

Lecture 2

EE3010: Electrical Devices and Machines

School of Electrical and Electronic Engineering

Associate Professor Lee Peng Hin

Tel: +65 6790 4474 | Email: ephlee@ntu.edu.sg

Learning Objectives

By the end of this lecture, you should be able to:

- Describe the equivalent circuit of an induction motor.
- Describe the power flows and power flow diagram of an induction motor.
- Calculate the various powers and motor efficiency of an induction motor from given power losses and operating conditions.

The Equivalent Circuit of an Induction Motor

Because the induction of voltages and currents in the rotor circuit of an induction motor is essentially a transformer action, the equivalent circuit of an induction motor is very similar to that of a transformer.

Per phase equivalent circuit of an induction motor, with rotor and stator connected by an ideal transformer of turns ratio a_{eff} .

The Equivalent Circuit of an Induction Motor

- The circuit parameters per phase:
 - R_1 : Stator winding resistance
 - X_1 : Stator leakage reactance
 - R_R : Rotor winding resistance
 - X_R : Rotor leakage reactance
 - $a_{\it eff}$: Effective turns ratio coupling E_1 and $E_{
 m R}$
 - R_C : Resistance representing core loss
 - X_M : Magnetising reactance

- In an induction motor, when a voltage is applied to the stator windings, a voltage is induced in the rotor windings.
- The induced voltage is 0 V when the rotor moves at synchronous speed.
- When the rotor is stationary (i.e. locked-rotor or blocked-rotor conditions), the largest voltage and rotor frequency are induced in rotor.

- At any other speed,
 - The rms value of the induced voltage generated in the rotor as it is swept by the rotating flux is

$$E_R = 4.44(f_r)N_r\phi_{\text{max}} = 4.44(sf_s)N_r\phi_{\text{max}} = sE_{RO}$$

where $E_{RO} = 4.44 (f_s) N_r \phi_{\rm max}$ is the rotor induced voltage at locked-rotor conditions $(f_r = f_s, s = 1)$.

 The reactance depends on the inductance and the frequency of the voltage and current in the rotor.

$$X_{R} = \omega_{r} L_{R} = 2\pi (f_{r}) L_{R} = 2\pi (sf_{s}) L_{R} = sX_{RO}$$

where X_{RO} is the blocked-rotor reactance.

Example 1

The frequency and induced voltage in the rotor of a certain six-pole wound-rotor induction motor, whose shaft is blocked, are 60 Hz and 100 V, respectively. Determine the corresponding values when the rotor is running at 1100 r/min.

$$n_{sync} = \frac{120 f_s}{p} = \frac{120(60)}{6} = 1200 \text{ r/min}$$

$$s = \frac{n_{sync} - n_m}{n_{sync}} = 0.0833$$

$$f_r = sf_s = 5 \text{ Hz}$$

$$E_R = sE_{RO} = 8.33 \text{ V}$$

The rotor circuit model of an induction motor.

The rotor circuit model with all the frequency (slip) effects concentrated in resistor $\frac{R_R}{s}$.

Rotor current as a function of rotor speed

$$\mathbf{I}_{R} = \frac{\mathbf{E}_{RO}}{R_{R}/s + jX_{RO}}$$

The Final Equivalent Circuit of an Induction Motor

The per phase equivalent circuit of an induction motor referred to the stator.

- The core losses (W) are usually <u>lumped together with friction</u>, <u>windage and stray losses and called the rotational losses</u>.
- \clubsuit Hence, unless specified otherwise, R_C will not appear in the equivalent circuit subsequently.

The Final Equivalent Circuit of an Induction Motor

The referred rotor parameters to the stator side are:

$$\begin{split} \mathbf{E}_1 &= a_{e\!f\!f} \mathbf{E}_{RO} \;, \\ \mathbf{I}_2 &= \frac{\mathbf{I}_R}{a_{e\!f\!f}} \text{ where } \mathbf{I}_R = \frac{\mathbf{E}_{RO}}{R_R/s + jX_{RO}} \\ R_2 &= a_{e\!f\!f}^2 R_R \;, \quad X_2 = a_{e\!f\!f}^2 X_{RO} \\ a_{e\!f\!f} &= \text{effective turns ratio} \end{split}$$

Losses and Power-Flow Diagram in Induction Motors

Power flow diagram of an induction motor.

Losses and Power-Flow Diagram in Induction Motors

- Induction motor basically is a rotating transformer.
- Input is 3-phase supply.
- Output is mechanical power.
- Air gap power is the power transferred to the rotor of the machine across the air gap between the stator and the rotor.
- The converted power is the power converted from electrical to mechanical form.
- The core losses are usually <u>lumped together with the friction</u>, <u>windage and stray load losses and called the rotational losses</u>.

Example 2

A 480 V, 60 Hz, 50-hp, three-phase induction motor is drawing 60 A at 0.85 pf lagging. The stator copper losses are 2 kW, and the rotor copper losses are 700 W. The total rotational losses which includes the friction, windage and core losses are 2400 W, and the stray losses are negligible. Find:

- a) The air-gap power P_{AG}
- b) The converted power P_{conv}
- c) The output power P_{out}
- d) The efficiency of the motor η

(Solutions \rightarrow)

Example 2 – Solutions

a)
$$P_{in} = \sqrt{3}V_{line}I_{line}\cos\theta$$
$$= \sqrt{3}(480)(60)0.85 = 42.4 \text{ kW}$$
$$P_{AG} = P_{in} - P_{SCL} = 40.4 \text{ kW}$$

b)
$$P_{conv} = P_{AG} - P_{RCL} = 39700 \text{ W}$$

c)
$$P_{out} = P_{conv} - P_{rot} = 37.3 \text{ kW}$$

d) The efficiency of the motor
$$\eta = \frac{P_{out}}{P_{in}} (100\%) = 88\%$$

Summary

In this lecture, you have learnt:

- The equivalent circuit of an induction motor turns out to be very similar to the equivalent circuit of a transformer.
- The power flow diagram of an induction motor.
- The computations of the various powers and motor efficiency of an induction motor from given power losses and operating conditions.

16

No.	Slide No.	Image	Reference
1	3	$\mathbf{V}_{P} \left(\begin{array}{c cccc} \mathbf{I}_{1} & R_{1} & jX_{1} & \mathbf{I}_{2} & a_{\mathrm{eff}} & \mathbf{I}_{R} & jX_{R} \\ \hline & & & & & & \\ & & & & & & \\ & & & &$	Reprinted from <i>Electric Machinery Fundamentals, 5th ed.</i> , (p. 318), by S. J. Chapman, 2012, New York, NY: McGraw-Hill. Copyright 2012 by The McGraw-Hill Companies, Inc. Reprinted with permission.
2	8	$ \begin{array}{c} \mathbf{I}_{R} \\ jX_{R} = jsX_{R0} \\ + \\ \mathbf{E}_{R} = s\mathbf{E}_{R0} \end{array} $	Reprinted from <i>Electric Machinery Fundamentals, 5th ed.</i> , (p. 318), by S. J. Chapman, 2012, New York, NY: McGraw-Hill. Copyright 2012 by The McGraw-Hill Companies, Inc. Reprinted with permission.
3	8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Reprinted from <i>Electric Machinery Fundamentals, 5th ed.</i> , (p. 319), by S. J. Chapman, 2012, New York, NY: McGraw-Hill. Copyright 2012 by The McGraw-Hill Companies, Inc. Reprinted with permission.

17 EE3010 Lecture 2

No.	Slide No.	Image	Reference
4	9	E 2.5 SO 73 ING E3 W_potentiage of ryschrossus speed	Reprinted from <i>Electric Machinery Fundamentals, 5th ed.</i> , (p. 319), by S. J. Chapman, 2012, New York, NY: McGraw-Hill. Copyright 2012 by The McGraw-Hill Companies, Inc. Reprinted with permission.
5	10	$V_{\phi} = \begin{bmatrix} \mathbf{I}_{1} & R_{1} & jX_{1} & \mathbf{I}_{2} & jX_{2} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	Reprinted from <i>Electric Machinery Fundamentals, 5th ed.</i> , (p. 321), by S. J. Chapman, 2012, New York, NY: McGraw-Hill. Copyright 2012 by The McGraw-Hill Companies, Inc. Reprinted with permission.
6	12	$P_{so} = \sqrt{3}V_{7}I_{L}\cos\theta$ $P_{soc} = T_{locat}\omega_{so}$	Adapted from <i>Electric Machinery Fundamentals, 5th ed.</i> , (p. 322), by S. J. Chapman, 2012, New York, NY: McGraw-Hill. Copyright 2012 by The McGraw-Hill Companies, Inc. Adapted with permission.

18