第 2 章

線形写像と行列の演算

線形写像と線形性

写像 $f\colon K^n \to K^m$ が与えられたとき、これは K^n の出来事、構造、その他もろもろの情報を K^m に投影していると考えられる。

このとき、その「写り方」にはどのような性質を期待するべきであろうか?

ベクトルには、和とスカラー倍という 2 つの演算が備わっていた。

そして、和とスカラー倍の組み合わせが、線形結合として重要な役割を果たしている。

そのため、写った先でも、ベクトルどうしの和・定数倍に関する関係式が保存されるという 状況が望ましい。

★ def - 線形写像と線形性

写像 $f: K^n \to K^m$ が線形写像 (linear mapping) であるとは、次の条件を満たすことをいう。

- i. 任意の $c \in K$, $\boldsymbol{v} \in K^n$ に対して、 $f(c\boldsymbol{v}) = cf(\boldsymbol{v})$
- ii. 任意の $\boldsymbol{u}, \boldsymbol{v} \in K^n$ に対して、 $f(\boldsymbol{u} + \boldsymbol{v}) = f(\boldsymbol{u}) + f(\boldsymbol{v})$

これらの性質を写像 f の線形性という。

また、m=n のとき、線形写像 $f\colon K^n\to K^n$ を K^n の線形変換 (linear transformation) という。

f が線形写像であれば、たとえば $c_1 \mathbf{u} + c_2 \mathbf{v}$ を f で写したときに、

$$f(c_1\boldsymbol{u}+c_2\boldsymbol{v})=c_1f(\boldsymbol{u})+c_2f(\boldsymbol{v})$$

というように、ベクトル \boldsymbol{u} , \boldsymbol{v} を \boldsymbol{f} で写したものに置き換えただけで、線形結合の形はそのまま保たれる。

比例関数の一般化

線形写像のひとつの解釈として、「比例関数の一般化」という考え方もできる。

m=n=1 の場合の線形写像 $f\colon \mathbb{R} \to \mathbb{R}$ は、単に数と数を対応させているので、(写像 というより) 関数である。このとき、線形性 (i) から、

$$f(c) = f(c \cdot 1) = c \cdot f(1) \quad (c \in \mathbb{R})$$

が成り立つので、 $a = f(1) \in \mathbb{R}$ とおくと、次のように書ける。

$$f(x) = ax$$

♣ theorem 2.1 - 一次元線形写像と比例関数の同一性

線形写像 $f: \mathbb{R} \to \mathbb{R}$ は、a を比例定数とする比例関数である。

もっとも簡単な関数である比例関数が満たすべき性質を抽象化し、高次元の世界で実現して いるのが線形写像だとも考えられる。

線形写像による零ベクトルの像

 $f: \mathbb{K}^n \to \mathbb{K}^m$ を線形写像とするとき、線形性 (i) より、

$$f(0 \cdot \boldsymbol{v}) = 0 \cdot f(\boldsymbol{v})$$

よって、次が成り立つ。

$$f(o) = o$$

♣ theorem - 零ベクトルの像

零ベクトルは線形写像によって零ベクトルに写される。

局所的な線形写像

線形写像は「局所的には」ありふれている。

たとえば、あらゆる微分可能な関数は、あらゆる場所で「線形写像+誤差」と局所的に表現 される。局所的に線形写像として近似するのが微分ともいえる。

線形写像の記述と行列

 K^n の任意のベクトル \boldsymbol{v} は、基本ベクトル (標準基底) の線型結合として次のように書ける。

$$oldsymbol{v} = egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix} = v_1 oldsymbol{e}_1 + \cdots + v_n oldsymbol{e}_n = \sum_{j=1}^n v_j oldsymbol{e}_j$$

この \boldsymbol{v} に、線形写像 f を作用させると、f の線形性より、

$$f(\boldsymbol{v}) = v_1 f(\boldsymbol{e}_1) + \cdots + v_n f(\boldsymbol{e}_n) = \sum_{j=1}^n v_j f(\boldsymbol{e}_j)$$

ここで、 v_1, \ldots, v_n は \boldsymbol{v} の成分なので、f の引数にどんなベクトルを入れるかによって変 わる部分である。

$$f(oldsymbol{v}) = \underline{v_1} f(oldsymbol{e}_1) + \cdots + \underline{v_n} f(oldsymbol{e}_n)$$
引数

よって、f 自体は、基本ベクトルの像 $f(e_1), \ldots, f(e_n)$ だけで決まってしまう。

行列:線形写像の簡略記法

f の構成要素 (f が表す操作)と f の引数 (f の操作対象)を分離して、もっと簡潔に書けないか?ということを考える。

基本ベクトル e_1, \ldots, e_n が、f によって a_1, \ldots, a_n というベクトルに写るとしよう。 すなわち、 $f(e_i) = a_i$ と書き直して、

$$f(\boldsymbol{v}) = v_1 \boldsymbol{a}_1 + \cdots + v_n \boldsymbol{a}_n$$

ここで、基本ベクトルの像 $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ を横に並べたものを \boldsymbol{A} とおく。

$$A = \begin{pmatrix} \boldsymbol{a}_1 & \cdots & \boldsymbol{a}_n \end{pmatrix}$$

A は、縦ベクトルを横に並べたものなので、結局は縦横に数を並べたものになっている。 このような、縦横に数を並べたものを行列 (matrix) という。

そして、次のような演算の規則を定める。

★ def - 行列とベクトルの積

行列
$$A = \begin{pmatrix} \boldsymbol{a}_1 & \cdots & \boldsymbol{a}_n \end{pmatrix}$$
 と $\boldsymbol{v} \in K^n$ との積を次のように定める。

$$A\boldsymbol{v}=v_1\boldsymbol{a}_1+\cdots+v_n\boldsymbol{a}_n$$

ここで、 v_i は \boldsymbol{v} の第 i 成分である。

行列とベクトルの積を用いると、f(v) は次のように簡潔に書ける。

$$f(oldsymbol{v}) = oldsymbol{A} oldsymbol{\underline{v}}$$
引数

このとき、行列 A は線形写像 f の表現行列と呼ばれる。

線形写像 f は基本ベクトルの像 $f(e_1), \ldots, f(e_n)$ だけで決まるのだから、これらを並べたものとして表現行列 A を定めれば、f は表現行列 A だけで決まることになる。

このことは、比例関数が比例定数 *a* だけで決まることの高次元版ともいえる。

行列の定義

前節で述べたように、線形写像の簡略記法として生まれたものが、<mark>行列</mark>である。 ここでは、行列についての用語をいくつか定義する。

行列:縦横に数を並べたもの

縦ベクトルは数を縦に並べたもの、横ベクトルは数を横に並べたものだった。 縦横に数を並べたものは<mark>行列</mark>といい、たとえば次のように書く。

$$A = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

横の数字の並びを行、縦の数字の並びを列という。

行列の型

A は、m 個の行と n 個の列をもつ行列である。

行がm個、列がn個の行列を、m行n列の行列、あるいは $m \times n$ 型行列という。

m=n の場合、すなわち $n\times n$ 型行列は、正方形状に数を並べたものなので n 次正方行列という。

行列の成分

第i行、第j列にある数を a_{ij} と表し、これを(i,j)成分という。

$$A = egin{pmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ dots & & dots & & dots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ dots & & dots & & dots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{pmatrix} i$$

行列 A を、 a_{ij} 成分の集まりとして、次のように略記することもある。

$$A = (a_{ij})$$

行列の列ベクトル

行列 A から、第 j 列だけを取り出して K^m のベクトルとしたものは、

$$oldsymbol{a}_j = egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{pmatrix}$$

であり、これを A の j 番目の \overline{M} 番目の \overline{M}

 $m \times n$ 型行列 A は、m 次元の列ベクトルを横に n 個並べたものという意味で、

$$A = \begin{pmatrix} \boldsymbol{a}_1 & \cdots & \boldsymbol{a}_n \end{pmatrix}$$

と書くこともできる。

行列の行べクトル

行列 A から、第 i 行だけを取り出して K^n のベクトルとしたものは、

$$oldsymbol{a}_i = egin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix}$$

であり、これを A の i 番目の行べクトルという。

 $m \times n$ 型行列 A は、n 次元の行ベクトルを縦に m 個並べたものという意味で、

$$A = egin{pmatrix} m{a}_1 \ dots \ m{a}_m \end{pmatrix}$$

と書くこともできる。

行列全体の集合

n 次元数ベクトル全体の集合を K^n と書くのと同様に、 $m \times n$ 型行列全体の集合を $M_{mn}(K)$ と書くことがある。

• 実数を縦横に並べた $m \times n$ 型行列の集合は、 $M_{mn}(\mathbb{R})$ と表す。

• 複素数を縦横に並べた $m \times n$ 型行列の集合は、 $M_{mn}(\mathbb{C})$ と表す。

行列から定まる線形写像

線形写像の記述と行列 [第 2 章] では、線形写像 f による像 $f(\boldsymbol{v})$ を、行列 A を用いて次のように表した。

$$f(oldsymbol{v}) = oldsymbol{A} oldsymbol{v}$$
引数

このように、行列とベクトルの積 $A \mathbf{v}$ を考えるとき、「A が 1 つ与えられていて \mathbf{v} がいろ いろ動く」と解釈することが多い。

これは、行列 A のことを、ベクトルを与えて別なベクトルを作る装置、すなわち写像だとみなすことである。

入力ベクトル
$$\boldsymbol{v} \xrightarrow{A \times}$$
 出力ベクトル $A \boldsymbol{v}$

次の定理は、この「行列 A を左からかける」という操作が、線形写像であることを示している。

\$ theorem 2.2 - 行列とベクトルの積の性質

 $A, B \in m \times n$ 型行列、 $\boldsymbol{u}, \boldsymbol{v} \in K^n, c \in K$ とするとき、次が成り立つ。

i.
$$A(\boldsymbol{u}+\boldsymbol{v})=A\boldsymbol{u}+A\boldsymbol{v}$$

ii.
$$A(c\boldsymbol{v}) = c(A\boldsymbol{v})$$

(i) 和の性質

$$A(\boldsymbol{u}+\boldsymbol{v})=\sum_{j=1}^n(u_j+v_j)\boldsymbol{a}_j=\sum_{j=1}^nu_j\boldsymbol{a}_j+\sum_{j=1}^nv_j\boldsymbol{a}_j=A\boldsymbol{u}+A\boldsymbol{v}$$

(ii) スカラー倍の性質

$$A(c\boldsymbol{v}) = \sum_{j=1}^{n} (cv_j)\boldsymbol{a}_j = c\sum_{j=1}^{n} v_j\boldsymbol{a}_j = c(A\boldsymbol{v})$$

行列から線形写像を作る

線形写像の記述と行列 [第 2 章] で線形写像 f から行列 A を作ったのとは逆に、任意の行列から線形写像を作ることもできる。

♣ theorem 2.3 - 行列から定まる線形写像

 $m \times n$ 型行列 A に対して、

$$f_A(\boldsymbol{v}) = A\boldsymbol{v} \quad (\boldsymbol{v} \in \mathcal{K}^n)$$

によって写像 $f_A: K^n \to K^m$ を定めれば、 f_A は線形写像である。

証明

 $\boldsymbol{u}, \boldsymbol{v} \in K^n, c \in K$ とする。

theorem 2.2「行列とベクトルの積の性質」より、

$$f_A(\boldsymbol{u} + \boldsymbol{v}) = A(\boldsymbol{u} + \boldsymbol{v}) = A\boldsymbol{u} + A\boldsymbol{v} = f_A(\boldsymbol{u}) + f_A(\boldsymbol{v})$$

 $f_A(c\boldsymbol{v}) = A(c\boldsymbol{v}) = cA\boldsymbol{v} = cf_A(\boldsymbol{v})$

が成り立つので、 f_A は線形写像である。

行列と線形写像の対応

ここまでの議論をまとめると、行列 A と線形写像 f_A の間には、次のような関係がある。

- 行列 A が与えられれば、線形写像 f_A が定まる
- \bullet 線形写像 f_A が与えられれば、行列 A が定まる

このように、行列 A と線形写像 f_A は一対一に対応している。 このことから、

行列 A と線形写像 f_A は「同じ」ものを表す

とみなして議論を進めることも多い。

この同一視の根拠は、行列と A 倍写像の同型 [第 12 章] でより厳密に議論する。

行列の積と線形写像の合成

行列の積は、線形写像の 合成写像 (def A.6) を表すものとして定義される。

♣ theorem 2.4 - 線形写像の合成

 K^n から K^m への線形写像 g と、 K^m から K^l への線形写像 f が与えられているとき、これらを合成して得られる写像

$$f \circ g \colon K^n \xrightarrow{g} K^m \xrightarrow{f} K^l$$

は、 K^n から K^l への線形写像である。

任意の $\boldsymbol{a}, \boldsymbol{b} \in K^n$ とスカラー $c_1, c_2 \in K$ について、次の合成写像を考える。

$$(f \circ g)(c_1\boldsymbol{a} + c_2\boldsymbol{b}) = f(g(c_1\boldsymbol{a} + c_2\boldsymbol{b}))$$

g の線形性より、

$$g(c_1\boldsymbol{a}+c_2\boldsymbol{b})=c_1g(\boldsymbol{a})+c_2g(\boldsymbol{b})$$

これを f に適用すると、f の線形性より、

$$f(c_1g(\boldsymbol{a}) + c_2g(\boldsymbol{b})) = c_1f(g(\boldsymbol{a})) + c_2f(g(\boldsymbol{b}))$$
$$= c_1(f \circ g)(\boldsymbol{a}) + c_2(f \circ g)(\boldsymbol{b})$$

したがって、

$$(f \circ g)(c_1\boldsymbol{a} + c_2\boldsymbol{b}) = c_1(f \circ g)(\boldsymbol{a}) + c_2(f \circ g)(\boldsymbol{b})$$

が成り立つことから、 $f \circ g: \mathbb{R}^n \to \mathbb{R}^l$ は線形写像である。

線形写像の合成の表現行列

A は $l \times m$ 型、B は $m \times n$ 型の行列である。 このとき、 $f \circ q$ は $l \times n$ 型行列で表現される。

 $f \circ g$ の表現行列を C と書くことにして、その成分を計算しよう。 そのためには、基本ベクトルの写り先を見ればよい。

$$B$$
 を列ベクトルに分解して $B=ig(m{b}_1 \ \cdots \ m{b}_nig)$ と書くとき、 $(f\circ g)(m{e}_j)=f(g(m{e}_j))=f(m{b}_j)=Am{b}_j \quad (1\leq j\leq n)$

なので、基本ベクトルの写り先を並べた行列は次のようになる。

$$C = (A\boldsymbol{b}_1 \quad \cdots \quad A\boldsymbol{b}_n)$$

これより、C の (i,j) 成分は Ab_j の第 i 成分なので、

$$c_{ij} = a_{i1}b_{1j} + \cdots + a_{im}b_{mj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$

により与えられる。

つまり、C の (i,j) 成分を計算するときは、A の第 i 行、B の第 j 列だけを見ればよい。

このようにして得られた $l \times n$ 型行列 C を AB と書き、A と B の積と定義する。

行列の積の可換性

2つの行列の積が順番に依らない場合、2つの行列は<mark>可換(commutative)</mark>であるという。

一般には、2つの行列は可換であるとは限らない。

つまり、ABとBAは一般には異なる。

「Todo 1: 可換な例と可換でない例を示す」

行列の積の結合法則

次の結合法則により、(AB)C や A(BC) を表すとき、括弧を書かずに単に ABC と書いても問題ない。行列の個数が増えても同様である。

♣ theorem - 行列の積の結合法則

行列の積 AB, BC がともに定義できるとき、次が成り立つ。

$$(AB)C = A(BC)$$

証明

A, B, C をそれぞれ $q \times m$, $m \times n$, $n \times p$ 型行列とする。 このとき、線形写像の合成

$$\mathbb{R}^p \xrightarrow{h} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^m \xrightarrow{f} \mathbb{R}^q$$

を考え、f, g, h の表現行列をそれぞれ A, B, C とする。

theorem A.1 「写像の合成の結合法則」より、

$$(f \circ g) \circ h = f \circ (g \circ h)$$

が成り立つことから、

$$(AB)C = A(BC)$$

がしたがう。

行列のべき乗

A が正方行列の場合は、A どうしの積を次のように書く。

$$A^2 = AA$$
$$A^3 = AAA$$

零行列と単位行列

ここでは、最も単純な線形写像とその表現行列について述べる。

零写像と零行列

 $f: K^n \to K^m$ を、すべての $\boldsymbol{v} \in K^n$ に対して $f(\boldsymbol{v}) = \boldsymbol{o}$ と定めたものは線形写像である。これを零写像 (zero mapping) という。

♣ theorem - 零写像の線形性

零写像は線形写像である。

証明

和について

任意の $\boldsymbol{u}, \boldsymbol{v} \in K^n$ に対し、次の 2 式が成り立つ。

$$f(\boldsymbol{u} + \boldsymbol{v}) = \boldsymbol{o}$$
$$f(\boldsymbol{u}) + f(\boldsymbol{v}) = \boldsymbol{o} + \boldsymbol{o} = \boldsymbol{o}$$

したがって、

$$f(\boldsymbol{u} + \boldsymbol{v}) = f(\boldsymbol{u}) + f(\boldsymbol{v})$$

である。

スカラー倍について

任意の $c \in K$ と $\boldsymbol{v} \in K^n$ に対し、次の 2 式が成り立つ。

$$f(c\mathbf{v}) = \mathbf{o}$$
$$cf(\mathbf{v}) = c \cdot \mathbf{o} = \mathbf{o}$$

したがって、

$$f(c\boldsymbol{v}) = cf(\boldsymbol{v})$$

である。

零写像の表現行列は、すべての成分が 0 である行列である。

これを零行列 (zero matrix) といい、O で表す。

 $m \times n$ 型であることを明示したい場合は、 $O_{m,n}$ と書くこともある。 また、n 次正方行列の場合は、 O_n と書く。

恒等写像と単位行列

 $f: K^n \to K^m$ を、すべての $\boldsymbol{v} \in K^n$ に対して $f(\boldsymbol{v}) = \boldsymbol{v}$ と定めたものは線形写像である。これは 恒等写像 (def A.5) であり、 $f = \mathrm{id}_{K^n}$ と書く。

st theorem - 恒等写像の線形性

恒等写像は線形写像である。

証明 証明

和について

任意の $\boldsymbol{u}, \boldsymbol{v} \in K^n$ に対して、

$$f(\boldsymbol{u} + \boldsymbol{v}) = \boldsymbol{u} + \boldsymbol{v} = f(\boldsymbol{u}) + f(\boldsymbol{v})$$

が成り立つ。

スカラー倍について

任意の $c \in K$ と $\boldsymbol{v} \in K^n$ に対して、

$$f(c\mathbf{v}) = c\mathbf{v} = cf(\mathbf{v})$$

が成り立つ。

恒等写像の表現行列は、 $f(e_j) = e_j$ より、次のような形になる。

$$E = egin{pmatrix} oldsymbol{e}_1 & \cdots & oldsymbol{e}_n \end{pmatrix} = egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{pmatrix}$$

このような行列を単位行列 (unit matrix) といい、E で表す。

単位行列は正方行列であり、n 次正方行列であることを明示したいときは E_n と書く。

スカラー行列と行列のスカラー倍

零行列と単位行列は、次のスカラー行列 (scalar matrix) の特別な場合である。

$$C = \begin{pmatrix} c & 0 & \dots & 0 \\ 0 & c & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & c \end{pmatrix} \quad (c \in K)$$

c=0 の場合が零行列、c=1 の場合が単位行列となる。

対角成分

スカラー行列において、c が並んでいる部分は対角成分と呼ばれる。

一般に、対角成分(diagonal entry)とは、正方行列において、左上から右下に向かう対角線上にある成分のことをいう。

$$\left(egin{array}{ccccccc} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{array}
ight)$$

対角成分の添字に着目すると、 a_{11} , a_{22} , a_{33} , a_{44} のように、行番号と列番号が等しい成分であることがわかる。そこで、対角成分は次のように定義される。

≥ def - 対角成分

正方行列 $A=(a_{ij})$ において、i=j となる成分 a_{ii} を A の<mark>対角成分</mark>という。

スカラー行列との積

行列 A にスカラー行列 C をかけると、A のすべての成分が c 倍される。 行列 A のすべての成分を c 倍した行列を、行列 A のスカラー倍といい、cA と表す。

♣ theorem - スカラー行列による積とスカラー倍の一致

行列 A にスカラー行列をかけることは、A をスカラー倍することと同じである。

証明

スカラー行列 $C = (c_{ij})$ は、対角成分が c、それ以外の成分が 0 である正方行列なので、各成分は次のように書ける。

$$c_{ij} = \begin{cases} c & (i=j) \\ 0 & (i \neq j) \end{cases}$$

C と A の積 CA の (i, j) 成分は、

$$(CA)_{ij} = \sum_{k=1}^{n} c_{ik} a_{kj}$$

ここで、 c_{ik} は i=k のとき c、それ以外のとき 0 なので、i=k の場合の項だけが残って、

$$(CA)_{ij} = \sum_{k=1}^n c_{ii}a_{ij} = ca_{ij}$$

として、A のすべての成分が c 倍されたものが CA となる。

この定理の特別な場合として、次のことがいえる。

- c = 0 の場合のスカラー行列(零行列)をかけると、A のすべての成分が 0 になる
- \bullet c=1 の場合のスカラー行列(単位行列)をかけても、A の成分は変化しない

これらは、次の2つの定理としてまとめられる。

北 theorem - 零行列との積

零行列をかけると、すべての成分が 0 になる。

すなわち、A を $m \times n$ 型とするとき、次が成り立つ。

$$O_m A = AO_n = O_{m,n}$$

♣ theorem - 単位行列との積

単位行列をかけても、行列は変わらない。

すなわち、A を $m \times n$ 型とするとき、次が成り立つ。

$$E_m A = A E_n = A$$

行列のスカラー倍の性質

♣ theorem - 行列の積とスカラー倍の性質

行列 A, B の積 AB が定義できる(A の列の個数と B の行の個数が同じである)とき、 $c \in K$ に対して次が成り立つ。

$$(cA)B = A(cB) = c(AB)$$

証明

 $A \in M_{m,r}(K)$, $B \in M_{r,n}(K)$ とし、AB が定義されているとする。 1 < i < m, 1 < j < n について成分を比較する。

まず、

$$((cA)B)_{ij} = \sum_{k=1}^{r} (c a_{ik}) b_{kj} = c \sum_{k=1}^{r} a_{ik} b_{kj} = c (AB)_{ij}$$

が成り立つ。同様に、

$$(A(cB))_{ij} = \sum_{k=1}^{r} a_{ik} (c b_{kj}) = c \sum_{k=1}^{r} a_{ik} b_{kj} = c (AB)_{ij}$$

を得る。

以上より、任意のi,jで

$$((cA)B)_{ij} = (A(cB))_{ij} = c(AB)_{ij}$$

であるから、

$$(cA)B = A(cB) = c(AB)$$

行列の和

[Placeholder 1: 再編予定]

A, B がともに $m \times n$ 型行列であるとき、それぞれの (i,j) 成分を足すことで行列の和 A+B を定める

♣ theorem - 分配法則

積が定義できるとき、

$$A(B+C) = AB + AC$$
$$(B+C)A = BA + CA$$

♣ theorem - 線形写像の和

 $f, g: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とし、

$$h(\boldsymbol{v}) = f(\boldsymbol{v}) + g(\boldsymbol{v}) \quad (\boldsymbol{v} \in \mathbb{R}^n)$$

により写像 $h: \mathbb{R}^n \to \mathbb{R}^m$ を定めるとき、h も線形写像であるまた、f,g の表現行列を A,B とするとき、h の表現行列は A+B であるなお、h=f+g と書き、f,g の和と呼ぶ

[Todo 2: book: 行列と行列式の基礎 p59 (問 2.5)]

線形変換とその表現行列

特に、線形変換は空間 \mathbb{R}^n からそれ自身への写像なので、 \mathbb{R}^n 内において「ベクトルが変化 している」(あるいは f が空間 \mathbb{R}^n に作用している) ニュアンスとみることができる。

 \mathbb{R}^n の線形変換の表現行列は、n 次正方行列である。

[Todo 3: \mathbb{R}^n の線形変換の具体例を紹介する]

行列の区分け

行列を

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

のようなブロック型に区分けして計算することがよくある

A が $m \times n$ 型のとき、 $m=m_1+m_2$, $n=n_1+n_2$ として、 A_{ij} は $m_i \times n_j$ 型である

また、B が $n \times l$ 型で、 $n = n_1 + n_2$, $l = l_1 + l_2$ と区分けして

$$B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

とするとき、

$$AB = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

のように A_{ij} などが行列の成分であるかのようにして(ただし積の順序は変えずに)積が計算できる

ここで、 A の列の区分けと B の行の区分けの仕方が同じであることが必要である

3 つ以上のブロックに分ける場合も同様である

行列 $A = (a_{ij})$ に対し、その成分の行と列の位置を交換してできる行列を転置行列という

► def - 転置行列

 $A=(a_{ij})$ を $m\times n$ 型行列とするとき、(i,j) 成分が a_{ji} である $n\times m$ 型行列を A の転置行列と呼び、 ${}^t\!A$ と表す

文字 t を左肩に書くのは、右肩に書くと t 乗に見えてしまうからである t 乗と区別しつつ、右肩に書く流儀として、 A^T と書く場合もある

ベクトルの転置

特別な場合として、n 次の数ベクトル v を $n \times 1$ 型行列とみて転置したもの tv は $1 \times n$ 型行列となる

すなわち、数ベクトルの転置は横ベクトルになる

このことを利用して、たとえば

$$egin{pmatrix} v_1 \ v_2 \ dots \ v_n \end{pmatrix}$$

を $^t(v_1, v_2, \ldots, v_n)$ と表記することもある

転置の性質

転置は「行と列の入れ替え」であるので、明らかに次が成り立つ

♣ theorem 2.5 - 転置操作の反復不変性

^tA に対して、転置をもう一度して得られる行列は A と一致する

$$t(^tA) = {}^{tt}A = A$$

♣ theorem 2.6 - 転置と行列積の順序反転性

行列 A, B の積 AB が定義できるとき、

$$^{t}(AB) = {}^{t}B^{t}A$$

[Todo 4: book: 行列と行列式の基礎 p78 命題 2.5.3]

♣ theorem 2.7 - 行列の和に対する転置の分配性

AとBが同じ型の行列であるとき、

$$^{t}(A+B) = {}^{t}A + {}^{t}B$$

証明

[Todo 5:]

正方行列 A が「転置しても元と変わらない」としたら、A の成分は左上から右下にかけての対角線に関して<mark>対称</code> $(a_{ij}=a_{ji})$ になっている</mark>

★ def 2.1 - 対称行列

正方行列 A が次を満たすとき、A を対称行列という

$${}^t\!A = A$$

≥ def - 交代行列

正方行列 A が次を満たすとき、A を交代行列という

$${}^t\!A = -A$$

正方行列のトレース

☎ def 2.2 - トレース

正方行列 $A=(a_{ij})$ に対して、対角成分の和

$$\sum_{i=1}^{n} a_{ii}$$

を A のトレースと呼び、tr(A) と表す

♣ theorem - トレースの性質

i.
$$tr(A + B) = tr(A) + tr(B)$$

ii.
$$tr(cA) = c tr(A)$$

iii.
$$tr(AB) = tr(BA)$$

証明

[Todo 6: book: 行列と行列式の基礎 p64 問 2.9]

行列と複素数

$$I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

とおき、

$$aE + bI = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \quad (a, b \in \mathbb{R})$$

という形の行列を<mark>複素数</mark>と呼ぶことにより、複素数の定義ができる この定義では、通常は a+bi と書かれるものを行列として実現している

[Todo 7: book: 意味がわかる線形代数 p43~49]

Zebra Notes

Туре	Number
todo	7
placeholder	1