

Graph Embedding

S. Zhou

Word2Vec

DeepWalk

 ${\bf Node 2 Vec}$

 ${\tt Struc2Vec}$

LINE

SDNE

图表示学习

Zhou Shen

School of Computer Science, Wuhan University

October 23, 2021

Outline

Graph Embedding

S. Zhou

 ${\bf Word2Vec}$

 ${\bf DeepWalk}$

Node2Vec

Struc2Vec

LINE

- 1 Word2Vec
- 2 DeepWalk
- 3 Node2Vec
- 4 Struc2Vec
- 5 LINE
- 6 SDNE

Graph Embedding

S. Zhou

DeepWalk

Node2Vec

Struc2Vec

LINE

SDNE

1-of-N Encoding

bag =
$$[0 \ 1 \ 0 \ 0 \ 0]$$

$$cat = [0 \ 0 \ 1 \ 0 \ 0]$$

$$dog = [0 \ 0 \ 0 \ 1 \ 0]$$

elephant =
$$[0 \ 0 \ 0 \ 0 \ 1]$$

Word2Vec One-Word Context

Graph Embedding

S. Zhou

.....

 ${\bf DeepWalk}$

Node2Vec

Struc2Vec

LINE

Figure 1: A simple CBOW model with only one word in the context

$$\mathbf{h} = \mathbf{W}^T \mathbf{x} = \mathbf{W}_{(k,\cdot)}^T := \mathbf{v}_{w_I}^T, u_j = \mathbf{v}_{w_j}' h$$
 (1)

$$p(w_j \mid w_I) = y_j = \frac{\exp(u_j)}{\sum_{i'=1}^{V} \exp(u_{i'})}$$
(2)

Word2Vec Objective Function

Graph Embedding

S. Zhou

DeepWalk

Node2Vec

Struc2Vec

LINE

SDNE

$$\max p(w_{O} \mid w_{I}) = \max y_{j^{*}}$$

$$= \max \log y_{j^{*}}$$

$$= u_{j^{*}} - \log \sum_{j'=1}^{V} \exp(u_{j'}) := -E$$
(3)

常用变形

$$\min E = -u_{j^*} + \log \sum_{j'=1}^{V} \exp(u_{j'})$$

Word2Vec

Graph Embedding

S. Zhou

Word2Ve

DeepWalk

Node2Vec

Struc2Vec

LINE

$$\mathbf{h} = \frac{1}{C} (\mathbf{v}_{w_1} + \mathbf{v}_{w_2} + \dots + \mathbf{v}_{w_C})^T$$

$$E = -\log p \left(w_O \mid w_{I,1}, \dots, w_{I,C} \right)$$

$$= -u_{j^*} + \log \sum_{j'=1}^{V} \exp \left(u_{j'} \right)$$

Figure 2: Continuous bag-of-word model

Word2Vec Skip-Gram

Graph Embedding

S. Zhou

DeepWalk

-

Node2Vec

Struc2Vec

LINE

Figure 3: The skip-gram model.

Word2Vec Hierarchical Softmax

Graph Embedding

S. Zhou

DeepWalk

Node2Vec

Struc2Vec

LINE

$$p(w = w_O) = \prod_{i=1}^{L(w)-1} \sigma\left([n(w, j+1) = \text{ch}(n(w, j))] \cdot \mathbf{v}'_{n(w, j)} {}^{T}\mathbf{h} \right)$$

Word2Vec Negative Sample

Graph Embedding

S. Zhou

Word2Ve

DeepWalk

Node2Vec

Struc2Vec

LINE

LIIVE

SDNE

1. 词频计算

$$weight(w_i) = \frac{count(w_i)^{0.75}}{\sum_{j}^{V} count(w_j)^{0.75}}$$

2. 目标函数

$$E = -\log \sigma \left(\mathbf{v}_{w_O}^{\prime} \mathbf{h}\right) - \sum_{w \in \mathcal{W}_{\text{out}}} \log \sigma \left(-\mathbf{v}_{w_j}^{\prime} \mathbf{h}\right)$$

DeepWalk

Graph Embedding

S. Zhou

Word2Vec

Node2Vec Struc2Vec

LINE

SDNE

Definition

Problem Definition Let G = (V, E), where V are the members of the network, and E be its edgs. Our goal is to learn $X_E \in \mathcal{R}^{|V| \times d}$, where d is number of latent dimensions.

DeepWalk

Graph Embedding

S. Zhou

 ${\bf Word2Vec}$

Node2Vec

Struc2Vec

LINE

SDNE

- (a) YouTube Social Graph
- (b) Wikipedia Article Text

Connection

The power-law distribution of vertices appearing in the short random walks follows a power-law, much like the distribution of words in natural language.

${\bf DeepWalk}$

Graph Embedding

S. Zhou

Word2Vec

Node2Vec

Struc2Vec

LINE

SDNE

 \blacksquare give a sequence of random walk from vertice i

$$W_i^n = \{v_1, v_2, v_3, \cdots, v_n\}$$
 (4)

2 maximize the likehood

$$\Pr\left(v_i \mid (\Phi(v_1), \Phi(v_2), \cdots, \Phi(v_{i-1}))\right) \tag{5}$$

Mapping Function Φ

 $\Phi: v \in V \longrightarrow \mathcal{R}^{|V| \times d}$ where d is the number of dimensions

DeepWalk Disadvantages and Optimizations

Graph Embedding

S. Zhou

Word2Vec

Node2Vec

Struc2Vec

LINE

- As the walk length grows, computing this objective function becomes unfeasible.
- Restricts the order in which vertices appear

(b) Representation mapping.

DeepWalk Algorithm

Graph Embedding

S. Zhou

Word2Vec

Node2Vec

Struc2Vec

Strucz v

LINE

SDNE

Algorithm 1 DeepWalk (G, w, d, γ, t)

Input: graph G(V, E)window size wembedding size dwalks per vertex γ walk length t

Output: matrix of vertex representations $\Phi \in \mathbb{R}^{|V| \times d}$

- 1: Initialization: Sample Φ from $\mathcal{U}^{|V| \times d}$
- 2: Build a binary Tree T from V
- 2. fan i 0 ta t da
- 3: for i = 0 to γ do
- 4: $\mathcal{O} = \text{Shuffle}(V)$
- 5: for each $v_i \in \mathcal{O}$ do
- 6: $W_{v_i} = RandomWalk(G, v_i, t)$
- 7: SkipGram(Φ , W_{v_i} , w)
- 8: end for
- 9: end for

Corollary

$$\underset{\Phi}{\operatorname{minimize}} - \log \Pr \left(\left\{ v_{i-w}, \cdots, v_{i-1}, v_{i+1}, \cdots, v_{i+w} \right\} \mid \Phi \left(v_{i} \right) \right)$$

DeepWalk 复现结果

Graph Embedding

S. Zhou

Word2Vec

Deepvvan

Node2Vec

 ${\tt Struc2Vec}$

LINE

micro-F1	Label Node% 原文结果 复现结果	36.00	38.20	30 39.60 39.75	40.30	41.00	41.30	41.50		
macro-F1	24701111	21.30	23.80	25.30 25.33	26.30	27.30	27.60	27.90	28.20	28.90

Node2Vec Classic Search Strategies

Graph Embedding

S. Zhou

Word2Vec

DeepWalk

Struc2Vec

LINE SDNE

- 1. The neighborhoods sampled by BFS lead to embeddings that correspond closely to structural equivalence.
- 2. DFS can freely explore network neighborhoods which is important in discovering homophilous communities.

Node2Vec Search Bias α

Graph Embedding

S. Zhou

Word2Vec

DeepWalk

Struc2Vec

LINE

$$\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0\\ 1 & \text{if } d_{tx} = 1\\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$

Node2Vec

Graph Embedding

S. Zhou Word2Vec

DeepWalk

Struc2Vec

Dirac₂ v

LINE SDNE

```
Algorithm 1 The node2vec algorithm.
LearnFeatures (Graph G = (V, E, W), Dimensions d, Walks per
  node r, Walk length l, Context size k, Return p, In-out a)
  \pi = \text{PreprocessModifiedWeights}(G, p, q)
  G' = (V, E, \pi)
  Initialize walks to Empty
  for iter = 1 to r do
    for all nodes u \in V do
       walk = node2vecWalk(G', u, l)
       Append walk to walks
  f = StochasticGradientDescent(k, d, walks)
  return f
node2vecWalk (Graph G' = (V, E, \pi), Start node u, Length l)
  Inititalize walk to [u]
  for walk iter = 1 to l do
     curr = walk[-1]
     V_{curr} = \text{GetNeighbors}(curr, G')
     s = AliasSample(V_{ourr}, \pi)
     Append s to walk
  return walk
```

Corollary

$$\max_{f} \sum_{u \in V} \left[\sum_{n_i \in N_S(u)} f(n_i) \cdot f(u) - \log Z_u \right]$$

Struc2Vec

Graph Embedding

S. Zhou

 ${\bf Word2Vec}$

 ${\bf DeepWalk}$

Node2Vec

Stru

LINE SDNE

Figure 1: An example of two nodes (u and v) that are structurally similar (degrees 5 and 4, connected to 3 and 2 triangles, connected to the rest of the network by two nodes), but very far apart in the network.

Limitation

Structurally similar nodes will never share the same context if their distance (hop count) is larger than the Skip-Gram window.

Struc2Vec

Structural Similarity

Graph Embedding

S. Zhou

Word2Vec

DeepWalk

Node2Vec

Struc

LINE

SDNE

 $f_k(u, v) = f_{k-1}(u, v) + g(s(R_k(u)), s(R_k(v)))$ $k \ge 0 \text{ and } |R_k(u)|, |R_k(v)| > 0$ (6)

符号解释

 $f_k(u, v)$ structural distance when consider k-hop neighborhoods

 $R_k(u)$ the ring of nodes at distance k

s(S) the ordered degree sequence

g(a, b) DTW Function

Struc2Vec

Graph Embedding

S. Zhou

 ${\bf Word2Vec}$

DeepWalk

Node2Vec

Str

LINE

SDNE

Example

$$R_1(1) = \{2, 3, 4, 6, 7\}$$

$$R_2(1) = \{5, 8, 9\}$$

$$s(R_1(1)) = \{1, 1, 1, 2, 3\}$$

$$s(R_2(1)) = \{1, 1, 1\}$$

$\begin{array}{c} Struc2Vec \\ {\tt DTW} \end{array}$

Graph Embedding S. Zhou

 ${\bf Word2Vec}$

DeepWalk

Node2Vec

LINE

SDNE

Dynamic Time Warping

利用动态规划的思想来计算两条不等长序列的相似度

动态转移方程如下:

$$\begin{split} g(i,j) &= \min\{g(i-1,j), g(i,j-1), g(i-1,j-1)\} + d(i,j) \\ \\ d(a,b) &= \frac{\max(a,b)}{\min(a,b)} - 1 \end{split}$$

LINE Overview

Graph Embedding

S. Zhou

Word2Vec

 ${\bf DeepWalk}$

Node2Vec

Struc2Vec

LINE

Figure 1: A toy example of information network. Edges can be undirected, directed, and/or weighted. Vertex 6 and 7 should be placed closely in the low-dimensional space as they are connected through a strong tie. Vertex 5 and 6 should also be placed closely as they share similar neighbors.

LINE First-Order Proximity

Graph Embedding S. Zhou

Word2Vec

DeepWalk

Node2Vec

Struc2Vec

SDNE

The Joint Probability between v_i and v_i :

$$p_1(v_i, v_j) = \frac{1}{1 + \exp(-\vec{u}_i^T \cdot \vec{u}_j)}$$

Empirical Probability $\hat{p}_1(i,j) = \frac{w_{ij}}{W}$

$$O_1 = d(\hat{p}_1(\cdot, \cdot), p_1(\cdot, \cdot))$$

where $d(\cdot, \cdot)$ is the distance between two distributions.

Objective Function

min
$$O_1 = -\sum_{(i,j) \in E} w_{ij} \log p_1(v_i, v_j)$$

LINE Second-Order Proximity

Graph Embedding

S. Zhou

 ${\bf Word2Vec}$

DeepWalk

Node2Vec

Struc2Vec

SDNE

The Probability of Context v_i generated by vertex v_i as:

$$p_2\left(v_j \mid v_i\right) = \frac{\exp\left(\vec{u}_j^T \cdot \vec{u}_i\right)}{\sum_{k=1}^{|V|} \exp\left(\vec{u}_k'^T \cdot \vec{u}_i\right)}$$

Empirical Probability $\hat{p}_1(v_j \mid v_i) = \frac{w_{ij}}{d_i}$

Objective Function

$$O_2 = -\sum_{(i,j)\in E} w_{ij} \log p_2 \left(v_j \mid v_i\right)$$

LINE Optimization

Graph Embedding S. Zhou

Word2Vec

DeepWalk

 ${\bf Node 2 Vec}$

Struc2Vec

SDNE

1. Negative Sample

$$\log \sigma \left(\vec{u}_{j}^{\prime T} \cdot \vec{u}_{i} \right) + \sum_{i=1}^{K} E_{v_{n} \sim P_{n}(v)} \left[\log \sigma \left(-\vec{u}_{n}^{T} \cdot \vec{u}_{i} \right) \right]$$

where $\sigma(x) = \frac{1}{1 + exp(-x)}$ is the sigmoid function.

2. Edge Sample - Alias Sample

Graph Embedding

S. Zhou

 ${\bf Word2Vec}$

 ${\bf DeepWalk}$

Node2Vec

Struc2Vec

Strucz v

LINE

Unsupervised Component Unsupervised Component (Local structure preserved cost) (Local structure preserved cost) \hat{x}_i parameter sharing $\widehat{y}_{i}^{(1)}$ $\widehat{y}_{i}^{(1)}$ Supervised Component (Global structure preserved cost) Laplacian $y_i^{(K)}$ **Eigenmaps** $y_i^{(1)}$ parameter sharing x_i x_i Vertex i Vertex j

SDNE

First-Order Proximity

Graph Embedding S. Zhou

Word2Vec

DeepWalk Node2Vec

....

Struc2Vec

LINE

Encoder and Decoder

$$\mathbf{y}_{i}^{(1)} = \sigma \left(W^{(1)} \mathbf{x}_{i} + \mathbf{b}^{(1)} \right)$$
$$\mathbf{y}_{i}^{(k)} = \sigma \left(W^{(k)} \mathbf{y}_{i}^{(k-1)} + \mathbf{b}^{(k)} \right), k = 2, \dots, K$$

First-Order Proximity Loss Function

$$\mathcal{L}_{1st} = \sum_{i,j=1}^{n} s_{i,j} \left\| \mathbf{y}_{i}^{(K)} - \mathbf{y}_{j}^{(K)} \right\|_{2}^{2}$$
$$= \sum_{i,j=1}^{n} s_{i,j} \left\| \mathbf{y}_{i} - \mathbf{y}_{j} \right\|_{2}^{2}$$

SDNE

Second-Order Proximity

Graph Embedding S. Zhou

 ${\bf Word2Vec}$

DeepWalk

Node2Vec

Struc2Vec

Duracz v c

LINE

The autoencoder goal is to minimize:

$$\mathcal{L} = \sum_{i=1}^{n} \left\| \hat{\mathbf{x}}_i - \mathbf{x}_i \right\|_2^2$$

Structural Similarity $x_i = s_i$

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|(\hat{\mathbf{x}}_i - \mathbf{x}_i) \odot \mathbf{b}_i\|_2^2$$
$$= \|(\hat{X} - X) \odot B\|_F^2$$

SDNE Objective Function

Graph Embedding

S. Zhou

Word2Vec

DeepWalk

Node2Vec

Struc2Vec

LINE

正则化部分

$$\mathcal{L}_{reg} = \frac{1}{2} \sum_{k=1}^{K} \left(\left\| W^{(k)} \right\|_{F}^{2} + \left\| \hat{W}^{(k)} \right\|_{F}^{2} \right)$$

损失函数

$$\mathcal{L}_{mix} = \mathcal{L}_{2nd} + \alpha \mathcal{L}_{1st} + \nu \mathcal{L}_{reg}$$

$$= \|(\hat{X} - X) \odot B\|_F^2 + \alpha \sum_{i=1}^n s_{i,j} \|\mathbf{y}_i - \mathbf{y}_j\|_2^2 + \nu \mathcal{L}_{reg}$$