

Actividades operaciones lógicas

Sistemas Informáticos

Francisco Javier Arruabarrena Sabroso

hsc','

_a_leve

Índice

Ejercicio 1	2
Ejercicio 2	3
Ejercicio 3	
Ejercicio 4	4
Ejercicio 5	5
Ejercicio 6	6
Eiercicio 7	7

Realiza las siguientes operaciones aritméticas en binario.

1101002	1110002	1001112
+ 101100 ₂	+ 110000 ₂	+ 111111 ₂
1100000	1101000	1100110
10011102	10101012	10011112
— 100100 ₂	— 110100 ₂	— 100110 ₂
0101010	0100001	0101001
1101012	1101102	1001102
+ 1100012	+ 1001002	+ 1111102
1100110	1011010	1100100
11000012	10111112	10110102
— 111100 ₂	— 111001 ₂	— 100111 ₂
100101	100110	110011

Realizar las siguientes operaciones y expresar el resultado en binario y en hexadecimal, aplicando para las operaciones necesarias Ca2:

```
 6FC2_{(16} - 754_{(10} = 1101111111000010 - 000001011110010 \\ 1101111111000010 - 111110100001101 \\ 1101111111000010 - 111110100001110 \\ 1101111111000010 + 111110100001110 = \\ \underline{1} \ 110110011010000
```

Solución en Binario: 110110011010000

Solución en Hexadecimal: 110 1100 1101 0000 → 6CD0

 $7FC3_{(16} + 642_{(10} = 11111111111000011 + 1010000010)$

Solución en Binario: 1000001001000101

Solución en Hexadecimal: 8245

Ejercicio 3

Sumar los números decimales 64 y -43 realizando la operación en binario representándolos en Ca1 en palabras de 8 bits.

64: 1000000 1000000 - 00101011 43: 0010 1011 1000000 - 11010100

 $10000000 + 11010101 = 100010101 \rightarrow 00010101$

Completa la tabla con las operaciones que se indican en la columna superior, con respecto a los valores de las columnas A y B y representa el circuito equivalente con puertas lógicas.

	Circuito 1	Circuito 2	Circuito 3	Circuito 4	Circuito 5
ΑВ	A NOR B	A NAND B	A AND NOT B	NOT A	NOT A XOR B
0 0	1	1	0	1	1
0 1	0	1	0	1	0
10	0	1	1	0	0
11	0	0	0	0	1

Dada la siguiente tabla de verdad, representa la función equivalente y la representación con puertas lógicas utilizando puerta AND, NOT y OR.

También se puede implementar con una puerta XOR (A, B, C).

Para los valores A= 44(10, B= 63(10, C= 31(10, teniendo en cuenta la función obtenida y la tabla de verdad del apartado anterior. Obtener la función F(S) de salida expresada en decimal, octal y hexadecimal.

```
A)<sub>(2</sub>= 44 \rightarrow 44 - 32 = 12; - 16 no; - 8 = 4; - 4 = 0; - 2 no; - 1 no 101100

B)<sub>(2</sub>= 63 \rightarrow 63 - 32 = 31; - 16 = 15; - 8 = 7; - 4 = 3; - 2 = 1; - 1 = 0

111111

C)<sub>(2</sub>= 31 \rightarrow 11111 (no pongo procedimiento puesto que es igual al anterior sin el primer dígito)

F(S)<sub>(2</sub>= 101100

111111

\overline{001100}

F(S)<sub>(8</sub>= 001\ 100 \rightarrow 14

F(S)<sub>(16</sub>= 1100 \rightarrow C

F(S)<sub>(10</sub>= 2^2 + 2^3 = 12
```

Notas: Tabla de potencias para cálculos:

Dado los siguientes números en binarios, obtener las operaciones lógicas siguientes:

Operaciones Lógicas	A= 10011110 B= 01100011	A= 1100111101010101 B= 0011000111110000
A AND B (A & B)	00000010	000000101010000
A OR B (A B)	11111111	1111111111110101
A NOR B	00000000	000000000001010
A NAND B	11111101	11111110101011111
A XOR B	11111101	1111111010100101
NOT A	01100001	0011000010101010
NOT B	10011100	1100111000001111
(NOT A) (NOT B)	11111101	11111110101011111
(NOT A) & (NOT B)	00000000	000000000001010
(NOT A) XOR (NOT B)	11111101	1111111010100101