Task 4: Parts-of-speech tagging using a single hidden layer RNN

Hyper parameters: Learning rate - 0.001 Epochs - 20 No. of Layers - 1 No. of nodes - 25

Experiment and Observations:

- The dataset instance is given below. The sentences split indexed and so are the Parts of speech variables. The vocabulary is stored and 200-dimensional GloVe embeddings are used to embed the text before feeding to the RNN
- The texts are padded and tagged with <SOS> , <EOS> etc.. No other pre-processing were required
- The model is defined and trained over 10 epochs initially which felt like there was more room for improvement.
- So, the epochs were adjusted and finalized as 20. The overall accuracy and accuracy for each tag is determined and plots are generated.

Features and observations:

Number of classes identified - 12

Train Loss: 59.6769Train accuracy: 88.89%

• Test accuracy: 87.27%

• The tag wise metrics is listed below:

Label	Precision	Recall	F1-Score	Support
•	1.00	1.00	1.00	3848
VERB	0.90	0.78	0.84	4914
ADP	0.91	0.92	0.91	4043
DET	0.98	0.99	0.98	3812
ADJ	0.75	0.53	0.62	2325
NOUN	0.77	0.93	0.84	7684
ADV	0.82	0.66	0.73	1563
PRON	0.98	0.93	0.96	1231
PRT	0.70	0.75	0.72	767
CONJ	0.98	0.98	0.98	1029
NUM	0.86	0.78	0.82	350
Х	0.50	0.06	0.11	16
Accuracy			0.87	31582
Macro Avg	0.85	0.78	0.79	31582
Weighted Avg	0.88	0.87	0.87	31582

Predictions from Model for an input not from the dataset:

Sentence: ['I', 'love', 'natural', 'language', 'processing'] **Predicted Tags**: ['PRON', 'VERB', 'ADJ', 'NOUN', 'NOUN']

Sentence: ['The', 'quick', 'brown', 'fox', 'jumps'] **Predicted** Tags: ['DET', 'ADJ', 'NOUN', 'NOUN', 'ADJ']

Sentence: ['Data', 'science', 'is', 'fun']
Predicted Tags: ['VERB', 'NOUN', 'VERB', 'ADJ']

Inference:

- The model achieved strong overall performance in parts-of-speech tagging, showing a high level of agreement between predicted and actual tags.
- It performed exceptionally well on common tags like punctuation, determiners, conjunctions, and pronouns, indicating it has effectively learned the dominant patterns in the data.
- Nouns and verbs, being among the most frequent word classes, were tagged with high consistency, though verbs showed slightly lower recall, suggesting some were missed.
- Adjectives and adverbs had moderate performance, which is expected due to their contextual variability and lower representation in the dataset.
- Less frequent tags such as foreign words or miscellaneous symbols were harder for the model to identify, resulting in low precision and recall for those classes.
- The macro average values indicate that while the model handles dominant classes well, there's room for improvement in capturing the less frequent ones.
- The weighted averages reflect the model's strength in handling class imbalance by prioritizing performance on tags that appear more often.
- Overall, the model demonstrates a solid understanding of syntactic structure and is suitable for general POS tagging tasks.