Définition 28.1 - matrice d'une famille de vecteurs dans une base finie

Soit E un \mathbb{K} -ev de dimension finie $n \neq 0$, $\mathcal{B} = (e_i)_{i \in [\![1,n]\!]}$ une base de E et $\mathcal{K} = (x_i)_{i \in [\![1,n]\!]}$ une famille de vecteurs de E.

 $M_n p \mathbb{K} \mathcal{M}_n \mathbb{K}$

Définition 28.10 - matrice d'une application linéaires entre espaces vectoriels finis

Soit E et F deux espaces vectoriels de dimensions finies non nulles p et n et $u \in \mathcal{L}(E, F)$. Soit $\mathcal{B} = (e_i)_{i \in [\![1,p]\!]}$ une base de E et $\mathcal{B}' = (f_i)_{i \in [\![1,n]\!]}$ une base de F.

On appelle matrice de u dans les bases \mathcal{B} et \mathcal{B}' et on note $\mathrm{Mat}_{e,f}(u)$ la matrice de la famille $u(\mathcal{B})$ dans la base \mathcal{B}' .

Théorème 28.21 (1) - lien entre applications linéaires et matrices

Soit E de base e et F de base f deux \mathbb{K} -ev de dimensions finies non nulles p et n respectivement. $\mathcal{L}(E,F)$ et $\mathcal{M}_{n,p}(\mathbb{K})$ sont isomorphes. En effet, $u:\mathcal{L}(E,F)\to\mathcal{M}_{n,p}(\mathbb{K})$; $u\mapsto \mathrm{Mat}_{e,f}(u)$ convient.

Théorème 28.22 (2) - lien entre applications linéaires et matrices

Soit E de base e, F de base g trois \mathbb{K} -ev de dimensions finies. Soit $\mathrm{Mat}_{e,g}(v\circ u)=\mathrm{Mat}_{f,g}(v)\times \mathcal{L}(E,F)$ et $\mathcal{M}_{n,p}(\mathbb{K})$ sont isomorphes. En effet, $u:\mathcal{L}(E,F)\to\mathcal{M}_{n,p}(\mathbb{K})$; $u\mapsto\mathrm{Mat}_{e,f}(u)$ convient.

Définition 25.50 - matrices extraites

On appelle matrice extraite d'une matrice A toute matrice obtenue à partir de A en supprimant des lignes et colonnes.

Proposition 25.52 - rang d'une matrice extraite

Pour toute matrice B extraite de A,

- 1. $rg(B) \leq rg(A)$
- 2. tout matrice inversible que l'on peut extraire de A est de taille au plus rg(A).

Définition 28.65 - matrice d'opération élémentaire

Une matrice d'opération élémentaire $E \in \mathcal{M}_n(\mathbb{K})$ est une matrice obtenue en appliquant une seule opération élémentaire sur les lignes de la matrice identité. Il en existe trois types :

1. la matrice de permutation de deux lignes, par exemple des lignes 2 et 3 de la matrice I_3 :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

2. la matrice de dilation d'un scalaire d'une ligne, i.e. de multiplication d'une ligne par un scalaire, par exemple de la ligne 2 par 5 de la matrice I_3 :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3. la matrice de transvection d'une ligne sur un autre, i.e. d'ajout d'une ligne à une autre, par exemple de la ligne 2 à la ligne 3 de la matrice I_3 :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Toutes ces matrices sont évidemment inversibles.

Proposition 28.66 - opérations élémentaires sur une matrice

- 1. Multiplier à gauche une matrice A par une matrice élémentaire revient à effectuer l'opération correspondante sur les lignes de A.
- 2. Multiplier à droite une matrice A par une matrice élémentaire revient à effectuer l'opération correspondante sur les colonnes de A.

2