

INTRODUCTION TO

COMPUTATIONAL TOPOLOGY

HSIEN-CHIH CHANG LECTURE 10, OCTOBER 14, 2021

CYCLE SEPARATOR AND TDIVISION

GOAL: r-DIVISION

[Frederickson 1989] [Klein-Mozes-Sommer 2012]

- Decompose the plane graph G into roughly equal size pieces
 - each piece has size $\leq r$
 - #pieces at most O(n/r)
 - #boundary vertices per piece $\leq 0(r^{1/2})$
 - **0(1) holes** per piece

SEPARATOR

- A separator is a vertex subset C such that [Lipton-Tarjan 1979]
 - $|C| \leq 0(n^{1/2})$
 - •G S = A \cup B and |A|, |B| $\leq 3n/4$
 - G can be vertex-weighted!
- -Cycle separator: vertices of C forms a simple cycle

CYCLE SEPARATOR THEOREM [Miller 1986] [Har-Peled Nayyeri 2018] Cycle separator can be found in O(n) time

FINDING CYCLES

- -Compute BFS tree T_{BFS}
- **Level** of a triangle face: max among levels of three vertices
- R_{<i}: region with face levels at most i

-Lemma. Boundaries of $R_{\leq i}$ are pairwise disjoint simple cycles C_i

FINDING SEPARATOR

• Find fundamental cycle separator cycle (T_{BFS}, uv) ; reroot to lca(u,v)

LEMMA. cycle(T_{BFS} , uv) intersects each C_i at most twice

FINDING CYCLE SEPARATOR

EFFICIENT r-DIVISION [Frederickson 1989] [Goodrich 1995] r-division can be computed in O(n) time

To GET r-DIVISION

- Iteratively find cycle separators. At level i:
 - If i mod 3 = 0: Separate vertices evenly
 - If i mod 3 = 1: Separate boundary vertices evenly
 - If i mod 3 = 2: Separate holes evenly

To Get t-Division

- Iteratively find cycle separators. At level i:
 - If i mod 3 = 0: Separate vertices evenly
 - If i mod 3 = 1: Separate boundary vertices evenly
 - If i mod 3 = 2: Separate holes evenly
- #vertices, #bdry vertices, #holes all decrease by $\mathbf{0}(1)$ factor after 3 levels
- -0(n log (n/r)) time naïvely; dynamic tree to the rescue

TOOLBOX TO BE BUILT

- Multiple-source shortest paths [Klein 2005] [Cabello-Chambers-Erickson 2013]
- **Cycle separator decomposition/r-division** [Frederickson 1989] [Klein-Mozes-Sommer 2012]
- Monge heap/dense distance graph [Aggarwal-Klawe-Moran-Shor-Wilber 1987]
- **FR-Dijkstra** [Fakcharoenphol-Rao 2001]

■ Monge emulator [Chang-Ophelders 2020] [Chang-Krauthgamer-Tan 2022]

MASTER PLAN FOR MIN-CUT ALGORITHM

- -Compute r-division for plane graph G
- -Compute APSP between bdry vertices per piece using MSSP
- -Replace each piece with a complete graph on bdry vertices
- -Compute n/log n parallel shortest paths for Reif's

INTERMISSION

JUST ENJOY THE BREAK.

WANTED: A SUBLINEAR-SIZE REPRESENTATION OF A PIECE

APSP DISTANCE AROUND A PIECE

Distance matrix D: k-by-k array where each entry

$$\mathbf{D}[\mathbf{i},\mathbf{j}] = \mathbf{d}_{\mathbf{P}}(\mathbf{s}_{\mathbf{i}},\mathbf{s}_{\mathbf{j}})$$

Four vertices s_1, \ldots, s_4 around P satisfies cyclic Monge Property [Monge 1781]

$$d_{P}(s_{1}, s_{2}) + d_{P}(s_{3}, s_{4}) \leq d_{P}(s_{1}, s_{3}) + d_{P}(s_{2}, s_{4})$$

Monge Property

[Monge 1781]

$$d_{P}(i_{1}, j_{1}) + d_{P}(i_{2}, j_{2}) \leq d_{P}(i_{1}, j_{2}) + d_{P}(i_{2}, j_{1})$$

$$\begin{bmatrix} 10 & 17 & 13 & 28 & 23 \\ 17 & 22 & 16 & 29 & 23 \\ 24 & 28 & 22 & 34 & 24 \\ 11 & 13 & 6 & 17 & 7 \\ 45 & 44 & 32 & 37 & 23 \\ 36 & 33 & 19 & 21 & 6 \\ 75 & 66 & 51 & 53 & 34 \end{bmatrix}$$

LEMMA. Matrix D decomposes into two Monge matrices.

SMAWK Agorithm [Aggarwal-Klawe-Moran-Shor-Wilber 1987] [Klawe-Kleitman 1990]

All row-wise minimum elements of a k-by-k Monge matrix can be found in O(k) time

ROW-MINIMUM IN MATRIX D

Distance matrix D: k-by-k array where each entry

$$D[i, j] = d_P(s_i, s_j)$$

- Minimum element in row i: $min_i d_P(s_i, s_i)$
 - Shortest "edge" going to vertex s_i
- -Search matrix M[i,j]=D[i,j]+c(j) for row-minimums

MONGE HEAP

- Representation of matrix M, supporting
 - FINDMIN(): smallest visible element in M
 - REVEAL(j, x): reveal column j by setting c(j) to x
 - HIDE(i): hide row i

Hide(5)

FR-DIJKSTRA

[Fakcharoenphol-Rao 2001]

```
R-DIJKSTRA
In all Monge heaps relevant to 5:
| REVEAL (5.0)
    HzpE(5)
 Repeat until t bidden:
   In all Monge heaps relevant to V:

L RZUZAL (V, d(s. V))

HIDZ (V)
```


ANALYSIS OF FR-DIJKSTRA

```
R-DIJKSTRA
In all Monge heaps relevant to 5:
REVEAL (5.0)
     HzpE(5)
   In all Monge heaps relevant to V:

L RZUZAL (V, d(s. V))

HIDZ (V)
```

- -per Monge heap: O(k log k)
- Overall:

ANALYSIS FOR FAST MIN-CUT ALGORITHM

- -Compute r-division for plane graph G
- -Compute APSP between bdry vertices per piece using MSSP
- -Replace each piece with Monge heaps on bdry vertices
- -Compute n/log n parallel shortest paths using FR-Dijkstra
- Recursion as in Reif

UNDER THE RUG

- Monge heap only works for Monge matrix
- Multiple holes
- r-division needs to respect strips
- Degenerate strips
- Actual shortest path needed from Dijkstra to cut
- 0(1)-degree assumptions

-...

PLANAR EMULATORS

[Chang-Ophelders 2020] [Chang-Krauthgamer-Tan 2022]

Every piece with k bdry vertices has (1) an exact planar emulator of size k^2 , or (2) an planar ϵ -emulator of size $O(k \text{ polylog } k/\epsilon)$

MULTIPLE-SOURCE E-SHORTEST PATHS [Chang-Krauthgamer-Tan 2022]

ε-MSSP problem can be solved in O(n log* n) time

ANALYSIS FOR FASTER MIN-CUT ALGORITHM

- -Compute r-division for plane graph G
- -Compute APSP between bdry vertices per piece using MSSP
- -Replace each piece with Monge heaps on bdry vertices
- -Compute n/log n parallel shortest paths using FR-Dijkstra
- Recursion as in Reif

ALGORITHMIC ENGINEERING IS A THING

Homology: a better tool to classify spaces

