Contents

1	Wst	tęp		4									
	1.1	Testov	wane algorytmy	4									
	1.2	Ocena	ı jakości algorytmów	4									
	1.3	Zawar	rtość poszczególnych folderów	4									
	1.4	Uwagi	i	4									
2	Fun	ıkcja te	estująca	5									
	2.1	Potrze	ebne pakiety	5									
	2.2	Opis f	unkcji	8									
	2.3	3 Przykładowe wywołania funkcji											
3	Alg	Algorytm spektralny 1											
	3.1	Imple	mentacja algorytmu	10									
		3.1.1	Funkcja Mnn	10									
		3.1.2	Funkcja Mnn_graph	10									
		3.1.3	Funkcja $Laplacian_eigen$	11									
		3.1.4	Funkcja $spectral_clustering$	12									
	3.2	Badar	nie algorytmu na wszystkich zbiorach benchmarkowych	12									
		3.2.1	Bez standaryzacji zmiennych	12									
		3.2.2	Ze standaryzacją zmiennych	16									
4	Alg	corytm	hclust	19									
	4.1	Badar	nie algorytmu na wszystkich zbiorach benchmarkowych	19									
		4.1.1	Bez standaryzacji zmiennych	19									
		4.1.2	Ze standaryzacją zmiennych	22									
5	\mathbf{Alg}	gorytm	Genie z pakietu genie	25									
	5.1	Badar	nie algorytmu na wszystkich zbiorach benchmarkowych	25									
		5.1.1	Bez standaryzacji zmiennych	25									
		5.1.2	Ze standaryzacją zmiennych	28									
6	Alg	orytm	HCPC	31									
	6.1	Badar	nie algorytmu na wszystkich zbiorach benchmarkowych	31									
		6.1.1	Bez standaryzacji zmiennych	31									
		6.1.2	Ze standaryzacją zmiennych	33									
7	Alg	corytm	cmeans z pakietu e1071	35									
	7.1	Badar	nie algorytmu na wszystkich zbiorach benchmarkowych	35									
		7.1.1	Bez standaryzacji zmiennych	35									
		7.1.2	Ze standaryzacją zmiennych	38									

8	Pod	lsumov	vanie	41
	8.1	genie		41
		8.1.1	Bez standaryzacji zmiennych	41
		8.1.2	Ze standaryzacją zmiennych	42
	8.2	hclust		42
		8.2.1	Bez standaryzacji zmiennych	42
		8.2.2	Ze standaryzacją zmiennych	43
	8.3	spectro	nl_clustering	43
		8.3.1	Bez standaryzacją zmiennych	43
		8.3.2	Ze standaryzacją zmiennych	44
	8.4	HCPC	7	44
		8.4.1	Bez standaryzacji zmiennych	44
		8.4.2	Ze standaryzacją zmiennych	44
	8.5	cmean	s	45
		8.5.1	Bez standaryzacji zmiennych	45
		852	Ze standaryzacja zmiennych	46

1 Wstęp

Poniższy dokument przedstawia analizę danych benchmarkowych przy wykorzystaniu pięciu algorytmów analizy skupień (spectral clustering).

1.1 Testowane algorytmy

Przetestowane zostały następujące algorytmy analizy skupień:

- własna implementacja algorytmu spektralnego
- algorytmy hierarchiczne z funkcji *hclust()*
- algorytm Genie z pakietu **genie**
- HCPC Hierarchical Clustering on Principal Components
- cmeans

1.2 Ocena jakości algorytmów

Do oceny podobieństwa dwóch k-podziałów zostały użyte następujące indeksy:

- skorygowany indeks Randa (\mathbf{AR}) - indeks ten pozwala ocenić zgodność dwóch podziałów na zbioru na rozłączne podzbiory. - indeks Fowlkesa-Mallowsa (\mathbf{MS})

1.3 Zawartość poszczególnych folderów

- benchmarkPlots wykresy danych zbiorów benchmarkowych
- benchmarkResults pliki .csv zawierające wyniki poszczególnych algorytmów
 - pliki *STAND.csv zawierają wyniki poszczególnych algorytmów przy uwzględnieniu standaryzacji zmiennych (kolumn w \mathbf{X})
 - pozostałe pliki zawierają wyniki poszczególnych algorytmów bez uwzględnienia standaryzacji zmiennych (kolumn w \mathbf{X})
- myBenchmark pliki .data oraz .labels0 stworzonych przeze mnie zbiorów benchmarkowych
- pd2-zbiory-benchmarkowe ściągnienie ze strony zbiory benchmarkowe
- scripts skrypty wykorzystywane do tworzenia wyników
- tasks treść pracy domowej

1.4 Uwagi

Uwaga 1: W sprawozdaniu nie dodawałem wykresów przedstawiających poszczególne zbiory danych (uznałem, iż nie jest to konieczne). Natomiast w folderze benchmarkPlots są przedstawiane dane zbiory o nazwach w kolejności wystąpienia.

2 Funkcja testująca

Poniższy kod testujący powstal w celu zautomatyzywania badania poszczególnych algorytmów oraz ich zapis do plików .csv. Przedstawiony poniżej kod można też znaleźć w pliku raport.R (jest on zamieszczony wraz z przykładowymi wywołaniami). Opis funkcji znajduje się pod listingiem kodu.

2.1 Potrzebne pakiety

```
library("mclust")
library("genie")
library("FactoMineR")
library("e1071")
source("spectral.R")
menu <- function(choseAlgorithm="spectral_clustering", stand=FALSE, params=NULL){</pre>
  path <- getwd()</pre>
  path <- normalizePath("..")</pre>
  dirPath <- file.path(path, "pd2-zbiory-benchmarkowe")</pre>
  data <- list.files(dirPath, "data\\.gz$", recursive=TRUE)</pre>
  dataLabels <- list.files(dirPath, "labels0\\.gz$", recursive=TRUE)</pre>
  # deciding how many digits after period
  decimalPlaces <- 3
  if (choseAlgorithm == "spectral_clustering"){
    # check if all params all natural
    stopifnot(all(is.natural.number(params)))
    inFM <- data.frame(matrix(ncol = length(params), nrow = length(data)))</pre>
    inAM <- data.frame(matrix(ncol = length(params), nrow = length(data)))</pre>
  }
  if (choseAlgorithm == "hclust"){
    methodList = list("ward.D", "ward.D2", "single", "complete",
                       "average", "mcquitty", "median", "centroid")
    inFM <- data.frame(matrix(ncol = length(methodList), nrow = length(data)))</pre>
    inAM <- data.frame(matrix(ncol = length(methodList), nrow = length(data)))</pre>
  }
  if (choseAlgorithm == "genie"){
    stopifnot(all( (params > 0) & (params < 1)))</pre>
    inFM <- data.frame(matrix(ncol = length(params), nrow = length(data)))</pre>
    inAM <- data.frame(matrix(ncol = length(params), nrow = length(data)))</pre>
  }
  if (choseAlgorithm == "HCPC"){
    inFM <- data.frame(matrix(ncol = length(params), nrow = length(data)))</pre>
    inAM <- data.frame(matrix(ncol = length(params), nrow = length(data)))</pre>
```

```
}
if (choseAlgorithm == "cmeans"){
  inFM <- data.frame(matrix(ncol = length(params), nrow = length(data)))</pre>
  inAM <- data.frame(matrix(ncol = length(params), nrow = length(data)))</pre>
for (iter in 1:length(data)){
 X <- read.table(file.path(dirPath, data[iter]), header = FALSE,</pre>
                   sep = "", dec = ".")
  labels <- read.table(file.path(dirPath, dataLabels[iter]), header = FALSE,
                        sep = "", dec = ".")
  if(stand == TRUE){
    X <- as.data.frame(scale(X))</pre>
  if (choseAlgorithm == "spectral_clustering"){
    for (iterParams in 1:length(params)){
      result <- spectral_clustering(X, length(unique(labels$V1)), params[iterParams])</pre>
      calculatedLabel <- result</pre>
      inFM[iter, iterParams] <- round(as.numeric(FM_index(labels$V1, calculatedLabel)),</pre>
                                        decimalPlaces)
      inAM[iter, iterParams] <- round(as.numeric(mclust::adjustedRandIndex(labels$V1,</pre>
                                                    calculatedLabel)), decimalPlaces)
      # naming columns
      colnames(inFM)[iterParams] <- paste("FM M", params[iterParams], sep = " ")</pre>
      colnames(inAM)[iterParams] <- paste("AM M", params[iterParams], sep = " ")</pre>
    }
  }
  if (choseAlgorithm == "hclust"){
    for (iterMethod in 1:length(methodList)){
      result <- hclust(dist(X, method = "euclidean"), method = methodList[iterMethod])</pre>
      calculatedLabel <- cutree(result, length(unique(labels$V1)))</pre>
      # we round our result to two decimal places
      inFM[iter, iterMethod] <- round(as.numeric(FM_index(labels$V1, calculatedLabel)),</pre>
                                        decimalPlaces)
      inAM[iter, iterMethod] <- round(as.numeric(mclust::adjustedRandIndex(labels$V1,</pre>
                                                    calculatedLabel)), decimalPlaces)
      # naming columns
      colnames(inFM)[iterMethod] <- paste("FM", methodList[iterMethod], sep = " ")</pre>
      colnames(inAM)[iterMethod] <- paste("AM", methodList[iterMethod], sep = " ")</pre>
```

```
}
}
if (choseAlgorithm == "genie"){
  for (iterParams in 1:length(params)){
    result <- genie::hclust2(object = as.matrix(dist(X, method = "euclidean")),</pre>
                               thresholdGini = params[iterParams])
    calculatedLabel <- cutree(result, length(unique(labels$V1)))</pre>
    inFM[iter, iterParams] <- round(as.numeric(FM_index(labels$V1, calculatedLabel)),</pre>
                                      decimalPlaces)
    inAM[iter, iterParams] <- round(as.numeric(mclust::adjustedRandIndex(labels$V1,</pre>
                                                  calculatedLabel)), decimalPlaces)
    # naming columns
    colnames(inFM)[iterParams] <- paste("FM tG", params[iterParams], sep = " ")</pre>
    colnames(inAM)[iterParams] <- paste("AM tG", params[iterParams], sep = " ")</pre>
}
# Hierarchical Clustering on Principal Components
if (choseAlgorithm == "HCPC"){
  for (iterParams in 1:length(params)){
    \#X.pca \leftarrow PCA(X, qraph=FALSE)
    result <- FactoMineR::HCPC(res = X, nb.clust=length(unique(labels$V1)),</pre>
                                 graph=FALSE)
    calculatedLabel <- result$data.clust$clust</pre>
    inFM[iter, iterParams] <- round(as.numeric(FM_index(labels$V1, calculatedLabel)),</pre>
                                      decimalPlaces)
    inAM[iter, iterParams] <- round(as.numeric(mclust::adjustedRandIndex(labels$V1,</pre>
                                                  calculatedLabel)), decimalPlaces)
    colnames(inFM)[iterParams] <- paste("FM proba", params[iterParams], sep = " ")</pre>
    colnames(inAM)[iterParams] <- paste("AM proba", params[iterParams], sep = " ")</pre>
  }
}
if (choseAlgorithm == "cmeans"){
  for (iterParams in 1:length(params)){
    #input <- as.SparseSimilarityMatrix(as.matrix(dist(X, method = "euclidean")),</pre>
    \#lower=-0.2)
    result <- cmeans(x=X, centers = length(unique(labels$V1)), dist='euclidean',
                      m=params[iterParams])
    calculatedLabel = result$cluster
    inFM[iter, iterParams] <- round(as.numeric(FM_index(labels$V1, calculatedLabel)),</pre>
                       decimalPlaces)
```

2.2 Opis funkcji

Funkcja ta przyjmuje jako parametry wejściowe:

- 1. choseAlgorithm wybrany algorytm do analizy skupień:
- spectral_clustering zaimplementowany przeze mnie algorytm spektralny
- hclust
- qenie
- HCPC Hierarchical Clustering on Principal Components
- cmeans
- 2. stand- wartość boolean informująca czy ma być przeprawadzana standaryzacja (TRUE) czy nie (FALSE)
- 3. params wektor z wartościami parameterów danej funkcji

W metodach sprawdzam czy argumenty wejściowe są poprawne wpisane (poprzez wykorzystanie funkcji stopifnot).

2.3 Przykładowe wywołania funkcji

```
# spectral_clustering
params <- seq(2, 10, 1)
output_SC <- menu("spectral_clustering", stand=TRUE, params)
# hclust
output_HC <- menu("hclust", stand=TRUE, params=c(NA))
# genie
params <- seq(0.1, 0.9, by=0.1)
output_G <- menu("genie", stand=TRUE, params)</pre>
```

```
# HCPC
output_HCPC <- menu("HCPC", stand=TRUE, c(NA))

# cmeans
params <- c(2, 3, 4, 5, 6, 7, 8)
output_AP <- menu("cmeans", stand=TRUE, params=params)</pre>
```

3 Algorytm spektralny

3.1 Implementacja algorytmu

Implementajca pszczególnych funkcji algorytmu spektralnego znajdują się w pliku *spectral.R.* Dane linijki kodu komentowałem w trakcie pisania. Ewentualne inne rozwiązania danego zadania zamieściłem w komentarzach. Głównym powodem dla który wybierałem jeden sposób było przede wszystkim szybkość działania poszczególnego sposobu.

3.1.1 Funkcja Mnn

```
Mnn <- function(X, M){
    # calculate the distance beetween two points and save it as a matrix
    distOutput <- as.matrix(dist(X), method = "euclidean")

# order the matrix
    orderedOutput <- apply(distOutput, 2, order)
# in first column is the same column value (1 - 1) so we want to delete it
    orderedOutput <- orderedOutput[-1, ]

# choose only this rows, which are the closest
# t function to transpose result
S <- t(orderedOutput[1:M, ])</pre>
```

3.1.2 Funkcja Mnn graph

W tej funkcji dane składowe łączyłem za pomocą pętli *while*. Po tesstach zauważyłem, iż nie jest to wolny sposób. Jednym z decyzji, jakie podjąłem, było łączenie danych składowych (gdy liczba składowych jest większa niż 1). Postanowiłem, iż najlepszym rozwiązaniem (a zarazem najłatwiejszym) będzie połączenie poszczególnych składowych łącząc krawędzie o najniższych liczbach.

```
Mnn_graph <- function(S){</pre>
  # convert into adjacency matrix
  G <- matrix(0, nrow = nrow(S), ncol = nrow(S))
  for(row in 1:nrow(S)) {
    for(col in 1:ncol(S)) {
      G[row, S[row, col]] <- 1
      G[S[row, col], row] <-1
    }
  }
  # creating a graph from a adjacency matrix
  ourGraph <- graph_from_adjacency_matrix(G, mode = c("undirected"),</pre>
                                             weighted = NULL, diag = FALSE)
  # calculating number of graph component
  comp <- components(ourGraph)</pre>
  componentsGroups <- groups(comp)</pre>
  componentsNumber <- length(componentsGroups)</pre>
```

```
# if the number of component is bigger than 1 we add some edges
  while (componentsNumber != 1) {
    G[componentsGroups[[componentsNumber]][1],
      componentsGroups[[componentsNumber-1]][1]] <- 1</pre>
    G[componentsGroups[[componentsNumber-1]][1],
      componentsGroups[[componentsNumber]][1]] <- 1</pre>
    componentsNumber <- componentsNumber - 1</pre>
  }
  G
}
      Funkcja Laplacian_eigen
3.1.3
Laplacian_eigen <- function(G, k){
  stopifnot(k > 1)
  # creating graph to calculate a degree of a vertex
  # (optional solution: sum of a row or a column)
  ourGraph <- graph_from_adjacency_matrix(G, mode = c("undirected"),</pre>
                                            weighted = NULL, diag = FALSE)
  # first solution
  # calculating a degree of a vertex
  #vertexDegree <- degree(ourGraph)</pre>
  # using diag function create D matrix
  #D = diag(vertexDegree, nrow(G), ncol(G))
  \#L = D - G
  # second solution
  L <- laplacian_matrix(ourGraph)
  #stopifnot(isSymmetric(L))
  #eigenStructure <- eigen(L, symmetric = TRUE) # <- too slow</pre>
  # SA - the smallest(leftmost) values
  eigenStructure <- eigs_sym(L, 10 * k, which = "SA")
  vectorNumbers <- k + 1
  E <- eigenStructure$vectors[, (ncol</pre>
                                    (eigenStructure$vectors) - k + 1)
                                :ncol(eigenStructure$vectors)]
  # alternatives (when we use a eigen function):
  #E <- eigenStructure$vectors[, order(eigenStructure$values,
  # decreasing = FALSE)[1:vectorNumbers]]
  Ε
}
```

3.1.4 Funkcja spectral_clustering

Efektem finalnym jest funkcja spectral_clustering. Wykorzystuje ona wcześniej zaimplementowane funkcje oraz korzysta dodatkowo z funkcji kmeans, która w sposób losowy wybiera punkt początkowy. Rodzi to pewne problemy - testując daną funkcję najlepiej to wykonać kilka razy a następnie obliczyć średnią z danych eksperymnetów. Ze wzgędu na skomplikowaność zadania postanowiłem tego nie wykonywać (badałem jedną próbę).

```
spectral_clustering <- function(X, M, k){
   S <- Mnn(X, M)
   G <- Mnn_graph(S)
   E <- Laplacian_eigen(G, k)
   kmeans(E, k)$cluster
}</pre>
```

3.2 Badanie algorytmu na wszystkich zbiorach benchmarkowych

Jak już wspomniałem poprzez losowość funkcji kmeans wyniki przy danych wykonaniach mogą się różnić.

3.2.1 Bez standaryzacji zmiennych

Pierwszym etapem przy badaniu algorytmu $spectral_clustering$ było wyznaczenie błędów metody dla różnych wartości parametrów M. Wszystkie wartości przedstawione w poniższej tabeli są również zapisane w pliku $spectral_clustering.csv$.

3.2.1.1 Zbiory dostarczone

Wartości indeksów AM dla różnych parametrów M są przedstawione ponżej:

set	2	3	4	5	6	7	8	9	10
fcps/atom.data.gz	0.819	0.620	0.579	0.405	0.421	0.401	0.333	0.257	0.232
fcps/chainlink.data.gz	0.925	0.327	0.469	0.499	0.420	0.336	0.283	0.289	0.266
fcps/engytime.data.gz	0.397	0.342	0.243	0.214	0.211	0.241	0.194	0.192	0.171
fcps/hepta.data.gz	0.272	0.472	0.630	0.619	0.689	0.817	0.611	0.948	0.620
fcps/lsun.data.gz	0.739	0.439	0.558	0.401	0.398	0.517	0.416	0.319	0.343
fcps/target.data.gz	0.970	0.659	0.698	0.657	0.267	0.297	0.288	0.270	0.275
fcps/tetra.data.gz	0.332	0.297	0.674	0.935	0.531	0.540	0.730	0.730	0.595
fcps/twodiamonds.data.gz	0.362	0.290	0.264	0.386	0.175	0.159	0.311	0.205	0.191
fcps/wingnut.data.gz	-0.001	0.056	0.113	0.045	0.117	0.100	0.115	0.131	0.070
graves/dense.data.gz	0.014	0.506	0.421	0.485	0.277	0.318	0.205	0.238	0.171
graves/fuzzyx.data.gz	0.091	0.311	0.702	0.622	0.548	0.438	0.530	0.585	0.597
graves/line.data.gz	0.510	0.274	0.048	0.101	0.138	0.071	0.052	0.085	0.027
graves/parabolic.data.gz	0.035	0.024	0.200	0.323	0.099	0.215	0.129	0.102	0.111
graves/ring.data.gz	0.757	0.720	0.496	0.354	0.387	0.270	0.229	0.176	0.200
graves/zigzag.data.gz	0.156	-0.070	0.297	0.469	0.430	0.273	0.293	0.230	0.248
other/iris.data.gz	0.568	0.731	0.635	0.473	0.565	0.267	0.434	0.585	0.395
other/iris5.data.gz	0.396	0.218	0.201	0.377	0.344	0.293	0.302	0.228	0.133
other/square.data.gz	0.692	0.479	0.354	0.244	0.331	0.322	0.279	0.268	0.228
sipu/a1.data.gz	0.092	0.184	0.137	0.237	0.365	0.414	0.384	0.455	0.431
sipu/a2.data.gz	0.056	0.095	0.145	0.157	0.180	0.285	0.282	0.278	0.278
sipu/a3.data.gz	0.038	0.075	0.110	0.136	0.174	0.182	0.151	0.139	0.124
sipu/aggregation.data.gz	0.404	0.672	0.635	0.796	0.672	0.455	0.708	0.690	0.544

set	2	3	4	5	6	7	8	9	10
sipu/compound.data.gz	0.484	0.740	0.753	0.461	0.560	0.264	0.373	0.325	0.320
sipu/d31.data.gz	0.004	0.113	0.106	0.210	0.229	0.291	0.215	0.361	0.370
sipu/flame.data.gz	-0.030	0.564	0.417	0.390	0.406	0.104	0.223	0.211	0.112
sipu/jain.data.gz	0.324	0.295	0.216	0.107	0.056	0.146	0.041	0.184	0.136
sipu/pathbased.data.gz	0.398	0.490	0.540	0.612	0.601	0.677	0.565	0.414	0.394
sipu/r15.data.gz	0.121	0.193	0.273	0.229	0.193	0.497	0.575	0.536	0.591
sipu/s1.data.gz	0.132	0.042	0.213	0.285	0.485	0.506	0.571	0.580	0.596
sipu/s2.data.gz	0.119	0.231	0.326	0.408	0.374	0.523	0.475	0.450	0.690
sipu/s3.data.gz	0.108	0.208	0.288	0.310	0.385	0.440	0.482	0.497	0.488
sipu/s4.data.gz	0.111	0.188	0.228	0.291	0.321	0.360	0.385	0.445	0.505
sipu/spiral.data.gz	0.410	0.786	0.389	0.452	0.484	0.383	0.361	0.406	0.293
sipu/unbalance.data.gz	0.457	0.879	0.772	0.863	0.854	0.743	0.765	0.644	0.484
wut/cross.data.gz	0.335	0.441	0.543	0.786	0.651	0.398	0.569	0.479	0.487
wut/smile.data.gz	0.166	0.222	0.477	0.056	0.380	0.364	0.308	0.266	0.360
wut/twosplashes.data.gz	0.546	0.309	0.324	0.331	0.107	0.191	0.329	0.214	0.225
wut/x1.data.gz	0.593	0.499	0.870	0.815	0.697	0.566	0.561	0.464	0.379
wut/x2.data.gz	0.467	0.556	0.454	0.386	0.560	0.409	0.206	0.291	0.277
wut/x3.data.gz	0.481	0.643	0.898	0.656	0.708	0.710	0.718	0.520	0.380
wut/z1.data.gz	0.347	0.283	0.183	0.191	0.181	0.226	0.187	0.191	0.181
wut/z2.data.gz	0.576	0.395	0.320	0.600	0.643	0.466	0.399	0.425	0.387
wut/z3.data.gz	0.574	0.851	0.848	0.772	0.754	0.494	0.490	0.513	0.339

Wartości indeksów FM dla różnych parametrów Msą przedstawione ponżej:

set	2	3	4	5	6	7	8	9	10
fcps/atom.data.gz	0.910	0.790	0.762	0.637	0.649	0.634	0.577	0.510	0.482
fcps/chainlink.data.gz	0.963	0.615	0.685	0.706	0.648	0.580	0.532	0.538	0.516
fcps/engytime.data.gz	0.703	0.620	0.538	0.505	0.479	0.500	0.459	0.443	0.424
fcps/hepta.data.gz	0.524	0.637	0.731	0.723	0.756	0.850	0.683	0.956	0.675
fcps/lsun.data.gz	0.860	0.638	0.705	0.601	0.587	0.679	0.599	0.515	0.542
fcps/target.data.gz	0.985	0.813	0.832	0.807	0.532	0.539	0.531	0.513	0.519
fcps/tetra.data.gz	0.631	0.600	0.782	0.951	0.664	0.645	0.801	0.801	0.703
fcps/twodiamonds.data.gz	0.706	0.598	0.567	0.630	0.465	0.426	0.558	0.455	0.447
fcps/wingnut.data.gz	0.499	0.481	0.472	0.373	0.430	0.373	0.420	0.390	0.337
graves/dense.data.gz	0.579	0.731	0.668	0.697	0.531	0.564	0.455	0.487	0.415
graves/fuzzyx.data.gz	0.466	0.559	0.783	0.703	0.637	0.545	0.617	0.664	0.682
graves/line.data.gz	0.813	0.661	0.452	0.474	0.485	0.394	0.359	0.385	0.420
graves/parabolic.data.gz	0.517	0.469	0.501	0.575	0.416	0.483	0.388	0.347	0.362
graves/ring.data.gz	0.879	0.849	0.705	0.597	0.622	0.523	0.480	0.431	0.449
graves/zigzag.data.gz	0.562	0.436	0.560	0.662	0.633	0.503	0.517	0.459	0.474
other/iris.data.gz	0.771	0.822	0.746	0.624	0.695	0.461	0.597	0.712	0.561
other/iris5.data.gz	0.697	0.538	0.504	0.600	0.568	0.523	0.531	0.461	0.384
other/square.data.gz	0.848	0.721	0.614	0.519	0.580	0.569	0.534	0.520	0.480
sipu/a1.data.gz	0.309	0.382	0.346	0.421	0.511	0.544	0.524	0.573	0.555
sipu/a2.data.gz	0.237	0.277	0.323	0.333	0.353	0.436	0.434	0.430	0.430
sipu/a3.data.gz	0.197	0.241	0.277	0.302	0.337	0.343	0.316	0.305	0.291
sipu/aggregation.data.gz	0.644	0.783	0.750	0.849	0.769	0.574	0.771	0.758	0.635
sipu/compound.data.gz	0.698	0.830	0.823	0.592	0.661	0.461	0.507	0.465	0.459
sipu/d31.data.gz	0.185	0.299	0.293	0.381	0.396	0.440	0.384	0.494	0.500
sipu/flame.data.gz	0.605	0.769	0.664	0.640	0.653	0.446	0.489	0.476	0.382
sipu/jain.data.gz	0.700	0.702	0.566	0.459	0.401	0.460	0.403	0.476	0.411

set	2	3	4	5	6	7	8	9	10
sipu/pathbased.data.gz	0.652	0.678	0.695	0.735	0.727	0.780	0.699	0.578	0.563
sipu/r15.data.gz	0.354	0.406	0.462	0.431	0.406	0.610	0.664	0.633	0.668
sipu/s1.data.gz	0.364	0.294	0.420	0.469	0.604	0.619	0.658	0.666	0.674
sipu/s2.data.gz	0.349	0.429	0.490	0.547	0.518	0.620	0.583	0.567	0.736
sipu/s3.data.gz	0.333	0.397	0.451	0.458	0.506	0.539	0.563	0.568	0.560
sipu/s4.data.gz	0.336	0.379	0.402	0.438	0.449	0.471	0.479	0.521	0.561
sipu/spiral.data.gz	0.688	0.858	0.575	0.610	0.633	0.551	0.534	0.581	0.473
sipu/unbalance.data.gz	0.705	0.920	0.838	0.901	0.895	0.813	0.830	0.742	0.621
wut/cross.data.gz	0.591	0.635	0.668	0.838	0.733	0.533	0.670	0.597	0.604
wut/smile.data.gz	0.507	0.493	0.624	0.353	0.538	0.521	0.473	0.439	0.523
wut/twosplashes.data.gz	0.773	0.598	0.592	0.589	0.397	0.453	0.573	0.463	0.475
wut/x1.data.gz	0.787	0.718	0.914	0.878	0.798	0.705	0.702	0.630	0.563
wut/x2.data.gz	0.731	0.713	0.621	0.568	0.694	0.576	0.425	0.476	0.462
wut/x3.data.gz	0.698	0.767	0.925	0.741	0.781	0.784	0.792	0.640	0.521
wut/z1.data.gz	0.621	0.566	0.433	0.410	0.389	0.417	0.379	0.375	0.363
wut/z2.data.gz	0.793	0.615	0.574	0.737	0.768	0.637	0.584	0.610	0.573
wut/z3.data.gz	0.758	0.900	0.892	0.839	0.827	0.630	0.629	0.646	0.503

3.2.1.2 Moje zbiory danych

Wyniki działania na moich zbiorach danych przedstawiają się następująco:

Wartości indeksów AM dla różnych parametrów M są przedstawione ponżej:

set	2	3	4	5	6	7	8	9	10
benchmark1.data	0.648	0.393	0.298	0.427	0.413	0.327	0.230	0.299	0.305
benchmark2.data	0.134	0.115	0.185	0.510	0.480	0.509	0.580	0.775	0.695
benchmark3.data	0.363	0.539	0.661	0.902	0.607	0.541	0.606	0.478	0.497
benchmark4.data	0.322	0.446	0.679	0.738	0.444	0.735	0.455	0.566	0.526

Wartości indeksów FM dla różnych parametrów M są przedstawione ponżej:

set	2	3	4	5	6	7	8	9	10
benchmark1.data	0.827	0.652	0.583	0.654	0.643	0.572	0.482	0.547	0.552
benchmark2.data	0.385	0.372	0.415	0.629	0.610	0.629	0.676	0.814	0.748
benchmark3.data	0.609	0.688	0.746	0.922	0.682	0.635	0.680	0.575	0.591
benchmark4.data	0.571	0.610	0.759	0.792	0.549	0.787	0.553	0.654	0.624

3.2.1.3 Przykładowy zbiór

3.2.2 Ze standaryzacją zmiennych

3.2.2.1 Zbiory dostaczone

Wartości indeksów AM dla różnych parametrów $M\colon$

set	2	3	4	5	6	7	8	9	10
fcps/atom.data.gz	0.819	0.622	0.579	0.455	0.344	0.399	0.343	0.317	0.230
fcps/chainlink.data.gz	0.925	0.377	0.480	0.442	0.446	0.244	0.280	0.267	0.190
fcps/engytime.data.gz	0.397	0.342	0.092	0.220	0.329	0.186	0.233	0.206	0.151
fcps/hepta.data.gz	0.269	0.472	0.624	0.729	0.850	0.803	0.763	0.780	0.894
fcps/lsun.data.gz	0.739	0.439	0.558	0.535	0.400	0.452	0.338	0.421	0.293
fcps/target.data.gz	0.970	0.655	0.698	0.405	0.339	0.336	0.264	0.237	0.256
fcps/tetra.data.gz	0.332	0.713	0.670	0.581	0.715	0.791	0.600	0.459	0.554
fcps/twodiamonds.data.gz	0.362	0.467	0.430	0.368	0.198	0.209	0.214	0.208	0.181
fcps/wingnut.data.gz	-0.001	0.057	0.143	0.044	0.113	0.090	0.130	0.068	0.115
graves/dense.data.gz	0.671	0.574	0.202	0.485	0.277	0.487	0.206	0.273	0.209
graves/fuzzyx.data.gz	0.091	0.464	0.551	0.461	0.548	0.456	0.531	0.486	0.537
graves/line.data.gz	0.257	0.274	0.019	0.094	0.065	0.020	0.049	0.085	0.058
graves/parabolic.data.gz	0.035	0.456	0.214	0.218	0.222	0.164	0.139	0.078	0.144
graves/ring.data.gz	0.757	0.680	0.496	0.375	0.376	0.335	0.272	0.215	0.201
graves/zigzag.data.gz	0.156	-0.070	0.568	0.469	0.232	0.276	0.293	0.215	0.222
other/iris.data.gz	0.568	0.731	0.320	0.454	0.321	0.371	0.369	0.584	0.360
other/iris5.data.gz	0.396	0.218	0.404	0.377	0.126	0.270	0.341	0.313	0.178
other/square.data.gz	0.692	0.479	0.439	0.336	0.285	0.580	0.209	0.241	0.181
sipu/a1.data.gz	0.092	0.184	0.208	0.312	0.203	0.428	0.401	0.469	0.404
sipu/a2.data.gz	0.057	0.095	0.145	0.189	0.215	0.261	0.298	0.287	0.270
sipu/a3.data.gz	0.038	0.075	0.100	0.141	0.174	0.198	0.206	0.240	0.245
sipu/aggregation.data.gz	0.404	0.672	0.797	0.429	0.866	0.755	0.569	0.622	0.682
sipu/compound.data.gz	0.484	0.406	0.783	0.578	0.411	0.535	0.379	0.344	0.571
sipu/d31.data.gz	0.004	0.071	0.112	0.066	0.214	0.267	0.320	0.257	0.395
sipu/flame.data.gz	-0.030	0.564	0.429	0.075	0.163	0.249	0.109	0.203	0.181
$\mathrm{sipu/jain.data.gz}$	0.324	0.295	0.118	0.139	0.221	0.075	0.069	0.156	0.076
sipu/pathbased.data.gz	0.398	0.490	0.540	0.612	0.612	0.496	0.467	0.441	0.356
$\rm sipu/r15.data.gz$	0.121	0.181	0.221	0.237	0.246	0.499	0.575	0.442	0.546
sipu/s1.data.gz	0.132	0.181	0.213	0.396	0.477	0.466	0.477	0.571	0.669
sipu/s2.data.gz	0.119	0.231	0.326	0.317	0.453	0.510	0.464	0.625	0.614
sipu/s3.data.gz	0.107	0.208	0.288	0.327	0.372	0.406	0.490	0.528	0.571
sipu/s4.data.gz	0.111	0.188	0.228	0.291	0.321	0.361	0.404	0.435	0.451
sipu/spiral.data.gz	0.374	0.786	0.389	0.446	0.370	0.288	0.404	0.406	0.324
sipu/unbalance.data.gz	0.528	0.879	0.331	0.898	0.893	0.719	0.786	0.686	0.630
wut/cross.data.gz	0.335	0.441	0.543	0.786	0.695	0.493	0.541	0.511	0.504
wut/smile.data.gz	0.166	0.222	0.260	0.318	0.499	0.364	0.137	0.383	0.345
wut/twosplashes.data.gz	0.546	0.309	0.324	0.286	0.274	0.308	0.246	0.209	0.176
wut/x1.data.gz	0.593	1.000	0.446	0.693	0.697	0.438	0.539	0.467	0.387
wut/x2.data.gz	0.467	0.556	0.623	0.549	0.464	0.359	0.367	0.313	0.282
wut/x3.data.gz	0.481	0.613	0.601	0.558	0.503	0.618	0.553	0.477	0.457
$\mathrm{wut/z1.data.gz}$	0.347	0.283	0.251	0.191	0.188	0.203	0.156	0.195	0.178
$\mathrm{wut/z2.data.gz}$	0.576	0.395	0.321	0.246	0.816	0.436	0.399	0.481	0.422
wut/z3.data.gz	0.574	0.851	0.848	0.562	0.681	0.551	0.372	0.468	0.314

Wartości indeksów FM dla różnych parametrów $M\colon$

set	2	3	4	5	6	7	8	9	10
fcps/atom.data.gz	0.910	0.791	0.762	0.676	0.587	0.632	0.586	0.563	0.479
fcps/chainlink.data.gz	0.963	0.640	0.693	0.665	0.668	0.501	0.534	0.517	0.442
fcps/engytime.data.gz	0.703	0.620	0.464	0.508	0.582	0.462	0.489	0.462	0.396
fcps/hepta.data.gz	0.522	0.637	0.728	0.796	0.881	0.839	0.800	0.810	0.911
fcps/lsun.data.gz	0.860	0.638	0.705	0.688	0.584	0.624	0.531	0.602	0.497
fcps/target.data.gz	0.985	0.811	0.832	0.678	0.576	0.574	0.508	0.481	0.500
fcps/tetra.data.gz	0.631	0.815	0.779	0.705	0.783	0.846	0.692	0.586	0.672
fcps/twodiamonds.data.gz	0.706	0.721	0.677	0.620	0.565	0.471	0.469	0.458	0.428
fcps/wingnut.data.gz	0.499	0.515	0.492	0.372	0.424	0.390	0.384	0.335	0.356
m graves/dense.data.gz	0.836	0.761	0.509	0.697	0.531	0.697	0.459	0.522	0.457
graves/fuzzyx.data.gz	0.466	0.632	0.666	0.583	0.637	0.557	0.619	0.583	0.624
graves/line.data.gz	0.694	0.661	0.461	0.464	0.444	0.375	0.377	0.385	0.344
graves/parabolic.data.gz	0.517	0.696	0.509	0.498	0.492	0.449	0.415	0.336	0.390
graves/ring.data.gz	0.879	0.826	0.705	0.614	0.613	0.578	0.522	0.465	0.449
graves/zigzag.data.gz	0.562	0.436	0.734	0.662	0.491	0.504	0.517	0.445	0.448
other/iris.data.gz	0.771	0.822	0.559	0.628	0.517	0.541	0.541	0.712	0.535
other/iris5.data.gz	0.697	0.538	0.623	0.600	0.410	0.505	0.566	0.541	0.418
other/square.data.gz	0.848	0.721	0.699	0.589	0.540	0.763	0.483	0.492	0.434
sipu/a1.data.gz	0.309	0.382	0.399	0.474	0.393	0.554	0.531	0.583	0.531
sipu/a2.data.gz	0.238	0.277	0.323	0.360	0.381	0.417	0.446	0.436	0.424
sipu/a3.data.gz	0.197	0.241	0.267	0.306	0.336	0.357	0.363	0.391	0.396
sipu/aggregation.data.gz	0.644	0.783	0.858	0.630	0.897	0.808	0.657	0.704	0.760
sipu/compound.data.gz	0.698	0.638	0.855	0.683	0.542	0.642	0.510	0.480	0.669
sipu/d31.data.gz	0.185	0.259	0.299	0.255	0.384	0.424	0.463	0.417	0.518
sipu/flame.data.gz	0.605	0.769	0.675	0.491	0.477	0.516	0.393	0.486	0.440
sipu/jain.data.gz	0.700	0.702	0.543	0.479	0.528	0.389	0.362	0.439	0.361
sipu/pathbased.data.gz	0.652	0.678	0.695	0.735	0.730	0.646	0.621	0.601	0.532
sipu/r15.data.gz	0.354	0.397	0.426	0.437	0.443	0.612	0.664	0.566	0.642
sipu/s1.data.gz	0.364	0.399	0.420	0.542	0.597	0.588	0.594	0.659	0.729
sipu/s2.data.gz	0.349	0.429	0.490	0.487	0.575	0.615	0.582	0.694	0.683
sipu/s3.data.gz	0.332	0.397	0.451	0.469	0.495	0.510	0.568	0.591	0.623
sipu/s4.data.gz	0.336	0.379	0.402	0.438	0.449	0.472	0.489	0.511	0.518
sipu/spiral.data.gz	0.669	0.858	0.575	0.606	0.540	0.471	0.568	0.581	0.505
sipu/unbalance.data.gz	0.736	0.920	0.605	0.927	0.923	0.797	0.846	0.776	0.732
wut/cross.data.gz	0.591	0.635	0.668	0.838	0.768	0.607	0.646	0.625	0.625
wut/smile.data.gz	0.507	0.493	0.476	0.496	0.633	0.521	0.360	0.543	0.507
wut/twosplashes.data.gz	0.773	0.598	0.592	0.558	0.534	0.559	0.497	0.459	0.421
wut/x1.data.gz	0.787	1.000	0.645	0.794	0.798	0.602	0.686	0.632	0.569
$\mathrm{wut/x2.data.gz}$	0.731	0.713	0.745	0.686	0.621	0.535	0.554	0.509	0.467
wut/x3.data.gz	0.698	0.746	0.724	0.677	0.643	0.714	0.665	0.602	0.590
wut/z1.data.gz	0.621	0.566	0.535	0.410	0.391	0.398	0.348	0.379	0.360
$\mathrm{wut/z}2.\mathrm{data.gz}$	0.793	0.615	0.544	0.564	0.889	0.612	0.584	0.648	0.601
wut/z3.data.gz	0.758	0.900	0.892	0.687	0.772	0.676	0.528	0.612	0.479

3.2.2.2 Moje zbiory

Wyniki działania na moich zbiorach danych przedstawiają się następująco:

Wartości indeksów AM dla różnych parametrów M są przedstawione ponżej:

set	2	3	4	5	6	7	8	9	10
benchmark1.data	0.851	0.458	0.266	0.391	0.352	0.379	0.267	0.275	0.219

set	2	3	4	5	6	7	8	9	10
benchmark2.data	0.103	0.247	0.304	0.401	0.339	0.409	0.564	0.231	0.421
benchmark3.data	0.363	0.545	0.646	0.550	0.863	0.651	0.742	0.677	0.457
benchmark4.data	0.320	0.446	0.701	0.597	0.511	0.642	0.573	0.602	0.522

Wartości indeksów FM dla różnych parametrów Msą przedstawione ponżej:

set	2	3	4	5	6	7	8	9	10
benchmark1.data	0.926	0.699	0.585	0.627	0.594	0.617	0.517	0.525	0.469
benchmark2.data	0.364	0.460	0.497	0.559	0.519	0.555	0.658	0.432	0.556
benchmark3.data	0.609	0.692	0.736	0.663	0.890	0.718	0.796	0.747	0.554
benchmark4.data	0.569	0.610	0.775	0.687	0.603	0.710	0.655	0.685	0.617

3.2.2.3 Przykładowy zbiór

-2

0

1

2

4 Algorytm *hclust*

4.1 Badanie algorytmu na wszystkich zbiorach benchmarkowych

4.1.1 Bez standaryzacji zmiennych

4.1.1.1 Zbiory dostarczone

Wartości indeksów AM dla różnych algorytmów hierarchicznych:

set	ward.D	ward.D2	single	complete	average	mcquitty	median	centroid
fcps/atom.data.gz	1.000	0.099	1.000	0.084	0.099	0.213	0.000	0.003
fcps/chainlink.data.gz	0.394	0.280	1.000	0.313	0.272	0.401	0.289	0.204
fcps/engytime.data.gz	0.754	0.718	0.000	0.041	0.051	0.032	0.023	0.000
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/lsun.data.gz	0.366	0.369	1.000	0.405	0.361	0.307	0.471	0.711
fcps/target.data.gz	0.639	0.639	1.000	0.207	0.146	0.299	0.255	0.090
fcps/tetra.data.gz	1.000	0.967	0.000	0.987	0.993	1.000	0.671	0.967
fcps/twodiamonds.data.gz	1.000	1.000	0.000	0.985	0.995	0.995	0.648	0.995
fcps/wingnut.data.gz	1.000	0.601	1.000	0.469	1.000	1.000	1.000	1.000
m graves/dense.data.gz	1.000	0.921	0.001	0.257	0.921	0.004	0.921	0.921
graves/fuzzyx.data.gz	0.694	0.637	0.000	0.654	0.743	0.615	0.566	0.270
graves/line.data.gz	-0.064	-0.104	1.000	-0.071	-0.066	-0.017	-0.078	-0.066
graves/parabolic.data.gz	0.391	0.621	0.000	0.589	0.599	0.602	0.689	0.509
graves/ring.data.gz	0.150	0.116	1.000	0.209	0.114	0.159	0.040	0.029
graves/zigzag.data.gz	0.142	0.142	1.000	0.130	0.129	0.132	0.143	0.182
other/iris.data.gz	0.759	0.731	0.564	0.642	0.759	0.746	0.745	0.564
other/iris5.data.gz	0.558	0.506	0.148	0.337	0.558	0.532	0.531	0.148
other/square.data.gz	0.004	0.253	1.000	0.168	0.152	0.220	0.218	0.184
sipu/a1.data.gz	0.920	0.914	0.444	0.916	0.925	0.804	0.668	0.866
sipu/a2.data.gz	0.932	0.922	0.348	0.908	0.934	0.857	0.625	0.815
sipu/a3.data.gz	0.947	0.937	0.315	0.918	0.944	0.850	0.642	0.843
sipu/aggregation.data.gz	0.794	0.813	0.804	0.774	0.993	0.683	0.949	0.993
sipu/compound.data.gz	0.558	0.552	0.742	0.793	0.803	0.817	0.773	0.799
sipu/d31.data.gz	0.916	0.920	0.174	0.924	0.907	0.775	0.602	0.840
sipu/flame.data.gz	0.367	0.187	0.013	-0.042	0.442	0.409	0.419	0.013
sipu/jain.data.gz	0.515	0.515	0.256	0.779	0.779	0.515	0.477	0.768
sipu/pathbased.data.gz	0.424	0.485	0.001	0.346	0.444	0.355	0.162	0.425
sipu/r15.data.gz	0.982	0.982	0.542	0.979	0.989	0.975	0.772	0.982
sipu/s1.data.gz	0.981	0.983	0.464	0.971	0.982	0.802	0.648	0.981
sipu/s2.data.gz	0.900	0.906	0.000	0.791	0.913	0.679	0.481	0.779
sipu/s3.data.gz	0.665	0.677	0.000	0.509	0.596	0.419	0.407	0.494
sipu/s4.data.gz	0.590	0.553	0.000	0.417	0.493	0.371	0.284	0.430
sipu/spiral.data.gz	0.008	-0.001	1.000	0.002	-0.002	0.002	-0.003	0.009
sipu/unbalance.data.gz	1.000	1.000	0.999	0.612	1.000	0.613	0.613	1.000
wut/cross.data.gz	0.154	0.072	0.000	0.359	0.001	0.045	0.006	0.000
wut/smile.data.gz	0.439	0.452	1.000	0.499	0.575	0.484	0.481	0.605
wut/twosplashes.data.gz	0.214	0.192	0.000	0.219	0.002	0.192	0.279	0.002
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.669	0.191	-0.007	0.209	0.250	-0.008	-0.007	0.271
wut/x3.data.gz	0.821	0.869	0.007	0.576	0.505	0.534	0.644	0.567
wut/z1.data.gz	0.202	0.184	0.122	0.181	0.214	0.200	0.200	0.047
$\mathrm{wut/z2.data.gz}$	0.477	0.434	0.735	0.441	0.512	0.386	0.523	0.574

set	ward.D	ward.D2	single	complete	average	mcquitty	median	centroid
$\overline{\mathrm{wut/z3.data.gz}}$	0.995	1.000	0.739	0.933	0.998	0.940	0.995	1.000

Wartości indeksów FM dla różnych algorytmów hierarchicznych:

ant	ward.D	arrand Do	ain ala	commisto			madian	id
set		ward.D2	single	complete	average	mcquitty	median	centroid
fcps/atom.data.gz	1.000	0.646	1.000	0.647	0.646	0.661	0.702	0.687
fcps/chainlink.data.gz	0.718	0.679	1.000	0.689	0.677	0.721	0.682	0.659
fcps/engytime.data.gz	0.877	0.860	0.707	0.654	0.650	0.659	0.654	0.702
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/lsun.data.gz	0.603	0.605	1.000	0.627	0.604	0.574	0.669	0.833
fcps/target.data.gz	0.795	0.795	1.000	0.663	0.658	0.684	0.672	0.667
fcps/tetra.data.gz	1.000	0.975	0.494	0.990	0.995	1.000	0.786	0.975
fcps/twodiamonds.data.gz	1.000	1.000	0.706	0.993	0.997	0.997	0.827	0.997
fcps/wingnut.data.gz	1.000	0.800	1.000	0.748	1.000	1.000	1.000	1.000
graves/dense.data.gz	1.000	0.960	0.695	0.671	0.960	0.683	0.960	0.960
graves/fuzzyx.data.gz	0.758	0.713	0.447	0.730	0.795	0.701	0.663	0.496
graves/line.data.gz	0.603	0.643	1.000	0.606	0.603	0.597	0.609	0.603
graves/parabolic.data.gz	0.701	0.811	0.706	0.796	0.799	0.803	0.845	0.758
graves/ring.data.gz	0.650	0.647	1.000	0.660	0.647	0.651	0.655	0.660
graves/zigzag.data.gz	0.497	0.497	1.000	0.504	0.509	0.497	0.491	0.528
other/iris.data.gz	0.841	0.822	0.764	0.769	0.841	0.832	0.831	0.764
other/iris5.data.gz	0.765	0.738	0.691	0.665	0.765	0.753	0.750	0.691
other/square.data.gz	0.519	0.671	1.000	0.652	0.650	0.663	0.662	0.655
sipu/a1.data.gz	0.924	0.918	0.564	0.920	0.929	0.815	0.694	0.877
$\mathrm{sipu/a2.data.gz}$	0.934	0.924	0.480	0.911	0.936	0.861	0.652	0.830
sipu/a3.data.gz	0.948	0.939	0.449	0.919	0.945	0.853	0.661	0.853
${\rm sipu/aggregation.data.gz}$	0.841	0.856	0.861	0.824	0.995	0.750	0.961	0.995
sipu/compound.data.gz	0.659	0.654	0.830	0.855	0.862	0.870	0.833	0.861
m sipu/d31.data.gz	0.919	0.923	0.349	0.926	0.910	0.784	0.635	0.851
sipu/flame.data.gz	0.696	0.624	0.730	0.623	0.731	0.715	0.724	0.730
$\mathrm{sipu/jain.data.gz}$	0.790	0.790	0.804	0.922	0.922	0.790	0.841	0.918
sipu/pathbased.data.gz	0.648	0.674	0.573	0.595	0.653	0.580	0.502	0.648
m sipu/r15.data.gz	0.983	0.983	0.637	0.980	0.990	0.977	0.800	0.983
sipu/s1.data.gz	0.982	0.984	0.589	0.973	0.983	0.819	0.680	0.982
sipu/s2.data.gz	0.906	0.912	0.257	0.807	0.918	0.703	0.539	0.806
sipu/s3.data.gz	0.688	0.699	0.257	0.548	0.636	0.470	0.467	0.574
sipu/s4.data.gz	0.618	0.585	0.257	0.468	0.546	0.438	0.380	0.512
sipu/spiral.data.gz	0.337	0.337	1.000	0.338	0.357	0.346	0.332	0.386
sipu/unbalance.data.gz	1.000	1.000	0.999	0.775	1.000	0.775	0.775	1.000
wut/cross.data.gz	0.455	0.440	0.498	0.597	0.490	0.475	0.476	0.495
wut/smile.data.gz	0.583	0.594	1.000	0.647	0.690	0.624	0.626	0.713
wut/twosplashes.data.gz	0.607	0.602	0.701	0.609	0.690	0.602	0.639	0.690
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.783	0.543	0.571	0.551	0.587	0.510	0.557	0.597
wut/x3.data.gz	0.869	0.903	0.512	0.694	0.679	0.696	0.779	0.729
wut/z1.data.gz	0.466	0.464	0.540	0.457	0.511	0.474	0.474	0.516
$\mathrm{wut/z}2.\mathrm{data.gz}$	0.644	0.612	0.857	0.623	0.676	0.594	0.698	0.776
$\mathrm{wut/z3.data.gz}$	0.997	1.000	0.842	0.954	0.998	0.957	0.997	1.000

4.1.1.2 Moje zbiory

Wyniki działania na moich zbiorach danych przedstawiają się następująco: Wartości indeksów AM dla różnych algorytmów hierarchicznych są przedstawione poniżej:

set	ward.D	ward.D2	single	complete	average	mcquitty	median	centroid
benchmark1.data	0.739	0.529	0.000	0.482	0.000	0.138	0.033	0.000
benchmark2.data	0.986	0.987	0.774	0.984	0.996	0.989	0.868	0.998
benchmark3.data	0.927	0.917	0.460	0.894	0.904	0.834	0.845	0.917
benchmark4.data	0.382	0.372	1.000	0.337	0.378	0.359	0.275	0.295

Wartości indeksów FM dla różnych algorytmów hierarchicznych są przedstawione poniżej:

set	ward.D	ward.D2	single	complete	average	mcquitty	median	centroid
benchmark1.data	0.871	0.765	0.706	0.741	0.703	0.641	0.649	0.705
benchmark2.data	0.987	0.988	0.813	0.985	0.997	0.990	0.883	0.998
benchmark3.data	0.941	0.934	0.653	0.915	0.923	0.868	0.876	0.934
benchmark4.data	0.509	0.502	1.000	0.476	0.506	0.492	0.450	0.507

4.1.1.3 Przykładowy zbiór

4.1.2 Ze standaryzacją zmiennych

4.1.2.1 Zbiory dostarczone

set	ward.D	ward.D2	single	complete	average	mcquitty	median	centroid
fcps/atom.data.gz	1.000	0.067	1.000	0.310	0.052	0.254	0.002	0.000
fcps/chainlink.data.gz	-0.001	-0.001	1.000	-0.001	0.188	0.158	0.096	0.090
fcps/engytime.data.gz	0.824	0.808	0.000	0.105	0.010	0.048	0.001	0.000
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/lsun.data.gz	0.378	0.385	1.000	0.367	0.398	0.421	0.428	0.340
fcps/target.data.gz	0.639	0.639	1.000	0.391	0.146	0.155	0.111	0.095
fcps/tetra.data.gz	1.000	0.967	0.000	0.987	0.993	0.987	0.671	0.967
fcps/twodiamonds.data.gz	0.985	1.000	0.000	0.005	0.970	0.085	0.001	0.003
fcps/wingnut.data.gz	1.000	1.000	1.000	0.482	1.000	0.491	0.635	0.319
graves/dense.data.gz	1.000	0.921	0.001	0.474	0.921	0.502	0.357	0.000
graves/fuzzyx.data.gz	0.699	0.664	0.000	0.599	0.743	0.499	0.510	0.270
graves/line.data.gz	-0.064	-0.104	1.000	-0.071	-0.066	-0.017	-0.078	-0.066
graves/parabolic.data.gz	0.553	0.541	0.000	0.565	0.596	0.538	0.033	0.571
graves/ring.data.gz	0.222	0.116	1.000	0.209	0.114	0.159	0.040	0.029
graves/zigzag.data.gz	0.214	0.175	1.000	0.196	0.207	0.137	-0.106	0.182
other/iris.data.gz	0.630	0.615	0.558	0.573	0.562	0.348	0.573	0.558
other/iris5.data.gz	0.324	0.322	0.150	0.271	0.459	0.393	0.147	0.147
other/square.data.gz	0.155	0.234	1.000	0.084	0.036	0.274	0.029	0.063
sipu/a1.data.gz	0.943	0.890	0.217	0.641	0.892	0.602	0.569	0.757
sipu/a2.data.gz	0.934	0.933	0.248	0.910	0.943	0.800	0.619	0.872
sipu/a3.data.gz	0.947	0.939	0.315	0.915	0.944	0.843	0.637	0.843
sipu/aggregation.data.gz	0.796	0.802	0.806	0.753	0.991	0.759	0.751	1.000
sipu/compound.data.gz	0.499	0.501	0.756	0.713	0.803	0.727	0.740	0.793
sipu/d31.data.gz	0.928	0.917	0.154	0.873	0.926	0.757	0.532	0.839
sipu/flame.data.gz	0.180	0.289	0.013	0.289	0.357	0.625	0.013	0.013
sipu/jain.data.gz	0.515	0.569	0.010	0.515	0.515	1.000	0.515	0.324
sipu/pathbased.data.gz	0.457	0.457	0.001	0.392	0.472	0.457	0.457	0.088
sipu/r15.data.gz	0.982	0.982	0.542	0.979	0.989	0.975	0.772	0.982
sipu/s1.data.gz	0.982	0.983	0.464	0.904	0.982	0.859	0.743	0.979
sipu/s2.data.gz	0.911	0.916	0.000	0.683	0.913	0.774	0.440	0.802
sipu/s3.data.gz	0.680	0.685	0.000	0.509	0.604	0.466	0.442	0.477
sipu/s4.data.gz	0.576	0.595	0.000	0.500	0.500	0.404	0.289	0.420
sipu/spiral.data.gz	0.000	-0.004	1.000	0.003	0.020	0.008	-0.005	0.012
sipu/unbalance.data.gz	0.743	1.000	0.612	0.611	0.612	0.611	0.611	0.611
wut/cross.data.gz	0.154	0.072	0.000	0.087	0.001	0.045	0.005	0.000
wut/smile.data.gz	0.446	0.455	1.000	0.474	0.471	0.470	0.574	0.606
wut/twosplashes.data.gz	0.301	0.301	0.000	0.007	0.018	0.007	0.005	0.018
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.669	0.191	-0.007	0.209	0.191	0.156	0.005	0.271
wut/x3.data.gz	0.821	0.869	0.007	0.774	0.505	0.701	0.621	0.562
wut/z1.data.gz	0.079	0.080	0.000	0.249	0.080	0.247	0.114	0.044
$\mathrm{wut/z}2.\mathrm{data.gz}$	0.535	0.342	0.735	0.303	0.403	0.401	0.282	0.476
wut/z3.data.gz	0.995	0.995	0.739	0.981	0.959	0.940	0.983	0.995

Wartości indeksów FM dla różnych algorytmów hierarchicznych:

set	ward.D	ward. $D2$	single	complete	average	mcquitty	median	centroid
set	ward.D	ward.D2	single	complete	average	mcquitty	median	centroid
fcps/atom.data.gz	1.000	0.649	1.000	0.688	0.651	0.671	0.692	0.702
fcps/chainlink.data.gz	0.509	0.500	1.000	0.504	0.656	0.651	0.646	0.647
fcps/engytime.data.gz	0.912	0.904	0.707	0.629	0.674	0.582	0.698	0.702
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/lsun.data.gz	0.613	0.617	1.000	0.604	0.623	0.636	0.652	0.595
fcps/target.data.gz	0.795	0.795	1.000	0.679	0.658	0.658	0.661	0.665
fcps/tetra.data.gz	1.000	0.975	0.494	0.990	0.995	0.990	0.786	0.975
fcps/two diamonds. data. gz	0.993	1.000	0.706	0.579	0.985	0.595	0.663	0.688
fcps/wingnut.data.gz	1.000	1.000	1.000	0.753	1.000	0.745	0.818	0.691
graves/dense.data.gz	1.000	0.960	0.695	0.748	0.960	0.760	0.703	0.702
graves/fuzzyx.data.gz	0.762	0.734	0.447	0.690	0.795	0.619	0.648	0.496
graves/line.data.gz	0.603	0.643	1.000	0.606	0.603	0.597	0.609	0.603
graves/parabolic.data.gz	0.777	0.771	0.706	0.783	0.798	0.769	0.663	0.786
graves/ring.data.gz	0.663	0.647	1.000	0.660	0.647	0.651	0.655	0.660
graves/zigzag.data.gz	0.521	0.511	1.000	0.524	0.547	0.493	0.476	0.510
other/iris.data.gz	0.762	0.750	0.764	0.728	0.760	0.597	0.728	0.764
other/iris5.data.gz	0.594	0.666	0.703	0.599	0.716	0.683	0.678	0.684
other/square.data.gz	0.650	0.666	1.000	0.568	0.657	0.677	0.660	0.649
sipu/a1.data.gz	0.946	0.896	0.404	0.666	0.898	0.629	0.611	0.785
sipu/a2.data.gz	0.936	0.935	0.405	0.913	0.945	0.807	0.644	0.878
sipu/a3.data.gz	0.948	0.940	0.449	0.917	0.945	0.847	0.659	0.853
sipu/aggregation.data.gz	0.843	0.845	0.863	0.806	0.993	0.811	0.809	1.000
sipu/compound.data.gz	0.612	0.613	0.835	0.788	0.861	0.802	0.816	0.856
sipu/d31.data.gz	0.931	0.919	0.333	0.877	0.928	0.768	0.588	0.851
sipu/flame.data.gz	0.621	0.662	0.730	0.662	0.691	0.821	0.730	0.730
sipu/jain.data.gz	0.790	0.816	0.784	0.790	0.790	1.000	0.790	0.700
sipu/pathbased.data.gz	0.660	0.660	0.572	0.597	0.666	0.660	0.660	0.529
sipu/r15.data.gz	0.983	0.983	0.637	0.980	0.990	0.977	0.800	0.983
sipu/s1.data.gz	0.983	0.984	0.589	0.912	0.983	0.870	0.768	0.981
sipu/s2.data.gz	0.917	0.922	0.257	0.709	0.919	0.791	0.505	0.822
sipu/s3.data.gz	0.702	0.706	0.257	0.549	0.644	0.508	0.503	0.566
sipu/s4.data.gz	0.604	0.622	0.257	0.541	0.552	0.454	0.388	0.511
sipu/spiral.data.gz	0.336	0.348	1.000	0.363	0.358	0.337	0.330	0.505
sipu/unbalance.data.gz	0.818	1.000	0.775	0.774	0.775	0.774	0.774	0.774
wut/cross.data.gz	0.455	0.440	0.498	0.444	0.490	0.475	0.485	0.495
wut/smile.data.gz	0.589	0.596	1.000	0.618	0.622	0.616	0.689	0.714
wut/twosplashes.data.gz	0.649	0.649	0.701	0.679	0.667	0.679	0.684	0.667
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.783	0.543	0.571	0.551	0.543	0.528	0.518	0.597
wut/x3.data.gz	0.869	0.903	0.512	0.835	0.679	0.784	0.764	0.724
wut/z1.data.gz	0.417	0.418	0.568	0.502	0.418	0.504	0.428	0.394
wut/z2.data.gz	0.688	0.541	0.857	0.535	0.596	0.603	0.522	0.752
wut/z3.data.gz	0.997	0.997	0.842	0.987	0.972	0.959	0.988	0.997

4.1.2.2 Moje zbiory

Wyniki działania na moich zbiorach danych przedstawiają się następująco:

Wartości indeksów AM dla różnych algorytmów hierarchicznych są przedstawione poniżej:

set	ward.D	ward.D2	single	complete	average	mcquitty	median	centroid
benchmark1.data	1.000	1.000	1.000	0.668	1.000	0.874	0.000	1.000
benchmark2.data	0.993	0.998	0.838	0.996	0.993	0.993	0.993	0.987
benchmark3.data	0.927	0.922	0.459	0.838	0.728	0.713	0.837	0.913
benchmark4.data	0.273	0.199	0.483	0.208	0.257	0.257	0.058	0.000

Wartości indeksów FM dla różnych algorytmów hierarchicznych są przedstawione poniżej:

set	ward.D	ward.D2	single	complete	average	mcquitty	median	centroid
benchmark1.data	1.000	1.000	1.000	0.837	1.000	0.937	0.703	1.000
benchmark2.data	0.993	0.998	0.862	0.997	0.993	0.993	0.993	0.988
benchmark3.data	0.941	0.937	0.651	0.871	0.800	0.787	0.869	0.930
benchmark4.data	0.422	0.363	0.672	0.380	0.428	0.420	0.419	0.322

4.1.2.3 Przykładowy zbiór

5~ Algorytm Geniez pakietu genie

5.1 Badanie algorytmu na wszystkich zbiorach benchmarkowych

5.1.1 Bez standaryzacji zmiennych

5.1.1.1 Zbiory dostaczone

set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
fcps/atom.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/chainlink.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/engytime.data.gz	0.803	0.803	0.803	0.803	0.803	0.007	0.007	0.007	0.002
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/lsun.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/target.data.gz	0.357	0.357	0.419	0.638	0.638	0.687	0.705	1.000	1.000
fcps/tetra.data.gz	0.993	0.993	0.993	0.993	0.993	0.993	0.993	0.709	0.709
fcps/twodiamonds.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000
fcps/wingnut.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/dense.data.gz	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.001	0.001
graves/fuzzyx.data.gz	0.539	0.431	0.431	0.298	0.298	0.288	0.073	0.073	0.029
graves/line.data.gz	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/parabolic.data.gz	0.732	0.732	0.732	0.732	0.732	0.000	0.000	0.000	0.000
graves/ring.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/zigzag.data.gz	0.469	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
other/iris.data.gz	0.690	0.690	0.690	0.690	0.560	0.560	0.561	0.561	0.561
other/iris 5. data.gz	0.297	0.496	0.496	0.496	0.148	0.148	0.148	0.148	0.147
other/square.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sipu/a1.data.gz	0.929	0.929	0.929	0.896	0.897	0.792	0.632	0.364	0.329
sipu/a2.data.gz	0.942	0.942	0.914	0.893	0.831	0.680	0.558	0.420	0.353
sipu/a3.data.gz	0.956	0.956	0.918	0.902	0.856	0.710	0.553	0.413	0.347
sipu/aggregation.data.gz	0.592	0.592	0.540	0.690	0.912	0.855	0.876	0.799	0.806
sipu/compound.data.gz	0.448	0.542	0.542	0.564	0.867	0.811	0.769	0.760	0.742
$\rm sipu/d31.data.gz$	0.932	0.932	0.903	0.876	0.694	0.651	0.546	0.310	0.154
sipu/flame.data.gz	0.967	0.967	0.967	0.967	0.967	0.967	0.967	0.967	0.013
sipu/jain.data.gz	0.044	1.000	1.000	1.000	1.000	1.000	0.246	0.246	0.108
sipu/pathbased.data.gz	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.557	0.557
sipu/r15.data.gz	0.989	0.989	0.989	0.989	0.914	0.548	0.548	0.548	0.548
sipu/s1.data.gz	0.988	0.988	0.988	0.988	0.988	0.988	0.859	0.586	0.531
sipu/s2.data.gz	0.924	0.924	0.924	0.784	0.783	0.735	0.472	0.379	0.143
sipu/s3.data.gz	0.700	0.700	0.580	0.583	0.555	0.488	0.421	0.182	0.081
sipu/s4.data.gz	0.611	0.611	0.550	0.442	0.403	0.321	0.217	0.168	0.034
sipu/spiral.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sipu/unbalance.data.gz	0.541	0.591	0.668	0.695	0.789	0.869	1.000	1.000	1.000
wut/cross.data.gz	0.753	0.753	0.461	0.312	0.103	0.103	0.064	0.027	0.006
wut/smile.data.gz	0.446	0.701	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/twosplashes.data.gz	0.238	0.238	0.238	0.238	0.238	0.238	0.002	0.002	0.002
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.688	0.688	0.688	0.688	0.221	0.221	0.221	0.261	-0.014
wut/x3.data.gz	0.871	0.871	0.484	0.484	0.484	0.320	0.320	0.222	0.194
$\mathrm{wut/z1.data.gz}$	0.340	0.340	0.340	0.340	0.340	0.340	0.340	0.340	0.340
$\mathrm{wut/z2.data.gz}$	0.440	0.440	0.539	0.822	0.822	1.000	1.000	1.000	0.735
$\frac{\text{wut/z3.data.gz}}{$	0.464	0.464	0.755	0.755	0.772	0.772	0.731	0.733	0.742

set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
fcps/atom.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/chainlink.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/engytime.data.gz	0.902	0.902	0.902	0.902	0.902	0.680	0.680	0.680	0.691
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/lsun.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/target.data.gz	0.591	0.591	0.641	0.794	0.794	0.825	0.836	1.000	1.000
fcps/tetra.data.gz	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.812	0.812
fcps/two diamonds. data. gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.706
fcps/wingnut.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/dense.data.gz	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.692	0.692
graves/fuzzyx.data.gz	0.648	0.571	0.571	0.503	0.503	0.514	0.423	0.423	0.427
graves/line.data.gz	0.601	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/parabolic.data.gz	0.866	0.866	0.866	0.866	0.866	0.689	0.689	0.689	0.689
graves/ring.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/zigzag.data.gz	0.682	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
other/iris.data.gz	0.793	0.793	0.793	0.793	0.754	0.754	0.757	0.757	0.757
other/iris5.data.gz	0.573	0.706	0.706	0.706	0.616	0.616	0.616	0.673	0.678
other/square.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sipu/a1.data.gz	0.932	0.932	0.932	0.902	0.903	0.814	0.693	0.508	0.484
sipu/a2.data.gz	0.943	0.943	0.917	0.897	0.843	0.719	0.629	0.533	0.484
sipu/a3.data.gz	0.957	0.957	0.920	0.905	0.863	0.742	0.622	0.522	0.473
sipu/aggregation.data.gz	0.675	0.675	0.636	0.763	0.931	0.891	0.909	0.856	0.863
sipu/compound.data.gz	0.569	0.646	0.646	0.669	0.904	0.866	0.841	0.837	0.830
sipu/d31.data.gz	0.934	0.934	0.906	0.881	0.725	0.694	0.620	0.451	0.333
sipu/flame.data.gz	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.730
sipu/jain.data.gz	0.592	1.000	1.000	1.000	1.000	1.000	0.803	0.803	0.789
sipu/pathbased.data.gz	0.751	0.751	0.751	0.751	0.751	0.751	0.751	0.767	0.767
sipu/r15.data.gz	0.990	0.990	0.990	0.990	0.922	0.643	0.643	0.643	0.643
sipu/s1.data.gz	0.989	0.989	0.989	0.989	0.989	0.989	0.875	0.671	0.635
sipu/s2.data.gz	0.929	0.929	0.929	0.808	0.808	0.771	0.584	0.525	0.366
sipu/s3.data.gz	0.720	0.720	0.621	0.625	0.604	0.565	0.529	0.375	0.310
sipu/s4.data.gz	0.637	0.637	0.586	0.508	0.488	0.438	0.380	0.357	0.267
sipu/spiral.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sipu/unbalance.data.gz	0.668	0.706	0.762	0.782	0.849	0.906	1.000	1.000	1.000
wut/cross.data.gz	0.817	0.817	0.622	0.543	0.440	0.440	0.454	0.463	0.466
wut/smile.data.gz	0.589	0.786	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/twosplashes.data.gz	0.620	0.620	0.620	0.620	0.620	0.620	0.690	0.690	0.690
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.794	0.794	0.794	0.794	0.559	0.559	0.559	0.589	0.553
wut/x3.data.gz	0.905	0.905	0.664	0.664	0.664	0.591	0.591	0.582	0.576
wut/z1.data.gz	0.592	0.592	0.592	0.592	0.592	0.592	0.592	0.592	0.592
wut/z2.data.gz	0.618	0.618	0.693	0.893	0.893	1.000	1.000	1.000	0.857
wut/z3.data.gz	0.617	0.617	0.830	0.830	0.851	0.851	0.836	0.838	0.844

5.1.1.2 Moje zbiory

Wyniki działania na moich zbiorach danych przedstawiają się następująco:

set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
benchmark1.data	0.990	0.990	0.990	0.990	0.990	0.990	0.990	0.990	0.000
benchmark2.data	0.998	0.998	0.998	0.998	0.998	0.998	0.914	0.913	0.913

set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
benchmark3.data	0.927	0.927	0.927	0.927	0.719	0.719	0.743	0.734	0.734
benchmark4.data	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
benchmark1.data	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.705
benchmark2.data	0.998	0.998	0.998	0.998	0.998	0.998	0.924	0.923	0.923
benchmark3.data	0.941	0.941	0.941	0.941	0.793	0.793	0.813	0.806	0.806
benchmark4.data	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

5.1.1.3 przykładowy zbiór

5.1.2 Ze standaryzacją zmiennych

${\bf 5.1.2.1}\quad {\bf Zbiory\ dostarczone}$

set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
fcps/atom.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/chainlink.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/engytime.data.gz	0.808	0.808	0.808	0.808	0.808	0.008	0.008	0.008	0.001
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/lsun.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/target.data.gz	0.357	0.357	0.419	0.638	0.638	0.687	0.738	1.000	1.000
fcps/tetra.data.gz	0.993	0.993	0.993	0.993	0.993	0.993	0.993	0.709	0.709
fcps/twodiamonds.data.gz	0.980	0.980	0.980	0.980	0.980	0.980	0.000	0.000	0.000
fcps/wingnut.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000
graves/dense.data.gz	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.001	0.001
graves/fuzzyx.data.gz	0.539	0.431	0.431	0.467	0.329	0.288	0.073	0.073	0.029
graves/line.data.gz	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/parabolic.data.gz	0.732	0.732	0.732	0.732	0.732	0.732	0.001	0.001	0.001
graves/ring.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/zigzag.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
other/iris.data.gz	0.706	0.644	0.644	0.644	0.644	0.560	0.560	0.558	0.558
other/iris5.data.gz	0.327	0.247	0.247	0.247	0.314	0.164	0.151	0.151	0.148
other/square.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sipu/a1.data.gz	0.915	0.853	0.858	0.826	0.757	0.678	0.678	0.483	0.208
sipu/a2.data.gz	0.943	0.943	0.896	0.864	0.837	0.564	0.502	0.443	0.362
sipu/a3.data.gz	0.956	0.956	0.918	0.902	0.856	0.710	0.553	0.413	0.347
sipu/aggregation.data.gz	0.545	0.507	0.507	0.685	0.912	0.855	0.781	0.806	0.806
sipu/compound.data.gz	0.518	0.538	0.514	0.514	0.618	0.862	0.777	0.748	0.750
sipu/d31.data.gz	0.933	0.933	0.899	0.873	0.712	0.624	0.487	0.322	0.155
sipu/flame.data.gz	0.967	0.967	0.967	0.967	0.967	0.967	0.967	0.967	0.013
sipu/jain.data.gz	0.044	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.020
sipu/pathbased.data.gz	0.667	0.667	0.667	0.667	0.667	0.667	0.524	0.552	0.001
sipu/r15.data.gz	0.989	0.989	0.989	0.989	0.914	0.548	0.548	0.548	0.548
sipu/s1.data.gz	0.988	0.988	0.988	0.988	0.988	0.988	0.859	0.586	0.464
sipu/s2.data.gz	0.913	0.913	0.913	0.773	0.770	0.730	0.466	0.338	0.102
sipu/s3.data.gz	0.698	0.660	0.580	0.583	0.554	0.484	0.421	0.182	0.082
sipu/s4.data.gz	0.606	0.606	0.584	0.462	0.407	0.319	0.256	0.171	0.035
sipu/spiral.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sipu/unbalance.data.gz	0.565	0.644	0.635	0.627	0.787	0.897	1.000	1.000	1.000
wut/cross.data.gz	0.753	0.753	0.461	0.312	0.103	0.103	0.064	0.027	0.006
wut/smile.data.gz	0.448	0.701	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/twosplashes.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.000
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.688	0.688	0.688	0.688	0.221	0.221	0.221	0.261	-0.014
wut/x3.data.gz	0.706	0.706	0.485	0.485	0.485	0.321	0.320	0.201 0.194	0.014
wut/z1.data.gz	0.055	0.055	0.465	0.405	0.405	-0.007	0.000	0.000	0.000
wut/z1.data.gz wut/z2.data.gz	0.519	0.519	0.535	0.831	0.831	1.000	1.000	1.000	0.480
wut/z3.data.gz	0.649	0.649	0.919	0.929	0.929	0.728	0.733	0.733	0.739
w ut/ zo.uata.gz	0.049	0.049	0.949	0.929	0.929	0.120	0.100	0.100	0.738

set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
fcps/atom.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/chainlink.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
fcps/engytime.data.gz	0.904	0.904	0.904	0.904	0.904	0.679	0.679	0.679	0.695
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/lsun.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/target.data.gz	0.592	0.592	0.641	0.794	0.794	0.825	0.856	1.000	1.000
fcps/tetra.data.gz	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.812	0.812
fcps/twodiamonds.data.gz	0.990	0.990	0.990	0.990	0.990	0.990	0.700	0.700	0.700
fcps/wingnut.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.704
graves/dense.data.gz	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.692	0.692
graves/fuzzyx.data.gz	0.648	0.571	0.571	0.609	0.531	0.514	0.423	0.423	0.427
graves/line.data.gz	0.601	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/parabolic.data.gz	0.866	0.866	0.866	0.866	0.866	0.866	0.688	0.688	0.688
graves/ring.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
graves/zigzag.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
other/iris.data.gz	0.806	0.772	0.772	0.772	0.772	0.749	0.749	0.764	0.764
other/iris5.data.gz	0.594	0.579	0.579	0.579	0.639	0.600	0.663	0.663	0.691
other/square.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sipu/a1.data.gz	0.920	0.863	0.867	0.842	0.785	0.725	0.727	0.589	0.397
sipu/a2.data.gz	0.944	0.944	0.900	0.870	0.848	0.632	0.590	0.547	0.491
sipu/a3.data.gz	0.957	0.957	0.920	0.905	0.863	0.742	0.622	0.522	0.473
sipu/aggregation.data.gz	0.636	0.607	0.607	0.759	0.931	0.891	0.841	0.863	0.863
sipu/compound.data.gz	0.626	0.643	0.629	0.629	0.709	0.901	0.845	0.832	0.832
sipu/d31.data.gz	0.936	0.936	0.903	0.879	0.740	0.674	0.576	0.460	0.333
sipu/flame.data.gz	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.730
sipu/jain.data.gz	0.592	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.784
sipu/pathbased.data.gz	0.781	0.781	0.781	0.781	0.781	0.781	0.747	0.763	0.572
sipu/r15.data.gz	0.990	0.990	0.990	0.990	0.922	0.643	0.643	0.643	0.643
sipu/s1.data.gz	0.989	0.989	0.989	0.989	0.989	0.989	0.875	0.671	0.589
sipu/s2.data.gz	0.919	0.919	0.919	0.798	0.797	0.767	0.580	0.497	0.336
sipu/s3.data.gz	0.719	0.685	0.620	0.624	0.604	0.560	0.528	0.375	0.311
sipu/s4.data.gz	0.632	0.632	0.614	0.525	0.492	0.439	0.402	0.358	0.266
sipu/spiral.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sipu/unbalance.data.gz	0.687	0.744	0.738	0.732	0.849	0.926	1.000	1.000	1.000
wut/cross.data.gz	0.817	0.817	0.622	0.543	0.440	0.440	0.454	0.463	0.466
wut/smile.data.gz	0.590	0.786	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/twosplashes.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.701	0.701
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.794	0.794	0.794	0.794	0.559	0.559	0.559	0.589	0.553
wut/x3.data.gz	0.787	0.787	0.665	0.665	0.665	0.591	0.591	0.576	0.576
wut/z1.data.gz	0.404	0.404	0.404	0.404	0.404	0.397	0.562	0.562	0.562
wut/z2.data.gz	0.676	0.676	0.676	0.892	0.892	1.000	1.000	1.000	0.754
wut/z3.data.gz	0.749	0.749	0.950	0.950	0.950	0.834	0.838	0.838	0.842

5.1.2.2 Moje zbiory

Wyniki działania na moich zbiorach danych przedstawiają się następująco:

set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
benchmark1.data	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
benchmark2.data	0.998	0.998	0.998	0.998	0.998	0.910	0.838	0.839	0.839
benchmark3.data	0.931	0.931	0.931	0.699	0.721	0.721	0.729	0.459	0.459
benchmark4 data	0.995	0.995	0.995	0.995	0.995	0.781	0.612	0.612	0.612

set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	NA								
	NA								
	NA								
set	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
benchmark1.data	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
benchmark2.data	0.998	0.998	0.998	0.998	0.998	0.920	0.862	0.863	0.863
benchmark3.data	0.945	0.945	0.945	0.776	0.795	0.795	0.802	0.652	0.652
benchmark4.data	0.996	0.996	0.996	0.996	0.996	0.843	0.741	0.741	0.741
	NA								
	NA								
	NA								

5.1.2.3 przykładowy zbiór

6 Algorytm HCPC

6.1 Badanie algorytmu na wszystkich zbiorach benchmarkowych

6.1.1 Bez standaryzacji zmiennych

6.1.1.1 Zbiory dostarczone

set	FM	AM
fcps/atom.data.gz	0.146	0.649
fcps/chainlink.data.gz	0.093	0.546
fcps/engytime.data.gz	0.815	0.908
fcps/hepta.data.gz	1.000	1.000
fcps/lsun.data.gz	0.429	0.638
fcps/target.data.gz	0.636	0.793
fcps/tetra.data.gz	1.000	1.000
fcps/twodiamonds.data.gz	1.000	1.000
fcps/wingnut.data.gz	0.859	0.930
graves/dense.data.gz	0.809	0.905
graves/fuzzyx.data.gz	0.607	0.690
graves/line.data.gz	-0.009	0.598
graves/parabolic.data.gz	0.589	0.795
graves/ring.data.gz	0.166	0.652
graves/zigzag.data.gz	0.136	0.496
other/iris.data.gz	0.730	0.821
other/iris5.data.gz	0.505	0.735
other/square.data.gz	0.028	0.517
sipu/a1.data.gz	0.966	0.968
sipu/a2.data.gz	0.968	0.969
sipu/a3.data.gz	0.972	0.973
sipu/aggregation.data.gz	0.762	0.816
sipu/compound.data.gz	0.538	0.642
$\rm sipu/d31.data.gz$	0.953	0.955
sipu/flame.data.gz	0.488	0.753
sipu/jain.data.gz	0.318	0.698
sipu/pathbased.data.gz	0.462	0.662
sipu/r15.data.gz	0.993	0.993
sipu/s1.data.gz	0.987	0.988
sipu/s2.data.gz	0.937	0.942
sipu/s3.data.gz	0.725	0.743
sipu/s4.data.gz	0.594	0.623
sipu/spiral.data.gz	-0.006	0.328
sipu/unbalance.data.gz	1.000	1.000
wut/cross.data.gz	0.109	0.441
wut/smile.data.gz	0.441	0.585
wut/two splashes. data. gz	0.279	0.639
wut/x1.data.gz	1.000	1.000
wut/x2.data.gz	0.209	0.551
wut/x3.data.gz	0.856	0.894
wut/z1.data.gz	0.203	0.466
wut/z2.data.gz	0.457	0.629
wut/z3.data.gz	1.000	1.000

6.1.1.2 Moje zbiory

Wyniki działania na moich zbiorach danych przedstawiają się następująco:

set	FM	AM
benchmark1.data	0.493	0.746
benchmark2.data	0.998	0.998
benchmark3.data	0.941	0.953
benchmark4.data	0.373	0.502

6.1.1.3 Przykładowy zbiór

6.1.2 Ze standaryzacją zmiennych

6.1.2.1 Zbiory dostarczone

set	FM	AM
fcps/atom.data.gz	0.149	0.650
fcps/chainlink.data.gz	-0.001	0.499
fcps/engytime.data.gz	0.812	0.907
fcps/hepta.data.gz	1.000	1.000
fcps/lsun.data.gz	0.405	0.624
fcps/target.data.gz	0.436	0.793
fcps/tetra.data.gz	1.000	1.000
fcps/twodiamonds.data.gz	1.000	1.000
fcps/wingnut.data.gz	0.670	0.835
graves/dense.data.gz	0.738	0.870
graves/fuzzyx.data.gz	0.598	0.683
graves/line.data.gz	-0.009	0.598
graves/parabolic.data.gz	0.550	0.775
graves/ring.data.gz	0.166	0.652
graves/zigzag.data.gz	0.182	0.510
other/iris.data.gz	0.620	0.745
other/iris5.data.gz	0.408	0.675
other/square.data.gz	-0.001	0.499
sipu/a1.data.gz	0.918	0.922
sipu/a2.data.gz	0.956	0.957
sipu/a3.data.gz	0.972	0.973
sipu/aggregation.data.gz	0.713	0.775
sipu/compound.data.gz	0.499	0.611
sipu/d31.data.gz	0.956	0.957
sipu/flame.data.gz	0.431	0.725
sipu/jain.data.gz	0.553	0.809
sipu/pathbased.data.gz	0.480	0.670
sipu/r15.data.gz	0.993	0.993
sipu/s1.data.gz	0.987	0.988
sipu/s2.data.gz	0.938	0.942
sipu/s3.data.gz	0.725	0.743
sipu/s4.data.gz	0.633	0.657
sipu/spiral.data.gz	-0.006	0.328
sipu/unbalance.data.gz	1.000	1.000
wut/cross.data.gz	0.109	0.441
wut/smile.data.gz	0.440	0.584
wut/twosplashes.data.gz	0.091	0.544
wut/x1.data.gz	1.000	1.000
wut/x2.data.gz	0.209	0.551
wut/x3.data.gz	0.856	0.894
wut/z1.data.gz	0.167	0.445
wut/z2.data.gz	0.428	0.607
wut/z3.data.gz	1.000	1.000

6.1.2.2 Moje zbiory

Wyniki działania na moich zbiorach danych przedstawiają się następująco:

set	FM	AM
benchmark1.data	0.975	0.988
benchmark2.data	0.998	0.998
benchmark3.data	0.931	0.945
benchmark4.data	0.252	0.401

6.1.2.3 Przykładowy zbiór

7 Algorytm cmeans z pakietu e1071

7.1 Badanie algorytmu na wszystkich zbiorach benchmarkowych

7.1.1 Bez standaryzacji zmiennych

7.1.1.1 Zbiory dostarczone

set	2	3	4	5	6	7	8
fcps/atom.data.gz	0.223	0.014	0.009	0.010	0.010	0.010	0.010
fcps/chainlink.data.gz	0.087	0.089	0.089	0.088	0.088	0.089	0.090
fcps/engytime.data.gz	0.783	0.788	0.791	0.795	0.798	0.798	0.798
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	0.651	0.816	0.641
fcps/lsun.data.gz	0.505	0.545	0.561	0.572	0.583	0.589	0.613
fcps/target.data.gz	0.383	0.161	0.102	0.290	0.034	0.007	0.178
fcps/tetra.data.gz	1.000	1.000	1.000	1.000	0.706	0.791	0.467
fcps/twodiamonds.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/wingnut.data.gz	0.771	0.750	0.736	0.736	0.736	0.730	0.730
graves/dense.data.gz	0.791	0.791	0.791	0.791	0.791	0.791	0.791
graves/fuzzyx.data.gz	0.569	0.577	0.625	0.715	0.732	0.744	0.753
graves/line.data.gz	-0.009	0.015	0.015	0.015	0.015	0.015	0.015
graves/parabolic.data.gz	0.605	0.605	0.599	0.599	0.599	0.599	0.599
graves/ring.data.gz	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
graves/zigzag.data.gz	0.144	0.173	0.157	0.165	0.165	0.165	0.164
other/iris.data.gz	0.729	0.743	0.757	0.742	0.771	0.771	0.771
other/iris5.data.gz	0.505	0.363	0.367	0.371	0.371	0.375	0.375
other/square.data.gz	0.027	0.022	0.019	0.020	0.020	0.020	0.020
sipu/a1.data.gz	0.822	0.825	0.779	0.648	0.605	0.592	0.581
sipu/a2.data.gz	0.842	0.760	0.720	0.605	0.552	0.574	0.604
sipu/a3.data.gz	0.717	0.722	0.658	0.576	0.586	0.551	0.625
sipu/aggregation.data.gz	0.611	0.533	0.696	0.677	0.549	0.610	0.548
sipu/compound.data.gz	0.536	0.534	0.467	0.402	0.406	0.380	0.413
sipu/d31.data.gz	0.788	0.783	0.638	0.565	0.648	0.531	0.567
sipu/flame.data.gz	0.488	0.476	0.465	0.465	0.465	0.465	0.465
sipu/jain.data.gz	0.300	0.277	0.277	0.266	0.266	0.266	0.266
sipu/pathbased.data.gz	0.460	0.353	0.330	0.335	0.334	0.336	0.336
sipu/r15.data.gz	0.890	0.694	0.695	0.686	0.648	0.739	0.502
sipu/s1.data.gz	0.902	0.899	0.845	0.707	0.780	0.771	0.661
sipu/s2.data.gz	0.839	0.848	0.862	0.805	0.645	0.695	0.646
sipu/s3.data.gz	0.669	0.731	0.676	0.578	0.527	0.534	0.499
sipu/s4.data.gz	0.637	0.638	0.608	0.508	0.422	0.440	0.431
sipu/spiral.data.gz	-0.006	-0.006	-0.005	-0.005	-0.005	-0.005	-0.005
sipu/unbalance.data.gz	0.738	0.690	0.691	0.696	0.552	0.587	0.592
wut/cross.data.gz	0.193	0.310	0.377	0.421	0.457	0.484	0.493
wut/smile.data.gz	0.577	0.444	0.444	0.443	0.572	0.572	0.558
wut/twosplashes.data.gz	0.279	0.279	0.279	0.279	0.279	0.279	0.279
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.209	0.648	0.629	0.610	0.592	0.592	0.575
wut/x3.data.gz	0.845	0.867	0.891	0.891	0.891	0.907	0.907
wut/z1.data.gz	0.202	0.207	0.228	0.229	0.239	0.239	0.250
$\mathrm{wut/z2.data.gz}$	0.442	0.420	0.286	0.412	0.285	0.414	0.414
$\mathrm{wut/z3.data.gz}$	0.995	0.775	0.764	0.761	0.756	0.756	0.754

set	2	3	4	5	6	7	8
fcps/atom.data.gz	0.661	0.507	0.504	0.505	0.505	0.505	0.505
fcps/chainlink.data.gz	0.543	0.544	0.544	0.544	0.544	0.544	0.545
fcps/engytime.data.gz	0.891	0.894	0.895	0.897	0.899	0.899	0.899
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	0.705	0.844	0.700
fcps/lsun.data.gz	0.687	0.713	0.723	0.729	0.736	0.740	0.755
fcps/target.data.gz	0.613	0.425	0.374	0.534	0.324	0.303	0.439
fcps/tetra.data.gz	1.000	1.000	1.000	1.000	0.783	0.844	0.617
fcps/two diamonds. data. gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/wingnut.data.gz	0.885	0.875	0.868	0.868	0.868	0.865	0.865
graves/dense.data.gz	0.896	0.896	0.896	0.896	0.896	0.896	0.896
graves/fuzzyx.data.gz	0.662	0.667	0.704	0.774	0.787	0.796	0.803
graves/line.data.gz	0.598	0.601	0.601	0.601	0.601	0.601	0.601
graves/parabolic.data.gz	0.802	0.802	0.799	0.799	0.799	0.799	0.799
graves/ring.data.gz	0.499	0.499	0.499	0.499	0.499	0.499	0.499
graves/zigzag.data.gz	0.497	0.507	0.495	0.497	0.497	0.497	0.497
other/iris.data.gz	0.820	0.828	0.838	0.828	0.847	0.847	0.847
other/iris5.data.gz	0.732	0.614	0.616	0.617	0.617	0.620	0.620
other/square.data.gz	0.516	0.512	0.510	0.510	0.511	0.510	0.510
sipu/a1.data.gz	0.832	0.836	0.792	0.674	0.634	0.625	0.615
sipu/a2.data.gz	0.848	0.773	0.735	0.623	0.575	0.602	0.625
sipu/a3.data.gz	0.729	0.732	0.673	0.601	0.605	0.572	0.639
sipu/aggregation.data.gz	0.692	0.626	0.762	0.744	0.639	0.690	0.638
sipu/compound.data.gz	0.640	0.639	0.586	0.532	0.535	0.513	0.542
sipu/d31.data.gz	0.798	0.794	0.655	0.591	0.666	0.555	0.597
sipu/flame.data.gz	0.753	0.747	0.742	0.742	0.742	0.742	0.742
sipu/jain.data.gz	0.689	0.679	0.679	0.674	0.674	0.674	0.674
sipu/pathbased.data.gz	0.660	0.582	0.567	0.574	0.574	0.577	0.577
sipu/r15.data.gz	0.898	0.723	0.721	0.712	0.685	0.762	0.567
sipu/s1.data.gz	0.910	0.907	0.856	0.733	0.798	0.790	0.699
sipu/s2.data.gz	0.851	0.859	0.873	0.820	0.675	0.719	0.673
sipu/s3.data.gz	0.692	0.749	0.699	0.608	0.563	0.572	0.546
sipu/s4.data.gz	0.661	0.662	0.634	0.544	0.470	0.486	0.477
sipu/spiral.data.gz	0.327	0.327	0.328	0.328	0.328	0.328	0.328
sipu/unbalance.data.gz	0.814	0.779	0.780	0.783	0.677	0.705	0.707
wut/cross.data.gz	0.472	0.531	0.569	0.594	0.616	0.633	0.639
wut/smile.data.gz	0.692	0.587	0.587	0.587	0.688	0.688	0.677
wut/twosplashes.data.gz	0.639	0.639	0.639	0.639	0.639	0.639	0.639
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.551	0.769	0.755	0.743	0.730	0.730	0.719
wut/x3.data.gz	0.886	0.902	0.920	0.920	0.920	0.932	0.932
wut/z1.data.gz	0.465	0.469	0.483	0.484	0.491	0.491	0.499
wut/z2.data.gz	0.618	0.601	0.498	0.595	0.499	0.597	0.597
wut/z3.data.gz	0.997	0.840	0.832	0.830	0.826	0.826	0.825

7.1.1.2 Moje zbiory

Wyniki działania na moich zbiorach danych przedstawiają się następująco:

set	2	3	4	5	6	7	8
benchmark1.data	0.507	0.518	0.518	0.518	0.518	0.518	0.521
benchmark2.data	0.998	0.765	0.838	0.769	0.767	0.710	0.684

set	2	3	4	5	6	7	8
benchmark3.data benchmark4.data	0.941 0.405	0.941 0.369	0.941 0.370	0.941 0.366	0.941 0.370	0.941 0.378	$0.941 \\ 0.387$
set	2	3	4	5	6	7	8
benchmark1.data benchmark2.data benchmark3.data benchmark4.data	0.753 0.998 0.953 0.524	0.759 0.786 0.953 0.498	0.759 0.852 0.953 0.498	0.759 0.790 0.953 0.495	0.759 0.788 0.953 0.498	0.759 0.738 0.953 0.504	0.760 0.719 0.953 0.510

7.1.1.3 Przykładowy zbiór

$7.1.2 \quad \hbox{Ze standaryzacją zmiennych}$

${\bf 7.1.2.1}\quad {\bf Zbiory\ destarczone}$

set	2	3	4	5	6	7	8
fcps/atom.data.gz	0.021	0.033	0.023	0.028	0.029	0.041	0.004
fcps/chainlink.data.gz	0.081	0.083	0.087	0.084	0.086	0.094	0.100
fcps/engytime.data.gz	0.821	0.821	0.819	0.819	0.820	0.822	0.822
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	0.361
fcps/lsun.data.gz	0.408	0.429	0.452	0.453	0.476	0.489	0.500
fcps/target.data.gz	0.383	0.098	0.385	0.167	0.001	0.117	0.008
fcps/tetra.data.gz	1.000	1.000	1.000	0.617	0.694	0.686	0.671
fcps/two diamonds. data. gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/wingnut.data.gz	0.547	0.524	0.519	0.519	0.519	0.519	0.519
graves/dense.data.gz	0.738	0.738	0.738	0.738	0.756	0.756	0.773
graves/fuzzyx.data.gz	0.569	0.577	0.623	0.715	0.732	0.744	0.770
graves/line.data.gz	-0.009	0.015	0.015	0.015	0.015	0.015	0.015
graves/parabolic.data.gz	0.556	0.565	0.565	0.571	0.571	0.571	0.571
graves/ring.data.gz	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
graves/zigzag.data.gz	0.182	0.193	0.195	0.187	0.187	0.184	0.180
other/iris.data.gz	0.630	0.630	0.652	0.652	0.664	0.664	0.664
other/iris5.data.gz	0.387	0.363	0.346	0.334	0.319	0.339	0.345
other/square.data.gz	0.022	0.022	0.020	0.020	0.019	0.018	0.019
sipu/a1.data.gz	0.791	0.687	0.723	0.701	0.560	0.568	0.508
sipu/a2.data.gz	0.769	0.724	0.655	0.525	0.622	0.635	0.533
sipu/a3.data.gz	0.802	0.653	0.616	0.568	0.562	0.551	0.543
sipu/aggregation.data.gz	0.731	0.691	0.575	0.585	0.423	0.553	0.533
sipu/compound.data.gz	0.510	0.396	0.467	0.403	0.423	0.421	0.437
sipu/d31.data.gz	0.805	0.677	0.648	0.659	0.594	0.542	0.570
sipu/flame.data.gz	0.500	0.476	0.476	0.476	0.465	0.465	0.465
sipu/jain.data.gz	0.537	0.522	0.515	0.515	0.515	0.515	0.515
sipu/pathbased.data.gz	0.484	0.481	0.369	0.361	0.363	0.361	0.366
sipu/r15.data.gz	0.881	0.828	0.559	0.649	0.743	0.687	0.486
sipu/s1.data.gz	0.895	0.912	0.837	0.690	0.688	0.818	0.836
sipu/s2.data.gz	0.937	0.860	0.851	0.785	0.737	0.820	0.765
sipu/s3.data.gz	0.682	0.667	0.578	0.661	0.581	0.586	0.632
sipu/s4.data.gz	0.604	0.637	0.527	0.481	0.522	0.433	0.387
sipu/spiral.data.gz	-0.006	-0.006	-0.006	-0.006	-0.005	-0.005	-0.005
sipu/unbalance.data.gz	0.586	0.740	0.523	0.690	0.443	0.527	0.445
wut/cross.data.gz	0.191	0.305	0.373	0.420	0.457	0.471	0.491
wut/smile.data.gz	0.441	0.367	0.441	0.441	0.441	0.439	0.439
wut/twosplashes.data.gz	0.094	0.107	0.120	0.127	0.127	0.127	0.127
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.668	0.668	0.649	0.631	0.613	0.596	0.579
wut/x3.data.gz	0.845	0.867	0.891	0.891	0.891	0.891	0.891
wut/z1.data.gz	0.157	0.097	0.091	0.080	0.068	0.040	-0.009
wut/z2.data.gz	0.430	0.413	0.295	0.398	0.287	0.405	0.285
wut/z3.data.gz	0.995	0.769	0.754	0.752	0.676	0.736	0.732

set	2	3	4	5	6	7	8
fcps/atom.data.gz	0.512	0.520	0.513	0.518	0.516	0.525	0.502
fcps/chainlink.data.gz	0.540	0.541	0.543	0.542	0.542	0.547	0.550

set	2	3	4	5	6	7	8
fcps/engytime.data.gz	0.911	0.911	0.910	0.910	0.910	0.911	0.911
fcps/hepta.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	0.541
fcps/lsun.data.gz	0.625	0.638	0.653	0.653	0.667	0.675	0.681
fcps/target.data.gz	0.613	0.371	0.615	0.432	0.286	0.396	0.310
fcps/tetra.data.gz	1.000	1.000	1.000	0.719	0.773	0.768	0.759
fcps/twodiamonds.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000
fcps/wingnut.data.gz	0.773	0.762	0.759	0.759	0.759	0.759	0.759
graves/dense.data.gz	0.870	0.870	0.870	0.870	0.878	0.878	0.887
graves/fuzzyx.data.gz	0.662	0.667	0.702	0.774	0.787	0.796	0.817
graves/line.data.gz	0.598	0.601	0.601	0.601	0.601	0.601	0.601
graves/parabolic.data.gz	0.778	0.782	0.782	0.785	0.785	0.785	0.785
graves/ring.data.gz	0.499	0.499	0.499	0.499	0.499	0.499	0.499
graves/zigzag.data.gz	0.508	0.512	0.510	0.506	0.506	0.504	0.503
other/iris.data.gz	0.752	0.752	0.767	0.767	0.775	0.775	0.775
other/iris5.data.gz	0.665	0.613	0.602	0.594	0.585	0.598	0.602
other/square.data.gz	0.512	0.511	0.511	0.510	0.510	0.509	0.510
sipu/a1.data.gz	0.803	0.709	0.739	0.720	0.586	0.595	0.544
sipu/a2.data.gz	0.782	0.735	0.671	0.551	0.639	0.655	0.562
sipu/a3.data.gz	0.807	0.665	0.631	0.585	0.582	0.577	0.567
sipu/aggregation.data.gz	0.787	0.757	0.661	0.669	0.534	0.643	0.626
sipu/compound.data.gz	0.621	0.527	0.586	0.533	0.549	0.548	0.561
sipu/d31.data.gz	0.813	0.691	0.662	0.676	0.617	0.576	0.593
sipu/flame.data.gz	0.759	0.747	0.747	0.747	0.742	0.742	0.742
sipu/jain.data.gz	0.802	0.794	0.790	0.790	0.790	0.790	0.790
sipu/pathbased.data.gz	0.672	0.668	0.586	0.582	0.587	0.587	0.593
sipu/r15.data.gz	0.890	0.844	0.608	0.680	0.765	0.714	0.552
sipu/s1.data.gz	0.904	0.919	0.853	0.718	0.716	0.832	0.849
sipu/s2.data.gz	0.941	0.870	0.862	0.800	0.757	0.833	0.783
sipu/s3.data.gz	0.704	0.690	0.610	0.685	0.612	0.615	0.660
sipu/s4.data.gz	0.632	0.661	0.559	0.520	0.559	0.480	0.435
sipu/spiral.data.gz	0.327	0.327	0.327	0.328	0.328	0.328	0.328
sipu/unbalance.data.gz	0.704	0.816	0.655	0.779	0.584	0.658	0.585
wut/cross.data.gz	0.471	0.528	0.566	0.593	0.616	0.625	0.638
wut/smile.data.gz	0.585	0.528	0.585	0.585	0.585	0.583	0.583
wut/twosplashes.data.gz	0.546	0.552	0.559	0.563	0.563	0.563	0.563
wut/x1.data.gz	1.000	1.000	1.000	1.000	1.000	1.000	1.000
wut/x2.data.gz	0.782	0.782	0.769	0.756	0.744	0.732	0.721
wut/x3.data.gz	0.886	0.902	0.920	0.920	0.920	0.920	0.920
wut/z1.data.gz	0.440	0.397	0.394	0.386	0.379	0.363	0.346
$\mathrm{wut/z2.data.gz}$	0.609	0.595	0.504	0.584	0.500	0.590	0.501
wut/z3.data.gz	0.997	0.835	0.825	0.823	0.768	0.811	0.808

7.1.2.2 Moje zbiory

Wyniki działania na moich zbiorach danych przedstawiają się następująco:

set	2	3	4	5	6	7	8
benchmark1.data	0.965	0.965	0.965	0.965	0.965	0.965	0.965
benchmark2.data	0.866	0.866	0.998	0.793	0.658	0.709	0.804
benchmark3.data	0.922	0.927	0.927	0.927	0.927	0.927	0.927
benchmark4.data	0.226	0.222	0.227	0.232	0.010	0.091	0.005

set	2	3	4	5	6	7	8
benchmark1.data	0.983	0.983	0.983	0.983	0.983	0.983	0.983
benchmark2.data	0.878	0.878	0.998	0.813	0.698	0.740	0.823
benchmark3.data	0.937	0.941	0.941	0.941	0.941	0.941	0.941
benchmark4.data	0.381	0.379	0.383	0.386	0.223	0.281	0.225

7.1.2.3 Przykładowy zbiór

8 Podsumowanie

8.1 genie

Na podstawie tabel możemy zauważyć, iż najlepszym algorytmem jest algorytm genie. Właściwie dla wszystkich zbiorów algorytm znalazł prawie, że idealne rozwiązanie. Jednak nie widzimy znaczącej różnicy pomiędzy danymi ustandaryzowanymi a danymi bez standaryzacji. Wg mnie wynika to głównie z tego, iż dane tu są już po części standaryzowane. Pewne różnice mogą być widoczne na etapie czasu wykonania danych funkcji.

Na podstawie wykresów widzimy, iż najlepszym parametrem dla tego algorytmu jest wartość 0.3. Dla parametrów tresholdGieni z zakresu od 0.7 do 0.8 wartość błędu jest większa niż dla innych wartości.

8.1.1 Bez standaryzacji zmiennych

Poniżej jest przedstawiony barplot dla algorytmu genie (indeks AM) w zależności od parametru thresholdGini:

Najlepszym parametrem tresholdGieni jest wartość 0.3 (swoją drogą jest to wartość defaultowa).

8.1.2 Ze standaryzacją zmiennych

Najlepszym parametrem tresholdGieni są wartości od 0.3 do 0.8. Wartości te dają podobne wyniki.

8.2 hclust

Na podstawie tabel możemy zauważyć, iż najlepszą metodą dla algorytmów hierarchicznych z pakietu *hclust* jest metoda *ward.D2*, gdyż średni błąd wg wykresu jest najmniejszy oraz odchylenie standardowe nie jest zbyt duże.

Jednak nie widzimy znaczącej różnicy pomiędzy danymi ustandaryzowanymi a danymi bez standaryzacji. Wg mnie wynika to głównie z tego, iż dane tu są już po części standaryzowane. Pewne różnice mogą być widoczne na etapie czasu wykonania danych funkcji.

Ponadto na podstaiwe wykresu możemy zauważyć, iż metoda complete radzi sobie najgorzej.

8.2.1 Bez standaryzacji zmiennych

Poniżej jest przedstawiony barplot dla algorytmu hclust (indeks AM) w zależności od metody clusteringu:

Najlepszą metodą jest metoda ward. D2.

8.2.2 Ze standaryzacją zmiennych

Najlepszą metodą jest metoda ward.D2.

8.3 spectral_clustering

Algorytm zaimlementowany przeze mnie daje satyfakcjonujące wyniki. Widać drobną poprawę, gdy wykonaliśmy standaryzację zmiennych.

8.3.1 Bez standaryzacją zmiennych

Poniżej jest przedstawiony barplot dla algorytmu $spectral_clustering$ (indeks FM) w zależności od parametru M:

Najlepszym parametrem jest M = 3.

8.3.2 Ze standaryzacją zmiennych

Najlepszym parametrem jest M=2.

8.4 *HCPC*

Przy algorytmie HCPC nie badałem żadnego współczynnika. Algorytm przy ustawieniach defaultowych wypadł gorzej niż genie. Algorytm daje podobne rezultaty co algorytm zaimplementowany przeze mnie oraz ward.D2.

8.4.1 Bez standaryzacji zmiennych

Poniżej jest przedstawiony barplot dla algorytmu HCPC bez standaryzacji zmiennych:

8.4.2 Ze standaryzacją zmiennych

Poniżej jest przedstawiony barplot dla algorytmu HCPC ze standaryzacją zmiennych:

8.5 cmeans

Algorytm $\it cmeans$ nie wypada najlepiej na tle innych.

8.5.1 Bez standaryzacji zmiennych

Poniżej jest przedstawiony barplot dla algorytmu cmeans:

Najlepszym parametrem dla tego algorytmu bez standaryzacji jest wartość rate.par=4, gdyż dla tego parametru średnia wartość jest największa.

8.5.2 Ze standaryzacją zmiennych

Najlepszym parametrem dla tego algorytmu ze standaryzacją jest wartość rate.par=3.