Lasso and Bayesian Lasso Chapter 6 ISL

STA521 Linear Models Duke University

Merlise Clyde

September 26, 2014

Ridge Regression Model

Write $\mathbf{Y} = \mathbf{1}_n \alpha + \mathbf{X}^c \boldsymbol{\beta} + \boldsymbol{\epsilon}$ where \mathbf{X}^c has been centered and standardized

Prior Distribution on

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}_{oldsymbol{
ho}}, rac{1}{\phi k} oldsymbol{\mathfrak{l}}_{oldsymbol{
ho}})$$

Ridge Regression Model

Write $\mathbf{Y} = \mathbf{1}_n \alpha + \mathbf{X}^c \boldsymbol{\beta} + \boldsymbol{\epsilon}$ where \mathbf{X}^c has been centered and standardized

Prior Distribution on

$$\boldsymbol{\beta} \mid \phi \sim \mathsf{N}(\mathbf{0}_p, \frac{1}{\phi k} \mathbf{I}_p)$$

Posterior mean

$$\tilde{\boldsymbol{\beta}} = (\mathbf{X}^{cT}\mathbf{X}^c + k\mathbf{I})^{-1}\mathbf{X}^{cT}\mathbf{X}^c\hat{\boldsymbol{\beta}}$$

Ridge Regression Model

Write $\mathbf{Y} = \mathbf{1}_n \alpha + \mathbf{X}^c \boldsymbol{\beta} + \boldsymbol{\epsilon}$ where \mathbf{X}^c has been centered and standardized

Prior Distribution on

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}_{oldsymbol{
ho}}, rac{1}{\phi k} oldsymbol{\mathfrak{I}}_{oldsymbol{
ho}})$$

Posterior mean

$$\tilde{\boldsymbol{\beta}} = (\mathbf{X}^{cT}\mathbf{X}^c + k\mathbf{I})^{-1}\mathbf{X}^{cT}\mathbf{X}^c\hat{\boldsymbol{\beta}}$$

Prior distribution on k?

Reparameterization to canonical representation:

$$\mathbf{Y} = \mathbf{1}\alpha + (\mathbf{I} - \mathbf{P_1})\mathbf{X}SS\beta + \epsilon$$

Reparameterization to canonical representation:

$$\mathbf{Y} = \mathbf{1}\alpha + (\mathbf{I} - \mathbf{P_1})\mathbf{X}SS\beta + \epsilon$$
$$= \mathbf{1}\alpha + \mathbf{X}^c\beta^c + \epsilon$$

Reparameterization to canonical representation:

$$\mathbf{Y} = \mathbf{1}\alpha + (\mathbf{I} - \mathbf{P_1})\mathbf{X}SS\beta + \epsilon$$
$$= \mathbf{1}\alpha + \mathbf{X}^c\beta^c + \epsilon$$

•
$$p(\alpha \mid \phi, \gamma, \kappa) \propto 1$$

Reparameterization to canonical representation:

$$\mathbf{Y} = \mathbf{1}\alpha + (\mathbf{I} - \mathbf{P_1})\mathbf{X}SS\beta + \epsilon$$
$$= \mathbf{1}\alpha + \mathbf{X}^c\beta^c + \epsilon$$

- $p(\alpha \mid \phi, \gamma, \kappa) \propto 1$
- $\beta^c \mid \phi, \kappa \sim \mathsf{N}(\mathbf{0}, \mathsf{I}(\phi\kappa)^{-1})$

Reparameterization to canonical representation:

$$\mathbf{Y} = \mathbf{1}\alpha + (\mathbf{I} - \mathbf{P_1})\mathbf{X}SS\beta + \epsilon$$

= $\mathbf{1}\alpha + \mathbf{X}^c\beta^c + \epsilon$

- $p(\alpha \mid \phi, \gamma, \kappa) \propto 1$
- $\beta^c \mid \phi, \kappa \sim \mathsf{N}(\mathbf{0}, \mathbf{I}(\phi\kappa)^{-1})$
- $p(\phi \mid \kappa) \propto 1/\phi$

Reparameterization to canonical representation:

$$\mathbf{Y} = \mathbf{1}\alpha + (\mathbf{I} - \mathbf{P_1})\mathbf{X}SS\beta + \epsilon$$

= $\mathbf{1}\alpha + \mathbf{X}^c\beta^c + \epsilon$

- $p(\alpha \mid \phi, \gamma, \kappa) \propto 1$
- $\beta^c \mid \phi, \kappa \sim \mathsf{N}(\mathbf{0}, \mathbf{I}(\phi\kappa)^{-1})$
- $p(\phi \mid \kappa) \propto 1/\phi$
- prior on κ ? Take $\kappa \mid \phi \sim \mathbf{G}(1/2, 1/2)$

Joint Distribution

• $\alpha, m{eta^c}, \phi \mid \kappa, \mathbf{Y}$ Normal-Gamma family given \mathbf{Y} and κ

Joint Distribution

- $\alpha, m{eta^c}, \phi \mid \kappa, \mathbf{Y}$ Normal-Gamma family given \mathbf{Y} and κ
- $\kappa \mid \mathbf{Y}$ not tractable

Joint Distribution

- $\alpha, m{eta^c}, \phi \mid \kappa, \mathbf{Y}$ Normal-Gamma family given \mathbf{Y} and κ
- $\kappa \mid \mathbf{Y}$ not tractable

Obtain marginal for $oldsymbol{eta}^c$ via

Joint Distribution

- $\alpha, m{eta^c}, \phi \mid \kappa, \mathbf{Y}$ Normal-Gamma family given \mathbf{Y} and κ
- $\kappa \mid \mathbf{Y}$ not tractable

Obtain marginal for $oldsymbol{eta}^c$ via

Numerical integration

Joint Distribution

- $\alpha, \beta^c, \phi \mid \kappa, \mathbf{Y}$ Normal-Gamma family given \mathbf{Y} and κ
- $\kappa \mid \mathbf{Y}$ not tractable

Obtain marginal for $oldsymbol{eta}^c$ via

- Numerical integration
- MCMC: Gibbs Sampling from Full Conditional Distributions
 - $\alpha, \gamma, \phi \mid \kappa, \mathbf{Y}$ Normal-Gamma family given \mathbf{Y} and κ

Joint Distribution

- $\alpha, m{eta^c}, \phi \mid \kappa, \mathbf{Y}$ Normal-Gamma family given \mathbf{Y} and κ
- $\kappa \mid \mathbf{Y}$ not tractable

Obtain marginal for $oldsymbol{eta}^c$ via

- Numerical integration
- MCMC: Gibbs Sampling from Full Conditional Distributions
 - $\alpha, \gamma, \phi \mid \kappa, \mathbf{Y}$ Normal-Gamma family given \mathbf{Y} and κ
 - $\kappa \mid \alpha, \gamma, \phi, \mathbf{Y}$ is tractable!

Full Conditional for k

• Pick initial values $\alpha^{(0)}, \beta^{(0)}, \phi^{(0)}$,

- Pick initial values $\alpha^{(0)}, \beta^{(0)}, \phi^{(0)}$, Set t=1
 - $\textbf{ ①} \ \mathsf{Sample} \ \kappa^{(t)} \sim \textit{p}(\kappa \mid \alpha^{(t-1)}, \gamma^{(t-1)}, \phi^{(t-1)}, \mathbf{Y})$

- Pick initial values $\alpha^{(0)}, \beta^{(0)}, \phi^{(0)}$, Set t=1
 - $\begin{array}{l} \textbf{1} \quad \text{Sample } \boldsymbol{\kappa}^{(t)} \sim \textit{p}(\boldsymbol{\kappa} \mid \boldsymbol{\alpha}^{(t-1)}, \boldsymbol{\gamma}^{(t-1)}, \boldsymbol{\phi}^{(t-1)}, \textbf{Y}) \\ \textbf{2} \quad \text{Sample } \boldsymbol{\alpha}^{(t)}, \boldsymbol{\gamma}^{(t)}, \boldsymbol{\phi}^{(t)} \mid \boldsymbol{\kappa}^{(t)}, \textbf{Y} \end{array}$

- Pick initial values $\alpha^{(0)}, \beta^{(0)}, \phi^{(0)}$, Set t=1

 - 2 Sample $\alpha^{(t)}, \gamma^{(t)}, \phi^{(t)} \mid \kappa^{(t)}, \mathbf{Y}$
 - 3 Set t = t + 1 and repeat until t > T

- Pick initial values $\alpha^{(0)}, \beta^{(0)}, \phi^{(0)}$, Set t=1
 - **1** Sample $\kappa^{(t)} \sim p(\kappa \mid \alpha^{(t-1)}, \gamma^{(t-1)}, \phi^{(t-1)}, \mathbf{Y})$
 - 2 Sample $\alpha^{(t)}, \gamma^{(t)}, \phi^{(t)} \mid \kappa^{(t)}, \mathbf{Y}$
 - 3 Set t = t + 1 and repeat until t > T

Use Samples $\alpha^{(t)}, \gamma^{(t)}, \phi^{(t)}, \kappa^{(t)}$ for $t = B, \dots, T$ for inference (B = Burnin)

JAGS

Just Another Gibbs Sampler (and more)

- Stanalone Program (for MAC, Windows, Unix)
- R interface
- Easy scripting language (no full conoditional derivation!)
- CODA Diagnostics
- Wide Range of Models/Priors!

Example

```
rr.model = function() {
for (i in 1:n) {
    mu[i] <- inprod(X[i,], alpha)</pre>
    Y[i] ~ dnorm(mu[i], phi)
}
phi ~ dgamma(1.0E-6, 1.0E-6)
sigma <- pow(phi, -.5)
alpha[1] ~ dnorm(0, 1.0E-10)
lambda.beta ~ dgamma(.5, .5)
for (j in 2:p) {
    prec.beta[j] <- lambda.beta*phi</pre>
    alpha[j] ~ dnorm(0, prec.beta[j])
    beta[j] <- alpha[j]/scales[j] # rescale</pre>
}
beta[1] <- alpha[1] - inprod(beta[2:p], Xbar)</pre>
```

Initial Values

```
rr.inits = function() {
   bf.lm <- lm(data$Y ~ -1 + data$X)
   coefs = coef(bf.lm)
   alpha= coefs
   phi = (1/summary(bf.lm)$sigma)^2
return(list(alpha=alpha, phi=phi))
}</pre>
```

Running

Output

> bf.sim

Inference for Bugs model at "/home/fac/clyde/Dropbox/Sta521/Lectures/ridge/rr-model.txt", fit using jags,
3 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 3000 iterations saved

	mu.vect	sd.vect	2.5%	25%	50%	75%	97.5% R	hat n.eff	
beta[1]	-464.642	415.597	-1296.740	-743.015	-459.517	-170.197	321.255 1.	001 3000	
beta[2]	-497.325	137.834	-761.888	-590.347	-497.310	-404.987	-221.117 1.	001 3000	
beta[3]	1.567	0.042	1.488	1.538	1.567	1.596	1.647 1.	002 1300	
beta[4]	-0.812	0.182	-1.167	-0.935	-0.812	-0.686	-0.449 1.	001 3000	
beta[5]	49.125	5.684	38.420	45.290	49.024	53.027	60.348 1.	001 3000	
beta[6]	-13.752	4.615	-22.989	-16.781	-13.719	-10.688	-4.698 1.	001 3000	
beta[7]	0.053	0.031	-0.009	0.032	0.054	0.075	0.114 1.	001 3000	
beta[8]	0.044	0.032	-0.020	0.023	0.044	0.066	0.108 1.	001 3000	
beta[9]	-0.084	0.019	-0.121	-0.096	-0.084	-0.071	-0.047 1.	002 1600	
beta[10]	0.153	0.048	0.057	0.122	0.154	0.185	0.248 1.	001 3000	
beta[11]	0.026	0.244	-0.458	-0.137	0.024	0.193	0.498 1.	001 3000	
beta[12]	0.032	0.063	-0.089	-0.012	0.032	0.075	0.156 1.	001 3000	
beta[13]	-8.507	4.562	-17.402	-11.596	-8.471	-5.468	0.272 1.	001 3000	
beta[14]	-3.648	5.032	-13.822	-6.907	-3.557	-0.123	5.761 1.	002 1900	
beta[15]	15.061	12.816	-9.761	6.503	14.759	23.718	40.284 1.	001 3000	
beta[16]	-0.070	4.062	-7.787	-2.917	-0.096	2.624	7.942 1.	001 2300	
beta[17]	0.078	0.012	0.053	0.069	0.078	0.086	0.102 1.	001 3000	
beta[18]	8.690	2.925	2.974	6.745	8.739	10.751	14.306 1.	001 3000	
lambda.beta	1.102	0.380	0.487	0.827	1.054	1.325	1.923 1.	001 3000	
sigma	1042.370	26.961	992.679	1023.561	1041.502	1060.475	1094.968 1.	002 1200	
deviance	13003.732	6.262	12993.517	12999.206	13003.168	13007.578	13017.910 1.	001 3000	

$$\mathbf{Y} \mid \alpha, \beta, \phi \sim \mathsf{N}(\mathbf{1}_n \alpha + \mathbf{X}^c \beta, \mathbf{I}_n / \phi)$$

$$\mathbf{Y} \mid \alpha, \beta, \phi \sim \mathsf{N}(\mathbf{1}_n \alpha + \mathbf{X}^c \beta, \mathbf{I}_n / \phi)$$

 $\beta \mid \alpha, \phi, \tau \sim \mathsf{N}(\mathbf{0}, \mathsf{diag}(\tau^2) / \phi)$

$$\mathbf{Y} \mid \alpha, \beta, \phi \sim \mathsf{N}(\mathbf{1}_n \alpha + \mathbf{X}^c \beta, \mathbf{I}_n / \phi)$$

 $\beta \mid \alpha, \phi, \tau \sim \mathsf{N}(\mathbf{0}, \mathsf{diag}(\tau^2) / \phi)$
 $\tau_1^2 \dots, \tau_p^2 \mid \alpha, \phi \quad \textit{i.i.d.} \quad \mathsf{Exp}(\lambda^2 / 2)$

$$\mathbf{Y} \mid \alpha, \beta, \phi \quad \sim \quad \mathsf{N}(\mathbf{1}_{n}\alpha + \mathbf{X}^{c}\beta, \mathbf{I}_{n}/\phi)
\beta \mid \alpha, \phi, \tau \quad \sim \quad \mathsf{N}(\mathbf{0}, \mathsf{diag}(\tau^{2})/\phi)
\tau_{1}^{2} \dots, \tau_{p}^{2} \mid \alpha, \phi \quad \textit{i.i.d.} \quad \mathsf{Exp}(\lambda^{2}/2)
p(\alpha, \phi) \quad \propto \quad 1/\phi$$

Park & Casella (JASA 2008) and Hans Biometrika (2010) propose Bayesian versions of the Lasso

$$\begin{array}{cccc} \mathbf{Y} \mid \alpha, \beta, \phi & \sim & \mathsf{N}(\mathbf{1}_n \alpha + \mathbf{X}^c \beta, \mathbf{I}_n / \phi) \\ \beta \mid \alpha, \phi, \tau & \sim & \mathsf{N}(\mathbf{0}, \mathsf{diag}(\tau^2) / \phi) \\ \tau_1^2 \dots, \tau_p^2 \mid \alpha, \phi & \textit{i.i.d.} & \mathsf{Exp}(\lambda^2 / 2) \\ p(\alpha, \phi) & \propto & 1 / \phi \end{array}$$

Can show that $\beta_j \mid \phi, \lambda \stackrel{\text{iid}}{\sim} DE(\lambda \sqrt{\phi})$

$$\int_0^\infty \frac{1}{\sqrt{2\pi s}} e^{-\frac{1}{2}\phi\frac{\beta^2}{s}}\,\frac{\lambda^2}{2} e^{-\frac{\lambda^2 s}{2}}\,ds = \frac{\lambda\phi^{1/2}}{2} e^{-\lambda\phi^{1/2}|\beta|}$$

Park & Casella (JASA 2008) and Hans Biometrika (2010) propose Bayesian versions of the Lasso

$$\begin{array}{cccc} \mathbf{Y} \mid \alpha, \beta, \phi & \sim & \mathsf{N}(\mathbf{1}_n \alpha + \mathbf{X}^c \beta, \mathbf{I}_n / \phi) \\ \beta \mid \alpha, \phi, \tau & \sim & \mathsf{N}(\mathbf{0}, \mathsf{diag}(\tau^2) / \phi) \\ \tau_1^2 \dots, \tau_p^2 \mid \alpha, \phi & \textit{i.i.d.} & \mathsf{Exp}(\lambda^2 / 2) \\ \rho(\alpha, \phi) & \propto & 1 / \phi \end{array}$$

Can show that $\beta_j \mid \phi, \lambda \stackrel{\mathrm{iid}}{\sim} DE(\lambda \sqrt{\phi})$

$$\int_{0}^{\infty} \frac{1}{\sqrt{2\pi s}} e^{-\frac{1}{2}\phi \frac{\beta^{2}}{s}} \frac{\lambda^{2}}{2} e^{-\frac{\lambda^{2}s}{2}} ds = \frac{\lambda \phi^{1/2}}{2} e^{-\lambda \phi^{1/2}|\beta|}$$

Scale Mixture of Normals (Andrews and Mallows 1974)

Gibbs Sampling

• Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$

Gibbs Sampling

- Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$
- $\boldsymbol{\beta} \mid \boldsymbol{\tau}, \phi, \lambda, \mathbf{Y} \sim \mathsf{N}(,)$

- Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$
- $\boldsymbol{\beta} \mid \boldsymbol{\tau}, \phi, \lambda, \mathbf{Y} \sim \mathsf{N}(,)$
- $\phi \mid \boldsymbol{\tau}, \boldsymbol{\beta}, \lambda, \mathbf{Y} \sim \mathbf{G}(,)$

- Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$
- $\boldsymbol{\beta} \mid \boldsymbol{\tau}, \boldsymbol{\phi}, \boldsymbol{\lambda}, \mathbf{Y} \sim \mathsf{N}(,)$
- $\phi \mid \boldsymbol{\tau}, \boldsymbol{\beta}, \lambda, \mathbf{Y} \sim \mathbf{G}(,)$
- $1/\tau_j^2 \mid \boldsymbol{\beta}, \phi, \lambda, \mathbf{Y} \sim \text{InvGaussian}(,)$

- Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$
- $\boldsymbol{\beta} \mid \boldsymbol{\tau}, \phi, \lambda, \mathbf{Y} \sim \mathsf{N}(,)$
- $\phi \mid \boldsymbol{\tau}, \boldsymbol{\beta}, \lambda, \mathbf{Y} \sim \mathbf{G}(,)$
- $1/\tau_j^2 \mid \boldsymbol{\beta}, \phi, \lambda, \mathbf{Y} \sim \text{InvGaussian}(,)$

 $X \sim \mathsf{InvGaussian}(\mu, \lambda)$

$$f(x) = \sqrt{\frac{\lambda^2}{2\pi}} x^{-3/2} e^{-\frac{1}{2} \frac{\lambda^2 (x-\mu)^2}{\mu^2 x}}$$
 $x > 0$

- Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$
- $\boldsymbol{\beta} \mid \boldsymbol{\tau}, \phi, \lambda, \mathbf{Y} \sim \mathsf{N}(,)$
- $\phi \mid \boldsymbol{\tau}, \boldsymbol{\beta}, \lambda, \mathbf{Y} \sim \mathbf{G}(,)$
- $1/\tau_j^2 \mid \boldsymbol{\beta}, \phi, \lambda, \mathbf{Y} \sim \mathsf{InvGaussian}(,)$

 $X \sim \mathsf{InvGaussian}(\mu, \lambda)$

$$f(x) = \sqrt{\frac{\lambda^2}{2\pi}} x^{-3/2} e^{-\frac{1}{2} \frac{\lambda^2 (x-\mu)^2}{\mu^2 x}}$$
 $x > 0$

Exercise for Energetic Student: Derive the full conditionals for ${\cal B}$, ϕ , $1/\tau^2$ see

http://www.stat.ufl.edu/~casella/Papers/Lasso.pdf

Range of other scale mixtures used

• Bridge - Power Exponential Priors

- Bridge Power Exponential Priors
- Horseshoe (Carvalho, Polson & Scott)

- Bridge Power Exponential Priors
- Horseshoe (Carvalho, Polson & Scott)
- Generalized Double Pareto (Armagan, Dunson & Lee)

- Bridge Power Exponential Priors
- Horseshoe (Carvalho, Polson & Scott)
- Generalized Double Pareto (Armagan, Dunson & Lee)
- Normal-Exponential-Gamma (Griffen & Brown)

Range of other scale mixtures used

- Bridge Power Exponential Priors
- Horseshoe (Carvalho, Polson & Scott)
- Generalized Double Pareto (Armagan, Dunson & Lee)
- Normal-Exponential-Gamma (Griffen & Brown)

Properties of Prior?

Range of other scale mixtures used

- Bridge Power Exponential Priors
- Horseshoe (Carvalho, Polson & Scott)
- Generalized Double Pareto (Armagan, Dunson & Lee)
- Normal-Exponential-Gamma (Griffen & Brown)

Properties of Prior?

Bayesian Posterior does not assign any probability to $\beta_j = 0$

• selection based on posterior mode ad hoc rule

Bayesian Posterior does not assign any probability to $\beta_j = 0$

- selection based on posterior mode ad hoc rule
- Selection solved as a post-analysis decision problem

Bayesian Posterior does not assign any probability to $\beta_i = 0$

- selection based on posterior mode ad hoc rule
- Selection solved as a post-analysis decision problem
- Selection part of model uncertainty ⇒ add prior

Bayesian Posterior does not assign any probability to $\beta_i = 0$

- selection based on posterior mode ad hoc rule
- Selection solved as a post-analysis decision problem
- Selection part of model uncertainty \Rightarrow add prior probability that $\beta_j = 0$ and combine with decision problem