Herramientas de probabilidad

Verónica E. Arriola-Rios

Inteligencia Artificial

31 de mayo de 2020

Temas

- 1 Antecedentes
- 2 Distribuciones de probabilidad
- 3 Compuertas lógicas con probabilidades
- 4 Factores
- 5 Distribuciones de probabilidad con factores
- 6 Cómo programar factores

Experimento de azar

Definición

Un experimento causal, indeterminista o de azar es aquel para el cual no necesariamente podemos predecir con certeza lo que va a ocurrir al realizarlo. Cuando se repite el mismo experimento bajo las mismas condiciones se puede obtener un resultado diferente.

Ej: "predecir el resultado de lanzar dos monedas."

Eventos

En un experimento aleatorio:

- Evento simple. Cualquier resultado elemental.
 - Ej: a: "obtener el 2 al lanzar un dado."
- Evento. Cualquier conjunto de resultados posibles.

Ej: A: "obtener un par al lanzar un dado."
$$A = \{2,4,6\} = \{ \text{ "obtengo el dos", "o... cuatro", "o...}$$

$$seis''$$
} = { $x | x = 2, 4, 6$ }

 Espacio de eventos, muestras o Universo S. Conjunto de todos los eventos simples posibles.

Ej: "lanzar un dado."
$$S = \{1, 2, 3, 4, 5, 6\}$$

 Tamaño de un evento. Número de eventos simples que satifacen la definición del evento (cardinalidad del conjunto).

Ej: tamaño de A:
$$|A| = 3$$
.

Definición de probabilidad

Definición

Definimos a la probabilidad de un evento A como:

$$P(A) = \frac{|A|}{|S|}.$$
 (1)

Destaca también lo que se conoce como la definición frecuentista de probabilidad, en la cual esta cantidad P(A) se define con respecto a una secuencia potencialmente infinita de repeticiones del experimento aleatorio A.

Variable aleatoria

Definición

Una variable aleatoria es una función que va del espacio de muestras a los reales $X:S\to\mathbb{R}^a$.

^aPor convensión, escribiremos las variables aleatorias con mayúsculas y sus valores concretos con minúsculas.

Ej: Para el evento E: "obtener un 7 al lanzar dos dados". Sea la variable aleatoria X : "La suma del resultado en cada uno de dos dados".

$$X(dado_1, dado_2) = dado_1 + dado_2$$
 (2)

Entonces el evento E se expresa como

$$E: X(dado_1, dado_2) = 7$$
 (3)

Casos particulares de variable aleatoria

- Función identidad $X: \mathbb{R} \to \mathbb{R}$.
- Un mapeo uno a uno del espacio de eventos hacia los reales. cuando los valores del dominio son:
 - Mutuamente exclusivos.
 - Exhaustivos.

Antecedentes

Ej: La variable aleatoria C(Clima) tendría el rango: C(Clima)

= C(< despejado, lluvioso, nublado, granizado, nevado >)=<1,2,3,4,5>

Esto también se puede escribir $C \in \{c^1, c^2, c^3, c^4, c^5\}$, que abrevia los casos C = 1, C = 2, C = 3, C = 4, C = 5.

 Por comodidad y legibilidad, frecuentemente se hará referencia a la variable del espacio de eventos como una variable aleatoria.

Antecedentes

0000000000000

Extensión de la lógica proposicional

- Es posible utilizar la teoría de probabilidades para extender a la lógica proposicional.
- Se utilizan proposiciones que afirman que una variable aleatoria tiene un valor particular tomado de su dominio:

• Se asocia una probabilidad al evento de que la proposición dada sea verdadera o falsa.

Axiomas de la probabilidad

Andrei Kolmogorov demostró cómo desarrollar el resto de la teoría probabilista a partir de los tres axiomas que llevan su nombre^[1]:

• Todas las probabilidades están entre 0 y 1. Para cualquier proposición α ,

$$0 \leqslant P(\alpha) \leqslant 1 \tag{4}$$

2 Las proposiciones necesariamente ciertas (es decir, válidas) tienen probabilidad 1, y las proposiciones necesariamente falsas (es decir, insatisfacibles) tienen probabilidad 0.

$$P(cierto) = 1$$
 $P(falso) = 0$ (5)

1 La probabilidad de una disyunción viene dada por

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$
 (6)

^[1] Russell y Norving 2004

Tercer axioma con conjuntos

Se puede interpretar el axioma:

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$
 (7)

utilizando teoría de conjuntos:

$$P(a \lor b) = \frac{|a \cup b|}{|S|} = \frac{|a| + |b| - |a \cap b|}{|S|}$$
$$= P(a) + P(b) - P(a \land b).$$

Figura: La probabilidad $P(a \lor b)$ corresponde a la probabilidad de la unión de ambos eventos.

Probabilidad condicional

Definición

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$
 (8)

Figura: La probabilidad P(a|b) corresponde a la probabilidad de la intersección de ambos eventos, como si B fuera el nuevo universo.

Teorema de Bayes

Tomando la definición de probabilidad condicional:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)} \qquad P(b|a) = \frac{P(a \wedge b)}{P(a)}$$

Despejando:

$$P(a \wedge b) = P(b)P(a|b) = P(a)P(b|a)$$

Se obtiene el teorema de bayes.

Definición

$$P(b|a) = \frac{P(a|b)P(b)}{P(a)}$$
 (9)

A priori, a posteriori y verosimilitud

Reescribiendo el teorema de Bayes como:

$$p(\theta|e) = \frac{p(e|\theta)p(\theta)}{p(e)}$$
 (10)

- Leemos cada variable como sigue:
 - $p(\theta)$: Creencia a priori (prior). Probabilidad de que ocurra el evento θ en ausencia de evidencia.
 - p(e): probabilidad de encontrar la evidencia por sí misma.
 - $p(e|\theta)$: Verosimilitud (likelihood). Probabilidad de observar la evidencia dado un evento que la causa.
 - $p(\theta|e)$: Creencia a posteriori (posterior). Probabilidad de que ocurra el evento θ dado que se posee información sobre su evidencia.

Esta es la cantidad que se desea calcular cuando se quiere realizar un *diagnóstico*.

Ejemplo

Antecedentes

- Supongamos que un médico quiere saber si un niño tiene varicela, dado que observa manchas en la piel. Sin embargo, recordemos que también pudiera se sarampión.
- Se busca entonces:

$$p(varicela|machas) = \frac{p(manchas|varicela)p(varicela)}{p(manchas)}$$
(11)

- p(varicela): Probabilidad de que cualquier persona tenga varicela.
- p(manchas): probabilidad que una persona tenga manchas en la piel por cualquier causa.
- p(manchas|varicela): probabilidad de que una persona enferma de varicela tenga manchas en la piel.
- p(varicela|manchas): probabilidad de que la persona tenga varicela, dado que tiene manchas en la piel.

Temas

- 1 Antecedentes
- 2 Distribuciones de probabilidad
- 3 Compuertas lógicas con probabilidades
- 4 Factores
- 5 Distribuciones de probabilidad con factores
- 6 Cómo programar factores

Distribución de probabilidad

Una distribución de probabilidad asocia a cada valor posible de una variable aleatoria la probabilidad de que se obtenga ese valor al realizar un experimento. Por ejemplo:

Lluvia	P(Lluvia)
0	0.6375
1	0.3625
	$\sum = 1$

Distribución de probabilidad conjunta

Una distribución de probabilidad conjunta asocia a cada combinación posible de los valores de varias variables que se revisan simulatáneamente, la probabilidad de que se obtenga esa combinación al realizar un experimento. Por ejemplo:

Estación	Lluvia	P(Lluvia∧Estación)
Primavera	0	0.1875
Primavera	1	0.0625
Verano	0	0.075
Verano	1	0.175
Otoño	0	0.175
Otoño	1	0.075
Invierno	0	0.2
Invierno	1	0.05
		$\sum = 1$

Distribución de probabilidad conjunta completa

Si las variables siendo consideradas, son todas las variables del sistema, entonces se dice que se tiene la *distribución de probabilidad conjunta completa*.

Distribución de probabilidad condicional

Antecedentes

La distribución de probabilidad condicional asocia una probabilidad a cada combinación de valores de variables, dado un valor determinado para un conjunto de variables evidencia.

Por ejemplo: "¿Cuál es la probabilidad de que llueva, si es primavera?" y la respuesta es 0.25.

Lluvia / Estación	Primavera	Verano	Otoño	Invierno
0	0.75	0.30	0.70	0.80
1	0.25	0.70	0.30	0.20
	$\sum = 1$	$\sum = 1$	$\sum = 1$	$\sum = 1$

La regla de la cadena

• Definición de probabilidad condicional:

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

$$\Rightarrow P(a,b) = P(a|b)P(b)$$

Definición de probabilidad condicional para más variables:

$$\begin{split} P(X_1,...,X_{n_1}|Y_1,...,Y_{n_2}) &= \frac{P(X_1,...,X_{n_1},Y_1,...,Y_{n_2})}{P(Y_1,...,Y_{n_2})} \\ \Rightarrow P(X_1,...,X_{n_1},Y_1,...,Y_{n_2}) &= P(X_1,...,X_{n_1}|Y_1,...,Y_{n_2})P(Y_1,...,Y_{n_2}) \end{split}$$

Aplicando lo anterior recursivamente podemos derivar:

$$P(X_1, X_2, ..., X_n) = P(X_1 | X_2, ..., X_n) P(X_2 | X_3, ..., X_n) ... P(X_n)$$
(12)

Temas

- 1 Antecedentes
- 2 Distribuciones de probabilidad
- 3 Compuertas lógicas con probabilidades
- 4 Factores
- 5 Distribuciones de probabilidad con factores
- 6 Cómo programar factores

Motivación

Si podemos escribir las funciones lógicas y (\land), o (\lor) y no (\neg), podemos escribir cualquier función boolena.

Usando distribuciones de probabilidad

No

χ	y	P(y x)
0	0	0
0	1	1
1	0	1
1	1	0

•	Y			
			/	\
	x ₁	χ_2	y	$P(y x_1,x_2)$
	0	0	0	1
	0	0	1	0
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
	1	1	1	1

Compuertas lógicas con ruido

Es posible modelar compuertas ruidosas, que no siempre devuelven la respuesta correcta, asociando una pequeña probabilidad $\varepsilon \neq 0$ a las respuestas incorrectas y ajustando acordemente las correctas Koller y Friedman 2009:

•	No		
			_
	χ	y	P(y x)
	0	0	ε
	0	1	$1-\varepsilon$
	1	0	$1-\varepsilon$
	_1	1	ε

•	Y			
			^	\
	χ_1	χ_2	y	$P(y x_1,x_2)$
	0	0	0	$1-\epsilon$
	0	0	1	ε
	0	1	0	$1-\varepsilon$
	0	1	1	ε
	1	0	0	$1-\varepsilon$
	1	0	1	ε
	1	1	0	ε
	1	1	1	$1-\epsilon$

Temas

Antecedentes

- 1 Antecedentes
- 2 Distribuciones de probabilidad
- 3 Compuertas lógicas con probabilidades
- 4 Factores
- 5 Distribuciones de probabilidad con factores
- 6 Cómo programar factores

Factor

Definición (Factor)

Un factor $\phi(X_1,...,X_k)$, sobre variables X_i , donde cada X_i puede tomar valores de un dominio D_{X_i} es una función:

$$\phi: Val(X_1, ..., X_k) \to \mathbb{R}$$
 (13)

que asocia un número real a posibles asignaciones de valores a las variables $X_1,...,X_k$. El *alcance* $\mathbb A$ de un factor son las variables cuyos posibles valores están siendo considerados.

$$\mathbb{A}(\phi(X_1, ..., X_k)) = \{X_1, ..., X_k\} \tag{14}$$

Ejemplo

 $\mathbb{A} = \{ \text{Estaci\'on}, \text{Lluvia} \}$

=	(,,			
Estación	Lluvia	Frecuencia (días/mes)		
Primavera	0	18		
Primavera	1	6		
Verano	0	7		
Verano	1	17		
Otoño	0	17		
Otoño	1	7		
Invierno	0	20		
Invierno	1	5		

Marginalización

Definición (Marginalización)

Dada una variable X_i , en el alcance $\mathbb A$ de un factor $\varphi=\varphi(X_1,...,X_k)$, que se desea marginalizar, se define a la operación como:

marginalización(
$$\phi(X_1, ..., X_k), X_i$$
) = $\phi'(\mathbb{A}')$ (15)

$$\mathbb{A}' = \mathbb{A}(\varphi) - X_{\mathfrak{i}} \text{ con } \mathfrak{i} \in [1, k]$$

$$\phi'(x_1, ..., x_{i-1}, x_{i+1}, ..., x_k) = \sum_{Val\{X_i\}} \phi(x_1, ..., x_k) \quad (17)$$

donde x_i es un valor particular de X_i , $\varphi'(x_1,...,x_{i-1},x_{i+1},...,x_k)$ es el renglón del factor φ' con $\{X_1=x_i,...,X_k=x_k\}$ y $Val\{X_i\}$ es el conjunto de valores posibles asignables a X_i .

Ejemplo: Marginalizar Estación

Estación	Lluvia	P(Lluvia, Estación)
Primavera	0	0.1875
Primavera	1	0.0625
Verano	0	0.075
Verano	1	0.175
Otoño	0	0.175
Otoño	1	0.075
Invierno	0	0.2
Invierno	1	0.05
		$\sum = 1$
	Lluvia	P(Lluvia)
_	0	0.63750
\Rightarrow	1	0.36250
		$\sum = 1$

Reducción

Definición (Reducción)

Dado un valor $x_i=\alpha$ para una de las variables X_i en el alcance $\mathbb A$ del factor φ , se reduce el factor eliminando todas aquellas entradas en las cuales no se cumple que $X_i=\alpha$. La operación se define como:

$$reducción(\phi(X_1, ..., X_k), X_i, \alpha) = \phi'(\mathbb{A}')$$
(18)

$$\mathbb{A}' = \mathbb{A}(\varphi) - X_{\mathfrak{i}} \text{ con } \mathfrak{i} \in [1, k] \quad (19)$$

$$\varphi'(x_1,...,x_{i-1},x_{i+1},...,x_k) = \varphi(x_1,...,x_k) \text{ con } X_i = a \quad \text{(20)}$$

A diferencia de las distribuciones de probabilidad, la reducción en un factor no requiere renormalizar sus valores asociados, pues por definición, no es necesario que éstos sumen uno.

Ejemplo: Reducir Estación = Primavera

Estación	Lluvia	P(Lluvia, Estación)
Primavera	0	0.1875
Primavera	1	0.0625
Verano	0	0.075
Verano	1	0.175
Otoño	0	0.175
Otoño	1	0.075
Invierno	0	0.2
Invierno	1	0.05
		$\sum = 1$

_	Lluvia	P(Lluvia, Estación = primavera)
	0	0.1875
\rightarrow	1	0.0625
		$\sum = 0.25$

Normalización

Definición (Normalización)

Dado un factor ϕ con n renglones sea

$$s = \sum_{i=1}^{n} \phi_i \tag{21}$$

con ϕ_i el valor asociado al renglón i, s es la suma de los valores de todos los renglones. Entonces:

$$normalización(\phi) = \phi'$$
 (22)

$$\phi_i' = \frac{\phi_i}{s} \tag{23}$$

donde el valor en cada renglón de ϕ ha sido dividido entre s.

Ejemplo:Normalizar

Lluvia	P(Lluvia, primavera)
0	0.1875 / 0.25
1	0.0625 / 0.25
	$\sum = 0.25$

\Rightarrow	Lluvia	P(Lluvia primavera)			
	0	0.75			
	1	0.25			
		$\sum = 1$			

Multiplicación

Antecedentes

Definición (Multiplicación)

Se define el producto de factores de tal modo que:

$$\phi_1 = \phi_1(X_1, ..., X_k)$$
 $\phi_2 = \phi_2(Y_1, ..., Y_l)$ (24)

$$\phi = \phi_1 \phi_2 \tag{25}$$

$$\mathbb{A}(\phi) = \mathbb{A}(\phi_1) \cup \mathbb{A}(\phi_2)$$

$$\phi(z_1,...,z_m) = \phi_1(x_1,...,x_k) * \phi_2(y_1,...,y_l)$$

donde $Z_k \in \mathbb{A}(\varphi)$ por lo que:

si
$$Z_k \in \mathbb{A}(\phi_1) \Rightarrow Z_k = X_i \land z_k = x_i$$
 (26)
si $Z_k \in \mathbb{A}(\phi_2) \Rightarrow Z_k = Y_i \land z_k = y_i$

obsérvese que si $Z_k \in \mathbb{A}(\varphi_1)$ y $Z_k \in \mathbb{A}(\varphi_2)$ entonces $Z_k = X_i = Y_j$ y en cada renglón deberá cumplirse $z_k = x_i = y_i$.

Ejemplo 1: Multiplicar P(Lluvia|Estación)P(Estación)

Estación	Lluvia	P(Lluvia Estación)		
Primavera	0	0.75		
Primavera	1	0.25		
Verano	0	0.30		
Verano	1	0.70		
Otoño	0	0.70		
Otoño	1	0.30		
Invierno	0	0.80		
Invierno	1	0.20		

	Estación	P(Estación)
	Primavera	0.25
	Verano	0.25
^	Otoño	0.25
	Invierno	0.25
		$\sum = 1$

	Estación	Lluvia	P(Lluvia, Estación)
	Primavera	0	0.1875
	Primavera	1	0.0625
	Verano	0	0.075
=	Verano	1	0.175
	Otoño	0	0.175
	Otoño	1	0.075
	Invierno	0	0.2
	Invierno	1	0.05
			$\sum = 1$

Ejemplo 2: Multiplicar P(Lluvia)P(Estación)

			Estación	P(Estación)	
Lluvia	P(Lluvia)		Primavera	0.25	
0	0.63750	×	Verano	0.25	_
1	0.36250		Otoño	0.25	_
	$\sum = 1$		Invierno	0.25	
				$\sum = 1$	

 $\mathsf{Sea}\ R = P(\mathsf{Lluvia}) P(\mathsf{Estaci\'on})$

Estación	Lluvia	R		Estación	Lluvia	R
Primavera	0	0.159375		Primavera	0	0.159375
Primavera	1	0.090625		Verano	0	0.159375
Verano	0	0.159375		Otoño	0	0.159375
Verano	1	0.090625	_	Invierno	0	0.159375
Otoño	0	0.159375		Primavera	1	0.090625
Otoño	1	0.090625		Verano	1	0.090625
Invierno	0	0.159375		Otoño	1	0.090625
Invierno	1	0.090625		Invierno	1	0.090625
		$\sum = 1$				$\sum = 1$

Temas

- 1 Antecedentes
- 2 Distribuciones de probabilidad
- 3 Compuertas lógicas con probabilidades
- 4 Factores
- 5 Distribuciones de probabilidad con factores
- 6 Cómo programar factores

Distribuciones de probabilidad con factores

- Claramente, los factores pueden contener, en particular, tablas de distribuciones de probabilidad sobre variables discretas.
- Las variables aleatorias del sistema aparecerán en el alcance del factor,
- las combinaciones posibles de asignaciones a estas variables quedarán registradas en los renglones del factor y
- la probabilidad de que ocurran será el número real asociado a esa entrada.

Distribuciones de probabilidad condicional con factores

Antecedentes

Estación	Lluvia	P(Lluvia Estación)	
Primavera	0	0.75	
Primavera	1	0.25	$\sum = 1$
Verano	0	0.30	
Verano	1	0.60	$\sum = 1$
Otoño	0	0.70	
Otoño	1	0.30	$\sum = 1$
Invierno	0	0.8	
Invierno	1	0.1	<u>></u> = 1

Temas

- 1 Antecedentes
- 2 Distribuciones de probabilidad
- 3 Compuertas lógicas con probabilidades
- 4 Factores
- 5 Distribuciones de probabilidad con factores
- 6 Cómo programar factores

Estructura

- Crear el clase Variable, con:
 - Nombre
 - Lista de valores posibles. Esta lista define un orden.
- Crear clase Factor, con:
 - Alcance. Una tupla de variables, esta tupla define un orden.
 - Valores φ. Una lista con los valores correspondientes a cada renglón.

$A = \{Estación, Lluvia\}$

Estación	Lluvia	Frecuencia (días/mes)
Primavera	0	18
Primavera	1	6
Verano	0	7
Verano	1	17
Otoño	0	17
Otoño	1	7
Invierno	0	20
Invierno	1	5

Ejemplo

Variables

- E =
 Variable('Estación',
 ['Primavera',
 'Verano', 'Otoño',
 'Invierno'])
- LL =
 Variable('Lluvia',
 [0,1])

Factores

• f = Factor((E, LL), [18,6,7,17, 17,7,20,5])

$A = \{Estación, Lluvia\}$

Estación	Lluvia	Frecuencia (días/mes)
Primavera	0	18
Primavera	1	6
Verano	0	7
Verano	1	17
Otoño	0	17
Otoño	1	7
Invierno	0	20
Invierno	1	5

Cómo encontrar un renglón

Se utiliza un polinomio de direccionamiento:

$$i = (((i_0) * t_1 + i_1) * t_2 + i_2) * ... * t_{n-1} + i_{n-1}$$
 (27)

- Para determinar los valores de i_k y t_k usamos:
 - Los índices k son la posición de la variable en A.
 - t_k es el tamaño del dominio de la k-ésima variable.
 - $\bullet \ i_k$ es el índice del valor de la k-variable en su lista-dominio.

	Letra	Estación	Lluvia	Frecuencia (días/mes)
0	a	Primavera	0	18
1	a	Primavera	1	6
2	a	Verano	0	7
3	a	Verano	1	17
4	a	Otoño	0	17
	b			
	С			

$$i(Letra = b, Estación = Otoño, Lluvia = 0) = ((1) * 4 + 2) * 2 + 0$$

Tips para implementar las operaciones

- Definir el dominio del factor resultante.
- 2 Utilizar el polinomio de direccionamiento para encontrar el renglón del factor ϕ donde las variables tienen los valores indicados.
 - Se recomienda tener una función auxiliar, que reciba un diccionario, y sólo lea los valores relevantes a las variables en su alcance.
 - A partir de esos valores, calcular sus índices según las listas con que se definieron los objetos.
 - Usar los índices en el polinomio para obter el índice del valor del factor.
- Iterar sobre los renglones del factor resultado, para calcular, según la definición de la operación correspondiente, el valor nuevo correspondiente.

Referencias I

- Koller, Daphne y Nir Friedman (2009). Probabilistic Graphical Models, Principles and Techniques. MIT Press Cambridge.
- Russell, Stuart y Peter Norving (2004). Inteligencia Artificial, Un Enforque Moderno. 2a. Pearson Prentice Hall.