

Системы рекомендаций (Recommender Systems)

Похожие товары

Рекомендуем также

469 Р Гарри Поттер и Кубок Огн Дж. К. Роулинг

Гарри Поттер и философ Дж.К. Роулинг

Гарри Поттер и Тайная ко Дж. К. Роулинг

414 ₽

Гарри Поттер и Орден Фе Дж. К. Роулинг

509₽

489 ₽

Гарри Поттер и Дары Смє Дж. К. Роулинг

Гарри Поттер и Фі Дж. К. Роулинг

414 ₽

1 160 ₽

2 990 руб
Nike / Лонгслив спортивный W NK
MILER TOP LS METALLIC

6 990 руб Nike / Кроссовки Women's Nike Air Force 1'07 Shoe

Nike / Свитшот W NK TOP VERSA CREW

1 699 руб
Маngo / Очки солнцезащитные NAOMI

Можно давать обратную связь

Системы рекомендаций (с точки зрения пользователя)

«то, что мы любим»

что интересно данному пользователю в данный момент времени в данном контексте

«то, что подходит»

«что может понравится – что ищем» ~ моделирование предпочтений и поведения

Помощь в поиске товара / услуги!

	Momon Hardam	
товары	книги фильмы музыка игры приложения	
контент	новости сайты статьи видео-курсы	
досуг	рестораны отели театральные представления выставки туры	
социальные связи	друзья группы	
услуги	медосмотр	

Виды рекомендаций

по контенту Content-based	Рекомендация похожих по описанию товаров
коллаборативная фильтрация Collaborative Filtering	Рекомендация по статистике покупок Проблема холодного старта: новый товар новый пользователь
гибридная	
Hybrid	
non-personalized	
demographic	
knowledge-based	

Информация

Описание пользователя

+ лог пользователя (поиск, ожидания и т.п.)

Описание товара

Взаимодействие (пользователь, товар)

Взаимодействие (пользователь, пользователь)

Взаимодействия (товар, товар)

Что рекомендуют

заменители (alternative)
сопутствующие товары (cross sell)
бандлы
аксессуары (up sell)
популярные товары (best sellers)

персональные / неперсональные

оффлайн / онлайн

Как рекомендуют / цели бизнеса

• тах вероятность покупки

Увеличить удовлетворение пользователя (satisfaction, fidelity)
Понять, что нужно людям

• тах матожидание прибыли

Продать больше (\$)

не стоимость, а маржа + расходы на упаковку, доставку и т.п.

• товары из категории (long-tail)

Продать больший ассортимент / распродать

Разница между информационным поиском и рекомендательными системами

IR RecSys

«Я знаю, что я ищу»

«Я не уверен, что мне надо»

История

199х – первые алгоритмы (GroupLens)

1995-2000 - внедрение в бизнес

2006 - Netflix prize

2007 – первая конференция

Соревнование Netflix

2006 год

~ 100.5 миллионов оценок 1,2,...,5 ~ 480 000 пользователей

> 17 770 фильмов RMSE

Netflix = 0.9514

надо = 0.8563

~ 20 000 участников

RBM = 0.8990

SVD = 0.8914

Для бизнеса > 0.88

По контенту (content based methods)

Если есть хорошие признаковые описания пользователей и объектов (и только они), тогда

$$u \sim f_u$$
$$i \sim f_i$$

Можно решать как обычную задачу обучения с учителем

$$\{([f_u, f_i], r_{ui})\}$$

Цель:
$$u \to i_1, ..., i_k : \hat{r}_{ui_1} \ge \hat{r}_{ui_2} \ge ...$$

По контенту (content based methods)

+

решает проблему холодного старта (cold start)

что новым пользователям / какие новые товары может начать работать «прямо сейчас» – без статистики

рекомендация не зависит от других пользователей

(XM...)

ясность (transparency) можно объяснить

можно много где использовать

если есть хороший контент

описания пользователей часто примитивные / товаров ???

извлечение описаний часто отдельная задача

пример: музыка, видео

однообразные рекомендации (overspecialization)

контент же похожий...

при наличии статистики хуже СF

см. дальше

Коллаборативная фильтрация

Если известна лишь статистика:

$$\{(u,i,r_{ui})\}$$

нет содержательных признаков!

Решение на статистике поведения лучше, чем на описаниях!

статья «Recommending new movies: even a few ratings are more valuable than metadata» (context: Netflix)

Колаборативная фильтрация

- memory based / nearest neighbors
 - model based
 - latent factors
 - matrix factorization

Статистика

	item1	item2	item3	item4
user1	1	2	5	
user2		2		5
user3	3	3	5	
user4		4		5
user5	5		3	

Матрица «пользователь – товар» (utility matrix)

разреженная матрица

Цель: фактически уметь дозаполнять матрицу...

GroupLens-алгоритм По пользователям (User-based)

$$\hat{r}_{ui} = \bar{r}_u + \frac{\sum_{v} sim(u, v)(r_{vi} - \bar{r}_v)}{\sum_{v} sim(u, v)}$$

По товарам (Item-based)

$$\hat{r}_{ui} = \bar{r}_i + \frac{\sum_{j} sim(i, j)(r_{uj} - \bar{r}_j)}{\sum_{j} sim(i, j)}$$

Идея: как скорректировать простейшие baseline

Проблема холодного старта
Плохие предсказания, если мало статистики
Долгие вычисления (нужен пересчёт)

Похожесть

корреляция Пирсона в user-based CF

$$\sin(u, v) = \frac{\sum_{i} (r_{ui} - \bar{r}_{u})(r_{vi} - \bar{r}_{v})}{\sqrt{\sum_{i} (r_{ui} - \bar{r}_{u})^{2}} \sqrt{\sum_{i} (r_{vi} - \bar{r}_{v})^{2}}}$$

	ltem1	ltem2	Item3	Item4	Item5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	
User2	4	3	4	3	5	
User3	3	3	1	5	4	4
User4	1	5	5	2	1	4

$$\frac{\text{sim}}{\text{sim}} = 0.85$$
 $\frac{\text{sim}}{\text{sim}} = 0.00$
 $\frac{\text{sim}}{\text{sim}} = 0.70$
 $\frac{\text{sim}}{\text{sim}} = -0.79$

YouTube

у видео-роликов мало мета-данных (сравни: книги, фильмы)! видео-ролики мало живут (сравни: ...) видео-роликов много, они короткие, шумный отклик (сравни: ...)

YouTube video recommendation system (2010)

$$sim(i, j) = \frac{view(\{i, j\})}{view(\{i\}) \cdot view(\{j\})}$$

здесь – просмотры за последние 24 часа Пусть S – просмотренные, понравившиеся, добавленные, R(S) – похожие на них рекомендации из $R(S) \cup R(R(S)) \cup \ldots$

SVD

SVD = сингулярное матричное разложение

SVD

$$R \approx U' \cdot V'$$

$$\hat{r}_{ui} = \langle p_u, q_i \rangle$$

SVD также метод CF (Simon Funk)

SVD

$$r_{u,i} \approx \langle p_u, q_i \rangle$$

$$J = \sum_{(u,i)} (\langle p_u, q_i \rangle - r_{u,i})^2 + \lambda_1 \sum_{u} ||p_u||^2 + \lambda_2 \sum_{i} ||q_i||^2$$

Одновременно получили признаковое описание пользователей и товаров $\lambda_{t} \sim 0.02$

Минимизация

- градиентный спуск ($\eta \sim 0.005$)
- ALS (Alternating Least Squares)

о хорошо параллелится

$$p_{u}(t+1) = \left(\sum_{i: r_{u,i}>0} (\langle q_{i}, q_{i} \rangle + \lambda_{1}I)\right)^{-1} \left(\sum_{i: r_{u,i}>0} r_{u,i}q_{i}\right)$$

Улучшения модели

$$r_{u,i} \approx r + r_u + r_i + \langle p_u, q_i \rangle$$

Учитываем смещения «добрый/злой» пользователь «плохой/хороший» товар

$$r_{u,i} \approx r + r_u + r_i + \left\langle p_u + \frac{1}{\sqrt{|\operatorname{view}(u)|}} \sum_{j \in \operatorname{view}(u)} y_j, q_i \right\rangle$$

+ что просматривал, но не покупал пользователь

Легко обобщать на разное число факторов: (пользователь, канал, товар)

Simon Funk статья в блоге во время конкурса Netflix

timeSVD++

Неизвестные зависят от времени...

Koren «Collaborative Filtering with Temporal Dynamics» KDD 2009

timeSVD++

Люди склонны завышать рейтинги старых фильмов есть много подобных эффектов – вывод: учитывайте время

Что происходит со временем

- меняется интерфейс [Koren, 2009]
- начинаем любить ретро [Koren, 2009]
- предпочтения меняются [Godes, Silva, 2012]
- пользователи меняются (аккаунт стал семейным [Xiang et al., 2010])
 - аномалии (в каникулы смотрел сериал [Xiang et al., 2010])
 - сезонность, мнение толпы и т.п. [McAuley, Leskovec, 2013]

Differences between "beginner" and "expert" preferences for different beer styles

timeSVD++

Регуляризация по времени

$$\dots + \lambda \| w(t) - w(t + \delta) \|$$

Адаптация SVD под социальные связи

$$\sum_{(u,i)} (\langle p_{u}, q_{i} \rangle - r_{u,i})^{2} + \lambda \sum_{u} || p_{u} - \frac{1}{|F(u)|} \sum_{v \in F(u)} p_{v} ||^{2} + \lambda_{1} \sum_{u} || p_{u} ||^{2} + \lambda_{2} \sum_{i} || q_{i} ||^{2}$$

F(u) – множество друзей u

или (тут по-другому!)

$$+\lambda \sum_{u} \sum_{v \in F(u)} \operatorname{sim}(u, v) \| p_u - p_v \|^2$$

можно учитывать похожесть на друзей

https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/wsdm10.pdf

Когда нет явного отклика

Если оценки даны не в шкале, а перечислены только отклики на услугу...

$$\{(u,i,1)\}$$

(покупка, скачивание, просмотр и т.п.)

выход: пропуски = нули

На практике: часто знаем, что видел пользователь...

содержание рассылки баннеры на странице

и почему-то не отреагировал

сбор информации (оценки, лайки) – дополнительные усилия!

One-class recommendation

Если есть «лайки» и «дизлайки»

$$\{(u, i, +1)\} \cup \{(u, i, -1)\}$$

Можно строить модель «один товар лучше другого»

$$P(i \succ j) = \sigma(w^{\mathsf{T}} \gamma_i - w^{\mathsf{T}} \gamma_j)$$

Стохастический градиентный спуск

~ случайно выцепляем пары сравнимых товаров

Коллаборативная фильтрация – минусы

• проблема холодного старта (cold start)

другая техника: по контенту, не персональные и т.п. система рейтинга (обратная связь), костыли (по умолчанию)

- популярные становятся популярнее (popularity bias)
- условия шума (семейные аккаунты, случайные покупки и т.п.)
 - возможны «атаки» на систему

Факторизационные машины

Steffen Rendle

libFM: Factorization Machine Library

http://www.libfm.org/

Супермодель, иммитирует SVD, SVD++, FPMC, Pairwise interaction tensor factorization, SVM с полином. ядром и т.п.

Ask Peter Norvig

Q5: What, say, 3 recent papers in machine learning do you think will be influential to directing the cutting edge of research these days? (41 Up-votes, 26.08.2014)

I've never been able to pick lasting papers in the past, so don't trust me now, but here are a few: Rendle's "Factorization Machines"

Wang et al. "Bayesian optimization in high dimensions via random embeddings"

Dean et al. "Fast, Accurate Detection of 100,000 Object Classes on a Single Machine"

Факторизационные машины

$$r_{ui} \sim w_0 + w_u + w_i + v_u^{\mathrm{T}} v_i$$

модель второго порядка:

$$w_0 + \sum_{i=1}^n w_i x_i + \sum_{1 \le i < j \le n} v_i^{\mathsf{T}} v_j x_i x_j \sim w_0 + w^{\mathsf{T}} x + x^{\mathsf{T}} \underbrace{W}_{\sim \mathsf{rg} = k} x$$

«факторизация» – в предположении, какая у нас матрица весов, иначе была бы просто «модель второго порядка»

Факторизационные машины

Что ещё...

- факторизация отдельных блоков (FFM field-aware factorization machine)
 - эффективное блочное хранение

FFM - field-aware factorization machine

Линейная модель

$$w^{\mathrm{T}} x = \sum_{i=1}^{n} w_i x_i$$

Полиномиальная модель (Poly2)

$$x^{\mathrm{T}}Wx = \sum_{1 \le i < j \le n} w_{ij} x_i x_j$$

Факторизационная машина

$$x^{\mathrm{T}}V^{\mathrm{T}}Vx = \sum_{1 \le i < j \le n} v_i^{\mathrm{T}}v_j x_i x_j$$

Факторизационная машина с полями

$$\sum_{1 \leq i < j \leq n} v_{i,f(j)}^{^{\mathrm{T}}} v_{j,f(i)} x_i x_j \ f(i)$$
 – поле для i

Оптимизационная задача

$$\sum_{t=1}^{m} \left(\log(1 + \exp(-y_t \varphi(w, x_t))) + \lambda \| w \|^2 \right) \rightarrow \min$$

$$\varphi(w, x) = \sum_{1 \le i < j \le n} w_{i, f(j)}^{\mathrm{T}} w_{j, f(i)} x_i x_j$$

LogLoss + регуляризация

Что такое поля...

Field name		Field index
User	\rightarrow	field 1
Movie	\rightarrow	field 2
Genre	\rightarrow	field 3
Price	\rightarrow	field 4

Что ещё?

- неотрицательные матричные разложения
 - вероятностные разложения
 - специальные регуляризаторы
 - локальная низкоранговость
 - бикластеризация
 - тензоры (тензорное разложение)

рис. из дипломной работы М.Трофимова

Простые методы

Трава для кошек Скакун, 10 г

15₽ Добавить в корзину

Вместе с этим товаром покупают

Бандлы ~ по статистике

Простые методы

FPM – Frequent Pattern Mining

• Ассоциативные правила (Association Rule Mining)

если {A, B, C} ⇒ D (были в одной сессии)

Sequential Pattern Mining

если $A\rightarrow ... \rightarrow B\rightarrow ... \rightarrow C \Rightarrow D$ (были до)

Contiguous Sequential Pattern Mining

если $A \rightarrow B \rightarrow C \Rightarrow D$ (были последовательно перед)

Кластеризация пользователей / товаров (+ стандартные рекомендации)

есть и автоматические кластеры (интересы, любимые театры / жанры, актёры и т.п.)

Методы на основе случайных блужданий

Laknath Semage «Recommender Systems with Random Walks: A Survey» // https://arxiv.org/pdf/1711.04101.pdf

Использование DL

Deep CF

Использование DLDeep Semantic Similarity Model (DSSM)

Здесь «user» – вся информация о пользователе!

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck «Learning deep structured semantic models for web search using clickthrough» // CIKM'13, P.2333–2338.

Ali Elkahky, Xiaodong He «A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems»

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/frp1159-songA.pdf

Knowledge-based Recommendations девиз: «что удовлетворяет моим нуждам»

дорогие редко покупаемые нерейтингуемые товары

машины, квартиры, технологические продукты требования / ограничения пользователя «не очень дорого», «у метро», «безопасная»

CF – мало данных CB – шумная похожесть тут м.б. нечёткие множества

constraint-based

в явном виде определяем условия

case-based

сходство по условиям

«conversational» recommendations

уточнение в диалоге

История одного тестирования

Бандл – множество товаров, которые покупают вместе...

Примеры

Крупная компания для интернет магазина предложила рекомендательную систему

⇒ тестирование (А/В-тест)

Итог...

Стоимость последнего бандла ~ 70000 руб.

Литература

Дьяконов А.Г. Алгоритмы для рекомендательной системы: технология LENKOR // Бизнес-Информатика, 2012, №1(19), С. 32–39.

https://bijournal.hse.ru/2012--1(19)/53535879.html

Y. Koren, R.M. Bell, C. Volinsky Matrix Factorization Techniques for Recommender Systems // IEEE Computer 42(8): 30-37 (2009).

S. Funk Netflix Update: Try This at Home //

http://sifter.org/~simon/journal/20061211.html

libFM: Factorization Machine Library // http://www.libfm.org/

FFM – field-aware factorization machine (слайды) //

http://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf

Литература

Книга по коллаборативной фильтрации

Michael D. Ekstrand, John T. Riedl and Joseph A. Konstan «Collaborative Filtering Recommender Systems»

https://md.ekstrandom.net/pubs/cf-survey.pdf

Курс по RS: PV254 Recommender Systems

https://www.fi.muni.cz/~xpelanek/PV254/

список ресурсов

https://github.com/grahamjenson/list_of_recommender_systems https://gist.github.com/entaroadun/1653794

Хорошая презентация

https://www.slideshare.net/MassimoQuadrana/personalizing-sessionbased-recommendations-with-hierarchical-recurrent-neural-networks