Boule v0.5.0: Reference ellipsoids for geodesy and geophysics

Fatiando a Terra Project , B. Bucha¹, C. Dinneen², M. Gomez³, L. Li⁴, A. Pesce², S. R. Soler⁵, L. Uieda⁶, and M. Wieczorek⁷

¹Slovak University of Technology in Bratislava, Department of Theoretical Geodesy and Geoinformatics ²Unaffiliated

³Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Mexico

⁴School of Earth Sciences, The University of Western Australia, Australia

⁵CONICET, Argentina; Instituto Geofísico Sismológico Volponi, Universidad Nacional de San Juan, Argentina

⁶Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, UK

⁷Institut de physique du globe de Paris

2024

Abstract

This document describes Boule v0.5.0, a software package for representing reference ellipsoids geometrically, calculating their gravity fields, and performing some global coordinate conversions. "Boule" is also French for "ball" as well as a traditional shape of bread resembling a squashed ball (much like the Earth). It is part of the Fatiando a Terra project and is available on Zenodo.

1 Introduction

Boule is a Python library for representing reference ellipsoids and calculating their gravity fields.

Boule is designed for:

 Storing and manipulating ellipsoid parameters for spherical harmonic analysis and coordinate system conversions. Calculating normal gravity for generating gravity anomalies and gravity disturbances.

2 Changelog for Version 0.5.0

Breaking changes:

• Drop support for Python 3.7 (188).

New features:

- Add geocentric_radius to TriaxialEllipsoid (146).
- Add a volume property for the Sphere (152).
- Add mass, mean_density, and volume_equivalent_radius properties to classes (173).
- Add true mean radius for Sphere, Ellipsoid, and TriaxialEllipsoid (177).
- Add area and area_equivalent_radius to all three ellipsoid classes (178).
- Add new planetary ellipsoids and new naming scheme (180).
- Add attributes for the normal potential to Sphere and Ellipsoid (184).
- Add normal_gravitational_potential, normal_gravity_potential, and centrifugal_potential methods to Ellipsoid and Sphere classes (187).
- Add the semimedium_axis and semimajor_axis_longitude to the Sphere and Ellipsoid classes for compatibility with the TriaxialEllipsoid (192).
- Add __str__ method to Ellipsoid classes (213).

Maintenance:

- Extend support for Python 3.11 (147).
- Add Blazej Bucha to AUTHORS.md (148).
- Update Leo's affiliation from Liverpool to São Paulo (149).
- Update Black format to version 24.2 (150).
- Use Burocrata to check/add license notices (153).
- Use Dependabot to manage updates to GitHub Actions (154).
- Use Trusted Publisher to deploy to PyPI (160).
- Move package configuration to pyproject.toml (171).

- Add link to Leo's ORCID (190).
- Extend support to Python 3.12 (189).
- Run tests with oldest dependencies on x86 macOS (200).
- Replace _version_generated.py with _version.py (199).
- Move push to Codecov to its own job in Actions (203).
- Update how output variables are stored in Actions (206).
- Replace build with python-build in environment.yml (207).

Documentation:

- Update the version of Sphinx and its plugins (170).
- Fix typo in installation instructions (172).
- Update coordinate conversions web documentation (212).
- Replace Sphinx Napoleon with Numpydoc (195).

3 Citation

Please cite this software as:

Fatiando a Terra Project, Bucha, B., Dinneen, C., Gomez, M., Li, L., Pesce, A., Soler, S. R., Uieda, L., Wieczorek, M. (2024). Boule v0.5.0: Reference ellipsoids for geodesy and geophysics (v0.5.0). Zenodo. https://doi.org/10.5281/zenodo.13975491