SI231b: Matrix Computations

Lecture 15: Eigenvalue Computations

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 31, 2022

MIT Lab, Yue Qiu

Recap: Eigenvalue Revealing Decomposition

Factorize a matrix to a form in which eigenvalues are explicitly displayed

- **Diagonalization**, $\mathbf{A} = \mathbf{V} \wedge \mathbf{V}^{-1}$, exists if and only if \mathbf{A} is nondefective.
- Schur decomposition, $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^H$ always exists.
- ▶ Jordan canonical form, $A = SJS^{-1}$ always exists (will not be introduced in our lecture), where

with

$$\mathbf{J}_i = egin{bmatrix} \lambda_i & & & & & \ & \lambda_i & & & \ & & \ddots & & \ & & & \lambda_i \end{bmatrix}, \quad ext{or} \quad \mathbf{J}_i = egin{bmatrix} \lambda_i & 1 & & & & \ & \lambda_i & \ddots & & \ & & \ddots & 1 & \ & & & \lambda_i \end{bmatrix}$$

Outline

- ► Facts About Eigenvalues
- Power Iteration
- ► Inverse Iteration
- ► Subspace Iteration

MIT Lab, Yue Qiu

Some Facts About Eigenvalues

► Eigenvalues of Hermitian matrices are real

$$\lambda(\mathbf{A}) \in \mathbb{R}, \quad \text{for } \mathbf{A} \in \mathbb{C}^{n \times n}, \mathbf{A} = \mathbf{A}^H$$

▶ Eigenvalues of real symmetric matrices are real

$$\lambda(\mathbf{A}) \in \mathbb{R}, \quad \text{for } \mathbf{A} \in \mathbb{R}^{n \times n}, \ \mathbf{A} = \mathbf{A}^T$$

- ► Eigenvectors of real symmetric matrices are also real
- Complex eigenvalues of real matrices appear in conjugate pair.
 - For $\mathbf{A} \in \mathbb{R}^{n \times n}$, if (λ, \mathbf{v}) is an eigenpair, then also $(\lambda^*, \mathbf{v}^*)$
- ightharpoonup Skew-Hermitian matrices ($\mathbf{A} = -\mathbf{A}^H$) have only pure imaginary eigenvalues
- ► Hermitian/real symmetric matricres are diagonalizable.

MIT Lab, Yue Qiu

Power Iteration

The Largest Eigenvalue and Associated Eigenvector

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be diagonalizable, i.e., $\mathbf{A} = \mathbf{V} \wedge \mathbf{V}^{-1}$ with $\mathbf{V} = [\mathbf{v}_1, \ \mathbf{v}_2, \ \cdots \ \mathbf{v}_n]$, and $\mathbf{A} = \mathrm{diag}(\lambda_1, \ \lambda_2, \ \cdots, \ \lambda_n)$. Assume that

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$$
.

The following iteration generates a sequence of $(\lambda^{(k)}, \mathbf{q}^{(k)})$ that converges to $(\lambda_1, \mathbf{v}_1)$.

Power Iteration:

 $\begin{aligned} & \text{random selection } \mathbf{q}^{(0)} \in \mathbb{C}^n \\ & \text{for } k = 1, \ 2, \ \cdots \\ & \mathbf{z}^{(k)} = \mathbf{A}\mathbf{q}^{(k-1)} \\ & \mathbf{q}^{(k)} = \frac{\mathbf{z}^{(k)}}{\|\mathbf{z}^{(k)}\|_2} \\ & \lambda^{(k)} = (\mathbf{q}^{(k)})^H \mathbf{A}\mathbf{q}^{(k)} \end{aligned}$

MIT Lab, Yue Qiu Sl231b: Matrix Computations, Shanghai Tech Oct. 31, 2022

Convergence of Power Iteration

The Power Iteration can only compute the largest eigenvalue and associated eigenvector with convergence rate

$$|\lambda^{(k)} - \lambda_1| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

$$\blacktriangleright \|\mathbf{q}^{(k)} - \mathbf{v}_1\| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

- can have slow convergence when λ_2 is close to λ_1 in magnititude, i.e., $\left|\frac{\lambda_2}{\lambda_1}\right|$ is close to 1.
- ► The Raleigh Quotient

$$(\mathbf{q}^{(k)})^H \mathbf{A} \mathbf{q}^{(k)}$$
 or $\frac{\mathbf{v}^H \mathbf{A} \mathbf{v}}{\mathbf{v}^H \mathbf{v}}$ in general

is an approximation of corresponding eigenvalues.

40 40 40 40 40 000

The Smallest Eigenvalue in Magnitude and Associated Eigenvector

random selection
$$\mathbf{q}^{(0)} \in \mathbb{C}^n$$
for $k = 1, 2, \cdots$

$$\mathbf{z}^{(k)} = \mathbf{A}^{-1}\mathbf{q}^{(k-1)}$$

$$\mathbf{q}^{(k)} = \frac{\mathbf{z}^{(k)}}{\|\mathbf{z}^{(k)}\|_2}$$

$$\lambda^{(k)} = (\mathbf{q}^{(k)})^H \mathbf{A} \mathbf{q}^{(k)}$$

end

Facts:

- \blacktriangleright (λ, \mathbf{v}) is eigenpair of \mathbf{A} , so $(\lambda^{-1}, \mathbf{v})$ is eigenpair of \mathbf{A}^{-1}
- ► Therefore, for the inverse power iteration,

$$\lambda^{(k)} \to \lambda_n$$
, $\mathbf{q}^{(k)} \to \mathbf{v}_n$

where λ_n is the eigenvalue of ${\bf A}$ with the smallest magnitude, associated with eigenvector ${\bf v}_n$.

Inverse Iteration with Shift

Suppose μ is not an eigenvalue of ${\bf A}$, the inverse iteration is given by

Inverse Iteration with Shift:

random selection
$$\mathbf{q}^{(0)} \in \mathbb{C}^n$$
 for $k=1,\ 2,\ \cdots$
$$\mathbf{z} = (\mathbf{A} - \mu \mathbf{I})^{-1} \mathbf{q}^{(k-1)} \qquad \text{solve } (\mathbf{A} - \mu \mathbf{I}) \mathbf{z} = \mathbf{q}^{(k-1)}$$

$$\mathbf{q}^{(k)} = \frac{\mathbf{z}}{\|\mathbf{z}\|_2}$$

$$\lambda^{(k)} = (\mathbf{q}^{(k)})^H \mathbf{A} \mathbf{q}^{(k)}$$
 end

- ightharpoonup compute the eigenvalue closest to μ
- convergence rate

$$\left| \frac{\mu - \lambda_j}{\mu - \lambda_k} \right|$$

where λ_j and λ_k are the closest and second closest eigenvalues to μ .

Efficiency per iteration vs Number of iterations?

MIT Lab. Yue Qiu S12315: Matrix Computations, Shanghalleds Oct. 31, 2022

Subspace Iteration

Power Iterations for a Set of Vectors

From the Power Iteration, we know that

- ightharpoonup $\mathbf{A}^k\mathbf{q}_0$ converges to the eigenvector associated with the largest eigenvalue in magnititude.
- ▶ if we start with a set of linearly independent vectors $\{\mathbf{q}_1, \ \mathbf{q}_2, \ \cdots, \mathbf{q}_r\}$, then $\mathbf{A}^k\{\mathbf{q}_1, \ \mathbf{q}_2, \ \cdots, \mathbf{q}_r\}$ should converge (under suitable assumptions) to a subspace spanned by eigenvectors of \mathbf{A} associated with r largest eigenvalues in magnititude.

Subspace Iteration

Suppose there is a gap between the *r* largest eigenvalues in magnititude and λ_{r+1} , i.e, $|\lambda_1| \ge |\lambda_2| \ge \cdots |\lambda_r| > |\lambda_{r+1}|$

Subspace Iteration:

random selection
$$\mathbf{Q}^{(0)}$$
 with orthonormal columns for $k=1,\ 2,\ \cdots$
$$\mathbf{Z}_k = \mathbf{A}\mathbf{Q}^{(k-1)}$$

$$\mathbf{Z}_k = \mathbf{Q}^{(k)}\mathbf{R}^{(k)}$$
 reduced QR factorization end

- ightharpoonup **Z**_k and **Q**^(k) has the same column space
- ightharpoonup equal to the column space of $\mathbf{A}^k \mathbf{Q}^{(0)}$

Subspace Iteration

- ▶ $\mathbf{Q}^{(k)}$ converge to subspace associated with r largest eigenvalues in magnititude (dominant invariant subspace).
- $\blacktriangleright \operatorname{diag}\left(\left(\mathbf{Q}^{(k)}\right)^{H}\mathbf{AQ}^{(k)}\right) \to \left\{\lambda_{1}, \ \lambda_{2}, \ \cdots, \lambda_{r}\right\}$
- $\|\mathbf{q}_{i}^{(k)} \mathbf{v}_{i}\| = \mathcal{O}\left(\left|\frac{\lambda_{r+1}}{\lambda_{i}}\right|^{k}\right), i = 1, 2, \cdots, r$
- $\left| \lambda_i^{(k)} \lambda_i \right| = \mathcal{O}\left(\left| \frac{\lambda_{r+1}}{\lambda_i} \right|^k \right), \ i = 1, \ 2, \ \cdots, \ r$
- ▶ also called simultaneously iteration or orthogonal iteration
- ightharpoonup when r = n, it coincides with QR iteration

Readings

You are supposed to read

Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra, SIAM, 1997.

Lecture 25, 26