System and Software Architecture Description (SSAD)

Image Processing Platform

Team 4

Name	First Role	Second Role
Hao Wu	Requirements Engineer	Software Architect
Junran Liu	Operational Concept Engineer	Software Architect
Meiyi Yang	Project Manager	Life Cycle Plan
Vinny DeGenova	IIV & V	Quality Focal Point
Xiangchen Zhao	Life Cycle Plan	Prototyper
Xinhui Liu	Feasibility Analyst	Operational Concept Engineer
Yifan Liu	Prototyper	Requirements Engineer

Version History

Date	Author	Version	Changes made	Rationale
10/04/16	HAO WU	1.0	Original template for use with Instructional ICM-Sw v1.0	• Initial draft for use with Instructional ICM-Sw v1.0
10/14/16	HAO WU	1.1	Modify the architecture	For DC package
12/01/16	HAO WU	2.0	 Complete Technology-Independent Model 	• For As Built package
			 Complete Technology-Specific System Design 	
			 Complete Architectural Styles, Patterns and Frameworks 	

Table of Contents

Sy	stem :	and Software Architecture Description (SSAD)	j
•		History	
		f Contents	
Ta	ble of	f Tables	ii
Ta	ble of	f Figures	iv
1.	Intro	oduction	1
	1.1	Purpose of the SSAD	1
	1.2	Status of the SSAD	1
2.	Syste	em Analysis	2
	2.1	System Analysis Overview	2
	2.2	System Analysis Rationale	7
3.	Tech	nnology-Independent Model	8
	3.1	Design Overview	8
	3.2	Design Rationale	12
4.	Tech	nnology-Specific System Design	13
	4.1	Design Overview	13
	4.2	Design Rationale	17
5.	Arch	hitectural Styles. Patterns and Frameworks	18

Table of Tables

Table 1: Actors Summary	2
Table 2: Artifacts and Information Summary	3
Table 3: Process Description	4
Table 4: Typical Course of Action	5
Table 5: Alternate Course of Action	5
Table 6: Exceptional Course of Action	5
Table 7: Process Description	5
Table 8: Typical Course of Action	5
Table 9: Alternate Course of Action	6
Table 10: Exceptional Course of Action	6
Table 11: Process Description	6
Table 12: Typical Course of Action	6
Table 13: Alternate Course of Action	6
Table 14: Exceptional Course of Action	7
Table 19: Hardware Component Description	9
Table 20: Software Component Description	10
Table 22: Design Class Description	10
Table 23: Hardware Component Description	14
Table 24: Software Component Description	14
Table 26: Design Class Description	14
Table 27: Architectural Styles, Patterns, and Frameworks	18

Table of Figures

Figure 1: System Context Diagram	2
Figure 2: Artifacts and Information Diagram	3
Figure 3a: Process Diagram	4
Figure 4: Conceptual Domain Model	8
Figure 5: Hardware Component Class Diagram	8
Figure 6: Software Component Class Diagram	9
Figure 7: Deployment Diagram	9
Figure 9: Design Class Diagram	
Figure 10: Robustness Diagram	
Figure 11: Sequence Diagram	
Figure 12: Hardware Component Class Diagram	
Figure 13: Software Component Class Diagram	
Figure 14: Deployment Diagram	
Figure 16: Design Class Diagram	
Figure 17a: Process Realization Diagram	16

1. Introduction

1.1 Purpose of the SSAD

This document defines comprehensive architecture for the Image Processing Platform(IPP) system. It explicates different aspects of the system by using charts and diagram. The aim of the document is to characterize the details of the whole system, include software components and their functions.

1.2 Status of the SSAD

This is the final version of the SSAD document and we already completed the system in details. This document helps others to understand the basic frame of our system and give an overview of the system. This document also explains why we design the system like this and how the idea came up.

2. System Analysis

2.1 System Analysis Overview

The IPP can help users to mine specific images from various content elements without acquiring specific knowledge. It identifies same topic images which are similar with the images user uploaded. This gives the possibility to users to monitor image data transferring on the internet and detect the violent elements from the data. Meanwhile, as more images are fetched by system, the accuracy of detection will be improved.

2.1.1 System Context

Figure 1: System Context Diagram

Table 1: Actors Summary

Actor	Description	Responsibilities
Trainer	User of the system	Upload images from local and start the
		model training process
Tester	User of the system	Upload image from local and execute
		the image recognition process.
Administrator	Administrator of the system	Control and monitor the system

2.1.2 Artifacts & Information

Figure 2: Artifacts and Information Diagram

Table 2: Artifacts and Information Summary

Artifact	Purpose
Image Recognition	To recognize image's category.
Model Training	The system update model with uploaded images.
Topics	Topic is necessary for Image Recognition
Database	To save model and Image to database
System	To process and analysis images from user
Users	To provide user a function to upload images
Recognition Results	To recognize images
Log	To inform administrator system condition.

2.1.3 Behavior

Figure 3a: Process Diagram

Figure 3b: Process Diagram

1. Table 3 is the process description of uploading training image. Table 4, Table 5, Table 6 talk about the uploading process in detail, the different ways to upload training images and exceptional course of action.

Table 3: Process Description

Identifier	Upload Training Images	
Purpose	Upload a set of image to server	
Requirements	WC_4147,WC_4109,WC_4040	

Development	The system need to identify the format of each images and the	
Risks	system can handle multiple images uploading at same time.	
Pre-conditions	Users need to upload proper format images and have good	
	network conditions.	
Post-conditions	User trained model	

Table 4: Typical Course of Action

Seq#	Actor's Action	System's Response
1	Trainer clicks upload button	System provides interface to user to
		upload images
2	Trainer clicks submit button	System starts to receive images

Table 5: Alternate Course of Action

Seq#	Actor's Action	System's Response
1		
2		

Table 6: Exceptional Course of Action

Seq#	Actor's Action	System's Response
1	Trainer clicks submit button	if there is no image uploaded or the
		image is improper, the system will
		inform user and redirect to the
		uploading page and show the error to
		user

2. Table 7 gives the description of selecting a topic. Table 8, Table 9, Table 10 talk about the selecting process in detail, the different ways to select topic and exceptional course of action.

Table 7: Process Description

Identifier	Add Topic	
Purpose	denominate a classifier	
Requirements	WC_4147	
Development	This process needs to insure that users input appropriate	
Risks	characters and inform users the error information when they	
	failure to meet the input requirement	
Pre-conditions	Users need to users input appropriate characters	
Post-conditions	User train model	

Table 8: Typical Course of Action

Seq# Actor's Action System's Response	
---------------------------------------	--

1	Trainer clicks add topic button	System provides interface to user to input the topic name.
2	Trainer clicks save button	System adds a topic and saves it in the databse

Table 9: Alternate Course of Action

Seq#	Actor's Action	System's Response
1		

Table 10: Exceptional Course of Action

Seq#	Actor's Action	System's Response
1	Trainer clicks save button	if the string user typed in is not match
		the requirement, system will inform the
		error information to users.

3. Table 11 gives the description of selecting a topic. Table 12, Table 13, Table 14 talk about the training process in detail, the different ways to start process and exceptional course of action.

Table 11: Process Description

Identifier	Model Training	
Purpose	Activate the training process to generate a specific classifier and	
	update model.	
Requirements	WC 4107	
Development	This process needs to apply machine learning algorithm to	
Risks	generate a corresponding classifier on model.	
Pre-conditions	Users need to upload a set of images in advance and already	
	assigned a topic to the images.	
Post-conditions	Users train model	

Table 12: Typical Course of Action

Seq#	Actor's Action	System's Response
1	Trainer clicks training button	System checks the images conditions and preprocess the images for smaller size.
2	Trainer view progress button	System returns a feedback (eg. a progress bar)

Table 13: Alternate Course of Action

Seq#	Actor's Action	System's Response
1		

Table 14: Exceptional Course of Action

Seq#	Actor's Action	System's Response
1	Trainer clicks training button	Users don't upload the images or assign
		a topic.

4. Table 11 gives the description of selecting a topic. Table 12, Table 13, Table 14 talk about the training process in detail, the different ways to start process and exceptional course of action.

2.1.4 Modes of Operation

The IPP has two main modes of operation:

- 1. Training Model mode: This mode is generated by machine learning algorithm and images uploaded by trainer_o
- 2. Image Recognition mode: This mode is used by testers. These users can just use the ready-made model instead of uploading images to generate a new model.

2.2 System Analysis Rationale

Most of our users are non-technical persons so that we need design a very simple interface and noticeable entrance. Given that trainers may don't have enough images to generate classifier, we provide extra function which is uploading image from Instagram to let trainer upload same topic images as many as possible. We also allow trainers to use other trainer's topic to update the topic. That's will help them to improve their classifier's accuracy.

3. Technology-Independent Model

3.1 Design Overview

3.1.1 System Structure

Figure 4: Conceptual Domain Model

Figure 5: Hardware Component Class Diagram

Figure 6: Software Component Class Diagram

Figure 7: Deployment Diagram

Table 15: Hardware Component Description

Hardware Component	Description	
Image and Topic	Image and Topic Management Nodes are the computers/laptops that	
Management Nodes	the users use to upload images and add or modify topics in the	
	system.	
Webserver Analyze Nodes	Webserver Analyze Nodes are the server which run the webserver. They	
	process all the training tasks and testing tasks	
Data Nodes	Data Nodes is database service run on the computer/server	

Table 16: Software Component Description

Software Component	Description	
Website	Website software component is the interface provided by us. It	
	gives the view to user to let them view the content and upload	
	their dataset and testing Image.	
Webserver	Webserver software component is used to process the requests	
	and receive the images uploaded by users. The core image	
	classification algorithm is contained in the webserver.	
Database	Database software component stores some useful data for reusing	
	them.	

3.1.2 Design Classes

3.1.2.1 < Classes n >

Figure 8: Design Class Diagram

Table 17: Design Class Description

Class	Type	Description
User Add/Update Topic Page	Boundary	The user can add a new topic or update the
		topic they select to scale up or update the new training model.
Topic Management	Component	This component directs user to the topic
		management page

Image Recognition	Component	This component execute image recognition
		algorithm and create a new model after
		training process is finished
Training Images Management	Component	This component directs user to the a image
		management page basic on which topic user
		choose.
User Uploading Training Image	Boundary	This page gives the uploading image function
Page		to user.
User Upload Testing Image	Boundary	This page gives the uploading image and
Page		choosing model function to user.
Training Images Management	Component	This component execute image recognition
		algorithm to detect images.
Classification Result Page	Boundary	This pages show the testing result to user.

3.1.3 Process Realization

Figure 9: Robustness Diagram

Figure 10: Sequence Diagram

3.2 Design Rationale

For the sake of applying our image recognition algorithm into webserver, we need provide some interface to user to let them add new classification and upload correspond images to enlarge the model. Considering most of our users have only little experience computer skill, our process flow should be simple to operate. So we facilitate the process into two main step, one is adding or selecting a topic and the other on is uploading images. The system should be easy to every user. In testing part, we want user can access our image recognition algorithm easily. So what users need to do is just uploading several testing images. After click the testing button, we will give back the final result to users.

4. Technology-Specific System Design

4.1 Design Overview

4.1.1 System Structure

Figure 11: Hardware Component Class Diagram

Figure 12: Software Component Class Diagram

Figure 13: Deployment Diagram

Table 18: Hardware Component Description

Hardware Component	Description
Laptop(MacBook/PC)	Users use any laptop can access our website and use our system.
LocalHost(AWS)	This component is a webserver which running on AWS. The
	webserver listen and process the requests from users
MySQL	We use MySQL database to store useful data.

Table 19: Software Component Description

Software Component	Description
Website	The Website component uses HTML, CSS, javascript, Uploadify
	and Bootstrap.
Web Server(AWS)	The Web Server component is deployed on the AWS and use
	Django web framework and python3 language.
Database(MySQL)	The Database component save the image files and their
	information for next retraining.

4.1.2 Design Classes

4.1.2.1 < Classes n >

Figure 14: Design Class Diagram

Table 20: Design Class Description

Class	Type	Description
Topic Manage Page	Boundary	Users use this page to add a new category or
		update the category

Image Manage Page	Boundary	Users use this page to upload training or testing images to server and train a new model or recognize images	
View Image Recognition Result Page	Boundary	Users can view the recognition result through this page	
Topic Controller	Component	Topic Controller component collect topic information input by users and redirects to Image Manage page.	
Image Controller	Component	This controller component allows users uploading multiple images through Image Manage Page. In addition, the component will send the image files to server.	
Model Training	Component	This component will run the learning algorithm, process the images and analyze them to build a new model.	
Image Recognition	Component	This component will classify the images and pass the results to the View Image Recognition Result Page.	

4.1.3 Process Realization

Figure 15a: Process Realization Diagram

Figure 17b: Process Realization Diagram

4.2 Design Rationale

Our overall architecture is very simple, but very efficient. We use django as our entire web framework and connect the server to database. The reason why we choose django is because most of us have some experience on python language and we can develop our system quickly and efficiently. Our client provides suggests us to deploy our system onto AWS, so we choose to run our web server on the AWS. We use Tensorflow as our machine learning algorithm because it uses advanced algorithm to classify images efficiently. Tensorflow also has high accuracy rate on image recognition compared with other similar algorithm.

5. Architectural Styles, Patterns and

Frameworks

Table 21: Architectural Styles, Patterns, and Frameworks

Name	Description	Benefits, Costs, and Limitations
Facade pattern	The learning algorithm integrated on the web server is very complicated, so what we choose façade pattern to help our development. The second reason we choose façade pattern is that we have many third library, such as bootstrap, uploadify, tensorflow, the façade pattern can reduce the dependencies of these third library on our system to make our system easier to modify.	The benefit of using façade pattern is reducing the difficulty of modifying the system when we need to substitute component in the system. The cost and limitation is that we need spend lots of time to code many interface-related code.
MVC	MVC(Model-View-Controller) is the most common software design pattern. We choose MVC design pattern because we are familiar with it and the we framework we choose is also completely support MCV.	The benefits of using MVC is that we can easily divide the entire development work into every team member instead of considering how to integrate everyone's work.