seminario

October 3, 2022

1 Refazendo Seminario em Python

```
[]: #Importando Bibliotecas
import warnings
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.stats.proportion import proportions_ztest
from statsmodels.stats.proportion import proportion_confint
```

2 Introdução

No dia 10 de abril de 1912, o maior transatlântico já construído até então zarpava do porto de Southampton, na Inglaterra, com destino a Nova York, em sua viagem inaugural. Na madrugada do dia 14 para o dia 15 de abril, o luxuoso transatlântico colidiu com um iceberg no Atlântico Norte por volta da meia-noite, afundando em menos de três horas.

Foram 1.517 pessoas mortas e 706 sobreviventes, dos 2.223 passageiros e tripulantes, de acordo com o relatório do Senado dos Estados Unidos sobre o desastre.

```
[]: Base = pd.read_csv('train.csv') #Lendo a Base de dados e atribuindou

ao objeto Base

Base['Age'] = Base['Age'].fillna(Base['Age'].median()) #Preenchendou

NAs com a mediana na coluna Age

Base['Sex'] = np.where(Base.Sex == 'male',0,1)
```

Para esse trabalho vamos utilizar a base de dados do titanic do kaggle.

```
[]: Base.head(10)
                          #Mostrando 20 linhas da base
[]:
        PassengerId
                      Survived Pclass
     0
                   1
                              0
                                      3
                   2
                              1
                                      1
     1
     2
                   3
                              1
                                      3
     3
                   4
                              1
                                      1
                              0
     4
                   5
                                      3
```

6	7	0	1
7	8	0	3
8	9	1	3
9	10	1	2

	Name	Sex	Age	SibSp	Parch	\
0	Braund, Mr. Owen Harris	0	22.0	1	0	
1	Cumings, Mrs. John Bradley (Florence Briggs Th	1 3	8.0	1	0	
2	Heikkinen, Miss. Laina	1	26.0	0	0	
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	
4	Allen, Mr. William Henry	0	35.0	0	0	
5	Moran, Mr. James	0	28.0	0	0	
6	McCarthy, Mr. Timothy J	0	54.0	0	0	
7	Palsson, Master. Gosta Leonard	0	2.0	3	1	
8	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	1	27.0	0	2	
9	Nasser, Mrs. Nicholas (Adele Achem)	1	14.0	1	0	

	Ticket	Fare	Cabin	Embarked
0	A/5 21171	7.2500	${\tt NaN}$	S
1	PC 17599	71.2833	C85	C
2	STON/02. 3101282	7.9250	${\tt NaN}$	S
3	113803	53.1000	C123	S
4	373450	8.0500	${\tt NaN}$	S
5	330877	8.4583	${\tt NaN}$	Q
6	17463	51.8625	E46	S
7	349909	21.0750	${\tt NaN}$	S
8	347742	11.1333	${\tt NaN}$	S
9	237736	30.0708	NaN	C

2.0.1 Informações sobre a base de dados

Homens = 0 e Mulheres = 1

Sobrevivente = 1 e Morto = 0

[]:	<pre>Base.describe()</pre>	#Descrição	da	base	de	dados	com	algumas	informações.

[]:		PassengerId	Survived	Pclass	Sex	Age	\
	count	891.000000	891.000000	891.000000	891.000000	891.000000	
	mean	446.000000	0.383838	2.308642	0.352413	29.361582	
	std	257.353842	0.486592	0.836071	0.477990	13.019697	
	min	1.000000	0.000000	1.000000	0.000000	0.420000	
	25%	223.500000	0.000000	2.000000	0.000000	22.000000	
	50%	446.000000	0.000000	3.000000	0.000000	28.000000	
	75%	668.500000	1.000000	3.000000	1.000000	35.000000	
	max	891.000000	1.000000	3.000000	1.000000	80.000000	
		SibSp	Parch	Fare			

```
891.000000 891.000000 891.000000
count
         0.523008
                     0.381594
                                32.204208
mean
std
         1.102743
                     0.806057
                                49.693429
min
         0.000000
                     0.000000
                                 0.000000
25%
         0.000000
                     0.000000
                                 7.910400
50%
         0.000000
                     0.000000
                                14.454200
75%
         1.000000
                     0.000000
                                31.000000
max
         8.000000
                     6.000000 512.329200
```

3 Histograma de Sobreviventes, Classes e Sexo

```
[]: fig, ax = plt.subplots(1,3,figsize=(12,5))
                                                           #Criando figura com
      ⇔subplots(1 linha e 3 colunas)
     ax[0].set_title('Sobreviventes')
                                                           #Título do subplot
     ax[0].set_ylabel('Passageiros')
                                                           \#Nome\ do\ eixo\ Y
     ax[0].set_xlabel('Mortos e Sobreviventes')
                                                           \#Nome\ do\ eixo\ X
     ax[0].hist(Base.Survived,2,rwidth=0.9)
                                                           #Histograma de
      Sobreviventes com 2 colunas
     ax[1].set_title('Sexo')
                                                           #Título do subplot
     ax[1].set_xlabel('Homens e Mulheres')
                                                           \#Nome\ do\ eixo\ X
     ax[1].hist(Base.Sex,2,rwidth=0.9)
                                                           #Histograma de Sexo com 2
      ⇔colunas
     ax[2].set_title('Classes')
                                                           #Título do subplot
     ax[2].set_xlabel('1, 2 e 3')
                                                           \#Nome\ do\ eixo\ X
     ax[2].hist(Base.Pclass,3,rwidth=0.9)
                                                           #Histograma de Classes com
      →3 colunas
```


No primeiro histograma é possível observar a distribuição da quantidade de pessoas que sobreviveram e que morreram. Como foi utilizado o sistema binário para definir sobreviventes como 1 e mortos como 0 (eixo x), é possível perceber através do gráfico que a quantidade de pessoas mortas foi maior do a de sobreviventes (eixo y).

No segundo histograma é possível observar a quantidade de pessoas que estavam a bordo (eixo y) separadas por classes (1, 2 e 3 no eixo x). Percebe-se através do gráfico que a maior parte das pessoas que estavam no Titanic eram da Terceira, Primeira e Segunda classe, respectivamente. Sendo a Terceira classe predominantemente maior com aproximadamente 500 pessoas, sendo pelo menos o dobro de alguma das demais classes.

O terceiro histograma mede a quantidade de pessoas segmentada pelos sexos feminino e masculino. Foi utilizado o sistema binário para definir Homens como 0 e Mulheres como 1. Foi possível interpreter que a quantidade de homens a bordo era superior do que a de mulheres.

4 Boxplot de Idade e Fare

```
fig1, ax1 = plt.subplots(1,2,figsize=(12,5)) #Criando figura comusubplots(1 linha e 2 colunas)

ax1[0].set_title('Idade') #Título
ax1[0].boxplot(Base.Age) #Criando boxplot dau
coluna Age

ax1[1].set_title('Tarifa') #Título
ax1[1].boxplot(Base.Fare) #Criando boxplot dau
coluna Fare
```


No boxplot acima podemos estimar as idades e fare dos passageiros no geral.

5 Gráfico de correlação da base de dados

```
[]: plt.figure(figsize=(10,10)) #Criando imagem e definindo tamanho sns.heatmap(Base.corr().round(2), annot = True) #gráfico de correlação⊔ usando biblioteca seaborn(sns) e arredondando para 2 casas decimais
```

[]: <AxesSubplot: >

Foi realizado o teste de correlação entre as variáveis para procurar entender se suas respetivas variações apresentariam alguma relação. Apesar de não ter notado nenhuma correlação forte, isto é, próxima de 1 ou -1, a variável "Sex" apresentou a maior relação com o número de sobreviventes, sendo esta uma correlação positiva, ou seja, quando uma aumenta, a outra aumenta também. No sistema binário tanto mulheres quanto sobreviventes correspondiam ao número 1. Desta forma, a correlação sugere que mulheres e sobreviventes estavam correlacionados.

5.0.1 Obtendo total de mulheres sobreviventes

```
[]: ms = Base[(Base.Sex == 1 ) & (Base.Survived == 1)] #Filtrando mulheres_
sobreviventes
ms = len(ms) #Obtendo quantidade através do tamanho do dataframe
ms
```

[]: 233

5.0.2 Obtendo total de sobreviventes

```
[]: ts = Base[Base.Survived == 1]
ts = len(ts)
ts
```

[]: 342

5.0.3 Teste de proporção de mulheres sobreviventes

```
[]: print(proportion_confint(ms,ts)) #Intervalo de confiança da_u proporção
print(proportions_ztest(ms,ts,0.5))
print(round(ms/ts,2))

(0.6319009716644249, 0.7306721277507798)
(7.1947139709042505, 6.259183826006731e-13)
```

Ao perceber a correlação entre mulheres e sobreviventes, foi feito um teste de proporção, onde foi concluído com 95% de confiança, que embora a quantidade de homens a bordo fosse maior, dentre o número absoluto de sobreviventes, 68% eram mulheres.

6 Criando base de passageiros por classe

```
[]: warnings.filterwarnings("ignore")
Base3 = Base[['Survived','Pclass']] #Base por classe
Base3['C1'] = np.where(Base3.Pclass == 1,1,0)
Base3['C2'] = np.where(Base3.Pclass == 2,1,0)
Base3['C3'] = np.where(Base3.Pclass == 3,1,0)
Base3.head(5)
```

```
[]:
        Survived Pclass
                            C1
                                 C2
                                     C3
     0
                0
                         3
                             0
                                  0
                                      1
     1
                1
                         1
                             1
                                  0
                                      0
     2
                1
                         3
                             0
                                  0
                                      1
                                  0
     3
                1
                         1
                                      0
                0
```

7 Gráfico de correlação por classes

```
[]: plt.figure(figsize=(10,10)) #Criando imagem e definindo tamanho sns.heatmap(Base3.corr().round(2), annot = True)
```

[]: <AxesSubplot: >

Ao analisar o gráfico acima, foi percebida uma correlação positiva entre sobreviventes e a primeira classe e uma correlação negativa entre sobreviventes e a terceira classe. Isto é, o número de sobreviventes e pessoas da primeira classe crescem na mesma direção, enquanto o número de pessoas da terceira classe crescem na mesma direção que o número de mortos. Apesar de entender que as classes poderiam, mesmo que de forma sutil (baixa correlação) ter influenciado no "poder de

sobrevivência", foi feita a estratificação das classes por sexo, a fim de entender melhor, se dentro de cada sexo as classes foram um fator determinante.

8 Comparações por Classe

8.0.1 Obtendo mulheres sobreviventes da classe 1 e total de de mulheres da classe 1

```
[]: # Obtendo mulheres sobreviventes da classe 1
    msc1 = Base[(Base.Pclass == 1 ) & (Base.Survived == 1) & (Base.Sex == 1)]
    msc1 = len(msc1)
    print(msc1)
    # Obtendo total de mulheres da classe 1
    tmc1 = Base[(Base.Pclass == 1) & (Base.Sex == 1)]
    tmc1 = len(tmc1)
    print(tmc1)
```

91 94

8.0.2 Teste de proporção das mulheres sobreviventes da classe 1

```
[]: print(proportion_confint(msc1,tmc1)) #Intervalo de confiança da_
proporção
print(proportions_ztest(msc1,tmc1,0.5))
print(round(msc1/tmc1,2))

(0.9325516352530691, 1.0)
(25.818754009596567, 5.460783834601893e-147)
0.97
```

8.0.3 Obtendo mulheres sobreviventes da classe 3 e total de de mulheres da classe 3

```
[]: # Obtendo mulheres sobreviventes da classe 3
msc3 = Base[(Base.Pclass == 3 ) & (Base.Survived == 1) & (Base.Sex == 1)]
msc3 = len(msc3)
print(msc3)
# Obtendo total de mulheres da classe 3
tmc3 = Base[(Base.Pclass == 3) & (Base.Sex == 1)]
tmc3 = len(tmc3)
print(tmc3)
```

72

8.0.4 Teste de proporção das mulheres sobreviventes da classe 3

```
[]: print(proportion_confint(msc3,tmc3)) #Intervalo de confiança da⊔

→ proporção

print(proportions_ztest(msc3,tmc3,0.5)) #Descarta a hipótese alternativa⊔

→ pois na classe 3 exatamente a metade das mulheres sobreviveram

print(round(msc3/tmc3,2))
```

```
(0.4183348339774977, 0.5816651660225023)
(0.0, 1.0)
0.5
```

A partir dos testes realizados, foi possível perceber que dentro do sexo feminino, as classes tiveram comportamento de sobreviventes diferentes, onde a primeira classe aparentou ter maior chance de sobreviver do que a terceira: 97% das mulheres da primeira classe sobreviveram enquanto 50% das mulheres da terceira classe sobreviveram.

8.0.5 Obtendo homens sobreviventes da classe 1 e total de de homens da classe 1

```
[]: # Obtendo homens sobreviventes da classe 1
hsc1 = Base[(Base.Sex == 0) & (Base.Survived == 1) & (Base.Pclass == 1)]
hsc1 = len(hsc1)
print(hsc1)
# Obtendo total de homens da classe 1
thc1 = Base[(Base.Sex == 0) & (Base.Pclass == 1)]
thc1 = len(thc1)
print(thc1)
```

45 122

8.0.6 Teste de proporção de homens sobreviventes da classe 1

```
[]: print(proportion_confint(hsc1,thc1)) #Intervalo de confiança da⊔

proporção

print(proportions_ztest(hsc1,thc1,0.5)) #Não podemos descartar a⊔

hipótese nula. Menos de 50% dos homens da classe 1 sobreviveram.

print(round(hsc1/thc1,2))
```

```
(0.2832354672379669, 0.45446945079482004)
(-3.0022598511061984, 0.0026798331913469088)
0.37
```

8.0.7 Obtendo homens sobreviventes da classe 3 e total de de homens da classe 3

```
[]: # Obtendo homens sobreviventes da classe 3

hsc3 = Base[(Base.Sex == 0) & (Base.Survived == 1) & (Base.Pclass == 3)]
hsc3 = len(hsc3)
```

```
print(hsc3)
# Obtendo total de homens da classe 3
thc3 = Base[(Base.Sex == 0) & (Base.Pclass == 3)]
thc3 = len(thc3)
print(thc3)
```

47 347

8.0.8 Teste de proporção de homens sobreviventes da classe 3

```
[]: print(proportion_confint(hsc3,thc3)) #Intervalo de confiança da⊔

proporção

print(proportions_ztest(hsc3,thc3,0.5)) #Não podemos descartar a⊔

hipótese nula. Menos de 50% dos homens da classe 3 sobreviveram.

print(round(hsc3/thc3,2))
```

```
(0.09944163448599802, 0.17145173727192703)
(-19.844753402062032, 1.2232728571920844e-87)
0.14
```

A partir dos testes realizados, foi possível perceber que dentro do sexo masculino, as classes tiveram comportamento de sobreviventes diferentes, onde a primeira classe aparentou ter maior chance de sobreviver do que a terceira: 37% dos homens da primeira classe sobreviveram enquanto 14% dos homens da terceira classe sobreviveram.

9 Comparações por Tarifa

9.0.1 Obtendo quantidade de passageiros por valor pago

```
[]: # Obtendo quantidade de passageiros por valor pago 31, 14, 7
maior31 = Base[(Base.Fare >= 31)]
maior31 = len(maior31)
print(maior31)
maior14 = Base[(Base.Fare < 31) & (Base.Fare >= 14)]
maior14 = len(maior14)
print(maior14)
menor14 = Base[(Base.Fare < 14)]
menor14 = len((menor14))
print(menor14)</pre>
```

225

230

9.0.2 Obtendo quantidade de passageiros sobreviventes pelo valor pago

```
[]: surv31 = Base[(Base.Fare >= 31) & (Base.Survived == 1)]
    surv31 = len(surv31)
    print(surv31)
    surv14 = Base[(Base.Fare < 31) & (Base.Fare >= 14) & (Base.Survived == 1)]
    surv14 = len(surv14)
    print(surv14)
    surv0 = Base[(Base.Fare < 14) & (Base.Survived == 1)]
    surv0 = len((surv0))
    print(surv0)</pre>
```

131

100

111

9.0.3 Teste de proporção de quem pagou mais que 31

```
[]: print(proportion_confint(surv31,maior31)) #Intervalo de confiança da⊔

→proporção

print(proportions_ztest(surv31,maior31,0.5))

print(round(surv31/maior31,2))
```

```
(0.517779498418524, 0.6466649460259204)
(2.500710472376967, 0.012394446013367241)
0.58
```

9.0.4 Teste de proporção de quem pagou mais que 14 e menos que 27

```
(0.3707165491352943, 0.49884866825601004)
(-1.995186515283529, 0.04602254120887567)
0.43
```

9.0.5 Teste de proporção de quem pagou menos que 14

```
(-11.763155888274051, 6.043240470251041e-32) 0.25
```

A partir dos testes realizados, foi possível entender que dos 342 sobreviventes, 25% pagaram mais de 31, 26% pagaram entre 14 e 31 e 49% pagaram menos de 14. Embora a maior parte seja de pagantes dos tickets com menores valores, ao analisar a proporção de sobreviventes de cada grupo, é possível perceber que existiu uma chance maior de sobrevivência para os grupos que pagaram por tickets com valores maiores:

- 58% dos que pagaram + de \$31 sobreviveram;
- 43% dos que pagaram + de \$14 sobreviveram;
- 25% dos que pagaram de \$14 sobreviveram.

10 Conclusão

Através das análises deste trabalho foi possível obter algumas perceções curiosas. Embora tivessem muito mais homens do que mulheres a bordo, as mulheres sobreviveram mais do que os homens. Apesar da terceira classe ser a maioria, a primeira classe se mostrou mais propensa a sobreviver tanto entre homens como entre mulheres. O poder aquisitivo demonstrado pelo valor dos tíckets (variável fare) também mostraram que os grupos que pagavam mais, tinham uma proporção maior de sobreviventes.