# Third Isomorphism Theorem via Category Theory

Yucong Chen

(Dated: June 5, 2023)

### I. DEFINITIONS

- A *category* has a set of objects and arrows satisfying composition and identity.
- ullet A group G can be regarded as a category  ${\bf BG}$  because it has:
  - A one-element object set \*,
  - Arrow set G(\*,\*), where each group element  $f:*\to *$  is an arrow/endomorphism,
  - Composition defined by multiplication,
  - Identity arrow given by the identity element  $e_G$ .

#### I. DEFINITIONS

- A functor is a morphism of categories. For categories C and B, a functor  $T:C\to B$  with domain C and codomain B consists of two functions: the object function T which assigns each c of C an object Tc of B and the arrow function T which assigns to each arrow  $f:c\to c'$  of C an arrow  $Tf:Tc\to Tc'$  of B such that  $T(1_c)=1_{T_c}$  and  $T(g\circ f)=Tg\circ Tf$  whenever  $g\circ f$  is defined in C.
- E.g. A group homomorphism  $f: G \to H$  is a functor between them. Suppose f maps arrows x, y, z of G to fx, fy, fz of H and  $x \circ y = z$ . Then  $f(e_G) = e_H$  and  $f(x) \circ f(y) = f(x \circ y) = f(z)$ .

### I. DEFINITIONS

• If  $S: D \to C$  is a functor and c an object of C, a universal arrow from c to S is a pair < r, u > consisting of an object r of D and an arrow  $u: c \to Sr$  of C, such that to every pair < d, f > with d an object of D and  $f: c \to Sd$  an arrow of C, there is a unique arrow  $f': r \to d$  of D with  $Sf' \circ u = f$ .



• (Universal property of the quotient) Let  $N \triangleleft G$ ,  $p: G \rightarrow G/N$  sends each  $g \in G$  to its coset pg = gN in the quotient group G/N, and  $f: G \rightarrow G'$  be a group homomorphism such that  $N \subset ker(f)$ . Then there exists a unique homomorphism  $f': G/N \rightarrow G'$  such that  $f' \circ p = f$ .



## II. APPLICATION: THIRD ISOMORPHISM THEOREM

Using only universality (of projections) to prove the following isomorphism of group theory:

For normal subgroups M, N of G with  $M \subset N$ ,  $(G/M)/(N/M) \cong G/N$ .

## III. PROOF

$$(G/M)/(N/M)\cong G/N$$
 
$$\Leftrightarrow$$
 there exists  $f:(G/M)/(N/M)\to G/N$  and  $g:G/N\to (G/M)/(N/M)$  such that  $f\circ g=g\circ f=1_{G/N}$ 









## IV. REFERENCES

Categories for the Working Mathematician by Saunders Mac Lane
Category Theory in Context by Emily Riehl