

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji
 przełącznika i urządzenia końcowego
- Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- 5.0 Wprowadzenie
- 5.0.1 Dlaczego powinienem przerobić ten moduł?
- 5.0.2 Czego się nauczę przerabiając ten moduł?
- 5.1 Binarny system liczbowy
- 5.1.1 Liczby binarne i adresy IPv4
- Wideo Konwersja między 5.1.2 systemami liczbowymi binarnym i dziesiętnym
- 5.1.3 Binarna notacja pozycyjna
- Sprawdź, czy zrozumiałeś -Binarny system liczbowy

Konwersia liczby binarnei na

↑ Systemy liczbowe / Szesnastkowy system liczbowy

Szesnastkowy system liczbowy

5.2.1

Liczby szesnastkowe i adresy IPv6

Teraz wiesz, jak przekonwertować liczby binarne na dziesiętne i dziesiętne na binarne. Potrzebujesz tej umiejętności, aby zrozumieć adresowanie IPv4 w sieci. Ale równie prawdopodobne jest, że będziesz używać adresów IPv6 w swojej sieci. Aby zrozumieć adresy IPv6, musisz być w stanie konwertować liczby szesnastkowe na dziesiętne i odwrotnie.

Podobnie jak system dziesiętny ma podstawę dziesięć, tak system szesnastkowy jest ma podstawę szesnaście. System o podstawie szesnaście używa cyfr od 0 do 9 i liter od A do F. Na rysunku pokazano równoważne wartości dziesiętne i szesnastkowe dla binarnych wartości od 0000 do 1111.

Komunikacja sieciowa dziś

'	Komunikacja sieciowa uzis	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	^
5.0	Wprowadzenie	~
5.0.1	Dlaczego powinienem przerob ten moduł?	ić
5.0.2	Czego się nauczę przerabiając moduł?	ten
5.1	Binarny system liczbowy	~
5.1.1	Liczby binarne i adresy IPv4	
5.1.2	Wideo - Konwersja między systemami liczbowymi binarnym i dziesiętnym	
5.1.3	Binarna notacja pozycyjna	
5.1.4	Sprawdź, czy zrozumiałeś - Binarny system liczbowy	
	Konwersia liczbv binarnei na	

Dziesiętne	Binarne	Szesnastkowe
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Binarny i szesnastkowy system działają dobrze razem, ponieważ łatwiej jest wyrazić wartość jako jedą cyfrę szesnastkową niż jako cztery bity.

System szesnastkowy jest używany w sieci do reprezentowania adresów IP w wersji 6 i adresów MAC Ethernet.

Adresy IPv6 mają długość 128 bitów, a każde 4 bity są reprezentowane przez pojedynczą cyfrę szesnastkową; łącznie 32 wartości szesnastkowych. Wielkość liter w zapisie adresu IPv6 nie jest istotna czyli adres może zawierać wszystkie litery małe lub wszystkie litery wielkie lub ich mieszankę (małe i wielkie jednocześnie).

Jak pokazano na rysunku, preferowanym formatem zapisu adresu IPv6 jest x:x:x:x:x:x:x; przy czym każde "x" składa się z czterech wartości szesnastkowych. Kiedy odwołujemy się do zapisu binarnego adresu IPv4 i 8 bitów używamy terminu oktet. W adresie IPv6 nieoficjalnym terminem jest *hekstet* używany na określenie grupy czterech liczb szesnastkowych (czyli 16 bitów w zapisie binarnym). Każde "x" to pojedynczy hekstet, 16 bitów lub cztery cyfry szesnastkowe.

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	^
5.0	Wprowadzenie	~
5.0.1	Dlaczego powinienem przerob ten moduł?	ić
5.0.2	Czego się nauczę przerabiając moduł?	ten
5.1	Binarny system liczbowy	~
5.1.1	Liczby binarne i adresy IPv4	
5.1.2	Wideo - Konwersja między systemami liczbowymi binarnym i dziesiętnym	
5.1.3	Binarna notacja pozycyjna	
5.1.4	Sprawdź, czy zrozumiałeś - Binarny system liczbowy	
	Konwersia liczby binarnei na	

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	^
5.0	Wprowadzenie	~
5.0.1	Dlaczego powinienem przerob ten moduł?	ić
5.0.2	Czego się nauczę przerabiając moduł?	ten
5.1	Binarny system liczbowy	~
5.1.1	Liczby binarne i adresy IPv4	
5.1.2	Wideo - Konwersja między systemami liczbowymi binarnym i dziesiętnym	
5.1.3	Binarna notacja pozycyjna	
5.1.4	Sprawdź, czy zrozumiałeś - Binarny system liczbowy	
	Konwersia liczby binarnei na	

5.2.3

Konwersje liczb dziesiętnych na szesnastkowe

Konwersja liczb dziesiętnych na wartości szesnastkowe jest prosta. Wykonaj poniższe kroki:

- 1. Konwertuj liczbę dziesiętną na 8-bitowe łańcuchy binarne.
- 2. Podziel łańcuchy binarne na grupy po cztery, zaczynając od prawej pozycji.
- 3. Przekształć każde cztery liczby binarne na odpowiadające im cyfry szesnastkowe.

Przykład zawiera kroki konwersji wartości 168 na postać szesnastką.

Przykład zamiany 168 na wartość szesnastkową przy użyciu trzyetapowego procesu.

- 1. 168 w binarnym to 10101000.
- 2. 10101000 w dwóch grupach po cztery cyfry binarne to 1010 i 1000.
- 3. 1010 to A a 1000 to 8.

Odpowiedź: 168 to A8 w systemie szesnastkowym.

5.2.4

Konwersja liczb szesnastkowych na dziesiętne

Konwersja liczb szesnastkowych na wartości dziesiętne jest również prosta. Wykonaj poniższe kroki:

- 1. Konwertuj liczbę szesnastkową na 4-bitowe ciągi binarne.
- 2. Wykonaj 8-bitowe grupowanie binarne zaczynając od prawej pozycji.
- 3. Konwertuj każdą 8-bitową grupę binarną na ich odpowiednik dziesiętny.

W tym przykładzie przedstawiono kroki konwersji wartości D2 na postać dziesiętną.

- 1. D2 w 4-bitowych łańcuchach binarnych jest 1101 i 0010.
- 2. 1101 i 0010 to 11010010 w 8-bitowym grupowaniu.
- 3. 11010010 w formacie binarnym jest równoważne 210 w postaci dziesiętnej.

Odpowiedź: D2 w systemie szesnastkowym to 210 wsystemie dziesiętnym.

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	^
5.0	Wprowadzenie	~
5.0.1	Dlaczego powinienem przerob ten moduł?	ić
5.0.2	Czego się nauczę przerabiając moduł?	ten
5.1	Binarny system liczbowy	~
5.1.1	Liczby binarne i adresy IPv4	
5.1.2	Wideo - Konwersja między systemami liczbowymi binarny dziesiętnym	m i
5.1.3	Binarna notacja pozycyjna	
5.1.4	Sprawdź, czy zrozumiałeś - Binarny system liczbowy	
	Konwersia liczby binarnei na	

5.2.5

Sprawdź, czy zrozumiałeś - Szesnastkowy system liczbowy

1		$\overline{}$
-		-)
ı.	$\overline{}$	-)
╲		/

J	_	Ū	
(ï)	
١,	٠	/	
	Т		

Sprawdź swoją wiedzę na temat systemu numerów szesnastkowych wybierając NAJLEPSZĄ odpowiedź na poniższe pytania.

Co jest szesnastkowym odpowiednikiem 202?	
○ B10	
BA	
○ C10	
CA	
2. Co jest szesnastkowym odpowiednikiem 254?	
○ EA	
○ ED	
○ FA	
FE	
3. Co jest dziesiętnym odpowiednikiem A9?	
<u> </u>	
4. Które z poniższych jest dziesiętnym odpowiednikiem 7D?	
124	Sprawdź
<u>125</u>	Parada and a
<u>126</u>	Rozwiązanie
<u> </u>	Resetuj

5.1.5 dziesiętną

Wprowadzenie do sieci

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	>
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	^
5.0	Wprowadzenie	~
5.0.1	Dlaczego powinienem przerobi ten moduł?	ć
5.0.2	Czego się nauczę przerabiając moduł?	ten
5.1	Binarny system liczbowy	~
5.1.1	Liczby binarne i adresy IPv4	
5.1.2	Wideo - Konwersja między systemami liczbowymi binarny dziesiętnym	m i
5.1.3	Binarna notacja pozycyjna	
5.1.4	Sprawdź, czy zrozumiałeś - Binarny system liczbowy	
	Konwersia liczbv binarnei na	

