Przetwarzanie indukcyjne.

Przy przetwarzaniu indukcyjnym wykorzystuje się zmianę **indukcyjności własnej** lub **wzajemnej cewek** oraz zmianę ich rezystancji czynnej zależnie od wartości strat spowodowanych **prądami wirowymi**.

Wielkość mierzona działa przeważnie na długość drogi magnetycznej, przenikalność magnetyczną rdzenia lub sprzężenie cewek.

Rys. 1. Element przetwarzający: a) zasada budowy, b) charakterystyka

Impedancja (opór pozorny) elementu przetwarzającego (rys. 1) wynosi

$$Z = \sqrt{R^2 + (\omega L)^2}$$

Gdzie: **R** – rezystancja, natomiast indukcyjność własna **L** wynosi

$$L = \frac{n^2}{R_{mFe} + \frac{2\delta}{\mu_0 S_p}}$$

gdzie: $m{n}$ – liczba zwojów, $m{R}_{mFe}$ – opór magnetyczny rdzenia, $m{\delta}$ – szerokość szczeliny powietrznej, $m{S}_p$ – przekrój szczeliny powietrznej, $m{\mu}_0$ – stała magnetyczna próżni, $m{\omega}$ – pulsacja napięcia przemiennego.

Szerokość szczeliny δ zmienia się wskutek działania mierzonej wielkości fizycznej \mathbf{X} (siła, przemieszczenie itp.). Efektem jest zmiana indukcyjności, a więc impedancji \mathbf{Z} cewki. Zależność $\mathbf{Z}(\delta)$ jest silnie nieliniowa (rys. 1b), stąd użyteczny zakres pracy $\Delta \delta = (0,3 \div 0,4) \delta_0$ jest niewielki.

Aby zminimalizować te wady, w praktyce stosuje się najczęściej układy różnicowe (rys. 2).

Prąd i_g płynący przez miernik jest proporcjonalny do różnicy impedancji (Z_1 , Z_2) obu cewek. Zakres pracy $\Delta \delta = (0,3 \div 0,4) \delta_0$.

Indukcyjność, a zatem i impedancja cewki, zależy też od położenia stalowego rdzenia (rys. 1 poniżej).

Z tej zasady korzysta się przeważnie w układach różnicowych.

Rzadziej w procesach przetwarzania korzysta się ze skutków wywołanych prądami wirowymi. Ta zasada polega na umieszczeniu w szczelinie powietrznej rdzenia magnetycznego $\boldsymbol{1}$ (rys. 2 poniżej) elementu $\boldsymbol{2}$ z metalu niemagnetycznego, w którym indukują się prądy wirowe. Od grubości \boldsymbol{x} elementu zależą straty mocy, a w konsekwencji rezystancja zespołu.

Rys. 2. Element przetwarzający wykorzystujący prądy wirowe

Często stosowanym sposobem przetwarzania jest wykorzystywanie zmiany **indukcyjności** wzajemnej uzwojeń (rys.3). Sensory pracujące na tej zasadzie nazywa się **transformatorowymi**.

Rys. 3. Zasady budowy sensorów transformatorowych: a) zwykły, b) różnicowy

Pod wpływem wielkości mierzonej \mathbf{X} (rys. 3a) zmienia się (np. maleje) szerokość szczeliny powietrznej $\boldsymbol{\delta}$, co powoduje, że rośnie sprzężenie magnetyczne między uzwojeniami 1 i 2. Wzrasta SEM $\boldsymbol{E_2}$ indukowana w uzwojeniu 2, a więc wskazania miernika są zależne od \boldsymbol{X} . W układzie różnicowym (rys. 3b) dla kąta $\boldsymbol{\alpha} = \boldsymbol{0}$ strumienie w rdzeniu środkowym się znoszą i SEM $\boldsymbol{E_2}$ w uzwojeniu 2 jest zerowa, dla $\boldsymbol{\alpha} \neq \boldsymbol{0}$, $\boldsymbol{E_2} \neq \boldsymbol{0}$.

Powyższe układy są zasilane napięciem o tzw. częstotliwości nośnej – zwykle 5 kHz i aby otrzymać sygnał wyjściowy w postaci przydatnej w technice, trzeba stosować dodatkowe układy elektroniczne.

Do przekształceń wielkości mechanicznych w elektryczne wykorzystuje się również zjawisko **magnetosprężystości**, polegające na zmianie przenikalności magnetycznej materiału ferromagnetycznego pod wpływem odkształcenia (rozciąganie, ściskanie, zginanie, skręcanie) (rys. 4).

Rys. 4. Schemat sensora magnetosprężystego

Taśma ferromagnetyczna 1 z nawiniętym uzwojeniem jest zamocowana na badanym obiekcie 2. Pod wpływem siły **F**zmienia się przenikalność magnetyczna taśmy, a to zmienia indukcyjność zestawu i w konsekwencji wartość impedancji. Czułość jest wyższa (ok. 200÷300 razy) niż tensometrów oporowych (sensory te reagują nawet na ciśnienie akustyczne).

Oddziaływanie prądu wirowego wykorzystuje się również w indukcyjnych, bezstykowych sensorach binarnych – wyłącznikach krańcowych (rys. 5).

Cewka jest częścią obwodu drgającego i wytwarza pole magnetyczne o wysokiej częstotliwości. Jeżeli w polu znajdzie się elektryczny lub/i magnetyczny przewodnik, to powstaną w nim prądy wirowe. W obiektach z materiałów ferromagnetycznych powstaną straty wywołane przemagnesowywaniem i prądami wirowymi, które pogarszają dobroć obwodu drgającego. Przy określonej odległości obiektu od czoła wyłącznika zacznie się zmniejszać amplituda drgań (zostaje stłumiona). Ta zmiana zostaje wykryta przez dołączony przełącznik progowy i zasygnalizowana przez

krańcowego

zmianę wartości binarnego sygnału wyjściowego.