

[Ex 6.3]

Find the lengths of the curves in Exercises.

1.
$$x = 1 - t$$
, $y = 2 + 3t$, $-2/3 \le t \le 1$

2.
$$x = \cos t$$
, $y = t + \sin t$, $0 \le t \le \pi$

3.
$$x = t^3$$
, $y = 3t^2/2$, $0 \le t \le \sqrt{3}$

9. Find the lateral (side) surface area of the cone generated by revolving the line segment y = x/2, $0 \le x \le 4$, about the x-axis. Check your answer with the geometry formula

Lateral surface area = $\frac{1}{2}$ × base circumference × slant height.

11. Find the surface area of the cone frustum generated by revolving the line segment y = (x/2) + (1/2), $1 \le x \le 3$, about the x-axis. Check your result with the geometry formula

Frustum surface area = $\pi(r_1 + r_2) \times \text{slant height}$.

26. The surface of an astroid Find the area of the surface generated by revolving about the x-axis the portion of the astroid $x^{2/3} + y^{2/3} = 1$ shown here. (*Hint:* Revolve the first-quadrant portion $y = (1 - x^{2/3})^{3/2}$, $0 \le x \le 1$, about the x-axis and double your result.)

[Ex 7.1]

Each of Exercises \bigvee gives a formula for a function y = f(x). In each case, find $f^{-1}(x)$ and identify the domain and range of f^{-1} . As a check, show that $f(f^{-1}(x)) = f^{-1}(f(x)) = x$.

19.
$$f(x) = x^5$$

20.
$$f(x) = x^4, \quad x \ge 0$$

23.
$$f(x) = 1/x^2$$
, $x > 0$ **24.** $f(x) = 1/x^3$, $x \ne 0$

24.
$$f(x) = 1/x^3$$
, $x \neq 0$

Ex 7.27

Evaluate the integrals in Exercises.

39.
$$\int \frac{2y \, dy}{y^2 - 25}$$

$$44. \int_2^4 \frac{dx}{x \ln x}$$

45.
$$\int_{2}^{4} \frac{dx}{x(\ln x)^{2}}$$

Ex 7.3)

Evaluate the integrals in Exercises

42.
$$\int (2e^x - 3e^{-2x}) dx$$

49.
$$\int \frac{e^{\sqrt{r}}}{\sqrt{r}} dr$$

55.
$$\int_0^{\pi/4} (1 + e^{\tan \theta}) \sec^2 \theta \ d\theta$$

68. Where does the periodic function $f(x) = 2e^{\sin{(x/2)}}$ take on its extreme values and what are these values?

