

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
20 October 2005 (20.10.2005)

PCT

(10) International Publication Number
WO 2005/098047 A2

- (51) International Patent Classification⁷: **C12Q 1/68**
- (21) International Application Number:
PCT/US2005/005356
- (22) International Filing Date: 18 February 2005 (18.02.2005)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
- | | | |
|------------|-------------------------------|----|
| 60/545,425 | 18 February 2004 (18.02.2004) | US |
| 60/559,754 | 5 April 2004 (05.04.2004) | US |
| 60/632,862 | 3 December 2004 (03.12.2004) | US |
| 60/639,068 | 22 December 2004 (22.12.2004) | US |
| 60/648,188 | 28 January 2005 (28.01.2005) | US |
- (71) Applicants (for all designated States except US): **ISIS PHARMACEUTICALS, INC.** [US/US]; 1896 Rutherford Road, Carlsbad, CA 92008 (US). **SCIENCE APPLICATIONS INTERNATIONAL CORPORATION** [US/US]; 10260 Campus Point Drive, MSC4, San Diego, CA 92121 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): **SAMPATH, Rangarajan** [US/US]; 12223 Mannix Road, San Diego, CA 92129 (US). **HALL, Thomas, A.** [US/US]; 5239 Wohlford Street, Oceanside, CA 92056 (US). **ECKER, David, J.** [US/US]; 1041 Saxony Road, Encinitas, CA 92024 (US). **ESCHOOP, Mark, W.** [US/US]; 615 Glenmont Drive, Solana Beach, CA 92075 (US). **MASSIRE, Christian** [US/US]; 7498 Altiva Place, Carlsbad, CA 92051 (US).
- (74) Agent: **LEGAARD, Paul, K.**; Cozen O'Connor, 1900 Market Street, Philadelphia, PA 19103 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2005/098047 A2

(54) Title: COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

(57) Abstract: The present invention provides oligonucleotide primers and compositions and kits containing the same for rapid identification of bacteria by amplification of a segment of bacterial nucleic acid followed by molecular mass analysis.

COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of priority to: U.S. Provisional Application Serial No. 60/545,425 filed February 18, 2004, U.S. Provisional Application Serial No. 60/559,754, filed April 5, 2004, U.S. Provisional Application Serial No. 60/632,862, filed December 3, 2004, U.S. Provisional Application Serial No. 60/639,068, filed December 22, 2004, and U.S. Provisional Application Serial No. 60/648,188, filed January 28, 2005, each of which is incorporated herein by reference in its entirety.

STATEMENT OF GOVERNMENT SUPPORT

[0002] This invention was made with United States Government support under DARPA/SPO contract BAA00-09. The United States Government may have certain rights in the invention.

FIELD OF THE INVENTION

[0003] The present invention relates generally to the field of genetic identification of bacteria and provides nucleic acid compositions and kits useful for this purpose when combined with molecular mass analysis.

BACKGROUND OF THE INVENTION

[0004] A problem in determining the cause of a natural infectious outbreak or a bioterrorist attack is the sheer variety of organisms that can cause human disease. There are over 1400 organisms infectious to humans; many of these have the potential to emerge suddenly in a natural epidemic or to be used in a malicious attack by bioterrorists (Taylor et al. Philos. Trans. R. Soc. London B. Biol. Sci., 2001, 356, 983-989). This number does not include numerous strain variants, bioengineered versions, or pathogens that infect plants or animals.

[0005] Much of the new technology being developed for detection of biological weapons incorporates a polymerase chain reaction (PCR) step based upon the use of highly specific primers and probes designed to selectively detect certain pathogenic organisms. Although this approach is appropriate for the most obvious bioterrorist organisms, like smallpox and anthrax, experience has shown that it is very difficult to predict which of hundreds of possible pathogenic organisms might be employed in a terrorist attack. Likewise, naturally emerging human disease that has caused devastating consequence in public health has come from unexpected families of

bacteria, viruses, fungi, or protozoa. Plants and animals also have their natural burden of infectious disease agents and there are equally important biosafety and security concerns for agriculture.

[0006] A major conundrum in public health protection, biodefense, and agricultural safety and security is that these disciplines need to be able to rapidly identify and characterize infectious agents, while there is no existing technology with the breadth of function to meet this need. Currently used methods for identification of bacteria rely upon culturing the bacterium to effect isolation from other organisms and to obtain sufficient quantities of nucleic acid followed by sequencing of the nucleic acid, both processes which are time and labor intensive.

[0007] Mass spectrometry provides detailed information about the molecules being analyzed, including high mass accuracy. It is also a process that can be easily automated. DNA chips with specific probes can only determine the presence or absence of specifically anticipated organisms. Because there are hundreds of thousands of species of benign bacteria, some very similar in sequence to threat organisms, even arrays with 10,000 probes lack the breadth needed to identify a particular organism.

[0008] There is a need for a method for identification of bioagents which is both specific and rapid, and in which no culture or nucleic acid sequencing is required. Disclosed in U.S. Patent Application Serial Nos: 09/798,007, 09/891,793, 10/405,756, 10/418,514, 10/660,997, 10/660,122, 10/660,996, 10/728,486, 10/754,415 and 10/829,826, each of which is commonly owned and incorporated herein by reference in its entirety, are methods for identification of bioagents (any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus) in an unbiased manner by molecular mass and base composition analysis of "bioagent identifying amplicons" which are obtained by amplification of segments of essential and conserved genes which are involved in, for example, translation, replication, recombination and repair, transcription, nucleotide metabolism, amino acid metabolism, lipid metabolism, energy generation, uptake, secretion and the like. Examples of these proteins include, but are not limited to, ribosomal RNAs, ribosomal proteins, DNA and RNA polymerases, elongation factors, tRNA synthetases, protein chain initiation factors, heat shock protein groEL, phosphoglycerate kinase, NADH dehydrogenase, DNA ligases, DNA gyrases and DNA topoisomerases, metabolic enzymes, and the like.

[0009] To obtain bioagent identifying amplicons, primers are selected to hybridize to conserved sequence regions which bracket variable sequence regions to yield a segment of nucleic acid which can be amplified and which is amenable to methods of molecular mass analysis. The variable sequence regions provide the variability of molecular mass which is used for bioagent identification. Upon amplification by PCR or other amplification methods with the specifically chosen primers, an amplification product that represents a bioagent identifying amplicon is obtained. The molecular mass of the amplification product, obtained by mass spectrometry for example, provides the means to uniquely identify the bioagent without a requirement for prior knowledge of the possible identity of the bioagent. The molecular mass of the amplification product or the corresponding base composition (which can be calculated from the molecular mass of the amplification product) is compared with a database of molecular masses or base compositions and a match indicates the identity of the bioagent. Furthermore, the method can be applied to rapid parallel analyses (for example, in a multi-well plate format) the results of which can be employed in a triangulation identification strategy which is amenable to rapid throughput and does not require nucleic acid sequencing of the amplified target sequence for bioagent identification.

[0010] The result of determination of a previously unknown base composition of a previously unknown bioagent (for example, a newly evolved and heretofore unobserved bacterium or virus) has downstream utility by providing new bioagent indexing information with which to populate base composition databases. The process of subsequent bioagent identification analyses is thus greatly improved as more base composition data for bioagent identifying amplicons becomes available.

[0011] The present invention provides oligonucleotide primers and compositions and kits containing the oligonucleotide primers, which define bacterial bioagent identifying amplicons and, upon amplification, produce corresponding amplification products whose molecular masses provide the means to identify bacteria, for example, at and below the species taxonomic level.

SUMMARY OF THE INVENTION

[0012] The present invention provides primers and compositions comprising pairs of primers, and kits containing the same for use in identification of bacteria. The primers are designed to produce bacterial bioagent identifying amplicons of DNA encoding genes essential to life such as, for example, 16S and 23S rRNA, DNA-directed RNA polymerase subunits (rpoB and rpoC),

valyl-tRNA synthetase (valS), elongation factor EF-Tu (TufB), ribosomal protein L2 (rplB), protein chain initiation factor (infB), and spore protein (sspE). The invention further provides drill-down primers, compositions comprising pairs of primers and kits containing the same, which are designed to provide sub-species characterization of bacteria.

[0013] In particular, the present invention provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 80% to 100% sequence identity with SEQ ID NO: 26, or a composition comprising the same; an oligonucleotide primer 20 to 27 nucleobases in length comprising at least a 20 nucleobase portion of SEQ ID NO: 388, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 26, and a second oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 388.

[0014] The present invention also provides an oligonucleotide primer 22 to 35 nucleobases in length comprising SEQ ID NO: 29, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising SEQ ID NO: 391, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 29, and a second oligonucleotide primer 13 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 391.

[0015] The present invention also provides an oligonucleotide primer 22 to 26 nucleobases in length comprising SEQ ID NO: 37, or a composition comprising the same; an oligonucleotide primer 20 to 30 nucleobases in length comprising SEQ ID NO: 362, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 37, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 362.

[0016] The present invention also provides an oligonucleotide primer 13 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 48, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising SEQ ID NO: 404, or a composition comprising the same; a composition comprising both primers; and

a composition comprising a first oligonucleotide primer 13 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 48, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 404.

[0017] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 160, or a composition comprising the same; an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 515, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 160, and a second oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 515.

[0018] The present invention also provides an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 261, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 624, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 261, and a second oligonucleotide primer 18 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 624.

[0019] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 231, or a composition comprising the same; an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 591; , or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 231, and a second oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 591.

[0020] The present invention also provides an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 349, or a composition

comprising the same; an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 711, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 349, and a second oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 711.

[0021] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 240, or a composition comprising the same; an oligonucleotide primer 15 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 596, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 240, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 596.

[0022] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 58, or a composition comprising the same; an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 414, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 58, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 414.

[0023] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 6, or a composition comprising the same; an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 369, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 6, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 369.

[0024] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 246, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 602, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 246, and a second oligonucleotide primer 19 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 602.

[0025] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 256, or a composition comprising the same; an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 620, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 256, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 620.

[0026] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 344, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 700, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 344, and a second oligonucleotide primer 18 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 700.

[0027] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 235, or a composition comprising the same; an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 587, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of

SEQ ID NO: 235, and a second oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 587.

[0028] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 322, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 686, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 322, and a second oligonucleotide primer 19 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 686.

[0029] The present invention also provides compositions, such as those described herein, wherein either or both of the first and second oligonucleotide primers comprise at least one modified nucleobase, a non-templated T residue on the 5'-end, at least one non-template tag, or at least one molecular mass modifying tag, or any combination thereof.

[0030] The present invention also provides kits comprising any of the compositions described herein. The kits can comprise at least one calibration polynucleotide, or at least one ion exchange resin linked to magnetic beads, or both.

[0031] The present invention also provides methods for identification of an unknown bacterium. Nucleic acid from the bacterium is amplified using any of the compositions described herein to obtain an amplification product. The molecular mass of the amplification product is determined. Optionally, the base composition of the amplification product is determined from the molecular mass. The base composition or molecular mass is compared with a plurality of base compositions or molecular masses of known bacterial bioagent identifying amplicons, wherein a match between the base composition or molecular mass and a member of the plurality of base compositions or molecular masses identifies the unknown bacterium. The molecular mass can be measured by mass spectrometry. In addition, the presence or absence of a particular clade, genus, species, or sub-species of a bioagent can be determined by the methods described herein.

[0032] The present invention also provides methods for determination of the quantity of an unknown bacterium in a sample. The sample is contacted with any of the compositions described

herein and a known quantity of a calibration polynucleotide comprising a calibration sequence. Concurrently, nucleic acid from the bacterium in the sample is amplified with any of the compositions described herein and nucleic acid from the calibration polynucleotide in the sample is amplified with any of the compositions described herein to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon. The molecular mass and abundance for the bacterial bioagent identifying amplicon and the calibration amplicon is determined. The bacterial bioagent identifying amplicon is distinguished from the calibration amplicon based on molecular mass, wherein comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in the sample. The method can also comprise determining the base composition of the bacterial bioagent identifying amplicon.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Figure 1 is a representative pseudo-four dimensional plot of base compositions of bioagent identifying amplicons of enterobacteria obtained with a primer pair targeting the rpoB gene (primer pair no 14 (SEQ ID NOS: 37:362). The quantity each of the nucleobases A, G and C are represented on the three axes of the plot while the quantity of nucleobase T is represented by the diameter of the spheres. Base composition probability clouds surrounding the spheres are also shown.

[0034] Figure 2 is a representative diagram illustrating the primer selection process.

[0035] Figure 3 lists common pathogenic bacteria and primer pair coverage. The primer pair number in the upper right hand corner of each polygon indicates that the primer pair can produce a bioagent identifying amplicon for all species within that polygon.

[0036] Figure 4 is a representative 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples (labeled NHRC samples) closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.

[0037] Figure 5 is a representative mass spectrum of amplification products representing bioagent identifying amplicons of *Streptococcus pyogenes*, *Neisseria meningitidis*, and *Haemophilus influenzae* obtained from amplification of nucleic acid from a clinical sample with primer pair number 349 which targets 23S rRNA. Experimentally determined molecular masses and base compositions for the sense strand of each amplification product are shown.

[0038] Figure 6 is a representative mass spectrum of amplification products representing a bioagent identifying amplicon of *Streptococcus pyogenes*, and a calibration amplicon obtained from amplification of nucleic acid from a clinical sample with primer pair number 356 which targets rplB. The experimentally determined molecular mass and base composition for the sense strand of the *Streptococcus pyogenes* amplification product is shown.

[0039] Figure 7 is a representative process diagram for identification and determination of the quantity of a bioagent in a sample.

[0040] Figure 8 is a representative mass spectrum of an amplified nucleic acid mixture which contained the Ames strain of *Bacillus anthracis*, a known quantity of combination calibration polynucleotide (SEQ ID NO: 741), and primer pair number 350 which targets the capC gene on the virulence plasmid pX02 of *Bacillus anthracis*. Calibration amplicons produced in the amplification reaction are visible in the mass spectrum as indicated and abundance data (peak height) are used to calculate the quantity of the Ames strain of *Bacillus anthracis*.

DESCRIPTION OF EMBODIMENTS

[0041] The present invention provides oligonucleotide primers which hybridize to conserved regions of nucleic acid of genes encoding, for example, proteins or RNAs necessary for life which include, but are not limited to: 16S and 23S rRNAs, RNA polymerase subunits, t-RNA synthetases, elongation factors, ribosomal proteins, protein chain initiation factors, cell division proteins, chaperonin groEL, chaperonin dnaK, phosphoglycerate kinase, NADH dehydrogenase, DNA ligases, metabolic enzymes and DNA topoisomerases. These primers provide the functionality of producing, for example, bacterial bioagent identifying amplicons for general identification of bacteria at the species level, for example, when contacted with bacterial nucleic acid under amplification conditions.

[0042] Referring to Figure 2, primers are designed as follows: for each group of organisms, candidate target sequences are identified (200) from which nucleotide alignments are created (210) and analyzed (220). Primers are designed by selecting appropriate priming regions (230) which allows the selection of candidate primer pairs (240). The primer pairs are subjected to *in silico* analysis by electronic PCR (ePCR) (300) wherein bioagent identifying amplicons are obtained from sequence databases such as, for example, GenBank or other sequence collections (310), and checked for specificity *in silico* (320). Bioagent identifying amplicons obtained from GenBank sequences (310) can also be analyzed by a probability model which predicts the capability of a particular amplicon to identify unknown bioagents such that the base compositions of amplicons with favorable probability scores are stored in a base composition database (325). Alternatively, base compositions of the bioagent identifying amplicons obtained from the primers and GenBank sequences can be directly entered into the base composition database (330). Candidate primer pairs (240) are validated by *in vitro* amplification by a method such as, for example, PCR analysis (400) of nucleic acid from a collection of organisms (410). Amplification products that are obtained are optionally analyzed to confirm the sensitivity, specificity and reproducibility of the primers used to obtain the amplification products (420).

[0043] Synthesis of primers is well known and routine in the art. The primers may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed.

[0044] The primers can be employed as compositions for use in, for example, methods for identification of bacterial bioagents as follows. In some embodiments, a primer pair composition is contacted with nucleic acid of an unknown bacterial bioagent. The nucleic acid is amplified by a nucleic acid amplification technique, such as PCR for example, to obtain an amplification product that represents a bioagent identifying amplicon. The molecular mass of one strand or each strand of the double-stranded amplification product is determined by a molecular mass measurement technique such as, for example, mass spectrometry wherein the two strands of the double-stranded amplification product are separated during the ionization process. In some embodiments, the mass spectrometry is electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) or electrospray time of flight mass spectrometry (ESI-TOF-MS). A list of possible base compositions can be generated for the molecular mass value

obtained for each strand and the choice of the correct base composition from the list is facilitated by matching the base composition of one strand with a complementary base composition of the other strand. The molecular mass or base composition thus determined is compared with a database of molecular masses or base compositions of analogous bioagent identifying amplicons for known bacterial bioagents. A match between the molecular mass or base composition of the amplification product from the unknown bacterial bioagent and the molecular mass or base composition of an analogous bioagent identifying amplicon for a known bacterial bioagent indicates the identity of the unknown bioagent.

[0045] In some embodiments, the primer pair used is one of the primer pairs of Table 1. In some embodiments, the method is repeated using a different primer pair to resolve possible ambiguities in the identification process or to improve the confidence level for the identification assignment.

[0046] In some embodiments, a bioagent identifying amplicon may be produced using only a single primer (either the forward or reverse primer of any given primer pair), provided an appropriate amplification method is chosen, such as, for example, low stringency single primer PCR (LSSP-PCR). Adaptation of this amplification method in order to produce bioagent identifying amplicons can be accomplished by one with ordinary skill in the art without undue experimentation.

[0047] In some embodiments, the oligonucleotide primers are "broad range survey primers" which hybridize to conserved regions of nucleic acid encoding RNA, such as ribosomal RNA (rRNA), of all, or at least 70%, at least 80%, at least 85%, at least 90%, or at least 95% of known bacteria and produce bacterial bioagent identifying amplicons. As used herein, the term "broad range survey primers" refers to primers that bind to nucleic acid encoding rRNAs of all, or at least 70%, at least 80%, at least 85%, at least 90%, or at least 95% known species of bacteria. In some embodiments, the rRNAs to which the primers hybridize are 16S and 23S rRNAs. In some embodiments, the broad range survey primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to 100% sequence identity with primer pair numbers 3, 10, 11, 14, 16, and 17 which consecutively correspond to SEQ ID NOs: 6:369, 26:388, 29:391, 37:362, 48:404, and 58:414.

[0048] In some cases, the molecular mass or base composition of a bacterial bioagent identifying amplicon defined by a broad range survey primer pair does not provide enough resolution to unambiguously identify a bacterial bioagent at the species level. These cases benefit from further analysis of one or more bacterial bioagent identifying amplicons generated from at least one additional broad range survey primer pair or from at least one additional “division-wide” primer pair (*vide infra*). The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as “triangulation identification” (*vide infra*).

[0049] In other embodiments, the oligonucleotide primers are “division-wide” primers which hybridize to nucleic acid encoding genes of broad divisions of bacteria such as, for example, members of the *Bacillus/Clostridia* group or members of the α-, β-, γ-, and ε-proteobacteria. In some embodiments, a division of bacteria comprises any grouping of bacterial genera with more than one genus represented. For example, the β-proteobacteria group comprises members of the following genera: *Eikenella*, *Neisseria*, *Achromobacter*, *Bordetella*, *Burkholderia*, and *Ralstonia*. Species members of these genera can be identified using bacterial bioagent identifying amplicons generated with primer pair 293 (SEQ ID NOS: 344:700) which produces a bacterial bioagent identifying amplicon from the *tufB* gene of β-proteobacteria. Examples of genes to which division-wide primers may hybridize to include, but are not limited to: RNA polymerase subunits such as *rpoB* and *rpoC*, tRNA synthetases such as valyl-tRNA synthetase (*valS*) and aspartyl-tRNA synthetase (*aspS*), elongation factors such as elongation factor EF-Tu (*tufB*), ribosomal proteins such as ribosomal protein L2 (*rplB*), protein chain initiation factors such as protein chain initiation factor *infB*, chaperonins such as *groL* and *dnaK*, and cell division proteins such as peptidase *ftsH* (*hflB*). In some embodiments, the division-wide primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to 100% sequence identity with primer pair numbers 34, 52, 66, 67, 71, 72, 289, 290 and 293 which consecutively correspond to SEQ ID NOS: 160:515, 261:624, 231:591, 235:587, 349:711, 240:596, 246:602, 256:620, 344:700.

[0050] In other embodiments, the oligonucleotide primers are designed to enable the identification of bacteria at the clade group level, which is a monophyletic taxon referring to a group of organisms which includes the most recent common ancestor of all of its members and all of the descendants of that most recent common ancestor. The *Bacillus cereus* clade is an example of a bacterial clade group. In some embodiments, the clade group primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to

100% sequence identity with primer pair number 58 which corresponds to SEQ ID NOS: 322:686.

[0051] In other embodiments, the oligonucleotide primers are “drill-down” primers which enable the identification of species or “sub-species characteristics.” Sub-species characteristics are herein defined as genetic characteristics that provide the means to distinguish two members of the same bacterial species. For example, *Escherichia coli* O157:H7 and *Escherichia coli* K12 are two well known members of the species *Escherichia coli*. *Escherichia coli* O157:H7, however, is highly toxic due to the its Shiga toxin gene which is an example of a sub-species characteristic. Examples of sub-species characteristics may also include, but are not limited to: variations in genes such as single nucleotide polymorphisms (SNPs), variable number tandem repeats (VNTRs). Examples of genes indicating sub-species characteristics include, but are not limited to, housekeeping genes, toxin genes, pathogenicity markers, antibiotic resistance genes and virulence factors. Drill-down primers provide the functionality of producing bacterial bioagent identifying amplicons for drill-down analyses such as strain typing when contacted with bacterial nucleic acid under amplification conditions. Identification of such sub-species characteristics is often critical for determining proper clinical treatment of bacterial infections. Examples of pairs of drill-down primers include, but are not limited to, a trio of primer pairs for identification of strains of *Bacillus anthracis*. Primer pair 24 (SEQ ID NOS: 97:451) targets the capC gene of virulence plasmid pX02, primer pair 30 (SEQ ID NOS: 127:482) targets the cyA gene of virulence plasmid pX02, and primer pair 37 (SEQ ID NOS: 174:530) targets the lef gene of virulence plasmid pX02. Additional examples of drill-down primers include, but are not limited to, six primer pairs that are used for determining the strain type of group A *Streptococcus*. Primer pair 80 (SEQ ID NOS: 310:668) targets the gki gene, primer pair 81 (SEQ ID NOS: 313:670) targets the gtr gene, primer pair 86 (SEQ ID NOS: 227:632) targets the murI gene, primer pair 90 (SEQ ID NOS: 285:640) targets the mutS gene, primer pair 96 (SEQ ID NOS: 301:656) targets the xpt gene, and primer pair 98 (SEQ ID NOS: 308:663) targets the yqiL gene.

[0052] In some embodiments, the primers used for amplification hybridize to and amplify genomic DNA, DNA of bacterial plasmids, or DNA of DNA viruses.

[0053] In some embodiments, the primers used for amplification hybridize directly to ribosomal RNA or messenger RNA (mRNA) and act as reverse transcription primers for obtaining DNA from direct amplification of bacterial RNA or rRNA. Methods of amplifying RNA using reverse

transcriptase are well known to those with ordinary skill in the art and can be routinely established without undue experimentation.

[0054] One with ordinary skill in the art of design of amplification primers will recognize that a given primer need not hybridize with 100% complementarity in order to effectively prime the synthesis of a complementary nucleic acid strand in an amplification reaction. Moreover, a primer may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or a hairpin structure). The primers of the present invention may comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% sequence identity with any of the primers listed in Table 1. Thus, in some embodiments of the present invention, an extent of variation of 70% to 100%, or any range therewithin, of the sequence identity is possible relative to the specific primer sequences disclosed herein. Determination of sequence identity is described in the following example: a primer 20 nucleobases in length which is otherwise identical to another 20 nucleobase primer but having two non-identical residues has 18 of 20 identical residues ($18/20 = 0.9$ or 90% sequence identity). In another example, a primer 15 nucleobases in length having all residues identical to a 15 nucleobase segment of primer 20 nucleobases in length would have $15/20 = 0.75$ or 75% sequence identity with the 20 nucleobase primer.

[0055] Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison WI), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489). In some embodiments, homology, sequence identity, or complementarity of primers with respect to the conserved priming regions of bacterial nucleic acid, is at least 70%, at least 80%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or is 100%.

[0056] In some embodiments, the primers described herein comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 98%, or at least 99%, or 100% (or any range therewithin) sequence identity with the primer sequences specifically disclosed herein. Thus, for example, a primer may have between 70% and 100%, between 75% and 100%, between 80% and 100%, and between 95% and 100% sequence identity with SEQ ID NO: 26. Likewise, a primer may have similar sequence identity with any other primer whose nucleotide sequence is disclosed herein.

[0057] One with ordinary skill is able to calculate percent sequence identity or percent sequence homology and able to determine, without undue experimentation, the effects of variation of primer sequence identity on the function of the primer in its role in priming synthesis of a complementary strand of nucleic acid for production of an amplification product of a corresponding bioagent identifying amplicon.

[0058] In some embodiments of the present invention, the oligonucleotide primers are between 13 and 35 nucleobases in length (13 to 35 linked nucleotide residues). These embodiments comprise oligonucleotide primers 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or 35 nucleobases in length, or any range therewithin.

[0059] In some embodiments, any given primer comprises a modification comprising the addition of a non-templated T residue to the 5' end of the primer (i.e., the added T residue does not necessarily hybridize to the nucleic acid being amplified). The addition of a non-templated T residue has an effect of minimizing the addition of non-templated A residues as a result of the non-specific enzyme activity of *Taq* polymerase (Magnuson et al. Biotechniques, 1996, 21, 700-709), an occurrence which may lead to ambiguous results arising from molecular mass analysis.

[0060] In some embodiments of the present invention, primers may contain one or more universal bases. Because any variation (due to codon wobble in the 3rd position) in the conserved regions among species is likely to occur in the third position of a DNA triplet, oligonucleotide primers can be designed such that the nucleotide corresponding to this position is a base which can bind to more than one nucleotide, referred to herein as a "universal nucleobase." For example, under this "wobble" pairing, inosine (I) binds to U, C or A; guanine (G) binds to U or C, and uridine (U) binds to U or C. Other examples of universal nucleobases include nitroindoles such as 5-nitroindole or 3-nitropyrrole (Loakes et al., Nucleosides and Nucleotides, 1995, 14, 1001-1003), the degenerate nucleotides dP or dK (Hill et al.), an acyclic nucleoside analog containing 5-nitroindazole (Van Aerschot et al., Nucleosides and Nucleotides, 1995, 14, 1053-1056) or the purine analog 1-(2-deoxy-β-D-ribofuranosyl)-imidazole-4-carboxamide (Sala et al., Nucl. Acids Res., 1996, 24, 3302-3306).

[0061] In some embodiments, to compensate for the somewhat weaker binding by the "wobble" base, the oligonucleotide primers are designed such that the first and second positions of each triplet are occupied by nucleotide analogs which bind with greater affinity than the unmodified

nucleotide. Examples of these analogs include, but are not limited to, 2,6-diaminopurine which binds to thymine, 5-propynyluracil which binds to adenine and 5-propynylcytosine and phenoxazines, including G-clamp, which binds to G. Propynylated pyrimidines are described in U.S. Patent Nos. 5,645,985, 5,830,653 and 5,484,908, each of which is commonly owned and incorporated herein by reference in its entirety. Propynylated primers are described in U.S. Serial No. 10/294,203 which is also commonly owned and incorporated herein by reference in entirety. Phenoxazines are described in U.S. Patent Nos. 5,502,177, 5,763,588, and 6,005,096, each of which is incorporated herein by reference in its entirety. G-clamps are described in U.S. Patent Nos. 6,007,992 and 6,028,183, each of which is incorporated herein by reference in its entirety.

[0062] In some embodiments, non-template primer tags are used to increase the melting temperature (T_m) of a primer-template duplex in order to improve amplification efficiency. A non-template tag is at least three consecutive A or T nucleotide residues on a primer which are not complementary to the template. In any given non-template tag, A can be replaced by C or G and T can also be replaced by C or G. Although Watson-Crick hybridization is not expected to occur for a non-template tag relative to the template, the extra hydrogen bond in a G-C pair relative to a A-T pair confers increased stability of the primer-template duplex and improves amplification efficiency for subsequent cycles of amplification when the primers hybridize to strands synthesized in previous cycles.

[0063] In other embodiments, propynylated tags may be used in a manner similar to that of the non-template tag, wherein two or more 5-propynylcytidine or 5-propynyluridine residues replace template matching residues on a primer. In other embodiments, a primer contains a modified internucleoside linkage such as a phosphorothioate linkage, for example.

[0064] In some embodiments, the primers contain mass-modifying tags. Reducing the total number of possible base compositions of a nucleic acid of specific molecular weight provides a means of avoiding a persistent source of ambiguity in determination of base composition of amplification products. Addition of mass-modifying tags to certain nucleobases of a given primer will result in simplification of *de novo* determination of base composition of a given bioagent identifying amplicon (*vide infra*) from its molecular mass.

[0065] In some embodiments of the present invention, the mass modified nucleobase comprises one or more of the following: for example, 7-deaza-2'-deoxyadenosine-5-triphosphate, 5-iodo-2'-

deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxycytidine-5'-triphosphate, 5-iodo-2'-deoxycytidine-5'-triphosphate, 5-hydroxy-2'-deoxyuridine-5'-triphosphate, 4-thiothymidine-5'-triphosphate, 5-aza-2'-deoxyuridine-5'-triphosphate, 5-fluoro-2'-deoxyuridine-5'-triphosphate, O6-methyl-2'-deoxyguanosine-5'-triphosphate, N2-methyl-2'-deoxyguanosine-5'-triphosphate, 8-oxo-2'-deoxyguanosine-5'-triphosphate or thiothymidine-5'-triphosphate. In some embodiments, the mass-modified nucleobase comprises ^{15}N or ^{13}C or both ^{15}N and ^{13}C .

[0066] In some embodiments of the present invention, at least one bacterial nucleic acid segment is amplified in the process of identifying the bioagent. Thus, the nucleic acid segments that can be amplified by the primers disclosed herein and that provide enough variability to distinguish each individual bioagent and whose molecular masses are amenable to molecular mass determination are herein described as "bioagent identifying amplicons." The term "amplicon" as used herein, refers to a segment of a polynucleotide which is amplified in an amplification reaction. In some embodiments of the present invention, bioagent identifying amplicons comprise from about 45 to about 200 nucleobases (i.e. from about 45 to about 200 linked nucleosides), from about 60 to about 150 nucleobases, from about 75 to about 125 nucleobases. One of ordinary skill in the art will appreciate that the invention embodies compounds of 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, and 200 nucleobases in length, or any range therewithin. It is the combination of the portions of the bioagent nucleic acid segment to which the primers hybridize (hybridization sites) and the variable region between the primer hybridization sites that comprises the bioagent identifying amplicon. Since genetic data provide the underlying basis for identification of bioagents by the methods of the present invention, it is prudent to select segments of nucleic acids which ideally provide enough variability to distinguish each individual bioagent and whose molecular mass is amenable to molecular mass determination.

[0067] In some embodiments, bioagent identifying amplicons amenable to molecular mass determination which are produced by the primers described herein are either of a length, size or mass compatible with the particular mode of molecular mass determination or compatible with a means of providing a predictable fragmentation pattern in order to obtain predictable fragments of a length compatible with the particular mode of molecular mass determination. Such means of providing a predictable fragmentation pattern of an amplification product include, but are not limited to, cleavage with restriction enzymes or cleavage primers, for example. Methods of using restriction enzymes and cleavage primers are well known to those with ordinary skill in the art.

[0068] In some embodiments, amplification products corresponding to bacterial bioagent identifying amplicons are obtained using the polymerase chain reaction (PCR) which is a routine method to those with ordinary skill in the molecular biology arts. Other amplification methods may be used such as ligase chain reaction (LCR), low-stringency single primer PCR, and multiple strand displacement amplification (MDA) which are also well known to those with ordinary skill.

[0069] In the context of this invention, a “bioagent” is any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus. Examples of bioagents include, but are not limited, to cells, (including but not limited to human clinical samples, bacterial cells and other pathogens), viruses, fungi, protists, parasites, and pathogenicity markers (including but not limited to: pathogenicity islands, antibiotic resistance genes, virulence factors, toxin genes and other bioregulating compounds). Samples may be alive or dead or in a vegetative state (for example, vegetative bacteria or spores) and may be encapsulated or bioengineered. In the context of this invention, a “pathogen” is a bioagent which causes a disease or disorder.

[0070] In the context of this invention, the term “unknown bioagent” may mean either: (i) a bioagent whose existence is known (such as the well known bacterial species *Staphylococcus aureus* for example) but which is not known to be in a sample to be analyzed, or (ii) a bioagent whose existence is not known (for example, the SARS coronavirus was unknown prior to April 2003). For example, if the method for identification of coronaviruses disclosed in commonly owned U.S. Patent Serial No. 10/829,826 (incorporated herein by reference in its entirety) was to be employed prior to April 2003 to identify the SARS coronavirus in a clinical sample, both meanings of “unknown” bioagent are applicable since the SARS coronavirus was unknown to

science prior to April, 2003 and since it was not known what bioagent (in this case a coronavirus) was present in the sample. On the other hand, if the method of U.S. Patent Serial No. 10/829,826 was to be employed subsequent to April 2003 to identify the SARS coronavirus in a clinical sample, only the first meaning (i) of “unknown” bioagent would apply since the SARS coronavirus became known to science subsequent to April 2003 and since it was not known what bioagent was present in the sample.

[0071] The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as “triangulation identification.” Triangulation identification is pursued by analyzing a plurality of bioagent identifying amplicons selected within multiple core genes. This process is used to reduce false negative and false positive signals, and enable reconstruction of the origin of hybrid or otherwise engineered bioagents. For example, identification of the three part toxin genes typical of *B. anthracis* (Bowen et al., J. Appl. Microbiol., 1999, 87, 270-278) in the absence of the expected signatures from the *B. anthracis* genome would suggest a genetic engineering event.

[0072] In some embodiments, the triangulation identification process can be pursued by characterization of bioagent identifying amplicons in a massively parallel fashion using the polymerase chain reaction (PCR), such as multiplex PCR where multiple primers are employed in the same amplification reaction mixture, or PCR in multi-well plate format wherein a different and unique pair of primers is used in multiple wells containing otherwise identical reaction mixtures. Such multiplex and multi-well PCR methods are well known to those with ordinary skill in the arts of rapid throughput amplification of nucleic acids.

[0073] In some embodiments, the molecular mass of a particular bioagent identifying amplicon is determined by mass spectrometry. Mass spectrometry has several advantages, not the least of which is high bandwidth characterized by the ability to separate (and isolate) many molecular peaks across a broad range of mass to charge ratio (m/z). Thus, mass spectrometry is intrinsically a parallel detection scheme without the need for radioactive or fluorescent labels, since every amplification product is identified by its molecular mass. The current state of the art in mass spectrometry is such that less than femtomole quantities of material can be readily analyzed to afford information about the molecular contents of the sample. An accurate assessment of the molecular mass of the material can be quickly obtained, irrespective of whether the molecular

weight of the sample is several hundred, or in excess of one hundred thousand atomic mass units (amu) or Daltons.

[0074] In some embodiments, intact molecular ions are generated from amplification products using one of a variety of ionization techniques to convert the sample to gas phase. These ionization methods include, but are not limited to, electrospray ionization (ES), matrix-assisted laser desorption ionization (MALDI) and fast atom bombardment (FAB). Upon ionization, several peaks are observed from one sample due to the formation of ions with different charges. Averaging the multiple readings of molecular mass obtained from a single mass spectrum affords an estimate of molecular mass of the bioagent identifying amplicon. Electrospray ionization mass spectrometry (ESI-MS) is particularly useful for very high molecular weight polymers such as proteins and nucleic acids having molecular weights greater than 10 kDa, since it yields a distribution of multiply-charged molecules of the sample without causing a significant amount of fragmentation.

[0075] The mass detectors used in the methods of the present invention include, but are not limited to, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), time of flight (TOF), ion trap, quadrupole, magnetic sector, Q-TOF, and triple quadrupole.

[0076] In some embodiments, conversion of molecular mass data to a base composition is useful for certain analyses. As used herein, a "base composition" is the exact number of each nucleobase (A, T, C and G). For example, amplification of nucleic acid of *Neisseria meningitidis* with a primer pair that produces an amplification product from nucleic acid of 23S rRNA that has a molecular mass (sense strand) of 28480.75124, from which a base composition of A25 G27 C22 T18 is assigned from a list of possible base compositions calculated from the molecular mass using standard known molecular masses of each of the four nucleobases.

[0077] In some embodiments, assignment of base compositions to experimentally determined molecular masses is accomplished using "base composition probability clouds." Base compositions, like sequences, vary slightly from isolate to isolate within species. It is possible to manage this diversity by building "base composition probability clouds" around the composition constraints for each species. This permits identification of organisms in a fashion similar to sequence analysis. A "pseudo four-dimensional plot" (Figure 1) can be used to visualize the concept of base composition probability clouds. Optimal primer design requires optimal choice

of bioagent identifying amplicons and maximizes the separation between the base composition signatures of individual bioagents. Areas where clouds overlap indicate regions that may result in a misclassification, a problem which is overcome by a triangulation identification process using bioagent identifying amplicons not affected by overlap of base composition probability clouds.

[0078] In some embodiments, base composition probability clouds provide the means for screening potential primer pairs in order to avoid potential misclassifications of base compositions. In other embodiments, base composition probability clouds provide the means for predicting the identity of a bioagent whose assigned base composition was not previously observed and/or indexed in a bioagent identifying amplicon base composition database due to evolutionary transitions in its nucleic acid sequence. Thus, in contrast to probe-based techniques, mass spectrometry determination of base composition does not require prior knowledge of the composition or sequence in order to make the measurement.

[0079] The present invention provides bioagent classifying information similar to DNA sequencing and phylogenetic analysis at a level sufficient to identify a given bioagent. Furthermore, the process of determination of a previously unknown base composition for a given bioagent (for example, in a case where sequence information is unavailable) has downstream utility by providing additional bioagent indexing information with which to populate base composition databases. The process of future bioagent identification is thus greatly improved as more BCS indexes become available in base composition databases.

[0080] In one embodiment, a sample comprising an unknown bioagent is contacted with a pair of primers which provide the means for amplification of nucleic acid from the bioagent, and a known quantity of a polynucleotide that comprises a calibration sequence. The nucleic acids of the bioagent and of the calibration sequence are amplified and the rate of amplification is reasonably assumed to be similar for the nucleic acid of the bioagent and of the calibration sequence. The amplification reaction then produces two amplification products: a bioagent identifying amplicon and a calibration amplicon. The bioagent identifying amplicon and the calibration amplicon should be distinguishable by molecular mass while being amplified at essentially the same rate. Effecting differential molecular masses can be accomplished by choosing as a calibration sequence, a representative bioagent identifying amplicon (from a specific species of bioagent) and performing, for example, a 2 to 8 nucleobase deletion or

insertion within the variable region between the two priming sites. The amplified sample containing the bioagent identifying amplicon and the calibration amplicon is then subjected to molecular mass analysis by mass spectrometry, for example. The resulting molecular mass analysis of the nucleic acid of the bioagent and of the calibration sequence provides molecular mass data and abundance data for the nucleic acid of the bioagent and of the calibration sequence. The molecular mass data obtained for the nucleic acid of the bioagent enables identification of the unknown bioagent and the abundance data enables calculation of the quantity of the bioagent, based on the knowledge of the quantity of calibration polynucleotide contacted with the sample.

[0081] In some embodiments, the identity and quantity of a particular bioagent is determined using the process illustrated in Figure 7. For instance, to a sample containing nucleic acid of an unknown bioagent are added primers (500) and a known quantity of a calibration polynucleotide (505). The total nucleic acid in the sample is subjected to an amplification reaction (510) to obtain amplification products. The molecular masses of amplification products are determined (515) from which are obtained molecular mass and abundance data. The molecular mass of the bioagent identifying amplicon (520) provides the means for its identification (525) and the molecular mass of the calibration amplicon obtained from the calibration polynucleotide (530) provides the means for its identification (535). The abundance data of the bioagent identifying amplicon is recorded (540) and the abundance data for the calibration data is recorded (545), both of which are used in a calculation (550) which determines the quantity of unknown bioagent in the sample.

[0082] In some embodiments, construction of a standard curve where the amount of calibration polynucleotide spiked into the sample is varied, provides additional resolution and improved confidence for the determination of the quantity of bioagent in the sample. The use of standard curves for analytical determination of molecular quantities is well known to one with ordinary skill and can be performed without undue experimentation.

[0083] In some embodiments, multiplex amplification is performed where multiple bioagent identifying amplicons are amplified with multiple primer pairs which also amplify the corresponding standard calibration sequences. In this or other embodiments, the standard calibration sequences are optionally included within a single vector which functions as the

calibration polynucleotide. Multiplex amplification methods are well known to those with ordinary skill and can be performed without undue experimentation.

[0084] In some embodiments, the calibrant polynucleotide is used as an internal positive control to confirm that amplification conditions and subsequent analysis steps are successful in producing a measurable amplicon. Even in the absence of copies of the genome of a bioagent, the calibration polynucleotide should give rise to a calibration amplicon. Failure to produce a measurable calibration amplicon indicates a failure of amplification or subsequent analysis step such as amplicon purification or molecular mass determination. Reaching a conclusion that such failures have occurred is in itself, a useful event.

[0085] In some embodiments, the calibration sequence is inserted into a vector which then itself functions as the calibration polynucleotide. In some embodiments, more than one calibration sequence is inserted into the vector that functions as the calibration polynucleotide. Such a calibration polynucleotide is herein termed a "combination calibration polynucleotide." The process of inserting polynucleotides into vectors is routine to those skilled in the art and can be accomplished without undue experimentation. Thus, it should be recognized that the calibration method should not be limited to the embodiments described herein. The calibration method can be applied for determination of the quantity of any bioagent identifying amplicon when an appropriate standard calibrant polynucleotide sequence is designed and used. The process of choosing an appropriate vector for insertion of a calibrant is also a routine operation that can be accomplished by one with ordinary skill without undue experimentation.

[0086] The present invention also provides kits for carrying out, for example, the methods described herein. In some embodiments, the kit may comprise a sufficient quantity of one or more primer pairs to perform an amplification reaction on a target polynucleotide from a bioagent to form a bioagent identifying amplicon. In some embodiments, the kit may comprise from one to fifty primer pairs, from one to twenty primer pairs, from one to ten primer pairs, or from two to five primer pairs. In some embodiments, the kit may comprise one or more primer pairs recited in Table 1.

[0087] In some embodiments, the kit may comprise one or more broad range survey primer(s), division wide primer(s), clade group primer(s) or drill-down primer(s), or any combination thereof. A kit may be designed so as to comprise particular primer pairs for identification of a

particular bioagent. For example, a broad range survey primer kit may be used initially to identify an unknown bioagent as a member of the *Bacillus/Clostridia* group. Another example of a division-wide kit may be used to distinguish *Bacillus anthracis*, *Bacillus cereus* and *Bacillus thuringiensis* from each other. A clade group primer kit may be used, for example, to identify an unknown bacterium as a member of the *Bacillus cereus* clade group. A drill-down kit may be used, for example, to identify genetically engineered *Bacillus anthracis*. In some embodiments, any of these kits may be combined to comprise a combination of broad range survey primers and division-wide primers, clade group primers or drill-down primers, or any combination thereof, for identification of an unknown bacterial bioagent.

[0088] In some embodiments, the kit may contain standardized calibration polynucleotides for use as internal amplification calibrants. Internal calibrants are described in commonly owned U.S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.

[0089] In some embodiments, the kit may also comprise a sufficient quantity of reverse transcriptase (if an RNA virus is to be identified for example), a DNA polymerase, suitable nucleoside triphosphates (including any of those described above), a DNA ligase, and/or reaction buffer, or any combination thereof, for the amplification processes described above. A kit may further include instructions pertinent for the particular embodiment of the kit, such instructions describing the primer pairs and amplification conditions for operation of the method. A kit may also comprise amplification reaction containers such as microcentrifuge tubes and the like. A kit may also comprise reagents or other materials for isolating bioagent nucleic acid or bioagent identifying amplicons from amplification, including, for example, detergents, solvents, or ion exchange resins which may be linked to magnetic beads. A kit may also comprise a table of measured or calculated molecular masses and/or base compositions of bioagents using the primer pairs of the kit.

[0090] In order that the invention disclosed herein may be more efficiently understood, examples are provided below. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the invention in any manner. Throughout these examples, molecular cloning reactions, and other standard recombinant DNA techniques, were carried out according to methods described in Maniatis et al., Molecular Cloning - A Laboratory Manual,

2nd ed., Cold Spring Harbor Press (1989), using commercially available reagents, except where otherwise noted.

EXAMPLES

[0091] Example 1: Selection of Primers That Define Bioagent Identifying Amplicons

[0092] For design of primers that define bacterial bioagent identifying amplicons, relevant sequences from, for example, GenBank are obtained, aligned and scanned for regions where pairs of PCR primers would amplify products of about 45 to about 200 nucleotides in length and distinguish species from each other by their molecular masses or base compositions. A typical process shown in Figure 2 is employed.

[0093] A database of expected base compositions for each primer region is generated using an *in silico* PCR search algorithm, such as (ePCR). An existing RNA structure search algorithm (Macke et al., Nuc. Acids Res., 2001, 29, 4724-4735, which is incorporated herein by reference in its entirety) has been modified to include PCR parameters such as hybridization conditions, mismatches, and thermodynamic calculations (SantaLucia, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 1460-1465, which is incorporated herein by reference in its entirety). This also provides information on primer specificity of the selected primer pairs.

[0094] Table 1 represents a collection of primers (sorted by forward primer name) designed to identify bacteria using the methods herein described. The forward or reverse primer name indicates the gene region of bacterial genome to which the primer hybridizes relative to a reference sequence eg: the forward primer name 16S_EC_1077_1106 indicates that the primer hybridizes to residues 1077-1106 of the gene encoding 16S ribosomal RNA in an *E. coli* reference sequence represented by a sequence extraction of coordinates 4033120..4034661 from GenBank gi number 16127994 (as indicated in Table 2). As an additional example: the forward primer name BONTA_X52066_450_473 indicates that the primer hybridizes to residues 450-437 of the gene encoding *Clostridium botulinum* neurotoxin type A (BoNT/A) represented by GenBank Accession No. X52066 (primer pair name codes appearing in Table 1 are defined in Table 2). In Table 1, U^a = 5-propynyluracil; C^a = 5-propynylcytosine; * = phosphorothioate linkage. The primer pair number is an in-house database index number.

Table 1: Primer Pairs for Identification of Bacterial Bioagents

Primer pair number	For. primer name	Forward sequence	For. SEQ ID NO:	Rev. primer name	Reverse sequence	Rev. SEQ ID NO:
1	16S EC 107	GTGAGATGTTGGTTAA	1	16S EC 1175	GACGTCATCCCCACCTTCC	368

	7_1106_F	GTCGGTAAACGAG		1195_R	TC	
266	16S_EC_108 2_1100_F	ATGTTGGGTTAAGTCCC GC	2	16S_EC_1177 1196_10G_1 1G_R	TGACGTCATGCCACCTTC C	372
265	16S_EC_108 2_1100_F	ATGTTGGGTTAAGTCCC GC	2	16S_EC_1177 1196_10G_R	TGACGTCATGCCACCTTC C	373
230	16S_EC_108 2_1100_F	ATGTTGGGTTAAGTCCC GC	2	16S_EC_1177 1196_R	TGACGTCATCCCCACCTTC C	374
263	16S_EC_108 2_1100_F	ATGTTGGGTTAAGTCCC GC	2	16S_EC_1525 1541_R	AAGGAGGTGATCCAGCC	382
2	16S_EC_108 2_1106_F	ATGTTGGGTTAAGTCCC GCAACGAG	3	16S_EC_1175 1197_R	TTGACGTCATCCCCACCTTC CCTC	371
278	16S_EC_109 0_1111_2_F	TTAACGCCCCAACGAG CGCAA	4	16S_EC_1175 1196_R	TGACGTCATCCCCACCTTC CTC	369
361	16S_EC_109 0_1111_2_T MOD_F	TTAACGCCCCAACGAG GCGCAA	5	16S_EC_1175 1196_TMOD_R	TTGACGTCATCCCCACCTTC CTCTC	370
3	16S_EC_109 0_1111_F	TTAACGCCCCAACGAG CGCAA	6	16S_EC_1175 1196_R	TGACGTCATCCCCACCTTC CTC	369
256	16S_EC_109 2_1109_F	TAGTCCCCAACGAGCG C	7	16S_EC_1174 1195_R	GACGTCATCCCCACCTTC TCC	367
159	16S_EC_110 0_1116_F	CAACGAGCGAACCCCTT	8	16S_EC_1174 1188_R	TCCCCACCTTCCTCC	366
247	16S_EC_119 5_1213_F	CAAGTCATCATGGCCCT TA	9	16S_EC_1525 1541_R	AAGGAGGTGATCCAGCC	382
4	16S_EC_122 2_1241_F	GCTACACACGTGCTACGA ATG	10	16S_EC_1303 1323_R	CGAGTTGCAGACTGCGATC CG	376
232	16S_EC_130 3_1323_F	CGGATTGGAGTCTGCAA CTCG	11	16S_EC_1389 1407_R	GACGGGCGGTGTGTACAAG	378
5	16S_EC_133 2_1353_F	AAGTCGGAATCGCTAGT AATCG	12	16S_EC_1389 1407_R	GACGGGCGGTGTGTACAAG	378
252	16S_EC_136 7_1387_F	TACGGTGAAATACGTTCC CGGG	13	16S_EC_1485 1506_R	ACCTTGTACGACTTCACC CCA	379
250	16S_EC_138 7_1407_F	GCCTTGACACACCTCC CGTC	14	16S_EC_1494 1513_R	CACGGCTACCTTGTTACGA C	381
231	16S_EC_138 9_1407_F	CTTGTACACACCGCCCC TC	15	16S_EC_1525 1541_R	AAGGAGGTGATCCAGCC	382
251	16S_EC_139 0_1411_F	TTGTACACACCGCCCC CATAC	16	16S_EC_1486 1505_R	CCTTGTACGACTTCACCC C	380
6	16S_EC_30_ 54_F	TGAACGGCTGGGGCATG CTTAACAC	17	16S_EC_105_ 126_R	TACGCAATTACTCACCGTC CGC	361
243	16S_EC_314 332_F	CACTGGAACGTGAGCAC GG	18	16S_EC_556_ 575_R	CTTTACGCCAGTAATTCC G	385
7	16S_EC_38_ 64_F	GTGGCATGCCATAATACA TGCAAGTCG	19	16S_EC_101_ 120_R	TTACTCACCGTCCGCC T	357
279	16S_EC_405 432_F	TGAGTGATGAAGGCCTT AGGGTTGTAAA	20	16S_EC_507_ 527_R	CGGCTGCTGGCACGAAGTT AG	384
8	16S_EC_49_ 68_F	TAACACATGCAAGTCGA ACG	21	16S_EC_104_ 120_R	TTACTCACCGTCCGCC TT	359
275	16S_EC_49_ 68_F	TAACACATGCAAGTCGA ACG	21	16S_EC_1061 1078_R	ACGACACGAGCTGACGAC	364
274	16S_EC_49_ 68_F	TAACACATGCAAGTCGA ACG	21	16S_EC_880_ 894_R	CGTACTCCCCAGGCG	390
244	16S_EC_518 536_F	CCAGCAGCCGCGGTAA AC	22	16S_EC_774_ 795_R	GTATCTAACCTGTTGCT CCC	387
226	16S_EC_556 575_F	CGGAATTACTGGCGTA AAG	23	16S_EC_683_ 700_R	CGCATTTACCGCTACAC	386
264	16S_EC_556 575_F	CGGAATTACTGGCGTA AAG	23	16S_EC_774_ 795_R	GTATCTAACCTGTTGCT CCC	387
273	16S_EC_683 700_F	GTGTAGCGGTGAAATGC G	24	16S_EC_1303 1323_R	CGAGTTGCAGACTGCGATC CG	377
9	16S_EC_683 700_F	GTGTAGCGGTGAAATGC G	24	16S_EC_774_ 795_R	GTATCTAACCTGTTGCT CCC	387
158	16S_EC_683 700_F	GTGTAGCGGTGAAATGC G	24	16S_EC_880_ 894_R	CGTACTCCCCAGGCG	390
245	16S_EC_683 700_F	GTGTAGCGGTGAAATGC G	24	16S_EC_967_ 985_R	GGTAAGGTTCTTCGCGTTG	396
294	16S_EC_7_3 3_F	GAGAGTTGATCCTGGC TCAGAACGAA	25	16S_EC_101_ 122_R	TGTTACTCACCGTCTGCC ACT	358
10	16S_EC_713 732_F	AGAACACCGATGGCGA GGC	26	16S_EC_789_ 809_R	CCTGGACTACCAGGGTATC TA	388
346	16S_EC_713 732_TMOD_	TAGAACACCGATGGCGA AGGC	27	16S_EC_789_ 809_TMOD_R	TCGTGGACTACCAGGGTAT CTA	389
228	16S_EC_774	GGGAGCAACAGGATT	28	16S_EC_880	CGTACTCCCCAGGCG	390

	795 F	GATAC		894 R		
11	16S EC 785 806 F	GGATTAGAGACCCTGGT AGTCC	29	16S EC 880 897 R	GGCCGTACTCCCCAGGCG	391
347	16S EC 785 806 TMOD F	TGGATTAGAGACCCTGGT TAGTCC	30	16S EC 880 897 TMOD R	TGGCCGTACTCCCCAGGCG	392
12	16S EC 785 810 F	GGATTAGATAACCCTGGT AGTCCACGC	31	16S EC 880 897 2 R	GGCCGTACTCCCCAGGCG	391
13	16S EC 789 810 F	TAGATACCCTGGTAGTC CACGC	32	16S EC 880 894 R	CGTACTCCCCAGGCG	390
255	16S EC 789 810 F	TAGATACCCTGGTAGTC CACGC	32	16S EC 882 899 R	GCGACCGTACTCCCCAGG	393
254	16S EC 791 812 F	GATACCTGGTAGTCCA CACCG	33	16S EC 886 904 R	GCCTTGCACCGTACTCCC	394
248	16S EC 8 2 7 F	AGAGTTTGATCATGGCT CAG	34	16S EC 1525 1541 R	AAGGAGCTGATCCAGCC	382
242	16S EC 8 2 7 F	AGAGTTTGATCATGGCT CAG	34	16S EC 342 358 R	ACTGCTGCCTCCCGTAG	383
253	16S EC 804 822 F	ACCACGCCGTAACGAT GA	35	16S EC 909 929 R	CCCCCGTCAATTCTTTGA GT	395
246	16S EC 937 954 F	AAGCGGTGGAGCATGTG G	36	16S EC 1220 1240 R	ATTGTAGCACGTGTAGC CC	375
14	16S EC 960 981 F	TTCGATGCAACGCGAAG AACCT	37	16S EC 1054 1073 R	ACGAGCTGACGACAGCCAT G	362
348	16S EC 960 981 TMOD F	TTTCGATGCAACGCGAA GAACCT	38	16S EC 1054 1073 TMOD R	TACGAGCTGACGACAGCCA TG	363
119	16S EC 969 985 1P F	ACGCGAAGAACCTTA U^C	39	16S EC 1061 1078 2P R	ACGACACGAGU^C^GACGAC	364
15	16S EC 969 985 F	ACGCGAAGAACCTTACC	39	16S EC 1061 1078 R	ACGACACGAGCTGACGAC	364
272	16S EC 969 985 F	ACGCGAAGAACCTTACC	40	16S EC 1389 1407 R	GACGGGCGGTGTACAAG	378
344	16S EC 971 990 F	GCGAAGAACCTTACAG GTC	41	16S EC 1043 1062 R	ACAACCATGCACCACCTGT C	360
120	16S EC 972 985 2P F	CGAAGAUU^U^TTACC	42	16S EC 1064 1075 2P R	ACACGAGU^C^GAC	365
121	16S EC 972 985 F	CGAAGAACCTTACC	42	16S EC 1064 1075 R	ACACGAGCTGAC	365
1073	23S BRM 11 10 1129 F	TGCGCGGAAGATGTAA GGG	43	23S BRM 117 6 1201 R	TCGCAGGCTTACAGAACGC TCTCTTA	397
1074	23S BRM 51 5 536 F	TGCATACAAACAGTCGG AGCCT	44	23S BRM 616 635 R	TCGGACTCGCTTCGCTAC G	398
241	23S BS - 68 -44 F	AAACTAGATAACAGTAG ACATCAC	45	23S BS 5_21 R	GTGCGCCCTTCTAACTT	399
235	23S EC 160 2 1620 F	TACCCCAAACCGACACA GG	46	23S EC 1686 1703 R	CCTTCTCCCGAAGTTACG	402
236	23S EC 168 5 1703 F	CCGTAACCTCGGGAGAA GG	47	23S EC 1828 1842 R	CACCGGGCAGGCGTC	403
16	23S EC 182 6 1843 F	CTGACACCTGCCCGGT C	48	23S EC 1906 1924 R	GACCGTTATAGTTACGGCC	404
349	23S EC 182 6 1843 TMOD D F	TCTGACACCTGCCCGGT GC	49	23S EC 1906 1924 TMOD R	TGACCGTTATAGTTACGGC C	405
237	23S EC 182 7 1843 F	GACGCCCTGCCCGGTGC	50	23S EC 1929 1949 R	CCGACAAGGAATTCGCTA CC	407
249	23S EC 183 1 1849 F	ACCTGCCCAAGTGCCTGGA AG	51	23S EC 1919 1936 R	TCGCTACCTTAGGACCGT	406
234	23S EC 187 207 F	GGGAACTGAAACATCTA AGTA	52	23S EC 242 256 R	TTCGCTCGCCGCTAC	408
233	23S EC 23 37 F	GGTGGATGCCTGGC	53	23S EC 115 130 R	GGGTTTCCCCATTCTGG	401
238	23S EC 243 4 2456 F	AAGGTACTCCGGGGATA ACAGGC	54	23S EC 2490 2511 R	AGCCGACATCGAGGTGCCA AAC	409
257	23S EC 258 6 2607 F	TAGAACCTCGCGAGACA GTTCG	55	23S EC 2658 2677 R	AGTCCATCCGGTCCTCTC G	411
239	23S EC 259 9 2616 F	GACAGTTCGGTCCCTAT C	56	23S EC 2653 2669 R	CCGGTCTCTCGTACTA	410
18	23S EC 264 5 2669 2 F	CTGTCCCTAGTACGAGA GGACCGG	57	23S EC 2751 2767 R	TTTCATGCTAGATGCTT TCAGC	417
17	23S EC 264 5 2669 F	TCTGTCCCTAGTACGAG AGGACCGG	58	23S EC 2744 2761 R	TGCTTAGATGCTTCAGC	414
118	23S EC 264 6 2667 F	CTGTTCTTAGTACGAGA GGACC	59	23S EC 2745 2765 R	TTCGTGCTTAGATGCTT AG	415
360	23S EC 264	TCTGTTCTTAGTACGAG	60	23S EC 2745	TTTCGTGCTTAGATGCTT	416

	6_2667_TMO D_F	AGGACC		_2765_TM0D_ R	CAG	
147	23S_EC_265 2_2669_F	CTAGTACGAGAGGACCG G	61	23S_EC_2741 2760_R	ACTTAGATGCTTCAGCGG T	413
240	23S_EC_265 3_2669_F	TAGTACGAGAGGACCG G	62	23S_EC_2737 2758_R	TTAGATGCTTCAGCACTT ATC	412
20	23S_EC_493 518_2_F	GGGGAGTGAAAGAGATC CTGAAACCG	63	23S_EC_551_ 571_2_R	ACAAAAGGCACGCCATCAC CC	418
19	23S_EC_493 518_F	GGGGAGTGAAAGAGATC CTGAAACCG	63	23S_EC_551_ 571_R	ACAAAAGGTACGCCGTAC CC	419
21	23S_EC_971 992_F	CGAGAGGGAAACAAACCC AGACC	64	23S_EC_1059 1077_R	TGGCTGCTCTAAGCCAAC	400
1158	AB_MLST- 11- OIF007_120 2_1225_F	TCGTGCCCGCAATTGCA ATAAACG	65	AB_MLST-11- OIF007_1266 1296_R	TAATGCCGGGTAGTGCAAT CCATTCTCTAG	420
1159	AB_MLST- 11- OIF007_120 2_1225_F	TCGTGCCCGCAATTGCA ATAAACG	65	AB_MLST-11- OIF007_1299 1316_R	TGCACCTGCGTCGAGCG	421
1160	AB_MLST- 11- OIF007_123 4_1264_F	TTGTAGCACAGCAAGGC AAATTCCCTGAAAC	66	AB_MLST-11- OIF007_1335 1362_R	TGCCATCCATAATCACGCC ATACTGACG	422
1161	AB_MLST- 11- OIF007_132 7_1356_F	TAGGTTTACGTCAGTAT GGCGTGATTATGG	67	AB_MLST-11- OIF007_1422 1448_R	TGCCAGTTCCACATTCA CGTTCGT	423
1162	AB_MLST- 11- OIF007_134 5_1369_F	TCGTGATTATGGATGCC AACGTGAA	68	AB_MLST-11- OIF007_1470 1494_R	TCGCTTGAGTGTAGTCATG ATTGCG	424
1163	AB_MLST- 11- OIF007_135 1_1375_F	TTATGGATGGCAACGTG AAACCGT	69	AB_MLST-11- OIF007_1470 1494_R	TCGCTTGAGTGTAGTCATG ATTGCG	424
1164	AB_MLST- 11- OIF007_138 7_1412_F	TCTTTGCCATTGAAGAT GACTTAAGC	70	AB_MLST-11- OIF007_1470 1494_R	TCGCTTGAGTGTAGTCATG ATTGCG	424
1165	AB_MLST- 11- OIF007_154 2_1569_F	TACTAGCGGTAAGCTTA AACAAAGATTGC	71	AB_MLST-11- OIF007_1656 1680_R	TGAGTCGGGTTCACTTAC CTGGCA	425
1166	AB_MLST- 11- OIF007_156 6_1593_F	TTGCCAATGATATTCGT TGGTTAGCAAG	72	AB_MLST-11- OIF007_1656 1680_R	TGAGTCGGGTTCACTTAC CTGGCA	425
1167	AB_MLST- 11- OIF007_161 1_1638_F	TCGGCGAAATCCGTATT CCTGAAAATGA	73	AB_MLST-11- OIF007_1731 1757_R	TACCGGAAGCACCAGCGAC ATTAATAG	427
1168	AB_MLST- 11- OIF007_172 6_1752_F	TACCACTATTAAATGTCG CTGGTGCTTC	74	AB_MLST-11- OIF007_1790 1821_R	TGCAACTGAATAGATTGCA GTAAGTTATAAGC	428
1169	AB_MLST- 11- OIF007_179 2_1826_F	TTATAACTTACTGCAAT CTATTCACTTGCTTGGT G	75	AB_MLST-11- OIF007_1876 1909_R	TGAATTATGCAAGAAGTGA TCAATTCTCACGA	429
1170	AB_MLST- 11- OIF007_179 2_1826_F	TTATAACTTACTGCAAT CTATTCACTTGCTTGGT G	75	AB_MLST-11- OIF007_1895 1927_R	TGCCGTAACTAACATAAGA GAATTATGCAAGAA	430
1152	AB_MLST- 11- OIF007_185 214_F	TATTGTTCAAATGTAC AAGGTGAAGTGC	76	AB_MLST-11- OIF007_291_ 324_R	TCACAGGTTCTACTTCATC AATAATTCCATTGC	432
1171	AB_MLST- 11- OIF007_197 0_2002_F	TGGTTATGTACCAAATA CTTTGTCTGAAGATGG	77	AB_MLST-11- OIF007_2097 2118_R	TGACGGCATCGATACCA GTC	431
1154	AB_MLST- 11- OIF007_206 239_F	TGAAGTGGTGTAGGATA TCGATGCACTTGATGTA	78	AB_MLST-11- OIF007_318_ 344_R	TCCGCCAAAAACTCCCCTT TTCACAGG	433

1153	AB_MLST-11-OIF007_260 289 F	TGGAACGTTATCAGGTG CCCCAAAAATTG	79	AB_MLST-11-OIF007_364 393 R	T TGCAATCGACATATCCAT T TCACCATGCC	434
1155	AB_MLST-11-OIF007_522 552 F	TCGGTTTACTAAAAGAA CGTATTGCTCAACC	80	AB_MLST-11-OIF007_587 610 R	T TCTGCTTGAGGAATAGTG C GTGG	435
1156	AB_MLST-11-OIF007_547 571 F	TCAACCTGACTGCGTGA ATGGTTGT	81	AB_MLST-11-OIF007_656 686 R	T ACGTTCTACGATTCTTC A TCAGGTACATC	436
1157	AB_MLST-11-OIF007_601 627 F	TCAAGCAGAAGCTTGG AAGAAGAAGG	82	AB_MLST-11-OIF007_710 736 R	T ACAACGTGATAAACACGA C CAGAAC	437
1151	AB_MLST-11-OIF007_62_91 F	TGAGATTGCTGAACATT TAATGCTGATTGA	83	AB_MLST-11-OIF007_169 203 R	T TGTACATTTGAAACAATA T GCATGCATGTGAAT	426
1100	ASD_FRT_1_29 F	TTGCTTTAACGTTGGTT TATTGGTGGCG	84	ASD_FRT_86_116 R	T GAGATGCGAAAAAACG T TGGCAAATAC	439
1101	ASD_FRT_43_76 F	TCAGTTTTAATGTCCTCG TATGATCGAACATCAAAG	85	ASD_FRT_129_156 R	T CCATAATGTTGCATAAAA C CTGTTGGC	438
291	ASPS_EC_40_5 422 F	GCACAACTGCGGGCTGC G	86	ASPS_EC_521_538 R	A CGGGCACGAGGTAGTCGC	440
485	BONTA_X520_66_450_473 F	TCTAGTAATAATAGGAC CCTCAGC	87	BONTA_X5206_6 517 539 R	T AAACCATTTCGCGTAAGAT T CAA	441
486	BONTA_X520_66_450_473 P F	T*U ^a *C ^a AGTAATAATAG GA*U ^a *U ^a *U ^a *C ^a *U ^a AG C	87	BONTA_X5206_6 517_539P_R	T AAACCA*C ^a *C ^a *C ^a *U ^a GC G TAAAGA*C ^a *C ^a *U ^a AA	441
481	BONTA_X520_66_538_552 F	TATGGCTCTACTCAA	88	BONTA_X5206_6 647_660 R	T GTTACTGCTGGAT	443
482	BONTA_X520_66_538_552 P F	TA*C ^a GGC*C ^a *U ^a *C ^a A *U ^a *C ^a *U ^a AA	88	BONTA_X5206_6 647_660P_R	T G*C ^a *C ^a A*U ^a *C ^a G*U ^a C ^GGAT	443
487	BONTA_X520_66_591_620 F	TGAGTCACTGAAAGTTG ATACAAATCCTCT	89	BONTA_X5206_6 644_671 R	T CATGTGCTTAATGTTACTG C TGGATCTG	442
483	BONTA_X520_66_701_720 F	GAATAGCAATTAAATCCA AAT	90	BONTA_X5206_6 759_775 R	T TACTTCTAACCCACTC	444
484	BONTA_X520_66_701_720 P F	GAA*C ^a AG*U ^a AA*C ^a *C *AA*C ^a *U ^a *U ^a AAAT	90	BONTA_X5206_6 759_775P_R	T TA*U ^a *C ^a *C ^a *U ^a *C ^a AA* U ^a *U ^a *U ^a *U ^a *C ^a C	444
774	CAF1_AF053_947_33407_33430 F	TCAGTCCGTTATCGCC ATTGCAT	91	CAF1_AF0539_47_33494_33 514 R	T GCGGGCTGGTTCAACAAG A G	445
776	CAF1_AF053_947_33435_33457 F	TGGAACATTGCAACTG CTAATG	92	CAF1_AF0539_47_33499_33 517 R	T GATGCGGGCTGGTTCAAC	446
775	CAF1_AF053_947_33515_33541 F	TCACTCTTACATATAAG GAAGGGCGCTC	93	CAF1_AF0539_47_33595_33 621 R	T CCTGTTTATAGCCGCCA A GAGTAAG	447
777	CAF1_AF053_947_33687_33716 F	TCAGGATGGAATAACC ACCAATTCACTAC	94	CAF1_AF0539_47_33755_33 782 R	T CAAGGTTCTCACCGTTA C CTTAGGAG	448
22	CAPC_BA_10_4 131 F	GTTATTGACTCGTT TTAACATCAGCC	95	CAPC_BA_180_205 R	T GAATCTGAAACACCAATA C CGTAAC	449
23	CAPC_BA_11_4 133 F	ACTCGTTTTAATCAGC CCG	96	CAPC_BA_185_205 R	T GAATCTGAAACACCAATA C CG	450
24	CAPC_BA_27_4 303 F	GATTATTGTTATCCTGT TATGCCATTGAG	97	CAPC_BA_349_376 R	T GAAACCTGTCTTTGAAT T GTATTTC	451
350	CAPC_BA_27_4 303_TMOD F	TGATTATTGTTATCCTG TTATGCCATTGAG	98	CAPC_BA_349_376_TMOD R	T GTAACCCCTGTCTTGAA T TGTATTTC	452
25	CAPC_BA_27_6 296 F	TTATTGTTATCCTGTTA TGCC	99	CAPC_BA_358_377 R	T GTAACCCCTGTCTTGAA	453
26	CAPC_BA_28_1 301 F	GTTATCCTGTTATGCCA TTTG	100	CAPC_BA_361_378 R	T GGTAACCCCTGTCTTG T	454
27	CAPC_BA_31_5 334 F	CCGTGGTATTGGAGTTA TTG	101	CAPC_BA_361_378 R	T GGTAACCCCTGTCTTG T	454
1053	CJST_CJ_10	TTGAGGGTATGCACCGT	102	CJST_CJ_116	T CCCCTCATGTTAAATGA	456

	80 1110 F	CTTTTTGATTCTTT		6 1198 R	TCAGGATAAAAAGC	
1063	CJST_CJ_12 68 1299 F	AGTTATAAACACGGCTT TCCTATGGCTTATCC	103	CJST_CJ_134 9 1379 R	TCCGGTTAAAGCTCTAC ATG ATCGTAAGGATA	457
1050	CJST_CJ_12 90 1320 F	TGGCTTATCCAAATTAA GATCGTGGTTTAC	104	CJST_CJ_140 6 1433 R	TTTGCTCATGATCTGC ATG AAGCATAAA	458
1058	CJST_CJ_16 43 1670 F	TTATCGTTGTGGAGCT AGTGCTTATGC	105	CJST_CJ_172 4 1752 R	TGCAATGTGTGCTATG TCA GCAAAAAGAT	459
1045	CJST_CJ_16 68 1700 F	TGCTCGAAGTGATTGACT TTGCTAAATTAGAGA	106	CJST_CJ_177 4 1799 R	TGAGCGTGTGGAAAAG GAC TTGGATG	460
1064	CJST_CJ_16 80 1713 F	TGATTTGCTAAATTAA GAGAAATTGCGGATGAA	107	CJST_CJ_179 5 1822 R	TATGTGTAGTTGAGCT TAC TACATGAGC	461
1056	CJST_CJ_18 80 1910 F	TCCCAATTAAATTCTGCC ATTTTTCCAGGTAT	108	CJST_CJ_198 1 2011 R	TGTTCTTACTTGCTT TGC ATAAACCTTCCA	462
1054	CJST_CJ_20 60 2090 F	TCCCCGACTTAATATCA ATGAAAATTGTGGA	109	CJST_CJ_214 8 2174 R	TCGATCCGCATCACCA TCA AAAGCAA	463
1059	CJST_CJ_21 65 2194 F	TGCGGATCGTTGGTGG TTGTAGATGAAAAA	110	CJST_CJ_224 7 2278 R	TCCACACTGGAATTGTA ATT TACCTTGTCTT	464
1046	CJST_CJ_21 71 2197 F	TCGTTGGTGGTGGTAG ATGAAAAGG	111	CJST_CJ_228 3 2313 R	TCTCTTCAAAGCACC ATT GCTCATTATAGT	465
1057	CJST_CJ_21 85 2212 F	TAGATGAAAAGGGCGAA GTGGCTAATGG	112	CJST_CJ_228 3 2316 R	TGAATTCTTCAAAGC ACC ATTGCTCATTATAGT	466
1049	CJST_CJ_26 36 2668 F	TGCCTAGAAGATCTAA AAATTCCGCCAACTT	113	CJST_CJ_275 3 2777 R	TTGCTGCCATAGCAAA GCC TACAGC	467
1062	CJST_CJ_26 78 2703 F	TCCCCAGACACCTGGA AATTTCAAC	114	CJST_CJ_276 0 2787 R	TGTGCTTTTTGCTG CCA TAGCAAAGC	468
1065	CJST_CJ_28 57 2887 F	TGGCATTCTTATGAAG CTTGTCTTTAGCA	115	CJST_CJ_296 5 2998 R	TGCTTCAAACGCATT TTT ACATTTCTGTTAAAG	469
1055	CJST_CJ_28 69 2895 F	TGAAGCTTGTCTTTAG CAGGACTCA	116	CJST_CJ_297 9 3007 R	TCCCTCTTGCTGCCCTCA AAA CGCATTTTTA	470
1051	CJST_CJ_32 67 3293 F	TTGATTTACGCCGTC CTCCAGGTGCG	117	CJST_CJ_335 6 3385 R	TCAAAGAACCCGCACC TAA TTCATCATTAA	471
1061	CJST_CJ_36 0 393 F	TCCTGTTATCCCTGAAG TAGTTAATCAAGTTGT	118	CJST_CJ_443 477 R	TACAACGGTTCAAAA ACA TTAAGCTGTAATTGTC	473
1048	CJST_CJ_36 0 394 F	TCCGTGTTATCCCTGAAG TAGTTAATCAAGTTGT	119	CJST_CJ_442 476 R	TCAACTGGTCAAAAA CAT TAAGTTGTAATTGTC	472
1052	CJST_CJ_5_39 F	TAGGCGAAGATATAACAA AGAGTATTAGAAGCTAG A	120	CJST_CJ_104 137 R	TCCCTTATTTCTTT CTA CTACCTTCGGATAAT	455
1047	CJST_CJ_58 4 616 F	TCCAGGACAAATGTATG AAAAATGCCAAGAAG	121	CJST_CJ_663 692 R	TTCATTTCTGGTCCA AAG TAAGCAGTATC	474
1060	CJST_CJ_59 9 632 F	TGAAAATATGCCAAGAA GCATAGCAAAAAAGCA	122	CJST_CJ_711 743 R	TCCCGAACATGAGTT GTA TCAACTATTTTAC	475
1096	CTXA_VBC_1 17 142 F	TCTTATGCCAAGAGGAC AGAGTGT	123	CTXA_VBC_19 4 218 R	TGCTCTAACAAATCCCG TCT GAGTTC	476
1097	CTXA_VBC_3 51 377 F	TGTATTAGGGGCATACA GTCCTCATCC	124	CTXA_VBC_44 1 466 R	TGTCATCAAGCACCCC AAA ATGAAC	477
28	CYA_BA_105 5 1072 F	GAAAGAGTCGGATTGG G	125	CYA_BA_1112 1130 R	TGTTGACCATGCTTCT TAG	479
277	CYA_BA_134 9 1370 F	ACAAACGAAGTACAATAC AAGAC	126	CYA_BA_1426 1447 R	CTTCTACATTTTAC CAT CAC	480
30	CYA_BA_135 3 1379 F	CGAAGTACAATACAAGA CAAAAGAAGG	127	CYA_BA_1448 1467 R	TGTTAACGGCTTCAG ACC C	482
351	CYA_BA_135 3 1379_TMO D F	TCGAAGTACAATACAAG ACAAAAGAAGG	128	CYA_BA_1448 1467_TMOD R	TTGTTAACGGCTTCAG ACC CC	483
31	CYA_BA_135 9 1379 F	ACAAATACAGACAAAAG AAGG	129	CYA_BA_1447 1461 R	CGGCTTCAAGACCCC	481
32	CYA_BA_914 937 F	CAGGTTTAGTACCAAGAA CATGCAG	130	CYA_BA_999 1026 R	ACCACTTTAAATAAGG TTT GTAGCTAAC	484
33	CYA_BA_916 935 F	GGTTTAGTACCAAGAAC TGC	131	CYA_BA_1003 1025 R	CCACTTTAAATAAGGT TTG TAGC	478
115	DNAK_EC_42 8 449 F	CGGCGTACTTCAACGAC AGCCA	132	DNAK_EC_503 522 R	CGCGGTCGGCTCGTTG ATG A	485
1102	GALE_FRT_1 68 199 F	TTATCAGCTAGACCTTT TAGGTAAAGCTAAC	133	GALE_FRT_24 1 269 R	TCACCTACAGCTTAA AGC CAGCAAAATG	486
1104	GALE_FRT_3 08 339 F	TCCAAGGTACACTAAC TTACTTGAGCTAAC	134	GALE_FRT_39 0 422 R	TCTTCTGTAAGGGTG GTT TATTATTACATCCA	487
1103	GALE_FRT_8 34 865 F	TCAAAAAGCCCTAGGTA AACAGATTCCATAC	135	GALE_FRT_90 1 925 R	TAGCCTTGGCAACATC AGC AAAATC	488
1092	GLTA_RKP_1 023 1055 F	TCCGTTCTTACAAATAG CAATAGAACTTGAAGC	136	GLTA_RKP_11 29 1156 R	TTGGCGACGGTATACC CAT AGCTTTATA	489
1093	GLTA_RKP_1 043 1072_2 F	TGGAGCTTGAAGCTATC GCTCTTAAAGATG	137	GLTA_RKP_11 38 1162 R	TGAACATTGGCACGG TAT ACCCAT	490

1094	GLTA_RKP_1 043_1072_3 F	TGGAACCTGAAGCTCTC GCTCTTAAAGATG	138	GLTA_RKP_11 38_1164_R	TGTGAACATTTGCGACGGT ATACCCAT	492
1090	GLTA_RKP_1 043_1072_F	TGGGACTTGAAGCTATC GCTCTTAAAGATG	139	GLTA_RKP_11 38_1162_R	TGAACATTGCGACGGTAT ACCCAT	491
1091	GLTA_RKP_4 00_428_F	TCTTCTCATCCTATGCC TATTATGCTTGC	140	GLTA_RKP_49 9_529_R	TGGTGGGTATCTTAGCAAT CATTCTAATAGC	493
1095	GLTA_RKP_4 00_428_F	TCTTCTCATCCTATGCC TATTATGCTTGC	140	GLTA_RKP_50 5_534_R	TGCGATGGTAGGTATCTTA GCAATCATTCT	494
224	GROL_EC_21 9_242_F	CGTGAAGAAGTTGCCT CTAAAGC	141	GROL_EC_328 350_R	TTCAAGGTCATCGGTTCA TGCC	496
280	GROL_EC_49 6_518_F	ATGGACAAAGTTGGCAA GGAAGG	142	GROL_EC_577 596_R	TAGCCGCGGTGAAATTGCA T	498
281	GROL_EC_51 1_536_F	AAGGAAGGCGTGTAC CGTTGAAGA	143	GROL_EC_571 593_R	CCGCGGTGAAATTGCA CTTC	497
220	GROL_EC_94 1_959_F	TGGAAGATCTGGGTCA GC	144	GROL_EC_103 9_1060_R	CAATCTGCTGACGGATCTG AGC	495
924	GYRA_AF100 557_4_23_F	TCTGCCGTGTCGTTGG TGA	145	GYRA_AF1005 57_119_142_R	TCGAACCGAAGTTACCTG ACCAT	499
925	GYRA_AF100 557_70_94_F	TCCATTGTTCGTATGGC TCAAGACT	146	GYRA_AF1005 57_178_201_R	TGCCAGCTTAGTCATAACGG ACTTC	500
926	GYRB_AB008 700_19_40_F	TCAGGTGGCTTACACGG CGTAG	147	GYRB_AB0087 00_111_140_R	TATTGCGGATCACCATGAT GATATTCTTGC	501
927	GYRB_AB008 700_265_29_F	TCTTCTTGAATGCTGG TGTACGTATCG	148	GYRB_AB0087 00_369_395_R	TCGTTGAGATGGTTTAC CTTCGTTG	502
928	GYRB_AB008 700_368_39_F	TCAACGAAGGTTAAAAC CATCTAACG	149	GYRB_AB0087 00_466_494_R	TTTGTGAAACAGCGAACAT TTTCTTGGTA	503
929	GYRB_AB008 700_477_50_F	TGTTCGCTTTACAAA ACAACATCCA	150	GYRB_AB0087 00_611_632_R	TCACGCGCATCATCACCA G TCA	504
949	GYRB_AB008 700_760_78_F	TACTTACTTGAGAATCC ACAAGCTGCAA	151	GYRB_AB0087 00_862_888_R	TCCTGCAATATCTAATGCA CTCTTACG	505
930	GYRB_AB008 700_760_78_F	TACTTACTTGAGAATCC ACAAGCTGCAA	151	GYRB_AB0087 00_862_888_R	ACCTGCAATATCTAATGCA CTCTTACG	506
222	HFLB_EC_10 82_1102_F	TGGCGAACCTGGTGAAC GAAGC	152	HFLB_EC_114 4_1168_R	CTTTCGCTTCTCGAACTC ACCAT	507
1128	HUPB_CJ_11 3_134_F	TAGTTGCTAAACAGCT GGGCT	153	HUPB_CJ_157 188_R	TCCCTAAATAGTAGAAATAA CTGCATCAGTAGC	509
1130	HUPB_CJ_76 102_F	TCCC GGAGCTTTATGA CTAAAGCAGAT	154	HUPB_CJ_114 135_R	TAGCCCAGCTGGTTGAGCA ACT	508
1129	HUPB_CJ_76 102_F	TCCC GGAGCTTTATGA CTAAAGCAGAT	154	HUPB_CJ_157 188_R	TCCCTAAATAGTAGAAATAA CTGCATCAGTAGC	510
1079	ICD_CXB_17 6_198_F	TCGCGTGGAAAAATCC TACGCT	155	ICD_CXB_224 247_R	TAGCCTTTCTCCGGCGTA GATCT	512
1078	ICD_CXB_92 120_F	TTCCTGACCGACCCATT ATTCCCTTATC	156	ICD_CXB_172 194_R	TAGGATTTTCCACGGCGG CATC	510
1077	ICD_CXB_93 120_F	TCCTGACCGACCCATT TTCCCTTATC	157	ICD_CXB_172 194_R	TAGGATTTTCCACGGCGG CATC	511
221	INFB_EC_11 03_1124_F	GTCGTAAAAGGAGCTG GAAGA	158	INFB_EC_117 4_1191_R	CATGATGGTCACAACCGG	513
964	INFB_EC_13 47_1367_F	TGCGTTACCGCAATGC GTGC	159	INFB_EC_141 4_1432_R	TCGGCATCACGCCGTGTC	514
34	INFB_EC_13 65_1393_F	TGCTCGTGGTGCACAA TAACGGATATTA	160	INFB_EC_143 9_1467_R	TGCTGCTTTCGCATGGTT ATTGCTTCAA	515
352	INFB_EC_13 65_1393_TM OD_F	TTGCTCGTGGTGCACAA GTAACGGATATTA	161	INFB_EC_143 9_1467_TM R	TTGCTGCTTTCGCATGGTT ATTGCTTCAA	516
223	INFB_EC_19 69_1994_F	CGTCAGGTAAATTCCG TGAAGTTAA	162	INFB_EC_203 8_2058_R	AACCTCGCTTCGGTCATG TT	517
781	INV_U22457 1558_1581_F	TGGTAACAGAGCCTTAT AGGCAGCA	163	INV_U22457 1619_1643_R	TTGCGTTGCGAGATTATCTT TACCAA	518
778	INV_U22457 515_539_F	TGGCTCCTGGTATGAC TCTGCTC	164	INV_U22457 571_598_R	TGTTAAGTGTGTTGCGGCT GTCTTTATT	519
779	INV_U22457 699_724_F	TGCTGAGGCCTGGACCG ATTATTTAC	165	INV_U22457 753_776_R	TCACGCGACGAGTGCCATC CATG	520
780	INV_U22457 834_858_F	TTATTACCTGCACTCC CACAACTG	166	INV_U22457 942_966_R	TGACCCAAAGCTGAAAGCT TTACTG	521

1106	IPAH_SGF_1 13 134 F	TCCTTGACCGCCTTCC GATAC	167	IPAH_SGF_17 2 191 R	TTTTCCAGCCATGCAGCGA C	522
1105	IPAH_SGF_2 58 277 F	TGAGGACCGTGTGCGGC TCA	168	IPAH_SGF_30 1 327 R	TCCTTCTGATGCCTGATGG ACCAGGAG	523
1107	IPAH_SGF_4 62 486 F	TCAGACCATGTCGAG AGAAACTT	169	IPAH_SGF_52 2 540 R	TGTCACTCCGACACGCCA	524
1080	IS1111A NC 002971_686 6 6891 F	TCAGTATGTATCCACCG TAGCCAGTC	170	IS1111A_NCO 02971_6928_ 6954_R	TAAACGTCCGATACCAATG GTTCGCTC	525
1081	IS1111A NC 002971_745 6 7483 F	TGGGTGACATTATCAA TTTCATCGTC	171	IS1111A_NCO 02971_7529_ 7554_R	TCAACAAACACCTCCTTATT CCCACTC	526
35	LEF_BA_103 3 1052 F	TCAAGAAGAAAAAGAGC	172	LEF_BA_1119 1135 R	GAATATCAATTGTAGC	527
36	LEF_BA_103 6 1066 F	CAAGAAGAAAAAGAGCT	173	LEF_BA_1119 1149 R	AGATAAAAGATCACGAATA TCAATTGTAGC	528
37	LEF_BA_756 781 F	AGCTTTGCATATTATA TCGAGCCAC	174	LEF_BA_843 872 R	TCTTCCAAGGATAGATTAA TTTCTTGTTCG	530
353	LEF_BA_756 781_TMOD_F	TAGCTTTGCATATTAT ATCGAGCCAC	175	LEF_BA_843 872_TMOD R	TCTTCCAAGGATAGATTAA TTTCTTGTTCG	531
38	LEF_BA_758 778 F	CTTTGCATATTATATC GAGC	176	LEF_BA_843 865 R	AGGATAGATTATTCCTTG TTCG	529
39	LEF_BA_795 813 F	TTTACAGCTTATGCAC CG	177	LEF_BA_883 900 R	TCTTGACAGCATCCGTG	532
40	LEF_BA_883 899 F	CAACGGATGCTGGCAAG	178	LEF_BA_939 958 R	CAGATAAAAGAACATCGCTCCA G	533
782	LL_NC00314 3_2366996 2367019 F	TGTAGCCGCTAACGACT ACCATCC	179	LL_NC003143 _2367073_23 67097 R	TCTCATCCCGATATTACCG CCATGA	534
783	LL_NC00314 3_2367172 2367194 F	TGGACGGCATCACGATT CTCTAC	180	LL_NC003143 _2367249_23 67271 R	TGGCAACAGCTAACACCT TTGG	535
878	MECA_Y1405 1_3645_367 0 F	TGAAAGTAGAAAATGACTG AACGTCCGA	181	MECA_Y14051 3690_3719_ R	TGATCCTGAATGTTATAT CTTTAACGCCT	536
877	MECA_Y1405 1_3774_380 2 F	AAAAACAAACTACGGTA ACATTGATCGCA	182	MECA_Y14051 3828_3854_ R	TCCCAATCTAACCTCCACA TACCATCT	537
879	MECA_Y1405 1_4507_453 0 F	TCAGGTAATGCTATCCA CCCTCAA	183	MECA_Y14051 4555_4581_ R	TGGATAGACGTATATGAA GGTGTGCT	538
880	MECA_Y1405 1_4510_453 0 F	TGTACTGCTATCCACCC TCAA	184	MECA_Y14051 4586_4610_ R	TATTCTCGTTACTCATGC CATACA	539
882	MECA_Y1405 1_4520_453 0 F	TU^AU^AU^AU^C^U^AA	185	MECA_Y14051 4590_4600P R	C^AU^C^U^AC^GU^U^A	540
883	MECA_Y1405 1_4520_453 0 F	TU^AU^AU^AU^C^U^AA	185	MECA_Y14051 4600_4610P R	C^AC^C^U^C^C^U^GC^T	541
881	MECA_Y1405 1_4669_469 8 F	TCACCAGGTCAACTCA AAAAATATTAACAA	186	MECA_Y14051 4765_4793_ R	TAACCACCCCAAGATTAT CTTTTGCCA	542
876	MECIA_Y140 51_3315_33 41 F	TTACACATATCGTGAGC AATGAACGT	187	MECIA_Y1405 1_3367_3393 R	TGTGATATGGAGGTGAGA AGGTGTTA	543
914	OMPA_AY485 227_272_30 1 F	TTACTCCATTATTGCTT GGTACACTTCC	188	OMPA_AY4852 27_364_388_ R	GAGCTGCGCCAACGAATAA ATCGTC	544
916	OMPA_AY485 227_311_33 5 F	TACACAAACATGGCGGT AAAGATGG	189	OMPA_AY4852 27_424_453_ R	TACGTCGCCTTAACTTGG TTATATTCAAGC	545
915	OMPA_AY485 227_379_40 1 F	TGGCGAGCTTGGTAT CGAGTT	190	OMPA_AY4852 27_492_519_ R	TGCCGTAACATAGAAGTTA CGCTTGATT	546
917	OMPA_AY485 227_415_44 1 F	TGCCTCGAAGCTGAATA TAACCAAGTT	191	OMPA_AY4852 27_514_546_ R	TCGTCGTATTTATAGTGAC ATTAAATCAGAAGT	547
918	OMPA_AY485 227_494_52 0 F	TCAACGGTAACCTCTAT GTTACTCTG	192	OMPA_AY4852 27_569_596_ R	TCGTCGTATTTATAGTGAC CAGCACCTA	548
919	OMPA_AY485 227_551_57 7 F	TCAAGCCGTACGTATTA TTAGGTGCTG	193	OMPA_AY4852 27_658_680_ R	TTAACGCGCCAGAAAGCAC CAAC	550

920	OMPA_AY485 227_555_58 1_F	TCCGTACGTATTATTAG GTGCTGGTCA	194	OMPA_AY4852 27_635_662_R	TCAACACCAGCGTTACCTA AACTACCTT	549
921	OMPA_AY485 227_556_58 3_F	TCGTACGTATTATTAGG TGCTGGTCACT	195	OMPA_AY4852 27_659_683_R	TGTTTAAGGCCAGAAAG CACCAA	551
922	OMPA_AY485 227_657_67 9_F	TGTTGGTGCTTCTGGC GCTTAA	196	OMPA_AY4852 27_739_765_R	TAAGCCAGCAAGAGCTGTA TAGTTCCA	552
923	OMPA_AY485 227_660_68 3_F	TGGTGCCTTCTGGCGT TAAACGA	197	OMPA_AY4852 27_786_807_R	TACAGGAGCAGCAGGCTTC AAG	553
1088	OMPB_RKP_1 192_1221_F	TCTACTGATTTGGTAA TCTTGCAGCACAG	198	OMPB_RKP_12 88_1315_R	TAGCAGCAAAAGTTATCAC ACCTGCACT	554
1089	OMPB_RKP_3 417_3440_F	TGCAAGTGGTACTTCAA CATGGGG	199	OMPB_RKP_35 20_3550_R	TGTTGTAGTCTCTGTAGT TGTTGCATTAAAC	555
1087	OMPB_RKP_8 60_890_F	TTACAGGAAGTTAGGT GGTAATCTAAAAGG	200	OMPB_RKP_97 2_996_R	TCCCTGCAGCTCTACCTGCT CCATTA	556
41	PAG_BA_122 142_F	CAGAACATCAAGTCCCAG GGG	201	PAG_BA_190 209_R	CCTGTAGTAGAAAGAGGTA C	558
42	PAG_BA_123 145_F	AGAACATCAAGTCCCAGG GGTTAC	202	PAG_BA_187 210_R	CCCTGTAGTAGAAAGAGGTA ACAC	557
43	PAG_BA_269 287_F	AATCTGCTATTGGTCA GG	203	PAG_BA_326 344_R	TGATTATCAGCGGAAGTAG	559
44	PAG_BA_655 675_F	GAAGGATAACGGTTGA TGTC	204	PAG_BA_755 772_R	CCCTGCTCCATTTCAG	560
45	PAG_BA_753 772_F	TCCTGAAAAATGGAGCA CGG	205	PAG_BA_849 868_R	TCCGATAAGCTGCCACAAG G	561
46	PAG_BA_763 781_F	TGGAGCACGGCTCTGA TC	206	PAG_BA_849 868_R	TCCGATAAGCTGCCACAAG G	562
912	PARC_X9581 9_123_147_F	GGCTCAGCCATTAGTT ACCGCTAT	207	PARC_X95819 232_260_R	TCGCTCAGCAATAATTAC TATAAGCCGA	566
913	PARC_X9581 9_43_63_F	TCAGCGCGTACAGTGGG TGAT	208	PARC_X95819 143_170_R	TTCCCTGACCTTCGATTA AAGGATAGC	563
911	PARC_X9581 9_87_110_F	TGGTGAACCGGCATGTT ATGAAGC	209	PARC_X95819 192_219_R	GGTATAACGCATCGCAGCA AAAGATTAA	564
910	PARC_X9581 9_87_110_F	TGGTGAACCGGCATGTT ATGAAGC	209	PARC_X95819 201_222_R	TTCGGTATAACGCATCGCA GCA	565
773	PLA_AF0539 45_7186_72 11_F	TTATACCGGAAACTTCC CGAAAGGAG	210	PLA_AF05394 5_7257_7280_R	TAATGCGATACTGGCCTGC AAGTC	567
770	PLA_AF0539 45_7377_74 02_F	TGACATCCGGCTCACGT TATTATGGT	211	PLA_AF05394 5_7434_7462_R	TGTAATTCCGCAAAGACT TTGGCATTAG	568
771	PLA_AF0539 45_7382_74 04_F	TCCGGCTCACGTTATTA TGGTAC	212	PLA_AF05394 5_7482_7502_R	TGGTCTGAGTACCTCCTTT GC	569
772	PLA_AF0539 45_7481_75 03_F	TGCAAAAGGAGGTACTCA GACCAT	213	PLA_AF05394 5_7539_7562_R	TATTGGAAATACCGGCAGC ATCTC	570
909	RECA_AF251 469_169_19 0_F	TGACATGCTGTCCGTT CAGGC	214	RECA_AF2514 69_277_300_R	TGGCTCATAAGACGCGCTT GTAGA	572
908	RECA_AF251 469_43_68_F	TGGTACATGTGCCCTCA TTGATGCTG	215	RECA_AF2514 69_140_163_R	TTCAAGTGCTTGCTCACCA TTGTC	571
1072	RNASEP_BDP 574_592_F	TGGCACGGCCATCTCCG TG	216	RNASEP_BDP_616_635_R	TCGTTCACCTGTCTAC CG	573
1070	RNASEP_BKM 580_599_F	TGCGGGTAGGGAGCTTG AGC	217	RNASEP_BKM_665_686_R	TCCGATAAGCCGGATTCTG TGC	574
1071	RNASEP_BKM 616_637_F	TCCTAGAGGAATGGCTG CCACG	218	RNASEP_BKM_665_687_R	TGCCGATAAGCCGGATTCT GTGC	575
1112	RNASEP_BRM 325_347_F	TACCCAGGGAAAGTGC CACAGA	219	RNASEP_BRM_402_428_R	TCTCTTACCCACCCCTTTC ACCCCTAC	576
1172	RNASEP_BRM 461_488_F	TAAACCCCATCGGGAGC AAGACCGAATA	220	RNASEP_BRM_542_561_2_R	TGCCCTCGTGCAACCCACCC G	577
1111	RNASEP_BRM 461_488_F	TAAACCCCATCGGGAGC AAGACCGAATA	220	RNASEP_BRM_542_561_R	TGCCCTCGCGCAACCTACCC G	578
258	RNASEP_BS_43_61_F	GAGGAAAGTCCATGCTC GC	221	RNASEP_BS_63_384_R	GTAAGCCATGTTTGTCC ATC	579
259	RNASEP_BS_43_61_F	GAGGAAAGTCCATGCTC GC	221	RNASEP_BS_63_384_R	GTAAGCCATGTTTGTCC ATC	578
258	RNASEP_BS_43_61_F	GAGGAAAGTCCATGCTC GC	221	RNASEP_EC_45_362_R	ATAAGCCGGTTCTGTCG	581

258	RNASEP_BS_43_61_F	GAGGAAAGTCCATGCTCGC	221	RNASEP_SA_358_379_R	ATAAGCCATGTTCTGTTCCATC	584
1076	RNASEP_CLB_459_487_F	TAAGGATAGTGCACAGAGATATACCCCG	222	RNASEP_CLB_498_522_R	TTTACCTCGCCTTCCACCCTTAC	579
1075	RNASEP_CLB_459_487_F	TAAGGATAGTGCACAGAGATATACCCCG	222	RNASEP_CLB_498_526_R	TGCTCTTACCTCACCGTTCACCTTAC	580
258	RNASEP_EC_61_77_F	GAGGAAAGTCCGGGCTC	223	RNASEP_BS_363_384_R	GTAAGCCATGTTTGTTCGAT	578
258	RNASEP_EC_61_77_F	GAGGAAAGTCCGGGCTC	223	RNASEP_EC_345_362_R	ATAAGCCGGTTCTGTGCG	581
260	RNASEP_EC_61_77_F	GAGGAAAGTCCGGGCTC	223	RNASEP_EC_345_362_R	ATAAGCCGGTTCTGTGCG	581
258	RNASEP_EC_61_77_F	GAGGAAAGTCCGGGCTC	223	RNASEP_SA_358_379_R	ATAAGCCATGTTCTGTTCGAT	584
1085	RNASEP_RKP_264_287_F	TCTAAATGGTCGTGCAGTTGCGT	224	RNASEP_RKP_295_321_R	TCTATAGAGTCGGACTTTCTCGTGA	582
1082	RNASEP_RKP_419_448_F	TGGTAAGAGCGCACCGGTAAGTTGGAACA	225	RNASEP_RKP_542_565_R	TCAAGCGATCTACCCGCATTACAA	583
1083	RNASEP_RKP_422_443_F	TAAGAGCGCACCGGTAA	226	RNASEP_RKP_542_565_R	TCAAGCGATCTACCCGCATTACAA	583
1086	RNASEP_RKP_426_448_F	TGCATACCGGTAAGTTGGCAACA	227	RNASEP_RKP_542_565_R	TCAAGCGATCTACCCGCATTACAA	583
1084	RNASEP_RKP_466_491_F	TCCACCAAGAGCAAGATCAAATAGGC	228	RNASEP_RKP_542_565_R	TCAAGCGATCTACCCGCATTACAA	583
258	RNASEP_SA_31_49_F	GAGGAAAGTCCATGCTCAC	229	RNASEP_BS_363_384_R	GTAAGCCATGTTTGTTCGAT	578
258	RNASEP_SA_31_49_F	GAGGAAAGTCCATGCTCAC	229	RNASEP_EC_345_362_R	ATAAGCCGGTTCTGTGCG	581
258	RNASEP_SA_31_49_F	GAGGAAAGTCCATGCTCAC	229	RNASEP_SA_358_379_R	ATAAGCCATGTTCTGTTCGAT	584
262	RNASEP_SA_31_49_F	GAGGAAAGTCCATGCTCAC	229	RNASEP_SA_358_379_R	ATAAGCCATGTTCTGTTCGAT	584
1098	RNASEP_VBC_331_349_F	TCCCGGGAGTTGACTGGT	230	RNASEP_VBC_388_414_R	TGACTTTCTCCCCCTTATCAGTCTCC	585
66	RPLB_EC_65_0_679_F	GACCTACAGTAAGAGGTCTGTAAATGAACC	231	RPLB_EC_739_762_R	TCCAAGTGTGGTTACCCCATGG	591
356	RPLB_EC_65_0_679_TM0D_F	TGACCTACAGTAAGAGGTTCTGTAAATGAACC	232	RPLB_EC_739_762_TM0D_R	TTCCAAGTGTGGTTACCCCATGG	592
73	RPLB_EC_66_9_698_F	TGTAATGAACCTTAATGACACCATCCACACGG	233	RPLB_EC_735_761_R	CCAAGTGTGGTTACCCATGG	586
74	RPLB_EC_67_1_700_F	TAATGAACCTTAATGACCATCCACACGGTG	234	RPLB_EC_737_762_R	TCCAAGTGTGGTTACCCATGG	590
67	RPLB_EC_68_8_710_F	CATCCACACGGTGGTGGTGAAGG	235	RPLB_EC_736_757_R	GTCCTGGTTACCCCATGG	587
70	RPLB_EC_68_8_710_F	CATCCACACGGTGGTGGTGAAGG	235	RPLB_EC_743_771_R	TGTTTGTATCCAAGTGCTGGTTACCC	593
357	RPLB_EC_68_8_710_TM0D_F	TCATCCACACGGTGGTGTGAAGG	236	RPLB_EC_736_757_TM0D_R	TGTGCTGGTTACCCCATGG	588
449	RPLB_EC_69_0_710_F	TCCACACGGTGGTGGTGAAGG	237	RPLB_EC_737_758_R	TGTGCTGGTTACCCCATGG	589
113	RPOB_EC_13_36_1353_F	GACCACCTCGCAACCGT	238	RPOB_EC_143_8_1455_R	TTCGCTCTCGGCCTGGCC	594
963	RPOB_EC_15_27_1549_F	TCAGCTGTCGCAAGTCA	239	RPOB_EC_163_0_1649_R	TCGTCGCCGACTTCGAAGC	595
72	RPOB_EC_18_45_1866_F	TATCGCTCAGGCGAACTCCAAC	240	RPOB_EC_190_9_1929_R	GCTGGATTCCGCTTGTAC	596
359	RPOB_EC_18_45_1866_TM0D_F	TTATCGCTCAGGCGAAC	241	RPOB_EC_190_9_1929_TM0D_R	TGCTGGATTCCGCTTGTAC	597
962	RPOB_EC_20_05_2027_F	TCGTTCTGGAACACGA	242	RPOB_EC_204_1_2064_R	TTGACGTGCGATGTTGAG	598
69	RPOB_EC_37_62_3790_F	TCAACAAACCTTGGAGTAAAGCTCA	243	RPOB_EC_383_6_3865_R	TTCTTGTAAAGAGTATGAG	600
111	RPOB_EC_37_75_3803_F	CTTGGAGGTAAGTCTCA	244	RPOB_EC_382_9_3858_R	CGTATAAGCTGCACCAATA	599
940	RPOB_EC_37_98_3821_F	TTGGCAGCGTTTCGGCGAAATGGA	245	RPOB_EC_386_2_3889_R	TGTCGACTTGACGGTTAG	604
939	RPOB_EC_37_98_3821_F	TGGGCAGCGTTTCGGCGAAATGGA	245	RPOB_EC_386_2_3889_R	CATTCCCTG	605
289	RPOB_EC_37_99_3821_F	GGGCAGCGTTTCGGCGAAATGGA	246	RPOB_EC_386_2_3888_R	GTCCGACTTGACGGTCAAC	602
362	RPOB_EC_37_99_3821_TM	TGGGCAGCGTTTCGGCGAAATGGA	245	RPOB_EC_386_2_3888_TM0D	TGTCGACTTGACGGTCAA	603

	OD_F		R		
288	RPOB_EC_38 02 3821_F	CAGCGTTCCGGCAAAT GGA	247	RPOB_EC_386 2 3885_R	CGACTTGACGGTTAACATT TCCTG
48	RPOC_EC_10 18_1045_2_F	CAAAACTTATTAGGTAA GCGTGTGACT	248	RPOC_EC_109 5 1124_2_R	TCAAGCGCCATCTCTTCG GTAATCCACAT
47	RPOC_EC_10 18_1045_F	CAAAACTTATTAGGTAA GCGTGTGACT	248	RPOC_EC_109 5 1124_R	TCAAGCGCCATTCTCTTTG GTAAACCACAT
68	RPOC_EC_10 36_1060_F	CGTGTGACTATTGGG GCGTTCAAG	249	RPOC_EC_109 7 1126_R	ATTCAAGAGCCATTCTTT TGGTAAACAC
49	RPOC_EC_11 4_140_F	TAAGAAGCCGAAACCA TCAACTACCG	250	RPOC_EC_213 232_R	GCGCCTTGTACTTACCGCA C
227	RPOC_EC_12 56_1277_F	ACCCAGTGCTGCTGAAAC CGTGC	251	RPOC_EC_129 5 1315_R	GTTCAAATGCCCTGGATACC CA
292	RPOC_EC_13 74_1393_F	CGCCGACTTCGACGGTG ACC	252	RPOC_EC_143 7 1455_R	GAGCATCAGCGTGCCTGCT
364	RPOC_EC_13 74_1393_TM OD_F	TCGCCGACTTCGACGGT GACC	253	RPOC_EC_143 7_1455_TMOD	TGAGCATCAGCGTGCCTGCT T
229	RPOC_EC_15 84_1604_F	TGGCCGAAAGAAGCTG AGCG	254	RPOC_EC_162 3_1643_R	ACGGGGCATGCAGAGATG CC
978	RPOC_EC_21 45_2175_F	TCAGGAGTCGTTCAACT CGATCTACATGATG	255	RPOC_EC_222 8_2247_R	TTACGCCATCAGGCCACGC A
290	RPOC_EC_21 46_2174_F	CAGGAGTCGTTCAACTC GATCTACATGAT	256	RPOC_EC_222 7_2245_R	ACGCCATCAGGCCACGCAT
363	RPOC_EC_21 46_2174_TM OD_F	TCAGGAGTCGTTCAACT CGATCTACATGAT	257	RPOC_EC_222 7_2245_TMOD	TACGCCATCAGGCCACGCAT T
51	RPOC_EC_21 78_2196_2_F	TGATTCCGGTGCCTCG GT	258	RPOC_EC_222 5_2246_2_R	TTGGCCATCAGACCACGCA TAC
50	RPOC_EC_21 78_2196_F	TGATTCTGGTGCCTCG GT	259	RPOC_EC_222 5_2246_R	TTGGCCATCAGGCCACGCA TAC
53	RPOC_EC_22 18_2241_2_F	CTTGCTGGTATGCGTGG TCTGATG	260	RPOC_EC_231 3_2337_2_R	CGCACCATGCGTAGAGATG AAGTAC
52	RPOC_EC_22 18_2241_F	CTGGCAGGTATGCGTGG TCTGATG	261	RPOC_EC_231 3_2337_R	CGCACCGTGGGTTGAGATG AAGTAC
354	RPOC_EC_22 18_2241_TM OD_F	CTGGCAGGTATGCGTGG GTCTGATG	262	RPOC_EC_231 3_2337_TMOD	TCGCACCGTGGGTTGAGAT GAAGTAC
958	RPOC_EC_22 23_2243_F	TGGTATGCGTGGTCTGA TGGC	263	RPOC_EC_232 9_2352_R	TGCTAGACCTTACGTGCA CGGTG
960	RPOC_EC_23 34_2357_F	TGCTCGTAAGGGCTGG CGGATAC	264	RPOC_EC_238 0_2403_R	TACTAGACGACGGGTAGG ATAAC
55	RPOC_EC_80 8_833_2_F	CGTCGTAAATTAAACCG TAACAACCG	265	RPOC_EC_865 891_R	ACGTTTTCTGTTGAACG ATAATGCT
54	RPOC_EC_80 8_833_F	CGTCGGGTATTAACCG TAACAACCG	266	RPOC_EC_865 889_R	GTTTTCTGTCGTTACGAT GATGTC
961	RPOC_EC_91 7_938_F	TATTGGACAAACGGTGT CGCGG	267	RPOC_EC_100 9_1034_R	TTACCGAGCAGGTTCTGAC GGAAACG
959	RPOC_EC_91 8_938_F	TCTGGATAACGGTCGTC CGGG	268	RPOC_EC_100 9_1031_R	TCCAGCAGGTTCTGACGGA AACG
57	RPOC_EC_99 3_1019_2_F	CAAAGGTAAAGCAAGGAC GTTTCCGTC	269	RPOC_EC_103 6_1059_2_R	CGAACGGCCAGAGTAGTCA ACACG
56	RPOC_EC_99 3_1019_F	CAAAGGTAAAGCAAGGTC GTTTCCGTC	270	RPOC_EC_103 6_1059_R	CGAACGGCCAGAGTAGTCA ACACG
75	SP101_SPET 11_1_29_F	AACCTTAATTGGAAAGA AACCCAAGAAGT	271	SP101_SPET1 1_92_116_R	CCTACCCAACGTTACCAA GGGCAG
446	SP101_SPET 11_1_29_TM OD_F	TAACCTTAATTGGAAAG AACCCAAGAAGT	272	SP101_SPET1 1_92_116_TM OD_R	TCCTACCCAACGTTACCAA AGGGCAG
85	SP101_SPET 11_1154_11 79_F	CAATACCGCAACAGCGG TGGCTTGGG	273	SP101_SPET1 1_1251_1277 R	GACCCCCAACCTGGCCTTT GTCGTTGA
424	SP101_SPET 11_1154_11 79_TMOD_F	TCAATACCGCAACAGCG GTGGCTTGGG	274	SP101_SPET1 1_1251_1277 TMOD_R	TGACCCCAACCTGGCCTTT TGTGTTGA
76	SP101_SPET 11_118_147 F	GCTGGTAAAATAACCC AGATGTCGTCCTC	275	SP101_SPET1 1_213_238_R	TGTGGCCGATTTCACCA TGCTCCT
425	SP101_SPET 11_118_147 TMOD_F	TGCTGGTAAAATAACCC CAGATGTCGTCCTC	276	SP101_SPET1 1_213_238_T MOD_R	TTGTGGCCGATTTCACCA CTGCTCCT
86	SP101_SPET	CGCAAAAAATCCAGCT	277	SP101_SPET1	AAACTATTTTTAGCTAT
					632

	11_1314_13 36 F	ATTTAGC		1_1403_1431 R	ACTCGAACAC	
426	SP101_SPET 11_1314_13 36 TMOD F	TCCGAAAAAATCCAGC TATTAGC	278	SP101_SPET1 1_1403_1431 TMOD R	TAAACTATTTTTTAGCTA TACTCGAACAC	633
87	SP101_SPET 11_1408_14 37 F	CGAGTATAGCTAAAAAA ATAGTTATGACA	279	SP101_SPET1 1_1486_1515 R	GGATAATTGGTCGTAACAA GGGATAGTGAG	634
427	SP101_SPET 11_1408_14 37 TMOD F	TCGAGTATAGCTAAAAAA AATACTTATGACA	280	SP101_SPET1 1_1486_1515 TMOD R	TGGATAATTGGTCGTAACAA AGGGATAGTGAG	635
88	SP101_SPET 11_1688_17 16 F	CCTATATTAATCGTTA CAGAAACTGGCT	281	SP101_SPET1 1_1783_1808 R	ATATGATTATCATTGAAC GCGGCCG	636
428	SP101_SPET 11_1688_17 16 TMOD F	TCCTATATTAATCGTT ACAGAAACTGGCT	282	SP101_SPET1 1_1783_1808 TMOD R	TATATGATTATCATTGAAC TGCAGGCCG	637
89	SP101_SPET 11_1711_17 33 F	CTGGCTAAAACCTTGGC AACGGT	283	SP101_SPET1 1_1808_1835 R	GCGTGACGACCTTCTTGAA TTGTAATCA	638
429	SP101_SPET 11_1711_17 33 TMOD F	TCTGGCTAAAACCTTGG CAACGGT	284	SP101_SPET1 1_1808_1835 TMOD R	TGCGTGACGACCTTCTTGAA ATTGTAATCA	639
90	SP101_SPET 11_1807_18 35 F	ATGATTACAATTCAAGA AGGTCTCACGC	285	SP101_SPET1 1_1901_1927 R	TTGGACCTGTAATCAGCTG AATACTGG	640
430	SP101_SPET 11_1807_18 35 TMOD F	TATGATTACAATTCAAG AAGTCGTACCGC	286	SP101_SPET1 1_1901_1927 TMOD R	TTTGGACCTGTAATCAGCT GAATACTGG	641
91	SP101_SPET 11_1967_19 91 F	TAACGGTTATCATGCC CAGATGGG	287	SP101_SPET1 1_2062_2083 R	ATTGCCAGAAATCAAATC ATC	642
431	SP101_SPET 11_1967_19 91 TMOD F	TTAACGGTTATCATGGC CCAGATGGG	288	SP101_SPET1 1_2062_2083 TMOD R	TATTGCCAGAAATCAAAT CATC	643
77	SP101_SPET 11_216_243 F	AGCAGGTGGTCAAATCG GCCACATGATT	289	SP101_SPET1 1_308_333 R	TGCCACTTGTACAACCT GTTGCTG	654
432	SP101_SPET 11_216_243 TMOD F	TAGCAGGTGGTCAAATC GGCCACATGATT	290	SP101_SPET1 1_308_333 T MOD R	TTGCCACTTGTACAACCT TGTGCTG	655
92	SP101_SPET 11_2260_22 83 F	CAGAGACCGTTTATCC TATCAGC	291	SP101_SPET1 1_2375_2397 R	TCTGGGTGACCTGGTGT TAGA	646
433	SP101_SPET 11_2260_22 83 TMOD F	TCAGAGACCGTTTATC CTATCAGC	292	SP101_SPET1 1_2375_2397 TMOD R	TTCTGGGTGACCTGGTGT TAGA	647
93	SP101_SPET 11_2375_23 99 F	TCTAAACACCAAGGTCA CCCAGAAG	293	SP101_SPET1 1_2470_2497 R	AGCTGCTAGATGAGCTTCT GCCATGGCC	648
434	SP101_SPET 11_2375_23 99 TMOD F	TTCTAAACACCAAGGT ACCCAGAAG	294	SP101_SPET1 1_2470_2497 TMOD R	TAGCTGCTAGATGAGCTTC TGCCATGGCC	649
94	SP101_SPET 11_2468_24 87 F	ATGGCCATGGCAGAAC TCA	295	SP101_SPET1 1_2543_2570 R	CCATAAGGTACCGTCACC ATTCAAAGC	650
435	SP101_SPET 11_2468_24 87 TMOD F	TATGGCCATGGCAGAAC CTCA	296	SP101_SPET1 1_2543_2570 TMOD R	TCCATAAGGTACCGTCAC CATTCAAAGC	651
78	SP101_SPET 11_266_295 F	CTTGACTTGTGGCTCA CACGGCTGTTGG	297	SP101_SPET1 1_355_380 R	GCTGCTTGTGGCTGAAT CCCCCTTC	661
436	SP101_SPET 11_266_295 TMOD F	TCTTGTACTTGTGGCTC ACACGGCTGTTGG	298	SP101_SPET1 1_355_380 T MOD R	TGCTGCTTGTGGCTGAAT CCCCCTTC	662
95	SP101_SPET 11_2961_29 84 F	ACCATGACAGAAGGCAT TTTGACA	299	SP101_SPET1 1_3023_3045 R	GGAATTTACCAAGCGATAGA CACC	652
437	SP101_SPET 11_2961_29 84 TMOD F	TACCATGACAGAAGGC CAACGGCTGTTGG	300	SP101_SPET1 1_3023_3045 TMOD R	TGGAATTTACCAAGCGATAG ACACC	653
96	SP101_SPET 11_3075_31 03 F	GATGACTTTTAGCTAA TGGTCAGGCA	301	SP101_SPET1 1_3168_3196 R	AATCGACGACCATCTTGG AAGATTCTC	656
438	SP101 SPET	TGATGACTTTTAGCTA	302	SP101 SPET1	TAATCGACGACCATCTTGG	657

	11_3075_31 03 TMOD F	ATGGTCAGGCAGC		1_3168_3196 TMOD R	AAAGATTTCTC	
448	SP101_SPET 11_3085_31 04 F	TAGCTAATGGTCAGGCA GCC	303	SP101_SPET1 1_3170_3194 R	TCGACGACCACCTTGAAA GATTTC	658
79	SP101_SPET 11_322_344 F	GTCAAA GTGGCACGTT ACTGGC	304	SP101_SPET1 1_423_441 R	ATCCCCTGCTTCTGCTGCC	665
439	SP101_SPET 11_322_344 TMOD F	TGTCAA AGTGGCACGTT TACTGGC	305	SP101_SPET1 1_423_441 T MOD R	TATCCCCCTGCTTCTGCTGC C	666
97	SP101_SPET 11_3386_34 03 F	AGCGTA AAGGTGAACCT T	306	SP101_SPET1 1_3480_3506 R	CCAGCAGTTACTGTCCCC CATCTTG	659
440	SP101_SPET 11_3386_34 03 TMOD F	TAGCGT AAAGGTGAACC TT	307	SP101_SPET1 1_3480_3506 TMOD R	TCCAGCAGTTACTGTCCCC TCATCTTG	660
98	SP101_SPET 11_3511_35 35 F	GCTTCAGGAATCAATGA TGGAGCAG	308	SP101_SPET1 1_3605_3629 R	GGGTCTACACCTGCACTT CATAAC	663
441	SP101_SPET 11_3511_35 35 TMOD F	TGCTTCAGGAATCAATG ATGGAGCAG	309	SP101_SPET1 1_3605_3629 TMOD R	TGGGTCTACACCTGCACTT GCATAAC	664
80	SP101_SPET 11_358_387 F	GGGGATTCAGCCATCAA AGCAGC TATTGAC	310	SP101_SPET1 1_448_473 R	CCAACCTTTCCACAACAG AATCAGC	668
442	SP101_SPET 11_358_387 TMOD F	TGGGGATTCAGCCATCA AAGCAGCTATTGAC	311	SP101_SPET1 1_448_473 T MOD R	TCCAACCTTTCCACAACAG GAATCAGC	669
447	SP101_SPET 11_364_385 F	TCAGCCATCAAAGCAGC TATTG	312	SP101_SPET1 1_448_471 R	TACCTTTCCACAACAGAA TCAGC	667
81	SP101_SPET 11_600_629 F	CCTTAC TTGAACTATG AATCTT TTGGAAG	313	SP101_SPET1 1_686_714 R	CCCATTTCACGCATGC TGAAAATATC	670
443	SP101_SPET 11_600_629 TMOD F	TCCTTA TTGAACTAT GAATCTT TTGGAAG	314	SP101_SPET1 1_686_714 T MOD R	TCCCATTTCACGCATG CTGAAAATATC	671
82	SP101_SPET 11_658_684 F	GGGGAT TGATATCACCG ATAAGAAGAA	315	SP101_SPET1 1_756_784 R	GATTGGCGATAAAAGTGATA TTTTCTAAAA	672
444	SP101_SPET 11_658_684 TMOD F	TGGGGATTGATATCACC GATAAGAAGAA	316	SP101_SPET1 1_756_784 T MOD R	TGATTGGCGATAAAAGTGAT ATTTTCTAAAA	673
83	SP101_SPET 11_776_801 F	TCGCCAATCAAACCAA GGGAATGGC	317	SP101_SPET1 1_871_896 R	GCCCCACCAGAAAAGACTAGC AGGATAA	674
445	SP101_SPET 11_776_801 TMOD F	TTCGCCAATCAAACCAA AGGGAAATGGC	318	SP101_SPET1 1_871_896 T MOD R	TGCCCACCAGAAAAGACTAG CAGGATAA	675
84	SP101_SPET 11_893_921 F	GGGCAACAGCAGCGGAT TGGGAT TGGCG	319	SP101_SPET1 1_988_1012 R	CATGACAGCCAAGACCTCA CCCACC	678
423	SP101_SPET 11_893_921 TMOD F	TGGGCAACAGCAGCGGA TTGGGAT TGGCG	320	SP101_SPET1 1_988_1012 TMOD R	TCATGACAGCCAAGACCTC ACCCACC	679
706	SSPE_BA_11 4_137_F	TCAAGCAAACGCACAAAT CAGAACG	321	SSPE_BA_196 222 R	TTGCACGTCTGTTCAAGTT GCACAAATTC	683
612	SSPE_BA_11 4_137_F	TCAAGCAAACGCACAAAC ^U^AGAACG	321	SSPE_BA_196 222P R	TTGCACGTU^C^GTTCAAGT TGCAAAATTC	684
58	SSPE_BA_11 5_137_F	CAAGCAAACGCACAAATC AGAACG	322	SSPE_BA_197 222 R	TGACACGTCTGTTCAAGTTG CAAATTC	686
355	SSPE_BA_11 5_137_TMOD F	TCAAGCAAACGCACAAAT CAGAACG	321	SSPE_BA_197 222 TMOD R	TTGCACGTCTGTTCAAGTT GCACAAATTC	687
215	SSPE_BA_12 1_137_F	AACGCACAAATCAGAACG	323	SSPE_BA_197 216 R	TCTGTTCAAGTTGCAAATT C	685
699	SSPE_BA_12 3_153_F	TGCACAAATCAGAACGTA AGAACGCGCAAGCT	324	SSPE_BA_202 231 R	TTTCACAGCATGCACGTCT GTTTCAGTTGC	688
704	SSPE_BA_14 6_168_F	TGCAAGCTTCTGGTGCT AGCATT	325	SSPE_BA_242 267 R	TTCTGATTGTTTCAGCT GATTGTG	689
702	SSPE_BA_15 0_168_F	TGCTTCCTGGTGCTAGCA TT	326	SSPE_BA_243 264 R	TGATTGTTTCAGCTGAT TGT	691
610	SSPE_BA_15 0_168P_F	TGCTTCCTGGC^GU^C^AG U^ATT	326	SSPE_BA_243 264P R	TGATTGTTTCAGCTGAT C^C^GT	691

700	SSPE_BA_15 6 168 F	TGGTGCTAGCATT	327	SSPE_BA_243 255 R	TGCAGCTGATTGT	690
608	SSPE_BA_15 6 168P F	TGGC ^a GU ^b C ^c AGU ^d ATT	327	SSPE_BA_243 255P R	TGU ^a AGU ^b TGAC ^c C ^d GT	690
705	SSPE_BA_63 89 F	TGCTAGTTATGGTACAG AGTTTGGAC	328	SSPE_BA_163 191 R	TCATAACTAGCATTGTGC TTTGAATGCT	682
703	SSPE_BA_72 89 F	TGGTACAGAGTTGCGA C	329	SSPE_BA_163 182 R	TCATTTGTGCC ^a C ^b C ^c GAAC "GU ^d T	681
611	SSPE_BA_72 89P F	TGGTAU ^a AGAGC ^b C ^c G ^d U ^e GAC	329	SSPE_BA_163 182P R	TCATTTGTGCC ^a C ^b C ^c GAAC "GU ^d T	681
701	SSPE_BA_75 89 F	TACAGAGTTGCGAC	330	SSPE_BA_163 177 R	TGTGCTTGTGAATGCT	680
609	SSPE_BA_75 89P F	TAU ^a AGAGC ^b C ^c CGU ^d G AC	330	SSPE_BA_163 177P R	TGTGCC ^a C ^b C ^c GAAC ^d GU ^e T	680
1099	TOXR_VBC_1 35 158 F	TCGATTAGGCAGCAACG AAAGCCG	331	TOXR_VBC_22 1 246 R	TTCAAAACCTTGCCTCTCGC CAAACAA	692
905	TRPE_AY094 355_1064_1 086 F	TCGACCTTGGCAGGAA CTAGAC	332	TRPE_AY0943 55_1171_119 6 R	TACATCGTTCGCCAAGA TCAATCA	693
904	TRPE_AY094 355_1278_1 303 F	TCAAATGTACAAGGTGA AGTGCCTGA	333	TRPE_AY0943 55_1392_141 8 R	TCCTCTTTACAGGCTCT ACTTCATC	694
903	TRPE_AY094 355_1445_1 471 F	TGGATGGCATGGTGAAA TGGATATGTC	334	TRPE_AY0943 55_1551_158 0 R	TATTTGGGTTTCATTCCAC TCAGATTCTGG	695
902	TRPE_AY094 355_1467_1 491 F	ATGTCGATTGCAATCCG TACCTGTG	335	TRPE_AY0943 55_1569_159 2 R	TGCGCGAGCTTTATTGG GTTTC	696
906	TRPE_AY094 355_666_68 8 F	GTGCATCGGATACAGA GCAGAG	336	TRPE_AY0943 55_769_791 R	TTCAAAATGCGGAGGCFTA TGTG	697
907	TRPE_AY094 355_757_77 6 F	TGCAAGCGCGACCACAT ACG	337	TRPE_AY0943 55_864_883 R	TGCCAGGTACAACCTGCA T	698
114	TUFB_EC_22 5 251 F	GCACTATGCACACGTAG ATTGTCTGG	338	TUFB_EC_284 309 R	TATAGCACCACATCATCTGA GCGGCAC	706
60	TUFB_EC_23 9 259 2 F	TTGACTGCCAGGTCA C GCTG	339	TUFB_EC_283 303 2 R	GCCGTCCATTTGAGCAGCA CC	704
59	TUFB_EC_23 9 259 F	TAGACTGCCAGGACAC GCTG	340	TUFB_EC_283 303 R	GCCGTCCATCTGAGCAGCA CC	705
942	TUFB_EC_25 1 278 F	TGCACGCCGACTATGTT AAGAACATGAT	341	TUFB_EC_337 360 R	TATGTGCTCACGAGTTGC GGCAT	707
941	TUFB_EC_27 5 299 F	TGATCACTGGTCTGCT CAGATGGA	342	TUFB_EC_337 362 R	TGGATGTGCTCACGAGTCT GTGGCAT	708
117	TUFB_EC_75 7 774 F	AAGACGACCTGCACGGG C	343	TUFB_EC_849 867 R	GCGCTCCACGTCTTCACGC	709
293	TUFB_EC_95 7 979 F	CCACACGCCGTTCTCA ACAACT	344	TUFB_EC_103 4 1058 R	GGCATCACCATTTCCTTG CCTTCG	700
367	TUFB_EC_95 7 979_TMOD F	TCCACACGCCGTTCTC AAACAAT	345	TUFB_EC_103 4 1058_TMOD R	TGGCATCACCATTTCTTG TCCTTCG	701
62	TUFB_EC_97 6 1000 2 F	AACTACCGCTCTCAGTT CTACTTCC	346	TUFB_EC_104 5 1068 2 R	GTTGTCACCAAGGCTTAC ATTTC	702
61	TUFB_EC_97 6 1000 F	AACTACCGTCCGCAGTT CTACTTCC	347	TUFB_EC_104 5 1068 R	GTTGTCGCCAGGCATAACC ATTTC	703
63	TUFB_EC_98 5 1012 F	CCACAGTTCTACTTCCG TACTACTGACG	348	TUFB_EC_103 3 1062 R	TCCAGGCATTACCAATTCT ACTCCTTCTGG	699
225	VALS_EC_11 05 1124 F	CGTGGCGCGTGGTTAT CGA	349	VALS_EC_119 5 1214 R	ACGAACTGGATGTCGCCGT T	710
71	VALS_EC_11 05 1124 F	CGTGGCGCGTGGTTAT CGA	349	VALS_EC_119 5 1218 R	CGGTACGAACCTGGATGTC CCGTT	711
358	VALS_EC_11 05 1124_TM OD F	TCGTGGCGGCCTGGTTA TCGA	350	VALS_EC_119 5 1218_TM R	TCGGTACGAACCTGGATGTC GCCGTT	712
965	VALS_EC_11 28 1151 F	TATGCTGACCGACCA GGTACGT	351	VALS_EC_123 1 1257 R	TTCCGGCATCCAGGAGAAG TACATGTT	713
112	VALS_EC_16 33 1850 F	CGACGCGCTGCGCTTC C	352	VALS_EC_192 0 1943 R	GCGTTCACAGCTTGTGC AGAAG	714
116	VALS_EC_19 20 1943 F	CTTCTGCAACAAGCTGT GGAACGC	353	VALS_EC_194 8 1970 R	TCGCAGTTCATCAGCACGA AGCG	715
295	VALS_EC_61 0 649 F	ACCGAGCAAGGAGACCA GC	354	VALS_EC_705 727 R	TATAACGCACATCGTCAGG GTGA	716
931	WAAA_Z9692 5 2 29 F	TCTTGTCTTTCTGTGAG TTCAGTAAATG	355	WAAA_Z96925 115 138 R	CAAGCGGTTTGCTCAAAT AGTCA	717
932	WAAA_Z9692	TCGATCTGGTTTCATGC	356	WAAA_Z96925	TGGCACGAGCCTGACCTGT	718

	5_286_311_F	TGTTTCAGT		-394_412_R		
--	-------------	-----------	--	------------	--	--

[0095] Primer pair name codes and reference sequences are shown in Table 2. The primer name code typically represents the gene to which the given primer pair is targeted. The primer pair name includes coordinates with respect to a reference sequence defined by an extraction of a section of sequence or defined by a GenBank gi number, or the corresponding complementary sequence of the extraction, or the entire GenBank gi number as indicated by the label “no extraction.” Where “no extraction” is indicated for a reference sequence, the coordinates of a primer pair named to the reference sequence are with respect to the GenBank gi listing. Gene abbreviations are shown in bold type in the “Gene Name” column.

Table 2: Primer Name Codes and Reference Sequences

Primer name code	Gene Name	Organism	Reference GenBank gi number	Extracted gene coordinates of gi number	Extraction or entire gene SEQ ID NO:
16S EC	16S rRNA (16S ribosomal RNA gene)	<i>Escherichia coli</i>	16127994	4033120..4034661	719
23S EC	23S rRNA (23S ribosomal RNA gene)	<i>Escherichia coli</i>	16127994	4166220..4169123	720
CAPC BA	capC (capsule biosynthesis gene)	<i>Bacillus anthracis</i>	6470151	Complement (55628..56074)	721
CYA BA	cya (cyclic AMP gene)	<i>Bacillus anthracis</i>	4894216	Complement (154288..156626)	722
DNAK EC	dnaK (chaperone dnaK gene)	<i>Escherichia coli</i>	16127994	12163..14079	723
GROL EC	grol (chaperonin grol)	<i>Escherichia coli</i>	16127994	4368603..4370249	724
HFLB EC	hflb (cell division protein peptidase ftsH)	<i>Escherichia coli</i>	16127994	Complement (3322645..3324576)	725
INFB EC	infB (protein chain initiation factor infB gene)	<i>Escherichia coli</i>	16127994	Complement (3310983..3313655)	726
LEF BA	lef (lethal factor)	<i>Bacillus anthracis</i>	21392688	Complement (149357..151786)	727
PAG BA	pag (protective antigen)	<i>Bacillus anthracis</i>	21392688	143779..146073	728
RPLB EC	rplB (50S ribosomal protein L2)	<i>Escherichia coli</i>	16127994	3449001..3448180	729
RPOB EC	rpoB (DNA-directed RNA polymerase beta chain)	<i>Escherichia coli</i>	6127994	Complement 4178823..4182851	730
RPOC EC	rpoC (DNA-directed RNA polymerase beta' chain)	<i>Escherichia coli</i>	16127994	4182928..4187151	731
SP101ET SPET_1_I	Concatenation comprising: gki (glucose kinase) gtr (glutamine transporter protein) muri (glutamate racemase) mutS (DNA mismatch)	Artificial Sequence* - partial gene sequences of <i>Streptococcus pyogenes</i>	15674250	Complement (1258294..1258791) complement (1236751..1237200) 312732..313169 Complement	732

	repair protein) xpt (xanthine phosphoribosyl transferase) yqIL (acetyl-CoA-acetyl transferase) tkt (transketolase)			(1787602..1788007) 930977..931425 129471..129903 1391844..1391386	
SSPE BA	sspE (small acid-soluble spore protein)	<i>Bacillus anthracis</i>	30253828	226496..226783	733
TUFB EC	tufB (Elongation factor Tu)	<i>Escherichia coli</i>	16127994	4173523..4174707	734
VALS EC	vals (Valyl-tRNA synthetase)	<i>Escherichia coli</i>	16127994	Complement (4481405..4478550)	735
ASPS EC	aspS (Aspartyl-tRNA synthetase)	<i>Escherichia coli</i>	16127994	complement (1946777..1948546)	736
CAF1_AF_053947	caf1 (capsular protein caf1)	<i>Yersinia pestis</i>	2996286	No extraction - GenBank coordinates used	-
INV_U22_457	inv (invasin)	<i>Yersinia pestis</i>	1256565	74..3772	737
LL_NC00_3143	<i>Y. pestis</i> specific chromosomal genes - difference region	<i>Yersinia pestis</i>	16120353	No extraction - GenBank coordinates used	-
BONTA_X_52066	BoNT/A (neurotoxin type A)	<i>Clostridium botulinum</i>	40381	77..3967	738
MECA_Y1_4051	mecA methicillin resistance gene	<i>Staphylococcus aureus</i>	2791983	No extraction - GenBank coordinates used	739
TRPE_AY_094355	trpE (anthranilate synthase (large component))	<i>Acinetobacter baumanii</i>	20853695	No extraction - GenBank coordinates used	740
RECA_AF_251469	recA (recombinase A)	<i>Acinetobacter baumanii</i>	9965210	No extraction - GenBank coordinates used	741
GYRA_AF_100557	gyrA (DNA gyrase subunit A)	<i>Acinetobacter baumanii</i>	4240540	No extraction - GenBank coordinates used	742
GYRB_AB_008700	gyrB (DNA gyrase subunit B)	<i>Acinetobacter baumanii</i>	4514436	No extraction - GenBank coordinates used	743
WAAA_Z9_6925	waaA (3-deoxy-D-manno-octulosonic-acid transferase)	<i>Acinetobacter baumanii</i>	2765828	No extraction - GenBank coordinates used	744
CJST_CJ	Concatenation comprising: tkt (transketolase) glyA (serine hydroxymethyltransferase) gltA (citrate synthase) aspA (aspartate ammonia lyase) glnA (glutamine synthase) pgm (phosphoglycerate mutase)	Artificial Sequence* - partial gene sequences of <i>Campylobacter jejuni</i>	15791399	1569415..1569873 367573..368079 complement (1604529..1604930) 96692..97168 complement (657609..658085) 327773..328270	745

	<i>uncA</i> (ATP synthetase alpha chain)			112163..112651	
RNASEP_BDP	<i>RNase</i> (ribonuclease P)	P <i>Bordetella pertussis</i>	33591275	Complement (3226720..3227933)	746
RNASEP_BKM	<i>RNase</i> (ribonuclease P)	P <i>Burkholderia mallei</i>	53723370	Complement (2527296..2528220)	747
RNASEP_BS	<i>RNase</i> (ribonuclease P)	P <i>Bacillus subtilis</i>	16077068	Complement (2330250..2330962)	748
RNASEP_CLB	<i>RNase</i> (ribonuclease P)	P <i>Clostridium perfringens</i>	18308982	Complement (2291757..2292584)	749
RNASEP_EC	<i>RNase</i> (ribonuclease P)	P <i>Escherichia coli</i>	16127994	Complement (3267457..3268233)	750
RNASEP_RKP	<i>RNase</i> (ribonuclease P)	P <i>Rickettsia prowazekii</i>	15603881	complement(605276..6 06109)	751
RNASEP_SA	<i>RNase</i> (ribonuclease P)	P <i>Staphylococcus aureus</i>	15922990	complement(1559869.. 1560651)	752
RNASEP_VBC	<i>RNase</i> (ribonuclease P)	P <i>Vibrio cholerae</i>	15640032	complement(2580367.. 2581452)	753
ICD CXB	<i>icd</i> (isocitrate dehydrogenase)	<i>Coxiella burnetii</i>	29732244	complement(1143867.. 1144235)	754
IS1111A	multi-locus IS1111A insertion element	<i>Acinetobacter baumannii</i>	29732244	No extraction	-
OMPA_AY 485227	<i>ompA</i> membrane protein A)	<i>Rickettsia prowazekii</i>	40287451	No extraction	755
OMPB_RK_P	<i>ompB</i> membrane protein B)	<i>Rickettsia prowazekii</i>	15603881	complement(881264..8 86195)	756
GLTA_RK_P	<i>gltA</i> (citrate synthase)	<i>Vibrio cholerae</i>	15603881	complement(1062547.. 1063857)	757
TOXR_VB_C	<i>toxR</i> (transcription regulator <i>toxR</i>)	<i>Francisella tularensis</i>	15640032	complement(1047143.. 1048024)	758
ASD_FRT	<i>asd</i> (Aspartate semialdehyde dehydrogenase)	<i>Francisella tularensis</i>	56707187	complement(438608..4 39702)	759
GALE_FR_T	<i>gale</i> (UDP-glucose 4-epimerase)	<i>Shigella flexneri</i>	56707187	809039..810058	760
IPAH_SG_F	<i>ipaH</i> (invasion plasmid antigen)	<i>Campylobacter jejuni</i>	30061571	2210775..2211614	761
HUPB_CJ	<i>hupB</i> (DNA-binding protein Hu-beta)	<i>Coxiella burnetii</i>	15791399	complement(849317..8 49819)	762
AB_MLST	Concatenation comprising :	Artificial Sequence* - partial gene sequences of <i>Acinetobacter baumannii</i>			763
	<i>trpE</i> (anthranilate synthase component I))				
	<i>adk</i> (adenylate kinase)				
	<i>mutY</i> (adenine glycosylase)				
	<i>fumC</i> (fumarate hydratase)				
	<i>efp</i> (elongation factor p)				
	<i>ppa</i> (pyrophosphate phospho-hydrolase)				
				Sequenced in-house	

[0096] * Note: These artificial reference sequences represent concatenations of partial gene extractions from the indicated reference gi number. Partial sequences were used to create the concatenated sequence because complete gene sequences were not necessary for primer design. The stretches of arbitrary residues "N"s were added for the convenience of separation of the partial gene extractions (100N for SP101_SPET11 (SEQ ID NO: 732); 50N for CJST_CJ (SEQ ID NO: 745); and 40N for AB_MLST (SEQ ID NO: 763)).

[0097] Example 2: DNA isolation and Amplification

[0098] Genomic materials from culture samples or swabs were prepared using the DNeasy[®] 96 Tissue Kit (Qiagen, Valencia, CA). All PCR reactions are assembled in 50 µl reactions in the 96 well microtiter plate format using a Packard MPII liquid handling robotic platform and MJ Dyad[®] thermocyclers (MJ research, Waltham, MA). The PCR reaction consisted of 4 units of AmpliTaq Gold[®], 1x buffer II (Applied Biosystems, Foster City, CA), 1.5 mM MgCl₂, 0.4 M betaine, 800 µM dNTP mix, and 250 nM of each primer.

[0099] The following PCR conditions were used to amplify the sequences used for mass spectrometry analysis: 95C for 10 minutes followed by 8 cycles of 95C for 30 seconds, 48C for 30 seconds, and 72C for 30 seconds, with the 48C annealing temperature increased 0.9C after each cycle. The PCR was then continued for 37 additional cycles of 95C for 15 seconds, 56C for 20 seconds, and 72C for 20 seconds.

[0100] Example 3: Solution Capture Purification of PCR Products for Mass Spectrometry with Ion Exchange Resin-Magnetic Beads

[0101] For solution capture of nucleic acids with ion exchange resin linked to magnetic beads, 25 µl of a 2.5 mg/mL suspension of BioClo™ amine terminated supraparamagnetic beads were added to 25 to 50 µl of a PCR reaction containing approximately 10 pM of a typical PCR amplification product. The above suspension was mixed for approximately 5 minutes by vortexing or pipetting, after which the liquid was removed after using a magnetic separator. The beads containing bound PCR amplification product were then washed 3x with 50mM ammonium bicarbonate/50% MeOH or 100mM ammonium bicarbonate/50% MeOH, followed by three more washes with 50% MeOH. The bound PCR amplicon was eluted with 25mM piperidine, 25mM imidazole, 35% MeOH, plus peptide calibration standards.

[0102] Example 4: Mass Spectrometry and Base Composition Analysis

[0103] The ESI-FTICR mass spectrometer is based on a Bruker Daltonics (Billerica, MA) Apex II 70e electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer that employs an actively shielded 7 Tesla superconducting magnet. The active shielding constrains the majority of the fringing magnetic field from the superconducting magnet to a relatively small volume. Thus, components that might be adversely affected by stray magnetic fields, such as CRT monitors, robotic components, and other electronics, can operate in close proximity to the FTICR spectrometer. All aspects of pulse sequence control and data acquisition were performed on a 600 MHz Pentium II data station running Bruker's Xmass software under Windows NT 4.0 operating system. Sample aliquots, typically 15 µl, were extracted directly from 96-well microtiter plates using a CTC HTS PAL autosampler (LEAP Technologies, Carrboro, NC) triggered by the FTICR data station. Samples were injected directly into a 10 µl sample loop integrated with a fluidics handling system that supplies the 100 µl /hr flow rate to the ESI source. Ions were formed via electrospray ionization in a modified Analytica (Branford, CT) source employing an off axis, grounded electrospray probe positioned approximately 1.5 cm from the metalized terminus of a glass desolvation capillary. The atmospheric pressure end of the glass capillary was biased at 6000 V relative to the ESI needle during data acquisition. A counter-current flow of dry N₂ was employed to assist in the desolvation process. Ions were accumulated in an external ion reservoir comprised of an rf-only hexapole, a skimmer cone, and an auxiliary gate electrode, prior to injection into the trapped ion cell where they were mass analyzed. Ionization duty cycles > 99% were achieved by simultaneously accumulating ions in the external ion reservoir during ion detection. Each detection event consisted of 1M data points digitized over 2.3 s. To improve the signal-to-noise ratio (S/N), 32 scans were co-added for a total data acquisition time of 74 s.

[0104] The ESI-TOF mass spectrometer is based on a Bruker Daltonics MicroTOF™. Ions from the ESI source undergo orthogonal ion extraction and are focused in a reflectron prior to detection. The TOF and FTICR are equipped with the same automated sample handling and fluidics described above. Ions are formed in the standard MicroTOF™ ESI source that is equipped with the same off-axis sprayer and glass capillary as the FTICR ESI source. Consequently, source conditions were the same as those described above. External ion accumulation was also employed to improve ionization duty cycle during data acquisition. Each detection event on the TOF was comprised of 75,000 data points digitized over 75 µs.

[0105] The sample delivery scheme allows sample aliquots to be rapidly injected into the electrospray source at high flow rate and subsequently be electrosprayed at a much lower flow rate for improved ESI sensitivity. Prior to injecting a sample, a bolus of buffer was injected at a high flow rate to rinse the transfer line and spray needle to avoid sample contamination/carryover. Following the rinse step, the autosampler injected the next sample and the flow rate was switched to low flow. Following a brief equilibration delay, data acquisition commenced. As spectra were co-added, the autosampler continued rinsing the syringe and picking up buffer to rinse the injector and sample transfer line. In general, two syringe rinses and one injector rinse were required to minimize sample carryover. During a routine screening protocol a new sample mixture was injected every 106 seconds. More recently a fast wash station for the syringe needle has been implemented which, when combined with shorter acquisition times, facilitates the acquisition of mass spectra at a rate of just under one spectrum/minute.

[0106] Raw mass spectra were post-calibrated with an internal mass standard and deconvoluted to monoisotopic molecular masses. Unambiguous base compositions were derived from the exact mass measurements of the complementary single-stranded oligonucleotides. Quantitative results are obtained by comparing the peak heights with an internal PCR calibration standard present in every PCR well at 500 molecules per well for the ribosomal DNA-targeted primers and 100 molecules per well for the protein-encoding gene targets. Calibration methods are commonly owned and disclosed in U.S. Provisional Patent Application Serial No. 60/545,425.

[0107] Example 5: *De Novo* Determination of Base Composition of Amplification Products using Molecular Mass Modified Deoxynucleotide Triphosphates

[0108] Because the molecular masses of the four natural nucleobases have a relatively narrow molecular mass range (A = 313.058, G = 329.052, C = 289.046, T = 304.046 – See Table 3), a persistent source of ambiguity in assignment of base composition can occur as follows: two nucleic acid strands having different base composition may have a difference of about 1 Da when the base composition difference between the two strands is G ↔ A (-15.994) combined with C ↔ T (+15.000). For example, one 99-mer nucleic acid strand having a base composition of A₂₇G₃₀C₂₁T₂₁ has a theoretical molecular mass of 30779.058 while another 99-mer nucleic acid strand having a base composition of A₂₆G₃₁C₂₂T₂₀ has a theoretical molecular mass of 30780.052. A 1 Da difference in molecular mass may be within the experimental error of a

molecular mass measurement and thus, the relatively narrow molecular mass range of the four natural nucleobases imposes an uncertainty factor.

[0109] The present invention provides for a means for removing this theoretical 1 Da uncertainty factor through amplification of a nucleic acid with one mass-tagged nucleobase and three natural nucleobases. The term "nucleobase" as used herein is synonymous with other terms in use in the art including "nucleotide," "deoxynucleotide," "nucleotide residue," "deoxynucleotide residue," "nucleotide triphosphate (NTP)," or deoxynucleotide triphosphate (dNTP).

[0110] Addition of significant mass to one of the 4 nucleobases (dNTPs) in an amplification reaction, or in the primers themselves, will result in a significant difference in mass of the resulting amplification product (significantly greater than 1 Da) arising from ambiguities arising from the G ↔ A combined with C ↔ T event (Table 3). Thus, the same the G ↔ A (-15.994) event combined with 5-Iodo-C ↔ T (-110.900) event would result in a molecular mass difference of 126.894. If the molecular mass of the base composition A₂₇G₃₀**5-Iodo-C₂₁T₂₁** (33422.958) is compared with A₂₆G₃₁**5-Iodo-C₂₂T₂₀**, (33549.852) the theoretical molecular mass difference is +126.894. The experimental error of a molecular mass measurement is not significant with regard to this molecular mass difference. Furthermore, the only base composition consistent with a measured molecular mass of the 99-mer nucleic acid is A₂₇G₃₀**5-Iodo-C₂₁T₂₁**. In contrast, the analogous amplification without the mass tag has 18 possible base compositions.

Table 3: Molecular Masses of Natural Nucleobases and the Mass-Modified Nucleobase 5-Iodo-C and Molecular Mass Differences Resulting from Transitions

Nucleobase	Molecular Mass	Transition	Δ Molecular Mass
A	313.058	A-->T	-9.012
A	313.058	A-->C	-24.012
A	313.058	A-->5-Iodo-C	101.888
A	313.058	A-->G	15.994
T	304.046	T-->A	9.012
T	304.046	T-->C	-15.000
T	304.046	T-->5-Iodo-C	110.900
T	304.046	T-->G	25.006
C	289.046	C-->A	24.012
C	289.046	C-->T	15.000
C	289.046	C-->G	40.006

5-Iodo-C	414.946	5-Iodo-C-->A	-101.888
5-Iodo-C	414.946	5-Iodo-C-->T	-110.900
5-Iodo-C	414.946	5-Iodo-C-->G	-85.894
G	329.052	G-->A	-15.994
G	329.052	G-->T	-25.006
G	329.052	G-->C	-40.006
G	329.052	G-->5-Iodo-C	85.894

[0111] Example 6: Data Processing

[0112] Mass spectra of bioagent identifying amplicons are analyzed independently using a maximum-likelihood processor, such as is widely used in radar signal processing. This processor, referred to as GenX, first makes maximum likelihood estimates of the input to the mass spectrometer for each primer by running matched filters for each base composition aggregate on the input data. This includes the GenX response to a calibrant for each primer.

[0113] The algorithm emphasizes performance predictions culminating in probability-of-detection versus probability-of-false-alarm plots for conditions involving complex backgrounds of naturally occurring organisms and environmental contaminants. Matched filters consist of *a priori* expectations of signal values given the set of primers used for each of the bioagents. A genomic sequence database is used to define the mass base count matched filters. The database contains the sequences of known bacterial bioagents and includes threat organisms as well as benign background organisms. The latter is used to estimate and subtract the spectral signature produced by the background organisms. A maximum likelihood detection of known background organisms is implemented using matched filters and a running-sum estimate of the noise covariance. Background signal strengths are estimated and used along with the matched filters to form signatures which are then subtracted. The maximum likelihood process is applied to this “cleaned up” data in a similar manner employing matched filters for the organisms and a running-sum estimate of the noise-covariance for the cleaned up data.

[0114] The amplitudes of all base compositions of bioagent identifying amplicons for each primer are calibrated and a final maximum likelihood amplitude estimate per organism is made based upon the multiple single primer estimates. Models of all system noise are factored into this two-stage maximum likelihood calculation. The processor reports the number of molecules of each base composition contained in the spectra. The quantity of amplification product

corresponding to the appropriate primer set is reported as well as the quantities of primers remaining upon completion of the amplification reaction.

[0115] Example 7: Use of Broad Range Survey and Division Wide Primer Pairs for Identification of Bacteria in an Epidemic Surveillance Investigation

[0116] This investigation employed a set of 16 primer pairs which is herein designated the “surveillance primer set” and comprises broad range survey primer pairs, division wide primer pairs and a single *Bacillus* clade primer pair. The surveillance primer set is shown in Table 4 and consists of primer pairs originally listed in Table 1. This surveillance set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (*vide supra*) relative to originally selected primers which are displayed below in the same row. Primer pair 449 (non-T modified) has been modified twice. Its predecessors are primer pairs 70 and 357, displayed below in the same row. Primer pair 360 has also been modified twice and its predecessors are primer pairs 17 and 118.

Table 4: Bacterial Primer Pairs of the Surveillance Primer Set

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
346	16S_EC_713_732_TMOD_F	27	16S_EC_789_809_TMOD_R	389	16S rRNA
10	16S_EC_713_732_F	26	16S_EC_789_809	388	16S rRNA
347	16S_EC_785_806_TMOD_F	30	16S_EC_880_897_TMOD_R	392	16S rRNA
11	16S_EC_785_806_F	29	16S_EC_880_897_R	391	16S rRNA
348	16S_EC_960_981_TMOD_F	38	16S_EC_1054_1073_TMOD_R	363	16S rRNA
14	16S_EC_960_981_F	37	16S_EC_1054_1073_R	362	16S rRNA
349	23S_EC_1826_1843_TMOD_F	49	23S_EC_1906_1924_TMOD_R	405	23S rRNA
16	23S_EC_1826_1843_F	48	23S_EC_1906_1924_R	404	23S rRNA
352	INF_B_EC_1365_1393_TMOD_F	161	INF_B_EC_1439_1467_TMOD_R	516	infB
34	INF_B_EC_1365_1393_F	160	INF_B_EC_1439_1467_R	515	infB
354	RPOC_EC_2218_2241_TMOD_F	262	RPOC_EC_2313_2337_TMOD_R	625	rpoC
52	RPOC_EC_2218_2241_F	261	RPOC_EC_2313_2337_R	624	rpoC
355	SSPE_BA_115_137_TMOD_F	321	SSPE_BA_197_222_TMOD_R	687	sspE
58	SSPE_BA_115_137_F	322	SSPE_BA_197_222_R	686	sspE
356	RPLB_EC_650_679_TMOD_F	232	RPLB_EC_739_762_TMOD_R	592	rplB
66	RPLB_EC_650_679_F	231	RPLB_EC_739_762_R	591	rplB
358	VALS_EC_1105_1124_TMOD_F	350	VALS_EC_1195_1218_TMOD_R	712	vals
71	VALS_EC_1105_1124_F	349	VALS_EC_1195_1218_R	711	vals
359	RPOB_EC_1845_1866_TMOD_F	241	RPOB_EC_1909_1929_TMOD_R	597	rpoB
72	RPOB_EC_1845_1866_F	240	RPOB_EC_1909_1929_R	596	rpoB
360	23S_EC_2646_2667_TMOD_F	60	23S_EC_2745_2765_TMOD_R	416	23S rRNA
118	23S_EC_2646_2667_F	59	23S_EC_2745_2765_R	415	23S rRNA
17	23S_EC_2645_2669_F	58	23S_EC_2744_2761_R	414	23S rRNA

361	16S_EC_1090_1111_2_TMOD_F	5	16S_EC_1175_1196_TMOD_R	370	16S rRNA
3	16S EC 1090 1111 2 F	6	16S EC 1175 1196 R	369	16S rRNA
362	RPOB_EC_3799_3821_TMOD_F	245	RPOB_EC_3862_3888_TMOD_R	603	rpoB
289	RPOB EC 3799 3821 F	246	RPOB EC 3862 3888 R	602	rpoB
363	RPOC_EC_2146_2174_TMOD_F	257	RPOC_EC_2227_2245_TMOD_R	621	rpoC
290	RPOC EC 2146 2174 F	256	RPOC EC 2227 2245 R	620	rpoC
367	TUFB_EC_957_979_TMOD_F	345	TUFB_EC_1034_1058_TMOD_R	701	tufB
293	TUFB EC 957 979 F	344	TUFB EC 1034 1058 R	700	tufB
449	RPLB_EC_690_710_F	237	RPLB_EC_737_758_R	589	rplB
357	RPLB_EC_688_710_TMOD_F	236	RPLB_EC_736_757_TMOD_R	588	rplB
67	RPLB EC 688 710 F	235	RPLB EC 736 757 R	587	rplB

[0117] The 16 primer pairs of the surveillance set are used to produce bioagent identifying amplicons whose base compositions are sufficiently different amongst all known bacteria at the species level to identify, at a reasonable confidence level, any given bacterium at the species level. As shown in Tables 6A-E, common respiratory bacterial pathogens can be distinguished by the base compositions of bioagent identifying amplicons obtained using the 16 primer pairs of the surveillance set. In some cases, triangulation identification improves the confidence level for species assignment. For example, nucleic acid from *Streptococcus pyogenes* can be amplified by nine of the sixteen surveillance primer pairs and *Streptococcus pneumoniae* can be amplified by ten of the sixteen surveillance primer pairs. The base compositions of the bioagent identifying amplicons are identical for only one of the analogous bioagent identifying amplicons and differ in all of the remaining analogous bioagent identifying amplicons by up to four bases per bioagent identifying amplicon. The resolving power of the surveillance set was confirmed by determination of base compositions for 120 isolates of respiratory pathogens representing 70 different bacterial species and the results indicated that natural variations (usually only one or two base substitutions per bioagent identifying amplicon) amongst multiple isolates of the same species did not prevent correct identification of major pathogenic organisms at the species level.

[0118] *Bacillus anthracis* is a well known biological warfare agent which has emerged in domestic terrorism in recent years. Since it was envisioned to produce bioagent identifying amplicons for identification of *Bacillus anthracis*, additional drill-down analysis primers were designed to target genes present on virulence plasmids of *Bacillus anthracis* so that additional confidence could be reached in positive identification of this pathogenic organism. Three drill-down analysis primers were designed and are listed in Tables 1 and 5. In Table 5 the drill-down set comprises primers with T modifications (note TMOD designation in primer names) which

constitutes a functional improvement with regard to prevention of non-templated adenylation (*vide supra*) relative to originally selected primers which are displayed below in the same row.

Table 5: Drill-Down Primer Pairs for Confirmation of Identification of *Bacillus anthracis*

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
350	CAPC_BA_274_303_TMOD_F	98	CAPC_BA_349_376_TMOD_R	452	capC
24	CAPC_BA_274_303_F	97	CAPC_BA_349_376_R	451	capC
351	CYA_BA_1353_1379_TMOD_F	128	CYA_BA_1448_1467_TMOD_R	483	cyA
30	CYA_BA_1353_1379_F	127	CYA_BA_1448_1467_R	482	cyA
353	LEF_BA_756_781_TMOD_F	175	LEF_BA_843_872_TMOD_R	531	lef
37	LEF_BA_756_781_F	174	LEF_BA_843_872_R	530	lef

[0119] Phylogenetic coverage of bacterial space of the sixteen surveillance primers of Table 4 and the three *Bacillus anthracis* drill-down primers of Table 5 is shown in Figure 3 which lists common pathogenic bacteria. Figure 3 is not meant to be comprehensive in illustrating all species identified by the primers. Only pathogenic bacteria are listed as representative examples of the bacterial species that can be identified by the primers and methods of the present invention. Nucleic acid of groups of bacteria enclosed within the polygons of Figure 3 can be amplified to obtain bioagent identifying amplicons using the primer pair numbers listed in the upper right hand corner of each polygon. Primer coverage for polygons within polygons is additive. As an illustrative example, bioagent identifying amplicons can be obtained for *Chlamydia trachomatis* by amplification with, for example, primer pairs 346-349, 360 and 361, but not with any of the remaining primers of the surveillance primer set. On the other hand, bioagent identifying amplicons can be obtained from nucleic acid originating from *Bacillus anthracis* (located within 5 successive polygons) using, for example, any of the following primer pairs: 346-349, 360, 361 (base polygon), 356, 449 (second polygon), 352 (third polygon), 355 (fourth polygon), 350, 351 and 353 (fifth polygon). Multiple coverage of a given organism with multiple primers provides for increased confidence level in identification of the organism as a result of enabling broad triangulation identification.

[0120] In Tables 6A-E, base compositions of respiratory pathogens for primer target regions are shown. Two entries in a cell, represent variation in ribosomal DNA operons. The most predominant base composition is shown first and the minor (frequently a single operon) is indicated by an asterisk (*). Entries with NO DATA mean that the primer would not be expected to prime this species due to mismatches between the primer and target region, as determined by theoretical PCR.

Table 6A – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 346, 347 and 348

Organism	Strain	Primer 346 [A G C T]	Primer 347 [A G C T]	Primer 348 [A G C T]
<i>Klebsiella pneumoniae</i>	MGH78578	[29 32 25 13] [29 31 25 13]*	[23 38 28 26] [23 37 28 26]*	[26 32 28 30] [26 31 28 30]*
<i>Yersinia pestis</i>	CO-92 Biovar Orientalis	[29 32 25 13]	[22 39 28 26]	[29 30 28 29] [30 30 27 29]*
<i>Yersinia pestis</i>	KIM5 P12 (Biovar Mediaevalis)	[29 32 25 13]	[22 39 28 26]	[29 30 28 29]
<i>Yersinia pestis</i>	91001	[29 32 25 13]	[22 39 28 26]	[29 30 28 29] [30 30 27 29]*
<i>Haemophilus influenzae</i>	KW20	[28 31 23 17]	[24 37 25 27]	[29 30 28 29]
<i>Pseudomonas aeruginosa</i>	PAO1	[30 31 23 15]	[26 36 29 24] [27 36 29 23]*	[26 32 29 29]
<i>Pseudomonas fluorescens</i>	Pf0-1	[30 31 23 15]	[26 35 29 25]	[28 31 28 29]
<i>Pseudomonas putida</i>	KT2440	[30 31 23 15]	[28 33 27 27]	[27 32 29 28]
<i>Legionella pneumophila</i>	Philadelphia-1	[30 30 24 15]	[33 33 23 27]	[29 28 28 31]
<i>Francisella tularensis</i>	schu 4	[32 29 22 16]	[28 38 26 26]	[25 32 28 31]
<i>Bordetella pertussis</i>	Tohama I	[30 29 24 16]	[23 37 30 24]	[30 32 30 26]
<i>Burkholderia cepacia</i>	J2315	[29 29 27 14]	[27 32 26 29]	[27 36 31 24] [20 42 35 19]*
<i>Burkholderia pseudomallei</i>	K96243	[29 29 27 14]	[27 32 26 29]	[27 36 31 24]
<i>Neisseria gonorrhoeae</i>	FA 1090, ATCC 700825	[29 28 24 18]	[27 34 26 28]	[24 36 29 27]
<i>Neisseria meningitidis</i>	MC58 (serogroup B)	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
<i>Neisseria meningitidis</i>	serogroup C, FAM18	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
<i>Neisseria meningitidis</i>	Z2491 (serogroup A)	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
<i>Chlamydophila pneumoniae</i>	TW-183	[31 27 22 19]	NO DATA	[32 27 27 29]
<i>Chlamydophila pneumoniae</i>	AR39	[31 27 22 19]	NO DATA	[32 27 27 29]
<i>Chlamydophila pneumoniae</i>	CWL029	[31 27 22 19]	NO DATA	[32 27 27 29]
<i>Chlamydophila pneumoniae</i>	J138	[31 27 22 19]	NO DATA	[32 27 27 29]
<i>Corynebacterium diphtheriae</i>	NCTC13129	[29 34 21 15]	[22 38 31 25]	[22 33 25 34]
<i>Mycobacterium avium</i>	k10	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
<i>Mycobacterium avium</i>	104	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
<i>Mycobacterium tuberculosis</i>	CSU#93	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
<i>Mycobacterium tuberculosis</i>	CDC 1551	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
<i>Mycobacterium tuberculosis</i>	H37Rv (lab strain)	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
<i>Mycoplasma pneumoniae</i>	M129	[31 29 19 20]	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	MRSA252	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [29 31 30 29]*
<i>Staphylococcus aureus</i>	MSSA476	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30]*
<i>Staphylococcus aureus</i>	COL	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30]*
<i>Staphylococcus aureus</i>	Mu50	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30]*
<i>Staphylococcus aureus</i>	MW2	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30]*

<i>Staphylococcus aureus</i>	N315	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30]*
<i>Staphylococcus aureus</i>	NCTC 8325	[27 30 21 21]	[25 35 30 26] [25 35 31 26]*	[30 29 30 29] [30 29 29 30]
<i>Streptococcus agalactiae</i>	NEM316	[26 32 23 18]	[24 36 31 25] [24 36 30 26]*	[25 32 29 30]
<i>Streptococcus equi</i>	NC 002955	[26 32 23 18]	[23 37 31 25]	[29 30 25 32]
<i>Streptococcus pyogenes</i>	MGAS8232	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
<i>Streptococcus pyogenes</i>	MGAS315	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
<i>Streptococcus pyogenes</i>	SSI-1	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
<i>Streptococcus pyogenes</i>	MGAS10394	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
<i>Streptococcus pyogenes</i>	Manfredo (M5)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
<i>Streptococcus pyogenes</i>	SF370 (M1)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
<i>Streptococcus pneumoniae</i>	670	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
<i>Streptococcus pneumoniae</i>	R6	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
<i>Streptococcus pneumoniae</i>	TIGR4	[26 32 23 18]	[25 35 28 28]	[25 32 30 29]
<i>Streptococcus gordonii</i>	NCTC7868	[25 33 23 18]	[24 36 31 25]	[25 31 29 31]
<i>Streptococcus mitis</i>	NCTC 12261	[26 32 23 18]	[25 35 30 26]	[25 32 29 30] [24 31 35 29]*
<i>Streptococcus mutans</i>	UA159	[24 32 24 19]	[25 37 30 24]	[28 31 26 31]

Table 6B – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 349, 360, and 356

Organism	Strain	Primer 349 [A G C T]	Primer 360 [A G C T]	Primer 356 [A G C T]
<i>Klebsiella pneumoniae</i>	MGH78578	[25 31 25 22]	[33 37 25 27]	NO DATA
<i>Yersinia pestis</i>	CO-92 Biovar Orientalis	[25 31 27 20] [25 32 26 20]*	[34 35 25 28]	NO DATA
<i>Yersinia pestis</i>	KIM5 P12 (Biovar Mediaevalis)	[25 31 27 20] [25 32 26 20]*	[34 35 25 28]	NO DATA
<i>Yersinia pestis</i>	91001	[25 31 27 20]	[34 35 25 28]	NO DATA
<i>Haemophilus influenzae</i>	KW20	[28 28 25 20]	[32 38 25 27]	NO DATA
<i>Pseudomonas aeruginosa</i>	PAO1	[24 31 26 20]	[31 36 27 27] [31 36 27 28]*	NO DATA
<i>Pseudomonas fluorescens</i>	Pf0-1	NO DATA	[30 37 27 28]	NO DATA
<i>Pseudomonas putida</i>	KT2440	[24 31 26 20]	[30 37 27 28]	NO DATA
<i>Legionella pneumophila</i>	Philadelphia-1	[23 30 25 23]	[30 39 29 24]	NO DATA
<i>Francisella tularensis</i>	schu 4	[26 31 25 19]	[32 36 27 27]	NO DATA
<i>Bordetella pertussis</i>	Tohama I	[21 29 24 18]	[33 36 26 27]	NO DATA
<i>Burkholderia cepacia</i>	J2315	[23 27 22 20]	[31 37 28 26]	NO DATA
<i>Burkholderia pseudomallei</i>	K96243	[23 27 22 20]	[31 37 28 26]	NO DATA
<i>Neisseria gonorrhoeae</i>	FA 1090, ATCC 700825	[24 27 24 17]	[34 37 25 26]	NO DATA
<i>Neisseria meningitidis</i>	MC58 (serogroup B)	[25 27 22 18]	[34 37 25 26]	NO DATA
<i>Neisseria meningitidis</i>	serogroup C, FAM18	[25 26 23 18]	[34 37 25 26]	NO DATA
<i>Neisseria</i>	Z2491 (serogroup A)	[25 26 23 18]	[34 37 25 26]	NO DATA

<i>meningitidis</i>				
<i>Chlamydophila pneumoniae</i>	TW-183	[30 28 27 18]	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	AR39	[30 28 27 18]	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	CWL029	[30 28 27 18]	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	J138	[30 28 27 18]	NO DATA	NO DATA
<i>Corynebacterium diphtheriae</i>	NCTC13129	NO DATA	[29 40 28 25]	NO DATA
<i>Mycobacterium avium</i>	k10	NO DATA	[33 35 32 22]	NO DATA
<i>Mycobacterium avium</i>	104	NO DATA	[33 35 32 22]	NO DATA
<i>Mycobacterium tuberculosis</i>	CSU#93	NO DATA	[30 36 34 22]	NO DATA
<i>Mycobacterium tuberculosis</i>	CDC 1551	NO DATA	[30 36 34 22]	NO DATA
<i>Mycobacterium tuberculosis</i>	H37Rv (lab strain)	NO DATA	[30 36 34 22]	NO DATA
<i>Mycoplasma pneumoniae</i>	M129	[28 30 24 19]	[34 31 29 28]	NO DATA
<i>Staphylococcus aureus</i>	MRSA252	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
<i>Staphylococcus aureus</i>	MSSA476	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
<i>Staphylococcus aureus</i>	COL	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
<i>Staphylococcus aureus</i>	Mu50	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
<i>Staphylococcus aureus</i>	MW2	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
<i>Staphylococcus aureus</i>	N315	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
<i>Staphylococcus aureus</i>	NCTC 8325	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
<i>Streptococcus agalactiae</i>	NEM316	[28 31 22 20]	[33 37 24 28]	[37 30 28 26]
<i>Streptococcus equi</i>	NC 002955	[28 31 23 19]	[33 38 24 27]	[37 31 28 25]
<i>Streptococcus pyogenes</i>	MGAS8232	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
<i>Streptococcus pyogenes</i>	MGAS315	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
<i>Streptococcus pyogenes</i>	SSI-1	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
<i>Streptococcus pyogenes</i>	MGAS10394	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
<i>Streptococcus pyogenes</i>	Manfredo (M5)	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
<i>Streptococcus pyogenes</i>	SF370 (M1)	[28 31 23 19] [28 31 22 20]*	[33 37 24 28]	[38 31 29 23]
<i>Streptococcus pneumoniae</i>	670	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
<i>Streptococcus pneumoniae</i>	R6	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
<i>Streptococcus pneumoniae</i>	TIGR4	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
<i>Streptococcus gordoni</i>	NCTC7868	[28 32 23 20]	[34 36 24 28]	[36 31 29 25]
<i>Streptococcus mitis</i>	NCTC 12261	[28 31 22 20] [29 30 22 20]*	[34 36 24 28]	[37 30 29 25]
<i>Streptococcus mutans</i>	UA159	[26 32 23 22]	[34 37 24 27]	NO DATA

Table 6C – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 449, 354, and 352

Organism	Strain	Primer 449 [A G C T]	Primer 354 [A G C T]	Primer 352 [A G C T]
<i>Klebsiella pneumoniae</i>	MGH78578	NO DATA	[27 33 36 26]	NO DATA
<i>Yersinia pestis</i>	CO-92 Biovar Orientalis	NO DATA	[29 31 33 29]	[32 28 20 25]
<i>Yersinia pestis</i>	KIM5 P12 (Biovar Mediaevalis)	NO DATA	[29 31 33 29]	[32 28 20 25]
<i>Yersinia pestis</i>	91001	NO DATA	[29 31 33 29]	NO DATA
<i>Haemophilus influenzae</i>	KW20	NO DATA	[30 29 31 32]	NO DATA
<i>Pseudomonas aeruginosa</i>	PAO1	NO DATA	[26 33 39 24]	NO DATA
<i>Pseudomonas fluorescens</i>	Pf0-1	NO DATA	[26 33 34 29]	NO DATA
<i>Pseudomonas putida</i>	KT2440	NO DATA	[25 34 36 27]	NO DATA
<i>Legionella pneumophila</i>	Philadelphia-1	NO DATA	NO DATA	NO DATA
<i>Francisella tularensis</i>	schu 4	NO DATA	[33 32 25 32]	NO DATA
<i>Bordetella pertussis</i>	Tohama I	NO DATA	[26 33 39 24]	NO DATA
<i>Burkholderia cepacia</i>	J2315	NO DATA	[25 37 33 27]	NO DATA
<i>Burkholderia pseudomallei</i>	K96243	NO DATA	[25 37 34 26]	NO DATA
<i>Neisseria gonorrhoeae</i>	FA 1090, ATCC 700825	[17 23 22 10]	[29 31 32 30]	NO DATA
<i>Neisseria meningitidis</i>	MC58 (serogroup B)	NO DATA	[29 30 32 31]	NO DATA
<i>Neisseria meningitidis</i>	serogroup C, FAM18	NO DATA	[29 30 32 31]	NO DATA
<i>Neisseria meningitidis</i>	Z2491 (serogroup A)	NO DATA	[29 30 32 31]	NO DATA
<i>Chlamydophila pneumoniae</i>	TW-183	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	AR39	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	CWL029	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	J138	NO DATA	NO DATA	NO DATA
<i>Corynebacterium diphtheriae</i>	NCTC13129	NO DATA	NO DATA	NO DATA
<i>Mycobacterium avium</i>	k10	NO DATA	NO DATA	NO DATA
<i>Mycobacterium avium</i>	104	NO DATA	NO DATA	NO DATA
<i>Mycobacterium tuberculosis</i>	CSU#93	NO DATA	NO DATA	NO DATA
<i>Mycobacterium tuberculosis</i>	CDC 1551	NO DATA	NO DATA	NO DATA
<i>Mycobacterium tuberculosis</i>	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA
<i>Mycoplasma pneumoniae</i>	M129	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	MRSA252	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
<i>Staphylococcus aureus</i>	MSSA476	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
<i>Staphylococcus aureus</i>	COL	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]
<i>Staphylococcus aureus</i>	Mu50	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
<i>Staphylococcus aureus</i>	MW2	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]

<i>Staphylococcus aureus</i>	N315	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
<i>Staphylococcus aureus</i>	NCTC 8325	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]
<i>Streptococcus agalactiae</i>	NEM316	[22 20 19 14]	[26 31 27 38]	[29 26 22 28]
<i>Streptococcus equi</i>	NC 002955	[22 21 19 13]	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	MGAS8232	[23 21 19 12]	[24 32 30 36]	NO DATA
<i>Streptococcus pyogenes</i>	MGAS315	[23 21 19 12]	[24 32 30 36]	NO DATA
<i>Streptococcus pyogenes</i>	SSI-1	[23 21 19 12]	[24 32 30 36]	NO DATA
<i>Streptococcus pyogenes</i>	MGAS10394	[23 21 19 12]	[24 32 30 36]	NO DATA
<i>Streptococcus pyogenes</i>	Manfredo (M5)	[23 21 19 12]	[24 32 30 36]	NO DATA
<i>Streptococcus pyogenes</i>	SF370 (M1)	[23 21 19 12]	[24 32 30 36]	NO DATA
<i>Streptococcus pneumoniae</i>	670	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
<i>Streptococcus pneumoniae</i>	R6	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
<i>Streptococcus pneumoniae</i>	TIGR4	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
<i>Streptococcus gordonii</i>	NCTC7868	[21 21 19 14]	NO DATA	[29 26 22 28]
<i>Streptococcus mitis</i>	NCTC 12261	[22 20 19 14]	[26 30 32 34]	NO DATA
<i>Streptococcus mutans</i>	UA159	NO DATA	NO DATA	NO DATA

Table 6D – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 355, 358, and 359

Organism	Strain	Primer 355 [A G C T]	Primer 358 [A G C T]	Primer 359 [A G C T]
<i>Klebsiella pneumoniae</i>	MGH78578	NO DATA	[24 39 33 20]	[25 21 24 17]
<i>Yersinia pestis</i>	CO-92 Biovar Orientalis	NO DATA	[26 34 35 21]	[23 23 19 22]
<i>Yersinia pestis</i>	KIM5 P12 (Biovar Mediaevalis)	NO DATA	[26 34 35 21]	[23 23 19 22]
<i>Yersinia pestis</i>	91001	NO DATA	[26 34 35 21]	[23 23 19 22]
<i>Haemophilus influenzae</i>	KW20	NO DATA	NO DATA	NO DATA
<i>Pseudomonas aeruginosa</i>	PAO1	NO DATA	NO DATA	NO DATA
<i>Pseudomonas fluorescens</i>	Pf0-1	NO DATA	NO DATA	NO DATA
<i>Pseudomonas putida</i>	KT2440	NO DATA	[21 37 37 21]	NO DATA
<i>Legionella pneumophila</i>	Philadelphia-1	NO DATA	NO DATA	NO DATA
<i>Francisella tularensis</i>	schu 4	NO DATA	NO DATA	NO DATA
<i>Bordetella pertussis</i>	Tohama I	NO DATA	NO DATA	NO DATA
<i>Burkholderia cepacia</i>	J2315	NO DATA	NO DATA	NO DATA
<i>Burkholderia pseudomallei</i>	K96243	NO DATA	NO DATA	NO DATA
<i>Neisseria gonorrhoeae</i>	FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA
<i>Neisseria meningitidis</i>	MC58 (serogroup B)	NO DATA	NO DATA	NO DATA
<i>Neisseria meningitidis</i>	serogroup C, FAM18	NO DATA	NO DATA	NO DATA

<i>Neisseria meningitidis</i>	Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	TW-183	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	AR39	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	CWL029	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	J138	NO DATA	NO DATA	NO DATA
<i>Corynebacterium diphtheriae</i>	NCTC13129	NO DATA	NO DATA	NO DATA
<i>Mycobacterium avium</i>	k10	NO DATA	NO DATA	NO DATA
<i>Mycobacterium avium</i>	104	NO DATA	NO DATA	NO DATA
<i>Mycobacterium tuberculosis</i>	CSU#93	NO DATA	NO DATA	NO DATA
<i>Mycobacterium tuberculosis</i>	CDC 1551	NO DATA	NO DATA	NO DATA
<i>Mycobacterium tuberculosis</i>	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA
<i>Mycoplasma pneumoniae</i>	M129	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	MRSA252	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	MSSA476	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	COL	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	Mu50	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	MW2	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	N315	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	NCTC 8325	NO DATA	NO DATA	NO DATA
<i>Streptococcus agalactiae</i>	NEM316	NO DATA	NO DATA	NO DATA
<i>Streptococcus equi</i>	NC 002955	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	MGAS8232	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	MGAS315	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	SSI-1	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	MGAS10394	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	Manfredo (M5)	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	SF370 (M1)	NO DATA	NO DATA	NO DATA
<i>Streptococcus pneumoniae</i>	670	NO DATA	NO DATA	NO DATA
<i>Streptococcus pneumoniae</i>	R6	NO DATA	NO DATA	NO DATA
<i>Streptococcus pneumoniae</i>	TIGR4	NO DATA	NO DATA	NO DATA
<i>Streptococcus gordonii</i>	NCTC7868	NO DATA	NO DATA	NO DATA
<i>Streptococcus mitis</i>	NCTC 12261	NO DATA	NO DATA	NO DATA
<i>Streptococcus mutans</i>	UA159	NO DATA	NO DATA	NO DATA

Table 6E – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 362, 363, and 367

Organism	Strain	Primer 362 [A G C T]	Primer 363 [A G C T]	Primer 367 [A G C T]
<i>Klebsiella pneumoniae</i>	MGH78578	[21 33 22 16]	[16 34 26 26]	NO DATA
<i>Yersinia pestis</i>	CO-92 Biovar Orientalis	[20 34 18 20]	NO DATA	NO DATA
<i>Yersinia pestis</i>	KIM5 Pl2 (Biovar Mediaevalis)	[20 34 18 20]	NO DATA	NO DATA
<i>Yersinia pestis</i>	91001	[20 34 18 20]	NO DATA	NO DATA
<i>Haemophilus influenzae</i>	KW20	NO DATA	NO DATA	NO DATA
<i>Pseudomonas aeruginosa</i>	PAO1	[19 35 21 17]	[16 36 28 22]	NO DATA
<i>Pseudomonas fluorescens</i>	Pf0-1	NO DATA	[18 35 26 23]	NO DATA
<i>Pseudomonas putida</i>	KT2440	NO DATA	[16 35 28 23]	NO DATA
<i>Legionella pneumophila</i>	Philadelphia-1	NO DATA	NO DATA	NO DATA
<i>Francisella tularensis</i>	schu 4	NO DATA	NO DATA	NO DATA
<i>Bordetella pertussis</i>	Tohama I	[20 31 24 17]	[15 34 32 21]	[26 25 34 19]
<i>Burkholderia cepacia</i>	J2315	[20 33 21 18]	[15 36 26 25]	[25 27 32 20]
<i>Burkholderia pseudomallei</i>	K96243	[19 34 19 20]	[15 37 28 22]	[25 27 32 20]
<i>Neisseria gonorrhoeae</i>	FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA
<i>Neisseria meningitidis</i>	MC58 (serogroup B)	NO DATA	NO DATA	NO DATA
<i>Neisseria meningitidis</i>	serogroup C, FAM18	NO DATA	NO DATA	NO DATA
<i>Neisseria meningitidis</i>	Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	TW-183	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	AR39	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	CWL029	NO DATA	NO DATA	NO DATA
<i>Chlamydophila pneumoniae</i>	J138	NO DATA	NO DATA	NO DATA
<i>Corynebacterium diphtheriae</i>	NCTC13129	NO DATA	NO DATA	NO DATA
<i>Mycobacterium avium</i>	k10	[19 34 23 16]	NO DATA	[24 26 35 19]
<i>Mycobacterium avium</i>	104	[19 34 23 16]	NO DATA	[24 26 35 19]
<i>Mycobacterium tuberculosis</i>	CSU#93	[19 31 25 17]	NO DATA	[25 25 34 20]
<i>Mycobacterium tuberculosis</i>	CDC 1551	[19 31 24 18]	NO DATA	[25 25 34 20]
<i>Mycobacterium tuberculosis</i>	H37Rv (lab strain)	[19 31 24 18]	NO DATA	[25 25 34 20]
<i>Mycoplasma pneumoniae</i>	M129	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	MRSA252	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	MSSA476	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	COL	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	Mu50	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	MW2	NO DATA	NO DATA	NO DATA
<i>Staphylococcus aureus</i>	N315	NO DATA	NO DATA	NO DATA

<i>aureus</i>				
<i>Staphylococcus aureus</i>	NCTC 8325	NO DATA	NO DATA	NO DATA
<i>Streptococcus agalactiae</i>	NEM316	NO DATA	NO DATA	NO DATA
<i>Streptococcus equi</i>	NC 002955	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	MGAS8232	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	MGAS315	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	SSI-1	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	MGAS10394	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	Manfredo (M5)	NO DATA	NO DATA	NO DATA
<i>Streptococcus pyogenes</i>	SF370 (M1)	NO DATA	NO DATA	NO DATA
<i>Streptococcus pneumoniae</i>	670	NO DATA	NO DATA	NO DATA
<i>Streptococcus pneumoniae</i>	R6	[20 30 19 23]	NO DATA	NO DATA
<i>Streptococcus pneumoniae</i>	TIGR4	[20 30 19 23]	NO DATA	NO DATA
<i>Streptococcus gordonii</i>	NCTC7868	NO DATA	NO DATA	NO DATA
<i>Streptococcus mitis</i>	NCTC 12261	NO DATA	NO DATA	NO DATA
<i>Streptococcus mutans</i>	UA159	NO DATA	NO DATA	NO DATA

[0121] Four sets of throat samples from military recruits at different military facilities taken at different time points were analyzed using the primers of the present invention. The first set was collected at a military training center from November 1 to December 20, 2002 during one of the most severe outbreaks of pneumonia associated with group A *Streptococcus* in the United States since 1968. During this outbreak, fifty-one throat swabs were taken from both healthy and hospitalized recruits and plated on blood agar for selection of putative group A *Streptococcus* colonies. A second set of 15 original patient specimens was taken during the height of this group A *Streptococcus*-associated respiratory disease outbreak. The third set were historical samples, including twenty-seven isolates of group A *Streptococcus*, from disease outbreaks at this and other military training facilities during previous years. The fourth set of samples was collected from five geographically separated military facilities in the continental U.S. in the winter immediately following the severe November/December 2002 outbreak.

[0122] Pure colonies isolated from group A *Streptococcus*-selective media from all four collection periods were analyzed with the surveillance primer set. All samples showed base compositions that precisely matched the four completely sequenced strains of *Streptococcus pyogenes*. Shown in Figure 4 is a 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair

number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.

[0123] In addition to the identification of *Streptococcus pyogenes*, other potentially pathogenic organisms were identified concurrently. Mass spectral analysis of a sample whose nucleic acid was amplified by primer pair number 349 (SEQ ID NOs: 49 and 405) exhibited signals of bioagent identifying amplicons with molecular masses that were found to correspond to analogous base compositions of bioagent identifying amplicons of *Streptococcus pyogenes* (A27 G32 C24 T18), *Neisseria meningitidis* (A25 G27 C22 T18), and *Haemophilus influenzae* (A28 G28 C25 T20) (see Figure 5 and Table 6B). These organisms were present in a ratio of 4:5:20 as determined by comparison of peak heights with peak height of an internal PCR calibration standard as described in commonly owned U.S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.

[0124] Since certain division-wide primers that target housekeeping genes are designed to provide coverage of specific divisions of bacteria to increase the confidence level for identification of bacterial species, they are not expected to yield bioagent identifying amplicons for organisms outside of the specific divisions. For example, primer pair number 356 (SEQ ID NOs: 232:592) primarily amplifies the nucleic acid of members of the classes *Bacilli* and *Clostridia* and is not expected to amplify proteobacteria such as *Neisseria meningitidis* and *Haemophilus influenzae*. As expected, analysis of the mass spectrum of amplification products obtained with primer pair number 356 does not indicate the presence of *Neisseria meningitidis* and *Haemophilus influenzae* but does indicate the presence of *Streptococcus pyogenes* (Figures 3 and 6, Table 6B). Thus, these primers or types of primers can confirm the absence of particular bioagents from a sample.

[0125] The 15 throat swabs from military recruits were found to contain a relatively small set of microbes in high abundance. The most common were *Haemophilus influenza*, *Neisseria meningitidis*, and *Streptococcus pyogenes*. *Staphylococcus epidermidis*, *Moraxella catarrhalis*, *Corynebacterium pseudodiphtheriticum*, and *Staphylococcus aureus* were present in fewer samples. An equal number of samples from healthy volunteers from three different geographic locations, were identically analyzed. Results indicated that the healthy volunteers have bacterial

flora dominated by multiple, commensal non-beta-hemolytic *Streptococcal* species, including the viridans group *streptococci* (*S. parasanguinis*, *S. vestibularis*, *S. mitis*, *S. oralis* and *S. pneumoniae*; data not shown), and none of the organisms found in the military recruits were found in the healthy controls at concentrations detectable by mass spectrometry. Thus, the military recruits in the midst of a respiratory disease outbreak had a dramatically different microbial population than that experienced by the general population in the absence of epidemic disease.

[0126] Example 8: Drill-down Analysis for Determination of *emm*-Type of *Streptococcus pyogenes* in Epidemic Surveillance

[0127] As a continuation of the epidemic surveillance investigation of Example 7, determination of sub-species characteristics (genotyping) of *Streptococcus pyogenes*, was carried out based on a strategy that generates strain-specific signatures according to the rationale of Multi-Locus Sequence Typing (MLST). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced (Enright et al. *Infection and Immunity*, 2001, 69, 2416-2427). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced. In the present investigation, bioagent identifying amplicons from housekeeping genes were produced using drill-down primers and analyzed by mass spectrometry. Since mass spectral analysis results in molecular mass, from which base composition can be determined, the challenge was to determine whether resolution of *emm* classification of strains of *Streptococcus pyogenes* could be determined.

[0128] An alignment was constructed of concatenated alleles of seven MLST housekeeping genes (glucose kinase (gki), glutamine transporter protein (gtr), glutamate racemase (murl), DNA mismatch repair protein (mutS), xanthine phosphoribosyl transferase (xpt), and acetyl-CoA acetyl transferase (yqIL)) from each of the 212 previously *emm*-typed strains of *Streptococcus pyogenes*. From this alignment, the number and location of primer pairs that would maximize strain identification via base composition was determined. As a result, 6 primer pairs were chosen as standard drill-down primers for determination of *emm*-type of *Streptococcus pyogenes*. These six primer pairs are displayed in Table 7. This drill-down set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (*vide supra*) relative to originally selected primers which are displayed below in the same row.

Table 7: Group A *Streptococcus* Drill-Down Primer Pairs

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
442	SP101_SPET11_358_387_TMOD_F	311	SP101_SPET11_448_473_TMOD_R	669	gki
80	SP101_SPET11_358_387_F	310	SP101_SPET11_448_473_TMOD_R	668	gki
443	SP101_SPET11_600_629_TMOD_F	314	SP101_SPET11_686_714_TMOD_R	671	gtr
81	SP101_SPET11_600_629_F	313	SP101_SPET11_686_714_R	670	gtr
426	SP101_SPET11_1314_133_6_TMOD_F	278	SP101_SPET11_1403_1431_TMOD_R	633	murI
86	SP101_SPET11_1314_133_6_F	277	SP101_SPET11_1403_1431_R	632	murI
430	SP101_SPET11_1807_183_5_TMOD_F	286	SP101_SPET11_1901_1927_TMOD_R	641	mutS
90	SP101_SPET11_1807_183_5_F	285	SP101_SPET11_1901_1927_R	640	mutS
438	SP101_SPET11_3075_310_3_TMOD_F	302	SP101_SPET11_3168_3196_TMOD_R	657	xpt
96	SP101_SPET11_3075_310_3_F	301	SP101_SPET11_3168_3196_R	656	xpt
441	SP101_SPET11_3511_353_5_TMOD_F	309	SP101_SPET11_3605_3629_TMOD_R	664	yqIL
98	SP101_SPET11_3511_353_5_F	308	SP101_SPET11_3605_3629_R	663	yqIL

[0129] The primers of Table 7 were used to produce bioagent identifying amplicons from nucleic acid present in the clinical samples. The bioagent identifying amplicons which were subsequently analyzed by mass spectrometry and base compositions corresponding to the molecular masses were calculated.

[0130] Of the 51 samples taken during the peak of the November/December 2002 epidemic (Table 8A-C rows 1-3), all except three samples were found to represent *emm3*, a Group A *Streptococcus* genotype previously associated with high respiratory virulence. The three outliers were from samples obtained from healthy individuals and probably represent non-epidemic strains. Archived samples (Tables 8A-C rows 5-13) from historical collections showed a greater heterogeneity of base compositions and *emm* types as would be expected from different epidemics occurring at different places and dates. The results of the mass spectrometry analysis and *emm* gene sequencing were found to be concordant for the epidemic and historical samples.

Table 8A: Base Composition Analysis of Bioagent Identifying Amplicons of Group A
Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 426
and 430

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	murI (Primer Pair No. 426)	mutS (Primer Pair No. 430)
48	3	3	MCRD San Diego (Cultured)	2002	A39 G25 C20 T34	A38 G27 C23 T33
2	6	6			A40 G24 C20 T34	A38 G27 C23 T33
1	28	28			A39 G25 C20 T34	A38 G27 C23 T33
15	3	ND			A39 G25 C20 T34	A38 G27 C23 T33
6	3	3		2003	A39 G25 C20 T34	A38 G27 C23 T33
3	5, 58	5			A40 G24 C20 T34	A38 G27 C23 T33
6	6	6			A40 G24 C20 T34	A38 G27 C23 T33
1	11	11			A39 G25 C20 T34	A38 G27 C23 T33
3	12	12			A40 G24 C20 T34	A38 G26 C24 T33
1	22	22			A39 G25 C20 T34	A38 G27 C23 T33
3	25, 75	75			A39 G25 C20 T34	A38 G27 C23 T33
4	44/61, 82, 9	44/61			A40 G24 C20 T34	A38 G26 C24 T33
2	53, 91	91			A39 G25 C20 T34	A38 G27 C23 T33
1	2	2	Ft. Leonard Wood (Cultured)	2003	A39 G25 C20 T34	A38 G27 C24 T32
2	3	3			A39 G25 C20 T34	A38 G27 C23 T33
1	4	4			A39 G25 C20 T34	A38 G27 C23 T33
1	6	6			A40 G24 C20 T34	A38 G27 C23 T33
11	25 or 75	75			A39 G25 C20 T34	A38 G27 C23 T33
1	25, 75, 33, 34, 4, 52, 84	75			A39 G25 C20 T34	A38 G27 C23 T33
1	44/61 or 82 or 9	44/61			A40 G24 C20 T34	A38 G26 C24 T33
2	5 or 58	5			A40 G24 C20 T34	A38 G27 C23 T33
3	1	1	Ft. Sill (Cultured)	2003	A40 G24 C20 T34	A38 G27 C23 T33
2	3	3			A39 G25 C20 T34	A38 G27 C23 T33
1	4	4			A39 G25 C20 T34	A38 G27 C23 T33
1	28	28			A39 G25 C20 T34	A38 G27 C23 T33
1	3	3			A39 G25 C20 T34	A38 G27 C23 T33
1	4	4	Ft. Benning (Cultured)	2003	A39 G25 C20 T34	A38 G27 C23 T33
3	6	6			A40 G24 C20 T34	A38 G27 C23 T33
1	11	11			A39 G25 C20 T34	A38 G27 C23 T33
1	13	94**			A40 G24 C20 T34	A38 G27 C23 T33
1	44/61 or 82 or 9	82			A40 G24 C20 T34	A38 G26 C24 T33
1	5 or 58	58			A40 G24 C20 T34	A38 G27 C23 T33
1	78 or 89	89			A39 G25 C20 T34	A38 G27 C23 T33
2	5 or 58	ND	Lackland AFB (Throat Swabs)	2003	A40 G24 C20 T34	A38 G27 C23 T33
1	2	ND			A39 G25 C20 T34	A38 G27 C24 T32
1	81 or 90	ND			A40 G24 C20 T34	A38 G27 C23 T33
1	78	ND			A38 G26 C20 T34	A38 G27 C23 T33
3***	No detection	ND			No detection	No detection
7	3	ND	MCRD San Diego (Throat Swabs)	2002	A39 G25 C20 T34	A38 G27 C23 T33
1	3	ND			No detection	A38 G27 C23 T33
1	3	ND			No detection	No detection
1	3	ND			No detection	No detection
2	3	ND			No detection	A38 G27 C23 T33
3	No detection	ND			No detection	No detection

Table 8B: Base Composition Analysis of Bioagent Identifying Amplicons of Group A *Streptococcus* samples from Six Military Installations Obtained with Primer Pair Nos. 438 and 441

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	xpt (Primer Pair No. 438)	yqIL (Primer Pair No. 441)
48	3	3	MCRD San Diego (Cultured)	2002	A30 G36 C20 T36	A40 G29 C19 T31
2	6	6			A30 G36 C20 T36	A40 G29 C19 T31
1	28	28			A30 G36 C20 T36	A41 G28 C18 T32
15	3	ND			A30 G36 C20 T36	A40 G29 C19 T31
6	3	3		2003	A30 G36 C20 T36	A40 G29 C19 T31
3	5, 58	5			A30 G36 C20 T36	A40 G29 C19 T31
6	6	6			A30 G36 C20 T36	A40 G29 C19 T31
1	11	11			A30 G36 C20 T36	A40 G29 C19 T31
3	12	12			A30 G36 C19 T37	A40 G29 C19 T31
1	22	22			A30 G36 C20 T36	A40 G29 C19 T31
3	25, 75	75			A30 G36 C20 T36	A40 G29 C19 T31
4	44/61, 82, 9	44/61			A30 G36 C20 T36	A41 G28 C19 T31
2	53, 91	91			A30 G36 C19 T37	A40 G29 C19 T31
1	2	2	Ft. Leonard Wood (Cultured)	2003	A30 G36 C20 T36	A40 G29 C19 T31
2	3	3			A30 G36 C20 T36	A40 G29 C19 T31
1	4	4			A30 G36 C19 T37	A41 G28 C19 T31
1	6	6			A30 G36 C20 T36	A40 G29 C19 T31
11	25 or 75	75			A30 G36 C20 T36	A40 G29 C19 T31
1	25, 75, 33, 34, 4, 52, 84	75			A30 G36 C19 T37	A40 G29 C19 T31
1	44/61 or 82 or 9	44/61			A30 G36 C20 T36	A41 G28 C19 T31
2	5 or 58	5			A30 G36 C20 T36	A40 G29 C19 T31
3	1	1	Ft. Sill (Cultured)	2003	A30 G36 C19 T37	A40 G29 C19 T31
2	3	3			A30 G36 C20 T36	A40 G29 C19 T31
1	4	4			A30 G36 C19 T37	A41 G28 C19 T31
1	28	28			A30 G36 C20 T36	A41 G28 C18 T32
1	3	3	Ft. Benning (Cultured)	2003	A30 G36 C20 T36	A40 G29 C19 T31
1	4	4			A30 G36 C19 T37	A41 G28 C19 T31
3	6	6			A30 G36 C20 T36	A40 G29 C19 T31
1	11	11			A30 G36 C20 T36	A40 G29 C19 T31
1	13	94**			A30 G36 C20 T36	A41 G28 C19 T31
1	44/61 or 82 or 9	82			A30 G36 C20 T36	A41 G28 C19 T31
1	5 or 58	58			A30 G36 C20 T36	A40 G29 C19 T31
1	78 or 89	89			A30 G36 C20 T36	A41 G28 C19 T31
2	5 or 58	ND (Throat Swabs)	Lackland AFB	2003	A30 G36 C20 T36	A40 G29 C19 T31
1	2				A30 G36 C20 T36	A40 G29 C19 T31
1	81 or 90				A30 G36 C20 T36	A40 G29 C19 T31
1	78				A30 G36 C20 T36	A41 G28 C19 T31
3***	No detection				No detection	No detection
7	3	ND	MCRD San Diego (Throat Swabs)	2002	A30 G36 C20 T36	A40 G29 C19 T31
1	3	ND			A30 G36 C20 T36	A40 G29 C19 T31
1	3	ND			A30 G36 C20 T36	No detection
1	3	ND			No detection	A40 G29 C19 T31
2	3	ND			A30 G36 C20 T36	A40 G29 C19 T31
3	No detection	ND			No detection	No detection

Table 8C: Base Composition Analysis of Bioagent Identifying Amplicons of Group A
Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 438
and 441

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	gki (Primer Pair No. 442)	gtr ((Primer Pair No. 443)
48	3	3	MCRD San Diego (Cultured)	2002	A32 G35 C17 T32	A39 G28 C16 T32
2	6	6			A31 G35 C17 T33	A39 G28 C15 T33
1	28	28			A30 G36 C17 T33	A39 G28 C16 T32
15	3	ND			A32 G35 C17 T32	A39 G28 C16 T32
6	3	3	NHRC San Diego-Archive (Cultured)	2003	A32 G35 C17 T32	A39 G28 C16 T32
3	5,58	5			A30 G36 C20 T30	A39 G28 C15 T33
6	6	6			A31 G35 C17 T33	A39 G28 C15 T33
1	11	11			A30 G36 C20 T30	A39 G28 C16 T32
3	12	12			A31 G35 C17 T33	A39 G28 C15 T33
1	22	22			A31 G35 C17 T33	A38 G29 C15 T33
3	25,75	75			A30 G36 C17 T33	A39 G28 C15 T33
4	44/61,82,9	44/61			A30 G36 C18 T32	A39 G28 C15 T33
2	53,91	91			A32 G35 C17 T32	A39 G28 C16 T32
1	2	2	Ft. Leonard Wood (Cultured)	2003	A30 G36 C17 T33	A39 G28 C15 T33
2	3	3			A32 G35 C17 T32	A39 G28 C16 T32
1	4	4			A31 G35 C17 T33	A39 G28 C15 T33
1	6	6			A31 G35 C17 T33	A39 G28 C15 T33
11	25 or 75	75			A30 G36 C17 T33	A39 G28 C15 T33
1	25,75, 33, 34,4,52,84	75			A30 G36 C17 T33	A39 G28 C15 T33
1	44/61 or 82 or 9	44/61			A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58	5			A30 G36 C20 T30	A39 G28 C15 T33
3	1	1	Ft. Sill (Cultured)	2003	A30 G36 C18 T32	A39 G28 C15 T33
2	3	3			A32 G35 C17 T32	A39 G28 C16 T32
1	4	4			A31 G35 C17 T33	A39 G28 C15 T33
1	28	28			A30 G36 C17 T33	A39 G28 C16 T32
1	3	3	Ft. Benning (Cultured)	2003	A32 G35 C17 T32	A39 G28 C16 T32
1	4	4			A31 G35 C17 T33	A39 G28 C15 T33
3	6	6			A31 G35 C17 T33	A39 G28 C15 T33
1	11	11			A30 G36 C20 T30	A39 G28 C16 T32
1	13	94**			A30 G36 C19 T31	A39 G28 C15 T33
1	44/61 or 82 or 9	82			A30 G36 C18 T32	A39 G28 C15 T33
1	5 or 58	58			A30 G36 C20 T30	A39 G28 C15 T33
1	78 or 89	89			A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58		Lackland AFB (Throat Swabs)	2003	A30 G36 C20 T30	A39 G28 C15 T33
1	2				A30 G36 C17 T33	A39 G28 C15 T33
1	81 or 90				A30 G36 C17 T33	A39 G28 C15 T33
1	78				A30 G36 C18 T32	A39 G28 C15 T33
3***	No detection	ND			No detection	No detection
7	3	ND	MCRD San Diego (Throat Swabs)	2002	A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND			No detection	No detection
1	3	ND			A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND			A32 G35 C17 T32	No detection
2	3	ND			A32 G35 C17 T32	No detection
3	No detection	ND			No detection	No detection

[0131] Example 9: Design of Calibrant Polynucleotides based on Bioagent Identifying Amplicons for Identification of Species of Bacteria (Bacterial Bioagent Identifying Amplicons)

[0132] This example describes the design of 19 calibrant polynucleotides based on bacterial bioagent identifying amplicons corresponding to the primers of the broad surveillance set (Table 4) and the *Bacillus anthracis* drill-down set (Table 5).

[0133] Calibration sequences were designed to simulate bacterial bioagent identifying amplicons produced by the T modified primer pairs shown in Table 4 (primer names have the designation “TMOD”). The calibration sequences were chosen as a representative member of the section of bacterial genome from specific bacterial species which would be amplified by a given primer pair. The model bacterial species upon which the calibration sequences are based are also shown in Table 9. For example, the calibration sequence chosen to correspond to an amplicon produced by primer pair no. 361 is SEQ ID NO: 722. In Table 9, the forward (F) or reverse (R) primer name indicates the coordinates of an extraction representing a gene of a standard reference bacterial genome to which the primer hybridizes e.g.: the forward primer name 16S_EC_713_732_TMOD_F indicates that the forward primer hybridizes to residues 713-732 of the gene encoding 16S ribosomal RNA in an *E. coli* reference sequence (in this case, the reference sequence is an extraction consisting of residues 4033120-4034661 of the genomic sequence of *E. coli* K12 (GenBank gi number 16127994). Additional gene coordinate reference information is shown in Table 10. The designation “TMOD” in the primer names indicates that the 5' end of the primer has been modified with a non-matched template T residue which prevents the PCR polymerase from adding non-templated adenosine residues to the 5' end of the amplification product, an occurrence which may result in miscalculation of base composition from molecular mass data (*vide supra*).

[0134] The 19 calibration sequences described in Tables 9 and 10 were combined into a single calibration polynucleotide sequence (SEQ ID NO: 741 - which is herein designated a “combination calibration polynucleotide”) which was then cloned into a pCR®-Blunt vector (Invitrogen, Carlsbad, CA). This combination calibration polynucleotide can be used in conjunction with the primers of Table 9 as an internal standard to produce calibration amplicons for use in determination of the quantity of any bacterial bioagent. Thus, for example, when the combination calibration polynucleotide vector is present in an amplification reaction mixture, a calibration amplicon based on primer pair 346 (16S rRNA) will be produced in an amplification

reaction with primer pair 346 and a calibration amplicon based on primer pair 363 (*rpoC*) will be produced with primer pair 363. Coordinates of each of the 19 calibration sequences within the calibration polynucleotide (SEQ ID NO: 783) are indicated in Table 10.

Table 9: Bacterial Primer Pairs for Production of Bacterial Bioagent Identifying Amplicons and Corresponding Representative Calibration Sequences

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Calibration Sequence Model Species	Calibration Sequence (SEQ ID NO:)
361	16S_EC_1090_1111_2_TMOD_F	5	16S_EC_1175_1196_TMOD_R	370	<i>Bacillus anthracis</i>	764
346	16S_EC_713_732_TMOD_F	27	16S_EC_789_809_TMOD_R	389	<i>Bacillus anthracis</i>	765
347	16S_EC_785_806_TMOD_F	30	16S_EC_880_897_TMOD_R	392	<i>Bacillus anthracis</i>	766
348	16S_EC_960_981_TMOD_F	38	16S_EC_1054_1073_TMOD_R	363	<i>Bacillus anthracis</i>	767
349	23S_EC_1826_1843_TMO_D_F	49	23S_EC_1906_1924_TMOD_R	405	<i>Bacillus anthracis</i>	768
360	23S_EC_2646_2667_TMO_D_F	60	23S_EC_2745_2765_TMOD_R	416	<i>Bacillus anthracis</i>	769
350	CAPC_BA_274_303_TMOD_E	98	CAPC_BA_349_376_TMOD_R	452	<i>Bacillus anthracis</i>	770
351	CYA_BA_1353_1379_TMO_D_F	128	CYA_BA_1448_1467_TMOD_R	483	<i>Bacillus anthracis</i>	771
352	INFb_EC_1365_1393_TMOD_F	161	INFb_EC_1439_1467_TMOD_R	516	<i>Bacillus anthracis</i>	772
353	LEF_BA_756_781_TMOD_F	175	LEF_BA_843_872_TMOD_R	531	<i>Bacillus anthracis</i>	773
356	RPLB_EC_650_679_TMOD_F	232	RPLB_EC_739_762_TMOD_R	592	<i>Clostridium botulinum</i>	774
449	RPLB_EC_690_710_F	237	RPLB_EC_737_758_R	589	<i>Clostridium botulinum</i>	775
359	RPOB_EC_1845_1866_TMOD_F	241	RPOB_EC_1909_1929_TMOD_R	597	<i>Yersinia Pestis</i>	776
362	RPOB_EC_3799_3821_TMOD_F	245	RPOB_EC_3862_3888_TMOD_R	603	<i>Burkholderia mallei</i>	777
363	RPOC_EC_2146_2174_TMOD_F	257	RPOC_EC_2227_2245_TMOD_R	621	<i>Burkholderia mallei</i>	778
354	RPOC_EC_2218_2241_TMOD_F	262	RPOC_EC_2313_2337_TMOD_R	625	<i>Bacillus anthracis</i>	779
355	SSPE_BA_115_137_TMOD_E	321	SSPE_BA_197_222_TMOD_R	687	<i>Bacillus anthracis</i>	780
367	TUFb_EC_957_979_TMOD_F	345	TUFb_EC_1034_1058_TMOD_R	701	<i>Burkholderia mallei</i>	781
358	VALS_EC_1105_1124_TMOD_F	350	VALS_EC_1195_1218_TMOD_R	712	<i>Yersinia Pestis</i>	782

Table 10: Primer Pair Gene Coordinate References and Calibration Polynucleotide Sequence Coordinates within the Combination Calibration Polynucleotide

Bacterial Gene and Species	Gene Extraction Coordinates of Genomic or Plasmid Sequence	Reference GenBank GI No. of Genomic (G) or Plasmid (P) Sequence	Primer Pair No.	Coordinates of Calibration Sequence in Combination Calibration Polynucleotide (SEQ ID NO: 783)
16S <i>E. coli</i>	4033120..4034661	16127994 (G)	346	16..109
16S <i>E. coli</i>	4033120..4034661	16127994 (G)	347	83..190
16S <i>E. coli</i>	4033120..4034661	16127994 (G)	348	246..353
16S <i>E. coli</i>	4033120..4034661	16127994 (G)	361	368..469
23S <i>E. coli</i>	4166220..4169123	16127994 (G)	349	743..837
23S <i>E. coli</i>	4166220..4169123	16127994 (G)	360	865..981
rpoB <i>E. coli</i>	4178823..4182851 (complement strand)	16127994 (G)	359	1591..1672
rpoB <i>E. coli</i>	4178823..4182851 (complement strand)	16127994 (G)	362	2081..2167
rpoC <i>E. coli</i>	4182928..4187151	16127994 (G)	354	1810..1926
rpoC <i>E. coli</i>	4182928..4187151	16127994 (G)	363	2183..2279
infB <i>E. coli</i>	3313655..3310983 (complement strand)	16127994 (G)	352	1692..1791
tufB <i>E. coli</i>	4173523..4174707	16127994 (G)	367	2400..2498
rplB <i>E. coli</i>	3449001..3448180	16127994 (G)	356	1945..2060
rplB <i>E. coli</i>	3449001..3448180	16127994 (G)	449	1986..2055
valS <i>E. coli</i>	4481405..4478550 (complement strand)	16127994 (G)	358	1462..1572

<i>capC</i> <i>B. anthracis</i>	56074..55628 (complement strand)	6470151 (P)	350	2517..2616
<i>cya</i> <i>B. anthracis</i>	156626..154288 (complement strand)	4894216 (P)	351	1338..1449
<i>lef</i> <i>B. anthracis</i>	127442..129921	4894216 (P)	353	1121..1234
<i>sspE</i> <i>B. anthracis</i>	226496..226783	30253828 (G)	355	1007-1104

[0135] Example 10: Use of a Calibration Polynucleotide for Determining the Quantity of *Bacillus Anthracis* in a Sample Containing a Mixture of Microbes

[0136] The process described in this example is shown in Figure 7. The *capC* gene is a gene involved in capsule synthesis which resides on the pX02 plasmid of *Bacillus anthracis*. Primer pair number 350 (see Tables 9 and 10) was designed to identify *Bacillus anthracis* via production of a bacterial bioagent identifying amplicon. Known quantities of the combination calibration polynucleotide vector described in Example 3 were added to amplification mixtures containing bacterial bioagent nucleic acid from a mixture of microbes which included the Ames strain of *Bacillus anthracis*. Upon amplification of the bacterial bioagent nucleic acid and the combination calibration polynucleotide vector with primer pair no. 350, bacterial bioagent identifying amplicons and calibration amplicons were obtained and characterized by mass spectrometry. A mass spectrum measured for the amplification reaction is shown in Figure 8). The molecular masses of the bioagent identifying amplicons provided the means for identification of the bioagent from which they were obtained (Ames strain of *Bacillus anthracis*) and the molecular masses of the calibration amplicons provided the means for their identification as well. The relationship between the abundance (peak height) of the calibration amplicon signals and the bacterial bioagent identifying amplicon signals provides the means of calculation of the copies of the pX02 plasmid of the Ames strain of *Bacillus anthracis*. Methods of calculating quantities of molecules based on internal calibration procedures are well known to those of ordinary skill in the art.

[0137] Averaging the results of 10 repetitions of the experiment described above, enabled a calculation that indicated that the quantity of Ames strain of *Bacillus anthracis* present in the sample corresponds to approximately 10 copies of pX02 plasmid.

[0138] Example 11: Drill-down Genotyping of *Campylobacter* Species

[0139] A series of drill-down primers were designed as described in Example 1 with the objective of identification of different strains of *Campylobacter jejuni*. The primers are listed in Table 11 with the designation “CJST_CJ.” Housekeeping genes to which the primers hybridize and produce bioagent identifying amplicons include: *tkt* (transketolase), *glyA* (serine

hydroxymethyltransferase), gltA (citrate synthase), aspA (aspartate ammonia lyase), glnA (glutamine synthase), pgm (phosphoglycerate mutase), and uncA (ATP synthetase alpha chain).

Table 11: *Campylobacter* Drill-down Primer Pairs

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
1053	CJST_CJ_1080_1110_F	102	CJST_CJ_1166_1198_R	456	gltA
1064	CJST_CJ_1680_1713_F	107	CJST_CJ_1795_1822_R	461	glyA
1054	CJST_CJ_2060_2090_F	109	CJST_CJ_2148_2174_R	463	pgm
1049	CJST_CJ_2636_2668_F	113	CJST_CJ_2753_2777_R	467	tkt
1048	CJST_CJ_360_394_F	119	CJST_CJ_442_476_R	472	aspA
1047	CJST_CJ_584_616_F	121	CJST_CJ_663_692_R	474	glnA

[0140] The primers were used to amplify nucleic acid from 50 food product samples provided by the USDA, 25 of which contained *Campylobacter jejuni* and 25 of which contained *Campylobacter coli*. Primers used in this study were developed primarily for the discrimination of *Campylobacter jejuni* clonal complexes and for distinguishing *Campylobacter jejuni* from *Campylobacter coli*. Finer discrimination between *Campylobacter coli* types is also possible by using specific primers targeted to loci where closely-related *Campylobacter coli* isolates demonstrate polymorphisms between strains. The conclusions of the comparison of base composition analysis with sequence analysis are shown in Tables 12A-C.

Table 12A — Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drill-down MLST Primer Pair Nos: 1048 and 1047

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1048 (aspA)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1047 (glnA)
J-1	<i>C. jejuni</i>	Goose	ST 690 /692/707/991	ST 991	RM3673	A30 G25 C16 T46	A47 G21 C16 T25
J-2	<i>C. jejuni</i>	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A30 G25 C16 T46	A48 G21 C17 T23
J-3	<i>C. jejuni</i>	Human	Complex 354/179	ST 436	RM4194	A30 G25 C15 T47	A48 G21 C18 T22
J-4	<i>C. jejuni</i>	Human	Complex 257	ST 257, complex 257	RM4197	A30 G25 C16 T46	A48 G21 C18 T22
J-5	<i>C. jejuni</i>	Human	Complex 52	ST 52, complex 52	RM4277	A30 G25 C16 T46	A48 G21 C17 T23
J-6	<i>C. jejuni</i>	Human	Complex 443	ST 51, complex 443	RM4275	A30 G25 C15 T47	A48 G21 C17 T23
					RM4279	A30 G25 C15 T47	A48 G21 C17 T23
J-7	<i>C. jejuni</i>	Human	Complex 42	ST 604, complex 42	RM1864	A30 G25 C15 T47	A48 G21 C18 T22
J-8	<i>C. jejuni</i>	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A30 G25 C15 T47	A48 G21 C18 T22
J-9	<i>C. jejuni</i>	Human	Complex 45/203	ST 147, Complex 45	RM3203	A30 G25 C15 T47	A47 G21 C18 T23
	<i>C. jejuni</i>	Human	Consistent	ST 828	RM4183	A31 G27 C20 T39	A48 G21 C16 T24

C-1	<i>C. coli</i>	<p>with 74 closely related sequence types (none belong to a clonal complex)</p> <p>Poultry</p> <p>Swine</p> <p>Unknown</p>	ST 832	RM1169	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1056	RM1857	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 889	RM1166	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 829	RM1182	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1050	RM1518	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1051	RM1521	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1053	RM1523	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1055	RM1527	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1017	RM1529	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 860	RM1840	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1063	RM2219	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1066	RM2241	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1067	RM2243	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1068	RM2439	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1016	RM3230	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1069	RM3231	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1061	RM1904	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 825	RM1534	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 901	RM1505	A31 G27 C20 T39	A48 G21 C16 T24	
C-2	<i>C. coli</i>	Human	ST 895	ST 895	RM1532	A31 G27 C19 T40	A48 G21 C16 T24
C-3	<i>C. coli</i>	<p>Poultry</p> <p>Consistent with 63 closely related sequence types (none belong to a clonal complex)</p>	ST 1064	RM2223	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1082	RM1178	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1054	RM1525	A31 G27 C20 T39	A48 G21 C16 T24	
			ST 1049	RM1517	A31 G27 C20 T39	A48 G21 C16 T24	
		Marmoset	ST 891	RM1531	A31 G27 C20 T39	A48 G21 C16 T24	

Table 12B – Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drill-down MLST Primer Pair Nos: 1053 and 1064

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1053 (gltA)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1064 (glyA)
J-1	<i>C. jejuni</i>	Goose	ST 690 /692/707/991	ST 991	RM3673	A24 G25 C23 T47	A40 G29 C29 T45
J-2	<i>C. jejuni</i>	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A24 G25 C23 T47	A40 G29 C29 T45
J-3	<i>C. jejuni</i>	Human	Complex 354/179	ST 436	RM4194	A24 G25 C23 T47	A40 G29 C29 T45
J-4	<i>C. jejuni</i>	Human	Complex 257	ST 257, complex 257	RM4197	A24 G25 C23 T47	A40 G29 C29 T45
J-5	<i>C. jejuni</i>	Human	Complex 52	ST 52, complex 52	RM4277	A24 G25 C23 T47	A39 G30 C26 T48
J-6	<i>C. jejuni</i>	Human	Complex 443	ST 51, complex 443	RM4275	A24 G25 C23 T47	A39 G30 C26 T46
					RM4279	A24 G25 C23 T47	A39 G30 C28 T46
J-7	<i>C. jejuni</i>	Human	Complex 42	ST 604, complex 42	RM1864	A24 G25 C23 T47	A39 G30 C26 T48

J-8	<i>C. jejuni</i>	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A24 G25 C23 T47	A38 G31 C28 T46
J-9	<i>C. jejuni</i>	Human	Complex 45/283	ST 147, Complex 45	RM3203	A24 G25 C23 T47	A38 G31 C28 T46
	<i>C. jejuni</i>			ST 828	RM4183	A23 G24 C26 T46	A39 G30 C27 T47
		Human		ST 832	RM1169	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1056	RM1857	A23 G24 C26 T46	A39 G30 C27 T47
				ST 889	RM1166	A23 G24 C26 T46	A39 G30 C27 T47
				ST 829	RM1182	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1050	RM1518	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1051	RM1521	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1053	RM1523	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1055	RM1527	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1017	RM1529	A23 G24 C26 T46	A39 G30 C27 T47
				ST 860	RM1840	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1063	RM2219	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1066	RM2241	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1067	RM2243	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1068	RM2439	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1016	RM3230	A23 G24 C26 T46	A39 G30 C27 T47
		Swine		ST 1069	RM3231	A23 G24 C26 T46	NO DATA
				ST 1061	RM1904	A23 G24 C26 T46	A39 G30 C27 T47
				ST 825	RM1534	A23 G24 C26 T46	A39 G30 C27 T47
		Unknown		ST 901	RM1505	A23 G24 C26 T46	A39 G30 C27 T47
C-2	<i>C. coli</i>	Human	ST 895	ST 895	RM1532	A23 G24 C26 T46	A39 G30 C27 T47
C-3	<i>C. coli</i>	Poultry	Consistent with 63 closely related sequence types (none belong to a clonal complex)	ST 1064	RM2223	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1082	RM1178	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1054	RM1525	A23 G24 C25 T47	A39 G30 C27 T47
				ST 1049	RM1517	A23 G24 C26 T46	A39 G30 C27 T47
		Marmoset		ST 891	RM1531	A23 G24 C26 T46	A39 G30 C27 T47

Table 12C – Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drill-down MLST Primer Pair Nos: 1054 and 1049

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1054 (pgm)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1049 (tkt)
J-1	<i>C. jejuni</i>	Goose	ST 690 /692/707/991	ST 991	RM3673	A26 G33 C18 T38	A41 G28 C35 T38
J-2	<i>C. jejuni</i>	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A26 G33 C19 T37	A41 G28 C36 T37
J-3	<i>C. jejuni</i>	Human	Complex 354/179	ST 436	RM4194	A27 G32 C19 T37	A42 G28 C36 T36
J-4	<i>C. jejuni</i>	Human	Complex 257	ST 257, complex 257	RM4197	A27 G32 C19 T37	A41 G29 C35 T37
J-5	<i>C. jejuni</i>	Human	Complex 52	ST 52, complex 52	RM4277	A26 G33 C18 T38	A41 G28 C36 T37

J-6	<i>C. jejuni</i>	Human	Complex 443	ST 51, complex 443	RM4275	A27 G31 C19 T38	A41 G28 C36 T37		
					RM4279	A27 G31 C19 T38	A41 G28 C36 T37		
J-7	<i>C. jejuni</i>	Human	Complex 42	ST 604, complex 42	RM1864	A27 G32 C19 T37	A42 G28 C35 T37		
J-8	<i>C. jejuni</i>	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A26 G33 C19 T37	A42 G28 C35 T37		
J-9	<i>C. jejuni</i>	Human	Complex 45/283	ST 147, Complex 45	RM3203	A28 G31 C19 T37	A43 G28 C36 T35		
	<i>C. jejuni</i>	Human	Consistent with 74 closely related sequence types (none belong to a clonal complex)	ST 828	RM4183	A27 G30 C19 T39	A46 G28 C32 T36		
C-1	<i>C. coli</i>			ST 832	RM1169	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1056	RM1857	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 889	RM1166	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 829	RM1182	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1050	RM1518	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1051	RM1521	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1053	RM1523	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1055	RM1527	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1017	RM1529	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 860	RM1840	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1063	RM2219	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1066	RM2241	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1067	RM2243	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1068	RM2439	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1016	RM3230	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1069	RM3231	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 1061	RM1904	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 825	RM1534	A27 G30 C19 T39	A46 G28 C32 T36		
				ST 901	RM1505	A27 G30 C19 T39	A46 G28 C32 T36		
C-2	<i>C. coli</i>	Human	ST 895	ST 895	RM1532	A27 G30 C19 T39	A45 G29 C32 T36		
C-3	<i>C. coli</i>	Poultry	Consistent with 63 closely related sequence types (none belong to a clonal complex)	ST 1064	RM2223	A27 G30 C19 T39	A45 G29 C32 T36		
				ST 1082	RM1178	A27 G30 C19 T39	A45 G29 C32 T36		
				ST 1054	RM1525	A27 G30 C19 T39	A45 G29 C32 T36		
				ST 1049	RM1517	A27 G30 C19 T39	A45 G29 C32 T36		
		Marmoset		ST 891	RM1531	A27 G30 C19 T39	A45 G29 C32 T36		

[0141] The base composition analysis method was successful in identification of 12 different strain groups. *Campylobacter jejuni* and *Campylobacter coli* are generally differentiated by all loci. Ten clearly differentiated *Campylobacter jejuni* isolates and 2 major *Campylobacter coli* groups were identified even though the primers were designed for strain typing of

Campylobacter jejuni. One isolate (RM4183) which was designated as *Campylobacter jejuni* was found to group with *Campylobacter coli* and also appears to actually be *Campylobacter coli* by full MLST sequencing.

[0142] Example 12: Identification of *Acinetobacter baumannii* Using Broad Range Survey and Division-Wide Primers in Epidemiological Surveillance

[0143] To test the capability of the broad range survey and division-wide primer sets of Table 4 in identification of *Acinetobacter* species, 183 clinical samples were obtained from individuals participating in, or in contact with individuals participating in Operation Iraqi Freedom (including US service personnel, US civilian patients at the Walter Reed Army Institute of Research (WRAIR), medical staff, Iraqi civilians and enemy prisoners). In addition, 34 environmental samples were obtained from hospitals in Iraq, Kuwait, Germany, the United States and the USNS Comfort, a hospital ship.

[0144] Upon amplification of nucleic acid obtained from the clinical samples, primer pairs 346-349, 360, 361, 354, 362 and 363 (Table 4) all produced bacterial bioagent amplicons which identified *Acinetobacter baumannii* in 215 of 217 samples. The organism *Klebsiella pneumoniae* was identified in the remaining two samples. In addition, 14 different strain types (containing single nucleotide polymorphisms relative to a reference strain of *Acinetobacter baumannii*) were identified and assigned arbitrary numbers from 1 to 14. Strain type 1 was found in 134 of the sample isolates and strains 3 and 7 were found in 46 and 9 of the isolates respectively.

[0145] The epidemiology of strain type 7 of *Acinetobacter baumannii* was investigated. Strain 7 was found in 4 patients and 5 environmental samples (from field hospitals in Iraq and Kuwait). The index patient infected with strain 7 was a pre-war patient who had a traumatic amputation in March of 2003 and was treated at a Kuwaiti hospital. The patient was subsequently transferred to a hospital in Germany and then to WRAIR. Two other patients from Kuwait infected with strain 7 were found to be non-infectious and were not further monitored. The fourth patient was diagnosed with a strain 7 infection in September of 2003 at WRAIR. Since the fourth patient was not related involved in Operation Iraqi Freedom, it was inferred that the fourth patient was the subject of a nosocomial infection acquired at WRAIR as a result of the spread of strain 7 from the index patient.

[0146] The epidemiology of strain type 3 of *Acinetobacter baumannii* was also investigated. Strain type 3 was found in 46 samples, all of which were from patients (US service members, Iraqi civilians and enemy prisoners) who were treated on the USNS Comfort hospital ship and subsequently returned to Iraq or Kuwait. The occurrence of strain type 3 in a single locale may provide evidence that at least some of the infections at that locale were a result of a nosocomial infections.

[0147] This example thus illustrates an embodiment of the present invention wherein the methods of analysis of bacterial bioagent identifying amplicons provide the means for epidemiological surveillance.

[0148] Example 13: Selection and Use of MLST *Acinetobacter baumannii* Drill-down Primers

[0149] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by multi-locus sequence typing (MLST) such as the MLST methods of the MLST Databases at the Max-Planck Institute for Infectious Biology (web.mpiib-berlin.mpg.de/mlst/dbs/Mcatarrhalis/documents/primersCatarrhalis_html), an additional 21 primer pairs were selected based on analysis of housekeeping genes of the genus *Acinetobacter*. Genes to which the drill-down MLST analogue primers hybridize for production of bacterial bioagent identifying amplicons include anthranilate synthase component I (trpE), adenylate kinase (adk), adenine glycosylase (mutY), fumarate hydratase (fumC), and pyrophosphate phospho-hydratase (ppa). These 21 primer pairs are indicated with reference to sequence listings in Table 13. Primer pair numbers 1151-1154 hybridize to and amplify segments of trpE. Primer pair numbers 1155-1157 hybridize to and amplify segments of adk. Primer pair numbers 1158-1164 hybridize to and amplify segments of mutY. Primer pair numbers 1165-1170 hybridize to and amplify segments of fumC. Primer pair number 1171 hybridizes to and amplifies a segment of ppa. The primer names given in Table 13 indicates the coordinates to which the primers hybridize to a reference sequence which comprises a concatenation of the genes TrpE, efp (elongation factor p), adk, mutT, fumC, and ppa. For example, the forward primer of primer pair 1151 is named AB_MLST-11-OIF007_62_91_F because it hybridizes to the *Acinetobacter* MLST primer reference sequence of strain type 11 in sample 007 of Operation Iraqi Freedom (OIF) at positions 62 to 91.

**Table 13: MLST Drill-Down Primers for Identification of Sub-species characteristics
(Strain Type) of Members of the Bacterial Genus *Acinetobacter***

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)
1151	AB MLST-11-OIF007_62_91_F	83	AB MLST-11-OIF007_169_203_R	426
1152	AB MLST-11-OIF007_185_214_F	76	AB MLST-11-OIF007_291_324_R	432
1153	AB MLST-11-OIF007_260_289_F	79	AB MLST-11-OIF007_364_393_R	434
1154	AB MLST-11-OIF007_206_239_F	78	AB MLST-11-OIF007_318_344_R	433
1155	AB MLST-11-OIF007_522_552_F	80	AB MLST-11-OIF007_587_610_R	435
1156	AB MLST-11-OIF007_547_571_F	81	AB MLST-11-OIF007_656_686_R	436
1157	AB MLST-11-OIF007_601_627_F	82	AB MLST-11-OIF007_710_736_R	437
1158	AB_MLST-11-OIF007_1202_1225_F	65	AB MLST-11-OIF007_1266_1296_R	420
1159	AB_MLST-11-OIF007_1202_1225_F	65	AB MLST-11-OIF007_1299_1316_R	421
1160	AB_MLST-11-OIF007_1234_1264_F	66	AB MLST-11-OIF007_1335_1362_R	422
1161	AB_MLST-11-OIF007_1327_1356_F	67	AB MLST-11-OIF007_1422_1448_R	423
1162	AB_MLST-11-OIF007_1345_1369_F	68	AB MLST-11-OIF007_1470_1494_R	424
1163	AB_MLST-11-OIF007_1351_1375_F	69	AB MLST-11-OIF007_1470_1494_R	424
1164	AB_MLST-11-OIF007_1387_1412_F	70	AB MLST-11-OIF007_1470_1494_R	424
1165	AB_MLST-11-OIF007_1542_1569_F	71	AB MLST-11-OIF007_1656_1680_R	425
1166	AB_MLST-11-OIF007_1566_1593_F	72	AB MLST-11-OIF007_1656_1680_R	425
1167	AB_MLST-11-OIF007_1611_1638_F	73	AB MLST-11-OIF007_1731_1757_R	427
1168	AB_MLST-11-OIF007_1726_1752_F	74	AB MLST-11-OIF007_1790_1821_R	428
1169	AB_MLST-11-OIF007_1792_1826_F	75	AB MLST-11-OIF007_1876_1909_R	429
1170	AB_MLST-11-OIF007_1792_1826_F	75	AB MLST-11-OIF007_1895_1927_R	430
1171	AB_MLST-11-	77	AB MLST-11-OIF007_2097_2118_R	431

	OIF007 1970 2002 F				
--	--------------------	--	--	--	--

[0150] Analysis of bioagent identifying amplicons obtained using the primers of Table 13 for over 200 samples from Operation Iraqi Freedom resulted in the identification of 50 distinct strain type clusters. The largest cluster, designated strain type 11 (ST11) includes 42 sample isolates, all of which were obtained from US service personnel and Iraqi civilians treated at the 28th Combat Support Hospital in Baghdad. Several of these individuals were also treated on the hospital ship USNS Comfort. These observations are indicative of significant epidemiological correlation/linkage.

[0151] All of the sample isolates were tested against a broad panel of antibiotics to characterize their antibiotic resistance profiles. As an example of a representative result from antibiotic susceptibility testing, ST11 was found to consist of four different clusters of isolates, each with a varying degree of sensitivity/resistance to the various antibiotics tested which included penicillins, extended spectrum penicillins, cephalosporins, carbipenem, protein synthesis inhibitors, nucleic acid synthesis inhibitors, anti-metabolites, and anti-cell membrane antibiotics. Thus, the genotyping power of bacterial bioagent identifying amplicons, particularly drill-down bacterial bioagent identifying amplicons, has the potential to increase the understanding of the transmission of infections in combat casualties, to identify the source of infection in the environment, to track hospital transmission of nosocomial infections, and to rapidly characterize drug-resistance profiles which enable development of effective infection control measures on a time-scale previously not achievable.

[0152] Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference (including, but not limited to, journal articles, U.S. and non-U.S. patents, patent application publications, international patent application publications, gene bank accession numbers, internet web sites, and the like) cited in the present application is incorporated herein by reference in its entirety.

WHAT IS CLAIMED IS:

1. An oligonucleotide primer selected from the group consisting of: an oligonucleotide primer 16 to 35 nucleobases in length comprising 80% to 100% sequence identity with SEQ ID NO: 26, an oligonucleotide primer 20 to 27 nucleobases in length comprising at least a 20 nucleobase portion of SEQ ID NO: 388, an oligonucleotide primer 22 to 35 nucleobases in length comprising SEQ ID NO: 29, an oligonucleotide primer 18 to 35 nucleobases in length comprising SEQ ID NO: 391, an oligonucleotide primer 22 to 26 nucleobases in length comprising SEQ ID NO: 37, an oligonucleotide primer 20 to 30 nucleobases in length comprising SEQ ID NO: 362, an oligonucleotide primer 13 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 48, an oligonucleotide primer 19 to 35 nucleobases in length comprising SEQ ID NO: 404, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 160, an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 515, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 261, an oligonucleotide primer 18 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 624, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 231, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 591; an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 349, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 711, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 240, an oligonucleotide primer 15 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 596, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 58, an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 414, an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 6, an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 369, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 246, an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 602, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 256, an oligonucleotide primer 14 to 35 nucleobases in length

comprising 70% to 100% sequence identity with SEQ ID NO: 620, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 344, an oligonucleotide primer 18 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 700, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 235, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 587;

wherein said primer comprises a non-templated T residue on the 5'-end, or at least one non-template tag.

2. A composition comprising one or more of the oligonucleotide primers of claim 1.
3. A composition comprising two or more of the oligonucleotide primers of claim 1.
4. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one modified nucleobase.
5. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises a non-templated T residue on the 5'-end.
6. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one non-template tag.
7. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one molecular mass modifying tag.
8. An oligonucleotide primer selected from the group consisting of: an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 322, and an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 686.
9. A composition comprising one or both of the oligonucleotide primers of claim 8.
10. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one modified nucleobase.

11. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises a non-templated T residue on the 5'-end.
12. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one non-template tag.
13. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one molecular mass modifying tag.
14. A kit comprising the composition of claim 3 or claim 9.
15. The kit of claim 14 further comprising at least one calibration polynucleotide.
16. The kit of claim 14 further comprising at least one ion exchange resin linked to magnetic beads.
17. A method for identification of an unknown bacterium comprising:
amplifying nucleic acid from said bacterium using the composition of claim 3 or claim 9
to obtain an amplification product;
determining the molecular mass of said amplification product;
optionally determining the base composition of said amplification product from said
molecular mass; and
comparing said molecular mass or base composition of said amplification product with
a plurality of molecular masses or base compositions of known bacterial bioagent identifying
amplicons, wherein a match between said molecular mass or base composition of said
amplification product and the molecular mass or base composition of a member of said plurality
of molecular masses or base compositions identifies said unknown bacterium.
18. The method of claim 17 wherein said molecular mass is determined by mass
spectrometry.
19. A method of determining the presence or absence of a bacterium of a particular clade,
genus, species, or sub-species in a sample comprising:

amplifying nucleic acid from said sample using the composition of claim 3 or claim 9 to obtain an amplification product;

determining the molecular mass of said amplification product;

optionally determining the base composition of said amplification product from said molecular mass; and

comparing said molecular mass or base composition of said amplification product with the known molecular masses or base compositions of one or more known clade, genus, species, or sub-species bioagent identifying amplicons, wherein a match between said molecular mass or base composition of said amplification product and the molecular mass or base composition of one or more known clade, genus, species, or sub-species bioagent identifying amplicons indicates the presence of said clade, genus, species, or sub-species in said sample.

20. The method of claim 19 wherein said molecular mass is determined by mass spectrometry.

21. A method for determination of the quantity of an unknown bacterium in a sample comprising:

contacting said sample with the composition of claim 3 or claim 9 and a known quantity of a calibration polynucleotide comprising a calibration sequence;

concurrently amplifying nucleic acid from said bacterium in said sample with the composition of claim 3 or claim 9 and amplifying nucleic acid from said calibration polynucleotide in said sample with the composition of claim 3 or claim 9 to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon;

determining the molecular mass and abundance for said bacterial bioagent identifying amplicon and said calibration amplicon; and

distinguishing said bacterial bioagent identifying amplicon from said calibration amplicon based on molecular mass, wherein comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in said sample.

22. The method of claim 21 further comprising determining the base composition of said bacterial bioagent identifying amplicon.

Figure 1

1/8

Figure 2

3/8

Figure 4

Base Composition Signatures from primer pair 14 (16S rRNA)

Figure 5

Figure 6

Figure 7

Figure 8

SEQUENCE LISTING

<110> Isis Pharmaceuticals, Inc.
Sampath, Rangarajan
Hall, Thomas A.
Ecker, David J.
Eshoo, Mark. W.
Massire, Christian
Science Applications International Corporation
Larson, Brons M.
Leighton, Terrance

<120> COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

<130> IBIS0074-500WO (DIBIS-0057WO1)

<150> 60/545,425
<151> 2004-02-18

<150> 60/559,754
<151> 2004-04-05

<150> 60/632,862
<151> 2004-12-03

<150> 60/639,068
<151> 2004-12-22

<150> 60/648,188
<151> 2005-01-28

<160> 785

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 1
gtgagatgtt gggtaagtc ccgtaacgag

30

<210> 2
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 2
atgttgggtt aagtccgc

19

<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 3
atgttgggtt aagtcccgca acgag

25

<210> 4
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 4
ttaagtccccg caacgagcgc aa

22

<210> 5
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 5
tttaagtccc gcaacgagcg caa

23

<210> 6
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 6
ttaagtccccg caacgatcgc aa

22

<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 7
tagtcccgca acgagcgc

18

<210> 8
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 8

caacgagcgc a~~a~~ccctt 17

<210> 9
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 9
caagtcatca t~~g~~gccctta 19

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 10
gctacacacg t~~g~~ctacaatg 20

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 11
cg~~g~~attggag t~~c~~tgc~~a~~actc g 21

<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 12
aagt~~c~~ggaat c~~g~~ctagtaat cg 22

<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 13
tac~~g~~gtgaat a~~c~~gttcc~~g~~ g 21

<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 14
gccttgtaca cacctccgt c

21

<210> 15
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 15
cttgtacaca cccggcgtc

19

<210> 16
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 16
ttgtacacac cgcccgat ac

22

<210> 17

<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 17
tgaacgctgg tggcatgtt aacac

25

<210> 18
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 18
caactggaaact gagacacagg

19

<210> 19
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 19

gtggcatgcc taatacatgc aagtctg	26
<210> 20	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 20	
ttagtgcgtga aggcccttagg gttgtaaa	28
<210> 21	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 21	
taacacatgc aagtgcgaacg	20
<210> 22	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 22	
ccagcagccg cggtaatac	19
<210> 23	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 23	
cggaaattact gggcgtaaag	20
<210> 24	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 24	
gtgttagcggt gaaatgcg	18
<210> 25	
<211> 27	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> Primer

<400> 25
gagagtttga tcctggctca gaacgaa 27

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 26
agaacaccga tggcgaaggc 20

<210> 27
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 27
tagaacacccg atggcgaagg c 21

<210> 28
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 28
gggagcaaac aggattagat ac 22

<210> 29
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 29
ggattagaga ccctggtagt cc 22

<210> 30
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 30
tggattagag accctggtag tcc 23

<210> 31
<211> 26
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 31
ggattagata ccctggtagt ccacgc 26

<210> 32
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 32
tagataccct ggtagtcac gc 22

<210> 33
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 33
gataaccctgg tagtccacac cg 22

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 34
agagtttgat catggctcag 20

<210> 35
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 35

accacgcccgt aaacgatga 19

<210> 36
<211> 18
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 36

aagcggtgga gcatgtgg 18

<210> 37

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 37

ttcgcatgcaa cgcgaaagaac ct 22

<210> 38

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 38

tttcgatgca acgcgaagaa cct 23

<210> 39

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 39

acgcgaagaa ccttacc 17

<210> 40

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 40

acgcgaagaa ccttacc 17

<210> 41

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 41

gcgaagaacc ttaccaggc	20
<210> 42	
<211> 14	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 42	
cgaagaacct tacc	14
<210> 43	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 43	
tgcgcggaag atgtaacggg	20
<210> 44	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 44	
tgcatacaaa cagtcggagc ct	22
<210> 45	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 45	
aaactagata acagtagaca tcac	24
<210> 46	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 46	
taccccaaac cgacacagg	19
<210> 47	
<211> 19	

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 47
ccgttaacttc gggagaagg

19

<210> 48
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 48
ctgacacacctg cccgggtgc

18

<210> 49
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 49
tctgacacacct gcccgggtgc

19

<210> 50
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 50
gacgcctgcc cggtgc

16

<210> 51
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 51
acctgcccag tgctggaag

19

<210> 52
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 52
gggaactgaa acatctaagt a 21

<210> 53
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 53
ggtggatgcc ttggc 15

<210> 54
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 54
aaggtaactcc ggggataaca ggc 23

<210> 55
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 55
tagaacgtcg cgagacagtt cg 22

<210> 56
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 56
gacagttcgg tccctatc 18

<210> 57
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 57
ctgtccctag tacggagagga ccgg 24

<210> 58
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 58
tctgtcccta gtacgagagg accgg 25

<210> 59
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 59
ctgttcttag tacgagagga cc 22

<210> 60
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 60
tctgttctta gtacgagagg acc 23

<210> 61
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 61
ctagtacgag aggaccgg 18

<210> 62
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 62
tagtacgaga ggaccgg 17

<210> 63
<211> 26
<212> DNA
<213> Artificial Sequence

<220>		
<223> Primer		
<400> 63		
ggggagtgaa agagatcctg aaaccg	26	
<210> 64		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 64		
cgagaggaaa acaacccaga cc	22	
<210> 65		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 65		
tcgtccccgc aatttgcata aagc	24	
<210> 66		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 66		
ttgttagcaca gcaaggcaaa tttcctgaaa c	31	
<210> 67		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 67		
taggtttacg tcagtatggc gtgattatgg	30	
<210> 68		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 68		
tcgtgattat ggatggcaac gtgaa	25	

<210> 69
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 69
ttatggatgg caacgtgaaa cgcgt

25

<210> 70
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 70
tcttgccat tgaagatgac ttaagc

26

<210> 71
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 71
tactagcggt aagcttaaac aagattgc

28

<210> 72
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 72
ttgccaatga tattcggtgg ttagcaag

28

<210> 73
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 73
tcggcgaaat ccgtattcct gaaaatga

28

<210> 74
<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 74

taccactatt aatgtcgctg gtgcttc

27

<210> 75

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 75

ttataactta ctgcaatcta ttcaagttgct tggtg

35

<210> 76

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 76

tattgtttca aatgtacaag gtgaagtgcg

30

<210> 77

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 77

tggttatgtta ccaaatactt tgtctgaaga tgg

33

<210> 78

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 78

tgaagtgcgt gatgatatcg atgcacttga tgta

34

<210> 79

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 79

tggAACGTTA TCAGGTGCC CAAAAATTCG	30
<210> 80	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 80	
TCGGTTAGT AAAAGAACGT ATTGCTCAAC C	31
<210> 81	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 81	
TCAACCTGAC TGC GTGAATG GTTGT	25
<210> 82	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 82	
TCAAGCAGAA GCT TTGGAAG AAGAAGG	27
<210> 83	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 83	
TGAGATTGCT AAC ATTTAA TGCTGATTGA	30
<210> 84 .	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 84	
TTGCTTAAAG TTGGTTTAT TGGTTGGCG	29
<210> 85	
<211> 34	
<212> DNA	

<213> Artificial Sequence

<220>

<223> Primer

<400> 85

tcagtttaa tgtctcgat gatcgaatca aaag

34

<210> 86

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 86

gcacaacctg cggctgcg

18

<210> 87

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 87

tctagtaata ataggaccct cagc

24

<210> 88

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 88

tatggctcta ctcaa

15

<210> 89

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 89

tgagtcactt gaagttgata caaatcctct

30

<210> 90

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 90	
gaatagcaat taatccaaat	20
<210> 91	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 91	
ttagttccgt tatcgccatt gcat	24
<210> 92	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 92	
tggaaacttatt gcaactgcta atg	23
<210> 93	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 93	
tcaactttac atataaggaa ggcgctc	27
<210> 94	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 94	
tcaggatgga aataaccacc aattcactac	30
<210> 95	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 95	
gttatatttagc actcgttttt aatcagcc	28
<210> 96	
<211> 20	

<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 96
actcgaaaaatcagcccg 20

<210> 97
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 97
gattattgtt atccctgttat gccatTTGAG 30

<210> 98
<211> 31
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 98
tgattattgtt atccctgtta tgccatTTGA G 31

<210> 99
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 99
ttattgttat cctgttatgc C 21

<210> 100
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 100
gttatacctgt tatGCCATTG 21

<210> 101
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 101
ccgtggattt ggagttattg 20

<210> 102
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 102
ttgagggtat gcaccgtctt tttgattctt t 31

<210> 103
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 103
agttataaac acggcttcc tatggcttat cc 32

<210> 104
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 104
tggcttatcc aaatttagat cgtggttta c 31

<210> 105
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 105
ttatcgttt gggagctagt gcttatgc 28

<210> 106
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 106
tgctcgagtg attgactttt ctaaatttag aga 33

<210> 107
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 107
tgattttgct aaatttagag aaattgcgga tgaa

34

<210> 108
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 108
tcccaattaa ttctgccatt tttccaggta t

31

<210> 109
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 109
tccccggactt aatatcaatg aaaattgtgg a

31

<210> 110
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 110
tgcggatcgt ttgggtggttg tagatgaaaa

30

<210> 111

<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 111
tcgtttgggt gttggtagatg aaaaagg

27

<210> 112
<211> 28
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 112

tagatgaaaaa gggcgaagtg gctaatgg

28

<210> 113

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 113

tgcctagaag atcttaaaaa tttccgccaa ctt

33

<210> 114

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 114

tccccaggac accctgaaat ttcaac

26

<210> 115

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 115

tggcatttct tatgaagctt gttcttttagc a

31

<210> 116

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 116

tgaagcttgt tcttttagcag gacttca

27

<210> 117

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 117	
tttgatttta cgccgtcctc caggtcg	27
<210> 118	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 118	
tcctgttata cctgaagtag ttaatcaagt ttgt	34
<210> 119	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 119	
tcctgttata cctgaagtag ttaatcaagt ttgtt	35
<210> 120	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 120	
taggcgaaga tatacaaaga gtattagaag ctaga	35
<210> 121	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 121	
tccaggacaa atgtatgaaa aatgtccaag aag	33
<210> 122	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 122	
tgaaaaatgt ccaagaagca tagcaaaaaa agca	34
<210> 123	
<211> 26	
<212> DNA	

<213> Artificial Sequence

<220>

<223> Primer

<400> 123

tcttatgcca agaggacaga gtgagt

26

<210> 124

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 124

tgtatttaggg gcatacagtc ctcatcc

27

<210> 125

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 125

gaaagagttc ggattggg

1_8

<210> 126

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 126

acaacgaagt acaatacaag ac

2_2

<210> 127

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 127

cgaagtacaa tacaagacaa aagaagg

2_7

<210> 128

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 128	
tcgaagtaca atacaagaca aaagaagg	28
<210> 129	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 129	
acaatacaag acaaagaag g	21
<210> 130	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 130	
caggtttagt accagaacat gcag	24
<210> 131	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 131	
gttttagtac cagaacatgc	20
<210> 132	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 132	
cgccgtactt caacgacagc ca	22
<210> 133	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 133	
ttatcagcta gaccttttag gttaagctaa gc	32
<210> 134	
<211> 32	

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 134
tccaaaggtag actaaaactta cttgagctaa tg 32

<210> 135
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 135
tcaaaaagcc ctaggtaaag agattccata tc 32

<210> 136
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 136
tccgttctta caaatagcaa tagaacttga agc 33

<210> 137
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 137
tggagcttga agctatcgct cttaaagatg 30

<210> 138
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 138
tggaacttga agctctcgct cttaaagatg 30

<210> 139
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 139	
tgggacttga agctatcgct cttaaagatg	30
<210> 140	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 140	
tcttcatac ctatggctat tatgcgtgc	29
<210> 141	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 141	
ggtgaaagaa gttgcctcta aagc	24
<210> 142	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 142	
atggacaagg ttggcaagga agg	23
<210> 143	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 143	
aaggaaggcg tgatcacccgt tgaaga	26
<210> 144	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 144	
tggaagatct gggtcaggc	19

<210> 145
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 145
tctgccccgtg tcgttgtga 20

<210> 146
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 146
tccattgttc gtatggctca agact 25

<210> 147
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 147
tcaggtggct tacacggcgt ag 22

<210> 148
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 148
tctttcttga atgctggtgt acgtatcg 28

<210> 149
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 149
tcaacgaagg taaaaaccat ctcaacg 27

<210> 150
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 150
tggtcgtgt ttcacaaaca acattcca 28

<210> 151
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 151
tacttaacttg agaatccaca agctgcaa 28

<210> 152
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 152
tggcgaacct ggtgaacgaa gc 22

<210> 153
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 153
tagttgctca aacagctggg ct 22

<210> 154
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 154
tccccggagct tttatgacta aaggcagat 28

<210> 155
<211> 23
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 155

tcggcggtgga aaaatcctac gct	23
<210> 156	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 156	
ttcctgaccg acccattatt ccctttatc	29
<210> 157	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 157	
tcctgaccg a cccattattc cctttatc	28
<210> 158	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 158	
gtcgtgaaaaa cgagctggaa ga	22
<210> 159	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 159	
tgcgttacc gcaatgcgtg c	21
<210> 160	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 160	
tgctcgtgg gcacaagtaa cgatatta	29
<210> 161	
<211> 30	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> Primer

<400> 161
ttgctcgtag tgcacaagta acggatatta 30

<210> 162
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 162
cgtcaggta aattccgtga agttaa 26

<210> 163
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 163
tggtAACAGA gccttatAGG CGCA 24

<210> 164
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 164
tggctccttg gtatgactct gcttc 25

<210> 165
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 165
tgctgaggcc tggaccgatt atttac 26

<210> 166
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 166
ttatTTACCT gcactcccac aacttg 25

<210> 167
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 167
tccttgaccg cctttccgat ac

22

<210> 168
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 168
tgaggaccgt gtcgcgctca

20

<210> 169
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 169
taagaccatg ctgcgcagaga aactt

25

<210> 170
<211> 26
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 170
tcagtatgtat tccaccgttag ccagtc

26

<210> 171
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 171
tgggtgacat tcataatattt catcgttc

28

<210> 172
<211> 17
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 172

tcaagaagaa aaagagc

17

<210> 173

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 173

caagaagaaa aagagcttct aaaaagaata c

31

<210> 174

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 174

agcttttgcatttatatcg agccac

26

<210> 175

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 175

tagcttttgc atattatatc gagccac

27

<210> 176

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 176

cttttgcatattatcgag c

21

<210> 177

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 177	
tttacag c tt tatgcaccg	19
<210> 178	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 178	
caaacggat gc tggcaag	17
<210> 179	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 179	
tgttagccg ct aagcactacc atcc	24
<210> 180	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 180	
tggacggcat cacgattctc tac	23
<210> 181	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 181	
tgaagt g aa atgactgaac gtccga	26
<210> 182	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 182	
taaaaacaaac tacggtaaca ttgatcgca	29
<210> 183	

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 183
tcaggtactg ctatccaccc tcaa 24

<210> 184
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 184
tgtactgcta tccaccctca a 21

<210> 185
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 185
tccaccctca a 11

<210> 186
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 186
tcaccaggta caactcaaaa aatattaaca 30

<210> 187
<211> 27
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 187
ttacacatata cgtgagcaat gaactga 27

<210> 188
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 188
ttactccatt attgcttggc tacac~~t~~tttcc 30

<210> 189
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 189
tacacaacaa tggcggtaaa gatgg 25

<210> 190
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 190
tgcgcgctc ttggtatcga gtt 23

<210> 191
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 191
tgcctcgaag ctgaatataa ccaagg 27

<210> 192
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 192
tcaacggtaa cttctatgtt acttc~~t~~g 27

<210> 193
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 193
tcaagccgta cgtattatta ggtgc~~t~~g 27

<210> 194

<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 194
tccgtacgta ttatttagtg ctggtca

27

<210> 195
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 195
tcgtacgtat tattaggtgc tggtcact

28

<210> 196
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 196
tgttggtgct ttctggcgct taa

23

<210> 197
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 197
tggtgctttc tggcgcttaa acga

24

<210> 198
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 198
tctactgatt ttggtaatct tgcagcacag

30

<210> 199
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 199
tgcaagtggt acttcaacat gggg 24

<210> 200
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 200
ttacaggaag ttaggtggt aatctaaaag g 31

<210> 201
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 201
cagaatcaag ttcccagggg 20

<210> 202
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 202
agaatcaagt tcccgagggt tac 23

<210> 203
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 203
aatctgctat ttggtcagg 19

<210> 204
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 204
gaaggatata cggttgatgt c 21

<210> 205

<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 205
tcctgaaaaa tggagcacgg

20

<210> 206
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 206
tggagcacgg cttctgatc

19

<210> 207
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 207

ggctcagcca ttttagttacc gctat

25

<210> 208
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 208
tcagcgcgt a cagtgggtga t

21

<210> 209
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 209
tggtgactcg gcatgttatg aagc

24

<210> 210
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 210
ttataccgga aacttcccga aaggag 26

<210> 211
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 211

tgacatccgg ctcacgttat tatggt 26

<210> 212
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 212
tccggctcac gttattatgg tac 23

<210> 213
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 213
tgcaaaggag gtactcagac cat 23

<210> 214
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 214
tgacatgctt gtccgttcag gc 22

<210> 215
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 215

tggtaacatgt gccttcattg atgctg	26
<210> 216	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 216	
tggcacggcc atctccgtg	19
<210> 217	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 217	
tgcgggtagg gagcttgagc	20
<210> 218	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 218	
tccttagagga atggctgcca cg	22
<210> 219	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 219	
tacccccaggg aaagtgccac aga	23
<210> 220	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 220	
taaaccccat cgggagcaag accgaata	28
<210> 221	
<211> 19	
<212> DNA	

<213> Artificial Sequence

<220>

<223> Primer

<400> 221

gaggaaaagtc catgctcgc

19

<210> 222

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 222

taaggatagt gcaacagaga tataccgcc

29

<210> 223

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 223

gaggaaaagtc cgggctc

17

<210> 224

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 224

tctaaatggt cgtcagttg cgtg

24

<210> 225

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 225

tggtaagagc gcaccggtaa gttggtaaca

30

<210> 226

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 226	
taagagcgca ccggtaagtt gg	22
<210> 227	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 227	
tgcataccgg taagttggca aca	23
<210> 228	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 228	
tccaccaaga gcaagatcaa ataggc	26
<210> 229	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 229	
gaggaaagt c catgctcac	19
<210> 230	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 230	
tccgcggagt tgactgggt	19
<210> 231	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 231	
gacctacagt aagaggttct gtaatgaacc	30
<210> 232	
<211> 31	
<212> DNA	

<213> Artificial Sequence

<220>

<223> Primer

<400> 232

tgacctacag taagagggttc tgtaatgaac c

31

<210> 233

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 233

tgtaatgaac cctaatgacc atccacacgg

30

<210> 234

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 234

taatgaaccc taatgaccat ccacacggtg

30

<210> 235

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 235

catccacacg gtgggttgtga agg

23

<210> 236

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 236

tcatccacac ggtgggttgtg aagg

24

<210> 237

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 237	
tcacacacggt ggtgggtgaag g	21
<210> 238	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 238	
gaccacccctcg gcaaccgt	18
<210> 239	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 239	
tcagctgtcg cagttcatgg acc	23
<210> 240	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 240	
tatcgctcag gcgaactcca ac	22
<210> 241	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 241	
ttatcgctca ggcgaactcc aac	23
<210> 242	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 242	
tcgttccctgg aacacgatga cgc	23
<210> 243	
<211> 29	

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 243

tcaacaacct cttggaggta aagctcagt 29

<210> 244
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

.

<400> 244

cttggaggta agtctcattt tggtgggca 29

<210> 245
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 245

tgggcagcgt ttcggcgaaa tggaa 24

<210> 246
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 246

gggcagcgtt tcggcgaaat gga 23

<210> 247
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 247

cagcgtttcg gcgaaatggaa 20

<210> 248
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 248
caaaaacttat taggttaagcg tgttgact 28

<210> 249
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 249
cgtgttgact attcggggcg tttag 25

<210> 250
<211> 27
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 250
taagaagccg gaaaccatca actaccg 27

<210> 251
<211> 22
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 251
acccagtgtct gctgaaccgt gc 22

<210> 252
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 252
cgccgacttc gacggtgacc 20

<210> 253
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 253
tcggccgactt cgacggtgac c 21

<210> 254
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 254
tggcccgaaa gaagctgagc g 21

<210> 255
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 255
tcaggagtcg ttcaactcga tctacatgat g 31

<210> 256
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 256
caggagtcgt tcaactcgat ctacatgat 29

<210> 257
<211> 30

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 257
tcaggagtcg ttcaactcga tctacatgat 30

<210> 258
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 258
tgattccgggt gcccgtgg 19

<210> 259
<211> 19
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 259
tgattctggc gccccgtggt 19

<210> 260
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 260
cttgctggta tgcgtggct gatg 24

<210> 261
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 261
ctggcaggta tgcgtggct gatg 24

<210> 262
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 262
tctggcaggta atgcgtggtc tgatg 25

<210> 263
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 263
tggtatgcgt ggtctgatgg c 21

<210> 264
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 264
tgctcgtaag ggtctggcgg atac 24

```

<210> 265
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 265
cgtcggtgtaa ttaaccgtaa caaccg 26

<210> 266
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 266
cgtcggtgtaa ttaaccgtaa caaccg 26

<210> 267
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 267
tattggacaa cggtcgtcgc gg 22

<210> 268
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 268
tctggataac ggtcggtcg g 21

<210> 269
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 269
caaaggtaa~~g~~ caaggacgtt tccgtca 27

<210> 270
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 270
caaaggtaag caaggtcgtt tccgtca 27

<210> 271
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 271
aaccttaatt ggaaagaaa ccaagaagt 29

<210> 272
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 272
taacccttaat tggaaagaaa cccaagaagt 30

<210> 273
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 273
caataccgca acagcggtgg ctgggg 26

<210> 274
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 274
tcaataccgc aacagcggtg gcttggg 27

<210> 275
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 275

gctggtgaaa ataaccaga tgcgtttc	30
<210> 276	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 276	
tgcgtggaa aataaccagg atgttgtttt c	31
<210> 277	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 277	
cgcaaaaaaa tccagttt agc	23
<210> 278	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 278	
tgcgcaaaaaaa atccagttt tagc	24
<210> 279	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 279	
cggatatacg taataataata gtttatgaca	30
<210> 280	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 280	
tcggatatacg ctataataata agtttatgac a	31
<210> 281	
<211> 29	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> Primer

<400> 281
cctatattaa tcgttacag aaactggct 29

<210> 282
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 282
tcctatatta atcgttaca gaaaactggct 30

<210> 283
<211> 23
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 283
ctggctaaaa ctttggcaac ggt 23

<210> 284
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 284
tctggctaaa actttggcaa cggt 24

<210> 285
<211> 29
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 285
atgattacaa ttcaagaagg tcgtcacgc 29

<210> 286
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 286	
tatgattaca attcaagaag gtcgtcacgc	30
<210> 287	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 287	
taacggttat catggccag atggg	25
<210> 288	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 288	
ttaacggtta tcatggccca gatggg	26
<210> 289	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 289	
agcagggtgg gaaatcggcc acatgatt	28
<210> 290	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 290	
tagcagggtgg tgaaatcggc cacatgatt	29
<210> 291	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 291	
cagagaccgt tttatcctat cagc	24
<210> 292	

<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 292
tcagagaccg ttttatccta tcagc 25

<210> 293
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 293
tctaaaacac caggtcaccc agaag 25

<210> 294
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 294
ttctaaaaca ccaggtcacc cagaag 26

<210> 295
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 295
atggccatgg cagaagctca 20

<210> 296
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 296
tatggccatg gcagaagctc a 21

<210> 297
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 297
cttgtacttg tggctcacac ggctgtttgg 30
<210> 298
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 298
tcttgtactt gtggctcaca cggctgtttg g 31
<210> 299
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 299
accatgacag aaggcattt gaca 24
<210> 300
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 300
taccatgaca gaaggcattt tgaca 25
<210> 301
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 301
gatgactttt tagctaattgg tcaggcagc 29
<210> 302
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 302
tcatgactttt ttagctaattg gtcaggcagc 30
<210> 303

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 303
tagctaatgg tcaggcagcc 20

<210> 304
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 304
gtcaaagtgg cacgttact ggc 23

<210> 305
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 305
tgtcaaagtg gcacgtttac tggc 24

<210> 306
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 306
agcgtaaagg tgaacctt 18

<210> 307
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 307
tagcgtaaag gtgaacctt 19

<210> 308
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 308
gcttcaggaa tcaatgatgg agcag 25

<210> 309
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 309
tgcttcagga atcaatgatg gagcag 26

<210> 310
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 310
ggggattcag ccatcaaagc agctattgac 30

<210> 311
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 311
tggggattca gccatcaaag cagctattga c 31

<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 312
tcagccatca aagcagctat tg 22

<210> 313
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 313

ccttacttcg aactatgaat cttttggaag	30
<210> 314	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 314	
tccttacttc gaactatgaa tctttggaa g	31
<210> 315	
<211> 27	
<212> DNA	
<213> Artificial Sequence	.
<220>	-.
<223> Primer	
<400> 315	
ggggatttat atcacccata agaagaa	27
<210> 316	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 316	
tggggattta tatcacccat aagaagaa	28
<210> 317	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 317	
tcgccaatca aaactaagg aatggc	26
<210> 318	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 318	
ttcgccaatc aaaactaagg gaatggc	27
<210> 319	
<211> 29	
<212> DNA	

<213> Artificial Sequence

<220>

<223> Primer

<400> 319

ggccaacagc agcgaggattgc gattgcgcg

29

<210> 320

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 320

tgggcaaacag cagcgaggattg cgattgcgcg

30

<210> 321

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 321

tcaagcaaacc gcacaatcag aagc

24

<210> 322

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 322

caagcaaacc cacaatcaga agc

23

<210> 323

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 323

aacgcacaat cagaagc

17

<210> 324

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<40O> 324	
tgcacaatca gaagctaaga aagcgcaagc t	31
<21O> 325	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<22O>	
<223> Primer	
<40O> 325	
tgcaagcttc tggtgctagc att	23
<21O> 326	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<22O>	
<223> Primer	
<40O> 326	
tgcttctggt gctagcatt	19
<21O> 327	
<211> 13	
<212> DNA	
<213> Artificial Sequence	
<22O>	
<223> Primer	
<40O> 327	
tggtgctagc att	13
<21O> 328	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<22O>	
<223> Primer	
<40O> 328	
tgctagttat ggtacagagt ttgcgac	27
<21O> 329	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<22O>	
<223> Primer	
<40O> 329	
tggtagacagat ttgcgac	18
<21O> 330	
<211> 15	

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 330
tacagagttt gcgac 15

<210> 331
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 331
tcgatttaggc agcaacgaaa gccg 24

<210> 332
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 332
tcgacaccttg gcaggaacta gac 23

<210> 333
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 333
tcaaatgtac aaggtaagt gcgtga 26

<210> 334
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 334
tggatggcat ggtgaaatgg atatgtc 27

<210> 335
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 335	
atgtcgattt caatccgtac ttgtg	25
<210> 336	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 336	
gtgcattgcgg atacagagca gag	23
<210> 337	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 337	
tgcataaggcgc accacatacg	20
<210> 338	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 338	
gcactatgca cacgttagatt gtcctgg	27
<210> 339	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 339	
ttgactgcc aggtcacgct g	21
<210> 340	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 340	
tagactgcc aggacacgct g	21

<210> 341
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 341
tgcacgcccga ctatgttaag aacatgtat

28

<210> 342
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 342
tgatcactgg tgctgctcag atgga

25

<210> 343
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 343
aagacgacct gcacgggc

18

<210> 344
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 344
ccacacgccc ttcttcaaca act

23

<210> 345
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 345
tccacacgcc gttcttcaac aact

24

<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 346
aactaccgtc ctcagttcta cttcc 25

<210> 347
<211> 25
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 347
aactaccgtc cgccagttcta cttcc 25

<210> 348
<211> 28
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 348
ccacagttct acttccgtac tactgacg 28

<210> 349
<211> 20
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 349
cgtggcgccg tggttatcg 20

<210> 350
<211> 21
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 350
tcgtggcgccg gtggttatcg a 21

<210> 351
<211> 24
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 351
tatgctgacc gaccagtggc acgt 24

<210> 352
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 352
cgacgcgctg cgcttcac

18

<210> 353
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 353
cttctgcaac aagctgtgga acgc

24

<210> 354
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 354
accgagcaag gagaccaggc

19

<210> 355
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 355
tcttgctctt tcgtgagttc agtaaatg

28

<210> 356
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 356
tcgatctgggt ttcatgctgt ttcagt

26

<210> 357
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 357
ttactcaccc gtccggcgct

20

<210> 358
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 358
tgttactcac ccgtctgcca ct

22

<210> 359

<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 359
ttactcaccc gtccgcc

17

<210> 360
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 360
acaaccatgc accacacctgtc

20

<210> 361
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 361
tacgcattac tcaccctgtcc gc

22

<210> 362
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 362

acgagctgac gacagccatg 20
<210> 363
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 363
tacgagctga cgacagccat g 21
<210> 364
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 364
acgacacgag ctgacgac 18
<210> 365
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 365
acacgagctg ac 12
<210> 366
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 366
tccccacatt cctcc 15
<210> 367
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 367
gacgtcatcc ccacaccttcc 22
<210> 368
<211> 21
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 368

gacgtcatcc ccacccctc c

21

<210> 369

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 369

tgacgtcatc cccacccccc tc

22

<210> 370

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 370

ttgacgtcat ccccacccccc ctc

23

<210> 371

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 371

ttgacgtcat ccccacccccc ctc

23

<210> 372

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 372

tgacgtcatg gcccacccccc cc

20

<210> 373

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 373
tgacgtcatg cccacaccttcc 20

<210> 374
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 374
tgacgtcatc cccacaccttcc 20

<210> 375
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 375
atttgttagcac gtgtgttagcc c 21

<210> 376
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 376
cgagttgcag actgcgatcc g 21

<210> 377
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 377
cgagttgcag actgcgatcc g 21

<210> 378
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 378
gacggggcggt gtgtacaag 19

<210> 379
<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 379

accttggtag gacttcaccc ca

22

<210> 380

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 380

ccttggtacg acttcacccc

20

<210> 381

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 381

cacggctacc ttgttacgac

20

<210> 382

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 382

aaggaggtga tccagcc

17

<210> 383

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 383

actgctgcct cccgtac

17

<210> 384

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 384

cggctgctgg cacgaagtta g

21

<210> 385

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 385

ctttacgccc agtaattccg

20

<210> 386

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 386

cgcatttcac cgctacac

18

<210> 387

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 387

gtatctaatac ctgtttgctc cc

22

<210> 388

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 388

cgtggactac cagggtatct a

21

<210> 389

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 389

tcgtggacta ccagggtatc ta

22

<210> 390
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 390
cgtactcccc aggcg

15

<210> 391
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 391
ggccgtactc cccagggcg

18

<210> 392
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 392
tggccgtact ccccagggcg

19

<210> 393
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 393
gcgaccgtac tccccagg

18

<210> 394

<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 394
gccttgcgac cgtactccc

19

<210> 395
<211> 21
<212> DNA
<213> Artificial Sequence

<220>		
<223> Primer		
<400> 395		
cccccgtaa ttccttttag t		21
<210> 396		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 396		
ggtaaggttc ttgcgttg		19
<210> 397		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 397		
tcgcaggctt acagaacgct ctccta		26
<210> 398		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 398		
tccggactcgc tttcgttacg		20
<210> 399		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 399		
gtgcgcctt tctaactt		18
<210> 400		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 400		
tggctgcttc taagccaac		19

<210> 401
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 401
gggtttcccc attcgg 16

<210> 402
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 402
ccttctcccg aagttacg 18

<210> 403
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 403
cacccgggcag gcgtc 15

<210> 404
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 404
gaccgttata gttacggcc 19

<210> 405
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 405
tgaccgttat agttacggcc 20

<210> 406
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 406
tcgctacattt aggaccgt 18

<210> 407
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 407
ccgacaaggaa atttcgctac c 21

<210> 408
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 408
ttcgctcgcc gctac 15

<210> 409
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 409
agccgacatc gaggtgccaa ac 22

<210> 410
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 410
ccgggtcctctt cgtacta 17

<210> 411
<211> 20
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 411

agtccatccc ggtcctctcg	20
<210> 412	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 412	
ttagatgctt tcagcactta tc	22
<210> 413	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 413	
acttagatgc tttcagcggt	20
<210> 414	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 414	
tgcttagatg ctttcagc	18
<210> 415	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 415	
ttcgtgctta gatgcttca g	21
<210> 416	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 416	
tttcgtgctt agatgcttca ag	22
<210> 417	
<211> 24	

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 417
gtttcatgtc tagatgcctt cagc 24

<210> 418
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 418
acaaaaggca cgccatcacc c 21

<210> 419
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 419
acaaaaggta cgccgtcacc c 21

<210> 420
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 420
taatgccggg tagtgcaatc cattcttcta g 31

<210> 421
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 421
tgcacctgcg gtcgagcg 18

<210> 422
<211> 28
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 422	
tgc ccatccat aatcacg cca tactgacg	28
<210> 423	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 423	
tgc cagtttc cacattt ca gttcgtg	27
<210> 424	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 424	
tcg cgttgagt gtagtcatga ttgcg	25
<210> 425	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 425	
t gagtcgggt tcactttacc tggca	25
<210> 426	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 426	
ttgtacattt gaaacaataat gcatgacatg tgaat	35
<210> 427	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 427	
tacc ggaa gc accagg cgaca ttaatag	27
<210> 428	
<211> 32	

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 428		
tgcaactgaa tagattgcag taagttataa gc		32
<210> 429		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 429		
tgaattatgc aagaagtgat caatttctc acga		34
<210> 430		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 430		
tgccgttaact aacataagag aattatgcaa gaa		33
<210> 431		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 431		
tgacggcatc gataccaccg tc		22
<210> 432		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 432		
tcacaggttc tacttcatca ataatttcca ttgc		34
<210> 433		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		

<40 0> 433
tccgcacaaa actccccttt tcacagg

27

<21 0> 434
<21 1> 30
<21 2> DNA
<21 3> Artificial Sequence

<22 0>
<22 3> Primer

<40 0> 434
ttgcaatcga catatccatt tcaccatgcc

30

<21 0> 435
<21 1> 24
<21 2> DNA
<21 3> Artificial Sequence

<22 0>
<22 3> Primer

<40 0> 435

ttcttgcttga ggaatagtgc gtgg

24

<21 0> 436
<21 1> 31
<21 2> DNA
<21 3> Artificial Sequence

<22 0>
<22 3> Primer

<40 0> 436
tacgttctac gatttcttca tcaggtacat c

31

<21 0> 437
<21 1> 27
<21 2> DNA
<21 3> Artificial Sequence

<22 0>
<22 3> Primer

<40 0> 437
tacaacgtga taaacacgac cagaagc

27

<21 0> 438
<21 1> 28
<21 2> DNA
<21 3> Artificial Sequence

<22 0>
<22 3> Primer

<40 0> 438
tccatattgt tgcataaaac ctgttggc

28

<21 0> 439

<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 439
tgagatgtcg aaaaaaacgt tggcaaaata c

31

<210> 440
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 440
acggcacgag gtagtcgc

18

<210> 441
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 441
taaccatttc gcgtaagatt caa

23

<210> 442
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 442
tcatgtgcta atgttactgc tggatctg

28

<210> 443
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 443
tgtttactgct ggat

14

<210> 444
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 444

ttacttctaa cccactc

17

<210> 445

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 445

tgcgggctgg ttcaacaaga g

21

<210> 446

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 446

tgatgcgggc tggttcaac

19

<210> 447

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 447

tcctgtttta tagccgccaa gagtaag

27

<210> 448

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 448

tcaagggtct caccgtttac cttaggag

28

<210> 449

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 449

tgaatcttga aacaccatac gtaacg

26

<210> 450

<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 450
tgaatcttga aacaccat~~a~~c g

21

<210> 451
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 451
gtaacccttg tctttga~~a~~t ttgc

28

<210> 452
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 452
tgtaaccctt gtctttga~~a~~t tgtatttgc

29

<210> 453
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 453
ggtaaccctt gtctttga~~a~~t

20

<210> 454
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 454
tgtgttaaccctt tgcttttg

18

<210> 455
<211> 34
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 455
tcccttattt ttctttctac taccttcgga taat 34

<210> 456
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 456
tcccctcatg tttaaatgt caggataaaa agc 33

<210> 457
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 457
tcggtttaag ctctacatga tcgtaaggat a 31

<210> 458
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 458
tttgctcatg atctgcatga agcataaa 28

<210> 459
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 459
tgcaatgtgt gctatgtcag caaaaagat 29

<210> 460
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 460
tgagcgtgtg gaaaaggact tggatg 26

<210> 461
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 461
tatgtgttagt tgagcttact acatgagc 28

<210> 462
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 462
tggttcttac ttgcttgca taaactttcc a 31

<210> 463
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 463
tcgatccgca tcaccatcaa aagcaaa 27

<210> 464
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 464
tccacacactgg attgtaattt accttggctt tt 32

<210> 465
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 465
tctctttcaa agcaccattg ctcattatacg t 31

<210> 466
<211> 34
<212> DNA
<213> Artificial Sequence

<220>		
<223> Primer		
<400> 466		
tgaattcttt caaaggacca ttgctcatta tagt		34
<210> 467		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 467		
ttgctgccat agcaaaggct acagc		25
<210> 468		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 468		
tgtgcttttt ttgctgccat agcaaaggc		28
<210> 469		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 469		
tgcttcaaaa cgcattttta cattttcgaa aaag		34
<210> 470		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 470		
tcctccttgt gcctcaaaac gcattttta		29
<210> 471		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 471		
tcaaagaacc cgcacccaat tcatacattta		30

<210> 472
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 472
tcaactgggtt caaaaacatt aagttgtaat tgtcc 35

<210> 473
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 473
tacaactgggt tcaaaaaacat taagctgtaa ttgtc 35

<210> 474
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 474
ttcattttct ggtccaaagt aagcagtatc 30

<210> 475
<211> 33
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 475
tcccgaacaa tgagttgtat caactattt tac 33

<210> 476
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 476
tgccctaacaa atccccgtctg agttc 25

<210> 477
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 477
tgtcatcaag caccggaaaa tgaact 26

<210> 478
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 478
ccacttttaa taagggttgc agc 23

<210> 479
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 479
tgttgaccat gcttccttag 19

<210> 480
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 480
cttctacatt tttagccatc ac 22

<210> 481
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 481
cggtttcaag acccc 15

<210> 482
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 482
tgttaacggc ttcaagaccc 20

<210> 483
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 483
ttgttaacgg cttcaagacc c

21

<210> 484
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 484
accactttta ataaggtttg tagctaac

28

<210> 485
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 485
cgcggtcggc tcgttgatga

20

<210> 486
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 486
tcacctacag cttaaagcc agcaaaatg

29

<210> 487
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 487
tcttctgtaa agggtggttt attattcatc cca

33

<210> 488
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 488

tagccttggc aacatcagca aaact

25

<210> 489

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 489

ttggcgacgg tataaccata gtttata

28

<210> 490

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 490

tgaacatttg cgacggtata cccat

25

<210> 491

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 491

tgtgaacatt tgcgacggta tacccat

27

<210> 492

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 492

tggtggtat cttagcaatc attctaata c

31

<210> 493

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 493

tgcgatggta ggtatcttag caatcattct	30
<210> 494	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 494	
caatctgctg acggatctga gc	22
<210> 495	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 495	
ttcaggtcca tcgggttcat gcc	23
<210> 496	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 496	
ccgcggtcga attgcatgcc ttc	23
<210> 497	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 497	
tagccgcggc cgaatttgcatt	20
<210> 498	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 498	
tcgaaccgaa gttaccctga ccat	24
<210> 499	

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 499

tgcgcaggta gtcatacgga cttc 24

<210> 500
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 500

tattgcggat caccatgatg atattcttgc 30

<210> 501
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 501

tgcgttagat ggtttttacc ttgcgttg 27

<210> 502
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 502 .

tttgtgaaac agcgaacatt ttcttgta 29

<210> 503
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 503

tcaacgcgcat catcaccagt ca 22

<210> 504
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 504

tcctgcaata tcta atgcac tctt acg

27

<210> 505

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 505

acctgcaata tcta atgcac tctt acg

27

<210> 506

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 506

ctttcgcttt ctcgaactca accat

25

<210> 507

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 507

tagccccagct gtttgagcaa ct

22

<210> 508

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 508

tcccttaatag tagaaataac tgcatacgtgc

32

<210> 509

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 509

tcccttaatag tagaaataac tgcatacgtgc

32

<210> 510
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 510
taggattttt ccacggcgcc atc

23

<210> 511
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 511
tagccttttc tccggcgtag atct

24

<210> 512
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 512
catgatggtc acaaccgg

18

<210> 513
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 513
tcggcatcac gccgtcgac

19

<210> 514
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 514
tgctgctttc gcatggtaa ttgcttcaa

29

<210> 515
<211> 30
<212> DNA
<213> Artificial Sequence

<220>		
<223> Primer		
<400> 515		
ttgctgctt cgcattgtta attgcttcaa		30
<210> 516		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 516		
aacttcgcct tcggcatgt t		21
<210> 517		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 517		
ttgcgttgca gattatcttt accaa		25
<210> 518		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 518		
tgttaagtgt gttggggctg tctttatt		28
<210> 519		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 519		
tcacgcgacg agtgccatcc attg		24
<210> 520		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 520		
tgaccCAAAG ctgaaAGCTT tactg		25

<210> 521
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 521
tttccagcc atgcagcgac

20

<210> 522
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 522
tccttctgtat gcctgatgga ccaggag

27

<210> 523
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 523
tgtcaactccc gacacgcca

19

<210> 524
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 524
taaacgtccg ataccaaatgg ttcgctc

27

<210> 525
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 525
tcaacaacac ctccttattc ccactc

26

<210> 526
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 526
gaataatcaat ttgttagc
<210> 527
<211> 31
<212> DNA
<213> Artificial Sequence

17

<220>
<223> Primer
<400> 527
agataaaagaa tcacgaatat caattttgtag c
<210> 528
<211> 23
<212> DNA
<213> Artificial Sequence

31

<220>
<223> Primer
<400> 528
aggatagatt tatttttgt tcg
<210> 529
<211> 30
<212> DNA
<213> Artificial Sequence

23

<220>
<223> Primer
<400> 529
tcttc caagg atagatttat ttcttgttcg
<210> 530
<211> 31
<212> DNA
<213> Artificial Sequence

30

<220>
<223> Primer
<400> 530
ttctt ccaag gatagattta ttcttgttc g
<210> 531
<211> 18
<212> DNA
<213> Artificial Sequence

31

<220>
<223> Primer

<400> 531

tcttgacagc atccgttg 18

<210> 532
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 532
cagataaaaga atcgctccag 20

<210> 533
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 533
tctcatcccg atattaccgc catga 25

<210> 534
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 534
tggcaaacagc tcaacacacctt tgg 23

<210> 535
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 535
tgatcctgaa tgtttatatc tttaacgcct 30

<210> 536
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 536
tcccaatcta acttccacat accatct 27

<210> 537
<211> 27

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 537
tggatagacg tcatatgaag gtgtgc~~t~~

27

<210> 538
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 538
tattttcgt tactcatgcc ataca

25

<210> 539
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 539
tactcatgcc a

11

<210> 540
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 540
tattttcgt t

11

<210> 541
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 541
taaccacccc aagatttatac ttttgcca

29

<210> 542
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 542	
tgtgatatgg aggtgtagaa ggtgtta	27
<210> 543	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 543	
gagctgcgcc aacgaataaa tcgtc	25
<210> 544	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 544	
tacgtcgcc ttaacttggt tatattcagc	30
<210> 545	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 545	
tgccgtaaca tagaagttac cgttgatt	28
<210> 546	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 546	
tcgggcgtag ttttagtaa ttaaatcaga agt	33
<210> 547	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 547	
tcgtcgtatt tatagtgacc agcaccta	28
<210> 548	

<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 548
tcaacaccag cgttacctaa agtacctt 28

<210> 549
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 549
tttaaggccc agaaaggcacc aac 23

<210> 550
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 550
tcgtttaagc gccagaaaagc accaa 25

<210> 551
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 551
taagccagca agagctgtat agttcca 27

<210> 552
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 552
tacaggagca gcagggttca ag 22

<210> 553
<211> 28
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer		
<400> 553		
tagcagcaaa agttatcaca cctgcagt	28	
<210> 554		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 554		
tggttttagt tccctgttagtt gttgcattaa c	31	
<210> 555		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 555		
tcctgcagct ctacctgctc catta	25	
<210> 556		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 556		
cctctgttagta gaagaggtaa ccac	24	
<210> 557		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 557		
cctctgttagtag aagaggttaac	20	
<210> 558		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 558		
tgattatcag cggaagtag	19	

<210> 559
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 559
ccgtgctcca tttttcag

18

<210> 560
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 560
tcggataagg tgccacaagg

20

<210> 561
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 561
tcggataagg tgccacaagg

20

<210> 562
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 562
ttccccctgac cttcgattaa aggatagc

28

<210> 563
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 563

ggtataacgc atgcagcaa aagattta

28

<210> 564
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 564
ttcggtataaa cgcatcgca ca 22

<210> 565
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 565
tcgctcagca ataattcaat ataaggccga 29

<210> 566
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 566
taatgcata ctggcctgca agtc 24

<210> 567
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 567
tgtaaattcc gcaaagactt tggcattag 29

<210> 568
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 568
tggtctgagt acctcccttg c 21

<210> 569
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 569
tattggaaat accggcagca tctc 24

<210> 570
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 570
ttcaagtgt tgctcaccat tgtc

24

<210> 571
<211> 24
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<400> 571
tggctcataa gacgcgcttg taga

24

<210> 572
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 572
tcgtttcacc ctgtcatgcc g

21

<210> 573
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 573
tccgataagc cgattctgt gc

22

<210> 574
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 574
tgccgataag ccggattctg tgc

23

<210> 575
<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 575

tctcttaccc caccctttca cccttac

27

<210> 576

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 576

tgcctcggtgc aacccacccg

20

<210> 577

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 577

tgcctcgcgc aacctacccg

20

<210> 578

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 578

gtaagccatg ttttgttcca tc

22

<210> 579

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 579

tttacacctgc ctttccaccc ttacc

25

<210> 580

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 580

tgctcttacc tcaccgttcc acccttacc	29
<210> 581	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 581	
ataagccggg ttctgtcg	18
<210> 582	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 582	
tctatagagt ccggactttc ctcgtga	27
<210> 583	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 583	
tcaaggcgtac taccgcatt acaa	24
<210> 584	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 584	
ataagccatg ttctgttcca tc	22
<210> 585	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 585	
tgactttcct cccccttatc agtctcc	27
<210> 586	
<211> 27	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> Primer

<400> 586
ccaagtgcgt gtttacccca tggagta 27

<210> 587
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 587
gtgctggtt accccatgga gt 22

<210> 588
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 588
tgtgctggtt taccccatgg agt 23

<210> 589
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 589
tgtgctggtt taccccatgg ag 22

<210> 590
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 590
tccaagtgcgt ggttacccc atggag 26

<210> 591
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 591	
tccaaagtgcg ggtttacccc atgg	24
<210> 592	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 592	
ttccaaggc tggtttaccc catgg	25
<210> 593	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 593	
tgttttgtat ccaaggctg gtttacccc	29
<210> 594	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 594	
ttcgctctcg gcctggcc	18
<210> 595	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 595	
tcgtcgccga cttcgaagcc	20
<210> 596	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 596	
gctggattcg cctttgctac g	21
<210> 597	

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 597
tgctggattc gcctttgcta cg

22

<210> 598
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 598
ttgacgttgc atgttcgagc ccat

24

<210> 599
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 599
cgtataagct gcaccataag ctt gtaatgc

30

<210> 600
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 600
tttcttgaag agtatgagct gct ccgtaag

30

<210> 601
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 601
cgacttgacg gttaacatii cctg

24

<210> 602
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 602
gtccgacttg acggtaaca tttcctg 27
<210> 603
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 603
tgtccgactt gacggtaaac atttcctg 28
<210> 604
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 604
tgtccgactt gacggtagc atttcctg 28
<210> 605
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 605
tgtccgactt gacggtcagc atttcctg 28
<210> 606
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 606
tccagcagg tctgacggaa acg 23
<210> 607
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 607
ttaccgagca gggtctgacg gaaacg 26
<210> 608

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 608
cgaa~~cggcca~~ gagtagtcaa cacg 24

<210> 609
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 609
cgaa~~cggcct~~ gagtagtcaa cacg 24

<210> 610
<211> 30

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 610
tcaa~~gcgccca~~ tctcttcgg taatccacat 30

<210> 611
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 611
tcaa~~gcgccca~~ tttctttgg taaaccacat 30

<210> 612
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 612
at~~tcaagagc~~ cattttttt ggtaaaccac 30

<210> 613
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 613

gttcaaatgc ctggataaccc a

21

<210> 614

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 614

gagcatcagg gtgcgtgct

19

<210> 615

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 615

ttagcatcag cgtgcgtgct

20

<210> 616

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 616

acgcgggcat gcagagatgc c

21

<210> 617

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 617

ggcgcttgta cttaccgcac

20

<210> 618

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 618

ttggccatca gaccacgcat ac

22

<210> 619

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 619
ttggccatca ggccacgcat ac

22

<210> 620
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 620
acgccatcag gccacgcat

19

<210> 621
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 621
tacggccatca ggccacgcat

20

<210> 622
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 622
ttacggccatc aggccacgca

20

<210> 623
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 623
cgcacccatgc gtagagatga agtac

25

<210> 624
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 624

cgcaccgtgg gttgagatga agtac

25

<210> 625

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 625

tgcgcaccgtg ggttgagatg aagtac

26

<210> 626

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 626

tgcttagaccc ttacgtgcac cgtg

24

<210> 627

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 627

tactagacga cgggtcaggt aacc

24

<210> 628

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 628

gtttttcggt gcgtacgatg atgtc

25

<210> 629

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 629

acgtttttcg ttttgaacga taatgct	27
<210> 630	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 630	
gaccggcaacc tggcccttttgcgttga	27
<210> 631	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 631	
tgaccggcaacc ctggcccttttgcgttga	28
<210> 632	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 632	
aaactatatttttttagctata ctgcgaacac	29
<210> 633	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 633	
taaactatatttttttagctata actcgcacac	30
<210> 634	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 634	
ggataattgg tcgtaacaag ggatagttag	30
<210> 635	
<211> 31	
<212> DNA	

<213> Artificial Sequence

<220>

<223> Primer

<400> 635

tggataattg gtcgtAACAA gggatAGTGA g

31

<210> 636

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 636

atatgattat cattGAACTG CGGCCG

26

<210> 637

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 637

tatATGATTAT TCATTGAACT GCGGCCG

27

<210> 638

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 638

gcgtgacgac cttcttgaat tgtaatca

28

<210> 639

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 639

tgCGTGACGA CCTTCTTGAAT TTGTAATCA

29

<210> 640

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 640	
ttggacctgt aatcagctga atactgg	27
<210> 641	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 641	
tttggacctg taatcagctg aatactgg	28
<210> 642	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 642	
attgccaga aatcaaatca tc	22
<210> 643	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 643	
tattgccag aaatcaaatc atc	23
<210> 644	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 644	
tgtggccgat ttcaccacct gctcct	26
<210> 645	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 645	
ttgtggccga ttccaccacc tgctcct	27
<210> 646	
<211> 23	

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 646
tctgggtgac ctggtgtttt aga 23

<210> 647
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 647
ttctgggtga cctggtgttt taga 24

<210> 648
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 648
agctgctaga tgagcttctg ccatggcc 28

<210> 649
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 649
tagctgctag atgagcttct gccatggcc 29

<210> 650
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 650
ccataaggta accgtcacca ttcaaagc 28

<210> 651
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 651
tccataaggt caccgtcacc attcaaagc 29

<210> 652
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 652
ggaatttacc agcgatagac acc 23

<210> 653
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 653
tggaatttac cagcgataga cacc 24

<210> 654
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 654
tgccactttg acaactcctg ttgctg 26

<210> 655
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 655
ttgccacttt gacaactcct gttgctg 27

<210> 656
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 656
aatcgacgac catcttggaa agatttctc 29

<210> 657

<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 657
taatcgacga ccatcttgaa aagatttctc 30

<210> 658
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 658
tcgacgacca tcttgaaag atttc 25

<210> 659
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 659

ccagcaggta ctgtccccctc atctttg 27

<210> 660
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 660
tccagcaggta actgtccccctc catctttg 28

<210> 661
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 661
gctgctttga tggctgaatc cccttc 26

<210> 662
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 662

tgctgctttg atggctgaat ccccttc

27

<210> 663

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 663

gggtctacac ctgcacttgc ataac

25

<210> 664

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 664

tgggtctaca cctgcacttg cataac

26

<210> 665

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 665

atccccctgct tctgctgcc

19

<210> 666

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 666

tatccccctgc ttctgctgcc

20

<210> 667

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 667

taccttttcc acaacagaat cagc

24

<210> 668
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 668
ccaaccctttt ccacaacaga atcagc 26

<210> 669
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 669
tccaaaccttt tccacaacag aatcagc 27

<210> 670
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 670
cccatttttt cacgcatgt gaaaatatc 29

<210> 671
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 671
tccccattttt tcacgcatgc tgaaaatatc 30

<210> 672
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 672
gattggcgat aaagtgtat tttctaaaa 29

<210> 673
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 673
tgattggcga taaagtgata ttttctaaaa 30

<210> 674
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 674
gccccaccaga aagactagca ggataa 26

<210> 675
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 675
tgcccaccag aaagactagc aggataa 27

<210> 676
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 676
cctacccaac gttcaccaag ggcag 25

<210> 677
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 677
tcctacccaa cgttcaccaa gggcag 26

<210> 678
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 678
catgacagcc aagacctcac ccacc 25

<210> 679
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 679
tcatgacagc caagacctca cccacc

26

<210> 680
<211> 15

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 680
tgtgctttga atgct

15

<210> 681
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 681
tcatttgc tttgaatgct

20

<210> 682
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 682
tcataactag catttggtct ttgaatgct

29

<210> 683
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 683
ttgcacgtct gttttagttt caaattc

27

<210> 684
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 684
ttgcacgtct gtttcagttg caaattc 27

<210> 685
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 685
tctgtttcag ttgcaaattc 20

<210> 686
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 686
tgcacgtctg tttcagttgc aaattc 26

<210> 687
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 687
ttgcacgtct gtttcagttg caaattc 27

<210> 688
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 688
tttcacagca tgcacgtctg tttcagttgc 30

<210> 689
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 689

ttgtgattgt tttgcagctg attgtg	26
<210> 690	
<211> 13	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 690	
tgcagctgat tgt	13
<210> 691	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 691	
tgattgttt gcagctgatt gt	22
<210> 692	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 692	
ttcaaaaacct tgctctcgcc aaacaa	26
<210> 693	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 693	
tacatcggtt cgcccaagat caatca	26
<210> 694	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 694	
tcctcttttc acaggctcta cttcatc	27
<210> 695	
<211> 30	
<212> DNA	

<213> Artificial Sequence

<220>

<223> Primer

<400> 695

tat~~t~~ttgggtt tcattccact cagattctgg

30

<210> 696

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 696

tgcgcg~~ac~~gt tttat~~t~~ttggg tt~~c~~

24

<210> 697

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 697

ttcaaaatgc ggaggcgtat gt~~g~~

23

<210> 698

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 698

tgcccaggta caac~~c~~ctgcat

20

<210> 699

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 699

tccaggcatt accatttcta ct~~c~~c~~t~~tctgg

30

<210> 700

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 700	
ggcatca cca tttccttgc cttcg	25
<210> 701	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 701	
tggcat cacc atttccttgt cttcg	26
<210> 702	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 702	
gttgtcac cca ggcattacca ttcc	24
<210> 703	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 703	
gttgtcg caca ggcataacca ttcc	24
<210> 704	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 704	
gccgtcc att tgagcagcac c	21
<210> 705	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 705	
gccgtcc atc tgagoagcac c	21
<210> 706	
<211> 26	

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 706
tatagcacca tccatctgag cggcac

26

<210> 707
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 707
tatgtgctca cgagtttgcg gcat

24

<210> 708
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 708
tggatgtgct cacgagtctg tggcat

26

<210> 709
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 709
gcgcgtccacg tcttcacgc

19

<210> 710
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 710
acgaactgga tgtcgcccgtt

20

<210> 711
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 711
cggtacgaac tggatgtcgc cgtt

<210> 712
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 712
tcggcacaa ctggatgtcgc ccgtt 25

<210> 713
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 713
ttcgcgcacat caggagaagt acatgtt 27

<210> 714
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 714
gcgttccaca gcttgtgca gaag 24

<210> 715
<211> 23

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 715
tcgcagttca tcagcacgaa gcg 23

<210> 716
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 716
tataacgcac atcgtcaggg tga 23

<210> 717

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 717
caagcggttt gcctcaaata gtca

24

<210> 718
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 718
tggcacgagc ctgacctgt

19

<210> 719
<211> 1542
<212> DNA
<213> Artificial Sequence

<220>
<223> Escherichia coli

<400> 719

aaattgaaga gtttgatcat ggctcagatt gaacgc~~t~~ggc ggcaggccta acacatgcaa 60
gtcgaacggt aacaggaaga agcttgcttc tttgct~~t~~gacg agtggcggac gggtgagtaa 120
tgtctggaa actgcctgat ggagggggat aactact~~t~~gga aacggtagct aataccgcat 180
aacgtcgcaa gaccaaagag ggggccttc gggcct~~t~~ttg ccatcggatg tgcccagatg 240
ggattagcta gtaggtgggg taacggctca cctagg~~C~~gac gatccctatg tggtctgaga 300
ggatgaccag ccacactgga actgagacac ggtccagact cctacgggag gcagcagtgg 360
ggaatattgc acaatggcg caagcctgat gcagcc~~t~~gc cgctgttat aagaaggcct 420
tcgggttigtta aagtactttc agcggggagg aaggga~~g~~taa agttaatacc tttgctcatt 480
gacgttaccc gcagaagaag caccggctaa ctccgt~~G~~cca gcagccgcg taatacggag 540
ggtcaagcg ttaatcgaa ttactggcg taaagc~~G~~cac gcaggcgggt tggtaagtca 600
gatgtgaaat ccccgggctc aacctggaa ctgcatt~~t~~ga tactggcaag cttgagtctc 660
gtagaggggg gtagaattcc agtgttagcg gtgaaat~~t~~gcg tagagatctg gaggaatacc 720
ggtggcgaag gcccgcct ggacgaagac tgacgc~~t~~cg gtgcgaaagc gtggggagca 780
aacaggattt gataccctgg tagtccacgc cgtaaa~~c~~gat gtcgacttgg aggttgtgcc 840
cttgaggcg~~t~~ ggcttccgga gctaacgcgt taatgc~~t~~acc gcctggggag tacggccgca 900
aggttaaaac tcaa~~t~~aatgat tgacggggc cccgac~~a~~gc ggtggagcat gtggtttaat 960
tcgatgcaac gcgaa~~g~~acc ttac~~t~~ggtc ttgacat~~t~~cca cggaa~~g~~ttt cagagatgag 1020
aatgtgcctt cgggaaccgt gagacaggtg ctgcatt~~t~~gct gtcgtcagct cgtgttgtga 1080
aatgttgggt taagtcccgc aac~~g~~ag~~g~~gc~~a~~ acccttata~~t~~cc ttgttgtccca gcggtccggc 1140
cgggaactca aaggagact~~t~~ ccagt~~t~~ataa actggaggaa ggtggggatg acgtcaagtc 1200
atcatggccc ttacgaccag ggctacacac~~t~~ gtgc~~t~~caat gg~~c~~cataca aagagaagcg 1260
ac~~t~~cg~~c~~g~~a~~ agcaagcg~~g~~ga cctcataaa~~g~~ tagtgc~~t~~tag tc~~c~~ggattgg agtctgcaac 1320
tegactccat gaagt~~t~~ggaa tcgcttagtaa tcg~~t~~gatca gaatgccac~~g~~ g~~t~~gaata~~t~~acgt 1380
tcccgggc~~t~~ tgc~~t~~acacacc~~t~~ gcccgtcaca ccatgg~~t~~gagt ggg~~t~~gcaaa agaagtaggt 1440
agcttaac~~t~~ tcgggagg~~g~~gc~~t~~ttaccact ttgtgat~~t~~ca tgactgggg~~t~~ gaagt~~t~~gtaa 1500
caaggtaacc~~t~~ gtaggggaac~~t~~ ctgcgg~~t~~tg~~t~~gg atcac~~t~~cct ta 1542

<210> 720
<211> 2904

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Escherichia coli

<400> 720

```

ggtaagcga ctaagcgtac acgggtggatg ccctggcagt cagaggcgat gaaggacgtg 60
ctaattctcg ataaagcgtcg gtaaggtgtat atgaaccgtt ataaaccggcg atttccgaat 120
ggggaaaccc agtgtgtttc gacacactat cattaactga atccataggt taatgaggcg 180
aacccgggaa actgaaacat ctaagtaccc cgaggaaaaag aaatcaaccg agattcccc 240
agttagcggcg agcgaacggg gacgagccca gagcctgaaat cagtgtgtgt gttagtgaa 300
gcgtctggaa aggccgcgca tacaggggtga cagccccgtaa cacaaaaatg cacatgctgt 360
gagctcgatg agtagggcg gacacgtggat atcctgtctg aatatgggg gaccatccctc 420
caaggctaaa tactcctgac tgaccgatag tgaaccagta ccgtgaggga aaggcgaaaa 480
gaaccccggc gagggggatg aaaaagaacc tgaaaccgtg tacgtacaag cagtgggagc 540
acgcttaggc gtgtgactgc gtaccttttgc tataatgggt cagcgaactt tattctgttag 600
caaggtaac cgaatagggg agccgaaggg aaaccgagtc ttaactgggc gttaaagtgc 660
agggtataga cccgaaaccc ggtgatctag ccatggcag gttgaagggtt gggtaacact 720
aactggagga ccgaaccgc taatgttcaa aaattagcgg atgacttgtg gctgggggtg 780
aaaggccaat caaaccgggaa gatagctgtt tctcccgaa agctatttag gtagcgcctc 840
gtgaattcat ctccgggggt agagcactgt ttccggcaagg ggtcatccc gacttaccaa 900
cccgatgcaa actgcaata cccggagaatg ttatcacggg agacacacgg cgggtgctaa 960
cgtccgtcgta gaagaggaa acaacccaga ccgcggacta aggtccaaa gtcatggta 1020
agtggaaac gatgtggaa gccccagaca gccaggatgt tggttttagaa gcagccatca 1080
tttaaagaaa gctgtaatacg tcaactgggtc agtccggctg cgcggaaagat gtaacggggc 1140
taaaccatgc accgaagctg cggcagcgc acgtttatgtt gtttggttgc 1200
tgtaagcctg cgaagggtgt ctgtgaggca tgctggaggt atcagaagtgc cgaatgctga 1260
cataagtaac gataaagcgg gtaaaagcc cgctccggg aagaccaagg gttcctgtcc 1320
aacgttaatc gggggcagggt gatgtcgacc ctaaggcggag gccgaaaggc gtagtcgtat 1380
ggaaacaggt taatattctt gtaacttgggtt ttactgcgaa ggggggacgg agaaggctat 1440
gttggccggg cgacgggtgtt cccgggtttaa gctgttaggc tggttttcca ggcaaatccg 1500
gaaaatcaag gctgaggcgat gatgacgagg cactacgggtg ctgaagcaac aaatgccctg 1560
cttccaggaa aagccctaa gcatcaggta acatcaatac gtacccaaa ccgacacagg 1620
tggtcaggta gagaatacca aggcgttgcg gagaactcgg gtaaggaac taggcaaaat 1680
gggtccgtaa ctccgggaga aggcacgtg atatgttaggt gaggtccctc gcggatggag 1740
ctgaaatcaatc tcgaagatac cagctggctg caactgttta ttaaaaacac agcaactgtgc 1800
aaacacgaaa gtggacgtat acgggtgtgac gcctggccgg tgccggaaagg ttaattgtat 1860
gggttagcgc aagcgaagct ctgtatcgaa gccccggtaa acggcggccg taactataac 1920
ggtcctaagg tagcggaaatt ccttgcggg taagttccga cctgcacgaa tggcgtatgt 1980
atggccaggc tgcgttccacc cgagactcgat taaaatgaa ctcgtgtga agatgcgtat 2040
tacccgcggc aagacggaaa gaccccggtgaa acctttacta tagcttgcata ctgaacattg 2100
agccttgcgtat tggtaggatag gttggaggctt gtaagtgtg gacgcgttc tgcatggagc 2160
cgaccttgcata ataccaccct ttaatgttttgc atgttcaac gttgaccgtt aatccgggtt 2220
gcggacagtg tctgggggtt agtttgcgtt gggcggtctc ctctaaagaa gtaacggagg 2280
agcacgaagg ttggetaatc ctggcggac atcaggaggt tagtgcataatgc gcataagcca 2340
gttgcgtgc gacgcgtgc gccgcggcagc gtgcggaaatc aggtcatatgt gatccgggtt 2400
ttctgaatgg aaggcccattc gctcaacggtaa taaaaggtaatc tccggggata acaggctgtat 2460
accgcggcaatc agttcataatc gacggcgggtt tttggcacctt cgtgtcgcc tcataccatc 2520
ctggggctgaa agtaggtccc aagggttatgg ctgttgcataatgc tttaaatgtgg tacgcgtat 2580
gggttttagaa cgtcgtgaga cagtgcgttc cctatctgcgtt gttggcgctg gagaacttag 2640
ggggggctgtct cctgtatcgaa gaggaccggta gttggacgtat cactgggtgtt cgggttgc 2700
tgccaaatggc actgcccggt agtctaaatgc ggaagagata agtgcgtaaa gcatctaagc 2760
acgaaacttg ccccgagatg agttcataatgc gaccctttaa ggttgcgtaa ggaacgttgc 2820
agacgacgac gttgataggc cgggtgtgtatc agcgcagcga tgcgttgc gtaaccgggtac 2880
taatgaaccg tgaggcttaa cttt 2904

```

<210> 721
 <211> 447
 <212> DNA
 <213> Artificial Sequence

<220>

<223> *Bacillus anthracis*

<400> 721

atgtttggat	cagatttata	tattgcatta	gtatttaggag	ttacactgag	Ccttattttt	60
acagaaaagaa	caggtatttt	acctgcaggt	tttagttgtac	ctggttattt	agcaactcggt	120
ttaaatcagc	ccgtattttat	gttgggttgtt	ttatTTtatca	gtatTTtaac	atatgtaaTC	180
gttacgtatg	gttttcaag	attcatgatt	ttatatggcc	gtagaaaatt	Tgcggcaacg	240
ctaattacag	gtatTTgttt	aaaactttta	tttgattatt	gttattcctgt	TatGCCattt	300
gagatttttG	aattccgtgg	tattggagtt	attgttccag	gattaattgc	aaatacaatt	360
caaagacaag	ggttaccatt	aacaatttga	actacaattt	tgttaagtgg	TgcAACattt	420
gcaatcatga	atatTTtatta	cttattt				447

<210> 722

<211> 2339

<212> DNA

<213> Artificial Sequence

<220>

<223> *Bacillus anthracis*

<400> 722

atgactagaa	ataaaatttat	acctaataag	tttagtatta	tatcctttc	agtattacta	60
tttgctatat	cctcctcaca	ggctatagaa	gttaatgcta	tgaatgaaca	t tacactgag	120
agtatattta	aaagaaacca	taaaactgaa	aaaaataaaa	ctgaaaaaga	aaaatttaaa	180
gacagtattta	ataacttagt	taaaacagaaa	tttaccaatg	aaactttaga	taaaatacacg	240
cagacacaag	acttattaaa	aaagataacct	aaggatgtac	ttgaaattta	t tagtgaattt	300
ggaggagaaaa	tctatttac	agatatacat	tttagtagaa	ataaggagtt	acaagatttta	360
agtgaagaag	agaaaaatag	tatgaatagt	agaggtgaaa	aagttccgtt	tgcattccgt	420
tttgtatTTG	aaaagaaaaag	ggaaacacac	aaattaattt	taaatatcaa	agattatgca	480
attaatagt	aacaaagtaa	agaagtata	tatgaaattt	gaaaggggat	t tctcttgat	540
attataagta	aggataaattc	tctagatcca	gagttttaa	atthaattaa	gagtttaagc	600
gatgatagt	atagtagcga	ccttttattt	agtcaaaaat	ttaaagagaa	gctagaattt	660
aataataaaa	gtatagat	aaatittata	aaagaaaaatt	taactgaatt	t cagcatgco	720
ttttctttag	cgtttctta	ttatTTTca	cctgaccata	gaacggatt	agagttat	780
gcccccgaca	tgtttgagta	tatgaataag	tttagaaaaag	ggggatttga	gaaaataagt	840
gaaagtttga	agaaagaagg	tgtggaaaaa	gataggattt	atgtgctgaa	aggagaaaaa	900
gcacttaaag	cttcagggtt	agtaccagaa	catgcagat	cttttaaaaa	a attgctaga	960
gaattaaata	catatattct	tttttaggcct	gttataatgt	tagctacaa	C cttattaaa	1020
agtgggtgtgg	ctacaaagg	attgaatgtt	catggaaaga	gttcggat	gggcccgt	1080
gctggataca	taccatttga	tcaagattt	tctaaagaa	atggtcaaca	attagctgtc	1140
gagaaaggaa	atttagaaaa	taaaaaatca	attacagac	atgaagggt	a ataggtaa	1200
ataccat	aaatgttacca	tttaagaata	gaagagttt	aggaaaatgg	gataatttt	1260
aagggtaaaa	aagaaattga	taatggtaaa	aaatattatt	tgttaga	gataatcag	1320
gtatataat	tttagaattt	cgatgaaaac	aacaaagtac	aatacaagac	a aaagaaggt	1380
aaaattact	tttttagggg	aaaattcaat	tggagaaata	tagaagtgt	ggctaaaaat	1440
gtagaagggg	tcttgaagcc	gttaacagct	gactatgatt	tatttgcact	t gccccaa	1500
ttaacagaaa	taaaaaaaca	aataccacaa	aaagaatggg	ataaaatgt	t aacacccca	1560
aattcat	aaaagcaaaa	aggtgttact	aatttatttga	ttaaatatgg	a attgagagg	1620
aaaccggatt	caactaagg	aactttatca	aattggcaaa	aacaaatgt	t gatcg	1680
aatgaagcg	tcaaatatac	aggatataca	gggggggat	tggtaacca	t ggcacagag	1740
caagataat	aagagtcc	tggaaaaagat	aacaaatatt	ttataat	t ccagaaggt	1800
gaatttat	taactaaaa	ttgggagat	acaggtat	ttatagaaaa	a acatattacg	1860
ggaaaagatt	atttatatta	ttttaaccgt	tcttataata	aaatagctc	t ggtaataaa	1920
gcttatattt	agtggactga	tccgattaca	aaagccaaaa	taaataccat	C cttacgtca	1980
gcagagttt	taaaaaactt	atccagat	agaagatctt	caaatgtagg	agtttataaa	2040
gatagtggcg	acaaagacga	atttgcaaaa	aaagaaagcg	tggaaaaat	t gcaggat	2100
ttgtcagact	attacaattt	agcaaatcat	atttttctc	aggaaaaaaa	g cgtaaaata	2160
tcaatattt	gtggaatcca	agcctataat	gaaattgaaa	atgttctaa	atctaaacaa	2220
atagcaccag	aaataaaaaa	ttatTTTca	tattttaaqq	aaaggattac	caatcaagtt	2280

caattgcttc taacacatca aaaatcta attgaattta aattattgtaaacaatt 2339

<210> 723

<211> 1917

<212> DNA

<213> Artificial Sequence

<220>

<223> Escherichia coli

<400> 723

atgggtaaaa taatttgtat cgacctgggt actaccaaact cttgtgtac gattatggat 60
 ggcaccactc ctgcgtgt ggagaacgcg gaaggcgatc gcaccacgccc ttctatcatt 120
 gctatacc accatctgtt tgcgattaaa cgcctgattt gtcagccgg ctaaacgtca ggcagtgtacg 180
 aacccgc当地 acactctgtt tgcatcatgccc ttcaaaaatgtt tgcgtgtac taacggcgac 240
 gatgggtcg aagttaaagg ccagaaaatgt gcaccggccg agatttctgc tgaagtgtc 300
 aaaaaaaaaatgt agaaaaaccgc tgaagattac ctgggtgaac cggtaactgt agctgttatac 360
 accgttaccgg catactttaa cgtatgttcag cgtcaggccaa ccaaagacgc aggccgtatac 420
 gctgggtctgg aagtaaaacg tatcatcaac gaaccggaccg cagctgcgtt ggcttacgg 540
 ctggacaaag gcactggca cctgtactatc gcggtttatg acctgggtgg tggtactttc 600
 gatatttcta ttatcgaaat cgacgaatgt gacggcgaaa aaacatcgaa agttctggca 660
 accaaccgtt atacccacct ggggggtgaa gacttgcaca gccgtctgtat caactatctg 720
 gttgaagaat tcaagaaaaga tcagggcatt gacctgcgc acgatccgtt ggcaatgcag 780
 cgcctgaaag aagcggcaga aaaagcgaatcgtt ctccgcgtca gcagaccgac 840
 gtaaccctgc catacatcactc tgccagacgcg accgggtccgaa aacacatcgaa catcaaagt 900
 actcgtgcga aactggaaag cctgggtgaa gatctgttaccgttccat tgagccgt 960
 aaagttgcac tgccggacgc tgccgtgtcc gtatctgtatacgtt tgcgttgcgtt 1020
 ggtggtcaga ctcgtatgcc aatgggtttagt aagaaatgtt ctgagttctt tggtaaagag 1080
 cgcgtaaag acgttaaaccggacgaatgt gttagcatcg gtgtgtctgt tcagggtgg 1140
 gttctgtactg gtgacgtaaa agacgtactg ctgctggacg ttaccccgct gtctctgg 1200
 atcgaaaccatc tggggcgtgt gatgacgcg ctgatcgcaaaaacaccatc tattccgcacc 1260
 aagcacagcc aggtgttctc taccgctgaa gacaaccagt ctgcggtaac catccatgt 1320
 ctgcagggtt aacgttaaaccgtgacgttgcgtat aacaaatctc tgggtcaggtaatcgtt caaccttagat 1380
 ggtatcaacc cggcacccgc cggcatgcgc cagatcgaaatgtt tgcgttgcgtt tatcgatgt 1440
 gacggtatcc tgcacgttcc cgcgaaagat aaaaacagcg gtaaagagca gaagatcacc 1500
 atcaagggtt ctctgtgtt gaaacgaatgaaatccgaa aatgggtacg cgacgcagaa 1560
 gctaaccgcg aagctgacccg taagtttgaa gagctgtac agactcgca ccagggcgac 1620
 catctgtgc acagcaccccg taagcagggtt gaaagacgcg ggcacaaact gccggctgac 1680
 gacaaaactgt ctatcgactc tgctgtactg gcaactgttactgttgc gatgttgcgtt 1740
 aaagccgcta tcgaagcgaa aatgcaggaa ctggcacagg tttcccgagaa actgtatggaa 1800
 atcgccccagc agcaacatgc ccagcagcag actgcccgtt ctgtatgttgc tgcaaaacaac 1860
 gcgaaagatgt acgtatgttgc gacgttgcgtt tttgaagaag tcaaaagacaa aaaataa 1917

<210> 724

<211> 1647

<212> DNA

<213> Artificial Sequence

<220>

<223> Escherichia coli

<400> 724

atggcagcta aagacgtaaa attcggtaac gacgctcgat tgaaaatgt ggcggcgta 60
 aacgtactgg cagatgcagt gaaagttacc ctgggtccaa aaggccgtaa cgtatctgt 120
 gataaaatctt tcgggtcacc gaccatcacc aaagatgggt tttccgttgc tcgtgaaatc 180
 gaactggaaag acaagttcgaa aatatgggt ggcgcgatgg tgaaaagaaatgt tgcctctaaa 240
 gccaaccgcg ctgcaggcga cgttaccacc actgcacccgc tactggctca ggctatcatc 300
 actgaagggtc tgaaaagctgt tgctgcgggc atgaacccga tggacctgaa acgtggatc 360
 gacaaaagcgg ttaccgtgc agttgaagaa ctgaaagcgc tgcgttgcgttactc atgttgcgtt 420
 tctaaagcga ttgtcaggatc tccgtactt ccgacgaaac cgttaggtaaa 480

ctgatcgctg	aaggcgtggaa	caaagtccgtt	aaagaaggcg	ttatcacccgt	tgaagacgggt	540
accggctcgc	aggacgaaact	ggacgtggtt	gaaggtatgc	agttcgaccg	tggctacctg	600
tctccttaact	tcatcaacaa	gccggaaact	ggcgccagtag	aactggaaag	cccgttcatc	660
ctgctggctg	acaagaaaat	ctccaacatc	cgcgaaatgc	tgccggttct	ggaagctgtt	720
gccaaaggcag	gcaaacccgt	gctgatcatc	gctgaagatg	tagaaggcga	agcgtggca	780
actctggttg	ttaacaccat	gcgtggcata	gtgaaaagtcg	ctgcggtaa	agcacccgggc	840
ttcggcgatc	gtcgtaaagc	tatgctgcag	gatatcgca	ccctgactgg	cggtaccgtg	900
atctctgaag	agatcggtat	ggagctggaa	aaagcaaccc	tgyaagacct	gggtcaggct	960
aaacgtgttg	tgatcaacaa	agacaccacc	actatcatcg	atggcgtggg	tgaagaagct	1020
gcaatccagg	gccgtgtgc	tcagatccgt	cagcagattg	aagaagcaac	ttctgactac	1080
gaccgtgaaa	aactgcagga	acgcgtagcg	aaactggcag	gcggcgttgc	agttatcaaa	1140
gtgggtgctg	ctaccgaagt	tgaaatgaaa	gagaaaaaaag	cacgcgttga	agatgccctg	1200
cacgcgaccc	gtgcgtcggt	agaagaaggc	gtggttgtcg	gtggtgtgt	tgcgctgatc	1260

cgcgtacgct	ctaaactggc	tgacctgcgt	ggtcagaacg	aagaccagaa	cgtgggtatc	1320
aaagttgcac	tgcgtcaat	ggaagctccg	ctgcgtcaga	tcgtattgaa	ctgcggcgaa	1380
gaaccgtctg	tttttgcata	caccgttaaa	ggcgccgacg	gcaactacgg	ttacaacgcgca	1440
gcaaccgaag	aatacggcaa	catgatcgac	atgggtatcc	tggatccaac	caaagtaact	1500
cgttctgctc	tgcagtacgc	agcttctgtg	gctggcctga	tgatcaccac	cgaatgcatg	1560
gttaccgacc	tgccgaaaaaa	cgatgcagct	gacttaggcg	ctgctggcgg	tatggccggc	1620
atgggtggca	tggcgccat	gatgtaa				1647

<210> 725

<211> 1935

<212> DNA

<213> Artificial Sequence

<220>

<223> Escherichia coli

725

atggcgaaaa	acctaatact	ctggctggtc	attgccgttg	tgctgatgtc	agtattccag	60
agctttggc	ccagcgagtc	taatggccgt	aagggtggatt	actctacctt	cctacaagag	120
gtcaataacg	accaggttcg	tgaagcgcgt	atcaacggac	gtgaaatcaa	cgttaccaag	180
aaagatagta	accgttatac	cacttacatt	ccggttcagg	atccgaaatt	actggataac	240
ctgttgcacca	agaacgtcaa	ggtgtcggt	gaaccgcctg	aagaaccaag	cctgctggct	300
tctatcttca	tctccgtggtt	cccgatgctg	ttgctgattt	gtgtctggat	cttcttcatg	360
cgtcaaatgc	agggcggcgg	tggcaaaggt	gccatgtcgt	ttggtaaagag	caaagcgcgc	420
atgctgacgg	aagatcagat	caaaaacgacc	tttgctgacg	ttgcqggctg	cgacqaagca	480
aaagaagaag	ttgctgaact	ggttgagttat	ctgcgcgagc	cgagccgctt	ccagaaaactc	540
ggcggtaaga	tcccgaaagg	cgtcttgatg	gtcggtcctc	cgggtacccgg	taaaacgctg	600
ctggcgaaaag	cgattgcagg	cgaagcgaaa	gttccgttct	ttactatctc	cgggtctgac	660
ttcgttagaaa	tgttcgtcgg	tgtgggtgca	tcccgtgttc	gtgacatgtt	cgaacaggcg	720
aagaaaagcgg	caccgtgcat	catctttatc	gatgaaaatcg	acggccgtagg	ccggccagcgt	780

```

ggcgcgtggc tggcggtgg tcacgatgaa cgtgaacaga ctctgaacca gatgctggtt 840
gagatggatg gcttcgaagg taacgaaggt atcatcgta tcgcccgcac taaccgtccg 900
gacgttctcg accccggccct gctgcgttcc ggcgcgttcc accgtcagggt tgtgtcgcc 960
ttgccagatg ttccgcgtcg tgagcagatc ctgaaaagttc acatgcgtcg cgtaccattg 1020
gcacccgata tcgacgcggc aatcatttgc cgtggtaactc ctggtttctc cggtgctgac 1080
ctggcgaacc tggtaacgaa agcggcactg ttccgtgttc gtggcaacaa acgcgttg 1140
tcgatggttg agttcgagaa agcgaaagac aaaatcatga tgggtgcggaa acgtcgctcc 1200
atqqtgtatga cggaaagcgcgaa gaaagaatcg acggcttacc acgaagcggg tcatgcgatt 1260
atcggtgcgc tggtgccggaa acacgatccg gtgcacaaag tgacgattat cccacgcgg 1320
cgtgcgttgg gtgtgacttt cttcttgcct gagggcgacg caatcagcgc cagccgtcag 1380
aaactggaaa gccagatttc tacgctgtac ggtgtcgtc tggcagaaga gatcatctac 1440
gggcccggaaac atgtatctac cggtgcgtcc aacgatatta aagttgcgcac caacctggca 1500
cgtaacatgg tgactcgtg gggcttctct gagaatttgg gtccactgtc gtacgcggaa 1560
gaagaagggtg aagtgttcc cggccgttagc gtagcgaaag cggaaacatgtat gtcccgatgaa 1620
actgcacgtatc tcatcgacca ggaagtggaaa gcactgatttgc acgtctaacta taatcgatgcg 1680
cgtcagcttc tgaccqacaa tatqgatatt ctqcatqcgq tqaqqatqgc tctcatqaaa 1740

```

```
tatggacta tcgacgcacc gcagattgtat gacctgtatgg cacgtcgatgg tgtacgtccg 1800  
ccagcgggct ggaaagaacc aggcgcttct aacaattctg gcgacaatgg tagtccaaag 1860  
gcttcctcgatc cggttgtatga accgcgtacg ccgaacccgg gtaaacaccat gtcagagcag 1920  
tttagqcqaca aqtaa 1935
```

<210> 726
<211> 2673
<212> DNA
<213> Artificial Sequence

<220>
<223> Escherichia coli

<400> 726
atgacagatg taacgattaa aacgctggcc gcagagcgc ac agacccgt ggaacgcctg 60
gtacagcaat ttgctgatgc aggtatccgg aagtctgctg acgactctgt gtctgcacaa 120
gagaaaacaga ctttgattga ccacctaatt cagaaaaatt caggccccga caaatggacg 180
ctgcaacgta aaacacgcag cacccttaac attcctggta gaaacgcacc tttgtgaaac cgggtggaaa aagcaaatcg 240
gtacaatcg aagtccgaa agcgcagcgta gaagcggaa gcgatccca agaggctgaa 300
cgcccttgcag cgaaagagca agcgcagcgta gaagcggaa agcaagcccg tcgtgaggca 360
gaagaatcg ctaaacgcgaa ggcgcaacaa aaagctgaa ac gtgaggccgc agaacaagct 420
aagcgtgaag ctgctgaaca agcggaaacgt gaagctgcgg aaaaagacaa agttagcaat 480
caacaagacg atatgactaa aaacgcccag gctgaaaaag cccggcgtga gcaggaagct 540
gcagagctca agcgtaaacg tgaagaagaa ggcgtcgta aactcgaaga agaagcacgt 600
cgcgttgcgt aagaagcagc tcttatggcg gaagaaaaaca aatggactga taacgcggaa 660
ccgactgaag attccagcga ttatcagtc actacttctc aacatgctcg ccaggcagaa 720
gacgaaagcg atcgtgaagt cgaaggccgc cgtggccgtg gtcgtAACgc gaaagcagcg 780
cgtccgaaga aaggcaacaa acacgctgaa tcaaaagctg atcgtgaaga agcacgcgca 840
gcagtagctg gcggtaaagg cggaaaacgt aaaggttctt cagagctggt tgctgaagag 900
aaggctgctc agggccgtta ccgtgacgtt gtatcggcg aactatcac cggtggcgaa 960
ctggcgaaca agatggcggt taaaggctct caggtcatca aagcgtatgat gaaactggc 1020
gcaatggcaa ccatcaacca gtttatcgat cagggaaaccc cacagctggt tgctgaagag 1080
atggccata aagttagtcc tgcgtgtgaa aacgagctgg aagaggccgt aatgagcgc 1140
cgtgacacccg gtgctggccgc tgaaccgcgc gcggccgtt tgaccatcat gggtcacgtt 1200
gaccacggta aaacctctct gctggactac attcgttcaa cggaaagtggc ctctggcgaa 1260
gcggccggca ttacccagca cattggtca taccacgtt aactgatgat gaaactggc 1320
accttcctgg acaccccggg geacgcgcgc tttacttcaa aactgatgatgat gaaactggc 1380
gcaacggaca tcgttagtcc ggttgttgc gccgacgac tgaccatcat gggtcacgtt 1440
gaagcaatcc agcacgcgaa agccgcgcag gtaccgggtt tggtgatgcc gcagaccatc 1500
gataaaccag aagctgatcc ggatcgcgtt aagaacgaaac tctcccaatcg ccggatcctg 1560
ccggaagagt gggccgtga aagccaggcc gtacacgtat tggtgatgcc gcagaccatc 1620
atcgatgaac tgctggacgc tatcctgtc caggccggaa ttctggagct gaaagccgtt 1680
cgtaaaggta tggcgagccg tgcgttatac gaatccctcc tcgatataagg tcgtgtccg 1740
gttgcgtaccg ttctggtaacg tgaaggtaact ctgcacaagg gcatatcg tctgtgtggc 1800
ttcgaataacg gtcgtgttcg tgcatgtcgta aacgaactgg gcatatcg tctgtgtggc 1860
ggtccgtcca ttccgggtgg aatcctccgc ctgtccggcg tccctggctgc ggtgtatgaa 1920
gttaccgttgc tacgtgacgaa gaagaaacgc cgtgaagttt cactctatcg tcagggtaaa 1980
ttcccgcaag ttaaactggc gcgtcagccaa aatctaaac tcgagaacat gttcccaac 2040
atgaccgaag gcgaaagtta cgaagttaat atcgctctga aggccaggccgt acagggttct 2100
gtcgaagcga tctccgactc ctgtgtggaa ctgtctactg acgaagttaa agtgaagatc 2160
atcggttctg gcttaggtgg tatcaccggaa accgacgcac ccctggctgc ggcgtccaa 2220
gccatccctgg ttggctttaa cgtacgtgtc gatgectctg cacgtaaatg gattgaagcg 2280
gaaaggctgg atctgcgtta ctactccgtc atctataacc tgattgacgaa agtggaaagcg 2340
gcgatgagcg gtatgctgtc tccggaaactg aaacagcaga ttatcggtct ggcggaaagtt 2400
cgtgacgtgt tcaaatcgcc gaaatttggt gccatcgccg gctgtatggt taccgaaggt 2460
gtggttaaac gtcacaaccc gatccgcgtt ctgcgtgaca acgtggttat ctacgaaggc 2520
gagctggagt ccctgcgcgg cttcaagat gacgtaacg aagtccgtaa cggtatggaa 2580
tgtgttatcg gcgttaagaa ctacaacgc gtccgcactg gcgatgtgat cgaagtattc 2640
gaaatcatcg agatccaaacg taccattgtct taa 2673

```
<210> 727  
<211> 2480  
<212> DNA  
<213> Artificial Sequence
```

<220>
<223> *Bacillus anthracis*

```
<210> 728
<211> 2295
<212> DNA
<213> Artificial Sequence
```

<220>
<223> *Bacillus anthracis*

<400> 728

atgaaaaaaac gaaaagtgtt aataccatta atggcattgt ctacgatatt agtttcaagc 60
 acaggtaatt tagaggtgat tcagggcagaa gttaaacagg agaaccgggtt attaaatgaa 120
 tcagaatcaa gttcccaggg gttacttagga tactattttt gtgatttgaa ttttcaagca 180
 cccatggtgg ttaccccttc tactacaggg gatttatcta ttcctagttc tgagtttagaa 240
 aatattccat cgaaaaacca attttcaa tctgcatttt ggtcaggatt tatcaaagtt 300
 aagaagagtg atgaatatac atttgtact tccgctgata atcatgtAAC aatgtggta 360
 gatgaccaag aagtgattaa taaagcttct aattctaaca aaatcagatt agaaaaaagga 420
 agattatatac aaataaaaaat tcaatatcaa cgagaaaatc ctactgaaaaa aggattggat 480
 ttcaagttgt actggaccga ttctcaaaaat aaaaaagaag tgatttctag tgataactta 540
 caattgccag aattaaaaca aaaaatctcg aactcaagaa aaaagcgaag tacaagtgtc 600
 ggacctacagg ttccagaccg tgacaatgtat ggaatccctg attcattaga ggtagaagga 660
 tatacgggtg atgtcaaaaaa taaaagaact tttcttcac catggatttc taatattcat 720
 gaaaagaaaag gattaaccaa atataaatc ttcctgaaa aatggagcac ggcttctgat 780
 cgtacagtg atttcgaaaaa gtttacagga cggatgtata agaatgtatc accagaggca 840
 agacaccccc ttgtggcagc ttatccgatt gtacatgttag atatggagaa tattattctc 900
 tcaaaaaatcg aggatcaatc cacacagaat actgatagtc aaacgagaac aataagtaaa 960
 aatacttcta caagtaggac acatactagt gaagtacatg gaaatcaga agtgcatgct 1020
 tcgttctttg atattgggtg gagttgtatc gcaggattta gtaattcgaa ttcaagtacg 1080
 gtcgcatttgc atcattact atctcttagca gggggaaaaa cttgggctga aacaatgggt 1140
 ttaataacccg ctgatacagc aagattaaat gccaatattt gatatgtaaa tactgggacg 1200
 gctccaatc acaacgtgtt accaacgcact tcgttagtgt taggaaaaaa tcaaacactc 1260
 gcgacaattt aagctaaagga aaaccaattt agtcaataac ttgcaccta taattattat 1320
 cttctaaaaa acttggcgc aatcgattt aatgcacaag acgatttcaag ttctactcca 1380
 attacaatgaa attacaatca atttctttagt ttagaaaaaa cggaaacaaattt aagatttagat 1440
 acggatcaag tatatggaa tatagcaaca tacaattttt gaaatggaa agtgagggtg 1500
 gatacaggct cgaactggag tgaagtgtt ccgcatttca aagaaacaaac tgcacgtatc 1560
 atttttaatg gaaaagattt aaatctggta gaaaggcggg tagcggcgggta taatcctagt 1620
 gatccatttag aaacgactaa accggatatg acattaaaag aagcccttaa aatagcattt 1680
 gatccatttag aaacgactaa accggatatg acattaaaag aagcccttaa aatagcattt 1740
 ttaatttccg atcaacaaac atctcaaaaat atcaagaatc agtttagcggaa attaaacgc 1800
 actaacatatactgtt agataaaaatc aaattaaatg caaaaatgaa tatttttaata 1860
 agagataaaac gtttccattt tgatagaaaaat aacatagcag ttggggcgggta tgagtctgat 1920
 gttaaggagg ctcatacaga agtaattttat tcgtcaacag agggattttt gttaaatatt 1980
 gataaggata taagaaaaat attatcaggat tatattgttag aatttgaaga tactgaaggg 2040
 cttaaagaag ttataaatgaa cagatgtat gatgttgaata tttcttagttt acggcaagat 2100
 gaaaaaaacat ttataatgaa taaaaatattt aatgataaaat taccgttata tataagtaat 2160
 cccaaattt aggttaatgtt atatgtgtt actaaagaaa acactattat taatccttagt 2220
 gagaatgggg atactagtac caacgggatc aagaaaattt taatctttc taaaaaaggc 2280
 tatgagatag gataa 2295

<210> 729
 <211> 822
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Escherichia coli

<400> 729
 atggcagttt ttaaatgtaa accgacatct ccgggtcgta gcccacgtatg taaagtgggtt 60
 aaccctgagc tgcacaaggg caaacctttt gtcggctgtc tggaaaaaaa cagcaaatcc 120
 ggtggctgta acaacaatgg ccgtatcacc actcgtcata tcgggtggc ccacaagcag 180
 gcttaccgtt ttgttgactt caaacgcacaa aaagacggta tcccgccagtt tggtaacgt 240
 cttgagtacg atccgaacccg ttccgcgaac atcgcgttcc ttctgtacaa agacggtgaa 300
 cgccgttaca tcctggcccc taaaggccctg aaagctggcg accagattca gtctggcgtt 360
 gatgctgcaa tcaaaaccagg taacaccctgt ccgtatgcgc acatcccggt tggttctact 420
 gttcataacg tagaaatgaa accaggtaaa ggcggtcagc tggcacgttc cgctggtaact 480
 tacgttcaag tcgttgctcg tgatgggtgt tatgtcacc tgcgtctgcg ttctggtgaa 540
 atgcgtaaag tagaagcaga ctgcgtgca actctggcg aagttggcaa tgctgagcat 600
 atgcgtcgcc ttctgggtaa agcagggtgt gcacgcgtgc gtgggttgc tccgaccgtt 660
 cgccgttaccg cgatgaaccc ggtagaccac ccacatggtg ttggtgaaagg tcgtacttt 720

ggtaaggcacc cggtaactcc gtggggcggtt cagaccaaag gtaagaagac ccgcagcaac	780
aagcgtactg ataaattcat cgtacgtcgc cgtagcaaat aa	822

<210> 730
<211> 4029

<212> DNA
<213> Artificial Sequence

<220>
<223> Escherichia coli

<400> 730

atggtttact cctataccga gaaaaaacgt attcgtaagg attttggtaa acgtccacaa	60
gttctggatg taccttatct ctttctatc cagcttgact cgtttcgaa atttattcgag	120
caagatcctg aaggccagta tggctggaa gctgtttcc gttccgtatt cccgatttcg	180
agctacagcg gtaattccga gctgcaatac gtcagctacc gccttggcga accggtgttt	240
gacgtccagg aatgtcaaat ccgtggcggt acctattccg caccgctcgc cgttaaactg	300
cgtctggtga tctatgagcg cgaagcgcgg gaaggcaccg taaaagacat taaaagacaa	360

gaagtctaca tggcgaaat tccgctcatg acagacaacg gtacctttgt tatcaacgg	420
actgagcgtg ttatcgtttcc ctagctgcac cgtatccgg gcgtcttctt tgactccgac	480
aaaggtaaaa cccactcttc gggtaaaatgt ctgtataacg cgcgtatcat cccttaccgt	540
ggttctggc tggacttcga attcgatccg aaggacaacc tggtcgtag tatcgaccgt	600
cgcgttaaac tgcctgcgac catcattctg cgcgcctga actacaccac agagcagatc	660
ctcgacctgt tctttgaaaa agttatcttt gaaatccgtg ataacaagct gcagatggaa	720
ctggtgccgg aacgcctgcg tggtaaaacc gcatctttt acatcgaacg taacggtaaa	780
gtgtacgtag aaaaaggccg ccgtatcaact ggcgcgccaca ttgcggcagct ggaaaaagac	840
gacgtcaaac tgatcgaagt cccgggttag tacatcgacg gtaaaatgttt tgctaaagac	900
tatattgatg agtctaccgg cgagctgatc tgccgacgca acatggagct gagcctggat	960
ctgtctggcta agctgagcca gtctggtcaac aagcgatcg aaacgctgtt caccaacgat	1020
ctggatcactg gccccatat ctctgaaacc ttacgtgtcg acccaactaa cgaccgtctg	1080
agcgcaactgg tagaaatcta cccatcgatc cgcctggcg ageccgcgcg tcgtgaagca	1140
gctgaaagcc tggcggagaa cctgttcttc tccgaagacc gttatgactt gtctgcgggt	1200
ggtcgtatga agttcaaccg ttctctgtcg cgcgaagaaa tcaaggttc cggtatcctg	1260
agcaaaagacg acatcattga tggtaaaacc aagctcatcg atatccgtaa cggtaaaggc	1320
gaagtctgatg atatcgacca cccggcaac cgtcgatcc ttccggttgg cgaaatggcg	1380
gaaaaccagg tccgcgttgg cctggatcgat gtagagcgtg cgggtgaaaga gcgtctgtct	1440
ctggcgatc tggataccct gatgccacag gatatgatca acgccaagcc gatttccgc	1500
gcaagtggaaag agttttcggg ttccagcccg ctgtctcgat ttatggacca gaacaaccgg	1560
ctgtctgaga ttacgcacaa acgtcgatcc ttccgactcg gcccaggccg tctgaccgt	1620
gaacgtcgacg gttcgaagt tcgagacgta caccggactc actacggctcg cgtatgtcca	1680
atcgaaaaccct ctgaaggatcc gaaatcgatc ctgtatcaact ctctgtccgt gtacgcacag	1740
actaaccgaat acggcttccct tgagactcgat ttcgtaaatg tgaccgcacg tggtaact	1800
gacgaaaattc actacgtgc tgctatcgaa gaggaaact acgttacgtc ccaggcgaac	1860
tccaaacttgg atgaagaagg ccacttcgtt gaaagacctgg taacttgcgg tagcaaaggc	1920
gaatcccgat tggtaaggccg cgaccgggtt gactacatgg acgtatccac ccagcagggt	1980
gtatccgtcg gtgcgtccct gatcccgatc ctggAACACG atgacgcacca ccgtgcattt	2040
atgggtgcga acatcgacacg tcaggccgtt cccactctgc ggcgtgtataa gccgctgggt	2100
ggtaacttggta tggaaacgtgc tggccgtt gactccgggt taacttgcggt agctaaacgt	2160
ggtggtgtcg ttcgtatcgat ggtatcgatc ctgtatcgat tcaaaatgtt caaagacgag	2220
atgtatccgg gtaaaggcagg ttcgtatcgat tcaaaatcgat ccaaaatatac ccgttctaac	2280
cagaacacccat gtatcgacacca gatgccgtt gtttacatttgc gtttacatttgc tggtaagct	2340
gacgtgtcccg cagacggccgtt gtttacatttgc gtttacatttgc tggtaagct gggtaagct	2400
ccgtatcgatc tcatcgatcc gaaatcgatc aacttcgtatcc acgtatcccgat cgtatcccgat	2460
cgatcccgatc aggaaggaccc ttcgtatcgat tcaaaatcgat ccaaaatatac ccgttctaac	2520
cgatcccgatc agctgggtcc ggaaggagatc accgtatcgat tcaaaatcgat ccaaaatatac	2580
ccgtatcgatc aacttgcgtt gtttacatttgc gtttacatttgc tggtaagct gggtaagct	2640
gacatttcccg ttttgcgtt gtttacatttgc gtttacatttgc tggtaagct gggtaagct	2700
ctgtctggatc cgatcccgatc tcatcgatcc gaaatcgatc aacttgcgtt gtttacatttgc	2760

ccaaacggtg tatccggtac ggttatcgac gttcaggtct ttactcgca tggcgttagaa 2820
 aaagacaaaac gtgcgttggaa aatcgaaagaa atgcagctca aacaggcgaa gaaagacctg 2880
 tctgaagaac tgcagatcct cgaagcgggt ctgttcagcc gtatccgtgc tggctggta 2940
 gccgttggcg ttgaagctga gaagctcgac aaactcgccg gcgatcgctg gctggagctg 3000
 ggcctgacag acgaagagaa acaaaaatcg agtgcacagc tggctgagca gtatgacgaa 3060
 ctgaaacaac agttcgagaa gaaactcgaa gcgaaacgac gaaaatcac ccagggcgac 3120
 gatctggcac cgggcgtgct gaagattgtt aaggtatata tggcggttaa acgcccgtatc 3180
 cagcctggtg acaagatggc aggtcgac ggtacaagg gtttaatttc taagatcaac 3240
 ccgatcgaaag atatgcctta cgatgaaaac ggtacccgg tagacatcg actgaacccg 3300
 ctggcgta cgtctcgat gaacatcggt cagatctcg aaacccaccc gggtatggct 3360
 gcgaaaggta tcggcgacaa gatcaacgccc atgctgaaaac agcagcaaga agtcgcgaaa 3420
 ctgcgcgaaat tcatccagcg tgcgtacgat ctggcgctg acgttcgtca gaaagtgtac 3480
 ctgagttaccc tcaagcgatga agaagttatg cgtctggctg aaaacctcgca caaaggatgt 3540
 ccaatcgcaa cgccgggttt cgacgggtcgaa aagaagcagaa aatattaaaga gtcgtgaaa 3600
 cttggcgacc tgccgacttc cggtcagatc cgcctgtacg atggtcgcac tggtaaacag 3660
 ttcgagcgtc cggtaaccgt tggttacatg tacatgtca aactgaaccca cctggcgac 3720
 gacaagatgc acgcgcgttc caccgggtt tacagcctgg ttactcagca gccgctgggt 3780
 ggttaaggcac agttcggtgg tcagcggtttc gggggatgg aagtgtgggg gctggaaagca 3840
 tacggcgcaag catacaccct gcaggaaatg ctcaccgtt agtctgtatg cgtgaacccgt 3900
 cgtaccaaga tgtataaaaaa catcggtggac ggcaaccatc agatggagcc gggcatgcca 3960
 gaatccttca acgtattgtt gaaagagatt cgttcgctgg gtatcaacat cgaactggaa 4020
 gacgagtaa 4029

<210> 731

<211> 4224

<212> DNA

<213> Artificial Sequence

<220>

<223> Escherichia coli

<400> 731

gtgaaagatt tattaaagtt tctgaaagcg cagactaaaaa ccgaagagtt tgatgcgatc 60
 aaaattgtctc tggcttcgccc agacatgatc cggtcatggt ctttcgggtga agttaaaaag 120
 ccggaaacca tcaactaccg tacgttcaaaa ccagaacgtg acggccctttt ctgcgccccgt 180
 atctttgggc cggtaaaaaga ttacgagtgc ctgtgcggta agtacaagcg cctgaaacac 240
 cgtggcgta tctgtgagaa gtgcggcggtt gaagtgcaccc agactaaaaatg acgcccgttag 300
 cgtatggggc acatcgaaact ggcttccccg actgcgcaca tctgggttccct gaaatcgctg 360
 ccgtcccgta tcggctctgt gtcgtatgt ccgctgcgcg atatcgaaacg cgtactgtac 420
 tttaatccat atgtggttat cgaaggcggtt atgaccaacc tggaaacgtca gcagatcctg 480
 actgaagagc agtatactggc cgcgcgtggaa gagttcggtg acgaatttcga cgcgaagatg 540
 gggggcggaaag caatccaggc tctgtctgaa agcatggatc tggagcaaga gtgcgaacag 600
 ctgcgtgaag agctgaacga accaactcc gaaaccaagc gtaaaaagct gaccaagcgt 660
 atcaaactgc tggaaacggtt cgttcgtatgt ggtaacaaac cagatgtggat gatcctgacc 720
 gttctgcgg tactggccgc agatctgtt ccgctgggtt cgttcgtatgt tggtcgtttc 780
 gcgacttcgtt acctgaacga tctgtatgtt cgcgttcatca accgtaaacaa ccgtctgaaa 840
 cgtctgttgc atctggctgc gcccgcacatc atcgtacgtt acgaaaaacg tatgtcgtac 900
 gaagcggtat acgcctctgtt ggataacccgtt cgttcgtggc gtgcgtatcac cggttctaaac 960
 aacgcgttgc tggaaatctttt gcccgcacatc atcaaaggta aacagggttgc tttccgttac 1020
 aacctgttgc gtaaggcgatgt tggactactcc ggtcgtttctg taatcaccgtt aggtccatatac 1080
 ctgcgttgc atcgtgtggg tctgtccgaag aaaaatggcac tggagctgtt caaaccgttc 1140
 atctacggca agctggaaact ggcgtggctt gctaccacca ttaaaggctgc gaagaaaaatg 1200
 gtttgcgttgc aagaaggctgtt cgtttggat atcctggacg aagttatccg cgaacacccg 1260
 gtactgttgc accgtgcacc gactctgcac cgtctgggtt tccaggcatc tgaaccggta 1320
 ctgatcgaaag gtaaaaggat ccaacgttgcac ccgcgtggttt gtgcggcata taacggccgac 1380
 ttgcgttgc accagatggc tggatcgatc ccgcgtacgc tggaaaggccca gctggaaacgc 1440
 cgtgcgttgc tggatgttgc acacaaacatc ctgtccccgg cgaacggcgac accaatcatc 1500
 gttccgttgc aggacgttgtt actgggtctg tactacatga cccgtactgt tggtaacgccc 1560
 aaaggcgaaag gcatgggtgtt gactggcccg aaagaaggcgac aacgtctgtt tggctctgtt 1620
 ctggcttgc tgcgttgc cgtttaaggatc cgtatcaccgtt agtataaaaaa agatgttaac 1680
 ggttaattttt tagcgaaaac cagcctgaaa gacacgactgt tggccgtgc cattctgtgg 1740

atgattgtac cgaaaggctct gccttactcc atcgtaacc aggcgctggg taaaaaaagca 1800
 atctccaaa tgctgaacac ctgctaccgc attctcggtc tggaaaccgac cgttatTTT 1860
 gcgaccaga tcatgtacac cggcttcgccc tatgcagcgc gttctgggtgc atctgttgg 1920
 atcgatgaca tggtcatccc ggagaagaaa cacgaaatca tctccgaggg agaaggcagaa 1980
 gttgctgaaa ttccaggagca gttccagtct ggtctggtaa ctgcggggcga acgtacaaac 2040
 aaagtttatcg atatctgggc tgccggcgaac gatcggttat ccaaaggcgat gatggataac 2100
 ctgcaactg aaaccgtgtat taaccgtgac ggtcaggaag agaaggcaggt ttcccttcaac 2160
 agcatctaca tggatggccga ctccgggtgcg cgtgggtctg cggcacagat tcgtcagctt 2220
 gttggatgc gttggctgtat ggcgaaggccg gatggctcca tcatcgaaac gccaatcacc 2280
 gcgaaacttc gtgaaggctct gaacgtactc cagtaatcca ttcccaccca cggtgctcg 2340
 aaaggctctgg cggataaccgc actgaaaact gcgaaactccg gttacctgac tcgtcgtctg 2400
 gttgacgtgg cgcaggaccc ggtggttacc gaagacgatt gtggtaccca tgaaggatc 2460
 atgatgactic cggttatcgaa ggggtggtaa gttaaagagc cgtgcgcga tcgtcgtactg 2520
 ggtctgttaa ctgtgaaga cgttctgaag cgggttactg ctgatatcc ctgtccgcgc 2580
 aacacgctgc tgcacgaaca gtgggtgtgac ctgctggaaag agaactctgt cgacgcgggt 2640
 aaagtagctt ctgttgtatc ttgtgacacc gacttgggtg tatgtgcgcgatcgt 2700
 cgtgacctgg cgcgtggccaa catcatcaac aagggtgaag caatcggtgt tatcgccggc 2760
 cagtccatcg gtgaaccggg tacacagctg accatgcgtt cgttccacat cggtggtgc 2820
 gcatctcgat cggctgctga atccagatc caagtaaaaa acaaaggtagt catcaagctc 2880
 agcaacgtga agtcgggtgtt gaactccaggc ggttaaactgg ttatcacttc ccgtaataact 2940
 gaactgaaac tggatcgacga attcggtcgat actaaagaaa gctacaaaagt accttacgg 3000
 ggggtactgg cggaaaggcgaa tggcgaacaa gttgtggcg gcgaaaccgt tgcaaactgg 3060
 gacccgcaca ccatgccgggt tattcaccgaa gtaagggtt ttgtacgctt tactgacatg 3120
 atcgacggcc agaccattac gctcagacc gacgaactga ccggctctgtc ttgcgtgg 3180
 gttctggatt cccgagaacg taccgcaggat ggttaaagatc tgctccggc actgaaaatc 3240
 gttgatgctc aggtaaacgaa cgttctgatc ccagggttaccg atatgcgcgc gcagtacttc 3300
 ctgccccggta aagcgatgtt tccatcgatc gatggcgatc agatcagctc ttgtgacacc 3360
 ctggcgcgta tcccgcgatg atccggcggtt accaaggaca tcaccgggtgg tctgccccgc 3420
 gttggggacc tggatcgacg aegtcgtccg aaagagccgg caatcctggc tgaaatcage 3480
 ggttatcgat cccatcgatc agaaacccaa ggttaaactggc gttgtgttat ccccggtt 3540
 gacggtagcg atccgtacga agagatgatt ccgaaatggc gtcagctcaa cgtgttcgaa 3600
 ggtgaacgtgt tagaacgtgg tgcgtatcc tccgacggtc cggaaaggccgc gcacgcacatt 3660
 ctgcgtctgc gttgtgttca tgcgttact cgttacatcg ttaacgaatc acaggacgtt 3720
 taccgtctgc aggccgtttaa gattaacgat aaacacatcg aagttatcgatc tgctcagatg 3780
 ctgcgtaaag ctaccatcgtaa taacgcgggtt agtcccgact tcctggaaagg cgaacagggt 3840
 gaataactctc gctcgtaaatcgat ccgaaaccgc gaaactggaaag cgaacggccaa agtgggtgc 3900
 acttactccc gctcgtatcgat ggttatcacc aaagcgatc tggcaaccgc gtccttcatc 3960
 tccgcggccat cgttcccgatg gaccactcgatc gttgttaccg aagcagccgt tgccggccaa 4020
 cgcgacgaaac tggatcgccctt gaaagagaaac gttatcgatc tgctcgtatc cccggcagggt 4080
 accgggttacg cgttaccatcg ggatcgatcgatc cgtccgggttgc ctgcgggtga agtccggct 4140
 gacccgcagg tgactgcaga agacgcacatcg gccagccgtt cagaactgctt gaaacgcagggt 4200
 ctggggcggtt ctgataacgaa gtaa 4224

<210> 732

<211> 3734

<212> DNA

<213> Artificial Sequence

<220>

<223> Concatenation of S. pyogenes genes

<220>

<221> misc_feature

<222> 499-598, 1049-1148, 1587-1686, 2093-2192, 2652-2751,
3201-3301

<223> n = A,T,C or G

<400> 732

aaccttaattt ggaaaggaaac ccaagaaggatc ggttccgttg ttgaaaaaga attgggcatt 60
 ccttttgccta ttgacaatgatc tgccaaatgtt gtcgtcccttgc gtaacgtttt ggttaggtgtt 120
 ggtgaaaata acccagatgt cgttccatcg acacttggaa caggtgtcgg tggaggcatt 180

<210> 733
<211> 288
<212> DNA
<213> Artificial Sequence

<220>
<223> *Bacillus anthracis*

<400> 733
atgagtaaaa aacaacaagg ttataacaag gcaacttctg gtgcttagcat tcaaagcaca 60
aatgctagt atggcacaga gtttgcact gaaacaaatg tacaaggat aaaacaagca 120
aacgcacaat cagaagctaa gaaagcgcaa gcttctggtg ctgcattca aagcacaaat 180
gotagttatg gtacagaatt tgcaactgaa acaga cgtgc atgcgtgaa aaaacaaaat 240
gcacaatcag ctgcaaaaaca atcacaatct tctagttcaa atcagtaa 288

<210> 734
<211> 1185
<212> DNA
<213> Artificial Sequence

<220>
<223> *Escherichia coli*

<400> 734
atgtctaaag aaaagtttga acgtacaaaaa ccgcacgtta acgtcggtac tatcgccac 60
gtgaccatg gtaaaacaac gctgaccyct gcaatcacta ccgtactggc taaaacctac 120
ggcggtctg ctcgcgcatt cgaccagatc gataacgcgc cgaagaaaa agctcggtg 180
atcaccatca acacttctca cgttgaatac gacaccccga cccgtcacta cgcacacgta 240
gactgcccgg ggcacgcccga ctatgttaaa aacatgatca ccgggtgctgc gcagatggac 300

ggcgcgatcc tggtagttgc tgcgactgac ggcccgatgc cgccagactcg tgagcacatc 360
ctgctgggtc gtcaggtagg cttccgtac atcatcgtgt tcctgaacaa atgcgacatg 420
gttgcgtgac aagagctgct ggaactgggt gaaatggaag ttcgtgaact tctgtctcag 480
tacgacttcc cgggogacga cactccgatc gttcggtgt ctgcctctgaa agcgctggaa 540
ggcgacgcac agtggaaagc gaaaatctg gaactggctg gttccctgaa ttcttacatt 600
ccggaacccag agcgtgcgt tgacaagccg ttccctgctgc cgatcgaaga cgtattctcc 660
atctccggtc gtggtaccgt ttttaccgtt cgtgtagaac gccgttatcat caaagggtt 720
gaagaagttt aaatcggtt tatcaaagag actcagaagt ctacctgtac tggcgittgaa 780
atgttccgca aactgcgtt gcaaggccgt gctggtgaga acgttaggtt tctgctgcgt 840
ggtatcaaac gtgaagaaat cgaacgtgtt caggtactgg ctaagccggg caccatcaag 900
ccgcacacca agttcgaatc tgaagtgtac attctgtcca aagatgaagg cggccgtcat 960
actccgttct tcaaaggcta ccgtccgcag ttctacttcc gtactactga cgtgactggt 1020
accatcgaac tgccggaaagg cgttagagatg gtaatgccgg gcgacaaacat caaaatggtt 1080
gttaccctga tccacccgtt cgcgtatggac gacggtctgc gtttcgcaat ccgtgaaggc 1140
ggccgttacccg ttggcgccgg cgtttagca aagttctga gctaa 1185

<210> 735
<211> 2856
<212> DNA
<213> Artificial Sequence

<220>
<223> *Escherichia coli*

<400> 735
atggaaaaga catataaccc acaagatatc gaacagccgc tttacgagca ctggggaaaag 60
cagggtctact ttaaggctaa tggcgatgaa agccaggaaa gtttctgcat catgatcccg 120
ccggccgaacg tcaccggcag ttgcgtatgt ggtcacccct tcacccaaat catcatggat 180
accatgatcc gctatcagcg catgcaggcc aaaaaaccccc ttgtggcaggt cggtaactgac 240
cacggccggga tcgctaccca gatggtcgtt gagcgcaga tttccgcaga agaaggtaaa 300
accgttacccg actacggccg cgaagcttcc atcgcacaaaa tctgggaatg gaaagcggaa 360

tctg~~gcggca~~ ccattacccg tcagatgcgc cgtctcgca actccgtcga ctgggagcgt 420
 gaac~~gttca~~ ccatggacga aggccgtgcc aatgcggta aagaagttt cgttcgctg 480
 tata~~aagaag~~ acctgattt ccgtggcaaa cgcctggtaa actgggatcc gaaactgcgc 540
 accg~~cstatct~~ ctgacctgga agtcgaaaac cgcgaatcga aaggttcgat gtggcacatc 600
 cgct atccgc tggctgacgg tgcgaaaacc gcagacggta aagattatcc ggtggtcgcg 660
 acta cccgtc cagaaaccct gctgggcatc actggcgttag cgcgttaaccc ggaagatccg 720
 cgtt acaaag atctgattgg caaatatgtc attctgcgc tggtaaccc tcgttattccg 780
 atcg~~ttggcg~~ acgaacacgc cgacatggaa aaaggccaccc gctgcgtgaa aatcactccg 840
 gogc~~acgact~~ ttaacgacta tgaagtgggt aaacgtcacc ccctgcccgt gatcaacatc 900
 ctga cctttg acggcgtat cctgtgaaagc gcccagggtgt tcgataccaa aggtaacgaa 960
 totg~~acgttt~~ attccagcga aatccctgca gagttccaga aactggagcg ttttgcgtca 1020
 cgtt aaggcag tcgttgcgc agttgcgcg ctggcctgc tggaaagaaat taaaccgcac 1080
 gacc~~tgaccg~~ ttccctacgg cgaccgtggc ggcgttagtta tcgaaaccaat gctgaccgac 1140
 cagt ggtacg tgcgtgccga tgctctggcg aaaccggcggt tgaaagcgt tgagaacccgc 1200
 gaca~~ttcagt~~ tcgttaccgaa gcagtaacgaa aacatgtact tctctctggat ggcgcgatatt 1260
 cagg~~acttgt~~ gtatctctcg tcagttgtgg tgggttcacc gtatcccggc atggtatgac 1320
 gaag~~cgggta~~ acgtttatgt tggccgcaac gaagacgaa tgctgtaaaga aaataacctc 1380

ggtg~~ctgatg~~ ttgtcctgca tcaggacgaa gacgttctcg atacctggtt ctcttcgtcg 1440
 ctgt~~ggacct~~ tctctaccct tggctggccg gaaaataccg acgcctcg~~cg~~ tcagttccac 1500
 ccaa~~ccagcg~~ t~~gatggt~~tac tggttcgac atcattttct tctggattgc cgc~~catgatc~~ 1560
 atga~~tgacca~~ tgcacttcat caaagatgaa aatggcaac cgcagg~~tgcc~~ gttccacacc 1620
 gttt~~acatga~~ cccgcctgat tcgtgtatgc~~g~~ gaaggccaga agatgtccaa atccaagggt 1680
 aacg~~ttatcg~~ acccactgga tatgggtgac ggttatttcgc~~g~~ tgccagaact gctggaaaaaa 1740
 cgtt~~ccggca~~ atatgatgc~~a~~ gcccgcagctg~~g~~ gcccaca~~aa~~ tccgtaagcg caccgagaag 1800
 cagt~~tcccg~~ acggatttgc~~g~~ gcccacccgt~~g~~ actgacgcgc~~g~~ tgctttcac~~c~~ cctggcggcg 1860
 ctgg~~cgttca~~ cccggtcgta catcaactgg gatatga~~g~~ g~~t~~ctggaaagg ttaccgttaac 1920
 ttct~~gttaca~~ agctgtggaa ccccgccgc~~g~~ tttgtgctga tgaacacaga aggtcaggat 1980
 tgct~~gttca~~ acggccggcga aatgacgcgt~~g~~ tcgctggcg~~g~~ accgctggat tctggcggag 2040
 ttca~~accaga~~ ccatcaa~~ac~~ g~~t~~accgcg~~g~~ g~~c~~gc~~t~~ggaca~~g~~ gcttccgct~~t~~ cgatatcgcc 2100
 gcag~~gcattc~~ t~~gtatggat~~t cacctgya~~ac~~ cagttctgt~~g~~ actggtatct~~t~~ cgagctgacc 2160
 aagg~~cggtaa~~ tgaacgg~~tgg~~ caccgaag~~ca~~ gaactgcgc~~g~~ g~~t~~actcgc~~ca~~ tacgctgg~~t~~ 2220
 actg~~tactgg~~ aagg~~tctgt~~ g~~c~~gc~~c~~tcgc~~g~~ catccgat~~ca~~ ttccgttcat~~c~~ caccgaaacc 2280
 atct~~ggcagc~~ g~~tgt~~gaa~~agt~~ actttgc~~gg~~ at~~c~~actgc~~cc~~ acaccat~~ca~~ g~~c~~tc~~g~~agccg 2340
 ttcc~~cgcagt~~ ac~~gatgc~~atc tcag~~gtt~~gat~~g~~ g~~a~~agccgc~~ac~~ tggccgac~~ac~~ cgaatgg~~ct~~g 2400
 aaac~~aggcga~~ t~~cgttgc~~g~~g~~ ac~~gt~~taac~~atc~~ c~~gt~~gc~~g~~aaa tgaacat~~cg~~c~~g~~ gcccggca~~aa~~ 2460
 ccgc~~tgg~~g~~ac~~ t~~gctgc~~tc~~g~~ tgg~~tt~~gc~~ac~~ g~~c~~ggat~~gc~~ aac~~gt~~cg~~cg~~ aatgaaa~~ac~~ 2520
 c~~gt~~g~~cttcc~~ t~~gca~~aa~~acc~~ct g~~gc~~gc~~gt~~ct~~g~~ g~~a~~ag~~gt~~at~~ca~~ c~~cg~~tg~~tc~~g~~cc~~ t~~g~~ccgat~~tg~~ac~~g~~ 2580
 aaag~~gtccgg~~ t~~ttccgtt~~ac~~ac~~ g~~a~~ag~~atc~~at~~cc~~ g~~a~~c~~gg~~tg~~cg~~ ag~~ct~~g~~ct~~gat~~cc~~cg~~at~~gg~~ct~~ 2640
 ggc~~c~~t~~cat~~ca~~ac~~aaa~~aga~~ t~~gag~~ct~~gg~~g~~c~~ c~~gt~~ct~~gg~~g~~c~~ a~~aga~~gt~~gg~~g~~c~~ g~~a~~ag~~at~~ttg~~aa~~ 2700
 ggt~~g~~aa~~at~~ca~~gc~~gtat~~cg~~ga~~a~~ac~~aa~~act~~g~~ g~~c~~ga~~ac~~g~~aa~~ g~~c~~tttgc~~tc~~g~~c~~ c~~cg~~gc~~cacc~~ 2760
 gaag~~cgg~~tc~~a~~ t~~cg~~g~~aa~~aga~~g~~ c~~gt~~g~~aga~~ag~~g~~ ct~~gg~~g~~aa~~gg~~ct~~ at~~g~~c~~gg~~g~~aa~~g~~c~~ g~~a~~ag~~cg~~aaa 2820
 ctga~~tt~~g~~aa~~ac~~g~~ ac~~gagg~~ct~~gt~~t tat~~cg~~cc~~gc~~g~~c~~ ct~~gt~~aa~~g~~ 2856

<210> 736
<211> 1770
<212> DNA
<213> Artificial Sequence

<220>
<223> Escherichia coli

<400> 736
atgc~~gt~~ac~~ag~~ aatattgtgg acag~~ctccgt~~ ttgtcccac~~g~~ tggggcag~~ca~~ g~~gt~~gactct~~g~~ 60
t~~gt~~g~~gt~~gg~~g~~ t~~ca~~acc~~gt~~cg~~t~~ t~~cg~~tgat~~ctt~~ g~~gt~~tag~~cct~~g~~a~~ t~~ctt~~cat~~cg~~a~~t~~ t~~at~~gc~~gc~~g~~ac~~ 120
c~~gc~~g~~a~~agg~~ta~~ t~~cg~~tg~~c~~agg~~t~~ at~~tttt~~cgat~~cc~~g~~at~~cg~~t~~g~~c~~ c~~gg~~ac~~gc~~g~~tt~~ a~~a~~ag~~ct~~gg~~cc~~ 180
t~~ct~~g~~a~~act~~gc~~ g~~ta~~at~~gt~~g~~at~~t ct~~gc~~att~~cg~~at~~g~~ g~~tc~~ac~~gg~~g~~ca~~ c~~cg~~gt~~ac~~gt~~gc~~ g~~cg~~gt~~ac~~g~~aa~~ 240
aaaa~~at~~tatta~~ac~~ccg~~gat~~at~~g~~ g~~gc~~acc~~gg~~g~~c~~ g~~a~~aa~~at~~cg~~aa~~ g~~t~~g~~t~~gg~~cg~~tc~~c~~tc~~g~~ct~~g~~act~~300~~
at~~ca~~t~~ca~~acc~~g~~c~~g~~ca~~gat~~gt~~t~~ t~~ct~~g~~cc~~g~~c~~t~~t~~ g~~a~~ct~~ct~~ta~~ac~~c~~ac~~ ac~~gt~~ca~~ac~~ac~~c~~ g~~ca~~aa~~g~~ac~~gc~~ 360
c~~gt~~t~~ct~~g~~aa~~at~~ac~~ccg~~ct~~ac~~cc~~ t~~cg~~ac~~ct~~g~~c~~g~~t~~ c~~gt~~cc~~gg~~aaa~~tt~~ g~~tg~~g~~tc~~ag~~cg~~g~~c~~ c~~ct~~g~~aa~~acc~~420~~
c~~gc~~g~~c~~ta~~aa~~aa~~tc~~acc~~cc~~g~~c~~t~~t~~ g~~gt~~g~~cc~~cc~~gt~~ t~~tt~~at~~gg~~at~~g~~ acc~~ac~~gg~~c~~t~~t~~ c~~ct~~g~~ac~~at~~c~~ 480

gaaaactccgaa tgctgaccaa agccacgcgg gaaggcgcgc gtgactaccc ggtgccttct 540
 cgtgtcaca aaggtaattt ctacgcactg ccgcataatccc cgcagttgtt caaacagctg 600
 ctgtatgtt cccgttttga ccgttactat cagatcgta aatgccttcgg tgacgaagac 660
 ctgcgtgctg accgtcagcc tgaattttact cagatcgatg tggaaacttc tttcatgacc 720
 ggcgcgcgaa tgcgtgaagt gatggaaagcg ctgggtgcgtc atctgtggct ggaagtgaag 780
 ggtgtggatc tggggcattt cccggtaatg acctttgcgg aaggcagaa cg ccgttatgg 840
 totgataaaac cggatctgcg taaccccgatg gaactgactg acgttgcgtga tctgtgaaa 900
 totgttgagt ttgcgtgtt tgcaggcgg gcgaacgatc cggaaaggctcg cgtagcggct 960
 ctgcgcgttc cggggcggcgc atcgcgtgacc cgtaaaggaga tcgacgaata cggtaacttc 1020
 gtaaaatct acggcgcgaa aaggctggct tacatcaaag ttaacgaa acg cgcgaaagg 1080
 ctggaaaggta tcaacagccc ggtagcgaag ttcccttaatg cagaatcatc cgaagacatc 1140
 ctggatcgta ctgcccgcga agatggcgat atgattttct tcgggtccga caacaagaaa 1200
 attgttgcggc acgcgtatggg tgcactgcgc ctgaaagtgg gtaaagaccc tggtctgacc 1260
 gacgaaagcga aatgggcacc gctgtgggtt atcgcacttc cgatgtttga agacgacgg 1320
 gaaggcggcgc tgacggcaat gcaccatccg ttcacctcac cggaaagat at gacggctgca 1380
 gaactgaaag ctgcaccggaa aaatgcgggt ggcgaacgcgtt acgatatggt catcaatgg 1440
 tacgaagtggc ggggtggttc agtacgtatc cataatggtg atatgcagca gacgggtgtt 1500
 ggtattctgg gtatcaacga agaggaacag cgcgagaaat tggcttcct gctcgacgc 1560
 ctgaaatacgt gtagtccgcgc gcacgcagggt ctggcattcg gtcttgaccg tctgaccatc 1620
 ctgctgaccgc gcaccggacaa tatccgtgac gttatcgctt tccccggaaaac cacggcggca 1680
 gogtgtctga tgactgaagc accgagctt gctaaccgcg ctgcactggc tgagctgagc 1740
 attcaggttg tgaagaaggc tgagaataac 1770

<210> 737

<211> 3699

<212> DNA

<213> Artificial Sequence

<220>

<223> Yersinia pestis

<400> 737

atgatggttt tccagccaat cagtgagttt ctcttgataa ggaatgcggg aatgtctatg 60
 tattttataa aaataatttc atttaatattt atttcacgaa tagttatgg tatctttttg 120
 atatgtggaa tggcatggc tggggcttca gaaaaaatatg atgctaacgc accgcaacag 180
 gtccagccctt attctgtctc ttcatctgca tttgaaaatc tccatcctaa taatgaaatg 240
 gagagttcaa tcaatccctt ttccgcatog gatacagaaa gaaatgcgc aataatagat 300
 cggcgcataa aggaggcggg gactgaaggg gtgataaaga tgataagcac cggggccagg 360
 ttagctgcat caggcaggggc atctgtatgtt gctcaacttca tgggtggcga tgccgttaat 420
 caagaaatca aacagtgggtt aaatcgattt ggtacggctc aagttatct gaattttgac 480
 aaaaattttt cgctaaaaga aagctctctt gattggctgg ctcccttggta tgactctgct 540
 tcattccctt ttttagtca gtttaggtattt cgcaataaag acaggccgca cacacttaac 600
 cttggcgtcg ggatacgtac attggagaac ggttggctgt acggacttta tactttttat 660
 gataatgatt tgaccggcca caaccaccgt atcggtctt gtcggcggaggc ctggaccgat 720
 tatttacagt tggctgcca tgggttattttt cgcctcaatg gatggcactc gtgcgtgtat 780
 ttctccgact ataaaagacgg cccagccact ggggggatt tgccgcgcga tgcttattta 840
 cctgcactcc cacaactggg gggggaaaggat atgtatgagc aatacaccgg tgagcgtgtt 900
 gctttattgt gcccagaaaa ccccccagcta ggctgggggt tcagtaaaacgc tttcagcttt 960
 gggtcgttta taaaaaccccc ttttgattttt ttaaaacagt ttgcggctg gcaactgcaa 1020
 atgttcaaca agaaatcaaa aggggggtccc aatgaggggat gaaaagagct tagcgcacac 1080
 ccgatggAAC tgtaaaatcc atatagtttt tgcgcgaag taccgaaggc aggtgttcta 1140
 caggggaaaaaa cgcagagcga ttggcagttt tttaaagaaaa ctgtgcgaat gaaaaaacgt 1200
 gaatatcctg gaagcagaat actgtgtggc tcacatccat atgcttctgg agatccgc 1260
 caagatgagttt gtctcgggat ttatggggta cctgaaggga aagagcagtc tgatgttta 1320
 tgagcgtttt ggcgatttga agttcaaaata ccgttaacagg gagttttggt gtcggggta 1380
 ttacgttgcgtt acggtagggaa aaaacacggc caggatcaa gaatacataa agcaccaatt 1440
 ggaagaggat aaaaatgggtg agcaactctc gatcccgtat cccggtagcc cgtttacggg 1500
 ccgtaaagttt tccatagatg caaatgtcag atcgcgtatgc gcctgtttagg ggcgcgctgg 1560
 taacagagcc ttataggcgc atatgaaaaa cctccggcta tgccggagga tattttatttt 1620
 ggttaaagata atctgcaacg caacccttat gccgtgactg cccggatcaa ttacaccccc 1680
 gtgcctctac tcactgtcgg ggtagatcag cgtatgggaa aagcagtaa gcatgaaaca 1740

cagtggAACc tccaaatgaa ctatcgccTG ggcgagAGTT ttcaGTCGCA acttagCCCT 1800
tcagCGGTGG cgggaACACG tctactGGCT gagAGCCGCT ataacCTTGT cgatCGTAAC 1860
aataatATCG tGTTGGAGTA tcagAAACAG caggTGGTTA aactGACATT atGCCAGCA 1920
actatCTCCG GCGTCCGGG tcagGTTAT caggTGAACG cacaAGTACA agggGCATCT 1980
gctgtAAAGGG aaattGTCTG gagtGATGCC gaACTGATTG CCGCTGGCG cacattaACA 2040
ccactgAGTA ccacacaATT caactGGTT ttaccGCCT ataaACGCAc agcacaAGTG 2100
agtCGGGTA CGGACGACCT gacAGCCAAC ttttattCgc ttAGTGCCTC CGCGTTGAT 2160
cacaaggAA acagatCTAA ctcatTCACA ttGAGCGTCA CGTTCAgCAt GCCTCAGTTG 2220
acattaACGG CGGCCGTcAt tggTGA TGCGC gcACCGGCTA GTGGGAAAC TGCAATCACC 2280
gttGAGTTCA CGGTGCTGA ttttgaggGG aaaccCTTAG CGGGCAGGA agtGGTgATA 2340
accaccaATA atGGTGCCT gCGCGCATtG cattaACCA tacGACAGAT ggcGtGACGG tagtCACAGC 2400
gggcaACGGC aaagtGTTGA tACCCACTT ttAAAGGTA CTATCGCGC ggataAAATCC 2520
actCTGGCTG CGGTACCGAC atCTATCATC gctGATGGTc taatGGCTTC aaccatCACG 2580
ttggagGTTGA aggataACCTA tATCAGGATG cacaATGACG GCACTTATAg CGCACCAATTG 2640
accttaGGCA atATGGGCGT accAGTACCA CGTTGGGGT gatCCTATTG cagatGCTGG CGCTCCAGT 2700
gtGCCGAGTG tgacGGTTAA tatCCTGGCTC ccacACCGGA tATCAGGATG CAGATGTTGAG ttttGACACA 2760
ttcacCGTcT ataagaATGG aacGGTGTc CGGTGAGTAT tagCCCATT accGAGCAGC cAGATAGCTA TACCGCGACG 3000
gtggTTGGGA ataccGCCG agtacATTGc agaaaaAAAAT atCCCTATTc ccggTACCTA CGCTGACCGG tattCTGGTT 3120
aacGGGCAAa attTCGCTAC ttccAGTTAC agatGGATAA taacGATCAG ggtcaGGTGA CGATTACCTA CCAAACCTAT 3300
ttcacACCCA atGTATCGGT agcGAAGTGG CTGTGACGGC gaaaAGTAAA aaattCCAA gttattCGGT gagttatCgg 3360
ttctacCCCA atCGGTGGAT agcAGACAAt GCCAAGGTTc atacGATGGC ggcACTTCGc tggTATCGAG tATCGAGGCC 3420
ggAACCGCGTG CGCCTGACGG agatATGTcT gCGGTTCTG aatCCTCACG TGCAACCAAC 3480
tctGATTGGC aatCTGGCGA gacattGTGG ggcGAAGTGGG ggAGCTTGAC CGCGTATAAGT 3540
aatatGAACA CTGGCCTGCT gcaACCAGGG CCTGCACTA tggCGTTCCC GCTCTGTGCG 3600
ctgtcaatat aaccAGATAA cagatAGCAA taAGAAACAG 3660
3699

<210> 738

<211> 3891

<212> DNA

<213> Artificial Sequence

<220>

<223> Clostridium botulinum

<400> 738

atgcaatttG ttaataAAACA atttaatttA aaAGATCCTG taaatGGTGT tgatattGCT 60
tatataaaaa ttccAAATGT aggacaAAATG caaccAGTA aagCTTTAA aattcataAT 120
aaaatATGGG ttattCCAGA aagAGATAcA tttacAAATC CTGAAGAAGG agatTTAAAT 180
ccaccACCAg aAGCAAAACa agtTCCAGT tcatattATG attcaACATA tttaAGTACA 240
gataatGAAA aAGATAATTa tttaaAGGGa gttacAAAT tatttGAGAG aatttATTCA 300
actgatCTTG gaAGAATGTT gttaACATCA atAGTAAGGG gaataACCATT ttggGGTGG 360
agtacaATAAG atacAGAAATT AAAAGTTTAT gataACTATT gtattAAATGT gatacaACCA 420
gatGGTAGTT atAGATCAGA agaACTTAAT ctGATAATAA tagGACCTC AGCTGATATT 480
atacAGTTG aatGTTAAAG CTTGGACAT gaAGTTTGA atCTTACGCG AAATGGTTAT 540
ggctCTACTC aatacATTAG attAGCCCCA gattttACAT ttGTTTTGA ggAGTCACCT 600
gaAGTTGATA caaaATCCTt tttagGTGCA ggcaAAATTG CTACAGATCC AGCAGTAACA 660
ttAGCACATG aacttataCA tgctGGACAT agattATATG gaATAGCAAT taatCCAAAT 720

aggGTTTTA aAGTAAAATAC taatGCTAT tatGAAATGA GTGGGTTAGA agtaAGCTTT 780
gagGAacttA gaACATTGg gggACATGAT gcaAAAGTTA tagATAGTTT acaggAAAAC 840
gaattTCGTC tatATTATTA taataAGTTT aaAGATAAG CAAGTACACT taataAAAGCT 900
aaatCAATAG tagGTACTAC tgCTTCATTA cAGTATATGA AAAATGTTT TAAAGAGAAA 960
tatotCCTAT ctGAAGATAc ATCTGGAAAAA ttTCGGTAG AtAAATTAAA AtTTGATAAG 1020

ttataaaaaa	tgttaacaga	.gatttacaca	gaggataatt	ttgttaagtt	ttttaaagta	1080
c当地	aaacatattt	gaattttgat	aaagccgtat	ttaagataaa	tatagtacct	1140
aaggtaaatt	acacaatata	tgtatggattt	aatttaagaa	atacaatattt	agcagcaaac	1200
ttaatggtc	aaaatacaga	aattaataat	atgaattttt	ctaaactaaa	aaattttact	1260
ggatgtttt	aattttataa	gttgctatgt	gtaagaggga	taataacttc	taaaaactaaa	1320
tcattagata	aagatacaa	taaggcatta	aatgatttat	gtatcaaagt	taataattgg	1380
gacttgtttt	ttagtccttc	agaagataat	tttactaatg	atctaataaa	aggagaagaa	1440
attacatctg	atactaataat	agaagcagca	gaagaaaata	ttagtttaga	tttaataacaa	1500
caatattatt	taaccctttaa	ttttgataat	gaacctgaaa	atatttcaat	agaaaaatctt	1560
tcaagtgaca	ttataggcca	attagaactt	atgcctaata	tagaaagatt	tcctaatgg	1620
aaaaagtagt	agtagataaa	atatactatg	ttccattatc	ttcgigtca	agaatttgaa	1680
catggtaaat	ctaggattgc	tttaacaaat	tctgttaacg	aagcatattt	aaatcctagt	1740
cgtgtttata	cattttttc	ttcagactat	gtaaagaaaag	ttaataaaagc	taeggaggca	1800
gctatgtttt	tagctgggt	agaacaatta	gtatatgatt	ttaccgatga	aactagcgaa	1860
gtaagtacta	cggataaaat	tgcggatata	actataatta	ttccatatat	aggacctgt	1920
ttaaatatag	gtaatatgtt	atataaagat	gattttgtag	gtgcttaat	atttcagga	1980
gctgttattt	tgttagaatt	tataccagag	attgcaatac	ctgttattag	tacttttgca	2040
cttgtatcat	atattgcgaa	taaggttcta	accgttcaaa	caatagataa	tgctttaagt	2100
aaaagaaatg	aaaaatggga	tgaggtctat	aaatataatg	taacaaattt	gttagcaaaag	2160
gttaatacac	agattgatct	aataagaaaa	aaaatgaaag	aagctttaga	aaatcaagca	2220
gaagcaacaa	aggctataat	aaactatcag	tataatcaat	atactgagga	agagaaaaat	2280
aatattaatt	ttaatattga	tgattnaagt	tgc当地actt	atgagtctat	aaataaagct	2340
atgattaata	taaataaattt	tttgaatcaa	tgctctgttt	catatttaat	gaattctatg	2400
atccctttag	gtgttaaaacg	gttagaagat	tttgcgtctt	gtcttaaaga	tgcttatttt	2460
aagtataat	atgataatag	aggaacttta	attggtcaag	tagatagatt	aaaagataaa	2520
gttaataataa	cacttagtac	agatataacct	tttcagcttt	ccaaatacgt	agataatcaa	2580
agatttattt	ctacattttc	tgaatataatt	aagaatatta	ttaataacttc	tatattgaat	2640
ttaagatatg	aaagtaatca	tttaatagac	ttatcttaggt	atgc当地aaa	aataaataatt	2700
ggtagtaaag	taaattttga	tccaaatagat	aaaaatcaaa	ttcaattatt	taatttagaa	2760
agtagtaaaa	ttgaggttaat	tttaaaaaat	gctattgtat	ataatagtat	gtatgaaaat	2820
tttagtacta	gcttttggat	aagaattcct	aagtttttta	acagtataag	tctaaataat	2880
gaatatacaa	taataaattt	tatggaaaaat	aattcaggat	ggaaagtatc	acttaattat	2940
ggtagaaataa	tctggacttt	acaggatact	cagggaaataa	aacaataggt	agtttttaaa	3000
tacagtccaa	tgattaatat	atcagattat	ataaaacagat	ggatttttgt	aactatcact	3060
aataatagat	taaataactc	taaaatttat	ataaaatggaa	gattaataga	tcaaaaacca	3120
atttcaaatt	tagtaatat	tcatgttagt	aataatataa	tgtttaaattt	agatggttgt	3180
agagatacac	atagatataat	ttggataaaaa	tattttatc	tttttgataa	ggaatttaaat	3240
aaaaaagaaa	tcaaagattt	atatgataat	caatcaaatt	caggtatttt	aaaagacttt	3300
tggggtgatt	atttacaata	tgataaaacca	tactatatgt	taaatttata	tgatccaaat	3360
aaatatgtcg	atgtaaataa	tgttaggtatt	agaggttata	tgtatcttaa	agggcctaga	3420
ggtagcgtaa	tgactacaaa	catttattta	aattcaagtt	tgtatagggg	gacaaaattt	3480
attataaaaa	aatatgcttc	tggaaataaa	gataatattt	tttagaaataa	tgatcgtgt	3540
tatattaatg	tagtagttaa	aaataaagaa	tataggttag	ctactaatgc	atcacaggca	3600
ggcgttagaaa	aaatactaag	tgcatttagaa	atacctgtat	taggaaatct	aagtcaagta	3660
gtagtaatga	agtcaaaaaaa	tgatcaagga	ataacaaata	aatgcaaaat	gaattttacaa	3720
gataataatg	ggaatgtat	aggctttata	ggatttcatc	agtttaataa	tatagctaaa	3780
ctagtagcaa	gtatggta	taatagacaa	atagaaagat	ctagtaggac	tttgggttgc	3840
tcatgggaat	ttattcctgt	agatgatgga	ttggggagaaa	qqccactgt	a	3891

<210> 739
<211> 9047
<212> DNA
<213> Artificial Sequence

<220>
<223> *Staphylococcus aureus*

<400> 739
aagcttcttg taaaaaaaata tcttcaatct tatgaaagat ctccacattha tcgctaactt 60
ttgagacaag tgtttttcca atttcaccccg cttccccatt tgccaccacga tacaattgtat 120
tattaataat aaqcccagca ccaataacctt tatgtatact taaaggcata agattattgt 180

aggataaaatt atgattaaaa ttacgttcat ataacgctga aagattcgct tcattttcaa 240
ctacgactgg aacatttagta atttcttttta ttttcttagc aattgaaatt ccttcagttt 300
catggaatgg taaatatgtc acatgctgct cattatccac aactccatgt atagaaacag 360

acacacctaata tagtccgtta taagtatcaa gtttctccctg aatatcaata tggtttttta 420
ttatgcttaa tatactacta accttttcat cagtaaatc ataagattca tgcttaatga 480
cattaccatc aaaataattg tacatcaact caacagaact ataagttaaa tccaaagaaa 540
taaaataacc ataaagatga ttaaccttca gaagaatagg ttttctacca ccactcttcg 600
tgctatcacc ctacccaacc tcattaacaa gagatttata ctttaactta ttccaaataac 660
tagaaatcgt tgccttatta actctttaa gatatttggc cgogaataat tatgatggta 720
taaatttccc ttagcactct ttttcttta tcattttat ctttatttcc ataattgcct 780
accccataag ttatTTGAA tttagttt agtttatca gtattttat accaactatt 840
ttaacataaa ttaaattaaa ccttagaaca actaaaacc tcacttaggt tattcatttc 900
gttctttat ttttttattt atttcaataa attacgtatt tccaatatga cgattttta 960
tgcaaagtgc ttgtatgtt ttcaaatttt tgacatttt gcaatctaaa tagccaatta 1020
ggaaattttt aacattttt atttggttga tattataactt aatgtatctt aaatagaag 1080
aggatgcat atggatttca ctgggtttt tacaagcat ttttcaact aaaaaacaga gaaatattt aacgacttga 1120
cattcaggct ttccgttaat ttttcaact aaaaaacaga ttgtttctc tggatttttcaata 1160
ttgtttctc tggatttttcaat gtattgttg aaacacaaca ttttctaca aagtttaga 1200
tatttctcaa ttcttctatt tcattttgtg atagatctt gtttttagat gttttatatt 1240
caagtgaatt gaaaccgcct ttgtatatt tattgataaa tttttagtct tttttagat 1280
ttatattact ttcttctaca agagagtaat atggaaaaat tttttagtct tttttagat 1320
ctataaatcc cttttctatc aatctcgta taatgttacg aatggttttt ggactccagt 1360
ccttttgcattt tttttagtct tttttagtct tttttagat 1400
tggatattcat aacttcccat tctgcagatg atatttcata tttttagtct tttttagat 1440
taatttccatt tcttttaaaa tacgctcaga aatttggttt gtttttagat tttttagat 1480
gtcttcgcct tttaaatgtg tagaaaaata atacgtattt tttttagtct tttttagat 1520
tacgaaccat ccatttgcct ctttgtgatt cacgattttc aatggttttt ggactccagt 1560
tttataatgt ttttttttttcaat tttttagtct tttttagat 1600
atcaaaatgc atggtatgtt gtttcatatt tttcaacaaa tttttagtct tttttagat 1640
aatttttaat gaagattcat tccaataatt ttcatttttcaat tttttagtct tttttagat 1680
ttcaattttaga tctaaataag atttaacotc atottgttct tttttagtct tttttagat 1720
gtaataccaa tttactgaat atttcattga agaattttaa tttttagtct tttttagat 1760
tttaaatggat tattgtatgtt tatcccattt ttgtttagt tttttagtct tttttagat 1800
ttggtogaat gccattaacg ctaaataaaat ttgttaagta aatgttttcaat tttttagtct tttttagat 1840
tttactttt ggttcattat aaatagaata agttgttcc tttttagtct tttttagat 1880
acttccatca aatcccttga aatacggagc tagttgattt ggttcattat tttttagtct tttttagat 1920
tgtttcatat ttgtcttggt gaacatgtgc agatagtaac tttttagtct tttttagat 1960
tataactacat acaatatacg caacaatacg ctgtttcga ggttcattat tttttagtct tttttagat 2000
ataaaatgtca atatacttaa cacgttcttt aatatttga tttttagtct tttttagat 2040
tgctgcacaca ttatTTTGT gctgagattt taaaatagag tttttagtct tttttagat 2080
ataacgtata tggatgttgc gattcaaaat ttttaaaacg tttttagtct tttttagat 2120
acagtcattt tccatcattt ttttacttta atatagtgtca ggttcattat tttttagtct tttttagat 2160
tttaaaaaca acataaagct ggttgaatat taagtcatga tttttagtct tttttagat 2200
atgttagaata atatattca ttttcttgc attcatgtt tttttagtct tttttagat 2240
tacaatttgg gatttcacta aaccaaaatac catcggattt tttttagtct tttttagat 2280
aattgttata tgctttttgtt agaactgcat ttactttga tttttagtct tttttagat 2320
aagatatgac gattccaaatg acgaactttt aataaacatca tttttagtct tttttagat 2360
catataaaaat aagcacaaca aactacccaa tacccatatc tttttagtct tttttagat 2400
atTTGAGGTC tcaaaactgt taacattaat tgcttaatgt tttttagtct tttttagat 2440
accatctaac atatgactaa ccgaagaagt cgtgtcagat tttttagtct tttttagat 2480
ttttgaaaat gtaaaaattcg atattttgtt aatattgtt tttttagtct tttttagat 2520
gagcactaatac aaccaaaatct tatgtgacat aatattttga tttttagtct tttttagat 2560
tctcactaaa aaaattacac atatcgttagt caatgaactg tttttagtct tttttagat 2600
agatgataac accttctaca cttccatatac acaaaaattt tttttagtct tttttagat 2640
tactacattt gtaatatact acaaattgtt tagttagt tttttagtct tttttagat 2680
ataaaaaattt gttccacttat tttttagtct tttttagtct tttttagat 2720
gtttcaaaatg ataaagaaat taataatactt attgtatgtca tttttagtct tttttagat 2760
caagtttata aagatagcag ttatattttctt aaaaagcgata tttttagtct tttttagat 2800
gaacgtccga taaaatataa taatagttaa ggcgtttaag tttttagtct tttttagat 2840
aaaataaaaaa aagtatctaa aaataaaaaa cgagtagatg tttttagtct tttttagat 2880

aactacggta acattgatcg caacgttcaa tttaaatttttg ttaaaagaaga tggtatgtgg 3840
 aagtttagatt gggatcatag cgtcatttatt ccaggaatgc agaaaagacca aagcatacat 3900
 attgaaaatt taaaatcaga acgtggtaaa attttagacc gaaacaatgt ggaattggcc 3960
 aatacaggaa cacatatgag attaggcattt gttccaaaga atgtatctaa aaaagattat 4020
 aaagcaatcg ctaaagaact aagtatttct gaagactata tcaacaacaa atggatcaaa 4080
 attgggtaca agatgatacc ttctgttccac tttaaaacccg tttaaaaaat ggatgaatat 4140
 ttaagtgatt tcgaaaaaaaa atttcattt acaactaattg aaacagaaaag tcgtaactat 4200
 cctctagaaa aagcgacttc acatctatta gttatgtttg gtcccattaa ctctgaagaa 4260
 ttaaaaacaaa aagaatataa agctataaa gatgatcgat ttattggtaa aaagggactc 4320
 gaaaaaactt acgataaaaaa gtcacacat gaagatggct atcggtcac aatcggtgac 4380
 gataatagca atacaatcgca acatacatta atagagaaaa agaaaaaaga tggcaaaagat 4440
 attcaactaa ctattgatgc taaagttcaa aagagtattt ataaacaacat gaaaaaatgt 4500
 tatggcttag gtactgctat ccaccctcaa acaggtgat tattagcact tgtaagcaca 4560
 cttccatatac acgttotatcc atttatgtat ggcattgatc acgaagaata taataaatta 4620
 accgaagata aaaaagaacc tctgctcaac aagttccaga ttacaacttc accagggtca 4680
 actcaaaaaa tattaaacagc aatgattggg ttaaataaca aaacattaga cgataaaaaca 4740
 agttataaaa tcgatggtaa agttggcaaa aaagataaaat cttgggggtg ttacaacgtt 4800
 acaagatatac aagtggtaaa tgtaatatac gacttaaaac aagcaataga atcatcagat 4860
 aacattttct ttgcttagt acgactcgaa ttggcagta agaaattttga aaaaggcatg 4920
 aaaaaaacttag gtgttggta agatataccaa agtGattatc cattttataa tgctcaaatt 4980
 tcaaaacaaa atttagataa tggaaatatta tttagctgatt caggttacgg acaagggtgaa 5040
 atactgatta acccagtaca gatccttca atctatacg cattagaaaaa taatggcaat 5100
 attaacgcac ctcacttatt aaaaagacacg aaaaacaag ttggaaagaa aaatattatt 5160
 tccaaagaaa atatcaatct attaaatgtat ggtatgcac aagtcgtaa taaaacacat 5220
 aaagaagata tttatagatc ttatgcaac ttaattggca aatccggatc tgcagaactc 5280
 aaaatgaaac aaggagaaag tggcagacaa attgggttgtt ttatatacata tgataaaagat 5340
 aatccaaaca tggatgtggc tattaaatgtt aaagatgtac aagataaaagg aatggctagc 5400
 tacaatgcca aatctcagg taaagtgtat gatgactat atgagaacgg taataaaaaa 5460
 tacgatatac atgaataaca aacagtgaa gcaatccgt aacatgggtt cttcaetgtt 5520
 ttattatgaa ttattaaataa gtgctgttac ttctccctta aatacaattt cttcattttc 5580
 attgtatgtt gaaagtgaca ctgtacggc tccatttttct tttttttagt atttcttatt 5640
 tggtaatttca gcgataacgt acaatgtatt acctgggtat acagggtttaa taaatttaac 5700
 gtatttcatt tgggttccctg ctacaacttc ttctccgtat ttaccttctt ctaccataa 5760
 tttaaatgat attgaaagtg tatgcatgco agatcaatg atacctttaa atctactttg 5820
 ttctgttattt tcttttatcta tatgcatata ttgaggatca aaagttgttg caaattggat 5880
 aatttcttct tctgtatataa gaaggctttt tgggttggat ttcttcctta ctataaaatc 5940
 atcgatatttc atatatgtct ctctttctta ttcaaaattaa ttttttagta tgtaacatgt 6000
 taaaggttaa gtcaccgtca ctgaaacgt aagactcaatc ctaactttctt attgagacaa 6060
 atgcaccatt ttatctgcat tggatgtaaa gataccatca actccccat tagcaagttg 6120
 gtttgcacgt gctgggttgc ttacgttca tacgttcaat tcataacccg cttcttttac 6180
 catttttact tttgcttttag taagtttgcg atcttcagtg ttactattt tagcattaca 6240
 gtaatctaa agtggttcc agtcttcacg aaacgaagtt gtagggata taactgtct 6300
 gtatattat ggcattgtt ctctgtcaaa tttaacaatgc acaacattaa agcttaaatg 6360
 agctcttctt gattctgatt taagtttgc ttacgttcaat ccactgtctt aaccatactt 6420
 ttagaaagtg ctgtccatt cgtccagta atacctttta atctcatttataa taaattcata 6480
 ttatattcat ttgcttattt tactacatca tggaaatgtt gcaaatgttc atctttgaat 6540
 ttttccacca accaagatcc tgcagaagca tttaacaatgtt catcataatt caattcagg 6600
 atttccccgg acatattttgt agtccgttctt aaataatcatt catgaatgtt aatcgttgc 6660
 tcaatcttttgc taatttgcac atctacttcc aaccaggatata taccttctac ttctgaagca 6720
 gctttaaatg atgcaatgtt atttccggaa gttttacttag gtaatcctct atgtccatata 6780
 acagtttagca tattacctt ctttcattt tttttttta attaacgtaa ctgttatttac 6840
 acattaaatcg cacttttattt tccatttttttta agatgatgaaat atcataataa aagaagtcga 6900
 tagattcgttta ttgattatgg agttaatctt cgtctcatctt cattttttaa aaatcattta 6960
 tgactccca gctccattttt gtaatcaagt ctatcttgc ttgatccctt atctgcattt 7020
 ttacttagga ttgcttttaa ctaccctt atcagaattt tactgagaac tgcttttaac 7080
 gatcacctct tatctgcaat ttgccttgcg actgtttta acgtacccctt tatctgcaat 7140
 ttacttgcgaa actgtttta acttaccctt tatcgttcaat ttgatccctt atctgcattt 7200
 acgtacccctt tatctgcaat ttacttgcgaa actgtttta acaaacccctt tatctgcaat 7260
 ttacttgcgaa actgtttta acttaccctt tatcgttcaat ttacttgcgaa aactgtttt 7320
 aacaaacccctt ttatctgcaat ttacttgcgaa aactgtttt aacaaacccctt ttatctgcaat 7380
 ttacttgcgaa aatttgcgat ttacttgcgaa aactgtttt aacaaacccctt ttatctgcaat 7440

taaaaatgaa	aattacaacc	gattttgtaa	gtctggacgc	ctgagggaat	agtatgtcg	7500
agagactaat	ggctcgagcc	atacccctag	gcaagcatgc	acgtacaaaa	tcgtaagata	7560
aaaaaataag	catactactg	taaactttaa	aaaatcagtt	tagtgatatg	cttattttat	7620
tcgagtttag	atttatgtcc	caagctcata	aagcacaatc	ggccactagt	ttatattctct	7680
atcttatatg	ttctgatatg	gtcttctata	ctgtataagt	atacttttga	atatggatct	7740
tgtgtcaatt	cacgttcgaa	atcaaattct	tgattatcaa	atgctgttaa	agaatgttc	7800
gtatttctcg	actgataatt	gctctctaga	ttctagcata	ttaagtgtt	tctctttatc	7860
taatgotttgc	tcatatcctt	taacgatgta	accactaaag	atttctecta	ctgctcctga	7920
accataacta	aatagacata	cttctcttct	ggttggaaatg	tgtggttctg	taataacgaa	7980
attaaactta	agtataatga	tcctgtataa	atgttaccaa	catctctatt	ccataatacg	8040
gttctgttgc	aaagttgaat	ttatagtata	attttaacaa	aaaggagtct	tctgtatgaa	8100
ctatttcaga	tataaacaat	ttaacaagga	tgttatcaact	gttagccgtt	gctactatct	8160
aagatataca	ttgagttatc	gtgatataatc	tgaatattta	agggAACGt	gtgtaaacgt	8220
tcatcattca	acggtctacc	gttgggttca	agaatatgcc	ccaattttgt	atcaaatttt	8280
gaagaaaaaag	cataaaaaaag	cttattacaa	atggcgtatt	gatgagacgt	acatcaaaat	8340
aaaagggaaaa	tggagctatt	tatacgtgc	cattgatgca	gagggacata	cattagatat	8400
ttgggttgcgt	aagcaacgag	ataatcattc	agcatatgcg	tttatcaaac	gtctcattaa	8460
acaatttttgt	aaacctcaaa	aggttaattac	agatcaggca	ccttcaacga	aggttagcaat	8520
ggcttaaagta	attaaagctt	ttaaacttaa	acctgactgt	cattgtacat	cgaaatatct	8580
gaataaccctc	attgagcaag	atcaccgtca	tattaaagta	agaaagacaa	ggtatcaaag	8640
tatcaataca	gcaaaagaata	ctttaaaagg	tattgaatgt	atttacgctc	tatataaaaa	8700
gaaccgcagg	tctcttcaga	tctacggatt	ttcgcctatgc	cacgaaatta	gcatcatgct	8760
agcaagttaa	gcgaacactg	acatgataaa	ttagtggtta	gctatatttt	tttactttgc	8820
aacagaaccg	aaaataatct	cttcaattta	tttttataatg	aatcctgtga	ctcaagattg	8880
taatatctaa	agatttcagt	tcatcataga	caatgttctt	ttcaacattt	tttata>tagcaa	8940
attgattaaa	taaattctct	aatttctccc	gtttgatttc	actaccatag	attatattat	9000
cattgatata	gtcaatgaat	aatgtacaaa	ttatcactca	taacagt		9047

```
<210> 740
<211> 1832
<212> DNA
<213> Artificial Sequence
```

<220>
<223> *Acinetobacter baumanii*

<400> 740
cgctgtacg taataactggt gaagccccac gtcctaagac gatgttttag ccaggtgaag 60
aattacttgt tattgacggt ccattcacag actttaaagg tgtggtgaa gaggttcaat 120
acgataagtc acgttaacg ttgacgatta acgtgtttaa tcgaccact cagggtgaac 180
tcgaatttcg ccaagtgcgaa aaaacgattt aatcttaatt ggttggaaaag cgcccgattt 240
tatcgggcat tggtgttgcg acagtattgt tacgttagaaa ttggggagcc taacggcgtt 300
tgtacccaga ggtattttaa atggctaaga agattgacgg ctatatacaag ctgcagttc 360
cagctggtaa agcaaatcca tctccaccga ttggccctgc acttaggtcaa cgtgtgtaa 420
acatcatggc gtttgcgtaaa gaattccaaa aacaattttaa agtttcttacg gctaaactct 480
taccagactt accaagtttt acggggcggtt tggtgggtt ttggggctac gatgtgtcc 540
gctacatcg agcacgttta aagaatgtac ctgcggctga tccgattacg ctgcagatt 600
tatgggttgc gctotcaaaatg acagtcatgg tttttgacaa tcttaaagat acgttatttt 660
taatttgtcga tgccgatatac gagcagagta atgcctatga agacgcctcaa caaaaattag 720
atcaatttgcg acagggttgcg ggcactccag ttatgttgcg agcgcgacca catacgcctc 780
cgcatgttgc atcaatttact ggtaaagccaa aattcttaga gacggtagag aagggttaaag 840
aatatatccg tgcaggcgat gtgtatgcagg ttgtacctgg gcagcgtatg gtttctgatt 900
tttgcgttggaga agcttacag gtttaccgtg cattacgtca tttaaatccatc accttacccatc 960
tattcttgcgt tcaaggacaa acgattactg ataaaaaaacc atttcatatatt gttgttcat 1020
caccggaaat tttatctcg ttagaaaatg gtattgtac agttcgcacct ttggcaggaa 1080
ctagaccgcg cggtaaaact aaagaagaag atatacgatt agaaaaagat ttgcattctg 1140
atgaaaaaaga gattgtcgaa catttaatgc tgattgtatct tgccgaaac gatgttagggc 1200
gcgtatcaaa aataggtaag gtccaaaggta cggatcaaat ggtgatcgag cgctattcac 1260
atgtcatgcg tattgttca aatgtacaag gtgaagtqcg tgratqatc qatqcacttq 1320

atgtatcaa agccacctt ccggcaggaa cgttatcagg tgcccaa~~aa~~ attcgtaaa 1380
 tggaaattat tcatgaaact gagectgtga aaagaggagt tttggcg~~gg~~ gctgttggtt 1440
 atttggatg gcatgtgaa atggatatgt cgattcaat ccgtacttgt gttatccgt 1500
 acaaaaaggt gtatgtacag gctggtgcaag ggctagttgc tgactcaa~~at~~ ccagaatctg 1560
 agtggaatga aacccaaata aaagctcg~~c~~ cagtgatcaa agcggttg~~aa~~ ttatcatcaa 1620
 acggattgat ttataggtt tttagcggtt tttttaaaaaa aaccgcttgc atcg~~ttt~~ gga 1680
 agtttgcta aactgcacac cgttccgata cgaaacgtac gaaacact~~aa~~ gaaacgccgg 1740
 catagctcag ttggtagagc aactgacttg taatcagtag gtc~~cc~~ acagttt cgaatccgt 1800

tgcggcacc attttaaagt gttaagttaa tt 1832

<210> 741

<211> 382

<212> DNA

<213> Artificial Sequence

<220>

<223> Acinetobacter baumanii

<400> 741

cacaatgaca ttgcaagcaa ttgctcaatg tcaaaaatct ggtggta~~c~~ at gtgc~~cc~~ tcat 60
 t~~g~~atgctgag cacgc~~c~~ tag accctcaata tgcacgcaag cttgg~~t~~g~~a~~ atattgataa 120
 cctacttgtt tcacaacccg acaatgg~~t~~ga gcaaggactt gaaattgct~~t~~g acatgctgt 180
 ccgttcagggc gcaattgatt taatcg~~t~~gtt ggactcg~~t~~ta gctgcact~~t~~a cccctaa~~a~~ 240
 agaaatcg~~aa~~ ggtgagatgg gtgactctca tatgg~~t~~cta caagcgc~~t~~tt~~t~~tatgagcca 300
 ggacttcgt aaaattacgg gtaatgctaa acgttcaa~~ac~~ t~~g~~tatgg~~t~~a tcttcattaa 360
 ccagattcgt atgaaaattt~~g~~t 382

<210> 742

<211> 344

<212> DNA

<213> Artificial Sequence

<220>

<223> Acinetobacter baumanii

<400> 742

aaatctgccc gtgtcg~~t~~ttgg tgacgtaatc ggtaaat~~at~~accgc~~t~~tg~~g~~ tgactcag~~c~~t 60
 gtttatgaaa ccattgtt~~c~~g t~~a~~tggctcaa gacttag~~c~~t tacgttattt attgg~~t~~gtat 120
 ggtcagg~~g~~ta acttcgg~~t~~tc gatcgatggc gatagc~~g~~ccg cggcaatg~~c~~g ttataccgaa 180
 gtccgtat~~g~~ta ctaagctggc acatgag~~c~~tt ctgcagatt tagaaaa~~a~~ga cacagt~~t~~gac 240
 tgg~~a~~agata actacgacgg tt~~c~~gg~~a~~acgt atccctgaag tacttccg~~a~~c acgtgttcca 300
 aactt~~g~~ttaa tcaacgg~~t~~gc tgcgggtatc g~~c~~cgttag~~g~~ta tggc 344

<210> 743

<211> 909

<212> DNA

<213> Artificial Sequence

<220>

<223> Acinetobacter baumanii

<400> 743

gataatagct ataaagttt~~c~~ aggtggctta cacggc~~t~~gt~~g~~tttctgt t~~g~~ttaacg~~c~~a 60
 ct~~t~~caag~~t~~a aattgc~~c~~at~~t~~ aacaattt~~c~~ c~~t~~gtgctgg~~t~~cc aatccat~~g~~a gcaagaat~~a~~ 120
 catcatgg~~t~~g atccg~~c~~ataa tccatt~~g~~ct~~g~~ g~~t~~gattgg~~t~~g aaacggata a taccgg~~a~~aca 180
 actgtac~~g~~t tttgg~~c~~caag tgc~~a~~aaa~~c~~ccat~~t~~tt~~a~~ t~~g~~ttgaattt 240
 ct~~a~~gcac~~g~~cc gtt~~t~~acgt~~g~~ta g~~c~~tttcttt~~t~~tt~~g~~at~~g~~ct~~g~~ g~~t~~gtac~~g~~t~~at~~ 300
 gat~~g~~aac~~g~~ta ttaac~~c~~tt~~g~~ta g~~c~~at~~t~~gt~~g~~ta gactat~~g~~aa~~g~~ g~~c~~gg~~t~~ttat~~c~~ t~~g~~ag~~t~~tt~~g~~ta 360
 aaatacat~~c~~ a~~c~~gaag~~g~~taa a~~a~~accat~~c~~tc a~~a~~c~~g~~aaat~~c~~t~~t~~ccat~~t~~~~c~~a~~c~~ a~~g~~ctgat~~g~~t~~c~~ 420
 gacaac~~g~~ta tt~~g~~ct~~g~~ta~~g~~ a~~g~~ttgc~~c~~att~~g~~ caat~~g~~gaac~~g~~ atagtt~~c~~ac~~a~~ a~~g~~aaaat~~g~~t~~t~~ 480

cgctgtttca caaacaacat tccacaaaaa gatggtggtt cgcactt~~a~~gc aggtttccgc 540
 gcagctttaa cacgtggc~~t~~ aaaccagtat ctggaaaatg aaaatatt~~c~~t caagaaagaa 600
 aaagtgaatg tgactggta tgatgcgc~~t~~ gaagg~~t~~taa cagcgatt~~a~~t ttctgttaag 660
 gttcctgatc caaaaattc~~t~~ gtctcagaca aaagaaaaat t~~g~~tatc~~a~~ag tgaggtaaaa 720
 ccagcggtag agcaagcaat gaacaaagag ttctctgtt acttact~~t~~ga gaatccacaa 780
 gctgcaaaat caattgcagg caagattatt gatgctgcac ggcac~~t~~ga tgctgcacgt 840
 aaagcacgtg aaatgacacg ccgtaaagagt gcattagata ttgcagg~~t~~tt gcctggtaaa 900
 ttggctgat 909

<210> 744
 <211> 1430
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Acinetobacter baumanii

<400> 744
 aacttgctct ttctgtgagtt cagtaaatga cttttctt~~g~~t atatgg~~t~~ga gtttaggtat 60
 c~~g~~aaaactctg ccatttttt tatctatgtt atatttccg c~~g~~tttt~~t~~ga atttt~~g~~acta 120
 tttgaggca~~a~~ accgcttgc~~c~~ gaccccattt t~~g~~gtacaaca c~~g~~gcactt~~c~~a tttattaaaa 180
 c~~g~~ctttt~~t~~atc~~t~~ gttggcg~~g~~at aaaaagacgt gcagaagtc tagaatt~~t~~a tcagcaggaa 240
 t~~g~~tctggaaa gat~~t~~ttggcc atttgaagca c~~g~~gaagaatg taaaagc~~g~~at ctgg~~t~~ttcat 300
 gctgttt~~c~~ag tcggggaaac caatgctgc~~a~~ c~~g~~gccctta~~a~~ ttgaatatt~~a~~ cctaaaactt 360
 gggcagcc~~a~~g tcttagtgc~~a~~ caataccacg aaaacagg~~t~~gc ag~~g~~ctcg~~t~~gc caagt~~c~~actt 420
 ttctaaaag aaccatattt agat~~t~~tattt caagcc~~t~~ttt atttgc~~c~~gt agaccagaag 480
 c~~c~~tctttta~~a~~ aaaaatttt~~t~~ t~~g~~agttat~~t~~at c~~g~~cca~~a~~agc ttttagc~~a~~ct gttgaaaact 540
 gaactctggc caaaatttaat c~~g~~atcaag~~c~~ aaattac~~g~~c at~~g~~tac~~t~~tg tttgctgc~~t~~ 600
 aatgctcggt t~~g~~t~~c~~agaaaaa atct~~g~~caaaa g~~g~~atatgg~~c~~a a~~g~~t~~c~~tc~~g~~gg tttaccg~~c~~a 660
 ggtatgtt~~a~~ aacagctg~~g~~ga ctgggtgtt~~a~~ gctcaagata g~~t~~gcaact~~c~~g tcagcgttat 720
 gttgagctt~~g~~ gtttagac~~g~~a acacaaaaat~~g~~ c~~g~~agg~~t~~cg~~t~~tg gtaatatt~~a~~ gtttgatatt 780
 catgcgcc~~a~~g aggcttttat taaaacaag~~c~~t gcccatt~~g~~c at~~g~~acaa~~t~~g t~~g~~atctggaa 840
 aatcggcagg ttgtgac~~g~~at t~~g~~cc~~c~~agtaca~~t~~ catgcaccc~~c~~ aagaacaa~~c~~a aattttggaa 900
 gcaactcg~~c~~c ctttattaaa tt~~c~~agat~~c~~gt g~~g~~at~~t~~gg~~t~~gt~~t~~ g~~t~~att~~t~~gt~~t~~gt gcctcg~~t~~cat 960
 cotgagc~~g~~tt tcgat~~g~~aat~~t~~tt~~t~~ t~~g~~ccaaaatt~~t~~ taaatttaat tacgc~~c~~at~~c~~gt 1020
 agaagtat~~g~~ g~~c~~ccaaaag~~t~~at t~~c~~at~~g~~cc~~a~~g acgca~~g~~ttt at~~c~~tc~~g~~ct~~a~~ g~~c~~gtat~~g~~gg~~t~~ 1080
 gagctctgg~~t~~ t~~t~~at~~g~~gtat~~g~~c c~~t~~taa~~g~~t~~c~~g~~t~~ g~~t~~gt~~t~~ttt~~g~~ taggc~~g~~gt~~t~~c tttaaat~~g~~ag 1140
 c~~c~~gggtgggg g~~g~~cataataat tt~~t~~tagaaac~~c~~t at~~g~~gttttaa at~~g~~tac~~c~~t ac t~~g~~tagt~~g~~ga 1200
 c~~c~~cg~~t~~ttatt ttaacttt~~c~~a aacgatt~~g~~tc gat~~g~~agg~~t~~ca tt~~g~~at~~g~~aa a~~t~~g~~t~~ctgt~~c~~ttt 1260
 attgctcaag atgcgcag~~c~~ g~~g~~tc~~t~~tt~~g~~at at~~c~~tc~~g~~tt~~g~~ tagt~~c~~t~~g~~gc agaact~~t~~gag 1320
 g~~g~~gact~~g~~ac~~a~~ agttagt~~g~~at acaggcgc~~c~~at aa~~g~~tt~~g~~tt~~g~~c aac~~g~~taat~~c~~a ag~~g~~ttcc~~c~~tt 1380
 caaaaacata tcgggg~~t~~gt~~t~~ taat~~c~~gtat~~c~~ ctggccgaaa aat~~c~~at~~g~~a at 1430

<210> 745
 <211> 3609
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Concatenation of C. jejuni genes

<220>
 <221> misc_feature
 <222> 478-527, 1005-1054, 1457-1506, 2014-2063, 2562-2611,
 3071-3120
 <223> n = A,T,C or G

<400> 745
 atgataggt~~g~~ aagatataca aagagtatta gaagctagaa aattgatt~~t~~t agagatcaat 60
 ttgggtggaa ctgcttatt~~g~~ aacaggaatt aattctc~~c~~atc ctgattat~~c~~c gaagg~~t~~tgta 120
 gaaagaaaaa taagagaag~~t~~ gacaggtttt~~t~~aatatact~~g~~ tggctgagg~~a~~ ttaat~~c~~gag 180

gcgactcaag atacggggagc ttatgtacaa atttcagggt ttttaaacg tgt tgcaaca 240
aaactttcta aagtatgtaa tgacttaaga ctttaagta gtggccaaa atg tggctt 300
aatgagatta atottccaaa aatgaacca ggtagttcta tcattgcagg taa ggtaaat 360
cctgttattc ctgaagtagt taatcaagtt tggatattttg ttattggagc aga cgtaact 420
gtaacttttgc ctgtgaggg tggacaatta caacttaatg ttttgaacc agt tggatnnn 480
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnngat cct ttacgg 540
ctgatcc tacatcatgta ttttgatg tggatgat ttaaaaaagga caa atgtatg 600
aaaaatgtcc aagaagata gcaaaaaaaag caatagaaca cttaaaaat agt ggcata 660
ctgatactgc ttactttgga ccagaaaaatg aattctttgt ttttgatagt gta aaaatag 720
ttgatactac tcattgttct aagtatgaag ttgataccga agaaggagag tgg aatgtatg 780
atagagaatt taccgatagc tacaatactg gacacaggcc aagaaacaaa ggt ggtatatt 840
ttccagttca gccaattgtat tcttttagtag atattcgat tggaaatgtt caa accctt 900
aaaaagtagg tctaaaaact tttgttccatc atcatgaagt tgcacaagga caa gctgaaa 960
taggatgaaa tttggcacg ctgtagaag cagctgacaa tggatnncnnn nnnnnnnnnn 1020
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnngaaatg tggatnncnnn nnnnnnnnnn 1080
tgaaggatgt cacgttctt ttgatttccctgataat aaaaaacgtt ctttacatc 1140
acaagggtct gttcatcgc tttagtctt ttatccgtat gtcataatc tgaatgtaaa 1200
agaagaatat atgaaatgg cagctgaaat agtagctaaa atccctacta tagtggccac 1260
cgcttataga tataaacacg gcttccat ggcttatcca aatitagatc gtg gttttac 1320
agaaaatttc ttatataatgt taagaaccta tccttacat catgtagago ttaaaccat 1380
agaagtaaaa gcacccata cagttttat gctcatcga gatcatgagc aaa atgttcc 1440
aacttcaaca gttcgtnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 1500
nnnnnnngcg gacatttaac tcatggtca aaagtaagtt cttcggccaa aat gtatgaa 1560
agctgtttt acggcgtaga acttgatgga agaattgatt atgaaaatg aag aagaaatt 1620
gctaaaaaag aaaaacccaa acttataatgt tggatggacta gtccttatgc aag aagtatt 1680
gattttgcta aatttagaga aattgctgat gaaatagtg cctatcttt tgctgtatata 1740
gcacatattg caggcttctgt tggccaggt gggatccaa gtcctttcc ata < gctcat 1800
gtagtaagct caactacaca taaaactttg cgtggccaa gaggtgttat tat tatgaca 1860
aatgatgaaag agcttgcata aaaaattaat tctgcccattt ttccaggat tca aaggttgt 1920
cctttgatgc atgtatgc tgccaaagca gtaggattta aatttaatct tag < gatgag 1980
tggaaagttt atgcaaaaca agtaagaact aatnnnnnnn nnnnnnnnnn nnnnnnnnnn 2040
nnnnnnnnnn nnnnnnnnnn nnngactta atatcaatga aaattgtgga gcttacatc 2100
ctgcaattt agctgctgag gtaaaggctt tgcgtcaga tggatggctt gcttttgatg 2160
gtgatgcaga tcgtttgggt gttgtatgt aaaaaggcga agtggctaat gggatagtt 2220
tattggcgctt atggcactt tatcttaaag aacaaggtaa attacaatca agt gttgtgg 2280
ctactataat gagaatgtt gctttaaaag agttttaaa taaacatgt atagaacttg 2340
atacttgcata tggatggcgt aaatatgtc ttggaaaact aaaagccaaat ggt gggaaatt 2400
ttggatggaga acaaagtggg catattattt ttagcgattt tgcaaaaact ggagatgggt 2460
tgatagccgc ctgcaattt agtgcattaa tgcttctaa gaaaaatct gcaagttcta 2520
tttgggtca agttaaacct tatttcacca nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 2580
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nttacattt aagcgctatg act < aagctt 2640
agaagatctt aaaaatttc gccaacttca ttctaaaacc cttggacacc ctgaaatttc 2700
aactcttggaa gtagaaatcg ctacaggccc tttaggacaa ggcgttgcca atg < tggtagg 2760
ctttgcata gcaaaaaaaa aagcacaaaa ttgcttaggc agtgettta tcgatcataa 2820
aatttattgt ctgcggag atggggattt acaagaaggc atttcttgcata tggatcttgc 2880
tttagcagga cttcacaaac ttgataactt catacttattt tattatgtatg acaatatactc 2940
tataagaaggc gatgttagtt tagcctttaa cgaaaaatgt aaaaatgcgtt ttgaaagcaca 3000
aggatttgcata gtttaagta taaatggaca cgattatgaa gaaatcaata aag ctttgc 3060
acaagctaaa nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 3120
ggccggctt cagatccgc ggcttacag tacttagctc catatactgg tggatccagg 3180
ggtgaattttt ttagagacaa cgcaaaacat gctttaattg tttatgtatg tttgagcaag 3240
catgctgttag ctatcgca aatgtctttg atttacgtc gtcctccagg tggatggact 3300
tatccaggtg atgtttttt ctttcatca agattgctt aagagcaag caagctaaat 3360
gatgaatttag gtgcgtgtt tttgacggca ttggccgat aatggatcataa agcaggagat 3420
gtttctgctt atattccaaat taatgttatt tcaattacag atggacaaat tttcttagaa 3480
actgatttat ttaactcagg aattcgctt gcaattatg ttggatattc agt < atctcg 3540
gttaggtgggg ctgctcaat taaagctaca aaacaagttt caggcacatt aagacttgc 3600
cttgctcaa 3609

<210> 746
<211> 1214

<212> DNA

<213> Artificial Sequence

<220>

<223> *Bordetella pertussis*

<400> 746

ttcggatgg gcatggcggt cgcacacgac gtcgaacacc gtgccgggtt c~~a~~tccagtgc 60
 gggttcctgc tcgaccgtgg ccacgcgcag gcccgaactg cgggcgatgt c~~g~~ccgtcg~~c~~ 120
 gggctcgctg cggccatcga gcaggcgca cagogaagat ttgcccgcgc c~~g~~ttgcgc~~cc~~ 180
 gatcaggccg atgcgtcgc cttcctggat ggcgaaatcg gcgtggtcca g~~c~~aaggggtg 240
 gtggccgtag gccagttgaa cgtcggtaa~~g~~ c~~t~~taataagg gaagcgaggg c~~c~~atgacag 300
 acagagtgtat g~~c~~gtattggc ctgtattgtc gcaggaacgc gccccggcggg c~~a~~gegcgc~~cg~~ 360
 cccggagccg gggccgcac tgtaactaaa tgccgc~~t~~gc agggcagatc gggcaatcgc 420
 gggggatgca aatccttcga ggaagg~~t~~ccg gactccacag ggcgggatag c~~g~~gctaacgg 480
 ccgtccggcg acgctggcgg gttgcccgc cggaaaagcc gaggaacagg g~~c~~cacagaga 540
 cgagtctgtc atgagggcgc gcctggcgc~~c~~ accggc~~a~~c~~g~~ gccatctccg tgccgc~~cc~~ 600
 tccggaaacg ggcggcgca tgacagg~~t~~g aaacgcggca acctctatcc ggaga~~c~~acat 660
 caaataggca tgcgtacggc c~~t~~taaggccg ggaagg~~t~~ccg cttcgtccaa g~~c~~atgcgggt 720
 aggtggctgg agcgg~~t~~ccag caatgg~~t~~tc ccaagaggaa tgattgccc~~c~~ c~~c~~gggaaac 780
 ccggcgtaca gaatccggc tatagatctg ctctgcactg cattttcatg a~~c~~agccggcc 840
 ggaatccggc cggctggctt acggggccct acgtaaaaca atgaaaggac~~g~~ g~~c~~gcccag~~g~~ 900
 cctacttctg atgaatgaca ttt~~a~~atagtc g~~g~~gc~~a~~ag~~c~~ gctgatttat c~~a~~gcaagttt 960
 tccgcgc~~cc~~ gttttacaa ttggctctaa g~~t~~c~~c~~ttgtt~~g~~ tgattgaaaa a~~a~~ttgcaacc 1020
 acggc~~t~~tga cccatga~~g~~tg~~t~~ccctg agatgggaa aaagtaggaa t~~t~~tgtcaac 1080
 taagtggggc aaacgggtgt tccagggaa~~g~~ c~~g~~gc~~g~~actc acgttggat~~g~~ t~~t~~aaggggcg 1140
 gatctcgatt c~~c~~gacccggc atcgtgacgc gctcatggac c~~t~~gtgc~~c~~gaag g~~c~~cgg~~t~~gac 1200
 cctgacccgt catc 1214

<210> 747

<211> 925

<212> DNA

<213> Artificial Sequence

<220>

<223> *Burkholderia mallei*

<400> 747

gaccgatccg gcaagccgc~~g~~ gtttcgcgc g~~t~~gcccgg~~t~~g~~t~~gc c~~c~~ggctgg~~t~~g 60
 g~~c~~ccggc~~g~~aac g~~c~~gtcgccgg c~~c~~ttctacga c~~g~~atccgc~~g~~ag g~~t~~tttcgc~~c~~ g~~c~~ggc~~c~~g~~c~~ccg 120
 acgcgcacccg gatgtc~~c~~tc~~g~~ cccgtgc~~g~~gc~~g~~ gtgacggac~~g~~ acgttgc~~c~~ct c~~g~~gcgc~~g~~cccc 180
 g~~g~~gcggcgcc~~g~~ g~~g~~cacccgc~~g~~ g~~g~~tgcgc~~g~~ct~~g~~ ttcgc~~g~~caag c~~g~~ccgc~~g~~ccgc~~g~~ g~~g~~caaggggcg 240
 tcgcgc~~g~~ag~~g~~ cggatgc~~g~~gc~~g~~ t~~t~~gacgg~~t~~gc tagaatcccg c~~t~~cgcaaa~~g~~gc~~g~~ aggctagg~~g~~ca 300
 g~~t~~cg~~g~~g~~c~~t~~t~~tc~~g~~ c~~g~~cg~~g~~caagg~~g~~ cgaggaa~~g~~at~~g~~ c~~c~~ggact~~c~~ca a~~c~~agg~~g~~cagg 360
 gtgatggct~~a~~ a~~c~~ggccat~~c~~cc~~g~~ g~~t~~ggc~~g~~ac~~g~~ac~~g~~ g~~c~~ggaacagg~~g~~ g~~c~~aacagaaa~~g~~ g~~c~~aaacc~~g~~cc 420
 gatggccc~~g~~ g~~c~~caagccgg~~g~~ g~~t~~c~~g~~agg~~g~~caa~~g~~ g~~g~~gtgaaac~~g~~ g~~t~~gc~~g~~gt~~g~~taag~~g~~ a~~g~~gc~~g~~acc~~g~~gc 480
 gg~~t~~cg~~g~~gc~~g~~ a~~g~~cg~~g~~ac~~g~~ g~~c~~ac~~g~~gt~~g~~aa~~g~~ c~~t~~ccacccgg~~g~~ a~~g~~caatt~~c~~ca a~~g~~t~~g~~agg~~g~~ga 540
 c~~g~~cg~~c~~at~~c~~tt~~t~~ c~~g~~gat~~g~~c~~g~~agg~~g~~ ac~~g~~gt~~g~~cccc~~g~~ c~~g~~t~~c~~tc~~g~~t~~g~~tc~~g~~ a~~g~~ctt~~g~~ag~~g~~cg 600
 c~~g~~t~~c~~ag~~c~~aat~~g~~ g~~g~~gc~~g~~gc~~g~~ct~~g~~a g~~g~~gaat~~g~~gc~~g~~ t~~t~~ccacggggc~~g~~ c~~g~~gc~~g~~gc~~g~~c~~g~~tt~~g~~ c~~g~~ggc~~g~~gt~~g~~cg 660
 g~~t~~tc~~g~~ac~~g~~ a~~at~~ccggctt atcggcccc~~g~~ t~~t~~tgcc~~g~~cccc~~g~~ g~~t~~gac~~g~~aaa~~g~~ g~~g~~ccggcgcc~~g~~ 720
 c~~g~~at~~g~~c~~g~~gc~~g~~ c~~g~~ggcc~~t~~ttt~~t~~tt~~t~~tt~~t~~tc~~g~~ c~~g~~gt~~g~~ccgc~~g~~ g~~c~~ac~~g~~ggcc~~g~~ t~~t~~g~~g~~ac~~g~~g~~g~~ 780
 a~~a~~ag~~c~~gc~~g~~t~~a~~ c~~g~~cg~~g~~gac~~g~~ a~~tt~~tc~~g~~ga~~g~~ a~~at~~gc~~g~~ac~~g~~ g~~c~~t~~c~~ggcc~~g~~gt~~g~~tc~~g~~ t~~t~~ggc~~g~~at~~g~~ca 840
 tgat~~g~~cgac~~g~~ c~~g~~aa~~g~~act~~g~~at~~t~~ tt~~t~~g~~t~~cg~~g~~tc~~g~~ ac~~g~~att~~g~~at~~t~~ c~~g~~gc~~g~~gc~~g~~tc~~g~~ a~~c~~gg~~t~~cg~~g~~cg~~g~~ 900
 g~~t~~tc~~g~~agg~~t~~ g~~g~~ggcccc~~g~~tc~~g~~ ac~~g~~gt 925

<210> 748

<211> 713

<212> DNA

<213> Artificial Sequence

<220>

<223> *Bacillus subtilis*

<400> 748

```
gttcttaacg ttcggtaat cgctgcagat cttgaatctg tagaggaaag tccatgctcg 60
cacggtgctg agatccccgt agtgtcgtg cctagcgaag tcataagct a gggcagtctt 120
tagaggctga cggcaggaaa aaagcctacg tcttcggata tgctgagta tccttggaaag 180
tgcccacagt acgaagtctc actagaaaatg gtgagatgg aacgcggta a acccctcgag 240
cgagaaaccc aaatttttgtt aggggaaacct tcttaacgga atcaacgg a gagaaggaca 300
aatgtcttc tgttagataga tgattgccgc ctgagttacga ggtgatgag c cgtttgcagt 360
acgatggAAC aaaacatggc ttacagaacg ttagaccact tacatTTAA a atgatgaaaa 420
caagctctcc cgtataagga gagctttat cttgaaaaga gaaaagttt aaaagacagg 480
gtgatacgt gaagaagtat acactaattt caacggcgcc gatgggcattt gaagctgttg 540
tcgcaaaggaa agtacgagat ttaggatacg aatgcaaggt tgataacggg aaagtttattt 600
ttgaaggtga tgcacttgcc atctggcgtg cgaacottt gcttagaaca gccgaccgca 660
taaagggtca ggttgcTTCT tttaaaggcga aaacatttga tgaactgttt gaa 713
```

<210> 749

<211> 828

<212> DNA

<213> Artificial Sequence

<220>

<223> *Clostridium perfringens*

<400> 749

```
aaaacaagg tttttcata taatgtatgtta taagtaatac tttagggtgg a gaattatgtg 60
gtccaattttt ggaaatagat ttaatggaga ctgcTTAAA gacttaagg a gagattcaa 120
tagattaatg agaaatttttta agagaaatgc ttgtaaaaga tgtcttattt a ataatttgcta 180
tttcagaaat gccttaaagt ggggggctgtt aggtggcata ttaaccttc ttataataag 240
tcaaatagg a gttccTTAG caattgtttt tattggataa gtagcaata t ttgtgattt 300
taataaaatgg tagaaaaaaat aatttggaaa aaataaagtat atatgtta t attaatctt 360
cgagtaagcc agacaatcg tgcTTAGTCTT agaacttagga gaggaaagt c cgagctccat 420
agggcaggat gctggataac gttccagtgg a ggtgactcta agatagtg aacagaaata 480
aaccgcctag atttatctag gtaagggtgg aaaggtgagg taagagctca ccagggata 540
ggtgactata ctgtatgtta aaccccatct ggagcaagac caaataggag gacatataagg 600
```

```
ggctgcccgt cccgtcctcg ggtgtgtcgc tttaggcctat cgcaacgg t aggccatag 660
agatgattgt caaaatacaga actcggttta tagacttac tgcTTTTTA aaaaacactag 720
gttataatac ctaagtgttt ttttattttta caaaaaaaaaata tactgtatgt tttttccctt 780
attaacttta attttacagt attaattttaa ttttatttggta tatatcta 828
```

<210> 750

<211> 777

<212> DNA

<213> Artificial Sequence

<220>

<223> *Escherichia coli*

<400> 750

```
gaagctgacc agacagtgcg cgcttcgtcg tcgtccctttt cgggggagac gggcggaggg 60
gaggaaagtcc cggggtccat agggcagggt gcccggtaac gctgggggg gaaacccacg 120
accagtgcAA cagagagcaa accggccatg gcccgcCAA gggggatcag gtaagggtga 180
aagggtgcgg taagagcgc cccgcgggtt ggtAACAGTC cgtggcacgg taaaactccac 240
ccggagcaag gccaaatagg ggttccataag gtacggcccg tactgaacc gggtaggctg 300
cttgagccag tgagcgattt ctggccCTAGA tgaatgtactg tccacgacag aacccggctt 360
atcggtcagt ttccacctgtt acgtttttttt acccgcttcg ggggtttttt gctttttggag 420
ggcggcggaaatg atgaatgact gttccacgacg ctataccaa aagaaagcgg cttatcggtc 480
agtttccacgtt ggtttacgtt aaaaacccgtt tcggcgggtt tttgtttttt gggggcaga 540
aagatgaatg acgttccacg acactatacc caaaaaggaaag cggcttacgt gtcagttca 600
cctgtttttac gtaaaaaaccc gtttcggcgg gttttactt ttggaggggg agaaagatga 660
```

atgactgtcc acgacactat acccaaaaaga aagcggctta tcggtagtt ttacctgatg 720
 tacgtataaa accgttccgg cgggtttcag attgtttagt gcgcatttatt catgccg 777

<210> 751
 <211> 834
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Rickettsia prowazekii

<400> 751
 taataaaatta atttattcat atcaaagttt gctaatacgatg tataatgtttt taagtactac 60
 attattttata cattaggaaa aaaatagtag caatgttaaa ttaagatatac ttcttttaaa 120
 gaatttgacat tatggaattt gtatttataa ttgttaattt attgtgtgt caataattac 180
 aataaaatttt cccctcagaa cctaacaacg taattgaaat tcttttaaca tattattgac 240
 taatthaaga aaagctacca taatctaaat ggtcgtgcag ttgcgtgtatg ataatcacga 300
 ggaaaggatccg gactctatag aggtatggtg ccggtaaca tccggcagag tattattact 360
 tttagggctag taccacagaa aatataccgc cgagtatttc ggttaagggtg aaaagggtgt 420
 gtaagagcac accggttaagt tgcaacaag ttacgcatgg ttaaccccaac caagagcaag 480
 atcaaataagg cattacagaa tttaaatatt tatttaagt cctgggttac ctctaatcgg 540
 attgtatgc gggtagatcg cttaggttac acggtaacgt ttatcctaga taaataactg 600
 caatgaatta atattcatac agaatccgc ttatagacca gatgagcagg tattacatgt 660
 gttataaccg cagagttatt gcgagtaact gaaaaaaagta tgcaatcta gaaaataata 720
 cagattctgt ggatttttag tttccctcg caatgacgaa aataatacac gtagtagatta 780
 cagcatgaga tgataactaat acttactgtt acataattta atgaaaaagt tata 834

<210> 752
 <211> 783
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Staphylococcus aureus

<400> 752
 tgatatttttggtaatcgct atatttatata gaggaaagtc catgctcaca cagtcgtgaga 60
 tgatgttgtt gttcgtgcctt gatgaaacaa taaatcaagg cattaatttg acggcaatga 120
 aatatcctaa gtctttcgat atggatagag taatttggaa gtgccacagt gacgttagtt 180
 ttatagaaat ataaaagggtg gaacgcggta aaccgcgtga gtgagcaatc caaattttgt 240
 aggagactt gtttaacgga atcaacgtt aaaaacgagac acacttcgcg aaatgaagtg 300
 gtgttagacag atggttatca cctgagtttac agtgtgacta gtgcacgtga tgagtagcat 360
 ggaacagaac atggcttata gaaatatcact tactagttt gctctcctag atgatggaga 420
 gctttttca tgaaaagaac actaaaaatt aacaccttgcg ctgtatataa tgacactgcc 480
 ttgtttttaa atagtaagcg gatgcgttta tttatcagcg attaaattttggaaatgt 540
 ataaaaaaaca caagctaaga ataaaatacc tttataaaaag gagaatcata tatgtttcaa 600
 ttacttgcag tttgtccgtt gggatttagaa gctgttgcgtt ctagggaaat tcaagaattt 660
 ggctatgaaa caaatgttga aatggtcgtt atatttttttgcg aaggagacgc aagtgcattt 720
 gtaaaggca atttatggtt ggcacacagca gaccgaatca aaattgttgcgtt tggacgtttt 780
 aac 783

<210> 753
 <211> 1086
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Vibrio cholerae

<400> 753

gtgaaatcg tctggcgatc gagatggcgt gtgatgcaga agacatcg~~c~~a ctgaccattc 60
 atgctcaccc aacgctgcat gагtctgtgg gtc~~tgg~~ggc tgaagtatt~~c~~ gaaggcacca 120
 tcactgacct gccaaacg~~c~~cc aaagcgaaaa agaaaaa~~g~~ta atttctgat~~t~~ cactg~~ttt~~g 180
 gttaaaaa~~g~~t gtttgatt~~g~~ta agaaaaccg~~c~~ct gcttgc~~a~~g~~c~~g gttttttt~~c~~ gcttttgatt 240
 cccaaattgaa tgcaa~~a~~gtaa~~c~~ g~~c~~ag~~t~~ttaa~~c~~ cgagattta~~a~~ c~~g~~cg~~c~~ttgg~~c~~g gatttttct 300
 ggactctgc~~c~~ cacacttctc gotacaatcc g~~c~~ccg~~gg~~g~~a~~gt tgactgg~~t~~ a~~g~~tc~~g~~ctgc~~c~~ct 360
 tattgac~~g~~tc c~~t~~ttggc~~c~~ta tegccagg~~g~~ga gactgata~~a~~g gggagg~~a~~aa g~~t~~ccggg~~c~~tc 420
 catagag~~c~~ag ggtgc~~c~~agg~~t~~ aacgc~~c~~ctgg~~g~~ gggc~~g~~ca~~a~~g~~c~~ ctacgaca~~a~~g tgcaac~~a~~gag 480
 agcaaaccg~~c~~ c~~g~~atggc~~c~~tc te~~c~~ttc~~g~~gg~~g~~ ta~~g~~ggatc~~g~~gg taagg~~g~~tg~~a~~ a~~g~~gg~~t~~gc~~g~~gt 540
 aagag~~c~~g~~c~~ac~~t~~ c~~g~~tg~~g~~act~~g~~ g~~a~~aac~~a~~g~~t~~tc gtagc~~g~~gg~~t~~ a~~a~~actcc~~c~~cc cggag~~c~~caaga~~g~~ 600
 ccaaata~~g~~gc~~c~~ ctccacat~~g~~ c~~g~~tt~~t~~g~~c~~tc~~c~~ gtttaggagg~~g~~ g~~g~~gttagg~~t~~~~t~~ gttgag~~c~~cc~~g~~ 660
 tgagt~~g~~att~~g~~ ctggc~~c~~ta~~g~~ ggaatgg~~c~~ta ctacc~~c~~gc~~a~~ a~~g~~cg~~g~~aa~~c~~ag~~a~~ a~~a~~cc~~c~~gg~~c~~tt~~c~~ 720
 atacgtc~~g~~ac~~c~~ tccac~~c~~tatt~~g~~ g~~c~~ag~~a~~cc~~c~~at~~t~~ cat~~g~~o~~c~~tt~~t~~ t~~g~~ttatgg~~t~~~~t~~ g~~g~~tttttt~~g~~ 780
 ttttt~~g~~ct~~g~~ta c~~t~~c~~a~~g~~t~~ta~~a~~c agaaaaa~~acc~~ca t~~t~~taaacttag~~g~~ c~~g~~caa~~a~~g~~t~~~~c~~a c~~g~~t~~c~~ctgtat~~t~~ 840
 acg~~c~~ttat~~g~~g~~t~~ c~~t~~ag~~c~~g~~t~~g~~t~~ t~~g~~t~~c~~t~~g~~aa~~a~~at~~c~~g~~t~~act~~c~~a acc~~c~~at~~t~~~~g~~a c~~g~~gg~~c~~at~~g~~cc~~c~~ 900
 c~~g~~ac~~c~~aca~~a~~g agaaaaat~~c~~at~~t~~ g~~a~~ct~~t~~g~~t~~t~~c~~ ttccaac~~a~~ca t~~c~~t~~c~~gtat~~t~~ att~~g~~aac~~g~~aa~~g~~ 960
 tcgatt~~g~~aa~~g~~ gatt~~g~~gc~~g~~at~~c~~ caag~~c~~gg~~g~~at~~t~~ g~~g~~tat~~t~~aca t~~c~~gat~~g~~gc~~a~~c~~c~~ cttt~~g~~cc~~g~~ 1020
 g~~g~~t~~g~~gtc~~a~~ca~~g~~ g~~t~~ec~~g~~acc~~at~~ t~~c~~t~~c~~g~~t~~ca~~g~~ t~~t~~agg~~g~~cc~~g~~ag~~t~~ a~~g~~g~~t~~cg~~t~~~~t~~ g~~t~~ac~~a~~g~~c~~att~~t~~ 1080
 gacc~~g~~t 1086

<210> 754

<211> 369

<212> DNA

<213> Artificial Sequence

<220>

<223> Coxiella burnetii

<400> 754

gagttaa~~c~~cg gagtatccat c~~t~~gtgact~~t~~ac caacacat~~c~~ca a~~a~~gttccc~~a~~g c~~c~~aaagg~~t~~gaa 60
 aaaatcac~~c~~g ttaataaa~~a~~gc c~~t~~ttttagaa gttc~~c~~t~~g~~acc~~t~~ g~~a~~cc~~c~~att~~t~~at~~t~~ tccctttat~~c~~ 120
 g~~a~~aggagat~~g~~ ggatt~~g~~cat~~t~~ tgat~~t~~at~~c~~cg~~c~~ c~~cc~~gtcat~~g~~ a~~aa~~ac~~c~~gt~~g~~gt~~t~~ c~~g~~at~~g~~cc~~g~~cc~~c~~ 180
 gtggaaaaaaat~~c~~c~~t~~ac~~c~~gt~~t~~gg aaagcgaaaa att~~g~~taat~~g~~ga t~~g~~gagat~~c~~ta c~~g~~cc~~g~~gag~~a~~aa 240
 aagg~~c~~tac~~g~~ga a~~a~~gt~~t~~at~~g~~g~~t~~ caaagaca~~a~~at~~t~~ t~~g~~g~~c~~t~~g~~c~~c~~tg at~~g~~ag~~a~~ca~~c~~t c~~g~~aagg~~c~~cc~~t~~ 300
 aaagaataacc~~a~~ a~~a~~gt~~g~~cc~~c~~at~~t~~ taaagg~~t~~ccc~~t~~ t~~t~~aa~~c~~cc~~a~~gc~~c~~ c~~g~~gt~~g~~gg~~g~~gg~~t~~ t~~g~~gcata~~c~~at~~g~~t~~t~~ 360
 tc~~g~~ct~~ca~~at~~t~~ 369

<210> 755

<211> 1317

<212> DNA

<213> Artificial Sequence

<220>

<223> Acinetobacter baumannii

<400> 755

attacgac~~g~~g aaattt~~g~~taag taatttt~~g~~tc aataattt~~g~~ac ttgat~~t~~aa~~a~~a ttat~~c~~aag~~c~~ca 60
 cttggaaa~~g~~at~~t~~at~~c~~a~~g~~t~~t~~ ttt~~g~~t~~t~~at~~g~~at~~t~~ t~~c~~aa~~a~~at~~t~~gt~~a~~ at~~g~~ctt~~a~~aa~~a~~ a~~a~~taat~~a~~act~~g~~ 120
 g~~g~~gtaaaaaa~~a~~ atat~~c~~t~~c~~agg~~g~~ g~~g~~cc~~a~~ata~~a~~aa ttt~~g~~agg~~t~~ga g~~t~~tt~~g~~a~~c~~aa~~a~~ caatt~~t~~tt~~t~~ 180
 ct~~c~~t~~g~~gagg~~g~~ga tat~~c~~cat~~g~~aa~~t~~ t~~g~~g~~a~~gt~~c~~tg~~t~~ att~~g~~act~~c~~tt~~g~~ ctactat~~g~~ t~~t~~tt~~g~~ct~~g~~t~~c~~ 240
 ccatt~~g~~act~~g~~ t~~c~~g~~c~~ta~~t~~at~~g~~tc t~~g~~g~~c~~ta~~a~~ca~~t~~ g~~t~~t~~a~~ct~~c~~cat~~t~~ t~~t~~tt~~g~~ct~~g~~gg~~t~~ ttac~~a~~ct~~t~~tc 300
 caagac~~c~~ag~~c~~cc~~c~~ aacacaac~~a~~aa t~~g~~g~~c~~gt~~t~~aa~~a~~ g~~t~~at~~g~~ta~~a~~ct~~t~~ taact~~a~~ac~~g~~g~~t~~ t~~c~~c~~t~~g~~a~~gt~~t~~ta 360
 caagac~~g~~att~~t~~ tatt~~c~~gt~~t~~gg c~~g~~c~~a~~gt~~c~~t~~t~~ g~~g~~t~~t~~at~~c~~cg~~t~~taa~~t~~ taact~~c~~cat~~t~~ g~~t~~tag~~g~~tt~~t~~ 420
 gaag~~c~~ct~~g~~aat~~t~~ataac~~c~~ca~~g~~gt~~t~~aa~~a~~ g~~t~~ag~~a~~cc~~g~~g~~t~~ c~~t~~t~~c~~ct~~g~~tg~~t~~ g~~t~~ct~~g~~aa~~a~~at~~t~~ 480
 aaacaaaaaa~~a~~ a~~a~~at~~c~~aa~~c~~cg~~t~~ taact~~t~~ct~~g~~at~~t~~ g~~t~~t~~a~~ct~~t~~ct~~g~~tt~~t~~ att~~g~~taat~~a~~ac~~t~~ 540
 g~~a~~ca~~c~~aaaaaa~~a~~ t~~c~~aa~~c~~gg~~t~~ta c~~g~~t~~t~~att~~t~~att~~t~~ g~~g~~gt~~c~~t~~g~~gg~~t~~tc act~~a~~aa~~a~~at~~t~~ a~~a~~taat~~t~~tt~~t~~ 600
 g~~g~~gc~~t~~aa~~a~~acc~~t~~ g~~g~~gt~~t~~ac~~g~~ t~~g~~g~~t~~act~~t~~ct~~g~~ gaaga~~a~~g~~t~~ta c~~t~~tt~~g~~ag~~t~~aa~~a~~ c~~g~~ct~~g~~gt~~t~~tt~~t~~ 660
 g~~g~~tg~~c~~ttt~~t~~ct~~g~~tt~~t~~aa~~a~~ c~~g~~ac~~g~~ct~~t~~ta t~~c~~t~~c~~tt~~g~~ta c~~t~~g~~a~~ag~~t~~ct~~t~~ g~~t~~ct~~g~~act~~t~~tt~~t~~ 720
 aat~~g~~ct~~g~~t~~t~~at~~g~~ a~~a~~g~~g~~tt~~c~~t~~g~~ gaactata~~c~~ca g~~c~~t~~c~~tt~~g~~ct~~g~~ g~~t~~t~~a~~aa~~a~~ct~~t~~ g~~g~~t~~t~~tt~~g~~gt~~t~~ 780
 g~~g~~tc~~c~~act~~t~~g~~t~~ a~~g~~c~~c~~t~~g~~ct~~g~~ t~~c~~c~~t~~gt~~g~~ta~~t~~ g~~a~~ag~~t~~tt~~g~~ct~~g~~ c~~g~~tt~~g~~ta~~a~~ac~~t~~ a~~a~~ct~~c~~ca~~g~~tt~~t~~ 840
 g~~t~~cc~~c~~aca~~a~~ac~~t~~ cacaag~~g~~at~~t~~ a~~a~~ct~~c~~ga~~g~~ac~~t~~ c~~t~~taac~~a~~cat~~g~~g~~t~~ a~~a~~ct~~t~~cg~~t~~~~t~~ g~~t~~t~~c~~tt~~t~~g~~t~~at~~t~~ 900

actaacaaaat	caaacatcaa	agaccaatac	aaggccagaaaa	tttgctaaagt	tgctgaaaaaaaa	960
tttatctgaat	acccttaacgc	tactgcacgt	atcgaaggtc	acacagataa	cactggtcca	1020
cgtaaagtga	acgaacgttt	atcttttagct	cgtgctaact	ctgttaaattc	agctcttgta	1080
aacgaataaca	acgttgcattc	ttctcggttgc	tctactcaag	gtttcgcttg	ggatcaaccg	1140
attgctgaca	acaaaaactaa	agaagggtcgt	gctatgaacc	gtcggtgtatt	cgccgacaatc	1200
actggtagcc	gtactgtagt	agttcaacct	ggtcaagaag	cggcagctcc	tgcagcagct	1260
caataatttg	agttcttggaa	cagtaaaaaaaa	gcgcactcgtt	agagtcgctt	ttttatgg	1317

210 756

<211> 4932

<212> DNA

<213> Artificial Sequence

<220>

<223> Rickettsia prowazekii

<400> 756

atggctcaaaa aaccaaattt tctaaaaaaaaataatttcgg caggattggtaactgcttcc 60
acggctactat tagtagctgg ttctctgggt gtagcaatgg gtgctgtat gcaataataat 120
aggacaacaa atgcagcagc tacaaccctt gatggatata gctttatca agctgctgg 180
gctaataattt ctgtcgctcc aaattcagtt attactgcta atgctaataaa tcctattact 240
ttaataactc caaacggtca tttaaatagt ttatffffgg atactgcaaa tgattttagca 300
gtaacaatta atgaggatac taccttagga ttataacaa atattgctca gcaaggctaag 360
ttctttaattt ttactgttgc tgctggtaaa attcttaaca taacagggca gggattact 420
gttcaagaag ctctataatac aataaatgtc caaaaatgctc ttacaaaagt gcatggtggc 480
gctgctattt acgctaatga tcttagcggg ctaggatcaa taaccttgc tgctgccc 540
tctgtatttag aatttaattt aataaatctt acaactcaag aagctccctt tacacttggt 600
gctaattctt aataatgttta tggtggtaat gggacattaa atattactaa tggattttt 660
caggtttcag ataacacttt tgctggatt aagaccatta atatcgatga ttgtcaaggt 720
ttaatgttta attctactcc tgatgccgt aatactttaa atttacaagt aggtggtaat 780
actattaattt ttaatggat agacggact ggtaaatttag tattagtca gtaagaatgg 840
gctgctaccg aatttaatgt tacaggaact ttaggtggta atctaaaagg tattattgaa 900
ttgaacactg cagcagtagc ttgtaaacct atctctcaag gaggtgtc taatgcagta 960
ataggtacag ataatggagc aggttagagct gcaggattta ttgttagtgt tgataatgg 1020
aatgcagcaa caattttctgg acaagttt gctaaaaaca tggataca aagtgctaat 1080
gcaggtggac aagtcaactt tgaacacata gttgatgtt gtttaggggg taccaccaac 1140
tttaaaactg cagattctaa agttataata acagaaaact caaacttgg ttctactaat 1200
tttggtaatc ttgacacaca gattgttagtc cctgataacta agattcttaa aggttaacttc 1260
ataggtgatg taaaaataaa cggtaataact gcaggtgtga ttacttttaa tgctaatgg 1320
gcttttagtaa gtgcttagtac tgatccaaat attgcagttaa caaatattaa tgcaattgaa 1380
gcagaagggg ccgggggtgt agaattatca ggaatacata ttgcagaatt acgttttaggg 1440
aatggtggtct ctatctttaa acttgctgat ggcacagttaa ttaatggtcc agttaaccaa 1500
aatgcttta tgaataataaa tgctcttgc gctgggtctta ttcaagttaga tggagtgct 1560
ataattaccg gtgatataagg taacgggtgt gttaatgctg cgttacaaca cattacttta 1620
gctaacgatg cttcaaaaat attagcactc gatggcgc当地 atattatcg ggctaatggt 1680
ggtggtgcaat ttcattttca agctaacgggt ggtacttata aattaacaaa tactcaaaat 1740
aatatttttag ttaattttga tttagatata actactgata aaacagggtgt tggatgca 1800
agtagtttaa caaataatca aacttttaact attaatggta gtatcggtac tggatgtagct 1860
aataactaaaa cacttgcaca attaaacatc gggtcaagta aaacaatatt aaatgctggc 1920
gatgtcgcta ttaacggat agttatagaa aataatggtt cagtacaact taatcacaat 1980
acttacttaa taacaaaaac tatcaatgtc gcaaaaccaag gtcaaaataat cggtggcc 2040

gatccttta	atactaatac	tactcttgct	gatggtaaa	atttaggtag	tgcagaataa	2100
ccactttcta	ctattcattt	tgccactaaa	gctgctaatg	ctgacttotat	attaaatgt	2160
ggtaaaggag	taaatttata	tgctaataat	attactacta	acgatgotaa	tgtägggtct	2220
ttacacttta	ggctctgggt	tacaagtata	gtaagtggta	cagttgggtgg	acagcaaggt	2280
cataaggotta	ataatttaat	attagataat	ggtaactactg	ttaagttttt	aggtaataca	2340
acattnaatg	gtggtaactaa	aattgaaggt	aatccatct	tgcaaatttag	caataattat	2400
actactgatc	atgttgaatc	tgctgataat	actggtaat	tagaatttgt	taacactgat	2460
cctataaccg	taacattaaa	taaacaaggt	gcttattttg	gtgttttaaa	acaagtaatt	2520
atttctggtc	caggtaacat	agtatttaat	gagataggta	atgttaggaat	tgtäcatggt	2580

atagcagcta	attcaatttc	ttttgaaaat	gcaagtttag	gtacatctt	att	cttaccc	2640
agtggtaactc	cattagatgt	ttaacaatt	aaaagtaccg	taggtaatgg	tac	agtagat	2700
aattttaatg	ctcttattgt	agttgtatca	ggtattgata	gtatgatcaa	taa	cggtcaa	2760
atcatcggt	ataaaaagaa	tattatagct	ctatcgctt	gaagtgataa	cag	tattact	2820
gttaatgcta	atacattata	ttcaggatc	agaactacaa	aaaataatca	agg	tactgtg	2880
acacttagt	gtggtatgcc	taataatcc	ggtacaattt	atggtttagg	ttt	agagaat	2940
ggtagtccaa	agttaaaaca	agtgcacatt	actacagatt	ataacaacctt	agg	tagtatt	3000
attgcaaata	atgtaacaat	taatgattat	gtaactctt	ctacaggagg	tat	agcaggg	3060
acagatttt	acgctaaaat	tactcttgg	agtgtaacg	gtaacgctaa	cgt	aaggttt	3120
gttgatagta	cattttctga	tcctagaagt	atgattgtt	ctactcaagc	taa	taagggt	3180
actgttaactt	atttaggtaa	tgcattagtt	agtaatatcg	gtagttaga	tac	tctgtt	3240
gcttctgtt	gattcacagg	taatgatagt	ggggcaggat	tacaaggcaa	tat	ttattca	3300
caaaatata	attttgtac	ttataattt	actattctaa	attctaatgt	cat	tttaggt	3360
ggtgttacta	ctgctattaa	tggtgaatc	gatcttctga	caaataattt	aat	atttgca	3420
aatggtaactt	caacatgggg	tgataatact	tctattagta	caacgttaaa	tgt	atcaagc	3480
ggtaatata	gtcaagtagt	cattgcogaa	gatgctcaag	ttaacgcaac	aact	acagga	3540
actacaacca	ttaaaaataca	agataatgt	aatgcattt	tcagtggcac	aca	agcttat	3600
actttaattc	aagggtgtc	tagatttaat	ggtactttag	gagctcccaa	ctt	tgctgt	3660
acaggaagta	atattttcg	aaaatatgaa	ctaatacg	attctaaacc	gga	ttatgt	3720
ttaacacgta	ctaacgatgt	attaaacgta	gttacaacag	ctgttggaaa	tag	tgcaatt	3780
gcaaattgcac	ctgtgttaag	tcagaacatt	tctagatgt	tagaatcaac	aaa	tacagca	3840
gcttataata	atatgccttt	agctaaagat	ccttctgtat	ttgcaacatt	tgt	aggagct	3900
attgctacag	atacaagtgc	ggctgttaact	acagtaaact	taaatgatac	aca	aaaaact	3960

```

caagatctac ttagtaatacg gctaggataca cttagatatac taagtaatgc tga aacttctc 4020
gatgttgctg gatctgcAAC aggtgcAGT tcttcAGGT atgaAGCGGA agt atcttat 4080
ggtgtatggg ctaaacCTTT ctataacATT gcagaACAAg acaaaaaAGG tgg tataGCT 4140
ggttataaaAG caaaaACTAC tggggTTGTA gtgggtttag atactCTCGC tag cgataaac 4200
ctaattGATTG gggcAGCTAT tgggatCACT aaaACTGATA taaaACACCA aga ttataAG 4260
aaaggTgATA aaACTGATA TaatggTTA tcattCTCTC tatatGGTC cca acagCTT 4320
gttaagaATT tcttgctca aggtatGCA atctttACCT taaacaAAAGT caa aagtAAA 4380
agtcagcGTT acttCTTCGA gtctaatGGT aagatGAGCA agcaaATTGC tgctggtaat 4440
tacgataaaca tgacatTTGG tggtaattTA atatttGGTT atgattataa tgc aatGCC 4500
aatgtattAG taactCCAA tggcaggACT agctactTAA aatcttCTAA tga aaattAT 4560
aaagaaaCCG gtacaACAGT tgcaaATAAG cgcatTAATA gcaaATTAG tga tagAGTC 4620
gatttaataAG taggggCTAA agtagCTGGT agtactGTGA atataACTGA tat tggata 4680
tatccggaaa ttcatTCCTT tgggtgcAC aaagtaAAATG gtaaaATTATC taa ctctcAG 4740
tctatgttag atggacAAAC tgctCCATTt atcagtcaAC ctgatAGAAC tgctaaaACG 4800
tcttataata taggCTTAAG tgcaaACATA aaatCTGATG ctaagatGGA gta tggTATC 4860
ggttatgatt ttaattCTGC aagtaAAAT ACTGCACATC aaggtaCTT AAA agtacGT 4920
gtaaaACTTCT AA

```

```
<210> 757
<211> 1311
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Rickettsia prowazekii

```
<400> 757
atgactaatg gcaataataa taacttagaa tttgcagaat taaaaattag aggtaaacta 60
ttaagttagtac ctatacttaa agcaagtatc ggtaaagatg taatcgatat aagtagggta 120
tctcgccaaag ccgattactt tacttagat ccgggttta tgtctactgc ttcttgtcaa 180
tctactatca catatataga cggtgataaa ggcataattat ggtatcgagg atatgatatt 240
aaagacttag ctgagaaaag tgattttta gaagtggcat atttgatgat ttatggggag 300
ctaccaagta gtgatcgtt ttgttaatttt actaaaaagg ttgctcatca ttcatctatgt 360
aatgaaagat tacactattt atttcaaaacc ttttgttagtt cttctcatcc tatggctatt 420
atgcttgcag ctgttggttc tctttcagca ttctatcctg atttattaaa ttttaatgaa 480
acagactatg aaccttaccgc tattagaatg attgctaaga tacctactat cgctgcaatg 540
```

tcttataaaat	attctatagg	gcaaccgttt	atttatcctg	ataattcatt	a gattttacc	600
gaaaattttc	tacatatgat	gtttgcaact	ccttgtacta	aatataaaagt	aaatccaata	660
ataaaaaatg	ctcttaataaa	gatatttatac	ttacatgcag	accatgagca	gaatgcttct	720
acttcaacag	ttcggattgc	tggctcatca	ggagctaatac	cttttgcatg	tattagcact	780
ggtattgcat	cactttgggg	gcctgctcac	ggccggggcta	atgaagcagt	gataaaatatg	840
cttaaagaaa	ttggcagttc	tgagaatatt	cctaaatatg	tagctaaagc	taaagataag	900
aatgatccat	ttaggttaat	gggttttgggt	catcgagttat	aaaaaagctat	t gaccgcgt	960
gccgcagttac	ttaaagaaaac	ttgtaaagaa	gtattaaatg	aatttaggtca	gttagacaat	1020
aatccgcgtgt	tacaaatagc	aatagaacctt	gaagctctcg	ctcttaaaga	t gaatatttt	1080
attgaaagaa	aatttatatcc	aaatgtttagt	tttatttcag	gcattatctat	taaagctatg	1140
ggtataccgt	cgcaaatgtt	cactgtactt	tttgcataatg	caagaaccgt	agggtggatg	1200
gcacaatgga	aagaatgca	cgaagatctt	gaacaaaaaaaa	tctatgttgc	tagacagctt	1260
tacactggtt	atgtacatag	agagtataag	tgtattgttag	aaagaaaatgt	a	1311

```
<210> 758  
<211> 882  
<212> DNA  
<213> Artificial Sequence
```

<220>
<223> Vibrio cholerae

```

<400> 758
atgttcggat taggacacaa ctcaaaaagag atatcgatga gtcataattgg tactaaattc 60
attcttgcgt aaaaaattac ctttgatccc ctaagcaata ctctgattga caaagaagat 120
agtgaagaga tcattcgatt aggcagcaac gaaaggccaa ttctttggct gctggcccaa 180
cgtccaaacg aggtgatttc tcgcaatgat ttgcatgact ttgtttggcg agagcaaggt 240
tttgaagtgcg atgattccag cttAACCCAA gccatttcga ctctgcgcAA aATGCTCAA 300
gattcgacaa agtccccaca atacgtcaaa acggttccga aacgcggta ccaattgatc 360
qcccqagtgg aaacgggtga agaagagatg gctcgcgaaa gcgaagctgc tcatgacatc 420
tctcagcog aatctgtcaa tgaataccga gagtcaagca gtgtgccttc atcagccact 480
gtagtgaaca caccgcagcc agccaaatgtt gtgacgaata aatcggctcc aaacttgggg 540
aatcgactgc ttattctgtat agcggtctta cttccccctcg cagtattact gctcactaac 600
ccgagccaaa ccagctttaa acccctaaacg gttgtcgatg gcgttagccgt caatatgcgg 660
aataaccacc ctgatcttc aaactggcta ccgtcaatcg aactgtgcgt taaaaaaatac 720
aatgaaaagc atactgggtgg gctcaaggcc atagaagtca ttgccacagg tg�acaaaat 780
aaccagttaa cgctgaatta cattcacagc cctgaagttt caggggaaaa cataacctta 840
cgcatcggtt ctaaccctaa cgatgccatc aaagtgtgtq ag 882

```

```
<210> 759  
<211> 1095  
<212> DNA  
<213> Artificial Sequence
```

<220>
<223> *Francisella tularensis*

<400> 759								
atgcctaaag ttggttttat	tgggtggcgc	ggaatggtcg	gctcagttt	aatgtctcg	60			
atgatcaat caaaaaggatt	tgattgtatt	ttgccaacgt	tttttcgac	atctcaggt	120			
gggcagctgc caacaggttt	tatgcaacaa	tatggagcgt	tacaagatgc	ctatagtatc	180			
gaccaactaa gtagtatgga	tatacttcta	agttgccaag	gtggtaata	taccaaagaa	240			
atacaccaca aattaaagaga	agccggctgg	caaggttct	ggatagacgc	tgcacatcgaca	300			
ctacgcttag acaaagatag	tactctagtt	ctagaccctc	taaatcacga	tcaaataatt	360			
aatgctattt ataatggtaa	aaaagatttt	atcggtagta	attgtactgt	tagtctaattg	420			
tcactagcta tagctggact	actcaaagaa	gatcttgttg	aatgggttaa	ctctagtact	480			
tatcaagcaa tttcaggagc	gggtggccga	gcaatgcaag	aactacttca	acaaacaagc	540			
cttttaagca aaattgtataa	tagagatgaa	gatattctaa	ttagagaaaa	aattctcaga	600			
gaatttatcaa aagactcatc	aaaaatccct	caacaaaaaa	ctgtacaaac	tttggcttat	660			
aatctattac cttggataga	tgttggtagt	cctagtgac	aaacaaaaaa	agagtacaaa	720			

gcagctacag aacttaataa aattcttagat actaaaaaaaaa caatccctgt	cgtatggata 780
tgtgtcagag tccaagtct aagatcacac tctcaagcat taacagtcaa	acttagacag 840
aaattaacaa ttgaagaaaat taagcaaaaa atatctcaag gtaatgaatg	ggttaaagta 900
atagataata acaaagaaga tactttaaaa tacctaacac ctcaagctaa	ttcagaact 960
cttgatatttgc tatcaaatca tcgttatttag ctgatgatat	atttcattgt 1020
ttcacagtag gtgatcagct attatgggg gctgctgagc cccttagaag	agttttaat 1080
attattaaaaa tataa	1095

<210> 760
<211> 1020
<212> DNA
<213> Artificial Sequence

<220>
<223> Francisella tularensis

<400> 760	
atgaataaaaa aaatcttagt aacagggtgg gttaggctata taggttagtca	tacagtggta 60
gaacttcttg atagagatta tcaagttgtg gtggtagata atctttcaaa	tagcaaagta 120
tctgtatag acagggttaa aaaaatcaca aataaaagatt ttgattttta	tcagctagac 180
cttttaggtt aagcttaagct aacaaaagtt tttcaagagt atgatattta	tgctgttaatt 240
cattttgtcg gctttaaaggc tgtaggtgaa agtgttggaaa aaccgtttaga	gtatttatcat 300
aacaatatcc aaggtacact aaacttactt gagctaattgc aaggatataa	agtttataat 360
tttgccttta gttcatcgcc gactgtatata gggatgaata ataaaccacc	ctttacagaa 420
gatatgcctc taagtacaac taaccctatac ggtgcaacta agctaattgtt	agaagacatt 480
ttgcgagatt tgcaaatatgc taataataat tttatattta catgtcttag	atattttat 540
ccagtcggcg cccatagtag tgggatgata ggagaggatc cacagggtat	acctaataac 600
ctcatgcctt atgtcgcgca agtaggtgct ggtaaacttag ctaaacttag	tatcttgggt 660
ggtgactatag agactataga tggtacagga gtgagagact atatacatgt	tgttagattta 720
gcaataggttc atatattagc gtttagaaaaa ttatcacaag ataaggcttag	ctggagagct 780
tataatcttg gttctggaaa tggctattct gtatttagaga ttgtcaaaagc	ttatcaaaaa 840
gcccttaggtt aagagattcc atatcagata gtagcttaga gagccgggtga	tattgcagcg 900
agtttgcgtg atgttgcacca ggctaaaaga gagttgggtt ttgagacaca	aaagactata 960
gatgatattt gtgatgatata gcttaaatgg caaaagtacg caaaagagaa	taatatctag 1020

<210> 761
<211> 840
<212> DNA
<213> Artificial Sequence

<220>
<223> Shigella flexneri

<400> 761	
cgcggccctgg ctgatgccgt gacagcatgg ttcccgaaaa acaaacaatc	tgtatgtatca 60
cagatatggc atgcttttga acatgaagag cacgccccaca ccttttccgc	gttccttgac 120
cgcctttccg ataccgtctc tgcacgcaat acctccggat tccgtgaaca	ggtcgctgca 180
tggctggaaa aactcagtgc ctctgcggag ctgcacacgc agtctttcgc	tgttgcgtct 240
gatgccactg agagctgtga ggaccgtgtc ggcgtcacat ggaacaatct	ccggaaaacc 300
ctccctggtcc atcaggcatc agaaggcctt ttgcataatg ataccggcgc	tctgcctctcc 360
ctgggcaggaa aatgttccg cctcgaattt ctggaggaca ttggccggga	taaagtcaaga 420
actctccatt ttgtggatga gatagaagtc tacctggct tccagaccat	gctcgccagag 480
aaacttcaggc tctccactgc cgtaaggaa atgcgttct atggcgtgtc	gggagtgaca 540
gcaaatgacc tccgcactgc cgaagccatg gtcagaagcc gtgaagagaa	tgaatttacg 600
gactggttct ccctctgggg accatggcat gctgtactga agcgtacggc	agctgaccgc 660
tgggcgcagg cagaagagca gaaatatgag atgctggaga atgagtagccc	tcagagggtg 720
gctgaccggc tgaaagcatc aggtctgagc ggtgatgcgg atgcggagag	ggaagccggt 780
gcacagggtga tgcgtgagac tgaacacgcg atttaccgtc agctgactg	cgaggtactg 840

<210> 762
<211> 503
<212> DNA
<213> Artificial Sequence

<220>
<223> *Campylobacter jejuni*

```
<400> 762
aaaaacttaa aaaaagctgt ttttacttg atattgttt ttaaatatgc taaaattagg 60
cgtttcaatt aaaacaaagg agctttatg actaaagcag atttcatttc attagttgc 120
caaacagctg ggctaacaaa aaaagacgct actactgcta ctgatgcagt tatttctact 180
attactgatg ttttagctaa aggtgatgc atcagttta ttggttttgg tacttttca 240
actcaagaaa gagctgctag agaagctaga gtaccaagca cagaaaaaac aatcaaagtt 300
cctgctacaa gagttgcaaa atttaaggtt ggtaaaaacc tttaagaagc tgttgcaaaa 360
qcaaggccca aaaagaaaaaa ataaaacttc ggctagataa attctagccct tctttcttaa 420
ttaattcaga tattttgtat cttttatTTT ctttattttt tttaactttt ataaaacttat 480
cattattaaa caaaaaagga tat 503
```

<210> 763
<211> 2118
<212> DNA
<213> Artificial Sequence

<220>
<223> Concatenation of *A. baumannii* genes

<220>
<221> misc_feature
<222> 447-486, 778-817, 1162-1201, 1495-1534, 1928-1967, 2115-2118
<223> n = A.T.C or G

ccgtattcct gaaaatgaac ctggttcaag tatcatgcca ggtaaagt^tga acccgactca 1680
 aagtgaagcc atgaccatgg ttgttgctca agtacttggc aacgata^cca ctattaatgt 1740
 cgctgggtct tctggtaact tcgagctaa tgtatttatg ccagtgat^ttg cttataactt 1800
 actgcaatctt attcagttgc ttggtgatgc atgtaatagt ttaatgat^ctc actgtgcagt 1860
 agggatcga^g ccaa^aatcgt^tg agaaaattga tcatttctt^g cataatt^ctc ttatgttagt 1920
 tacggcann nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnn^ccc ggttatgtac 1980
 caaatacttt gtctgaagat ggtgacccat tagacgtact tttgt^aact ccacatcctg 2040
 ttgctgccgg ttctgtattt cgttgccg^ccc cagtggca^a attaaacat^tg gaagacgacg 2100
 gtggtatcga tgccnnnn 2118

<210> 764

<211> 276

<212> DNA

<213> Acinetobacter baumannii

<400> 764

atgagcgagc taggctaaa aagcagtggc aagccaaaaaa aatcagc^gcg tacagtgggt 60
 gatgtacttg gtaaatacca cccacatggt gactcggcat gttatga^agc catggta^ttc 120
 atggctcagc catttagtt^a ccgc^ttatcct ttaatcgaag gtcagg^ggaa ctggggttca 180
 cctgatgatc^t ctaaatctt^t tgctgcgat^t gttataccg aagccaa^aact ctcggctt^t 240
 agtgaattat tgctgagcga attaggtcag ggcact 276

<210> 765

<211> 9610

<212> DNA

<213> Yersinia pestis

<400> 765

tgtaacgaac ggtgcaatag tgatcccacac ccaacgcctg aaatcagat^ctc caggggtaa 60
 tctgctctcc tgattcagga gagtttatgg tcactttga gacagttat^tg gaaattaaaa 120
 tcctgcacaa gcagggaaat^tg agtagccgg^ccgattgccag agaactg^ggg atctccgc^a 180
 ataccgttaa acgttatttg caggcaaaat^tctgagccg^ccc aaaatat^acg cgcgcac^ttg 240
 ctgttgc^ttc actcctggat^t gaataccgg^cgattatattcg tcaacgc^atc gccgatgc^ttc 300
 atccttacaa aatcccggca acgtaatcg ctcg^tcgagat^t cagagac^cag ggatatcg^tg 360
 gcggaatgac cattctcagg gcattcattc gttctctc^t gttcct^tcg^t gggcaggagc 420
 ctgcccgttc^t gttc^tgaaact^t gaacc^tccggac^t gacagat^tgc ggttgc^ttg^t ggcactat^tgc 480
 gtaatggtcg^t ctcaccgc^ttt cacgtgttc^t gttctgtt^tcg^t ggcatac^agc cgaatgc^tgt 540

acatcgaatt cactgacaat atgcgttata^tg acacgc^tgga gac^tgc^cat^t cgtaatgc^tgt 600
 tccgcttctt^t tgg^tggtgt^t cccgcgc^tgaag^t tg^tgtat^tga caatat^tgaaa^t a^tctgtgg^ttc 660
 tgcaacgtga^t cgc^tat^tat^tcg^t accgg^ttc^tacc^tcc^t tc^ttc^tcg^t ctg^t tggcagttc^tg 720
 gcaaggagat^t gggcttct^t ccccgact^tgt^t gtcgccc^ttt^t cagg^tgca^tg^t actaaaggta^t 780
 aggtggaa^tac^tg gatgg^tgc^tg tacacccgt^t acagtttt^tta^t cat^tccca^tta^t atgactcg^tcc^t 840
 tgcgc^tcc^tgat^tact^t gtc^tgat^ttt^t aaacagccaa^t ccgc^tcc^tg^t ctgc^tg^ttc^tg^t 900
 tgcac^tgat^tgt^t cg^tcta^tcc^taa^t cga^taa^tcgat^t aaacaat^tcc^t gccc^tgt^tccc^t tgc^tgat^tcg^t 960
 ggctcgaaga^t g^tcagc^tgt^tcc^t ac^tgt^tgg^tac^t tgc^ttc^tcc^tg^tg^t gaaa^taa^tg^tg^t tatgac^tgt^tg^t 1020
 atctt^tgtat^tg^taa^tat^tct^tgg^tg^t a^tct^ttc^tg^taca^t a^tac^tcccc^tct^t g^tc^tat^tcat^tct^t 1080
 acgact^tcat^t ct^tgc^tag^tg^tg^t g^ttt^tg^tgt^tg^tat^tg^taa^tct^tac^tat^tcc^t a^tact^tgat^tgg^t 1140
 g^ttc^tgc^tcc^tgg^tg^t c^tag^ttg^tca^tac^t t^tg^taa^tgg^tc^tta^t g^tcc^tct^tg^tcg^t 1200
 gg^tc^tg^tat^tg^tac^t g^tag^tat^tg^tg^t g^tt^tat^tat^tg^tg^t g^tat^tct^tg^ttc^ttt^t at^tga^taaaa^t 1260
 act^tgg^tac^tgt^t cat^tca^tac^tg^ta a^tac^tagg^tcg^tat^t g^ttata^tcc^tg^tcc^t at^tgg^tcc^tgt^t 1320
 gaaa^tac^tgt^ttc^t g^ta^tag^tat^tg^t g^ttt^tac^tat^t c^tgc^tcc^tgg^tg^t g^tc^tacc^tcc^ta^t 1380
 g^ttc^ttt^tac^tg^ttc^t t^tca^tta^tac^tg^tta^tat^tg^taaa^tat^ttc^tg^tat^ttc^t t^tgg^tgg^tcc^tat^tc^t 1440
 agg^ttg^tgg^tgg^taaa^tac^tcc^tat^t t^tg^tca^tat^tg^tac^t g^tat^tgg^tat^t g^ta^tag^tcg^tat^t 1500
 c^taa^tag^ttc^t g^ttc^tcaca^tac^tg^ta c^tgc^tag^tat^t g^ttact^ttc^tg^t g^tcc^taca^tgt^tca^t 1560
 g^tgg^tcc^tttat^taaa^tac^tgc^tg^ttt^t c^ttc^tag^tgt^tg^t ag^ttaat^tgg^tcc^tccc^tcc^ttc^tg^ttc^t 1620
 tg^taa^tat^tgg^tg^t t^tat^tct^tgc^tgt^t t^tca^tgt^tcg^tg^t ag^ta^tg^tca^taa^t 1680
 t^taa^tac^tgt^tac^t g^taaa^tag^tg^tcg^t ca^tat^tg^tat^t g^tac^tat^tcc^t g^tac^tg^tgg^tg^t 1740
 t^tcaa^tac^tgt^ttc^t g^tcc^tgg^tat^tg^t c^tgc^tact^tg^tac^t g^ttc^tg^tacc^tg^ta t^ttt^tac^tcc^ta^t 1800
 c^ttc^tac^tat^tg^ttc^t g^ttt^tca^tat^t a^tgg^tag^taa^tg^t c^tat^tcg^tact^t g^tac^taga^taa^tg^tcc^tgg^t 1860
 g^ttt^tat^tag^tca^t g^ta^tg^tta^tat^tcc^t g^tcg^tgg^tat^tca^t at^ttt^tgg^tg^tcc^t 1920

atataagtgg atcacttttc atccgtcggt gacaccctga tgaat~~t~~cacg tggtaacgc 1980
 tgaataacaa gaatgccgga gatacgcagt catattttt acaca~~a~~ttct ctaatcccga 2040
 caaggtcgta ggtcggtata gaaaaattct tagcaccatt ccggaa~~a~~caat cagaacagca 2100
 ggccatgaac gactgacaac attacgaata taaaaaacgc acccg~~g~~gcca gacattcccc 2160
 ctactgatta aaccagccgg acttgtccac ggaacggct tttta~~a~~ccg acacacagtc 2220
 tgagtacaga tacatgtcac gatgtatgcag gattagcgga agagt~~t~~tgtag cacgtttccg 2280
 ggaactgtgg tgaaccatag ctaaatattc gagtgaggc atacc~~g~~gaaa cgcgctcaga 2340
 ttctgtgtaa cgcgatttc cgtaccggc aatttttca gtgt~~t~~ttt cgtttcatgt 2400
 cgtcagaaac gttctgagcg cgttccgc atctgatgtc acgca~~a~~acca tccccatgg 2460
 cagttgacag ccggaaacac ggggtgtcg ttttagcgta tegac~~g~~gac ggcgtcgaga 2520
 agcaca~~aaaa~~ acagatgttg tactcagtca gttgtttac agaca~~g~~cact gggcagatt 2580
 gaaaaagtac cgtactttca ggaatgtcca gaaaccatgt gtcag~~a~~cttc gttctcccc 2640
 ttccgggtga attttttgt catccgttca ggaatctt tataa~~c~~gatt actccatttc 2700
 aggattttt atgtggcggt tactacaggc aggatattca aaggc~~a~~aaaaa aatccccgg 2760
 aacaggcggg acccgacag ggggagaacg aatcgctaaa taatt~~t~~tcgt agttgtattt 2820
 cccatcggtg ctactgcaac gggatgatt tgccgcagg tatcc~~t~~gtaa aacaatctg 2880
 atttactcac actccacata tactgacgg agcacaacgg aatag~~t~~gaac aaacaacaac 2940
 aaactgcgcg gaatatggcg cgatttatca gaagccagag cctgat~~t~~actt cttgaaaaac 3000
 tggatgctct ggtggccgac gaggcggcgg ccatgtgtga acgact~~t~~gcac gaactcgccg 3060
 aagaactcca gaacagcatc caggctcgct ttgaagccga aagt~~g~~aaca ggaacataac 3120
 gaagctcccg gagacggtca cagttgtct gtgaacggat gccgg~~g~~gac gacaagcccg 3180
 tcagggcgcg tcaggggtt tttaggggtg tggggcgca gccat~~g~~gacc agtcacgtag 3240
 cgatagcggg gtgtatactg gettagtcat gggcatcag tgcgg~~t~~ttgt atgaaaaagt 3300
 caccatgtac ggtgtaaaat gccgcacaga tgcgttaagg gaaca~~t~~gcag atgcccgtc 3360
 tcttcgctt cctcgctcac tgactcgctg cgctcggtcg ttcc~~t~~gtcg gcgagcgggtg 3420
 tctgctcaact caaaagcggg gatactgtta tccacacaaat caggg~~g~~ataa cggcggaaag 3480
 aacatgtgaag caaaaaaaaa agacccaga aaaggccgcg cccgg~~g~~gccc tttttccata 3540
 ggctccgcgc ccctgacgac catcacaaaa atcgacgc~~t~~ aagt~~c~~agagg tggcggaaacc 3600
 cgacaggact taaagatacc aggcttcc cccggaaagc tcct~~t~~gtgc gctctctgt 3660
 tccgaccctg ccgcattaccg gatacctc~~t~~ cgccttctc cttc~~g~~ggaa gcg~~t~~ggcgt 3720
 ttctcatagg tcacgtgtt ggtatctc~~t~~ tag tccgggttag gtcgt~~t~~cgct ccaagctggg 3780
 ctgtgtgcac gaacccccc ttca~~g~~ccgc~~t~~ ccactgcgc ttatc~~g~~gta actatcgct 3840
 tgagtccaaac cccgttaagac aegactttac gccactggca gcagc~~t~~attt gtaactgaaa 3900
 agtggattta gatacgcaga actcttgaag ttgaaggcctt atcgc~~g~~gcta cactgaaagg 3960
 acagcattt~~t~~ gtagtctgc~~t~~ccacttaa~~t~~ ccagctacca caggt~~t~~agaa agcctgagaa 4020
 acttctaacc ttca~~g~~aaagaa cccacgcctg agaacgtggg tttt~~t~~cggt tacaggcgc 4080
 agattacgcg cagaaaaaaa g~~g~~atctcaag aagatctt~~t~~ gatct~~t~~ttt~~t~~ actgaattgc 4140
 gctccgcgc~~t~~ agttcagc~~t~~ aagattat~~t~~ tgggttct~~t~~ tgggtatt~~t~~ tgcggtaaca 4200
 cccatgttac ttgagggtgt atgttagtctg t~~t~~gtagaattt~~t~~ tacac~~a~~taag gcttaaactg 4260
 ctctttttt tcaatatgc~~t~~ att~~t~~gaaagt~~t~~ cattgactac ataaat~~t~~agat tattccaaat 4320
 aatttattta t~~t~~gtaagaaca g~~g~~at~~t~~gggagg gggat~~t~~gatc tcaa~~a~~gtt~~t~~ tttgcttgc 4380
 tctcatattt ttatcatcaa~~t~~ gttggc~~t~~tc~~t~~ agaaaaaaac acata~~t~~acag caaaagacat 4440
 cttgc~~a~~aaac ctagaattaa atac~~t~~tt~~t~~g~~t~~ caattcattt~~t~~ tctcat~~t~~ggca tctatggaa 4500
 acagacaacc ttca~~g~~aa~~t~~ cogat~~t~~ttac aaatattaa~~t~~ agca~~t~~acca aaaaacacat 4560
 tgcacttac aataaagaca actcatggat gat~~t~~atcattt~~t~~ aaaat~~t~~act~~t~~ gaattaagag 4620
 agatgagtat actgtctgtt ttgaagattt ctctctaa~~t~~ agacc~~g~~ccaa catatgtac~~t~~ 4680
 catacatcct ctacttataa aaaaagtaaa atctggaaac tttat~~t~~agtag t~~t~~gaaagaaat 4740
 aaagaaatct atccctgggtt goactgtata ttatcattaa tagca~~a~~gccc ctcattatta 4800
 tgagggc~~t~~tc atgg~~t~~attt taacaatcc~~t~~ ctatcgat~~t~~ cttt~~t~~gcac cagagcgc~~c~~ 4860
 ttc~~t~~gttac~~t~~ g~~t~~ctgtcaga cattccatca acaatattt~~t~~ taaa~~g~~cat~~t~~ tacaaggcca 4920
 ttcc~~t~~gtctt~~t~~ ttgcgataac ttat~~t~~ccat actgtgggag cagtt~~t~~tgga taacttaaac 4980
 cctttttgtat atccaataga caccagtgc~~t~~ gtacgggtt~~t~~ tcaac~~g~~gtaa atcgctgaac 5040
 cgaagaccga tattagcgtc att~~t~~aaaaga ccttcaatct~~t~~ tatgt~~t~~gagaa tttatcaata 5100
 taaatattta ataagagat~~t~~ agcttcat~~t~~ t~~t~~gagaagog t~~t~~ag~~g~~gtgc t~~t~~ttctact 5160
 ttatcataag ccccttccc togaagcata taat~~t~~ccat~~t~~ caagt~~t~~stac~~t~~ tgcaatatac 5220
 tgagggacac cgtcattca~~t~~ taat~~t~~c~~t~~tt~~t~~ tgcttc~~t~~gct gacca~~a~~gg~~t~~cc aaccccgaa 5280
 c~~t~~gaatgtaa caccggtaact g~~t~~aaaataa~~t~~ t~~t~~gctact~~t~~ gat~~t~~gacgg aaaaatgactt 5340
 gtcggattaa acccttcaaa accattactg gaga~~aa~~at~~t~~ cgtgg~~t~~caac aatatttacc 5400
 gaacgcgta aaaaattcc~~t~~ cagttgacta atattgtcaa agtta~~a~~tgac agt~~t~~ttgtcc 5460
 gctaggacga tgcgattt~~t~~cg gttattattc aga~~a~~atgtctt cgttct~~t~~ttt cttatcgaga 5520
 tttcaatag attcggcaat cgttccctca agaaccatga cacgg~~t~~agac tttcacaccg 5580

tcttttcct gacgttcc aacagttatt ttctgttgc a^gagacacggc cccttcagg 5640
 tttgaattt taatttcctg goggatcta tttgaatatt c^actgtctt ctccatctcc 5700
 gtatcaatcg gaaaccccatt aatgtacatc agttaaaat t^acttccggcc aggcagatcc 5760
 acataatgtg gtaatcaat tgaatcgaa tttagcttcaa a^atttggct gtaactgctt 5820
 aatgtacttc cggaaaagag aaaagccgga acaccacgt a^accattcac taccattgt 5880
 tctgacataa aaatttctt ttaacacata aaaaaacaat a^agttaaaaa aaaatactgt 5940
 acataaaacc actgtttta t^ttgacagtaa taaaattacg c^ccgcttatt ttctctgtca 6000
 ataatatgaa atttcattt t^ttgatctga atcacttta taaaaatca gaaaggaaaga 6060
 ttgcagcag aaaaacagca cccggtaaca tcagaaaaaa a^cagaaaagga gataacgtga 6120
 gcaaaaacaaa atctggtcgc caccgactga gcaaaaacaga c^caaacgcctg ctggctgcac 6180
 ttgtcggtgc cggatacgaa gaacggacag cccgtgaccc c^catccagaaa cacgttaca 6240
 cactgacaca ggccgacctg cgccatctgg tcagtgaat c^agtaacggg gtgggacagt 6300
 cacaggccatc cgatgcgatt taccaggcga gacgcattcg t^tctcgccctg aaataacctga 6360
 gcggaaaaaa accggaaaggg gtggaaaccc gggaaaggcga g^ggaacgggaa gatttaccat 6420
 aactcccgtt atcagatcca t^tcgctcaac gctcggtgc g^gatctgaaa aattcgctca 6480
 aaagatcata ttccctgga tattttccac cggttttat t^tgagcaaaag tcacataatt 6540
 ctgtcagacg acgagaaaac ggatatcgat tattttttaa tatttttaca ttattaaaaaa 6600
 tgaatttaga taatcagata caaataataat gtttgcgtt^t atgcagagaa attaagggtg 6660
 tctaataatgaa aaaaatcta ttgtggcaac cattataact atttctgtccg ggagtgcataa 6720
 tgcagcatca tctcagttaa taccataat atccccgtac agctttacag ttgcagccctc 6780
 caccgggatc ctgagtgaa agtctcatga aatgccttat g^aacgcagaaa caggaagaaa 6840
 gatcagccag ttgactcgga agatcaaaa t^ttgctgatc c^tgaaaagggtg atatactctg 6900
 ggatccatatac tcatttctga ccctgaatgc caggggggtgg a^cgtctctgg cttccgggtc 6960
 aggtatatatg gatgactacg actggatgaa tgaaaatcaa t^tctgatgtgg cagatcactc 7020
 atctcatctt gctacaaaatg ttaatcatgc caatgaat g^aacctaattg tgaaaggctg 7080
 gttactccag gatgagaatt ataaaggcagg tataacagca g^gatatacgaa aaacacgttt 7140
 cagttggaca gctacagggtg gttcatataat ttataataat g^gagcttata ccggaaactt 7200
 cccgaaagga gtgcgggtaa taggttataa ccagcgcttt t^tctatgccat atattggact 7260
 tgcaggccag tatcgcattt atgattttga gttaaatgc t^ttattttaaat tcagcgactg 7320
 gtttcgggca catgataatg atgagcacta tatgagagat cttactttc gtgagaagac 7380
 atccggctca cgtttattatg gtaccgtaat taacgcgttga tattatgtca cacctaattgc 7440
 caaagtcttt gcggaattt catacagtaa atatgtatg g^gcaaaggag gtactcagac 7500
 cattgataag aatagtgag attctgtctc tattggcggg gatgctggcgt g^ttattccaa 7560
 taaaaattat actgtgacgg cgggtctgca atatcgctt^t tgaaaaatac agatcatatac 7620
 tctctttca tcctccctca gccccggagga t^tgtctgttga a^aggagggtt^t g^tgtttgacc 7680
 aaccctcaga t^tgtgtaaaaa atcaccttt tcaccataat g^acggggcgc tcattctgtt 7740
 gttttgcctt gacattctcc acgtctttca gggcatggag a^aggtcaaat tagacatgga 7800
 acgctactct ctttctgtca ggaagctcaa catccaagct taatttgcct cccatcgctt 7860
 caacgttaacg cttaacgtc gccagcttta aatcatttcc g^cgcgtctcc agctttgtt 7920
 ctgctggctg gtttataccc atgcctctag caacttgttt t^tgtgtataac tggagttctt 7980
 cacgcattcat ctgcaagccg acctcaagaa tcatctcattc t^tgcccatttctt ttaattcg 8040
 tctggtttc aggtgaacga ctggcaatca cctcatctaa t^tgttctcatc acttgcctc 8100
 cagtggtgtt^t agatgtgtc taaatttcatc ctcagctata c^cgcaccagg^t tttcataaaa 8160
 ccgcattatca ttactttat ctccctgcaca aagaacgata g^cccgcacgaa tcggatcgaa 8220
 cgcataaaag gctcttatcg gacggccaga aaactgaacg c^cgaagctctt tcatattttt 8280
 gtaccggaaa ccttcacgg tattcggcata tggcctgggt a^actcagg^t c^tgtaaacctg 8340
 tagcttttc aaatcagcca aaaccccttcc t^tgaagagcg t^tttcttgcattt catttagcca 8400
 gtctgtcaat cgctggctaa aaagtaccat ccacatgc^t a^accctataa cctgttagctt 8460
 acccccactaa caatataacc tacgagttat atttcaaga a^aagctgggtt attaacata 8520
 acggcaattt gtacgcacca ctggcaatcg ttcagcgcga t^tacggcaac agacaggca 8580
 aaatagcaac aaacccccc aaaaacccgc g^cgatcgcgc ctgataaatt ttaaccttat 8640
 gcatatctat gcagccaggc gaatcacgaa cgaattgcct g^cctgtatgt^t actgaaacgg 8700
 gtgttttttc ctgatgggtt gggcgtggaa gacggacat g^aacgggaaa acagaattca 8760
 tgccagatga ggcgcattctg gcaattaagg caaaaacacag c^aacaaagac acgcccagaat 8820
 cgcggccggaa tatgttttaa cgcgattttc agactcagac a^aattcagca gaatgtact 8880
 ccattcaccg ggctgtatggt gaatacatgc gtatccagga t^tgagttacatt tctggctctg 8940
 ccacagctct g^tctgttgc agctttcgcc t^tgtccggaaa c^cctgcttaaa acgctcccga 9000
 aaggcctctg aaccagaaaag caacaaaaca caggccattt a^tgtaatcg^t gttaaaacac 9060
 gtctgtatgg^t ttgcgtcaaa aaaaagtccc taatggagca g^ggactgtt^t aacccagtga 9120
 atagcgctca aattaaagta agaatacgcac caggtactct t^tgaaaaga gattaatcca 9180
 ccgcacagaa taatcaacag taaaacacaa caaccctgat t^ttttattttc tcttttttc 9240

gataaaaaca aaattaaaga aataattaat cagaacattc ctt aacttca gggcattgcc 9300
tgtgttccat tttgtgatta gtctgaaact tccgaaggtg gat aacaccg ggtattttt 9360
tgctcacata aagccctcc ttccaggcaga ggggctttt ctt tgccacc acataaaaaa 9420
ggccctcaca ggagggttgc tttgagggcg tatgataagg act gaatcga tggtaatat 9480
gtcttagtcct gacttttgc tctccgaata taaaaccctg ttt aacggca tgcaaaacca 9540
aaaaataaaa atgtgacatc gcaatgccag ataatttga cgc atgaggg aatgcgtacc 9600
ccgaccctcg 9610

<210> 766
<211> 102
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 766
tttaagtccc gcaacgagcg caacccttga tcttagttgt tta gttgggc actctaaggt 60
gactgccgt gacaaaccgg aggaaggtgg ggatgacgto aa 102

<210> 767
<211> 94
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 767
tagaacaccg atggcgaagg cgactttctg gtctgtaact gacactgaga aagcgtgggg 60
agcaaacagg attagataacc ctggtagtcc acga 94

<210> 768
<211> 108
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 768
tggatttagag accctggtag tccacgcccgt aaacgatgag tgcttaagtgt tagaggcctt 60
tagtgctgaa gttAACGcat taagcaactcc gcctggggag tacggcca 108

<210> 769
<211> 108
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 769
tttcgatgca acgcgaagaa ccttaccagg tcttgacatc ctctgacaac cctagcttct 60
ccttcggggag cagagtgaca ggtggtgcat ggctgtcgto agctcgta 108

<210> 770
<211> 95

<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 770
tctgacacct gcccgtgct ggaaggtaa ggaga~~gg~~gggt tagcgtaact ctgaactgaa 60
gccccagtaa acggccgccc taactataac ggtca 95

<210> 771
<211> 117
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 771
tctgttctta gtacgagagg accgggatgg acgcac~~c~~ggc accagttgtt ctgccaagg 60
catagctgg tagctatgtc cggaaggat aagtgc~~t~~gaa agcatctaag cacgaaa 117

<210> 772
<211> 100
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 772
tgattattgt tatcctgtta tgccatttga gat~~t~~tttgtag tggatttggg gttattgttc 60
caggattaat tgcaaataca atccaaagac aagggttaca 100

<210> 773
<211> 112
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 773
tcgaagtaca atacaagaca aaagaaggta aaatt~~a~~ctgt tttagggaa aaattcaaga 60
aatatagaag tgatggctaa aatgttagaa ggggt~~c~~ttga agccgttaac aa 112

<210> 774
<211> 100
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 774
ttgctcgtgg tgcacaagta acggatatta caat~~c~~attgt tggcagct gatgacggcg 60
taataaacag ttgaagcaat taaccatgcg aaagca gcaa 100

<210> 775
<211> 114

<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 775
tagctttgc atattatatac gagccacagc atcgtgatgt tttacagctt tatgcaccgg 60
aagctttaa tggataaatt taacgaacaa gaaataaaatc taticttgga agaa 114

<210> 776
<211> 116
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 776
tgacctacag taagaggttc tgtaatgaac cctaattgacc atccacacgg tggtggtgaa 60
ggtagatctc ctatcgaaa gtccacgtac tccatggggt aaaccagcac ttggaa 116

<210> 777
<211> 70
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 777
tccacacgg ggtggtgaaag gtagatctcc tattcgaaag tccacgtact ccatgggta 60
aaccagcaca 70

<210> 778
<211> 82

<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 778
ttatcgctca ggcgaactcc aacctggatg atgaaggccg cttttagaa ggtgacttgt 60
cgttagaaag gcgaaatccag ca 82

<210> 779
<211> 87
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 779
tggcgacgt ttccggcgaaa tggaaagtggc tcgaaggcgtt tggcgatcc tacgtgctgc 60
aggaaatgtt gaccgtcaag tcggaca 87

<210> 780

<211> 97
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 780
tcaggagtgc ttcaactcga tctacatgat ggccgaccgc ccggggttcg gcgggtgcaga 60
ttcgtagtgc ggcggcatg cgtggcctga tggcgta 97

<210> 781
<211> 117
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 781
tctggcaggat atgcgtggtc tcatggccaa tccatctggc cgtatcatcg aacttccaaat 60
caagtttccg tgaaggttt acagtaacttg agtacttcat ctcaacccac ggtgcga 117

<210> 782
<211> 98
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 782
tcaagcaaac gcacaatcag aagctaagaa agcgcaagct tctggaaagc acaaatgcta 60
gttatggtac agaatttgc actgaaacag acgtgcaa 98

<210> 783
<211> 99
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Polynucleotide

<400> 783
tccacacgccc gtttttcaac aactaccgtg ttctacttcc gtacgacgga cgtgacgggc 60
tcgatcgagc tgccgaagga caaggaaatg gtgatgcc 99

<210> 784
<211> 111
<212> DNA
<213> Artificial Sequence

<220>
<223> Calibration Sequence

<400> 784
tcgtggcggc gtggttatcg aacccatgct gaccgatcaa tggtagtgc acaccgcccc 60
ccaaagtgcg gattgaagcc gtagagaacg gcgacatcca gttcgatcc 111

```
<210> 785
<211> 2100
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Combination Calibration Polynucleotide

<400>	785					
gaagttagaga	tatggaggaa	caccagtggc	gaaggcgact	ttctggtctg	taactgacac	60
tgagaaaagcg	tggggagcaa	acaggattag	atacccttgtt	agtccacgcc	gtaaaacgatg	120
agtgtctaagt	tttagaggcc	tttagtgctg	aaggtaacgc	attaagcact	ccgcctgggg	180
agtacggccg	caaggctgaa	actcaaagga	attgacgggg	cacaagcggt	ggagcatgtg	240
gtttaattcg	aagaacacg	aagaaccta	ccaggtcttg	acatcctctg	acaaccctag	300
cttctccccc	gggagcagag	tgacaggtgg	tgcatggttt	tcgtcagctc	gtgtcgtgag	360
atgttgggtt	aagtccccca	acgagcgcaa	cccttgatct	tagttgttta	gttgggact	420
ctaaggtgac	tgcgggtgac	aaaccggagg	aagggtgggg	tgacgtcaaa	tcatcatgcc	480
ccagtagccgt	gagggaaagg	tgaaaagcac	cccggaagggg	gagtgaaaga	gatcctgaaa	540
ccgtgtgcca	tagtcagagc	ccgttaacgg	gtgatggcgt	gcctttgt	gaatgaaccg	600
gcgagttata	agatccgtag	tcaaaaggga	aacagcccgag	accgcagct	aaggccccaa	660
agtgtgtatt	gaaaaggatg	tggagttgt	tagacaacta	ggatgttggc	ttagaagcag	720
ccaccattta	aagagtatag	ggggtgacac	ctggccgggt	ctggaaagg	aaggagaggg	780
gttagcgtaa	ctctgaactg	aagcccccagt	aaacggccggc	cgtaactata	acggtcctaa	840
ggtagcgaaa	gaaatttgag	aggagctgtc	cttagtacga	gaggacggg	atggacgcac	900
cggtaccagt	tgttctgcca	agggcatagc	tggtagct	tgtcggaag	ggataagtgc	960
tgaaaagcatc	taagcatgaa	gccccccctca	agatgagagc	agtaaaacaa	gcaaacgcac	1020
aatcagaagc	taagaaagcg	caagcttctg	gaaagcaca	atgctagtt	tggtagagaa	1080
tttgcactg	aaacagacgt	gcatgctgt	aaatttgcga	aagctttgc	atattatatc	1140
gagccacagc	atcggtatgt	tttacagtt	tatgcacccgg	aagctttaa	tggataaaatt	1200
taacgaacaa	gaaataaaatc	tatccttgg	agaacttaaaa	gatcaacgg	tgctggcaag	1260
atatgaaaaa	taagataaaa	cagcactatc	aacactggag	cgattctta	tctgaagaag	1320
gaagagcgat	gaaaacaacg	aagtacaata	caagacaaaa	gaaggtaaaa	ttactgtttt	1380
agggggaaaaaa	ttcaagaaat	atagaagtga	tggctaaaa	tgtagaaggg	gtcttgaago	1440
cgttaacagc	tgttatggcg	accgtggcg	cgtggttatc	gaacccatgc	tgaccgatca	1500
atggtagctg	cacacccccc	cccaaagtgc	cgattgaaagc	cgtagagaac	ggcgagatcc	1560
agttcgcccc	taaacagtagc	ggcaacttcg	ttatcgctca	ggcgaactcc	aacctggatg	1620
atgaaggccg	cttttttagaa	ggtgacttgt	cgtacgaaaa	gogaatcaag	cctgttttagc	1680
cacaactatg	cgtgctcg	gtgcacaagt	aacggatatt	acaatcattg	ttgttgcago	1740
tgatgacggc	gtaataaaaca	gttgaagcga	ttaaccatgc	gaaagcagca	ggagtaccaa	1800
ctttactcag	cttgctggta	tgcggtgt	gatggccaat	ccatctggtc	gtatcatcga	1860
acttccaatc	aagttccgt	gaaggttta	cagtacttga	gtacttcatc	tctacgcatg	1920
gtgcgcgtaa	aggtcatgg	agtaagacct	acagtaagag	gttctgtat	gaaccctaatt	1980
gaccatccac	acgggtgtgg	tgaaggtaga	tctccatcgc	gaaagtccac	gtactccatg	2040
gggttaaacc	gcacttggat	acaaaacaag	cgcagtccgg	cggccagcgc	ttcggtgaaa	2100