§4. Понятие линейной зависимости и линейной независимости системы векторов

Определение 4.1. Линейной комбинацией векторов $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ называется сумма произведений данных векторов на произвольные вещественные числа $\lambda_1, ..., \lambda_n$.

Таким образом, линейная комбинация векторов $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ имеет вид

$$\lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \ldots + \lambda_n \vec{e}_n, \tag{4.1}$$

где $\lambda_i \in \mathbb{R}$, i = 1,...,n. Здесь под \mathbb{R} понимается множество всех вещественных чисел (см. раздел 4, глава 1, §1). Очевидно, линейная комбинация векторов также является вектором.

Определение 4.2. Линейная комбинация (4.1) векторов $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ называется нетривиальной, если не все числа λ_i , i=1,...,n, равны нулю, т.е. $\lambda_1^2 + \lambda_2^2 + ... + \lambda_n^2 > 0$. Если все $\lambda_i = 0$, i=1,...,n, то линейная комбинация (4.1) называется тривиальной.

Заметим, что тривиальная линейная комбинация любых векторов является нульвектором. Действительно, $0 \cdot \vec{e}_1 + 0 \cdot \vec{e}_2 + \ldots + 0 \cdot \vec{e}_n = \vec{0}$.

Определение 4.3. Векторы $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ называются *линейно зависимыми*, если существует их нетривиальная линейная комбинация, равная нуль-вектору, иначе данные векторы называются *линейно независимыми*.

Для линейно зависимых векторов равенство

$$\lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \ldots + \lambda_n \vec{e}_n = \vec{0} \tag{4.2}$$

выполняется при некоторых $\lambda_1, \lambda_2, \dots, \lambda_n$, удовлетворяющих условию $\lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2 > 0$, а для линейно независимых векторов равенство (4.2) справедливо только при $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$.

Свойства линейно зависимых векторов

- **1.** Если хотя бы один из векторов $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ нулевой, то эти векторы линейно зависимы.
- **2.** Если какие-то k из n векторов $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ ($2 \le k < n$) линейно зависимы, то и все векторы $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ линейно зависимы.
- **3.** Векторы $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ линейно зависимы тогда и только тогда, когда хотя бы один из векторов является линейной комбинацией всех остальных.
- ▶1–2. Доказательство следует из возможности выбора ненулевых коэффициентов в равенстве (4.2). В первом случае такой коэффициент можно выбрать при нулевом векторе. Во втором случае этот выбор обеспечивается линейной зависимостью k векторов системы. Пусть это векторы $\vec{e}_1, ..., \vec{e}_k$. Тогда существуют числа $\lambda_1, ..., \lambda_k$, не все равные нулю, такие, что $\lambda_1 \vec{e}_1 + ... + \lambda_k \vec{e}_k = \vec{0}$. Если положить $\lambda_{k+1} = \lambda_{k+2} = ... = \lambda_n = 0$, то получим нетривиальную линейную комбинацию $\lambda_1 \vec{e}_1 + ... + \lambda_k \vec{e}_k + 0 \cdot \vec{e}_{k+1} + ... + 0 \cdot \vec{e}_n$, равную $\vec{0}$ вектору.

3. Утверждение "данные векторы линейно зависимы" означает, что в равенстве (4.2) не все $\lambda_i=0$, $i=1,\dots,n$. Для определённости предположим, что $\lambda_n\neq 0$, при этом равенство (4.2) преобразуется к виду

$$\vec{e}_n = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \ldots + \alpha_{n-1} \vec{e}_{n-1}, \tag{4.3}$$

где $\alpha_i = -\lambda_i/\lambda_n$, i = 1, ..., n-1. А это и означает, что один из векторов (а именно \vec{e}_n) является линейной комбинацией векторов $\vec{e}_1, \vec{e}_2, ..., \vec{e}_{n-1}$. Напротив, если имеет место равенство (4.3), то для векторов $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ из (4.3) получаем:

$$\alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \dots + \alpha_{n-1} \vec{e}_{n-1} - \vec{e}_n = 0.$$
 (4.4)

Левая часть равенства (4.4) — нетривиальная линейная комбинация данных векторов, так как коэффициент при векторе \vec{e}_n равен −1. Следовательно, по определению 4.3 в силу (4.4) данные векторы линейно зависимы. \blacktriangleleft

Замечание 4.1. Понятие линейной зависимости и линейной независимости, вообще говоря, отнесены к системе векторов. Для единства формул и формулировок любой ненулевой вектор целесообразно считать линейно независимым, а нульвектор — линейно зависимым. Действительно, равенство $\lambda \vec{a} = \vec{0}$ при $\lambda \neq 0$ справедливо только при $\vec{a} = \vec{0}$.