CSE 417T Introduction to Machine Learning

Lecture 21

Instructor: Chien-Ju (CJ) Ho

Logistics

- Homework 4 is due April 19 (next Monday)
 - Keep track of your own late days
 - Your submissions won't be graded if you exceed the late-day limit
 - See the implementation hints for random forest by the TA on Piazza
- Homework 5 is posted and is due April 30 (Friday)

• Exam 2: In lecture on the last day of lecture (May 4, Tuesday)

Recap

Support Vector Machines

• Soft-margin SVM (approximates hard-margin SVM with $C \to \infty$)

minimize
$$\overrightarrow{w}, b, \overrightarrow{\xi} = \frac{1}{2} \overrightarrow{w}^T \overrightarrow{w} + C \sum_{n=1}^N \xi_n$$

subject to $y_n (\overrightarrow{w}^T \overrightarrow{x}_n + b) \ge 1 - \xi_n, \forall n$
 $\xi_n \ge 0, \forall n$

• Kernel version of the soft-margin SVM (with Kernel K_{Φ})

maximize
$$\vec{\alpha} \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m K_{\Phi}(\vec{x}_n, \vec{x}_m)$$
 subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$ $0 \le \alpha_n \le C$, $\forall n$

• Solve for $\vec{\alpha}^*$ in the kernel SVM using QP

$$g(\vec{x}) = sign(\vec{w}^{*T}\Phi(\vec{x}) + b^{*})$$

$$= sign(\sum_{\alpha_{n}^{*}>0} \alpha_{n}^{*} y_{n} K_{\Phi}(\vec{x}_{n}, \vec{x}) + b^{*}),$$
where $b^{*} = y_{m} - \sum_{\alpha_{n}^{*}>0} \alpha_{n}^{*} y_{n} K_{\Phi}(\vec{x}_{n}, \vec{x}_{m})$ for some $\alpha_{m}^{*} > 0$

Neural Networks

Perceptron

A hypothesis in Perceptron

$$h(\vec{x}) = sign(\vec{w}^T \vec{x})$$

Graphical representation of Perceptron

- Notations
 - $\vec{x} = (x_0, x_1, ..., x_d)$
 - $\overrightarrow{w} = (w_0, w_1, \dots, w_d)$
 - Linear separator

$$h(\vec{x}) = sign(\vec{w}^T \vec{x})$$

Inspired by neurons:

The output signal is triggered when the weighted combination of the inputs is larger than some threshold

Implementing Logic Gates with Perceptron

Impossible to implement XOR using a single perceptron

Multi-Layer Perceptron

• $XOR(x_1, x_2) \to x_1 \bar{x}_2 + \bar{x}_1 x_2$

- Side note: you are asked to create a neural network with one hidden layer that implements XOR(AND $(x_1, x_2), x_3$)
 - Hint: Try to operate the boolean algebra first
 - Using sign as the activation function would make sense

Universal approximation theorem

• A feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of \mathbb{R}^n , under mild assumptions on the activation function.

Three-layer MLP can approximate ANY continuous target function!

- What about overfitting?
 - We'll talk about regularization methods in the next lecture

Learn MLP From Data?

• Given D and the network structure, how to learn the "weights" (i.e., the weight vectors of every Perceptron)?

• Computationally challenging due to the "sign" function (\Box)

Neural Networks

A softened version of multi-layer Perceptron (MLP)

 θ : activation function

(Specify the "activation" of the neuron)

input layer $\ell = 0$

hidden layers $0 < \ell < L$

output layer $\ell = L$

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Goal of Today

Formally characterize Neural Networks (introduce notations)

• Given a Neural Network hypothesis h, how do we make prediction $h(\vec{x})$

• Given D, how do we learn a Neural Network hypothesis

Neural Networks

 θ : activation function

(Specify the "activation" of the neuron)

We mostly focus on feed-forward network structure

- Think about a single neuron (linear model)
 - Compute the linear signal $\mathbf{s} = \overrightarrow{w}^T \overrightarrow{x}$
 - Transform it to what we need in the output (sign, linear, or sigmoid)

	Domain	Model
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}$
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}$

- In Neural networks, outputs of some nodes are inputs of some others
 - Activation function decides how to do this transformation

- Activation functions in Neural Networks
 - sign function:
 - hard to optimize
 - linear function:
 - the entire neural network is linear
 - One potential option: having a "softened" version of sign function

- Activation functions in Neural Networks
 - sign function: hard to optimize
 - linear function: the entire neural network is linear
 - tanh: a softened version of sign

•
$$tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

• Examine tanh(s)

•
$$tanh(s) = \begin{cases} 1 & \text{when } s \to \infty \\ 0 & \text{when } s = 0 \\ -1 & \text{when } s \to \infty \end{cases}$$

• For $\theta(s) = \tanh(s)$, $\theta'(s) = 1 - \theta(s)^2$

- There are other activation functions with different benefits. However, it doesn't impact our discussions, and we'll focus on tanh() as the activation function
- A few more examples

ArcTan	$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)	$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]	$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus	$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

- Layers $\ell = 0$ to L
 - Layer 0: input layer
 - Layer 1 to L-1: hidden layers
 - Layer *L*: output layer
- $d^{(\ell)}$: dimension of layer ℓ
 - # nodes (excluding 1s) in the layer
- $\vec{x}^{(\ell)}$: the nodes in layer ℓ
 - $\vec{x}^{(0)}$ is the input feature \vec{x}
 - $x_i^{(\ell)}$ is the *i*-th node in layer ℓ

- A hypothesis in linear model is specified by the weights $\{w_i\}$
- Similarly, a hypothesis in NN is characterized by the weights $\{w_{i,j}^{(\ell)}\}$

•
$$1 \le \ell \le L$$

layers

•
$$0 \le i \le d^{(\ell-1)}$$

inputs

•
$$1 \le j \le d^{(\ell)}$$

outputs

- Notations so far:
 - $d^{(\ell)}$: dimension of layer ℓ
 - $\vec{x}^{(\ell)}$: the nodes in layer ℓ
 - $w_{i,j}^{(\ell)}$: weights; characterize hypothesis in NN

- Lastly, linear signal $s_j^{(\ell)} = \sum_{i=0}^{d^{(\ell-1)}} w_{i,j}^{(\ell)} x_i^{(\ell-1)}$
 - By definition: $x_j^{(\ell)} = \theta(s_j^{\ell})$

$$\mathbf{s}^{(\ell)} \xrightarrow{\theta} \mathbf{x}^{(\ell)}$$

- Notations so far:
 - $d^{(\ell)}$: dimension of layer ℓ
 - $\vec{x}^{(\ell)}$: the nodes in layer ℓ
 - $w_{i,j}^{(\ell)}$: weights; characterize hypothesis in NN

- Lastly, linear signal $s_j^{(\ell)} = \sum_{i=0}^{d^{(\ell-1)}} w_{i,j}^{(\ell)} x_i^{(\ell-1)}$
 - By definition: $x_j^{(\ell)} = \theta(s_j^{\ell})$

$$\mathbf{s}^{(\ell)} \stackrel{ heta}{-\!\!\!-\!\!\!\!-\!\!\!\!-} \mathbf{x}^{(\ell)}$$

Short Break and Q&A

Practice:

For a neural network with L=2, $d^{(0)}=3$, $d^{(1)}=2$, $d^{(2)}=1$, what is the total # weights?

Forward Propagation

Given a NN hypothesis and a point \vec{x} , how do we make predictions

Backpropagation

Learn a Neural Network hypothesis from data

Forward Propagation

- A Neural network hypothesis h is characterized by $\left\{w_{i,j}^{(\ell)}\right\}$
- How to evaluate $h(\vec{x})$?

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{w}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{w}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \xrightarrow{\mathbf{w}^{(L)}} \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x}).$$

Forward Propagation

- A Neural network hypothesis h is characterized by $\left\{w_{i,j}^{(\ell)}\right\}$
- How to evaluate $h(\vec{x})$?

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{w}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{w}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \xrightarrow{\mathbf{w}^{(L)}} \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x}).$$

```
Forward propagation to compute h(\mathbf{x}):

1: \mathbf{x}^{(0)} \leftarrow \mathbf{x} [Initialization]

2: \mathbf{for} \ \ell = 1 \ \mathbf{to} \ L \ \mathbf{do} [Forward Propagation]

3: \mathbf{s}^{(\ell)} \leftarrow (\mathbf{W}^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}

4: \mathbf{x}^{(\ell)} \leftarrow \begin{bmatrix} 1 \\ \theta(\mathbf{s}^{(\ell)}) \end{bmatrix}

5: \mathbf{end} \ \mathbf{for}

6: h(\mathbf{x}) = \mathbf{x}^{(L)} [Output]
```

Given weights $w_{i,j}^{(\ell)}$ and $\vec{x}^{(0)} = \vec{x}$, we can calculate all $\vec{x}^{(\ell)}$ and $\vec{s}^{(\ell)}$ through forward propagation.

How to Learn NN From Data?

- Given D, how to learn the weights $W = \{w_{i,j}^{(\ell)}\}$?
- Intuition: Minimize $E_{in}(W) = \frac{1}{N} \sum_{n=1}^{N} e_n(W)$
- How?
 - Gradient descent: $W(t+1) \leftarrow W(t) \eta \nabla_W E_{in}(W)$
 - Stochastic gradient descent $W(t+1) \leftarrow W(t) \eta \nabla_W e_n(W)$

- Key step: we need to be able to evaluate the gradient...
 - Not trivial to do given the network structure
 - Backpropagation is an algorithmic procedure to calculate the gradient

Backpropagation

Use dynamic programming to evaluate the gradient

Quick Reminders on Dynamic Programming

- Example: Fibonacci number
 - $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$
 - $F_0 = 0, F_1 = 1$
 - To evaluate F_N
 - Recursively apply the definition
 - Wasted computation
 - Dynamic programming: evaluate and store F_0 , F_1 , ..., F_N
 - Use space to exchange for time
- Key step in backpropagation
 - Find a recursive definitions of some key quantities
 - Solve the boundary conditions
 - Adopt dynamic programming

Compute the Gradient $V_W e_n(W)$

- To evaluate $\nabla_W e_n(W)$, we need to calculate $\frac{\partial e_n(W)}{\partial w_{i,j}^{(\ell)}}$ for all (i,j,ℓ)
- Zoom in on the region around $w_{i,i}^{(\ell)}$

• Apply chain rule
$$\frac{\partial e_n(W)}{\partial w_{i,j}^{(\ell)}} = \frac{\partial e_n(W)}{\partial s_j^{(\ell)}} \frac{\partial s_j^{(\ell)}}{\partial w_{i,j}^{(\ell)}}$$

Compute the Gradient $V_W e_n(W)$

Apply chain rule

$$\frac{\partial e_n(W)}{\partial w_{i,j}^{(\ell)}} = \frac{\partial e_n(W)}{\partial s_j^{(\ell)}} \frac{\partial s_j^{(\ell)}}{\partial w_{i,j}^{(\ell)}}$$

- Let's look at the second term first
 - Remember $s_i^{(\ell)} = \sum_{i=0}^{d^{(\ell-1)}} w_{i,i}^{(\ell)} x_i^{(\ell-1)}$
 - Therefore, $\frac{\partial s_j^{(\ell)}}{\partial w_{i,j}^{(\ell)}} = x_i^{(\ell-1)}$

- What about the first term?
 - Let's define $\delta_j^{(\ell)} = \frac{\partial e_n(W)}{\partial s_i^{(\ell)}}$
 - We'll apply dynamic programming style algorithm to deal with this term

Compute
$$\delta_j^{(\ell)} = \frac{\partial e_n(W)}{\partial s_j^{(\ell)}}$$

- Using dynamic programming style approach
 - Check boundary case (what is the boundary case?)
 - Write the recursive formulation

- Check boundary case (when $\ell = L$)
 - Output layer
 - For simplicity, assume we are doing regression and the error is squared error

•
$$e_n(W) = (s_1^{(L)} - y_n)^2$$
 (Usually only one node in the output layer)

- $\delta_1^{(L)} = 2(s_1^{(L)} y_n)$ (similar discussion applies for other differentiable error function)
- So the boundary condition at L is checked.
- Next we will derive the backward recursive formulation (hence, backpropagation)

Compute
$$\delta_j^{(\ell)} = \frac{\partial e_n(W)}{\partial s_j^{(\ell)}}$$

Zoom in to see the chain of dependencies

Compute
$$\delta_j^{(\ell)} = \frac{\partial e_n(W)}{\partial s_j^{(\ell)}}$$

Zoom in to see the chain of dependencies

$$\mathbf{s}^{(\ell)} \longrightarrow \mathbf{x}^{(\ell)} \longrightarrow \mathbf{s}^{(\ell+1)}$$

$$\delta_{j}^{(\ell)} = \frac{\partial e_{n}(W)}{\partial s_{j}^{(\ell)}}$$

$$= \sum_{k=1}^{d(\ell+1)} \frac{\partial e_{n}(W)}{\partial s_{k}^{(\ell+1)}} \frac{\partial s_{k}^{(\ell+1)}}{\partial x_{j}^{(\ell)}} \frac{\partial x_{j}^{(\ell)}}{\partial s_{j}^{(\ell)}}$$

$$= \sum_{k=1}^{d(\ell+1)} \delta_{k}^{(\ell+1)} w_{j,k}^{(\ell+1)} \theta' \left(s_{j}^{(\ell)}\right)$$

We have the backward recurve definition!

Compute
$$\delta_j^{(\ell)} = \frac{\partial e_n(W)}{\partial s_j^{(\ell)}}$$

- We can calculate $\delta_j^{(\ell)}$ in a dynamic programming manner:
- Boundary condition: $\delta_1^{(L)} = 2(s_1^{(L)} y_n)$
- Recursive formulation: $\delta_j^{(\ell)} = \sum_{k=1}^{d^{(\ell+1)}} \delta_k^{(\ell+1)} w_{j,k}^{(\ell+1)} \theta'\left(s_j^{(\ell)}\right)$
- Calculate $\delta_j^{(\ell)}$ for $\ell < L$ in a backward manner

Backprogagation Algorithm

- Recall that $\frac{\partial e_n(W)}{\partial w_{i,j}^{(\ell)}} = \delta_j^{(\ell)} x_i^{(\ell-1)}$
- Backpropagation Algorithm
 - Initialize $w_{i,j}^{(\ell)}$ randomly
 - For t = 1 to T
 - Randomly pick a point from D (for stochastic gradient descent)
 - Forward propagation: Calculate all $x_i^{(\ell)}$ and $s_i^{(\ell)}$
 - Backward propagation: Calculate all $\delta_i^{(\ell)}$
 - Update the weights $w_{i,j}^{(\ell)} \leftarrow w_{i,j}^{(\ell)} \eta \delta_j^{(\ell)} x_i^{(\ell-1)}$
 - Return the weights

Discussion

- Backpropagation is gradient descent with efficient gradient computation
- Note that the E_{in} is not convex in weights
- Gradient descent doesn't guarantee to converge to global optimal

- Common approaches:
 - Run it many times
 - Each with a different initialization (the choice of initialization matters)
 - Initialization matters (more discussion next lecture)
 - Initializing at 0 is not a good choice (Q5 of HW5)