Chapter 23 Gauss' Law

Chap. 23-1 Electric Flux

Chap. 23-2 Gauss' Law

Chap. 23-3 A Charged Isolated Conductor

Chap. 23-4 Applying Gauss' Law: Cylindrical Symmetry

Chap. 23-5 Applying Gauss' Law: Planar Symmetry

Chap. 23-6 Applying Gauss' Law: Spherical Symmetry

Guass' law relates the electric field at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

Electric field vectors and field lines pierce an imaginary, sph erical Gaussian surface that e ncloses a particle with charge + Q.

Now the enclosed particle has charge +2Q.

Can you tell what the en closed charge is now? *Answer: -0.5Q*

쿨롱의 법칙을 이용한 적분을 하지 않고 전기장을 구하는 방법은 없을까?

- → use flux (다발)
- 유체의 흐름에서 다발의 개념 단위시간당 표면 A를 통과하는 유체의 양

- Electric flux quantifies the notion "number of field lines crossing a surface."
- The electric flux Φ through a flat surface in a uniform electric field depends on the field strength E, the surface area A, and the angle θ between the field and the surface.
- Mathematically, the flux is given by

$$\Phi = EA\cos\theta = \vec{E} \cdot \vec{A}$$

• Here \vec{A} is a vector whose magnitude is the surface area A and whose orien tation is normal to the surface.

Electric Flux with Curved Surfaces and Nonuniform Fields

- When the surface is curved or the field is nonuniform, we calculate the flux by dividing the surface into small patches $d\vec{A}$, so small that each patch is essentially flat and the field is essentially uniform over each patch.
 - We then sum the fluxes $d\Phi = \vec{E} \cdot d\vec{A}$ over each patch.
 - In the limit of infinitely many infinitesimally small patches, the sum becomes a surface integral:

$$\Phi = \int \vec{E} \cdot d\vec{A}$$

The **total flux** through a surface is given by

$$\Phi = \int \vec{E} \cdot d\vec{A} \quad \text{(total flux)}.$$

The **net flux** through a closed surface (which is used in Gauss' law) is given by

$$\Phi = \oint_{\uparrow} \vec{E} \cdot d\vec{A} \quad \text{(net flux)}.$$

where the integration is carried out over the entire surface.

> Gauss 폐곡면 (Gaussian surface)

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

•What does this new quantity mean?

- The integral is over a CLOSED SURFACE
- Since
 ē d
 ā is a SCALAR product, the electric flux is a SCALAR quantity
- The integration vector \overrightarrow{dA} is normal to the surface and points OUT of the surface. $\overrightarrow{E} \cdot \overrightarrow{dA}$ is interpreted as the component of E which is NORMAL to the SURFACE
- Therefore, the electric flux through a closed surface is the sum of the normal components of the electric field all over the surface.
- The sign matters!!
 Pay attention to the direction of the normal component as it penetrates the surface... is it "out of" or "into" the surface?
- "Out of" is "+" "into" is "-"

보기문제 23-1

$$\Phi = \oint \mathbf{E} \cdot d\mathbf{A} = \int_{a} \mathbf{E} \cdot d\mathbf{A} + \int_{b} \mathbf{E} \cdot d\mathbf{A} + \int_{c} \mathbf{E} \cdot d\mathbf{A}$$

$$\int_{a} \mathbf{E} \cdot d\mathbf{A} = \int E(\cos 180^{\circ}) dA = -E \int dA = -EA$$

$$\int_{b} \mathbf{E} \cdot d\mathbf{A} = \int E(\cos 90^{\circ}) d\mathbf{A} = 0$$

$$\int_{c} \mathbf{E} \cdot d\mathbf{A} = \int E(\cos 0^{\circ}) dA = EA$$

$$\Phi = -EA + 0 + EA = 0$$

보기문제 23-2

그림과 같은 정육면체의 왼쪽, 오른쪽, 위쪽 면에서의 전기장 플럭스? 단, 전기장은

$$E = (3.0 x) i + (4.0) j$$
 (N/C).

Gaussian surface

1) 왼쪽 면

된쪽 년

$$dA = -(dydz) i,$$

$$E = (3.0x i + 4.0 j)_{x=1.0} = (3.0)i + (4.0)j z$$

$$\phi = \int E \cdot dA = \int_{z=0}^{z=2} \int_{y=0}^{y=2} (3.0i + 4.0j) \cdot (-dydz i)$$

$$= -3.0 \int_{z=0}^{z=2} \int_{y=0}^{y=2} dydz = -12.0 (N \cdot m^2/C)$$

2) 오른쪽 면

$$dA = dy dz i$$
, $E = (3.0x i + 4.0 j)_{x=3.0} = (9.0)i + (4.0)j$
 $\Phi_{\text{REF}} = -3 \times \Phi_{\text{REF}} = 36 (\text{N} \cdot \text{m}^2/\text{C})$

3) 위쪽 면

$$d\mathbf{A} = dzdx\mathbf{j},$$

$$\Phi_{\text{MMS}} = \int_{x=1}^{x=3} \int_{z=0}^{z=2} (3.0x \, \mathbf{i} + 4.0 \, \mathbf{j}) \cdot (dz dx \, \mathbf{j}) = 16.0 \, (\text{N} \cdot \text{m}^2/\text{C})$$

Chap. 23-2 Gauss' Law

■ 쿨롱의 법칙 ⇔ 가우스의 법칙

$$ec{E}=rac{1}{4\pi\epsilon_0}rac{q}{r^2}\hat{r}$$
 $\Phi=\oint_{A}ec{E}\cdot dec{A}=rac{q}{\epsilon_0}$ 예곡면 A 상의 적분 A의 내부에 있는 전하

- Gauss's law is always true.
- But it's useful for calculating the electric field only in situations with sufficient symmetry:
 - Spherical symmetry
 - Line symmetry
 - Plane symmetry

Chap. 23-2 Gauss' Law

$$\varepsilon_0 \Phi = q_{\rm enc}$$
 (Gauss' law).

$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = q_{\rm enc}$$
 (Gauss' law).

면
$$S_1: \Phi > 0$$
, $q_{enc} > 0$

면
$$S_2: \Phi < 0$$
, $q_{enc} < 0$

면 S₃:
$$\Phi = 0$$
, $q_{enc} = 0$

면 S₄:
$$\Phi = 0$$
, $q_{enc} = 0$

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Chap. 23-2 Gauss' Law

Gauss's Law: A Problem-Solving Strategy

- **INTERPRET**: Check that your charge distribution has sufficie nt symmetry.
- **DEVELOP**: Draw a diagram and use symmetry to find the direction of the electric field. Then draw a **Gaussian surface** on which you can evaluate the surface integral in Gauss's law.

EVALUATE:

- Evaluate the flux $\Phi = \oint \vec{E} \cdot d\vec{A}$ over your surface. The result contains the unknown field strength \vec{E} .
- Evaluate the enclosed charge.
- Equate the flux to $q_{\text{enclosed}}/\epsilon_0$ and solve for E.
- **ASSESS**: Check that your answer makes sense, especially in comparison to charge distributions whose fields you know.

Chap. 23-3 A Charged Isolated Conductor

- Charges in conductors are free to move, and they do so in response to an applied electric field.
 - If a conductor is allowed to reach electrostatic equilibrium, a condition in which there is no net charge motion, then charges redistribute themselves to cancel the applied field inside the conductor.
 - Therefore the electric field is zero inside a conductor in electrostatic equilibrium.

Chap. 23-3 A Charged Isolated Conductor

- Gauss's law requires that any free charge on a conductor reside on the conductor surface.
- The electric field at the surface of a charged conductor in electrostatic equilibrium is perpendicular to the surface.

$$E = \frac{\sigma}{\varepsilon_0}$$
 (conducting surface).

Because Gauss's law says $\Phi \propto q_{\rm enclosed}$, all excess charge resides on the conductor surface.

Chap. 23-4 Gauss' Law: Cylindrical Symmetry

원통대칭

$$\Phi = \oint \vec{E} \cdot d\vec{A} = \frac{q_{\mathit{encl}}}{\mathcal{E}_o}$$

$$\Phi = EA\cos\theta = E(2\pi rh)$$

$$q = \lambda h$$

$$\therefore E = \frac{1}{2\pi\varepsilon_0} \left(\frac{\lambda}{r}\right)$$

Chap. 23-5 Gauss' Law: Planar Symmetry

면대칭

얇은 절연체판

$$\oint \vec{E} \cdot d\vec{A} = EA + EA = \frac{q}{\epsilon} = \frac{\sigma A}{\epsilon}$$

$$E = \frac{\sigma}{2\epsilon_0}$$

두 도체판

전도체는 내부의 전기장은 0이다.

$$\oint \vec{E} \cdot d\vec{A} = 0 + EA = \frac{q}{\epsilon} = \frac{\sigma A}{\epsilon}$$

$$E = \frac{\sigma}{\epsilon_0}$$

Chap. 23-6 Gauss' Law: Spherical Symmetry

구대칭

$$\Phi = \oint \vec{E} \cdot d\vec{A} = \frac{q_{\mathit{encl}}}{\varepsilon_o}$$

$$\Phi = 4\pi r^2 E$$

$$q_{\triangleq} = q$$
, $(r > R, 공바깥)$ (S₂)
= 0, $(r < R, 공속)$ (S₁)

$$\therefore E = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r^2}\right), \quad (r > R, \text{ 공바깥})$$

$$= 0, \quad (r < R, \text{ 공속})$$

Chap. 23-6 Gauss' Law: Spherical Symmetry

구대칭 전하분포

Charge density
$$\rho$$
: $\frac{4}{3}\pi a^3 \rho = Q \implies \rho = \frac{3Q}{4\pi a^3}$

(a)
$$r > a$$
 $\Phi_C = \oint \vec{E} \cdot d\vec{A} = \frac{q_{inc}}{\varepsilon_0} = \frac{Q}{\varepsilon_0}$

$$4\pi r^2 \cdot E = \frac{Q}{\varepsilon_0}$$
 $\Rightarrow E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} = k_e \frac{Q}{r^2}$ for $r > a$

Gaussian sphere

(a)
$$r > a$$

for
$$r > a$$

(b)
$$r < a$$

$$\Phi_C = \oint \vec{E} \cdot d\vec{A} = \frac{q_{inc}}{\varepsilon_0}$$
$$= \frac{1}{\varepsilon_0} \int \rho \cdot dV$$
$$= \frac{\rho}{\varepsilon_0} \frac{4\pi}{3} r^3$$

$$\left(\rho = \frac{3Q}{4\pi a^3}\right) \quad 4\pi r^2 E = \frac{Q}{\varepsilon_0} \frac{r^3}{a^3} \Rightarrow E = \frac{Q}{4\pi \varepsilon_0} \frac{r}{a^3} = k_e \frac{Qr}{a^3} \quad \text{for } r < a$$

Chap. 23-6 Gauss' Law: Spherical Symmetry

Summary

Gauss' Law

Gauss' law is

$$\varepsilon_0 \Phi = q_{\rm enc}$$

Eq. 23-6

 the net flux of the electric field through the surface:

$$\Phi = \oint \vec{E} \cdot d\vec{A}$$
 Eq. 23-6

Applications of Gauss' Law

surface of a charged conductor

$$E = \frac{\sigma}{\varepsilon_0}$$

Eq. 23-11

- Within the surface *E=0*.
- Line of charge

$$E = \frac{\lambda}{2\pi\epsilon_0 r}$$

Eq. 23-12

Infinite non-conducting sheet

$$E = \frac{\sigma}{2\varepsilon_0}$$

Eq. 23-13

Outside a spherical shell of charge

$$E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$
 Eq. 23-15

Inside a uniform spherical shell

$$E = 0$$

Eq. 23-16

• Inside a uniform sphere of charge

$$E = \left(\frac{q}{4\pi\epsilon_0 R^3}\right)r.$$
 Eq. 23-20