Trasformare e migliorare

Elaborazione di immagini

Procedimento che data un'immagine originale f(x,y) ne generi una nuova g(x,y) i cui pixel siano stati trasformati secondo un determinato algoritmo.

Scopi dell'elaborazione

- Eliminazione dei disturbi
- Esaltazione dei particolari
- Estrazione di informazione

Nella maggior parte dei casi si tratta di miglioramenti dell'immagine (dipendenza dall'applicazione)

Tipi di elaborazione

- elaborazioni puntuali
- elaborazioni locali
- elaborazioni globali

Elaborazioni puntuali

Determinano il valore di un pixel dell'immagine elaborata g(x,y) in funzione del valore dello stesso pixel nell'immagine originale f(x,y).

Uso pratico

Queste elaborazioni consistono per lo più in cambiamenti di scala dei livelli di luminanza (di grigio per le immagini monocromatiche) (rescaling)

Esempio

- f(x,y) ha valore di luminanza r
- il corrispondente valore s di g(x,y)
- s=r+k dove k è una costante definita dall'utente
- r=50 e k=30: il valore originario di r sarà riscalato producendo s=80

Elaborazioni locali

Queste tecniche forniscono il valore di luminanza di ogni pixel dell'immagine migliorata g(x,y) in funzione del valore del pixel dell'immagine originale f(x,y) e dei valori dei pixel di un opportuno intorno.

Uso pratico

Per intorno di un pixel si intende l'insieme dei pixel ad esso vicini, come nel caso di un quadrato di 3 pixel per 3 pixel in cui quello in esame è in posizione centrale.

Elaborazioni locali

$$f(x-1, y-1)$$
 $f(x-1, y)$ $f(x-1, y+1)$
 $f(x, y-1)$ $f(x, y)$ $f(x, y+1)$
 $f(x+1, y-1)$ $f(x+1, y)$ $f(x+1, y+1)$

Il pixel centrale è f(x, y) e gli altri ne costituiscono l'intorno.

Elaborazioni globali

- Forniscono il valore di un pixel utilizzando i valori di luminanza di tutti i pixel dell'immagine originale
- Livello di grigio dei pixel modificato con funzione di trasformazione basata sull'istogramma dei livelli di luminanza (o di grigio)

Istogramma livelli di grigio

Rappresentazione della distribuzione della frequenza (probabilità) con cui i livelli di luminanza appaiono in un'immagine.

Filtraggi

Operazioni sui pixel per modificarne i valori sia con tecniche puntuali sia con tecniche locali e globali

Filtraggi puntuali

- Utilizzo di tabelle di conversione LUT
- La LUT rappresenta la funzione di trasformazione del valore r di f(x, y) al valore s di g(x,y).
- L'andamento del grafico corrisponde al tipo di funzione di trasformazione.

LUT identità

Identità: lascia invariati i livelli di luminanza.

LUT di inversione

Inversione di tonalità. Inverte tutte le tonalità dei pixel dell'immagine; quelli chiari diventano scuri e viceversa.

LUT logaritmica

A valori bassi di r corrispondono valori più elevati di s. L'immagine filtrata diventa più chiara.

LUT esponenziale

Ha un comportamento opposto al precedente; a valori alti di r corrispondono valori più bassi di s.

LUT a scala

Accorpa i livelli di luminanza. L'effetto è l'introduzione di falsi contorni, linee con lo stesso valore di intensità (isolinee).

LUT a rampa

Azzera i livelli di luminanza da 0 a x_1 Esalta quelli tra x_1 a x_2 (**stretching**) Valore massimo per livelli tra x_2 e il max

Utile se livelli bassi o livelli alti di luminanza non portano contenuto informativo (vengono annullati); per i livelli medi viene aumentata la dinamica (si distinguono meglio i particolari).

LUT di binarizzazione

Trasforma l'immagine originale in una con due soli livelli di luminanza; nel caso di un'immagine monocromatica i pixel tra 0 e x_1 sono portati a 0 (nero), quelli tra x_1 e x_2 sono portati al max (bianco) e quelli tra x_2 e max a zero.

In questa LUT, da 0 fino alla soglia T si ha una riduzione del contrasto; dalla soglia T fino alla fine, si ha invece un aumento del contrasto.

Filtraggi locali

Filtraggi locali

- Modificano un pixel non soltanto in base al suo valore, ma anche a quello di un insieme di pixel in un intorno che lo circonda
- L'intorno, o finestra, ha dimensione limitata, in genere 3×3, 5x5 o 7×7 al massimo
- Cardinalità dispari in modo tale che il pixel in esame si trovi al centro

Filtraggi locali (a maschera)

- Ogni "vetro", maschera, contiene dei pesi
- Pesi come coefficienti moltiplicati per i corrispondenti valori dei pixel della porzione di immagine vista attraverso la finestra stessa
- Prodotti poi sommati per dare luogo al valore del pixel nell'immagine elaborata g(x, y)

w_1	w_2	w_3
W_4	w_5	w_6
w ₇	w ₈	W_9

Convoluzione

f(x-1, y-1)	f(x-1, y)	f(x-1, y+1)
f(x, y-1)	f(x, y)	f(x, y+1)
f(x+1, y- 1)	f(x+1, y)	f(x+1, y+1)

W ₁	W ₂	W ₃
W ₄	W ₅	W ₆
W ₇	W ₈	W ₉

$$\begin{split} g(x,y) &= w_1^* \; f(x\text{-}1,\,y\text{-}1) + w_2^* \; f(x\text{-}1,\,y) + w_3^* \; f(x\text{-}1,\,y\text{+}1) + w_4^* \\ f(x,\,y\text{-}1) &+ w_5^* \; f(x,\,y) + w_6^* \; f(x,\,y\text{+}1) + w_7^* \; f(x\text{+}1,\,y\text{-}1) + w_8^* \\ f(x\text{+}1,\,y) &+ w_9^* \; f(x\text{+}1,\,y\text{+}1) \end{split}$$

Filtri passa basso e passa alto

- La scelta dei pesi ci permette di muoverci in due contesti
- Filtri passa basso: eliminano le brusche transizioni di luminanza corrispondenti alle alte frequenze (rumore e contorni), lasciando inalterate quelle basse.
- Filtri passa alto: enfatizzano i contorni diminuendo il contributo delle basse frequenze

Filtri passa basso (di *smoothing*)

- Pesi tutti positivi, scelti in modo da calcolare medie pesate
- Dividere la somma dei prodotti per un coefficiente, di normalizzazione (somma dei pesi stessi)

$$g(x,y) = \frac{1}{\sum_{i} w_{i}} \begin{bmatrix} w_{1} & w_{2} & w_{3} \\ w_{4} & w_{5} & w_{6} \\ w_{7} & w_{8} & w_{9} \end{bmatrix} f(x,y)$$

Esempio: Filtro a media mobile

- Sostituisce a ogni punto il valore medio in un intorno di 3x3
- Filtro abbastanza pesante nella sua azione di smussamento
- Variare il contributo dei pixel a seconda della distanza (filtro gaussiano)

Filtro gaussiano

I pesi del filtro simulano l'andamento di una curva di Gauss.

Questo filtro smussa meno rispetto a quello a media mobile.

Maschere ampie (5x5, 7x7)

- Finestra 5x5 smussa di più rispetto a quello 3x3; quello 7x7 ancora di più.
- Si considerano pixel molto lontani da quello centrale (con valori notevolmente differenti)
- Considerazioni analoghe valgono per il filtro gaussiano
- Effetto di sfocatura (smussa segnale e rumore)

Esempio

Filtro mediano

- Non è un filtro convolutivo
- Efficiente per ottenere l'eliminazione del rumore puntiforme ad altissime frequenze
- Contenute alterazioni nell'immagine originale
- Elaborazione di tipo locale: si considera un intorno (generalmente 3x3), si dispongono in ordine i valori dei pixel; al pixel centrale si assegna la mediana

porzione di immagine originale

10 15 20 20 20 20 20 25 90

valore mediano

10	20	20
20	20	20
20	25	15

porzione di immagine filtrata

Filtro mediano

- Con rumore non puntuale (ma di dimensioni contenute) si itera l'applicazione del filtro
- Maschera non necessariamente quadrata

Filtri passa alto (di sharpening)

- Esaltano i particolari
- Azione globale: aumento medio del contrasto
- I pesi scelti in modo tale da esaltare le differenze (in corrispondenza alle transizioni)
- Pesi
 - al pixel centrale un valore positivo
 - ai pixel dell'intorno locale generalmente valori negativi o nulli
 - la somma dei pesi vale uno

Filtri passa alto

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

Estrazione di contorni (segmentazione)

- Si esaltano i soli pixel che appartengono al contorno azzerando gli altri
- Caso limite: immagine binarizzata in cui i contorni hanno la massima luminanza e gli altri pixel sono a valore nullo
- E' spesso utile invertire poi l'immagine in modo che i contorni siano neri su sfondo bianco

Contorni in opportune direzioni

Estrazione di contorni

- La somma dei pesi è 0
- Le quattro direzioni permettono di ricavare facilmente le direzioni complementari
- Per estrazione di contorni nelle otto possibili direzioni si sommano le immagini ottenute con i diversi filtraggi

Operatori del prim'ordine (gradiente)

- Gradiente: quanto varia la derivata prima
- $G[f(x,y)] = [G_x G_y] = [\delta f/\delta x \delta f/\delta y]$
- Differenze finite

$$-G_x = f[i,j+1] - f[i,j]$$

$$-G_y = f[i,j] - f[i+1,j]$$

Maschere

Maschere di Prewitt e Sobel

$$\begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

bordi orizzontali

$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

bordi verticali

$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

bordi orizzontali

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

bordi verticali

Applicazione Sobel

$$S_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

dove
$$\begin{vmatrix} a_0 & a_1 & a_2 \\ a_7 & (i,j) & a_3 \\ a_6 & a_5 & a_4 \end{vmatrix}$$

Estrazione di contorni: immagine differenza

- Si shifta l'immagine originale di un pixel
- Si esegue la differenza fra l'immagine originale e quella shiftata.
- Il risultato ottenuto pone in risalto i contorni che possono essere eventualmente esaltati riscalando i livelli di luminanza.

Esempio

Elaborazioni globali

Istogramma livelli di grigio

- funzione a valori interi (discreta) $p(r_n) = \frac{n_n}{n_n}$
- r_k k-esimo livello di grigio
- n_k numero di pixel nell'immagine con quel livello
- n numero totale di pixel dell'immagine.
- Misura della probabilità che ci sia un determinato livello di grigio r_k
- Descrizione globale dell'immagine

Esempio

- Immagine di 64 x 64 pixel
- 8 livelli di luminanza, compresi tra 0 e 1 e cioè con valori: 0, 1/7, 2/7,......7/7.

r_k	π_k	$p_r(r_k) = n_k/n$
r ₀ = 0	790	0,19
r, = 1/7	1023	0.25
r ₂ = 2/7	850	0.21
r ₃ = 3/7	656	0,16
r ₄ = 4/7	329	0.08
r _s = 5/7	245	0.06
$r_6 = 6/7$	122	0.03
7 ₇ =1	81	0,02

Istogramma dei livelli di grigio

Elaborazioni globali

- Picchi in un istogramma:
 - una zona chiara o scura;
 - una zona molto o poco contrastata.
- La distribuzione uniforme dei livelli di grigio permette
 - una migliore definizione
 - aumenta il contrasto dell'immagine
 - elimina zone molto chiare o molto scure, all'interno delle quali i dettagli non sono facilmente visibili.

Equalizzazione dell'istogramma

Dominio spaziale e trasformato

- Filtri riferiti al dominio spaziale
- Filtri riferiti al dominio trasformato (di Fourier)
 - risultati molto più incisivi
 - permettono il taglio delle frequenze in corrispondenza a valori definiti
- Ma Trasformata di Fourier non di facile utilizzo
 - nella pratica si opera nel dominio spaziale
 - Alte frequenze = contorni
 - Basse frequenze = background