XP-002330193

THIOPHENE DURCH S-ALKYLIERUNG

M. AUGUSTIN,* W.-D. RUDORF und U. SCHMIDT Sektion Chemie der Martin-Luther-Universität Halle-Wittenberg, DDR

(Received in Germany 19 February 1976; Received in the UK for publication 5 July 1976)

Zusammenfassung-Es wird über die Umsetzung von Aroyl- und Hetaroylacetonstrilen 1 mit Schwefelkohlenstoff bzw. Phenylisothiocyanat und a-CH-aciden Halogenverbindungen zu Keten-S,S-acetalen 3 und 5 bzw. zu Keten-S,N-acetalen 8 beschrieben. In den meisten Fällen können die Keten-S,S- und Keten-S,N-acetale nicht isoliert werden. Basenkatalysierte Cyclisierung ergibt die Thiophene 4, 6, 9 und die Thieno[2,3-b]thiophene 7. Das Keten-S,N-acetal 8f führt jedoch zum Thiazolidon 10. Die Massen- und IR-Spektren der hergestellten Verbindungen werden diskutiert.

Abstract-The reaction of aroyl- and hetaroyl acetonitriles I with carbon disulfide and phenyl isothiocyanate, respectively, and a-CH-acid halo compounds to ketene S,S-acetals 3, 5 and to ketene S,N-acetals 8, respectively, is described. In most cases the ketene S,S- and ketene S,N-acetals cannot be isolated. Base catalyzed cyclisation yields the thiophenes 4, 6, 9 and the thieno[2,3-b]thiophenes 7. However, the ketene S,N-acetal 8f leads to the thiazolidone 10. The mass- and IR-spectra of the synthesized compounds are discussed.

Die durch Reaktion der CH-aciden Aroyl- und Hetaroylacetonitrile 1 mit Schwefelkohlenstoff in Gegenwart von Natriumhydrid leicht zugänglichen Natriumen wart von Natriumhydrid leicht zugänglichen Natrium-

salze geminaler Dithiole 2 können durch zweifache Methylengruppe verfügen, so entstehen zunächst die Alkylierung am Schwefel in Keten-S,S-acetale überführt offenkettigen Keten-S,S-acetale 3 bzw. 5. Sie sind

$$R'-CO-CH_{2}-CN \xrightarrow{CS_{1}} R'-CO \\ 1 \\ R'-CO \\ NC \\ S-CH_{2}-Y \\ NC \\ S-CH_{2}-Y \\ 1 \\ R'-CO \\ S-CH_{3} \\ 4' \\ R'-C \\ S-CSCH_{3} \\ 4' \\ R'-C \\ S-CSCH_{3} \\ 4' \\ R'-C \\ S-CH_{2}-Y \\ S-CH_{2}-Y \\ S-CH_{2}-Y \\ S-CH_{2}-Y \\ S-CH_{3}-Y \\ S-CH_{2}-Y \\ S-CH_{2}-Y \\ S-CH_{3}-Y \\ S-CH_$$

geeignete Ausgangssubstanzen für die Synthese von Thiophenen. Als Alkylierungsmittel findet neben a-Halogenmethylketonen und Halogenessigsaurederivaten auch das p-Nitrobenzylchlorid Verwendung.

Ein allgemeines Syntheseprinzip für Thiophene stellt die Dieckmann-bzw. Thorpe-Cyclisierung dar. R. Gompper und Mitarb.² haben nach dieser Methode vor allem 3-Amino- und 3-Hydroxy-thiophene synthetisiert.

Die Verbindungen 3 liessen sich in einigen Fällen isolieren, besonders dann, wenn ein Basenüberschuss vermieden werden konnte.

Von den Keten-S,S-acetalen 5 konnte nur die Verbindung 50 ($R' = C_6H_5$; $Y = p - NO_2 - C_6H_4$) in kristalliner Form isoliert werden. Normalerweise werden nur ölige oder teerige Produkte erhalten. Diese begannen häufig schon zu cyclisieren, wenn versucht wurde, aus Alkohol unzukristallisieren.

Durch Basenkatalyse—Zugabe von wenig Natriumalkoholat zu den alkoholischen Lösungen von 3 bzw. 5—entstehen die Thiophene 4 bzw. 6.

Prinzipiell sollte der Ringschluss sowohl über die Carbonyl- als auch über die Nitrilgruppe möglich sein. Es wurde gefunden, dass die Cyclisierung zum Thiophen zunächst ausschliesslich über die Ketocarbonyl-Gruppe erfolgt, denn in keinem Fall konnten Aminothiophene 4'

oder 6' isoliert werden. Dass aber auch die Nitrilgruppe in die Reaktion einbezogen werden kann, beweist die Bildung der Thieno[2,3-b]thiophene 7. Hierzu sind häufig erhöhte Temperaturen und unter Umständen längere Reaktionszeiten erforderlich, während die Thiophene 4 und 6 sofort nach Zugabe des basischen Katalysators entstehen. Allerdings gelang es nicht immer, die Verbindungen 6 zu isolieren. Verwendet man als Alkylierungsmittel Bromaceton, so entstehen bei Zimmertemperatur direkt die entsprechenden Thieno[2,3-b]thiophene 7g, h, 1 (vgl. Tabellen 5 und 6).

Die verminderte Reaktivität der Nitrilgruppe gegenüber der Carbonylfunktion wird besonders deutlich bei den Umsetzungen mit p-Nitrobenzylchlorid. Während sich hier die offenkettige Verbindung 50 isolieren lässt und die Cyclisierung zum Thiophen 60 unter Wasserabspaltung über die Carbonylgruppe erfolgt, gelingt es nicht mehr, ein Thieno[2,3-b]thiophen zu erhalten. Offenbar ist die Aktivierung der Methylengruppe durch den p-Nitrophenylrest so gering, dass die reaktionsträgere Nitrilgruppe nicht mehr angegriffen wird.

Die Struktur der Thiophene 4 und 6 bzw. der Thieno[2,3-b]thiophene 7 ergibt sich aus den Elementaranalysen und den IR-Spektren.

Die IR-Spektren der Thiophene 6 gestatten eine

Tabelle 1. 2-Aroyl-3-methylmercapto-3-(cyanmethylmercapto)-acrylnitrile 3

$$R'-CO$$
 $C=C$ SCH_2CN SCH_3

		F [°C]	Ausb.	ν(CN)	ν(CO)	Summenformel	Analyse: Ber./Gef.			
Nr.	R'	umkrist.	(% d.Th.)	[cm-']	in Nujol	(MolGew.)	c	Н	N	
3a	C.H,	67-69	65.5	2210	1640	C13H10N2OS,	56.91 56.91	3.71	10.21	
3c	p-Cl-C ₆ H ₄	Athanol 90–91	80	2250 2215	1640	(274.4) C ₁₃ H ₉ CIN ₂ OS ₂	50.56	3.50 2.94	9.91 9.08	
3d	3,4-Cl ₂ -C ₆ H ₃	Athanol 116–119	45	2250 2210	1640	(308.8) C ₁₃ H ₈ Cl ₂ N ₂ OS ₂	50.73 45.48	2.65 2.35	8.58 8.16	
3g	2-Thienvl	Āthanol 88–89	91	2250 2215	1650	(343.3) C ₁₃ H _# N₂OS ₃	46.11 47.12	2.29 2.88	7.76 9.99	
-0	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Äthanoi		2250		(280.4)	46.71	2.67	9,71	

Tabelle 2. 2-Methylmercapto-3-cyan-5-thiophencarbonitrile 4a-g

		F. (°C)	Ausb.	ν(CN) [cm ⁻¹]	Summenformel	Anal	Analyse: Ber./Gef.			
Nr.	R'	umkrist.	(% d.Th.)	in Nujol	(MolGew.)	С	Н	N		
4a	C.H.	199-200	45	2210	C.,H,N,S2	60.90	3.15	10.93		
		Aceton			(256.4)	60.77	3.11	11.37		
4b	p-Br-C ₆ H ₄	206-207	41	2215	C13H3BrN2S2	46.57	2.10	8.36		
70	•	Aceton		2225	(335.3)	46.34	1.81	8.06		
4c	p-Cl-C ₄ H ₄	209-210	3 7	2215	C11H2CIN2S2	53.70	2.42	9.64		
		Aceton/ Äthanol		2225	(290.8)	53.84	2.07	9.38		
4d	3,4-Cl ₂ -C ₆ H ₃	231-232	24	2220	C12HCI2N2S2	48.01	1.86	8 61		
		Aceton			(325.2)	47.82	1 59	8.42		
4e	p-CH ₁ O-C ₂ H ₄	186-187	20	2212	C14H10N2OS2	58.72	3.53	9.78		
	,-	Methanoi		2228	(286.4)	58.11	2.89	9.01		
41	2-Furyl	203-204	23	2220	C11H6N2OS2	53.64	2.46	11.37		
-	•	Aceton			(246.3)	53.72	1.98	11.30		
4g	2-Thienyl	194-195	35	2215	CuHaNiS	50.35	2.30	10.67		
. 9		Äthanoi			(262.4)	50.21	2.11	10.31		

BNSDOCID <XP 2330193A I >

Tabelle 3. 2-Methylmercapto-3-cyan-5-thiophencarbonsäuremethylester 4b-a

		F. (°C)	Ausb.	ν(CN)	ν(CO)	Summenformel	Analyse: Ber./Gef.		
Nr.	R'	umkrist.	(% d.Th.)	(cm 1)	in Nujol	(MolGew.)	C	Н	N
4h	C.H.	98-100	45	2225	1725	C,H,NO,S,	58.11	3.83	4.84
		Méthanol				(289 4)	58.69	4.29	4.57
41	p-Br-C ₆ H ₄	149-150	60	2220	1700	C14H10BrNO2S2	45.65	2.75	3.81
	•	Methanol				(368.3)	45.67	2.30	3.49
4k	p-CI-C.H.	148-149	52.5	2222	1735	C14H10CINO2S2	51.93	3.12	4.32
	• • • •	Methanol				(323.8)	51.59	2.92	4.13
41	3,4-Cl ₂ -C ₆ H ₃	144-146	44.5	2225	1720	C,H,CI,NO,S,	46.93	2.54	3.91
		Methanol				(358.3)	47.01	2.61	3.43
4m	p-CH ₃ O-C ₃ H ₄	150-151	36	2220	1715	C.H.,NO,S.	56.41	4.10	4.39
	•	Methanol				(319.4)	55.97	3.84	4.10
4n	2-Thienyl	135-136	21	2220	1725	C,H,NO,S,	48.79	3.08	4.74
	•	Methanol				(295.4)	48.45	2.54	4.32

Tabelle 4. 2-Methylmercapto-3-cyan-5-acetylthiophene 4o-u

		F. (°C)	Ausb	ν(CN)	ν(CO)	Summenformel	Anal	yse: Ber	/Gef.
Nr.	R'	umkrist.	(% d.Th.)	[cm ']	in Nujol	(MolGew.)	С	н	N
40	C ₄ H ₅	109-110	51	2225	1645	C, H, NOS	6151	4.06	5.12
		Äthanol				(273.4)	61 22	3.74	5.17
4p	p-Br-C ₄ H ₄	140.5-142	33	2235	1655	C14H10BrNOS2	47.73	2.86	3.98
•	•	Methanol				(352.3)	47 88	2,76	3.78
4q	p-CI-C ₆ H ₄	126.5-127	54	2235	1660	C14H10CINOS2	54 63	3.27	4.5
•	·	Methanol				(307.8)	54 42	3.19	4.31
4г	3,4-Cl ₂ -C ₆ H ₃	147-149	54	2220	1650	C14HaCI2NOS2	49.13	2.66	4.09
		Methanol				(342.3)	49 86	2.61	3.98
45	p-CH ₁ O-C _n H ₄	127-129	30	2220	1640	C14H11NO2S2	59.39	4.31	4.62
		Methanol				(303.4)	59.47	4.29	4.36
41	2-Furyl	113-114	63	2220	1650	$C_{12}H_{\bullet}NO_{2}S_{2}$	54.74	3.44	5.32
		Methanol				(263.3)	54.65	3.27	5.34
4u	2-Thienyl	106-108	37	2220	1640	C12H,NOS	51.59	3.25	5 01
	•	Methanol				(279.4)	51.42	2.89	4.85

deutliche Unterscheidung zwischen konjugierten und nicht-konjugierten Nitril-, Ester- und Acylgruppen, d.h. zwischen Substituenten, die direkt oder über die S-CH₂-Seitenkette mit dem Thiophenring verknüpft sind.

Die Thieno[2,3-b]thiophen-Struktur wird durch den Nachweis einer primären Aminogruppe im IR-Spektrum sowie durch das Vorhandensein von Nitril-bzw. Carbonylfrequenzen gestützt. Auffallend ist bei 7d-1 die starke Verschiebung einer Carbonylbande nach tieferen Wellenzahlen. Dies ist vermutlich auf die coplanare Anordnung von Amino- und Carbonylgruppe zurückzuführen, die intramolekulare Wasserstoffbrücken begünstigt und dadurch die Bindungsordnung der Carbonylgruppe verringert, z.B.:

Auch unter extremen Bedingungen gelingt es nicht, in den Thiophenen 4 die Methylmercaptogruppe gegen den

Anilinrest auszutauschen. Ein bequemer Weg zur Synthese ergibt sich, wenn man direkt von den CH-aciden Verbindungen 1 ausgeht.

Die Aroyl- und Hetaroylacetonitrile 1 sind, wie andere methylenaktive Nitrile, auch zur Addition von Isothiocyanaten in Gegenwart von Basen befähigt. Nachfolgende Alkylierung mit α-Halogenketonen oder ρ-Nitrobenzylchlorid führt oft bereits ohne zusätzliche

Tetra Vol 32, No 24-F

Tabelle 5. 2-Alkylmercapto-4-aryl-3-cyan-5-subst.-thiophene 6

			F. [°C]	Ausb.	ν(CN)	ν(CO)	Summenformel	Analyse: Ber./Gef.		
Nr.	R'	Y	umkrist.	(% d.Th.)	[cm ⁻¹]	in Nujol	(MolGew.)	C	Н	N
6a	C ₆ H,	CN	150-152	30	2230		C14H1N3S2	59.76	2.51	14.93
			Methanol		2255		(281.4)	59.30	2.39	14.92
6d	C₄H,	COOCH,	101-102*	25	2220	1725	C, H, NO.S,	55.33	3.77	4.03
			Methanol				(347.4)	55.13	3.86	4.06
6e	p-Br-C ₀ H ₄	COOCH,	123-126	42	2225	1720	C.H., BrNO.S.	45.08	2.84	3.29
			Methanol	-		1750	(426.3)	44.94	2.57	3.05
6f	p-CI-C ₆ H₄	COOCH,	112-114	47	2225	1730	C, H, CINO, S,	50.32	3.17	3.67
	-		Äthanol				(381.9)	50.25	3.01	3.23
6k	3,4-Cl ₂ -C ₆ H ₃	CO-CH,	156-158	26	2220	1720	C16H11Cl2NO2S2	50.01	2.89	3.65
		-	Methanol			1650	(384.3)	49.75	2.68	3.70
61	2-Thienyl	CO-CH,	119-121	24	2225	1715	C.H.,NO.S.	52.32	3.45	4.36
			Methanol			1645	(321.4)	52.15	3.25	4.26
6m	2-Furyl	CO-CH ₁	127-128.5	17	2225	1720	C, H, NO,S,	55.06	3.63	4.59
	•	•	Methanol			1670	(305.4)	54.65	3.38	4.14
6n	C ₄ H ₄	CO-C.H.	153-154	20	2220	1725	C26H17NO2S2	71.04	3.98	3.18
	• •		Aceton			1680	(439.6)	70.73	4.04	3.15
60	C.H.	p-NO ₂ C ₆ H ₄	211-213	74	2220	_	CaHINOOS	60.88	3.19	8.87
			Aceton				(473.5)	61.00	2.98	8.48

^{*}Lit. F. 100.5-101.5°C3.

Tabelle 6. Thieno[2,3-b]thiophene 7

			F. [°C]	Ausb.	ν(NH)	ν(CN)	ν(CO)	Summenformel	Anal	yse: Bei	:./Gef.
Nr.	R۱	Y	umkrist.	(% d.Th.)	[cm-1]	in Nujol		(MolGew.)	С	н	N
7a	C.H,	CN	278-284	20	3420	2215		C, H, N,S,	59.76	2.51	14.93
			Aceton		3270 3175			(281.4)	59.58	2.73	14.53
7ь	p-Br-CaHa	CN	231-233	14.6	3485	2210	_	C14H4BrN1S2	46.67	1.68	11.66
			Aceton		3340 3275			(360 3)	46.38	1.92	11.46
7c	p-Cl-C ₄ H ₄	CN	238-240	34.4	3485	2215	_	C1.H.CIN,S2	53.24	1.91	13.31
			Aceton		3345 3280			(315.8)	52.97	2.25	12.97
7d	C.H,	COOCH,	184-185	57	3500		1725	C, H,, NO,S,	55.32	3.78	4.03
			Methanol		3380		1680	(347.4)	55.63	3.87	4.21
7c	p-Br-C ₆ H ₆	COOCH,	224-226	35	3490		1725	C14H12BrNO4S2	45.08	2.84	3.29
			Aceton		3385		1680	(426.3)	45.72	2.39	3.26
7f	p-CI-C ₆ H ₄	соосн,	216-217	25	3510		1730	CH.,CINO.S.	50.32	3.17	3.67
			Aceton		3390		1680	(381.9)	50.41	2.89	3.64
7g	C ₄ H ₅	со-сн,	130-132	28	3490			C16H11NO2S2	60.93	4.16	4.44
			Methanol		3470	_	1655	(315.4)	61.07	4.10	4.40
					3350 3325		1625				
7h	p-Br–C₀H₄	CO-CH,	195-197	24	3480	_	1655	C ₁₆ H ₁₇ BrNO ₂ S ₂	48.74	3.07	3.56
			Aceton		3345		1625	(394.3)	48.61	2.92	3.33
7i	p-Cl-C.H.	CO-CH,	196-197	14	3480	_		C ₁₄ H ₁₂ CINO ₂ S ₂	54.93	3.46	4.00
			Aceton		3320 3150		1650 1620	(349.9)	54.96	3.42	3.91
7k	3,4-Cl2-CeH		238-241	17	3495	_	1655	C ₁₀ H ₁₁ Cl ₂ NO ₂ S ₂	50.01	2.89	3.65
		-	Aceton		3340		1605	(384.3)	49.76	2.57	3.63
71	2-Thienyl	CO-CH,	149-150	45	3470		1650	C.H.,NO2S,	52.32	3.45	4 36
	-	,	Methanol		3310		1625	(321.4)	52.07	3.30	4 19

Base unter Wasserabspaltung zu den Anilino-thiophenen 9. Auf die Isolierung der Keten-S,N-acetale 8a-e wurde verzichtet, da sie unter den angewendeten Reaktions-

bedingungen stets nur im Gemisch mit den cyclischen Produkten 9 auftraten.

Von Interesse war in diesem Zusammenhang die

Tabelle 7. 2-Anilino-4-phenyl-5-subst.-3-thiophencarbonitrile 9a-e

		F [°C]	Ausb.	ν(NH)	ν(CN)	ν(CO)	Summenformel (Mol-Gew.)	Analyse: Ber./Gef.		
Nr.	Y	umkrist.	(% d.Th.)	[cm-1]	in Nujol			С	Н	N
9a	СН,СО	217-218	75	3110	2200	1600	C ₁₉ H ₁₄ N ₂ OS	71.67	4.43	9.09
		Methanol					(318.4)	71.52	4.39	8.61
9ъ	C ₄ H ₅ -CO	228-229	79	3265	2215	1620	C24H16N2OS	75.76	4.24	7.36
		Methanol					(380.5)	75.49	4.13	7.05
9c	p-Br-C ₄ H ₄ -CO	227-229	95	3255	2215	1620	C24H13BrN2OS	62.75	3.08	6.09
	·	Aceton		3140			(459.4)	63.01	2.98	5.91
9d	p-CI-C ₄ H ₄ -CO	221-223	95	3265	2215	1620	C24H15CIN2OS	69.48	3.40	6.75
	•	Methanol					(419.9)	69.59	3.47	6.57
9e	p-NO ₂ -C ₄ H ₄	262-264	21	3260	2215	_	$C_{2}, H_{1}, N_{1}O_{2}S$	69.50	3.81	10.57
	• • • • • •	Aceton					(397.5)	69.73	3.80	10.57

Reaktion mit Halogenessigester als Alkylierungsmittel. Die Umsetzung des CH-aciden Thiocarbonsäureanilids 12 mit Chloressigester in Gegenwart von Na-Alkoholat ist bereits bekannt. Barnikow und Niclas' formulieren als Reaktionsprodukt eine Verbindung mit einer 3 - Ketotetrahydrothiophenstruktur 11, wobei angenommen wurde, dass die Kondensation an der CH-Gruppe des zum Keten-S,N-acetal 81 tautomeren Thioimidsäureesters 87 erfolgt.

Es gelang uns, das Keten-S,N-acetal 8f entweder direkt aus dem Benzoylacetonitril 1 ($R^1 = C_cH_3$) oder aus dem Anilino(thiocarbonyl)benzoylacetonitril 12 durch Alkylierung mit Bromessigsäureäthylester zu erhalten. Das IR- und 1H -NMR-Spektrum zeigt, dass ausschliesslich die Keten-S,N-acetalform 8f vorliegt und nicht ein Thioimidsäureester 8f'. Neben einer $\nu_{\rm CO}$ -Bande bei 1740 cm $^{-1}$, die auf die Carbonylgruppe des Thioglykolsäureesters zurückzuführen ist, enthält es eine Absorptionsbande bei 1600 cm $^{-1}$, die der konjugierten Ketocarbonylgruppe entspricht. Die CN-Bande ist durch Konjugation zur C=C-Bindung ebenfalls zu niedrigen

Wellenzahlen ($\nu_{CN} = 2200 \, \text{cm}^{-1}$) verschoben.

Bei bemerkenswert tiefen Wellenzahlen ist die NH-Valenzabsorption aufzufinden ($\nu_{\rm NH} = 3230-2720~{\rm cm}^{-1}$). Die deuterierte Verbindung zeigt in diesem Bereich keine Absorption.

Auch das 'H-NMR-Spektrum bestätigt die Struktur 8f, da kein Signal für ein Proton an einem tert. C-Atom vorhanden ist. Durch Zugabe einer katalytischen Menge Natriumalkoholat zur äthanolischen Lösung der Verbindung 8f erfolgt Cyclisierung unter Abspaltung von Äthanol. Für das Reaktionsprodukt kommt nach dem Ergebnis der Elementaranalyse nur die Struktur 10 bzw. 11 in Frage. Die Thiophenstruktur 9f muss ausserdem aufgrund des Fehlens von NH-Valenzabsorptionsbanden (vgl. Tabelle 7) ausgeschlossen werden.

Das IR-Spektrum (Nujol) deutet auf die Thiazolidonstruktur 10 hin. Die C≡N-Bande liegt bei 2210 cm ¹, während die Bande für die Carbonylgruppe des Thiazolidinringes bei der recht hohen Wellenzahl von 1735 cm⁻¹ erscheint. Die konjugierte Ketocarbonylgruppe liegt dagegen bei 1630 cm⁻¹.

Das 'H-NMR-Spektrum erlaubt keine Entscheidung zwischen den Strukturen 10 und 11.

Das Massenspektrum liefert den eindeutigen Beweis für das Vorliegen der Thiazolidonstruktur 10. Die Bildung des Bruchstücks mit m/e = 201 ist dafür charakteristisch.

Der Basispeak bei m/e = 215 (Eliminierung einer Benzoylgruppe) und die Bruchstücke bei m/e = 278 und

141 (Eliminierung von CH₂=C=O und S) sind für die Strukturaufklärung allerdings ohne Bedeutung.

2 - Methylmercapto - 3 - cyan - 5 - thiophencarbonsāuremethylester 4h-n

Die unter Verwendung von Methyljodid und Bromessigsäuremethylester gebildeten Keten-S.S-acetale 3 werden in 50-100 ml Methanol unter Erwärmen gelöst, dann auf

$$\begin{bmatrix} C_{0}H_{1} - CO & & & \\ N - C = O & & \\ N - C = O & \\ S - CH_{2} & & & \\ \end{bmatrix}^{\mathfrak{G}} = 320 (22.6\%)$$

$$\begin{bmatrix} C_{0}H_{1} - CO & & \\ N - C = C - S = CH_{2} \\ & & \\ N - C = C - S = CH_{3} \end{bmatrix}^{\mathfrak{G}}$$

$$\begin{bmatrix} C_{0}H_{1} - CO & & \\ N - C = C - S = CH_{3} \\ & & \\ N - C = C - S = CH_{3} \end{bmatrix}^{\mathfrak{G}}$$

Die Umsetzung von Benzoylacetonitril 1 ($R^t = C_bH_s$) mit Natriumhydrid, Phenylsenföl und Chloracetylchlorid führt in einer "Eintopfreaktion" ebenfalls zu dem Thiazolidon 10.

EXPERIMENTELLES

Die Schmelzpunkte wurden auf dem Mikroheiztisch nach Boetius bestimmt und sind korrigiert. Die IR-Spektren wurden mit dem Spektralphotometer UR 20 des VEB Carl Zeiss Jena angefertigt. Die 'H-NMR-Spektren wurden in CDCl, mit einem Gerät HA 100 der Firma Varian aufgenommen. Die chemischen Verschiebungen beziehen sich auf Tetramethylsilan als innerem Standard.

Keten-S,S-acetale 3

0.05 Mol des Aroyl- bzw. Hetaroylacetonitrils 1 werden in 100 ml abs Dimethylsulfoxid gelost. Unter Rühren und mässiger ausserer Kühlung mit kaltem Wasser werden zunächst 0.05 Mol Schwefelkohlenstoff hinzugefühl und dann in kleinen Portionen 0.1 Mol Natriumhydrid. Die gesamte Reaktion wird unter einer Inertgasatmosphäre durchgeführt. Zur Vervollständigung der Reaktion wird noch 1-2 h bei Raumtemp. gerührt. Nachdem 0.05 Mol Methyljodid langsam unter Kühlung zugetropft wurden, wird weitere 30 Min. bei Raumtemp. gerührt. Sodann erfolgt unter Kühlung die tropfenweise Zugabe von 0.05 Mol des Chloracetonitrils, Bromessigsäuremethylesters, Bromacetons, Phenacylbromids bzw. p-Nitrobenzylchlorids. Feststoffe werden zuvor in 30 ml Dimethylsulfoxid gelöst. Anschliessend wird 2 h bei Raumtemp. weiter gerührt, über Nacht stehengelassen und danach in Eiswasser eingegossen.

Feststoffe werden abgesaugt und vorsichtig umkristallisiert. 3a fällt als Öl an und wird durch mehrmaliges Kochen mit Äthanol/A-Kohle zur Kristallisation gebracht. Von Ölen und Schmieren wird das Wasser möglichst vollständig abdekantiert. Sie werden ohne Reinigung weiter umgesetzt.

Keten-S.S-acetale 5

Die Darstellung erfolgt analog zu den Keten-S,S-acetalen 3. Anstelle des Methyljodids werden sofort 0.1 Mol Chloracetonitril, Bromessigsäuremethylester, Bromaceton, p-Bromphenacylbromid bzw. p-Nitrobenzylchlorid zugetropft Von den gebildeten Keten-S,S-acetalen liess sich nur die Verbindung 50 (R' = C_nH_1 , Y = p-NO₂- C_nH_2) in reiner Form isolieren.

- 2 Benzoyl 3,3 bis p nitrobenzylmercapto acrylnitril 50: F. 141-143°C (Athanol). Ausb. 36%. C₂₄H₁₇N₁O,S₂ (491.6) Ber. C. 58.64; H. 3 49; N, 8.55; Gef. C. 58.53; H, 3.55; N, 8.33 IR (Nujol): CN 2215, CO 1650 cm⁻¹.
- 2 Methylmercapto · 3 cyan · 5 thiophencarbonitrile 48-g
 Die als Rohprodukte anfallenden Keten-S,S-acetale 3, die aus
 den Aroyl- bzw. Hetaroylacetonitrilen 1, Schwefelkohlenstoff,
 Methyljodid und Chloracetonitril entstehen, werden in einer

Raumtemp, abgekühlt und mit 2 ml einer 0.5 n Natriummethylat-Lösung versetzt. Es entsteht sofort ein Niederschlag, der abgesaugt und umkristallisiert wird. Im Falle der Verbindung 4n erfolgt die Bildung des Niederschlags erst nach längerem Stehen.

2 - Methylmercapto - 3 - cyan - 5 - acetylthiophene 40-u

Die unter Verwendung von Methyljodid und Bromaceton erhältlichen Keten-S,S-acetale 3 werden unter Erwärmen in einer minimalen Menge Äthanol oder Methanol gelöst. Dann wird 1 ml einer 0.5 n Natriumäthylat- oder Natriummethylat-Lösung hinzugefügt, der gebildete Niederschlag abgesaugt und umkristalisiert. Die als Rohprodukte eingesetzten Keten-S,S-acetale 30-u enthalten bereits einen hohen Prozentsatz an cyclischem Produkt 4.

- 2 Methylmercapto 3 cyan 4 phenyl 5 benzoylthiophen 4v. F. 143-144°C (Methanol). Ausb. 37% C₁₀H₁₁NOS₂ (335.5) Ber. C, 68.02. H, 3.90. N, 4.17. Gef. C, 68.59; H, 3.75; N, 4.17. IR (Nujol): CN 2220; CO 1638 cm⁻¹.
- 2 Methylmercapto 3 cyan 4 phenyl 5 (p nitrophenyl) thiophen 4w. F. 184–186°C (Aceton). Ausb. 36%. $C_{18}H_{12}N_2O_2S_2$ (352.4) Ber. C, 61.35; H, 3.44; N, 7.95; Gef. C, 60.65; H, 3.33; N, 7.57. IR (Nujol): CN 2225 cm 1 .

2 - Alkylmercapto - 4 - aryl - 3 - cyan - 5 - subst. - thiophene 6

Die Keten-S.S-acetale 5 werden ohne weitere Reinigung in einer minimalen Menge Methanol gelöst und mit 5-10 ml einer 0.5 n methanolischen Natriummethylat-Lösung versetzt. Die Thiophene werden abgesaugt und umkristallisiert. 6a, d, k und n entstehen direkt, ohne dass es gelang, das entsprechende Keten-S,S-acetal 5 zu isolieren.

Thieno (2,3-b) thiophene 7

Die isolierbaren Thiophene 6 werden in Methanol bzw. Aceton gelöst, mit 5 ml einer 0.5 n Natriummethylat-Lösung versetzt und kurz zum Sieden erhitzt. Die Thieno(2,3-b]thiophene beginnen sofort oder nach einigem Stehen auszukristallisieren. Sie werden abgesaugt und umkristallisiert

2 - Anilino - 4 - phenyl - 5 - subst. - 3 - thiophencarbonitrile 9 0.05 Mol Benzoylacetonitril werden in 50 ml abs. Dimethylformamid (DMF) gelöst. Die auf Of gekuhlte Lösung wird unter Rühren portionsweise mit 0.05 Mol Natriumhydrid versetzt. Ohne weitere Kühlung tropft man langsam 0.05 Mol Phenylsenföl zu. Dabei sollte die Temperatur 25°C nicht übersteigen. Dann wird noch 1 h bei Raumtemp. gerührt, und im Anschluss daran werden 0.05 Mol Bromaceton, Phenacylbromid bzw. p-Nitrobenzylchlorid zugetropft. Feste Substanzen werden vorher in 15 ml DMF gelöst. Es wird noch 2 h gerührt und über Nacht stehengelassen. Die Losung wird in Eiswasser eingegossen und der entstandene Niederschlag abgesaugt. Ihre methanolischen Lösungen bzw. Suspensionen versetzt man mit 10 ml einer 0.5 n Natriummethylat-Losung, Man lasst 30 Min. stehen und saugt ab.

3 - Anilino - 2 - benzoyl - 3 - (āthoxycarbonylmethylmercapto) - acrylnitril (8f)

(A) Die Umsetzung erfolgt zunächst entsprechend der allgemeinen Arbeitsvorschrift für die Thiophene 9. Nach dem Zutropfen von 0.05 Mol Bromessigsäureäthylester wird weitere 2 h gerührt und über Nacht stehengelassen. Eingiessen des Reaktionsgemisches in Eiswasser liefert einen Feststoff, der umkristallisiert wird. F. 106–107°C (Āthanol), Ausb. 58%. C₂₀H₁₈N₂O₂S (366.4) Ber. C, 65.56; H, 4.95; N, 7.64; Gef. C, 65.77; H, 5.16; N, 7.50. IR (Nujol): CN 2200; CO 1740, 1600 cm '. IR (CHCl₃): NH 3230–2720 cm⁻¹. 'H-NMR δ[ppm]): CH, 1.12(t), CH₂ 4.08(q), SCH₂ 3.56(s), C₆H₁ 7.36(m), 7.81(m), NH 13.86(breit).

(B) 0.01 Mol Anilino (thiocarbonyl)benzoylacetonitril (12) werden in 20 ml Acetonitril gelöst und unter Rühren nacheinander mit 0.01 Mol Triäthylamin und 0.01 Mol Bromessigsäureathylester versetzt. Es wurde noch 2 h gerührt und dann 12 h stehengelassen. Nach Verdampfen des Acetonitrils wurde der Rückstand aus Äthanol umkristallisiert. Ausb. 55%.

(4 - Oxo - 3 - phenylthiazolidin · 2 - yliden)benzoylacetonitril (10)
(A) 0.005 Mol 3 - Anilino - 2 - henzoyl - 3 - (āthoxycarbonylmethylmercapto) - acrylnitril (81) werden in 40 ml

Äthanol gelöst und mit 5 ml einer 0.5 n Natriumathylat-Lösung versetzt. Der gebildete Niederschlag wird abgesaugt. F. ab 214°C Zers. (Aceton). Ausb. 57%. C₁₈H₁₂N₂O₂S (320.4) Ber. C. 67.48; H, 3.78; N, 8.74; Gef. C. 67.38; H, 3.63; N, 8.43. IR (Nujol): CN 2210: CO 1735, 1630 cm *.

(B) Die Umsetzung erfolgt analog der allgemeinen Arbeitsvorschrift für die Thiophene 9. Anstelle des Halogenketons werden 0.05 Mol Chloracetylchlorid in 15 ml DMF bei -5°C unter Rühren zugetropft. Nach 4h wird die gebildete Suspension in Eiswasser eingegossen, der Feststoff abgesaugt und aus Aceton umkristallisiert. Aush. 50%.

LITERATUR

- W.-D. Rudorf und M. Augustin, D.P. (DDR) 119041.
- ²R. Gompper, E. Kutter und W. Tüpfl, Liebigs Ann. Chem. 659, 90 (1962).
- T. Liljefos und J. Sandström, Acta Chem. Scand. 24, 3109 (1970).
- ⁴R. Laliberté und G. Medawar, Can. J. Chem. 49, 1372 (1971).
- 'G. Barnikow und H. Niclas, Z. Chem. 6, 417 (1966).