Alignment of Short Reads: Suffix Trees

Ahmet Sacan

The Newspaper Problem

The Newspaper Problem as an Overlapping Puzzle

noodie, appraed vet named vation is welc

lie, appropriate por 2° yet named any suspects, alt is welcon the care

Whole-Genome Sequencing

Hierarchical shotgun sequencing Genomic DNA **BAC** library Organized mapped large clone contigs BAC to be sequenced Shotgun clones Shotgun ... ACCGTAAATGGGCTGATCATGCTTAAA TGATCATGCTTAAACCCTGTGCATCCTACTG... sequence ... ACCGTAAATGGGCTGATCATGCTTAAACCCTGTGCATCCTACTG...

From Reference Genome to Personal Genomes

Reference human genome assembled in 2000.

Reference-based sequencing

- Map short reads to the reference genome.
- Exact "pattern matching"
 - Locate the occurrence of short read exactly.
- · Approximate "pattern matching"
 - Allow mismatches, insertions, deletions.

Searching short read (pattern) in genome (text)

Pattern drives along Text

panamabananas nana

Text

Pattern

Searching short read (pattern) in genome (text)

Pattern drives along Text

panamabananas nana

Text

Pattern

Searching for multiple patterns

Genome

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTAC**C**ACATCGTAGCTAC

Searching for multiple patterns

Genome

Computational Complexity

- How long does it take to find a single pattern?
 O(|text| * |pattern|)
- Multiple patterns?

```
O(|pattern1| * |text|) + O(|pattern2| * |text|) + ...
= O(|text| * |patterns|)
```

- Human genome:
 - $-|\text{Text}| \approx 10^9$
 - |Patterns| ≈ 10^12

Pack Patterns onto a bus

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTAC**C**ACATCGTAGCTAC

banana

pan nab antenna bandana ananas nana

banana pan and nab antenna **bandana**

ananas

nana

panamabananas

TrieMatching(*Text, Patterns*): drive Trie(*Patterns*) along *Text* at each position of *Text*

- walk down Trie(Patterns)
 by spelling symbols of Text
- a pattern from Patterns matches Text each time you reach a leaf!

For simplicity, we assume that no pattern is a substring of another pattern

p a n a m a b a n a n a s

pa**n**amabananas

pan**a**mabananas

Computational Complexity

- How long does it take to find multiple patterns?
 - Brute force: O(|text| * |patterns|)
 - Pattern trie: O(|text| * |LongestPattern|)
- Space complexity
 - Number of edges in pattern trie: O(|Patterns|)
 - Human genome: |Patterns| ≈ 10^12

Alternative: Pack Text onto a bus

- Generate all suffixes of Text
 - The suffixes represent all possible places a pattern can match
- Form a trie from these suffixes (suffix trie)
- For each pattern, walk down from the root of the trie to see if there is a match.

panamabananas

panamabananas \$

Adding "\$" sign in the end (we'll explain later why)

Where Are the Matches???

bananas\$

Where Are the Matches???

Identifying position of match in text

 Once we find a match, walk down to the leaves to get the position(s) of the matches.

Memory Footprint of Suffix Trie

The suffix trie is formed from | Text | suffixes with total length:

$$|Text|*(|Text|-1)/2$$

For human genome:

• $|Text| \approx 3*10^9$


```
|Text| symbols
```


Since each suffix adds one leaf and at most one internal vertex to the suffix tree:

- # vertices < 2 | Text |
- memory footprint of the suffix tree: O(|Text|)

Since each suffix adds one leaf and at most one internal vertex to the suffix tree:

- # vertices < 2 | Text |
- memory footprint of the suffix tree: O(|Text|)
- storing edge labels

Overview of Suffix Tree

- Fast Exact Multiple Pattern Matching
 - Time: O(|text| + |patterns|)
 - Memory: O(|text|)
 - Actual implementation still too demanding in memory requirements.
 ~20 * |text|
- Construction: O(|text|)
- Need better method that:
 - Can handle mutations (approximate matching)
 - Has smaller memory footprint