并行程序设计实验

#ff程序设计实验 **实验 2 LU 分解**

联系方式: NJU-TJL@outlook.com

目录

实验 2 LU 分解	3
一、 实验设计	3
1. OpenMP 实现部分	3
1) 串行程序思路	3
2) 并行化思想	3
2. MPI 实现部分	4
1) 初版程序	
2) 重新设计 LU 分解计算思路	
3) 并行化思想	5
二、 实验结果	6
1. 运行环境	6
2. OpenMP 实现运行结果	6
3. MPI 实现运行结果	7
4. 结果分析	
三、 实验中遇到的问题及解决办法	
1. MPI 运行报错	
四、 实验总结	
五、 参考文献及资料	9

实验 2 LU 分解

一、实验设计

1. OpenMP 实现部分

1) 串行程序思路

LU分解可将一个矩阵 A分解为一个下三角矩阵 L和上三角矩阵 U的乘积,即:

$$A = LU$$

并非所有的矩阵都有 LU 分解,而对于非奇异矩阵(任 n 阶顺序主子式不全为 0)的方阵 A,可以采用 Doolittle 分解的方法来完成 LU 分解。

假设 A、L、U矩阵表示如下:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

$$A = LU = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & 1 \end{bmatrix} \times \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

那么在 Doolittle 分解中, 计算 L、U 矩阵的公式为:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} \cdot u_{kj} \quad (j \ge i)$$

$$l_{ji} = (a_{jl} - \sum_{k=1}^{i-1} l_{jk} \cdot u_{ki}) / u_{ii} \quad (j > i)$$

从此公式中,我们可以发现: 计算 u_{ij} 所依赖的数据都是下标值小于 i、j 的位置上的值。同理, l_{ji} 也是。所以,只要按照下标 i、j 从小到大的顺序,使用二重循环,依次计算 u_{ij} 和 l_{ji} ,即可利用此公式算出 L、U 矩阵中的全部值。

2) 并行化思想

要进行并行化,我们必须先理清楚计算过程中的数据依赖,即有哪些数据得先算,哪些必须后算。首先,观察 u_{ij} 的计算公式可以发现,计算 u_{ij} 依赖的数是 $l_{i,1\sim i-1}$ 和 $u_{1\sim i-1,j}$ 的数据。这里可以通过举一个例子来形象地说明:

1	0	0	0	0
1 ₂₁	1	0	0	0
1 ₃₁	l ₃₂	1	0	0
1 ₄₁	1 ₄₂	l ₄₃	1	0
1 ₅₁	152	l ₅₃	1 ₅₄	1

u ₁₁	u ₁₂	u ₁₃	u ₁₄	u ₁₅
0	u ₂₂	u ₂₃	u ₂₄	u ₂₅
0	0	u ₃₃	(u ₃₄)	(u ₃₅)
0	0	0	u ₄₄	u ₄₅
0	0	0	0	u ₅₅

计算u₃₄所依赖的数据 计算u₃₅所依赖的数据

在上图中,如果 u_{34} 和 u_{35} 所依赖的数据都已计算完成,那么此时 u_{34} 和 u_{35} 可并行地进行计算。同理,再来看L矩阵部分的计算:

1	0	0	0	0
1 ₂₁	1	0	0	0
1 ₃₁	132	1	0	0
1 ₄₁	1 ₄₂	143	1	0
1 ₅₁	l ₅₂	(l ₅₃)	l ₅₄	1

u ₁₁	u ₁₂	u ₁₃	u ₁₄	u ₁₅
0	u ₂₂	u ₂₃	u ₂₄	u ₂₅
0	0	u ₃₃	u ₃₄	u ₃₅
0	0	0	u ₄₄	u ₄₅
0	0	0	0	u ₅₅

□□□□ 计算l₃₄所依赖的数据

□□□ 计算l₃5所依赖的数据

数据的依赖性是类似的,所以也可以并行地计算143和153。

综上所述, 计算 u_{ij} 的时候每一行内的元素可以并行地计算, 计算 l_{ji} 的时候每一列内的元素可以并行地计算。

理清楚了并行化思想后,非常容易从上述的串行程序中,改造得到 OpenMP 版本的并行程序。如下图所示,仅需要添加一行编译指示,让内循环进行并行计算即可。

```
//计算L、U矩阵

for (int i = 0; i < N; i++) {

    U[i][i] = A[i][i] - sum_i_j_K(i, i, i);
    L[i][i] = 1;
    #pragma omp parallel for
    for (int j = i+1; j < N; j++) {

        U[i][j] = A[i][j] - sum_i_j_K(i, j, i);
        L[j][i] = (A[j][i] - sum_i_j_K(j, i, i)) / U[i][i];
    }
}
```

2. **MPI 实现部分**

1) 初版程序

写出了 OpenMP 并行程序后,理清楚了并行思想,MPI 也是类似的实现,只是其中的进程通信部分需要额外处理。按照上述的并行原理,也是内循环中各进程并行计算。按照这样的规定分配计算: u_{ii} 和 l_{ii} 由第 j % n threads 号进程计算(n threads 为进程总数)。

另外,由于各进程负责计算的元素,所依赖的数据并不是都在本进程,所以还需要在每轮计算前,拿到自己所依赖的数据。比如,上图中,计算 u_{34} 所依赖的数据中, l_{31} 和 l_{32} 都是由 3 号进程负责计算,而 u_{34} 是由 4 号进程负责计算(假设 n threads=8)。

所以,这其中有着大量的进程通信过程。

最终,按此方式实现的 MPI 版本,计算结果正确(与 OpenMP 版本输出结果进行对比,结果一致)。MPI 单进程版本与 OpenMP 的单线程版本运行时间基本一致,但是加速效果很差,最高加速比只能到达 1.2 左右。且随着从 4 到 8 进程,进程数增加,运行时间增加很多,而 16 进程则无法在数分钟内运行结束。

仔细分析,发现这其中的进程通信开销很大,进程数增大带来并行化效果不足以抵消的通信额外开销。至于为什么开销很大,分析发现,其最根本原因,还是因为数据结构与并行划分方式不太契合,比如:本来同一行内的元素,在地址空间上是放在一个块一起的,整个通信则可以传输一个块的数据。但是按照这里采用的并行划分方式,导致了每次只能传送一个单位数据,比如说 u_{34} 和 u_{35} 是同一行内的数,且在地址空间处于相邻位置,本来是可以一

起传送。但是按照这里的计算方式,它们两个分别是 4 号和 5 号进程负责计算(假设进程总数为 8),那么这两个元素就分别需要由 4 号和 5 号进程来 MPI Send。

而在这种 LU 分解计算方法下 (Doolittle 分解,也即递推公式法),数据结构和计算划分方法都难以改变,所以这种计算方式在 MPI 实现下难以产生较好的并行效果。

2) 重新设计 LU 分解计算思路

在网上查阅许多资料后,我发现了一篇名为<u>《方阵 A 的 LU 分解的初等行变换法》</u>的论文。其中提到使用矩阵的初等行变换来实现 LU 分解的方法,非常适合于 MPI 并行化。

在线性代数课程中,我们十分熟悉用高斯消元法产生行阶梯型矩阵的过程:从上往下,依次将下三角区域的第1列元素变为0,然后是第2列、第3列……这样就可以得到一个上三角矩阵(也是行阶梯型矩阵)。文章中指出,对矩阵A进行高斯消元法中的行初等变换,而得到那个上三角矩阵就是LU分解的U。而矩阵L的计算则可以在初等行变换过程中一起计算,非常简便:只需在把下三角区域的一列列元素变为0的时候,除以主行元素对应列的那个元素,即可算出。这里通过举例来进行说明:

					<u> </u>
u ₁₁	u ₁₂	u ₁₃	u ₁₄	u ₁₅	
١.	l —				<u> </u>
l ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	
,					
l ₃₁	a ₃₂	a ₃₂	a ₃₄	a ₃₅	
,					
1 ₄₁	a ₄₂	a ₄₃	a ₄₄	a ₄₅	
l_{51}	a_{52}	a ₅₃	a ₅₄	a ₅₅	
+-	4				ı
1	1				

在如图这样的矩阵中,计算过程依次按照①、② ... 的顺序进行初等行变换。但是与行变换不同的地方在于,原来该填 0 的地方,现在要填入 l_{ij} 。而 l_{ij} 的计算遵循:在对本列进行初等行变换消元时,比如在如图这个时刻,计算②部分,可以算出 $l_{32}=a_{32}/a_{22}$ 、 $l_{42}=a_{42}/a_{22}$ 、 $l_{52}=a_{52}/a_{22}$ 。其他部分进行正常的初等行变换即可,和高斯消元法产生行梯型矩阵的过程一致。

最终,按照这样的顺序计算,从左上角算到右下角,一层层进行行初等变换过程,最终 a 矩阵的上三角区域就是 U 的上三角的值,下三角就是 L 的下三角的值。当然,L 中, l_{ii} 的值 为 1。

3) 并行化思想

从以上分析过程中可见,最外层的计算是一个循环,从上往下,依次选取第i行作为初等行变换中的主行元素,然后对第i+1行到第N行做初等行变换。这里我们按行来划分矩阵,即第j行由第j% $n_threads$ 号进程来进行计算(做初等行变换)。而每次进行初等行变换前,都先使用 MPI_B cast将主行元素广播到所有进程,这样每个进程即可各自独立地完成初等行变换过程,这也就是并行化的核心所在。

二、实验结果

注:关于程序正确性的验证。测试手工构造的一个 3×3 小矩阵 LU 分解,二者的结果均为正确。之后,将给定的 LU.in 文件作为输入,所实现 OpenMP 和 MPI 程序都会输出 L.out 和 U.out 两个文件作为输出结果。再将 OpenMP 和 MPI 程序输出的结果文件使用 Linux 终端下的 diff 命令进行比对,发现完全一致,所以基本可以确定 OpenMP 和 MPI 所实现的 LU 分解程序是正确的。

1. 运行环境

物理机 CPU: Intel i5-7200U (双核), 内存 16GB

虚拟机: CPU 分配 2 个核,内存 4GB

虚拟机系统环境: Ubuntu 16.04 (64 位版本)、gcc version 5.4.0 20160609、mpicc for MPICH

version 3.3.2

2. OpenMP 实现运行结果

使用如下命令编译源代码:

gcc -fopenmp -o LU OpenMP LU OpenMP.c

再按如下格式运行可执行文件:

./LU OpenMP 4 LU.in

(第1个参数表示线程个数、第2个代表输入文件; 缺省值分别为1和LU.in)程序会在终端打印输出运行时间,且在同目录下生成L.out和U.out两个结果文件。

为减少误差,这里使用了 shell 脚本进行 10 轮实验。每一轮中,线程数分别取 1、2、4、8、16 和 32。最终,可得到数据如下表:

线和	呈数	1	2	4	8	16	32
	Round 1	19.30	14.34	11.94	12.07	12.31	12.93
	Round 2	19.78	14.31	11.58	11.95	12.68	13.42
	Round 3	19.12	14.06	11.87	12.26	13.19	12.98
	Round 4	19.45	14.13	11.49	12.10	12.32	13.19
执行时间	Round 5	19.08	14.33	11.59	12.58	12.42	13.31
(单位: s)	Round 6	19.09	14.73	12.12	12.10	12.26	13.28
	Round 7	19.42	13.93	11.21	12.15	12.45	12.83
	Round 8	18.99	14.20	11.71	12.14	12.47	12.87
	Round 9	19.33	14.80	11.98	12.00	12.66	13.29
	Round 10	19.32	14.12	11.93	12.26	12.29	13.04
平均	平均时间		14.30	11.74	12.16	12.50	13.11
加油	速比	1.00	1.35	1.64	1.59	1.54	1.47

将加速比绘制成柱状图如下:

3. MPI 实现运行结果

使用如下命令编译源代码:

mpicc -o LU MPI LU MPI.c

再按如下格式运行可执行文件:

mpirun -np 2 ./LU MPI LU.in

("2"表示进程个数; "LU.in"代表输入文件路径, 缺省值为 LU.in)

程序会在终端打印输出运行时间,且在同目录下生成L.out和U.out两个结果文件。

为减少误差,这里使用了 shell 脚本进行 10 轮实验。每一轮中,进程数分别取 1、2、4、8、16 和 32。最终,可得到数据如下表:

进	程数	1	2	4	8	16	32
	Round 1	15.59	10.69	8.15	30.45	69.49	134.36
	Round 2	13.96	10.53	8.15	28.17	71.14	114.97
	Round 3	13.80	10.45	8.67	31.06	77.61	114.50
	Round 4	14.10	10.36	8.33	28.35	73.18	111.39
执行时间	Round 5	14.44	10.52	8.04	26.87	77.54	115.90
(单位: s)	Round 6	13.91	10.75	8.15	28.20	70.82	113.32
	Round 7	19.60	12.91	8.57	27.64	70.86	115.43
	Round 8	14.29	10.59	8.24	30.37	72.00	114.82
	Round 9	14.11	10.39	8.25	36.15	74.82	115.98
	Round 10	13.94	10.71	8.46	30.07	67.76	118.34
平均	平均时间		10.79	8.30	29.73	72.52	116.90
加	速比	1.00	1.37	1.78	0.50	0.20	0.13

将加速比绘制成柱状图如下:

4. 结果分析

这次实验中, OpenMP 的结果与上次实验的基本一致,即:随着线程数增加,加速比逐渐增大到最大值,再随着线程数的增大,加速比逐渐有所下降。当线程数增加,越来越充分利用 2 个物理 CPU 核的并行资源,加速比也就接近于 2。而线程数增加到一定程度,物理 CPU 核有限的,再增加线程数也无法从物理上增加程序运行的并行程度,反而因为线程数的增加,带来切换线程、线程通信和管理等的额外开销,所以使得运行时间增加,加速比下降。

而本次实验中, MPI 实现中的结果总体趋势上与 OpenMP 一致, 加速比都是先上升再下降。但是, 后期下降的幅度很大, 显示出增加进程带来的额外开销增长较为明显。

经过分析,我认为其主要原因是本次实验 MPI 实现的 LU 分解程序中进程通信带来的额外开销较大。在 MPI 程序中,进程通信体现在每次行变换前,需要将主行元素 Bcast 到所有进程,这个 Bcast 的复杂度可以粗略计算为 O(p) (p 为线程数),总共需要 N 次 Bcast,所以总体进程通信的开销约为 O(N*p) (N 为方阵阶数)。而在结果数据表中,从进程 8、16、32 的平均运行时间来看(此时大部分耗时都在进程通信上),进程数为 2 倍时,时间也正好约为 2 倍,故可以验证此想法。

OpenMP 利用多线程来加速程序执行,只能在共享内存系统上运行。MPI 则是基于进程,所以可以适用于非共享内存系统(比如计算机集群)。而线程与进程对比下,线程是更轻量级的,可以提供更细粒度的并行,且通信等的额外开销更小(线程不用完全复制出一整个独立的内存空间,多个线程可以共用一个;进程则是每个进程有自己独立的内存空间)。所以,此分析也符合本次实验中所呈现的结果(MPI 程序随进程数增大,额外开销增大比较多)。

三、实验中遇到的问题及解决办法

1. **MPI 运行报错**

之前可以运行的 MPI 程序, 忽然出现报错, 无法运行。并且给出如下的报错提示:

解决:

根据提示信息的最后一行,"gethostbyname failed",说明这是个与网络通信有关的错误,而这里的 MPI 都运行在本机这一个节点上,所以猜测可能是网络连接出现问题。

果然,检查 Ubuntu 的网络链接,发现没有启用联网。启用后即可以正常运行程序。

四、实验总结

- 使用 OpenMP 可以较为方便地从串行代码中修改得到并行代码,但是操作的灵活性不如 MPI,会有更多的局限性,适用面不如 MPI广,比如无法在计算机集群上使用。
- MPI 程序设计需要仔细考量进程间通信的设计,以免发送阻塞等问题。比如,进程不能 尝试 Recv 接收源为自己进程的数据,否则就会处于一直阻塞。所以相比 OpenMP, MPI 的程序设计更为复杂,需要考虑更多的细节。
- 在本次实验中,OpenMP 与 MPI 的并行加速效果都还不错(最高加速比都比较接近 2,即 CPU 核心数),但是它们各自适用的地方有不同。OpenMP 非常适合改造计算主体为 for 循环的串行程序,所以这里使用 Doolittle 分解(即递推公式法)来完成 LU 分解比较适合;MPI 则非常灵活,可以完成一些复杂进程通信操作,所以这里适合使用初等行变换的方法来完成 LU 分解则非常不错,可以得到更为高效的程序。同时,MPI 程序中,在进程数增大到一定程度时,我们需要考虑到进程通信带来额外开销的影响。

五、参考文献及资料

- [1] 徐晓飞,曹祥玉,姚旭,等. 一种基于 Doolittle LU 分解的线性方程组并行求解方法[J]. 电子与信息学报, 2010, 32(008):2019-2022.
- [2] 周涛, 满迪, 高文鹏,等. 基于矩阵 LU 分解的并行处理[J]. 电脑知识与技术, 2016, 12(021):219-221.
- [3] 杨成,陈进之,魏吉朝. 方阵 A 的 LU 分解的初等行变换法[J]. 西北轻工业学院学报, 1998(2):136-138.
- [4] 赵祥宇. 基于 Spark 平台的大矩阵 LU 分解及求逆算法的研究与实现[D]. 2016.
- [5] LU 分解 百度文库. https://wenku.baidu.com/view/cd431e02de80d4d8d15a4f16.html#
- [6] LU 分解(图解) qq 40688707 的博客-CSDN 博客.

https://blog.csdn.net/qq 40688707/article/details/89256737

[7] 线性代数笔记 10——矩阵的 LU 分解 - 我是 8 位的 - 博客园.

https://www.cnblogs.com/bigmonkey/archive/2018/08/29/9555710.html