BVAR in Russia

я и Боря

17 августа 2015 г.

1 Введение для Карты BVAR

Значение точных прогнозов для проведения макроэкономической политики трудно переоценить. Существование лагов политики приводит к тому, что решения, принятые сегодня, повлияют на экономику только через некоторое время, поэтому фискальным и монетарным властям при принятии решений приходится ориентироваться не на текущие, а на ожидаемые показатели. Точный прогноз макроэкономических показателей, таким образом, является одним из ключевых факторов успешной политики. На важность точных прогнозов при проведении полититики первым обратил внимание Theil(1958)(нужно найти его работу и посмотреть, есть ли там эти пункты. На данный момент они взяты из Wieland). В частности, он писал, что власти должны (1) предстказть будущее состояние экономики (2) оценить эффект изменения инструмента политики (3) на базе полученных прогнозов разработать план действий. (нужно ли это вообще?) В настоящее время основной моделью для прогнозирования макроэкономических временных рядов является модель векторной авторегрессии (VAR). Использование векторных авторегрессий в макроэкономическом анализе явилось следствием критики активно использовавшихся прежде традиционных эконометрических моделей. В частности, Sims(1980) обратил внимание на необоснованность ограничений, вводимых в рамках традиционных моделей, и предложил использовать более простую по построению динамическую модель, основанную на разложении Вольда и не требующую введения никаких ограничений на взаимную динамику переменных - VAR. Модели этого класса стали широко использоваться как для прогнозирования, так и для структурного анализа благодаря своей логичности и относительной простоте. Однако для того чтобы правильно отражать динамику фактических временных рядов. VAR часто требуется большое количество лагов, что, в свою очередь, может снизить эффективность оценивания(?) на коротких выборках и привести к высоким ошибкам/высокой неопределенности прогноза. Проблема усугубляется тем, что в реальности при проведении политики центральные банки развитых стран ориентируются на большое количество показателей, и VAR малой размерности не может отразить всей информации, доступной центральным банкам. При этом увеличение числа переменных в VAR приводит к тому, что количество оцениваемых параметров, растет нелинейно. Это усугубляет проблему неэффективности оценивания и высоких ошибок прогноза. Одим из решений этой

проблемы стало использование априорной информации относительно распределения параметров и ковариационной матрицы ошибок, т. е. переход от обычных 1 VAR к Байесовским (Bayesian VAR, BVAR). Исследователи выделяют два преимущества BVAR по отношению к обычным. Во-первых, этот класс моделей предлагают решение проблемы избыточной параметризации и благодаря этому позволяет включать в модель большее количество переменных. При этом априорные веры позволяют снизить неопределенность в распределении параметров модели и улучшить ее прогнозные способности. Во-вторых, распространенные в настоящее время априорные распределения отражают современные представления о долгосрочной динамике переменных, не проявляющиеся в коротких выборках, обычно используемых для анализа. Это, в свою очередь, также улучшает точность полученных прогнозов. Нельзя также не отметить, что современные компьютеры осуществляют симуляции настолько быстро, что исследователи более не ограниченны необходимостью использования только сопряженных распределений, позволяющих получить явное аналитическое решение, что, безусловно, увеличивает привлекательность байесовского подхода и способствует его быстрому распространению, в частности, в макроэкономическом анализе. (karlsson 2012). Наиболее часто цитируемый недостаток байесовского подхода – субъективность, с нашей точки зрения, не является существенным. Действительно, изменение априорного распределения влияет на результаты анализа². Однако обычная небаесовская VAR (как и любая эконометрическая модель) является в неменьшей степени отражением субъективных представлений исследователя. Выбор весьма ограниченного набора переменных в модели, разделение их на эндогенные и экзогенные, определение числа лагов в модели³ в любом случае отражают представления исследователя о правильной спецификации модели. К сожалению, несмотря на широкое распространение BVAR в академических статьях, количество практических обзоров этого метода весьма ограничено. Существующие обзоры karlsson 2012 delnegro schorfheide 2011 и изложение в учебнике canova 2007 сильно математизированы и едва ли доступны для новичков без специальной математической подготовки. При этом ни в одном из них не содержится достаточно подробной классификации априорных распределений и ни к одному из них не прилагается инструкций для реализации предложенных методов в эконометрическом пакете. Исключениями являются обзоры koop korobilis и blake mumtaz Однако koop korobilis 2010 не рассматривают ставший весьма популярным метод задания априорного распределения через добавление дополнительных наблюдений, в т. ч. априорное распределение суммы коэффициентов

¹В англоязычной литературе обычные VAR (без наложения априорных распределений) называются частотными — frequentist.

 $^{^2}$ Т.к. плотность апостериорного распределения представляет собой комбинацию плотности априорного распределения и функции правдоподобия. Этот вопрос подробно освещен в следующем разделе.

³На практике для определения количества лагов в частотной VAR, как правило, исследователи ориентируются на информационные критерии. Однако довольно часто разные информационные критерии дают противоречивые результаты. В этом случае предпочтение определенного критерия всем остальным – есть тоже субъективное решение.

(sum-of-coefficients prior) и априорное распределение начального наблюдения (initial observation prior). blake mumtaz 2012 используют терминологию, несколько отличающуюся от других работ, а код фактически содержит только пример построения BVAR только с одним типом распределения. Кроме того, сам обзор не лишен опечаток (стоит ли это писать? можем ли мы быть уверены, что наш -лишен??). При этом ни в одном из указанных обзор не рассмотрен достаточно подробно вопрос о прогнозировании с помощью BVAR (а именно это и является обычно целью их построения, по крайней мере, BVAR в сокращенной форме). На русском языке обзоров BVAR на данный момент, насколько нам известно, вообще нет. Данный обзор нацелен на новичков в Байесовском анализе и содержит подробную классификацию априорных распределений, наиболее популярных при проведении макроэкономических исследований. Кроме того, к обзору прилагается код в R, в котором используются те же обозначения, что и в тексте работы, и который может быть использован как в учебных, так и в научных целей. Мы оставляем за рамками данного обзора построение структурных BVAR (SBVAR), BVAR с меняющимися параметрами (TVP-BVAR), BVAR со стохастической волатильностью, а также проблемы выбора переменных при построении BVAR. К этим вопросам мы вернемся в своих будущих работах. План обзора следующий: ...

2 Обзор литературы

Построение точных макроэкономических прогнозов является ключевым условием проведения верной политики центральными банками. Хорошо известно, что центральные банки развитых государств опираются на большое число макроиндикаторов при проведении политики (beckner 1996 или (bernanke boivin 2003) для США., какая-нибудь аналогичная работа для ЕЗ). Однако обычная векторноавторегрессионная модель, ставшая наиболее часто встречающимся инструментом для построения прогнозов, не может учесть большое количество переменных, так как количество параметров, подлежащих оценке, растет нелинейно с увеличением числа уравнений. При этом неучтенная при построении VAR информация может приводить к смещенным оценкам и неверным выводам как относительно прогнозируемых значений, так и виде функций импульсных откликов. Основные способы учета большого числа переменных – это использование DF и Байсовских VAR. Динамические факторы были предложены в работах forni al 2000 и stock watson 2002 В указанных работах предполагается, что дисперсия большого количества временных рядов может быть описана с помощью нескольких, искусственно построенных (common factors) с помощью метода главных компонент. Расширением метода stock watson 2002 служит FAVAR, предложенная в статье bernanke al 2005 В рамках FAVAR несколько динамических факторов добавляются как дополнительные переменные в обычную VAR. Цель данной работы состоит в построении прогноза основных макроиндикаторов (выпуска, инфляции и др.) для российской экономики. Задача осложняется отсутствием большого количества длинных временных рядов, что не позволяет провести построение DFM. Байесовские модели зарекомендовали себя как хороший инструмент построения прогнозов. В ряде работ было показано, что они обеспечивают более низкую ошибку прогноза, чем, например, обычные VAR и VECM. (?) две стратегии – использовать shrinkage, который становится уже с ростом числа переменных По Bloor and Matheson надо бы переписать.

Модификация Litterman prior была предложена в работах doan_al_1984 (sum of coefficients prior) и sims_1993 (со-persistence prior). Комбинация этих трех априорных распределений была использована в работе robertson_tallman_1999 для предсказания безработицы, темпа роста и инфляции. В работе показано, что смешанное априорное распределение получает получить более точные прогнозы, чем априорные распределения litterman_1986 и sims_zha_1998 (про эту работу пока ничего не писала).

Ключевую роль в развитии подхода сыграла статья de mol al 2008 В этой работе на основе асимптотического анализа было показано, что если данные характеризуются высокой мультиколлинеарностью (что характерно для выборок макрорядов большой размерности) сужение априорного распределения при увеличении количества переменных дает больший вес нескольким первым главным компонентам. Это означает, что если данные характеризуются факторной структурой, то наложение более узких априорных распределений с увеличением размерности модели не приводит к потере важной информации, т.к. для описания данных достаточно небольшого количества первых факторов. Эта точка зрения была подтверждена и развита в статье banbura al 2010 в которой авторы строят VAR модели для 3, 7, 20 и 131 переменных и показывают, что модели с большей размерностью демонстрируют лучшие прогнозные способности, чем модели малой размерности и даже FAVAR (? Проверить, об этом пишет Бошеман). Интересно отметить, что хорошая прогнозная способность достигается уже в модели с 20 переменными, поэтому как для прогнозирования, так и для структурного анализа достаточно сконцентрироваться на агрегированных данных. Аналогичная модель для Новой Зеландии была построена в работе bloor matheson 2010 в которой они использовали метод условного прогнозного оценивания (waggoner zha 1999), что позволило им сравнить сценарии, основанные на различной условной информации. Строят три модели (с 9, 13 и 35 переменными), делают вывод, что BVAR обладает более высокой предсказательной способностью, чем AR и обычная VAR модель. Хотя результаты варьируют по разным переменным, в общем и целом, BVAR с большим числом переменных характеризуется более высокой точностью прогноза. Из Beauchemin koop 2010 расширил результаты banbura al 2010 и показал, что BVAR с большой размерностью обладают лучшей прогнозной способностью даже по отношению к более сложным моделям (???) Тот же метод построения априорного распределения (естественно-сопряженная версия Миннесоты-распределения (kadiyala karlsson 1997 sims zha 1998- проверить, они ли предложили?), что в работах banbura al 2010, bloor matheson 2010 и koop 2010 был применен в работе beauchemin zaman 2011 Они показывают, что BVAR с 16 переменными может быть с успехом использована как для прогнозов, так и для структурного анализа (трансмиссии монетарного шока (?)/структурного анализа

монетарной политики. Аналогичное построение априорного распределения используется в работе alessandri_mumtaz_2014 где с помощью линейной и нелинейной BVAR (?) модели показано, что учет финансовых индикаторов позволяет улучшить прогноз выпуска и инфляции, в т. ч. в кризисные периоды.

Во всех работах гиперпараметр, контролирующий жесткость (?), выбирается таким образом, чтобы максимизировать функцию правдоподобия данных (это максимизирует точность вневыборочного прогноза ?). В работе **geweke_whiteman_2006** было показано, что такой выбор гиперпараметра минимизирует ошибки прогноза на один период.

Сам Литтерман в своей работе показал, что использование априорного распределения (Bayesian shrinkage) в BVAR с не менее чем шестью переменными улучшает прогнозную силу модели. Однако до последнего времени считалось, что при использовании достаточно большого числа временных рядов уточнения правдоподобия только с помощью априорного распределения недостаточно. Это приводило к необходимости задавать дополнительные ограничения.

3 Методология

3.1 Удобная табличка

Буква	Размер	Описание	Формула
p	скаляр	количество лагов	
\overline{m}	скаляр	количество эндогенных перемен-	
		ных	
d	скаляр	количество экзогенных перемен-	
1		ных	
k	скаляр	количество параметров в одном	k = mp + d
T	GV9 HGD	уравнении количество наблюдений	
1	скаляр		
z_t	$d \times 1$	вектор экзогенных переменных	
	、1	(считая константу)	<i>ক</i> / । -
y_t	$m \times 1$ $k \times 1$	вектор эндогенных переменных	$y_t = \Phi' x_t + \varepsilon_t$
x_t	$m \times 1$	вектор всех регрессоров вектор случайных ошибок	$x_t = [y'_{t-1} \dots y'_{t-p} \ z'_t]'$
$rac{arepsilon_t}{Y}$	$T \times m$	все эндогенные переменные	$Y = [y_1, y_2, \dots, y_T]'$
$\stackrel{I}{X}$	$T \times m$ $T \times k$	матрица регрессоров	$X = [y_1, y_2, \dots, y_T]$ $X = [x_1, x_2, \dots, x_T]'$
E	$T \times m$	матрица регрессоров матрица ошибок	$E = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_T]'$
y	$mT \times 1$	векторизация Y	y = vec(Y)
arepsilon	$mT \times 1$	векторизация E	$\varepsilon = \text{vec}(F)$
			$y_t = \Phi_1 y_{t-1} + \ldots + \Phi_{ex} z_t + \varepsilon_t$
Φ_1, \ldots	$m \times m$ $m \times d$	коэффициенты VAR коэффициенты при экзогенных	$y_t \equiv \Psi_1 y_{t-1} + \ldots + \Psi_{ex} z_t + \varepsilon_t$
Φ_{ex}	$m \times a$	коэффициенты при экзогенных переменных	
Φ	$k \times m$	упаковка матриц Φ_1, \ldots	$\Phi = [\Phi_1 \dots \Phi_p \; \Phi_{ex}]'$
ϕ	$km \times 1$	вектор из матрицы Ф	$\phi = \operatorname{vec} \Phi$
	$km \times km$,
Ξ	$\kappa m \times \kappa m$	Априорная ковариационная матрица Ф	
Φ	$k \times m$	априорное математическое ожида-	
<u> </u>	10 / 110	ние Φ	
ϕ	$km \times 1$	вектор из матрицы Φ	$\phi = \operatorname{vec} \Phi$
$\stackrel{\phi}{\equiv}$	$km \times km$	Апостериорная ковариационная	<u>-</u>
		матрица Ф	
$\overline{\Phi}$	$k \times m$	апостериорное математическое	
		ожидание Ф	
$\overline{\phi}$	$km \times 1$	вектор из матрицы $\overline{\Phi}$	$\overline{\phi} = \operatorname{vec} \overline{\Phi}$
$\underline{\nu}$	скаляр		
$\overline{ u}$	скаляр		$\overline{\nu} = T + \underline{\nu}$
Ω	$k \times k$	Матрица априорных масштабиру-	$\underline{\Xi} = \Sigma \otimes \underline{\Omega}$
		ющих коэффициентов ковариаци-	
		онной матрицы Φ	
$\overline{\Omega}$	$k \times k$	Матрица апостериорных масшта-	$\overline{\Omega} = (\underline{\Omega}^{-1} + X'X)^{-1}, \ \overline{\Xi} = \Sigma \otimes \overline{\Omega}$
		бирующих коэффициентов кова-	
		риационной матрицы Φ	
\sum	$m \times m$	Ковариационная матрица ошибок	$\mathbb{E}\varepsilon_t\varepsilon_t'=\Sigma$

3.2 Байесовская VAR

Рассмотрим переменные y_{it} , объединенные в вектор $y_t = (y_{1t}, y_{2t}, \dots, y_{mt})'$ размерности m. Векторная авторегрессия в сокращенной форме записывается в виде:

$$y_t = \Phi_{ex} + \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \ldots + \Phi_p y_{t-p} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \Sigma)$$
 (1)

где $\Phi_{ex}=(c_1,\ldots,c_m)'$ — вектор констант размерности $m,\,\Phi_l$ — авторегрессионные матрицы размерности $m\times m$ при $l=1,\ldots,p$. Вектор ε_t — m-мерный вектор ошибок с ковариационной матрицей $\mathbb{E}\,\varepsilon_t\varepsilon_t'=\Sigma$, некоррелированный с объясняющими переменными. Группируя матрицы параметров в общую матрицу $\Phi=[\Phi_1\ldots\Phi_p\,\Phi_{ex}]'$ и определяя новый вектор $x_t=[y_{t-1}',\ldots y_{t-p}']'$, получаем VAR записанную в более компактном виде:

$$y_t = \Phi' x_t + \varepsilon_t \tag{2}$$

Если же сгруппировать переменные и шоки следующим образом: $Y = [y_1, y_2, \dots, y_T]',$ $X = [x_1, x_2, \dots, x_T]', E = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_T]'$ то VAR можно записать как:

$$Y = X\Phi + E \tag{3}$$

Эта же модель может быть записано в векторизованном виде 4 :

$$Y = X\Phi + E \tag{4}$$

$$\operatorname{vec}(Y) = \operatorname{vec}(X\Phi I) + \operatorname{vec}(E) \Leftrightarrow \tag{5}$$

$$y = (I_M \otimes X)\phi + \varepsilon \tag{6}$$

где $\varepsilon \sim \mathcal{N}(0,\Sigma \otimes I_T)$ и вектор $\phi = \text{vec}\,\Phi$ имеет размерность $km \times 1$.

Задача байесовского оценивания заключается в поиске апостериорных распределений параметров $p(\Phi, \Sigma|Y)$ с использованием функции максимального правдоподобия, $L(Y|\Phi,\Sigma)$, и заданного априорного распределения, $p(\Phi,\Sigma|Y)$. Для этого используется правило Байеса:

$$p(\Phi, \Sigma | Y) = \frac{p(\Phi, \Sigma)L(Y | \Phi, \Sigma)}{p(Y)}$$
(7)

Т.к. p(Y) не зависит от Φ и Σ , то можно записать:

$$p(\Phi, \Sigma|Y) \propto p(\Phi, \Sigma)L(Y|\Phi, \Sigma)$$
 (8)

Так как $\varepsilon_t \sim \mathcal{N}(0, \Sigma)$, то функция правдоподобия задается как:⁵

$$L(Y|\Phi,\Sigma) \propto |\Sigma|^{-T/2} \operatorname{etr} \left\{ -\frac{1}{2} \left[\Sigma^{-1} (Y - X\Phi)'(Y - X\Phi) \right] \right\}$$
 (9)

В двух следующих разделах будут разобраны наиболее известные априорные и построенные на их основе апостериорные распределения.

 $^{^4}$ Третье уравнение системы следует из тождества: $\mathrm{vec}(ABC) = (C \otimes A)\,\mathrm{vec}(B)$

 $^{^{5}}$ Другая форма записи функции правдоподобия: $L(Y|\Phi,\Sigma)\propto |\Sigma|^{-T/2} \operatorname{etr}\left\{-\frac{1}{2}\left[\Sigma^{-1}\hat{E}'\hat{E}\right]\right\} imes \operatorname{etr}\left\{-\frac{1}{2}\left[\Sigma^{-1}(\Phi-\hat{\Phi})'X'X(\Phi-\hat{\Phi})\right]\right\}$, где $\hat{E}=Y-X\hat{\Phi}$ и $\hat{\Phi}=(X'X)^{-1}X'Y$. Здесь $\operatorname{etr}()=\exp(\operatorname{tr}())$.

3.3 Классификация популярных априорных распределений

Детально каждое из априорных распределений будет описано отдельно, а в этом разделе будет дана общая схема связи априорных распределений. Среди самых популярных априорных распределений можно назвать:

1. Независимое нормальное-обратное Уишарта распределение

$$\begin{cases} \phi \sim \mathcal{N}(\underline{\phi}; \underline{\Xi}) \\ \Sigma \sim \mathcal{IW}(\underline{S}; \underline{\nu}) \\ \phi \text{ и } \Sigma \text{ независимы} \end{cases}$$
 (10)

В общем случае выборку из апостериорного распределения можно получить по схеме Гиббса.

Частными случаями независимого нормального-обратного Уишарта являются:

(а) Распределение Миннесоты

$$\begin{cases} \phi \sim \mathcal{N}(\underline{\phi}; \underline{\Xi}) \\ \Sigma = const \end{cases}$$
 (11)

Получается из независимого нормального-обратного Уишарта при $\underline{S}=(\underline{\nu}-m-1)\cdot \Sigma$ и $\underline{\nu}\to\infty$. Апостериорное распределение выписывается в явной форме. Можно использовать алгоритм Монте-Карло, сразу генерирующий случайную выборку из апостериорного распределения, без необходимости периода «прожига».

Более того, алгоритм симуляции упрощается если матрица $\underline{\Xi}$ имеет структуру кронекерова произведения $\underline{\Xi} = \Sigma \otimes \underline{\Omega}$. В этом случае распределение Миннесоты становится частным случаем сопряжённого нормального-обратного Уишарта.

(b) Независимое нормальное-Джеффри

$$\begin{cases} \phi \sim \mathcal{N}(\underline{\phi}; \underline{\Xi}) \\ \Sigma \sim |\Sigma|^{-(m+1)/2} \\ \phi \text{ и } \Sigma \text{ независимы} \end{cases}$$
 (12)

Получается из независимого нормального-обратного Уишарта при $\underline{S}=\nu^{1/m}\cdot I$ и $\nu\to 0$.

как тут с плотностью растущей к необратимым матрицам ??????????

http://www.tc.umn.edu/~nydic001/docs/unpubs/Wishart_Distribution. pdf — тут пишут, что при $\nu < \dots$ получается необратимая матрица, а тут вроде как обратимая????

Для получения выборки из апостериорного распределения можно использовать схему Гиббса. Необходимые формулы для гиперпараметров апостериорного распределения получаются из общего случая просто подстановкой $\underline{S}=0,\,\underline{\nu}=0.$

Распределение Миннесоты и независимое нормальное-Джеффри являются противоположными крайностями независимого-обратного Уишарта. В распределении Миннесоты матрица Σ предполагается известной, а в нормальном-Джеффри матрица Σ имеет «размытое» неинформативное распределение.

Частным случаем независимого нормального-Джеффри распределения является:

і. Неинформативное-Джеффри

$$\begin{cases} \phi \sim 1 \\ \Sigma \sim |\Sigma|^{-(m+1)/2} \\ \phi \text{ и } \Sigma \text{ независимы} \end{cases}$$
 (13)

Априорное распределение для ленивых. Не нужно указывать ни одного гиперпараметра!

Получается из независимого нормального-Джеффри при $\phi=0$ и $\Xi=a\cdot I$ и $a\to\infty$. Является также частным случаем сопряженного нормального-Джеффри априорного распределения.

Для получения выборки из апостериорного распределения можно использовать прямое симулирование по схеме Монте-Карло без алгоритма Гиббса. распределения получаются из общего случая просто подстановкой $\underline{S}=0, \ \underline{\nu}=0, \ \underline{\Xi}^{-1}=0, \ \underline{\phi}=0.$ При этом формулы существенно упрощаются, в частности исчезает необходимость обращать матрицу размера $km \times km$.

2. Сопряженное нормальное-обратное Уишарта распределение

$$\begin{cases} \Sigma \sim \mathcal{IW}(\underline{S}, \underline{\nu}) \\ \phi | \Sigma \sim \mathcal{N}(\phi, \Sigma \otimes \underline{\Omega}) \end{cases}$$
 (14)

Для сопряженного нормального-обратного Уишарта распределения нет необходимости использовать алгоритм Гиббса, так как есть явные формулы для апостериорных распределений. Можно использовать алгоритм Монте-Карло, сразу генерирующий случайную выборку из апостериорного распределения. Исчезает период «прожига», необходимый для сходимости алгоритма Гиббса.

Частным случаем сопряжённого нормального-обратного Уишарта распределения оказывается:

(a) Распределение Миннесоты при $\underline{\Xi} = \Sigma \otimes \underline{\Omega}$.

При $\Xi = \Sigma \otimes \Omega$ распределение Миннесоты является и частным случаем независимого нормального-обратного Уишарта, и сопряженного нормального-обратного Уишарта. Для получения выборки из апостериорного распределения можно использовать и схему Гиббса для независимого нормального-обратного Уишарта, и алгоритм Монте-Карло без «прожига».

(b) Сопряжённое нормальное-Джеффри

$$\begin{cases} \Sigma \sim |\Sigma|^{-(m+1)/2} \\ \phi | \Sigma \sim \mathcal{N}(\underline{\phi}; \Sigma \otimes \underline{\Omega}) \end{cases}$$
 (15)

Получается из сопряжённого нормального-обратного Уишарта при $\underline{S} = \underline{\nu}^{1/m} \cdot I$ и $\underline{\nu} \to 0$. Формулы для гиперпараметров апостериорного распределения получаются подстановкой $\underline{\nu} = 0$, $\underline{S} = 0$.

Частным случаем сопряжённого нормального-Джеффри является

і. Неинформативное-Джеффри Получается из сопряженного нормального-Джеффри при $\underline{\phi}=0$ и $\underline{\Omega}=a\cdot I$ и $a\to\infty$. Формулы для гиперпараметров апостериорного распределения получаются подстановкой $\underline{\phi}=0,\ \underline{\Omega}^{-1}=0,\ \underline{\nu}=0,$ S=0.

????? Где в этой схеме Березовский априорное распределение Sim-Zha?

В нашей работе мы всегда явно указываем, идёт ли речь о независимом или сопряжённом априорном распределении. Однако при чтении многих других работ надо быть внимательным, зачастую авторы говорят о «нормальном-обратном Уи-шарта» распределении, не уточняя, какое имеется ввиду.

3.4 Априорное распределение Миннесоты

Одно из решений этой проблемы было предложено в работе litterman_1979 автор которой показал, что введение ограничений в форме априорных распределений параметров увеличивает точность оценок и прогнозов. Априорное распределение, позже(?) получившее название «априорное распределение Миннесоты» было предложено в работе litterman 1986 и (с некоторыми модификациями) в doan litterman sims 1984

Априорное распределение параметров предполагается многомерным нормальным, зависящим от нескольких гиперпараметров. Параметры предполагаются независимыми, следовательно, их ковариационная матрица диагональна. Ковариационная матрица вектора ε_t также предполагается диагональной и постоянной. Тогда вектор Φ не зависит от Σ :

$$\phi \sim \mathcal{N}(\phi, \Xi) \tag{16}$$

Априорная плотность распределения ϕ также не зависит от Σ и может быть записана как:

$$p(\phi) = \frac{1}{(2\pi)^{km/2}|\Xi|^{1/2}} \exp\left\{-\frac{1}{2}(\phi - \underline{\phi})'\underline{\Xi}^{-1}(\phi - \underline{\phi})\right\}. \tag{17}$$

Комбинируя её с функцией правдоподобия (??), получаем, что апостериорное распределение параметров задаются в следующем виде:

$$\phi|Y \sim \mathcal{N}(\overline{\phi}, \overline{\Xi}) \tag{18}$$

где

$$\overline{\Xi} = [\underline{\Xi}^{-1} + \Sigma^{-1} \otimes (X'X)]^{-1}$$
$$\overline{\phi} = \overline{\Xi}[\underline{\Xi}^{-1}\phi + (\Sigma^{-1} \otimes X')y].$$

Если Ξ имеет структуру кронекерова произведения, $\Xi = \Sigma \otimes \Omega$, то формулы можно существенно упростить и обойтись обращением матриц меньшей размерности:

$$\overline{\Xi} = [\underline{\Xi}^{-1} + \Sigma^{-1} \otimes (X'X)]^{-1} = [(\Sigma \otimes \underline{\Omega})^{-1} + \Sigma^{-1} \otimes (X'X)]^{-1} =
= [\Sigma^{-1} \otimes \underline{\Omega}^{-1} + \Sigma^{-1} \otimes (X'X)]^{-1} = \Sigma \otimes (\underline{\Omega}^{-1} + X'X)^{-1} = \Sigma \otimes \overline{\Omega}$$
(19)

В результате получаем

$$\Phi|Y \sim \mathcal{N}(\overline{\Phi}, \Sigma \otimes \overline{\Omega})$$

На практике в качестве матрицы Σ используют её оценку $\hat{\Sigma}$, диагональные элементы которой равны: $\hat{\sigma}_1^2, \hat{\sigma}_2^2, \dots, \hat{\sigma}_m^2$, где $\hat{\sigma}_i^2$ — оценка дисперсии случайной составляющей в AR(p) модели для ряда i. 6

Математическое ожидание априорного распределения параметров может быть записано с помощью матрицы $\underline{\Phi} = \mathbb{E}(\Phi)$ размерности $k \times m$, где $\underline{\Phi} = [\underline{\Phi}_1 \dots \underline{\Phi}_p \ \underline{\Phi}_{ex}]'$ и $\phi = \text{vec }\underline{\Phi}$.

$$(\underline{\Phi}_l)_{ij} = \begin{cases} \delta_i \ i = j, l = 1; \\ 0, \quad \text{в остальных случаях} \end{cases}$$
 (20)

Априорное распределение Миннесоты было задумано таким образом, чтобы учесть нестационарность многих макроэкономических временных рядов. В этом случае δ_i , принимают значение единица. ⁷

Априорное распределение Миннесоты предполагает, что априорная ковариационная матрица параметров Ξ диагональна. Пусть Ξ_i обозначает блок Ξ , размера $k \times k$, связанный с коэффициентами уравнения i, т.е.

$$\Xi = \begin{pmatrix} \Xi_1 & 0_{k \times k} & \cdots & 0_{k \times k} & 0_{k \times k} \\ 0_{k \times k} & \Xi_2 & \cdots & 0_{k \times k} & 0_{k \times k} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0_{k \times k} & 0_{k \times k} & \cdots & \Xi_{m-1} & 0_{k \times k} \\ 0_{k \times k} & 0_{k \times k} & \cdots & 0_{k \times k} & \Xi_m \end{pmatrix} \quad \Xi_i = \begin{pmatrix} \Xi_{i, lag=1} & 0_{m \times m} & \cdots & 0_{m \times m} & 0_{m \times 1} \\ 0_{m \times m} & \Xi_{i, lag=2} & \cdots & 0_{m \times m} & 0_{m \times 1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0_{m \times m} & 0_{m \times m} & \cdots & \Xi_{i, lag=p} & 0_{m \times 1} \\ 0_{1 \times m} & 0_{1 \times m} & \cdots & 0_{1 \times m} & \Xi_{i, const} \end{pmatrix}$$

 $^{^6}$ Некоторые авторы для подсчета оценки дисперсии используют AR(1) модель, даже если сама VAR имеет большее количество лагов.

 $^{^{7}}$ В настоящее время широкое распространение получила практика назначать $\delta_{i}=1$ для нестационарных рядов и $\delta_{i}<1$ для стационарных.

Тогда диагональные элементы $\underline{\Xi}_{i,lag=l}$ определяются по формулам:

$$(\underline{\Xi}_{i,lag=l})_{jj} = \begin{cases} \left(\frac{\lambda_{tight}}{l^{\lambda_{lag}}}\right)^{2}, \ j = i \\ \left(\frac{\lambda_{tight} \cdot \lambda_{kron} \sigma_{i}}{l^{\lambda_{lag}} \sigma_{j}}\right)^{2}, \ j \neq i \end{cases} \underline{\Xi}_{i,const} = \lambda_{const}^{2} \sigma_{i}^{2}, \tag{21}$$

Как можно видеть из приведенной выше формулы (??) априорная дисперсия параметров зависит от нескольких гиперпараметров, задаваемых исследователем. Гиперпараметры имеют следующую интерпретацию: λ_{tight} (параметр регуляризации) отражает общую «жесткость» априорного распределения. Если $\lambda_{tight} \to 0$, то априорное распределение полностью определяет апостериорное распределение, и данные не играют никакой роли при оценке параметров. Наоборот, если $\lambda_{tight} \to \infty$, то априорное распределение перестает влиять и оценка параметров сходится к обычной оценке МНК. Параметр λ_{kron} (параметр кросс-регуляризации) добавляет дополнительную жесткость лагам других переменных по сравнению с лагами зависимой переменной. Если $\lambda_{kron} < 1$, то собственные лаги зависимой переменных, поэтому коэффициенты при лагах других переменных оказываются жестче регуляризованы к нулю. Параметр λ_{const} отражает относительную жесткость распределения константы.

При $\lambda_{kron}=1$ матрица Ξ имеет структуру кронекерова произведения и представима в виде:

$$\Xi = \Sigma \otimes \Omega$$
,

где $\underline{\Omega}$ — матрица размера $k \times k$, соответствующая отдельному уравнению. Кронекерово домножение слева на матрицу Σ для i-го уравнения означает домножение дисперсий, указанных в матрице $\underline{\Omega}$, на коэффициент σ_i^2 . Сама $\underline{\Omega}$ представима в виде:

$$\underline{\Omega} = \begin{pmatrix}
\underline{\Omega}_{lag=1} & 0_{m \times m} & \cdots & 0_{m \times m} & 0_{m \times 1} \\
0_{m \times m} & \underline{\Omega}_{lag=2} & \cdots & 0_{m \times m} & 0_{m \times 1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0_{m \times m} & 0_{m \times m} & \cdots & \underline{\Omega}_{lag=p} & 0_{m \times 1} \\
0_{1 \times m} & 0_{1 \times m} & \cdots & 0_{1 \times m} & \underline{\Omega}_{const}
\end{pmatrix}$$
(22)

При этом матрица $\Omega_{lag=l}$ имеет размерность $m \times m$, и ее диагональные элементы определяются по формулам:

$$(\underline{\Omega}_{lag=l})_{jj} = \left(\frac{\lambda_{tight}}{l^{\lambda_{lag}}\sigma_j}\right)^2 \quad \underline{\Omega}_{const} = \lambda_{const}^2$$
 (23)

При использовании априорного распределения Миннесоты, нет необходимости применять алгоритм Гиббса для получения апостериорного распределения. Алгоритм генерации случайной выборки непосредственно из апостериорного распределения происходит методом Монте-Карло:

1. На *s*-ом шаге сгенерировать очередную итерацию согласно:

$$\phi^{[s]} \sim \mathcal{N}(\overline{\phi}; \overline{\Xi}) \tag{24}$$

2. Увеличить s на единицу и перейти к пункту один

Если $\underline{\Xi}$ имеет структуру кронекерова произведения, $\underline{\Xi} = \Sigma \otimes \underline{\Omega}$, то вместо вектора $\phi^{[s]}$ можно генерировать матрицу $\Phi^{[s]}$ численно более простым алгоритмом:

- 1. Генерируют матрицу V размера $k \times m$ из независимых стандартных нормальных величин
- 2. Считают матрицу $\Phi^{[s]}$ по формуле:

$$\Phi^{[s]} = \overline{\Phi} + \operatorname{chol}(\overline{\Omega}) \cdot V \cdot \operatorname{chol}(\Sigma^{[s]})'$$

Преимущества априорного распределения Миннесоты хорошо известны. Прежде всего, оно просто задается, Кроме того, оно успешно применялось в литературе для решения различных задач. И наконец, получившееся апостериорное распределение является нормальным, а значит, легко можно получить значение любой функции параметров с помощью методов Монте-Карло. Однако существенным недостатком этого распределения является то, что оно не предполагает использования байесовской процедуры для оценки Σ .

3.5 Сопряженное нормальное-обратное Уишарта априорное распреледение

Указанного недостатка априорного распределения Миннесоты можно избежать, если рассматривать сопряженное априорное распределение, т.е. распределение, при котором априорное распределение, функция правдоподобия и апостериорное распределение принадлежат одному классу. Т.к. функция правдоподобия может быть разбита на две части, одна из которых соответствует нормальному распределению (при условии известной ковариационной матрицы остатков), а другая — обратному распределению Уишарта, то и сопряженным априорным распределением для рассматриваемой модели будет также нормальное-обратное Уишарта распределение.

Априорное нормальное-обратное Уишарта распределение может быть записано как:

$$\begin{cases} \Sigma \sim \mathcal{IW}(\underline{S}, \underline{\nu}) \\ \phi | \Sigma \sim \mathcal{N}(\underline{\phi}, \Sigma \otimes \underline{\Omega}) \end{cases}$$
 (25)

Здесь нужно отметить, что система $(\ref{eq:condition})$ записана для случая, когда ковариационная матрица параметров имеет кронекерову структуру, что означает, что λ_{kron} полагается равной единице. Хотя строго, говоря, это предположение не обязательно, оно существенно ускоряет расчеты, поэтому, как правило, используется в макроэкономических приложениях.

Гиперпараметры вектора математического ожидания $(\underline{\phi})$ и ковариационной матрицы $\underline{\Omega}$ условного априорного распределения могут быть заданы точно так же, как и в случае распределения Миннесоты для случая $\lambda_{kron} = 1$ (см. (??),(??) и(??)). \underline{S} выбирается так, чтобы среднее Σ совпадало с фиксированной ковариационной матрицей в априорном распределении Миннесоты. Т.к. безусловное распределение параметров имеет вид:

$$\mathbb{E}(\phi) = \phi \quad \mathbb{V}\mathrm{ar}(\phi) = (\underline{\nu} - m - 1)^{-1} (\underline{S} \otimes \underline{\Omega}), \tag{26}$$

то диагональные элементы \underline{S} выбираются следующим образом:

$$(S)_{ii} = (\nu - m - 1)\hat{\sigma}_i^2 \tag{27}$$

Выбор степеней свободы обратного Уишарта распределения ν в соответствии с:

$$\underline{\nu} \ge \max\{m+2, m+2h-T\} \tag{28}$$

обеспечивает существование как априорной дисперсии параметров, так и апостериорной дисперсии прогнозов на горизонте h (см. kadiyala karlsson 1997).

Можно показать, что с учетом функции правдоподобия (??) апостериорное распределение принадлежит тому же классу (см. например, **zellner 1996**):

$$\begin{cases} \Sigma | Y \sim \mathcal{IW}(\overline{S}, \overline{\nu}) \\ \Phi | \Sigma, Y \sim \mathcal{N}(\overline{\Phi}, \Sigma \otimes \overline{\Omega}) \end{cases}$$
 (29)

где

$$\overline{\nu} = \underline{\nu} + T$$

$$\overline{\Omega} = (\underline{\Omega}^{-1} + X'X)^{-1}$$

$$\overline{\Phi} = \overline{\Omega} \cdot (\underline{\Omega}^{-1}\underline{\Phi} + X'Y)$$

$$\overline{S} = \underline{S} + \hat{E}'\hat{E} + \hat{\Phi}'X'X\hat{\Phi} + \underline{\Phi}'\underline{\Omega}^{-1}\underline{\Phi} - \overline{\Phi}'\overline{\Omega}^{-1}\overline{\Phi}$$

$$\hat{\Phi} = (X'X)^{-1}X'Y$$

$$\hat{E} = Y - X\hat{\Phi}$$

Существует достаточно популярный альтернативный подход для подсчёта гиперпараметров апостериорного распределения.

Мы обнуляем матрицы \underline{S} и $\underline{\Omega}^{-1}$, а чтобы компенсировать разницу добавляем дополнительные наблюдения в матрицу X и в матрицу Y:

$$X^* = \begin{bmatrix} X^+ \\ X \end{bmatrix}, Y^* = \begin{bmatrix} Y^+ \\ Y \end{bmatrix}$$

Отметим, что матрицы X и Y входят в гиперпараметры апостериорного распределения только в составе матриц X'X, X'Y и Y'Y, поэтому абсолютно не важно, в

каком порядке добавлять искусственные наблюдения и каким образом по отношению к матрицам X и Y. Можно их добавить в конец матриц X и Y, можно в начало, можно посередине.

Получим новые формулы для апостериорных гиперпараметров: ВЫВЕРИТЬ!

$$\overline{\nu} = \underline{\nu} + T$$

$$\overline{\Omega} = (X^{*\prime}X^{*})^{-1} = (X^{+\prime}X^{+} + X^{\prime}X)^{-1}$$

$$\overline{\Phi} = \overline{\Omega} \cdot (X^{*\prime}Y^{*}) = \overline{\Omega} \cdot (X^{+\prime}Y^{+} + X^{\prime}Y)$$

$$\overline{S} = \hat{E}^{\prime}\hat{E} + \hat{\Phi}X^{\prime}X\hat{\Phi} - \overline{\Phi}^{\prime}\overline{\Omega}^{-1}\overline{\Phi}$$

$$\hat{\Phi} = (X^{\prime}X)^{-1}X^{\prime}Y$$

$$\hat{E}^{*} = Y^{*} - X^{*}\hat{\Phi}$$

Другими словами, наблюдения добавляются так, что гиперпараметры апостериорных наблюдений не изменяются. Заметим, что $X^{*\prime}X^* = X^{+\prime}X^+ + X^\prime X, \; E^{*\prime}E^* = E^{+\prime}E^+ + E^\prime E.$

Чтобы новые формулы совпадали со старыми необходимо, чтобы

$$\begin{cases}
X^{+\prime}X^{+} = \underline{\Omega}^{-1} \\
X^{+\prime}Y^{+} = \underline{\Omega}^{-1}\underline{\Phi} \\
\dots
\end{cases}$$
(30)

Заметим, что новые формулы позволяют трактовать:

• $\overline{\Phi}$ — как результат построения регрессий Y^* на X^* :

$$\overline{\Phi} = (X^{*\prime}X^*)^{-1} \cdot (X^{*\prime}Y^*)$$

• \overline{S} — как ...

Эти условия будут выполнены если добавить наблюдения по схеме:

По аналогии с работами banbura_al_2010 berg_henzel_2013 соответствующее априорное распределение вводится путем добавления искусственных наблюдений⁸:

$$Y^{NIW} = \begin{bmatrix} \frac{\operatorname{diag}(\delta_{1}\sigma_{1}, \dots, \delta_{m}\sigma_{m})}{\lambda_{tight}} \\ 0_{m(p-1)\times m} \\ \operatorname{diag}(\sigma_{1}, \dots, \sigma_{m}) \\ 0_{1\times m} \end{bmatrix} \quad X^{NIW} = \begin{bmatrix} \frac{\operatorname{diag}(1, 2^{\lambda_{lag}}, \dots, p^{\lambda_{lag}}) \otimes \operatorname{diag}(\sigma_{1}, \dots, \sigma_{m})}{\lambda_{tight}} & 0_{mp\times 1} \\ 0_{m\times mp} & 0_{m\times 1} \\ 0_{1\times mp} & \frac{1}{\lambda_{const}} \end{bmatrix}$$

$$(31)$$

⁸Формулы, приведенные в самих работах banbura_al_2010 berg_henzel_2013 и отражающие введение новых наблюдений, являются частным случаем (??) для $\lambda_{lag} = 1$ и $\lambda_{const} \to \infty$.

В работах doan_al_1984 and sims_1993 было предложено добавить к этим априорным распределениям дополнительную характеристику, введение которой обуславливается возможным наличием во временных рядах единичных корней и коинтеграционных соотношений. Это позволяет исключить появление неправдоподобно большой доли внутривыборочной дисперсии, объясняемой экзогенными переменными carriero al 2015

Модификации априорного распределения

Априорное распределение суммы коэффициентов⁹ было предложено в работе doan_al_1984 Это распределение отражает следующую идею: если переменные в VAR имеют единичный корень, то можно учесть эту информацию, задав априорное распределении, в котором сумма коэффициентов при всех лагах зависимой переменной равна единице (см. robertson_tallman_1999 и blake_mumtaz_2012 Другими словами, когда среднее значение лагированных значений какой либо переменной находится на некотором уровне, то это же самое значение, является хорошим прогнозом для будущих значений этой переменной.

Внедрение этого априорного распределения производится путем добавления искусственных дамми-наблюдений по следующей схеме:

$$Y^{SC} = \frac{1}{\lambda_{sc}} \left[\operatorname{diag}(\delta_1 \mu_1, \dots, \delta_m \mu_m) \right]$$
 (32)

$$X^{SC} = \frac{1}{\lambda_{sc}} \begin{bmatrix} (1_{1 \times p}) \otimes \operatorname{diag}(\delta_1 \mu_1, \dots, \delta_m \mu_m) & 0_{m \times 1} \end{bmatrix}, \tag{33}$$

где $(1_{1\times p})$ - вектор-строка из единиц длиной $p,\,\mu_i$ есть i-ая компонента вектора $\mu,$ который состоит из средних начальных значений всех переменных 10 : $\mu=\frac{1}{p}\sum_{t=1}^p y_t$

Априорное распределение начального наблюдения 11 , предложенное в работе sims _ 1993 отражает априорную веру в то, что переменные имеют общий стохастический тренд. Для этого вводится единственное дамми-наблюдение такое, что все значения всех переменных равны соответствующему среднему начальных значений μ_i с точностью до коэффициента масштаба: λ_{io} . Это происходит путем добавления в систему дамми-наблюдения следующего вида:

$$Y^{IO} = \frac{1}{\lambda_{io}} \left[\delta_1 \mu_1, \dots, \delta_m \mu_m \right] \tag{34}$$

$$X^{IO} = \frac{1}{\lambda_{io}} \left[(1_{1 \times p}) \otimes (\delta_1 \mu_1, \dots, \delta_m \mu_m) \quad 1 \right], \tag{35}$$

⁹sum-of-coefficints prior

 $^{^{10}}$ Некоторые авторы для расчета mu рассчитывают среднее по всем наблюдениям, т. е. $\mu = \frac{1}{T} \sum_{t=1}^{T} y_t$ (см. banbura_al_2010 и carriero_al_2015). Однако, в соответствии с работой sims_zha_1998 для расчета среднего используются только первые p наблюдений.

¹¹dummy initial observation prior

(?) Это априорное распределение приводит к тому, что среднее по каждой переменной есть линейная комбинация всех остальных средних.

Гиперпараметр λ_{io} отражает жесткость указанного априорного распределения. Когда $\lambda_{io} \to 0$, модель принимает вид, в котором либо все переменные стационарны со средним, равным выборочному среднему начальных условий, либо нестационарны (без дрейфа) и коинтегрированны.

Как и в случае распределения Миннесоты, необходимости использовать алгоритм Гиббса нет, можно генерировать случайную выборку непосредственно из апостериорного распределения. Например, можно применять такой алгоритм:

1. На *s*-ом шаге сгенерировать очередную итерацию согласно:

$$\Sigma^{[s]} \sim \mathcal{IW}(\overline{S}, \overline{\nu})$$
$$\phi^{[s]} \sim \mathcal{N}(\overline{\phi}; \Sigma^{[s]} \otimes \overline{\Omega})$$

2. Увеличить j на единицу и перейти к пункту один

На практике вместо генерирования вектора $\phi^{[s]}$ генерируют сразу матрицу $\Phi^{[s]}$ в два шага:

- 1. Генерируют матрицу V размера $k \times m$ из независимых стандартных нормальных величин
- 2. Считают матрицу $\Phi^{[s]}$ по формуле:

$$\Phi^{[s]} = \overline{\Phi} + \operatorname{chol}(\overline{\Omega}) \cdot V \cdot \operatorname{chol}(\Sigma^{[s]})'$$

Два ключевых недостатка априорного распределения Миннесоты (отсутствие байесовского оценивания Σ обязательная апостериорная независимость отдельных уравнений системы) решаются при использовании сопряженного нормального - обратного Уишарта распределения. Однако в этом случае параметры априорного распределения для разных уравнений выбираются симметрично. В частности, все коэффициенты при первом лаге зависимой переменной априорно имеют одну и ту же дисперсию λ_{tight}^2 Хотя обычно эта предпосылка не является слишком ограничивающей, в реальности легко встретиться с задачами, в которых ковариационная матрица априорного распределения не должна быть симметрично сформирована для разных уравнений. Например, довольно известным в литературе является следующий пример (см. kadivala karlsson 1997). Положим, исследователь хочет учесть в VAR наличие нейтральности денег. При построении модели эта предпосылка может быть учтена наложением такого априорного распределения, в котором все коэффициенты при лагах денег в уравнении для выпуска имеют нулевое матожидание и низкую дисперсию. Однако это означает, что и в других уравнениях дисперсия коэффициентов в априорном распределении будет относительно низкой. Это характеристика может быть нежелательной, и, чтобы этого избежать, априорное распределение можно задать как независимое - обратное Уишарта.

3.6 Независимое нормальное-обратное Уишарта распределение

Этот тип распределений предполагает, что ковариационная матрица параметров может быть произвольной формы:

$$\begin{cases} \phi \sim \mathcal{N}(\underline{\phi}; \underline{\Xi}) \\ \Sigma \sim \mathcal{IW}(\underline{S}; \underline{\nu}) \\ \phi \text{ и } \Sigma \text{ независимы} \end{cases}$$
 (36)

В этом случае можно показать (ссылка karlsson? - но тут нет доказательства), что условные апостериорные распределения имеют вид:

$$\begin{cases} \phi | \Sigma, Y \sim \mathcal{N}(\overline{\phi}; \overline{\Xi}) \\ \Sigma | \phi, Y \sim \mathcal{IW}(\overline{S}; \overline{\nu}) \end{cases}$$
 (37)

где 12

$$\begin{split} \overline{\nu} &= \underline{\nu} + T \\ \overline{S} &= \underline{S} + E'E, \text{ где } E = Y - X\Phi \\ \overline{\Xi} &= (\underline{\Xi}^{-1} + \Sigma^{-1} \otimes X'X)^{-1} \\ \overline{\phi} &= \overline{\Xi} \cdot (\underline{\Xi}^{-1}\phi + \text{vec}(X'Y\Sigma^{-1})) \end{split}$$

Гиперпараметры априорного распределения могут быть выбраны точно так же, как и в априорном распределении Миннесоты (см. (??) и (??)). При необходимости неинформативное априорное распределение для коэффициентов при детерминированных переменных переменных можно задать, обнулив соответствующее значение в матрице Ξ^{-1} . Использование произвольной ковариационной матрицы приводит к тому, что исследователю оказываются известны только условные апостериорные распределения для ϕ и Σ . Это обуславливает необходимость использования алгоритма Гиббса для получения реализаций из совместного апостериорного распределения.

Получить Марковскую цепь, сходящуюся к апостериорному распределению можно, например, так:

- 1. Сгенерировать произвольно стартовую матрицу $\Sigma^{[0]}$, например, единичную
- 2. На s-ом шаге сгенерировать очередную итерацию согласно:

$$\phi^{[s]} \sim \mathcal{N}(\overline{\phi}^{[s-1]}; \overline{\Xi}^{[s-1]})$$
, где $\overline{\phi}^{[s-1]}$ и $\overline{\Xi}^{[s-1]}$ рассчитываются через $\Sigma^{[s-1]}$ (38) $\Sigma^{[s]} \sim \mathcal{IW}(\overline{S}^{[s]}; \overline{\nu})$, где $\overline{S}^{[s]}$ рассчитываются через $\phi^{[s]}$ (39)

3. Увеличить s на единицу и перейти к пункту два

3.7 Соответствие гиперпараметров в разных работах

DM16	CCM15	BGR10, BH13	KK97	Формула?
λ_{tight}	λ_1	λ	$\sqrt{\pi_1}$	
λ_{kron}	$\lambda_2 = 1$	$\vartheta = 1$	$\sqrt{\frac{\pi_2}{\pi_1}}$	
λ_{lag}	1	1	0.5	
λ_{const}	λ_0	∞	$\sqrt{\pi_3}$	
λ_{exo}	NA	NA	ΝA	
λ_{sc}	λ_3	au		
λ_{io}	λ_4	NA		

3.8 Выбор гиперпараметров и числа лагов

Как было показано в работе $demol_al_2008$ и подтверждено в других более поздних работах,использование сравнительно большого количества временных рядов требует уменьшения параметра λ_1 с увеличением размерности выборки, что означает наложение более жесткого априорного распределения. На данный момент в литературе используется два подхода к определению оптимальной величины λ_1 . В своей работе мы используем оба и сравниваем качество прогноза.

3.9 Метод регуляризации в соответствии с banbura al 2010

Первый алгоритм был предложен в работе banbura_al_2010 и он основан на идее о том, что регуляризация должна быть настолько жесткой, чтобы не исключить возможность избыточной параметризации модели, при этом предполагается, что трехмерная VAR - достаточно простая (parsimonious) модель, не содержащая слишком большого количества параметров. Процедура выбора λ состоит в том, что что средний внутривыборочный прогноз для реального ВВП и индекса цен тот же самый, как на первой выборке (на которой происходит) оценивание. Т.е. каждая модель регуляризуется до размера простой VAR. При этом референтной моделью является та, для которой апостериорное распределение не зависит от функции правдоподобия, т. е. для которой $\lambda=0$. Это означает, что дисперсии всех параметров ϕ равны нулю, т. е. переменные описываются моделью случайного блуждания (RW) со смещением, $y_{i,t}=c+y_{i,t-1}+\varepsilon_t, i=1,\ldots,m$. Обозначим эту модель индексом 0, т.к. $\lambda=0$. Схема выбора λ состоит из следующих этапов:

- 1. На первом этапе строятся внутривыборочные однопериодные прогнозы на обучающей выборке и рассчитывается среднеквадратичная ошибка прогноза выпуска $(MSFE_{\eta}^{0})$ и инфляции $(MSFE_{\pi}^{0})$.
- 2. Оценивается трехмерная VAR для $\lambda \to \infty^{-13}$ и рассчитываются среднеквадратичная ошибка прогноза выпуска $(MSFE_y^\infty)$ и инфляции $(MSFE_\pi^{\infty,3})$ и пока-

 $^{^{13}}$ При $\lambda \to \infty$ оценки BVAR совпадают с оценками VAR методами OLS или ML, т. к. апостериорное распределение параметров в этом случае совпадает с функцией правдоподобия. Считается, что

затель $FIT^{\infty,3}$:

$$FIT^{\infty,3} = \frac{1}{2} \cdot \frac{MSFE_y^{\infty,3}}{MSFE_y^0} + \frac{1}{2} \cdot \frac{MSFE_{\pi}^{\infty,3}}{MSFE_{\pi}^0},\tag{40}$$

3. Оцениваются BVAR модели для m переменных и для большого числа различных λ рассчитываются среднеквадратичные ошибки прогноза для выпуска $(MSFE_y^{\lambda,m})$ и инфляции $(MSFE_\pi^{\lambda,m})$ и показатель $FIT^{\lambda,m}$:

$$FIT^{\lambda,m} = \frac{1}{2} \cdot \frac{MSFE_y^{\lambda,m}}{MSFE_y^0} + \frac{1}{2} \cdot \frac{MSFE_\pi^{\lambda,m}}{MSFE_\pi^0}$$
 (41)

4. Оптимальное λ рассчитывается как значение, при котором минимизируется отклонение $FIT^{\lambda,m}$ от $FIT^{\infty,3}$:

$$\lambda_m^* = \arg\min_{\lambda} |FIT^{\lambda,m} - FIT^{\infty,3}| \tag{42}$$

После того как выбрано оптимальное λ для каждой модели, происходит построение вневыборочных прогнозов на оценивающей выборке.

3.10 Метод регуляризации в соответствии с carriero al 2012

Второй алгоритм предложен в работе (Carriero et al, 2012) и представляет собой выбор такого параметра λ_1 , который бы максимизировал функцию предельной плотности:

$$\lambda^* = \arg\max_{\lambda} \ln p(Y) \tag{43}$$

При этом функция предельной плотности может быть получена путем интегрирования коэффициентов модели: 14

$$p(Y) = \int p(Y|\phi)p(\phi)d\phi \tag{44}$$

Если априорное распределение является нормальным — обратным Уишарта, то предельная плотность p(Y) может быть посчитана аналитически (**zellner_1996** Bauwens et al,1999; Carriero et al,2012):

$$p(Y) = \pi^{-\frac{T_m}{2}} \times + \left| (I + X\underline{\Omega}X')^{-1} \right|^{\frac{N}{2}} \times |\underline{S}|^{\frac{\nu}{2}} \times \frac{\Gamma_N(\frac{\nu+T}{2})}{\Gamma_N(\frac{\nu}{2})} \times \left| \underline{S} + (Y - X\underline{\Phi})'(I + X\underline{\Omega}X')^{-1}(Y - X\underline{\Phi}) \right|^{-\frac{\nu+T}{2}}, \quad (45)$$

трехмерная VAR содержит достаточно маленькое число параметров, и байесовская регуляризация не требуется.

 $^{^{14}}$ Т.к. интегрирование происходит по всем коэффициентам, но не по гиперпараметрам априорного распределения $(\lambda_1, \lambda_2, \lambda_3)$ и не по числу лагов p, то предельная плотность является функцией $\lambda_j, j = 1 \dots 3$ и p.

где $\Gamma_N(\cdot)$ обозначает N-мерную гамма функцию. Выбор числа лагов происходит аналогично путем максимизации по p функции предельной плотности (??):

$$p^* = \underset{p}{\operatorname{arg\,max}} \ln p(Y) \tag{46}$$

3.11 Построение прогнозов и сравнение результатов

Оценка байесовских VAR с заданным λ происходит с «rolling window» по 120 наблюдениям, начиная с января 1996 г и заканчивая апрелем 2015г. (первые 12 наблюдений используются для построения лаговых значений в нескольких наиболее ранних подвыборках. Обозначим последнее наблюдение первой выборки (декабрь 2005 г.) как T_0 и последнее доступное наблюдение (апрель 2015г.) за T_1 , а последнее наблюдение каждой оцениваемой выборки за T. Мы строим вневыборочные прогнозы на 1,3,6,9 и 12 месяцев вперед. т.е. на дату T+h, где h=1,3,6,9,12. Таким образом количество прогнозов на один шаг оказывается на единицу меньше, чем прогнозов на два шага и т.д. ¹⁵ Для каждой модели (m) и каждого прогнозного окна (m) рассчитываются вневыборочные среднеквадратичные ошибки прогноза для индикатора деловой активности (m) и ППЦ (m) и процентной ставки (m) на процентной ставки (m)

$$OMSFE_{var,h}^{\lambda,m} = \frac{1}{2 + T_1 - T_0 - h} \sum_{T=T_0-1}^{T_1} (y_{var,T+h|T}^{\lambda,m} - y_{var,T+h|T})^2, \quad var = \{ip, p, r\}$$
(47)

3.12 Особенности кодирования

При практической реализации алгоритма Гиббса или Монте-Карло часто приходится обращать положительно определённые симметричные матрицы. Для этого можно использовать следующий способ:

1. Получить разложение Холецкого для заданной матрицы A

$$A = U'U$$
,

где U — верхнетреугольная матрица

2. Обратить матрицу U. Существуют специальные алгоритмы обращения верхнетреугольных матриц.

¹⁵Альтернативный метод состоит в том, чтобы посчитать одинаковое количество прогнозов для каждого горизонта h, начиная с $T_0 + 11$, однако это означает определенную потерю информации о прогнозах.

3. Получить A^{-1} по формуле

$$A^{-1} = U^{-1}U^{-1}$$

Однако даже данный способ сопряжён с численными трудностями, если обращаемая матрица плохо обусловлена. Например, при большом количестве эндогенных переменных и большом количестве лагов матрица X'X является плохо обусловленной и для неё может быть численно трудно получить разложение Холецкого. В таком случае мы использовали псевдообратную матрицу Мура-Пенроуза.

4 Данные

Для расчетов мы используем 24 временных ряда с января 1995г. по апрель 2015г. Границы выборки обусловлены доступностью данных, исходная выборка содержит 244 наблюдения. Полный список взятых временных рядов указан в Приложении 2. После устранения сезонности в рядах, демонстрирующих сезонные колебания, мы логарифмируем всех ряды кроме процентной ставки. Далее происходит проверка на стационарность, для чего используются ADF и KPSS тесты. Такая проверка необходима, для того чтобы определить матожидание априорного распределения для параметров Φ_1 . Следуя методологии других работ, посвященных прогнозированию с помощью BVAR (например ()()), мы назначаем (Φ_1) $_{ii}=1$ для нестационарных рядов и $(\Phi_1)_{ii} = 0$ для стационарных. На втором этапе мы оцениваем три rolling VAR модели для разного набора переменных и строим по ним прогнозы. Период оценивания составляет всегда 120 месяцев, Прогноз строится на 1, 3, 6 и 12 месяцев. Мы строим VAR для разного количества переменных: для 3, 6 и 24^{16} . Модель с тремя переменными рассматривается как наиболее простая модель, содержащая только самые важные переменные: показатель деловой активности (индекс промышленного производства), индекс цен (подсчитанной с помощью ИПЦ) и инструмента монетарной политики (в качестве прокси для которого мы берем процентную ставку межбанковского рынка). Модель с шестью переменными специфицируется по аналогии со многими монетарными моделями, использовавшимися для структурного анализа различных экономик (Sims, 1992; Kim and Roubini (2000); Bjornland (2008); Uhlig and Scholl (2008) и включает в дополнение к уже указанным переменным валютный курс, денежный агрегат М2 и цены на нефть (последний показатель включен для отражения экспортоориентированности российской экономики). В модель с 24 переменными строится с использованием всех доступных временных рядов.

При определении параметра жесткости распределения по методу **banbura_al_2010** необходимо выделить период, на котором происходит определение λ . Мы определяем λ на самом раннем доступном промежутке: с января 1996г. по декабрь 2005г (первые 12 месяцев используются в качестве лаговых значений переменных для этой регрессии). Количество лагов определяется путем минимизации информационных

 $^{^{16}}$ Обычная VAR для сравнения качества прогноза строится для 3 и 6 переменных

критериев для обычной VAR на той же самой подвыборке. (что делать с вар по 24 рядам??) Далее количество лагов и параметр жесткости фиксируются и используются для построения прогнозов на всех остальных подвыборках. При определении параметра жесткости путем максимизации предельной плотности данных (marginal data density) при оценке каждой BVAR происходит совместный поиск на сетке по λ и по p, и выбираются такие значения, для которых (??) максимально.

Приложения

Данные

Название временного ряда	Тип данных	База (если есть)	Источник
Индекс промышленного производства	Базисный индекс	2010	IFS
Индекс потребительских цен	Базисный индекс	2010	IFS
Индекс занятости в промышленности	Базисный индекс	2010	IFS
Процентная ставка межбанковского рынка	В процентах годовых		IFS
Процентная ставка по кредитам	В процентах годовых		IFS
Индекс реальных денежных доходов	Базисный индекс	январь 1992	Φ C Γ C
Уровень безработицы	В процентах		IFS
Индекс цен на нефть марки Brent	Базисный индекс	2010	IFS
Индекс цен производителей	Цепной индекс		IFS
Ввод в действие новых жилых домов	В тыс.кв.м.		Φ C Γ C
Индекс реальных инвестиций в основной капитал	Базисный индекс	январь 1994	ЦАД
Индекс реальных зарплат	Базисный индекс	январь 1993	Φ C Γ C
Денежный агрегат М2	в млрд. руб.		ЦБ
Реальный эффективный валютный курс	Базисный индекс	2010	IFS
Цена натурального газа	Долл. за млн. БТЕ	2010	IFS
Международные резервы за исключением золота	Млрд. долл.		IFS
Номинальный валютный курс	руб. за долл.		IFS
Заявленная потребность в работниках	Тыс. чел.		ЦАД
Индекс реального объема сельхозпроизводства	Базисный индекс	январь 1993	ЦАД
Индекс реального объема розничной торговли	Базисный индекс	январь 1994	ЦАД
Сальдо консолидированного бюджета			ЦАД
Экспорт товаров	млн. долл.		IFS
Импорт товаров	млн. долл.		IFS

Доступные реализации кода

Источник	Среда	Min	Conj N-IW	Ind N-IW	SoC	IO
Carriero	Matlab	-	?	-	+	+
Blake Mumtaz	Matlab	-	+	+	+	+
Koop Korobilis	Matlab	+	+	+	-	-
Zha	Matlab		?		+	+
Le Sage	Matlab	?				
Sims	Matlab		?	?	+	+
Canova	Matlab		?			
BMR	R	+	-	+	-	-
MSBVAR	R	-	+	-	+	+
bvarr	R	+	+	+	+	+
Sims	R		?	?	+	+
Встроенная функция	EViews	+	+	-	+	+
Встроенная функция	Gauss	?	?	?	?	?
Встроенная функция	Dynare	?	+	?	+	+

- 1. Carriero: Дамми-наблюдения вводятся как для conj NIW, при этом делает Gibbs sampling, при этом $\overline{\Phi}$ одно и то же, а Σ пересчитывается на каждом шаге в зависимости от предыдущего Φ . При плохо обусловленной матрице X'X используется псевдо-обратная. Имеется странный хак, повторно генерирующий VAR коэффициенты, если собственные числа за пределами единичного круга. http://cremfi.econ.qmul.ac.uk/efp/info.php
- 2. Blake Mumtaz: Называет Миннесотой Ind NIW. Код для сопј NIW построен так же, как у Carriero через Gibbs Sampling: разница добавляет 2 один. строки для дамми при опредеделеннии коэффициента при константе. http://www.bankofengland.co.uk/education/Pages/ccbs/technical_handbooks/techbook4.aspx
- 3. Koop Korobilis: Код крайне негибкий. Без правки кода нет возможности прогнозировать больше чем на один шаг, базовые conj N-IW и ind N-IW априорное распределения не содержит гиперпараметров и задаются через фиксированные матрицы.https://sites.google.com/site/dimitriskorobilis/matlab
- 4. Zha: в соответствии со статьей ограничения накладываются на структурную форму VAR, соответственно дается другая интерпретация для некоторых гиперпараметров
- 5. Sims Недостаточно подробное описание. Нужно прочитать весь код, чтобы чтото модифицировать.http://sims.princeton.edu/yftp/VARtools/
- 6. BMR: Симуляции реализованы в C++. оценивает DSGE. Peaлизует TVPBVAR. Отличная документация. http://bayes.squarespace.com/bmr/

- 7. MSBVAR: Симуляции реализованы на фортране и C++. Реализует также марковские BVAR с переключением. https://cran.r-project.org/web/packages/MSBVAR/
- 8. bvarr: Сопряжённое нормальное-Уишарта реализовано максимально гибко. При плохо обусловленной матрице X'X используется псевдо-обратная. Код для Миннесоты и независимого нормального Уишарта является переводом кода Koops-Korobilis и потому крайне негибкий. https://github.com/bdemeshev/bvarr
- 9. Eviews: «EViews just ignores the fact that the coefficients were estimated using Bayesian methods, and forecasts the same way as it would a classical model» . Коэффициент λ_{kron} равен по умолчанию 0,99 и не может быть изменен. Большую свободу представляет прямое задание ковариационной матрицы. Матожидания коэффициентов при первых лагах могут быть заданы только одинаковыми для всех переменных.

10. Gauss:

11. Dynare: Функция позиционируется как BVAR à la Sims. Оценка возможна только «комплектом», но можно поменять априорное распределение для априорного распределения ковариационной матрицы http://www.dynare.org/