In [13]:

```
import numpy as np
import sklearn
from sklearn import tree
import pandas as pd
```

In [14]:

```
data=pd.read_csv("./play_tennis.csv")
data
```

Out[14]:

	day	outlook	temp	humidity	wind	play
0	D1	Sunny	Hot	High	Weak	No
1	D2	Sunny	Hot	High	Strong	No
2	D3	Overcast	Hot	High	Weak	Yes
3	D4	Rain	Mild	High	Weak	Yes
4	D5	Rain	Cool	Normal	Weak	Yes
5	D6	Rain	Cool	Normal	Strong	No
6	D7	Overcast	Cool	Normal	Strong	Yes
7	D8	Sunny	Mild	High	Weak	No
8	D9	Sunny	Cool	Normal	Weak	Yes
9	D10	Rain	Mild	Normal	Weak	Yes
10	D11	Sunny	Mild	Normal	Strong	Yes
11	D12	Overcast	Mild	High	Strong	Yes
12	D13	Overcast	Hot	Normal	Weak	Yes
13	D14	Rain	Mild	High	Strong	No

```
In [15]:
data.play
Out[15]:
0
       No
1
       No
2
      Yes
3
      Yes
4
      Yes
5
      No
6
      Yes
7
      No
8
      Yes
9
      Yes
10
      Yes
11
      Yes
12
      Yes
13
       No
Name: play, dtype: object
In [16]:
d=np.array(data)[:,1:-1]
print(d)
[['Sunny' 'Hot' 'High' 'Weak']
 ['Sunny' 'Hot' 'High' 'Strong']
 ['Overcast' 'Hot' 'High' 'Weak']
 ['Rain' 'Mild' 'High' 'Weak']
 ['Rain' 'Cool' 'Normal' 'Weak']
 ['Rain' 'Cool' 'Normal' 'Strong']
 ['Overcast' 'Cool' 'Normal' 'Strong']
 ['Sunny' 'Mild' 'High' 'Weak']
 ['Sunny' 'Cool' 'Normal' 'Weak']
 ['Rain' 'Mild' 'Normal' 'Weak']
 ['Sunny' 'Mild' 'Normal' 'Strong']
 ['Overcast' 'Mild' 'High' 'Strong']
 ['Overcast' 'Hot' 'Normal' 'Weak']
 ['Rain' 'Mild' 'High' 'Strong']]
In [17]:
targets=np.array(data)[:,-1]
print(targets)
['No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes' 'Yes' 'Yes' 'Yes' 'Yes'
```

'No']

In [18]:

```
data['outlook'].replace(['Sunny', 'Overcast','Rain'],[0,1,2], inplace=True)
data['temp'].replace(['Hot', 'Mild','Cool'],[0,1,2], inplace=True)
data['humidity'].replace(['High', 'Normal'],[0,1], inplace=True)
data['wind'].replace(['Weak', 'Strong'],[0,1], inplace=True)
data['play'].replace(['No', 'Yes'],[0,1], inplace=True)
data
```

Out[18]:

	day	outlook	temp	humidity	wind	play
0	D1	0	0	0	0	0
1	D2	0	0	0	1	0
2	D3	1	0	0	0	1
3	D4	2	1	0	0	1
4	D5	2	2	1	0	1
5	D6	2	2	1	1	0
6	D7	1	2	1	1	1
7	D8	0	1	0	0	0
8	D9	0	2	1	0	1
9	D10	2	1	1	0	1
10	D11	0	1	1	1	1
11	D12	1	1	0	1	1
12	D13	1	0	1	0	1
13	D14	2	1	0	1	0

```
In [19]:
```

```
d=np.array(data)[:,1:-1]
print(d)
d1=d.tolist()
print(d1)
[[0 0 0 0]]
  [0 0 0 1]
   [1 0 0 0]
   [2 1 0 0]
   [2 2 1 0]
   [2 2 1 1]
    [1 2 1 1]
   [0 1 0 0]
   [0 2 1 0]
   [2 1 1 0]
   [0 1 1 1]
   [1 1 0 1]
   [1 0 1 0]
  [2 1 0 1]]
[[0, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [2, 1, 0, 0], [2, 2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 1, 0], [2, 
2, 1, 1], [1, 2, 1, 1], [0, 1, 0, 0], [0, 2, 1, 0], [2, 1, 1, 0], [0, 1,
1, 1], [1, 1, 0, 1], [1, 0, 1, 0], [2, 1, 0, 1]]
In [20]:
targets=np.array(data)[:,-1]
print(targets)
target=targets.tolist()
print(target)
[0 0 1 1 1 0 1 0 1 1 1 1 1 0]
[0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0]
In [21]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(d1,target,test_size=0.25,random_state=No
ne)
In [27]:
clf = tree.DecisionTreeClassifier()
clf = clf.fit(x_train,y_train)
clf.predict([[0.,0.,0.,1.]])
Out[27]:
array([0])
```

In [28]:

```
tree.plot_tree(clf)
```

Out[28]:

```
[Text(0.5555555555555556, 0.875, 'X[3] \le 0.5 \text{ ngini} = 0.48 \text{ nsamples} = 10 \text{ ngini}
value = [4, 6]'),
value = [1, 5]'),
Text(0.2222222222222, 0.375, 'X[0] <= 0.5\ngini = 0.5\nsamples = 2\nva
lue = [1, 1]'),
0]'),
1]'),
Text(0.444444444444444, 0.375, 'gini = 0.0\nsamples = 4\nvalue = [0,
4]'),
Text(0.7777777777778, 0.625, 'X[0] <= 1.5\ngini = 0.375\nsamples = 4\n
value = [3, 1]'),
Text(0.666666666666666, 0.375, 'X[2] <= 0.5\ngini = 0.5\nsamples = 2\nva
lue = [1, 1]'),
Text(0.55555555555556, 0.125, 'gini = 0.0\nsamples = 1\nvalue = [1,
0]'),
Text(0.7777777777778, 0.125, 'gini = 0.0\nsamples = 1\nvalue = [0,
Text(0.888888888888888, 0.375, 'gini = 0.0\nsamples = 2\nvalue = [2,
0]')]
```


In [24]:

```
from sklearn import metrics

y_pred=clf.predict(x_test)
print("Accurcay ",metrics.accuracy_score(y_test,y_pred))
```

Accurcay 0.5