What is SLAM?

- Estimate the pose of a robot and the map of the environment at the same time
- SLAM is hard, because
 - a map is needed for localization and
 - a good pose estimate is needed for mapping
- Localization: inferring location given a map
- Mapping: inferring a map given locations
- SLAM: learning a map and localizing the robot simultaneously

The SLAM Problem

- SLAM has long been regarded as a chicken-or-egg problem:
 - → a map is needed for localization and
 - → a pose estimate is needed for mapping

SLAM Applications

 SLAM is central to a range of indoor, outdoor, in-air and underwater applications for both manned and autonomous vehicles.

Examples:

- At home: vacuum cleaning, lawn mowing
- Air: surveillance with unmanned air vehicles
- Underwater: reef monitoring
- Underground: exploration of mines
- Space: terrain mapping for localization
- Cars: staying on the road

SLAM Applications

Map Representations

Examples: Subway map, city map, landmark-based map

Here: Maps are **topological** and/or **metric models** of the environment

Map Representations in Robotics

Grid maps or scans, 2d, 3d

Landmark-based

The SLAM Problem

- SLAM is considered a fundamental problem for robots to become truly autonomous
- Large variety of different SLAM approaches have been developed
- The majority uses probabilistic concepts
- History of SLAM dates back to the mid-eighties

Different Variants of the SLAM Problem

- Depending on the representation
 - Feature-based (landmarks or features)
 - Dense (2d/3d grids, signed distance functions, ...)
- Depending on the sensor
 - Vision
 - Proximity sensors
- Depending on the sensor information
 - Range only
 - bearing only
 - Range and bearing
- Depending on the algorithm
 - Filtering-based
 - Optimization-based

Feature-Based SLAM

Given:

- $oldsymbol{oldsymbol{U}}$ The robot's controls $oldsymbol{U}_{1:k} = \{oldsymbol{u}_1, oldsymbol{u}_2, \ldots, oldsymbol{u}_k\}$
- Relative observations

$$oldsymbol{Z}_{1:k} = \{oldsymbol{z}_1, oldsymbol{z}_2, \dots, oldsymbol{z}_k\}$$

Wanted:

- Map of features $oldsymbol{m} = \{oldsymbol{m}_1, oldsymbol{m}_2, \dots, oldsymbol{m}_n\}$
- Path of the robot

$$oldsymbol{X}_{1:k} = \{oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_k\}$$

Feature-Based SLAM

- Absolute robot poses
- Absolute landmark positions
- But only relative measurements of landmarks

Why this SLAM Problem is Hard

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated

Why this SLAM Problem is Hard

- The mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences (divergence)

SLAM: Simultaneous Localization And Mapping

Full SLAM:

$$p(x_{0:t}, m | z_{1:t}, u_{1:t})$$

Estimates entire path and map!

Online SLAM:

$$p(x_{t}, m \mid z_{1:t}, u_{1:t}) = \int \int ... \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_{1} dx_{2} ... dx_{t-1}$$

Estimates most recent pose and map!

 Integrations (marginalization) typically done recursively, one at a time

Graphical Model of Full SLAM

$$p(x_{1:t+1}, m \mid z_{1:t+1}, u_{1:t+1})$$

Graphical Model of Online SLAM

$$p(x_{t+1}, m \mid z_{1:t+1}, u_{1:t+1}) = \int \int \dots \int p(x_{1:t+1}, m \mid z_{1:t+1}, u_{1:t+1}) dx_1 dx_2 \dots dx_t$$