Air Quality and Climate Impact of the Charcoal Supply Chain in Africa

^aA.S. Bockarie, ^bE.A. Marais, ^aA.R. MacKenzie, ^aR. M. Harrison

^b Department of Physics and Astronomy, University of Leicester, Leicester, UK

Charcoal production in Africa

By 2100, Africa will have 13 of the world's 20 largest megacities which suggests charcoal production will continue to increase

Charcoal supply chain

Kilns combustion efficiency < 20%

Large source of CO, NMVOCs, OC, CH₄

Production in rural areas

Unregulated and outdated diesel trucks. Source of SO₂

Rural to urban transport

Large source of NO_x and BC

Includes burning of plastic to initiate combustion. Prevalent in slums. Source of HCI

Use in densely populated urban centres

Charcoal production and use are sources of primary aerosols and precursors of secondary aerosols and ozone

Charcoal production and use trends in Africa (2000 - 2014)

YEAR	CHARCOAL PRODUCTION	[Tg]
2014	41.7	
2030	82.7	

[Data source]: United Nations energy statistics database (UN, 2017)

From 2014 to 2030 charcoal production will double in Africa due to urbanization

Developing emission inventory

Emission = Activity Data x Emission Factor

We develop country level emissions of air pollutants from the charcoal supply chain in Africa in 2014

Mapping emission activity locations

Production:

5-15 km from main roads.

Consumption:

Urban extent determined using road network data

Plastic burning limited to slums.

Trucks:

Mapped around urban centres proportional to population

Spatial distribution of pollutants from charcoal production in 2014

Black Carbon Emission [tonnes a-1]

Emission from the charcoal production are highest in East and West Africa

Spatial distribution of pollutants from charcoal use in 2014

Emission of Black Carbon

Black carbon from charcoal use is higher due to higher emission factor

Spatial distribution of pollutants from charcoal transport in 2014

Emission of Black Carbon

Emission from the charcoal transport is least from the supply chain

Contribution of the charcoal activities to pollutant emission

Most of the ozone precursors are emitted during charcoal production whilst most of the directly emitted particles are from charcoal use

Global cycling of tropospheric chlorine

HCl from charcoal use contributes to the chlorine budget of the troposphere and reduces the oxidative capacity of the atmosphere

Chemical transport modelling (CTM)

3D Chemical transport model driven by reanalysis meteorology Grid Resolution: 2° x 2.5° (200 - 250 km)

CTM provides comprehensive representation of the atmosphere

GEOS-Chem baseline surface PM_{2.5} and ozone

 $PM_{2.5}$ is mostly from windblown dust in the north. Major sources of both $PM_{2.5}$ and ozone are open fires in the tropics and coal burning in South Africa

PM_{2.5} and Ozone enhancement in 2014

Surface enhancements are widespread across the tropics and subtropics, with peak, with peak values of 1.3 μg m⁻³ for PM_{2.5} and 0.7 ppbv for ozone respectively.

Concentration response curve

[Source]: Apte et al., 2015

GEOS-Chem top of the atmosphere radiative forcing due aerosols and ozone from the charcoal supply chain

Aerosols exert a net cooling effect on the earth's climate, peaking in East Africa (-0.25 Wm⁻²). Ozone forcing exerts a net warming effect on the earth's climate, peaking also in East Africa (2.7 mW m⁻²)

Conclusions

- Charcoal production is a considerable source of pollution in Africa (24% of open fire emissions in 2014)
- Charcoal enhances the poor air quality in Africa and contributes to warming and cooling of the atmosphere from the emission of aerosols and precursors of aerosol and ozone along its supply chain
- With an annual increase in charcoal production at 7% a⁻¹, it is quite clear that emissions will increase at the same rate in the coming decades and hence the effects on air quality and climate

Future Work

 Assess the population weighted exposure to PM_{2.5} from the charcoal value chain in 2014 and 2030

$$PWE = \sum_{i=1}^{n} pm_i \times pop_i / \sum_{i=1}^{n} pop_i$$

Future Work

Assess sustainability of the forest for charcoal production

$$Time \ Taken = \frac{Total \ mass \ of \ wood(W_T)}{Rate \ of \ wood \ removal \ \left(\frac{\partial W}{\partial t}\right)}$$

 $\frac{\partial W}{\partial t} = slope$ time (yr)

