[확률의 개념과 응용]





# 학습목표

- 1. 이산형 확률변수를 이해할 수 있다.
- 2. 연속형 확률변수를 이해할 수 있다.
- 3. 확률질량함수를 이해할 수 있다.
- 4. 확률밀도함수를 이해할 수 있다.

# 들어가기



## 학습하기

5강 확률분포와 기댓값 1

# 확률변수



# 동전던지기

◆ 동전 2개를 던지는 확<del>률</del>실험

$$S = \{ (H, H), (H, T)$$
  
 $(T, H), (T, T) \}$ 



# 동전던지기

◆ 동전 2개 던지기에 따른 상금(X)의 분포

| X | 0   | 100 | 500 | 합 |
|---|-----|-----|-----|---|
|   | 1/4 | 1/2 | 1/4 | 1 |

#### 1.확률변수

## 확률변수

◆ 확률변수 (random variable) : 확률적 실험에서 실험결과를 숫자로 표현한 함수

◆ 이산형 확률변수와 연속형 확률변수



## 이산형확률변수

- ◆ 이산형 확률변수 : 취할 수 있는 값을 셀 수 있을 때
  - 확률분포는 점 확률에 의해 결정



## 연속형확률변수

◆ 연속형 확률변수 : 취할 수 있는 값을 셀 수 없을 때



#### 1.확률변수

## 연속형 확률변수

- ◆ 연속형 확률변수 : 취할 수 있는 값을 셀 수 없을 때
  - 확률분포는 구간 확률에 의해 결정



# 이산형확률분포

◆ 이산형 확률분포 : 확률변수가 가질 수 있는 값의 점확률인 확률질량함수에 의하여 확률분포 결정

- 균등분포, 이항분포, 초기하분포, 포아송분포



# 연속형확률분포

◆ 연속형 확률분포 : 확률변수 각 값의 점확률이 아니라 구간의 확률에 의하여 확률분포가 결정

- 연속형 균등분포, 지수분포, 정규분포



## 누적분포함수

누적분포함수 F(x): X가 (-∞, x] 에 속할 확률

$$F(x) = P(X \in (-\infty, x]) = P(X \le x)$$



## 누적분포함수의성질

$$x \le y \to F(x) \le F(y)$$

- $\bullet \lim_{x \to -\infty} F(x) = 0$
- $\bullet \lim_{x \to \infty} F(x) = 1$



## 학습하기

5강 확률분포와 기댓값 1

# 이산형 확률분포

## 이산형확률변수

◆ 이산형 확률변수

취할 수 있는 값이 셀 수 있을 때의 확률변수

(예) 동전의 앞면 수, 불량품 수, 페이지 당 오타 수



## 이산형확률분포

• 
$$S = \{x_1, x_2, \dots, x_n\}, P(X = x_i) = p_i$$

| X    | $x_1$ | $x_2$ | <br>$X_i$   | <br>$\mathcal{X}_n$ | 합 |
|------|-------|-------|-------------|---------------------|---|
| P(X) | $p_1$ | $p_2$ | <br>$p_{i}$ | <br>$p_n$           | 1 |



# 확률질량함수

◆ 확률질량함수(probability mass function)

이산형 확률변수의 점확률을 결정지어주는 함수

$$f(x) = P(X = x), \qquad x = x_1, x_2, \dots, x_n$$



# 확률질량함수의성질

$$0 \le f(x) \le 1$$

$$P(X \in A) = \sum_{x \in A} f(x)$$



## 누적분포함수

$$F(x) = P(X \le x) = \sum_{y \le x} f(y)$$

$$f(x) = F(x) - F(x^{-})$$

 $\mathcal{X}_n$ 



## 이산형확률분포의예



두 개의 주사위를 던져서 나오는 눈금의 합의 확률분포를 구하시오.



## 이산형확률분포의예



두 개의 주사위를 던져서 나오는 눈금의 합의 확률분포를 구하시오.



## 확률질량함수의예

예

두 개의 주사위를 던져서 나오는 눈의 합을 X 라고 할 때 다음을 구하시오.

(1) 
$$P(X = 10)$$

| X                 | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10 | 11             | 12             | 합 |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|----------------|----------------|---|
| $P\left(X\right)$ | $\frac{1}{36}$ | $\frac{2}{36}$ | $\frac{3}{36}$ | $\frac{4}{36}$ | $\frac{5}{36}$ | $\frac{6}{36}$ | $\frac{5}{36}$ | $\frac{4}{36}$ | а  | $\frac{2}{36}$ | $\frac{1}{36}$ | 1 |

# 확률질량함수의 예(2)



(2) 
$$P(X = 2$$
 또는  $X = 12$ )

| X                 | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10 | 11             | 12             | 합 |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|----------------|----------------|---|
| $P\left(X\right)$ | $\frac{1}{36}$ | $\frac{2}{36}$ | $\frac{3}{36}$ | <u>4</u><br>36 | $\frac{5}{36}$ | $\frac{6}{36}$ | $\frac{5}{36}$ | <u>4</u><br>36 | а  | $\frac{2}{36}$ | $\frac{1}{36}$ | 1 |

## 확률질량함수의예



(3) 
$$P(X < 7)$$

| X    | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10 | 11             | 12             | 합 |
|------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|----------------|----------------|---|
| P(X) | $\frac{1}{36}$ | $\frac{2}{36}$ | $\frac{3}{36}$ | <u>4</u><br>36 | <u>5</u><br>36 | <u>6</u><br>36 | <u>5</u><br>36 | <u>4</u><br>36 | а  | $\frac{2}{36}$ | $\frac{1}{36}$ | 1 |

# 확률질량함수의예

예

(3) 
$$P(X \ge 7)$$

| X    | 2              | 3              | 4              | 5              | 6              | 7 | 8              | 9 | 10 | 11             | 12             | 합 |
|------|----------------|----------------|----------------|----------------|----------------|---|----------------|---|----|----------------|----------------|---|
| P(X) | $\frac{1}{36}$ | $\frac{2}{36}$ | $\frac{3}{36}$ | <u>4</u><br>36 | <u>5</u><br>36 |   | $\frac{5}{36}$ |   | а  | $\frac{2}{36}$ | $\frac{1}{36}$ | 1 |

## 확률질량함수의예



(4) P(X < 7 또는 X는 짝수)

| X   |   | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10 | 11             | 12             | 합 |
|-----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|----------------|----------------|---|
| P(X | ) | $\frac{1}{36}$ | $\frac{2}{36}$ | $\frac{3}{36}$ | <u>4</u><br>36 | <u>5</u><br>36 | $\frac{6}{36}$ | $\frac{5}{36}$ | <u>4</u><br>36 | а  | $\frac{2}{36}$ | $\frac{1}{36}$ | 1 |

## 학습하기

5강 확률분포와 기댓값 1

# 연속형 확률분포



## 연속형확률변수의정의

◆ 연속형 확률변수

어떤 구간에 속하는 연속적인 값을 가지는 확률변수

- (예) 키, 무게, 사용기간, 주가지수



## 누적분포함수

◆ 확률변수 X가  $(-\infty, x]$ 에 속할 확률로 정의  $F(x) = P(X \le x), -\infty < x < \infty$ 



## 연속형확률분포의예



버스가 정류장에 15분 간격으로 도착

(1) 버스를 기다리는 시간이 10분일 확률은?



## 연속형확률분포의예



버스가 정류장에 15분 간격으로 도착

(2) 버스를 기다리는 시간이 10분보다 짧을 확률은?



## 연속형확률분포의예



버스가 정류장에 15분 간격으로 도착

(3) 버스를 기다리는 시간의 누적분포함수는?



# 확률밀도함수

◆ 확률밀도함수(probability density function): 연속형 확률변수가 구간에 속할 확률을 결정지어 주는 함수



## 누적분포함수

◆ 누적분포함수 F(a): X가 a보다 작을 확률





# 누적분포함수

$$F(x) = \int_{-\infty}^{x} f(t) dt$$



## 누적분포함수의예



X가 0.5이하일 확<del>률은</del>?





### 누적분포함수의예



X가 0.5보다 크고 1.5보다 작을 확률은?





### 누적분포함수의예



X의 누적분포함수는?





### <u>누적분포함수의</u>예



X의 누적분포함수는?





# 확률밀도함수의성질

$$f(x) \ge 0$$

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

$$P(a \le X \le b) = \int_a^b f(x) \, dx$$



## 확률밀도함수의예

$$f(x) = kx^2, \qquad 0 \le x \le 2$$

(1) k 값은?



## 확률밀도함수의예



$$f(x) = kx^2, \qquad 0 \le x \le 2$$

(2) X가 1보다 작은 값을 가질 확률은?



# 확률밀도함수







# 확률밀도함수

• 
$$P(x \le X \le x + h) \approx f(x) \times h$$





### 누적분포함수와확률밀도함수

$$F(x) = \int_{-\infty}^{x} f(t)dt$$



## 확률밀도함수의예

여

X의 누적분포함수가 다음과 같을 때 X의 확률밀도함수는?

$$F(x) = \begin{cases} 0, x < 0 일 때 \\ x^2, 0 \le x \le 1 일 때 \\ 1, x > 1 일 때 \end{cases}$$

# 학습정리

- 확률적 실험에서 실험결과를 수치로 나타낸 것을 확률변 수라고 한다.
- 확률변수가 취할 수 있는 값을 셀 수 있을 때 이를 이산형 확률변수라 하고, 그렇지 않고 연속형일 때 연속형 확률 변수라고 한다.



- 이산형 확률변수의 확률분포는 확률질량함수에 의하여, 연속형 확률변수의 확률분포는 확률밀도함수에 의하여 결정된다.
- 확률질량함수는 0과 1 사이의 값을 가지며, 모든 경우의 합은 1이 된다. 또한 서로 배반적인 값들의 합집합의 확률은 각각의 확률값의 합으로 표현된다.



# 학습정리

• 확률밀도함수는 0을 포함한 양의 값을 가지며, x축과 확률밀도함수로 둘러싸인 부분의 전체 넓이는 1이 된다. 연속형 확률변수가 구간에 속할 확률은 그 구간에서 x 축과 확률밀도함수로 둘러싸인 부분의 넓이이다.



# 수고하셨습니다.

05과 확률분포와 기댓값 1

96 확률분포와'''' 1 2