Lecture 7 - GLM III Differences between two groups Caspar J. van Lissa

2023-08-13

Categorical predictors

Binary variables

Examples of binary/dichotomous variables

- Nominal
 - Biological sex (male/female)
 - Student ethnicity (Dutch/foreign student)
 - Has tattoo, has pets (No/Yes)
- Ordinal
 - Performance on exam question (Fail/Pass)
 - Risk of disease (Low/High)

Ways of coding

sex	ethnicity	tattoo	exam	risk
Man	0	1	Fail	1
Woman	1	2	Pass	-1
Man	0	2	Fail	1
Woman	0	1	Pass	-1
Woman	0	1	Pass	1
Man	1	1	Pass	-1

Dummy coding

ethnicity1	tattoo2	examPass
0	0	0
1	1	1
0	1	0
0	0	1
0	0	1
1	0	1
	ethnicity1 0 1 0 0 0 0 1	ethnicity1 tattoo2 0 0 1 1 0 1 0 0 0 0 1 0 1 0

Other ways of coding

- There are other ways to code binary variables
- Outside the scope of this course
- Further reading: https://stats.oarc.ucla.edu/spss/faq/coding-systems-for-categorical-variables-in-regression-analysis

Regression with dummy variables

Linear regression

Linear regression is a basic model that can be adapted for various purposes You've learned $Y_i = a + b st X_i + e_i$

ullet Where X is a continuous predictor

Today we examine how we can use the same model for *binary predictors*

Scatterplot

We have previously examined some scatterplots, including this one) .

Coefficients

The formula for a diagonal regression line is: Y=a+bX a is the intercept

- This is the predicted value when X equals 0 b is the slope, how steep the line is
- ullet Y increases by b when X increases by ullet

Regression with binary predictor

We make clever use of regression to include a binary predictor:

- Assign the value 0 to one of the categories
 - This is the "reference category"
- Assign the value 1 to the other category
- You can enter your data this way, or "recode" existing variables
- Regression will estimate the mean of the reference category and test the difference between the two categories!

Formula

$$\hat{Y}_i = a + b * X_i$$

- \hat{y}_i : Individual predicted value of Shoesize
- *a*: Intercept
- *b*: Slope
- X_i : Sex (0 = woman, 1 = man)

Fill in the formula

Fill in for women:

•
$$\hat{Y}_i = a + b * 0 = a$$

• So the predicted shoesize for women is the intercept (a)

Fill in for men:

$$ullet \hat{Y_i} = a + b * 1 = a + b$$

• So the predicted shoesize for men is the intercept (a) plus the difference between men and women (b)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.845ª	.714	.713	1.6393

a. Predictors: (Constant), Man

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1182.463	1	1182.463	440.044	.000 ^b
	Residual	472.938	176	2.687		
	Total	1655.400	177			

a. Dependent Variable: What is your shoe size?

b. Predictors: (Constant), Man

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1 (Con	stant)	38.337	.163		235.033	.000
Man		5.202	.248	.845	20.977	.000

a. Dependent Variable: What is your shoe size?

Independent samples t-test

Independent Samples t-Test

The independent samples t-test is used to compare the means of two independent groups

• It is equivalent to the t-test of the slope in regression with a binary predictor

Compare: t-test

.

Compare: Regression

.

Assumptions

The t-test has the same assumptions as bivariate linear regression, with slight nuances

- Linearity of relationship between X and Y
 - Difference between two groups is linear by definition
- Normality of residuals
 - The outcome is normally distributed in each group
- Homoscedasticity
 - Equality of Variances in both groups (Levene's test)
- Independence of observations

Levene's test

By default, SPSS tests the assumption of homoscedasticity using Levene's test

- This is an F-test, as two sources of variance (i.e., the variances of the two groups) are compared
- $H_0: S_1^2 = S_2^2$, which is equivalent to $H_0: S_1^2 S_2^2 = 0$
- If Levene's test is *significant*, there is evidence that the two variances are not equal
- SPSS offers a test that allows for unequal variances
 But remember: The notion of "assumption checks" risks overfitting data
- Better to make an informed guess (variances equal or not), and stick with it

Demo

M1 =

0

SD1 =

1

M2 =

1

SD2 =

1

←

Step 1. Hypotheses

The default hypothesis in most software is:

- $H_0: \mu_1=\mu_2$, which is equivalent to $H_0: (\mu_1-\mu_2)=0$
- $H_A: (\mu_1 \mu_2) \neq 0$

But a one-sided test is also possible:

- $H_0: \mu_1 > \mu_2$, which is equivalent to $H_0: (\mu_1 \mu_2) > 0$
- $H_A: (\mu_1 \mu_2) \leq 0$

Or custom hypothesis

Step 2. Test statistic

Observed group difference minus hypothesized group difference, divided by the appropriate standard error

$$t = rac{(ar{X_1} - ar{X_2}) - (\mu_1 - \mu_2)_{H_0}}{SE_{ar{X_1} - ar{X_2}}}$$

Standard error:

$$SE_{ar{X_1}-ar{X_2}} = \sqrt{S^2_{pooled}(rac{1}{n_1} + rac{1}{n_2})}$$

Where

$$S_{pooled}^2 = rac{(n_1-1)*S_1^2 + (n_2-1)*S_2^2}{n_1+n_2-2}$$

Step 3. P-value

Use the t-distribution with appropriate degrees of freedom

- ullet $df:n_1+n_2-2$, minus 2 because two parameters are being estimated
 - lacksquare a and b, or the two means $ar{X}_1$ and $ar{X}_2$
- Find p-value in the t-table, online calculator, Excel or SPSS
- Remember: decide whether you assume equal variances or not

Step 4. Draw conclusion

- ullet If p<lpha , the test is significant
- ullet It is very unlikely to observe a group difference at least as large as you observed, if H_0 were true

Effect size

Effect size

The t-test tells us whether the difference between groups is statistically significant

- But is it also *practically* significant?
- Remember statistical power
 - In a large enough sample, even trivial differences between groups become significant
- Effect size measures standardize the difference between the group means
- This makes it interpetable on a meaningful scale (i.e., number of standard deviations)

Visualization

.

Cohen's D

Cohen's d is an effect size for mean differences, calculated as:

$$\frac{ar{X}_1 - ar{X}_2}{ar{x}_1}$$

Difference divided by pooled SD

Interpreting Cohen's d

Larger Cohen's d: bigger difference between the groups Rule of thumb:

• Small effect size: d ≈ 0.2

• Medium effect size: d ≈ 0.5

• Large effect size: d ≈ 0.8