Université libre de Bruxelles 2024

Corrigé

Examen blanc MATH-F211

18 décembre 2024

Nom:												
Prénom :												
♦ N'a♦ Cet éga♦ Pout												
T1	T2	T2	1–5	5–10	11	12	13	14	15	Σ		

Note:

Partie A

Veuillez écrire vos réponses dans cette partie directement sous chaque exercice. Temps estimé : 20 min.
Exercice 1 (2P). Finir la définition suivante : Une collection \mathcal{T}_X de sous-ensembles de X est une topologie sur X si
Le syllabus, page 11.
Exercice 2 (2P). Finir la définition suivante : Soit M un ensemble non-vide. Une fonction $d \colon M \times M \to \mathbb{R}$ est une <i>métrique</i> si
Page 28.
Exercice 3 (2P). Formuler le théorème à propos de l'unicité d'un prolongement continu.
Page 99.

Exercice 4 (2P). Formuler le théorème donnant des conditions suffisantes pour que X/G soit Hausdorff, où X est un espace topologique et G un groupe opérant sur X .
Page 107.
Exercice 5 (2P). Finir la définition suivante : Un espace topologique X est dit connexe si
Page 112. Partie B
Dans cette partie, choisissez une réponse dans la liste fournie. Vous ne devez pas fournir de solution ou de justification. Temps estimé : 20 min.
Exercice 6 (2P). Soit $X = \mathbb{R}$ muni de la topologie cofinie. Le sous-ensemble \mathbb{Z} [] est ouvert dans X . [] est fermé dans X . [X] n'est ni ouvert ni fermé dans X . [] a aucun point d'adhérence dans X .

Exercice 7 (2P). On définit la fonction $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ par

$$d(x,y) := \begin{cases} x - y & \text{si } x \ge y, \\ 1 & \text{sinon.} \end{cases}$$

[] d est une métrique sur	Ж.
----------------------------	----

- [] d n'est pas une métrique sur \mathbb{R} parce que l'inégalité triangulaire n'est pas satisfaite.
- [] d n'est pas une métrique sur \mathbb{R} parce qu'il existe un $x \in \mathbb{R}$ tel que $d(x, x) \neq 0$.
- [X] d n'est pas une métrique sur \mathbb{R} pour une raison non mentionnée ci-dessus.

Exercice 8 (2P). Soit (M,d) un espace métrique. La boule ouverte $B_1(p)$ de rayon r=1 centrée en $m\in M\dots$

- [] est toujours connexe.
- [X] peut être fermé.
- [] peut ne pas être Hausdorff (par rapport à la topologie induite).
- [] aucune des réponses ci-dessus ne s'applique.

Exercice 9 (2P). Soit X un espace topologique et \sim une relation d'équivalence sur X. Choisir une vraie affirmation dans la liste suivante :

- [] Si X est Hausdorff, alors X/\sim est Hausdorff.
- [] Si U est ouvert dans X, alors $\pi(U)$ est ouvert dans X/\sim , où π est la projection canonique.
- [X] Si X est connexe, alors X/\sim est connexe.
- Aucune des réponses ci-dessus ne s'applique.

Exercice 10 (2P). Soit X est un espace topologique. Choisir une vraie affirmation dans la liste suivante :

- $\begin{bmatrix} \end{bmatrix}$ Si X est connexe, alors X est localement connexe.
- $\begin{bmatrix} \end{bmatrix}$ Si X est connexe par arcs, alors X est localement connexe par arcs.
- $[\hspace{1em}]$ Si X est connexe par arcs, alors X est localement connexe.
- [X] Aucune des réponses ci-dessus ne s'applique.

Partie C

Veuillez écrire vos solutions aux exercices des parties C et D sur les feuilles blanches fournies. Temps estimé : 1 h 20 min.

Exercice 11 (5+5P). Soit (M,d) un espace métrique et soient

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)},$$
 et $d_2(x,y) = (d(x,y))^2.$

Démontrer que d_1 est une métrique sur M, mais démontrer que d_2 n'en est pas forcément une.

Corrigé. Puisque d(x,x)=0, on a $d_1(x,x)=0$ pour tout $x\in M$. Inversement, si $d_1(x,y)=0$, alors d(x,y)=0 et donc x=y.

 d_1 est évidemment symétrique. Pour démontrer l'inégalité triangulaire, on note que la fonction $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ définie par f(t) = t/(1+t) est croissante et satisfait la propriété

$$f(s+t) = \frac{t+s}{1+t+s} = \frac{t}{1+t+s} + \frac{s}{1+t+s} \le \frac{t}{1+t} + \frac{s}{1+s} = f(s) + f(t). \tag{1}$$

Par conséquent, pour tout $z \in M$ on a

$$d_1(x,y) = f(d(x,y)) \le f(d(x,z) + d(z,y)) \le f(d(x,z)) + f(d(z,y)) = d_1(x,z) + d_1(z,y),$$

où la première inégalité suit de la croissance de f et la deuxième de (1). Ainsi, d_1 est une métrique sur M.

Il suffit de démontrer que $d_2(x,y)=(x-y)^2$ n'est pas une métrique sur $\mathbb R$. En effet, pour x=0,y=4 et z=2 on a

$$d_2(0,4) = 16$$
 et $d_2(0,2) + d_2(2,4) = 8$.

Donc, d_2 ne satisfait pas l'inégalité triangulaire et n'est alors pas une métrique.

Exercice 12 (10P). Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) des espaces topologiques et $f, g: X \to Y$ des fonctions continues, où (Y, \mathcal{T}_Y) est un espace Hausdorff. Démontrer que l'ensemble

$$E := \left\{ x \in X \mid f(x) = g(x) \right\}$$

est un fermé de X.

Corrigé. Le syllabus, page 98.

Exercice 13 (10P). Démontrer que l'intervalle [0,1] muni de la topologie induite de \mathbb{R} est connexe.

Corrigé. Le syllabus, page 134.

Partie D

Temps estimé: 1 h.

Exercice 14 (10P). Soit (M, d) un espace métrique et $A \subset M$ un sous-ensemble quelconque. Pour $m \in M$, posons

$$\rho(m, A) = \inf \left\{ d(m, a) \mid a \in A \right\}.$$

Démontrer que $\rho(m, A) = 0$ si et seulement si $m \in \bar{A}$.

Corrigé. Supposons que $\rho(m,A)=0$. Donc, il existe une suite (a_n) dans A tq la suite $(d(m,a_n))$ converge vers $0 \in \mathbb{R}$, càd (a_n) converge vers m. Il suit que $B_r(m) \cap A \neq \emptyset$ pour tout r>0 et donc $m \in \bar{A}$.

Inversement, si $m \in \bar{A}$, il existe une suite (a_n) dans A qui converge vers m. Donc, la suite $(d(m, a_n))$ converge vers 0 et alors $\rho(m, A) = 0$.

Exercice 15 (10P). Trouver toutes les composantes connexes de l'espace

$$X = \{ A \in M_n(\mathbb{R}) \mid A = A^t, \det A \neq 0 \},$$

où A^t est la matrice transposée de A et X est muni de la topologie induite de $M_n(\mathbb{R})$.

Corrigé. Tout d'abord, notons que l'espace vectoriel

$$Y = \{ A \in M_n(\mathbb{R}) \mid A = A^t \},\$$

est isomorphe à $\mathbb{R}^{n(n+1)/2}$. De plus, $\det: Y \to \mathbb{R}$ est continue en tant qu'une fonction polynomiale. Alors, $X \subset Y$ est ouvert parce que $X = \det^{-1}(J)$, où $J = \mathbb{R} \setminus \{0\}$ est ouvert. En particulier, X est une variété topologique (de la dimension n(n+1)/2). Par conséquent, les composantes connexes de X et les composantes connexes par arcs sont égales.

Rappelons que la signature de A est définie par

$$\operatorname{sgn} A = \operatorname{le} \operatorname{nombre} \operatorname{de} \operatorname{valeurs} \operatorname{propres} \operatorname{positives} = \dim V_{max} \in \{0, 1, \dots, n\}$$

où V_{max} est un espace vectoriel maximal parmi les sous-espaces vectoriels V de \mathbb{R}^n tq $\langle Av, v \rangle > 0$ lorsque $v \in V, v \neq 0$.

Soit S_{max} la sphère dans V_{max} , càd $S_{max} = \{v \in V_{max} \mid ||v|| = 1\}$. Puisque S_{max} est compact et la fonction $S_{max} \to \mathbb{R}$, $v \mapsto \langle Av, v \rangle$ est continue et strictement positive, il existe $\underline{\lambda} > 0$ tq

$$\langle Av, v \rangle \ge \underline{\lambda} \qquad \forall v \in S_{max}.$$

Si $B \in Y$ satisfait $||B||^2 = \sum_{i,j=1}^n b_{ij}^2 < \varepsilon^2$, on obtient

$$\langle Bv, v \rangle \le ||B|| ||v|| \le \varepsilon$$
 si $v \in S_{max}$.

De coup, si $\varepsilon < \underline{\lambda}$, la fonction

$$S_{max} \to \mathbb{R}, \qquad v \mapsto \langle (A+B)v, v \rangle$$

est strictement positive et donc $sgn(A + B) \ge sgn A$.

De la même manière, on obtient aussi $\operatorname{sgn}(A+B) \leq \operatorname{sgn} A$ si $\|B\|$ est suffisamment petite (en considérant l'espace vectoriel maximal sur lequel A est définie négative). Donc, l'application $A \mapsto \operatorname{sgn} A$ est constante sur un voisinage d'une matrice $A_0 \in X$. En particulier, si on munit $\{0,1,\ldots,n\}$ de la topologie discrète, l'application $\operatorname{sgn}\colon X \to \{0,1,\ldots,n\}$ est continue et (évidemment) surjective. Donc, X a au moins n+1 composantes connexes representés par

$$E_n := \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}, \quad E_{n-1} := \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}, \dots, E_0 := \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -1 \end{pmatrix}.$$

En utilisant l'induction par rapport à n, on va démontrer l'affirmation suivante : si $\operatorname{sgn} A = p$, alors il existe un chemin joignant A et E_p (qui implique que $X_p := \{A \in X \mid \operatorname{sgn} A = p\}$ est connexe (par arcs)).

Tout d'abord, pour n=1 on a $X=\mathbb{R}\setminus\{0\}$ et dans ce cas-là l'affirmation est évidente.

Soit n>0 quelconque. Si $p=0 \Leftrightarrow A$ est définie négative, $t\mapsto (1-t)A+tE_0$ est un chemin joignant A et E_0 . Supposons donc que $\operatorname{sgn} A=p>0$. Alors, il existe un vecteur propre v_1 de A de valeur propre $\lambda_1>0$. Soit R la rotation dans le plan P engendré par $\{e_1,v_1\}$ tq $Re_1=v_1$ (si $v_1=e_1$ on peut prendre R=id). On prolonge R sur $\{e_1,v_1\}^\perp$ comme identité.

Évidemment, il existe un chemin de rotations $t \mapsto R_t$ tq R_0 est la matrice identité et $R_1 = R$. Donc A et $R^{-1}AR$ appartiennent à la même composante connexe. Puisque par construction on a $R^{-1}ARe_1 = \lambda_1 e_1$, en fait

$$R^{-1}AR = \left(\begin{array}{c|c} \lambda_1 & 0 \\ \hline 0 & A' \end{array}\right)$$

où $A' \in M_{n-1}(\mathbb{R})$ est symétrique et $\operatorname{sgn} A' = p-1$. Par l'hypothèse de récurrence, il existe un chemin $t \mapsto A'_t$ tq $A'_0 = A'$ et $A'_1 = E'_{p-1}$, où E'_{p-1} est la $(n-1) \times (n-1)$ -matrice de la signature p-1. Donc

$$t \mapsto \left(\begin{array}{c|c} (1-t)\lambda_1 + t & 0 \\ \hline 0 & A'_t \end{array} \right)$$

est un chemin joignant $R^{-1}AR$ et E_p . Ainsi, X_p est connexe.