Dans tout ce problème E est un espace euclidien de dimension $n \geq 1$. Les vecteurs de E sont représentés par des lettres surmontées de flèches et le produit scalaire de deux vecteurs \overrightarrow{x} et \overrightarrow{y} de E est noté $(\overrightarrow{x}|\overrightarrow{y})$. L'orthogonal d'un sous-espace F de E est noté F° . On note a^{*} l'adjoint de $a \in \mathcal{L}(E)$ pour la structure euclidienne définie par le produit scalaire (|) et ab le composé de deux endomorphismes a et b de E.

Le sous-espace de $\mathcal{L}(E)$ constitué des endomorphismes symétriques est noté $\mathcal{S}(E)$. On appelle endomorphisme antisymétrique un endomorphisme $a \in \mathcal{L}(E)$ tel que $a^* = -a$ et on note $\mathcal{A}(E)$ le sous-espace de $\mathcal{L}(E)$ constitué par les endomorphismes antisymétriques. L'ensemble des endomorphismes symétriques positifs de E est noté $\mathcal{S}^+(E)$.

On désigne par O(E) l'ensemble des automorphismes orthogonaux de E et $O^+(E)$ l'ensemble de ceux dont le déterminant est positif.

L'objectif de ce problème est de prouver que certains sous-espaces vectoriels de $\mathcal{L}\left(E\right)$ contiennent des automorphismes orthogonaux. Les deux parties du problème sont indépendantes nonobstant la question I.B.2.

Partie I - Cas d'un hyperplan de $\mathcal{L}\left(E\right)$

I.A -

I.A.1) Soit $a \in \mathcal{L}(E)$ et $(e) = (\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_n})$ une base orthonormée de E. Prouver que

$$\operatorname{Tr} a = \sum_{i=1}^{n} \left(\overrightarrow{e_i} | a(\overrightarrow{e_i}) \right)$$

I.A.2) Soient a et b deux endomorphismes de E.

On pose
$$\langle \langle a, b \rangle \rangle = \text{Tr}(a^*b)$$
,

montrer qu'on définit ainsi un produit scalaire sur $\mathcal{L}(E)$. L'orthogonal, pour ce produit scalaire, d'un sous-espace $\mathcal{E} \subset \mathcal{L}(E)$ sera noté \mathcal{E}^{\perp} .

I.A.3) Montrer que les sous-espaces $\mathcal{S}(E)$ et $\mathcal{A}(E)$ sont des supplémentaires orthogonaux de $\mathcal{L}(E)$ pour $\langle \langle , \rangle \rangle$.

I.B -

I.B.1) Soit $a \in \mathcal{L}(E)$ de rang $r \geq 1$.

- a) Montrer que Ker $a^*a = \text{Ker } a$ et que $\operatorname{rg} a^*a = \operatorname{rg} a$.
- b) Montrer que a^*a possède au moins une valeur propre non nulle.
- c) Soit $\{\lambda_1, \lambda_2, \dots, \lambda_s\}$ l'ensemble des valeurs propres non nulles de a^*a . En notant $E(\lambda)$ le sous-espace propre de a^*a associé à la valeur propre λ , montrer que :

$$\operatorname{Im} a^* = \operatorname{Im} a^* a = \bigoplus_{i=1}^s E(\lambda_i)$$

- d) Prouver l'existence d'une base orthonormée $(e) = (\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_n})$ de E et de scalaires $\mu_1, \ \mu_2, \dots, \mu_n$ avec $\mu_i \neq 0$ pour $i \leq r$ tels que $a^*a(\overrightarrow{e_i}) = \mu_i^2 \overrightarrow{e_i}$ pour tout $i \in \{1, 2, \dots, n\}$. Pour toute base orthonormée (e) vérifiant ces propriétés, que valent les μ_i si i > r?
- e) La base (e) étant choisie comme dans la question précédente, prouver l'existence d'une base orthonormée $(f) = (\overrightarrow{f_1}, \overrightarrow{f_2}, \dots, \overrightarrow{f_n})$ telle que $a(\overrightarrow{e_i}) = \mu_i \overrightarrow{f_i}$ pour tout i.
- I.B.2) Soit $a \in \mathcal{L}(E)$, $a \neq 0$, déduire de la question précédente l'existence de $u \in O(E)$ tel que $ua \in \mathcal{S}^+(E)$, et Tr(ua) > 0.
- **I.C** Soit \mathcal{H} un hyperplan de $\mathcal{L}(E)$ et a un élément non nul de \mathcal{H}^{\perp} .
- I.C.1) La base $(\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_n})$ de E étant toujours choisie comme dans la question I.B.1.d, prouver l'existence de $h \in O(E)$ tel que, pour tout $i \in \{1, 2, \dots, n\}, ha(\overrightarrow{e_i}) \in Vect(\overrightarrow{e_i})^{\circ}$.
- I.C.2) Montrer que \mathcal{H} contient au moins un automorphisme orthogonal.

Partie II - Cas où dim E=3

Dans toute cette partie l'espace euclidien E est de dimension 3 et orienté. On se propose de prouver que tout sous-espace de $\mathcal{L}(E)$ de dimension 7 contient au moins une rotation.

II.A - Si $\overrightarrow{k} \in E$ est un vecteur unitaire et si $\theta \in \mathbf{R}$, on note $p_{\overrightarrow{k}}$ le projecteur orthogonal d'image $\mathrm{Vect}(\overrightarrow{k})$, $\omega_{\overrightarrow{k}}$ l'endomorphisme $\overrightarrow{x} \mapsto \overrightarrow{k} \wedge \overrightarrow{x}$ et $r_{\theta, \overrightarrow{k}}$ la rotation d'angle θ autour de \overrightarrow{k} .

Filière MP

Soit $a \in \mathcal{L}(E)$, \overrightarrow{k} un vecteur unitaire et θ un réel.

II.A.1) Exprimer simplement le produit scalaire $\left\langle \left\langle a,p_{\overrightarrow{k}}\right\rangle \right\rangle$ à l'aide du produit scalaire de deux vecteurs de E.

II.A.2) Exprimer simplement $r_{\theta \vec{k}}$ à l'aide de $p_{\vec{k}}$ et de $\omega_{\vec{k}}$. En déduire la relation :

$$\left\langle \left\langle a, r_{\theta, \overrightarrow{k}} \right\rangle \right\rangle = \cos \theta \operatorname{Tr}(a) + (1 - \cos \theta) \left(\overrightarrow{k} | a(\overrightarrow{k}) \right) + \sin \theta \left\langle \left\langle a, \omega_{\overrightarrow{k}} \right\rangle \right\rangle \tag{1}$$

II.A.3) Que devient cette relation (1) lorsque $a \in \mathcal{S}(E)$, lorsque $a \in \mathcal{A}(E)$?

II.B - Dans cette section $s \in \mathcal{S}^+(E)$ est un endomorphisme symétrique positif de rang ≤ 2 et de trace égale à 1 et ν est un endomorphisme de E non nul mais de trace nulle. On pose $\mathcal{V} = \operatorname{Vect}(s, \nu)^{\perp}$ et on veut montrer que $\mathcal{V} \cap \operatorname{O}^+(E) \neq \emptyset$.

II.B.1) Quelle est la dimension de V?

II.B.2) Soit $(e) = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ une base orthonormée de E. Pour $\epsilon = (\epsilon_1, \epsilon_2, \epsilon_3) \in \{-1, 1\}^3$, on note $\overrightarrow{x_{\epsilon}}$ le vecteur $\frac{\epsilon_1 \overrightarrow{e_1} + \epsilon_2 \overrightarrow{e_2} + \epsilon_3 \overrightarrow{e_3}}{\sqrt{3}}$.

Prouver l'identité : $\sum_{\epsilon \in \{-1,1\}^3} (\overrightarrow{x_{\epsilon}} | s(\overrightarrow{x_{\epsilon}})) = \frac{8}{3}$.

II.B.3) Dans cette question seulement, on rajoute l'hypothèse ν symétrique.

a) Prouver l'existence d'une base (e) telle que $(\overrightarrow{x_{\epsilon}}|\nu(\overrightarrow{x_{\epsilon}}))=0$ pour tout $\epsilon\in\{-1,1\}^3$.

b) Démontrer l'existence d'un vecteur \overrightarrow{k} unitaire vérifiant :

$$0 \le \left(\overrightarrow{k} | s(\overrightarrow{k})\right) \le \frac{1}{3} \text{ et } \left(\overrightarrow{k} | \nu(\overrightarrow{k})\right) = 0$$

c) Établir l'existence de $\theta \in [\pi/2, \pi[$ tel que $r_{\theta \overrightarrow{k}} \in \mathcal{V}.$

II.B.4) On décompose maintenant ν sous la forme $\nu_1 + a$ où ν_1 est symétrique et a antisymétrique. On choisit \overrightarrow{k}_1 unitaire tel que :

$$0 \le \left(\overrightarrow{k}_1 | s(\overrightarrow{k}_1)\right) \le \frac{1}{3} \text{ et } \left(\overrightarrow{k}_1 | \nu_1(\overrightarrow{k}_1)\right) = 0$$

a) Dans la suite on posera, pour tout réel x:

$$sgn(x) = 1 \text{ si } x \ge 0, -1 \text{ sinon.}$$

On note $(e) = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ une base orthonormée de vecteurs propres de s et l'on pose :

$$\overrightarrow{k}_i = a_i \overrightarrow{e_1} + b_i \overrightarrow{e_2} + c_i \overrightarrow{e_3} \text{ pour } i = 1, 2.$$

Démontrer l'existence d'un vecteur unitaire \overrightarrow{k}_2 tel que $r_{\pi, \overrightarrow{k}_2}$ soit orthogonale à s pour $\langle\langle\;,\;\rangle\rangle$ et que les composantes de \overrightarrow{k}_2 dans une base de diagonalisation de s soient de mêmes signes que celles de \overrightarrow{k}_1 .

b) Justifier l'existence d'une fonction $t \mapsto \overrightarrow{k}(t)$ de [0,1] dans E et d'une fonction $t \mapsto \theta(t)$ de [0,1] dans $\mathbf R$ vérifiant les propriétés suivantes :

$$\overrightarrow{k}(t) = a(t)\overrightarrow{e_1} + b(t)\overrightarrow{e_2} + c(t)\overrightarrow{e_3} \text{ avec}:$$

$$a(t) = \operatorname{sgn}(a_1)\sqrt{2ta_2^2 + (1 - 2t)a_1^2} \text{ si } 0 \le t \le 1/2, \ a(1 - t) \text{ si } 1/2 < t \le 1$$

$$b(t) = \operatorname{sgn}(b_1)\sqrt{2tb_2^2 + (1 - 2t)b_1^2} \text{ si } 0 \le t \le 1/2, \ b(1 - t) \text{ si } 1/2 < t \le 1$$

$$c(t) = \operatorname{sgn}(c_1)\sqrt{2tc_2^2 + (1 - 2t)c_1^2} \text{ si } 0 \le t \le 1/2, \ c(1 - t) \text{ si } 1/2 < t \le 1$$

$$\theta(t) = \operatorname{Arccos} \frac{\left(\overrightarrow{k}(t)|s(\overrightarrow{k}(t))\right)}{\left(\overrightarrow{k}(t)|s(\overrightarrow{k}(t))\right) - 1} \text{ si } 0 \le t \le 1/2, \ 2\pi - \theta(1 - t) \text{ si } 1/2 < t \le 1$$

- c) Vérifier que $\overrightarrow{k}(t)$ est unitaire et que $\rho(t) = r_{\theta(t), \overrightarrow{k}(t)}$, est orthogonale à s pour $\langle \langle , \rangle \rangle$.
- d) Montrer que la fonction $t \mapsto \langle \langle \rho(t), \nu \rangle \rangle$ de [0, 1] dans \mathbb{R} est continue. Étudier les signes de $\langle \langle \rho(0), \nu \rangle \rangle$ et de $\langle \langle \rho(1), \nu \rangle \rangle$ et prouver qu'existe t tel que $\rho(t) \in \mathcal{V}$.

II.C - Cas général

II.C.1) En utilisant le résultat de la question I.B.2, prouver que tout sous espace vectoriel de dimension 7 de $\mathcal{L}(E)$ contient au moins un automorphisme orthogonal.

II.C.2) Un sous-espace vectoriel de dimension 6 de $\mathcal{L}(E)$ contient-il toujours un automorphisme de E?

• • • FIN • • •