Workshop 8 - Statistics 1

Dr. Markus Hofmann

Overview

- Generate Summaries and make general statements about the data, and its relationships within the data is the heart of Exploratory Data Analysis
- We generally make assumptions on the entire population but mostly just work with small samples. Why are we allowed to do this???
- Two important definitions:
 - Population: A precise definition of all possible outcomes, measurements or values for which inference will be made about.
 - Sample: A portion of the population which is representative of the population (at least ideally)

Overview

- Parameters: numbers that characterise a population
- Statistics: summaries that characterise a sample which was taken from the population
- A sample should be an unbiased, random sample from the population
- Two statistical methods play an important role throughout the Exploratory Data Analysis stage:
 - Summarising the data: summarising sample data sets and making confident statements about the entire population
 - Characterising the data: Characterise the variables and the relationships between them
 - Making statements about "hidden" facts: Once a group of observations has been identified statistics give us the ability to make confident statements about these groups

Overview

- Numerical scores are called: measurement or scale data.
- Rankings are called: ordinal data
- Categories such as gender are called: nominal data.
- Download and install the R project statistical package
 - http://www.r-project.org/
 - Also on my student share
 - Just copy the folder onto your machine

Descriptive Statistics

• Descriptive statistics describes the variables in a number of ways.

Histogram of iris\$Sepal.Width

• E.g. The histogram of the variable Sepal Width shows a number of approx. descriptive statistics such as mean, median, skewness, distribution, etc...

Descriptive Statistics

- It allows us to calculate specific and precise measures of a variable.
- The following main areas are part of descriptive statistics:
 - Central Tendency Measures
 - Arithmetic Mean, Median, Mode
 - Measures of Variation
 - Range, Quartiles, Variance, Standard Deviation, z-score
 - Measures of Shape
 - Skewness, Kurtosis

Central Tendency and Variability

- Measures of central tendency
 - tell us about the most **typical scores**.
- Measures of variability
 - tell us about how the **scores** are **spread out**.

• Let's have a look at some measures....

Central Tendency - Mean

- Arithmetic Mean is more commonly known as Average
- It is defined by the sum of all values divided by the number of all values:

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

- The mean is commonly defined as x bar (\bar{x}) . n is the number of observations (examples). x_i is the individual value.
- In R: > mean(iris\$Sepal.Width)
 - This results in a single return value representing the mean of the variable Sepal Width within the Iris dataset
- Other Means also exist such as Geometric Mean, Weighted Mean, Harmonic Mean, and Truncated Mean

Central Tendency - Median

- Median is the middle value of a variable once it has been sorted in ascending order (low to high).
- For even number of observations the two middle numbers need to be averaged.
- E.g. 2,2,4,6,7,8,9,9,11,14,16,208 and 9 are the two middle numbers therefore the median is 8.5 ((8+9)/2)
- Median can be calculated on ordinal, interval and ratio scales.
- In particular well suited for variables measured on the ordinal scale
- Unlike the average, the median will not be influenced by extreme values
- In R: > median(iris\$Sepal.Length)

Central Tendency - Mode

- The mode is the most frequent value of a variable
- E.g. 2,2,4,6,7,8,9,9,11,14,16, 20 The mode here is {2,9} as 2 and 9 both occur twice
- Mode provides the only measure for nominal type attributes
- Can also be calculated for ordinal, interval and ratio scales
- Provided by RapidMiner in the Meta Data View (for nominal attributes)
- Note: mode() gives you the storage mode and not the Mode
- In R:
 - my_mode <- table(iris\$Sepal.Width)
 - my_mode
 - my_mode[which(my_mode ==max(my_mode))]

Measures of Variation - Range

- The Range is simply the difference between min and max value of a variable
- In R: > min(iris\$Sepal.Width)
 - > max(iris\$Sepal.Width)
 - > range(iris\$Sepal.Width)
- Range can be used on Ordinal, Ratio and Interval scales

Measure of Variation - Quartile

- Quartiles divide a variable into four even segments based on the number of observations.
- E.g. 100 observations the there will be 4 groups of 25 numbers
- First quartile (Q1) –25% mark
- Second quartile (Q2) 50% mark (equal to median)
- Third quartile (Q3) 75% mark
- Calculated similarly to Median. All values are ordered from low to high. The middle number(s) of the 0% to 50% numbers will become Q1 and the middle number(s) of 50%-100% numbers will become Q3
- Also known as quantiles or percentiles

Measure of Variation - Quartile

- In R:
 - > quantile(iris\$Sepal.Length) 0% 25% 50% 75% 100%
 - 4.3 5.1 5.8 6.4 7.9
- 0% and 100% are equivalent to min max values.
- BoxPlot shows this also
- In R:
- boxplot(iris\$Sepal.Length)

Measure of Variation - Variance

- Variance describes the spread of the data
- It is a measure of deviation of a variable from the arithmetic mean
- For sample data the formula to calculate the variance is

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

- S^2 is the sample variance. x_i is the actual value of example i, x bar is the arithmetic mean and n is the number of examples in the sample set.
- In R: > var(iris\$Sepal.Length)

Measure of Variation – St. Deviation

- The Standard Deviation is the square root of the variance
- This measure is the most widely used to express deviation from the mean in a variable
- The higher the value the more widely distributed are the variable data values around the mean
- Assuming the frequency distributions approximately normal, about 68% of all observations are within +/- 1 standard deviation
- Approximately 95% of all observations fall within two standard deviations of the mean (if data is normally distributed).
- In R: > sd(iris\$Sepal.Length)

Measure of Variation - z-score

- A way to compare two measurements originating from different distributions
 - Is 60% in Web Development a better or worse grade than 60% in Operating Systems?
- Z-Scores can be turned into percentages.
- Distribution needs to be 'normal'

Measure of Variation - z-score

- z-score represents how far from the mean a particular value is based on the number of standard deviations.
- The formula to calculate the z-score is

$$z = \frac{x - \overline{x}}{s}$$

- where x is the data value of x_i , x bar is the arithmetic mean and s is the standard deviation
- z-scores are also known as standardized residuals
- Note: mean and standard deviation are sensitive to outliers
- In R:
 - > x < -((iris Sepal.Width)-mean(iris Sepal.Width))/sd(iris Sepal.Width)
 - > X

Shape of Distribution - Skewness

- Skewness is a method for quantifying the lack of symmetry in the distribution of a variable
- Skewness can be calculated using this formula:

$$skewness = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{(n-1)s^3}$$

Skewness value of zero indicates that the variable is distributed symmetrically. Positive number indicate asymmetry to the left, negative number indicates asymmetry to the right

Negative Skew

Positive Skew

Shape of Distribution - Skewness

- Shape functions are not part of the Basic package in R. The 'moments' package needs to be loaded
- In R: > skewness(iris\$Sepal.Width)
- Skewness: -0.1019342

0.3117531

Shape of Distribution - Kurtosis

- Kurtosis is a measure that gives indication in terms of the peak of the distribution
- The following formula can be used to calculate the kurtosis:

$$kurtosis = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^4}{(n-1)s^4}$$

• Variables with a pronounced peak toward the mean have a high Kurtosis score and variables with a flat peak have a low Kurtosis score.

Shape of Distribution - Kurtosis

Things to know

- The mean is the centre of normal distributions.
- For skewed distributions report both the mean and median.
- For normal distributions the mean, median and mode are equal.
- The mean is unbiased on the average, sample means aren't always too high or too low.
- For non-normal distributions use the **range** and the **median** to summarize the distribution.