集成学习实验报告

千英卓 2017013622

1 Experiment Design

在这次实验中,我使用两种集成学习算法(Bagging & AdaBoost.M1),和两种基本的统计分类算法(Support Vector Machine & Decision Tree)进行review的评分预测。

除此之外,我还实现了一个简单的Multilayer Perceptron,并将其使用Bagging的表现与不使用时对比,发现Bagging的提高有限。

1.1 Feature Extraction

实验数据中有意义的域有summary和review, 我采取bag-of-words对其进行特征提取。

首先建立词库:将词定义为符合Python正则表达式[a-z]+(所有文本均小写处理),对trainset中的所有词按照出现频数排序。由于高频词往往包含信息较少,去除频数最高的remove_head个词,采用之后的vocab_size个词作为词库。

将每个样本中summary和review中在词库里的词使用bag-of-words表示:对于词库中第i个词,设其在summary和review中出现次数分别为#(s),#(r),则特征向量的第i维的值为#(s)× $summary_weight + <math>\#(r)$,即每个样本的特征维度均为 $vocab_size$ 。

1.2 Classifiers

虽然评分看似是回归问题,但由于得分均为整数(离散),所以将其视为分类问题,使用分类器。

使用了**Support Vector Machine**和**Decision Tree**作为基本的分类器,采用scikit-learn库中的svm.LinearSVC和tree.DecisionTreeClassifier的实现。创建SVM时使用参数*max_iter*,DT使用参数*max_depth*,其他参数均为默认值。

另外使用Pytorch实现了一个两层的MLP,训练参数为: $hidden_size = 256, batch_size = 10, learning_rate = 0.0001, activation_function = ReLU, optimizer = SGD, loss_function = MSELoss$

1.3 Ensemble Learning

使用Bagging 和 AdaBoost.M1两种集成学习算法,其实现参照课件中的算法。两个算法都只有迭代次数T一个参数。

由于最终结果接受非整数,所以不进行投票决定类别,而是直接将算法得到的若干个分类器的结果加权平均(Bagging中为平权)作为最终结果。

1.4 Evaluation

使用root-mean-square-error(\mathbf{RMSE})进行evaluation。设标签为y,而预测结果为p,RMSE计算公式为

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (p_i - y_i)^2}{n}}$$

2 Experiment Results

以下若未特殊说明,则remove_head=20, vocab_size=2000, summary_weight=5。

2.1 Bagging + SVM

对迭代次数T进行了实验, SVM的max_iter设为1000.

Т	RMSE
1	1.08222
5	0.99194
20	0.93517
30	0.93011

表 1: 迭代次数的实验结果(Bagging+SVM)

并且对SVM的参数 max_iter 的选取进行了实验。由于训练时间限制,Bagging的迭代次数设为5。为了体现区别,展示了不使用集成学习算法的Base方法的效果。

max_iter/algorithm	Bagging	Base
500	0.97045	1.03166
1000	0.99194	1.04434
2000	0.98690	1.04864

表 2: max_iter的实验结果(Bagging+SVM)

2.2 AdaBoost + SVM

同Adaboost的迭代次数进行实验,SVM的*max_iter*设为1000。由于在改变权重的数据集上,分类器的准确率很快会降到0.5以下,所以实际迭代次数一般只能到4或5。

同样对max_iter的选取进行了实验,最大迭代次数T_max取为3。

Т	RMSE	actural T
1	1.04259	1
3	0.92402	3
10	0.88955	5

表 3: 迭代次数的实验结果(AdaBoost+SVM)

max_iter	RMSE	actural T
500	0.90922	3
1000	0.92402	3
2000	0.93369	3

表 4: max_iter的实验结果(AdaBoost+SVM)

2.3 Bagging + DT

对迭代次数T和DT的参数 max_depth 进行了实验。表6中 max_depth 为10,表7中T为10。同上,Base表示不使用集成学习得到的结果。

Т	RMSE
1	1.22787
5	1.20101
10	1.19579
20	1.18016
30	1.18721

表 5: 迭代次数的实验结果(Bagging+DT)

2.4 AdaBoost + DT

实验方法与之前类似,若未特殊说明则T为3, max_depth为10。

3 Performance on Leaderboard

图9展示各种方法在test集上取得的最好成绩(注: 排名以5.15 22:00情况为准)。其中AdaBoost+SVM的组合进行了对特征提取参数的调整,为remove_head=20,vocab_size=5000, summary_weight=3. MLP的训练参数设置为remove_head=20,vocab_size=2000, summary_weight=5, bagging_iter=10。

max_depth/algorithm	Bagging	Base
5	1.25416	1.26649
10	1.19725	1.22872
20	1.12421	1.20581

表 6: max_depth的实验结果(Bagging+DT)

Т	RMSE	Actual T
1	1.22800	1
3	1.17993	3
10	1.15029	4

表 7: 迭代次数的实验结果(AdaBoost+DT)

max_depth/algorithm	AdaBoost	Base
5	1.20009	1.26649
10	1.17993	1.22872
20	1.03229	1.20581

表 8: max_depth的实验结果(AdaBoost+DT)

Algorithm	RMSE	Place on Leaderboard
Bagging+SVM	0.93011	15
AdaBoost+SVM	0.79856	3
Bagging+DT	1.12421	27
AdaBoost+DT	1.03229	23
Bagging+MLP	0.92602	15

表 9: 各方法在Leaderboard上的结果

在调整了特征提取参数,尤其是增加了特征维数后,模型表现有了极大的提高,RMSE达到了0.80以下。可以预想,进一步增加特征维数可以继续提高效果,但由于硬件条件(内存不足)且没有必要,我没有进一步调整参数。

4 Analysis & Discussion

4.1 Result Analysis

由上可见,Bagging和AdaBoost两种集成学习算法对各种分类器都有不同程度的提高,其中AdaBoost的提高效果更为明显。由于训练时间有限,无法充分实验Bagging的迭代次数较高时的效果。仅对比迭代次数为5时最优模型的效果,Bagging和AdaBoost将SVM的RMSE分别降低了5.93%和13.77%,而将DT的RMSE分别降低了6.77%和14.39%,可见大致相同的训练时间内AdaBoost的提升效果强很多。但由于Bagging的迭代次数可取任意次,其效果理论上仍有提升空间,囿于时间原因无法实验。

同时可以发现,SVM的表现明显强于DT。在参数为scikit-learn库默认参数,特征提取参数为remove_head=20, vocab_size=2000, summary_weight=5的情况下:不使用集成学习算法时,SVM的RMSE相对DT低了15.01%;而使用集成学习算法时,SVM的最好效果比DT低了13.83%,均有着明显的十分明显的优势。

为了比较,我还实现了一个最基础的MLP,并使用**Bagging**进行了效果优化。其在没有进行任何调参的情况下取得了0.92602的RMSE值,比同等设定的SVM降低了0.00409。可见,神经网络对于自然语言的语义信息提取能力是相当强的。

4.2 Discussion

4.2.1 Difference of Classifiers

对于DT表现明显弱于SVM, 我提出了两个假设:

- 1. DT在进行分类时只能将不同的类别当做各自独立处理,但这个任务的本质其实是回归问题,即不同label对之间的相似度是不同的(比如说,label为4的sample比label为1的sample更接近label为5的sample)。DT无法体现这类信息,而因为可以认为label为4的samples到label为5的samples在特征向量空间的距离小于label为1的samples,所以SVM能够捕捉这种区别。
- 2. 由实验结果可见,DT的效果随着 max_depth 的增加而增加,但由于设备与时间限制无法得知这个趋势在什么范围内成立。猜测是因为自然语言的复杂性较高,DT需要很高的树高才能充分获取到语义信息。

进行了一个实验验证假设1的正确性:比较SVM与DT的正确率(类别由弱分类器加权投票得到)。这样相当于在评价时将所有类别视为互相无关联的,不会出现不同的错误预测的评价不同的情况,可以部分抵消SVM的优势。(实验中SVM和DT的参数均取sklearn实现的默认

值,其他参数均相同)

可见,比起RMSE,SVM在准确率上的相对优势要明显小(当然,由于RMSE为非线性

Metric	RMSE	Accuracy
SVM	0.92658	0.6411
DT	1.17985	0.5875
SVM superior by	21.47%	9.12%

表 10: 不同Metric下的实验结果

函数,直接比较相对增大(减小)并不严谨,但仍可以大概得出结论)。这说明假设1应该是SVM表现更好的原因之一。

4.2.2 Difference of Ensemble Learning Algorithms

Boosting的提高幅度高于Bagging与课件中描述相符。这里对其原因提出一个假设:由于训练集已足够大(220k samples),所以不使用集成算法训练就可以将variance降到比较低,但不能有效降低bias;而Bagging方法主要能够降低variance,Boosting能够降低bias,所以Boosting取得了更好的效果。

为此,进行了一个小实验来证明:仅采用训练集中的10000个sample进行训练,测试使用Bagging和AdaBoost(T=5)比起不使用集成学习和的效果提升,与全测试集的结果做比较(括号内为相对Base方法RMSE的降低比例):

Algorithm/Data Size	Small	Full
Base	1.29601	1.03865
Bagging	1.03166(19.85%)	0.97045(5.93%)
AdaBoost	1.22805(5.24%)	0.88955(14.36%)

表 11: 不同数据大小的实验结果

可见,在样本数量很小时,Bagging的提升效果尤为明显,而AdaBoost效果较为一般,与 在数据全集上训练的结果截然不同。初步验证了我的假设。