

By: David Catalan Perez, Vandyck Buabeng, Kristen Hanold, & Reuben Akipogu

CIS 4730 (Summer 2021) - Professor Zhang

Introduction

We are deploying a new phone product, and we need to examine the current market to ensure its success and survivability.

Use

 A <u>data set</u> that has user reviews for current phones in the market.

Clean and extract

 Data to generate tables and figures for analysis.

Present

 A viable solution from the data that will assist the business in a successful launch.

Methodology

- Our Data Set
- Source: Kaggle
- Size: 374,910 User Reviews
- Sample Size: 246, 810 Reviews
- Data ranges from 2014 to 2017.

Step-by-Step Workflow Diagram

Finding the Top 5 Countries

- After importing our data to R, we will find the top five countries with the most reviews.
- Once we find our top five regions, we can filter the data to focus on those regions for now.

```
# Acquiring the Data - Reading Phone Reviews File
User_Reviews = read_csv("phone_user_review_file_1.csv")

# Filtering the Data - Finding the Top 5 Regions in Device Purchases
User_Reviews_Top5_Regions = User_Reviews %>%
    group_by(country) %>%
    summarise(Number_of_Region_Purchases = n()) %>%
    arrange(desc(Number_of_Region_Purchases))

User_Reviews_Top5_Regions <- top_n(User_Reviews_Top5_Regions, 5)

# Extracting the Data - Getting United States Reviews</pre>
```

User_Reviews_US = User_Reviews %>% filter(country == "us")

User_Reviews_IN = User_Reviews %>% filter(country == "in")

User_Reviews_IT = User_Reviews %>% filter(country == "it")

User_Reviews_DE = User_Reviews %>% filter(country == "de")

User_Reviews_FR = User_Reviews %>% filter(country == "fr")

Extracting the Data - Getting India Reviews

Extracting the Data - Getting Italy Reviews

Extracting the Data - Getting Germany Reviews

Extracting the Data - Getting France Reviews

Device Rating Averages Based on Country

- We can find the averages of every reviewed device within all the selected countries from our filtered lists.
- We can sort from descending order to display the top-rated devices to the lowest.
- Examining this will allow us to see popular devices in that region.

US Device and Average Rating

> Device_Ratings_US # A tibble: 1.898 x 4

77	# A CIDDLE. 1,030 X 4				
	product	Number_of_Produc	Average_Product_Ra	Product_Percenta	
	<chr></chr>	<int></int>	<db1></db1>	<db1></db1>	
1	Samsung Galaxy S7 edge 32GB (Verizon)	<u>1</u> 811	9.35	2.15	
2	Samsung Galaxy S7 edge 32GB (T-Mobile)	<u>1</u> 729	9.42	2.05	
3	Samsung Galaxy S7 32GB (Verizon)	<u>1</u> 607	9.35	1.91	
4	Samsung Galaxy S7 32GB (T-Mobile)	<u>1</u> 532	9.38	1.82	
5	Samsung Galaxy S5 16GB (Verizon)	<u>1</u> 432	9.19	1.7	
6	Samsung Galaxy S7 edge 32GB (AT&T)	<u>1</u> 383	9.42	1.64	
7	Samsung Galaxy S5 16GB (T-Mobile)	<u>1</u> 165	9.03	1.38	
8	Samsung Galaxy S5 16GB (AT&T)	<u>1</u> 079	9.16	1.28	
0	Samsung Galaxy S6 edge+ 32GB (T-Mobile)	<u>1</u> 040	9.45	1.23	
10	Huawei Honor 5X Unlocked Smartphone, 16GB	<u>1</u> 005	8.31	1.19	
#	with 1,888 more rows				

Devices in Each Region

- We can discover the number of devices that are within each region.
- Examining these regions will allow us to see if there is a trend and potential competitor.
- Analyze what they do right and wrong that allows for a high usage from consumers (High v. Low rated devices).

```
# Counts the Number of Devices in the US
us <- User_Reviews_US %>%
  select(country, product) %>%
  summarise(product = n())
# Counts the Number of Devices in the India
In <- User_Reviews_IN %>%
  select(country, product) %>%
  summarise(product = n())
#Counts the Number of Devices in the Italy
it <- User_Reviews_IT %>%
  select(country, product) %>%
  summarise(product = n())
# Counts the Number of Devices in the Germany
de <- User_Reviews_DE %>%
  select(country, product) %>%
  summarise(product = n())
# Counts the Number of Devices in the France
fr <- User_Reviews_FR %>%
 select(country, product) %>%
  summarise(product = n())
```

```
> us
# A tibble: 1 x 1
  product
    <int>
1 84259
> In
# A tibble: 1 x 1
  product
    <int>
1 52821
> it
# A tibble: 1 x 1
  product
    <int>
1 45729
> de
# A tibble: 1 x 1
  product
    <int>
1 34264
> fr
# A tibble: 1 x 1
  product
    <int>
   29737
```

```
> Ten_Rated_Devices_US
# A tibble: 1,676 x 3
# Groups: product, country [1,676]
   country product
                                                                           score
                                                                           <dbl>
   <chr> <chr>
          Samsung Galaxy S7 edge 32GB (T-Mobile)
                                                                              10
                                                                              10
          Samsung Galaxy S7 edge 32GB (Verizon)
                                                                              10
          Samsung Galaxy S7 32GB (T-Mobile)
                                                                              10
          Samsung Galaxy S7 32GB (Verizon)
                                                                              10
          Samsung Galaxy S7 edge 32GB (AT&T)
                                                                              10
          Samsung Galaxy S5 16GB (Verizon)
          Huawei Nexus 6P unlocked smartphone, 32GB Gold (US Warranty)
                                                                              10
                                                                              10
          Huawei Honor 5X Unlocked Smartphone, 16GB Dark Grey (US Warranty)
          Samsung Galaxy S6 edge+ 32GB (T-Mobile)
                                                                              10
          Samsung Galaxy S5 16GB (AT&T)
                                                                              10
# ... with 1,666 more rows
```

Identifying Key Players in All 5 Regions

- With the identification of the top and highlyrated devices in each region, we can examine the key players.
- Using str_detect, we can search through the data set to find specific products (e.g., Samsung Galaxy, Apple iPhone, etc.).
- We can see which regions these key players are dominating or fallen behind from competitors.

```
# Show individuals in the Top 5 Countries that uses a Samsung Galaxy.
Samsung = "Samsung Galaxy"

Samsung_Galaxy = User_Reviews_Top_Products %>%
    group_by(country) %>%
    filter(str_detect(product, Samsung)) %>%
    summarise(Device_Purchases = sum(Total_Products)) %>%
    arrange(desc(Device_Purchases))
```


Finding Popular Device Source Locations

- We need to examine these purchased devices and find where consumers buy them primarily from.
- Identifying these device sources will enable us to adjust strategies to ensure the availability of our product.
- We'll see where we should focus our efforts when it comes time to sell a product.

```
# A tibble: 5 \times 3
              num_of_device source_percentage
  source
  <chr>
                       <int>
                                           < dh1 >
                                          60.0
1 Amazon
                      225034
                                           8.5
2 Samsung
                       31872
3 KIESKEURIG
                       18858
                                           5.03
4 Bondfaro
                                           1.89
                        7097
5 Yandex
                        6674
                                           1.78
```

Using Regex to Dig Deeper

Best Match

- We will use Regex (Regular Expressions) to go through thousands of reviews to find specific keywords.
- These keywords will help determine what is essential to a product and improve where competitors fall short.
- Keywords such as "Best," "Issues," "Love," etc., can tell us much about a device and see what matters to consumers.

```
# Finding Keyword "best" in Reviews and Displaying the top 5 devices
reviews_keywords_Best <- User_Reviews %>%
  select(extract, product) %>%
                                                                  # \Delta tibble: 5 x 2
 filter(str_detect(extract, "[Bb]est")) %>%
 count(product) %>%
                                                                     product
                                                                                                                                n
 arrange(desc(n))
                                                                     <chr>>
                                                                                                                           <int>
head(reviews_keywords_Best, 5)
                                                                  1 OnePlus 3 (Graphite, 64 GB)
                                                                                                                              679
# Using Regex to confirm str_detect received the correct number.
                                                                  2 OnePlus 3 (Soft Gold, 64 GB)
                                                                                                                              645
Phone_Reviews = User_Reviews$extract
                                                                  3 Samsung Galaxy S7 edge 32GB (T-Mobile)
                                                                                                                              326
my_regex_Best = "[Bb]est"
                                                                  4 OnePlus 3T (Gunmetal, 6GB RAM + 64GB memory)
                                                                                                                              314
Best = (stringr::str_extract_all(Phone_Reviews, my_regex_Best))
Best[lengths(Best) == 0] <- NA_character_</pre>
                                                                  5 Samsung Galaxy S7 edge 32GB (Verizon)
                                                                                                                              297
Best = Best[!is.na(Best)]
Best_Match = length(Best)
```

Analyzing the Data

- Number of Reviews in each Filtered Region
- Highly-Rated Devices

> User_Reviews_Top5_Regions

A tibble: 5 x 2

country Number_of_Region_Purchases

<chr></chr>	<int></int>
1 us	<u>84</u> 259
2 in	<u>52</u> 821
3 it	<u>45</u> 729
4 de	<u>34</u> 264
5 fr	<u>29</u> 737

Histogram of Device_Ratings_US\$Average_Product_Rating

> Device_Ratings_US

# A tibble: 1,898 x 4				
product	Number_of_Produc	Average_Product_Ra	Product_Percenta	
<chr></chr>	<int></int>	<db1></db1>	<db1></db1>	
1 Samsung Galaxy S7 edge 32GB (Verizon)	<u>1</u> 811	9.35	2.15	
2 Samsung Galaxy S7 edge 32GB (T-Mobile)	<u>1</u> 729	9.42	2.05	
3 Samsung Galaxy S7 32GB (Verizon)	<u>1</u> 607	9.35	1.91	
4 Samsung Galaxy S7 32GB (T-Mobile)	<u>1</u> 532	9.38	1.82	
5 Samsung Galaxy S5 16GB (Verizon)	<u>1</u> 432	9.19	1.7	
6 Samsung Galaxy S7 edge 32GB (AT&T)	<u>1</u> 383	9.42	1.64	
7 Samsung Galaxy S5 16GB (T-Mobile)	<u>1</u> 165	9.03	1.38	
8 Samsung Galaxy S5 16GB (AT&T)	<u>1</u> 079	9.16	1.28	
9 Samsung Galaxy S6 edge+ 32GB (T-Mobile)	<u>1</u> 040	9.45	1.23	
10 Huawei Honor 5X Unlocked Smartphone, 16GB	<u>1</u> 005	8.31	1.19	
# with 1,888 more rows				

Analyzing the Data

- Popular Device Source Location
- Domain (URL) Purchases

> Region_Purchases

A tibble: 253 x 3

			D . D .	
	domain	Domain_Purchases	Domain_Percentage	
	<chr></chr>	<int></int>	<dbl></dbl>	
1	amazon.com	<u>46</u> 695	0.12	
2	amazon.in	<u>45</u> 058	0.12	
3	amazon.it	<u>43</u> 601	0.12	
4	samsung.com	<u>31</u> 772	0.08	
5	amazon.de	<u>26</u> 673	0.07	
6	amazon.es	<u>22</u> 699	0.06	
7	amazon.fr	<u>22</u> 086	0.06	
8	amazon.co.uk	<u>15</u> 191	0.04	
9	kieskeurig.be	<u>9</u> 805	0.03	
10	kieskeurig.nl	<u>9</u> 053	0.02	
# with 243 more rows				

> device_source_us

A tibble: 217 x 3

, ,	CLDDIC. LII X	9		
	source	num_of_device	source_percentage	
	<chr></chr>	<int></int>	<dbl></dbl>	
1	Amazon	<u>225</u> 034	60.0	
2	Samsung	<u>31</u> 872	8.5	
3	KIESKEURIG	<u>18</u> 858	5.03	
4	Bondfaro	<u>7</u> 097	1.89	
5	Yandex	<u>6</u> 674	1.78	
6	Otto.de	<u>6</u> 453	1.72	
7	Cissa Magazine	<u>5</u> 426	1.45	
8	Argos	<u>4</u> 414	1.18	
9	Verkkokauppa	<u>4</u> 248	1.13	
10	Flipkart	<u>3</u> 781	1.01	
¥	. with 207 more	rows		

Conclusion

We found the key players in their regions, what they did right, and what consumers want for our business problem. Utilizing R allowed us to take and extract information from the data set to support a business need.

As a team, we were able to develop and test our technical skills and work as one unit, supporting one another along the way.

We used our collective knowledge of the R labs to set tasks that would allow us to explore the data on a deeper level.

Learned how we could use unstructured data to tackle business problems to find insights that solve them.

Thank You!

Any Questions?