DS N°6 (le 16/01/2010)

PROBLÈME 1 : Autour de la fonction Zeta alternée de Riemann (extrait de CCP MP 2008)

Objectifs: On note F la fonction zeta alternée de Riemann, définie par

$$F(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x},$$

et ζ la fonction zeta de Riemann, définie sur $]1,+\infty[$ par

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

Ce problème propose une étude croisée de quelques propriétés de F et ζ.

Mise à part la partie III. qui utilise des résultats de la partie I., les parties sont, dans une très large mesure, indépendantes.

I. Généralités

- 1. Déterminer l'ensemble de définition de F.
- **2.** On considère la suite de fonctions $(g_n)_{n\geqslant 1}$ définies sur [0,1] par

$$g_n(t) = \sum_{k=0}^{n} (-t)^k$$
.

Pour $t \in [0,1]$, on pose $g(t) = \frac{1}{1+t}$.

Démontrer que la suite (g_n) converge simplement vers g sur [0,1[. La convergence est-elle uniforme ?

En utilisant un majorant simple de $|g-g_n|$, montrer que $F(1) = \int_0^1 g(t) dt$. En déduire la valeur de F(1).

- 3. Démontrer que la série de fonctions $\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n^x}$ converge normalement sur $[2,+\infty[$. En déduire la limite de F en $+\infty$.
- **4.** Dérivabilité de F
 - a) Soit x > 0. étudier les variations sur $]0, +\infty[$ de la fonction $t \mapsto \frac{\ln t}{t^x}$ et en déduire que la suite $\left(\frac{\ln n}{n^x}\right)_{n\geqslant 1}$ est monotone à partir d'un certain rang (dépendant de x) que l'on précisera.
 - **b)** Pour $n \ge 1$, on pose $f_n : x \mapsto \frac{(-1)^{n-1}}{n^x}$.

Si a est un réel strictement positif, démontrer que la série des dérivées $\sum_{n\geqslant 1} f'_n$ converge uniformément sur $[a,+\infty[$.

En déduire que F est une fonction de classe \mathscr{C}^1 sur $]0,+\infty[$.

5 Lion avec Y

Calculer, pour x > 1, $F(x) - \zeta(x)$ en fonction de x et de $\zeta(x)$. En déduire que :

$$F(x) = (1 - 2^{1-x})\zeta(x)$$
.

1/5

Puis en déduire la limite de ζ en $+\infty$.

II. Produit de Cauchy de la série alternée par elle-même

On rappelle que le produit de Cauchy de deux séries $\sum_{n\geqslant 1}a_n$ et $\sum_{n\geqslant 1}b_n$ est la série $\sum_{n\geqslant 2}c_n$, où $c_n=\sum_{k=1}^{n-1}a_kb_{n-k}$.

Dans cette partie, on veut déterminer la nature, selon la valeur de x, de la série $\sum_{n\geq 2} c_n(x)$, produit de Cauchy de

$$\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n^x}$$
 par elle-même.

Cette étude va illustrer le fait que le produit de Cauchy de deux séries convergentes n'est pas nécessairement une série convergente.

Dans toute cette partie, n désigne un entier supérieur ou égal à 2 et x un réel strictement positif.

- 6. Étude de la convergence
 - a) Indiquer sans aucun calcul la nature et la somme, en fonction de F, de la série produit $\sum_{n\geqslant 2}c_n(x)$ lorsque x>1.
 - **b)** Démontrer que, pour x > 0, $|c_n(x)| \ge \frac{4^x(n-1)}{n^{2x}}$. En déduire, pour $0 < x \le \frac{1}{2}$, la nature de la série $\sum_{n \ge 2} c_n(x)$.
- **7.** *Cas où* x = 1

On suppose, dans cette question 7., que x = 1.

- a) Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(n-X)}$. En déduire une expression de $c_n(x)$ en fonction de $\frac{H_{n-1}}{n}$, où $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ (somme partielle de la série harmonique).
- **b)** Déterminer la monotonie de la suite $\left(\frac{H_{n-1}}{n}\right)_{n\geq 2}$.
- c) En déduire la nature de la série $\sum_{n\geqslant 2} c_n(x)$.

III. Calcul de la somme d'une série à l'aide d'une étude de ζ au voisinage de 1

- 8. Développement asymptotique en 1
 - a) écrire en fonction de $\ln 2$ et de F'(1) le développement limité à l'ordre 1 et au voisinage de 1 de la fonction F, puis déterminer le développement limité à l'ordre 2 et au voisinage de 1 de la fonction $x \mapsto 1 2^{1-x}$.
 - **b)** En déduire deux réels a et b, qui s'écrivent éventuellement à l'aide de ln2 et F'(1), tels que l'on ait, pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{a}{x-1} + b + o(1).$$

9. Développement asymptotique en 1 (bis)

On considère la série de fonctions $\sum_{n\geq 1} v_n$, où v_n est définie sur [1,2] par

$$v_n(x) = \frac{1}{n^x} - \int_n^{n+1} \frac{\mathrm{d}t}{t^x}.$$

a) Justifier que, pour $n \ge 1$ et $x \in [1,2]$, on a :

$$0 \leqslant v_n(x) \leqslant \frac{1}{n^x} - \frac{1}{(n+1)^x}$$

2/5

- **b)** Justifier que, pour $x \in [1,2]$, la série $\sum_{n\geqslant 1} \nu_n(x)$ converge. On note alors $\gamma = \sum_{n=1}^{+\infty} \nu_n(1)$ (c'est la constante d'Euler).
- c) Exprimer, pour $x \in]1,2]$, la somme $\sum_{n=1}^{+\infty} \nu_n(x)$ à l'aide de $\zeta(x)$ et 1-x.
- **d**) Démontrer que la série $\sum_{n\geq 1} \nu_n$ converge uniformément sur [1,2] (on pourra utiliser le reste de la série).
- e) En déduire que l'on a, pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{1}{x-1} + \gamma + o(1).$$

10. Application

Déduire des résultats précédents une expression, à l'aide de ln2 et γ, de la somme

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \ln n}{n}.$$

PROBLÈME 2 : Produits infinis (d'après Centrale TA 1981)

Pour toute suite réelle ou complexe $u=(u_n)$, le symbole $\prod_q^\infty u_n$, où q est un entier naturel donné, désigne la limite **si elle existe** de la suite p définie par $p_n=u_qu_{q+1}...u_n$ (pour $n\geqslant q$).

Partie I

I.1 Démontrer l'existence et calculer les valeurs, de :

$$\prod_{1}^{\infty} \left(1 - \frac{1}{n}\right) \qquad \prod_{2}^{\infty} \left(1 - \frac{1}{n^2}\right) \qquad \prod_{2}^{\infty} \left(1 - \frac{2}{n(n+1)}\right)$$

[Indication: Dans les trois cas, on calculera explicitement la valeur de p_n .]

- **I.2 Dans toute cette question**, on suppose que u est une suite réelle telle que : $\forall n \in \mathbb{N}$, $0 < u_n < 1$.
 - a) Montrer que $\prod_{n=0}^{\infty} u_n$ existe. Démontrer que sa valeur est non nulle si et seulement si la série $\sum \ln(u_n)$ est convergente.
 - **b)** En déduire que $\prod_{n=0}^{\infty} (1+u_n)$ existe si et seulement si la série $\sum u_n$ est convergente.
 - c) Montrer que $\prod_{n=0}^{\infty} (1+u_n)$ existe si et seulement si $\prod_{n=0}^{\infty} (1-u_n)$ existe et est non nul.

Partie II

II.1 Démontrer l'existence, et calculer les valeurs, de :

$$\prod_{2}^{\infty} \left(1 - \frac{(-1)^{n}}{n}\right) \; \; ; \quad \prod_{2}^{\infty} \left(1 - \frac{(-1)^{n}}{\sqrt{n}}\right)$$

[*Indication*: Dans le premier cas, on fera comme au I. Dans le deuxième cas, on pourra par exemple trouver une majoration simple de p_{2n+1} en regroupant les termes 2 par 2.]

II.2 Soit *u* une suite réelle vérifiant les deux conditions :

•
$$\forall n \in \mathbb{N} |u_n| < 1$$
.
• $\sum u_n$ converge.

Montrer que
$$\prod_{0}^{\infty}(1+u_n)$$
 existe, et que $\prod_{0}^{\infty}(1+u_n)$ vaut 0 si et seulement si la série $\sum u_n^2$ diverge. [Indication: On étudiera, grâce à un DL, les deux comportements possibles de la série $\sum [u_n - \ln(1+u_n)]$.]

Partie III

III.1 On définit une suite a pour n >= 1 par :

$$a_{2n} = \frac{1}{\sqrt{n}} + \frac{1}{n} + \frac{1}{n\sqrt{n}}$$
 ; $a_{2n-1} = -\frac{1}{\sqrt{n}}$

- a) Étudier la convergence des séries $\sum a_n$ et $\sum a_n^2$. [*Indication:* Pour la première, on pourra calculer la somme partielle s_{2n} .]
- **b)** Simplifier $(1+a_{2n-1})(1+a_{2n})$. En déduire que la suite $p_{2n} = \prod_{q=3}^{2n} (1+a_q)$ converge vers une limite non nulle.

En déduire l'existence et la valeur de $\prod_{3}^{\infty} (1 + a_n)$.

III.2 Soit *u* une suite réelle vérifiant les deux conditions :

$$\begin{cases} \forall n \in \mathbb{N} & |u_n| < 1. \\ \prod_{n=0}^{\infty} (1 + u_n) \text{ existe, et est non nul.} \end{cases}$$

- a) Montrer que les deux séries $\sum u_n$ et $\sum u_n^2$ sont de même nature. [*Indication*: On pourra considérer encore la série de terme général $(u_n \ln(1 + u_n))$.]
- **b)** Montrer que $\lim_{n\to+\infty}\sum_{k=0}^n u_k = +\infty$ si, et seulement si, la série de terme général (u_n^2) diverge.

III.3 Dans cette question on étudie un dernier cas distinct des précédents : on suppose que :

$$\forall n \in \mathbb{N} \quad |u_n| < 1 \text{ et que } (\sum |u_n|) \text{ converge.}$$

Montrer que $\prod_{n=0}^{\infty} (1+u_n)$ existe.

[Indication: On pourra chercher un équivalent de $|\ln(1+u_n)|$.]

Qu'en conclure quant à $\prod_{1}^{\infty} \left(1 - \frac{\cos(e.n^2)}{4n^2}\right)$?

Partie IV

Dans toute la suite du problème, (u_n) désigne une suite à valeurs **complexes**.

IV.1 Soit u une suite **complexe** telle que $\forall n \in \mathbb{N}$ $u_n/=-1$.

Montrer que si $\prod_{n=0}^{\infty} (1+u_n)$ existe et vaut 0, alors la série $\sum \ln|1+u_n|$ diverge. De quelle façon?

IV.2 On considère dans toute cette question une suite u à valeurs complexes vérifiant les deux conditions :

•
$$\forall n \in \mathbb{N}$$
, $|u_n| < 1$.

•
$$\sum |u_n|$$
 converge.

On définit pour tout $z \in \mathbb{C}^*$ Arg z comme l'unique détermination de son argument comprise dans $]-\pi,\pi]$:

$$\operatorname{Arg} z \in]-\pi,\pi]$$
 $z=|z|e^{i\operatorname{Arg} z}$

a) Montrer que
$$\prod_{n=0}^{\infty} (1+|u_n|)$$
 existe.

Montrer que ce réel est strictement supérieur à 1 à une condition que l'on déterminera.

b) Montrer que la suite
$$p_n = \prod_{k=0}^{n} (1 + u_k)$$
 est une suite de CAUCHY.

On démontrera préalablement la formule :

$$\left| \prod_{1}^{n} (1 + a_k) - 1 \right| \le \prod_{1}^{n} (1 + |a_k|) - 1$$

Comme toute suite de Cauchy dans \mathbb{C} est convergente, on en déduit donc l'existence de $\prod_{1}^{\infty} (1 + u_n)$.

- c) Montrer que la série $\sum \ln |1 + u_n|$ est absolument convergente.
- **d**) Montrer que $\prod_{n=0}^{\infty} (1+u_n) \neq 0$.
- e) Montrer que la série $\sum Arg|1+u_n|$ est **absolument** convergente.
- f) Le produit $\prod_{1}^{\infty} (1 + \frac{i}{n})$ existe-t-il? Si oui, donnez sa valeur. Sinon, dites (sommairement) pourquoi.

On admettra, si nécessaire, que $\prod_{1}^{\infty} \sqrt{1 + \frac{1}{n^2}} = \sqrt{\frac{\sinh \pi}{\pi}}$.

IV.3 Soit u une suite **complexe** telle que $\prod_{n=0}^{\infty} (1+u_n)$ existe et est non nul.

- a) Montrer que u_n ne vaut jamais -1, et tend vers 0.
- **b)** Montrer que $\sum \ln |1 + u_n|$ converge.

