ECON-122 Introduction to Econometrics

Agnieszka Postepska

July 21st, 2011

Omitted Variable Bias

In a two variable population model, the bias caused by omission of the second explanatory variable can be computed as follows:

Expression for the bias:

$$E(\hat{\beta}_1) - \beta_1 = \beta_2 \frac{\sum_i (x_{1i} - \bar{x_1})(x_{2i} - \bar{x_2})}{\sum_i (x_{1i} - \bar{x_1})^2} = \beta_2 \hat{\delta}_1$$

where δ_1 correlation coefficient from a simple regression of x_{2i} on x_{1i}

Two cases are possible:

- ▶ Upward (positive) bias: $E(\hat{\beta}) \beta > 0$
- ▶ Downward (negative) bias: $E(\hat{\beta}) \beta < 0$

If x_1 and x_2 are uncorrelated, such that, $\beta_2 = 0$ the model is misspecified but the estimates are still unbiased.

If x_1 and x_2 are correlated, such that, $\beta_2 \neq 0$ the model is misspecified and the estimates are biased.

More than two explanatory variables in the model

- how can we extend the formula for the bias to allow for as many x's as we want?
- Consider the following model:

$$wage = \beta_0 + \beta_1 education + \beta_2 ability + \beta_3 experience + u$$

and again, we observe education and experience but not ability, so we estimate the following model:

$$extit{w\~age} = ilde{eta}_0 + ilde{eta}_1 ext{education} + ilde{eta}_3 ext{experience}$$

- ▶ does exclusion of ability influence estimates of both coefficients, β_1 and β_2 ?
 - \Rightarrow unfortunately, generally yes even if the variable is uncorrelated with the omitted variable
- unless a variable is uncorrelated with ALL RHS variables (including the omitted variable), its coefficient will be bias if the model is misspecified

Expression for the bias in multiple regression model

Consider the true model:

$$y = X\beta + Z\alpha + u$$

Then:

$$\hat{\beta}_{OLS} = (X'X)^{-1}X'y$$

$$= (X'X)^{-1}X'(X\beta + Z\alpha + u)$$

$$= \beta + (X'X)^{-1}X'Z\alpha + (X'X)^{-1}X'u$$

$$\Rightarrow E(\hat{\beta}_{OLS}) = \beta + (X'X)^{-1}X'Z\alpha$$

Expression for the bias with any number of regressors:

$$E(\hat{\beta}_{OLS}) - \beta = (X'X)^{-1}X'Z\alpha$$

And X'Z is the variance-covariance matrix of included and omitted regressors which explains why omitted variable generally biases all coefficient.

Many regressors in one model-introduction to multicollinearity

▶ Recall the formula for the error variance:

$$Var(\hat{\beta}_{OLS}|\mathbf{X}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$$

► The variance of an individual coefficient can be written as (derivation on the blackboard):

$$Var(\hat{eta}_{j}^{OLS}|\mathbf{X}) = rac{\sigma^2}{SST_j(1-R_i^2)}$$

- ▶ 3 elements of the variance:
 - σ^2 feature of the population the only way to decrease σ is to add explanatory variables to the model as this takes things out of the error term
 - ► SST_j total sample variation in x_j this we can increase by increasing the sample size and we want a lot of variation in x's as this increases the precision of estimates
 - $ightharpoonup R_j^2$ linear relationship between all explanatory variables in the model

Closer look at R_i^2

- ▶ this R_j^2 is obtained from regressing all independent variables on x_j so here x_i acts as y in normal setting)
- ▶ in other words, R_j^2 comes from the following model:

$$x_{ji} = \alpha X_{-ji} + u_i$$

- if the explanatory variables in the model are highly correlated, such that R_j^2 is high, then $(1-R_j^2)$ is small causing the variance of $\hat{\beta}_j$ to be large thus we get imprecise estimate
- when R_j^2 is "large" or "close to 1" we have **multicollinearity** problem
- not well defined concept and no easy way to correct it...

Include or not to include...

- no easy answer
- usually data is the main constraint
- one can run some specification tests but it really should be the theory not the data that tells us what to include in a model
- also, often we are facing the unbiasedness vs. efficiency trade-off
 - if theory tells us we should include two very correlated variables it might be better to exclude one and get a biased (why biased?) but more precise (why more precise?) estimates
 - it is often the case that researcher must scarify some bias for the sake of precision
- one solution to this problem is to group variables one cannot identify partial effects then but gets more precise estimates
- GOOD NEWS: precision of one estimate is not affected by multicollinearity among other, uncorrelated variables (why?)

Treatment of qualitative regressors

- indicator variables are used to capture qualitative variables and characteristics
- common examples: gender (male/female), presence of children (yes/no), employment status(employed/unemployed), marital status (married/divorced/separated/single/widowed), countries of birth etc.
- ▶ include in the model as any other regressor but be careful with interpretation:
 - for gender example include female dummy takes on value 1 for females and 0 for men
 - the omitted category is always the reference group
 - reference group is the group to which every other group is compared in estimation

Interaction terms

sometimes we might also suspect that some characteristic changes the influence of another variable - for example effect of schooling on wages is different for women than for men - interaction term captures this effect in the model:

$$wage_i = \beta_0 + \beta_1 schooling_i + \beta_2 female_i + \beta_3 female_i * schooling_i + u_i$$

- ▶ Interpretation:
 - $ightharpoonup eta_0$ effect of schooling on wages on men with 0 years of education
 - β₂ effect of schooling on wages for females with 0 years of education
 - $\beta_1 + \beta_3$ effect of one more year of edu on wages for women
 - $ightharpoonup eta_1$ effect of one more year of edu on wages for men

