EXPERIMENT NO.-8

NAME-ANJALI MANTRI

ROLL NO.-U18EC125

Aim: To simulate setup of 10Gb/s channel of 1550nm SMF transmission using Optisystem software:

- A) Study the effect of attenuation (0.2dB/Km) and improve the signal by increasing the laser power (1mW-3mW). Evaluate the performance on the basis of eye diagram.
- B) Compare the results with and without help of dispersion compensating fiber (DCF). Show the analysis on the basis of time domain optical waveform?

Equipments Required:

• OptisystemSoftware

Connection Diagram:

Attenuation

Table 1 for attenuation

S. No	Transmit power	Received power
1	1mW	5.430x10^-6W
2	1.5mW	8.144x10^-6W
3	2mW	10.859x10^-6W
4	2.5mW	13.574x10^-6W
5	3mW	16.289x10^-6W

Eye Diagram:

• For 1mW

• For 1.5Mw

• For 2mW

• For 2.5mW

• For 3mW

Connection Diagram:

• Dispersion

• Transmitted waveform:

• Output Waveform:

Conclusion:From the above experiment we observed the attenuation and dispersion in fiber. In attenuation we observed received power corresponding transmit power and eye diagram . And we compensate the dispersion coefficient that we got output waveform almost equal to input waveform that means dispersion in fiber became less.