

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV RADIOELEKTRONIKY

DEPARTMENT OF RADIO ELECTRONICS

MĚŘENÍ POLOHY UVNITŘ BUDOV POMOCÍ INERCIÁLNÍ JEDNOTKY

INDOOR POSITIONING BASED ON INERCIAL MEASUREMENT UNIT

SEMESTRÁLNÍ PRÁCE

SEMESTRAL THESIS

AUTOR PRÁCE

Marek Coufal

AUTHOR

VEDOUCÍ PRÁCE

Ing. Jan Král, Ph.D.

SUPERVISOR

BRNO 2023

Semestrální práce

bakalářský studijní program Elektronika a komunikační technologie

Ústav radioelektroniky

Student: Marek Coufal ID: 240598

Ročník: 3 Akademický rok: 2023/24

NÁZEV TÉMATU:

Měření polohy uvnitř budov pomocí inerciální jednotky

POKYNY PRO VYPRACOVÁNÍ:

BP(K)C-SEP: Seznamte se s dostupnými jednotkami pro měření inerciální polohy. Navrhněte a realizujte vhodný hardware samostatné bezdrátové jednotky, která bude umět zaznamenávat interně své údaje do paměti a na konci měření tato data přenést do počítače.

BP(K)C-BAP: Realizujte ovládací SW a FW a skripty v Matlabu nebo Pythonu pro určení polohy uvnitř budov. Funkci demonstrujte. Všechny programy realizujte tak, aby byly vhodné a použitelné v rámci laboratorní úlohy předmětu MPC-RAR. Navrhněte koncept této laboratorní úlohy.

DOPORUČENÁ LITERATURA:

[1] MALÝ, Martin. Hradla, volty, jednočipy: Úvod do bastlení. Praha: CZ.NIC, 2017. ISBN 978-80-88168-26-3. [2] RITCHIE, Dennis M., KERNIGHAN, Brian W. The C Programming Language, Second Edition. New Jersey: Prentice Hall, 1988. ISBN 9780133086249.

Termín zadání: 22.9.2023 Termín odevzdání: 2.1.2024

Vedoucí práce: Ing. Jan Král, Ph.D.

doc. Ing. Lucie Hudcová, Ph.D. předseda rady studijního programu

UPOZORNĚNÍ:

Autor semestrální práce nesmí při vytváření semestrální práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Abstrakt práce v originálním jazyce

KLÍČOVÁ SLOVA

Klíčová slova v originálním jazyce

ABSTRACT

Překlad abstraktu (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

KEYWORDS

Překlad klíčových slov (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

Vysázeno pomocí balíčku thesis verze 4.09; https://latex.fekt.vut.cz/

ROZŠÍŘENÝ ABSTRAKT

Výtah ze směrnice rektora 72/2017:

Bakalářská a diplomová práce předložená v angličtině musí obsahovat rozšířený abstrakt v češtině nebo slovenštině (čl. 15). To se netýká studentů, kteří studují studijní program akreditovaný v angličtině. (čl. 3, par. 7)

Nebude-li vnitřní normou stanoveno jinak, doporučuje se rozšířený abstrakt o rozsahu přibližně 3 normostrany, který bude obsahovat úvod, popis řešení a shrnutí a zhodnocení výsledků. (čl. 15, par. 5)

Prohlášení autora o původnosti díla

Marek Coufal

240598

Typ práce:	Semestrální práce
Akademický rok:	2023/24
Téma závěrečné práce:	Měření polohy uvnitř budov pomocí inerciální jednotky
cí/ho závěrečné práce a s použitím o které jsou všechny citovány v práci a u Jako autor uvedené závěrečné práce d závěrečné práce jsem neporušil autor nedovoleným způsobem do cizích aut a jsem si plně vědom následků porušekona č. 121/2000 Sb., o právu autorska o změně některých zákonů (autorska)	sem vypracoval samostatně pod vedením vedoudborné literatury a dalších informačních zdrojů, ivedeny v seznamu literatury na konci práce. ále prohlašuji, že v souvislosti s vytvořením této ská práva třetích osob, zejména jsem nezasáhl orských práv osobnostních a/nebo majetkových ní ustanovení § 11 a následujících autorského zákém, o právech souvisejících s právem autorským ký zákon), ve znění pozdějších předpisů, včetně lývajících z ustanovení části druhé, hlavy VI. díl 4
Brno	podpis autora*

Jméno a příjmení autora:

VUT ID autora:

^{*}Autor podepisuje pouze v tištěné verzi.

PODĚKOVÁNÍ
Rád bych poděkoval vedoucímu bakalářské/diplomové/disertační práce panu Ing. XXX YYY, Ph.D. za odborné vedení, konzultace, trpělivost a podnětné návrhy k práci.

Obsah

U	vod			12
Cí	île pı	ráce		13
1			á část studentské práce	14
	1.1	Porov	nání navigačních systémů	14
2	Výs	ledky	studentské práce	15
	2.1	Hardy	vare inerciální jednotky	15
		2.1.1	Akcelerometr a gyroskop	16
		2.1.2	Magnetometr	18
		2.1.3	GNSS	18
		2.1.4	Paměť	19
		2.1.5	Uživatelské rozhraní	20
		2.1.6	Napájení	20
		2.1.7	Hlavní procesor	22
		2.1.8	ESP32	22
Zá	ivěr			24
Li	terat	ura		25
Se	znar	n sym	bolů a zkratek	27
Se	znar	n přílo	oh .	28
\mathbf{A}	Sch	éma z	apojení inerciální jednotky	29
В	Poh	iled os	azení součástek	36
\mathbf{C}	Vrchní vrstva mědi DPS			37
D	Vni	třní vi	rstva mědi DPS In1	38
${f E}$	Vni	třní vi	rstva mědi DPS In2	39
\mathbf{F}	Spodní vrstva mědi DPS 4			40

Seznam obrázků

2.1	Blokové schéma inerciální jednotky	15
2.2	Fotografie grafického OLED displeje	20

Seznam tabulek

2.1	Porovnání základních parametrů gyroskopů [9] [10]	17
2.2	Podporované družicové systémy [6]	19
2.3	Odhad celkového bitratu pro záznam dat	19
2.4	Odhad spotřeby proudu 3,3V větve	21
2.5	Minimální požadavky na periferie mikroprocesoru	22

Seznam výpisů

Úvod

Úvod studentské práce, např...

Nečíslovaná kapitola Úvod obsahuje "seznámení" čtenáře s problematikou práce. Typicky se zde uvádí: (a) do jaké tematické oblasti práce spadá, (b) co jsou hlavní cíle celé práce a (c) jakým způsobem jich bylo dosaženo. Úvod zpravidla nepřesahuje jednu stranu. Poslední odstavec Úvodu standardně představuje základní strukturu celého dokumentu.

1

Šablona je nastavena na *dvoustranný tisk*. Nebuďte překvapeni, že ve vzniklém PDF jsou volné stránky. Je to proto, aby důležité stránky jako např. začátky kapitol začínaly po vytisknutí a svázání vždy na pravé straně. Pokud máte nějaký závažný důvod sázet (a zejména tisknout) jednostranně, nezapomeňte si přepnout volbu twoside na oneside!

¹Tato věta je pouze ukázkou použití příkazů pro sazbu zkratek.

Cíle práce

Konkrétní specifikace cílů, které má autor v práci vyřešit. Tato kapitola je $voliteln\acute{a}$ – pokud váš studijní program nevyžaduje zvláštní kapitolu s cíli, cíle specifikujte v rámci Úvodu.

- 1 Teoretická část studentské práce
- 1.1 Porovnání navigačních systémů

2 Výsledky studentské práce

2.1 Hardware inerciální jednotky

Obr. 2.1: Blokové schéma inerciální jednotky

Hardware inerciální jednotky je realizován tak, aby umožňoval zaznamenávat hodnoty změřené inerciálními senzory a poskytovat dohromady data o rozměru 9 DoF (akcelerometr, gyroskop a magnetometr). Jednotka také obsahuje GPS modul s vestavěným IMU, jehož použití by mohlo být vhodné například v prostorech s alespoň částečným pokrytím signálu GPS.

Naměřená data je možné uložit do externí NOR Flash paměti připojené k MCU, popřípadě lze využít i kartu typu microSD. K přenosu dat pro jejich následné zpracování v PC primárně slouží ESP32-C3, umožňující bezdrátovou komunikaci přes Wifi, nebo Bluetooth. Konektor USB typu C umožňuje nabíjení vestavěného Li-Ion akumulátoru jednotky a komunikaci mezi PC a ESP32, GPS modulem a hlavním

MCU skrze vestavěný USB rozbočovač. Toto rozhraní je plánované pro použití např. ke konfiguračním, nebo ladícím účelům.

Pro jednoduchou volnost pohybu je jednotka napájena jedním Li-Ion akumulátorem velikosti 18650, při záznamu dat tedy nebude potřeba externího zdroje energie. Grafický OLED displej a 4 tlačítka slouží jako uživatelské rozhraní při používání jednotky.

2.1.1 Akcelerometr a gyroskop

Jednotka obsahuje dvě 6 DoF IMU (gyroskop s akcelerometrem) rozdílných parametrů a řádově rozdílné ceny. Takto odlišné součástky byly vybrány proto, aby bylo možné porovnat vliv přesnosti, šumu a driftu senzorů na následně zpracovaná data. V Tabulce 2.1 jsou porovnány důležité parametry senzorů MPU6050 a ADIS16505-2. Pro účely inerciální navigace je důležitý zejména nízký drift senzorů, aby při integraci dat k vyhodnocení polohy nebyla integrována i driftová chyba, což má za výsledek velmi nepřesné zpracování hodnot.

Integrovaný obvod MPU6050 je standardní 6 osé MEMS IMU, vhodné mimo jiné pro použití v mobilních zařízeních a dalších podobných aplikacích. Jeho vnitřní gyroskop a akcelerometr má softwarově přepínatelné rozsahy měřených veličin. Kromě inerciálních senzorů má i vestavěný signálový procesor pro fúzi a filtrování dat přímo v integrovaném obvodu. Tato funkce může být vhodná pro odlehčení výpočetního výkonu hlavního procesoru, ovšem pro účely této práce nebude signálový procesor využit, jelikož se měřená data budou zpracovávat až po jejich naměření v PC, ne v reálném čase. Vzorkovací frekvence gyroskopu je 8 kHz a akcelerometru 1 kHz, oba senzory mají 16bitové rozlišení. [9]

MPU6050 disponuje rozhraním I2C s maximální frekvencí hodinového signálu 400 kHz. [9] Pokud bychom chtěli vyčítat ze senzoru data při maximální možné vzorkovací frekvenci, byla by potřeba minimální přenosová rychlost sběrnice:

$$f_{\text{clk}} = 3 \text{ osy} \times (f_{\text{gyro}} + f_{\text{acc}}) \times (16 \text{bit} \mathring{u} + 2 \times \text{ACK}) = 3 \times (8000 + 1000) \times (16 + 2) = 486 \text{ kHz}$$

Při vyčítání dat o maximální vzorkovací frekvenci jsme omezeni samotným I2C rozhraním senzoru (využití maximální vzorkovací frekvence je teoreticky možné krátkodobě, pomocí interního 1kB FIFO zásobníku).[9]

Jelikož pro účely inerciální navigace stačí vzorkovací frekvence dat v řádu stovek Hz [8], tak není tato limitace omezující. Senzor je propojen s hlavním MCU přes

 $^{^1\}mathrm{Pro}$ porovnání citlivosti byl vybrán dynamický rozsah $500\,^\circ/\mathrm{s}$ senzoru MPU6050 pro možnost porovnání hodnoty s druhým senzorem

 $^{^2}$ Pro porovnání citlivosti byl vybrán dynamický rozsah $78,4\,\mathrm{m/s^2}$ senzoru MPU6050 pro možnost porovnání hodnoty s druhým senzorem

Model IMU	MPU6050	ADIS16505-2	jednotka	
Parametry gyroskopů				
programovatelný,				
Dynamický rozsah	$\pm 250, \pm 500,$	± 500	$^{\circ}/\mathrm{s}$	
	$\pm 1000, \pm 2000$			
Citlivost ¹	65, 5	2621440	LSB/(°/s)	
Drift v ose x a z	±20	$\pm 0, 14$	$^{\circ}/\mathrm{s}$	
Drift v ose y	±20	$\pm 1, 4$	$^{\circ}/\mathrm{s}$	
Efektivní hodnota hustoty	0.005	0.0042	0 /a / . /IIa	
šumu při 10Hz pro osy x a y	0,005	0,0043	$^{\circ}/\mathrm{s}/\sqrt{\mathrm{Hz}}$	
Efektivní hodnota hustoty	0.005	0.0094	0 / / /II	
šumu při 10Hz pro osu z	0,005	0.0034 °/s/ $\sqrt{\text{Hz}}$	S/VHZ	
Par	Parametry akcelerometrů			
	programovatelný,			
Dynamický rozsah	$\pm 19, 6, \pm 39, 2,$	$\pm 78, 4$	$\mathrm{m/s^2}$	
	$\pm 78, 4, \pm 156, 8$			
Citlivost ²	418	26756268	$LSB/(m/s^2)$	
Drift v ose x a y	$\pm 0,491$	$\pm 0,0196$	m/s^2	
Drift v ose z	$\pm 0,785$	$\pm 0,0196$	m/s^2	
Efektivní hodnota hustoty	2004	167		
šumu při 10Hz pro osy x a y	3924	167	$\mu m/s^2/\sqrt{Hz}$	
Efektivní hodnota hustoty	3924	243	$\mu \mathrm{m/s^2/\sqrt{Hz}}$	
šumu při 10Hz pro osu z	3924	$\angle 43$	µш/ѕ / Ѵ НZ	

Tab. 2.1: Porovnání základních parametrů gyroskopů [9] [10]

I2C sběrnici s frekvencí hodinového signálu 400 kHz a není sdílena s žádným jiným zařízením, aby bylo možné, v případě potřeby, využít maximální dostupný potenciál senzoru (i přestože je reálná potřeba vzorkovací frekvence nižší).

Integrovaný obvod ADIS16505-2 je precizní 6 osé MEMS IMU, vhodné pro použití v průmyslových a navigačních aplikacích s poměrně nízkým driftem a vysokou přesností. Na rozdíl od MPU6050 nemá přepínatelný dynamický rozsah, je fixně daný variantou součástky. Vzorkovací frekvence gyroskopu i akcelerometru je 2 kHz, oba senzory mají 32bitové rozlišení. S hlavním MCU komunikuje přes sběrnici SPI s maximální frekvencí hodinového signálu 2,1 Mhz. [10] Pokud budeme chtít vyčítat data ze senzoru při maximální možné vzorkovací frekvenci, bude potřeba minimální přenosová rychlost sběrnice:

$$f_{\rm clk} = 3 \text{ osy} \times (f_{\rm gyro} + f_{\rm acc}) \times 32 \text{bit} \mathring{\mathrm{u}} = 3 \times (2000 + 2000) \times 32 = 384 \,\mathrm{kHz}$$

Nejsme tedy omezeni maximální frekvencí hodinového signálu a můžeme teoreticky využívat senzor i při nejvyšší možné rychlosti.

Výrobce prodává tento obvod ve variantě 100 pinového BGA čipu, ale i jako vývojovou desku osazenou senzorem a kolíkovou lištou pro jednodušší práci s osazením DPS. [10] Hardware jednotky byl navržen tak, aby bylo možné využít jak samotný BGA čip, tak i hotový modul s konektorem.

2.1.2 Magnetometr

Vzhledem k tomu, že výběr komerčně dostupných 9 DoF (akcelerometr, gyroskop a magnetometr) je značně omezený, popřípadě součástky prodávané jako 9osé IMU jsou ve skutečnosti moduly více součástek na jedné desce, tak je ve výsledném obvodovém zapojení použit senzor magnetické indukce jakožto samostatná součástka.

Přestože fúze dat z magnetometru může mít pozitivní dopady na zmenšení chyby trajektorie [7], jeho použití uvnitř budov je značně omezené vzhledem k jednoduché ovlivnitelnosti měření blízkými feromagnetickými látkami, silovými rozvody elektřiny a pod. Proto nebyly na výběr magnetometru kladeny vysoké požadavky a slouží spíše pro porovnání vlivu přítomnosti / absence naměřených dat z tohoto senzoru.

K tomuto účelu byl vybrán běžně dostupný obvod LSM303AGR, který kromě magnetometru v pouzdře obsahuje i akcelerometr, ten ovšem nebude pro potřeby práce využit, jelikož tuto funkci obstarávají součástky z kapitoly 2.1.1.

Magnetometr komunikuje s hlavním MCU přes sběrnici I2C s maximální vzorkovací frekvencí 150 Hz, dynamickým rozsahem $\pm 4,915\,\mathrm{mT}$ a 16bitovým rozlišením. [11]

2.1.3 GNSS

Zajímavou a uživatelsky přívětivou kombinaci GNSS a inerciální navigace poskytuje například firma u-blox s řadou modulů podporující funkci "dead reckoning". Jedná se o navigační moduly s vestavěným IMU, určené zejména do oblasti automotive. Jejich typický příklad použití, dle výrobce, je navigace aut, kdy při běžném provozu je zafixovaný signál z GNSS a při výpadku signálu (vjezd do garáže, tunelu apod.) je navigace modulem stále poskytována na základě dat z IMU. [6]

Navigační modul u-blox NEO-M8U byl vybrán a implementován do obvodového zapojení inerciální navigační jednotky. Výrobce udává, že modul zvládne odhadovat polohu po ztrátě signálu GNSS po dobu 60 s s typickou odchylkou 10 % trajektorie. Dále také modul při zapnutí odpovídající funkce umí využít interní IMU ke zvýšení maximální rychlosti aktualizace polohy až na 30 Hz. Jeho využití v rámci této práce

může být různé, například pro navigaci v místech s alespoň částečným pokrytím signálu GNSS. [6]

NEO-M8U umí využívat všechny světové navigační systémy (uvedeny v tabulce 2.2) Tento modul komunikuje s hlavním MCU přes sběrnici UART, pomocí standardi-

GNSS systém	Pásmo	Frekvence (MHz)
GPS	L1C/A	1575,42
GLONASS	L1OF	1602
BeiDou	В1	1561,098
Galileo	E1-B/C	1575,42

Tab. 2.2: Podporované družicové systémy [6]

zovaných NMEA příkazů v textové podobě, nebo pomocí binárního protokolu UBX, který je specifikován výrobcem. Použití protokolu NMEA je omezené pouze na standardní funkce GNSS modulů, pokud chceme využít speciálních funkcí, například inerciální navigace, je nutné použít proprietární protokol UBX. [6] NEO-M8U také disponuje USB portem, skrz který je možné modul ovládat a konfigurovat pomocí PC aplikace výrobce. Tento port je připojen na integrovaný USB rozbočovač a lze jej využít například pro vývojové účely.

2.1.4 Paměť

Senzor	Odhadovaný bitrate
ADIS16505-2	375 kbit/s
MPU-6050	422 kbit/s
LSM303AGR	7 kbit/s
NEO-M8U	1 kbit/s
Celkem	805 kbit/s (0,1MB/s)

Tab. 2.3: Odhad celkového bitratu pro záznam dat

V případě, že bychom chtěli zaznamenávat data ze všech senzorů při jejich maximálních vzorkovacích frekvencích, nebude množství změřených dat zanedbatelné. V tabulce 2.3 je hrubý odhad potřebné rychlosti záznamu dat pro tento krajní případ. Pokud bude měření trvat např. 2 minuty, vygenerujeme dohromady 12 MB dat, což převyšuje velikost paměti většiny dostupných MCU.

Z tohoto důvodu je v obvodovém zapojení inerciální jednotky implementována 32MB NOR Flash paměť, propojená s hlavním MCU přes sběrnici QUADSPI s

maximální možnou hodinovou frekvencí 120 Mhz, měla by tedy být pro potřeby této aplikace dostačující. [5]

Kromě výše popsané Flash paměti jednotka obsahuje i slot na microSD kartu, která by z uživatelského hlediska mohla být jednodušší k použití, ovšem při zápisu může latence SD karty být (krátkodobě) až stovky ms [4]. To by mohlo znemožnit její použití v případě, že by hlavní MCU měl nedostatek volné paměti RAM pro krátkodobé uchování dat, proto bude o její využití rozhodnuto až později.

2.1.5 Uživatelské rozhraní

Obr. 2.2: Fotografie grafického OLED displeje

Pro ovládání uživatelem disponuje jednotka grafickým OLED displejem s úhlopříčkou 0,96 palce a rozlišením 128 × 64 pixelů, který je připojený přes sběrnici I2C. Společně s 4 tlačítky by měl poskytnout dostatečně univerzální a pohodlné uživatelské rozhraní.

2.1.6 Napájení

Inerciální jednotka je napájena z jednoho Li-Ion akumulátoru velikosti 18650. Nabíjení je realizováno obvodem BQ24075RGT, který monitoruje nabíjecí odebíraný proud jednotkou. Proud, kterým je nabíjen akumulátor je regulován tak, aby nepřekročil maximální hranici 900 mA z USB portu. [2]

Všechny součásti inerciální jednotky (až na RTC a zálohovací registry hlavního MCU a GPS modulu) jsou napájeny skrz DC/DC měnič z výstupního vývodu tohoto nabíjecího obvodu. V případě, že je připojena jednotka do USB a nabíjí se, na výstupním pinu nabíjecího obvodu je napájecí napětí USB portu. Díky tomu nedochází k velkým ztrátám pokud je jednotka zapnuta a nabíjí se zároveň. Jestliže je USB odpojeno, skrz interní tranzistor je jednotka napájena z akumulátoru. [2]

Nabíjecí obvod také umožňuje kompletní odpojení napájení jednotky přes jeden z vývodů. Toho je využito pro ochranu akumulátoru proti podvybití pomocí zapojení S/R klopného obvodu na napájení USB a jednoho z výstupů procesoru. Napětí

akumulátoru je měřeno pomocí ADC mikrokontroléru. Jestliže klesne pod definovanou úroveň, pomocí pulzu bude celý obvod odpojen od napájení až do té doby, dokud uživatel znova nepřipojí jednotku do USB portu.

Součástka	Odhadovaný proud (mA)
STM32F446	50
ESP32	150
USB2514	135
ADIS16505	50
NEO-M8U	30
OLED displej	10
microSD karta	50
Celkem	475

Tab. 2.4: Odhad spotřeby proudu 3,3V větve

Vzhledem k většímu počtu součástek není odebíraný proud z 3,3V napájecí větve malý (zhruba 0,5 A, viz. tabulka 2.4). Budeme-li uvažovat rozsah výstupního napětí nabíjecího obvodu 3,5 V (vybitý akumulátor) až 5 V (zařízení připojené do USB) zjistíme, že pro napájení 3,3V větve není vhodný lineární regulátor, zejména kvůli vysokému ztrátovému výkonu. Ten je v krajním případě:

$$P_{\text{ztrátov}} = (U_{\text{USB}} - U_{\text{IO}}) \times I_{\text{IO}} = (5 - 3, 3) \times 0, 5 = 0.85 \,\text{W}$$

Proto byl na napájení hlavní 3,3V větve vybrán spínaný regulátor TPS62823. Jedná se o buck (snižující) měnič s integrovaným výkonovým tranzistorem pracujícím na frekvenci 2,2 MHz. Díky vyšší spínací frekvenci je možné využít menší komponenty, zejména cívku a filtrační kondenzátory na výstup, ovšem je potřeba dodržet doporučovaná pravidla při návrhu desky pro omezení rušení a velkých proudových smyček. Rozsah napájecího napětí čipu je 2,4 až 5 V, maximální výstupní proud 3 A. [1]

Minimální napětí, na které můžeme nechat akumulátor vybít je dáno odpory přechodů D-S vnitřních tranzistorů nabíjecího obvodu, DC/DC měniče a stejnosměrným odporem cívky. V tomto případě bude regulátor pracovat v módu s minimální střídou. [1] Toto napětí je:

$$U_{\text{batMin}} = U_{\text{out}} + I_{\text{out}} \times (R_{\text{DS(charge)}} + R_{\text{DS(conv)}} + R_{\text{DC(L)}}) =$$

= 3, 3 + 0, 5 \times (0, 05 + 0, 026 + 0, 014) = 3,345 V

2.1.7 Hlavní procesor

Požadavky na výběr hlavního procesoru byly z velké části dané počtem a druhem potřebných periferií, které jsou popsané v tabulce 2.5. Dále byly z podskupiny procesorů disponujících všemi periferiemi z tabulky 2.5 vybrány takové, které mají velikost vnitřní FLASH paměti alespoň 512 kB, abychom nebyli při vývoji Firmwaru jednotky omezeni velikostí programu. Pouzdra procesorů byla vybrána taková, aby se s nimi dalo jednoduše pracovat, z toho důvodu byla vyloučena pouzdra typu BGA. V neposlední řadě byla zvážena i dostupnost vybíraných procesorů u nejobvyklejších distributorů elektronických součástek, aby bylo možné v případě potřeby výrobu jednotky opakovat.

Druh periferie	Minimální požadovaný počet	Použití periferie
I2C	3	OLED displej, LSM303AGR,
	9	MPU6050, USB2514B
SPI	1	ADIS16505
UART	2	NEO-M8U, ESP32
QUADSPI	1	NOR FLASH paměť
SDIO	1	microSD karta
ADC	1	měření napětí akumulátoru

Tab. 2.5: Minimální požadavky na periferie mikroprocesoru

Na základě těchto požadavků byl jako hlavní mikrokontrolér vybrán STM32F446VET6. Jedná se 32bitový Arm Cortex-M4 procesor z portfolia "high performance" mikrokontrolérů výrobce STMicroelectronics. Splňuje všechny výše zmíněné minimální požadavky, v obvodovém zapojení byla použita i USB periferie procesoru, která může mít různá využití. Procesor obsahuje 512 kB paměti Flash a 128 kB paměti RAM, maximální hodinová frekvence je 180 MHz a disponuje matematickým koprocesorem pro operace s plovoucí desetinou čárkou. Vzhledem k počtu GPIO v zapojení inerciální jednotky byla vybrána varianta procesoru v pouzdře LQFP100.

2.1.8 ESP32

Pro splnění požadavků zadání práce je potřeba, aby mohla inerciální jednotka komunikovat bezdrátově s PC zpracovávajícím data. Pro tento úkol byl vybrán bezdrátový modul ESP32-C3-Mini. Jedná se o jeden z novějších produktů portfolia bezdrátových modulů firmy Espressif. Podporuje standard WiFi 802.11 b/g/n a Bluetooth LE 5. [3]

Tento modul je v obvodovém zapojení použit čistě jako bezdrátové rozhraní, neobsluhuje žádné další GPIO kromě 2 UART sběrnic. První sběrnice UART je připojena pomocí USB-serial převodníku CH340 na USB rozbočovač v inerciální jednotce. Toto rozhraní slouží pro nahrávání, popřípadě aktualizaci vestavěného AT firmwaru výrobce. V případě, že by poskytovaný firmware výrobce nedostačoval, nebo nebyl vhodný pro potřeby naší aplikace, bude možné pomocí tohoto rozhraní nahrát vlastní obslužný firmware pro ESP32.

Druhá sběrnice UART je připojena k hlavnímu MCU inerciální jednotky. Kromě standardních pinů Rx a Tx jsou propojeny i piny pro řízení toku, které by bylo možné použít na zjednodušení časování komunikace.

Závěr

Shrnutí studentské práce.

Literatura

- [1] TEXAS INSTRUMENTS. TPS6282x: 5.5-V, 1-A, 2-A, 3-A Step-Down Converter Family with 1% Accuracy. Online katalogový list. C. 2019. Dostupné z: https://www.ti.com/lit/gpn/tps62823. [cit. 2023-12-21].
- [2] TEXAS INSTRUMENTS. BQ2407x: Standalone 1-Cell 1.5-A Linear Battery Chargers with Power Path. Online katalogový list. N. 2021. Dostupné z: https://www.ti.com/lit/gpn/bq24075. [cit. 2023-12-21].
- [3] ESPRESSIF SYSTEMS. ESP32C3MINI1: Smallsized 2.4 GHz WiFi (802.11 b/g/n) and Bluetooth® 5 module. Online katalogový list. 2022. Dostupné z: https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf. [cit. 2023-12-21].
- [4] KRÄWINKEL, R.W. The effect of writing and transmitting SD card data on the consistency of SD card write performance. Online, bakalářská. Enschede, Holandsko: University of Twente, 2020. Dostupné z: http://essay.utwente.nl/82256/1/Krawinkel BA EEMCS.pdf. [cit. 2023-12-17].
- [5] XTX TECHNOLOGY LIMITED. XT25F256BWSIGT: Quad IO Serial NOR Flash Datasheet. Online katalogový list. 2020. Dostupné z: http://www.xtxtech.com/download/?AId=287. [cit. 2023-12-17].
- [6] U-BLOX. NEO-M8U: u-blox M8 untethered dead reckoning module including 3D inertial sensors. Online katalogový list. R13. 2022. Dostupné z: https://content.u-blox.com/sites/default/files/NEO-M8U_DataSheet_UBX-15015679.pdf. [cit. 2023-12-17].
- [7] TKHORENKO, M. Yu.; PAVLOV, B. V.; KARSHAKOV, E. V. a VOLKO-VITSKY, A. K. On integration of a strapdown inertial navigation system with modern magnetic sensors. Online. In: 2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE, 2018, s. 1-4. ISBN 978-5-91995-057-8. Dostupné z: https://doi.org/10.23919/ICINS.2018.8405845. [cit. 2023-12-17].
- [8] WEI, Y. a LI, Y. IMPACT OF SENSOR DATA SAMPLING RATE IN GNSS/INS INTEGRATED NAVIGATION WITH VARIOUS SENSOR GRADES. Online. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2022, roč. XLVI-3/W1-2022, s. 205-211. ISSN 2194-9034. Dostupné z: https://doi.org/10.5194/ isprs-archives-XLVI-3-W1-2022-205-2022. [cit. 2023-12-16].

- [9] TDK INVENSENSE. MPU6050: Product specification. Online katalogový list. 3.4. 2013. Dostupné z: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf. [cit. 2023-12-12].
- [10] ANALOG DEVICES. ADIS16505: Precision, Miniature MEMS IMU. Online katalogový list. C. 2020. Dostupné z: https://www.analog.com/media/en/technical-documentation/data-sheets/adis16505.pdf. [cit. 2023-12-12].
- [11] ST MICROELECTRONICS. LSM303AGR: Ultracompact high-performance eCompass module. Online katalogový list. 11. 2022. Dostupné z: https://www.st.com/resource/en/datasheet/lsm303agr.pdf. [cit. 2023-12-12].
- [12] ST MICROELECTRONICS. STM32F446xC/E: Arm® Cortex®-M4 32-bit MCU+FPU, 225 DMIPS, up to 512 KB Flash/128+4 KB RAM, USB OTG HS/FS, seventeen TIMs, three ADCs and twenty communication interfaces. Online katalogový list. 10. 2021. Dostupné z: https://www.st.com/resource/en/datasheet/stm32f446ve.pdf. [cit. 2023-12-14].
- [13] BLOCHER, Lukas; MAYER, Wolfram; ARENA, Marco; RADOVIC, Dusan; HILLER, Tobias et al. Purely Inertial Navigation with a Low-Cost MEMS Sensor Array. Online. In: 2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL). IEEE, 2021, s. 1-4. ISBN 978-1-7281-5099-4. Dostupné z: https://doi.org/10.1109/INERTIAL51137.2021.9430468. [cit. 2023-12-09].

Seznam symbolů a zkratek

DoF Degrees of Freedom - stupně volnosti

IMU Inertial Measurement Unit - měřicí inerciální jednotka

OLED

MCU
GPS
IMU
MEMS
I2C
FIFO
BGA
DPS
RAM
ADC

Seznam příloh

\mathbf{A}	Schéma zapojení inerciální jednotky	29
В	Pohled osazení součástek	36
\mathbf{C}	Vrchní vrstva mědi DPS	37
D	Vnitřní vrstva mědi DPS In1	38
\mathbf{E}	Vnitřní vrstva mědi DPS In2	39
\mathbf{F}	Spodní vrstva mědi DPS	40

A Schéma zapojení inerciální jednotky

B Pohled osazení součástek

C Vrchní vrstva mědi DPS

D Vnitřní vrstva mědi DPS In1

E Vnitřní vrstva mědi DPS In2

F Spodní vrstva mědi DPS

