EHB 211E Basics of Electrical Circuits

Asst. Prof. Onur Kurt

Basic Laws

Introduction

- Fundamental laws:
 - Ohm's law
 - Kirchhoff's law: Kirchhoff's voltage law & Kirchhoff's current law
- Techniques applied in circuit design and analysis:
 - Combining resistors in series or parallel
 - Voltage division & current division
 - Delta-to-wye and wye-to-delta transformation

- What is resistance?
- Materials in general have a characteristic behavior of resisting the flow of electric charge. This physical property, or ability to resist current, is known as resistance.
- Resistance is represented by R, measure in ohms (Ω)
- Resistance in mathematical form:

$$R=oldsymbol{
ho}rac{\ell}{A}$$
 p

 ρ is resistivity ($\Omega\text{-m}$), I is the length (m), and A is cross-sectional area (m²)

- □ Resistance: ability to resist current
- □ Resistor: passive circuit element that create resistance

• Resistivity, ρ, is material dependent properties.

• Conductor: low resistivity

• Insulator: high resistivity

Resistivities of common materials.		
Material	Resistivity (Ω•m)	Usage
Silver	1.64×10^{-8}	Conductor
Copper	1.72×10^{-8}	Conductor
Aluminum	2.8×10^{-8}	Conductor
Gold	2.45×10^{-8}	Conductor
Carbon	4×10^{-5}	Semiconductor
Germanium	47×10^{-2}	Semiconductor
Silicon	6.4×10^{2}	Semiconductor
Paper	10^{10}	Insulator
Mica	5×10^{11}	Insulator
Glass	10^{12}	Insulator
Teflon	3×10^{12}	Insulator

- What is Ohm's law?
 - \Box Ohm's law states that the voltage v across a resistor is directly proportional to the current if flowing through the resistor, i.e., $v \propto i$
 - By definition:

$$v = i R$$

Relation between voltage and current for a resistor

$$R = \frac{v}{i} \longrightarrow \Omega = \frac{V}{A}$$

• Two extreme possible values of resistance R:

Short circuit: R approaches zero

$$v = i R = 0$$

Open circuit: R approaches infinity

$$i = \lim_{R \to \infty} \frac{V}{R} = 0$$

Resistors

• Two kinds of resistors: Fixed or variable

Fixed resistors

Circuit symbol of fixed resistor

Variable resistors

Circuit symbol of variable resistor

Resistors in an integrated circuit board

Eric Tormey/Alamy

Not all resistors obey Ohm's law

Linear resistance: Obey Ohm's law

Nonlinear resistance: Does not Obey Ohm's law

- It has a constant resistance (slope)
- Its i-v graph is a straight line passing through the origin

- Its resistance (slope) varies with current
- Example: Light bulb, diode

Conductance

What is conductance?

- □ The ability of an element to conduct electric current or reciprocal of resistance R
- ם It is denoted by G, and measured in mho(ט) or siemens (S)

$$G = \frac{1}{R} = \frac{i}{v}$$
 $i = Gv$

$$1 S = 1 \mho = 1 \frac{A}{V}$$

Power dissipated by the resistor (in terms of R):

or (in terms of R): Power dissipated by the resistor (in terms of G)

$$p = vi = i^2 R = \frac{v^2}{R}$$

$$p = vi = v^2G = \frac{i^2}{G}$$

- The power dissipated in a resistor is a nonlinear function of either current or voltage
- Since R and G are both positive, the power dissipated is a resistor is positive. Resistor always absorbs power from the circuit. Resistor is passive element (incapable of generating power)

Example 1:

 In the circuit shown below, calculate the current i, the conductance G, and the power p.

Solution:

- To calculate the current i, we need to use Ohm's law, i.e., v=iR
- Voltage across the resistor is same as the source voltage (30 V) since the source and resistor are connected to the same pair of terminals. Therefore, the current is:

$$v = iR \longrightarrow i = \frac{v}{R} \longrightarrow i = \frac{30}{5k} = 6mA$$

- The conductance G is: $G = \frac{1}{R} = \frac{1}{5k} = 0.2 \text{ mS}$
- The power p is: $p = vi = i^2 R = \frac{v^2}{R}$ or $p = vi = v^2 G = \frac{i^2}{G}$ $p = vi = 30 \times 6 \times 10^{-3} = 180 \ mW$

Nodes-Branches-Loops

- Basic concepts of network topology: Nodes, Branches, and Loops.
- What is a branch?
 - □ A single element such as voltage source or a resistor (any two-terminal element)
- What is a node?
 - □ The point of connection between two or more branches and usually indicated by a dot.
 - □ If a short circuit (connecting wire) connects two nodes, the nodes constitute a single node.

- <u>5 branches:</u> 10 V voltage source, 2 A current source, and three resistors
- 3 nodes: node a, node b, and node c

Nodes-Branches-Loops

What is a loop?

- Any closed path in a circuit.
- □ A loop is a closed path formed by starting at a node, passing through a set of nodes, and returning to the starting node without passing through any nodes more than once.
- □ A loop said to be independent if it contains at least one branch which is not a part of any other independent loop
- □ Independent loops or paths result in independent set of equations.

Three independent loops:

- \triangleright 1st loop: voltage source and two resistors (5 Ω & 2 Ω)
- \triangleright 2nd loop: voltage source and two resistors (5 Ω & 3 Ω)
- \triangleright 3rd loop: voltage source, current source, and a resistor (5 Ω)

Fundamental Theorem of Network Topology

A network with b branches, n nodes, and l independent loops will always satisfy the fundamental theorem of network topology.

$$b = l + n - 1$$

b: # of branches,

l: # of independent loop

n: # of nodes

Series Connection

Two or more elements carry same current if they are in series

Parallel Connection

Two or more elements have same voltage if they are in parallel

Kirchhoff's Law

- Ohm's law: not sufficient to analyze circuits by itself
- Ohm's law coupled with Kirchhoff's law: very powerful set of tools for analyzing a large variety of electric circuits.

- Two Kirchhoff's law:
 - □ Kirchhoff's Current Law (KCL)
 - □ Kirchhoff's Voltage Law (KVL)

Kirchhoff's Current Law (KCL)

- What is Kirchhoff's Current Law (KCL)?
 - □ Algebraic sum of currents entering a node (or a closed boundary) is zero.
 - □ Sum of currents entering a node is equal to the sum of currents leaving from that node.
- Mathematically, KCL is given by:

$$\sum_{n=1}^{N} i_n = 0$$

N: # of branches connected to the nodes

 i_n : nth current entering (or leaving) the node

$$i_1 + i_3 + i_4 = i_2 + i_5$$
 or $i_1 + (-i_2) + i_3 + i_4 + (-i_5) = 0$

Kirchhoff's Voltage Law (KVL)

- What is Kirchhoff's Voltage Law (KVL)?
 - □ Algebraic sum of all voltages around a closed path (or loop) is zero.
- Mathematically, KVL is given by:

$$\sum_{m=1}^{M} V_m = 0$$

M: # of voltages in the loop V_m : mth voltage

$$-v_1 + v_2 + v_3 - v_4 + v_5 = 0$$
or

$$v_2 + v_3 + v_5 = v_1 + v_4$$

Sum of voltage drop = sum of voltage rise

$$-v_{ab} + v_1 + v_2 - v_3 = 0$$
$$v_{ab} = v_1 + v_2 - v_3$$

Example 2:

• For the circuit shown below, find $v_1 \& v_2$

Solution:

• In order to find $v_1 \& v_2$, we apply Ohm's law and Kirchhoff's voltage law.

Assume that current i flows through the loop (clockwise direction)

Ohm's law:
$$v = iR$$

$$v_1 = 2i$$
 $v_2 = -3i$

Applying KVL around the loop gives

$$-20 + v_1 - v_2 = 0$$

$$-20 + 2i - (-3i) = 0 \Rightarrow i = 4A$$

Example 3:

• Determine $v_0 \& i$ in the circuit shown below

Solution:

Applying KVL around the loop gives

$$-12 + 4i + 2v_0 - 4 - v_0 = 0$$

$$-12 + 4i + 2(-6i) - 4 - (-6i) = 0$$

$$i = -8 A$$

$$v_0 = -6i \Rightarrow v_0 = 64 V$$

Ohm's law: v = iR

$$v_0 = -6i$$

Example 4:

Find current i_o and voltage v_o in the circuit

Solution:

Applying KCL to node a, we obtain

$$3 + 0.5i_o = i_o \implies i_o = 6 \text{ A}$$

For the 4- Ω resistor, Ohm's law gives

$$v_o = 4i_o = 24 \text{ V}$$

Example 5:

Find currents and voltages in the circuit

Solution:

We apply Ohm's law and Kirchhoff's laws. By Ohm's law,

$$v_1 = 8i_1, \quad v_2 = 3i_2, \quad v_3 = 6i_3 \quad -v_2 + v_3 = 0 \quad \Rightarrow \quad v_3 = v_2$$

At node a, KCL gives

$$i_1 - i_2 - i_3 = 0$$

Applying KVL to loop 1

$$-30 + v_1 + v_2 = 0$$
$$-30 + 8i_1 + 3i_2 = 0$$
$$i_1 = \frac{(30 - 3i_2)}{8}$$

Applying KVL to loop 2,

$$-v_{2} + v_{3} = 0 \implies v_{3} = v_{2}$$

$$6i_{3} = 3i_{2} \implies i_{3} = \frac{i_{2}}{2}$$

$$\frac{30 - 3i_{2}}{8} - i_{2} - \frac{i_{2}}{2} = 0 \implies i_{2} = 2 \text{ A}$$

$$i_{1} = 3 \text{ A}, \quad i_{3} = 1 \text{ A}, \quad v_{1} = 24 \text{ V},$$

$$v_{2} = 6 \text{ V}, \quad v_{3} = 6 \text{ V}$$

$$i_1 = 3 \text{ A}, \quad i_3 = 1 \text{ A}, \quad v_1 = 24 \text{ V}$$
 $v_2 = 6 \text{ V}, \quad v_3 = 6 \text{ V}$

Series Resistors and Voltage Division

Equivalent Circuit

 $R_1 \& R_2$ are in series since same current i flows through them

Apply Ohm's law: $v_1 = iR_1 \& v_2 = iR_2$

Apply KVL to the loop (Clockwise): $-v + v_1 + v_2 = 0$

Combining equations, we get:

$$v = v_1 + v_2 \Rightarrow iR_1 + iR_2 \Rightarrow i(R_1 + R_2)$$

$$v = i(R_1 + R_2) \text{ or } i = \frac{v}{(R_1 + R_2)}$$

This equation can be written as follows:

$$v = i(R_{eq})$$
 where $R_{eq} = R_1 + R_2$

Equivalent resistance of any number of resistors connected in series is the sum of the individual resistance

In general, for N resistors in series:

$$R_{eq} = R_1 + R_2 + R_3 + \dots + R_N = \sum_{n=1}^{N} R_n$$

Voltage division:

$$v_1 = \frac{R_1}{(R_1 + R_2)}v$$
 and $v_2 = \frac{R_2}{(R_1 + R_2)}v$

Parallel Resistors and Current Division

 $R_1 \& R_2$ are connected in parallel and therefore they have same voltage across them

Apply Ohm's law: $v = i_1 R_1 = i_2 R_2$

Apply KCL at node a: $i = i_1 + i_2$

Combining equations, we get:

$$i = \frac{v}{R_1} + \frac{v}{R_2} = v\left(\frac{1}{R_1} + \frac{1}{R_2}\right) \Rightarrow \frac{v}{R_{eq}}$$

where
$$R_{eq} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 \times R_2}{R_1 + R_2}$$

Equivalent resistance of two parallel resistors is equal to the product of their resistances divided by their sum

In general, for N resistors in parallel:

$$R_{eq} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$$

If
$$R_1=R_2=R_3=\cdots=R_N=R$$
,
$$R_{eq}=\frac{R}{R_N}$$

Current division:

$$i_1 = \frac{R_2}{(R_1 + R_2)}i$$
 and $i_2 = \frac{R_1}{(R_1 + R_2)}i$

Equivalent Conductance

• By definition: $G = \frac{1}{R}$ (Reciprocal of resistance)

$$\frac{1}{G_{eq}} = \frac{1}{G_1} + \frac{1}{G_2} + \frac{1}{G_3} + \dots + \frac{1}{G_N}$$

$$G_{eq} = G_1 + G_2$$

Equivalent conductance for N resistors in parallel:

$$G_{eq} = G_1 + G_2 + G_3 + \dots + G_N$$

Short Circuit and Open Circuit Case

Entire current i bypasses R_1 and flows through the short circuit

Current always prefers to use path without resistance if possible

Entire current i flows through R_1 since there is an open circuit on the other side.

Example 6:

Find $R_{\rm eq}$ for the circuit

Solution:

$$6\Omega \parallel 3\Omega = \frac{6 \times 3}{6+3} = 2\Omega$$

$$1\Omega + 5\Omega = 6\Omega$$

$$R_{eq}$$

$$8\Omega$$

$$2\Omega$$

$$8\Omega$$

$$2\Omega + 2\Omega = 4\Omega$$

$$4\Omega \parallel 6\Omega = \frac{4 \times 6}{4 + 6} = 2.4\Omega$$

$$R_{eq} = 4\Omega + 2.4\Omega + 8\Omega = 14.4\Omega$$

Example 7:

Calculate the equivalent resistance R_{ab}

Solution:

$$3 \Omega \| 6 \Omega = \frac{3 \times 6}{3 + 6} = 2 \Omega$$

$$12 \Omega \| 4 \Omega = \frac{12 \times 4}{12 + 4} = 3 \Omega$$

$$1 \Omega + 5 \Omega = 6 \Omega$$

$$3\Omega \parallel 6\Omega = \frac{3 \times 6}{3 + 6} = 2\Omega$$
$$1\Omega + 2\Omega_0 = 3\Omega$$

$$2 \Omega \| 3 \Omega = \frac{2 \times 3}{2 + 3} = 1.2 \Omega$$

$$R_{ab} = 10 + 1.2 = 11.2 \,\Omega$$

Example 8:

Find the equivalent conductance $G_{\rm eq}$

Solution:

The 8-S and 12-S resistors are in parallel, so their conductance is

This 20-S resistor is now in series with 5 S

$$\frac{20 \times 5}{20 + 5} = 4 \text{ S}$$
 This is in parallel with the 6-S resistor.

$$G_{\rm eq} = 6 + 4 = 10 \, \rm S$$

Example 9:

Find i_o and v_o in the circuit shown below. Calculate the power dissipated in 3- Ω

resistor.

Solution:

$$6\Omega||3\Omega = \frac{6\times3}{6+3} = 2\Omega$$

12 V
$$\stackrel{+}{\stackrel{}{\stackrel{}}{\stackrel{}}}$$
 2 Ω

Apply voltage division:
$$v_0 = \frac{R_1}{(R_1 + R_2)}v$$
 $v_0 = \frac{2}{(2+4)}12 = 4V$

Apply Ohm's law:
$$v = iR$$
 $v_0 = i_0 3 \Rightarrow i_0 = \frac{4}{3}A$

Power dissipation:
$$p_0 = v_0 i_0$$
 $p_0 = 4 \times \frac{4}{3} = \frac{16}{3} = 5.333 W$

Recall:

Supply power: Negative (-) Absorb power: Positive (+) Resistor: passive element

Example 10:

For the circuit shown below, determine: a-) voltage v_o , b-) the power supplied by the current source, and c-) the power absorbed by each resistor.

Solution:

6-k Ω and 12-k Ω resistors in series. Thus, 6+12=18-k Ω

Apply current division:

$$i_1 = \frac{R_2}{(R_1 + R_2)} i_0 \Rightarrow i_1 = \frac{18}{(9+18)} 30 \ (mA) = 20 \ mA$$

$$i_2 = \frac{R_1}{(R_1 + R_2)} i_0 \Rightarrow i_2 = \frac{9}{(9 + 18)} 30 \ (mA) = 10 \ mA$$

Power supplied = power absorbed

Apply Ohm's law:
$$v_0 = i_1 9 = 20 \times 9 = 180 V$$

Power dissipation:
$$p = vi$$

$$p_9 = 180 \times 20 = 3600 \ mW = 3.6 \ W$$

$$p_{12} = vi = (i_2 R)i_2 = i_2^2 R = 10^2 \times 12 = 1.2 W$$

$$p_6 = 10^2 \times 6 = 0.6 W$$
, $p_{cur} = 180 \times 30 = 5.4 W$

Wye-Delta Transformations

These types of circuits can be simplified by using three-terminal equivalent networks:

Two forms of same network

Two forms of same network

Delta to Wye Conversion

Adding eq 4 & eq 2:
$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$$

$$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$$

For terminal 1 & 2:
$$\frac{R_{12}(Y) = R_1 + R_3}{R_{12}(\Delta) = R_b \parallel (R_a + R_c)}$$

Setting
$$R_{12}(Y) = R_{12}(\Delta)$$
: $R_{12} = R_1 + R_3 = \frac{R_b(R_a + R_c)}{R_a + R_b + R_c}$ Eq 1

 $R_{13} = R_1 + R_2 = \frac{R_c(R_a + R_b)}{R_a + R_b + R_c}$ Eq 2 Similarly,

$$R_{34} = R_2 + R_3 = \frac{R_a(R_b + R_c)}{R_a + R_b + R_c}$$
 Eq 3

Subtracting eq 1 &
$$R_1 - R_2 = \frac{R_c(R_b - R_a)}{R_a + R_b + R_c}$$
 Eq 4 -

Each resistor in the Y network is the product of the resistors in the two adjacent Δ branches, divided by the sum of the three Δ resistors.

Wye to Delta Conversion

Combining eqs 1, 2, and 3 obtained in the previous step, we get:

$$R_1 R_2 + R_2 R_3 + R_3 R_1 = \frac{R_a R_b R_c (R_a + R_b + R_c)}{(R_a + R_b + R_c)^2} = \frac{R_a R_b R_c}{R_a + R_b + R_c}$$

Dividing the eq by each eq (1, 2, and 3) obtained in the previous step, we get:

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

Each resistor in the Δ network is the sum of all possible products of the Y resistor taken two at a time, divided by the opposite Y resistor.

Example 11:

Convert the Δ network in the figure below to an equivalent Y network

Solution:

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c} = \frac{10 \times 25}{15 + 10 + 25} = \frac{250}{50} = 5 \Omega$$

$$R_2 = \frac{R_c R_a}{R_a + R_b + R_c} = \frac{25 \times 15}{50} = 7.5 \ \Omega$$

$$R_3 = \frac{R_a R_b}{R_a + R_b + R_c} = \frac{15 \times 10}{50} = 3 \Omega$$

Example 12:

Obtain the equivalent resistance R_{ab} for the circuit shown on the right and use it to find i.

Solution:

In the circuit, there are two Y networks (one at node n and the other at node c) and three Δ networks (can, abn, cnb).

If we convert the Y network comprising the 5- Ω , 10- Ω , and 20- Ω resistors, we may select

$$R_1 = 10 \,\Omega, \qquad R_2 = 20 \,\Omega, \qquad R_3 = 5 \,\Omega$$

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1} = \frac{10 \times 20 + 20 \times 5 + 5 \times 10}{10}$$

$$= \frac{350}{10} = 35 \Omega$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2} = \frac{350}{20} = 17.5 \Omega$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2} = \frac{350}{5} = 70 \Omega$$

Example 12 Continuing:

Combining the three pairs of resistors in parallel, we obtain

$$70 \parallel 30 = \frac{70 \times 30}{70 + 30} = 21 \Omega$$

$$12.5 \parallel 17.5 = \frac{12.5 \times 17.5}{12.5 + 17.5} = 7.292 \Omega$$

$$15 \parallel 35 = \frac{15 \times 35}{15 + 35} = 10.5 \Omega$$

$$R_{ab} = (7.292 + 10.5) \| 21 = \frac{17.792 \times 21}{17.792 + 21} =$$
9.632 Ω

Ohm's law:
$$v = iR \Rightarrow i = \frac{v_s}{R_{ab}} = \frac{120}{9.632} = 12.458 \text{ A}$$

Example 12: Second Way

Solving with Δ to Y conversion. Transform Δ (can) to Y

Let $R_c = 10 \Omega$, $R_a = 5 \Omega$, and $R_n = 12.5 \Omega$. This will lead

$$R_{ad} = \frac{R_c R_n}{R_a + R_c + R_n} = \frac{10 \times 12.5}{5 + 10 + 12.5} = 4.545 \,\Omega$$

$$R_{cd} = \frac{R_a R_n}{27.5} = \frac{5 \times 12.5}{27.5} = 2.273 \,\Omega$$

$$R_{nd} = \frac{R_a R_c}{27.5} = \frac{5 \times 10}{27.5} = 1.8182 \,\Omega$$

Resistance between d and b, we have two series combination in parallel, i.e.,

$$R_{db} = \frac{(2.273 + 15)(1.8182 + 20)}{2.273 + 15 + 1.8182 + 20} = \frac{376.9}{39.09} = 9.642 \Omega$$

This is in series with the 4.545- Ω and the resultant resistance parallel with 30- Ω resistor.

$$R_{ab} = \frac{(9.642 + 4.545)30}{9.642 + 4.545 + 30} = \frac{425.6}{44.19} = 9.631 \Omega$$

Ohm's law:
$$v = iR \Rightarrow i = \frac{v_s}{R_{ab}} = \frac{120}{9.632} = 12.458 \text{ A}$$