Análise Demográfica do Estado do Rio de Janeiro

Mortalidade, Natalidade e População - 2010 a 2020

Universidade Federal da Paraíba - CCEN

Gabriel de Jesus Pereira

20 de agosto de 2024

Introdução

O estado do Rio de Janeiro, localizado na região Sudeste do Brasil, é um dos estados mais importantes do país, tanto em termos econômicos quanto culturais. Com uma área de aproximadamente 43.696 km², o Rio de Janeiro é o terceiro menor estado brasileiro, mas também é um dos mais populosos. De acordo com o censo de 2022, 16.055.174 pessoas viviam no estado do Rio de Janeiro.

Apesar de sua grandeza e importância, o estado do Rio de Janeiro também enfrenta desafios significativos, como problemas relacionados à segurança pública, desigualdade social, e dificuldades econômicas. No entanto, o estado continua a ser um pilar fundamental na construção da identidade e do desenvolvimento do Brasil.

Assim, esse trabalho tem como objetivo analisar variáveis demográficas de mortalidade, natalidade e população do estado do Rio de Janeiro entre o ano de 2010 a 2020. Além disso, o trabalho também pretende testar diferentes métodos para projeção de população por sexo e comparar com as projeções reais disponibilizadas pelo IBGE.

Metodologia

Recursos computacionais

As análises a seguir foram realizadas utilizando a linguagem de programação Python (VAN ROSSUM; DRAKE JR, 1995), com a biblioteca Pandas (TEAM, 2020) para manipulação de dados e Matplotlib para visualização (HUNTER, 2007). Além disso, os documentos do relatório foram elaborados com o Quarto (ALLAIRE *et al.*, 2022), um sistema de escrita e publicação científica, e o código-fonte utilizado está disponível no GitHub (J. PEREIRA, 2024).

Obtenção dos dados

Os dados demográficos utilizados neste estudo foram obtidos de duas fontes principais. Os dados de óbitos e nascimentos vivos foram extraídos do TABNET, uma ferramenta desenvolvida pelo DATASUS. O TABNET é um tabulador genérico de domínio público que permite a rápida organização dos dados conforme a consulta desejada, enquanto o DATASUS oferece informações valiosas para a análise da saúde pública e de variáveis demográficas, auxiliando na elaboração de programas de ações de saúde. Os dados populacionais do estado do Rio de Janeiro foram obtidos a partir de projeções do Instituto Brasileiro de Geografia e Estatística (IBGE). As informações sobre óbitos são provenientes do Sistema de Informações sobre Mortalidade (SIM), e os dados de nascimentos vivos são do Sistema de Informações sobre Nascidos Vivos (SINASC). Vale destacar que as projeções do IBGE referem-se à data de 1º de julho, e as projeções utilizadas abrangem os anos de 2011 a 2020. Além disso, o ano de 2050 foi selecionado para comparação com os métodos de projeção final. Para a comparação das diferentes técnicas de projeção, também foram utilizados os dados do IBGE referentes aos censos de 2000 e 2010

A análise abrange o período de 2010 a 2020, delimitando os dados de população, mortalidade e natalidade a esse intervalo. Os dados de mortalidade estão detalhados por município no estado do Rio de Janeiro. As projeções populacionais do IBGE incluem faixas etárias e são segmentadas por sexo, permitindo uma análise detalhada da pirâmide etária do estado.

Análise Exploratória de Dados

A análise exploratória de dados é uma etapa fundamental em qualquer estudo que utilize a estatística como principal ferramenta de análise. Ela permite identificar padrões de comportamento nos dados e descobrir relações entre as variáveis estudadas. Assim, após a coleta e organização dos dados, a primeira etapa deste estudo foi a análise exploratória de dados. Essa etapa possibilitou a análise dos comportamentos de natalidade, mortalidade e crescimento populacional. Para identificar esses diferentes comportamentos, foram elaborados gráficos e tabelas.

Estatísticas para análise demográfica

As estatísticas utilizadas neste trabalho para analisar a população do estado do Rio de Janeiro descrevem a situação em relação à mortalidade, natalidade e crescimento populacional. O crescimento populacional relaciona-se com a natalidade e a mortalidade e pode ser descrito principalmente de duas formas: população fechada e população aberta. Na população fechada, a estrutura populacional é alterada apenas pelos nascimentos e óbitos, sem impacto das migrações externas. Um exemplo de população fechada é a Coreia do Norte, que é isolada tanto cultural quanto populacionalmente. Em contraste, a população aberta, além das características das populações fechadas, é também afetada pela dinâmica migratória, como é o caso do estado do Rio de Janeiro. Dessa forma, o crescimento populacional de uma população aberta pode ser expresso por

$$P_n - P_0 = N_t - O_t + I_t - E_t (0.1)$$

em que P_0 e P_n representam a população inicial no tempo t=0 e a população final no tempo t=n, respectivamente. N_t e O_t indicam o número de nascidos vivos e óbitos, respectivamente. Como a população é aberta, ela é afetada pela dinâmica migratória. Assim, a imigração e a emigração no tempo t são representadas por I_t e E_t , respectivamente. A diferença entre o número de nascidos vivos e óbitos

$$N_t - O_t$$

é chamada de crescimento natural, enquanto a diferença entre o número de imigrantes e emigrantes,

$$I_t - E_t$$

é chamada de migração líquida.

A expressão dada na Equação 0.1 pode ser dividida por uma quantidade P_m , que representa o número de anos-pessoa vividos na população durante um intervalo de tempo t, resultando na seguinte expressão:

$$\frac{P_{n} - P_{0}}{P_{m}} = \frac{N_{t}}{P_{m}} - \frac{O_{t}}{P_{m}} + \frac{I_{t}}{P_{m}} - \frac{E_{t}}{P_{m}}$$

Cada termo da equação dividido por P_m fornece diferentes estatísticas para a análise da população. Essas estatísticas serão detalhadas nas próximas seções.

Taxa bruta de crescimento (r)

A taxa bruta de crescimento é calculada pela diferença entre a população final no tempo t=n e a população inicial no tempo t=0, dividida por P_m . Essa estatística indica a intensidade anual de crescimento da população residente. Sua expressão é dada por:

$$r = \frac{P_n - P_0}{P_m}$$

A taxa bruta de crescimento é influenciada por todas as dinâmicas populacionais, incluindo o número de nascidos vivos, óbitos e mudanças migratórias.

Taxa bruta de natalidade (TBN)

A taxa bruta de natalidade expressa o número de nascidos vivos por mil habitantes ocorridos na população geral durante um determinado período. Sua definição matemática é dada por:

$$TBN = \frac{N_t}{P_m} 1000$$

Essa taxa é influenciada pela estrutura da população, incluindo sexo e idade, e é condicionada por fatores socioeconômicos de um país. Compreender essa taxa é essencial para dimensionar a frequência de nascimentos vivos em uma população e, por exemplo, para o planejamento de assistência materno-infantil e o desenvolvimento de políticas de saúde e educação.

Taxa bruta de mortalidade (TBM)

A estatística de taxa bruta de mortalidade mede a quantidade de óbitos em uma população especifíca durante um período de tempo, em relação a população total. A sua fórmula é expressa por

$$TBM = \frac{O_t}{P_m} 1000$$

em que O_t é o número de óbitos no tempo t. Além disso, a taxa bruta de mortalidade (TBM) é expressa como o número de mortes por mil habitantes. Esse indicador é crucial para avaliar a saúde de uma população, medir a eficácia dos sistemas de saúde e planejar políticas de saúde pública.

Taxa de crescimento natural (r)

A taxa de crescimento natural é a diferença entre o TBN e o TBM, sendo expresso da seguinte forma:

$$TCN = TBN - TBM$$

Se a TCN for positiva, isso indica que a população está crescendo naturalmente; se for negativa, indica que a população está diminuindo.

Taxa bruta de imigração (TBI)

A taxa bruta de imigração mede o número de pessoas que imigram para uma determinada região durante um tempo t, em relação à população total dessa área ou país. Ela é calculada como a divisão entre o número de imigrantes que chegaram à área e a população total no meio do período, expressa por mil habitantes por ano. Assim, temse

$$TBI = \frac{I_t}{P_m} 1000$$

Esse indicador é importante para avaliar o impacto da imigração sobre o crescimento populacional e para planejar políticas relacionadas a integração social, mercado de trabalho e outras áreas afetadas pela chegada de novos residentes.

Taxa bruta de emigração

A taxa bruta de emigração é uma estatística demográfica que mede o número de pessoas que emigram, ou seja, deixam uma determinada área ou país para viver em outro lugar durante um período de tempo, em relação à população total dessa área ou país. A fórmula básica para calcular a taxa bruta de emigração é:

$$TBE = \frac{E_t}{P_m} 1000$$

A taxa bruta de emigração é expressa em número de emigrantes por mil habitantes por ano. Este indicador é usado para analisar a saída de pessoas de uma região e entender os impactos dessa saída na população, na economia e em outros aspectos sociais. Um

exemplo de utilização da taxa bruta de emigração é o conflito entre Rússia e Ucrânia. A TBE pode ser utilizada para avaliar a perda de mão de obra que um país enfrenta durante o período de guerra devido à emigração para outros países.

Taxa líquida de migração

A taxa líquida de imigração é a diferença entre a TBE e TBI, durante um período determinado de tempo. Essa taxa reflete o saldo migratório, ou seja, o impacto líquido da migração sobre o tamanho da população de uma região. Dessa forma, tem-se a seguinte expressão:

$$TLM = TBE - TBI$$

A TLM é expressa em número de pessoas por mil habitantes por ano. Um valor positivo indica que a imigração supera a emigração, resultando em um aumento populacional devido à migração. Um valor negativo indica que a emigração supera a imigração, resultando em uma diminuição populacional.

Este indicador é útil para entender as dinâmicas migratórias de uma região e para planejar políticas públicas que respondam às mudanças populacionais provocadas pela migração.

Taxa média geométrica de crescimento anual

A Taxa média geométrica de crescimento anual é uma medida que mostra, em percentual, quanto uma população cresceu ao ano durante o período indicado. Essa estatística demográfica é influenciada pala dinâmica de natalidade, mortalidade e migrações. Assim, a sua expressão é dada por

$$TGCA = \sqrt[n]{\frac{P_n}{P_0}} - 1$$

em que n denota o número de anos no período. Se o TGCA for negativo, é um indicativo que a população está descrescendo, caso contrário, está crescendo.

Tempo de duplicação de uma população

No tempo de duplicação de uma população é pressuposto que a população será o dobro em um tempo final n. Dessa forma, $P_n/P_0=2$ e, fazendo o logaritmo da expressão anterior, temos $\ln(P_n/P_0)=0.693$. Assim, tem-se a expressão final do tempo de duplicação de uma população

$$\frac{0.693}{r}$$

em que r denota uma taxa de crescimento. Portanto, a tempo de duplicação é interpretado como quanto tempo levará para uma população atingir o dobro do tamanho inicial.

Projeções populacionais

O resultado final deste trabalho consiste na comparação entre diferentes métodos de projeção populacional. Foram utilizados quatro métodos: aritmético, geométrico, exponencial e logístico. As projeções obtidas foram, em seguida, comparadas com as projeções do IBGE. A projeção foi realizada com base nos dados dos censos populacionais de 2000 e 2010, segmentados por sexo. A partir desses dados, projetou-se a população de 2020 com cada um dos métodos e, em seguida, utilizando a projeção de 2020, estimou-se a população de 2050.

O resultado final deste trabalho é a comparação entre diferentes métodos de projeção populacional. Foram utilizados quatro métodos: aritmético, geométrico, exponencial e logístico. As projeções obtidas foram então comparadas com as projeções do IBGE. A projeção foi realizada com base nos dados dos censos populacionais de 2000 e 2010, segmentados por sexo. Com esses dados, a população de 2020 foi projetada utilizando cada um dos métodos, e, em seguida, a partir das projeções de 2020, foi estimada a população de 2050.

Método Aritmético

O primeiro método aplicado para a projeção da população foi o método aritmético. Este método assume que a taxa de mudança entre duas datas é constante ao longo do intervalo de tempo. Matematicamente, ele é definido como:

$$P_n = P_0 + (P_0 r) t$$

onde P_0 é a população inicial no instante 0, P_n é a população no instante n, r é a taxa de crescimento e t é o intervalo de tempo entre 0 e t. Manipulando a equação, podemos calcular a taxa de crescimento r como:

$$r = \frac{P_n - P_0}{(P_0 t)}$$

Dessa forma, com a taxa de crescimento obtida, basta fazer a previsão para o ano que se deseja considerando o intervalo de tempo t.

Método Geométrico

Para selecionar o método de projeção, é necessário considerar diversos fatores, como a distância da estimativa desejada e o ritmo de crescimento. Se o ritmo de crescimento for geométrico, a projeção utilizando o método geométrico é definida da seguinte forma:

$$P_n = P_0 \left(1 + r \right)^t$$

em que P_n , P_0 , t e r representam as mesmas variáveis do método anterior. Manipulando a equação, é possível determinar a taxa de crescimento r:

$$r = 10^{\frac{1}{t} \log \left(\frac{P_n}{P_0}\right)} - 1$$

Além disso, para determinar o tempo necessário para que uma população dobre seu tamanho, basta considerar $P_n=2P_0$. Com isso, obtemos a seguinte expressão ao manipular a equação de projeção:

$$t = \frac{\log 2}{\log (1+r)}$$

Método Exponencial

O método exponencial é útil para projetar a população quando se assume um crescimento contínuo da taxa de crescimento entre duas datas.

$$P_n = P_0 e^{r_e t}$$

Assim, utilizando a expressão de sua curva, podemos calcular a taxa de crescimento de maneira semelhante aos métodos anteriores:

$$r_e = \frac{1}{t} \log \left(\frac{P_n}{P_0} \right)$$

Método Logístico

Por último, aplicou-se o método logístico. Diferentemente dos outros métodos, o método logístico não assume uma taxa de crescimento constante ao longo do intervalo de projeção. Ele descreve uma situação em que o crescimento é rápido no início do intervalo, mas se aproxima de um valor de equilíbrio, ou até mesmo se estabiliza, no final.

O método logístico pressupõe três condições: Primeiro, é necessário ter dados de três populações em momentos diferentes e equidistantes (P_0, P_1, P_2) . Segundo, assume-se que a população está sempre crescendo. Finalmente, a condição de inflexão da curva

deve ser atendida, que é dada por $P_1^2 > P_0 P_2$. Com essas condições satisfeitas, a projeção da população pode ser realizada usando a seguinte equação:

$$P_n = \frac{P_s}{1 + ce^{Kt}}$$

em que P_s é a estimativa da população assumida como limite, P_n é a população estimada para o ano n, e c é uma constante a ser estimada que representa o intervalo de tempo entre P_0 e o ponto de saturação (0). A constante k, assim como c, também deve ser estimada. t é a diferença entre o ano para o qual se deseja estimar a população e o ano do primeiro censo, tomado como referência: $t = t' - t_0$. Assim, definem-se as seguintes quantidades:

$$\begin{split} P_s &= \frac{2P_0P_1P_2 - P_1^2\left(P_0 + P_2\right)}{P_0P_2 - P_1^2} \\ &c = \frac{P_s - P_0}{P_0} \\ k &= \frac{1}{t_2 - t_1} \ln \left[\frac{P_0\left(P_s - P_1\right)}{P_1\left(P_s - P_0\right)} \right] \end{split}$$

Como mencionado anteriormente, P_0 , P_1 e P_2 representam as populações em três momentos distintos, que são equidistantes entre si.

Resultados

Descritiva dos dados

A análise exploratória dos dados de mortalidade, natalidade e projeções populacionais do estado do Rio de Janeiro começou com o entendimento da estrutura dos dados disponíveis. Para isso, a distribuição dos dados foi analisada por meio de histogramas, como mostrado na Figura 1. No primeiro gráfico à esquerda, observa-se a distribuição dos nascidos vivos no estado do Rio de Janeiro. Nota-se um crescimento no número de nascidos vivos até o ano de 2015; contudo, após 2015, esses números diminuem rapidamente, atingindo sua maior redução em 2020.

Figura 1: Gráficos de barra que mostram os nascidos vivos, óbitos e população população do estado do Rio de Janeiro entre 2011 a 2020.

Analisando agora o histograma em cor laranja, que representa a distribuição dos óbitos, observa-se uma tendência de aumento constante no número de mortes. Embora não seja possível determinar com precisão a causa desse aumento, é importante considerar os diversos problemas sociais e de segurança pública enfrentados pelo estado do Rio de Janeiro. No entanto, ao observar o ano de 2020, destaca-se que esse período coincide com o auge da pandemia de Covid-19 no estado, o que provavelmente explica o aumento significativo no número de óbitos registrado naquele ano. Por fim, o gráfico verde, que representa a distribuição da população do estado, mostra uma tendência praticamente constante. É importante notar que, apesar da queda na natalidade e

óbitos, o crescimento populacional pode estar sendo significativamente influenciado pela dinâmica migratória.

Os dois gráficos da figura Figura 2 são as pirâmides etárias do estado do rio de janeiro. A pirâmide etária abaixo é do ano de 2010 e a de cima é a de 2020. É possível ver claramente o envelhecimento da população. Isso pode acontecer por diversos motivos. No caso do estado do Rio de Janeiro, um dos motivos bastantes impactantes parece ser a queda da natalidade, o que já havia sido observado no gráfico de barras anterior.

Tabela 1

População e indicadores de crescimento demográfico	Estrutura conciliatória
População 2011	16405508.000000
População 2020	17366189.000000
Incremento total	960681.000000
Óbitos entre 2011 e 2020	1381145.000000
Nascimentos entre 2011 e 2020	2208305.000000
Óbitos médios entre 2011 e 2020	138114.500000
Nascimentos médios entre 2011 e 2020	220830.500000
População média entre 2011 e 2020	16889009.600000
Taxa bruta de natalidade	13.075397
Taxa bruta de mortalidade	8.177774
Taxa de crescimento natural	4.897623
Taxa média geométrica de crescimento anual (%)	76.664140

De acordo com a tabela de população e indicadores de crescimento demográfico, a taxa bruta de natalidade no estado do Rio de Janeiro é de 13,075 nascimentos por mil habitantes, enquanto a taxa de mortalidade é de 8 óbitos por mil habitantes, resultando em um crescimento natural de 4,89. Além disso, a taxa média de crescimento populacional no estado do Rio de Janeiro é de 76,66%. Por último, foi calculado o tempo de duplicação de uma população que, pela expressão anterior, pode ser calculado da seguinte forma: 0.693/0.048 = 14,44. Portanto, a população será o dobro em 14,44 anos.

Figura 2: Gráfico de pirâmide etária que mostra a distribuição da população (em milhares) por sexo, de acordo com os grupos de idade. O gráfico na Figura 2a representa a distribuição referente ao ano de 2020, enquanto o gráfico na Figura 2b refere-se ao ano de 2010.

Projeção da população do estado do Rio de Janeiro para 2050

Nesta seção, serão apresentados os resultados das diferentes técnicas de projeção para a população do estado do Rio de Janeiro no ano de 2050. Inicialmente, foram utilizados os dados populacionais dos censos de 2000 e 2010 para projetar a população do estado em 2020. Com base nas estimativas populacionais para esses três anos, a população para 2050 foi então projetada. Abaixo está a tabela com os dados populacionais do Rio de Janeiro, por sexo, dos censos de 2000 e 2010. A projeção para 2020 foi necessária, pois não houve censo em 2020, apenas em 2022

Tabela 2

Ano	Masculino	Feminino
2000	6900335	7490947
2010	7625679	8364250

Resultados do método aritmético

Para cada um dos métodos aplicados, foram calculadas as taxas de crescimento r para os sexos masculino e feminino. As taxas de crescimento resultantes são:

$$r_M = \frac{7.625.679 - 6.900.335}{(6.900.335 \cdot 10)} = 0,0105$$

$$r_F = \frac{8.364.250 - 7.490.947}{(7.490.947 \cdot 10)} = 0,0116$$

em que r_F é a taxa de crescimento para o feminino e r_M é a taxa para o masculino.

Agora, com as taxas de crescimento calculadas, podemos projetar a população para o ano de 2020 usando os dados de 2010, que é o ano mais recente disponível

$$P_{2020-masculino} = 7.625.679 + (7.625.679 \cdot 0,0105) \cdot 10 = 8.427.270$$

$$P_{2020-feminino} = 8.364.250 + (8.364.250 \cdot 0,0116) \cdot 10 = 9.339.364$$

Com a projeção para 2020 obtida, basta projetar a população para 2050 utilizando as mesmas taxas de crescimento calculadas para os sexos masculino e feminino. Assim, os resultados das projeções para 2050, com base nas estimativas de 2020, serão:

$$P_{2050-masculing} = 11.084.823$$

$$P_{2050-feminino} = 12.605.745$$

Resultados do método geométrico

O método geométrico foi aplicado de maneira semelhante ao método anterior. Primeiro, estimamos a taxa de crescimento para cada sexo e, em seguida, projetamos a população para 2020. Com a população projetada para 2020, utilizamos essa estimativa para projetar a população para 2050. As taxas de crescimento calculadas para cada sexo são:

$$r_M = 10^{\frac{1}{10}\log(\frac{7.625.679}{6.900.335})} - 1 = 0,0100$$

$$r_F = 10^{\frac{1}{10}\log\left(\frac{8.364.250}{7.490.947}\right)} - 1 = 0,0110$$

Agora, basta projetar a população de 2020:

$$P_{2020-masculino} = 7.625.679 (1+0.01)^{10} =$$

$$P_{2020-feminino} = 9.339.364 \left(1+0,011\right)^{10}$$

Com as projeções para 2020 de cada sexo, podemos então estimar a população para 2050, obtendo os seguintes resultados:

$$P_{2050-masculino} = 11.373.966$$

$$P_{2050-feminino} = 13.001.341$$

Conforme mostrado nas tabelas abaixo e na tabela anterior do método aritmético, observa-se que as projeções são bastante similares (as projeções foram arredondadas para cima). No entanto, a projeção geométrica para 2050 tende a superestimar a população, enquanto a projeção aritmética apresenta um crescimento mais moderado. Além disso, o tempo necessário para dobrar a população é de aproximadamente 69,66 anos para o sexo masculino e 63,35 anos para o sexo feminino.

Resultados do método exponencial

Como nos métodos anteriores, começamos estimando a taxa de crescimento r_e :

$$r_{e,M} = \frac{1}{10} \ln \left(\frac{7.625.679}{6.900.335} \right) = 0,0099$$

$$r_{e,F} = \frac{1}{10} \ln \left(\frac{8.364.250}{7.490.947} \right) = 0,0110$$

É importante notar que todos os métodos resultaram em taxas de crescimento muito próximas, o que pode explicar a semelhança nas projeções obtidas. Com essas taxas calculadas, projetamos a população para 2020:

$$P_{2020-masculino} = 7.625.679 \cdot e^{0.0099 \cdot 10} = 8.427.270$$

$$P_{2020-femining} = 8.364.250 \cdot e^{0.0110.10} = 9.339.364$$

Com base nas projeções de 2020 para cada sexo, calculamos a projeção para 2050. Assim, as projeções para 2050 são de 11.373.966 para o sexo masculino e 13.001.341 para o sexo feminino.

Resultados do método logístico

O método logístico não cumpriu com a condição de inflexão da curva $P_1^2 > P_0 P_2$, o que acabou gerando alguns resultados inesperados ao se fazer a projeção utilizando esse método. No entanto, ele foi aplicado. É importante salientar que foram utilizados os dados do censo de 2000, 2010 e a projeção feita com os outros métodos para o ano de 2020. Assim, esses foram os dados utilizados para a aplicação do método logístico. Portanto, utilizando os valores de 2000, 2010 e 2020 das tabelas anteriores, obtemos as seguintes estimativas para as constantes

$$P_{s\text{-masculino}} = -748386452196, 1002 \ c_{masculino} = -108457, 5390 \ k_{masculino} = 0,0019 \ k_{masculino} = 0,0$$

$$P_{s\text{-}\mathrm{feminino}} = -2662492726548.4253\ c_{feminino} = -355429.0555\ k_{feminino} = -0.0022$$

Já é possível ver as inconsistências nos P_s estimados pois o método não cumpre com a suposição $P_1^2 > P_0 P_2$. Assim, chegamos a seguinte projeção para o ano de 2050, que pode ser observado na tabela abaixo.

A tabela abaixo contém a informação de projeção para o ano de 2050. Podemos ver que a projeção para o ano de 2050 acaba sendo menor que o ano de 2020. A causa é o não cumprimento da condição de inflexão da curva, o que acaba fazendo com que P_s seja negativo e projetando a população para baixo.

Tabela 3

Ano	Masculino	Feminino
2000	6900335.000000	7490947.000000
2010	7625679.000000	8364250.000000
2020	8427270.000000	9339364.000000
2050	7625679.000000	8364250.000000

Conclusão

Durante o trabalho, foi possível observar mudanças significativas na demografia do estado do Rio de Janeiro. Um dos resultados mais evidentes é o rápido envelhecimento da população em comparação com 2010, além da queda na taxa de natalidade. A taxa bruta de natalidade no estado é de 13,075 nascimentos por mil habitantes, enquanto a taxa de mortalidade é de 8 óbitos por mil habitantes

Em relação aos diferentes métodos de projeção empregados, o método logístico foi o que mais se aproximou das projeções do IBGE para o ano de 2050, apesar de não cumprir todas as suposições. Além disso, os demais métodos também chegaram a valores bastante próximos, devido às suas taxas de crescimento semelhantes. A comparação pode ser visualizada na tabela abaixo. Embora as projeções para o ano de 2050 não tenham ficado boas, todas as projeções do ano de 2020 ficaram bastante próximas das originais do IBGE.

Tabela 1

Ano	Masculino	Feminino	Metodo
2000	6900335.000000	7490947.000000	Logístico
2010	7625679.000000	8364250.000000	Logístico
2020	8427270.000000	9339364.000000	Logístico
2050	7625679.000000	8364250.000000	Logístico
2000	6900335.000000	7490947.000000	Exponencial
2010	7625679.000000	8364250.000000	Exponencial
2020	8427270.000000	9339364.000000	Exponencial
2050	11373966.000000	13001341.000000	Exponencial
2000	6900335.000000	7490947.000000	Aritmético
2010	7625679.000000	8364250.000000	Aritmético
2020	8427270.000000	9339364.000000	Aritmético
2050	11084823.000000	12605745.000000	Aritmético
2000	6900335.000000	7490947.000000	Geométrico
2010	7625679.000000	8364250.000000	Geométrico
2020	8427270.000000	9339364.000000	Geométrico
2050	11373966.000000	13001341.000000	Geométrico

Ano	Masculino	Feminino	Metodo
	8306271.000000	9059918.000000	Projeção - IBGE
	8790956.000000	9419780.000000	Projeção - IBGE

ALLAIRE, J. J. et al. Quarto. 2022. Disponível em: https://quarto.org.

HUNTER, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 2007. v. 9, n. 3, p. 90–95.

J. PEREIRA, G. De. Códigos da análise demográfica para o primeiro relatório da disciplina de demografia. 2024. Disponível em: https://github.com/cowvin0/UFPB/tree/main/demografia/primeiro_bloco.

TEAM, T. Pandas Development. **pandas-dev/pandas: Pandas**. Zenodo. Disponível em: https://doi.org/10.5281/zenodo.3509134>.

VAN ROSSUM, G.; DRAKE JR, F. L. **Python reference manual**. [S.l.]: Centrum voor Wiskunde en Informatica Amsterdam, 1995.