

if
$$ut_i > w$$

 $table(i, w) = table(i+1, w)$
 $aux(i, w) = (i+1, w)$

else

$$val_{talen} = val_{i} + table (i+i), w-wt_{i}$$

 $val_{talen} = table (i+1, w)$
 $if val_{talen} \ge val_{talen}$
 $table (i, w) = val_{talen}$
 $aux (i, w) = (i+1, w-wt_{i})$
 $else$
 $table (i, w) = val_{talen}$
 $table (i, w) = val_{talen}$
 $table (i, w) = (i+1, w-wt_{i})$

return arith].

Optimismum value (value of Knapsack)	((
Optimum = selection (Subset in Knapsack)	
conjuting In (fib)	
counting w/ Dyn. Prog.	
A graph has a set of vertices (nodes)	
t a set of edges connecting pairs of v	erts
0 - 0 i	
directed undirected	
Directed acyclic graphs to	
Directed acyclic graphs to be cycle	
A path in a directed graph is a sequ	rence
of edges (e,,, ex)	
e, 20 e 2 e 3 e x	
endpoint of e; = start point of e;+1	
Given: A DAG, two vertices i, j	
Given: A DAG, two vertices i,j Goal: Campte the # paths from i >>j)

