COURS: Architecture et Technologie des Ordinateurs

Pr Youssou FAYE

Université Assane Seck de Ziguinchor

Année 2020-2021

Licence 1 en Ingénierie Informatique

Architecture et Technologie des Ordinateurs

Objectifs du Cours

A la fin de ce cours, l'apprenant sera capable de:

- ☐ faire une représentation de l'information dans l'ordinateur
- Pouvoir construire des circuits combinatoires et séquentiels
- ☐ Pouvoir modéliser et simuler une Unité Arithmétique et Logique
- ☐ Décrire le chemin de données et le traitement d'un programme

☐ Chapitre 4: Circuits combinatoire Partie 3: Séquentielle

Partie 1: Numération et de Codage

Partie 2: Logique Combinatoire

Programme

☐ Chapitre 4: Las bascules

☐ Chapitre 3: Algèbre de Boole

- ☐ Chapitre 5: Les compteurs ☐ Chapitre 6: Les registres
- Partie 4: Architecture de l'ordinateur
- ☐ Chapitre 7: Architecture de base des microprocesseurs
- ☐ Chapitre 8: Architecture de base des ordinateurs

☐ Chapitre 1: Système de numération

☐ Chapitre 2: Représentation des informations

Architecture et Technologie des Ordinateurs

Les Systèmes de Numération: définition

Système de numération

- Défini comme un ensemble de règles permettant de représenter le nombre états d'un système
 - Il est composé d'un alphabet muni d'un certain nombre d'opérateurs permettant de lier les éléments de l'alphabet
 - Dans un Système de numération positionnel, la valeur du chiffre dépend de sa position dans la représentation du nombre;
 - Exemple : Système de numération décimal est positionnel
 - Système de numération romain est non positionnel

Numération de position

- Mathématiquement, la valeur d'un nombre N est représentée sous forme d'un plolynôme par n chiffres dans la base b.
 - $\mathbb{N} = a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + \dots + a_1b^1 + a_0b^0$
 - **Exemple** en base 10 (décimale) : $3254 = 3.10^3 + 2.10^2 + 5.10^1 + 4.10^0$
 - Un décalage à gauche multiplie un nombre par sa base
 - Un décalage à droite divise un nombre par sa base

Pr Y. FAY

Architecture et Technologie des Ordinateurs

2020-2021

Numération binaire

- L'alphabet est composé de deux symbôles {0, 1} appelés éléments binaires ou bit pour Binary digIT
- La base est 2, le système est pondéré par 2, c'est à dire les poids sont des puissances de 2
- L'addition et la multiplication sont les opérations de base
- Exemple de représentation d'un nombre en binaire
 - 10010₂ où le 2 en indice indique la base binaire
 - $10010_2 = 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 0x2^0$
 - Le bit le plus significatif, le bit le plus à gauche est appelé bit de poids fort ou MSB (Most Significant Bit).
 - Le bit le moins significatif, le bit le plus à droite est appelé bit de poids faible ou LSB (Less Significant Bit)
- Si on utilise n bits, on peut représenter 2^n valeurs différentes, de 0 à 2^{n} -1
- Exemple pour N=8 : 00000000 à 11111111

10 + 10 + 15 + 15 + 15 99°

Numération en base 5

- L'alphabet est composé de 5 symbôles {0, 1, 2, 3, 4}
- La base est 5, le système est pondéré par 5, c'est à dire les poids sont des puissances de 5
- L'addition et la multiplication sont les opérations de base
- Exemple de représentation d'un nombre en base 5
 - 13042₅ où le 5 en indice indique la base
 - $13042_5 = 1x5^4 + 3x5^3 + 0x5^2 + 4x5^1 + 2x5^0$

Pr Y. FAYI

Architecture et Technologie des Ordinateurs

2020 2021

7

Numération Octale

- Les nombres binaires sont souvent composés d'un grand nombre de bits, généralement ils sont exprimés en octale (b=8) ou en hexadécimal (b=16), car leur conversion avec le système binaire est plus simple
- L'alphabet est composé de 8 symbôles {0, 1, 2, 3, 4, 5, 6, 7}
- La base est 8 ou base octale, le système est pondéré par 8, c'est à dire les poids sont des puissances de 8
- L'addition et la multiplication sont les opérations de base
- Exemple de représentation d'un nombre en octal
 - $\,\blacksquare\,$ 13762 $_8$ où le 8 en indice indique la base
 - $13762_8 = (1x8^4 + 3x8^3 + 7x8^2 + 6x8^1 + 2x8^0)_{10}$
- L'intérêt de ce système est que la base 8 est une puissance de 2 (8 = 2³), donc les poids sont aussi des puissances de 2.
- Chaque symbole de la base octale peut être exprimé sur 3 éléments binaires

Numération hexadécmale

- L'alphabet est composé de 16 symbôles {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
- La base est 16, le système est pondéré par 16, c'est à dire les poids sont des puissances de 16
- L'addition et la multiplication sont les opérations de base hexadécmale
- Exemple de représentation d'un nombre en hexadécmale
 - 1A57F₁₆ où le 16 en indice indique la base hexadécmale
 - $1A57F_{16} = (1x16^4 + 10x16^3 + 5x16^2 + 7x16^1 + 15x16^0)_{10}$
- L'intérêt de ce système est que la base 16 est une puissance de 2 (16 =2⁴), donc les poids sont aussi des puissances de 2.
- Chaque symbole de la base hexadécmale peut être exprimé sur 4 éléments binaires

Architecture et Technologie des Ordinateurs

2020-2021

Conversion d'un système de numération à un autre (1)

- Plusieurs méthodes existent pour passer d'une base à une autre dont nous pouvons noter : la décomposition, la méthode de la division successive et celle de la soustraction successive. Des facilités de transition s'offrent également quand l'une des base est une puissance de l'autre
- Base B vers la base 10
- L'opération qui permet de passer de la base B vers la base 10 est appelée décodage
- Dans ce cas on fait une décomposition dans la base 10 en puissance de B

$$(a_n...a_0)_B = a_n.B^n + + a_0.B^0 = (a_m^{Exemple})_B$$

$$(1001)_2 = 1.2^3 + 0.2^2 + 0.2^1 + 1.2^0 = 9_{10}$$

 $(A12)_{16} = 10.16^2 + 1.16^1 + 2.16^0$

4 D > 4 B > 4 B > 4 B > B 9 Q C

Conversion d'un système de numération à un autre (2)

- Base 10 vers base B
- L'opération qui permet de passer de la base 10 vers une autre base est appelée codage
 - Méthode à divisons successives
 - Elle consiste à diviser successivement par B autant de fois que cela est nécessaire pour obtenir un quotient nul. Ensuite on écrit les restes dans l'ordre inverse de celui dans lequel ils ont été obtenus.
 - **Exemple**: base 10 vers base 2: 20, 625₁₀=.....2

```
Partie entière - - - - - - - - Partie décimale
  20/2 = 10 \text{ reste } 0 - - - - - - 0,625x2 = 1 + 0,25
  10/2 = 5 \text{ reste } 0 - - - - - 0.25x2 = 0 + 0.5
  5/2 = 2 \text{ reste} \cdot - - - - - 0.5x2 = 1 + 0
  2/2 = 1 \text{ reste } 0
  1/2 = 0 reste 1
20, 625<sub>10</sub>= 10100, 101<sub>2</sub>
```

Architecture et Technologie des Ordinateurs

Conversion d'un système de numération à un autre (3)

Base 10 vers base B

- Méthode à soustractions successives
- Elle consiste à soustraire successivement la plus grande puissance de B multiplié par un élément de la base, on note l'élément de la base, et on continue de la même manière jusqu'à la plus petite puissance de B.
- Exemple1 : Base 10 vers base 2 :135₁₀=.....2
 - De 135 on peut (1) retirer 128 reste $7 -> 135 = 2^7 + 7$ (on met 1 en position 7 de la suite binaire)
 - De 7 on peut (1) retirer 4 reste $3 \rightarrow 7 = 2^2 + 3$ (on met 1 en position 2 de la suite binaire)
 - De 3 on peut (1) retirer 2 reste $2 \rightarrow 3 = 2^{1} + 1$ (on met 1 en position 1 de la suite binaire)
 - De 1 on peut (1) retirer 1 reste $0 \rightarrow 1=2^{0}+0$ (on met 1 en position 0 de la suite binaire)
 - **135**₁₀=10000111₂

Conversion d'un système de numération à un autre (4)

- Base 10 vers base B
 - Méthode à soustractions successives (suite)
 - Exemple 2 : Base 10 vers base 8 239₁₀=.....8
 - $239 = 3.8^2 + 47 -> 3$ en position 2
 - \blacksquare 47 = 5.8¹ + 7 -> 5 en position 1
 - $= 7 = 7.8^{\circ} + 0 -> 7$ en position 0
 - **239**₁₀=357₈

4 □ ト 4 同 ト 4 豆 ト 4 豆 ト 3 및 9 Q (*)

Architecture et Technologie des Ordinateurs

Conversion d'un système de numération à un autre (6)

- Base i vers base i
- Si la base i et la base i sont différentes de 10, l'opération qui permet de passer de la base i vers la base j et inversement est appelée transcodage
 - si i et j sont des puissances de 2, on utilise la base 2 comme relais
 - Exemple : Base 8 -> base 2 -> base 16
 - sinon, on utilise la base 10 comme relais i.e faire une conversion de la base i vers La base 10 et de la base 10 vers la base j.
 - Exemple : Base 5 -> base 10 -> base 2

4日 > 4月 > 4日 > 4日 > 日 り90

Architecture et Technologie des Ordinateurs

Conversion d'un système de numération à un autre (5)

Base 2^n vers base 2

- Chaque symbole de la base B = 2ⁿ peut être représenté par n éléments binaires.
- Exemple 1 : Base 16= 2⁴ vers base 2 $3A9_{16} = 001110101001_2$
- Exemple 2 : Base 8 = 2³ vers base 2 $742, 5_8 = 111100010, 101_2$

Base 2 vers base 2^n

- Il suffit de regrouper les éléments binaires par paquets de n.
- Exemple: 1011011₂=₈
- $01011011_2 = 001 011 011 = 133_8$
- \bullet 1011011₂ = 0101 1011= 5 B_{16}

Arithmétique dans un système de numération positionnel

Addition binaire

Soustraction binaire

Multiplication binaire

Division binaire

Addition Binaire

L'addition binaire se fait avec les mêmes règles qu'en décimal.

- On commence par additionner les bits de poids faibles;
- On a des retenues lorsque la somme de deux bits de même poids dépasse la valeur de l'unité la plus grande (dans le cas du binaire : 1)
- Cette retenue est reportée sur le bit de poids plus fort suivant.

La table d'addition binaire est la suivante :

Soustraction Binaire

Dans la soustraction binaire, on procède comme en dcimal qu'en décimal.

- Quand la quantité à soustraire est supérieure à la quantité dont on soustrait, on emprunte 1 au voisin de gauche;
- En binaire, ce 1 ajoute 2 à la quantité dont on soustrait, tandis qu'en décimal il ajoute 10.

La table de soustraction binaire est la suivante :

Multiplication Binaire

• La table de multiplication binaire est la suivante

Exemple :

		1	0	1 1	0	-
	_	_	-	1	_	-
	0	0	0	0	0	
1	0	1	1	0	٠	
_		- :	-	_	_	Ξ.
1	1	0	1	1	1	0

Architecture et Technologie des Ordinateurs

4日 → 4周 → 4 至 → 4 至 → 1 回 の 9 ○ ○

Division Binaire

La table de la division binaire est la suivante

Base 5

Table	e d'a	additi	on		
+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	10
2	2	3	4	10	11
3	3	4	10	11	12
4	4	10	11	12	13
		•			

I	able	e de	mu	ltipli	cation	า	
	X	0	1	2	3	4	
	0	0	0	0	0	0	
	1	0	1	2	3	4	
	2	0	2	4	11	13	
	3	0	3	11	14	22	
	4	0	4	13	22	31	
ľ					•		

Addition en base 5

4 □ ト 4 同 ト 4 豆 ト 4 豆 ・ 9 Q (*)

4

4 6 10 12 14 3 0 3 6 11 14 17 22 25

4 0 4 10 14 20 24 30 34

5 0 5 12 17 24 31 36 43

6 0 6 14 22 30 36 44 52 7 0 7 16 25 34 43 52 61

4 5 6

Pr Y.FAYE

Table d'addition

Pr Y.FAYE

0 1 2 3

3

4 5

4 4 5 6 7 10 11 12 13

5 6 7 10 11 12 13 14

 6
 7
 10
 11
 12
 13
 14
 15

 7
 10
 11
 12
 13
 14
 15
 16

4 5

Base 8

Architecture et Technologie des Ordinateurs

2020-2021

Y.FAYE (UASZ)

Logique Combinatoire et Séquentielle

◆ロト ◆部 → ◆差 > ◆差 > ・差 ● 釣 < ©</p> 31 mai 2019 23 / 44

10

12

13

17

18

1 A

10

10 11

11

11 12

13 14

16 17

18 19

1A 1B

1B 1C 1D

14 15 16

19 1 A 1 B

Base 16

Base 16

Table d'addition

4

10

В

8

C D E

10 11 12 13 14

E E F 10 11 12 13 14 15 16 17 18 19 1A

F F 10 11 12 13 14 15 16 17 18 19 1A 1B

A B C D C D

F

D E F 10 11 12 13 14 15

E F 10 11 12 13 14 15 16

F 10 11 12 13 14 15 16 17

F 10

11 12 13 14 15 16 17 18

ВС

D E

11 12

D

13

13

19

F 10 11 12

10 11 12

15 16 17

4

9

9 9 A B C

С D E

Х	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
2	0	2	4	6	8	Α	С	E	10	12	14	16	18	1 A	10	18
3	0	3	6	9	С	F	12	15	18	1 B	1E	21	24	27	2A	20
4	0	4	8	С	10	14	18	1 C	20	24	28	2 C	30	34	38	3 (
5	0	5	Α	F	14	19	1E	23	28	2 D	32	37	3 C	41	46	4 E
6	0	6	С	12	18	1 E	24	2A	30	36	3 C	42	48	4 E	54	5 A
7	0	7	E	15	10	23	2A	31	38	3F	46	4 D	54	5 B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1 B	24	2 D	36	3F	48	51	5 A	63	6 C	75	7 E	87
Α	0	Α	14	1E	28	32	3 C	46	50	5 A	64	6 E	78	82	8 C	96
В	0	В	16	21	2 C	37	42	4 D	58	63	6 E	79	84	8 F	9A	A5
С	0	С	18	24	30	3 C	48	54	60	6 C	78	84	90	9 C	A8	B 4
D	0	D	1A	27	34	41	4 E	5 B	68	75	82	8 F	9 C	A 9	B 6	C3
E	0	E	10	2A	38	46	54	62	70	7 E	8 C	9 A	A8	B 6	CA	D2
F	0	F	1 E	2 D	3 C	4 B	5 A	69	78	87	96	A 5	B 4	C3	D2	E1

40 × 40 × 42 × 42 × 2 990

Table de multiplication

0 0 2 3

1 0 1 2 3

Architecture et Technologie des Ordinateurs

10

10 11

Pr Y.FAYE

4 D > 4 B > 4 E > 4 E > E 900