Comparison of chaotic circuits

$\frac{1 \text{ Lotka-Volterra}}{\frac{dx_i}{dt}} = r_i \cdot x_i \cdot \left(1 - \sum_{j=1}^n a_{ij} \cdot x_j\right)$ $\frac{2 \text{ van der Pol Circuit}}{\frac{dx}{dt}} = y$ $y = \mu \cdot \left[1 - \frac{1}{3} \cdot x^2\right] \cdot x - z + \left\{A \cdot \cos(w \cdot \tau - \pi)\right\}$ $\frac{dz}{dt} = x$ $\frac{dz}{dt} = x$ $\frac{dz}{dt} = x \cdot (y - x)$ $\frac{dy}{dt} = x \cdot (p - z) - y$ $\frac{dz}{dt} = x \cdot y - \beta \cdot z$ $\frac{dz}{dt} = -y - z$ $\frac{dy}{dt} = x + a \cdot y$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = a \cdot y - x - z$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ $\frac{dz}{dt} = -z$ dz	$\frac{dx_i}{dt} = r_i \cdot x_i \cdot \left(1 - \sum_{j=1}^{i} a_{ij} \cdot x_j\right)$ $\frac{dx}{dt} = y$ $y = \mu \cdot \left[1 - \frac{1}{3} \cdot x^2\right] \cdot x - z + \begin{cases} 0 \\ x \cdot z \cdot z + \begin{cases} 0 \\ x \cdot z \cdot z \cdot z + \end{cases} \right]$ $\frac{dz}{dt} = x$ $\frac{dz}{dt} = x \cdot (y - x)$ $\frac{dz}{dt} = x \cdot (y - z) - y$ $\frac{dz}{dt} = x \cdot y - \beta \cdot z$ $\frac{dz}{dt} = x + a \cdot y$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -$	Comparison of chaotic circuits	
$\frac{2 \text{ van der Pol Circuit}}{dt} = y$ $y = \mu \cdot \left[1 - \frac{1}{3} \cdot x^2\right] \cdot x - z + \begin{cases} 0 \\ A \cdot cos(w \cdot \tau - \pi) \end{cases}$ $\frac{dz}{dt} = x$ $\frac{dx}{dt} = \sigma \cdot (y - x)$ $\frac{dy}{dt} = x \cdot (\rho - z) - y$ $\frac{dz}{dt} = x \cdot y - \beta \cdot z$ $\frac{dx}{dt} = -y - z$ $\frac{dy}{dt} = x + a \cdot y$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = z$		1 Lotka-Volterra	$\frac{dx_i}{dt} = r_i \cdot x_i \cdot \left(1 - \sum_{j=1}^n a_{ij} \cdot x_j\right)$
$y = \mu \cdot \left[1 - \frac{1}{3} \cdot x^2\right] \cdot x - z + \left\{\begin{matrix} 0 \\ A \cdot cos(w \cdot \tau - \pi) \end{matrix}\right]$ $\frac{dz}{dt} = x$ $\frac{dz}{dt} = x \cdot (y - x)$ $\frac{dy}{dt} = x \cdot (p - z) - y$ $\frac{dz}{dt} = x \cdot y - \beta \cdot z$ $\frac{dz}{dt} = -y - z$ $\frac{dy}{dt} = x + a \cdot y$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} =$	$y = \mu \cdot \left[1 - \frac{1}{3} \cdot x^2\right] \cdot x - z + \left\{\begin{matrix} 0 \\ A \cdot cos(w \cdot \tau - \pi) \end{matrix}\right]$ $\frac{dz}{dt} = x$ $\frac{dz}{dt} = \sigma \cdot (y - x)$ $\frac{dy}{dt} = x \cdot (\rho - z) - y$ $\frac{dz}{dt} = x \cdot y - \beta \cdot z$ $\frac{dz}{dt} = -y - z$ $\frac{dy}{dt} = x + a \cdot y$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = x + x \cdot y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z + z \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = z$ \frac	2 1 2 10: 1:	\ , , /
$y = \mu \cdot \left[1 - \frac{1}{3} \cdot x^2\right] \cdot x - z + \left\{\begin{matrix} 0 \\ A \cdot cos(w \cdot \tau - \pi) \end{matrix}\right]$ $\frac{dz}{dt} = x$ $\frac{dz}{dt} = x$ $\frac{dz}{dt} = \sigma \cdot (y - x)$ $\frac{dy}{dt} = x \cdot (\rho - z) - y$ $\frac{dz}{dt} = x \cdot y - \beta \cdot z$ $\frac{dz}{dt} = -y - z$ $\frac{dy}{dt} = x + a \cdot y$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -z$	$y = \mu \cdot \left[1 - \frac{1}{3} \cdot x^2\right] \cdot x - z + \left\{\begin{matrix} 0 \\ A \cdot cos(w \cdot \tau - \pi) \end{matrix}\right]$ $\frac{dz}{dt} = x$ $\frac{dz}{dt} = \sigma \cdot (y - x)$ $\frac{dy}{dt} = x \cdot (\rho - z) - y$ $\frac{dz}{dt} = x \cdot y - \beta \cdot z$ $\frac{dz}{dt} = -y - z$ $\frac{dy}{dt} = x + a \cdot y$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = z$ $\frac{dz}{dt} $	2_van der Pol Circuit	$\frac{ax}{x} = y$
$\frac{dz}{dt} = x$ $\frac{dx}{dt} = \sigma \cdot (y - x)$ $\frac{dy}{dt} = x \cdot (\rho - z) - y$ $\frac{dz}{dz} = x \cdot y - \beta \cdot z$ $\frac{dx}{dt} = -y - z$ $\frac{dy}{dt} = x + a \cdot y$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = x + a \cdot y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = x + a \cdot y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = x + a \cdot y$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z$ $\frac{dz}{dt} = -z + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = x + a \cdot y$ $\frac{dz}{dt} = -z + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = x + a \cdot y$ $\frac{dz}{dt} = -z + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = -z + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = x + a \cdot y$ $\frac{dz}{dt} = -z + a \cdot (e^y - 1) - b \cdot z$ $\frac{dz}{dt} = -z + a \cdot (e^y - 1) -$	$\frac{dz}{dt} = x$ $\frac{dz}{dt} = \sigma \cdot (y - x)$ $\frac{dy}{dt} = x \cdot (\rho - z) - y$ $\frac{dz}{dz} = x \cdot y - \beta \cdot z$ $\frac{dz}{dt} = -y - z$ $\frac{dy}{dt} = x + a \cdot y$ $\frac{dz}{dt} = b + (x - c) \cdot z$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -y$ $\frac{dz}{dt} = -z$		
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator for educational purposes $ \frac{dy}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	Thirmine ar conductor (two Nics) with partly negative slope 6 Chaotic Diode Circuit A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$y = \mu \cdot \left[1 - \frac{3}{3} \cdot x^{2}\right] \cdot x - z + \left\{A \cdot \cos(w \cdot \tau - \pi)\right\}$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator for educational purposes $ \frac{dy}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	Thirmine ar conductor (two Nics) with partly negative slope 6 Chaotic Diode Circuit A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{dz}{dz} = x$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator for educational purposes $ \frac{dy}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	Thirmine ar conductor (two Nics) with partly negative slope 6 Chaotic Diode Circuit A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$d\tau = x$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator for educational purposes $ \frac{dy}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	Thirmine ar conductor (two Nics) with partly negative slope 6 Chaotic Diode Circuit A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope	3_Lorenz System	$\frac{dx}{dx} = \sigma \cdot (y - x)$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator for educational purposes $ \frac{dy}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	Thirmine ar conductor (two Nics) with partly negative slope 6 Chaotic Diode Circuit A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{dt}{dt}$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator for educational purposes $ \frac{dy}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	Thirmine ar conductor (two Nics) with partly negative slope 6 Chaotic Diode Circuit A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{dy}{dz} = x \cdot (\rho - z) - y$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator for educational purposes $ \frac{dy}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	Thirmine ar conductor (two Nics) with partly negative slope 6 Chaotic Diode Circuit A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		dt dz
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator for educational purposes $ \frac{dy}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	Thirmine ar conductor (two Nics) with partly negative slope 6 Chaotic Diode Circuit A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{dz}{dt} = x \cdot y - \beta \cdot z$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ $ \frac{dx}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) $ \frac{g \text{ Shinriki Oscillator}}{g \text{ two antiparallel Z-diodes and nonlinear conductor}} $	This interest contactor (two Nics) with partly negative slope A simple chaotic Diode Circuit $\frac{dx}{dt} = -y$ $\frac{dy}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ A simple chaotic Oscillator $\frac{dx}{dt} = y$ $\frac{dy}{dt} = a \cdot y - x - z$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ LC oscillator with transistor (orig. vacuum tube) $\frac{g \cdot Shinriki \cdot Oscillator}{g \cdot Shinriki \cdot Scillator}$ two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope	4 Roessler System	$\frac{dL}{dx}$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ $ \frac{dx}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) $ \frac{g \text{ Shinriki Oscillator}}{g \text{ two antiparallel Z-diodes and nonlinear conductor}} $	This interest contactor (two Nics) with partly negative slope A simple chaotic Diode Circuit $\frac{dx}{dt} = -y$ $\frac{dy}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ A simple chaotic Oscillator $\frac{dx}{dt} = y$ $\frac{dy}{dt} = a \cdot y - x - z$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ LC oscillator with transistor (orig. vacuum tube) $\frac{g \cdot Shinriki \cdot Oscillator}{g \cdot Shinriki \cdot Scillator}$ two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{1}{dt} = -y - z$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ $ \frac{dx}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) $ \frac{g \text{ Shinriki Oscillator}}{g \text{ two antiparallel Z-diodes and nonlinear conductor}} $	This interest contactor (two Nics) with partly negative slope A simple chaotic Diode Circuit $\frac{dx}{dt} = -y$ $\frac{dy}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ A simple chaotic Oscillator $\frac{dx}{dt} = y$ $\frac{dy}{dt} = a \cdot y - x - z$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ LC oscillator with transistor (orig. vacuum tube) $\frac{g \cdot Shinriki \cdot Oscillator}{g \cdot Shinriki \cdot Scillator}$ two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		dy
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ $ \frac{dx}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) $ \frac{g \text{ Shinriki Oscillator}}{g \text{ two antiparallel Z-diodes and nonlinear conductor}} $	This interest contactor (two Nics) with partly negative slope A simple chaotic Diode Circuit $\frac{dx}{dt} = -y$ $\frac{dy}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ A simple chaotic Oscillator $\frac{dx}{dt} = y$ $\frac{dy}{dt} = a \cdot y - x - z$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ LC oscillator with transistor (orig. vacuum tube) $\frac{g \cdot Shinriki \cdot Oscillator}{g \cdot Shinriki \cdot Scillator}$ two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{1}{dt} = x + a \cdot y$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ $ \frac{dx}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) $ \frac{g \text{ Shinriki Oscillator}}{g \text{ two antiparallel Z-diodes and nonlinear conductor}} $	This interest contactor (two Nics) with partly negative slope A simple chaotic Diode Circuit $\frac{dx}{dt} = -y$ $\frac{dy}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ A simple chaotic Oscillator $\frac{dx}{dt} = y$ $\frac{dy}{dt} = a \cdot y - x - z$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ LC oscillator with transistor (orig. vacuum tube) $\frac{g \cdot Shinriki \cdot Oscillator}{g \cdot Shinriki \cdot Scillator}$ two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{dz}{dz} = h + (x - c) \cdot z$
A simple chaotic circuit with a light-emitting diode A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = -y \\ \frac{dz}{dt} = -z \\ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ $ \frac{dx}{dt} = y \\ \frac{dy}{dt} = a \cdot y - x - z \\ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) $ \frac{g \text{ Shinriki Oscillator}}{g \text{ two antiparallel Z-diodes and nonlinear conductor}} $	This interest contactor (two Nics) with partly negative slope A simple chaotic Diode Circuit $\frac{dx}{dt} = -y$ $\frac{dy}{dt} = -z$ $\frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z$ A simple chaotic Oscillator $\frac{dx}{dt} = y$ $\frac{dy}{dt} = a \cdot y - x - z$ $\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ LC oscillator with transistor (orig. vacuum tube) $\frac{g \cdot Shinriki \cdot Oscillator}{g \cdot Shinriki \cdot Scillator}$ two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{1}{dt} = b + (x - c) \cdot z$
A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic Oscillator A simple chaotic oscillator for educational purposes $ \frac{dy}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) $ \frac{\mathbf{g} \ \mathbf{Shinriki} \ \mathbf{Oscillator}}{\mathbf{g} \ \mathbf{g} \ g$	A simple chaotic circuit with a light-emitting diode $ \frac{dx}{dt} = -y $ $ \frac{dy}{dt} = -z $ $ \frac{dz}{dt} = -x + a \cdot (e^y - 1) - b \cdot z $ A simple chaotic Oscillator A simple chaotic oscillator for educational purposes $ \frac{dx}{dt} = y $ $ \frac{dy}{dt} = a \cdot y - x - z $ $ \frac{dz}{dt} = b + y - c \cdot (e^z - 1) $ B. Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) $ \frac{9 \text{ Shinriki Oscillator}}{\text{(NIC) with partly negative slope}} $	5 Chua's Circuit	Horilinear conductor (two Mcs)
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope	6 Chaotic Diode Circuit	dx
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{d}{dt} = -y$
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope	A simple chaotic circuit with a light-emitting diode	dy_{-}
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{\overline{dt}}{dt}$ = -2
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{dz}{dz} = -x + a \cdot (e^y - 1) - h \cdot z$
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope	7 Observing Confliction	dt da
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope	7_Chaotic Oscillator	$\frac{dx}{dx} = y$
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope	A simple chaotic oscillator for educational purposes	dt dv
$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	$\frac{dz}{dt} = b + y - c \cdot (e^z - 1)$ 8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{dy}{dt} = a \cdot y - x - z$
8_Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9_Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor	8 Colpitts Oscillator LC oscillator with transistor (orig. vacuum tube) 9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		dz
<u>9_Shinriki Oscillator</u> two antiparallel Z-diodes and nonlinear conductor	9 Shinriki Oscillator two antiparallel Z-diodes and nonlinear conductor (NIC) with partly negative slope		$\frac{d}{dt} = b + y - c \cdot (e^z - 1)$
· · · · · · · · · · · · · · · · · · ·	(NIC) with partly negative slope	8_Colpitts Oscillator	LC oscillator with transistor (orig. vacuum tube)
· · · · · · · · · · · · · · · · · · ·	(NIC) with partly negative slope		
· · · · · · · · · · · · · · · · · · ·	(NIC) with partly negative slope	9 Shinriki Oscillator	two antiparallel Z-diodes and nonlinear conductor
			·
	$\mathbf{\underline{10}}_{Jerk} Circuit \qquad \qquad \ddot{x} + G(\ddot{x}, \dot{x}, x) = 0$		
$\underline{10}_{\mathbf{Jerk}} \mathbf{Circuit} \qquad \qquad \ddot{x} + G(\ddot{x}, \dot{x}, x) = 0$	I I	10 Jerk Circuit	$\ddot{x} + G(\ddot{x}, \dot{x}, x) = 0$

OpAmp-Circuits

Algebraic-Differential Equation Systems can be simulated with analog computers using operational amplifiers and analog multipliers.

$$\begin{split} &\frac{inp.\,v}{R_{inp}} + \frac{out.\,v}{R_{out}} = 0\\ &-out.\,v = k \cdot inp.\,v\\ &k = \frac{R_{out}}{R_{inp}} \end{split}$$

Input resistance = R_{inp} Output resistance $\rightarrow 0$ It is possible to add several inputs.

Integrator

$$\begin{split} &\frac{inp.v}{R_{inp}} + C_{out} \cdot \frac{d\ out.v}{dt} = 0 \\ &-out.v = v_0 + \frac{1}{\tau} \cdot \int\limits_0^t inp.v \cdot dt \\ &\tau = R_{inp} \cdot C_{out} \end{split}$$

Input resistance = R_{inn} Output resistance $\rightarrow 0$

It is possible to integrate the sum of several inputs.

Analog Multiplier

Functional Block Diagram of AD633 Division by 10 V (scaling) inhibits overflow. Additional summing input Z is omitted. Negative inputs of X- and Y-amplifiers are connected to ground.

Possible implementations:

- Gilbert cell
- $y = e^{\ln(x_1) + \ln(x_2)}$ $y = \frac{(x_1 + x_2)^2 (x_1 x_2)^2}{4}$

1_Lotka-Volterra

https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations https://en.wikipedia.org/wiki/Competitive_Lotka%E2%80%93Volterra_equations https://sprott.physics.wisc.edu/pubs/paper288.pdf

As a 2-dimensional predator-prey-model no chaos is reported:

$$\frac{dx}{dt} = r_x \cdot x - d_x \cdot x \cdot y$$
$$\frac{dy}{dt} = r_x \cdot x \cdot e_y \cdot y - d_y \cdot y$$

We might interpret x as number of hares (prey) and y as foxed (predator).

 r_{x} is the reproduction rate of hares, d_{x} the deathrate of hares due to foxes.

 $\emph{e}_\emph{y}$ is the efficiency in growing foxes from hares, $\emph{d}_\emph{y}$ the (natural) deathrate of foxes.

A n-dimensional Lotka-Volterra model is defined for $2 \le i \le n$ (n designates the number of species):

$$\frac{dx_i}{dt} = r_i \cdot x_i \cdot \left(1 - \sum_{j=1}^n a_{ij} \cdot x_j\right)$$

The vector [r] describes the reproduction rates of the species whereas the quadratic matrix [a] describes the competition between species.

2_van der Pol Circuit

https://en.wikipedia.org/wiki/Van der Pol oscillator

B. van der Pol and J. van der Mark, "Frequency Demultiplication", Nature 120 (1927), p. 363-364, ISSN 0028-0836, DOI https://doi.org/10.1038/120363a0

Balthasar van der Pol reported 1927 strange phenomena about oscillations in a series resonance circuit containing a vacuum electron triode. Due to the nonlinear characteristic of the triode the autonomous circuit is able to maintain periodic oscillations, and with harmonic excitation it is able to produce chaos.

$$i = C \cdot \frac{dv_C}{dt} \rightarrow v_C = v_{C0} + \frac{1}{C} \cdot \int_{t_0}^{t} i \cdot dt'$$

$$L \cdot \frac{di}{dt} + \tilde{R}(i) \cdot i + v_C = \begin{cases} 0 \\ \hat{V} \cdot \cos(\omega \cdot t - \pi) \end{cases}$$

$$\tilde{R}(i) = -R_0 \cdot \left[1 - \frac{1}{3} \cdot \left(\frac{i}{I_0} \right)^2 \right]$$

These are the equations of the physical model.

Note the phase shift of the excitation!

$$L \cdot \frac{d^2i}{dt^2} - R_0 \cdot \left[1 - \left(\frac{i}{I_0}\right)^2\right] \cdot \frac{di}{dt} + \frac{1}{C} \cdot i = \begin{cases} 0 \\ \hat{V} \cdot \omega \cdot \sin(\omega \cdot t) \end{cases}$$

$$\omega_{0} = \frac{1}{\sqrt{L \cdot C}}$$

$$\mu = R_{0} \cdot \sqrt{\frac{C}{L}}$$

$$A = \frac{\omega_{0} \cdot C \cdot \hat{V}}{I_{0}}$$

$$w = \frac{\omega}{\omega_{0}}$$

$$\tau = \omega_{0} \cdot t$$

$$x = \frac{i}{I_{0}}$$

$$y = \frac{dx}{d\tau} = \frac{1}{\omega_{0} \cdot I_{0}} \cdot \frac{di}{dt}$$

$$\frac{I_{0}}{\omega_{0} \cdot C} \cdot z = v_{C} = v_{C0} + \frac{1}{C} \cdot \int_{t_{0}}^{t} i \cdot dt'$$

$$z = z_{0} + \int_{\tau_{0}}^{\tau} x \cdot d\tau'$$

$$z = z_0 + \int_{\tau_0} x \cdot d\tau'$$

$$\frac{d^2x}{d\tau^2} - \mu \cdot [1 - x^2] \cdot \frac{dx}{d\tau} + x = \begin{cases} 0 \\ A \cdot w \cdot \sin(w \cdot \tau) \end{cases}$$

$$\frac{dy}{d\tau} = \mu \cdot [1 - x^2] \cdot y - x + \begin{cases} 0 \\ A \cdot w \cdot \sin(w \cdot \tau) \end{cases}$$

$$\frac{dz}{d\tau} = x$$
Alternative Formulation with 2 states:
$$\frac{dx}{d\tau} = y$$

$$y = \mu \cdot \left[1 - \frac{1}{3} \cdot x^2\right] \cdot x - z + \begin{cases} 0 \\ A \cdot \cos(w \cdot \tau - \pi) \end{cases}$$

$$\frac{dz}{d\tau} = x$$

Note:

Instead of using a series resonance circuit and deriving a scaled differential equation for the current, we could use an equivalent parallel resonance circuit and derive a scaled differential equation for the voltage.

$$v = L \cdot \frac{di_L}{dt} \to i_L = i_{L0} + \frac{1}{L} \cdot \int_{t_0}^{t} v \cdot dt'$$
$$i_L + \tilde{G}(v) \cdot v + C \cdot \frac{dv}{dt} = i_e$$

Initialization:

The physical model has 2 states: i and v_C . Current i acts as an initial value for the nonlinear resistor. The analytic equations have 3 states: x, y and z.

The third state has been introduced artificially by first differentiating the voltage equation, generating an equation with second derivative of i. Splitting this equation into two first order differential equations, we generate i and $\frac{di}{dt}$ as states. Calculating capacitor voltage v, we get the third state.

For an implementation as an electronic circuit, the equations have to be scaled to keep the variables within the desired range. We chose natural eigen frequency ω_0 as time scale:

$$x' = \frac{x}{k_x}$$
$$y' = \frac{y}{k_y}$$
$$z' = \frac{z}{k_z}$$
$$t' = \frac{\tau}{\omega_0}$$

We also have to take into account that the analog multiplier divides by V_S to avoid overflow of the output. After that, none of the computing block should encounter an overflow.

This leads to the following set of equations:

$$\begin{split} \frac{1}{\omega_0} \cdot \frac{dx'}{dt'} &= \frac{k_y}{k_x} \cdot y' \\ y' &= \mu \cdot \frac{k_x \cdot V_s}{k_y} \cdot \left[1 - \frac{k_x^2 \cdot V_s}{3} \cdot \frac{{x'}^2}{V_s} \right] \cdot \frac{x'}{V_s} - \frac{k_z}{k_y} \cdot z' + \begin{cases} 0 \\ \frac{A}{k_y} \cdot \cos(w \cdot \omega_0 \cdot t' - \pi) \end{cases} \\ &\qquad \qquad \frac{1}{\omega_0} \cdot \frac{dz'}{dt'} = \frac{k_x}{k_z} \cdot x' \end{split}$$

These equations can easily get implemented as blocks or as an electronic circuit.

Calculating back from per-unit-parameters:

$$\mu = 0.2, w = 1.15, A = [0..1]$$

and some assumptions:

$$C = \frac{100}{2\pi} \ \mu F, \omega_0 = 2\pi \cdot 1000 \ \frac{rad}{s}, I_0 = 0.5 \ A$$

we obtain physical parameters:

$$L = \frac{1}{\omega_0^2 \cdot C} = \frac{10}{2\pi} mH$$

$$R_0 = \mu \cdot \sqrt{\frac{L}{C}} = \frac{\mu}{\omega_0 \cdot C} = 2 \Omega$$

$$\hat{V} = A \cdot \frac{I_0}{\omega_0 \cdot C} = [0 \cdots 5] V$$

Investigating the nonlinear resistance of the triode:

$$v_R = -R_0 \cdot I_0 \cdot \left[\left(\frac{i}{I_0} \right) - \frac{1}{3} \cdot \left(\frac{i}{I_0} \right)^3 \right] = -R_0 \cdot i \cdot \left[1 - \frac{1}{3} \cdot \left(\frac{i}{I_0} \right)^2 \right]$$

$$\frac{v_R}{i} = -R_0 \cdot \left[1 - \frac{1}{3} \cdot \left(\frac{i}{I_0} \right)^2 \right]$$

$$\frac{dv_R}{di} = -R_0 \cdot \left[1 - \left(\frac{i}{I_0} \right)^2 \right]$$

$$x = \frac{i}{I_0}$$

$$y = \frac{v_R}{R_0 \cdot I_0}$$

$$y = -\left(x - \frac{x^3}{3} \right) = -x \cdot \left(1 - \frac{x^2}{3} \right)$$

$$\frac{y}{x} = -\left(1 - \frac{x^2}{3} \right)$$

$$\frac{dy}{dx} = -(1 - x^2)$$

Characteristic of the triode y(x):

Zero crossings
$$y=0$$
: $x=\left\{-\sqrt{3},0,+\sqrt{3}\right\}$ with slopes $\frac{dy}{dx}=\left\{+2,-1,+2\right\}$

Extrema:
$$x = \{-1, +1\}$$
 with $x = \{+\frac{2}{3}, -\frac{2}{3}\}$

Inflection point:
$$[x, y] = [0, 0]$$

If current x is prescribed, voltage y can be unambiguously determined.

If y is prescribed, in the range $-2 \le x \le +2$ i.e. $-\frac{2}{3} \le y \le +\frac{2}{3}x$ has 2 or 3 possible solutions.

For this application, this restriction has no influence.

Shifting the characteristic up and to the right, it looks like the i(v) characteristic of a tunnel (Esaki) diode. Inversion of the triode characteristic shows hysteretic behavior (split into 2 branches):

$$x \ge +1: y + \frac{2}{3} = \frac{(x-1)^3}{3} + (x-1)^2$$
$$x \le -1: y - \frac{2}{3} = \frac{(x+1)^3}{3} - (x+1)^2$$

3_Lorenz System

http://en.wikipedia.org/wiki/Lorenz attractor

Developed 1963 by Edward Lorenz to model atmospheric convection.

x is proportional to the rate of convection, y to the horizontal temperature variation and z to the vertical temperature variation. σ depicts the Prandtl number, ρ the Rayleigh number and β the physical dimensions.

The original parameters were:
$$\sigma=10, \rho=28, \beta=\frac{8}{3}$$

$$\frac{dx}{dt}=\sigma\cdot(y-x)$$

$$\frac{dy}{dt}=x\cdot(\rho-z)-y$$

$$\frac{dz}{dt}=x\cdot y-\beta\cdot z$$

 $\beta = \frac{1}{3}$ leads to a periodic solution.

For an implementation as an electronic circuit, the equations have to be scaled to keep the variables within the desired range. This can be compared with calculating per-unit values by dividing by reference values:

$$x' = \frac{x}{k_x}$$
$$y' = \frac{y}{k_y}$$
$$z' = \frac{z}{k_z}$$
$$t' = \frac{t}{\tau}$$

We also have to take into account that the analog multiplier divides by V_S to avoid overflow of the output. After that, none of the computing block should encounter an overflow.

This leads to the following set of equations:

$$\begin{split} &\frac{1}{\tau} \cdot \frac{dx'}{dt'} = -\sigma \cdot x' + \sigma \cdot \frac{k_y}{k_x} \cdot y' \\ &\frac{1}{\tau} \cdot \frac{dy'}{dt'} = \rho \cdot \frac{k_x}{k_y} \cdot x' - y' - \frac{k_x \cdot k_z \cdot V_S}{k_y} \cdot \frac{x' \cdot z'}{V_S} \\ &\frac{1}{\tau} \cdot \frac{dz'}{dt'} = \frac{k_x \cdot k_y \cdot V_S}{k_z} \cdot \frac{x' \cdot y'}{V_S} - \beta \cdot z' \end{split}$$

These equations can easily get implemented as blocks or as an electronic circuit.

4_Roessler System

https://en.wikipedia.org/wiki/R%C3%B6ssler attractor

A simple system of 3 ordinary nonlinear differential equations to study chaos without physical background.

$$\frac{dx}{dt} = -y - z$$

$$\frac{dy}{dt} = x + a \cdot y$$

$$\frac{dz}{dt} = b + (x - c) \cdot z$$

a=0.2, b=0.2 and c=1 give periodic results. Changing c=5.7 reveals chaotic results.

For an implementation as an electronic circuit, the equations have to be scaled to keep the variables within the desired range. This can be compared with calculating per-unit values by dividing by reference values:

$$x' = \frac{x}{k_x}$$

$$y' = \frac{y}{k_y}$$

$$z' = \frac{z}{k_z}$$

$$t' = \frac{t}{\tau}$$

We also have to take into account that the analog multiplier divides by V_S to avoid overflow of the output. After that, none of the computing block should encounter an overflow.

This leads to the following set of equations:

$$\frac{1}{\tau} \cdot \frac{dx'}{dt} = -\frac{k_y}{k_x} \cdot y' - \frac{k_z}{k_x} \cdot z'$$

$$\frac{1}{\tau} \cdot \frac{dy'}{dt} = \frac{k_x}{k_y} \cdot x' + a \cdot y'$$

$$\frac{1}{\tau} \cdot \frac{dz'}{dt} = \frac{b}{k_z} + k_x \cdot V_S \cdot \frac{x' \cdot z'}{V_S} - c \cdot z'$$

These equations can easily get implemented as blocks or as an electronic circuit.

5_Chua's Circuit

https://link.springer.com/book/10.1007/978-3-319-05900-6 (1.1)

https://nonlinear.eecs.berkeley.edu/chaos/chaos.html# Working With Chaos Simulation

https://ieeexplore.ieee.org/document/246149

https://ieeexplore.ieee.org/document/1085728

$$L \cdot \frac{di_L}{dt} = v_2 - R_L \cdot i_L$$

$$C_2 \cdot \frac{dv_2}{dt} = -i_L - \frac{v_2 - v_1}{R}$$

$$C_1 \cdot \frac{dv_1}{dt} = -i_{NL} + \frac{v_2 - v_1}{R}$$

$$-i_{NL}(v_1) = \begin{cases} -\infty < v_1 < -V_e \to G_b \cdot (v_1 + V_e) - G_a \cdot V_e \\ -V_e < v_1 < +V_e \to G_a \cdot v_1 \\ +V_e < v_1 < +\infty \to G_b \cdot (v_1 - V_e) + G_a \cdot V_e \end{cases}$$

$$-\frac{i_{NL}}{v_1} = \begin{cases} -\infty < v_1 < -V_e \to G_b - (G_a - G_b) \cdot \frac{V_e}{v_1} \\ -V_e < v_1 < +V_e \to G_a \\ +V_e < v_1 < +\infty \to G_b + (G_a - G_b) \cdot \frac{V_e}{v_1} \end{cases}$$

$$-\frac{di_{NL}}{dv_1} = \begin{cases} -\infty < v_1 < -V_e \to G_b \\ -V_e < v_1 < +V_e \to G_a \\ +V_e < v_1 < +V_e \to G_a \end{cases}$$

$$+V_e < v_1 < +V_e \to G_b$$

$$\begin{split} \tau_L \cdot \dot{v}_{RL} &= v_2 - v_{RL} \\ \tau_2 \cdot \dot{v}_2 &= +v_1 - v_2 - \frac{R}{R_L} \cdot v_{RL} \\ \tau_1 \cdot \dot{v}_1 &= -v_1 + v_2 + R \cdot g \cdot v_1 \\ g(v_1) &= \begin{cases} |v_1| > V_e \to G_b + (G_a - G_b) \cdot \frac{V_e}{|v_1|} \\ |v_1| < V_e \to G_a \end{cases} \end{split}$$

parameter SI.Resistance R=1.9e3 "Resistor";
parameter SI.Inductance L=18e-3 "Inductor";
parameter SI.Resistance RL=14 "Resistance of Inductor";
parameter SI.Capacitance C1=10.e-9 "Capacitor 1";
parameter SI.Capacitance C2=100e-9 "Capacitor 2";
//parameter of Chua's diode
parameter Real k0=15000.0 "No-load amplification ";
parameter SI.Voltage Vs=9 "Supply voltage of opAmps";
parameter SI.Resistance R12=220 "R1 and R2";
parameter SI.Resistance R3=2200 "R3";
parameter SI.Resistance R45=22e3 "R4 and R5";
parameter SI.Resistance R6=3300 "R6";

This implementation of Chua's Diode with opAmps combines two NICs (negative impedance converter).

Chua's Circuit: Inductor Replacement

OpAmp input currents neglectible

OpAmp differential input voltage neglectible

$$R_{1} \cdot i + R_{2} \cdot (i + i_{2}) = 0$$

$$R_{3} \cdot (i + i_{2}) + v_{c} = 0$$

$$i + i_{2} + i_{1} = i_{c} = C \cdot \frac{dv_{c}}{dt}$$

$$\begin{split} i+i_2 &= -\frac{R_1}{R_2} \cdot i \\ v_c &= \frac{R_1 \cdot R_3}{R_2} \cdot i \\ i_c &= C \cdot \frac{R_1 \cdot R_3}{R_2} \cdot \frac{di}{dt} \\ v &= R_4 \cdot i_c = C \cdot \frac{R_1 \cdot R_3 \cdot R_4}{R_2} \cdot \frac{di}{dt} \end{split}$$

This TwoPin is *not* a OnePort $i_c \neq i$ and $i_1 + i_2 \neq 0$! The ground at the bottom is necessary.

R₁ = 100
$$\Omega$$

 R_2 = 1 $k\Omega$
 R_3 = 1 $k\Omega$
 R_4 = 1,8 $k\Omega$
 C = 100 nF
 $L = C \cdot \frac{R_1 \cdot R_3 \cdot R_4}{R_2} = 18 mH$

6_Chaotic Diode Circuit

https://www.researchgate.net/publication/309351711 A simple chaotic circuit with a light-emitting diode

$$C \cdot \frac{dv_1}{dt} = -\frac{v_2}{R}$$

$$C \cdot \frac{dv_2}{dt} = -\frac{v_3}{R}$$

$$C \cdot \frac{dv_3}{dt} = -\frac{v_1}{R} - \frac{v_3}{R_b} - \frac{v_4}{R}$$

$$\frac{v_4}{R_a} = -I_{ds} \cdot \left(e^{\frac{v_2}{nV_t}} - 1\right)$$

$$\tau = R \cdot C$$

$$\tau \cdot \frac{dv_1}{dt} = -v_2$$

$$\tau \cdot \frac{dv_2}{dt} = -v_3$$

$$\tau \cdot \frac{dv_3}{dt} = -v_1 - \frac{R}{R_h} \cdot v_3 + R_a \cdot I_{ds} \cdot \left(e^{\frac{v_2}{nV_t}} - 1\right)$$

$$a = \frac{R_a \cdot I_{ds}}{nV_t}$$

$$b = \frac{R}{R_b}$$

$$\tau \cdot \dot{x}_1 = -x_2$$

$$\tau \cdot \dot{x}_2 = -x_3$$

$$\tau \cdot \dot{x}_3 = -x_1 + a \cdot (e^{x_2} - 1) - b \cdot x_3$$

7_Chaotic Oscillator

https://www.researchgate.net/publication/230925506_A_simple_chaotic_oscillator_for_educational_purposes https://www.researchgate.net/publication/259216097_NUMERICAL_TREATMENT_OF_EDUCATIONAL_CHAOS_OSCILLATOR

$$\begin{split} i_L &= C \cdot \frac{dv_C}{dt} \\ L \cdot \frac{di_L}{dt} &= \left(k - 1 - \frac{R_L}{R}\right) \cdot R \cdot i_L - v_C - v_{C^*} \\ k &= 1 + \frac{R_2}{R_1} \\ C^* \cdot \frac{dv_{C^*}}{dt} &= I_0 + i_L - I_{DS} \cdot \left(e^{\frac{v_{C^*}}{nV_t}} - 1\right) \\ I_0 &\approx \frac{V_b}{R_0} \end{split}$$

$$\tau = \sqrt{L \cdot C}$$

$$Z = \sqrt{\frac{L}{C}}$$

$$a = \left(k - 1 - \frac{R_L}{R}\right) \cdot \frac{R}{Z}$$

$$b = \frac{Z \cdot I_0}{nV_t}$$

$$c = \frac{Z \cdot I_{DS}}{nV_t}$$

$$e = \frac{C^*}{C}$$

$$\begin{split} \tau \cdot \frac{\dot{v}_C}{nV_t} &= \frac{Z \cdot i_L}{nV_t} \\ \tau \cdot \frac{Z \cdot i_L}{nV_t} &= \left(k - 1 - \frac{R_L}{R}\right) \cdot \frac{R}{Z} \cdot \frac{Z \cdot i_L}{nV_t} - \frac{v_C}{nV_t} - \frac{v_{C^*}}{nV_t} \\ \tau \cdot e \cdot \frac{\dot{v}_{C^*}}{nV_t} &= \frac{Z \cdot I_0}{nV_t} + \frac{Z \cdot i_L}{nV_t} - \frac{Z \cdot I_{DS}}{nV_t} \cdot \left(e^{\frac{v_{C^*}}{nV_t}} - 1\right) \end{split}$$

8_Colpitts Oscillator

https://link.springer.com/book/10.1007/978-3-319-05900-6 (1.3)

https://ieeexplore.ieee.org/document/331536

$$C_1 \cdot \frac{dv_1}{dt} = i_L - \beta \cdot i_B$$

$$C_2 \cdot \frac{dv_2}{dt} = -\frac{V_{s-} + v_2}{R_2} - i_L - i_B$$

$$L \cdot \frac{di_L}{dt} = V_{s+} - v_1 + v_2 - R_L \cdot i_L$$

$$i_B = \begin{cases} v_2 = v_{BE} \le V_{th} \to & 0 \\ v_2 = v_{BE} > V_{th} \to & \frac{v_2 - V_{th}}{R_{on}} \end{cases}$$

parameter SI.Resistance RL=35. "Resistance of L";
parameter SI.Inductance L=98.5e-6 "Inductor";
parameter SI.Resistance R2=1000 "Resistor 2";
parameter SI.Capacitance C1=54.e-9 "Capacitor 1";
parameter SI.Capacitance C2=54.e-9 "Capacitor 2";
parameter SI.Voltage Vs=5 "Source Voltage";

parameter SI.Voltage Vth=0.75 "Transistor threshold voltage";
parameter SI.Resistance Ron=100
 "Small-signal on-resistance of base-emitter junction";
parameter Real beta=200 "Transistor forward current gain";

9_Shinriki Oscillator

https://pawn.physik.uni-wuerzburg.de/~slueck/PhyAmSa09/Home_files/Examensarbeit_Lueck.pdf https://ieeexplore.ieee.org/abstract/document/1456241

$$i_{z} = \begin{cases} |v_{z}| < V_{bt} \\ |v_{z}| \ge V_{bt} \end{cases} sign(v_{z}) \cdot [a \cdot (|v_{z}| - V_{bt}) + b \cdot (|v_{z}| - V_{bt})^{3} + c \cdot (|v_{z}| - V_{bt})^{5}]$$

$$C_{1} \cdot \frac{dv_{1}}{dt} = -i_{NIC} - \frac{v_{1}}{R_{1}} - i_{z}$$

$$C_{2} \cdot \frac{dv_{2}}{dt} = i_{z} - i_{L}$$

$$v_{2} = L \cdot \frac{di_{L}}{dt} + R_{L} \cdot i_{L}$$

$$g_{NIC} = \frac{di_{NIC}}{dv_{NIC}} = \begin{cases} |v_{NIC}| > V_{Lim} & g_{+} \\ |v_{NIC}| \le V_{Lim} & g_{-} \end{cases}$$

$$parameter SI. Resistance Ri=100. "Resistor of the state of the$$

parameter SI.Inductance L=320e-3 "Inductor";
parameter SI.Resistance RL=100. "Resistor of L";
parameter SI.Resistance R1=60e3 "Resistor 1";
parameter SI.Resistance R2=20e3 "Resistor 2";
parameter SI.Capacitance C1=10.e-9 "Capacitor 1";
parameter SI.Capacitance C2=100e-9 "Capacitor 2";

$$V_{bt} = 3.3 V$$

$$a = 1,0862 \frac{mA}{V}$$

$$b = -0,1615 \frac{mA}{V^3}$$

$$c = 0,3021 \frac{mA}{V^5}$$

$$V_{Lim} = V_S \cdot \frac{6800}{4700 + 6800}$$

$$g_+ = +\frac{1000}{4700} mS$$

$$g_- = -\frac{1000}{6800} mS$$

Characteristic of the NIC (negative impedance converter)

Investigation of the Zener diode pair approximation:

$$\begin{split} i_z &= \begin{cases} |v_z| < V_{bt} & 0 \\ |v_z| \ge V_{bt} & sign(v_z) \cdot [a \cdot (|v_z| - V_{bt}) + b \cdot (|v_z| - V_{bt})^3 + c \cdot (|v_z| - V_{bt})^5] \\ \frac{di_z}{dv_z} &= \begin{cases} |v_z| < V_{bt} & 0 \\ |v_z| \ge V_{bt} & sign(v_z) \cdot [a + 3b \cdot (|v_z| - V_{bt})^2 + 5c \cdot (|v_z| - V_{bt})^4] \end{cases} \end{split}$$
 The first derivative $\frac{di_z}{dv_z}$ is not continuous at $|v_z| = V_{bt}$.

If voltage v is prescribed, the current i can be unambiguously determined.

If current i is prescribed, between $-V_{bt}$ and $+V_{bt}$ there is a manifold of solutions for the voltage v. For this application, this restriction has no influence.

This restriction could be solved by adaption the approximation, i.e. exchange the horizontal line in the range $-V_{bt} < v_z < +V_{bt}$ against a characteristic with small constant positive slope and adapt the polynomial approximation to achieve a one times continuously differentiable characteristic.

Investigation of the negative impedance converter (NIC):

As long as the opAmp operates in the linear region:

$$i_n = \frac{v_{out} - v}{R} = \frac{v}{R_g} \rightarrow v_{out} = v \cdot \frac{R + R_g}{R_g}$$
$$i = \frac{v - v_{out}}{R} = -\frac{v}{R_g}$$
$$g_- = \frac{1}{R_g}$$

When the opAmp's output saturates:

$$V_{Lim} = V_s \cdot \frac{R_g}{R + R_g}$$

$$v \ge +V_{Lim} : i = \frac{v - V_{Lim}}{R}$$

$$g_+ = \frac{1}{R}$$

If voltage v is prescribed, the current i can be unambiguously determined.

If current i is prescribed, in the range between the zero crossings the voltage v has 3 possible solutions. For this application, this restriction has no influence.

10 Jerk Circuit

https://link.springer.com/book/10.1007/978-3-319-05900-6 (3.1)

https://sprott.physics.wisc.edu/pubs/paper352.pdf

The name of the system stems from the third derivative of x, which – in a mechanical system – is the derivative of acceleration called jerk. The Jerk equation has been investigated in different versions.

$$\ddot{x} + G(\ddot{x}, \dot{x}, x) = 0$$

The version implemented here uses a diode as described in the mentioned publications:

$$G(\ddot{x}, \dot{x}, x) = A \cdot \ddot{x} + f(\dot{x}) + x$$

$$\ddot{x} + A \cdot \ddot{x} + f(\dot{x}) + x = 0$$

 $f(\dot{x})$ is modeled using the Shockley equation of a diode:

$$f(\dot{x}) = R \cdot I_S \cdot \left(e^{\frac{\dot{x}}{nV_t}} - 1\right)$$

This leads to a system of 3 ordinary differential equations with one nonlinearity:

$$\dot{x} = y$$

$$\ddot{x} = \dot{y} = z$$

$$\ddot{x} = \ddot{y} = \dot{z}$$

$$\dot{z} = -A \cdot z - x - f(y)$$

The values stay pretty inside a practicable range for a normal voltage supply.

Using 4 operational amplifiers and an acceleration factor of 1000, the circuit can be implemented as follows. The parameter A influences only the feedback resistor at opAMp_z:

parameter Real A=0.3 "Parameter to be varied";
parameter SI.Resistance R=1e3 "Resistance";
parameter SI.Capacitance C=1e-6 "Capacitance";
parameter SI.Current Ids=1e-12 "Sat.current";
parameter SI.Voltage nVt=26e-3 " voltage equ.";

A=0.3 for periodic results

A=1.0 for chaotic results