ME705 - Prova 2 - 28/06/2022

Profa. Mariana Rodrigues Motta, DE - UNICAMP Coloque nome e RA.

Considere as contagens anuais de grandes terremotos (ou seja, magnitude 7 e acima) para os anos 1900-2006 trabalhadas nas Listas 5, 6 e 7. A variável *counts* contém a contagem de $0, 1, 2, 3, \ldots, 41$ terremotos ao longo dos anos em estudo.

counts

Considerando a função kmeans do pacote mixtools do R para duas classes, temos como saída

> kmeans(counts,2)

K-means clustering with 2 clusters of sizes 14, 28

Cluster means:

[,1]

1 5.7142857

2 0.9642857

Clustering vector:

onde Cluster means indica a média das observações dentro dos clusters 1 e 2, respectivamente. Lembre que a distribuição de Poisson com parâmetro λ é dada por

$$P(Y = k) = e^{-\lambda} \lambda^k / k!$$

1. (1,0 ponto) Escreva o modelo marginal de mistura de Poisson considerando duas classes usando p como probabilidade de mistura e os valores do parâmetro λ da distribuição de Poisson a partir dos resultados do kmeans com 2 classes.

3. (1,0 ponto) Considere o argumento de 'aumentar' os dados através das variáveis latentes z_1,\ldots,z_n , iid, tal que $z_i=1$ se y_i pertence à classe 1 e zero caso contrário, onde $P(Z_i=1)=p$ e $P(Z_i=0)=1-p$, p é a probabilidade de mistura. Escreva a função de verossimilhança com dados aumentados em z_1,\ldots,z_n para a mistura de duas distribuições de Poisson considerando λ_1 e λ_2 a partir do resultado do *kmeans* com 2 classes.

4. Considerando a função kmeans do pacote mixtools do R para três classes, temos como saída

onde Cluster means indica a média das observações dentro dos clusters 1, 2 e 3, respectivamente.

(a) (1,0 ponto) Escreva o modelo marginal de mistura de Poisson considerando três classes, com probabilidade de mistura p_1 , p_2 e $p_3 = 1 - p_1 - p_2$, e valores do parâmetro λ da distribuição de Poisson de cada classe usando os resultados do *kmeans* para 3 classes.

(b) (1,0 ponto) Considere o argumento de 'aumentar' os dados através das variáveis latentes z_1, \ldots, z_n , iid, tal que $z_i = 1$ se y_i pertence à classe 1, $z_i = 2$ se y_i pertence à classe 2 e $z_i = 3$ se y_i pertence à classe 3, onde $P(Z_i = 1) = p_1$, $P(Z_i = 2) = p_2$ e $P(Z_i = 3) = 1 - p_1 - p_2$. Note que $z_i \sim Multinomial(3, p_1, p_2, p_3)$. Escreva a função de verossimilhança com dados aumentados em z_1, \ldots, z_n para a mistura de três distribuições de Poisson com valores do parâmetro λ de cada classe usando os resultados do kmeans para 3 classes.

5.	. (1,0 ponto) Considere um modelo de mistura de Poisson com duas classes com dados aumentados en z_1, \ldots, z_n , iid. A seguir, escreva a distribuição condicional completa a posteriori de z_i .		

6. (1,0 ponto) Escreva o algoritmo do amostrador de Gibbs para o modelo de mistura de Poisson com duas classes com dados aumentados em z_1, \ldots, z_n , iid. Para isso, use a notação $p(\lambda_1|else, \mathbf{y}), p(\lambda_2|else, \mathbf{y}), p(p|else, \mathbf{y})$ e $p(z_i|else, \mathbf{y})$ como as condicionais completas de λ_1, λ_2, p e z_i , respectivamente, e seja else o vetor de parâmetros sem o parâmetro de interesse da distribuição condicional completa. Por exemplo, para $p(\lambda_1|else, \mathbf{y})$, o interesse é λ_1 e else é igual a $\lambda_2, p, z_1, \ldots, z_n$. Use apenas a notação das condicionais completas, não precisa deduzí-las.

- 7. (1,0 ponto) Considere um modelo de mistura de Poisson com duas classes para y_1, \ldots, y_n com dados aumentados em z_1, \ldots, z_n , iid, n = 5.
 - (a) Para que serve o burn-in?
 - (b) Por que tomamos amostras da distribuição a posteriori 'pulando' (thinning) elementos das cadeias de Markov obtidas pelo amostrador de Gibbs?
 - (c) A seguir, considere a tabela abaixo, a qual associa a estatística R de Gelman a partir de duas cadeias para cada quantidade desconhecida do modelo estimada pelo amostrador de Gibbs. Note que para algumas quantidades R é bem maior do que 1. O que isso indica? Qual medida você tomaria para resolver o problema?

	\mathbf{R}
λ_1	2.1
λ_2	1.1
p	3
z_1	2.5
z_2	1.2
z_3	1.1
z_4	1.6
z_5	1.3

8. Considere um modelo de mistura de Poisson com duas classes para y_1, \ldots, y_n com dados aumentados em z_1, \ldots, z_n , iid, para os dados de incidência de terremotos descrito em (1), onde consideramos o objeto counts como a amostra em estudo. O código abaixo é utilizado para obter uma amostra da distribuição preditiva a posteriori de uma nova observação y_{n+1} , considerando que os objetos lambda.1, lambda.2, e p contém amostras a posteriori dos parâmetros λ_1 , λ_2 e p após aplicar o burn-in e thinning. O objeto deny[i,] contém amostras da distribuição preditiva da contagem associada ao índice i. O código considera que observação futura y_{n+1} é independente da amostra \mathbf{y} .

```
## preditiva de y_{n+1}

yy = 0:max(counts)

ny = length(yy)

deny = matrix(0,ny,niter) ## densidade de y

for (i in 1:ny)
  deny[i,] = p*dpois(yy[i],lambda.1)+(1-p)*dpois(yy[i],lambda.2)
```

- (a) (1,0 ponto) Escreva um trecho de código para estimar $P(y_{n+1}=0|\mathbf{y})$ usando a amostra da distribuição preditiva.
- (b) (1,0 ponto) Escreva um trecho de código para encontrar um intervalo de credibilidade de 95% para $P(y_{n+1}=0|\mathbf{y})$ usando a amostra da distribuição preditiva.