Lecture 21: Gaussian process regression

Professor Ilias Bilionis

Gaussian process regression - Overview

Regression

Your are given n observations consisting of:

$$\mathbf{x}_{1:n} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$$

(inputs, features, ...)

$$\mathbf{y}_{1:n} = \{y_1, \dots, y_n\}$$

(outputs, targets, labels, ...)

Continuous outputs

Problem: Use the data to learn the map between x and y

Gaussian process regression

- The "best" regression you can do when:
 - The dimensionality of the features is not too big (<100).
 - The number of observations is not too large (<5000).

How does Gaussian process regression work?

Why is the Gaussian process regression so powerful?

- It allows you to encode your prior beliefs about the regularity of the function (smoothness, length scale, variance). in a non-parametric way
- It does not overfit because it is fully Bayesian.
- It is easy to put together from intuitive pieces.

The best book on the Subject

Gaussian Processes for Machine Learning
Carl Edward Rasmussen and Christopher K. I.
Williams
The MIT Press, 2006. ISBN 0-262-18253-X.

Free online at <u>www.gaussianprocess.org</u>.

The best code on the subject

GPy (in Python) from the group of N. Lawrence @ University of Sheffield

https://github.com/SheffieldML/GPy

