Chapter 5

5.11 (a): $P_1(f) = \pi(\frac{f}{2W}) + \pi(\frac{f}{W})$: the spectrum is as follows: $P_1(f) = \pi(\frac{f}{2W}) + \pi(\frac{f}{W})$ $P_2(f) = \frac{f}{2W}$

W

- W - M

$$\therefore T = \frac{2}{3W}$$

: the spectrum is as follows:

and P. (f) doesn't satisfy Nyquist's pulse-shape criterion.

(c) :
$$P_3(f) = TI(\frac{f}{HW}) - \Lambda(\frac{f}{W})$$

: the spectrum is as follows:

.. The other way in which an error occurs if -Az is transmitted and

$$-A_2T + N > 0$$
. that is. $N > A_2T$.

i.
$$Pr(error | A_2 sent) = \int_{A_2T}^{\infty} \frac{e^{-\frac{1}{N_0T}}}{\sqrt{2N_0T}} d\Omega = Q(\sqrt{\frac{2A_2^2T}{N_0}})$$

:. PE = PIA, sent) Plerror A, sent) + PIA, sent) Plerror A, sent)

$$F = \frac{A^2 + A^2}{2}T = \frac{A^2T}{2}(1 + p^2), p = \frac{A^2}{A}$$

$$A^{2}T = \frac{2E}{1+\rho^{2}}, A^{2}T = \frac{2E\rho^{2}}{1+\rho^{2}}$$

(b) According to the result in part (a), we can plot as follows:

when
$$P = 10^{-6}$$
, the degradations are: $10197 = \begin{cases} 10.5 & P^2 = 1 \\ 10.8 & P^2 = 0.8 \end{cases}$ (dB).

9.11 (a) Note the input as y(t)=s(t)+no(t) where no(t) is white noise 注意法

```
at the instant time of to. the SNR:
      SNR = 51t) | t=to = 1500 Hif, Sifie 122fto df 2
       using Schwarz's inequality, we have:
      SNR = 2 150 |H(f)S(f)ej22ftodf|2 < 2 50 |H(f)|2df 50 |& S(f)|2df = 2 50 |S(f)|2df = 2 50 |S(f)|2df = 2 50 |S(f)|2df
       The equality holds if and only if: H(f) = S*(f)e-j22tof. a.
       Since a just fixes the gain of the filter, we can set it to I
       : Hm(f) = S*(f)e-j22fto
(b) : Hm(f) = 5*(f)e-j2xfto
       : hm 1t) = 5+00 S*(f)e-j22fto ej22ft df = 5+00 S(-f)e-j22(to-t)f df
                   = S(to-t)
(c) According to the title. hmr(t)= { s(to-t), t>0
       and sit) = ATT[(t-T*/2)/T]
     0 \text{ if } t_0 = 0, then: hmr(t) = \begin{cases} S(-t) & t > 0 \\ 0 & t < 0 \end{cases} = AS(t)
      Q if t_0 = \frac{1}{2}, then:
          hmr(t) = \begin{cases} S(\overline{\pm}-t), t > 0 \\ 0 + t < 0 \end{cases} = A \pi(\frac{t-\overline{\pm}}{T/2})
      3 if to=I, then:
           hmr(t) = \begin{cases} S(T-t), & t>0 \\ 0, & t<0 \end{cases} = AT(\frac{t-\frac{1}{2}}{T}).
      @ if to=2T, then:
           hmr(t) = \begin{cases} S(2T-t), t > 0 \\ 0, t < 0 \end{cases} = ATI(\frac{t-\frac{1}{2}T}{T})
```

(d) Assume: sit) = { A . 0 < t < T. in the response of the filter to siti is: y(t) = hmr(t) * s(t) and the peak output signal occurs at t= to : 41to) = 1000 hmrtto) # 51to) = 0, to=0 : y(to) = hmr(t) * s(t) | t=to = { \frac{1}{2}A^2T. to = \frac{7}{2}}
A^2T. to = T. 2T. The plot is as follows: Obviously, when to 2T, we can meet the requirement of causality Firstly, if $Q(x) = 10^{-5}$, we can know that x = 4.26489(a) For binary ASK. PE = Q(小兒) = Q(小兒) : Z = 4. 264892 = 18.18929 (b) For BPSK, PE = Q[12(1-m2)] m=0 = Q(12). · 7 = 5 × 4. 26 4892 = 9. 09464 (c) For binary FSK. PE = Q(JZ) : Z = 4.264892 = 18.18929 (d) For BPSK with a phase error of 5 degrees. PE=Q1/27costo) : 7 = 1 2002 × 4.264892 = 9.16426 独行上源

(e) For PSK with
$$m = \sqrt{2}$$
, $P_E = Q(\sqrt{1211-m^2})^2$ = $Q(\sqrt{\frac{1}{2}})^2$
 $\therefore z = 4 \cdot 26489^2 = 18 \cdot 18929$.

(f) For PSK with $m = \sqrt{2}$ and with a phase error of 5 degrees,

 $P_E = Q[\sqrt{1211-m^2})^2 \cos^2 \phi] = Q(\sqrt{12}\cos^2 \phi)$.

 $\therefore z = \cos^2 \phi \times 4 \cdot 26489^2 = 18 \cdot 32851$

9. 32 (a) Firstly, if $Q(x) = 10^{-6}$, we have $x = 4 \cdot 75342$

(i) For binary Ask, $B = 2R$, $P_E = Q(\sqrt{12})$.

 \therefore the bandwith $B = 2R = 190 \text{ M}^2$.

(ii) For BPSK, $B = 2R$, $P_E = Q(\sqrt{12})$.

 $\therefore B = 2R = 100 \text{ KHz}$

and $\frac{E_0}{N_0} = z = \frac{1}{2} \times 4 \cdot 15342^2 = 13 \cdot 54012 \text{ dB}$.

(iii) For R binary FSK, $B = \frac{1}{2} + \frac{1}{27} + \frac{1}{7} = 2 \cdot 5R$, $P_E = Q(\sqrt{12})$.

 $\therefore B = 2 \cdot 5R = 125 \text{ KHz}$.

 $\Rightarrow a = \frac{E_0}{N_0} = z = 4 \cdot 75342^2 = 13 \cdot 54012 \text{ dB}$

(b) Similarly, if $Q(x) = 10^{-5}$, we have $x = 4 \cdot 26489$

(i) For binary ASK, $B = 2R = 1 \cdot MHz$

and = = = 4.264892 = 12.59816 dB

	(ii) For BPSK. B=2R=1MHZ.
	and Fb = z = 5 x 4. 264892 = 9.58786 dB
	(iji) For binary FSK, B=2.5R=1.25 MHz
	and No = Z = 4.264892 = 12.59816 dB.
9.32 A	according to the title, the demi decimal numbers' Gray S code one can be
	onstructed as follows.
F	irstly, there are totally 32 numbers so the code should have 5 bits.
	co's Gray code is 00000.
	Further more, let's take 2 as an example.
;	· 2 = (00010) ₃
:	g, = 0. g ₂ = 0. g ₃ = 0. g ₄ = 1. g ₅ = 1.
	2's Gray code is 00011.
· :	. The answers are shown in following table:

Decimal numbers	Binary numbers	Gray codes	Decimal numbers	Binary	Gray codes
0	00000	00000	16	10000	11000
1	00001	00001	17	10001	11001
2	00010	00011	18	10010	11011
3	00011	00010	19	10011	11010
4	00100	00110	20	10100	11110
5	00101	00111	21	10101	11111
6	00110	00101	22	10110	11101
7	00111	00100	23	10111	11100
8	01000	01100	24	11000	10100
9	01001	01101	25	11001	10101
10	01010	01111	26	11010	10111
11	01011	01110	27	11011	10110
12	01100	01010	28	11100	10010
13	01101	01011	29	11101	10011
14	01110	01001	30	11110	10001
15	01111	01000	31	11111	10000

9.34 (a) : $R_b = \frac{1}{7} = 20 \text{ kbps}$ 5 kHz. $R_b = \frac{109 \text{ M}}{7} = 20 \text{ kbps}$

: 10g2M= 4

: M = 24 = 16.

(b) .. Ph = 21M-1) Q(| 1092MEh) = 30 Q(| 2450) = 15 Q(| 2450)

198 12 Jr 🗳

if Pb = 10-6, then: N255 No = 4.59795. : Eb = 224. 6246572 = 23.51457 dB Eb = 177.9568888 = 22.50315 dB. 9.35. (a) : B = 100 KHZ. Rb = 50 Kpbps. $Y = \frac{R_b}{B} = 0.5 \text{ bps/Hz}.$: BPSK can be applied. Assume the probability of error $PE = 10^{-6}$. that is: $Q(\sqrt{122}) = Q(\sqrt{150}, x_2) = 10^{-6}$ (b) : B = 100 KHZ Rb = 100 Kbps y = 1. bps/Hz. : QPSK can be applied. Similarly, if $PE = Q(\sqrt{\frac{2Eb}{N_0}}) = 10^{-b}$. : No = Z = ± × 4.753422 = 10.52982 dB. (c) : B = 100 KHz Rb = 150 Kbps : Y = 1.5 bps | Hz. :. 8PSK can be applied.

In this case, if PE = & Tog28 Q(127log28 sin(81) = 10-6. $\frac{E_b}{N_0} = z = \frac{1}{5} \left[\frac{4.67082}{\sin(248)} \right]^2 = 24.82880 = 13.94956 \, dB$ (d) -: B = 100 KHZ Rb = 200 Kbps $Y = 2 bps/H_Z.$: 16 PSK can be applied. : PE = log21b Q (,22log21b sin(Tb)) = 10-6 : Eb = Z = 8 [4.61(382)] = 69.83945 = 18.44101 dB (e) -- B = 100 KHZ. Rb = 250 Kbps. : V = 2.5 bps/Hz : 32 PSK can be applied. .. PE = 109.32 Q(127/09.32 Sin(32)) = 10-6 $\frac{E_b}{N_0} = Z = \frac{1}{10} \left[\frac{4.56479}{\text{sm}(2/32)} \right]^2 = 216.88880 = 23.36237 dB$ 9.39 (a) According to the title. Gn(f) = No = 10-11 W/Hz. and T = 9600 S . \$He (f) } = 1+j 11500 : PIFI = I[1+ cos(2TIFI)] = + T cos(22IIFI) = 9600 cos2 (19200) : 1HR (f) opt = k= p=1f) = 10 + k= x \[\frac{7\left{1920}}{19200} \] \[\left{1+(\frac{1}{19200})^2} \] \[\frac{1}{19200} \] = $\frac{562.34}{97.980} k^{\frac{1}{2}} [\cos(\frac{7.161}{19200})][1+(\frac{1}{19800})^{2}]^{\frac{1}{4}}$ [FIE [0.9600](Hz) 1HT (f) lopt = Ap=1f110-# = AK-=10-# x 19600 | cos(71f1) [1+ (4800)] +. = \$5098.0 K= | cos (7/161) | [1+(4500)2]4. If | E [0,9600] (HZ)

:
$$k^{\frac{1}{12}} = 0.17424$$
. $A = 35098.0$, and the magnitudes are $\sqrt{1}k = 0.41742$

(c) :
$$(\frac{4}{5})^2 = \frac{1}{100} \left[\int_{-\infty}^{+\infty} \frac{G_n^{\frac{1}{5}}(f)P(f)}{|H_c(f)|} df \right]^2$$

and
$$\int_{-\infty}^{+\infty} \frac{G_{n}^{\frac{1}{2}}(f)P(f)}{|H_{c}(f)|} df = \int_{-9600}^{9600} \frac{10^{-\frac{11}{2}} \times \frac{1}{9600} \cos^{2}(\frac{Z(f)}{19200})}{\left[1+(\frac{f}{4800})^{2}\right]^{-1/2}} df = 3.29 \times 10^{-10} \times \frac{11644.84881}{11648.53310}$$

$$E_b = \frac{(3.83 \times 10^{-6})^2}{3.71902^2} = 1.06 \times 10^{-12} \text{ J}$$