)
\implies The number of states required to compute a regular expression is in O(n). \square
```