Markov Decision Processes

What is a Markov decision process?

- MDP (Environment evaluation)
- Andrey Markov (1856-1922)
- "Markov" generally means that given the **present state**, the **future** and **independent**

•
$$F_t P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

• A mathematical representation of a sequential decision making problem

Markov Decision Process

- An MDP is defined by 5 tuple $(S,A, \gamma, \{Psa\},R)$
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s,a,s')
 - Probability that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
 - A discount factor: γ
- MDPs are a family of non-deterministic search problems
 - Reinforcement learning: MDPs where we don't know the transition or reward functions

Optimal Utilities

- Fundamental operation: compute the optimal values of states s
- Optimal values ($V^*(s)$) define optimal policies($\pi^*(s)$)
- Define the value of a state s:
 V*(s) = expected utility starting in s and acting optimally

- Define the value of a q-state (s,a): $Q^*(s,a) = \text{expected utility starting in } s$, taking action a and thereafter acting optimally
- Define the optimal policy: $\pi^*(s) = \text{optimal action from state } s$

Optimal Value function (Bellman equations)

• Given a fixed policy π , its value function V π satisfies the

Bellman equations:

- We start in some state s_0 , and get to choose some action $a_0 \in A$
- As a result of our choice, the state of the MDP randomly transitions to some successor state s_1 , drawn according to $s_1 \sim Ps0a0$
- Then, we get to pick another action a_1

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} \dots$$

The Basic Setting for Learning

- Training data: n finite horizon trajectories, of the form $\{s_0, a_0, r_0, ..., s_T, a_T, r_T, s_{T+1}\}.$
- Deterministic or stochastic policy: A sequence of decision rules

$$\{\pi_0, \pi_1, ..., \pi_T\}.$$

• Each π maps from the observable history (states and actions) to the action space at that time point.

Example of Q learning (episode 1)

- Initialize \hat{Q} to 0
- Random initial state = < 1,1 >
- Random action from $A_{<1,1>} = east$
 - s' = < 2.1 >
 - $R_a(s,s') = 0$
- Update $\hat{Q}(<1,1>,east) = 0$
- Random action from $A_{<2,1>} = north$
 - s' = < 2.0 >
 - $R_a(s,s') = 100$
- Update $\hat{Q}(<2,1>,north) = 100$
- No more moves possible, start again...

$$\widehat{Q}(s,a) = R_a(s,s') + \gamma \max_{a'} \widehat{Q}_{n-1}(s',a')$$

Example of Q learning

$$\hat{Q}(s,a) = R_a(s,s') + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')$$

$$\gamma = 0.5$$

- Random Initial State < 0,0 >
- Update $\hat{Q}(<1,1>,east) = 50$
- Update $\hat{Q}(<1,2>,east) = 25$

