Computational Complexity

Theory of Computation

CISC 603, Spring 2020, Daqing Yun

Recall

- A decision problem is decidable if there is an algorithm that can answer it in principle
- A Turing machine deciding a language $L \subseteq \Sigma^*$ solves a decision problem: given $x \in \Sigma^*$, is $x \in L$?
 - A measure of the *size* of the problem is the length of the input string x

Computational Complexity

- We try to identify the problems for which there are *practical* algorithms
 - Ones that can answer reasonable-size instances in a reasonable amount of time

Growth of Functions

- If f and g are partial functions from \mathbb{N} to \mathbb{R}^+ ; that is, both functions have values that are nonnegative real numbers wherever they are defined
 - We say that f = O(g), or f(n) = O(g(n)) (which we read "f is big-oh of g" or "f(n) is big-oh of g(n)") if, for some positive numbers C and N, $f(n) \le C g(n)$ for every $n \ge N$
 - For example, every polynomial of degree k with positive leading coefficient is $O(n^k)$

Growth of Functions

• If f and g are partial functions from \mathbb{N} to \mathbb{R}^+ ; that is, both functions have values that are nonnegative real numbers wherever they are defined

Time Complexity of a Turing Machine

- Suppose T is a TM with input alphabet Σ that eventually halts on every input string
 - The *time complexity* of T is the function $\tau_T(n)$ defined by considering, for every input string of length n in Σ^* , the *number of moves T* makes on that string before halting, and letting $\tau_T(n)$ be the *maximum* of these numbers
 - When we refer to a TM with a certain time complexity, it will be understood that it halts on every input

Time Complexity of a Turing Machine

- What constitutes a *tractable* problem?
 - The most common answer is those that can be solved in *polynomial* time on a TM or other computer
 - One reason for this characterization is that it is relatively robust, as problems that can be solved in polynomial time on any computer can be solved in polynomial time on a TM as well, and vice-versa

The P Problem

- Definition: P is the set of languages L such that for some TM T deciding L and some $k \in \mathbb{N}$, $\tau_T(n) = O(n^k)$
- The set *P* is the set of problems that can be decided by a TM in *polynomial time*, as a function of the instance size. (Brute-force algorithms tend to be exponential)

Time Complexity

• In practice, we "measure" the time complexity of an algorithm by counting the "basic computer steps"

Algorithm 3 TraverseArray(A)

```
1: s = 0
```

2: for i = 1 to A.length do

3: j = i

4: while j > 1 do

s = i + j

6: j = j/2

7: return s

1:	s = 0	c_1	1
2:	for $i = 1$ to $A.length$ do	c_2	n
3:	j = i	c_3	n
4:	while $j \geq i$ do	c_4	$\sum_{j=1}^{n} t_j$
5:	s = i + j	c_5	$\sum_{j=1}^{n} (t_j - 1)$
6:	j = j/2	c_6	$\sum_{j=1}^{n} (t_j - 1)$
7:	return s	c_7	1

$$T(n) = c_1 + c_2 n + c_3 n + c_4 \sum_{j=1}^{n} t_j + c_5 \sum_{j=1}^{n} (t_j - 1) + c_6 \sum_{j=1}^{n} (t_j - 1) + c_7$$

$$= (c_1 + c_7) + (c_2 + c_3 + c_4) n + (c_4 + c_5 + c_6) \sum_{j=1}^{n} \log_2 n.$$

$$T(n) = \mathcal{O}(n \log_2 n).$$

Maximal Continuous Sub-array Sum Problem

Given: an integer array $A = a_1, a_2, ..., a_n$.

if $max < \mathcal{P}_i$

10: **return** max

 $max = \mathcal{P}_i \, \mathbf{O}(\mathbf{n})$

8:

9:

Output: the sub-array of A starts from index i and ends at index j that has

IVIDECONQUERMAXSUM(A)

AxSum(A, L, R)

SAT

- An instance of the *satisfiability problem* is a Boolean expression $(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3})$
 - It involves Boolean variables x_1, x_2, \dots, x_n and the logical connectives \land , \lor , and \neg
 - It is in conjunctive normal form (the conjunction ∧ of several clauses, each of which is a disjunction ∨)
- Question: is there an assignment of truth values to the variables that satisfies the expression (i.e., makes it true)?
 - This problem is clearly decidable we could simply try every possible assignment of values to variables

TSP

- The *traveling salesman problem* considers *n* cities that a salesman must visit, with a distance specified for every pair of cities
 - It is simplest to formulate this as an optimization problem – determine the order that minimizes the total distance traveled
 - We can turn this into a decision problem by introducing a variable k and asking whether there is an order in which the cities could all be visited by traveling no more than distance k

In Practice ...

- There is a brute-force solution to this problem too consider all n! possible permutations of the cities
- With current hardware we can solve very large problems, if the problems require time O(n)
- We can still solve largish problems if they take time $O(n^2)$ or even $O(n^3)$
- Exponential problems are another story
 - If the problem really requires time proportional to 2^n , then doubling the speed of the machine only allows us to increase the size of the problem by 1

However ...

- Showing that a brute-force approach takes a long time does not necessarily mean that the problem is complex
- The satisfiability problem and the traveling salesman problem are assumed to be hard, *not* because the brute-force approach takes exponential time, but because no one has found a way of solving either problem that *does not* take at least exponential time

- The satisfiability problem seems like a hard problem
 - Testing a potential answer is easy, but there are an exponential number of potential answers
- We can approach this problem nondeterministically
 - We "guess" an answer (a particular truth assignment) and then test it deterministically
 - This can be done in polynomial time

- Definition: If T is an NTM with input alphabet Σ such that, for every $x \in \Sigma^*$, every possible sequence of moves of T on input x eventually halts, the time complexity $\tau_T(n)$ is defined as follows:
 - Let $\tau_T(n)$ be the *maximum* number of moves T can possibly make on any input string of length n before halting
 - As before, if we speak of an NTM as having a time complexity, we are assuming implicitly that no input string can cause it to loop forever

- Definition: *NP* is the set of languages *L* such that for some NTM *T* that cannot loop forever on any input, and some integer *k*, *T* accepts *L* and $\tau_T(n) = O(n^k)$
 - We say that a language in NP can be accepted in nondeterministic polynomial time
 - It is clear that $P \subseteq NP$
 - The SAT problem is in NP (the "guess-and-test" strategy is typical of problems in NP, and we can formalize this by constructing an appropriate NTM)

- Definition: If $L \subseteq \Sigma^*$, we say that a TM T is a verifier for L if:
 - T accepts a language $L_1 \subseteq \Sigma^* \{\$\} \Sigma^*$, T halts on every input, and
 - $-L = \{x \in \Sigma^* \mid \text{ for some } a \in \Sigma^*, x \$ a \in L_1\}$ (we will call such a value a a *certificate* for x)
- A verifier *T* is a *polynomial-time verifier* if:
 - There is a polynomial p such that for every x and every a in Σ^* , the number of moves T makes on the input string x\$a is no more than p(|x|)

- Theorem: For every language $L \in \Sigma^*$, $L \in NP$ if and only if L is polynomially verifiable
 - i.e., there is a polynomial-time verifier for L
- A verifier for the satisfiability problem could take a specific truth assignment as a certificate; the traveling salesman problem could take a permutation of the cities as a certificate

- Just as we can show that a problem is decidable by reducing it to another one that is, we can show that a language is in *P* by reducing it to another that is
 - In the case of decidability, we only needed the reduction to be computable
 - Here we need the reduction function to be computable in polynomial time

- Definition: If L_1 and L_2 are languages over respective alphabets Σ_1 and Σ_2 , a polynomial-time reduction from L_1 to L_2 is a function $f: \Sigma_1^* \to \Sigma_2^*$ satisfying two conditions
 - First: for every $x \in \Sigma_1^*$, $x \in L_1$ if and only if $f(x) \in L_2$
 - Second: f can be computed in polynomial time, i.e., there is a TM with polynomial time complexity that computes f
- If there is a polynomial-time reduction from L_1 to L_2 , we write $L_1 \leq_p L_2$ and say that L_1 is polynomial-time reducible to L_2

- Polynomial-time reducibility is transitive
- If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ then $L_1 \leq_p L_3$
- If $L_1 \leq_p L_2$ and $L_2 \in P$, then $L_1 \in P$

- A language *L* is *NP-hard* if $L_1 \leq_p L$ for each $L_1 \in NP$
- L is NP-complete if $L \in NP$ and L is NP-hard
- If L and L_1 are languages such that L is NP-hard and $L \leq_p L_1$, then L_1 is also NP-hard
- If L is any NP-complete language, then $L \in P$ if and only if P = NP
- We do not know if P = NP, most people assume that NP is a larger set, but no one has been able to demonstrate that $P \neq NP$

In "Non-Mathematical" Words

- *P* problems can be solved efficiently (i.e., in polynomial time)
- *NP* problems can be verified efficiently (i.e., in polynomial time)
- *NP-hard* problems are all harder than *NP* problems
- *NP*-Complete problems are the hardest ones in *NP*

In "Visual" Words If $P \neq NP$ (Many believe this)

Next 🔷

• How to Prove *NP*-Completeness?

Other Reading Materials

- https://rjlipton.wordpress.com/2009/07/03/is-pnp-an-ill-posed-problem/
- http://sites.math.rutgers.edu/~zeilberg/Opinion98.html
- https://www.bbc.com/news/technology-18327261

Thanks!

Questions?