7. Übungsblatt zur Experimentalphysik 1 (WS 19/20)

Abgabe am 5./6.12.2019 in den Übungen

Name(n): Gruppe: Punkte: $_/_/$

7.1 Der Mann auf der Leiter (15 Punkte)

Eine Leiter der Masse m_L und Länge L stehe unter einem Winkel α an eine Wand gelehnt. Die Masse der Leiter sei homogen über deren Länge verteilt. Der Haftreibungskoeffizient am Boden sei μ . Der Kontakt zur Wand sei reibungsfrei. Im Abstand x vom Fußpunkt der Leiter stehe eine Person der Masse m_P auf der Leiter.

- a) Tragen Sie die wirkenden Kräfte in eine Skizze ein und stellen Sie die Kräftebilanz in vertikaler und horizontaler Richtung auf. Stellen Sie eine geeignete Drehmomentbilanz auf.
- **b)** Berechnen Sie den minimalen Anstellwinkel, bei dem die Leiter ohne Arbeiter nicht wegrutscht.
- c) Bei welchem minimalen Winkel muß die Leiter aufgestellt werden, damit ein $m_P=75\,\mathrm{kg}$ schwerer Arbeiter bis zum Ende der Leiter hochsteigen kann, ohne dass die Leiter wegrutscht? Nehmen Sie hierbei $m_L=25\,\mathrm{kg},\,L=6\,\mathrm{m}$ und $\mu=0,5$ an.

7.2 Nicht-zentraler elastischer Stoß (15 Punkte)

Eine Kugel (1) mit Radius $R=1\,\mathrm{cm}$ bewege sich reibungsfrei mit der Geschwindigkeit $v_1=10\,\mathrm{cm/s}$ auf eine gleichartige, im Laborsystem ruhende Kugel (2) zu. Der als Stoßparameter b bezeichnete Abstand der Einfallsgeraden von Kugel (1) zum Zentrum von Kugel (2) betrage $b=1.2\,\mathrm{cm}$. Der Stoß der beiden Kugeln erfolge elastisch.

- a) Zeigen Sie allgemein, dass sich die Kugeln nach dem Stoß im Laborsystem unter einem Winkel von $\alpha_1 + \alpha_2 = 90^{\circ}$ von einander entfernen.
- b) Wie groß sind die Winkel α_1 und α_2 und die Geschwindigkeiten u_1 und u_2 nach dem Stoß im Laborsystem?

c) Geben sie die Geschwindigkeiten v_1' , u_1' und u_2' sowie die Winkel α_1' und α_2' im Schwerpunktsystem der beiden Kugeln an.

Hinweis: Wie bei einem Stoß einer Kugel mit einer festen Wand bleiben die Impulskomponenten der Kugeln parallel zur Auftrefffläche $(p_1^{\parallel} \text{ und } p_2^{\parallel})$ - hier parallel zur Tangente am Auftreffpunkt von Kugel (2) und damit senkrecht zur Verbindungslinie der beiden Kugelzentren - durch den Stoß unverändert.

7.3 Atwoodsche Fallmaschine (10 Punkte)

Zwei Massen, $m_1 = 35 \,\mathrm{kg}$ und $m_2 = 38 \,\mathrm{kg}$, sind durch ein masseloses inelastisches Seil, das über eine Rolle geführt wird, miteinander verbunden. Die Rolle besteht aus einer homogenen Scheibe mit einem Radius von $0.3 \,\mathrm{m}$ und einer Masse von $4.8 \,\mathrm{kg}$, über die das Seil aufgrund von Haftreibung ohne durchzurutschen läuft. Anfangs befindet sich m_1 auf dem Boden und m_2 ruht in $2.5 \,\mathrm{m}$ Höhe über dem Boden. Berechnen Sie mithilfe der zugrundeliegenden Bewegungsgleichungen die Geschwindigkeit von m_2 direkt vor dem Auftreffen auf dem Boden. Die Rolle drehe sich reibungsfrei.

Am 10.12.2019 veranstaltet eure Fachschaft Math-PhysInfo gemeinsam mit der Fakultät für Physik und Astronomie die ArbeitsgruppenInspirationsMesse-kurz AIM. Ab 16:00 Uhr könnt ihr euch im Neuenheimer Feld 227 im Kirchhoff-Institut für Physik mit Professoren, Promovierenden, Masteranden und weiteren Mitgliedern aus verschiedenen Arbeitsgruppen unterhalten und euch über Abschlussarbeiten, einen HiWi-Job oder allgemein die aktuelle Forschung in den Gruppen unterhalten. Eure Fachschaft versorgt euch dabei mit ein paar Snacks und warmen Getränken.

Weitere Informationen erhaltet ihr unter mathphys.info/w/aim.

