Last Name: First Name:	
CS 6505, Fall 2017, Homework 1, $9/1/17$ Due $9/8/17$ in class	s Page 1/10
Problem 1, Analysis of Algorithm (10 points)	
Where n is a power or 2 and $n > 8$, how many x 's does the fe	$\operatorname{Inction} \operatorname{Mystery}(n) \text{ below print?}$
(a) Write and solve the recurrence exactly using substitution.	
(b) State the solution in $O()$ notation.	
Mystery(n)	
if $n > 8$ then begin	
$\operatorname{print}("x")$	
$Mystery(\frac{n}{2})$	
$Mystery(\frac{n}{2})$	
end	

	First Name: Email:
Problem 2, An	alysis of Algorithm (10 points)
Where n is a pow	ver or 2 and $n \ge 1$, how many x's does the function Mystery(n) below print?
(a) Write and sol	ve the recurrence exactly using substitution.
(b) State the solu	ution in $O()$ notation.
Mystery(n)	V
$\operatorname{print}("xx")$	
if $n > 1$ then 1	pegin
	$Mystery(\frac{n}{2})$
	$Mystery(\frac{n}{2})$
	$Mystery(\frac{n}{2})$
	end

Last Name:	First Name:	Email:	
CS 6505, Fall 2017, Ho	omework 1, 9/1/17 Due 9/8/17 i	in class Page 3/10	
${f Problem~3,~Analysis}$	of Algorithm (10 points)		
Where n is a power or	2 and $n \ge 1$, how many x's does	s the function $Mystery(n)$ below print?	
(a) Write and solve the	recurrence exactly using substit	tution.	
(b) State the solution i	O() notation.		
Mystery(n)			
for $i := 1$ to n^2			
$\operatorname{print}("xx")$			
if $n > 1$ then begin			
Myste	$\exp\left(\frac{n}{2}\right)$		
Myste	$\exp\left(\frac{\bar{n}}{2}\right)$		
Myste	$\exp\left(\frac{\tilde{n}}{2}\right)$		
· .	\ = /		

end

Last Name:	First Name:	Email:	
CS 6505, Fall 2017, Hor	mework 1, $9/1/17$ Due $9/8/17$ in class	s Page 4/10	

Problem 4, Analysis of Algorithm (10 points)

Where n is a positive integer, how many x's does the function Mystery(n) below print?

- (a) Write and solve the recurrence exactly using substitution.
- (b) State the solution in O() notation.

```
\begin{aligned} & \text{Mystery}(n) \\ & \text{if } n = 1 \text{ then print}("x") \\ & \text{if } n > 1 \text{ then begin} \\ & & \text{Mystery}(n-1) \\ & & \text{Mystery}(n-1) \\ & & \text{end} \end{aligned}
```

Last Name:	First Name:	Email:
CS 6505, Fall 2017, Homework 1	1, 9/1/17 Due $9/8/17$ in	class Page 5/10

Problem 5, Min and Max with Fewer Comparisons (10 points)

Let $a_1
ldots a_n$ be an input array of n unsorted distint integers, where n is an even number. Let m_{max} be the maximum value of the above integers, and let m_{min} be the minimum value of the above integers. Give an algorithm that findsboth m_{max} and m_{min} using at most $\frac{3n}{2}-2$ comparisons. Argue correctness and running time of your solution.

Last Name:	First Name:	Email:
CS 6505, Fall 2017,	Homework 1, $9/1/17$ Due $9/8/17$ in class	Page 6/10

Problem 6, Sorting Faster than $O(n \log n)$ in Special Case (10 points)

Let $a_1 \dots a_n$ be an input array of n unsorted and not necessarily distint integers. Let m_{\max} be the maximum value of the above integers, and let m_{\min} be the minimum value of the above integers. Let $M = m_{\max} - m_{\min}$. Give an O(n+M) comparison algorithm that sorts the input array. Argue correctness and running time of your solution.

Last Name:	First Name:	Email:
CS 6505, Fall 2017, Homework	1, 1/9/17 Due $9/8/17$ in class	Page 7/10

Problem 7, Use of Pointers (10 points)

Let $a_1
ldots a_n$ be n sorted distint integers, and let τ be an additional given integer. Give an O(n) comparison algorithm that decides if there exist distinct indices i and j, ie $1 \le i < j \le n$, such that $a_i + a_j = \tau$. Argue correctness and running time of your solution.

Last Name:	First Name:	Email:
CS 6505, Fall 2017, Homework	1, 9/1/17 Due $9/8/17$ in class	Page 8/10

Problem 8, Searching a Tree (10 points)

You are given a complete binary tree on n nodes, where each node has a distinct value w_i , $1 \le i \le n$. The input representation is as follows:

- (1) Index 1 is the root of the tree.
- (2) For $1 \le i \le \frac{n-1}{2}$, the left child of i is 2i and the right child of i is 2i + 1.
- (3) For $2 \le i \le n$, the parent of i is $\lfloor \frac{n}{2} \rfloor$.

Say that k is a *local minimum* if and only if:

- (1) If k = 1, then w_1 is smaller than both its children.
- (2) If $k \ge \frac{n-1}{2}$, then w_k is smaller than its parent. (3) If $2 \le k \le \frac{n-1}{2}$, then w_k is smaller than both its children, and w_k is also smaller than its parent. Give an $O(\log n)$ comparison algorithm that finds a local minimum of the binary tree. Justify correctness and running time.

Last Name:		Page 9/10
Problem 9, Sorting in Linea Suppose that n is a perfect square given an array of a :	are and let $N = n + \sqrt{n}$.	O points) first n integers are sorted $a_1 < a_2 < \ldots < a_n$,
· -		parison algorithm that sorts the entire input

Last Name:	. First Name:	Email:
CS 6505, Fall 2017, Homework	1, 9/1/17 Due $9/8/17$ in cla	ss Page 10/10

Problem 10, Comparing Algorithmic Performance (10 points)

Suppose you are choosing between the following three algorithms:

- Algorithm A solves problems by dividing them into five subproblems of half the size, recursively solving each subproblem, and then combining solutions in linear time.
- ullet Algorithm B solves problems of size n by recursively solving two subproblems of size (n-1) and then combining the solutions in constant time.
- Algorithm C solves problems of size n by dividing them into nine subproblems of size n/3, recursively solving each subproblem, and then combining the solutions in $O(n^2)$ time.

Solve each recurrence by substitution, and give the running times of each of these algorithms in O() notation. Which one would you choose as the asymptotically fastest?