

Capstone Project - 3 CREDIT CARD DEFAULT PREDICTION

Team Members

Harisha Chennozwala Niharika Soni Satya Prakash

APPROACH OVERVIEW

Exploratory

Introduction	Problem & Objective	Data Acquisition	Data Cleaning	Data Analysis
What is Credit Card Default and the objectives of this project	statement	DatasetWhy this Dataset?Dataset features	 Understand and Clean Finding information on undocumented column values. Clean data to get it ready for analysis. 	 Graphical & Statistical: Exam data with visualizations. Verify findings with statistical test.
Machine Learning Models	Metrics	Models	Feature Importance	Conclusion
 Predictive Modeling Hyperparameter Tuning Model Performance 	ROC_AUC Curves Precision_Recall curve	, ,	 Best model feature importances plot. 	LimitationsFuture workSuggestions

Recommendation

Credit Card Default is a complex phenomenon involving many factors beyond the scope of the present research. The variables which we have examined here capture some key behaviors and provide the issuer a better understanding of current and potential customers, specifically which would inform their strategy in the new market.

PROBLEM DESCRIPTION

This Project is aimed at predicting the case of customers default payments in Taiwan from 2005.

Quantitative analysis on credit default risk To evaluate which customers will default on their credit card payments.

OBJECTIVE

DATA DESCRIPTION

30,000 CLIENTS

23 VARIABLES

- AGE (20-79)
- GENDER
- MARRIAGE
- EDUCATION

- April to September, 2005
- Bill Statements
- Payment Amount
- Repayment Status

DATASET FEATURES

TARGET SKEW

- Class Imbalance
- 22% Defaulters
- Taken into account

DATA CLEANING

- Converting the column names to proper names
- Renaming column PAY_0 to PAY_1 and default.payment.next.month as DEFAULT
- Converting the data type of all the columns to integer.
- There is no missing data in the entire dataset.
- Overall, the dataset is very clean, but there are several undocumented column values. As a result, most of the data wrangling effort was spent on searching information and interpreting the columns.

EXPLORATORY DATA ANALYSIS

What demographic factors impact payment default risk?

CHECKING THE CORRELATION OF DEFAULT VARIABLE WITH OTHER

NUMERIC VARIABLES

PAY_1 to PAY_6 are highly correlated with our dependent variable 'DEFAULT'

Distribution of credit limit amounts. The three largest credit limit amount groups are \$50k, \$20k, and \$30k, respectively.

					_										_									
LIMIT_BAL -	1	0.025	-0.22																					
SEX -	0.025	1	0.014	-0.031																-0.0086				
EDUCATION -	-0.22		1	-0.14	0.18	0.11									-0.00045									
MARRIAGE -	-0.11	-0.031		1	-0.41	0.02						-0.023	-0.022					-0.006	-0.0081	-0.0035		-0.0012	-0.0066	
AGE -	0.14			-0.41	1	-0.039	-0.05	-0.053	-0.05	-0.054	-0.049													
PAY_1	-0.27					1	0.67														-0.064			
PAY_2	-0.3					0.67	1	0.77																
PAY_3	-0.29					0.57	0.77	1	0.78	0.69														
PAY_4	-0.27	-0.06				0.54		0.78	1	0.82	0.72								-0.0019	-0.069	-0.043			
PAY_5 -	-0.25				-0.054			0.69	0.82	0.82	0.82									0.0091		-0.033		
BILL AMT1	0.29	-0.034	0.024		0.056		0.23	0.03	0.72	0.82	0.21	1	0.95	0.89	0.86	0.83	0.8	0.14	0.099	0.0058		0.17		
BILL AMT2	0.28											0.95	1	0.93	0.89	0.86	0.83	0.28						0.014
BILL_AMT3	0.28											0.89	0.93	1	0.92	0.88	0.85	0.24						0.014
BILL AMT4	0.29		-0.00045									0.86	0.89	0.92	1	0.94	0.9	0.23						
BILL AMTS	0.3											0.83	0.86	0.88	0.94	1	0.95	0.22						-0.006
BILL_AMT6 -	0.29				0.048							0.8	0.83	0.85	0.9	0.95	1	0.2						
PAY_AMT1 -	0.2											0.14	0.28	0.24	0.23	0.22	0.2	1						
PAY_AMT2 -	0.18																	0.29	1					-0.059
PAY_AMT3 -	0.21	-0.0086																	0.24	1				-0.05€
PAY_AMT4 -	0.2																			0.22	1			
PAY_AMT5	0.22																			0.16	0.15	1		
PAY_AMT6 -	0.22																					0.15	1	-0.053
DEFAULT -	-0.15																						-0.053	1
	LIMIT_BAL	SEX	EDUCATION	NMARRIAGE	AĞE	PAY_1	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	BILL_AMT1	BILL_AMT2	BILL_AMT	BILL_AMT4	BILL_AMTS	BILL_AMTE	PAY_AMT1	PAY_AMT2	PAY_AMT3	PAY_AMT4	PAY_AMTS	PAY_AMT6	DEFÁUL

GENDER VARIABLE

30% of MALES and

26% of FEMALES have payment default.

EDUCATION VARIABLE

Higher
education
level, lower
default
risk.

1- graduate school, 2 - university, 3 - high school, 4 - Others

Others-4' only consists 1.56% of total customers even if they appear to have the least default.

AGE VARIABLE

30-50: Lowest risk

<30 or >50:
Risk increases

MARITAL STATUS VARIABLE

There is no significant correlations of default risk and marital status.

CREDIT LIMIT VARIABLE

Higher credit limits,

Lower default risk.

EDA SUMMARY:

Demographic factors that impact default risk are:

- 1. Education: Higher education is associated with lower default risk.
- 2. Age: Customers aged 30-50 have the lowest default risk.
- 3. Sex: Females have lower default risk than males in this dataset.
- **4. Marriage**: There appears to be no correlation between default payment and marital status.
- 5. Credit limit: Higher credit limit is associated with lower default risk.

PREDICTIVE MODELING

What precision and recall scores can the models achieve?

MODELING OVERVIEW:

Supervised learning/ **DEFINE PROBLEM** binary classification **IMBALANCED** 78% non-default vs 22% default. **CLASSES** 3 Scikit learn Library and imblearn **TOOLS USED Logistic Regression** 4 **MODELS APPLIED Random Forest XGBoost**

MODELING STEPS:

Data Preprocessing

Fitting and Tuning

Model Evaluation

- Feature selection
- Feature engineering
- Train-test data splitting (70%/30%)
- Training data rescaling
- SMOTE oversampling

- Start with default model parameters
- Hyperparameters tuning
- Measure ROC_AUC on training data.

- Models testing
- Precision-Recall score
- Compare with sklearn dummy classifier.
- Compare with the three models.

CORRECT IMBALANCED CLASSES

- Fit every model without and with SMOTE oversampling for comparison.
- Training AUC scores improved significantly with SMOTE.

MODELS	AUC without SMOTE	AUC with SMOTE
Logistic Regression	0.725	0.797
Random Forest	0.765	0.920
XGBoost	0.781	0.860

HYPERPARAMETERS TUNING

- K-fold Cross Validation to get average performance on the folds.
- Randomised Search on Logistic Regression since C has large search space.
- **Grid Search** on Random Forest on limited parameters combinations.
- Randomised Search on XGBoost because multiple hyperparameters to tune.

MODEL COMPARISONS

- Compare the models to Scikit-learn's dummy classifier.
- All models performed better than dummy model.

Models	Precision	Recall	F1 Score	Conclusion
Dummy Model	0.216	0.482	0.298	Benchmark
Logistic Regression	0.387	0.567	0.460	Best Recall
Random Forest	0.496	0.555	0.524	Best F1
XGBOOST	0.496	0.530	0.513	

MODEL COMPARISONS

- Compare within 3 models.
- Random Forest(black line) has the best precision_recall score.

Terminology:

- ★ Recall: How many 1s are being defined?
- ★ Precision: Among all the 1s that are flagged, how many are truly 1s?
- ★ Precision and recall trade-off: high recall will cause low precision.

MODEL USAGE-RECOMMENDATION

Recall = 0.8. Threshold can be adjusted to reach higher recall.

FEATURE IMPORTANCES

Best model Random Forest feature importances plot.

PAY_1: most recent months payment status.

PAY_2: the month prior to current month's payment status.

BILL_AMT1: most recent month's bill amount. **LIMIT_BAL:** credit limit

LIMITATIONS & FUTURE WORK

LIMITATIONS

- Best model Random
 Forest can only detect
 51% of default.
- Model can only be served as an aid in decision making instead of replacing human decision.

FUTURE WORK

- Models are not exhaustive. Other models could perform better.
- Get more computational resources to tune
 XGBoost parameters.
- Incorporate datasets from different countries.

CONCLUSION

- Recent 2 payment status and credit limit are the strongest default predictors.
- Dormant customers can also have default risk.
- Random Forest has the best precision and recall balance.
- Higher recall can be achieved if low precision is acceptable.
- Model can be served as an aid to human decision.
- Suggest output probabilities rather than predictions.
- Model can be improved with more data and computational resources.

THANK YOU