6. Линейни рекурентни отношения

Нека е даден един полином

$$P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n$$
 с реални

коефициенти a_0, \ldots, a_n . (Реален) корен на уравнението

 $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0$ се нарича всяко (реално) число α , такова, че

$$P(\alpha) = a_0.\alpha^n + a_1.\alpha^{n-1} + \dots + a_{n-1}.\alpha + a_n = 0.$$

Забележка. Известно е, че ако едно число α е (реален) корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n = 0$, то

$$P(x) = (x - \alpha).(b_0.x^{n-1} + b_1.x^{n-2} + \dots + b_{n-2}.x + b_{n-1}).$$

Нека е даден един полином $P(x)=a_0.x^n+a_1.x^{n-1}+\cdots+a_{n-1}.x+a_n \text{ с реални}$ коефициенти a_0,\ldots,a_n . (Реален) корен на уравнението $P(x)=a_0.x^n+a_1.x^{n-1}+\cdots+a_{n-1}.x+a_n=0 \text{ се нарича всяко}$ (реално) число α , такова, че $P(\alpha)=a_0.\alpha^n+a_1.\alpha^{n-1}+\cdots+a_{n-1}.\alpha+a_n=0.$

Забележка. Известно е, че ако едно число α е (реален) корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n = 0$, то

$$P(x) = (x - \alpha).(b_0.x^{n-1} + b_1.x^{n-2} + \dots + b_{n-2}.x + b_{n-1}).$$

Нека е даден един полином $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n \text{ с реални}$ коефициенти a_0, \dots, a_n . (Реален) корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n = 0 \text{ се нарича всяко}$ (реално) число α , такова, че $P(\alpha) = a_0.\alpha^n + a_1.\alpha^{n-1} + \cdots + a_{n-1}.\alpha + a_n = 0.$

Забележка. Известно е, че ако едно число α е (реален) корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0$, то

$$P(x) = (x - \alpha).(b_0.x^{n-1} + b_1.x^{n-2} + \dots + b_{n-2}.x + b_{n-1}).$$

Нека е даден един полином

$$P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n$$
 с реални коефициенти a_0, \dots, a_n . (Реален) корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0$ се нарича всяко (реално) число α , такова, че

$$P(\alpha) = a_0.\alpha^n + a_1.\alpha^{n-1} + \dots + a_{n-1}.\alpha + a_n = 0.$$

Забележка. Известно е, че ако едно число α е (реален) корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n = 0$,

$$P(x) = (x - \alpha).(b_0.x^{n-1} + b_1.x^{n-2} + \dots + b_{n-2}.x + b_{n-1})$$

Нека е даден един полином $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n$ с реални коефициенти a_0, \dots, a_n . (Реален) корен на уравнението

 $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n = 0$ се нарича всяко (реално) число α , такова, че

$$P(\alpha) = a_0.\alpha^n + a_1.\alpha^{n-1} + \dots + a_{n-1}.\alpha + a_n = 0.$$

Забележка. Известно е, че ако едно число α е (реален) корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n = 0$, то

$$P(x) = (x - \alpha).(b_0.x^{n-1} + b_1.x^{n-2} + \dots + b_{n-2}.x + b_{n-1}).$$

Дефиниция

Нека е даден един полином

$$P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n$$
 с реални коефициенти a_0, \dots, a_n . k -кратен корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0$ за $k \le n$, се нарича всяко число α , такова, че $P(x) = (x - \alpha)^k.Q(x)$, където $Q(x)$ е полином от степен $n - k$ такъв че, $Q(\alpha) \ne 0$.

Дефиниция

Нека е даден един полином $P(x)=a_0.x^n+a_1.x^{n-1}+\cdots+a_{n-1}.x+a_n \ c \ реални$ коефициенти $a_0,\ldots,a_n.$ k-кратен корен на уравнението $P(x)=a_0.x^n+a_1.x^{n-1}+\cdots+a_{n-1}.x+a_n=0 \ \text{за} \ k\leq n, \ ce$ нарича всяко число α , такова, че $P(x)=(x-\alpha)^k.Q(x),$ където Q(x) е полином от степен n-k такъв че, $Q(\alpha)\neq 0$

Дефиниция

Нека е даден един полином $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n \text{ с реални}$ коефициенти a_0,\dots,a_n . k-кратен корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0 \text{ за } k \leq n, \text{ се}$ нарича всяко число α , такова, че $P(x) = (x - \alpha)^k.Q(x)$, където Q(x) е полином от степен n - k такъв че, $Q(\alpha) \neq 0$

Дефиниция

Нека е даден един полином $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n \text{ с реални}$ коефициенти a_0, \ldots, a_n . \mathbf{k} -кратен корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n = 0 \text{ за } \mathbf{k} \leq \mathbf{n}, \text{ се}$ нарича всяко число α , такова, че $P(x) = (\mathbf{x} - \alpha)^k.Q(x)$, където Q(x) е полином от степен $\mathbf{n} - \mathbf{k}$ такъв че, $Q(\alpha) \neq 0$.

Нека е даден един полином

$$P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n$$
 с реални

коефициенти a_0, \ldots, a_n . Прост корен на уравнението

$$P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0$$
 се нарича всяко α , такова, че α е еднократен корен на

$$P(x) = a_0.\alpha^n + a_1.\alpha^{n-1} + \dots + a_{n-1}.\alpha + a_n = 0.$$

Дефиниция

Нека е даден един полином $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n \text{ с реални}$ коефициенти a_0, \dots, a_n . Прост корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \cdots + a_{n-1}.x + a_n = 0 \text{ се нарича всяко}$ α , такова, че α е еднократен корен на $P(x) = a_0.\alpha^n + a_1.\alpha^{n-1} + \cdots + a_{n-1}.\alpha + a_n = 0.$

Дефиниция

Нека е даден един полином $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n \text{ с реални}$ коефициенти a_0, \dots, a_n . Прост корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0 \text{ се нарича всяко}$ α , такова, че α е еднократен корен на $P(x) = a_0.\alpha^n + a_1.\alpha^{n-1} + \dots + a_{n-1}.\alpha + a_n = 0.$

Дефиниция

Нека е даден един полином $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n \text{ с реални}$ коефициенти a_0, \dots, a_n . Прост корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0 \text{ се нарича всяко}$ α , такова, че α е еднократен корен на $P(x) = a_0.\alpha^n + a_1.\alpha^{n-1} + \dots + a_{n-1}.\alpha + a_n = 0.$

Дефиниция

Нека е даден един полином $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n \text{ с реални}$ коефициенти a_0, \dots, a_n . Прост корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0 \text{ се нарича всяко}$ α , такова, че α е еднократен корен на $P(x) = a_0.\alpha^n + a_1.\alpha^{n-1} + \dots + a_{n-1}.\alpha + a_n = 0.$

Дефиниция

Нека е даден един полином $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n \text{ с реални}$ коефициенти a_0, \dots, a_n . Прост корен на уравнението $P(x) = a_0.x^n + a_1.x^{n-1} + \dots + a_{n-1}.x + a_n = 0 \text{ се нарича всяко}$ α , такова, че α е еднократен корен на $P(x) = a_0.\alpha^n + a_1.\alpha^{n-1} + \dots + a_{n-1}.\alpha + a_n = 0.$

Дефиниция

Линейно рекурентно отношение (редица) се нарича $a_{n+r}+c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n=F(n)$, (или още $a_{n+r}=c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n+F(n)$), където $n=0,1,\ldots$ и c_1,\ldots,c_r са дадени числа, а F(n) е дадена функция.

Всяко рекурентно отношение определя една безкрайна редица.

Линейно рекурентно отношение (редица) се нарича $a_{n+r}+c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n=F(n)$, (или още $a_{n+r}=c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n+F(n)$), където $n=0,1,\ldots$ и c_1,\ldots,c_r са дадени числа, а F(n) е дадена функция.

Всяко рекурентно отношение определя една безкрайна редица.

Линейно рекурентно отношение (редица) се нарича $a_{n+r}+c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n=F(n)$, (или още $a_{n+r}=c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n+F(n)$), където $n=0,1,\ldots$ и c_1,\ldots,c_r са дадени числа, а F(n) е дадена функция.

Всяко рекурентно отношение определя една безкрайна редица.

Линейно рекурентно отношение (редица) се нарича $a_{n+r}+c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n=F(n)$, (или още $a_{n+r}=c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n+F(n)$), където $n=0,1,\ldots$ и c_1,\ldots,c_r са дадени числа, а F(n) е дадена функция.

Всяко рекурентно отношение определя една безкрайна редица.

Линейно рекурентно отношение (редица) се нарича $a_{n+r}+c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n=F(n)$, (или още $a_{n+r}=c_1.a_{n+r-1}+c_2.a_{n+r-2}+\cdots+c_r.a_n+F(n)$), където $n=0,1,\ldots$ и c_1,\ldots,c_r са дадени числа, а F(n) е дадена функция.

Всяко рекурентно отношение определя една безкрайна редица.

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където $a_0,\,a_1$ са дадени числа. Нека освен това lpha и eta са различни корени на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответното на рекурентното отношение (*). Тогава общият член на редицата ап има вида

$$a_n = a.\alpha^n + b.\beta^n \qquad (***),$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0 , a_1 са дадени числа. Нека освен това α и β са различни корени на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответното на рекурентното отношение (*). Тогава общият член на редицата а_п има вида

$$a_n = a.\alpha^n + b.\beta^n \qquad (***),$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0, a_1 са дадени числа. Нека освен това α и β са различни корени на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответното на рекурентното отношение (*). Тогава общият член на редицата a_n има вида

$$a_n = a.\alpha^n + b.\beta^n \qquad (***),$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0, a_1 са дадени числа. Нека освен това α и β са различни корени на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответното на рекурентното отношение (*). Тогава общият член на редицата a_n има вида

$$a_n = a.\alpha^n + b.\beta^n \qquad (***),$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0, a_1 са дадени числа. Нека освен това α и β са различни корени на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответното на рекурентното отношение (*). Тогава общият член на редицата а_п има вида

$$a_n = a.\alpha^n + b.\beta^n \qquad (***),$$

В доказателството отново ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните стойности получаваме системата получаваме $a_0=a.1+b.1$ $a_1=a.\alpha+b.\beta$.

$$b = \frac{a_1 - a_0 \cdot \alpha}{\beta - \alpha}, \ a = \frac{a_0 \cdot \beta - a_1}{\beta - \alpha}$$

В доказателството отново ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните стойности получаваме системата получаваме $a_0=a.1+b.1$ $a_1=a.\alpha+b.\beta$.

$$b = \frac{a_1 - a_0 \cdot \alpha}{\beta - \alpha}, \ a = \frac{a_0 \cdot \beta - a_1}{\beta - \alpha}.$$

В доказателството отново ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните стойности получаваме системата получаваме $a_0=a.1+b.1$ $a_1=a.\alpha+b.\beta$.

$$b = \frac{a_1 - a_0 \cdot \alpha}{\beta - \alpha}, \ a = \frac{a_0 \cdot \beta - a_1}{\beta - \alpha}.$$

В доказателството отново ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните стойности получаваме системата получаваме $a_0=a.1+b.1$ $a_1=a.\alpha+b.\beta$.

$$b = \frac{a_1 - a_0 \cdot \alpha}{\beta - \alpha}, \ a = \frac{a_0 \cdot \beta - a_1}{\beta - \alpha}.$$

В доказателството отново ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните стойности получаваме системата получаваме $a_0=a.1+b.1$ $a_1=a.\alpha+b.\beta$.

$$b = \frac{a_1 - a_0 \cdot \alpha}{\beta - \alpha}, \quad a = \frac{a_0 \cdot \beta - a_1}{\beta - \alpha}.$$

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина,

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = a.\alpha^{n-1} + b.\beta^{n-1}$ и $a_{n-2} = a.\alpha^{n-2} + b.\beta^{n-2}$. Освен това

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = a.\alpha^{n-1} + b.\beta^{n-1}$ и $a_{n-2} = a.\alpha^{n-2} + b.\beta^{n-2}$. Освен това α и β са корени на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$ и $\beta^2 + p.\beta + q = 0$, откъдето $\alpha^2 = -p.\alpha - q$ и $\beta^2 = -p.\beta - q$.

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = a.\alpha^{n-1} + b.\beta^{n-1}$ и $a_{n-2} = a.\alpha^{n-2} + b.\beta^{n-2}$. Освен това α и β са корени на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$ и $\beta^2 + p.\beta + q = 0$, откъдето $\alpha^2 = -p.\alpha - q$ и $\beta^2 = -p.\beta - q$.

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = a.\alpha^{n-1} + b.\beta^{n-1}$ и $a_{n-2} = a.\alpha^{n-2} + b.\beta^{n-2}$. Освен това α и β са корени на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$ и $\beta^2 + p.\beta + q = 0$, откъдето $\alpha^2 = -p.\alpha - q$ и $\beta^2 = -p.\beta - q$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = a.\alpha^{n-1} + b.\beta^{n-1}$ и $a_{n-2} = a.\alpha^{n-2} + b.\beta^{n-2}$. Освен това α и β са корени на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$ и $\beta^2 + p.\beta + q = 0$, откъдето $\alpha^2 = -p.\alpha - q$ и $\beta^2 = -p.\beta - q$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$ $- \text{p.}(a.\alpha^{n-1} + b.\beta^{n-1}) - \text{q.}(a.\alpha^{n-2} + b.\beta^{n-2}) =$

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = a.\alpha^{n-1} + b.\beta^{n-1}$ и $a_{n-2} = a.\alpha^{n-2} + b.\beta^{n-2}$. Освен това α и β са корени на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$ и $\beta^2 + p.\beta + q = 0$, откъдето $\alpha^2 = -p.\alpha - q$ и $\beta^2 = -p.\beta - q$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$ $-p.(a.\alpha^{n-1}+b.\beta^{n-1})-q.(a.\alpha^{n-2}+b.\beta^{n-2})=$ $a.\alpha^{n-2}.(-p.\alpha - q) + b.\beta^{n-2}(-p.\beta - q) =$

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = a.\alpha^{n-1} + b.\beta^{n-1}$ и $a_{n-2} = a.\alpha^{n-2} + b.\beta^{n-2}$. Освен това α и β са корени на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$ и $\beta^2 + p.\beta + q = 0$, откъдето $\alpha^2 = -p.\alpha - q$ и $\beta^2 = -p.\beta - q$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$ $- \text{p.}(a.\alpha^{n-1} + b.\beta^{n-1}) - \text{q.}(a.\alpha^{n-2} + b.\beta^{n-2}) =$ $a.\alpha^{n-2}.(-p.\alpha - q) + b.\beta^{n-2}(-p.\beta - q) =$ $a.\alpha^{n-2}.\alpha^2 + b.\beta^{n-2}.\beta^2 = a.\alpha^n + b.\beta^n$, което доказва

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = a.\alpha^{n-1} + b.\beta^{n-1}$ и $a_{n-2} = a.\alpha^{n-2} + b.\beta^{n-2}$. Освен това α и β са корени на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$ и $\beta^2 + p.\beta + q = 0$, откъдето $\alpha^2 = -p.\alpha - q$ и $\beta^2 = -p.\beta - q$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$ $- \text{p.}(a.\alpha^{n-1} + b.\beta^{n-1}) - \text{q.}(a.\alpha^{n-2} + b.\beta^{n-2}) =$ $a.\alpha^{n-2}.(-p.\alpha - q) + b.\beta^{n-2}(-p.\beta - q) =$ $a.\alpha^{n-2}.\alpha^2 + b.\beta^{n-2}.\beta^2 = a.\alpha^n + b.\beta^n$, което доказва твърдението.

Нека редицата a_0, a_1, a_2, \ldots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0 , a_1 са дадени числа. Нека освен това α , $\alpha \neq 0$, е двоен (двукратен) корен на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответно на рекурентното отношение (*). Тогава общият член на редицата ап има вида

$$\mathbf{a}_{\mathbf{n}} = (\mathbf{a} + \mathbf{b}.\mathbf{n}).\alpha^{\mathbf{n}}, \qquad (***)$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0 , a_1 са дадени числа. Нека освен това α , $\alpha \neq 0$, е двоен (двукратен) корен на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответно на рекурентното отношение (*). Тогава общият член на редицата ап има вида

$$\mathbf{a}_{\mathbf{n}} = (\mathbf{a} + \mathbf{b}.\mathbf{n}).\alpha^{\mathbf{n}}, \qquad (***)$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0 , a_1 са дадени числа. Нека освен това α , $\alpha \neq 0$, е двоен (двукратен) корен на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответно на рекурентното отношение (*). Тогава общият член на редицата ап има вида

$$\mathbf{a}_{\mathbf{n}} = (\mathbf{a} + \mathbf{b}.\mathbf{n}).\alpha^{\mathbf{n}}, \qquad (***)$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0 , a_1 са дадени числа. Нека освен това α , $\alpha \neq 0$, е двоен (двукратен) корен на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответно на рекурентното отношение (*). Тогава общият член на редицата а_п има вида

$$\mathbf{a}_{\mathbf{n}} = (\mathbf{a} + \mathbf{b}.\mathbf{n}).\alpha^{\mathbf{n}}, \qquad (***)$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0 , a_1 са дадени числа. Нека освен това α , $\alpha \neq 0$, е двоен (двукратен) корен на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответно на рекурентното отношение (*). Тогава общият член на редицата a_n има вида

$$\mathbf{a}_{\mathbf{n}} = (\mathbf{a} + \mathbf{b}.\mathbf{n}).\alpha^{\mathbf{n}}, \qquad (***)$$

 ${
m n}=0,1,\dots$ за някои числа а и b.

Нека редицата a_0, a_1, a_2, \dots е определена от дадено рекурентното отношение

$$a_{n+2} + p.a_{n+1} + q.a_n = 0,$$
 (*)

където a_0 , a_1 са дадени числа. Нека освен това α , $\alpha \neq 0$, е двоен (двукратен) корен на уравнението

$$x^2 + p.x + q = 0$$
 (**)

(наречено характеристично уравнение), съответно на рекурентното отношение (*). Тогава общият член на редицата a_n има вида

$$\mathbf{a}_{\mathbf{n}} = (\mathbf{a} + \mathbf{b}.\mathbf{n}).\alpha^{\mathbf{n}}, \qquad (***)$$

Тъй като всичко казано в теоремата важи и за коплексни числа няма да уточняваме какви са числата и корените. В

доказателството ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа п и в частност за n = 0,1. След заместване с конкретните стойности получаваме системата

$$a_0 = (a + b.0).1 = a$$

$$a_1 = (a + b.1).\alpha = (a + b).\alpha.$$

$$a = a_0, b = \frac{a_1 - a_0.\alpha}{\alpha}$$

Тъй като всичко казано в теоремата важи и за коплексни числа няма да уточняваме какви са числата и корените. В доказателството ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните стойности получаваме системата $a_0=(a+b,0)$ 1=a

 $a_1 = (a + b.1) \cdot \alpha = (a + b) \cdot \alpha.$

$$a = a_0, b = \frac{a_1 - a_0 \cdot \alpha}{\alpha}$$

Тъй като всичко казано в теоремата важи и за коплексни числа няма да уточняваме какви са числата и корените. В доказателството ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните

стойности получаваме системата

$$a_0 = (a + b.0).1 = a$$

 $a_1 = (a + b.1).\alpha = (a + b).\alpha$.

$$a = a_0, b = \frac{a_1 - a_0.\alpha}{\alpha}$$

Тъй като всичко казано в теоремата важи и за коплексни числа няма да уточняваме какви са числата и корените. В доказателството ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните стойности получаваме системата

$$a_0 = (a + b.0).1 = a$$

 $a_1 = (a + b.1).\alpha = (a + b).\alpha$.

$$a = a_0, b = \frac{a_1 - a_0.\alpha}{\alpha}$$

Тъй като всичко казано в теоремата важи и за коплексни числа няма да уточняваме какви са числата и корените. В доказателството ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните стойности получаваме системата

$$a_0 = (a + b.0).1 = a$$

 $a_1 = (a + b.1).\alpha = (a + b).\alpha$.

$$a = a_0, b = \frac{a_1 - a_0 \cdot \alpha}{\alpha}.$$

Тъй като всичко казано в теоремата важи и за коплексни числа няма да уточняваме какви са числата и корените. В доказателството ще стане ясно как определяме числата а и b. Равенството (*) е в сила за всички естествени числа n и в частност за n=0,1. След заместване с конкретните стойности получаваме системата

$$a_0 = (a + b.0).1 = a$$

 $a_1 = (a + b.1).\alpha = (a + b).\alpha$.

$$a = a_0, b = \frac{a_1 - a_0 \cdot \alpha}{\alpha}.$$

За останалите n = 2, 3, ... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина,

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = (a + b.(n-1)).\alpha^{n-1}$ и $a_{n-2} = (a + b.(n-2)).\alpha^{n-2}$.

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = (a + b.(n-1)).\alpha^{n-1}$ и $a_{n-2} = (a + b.(n-2)).\alpha^{n-2}$. Освен това α е корен на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$, откъдето $q = \alpha^2$ и $p = -2 \cdot \alpha$. От друга

За останалите n=2,3,... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = (a + b.(n-1)).\alpha^{n-1}$ и $a_{n-2} = (a + b.(n-2)).\alpha^{n-2}$. Освен това α е корен на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$, откъдето $q = \alpha^2$ и $p = -2 \cdot \alpha$. От друга

За останалите n = 2, 3, ... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = (a + b.(n-1)).\alpha^{n-1}$ и $a_{n-2} = (a + b.(n-2)).\alpha^{n-2}$. Освен това α е корен на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$, откъдето $q = \alpha^2$ и $p = -2 \cdot \alpha$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$

За останалите n = 2, 3, ... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = (a + b.(n-1)).\alpha^{n-1}$ и $a_{n-2} = (a + b.(n-2)).\alpha^{n-2}$. Освен това α е корен на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$, откъдето $q = \alpha^2$ и $p = -2 \cdot \alpha$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$ $-p.[a + b.(n-1)]\alpha^{n-1} - q.[a + b.(n-2)].\alpha^{n-2} =$

За останалите n = 2, 3, ... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = (a + b.(n-1)).\alpha^{n-1}$ и $a_{n-2} = (a + b.(n-2)).\alpha^{n-2}$. Освен това α е корен на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$, откъдето $q = \alpha^2$ и $p = -2 \cdot \alpha$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$ $-p.[a + b.(n-1)]\alpha^{n-1} - q.[a + b.(n-2)].\alpha^{n-2} =$ $2 \cdot \alpha \cdot [a + b \cdot (n-1)] \alpha^{n-1} - \alpha^2 \cdot [a + b \cdot (n-2)] \cdot \alpha^{n-2} =$

За останалите n = 2, 3, ... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = (a + b.(n-1)).\alpha^{n-1}$ и $a_{n-2} = (a + b.(n-2)).\alpha^{n-2}$. Освен това α е корен на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$, откъдето $q = \alpha^2$ и $p = -2 \cdot \alpha$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$ $-p.[a + b.(n-1)]\alpha^{n-1} - q.[a + b.(n-2)].\alpha^{n-2} =$ $2 \cdot \alpha \cdot [a + b \cdot (n-1)] \alpha^{n-1} - \alpha^2 \cdot [a + b \cdot (n-2)] \cdot \alpha^{n-2} =$ $\alpha^{n}[2.(a+b.(n-1))-(a+b.(n-2))]=(a+b.n).\alpha^{n}$, koeto

доказва твърдението.

За останалите n = 2, 3, ... твърдението ще докажем с пълна индукция относно n. Допускаме, че равенството (* * *) е вярно за всички k < n. Ще го докажем и за n. Наистина, равенството е вярно за n-1 и n-2 съгласно индукционното предположение, откъдето получаваме, че $a_{n-1} = (a + b.(n-1)).\alpha^{n-1}$ и $a_{n-2} = (a + b.(n-2)).\alpha^{n-2}$. Освен това α е корен на уравнението (**), т.е. $\alpha^2 + p \cdot \alpha + q = 0$, откъдето $q = \alpha^2$ и $p = -2 \cdot \alpha$. От друга страна от рекурентното отношение имаме $a_n = -p.a_{n-1} - q.a_{n-2} =$ $-p.[a + b.(n-1)]\alpha^{n-1} - q.[a + b.(n-2)].\alpha^{n-2} =$ $2 \cdot \alpha \cdot [a + b \cdot (n-1)] \alpha^{n-1} - \alpha^2 \cdot [a + b \cdot (n-2)] \cdot \alpha^{n-2} =$ $\alpha^{n}[2.(a+b.(n-1))-(a+b.(n-2))]=(a+b.n).\alpha^{n}$, което доказва твърдението.

Горните твърдения могат да се обобщят както следва:

<u>Твърдение</u>

Нека редицата a_0, a_1, a_2, \dots е определена от дадено хомогенно рекурентното отношение

$$a_{n+r} + c_1.a_{n+r-1} + c_2.a_{n+r-2} + \dots + c_r.a_n = 0,$$
 (*)

където ${
m a_0, a_1, \ldots, a_{r-1}}$ са дадени числа. Нека освен това ${
m lpha_1, lpha_2, \ldots, lpha_s},$ са корени на уравнението

$$x^{r} + c_{1}.x^{r-1} + c_{2}.x^{r-2} + \dots + c_{r} = 0$$
 (**)

$$\begin{aligned} a_n &= (a_{1,0} + a_{1,1}.n \cdots + a_{1,k_1-1}.n^{k_1-1}).\alpha_1^n + \dots \\ &+ (a_{s,0} + a_{s,1}.n \cdots + a_{s,k_s-1}.n^{k_s-1}).\alpha_s^n, \end{aligned} \tag{***}$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено хомогенно рекурентното отношение

$$a_{n+r} + c_1.a_{n+r-1} + c_2.a_{n+r-2} + \dots + c_r.a_n = 0,$$
 (*)

където $a_0, a_1, \ldots, a_{r-1}$ са дадени числа. Нека освен това $\alpha_1, \alpha_2, \ldots, \alpha_s$, са корени на уравнението

$$x^{r} + c_{1}.x^{r-1} + c_{2}.x^{r-2} + \dots + c_{r} = 0$$
 (**)

$$\begin{aligned} a_n &= (a_{1,0} + a_{1,1}.n \cdots + a_{1,k_1-1}.n^{k_1-1}).\alpha_1^n + \dots \\ &+ (a_{s,0} + a_{s,1}.n \cdots + a_{s,k_s-1}.n^{k_s-1}).\alpha_s^n, \end{aligned} \tag{***}$$

<u>Твърдение</u>

Нека редицата a_0, a_1, a_2, \dots е определена от дадено хомогенно рекурентното отношение

$$a_{n+r} + c_1 a_{n+r-1} + c_2 a_{n+r-2} + \dots + c_r a_n = 0,$$
 (*)

където a_0, a_1, \dots, a_{r-1} са дадени числа. Нека освен това $\alpha_1, \alpha_2, \dots, \alpha_s,$ са корени на уравнението

$$x^{r} + c_{1}.x^{r-1} + c_{2}.x^{r-2} + \dots + c_{r} = 0$$
 (**)

$$\begin{aligned} a_n &= (a_{1,0} + a_{1,1}.n \cdots + a_{1,k_1-1}.n^{k_1-1}).\alpha_1^n + \dots \\ &+ (a_{s,0} + a_{s,1}.n \cdots + a_{s,k_s-1}.n^{k_s-1}).\alpha_s^n, \end{aligned} \tag{***}$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено хомогенно рекурентното отношение

$$a_{n+r} + c_1 a_{n+r-1} + c_2 a_{n+r-2} + \dots + c_r a_n = 0,$$
 (*)

където a_0, a_1, \dots, a_{r-1} са дадени числа. Нека освен това $\alpha_1, \alpha_2, \dots, \alpha_s,$ са корени на уравнението

$$x^{r} + c_{1}.x^{r-1} + c_{2}.x^{r-2} + \dots + c_{r} = 0$$
 (**)

$$\begin{aligned} a_n &= (a_{1,0} + a_{1,1}.n \cdots + a_{1,k_1-1}.n^{k_1-1}).\alpha_1^n + \dots \\ &+ (a_{s,0} + a_{s,1}.n \cdots + a_{s,k_s-1}.n^{k_s-1}).\alpha_s^n, \end{aligned} \tag{***}$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено хомогенно рекурентното отношение

$$a_{n+r} + c_1 a_{n+r-1} + c_2 a_{n+r-2} + \dots + c_r a_n = 0,$$
 (*)

където a_0, a_1, \dots, a_{r-1} са дадени числа. Нека освен това $\alpha_1, \alpha_2, \dots, \alpha_s,$ са корени на уравнението

$$x^{r} + c_{1} \cdot x^{r-1} + c_{2} \cdot x^{r-2} + \dots + c_{r} = 0$$
 (**)

$$\begin{aligned} \mathbf{a}_{n} &= (\mathbf{a}_{1,0} + \mathbf{a}_{1,1}.\mathbf{n} \cdot \dots + \mathbf{a}_{1,k_{1}-1}.\mathbf{n}^{k_{1}-1}).\alpha_{1}^{n} + \dots \\ &+ (\mathbf{a}_{s,0} + \mathbf{a}_{s,1}.\mathbf{n} \cdot \dots + \mathbf{a}_{s,k_{s}-1}.\mathbf{n}^{k_{s}-1}).\alpha_{s}^{n}, \end{aligned} \tag{***}$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено хомогенно рекурентното отношение

$$a_{n+r} + c_1 \cdot a_{n+r-1} + c_2 \cdot a_{n+r-2} + \dots + c_r \cdot a_n = 0,$$
 (*)

където $a_0, a_1, \ldots, a_{r-1}$ са дадени числа. Нека освен това $\alpha_1, \alpha_2, \ldots, \alpha_s$, са корени на уравнението

$$x^{r} + c_{1}.x^{r-1} + c_{2}.x^{r-2} + \dots + c_{r} = 0$$
 (**)

$$\begin{aligned} \mathbf{a}_{n} &= (\mathbf{a}_{1,0} + \mathbf{a}_{1,1}.\mathbf{n} \cdots + \mathbf{a}_{1,k_{1}-1}.\mathbf{n}^{k_{1}-1}).\alpha_{1}^{n} + \dots \\ &+ (\mathbf{a}_{s,0} + \mathbf{a}_{s,1}.\mathbf{n} \cdots + \mathbf{a}_{s,k_{s}-1}.\mathbf{n}^{k_{s}-1}).\alpha_{s}^{n}, \end{aligned} \tag{***}$$

Нека редицата a_0, a_1, a_2, \dots е определена от дадено хомогенно рекурентното отношение

$$a_{n+r} + c_1 a_{n+r-1} + c_2 a_{n+r-2} + \dots + c_r a_n = 0,$$
 (*)

където a_0, a_1, \dots, a_{r-1} са дадени числа. Нека освен това $\alpha_1, \alpha_2, \dots, \alpha_s,$ са корени на уравнението

$$x^{r} + c_{1}.x^{r-1} + c_{2}.x^{r-2} + \dots + c_{r} = 0$$
 (**)

$$\begin{aligned} \mathbf{a}_{n} &= (\mathbf{a}_{1,0} + \mathbf{a}_{1,1}.\mathbf{n} \cdots + \mathbf{a}_{1,k_{1}-1}.\mathbf{n}^{k_{1}-1}).\alpha_{1}^{n} + \dots \\ &+ (\mathbf{a}_{s,0} + \mathbf{a}_{s,1}.\mathbf{n} \cdots + \mathbf{a}_{s,k_{s}-1}.\mathbf{n}^{k_{s}-1}).\alpha_{s}^{n}, \end{aligned} \tag{***}$$

Дотук ние изяснихме как се намира общия член на редица определена с хомогенно линейно рекурентно отношение.

Когато отношението не е хомогенно можем да намерим общия член на редицата, само когато дясната част F(n) има специален вид, т.е. $F(n) = P(n).q^n$ или е крайна линейна комбинация на такива функции.

Дотук ние изяснихме как се намира общия член на редица определена с хомогенно линейно рекурентно отношение. Когато отношението не е хомогенно можем да намерим общия член на редицата, само когато дясната част F(n) има специален вид, т.е. $F(n) = P(n).q^n$ или е крайна линейна комбинация на такива функции.

Дотук ние изяснихме как се намира общия член на редица определена с хомогенно линейно рекурентно отношение. Когато отношението не е хомогенно можем да намерим общия член на редицата, само когато дясната част F(n) има специален вид, т.е. $F(n) = P(n).q^n$ или е крайна линейна комбинация на такива функции.