Deuternaopia Combined Filter Analysis

Table of Contents

Clearing previous values	
For Expanded Transfer function	1
Zeros of the transfer functions	
Poles of the transfer functions	
Commented for complex analysis	
Plotting PZ map in Z domain	
For phase and magnitude plot	

This analysis is based on assuming the filter characteristics to be ideal. This is not true in the real world scenario. The graph will have infinite number of poles and infinite number of zeros to get the ideal characteristics

Clearing previous values

```
clear all
clc
```

For Expanded Transfer function

```
disp ('Expanded Transfer Functions');
  num = [1 1+i];
  den = [1 1];
  n_roots = roots(num);
  d_roots = roots(den);

Expanded Transfer Functions
```

Zeros of the transfer functions

```
n_roots = [0.9*cos(105*pi/180)+i*0.9*sin(105*pi/180)
  cos(124*pi/180)+i*sin(124*pi/180)
  0.9*cos(148.96*pi/180)+i*0.9*sin(148.96*pi/180)]

n_roots =
  -0.2329 + 0.8693i  -0.5592 + 0.8290i  -0.7711 + 0.4641i
```

Poles of the transfer functions

```
d_roots = [ 0.8*cos(55*pi/180)+i*0.8*sin(55*pi/180)
  0.9*cos(74*pi/180)+i*0.9*sin(74*pi/180)
  0.8*cos(86.9*pi/180)+i*0.8*sin(86.9*pi/180)]
```

Commented for complex analysis

```
% [loop1, ~] = size(n_roots);
% [loop2, ~] = size(d_roots);
% for i = 1:loop1
% a = real(n_roots(i));
% b = imag(n_roots(i));
% r = sqrt(a^2 + b^2);
% theta = atan(b/a);
% zeros_mag(i) = r;
% zeros_angle(i) = theta;
% end
응
% for j = 1:loop2
% c = real(n_roots(j));
% d = imag(n_roots(j));
% r = sqrt(c^2 + d^2);
%
% theta = atan(d/c);
% poles_mag(j) = r;
% poles_angle(j) = theta;
```

Plotting PZ map in Z domain

```
r = 1;
xc = 0;
yc = 0;
grid on
hold on
theta = linspace(0,2*pi);
xlabel('Pole Zero Map in Z domain')
x = r*cos(theta) + xc;
y = r*sin(theta) + yc;
plot(x,y)
legend('boxon')
legend('0 = Zero * = Pole');
```

```
[11, m1] = size(n_roots);
[12, m2] = size(d_roots);
for i=1:m1
        disp('KTB')
plot(real(n_roots(i)),imag(n_roots(i)),'o');
end

for i=1:m2
plot(real(d_roots(i)),imag(d_roots(i)),'*');
end
axis equal
KTB
KTB
KTB
KTB
```


For phase and magnitude plot

```
equity = 0;
equity_num = 0;
equity_den = 0;
%syms z;
w = 1:180;
x = cos((w*pi)/180) + i*sin((w*pi)/180);
z = x;
for k = 1:(11)
%disp('KTB');
equity_num = equity_num + z.^k * num(11 - k + 1);
end
equity_num = equity_num + num(11+1);
for m = 1:(12)
equity_den = equity_den + z.^m * den(12 - m + 1);
end
equity_den = equity_den + den(12+1);
equity = equity_num / equity_den;
```

Published with MATLAB® R2015a