## 数理方程复习课——特别定制版

数理方程 08 班内部讲义,仅供学习交流使用

### 定解问题的书写

一均匀杆的原长为 l, 一端固定,另一端沿杆的轴线方向拉长 b 而静止,放手任其振动,试写出对应的定解问题。

解: 首先按照题意建立合适的坐标系。

由题意知,取杆所在直线为 x 轴,固定端为原点 x=0,另一端对应 x=l。以  $\bar{u}(x,t)$  表示小段的质心位移,设 S 为杆的横截面积, $\rho$  为杆的质量密度,p(x,t) 是小段端点处所受的力. 由牛顿第二定律,有

$$[p(x + \Delta x, t) - p(x, t)]S = \rho S \Delta x \frac{\partial^2 \bar{u}}{\partial t^2}$$

当  $\Delta x \to 0$  时  $, \bar{u} \to u, \frac{p(x + \Delta x, t) - p(x, t)}{\Delta x} \to \frac{\partial p}{\partial x},$  又因为  $p = E \frac{\partial u}{\partial x},$  故有

$$\rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial p}{\partial x} = E \frac{\partial^2 u}{\partial x^2}$$

令  $a^2 = \frac{E}{\rho}$ , 可得振动方程为

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

由题意知,放手时即是振动的初始时刻,此时杆振动的速度为零,则

$$u_t|_{t=0} = 0$$

而 x = l 端拉离平衡位置使整个杆伸长了 b, 故初始位移为

$$u|_{t=0} = \frac{b}{l}x$$

再看边界条件,一端固定即该端位移保持为0,即

$$u|_{x=0} = 0$$

另一端未受外力, 于是有

$$u_x|_{x=l} = 0$$

所以定解问题可以写作

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \\ u|_{t=0} = \frac{b}{l} x, \quad u_t|_{t=0} = 0 \\ u|_{x=0} = 0, \quad u_x|_{x=l} = 0 \end{cases}$$

长为 l 的柔软均匀绳,一端固定在以角速度  $\omega$  匀速转动的竖直轴上,由于惯性离心力的作用,这根绳的平衡位置应是水平线,试推导此绳相对于水平线的横振动方程。

解: 由小量近似, $\sin \alpha \approx \tan \alpha = \frac{\partial u}{\partial x}, \cos \alpha \approx 1$ , 因而从 x 到 x + dx 这段绳满足

$$T_2 u_x|_{x+dx} - T_1 u_x|_x = \rho dx \cdot u_{tt}$$

即

$$(Tu_x)|_{x+dx} - (Tu_x)|_x = \rho dx \cdot u_{tt}$$

为了求出在 x 处的张力 T(x), 需考虑从 x 到 l 的一段绳上的惯性离心力的作用, 设在 x 处的张力为 T(x), 则

$$T(x) = \int_{x}^{l} \omega^{2} x \rho dx = \frac{1}{2} \rho \omega^{2} \left( l^{2} - x^{2} \right)$$

因此,

$$\left[\frac{1}{2}\rho\omega^2\left(l^2-x^2\right)\right]u_x\bigg|_{x+dx} - \left[\frac{1}{2}\rho\omega^2\left(l^2-x^2\right)\right]u_x\bigg|_{x} = u_{tt}\rho dx$$

即

$$\rho u_{tt} = \frac{\left[\frac{1}{2}\rho\omega^2 \left(l^2 - x^2\right)u_x\right]\Big|_{x+dx} - \left[\frac{1}{2}\rho\omega^2 \left(l^2 - x^2\right)u_x\right]\Big|_x}{dx}$$
$$= \frac{1}{2}\rho\omega^2 \frac{\partial}{\partial x} \left[\left(l^2 - \omega^2\right)u_x\right]$$

整理得

$$u_{tt} - \frac{1}{2}\omega^2 \frac{\partial}{\partial x} \left[ \left( l^2 - \omega^2 \right) u_x \right] = 0$$

长为 1 的柔软均匀的重绳,上端固定在以角速度  $\omega$  匀速转动的竖直轴上,由于重力的作用,绳的平衡位置应是竖直线。试推导此绳相对于竖直线的横振动方程。

解: 在小振动的情况下, $\sin \alpha \approx \tan \alpha = \frac{\partial u}{\partial x}, \cos \alpha \approx 1, ds \approx dx$ , 取从 x 到 x + dx 一段绳,满足

$$T_2 u_x|_{x+dx} - T_1 u_x|_x + F = \rho \mathrm{d}x \cdot u_{tt}$$

其中 F 是 dx 段上所受的惯性离心力, $F = \rho dx u \omega^2$ ,在 x 端还受重力的作用,张力  $T = \int_x^l \rho g dx$ . 代入上式得

$$[(l-x)\rho gu_x]|_{x+dx} - [(l-x)\rho gu_x]|_x + u\omega^2 \rho dx = u_{tt}\rho dx$$

即

$$u_{tt} = \frac{[(l-x)gu_x]|_{x+dx} - [(l-x)gu_x]|_x}{dx} + u\omega^2$$

亦即

$$u_{tt} = g \frac{\partial}{\partial x} [(l - x)u_x] = u\omega^2$$

整理得到

$$u_{tt} - g \frac{\partial}{\partial x} \left[ (l - x)u_x \right] - u\omega^2 = 0$$

### 行波法求解定解问题(并和积分变换法作比较)

$$\begin{cases} u_{tt} = a^2 \Delta_3 u, & (t > 0, r > 0) \\ u|_{r=0} & \text{\textit{ff}} \\ u|_{t=0} = 0, & u_t|_{t=0} = (1 + r^2)^{-2} \end{cases}$$

解:

法一:使用行波法求解。观察问题为三维球对称的波动方程问题,可以通过函数变换转化为一维半无界区域问题,接着使用延拓法转化为一维无界区域的波动方程问题进而使用行波法求解。

使用球坐标表达泛定方程

$$u_{tt} = a^2 \left( u_{rr} + \frac{2}{r} u_r \right)$$

通过待定函数变换过程确定函数变换因子,令 v=ru,则变为半无界弦振动定解问题:

$$\begin{cases} v_{tt} = a^2 v_{rr}, & (t > 0, r > 0) \\ v|_{r=0} = 0 \\ v|_{t=0} = 0, & v_t|_{t=0} = \frac{r}{(1+r^2)^2} \end{cases}$$

进一步,使用延拓法

$$\begin{cases} w_{tt} = a^2 w_{xx}, & (t > 0, -\infty < x < +\infty) \\ w|_{t=0} = 0, & w_t|_{t=0} = \frac{x}{(1+x^2)^2} \end{cases}$$

利用达朗贝尔公式

$$w(t,x) = \frac{1}{2a} \int_{x-at}^{x+at} \frac{\xi}{(1+\xi^2)^2} d\xi = -\frac{1}{4a} \frac{1}{(1+\xi^2)} \Big|_{x-at}^{x+at}$$
$$= \frac{1}{4a} \frac{1}{(1+(x-at)^2)} - \frac{1}{4a} \frac{1}{(1+(x+at)^2)} = \frac{xt}{[1+(x-at)^2][1+(x+at)^2]}$$

取 x > 0 部分 (对应原问题的 r > 0), 得到半无界弦振动定解问题的解为

$$v(t,r) = \frac{rt}{[1 + (r - at)^2)][1 + (r + at)^2]}$$

相应地,此三维波动方程定解问题的解为

$$u(t,r) = \frac{t}{[1 + (r - at)^2][1 + (r + at)^2]}$$

法二:使用拉普拉斯变换法求解。对于一般的发展方程问题,时间变量 t > 0 为半无界区域,且初始条件往往满足拉普拉斯变换法使用条件。特别地,可以使用拉普拉斯变换法可以求解这一问题。

$$L[u_{tt}] = p^{2}U - pU(0,r) - u_{t}(0,r) = p^{2}U - (1+r^{2})^{-2}$$

那么方程变为

$$p^{2}U - (1+r^{2})^{-2} = a^{2}\frac{d^{2}U}{dr^{2}} + \frac{2a^{2}}{r}\frac{dU}{dr}$$

求解常微分方程, 再作 Laplace 逆变换, 最后得到

$$u = \frac{t}{[1 + (r - at)^2][1 + (r + at)^2]}$$

比较:可以发现,行波法和积分变换法都可以应用于求解这一问题。行波法求解这一问题主要步骤为:选取合适的坐标系表达定解问题,待定函数变换寻找合适的函数变换因子,变换后的问题利用延拓法转化为可以直接使用行波法求解的问题,利用达朗贝尔公式直接得到解。拉普拉斯变换法求解这一问题的主要步骤为:选取合适的坐标系表达定解问题,选取合适的积分变量作正变换,求解像函数满足的常微分方程,对像函数作反变换得到解。一般来讲,如果需要作函数变换才可以使用行波法发问题,需要考虑题目是否提供关于函数变换因子的提示,如果没有需要考虑是否掌握待定函数变换法。而对于拉普拉斯变换法,则要考虑像函数的求解以及反变换的过程。一般的原则是能够使用行波法求解的问题尽量使用行波法。

### 齐次化原理

应用齐次化原理求解非齐次发展方程问题。

$$\begin{cases} u_{tt} - a^2 u_{xx} = A \cos \frac{\pi x}{l} \sin \omega t (0 < x < l, t > 0) \\ u_x(0, t) = u_x(l, t) = 0 \\ u(x, 0) = u_t(x, 0) = 0 \end{cases}$$

解: 非齐次发展方程,可以应用齐次化原理进行转化,进而使用分离变量法求解。 记

$$\begin{cases} v_{tt} - a^2 v_{xx} = 0(0 < x < l, t > \tau) \\ v_x(0, t) = v_x(l, t) = 0 \\ v(x, t; \tau)|_{t=\tau} = 0, v_t(x, t; \tau)|_{t=\tau} = A \cos \frac{\pi}{l} x \sin \omega \tau \end{cases}$$

的解  $v(x,t;\tau)$ , 而

$$u(x,t) = \int_0^t v(x,t;\tau) d\tau$$

为了求解这个定解问题,我们要进行时间变量偏移。令

$$v(x,t;\tau) = X(x)T(t-\tau)$$

$$T'' - \mu a^2 T = 0$$

$$X'' - \mu X = 0$$

$$X'(0) = 0, X'(l) = 0$$

求解固有值问题得到固有值和固有函数系

将固有值代入关于时间变量 t 的常微分方程并求解得到

$$\begin{cases} T_0(t-\tau) = a_0(t-\tau) + b_0 \\ T_n(t-\tau) = A_n \cos\frac{n\pi a}{l}(t-\tau) + B_n \sin\frac{n\pi a}{l}(t-\tau) \end{cases}$$

进而得到

$$v_n(x,t;\tau) = \left[ A_n \cos \frac{n\pi a}{l} (t-\tau) + B_n \sin \frac{n\pi a}{l} (t-\tau) \right] \cos \frac{n\pi}{l} x$$

则形式解

$$v(x,t;\tau) = a_0(t-\tau) + b_0 + \sum_{n=1}^{\infty} \left[ A_n \cos \frac{n\pi a}{l} (t-\tau) + B_n \sin \frac{n\pi a}{l} (t-\tau) \right] \cos \frac{n\pi}{l} x$$

代入初始条件

$$\begin{cases} b_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi}{l} x = 0 \\ a_0 + \sum_{n=1}^{\infty} B_n \frac{n\pi a}{l} \cos \frac{n\pi}{l} x = A \cos \frac{n\pi}{l} x \sin \omega t \tau \end{cases}$$

比较等式两边对应项系数得

$$b_0 = 0, A_n = 0$$
  
 $a_0 = 0, B_1 \frac{\pi a}{I} = A \sin \omega \tau, B_n = 0 (n \neq 1)$ 

即

$$a_0 = b_0 = A_n = 0, B_n = 0 (n \neq 1), B_1 = \frac{Al}{\pi a} \sin \omega \tau$$

代入形式解

$$v(x,t;\tau) = B_1 \sin \frac{\pi a(t-\tau)}{l} \cos \frac{\pi}{l} x$$
$$= \frac{Al}{\pi a} \sin \omega \tau \sin \frac{\pi a}{l} (t-\tau) \cdot \cos \frac{\pi}{l} x$$

所以定解问题的解为

$$u(x,t) = \int_0^t v(x,t;\tau) d\tau = \frac{Al}{\pi a} \cos \frac{\pi x}{l} \int_0^t \sin \omega \tau \sin \frac{\pi a(t-\tau)}{l} d\tau$$
$$= \frac{Al}{\pi a} \cdot \frac{1}{\omega^2 - \frac{\pi^2 a^2}{l^2}} \left( \omega \sin \frac{\pi a}{l} t - \frac{\pi a}{l} \sin \omega t \right) \cos \frac{\pi}{l} x$$

另外,这个问题属于有界区域的齐次边界非齐次方程问题,还可以使用固有函数展开法进行求解。可以在阅读时尝试利用固有函数展开法进行求解,并比较两种方法的特点。 这里简单叙述固有函数展开法的操作过程。

相应的齐次问题分离变量后所得的固有值问题为

$$\begin{cases} X''(x) - \mu X(x) = 0 \\ X'(0) = X'(l) = 0 \end{cases}$$

求解得到固有函数系

$$X_n(x) = C_n \cos \frac{n\pi}{l} x, n = 0, 1, \cdots$$

进而把非齐次项在固有函数系上展开

$$\begin{cases} u(x,t) = \sum_{n=0}^{\infty} T_n(t) \cos \frac{n\pi}{l} x \\ A \cos \frac{\pi x}{l} \sin \omega t = \sum_{n=0}^{\infty} f_n(t) \cos \frac{n\pi}{l} x \end{cases}$$

并得到展开式系数

$$f_1(t) = A\sin wt, f_n(t) = 0 (n \neq 1)$$

进而得到关于 t 的常微分方程

$$\begin{cases} T_n''(t) + \left(\frac{n\pi a}{l}\right)^2 T_n(t) = f_n(t) \\ T_n(0) = 0, T_n'(0) = 0 \end{cases}$$

即

$$\begin{cases} T_1''(t) + \frac{\pi a}{l} T_1(t) = A \sin \omega t \\ T_1(0) = 0, T_1'(0) = 0 \end{cases}$$

$$\begin{cases} T_n''(t) + \left(\frac{n\pi a}{l}\right)^2 T_n(t) = 0, n \neq 1 \\ T_n(0) = 0, T_n'(0) = 0 \end{cases}$$

求解得到

$$T_1(t) = \frac{Al}{\pi a} \cdot \frac{1}{\omega^2 - \frac{\pi^2 a^2}{l^2}} \left( \omega \sin \frac{\pi a}{l} t - \frac{\pi a}{l} \sin \omega t \right)$$

和

$$T_n(t) \equiv 0, n \neq 1$$

所以定解问题的解为

$$u(x,t) = \frac{Al}{\pi a} \cdot \frac{1}{\omega^2 - \frac{\pi^2 a^2}{l^2}} \left( \omega \sin \frac{\pi a}{l} t - \frac{\pi a}{l} \sin \omega t \right) \cos \frac{\pi}{l} x$$

# 分离变量法求解定解问题

在环形域  $a \le \sqrt{x^2 + y^2} \le b(0 < a < b)$  内求解定解问题

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 12(x^2 - y^2), & a < \sqrt{x^2 + y^2} < b \\ u|_{\sqrt{x^2 + y^2} = a} = 0, & \frac{\partial u}{\partial n}|_{\sqrt{x^2 + y^2} = b} = 0 \end{cases}$$

解:由于求解区域是环形区域,所以我们选用极坐标系,利用直角坐标系与极坐标系之间的关系

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

可将上述定解问题用极坐标  $\rho$ ,  $\theta$  表示

$$\begin{cases} \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \theta^2} = 12\rho^2 \cos 2\theta, \quad a < \rho < b \\ u|_{\rho=a} = 0, \quad \frac{\partial u}{\partial \rho}|_{\rho=b} = 0 \end{cases}$$

这是一个非齐次方程齐次边界条件的定解问题. 使用固有函数展开法,并注意到圆域内 Laplace 方程所对应的固有函数为  $\Phi_n(\varphi) = A_n \cos n\varphi + B_n \sin n\varphi, n = 0, 1, 2, \cdots$  进而可得形式解

$$u(\rho, \theta) = \sum_{n=0} [A_n(\rho) \cos n\theta + B_n(\rho) \sin n\theta]$$

代入泛定方程并整理得到

$$\sum_{n=0}^{\infty} \left\{ \left[ A_n''(\rho) + \frac{1}{\rho} A_n'(\rho) - \frac{n^2}{\rho^2} A_n(\rho) \right] \cos n\theta + \left[ B_n''(\rho) + \frac{1}{\rho} B_n'(\rho) - \frac{n^2}{\rho^2} B_n(\rho) \right] \sin n\theta \right\}$$

$$= 12\rho^2 \cos 2\theta$$

比较两端关于  $\cos \theta$ ,  $\sin n\theta$  的系数,可得

$$A_2''(\rho) + \frac{1}{\rho} A_2'(\rho) - \frac{4}{\rho^2} A_2(\rho) = 12\rho^2$$

$$A_n''(\rho) + \frac{1}{\rho} \Lambda_n'(\rho) - \frac{n^2}{\rho^2} A_n(\rho) = 0 \quad (n \neq 2)$$

$$B_n''(\rho) + \frac{1}{\rho} B_n'(\rho) - \frac{n^2}{\rho^2} B_n(\rho) = 0$$

再由边界条件得

$$A_n(a) = A'_n(b) = 0$$
$$B_n(a) = B'_n(b) = 0$$

系数递推公式的通解为

$$A_n(\rho) = c_n \rho^n + d_n \rho^{-n}$$
  
$$B_n(\rho) = c'_n \rho^n + d'_n \rho^{-n}$$

其中  $c_n, d_n, c'_n, d'_n$  都是任意常数. 由系数满足的条件得

$$A_n(\rho) \equiv 0 \quad (n \neq 2)$$
  
 $B_n(\rho) \equiv 0$ 

下面的任务就是要确定  $A_2(\rho)$ 

其满足非齐次的欧拉方程,利用待定系数法可求得它的一个特解

$$A_2^*(\rho) = \rho^4$$

所以,它的通解为

$$A_2(\rho) = C_1 \rho^2 + C_2 \rho^{-2} + \rho^4$$

由条件 (6) 确定  $C_1, C_2$ , 得

$$C_1 = -\frac{a^6 + 2b^6}{a^4 + b^4}$$
$$C_2 = -\frac{a^4b^4(a^2 - 2b^2)}{a^4 + b^4}$$

因此

$$A_2(\rho) = -\frac{a^6 + 2b^6}{a^4 + b^4}\rho^2 - \frac{a^+b^4(a^2 - 2b^2)}{a^4 + b^4}\rho^{-2} + \rho^4$$

原定解问题的解为

$$u(\rho,\theta) = -\frac{1}{a^4 + b^4} \left[ \left( a^6 + 2b^6 \right) \rho^2 + a^4 b^4 \left( a^2 - 2b^2 \right) \rho^{-2} - \left( a^4 + b^4 \right) \rho^4 \right] \cos 2\theta$$

求解高维分离变量问题

$$\begin{cases} u_{tt} = k^2 \nabla^2 u = k^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right), & 0 < x < a, \quad 0 < y < b, \quad 0 < z < c, \quad t > 0 \\ u(0, y, z, t) = u(a, y, z, t) = 0, \quad u(x, 0, z, t) = u(x, b, z, t) = 0 \\ u(x, y, 0, t) = u(x, y, c, t) = 0 \\ u(x, y, z, 0) = f(x, y, z), \quad u_t(x, y, z, 0) = g(x, y, z) \end{cases}$$

解: 令 u(x,y,z,t) = v(x,y,z)T(t), 代入方程得

$$T'' + \lambda k^2 T = 0$$

及

代入方程得 
$$T'' + \lambda k^2 T = 0$$
 
$$\nabla^2 v + \lambda v = 0$$

设 v(x,y,z) = X(x)Y(y)Z(z),代入 v(x,y,z) 得

$$\frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} + \frac{Z''(z)}{Z(z)} + \lambda = 0$$

令  $X''(x) = \mu X(x), Y''(y) = \nu Y(y)$ ,代入上式得  $Z'' + (\lambda + \mu + \nu)Z = 0$ 

$$Z'' + (\lambda + \mu + \nu)Z = 0$$

由于关于 x 的边界条件是齐次的, 令  $\mu = -\alpha^2$ , 得

$$X(x) = A\cos\alpha x + B\sin\alpha x$$

及

$$X_l(x) = B_l \sin \frac{l\pi x}{a}, \quad l = 1, 2, 3, \cdots$$

同样, 令  $\nu = -\beta^2$ , 得

$$Y(y) = C\cos\beta y + D\sin\beta y$$

及

$$Y_m(y) = D_m \sin \frac{m\pi y}{b}, \quad m = 1, 2, 3, \dots$$

令  $q^2 = \lambda + \mu + \nu = \lambda - a^2 - \beta^2$ , 得到  $Z(z) = E \cos qz + F \sin qz$ . 再利用关于 z 的齐次 边界条件,可得

$$Z_n(z) = F_m \sin \frac{n\pi z}{c}, \quad n = 1, 2, 3, \dots$$

将固有值代入关于 t 的常微分方程得

$$T_{lmn} = G_{lmn}\cos\sqrt{\lambda_{lmn}kt} + H_{lmn}\sin\sqrt{\lambda_{lmn}kt}$$

进而可得形式解

$$u(x, y, z, t) = \sum_{l=1}^{\infty} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left( a_{lmn} \cos \sqrt{\lambda_{lmn} kt} + b_{lmn} \sin \sqrt{\lambda_{lmn} kt} \right) \times \sin \frac{l\pi x}{a} \sin \frac{m\pi y}{b} \sin \frac{n\pi z}{c}$$

其中  $a_{lmn}, b_{lmn}$  为任意常数。由 u(x, y, z, 0) = f(x, y, z),得

$$f(x,y,z) = \sum_{l=1}^{\infty} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{lmn} \sin \frac{l\pi x}{a} \sin \frac{m\pi y}{b} \sin \frac{n\pi z}{c}$$

右端即为 f(x,y,z) 的三重 Fourier 级数,其中

$$a_{lmn} = \frac{8}{abc} \int_0^a \int_0^b \int_0^c f(x, y, z) \sin \frac{l\pi x}{a} \sin \frac{m\pi y}{b} \sin \frac{n\pi z}{c} dx dy dz$$

曲  $u_t(x,y,z,0) = g(x,y,z)$ , 有

$$b_{lmn} = \frac{8}{\sqrt{\lambda_{lmn}}kabc} \int_0^a \int_0^b \int_0^c g(x, y, z) \sin\frac{l\pi x}{a} \sin\frac{m\pi y}{b} \sin\frac{n\pi z}{c} dx dy dz$$

其中

$$\lambda_{lmn} = \left(\frac{l^2}{a^2} + \frac{m^2}{b^2} + \frac{n^2}{c^2}\right)\pi^2$$

非齐次边界问题

$$\begin{cases} u_{tt} = a^2 u_{xx}, & 0 < x < l, \quad t > 0 \\ u|_{x=0} = 0, & u|_{x=l} = \sin \omega t \\ u|_{t=0} = 0, & u_t|_{t=0} = 0 \end{cases}$$

解:对于非齐次边界问题,一般的处理方法是基于叠加原理的特解法。其核心在于特解的选取。这道题目通过不同的特解选取展示相应的求解过程,说明选取合适特解的重要性及一些关于选取原则的建议。

$$w(x,t) = \frac{\mu_2(t) - \mu_1(t)}{l}x + \mu_1(t) = \frac{x}{l}\sin \omega t$$

则定解问题转化为

$$\begin{cases} v_{ut} - a^2 v_{xx} = \frac{\omega^2}{l} x \sin \omega t \\ v(0, t) = v(l, t) = 0 \\ v(x, 0) = 0, \quad v_t(x, 0) = -\frac{\omega}{l} x \end{cases}$$

进而求解这一非齐次方程齐次边界问题即可得到结果。

法二:令

$$v(t, x) = X(x)\sin \omega t$$

由边界条件,可知 X(0) = 0, X(l) = 1. 把 v(t,x) 代入泛定方程消去  $\sin \omega t$ , 得

$$X'' + \frac{\omega^2}{a^2}X = 0$$

所以

$$X(x) = C_1 \cos \frac{\omega x}{a} + C_2 \sin \frac{\omega x}{a}$$

由 X(0) = 0, 得  $C_1 = 0$ ; 再由 X(l) = 1, 得

$$C_2 = \frac{1}{\sin\frac{\omega l}{a}}$$

于是

$$X(x) = \frac{1}{\sin\frac{\omega l}{a}}\sin\frac{\omega x}{a}$$

从而

$$C_2 = \frac{1}{\sin\frac{\omega l}{a}}$$

$$X(x) = \frac{1}{\sin\frac{\omega l}{a}}\sin\frac{\omega x}{a}$$

$$v(t, x) = \frac{\sin\frac{\omega x}{a}}{\sin\frac{\omega l}{a}}\sin\omega t$$

再令

$$u = w(t, x) + v(t, x)$$

代入原定解问题, 就得到关于w 的定解问题

$$\begin{cases} \frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} \\ w(t,0) = w(t,l) = 0 \\ w(0,x) = 0, w_t(0,x) = -\omega \frac{\sin \frac{\omega x}{a}}{\sin \frac{\omega l}{a}} \end{cases}$$

利用分离变量法处理这一齐次方程齐次边界问题得到解

$$w(t,x) = 2\omega a l \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{(\omega l)^2 - (n\pi a)^2} \sin \frac{n\pi a t}{l} \sin \frac{n\pi x}{l}$$

最后, 把 v(x,t) 和 w(x,t) 加起来, 就得到原定解问题的解。 施刘方程标准型

将方程化为施刘方程的标准形式:

$$xy'' + (1-x)y' + \lambda y = 0$$

解:

$$y'' + \frac{1-x}{x}y' + \frac{\lambda}{x}y = 0$$

于是  $p(x) = \frac{1-x}{x}$ , 故

$$y'' + \frac{1-x}{x}y' + \frac{\lambda}{x}y = 0$$
  
故 
$$k(x) = \exp\left[\int p(x) \mathrm{d}x\right] = \exp\left[\int \frac{1-x}{x} \mathrm{d}x\right] = x\mathrm{e}^{-x}$$

对照施刘方程的标准形式

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[ k(x) \frac{\mathrm{d}y}{\mathrm{d}x} \right] - g(x)y + \lambda \rho(x)y = 0$$

可知该方程对应的施刘方程标准形式为

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[ x \mathrm{e}^{-x} \frac{\mathrm{d}y}{\mathrm{d}x} \right] + \lambda \mathrm{e}^{-x} y = 0$$

注意: 这里首先求解 k(x), 本质上和教材方法是一样的。

### 积分变换法求解定解问题

求解有界弦的振动问题。

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, & t > 0, \quad 0 < x < l \\ u(t,0) = 0, \quad u_x(t,l) = A \sin \omega t, \quad \omega \neq \frac{2k-1}{2l} \pi a, k = 1, 2, \cdots \\ u(0,x) = u_t(0,x) = 0 \end{cases}$$

解:由题意知,可以采用拉普拉斯变换法求解。

记  $\bar{u}(p,x) = L[u(t,x)]$ , 定解问题作拉普拉斯变换得到

$$\begin{cases} p^2 \bar{u} = a^2 \frac{\mathrm{d}^2 \bar{u}}{\mathrm{d}x^2}, & 0 < x < l \\ \bar{u}|_{x=0} = 0, & \frac{\mathrm{d}\bar{u}}{\mathrm{d}x}|_{x=l} = \frac{A\omega}{p^2 + \omega^2} \end{cases}$$

常微分方程的通解

$$\bar{u} = C \operatorname{ch} \frac{p}{a} x + D \operatorname{sh} \frac{p}{a} x$$

由边界条件定出特解

$$\bar{u} = \frac{Aa\omega}{p(p^2 + \omega^2) \operatorname{ch} \frac{l}{a} p} \operatorname{sh} \frac{x}{a} p$$

利用拉普拉斯变换反演公式和留数定理

$$u(t,x) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \bar{u}(p,x) e^{pt} dp = \sum \text{Res} \left[ \bar{u}(p,x) e^{pt} \right]$$

这里,  $\sum$  是对  $\bar{u}(p,x)e^{pt}$  的所有孤立奇点的留数求和. 由于  $\bar{u}(p,x)$  在 p 平面上有可去奇点 p=0,一级极点  $p=\pm \mathrm{i}\omega$  和  $p=\pm \mathrm{i}\omega_k$ , 其中,  $\omega_k=\frac{(2k-1)\pi a}{2l}(k=1,2,3,\cdots)$ 。所以可得

$$u_0(t,x) = \left(\underset{p=i\omega}{\operatorname{Res}} + \underset{p=-i\omega}{\operatorname{Res}}\right) \left[\bar{u}(p,x)e^{pt}\right] = 2\operatorname{Re}\left\{\underset{p=i\omega}{\operatorname{Res}}\left[\bar{u}(p,x)e^{pt}\right]\right\}$$
$$= 2\operatorname{Re}\left[\frac{Aaw \operatorname{sh}\left(\frac{x}{a}p\right)e^{pt}}{p(p+i\omega)\operatorname{ch}\left(\frac{l}{a}p\right)}\right]_{p=i\omega} = \frac{Aa}{\omega\cos\frac{\omega l}{a}}\sin\frac{\omega x}{a}\sin\omega t$$

和

$$v(t,x) = \sum_{k=1}^{+\infty} \left( \underset{p=i\omega_k}{\operatorname{Res}} + \underset{p=-i\omega_k}{\operatorname{Res}} \right) \left[ \bar{u}(p,x) e^{pt} \right]$$

$$= \sum_{k=1}^{+\infty} 2 \operatorname{Re} \left\{ \underset{p=i\omega_k}{\operatorname{Res}} \left[ \bar{u}(p,x) e^{pt} \right] \right\}$$

$$= 2 \sum_{k=1}^{+\infty} \operatorname{Re} \left[ \frac{Aaw \operatorname{sh} \left( \frac{x}{a}p \right) e^{pt}}{p \left( p^2 + \omega^2 \right) \frac{l}{a} \operatorname{sh} \left( \frac{l}{a}p \right)} \right]_{p=i\omega_k}$$

$$= 16 Aaw l^2 \sum_{k=1}^{+\infty} \frac{(-1)^{k-1} \sin \frac{\omega_k}{a} x \sin \omega_k t}{(2k-1)\pi \left[ 4l^2 \omega^2 - (2k-1)^2 \pi^2 a^2 \right]}$$

所以定解问题的解为:  $u(t,x) = u_0(t,x) + v(t,x)$ 注意反演公式在使用拉普拉斯变换法的反变换步骤中的重要应用。

### $\delta$ 函数的性质

试证明  $x\delta'(x) = -\delta(x)$ 

证明:对于这类关于  $\delta$  函数的等式的证明问题,要利用  $\delta$  函数最根本的性质,即筛选性质,进行证明。

首先任选一检验函数  $\varphi(x)$ , 并得到

$$\int_{-\infty}^{+\infty} x \delta'(x) \varphi(x) dx = -\left(x \varphi(x)\right)'|_{x=0} = -\varphi(x) - \left.x \varphi'(x)\right|_{x=0} = -\varphi(0)$$

而根据  $\delta$  函数的筛选性质

$$\int_{-\infty}^{+\infty} -\delta(x)\varphi(x)dx = -\left.\varphi(x)\right|_{x=0} = -\varphi(0)$$

比较得到

$$\int_{-\infty}^{+\infty} x \delta'(x) \varphi(x) dx = \int_{-\infty}^{+\infty} -\delta(x) \varphi(x) dx$$

因此有:

$$x\delta'(x) = -\delta(x)$$

### 基本解方法求解定解问题

$$\begin{cases} \Delta u = 0 (x > 0, y > 0) \\ u(0, y) = f(y) \\ u(x, 0) = 0 \end{cases}$$

解: 格林函数满足的定解问题为

$$\begin{cases} \Delta G = \delta (x - x_0, y - y_0) (x > 0, y > 0) \\ G|_{x=0} = G|_{y=0} = 0 \end{cases}$$

利用镜像法可得格林函数

$$G = \frac{1}{4\pi} \ln \frac{\left[ (x+x_0)^2 + (y-y_0)^2 \right] \left[ (x-x_0)^2 + (y+y_0)^2 \right]}{\left[ (x-x_0)^2 + (y-y_0)^2 \right] \left[ (x+x_0)^2 + (y+y_0)^2 \right]}$$

积分公式为

$$u(M) = -\int_{l} f(M_{0}) \frac{\partial}{\partial n_{0}} G(M, M_{0}) dl_{0}$$
  
= 
$$-\int_{0}^{\infty} f(y_{0}) \frac{\partial G}{\partial (-x_{0})} dy_{0} + 0 = \int_{0}^{\infty} f(y_{0}) \frac{\partial G}{\partial x_{0}} dy_{0}$$

计算方向导数

$$\frac{\partial G}{\partial x}\Big|_{l} = \frac{1}{4\pi} \left[ \frac{2(x+x_{0})}{(x+x_{0})^{2} + (y-y_{0})^{2}} + \frac{2(x-x_{0})}{(x-x_{0})^{2} + (y+y_{0})^{2}} - \frac{2(x-x_{0})}{(x-x_{0})^{2} + (y-y_{0})^{2}} - \frac{2(x+x_{0})}{(x+x_{0})^{2} + (y+y_{0})^{2}} \right]_{x=0}$$

$$= \frac{1}{4\pi} \left[ \frac{4x_{0}}{x_{0}^{2} + (y-y_{0})^{2}} - \frac{4x_{0}}{x_{0}^{2} + (y+y_{0})^{2}} \right]$$

$$= \frac{x_{0}}{\pi} \left[ \frac{1}{x_{0}^{2} + (y-y_{0})^{2}} - \frac{1}{x_{0}^{2} + (y+y_{0})^{2}} \right]$$

进而得到解

$$u(x,y) = \frac{x}{\pi} \int_0^\infty \left[ \frac{1}{x^2 + (y_0 - y)^2} - \frac{1}{x^2 + (y_0 + y)^2} \right] f(y_0) dy_0$$