Chapter 5

Force and Motion-I

Learning Objectives

- **5.01** Identify that a force is a vector quantity and thus has both magnitude and direction and also components.
- **5.02** Given two or more forces acting on the same particle, add the forces as vectors to get the net force.
- **5.03** Identify Newton's first and second laws of motion.
- **5.04** Identify inertial reference frames.

- 5.05 Sketch a free-body diagram for an object, showing the object as a particle and drawing the forces acting on it as vectors anchored to the particle.
- **5.06** Apply the relationship between net force on an object, its mass, and the produced acceleration.
- **5.07** Identify that *only* external forces on an object can cause the object to accelerate.

A force:

- Is a "push or pull" acting on an object
- Causes acceleration
- We will focus on Newton's three laws of motion:
 - Newtonian mechanics is valid for everyday situations
 - It is not valid for speeds which are an appreciable fraction of the speed of light
 - It is not valid for objects on the scale of atomic structure
 - Viewed as an approximation of general relativity

- Before Newtonian mechanics:
 - Some influence (force) was thought necessary to keep a body moving
 - The "natural state" of objects was at rest
- This seems intuitively reasonable (due to friction)
- But envision a frictionless surface
 - Does not slow an object
 - The object would keep moving forever at a constant speed
 - Friction is a force!

Newton's First Law: If no force acts on a body, the body's velocity cannot change; that is, the body cannot accelerate.

- Characteristics of forces:
 - Unit: N, the newton; $1 \text{ N} = 1 \text{ kg m/s}^2$
 - Acceleration of a mass is proportional to the exerted force
 - Forces are vectors
- Net force is the vector sum of all forces on an object
- Principle of superposition for forces:
 - A net force has the same impact as a single force with identical magnitude and direction
 - So we can restate more correctly:

Newton's First Law: If no *net* force acts on a body ($\vec{F}_{net} = 0$), the body's velocity cannot change; that is, the body cannot accelerate.

- Newton's first law is not true in all frames
- Inertial frames:

An inertial reference frame is one in which Newton's laws hold.

- (a): a frictionless puck, pushed from the north pole, viewed from space
- (b): the same situation, viewed from the ground
- Over *long* distances, the ground is a **noninertial frame**
- In (b), a fictitious force would be needed to explain deflection

Earth's rotation causes an apparent deflection.

Figure 5-2

Generally, assume the ground is an inertial frame

Answer: (c), (d), (e)

What is mass?

- "the mass of a body is the characteristic that relates a force on the body to the resulting acceleration"
- Mass is a measure of a body's resistance to a change in motion (change in velocity)
- It is not the same as weight, density, size etc.
- Mass is inversely proportional to acceleration

Example Apply an 8.0 N force to various bodies:

- Mass: 1kg → acceleration: 8 m/s²
- Mass: 2kg → acceleration: 4 m/s²
- Mass: 0.5kg → acceleration: 16 m/s²
- Acceleration: 2 m/s² → mass: 4 kg

Summarize these behaviors as:

Newton's Second Law: The net force on a body is equal to the product of the body's mass and its acceleration.

As an equation, we write:

$$\vec{F}_{\rm net} = m\vec{a}$$
 Eq. (5-1)

- Identify the body in question, and only include forces that act on that body!
- Separate the problem axes (they are independent):

$$F_{\text{net},x} = ma_x$$
, $F_{\text{net},y} = ma_y$, and $F_{\text{net},z} = ma_z$. Eq. (5-2)

The acceleration component along a given axis is caused *only by* the sum of the force components along that *same* axis, and not by force components along any other axis.

- If the net force on a body is zero:
 - Its acceleration is zero
 - The forces and the body are in equilibrium
 - But there may still be forces!
- Units of force:

Table 5-1 Units in Newton's Second Law (Eqs. 5-1 and 5-2)

System	Force	Mass	Acceleration
\overline{SI} $\overline{CGS^a}$ $\overline{British^b}$	newton (N) dyne pound (lb)	kilogram (kg) gram (g) slug	m/s^2 cm/s^2 ft/s^2

 $^{^{}a}1 \text{ dyne} = 1 \text{ g} \cdot \text{cm/s}^{2}.$

Tab. (5-1)

 $[^]b$ 1 lb = 1 slug · ft/s².

- To solve problems with forces, we often draw a free body diagram
- The only body shown is the one we are solving for
- Forces are drawn as vector arrows with their tails on the body
- Coordinate system shown
- Acceleration is NEVER part of a free body diagram – only forces on a body are present.

Figure 5-3

Checkpoint 2

The figure here shows two horizontal forces acting on a block on a frictionless floor. If a third horizon-

tal force \vec{F}_3 also acts on the block, what are the magnitude and direction of \vec{F}_3 when the block is (a) stationary and (b) moving to the left with a constant speed of 5 m/s?

Answer: $F_3 = 2 N$ to the left in *both* cases

- A system consists of one or more bodies
- Any force on the bodies inside a system exerted by bodies outside the system is an external force
- Net force on a system = sum of external forces
- Forces between bodies in a system: internal forces
 - Not included in a FBD of the system since internal forces cannot accelerate the system

Note: do not confuse a free body diagram of an entire system with free body diagrams of individual bodies within a system.

Learning Objectives

- **5.08** Determine the magnitude and direction of gravitational force on a mass, for a given free-fall acceleration.
- **5.09** Identify that weight is the magnitude of the net force required to prevent a body from falling freely, measured by the frame of ground.
- **5.10** Identify that a scale gives an object's weight when the measurement is done in an inertial frame but not in an accelerating frame, where it gives an apparent weight.

- **5.11** Determine the magnitude and direction of the normal force on an object when the object is pressed or pulled onto a surface.
- **5.12** Identify that the force parallel to the surface is a frictional force that appears when the object slides or attempts to slide.
- **5.13** Identify that a tension force is said to pull at both ends of a cord (or a cord-like object) when the cord is taut.

The gravitational force:

- A pull that acts on a body, directed toward a second body
- Generally we consider situations where the second body is Earth
- In free fall (y direction, with no drag from the air):

$$-F_g = m(-g)$$
 Eq. (5-8)

- This force still acts on a body at rest!
- We can write it as a vector:

$$\vec{F}_g = -F_g \hat{\mathbf{j}} = -mg \hat{\mathbf{j}} = m\vec{g},$$
 Eq. (5-9)

Weight:

- The name given to the gravitational force that one body (like the Earth) exerts on an object
 - It is a force measured in newtons (N)
 - It is directed downward towards the center

$$W = F_g$$
 (weight, with ground as inertial frame).

The weight W of a body is equal to the magnitude F_g of the gravitational force on the body.

Eq. (5-12)

Example To relate weight to mass, consider an apple in free fall. The only force on the apple is the gravitational force which results in an acceleration of g. Applying Newton's 2nd Law

$$F_{net} = ma$$
 where $F_{net} = F_g = W$ and $a = g$
 $F_g = W = mg$

Thus,

$$W = mg$$
 (mass – weight relationship)

Measuring weight:

- Use a balance to compare a body to known masses, find its mass, and compute its weight
- Use a spring scale that measures weight on a calibrated scale
- Weight is not the same as mass: a pan balance will read the same for different values of g, a scale will read differently for different values of g
- Weight must be measured when the body is not accelerating vertically
 - E.g., in your bathroom, or on a train
 - But not in an elevator

The normal force:

- If you are standing on a surface, the push back on you from the surface (due to deformation) is the normal force
- Normal means perpendicular

When a body presses against a surface, the surface (even a seemingly rigid one) deforms and pushes on the body with a normal force \vec{F}_N that is perpendicular to the surface.

Figure 5-7

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved

Eq. (5-13)

5-2 Some Particular Forces

Example Normal force for a block resting on a horizontal surface that is:

- Accelerating vertically at a_y : $F_N = mg + ma_y = m(g + a_y)$
- Vertically at rest:

$$F_N = mg$$
. Eq. (5-14)

Checkpoint 3

In Fig. 5-7, is the magnitude of the normal force \vec{F}_N greater than, less than, or equal to mg if the block and table are in an elevator moving upward (a) at constant speed and (b) at increasing speed?

Answer: (a) equal to mg (no acceleration)

(b) greater than mg (see 5-13, with positive acceleration)

Frictional force or friction:

- Occurs when one object slides or attempts to slide over another
- Directed along the surface, opposite to the direction of intended motion

Tension force:

- A cord (or rope, etc.) is attached to a body and pulled taut
- Cord pulls on the body with force T directed along the cord
- The cord is said to be under tension
- The tension in the cord is T
- A massless and unstretchable cord exists only as a connection between two bodies
 - It pulls on both with the same force, T
 - True even if the bodies and cord are accelerating, and even if the cord runs around a *massless, frictionless pulley*
 - These are useful simplifying assumptions

Checkpoint 4

The suspended body in Fig. 5-9c weighs 75 N. Is T equal to, greater than, or less than 75 N when the body is moving upward (a) at constant speed, (b) at increasing speed, and (c) at decreasing speed?

Answer: (a) equal to 75 N (b) greater than 75 N (c) less than 75 N

Learning Objectives

- **5.14** Identify Newton's third law of motion and third-law of force pairs.
- 5.15 For an object that moves vertically or on a horizontal or inclined plane, apply Newton's second law to a free-body diagram of the object.
- 5.16 For an arrangement where a system of several objects moves rigidly together, draw a free-body diagram and apply Newton's second law for the individual objects and also for the system taken as a composite object.

Objects interact when they push or pull on each other:

Newton's Third Law: When two bodies interact, the forces on the bodies from each other are always equal in magnitude and opposite in direction.

We can write this law as a scalar or vector relation:

$$F_{BC}=F_{CB}$$
 $\overrightarrow{F}_{BC}=-\overrightarrow{F}_{CB}$ Eq. (5-15)

- We call these two forces a third-law force pair
- Any time any two objects interact, there is a third-law force pair

Copyright ${\tt ©}$ 2014 John Wiley & Sons, Inc. All rights reserved.

Third-law force pairs:

$$\vec{F}_{CT} = -\vec{F}_{TC}$$
 (cantaloupe-table interaction).
 $\vec{F}_{CE} = -\vec{F}_{EC}$ (cantaloupe-Earth interaction).

 This includes the gravitational forces between Earth and the cantaloupe!

Checkpoint 5

Suppose that the cantaloupe and table of Fig. 5-11 are in an elevator cab that begins to accelerate upward. (a) Do the magnitudes of \vec{F}_{TC} and \vec{F}_{CT} increase, decrease, or stay the same? (b) Are those two forces still equal in magnitude and opposite in direction? (c) Do the magnitudes of \vec{F}_{CE} and \vec{F}_{EC} increase, decrease, or stay the same? (d) Are those two forces still equal in magnitude and opposite in direction?

Answer: (a) they increase

(b) yes

(c) they begin to decrease slowly (the gravitational force of Earth decreases with height—negligible in an actual elevator)

(d) yes

Sample Problem A block of mass M = 3.3 kg, connected by a cord and pulley to a hanging block of mass m = 2.1 kg, slides across a frictionless surface

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

- Draw the forces involved
- Treat the string as unstretchable, the pulley as massless and frictionless, and each block as a particle
- Draw a free-body diagram for each mass
- Apply Newton's 2nd law (F = ma) to each block → 2 simultaneous eqs.
- Eliminate unknowns (T) that are the same, and solve for the acceleration

Copyright © 2014 John Wiley & Sons, Inc. All rights reserve

Figure 5-14

For the sliding block:

$$T = Ma$$
. Eq. (5-18)

For the hanging block:

$$T - mg = -ma$$
. Eq. (5-20)

Combining we get:

$$a = \frac{m}{M+m} g$$
. Eq. (5-21) $T = \frac{Mm}{M+m} g$. Eq. (5-22)

- Plugging in we find $a = 3.8 \text{ m/s}^2$ and T = 13 N
- Does this make sense? Check that dimensions are correct, check that a < g, check that T < mg (otherwise acceleration would be upward), check limiting cases (e.g., g = 0, M = 0, $m = \infty$)

Sample Problem A block being pulled up a ramp:

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

5 Summary

Newtonian Mechanics

- Forces are pushes or pulls
- Forces cause acceleration

Newton's First Law

 If there is no net force on a body, the body remains at rest if it is initially at rest, or moves in a straight line at constant speed if it is in motion.

Force

- Vector quantities
- $1 N = 1 kg m/s^2$
- Net force is the sum of all forces on a body

Inertial Reference Frames

Frames in which Newtonian mechanics holds

5 Summary

Mass

- The characteristic that relates the body's acceleration to the net force
- Scalar quantity

Some Particular Forces

Weight:

$$W = mg$$
 Eq. (5-12)

- Normal force from a surface
- Friction along a surface
- Tension in a cord

Newton's Second Law

$$\overrightarrow{F}_{\rm net} = m\overrightarrow{a}$$
 Eq. (5-1)

 Free-body diagram represents the forces on one object

Newton's Third Law

- Law of force-pairs
- If there is a force by B on C, then there is a force by C on B:

$$\overrightarrow{F}_{BC}=-\overrightarrow{F}_{CB}$$
 Eq. (5-15)