

GIẢI TÍCH SỐ

Phương pháp sai phân giải bài toán biên

Phan Thành Long - 20200369

ONE LOVE. ONE FUTURE.

1. Bài toán biên

a. Bài toán

Tìm u(x) là nghiệm của phương trình vi phân :

$$[p(x) * u'(x)]' - q(x)u(x) = -f(x)$$
 với $a \le x \le b$

Trong đó:

- p(x), q(x), f(x) là những hàm số **liên tục** và **có đạo hàm cấp cần thiết** trên đoạn [a,b]
- $p(x) \ge c_1 > 0$
- $q(x) \ge 0$
- Thỏa mãn một trong các điều kiện biên

1. Bài toán biên

b. Điều kiện biên

Điều kiện biên tổng quát :
$$\begin{cases} p(a)u'(a) - \sigma_1 u(a) = -\mu_1 \\ p(b)u'(b) - \sigma_2 u(b) = -\mu_2 \end{cases}$$

• Điều kiện biên loại 1:
$$\begin{cases} u(a) = \alpha \\ u(b) = \beta \end{cases}$$

• Điều kiện biên loại 2:
$$\sigma_1=\sigma_2=0$$
 hay $\begin{cases} p(a)u'(a)=-\mu_1 \\ p(b)u'(b)=-\mu_2 \end{cases}$

• Điều kiện biên loại 3: Đây chính là điều kiện biên tổng quát với σ_1 , $\sigma_2 \geq 0$ và $\sigma_1 + \sigma_2 > 0$

1. Bài toán biên

c. Ý tưởng

Nhận xét: Khó để tìm nghiệm chính xác của bài toán biên

 \implies Do đó ta sẽ dùng sai phân hữu hạn để tìm nghiệm gần đúng của bài toán, xấp xỉ hàm số u(x)

a. Lưới và hàm lưới

Chia đoạn [a, b] thành n phần đều nhau bởi cách điểm:

$$\begin{cases} x_0 = a; \ x_n = b \\ h = \frac{b-a}{n} \\ x_i = x_0 + i * h, \ i = \overline{1, n} \end{cases}$$

- Các điểm x_i gọi là các **nút của lưới**
- h gọi là **bước của lưới**

b. Lược đồ sai phân đối với bài toán biên

Xấp xỉ hàm u'(x) tại các nút lưới

Do u(x) có đạo hàm cấp 3 trên đoạn [a,b]. Theo công thức Taylor ta có :

$$u\left(x_i + \frac{h}{2}\right) = u(x_i) + \frac{h}{2}u'(x_i) + (\frac{h}{2})^2 \frac{1}{2!}u''(x_i) + (\frac{h}{2})^3 \frac{1}{3!}u'''(c_1)$$
 (1)

$$u\left(x_{i} - \frac{h}{2}\right) = u(x_{i}) - \frac{h}{2}u'(x_{i}) + (\frac{h}{2})^{2} \frac{1}{2!}u''(x_{i}) + (\frac{h}{2})^{3} \frac{1}{2!}u'''(c_{2})$$
 (2)

trong đó:
$$\begin{cases} c_1 \in \left(x_i, x_i + \frac{h}{2}\right) \\ c_2 \in \left(x_i - \frac{h}{2}, x_i\right) \end{cases}$$

$$u\left(x_i + \frac{h}{2}\right) - u\left(x_i - \frac{h}{2}\right) = hu'(x_i) + O(h^3)$$

$$\Rightarrow \qquad u'(x_i) = \frac{u(x_i + \frac{h}{2}) - u(x_i - \frac{h}{2})}{h} + O(h^2)$$

Vậy
$$u'(x_i) \approx \frac{1}{h} \left(u \left(x_i + \frac{h}{2} \right) - u \left(x_i - \frac{h}{2} \right) \right)$$
 với sai số $O(h^2)$

b. Lược đồ sai phân đối với bài toán biên

$$u'(x_i) \approx \frac{1}{h} \left(u \left(x_i + \frac{h}{2} \right) - u \left(x_i - \frac{h}{2} \right) \right) \tag{*}$$

Xấp xỉ $[p(x_i)u'(x_i)]'$ dựa vào công thức $u'(x_i)$ đã tìm được ở trên

$$[p(x_i)u'(x_i)]' \approx \frac{1}{h} \left(p\left(x_i + \frac{h}{2}\right)u'\left(x_i + \frac{h}{2}\right) - p\left(x_i - \frac{h}{2}\right)u'\left(x_i - \frac{h}{2}\right) \right)$$

Mặt khác từ (*) cũng có :
$$\begin{cases} u'\left(x_i + \frac{h}{2}\right) \approx \frac{1}{h}\left(u(x_{i+1}) - u(x_i)\right) \\ u'\left(x_i - \frac{h}{2}\right) \approx \frac{1}{h}\left(u(x_i) - u(x_{i-1})\right) \end{cases}$$

Do đó
$$[p(x_i)u'(x_i)]' \approx \frac{1}{h} \Big(p \Big(x_i + \frac{h}{2} \Big) \frac{1}{h} \Big(u(x_{i+1}) - u(x_i) \Big) - p \Big(x_i - \frac{h}{2} \Big) \frac{1}{h} \Big(u(x_i) - u(x_{i-1}) \Big) \Big)$$

$$\Rightarrow [p(x_i)u'(x_i)]' \approx \frac{1}{h^2} \left(p\left(x_i - \frac{h}{2}\right)u(x_{i-1}) - \left(p\left(x_i + \frac{h}{2}\right) + p\left(x_i - \frac{h}{2}\right)\right)u(x_i) + p\left(x_i + \frac{h}{2}\right)u(x_{i+1}) \right)$$

b. Lược đồ sai phân đối với bài toán biên

$$[p(x_i)u'(x_i)]' \approx \frac{1}{h^2} \left(p\left(x_i - \frac{h}{2}\right)u(x_{i-1}) - \left(p\left(x_i + \frac{h}{2}\right) + p\left(x_i - \frac{h}{2}\right)\right)u(x_i) + p\left(x_i + \frac{h}{2}\right)u(x_{i+1}) \right)$$

Vậy thay vào phương trình vi phân [p(x) * u'(x)]' - q(x)u(x) = -f(x) ban đầu ta được

$$\frac{p\left(x_{i} - \frac{h}{2}\right)}{h^{2}}u(x_{i-1}) - \left(\frac{p\left(x_{i} + \frac{h}{2}\right) + p\left(x_{i} - \frac{h}{2}\right)}{h^{2}} + q(x_{i})\right)u(x_{i}) + \frac{p\left(x_{i} + \frac{h}{2}\right)}{h^{2}}u(x_{i+1}) = -f(x_{i})$$

$$\text{Dể có thể dễ dàng quan sát, ta đặt}: \begin{cases} u_i = u(x_i) \\ d_i = -f(x_i) \\ a_i = \frac{p\left(x_i - \frac{h}{2}\right)}{h^2} \\ b_i = -\left(\frac{p\left(x_i + \frac{h}{2}\right) + p\left(x_i - \frac{h}{2}\right)}{h^2} + q(x_i)\right) \end{cases} \text{ khi đó ta viết lại } \boxed{a_i u_{i-1} + b_i u_i + c_i u_{i+1} = d_i} \\ c_i = \frac{p\left(x_i + \frac{h}{2}\right)}{h^2} \end{cases}$$

$$a_i u_{i-1} + b_i u_i + c_i u_{i+1} = d_i$$

b. Lược đồ sai phân đối với bài toán biên

Bây giờ ta sẽ đi xấp xỉ điều kiện biên $\begin{cases} p(a)u'(a) - \sigma_1 u(a) = -\mu_1 & (1) \\ p(b)u'(b) - \sigma_2 u(b) = -\mu_2 & (2) \end{cases}$

Với biên x = a, theo định lý Taylor :

$$\begin{cases} p\left(a + \frac{h}{2}\right) = p(a) + \frac{h}{2}p'(a) + O(h^2) \\ \frac{u(a+h) - u(a)}{h} = u'(a) + \frac{h}{2}u''(a) + O(h^2) \end{cases} \Rightarrow p\left(a + \frac{h}{2}\right)\frac{u(a+h) - u(a)}{h} = p(a)u'(a) + \frac{h}{2}[p(a)u'(a)]' + O(h^2)$$

Mà lại có
$$[p(a)u'(a)]' = q(a)u(a) - f(a) \Rightarrow p(a)u'(a) = p\left(a + \frac{h}{2}\right)\frac{u(a+h)-u(a)}{h} - \frac{h}{2}(q(a)u(a) - f(a)) + O(h^2)$$

$$\Rightarrow p(a)u'(a) \approx p\left(a + \frac{h}{2}\right)\frac{u(a+h)-u(a)}{h} - \frac{h}{2}(q(a)u(a) - f(a))$$

Thay lại vào (1) vậy : $\frac{p\left(a+\frac{h}{2}\right)}{h}u(a+h)-\left(\sigma_1+\frac{p\left(a+\frac{h}{2}\right)}{h}-\frac{q(a)h}{2}\right)u(a)=-\mu_1-\frac{f(a)h}{2}$ hay ta có thể viết gọn :

$$\frac{p(a+\frac{h}{2})}{h}u_{1} - \left(\sigma_{1} + \frac{p(a+\frac{h}{2})}{h} - \frac{q(a)h}{2}\right)u_{0} = -\mu_{1} - \frac{f(a)h}{2}$$

b. Lược đồ sai phân đối với bài toán biên

Bây giờ ta sẽ đi xấp xỉ điều kiện biên
$$\begin{cases} p(a)u'(a) - \sigma_1 u(a) = -\mu_1 & (1) \\ p(b)u'(b) - \sigma_2 u(b) = -\mu_2 & (2) \end{cases}$$

$$\frac{p\left(a+\frac{h}{2}\right)}{h}u_1 - \left(\sigma_1 + \frac{p\left(a+\frac{h}{2}\right)}{h} - \frac{q(a)h}{2}\right)u_0 = -\mu_1 - \frac{f(a)h}{2}$$

Lại để dễ dàng quan sát ta đặt
$$\begin{cases} b_0 = -\left(\sigma_1 + \frac{p\left(x_0 + \frac{h}{2}\right)}{h} - \frac{q(x_0)h}{2}\right) \\ c_0 = \frac{p\left(x_0 + \frac{h}{2}\right)}{h} & \text{ta có} \quad b_0u_0 + c_0u_1 = d_0 \\ d_0 = -\mu_1 - \frac{f(x_0)h}{2} \end{cases}$$

Làm tương tự với biên b, có
$$\begin{cases} a_n=-\frac{p\left(x_n-\frac{h}{2}\right)}{h}\\ b_n=-\sigma_2+\frac{p\left(x_n-\frac{h}{2}\right)}{h}-\frac{q(b)h}{2} & \text{ta có} \ \ a_nu_{n-1}+b_nu_n=d_n\\ d_n=-\mu_2-\frac{f(x_n)h}{2} & \end{cases}$$

c. Phương pháp giải

Bài toán biên loại (1)
$$\begin{cases} u(x_0) = \alpha \\ u(x_n) = \beta \end{cases}$$

Thay công thức tìm được ở b vào bài toán biên loại (1), ta được:

$$\begin{cases} u_0 = \alpha, \ u_n = \beta \\ a_i u_{i-1} + b_i u_i + c_i u_{i+1} = d_i \end{cases} \qquad i = \overline{1, n-1}$$
 với
$$\begin{cases} u_i = u(x_i), d_i = f(x_i) \\ a_i = \frac{p\left(x_i - \frac{h}{2}\right)}{h^2} \\ b_i = -\left(\frac{p\left(x_i + \frac{h}{2}\right) + p\left(x_i - \frac{h}{2}\right)}{h^2} + q(x_i)\right) \\ c_i = \frac{p\left(x_i + \frac{h}{2}\right)}{h^2} \end{cases}$$

Hệ này là ma trận hệ số dạng 3 đường chéo, ta có thể dễ dàng giải tìm ra hàm số xấp xỉ với sai số $O(h^2)$

c. Phương pháp giải

Bài toán biên loại (2)(3)
$$\begin{cases} p(a)u'(a) - \sigma_1 u(a) = -\mu_1 \\ p(b)u'(b) - \sigma_2 u(b) = -\mu_2 \end{cases}$$

Thay công thức tìm được ở b vào bài toán biên loại (3), ta được:

$$\begin{cases} b_0u_0+c_0u_1=d_0\\ a_nu_{n-1}+b_nu_n=d_n\\ a_iu_{i-1}+b_iu_i+c_iu_{i+1}=d_i \end{cases} i=\overline{1,n-1} \\ \end{cases} b_0=-\left(\sigma_1+\frac{p(x_0+\frac{h}{2})}{h}-\frac{q(x_0)h}{2}\right), c_0=\frac{p(x_0+\frac{h}{2})}{h}, d_0=-\mu_1-\frac{f(x_0)h}{2}\\ a_n=-\frac{p(x_n-\frac{h}{2})}{h}, b_n=-\sigma_2+\frac{p(x_n-\frac{h}{2})}{h}-\frac{q(b)h}{2}, d_n=-\mu_2-\frac{f(x_0)h}{2}\\ u_i=u(x_i), d_i=f(x_i)\\ a_i=\frac{p(x_i-\frac{h}{2})}{h^2}, b_i=-\left(\frac{p(x_i+\frac{h}{2})+p(x_i-\frac{h}{2})}{h^2}+q(x_i)\right), c_i=\frac{p(x_i+\frac{h}{2})}{h^2} \end{cases}$$

Hệ này là cũng là ma trận hệ số dạng 3 đường chéo, ta có thể dễ dàng giải tìm ra hàm số xấp xỉ với sai số $O(h^2)$

3. Bài toán trị riêng

a. Bài toán

Tìm λ và hàm u(x) không đồng nhất bằng 0 trên đoạn [a,b] là nghiệm của :

$$\begin{cases} -\left[p(x) * u'(x)\right]' - q(x)u(x) = \lambda r(x)u(x) & \text{v\'oi} \quad a < x < b \\ u(a) = u(b) = 0 \end{cases}$$

Trong đó:

- p(x), q(x), r(x) là những hàm số **liên tục** và **có đạo hàm cấp cần thiết** trên đoạn [a,b]
- $p(x) \ge c_1 > 0$ với c_1 là hằng số dương
- $q(x) \ge 0, r(x) > 0$

3. Bài toán trị riêng

b. Thiết lập công thức

Ta làm tương tự như bài toán biên, chia thành các nút lưới và thiết lập công thức, ta được:

$$-[p(x_i) * u'(x_i)]' - q(x_i)u(x_i) = \lambda r(x_i)u(x_i)$$
 với $i = \overline{1, n-1}$

$$\Rightarrow -\frac{1}{h^2} \left(p \left(x_i - \frac{h}{2} \right) u_{i-1} - \left(p \left(x_i + \frac{h}{2} \right) + p \left(x_i - \frac{h}{2} \right) \right) u_i + p \left(x_i + \frac{h}{2} \right) u_{i+1} \right) - q(x_i) u_i = \lambda r(x_i) u_i$$

$$\Rightarrow -\frac{p\left(x_{i} - \frac{h}{2}\right)}{h^{2}r(x_{i})}u_{i-1} + \left(\frac{p\left(x_{i} + \frac{h}{2}\right) + p\left(x_{i} - \frac{h}{2}\right)}{h^{2}r(x_{i})} - \frac{q(x_{i})}{r(x_{i})} - \lambda\right)u_{i} - \frac{p\left(x_{i} + \frac{h}{2}\right)}{h^{2}r(x_{i})}u_{i+1} = 0$$

$$\text{Dặt} \begin{cases} a_i = -\frac{p\left(x_i - \frac{h}{2}\right)}{h^2 r(x_i)} \\ b_i = \frac{p\left(x_i + \frac{h}{2}\right) + p\left(x_i - \frac{h}{2}\right)}{h^2 r(x_i)} - \frac{q(x_i)}{r(x_i)} \quad \text{ta có} \quad \boxed{a_i u_{i-1} + (b_i - \lambda) u_i + c_i u_{i+1} = 0} \\ c_i = -\frac{p\left(x_i + \frac{h}{2}\right)}{h^2 r(x_i)} \end{cases}$$

3. Bài toán trị riêng

c. Phương pháp giải

Vậy kết hợp với điều kiện u(a)=u(b)=0 hay $u_0=u_n=0$ ta được $\begin{cases} a_i = \frac{p\left(x_i - \frac{h}{2}\right)}{h^2 r(x_i)} \\ b_i = -\frac{p\left(x_i + \frac{h}{2}\right) + p\left(x_i - \frac{h}{2}\right)}{h^2 r(x_i)} - \frac{q(x_i)}{r(x_i)} \\ c_i = \frac{p\left(x_i + \frac{h}{2}\right) + p\left(x_i - \frac{h}{2}\right)}{h^2 r(x_i)} - \frac{q(x_i)}{r(x_i)} \end{cases}$

Đây là hệ đại số tuyến tính thuần gồm n + 1 ẩn, để hệ này tồn tại nghiệm không đồng thời bằng 0 thì định thức của hệ phải bằng 0, hay nói cách khác λ sẽ là trị riêng của hệ đại số tuyến tính sau :

$$\begin{cases} a_i u_{i-1} + b_i u_i + c_i u_{i+1} = 0 & \text{v\'oi} \ i = \overline{1, n-1} \\ u_0 = u_n = 0 \end{cases}$$

Giải đa thức đặc trưng ta sẽ tìm được λ là giá trị riêng xấp xỉ của bài toán Thay lại λ vào hệ ta sẽ tìm được hàm riêng xấp xỉ u(x).

4. Thuật toán

a. Bài toán biên

Bài toán biên loại 1

Input :
$$p(x)$$
, $f(x)$, $q(x)$, a, b, α , β

Chọn n là số nút của lưới
$$h = (b - a)/(n - 1)$$
 là bước của lưới

Xây dựng ma trận hệ số 3 đường chéo dựa vào công thức đã tìm được.

Giải ma trận

$$\begin{cases} u_0 = \alpha, \ u_n = \beta \\ a_i u_{i-1} + b_i u_i + c_i u_{i+1} = d_i \end{cases} \quad i = \overline{1, n-1}$$

$$\begin{cases} u_i = u(x_i), d_i = f(x_i) \\ a_i = \frac{p(x_i - \frac{h}{2})}{h^2} \\ b_i = -\left(\frac{p(x_i + \frac{h}{2}) + p(x_i - \frac{h}{2})}{h^2} + q(x_i)\right) \\ c_i = \frac{p(x_i + \frac{h}{2})}{h^2} \end{cases}$$

4. Thuật toán

a. Bài toán biên

Bài toán biên loại 2 và 3

Input : p(x), f(x), q(x), a, b, σ_1 , σ_2 , μ_1 , μ_2

Chọn n là số nút của lưới h = (b - a)/(n - 1) là bước của lưới

Xây dựng ma trận hệ số 3 đường chéo dựa vào công thức đã tìm được.

Giải ma trận

$$\begin{cases} b_0u_0+c_0u_1=d_0\\ a_nu_{n-1}+b_nu_n=d_n\\ a_iu_{i-1}+b_iu_i+c_iu_{i+1}=d_i & i=\overline{1,n-1} \end{cases}$$

$$\begin{cases} b_0=-\Big(\sigma_1+\frac{p\left(x_0+\frac{h}{2}\right)}{h}-\frac{q(x_0)h}{2}\Big),c_0=\frac{p\left(x_0+\frac{h}{2}\right)}{h},d_0=-\mu_1-\frac{f(x_0)h}{2}\\ a_n=-\frac{p\left(x_n-\frac{h}{2}\right)}{h},b_n=-\sigma_2+\frac{p\left(x_n-\frac{h}{2}\right)}{h}-\frac{q(b)h}{2},d_n=-\mu_2-\frac{f(x_n)h}{2}\\ u_i=u(x_i),d_i=f(x_i)\\ a_i=\frac{p\left(x_i-\frac{h}{2}\right)}{h^2},b_i=-\Big(\frac{p\left(x_i+\frac{h}{2}\right)+p\left(x_i-\frac{h}{2}\right)}{h^2}+q(x_i)\Big),c_i=\frac{p\left(x_i+\frac{h}{2}\right)}{h^2} \end{cases}$$

4. Thuật toán

b. Bài toán trị riêng

Input :
$$p(x)$$
, $q(x)$, $r(x)$

Chọn n là số nút của lưới h = (b - a)/(n - 1) là bước của lưới

Xây dựng ma dựa vào công thức đã tìm được.

Giải ma trận

$$\begin{cases} a_{i}u_{i-1} + (b_{i} - \lambda)u_{i} + c_{i}u_{i+1} = 0 & \text{v\'oi} \ i = \overline{1, n-1} \\ u_{0} = u_{n} = 0 \end{cases}$$

trong đó
$$\begin{cases} a_i = \frac{p\left(x_i - \frac{h}{2}\right)}{h^2 r(x_i)} \\ b_i = -\frac{p\left(x_i + \frac{h}{2}\right) + p\left(x_i - \frac{h}{2}\right)}{h^2 r(x_i)} - \frac{q(x_i)}{r(x_i)} \\ c_i = \frac{p\left(x_i + \frac{h}{2}\right)}{h^2 r(x_i)} \end{cases}$$

5. Đánh giá thuật toán

<u>**Ưu điểm**</u>:

- Thuật toán đơn giản, dễ cài đặt
- Tính hiệu quả cao trong hầu hết các trường hợp

Nhược điểm:

- Thuật toán chỉ có thể xấp xỉ chứ không thể tìm chính xác hàm số
- Khi khoảng [a, b] lớn, dẫn đến sai số lớn, hàm tìm được có thể không còn chính xác

HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!