齋藤正彦・線型代数入門解答集

なまちゃん

2023年12月4日

		p40:問	15
目次		p41:問1	16
		p42:問 1	17
	•	p52:問	18
目次	2	p62:問1	18
第1章	2	p62:問 2	18
p5:問 1	2	第 2 章・章末問題	19
p5:問 2	2	p70:1-イ)	19
p7:問-(上)	3	р70:1-ロ)	20
p7:問-(下)	3	p71:3-イ)	21
p8:問1	4	p71:7	22
p8:問 2	4		
p10:問1	5	│ 附録 Ⅲ	23
p10:問2	5	p249:問	23
p11:問1	6		
p12:問 2	6		
p12:問 3	6		
p13:問 1	7		
p18:問	8		
p19:問 1	9		
p19:問 2	9		
p19:問 1-(下)	9		
p19:問 2-(下)	10		
p22:問 1	11		
第1章・章末問題	11		
p29-30:2	11		
p29-30:3	12		
p29-30:7-(1)	12		
p29-30:8	13		
p29-30:9	13		
p29-30:10	14		
第2章	15		
p34:問 1	15		

第1章

p5:問1

証明. 線分 PQ の中点を M とする. このとき,

$$\overrightarrow{\mathrm{OM}} = \overrightarrow{\mathrm{OP}} + \overrightarrow{\mathrm{PM}}$$

$$= a + \frac{b - a}{2}$$

$$= \frac{a + b}{2}$$

である. □

p5:問2

証明. 三角形 PQR の重心を G, PQ の中点を N とする. G は線分 RN を 2: 1 に内分する点なので,

$$\overrightarrow{OG} = \overrightarrow{OR} + \frac{2}{3}\overrightarrow{RN}$$

$$= c + \frac{3}{2}\left(\frac{a+b}{2} - c\right)$$

$$= \frac{a+b+c}{3}$$

である 🗆

p7:問-(上)

求めるベクトルを、 $\boldsymbol{x}=(x,\ y,\ z)\ (x^2+y^2+z^2=1)$ とおく。このとき、内積の定義により、

$$x \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = x + y + z = 1 \cdot \sqrt{3} \cdot \cos \frac{\pi}{6} = \frac{3}{2}$$

$$x \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = x + y + z = 1 \cdot \sqrt{3} \cdot \cos \frac{\pi}{6} = \frac{3}{2}$$
$$x \cdot \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = x + y + 4z = 1 \cdot 3\sqrt{2} \cdot \cos \frac{\pi}{4} = 3$$
るの式から、

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{2 \pm \sqrt{2}}{4} \\ \frac{2 \mp \sqrt{2}}{4} \\ \frac{1}{2} \end{pmatrix} \quad (複号同順)$$

である.

p7:問-(下)

[1.4] の結果を利用する.

求める三角形の面積をSとし.

$$a = \overline{P_1P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1), \quad b = \overline{P_1P_3} = (x_3 - x_1, y_3 - y_1, z_3 - z_1)$$

$$S = \frac{1}{2} \sqrt{\|\overline{\mathbf{P}_{1}}\mathbf{P}_{2}^{2}\|^{2} \|\overline{\mathbf{P}_{1}}\mathbf{P}_{3}^{2}\|^{2} - (\overline{\mathbf{P}_{1}}\mathbf{P}_{2}^{2} \cdot \overline{\mathbf{P}_{1}}\mathbf{P}_{3}^{2})^{2}}$$

$$= \frac{1}{2} \sqrt{\|\boldsymbol{a}\|^{2} \|\boldsymbol{b}\|^{2} - (\boldsymbol{a} \cdot \boldsymbol{b})^{2}}$$

$$= \frac{1}{2} \{ [(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + (z_{2} - z_{1})^{2}] [(x_{3} - x_{1})^{2} + (y_{3} - y_{1})^{2} + (z_{3} - z_{1})^{2}]$$

$$- [(x_{2} - x_{1})(x_{3} - x_{1}) + (y_{2} - y_{1})(y_{3} - y_{1}) + (z_{2} - z_{1})(z_{3} - z_{1})]^{2} \}^{\frac{1}{2}}$$

である,

p8:問1

イ 与えられた直線を l とする。l の方程式に x=-2 を代入すると,y=2 となるため,l は点 (-2,2) を通る。また,l の法線ベクトルのひとつは, $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ なので,l の方向ベクトルのひとつは, $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ である。よって,l のベクトル表示のひとつは, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} + t \begin{pmatrix} -3 \\ 2 \end{pmatrix} (-\infty < t < \infty)$ である.

口 与えられた直線を l' とする。l' の方向ベクトルのひとつは, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ である。また,l' は点 (3,0) を通るので,そのベクトル表示のひとつは, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \end{pmatrix} \; (-\infty < t < \infty)$ となる。

p8:問2

イ 与えられたベクトル表示から.

$$\begin{cases} x = 1 + 2t \\ y = -1 + t \end{cases}$$

であるから,

$$\begin{cases} t = \frac{x-1}{2} \\ t = y+1 \end{cases}$$

である. これからtを消去すると,

$$\frac{x-1}{2} = y+1$$

$$\therefore x-2y-3 = 0$$

である.

口 点 (-1,-2) を通り、x 軸に平行な直線を表すから、y=-2 が求める直線の方程式である.

p10:問1

$$\begin{cases} x + 2y + 3z = 1\\ 3x + 2y + z = -1 \end{cases}$$

$$-2x + 2z = 2$$

$$\therefore -x + z = 1$$

である.このとき, $\binom{x}{z}=\binom{1}{2}$, $\binom{2}{3}$ はこれを満たす.このときの y の値を計算すると,それぞれ -3, -5 なので、結局、与えられた直線は 2 点 (1, -3, 2), (2, -5, 3) を通る。すなわち、この直線の方向べ

$$\begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

である。したがって求めるベクトル表示のひとつは、直線上の任意の位置ベクトルをxとすると、

$$x \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

と表せる.

p10:問2

証明. $t \in 0 \le t \le 1$ をみたす実数、線分 P_1P_2 上の任意の点の位置ベクトルを x とする.このとき、

$$x = \overrightarrow{\mathrm{OP}}_1 + t \overrightarrow{\mathrm{P}}_1 \overrightarrow{\mathrm{P}}_2$$
$$= x_1 + t(x_2 - x_1)$$
$$= (1 - t)x_1 + tx_2$$

である. $1-t=t_1,\;t=t_2$ と改めておくと,t の定め方から $t_1\geq 0,\;t_2\geq 0$ であり, $m{x}=t_1m{x}_1+t_2m{x}_2,\quad t_1+t_2=1$

$$x = t_1 x_1 + t_2 x_2, \quad t_1 + t_2 = 1$$

となり、これが証明すべきことであった。 □

p11:問1

与えられた平面を(S)とおく。(S)は3点(-1,0,1),(2,0,-1),(0,-1,0)を通るので、

$$m{x}_1 = egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}, \quad m{x}_2 = egin{pmatrix} 2 \ 0 \ -1 \end{pmatrix} \quad m{x}_3 = egin{pmatrix} 0 \ -1 \ 0 \end{pmatrix}$$

と改めておくと,

$$egin{aligned} oldsymbol{x}_2 - oldsymbol{x}_1 = egin{pmatrix} 3 \ 0 \ -1 \end{pmatrix}, \quad oldsymbol{x}_3 - oldsymbol{x}_1 = egin{pmatrix} 1 \ -1 \ -1 \end{pmatrix} \end{aligned}$$

となり, $oldsymbol{x}_2-oldsymbol{x}_1$ と $oldsymbol{x}_3-oldsymbol{x}_1$ は線型独立なので,求めるベクトル表示のひとつは,

$$(S) \colon \boldsymbol{x} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \ (-\infty < t, \ s < \infty)$$

p12:問2

$$\begin{cases} x = 1 + t - s \\ y = 2 - t - 2s \\ z = 0 + 2t + s \end{cases}$$

$$x - y - z = -1$$

これが求める直線の方程式である.

p12:問3

$$\overrightarrow{\mathrm{OP}_1} = \boldsymbol{x}_1, \quad \overrightarrow{\mathrm{OP}_2} = \boldsymbol{x}_2, \quad \overrightarrow{\mathrm{OP}_3} = \boldsymbol{x}_3$$

とする.このとき,三角形 $P_1P_2P_3$ 上の任意の点の位置ベクトルを x, s,t を $0 \le s,t \le 1$ を満たす実数と

$$\boldsymbol{x} = \boldsymbol{x}_1 + s(\boldsymbol{x}_2 - \boldsymbol{x}_1) + t(\boldsymbol{x}_3 - \boldsymbol{x}_1)$$

$$\therefore \quad \boldsymbol{x} = (1 - s - t)\boldsymbol{x}_1 + s\boldsymbol{x}_2 + t\boldsymbol{x}_3$$

 $m{x} = m{x}_1 + s(m{x}_2 - m{x}_1) + t(m{x}_3 - m{x}_1)$ $\therefore \quad m{x} = (1-s-t)m{x}_1 + sm{x}_2 + tm{x}_3$ となり、 $1-s-t=t_1, \ s=t_2, \ t=t_3$ と改めて書き直すと、s,t の定め方より、 $0 \le t_1, \ t_2, \ t_3 \le 1$ であり $m{x} = t_1m{x}_1 + t_2m{x}_2 + t_3m{x}_3, \quad t_1 + t_2 + t_3 = 1$

$$x = t_1x_1 + t_2x_2 + t_3x_3, \quad t_1 + t_2 + t_3 = 1$$

となる。これが証明すべきことであった。 □

p13:問1

問1:

 (S_1) , (S_2) の法線ベクトルをそれぞれ \boldsymbol{x}_1 , \boldsymbol{x}_2 とおくと,

$$m{x}_1 = egin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \ m{x}_2 = egin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}$$

 $m{x}_1 = egin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \ m{x}_2 = egin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}$ である。ゆえに,交角を heta $(0 \le heta \le \frac{\pi}{2})$ とすると, $\cos \theta = \frac{m{x}_1 \cdot m{x}_2}{\|m{x}_1\| \|m{x}_2\|} = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}}$ であるから, $0 \le heta \le \frac{\pi}{2}$ より $\theta = \frac{\pi}{4}$ である。

$$\cos \theta = \frac{x_1 \cdot x_2}{\|x_1\| \|x_2\|} = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}}$$

p18:問

証明. A, B, C が 2×2 行列の場合を証明する.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}, \ C = \begin{pmatrix} i & j \\ k & l \end{pmatrix}$$

とし、A, B, C の成分はすべて複素数であるとする。このとき、

$$(AB)C = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} \begin{pmatrix} i & j \\ k & l \end{pmatrix}$$

$$= \begin{pmatrix} aei + bgi + afk + bhk & aej + bgj + afl + bhl \\ cei + dgi + cfk + dhk & cej + dgj + cfl + dhl \end{pmatrix}$$

となる. 他方

$$\begin{split} A(BC) &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} ei + fk & ej + fl \\ gi + hk & gj + hl \end{pmatrix} \\ &= \begin{pmatrix} aei + afk + bgi + bhk & aej + afl + bgj + bhl \\ cei + cfk + dgi + dhk & cej + cfl + dgi + dhl \end{pmatrix} \end{split}$$

となり、たしかに (AB)C = A(BC) である. \square

p19:問1-(上)

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$

証明. $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$ となり,これは明らかに線型変換である.対応する行列は, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ である. \square

p19:問2-(上)

証明. 式 (15) より, 2×2 行列 A, B とベクトル x について,

$$T_B(T_A(\boldsymbol{x})) = B(A\boldsymbol{x})$$

= $(BA)\boldsymbol{x}$
= $T_{BA}(\boldsymbol{x})$

である. これが証明すべきことであった. □

p19:問1-(下)

$$x = \begin{pmatrix} x \\ y \end{pmatrix}$$
 とおくと、(17) 式より、
$$Tx = \frac{ax + by}{a^2 + b^2}a$$

$$= \begin{pmatrix} a^2x + aby \\ abx + b^2y \end{pmatrix}$$

$$= \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix} x$$
であるから、
$$T = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}$$

$$T = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}$$

p19:問2-(下)

イ 証明.
$$a=\begin{pmatrix}a_1\\a_2\end{pmatrix}$$
, $b=\begin{pmatrix}b_1\\b_2\end{pmatrix}$, $a\neq \mathbf{0}$ かつ $b\neq \mathbf{0}$ とする. このとき,

$$Tx = \frac{(a, x)}{(a, a)}a$$

$$= \frac{a_1x + a_2y}{a_1^2 + a_2^2} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

$$= \frac{1}{a_1^2 + a_2^2} \begin{pmatrix} a_1^2 & a_1a_2 \\ a_1a_2 & a_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

となる。つまり,
$$T=rac{1}{{a_1}^2+{a_2}^2}egin{pmatrix} {a_1}^2 & {a_1}{a_2} \\ {a_1}{a_2} & {a_2}^2 \end{pmatrix}$$
である。このとき,

$$\begin{split} T^2 &= \frac{1}{(a_1{}^2 + a_2{}^2)^2} \begin{pmatrix} a_1{}^4 + a_1{}^2 a_2{}^2 & a_1{}^3 a_2 + a_1 a_2{}^3 \\ a_1{}^3 a_2 + a_1 a_2{}^3 & a_2{}^4 + a_1{}^2 a_2{}^2 \end{pmatrix} \\ &= \frac{1}{a_1{}^2 + a_2{}^2} \begin{pmatrix} a_1{}^2 & a_1 a_2 \\ a_1 a_2 & a_2{}^2 \end{pmatrix} = T \end{split}$$

となり、 $T^2=T$ である。 $S^2=S$ も同様にして示される。 \square **ロ 証明**. $m{a}=\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ 、 $m{b}=\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ とする。このとき, $m{a}$ と $m{b}$ が直交することから,

$$\mathbf{a} \cdot \mathbf{b} = 0$$

$$\therefore a_1 b_1 + a_2 b_2 = 0$$

である. ここで,

$$TS = \frac{1}{(a_1^2 + a_2^2)} \begin{pmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{pmatrix} \frac{1}{(b_1^2 + b_2^2)} \begin{pmatrix} b_1^2 & b_1 b_2 \\ b_1 b_2 & b_2^2 \end{pmatrix}$$
$$= \frac{a_1 b_1 + a_2 b_2}{(a_1^2 + a_2^2)(b_1^2 + b_2^2)} \begin{pmatrix} a_1 b_1 & a_1 b_2 \\ a_2 b_1 & a_2 b_2 \end{pmatrix} = 0$$
$$(\because a_1 b_1 + a_2 b_2 = 0)$$

である.同様に ST を計算すると, ST=0 であることもわかり,これで TS=ST=0 が証明された. \square

ハ 証明. イ), ロ) の文字や結論を用いると,

$$\begin{split} T\boldsymbol{x} + S\boldsymbol{x} &= \frac{1}{{a_1}^2 + {a_2}^2} \begin{pmatrix} {a_1}^2 & {a_1}{a_2} \\ {a_1}{a_2} & {a_2}^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \frac{1}{{b_1}^2 + {b_2}^2} \begin{pmatrix} {b_1}^2 & {b_1}{b_2} \\ {b_1}{b_2} & {b_2}^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \frac{1}{({a_1}^2 + {a_2}^2)({b_1}^2 + {b_2}^2)} \begin{pmatrix} ({a_1}^2 + {a_2}^2)({b_1}^2 + {b_2}^2) & ({a_1}^2 + {a_2}^2)({b_1}^2 + {b_2}^2) \\ ({a_1}^2 + {a_2}^2)({b_1}^2 + {b_2}^2) & ({a_1}^2 + {a_2}^2)({b_1}^2 + {b_2}^2) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \begin{pmatrix} x \\ y \end{pmatrix} = \boldsymbol{x} \end{split}$$

となる。これが証明すべきことであった。 □

p22:問1

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ -z \end{pmatrix}$$

となり、これはy軸に関する対象点に移す変換を表す。

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \cos \alpha - z \sin \alpha \\ y \sin \alpha + z \cos \alpha \end{pmatrix}$$

となり、これはx軸まわりに角 α だけ回転する変換を表す。

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ z \\ x \end{pmatrix}$$

第1章・章末問題

p29-30:2

証明. $2 ext{ in } P_1$, P_2 を通る直線の方程式を ax + by + 1 = 0 (ただし (a,b) = 0) とおく. このとき,

$$\begin{cases} ax + by + c = 0 \\ ax_1 + by_1 + c = 0 \\ ax_2 + by_2 + c = 0 \end{cases}$$

が成立する. すなわちこれは

$$\begin{pmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{0}$$

をみたす。これをa, b, cについての連立方程式とみたとき、与条件により自明でない解があり、

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

が成立する. 転置行列の行列式はもとの行列の行列式に等しいので, 行列式の交代性なども用いて,

$$\begin{vmatrix} 1 & 1 & 1 \\ x & x_1 & x_2 \\ y & y_1 & y_2 \end{vmatrix} = 0$$

を得る. これが証明すべきことであった. □

p29-30:3

証明. 点を以下の順で移動させる変換を考える.

- (1) 原点中心に $-\theta$ 回転させる.
- (2) x 軸に関して対称移動させる.
- (3) 原点中心に θ 回転させる.

ここで、(1) から(3) までの変換を表す行列をそれぞれ $R_{-\theta}$ 、 A_x 、 R_{θ} とすると.

$$R_{-\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix},$$

$$A_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

となる. よって, この変換を表す行列は

$$R_{\theta}A_{x}R_{-\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos^{2}\theta - \sin^{2}\theta & 2\sin\theta\cos\theta \\ 2\sin\theta\cos\theta & \sin^{2}\theta - \cos^{2}\theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$

である. □

p29-30:7-(1)

a, b, c が張る平行六面体の体積は,

$$|\det(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})|$$

で与えられる.

一方, この平行六面体の O, B, C を含む面の面積は,

$$\| \boldsymbol{b} \times \boldsymbol{c} \|$$

で与えられる.

以上の考察により、求める長さは、

$$\frac{|\mathrm{det}(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})|}{\|\boldsymbol{b}\times\boldsymbol{c}\|}$$

p29-30:8

証明.

$$m{a} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}, \quad m{b} = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}, \quad m{c} = egin{pmatrix} c_1 \ c_2 \ c_3 \end{pmatrix}$$

とする. このとき,

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$

$$= \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 & a_1c_1 + a_2c_2 + a_3c_3 \\ b_1a_1 + b_2a_2 + b_3a_3 & b_1^2 + b_2^2 + b_3^2 & b_1c_1 + b_2c_2 + b_3c_3 \\ c_1a_1 + c_2a_2 + c_3a_3 & c_1b_1 + c_2b_2 + c_3b_3 & c_1^2 + c_2^2 + c_3^2 \end{pmatrix}$$

$$= \begin{pmatrix} (\boldsymbol{a}, \boldsymbol{a}) & (\boldsymbol{a}, \boldsymbol{b}) & (\boldsymbol{a}, \boldsymbol{c}) \\ (\boldsymbol{b}, \boldsymbol{a}) & (\boldsymbol{b}, \boldsymbol{b}) & (\boldsymbol{b}, \boldsymbol{c}) \\ (\boldsymbol{c}, \boldsymbol{a}) & (\boldsymbol{c}, \boldsymbol{b}) & (\boldsymbol{c}, \boldsymbol{a}) \end{pmatrix}$$

である.

一方,

$$\det(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$= c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} + c_2 \begin{vmatrix} a_3 & b_3 \\ a_1 & b_1 \end{vmatrix} + c_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

$$= c_1(a_2b_3 - b_2a_3) + c_2(a_3b_1 - b_3a_1) + c_3(a_1b_2 - b_1a_2)$$

$$= a_3(b_1c_2 - b_2c_1) + b_3(c_1a_2 - c_2a_1) + c_3(a_1b_2 - b_1a_2)$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

であるから,これと行列式の積の性質により,

$$egin{array}{cccc} \left| egin{array}{cccc} (oldsymbol{a},oldsymbol{a}) & (oldsymbol{a},oldsymbol{b}) & (oldsymbol{a},oldsymbol{c}) \ (oldsymbol{c},oldsymbol{a}) & (oldsymbol{c},oldsymbol{b}) & (oldsymbol{b},oldsymbol{c}) \ (oldsymbol{c},oldsymbol{a}) & (oldsymbol{c},oldsymbol{a}) \end{array}
ight| = \det(oldsymbol{a},oldsymbol{b},oldsymbol{c})^2$$

である. □

p29-30:9

 $\det(x,y,z)$ は、x、y、z の張る平行六面体の体積に符号をつけたものに等しい。 与条件より、 $\det(x,y,z)$ が最大になるのは、x. y、z の張る図形が立方体のときであり、そのとき

$$\det(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 1$$

である.これからただちに $\det(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})$ の最小値が -1 であることも従う. 以上により, $\det(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})$ の最大値は 1,最小値は -1 である.

p29-30:10

イ 証明. 単位ベクトル e_1 , e_2 , e_3 を適当にとり,

$$a = \alpha_1 e_1, b = \beta_1 e_1 + \beta_2 e_2, c = \gamma_1 e_1 + \gamma_2 e_2 + \gamma_3 e_3$$

とおく. このとき,

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \alpha_1 \beta_2 \mathbf{e}_3 \times (\gamma_1 \mathbf{e}_1 + \gamma_2 \mathbf{e}_2 + \gamma_3 \mathbf{e}_3)$$
$$= \alpha_1 \beta_2 \gamma_1 \mathbf{e}_2 - \alpha_1 \beta_2 \gamma_2 \mathbf{e}_1$$
$$= -(\mathbf{b}, \ \mathbf{c}) \mathbf{a} + (\mathbf{a}, \ \mathbf{c}) \mathbf{b}$$

であり、これが証明すべきことであった. □

第2章

p34:問1

証明. 後半二つの主張は明らか。また、二つ目の主張は一つ目の主張と同様にして示すことができるので、一つ目のみ示すことにする。

 $A=(a_{pq})$ を $k\times l$ 行列, $B=(b_{qr})$, $C=(c_{qr})$ を $l\times m$ 行列とする.示したい式の両辺がともに定義され,ともに $k\times m$ 行列であることはよい.行列 B+C の (q,r) 成分は $b_{qr}+c_{qr}$ であるから,左辺の (p,r) 成分は,

$$\sum_{q=1}^{l} a_{pq} (b_{qr} + c_{qr}) = \sum_{q=1}^{l} a_{pq} b_{qr} + \sum_{q=1}^{l} a_{pq} c_{qr}$$

とかける。この等号の右辺は AB の (p,r) 成分と AC の (p,r) 成分の和である。これより、主張が示された。 \Box

p40:問

1

$$A_{11} = \begin{pmatrix} 1 & -1 \\ 0 & -2 \end{pmatrix}, \quad A_{22} = \begin{pmatrix} -2 & 3 \\ 1 & 1 \end{pmatrix}, \quad B_{11} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \quad B_{22} = \begin{pmatrix} 1 & 1 \\ 2 & -3 \end{pmatrix}$$

とおくと,

(与式) =
$$\begin{pmatrix} A_{11} & O \\ O & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & O \\ O & B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11}B_{11} & O \\ O & A_{22}B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 4 & -11 \\ 0 & 0 & 3 & -2 \end{pmatrix}$$

である.

p41:問1

(1)
$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$
 とする. このとき,

$$AX = \begin{pmatrix} x_{11} + 2x_{21} & x_{12} + 2x_{22} \\ 2x_{11} + 4x_{21} & 2x_{12} + 4x_{22} \end{pmatrix}$$

となり、これが E_2 と等しくなるためには

$$\begin{cases} x_{11} + 2x_{21} = 1\\ x_{12} + 2x_{22} = 0\\ 2x_{11} + 4x_{21} = 0\\ 2x_{12} + 4x_{22} = 1 \end{cases}$$

となることが必要かつ十分であるが、これを満たす $x_{11},x_{12},x_{21},x_{22}\in\mathbb{C}$ は存在しない。よって前半の主張が示された。

後半について示す.
$$Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$$
 とする.このとき,

$$YA = \begin{pmatrix} y_{11} + 2y_{12} & 2y_{11} + 4y_{12} \\ y_{21} + 2y_{22} & 2y_{21} + 4y_{22} \end{pmatrix}$$

となり、これが E_2 と等しくなるためには

$$\begin{cases} y_{11} + 2y_{12} = 1\\ 2y_{11} + 4y_{12} = 0\\ y_{21} + 2y_{22} = 0\\ 2y_{21} + 4y_{22} = 1 \end{cases}$$

となることが必要かつ十分であるが、これを満たす $y_{11},y_{12},y_{21},y_{22}\in\mathbb{C}$ は存在しない。よって後半の主張も示された。 \Box

(2) X,Y を (1) で定義したものとする。このとき、

$$AX = \begin{pmatrix} x_{11} + 2x_{21} & x_{12} + 2x_{22} \\ 0 & 0 \end{pmatrix}$$

となり、これがBと等しくならないことは明らか。 後半について、

$$YA = \begin{pmatrix} x_{11} & 2x_{11} \\ x_{21} & 2x_{21} \end{pmatrix}$$

となり、これが B と等しくなるためには $x_{11}=1$ 、 $x_{21}=2$ となることが必要かつ十分であるが、 x_{12} 、 x_{22} については任意の複素数である。以上の議論により、このような Y は無限に存在する。 \Box

(3) A の第 k 列の成分が全て 0 であるとする。ただしここで $1 \le k \le n, \ k \in \mathbb{N}$ であるとする。 XA = E をみたす X が存在すると仮定する。このとき,X は明らかに $n \times n$ 行列であり,積 XA は定義される。いま $X = (x_{jk}), \ A = (a_{kj}), \ 1 \le j, k \le n$ と表す。このとき,

$$(XA \mathcal{O}(j,j)$$
 成分) = $\sum_{k=1}^{n} x_{jk} a_{kj} = 0$

となり、これは XA = E に矛盾する。よってこのような X は存在しないことが示された。 \square

p42:問1

(1) まず,

$$\overline{A} \ \overline{A^{-1}} = \overline{AA^{-1}} = E, \quad \overline{A^{-1}} \ \overline{A} = \overline{A^{-1}A} = E$$

より、 \overline{A} は正則で、逆行列は $\overline{A^{-1}}$ である。 さらに、

$${}^{t}A^{t}A^{-1} = {}^{t}(A^{-1}A) = E, \quad {}^{t}A^{-1}A = {}^{t}(AA^{-1}) = E$$

であるから、 tA は正則であり、逆行列は ${}^tA^{-1}$ である.

(2)

$$A := \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad A' := \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$

とする. このとき,

$$AA' = \begin{pmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{pmatrix}$$

である. AA' = E となる条件は、x, y, z, w についてのふたつの連立方程式

$$\begin{cases} ax + bz = 1 \\ cx + dz = 0 \end{cases}, \quad \begin{cases} ay + bw = 0 \\ cy + dw = 1 \end{cases}$$

が解を持つことで、その条件は $ad-bc \neq 0$ である。そのときの解は、

$$(x,y,z,w)=(\frac{d}{ad-bc},-\frac{b}{ad-bc},-\frac{c}{ad-bc},\frac{a}{ad-bc})$$

である.これを用いて A'A を計算すると,A'A=E となり. たしかに A' は A の逆行列である.以上の議論により, $ad-bc\neq 0$ となることが必要十分条件である.

p52:問

第 1 行の (-2) 倍,第 1 行の 2 倍をそれぞれ第 2 行,第 3 行に加える
$$\begin{pmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 2 & 6 & 3 & 0 & 1 & 0 \\ -2 & -5 & -2 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{\$1 行の (-2) 倍,第 1 行の 2 倍をそれぞれ第 2 行,第 3 行に加える }{\begin{pmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & 0 & -1 & -2 & 1 & 0 \\ 0 & 1 & 2 & 2 & 0 & 1 \end{pmatrix} }{\begin{pmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 0 & 1 \\ 0 & 0 & -1 & -2 & 1 & 0 \end{pmatrix} }$$

$$\frac{\$2 行と 第 3 行を交換する}{\begin{pmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 0 & 1 \\ 0 & 0 & -1 & -2 & 1 & 0 \end{pmatrix} }{\begin{pmatrix} 1 & 0 & 0 & 3 & -4 & -3 \\ 0 & 1 & 2 & 2 & 0 & 1 \\ 0 & 0 & -1 & -2 & 1 & 0 \end{pmatrix} }$$

$$\frac{\$3 行の 2 倍を 第 2 行に加え,第 3 行を (-1) 倍する}{\begin{pmatrix} 1 & 0 & 0 & 3 & -4 & -3 \\ 0 & 1 & 0 & -2 & 2 & 1 \\ 0 & 0 & 1 & 2 & -1 & 0 \end{pmatrix} }{\begin{pmatrix} 1 & 0 & 0 & 3 & -4 & -3 \\ 0 & 1 & 0 & -2 & 2 & 1 \\ 0 & 0 & 1 & 2 & -1 & 0 \end{pmatrix} }$$

$$7 , 求める 逆行列は$$

よって、求める逆行列は

$$\begin{pmatrix} 3 & -4 & -3 \\ -2 & 2 & 1 \\ 2 & -1 & 0 \end{pmatrix}$$

である.

p62:問1

証明. 定義に従って計算すると,

$$\begin{aligned} \|x + y\|^2 + \|x - y\|^2 &= (x + y, x + y) + (x - y, x - y) \\ &= (x, x) + (x, y) + (y, x) + (y, y) + (x, x) - (x, y) - (y, x) + (y, y) \\ &= 2((x, x) + (y, y)) \\ &= 2(\|x\|^2 + \|y\|^2) \end{aligned}$$

となり、これが証明すべきことであった。

p62:問2

証明.

$$\|x + y\|^2 = (x, x) + (x, y) + (y, x) + (y, y)$$

である。ここで、 $x \in y$ が直交することから、

$$(\boldsymbol{x}, \boldsymbol{y}) + (\boldsymbol{y}, \boldsymbol{x}) = (\boldsymbol{x}, \boldsymbol{y}) + \overline{(\boldsymbol{x}, \boldsymbol{y})} = 0$$

であり、これを用いると

$$\|x + y\|^2 = (x, x) + (y, y) = \|x\|^2 + \|y\|^2$$

となる. $oldsymbol{x}, oldsymbol{y}$ がともに実ベクトルのときは $(oldsymbol{x}, oldsymbol{y}) = 0$ であるから確かに逆が成り立つが,たとえば $x = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $y = \begin{pmatrix} 2i \\ 0 \end{pmatrix}$ とすれば、等式は成り立つが x と y は直交しないため、逆は成り立たない。 \Box

第2章・章末問題

p70:1-イ)

よって, 求める逆行列は,

$$\begin{pmatrix} 4 & 18 & -16 & -3 \\ 0 & -1 & 1 & 1 \\ 1 & 3 & -3 & 0 \\ 1 & 6 & -5 & -1 \end{pmatrix}$$

である.

p70:1-□)

よって, 求める逆行列は

$$\begin{pmatrix} -3 & -1 & 1 & -1 \\ -3 & -1 & 0 & 1 \\ -4 & -1 & 1 & 0 \\ -10 & -3 & 1 & 1 \end{pmatrix}$$

である.

p71:3-イ)

$$\begin{pmatrix} 1 & 3 & 2 & | 1 & 0 & 0 \\ -1 & -2 & -1 & | 0 & 1 & 0 \\ 2 & 4 & 3 & | 0 & 0 & 1 \end{pmatrix}$$

$$\frac{\hat{\pi} 1 \text{ 列を掃き出す}}{} \begin{pmatrix} 1 & 3 & 2 & | 1 & 0 & 0 \\ 0 & 1 & 1 & | 1 & 1 & 0 \\ 0 & -2 & -1 & | -2 & 0 & 1 \end{pmatrix}$$

$$\frac{\hat{\pi} 2 \text{ 列を掃き出す}}{} \begin{pmatrix} 1 & 0 & -1 & | -2 & -3 & 0 \\ 0 & 1 & 1 & | 1 & 1 & 0 \\ 0 & 0 & 1 & | 0 & 2 & 1 \end{pmatrix}$$

$$\frac{\hat{\pi} 3 \text{ 列を掃き出す}}{} \begin{pmatrix} 1 & 0 & 0 & | -2 & -1 & 1 \\ 0 & 1 & 0 & | 1 & -1 & -1 \\ 0 & 0 & 1 & | 0 & 2 & 1 \end{pmatrix}$$

である. ゆえに

$$P^{-1} = \begin{pmatrix} -2 & -1 & 1\\ 1 & -1 & -1\\ 0 & 2 & 1 \end{pmatrix}$$

である. だから

$$P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

p71:7

証明. $X=(x_{ij}), Y=(y_{ij})$ とする.ここで、XY O(i,i) 成分は $\sum_{j=1}^n x_{ij}y_{ji}$ であるから、

$$\operatorname{tr}(XY) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} x_{ij} y_{ji} \right)$$

となる. YX については、同様の議論により、

$$\operatorname{tr}(YX) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} y_{ij} x_{ji} \right)$$
$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} x_{ji} y_{ij} \right)$$

である.ここで,iとjをおきかえれば,

$$\operatorname{tr}(YX) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} x_{ij} y_{ji} \right) \tag{1}$$

となる. これより,

$$tr(XY) = tr(YX) \tag{2}$$

を得て、これとトレースの線型性により $\operatorname{tr}(XY-YX)=0$ であるが、 $\operatorname{tr}(E_n)=n\neq 0$ であるため、これ は矛盾である.

ゆえに、 $XY-YX=E_n$ となる n 次行列 X, Y は存在しないことが示された。 \square

附録Ⅲ

p249:問

イ 証明. 体 K の単位元について, 0 = 0 + 0 であるから,

$$a0 = a(0+0) = a0 + a0$$

 $\therefore a0 = a0 + a0$

K は加法について可換群であるから、a0 の逆元 -a0 が K に存在する。これを用いると、

$$a0 + (-a0) = a0 + a0 + (-a0)$$

 $\therefore 0 = a0 + a0 + (-a0)$

ここで,

$$a0 + a0 + (-a0) = a0 + \{a0 + (-a0)\}\$$

= $a0 + 0$
= $a0$

となるから、0 = a0 である。0 = 0a についても同様。 \square

口 証明. $a \neq 0$ とする.このとき,a の逆元 $a^{-1} \in K$ が存在し,ab = 0 の両辺に a^{-1} をかけると,

$$a^{-1}(ab) = a^{-1}0$$
$$(a^{-1}a)b = 0$$
$$1b = 0$$
$$\therefore b = 0$$

である.これと $b \neq 0$ を仮定したときの同様の考察により, ab = 0 のとき, a = 0 または b = 0 である. \square

参考文献

[1] 齋藤正彦『線型代数入門』,東京大学出版会,1966