CS 577- Intro to Algorithms

Dynamic Programming (Part 4)

Dieter van Melkebeek

October 1, 2020

Paradigm

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Paradigm

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Examples

- Computing Fibonacci numbers
- Weighted interval scheduling
- Knapsack problem
- ► RNA secondary structure
- ► Sequence alignment / Edit distance

Paradigm

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Examples

- Computing Fibonacci numbers
- Weighted interval scheduling
- Knapsack problem
- RNA secondary structure
- Sequence alignment / Edit distance
- Shortest paths

Input: (di)graph G=(V,E); lengths $\ell:E o\mathbb{R};\,s,t\in V$

Input: (di)graph G=(V,E); lengths $\ell:E\to\mathbb{R};\ s,t\in V$ Ouput: path P from s to t with minimum length $\ell(P)\doteq\sum_{e\in P}\ell(e)$

Input: (di)graph G=(V,E); lengths $\ell:E\to\mathbb{R};\ s,t\in V$ Ouput: path P from s to t with minimum length $\ell(P)\doteq\sum_{e\in P}\ell(e)$

Input: (di)graph G=(V,E); lengths $\ell:E\to\mathbb{R};\ s,t\in V$ Ouput: path P from s to t with minimum length $\ell(P)\doteq\sum_{e\in P}\ell(e)$

Variants based on source/target

single pair

```
Input: (di)graph G=(V,E); lengths \ell:E\to\mathbb{R}; s,t\in V
Ouput: path P from s to t with minimum length \ell(P)\doteq\sum_{e\in P}\ell(e)
```

- single pair
- single source

```
Input: (di)graph G=(V,E); lengths \ell:E\to\mathbb{R};\ s,t\in V
Ouput: path P from s to t with minimum length \ell(P)\doteq\sum_{e\in P}\ell(e)
```

- single pair
- single source
- single target

```
Input: (di)graph G=(V,E); lengths \ell:E\to\mathbb{R};\ s,t\in V
Ouput: path P from s to t with minimum length \ell(P)\doteq\sum_{e\in P}\ell(e)
```

- single pair
- single source
- single target
- all pairs

```
Input: (di)graph G=(V,E); lengths \ell:E\to\mathbb{R};\ s,t\in V
Ouput: path P from s to t with minimum length \ell(P)\doteq\sum_{e\in P}\ell(e)
```

Variants based on source/target

- ▶ single pair
- single source
- single target
- ▶ all pairs

Variants based on edge lengths

```
Input: (di)graph G=(V,E); lengths \ell:E\to\mathbb{R};\ s,t\in V
Ouput: path P from s to t with minimum length \ell(P)\doteq\sum_{e\in P}\ell(e)
```

Variants based on source/target

- ▶ single pair
- single source
- single target
- ▶ all pairs

Variants based on edge lengths

unit

Input: (di)graph G=(V,E); lengths $\ell:E\to\mathbb{R};\ s,t\in V$ Ouput: path P from s to t with minimum length $\ell(P)\doteq\sum_{e\in P}\ell(e)$

Variants based on source/target

- single pair
- single source
- single target
- ▶ all pairs

Variants based on edge lengths

- unit
- nonnegative

```
Input: (di)graph G=(V,E); lengths \ell:E\to\mathbb{R};\ s,t\in V
Ouput: path P from s to t with minimum length \ell(P)\doteq\sum_{e\in P}\ell(e)
```

Variants based on source/target

- single pair
- single source
- single target
- ▶ all pairs

Variants based on edge lengths

- unit
- nonnegative
- arbitrary

Specification

```
Input: (di)graph G=(V,E); lengths \ell:E\to\mathbb{R};\ s,t\in V
Ouput: path P from s to t with minimum length \ell(P)\doteq\sum_{e\in P}\ell(e)
```

Specification

```
Input: (di)graph G=(V,E); lengths \ell:E\to\mathbb{R};\ s,t\in V
Ouput: path P from s to t with minimum length \ell(P)\doteq\sum_{e\in P}\ell(e)
```

Distance d(s, t)

Specification

```
Input: (di)graph G = (V, E); lengths \ell : E \to \mathbb{R}; s, t \in V
Ouput: path P from s to t with minimum length \ell(P) \doteq \sum_{e \in P} \ell(e)
```

```
Distance d(s, t)
= \min\{\ell(P) | P \text{ path from } s \text{ to } t\}
```

Specification

```
Input: (di)graph G=(V,E); lengths \ell:E\to\mathbb{R};\ s,t\in V
Ouput: path P from s to t with minimum length \ell(P)\doteq\sum_{e\in P}\ell(e)
```

Distance d(s, t)

- $= \min\{\ell(P) \mid P \text{ path from } s \text{ to } t\}$
- $=\infty$ if there is no path from s to t

Specification

```
Input: (di)graph G = (V, E); lengths \ell : E \to \mathbb{R}; s, t \in V
Ouput: path P from s to t with minimum length \ell(P) \doteq \sum_{e \in P} \ell(e)
```

Distance d(s, t)

- $= \min\{\ell(P) \mid P \text{ path from } s \text{ to } t\}$
- $=\infty$ if there is no path from s to t
- $=-\infty$ if there is a path from s to t but no shortest one

Specification

```
Input: (di)graph G = (V, E); lengths \ell : E \to \mathbb{R}; s, t \in V
Ouput: path P from s to t with minimum length \ell(P) \doteq \sum_{e \in P} \ell(e)
```

Distance d(s, t)

- $= \min\{\ell(P) \mid P \text{ path from } s \text{ to } t\}$
- $=\infty$ if there is no path from s to t
- $=-\infty$ if there is a path from s to t but no shortest one

Proposition

$$d(s,t) = -\infty \Leftrightarrow$$

there exists cycle C with $\ell(C) < 0$ such that $s \rightsquigarrow C$ and $C \rightsquigarrow t$.

Principle of optimality

Subproblems

 $\mathsf{OPT}(k,v) =$ length of a shortest path from s to v using $\leq k$ edges ∞ if no such path exists

Subproblems

```
\begin{aligned} \mathsf{OPT}(k,v) &= \\ \mathsf{length} \ \mathsf{of} \ \mathsf{a} \ \mathsf{shortest} \ \mathsf{path} \ \mathsf{from} \ s \ \mathsf{to} \ v \ \mathsf{using} \leq k \ \mathsf{edges} \\ & \infty \ \mathsf{if} \ \mathsf{no} \ \mathsf{such} \ \mathsf{path} \ \mathsf{exists} \\ \big(k \in \mathbb{N} \ \mathsf{and} \ v \in V\big) \end{aligned}
```

Subproblems $\mathsf{OPT}(k,v) = \\ \mathsf{length} \ \mathsf{of} \ \mathsf{a} \ \mathsf{shortest} \ \mathsf{path} \ \mathsf{from} \ \mathsf{s} \ \mathsf{to} \ v \ \mathsf{using} \le k \ \mathsf{edges} \\ \infty \ \mathsf{if} \ \mathsf{no} \ \mathsf{such} \ \mathsf{path} \ \mathsf{exists}$

 $(k \in \mathbb{N} \text{ and } v \in V)$

Base case (k = 0)

Subproblems

$$\mathsf{OPT}(k,v) = \mathsf{length}$$
 of a shortest path from s to v using $\leq k$ edges ∞ if no such path exists $(k \in \mathbb{N} \text{ and } v \in V)$

$$\mathsf{Base case } (k = 0)$$
 $\mathsf{OPT}(0,s) = 0$ and $\mathsf{OPT}(0,v) = \infty$ for $v \neq s$

Subproblems

$$\mathsf{OPT}(k,v) = \mathsf{length} \ \mathsf{of} \ \mathsf{a} \ \mathsf{shortest} \ \mathsf{path} \ \mathsf{from} \ s \ \mathsf{to} \ v \ \mathsf{using} \le k \ \mathsf{edges} \ \infty \ \mathsf{if} \ \mathsf{no} \ \mathsf{such} \ \mathsf{path} \ \mathsf{exists} \ (k \in \mathbb{N} \ \mathsf{and} \ v \in V)$$

$$\mathsf{Base} \ \mathsf{case} \ (k = 0)$$

$$\mathsf{OPT}(0,s) = 0 \ \mathsf{and} \ \mathsf{OPT}(0,v) = \infty \ \mathsf{for} \ v \ne s$$

$$\mathsf{Recursive} \ \mathsf{case} \ (k > 1)$$

```
Subproblems
OPT(k, v) =
   length of a shortest path from s to v using \leq k edges
   \infty if no such path exists
(k \in \mathbb{N} \text{ and } v \in V)
Base case (k = 0)
\mathsf{OPT}(0,s) = 0 and \mathsf{OPT}(0,v) = \infty for v \neq s
Recursive case (k > 1)
OPT(k, v) =
   \min_{(u,v)\in E}(\mathsf{OPT}(k-1,u)+\ell(u,v))
```

```
Subproblems
OPT(k, v) =
   length of a shortest path from s to v using \leq k edges
   \infty if no such path exists
(k \in \mathbb{N} \text{ and } v \in V)
Base case (k = 0)
\mathsf{OPT}(0,s) = 0 and \mathsf{OPT}(0,v) = \infty for v \neq s
Recursive case (k > 1)
OPT(k, v) =
   \min_{(u,v)\in E}(\mathsf{OPT}(k-1,u)+\ell(u,v))
   OPT(k-1, v)
```

```
Subproblems
OPT(k, v) =
   length of a shortest path from s to v using \leq k edges
   \infty if no such path exists
(k \in \mathbb{N} \text{ and } v \in V)
Base case (k = 0)
\mathsf{OPT}(0,s) = 0 and \mathsf{OPT}(0,v) = \infty for v \neq s
Recursive case (k > 1)
OPT(k, v) =
   \min_{(u,v)\in E}(\mathsf{OPT}(k-1,u)+\ell(u,v))
   OPT(k-1, v)
Answer
```

d(s, v)

```
Subproblems
OPT(k, v) =
   length of a shortest path from s to v using \leq k edges
   \infty if no such path exists
(k \in \mathbb{N} \text{ and } v \in V)
Base case (k = 0)
\mathsf{OPT}(0,s) = 0 and \mathsf{OPT}(0,v) = \infty for v \neq s
Recursive case (k > 1)
OPT(k, v) =
   \min_{(u,v)\in E}(\mathsf{OPT}(k-1,u)+\ell(u,v))
   OPT(k-1, v)
Answer
```

 $d(s, v) = \lim_{k \to \infty} \mathsf{OPT}(k, v)$

Single Source – number of iterations

Single Source – number of iterations

Observation 1 If $(\forall v) \mathsf{OPT}(k, v) = \mathsf{OPT}(k-1, v)$ then $(\forall v) \mathsf{OPT}(k+1, v) = \mathsf{OPT}(k, v)$.

Single Source – number of iterations

Observation 1

If
$$(\forall v) \mathsf{OPT}(k, v) = \mathsf{OPT}(k - 1, v)$$

then $(\forall v) \mathsf{OPT}(k + 1, v) = \mathsf{OPT}(k, v)$.

Note

If $\ell \geq 0$, the hypothesis of Observation 1 holds for k = n.

Single Source – number of Iterations

Observation 2

If $\mathsf{OPT}(n,v) < \mathsf{OPT}(n-1,v)$ then there exists cycle C with $\ell(C) < 0$ such that $s \leadsto C$ and $C \leadsto v$.

Single Source – number of Iterations

Observation 2

If $\mathsf{OPT}(n,v) < \mathsf{OPT}(n-1,v)$ then there exists cycle C with $\ell(C) < 0$ such that $s \leadsto C$ and $C \leadsto v$.

Proof

```
\begin{aligned} \mathsf{OPT}(n,v) &= \ell(P) \\ &= \ell(P-C) + \ell(C) \\ &\geq \mathsf{OPT}(n-1,v) + \ell(C) \\ &> \mathsf{OPT}(n,v) + \ell(C) \\ \Rightarrow \ell(C) < 0 \end{aligned}
```

Single Source – number of Iterations

Observation 1

If
$$(\forall v) \mathsf{OPT}(k, v) = \mathsf{OPT}(k - 1, v)$$

then $(\forall v) \mathsf{OPT}(k + 1, v) = \mathsf{OPT}(k, v)$.

Observation 2

If $\mathsf{OPT}(n,u) < \mathsf{OPT}(n-1,u)$ then there exists cycle C with $\ell(C) < 0$ such that $s \leadsto C$ and $C \leadsto u$.

Criterion

$$d(s, v) = -\infty \Leftrightarrow$$

there exist $u \in V$ s.t. $u \leadsto v$ and $\mathsf{OPT}(n, u) < \mathsf{OPT}(n-1, u)$.

Single Source – algorithm

Single Source – algorithm

Recurrence

- ▶ OPT(0, s) = 0 and OPT $(0, v) = \infty$ for $v \neq s$
- $\mathsf{OPT}(k,v) = \min \left(\mathsf{OPT}(k-1,v), \min_{(u,v) \in \mathcal{E}} (\mathsf{OPT}(k-1,u) + \ell(u,v)) \right)$

Single Source – complexity analysis

Recurrence

- ▶ $\mathsf{OPT}(0,s) = 0$ and $\mathsf{OPT}(0,v) = \infty$ for $v \neq s$
- $\mathsf{OPT}(k,v) = \\ \min \left(\mathsf{OPT}(k-1,v), \min_{(u,v) \in \mathcal{E}} (\mathsf{OPT}(k-1,u) + \ell(u,v)) \right)$

Time

- \triangleright O(n+m) per row
- ightharpoonup < n+1 rows
- \triangleright O(n(n+m)) total

Space

- \triangleright O(n) for computing distances
- ▶ $O(n^2) \rightarrow O(n)$ for finding shortest paths

Principle of optimality

Principle of optimality

$$V = [n]$$

```
\mathsf{OPT}(s,t,k) =  length of a shortest path from s to t that only uses \{k,\ldots,n\} as intermediate vertices
```

```
\mathsf{OPT}(s,t,k) =  length of a shortest path from s to t that only uses \{k,\ldots,n\} as intermediate vertices \infty if no such path exists
```

```
\mathsf{OPT}(s,t,k) = \mathsf{length} of a shortest path from s to t that only uses \{k,\ldots,n\} as intermediate vertices \infty if no such path exists -\infty if there is such a path but no shortest one
```

```
\mathsf{OPT}(s,t,k) = \mathsf{length} of a shortest path from s to t that only uses \{k,\ldots,n\} as intermediate vertices \infty if no such path exists -\infty if there is such a path but no shortest one (s,t\in V) and k\in [n+1]
```

```
\mathsf{OPT}(s,t,k) = \mathsf{length} of a shortest path from s to t that only uses \{k,\ldots,n\} as intermediate vertices \infty if no such path exists -\infty if there is such a path but no shortest one (s,t\in V \text{ and } k\in [n+1]) Base case (k=n+1)
```

$$\mathsf{OPT}(s,t,k) = \mathsf{length}$$
 of a shortest path from s to t that only uses $\{k,\ldots,n\}$ as intermediate vertices ∞ if no such path exists $-\infty$ if there is such a path but no shortest one $(s,t\in V)$ and $s\in [n+1]$

Base case
$$(k = n + 1)$$

►
$$OPT(s, t, n + 1) = 0$$
 if $s = t$

$$\mathsf{OPT}(s,t,k) = \mathsf{length}$$
 of a shortest path from s to t that only uses $\{k,\ldots,n\}$ as intermediate vertices ∞ if no such path exists $-\infty$ if there is such a path but no shortest one $(s,t\in V)$ and $t\in [n+1]$

Base case
$$(k = n + 1)$$

- ► OPT(s, t, n + 1) = 0 if s = t
- lacksquare OPT $(s,t,n+1)=\ell(s,t)$ if $(s,t)\in E$

$$\mathsf{OPT}(s,t,k) = \mathsf{length}$$
 of a shortest path from s to t that only uses $\{k,\ldots,n\}$ as intermediate vertices ∞ if no such path exists $-\infty$ if there is such a path but no shortest one $(s,t\in V)$ and $t\in [n+1]$

Base case
$$(k = n + 1)$$

- ► OPT(s, t, n + 1) = 0 if s = t
- lacksquare OPT $(s,t,n+1)=\ell(s,t)$ if $(s,t)\in E$
- ▶ $\mathsf{OPT}(s,t,n+1) = \infty$ otherwise

Subproblems

$$\mathsf{OPT}(s,t,k) = \mathsf{length}$$
 of a shortest path from s to t that only uses $\{k,\ldots,n\}$ as intermediate vertices ∞ if no such path exists $-\infty$ if there is such a path but no shortest one $(s,t\in V)$ and $k\in [n+1]$

Base case
$$(k = n + 1)$$

- ► OPT(s, t, n + 1) = 0 if s = t
- lacksquare OPT $(s,t,n+1)=\ell(s,t)$ if $(s,t)\in E$
- ▶ $\mathsf{OPT}(s,t,n+1) = \infty$ otherwise

Answer

$$d(s,t) = \mathsf{OPT}(s,t,1)$$

Recursive case $(k \le n)$

```
Recursive case (k \le n)

If \mathsf{OPT}(s,k,k+1) < \infty and \mathsf{OPT}(k,t,k+1) < \infty

and \mathsf{OPT}(k,k,k+1) < 0

then \mathsf{OPT}(s,t,k) = -\infty

else \mathsf{OPT}(s,t,k) = \min(\mathsf{OPT}(s,t,k+1), \mathsf{OPT}(s,k,k+1) + \mathsf{OPT}(k,t,k+1))
```

```
Recursive case (k \le n)

If \mathsf{OPT}(s,k,k+1) < \infty and \mathsf{OPT}(k,t,k+1) < \infty

and \mathsf{OPT}(k,k,k+1) < 0

then \mathsf{OPT}(s,t,k) = -\infty

else \mathsf{OPT}(s,t,k) = \min(\mathsf{OPT}(s,t,k+1), \mathsf{OPT}(s,k,k+1) + \mathsf{OPT}(k,t,k+1))
```

Time

- \triangleright O(1) per entry
- \triangleright $O(n^3)$ entries
- $ightharpoonup O(n^3)$ total

```
Recursive case (k \le n)

If \mathsf{OPT}(s,k,k+1) < \infty and \mathsf{OPT}(k,t,k+1) < \infty

and \mathsf{OPT}(k,k,k+1) < 0

then \mathsf{OPT}(s,t,k) = -\infty

else \mathsf{OPT}(s,t,k) = \min(\mathsf{OPT}(s,t,k+1), \mathsf{OPT}(s,k,k+1) + \mathsf{OPT}(k,t,k+1))
```

Time

- ▶ O(1) per entry
- \triangleright $O(n^3)$ entries
- $ightharpoonup O(n^3)$ total

Space

 $O(n^2)$ for distances and shortest paths