作业1,2021年3月10日

1. 记 U_1, \dots, U_n 为在(0,1)中均匀分布的独立随机变量。对0 < t, x < 1定义

$$I(t,x) = \begin{cases} 1, & x \le t, \\ 0, & x > t, \end{cases}$$

并记 $X(t) = \frac{1}{n} \sum_{k=1}^{n} I(t, U_k), 0 \le t \le 1$, 这是 U_1, \dots, U_n 的经验分布函数。 试求过程 X(t) 的均值和协方差函数。

- 2. 设随机变量X(t)为平稳过程,证明自协方差函数 $\gamma_X(\tau)$ 具有如下性质:
 - (1). $\gamma_X(\tau) = \gamma_X(-\tau)$;
 - (2). $|\gamma_X(\tau)| \leq \gamma_X(0)$;
 - (3). $\gamma_X(\tau)$ 为非负定函数(矩阵($\Gamma = (\gamma(t_i t_i))$)非负定的).
- 3. 设随机变量序列 $\{X_n, n = 0, \pm 1, \dots\}$ 满足

$$X_n = \sum_{k=0}^{m} (A_k \cos n\omega_k + B_k \sin n\omega_k),$$

其中 $A_1, \dots, A_m; B_1, \dots, B_m$ 是均值为 0 且两两不相关的随机变量,又 $EA_k^2 = EB_k^2 = \sigma_k^2, 1 \le k \le m, 0 < \omega_k < 2\pi$,试考察其平稳性。

- 4. 令 Z_1, Z_2 为独立的正态分布随机变量,均值为 0,方差为 σ^2 , λ 为实数。定义过程 $X(t) = Z_1 \cos \lambda t + Z_2 \sin \lambda t$ 。试求 X(t) 的均值函数和协方差函数,试验证它是 严平稳过程.
- 5. 若X(t)为

$$X(t) = Z_1 \cos \lambda t + Z_2 \sin \lambda t$$

(1)X(t)是严平稳的充分必要条件 Z_1, Z_2 的联合分布 $f(z_1, z_2)$ 为圆形对称分布,即

$$f(z_1, z_2) = g\left(\sqrt{z_1^2 + z_2^2}\right)$$

- (2) 若X(t) 是严平稳的, 且 Z_1 与 Z_2 独立, 则 Z_1 与 Z_2 一定是正态分布.
- 6. 设X(t)是严平稳列,多元函数 $\phi(x_1, x_2, \ldots, x_m)$ 证明

$$Y_t = \phi(X_{t+1}, X_{t+2}, \dots, X_{t+m}), \quad t \in \mathbb{Z}$$

是严平稳序列.

7. (滑动平均序列)设 $\{\varepsilon_n, n=0,\pm 1,\pm 2,\cdots\}$ 为一列不相关的有相同均值 m 和方差 σ^2 的 随机变量。设 a_1,\cdots,a_k 为任意 k 个实数。考虑由下式定义的序列:

$$X_n = a_1 \varepsilon_n + a_2 \varepsilon_{n-1} + \dots + a_k \varepsilon_{n-k+1}, \quad n = 0, \pm 1, \dots$$

验证 X_n 是平稳列.

8. (随机电报信号)设信号流 $X = \{X(t), t \ge 0\}$ 为一随机过程,且对每个 t 有

$$P(X(t) = I) = P(X(t) = -I) = \frac{1}{2},$$

而在 $[t,t+\tau]$ 时间内正负号变化的次数 N 服从速率为 λ 的 Poisson 过程,即

$$P(N(\tau) = k) = e^{-\lambda \tau} (\lambda \tau)^k / k!, \quad \lambda > 0,$$

试讨论信号流的平稳性.