可縮なファイバーを持つファイバーバンドルの切断の存在

定理 3.8 の証明で 2 度用いた次の定理の証明を与える.

定理 3.9 パラコンパクトな Hausdorff 空間 B を底空間とし, 可縮な空間 C をファイバーとする C-バンドル $\zeta = (C \to E \xrightarrow{\pi} B)$ について, 閉集合 A を含む開集合 N で定義された任意の切断 $s \colon N \to Y$ に対して

$$S|_A = s|_A$$

を満たす切断 $S\colon B\to E$ が存在する. とくに $A=N=\emptyset$ とすれば, 切断 $S\colon B\to E$ が存在する.

<u>証明</u> B はパラコンパクトな Hausdorff 空間なので 1 の分割 $\{v'_{\lambda'}: B \to [0,1]\}_{\lambda' \in \Lambda'}$ を $\{v'_{\lambda'}^{-1}(0,1]\}_{\lambda' \in \Lambda'}$ が局所有限な B の開被覆で, かつ各 $v'_{\lambda'}^{-1}(0,1]$ 上で ζ が自明であるように選ぶことができる. また B は正規空間 (normal space) であるから, Urysohn の補題より A 上で 1, B-N 上で 0 の値をとる連続関数 $f: B \to [0,1]$ が存在する.

簡単のため Λ' が 0 という元を含まないとし, $\Lambda = \Lambda' \sqcup \{0\}$ とおく. ここで

$$V_0 = N,$$
 $v_0 = f,$ $V_{\lambda'} = v'_{\lambda'}^{-1}(0, 1],$ $v_{\lambda'} = (1 - v_0)v'_{\lambda'}$ $(\lambda' \in \Lambda')$

とおくと, $\{V_{\lambda}\}_{\lambda\in\Lambda}$ は局所有限な開被覆であり, 各 $\lambda\in\Lambda$ に対して $v_{\lambda}^{-1}(0,1]\subset V_{\lambda}$ が成り立つ. Λ の任意の部分集合 Γ に対し

$$v_{\Gamma} := \sum_{\lambda \in \Gamma} v_{\lambda} \colon B \longrightarrow [0, 1]$$

とおく. 上記の開被覆の局所有限性より, この和は B の各点において有限和であることに注意しよう. また, 定義より

$$v_{\Lambda} = v_0 + \sum_{\lambda' \in \Lambda'} v_{\lambda'} = v_0 + \sum_{\lambda' \in \Lambda'} (1 - v_0) v_{\lambda'}' = 1$$

である.

いま $A \subset v_0^{-1}(1) \subset V_0 = N$ であることに注意して

$$\chi = \left\{ \begin{array}{l} (\Gamma, S_{\Gamma}) \middle| \begin{array}{l} 0 \in \Gamma \subset \Lambda, \\ S_{\Gamma} \colon v_{\Gamma}^{-1}(0,1] \to E \text{ は } S_{\Gamma}|_{v_{0}^{-1}(1)} = s|_{v_{0}^{-1}(1)} \text{ を満たす } \zeta \text{ の局所切断} \end{array} \right\}$$

という集合を考えると, $(\{0\}, s) \in \chi$ より $\chi \neq \emptyset$ である. ここで,

$$(\Gamma, S_{\Gamma}) \succeq (\Gamma', S_{\Gamma'}) \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad \Gamma \supset \Gamma'$$
 かつ $\lceil v_{\Gamma}(b) = v_{\Gamma'}(b) > 0$ ならば $S_{\Gamma}(b) = S_{\Gamma'}(b)$ 」

と定めると \succeq は χ の半順序となる (等しくないことを強調するときは記号 \succ を用いることとする). $\Gamma \supset \Gamma'$ のとき $v_{\Gamma} > v_{\Gamma'}$ であるから, S_{Γ} の定義域 $v_{\Gamma}^{-1}(0,1]$ は $S_{\Gamma'}$ の定義域

 $v_{\Gamma'}^{-1}(0,1]$ を含むことに注意しよう. いま, Zorn の補題を用いて χ に極大元が存在することを示そう.

半順序 \succeq に関する χ の全順序部分集合 $\mathcal{S}=\{(\Gamma^{\sigma},S_{\Gamma^{\sigma}})\}_{\sigma\in\Sigma}$ を任意にとる. このとき

$$\widetilde{\Gamma} := \bigcup_{\sigma \in \Sigma} \Gamma^{\sigma}$$

とし、切断 $S_{\widetilde{\Gamma}}$: $v_{\widetilde{\Gamma}}^{-1}(0,1] \to E$ を

「 $b\in v_{\widetilde{\Gamma}}^{-1}(0,1]$ に対して, $\mathcal S$ の中で全順序 \succeq に関して十分に大きな $(\Gamma^\rho,S_{\Gamma^\rho})$ を選び, $S_{\widetilde{\Gamma}}(b):=S_{\Gamma^\rho}(b)$ とする」

という形で定めたい. これが切断を定めていることを示すには,

- (i) 十分大きな $(\Gamma^{\rho}, S_{\Gamma^{\rho}})$ について $S_{\Gamma^{\rho}}(b) \in E$ は定義され、一定である、
- (ii) $S_{\tilde{\Gamma}}$ は連続,

の2つを確かめる必要がある.

 $b\in v_{\widetilde{\Gamma}}^{-1}(0,1]$ の近傍 W をうまく選ぶと $v_{\gamma}^{-1}(0,1]\cap W\neq\emptyset$ となるような $\gamma\in\widetilde{\Gamma}$ たちは有限個となる.それらを $\gamma_1,\gamma_2,\ldots,\gamma_r$ とする.必要なら W を小さく選び直して,各 $i=1,2,\ldots,r$ に対して $W\subset v_{\gamma_i}^{-1}(0,1]$ であるとしてよい. $\gamma_i\in\Gamma^{\sigma_i}$ となる $\sigma_i\in\Sigma$ を 1 つ選び, $\{(\Gamma^{\sigma_i},S_{\Gamma^{\sigma_i}})\}_{i=1}^r$ の最大元を $(\Gamma^{\rho},S_{\Gamma^{\rho}})$ とする. $\gamma_1,\gamma_2,\ldots,\gamma_r\in\Gamma^{\rho}$ なので,

$$W \subset \bigcap_{i=1}^{r} v_{\gamma_i}^{-1}(0,1] \subset \bigcup_{\lambda \in \Gamma^{\rho}} v_{\lambda}^{-1}(0,1] = v_{\Gamma^{\rho}}^{-1}(0,1]$$

であり, $S_{\Gamma^{\rho}}(b)$ が定まる. この $(\Gamma^{\rho}, S_{\Gamma^{\rho}})$ が W の任意の点 b' において「十分大きい」ことを確かめよう. そこで, $(\Gamma^{\sigma}, S_{\Gamma^{\sigma}}) \in \mathcal{S}$ が $(\Gamma^{\sigma}, S_{\Gamma^{\sigma}}) \succeq (\Gamma^{\rho}, S_{\Gamma^{\rho}})$ を満たしているとする. W の選び方より, $\Gamma^{\sigma} - \Gamma^{\rho}$ の任意の元 μ に対して $v_{\mu}(b') = 0$ となる. よって $v_{\Gamma^{\sigma}}(b') = v_{\Gamma^{\rho}}(b') > 0$ となるので, 半順序 \succeq の定義より $S_{\Gamma^{\sigma}}(b') = S_{\Gamma^{\rho}}(b')$ となることより (ii) の連続性も確かめられた. 次に, $(\tilde{\Gamma}, S_{\tilde{\Gamma}})$ が S の上界にあることを示そう. $(\Gamma^{\sigma'}, S_{\Gamma^{\sigma'}}) \in S$ を任意にとる. 定義より $\tilde{\Gamma}$ つ $\Gamma^{\sigma'}$ は明らかである. いま $b \in v_{\Gamma^{\sigma'}}^{-1}(0,1] \subset v_{\tilde{\Gamma}}^{-1}(0,1]$ に対して $S_{\tilde{\Gamma}}(b) \neq S_{\Gamma^{\sigma'}}(b)$ であり, $S_{\Gamma^{\rho}}(b) \neq S_{\Gamma^{\sigma'}}(b)$ となる. いま, 全順序集合 S において $(\Gamma^{\sigma'}, S_{\Gamma^{\sigma'}}) \succeq (\Gamma^{\rho}, S_{\Gamma^{\rho}})$ とすると, 上で見たように $S_{\Gamma^{\rho}}(b) = S_{\Gamma^{\sigma'}}(b)$ となってしまうため不適であり, $(\Gamma^{\rho}, S_{\Gamma^{\rho}}) \succeq (\Gamma^{\sigma'}, S_{\Gamma^{\sigma'}})$ が成り立つ. よって, ある $\mu \in \Gamma^{\rho} - \Gamma^{\sigma'}$ に対し $v_{\mu}(b) \neq 0$ となる. これより

$$v_{\widetilde{\Gamma}}(b) \ge v_{\Gamma^{\rho}}(b) \ge v_{\Gamma^{\sigma'}}(b) + v_{\mu}(b) > v_{\Gamma^{\sigma'}}(b)$$

であることが従い, $(\widetilde{\Gamma}, S_{\widetilde{\Gamma}}) \succeq (\Gamma^{\sigma'}, S_{\Gamma^{\sigma'}})$ であることが示された.

以上より Zorn の補題を用いることができ, χ に極大元 (Γ, S_{Γ}) が存在することが示された. あとは, $\Gamma = \Lambda$ であることを示せば $v_{\Lambda}^{-1}(0,1] = B$ より証明が完了する.

 $\Gamma \neq \Lambda$ であると仮定する. このとき $\mu \in \Lambda - \Gamma$ が存在する. $\Gamma' := \Gamma \cup \{\mu\}$ とおく. $v_{\Gamma'} = v_{\Gamma} + v_{\mu}$ となることに注意して連続関数 $\eta\colon v_{\Gamma'}^{-1}(0,1] \to [0,1]$ を

$$\eta(b) = \begin{cases}
1 & (v_{\mu}(b) \le v_{\Gamma}(b) \ne 0) \\
\frac{v_{\Gamma}(b)}{v_{\mu}(b)} & (v_{\Gamma}(b) \le v_{\mu}(b) \ne 0)
\end{cases}$$

と定めると, $\eta^{-1}(0,1]=v_\Gamma^{-1}(0,1]$ となるので, S_Γ は $\eta^{-1}(0,1]$ 上で定義されている. $v_\mu^{-1}(0,1]$ 上の切断 $S_\mu\colon v_\mu^{-1}(0,1]\to E$ を

$$S_{\mu}(b) = \begin{cases} \varphi_{\mu}^{-1}(b, r(\operatorname{pr}_{2} \circ \varphi_{\mu}(S_{\Gamma}(b)), \psi \circ \eta(b))) & (b \in \eta^{-1}(0, 1]) \\ \varphi_{\mu}^{-1}(b, x) & (b \in \eta^{-1}(0)) \end{cases}$$

で定める. ここで

$$\varphi_{\mu} \colon \pi^{-1}(v_{\mu}^{-1}(0,1]) \xrightarrow{\approx} v_{\mu}^{-1}(0,1] \times C$$

は局所自明化写像であり、 $\operatorname{pr}_2\colon v_\mu^{-1}(0,1]\times C\to C$ は第 2 成分への射影, $r\colon C\times [0,1]\to C$ は任意の $c\in C$ に対して $r(c,0)=x\in C$,r(c,1)=c となる連続写像である (C の可縮性より存在する). また $\psi\colon [0,1]\to [0,1]$ は

$$\psi(t) = \begin{cases} 0 & (0 \le t \le 1/2) \\ 2t - 1 & (1/2 \le t \le 1) \end{cases}$$

で定まる連続関数であり、これにより S_μ の連続性が従う. さらに、 $S_{\Gamma'}: v_{\Gamma'}^{-1}(0,1] \to E$ を

$$S_{\Gamma'}(b) = \begin{cases} S_{\Gamma}(b) & (v_{\mu}(b) \le v_{\Gamma}(b)) \\ S_{\mu}(b) & (v_{\Gamma}(b) \le v_{\mu}(b)) \end{cases}$$

と定めると, $v_{\mu}(b)=v_{\Gamma}(b)$ のとき $b\in\eta^{-1}(1)\cap v_{\mu}^{-1}(0,1]$ であるから

$$\begin{split} S_{\mu}(b) &= \varphi_{\mu}^{-1}(b, r(\operatorname{pr}_2 \circ \varphi_{\mu}(S_{\Gamma}(b)), \psi \circ \eta(b))) = \varphi_{\mu}^{-1}(b, r(\operatorname{pr}_2 \circ \varphi_{\mu}(S_{\Gamma}(b)), 1)) \\ &= \varphi_{\mu}^{-1}(b, \operatorname{pr}_2 \circ \varphi_{\mu}(S_{\Gamma}(b))) = S_{\Gamma}(b) \end{split}$$

となり, $S_{\Gamma'}$ は well-defined な切断となる. $1=v_{\Lambda}\geq v_{\mu}+v_0$ であるから $v_0^{-1}(1)\cap v_{\mu}^{-1}(0,1]=\emptyset$ となり, $S_{\Gamma'}|_{v_0^{-1}(1)}=S_{\Gamma}|_{v_0^{-1}(1)}=s|_{v_0^{-1}(1)}$ が成り立つ. よって $(\Gamma',S_{\Gamma'})\in\chi$ である.

もし $v_{\Gamma}^{-1}(0,1]$ のある点 b において $S_{\Gamma}(b) \neq S_{\Gamma'}(b)$ であったとすると, $S_{\Gamma'}$ の定義より $v_{\mu}(b) > v_{\Gamma}(b) > 0$ となる. これより $(\Gamma', S_{\Gamma'}) \succ (\Gamma, S_{\Gamma})$ となり, Γ の極大性に矛盾する.

以上より
$$\Gamma = \Lambda$$
 であることが従い、定理の証明が完了した.