BACHELOR'S THESIS COMPUTING SCIENCE

RADBOUD UNIVERSITY NIJMEGEN

Thesis Title

 $Subtitle\ if\ you\ like$

Author: Floris Reuvers s1096976 First supervisor/assessor: Dr. Niels van der Weide

 $Second\ assessor:$ Dr. Engelbert Hubbers

${\bf Abstract}$

Brief outline of research questions, results. (The preferred size of an abstract is one paragraph or one page of text.)

Contents

1	Introduction	2
2	Rules	3
	2.1 Rules Intuitionistic Logic	3
	2.2 Rules Intuitionistic Logic with Types	4
	2.3 Rules Linear Logic	5
	2.4 Rules Linear Logic with Types	7
3	Lambda Calculus	8
	3.1 Introduction to the λ -calculus	8
	3.2 β -Reduction	8
	3.2.1 Variables	9
	3.2.2 Substitution	9
	3.2.3 β -Reduction	10
	3.3 Call-by-name calculus	11
	3.4 Call-by-value calculus	11
4	Call-by-box Lambda Calculus	13
	4.1 Speficitation of λ_b	13
	4.2 Embedding of λ_n into λ_b	14
	4.3 Embedding of λ_v into λ_b	15
5	Related Work	16
6	Conclusions	17
\mathbf{A}	Appendix	19

Introduction

The introduction of your bachelor thesis introduces the research area, the research hypothesis, and the scientific contributions of your work. A good narrative structure is the one suggested by Simon Peyton Jones [1]:

- describe the problem / research question
- motivate why this problem must be solved
- demonstrate that a (new) solution is needed
- explain the intuition behind your solution
- motivate why / how your solution solves the problem (this is technical)
- explain how it compares with related work

Close the introduction with a paragraph in which the content of the next chapters is briefly mentioned (one sentence per chapter).

Starting a new paragraph is done by inserting an empty line like this.

Rules

2.1 Rules Intuitionistic Logic

$$\frac{\Gamma, \Delta \vdash A}{A \vdash A} \text{ Exchange}$$

$$\frac{\Gamma, A \vdash B}{\Gamma, A \vdash B} \text{ Contraction}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to \text{I}$$

$$\frac{\Gamma \vdash A \to B}{\Gamma, \Delta \vdash A \to B} \times \text{-I}$$

$$\frac{\Gamma \vdash A \to B}{\Gamma, \Delta \vdash A \times B} \times \text{-I}$$

$$\frac{\Gamma \vdash A \to B}{\Gamma, \Delta \vdash A \times B} \times \text{-I}$$

$$\frac{\Gamma \vdash A \to B}{\Gamma, \Delta \vdash C} \times \text{-E}$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A + B} + \text{-I}_{1}$$

$$\frac{\Gamma \vdash B}{\Gamma \vdash A + B} + \text{-I}_{2}$$

$$\frac{\Gamma, A \vdash C}{\Gamma, \Delta \vdash C} \to A, A \vdash C \to A, B \vdash C}{\Gamma, \Delta \vdash C} + \text{-E}$$

Figure 2.1: Multiple Proof Rules in Columns

2.2 Rules Intuitionistic Logic with Types

$$\frac{\Gamma, \Delta \vdash t : A}{\Delta, \Gamma \vdash t : A} \text{ Exchange}$$

$$\frac{\Gamma, y : A, z : A \vdash u : B}{\Gamma, x : A \vdash u[y \mapsto x][z \mapsto x] : B} \text{ Contraction}$$

$$\frac{\Gamma \vdash u : B}{\Gamma, x : A \vdash u : B} \text{ Weakening}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} \to -I$$

$$\frac{\Gamma \vdash s : A \to B}{\Gamma, \Delta \vdash s(t) : B} \to -E$$

$$\frac{\Gamma \vdash t : A}{\Gamma, \Delta \vdash s(t) : B} \times -I$$

$$\frac{\Gamma \vdash t : A}{\Gamma, \Delta \vdash (t, u) : A \times B} \times -I$$

$$\frac{\Gamma \vdash s : A \times B}{\Gamma, \Delta \vdash \text{ case } s \text{ of } (x, y) \to v : C} \times -E$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash \text{ inl}(t) : A + B} + I_1$$

$$\frac{\Gamma \vdash u : B}{\Gamma \vdash \text{ inr}(u) : A + B} + I_2$$

$$\frac{\Gamma \vdash s : A + B}{\Gamma, \Delta \vdash \text{ case } s \text{ of inl}(x) \to v; \text{ inr}(y) \to w : C} + -E$$

Figure 2.2: Multiple Proof Rules in Columns

2.3 Rules Linear Logic

Figure 2.3: Multiple Proof Rules in Columns

2.4 Rules Linear Logic with Types

Figure 2.4: Multiple Proof Rules in Columns

Lambda Calculus

This section provides a detailed and formal description of the λ -calculus. We define a formal grammar of the λ -calculus and give examples of some terms in the λ -calculus. Then we explain β -reduction, after which we define call-by-name evaluation and call-by-value evaluation.

3.1 Introduction to the λ -calculus

The grammar of the lambda calculus is as follows:

$$M, N, P, Q ::= x \mid \lambda x.M \mid MN$$

Terms are denoted by M, N, P or Q and can either be of the form x, $\lambda x.M$ or MN:

- \bullet x is a variable, which is a symbol that represents an input or a value.
- $\lambda x.M$ is an abstraction. An abstraction is an anonymous function, where x is the parameter and M is the body of the function.
- MN is a function application, where M and N are terms.

The λ -term $\lambda x.x$ is an abstraction. This specific abstraction is called the identity function and has one input parameter, namely x, and returns the input x. The body of the function is also x in this case and the function is often abbreviated as \mathbf{I} . The λ -term $(\lambda x.x)y$ is a function application. So the identity function is applied to the variable y and the λ -term reduces to the variable y.

3.2 β -Reduction

Before we discuss β -reduction, we first define bound and free variables and substitution.

3.2.1 Variables

Let us first define free variables. Let P be any term in the λ -calculus and FV(P) be the set that contains all free variables in P. We define FV inductively on P. Since P can only be a variable, an abstraction or a function application, P can only be of the form x, $\lambda x.M$ and MN. Therefore, we define FV as follows:

$$FV(x) = \{x\}$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

We see that if a variable is free if it is by itself. All free variables in an abstraction are those that are not the parameter of the abstraction. For example, the λ -term $\lambda x.yx$ has one free variable, y. We can use the following reasoning:

$$FV(\lambda x.yx) = FV(yx)\backslash\{x\}$$

$$= (FV(x) \cup FV(y))\backslash\{x\}$$

$$= (\{x\} \cup \{y\})\backslash\{x\}$$

$$= \{x,y\}\backslash\{x\}$$

$$= \{y\}$$

Let us now define bound variables. Again, let P be any term in the λ -calculus and BV(P) be the set of all bound variables in P. We define BV inductively on P as follows:

$$BV(x) = \emptyset$$

 $BV(\lambda x.M) = BV(M) \cup \{x\}$
 $BV(MN) = BV(M) \cup BV(N)$

Using our previous example of the λ -term $\lambda x.yx$, we can now reason that $BV(\lambda x.xy) = \{x\}.$

$$BV(\lambda x.xy) = BV(xy) \cup \{x\}$$
$$= (BV(x) \cup BV(y)) \cup \{x\}$$
$$= (\emptyset \cup \emptyset) \cup \{x\}$$
$$= \{x\}$$

3.2.2 Substitution

Keeping the definitions of free and bound variables in mind, we now define substitution. In this research, substitution is often denoted as $P[x \mapsto Q]$ and defined inductively on P by:

$$\begin{array}{ll} x[x\mapsto Q] & = Q \\ y[x\mapsto Q] & = y \text{ if } (x\neq y) \\ (MN)[x\mapsto Q] & = M[x\mapsto Q]N[x\mapsto Q] \\ (\lambda x.M)[x\mapsto Q] & = \lambda x.M \\ (\lambda y.M)[x\mapsto Q] & = \lambda z.M[y\mapsto z][x\mapsto Q] \text{ if } (x\neq y) \end{array}$$

with z a variable defined by:

- 1. If $x \notin FV(N)$ or $y \notin FV(M)$ then z = y
- 2. Otherwise, z can be any variable such that $z \notin FV(N)$ or $z \notin FV(M)$

It might not be clear why need to use the variable z and one can expect that the following rule is good enough:

$$(\lambda y.M)[x \mapsto Q] = \lambda z.M[x \mapsto Q] \text{ if } (x \neq y)$$

However, the following example will illustrate why the more complicated rule is necessary. Consider the substitution $(\lambda y.xy)[x \mapsto y]$. The free variable of λ -term $\lambda y.xy$ is x and the bound variable is y. If we use the simple rule above, we get that $(\lambda y.xy)[x \mapsto y] = \lambda y.yy$, the meaning of the λ -term changes. However, the free variable we substituted, is not free anymore. The variable y is not a free variable in the term that we substituted y in. Therefore, we change the bound variable y in $\lambda y.xy$ to a new variable z. We can pick z as z is not a free variable in xy. Following the more complex rule, we get:

$$(\lambda y.xy)[x \mapsto y] = \lambda z.(xy)[y \mapsto z][x \mapsto y]$$
$$= \lambda z.yz$$

3.2.3 β -Reduction

Now, we are ready to discuss β -reduction. In the λ -calculus, there is one way to simplify terms, which is β -reduction. We can define:

$$(\lambda x.M)N \to M[x \mapsto N]$$
 (β)

So a λ -term of the form $(\lambda x.M)N$ can be reduced by substituting x by N in M. However, without additional rules, we cannot apply β -reduction to subterms. For example, the following reduction would not be possible: $\lambda x.(\lambda y.y)x \to \lambda x.x$. Therefore, we can define the following rules:

$$\frac{MN \to M'N}{M \to M'} (\mu) \qquad \frac{MN \to MN'}{N \to N'} (\nu) \qquad \frac{\lambda x.M \to \lambda x.M'}{M \to M'} (\xi)$$

Now, we define \rightarrow_{β} as β closed under μ , ν and ξ . So with \rightarrow_{β} we can use β -reduction on all subterms if the subterm is of the form $(\lambda x.M)N$. A subterm of the form $(\lambda x.M)N$ is called a β -redex. In one reduction, we may need to use multiple rules. The β -redex that is reduced is underlined. For instance, we need to use the μ and ξ rule in the last example of the following reductions:

$$(\underline{\mathbf{II}})(\mathbf{II}) \to_{\beta} \mathbf{I}(\mathbf{II}) \qquad \qquad \beta \text{ with } \mu \text{ rule}$$

$$(\mathbf{II})(\underline{\mathbf{II}}) \to_{\beta} (\mathbf{II})\mathbf{I} \qquad \qquad \beta \text{ with } \nu \text{ rule}$$

$$\lambda x.\underline{\mathbf{I}}x \to_{\beta} \lambda x.x \qquad \qquad \beta \text{ with } \xi \text{ rule}$$

$$(\mathbf{I}(\lambda x.\underline{\mathbf{I}}x))(\mathbf{II}) \to_{\beta} (\mathbf{I}(\lambda x.x))(\mathbf{II}) \qquad \qquad \beta \text{ with } \mu \text{ and } \xi \text{ rule}$$

3.3 Call-by-name calculus

In this section, we discuss the call-by-name λ -calculus. The reduction rule that is used in this calculus is the same as the β reduction rule. However, we name the rule β_n to make it clear that it is the reduction rule of the call-by-name λ -calculus.

$$(\lambda x.M)N \to M[x \mapsto N]$$
 β_n

We can define weak reduction, \to_w , as β_n closed under μ and ν . So \to_w has the only restiction that it cannot reduce under λ 's. The relation \to_n is defined as β_n closed under μ . So using name evaluation, we can not evaluate the argument of a function. Call-by-name evaluation is defined as \to_n^* . In the following example, we give the call-by-name evaluation of the λ -term $(\mathbf{I}(\lambda x.\mathbf{I}x))(\mathbf{II})$. The β -redex that is reduced is underlined. Note that \to_n is deterministic, so there is only one way to apply \to_n on a λ -term.

$$\frac{(\mathbf{I}(\lambda x.\mathbf{I}x))(\mathbf{II})}{\rightarrow_n} \frac{(\lambda x.\mathbf{I}x)(\mathbf{II})}{\mathbf{III}} \\
\rightarrow_n \frac{\mathbf{III}}{\mathbf{II}} \\
\rightarrow_n \mathbf{I}$$

3.4 Call-by-value calculus

Before we can define the call-by-value λ -calculus (abbreviated as), we first define what we mean by values. Values are all λ -terms that are either a variable or an abstractions. Values are usually denoted by V or W.

$$V ::= x \mid \lambda x.M$$

In the λ_v , we can only reduce if the argument is a value. Therefore, the reduction rule is as follows:

$$(\lambda x.M)V \to M[x \mapsto V]$$
 β_v

In order to define the \rightarrow_v relation, we first define the rule $\nu_{<}$.

$$\frac{N \to N'}{VN \to VN'} \, \nu_{<}$$

The relation \to_v can be defined as β_v , closed under μ and $\nu_<$. The $\nu_<$ forces evaluation from left to right and β_v makes sure that the argument needs to be a value. In the following example, we give the call-by-value evaluation of the λ -term $(\mathbf{I}(\lambda x.\mathbf{I}x))(\mathbf{II})$. The β -redex that is reduced is underlined. Note that \to_v is deterministic, so there is only one way to apply \to_v on a λ -term.

$$\begin{array}{ccc} (\underline{\mathbf{I}(\lambda x.\mathbf{I}x)})(\mathbf{II}) & \to_v & (\lambda x.\mathbf{I}x)(\underline{\mathbf{II}}) \\ & \to_v & \underline{(\lambda x.\mathbf{I}x)}\mathbf{I} \\ & \to_v & \underline{\mathbf{II}} \\ & \to_v & \mathbf{I} \end{array}$$

Call-by-box Lambda Calculus

Speficitation of λ_b 4.1

The terms of λ_b are given by:

$$M,N,P,Q ::= \varepsilon(x) \mid \lambda x.M \mid MN \mid \text{box}(N)$$
 Types are given by:

$$A, B ::= X \mid A \to B \mid \Box A$$

The typing rules of λ_b are give by:

$$\frac{\Gamma, x: \Box A \vdash \varepsilon(x): A}{\Gamma, x: A \vdash M: B} \xrightarrow{\Gamma \vdash \lambda x. M: A \to B} \to -\mathbf{I}$$

$$\frac{\Gamma \vdash M: A \to B \qquad \Delta \vdash N: A}{\Gamma, \Delta \vdash MN: B} \to -\mathbf{E}$$

$$\frac{\Gamma \vdash M: A}{\Gamma \vdash \mathrm{box}(M): \Box A} \Box -\mathbf{I}$$

Since variables always occur inside ε , we need to redefine free and bound variables and substitution. For λ_b , we have:

$$FV_b(\varepsilon(x)) = \{\varepsilon(x)\} \qquad BV(\varepsilon(x)) = \emptyset$$

$$FV_b(\lambda x.M) = FV(M) \setminus \{\varepsilon(x)\} \qquad BV(\lambda x.M) = BV(M) \cup \{\varepsilon(x)\}$$

$$FV_b(MN) = FV(M) \cup FV(N) \qquad BV(MN) = BV(M) \cup BV(N)$$

Thus, for substitution, we get:

$$\begin{array}{ll} \varepsilon(x)[\varepsilon(x)\mapsto Q] & = Q \\ \varepsilon(y)[\varepsilon(x)\mapsto Q] & = \varepsilon(y) \text{ if } (x\neq y) \\ (MN)[\varepsilon(x)\mapsto Q] & = M[x\mapsto Q]N[x\mapsto Q] \\ (\lambda x.M)[\varepsilon(x)\mapsto Q] & = \lambda x.M \\ (\lambda y.M)[\varepsilon(x)\mapsto Q] & = \lambda z.M[\varepsilon(y)\mapsto \varepsilon(z)][\varepsilon(x)\mapsto Q] \text{ if } (x\neq y) \end{array}$$

with z a variable defined by:

- 1. If $\varepsilon(x) \notin FV_b(N)$ or $\varepsilon(y) \notin FV_b(M)$ then z = y
- 2. Otherwise, z can be any variable such that $\varepsilon(z) \notin FV(N)$ or $\varepsilon(z) \notin FV(M)$

The reduction rule we can use for this λ -calculus is:

$$(\lambda x.M)$$
box $(N) \to M[\varepsilon(x) \mapsto N]$ (β_b)

We define two relations: \rightarrow_{b_n} and \rightarrow_{b_v} . The relation \rightarrow_{b_n} will be used for cbn evaluation for embeddings of λ_n in λ_b . The relation \rightarrow_{b_v} will be used for cbn evaluation for embeddings of λ_v in λ_b .

4.2 Embedding of λ_n into λ_b

Let Λ_{CBN} be the set containing all λ -terms in the λ_n and let Λ_{CBB} be the set containing all λ -terms in the λ_b . The set \mathcal{T}_{CBN} contains all types of the λ_n and \mathcal{T}_{CBB} contains all types of the λ_b . Now we define functions from Λ_{CBN} to Λ_{CBB} for term translation and from \mathcal{T}_{CBN} to \mathcal{T}_{CBB} for type translation. These functions represent an embedding of the λ_n into the λ_b .

$$T_t$$
 : $\mathcal{T}_{CBN} \to \mathcal{T}_{CBB}$ T : $\Lambda_{CBN} \to \Lambda_{CBB}$ $T_t(X) = X$ $T(x) = \varepsilon(x)$ $T_t(A \to B) = \Box T_t(A) \to T_t(B)$ $T(\lambda x.M) = \lambda x.T(M)$ $T(MN) = T(M) \mathrm{box}(T(N))$

To clarify, we give the embedding of $\mathbf{I}x$ into λ_b after which we apply \to_{b_n} . It is clear that the result obtained after \to_{b_n} is equal to the embedding of the result of applying \to_{b_n} on $\mathbf{I}x$ in the λ_n , which is $T(x) = \varepsilon(x)$.

$$T(\mathbf{I}x) = (T(\lambda x.x))box(T(x))$$

$$= (\lambda x.T(x))box(T(x))$$

$$= (\lambda x.\varepsilon(x))box(\varepsilon(x))$$

$$\rightarrow_{b_n} (\lambda x.\varepsilon(x))[\varepsilon(x) \mapsto \varepsilon(x)]$$

$$= \varepsilon(x)$$

4.3 Embedding of λ_v into λ_b

For the embedding of the λ_v into the λ_b , we make use of the abbreviation "raise" defined by:

$$raise(M) := \lambda z.\varepsilon(z)M$$

Let Λ_{CBV} be the set containing all λ -terms in the λ_v and let Λ_{CBB} be the set containing all λ -terms in the λ_b . The set \mathcal{T}_{CBV} contains all types of the λ_v and \mathcal{T}_{CBB} contains all types of the λ_b . Now we define functions from Λ_{CBV} to Λ_{CBB} for term translation and from \mathcal{T}_{CBV} to \mathcal{T}_{CBB} for type translation.

$$T_t$$
 : $\mathcal{T}_{CBV} \to \mathcal{T}_{CBB}$ T : $\Lambda_{CBN} \to \Lambda_{CBB}$ $T_t(X)$ = $\Box X$ $T(x)$ = $\operatorname{box}(\varepsilon(x))$ $T_t(A \to B)$ = $\Box(\Box T_t(A) \to \Box T_t(B))$ $T(\lambda x.M)$ = $\operatorname{box}(\lambda x.T(M))$ $T(MN)$ = $\operatorname{raise}(T(N))T(M)$

To clarify, we give the embedding of $\mathbf{I}x$ into λ_b after which we apply \to_{b_v} twice. It is clear that the result obtained after \to_{b_v} is equal to the embedding of the result of applying \to_v on $\mathbf{I}x$ in the λ_v , which is $T(x) = \text{box}(\varepsilon(x))$.

```
T(\mathbf{I}x) = \operatorname{raise}(T(x))T(\mathbf{I})
= \operatorname{raise}(T(x))T(\lambda x.x)
= \operatorname{raise}(\operatorname{box}(\varepsilon(x)))\operatorname{box}(\lambda x.T(x))
= \operatorname{raise}(\operatorname{box}(\varepsilon(x)))\operatorname{box}(\lambda x.\operatorname{box}(\varepsilon(x)))
= (\lambda z.\varepsilon(z)\operatorname{box}(\varepsilon(x)))\operatorname{box}(\lambda x.\operatorname{box}(\varepsilon(x)))
\to_{b_v} (\lambda x.\operatorname{box}(\varepsilon(x)))\operatorname{box}(\varepsilon(x))
\to_{b_v} \operatorname{box}(\varepsilon(x))
```

Related Work

In this chapter you demonstrate that you are sufficiently aware of the state-of-art knowledge of the problem domain that you have investigated as well as demonstrating that you have found a new solution / approach / method.

Conclusions

In this chapter you present all conclusions that can be drawn from the preceding chapters. It should not introduce new experiments, theories, investigations, etc.: these should have been written down earlier in the thesis. Therefore, conclusions can be brief and to the point.

Bibliography

[1] Simon Peyton Jones. How to write a good research paper, 2004. Presentation at Technical University of Vienna, http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/writing-a-paper-slides.pdf.

Appendix A

Appendix

Appendices are *optional* chapters in which you cover additional material that is required to support your hypothesis, experiments, measurements, conclusions, etc. that would otherwise clutter the presentation of your research.