Rank-65617 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(8)$ is 1227396245

General information

Number of lines	3
Number of points	65
Number of singular points	1
Number of Eckardt points	1
Number of double points	0
Number of single points	24
Number of points off lines	40
Number of Hesse planes	0
Number of axes	0
Type of points on lines	93
Type of lines on points	$3, 1^{24}, 0^{40}$

Singular Points

The surface has 1 singular points:

$$0: P_{75} = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & \gamma^6 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{3578} = \begin{bmatrix} 1 & 0 & 1 & 6 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{3578} = \mathbf{Pl}(2, 6, 1, 6, 0, 1)_{1120}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 1 & \gamma^5 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{1826} = \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{1826} = \mathbf{Pl}(4, 3, 1, 3, 0, 1)_{975}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & \gamma^3 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{2994} = \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{2994} = \mathbf{Pl}(7, 5, 1, 5, 0, 1)_{1076}$$

Rank of lines: (3578, 1826, 2994)

Rank of points on Klein quadric: (1120, 975, 1076)

Eckardt Points

The surface has 1 Eckardt points: $0: P_{19} = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0).$

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 24 single points: The single points on the surface are:

$0: P_{92} = (2, 2, 0, 1)$ lies on line ℓ_0	13: $P_{360} = (7, 3, 4, 1)$ lies on line ℓ_2
1: $P_{110} = (4, 4, 0, 1)$ lies on line ℓ_1	14: $P_{379} = (2, 6, 4, 1)$ lies on line ℓ_0
$2: P_{137} = (7,7,0,1)$ lies on line ℓ_2	15: $P_{405} = (4, 1, 5, 1)$ lies on line ℓ_1
$3: P_{163} = (2,3,1,1)$ lies on line ℓ_0	16: $P_{416} = (7, 2, 5, 1)$ lies on line ℓ_2
4: $P_{181} = (4, 5, 1, 1)$ lies on line ℓ_1	17: $P_{451} = (2,7,5,1)$ lies on line ℓ_0
$5: P_{192} = (7, 6, 1, 1)$ lies on line ℓ_2	18: $P_{472} = (7, 1, 6, 1)$ lies on line ℓ_2
6: $P_{203} = (2, 0, 2, 1)$ lies on line ℓ_0	19: $P_{477} = (4, 2, 6, 1)$ lies on line ℓ_1
7: $P_{248} = (7, 5, 2, 1)$ lies on line ℓ_2	20: $P_{491} = (2, 4, 6, 1)$ lies on line ℓ_0
8: $P_{253} = (4, 6, 2, 1)$ lies on line ℓ_1	$21: P_{528} = (7,0,7,1)$ lies on line ℓ_2
9: $P_{275} = (2, 1, 3, 1)$ lies on line ℓ_0	$22: P_{549} = (4, 3, 7, 1)$ lies on line ℓ_1
10: $P_{304} = (7, 4, 3, 1)$ lies on line ℓ_2	23: $P_{563} = (2, 5, 7, 1)$ lies on line ℓ_0
11: $P_{325} = (4,7,3,1)$ lies on line ℓ_1	
12: $P_{333} = (4, 0, 4, 1)$ lies on line ℓ_1	

The single points on the surface are:

Points on surface but on no line

The surface has 40 points not on any line: The points on the surface but not on lines are:

$$\begin{array}{lll} 0: \ P_0 = (1,0,0,0) & 4: \ P_{52} = (1,5,1,0) \\ 1: \ P_{29} = (2,2,1,0) & 5: \ P_{60} = (1,6,1,0) \\ 2: \ P_{36} = (1,3,1,0) & 6: \ P_{74} = (7,7,1,0) \\ 3: \ P_{47} = (4,4,1,0) & 7: \ P_{75} = (1,0,0,1) \end{array}$$

```
8: P_{82} = (0, 1, 0, 1)
                                                                  25: P_{364} = (3, 4, 4, 1)
9: P_{104} = (6, 3, 0, 1)
                                                                  26: P_{365} = (4, 4, 4, 1)
10: P_{117} = (3, 5, 0, 1)
                                                                  27: P_{377} = (0, 6, 4, 1)
11: P_{127} = (5, 6, 0, 1)
                                                                  28: P_{396} = (3, 0, 5, 1)
12: P_{138} = (0, 0, 1, 1)
                                                                  29: P_{402} = (1, 1, 5, 1)
                                                                  30: P_{409} = (0, 2, 5, 1)
13: P_{162} = (1, 3, 1, 1)
14: P_{178} = (1, 5, 1, 1)
                                                                  31: P_{452} = (3,7,5,1)
15: P_{186} = (1, 6, 1, 1)
                                                                  32: P_{462} = (5,0,6,1)
16: P_{219} = (2, 2, 2, 1)
                                                                  33: P_{466} = (1, 1, 6, 1)
17: P_{223} = (6, 2, 2, 1)
                                                                  34: P_{478} = (5, 2, 6, 1)
18: P_{241} = (0, 5, 2, 1)
                                                                  35: P_{489} = (0,4,6,1)
                                                                  36:\,P_{545}=(0,3,7,1)
19: P_{254} = (5, 6, 2, 1)
20: P_{271} = (6, 0, 3, 1)
                                                                  37: P_{564} = (3, 5, 7, 1)
21: P_{274} = (1, 1, 3, 1)
                                                                  38: P_{582} = (5, 7, 7, 1)
22: P_{303} = (6, 4, 3, 1)
                                                                  39: P_{584} = (7,7,7,1)
23: P_{321} = (0,7,3,1)
24: P_{359} = (6, 3, 4, 1)
```

Line Intersection Graph

 $\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

	Line	ℓ_1	ℓ_2
in	point	P_{19}	P_{19}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{19}	P_{19}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{19}	P_{19}

The surface has 65 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	15: $P_{137} = (7, 7, 0, 1)$	$30: P_{271} = (6,0,3,1)$
$1: P_{19} = (0, 1, 1, 0)$	16: $P_{138} = (0, 0, 1, 1)$	$31: P_{274} = (1, 1, 3, 1)$
$2: P_{29} = (2, 2, 1, 0)$	$17: P_{162} = (1, 3, 1, 1)$	$32: P_{275} = (2, 1, 3, 1)$
$3: P_{36} = (1,3,1,0)$	$18: P_{163} = (2, 3, 1, 1)$	$33: P_{303} = (6,4,3,1)$
$4: P_{47} = (4, 4, 1, 0)$	19: $P_{178} = (1, 5, 1, 1)$	$34: P_{304} = (7,4,3,1)$
$5: P_{52} = (1, 5, 1, 0)$	$20: P_{181} = (4, 5, 1, 1)$	$35: P_{321} = (0,7,3,1)$
$6: P_{60} = (1, 6, 1, 0)$	$21: P_{186} = (1, 6, 1, 1)$	$36: P_{325} = (4,7,3,1)$
$7: P_{74} = (7, 7, 1, 0)$	$22: P_{192} = (7, 6, 1, 1)$	$37: P_{333} = (4,0,4,1)$
$8: P_{75} = (1, 0, 0, 1)$	$23: P_{203} = (2,0,2,1)$	$38: P_{359} = (6, 3, 4, 1)$
$9: P_{82} = (0, 1, 0, 1)$	$24: P_{219} = (2, 2, 2, 1)$	$39: P_{360} = (7, 3, 4, 1)$
$10: P_{92} = (2, 2, 0, 1)$	$25: P_{223} = (6, 2, 2, 1)$	$40: P_{364} = (3,4,4,1)$
$11: P_{104} = (6, 3, 0, 1)$	$26: P_{241} = (0, 5, 2, 1)$	$41: P_{365} = (4, 4, 4, 1)$
$12: P_{110} = (4, 4, 0, 1)$	$27: P_{248} = (7, 5, 2, 1)$	$42: P_{377} = (0, 6, 4, 1)$
$13: P_{117} = (3, 5, 0, 1)$	$28: P_{253} = (4, 6, 2, 1)$	$43: P_{379} = (2, 6, 4, 1)$
$14: P_{127} = (5, 6, 0, 1)$	$29: P_{254} = (5, 6, 2, 1)$	$44: P_{396} = (3, 0, 5, 1)$
	=== (, , , / /	(/ / / /

$45: P_{402} = (1, 1, 5, 1)$	$52: P_{466} = (1, 1, 6, 1)$	$59: P_{545} = (0, 3, 7, 1)$
$46: P_{405} = (4, 1, 5, 1)$	$53: P_{472} = (7, 1, 6, 1)$	$60: P_{549} = (4, 3, 7, 1)$
$47: P_{409} = (0, 2, 5, 1)$	$54: P_{477} = (4, 2, 6, 1)$	$61: P_{563} = (2, 5, 7, 1)$
$48: P_{416} = (7, 2, 5, 1)$	$55: P_{478} = (5, 2, 6, 1)$	$62: P_{564} = (3, 5, 7, 1)$
$49: P_{451} = (2,7,5,1)$	$56: P_{489} = (0, 4, 6, 1)$	$63: P_{582} = (5,7,7,1)$
$50: P_{452} = (3,7,5,1)$	$57: P_{491} = (2, 4, 6, 1)$	$64: P_{584} = (7,7,7,1)$
$51: P_{462} = (5, 0, 6, 1)$	$58: P_{528} = (7, 0, 7, 1)$	