Работу выполнил Самохин Валентин, 676 гр. под руководством Артанова А. А.

Маршрут IX № 8 12 апреля 2017 г.,

## Лабораторная работа № 2.2.1:

# Исследование взаимной диффузии газов

### Цель работы:

- 1. регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных двалениях смеси газов;
- 2. определение коэффициента диффузии по результатам измерений.

В работе используются: измерительная установка; форвакуумный насос; баллон с газом (гелий); манометр; источник питания; магазин сопротивлений.

**Теоретическая справка.** В двухкомпонентной системе плотность потока вещества любого компонента в результате взаимной диффузии определяется законом Фика:

$$j_i = -D_{ij} \frac{\delta n_i}{\delta x},\tag{1}$$

причём  $D_{ij}=D_{ji}\equiv D$  — коэффициент взаимной диффузии компонентов.

Пусть два сосуда с объёмами  $V_1, V_2$  соединены трубкой длины l, сечения S и заполнены смесью двух газов при одинаковом давлении (чтобы исключить макроскопические течения), но с разной концентрацией компонентов, причём один из компонентов преобладает. Вследствие взаимной диффузии концентрации каждого из компонентов со временем выравниваются, однако удобно рассматривать только концентрацию «примеси».

Будем исходить из того, что описанный процесс происходит в основном благодаря диффузии в трубке, и считать процесс установления квазистационарным, тогда

$$J = -DS\frac{n_1 - n_2}{l},\tag{2}$$

где  $n_i$  — концентрация примеси в i-ом сосуде. С учётом сохранения вещества запишем

$$\frac{d(n_1 - n_2)}{dt} = -\frac{n_1 - n_2}{l} DS\left(\frac{1}{V_1} + \frac{1}{V_2}\right) \Rightarrow \Delta n \equiv n_1 - n_2 = \Delta n_0 \exp\left(-\frac{t}{\tau}\right),\tag{3}$$

$$\tau \equiv \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD}.\tag{4}$$

Для измерения концентраций будем применять датчики теплопроводности, считая линейными зависимость сопротивления от температуры и коэффициента теплопроводности от разности концентрации (раскладывая по Тейлору до первого члена, такой точности в нашем опыте достаточно).

#### Экспериментальная установка

**Устройство установки:** V - сосуды, M - манометр, T - выключатель, П.Б. - предохранительный баллон, Ф.Н. - форвакуумный насос, D - датчики теплопроводности.



Рис. 1: Устройство установки





Рис. 2: Устройство моста

Рис. 3: Кран К6

Методика эксперимента заключается в том, что разность теплопроводностей изменяется пропорционально разности концентраций. Таким образом, показания гальванометра должны в процессе диффузии убывать по экспоненциальному закону, и установив зависимость показаний во времени, можно найти характерное время  $\tau$ , а из него коэффициент диффузии.

## Выполнение работы

Измерениям предшествовали калибровка моста, сложный процесс закачки газов в объемы  $V_1$  и  $V_2$ , ход которых не влияет на обработку результатов. Как было сказано ранее, замерив зависимость напряжения от времени, а затем прологарифмировав полученные значения, мы, из теории, должны были получить прямую. По ее коэффициенту наклона можно вычислить интересующие нас значения коэффициента диффузии, оценить размер частиц и длину свободного пробега.

| t(c)   | U(MB) | $\ln U_0/U$ |
|--------|-------|-------------|
| 0      | 255   | 0.00        |
| 8.32   | 250.7 | 0.74        |
| 16.65  | 245.4 | 1.67        |
| 24.97  | 240   | 2.63        |
| 33.29  | 235.7 | 3.42        |
| 41.62  | 230.4 | 4.41        |
| 49.94  | 226   | 5.24        |
| 58.26  | 221   | 6.21        |
| 66.59  | 216.4 | 7.13        |
| 74.91  | 212   | 8.02        |
| 83.24  | 207   | 9.06        |
| 91.56  | 203.4 | 9.82        |
| 99.88  | 199   | 10.77       |
| 108.21 | 194.8 | 11.70       |
| 116.53 | 188   | 13.24       |
| 124.84 | 184.1 | 14.15       |
| 133.18 | 180   | 15.13       |
| 141.5  | 176   | 16.10       |
| 149.82 | 172.2 | 17.05       |
| 158.15 | 168.9 | 17.89       |
| 166.47 | 165   | 18.91       |
| 174.79 | 161.2 | 19.92       |
| 183.12 | 155   | 21.62       |
| 191.44 | 152   | 22.47       |
| 199.76 | 149   | 23.34       |
| 208.09 | 145   | 24.52       |
| 216.41 | 141.6 | 25.55       |
| 224.74 | 138.3 | 26.57       |
| 233.06 | 135   | 27.62       |
| 241.38 | 132   | 28.60       |
| 249.71 | 129   | 29.60       |
| 258.03 | 126   | 30.62       |
| 266.35 | 123   | 31.66       |
| 274.68 | 120   | 32.74       |
| 283    | 117   | 33.84       |

Таблица 1: Показания при рабочем давлении 40 тор

|        |       | t(c)        | U(MB)  | $\ln U_0/U$ |       |
|--------|-------|-------------|--------|-------------|-------|
| t(c)   | U(MB) | $\ln U_0/U$ | 238.45 | 206         | 9.27  |
| 0      | 255   | 0.00        | 248.82 | 204         | 9.69  |
| 10.37  | 253   | 0.34        | 259.18 | 201         | 10.33 |
| 20.73  | 251   | 0.69        | 269.55 | 199.4       | 10.68 |
| 31.1   | 248.9 | 1.05        | 279.92 | 198         | 10.99 |
| 41.47  | 245   | 1.74        | 290.29 | 196         | 11.43 |
| 51.84  | 243   | 2.09        | 300.65 | 194         | 11.87 |
| 62.2   | 240.8 | 2.49        | 311.02 | 193         | 12.10 |
| 72.57  | 238   | 3.00        | 321.39 | 191         | 12.55 |
| 82.94  | 236.1 | 3.34        | 331.76 | 188.2       | 13.19 |
| 93.31  | 234   | 3.73        | 342.12 | 187         | 13.47 |
| 103.67 | 231   | 4.29        | 352.49 | 185         | 13.94 |
| 114.04 | 229   | 4.67        | 362.86 | 184         | 14.17 |
| 124.41 | 227   | 5.05        | 373.22 | 182         | 14.65 |
| 134.78 | 225   | 5.44        | 383.59 | 181         | 14.89 |
| 145.14 | 223   | 5.82        | 393.96 | 179         | 15.37 |
| 155.51 | 221   | 6.21        | 404.33 | 177.7       | 15.69 |
| 165.88 | 219   | 6.61        | 414.69 | 176         | 16.10 |
| 176.24 | 217   | 7.01        | 425.06 | 174         | 16.60 |
| 186.61 | 215   | 7.41        | 435.43 | 173         | 16.85 |
| 196.98 | 213   | 7.82        | 445.8  | 171.2       | 17.30 |
| 207.35 | 211   | 8.23        | 456.16 | 170         | 17.61 |
| 217.71 | 209.3 | 8.58        | 466.53 | 169         | 17.87 |
| 228.08 | 208   | 8.85        | 476.9  | 167         | 18.38 |
|        | •     |             | 487.27 | 165         | 18.91 |

Таблица 2: Показания при рабочем давлении 104 тор

| t(c)                 | <i>U (мв)</i> | $\ln U_0/U$    | t(c) | <i>U (мв)</i> | $\ln U_0/U$ |
|----------------------|---------------|----------------|------|---------------|-------------|
| $\frac{\iota(c)}{0}$ | 13.95         | 0.00           | 270  | 11.67         | 7.75        |
| 10                   |               | $0.00 \\ 0.34$ | 280  | 11.6          | 8.01        |
|                      | 13.84         |                | 290  | 11.52         | 8.31        |
| 20                   | 13.76         | 0.60           | 300  | 11.44         | 8.61        |
| 30                   | 13.67         | 0.88           | 310  | 11.37         | 8.88        |
| 40                   | 13.57         | 1.20           | 320  | 11.3          | 9.15        |
| 50                   | 13.49         | 1.46           | 330  | 11.23         | 9.42        |
| 60                   | 13.4          | 1.75           | 340  | 11.15         | 9.73        |
| 70                   | 13.31         | 2.04           | 350  | 11.08         | 10.00       |
| 80                   | 13.21         | 2.37           | 360  | 11            | 10.32       |
| 90                   | 13.12         | 2.66           | 370  | 11.93         | 6.79        |
| 100                  | 13.03         | 2.96           | 380  | 10.86         | 10.87       |
| 110                  | 12.95         | 3.23           | 390  | 10.8          | 11.12       |
| 120                  | 12.86         | 3.53           | 400  | 10.73         | 11.40       |
| 130                  | 12.78         | 3.80           | 410  | 10.66         | 11.68       |
| 140                  | 12.71         | 4.04           | 420  | 10.59         | 11.97       |
| 150                  | 12.62         | 4.35           | 430  | 10.52         | 12.26       |
| 160                  | 12.53         | 4.66           | 440  | 10.45         | 12.55       |
| 170                  | 12.45         | 4.94           | 450  | 10.38         | 12.84       |
| 180                  | 12.37         | 5.22           | 460  | 10.31         | 13.13       |
| 190                  | 12.29         | 5.50           | 470  | 10.25         | 13.39       |
| 200                  | 12.22         | 5.75           | 480  | 10.18         | 13.68       |
| 210                  | 12.14         | 6.04           | 490  | 10.12         | 13.94       |
| 220                  | 12.06         | 6.32           | 500  | 10.05         | 14.24       |
| 230                  | 11.98         | 6.61           | 510  | 9.99          | 14.50       |
| 240                  | 11.91         | 6.87           | 520  | 9.92          | 14.81       |
| 250                  | 11.83         | 7.16           | 530  | 9.86          | 15.07       |
| 260                  | 11.75         | 7.45           | 540  | 9.8           | 15.33       |

| t(c) | U(MB) | $\ln U_0/U$ |
|------|-------|-------------|
| 0    | 20.64 | 0.00        |
| 10   | 20.05 | 1.26        |
| 20   | 19.44 | 2.60        |
| 30   | 18.85 | 3.94        |
| 40   | 18.27 | 5.30        |
| 50   | 17.7  | 6.67        |
| 60   | 17.15 | 8.04        |
| 70   | 16.61 | 9.43        |
| 80   | 16.12 | 10.73       |
| 90   | 15.63 | 12.08       |
| 100  | 15.18 | 13.34       |
| 110  | 14.74 | 14.62       |
| 120  | 14.31 | 15.91       |
| 130  | 13.88 | 17.23       |
| 140  | 13.49 | 18.47       |
| 150  | 13.1  | 19.74       |
| 160  | 12.72 | 21.02       |
| 170  | 12.36 | 22.27       |
| 180  | 12.02 | 23.48       |

Таблица 4: Показания при изменении долей газов

Таблица 3: Показания при рабочем давлении 150 тор

| t(c)                                     | <i>U (мв)</i> | $\ln U_0/U$ |      | <b>T</b> T ( ) | 1 77 /77    |      | <b>T</b> T ( ) | 1 77 /77    |
|------------------------------------------|---------------|-------------|------|----------------|-------------|------|----------------|-------------|
| 0                                        | 15.76         | 0.00        | t(c) | <i>U (мв)</i>  | $\ln U_0/U$ | t(c) | <i>U(мв)</i>   | $\ln U_0/U$ |
| 10                                       | 15.71         | 0.14        | 210  | 14.12          | 4.77        | 410  | 12.75          | 9.20        |
| 20                                       | 15.64         | 0.33        | 220  | 14.05          | 4.99        | 420  | 12.68          | 9.44        |
| $\begin{vmatrix} 20 \\ 30 \end{vmatrix}$ | 15.55         | 0.58        | 230  | 13.98          | 5.20        | 430  | 12.61          | 9.68        |
| 40                                       | 15.35 $15.47$ | 0.33        | 240  | 13.91          | 5.42        | 440  | 12.55          | 9.89        |
|                                          |               |             | 250  | 13.84          | 5.64        | 450  | 12.49          | 10.10       |
| 50                                       | 15.38         | 1.06        | 260  | 13.76          | 5.89        | 460  | 12.43          | 10.31       |
| 60                                       | 15.3          | 1.29        | 270  | 13.69          | 6.12        | 470  | 12.37          | 10.52       |
| 70                                       | 15.21         | 1.54        | 280  | 13.62          | 6.34        | 480  | 12.31          | 10.73       |
| 80                                       | 15.13         | 1.77        | 290  | 13.55          | 6.56        | 490  | 12.25          | 10.94       |
| 90                                       | 15.05         | 2.00        | 300  | 13.48          | 6.79        | 500  | 12.19          | 11.16       |
| 100                                      | 14.97         | 2.23        | 310  | 13.41          | 7.01        | 510  | 12.13          | 11.37       |
| 110                                      | 14.89         | 2.47        | 320  | 13.34          | 7.01        | 520  | 12.13 $12.07$  | 11.58       |
| 120                                      | 14.8          | 2.73        |      |                |             |      |                |             |
| 130                                      | 14.73         | 2.94        | 330  | 13.28          | 7.44        | 530  | 12.01          | 11.80       |
| 140                                      | 14.65         | 3.17        | 340  | 13.21          | 7.67        | 540  | 11.96          | 11.98       |
| 150                                      | 14.57         | 3.41        | 350  | 13.14          | 7.90        | 550  | 11.9           | 12.20       |
| 160                                      | 14.49         | 3.65        | 360  | 13.08          | 8.09        | 560  | 11.84          | 12.42       |
| 170                                      | 14.42         | 3.86        | 370  | 13             | 8.36        | 570  | 11.79          | 12.60       |
| 180                                      | 14.42 $14.34$ | 4.10        | 380  | 12.94          | 8.56        | 580  | 11.73          | 12.83       |
|                                          |               |             | 390  | 12.88          | 8.76        | 590  | 11.67          | 13.05       |
| 190                                      | 14.28         | 4.28        | 400  | 12.81          | 9.00        | 600  | 11.62          | 13.24       |
| 200                                      | 14.2          | 4.53        |      |                |             |      |                |             |

Таблица 5: Показания при рабочем давлении 200 тор



Рис. 4: График при P=40 тор

$$\begin{split} y &= 0,121x - 0,785 \\ 1/\tau &= 0,121 \\ M &= (0,440 \pm 0,002) \text{M}^2 \\ D &= \frac{1}{\tau M} \\ D &= (0,281 \pm 0,007) 10^{-2} \text{M}^2/c \end{split}$$

Рис. 5: График при 
$$P=104$$
 тор

$$y = 0,0386x - 0,1399$$
 
$$1/\tau = 0,0386$$
 
$$M = (0,440 \pm 0,002) \text{M}^2$$
 
$$D = \frac{1}{\tau M}$$
 
$$D = (0,087 \pm 0,001) 10^{-2} \text{M}^2/c$$



Рис. 6: График при P=150 тор

$$\begin{split} y &= 0,0283x + 0,0846 \\ 1/\tau &= 0,0283 \\ M &= (0,440 \pm 0,002) \textit{M}^2 \\ D &= \frac{1}{\tau M} \\ D &= (0,064 \pm 0,001) 10^{-2} \textit{M}^2/c \end{split}$$



Рис. 7: График при 
$$P=200$$
 тор

$$y = 0,0223x + 0,0343$$
 
$$1/\tau = 0,0223$$
 
$$M = (0,440 \pm 0,002) \text{M}^2$$
 
$$D = \frac{1}{\tau M}$$
 
$$D = (0,051 \pm 0,001) 10^{-2} \text{M}^2/c$$



 $D = \frac{1}{\tau M}$   $D = (0, 298 \pm 0, 005)10^{-2} M^2/c$ 

y = 0,1312x + 0,0946 $1/\tau = 0,0283$ 

 $M = (0,440 \pm 0,002) M^2$ 

Рис. 8: График при P=40 тор (при измененных пропорций)



$$y=11,429x-0,0128$$
 Экстраполяция даст: 
$$D_{am\scriptscriptstyle M}=(2,23\pm 0,01)10^{-5} {\it M}^2/c$$

Рис. 9: График зависимости коэф. диффузии D от 1/P

Оценим длину свободного пробега  $\lambda$  и размер молекулы d:

$$\lambda = 3D\sqrt{\frac{\mu}{3RT}} = (4, 17 \pm 0, 03)10^{-7} M$$
 
$$d = \sqrt{\frac{kT}{P\lambda}} \sim 10^{-10} M$$

### Вывод

- 1. Во-первых, по данным хорошо видно, что коэффициент взаимной диффузии газов не зависит от их пропорций (первый и последний опыты).
- 2. Во-вторых, последний график недостаточно хорош. Видно, что не все точки лежат на прямой, что связано с плохой работой компьютера, использовавшегося с первых опытах.
- 3. Наконец, оценка, произведенная в конце работы для размеров молекул, верна, что может говорить об относительно достоверных результатах.