

## REAL VECTOR ANGLES

## Why

We generalize the notion of angle between vectors in  $\mathbb{R}^2$  and  $\mathbb{R}^3$  to vectors in  $\mathbb{R}^n$ .

## **Definition**

The angle (unsigned angle) between the nonzero vectors  $x, y \in \mathbb{R}^n$ , the number

$$\theta = \angle(x, y) = \cos^{-1} \frac{x^{\top} y}{\|x\| \|y\|}.$$

In the case that one (or both) of the vectors is zero, we define the angle between them to be 0. Thus,  $x^{\top}y = ||x|| ||y|| \cos \theta$ , which is a convenient way to remember the inner product norm inequality.

## **Terminology**

x and y are aligned if  $\theta = 0$ , in which case  $x^{\top}y = ||x|| ||y||$ . In the case that  $x \neq 0$ , x and y are aligned if  $x = \alpha y$  for some  $\alpha \geq 0$ . x and y are opposed if  $\theta = \pi$ , in which case  $x^{\top}y = ||x|| ||y||$ . In the case that  $x \neq 0$ , x and y are opposed if  $x = -\alpha y$  for some  $\alpha \geq 0$ . Two nonnzero vectors x and y are orthogonal if  $\theta = \pi/2$  or  $-\pi/2$ , in which case  $x^{\top}y = ||x|| ||y||$ . The origin is orthogonal to every other vector. We denote that two vectors x and y are orthogonal by  $x \perp y$ .

