

Documento de Casos de Uso

Unidade de Operações Aritméticas

Universidade Estadual de Feira de Santana

Build 2.0a

Histórico de Revisões

Date	Descrição	Autor(s)
18/08/2014	Document conception	joaocarlos

SUMÁRIO

1	Intr	Introdução			
	1.1	Objetivo	3		
	1.2	Visão Geral do Documento	3		
	1.3	Representação Simbólica	3		
	1.4	Definições, Acrônimos e Abreviações	4		
2		res do Sistema os de Usos	4		
J			_		
	3.1	[UC 001] Unidade de Processamento	4		
		3.1.1 Fluxo Principal de Eventos	6		
		3.1.2 Fluxo Secundário: Alternativo	6		
	3.2	[UC 002] Interface de Comunidação	6		
		3.2.1 Fluxo Principal de Eventos	7		

1. Introdução

1.1. Objetivo

O objetivo desse documento é especificar os casos de uso do projeto Unidade de Operações Aritméticas. O documento contempla as seguintes informações: descrição dos Atores envolvidos no processo; definição dos fluxos de eventos principal e secundário; lista de requisitos essenciais, funcionais e não funcionais; estabelecimento de pré-condições e pós-condições.

1.2. Visão Geral do Documento

- Sessão 2: lista todos os possíveis atores do sistema.
- Sessão 3: relata a lista dos casos de uso do projeto.

1.3. Representação Simbólica

A Figura 1 ilustra a simbologia utilizada para representar operações que devem ser realizadas pelo sistema. A Figura 2 ilustra as duas simbologias utilizadas para representar os Atores do sistema. Um ator, dentro do escopo desta descrição, pode ser identificado como um módulo *top level*, ou como um elemento de entrada e saída (botões, sensores, displays, etc).

Figura 1: Exemplo de Caso de Uso.

A simbologia usual para representação de um Ator é apresentada na Figura 2a, no entanto, para representar módulos incorporados que outrora deveriam utilizar a mesma simbologia, utiliza-se a representação ilustrada nas Figuras 2b e 2c, definida por convenção. Este elemento, em geral, está associado aos módulos do sistema, ou IP-cores que de terceiros incorporados ao mesmo. Esta simbologia ainda foi divida, tendo em vista representar instâncias únicas (Figura 2c), ou múltiplas (Figura 2b) de um determinado componente.

Figura 2: Simbologia utilizada na implementação dos Casos de Uso.

O projetista responsável por interpretar os diagramas não deve confundir-se no momento de interpretar as simbologias de atores. A representação alternativa, não implica que o módulo será instanciado no subsistema em questão, mas sim que os recursos providos por este *core* são necessários para garantir o seu funcionamento.

1.4. Definições, Acrônimos e Abreviações

Termo	Descrição
UC	Caso de Uso
SF	Fluxo Secundário
FR	Requisito Funcional
LED	Light Emitter Diode
IF	Interface

2. Atores do Sistema

Controle IF - Entidade responsável por controlar os pacotes de entrada de dados.

Controle – Unidade que controla a execução das operações.

LED de overflow – Interface de saída que aciona o LED de overflow.

LEDs de dados: – Interface de saída que aciona os sinais de dados.

3. Casos de Usos

3.1. [UC 001] Unidade de Processamento

A **Unidade de Processamento** é responsável por realizar as operações aritméticas e lógicas, de acordo com o código de entrada.

Atores

Controle – Unidade que controla a execução das operações.

LED de overflow - Interface de saída que aciona o LED de overflow.

LEDs de dados: – Interface de saída que aciona os sinais de dados.

Pré-condições

- Atender aos requisitos funcionais [FR7-12];
- Codificação das operações deve ser definida;
- Identificação das unidades sequenciais e combinacionais;

Pós-condições

- O módulo deve ser capaz de detectar overflow aritmético;
- O resultado deve estar presente nas saídas correspondentes aos pinos de dados usando uma codificação binária;

Diagrama de Caso de Uso

- 3.1.1. Fluxo Principal de Eventos
 - P1. Decodificar o indicador operação;
 - P2. Realizar operação aritmética ou lógica;
 - P3. Armazenar o resultado em um registrador;
- 3.1.2. Fluxo Secundário: Alternativo

[SF1] Valor do resultado excede o suportado

1. Habilitar sinal de overflow;

3.2. [UC 002] Interface de Comunicação

A **Interface de Comunicação** é responsável por estabelecer um mecanismo de interfaceamento entre as unidades de processamento e comunicação.

Atores

Controle IF – Entidade responsável por controlar os pacotes de entrada de dados.

Controle – Unidade que controla a execução das operações.

Pré-condições

Atender aos requisitos [FR2-4];

Pós-condições

• O módulo deve transmitir as informações recebidas de forma paralela;

Diagrama de Caso de Uso

3.2.1. Fluxo Principal de Eventos

- P1. Realizar leitura do código da operação;
- P2. Realizar leitura do primeiro operando;
- P3. Realizar leitura do segundo operando;
- P4. Disponibilizar dados na saída para o Controle;