

Filtrace v prostorové a frekvenční oblasti

Filtrace v prostorové a frekvenční oblasti

Filtrace

- soubor lokálních transformací obrazu
- úrovně jasu se převádí na jiné
- cílem je potlačit nežádoucí jasové složky

Filtrace

- v prostorové (obrazové) nebo časové oblasti (konvoluce)
- ve frekvenční oblasti (Fourierova transformace)

- Filtry
 - Pracují s více pixely v obraze (nejsou zaměřeny na jeden pixel), tj. počítají novou hodnotu pixelu na základě hodnot více pixelů v obraze.
 - Díky tomu umožňují takové operace, jako je např. zaostření nebo rozmazání obrazu
 - Filtry potlačují část neužitečné informace a zdůrazňují tu užitečnou.
 - Filtrace nebývá vratnou operací, tj. dochází díky ní ke ztrátě informace.

Příklad průměrovacího filtru (rozmazání)

$$I'(u,v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}$$

Kde p_i jsou jsou sousední pixely středového pixelu p₀.

• Jiný zápis téhož, ale pomocí relativních odkazů na sousední pixely

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \begin{bmatrix} I(u-1,v-1) + I(u,v-1) + I(u+1,v-1) + I(u-1,v) + I(u,v) + I(u+1,v) + I(u-1,v+1) + I(u,v+1) + I(u+1,v+1) \end{bmatrix}$$

resp. v kompaktní formě:

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

- (Obrazový) filtr je charakterizován zejména
 - množinou pixelů, které zohledňuje ve výpočtu
 - velikostí této množiny
 - tvarem oblasti, kterou tyto pixely vymezují (nemusí být spojitá)
 - váhami (vlivem) jednotlivých pixelů

- Lineární filtry
 - Lineární filtry jsou postaveny na váženém součtu hodnot uvažovaných pixelů
 - Velikost, tvar a váhy jsou určeny tzv. filtrační maticí, resp. filtrační maskou H(i,j)
 - Např. zmíněný průměrovací filtr velikosti 3x3 má masku:

$$H(i,j) = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Filtr sám je dvourozměrnou diskrétní funkcí $H: Z \times Z \rightarrow R$
- Filtr bývá zvykem indexovat od jeho středu.
- Pro matematické operace se uvažuje automatické doplnění nulami okolo filtru.

- Pro výpočty je výhodné mít v matici celá čísla.
- Lin. filtry mají svá omezení při vyhlazování a odstraňování šumu (rozmazání).

- Aplikace filtru
 - Maska filtru (dále jen filtr) je umístěna na uvažovanou pozici v obrázku.
 - Všechny hodnoty filtru H(i, j) jsou pronásobeny s odpovídající hodnotami v obraze I(u+i, v+j) a následně sečteny.
 - Výsledná hodnota je uložena do nového obrázku (nejsou přepisovány hodnoty ve stávajícím obrazu) a celý proces se opakuje pro další pixely v obrazu

Proces aplikace filtru lze vyjádřit vztahem (tzv. lin. korelace)

$$I'(u,v) \leftarrow \sum_{(i,j)\in R_H} I(u+i,v+j) \cdot H(i,j)$$

$$I'(u,v) \leftarrow \sum_{i=-1}^{i=1} \sum_{j=-1}^{j=1} I(u+i,v+j) \cdot H(i,j)$$

- (Lineární) konvoluce
 - Kombinace (pronásobení) dvou diskrétních nebo spojitých funkcí mezi sebou při různém vzájemném překryvu

$$I*H = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} I(u-i,v-j) \cdot H(i,j)$$

Vlastnosti konvoluce

- Komutativita I * H = H * I
- Linearita $(s \cdot I) * H = I * (s \cdot H) = s \cdot (I * H)$

$$(I_1 + I_2) * H = (I_1 * H) + (I_2 * H)$$

- Asociativita A*(B*C) = (A*B)*C
- Separabilita $H = H_1 * H_2 * ... * H_n$

$$I' \leftarrow (I * H_x) * H_y = I * \underbrace{(H_x * H_y)}_{H_{xy}}$$

Ušetření počtu operací, než u výpočtu s maticí

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	
0	104	104	104	100	98	
						9

44.0			200
Kerne	⊃l N	1atr	'ix

0	-1	0		
-1	5	-1		
0	-1	0		

320				25
				4000
		5		
	B1-1 1 - 1 - 1			2000
			%	

Image Matrix

$$0*0+0*-1+0*0$$

+0*-1+105*5+102*-1
+0*0+103*-1+99*0 = 320

Output Matrix

Tvary/typy filtrů (konvolučních jader)

- Vyhlazovací filtry
 - Krabicový filtr (Box filter)
 - Jednoduchá implementace
 - Nevýhodou jsou ostré přechody -> zvlnění obrazu
 - Neizotropní (nechová se stejně ve všech směrech)
 - Gaussovský filtr (Gaussian filter)
 - Izotropní
 - "měkké" okraje, bez zvlnění obrazu

$$G_{\sigma}(x,y) = e^{-\frac{r^2}{2\sigma^2}} = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\frac{1}{16} \begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix}$$

- Diferenční filtry
 - Některé koeficienty filtrační matice jsou záporné
 - Výpočet lze interpretovat jako rozdíl dvou součtů: součet hodnot pro kladné hodnoty filtru mínus součet hodnot pro záporné hodnoty filtru

$$\begin{split} I'(u,v) &= \sum_{(i,j) \in R_H^+} I(u+i,v+j) \cdot |H(i,j)| \\ &- \sum_{(i,j) \in R_H^-} I(u+i,v+j) \cdot |H(i,j)| \end{split}$$

- Příkladem je např. Laplaceův filtr
- Zatímco vyhlazovací filtry potlačují výrazné osamělé hodnoty, diferenční filtry je naopak zvýrazňují -> zaostřování obrázku, detekce hran

- Nelineární filtry
 - Hodnoty pixelů jsou kombinovány pomocí nelineární funkce.
- Minimální a maximální filtr

$$I'(u,v) \leftarrow \min \left\{ I(u+i,v+j) \mid (i,j) \in R \right\}$$
$$I'(u,v) \leftarrow \max \left\{ I(u+i,v+j) \mid (i,j) \in R \right\}$$

Min. filtr (potlačení bílé, zvýraznění černé)

Max. filtr (potlačení černé, zvýraznění bílé)

- Mediánový filtr
 - Nahrazuje hodnotu daného pixlu mediánem hodnot sousedních pixelů

$$I'(u,v) \leftarrow \text{ median } \{I(u+i,v+j) \mid (i,j) \in R\}$$

- Pro výpočet mediánu je potřeba provést seřazení hodnot -> časově náročné.
- Robustní nerozhodí ho extrémní hodnoty.
- Zachovává hrany, bohužel je někdy i vytváří.

 Srovnání lineárního filtru (matice jedniček 3x3) a mediánového filtru

Průměrovací lin. filtr 3x3

Př. Impulzní šum ("pepř a sůl")

- Vážený mediánový filtr
 - Jednotlivým pozicím ve filtru jsou přiřazeny váhy, tj. důležitosti jednotlivých hodnot
 - Většinou váhy blízko uvažovaného pixelu jsou větší, než vzdálenější pixely
 - Váhová matice $W(i, j) \in \mathbb{N}$
 - Výpočet probíhá tak, že každá hodnota obrazu je nakopírována do pomocného vektoru tolikrát, jaké je číslo na odpovídající pozici ve váhové matici.
 - Teprve poté je vypočten medián vektoru.

- Hraniční oblasti
 - Problém: Jak počítat hodnoty na okrajích obrázku
 - Několik způsobů řešení:
 - Okrajové hodnoty doplnit nějakou konstantou, např. 0 = černá
 - Okrajové hodnoty doplnit hodnotami nejbližšího pixelu obrázku
 - Použít zrcadlově obrácený obraz
 - Periodicky rozšířit obraz (výhodné, pokud pracujeme ve frekvenční oblasti)

- Fourierova analýza slouží ke zjištění, z jakých harmonických funkcí se daná funkce skládá.
- Harmonický signál: $y(x) = A.\sin(\omega x + \varphi)$, kde
 - A je amplituda
 - ω je kruhová **frekvence**, $\omega = \frac{2\pi}{T}$, T je perioda
 - φ je **fázový posun** (fáze)
- Výsledkem Fourierovy analýzy je seznam (tabulka) amplitud a fázových posunů pro jednotlivé frekvence.
- Grafu závislosti amplitudy na frekvenci se říká amplitudové spektrum.
- Grafu závislosti fázového posunu na frekvenci se říká fázové spektrum.

- Fourierova řada se používá pro vyjádření periodického signálu.
- Fourierova transformace (Fourierův integrál) se používá pro vyjádření neperiodického signálu.

• Dále je se rozlišuje, zda pracujeme se **spojitou** nebo **diskrétní funkcí** (posloupností čísel).

$$f(x) = \sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \frac{1}{7}\sin 7x + \frac{1}{9}\sin 9x + \cdots$$

Rozvoj Fourierovy řady (s periodou 2T)

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{T} + b_n \sin \frac{n\pi x}{T} \right)$$

$$a_0 = \frac{1}{2T} \int_{-T}^{T} f(x) dx$$

$$a_n = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{n\pi x}{T} dx, \quad n = 1, 2, 3, \dots$$

$$b_n = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n\pi x}{T} dx, \quad n = 1, 2, 3, \dots$$

Rozklad 1D funkce na jednotlivé harmonické složky

http://www.tomasboril.cz/fourierseries3d/cz/

 Rozvoj Fourierovy řady (periodické funkce) může zapsat i v komplexní podobě

$$f(x) = \sum_{n = -\infty}^{\infty} c_n \exp\left(\frac{in\pi x}{T}\right) dx \quad \text{kde} \quad c_n = \frac{1}{2T} \int_{-T}^{T} f(x) \exp\left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = -\infty} c_n \exp\left(\frac{in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = -\infty} c_n \exp\left(\frac{in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx \quad \text{for } x = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-in\pi x}{T}\right) dx$$

$$f(x) = \sup_{n = 1}^{\infty} c_n \times \left(\frac{-i$$

 Pokud je funkce neperiodická, potom T -> ∞, jedná se o Fourierovu transformaci, a dostaneme vztahy

$$f(x) = \int_0^\infty [a(\omega)\cos\omega x + b(\omega)\sin\omega x]d\omega$$

kde

$$a(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos \omega x \, dx,$$

$$b(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin \omega x \, dx.$$

(složkový, trigonometrický tvar)

 Fourierova transformace pro neperiodickou funkci lze také vyjádřit v komplexní podobě:

$$f(x) = \int_{-\infty}^{\infty} F(\omega)e^{i\omega x}d\omega,$$
$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{i\omega x}dx.$$

 Využití komplexních čísel je výhodné z důvodu kompaktnějšího zápisu a snazších matematických operací.

- Protože nás zajímá využití FT při zpracování obrazu, který je reprezentován maticí a je tedy diskrétní, omezíme se na diskrétní Fourierovu transformaci (DFT)
- Pro diskrétní funkce jedné proměnné (např. časové řady) je DFT dána těmito vztahy:

$$F_u = \frac{1}{N} \sum_{x=0}^{N-1} \exp\left[-2\pi i \frac{xu}{N}\right] f_x \qquad \text{DFT}$$

$$x_u = \sum_{x=0}^{N-1} \exp\left[2\pi i \frac{xu}{N}\right] F_u$$

inverzní DFT (IDFT)

FT 2D obrázku (spektrum obrázku)

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \exp\left[-2\pi i \left(\frac{xu}{M} + \frac{yv}{N}\right)\right]$$

Zpětná FT 2D obrázku (rekonstrukce obrázku ze spektra)

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \exp\left[2\pi i \left(\frac{xu}{M} + \frac{yv}{N}\right)\right]$$

• 2D harmonická složka

 $z = a\sin(bx + cy)$

• Pozice ve spektru

- Vlastnosti Fourierovy transformace
 - Linearita: F(f+g) = F(f) + F(g) výhodné pro odstranění známého šumu
 - Konvoluce: $F(M*S) = F(M) \cdot F(S)$ výhodné pro filtraci
 - Posun: Spektrum se posune do středu, pokud pronásobíme obraz maticí {(-1)x+y}
- Vizualizace spektra
 - Snížení vlivu stejnosměrné složky, např. log(1+|F(u,v)|)
- FFT (Fast Fourier Transform)
 - Efektivní implementace DFT (2²ⁿ -> n2ⁿ operací násobení)
 - Postavena na rekurzivním dělení dat -> výhodné pro matice o rozměrech 2^k

- Posun spectra
 - Po FT je standardně stejnosměrná složka v levém horním rohu matice spektra
 - Okolí stejnosměrné složky odpovídá složkám s nižší frekvencí, která se zvyšuje jak se od levého horního roku vzdalujeme
 - Pro snazší interpretaci je výhodné provést posun spektra tak, aby stejnosměrná složka byla uprostřed a okolní hodnoty FT odpovídající složkám o nižších frekvencích.
 Větší vzdálenosti od středu odpovídají složkám o vyšších frekvencích.
 - Posun spektra využívá skutečnosti, že pokud obrázek pronásobíme stejně velkou maticí ve tvaru šachovnice s hodnotami +1 a -1, dojde k žádanému posunu.

- Jednoduché příklady DFT
 - Příklad 1: Mějme obrázek o rozměru 8x8 pixelů, který obsahuje samé jedničky (jednolitá plocha)

```
al =
                                        obrázek jako matice
ans =
                                        spektrum obrázku
                                        (neposunuté)
```

- Pokud dosadíme do vztahu pro F(u,v) za u=0 a v=0, vypadne exponenciální člen (e⁰=1) a zůstane součet prvků matice, tj. hodnota 64.
- Pokud dosadíme do vztahu pro F(u,v) např. za u=0 a v=1, výpočtem zjistíme, že se vyruší a bude platit, že F(0,1)=1.
- F(u,v)=0 dostaneme pro všechny hodnoty u a v vyjma prvního případu, kdy u=0 a v=0.

Jednoduché příklady DFT

$$F(0,1) = \sum_{x} \int_{y}^{2\pi i \cdot y} \int_{y}^$$

- Jednoduché příklady DFT
 - Příklad 2: Mějme obrázek o rozměru 8x8 pixelů, který obsahuje následující hodnoty:

a2 =								
100	200	100	200	100	200	100	200	obrázek jako matice
100	200	100	200	100	200	100	200	,
100	200	100	200	100	200	100	200	
100	200	100	200	100	200	100	200	
100	200	100	200	100	200	100	200	
100	200	100	200	100	200	100	200	
100	200	100	200	100	200	100	200	
100	200	100	200	100	200	100	200	
af2 =								
9600	0	0	0 -	3200	0	0	0	1
0	0	0	0	0	0	0	0	spektrum obrázku
0	0	0	0	0	0	0	0	(neposunuté)
0	0	0	0	0	0	0	0	(neposunate)
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

- Pokud dosadíme do vztahu pro F(u,v) za u=0 a v=0, vypadne exponenciální člen (e⁰=1) a zůstane dvojnásobný součet prvků matice, tj. hodnota 9600.
- Pokud dosadíme do vztahu pro F(u,v) např.
 za u=4 a v=0, výpočtem zjistíme, že
 F(0,1)=-3200.
- Pro ostatní hodnoty u a v dostaneme
 F(u,v)=0.
- Matice F(u,v) obsahuje v tomto případě reálná čísla. To však nemusí být vždy pravda. V tom případě je F(u,v) matice komplexních čísel a vyjadřujeme ji dvěma maticemi: maticí amplitud a maticí fází.

- Jednoduché příklady DFT
 - Příklad 2 pokračování

- Jednoduché příklady DFT
 - Příklad 2 pokračování: Pokud dosadíme do vztahu pro zpětnou FT dostaneme
 - $F(x,y) = ... = 150 50 \cdot \cos(\pi y) = 150 50 \cdot (-1)^y$
 - Pro liché hodnoty y dostaneme f(x,y) = 100 a pro sudé hodnoty f(x,y) = 200
 - Vztah je nezávislý na x, tj. pro každé x budou platit hodnoty výše.
 - Dostáváme tedy původní matici hodnot (obrázek).

$$J(x,y) = \frac{1}{M \cdot N} \sum_{u=0}^{M-1} \sum_{v=0}^{M-1} \frac{1}{F(u,v) \cdot exp} \left[\frac{2\pi i}{H} + \frac{yv}{N} \right]$$

$$= \frac{1}{F(0,y)} = \frac{9600}{3200} \quad \text{ [innterpresent of the proof of the pr$$

- Jednoduché příklady DFT
 - Příklad 3: Mějme obrázek jednotkového skoku, tj. matici:

```
a3 =
                                                     obrázek jako matice
af3 =
 Columns 1 through 4
                                                                              spektrum obrázku (tentokrát už obsahuje komplexní čísla a je posunuté)
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
                    0.0000 + 0.0000i
  0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
  0.0000 + 0.0000i -8.0000 - 3.3137i
                                      0.0000 + 0.0000i
                                                       -8.0000 -19.3137i
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
  0.0000 + 0.0000i
                   0.0000 + 0.0000i
                                     0.0000 + 0.0000i
 Columns 5 through 8
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
                                      0.0000 + 0.0000i
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
  32.0000 + 0.0000i
                   -8.0000 +19.3137i
                                      0.0000 + 0.0000i
                                                       -8.0000 + 3.3137i
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                        0.0000 + 0.0000i
```

0.0000 + 0.0000i

0.0000 + 0.0000i

0.0000 + 0.0000i

- Jednoduché příklady DFT
 - Příklad 3: FT obrázku s posunem stejnosměrné složky na střed (shift):

- Jednoduché příklady DFT
 - Příklady umělých obrázků (všechna spektra jsou již po posunu)

- Ideální filtr
 - Low-pass filter (dolnofrekvenční propusť)

High-pass filter (hornofrekvenční propusť)

• Ideální filtr – Low-pass filter (dolnofrekvenční propusť)

(amplitudové) spektrum původního obrázku

dolnofrekvenční ideální propusť, *D* = 15

zpětná transformace z vyfiltrovaného spektra

• Ideální filtr – High-pass filter (hornofrekvenční propusť)

- Butterworthův filtr
 - Ideální filtr snadná SW implementace, artefakty zvlnění obrazu
 - BF postupný přechod -> snížení zvlnění obrazu

dolnofrekvenční propusť

$$f(x) = \frac{1}{1 + (x/D)^{2n}}$$

$$f(x) = \frac{1}{1 + (x/D)^{2n}} \qquad f(x,y) = \frac{1}{1 + \left(\frac{x^2 + y^2}{D^2}\right)}$$

hornofrekvenční propusť

$$f(x) = \frac{1}{1 + (D/x)^{2n}}$$

$$f(x) = \frac{1}{1 + (D/x)^{2n}} \qquad f(x,y) = \frac{1}{1 + \left(\frac{D^2}{x^2 + y^2}\right)}$$

n je řád filtru, D je místo přechodu přes 0,5 (odpovídá hraniční frekvenci)

• Butterworthův filtr

(amplitudové) spektrum původního obrázku

dolnofrekvenční propusť D = 15, n = 2

- Gaussův filtr
 - "Hladký" filtr
 - Tvar Gaussovy funkce (pro 2D tvar "klobouku")

$$f(x,y) = A \exp \left(-\left(rac{(x-x_o)^2}{2\sigma_x^2} + rac{(y-y_o)^2}{2\sigma_y^2}
ight)
ight)$$

 FT obrázku po prvcích pronásobíme hodnotami filtru a na výsledek aplikujeme zpětnou FT

Gaussův filtr – low-pass filtr

Gaussův filtr – high-pass filtr

Literatura

- McAndrew A., Computational Introduction to Digital Image Processing, CRC Press, 2. vydání, 2016
- Sundararajan D., Digital Image Processing: A Signal Processing and Algorithmic Approach, Springer, 2017
- Birchfield S., Image Processing and Analysis, Cengage Learning, 2016
- Acharya T., Ray A. K., Image Processing: Principles and Applications, Wiley, 2005
- Burger W., Burge M. J., Principles of Digital Image Processing: Fundamental Techniques, Springer-Verlag, 2009