

Lecture 3

EE3010: Electrical Devices and Machines

School of Electrical and Electronic Engineering

Associate Professor Lee Peng Hin

Tel: +65 6790 4474 | Email: ephlee@ntu.edu.sg

Learning Objectives

By the end of this lecture, you should be able to:

- Describe the respective powers, derive their relationships and equations for an induction motor.
- Explain the notions of developed torque and output torque and how to compute them.
- Use the induction motor equivalent circuit to study and predict the performance of the motor for a given operating condition.

Power and Torque in Induction Motors

From the per-phase equivalent circuit,

- The stator copper losses $P_{SCL} = 3I_1^2 R_1$
- The air-gap power $P_{AG} = P_{in} P_{SCL}$
- Since X_2 does not consume real power, $P_{AG} = 3I_2^2 \left(\frac{R_2}{S}\right)$
- The rotor copper losses $P_{RCL} = 3I_2^2 R_2$
- The converted power, also called developed power,

$$P_{dev} = P_{conv} = P_{AG} - P_{RCL} = 3I_2^2 \left(R_2 \left(\frac{1-s}{s} \right) \right)$$

Power and Torque in Induction Motors

$$\clubsuit$$
 Also, $P_{RCL} = sP_{AG}$, $P_{conv} = (1-s)P_{AG}$, $P_{out} = P_{conv} - P_{rot}$

The induced torque T_{ind} is the torque generated by the internal electrical to mechanical power conversion. Also called developed torque T_{dev} .

$$T_{ind} = T_{dev} = \frac{P_{conv}}{\omega_m} = \frac{(1-s)P_{AG}}{(1-s)\omega_{sync}} = \frac{P_{AG}}{\omega_{sync}}$$

Separating Rotor Cu Losses and the Power Converted

- The air-gap power $P_{AG} = 3I_2^2 \left(\frac{R_2}{S}\right)$
- Rotor copper losses $P_{RCL} = 3I_2^2 R_2$
- The converted power

$$P_{conv} = P_{AG} - P_{RCL} = 3I_2^2 \left\{ R_2 \left(\frac{1-s}{s} \right) \right\}$$

The per phase equivalent circuit with rotor copper losses and power converted separated.

Example 1

A 460 V, 60 Hz, four-pole induction motor is wye-connected. The core losses are lumped together with the friction and windage losses and the stray losses to give the total rotational losses of 1100 W and they are assumed to be constant. The impedances per phase referred to the stator circuit are:

$$R_1 = 0.641\Omega$$
 , $R_2 = 0.332\Omega$, $X_1 = 1.106\Omega$, $X_2 = 0.464\Omega$, $X_M = 26.3\Omega$

For a rotor slip of 2.2% at the rated voltage and rated frequency, find the motor's

a) Speed

- c) Input power factor e) T_{ind} and T_{load}
- b) Input stator current d) P_{conv} and P_{out} f)

Efficiency

(Solutions \rightarrow)

Example 1 – Solutions

a)
$$n_{sync} = \frac{120f_s}{p} = \frac{120(60)}{4} = 1800 \text{ r/min}$$

 $\Rightarrow n_m = (1-s)n_{sync} = 1760 \text{ r/min}$

b) The total impedance per phase is calculated as

$$\mathbf{Z}_{total} = 11.72 + j7.79 = 14.07 \angle 33.6^{\circ}\Omega$$

$$\Rightarrow \mathbf{I}_{1} = \frac{\mathbf{V}_{\phi}}{\mathbf{Z}_{total}} = \frac{266\angle 0^{\circ}}{14.07\angle 33.6^{\circ}} = 18.88\angle -33.6^{\circ} \,\mathrm{A}$$

c) The pf is $cos(33.6^{\circ}) = 0.833$ lagging.

Example 1 – Solutions

d)
$$P_{AG} = P_{in} - P_{SCL} = \sqrt{3}V_{line}I_{line}\cos\theta - 3I_1^2R_1$$

= $\sqrt{3}(460)(18.88)0.833 - 3(18.88)^20.641 = 11845 \text{ W}$

$$P_{conv} = (1 - s)P_{AG} = 11585 \text{ W} \Rightarrow P_{out} = P_{conv} - P_{rot} = 10485 \text{ W}$$

e)
$$T_{ind} = \frac{P_{conv}}{\omega_m} = \frac{P_{AG}}{\omega_{sync}} = 62.8 \text{ N.m. } T_{load} = \frac{P_{out}}{\omega_m} = 56.9 \text{ N.m.}$$

f) The efficiency of the motor
$$\eta = \frac{P_{out}}{P_{in}} \times 100\% = 83.7\%$$

Example 2

A three-phase 230 V, 60 Hz, 100-hp (1 hp = 746 W), six-pole induction motor operating at rated conditions has an efficiency of 91 % and draws a line current of 248 A. The stator copper and rotor copper losses are 2803 W and 1549 W, respectively. Determine:

a) Power input

d) Rotor speed

b) Total losses

e) Input power factor

c) Air-gap power

f) Rotational losses

(Solutions \rightarrow)

Example 2 – Solutions

a) Eff
$$\eta = \frac{(P_{out} = 100 \text{ x } 746)}{P_{in}} \Rightarrow P_{in} = 81978 \text{ W}$$

b) Total losses =
$$P_{in} - P_{out} = 7378 \text{ W}$$

c)
$$P_{AG} = P_{in} - P_{SCL} = 79175 \text{ W}$$

Example 2 – Solutions

d) From
$$P_{RCL} = sP_{AG} \Rightarrow s = 0.01956$$

$$n_{sync} = 120 \frac{f_s}{p} = 1200 \text{ rpm}$$

$$n_m = (1-s) \ n_{sync} = 1176 \text{ rpm}$$

e) From
$$P_{in} = \sqrt{3}V_{line}I_{line}\cos\theta \Rightarrow \cos\theta = 0.83$$

f)
$$P_{rot} = \text{Total losses} - P_{SCL} - P_{RCL} = 3026 \text{ W}$$

Summary

In this lecture, you have learnt:

- The equations that relate the respective powers and torques in an induction motor.
- The separation of air-gap power into the rotor copper loss and the power converted in an induction motor, and representing them as distinct elements in the equivalent circuit.
- The calculations of the various powers, torques and motor efficiency from the induction motor equivalent circuit for a given operating condition.

12

No.	Slide No.	Image	Reference
1	5	$V_{\phi} = \begin{cases} I_{1} & R_{1} & jX_{1} & I_{2} & jX_{2} & R_{2} \\ & & & & & & & & & & & & & & & & & & $	Adapted from <i>Electric Machinery Fundamentals, 5th ed.</i> , (p. 326), by S. J. Chapman, 2012, New York, NY: McGraw-Hill. Copyright 2012 by The McGraw-Hill Companies, Inc. Adapted with permission.

EE3010 Lecture 3

13