Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №2.2, 2.3

по курсу общей физики
на тему:
«Изучение спектров атома водорода
и молекулы йода»

Работу выполнил: Баринов Леонид (группа Б02-827)

1. Цель работы

В работе исследуются сериальные закономерности в оптическом спектре водорода и спектр поглощения паров йода в видимой области.

2. Суть исследуемого явления

Спектр атома — набор частот, испускаемых возбужденным атомом. Экспериментально спектр определяется с хорошей точностью, поэтому представляет интерес сравнить эти экспериментальные данные с теорией.

Особенно хорошо получается провести процесс сравнения теории явления и наблюдаемого спектра на атоме водорода и водородноподобных (одноэлектронных) атомах, для которых уравнение Шредингера (2) может быть решено точно.

3. Теория явления

Одним из основных утверждений квантовой механики является утверждение, что состояние, в котором физическая величина f имеет определенное значение f_0 , описывается ψ -функцией, являющейся решением уравнения:

$$\hat{f}\psi = f_0\psi \tag{1}$$

У изолированных систем сохраняется энергия, следовательно их состояния описываются ψ -функциями. Подставляя в (1) вместо \hat{f} оператор полной энергии, получим уравнение Шредингера для стационарных состояний:

$$-\frac{\hbar^2}{2m}\Delta\psi + U\psi = E_0\psi \tag{2}$$

U — потенциальная энергия. В случае водородноподобного атома она будет выражаться кулоновским взаимодействием ядра и электрона:

$$U(r) = -\frac{Ze^2}{r} \tag{3}$$

где Z — заряд ядра.

Уравнение Шредингера (2) с потенциальной энергией (3) может быть решено точно. Энергетические состояния будут определяться выражением:

$$E_n = -\frac{2\pi^2 m_e e^4 Z^2}{h^2} \frac{1}{n^2} \tag{4}$$

В формуле (4) выделяют постоянную Ридберга:

$$R = \frac{2\pi^2 m_e e^4}{h^3 c} \tag{5}$$

Излучение или поглощение происходит при переходе электрона с одной орбиты на другую, при этом частота излучения

$$h\nu = E_1 - E_2 \tag{6}$$

Рис. 1. Уровни энергии атома водорода и образование спектральных серий

Тогда при переходе электрона в атоме водорода с уровня m на уровень n длина волны излучения:

$$\frac{1}{\lambda} = R\left(\frac{1}{n^2} - \frac{1}{m^2}\right) \tag{7}$$

Из $puc.\ 1$ видно, что линии в спектре водорода можно расположить по сериям; для всех линий серии значение n остается постоянными, а m может принимать любые значения от n+1 до ∞ . В данной работе изучается серия Бальмера, линии которой лежат в видимой области. Для серии Бальмера n=2. Величина m для первых четырех линий этой серии принимает значение 3,4,5,6. Это линии обозначаются символами $H_{\alpha},H_{\beta},H_{\gamma},H_{\delta}$.

Молекулы обладают более богатым спектром возбужденных состояний, так как обладают колебательными и вращательными под-

уровнями. В первом приближении $E=E_{\rm эл}+E_{\rm кол}+E_{\rm вращ}$. Энергия колебательных состояний примерно в 10^3 меньше энергии электронных переходов $E_{\rm эл}$, энергия вращательных состояний $E_{\rm вращ}$ меньше $E_{\rm эл}$ примерно в 10^6 раз, в связи с чем обнаружить $E_{\rm вращ}$ спектроскопическим методом в данной работе невозможно.

Рис. 2. Электронные и электронно-колебательные энергетические уровни двухатомной молекулы

На puc. 2 схематически изображены энергетические уровни молекулы без учета вращательной структуры. Штриховыми линиями показаны чисто электронные уровни E_1 и E_2 , а сплошными — колебательные подуровни этих состояний. Минимальное значение колебательной энергии при n=0 отлично от нуля и равно $h\nu/2$. С ростом квантовых чисел n_1 и n_2 колебательные подуровни сближаются и переходят в непрерывный спектр, области которого на рисунке

заштрихованы. С ростом n растет амплитуда колебаний, при достижении некоторой максимальной амплитуды происходит разрыв связи между атомами — диссоциация молекулы.

Наименьшая энергия, которую нужно сообщить молекулы в нижайшем колебательном состоянии (n=0), чтобы она диссоциировала, называется энергией диссоциации. На $puc.\ 2\ D_1,\ D_2$ — энергия диссоциации молекулы из состояний $n_1=0$ и $n_2=0$; E_a — энергия возбуждения атома, возникающая при переходе молекулы из состояния 1 в область непрерывного спектра, соответствующего состоянию 2; $h\nu_{\rm эл}$ — энергия чисто электронного перехода; $h\nu_{\rm гp}$ — энергия возбуждения, при которой происходит переход молекулы в область непрерывного спектра.

Спектр поглощения йода в видимой области при комнатной температуре состоит из двух серий Деландра (нулевая и первая).

 hv_{3,0}
 0-я серия

 1-я серия
 Общий вид спектра

 hv_{1,0}
 hv_{1,5}

Рис. 3. Структура электронноколебательного спектра поглощения молекулы йода в видимой области

Рис. 4. Спектр поглощения паров йода

Энергетическое положение линий поглощения описывается выражением

$$h\nu_{0,n_2} = (E_2 - E_1) + h\nu_2\left(n_2 + \frac{1}{2}\right) - \frac{1}{2}h\nu_1 \tag{8}$$

4. Эксперимент

4.1. Экспериментальная установка

Для измерения длин волн спектральных линий в работе используется стекляннопризменный монохроматор-спектрометр УМ-2 (универсальный монохроматор), предназначенный для спектральных исследований в диапазоне от 0.38 до 1.00мкм.

Основные элементы монохроматора представлены на puc.~5.~1 — входная щель; 2 — коллиматорный объектив; 3 — спектральная призма; 4 — объектив; 5 — окуляр; 6 — поворотный столик; 7 — отсчетный барабан; 8,~9 — микрометрические винты; 10 — острие указателя; 11 — массивный корпус; $\Pi_1,~\Pi_2,~\Pi_3$ — призмы; \mathcal{J} — источник света; K — конденсатор.

В опытах по измерению длин волн балмеровской серии источником света служит водородная трубка Н-образной формы, питаемая от источника высокого напряжения. В спектре водородной лампы наряду с линиями атомного спектра наблюдается также спектр молекулярного водорода, однако их интенсивность значительно слабее.

Рис. 5. Схема экспериментальной установки для изучения спектра атома водорода

Рис. 6. Схема экспериментальной установки для изучения молекулярного спектра йода

На $puc.\ 6$ изображена схема экспериментальной установки для изучения молекулярного для изучения молекулярного спектра йода. 1 — лампа накаливания; 2 — блок питания; 3 — кювета; 4 — линза.

В нашей работе спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2. Кювета 3 с кристаллами йода подогревается нихромовой спиралью, подключённой вместе с лампой накаливания к блоку питания. Линза 4 используется как конденсор. В результате подогрева кристаллы йода частично возгоняются, образуя пары с лёгкой фиолетовой окраской. Спектрометр позволяет визуально наблюдать линии поглощения молекул йода на фоне сплошного спектра излучения лампы накаливания видимой области.

5. Результаты эксперимента

Калибруем барабан монохроматора с помощью спектров неона и ртути.

	Ne Hg							
№	λ, \mathring{A}	$ heta,^{\circ}$	№	λ, \mathring{A}	$ heta,^{\circ}$	№	$\lambda,\ \mathring{A}$	$ heta,^\circ$
1	7032	2596	14	6164	2292	K1	6907	2562
2	6929	2564	15	6143	2282	K2	6234	2320

N		le e			Hg			
Nº	λ, \mathring{A}	$ heta,^{\circ}$	№	λ, \mathring{A}	$\theta,^{\circ}$	Nº	λ, \mathring{A}	$\theta,^{\circ}$
3	6717	2504	16	6096	2264	1	5792	2115
4	6678	2490	17	6074	2254	2	5770	2104
5	6599	2461	18	6030	2232	3	5461	1923
6	6533	2434	19	5976	2210	4	4916	1494
7	6507	2426	20	5945	2196	5	4358	821
8	6402	2388	21	5882	2166	6	4047	265
9	6383	2380	22	5852	2152			
10	6334	2364	23	5401	1883			
11	6305	2354	24	5341	1841			
12	6267	2336	25	5331	1834			
13	6217	2314						

Таблица 1. Калибровка барабана монохроматора по спектрам неона и ртути

По результатам в таблице 1 построим калибровочный график (puc. 7). Аппроксимируем по дисперсионной формуле Гартмана:

$$\lambda = \lambda_0 + \frac{C}{\theta - \theta_0}$$

Рис. 7. Калибровка барабана монохроматора по спектрам неона Ne и ртути Hg

Рассмотрим линии спектра водорода и из градуировочной кривой определим их длины волн. Результаты сведем в таблицу 2 и построим график связи длины волны и номера перехода.

Линия спектра	θ , °	λ, \mathring{A}	m	$1/n^2 - 1/m^2$	$1/\lambda, 10^{-4} \mathring{A}^{-1}$
H_{lpha}	2451	6571	3	0,139	1,522
H_{eta}	1464	4881	4	0,188	2,049
H_{γ}	839	4368	5	0,210	2,289
H_{δ}	414	4123	6	0,222	2,425

Таблица 2. Определение линий спектра водорода

Рис. 8. Проверка обобщенной формулы Бальмера (7)

6. Анализ результатов

Из графика на рис. 8 определим постоянную Ридберга:

$$R = (10.914 \pm 0.012) \cdot 10^4 \, \text{cm}^{-1}$$

Исследуем спектр поглощения йода. Определим на монохроматоре деления, соответствующие длинноволновой линии и линии, отстоящей на 6 от нее а также границу схождения спектра.

$$\begin{split} &\theta_{1,0} = 2386 \Rightarrow \lambda_{1,0} = 6394 \ \mathring{A} \Rightarrow h\nu_{1,0} \approx 1{,}94 \ \text{9B} \\ &\theta_{1,5} = 2282 \Rightarrow \lambda_{1,5} = 6139 \ \mathring{A} \Rightarrow h\nu_{1,5} \approx 2{,}02 \ \text{9B} \\ &\theta_{\text{PD}} = 1616 \Rightarrow \lambda_{\text{PD}} = 5023 \ \mathring{A} \Rightarrow h\nu_{\text{PD}} \approx 2{,}46 \ \text{9B} \end{split}$$

Проведем расчеты энергии колебательного кванта возбужденного состояния молекулы йода согласно (8).

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5} = (0.0160 \pm 0.0007) \text{ 9B}$$

Вычислим $h\nu_{\text{эл}}=E_2-E_1$, сделав сдвиг серии на 1 (вычитая $h\nu_1=0{,}027\,\text{эВ})$:

$$h
u_{\text{эл}} = h
u_{1,0} - \frac{1}{2}h
u_2 + \frac{3}{2}h
u_1 = (1,98 \pm 0,02)$$
 эВ

Получим энергии диссоциации частицы в основном D_1 и возбужденном состоянии D_2 , считая $E_a=0.94$ эВ.

$$D_1 = h
u_{
m rp} - E_a = (1,52 \pm 0,03) \ {
m 9B}$$
 $D_2 = h
u_{
m rp} - h
u_{
m 9J} = (0,48 \pm 0,05) \ {
m 9B}$

7. Выводы

В работе было проведено исследование спектров водорода и йода в видимой области. В спектре водорода в видимой области находится серия Бальмера, в которой наблюдались первые четыре линии H_{α} , H_{β} , H_{γ} , H_{δ} . С помощью калибровки монохроматора по спектрам неона Ne и ртути Hg (puc. 7) были определены длины волн переходов четырех первых линий водорода при n=2 (Таблица 2). По результатам был построен график зависимости $1/\lambda$ от $1/n^2-1/m^2$ (puc. 8), который является линейным. Это является подтверждением обобщенной формулы Бальмера (7) и соответствует теории атома Нильса Бора, также это позволяет вычислить постоянную Ридберга:

$$R = (109140 \pm 120) \text{ cm}^{-1}$$

Значение близкое к табличному:

$$R^{\text{\tiny T}} = 109678 \, \text{cm}^{-1}$$

Расхождения связаны с неточностью снятия спектра водорода. Получившиеся значения λ в таблице 2 отличаются от табличных значений в среднем на $20\,\mathring{A}$.

В спектре йода в данной работе кроме электронных уровней наблюдаются колебательные подуровни. Исходя из интенсивности спектра удалось пронаблюдать 2 серии Деландра. По ним были проведены расчеты энергии колебательного кванта возбужденного состояния молекулы йода, которая получилась в 100 раз меньше энергии электронного перехода; вычислены значения диссоциации частицы в основном D_1 и возбужденном состоянии D_2 :

$$D_1 = (1.52 \pm 0.03) \text{ 9B}$$

 $D_2 = (0.48 \pm 0.05) \text{ 9B}$

Значение D_1 хорошо соотносится с табличным в отличие от D_2 :

$$D_1^{\scriptscriptstyle {
m T}} = 1{,}5425\,{
m {
m 9B}}$$
 $D_2^{\scriptscriptstyle {
m T}} = 0{,}69\,{
m {
m 9B}}$

Неточность полученных результатов связана со сложностью визуального определения линий спектра поглощения йода.