1. In this question you should work **from first principles**, proving any result you need.

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers.

- (a) Define what it means to say $a_n \to a \in \mathbb{R}$ as $n \to \infty$.
- (b) If $a_n = \frac{(n+1)(n+2)}{(2n-5)(n+3)}$, is $(a_n)_{n=1}^{\infty}$ convergent or not? Prove your answer carefully.
- (c) Instead of asking for the difference $a_n a$ to be close to 0, we could ask for the ratio $(a_n + M)/(a + M)$ to be close to 1 (for some $M \in \mathbb{R}$ included to avoid dividing by zero).

So we make the following definition: $a_n \rightsquigarrow a$ if and only if there exists $M \neq -a$ such that

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, \quad \frac{a_n + M}{a + M} \in (1 - \epsilon, 1 + \epsilon).$$

Prove that $a_n \rightsquigarrow a$ if and only if $a_n \rightarrow a$.

- (a) $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ such that } \forall n > N, |a_n a| < \epsilon$
- (b) We will prove $a_n \to 1/2$. Let $\epsilon > 0$, and let $N \in \mathbb{N}$ such that $N > \frac{5}{2\epsilon}$, 19. Then for all n > N: $\epsilon > \frac{5}{2n}$, n > 19, 2n 5 > n. So

$$|a_n - 1/2| = \left| \frac{(n+1)(n+2)}{(2n-5)(n+3)} - \frac{\frac{1}{2}(2n-5)(n+3)}{(2n-5)(n+3)} \right| = \left| \frac{5n+19}{2(2n-5)(n+3)} \right| < \left| \frac{5n+n}{2n^2} \right| = \left| \frac{5}{2n} \right| = \frac{5}{2n} < \epsilon.$$

(c) \Longrightarrow Assume $a_n \to a$, and choose $M \neq -a$ (e.g., M = 1-a). Let $\epsilon_0 > 0$. Since $a_n \to a$, for every $\epsilon > 0$, there is some $N \in \mathbb{N}$ such that $\forall n > N$, $|a_n - a| < \epsilon$. In particular, this is true for $\epsilon = |a + M| \epsilon_0$. So let N be such that $\forall n > N$, $|a_n - a| < |a + M| \epsilon_0$. Then

$$\left| \frac{a_n + M}{a - M} - 1 \right| = \left| \frac{a_n + M}{a + M} - \frac{a + M}{a + M} \right| = \left| \frac{a_n - a}{a + M} \right| = \frac{|a_n - a|}{|a + M|} < \epsilon_0$$

 \Leftarrow Assume $a_n \leadsto a$. Let $\epsilon_0 > 0$. Since $a_n \leadsto a$, there is some $M \neq -a$ such that for every $\epsilon > 0$, there is some $N \in \mathbb{N}$ such that $\forall n > N$, $\left| \frac{a_n + M}{a - M} - 1 \right| < \epsilon$. In particular, this is true for $\epsilon = \frac{\epsilon_0}{|a + M|}$. So let N be such that $\forall n > N$, $|a_n - a| < |a + M| \epsilon_0$. Then

$$\left|\frac{\epsilon_0}{|a+M|} > \left|\frac{a_n+M}{a-M} - 1\right| = \left|\frac{a_n+M}{a+M} - \frac{a+M}{a+M}\right| = \left|\frac{a_n-a}{a+M}\right| = \frac{|a_n-a|}{|a+M|}.$$

Therefore, $\epsilon_0 > |a_n - a|$.

2. Show that if $a_n \to l$, and we define $b_n = (\sum_{k=1}^n a_n)/n$, then $b_n \to l$ too. Give an example to show that the converse does not hold.

Let $\epsilon > 0$ and let $N_1 \in \mathbb{N}$ such that $\forall n > N_1, \ |a_n - l| < \epsilon/2$. Let $M := \sum_{k=1}^{N_1} |a_n - l|$. Let $N_2 \in \mathbb{N}$ be such that $N_2 > 2M/\epsilon$ (so $M/N_2 < \epsilon/2$). Let $N := \max\{N_1, N_2\}$. We will show that for every n > N, $|b_n - l| < \epsilon$. Let n > N.

$$|b_n - l| = \left| \frac{\sum_{k=1}^n a_k}{n} - l \right| = \left| \frac{\sum_{k=1}^n a_k}{n} - \frac{nl}{n} \right| = \left| \frac{\sum_{k=1}^n (a_k - l)}{n} \right| \le \frac{\sum_{k=1}^n |a_k - l|}{n} = \frac{\sum_{k=1}^{N_1} |a_k - l|}{n} + \frac{\sum_{k=N+1}^n |a_k - l|}{n} = \frac{M}{n} + \frac{\sum_{k=N+1}^n |a_k - l|}{n} < \frac{M}{n} + \frac{(n - N_1)\epsilon}{2n} < \frac{M}{N_2} + \frac{\epsilon}{2} < \epsilon/2 + \epsilon/2 = \epsilon.$$

For $a_n = (-1)^n, b_n \to 0.$

3. Let $s_n = \sum_{k=1}^n \frac{1}{k(k+1)}$. Compute $\lim_{n\to\infty} s_n$ for the following sequences:

Notice that $\frac{1}{k(k+1)} = \frac{k+1-k}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$. So

$$s_n = \sum_{k=1}^n \frac{1}{k} - \frac{1}{k+1} = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1} = \sum_{k=1}^n \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} = 1 - \frac{1}{n+1} \to 1.$$