Όραση Υπολογιστών (Computer Vision)

Human Vision System

Computer Vision System

"Just like to hear is just not to same as to listen, to take pictures is not the same as to see" ~ Fei Fei Le (Director of AI laboratory at Stanford).

Vision begins with the eyes, but truly takes place in the brain.

Όραση Υπολογιστών (Computer Vision)

Computer Vision, also known as **CV** is a field of Computer Science.

The main goal of computer vision is to give computers the ability to have a high-level understanding of digital images and videos.

In short, it is a field of computer science that seeks to develop techniques, and tools to help computers "SEE" and understand the content of digital images and videos.

Computer Vision focuses on the implementation of the complex human vision system inside computers making them perform intelligent tasks as humans do.

Όραση Υπολογιστών Εφαρμογές

Tractica

Όραση Υπολογιστών

Classification

CAT

Classification + Localization

CAT

Single object

Όραση Υπολογιστών

Object Detection

CAT, DOG

Instance Segmentation

CAT, DOG

Multiple objects

Object detection

Images

Binary image (Black and White)

1	1	1	1	1	1
1	0	1	1	0	1
1	1	1	1	1	1
1	0	1	1	0	1
1	0	0	0	0	1
1	1	1	1	1	1

Grayscale image

25 43 11 04 70 87 12 31 43 10 05 77 12 06 45 09 29 30 02 56 22 75 03 22 96 45 12 23 03 77 67 81 45 22 04 90 22 21 32 45 41 91 87 62 35 02 00 11 62 25 43 11 04 70 87 12 61 31 43 10 05 77 12 06 45 09 29 30 56 22 75 03 22 96 45 05 12 23 03 77 67 81 45 22 04 90 22 32 45 41 91 87 62 35 44 02 00 11 62 25 43 11 04 70 87 12 31 43 10 05 77 12 06 10 45 09 29 30 56 22 75 03 22 96 45 12 23 03 77 67 81 45 55 22 04 90 22 32 45 41 91 87 62 35 02 00 11 62 25 43 11 80 04 70 87 12 31 43 10 05 77 12 06 45 09 29 30 56 22 75 08 03 22 96 45 12 23 03 77 67 81 45 22 04 90 22 32 45 41 99 91 87 62 35 02 00 11 62 22 01 00 72 65 23 01 00 22 04 30 90 22 32 45 41 91 87 62 35 02 00 11 62 25 43 11 04 70 42 87 12 31 43 10 05 77 12 06 45 09 29 30 56 22 75 03 22 91 96 45 12 23 03 77 67 81 45 22 04 90 22 32 45 41 91 87 40 62 35 02 00 11 62 22 01 00 72 65 23 01 00 56 22 75 03 67 22 96 45 12 23 03 77 67 81 45 22 04 90 22 32 45 41 91 22

What we see

What computers see

What Computer Sees

RGB

How to create colors with RGB?

Combine parts of the three primary colors **red**, **green** and **blue**.

Each of the primary colors can have a value in the range from 0 to 255.

R:	255	0	0	0	255
G:	0	255	0	0	255
B:	0	0	255	0	255

Images

Fig 1.4 R has value 22, G has value 159, B has value 230 combined in an additive manner to result in Navy Blue color component

Image with color

Democritus University of Thrace IEEE Student Branch

Image with color

Image with color

Image filtering

Convolution Operation on a 7×7 matrix with a 3×3 kernel

2D Convolution

Image Filtering

- https://www.youtube.com/watch?v=6v8dNtknOSM
- https://i.stack.imgur.com/AV512.gif

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	(0)
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	9
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	9

Famous filters in Opency

https://docs.opencv.org/3.4/d4/d86/group imgproc filter.html

Εγκατάσταση βιβλιοθήκης στο PyCharm

- Πηγάινουμε στο menu: File -> Settings
- 2. Στο δεξιο tree επιλέγουμε "Project: <name>" -> Project Interpreter
- 3. Επιλέγουμε προσθήκη (+)
- 4. Αναζητούμε "opency"
- 5. Επιλέγουμε "opency-contrib-python"
- 6. Install Package...

Με τον παρακάτω κώδικα μπορούμε να δούμε αν η βιβλιοθήκη εγκαταστάθηκε σωστά. Επίσης μπορούμε να δούμε ποιο version της βιβλιοθήκης χρησιμοποιούμε.

```
import cv2
print(cv2.__version__)
```


Computer Vision applications in Autonomous Vehicles

Lane Tracking

Lane Tracking is a vital component of an autonomous vehicle to decide which lane it should stay in, and not move randomly on the road.

Lane detection

Traffic Signs Detection

Detection of traffic signs is an important task that is achieved using Computer Vision and Deep Learning. Imagine an autonomous vehicle not stopping at a red light, or overspeeding at a school zone. Hence it is vital to detect these signs and act accordingly.

Vehicle Detection

Vehicle detection is also another important part of an autonomous vehicle that can be achieved using Computer Vision or Sonar. There are many object detection algorithms that use deep learning or machine learning to help in detecting that specific object. Some of the most famous algorithms include YOLO, RCN, and SSD.

Pedestrian Detection

Imagine a self-driving car or bike hits a pedestrian. This would raise a big question mark on the road safety of autonomous vehicles. In order to protect pedestrians, and to make wise moves, autonomous vehicles need to detect humans first. This is where computer vision comes into play and detects pedestrians and helps autonomous vehicles make wise decisions, thus increasing road safety.

