Algorithm Analysis & Design

Stable Matching

Prof. Xin Wang xinwang@swpu.edu.cn

Matching Residents to Hospitals

Goal: Given a set of preferences among hospitals and medical school residents (graduating medical students), design a self-reinforcing admissions process.

Unstable pair: applicant A and hospital Y are unstable if:

A prefers Y to its assigned hospital.

Y prefers A to one of its admitted applicants.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital side deal from being made.

Simpler: Stable Matching Problem

Given n hetero men $m_1, ..., m_n$ and n hetero women $w_1, ..., w_n$ find a "stable matching".

- Participants rate members of opposite sex.
- Each man lists women in order of preference.
- Each woman lists men in order of preference.

	favorite	le	least favorit		
	1st	2nd	3rd		
m_1	w_1	w_2	w_3		
m_2	W_2	w_1	W_3		
m_3	w_1	w_2	W_3		

	favorite	least favorite		
	1st	2nd	3rd	
w_1	m_2	m_1	m_3	
w_2	m_1	m_2	m_3	
W_3	m_1	m_2	m_3	

Stable Matching

Perfect matching:

to current partners.

- Each man gets exactly one woman.
- Each woman gets exactly one man.

Stability: no incentive for some pair of participants to undermine assignment by joint action.

In a matching M, an unmatched pair

m-w is unstable if man m and woman w prefer each other

Stable matching: perfect matching with no unstable pairs.

Stable matching problem: Given the preference lists of n men and n women, find a stable matching if one exists.

Example

Question. Is assignment (m_1, w_3) , (m_2, w_2) , (m_3, w_1) stable?

	favorite ↓		least favorite ↓
	1st	2 _{nd}	3rd
m_1	w_1	w_2	W_3
m_2	W_2	w_1	w_3
m_3	w_1	w_2	W_3

	favorite ↓		least favorite
	1st	2nd	3rd
w_1	m_2	m_1	m_3
W_2	m_1	m_2	m_3
w_3	m_1	m_2	m_3

Example

Question. Is assignment $(m_1, w_3), (m_2, w_2), (m_3, w_1)$ stable?

Answer. No. w_2 , m_1 will hook up.

	favorite ↓	least favorite ↓	
	1st	2nd	3rd
m_1	w_1	w_2	W_3
m_2	W_2	w_1	w_3
m_3	w_1	w_2	W_3

	favorite ↓		least favorite ↓
	1st	2nd	3rd
w_1	m_2	m_1	m_3
w_2	m_1	m_2	m_3
w_3	m_1	m_2	m_3

Example

Question: Is assignment $(m_1, w_1), (m_2, w_2), (m_3, w_3)$ stable?

Answer: Yes.

	favorite ↓		least favorite ↓	
	1st	2nd	3rd	
m_1	w_1	w_2	W_3	
m_2	W_2	w_1	W_3	
m_3	w_1	w_2	W_3	

	favorite ↓		least favorite ↓
	1st	2nd	3rd
w_1	m_2	m_1	m_3
w_2	m_1	m_2	m_3
w_3	m_1	m_2	m_3

Existence of Stable Matchings

Question. Do stable matchings always exist? Answer. ?

Stable roommate problem:

2n people; each person ranks others from 1 to 2n-1. Assign roommate pairs so that no unstable pairs.

	1 st	2 nd	3 rd
Adam	В	С	D
Bob	С	Α	D
Chris	Α	В	D
David	Α	В	С

A-B, C-D \Rightarrow B-C unstable A-C, B-D \Rightarrow A-B unstable A-D, B-C \Rightarrow A-C unstable

So, Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm [Gale-Shapley'62]

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
   Choose such a man m
   W = 1st woman on m's list to whom m has not yet proposed
   if (W is free)
        assign m and w to be engaged
   else if (W prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
   else
        w rejects m
}
```

First step: Properties of Algorithm

Observation 1: Men propose to women in decreasing order of preference.

Observation 2: Each man proposes to each woman at most once

Observation 3: Once a woman is matched, she never becomes unmatched; she only "trades up."

What do we need to prove?

- 1) The algorithm ends
 - How many steps does it take?

- 2) The algorithm is correct [usually the harder part]
 - It outputs a perfect matching
 - The output matching is stable

1) Termination

Claim. Algorithm terminates after $\leq n^2$ iterations of while loop. Proof. Observation 2: Each man proposes to each woman at most once.

Each man makes at most n proposals So, there are only n^2 possible proposals.

	1st	2 _{nd}	3rd	4th	5 _{th}
Victor	Α	В	С	D	Е
Walter	В	С	D	Α	Ε
Xavier	С	D	Α	В	Ε
Yuri	D	Α	В	С	Ε
Zoran	Α	В	С	D	Е

	1st	2nd	3rd	4th	5th
Amy	W	X	У	Z	V
Brenda	Х	У	Z	V	W
Claire	У	Z	V	W	X
Diane	Z	V	W	X	У
Erika	V	W	X	У	Z

n(n-1) + 1 proposals required

2) Correctness: Output is Perfect matching

Claim. All men and women get matched.

Proof. (by contradiction)

Suppose, for sake of contradiction, that m_1 is not matched upon termination of algorithm.

Then some woman, say w_1 , is not matched upon termination.

By Observation 3 (only trading up, never becoming unmatched), w_1 was never proposed to.

But, m_1 proposes to everyone, since he ends up unmatched.

2) Correctness: Stability

Claim. No unstable pairs.

Proof. (by contradiction)

Suppose m, w is an unstable pair: each prefers each other to the partner in Gale-Shapley matching S^* .

Obs1: men propose in

Case 1: m never proposed to w.

 \Rightarrow m prefers his S* partner to $w \nearrow$

 \Rightarrow *m*, *w* is stable.

Case 2: *m* proposed to *w*.

 \Rightarrow w rejected m (right away or later)

 \Rightarrow w prefers her **S*** partner to m.

 \Rightarrow *m*, *w* is stable.

Obs2: women only trade up

decreasing order of preference

In either case m, w is stable, a contradiction.

Summary

Stable matching problem: Given n men and n women, and their preferences, find a stable matching if one exists.

- Gale-Shapley algorithm: Guarantees to find a stable matching for any problem instance.
- Q: How to implement GS algorithm efficiently?
- Q: If there are multiple stable matchings, which one does GS find?
- Q: How many stable matchings are there?