Assignment 1

19/10/2022

Francesco Refolli 865955

Esercizio 1 1

$$max x_1 + x_2 (1)$$

$$x_1 + x_2 \le 2 \tag{2}$$

$$2x_1 - x_2 \le 0 (3)$$

$$x_1, x_2 \ge 0 \tag{4}$$

Costruisco il grafico con le equazioni dei vincoli lungo l'asse $x_1 \times x_2$. Riscrivo per comodita' i primi due vincoli in forma equivalente:

$$x_1 \le 2 - x_2 \tag{5}$$

$$x_1 \le 2 - x_2$$
 (5)
 $x_1 \le \frac{x_2}{2}$ (6)

Il vetto del gradiente della funzione obiettivo g=<1,1>, composto dalle derivate parziali delle componenti della funzione obiettivo, e' perpedincolare al vincolo $x_1 \le 2 - x_2$, quindi il problema ha **Infinite Soluzioni Ottime**. Le soluzioni sono tutte le coppie $< x_1, x_2 >$ che risiedono nello spigolo della regione obiettivo su cui si poggia il vincolo $x_1 \le 2 - x_2$. Ovvero tutti i punti sul segmento delimitato dai punti: $(0,2), (\frac{2}{3}, \frac{4}{3})$.

2 Esercizio 2

$$max x_1 + x_2 \tag{7}$$

$$x_1 + x_2 - x_3 = 2 (8)$$

$$2x_1 - x_2 \le 0 \tag{9}$$

$$x_1, x_2 \ge 0 \tag{10}$$

$$x_3 \le 0 \tag{11}$$

Conversione in forma aumentata

1 La forma standard non prevede vincoli di non positivita', quindi inverto il segno di x_3 in tutti i vincoli:

$$max x_1 + x_2 (12)$$

$$x_1 + x_2 + x_3 = 2 (13)$$

$$2x_1 - x_2 \le 0 \tag{14}$$

$$x_1, x_2, x_3 \ge 0 \tag{15}$$

2 Aggiungo tre variabili di slack per portare i tre vincoli \leq in vincoli =.

$$max x_1 + x_2 \tag{16}$$

$$x_1 + x_2 + x_3 = 2 (17)$$

$$2x_1 - x_2 + x_4 = 0 (18)$$

$$x_1, x_2, x_3, x_4 \ge 0 \tag{19}$$

3 Quindi esporto la funzione obiettivo f(x) in un vincolo Z - f(x) = 0.

$$max Z$$
 (20)

$$Z - x_1 - x_2 = 0 (21)$$

$$x_1 + x_2 + x_3 = 2 (22)$$

$$2x_1 - x_2 + x_4 = 0 (23)$$

$$x_1, x_2, x_3, x_4 \ge 0 \tag{24}$$

Risoluzione con tableau

Z	x_1	x_2	x_3	x_4	b
1	-1	-1	0	0	0
0	1	1	1	0	2
0	2	-1	0	1	0

iteration 1 Scelgo la colonna 1 perche' non esiste un coefficiente in prima riga negativo piu' basso.

Scelgo la riga 2 che ha il rapporto minimo.

Ricalcolo la tabella. Questo ha l'effetto di scambiare x_2 della base con x_1 .

Z	x_1	x_2	x_3	x_4	b
1.0	0.0	$-\frac{3}{2}$	0.0	$\frac{1}{2}$	0.0
0.0	0.0	$\frac{3}{2}$	1.0	$-\frac{1}{2}$	2.0
0.0	1.0	$-\frac{1}{2}$	0.0	$\frac{1}{2}$	0.0

iteration 2 Scelgo la colonna 2 perche' non esiste un coefficiente in prima riga negativo piu' basso.

Scelgo la riga 1 che ha il rapporto minimo.

Ricalcolo la tabella. Questo ha l'effetto di scambiare x_1 della base con x_2 .

Z	x_1	x_2	x_3	x_4	b
1.0	0.0	0.0	1.0	0.0	2.0
0.0	0.0	1.0	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{4}{3}$
0.0	1.0	0.0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$

iteration 3 La prima riga non contiene piu' valori negativi, l'algoritmo del simplesso si arresta.

La soluzione di base corrente e' $< x_1, x_2, x_3, x_4> = <\frac{2}{3}, \frac{4}{3}, 0, 0>$ Quindi una soluzione al problema PL e' $< x_1, x_2> = <\frac{2}{3}, \frac{4}{3}>$