Collision Prevention in Distributed 6TiSCH Networks

Ali Jawad Fahs

Université Grenoble Alpes (UGA) - UFR IM²AG Laboratoire d'Informatique de Grenoble (LIG), Team Drakkar VERIMAG,Synchrone Supervised by: Olivier Alphand, Franck Rousseau Karine Altisen, Stéphane Devismes

Master thesis, 21st of June,2017

Outline

Introduction

General intoduction Project Objectives

Background

IEEE802.15.4e & 6top Collisions in Dedicated cells

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Avoid Table

Adding the Cell Buffer

Simulator and Results

Simulator

Results

Outline

Introduction

General intoduction

Project Objectives

Background

IEEE802.15.4e & 6top

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Avoid Table

Adding the Cell Buffer

Simulator and Results

Simulator

Results

IoT & Wireless Sensor Networks

ΙoΤ

Historically networks were a connection of high performance expensive computers.

IoT & Wireless Sensor Networks

IoT

- Historically networks were a connection of high performance expensive computers.
- Nowadays network is a connection of entities with limited processing capabilities called Things.

IoT & Wireless Sensor Networks

IoT

- Historically networks were a connection of high performance expensive computers.
- Nowadays network is a connection of entities with limited processing capabilities called Things.
- ▶ led us to the idea of Internet of Things (IoT)

IoT & Wireless Sensor Networks

IoT

- Historically networks were a connection of high performance expensive computers.
- Nowadays network is a connection of entities with limited processing capabilities called Things.
- ▶ led us to the idea of *Internet of Things (IoT)*

Wireless Sensor Networks

▶ A source of communication between the IoT nodes.

IoT & Wireless Sensor Networks

lo_T

- Historically networks were a connection of high performance expensive computers.
- Nowadays network is a connection of entities with limited processing capabilities called Things.
- ▶ led us to the idea of *Internet of Things (IoT)*

Wireless Sensor Networks

- A source of communication between the IoT nodes.
- Main contributions are : low power, low cost.

IoT & Wireless Sensor Networks

IoT

- Historically networks were a connection of high performance expensive computers.
- Nowadays network is a connection of entities with limited processing capabilities called Things.
- ▶ led us to the idea of *Internet of Things (IoT)*

Wireless Sensor Networks

- A source of communication between the IoT nodes.
- Main contributions are : low power, low cost.
- ▶ IEEE802.15.4 one of the main standard for those Networks

IEEE802.15.4

IEEE802.15.4

 The low layers of the network (i.e., PHY and MAC)

IEEE802.15.4

- The low layers of the network (i.e., PHY and MAC)
- The Physical Layer and Medium Access Control Layer.

- The low layers of the network (i.e., PHY and MAC)
- The Physical Layer and Medium Access Control Layer.
- Uses RPL to set-up A DODAG.

IEEE802.15.4

- The low layers of the network (i.e., PHY and MAC)
- The Physical Layer and Medium Access Control Layer.
- Uses RPL to set-up A DODAG.
- A converge cast towards a sink.

IEEE802.15.4

- The low layers of the network (i.e., PHY and MAC)
- The Physical Layer and Medium Access Control Layer.
- Uses RPL to set-up A DODAG.
- A converge cast towards a sink.

IEEE802.15.4

IEEE802.15.4e TSCH

▶ Extension of the Medium Access Control (MAC) Layer.

IEEE802.15.4

- Extension of the Medium Access Control (MAC) Layer.
- Time-slotted Channel Hopping (TSCH) is based on time frequency multiplexing.

IEEE802.15.4

- Extension of the Medium Access Control (MAC) Layer.
- Time-slotted Channel Hopping (TSCH) is based on time frequency multiplexing.
- Two types of cells: dedicated and shared.

IEEE802.15.4

- Extension of the Medium Access Control (MAC) Layer.
- Time-slotted Channel Hopping (TSCH) is based on time frequency multiplexing.
- Two types of cells: dedicated and shared.
- Managed in centralized or distributed way.

Collision in the Dedicated Cells

IEEE802.15.4e TSCH

► Collision free dedicated cells.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Collision in the Dedicated Cells

- Collision free dedicated cells.
- Collisions in distributed approach .

Collision in the Dedicated Cells

- Collision free dedicated cells.
- Collisions in distributed approach .
- ▶ Lack of central entity.

Collision in the Dedicated Cells

- Collision free dedicated cells.
- Collisions in distributed approach .
- ▶ Lack of central entity.
- Collision are very expensive in Wireless sensor Networks.

Outline

Introduction

General intoduction

Project Objectives

Background

IEEE802.15.4e & 6top

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Avoid Table

Adding the Cell Buffer

Simulator and Results

Simulator

Results

Project Objectives

Reducing the collisions in TSCH dedicated cells.

Project Objectives

- Reducing the collisions in TSCH dedicated cells.
- Modifying the Cell reserving process without introducing new overhead on the network

Project Objectives

- Reducing the collisions in TSCH dedicated cells.
- Modifying the Cell reserving process without introducing new overhead on the network
- Creating a flexible mechanism, compatible with all scheduling functions

Outline

Introduction

General intoduction Project Objectives

Background

IEEE802.15.4e & 6top

Collisions in Dedicated cells

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Avoid Table

Adding the Cell Buffer

Simulator and Results

Simulator

Results

6TiSCH

► The standard have defined TSCH schedule but the control of this schedule was left for other protocols for flexibility and optimization.

- ► The standard have defined TSCH schedule but the control of this schedule was left for other protocols for flexibility and optimization.
- ▶ 6TiSCH purpose is the Integration of IPv6 and TSCH.

- The standard have defined TSCH schedule but the control of this schedule was left for other protocols for flexibility and optimization.
- ▶ 6TiSCH purpose is the Integration of IPv6 and TSCH.
- ▶ 6TiSCH operation (6top) is a sublayer of 6TiSCH.

- The standard have defined TSCH schedule but the control of this schedule was left for other protocols for flexibility and optimization.
- ▶ 6TiSCH purpose is the Integration of IPv6 and TSCH.
- 6TiSCH operation (6top) is a sublayer of 6TiSCH.
- 6top contains the scheduling function.

- ► The standard have defined TSCH schedule but the control of this schedule was left for other protocols for flexibility and optimization.
- ▶ 6TiSCH purpose is the Integration of IPv6 and TSCH.
- 6TiSCH operation (6top) is a sublayer of 6TiSCH.
- 6top contains the scheduling function.
- 6top is responsible for the cell addition and deletion.

6top

 Orchestrates all communications using the TSCH schedule.

PCEP PCC	CoAP DTLS	PANA	6LoWPAN ND	RPL		
TCP	UDP		ICMP		RSVP	
IPV6						
6LoWPAN HC						
6top						
IEEE802.15.4e TSCH						
IEEE802.15.4 PHY						

6top

- Orchestrates all communications using the TSCH schedule.
- Allows the nodes to request for new TSCH cells.

PCEP PCC	CoAP DTLS	PANA	6LoWPAN ND	RPL		
TCP	UDP		ICMP		RSVP	
IPV6						
6LoWPAN HC						
6top						
IEEE802.15.4e TSCH						
IEEE802.15.4 PHY						

6top

- Orchestrates all communications using the TSCH schedule.
- Allows the nodes to request for new TSCH cells.
- 6top enables the distributed scheduling in 6TiSCH network.

PCEP PCC	CoAP DTLS	PANA	6LoWPAN ND	RPL		
TCP	UDP		ICMP		RSVP	
IPV6						
6LoWPAN HC						
6top						
IEEE802.15.4e TSCH						
IEEE802.15.4 PHY						

IEEE802.15.4e & 6top

▶ 6top transactions: negotiation to Add/Delete/Relocate cells.

IEEE802.15.4e and 6top

IEEE802.15.4e & 6top

- ▶ 6top transactions: negotiation to Add/Delete/Relocate cells.
- ► Two types: 2-step and 3-step.

IEEE802.15.4e and 6top

IEEE802.15.4e & 6top

- ▶ 6top transactions: negotiation to Add/Delete/Relocate cells.
- ► Two types: 2-step and 3-step.
- ▶ The transaction is done in the shared slot.

IEEE802.15.4e and 6top

IEEE802.15.4e & 6top

- ▶ 6top transactions: negotiation to Add/Delete/Relocate cells.
- ► Two types: 2-step and 3-step.
- ▶ The transaction is done in the shared slot.
- The transaction will be received by the neighbor nodes by dropped due too MAC filtering of the messages.

Outline

Introduction

General intoduction Project Objectives

Background

IEEE802.15.4e & 6top

Collisions in Dedicated cells

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Avoid Table

Adding the Cell Buffer

Simulator and Results

Simulator

Results

6top

▶ Nodes have no information about the neighbors.

6top

- Nodes have no information about the neighbors.
- Scheduling function cell selection does not consider the neighbor's cells.

6top

- Nodes have no information about the neighbors.
- Scheduling function cell selection does not consider the neighbor's cells.
- If another neighbor node is using the same cell a collision will occur.

6top

- ▶ Nodes have no information about the neighbors.
- Scheduling function cell selection does not consider the neighbor's cells.
- If another neighbor node is using the same cell a collision will occur.
- Collisions are expensive.

Outline

Introduction

General intoduction Project Objectives

Background

IEEE802.15.4e & 6top Collisions in Dedicated cells

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells Avoid Table Adding the Cell Buffer

Simulator and Results

Simulator

Our objective is to Reduce the collisions in the dedicated cells.

- Our objective is to Reduce the collisions in the dedicated cells.
- Using local mutual exclusion we can prevent collisions.

- Our objective is to Reduce the collisions in the dedicated cells.
- Using local mutual exclusion we can prevent collisions.
- Since we are working with distributed system, then all the information is local for each node.

- Our objective is to Reduce the collisions in the dedicated cells.
- Using local mutual exclusion we can prevent collisions.
- Since we are working with distributed system, then all the information is local for each node.
- Using the 6top transaction we can collect information about neighbors.

- Our objective is to Reduce the collisions in the dedicated cells.
- Using local mutual exclusion we can prevent collisions.
- Since we are working with distributed system, then all the information is local for each node.
- Using the 6top transaction we can collect information about neighbors.
- ► From the collected information we can prevent the nodes selecting the same cell.

- Our objective is to Reduce the collisions in the dedicated cells.
- Using local mutual exclusion we can prevent collisions.
- Since we are working with distributed system, then all the information is local for each node.
- Using the 6top transaction we can collect information about neighbors.
- ► From the collected information we can prevent the nodes selecting the same cell.

Outline

Introduction

General intoduction Project Objectives

Background

IEEE802.15.4e & 6top Collisions in Dedicated cells

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Avoid Table

Adding the Cell Buffer

Simulator and Results

Simulator

Results

Using 6top Transactions Collect neighbor's cells

D will transmit an Add request to B.

Using 6top Transactions Collect neighbor's cells

- D will transmit an Add request to B.
- ▶ B will reply with the Add Response that will contain the cells.

Using 6top Transactions Collect neighbor's cells

- D will transmit an Add request to B.
- ▶ B will reply with the Add Response that will contain the cells.
- ► The Add Response is transmitted in the shared cell, E & F will receive and extract the cells.

Outline

Introduction

General intoduction Project Objectives

Background

IEEE802.15.4e & 6top Collisions in Dedicated cells

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Avoid Table

Adding the Cell Buffer

Simulator and Results

Simulator

Results

Avoid Table

► The cells reserved by neighbors will be saved by a structure similar to TSCH table.

Avoid Table

- ► The cells reserved by neighbors will be saved by a structure similar to TSCH table.
- Scheduling function will avoid selecting cells found in this structure.

Avoid Table

- ► The cells reserved by neighbors will be saved by a structure similar to TSCH table.
- Scheduling function will avoid selecting cells found in this structure.
- 6top will manage this table.

Outline

Introduction

General intoduction Project Objectives

Background

IEEE802.15.4e & 6top Collisions in Dedicated cells

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Adding the Cell Buffer

Simulator and Results

Simulator

Results

▶ The assumption of 100% successful dilevery is not realistic.

- ▶ The assumption of 100% successful dilevery is not realistic.
- ▶ The 6top Transaction maybe lost due too environment effects.

- ▶ The assumption of 100% successful dilevery is not realistic.
- The 6top Transaction maybe lost due too environment effects.
- The loss of the transaction increase the probability of collisions.

- ▶ The assumption of 100% successful dilevery is not realistic.
- ▶ The 6top Transaction maybe lost due too environment effects.
- ► The loss of the transaction increase the probability of collisions.
- By saving the reserved cells in a buffer, and sending the buffer this probability can be reduced.

▶ We have created a probablistic model to calaculate the optimal length of the buffer.

- We have created a probablistic model to calaculate the optimal length of the buffer.
- ▶ *p* is the probability of successful transmission.

- We have created a probablistic model to calaculate the optimal length of the buffer.
- ▶ *p* is the probability of successful transmission.
- we are confidence with a probability P_o that one of the transmission is successful.

- We have created a probablistic model to calaculate the optimal length of the buffer.
- p is the probability of successful transmission.
- we are confidence with a probability P_o that one of the transmission is successful.
- ▶ *k* is the number of retransmission (the optimal length of the buffer).

- We have created a probablistic model to calaculate the optimal length of the buffer.
- p is the probability of successful transmission.
- ▶ we are confidence with a probability P_o that one of the transmission is successful.
- ▶ *k* is the number of retransmission (the optimal length of the buffer).
- we end up with the following equation using binomial distribution:

$$\left\lceil \frac{\log(1 - P_0)}{\log(1 - p)} \right\rceil$$

- We have created a probablistic model to calaculate the optimal length of the buffer.
- ▶ *p* is the probability of successful transmission.
- ▶ we are confidence with a probability P_o that one of the transmission is successful.
- ▶ *k* is the number of retransmission (the optimal length of the buffer).
- we end up with the following equation using binomial distribution:

$$\left\lceil \frac{\log(1 - P_0)}{\log(1 - p)} \right\rceil$$

► According to this equation, and by taking the worst case scenario a buffer of length 10 can assure us 95% of success

Outline

Introduction

General intoduction Project Objectives

Background

IEEE802.15.4e & 6top Collisions in Dedicated cells

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Avoid Table

Adding the Cell Buffer

Simulator and Results

Simulator

Results

Simulator Architecture

Figure: Simulator Architecture

Outline

Introduction

General intoduction Project Objectives

Background

IEEE802.15.4e & 6top Collisions in Dedicated cells

Proposed Mechanism

Criteria

Using 6top Transactions Collect neighbor's cells

Avoid Table

Adding the Cell Buffer

Simulator and Results

Simulator

Results

Results

Figure: Simulation of the Number of Collided Tx Cells as Function of Cycle Number (Time)

► The lost 6top transactions.

- ▶ The lost 6top transactions.
- Special Case That Induce Collisions.

Comparison with Housekeeping

Figure: Simulation of the Number of Collided Tx Cells as Function of Cycle Number (Time) - comparison with the housekeeping approach

Comparison with Housekeeping

Figure: Simulation of the Number of Collided Packets as Function of Cycle Number (Time) - comparison with the housekeeping approach

Summary

- Our implementation introduce no overhead in the network.
- ► The implementation achieved 60% reduction in the number of collided Tx cells and 70% reduction of the Collided Packets.
- ► The Combination of Our approach and Housekeeping accomplish an almost collision free dedicated cells.
- Outlook
 - Our goal is to reach a place were we have collision free network, using more complex methods.
 - Our prespective in this project was work on 6top, but our next steps is to study the effects of traffic in the protocols performances.

Thanks for your attention! Questions?