

Psicrometria: studio delle proprietà di un sistema gas-vapore

Igrometria: studio delle proprietà del sistema aria-vapore acqueo

aria secca

componenti	volume (%)
azoto	78,09
ossigeno	20,95
argo	0,93
biossido di carbonio	3.10-2
neon	$1,8.10^{-3}$
elio	5,2.10-4
metano	1,5.10-4
cripto	1,1.10-4
protossido d'azoto	5.10-5
idrogeno	5.10-5
ozono	5.10-5
ossido di carbonio	1.10-5
xeno	8,6.10-5
anidride solforica	1.10-6
ammoniaca	5.10-7
biossido d'azoto	1.10-7
iodio	2.10-11
radon	6.10-18

Psychrometric chart (Diagramma di Carrier)

Figure 8.4-1 Psychrometric chart—SI units. Reference states: H₂O (L, 0°C, 1 atm), dry air (0°C, 1 atm). (Reprinted with permission of Carrier Corporation.)

Igrometria: studio delle proprietà del sistema aria-vapore acqueo

Le grandezze termoigrometriche dell'aria umida:

- Temperatura a bulbo secco, T_{bs}
- Umidità assoluta, X (kg/kg d.a.)
- Umidità relativa, U.R. (%)
- Temperatura a bulbo umido, T_{bu}
- Temperatura di rugiada, T_{dp}
- Volume specifico (m³/kg d.a.)
- Entalpia specifica, h (kcal/kg d.a. o kJ/kg d.a.)

d.a.: dry air

Temperatura di bulbo secco (dry bulb temperature)

È la temperatura misurata da un comune termometro o termocoppia. La misura di tale temperatura è indipendente dall'umidità relativa (U.R.) dell'aria

Sul diagramma psicrometrico le temperature a bulbo secco sono indicate sull'asse delle ascisse

Umidità assoluta (absolute humidity o moisture content)

L'umidità assoluta, X, indica esprime i kg di vapore acqueo presenti in ogni kg di aria secca.

Sul diagramma igrometrico l'umidità assoluta è indicata sull'asse delle ordinate (posto sul lato destro).

$$X = 0.015 \text{ kg H}_2\text{O/kg d.a.}$$

Umidità relativa (relative humidity)

L'umidità relativa (U.R.) rappresenta la percentuale di vapore contenuto nell'aria in rapporto alla massima quantità in essa contenibile alla data temperatura. Sul diagramma igrometrico sono riportate le curve a umidità relativa costante.

$$\frac{\text{pressione parziale}}{\text{tensione di vapore}} 100 = \frac{p_{v}}{P_{\text{Sat}}} 100$$

1 kg di aria secca contenente 3.675g di vapor d'acqua

Temperatura di rugiada (dew point temperature)

E' la temperatura alla quale l'aria umida diventa satura se raffreddata a pressione costante

1 kg di aria secca contenente 8 g di vapore acqueo U.R. 40% 25°C В U.R. 100 %

di vapore acqueo

10.5°C

Temperatura di rugiada (dew point temperature)

E' la temperatura alla quale l'aria umida diventa satura se raffreddata a pressione costante

Supponiamo di avere aria alle condizioni di temperatura a bulbo secco Tbs = 25°C e di umidità relativa U.R.=50%; in questo caso la temperatura di rugiada è pari a 14°C (caso A nella figura accanto).

Supponiamo ora di avere aria alle condizioni di temperatura a bulbo secco Tbs = 25°C e di umidità relativa U.R. = 70%; in questo caso la temperatura di rugiada è pari a 19°C (caso B).

Per l'aria avente Tbs = 25°C ed U.R.= 100% la temperatura di rugiada è pari a 25°C (caso C).

Temperatura di bulbo umido (wet-bulb temperature)

La T_{wb} è la temperatura dell'aria misurata con un termometro il cui bulbo è mantenuto umido con una garza bagnata con acqua pura ed esposto ad un a corrente d'aria.

Supponiamo che l'aria umida si trovi nelle seguenti condizioni (punto A)

Tbs = 27° C

U.R.=50%

la temperatura a bulbo umido sarà pari a Tbu = 19°C

Volume specifico

Volume occupato dall'aria umida facendo riferimento al kg di aria secca

l'aria umida con Tbs = 25°C e con U.R=20% (punto A nella figura seguente) e l'aria umida con Tbs = 26°C e con U.R.=10% (punto B) hanno lo stesso volume specifico pari a 0.850 m³/kg a.s.

Entalpia specifica

Entalpia di una massa unitaria di aria secca più il relativo vapor d'acqua alla saturazione

Stati di riferimento:

Acqua liquida a 0 °C e 1 atm

Aria secca a 0 °C e 1 atm

Per calcolare l'entalpia specifica h dell'aria a Tbs = T e umidità X basta calcolare il calore necessario per:

- Portare l'aria secca (1kg) dalla temperatura di o°C alla temperatura finale T;
- Far evaporare a o°C gli X grammi di acqua contenuti nell'aria umida e riscaldare da o°C a T°C gli X grammi di vapore.

Esempio: l'aria alla temperatura Tbs di 20°C con umidità specifica X = 10g/kg ha entalpia specifica pari a 10.85 kcal/kg a.s. (letta sul diagramma psicrometrico) in quanto:

- ha = 4.8 kcal servono per portare il kg di aria secca da o°C a 20°C (Q = m cp ΔT = 1 x 0.24 x 20);
- \triangleright hv = 6.05 kcal servono per fare evaporare i 10 grammi di acqua a 0°C e poi a riscaldare il vapore da 0°C a 20°C: 0.010 x (λ + cp_v x Δ T) = 0.010 kg x (596 kcal/kg + 0.46 kcal/kg°C x 20°C)
 - \rightarrow h = ha + hv = 4.8 + 6.05 = 10.85 kcal/kg aria secca

