Analysis of Divide-Conquer Algorithms

The typical recurrence describing the complexity of a divide and conquer algorithm would look like:

$$T(N) = aT(N/b) + f(N)$$

where

- N/b is the size of each subproblem
- *a* is the number of subproblems and
- f(N) is the cost of dividing up the problem into subproblems and combining the solutions.

Usually, dividing into subproblems is quite direct and the ingenuity is in stitching together the solutions.

Closest Pair

Given a collection

$$P = \{(x_1, y_1), (x_2, y_2) \dots (x_N, y_N)\}$$

of points on the plane, find the pair that is closest to each other.

$$dist((x_i, y_i), (x_j, y_j)) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Closest Pair

Given a collection

$$P = \{(x_1, y_1), (x_2, y_2) \dots (x_N, y_N)\}$$

of points on the plane, find the pair that is closest to each other.

$$dist((x_i, y_i), (x_j, y_j)) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

The obvious algorithm that considers all possible pairs and finds the minimum takes $O(N^2)$ time.

An example

Consider the list of points

$$(1,2), (8,2), (7,5), (9,8), (6,8), (3,6), (4,8), (1,8)$$

Step 1: How do we divide the given problem into subproblems?

Step 1: How do we divide the given problem into subproblems?

Sort the points on their *X*-coordinates and divide them into to equal halves.

Step 1: How do we divide the given problem into subproblems?

Sort the points on their *X*-coordinates and divide them into to equal halves.

$$(1,2), (1,8), (3,6), (4,8), (6,8), (7,5), (8,2), (9,8)$$

Step 1: How do we divide the given problem into subproblems?

Sort the points on their *X*-coordinates and divide them into to equal halves.

$$(1,2), (1,8), (3,6), (4,8), (6,8), (7,5), (8,2), (9,8)$$

 $(1,2), (1,8), (3,6), (4,8)$ $(6,8), (7,5), (8,2), (9,8)$

Two Subproblems

Two Subproblems

Solve each subproblem.

Solutions to Subproblems

Solutions to Subproblems

How do we put together the solutions?

Composing the Solutions

What is the difficulty?

Composing the Solutions

What is the difficulty?

The closest pair of points can span across the division.

An observation

Let d_l and d_r be the answers to the two subproblems. Let d be the minimum of these two values.

Let X = m be the line that is used to divide the problem into subproblems.

An observation

Let d_l and d_r be the answers to the two subproblems. Let d be the minimum of these two values.

Let X = m be the line that is used to divide the problem into subproblems.

Observation: If (x, y) and (x', y') are from across the division and the distance between them is less than d then |x - m| < d and |x' - m| < d.

② Sort the points by their X-coordinates. (O(NlogN))

- ② Sort the points by their X-coordinates. (O(NlogN))
- Pick X = m that divides the set of points into two equal parts. (O(N))

- ② Sort the points by their X-coordinates. (O(NlogN))
- Pick X = m that divides the set of points into two equal parts. (O(N))
- § Find the shortest pair in each subproblem. (T(N/2) + T(N/2)).

- ② Sort the points by their X-coordinates. (O(NlogN))
- Pick X = m that divides the set of points into two equal parts. (O(N))
- Find the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .
- Let S be the set of points whose X-coordinate is not farther than d from m. Find the shortest pair within this set. $(T(|S|) \text{ or } |S|^2)$.

- ② Sort the points by their X-coordinates. (O(NlogN))
- Pick X = m that divides the set of points into two equal parts. (O(N))
- Find the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .
- Let S be the set of points whose X-coordinate is not farther than d from m. Find the shortest pair within this set. $(T(|S|) \text{ or } |S|^2)$.

- ② Sort the points by their X-coordinates. (O(NlogN))
- Pick X = m that divides the set of points into two equal parts. (O(N))
- Find the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .
- Let S be the set of points whose X-coordinate is not farther than d from m. Find the shortest pair within this set. $(T(|S|) \text{ or } |S|^2)$.

S might contain all the points!

The Neighbourhood around X = m

Let us divide up the region between X = m - d and X = m + d into squares of size d/2

A Key observation

Observation: There can be at the most one point within any square region.

A Key observation

Observation: There can be at the most one point within any square region.

- Each square lies entirely on one side of the partition.
- The farthest points in a square are separated by the diagonal. The length of the diagonal is:

$$\sqrt{2}.d/2 = \frac{d}{\sqrt{2}} < d$$

If there are two in any one square then *d* cannot be the distance between the closest pair of points in the subproblems.

Where can points (in *S*) closer than *d* lie?

Only within the marked rectangle.

Only within the marked rectangle.

Thus, there are at the most 19 points whose distance from the given point is less than d

How to find the candidate pairs?

Sort the points in **S** based on the Y-coordinate. Then, a candidate pair cannot be separated by more than 11 in the list!

We can check all candidate pairs within S using at the most 11.|S| calculations.

② Sort the points by their X-coordinates. (O(Nlog(N)))

- ② Sort the points by their X-coordinates. (O(Nlog(N)))
- 2 Pick a line X = m that divides the set of points into two equal parts. (O(N))

- ② Sort the points by their X-coordinates. (O(Nlog(N)))
- 2 Pick a line X = m that divides the set of points into two equal parts. (O(N))
- § Find the shortest pair in each subproblem. (T(N/2) + T(N/2)).

- ② Sort the points by their X-coordinates. (O(Nlog(N)))
- 2 Pick a line X = m that divides the set of points into two equal parts. (O(N))
- Find the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .
- 4 Let S be the set of points whose X-coordinate is not farther than d from m. (O(N))

- ② Sort the points by their X-coordinates. (O(Nlog(N)))
- Pick a line X = m that divides the set of points into two equal parts. (O(N))
- Find the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .
- Uet S be the set of points whose X-coordinate is not farther than d from m. (O(N))
- Sort the points in S along the Y-axis. (O(|S|log(|S|)))

- ② Sort the points by their X-coordinates. (O(Nlog(N)))
- 2 Pick a line X = m that divides the set of points into two equal parts. (O(N))
- Find the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .
- Let S be the set of points whose X-coordinate is not farther than d from m. (O(N))
- **5** Sort the points in S along the Y-axis. (O(|S|log(|S|)))
- The Consider all pairs within distance 11 in this list and compute the minimum. (O(|S|))

$$T(N) = 2T(N/2) + c.Nlog(N)$$

Start with two lists P_x and P_y listing the points sorted along X-axis and along Y-axis respectively.

Pick X = m that divides the set of points into two equal parts. Use that to construct two subproblems (Q_x, Q_y) and (R_x, R_y) . (O(N))

- Pick X = m that divides the set of points into two equal parts. Use that to construct two subproblems (Q_x, Q_y) and (R_x, R_y) . (O(N))
- Prind the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .

- Pick X = m that divides the set of points into two equal parts. Use that to construct two subproblems (Q_x, Q_y) and (R_x, R_y) . (O(N))
- Find the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .
- 3 Let S be the set of points whose X-coordinate is not farther than d from m. Construct S by scanning the list P_y so that S is sorted along Y-axis by construction. (O(N))

- Pick X = m that divides the set of points into two equal parts. Use that to construct two subproblems (Q_x, Q_y) and (R_x, R_y) . (O(N))
- Find the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .
- 3 Let S be the set of points whose X-coordinate is not farther than d from m. Construct S by scanning the list P_y so that S is sorted along Y-axis by construction. (O(N))
- Onsider all pairs within distance 11 in this list and compute the minimum. (O(|S|))

- Pick X = m that divides the set of points into two equal parts. Use that to construct two subproblems (Q_x, Q_y) and (R_x, R_y) . (O(N))
- Find the shortest pair in each subproblem. (T(N/2) + T(N/2)). Let d_l and d_r be the answers. Let d be the minimum of d_l and d_r .
- 3 Let S be the set of points whose X-coordinate is not farther than d from m. Construct S by scanning the list P_y so that S is sorted along Y-axis by construction. (O(N))
- Onsider all pairs within distance 11 in this list and compute the minimum. (O(|S|))

