AP Physics C: Chapter 25

Zach Baylin

March 29, 2019

Intro to Electrodynamics 1

Electrostatics	Electrodynamics
Charge	√
insulator vs. conductor	✓
F_E	✓
$ec{E}$	✓
U_E	✓
V	ΔV or V
capacitors	batteries
	F_B
	inductor

- Circuit elements
 - battery or capacity ΔV
 - wire (charge carrier)
 - resistor
 - inductor
 - capacitor
- Equations
 - **current** (I): the rate of electron flow

$$*I = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

$$* I = \overset{\text{d}}{N_E} \cdot ev_d \cdot A$$

$$\begin{split} * & I = \frac{\mathrm{d}Q}{\mathrm{d}t} \\ * & I = N_E \cdot ev_d \cdot A \\ * & I = \frac{\Delta V}{R} \text{ (for ohmic materials)} \end{split}$$

- resistance (R): the tendency to resist current

$$* R = \frac{\rho \ell}{\Lambda}$$

*
$$R_{\text{seq}} = \sum_{i} R_{i}$$

$$* R = \frac{\rho \ell}{A}$$

$$* R_{\text{seq}} = \sum_{i} R_{i}$$

$$* R_{\text{parallel}}^{-1} = \sum_{i} R_{i}$$

$$\begin{array}{c} * \ \rho = I \Delta V \\ - \ \mbox{electric field } (\vec{E}) \\ * \ \vec{E} = \rho \vec{J} = \rho \frac{I}{A} \end{array}$$

- **electrodynamics**: controlled movement of charge in a conductor due to an *internal* electic field
- the charge *carrier* is what moves
 - metal
 - * e⁻ bound to the solid, not individual atoms
 - $\ast\,$ random thermal motion of e^-
 - * collisions with lattice
 - * net motion = 0
 - * the electric field is like a push that causes all e⁻ to have a direction
 - * drift velocity (v_d): $v_d = \frac{\Delta x}{\Delta t} = 10^{-4} m/s$
 - * electron current (i_e) : $i_e = \frac{n_e}{\Delta t}$
 - * number of electrons (N_e) : $N_e = \frac{n_e}{\text{volume}}$

Figure 1: A labeled diagram of a charge capacitor

• capacitive discharging

Figure 2: A diagram of a discharged capacitor

- discharge occurs immediately
- wire heats up

Figure 3: A discharged capacitor with uniform charge density

• batteries

Figure 4: A diagram of how a battery changes voltage

Figure 5: A circuit with a battery and resistors, demonstrating the change in V

- batteries work the same as capacitors
 - \ast provide a "pathway back" to 0
- ideal batteries have no internal resistance
- **non-ideal batteries** have internal resistance

Figure 6: A battery with internal resistance (non-ideal)

2 Capacitors, cont.

2.1 Discharging a Capacitor

Switch open

Right after switch is closed

$$Q_0 = Q_{\text{max}}$$

$$I_0 = 0$$

$$V_0 = V_c = \text{max} = \frac{Q_0}{C}$$

$$i$$
 Q leaving C get $i = -\frac{\mathrm{d}Q}{\mathrm{d}t}$
As $V_C \downarrow Q \downarrow I \downarrow$
 $I_0 = \max$
 $V_C = \frac{Q}{C}$

• loop rule

$$V_c - IR = 0$$

$$V_c - \left(-\frac{dQ}{dt}\right)R = 0$$

$$\frac{1}{R}\left(\frac{Q}{C} + \frac{dQ}{dt}R\right) = 0$$

$$\frac{Q}{RC} + \frac{dQ}{dt} = 0$$

$$\frac{dQ}{Q} = -\frac{1}{RC} dt$$

then integrate...

$$\begin{split} \int_{Q_{\text{max}}}^{Q} \frac{1}{Q} \, \mathrm{d}Q &= -\frac{t}{RC} \\ \ln(Q) \bigg|_{Q_{\text{max}}}^{Q} &= -\frac{t}{RC} \\ \ln(Q) - \ln(Q_{\text{max}}) &= \quad ^{\wedge} \end{split}$$

then simplify...

$$\ln\left(\frac{Q}{Q_{\max}}\right) = -\frac{t}{RC}$$
 In $\left(\frac{Q}{Q_{\max}}\right) = e^{-t/RC}$
$$Q = Q_{\max} \cdot e^{-t/RC}$$

$$\boxed{RC = \tau}$$

Figure 7: Charge over time in an RC circuit