Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет: Информатики и систем управления

Кафедра: Теоретической информатики и компьютерных технологий

Домашнее задание №2 «Цепи Маркова с дискретным и непрерывным временем» по курсу: «МОДЕЛИРОВАНИЕ»

Выполнила: студентка группы ИУ9-81

Синявская А. А.

Проверила: Домрачева А.Б.

ЦЕЛЬ: приобретение навыка описания сложных систем на основе цепей Маркова, получение навыков планирования и проведения вычислительного эксперимента.

ПОСТАНОВКА ЗАДАЧИ:

Дано: Сезон телевизионной игры «Что? Где? Когда?» состоит из 4 серий: Весенней, Летней, Осенней и Зимней. Порядок участия команд знатоков в сериях:

- Все команды принимают участие в Весенней или Летней серии. Команда, выигравшая последней в Весенней или Летней серии, получает право сыграть в Зимней серии. Остальные победившие команды имеют шанс сыграть в Осенней серии.
- Команда, выигравшая последней в Осенней серии, получает право сыграть в Зимней серии.
- Победившая с большим счетом в Зимней серии команда получает право сыграть в Финале года.

Вероятность победы не последней по счету для команды X в Весенней/Летней серии составляет $p_1=0.5$, вероятность победы последней $p_2=0.3$. Вероятность победы последней в Осенней серии $p_3=0.3$. Вероятность победы с наибольшим счетом в Зимней серии составляет $p_4=0.4$.

Оценить: количество сезонов, по прошествии которых у команды получится попасть в Финал года.

ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Случайный процесс называется марковским процессом, если для каждого момента времени t состояние системы в настоящем и не зависит от того, каким образом она пришла в это состояние.

Марковский процесс удобно задавать графом переходов из состояния S_i в состояние S_j с вероятностью перехода $P_{ij}, \ ^{i=\overline{1,n}, \ j=\overline{1,m}}$.

Рассматривают два варианта описания марковских процессов — с дискретным и непрерывным временем. В первом случае переход из одного состояния в другое происходит в заранее известные моменты времени — такты (1, 2, 3, 4, ...). Переход осуществляется на каждом такте, то есть исследователя интересует только последовательность состояний, которую проходит случайный процесс в своем развитии, и не интересует, когда конкретно происходил каждый из переходов. Во втором случае последовательность состояний и моменты переходов оказываются значимы. Если вероятность перехода не зависит от времени, то марковскую цепь называют однородной.

ОПИСАНИЕ АЛГОРИТМА:

Исходя из постановки задачи, будем описывать дискретную однородную марковскую цепь. В реализуемой модели 4 состояния $S = \{S_1, S_2, S_3, S_4\}, S_1$ игра в Весенней/Летней серии, S_2 — игра в Осенней серии, S_3 — игра в Зимней серии, S_4 — Финал года. Вероятности переходов представлены в таблице 1. Наглядно модель марковского процесса можно представить себе в виде графа на рисунке 1.

Таблица 1 – Вероятности переходов.

	S ₁	S ₂	S ₃	S ₄
S ₁	0.2	0.5	0.3	0
S ₂	0.7	0	0.3	0
S ₃	0.6	0	0	0.4
S ₄	0	0	0	1

Рисунок 1 – Граф модели марковского процесса.

Чтобы определить, в какое состояние перейдет процесс из текущего i-го состояния, достаточно разбить интервал [0; 1] на подынтервалы величиной P_{i1} , P_{i2} , P_{i3} , ... $(P_{i1} + P_{i2} + P_{i3} + ... = 1)$. Далее с помощью генератора случайных чисел необходимо получить очередное равномерно распределенное в интервале [0; 1] случайное число и определить, в какой из подынтервалов оно попадает.

Отсчёт сезонов ведётся по факту попадания в состояние S_1 .

ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ

Для реализации поставленной задачи использован язык Python, для генерации случайных чисел библиотеки random и _random. В листинге 1 представлен программный код, оценивающий количество сезонов, в которых необходимо сыграть команде для попадания в Финал года.

Листинг 1. Описание системы на основе марковской цепи.

```
import random
import _random
import numpy as np
import matplotlib.pyplot as plt

n = 4 # количество состояний

# таблица состояний

conversion_table3 = {
```

```
(0, 0): 0.2, (0, 1): 0.5, (0, 2): 0.3, (0, 3): 0,
    (1, 0): 0.7, (1, 1): 0, (1, 2): 0.3, (1, 3): 0,
    (2, 0): 0.6, (2, 1): 0, (2, 2): 0, (2, 3): 0.4,
    (3, 0): 0, (3, 1): 0, (3, 2): 0, (3, 3): 1
sum seasons = 0
m = 100
seasons = []
p r = random.Random()
for 1 in range(0, m):
    season number = 0
    s cur = (0, 0)
    x = 0
    fl = False
    while s cur[0] < 3:
        i, j = s cur
        p random= np.random.random()
        # p random = p r.random()
        if s cur == (0, 0):
           season number += 1
        p = 0
        delta = 0
        for k in range (0, n):
            p = p + conversion table3[i, k]
            delta = k
            if p random <= p:</pre>
                break
        s cur = (delta, 0)
        x += 1
               sum seasons += season number
    seasons.append(season number)
print(sum seasons / m)
fig, ax = plt.subplots()
ax.scatter([i for i in range(1, len(seasons)+1)], seasons, c = 'deeppink')
plt.show()
```

ТЕСТИРОВАНИЕ

По результатам 1000 запусков реализованной программы для генератора random было получено среднее значение количества сезонов = 5.508, для генератора _random = 5.5. Полученные результаты совпадают. Следовательно, команда сможет выйти в Финал года через 6 лет. На рисунке 2 представлен разброс количества сезонов для 1000 запусков программы. По оси X располагаются порядковые номера запусков, по оси У получившиеся количества сезонов.

Рисунок 2 — График разброса количества сезонов, получившихся в результате 1000 запусков программы.

вывод

В рамках данной лабораторной работы была описана заданная система с помощью модели марковской цепи, оценено среднее количество сезонов, необходимых для попадания в Финал года команды знатоков в игре «Что? Где? Когда?». Полученный результат совпал для двух генераторов случайных чисел, что говорит о корректности построения модели.