Notations de Dynamique

(Version du 01/08/18)

1 Packages requis

- **ifthen**: Package permettant une compilation à choix multiple,
- mathrsfs : Package qui rajoute des polices d'écritures mathématiques.
- Raf_Notations_Actions-Meca: Package de notations d'actions mécaniques.
- Raf_Notations_Torseurs : Package de notations des torseurs.

2 Appel du package

Le package est appelé en début de document par la commande :

\usepackage{Raf_Notations_Dynamique}

Par défaut, ce package utilise un certain nombre de notations raccourcies, susceptibles de rentrer en conflit avec d'autre package (mais tellement plus rapide à taper!). De plus, certaines commandes ont été rebaptisée. Ces raccourcis et renommages seront cités ((Raccourci) ou (Renommé)) dans les tableaux suivants. Pour ne pas créer ces raccourcis/renommage, il faut rentre l'option noRaccourci à l'appel du package.

usepackage[noRaccourci]{Raf_Notations_Dynamique}

3 Masse

Commandes	Rendus	Commentaires
\ddm	dm	Masse élémentaire

4 Inertie

Commandes	Rendus	Commentaires
\matInertie{P}{S}	$\overline{I_{(P,S)}}$	Matrice d'inertie.
\IGS	$\overline{I_{(G,S)}}$	Matrice d'inertie au point G de S .
\matInertieComposantes {G}{1&2&3\\4&5&6\\7&8 &9}{R}	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}_{R}$	Composantes de la matrice
\IGSABCDEF	$\begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{R_0}$	Composantes du tenseur en G dans le repere R .
\IGSABCDEF[G_1][R_1]	$\begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{R}$	Composantes du tenseur en un autre point et une autre base.
\IGSABC	$\begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{R}$	Composantes du tenseur diagonal (similaire à \IGSABCDEF)
\IGSABC[G_3][R][A_3] [B_3][C_3]	$\begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}_R$	Composantes du ten- seur diagonal en choisis- sant les valeurs
\IGSParallelepipede {a}{b}{c}	$\begin{bmatrix} \frac{M(b^2+c^2)}{12} & 0 \\ 0 & \frac{M(a^2-c^2)}{12} \\ 0 & 0 \end{bmatrix}$	Matrice d'inertie d'un $\frac{1}{2}$ parallélépipède $\frac{M(a^2+b^2)}{12}$
\IGSParallelepipede[A] [M_2]{a}{b}{c}[R_1]	$\begin{bmatrix} \frac{M_2 \left(b^2+c^2\right)}{12} \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ i^2 + c^2 \\ \text{idem,en un autge point,} \\ 12t \text{ un autge repère.} \\ 0 & 12 \end{bmatrix}_{R_1}$
\IGSCylindreX {R}{H}	$ \begin{bmatrix} \frac{MR^2}{2} & 0 \\ 0 & \frac{M(3R^2 + H)}{12} \\ 0 & 0 \end{bmatrix} $	0 Matrice djinertie d'un cylindre de rayen R et de hauteur H d'axe R
\IGSCylindreY {R}{H}	$\begin{bmatrix} \frac{M\left(3R^2 + H^2\right)}{12} & 0\\ 0 & \frac{M}{2} \\ 0 & 0 \end{bmatrix}$	0 R ² Matrice d'inertie d'un cylindre de rayen R et de hauteur H // x . 12
\IGSCylindreZ {R}{H}	$ \begin{bmatrix} \frac{M \sqrt[3]{3}R^2 + H^2}{12} \\ 0 & \frac{M}{2} \end{bmatrix} $	0 0 ($\frac{3R^2 + H^2}{Matrice}$ d'inertje d'un cylindre de rayon R et de Chauteur $H \xrightarrow{7/7} x$.

5 Cinétique

Rendus	Commentaires
\mathscr{C}	C calligraphié
$\mathscr{C}_{(S_1/S_2)}$	Torseur cinétique
$\left\{oldsymbol{\mathscr{C}}_{(S_1/S_2)} ight\}$	Torseur cinétique avec accolade (n'importe quel argument en fin, différent de noBraket)
$\mathscr{C}^2_{(S_1/S_2)}$	Torseur cinétique avec exposant
$\overrightarrow{\mathcal{R}_{c(S_1/S_2)}}$	Résultante cinétique
$\sigma_{(P \in S_1/S_2)}$	Moment cinétique au point P
	$egin{array}{c} m{\mathscr{C}}_{(S_1/S_2)} \ m{\mathscr{C}}_{(S_1/S_2)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

6 Dynamique

Commandes	Rendus	Commentaires
\ACallig	A	
\DCallig	D	🛭 🛭 calligraphié pour le
		nom du torseur
\dA	$d\mathscr{A}$	Quantité d'accélération
	,	(scalaire)
\vdA	\overrightarrow{d}	Quantité d'accélération
		(vecteur)
\resDynamique{S}{R}	$\overrightarrow{\mathcal{R}_{d(S/R)}}$	Résultante dynamique
\momDynamique{A}{S}{R}	$\overrightarrow{\delta_{(A \in S/R)}}$	moment dynamique au
		point A
\tDynamique{S}{R}	${\cal G}_{(S/R)}$	Torseur dynamique
\tDynamique{S}{R}	$\left\{ oldsymbol{\mathscr{D}}_{(S/R)} ight\}$	Torseur dynamique
[braket]		avec accolade (n'im-
		porte quel argument
		en fin, différent de
		noBraket)
\tDynamique[2]{S}{R}	${m \mathscr D}^2_{(S/R)}$	Torseur dynamique
		avec exposant