Scientific Report

Team name: ExampleTeam

Group Members

Linus Schlumberger
Lukas Stöckli
Yutaro Sigrist

Table of content

- Scientific Report
 - Group Members
- · Literature review
 - test 1
 - test 2
 - test 3
 - test 4
- Data collection
- Data processing
- Methods
- Model Validation
- · Machine Learning Operations (MLOps)

Literature review

test 1

test 2

test 3

test 4

Follows...

Requirements (2-3 pages with a minimum of 7 sources):

- 1. **Foundation of Knowledge:** A literature review establishes the theoretical foundation and current state of research in the field. By requiring a minimum number of sources, students are encouraged to engage deeply with existing literature, ensuring a comprehensive understanding of the subject.
- 2. **Critical Thinking and Contextualization:** Analyzing and synthesizing various sources enhances critical thinking skills. It allows students to understand different perspectives and place their work

Data collection

Follows...

No Requirements, it is good to show what we did to achieve our goal with data. Maybe also ask Umberto if we should include it.

Data processing

Follows...

Requirements:

- 1. **Core Competency in Data Science:** Data processing is a fundamental step in any data science project. Demonstrating this process shows the student's ability to handle and prepare data for analysis, which is a critical skill in the field.
- Transparency and Reproducibility: Detailing the data processing steps ensures transparency and aids in the reproducibility of the results, which are key aspects of scientific research.

Methods

Follows...

Requirements:

- 1. **Understanding and Application:** This section allows students to demonstrate their understanding of various methodologies and their ability to apply appropriate techniques to their specific project.
- Rationale and Justification: Discussing the methods used provides insight into the student's decision-making process and the rationale behind choosing specific approaches.

Model Validation

Fol	lows

Requirements:

- Ensuring Model Reliability: Model validation is crucial for assessing the accuracy and reliability of the model. This section shows how the student evaluates the performance and generalizability of their model.
- Critical Evaluation: It encourages students to critically evaluate their model's performance, understand its limitations, and discuss potential improvements.

Machine Learning Operations (MLOps)

Fol	lows

Requirements:

- 1. Practical Application: This section emphasizes the practical aspect of machine learning. It's not just about building models but also about deploying them effectively in real-world scenarios.
- 2. Bridging Theory and Practice: It allows students to demonstrate their ability to translate theoretical knowledge into practical applications, showcasing their readiness for industry challenges.