

Design at Register Transfer Level (RTL)

Index

- ☐ Abstraction levels
- ☐ RT level digital systems structure
 - Datapath
 - Control
- Design optimization
 - Area
 - Performance
- Optimization by design
 - Serial, parallel and pipeline architectures

Digital systems

- ☐ Digital systems specification
 - Inputs (protocol)
 - Algorithm: ordered set of operations
 - Outputs (protocol)
- Design at Register Transfer Level

Abstraction levels

	Logic	RTL
Time resulution	Delays (ps)	Clock cycle
Data	Bits	Vectors Integers
Functional components	Logic functions	Operations State diagrams
Structural components	Gates Flip-flops	ALU Registers Multiplexers Counters Buses

Too Complex

Digital systems structure

Sample algorithm

☐ Function:

$$R = abs(A-B)/2$$

- ☐ Algorithm:
 - 1. R <= A-B
 - 2. If R<0 then R <= -R
 - 3. R <= R/2

Signals	Function
enA, enB, enR	Register load enable
selA, selB	Mux select
shR	R shift
sigR	R sign

Algorithm control

Step	Operation	enA enB	selA selB	enR	shR
P1	Load operators	1	Х	0	0
P2	$R \le rA - rB$	0	0	1	0
Р3	R <= 0 - R	0	1	1	0
P4	R <= R/2	0	Χ	1	1

Datapath description

```
-- Registers y and substraction
process (Reset, Clk)
begin
  if Reset = '1' then
    rA <= (others => '0');
   rB <= (others => '0');
   R <= (others => '0');
  elsif Clk'event and Clk='1' then
    if enA='1' THEN
      rA \le A;
   end if;
   if enB=\1' THEN
      rB <= B;
   end if:
   if enR=\1' THEN
      if shR='1' THEN
       R \le R/2:
      else
       R \le mA - mB;
      end if:
    end if;
  end if;
end process;
```


Circuit synthesis

- ☐ Synthesis: transform a circuit described at RTL into a circuit in the Logic Level (netlist)
- ☐ After synthesis, analyze:
 - Area: area taken by the circuit cells (ASIC) or amount of resources used (FPGA)
 - Performance: circuit processing speed
 - Power

- ☐ FPGA (Field Programmable Gate Array)
 - Resources: LUTs, flip-flops, RAM blocks, pins...
 - Before Place & Route (implementation), approximate estimations
 - Cannot achieve 100% occupation due to routing
- ASIC (Application Specific Integrates Circuit)
 - ❖No. gates, flip-flops, memories → area estimation
 - Interconnection area
 - Before Place & Route, approximate estimations
 - Pins/pads: core limited, pad limited. Cell area may be irrelevant

Core and pad limited circuits

Pad limited

Core limited

Performance

Clock frequency

$$\star$$
 f_{CIk} = 1 / T_{CIk}

- ☐ Throughput or data rate : no. data per time unit
 - ❖ N = clock cycles required to process a single datum
 - ❖ $T_{dat} = N \times T_{Clk}$ → Single datum processing time
 - $R = 1 / (N \times T_{Clk}) = f_{Clk} / N$ \rightarrow Data per second
- ☐ Do not confuse performance with clock frequency

Clock period: critical path

Design optimization

- Area and performance are opposite: higher performance usually imply higher area
- Requirements
 - ❖For a given frequency → get the lowest area
 - ❖For a given area → get the highest frequency
- ☐ Tool guided optimization
 - Temporal restrictions: clock frequency
 - Area or performance optimization
- Optimization by design
 - Series implementation
 - Parallel implementation
 - Pipeline

Example: exponentiation circuit

- \square R = A^B (B three bit: 0 7)
- ☐ Required operator: multiplier
- \square Binary codification: B = $b_2b_1b_0$

$$A^{B} = A^{(4b_{2}+2b_{1}+b_{0})} = A^{4b_{2}} \cdot A^{2b_{1}} \cdot A^{b_{0}}$$

$$A^{4} \text{ if } b_{2}=1 \qquad A^{2} \text{ if } b_{1}=1 \qquad A \text{ if } b_{0}=1$$

$$1 \text{ if } b_{2}=0 \qquad 1 \text{ if } b_{1}=0 \qquad 1 \text{ if } b_{0}=0$$

Serial implementation (I)

- ☐ Multiply A, B times
 - **❖**R <= R*A
 - R initialized to 1
- Control needs a counter
- Small area
- ☐ High clock frequency
- Variable number of clock cycles

R is called accumulator

Serial implementation (II)

$$A^B = A^{4b_2} \cdot A^{2b_1} \cdot A^{b_0}$$

- 1) $A^2 <= A^*A$
- 2) $A^4 \le A^2 + A^2$
- 3) $R \le A^{2*}A$
- 4) $R \le A^{4*}R$
- ☐ Small area
- ☐ High clock frequency
- ☐ 4 clock cycles

ALU + register file

Typical microprocessor structure

Can you re-order the algorithm to use lower number of registers?

Parallel implementation

18

Parallel

```
process (Reset, Clk)
 variable A2, A4, T: ...
begin
  if Reset = 1' then
  R <= (others => '0');
  elsif Clk'event and Clk='1'
then
    A2 := A*A;
    A4 := A2*A2;
    if b(0) = 0' then
      T := 1;
    else
     T := A;
    end if;
    if b(1) = 1' then
    T := T*A2;
    end if;
    if b(2) = 1' then
      T := T*A4;
    end if;
    R \ll T;
  end if;
end process;
```


- Biggest area
- ☐ High clock frequency
 - Short critical path
- ☐ 1 datum every clock cycle
- Latency

- In order to improve the critical path, the pipes should involve balanced delays
 - One multiplier and one mux
- Minimizing the number of inserted registers
 - Cutting after the multiplexers b1 y b0 requires an additional register

Retiming

Exponentiation circuit: simulation

- Latency
- ☐ Number of cycles per datum

Exponentiation circuit: synthesis

	Serial	Parallel	Pipeline	Constraints
FF	285	116	315	
LUT	3,421	4,717	4,633	Synthesis for speed
T _{Clk} (ns)	22.33	30.12	20.03	Multiplier with LUTs
Freq (Mhz)	44,78	33.20	49.94	

	Serial	Parallel	Pipeline	Constraints
FF	278	115	290	
LUTs	3,399	4,669	4,633	Synthesis for area
T _{Clk} (ns)	22.33	30.12	20.025	Multiplier with LUTs
Freq (Mhz)	44.78	33.20	49.94	

	Serial	Parallel	Pipeline	Constraints	
FF	280	115	294		
LUTs	610	739	675	Countle a sia famana a	
MULT18x18	12	19	19	Synthesis for speed Multipliers auto	
Tclk (ns)	21.62	27.47	20.025	Multipliers auto	
Freq (Mhz)	46.24	36.40	49.94		

Comparison

	Serial	Parallel	Pipelined
Area	↓↓	个个	个个个
(FF/LUT)	280/3500	115/4700	300/4600
Clock Frequency	个个	↓↓	个个个
	45 MHz	33 MHz	50 MHz
Throughput	↓↓	个个	个个个
	9 Mdata/s	33 Mdata/s	50 Mdata/s
Latency	Yes (5)	No	Yes (4)

Advised for reducing area

Advised for high performance

Conclusions

- ☐ The structure of a digital system at RT level
 - Datapath
 - Control
- ☐ Design optimization
 - Area
 - Performance
- Optimizing by design
 - Serial architecture
 - Parallel architecture
 - Pipelined architecture

28