Dag 1

February 13, 2014

0.2 Wie zijn wij?

- Peter
 - Weet veel van elektronica
 - Werkt veel met Arduino, kent veel Arduino projecten
- Richèl
 - Weet veel van programmeren
 - Weet veel van les geven

0.1 Vandaag

- 1. Introduction: introductie
- 2. WhatIsArduino: wat is een Arduino?
- 3. ConnectLed: een LEDje aansluiten
- 4. SwitchLed: een LEDje laten knipperen

1

0.3 Wie zijn jullie?

- Wie ben jij?
- Wat wil je?

Arduino cursus introductie

January 30, 2014

0.4 Vorm cursus

- De vorm van de cursus is vrij
 - Niveau van de uitleg hoger/lager?
 - Uitleg door deelnemers?
 - Wedstrijd?
 - Grote projecten?
- Samen zoeken naar onze favoriete vorm

0.1 Overzicht

- 1. Wie zijn wij?
- 2. Wie zijn jullie? Wat willen julie?
- 3. Wat willen we?
- 4. Hoe doen we dat?

0.5 Vorm cursus vandaag

- Schoolse traject
 - begint bij de basis
 - stap-voor-stap uitleg, oefening en nabespreking
- Projectgebaseerde traject
 - vrij

0.6 Hoe handelen we?

- Concentreren: we zijn alleen bezig met Arduino
- Uittesten: fouten maken is goed
- Slim: we gedragen ons als Einsteins
- Samen: we proberen het goede voorbeeld te geven en ons best te doen

6

0.2 Wat weten jullie?

- Wij willen weten wat jullie al weten!
- Hiervoor hebben we een mindmap van jullie nodig

0.7 Tijdsindeling avond

- introductie
- □ Wat is Arduino?
- $\bullet \square$ Ontwerp: LED
- 20:30-21:00 pauze
- □ Bouwen: LED
- 🗹 Programmeren: LED
- $\bullet \square$ Ontwerp: schakelbare LED
- □ Bouwen: schakelbare LED
- □ Programmeren: schakelbare LED

7

0.3 Wat is een mindmap?

Wat is Arduino?

(C) Richèl Bilderbeek

February 13, 2014

0.4 Maken mindmap

- Opdracht: maak een mindmap met de tekst 'Arduino' in het midden
- Mijn voorbeeld is maar een voorbeeld: alles mag!

0.1 Overzicht

- 1. Wat weten jullie al?
- 2. Wat is een mindmap?
- 3. Maken mindmap
- 4. Wat is Arduino volgens Richèl
- 5. Conclusie

1

0.5 Wat is Arduino volgens Richèl?

 $2 \hspace{1.5cm} 3$

0.6 Wat is Arduino volgens Richèl?

0.10 Conclusie

Wat we doen is divers:

• Ontwerpen: Fritzing

• Bouwen: Elektronica

• Programmeren: Arduino IDE

Wij bouwen dit stap voor stap op

0.7 Elektronica

Hoe sluit ik een LED aan?

February 13, 2014

0.8 Software

8

0.1 Overzicht

- 1. Fritzing
- 2. Er is een probleem?
- 3. Wat weten we?
- 4. Er is een probleem?
- 5. Hoe gaan we daar mee om?
- 6. Opdracht: vind dit uit! Noteer in je logboek

0.9 Ontwerpen

9

0.2 Fritzing

- Vrije software
- Linux, Mac OS X, Windows

0.3 Fritzing installatie

- sudo apt-get install fritzing
- yum install fritzing
- Download van fritzing.org/download

3

0.7 Antwoorden

- 1. Volt = de hoeveelheid energie die stroom levert
- 2. Een LED (diffuus, zonder [...]) gebruikt 1,8-2,5 Volt (zie volgende slide)
- 3. Een Arduino levert 3,3 of 5,0 Volt

Wat kun hieraan doen?

0.4 Opdracht

- Installeer Fritzing
- Bekijk wat Fritzing kan: 'Breadboard view', 'Schematic' en 'PCB'
- Ontwerp: stroomschema van een LED die altijd brandt

Welk probleem kom je tegen?

:

0.8 Antwoorden

Wat kun hieraan doen?

0.5 Er is een probleem?

Ja: je kunt een LED niet direct op een Arduino aansluiten

- Hoe kun je dat merken?
- Dat gaan we doen!
- Waarom is dat zo?

)

0.9 Hoe hoge spanningen tegen te gaan?

• Met een weerstand!

0.6 Wat weten we?

- 1. Wat is volt?
- 2. Wie weet hoeveel volt een LED gebruikt?
- 3. Wie weet hoeveel volt een Arduino levert?

6

0.10 Welke weerstand?

- Proberen: start met hoge weerstand en ga omlaag
- Berekenen

0.11 Welke weerstand?

• Zij Bracht ROzen Op GErrits GRaf Bij Vies GRIJS Weer

11

0.1 Overzicht

- 1. Doel
- 2. Hoe ontwerpen?
- 3. Arduino IDE
- 4. Bouwen!

0.12 Bouwen!

- Wat gebeurt er als je de LED omdraait?
- Welke problemen loop je tegen aan?

2

0.2 Doel

Een machine maken die een LED na een seconde aan doet, en deze een seconde later weer uit doet

0.13 Geniet

- Wat zijn logische volgende stappen?
- Welke problemen loop je tegen aan?

Hoe schakel ik een LED?

February 13, 2014

0.3 Hoe ontwerpen?

• Waar denk je dat de Arduino dit mee kan?

13

0.4 Ontwerp

0.5 En nu?

- Programmeren!
- Met Arduino IDE ('Integrated Development Environment' ≈ 'Programmeeromgeving')

5

Dag 1 Oefeningen

(C) Richèl Bilderbeek

February 13, 2014

0.6 Arduino IDE

0.1 Overzicht

- 1. Installeer Fritzing
- 2. Ontwerp in Fritzing
- 3. Installeer Arduino IDE
- 4. Programmeer een knipperende LED

0.7 Arduino IDE installatie

- sudo apt-get install arduino
- yum install arduino
- Download van http://arduino.cc/en/main/software

7

0.2 Fritzing installatie

- sudo apt-get install fritzing
- yum install fritzing
- Download van fritzing.org/download

0.8 Opdracht

- Installeer Arduino IDE
- Bekijk wat de Arduino IDE kan: de voorbeelden, het uploaden1
- Ontwerp: stroomschema van een LED die knippert
- Programmeer: vind de code van een LED die knippert
- Bouw, test, noteer

8

0.3 Ontwerp in Fritzing

- Installeer Fritzing
- Bekijk wat Fritzing kan: 'Breadboard view', 'Schematic' en 'PCB'
- Ontwerp: stroomschema van een LED die altijd brandt
- Bouw, test, noteer

0.4 Arduino IDE installatie

- sudo apt-get install arduino
- yum install arduino
- Download van http://arduino.cc/en/main/software

4

Kortsluiting & Breadboard

(C) Richèl Bilderbeek

February 13, 2014

0.5 Programmeer een knipperende LED

- Installeer Arduino IDE
- Bekijk wat de Arduino IDE kan: de voorbeelden, het uploaden1
- Ontwerp: stroomschema van een LED die knippert
- Programmeer: vind de code van een LED die knippert
- Bouw, test, noteer

5

0.1 Overzicht

- 1. Wat is kortsluiting?
- 2. Hoe dit te voorkomen?
- 3. Hoe werkt een breadboard?

Dag 2

(C) Richèl Bilderbeek EYNCSA

February 13, 2014

0.2 Wat is kortsluiting?

0.1 Vandaag

- 1. shortCircuit: kortsluiting & breadboard
- 2. analogRead: belangrijk basisschakelingen met weerstandjes
- 3. readInput: nog een belangrijke basisschakeling met een drukknop
- 4. Per groepje: solderen bij Tonnie & bouwen met sensoren en motortje
- 5. Einddoel: een zo ingewikkeld mogelijke machine bouwen

1

0.3 Wat is kortsluiting?

0.4 Hoe dit te voorkomen?

- Weerstand van minimaal 270 ohm
- Ander nuttig gebruik van de spanning

4

0.8 Breadboard

0.5 Wat is kortsluiting?

ó

analogRead

February 13, 2014

0.6 Wat is kortsluiting?

0.1 Overzicht

- 1. Doel
- 2. Opdracht
- 3. Meten
- 4. Opschrijven

0.7 Breadboard

0.2 Doel

- Spanning meten met Arduino: analogRead
- Basisschakelingen herkennen
- Bouwen van minstens vijf schakelingen
- Dit niet kennen = domme fouten gaan maken: drukknop, sensor, etcetera

0.3 Opdracht

3

0.7 Bekijken

0.4 Opdracht

1

0.8 Opschrijven

- Welke waarden meet je bij elk van de vijf schakelingen?
- Kun je voorspellingen maken? Maak gerust nieuwe schakelingen!
- Noteer! Deze schakelingen zul je vaak gaan bekijken!

0.5 Programma

5

Hoe lees ik input?

February 13, 2014

0.6 Programma

0.1 Overzicht

- 1. Doel
- 2. Vraag
- 3. Naief & experiment
- 4. Zo werkt het
- 5. Slim & experiment

0.2 Doel

- Kunnen reageren op een drukknop
- Een nieuwe basisschakelingen leren
- Dit niet kennen = domme fouten gaan maken

2

0.6 Doen...

• Volgende slide de oplossing...

0.3 Vraag

- Bouw een machine die kan reageren op een drukknop
- Gebruik je kennis van 'analogRead'
- ... dit gaat echter anders dan verwacht!

0.7 Waarom onjuist?

- Als de drukknop open is, is de spanning op de input onbepaalt: dit kan elke waarde tussen nul en vijf Volt zijn!
- Dit wordt een zwevende input genoemd
- Hoe dit op te lossen?

0.4 Ontwerp: naief

0.8 Ontwerp: oplossing

- Verbind de input via een weerstand met de Aarde
- Hierdoor kan restspanning wegvloeien tot nul Volt
- Dit wordt een pull-down weerstand genoemd

0.5 Opdracht

- Bouw dit!
- Wat voorspel je?
- Gebruik weer programma 'Examples | Basics | AnalogReadSerial'
- Wat meet je als de schakelaar wel/niet ingedrukt is?
- Noteer! Dit onverwachte gedrag zal je vaker tegenkomen!
- (tijd over: probeer de schakeling te laten werken)

5

0.9 Ontwerp: oplossing

0.10 Ontwerp: oplossing

10

0.2 Basisschakelingen

0.11 Opdracht

- Bouw dit!
- Wat voorspel je?
- Gebruik weer programma 'Examples | Basics | AnalogReadSerial'
- Wat meet je als de schakelaar wel/niet ingedrukt is?
- (tijd over: gebruik analogWrite naar een LEDje)

0.3 Basisschakelingen

Dag 2 Oefeningen

February 13, 2014

0.4 Programma

0.1 Overzicht

- 1. De vijf basisschakelingen
- 2. De drukknop

0.5 De Vijf Basisschakelingen

- Gebruik het programma: 'Examples | 01. Basics | AnalogReadSerial'
- Bouw omstebeurt de vijf basisschakelingen
- Welke waarden meet je bij elk van de vijf schakelingen?
- Noteer! Deze schakelingen zul je vaak gaan bekijken!

0.6 De Drukknop: naief ontwerp

Arduino C++ #1

February 13, 2014

0.7 De Drukknop

- Bouw dit!
- rial'
- Wat meet je als de schakelaar wel/niet ingedrukt is?
- Daarna: krijg de schakeling juist werkend

0.1 Overzicht

- 1. Doel
- 2. Arduino IDE
- 3. 'setup' en 'loop'
- 4. Fouten
- 5. data typen
- 6. if
- 7. for

- Wat voorspel je?
- Gebruik weer programma 'Examples | Basics | AnalogReadSe-
- Noteer! Dit onverwachte gedrag zal je vaker tegenkomen!

0.2 Doel

- Fouten leren lezen
- Internet zoektermen
- Basis van programmeren

0.1 Vandaag

- 1. RgbLed: aansluiten RGB led
- 2. Cpp01: C++ basis
- 3. ReadSensor: lezen van een sensor

0.3 Arduino IDE

- Doel: gemakkelijk programmeren voor beginners (NB: voor gevorderden minder geschikt)
- taal: C++, volgens de C++03 standaard (niet C++0x, niet C++11)
- bibliotheken: C, Arduino
- voegt zelf nog dingen toe (zoals de main functie)

Dag 3

(C) Richèl Bilderbeek

February 13, 2014

0.4 Van code naar machinetaal

- Code is bedoeld voor mensen om te lezen en te schrijven
- Een chip begrijpt alleen maar machinetaal
- Een compiler doet de vertaling van code naar machinetaal (NB: er zijn meer programma's die helpen, die noem ik vandaag allemaal 'compiler')
- De compiler is erg precies, en dat is goed
- De compiler heeft altijd gelijk!

4

0.8 Fouten

```
//Een letter weg
                  void setup ( {}
oid setup() {}
                  void setup) \{\}
vid setup() {

                  void setup()
vod setup() {}
                  void setup() {
voi setup() {
voidsetup() {}
                    /Een woord of tekencombinatie weg
void etup() {
                  setup() {}
void stup() {}
                  void () {}
void seup() {
                  void setup {}
void setp() {
                  void setup()
void setu() {}
```

0.5 Minimum programma

```
void setup() {}
void loop() {}
```

0.9 Variabelen en data typen

- Variabele: iets wat een computer moet onthouden, iets dat een mens kan lezen
- int: een geheel getal, bijvoorbeeld: een pin nummer, een aantal seconden

```
const int pin_led = 2;
```

• double: een gebroken getal, bijvoorbeeld: een voltage

```
const double voltage = 3.3; //Volt
```

• bool: een ja/nee, bijvoorbeeld: is de drukknop ingedrukt?

```
const bool is_ingedrukt = /* iets ingewikkelds */;
```

• nog veel meer

0.6 Fouten

```
De code:

//(alle code gewist)

Foutmelding:

core.a(main.cpp.o):
In function 'main': /[...]/main.cpp:11:
undefined reference to 'setup'
collect2: error: ld returned 1 exit status

Kern:
undefined reference to 'setup'

Wat bedoelt de compiler:
De compiler heeft gehoord dat 'setup' moet bestaan, maar kan deze niet vinden
```

;

0.10 Ombouwen van data type

- Soms gebeurt dit stiekum of per ongeluk
- Maar dit kan ook open en expres, met static cast

```
const int waarde
    = analogRead(A0);
const double voltage
    = static_cast < double > (waarde)
    / 1024.0;
```

0.7 Opdracht

- Start 'Examples | Basics | Bare minimum'
- Probeer zoveel mogelijk verschillende fouten te maken, alleen in 'setup' ('loop' is immers precies hetzelfde)
- Noteer (1) de code (2) de kern van de foutmelding (3) wat je denkt dat de compiler bedoelt (4) laat ruimte over voor later; als je snapt wat de
- Ik vind er met gemak achtien!
- Deze fouten zul je nog vaak tegen komen!

7

0.11 if statement

• Als je iets soms wel en soms niet wil

```
\begin{array}{ll} if \;\; (analogRead\,(A0)\,<\,512) \;\; \{ \;\; digitalWrite\,(2\,,HIGH\,)\,; \;\; \} \\ else \;\; \{ \;\; digitalWrite\,(2\,,LOW)\,; \;\; \} \end{array}
```

Teken	Spreek uit
==	is gelijk aan
!=	is ongelijk aan
<	is kleiner dan
<=	is kleiner of gelijk dan
>	is groter dan
>=	is groter of gelijk dan

0.12 for loop

• Als je een teller wilt laten lopen

```
for (int teller = 0; teller! = 255; ++teller)
{
    analogWrite(2, teller);
}
```

- Lees dit als:
 - 1. Zet een int genaamd 'teller' op de beginwaarde nul
 - 2. Doe de code tussen accolades zo lang 'teller' niet gelijk is aan 255
 - 3. Na de code tussen accolades: tel één op bij teller ('++teller') en ga naar stap 2

12

0.1 Overzicht

- 1. Doel
- 2. Vraag
- 3. Naief & experiment
- 4. Zo werkt het
- 5. Slim & experiment

0.13 Testen

```
void setup()
{
    Serial.begin(9600);
}

void loop()
{
    const double x = 2.0 / 7.0; Serial.println(x);
    const int i = 123; Serial.println(i);
    const bool b = true; Serial.println(b);
    for (int i=0; i!=255; ++i) Serial.println(i);
}
```

13

0.2 Doel

- Zelf uitvinden hoe een lichtsensor werkt
- Experiment: ontwerpen, bouwen, meten, noteren

0.14 Opdracht

- Zoek een toepassing voor een if statement
- Zoek een toepassing voor een for loop

14

0.3 Waar in Fritzing?

Hoe lees ik een sensor?

February 13, 2014

0.4 Opdracht

- \bullet Weet: een lichtsensor krijgt een andere weerstand bij meer/minder licht
- Weerstanden kennen we!
- Ontwerp een (of meer) schakeling(en) in Fritzing die bij meer/minder licht een andere waarde meet
- Bouw de schakeling, programmeer, meet de waarden, noteer!
- (tijd over: meet alleen de waarde als er op een drukknop wordt gedrukt, gebruik 'if' in je code)

 $1 \hspace{1.5cm} 2$

0.5	Doen!

0.6 Conclusie

- Waar liep je tegen aan?
- Hoe reageert een lichtsensor?

0.2 Doel

• Zelf uitvinden hoe een zonnemotor werkt

0.3 Waar in Fritzing?

• Niet

0.4 Opdracht

- Weet: een zonnemotor werkt op maximaal 5 Volt
- Gebruik de code van 'Examples | Analog | Fading' met analog-Write erin
- Ontwerp een (of meer) schakeling(en) in Fritzing om de zonnemotor aan te sturen
- Bouw de schakeling, programmeer, bekijk, noteer

0.1 Overzicht

1. Doel

Hoe stuur ik een zonnemotor?

(C) Richèl Bilderbeek

February 13, 2014

0.5 Doen!

0.6 Conclusie

- Waar liep je tegen aan?
- Hoe reageert een lichtsensor?

Dag 4

(C) Richèl Bilderbeek BYNC SA

February 13, 2014

6

0.2 Hoezo?

Hij doet het niet!

0.3 'Hij doet het niet'

- Wat is je stroomschema?
- Wat is je programma?
- Wat had je verwacht? Wat zie je gebeuren?

Arduino & werkwijze

(C) Richèl Bilderbeek EYNCSA

February 13, 2014

0.4 Stroomschema

0.1 Overzicht

- 1. Waarom een werkwijze?
- 2. Welke werkwijze?

1

0.5 Stroomschema

0.6 Wat is je programma?

```
void setup()
{
    setPinMode(2,OUTPUT);
}

void loop()
{
    int x = 0;
    if (x == 10)
    {
        digitalWrite(2,HIGH);
    }
    ++x;
}
```

6

0.10 Werkwijze

- Ontwerp precies
 - maak een stroomschema
- Werk precies:
 - sluit het stroomschema juist aan
 - laat het stroomschema met de software overeenkomen
- Denk precies
 - bedenk wat je verwacht
 - bedenk wat je aanneemt
- Als je dit doet, kun je alles

0.7 Wat is je programma?

0.8 Wat had je verwacht? Wat zie je gebeuren?

- 'Dat er dingen gebeurden'
- 'Dat als ik op de knop druk, er een lampje elke second aan en uit gaat, de pieper gaat piepen met afwisselend elke twee seconde een hoge en een lage toon, het LCD scherm met een snelheid van een letter per seconde als een lichtkrantje het Wilhelmus toont ... camera ... robotarmen ... koude kernfusie
- 'dat het LEDje om de seconde aan en uit gaat'
- [andere citaten van vage verwachtingen]

0.9 Wat had je verwacht? Wat zie je gebeuren?

- 'als ik de drukknop indruk, dat dit bij de Arduino binnenkomt'
- 'dat er elke seconde afwisselend wel en geen spanning op het LEDje staat'
- Dit zijn verwachtingen die wijzen richting de oplossing
- Elke verwachting omvat een aanname, die blijkbaar onjuist is gebleken