COMP4431 Artificial Intelligence Heuristic Search

Raymond Pang
Department of Computing
The Hong Kong Polytechnic University

Agenda

- Rational agent
- Search agent
 - Uninformed search and informed search
 - A* search
 - Heuristics
 - Domination of heuristic functions
- Technological trends of agent

Agenda

- Rational agent
- Search agent
 - Uninformed search and informed search
 - A* search
 - Heuristics
 - Domination of heuristic functions
- Technological trends of agent

Agent

- Agents in artificial intelligence
 - Agents denotes artificial entities that are capable of perceiving their surroundings using sensors, making decisions, and then taking actions in response using actuators
- Example
 - Vacuum-Cleaner
- How to perceives the environment
 - which room, clean or dirty
- How to make the decision
 - move right or left, suck the dust
- How to make the action

Environment

Rational Agent

Agent

☐ An agent is an entity that perceives and act with the environment

Rational Agent

- Agent that does the right thing!
- Acts to achieve the best outcome
- Different environment can have different agent to adopt it
- ☐ For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

Rational Agent

- Characteristics of rational agent
 - Distinct from omniscience
 - An agent is autonomous if its behavior is determined by its own experience
 - Agents can perform actions in order to modify future percepts so as to obtain useful information

A real-life rational agent analogy

Agent Type	Performance Measure	Environment	Actuators	Sensors
Taxi driver	Safe, fast, legal, comfortable trip, maximize profits, minimize impact on other road users	Roads, other traffic, police, pedestrians, customers, weather	Steering, accelerator, brake, signal, horn, display, speech	Cameras, radar, speedometer, GPS, engine sensors, accelerometer, microphones, touchscreen

Agenda

- Rational agent
- Search agent
 - Uninformed search and informed search
 - A* search
 - Heuristics
 - Domination of heuristic functions
- Technological trends of agent

Scenario

- Students visit scientific park
 - Use intelligent information system to aid arrangement
- Real world problem
 - Students are in building A
 - Students want to go to building G
 - Find a path from building A to building G
 - Find a shortest path from building A to building G
 - □ Find a shortest path from any building to another building

Represent the Map using Graph

- Abstract the map to the graph
 - Ignore the detailed information
- Node
 - Location of the building
- Edge
 - □ The path connecting two buildings
- Value
 - □ The time walking from one building to another

Solve the Problem using Rational Agent

- How to perceive the environment
 - Which kind of information should be collected?
 - Which kind of information could be collected?
 - □ Which kind of information should be kept?
 - □ Which kind of information could be kept?
- How to make the action
 - Which kind of action could be taken?
 - Which kind of action should be made?
- How to optimize the performance?
 - Could we find the solution?
 - Could we find the optimal solution?
- How to make the decision
 - Check the target
 - Check the cost

Problem Formulation

- Perception
 - □ State: In(B)
 - Initial state: In(A)Goal state: In(G)
- Action

 - Decision result Go(B)Solution: {Go(B),Go(F),Go(G)}
- Transition model
 - Action leads to the state transtition
 - \square Result (In(A), Go(B)) = In(B)
- Cost

 - If optimize the performance
 c(In(A), {Go(B)}, In(B)) = 10
 The sum of the costs of the individual actions along the path
 c(In(A), {Go(B), Go(F)}, In(F)) = 10 + 8 =

Any Existing Methods to Model the Problem

- Solution
 - An action sequence
- Search algorithm
 - Considering various possible action sequences
- Search tree
 - Nodes: states in the state space
 - Root: initial state
 - Branches: actions
- Expanding the current state
 - Apply each legal action to the current state, thereby generating a new set of states
 - Add branches from the parent node leading to child nodes
- Essence of search
 - □ Following up one option now and putting the others aside for later
 - In case the first choice does not lead to a solution

Breadth-first Search

- Expand the shallowest unexpanded node
 - Cost = 10+14+20=44

Depth-first Search

- Expand the deepest unexpanded node
 - □ Cost = 10+7+8+20=45

The Search Tree

- Observe the search tree which represent the state space
 - i.e. all possible states to reach our goal
- if the problem is large, the search tree can even larger!!!
- Search will take more time.
- Search strategy is important!

Uninformed Search and Informed Search

Uninformed search

□ The strategies have no additional information about states beyond that provided in the problem definition

Informed search

- The strategies know whether one non-goal node is "more promising" than another
- □ Heuristic information represents the relative suitability of a solution among its peers based on the intuition, experience or common sense

A* Search

- Evaluation function: f(n) = g(n) + h(n).
 - □ g(n): the cost so far to reach the node n
 - □ h(n): the estimated cost to goal from the node n
 - f(n): the estimated total cost of path through the node n to goal

Heuristics

- Heuristics
 - A problem-solving method
 - Uses shortcuts to produce good-enough solutions given a limited time
 - Solution may not necessarily be optimal solution
- Heuristic function in search algorithms
 - □ A function that ranks alternatives based on available information
- An admissible heuristic never overestimates the cost to reach the goal
 - □ A heuristic h(n) is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n

Domination of Heuristic Functions

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
 - □ then h₂ dominates h₁, which indicates that h₂ is better for search
- Domination translates directly into efficiency
 - A* using h₂ will never expand more nodes than A* using h₁
- $h_2(S)$ and $h_1(S)$ for all both admissible
 - $h_1(S) = 8$
 - $h_2(S) = 18$
- A* using h₂ will never expand more nodes than
 A* using h₁
 - \triangle A*(h₁) =39,135 nodes
 - \triangle A*(h₂) =1,641 nodes

Search Strategy

- Search strategy
 - □ Pick the order of node expansion
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- Uninformed search algorithms
 - Breadth-first search
 - Depth-first search
- Informed search algorithms
 - A* search

8-puzzle

- Apart from path finding problem, searching can apply to other problem, e.g. 8-puzzle/slidingtile puzzle
- The empty space can only move in four directions viz.,
 - ☐ 1. Up
 - 2.Down
 - 3. Right or
 - 4. Left

1	2	3
4	5	6
7	8	

8-puzzle

 We can use the search strategy discussed before, e.g. BFS, A*

Issues of Heuristic Search

- Heuristics may not always produce the optimum choice
 - Some times it may lead you to local minimum
 - (2nd or 3rd best solution)

Issues of Heuristic Search

- The definition of a heuristic function h(n) can cause the issue
 - Since it is simply an estimation
- If the straight line distance of B->G is 10, it will be attracted to expend node B instead of E

Agenda

- Rational agent
- Search agent
 - Uninformed search and informed search
 - A* search
 - Heuristics
 - Domination of heuristic functions
- Technological trends of agent

Technological Trends in Agent Research

- The evolution of AI agents has undergone several stages
 - Symbolic agent stage: symbolic agent approaches employ logical rules and symbolic representations to encapsulate knowledge and facilitate reasoning processes.
 - A classic example of this approach is knowledge-based expert systems.

Minsky M. Society of mind[M]. Simon and Schuster, 1988.

Technological Trends in Agent Research

- The evolution of AI agents has undergone several stages
 - Reinforcement learning-based agent stage: reinforcement learning-based agents utilize reinforcement learning methods to train agents to learn through interactions with their environments, enabling them to achieve maximum cumulative rewards in specific tasks.

- The agent-environment interaction in reinforcement learning
 - An agent (decision maker) takes the action A_t in the given state s_t and receives the reward R_t .
 - After the reward is received, the agent update their parameters such that the total maximizing discounted expected reward.

Technological Trends in Agent Research

- The evolution of AI agents has undergone several stages
 - □ Large language model-based agent stage: employ large language model as the primary component of brain or controller of agents.
 - LLMs can exhibit reasoning and planning abilities comparable to symbolic agents
 - LLMs can acquire interactive capabilities with the environment, by learning with feedback
 - LLMs undergo pre-training and demonstrate the capacity for few- and zero-shot generalization

Several key components in LLM

- Memory: The primary function of the memory system is to preserve and regulate knowledge, experiential data, and historical information.
- Planning: The planning capability defines an LLM-based agent's ability to devise action sequences based on set objectives and existing environment constraints, ensuring goal fulfillment.
- Tool use: encompassing APIs, calculators, code interpreters, or actions within a physical environment through text-based directives.

https://lilianweng.github.io/posts/2023-06-23-agent/

Coze

- Coze is a one-stop AI chat bot development platform.
 Regardless of your programming skills,
- Coze allows you to swiftly create a wide range of chat bots powered by AI, capable of handling everything from simple questions to complex conversations.
- Coze facilitates and simplifies the process of AI bots development
 - Knowledge
 - Coze supports adding data from local files in the format of TXT, PDF, DOCX, Excel, and CXV, or obtaining online content and API JSON data via the specified URL.
 - Workflow
 - Coze empowers users to process intricate task flows with a set of workflow nodes such as LLMs, codes, and conditions. Regardless of your coding expertise, its intuitive drag-and-drop interface facilitates workflow creation
 - Plugins
 - Coze provides an extensive collection of plugins, enhances bot's functionality in areas such as information retrieval, travel assistance, productivity, image comprehension, and so on.

Quiz Arrangement

- Quiz is open book and notes
- Use of mobile phone, Internet and other electronic devices are NOT ALLOWED!!
- Quiz will be held at the end of the lecture session
- Quiz time is 12 mins
- Lecture will end at 7:50pm, Quiz starts at 8:00pm

Summary

- Search agent
- Heuristic Search
- A* Search
- NO Classes and labs on next week!
 - ☐ Be cancelled due to the Chinese New Year public holiday
- Quiz 1 after holiday!
- Happy Chinese New Year