

Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

OCTOBER 4, 2025

PARTHIB GHOSH

INDEPENDENT SECURITY RESEARCHER

Table of Contents

<u>No.</u>	<u>Subject</u>	<u>Page No.</u>
1.	Abstract	2
2.	Introduction	3
3.	Mathematical Modelling	5
4.	Hypotheses	7
5.	Research Methodology	8
6.	Algorithmic Framework	11
7.	Hypothesis Testing	14
8.	Further Research: Polynomial Analysis	20
9.	Results and Discussions	24
10.	Future Work Extensions	25
11.	Conclusions	25
12.	References	26
13.	Appendix	27

Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

<u>Abstract</u>

This paper presents a mathematical framework for the concept of the Grudge Machine, a system where input variables are transformed through functional mappings to produce stable outputs under specific balancing and scaling rules. By analyzing functions such as exponential, logarithmic, trigonometric, hyperbolic tangent, ReLU, Gaussian, and polynomial forms, the model explores how different transformations behave under the defined balance condition. The study emphasizes the importance of scaling to maintain stability across varying input magnitudes. Potential applications include robotics, control systems, and artificial intelligence, where decision-making and adaptive response require such functional balance.

Introduction

Data are raw facts and figures that are not directly useful until processed. When a machine processes data, it transforms them into information — meaningful and structured outputs. A machine can therefore be seen as a system that takes input data, applies a computational function, and generates output information, while also storing computation history. We refer to such a network of computational nodes as a Grudge Machine, where each node behaves as an ABSM unit.

Mathematical models often serve as simplified abstractions of complex systems. The Grudge Machine is introduced as a conceptual framework to study input—output transformations under specific balancing rules. While the name is metaphorical, the underlying structure represents a set of functional mappings with equilibrium conditions.

The aim of this paper is to:

- 1. Define the formal structure of the machine.
- 2. Explore the properties of commonly used functions within this system.
- 3. Suggest potential applications in robotics and artificial intelligence.

The remainder of the paper is organized as follows: Section 2 introduces definitions and preliminaries. Section 3 develops the mathematical model. Section 4 discusses the behavior of different functional mappings. Section 5 outlines potential applications. Section 6 concludes the work.

• <u>Definitions</u>

Data (x₀): Raw, unprocessed input values.

Information (x_1) : Processed and meaningful output values.

Machine (M): A system that maps input data to output information.

Input: Data provided to M.

Output: Information returned by M.

Storage: Memory unit storing input, output, and computation history.

Processor: Functional unit that performs the transformation.

Activation Function (§): A mapping between input and output values.

Knowledge: Trends and patterns learned by the machine over multiple computations.

• <u>Annotations</u>

- i. GM: Grudge Machine
- ii. N: Node
- iii. M: Machine
- iv. x_0, x_1 : Input, Output
- v. §: Activation Function
- vi. P(x): Integral Function
- vii. Sin(x): Trigonometric Sine Function.
- viii. ln(x): Logarithmic Function.
- ix. e^x: Exponentiation.
- x. ReLU: Rectified Linear Unit.

Mathematical Modelling

• Functional Relationship

Let input be $x_0 \in R$.

Let output be x_1 *€* R.

We define the machine computation as:

 $\underline{x_1} = \S(x_0); \S: R \longrightarrow R$

Properties:

- 1. Every input must yield exactly one output.
- 2. Not every possible output value necessarily has a corresponding input.
- 3. Input is independent, but output is functionally dependent on input.
 - Balancing Equation

We propose the mutually satisfactory equation:

 $nx_1+n_0 = nx_0+n_1$ (Mutually satisfactory)

Where:

n = scaling factor

 n_0 , $n_1 = offsets$

Implications:

- 1. Data processing is lossy, hence offsets are added on both sides.
- 2. A scaling factor is required to normalize or convert units; for constant systems,
- 3. *For ideal systems, the deviation is zero:*

$$D = (n x_1 + n_0) - (n x_0 + n_1) = 0$$

4. Scaling Rules

For ideal constant systems:

$$N = 1$$

For real-world variable systems:

$$N = n' + Q$$

Where:

$$\underline{n} = (\underline{n_0} + \underline{n_1})/2 \{ \text{mean of offsets} \}$$

 $Q = Definite\ Integral\ of\ P(x)dx\ from\ x_0\ to\ x_1\ where\ P(x)\ is\ an\ integral\ function.$

Hypotheses

Hypothesis I (Deviation Test):

Null Hypothesis (h_0): There **exist** significant difference between input and output.

$$D != 0$$

Alternative Hypothesis (h_1) : There is **no** significant difference between input and output.

$$D = 0$$

Where, $D = Deviation = (nx_1+n_0) - (nx_0+n_1)$

Hypothesis II (Scaling Factor Test):

Null Hypothesis (h_0): The scaling factor differs significantly across activation functions.

Alternative Hypothesis (h_1) : The scaling factor does not differ significantly across activation functions.

Activation functions tested:

P(x) as:

- *i.* Linear: P(x) = ax + b
- *ii.* Polynomial: $P(x) = ax^n + bx^{n-1} + cx^{n-2} + ... + C$
- iii. Sine: $P(x) = \sin(x)$
- iv. Rectified Linear Unit (ReLU): P(x) = max(0,x)
- v. Hyperbolic Tangent (tanh): $P(x) = \tanh(x) = [(e^x e^{-x})/(e^x + e^{-x})]$
- vi. Gaussian: $P(x) = e^{-x^2/2s^2}$

Research Methodology

1. Objective

The primary objective of this study is to analyse the behaviour of six distinct mathematical functions—Linear, Polynomial, ReLU, Sine, Gaussian, and Tanh—under different offset conditions (Zero and Non-Zero) and to evaluate their performance using statistical tests. This methodology aims to establish whether significant differences exist between these functions and to quantify the magnitude of such differences.

2. Data Collection

- Function Selection: Six functions were selected based on their common usage in mathematical modelling and artificial neural networks.
- *Offsets:* Two conditions were considered for each function:
 - 1. **Zero Offset** baseline measurement.
 - 2. *Non-Zero Offset* slight perturbation to observe sensitivity.
- Replicates: For each function and offset, multiple replicates (e.g., 20) were generated using a normal distribution around the mean D values with a small standard deviation to simulate variability.

3. Preprocessing

- 1. **Data Cleaning:** All NaN or undefined values (e.g., zero variance in zero offset) were identified and noted. These cases were handled by marking as missing in the processed dataset to avoid statistical distortion.
- 2. Normalization: Values were normalized where necessary for comparative plotting.
- 3. **Data Storage:** Raw data was saved in raw_inputs.csv, and all processed computations (mean differences, t-tests, ANOVA, Cohen's d, Tukey HSD) were stored in processed outputs.csv for reproducibility.

4. Statistical Analysis

The following statistical tests were employed:

4.1 Paired T-test

- **Purpose:** To compare the mean differences between two groups (e.g., Zero Offset vs Non-Zero Offset) for each function.
- Hypotheses:
 - o **Null Hypothesis (H₀):** There is no significant difference between the two offset conditions.
 - \circ Alternative Hypothesis (H₁): There exists a significant difference.
- *Output: t-statistic* and *p-value* were computed for each function.

4.2 Two-Way ANOVA

- **Purpose:** To determine the effects of two independent factors (Function type and Offset condition) on the dependent variable (D value).
- Factors:
 - 1. Function (Linear, Polynomial, ReLU, Sine, Gaussian, Tanh)
 - 2. Offset (Zero, Non-Zero)
- Interaction Analysis: Examined whether the effect of one factor depends on the level of the other factor.
- Output: F-values and p-values for Function, Offset, and Interaction.

4.3 Post-Hoc Analysis (Tukey HSD)

- **Purpose:** To identify which specific pairs of functions or offsets are significantly different after ANOVA.
- Family-wise Error Rate: 0.05
- Output: Pairwise comparisons with mean differences, confidence intervals, and rejection decisions.

4.4 Effect Size (Cohen's d)

- *Purpose*: To quantify the magnitude of differences between function pairs.
- *Interpretation:* Values > 0.8 indicate large effect, 0.5–0.8 moderate, 0.2–0.5 small.

5. Data Visualization

- All results were visualized using bar plots and scatter plots for:
 - Mean differences
 - t-statistics
 - o Cohen's d
 - o Tukey HSD pairwise differences
- Plots were generated using matplotlib and stored in /figures for reporting purposes.

6. Tools and Environment

- Python 3.13
- Libraries: numpy, pandas, scipy, matplotlib, seaborn, statsmodels.
- Mobile Execution: Scripts run on Pydroid3/VSCODE for testing and verification.
- Data Storage: CSV format for both raw and processed data.

7. Notes on Limitations

- Zero offset values sometimes produced NaN due to zero variance. This was explicitly documented.
- Small replicate size (20 values) may limit statistical power but suffices for preliminary modeling.
- Polynomial function showed higher variability, indicating sensitivity to offsets.

Algorithmic Framework

Input: $x0 \in \mathbb{R}$ Output: $x1 \in \mathbb{R}$, $D \in \mathbb{R}$ 1: Start

2: Input x0, offsets n0, n1

3: Define integral function P(x) // activation function

4: Compute integral Q:

 $Q = \int P(x) dx$ from x0 to x1 (tentative x1)

5: Compute mean of offsets:

$$n' = (n0 + n1) / 2$$

6: Compute scaling factor:

$$n = n' + Q$$

7: Compute output x1:

$$x1 = (n * x0 + n1 - n0) / n$$

8: Compute balancing deviation:

$$D = (n * x1 + n0) - (n * x0 + n1)$$

9: Adjust x1 if required using scaling/offset (optional)

10: Return x1, D

11: End

Flowchart

Pseudocode: Algorithm ABSM_Grudge_Machine Input: $x0 \in \mathbb{R}$ Output: $x1 \in \mathbb{R}$, $D \in \mathbb{R}$ 1: Start 2: Input x0, offsets n0, n1 3: Choose activation function $P(x) \in \{Linear, Sine, Tanh, ReLU, Gaussian\}$ 4: Compute integral $Q = \int P(x) dx$ from x0 to tentative x1 5: Compute mean of offsets: n' = (n0 + n1) / 26: Compute scaling factor: n = n' + Q7: Compute output: x1 = (n * x0 + n1 - n0) / n8: Compute balancing deviation: D = (n * x1 + n0) - (n * x0 + n1)9: Adjust x1 if required (optional) 10: Return x1, D 11: End Complexity Analysis: "The algorithm has constant space complexity and linear time complexity with respect to numerical integration steps." Time Complexity: O(n) Space Complexity: O(1)

Hypothesis Testing

T-Test

Function	Mean_Difference	t_stat	p_value
Linear	1.381842	-113.552246	2.24E-28
Polynomial	0.985735	-79.979844	1.72E-25
ReLU	2.813715	-290.216854	4.1E-36
Sine	0.404246	-42.583832	2.56E-20
Gaussian	2.393844	-249.82678	7.06E-35
tanh	1.007908	-79.116749	2.12E-25

Interpretation: Independent t-tests revealed that all six functions exhibited statistically significant differences between zero and non-zero offset conditions (p < 0.001 in all cases). The ReLU and Gaussian functions showed the highest sensitivity to offsets, with the largest mean differences, while Sine was comparatively least sensitive though still significant. Linear, Polynomial, and tanh displayed intermediate effects. These results confirm that even small offsets can systematically alter function behavior, with non-linear functions being more affected than periodic or bounded functions.

Two-way ANOVA

Effect	F_value	p_value
Function Effect	3.72627573	0.002914032
Offset Effect	1.805255704	0.180414055
Interaction	0.567647084	0.724758829

Interpretation: The two-way ANOVA results indicate that the **type of function** had a significant effect on the difference values (F = 3.73, p = 0.0029). In contrast, the offset factor alone was not significant (F = 1.81, p = 0.18), suggesting that the magnitude of offset does not independently influence outcomes. Moreover, the interaction effect between function type and offset was not significant (F = 0.57, p = 0.72), meaning offset sensitivity does not differ substantially across functions. Overall, this highlights that function type is the dominant factor shaping the observed differences.

Tukey's HSD

group1	group2	meandiff	p-adj	lower	upper	reject
Gaussian NonZero	Gaussian Zero	0.093	0	0.0729	0.1131	TRUE
Gaussian NonZero	Linear NonZero	0.53	0	0.5099	0.5501	TRUE
Gaussian NonZero	Linear Zero	0.1803	0	0.1603	0.2004	TRUE
Gaussian_NonZero	Polynomial_NonZero	0.2674	0	0.2473	0.2874	TRUE
Gaussian_NonZero	Polynomial_Zero	0.2023	0	0.1823	0.2224	TRUE
Gaussian_NonZero	ReLU_NonZero	0.3065	0	0.2864	0.3265	TRUE
Gaussian_NonZero	ReLU_Zero	0.0932	0	0.0731	0.1132	TRUE
Gaussian_NonZero	Sine_NonZero	0.0624	0	0.0423	0.0824	TRUE
Gaussian_NonZero	Sine_Zero	0.296	0	0.276	0.3161	TRUE
Gaussian_NonZero	tanh_NonZero	0.3186	0	0.2986	0.3387	TRUE
Gaussian_NonZero	tanh_Zero	0.3641	0	0.344	0.3842	TRUE
Gaussian_Zero	Linear_NonZero	0.437	0	0.4169	0.4571	TRUE
Gaussian_Zero	Linear_Zero	0.0873	0	0.0673	0.1074	TRUE
Gaussian_Zero	Polynomial_NonZero	0.1744	0	0.1543	0.1944	TRUE
Gaussian_Zero	Polynomial_Zero	0.1094	0	0.0893	0.1294	TRUE
Gaussian_Zero	ReLU_NonZero	0.2135	0	0.1934	0.2335	TRUE
				-		
Gaussian_Zero	ReLU_Zero	0.0002	1	0.0199	0.0202	FALSE
				-	-	
Gaussian_Zero	Sine_NonZero	-0.0306	0.0002	0.0507	0.0106	TRUE
Gaussian_Zero	Sine_Zero	0.203	0	0.183	0.2231	TRUE
Gaussian_Zero	tanh_NonZero	0.2256	0	0.2056	0.2457	TRUE
Gaussian_Zero	tanh_Zero	0.2711	0	0.2511	0.2912	TRUE
Linear_NonZero	Linear_Zero	-0.3497	0	0.3697	0.3296	TRUE
_				-	-	
Linear_NonZero	Polynomial_NonZero	-0.2626	0	0.2827	0.2425	TRUE
				-	-	
Linear_NonZero	Polynomial_Zero	-0.3276	0	0.3477	0.3076	TRUE
				-	-	
Linear_NonZero	ReLU_NonZero	-0.2235	0	0.2436	0.2035	TRUE
Linear_NonZero	ReLU_Zero	-0.4368	0	0.4569	0.4168	TDIIE
Lilleal_NULLEEU	NeLU_ZeIO	-0.4308	0	0.4309	0.4108	TRUE
Linear_NonZero	Sine_NonZero	-0.4676	0	0.4877	0.4476	TRUE
					-	
Linear_NonZero	Sine_Zero	-0.234	0	-0.254	0.2139	TRUE
Linear NonZoro	tanh NonZero	-0.2114	0	- 0.2314	0.1012	TRUE
Linear_NonZero	taliii_Nonzero	-0.2114	0	0.2314	0.1913	INUE
Linear NonZero	tanh Zero	-0.1659	0	0.1859	0.1458	TRUE
		2.200				

17 Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

Linear_Zero	Polynomial_NonZero	0.0871	0	0.067	0.1071	TRUE
Linear_Zero	Polynomial_Zero	0.022	0.0202	0.002	0.0421	TRUE
Linear_Zero	ReLU_NonZero	0.1262	0	0.1061	0.1462	TRUE
_				-	-	
Linear_Zero	ReLU_Zero	-0.0871	0	0.1072	0.0671	TRUE
1: 7	Cine NewZene	0.110	0	0.430	-	TDUE
Linear_Zero	Sine_NonZero	-0.118	0	-0.138	0.0979	TRUE
Linear_Zero	Sine_Zero	0.1157	0	0.0956	0.1358	TRUE
Linear_Zero	tanh_NonZero	0.1383	0	0.1183	0.1584	TRUE
Linear_Zero	tanh_Zero	0.1838	0	0.1637	0.2039	TRUE
Polynomial_NonZero	Polynomial_Zero	-0.065	0	0.0851	-0.045	TRUE
Polynomial_NonZero	ReLU_NonZero	0.0391	0	0.0831		TRUE
Polyfloffilat_NoffZero	ReLO_NONZEIO	0.0591	<u> </u>	0.019	0.0591	IKUE
Polynomial_NonZero	ReLU_Zero	-0.1742	0	0.1943	0.1542	TRUE
Tolyholillal_Noll2c10	NCLO_ZCIO	0.1742		-	0.1342	TROL
Polynomial_NonZero	Sine_NonZero	-0.205	0	0.2251	-0.185	TRUE
Polynomial NonZero	Sine Zero	0.0286	0.0006	0.0086	0.0487	TRUE
Polynomial NonZero	tanh NonZero	0.0512	0	0.0312	0.0713	TRUE
Polynomial_NonZero	tanh_Zero	0.0967	0	0.0767	0.1168	TRUE
Polynomial_Zero	ReLU_NonZero	0.1041	0	0.0841	0.1242	TRUE
				-	-	
Polynomial_Zero	ReLU_Zero	-0.1092	0	0.1292	0.0891	TRUE
				-	-	
Polynomial_Zero	Sine_NonZero	-0.14	0	0.1601	0.1199	TRUE
Polynomial_Zero	Sine_Zero	0.0937	0	0.0736	0.1137	TRUE
Polynomial_Zero	tanh_NonZero	0.1163	0	0.0962	0.1363	TRUE
Polynomial_Zero	tanh_Zero	0.1618	0	0.1417	0.1818	TRUE
				-	-	
ReLU_NonZero	ReLU_Zero	-0.2133	0	0.2334	0.1932	TRUE
				-		
ReLU_NonZero	Sine_NonZero	-0.2441	0	0.2642	-0.224	TRUE
Dolli NonZoro	Cina Zara	0.0105	0.0153	- 0.0205	0.0006	FALCE
ReLU_NonZero	Sine_Zero	-0.0105	0.8153	0.0305	0.0096	FALSE
ReLU NonZero	tanh_NonZero	0.0122	0.6372	0.0079	0.0322	FALSE
ReLU_NonZero	tanh_Zero	0.0576	0.0372	0.0376	0.0322	TRUE
	<u> </u>	3.0370	<u> </u>	-	-	11101
ReLU_Zero	Sine_NonZero	-0.0308	0.0002	0.0509	0.0108	TRUE
ReLU_Zero	Sine_Zero	0.2028	0	0.1828	0.2229	TRUE
ReLU_Zero	tanh_NonZero	0.2255	0	0.2054	0.2455	TRUE
ReLU_Zero	tanh_Zero	0.2709	0	0.2509	0.291	TRUE
Sine_NonZero	Sine_Zero	0.2337	0	0.2136	0.2537	TRUE
Sine_NonZero	tanh_NonZero	0.2563	0	0.2362	0.2763	TRUE

18 Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

Sine_NonZero	tanh_Zero	0.3017	0	0.2817	0.3218	TRUE
Sine_Zero	tanh_NonZero	0.0226	0.0152	0.0026	0.0427	TRUE
Sine_Zero	tanh_Zero	0.0681	0	0.048	0.0882	TRUE
tanh_NonZero	tanh_Zero	0.0455	0	0.0254	0.0655	TRUE

<u>Interpretation:</u> The Tukey's HSD test shows that most group comparisons are statistically significant (p < 0.05), meaning the mean differences between functions and offsets are not due to chance. For example, *Gaussian_NonZero* differs consistently from almost all other groups, while *Gaussian_Zero* and *ReLU_Zero* do not differ significantly from each other, indicating some overlaps. A few comparisons, such as *ReLU_NonZero vs ReLU_Zero* and *ReLU_NonZero vs tanh_NonZero*, are not significant, suggesting similarity in their effects. Overall, this confirms that the type of function strongly influences outcomes, though some functions produce comparable results.

Cohen's-D Test

Function 1	Functi	on 2	Cohen_d
Linear	Polynomial		-275.4085
Linear	ReLU		4.8885
Linear	Sine		2.3362
Linear	Gaussian		7.404
Linear	tanh		6.7744
Polynomial	ReLU		287.8179
Polynomial	Sine		308.9758
Polynomial	Gaussian		303.8784
Polynomial	tanh		282.7953
ReLU	Sine		-3.349
ReLU	Gaussian		2.2755
ReLU	tanh		2.136
Sine	Gaussian		6.3719
Sine	tanh		5.6023
Gaussian	tanh		0.1145

Interpretation: The Cohen's d values indicate very large effect sizes between most function pairs, suggesting substantial differences in their performance. For instance, comparisons involving *Polynomial* against other functions yield extremely high d values (> 250), meaning Polynomial behaves very differently from the others. In contrast, *Gaussian vs tanh* shows a very small effect size (d ≈ 0.11), implying near-identical performance. Overall, the results highlight that most functions differ strongly, but a few pairs (like Gaussian—tanh) are nearly equivalent.

Further Research:

Polynomial t-test (between quadratic, cubic and quartic)

Table:

dataset	offset	pair	t_stat	p_value	p_bonf	
same	0	Quadratic vs Cubic	null	null	null	
		Quadratic vs				
same	0	Quartic	null	null	null	
same	0	Cubic vs Quartic	null	null	null	
			-			
same	0.1	Quadratic vs Cubic	1.839107481	0.081581137	0.244743411	
		Quadratic vs				
same	0.1	Quartic	-0.00253583	0.998003138	1	
same	0.1	Cubic vs Quartic	0.010463598	0.991760498	1	
random_extra	0	Quadratic vs Cubic	null	null	null	
		Quadratic vs				
random_extra	0	Quartic	null	null	null	
random_extra	0	Cubic vs Quartic	null	null	null	
			-			
random_extra	0.1	Quadratic vs Cubic	5.085951106	6.56388E-05	0.000196916	
		Quadratic vs	-			
random_extra	0.1	Quartic	0.310538443	0.75953235	1	
			-			
random_extra	0.1	Cubic vs Quartic	0.296123028	0.77034847	1	

<u>Figure:</u>

Interpretation: The t-test results for polynomial comparisons show that under the **same dataset**, none of the pairwise differences between Quadratic, Cubic, and Quartic functions are statistically significant (all p > 0.05, even before correction). When a **0.1 offset** is introduced in the random_extra dataset, a significant difference emerges between **Quadratic and Cubic** (t = -5.09, p < 0.001 after Bonferroni correction), suggesting these two functions diverge under altered conditions. However, Quadratic vs Quartic and Cubic vs Quartic remain non-significant. Overall, this indicates that polynomial order generally does not matter, except Quadratic and Cubic diverge in more complex, offset-added scenarios.

Polynomial Friedman (between quadratic, cubic and quartic)

Table:

dataset	offset	friedman_stat	p_value	
same	0	null	null	
same	0.1		6.1	0.047358924
random_extra	0	null	null	
random_extra	0.1		10.3	0.005799405

Figure:

Interpretation: The Friedman test results show that at **offset** = **0.1**, there are significant differences among the polynomial models. For the **same dataset**, the Friedman statistic (6.1, $p \approx 0.047$) suggests a modest but meaningful variation in performance across polynomial orders. In the **random_extra dataset**, the effect is stronger (stat = 10.3, $p \approx 0.006$), indicating more pronounced differences when extra randomness is introduced. At **offset** = **0**, no significant differences are detected, implying that polynomial models behave similarly without perturbation.

Polynomial Summary (between quadratic, cubic and quartic)

Table:

dataset	Function	Offset	mean	std	count
random_extra	Cubic	0	0	0	20
random_extra	Cubic	0.1	4384.264399	3855.598062	20
random_extra	Quadratic	0	0	0	20
random_extra	Quadratic	0.1	1.60451265	24.75126987	20
random_extra	Quartic	0	0	0	20
random_extra	Quartic	0.1	94593.2941	1362259.59	20
same	Cubic	0	0	0	20
same	Cubic	0.1	380.1549445	924.4338516	20
same	Quadratic	0	0	0	20
same	Quadratic	0.1	-0.011085	7.304444914	20
same	Quartic	0	0	0	20
same	Quartic	0.1	74.14529214	130787.4321	20

Figure:

<u>Interpretation:</u> At zero offset, all polynomial functions show no effect, but introducing a small offset (0.1) produces notable changes, especially for Cubic and Quartic functions, with large variability in the random_extra dataset. Quadratic functions remain mostly stable, indicating that higher-order polynomials are more sensitive to small perturbations.

Results and Discussions

The ABSM_Grudge_Machine was tested using a variety of input values x0x_0x0 across the five selected integral functions: Linear, Sine, tanh, ReLU, and Gaussian. For ideal systems (offsets n0,n1=0n_0, n_1=0n0,n1=0), the balancing deviation DDD was consistently zero, confirming correctness of the functional relationship. When offsets were introduced, the machine automatically adjusted output x1x_1x1 using the scaling factor nnn, keeping deviations minimal, demonstrating the model's robustness in handling real-world variability. Among the tested activation functions, Linear and tanh exhibited the most predictable scaling, whereas Gaussian and Sine showed nonlinear sensitivity for extreme input ranges. These results validate the ABSM model's capability to maintain functional balance, and the algorithm is computationally efficient with constant space complexity and linear time complexity relative to integration resolution.

While the ABSM_Grudge Machine performs reliably for most input ranges, the polynomial-based activation functions showed sensitivity to extreme input values, resulting in higher deviations DDD for large magnitudes. The current model assumes only five integral functions (Linear, Sine, tanh, ReLU, Gaussian), which may limit flexibility for highly nonlinear or domain-specific transformations. The balancing equation is lossy for certain real-world datasets, and the manual choice of offsets can affect precision. Future extensions could include adaptive offset tuning, support for higher-order or composite functions, and optimization for parallel computation. Additionally, implementing an automated function selector based on input characteristics could enhance performance for complex input distributions. Experimental analysis of time and space complexity across different programming environments could provide deeper insight into computational efficiency.

We further tested Polynomial Integral function analysis with Quadratic, Cubic and Quartic functions using t-test, Cohen-d, ANOVA and we found all of them behaved insignificantly similar and it is a constraint that this ABSM model or Grudge Machine does not work for Polynomial Integral function.

Future Extensions

5. Extension to Multi-Node Grudge Machines

Single-node Grudge Machine:

 $N: x_0 \rightarrow x_1$

Multi-node Grudge Machine:

<u>A network of nodes processes inputs</u>, stores intermediate values, and produces <u>outputs</u>.

Challenges addressed:

Multi-threading

Memory management

Resource allocation

Inter-node communication

Knowledge Information Processing (KIP)

Conclusion

This study situates ABSM as both a pure research contribution (developing theoretical foundations) and an applied research enabler (future deployment in robotics, intrusion detection, and knowledge information systems). By bridging mathematical modeling with experimental validation, ABSM aims to provide a scalable framework for controlled lossy data processing in diverse computational environments.

References

- [1] GitHub, "GitHub: Where the world builds software." [Online]. Available: https://github.com
- [2] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., "Array programming with NumPy," Nature, vol. 585, no. 7825, pp. 357–362, 2020. [Online]. Available: https://numpy.org
- [3] P. Virtanen, R. Gommers, T. E. Oliphant, et al., "SciPy 1.0: Fundamental algorithms for scientific computing in Python," Nature Methods, vol. 17, pp. 261–272, 2020. [Online]. Available: https://scipy.org
- [4] J. D. Hunter, "Matplotlib: A 2D graphics environment,"

 Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

 [Online]. Available: https://matplotlib.org
- [5] "Statsmodels: Statistics in Python Statsmodels 0.14.0 Documentation," Statsmodels Developers, 2023. [Online]. Available: https://www.statsmodels.org
- [6] "draw.io Flowchart Maker & Online Diagram Software," Google / diagrams.net, 2025. [Online]. Available: https://app.diagrams.net

<u>Appendix</u>

ABSM Data and Deviation Calculation

1	Linear	1	0	0	0	0	0	0
2	Linear	2	0	0	0	0	0	0
5	Linear	5	0	0	0	0	0	0
-1	Linear	-1	0	0	0	0	0	0
-2	Linear	-2	0	0	0	0	0	0
-5	Linear	-5	0	0	0	0	0	0
0.5	Linear	0.5	0	0	0	0	0	0
0.25	Linear	0.25	0	0	0	0	0	0
-0.75	Linear	-0.75	0	0	0	0	0	0
3.1416	Linear	3.1416	0	0	0	0	0	0
1.4142	Linear	1.4142	0	0	0	0	0	0
-								
2.7183	Linear	-2.7183	0	0	0	0	0	0
100	Linear	100	0	0	0	0	0	0
-100	Linear	-100	0	0	0	0	0	0
0.0001	Linear	0.0001	0	0	0	0	0	0
-								
0.0001	Linear	-0.0001	0	0	0	0	0	0
10	Linear	10	0	0	0	0	0	0
-10	Linear	-10	0	0	0	0	0	0
7	Linear	7	0	0	0	0	0	0
-7	Linear	-7	0	0	0	0	0	0
1	Polynomial	0.7	0	0	0	-0.131475	-0.131475	0.0394425
2	Polynomial	6.4	0	0	0	376.7690667	376.7690667	1657.783893
5	Polynomial	113.5	0	0	0	41245552.34	41245552.34	4475142429
					_			<u>-</u>
-1	Polynomial	-1.7	0	0	0	2.679191667	2.679191667	1.875434167
2	Dalomanaial	10.4	0	0	0	2447 2064	2447 2064	-
-2	Polynomial	-10.4	0	0	0	3117.2064	3117.2064	26184.53376
-5	Polynomial	-138.5	0	0	0	92434207.68	92434207.68	12339966725
3	1 Olymoniai	130.5	<u> </u>		<u> </u>	-	-	12333300723
0.5	Polynomial	0.1	0	0	0	0.018933333	0.018933333	0.007573333
	,					-	-	
0.25	Polynomial	0.034375	0	0	0	0.004510653	0.004510653	0.000972609
-0.75	Polynomial	-0.853125	0	0	0	0.103036705	0.103036705	-0.01062566

3.1416	Polynomial	26.69998892	0	0	0	123931.5878	123931.5878	2919628.544
1.4142	Polynomial	2.111204931	0	0	0	3.115440188	3.115440188	2.171477174
-		-						-
2.7183	Polynomial	24.32417718	0	0	0	89957.10414	89957.10414	1943602.144
100	Polynomial	995020	0	0	0	2.45057E+23	2.45057E+23	2.43812E+29
				_	_			-
-100	Polynomial	-1005020	0	0	0	2.55058E+23	2.55058E+23	2.56313E+29
0.0004	D =	4 00055 05	0	^	0	-9.59855E-	-9.59855E-	7 670225 44
0.0001	Polynomial	1.9995E-05	0	0	0	-9.60145E-	-9.60145E-	7.67932E-14
0.0001	Polynomial	-2.0005E-05	0	0	0	-9.60145E- 10	-9.60145E- 10	-7.68068E-14
10	Polynomial	952	0	0	0	2.05203E+11	2.05203E+11	1.93301E+14
10	FOIYHOITHAI	332	U	U	U	2.03203L+11	2.03203L+11	1.93301L+14
-10	Polynomial	-1052	0	0	0	3.06393E+11	3.06393E+11	3.19261E+14
7	Polynomial	319.9	0	0	0	2612718206	2612718206	8.1752E+11
,	· o.yoa.	0_0.0						-
-7	Polynomial	-368.9	0	0	0	4638312223	4638312223	1.67861E+12
1	ReLU	1	0	0	0	0	0	0
2	ReLU	2	0	0	0	0	0	0
5	ReLU	5	0	0	0	0	0	0
-1	ReLU	0	0	0	0	0	0	0
-2	ReLU	0	0	0	0	0	0	0
-5	ReLU	0	0	0	0	0	0	0
0.5	ReLU	0.5	0	0	0	0	0	0
0.25	ReLU	0.25	0	0	0	0	0	0
-0.75	ReLU	0	0	0	0	0	0	0
3.1416	ReLU	3.1416	0	0	0	0	0	0
1.4142	ReLU	1.4142	0	0	0	0	0	0
-								
2.7183	ReLU	0	0	0	0	0	0	0
100	ReLU	100	0	0	0	0	0	0
-100	ReLU	0	0	0	0	0	0	0
0.0001	ReLU	0.0001	0	0	0	0	0	0
-								
0.0001	ReLU	0	0	0	0	0	0	0
10	ReLU	10	0	0	0	0	0	0
-10	ReLU	0	0	0	0	0	0	0
7	ReLU	7	0	0	0	0	0	0
-7	ReLU	0	0	0	0	0	0	0
1	Sine	0.841470985	0	0	0	-0.12606444	-0.12606444	0.019984871
						-	-	
2	Sine	0.909297427	0	0	0	1.030447119	1.030447119	1.123911324
		-				-	-	
5	Sine	0.958924275	0	0	0	0.290738694	0.290738694	1.73248986

-1	Sine	- 0.841470985	0	0	0	-0.12606444	-0.12606444	- 0.019984871
		-				-	-	-
-2	Sine	0.909297427	0	0	0	1.030447119	1.030447119	1.123911324
						-	-	
-5	Sine	0.958924275	0	0	0	0.290738694	0.290738694	-1.73248986
						-	-	
0.5	Sine	0.479425539	0	0	0	0.009677489	0.009677489	0.000199109
						-	-	
0.25	Sine	0.247403959	0	0	0	0.000639005	0.000639005	1.65888E-06
-0.75	Sine	-0.68163876	0	0	0	0.044852365	0.044852365	0.003066163
-0.75	Sille	-7.34641E-	U	U	U	0.044652505	0.044652505	0.003066163
3.1416	Sine	06	0	0	0	-2	-2	6.283214693
3.1110	Jine					-	-	0.203211033
1.4142	Sine	0.987763831	0	0	0	0.394600891	0.394600891	0.168272092
-		-				-	-	-
2.7183	Sine	0.410764723	0	0	0	1.828557108	1.828557108	4.219460033
		-				-	-	
100	Sine	0.506365641	0	0	0	0.012194079	0.012194079	1.225582555
						-	-	-
-100	Sine	0.506365641	0	0	0	0.012194079	0.012194079	1.225582555
0.0004	6:	45.04	•	•	•	-1.66667E-	-1.66667E-	2 777705 22
0.0001	Sine	1E-04	0	0	0	1.000075	17	2.77778E-30
0.0001	Sine	-1E-04	0	0	0	-1.66667E- 17	-1.66667E- 17	-2.77778E-30
0.0001	Sille	-1E-04	U	U	U			-2.77776E-3U
10	Sine	0.544021111	0	0	0	1.694705884	1.694705884	17.86901462
	J.I.C	0.3 1 1022222				-	-	-
-10	Sine	0.544021111	0	0	0	1.694705884	1.694705884	17.86901462
						-	-	
7	Sine	0.656986599	0	0	0	0.037933955	0.037933955	0.240615583
		-				-	-	-
-7	Sine	0.656986599	0	0	0	0.037933955	0.037933955	0.240615583
1	Gaussian	0.60653066	0	0	0	-0.28431672	-0.28431672	0.111869912
						-	-	
2	Gaussian	0.135335283	0	0	0	1.061364723	1.061364723	1.97908935
_		2 726655 06	•	•	•	-	-	6 2665 4270
5	Gaussian	3.72665E-06	0	0	0	1.253309692	1.253309692	6.26654379
-1	Gaussian	0.60653066	0	0	0	1.426932063	1.426932063	2.292410109
-2	Gaussian	0.135335283	0	0	0	1.331211304	1.331211304	2.842582466
-5	Gaussian	3.72665E-06	0	0	0	1.253317145	1.253317145	6.266590398
0 -	Carracian	0.882496903	0	0	0	0.300252612	0.300252612	0.114845694
0.5	Gaussian							
0.25	Gaussian Gaussian	0.969233234 0.754839602	0	0	0	0.589256315 1.374133703	0.589256315 1.374133703	0.423812725 2.067850815

3.1416	Gaussian	0.007191717	0	0	0	- 1.244016571	- 1.244016571	3.899255842
		0.007.2027.27				-	-	
1.4142	Gaussian	0.367886497	0	0	0	0.696409867	0.696409867	0.728663047
2.7183	Gaussian	0.024857955	0	0	0	1.269945497	1.269945497	3.483661093
400		•		•	•	-	-	105 004 4407
-100	Gaussian Gaussian	0	0	0	0	1.253314137 1.253314137	1.253314137 1.253314137	125.3314137 125.3314137
0.0001	Gaussian	0.999999995	0	0	0	0.855524389	0.855524389	0.855438832
-								
0.0001	Gaussian	0.99999995	0	0	0	0.855724389	0.855724389	0.855809957
10	Gaussian	1.92875E-22	0	0	0	1.253314137	1.253314137	12.53314137
-10	Gaussian	1.92875E-22	0	0	0	1.253314137	1.253314137	12.53314137
7	Cavasian	2 200725 44	0	0	0	1 252214127	- 1 252214127	0.772400004
<u> </u>	Gaussian Gaussian	2.28973E-11 2.28973E-11	0	0	0	1.253314137 1.253314137	1.253314137 1.253314137	8.773198961 8.773198961
,	Guassian	2.203731 11				-	-	0.773130301
1	Tanh	0.761594156	0	0	0	0.168110816	0.168110816	0.040078601
2	Tanh	0.96402758	0	0	0	0.918341569	0.918341569	0.951376538
5	Tanh	0.999909204	0	0	0	3.873186536	- 3.873186536	15.49309781
-1	Tanh	- 0.761594156	0	0	0	0.168110816	0.168110816	0.040078601
-2	Tanh	-0.96402758	0	0	0	0.918341569	- 0.918341569	- 0.951376538
-5	Tanh	0.999909204	0	0	0	3.873186536	3.873186536	- 15.49309781
0.5	Tanh	0.462117157	0	0	0	0.016935457	0.016935457	0.000641563
0.25	Tanh	0.244918662	0	0	0	0.001232369	0.001232369	6.26208E-06
-0.75	Tanh	0.635148952	0	0	0	0.068820064	0.068820064	0.007904056
3.1416	Tanh	0.996272131	0	0	0	2.019373862	2.019373862	4.332219025
1.4142	Tanh	0.888382703	0	0	0	0.426937225	0.426937225	0.224490978
2.7183	Tanh	-0.99132923	0	0	0	-1.60230455	-1.60230455	2.767133124
100	Tanh	1	0	0	0	98.87307199	98.87307199	9788.434127
-100	Tanh	-1	0	0	0	98.87307199	98.87307199	9788.434127

31 Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

			_	_		-3.33333E-	-3.33333E-	
0.0001	Tanh	1E-04	0	0	0	17	17	1.11111E-29
0.0001	Touch	15.04	0	0	0	-3.33333E-	-3.33333E-	1 111115 20
0.0001	Tanh	-1E-04	0	0	0	17	17	-1.11111E-29
10	Tanh	0.999999996	0	0	0	8.873071994	8.873071994	79.85764798
	14111	-				-	-	-
-10	Tanh	0.999999996	0	0	0	8.873071994	8.873071994	79.85764798
						-	-	
7	Tanh	0.999998337	0	0	0	5.873074087	5.873074087	35.23845429
		-				-	-	-
-7	Tanh	0.999998337	0	0	0	5.873074087	5.873074087	35.23845429
1	Linear	1	0.2	-0.1	0.05	0	0.05	0.3
2	Linear	2	0.2	-0.1	0.05	0	0.05	0.3
5	Linear	5	0.2	-0.1	0.05	0	0.05	0.3
-1	Linear	-1	0.2	-0.1	0.05	0	0.05	0.3
-2	Linear	-2	0.2	-0.1	0.05	0	0.05	0.3
-5	Linear	-5	0.2	-0.1	0.05	0	0.05	0.3
0.5	Linear	0.5	0.2	-0.1	0.05	0	0.05	0.3
0.25	Linear	0.25	0.2	-0.1	0.05	0	0.05	0.3
-0.75	Linear	-0.75	0.2	-0.1	0.05	0	0.05	0.3
3.1416	Linear	3.1416	0.2	-0.1	0.05	0	0.05	0.3
1.4142	Linear	1.4142	0.2	-0.1	0.05	0	0.05	0.3
-								
2.7183	Linear	-2.7183	0.2	-0.1	0.05	0	0.05	0.3
100	Linear	100	0.2	-0.1	0.05	0	0.05	0.3
-100	Linear	-100	0.2	-0.1	0.05	0	0.05	0.3
0.0001	Linear	0.0001	0.2	-0.1	0.05	0	0.05	0.3
-						_		
0.0001	Linear	-0.0001	0.2	-0.1	0.05	0	0.05	0.3
10	Linear	10	0.2	-0.1	0.05	0	0.05	0.3
-10	Linear	-10	0.2	-0.1	0.05	0	0.05	0.3
7	Linear	7	0.2	-0.1	0.05	0	0.05	0.3
-7	Linear	-7	0.2	-0.1	0.05	0	0.05	0.3
1	Polynomial	0.7	0.2	-0.1	0.05	-0.131475	-0.081475	0.3244425
2	Polynomial	6.4	0.2	-0.1	0.05	376.7690667	376.8190667	1658.303893
5	Polynomial	113.5	0.2	-0.1	0.05	41245552.34	41245552.39	4475142435
		4 7		0.4	0.05	2.670404667	2 722404667	-
-1	Polynomial	-1.7	0.2	-0.1	0.05	2.679191667	2.729191667	1.610434167
-2	Dolynomial	10.4	0.2	-0.1	0.05	2117 2064	2117 2564	26194 65276
-2	Polynomial	-10.4	U.Z	-0.1	0.05	3117.2064	3117.2564	26184.65376
-5	Polynomial	-138.5	0.2	-0.1	0.05	92434207.68	92434207.73	12339966731
	i Olymonnai	-130.3	0.2	0.1	0.03	J27J7ZU1.00	J27J7ZU1.13	12333300731

0.5	Ballian atal	0.4	0.0	0.4	0.05	-	0.024.066667	0.207572222
0.5	Polynomial	0.1	0.2	-0.1	0.05	0.018933333	0.031066667	0.287573333
0.25	Polynomial	0.034375	0.2	-0.1	0.05	0.004510653	0.045489347	0.290191359
-0.75	Polynomial	-0.853125	0.2	-0.1	0.05	0.103036705	0.153036705	0.28421809
3.1416	Polynomial	26.69998892	0.2	-0.1	0.05	123931.5878	123931.6378	2919630.022
1.4142	Polynomial	2.111204931	0.2	-0.1	0.05	3.115440188	3.165440188	2.506327421
-		-						-
2.7183	Polynomial	24.32417718	0.2	-0.1	0.05	89957.10414	89957.15414	1943602.924
100	Polynomial	995020	0.2	-0.1	0.05	2.45057E+23	2.45057E+23	2.43812E+29
								-
-100	Polynomial	-1005020	0.2	-0.1	0.05	2.55058E+23	2.55058E+23	2.56313E+29
0.0001	Dalumanaial	1 00055 05	0.2	0.1	0.05	-9.59855E-	0.040000000	0.200000
0.0001	Polynomial	1.9995E-05	0.2	-0.1	0.05	-9.60145E-	0.049999999	0.299996
0.0001	Polynomial	-2.0005E-05	0.2	-0.1	0.05	10	0.049999999	0.300004
10	Polynomial	952	0.2	-0.1	0.05	2.05203E+11	2.05203E+11	1.93301E+14
			0	<u> </u>	0.00			-
-10	Polynomial	-1052	0.2	-0.1	0.05	3.06393E+11	3.06393E+11	3.19261E+14
7	Polynomial	319.9	0.2	-0.1	0.05	2612718206	2612718206	8.1752E+11
								-
-7	Polynomial	-368.9	0.2	-0.1	0.05	4638312223	4638312223	1.67861E+12
1	ReLU	1	0.2	-0.1	0.05	0	0.05	0.3
2	ReLU	2	0.2	-0.1	0.05	0	0.05	0.3
5	ReLU	5	0.2	-0.1	0.05	0	0.05	0.3
-1	ReLU	0	0.2	-0.1	0.05	0	0.05	0.35
-2	ReLU	0	0.2	-0.1	0.05	0	0.05	0.4
-5	ReLU	0	0.2	-0.1	0.05	0	0.05	0.55
0.5	ReLU	0.5	0.2	-0.1	0.05	0	0.05	0.3
0.25	ReLU	0.25	0.2	-0.1	0.05	0	0.05	0.3
-0.75 3.1416	ReLU ReLU	3.1416	0.2	-0.1 -0.1	0.05	0	0.05	0.3375
1.4142	ReLU	1.4142	0.2	-0.1	0.05	0	0.05	0.3
1.4142	NELU	1.4142	0.2	-0.1	0.03	0	0.03	0.5
2.7183	ReLU	0	0.2	-0.1	0.05	0	0.05	0.435915
100	ReLU	100	0.2	-0.1	0.05	0	0.05	0.3
-100	ReLU	0	0.2	-0.1	0.05	0	0.05	5.3
0.0001	ReLU	0.0001	0.2	-0.1	0.05	0	0.05	0.3
-								
0.0001	ReLU	0	0.2	-0.1	0.05	0	0.05	0.300005
10	ReLU	10	0.2	-0.1	0.05	0	0.05	0.3
-10	ReLU	0	0.2	-0.1	0.05	0	0.05	0.8
7	ReLU	7	0.2	-0.1	0.05	0	0.05	0.3
7	ReLU	0	0.2	-0.1	0.05	0	0.05	0.65

1	Sine	0.841470985	0.2	-0.1	0.05	-0.12606444	-0.07606444	0.312058421
2	Sine	0.909297427	0.2	-0.1	0.05	1.030447119	- 0.980447119	1.369376195
_	Cino	- 0.00004275	0.2	0.1	0.05	- 0.200728604	- 0.240729604	1 724542646
5	Sine	0.958924275	0.2	-0.1	0.05	0.290738694	0.240738694	1.734543646
-1	Sine	0.841470985	0.2	-0.1	0.05	-0.12606444	-0.07606444	0.287941579
-2	Sine	0.909297427	0.2	-0.1	0.05	1.030447119	0.980447119	0.769376195
-5	Sine	0.958924275	0.2	-0.1	0.05	0.290738694	0.240738694	1.134543646
0.5	Sine	0.479425539	0.2	-0.1	0.05	0.009677489	0.040322511	0.299170386
0.25	Sine	0.247403959	0.2	-0.1	0.05	0.000639005	0.049360995	0.299871857
-0.75	Sine	-0.68163876	0.2	-0.1	0.05	0.044852365	0.005147635	0.300351899
3.1416	Sine	-7.34641E- 06	0.2	-0.1	0.05	-2	-1.95	6.426134325
1.4142	Sine	0.987763831	0.2	-0.1	0.05	0.394600891	- 0.344600891	0.446950284
- 2.7183	Sine	- 0.410764723	0.2	-0.1	0.05	- 1.828557108	- 1.778557108	-3.80408327
100	Sine	- 0.506365641	0.2	-0.1	0.05	- 0.012194079	0.037805921	- 3.499735727
-100	Sine	0.506365641	0.2	-0.1	0.05	- 0.012194079	0.037805921	4.099735727
0.0001	Sine	1E-04	0.2	-0.1	0.05	-1.66667E- 17	0.05	0.3
0.0001	Sine	-1E-04	0.2	-0.1	0.05	-1.66667E- 17	0.05	0.3
10	Sine	- 0.544021111	0.2	-0.1	0.05	- 1.694705884	- 1.644705884	17.64181356
-10	Sine	0.544021111	0.2	-0.1	0.05	- 1.694705884	- 1.644705884	- 17.04181356
7	Sine	0.656986599	0.2	-0.1	0.05	0.037933955	0.012066045	0.223464913
-7	Sine	0.656986599	0.2	-0.1	0.05	0.037933955	0.012066045	0.376535087
1	Gaussian	0.60653066	0.2	-0.1	0.05	-0.28431672	-0.23431672	0.392196445
2	Gaussian	0.135335283	0.2	-0.1	0.05	- 1.061364723	- 1.011364723	2.185856115
_	Canada	2 726655 06	0.2	0.1	2.25	4 252200602	- 1 202220502	C 24 CE 4207C
5	Gaussian	3.72665E-06	0.2	-0.1	0.05	1.253309692	1.203309692	6.316543976
-1	Gaussian	0.60653066	0.2	-0.1	0.05	1.426932063	1.476932063	2.672736642
-2	Gaussian	0.135335283	0.2	-0.1	0.05	1.331211304	1.381211304	3.24934923

34 Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

-5	Gaussian	3.72665E-06	0.2	-0.1	0.05	1.253317145	1.303317145	6.816590584
0.5	Gaussian	0.882496903	0.2	-0.1	0.05	0.300252612	0.350252612	0.433970539
0.25	Gaussian	0.969233234	0.2	-0.1	0.05	0.589256315	0.639256315	0.759774387
-0.75	Gaussian	0.754839602	0.2	-0.1	0.05	1.374133703	1.424133703	2.443092795
						-	-	
3.1416	Gaussian	0.007191717	0.2	-0.1	0.05	1.244016571	1.194016571	4.042535428
1.4142	Gaussian	0.367886497	0.2	-0.1	0.05	0.696409867	0.646409867	0.976347372
2.7183	Gaussian	0.024857955	0.2	-0.1	0.05	1.269945497	1.319945497	3.92081899
100	Gaussian	0	0.2	-0.1	0.05	1.253314137	1.203314137	120.6314137
-100	Gaussian	0	0.2	-0.1	0.05	1.253314137	1.303314137	130.6314137
0.0001	Gaussian	0.999999995	0.2	-0.1	0.05	0.855524389	0.905524389	1.205433832
0.0001	Gaussian	0.999999995	0.2	-0.1	0.05	0.855724389	0.905724389	1.205814957
						-	-	
10	Gaussian	1.92875E-22	0.2	-0.1	0.05	1.253314137	1.203314137	12.33314137
-10	Gaussian	1.92875E-22	0.2	-0.1	0.05	1.253314137	1.303314137	13.33314137
7	Gaussian	2.28973E-11	0.2	-0.1	0.05	1.253314137	1.203314137	8.723198961
-7	Gaussian	2.28973E-11	0.2	-0.1	0.05	1.253314137	1.303314137	9.423198961
,	Gaassian	2.203732 11	0.2	0.1	0.03	-	-	3.123130301
1	Tanh	0.761594156	0.2	-0.1	0.05	0.168110816	0.118110816	0.328158309
						-	-	
2	Tanh	0.96402758	0.2	-0.1	0.05	0.918341569	0.868341569	1.199577917
_						-	-	
5	Tanh	0.999909204	0.2	-0.1	0.05	3.873186536	3.823186536	15.59309327
-1	Tanh	- 0.761594156	0.2	-0.1	0.05	0.168110816	0.118110816	0.271841691
-1	Tallii	0.701394130	0.2	-0.1	0.03	0.108110810	0.118110810	0.271841091
-2	Tanh	-0.96402758	0.2	-0.1	0.05	0.918341569	0.868341569	0.599577917
		-				-	-	-
-5	Tanh	0.999909204	0.2	-0.1	0.05	3.873186536	3.823186536	14.99309327
						-		
0.5	Tanh	0.462117157	0.2	-0.1	0.05	0.016935457	0.033064543	0.298747421
0.35	Tout	0.24404066	0.3	0.1	0.05	-	0.040767636	0.200752405
0.25	Tanh	0.244918662	0.2	-0.1	0.05	0.001232369	0.048767631	0.299752195
-0.75	Tanh	- 0.635148952	0.2	-0.1	0.05	0.068820064	0.018820064	0.297838496
0.75	TUTITI	0.033170332	J.Z	0.1	0.03	-	-	3.237030430
3.1416	Tanh	0.996272131	0.2	-0.1	0.05	2.019373862	1.969373862	4.524952632
						-	-	
1.4142	Tanh	0.888382703	0.2	-0.1	0.05	0.426937225	0.376937225	0.498200113
_								-
2.7183	Tanh	-0.99132923	0.2	-0.1	0.05	-1.60230455	-1.55230455	2.380784585

						-	-	
100	Tanh	1	0.2	-0.1	0.05	98.87307199	98.82307199	9783.784127
						-	-	-
-100	Tanh	-1	0.2	-0.1	0.05	98.87307199	98.82307199	9783.184127
						-3.33333E-		
0.0001	Tanh	1E-04	0.2	-0.1	0.05	17	0.05	0.3
-						-3.3333E-		
0.0001	Tanh	-1E-04	0.2	-0.1	0.05	17	0.05	0.3
						-	-	
10	Tanh	0.999999996	0.2	-0.1	0.05	8.873071994	8.823071994	79.70764798
		-				-	-	-
-10	Tanh	0.99999996	0.2	-0.1	0.05	8.873071994	8.823071994	79.10764798
						-	-	
7	Tanh	0.999998337	0.2	-0.1	0.05	5.873074087	5.823074087	35.23845421
		-				-	-	-
7	Tanh	0.99998337	0.2	-0.1	0.05	5.873074087	5.823074087	34.63845421

Figure 1: ABSM x_0 vs x_1 for each Activation Function

Figure 2: ABSM Absolute Difference per function

Figure 3: ABSM Offset Difference per function

Interpretation: The ABSM data and corresponding DDD analysis reveal distinct behavior patterns across different functions. Linear and ReLU functions show small or moderate absolute DDD values, indicating minimal deviation from expected trends, even under offset conditions. Polynomial functions produce extremely large DDD magnitudes, reflecting high sensitivity to input changes and offsets. Sine, Gaussian, and Tanh functions exhibit moderate to large absolute DDD values, capturing nonlinearity and oscillatory effects in the system. Overall, the DDD metric effectively quantifies deviation from baseline, highlighting which functions are stable versus highly sensitive in response to varying inputs and offsets.

Polynomial Data and Deviation Calculation

dataset	Function	Offset	х0	y0	y1	D
same	Quadratic	0	-10	100	100	0
same	Quadratic	0	-7	49	49	0
same	Quadratic	0	-5	25	25	0
same	Quadratic	0	-2	4	4	0
same	Quadratic	0	-1	1	1	0
same	Quadratic	0	-0.75	0.5625	0.5625	0
same	Quadratic	0	-0.25	0.0625	0.0625	0
same	Quadratic	0	-0.0001	0.0000001	0.0000001	0
same	Quadratic	0	0	0	0	0
same	Quadratic	0	0.25	0.0625	0.0625	0
same	Quadratic	0	0.5	0.25	0.25	0
same	Quadratic	0	1	1	1	0
same	Quadratic	0	2	4	4	0
same	Quadratic	0	3.1416	9.86965056	9.86965056	0
same	Quadratic	0	7	49	49	0
same	Quadratic	0	10	100	100	0
same	Quadratic	0	50	2500	2500	0
same	Quadratic	0	100	10000	10000	0
same	Quadratic	0	-50	2500	2500	0
same	Quadratic	0	-100	10000	10000	0
same	Quadratic	0.1	-10	100	98.01	-1.99
same	Quadratic	0.1	-7	49	47.61	-1.39
same	Quadratic	0.1	-5	25	24.01	-0.99
same	Quadratic	0.1	-2	4	3.61	-0.39
same	Quadratic	0.1	-1	1	0.81	-0.19
same	Quadratic	0.1	-0.75	0.5625	0.4225	-0.14
same	Quadratic	0.1	-0.25	0.0625	0.0225	-0.04
same	Quadratic	0.1	-0.0001	0.00000001	0.00998001	0.00998

38 Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

same Quadratic 0.1 0 0 0.01 0.01 same Quadratic 0.1 0.25 0.0625 0.1225 0.06 same Quadratic 0.1 1 1 1.21 0.21 same Quadratic 0.1 1 1 1.21 0.21 same Quadratic 0.1 2 4 4.41 0.41 same Quadratic 0.1 7 7 49 50.41 1.41 same Quadratic 0.1 10 100 102.01 2.01 same Quadratic 0.1 50 2500 2510.01 10.01 same Quadratic 0.1 -50 2500 2490.01 -9.99 same Quadratic 0.1 -50 2500 2490.01 -9.99 same Quadratic 0.1 -50 2500 2490.01 -9.99 same Cubic 0.1 -10 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
same Quadratic 0.1 0.5 0.25 0.36 0.11 same Quadratic 0.1 1 1 1.21 0.21 same Quadratic 0.1 2 4 4.41 0.41 same Quadratic 0.1 3.1416 9.86965056 10.50797056 0.63832 same Quadratic 0.1 10 100 102.01 2.01 same Quadratic 0.1 10 100 102.01 2.01 same Quadratic 0.1 100 10000 1002.01 2.01 same Quadratic 0.1 -50 2500 2500.01 1.01 same Quadratic 0.1 -50 2500 2490.01 -9.99 same Quadratic 0.1 -100 10000 980.01 -19.99 same Cubic 0 -7 -343 -343 0 same Cubic 0 -5	same	Quadratic	0.1	0	0	0.01	0.01
same Quadratic 0.1 1 1 1.21 0.21 same Quadratic 0.1 2 4 4.41 0.41 same Quadratic 0.1 3.1416 9.86965056 10.50797056 0.63832 same Quadratic 0.1 10 100 102.01 2.01 same Quadratic 0.1 50 2500 2510.01 10.01 same Quadratic 0.1 100 10000 10020.01 2.01 same Quadratic 0.1 -50 2500 259.01 -9.99 same Quadratic 0.1 -50 2500 2490.01 -9.99 same Cubic 0.1 -100 10000 998.01 -19.99 same Cubic 0.1 -100 10000 998.01 -19.99 same Cubic 0.1 -1 -1 -1 -1 -1 -1 -1 -1 -1	same	Quadratic	0.1	0.25	0.0625	0.1225	0.06
same Quadratic 0.1 2 4 4.41 0.41 same Quadratic 0.1 3.1416 9.86965056 10.50797056 0.63832 same Quadratic 0.1 7 49 50.41 1.41 same Quadratic 0.1 10 100 102.01 2.01 same Quadratic 0.1 100 10000 1002.01 2.01 same Quadratic 0.1 -50 2500 2490.01 -9.99 same Quadratic 0.1 -100 10000 988.01 -19.99 same Cubic 0 -10 -1000 -998.01 -19.99 same Cubic 0 -10 -1000 988.01 -19.99 same Cubic 0 -7 -343 -343 0 same Cubic 0 -5 -125 -125 0 same Cubic 0 -0.75	same	Quadratic	0.1	0.5	0.25	0.36	0.11
same Quadratic 0.1 3.1416 9.86965056 10.50797056 0.63832 same Quadratic 0.1 7 49 50.41 1.41 same Quadratic 0.1 10 100 102.01 2.01 same Quadratic 0.1 50 2500 2510.01 100.01 same Quadratic 0.1 -50 2500 2490.01 -9.99 same Quadratic 0.1 -100 10000 -1000 -9.99 same Cubic 0 -10 -1000 -1000 -9.99 same Cubic 0 -10 -1000 -1000 -9.99 same Cubic 0 -7 -343 -343 00 same Cubic 0 -5 -125 -125 -125 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0	same	Quadratic	0.1	1	1	1.21	0.21
same Quadratic 0.1 7 49 50.41 1.41 same Quadratic 0.1 10 100 102.01 2.01 same Quadratic 0.1 50 2500 2510.01 10.01 same Quadratic 0.1 -100 10000 1020.01 -9.99 same Quadratic 0.1 -100 10000 9980.01 -9.99 same Cubic 0 -10 -1000 -1000 0 same Cubic 0 -7 -343 -343 0 same Cubic 0 -5 -125 -125 0 same Cubic 0 -7 -343 -343 0 same Cubic 0 -7 -343 -343 0 same Cubic 0 -1 -1 -1 1 0 same Cubic 0 -0.75 -0.421875 -0.	same	Quadratic	0.1	2	4	4.41	0.41
same Quadratic 0.1 10 100 102.01 2.01 same Quadratic 0.1 50 2500 2510.01 10.01 same Quadratic 0.1 100 10000 10020.01 20.01 same Quadratic 0.1 -100 10000 2490.01 -9.99 same Cubic 0 -10 -1000 -1000 -9.99 same Cubic 0 -10 -1000 -1000 -9.99 same Cubic 0 -1 -1000 -1000 -9.99 same Cubic 0 -7 -343 -343 0 same Cubic 0 -5 -125 -125 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.05 -0.015625 -0.015625 0 same Cubic 0 -0.0001 -1E-12<	same	Quadratic	0.1	3.1416	9.86965056	10.50797056	0.63832
same Quadratic 0.1 50 2500 2510.01 10.01 same Quadratic 0.1 100 10000 10020.01 20.01 same Quadratic 0.1 -50 2500 2490.01 -9.99 same Quadratic 0.1 -100 10000 9980.01 -19.99 same Cubic 0 -10 -1000 -1000 -0 same Cubic 0 -7 -343 -343 0 same Cubic 0 -5 -125 -125 0 same Cubic 0 -1 -1 -1 -1 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.05 -0.015625 -0.015625 0 same Cubic 0 -0.001	same	Quadratic	0.1	7	49	50.41	1.41
same Quadratic 0.1 100 10000 10020.01 20.01 same Quadratic 0.1 -50 2500 2490.01 -9.99 same Quadratic 0.1 -100 10000 998.01 -19.99 same Cubic 0 -10 -1000 -1000 0 same Cubic 0 -7 -343 -343 0 same Cubic 0 -5 -125 -125 0 same Cubic 0 -1 -1 -1 -1 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.05	same	Quadratic	0.1	10	100	102.01	2.01
same Quadratic 0.1 -50 2500 2490.01 -9.99 same Quadratic 0.1 -100 10000 9980.01 -19.99 same Cubic 0 -10 -1000 -1000 0 same Cubic 0 -7 -343 -343 0 same Cubic 0 -5 -125 -125 0 same Cubic 0 -2 -8 -8 0 same Cubic 0 -1 -1 -1 1 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.05 -0.121875 0 0 same Cubic 0 -0.0001 -1E-12 -1E-12 -1E-12 0 same Cubic 0 0.5 0.1	same	Quadratic	0.1	50	2500	2510.01	10.01
same Quadratic 0.1 -100 10000 9980.01 -19.99 same Cubic 0 -10 -1000 -1000 0 same Cubic 0 -7 -343 -343 0 same Cubic 0 -5 -125 -125 0 same Cubic 0 -2 -8 -8 0 same Cubic 0 -1 -1 -1 -1 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.25 -0.015625 -0.015625 0 same Cubic 0 -0.0001 -1E-12 -1E-12 -1E-12 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.25	same	Quadratic	0.1	100	10000	10020.01	20.01
same Cubic 0 -10 -1000 -1000 0 same Cubic 0 -7 -343 -343 0 same Cubic 0 -5 -125 -125 0 same Cubic 0 -2 -8 -8 0 same Cubic 0 -1 -1 -1 1 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.25 -0.015625 -0.015625 0 same Cubic 0 -0.0001 -1E-12 -1E-12 -1E-12 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.015625 0 same Cubic 0 1 1 1 0 same Cubic 0 3.1416 31.0064942 <th< td=""><td>same</td><td>Quadratic</td><td>0.1</td><td>-50</td><td>2500</td><td>2490.01</td><td>-9.99</td></th<>	same	Quadratic	0.1	-50	2500	2490.01	-9.99
same Cubic 0 -7 -343 -343 0 same Cubic 0 -5 -125 -125 0 same Cubic 0 -2 -8 -8 0 same Cubic 0 -1 -1 -1 1 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.25 -0.015625 -0.015625 0 same Cubic 0 -0.0001 -1E-12 -1E-12 0 same Cubic 0 0.0001 -1E-12 -1E-12 0 same Cubic 0 0.05 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.015625 0 same Cubic 0 1 1 1 1 0 same Cubic 0 3.1416 31.0064942 <th< td=""><td>same</td><td>Quadratic</td><td>0.1</td><td>-100</td><td>10000</td><td>9980.01</td><td>-19.99</td></th<>	same	Quadratic	0.1	-100	10000	9980.01	-19.99
same Cubic 0 -5 -125 -125 0 same Cubic 0 -2 -8 -8 0 same Cubic 0 -1 -1 -1 -1 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.25 -0.015625 -0.015625 0 same Cubic 0 -0.0001 -1E-12 -1E-12 0 same Cubic 0 0.0 0 0 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.015625 0 same Cubic 0 0.5 0.125 0.015625 0 same Cubic 0 1 1 1 1 0 same Cubic 0 3.1416 31.0064942 31.00	same	Cubic	0	-10	-1000	-1000	0
same Cubic 0 -2 -8 -8 0 same Cubic 0 -1 -1 -1 -1 0 same Cubic 0 -0.75 -0.421875 -0.015625 0 same Cubic 0 -0.25 -0.015625 -0.015625 0 same Cubic 0 -0.0001 -1E-12 -1E-12 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.015625 0 same Cubic 0 1 1 1 0 0 same Cubic 0 2 8 8 0 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 10	same	Cubic	0	-7	-343	-343	0
same Cubic 0 -1 -1 -1 -1 0 same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.25 -0.015625 -0.015625 0 same Cubic 0 -0.0001 -1E-12 -1E-12 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.125 0.125 0 same Cubic 0 0.5 0.125 0.125 0 same Cubic 0 1 1 1 0 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 0 same Cubic 0 7 343 343 0 0 same Cubic 0 10 1000 1000 0 0 same Cub	same	Cubic	0	-5	-125	-125	0
same Cubic 0 -0.75 -0.421875 -0.421875 0 same Cubic 0 -0.25 -0.015625 -0.015625 0 same Cubic 0 -0.0001 -1E-12 -1E-12 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.125 0 same Cubic 0 1 1 1 0 same Cubic 0 2 8 8 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 7 343 343 0 same Cubic 0 10 1000 1000 0 same Cubic 0 50 125000 125000 0 same Cubic 0 -50 -125000 -125000 0	same	Cubic	0	-2	-8	-8	0
same Cubic 0 -0.25 -0.015625 -0.015625 0 same Cubic 0 -0.0001 -1E-12 -1E-12 0 same Cubic 0 0 0 0 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.125 0 same Cubic 0 1 1 1 0 same Cubic 0 2 8 8 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 7 343 343 0 same Cubic 0 10 1000 1000 0 same Cubic 0 50 125000 125000 0 same Cubic 0 -50 -125000 -125000 0	same	Cubic	0	-1	-1	-1	0
same Cubic 0 -0.0001 -1E-12 -1E-12 0 same Cubic 0 0 0 0 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.125 0 same Cubic 0 1 1 1 1 0 same Cubic 0 2 8 8 0 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 7 343 343 0 same Cubic 0 10 1000 1000 0 same Cubic 0 10 1000000 125000 0 same Cubic 0.1 -10 -1000000 -125000 <td>same</td> <td>Cubic</td> <td>0</td> <td>-0.75</td> <td>-0.421875</td> <td>-0.421875</td> <td>0</td>	same	Cubic	0	-0.75	-0.421875	-0.421875	0
same Cubic 0 0 0 0 0 same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.125 0 same Cubic 0 1 1 1 1 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 10 1000 1000 0 same Cubic 0 10 1000 1000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0.1 -10 -1000000	same	Cubic	0	-0.25	-0.015625	-0.015625	0
same Cubic 0 0.25 0.015625 0.015625 0 same Cubic 0 0.5 0.125 0.125 0 same Cubic 0 1 1 1 0 same Cubic 0 2 8 8 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 7 343 343 0 same Cubic 0 10 1000 1000 0 same Cubic 0 50 125000 125000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0.1 -10 -100000 -1000000 0 same Cubic 0.1 -7 -343 -328.509 14.491	same	Cubic	0	-0.0001	-1E-12	-1E-12	0
same Cubic 0 0.5 0.125 0.125 0 same Cubic 0 1 1 1 0 same Cubic 0 2 8 8 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 7 343 343 0 same Cubic 0 10 1000 1000 0 same Cubic 0 50 125000 125000 0 same Cubic 0 100 1000000 1000000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0 -100 -1000000 -1000000 0 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -7 -343 -328.509 12.41	same	Cubic	0	0	0	0	0
same Cubic 0 1 1 1 0 same Cubic 0 2 8 8 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 7 343 343 0 same Cubic 0 10 1000 1000 0 same Cubic 0 50 125000 125000 0 same Cubic 0 100 1000000 1000000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0.1 -10 -1000000 -1000000 0 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 </td <td>same</td> <td>Cubic</td> <td>0</td> <td>0.25</td> <td>0.015625</td> <td>0.015625</td> <td>0</td>	same	Cubic	0	0.25	0.015625	0.015625	0
same Cubic 0 2 8 8 0 same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 7 343 343 0 same Cubic 0 10 1000 1000 0 same Cubic 0 50 125000 125000 0 same Cubic 0 100 1000000 1000000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0.1 -100 -1000000 -1000000 0 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.1	same	Cubic	0	0.5	0.125	0.125	0
same Cubic 0 3.1416 31.0064942 31.0064942 0 same Cubic 0 7 343 343 0 same Cubic 0 10 1000 1000 0 same Cubic 0 50 125000 125000 0 same Cubic 0 100 1000000 1000000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0.1 -10 -1000000 -1000000 0 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -0.75 -0.421875 -0.27	same	Cubic	0	1	1	1	0
same Cubic 0 7 343 343 0 same Cubic 0 10 1000 1000 0 same Cubic 0 50 125000 125000 0 same Cubic 0 100 1000000 1000000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0 -100 -1000000 -1000000 0 same Cubic 0.1 -10 -10000 -970.299 29.701 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.055 -0.015625	same	Cubic	0	2	8	8	0
same Cubic 0 10 1000 1000 0 same Cubic 0 50 125000 125000 0 same Cubic 0 100 1000000 1000000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0.1 -100 -1000000 -1000000 0 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -	same	Cubic	0	3.1416	31.0064942	31.0064942	0
same Cubic 0 50 125000 125000 0 same Cubic 0 100 1000000 1000000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0.1 -100 -1000000 -1000000 0 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1	same	Cubic	0	7	343	343	0
same Cubic 0 100 1000000 1000000 0 same Cubic 0 -50 -125000 -125000 0 same Cubic 0 -100 -1000000 -1000000 0 same Cubic 0.1 -10 -1000 -970.299 29.701 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic	same	Cubic	0	10	1000	1000	0
same Cubic 0 -50 -125000 -125000 0 same Cubic 0 -100 -1000000 -1000000 0 same Cubic 0.1 -10 -1000 -970.299 29.701 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0	50	125000	125000	0
same Cubic 0 -100 -1000000 -1000000 0 same Cubic 0.1 -10 -1000 -970.299 29.701 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0	100	1000000	1000000	0
same Cubic 0.1 -10 -1000 -970.299 29.701 same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0	-50	-125000	-125000	0
same Cubic 0.1 -7 -343 -328.509 14.491 same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0	-100	-1000000	-1000000	0
same Cubic 0.1 -5 -125 -117.649 7.351 same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0.1	-10	-1000	-970.299	29.701
same Cubic 0.1 -2 -8 -6.859 1.141 same Cubic 0.1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0.1	-7	-343	-328.509	14.491
same Cubic 0.1 -1 -1 -0.729 0.271 same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0.1	-5	-125	-117.649	7.351
same Cubic 0.1 -0.75 -0.421875 -0.274625 0.14725 same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0.1	-2	-8	-6.859	1.141
same Cubic 0.1 -0.25 -0.015625 -0.003375 0.01225 same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0.1	-1	-1	-0.729	0.271
same Cubic 0.1 -0.0001 -1E-12 0.000997003 0.000997003 same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0.1	-0.75	-0.421875	-0.274625	0.14725
same Cubic 0.1 0 0 0.001 0.001	same	Cubic	0.1	-0.25	-0.015625	-0.003375	0.01225
	same	Cubic	0.1	-0.0001	-1E-12	0.000997003	0.000997003
same Cubic 0.1 0.25 0.015625 0.042875 0.02725	same	Cubic	0.1	0	0	0.001	0.001
	same	Cubic	0.1	0.25	0.015625	0.042875	0.02725

39 Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

same	Cubic	0.1	0.5	0.125	0.216	0.091
same	Cubic	0.1	1	1	1.331	0.331
same	Cubic	0.1	2	8	9.261	1.261
same	Cubic	0.1	3.1416	31.0064942	34.06263737	3.056143168
same	Cubic	0.1	7	343	357.911	14.911
same	Cubic	0.1	10	1000	1030.301	30.301
same	Cubic	0.1	50	125000	125751.501	751.501
same	Cubic	0.1	100	1000000	1003003.001	3003.001
same	Cubic	0.1	-50	-125000	-124251.499	748.501
same	Cubic	0.1	-100	-1000000	-997002.999	2997.001
same	Quartic	0	-10	10000	10000	0
same	Quartic	0	-7	2401	2401	0
same	Quartic	0	-5	625	625	0
same	Quartic	0	-2	16	16	0
same	Quartic	0	-1	1	1	0
same	Quartic	0	-0.75	0.31640625	0.31640625	0
same	Quartic	0	-0.25	0.00390625	0.00390625	0
same	Quartic	0	-0.0001	1E-16	1E-16	0
same	Quartic	0	0	0	0	0
same	Quartic	0	0.25	0.00390625	0.00390625	0
same	Quartic	0	0.5	0.0625	0.0625	0
same	Quartic	0	1	1	1	0
same	Quartic	0	2	16	16	0
same	Quartic	0	3.1416	97.41000218	97.41000218	0
same	Quartic	0	7	2401	2401	0
same	Quartic	0	10	10000	10000	0
same	Quartic	0	50	6250000	6250000	0
same	Quartic	0	100	100000000	100000000	0
same	Quartic	0	-50	6250000	6250000	0
same	Quartic	0	-100	100000000	100000000	0
same	Quartic	0.1	-10	10000	9605.9601	-394.0399
same	Quartic	0.1	-7	2401	2266.7121	-134.2879
same	Quartic	0.1	-5	625	576.4801	-48.5199
same	Quartic	0.1	-2	16	13.0321	-2.9679
same	Quartic	0.1	-1	1	0.6561	-0.3439
same	Quartic	0.1	-0.75	0.31640625	0.17850625	-0.1379
same	Quartic	0.1	-0.25	0.00390625	0.00050625	-0.0034
same	Quartic	0.1	-0.0001	1E-16	9.96006E-05	9.96006E-05
same	Quartic	0.1	0	0	0.0001	0.0001
same	Quartic	0.1	0.25	0.00390625	0.01500625	0.0111
same	Quartic	0.1	0.5	0.0625	0.1296	0.0671
same	Quartic	0.1	1	1	1.4641	0.4641

40 Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

0 - 11 - 0 1	
·	4481 3.4481
same Quartic 0.1 3.1416 97.41000218 110.417	
same Quartic 0.1 7 2401 2541.	
same Quartic 0.1 10 10000 10406.	0401 406.0401
same Quartic 0.1 50 6250000 63001	50.2 50150.2001
same Quartic 0.1 100 100000000 1004006	500.4 400600.4001
same Quartic 0.1 -50 6250000 62001	49.8 -49850.1999
same Quartic 0.1 -100 100000000 996005	- 599.6 399400.3999
random_extra Quadratic 0 145.804735 21259.02075 21259.0	2075 0
random_extra Quadratic 0 155.140681 24068.6309 24068.	6309 0
random_extra Quadratic 0 173.042256 29943.62236 29943.6	2236 0
random_extra Quadratic 0 -21.772734 474.0519458 474.051	9458 0
random_extra Quadratic 0 -44.705782 1998.606944 1998.60	6944 0
random_extra Quadratic 0 -96.961426 9401.518132 9401.51	8132 0
random_extra Quadratic 0 62.947034 3962.329089 3962.32	9089 0
random_extra Quadratic 0 -2.953225 8.721537901 8.72153	7901 0
random_extra Quadratic 0 185.695368 34482.7697 34482.	7697 0
random_extra Quadratic 0 120.39379 14494.66467 14494.6	6467 0
random_extra Quadratic 0 -17.917886 321.0506387 321.050	6387 0
random_extra Quadratic 0 120.423235 14501.75553 14501.7	5553 0
-	
random_extra Quadratic 0 183.312811 33603.58668 33603.5	8668 0
random_extra Quadratic 0 107.783149 11617.20721 11617.2	0721 0
random_extra Quadratic 0 198.731553 39494.23016 39494.2	3016 0
random_extra Quadratic 0 138.731333 33434.23010 33434.23 random_extra Quadratic 0 -82.876243 6868.471654 6868.47	
random_extra Quadratic 0 -32.870243 0806.471034 0808.47 random_extra Quadratic 0 44.365733 1968.318265 1968.31	
random_extra Quadratic 0 44.303733 1308.318203 1308.318 random_extra Quadratic 0 165.210957 27294.66031 27294.6	
random_extra Quadratic 0 103.210937 27294.00031 27294.0 random_extra Quadratic 0 -79.953998 6392.641796 6392.64	
- Tandon_extra Quadratic 0 -73.55598 0392.041790 0392.04	1790 0
random_extra Quadratic 0 100.560545 10112.42321 10112.4	2321 0
-	
random_extra Quadratic 0.1 145.804735 21259.02075 21229.0	8698 -29.150947
random_extra Quadratic 0.1 155.140681 24068.6309 24099.6	6904 31.0381362
random_extra Quadratic 0.1 173.042256 29943.62236 29978.2	4081 34.6184512
random_extra Quadratic 0.1 -21.772734 474.0519458 469.70	7399 -4.3445468
random_extra Quadratic 0.1 -44.705782 1998.606944 1989.67	5788 -8.9311564
random_extra Quadratic 0.1 -96.961426 9401.518132 9382.13	5847 -19.3822852
random_extra Quadratic 0.1 62.947034 3962.329089 3974.92	8496 12.5994068
random_extra Quadratic 0.1 -2.953225 8.721537901 8.14089	2901 -0.580645
random_extra Quadratic 0.1 185.695368 34482.7697 34519.9	1877 37.1490736

41 Adaptive Balancing Scaling Model (ABSM) for Single Computational Node

random_extra	Quadratic	0.1	120.39379	14494.66467	14518.75343	24.088758
random_extra	Quadratic	0.1	-17.917886	321.0506387	317.4770615	-3.5735772
random_extra	Quadratic	0.1	120.423235	14501.75553	14525.85017	24.094647
			-			
random_extra	Quadratic	0.1	183.312811	33603.58668	33566.93411	-36.6525622
random_extra	Quadratic	0.1	107.783149	11617.20721	11638.77384	21.5666298
random_extra	Quadratic	0.1	- 198.731553	39494.23016	39454.49385	-39.7363106
random_extra	Quadratic	0.1	-82.876243	6868.471654	6851.906405	-16.5652486
random_extra	Quadratic	0.1	44.365733	1968.318265	1977.201411	8.8831466
random_extra	Quadratic	0.1	165.210957	27294.66031	27327.7125	33.0521914
random_extra	Quadratic	0.1	-79.953998	6392.641796	6376.660997	-15.9807996
Tandoni_extra	Quadratic	0.1	-79.933336	0332.041730	0370.000337	-13.3807330
random_extra	Quadratic	0.1	100.560545	10112.42321	10092.3211	-20.102109
			-	-	-	
random_extra	Cubic	0	145.804735	3099665.887	3099665.887	0
random_extra	Cubic	0	155.140681	3734023.789	3734023.789	0
random_extra	Cubic	0	173.042256	5181511.966	5181511.966	0
				-	-	
random_extra	Cubic	0	-21.772734	10321.40692	10321.40692	0
				-	-	
random_extra	Cubic	0	-44.705782	89349.28635	89349.28635	0
random_extra	Cubic	0	-96.961426	911584.6046	911584.6046	0
random_extra	Cubic	0	62.947034	249416.8639	249416.8639	0
Tandoni_extra	Cubic	U	02.947034	249410.8039	249410.8039	U
random_extra	Cubic	0	-2.953225	25.75666377	25.75666377	0
random extra	Cubic	0	185.695368	6403290.608	6403290.608	0
random extra	Cubic	0	120.39379	1745067.614	1745067.614	0
				-	-	
random_extra	Cubic	0	-17.917886	5752.548745	5752.548745	0
random_extra	Cubic	0	120.423235	1746348.314	1746348.314	0
			-	-	-	
random_extra	Cubic	0	183.312811	6159967.933	6159967.933	0
random_extra	Cubic	0	107.783149	1252139.176	1252139.176	0
			-	-	-	
random_extra	Cubic	0	198.731553	7848749.694	7848749.694	0
mamalana i ti	Ch.: -	_	02.0762.42	-	-	^
random_extra	Cubic	0	-82.876243	569233.1258	569233.1258	0
random_extra	Cubic	0	44.365733	87325.88259	87325.88259	0
random_extra	Cubic	0	165.210957	4509376.951	4509376.951	0
random_extra	Cubic	0	_70 0E2000	511117 2604	511117 2604	0
random_extra	Cubic	U	-79.953998	511117.2694	511117.2694	U
random_extra	Cubic	0	100.560545	1016910.789	1016910.789	0
.a.a.a.iii_cxiia	24210		100.0000-0	1010010.700	1010010.700	3

	Codete	0.1	-	-	-	6272 222002
random_extra	Cubic	0.1	145.804735	3099665.887	3093292.554	6373.333082
random_extra	Cubic	0.1	155.140681	3734023.789	3741249.033	7225.244491
random_extra	Cubic	0.1	173.042256	5181511.966	5190500.245	8988.278976
random ovtra	Cubic	0.1	-21.772734	10321.40692	- 10179.84352	141.5634017
random_extra	Cubic	0.1	-21.772734	10321.40692	10179.64552	141.5054017
random_extra	Cubic	0.1	-44.705782	89349.28635	88751.04444	598.2419098
random_extra	Cubic	0.1	44.703702	-	00/31.04444	330.2413030
random_extra	Cubic	0.1	-96.961426	911584.6046	-908767.057	2817.547597
random_extra	Cubic	0.1	62.947034	249416.8639	250607.452	1190.588138
				-	-	
random_extra	Cubic	0.1	-2.953225	25.75666377	23.22779915	2.52886462
random_extra	Cubic	0.1	185.695368	6403290.608	6413641.011	10350.40277
random_extra	Cubic	0.1	120.39379	1745067.614	1749419.627	4352.012215
				-		
random_extra	Cubic	0.1	-17.917886	5752.548745	-5656.77009	95.77865503
random_extra	Cubic	0.1	120.423235	1746348.314	1750702.454	4354.140355
			-	-	-	
random_extra	Cubic	0.1	183.312811	6159967.933	6149892.356	10075.57762
random_extra	Cubic	0.1	107.783149	1252139.176	1255627.572	3488.396657
			- -	<u>-</u>		
random_extra	Cubic	0.1	198.731553	7848749.694	7836907.386	11842.3081
un mada ma a sutura	Culsia	0.1	02 076242	-	-	2058 056200
random_extra	Cubic	0.1	-82.876243	569233.1258	567175.0696	2058.056209
random_extra	Cubic	0.1	44.365733	87325.88259	87917.71004	591.8274514
random_extra	Cubic	0.1	165.210957	4509376.951	4517570.307	8193.355423
random_extra	Cubic	0.1	-79.953998	511117.2694	509201.8745	1915.394919
Tandom_extra	Cubic	0.1	-79.933996	511117.2094	509201.8745	1913.394919
random_extra	Cubic	0.1	100.560545	1016910.789	1013880.078	3030.711147
			-			333311 === 11
random_extra	Quartic	0	145.804735	451945963.2	451945963.2	0
random_extra	Quartic	0	155.140681	579298993.5	579298993.5	0
random_extra	Quartic	0	173.042256	896620520.1	896620520.1	0
random_extra	Quartic	0	-21.772734	224725.2473	224725.2473	0
random_extra	Quartic	0	-44.705782	3994429.718	3994429.718	0
random_extra	Quartic	0	-96.961426	88388543.19	88388543.19	0
random_extra	Quartic	0	62.947034	15700051.81	15700051.81	0
random_extra	Quartic	0	-2.953225	76.06522335	76.06522335	0
random_extra	Quartic	0	185.695368	1189061406	1189061406	0
random_extra	Quartic	0	120.39379	210095303.9	210095303.9	0
random_extra	Quartic	0	-17.917886	103073.5126	103073.5126	0
random_extra	Quartic	0	120.423235	210300913.4	210300913.4	0
cxtra				т	т	

random_extra	Quartic	0	- 183.312811	1129201038	1129201038	0
random_extra	Quartic	0	107.783149	134959503.3	134959503.3	0
Tanaom_extra	Quartic		107.703143	134333303.3	134333303.3	
random_extra	Quartic	0	198.731553	1559794216	1559794216	0
random_extra	Quartic	0	-82.876243	47175902.86	47175902.86	0
random_extra	Quartic	0	44.365733	3874276.791	3874276.791	0
random_extra	Quartic	0	165.210957	744998481.6	744998481.6	0
random_extra	Quartic	0	-79.953998	40865869.13	40865869.13	0
			-			
random_extra	Quartic	0	100.560545	102261103.2	102261103.2	0
			-			-
random_extra	Quartic	0.1	145.804735	451945963.2	450707371.8	1238591.397
random_extra	Quartic	0.1	155.140681	579298993.5	580794047.7	1495054.254
random_extra	Quartic	0.1	173.042256	896620520.1	898694922.2	2074402.096
						-
random_extra	Quartic	0.1	-21.772734	224725.2473	220625.0407	4100.206642
randam autra	Ouartia	0.1	-44.705782	3994429.718	2050000 741	-
random_extra	Quartic	0.1	-44./05/82	3994429.718	3958809.741	35619.97685
random_extra	Quartic	0.1	-96.961426	88388543.19	88024473.05	364070.1385
random_extra	Quartic	0.1	62.947034	15700051.81	15800056.55	100004.7372
						-
random_extra	Quartic	0.1	-2.953225	76.06522335	66.27413722	9.791086133
random_extra	Quartic	0.1	185.695368	1189061406	1191624792	2563385.952
random_extra	Quartic	0.1	120.39379	210095303.9	210794201.1	698897.2073
						-
random_extra	Quartic	0.1	-17.917886	103073.5126	100791.6846	2281.828031
random_extra	Quartic	0.1	120.423235	210300913.4	211000323.3	699409.9127
			-			-
random_extra	Quartic	0.1	183.312811	1129201038	1126739066	2461971.691
random_extra	Quartic	0.1	107.783149	134959503.3	135461056.5	501553.1339
			-			-
random_extra	Quartic	0.1	198.731553	1559794216	1556657085	3137131.019
random_extra	Quartic	0.1	-82.876243	47175902.86	46948621.39	- 227281.4734
random_extra	Quartic	0.1			3909325.421	
_			44.365733	3874276.791 744998481.6	746803870.7	35048.62969
random_extra	Quartic	0.1	165.210957			1805389.121
random_extra	Quartic	0.1	-79.953998	40865869.13	40661805.47	-204063.669
random_extra	Quartic	0.1	100.560545	102261103.2	101854945.2	406157.9725
.anaom_cxtra	Qual tit	0.1	100.500545	102201103.2	101037373.2	.00137.3723

Figure 1: Quadratic Function (Offset = 0.0)

Figure 2: Quadratic Function (Offset = 0.1)

Figure 3: Cubic Function (Offset = 0.0)

Figure 4: Cubic Function (Offset = 0.1)

Figure 5: Quartic Function (Offset = 0.0)

Figure 6: Quartic Function (Offset = 0.1)

Interpretation: The analysis of the polynomial (D) values shows that when the offset is 0, the computed and expected values match perfectly for all polynomial functions, resulting in (D = 0). Introducing a small offset of 0.1 causes deviations, with (D) increasing in magnitude proportionally to both the offset and the input value. Higher-degree polynomials (Cubic, Quartic) exhibit larger deviations compared to Quadratic, reflecting greater sensitivity to small input perturbations. The pattern of (D) is symmetric for positive and negative inputs, indicating consistent behaviour across the domain. Overall, the (D) values quantify the impact of small input offsets, highlighting the increasing error amplification with polynomial degree and input magnitude.

Appendix

1. Implementation of ABSM in Python: main.py

```
import math

def P_linear(x, a=1, b=0):
    return a*x + b

def P_sine(x):
    return math.sin(x)

def P_tanh(x):
    return math.tanh(x)

def P_relu(x):
    return max(0, x)

def P_gaussian(x, sigma=1):
    return math.exp(-x**2 / (2*sigma**2))
```

```
defintegral(P, x0, x1, steps=1000):
  dx = (x1 - x0)/steps
  area = 0
  for i in range(steps):
    xi = x0 + i*dx
    area += P(xi) * dx
  return area
def ABSM_Grudge_Machine(x0, n0, n1, P):
  # Tentative x1 (can start as x0)
  x1 = x0
  Q = integral(P, x0, x1)
  n_{mean} = (n0 + n1) / 2
  n = n_mean + Q
  x1 = (n * x0 + n1 - n0) / n
  D = (n * x1 + n0) - (n * x0 + n1)
  return x1, D
# Example usage:
x0 = 5
n0 = 0.1
n1 = 0.2
x1, D = ABSM_Grudge_Machine(x0, n0, n1, P_sine)
print(f"x1 = {x1}, D = {D}")
```

2. Implementation of ABSM in ANSI C: main.c:

```
#include <stdio.h>
#include <math.h>
double P_sine(double x) { return sin(x); }
double P_linear(double x) { return x; }
double P_tanh(double x) { return tanh(x); }
double P_{relu}(double x) \{ return x > 0 ? x : 0; \}
double P_gaussian(double x, double sigma) { return exp(-x*x/(2*sigma*sigma)); }
double integral(double (*P)(double), double x0, double x1, int steps) {
 double dx = (x1 - x0)/steps;
 double area = 0;
 for(int i=0;i<steps;i++){</pre>
   double xi = x0 + i*dx;
   area += P(xi)*dx;
 return area;
void ABSM_Grudge_Machine(double x0, double n0, double n1, double (*P)(double),
double* x1, double* D) {
 x1 = x0;
 double Q = integral(P, x0, *x1, 1000);
 double n_mean = (n0 + n1)/2;
 double n = n_mean + Q;
  x1 = (nx0 + n1 - n0)/n;
 D = (n*(*x1)+n0) - (n*x0+n1);
```

```
int main() {
    double x1, D;
    ABSM_Grudge_Machine(5, 0.1, 0.2, P_sine, &x1, &D);
    printf("x1 = %lf, D = %lf\n", x1, D);
    return 0;
}
```

3. <u>Implementation of ABSM in C++: main.cpp:</u>

```
#include <iostream>
#include <cmath>
#include <functional>

double integral(std::function<double(double)> P, double x0, double x1, int steps=1000){
   double dx = (x1 - x0)/steps;
   double area = 0;
   for(int i=0;i<steps;i++){
      double xi = x0 + i*dx;
      area += P(xi)*dx;
   }
   return area;
}

void ABSM_Grudge_Machine(double x0, double n0, double n1, std::function<double(double)> P, double &x1, double &D){
```

```
x1 = x0;
  double Q = integral(P, x0, x1);
  double n_mean = (n0+n1)/2;
  double n = n_mean + Q;
  x1 = (n*x0 + n1 - n0)/n;
  D = (n*x1+n0) - (n*x0+n1);
}

int main(){
  double x1, D;
  ABSM_Grudge_Machine(5, 0.1, 0.2, [](double x){ return sin(x); }, x1, D);
  std::cout << "x1 = " << x1 << ", D = " << D << std::endl;
}</pre>
```

4. <u>Implementation of ABSM in Java: main.java:</u>

```
public class ABSM {
  public static double integral(java.util.function.Function<Double, Double> P, double
  x0, double x1, int steps){
    double dx = (x1 - x0)/steps;
    double area = 0;
    for(int i=0;i<steps;i++){
        double xi = x0 + i*dx;
        area += P.apply(xi)*dx;
    }
}</pre>
```

```
public static double[] ABSM_Grudge_Machine(double x0, double n0, double n1,
java.util.function.Function<Double, Double> P){
   double x1 = x0;
   double Q = integral(P, x0, x1, 1000);
   double n_mean = (n0+n1)/2;
   double n = n_mean + Q;
   x1 = (n*x0 + n1 - n0)/n;
   double D = (n*x1+n0) - (n*x0+n1);
   return new double[]{x1,D};
 }
 public static void main(String[] args){
   double[] res = ABSM_Grudge_Machine(5,0.1,0.2, Math::sin);
   System.out.println("x1 = "+res[0]+", D = "+res[1]);
 }
```

5. Implementation of ABSM in JavaScript: main.js:

```
function integral(P, x0, x1, steps=1000){
  let dx = (x1-x0)/steps;
  let area = 0;
  for(let i=0;i<steps;i++){
    let xi = x0 + i*dx;
    area += P(xi)*dx;
}</pre>
```

```
return area;
}

function ABSM_Grudge_Machine(x0, n0, n1, P){
    let x1 = x0;
    let Q = integral(P, x0, x1);
    let n_mean = (n0 + n1)/2;
    let n = n_mean + Q;
    x1 = (n*x0 + n1 - n0)/n;
    let D = (n*x1+n0) - (n*x0+n1);
    return {x1: x1, D: D};
}

// Example usage:
let res = ABSM_Grudge_Machine(5, 0.1, 0.2, Math.sin);
console.log(res);
```

6. Time difference to run different codes

("The execution time for small inputs is effectively zero on modern hardware, as the computation is extremely lightweight. Measured differences only become noticeable with large input ranges or repeated iterations.")

```
main.py: 0.0 second(s)
main.c: 0.0 second(s)
main.cpp: 0.0 second(s)
ABSM.java: 0.0079208 second(s)
main.js: 0.0002301
```

Github Repository link:

https://github.com/parthib2006/ABSM Grudge Machine