ECE408/CS483/CSE408 Fall 2021

Applied Parallel Programming

Lecture 9: Tiled Convolution Analysis

Course Reminders

- We are still grading Labs 2 and 3
- Lab 4 out, it is due this week
- Midterm 1 is on Thursday, October 7th
 - On-line, everybody will be taking it at the same time
 - Thursday, Oct. 7th 8:00pm-9:20pm US Central time
 - Friday, Oct. 9th 9:00am-10:20am Beijing time
 - Includes materials from Lecture 1 through Lecture 10
- Project Milestone 1: Rai Installation and baseline CPU implementation is due Friday October 15th
 - Project details to be posted next week on course wiki

Objective

To learn more about the analysis of tiled convolution/stencil algorithms

Stencil Algorithms

- Numerical data processing algorithms which update array elements according to some fixed pattern, called a stencil
 - Convolution is just one such example

2D convolutional kernel (9-point 2D stencil)

Nearest neighbor lattice Dirac operator (5-point 2D stencil)

Finite difference stencil for 3D explicit time-marching (13-point 3D stencil)

The Wilson-Dslash operator (4D stencil)

Review: Three Tiling Strategies

- Strategy 1
- 1. Block size covers **output** tile
- 2. Use multiple steps to load input tile

Strategy 3

- 1. Block size covers **output** tile
- 2. Load only "core" of input tile
- 3. Access halo cells from global memory

Strategy 2

- 1. Block size covers **input** tile
- 2. Load input tile in one step
- 3. Turn off some threads when calculating output

A Small 1D Convolution Example

- output and input tiles for block 1
- For MASK_WIDTH of 5, each block loads
 8 + (5 1) = 12 elements (12 memory loads)

Each Output Uses MASK_WIDTH Inputs

TILE_WIDTH is 8

- P[8] uses N[6], N[7], N[8], N[9], N[10]
- P[9] uses N[7], N[8], N[9], N[10], N[11]
- •
- P[15] uses N[13], N[14], N[15], N[16], N[17]

Total of 8 * 5 values from tile used for the output.

A simple way to calculate tiling benefit

- 8+(5-1) = 12 unique elements of input array N loaded
- 8*5 global memory accesses potentially replaced by shared memory accesses
- This gives a bandwidth reduction of 40/12=3.3
- This is independent of the size of N

In General, for 1D convolution kernels

- Load (TILE_WIDTH + MASK_WIDTH 1) elements from global memory to shared memory
- Replace (TILE_WIDTH * MASK_WIDTH) global memory accesses with shared memory accesses
- This leads to bandwidth reduction of

(TILE_SIZE * MASK_WIDTH) / (TILE_SIZE + MASK_WIDTH - 1)

Another Way to Look at Reuse

- tile[6] is used by P[8] (1x)
- tile[7] is used by P[8], P[9] (2×)
- tile[8] is used by P[8], P[9], P[10] (3×)
- tile[9] is used by P[8], P[9], P[10], P[11] (4x)
- tile[10] is used by P[8], P[9], P[10], P[11], P[12] (5×)
- ... (5×)
- tile[14] is uses by P[12], P[13], P[14], P[15] (4×)
- tile[15] is used by P[13], P[14], P[15] (3×)
- tile[16] is used by P[14], P[15] (2×)
- tile[17] is used by P[15] (1×)

Another Way to Look at Reuse

- Each access tile replaces an access to input N
- The total number of global memory accesses (to the (8+5-1)=12 input elements) replaced by shared memory accesses is

$$1 + 2 + 3 + 4 + 5 * (8-5+1) + 4 + 3 + 2 + 1$$

= $10 + 20 + 10$
= 40

• There are 12 elements of input N, so the average reduction is

$$40/12 = 3.3$$

What about Boundary Tiles?

- P[0] uses N[0], N[1], N[2]
- P[1] uses N[0], N[1], N[2], N[3]
- P[2] uses N[0], N[1], N[2], N[3], N[4]

Less than 8 * 5 elements of N are used for the output tile

Ghost elements change ratios

- For a boundary tile, we load
 TILE_WIDTH + (MASK_WIDTH-1)/2 elements
 - 10 in our example of TILE_WIDTH of 8 and MASK_WIDTH of 5

- Computing boundary elements do not access global memory for ghost cells
 - Total accesses is 6*5 + 4 + 3 = 37 accesses
 (when computing the P elements)

The reduction is 37/10 = 3.7

In General for 1D, internal tiles

 The total number of global memory accesses to the (TILE_WIDTH+Mask_Width-1) elements of input N replaced by shared memory accesses is

```
1 + 2 + ... + Mask_Width-1+ Mask_Width * (TILE_WIDTH -Mask_Width+1) + Mask_Width-1+... + 2 + 1
= ((Mask_Width-1) *Mask_Width)/2+ Mask_Width*(TILE_WIDTH-Mask_Width+1) + ((Mask_Width-1)
*Mask_Width)/2
= (Mask_Width-1)*Mask_Width+ Mask_Width*(TILE_WIDTH-Mask_Width+1)
= Mask_Width*TILE_WIDTH
```

Bandwidth Reduction for 1D

The reduction is

(TILE_SIZE * MASK_WIDTH) / (TILE_SIZE + MASK_WIDTH - 1)

TILE_WIDTH	16	32	64	128	256
Reduction MASK_WIDTH = 5	4.0	4.4	4.7	4.9	4.9
Reduction MASK_WIDTH = 9	6.0	7.2	8.0	8.5	8.7

Review: Parallelization of Tile Load

MASK_WIDTH is 5

Analysis for an 8×8 Output Tile, MASK_WIDTH of 5

- Loading input tile requires (8+5-1)² = 144 reads
- Calculation of each output requires $5^2 = 25$ input elements
- 8×8×25 = 1,600 global memory accesses for computing output tile are converted to shared memory accesses
- Bandwidth reduction of 1,600/144 = 11.1×

In General

- (TILE_WIDTH+MASK_WIDTH-1)² elements need to be loaded from N into shared memory
- The calculation of each P element needs to access MASK_WIDTH² elements of N
- (TILE_WIDTH * MASK_WIDTH)² global memory accesses converted into shared memory accesses
- Bandwidth reduction of (TILE_WIDTH * MASK_WIDTH)² / (TILE_WIDTH + MASK_WIDTH - 1)²

Bandwidth Reduction for 2D Convolution Kernel

The reduction is

(TILE_WIDTH * MASK_WIDTH)² / (TILE_WIDTH + MASK_WIDTH - 1)²

TILE_WIDTH	8	16	32	64
Reduction MASK_WIDTH = 5	11.1	16	19.7	22.1
Reduction MASK_WIDTH= 9	20.3	36	51.8	64

Ghost elements change ratios

2D calculation left for your enjoyment

2B/FLOP for Untiled Convolution

How much global memory per FLOP is in untiled convolution?

- In untiled convolution,
 - each value from N (4B from global memory)
 - is multiplied by a value from M
 (4B from constant cache, 1 FLOP),
 - then added to a running sum (1 FLOP)

That gives 2B / FLOP

Full Use of Compute Requires 13.3× Reuse

- Recall our reuse discussion from matrix multiply:
 - 1,000 GFLOP/s for GPU from ~2010, and
 - 150 GB/s memory bandwidth.
- Dividing memory bandwidth by 2B/FLOP,

$$\frac{150 \text{ GB/s}}{2 \text{ B/FLOP}} = 75 \text{ GFLOP/s} = 7.50\% \text{ of peak.}$$

 Need at least 100/7.50 = 13.3× reuse to make full use of compute resources

In 2020, Need 52.1× Reuse

- In 2020, the GRID K520 offers
 - nearly 5,000 GFLOP/s, but only
 - 192 GB/s memory bandwidth
- Dividing memory bandwidth by 2B/FLOP,

$$\frac{192 \text{ GB/s}}{2 \text{ B/FLOP}} = 96 \text{ GFLOP/s} = 1.92\% \text{ of peak}$$

 Need at least 100/1.92 = 52.1× reuse to make full use of compute resources

Need Really Big Mask to Balance Resources

- Let's make another table: % of peak compute
 - for 1D tiled convolution,
 - with TILE_WIDTH 1024

MASK_WIDTH	2010	2020
5	37%	9.6%
9	67%	17%
15	100%	28%
55	100%	100%

Need Really Big Mask to Balance Resources

- And one more: % of peak compute
 - for 2D tiled convolution,
 - with TILE_WIDTH 32×32

MASK_WIDTH	2010	2020
3	60%	15%
5	100%	37%
7	100%	67%
9	100%	almost 100%

Food for Thought

- Ratios are different for tiles on boundaries
- More importantly,
 - Each thread loads 4B to shared memory
 - 2,048 threads load only 8kB
 - Shared memory is usually 64kB or larger
 - What can one do with the rest?

Improved approach left as homework

(For example, can raise MW=7 from 67% to 81%)

ANY MORE QUESTIONS? READ CHAPTER 7