অনুশীলনী ৯

১। ABCD সামান্তরিকের অভ্যন্তরে O যেকোনো একটি বিন্দু । প্রমাণ করতে হবে যে, এক্ষেত্র AOB + Δ ক্ষেত্র COD = $\frac{1}{2}$ (সামান্তরিকক্ষেত্রে ABCD) সমাধান :

বিশেষ নির্বচন :

দেওয়া আছে, ABCD সামান্তরিকের অভ্যন্তরে O যেকোনো একটি বিন্দু। O, A; O, B; O, C এবং O, D যোগ করি। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $AOB + \Delta$ ক্ষেত্র $COD = \frac{1}{2}$ (সামান্তরিকক্ষেত্রে ABCD)

অঙ্কন : O বিন্দু হতে AB- এর উপর OF লম্ব টানি। FO কে E পর্যন্ত এমনভাবে বর্ধিত করি যেন তা CD কে E বিন্দুতে ছেদ করে।

প্রমাণ •

ধাপ	যথাৰ্থতা
(১) যেহেতু AB।। CD এবং EF তাদের ছেদক।	
∴ ∠DEF = ∠ EFB = এক সমকোণ	[একান্তর কোণ এবং EF⊥ AB বলে]
∴ ABCD সামান্তরিকের উচ্চতা EF	
সুতারাং ABCD = AB × EF	[যেহেতু সামান্তরিক ক্ষেত্র = ভূমি ×
এখানে, ΔΑΟΒ এ ভূমি AB এবং উচ্চতা OF	উচ্চতা]
1	
$\therefore \Delta$ কেত্র $AOB = \frac{1}{2} \times AB \times OF$	[: ∠OFB = এক সমকোণ]
(২) অনুরূপভাবে, Δ ক্ষেত্র $\mathrm{COD} = \frac{1}{2} \times \mathrm{CD} \times \mathrm{OE}$	[∵ ∠OED = এক সমকোণ তাই OF
1	উচ্চতা]
$=\frac{1}{2} \times AB \times OE$	[সামান্তরিকের বিপরীত বাহু পরস্পর
(1) +	সমান]
(9) A (本面 AOB + A (本面 COD	[(১) ও (২) থেকে]

$$= \frac{1}{2} \times AB \times OF + \frac{1}{2} \times AB \times OE$$

$$= \frac{1}{2} AB(OF + OE)$$

$$= \frac{1}{2} AB.EF$$

$$= \frac{1}{2} (সামান্তরিক ক্ষেত্র ABCD)$$
(প্রমাণিত)

২। প্রমাণ কর যে, ত্রিভুজের যেকোনো মধ্যমা ত্রিভুজক্ষেত্রটিকে সমান ক্ষেত্রফলবিশিষ্ট দুইটি ত্রিভুজক্ষেত্রে বিভক্ত করে।

সমাধান:

বিশেষ নির্বচন : মনে করি, ΔABC - এ AD একটি মধ্যমা। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $ABD=\Delta$ ক্ষেত্র ACD

অঙ্কন : A বিন্দু থেকে BC - এর উপর AE লম্ব আঁকি।

ধাপ	যথাৰ্থতা
(১) যেহেতু AD মধ্যমা, সেহেতু BD = CD	
Δ ক্ষেত্র ABD - এর ক্ষেত্রফল $==rac{1}{2} imes BD imes AE$	[ত্রিভুজের ক্ষেত্রফল = $\frac{1}{2} \times$ ভুমি×উচ্চতা]
(২) আবার, ∆ ক্ষেত্র ACD- এর ক্ষেত্রফল	2
$= \frac{1}{2} \times CD \times AE$	
$= \frac{1}{2} \times BD \times AE$	
$\therefore \Delta$ ক্ষেত্র $\mathrm{ABD} = \Delta$ ক্ষেত্র ACD ।	
(প্রমাণিত)	[(১) থেকে]

৩। ΛΑΒC এ AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E. প্রমাণ করতে হবে যে, Δক্ষেত্র CDE = $\frac{1}{2}$ (Δক্ষেত্র ABC).

বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $CDE=\frac{1}{4}(\Delta$ ক্ষেত্র ABC)

অঙ্কন: C, D এবং D, E যোগ করি।

	ধাপ	888	যথাৰ্থতা
2 2	ক্ষেত্র ABC) এর AC বাহু থর মধ্যমা ক্ষেত্র ACD) (A ক্ষেত্র ABC)) ৱ মধ্যবিন্দু E) .BC)	[ত্রিভুজের যেকোনো মধ্যমা ত্রিভুজকে দুইটি সমান অংশে বিভক্র করে] [ত্রিভুজের যেকোনো মধ্যমা ত্রিভুজকে সমান দুইটি অংশে বিভক্ত করে] [(১) থেকে]

8। ΔABC এ BC ভূমির সামান্তরাল যেকোণ সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, Δক্ষেত্র DBE = Δক্ষেত্র EBC এবং = Δক্ষেত্র CDE সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, ΔΑΒC- এর ভূমি BC - এর সমান্তরাল যেকোনো সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, Δক্ষেত্র DBC = Δক্ষেত্র EBC এবং Δক্ষেত্র BDE = Δক্ষেত্র CDE

অঙ্কন :

ধাপ	যথাৰ্থতা
(১) ADBC ও AEBC - এ ভূমি BC = ভূমি BC, BD = CE এবং ∠EBC= ∠DCB ∴ এক্ষেত্র DBC = এক্ষেত্র EBC	[ত্রিভুজদ্বয় একই ভূমি BC এর ওপর এবং একই সমান্তরাল রেখাযুগল BC ও DE এর মধ্যে অবস্থিত]
(২) ΔBDE ও ΔCDE- এ ভুমি DE = ভুমি DE, BD = CE এবং ∠BED= ∠CDE অতএব, এক্ষেত্ৰ BDE = এক্ষেত্ৰ CDE (প্রমাণিত)	[ত্রিভুজদ্বয় একই ভূমি DE এর ওপর এবং একই সমান্তরাল রেখাযুগল DE ও BC এর মধ্যে অবস্থিত।]

৫। $\triangle ABC$ এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E । প্রমাণ কর যে, \triangle ক্ষেত্র ADE $\frac{1}{4}$ (\triangle ক্ষেত্ৰ ABC)

সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $ADE = \frac{1}{4} (\Delta$ ক্ষেত্র ABC)

অঙ্কন: C, D এবং D, E যোগ করি

যথাৰ্থতা
তু CD,
[ত্রিভুজের মধ্যমা ত্রিভুজকে সমান ক্ষেত্রফল বিশিষ্ট দুইটি অংশে ভাগ করে]
হুর মধ্যবিন্দু E.
) [ত্রিভুজের মধ্যমা ত্রিভুজকে সমান ক্ষেত্রফল বিশিষ্ট দুইটি অংশে ভাগ করে]
BC) [(১) থেকে]
3C).
(প্রমাণিত)

৬। প্রমাণ কর যে, সামান্তরিকের কর্ণদ্বয় সামান্তরিকক্ষেত্রটিকে চারটি সমান ত্রিভুজক্ষেত্রে বিভক্ত করে। সমাধান :

বিশেষ নির্বচন : মনে করি, ABCD একটি সামান্তরিক। এর AC ও BD কর্ণদ্বয় পরস্পর O বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $\Delta AOB = \Delta$ ক্ষেত্র $BOC = \Delta$ ক্ষেত্র $COD = \Delta$ ক্ষেত্র AOD.

यमा १ :	
ধাপ ১৯	যথাৰ্থতা
(১) AO = CO এবং BO = DO	[সামান্তরিকের কর্ণদ্বয় পরস্পরকে
A sol	সমদ্বিখন্ডিত করে]
(২) এখন, ΔABC- এ BO মধ্যমা	
∴ এক্ষেত্র AOB = এক্ষেত্র BOC	[ত্রিভুজের মধ্যমা ত্রিভুজকে সমান
$=\frac{1}{2}\Delta$ কেত্র ABC	ক্ষেত্রফলবিশিষ্ট দুইটি অংশে বিভক্ত
2	করে]
(৩) AADC- এ DO মধ্যমা	[সামান্তরিকের কর্ণ সামান্তরিক ক্ষেত্রকে
$\therefore \Delta$ ক্ষেত্র $\mathrm{COD} = \Delta$ ক্ষেত্র AOD	দুইটি সর্বসম ত্রিভুজে বিভক্ত করে]
$=\frac{1}{2}\Delta$ কেত্র ADC	
$\therefore \Delta ABC \cong \Delta ADC$	
Aribe Aribe	
বা, Δ ক্ষেত্র $\mathrm{ABC} = \Delta$ ক্ষেত্র ADC	[সর্বস্ব ত্রিভুজদ্বয়ের ক্ষেত্রফল সমান]
$\therefore \frac{1}{2} \Delta$ কেত্র $ABC = \frac{1}{2} \Delta$ কেত্র ADC	
(৪) Δ ক্ষেত্র $AOB = \Delta$ ক্ষেত্র $BOC = \Delta$ ক্ষেত্র $COD =$	[ধাপ (২) ও (৩) হতে]
Δ ক্ষেত্র AOD	
(প্রমাণিত)	

৭। প্রমাণ কর যে, কোনো বর্গক্ষেত্র তার কর্ণের উপর অঙ্কিত বর্গক্ষেত্রের অর্ধেক। সমাধান:

বিশেষ নির্বচন : মনে করি, ABCD একটি বর্গক্ষেত্র। এর AC কর্ণ। প্রমাণ করতে হবে যে, $AB^2 = \frac{1}{2}AC^2$

ধাপ ১	যথাৰ্থতা
(১) △ABC- এ ∠B = এক সমকোণ	[বর্গক্ষেত্রের সকল কোণ সমকোণ]
∴ ∆ABC সমকোণী এবং AC এর অতিভুজ।	
(২) এখন, $\triangle ABC$ - এ $AC^2 = AB^2 + BC^2$	[পীথাগোরাসের উপপাদ্য অনুযায়ী]
বা, $AC^2 = AB^2 + AB^2$	[বর্গক্ষেত্রের বাহুগুলো পরস্পর সমান]
বা, $2AB^2 = AC^2$	
$\therefore AB^2 = \frac{1}{2}AC^2$ (প্রমাণিত)	

৮। ABC ত্রিভুজের $\angle A=$ এক সমকোণ। D,AC এর উপরস্থ একটি বিন্দু। প্রমাণ কর যে, $BC^2+AD^2=BD^2+AC^2$ সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, ABC ত্রিভুজের $\angle A=$ এক সমকোণ এবং D, AC- এর উপস্থ একটি বিন্দু। প্রমাণ করতে হবে যে, $BC^2+AD^2=BD^2+AC^2$

ধাপ ু	যথাৰ্থতা
(১) যেহেতু, ABC সমকোণী ত্রিভুজে $\angle A = \omega$ ক সমকোণ এবং BC এর অতিভুজ। $BC^2 = AB^2 + AC^2$ (২) অনুরূপভাবে, ABD সমকোণী ত্রিভুজের অতিভুজ BD	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
∴ $AB^2 + AD^2 = BD^2$ If $AD^2 = BD^2 - AB^2$	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
(৩) এখানে, $BC^2 + AD^2$ $= AB^2 + AC^2 + BD^2 - AB^2$ সুতারাং, $BC^2 + AD^2 = BD^2 + AC^2$	[(১) ও (২) থেকে]
(প্রমাণিত)	

৯। $\triangle ABC$ ত্রিভুজের $\angle A$ = একসমকোণ D ও E যথাক্রমে AB ও AC এর মধ্যবিন্দু হলে, প্রমাণ কর যে, $DE^2 = CE^2 + BD^2 + BD^2$ সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, △ABC- এর ∠A = এক সমকোণ। D ও E যথাক্রমে AB ও AC-এর মধ্যবিন্দু। প্রমাণ করতে হবে যে, $DE^2=CE^2+BD^2$

ধাপ 🐬	যথাৰ্থতা
(১) এখানে, AD = BD এবং AE = CE	[D ও E যথাক্রমে AB ও AC- এর
(২) এখন ADE সমকোণী ত্রিভুজে,	মধ্যবিন্দু।]
$DE^2 = AE^2 + AD^2$	[পিথাগোরাসের উপপাদ্য অনুসারে]
$\therefore DE^2 = CE^2 + BD^2$ (প্রমাণিত)	[(১) থেকে]

১০। $\Delta {
m ABC}$ এ BC এর উপর লম্ব AD এবং AB > AC প্রমাণ কর যে, $AB^2-AC^2=BD^2-CD^2$ সমাধান :

বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এ BC এর উপর লম্ব AD এবং AB > AC প্রমাণ করতে হবে যে, $AB^2 - AC^2 = BD^2 - CD^2$

ধাপ ুর্	যথাৰ্থতা
(১) △ABC এ AD, BC- এর উপর লম্ব।	
∴ ∆ABC ও ∆ACD উভয়ই সমকোণী ত্রিভুজ	1
(২) এখন ABD সমকোণী ত্রিভুজে AB অতিভুজ	[felonzonza za zakonaz az zaral]
$\therefore BD^2 + AD^2 = AB^2$	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
বা, $AD^2 = AB^2 - BD^2$	
(৩) আবার, ACD সমকোণী ত্রিভুজে	
$AD^2 + CD^2 = AC^2$	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
বা, $AD^2 = AC^2 - CD^2$, i
(8) $AB^2 - BD^2 = AC^2 - CD^2$	[(২) ও (৩) থেকে]
$AB^2 - AC^2 = BD^2 - CD^2$ (প্রমাণিত)	

১১। ΔABC এ BC এর উপর AD লম্ব এবং AD এর উপর P যেকোনো বিন্দু ও AB > AC প্রমাণ কর যে, $AB^2 - PC^2 = AB^2 - AC^2$ সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এ BC- এর উপর লম্ব AD এবং AD- এর উপর Pযেকোনো বিন্দু ও AB > AC | P, B ও P, C যোগ করি। প্রমাণ করতে হবে যে $AB^2 - PC^2 = AB^2 - AC^2$

ধাপ	যথাৰ্থতা
(১) $\triangle ABC$ - এ $AD \perp BC$, $\triangle ABD$, $\triangle ACD$, $\triangle BPD$ এবং $\triangle CPD$ প্রত্যেকেই সমকোণী ত্রিভুজ (২) এখন $\triangle ABD$ - এ, $AB^2 = BD^2 + AD^2$	[সমকোণী ত্রিভুজের অতিভুজের উপর বর্গক্ষেত্র অপর দুই বাহুর উপর বর্গক্ষেত্রের সমষ্টির সমান] [একই কারণে]
(৪) ΔACD - এ $AC^{-} = AD^{-} + CD^{-}$ (৪) $AB^{2} - AC^{2} = BD^{2} - CD^{2}$ (৫) আবার, ΔBPD - এ $PB^{2} = BD^{2} + PD^{2}$ (৬) ΔPCD - এ $PC^{2} = PD^{2} + CD^{2}$	[(২) ও (৩) থেকে] [সমকোণী ত্রিভুজের অতিভুজের উপর বর্গক্ষেত্র অপর দুই বাহুর উপর বর্গক্ষেত্রের সমষ্টির সমান] [একই কারণে]
(৭) $PB^2 - PC^2 = BD^2 - CD^2$ $PB^2 - PC^2 = AB^2 - AC^2$ (প্রমাণিত)	[(৫) ও (৬) থেকে] [(৪) থেকে]

১২। ABCD বহুভুজে AE II BC, CF \perp AE এবং DQ \perp CF, ED =10 মি.মি. EF = 2 মি.মি. BC = 8 মি.মি. AB = 12 মি.মি.

উপরের তথ্যের ভিত্তিতে নিচের (১- ৪) নম্বর প্রশ্নের উত্তর দাও:

- ১। ABCD চতুর্ভুজের ক্ষেত্রফল কত বর্গ মি.মি.?
 - (ক) 64
- (খ) 96
- (গ) 100
- (ঘ) 144
- ২। নিচের কোনটি FPC ত্রিভুজের ক্ষেত্রফল নির্ণয় কর?
 - (ক) 32
- (খ) 48
- (গ) 72
- (ঘ) 60
- ৩। CD এর দৈর্ঘ্য নিচের কোনটিতে প্রকাশ পায়?
 - **(季)** 2√2
- (খ) 4
- (গ) 4√2
- (ঘ) 8
- 8। নিচের কোনটিতে ΔFPC ও ΔDQC এর ক্ষেত্রফলের অন্তর নির্দেশ কর?
 - (ক) 46 বর্গ একক (খ) 48 বর্গ একক
- ্গে) 50 বর্গ একক
- (ঘ) 52 বর্গ একক

106

- (ক) PQST কী ধরনের চতুর্ভুজ? স্বপক্ষে যুক্তি দাও।
- (খ) দেখাও যে, ∆PRT সমকোণী।
- (গ) প্রমাণ কর যে, $PR^2 = PQ^2 + QR^2$

সমাধান:

- (ক) POST চতুর্ভজটি ট্রাপিজিয়াম। কারণ POST চতুর্ভুজের বিপরীত বাহু PO ও TS বাহুদ্বয় সমান্তরাল এবং অপর বিপরীত PT ও QS বাহুদ্বয় অসমান্তরাল।
- (খ) ΔPQR ও ΔRST এ PQ=RS=b, QR=ST=a এবং $\angle PQR=\angle RST$ [প্রত্যেক 90^{0}] $\Delta PQR \stackrel{\sim}{=} \Delta RST : PR = RT = c$ এবং QPR = TRSআবার, PC⊥ QS এবং TS⊥ QS বলে, PQ ।। TS সুতারাং, PQST একটি ট্রাপিজিয়াম. এখন, \angle PRO + \angle QPR = \angle PRO + \angle TRS = 1 সমকোণ ∴ ∠PRT = এক সমকোণ। সূতারাং ∆PQR সমকোণী ত্রিভুজ। (দেখানো হলো)
- (গ) এখন, PQST ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল = Δ ক্ষেত্র PQR + Δ ক্ষেত্র RST Δ ক্ষেত্র PRT বা, $\frac{1}{2}QS(PQ+TS) = \frac{1}{2}ab + \frac{1}{2}ab + \frac{1}{2}c^2$ বা, $\frac{1}{2}(QR + RS)(PQ + TS) = \frac{1}{2}(2ab + c^2)$ $\exists \uparrow$, $\frac{1}{2}(a+b)(b+a) = \frac{1}{2}(2ab+c^2)$ বা. $a^2 + 2ab + b^2 = 2ab + c^2$ বা, $a^2 + b^2 = c^2$

 $\therefore PR^2 = PQ^2 + QR^2$ (প্রমাণিত)

বা. $c^2 = b^2 + a^2$