2013-2014 学年第二学期伯苓班实变函数期末考试

 $1.\{E_k\}_{1 \le k \le n}$ 是 [0,1] 中互不相交的可测集,对任意 $x \in [0,1]$,至少属于 $q \uparrow E_k$,求证:至少有一个 k,使得 $m(E_k) \ge \frac{q}{n}$

2. 设
$$f \in L^2(R)$$
, 证明: $\lim_{n \to \infty} f(x+n) = 0$, a.e.

$$3.f \in L([0,1])$$
 求极限:
$$\lim_{n \to \infty} \int_0^1 n \ln(1 + \left(\frac{f(x)}{n}\right)^{\alpha}) dx$$

4. 设
$$g \in L^2(R)$$
, 且 $\lim_{n \to \infty} ||f_n - f||_2 = 0$, 证明 : $\int_R f_n g \to \int_R f g$

5. 设
$$f$$
 在 $[-1,2]$ 绝对连续, $x \in [0,1]$,证明 : $\frac{d}{dx} \int_0^1 f(x+t)dt = \int_0^1 f'(x+t)dt$

6. 若 f' = 0, a.e. 且 f 满足 lipschitz 条件, 证明 f 是常数

 $7.f \in L(R), \{a_n\}$ 收敛于 0, 证明存在 $\{a_n\}$ 的子列 a_{n_k} , 使得 $f(x + a_{n_k}) \to 0, a.e.$

- 8.f 在 R^n 的任意有限测度集可积,证明:
- (1) 存在某个 $k_0 > 1$, 使得 $m(\{|f| > k_0\}) < \infty$
- $(2) f = f_1 + f_2$, 其中 f_1 可积, f_2 有界可测