Sorting

Sorting Problem

The Sorting Problem

Instance:

A sequence of n numbers $\langle a_1, \dots, a_n \rangle$

Objective:

A permutation (reordering) $\langle a'_1, ..., a'_n \rangle$ of the input sequence such that $a'_1 \le ... \le a'_n$

The numbers are called keys

Insertion Sort

The most natural sorting algorithm

```
Input: array A of length n
Output: sorted array A
Method:
for j=2 to n do
  set key:=A[j]
  set i:=j-1
  while i>0 and A[i]>key do
                                       Insert A[j] into sorted
    set A[i+1]:= A[i], i:=i-1
                                       sequence A[1...j-1]
    set A[i+1]:=key
  endwhile
endfor
```

Insertion Sort: Soundness

Insertion Sort consists of a single loop

We use technique called loop invariant that is a property P such that

(Initialization) it is true before the first iteration of the loop

(*Maintenance*) if it is true before an iteration of the loop, it remains true before the next iteration

(*Termination*) when the loop terminates, the property helps to establish the correctness of the algorithm

Invariant for Insertion Sort:

At the start of each iteration of the for loop, the subarray A[1...j-1] consists of the elements originally in A[1...j-1] but in sorted order

Insertion Sort: Soundness

(Initialization)

initially j = 2, so the subarray of interest contains only one element, A[1]. The invariant is true

(Maintenance)

Suppose the property is true before iteration j of the loop, i.e. the array A[1...j-1] is sorted.

If $A[i-1] \le A[j] < A[i]$, then all the elements A[i], ..., A[j-1] are moved to the next position, and A[j] is inserted in place of A[i], maintaining the order

(Termination)

Obvious. When the loop terminates, all the A[1...n] elements are properly ordered.

Insertion Sort: Running Time

```
Input: array A of length n
Output: sorted array A
Method:
                                       n times
for j=2 to n do
  set key:=A[j]
  set i:=j-1
                                         j-1 times
  while i>0 and A[i]>key do
    set A[i+1]:= A[i], i:=i-1
    set A[i+1]:=key
  endwhile.
endfor
\sum_{j=2}^{n} (2+3(j-1)) = 3\sum_{j=2}^{n} j - (n-1) = 3\frac{n(n-1)}{2} - n - 2 = O(n^2)
```

MergeSort, Divide and Conquer

Recursive algorithms: Call themselves on subproblem

Divide and Conquer algorithms:

Split a problem into subproblems (divide)

Solve subproblems recursively (conquer)

Combine solutions to subproblems (combine)

MergeSort

Divide: Split a given sequence into halves

Conquer: By calling itself sort the two halves

Combine: Merge the two sorted arrays into one

MergeSort

MergeSort

```
MergeSort(A,p,r)
Input: array A, positions p,r
Output: array A such that entries A[p],...,A[r] are
  sorted
Method:
if p<r then do
    set q := \lfloor (p+r)/2 \rfloor
    MergeSort(A,p,q)
    MergeSort(A,q+1,r)
    Merge(A,p,q,r)
endif
```

Merge

The Merge procedure is applied to array A and three positions p, q, r in this array

Assume

```
p \le q < r
 A[p], ..., A[q] and A[q+1], ..., A[r] are ordered
 Outputs ordered sequence in positions A[p], ..., A[r]
```

This sequence is generated by comparing the two elements on the top of subarrays and moving the smaller one

Merge

```
Merge(A,p,q,r)
                                           set L[u+1]:=∞
set u:=q-p+1,
                                           set R[v+1] := \infty
set v:=r-q
                                             sentinel cards
set L[1...u] := A[p...q]
set R[1...v] := A[q+1...r]
set i:=1, j:=1
for k=p to r do
    if l[i]≤R[j] then
        set A[k]:=L[i], i:=i+1
    else
        set A[k] := R[j], j := j+1
endfor
```

Merge: Soundness

Invariant for Merge:

At the start of each iteration of the **for** loop, the subarray A[p...k-1] contains the k – p smallest elements of L[1...u+1] and R[1...v+1] in sorted order.

Moreover, L[i] and R[j] are the smallest elements of the corresponding arrays that have not been copied to A

(Initialization)

Initially k = p, so the subarray A[p...k - 1] is empty.

It contains the k - p = 0 smallest elements of L and R.

Since i = j = 1, both L[i] and R[j] are the smallest elements in the corresponding arrays.

The invariant is true

Merge: Soundness

(Maintenance)

Suppose the property is true before iteration k of the loop.

If $L[i] \le R[j]$, then L[i] is the smallest element not yet copied into A.

Since A[p...k-1] contains the k-p smallest elements, after the iteration L[i] is copied into A[k], and A[p...k] contains the k-p+1 smallest elements.

New top elements of L and R are clearly the smallest ones After incrementing k the loop invariant is true again If L[i] < R[j] the argument is similar

(Termination)

Obvious. When the loop terminates, A[p...r] contains the k-p smallest elements from L and R, that is all but the sentinels.

Example

5	2	4	7	1	3	2	6
---	---	---	---	---	---	---	---

MergeSort: Soundness

Theorem

MergeSort returns a sorted array

Proof

Follows from the soundness of Merge.

Finish the proof yourself

QED

MergeSort: Running Time

The running time of Merge when applied to two arrays of total size n is $\Theta(n)$

The running time, T(n), of MergeSort is

If
$$n = 1$$
 then $T(1) = C$

Recursion tree

MergeSort: Soundness

Recursion tree

There are 2^i nodes on level i

Each node requires $\frac{Cn+Dn}{2^i}$ work

Total work on each level: (C+D)n

There are log n levels

Theorem

The running time of MergeSort is $\Theta(n \log n)$

Heaps

The main setback of the InsertionSort is that to insert it needs to scan a substantial part of the array.

Can it be sped up?

Yes! Using binary trees --- heaps

Heap Property

Let Parent(i) denote the parent of the vertex i

Max-Heap Property:

 $Key(Parent(i)) \ge Key(i)$ for all i

Min-Heap Property:

 $Key(Parent(i)) \le Key(i)$ for all i

Heaps

Nearly complete binary tree means that the length of any path from the root to a leaf can vary by at most one

The height of a vertex i is the length of the longest simple downward path from i

Therefore the height of the root is around log n

Heap Operations

Creating a max-heap

Accessing the minimal element (root)

Inserting an element

Deleting an element

Goal running time

O(n)

O(1)

O(log n)

O(log n)

Implementing Heaps and Operations

Heap can be implemented by an array

Children:

leftChild(i) = 2i

rightChild(i) = 2i + 1

Parent: parent(i) = \(\begin{aligned} i / 2 \end{aligned} \)

Length: length(H) = the number of elements in H

Insertion

```
Insert(H,key)
set n:=length(n),
set H[n+1]:=key
HeapifyUp(H,n+1)
HeapifyUp(H,i)
if i>1 then
   set j:=parent(i)=\lfloor i/2 \rfloor
   if Key[H[i]]>Key[H[j]] then
       swap array entries H[i] and H[j]
      HeapifyUp(H,j)
   endif
endif
```

HeapifyUp: Soundness

Theorem

The procedure HeapifyUp(H,i) fixes the heap property in O(log i) time, assuming that the array H is almost a heap with the key of H[i] too large.

The running time of Insertion is O(log n)

Proof

Induction on i.

Base Case i = 1 is obvious

Induction Case: Swapping elements takes O(1) time

It remains to observe that after swapping H remains a heap or almost heap

Deletion

```
Delete(H,i)
set n:=length(n),
set H[i]:=H[n]
if Key[H[i]]>Key[H[parent(i)]] then
    HeapifyUp(H,i)
endif
if Key[H[i]]<Key[H[leftChild(i)]] or
    Key[H[i]]<Key[H[rightChild(i)]] then
    HeapifyDown(H,i)
endif</pre>
```

Deletion (cntd)

```
HeapifyDown(H,i)
set n:=length(H)
if 2i>n then Terminate with H unchanged
else if 2i<n then do
   set left:=2i, right:=2i+1
   let j be the index that minimizes Key[H[left]]
  and Key[H[right]]
else if 2i=n then set j:=2i
endif
if Key[H[j]]>Key[H[i]] then
    swap array entries H[i] and H[j]
    HeapifyDown(H,j)
endif
```

HeapifyDown: Soundness

Theorem

The procedure HeapifyDown(H,i) fixes the heap property in O(log i) time, assuming that the array H is almost a heap with the key of H[i] too small.

The running time of Deletion is O(log n)

Proof DIY

Homework

Explain how to implement creating a heap, accessing and deleting the maximal element