Exam 1

Evan Fox

3/9/2023

Problem 1. First I prove the following: Let $n \ge 4$ and G be on n vertices and let 4 < k < n. Then if every induced subgraph on k vertices is disconnected, G is disconected.

Proof. if k=n-1, it is clear, since in any connected graph n>4 there exists a vertex v such that $G\setminus v$ is conected. This can be seen first by removing any vertex of degree 1, if none exists then $\delta\geq 2$ and there is a cycle from which an appropriate vertice can be removed(not every edge is a brige). Then for any 4< k< n, if all induced subgraphs on k vertices are disconnected, it follows that any induced subgraph of order k+1 is disconnected by the above. This will continue so that all induced subgraphs of order n-1 are disconnected and we see that G must be disconected.

Now to solve the question at hand, if n=4, clearly P_3 is the only solution, by checking cases. Now let G be on n vertices and assume G and \overline{G} are connected. Then if G does not contain P_3 , the complement of every connected induced subgraph of order 4 must be disconnected (since P_3 is the only graph on 4 vertices with connected complement), these subgraphs are induced subgraphs in \overline{G} and clearly every induced subgraph of order 4 in \overline{G} is obtained this way, hence \overline{G} is disconnected by the above remark; a contradiction.

So we may conclude that G contains a copy of P_3 .

Problem 2. Proof. Suppose that G is connected and that there exits vertices a,b,c such that $\{b,c\} \in E(G)$ and dist(a,b) = dist(a,c). We prove this holds iff there is an odd cycle. First if there is an odd clycle then clearly this will hold, fix a vertex v in the cycle, then the two furthest vertices in the cycle will have the same distence to v and they will be connected by an edge (since they are furthest). Conversly, let P be a minimal length path from a to b and b be a minimal length path from b to b and b do and

Problem 3. Proof. Let M and N be disjoint matchings and suppose that |M| = |N| + k. Then let $S \subset M$ satisfying |S| = k - 1. Then set

$$M_1 = N \cup S$$

$$N_1 = M \setminus S$$

We have that $|M_1| = |N \cup S| = |M| - k + (k-1) = |M| - 1$, where I am using $S \cap N = \emptyset$ (since $S \subset M$) and $|N_1| = |M \setminus S| = |N| + k - (k-1) = |N| + 1$, again since $S \subset M$. Clearly these are disjoint,

$$M_1 \cap N_1 = (N \cup S) \cap (M \setminus S) = (N \cap (M \setminus S)) \cup (S \cap (M \setminus S)) = \emptyset \cup \emptyset$$

and they have the same union, since

$$N \cup S \cup (M \setminus S) = N \cup M$$

Problem 4. Proof. First we assume n = 2k then extend the result.

Let G be a graph on 2k vetices such that $\delta \geq k$. We show that $\alpha'(G) \geq k$ by finding a spanning path in G. If k = 1 then G is P_1 and the result is satisfied. Now for k > 1, first note that G is connected, since otherwise, the smaller component can have at most k vertices and hence has a minimal degree less than k.

Now consider a longest path $P = \{x_0, x_1, \ldots, x_l\}$ in G and order the vertices by their index. Both x_0 and x_l have at least k neighbors on the path, let E_1 denote the set of all edges whose maximal (by the ordering) vertex is adjacent to x_0 and let E_2 denote the set of all edges whose minimal vertex is adjacent to x_l . Then both $|E_1| \geq k \leq |E_2|$, since the number of edges in P is at most 2k-1, we have $E_1 \cap E_2 \neq \emptyset$. Hence we may fix $e = \{x_i, x_{i+1}\} \in E_1 \cap E_2$. Now the path $x_0x_{i+1}Px_lx_ipx_1$ is a path in G that vists every vertex, since if there were a vertice w left unvisted, we would have a path Q from w to x_j then by travesring Q onto P, then going to the nearest end vertice, say x_l we construct a path $wQx_jPx_lx_iPx_0$ which contradics our assumption that P is the longest path. Now we have a path that vists all 2k vertices in G exactly once and doesnt repeat egdes. By constructing a matching M which takes every other edge from the path we get a matching of size k, since ||P|| = 2k - 1. As desired.

Now if n > 2k the we can no longer prove that G is connected, if fact it may be the case that all connected components of G have less than 2k vertices. For each connected component C_i , we will consider the longest path in each C_i . If $|C_i| \leq 2k$ the above argument applies and we get a matching of size $\lfloor \frac{|C_i|}{2} \rfloor$ (which is k if $|C_i| = 2k$ which was the case above).

If there is C_i such that $|C_i| > 2k$, then the longest path is at least 2k vertices since if the longest path P has |P| < 2k, using the fact that we are in a connected component with minimal degree k along with the argument from the first paragraph will force P to be spannin, hence $|C_i| < 2k$; a contradiction.

Then by selecting alternating edges in the path (of length at least 2k-1) we get a matching of sufficint size

So assume that each C_i has order less than 2k and let t be the number of components (clearly $t \geq 2$). We want to show that

$$k \le \sum_{i=1}^{t} \lfloor \frac{|C_i|}{2} \rfloor$$

Now the minimal degree restricts how small $|C_i|$ can be; in oder to satisfy the minimal degree we must have $|C_i| > k$. So since $t \ge 2$ we have $t^{\frac{k}{2}} \ge k$. And hence,

$$k \leq t\frac{k}{2} \leq \sum_{i=1}^t \frac{k}{2} \leq \sum_{i=1}^t \lfloor \frac{k+1}{2} \rfloor \leq \sum_{i=1}^t \lfloor \frac{|C_i|}{2} \rfloor$$

Hence there is a matching M of size k and so $\alpha'(G) \ge |M| = k$. As desired. \square