МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

РАЗРАБОТКА МИКРОПРОГРАММЫ ДЛЯ ВЫЧИСЛИТЕЛЬНОГО УСТРОЙСТВА

Отчет по лабораторной работе №3 по дисциплине «Организация ЭВМ и систем» Задание 8

Выполнил студент группы ИВТ-21 _	/Рзаев А. Э./
Проверил преподаватель	/Гагарский К. Н./

1 Задание

Выполнить сдвиг 8-разрядного двоичного кода X на N разрядов в сторону младших разрядов (сдвиг логический)

2 Распределения ячеек ЗУ и регистров микропроцессора

Распределение ячеек запоминающего устройства представлено в таблице 2.1

Таблица 2.1 – Распределение ячеек ЗУ

Адрес	Код	Мнемоника	Комментарий
00	0000	КОП	код операции
01		X	исходное число
02		N	количество разрядов для сдвига
03		Z	результат сдвига

Распределение регистров микропроцессора представлено в таблице 2.2

Таблица 2.2 – Распределение регистров микропроцессора

	P3Y(R0-R7)		P3Y(R8-R15)
0	Регистр числа X	8	
1	Регистр сдвигов N	9	
2	Регистр счетчика	A	
3		В	
4		C	
5		D	
6		E	
7		F	Счетчик адреса ЗУ
RA	Адрес ЗУ	RQ	

3 Разработка микропрограммы для устройства без конвейерного выполнения микрокоманд

Распределение ячеек преобразователя начального адреса представлено в таблице 3.1.

Таблица 3.1 – Распределение ячеек ПНА

КОП (адрес)	Начальный адрес МП	Комментарий
00	00001011	0B – адрес микропрограммы логического сдвига

4 Граф-схема логического сдвига

Рисунок 4.1 – Граф схема логического сдвига

Рисунок 5.1 – Граф-схема микропрограммы

6 Диаграмма распределения ячеек блока памяти микропрограмм

Рисунок 6.1 - Диаграмма распределения памяти микропрограмм

7 Текст отлаженной микропрограммы

№	МИ	МИ РЗУ Упр. АЛУ		У	Упр. ОЗУ			МИ		Упр.	усл.	Упр. УУ					
312	I8-0	A	В	C0	^OE	SC	^CS	^ W	^EA	D11-0	13-10	A	U	^CCE	C0	^RLD	^OE
00	244	F	F	0	1	00	1	0	1	000	Е	00	0	0	1	1	0
									RF:=	0							
01	304	F	F	1	0	00	1	0	0	000	E	00	0	0	1	1	0
RA:=RF + 1; RF:=RF + 1;																	
02	237	0	0	0	1	00	0	1	1	000	Е	00	0	0	1	1	0
	R0:=M[RA] (Считывание X из ЗУ)											1					
03	304	F	F	1	0	00	1	0	0	000	Е	00	0	0	1	1	0
		ı	ı					RA:=R	F + 1; R	F:=RF +	1;						
04	237	1	1	0	1	00	0	1	1	000	Е	00	0	0	1	1	0
					•		R1:=	M[RA]	(Счить	івание N	из ЗУ)						•
05	144	Е	Е	0	0	00	1	0	0	000	Е	00	0	0	1	1	0
									RA:=	=0							
06	237	0	Е	0	1	00	0	1	1	000	2	00	0	0	1	1	0
								Пе	реход н	а КОП							
07	304	F	F	1	0	00	1	0	0	000	Е	00	0	0	1	1	0
								RA:=R	F + 1; R	F:=RF +	1;						
08	134	0	0	0	0	00	0	0	1	000	0	00	0	0	1	1	0
							M[I	RA]:=R	.0 (Запи	сь резуль	тата)						
0B	244	2	2	0	1	00	1	0	1	000	Е	00	0	0	1	1	0
									R2:=	0							
0C	161	1	2	0	1	00	1	0	1	010	3	00	1	0	1	1	0
						RQ:	=R1 xor	R2; E	сли Z =	1, то пере	еход к N	IK 10					
0D	134	0	0	0	1	00	1	0	1	010	3	00	1	0	1	1	0
						•	F(R0);	Если Z	Z = 1, то	переход	к МК 10)					
0E	431	0	0	0	1	00	1	0	1	000	Е	00	0	0	1	1	0
						•			R0:=R0) / 2							
0F	204	2	2	1	1	00	1	0	1	00C	3	00	1	1	1	1	0
						R2	2:=R2 +	1; Без	условнь	ый перехо	д к МК	0C					
10	100	0	0	0	1	00	1	0	1	007	3	00	1	1	1	1	0
							Без	услові	ный пер	еход к М	K 07						
_					_												_

8 Разработка микропрограммы для устройства с конвейерным выполнением команд

Распределение ячеек ПНА для устройства с конвейерным выполнением команд аналогично распределению для устройства без конвейерного выполнения команд. Распределение ячеек ПНА представлено в таблице 3.1.

9 Граф-схема логического сдвига

Граф-схема представлена на рисунке 9.1.

Рисунок 9.1 – Граф схема логического сдвига

11 Диаграмма распределения ячеек блока памяти микропрограмм

12 Текст отлаженной микропрограммы

Ma	МИ	ми Рзу		Упр. АЛУ		Упр. ОЗУ			Шина	Шина МИ	3	Упр.	усл.	Упр. УУ			
Nº	I8-0	A	В	C0	^OE	SC	^CS	^ W	^EA	D11-0	13-10	A	U	^CCE	C0	^RLD	^OE
00	244	F	F	0	1	00	1	0	1	000	Е	00	0	0	1	1	0
RF:=0																	
01	304	F	F	1	0	00	1	0	0	000	Е	00	0	0	1	1	0
]	RA:=R	F + 1; R	F:=RF +	1;						
02	237	0	0	0	1	00	0	1	1	000	Е	00	0	0	1	1	0
R0:=M[RA] (Считывание X из ЗУ)																	
03	304	F	F	1	0	00	1	0	0	000	Е	00	0	0	1	1	0
								RA:=R	F + 1; R	F:=RF +							
04	237	1	1	0	1	00	0	1	1	000	Е	00	0	0	1	1	0
								M[RA]	,	івание N							
05	144	Е	Е	0	0	00	1	0	0	000	Е	00	0	0	1	1	0
				_					RA:=				_				
06	237	0	Е	0	1	00	0	1	1	000	Е	00	0	0	1	1	0
07	111	-	Б		1	00			BRA:=F		2	0.0	0	0			
07	144	Е	Е	0	1	00	1	0	0	000	2	00	0	0	1	1	0
08	304	F	F	1	0	00	1	0	реход н 0	000	Е	00	0	0	1	1	0
08	304	Г	Г	1	U	00				F:=RF +		00	U	U	1	1	U
09	134	0	0	0	0	00	0	0	1 + 1, K	000	г, Е	00	0	0	1	1	0
09	134	U	U	U	U	00				сь резуль		00	U	U	1	1	U
							IVILI	M.JIN		сь резуль	1414)						
0B	244	2	2	0	1	00	1	0	1	000	Е	00	0	0	1	1	0
ОВ	211			Ů	1	00	1	U	R2:=		ь	00	Ü	•	1	1	Ů
0C	161	1	2	0	1	00	1	0	1	000	Е	00	0	0	1	1	0
				-					 RA:=R1					-			
0D	304	2	2	1	1	00	1	0	1	011	3	00	1	0	1	1	0
						R2:=l	R2 + 1;	BRA, e	 если Z=	1, то пере	ход к М	K 01	1				
0E	134	0	0	0	1	00	1	0	1	000	Е	00	0	0	1	1	0
]	 BRA:=F	(R0)							
0F	431	0	0	0	1	00	1	0	1	011	3	00	1	0	1	1	0
		l				R0:=	R0 / 2; I	BRA, e	если Z=1	l, то пере	ход к М	K 011				l	1
10	131	0	0	0	1	00	1	0	1	00C	3	00	0	1	1	1	0
		I	ı			<u> </u>	Безу	/словн	ый пере	ход к МК	00C				<u> </u>	l	l
11	034	Е	Е	0	1	00	1	0	1	008	3	00	0	1	1	1	0
					1		Без	условн	ый перс	еход к МЕ	300 \$			·	1	1	1

13 Сравнение микропрограмм

Без конвейерного выполнения микрокоманд:

$$M = 1 + (1 + 0.5 * (1 + 0.5 * 2)) / 0.5 + 1 = 6$$

$$T = M * \tau = 6\tau$$

$$V = N * n = 14 * 47 = 658 \ бит$$

С конвейерным выполнением микрокоманд:

$$M = 1 + (2 + 0.5 * 2) / 0.5 + 1 = 8$$

 $T = M * k * \tau = 8 * 0.7 * \tau = 5.6 \tau$
 $V = N * n = 15 * 47 = 752$ бит

Вывод

Таким образом, конвейерная обработка микрокоманд позволила уменьшить время вычислений, но привела к увеличению объема памяти, необходимого для размещения микропрограммы.