Vorlesungszusammenfassung

Schematheorie

Stefan Hackenberg

Maximilian Huber

gelesen im WS 2012/2013 und SS 2013 von

Prof. Dr. Marco Hien

4. April 2014

* 7

Inhaltsverzeichnis

1	Lok	al geringte Räume	5
	1.1	Garben	5
	1.2	Lokal geringte Räume	8
2	Affii	ne Schemata	11
_	2.1		 11
	2.2		16
	2.2	-	17
		2.2.1 Deweis von Satz 2.55	11
3	Beis	·	19
	3.1	1	19
	3.2		19
	3.3	Der Affine n -dimensionale Raum über k	21
	3.4	Weiteres Beispiel	21
	3.5	Spezielles Beispiel $\mathbb{A}^1_{\mathbb{Z}} = \operatorname{Spec} \mathbb{Z}[X]$	23
	3.6		24
			26
4	Proj		28
	4.1	U I V	28
	4.2	$\mathbb{P}^n(k)$ als Schema	28
			29
		4.2.2 2. Variante (Die Proj-Konstruktion)	30
	4.3	Immersionen und projektive A-Schemata	32
		4.3.1 Beispiele	33
_	- :	and a francisco Calcinosta	2 -
5	_		35
	5.1		35
	5.2		35
	5.3		36
	5.4	9	36
	5.5		37
	5.6	Reduzierte Schemata II	38
	5.7	Integere Schemata	38
c			20
6		·	39
	6.1	9	39
		*	39
			39
		6.1.3 Basiswechsel und projektive Schemata	41
7	Glat	tt, regulär & normal	43
•	7.1	——————————————————————————————————————	43
	7.2		46
	7.3		47
	1.0	Glassellete	±1
8	k-Va	arietät	48
0	Do	Dunktofunktor	40

10 \mathcal{O}_X -Moduln	51		
10.1 \mathcal{O}_X -Moduln	51		
10.2 Exkurs: Vektorbündel in der Topologie	51		
10.3 Quasi-Kohärenz	52		
	53		
	55		
	56		
10.7 Direktes und inverses Bild	56		
	57		
10.8 Abgeschlossene Unterschemata	57		
10.9 Quasikohärente Moduln auf projektiven Schemata	58		
	58		
10.9.2 Wiederholung Geradenbündel	59		
1	60		
11 Divisoren	63		
11.1 Cartier-Divisoren	63		
11.1.1 Cartier-Divisoren und Geradenbündel	63		
11.2 Weil-Divisoren	64		
12 Garbenkohomologie			
13 Differentiale			
Definitionen			

Lokal geringte Räume

1

Bei mir steht hier im Skript $s \Big|_{U}$. Offenbar ein Fehler!?

1.1 Garben

Definition 1.1 (Prägarbe). -

Sei X ein topologischer Raum. Eine $Pr\ddot{a}garbe \mathcal{F}$ auf X ist eine Zuordnung

$$\mathcal{F}: U \mapsto \mathcal{F}(U)$$
,

die jedem offenen $U \subset X$ eine abelsche Gruppe $\mathcal{F}(U)$ zuordnet, zusammen mit Homomorphismen

$$\rho_{UV}: \mathcal{F}(U) \to \mathcal{F}(V)$$

für jedes Paar $V \subset U$, so dass

kommutiert.

Wir nennen ρ_{UV} Restriktion, schreiben meist $s\big|_{V} := \rho_{UV}(s)$.

Man nennt $s \in \mathcal{F}(U)$ auch Schnitt über U.

Beispiel 1.2.

$$\mathcal{C}_X^{\circ}: U \mapsto \mathcal{C}_X^{\circ}(U) := \{f: U \to \mathbb{R} \mid f \text{ stetig}\}$$

mit $\rho_{VU}: \mathcal{C}_X^{\circ}(V) \mapsto \mathcal{C}_X^{\circ}(U), f \mapsto f|_{U}$.

Bemerkung 1.3. Ist Ab die Kategorie der abelschen Gruppen und

$$\mathbf{Top}_X := \begin{cases} \mathrm{Obj} : U \subset X \text{ offen} \\ \mathrm{Morph} : \mathrm{Hom}(U,V) = \begin{cases} \emptyset & U \not\subset V, \\ U \to V & U \subset V, \end{cases}$$

dann ist eine Prägarbe gerade ein kontravarianter Funktor

$$\begin{array}{cccc} \mathcal{F}: & \mathbf{Top}_X & \to & \mathbf{Ab} \\ & U & \mapsto & \mathcal{F}(U) \\ & (U \to V) & \mapsto & (\mathcal{F}(V) \to \mathcal{F}(U)). \end{array}$$

Oder anders ausgedrückt: Es ist

$$\begin{array}{cccc} \mathcal{F}: & \mathbf{Top}_X^{\mathrm{op}} & \to & \mathbf{Ab} \\ & U & \mapsto & \mathcal{F}(U) \\ & (V \to U) & \mapsto & (\mathcal{F}(V) \to \mathcal{F}(U)). \end{array}$$

ein kovarianter Funktor.

Definition 1.4 (Morphismus von Prägarben).

Ein Morphismus von Prägarben $\mathcal{F} \xrightarrow{\phi} \mathcal{G}$ auf X ist eine natürliche Transformation der Funktoren \mathcal{F} und \mathcal{G} , d.h. für alle $U \subset X$ offen gibt es einen Morphismus $\mathcal{F}(U) \xrightarrow{\phi_U} \mathcal{G}(U)$, so dass für $U \subset V$

$$\begin{array}{ccc} \mathcal{F}(U) & \stackrel{\phi_U}{----} & \mathcal{G}(U) \\ \uparrow & & \uparrow \\ \mathcal{F}(V) & \stackrel{\phi_V}{-----} & \mathcal{G}(V) \end{array}$$

kommutiert.

Definition 1.5 (Garbe). -

Eine Prägarbe \mathcal{F} auf X heißt Garbe (engl. sheaf), falls gilt: Ist $U \subset X$ offen und $U = \bigcup_{i \in I} U_i$ für offene $U_i \subset X$, so gilt

- 1. Ist $s \in \mathcal{F}(U)$ und $s|_{U_i} = 0$ für alle $i \in I$, so ist $s = 0 \in \mathcal{F}(U)$.
- 2. Sind $s_i \in \mathcal{F}(U_i)$ gegeben, mit

$$s_i\big|_{U_i\cap U_i} = s_j\big|_{U_i\cap U_i} \quad \forall i, j,$$

so existiert ein $s \in \mathcal{F}(U)$ mit

$$s_i = s \big|_{U_i} \qquad \forall i.$$

Bemerkung 1.6. \mathcal{F} ist eine Garbe, genau dann, wenn die folgende Sequenz abelscher Gruppen exakt ist:

Exaktheit an dieser Stelle ist äquivalent zu Eigenschaft 1 und Exaktheit hier zu Eigenschaft 2.

Beispiel 1.7. Sei M eine C^{∞} Mannigfaltigkeit, so ist

$$\mathcal{C}_M^{\infty}: U \mapsto \mathcal{C}_M^{\infty}(U) := \{ f: U \to \mathbb{R} \mid f \in \mathcal{C}^{\infty}(U) \}$$

eine Garbe.

Beispiel 1.8. Sei M eine \mathbb{C} Mannigfaltigkeit, so ist

$$\mathcal{O}_M: U \mapsto \mathcal{O}_M(U) := \{f: U \to \mathbb{C} \mid f \text{ holomorph}\}\$$

eine Garbe. Für $M=\mathbb{C}$ haben wir zusätzlich die Garbe

$$\mathcal{O}_{\mathbb{C}}^{\times}: U \mapsto \mathcal{O}_{\mathbb{C}}^{\times}(U) := \{ f: U \to \mathbb{C}^{\times} \mid f \text{ holomorph} \},$$

(wobei die Gruppenverknüpfung multiplikativ zu lesen ist). Dies liefert uns einen Morphismus von (Prä)garben

$$\mathcal{O} \to \mathcal{O}_C^{\times}, \ f \mapsto \exp(f).$$

Betrachte nun die Prägarbe

$$\mathcal{H} := \operatorname{im}^{\operatorname{naiv}}(\exp) : U \mapsto \operatorname{im}(\exp_U) = \{ \exp \circ f : U \to \mathbb{C} \mid f : U \to \mathbb{C} \text{ holomorph} \}.$$

Warum steht hier naiv??

Dies ist keine Garbe: Betrachte die Scheibe

$$U = \{ z \in \mathbb{C} \mid \frac{1}{2} < |z| < \frac{3}{2} \}$$

zerlegt in die beiden offenen Teilmengen

$$U_1 = \{ z \in U \mid \Re z > -\varepsilon \}$$

$$U_2 = \{ z \in U \mid \Re z < \varepsilon \}$$

mit $U = U_1 \cup U_2$ für ein $\varepsilon > 0$ beliebig. Für i = 1, 2 ist $(z : U_i \to \mathbb{C}, z \mapsto z) \in \mathcal{H}(U_i)$, da sich der komplexe Logarithmus auf beiden U_i problemlos definieren lässt. Ferner ist auch

$$(z:U_1\to\mathbb{C})\big|_{U_1\cap U_2}=(z:U_2\to\mathbb{C})\big|_{U_1\cap U_2},$$

erfüllt, jedoch kommen diese nicht von einem gemeinsamen Schnitt da

$$(z:U\to\mathbb{C})\notin\mathcal{H}(U).$$

Definition 1.9 (Kategorie der (Prä-)garben).

Für einen topologischen Raum X bezeichne

 $\mathbf{PSh}_X := \text{die Kategorie der Prägarben auf } X,$

 $\mathbf{Sh}_X := \mathrm{die} \ \mathrm{Kategorie} \ \mathrm{der} \ \mathrm{Garben} \ \mathrm{auf} \ X, \ \mathrm{wobei} \ \mathrm{Hom}_{\mathbf{Sh}_X}(\mathcal{F}, \mathcal{G}) := \mathrm{Hom}_{\mathbf{PSh}_X}(\mathcal{F}, \mathcal{G})$

Bemerkung 1.10. Man hat den Inklusionsfunktor

$$\iota: \mathbf{Sh}_X \to \mathbf{PSh}_X, \ \mathcal{F} \mapsto \mathcal{F}$$

Definition 1.11 (Halm, Keim). -

Ist \mathcal{F} eine (Prä)Garbe auf X und $x_0 \in X$, so heißt

$$\mathcal{F}_{x_0} := \varinjlim_{x_0 \in U \subset X \text{ offen}} \mathcal{F}(U) = \coprod_{U \subset X \text{ offen}} \mathcal{F}(U) \Big/ \sim$$

 $_{
m mit}$

$$s \sim t : \Leftrightarrow \exists W \subset X \text{ offen}: x_0 \in W \subset U \cap U' \text{ und } s|_W = t|_W$$

für $s \in \mathcal{F}(U)$, $t \in \mathcal{F}(U')$ der Halm von \mathcal{F} bei x_0 .

Die Elemente $[s] \in \mathcal{F}_{x_0}$ heißen Keime von Schnitten bei x_0 .

$$\textbf{Beispiel 1.12.} \ \ (\mathcal{C}_{M}^{\infty})_{x_{0}} = \{[f: U \xrightarrow{C^{\infty}} \mathbb{R}] \mid f \sim g \Leftrightarrow \exists W \subset M \text{ offen}, x_{0} \in W \text{ mit } f\big|_{W} = g\big|_{W}\}$$

Beispiel 1.13.

$$\mathcal{O}_{\mathbb{C},x_0} = \{ [f:U \xrightarrow{\text{hol}} \mathbb{C}] \mid x_0 \in U \}$$

$$= \{ \sum_{n=0}^{\infty} a_n (x - x_0)^n \mid \text{Reihe hat positiven Konvergenzradius} \}$$

$$:= \mathbb{C} \{ x - x_0 \}$$

Übung (Übungsblatt 1 Aufgabe 3).

- 1. Es sei \mathcal{F} eine Garbe auf einen topologischen Raum X. Es sei $U \subset X$ eine offene Teilmenge. Für $r \in \mathcal{F}(U)$, $x_0 \in U$ bezeichne r_{x_0} den Keim [r] von \mathcal{F} bei x_0 . Es seien nun $s,t \in \mathcal{F}(U)$, für die $\forall x_0 \in U : s_{x_0} = t_{x_0}$ gelte. Zeige, dass s = t.
- 2. Gib ein Beispiel einer Prägarbe an, die nicht separiert ist, die also nicht die erste Garbenbedingung erfüllt.

Definition 1.14 (push-forward).

Ist $f: X \to Y$ stetig und \mathcal{F} eine Garbe auf X, so ist durch

$$f_*\mathcal{F}: V \mapsto \mathcal{F}(f^{-1}(V))$$

für $V \subset Y$ offen eine Garbe definiert, der push-forward von \mathcal{F} .

1.2 Lokal geringte Räume

Betrachte nun

Ring := Kategorie der kommuativen Ringe mit 1

und entsprechend Garben

$$\mathcal{F}: \mathbf{Top}_X^{\mathrm{op}} o \mathbf{Ring}.$$

Definition 1.15 (lokaler Ring).

Sei R ein Ring. Dann heißt R lokal, wenn R genau ein maximales Ideal besitzt.

Beispiel 1.16.
$$\mathbb{Z}_{(p)}:=\left\{ rac{a}{b}\in\mathbb{Q}\mid p\nmid b
ight\} \ \mathop{\subset}_{\mathrm{Unterring}}\mathbb{Q}$$

Bemerkung 1.17. Ist R lokaler Ring und $\mathfrak{m} \triangleleft R$ das maximale Ideal, so ist $R \setminus \mathfrak{m} = R^{\times}$.

Übung (Übungsblatt 1 Aufgabe 1). -

- 1. Es sei R ein kommutativer Ring und R^{\times} seine Einheitengruppe. Zeige, dass R genau dann lokal ist, wenn $R \setminus R^{\times} \triangleleft R$ gilt, d.h. wenn die Nichteinheiten $R \setminus R^{\times}$ ein Ideal in R bilden.
- 2. Es sei R ein kommutativer nullteilerfreier Ring. Den Quotientenkörper zu R bezeichen wir mit Quot(R). Lokalisieren wir R nach \mathfrak{p} , so erhalten wir den Ring $R_{\mathfrak{p}} = \{\frac{a}{b} \in \operatorname{Quot}(R) \mid a \in R, \ b \notin \mathfrak{p}\}$. Zeige, dass $R_{\mathfrak{p}}$ ein lokaler Ring ist.

Beispiel 1.18. Sei M eine C^{∞} Mannigfaltigkeit und $x_0 \in M$. Dann ist $\mathcal{C}_{M,x_0}^{\infty}$ ein lokaler Ring, denn

$$C_{M,x_0}^{\infty} \setminus (C_{M,x_0}^{\infty})^{\times} = \{ [f: U \xrightarrow{C^{\infty}} \mathbb{R}] \mid x_0 \in U \text{ mit } f(x_0) = 0 \} =: \mathfrak{m},$$

da [f] eine Einheit ist, genau dann, wenn $f(x_0) \neq 0$: Ist $f: U \xrightarrow{C^{\infty}} \mathbb{R}$ mit $f(x_0) \neq 0$, so existiert $W \subset U$ offen, $x_0 \in W$ mit $f(x) \neq 0$ für alle $x \in W$. Damit folgt

$$\left[\frac{1}{f}:W\to\mathbb{R},\ x\mapsto\frac{1}{f(x)}\right]\in\mathcal{C}_{M,x_0}^\infty$$

ist Inverses zu [f]. Zudem ist ${\mathfrak m}$ ein Ideal.

Definition 1.19 (lokal geringter Raum).

Ein lokal geringter Raum ist ein Paar (X, \mathcal{O}_X) bestehend aus:

- \bullet einem topologischen Raum X und
- einer Garbe \mathcal{O}_X auf X von Ringen,

so dass \mathcal{O}_{X,x_0} für alle $x_0 \in X$ ein lokaler Ring ist.

Man nennt \mathcal{O}_X die Strukturgarbe von (X, \mathcal{O}_X) . Ist $x_0 \in X$, so hat man das maximale Ideal $\mathfrak{m}_{x_0} \triangleleft \mathcal{O}_{X,x_0}$. Der Körper

$$\kappa(x_0) := \mathcal{O}_{X,x_0} / \mathfrak{m}_{x_0}$$

heißt Restklassenkörper von x_0 in (X, \mathcal{O}_X) .

Beispiel 1.20. Sei M eine C^{∞} -Mannigfaltigkeit und $x_0 \in M$, so ist $\kappa(x_0) = \mathbb{R}$.

Übung (Übungsblatt 1 Aufgabe 2). —

- 1. Zeige, dass das Tupel $(\mathbb{R}, C_{\mathbb{R}}^{\infty})$ bestehend aus \mathbb{R} und der Garbe der C^{∞} -Funktionen einen lokal geringten Raum bilden. Zeige also, dass $C_{\mathbb{R},x_0}^{\infty}$ für beliebiges $x_0 \in \mathbb{R}$ ein lokaler Ring ist, indem Du sein maximales Ideal \mathfrak{m}_{x_0} angiebst. Warum ist es das einzige maximale Ideal?
- 2. Zeige, dass $\forall x_0 \in \mathbb{R} : C_{\mathbb{R},x_0}^{\infty} / \mathfrak{m}_{x_0} \cong \mathbb{R}$.
- 3. Zeige nun auf gleiche Weise, dass \mathbb{C} mit der Garbe der holomorphen Funktionen $\mathcal{O}_{\mathbb{C}}$ eine lokal gerinter Raum ist und dass $\mathcal{O}_{\mathbb{C},z_0}/\mathfrak{m}_{z_0} \cong \mathbb{C}$ für alle $z_0 \in \mathbb{C}$ gilt.

Definition 1.21 (lokale Ringhomomorphismen).

Sind R, S lokale Ringe mit den maximalen Idealen $\mathfrak{m}_R \triangleleft R, \mathfrak{m}_S \triangleleft S$, so heißt der Ringhomomorphismus $\varphi : R \to S \ lokal$, falls

$$\varphi^{-1}(\mathfrak{m}_S) = \mathfrak{m}_R.$$

Äquivalent lässt sich fordern, dass

$$\varphi(\mathfrak{m}_R)\subset\mathfrak{m}_S.$$

Definition 1.22 (Morphismus lokal geringter Räume).

Ein Morphismus $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ lokal geringter Räume ist ein Paar $(f,f^{\#})$ bestehend aus

$$f: X \to Y$$
 stetig,

 $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ Morphismus von Garben auf Y,

so dass der von $f^{\#}$ induzierte Ringhomomorphismus für $x_0 \in X, y_0 := f(x_0) \in Y$

$$f_{x_0}^{\#}: \mathcal{O}_{Y,y_0} \rightarrow \mathcal{O}_{X,x_0}$$

$$[s] \mapsto [f_U^{\#}(s)]$$

für $s \in \mathcal{O}_Y(U)$ und $y_0 \in U$ ein lokaler Ringhomomorphismus ist.

Bemerkung 1.23. In Definition 1.22 ist $f_{x_0}^{\#}$ wohldefiniert:

Sei $[s] = [t] \in \mathcal{O}_{Y,y_0}$, d.h. es existiert $W \subset Y$ offen mit $y_0 \in W$ und $s|_W = t|_W \in \mathcal{O}_Y(W)$. Betrachte num $f_U^\#(s) \in \mathcal{O}_X(f^{-1}(U))$ für $s \in \mathcal{O}_Y(U)$, $U \subset Y$, $y_0 \in U$ und analog $f_V^\#(t) \in \mathcal{O}_X(f^{-1}(V))$ für $t \in \mathcal{O}_Y(V)$,

 $V\subset Y,\,y_0\in V.$ Da $f^\#$ ein Garbenmorphismus ist, kommutiert damit folgendes Diagramm:

2.1 Spec A als topologischer Raum

Sei im Folgenden A ein kommuativer Ring mit 1 und Spec $A := \{ \mathfrak{p} \triangleleft A \mid \mathfrak{p} \text{ Primideal} \}.$

Definition 2.1 (Zariski Topologie). -

Ist $\mathfrak{a} \triangleleft A$, ein Ideal, setze

$$V(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{a} \subseteq \mathfrak{p} \} \subseteq \operatorname{Spec} A.$$

Dann ist durch

$$\mathcal{T} := \{ U \subseteq \operatorname{Spec} A \mid \exists \ \mathfrak{a} \triangleleft A : \ U = \operatorname{Spec} A \setminus V(\mathfrak{a}) \}$$

eine Topologie auf Spec A definiert. Sie heißt Zariski-Topologie.

Bemerkung 2.2. Die abgeschlossenen Teilmengen $M \subset \operatorname{Spec} A$ sind genau die $M = V(\mathfrak{a})$ für ein $\mathfrak{a} \triangleleft A$.

Beispiel 2.3 (Spec \mathbb{Z}). Für $\mathfrak{a} \lhd \mathbb{Z}$ ist $\mathfrak{a} = (a)$. Falls $a \neq 0, 1, -1$ sei $a = \pm p_1^{\nu_1} \cdots \nu_r^{\nu_r}$ die Primfaktorzerlegung. Für p Primzahl ist

$$(p) \in V((a)) \Leftrightarrow (a) \subseteq (p) \Leftrightarrow p \mid a \Leftrightarrow p \in \{p_1, \dots, p_r\}$$

Das bedeutet, die abgeschlossenen Mengen in Spec \mathbb{Z} sind genau die Mengen \emptyset , Spec \mathbb{Z} und $\{(p_1), \ldots, (p_r)\}$ für eine endliche Anzahl an Primzahlen.

Insbesondere gilt

- Spec \mathbb{Z} ist nicht hausdorffsch.
- $(0) =: \eta \in \operatorname{Spec} \mathbb{Z}$ liegt in *jeder* nichtleeren offenen Teilmenge.

Lemma 2.4. Sei $x \in \operatorname{Spec} A$, so ist der Abschluss $\overline{\{x\}}$ der Menge $\{x\}$ in $\operatorname{Spec} A$ gleich

$$\overline{\{x\}} = V(x).$$

Bemerkung 2.5. Beachte, dass

$$\mathfrak{a} \subseteq \mathfrak{b} \quad \Rightarrow \quad V(\mathfrak{b}) \subseteq V(\mathfrak{a})$$

Definition 2.6 (abgeschlossener Punkt, generischer Punkt). -

Sei X ein topologischer Raum. Ein $x \in X$ heißt abgeschlossener Punkt, wenn $\overline{\{x\}} = \{x\}$.

Er heißt generischer Punkt, wenn $\overline{\{x\}} = X$ gilt.

Die Menge der abgeschlossenen Punkte bezeichnen wir mit |X|.

Beispiel 2.7. Sei $A = \mathbb{C}[X, Y]$.

• $x = (0) \in \operatorname{Spec} A$ ist generisch.

Abbildung 1: Spec $\mathbb{C}[X,Y]$

- $x = (X \alpha, Y \beta) \triangleleft A$ ist abgeschlossen, da aus $x \triangleleft A$ maximal $V(x) = \{x\}$ und somit x abgeschlossen folgt.
- $x = (X) \triangleleft A$ ist weder abgeschlossen noch generisch.
- $x = (XY 1) \triangleleft A$ ist ebenfalls weder abgeschlossen noch generisch.

Wir können die bisherigen Ergebnisse in 1 zusammenfassen.

Definition 2.8 (basisoffene Menge). -

Für $f \in A$ nennt man

$$D(f) := \operatorname{Spec} A \setminus V((f)) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \notin \mathfrak{p} \}$$

die zu f gehörige basisoffene Menge.

Lemma 2.9. Die Menge $\mathfrak{B} := \{D(f) \mid f \in A\}$ ist eine Basis der Topologie, d.h. jedes offene $U \subseteq \operatorname{Spec} A$ ist eine Vereinigung von $D(f) \in \mathfrak{B}$ und \mathfrak{B} ist unter endlichen Schnitten abgeschlossen.

Lemma 2.10. $F\ddot{u}r \mathfrak{a}, \mathfrak{b} \triangleleft A \ gilt$

$$V(\mathfrak{a}) \cup V(\mathfrak{b}) = V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a} \cdot \mathfrak{b}).$$

Definition 2.11 (Radikal).

Für $\mathfrak{a} \lhd A$ heißt

$$\sqrt{\mathfrak{a}} := \{ f \in A \mid \exists n \in \mathbb{N} : f^n \in \mathfrak{a} \}$$

Radikal von \mathfrak{a} .

Lemma 2.12. $\sqrt{a} \triangleleft A$.

Definition 2.13 (Radikalideal (radiziell)). -

Ein Ideal $\mathfrak{b} \triangleleft A$ heißt Radikalideal (radiziell), falls

$$\sqrt{\mathfrak{b}} = \mathfrak{b}.$$

Bemerkung 2.14. Es gilt $\sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$.

Lemma 2.15. $F\ddot{u}r \mathfrak{a} \triangleleft A \ gilt$

$$\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p}$$

Satz 2.16. -

 $F\ddot{u}r \, \mathfrak{a}, \mathfrak{b} \lhd A \, gilt$

$$V(\mathfrak{a}) \subseteq V(\mathfrak{b}) \quad \Leftrightarrow \quad \mathfrak{b} \subseteq \sqrt{\mathfrak{a}}.$$

 $In sbe sondere\ gilt\ sogar$

$$V(\mathfrak{a}) = V(\mathfrak{b}) \quad \Leftrightarrow \quad \mathfrak{b} = \sqrt{\mathfrak{a}}.$$

Definition 2.17 (irreduzibel). —

Ein topologischer Raum X heißt irreduzibel, wenn gilt: Ist $X = A_1 \cup A_2$ mit $A_{1,2} \subseteq X$ abgeschlossen, so ist $X = A_1$ oder $X = A_2$.

Eine Teilmenge $Z\subseteq X$ heißt irreduzibel, wenn Z mit der Teilraumtopologie irreduzibel ist.

Beispiel 2.18. Spec \mathbb{Z} ist irreduzibel. Ist nämlich $A_1 \subsetneq \operatorname{Spec} \mathbb{Z}$ abgeschlossen, so ist $A_1 = \{(p_1), \dots, (p_r)\}$ für irgendwelche Primzahlen p_i .

Lemma 2.19. In Spec A gilt:

$$V(\mathfrak{a})$$
 irreduzibel \Leftrightarrow $\sqrt{\mathfrak{a}}$ Primideal.

Definition 2.20 (Nilradikal). -

$$Nil(A) := \sqrt{(0)}$$

heißt Nilradikal von A.

Korollar 2.21. Es gilt

 $\operatorname{Spec} A \ \mathit{irreduzibel} \quad \Leftrightarrow \quad \operatorname{Nil}(A) \ \mathit{Primideal}.$

Definition 2.22 (noethersch).

Ein topologischer Raum heißt noethersch, wenn gilt: Ist

$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$

eine Folge abgeschlosser Teilmengen, so existiert $n_0 \in \mathbb{N}$ mit $A_i = A_{i+1}$ für alle $i \geq n_0$.

Lemma 2.23. Ist A noethersch, so ist auch Spec A noethersch.

Satz 2.24.

 $\textit{Ist X noethers} \textit{chscher topologischer Raum und } \emptyset \neq A \subseteq X \textit{ abgeschlossen, so zerlegt sich}$

$$A = A_1 \cup \ldots \cup A_r$$

in abgeschlosse irreduzible Teilmengen $A_i \subseteq A$. Nimmt man $A_i \not\subseteq A_j$ für $i \neq j$, so ist die Zerlegung bis auf Reihenfolge eindeutig.

Die A_i heißen (irreduzible) Komponenten von A.

Beispiel 2.25. In Spec k[X, Y] zerfüllt

$$V((XY)) = V((X)) \cup V((Y)).$$

 $Im \ Bild \ \underline{\hspace{1cm}} V((X))$

Quelle suchen!

" ist klar. Also

 $\beta)h(X,Y)$

Es ist $f(\alpha, \beta) = 0$,

 $\alpha)g(X,Y)$, da die linke Seite $X=\alpha$ als Nullstelle hat.

Beispiel 2.26. Sei k algebraisch abgeschlossen. Betrachte Spec k[X,Y]. Die maximalen Ideale sind gerade $\mathfrak{m}=(X-\alpha,Y-\beta)$ für $\alpha,\beta\in k$. Ein abgeschlosser Punkt $\mathfrak{m}\in \operatorname{Spec} k[X,Y]$ wird eindeutig durch $(\alpha,\beta)\in k^2$ gegeben.

 $\mathbb{A}^2_k := \operatorname{Spec} k[X,Y]$ wird der 2 dimensionale affine Raum über k genannt. Man hat die Bijektion

$$|\mathbb{A}_k^2| \xrightarrow{\phi} k^2.$$

Eine abgeschlossene Teilmenge $A = V(\mathfrak{a}) \subseteq \mathbb{A}^2_k$ liefert

$$A \cap |\mathbb{A}_k^2| \cong_{\phi} \{ (\alpha, \beta) \in k^2 \mid f(\alpha, \beta) = 0 \ \forall f \in \mathfrak{a} \},$$

denn

$$\begin{split} A \cap |\mathbb{A}_k^2| &= V(\mathfrak{a}) \cap |\mathbb{A}_k^2| = |V(\mathfrak{a})| \\ &= \{\mathfrak{m} \in \operatorname{Spec} k[X,Y] \mid \mathfrak{a} \subseteq \mathfrak{m}, \ \mathfrak{m} \ \operatorname{maximal}\} = \{(X-\alpha,Y-\beta) \lhd k[X,Y] \mid \mathfrak{a} \subseteq (X-\alpha,Y-\beta)\} \\ &= \{(X-\alpha,Y-\beta) \mid f(X,Y) \in \alpha \ \Rightarrow \ f(X,Y) \in (X-\alpha,Y-\beta)\} \\ &= \{(X-\alpha,Y-\beta) \mid f(X,Y) \in \alpha \ \Rightarrow \ f(X,Y) = (X-\alpha)g(X,Y) + (Y-\beta)h(X,Y)\} \\ &= \{(X-\alpha,Y-\beta) \mid f(\alpha,\beta) = 0 \ \forall f \in \mathfrak{a}\} \\ &\stackrel{\phi}{\to} \{(\alpha,\beta) \in k^2 \mid f(\alpha,\beta) = 0 \ \forall f \in \mathfrak{a}\}. \end{split}$$

Abbildung 2: Spec k[X, Y]

In \mathbb{A}^2_k hat man aber noch mehr Punkte: Sei $\mathfrak{p} \triangleleft k[X,Y]$ Primideal, aber nicht maximal, so ist $\mathfrak{p} \in \mathbb{A}^2_k$ kein abgeschlossener Punkt. Ist beispielsweise $\mathfrak{p} = (f(X,Y))$ für $f \in k[X,Y]$ irreduzibel, so liegen alle $(\alpha,\beta) \in k^2$ mit $f(\alpha,\beta) = 0$ auf der entsprechenden Menge in k^2 , d.h.

$$\mathfrak{p}=(f(X,Y))\subseteq\mathfrak{m}_{\alpha,\beta}:=(X-\alpha,Y-\beta)\quad\Rightarrow\quad\mathfrak{m}_{\alpha,\beta}\in\overline{\{\mathfrak{p}\}}.$$

2 verdeutlicht dies.

Lemma 2.27. Ist A ein Ring, $\mathfrak{a} \in \operatorname{Spec} A$ und $\pi : A \to A/\mathfrak{a}$ die Projektion, so ist

$$\varphi := \pi^{-1}: \operatorname{Spec} A / \mathfrak{a} \to \operatorname{Spec} A$$

$$\overline{\mathfrak{p}} \mapsto \pi^{-1}(\overline{\mathfrak{p}})$$

ein Homöomorphismus auf sein Bild

$$\operatorname{Spec} A / \mathfrak{a} \xrightarrow[\approx]{\pi^{-1}} V(\mathfrak{a}) \subseteq \operatorname{Spec} A.$$

Definition 2.28 ((quasi)-kompakt).

Ein topologischer Raum X heißt quasi-kompakt, wenn gilt: Ist $X = \bigcap_{i \in I} U_i$ mit U_i offen, so existiert eine endliche Teilmenge $F \subset I$ mit $X = \bigcap_{i \in F} U_i$.

X heißt kompakt, wenn X hausdorffsch und quasi-kompakt ist.

Satz 2.29. -

Ist A ein Ring, so ist Spec A quasi-kompakt.

2.2 $\operatorname{Spec} A$ als lokal geringter Raum

Wir wollen $\mathcal{O}_{\operatorname{Spec} A}$ als die "guten Funktionen" auf Spec A auffassen, aber dazu müssen wir es besser verstehen.

Definition 2.30 (multiplikative Teilmenge, Lokalisierung). -

Sei A ein Ring, dann heißt $S \subseteq A$ multiplikative Teilmenge, wenn $1 \in S$ ist und aus $a, b \in S$ auch $ab \in S$ folgt.

Die Lokalisierung A_S oder $A[S^{-1}]$ von A bezüglich S ist der Ring

$$A_S := (A \times S) / \sim$$

mit

$$(a,s) \sim (b,t) \quad \Leftrightarrow \quad \exists u \in S : \ u(at-bs) = 0.$$

Schreibe $\frac{a}{s} := [(a, s)]$ und definiere eine Ringstruktur auf A_S durch Bruchrechnen.

Lemma 2.31 (Universelle Eigenschaft der Lokalisierung). Wir haben die folgende universelle Eigenschaft: Ist $S \subseteq A$ wie in Definition 2.30, $\varphi: A \to R$ ein Ringhomomorphismus, so dass $\varphi(S) \subseteq R^{\times}$, so existiert ein eindeutiger Ringhomomorphismus, der das Diagramm

kommutativ macht, wobei $\iota: A \to A_S, \ a \mapsto \frac{a}{1}$.

Beispiel 2.32. • $S = \{f^n \mid n \in \mathbb{N}_0\}, f \in A \text{ fest.}$

$$A_S =: A_f := \left\{ \frac{a}{f^n} \mid n \in \mathbb{N}_0 \right\}$$

• $S = A \setminus \mathfrak{p}, \mathfrak{p} \in \operatorname{Spec} A$.

$$A_{\mathfrak{p}}:=\left\{\frac{a}{b}\mid a\in A,\ b\notin \mathfrak{p}\right\}$$

ist ein lokaler Ring mit dem maximalen Ideal $\mathfrak{p}A_{\mathfrak{p}}$.

Satz 2.33. -

Sei $X = \operatorname{Spec} A$. Dann existiert auf X eine bis auf Isomorphie eindeutige Ringgarbe \mathcal{O}_X mit:

- i) Es existiert ein Ringhomomorphismus $\varphi: A \xrightarrow{\cong} \mathcal{O}_X(X)$.
- ii) Für $f \in A$ betrachte

$$\mathcal{O}_X(X) \to \mathcal{O}_X(D(f))$$
 $\varphi(f) \mapsto \varphi(f)|_{D(f)}.$

Dann ist $\varphi(f)|_{D(f)} \in \mathcal{O}_X(D(f))^{\times}$ eine Einheit und der eindeutig durch

gegebene Ringhomomorphismus φ_f ist ein Isomorphismus.

iii) Für $\mathfrak{p} \in \operatorname{Spec} A$ hat man das koanonische Diagramm

$$\begin{array}{ccc} A & \xrightarrow{\varphi} & \mathcal{O}_X(X) \\ \downarrow^{\iota} & & \downarrow \\ A_{\mathfrak{p}} & \xrightarrow{\varphi_{\mathfrak{p}}} & \mathcal{O}_{X,\mathfrak{p}} \end{array}$$

und $\varphi_{\mathfrak{p}}: A_{\mathfrak{p}} \to \mathcal{O}_{X,\mathfrak{p}}$ ist ein Isomorphismus.

2.2.1 Beweis von Satz 2.33

Für den Beweis benötigen wir noch eine Definition.

Definition 2.34 (%-(Prä)Garbe). -

 $\mathcal{F}: D(f) \mapsto A_f$ heißt \mathfrak{B} -Prügarbe auf $X = \operatorname{Spec} A$, wenn \mathcal{F} eine Prägarbe auf

$$\mathfrak{B} := \{ D(f) \subset X \mid f \in A \}$$

ist.

 \mathcal{F} heißt \mathfrak{B} -Garbe, wenn \mathcal{F} eine \mathfrak{B} -Prägarbe ist und die Garbenbedingungen für die D(f) erfüllt sind.

Hilfslemma 2.35. Es gilt:

- 1. $\mathcal{O}_X : D(f) \mapsto A_f$ ist eine \mathfrak{B} -Garbe.
- 2. Ist \mathcal{F} eine \mathfrak{B} -Garbe, so existiert eine bis auf Isomorphie eindeutige Garbe $\bar{\mathcal{F}}$ auf X mit $\bar{\mathcal{F}}(D(f)) = \mathcal{F}(D(f))$ für alle $D(f) \in \mathfrak{B}$.

TODO

Definition 2.36 ((affines) Schema). -

Ein affines Schema ist ein lokal geringter Raum (X, \mathcal{O}_X) , der zu einem $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ als lokal geringter Raum isomorph ist.

Ein Schema ist ein lokal geringter Raum (X, \mathcal{O}_X) , der eine offene Überdeckung durch affine Schemata besitzt, d.h. $X = \bigcup_{i \in I} U_i$ mit $U_i \subseteq X$ offen und $(U_i, \mathcal{O}_X|_{U_i})$ ist ein affines Schema.

Bemerkung 2.37. Beachte dabei: Ist X ein topologischer Raum, \mathcal{F} eine Garbe auf X, $U \subseteq X$ offen, so ist durch

$$\mathcal{F}\big|_U:\ V\mapsto \mathcal{F}\big|_U(V):=\mathcal{F}(V)$$

eine Garbe $\mathcal{F}|_{U}$ auf U definiert.

Definition 2.38 (Morphismus von Schemata). -

Ein Morphismus von Schemata ist ein Morphismus von lokal geringten Räumen

$$(f, f^{\#}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y).$$

mit $f: X \to Y$ stetig und $f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ Garbenmorphismus auf Y so dass $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ lokaler Ringhomomorphismus

Bemerkung 2.39. Man hat einen kontravarianten Funktor

$$\begin{array}{ccc} \mathbf{Ring} & \to & \mathbf{Sch^{aff}} \\ & A & \mapsto & (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A}) \\ A \xrightarrow{\varphi} B & \mapsto & (f, f^{\#}) : (\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}) \to (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A}) \end{array}$$

durch

$$f: \operatorname{Spec} B \to \operatorname{Spec} A ,$$

$$\mathfrak{q} \mapsto \varphi^{-1}(\mathfrak{q}) ,$$

wobei die Stetigkeit hier klar ist, und

$$f^{\#}: \mathcal{O}_{\operatorname{Spec} A} \to f_* \mathcal{O}_{\operatorname{Spec} B}.$$

Letzterer ist für $g \in A$ gegeben durch

$$f_{D(g)}^{\#}: \mathcal{O}_{\operatorname{Spec} A}(D(g)) = A_g \to \left(f_* \mathcal{O}_{\operatorname{Spec} B}\right)(D(g)) = B_{\varphi(g)}$$

$$\frac{a}{g^n} \mapsto \frac{\varphi(a)}{\varphi(g)^n}$$

wobei wir • durch

$$f^{-1}(D(g)) = \{\mathfrak{q} \in \operatorname{Spec} B \mid f(\mathfrak{q}) \in D(g)\} = \{\mathfrak{q} \in \operatorname{Spec} B \mid \varphi^{-1}(\mathfrak{q}) \not\ni g\} = \{\mathfrak{q} \in \operatorname{Spec} B \mid \mathfrak{q} \not\ni \varphi(g)\}$$

erhalten. Diese Abbildung ist funktoriell und lokal, da für $\mathfrak{p} \in \operatorname{Spec} A$

$$\begin{array}{cccc} f_{\mathfrak{p}}^{\#}: & A_{\mathfrak{p}} & \to & \mathcal{O}_{\operatorname{Spec} B, \mathfrak{q}} \\ & \frac{a}{\gamma} & \mapsto & \frac{\varphi(a)}{\varphi(\gamma)} \end{array}$$

für $\mathfrak{p}=\varphi^{-1}(\mathfrak{q}),\,\gamma\notin\mathfrak{p}$ (also $\varphi(\gamma)\notin\mathfrak{q}$) ein lokaler Ringhomomorphismus ist.

Beispiele 3

3.1 Spec \mathbb{Z}

Jeder Ring A hat einen eindeutigen Homomorphismus

 \mathbb{Z} ist daher ein *initiales Objekt* in der Kategorie **Ring**.

Wir haben daher einen eindeutigen Morphismus Spec $A \to \operatorname{Spec} \mathbb{Z}$ von affinen Schemata. Spec \mathbb{Z} ist somit ein finales Objekt in der Kategorie $\operatorname{\mathbf{Sch}}^{\operatorname{\mathbf{aff}}}$.

Ferner können wir zusammenfassen

$$\textbf{Offene Mengen} \quad \emptyset \neq U \subseteq \operatorname{Spec} \mathbb{Z} \text{ offen} \Leftrightarrow U = \begin{cases} \operatorname{Spec} \mathbb{Z} \setminus \{(p_1), \dots, (p_r)\} &, r \in \mathbb{N}_0 \\ \emptyset & \end{cases}$$

 $\textbf{Basisoffene Mengen} \quad D(f) = \{\mathfrak{p} \in \operatorname{Spec} \mathbb{Z} \mid f \notin \mathfrak{p}\} = \operatorname{Spec} \mathbb{Z} \backslash \{(p_1), \dots, (p_r)\} \text{ für } f = p_1^{\nu_1} \dots p_r^{\nu_r}.$

Strukturgarbe

$$\mathcal{O}_{\operatorname{Spec}\mathbb{Z}}(D(f)) = \mathbb{Z}_f = \left\{ \frac{a}{f^n} \mid n \in \mathbb{N}_0, a \in \mathbb{Z} \right\}$$
$$\mathcal{O}_{\operatorname{Spec}\mathbb{Z},(p)} = \mathbb{Z}_{(p)} = \left\{ \frac{a}{b} \mid p \nmid b, a \in \mathbb{Z} \right\}$$

3.2 $\operatorname{Spec} k$ für einen Körper k

Als topologischer Raum $\operatorname{Spec} k = \{(0)\}.$

Strukturgarbe $\mathcal{O}_{\operatorname{Spec} k}(\{(0)\}) = k.$

Bemerkung 3.1. Sei A ein Ring. Angenommen wir haben Spec $A \xrightarrow{(f,f^{\#})}$ Spec k für einen Körper k, so haben wir

 $f_{\operatorname{Spec} k}^{\#}: k = \mathcal{O}_{\operatorname{Spec} k} \to f_* \mathcal{O}_{\operatorname{Spec} A}(\operatorname{Spec} k) = A,$

wobei aus $\mathcal{O}_{\operatorname{Spec} A}(f^{-1}(\{(0)\})) = \mathcal{O}_{\operatorname{Spec} A}(\operatorname{Spec} A)$ resultiert. Insgesamt ist A also eine k-Algebra (d.h. ein Ring zusammen mit $k \to A$).

Bemerke hierbei "Grothendiecks Gesamtphilosophie":

Alles relativ lesen!

Definition 3.2 (S-Schema).

Sei S ein Schema. Dann ist ein S-Schema ein Schema X zusammen mit einem Strukturmorphismus $X \xrightarrow{\varphi} S$. Dies ergibt die Kategorie \mathbf{Sch}_S , wenn man

$$\operatorname{Hom}(X \xrightarrow{\varphi} S, Y \xrightarrow{\varphi} S) := \left\{ \begin{array}{c} X \xrightarrow{f} Y \\ \swarrow \\ S \end{array} \right\}$$

setzt.

Beispiel 3.3. $\mathbf{Sch}_k := \mathbf{Sch}_{\operatorname{Spec} k}$ sind die sog. k-Schemata. Ein Beispiel hierfür ist $\operatorname{Spec} k[X_1, \dots, X_n] \to \operatorname{Spec} k$ via $k \hookrightarrow k[X_1, \dots, X_n]$.

Bemerkung 3.4. Sei X ein Schema und $x \in X$ und weiter $\mathfrak{m}_x \triangleleft \mathcal{O}_{X,x}$ das maximale Ideal. Dann ist

$$\kappa(x) := k(x) := \mathcal{O}_{X,x}/\mathfrak{m}_x$$

der Restklassenkörper von x.

Betrachte nun $(f, f^{\#})$: Spec $k \to X$ mit

$$f: \operatorname{Spec} k(x) \to X$$

 $\eta_x \mapsto x,$

wobei topologisch gesehen $\eta_x \in \operatorname{Spec} k(x)$ der einzige Punkt dieses Schemas ist. Für $U \subseteq X$ offen haben wir:

$$f_U^{\#}: \mathcal{O}_X \to f_*\mathcal{O}_{\operatorname{Spec} k(x)}(U) = \begin{cases} 0 & x \notin U \\ k(x) & x \in U. \end{cases}$$

Im Fall $x \in U$ geht dies via

$$\mathcal{O}_X(U) \to \mathcal{O}_{X,x} = \varinjlim_{x \in V} \mathcal{O}_X(V) \overset{\pi}{\twoheadrightarrow} \mathcal{O}_{X,x} / \mathfrak{m}_x = k(x).$$

Ist umgekehrt $(f, f^{\#})$: Spec $k \to X$ ein Schemamorphismus, so setze $x := f((0)) \in X$ und $f^{\#} : \mathcal{O}_X \to f_*\mathcal{O}_{\operatorname{Spec} k}$ liefert einen Ringhomomorphismus der Halme:

$$f_x^\#: \mathcal{O}_{X,x} \to \mathcal{O}_{\operatorname{Spec} k,(0)} = k.$$

Dieser ist lokal (also $f_x^{\#}(\mathfrak{m}_x) = (0)$). Damit ist

$$k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x \xrightarrow{f_x^\# \mod \mathfrak{m}_x} f_x^\# \mod \mathfrak{m}_x k$$

wohldefiniert und somit ist $k \mid k(x)$ eine Körpererweiterung.

Zusammengefasst haben wir:

Einen Punkt
$$x \in X$$
 wählen mit Restklassenkörper $k(x)$ und eine Körpererweiterung $k \mid k(x)$.

Einen Schemamorphismus Spec $k \to X$ wählen für eine Körpererweiterung $k \mid k(x)$.

3.3 Der Affine n-dimensionale Raum über k

Sei k wieder ein Körper. Der affine n-dimensionale Raum über k ist $\mathbb{A}^n_k := \operatorname{Spec} k[X_1, \dots, X_n]$.

Wir erinnern an den Hilbertschen Nullstellensatz:

Satz 3.5 (Hilbertscher Nullstellensatz). -

Sei k algebraisch abgeschlossen. Dann ist jedes maximale Ideal in $k[X_1, \ldots, X_n]$ von der Form $(X_1 - a_1, \ldots, X_n - a_n)$.

Wir haben bereits gezeigt:

$$|\mathbb{A}_{k}^{n}| = k^{n}, \quad \text{via } (X_{1} - a_{1}, \dots, X_{n} - a_{n}) \mapsto (a_{1}, \dots, a_{n}).$$

Sei $\mathfrak{p}=(f_1,\ldots,f_r)$ ein nicht maximales Ideal in $k[X_1,\ldots,X_n]$ (die Darstellung ist nach Satz 3.5) möglich, so gilt

$$\mathfrak{p} \subseteq (X_1 - a_1, \dots, X_n - a_n) \quad \Leftrightarrow \quad f_1(a_1, \dots, a_n) = 0, \dots, f_r(a_1, \dots, a_n) = 0$$

Wir können dies in Abbildung 3 "sehen".

3.4 Weiteres Beispiel

Betrachte $k[\![X_1,\ldots,X_n]\!] = k[\![X_1,\ldots,X_{n-1}]\!][\![X_n]\!]$ mit $R[\![X]\!] = \{\sum_{i=0}^{\infty} a_i X^i \mid a_i \in R\}.$

Bemerkung 3.6. $g \in k[X_1, \ldots, X_n] \setminus (X_1, \ldots, X_n)$ ist eine Einheit.

Funktor Spec Wir haben den Funktor Spec: Die Ringhomomorphismen

induzieren

$$\operatorname{Spec} k \longrightarrow k[\![X_1,\ldots,X_n]\!] \longrightarrow k[X_1,\ldots,X_n]_{(X_1,\ldots,X_n)} \longrightarrow \operatorname{Spec} k[X_1,\ldots,X_n]$$
 topologisch:
$$(0) \longmapsto (X_1,\ldots,X_n) \longmapsto (X_1,\ldots,X_n) \longmapsto (X_1,\ldots,X_n).$$
 entspricht dem abgeschlossener abgeschlossener abgeschlossener Punkt Punkt
$$(0,\ldots,0) \in k^n$$

Dies ist ein Homöomorphismus auf $\{\mathfrak{p}\in\mathbb{A}^n_k\mid\mathfrak{p}\subseteq(X_1,\ldots,X_n)\}=V(\mathfrak{p})=\overline{\{\mathfrak{p}\}}\subseteq\mathbb{A}^n_k$.

Was passiert aber auf Schemaniveau?

Betrachte dazu

$$\operatorname{Spec} k \longrightarrow k[\![X_1,\ldots,X_n]\!]/\mathfrak{p} \longrightarrow k[X_1,\ldots,X_N]_{(X_1,\ldots,X_n)}/\mathfrak{p} \longrightarrow \operatorname{Spec} k[X_1,\ldots,X_n]/\mathfrak{p} \approx V(\mathfrak{p})$$

Nehmen wir das explizite Beispiel $\mathfrak{p}=(Y^2-X^2(X+1))$. Es ist \mathfrak{p} ein Primideal und $V(\mathfrak{p})$ irreduzibel.

Beachte: $1 + X \in k[X]$ hat eine Wurzel, wie man durch folgenden Ansatz mit $h(X) = a_0 + a_1X + \dots$ sieht:

$$1 + X = (h(X))^2 = a_0^2 + 2a_0a_1X + \dots$$

Setze $a_0 := 1$ oder -1 und löse sukzessizve auf. Demnach ist $Y^2 - X^2(X+1) = (Y - Xh(X))(Y + Xh(X))$ nicht mehr prim, also $V(\mathfrak{p}) \subseteq k[\![X,Y]\!]$ nicht mehr irreduziebel!

Betrachte genauer

$$k\llbracket u,v \rrbracket / (uv) \stackrel{\cong}{\longrightarrow} k\llbracket z,w \rrbracket / (z^2 - w^2) \stackrel{\cong}{\longrightarrow} k\llbracket X,Y \rrbracket / (Y^2 - X^2(h(X))^2)$$

$$u \longmapsto z + w \qquad z \longmapsto Y$$

$$v \longmapsto z - w \qquad w \longmapsto Xh(X)$$

In Bildern:

Spec
$$k[u, v]/(uv) \longrightarrow \text{Spec } k[X, Y]/(Y^2 - X^2(X+1))$$

Abbildung 4: Veranschaulichung von $\mathbb{A}^1_{\mathbb{Z}} \to \operatorname{Spec} \mathbb{Z}$

3.5 Spezielles Beispiel $\mathbb{A}^1_{\mathbb{Z}} = \operatorname{Spec} \mathbb{Z}[X]$

Wir haben $\pi: \mathbb{A}^1_{\mathbb{Z}} \to \operatorname{Spec} \mathbb{Z}$. Topologisch ist

$$\mathbb{A}^1_{\mathbb{Z}} = \bigcup_{p \text{ prim}} \pi^{-1}((p)) \cup \pi^{-1}((0)).$$

Abbildung 4 verdeutlicht dies.

Zu $\pi^{-1}((0))$ Betrachte nun $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[X]$, so gilt $\mathfrak{p} \in \pi^{-1}((0)) \Leftrightarrow \mathfrak{p} \cap \mathbb{Z} = (0)$.

Betrachte $S := \mathbb{Z} \setminus \{0\} \subseteq \mathbb{Z}[X]$ und die Lokalisierung $g : \mathbb{Z}[X] \hookrightarrow \mathbb{Z}[X]_S$. Es ist klar: $\mathbb{Z}[X]_S = \mathbb{Q}[X]$

Ferner gilt $\operatorname{Spec}\mathbb{Q}[X]\to\operatorname{Spec}\mathbb{Z}[X]$ ist ein Homö
omorphismus auf sein Bild:

$$\{\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[X] \mid \mathfrak{p} \cap S = \emptyset\} = \{\mathfrak{p} \in \mathbb{A}^1_{\mathbb{Z}} \mid \mathfrak{p} \cap \mathbb{Z} = (0)\} = \pi^{-1}(0),$$

Zu $\pi^{-1}((p))$ Es ist $\mathfrak{p} \in \pi^{-1}((p)) \Leftrightarrow p \in \mathfrak{p}$. Dann betrachte $\rho : \mathbb{Z}[X] \twoheadrightarrow \mathbb{F}_p[X]$ und $\rho^* : \operatorname{Spec} \mathbb{F}_p[X] \to \mathbb{A}^1_{\mathbb{Z}}$. Wegen $\mathbb{F}_p[X] \cong \mathbb{Z}[X] / \ker \rho$ ist ρ^* ein Homöomorphismus auf

$$V(\ker \rho) = {\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[X] \mid \ker \rho \subseteq \mathfrak{p}} = \pi^{-1}((p)) \subseteq \mathbb{A}^1_{\mathbb{Z}}.$$

Zusammengefasst ist:

$$\pi^{-1}((0)) = \mathbb{A}^1_{\mathbb{Q}}$$

 $\pi^{-1}((p)) = \mathbb{A}^1_{\mathbb{F}_p},$

wobei die Gleichheiten topologisch zu lesen sind.

Betrachte $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[X]$

1. Fall.
$$\mathfrak{p} \in \pi^{-1}((0)) \Leftrightarrow \mathfrak{p} \cap \mathbb{Z} = (0)$$
, also

$$\mathfrak{p}=(\mu(X))$$

mit $\mu(X) \in \mathbb{Z}[X]$ einem primitiven, irreduziblen Polynom.

2. Fall. $\mathfrak{p} \in \pi^{-1}((p))$, so ist $\mathfrak{p} = \rho^{-1}(\mathfrak{q})$ für ein $\mathfrak{q} \in \operatorname{Spec} \mathbb{F}_p[X]$, also $\mathfrak{p} = \rho^{-1}((q(X)))$ für ein irreduzibles $q(X) \in \mathbb{F}_p[X]$ oder (0). Dann ist

$$\mathfrak{p} = (r(X), p)$$

mit $r(X) \in \mathbb{Z}[X]$ und $r(X) \equiv q(X) \mod p$.

Es stellt sich die Frage, wie für $f\in\mathbb{Z}[X]$ die $D(f)\subseteq\mathbb{A}^1_{\mathbb{Z}}$ aussehen. Dazu

1. Fall $\mathfrak{p} \in \pi^{-1}((0))$. Sei $f(X) \in \mathbb{Q}[X]$. Dann $f(X) = \xi q_1(X)^{\nu_1} \dots q_r(X)^{\nu_r}$ und es gilt

$$f \notin \mathfrak{p} \Leftrightarrow \mathfrak{p} = (q(X))$$

mit $q \neq q_1, \ldots, q_r$.

2. Fall $\mathfrak{p} \in \pi^{-1}((p))$. $f(X) \notin (r(X), p)$ mit $r(X) \mod p \in \mathbb{F}_p[X]$ irreduzibel. Für eine Primzahl p, betrachte $\bar{f}(X) \in \mathbb{F}_p[X]$. Ist $\bar{f}(X) = 0$, so ist $f(X) \in (r(X), p)$ für alle r(X). Für $\bar{f}(X) = \bar{q}_1(X)^{\nu_1} \dots \bar{q}_s(X)^{\nu_s}$, ist $f(X) \in (q_i(X), p)$ für diese i.

Dargestellt ist dies wieder in Abbildung 5.

3.6 Diskrete Bewertungsringe

Definition 3.7 (Diskrete Bewertung). -

Eine diskrete Bewertung auf einem Körper k ist eine Abbildung

$$v: k \to \mathbb{Z} \cup \{\infty\},$$

so dass

- 1. $v(0) = \infty, v(x) \in \mathbb{Z}$ für $x \neq 0$,
- 2. v(xy) = v(x) + v(y) für alle x, y und
- 3. $v(x+y) \ge \min\{v(x), v(y)\}\$ für alle x, y.

Bemerkung 3.8. Wählt man q > 1 (in \mathbb{R}), so ist

$$|\cdot|: k \to \mathbb{R}, \ x \mapsto |x| := q^{-v(x)}$$

eine Betragsfunktion mit

- 1. $|x| = 0 \Leftrightarrow x = 0$,
- 2. |xy| = |x||y|.
- 3. $|x+y| \le \max\{|x|,|y|\} \le |x|+|y|$. Die erste Ungleichung wird auch nicht-archimedische Dreiecksungleichung genannt.

Definition 3.9 (Bewertungsring). ——

Ist (k, v) ein diskret bewerteter Körper, so ist

$$\mathcal{O} := \{ x \in k \mid v(x) \ge 0 \} = \{ x \in k \mid |x| \le 1 \}$$

ein lokaler Ring mit maximalem Ideal

$$\mathfrak{m} := \{ x \in k \mid v(x) > 0 \} = \{ x \in k \mid |x| < 1 \} \vartriangleleft \mathcal{O},$$

der Bewertungsring zu k.

Ein diskreter Bewertungsring (dvr) ist ein Integritätsbereich R, zusammen mit diskreter Bewertung $v: K = \text{Quot}(R) \to \mathbb{Z} \cup \{\infty\}$, so dass $R = \mathcal{O}$ gilt.

Ferner gilt \mathcal{O} ist ein Hauptidealbereich (PID), $k = \text{Quot}(\mathcal{O})$.

Ist $\pi \in \mathcal{O}$ mit $v(\pi) = 1$, so ist $\mathfrak{m} = (\pi)$ und \mathcal{O} hat genau die Ideale (π^k) für $k \in \mathbb{N}_0$.

Bemerkung 3.10. Der Wertebereich $v(k \setminus \{0\}) \subseteq \mathbb{Z}$ ist eine Untergruppe, also $v(k \setminus \{0\}) = d\mathbb{Z}$ für ein d. Wir können meistens oBdA d = 1 annehmen.

Bemerkung 3.11. Beachte: Für $x \in \mathcal{O}$ gilt

$$v(x) = n \iff x \in \mathfrak{m}^n \setminus \mathfrak{m}^{n+1}.$$

Für $\xi = \frac{x}{y} \in K = \text{Quot}(\mathcal{O})$ ist $v(\xi) = v(x) - v(y)$.

Bemerkung 3.12.

$$\operatorname{Spec} \mathcal{O} = \{(0), (\pi) = \mathfrak{m}\},\$$

da in Hauptidealbereichen jedes Primideal \neq (0) auch maximal ist.

Definition 3.13 (Restklassenkörper eines dvr).

Ist \mathcal{O} ein diskreter Bewertungsring, so heißt

$$\mathcal{O}/\mathfrak{m} =: k$$

der $Restklassenk\"{o}rper$ von \mathcal{O} .

 \mathcal{O} heißt

- von verschiedener Charakteristik, wenn für $K = \text{Quot}(\mathcal{O})$, char K = 0 und char $k \neq 0$ ist und
- von gleicher Charakteristik, wenn char $K = \operatorname{char} k$.

3.6.1 Beispiele

1. Sei k ein Körper,

$$K := k((t)) := \text{Quot } k[t] = \left\{ f(t) = \sum_{l=-N}^{\infty} a_t t^l \mid a_l \in k \right\}$$

und

$$v: k[\![t]\!] \to \mathbb{N}_0 \cup \{\infty\} \\ f(t) = \sum_{l} a_l t^l \mapsto \max\{k \in \mathbb{N}_0 \mid t^{-k} f(t) \in k[\![t]\!]\} = \min\{l \in \mathbb{N}_0 \mid a_l \neq 0\}.$$

Auf k(t) Dies ist eine diskrete Bewertung mit $\mathcal{O} = k[t]$:

$$v:$$
 $k((t)) \rightarrow \mathbb{Z}_0 \cup \{\infty\}$
 $f(t) = \sum a_l t^l \mapsto = \min\{l \in \mathbb{Z}_0 \mid a_l \neq 0\}.$

k((t)) trägt damit $|\cdot| := q^{-v(\cdot)}$, also ist k((t)) ein metrischer Raum mit d(x,y) := |x-y|, dieser ist vollständig.

Für den Restklassenkörper gilt

$$\mathcal{O}/\mathfrak{m} = k[t]/tk((t)) \cong k,$$

da $\mathfrak{m} = tk[\![t]\!] = (t)$. t heißt dabei Uniformierende.

2. Betrachte

$$\nu_p: \ \mathbb{Q} \to \ \mathbb{Z} \cup \{\infty\}$$
$$\frac{a}{b} \mapsto v(a) - v(b)$$

mit $v(a) = \max\{k : p^k \mid a\}$ für eine Primzahl p.

 ν_p ist eine diskrete Bewertung, die p-adische Bewertung. Ferner ist

$$\mathcal{O} = \left\{\frac{a}{b} \in \mathbb{Q} \mid \nu_p\left(\frac{a}{b}\right) > 0\right\} = \left\{\frac{a}{b} \in \mathbb{Q} \text{ in gekürzter Form } \mid p \nmid b\right\} = \mathbb{Z}_{(p)}$$

und $\mathfrak{m} = p\mathbb{Z}_{(p)}$ und

$$\mathcal{O}/\mathfrak{m} = \mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)} \cong \mathbb{Z}/p\mathbb{Z} = \mathfrak{F}_p.$$

 $|\cdot|_p:=p^{-\nu_p(\cdot)}:\mathbb{Q}\to\mathbb{R}_{\geq 0}$ heißt *p-adischer Betrag.* $(\mathbb{Q},|\cdot|_p)$ ist jedoch nicht vollständig, da z.B. $\sum_{n=0}^{\infty}p^n$ ein Cauchyfolge bildet.

Man erhält die Vervollständigungen

$$(\mathbb{Q}, |\cdot|) \rightsquigarrow \mathbb{R}$$
$$(\mathbb{Q}, |\cdot|_p) \rightsquigarrow \mathbb{Q}_p.$$

Zurück zu Schemata Sei \mathcal{O} ein dvr, so ist Spec $\mathcal{O} = \{(0), (\pi)\}$. Dabei ist (0) der generische Punkt mit $\overline{\{(0)\}} = V((0)) = \operatorname{Spec} \mathcal{O} \text{ und } (\pi) \text{ ein abgeschlossener Punkt, genannt der } spezielle Punkt in Spec <math>\mathcal{O}$.

Beispiel 3.14. Sei k ein Körper mit char $k \neq 2, 3$ und k algebraisch abgeschlossen. Wir betrachten

$$E := \operatorname{Spec} A \quad \operatorname{mit} A := k[X, Y]/(Y^2 - (X^3 + aX + b)).$$

Dies ist der affine Teil einer *elliptischen Kurve*, wenn $4a^3 + 27b^2 \neq 0 \in k$.

Wir haben

$$|E| \cong \{(x_0, y_0) \in k^2 \mid y_0^2 - (x_0^3 + ax_0 + b) = 0\}.$$

Sei $(x_0, y_0) \in |E|$, oder besser $\mathfrak{p} := (X - x_0, Y - y_0) \in E$. Es ist $\mathcal{O}_{E,\mathfrak{p}}$ ein dvr.

Dazu:

1. Fall $y_0 \neq 0$, so ist $\mathcal{O}_{E,y} = A_{\mathfrak{p}}$. Betrachten wir $\frac{\bar{f}(X,Y)}{\bar{g}(X,Y)} \in A_{\mathfrak{p}}$, also $\bar{f}, \bar{g} \in A$ und $\bar{g} \notin (X - x_0, Y - y_0)$, d.h. $\bar{g}(x_0, y_0) \neq 0$. Ferner ist

$$Y^{2} - (X^{3} + aX + b) = (Y + y_{0})(Y - y_{0}) + (X^{2}x_{0}X + (x + x_{0}^{2}))(X - x_{0})$$

und wenn $y_0 \neq 0$, so ist $(Y + y_0) \notin (X - x_0, Y - y_0)$. Demnach ist $Y + y_0 \in A_{\mathfrak{p}}^{\times}$, also gilt in $A_{\mathfrak{p}}$:

$$Y - y_0 = \frac{X^2 + x_0 X + (a + x_0^2)}{Y + y_0} (X - x_0)$$

und $(X - x_0, Y - y_0)A_{\mathfrak{p}} = \mathfrak{p}A_{\mathfrak{p}} = (X - x_0)A_{\mathfrak{p}}$ ist ein Hauptideal.

Also ist

$$v: A_{\mathfrak{p}} \to \mathbb{N}_0 \cup \{\infty\}$$

 $a \mapsto \max\{k \in \mathbb{N}_0 \mid a \in (X - x_0)^k\}$

eine diskrete Bewertung!

2. Fall $y_0 = 0$. Dies geht analog und man sieht, dass

$$X^{2} + x_{0}X + (a + x_{0}^{2}) \notin (X - x_{0}, Y),$$

da nach Voraussetzung $4a^2 + 27b^2 \neq 0$. Also ist $\mathfrak{p}A_{\mathfrak{p}} = (Y - y_0)A_{\mathfrak{p}}$.

Bemerkung 3.15. Sei $K(E) := \mathcal{O}_{E,(0)} = \operatorname{Quot}(A) = A_{(0)}$ der Funktionenkörper von E. Für $\mathfrak{p} \in E$ hat man die Null-/Polstellenordnung

$$v_{\mathfrak{p}}: K(E) \to \operatorname{Quot}(A_{\mathfrak{p}}) = \operatorname{Quot}(\mathcal{O}_{E,\mathfrak{p}}) \xrightarrow{v} \mathbb{Z} \cup \{\infty\}.$$

4

Projektive Schemata

4.1 Eine kurze Einführung in klassische projektive Geometrie

Sei k ein Körper. So ist

$$\mathbb{P}^n(k) := \mathbb{P}(k^{n+1}) := \{ L \subset k^{n+1} \text{UVR} \mid \dim_k L = 1 \}$$

der n-dimensionale projektive Raum.

Homogene Koordinaten $[x_0:\cdots:x_n]\in\mathbb{P}^n(k)$ mit $0\neq (x_0,\ldots,x_n)\in k^{n+1}$ definiert als

$$[x_0:\cdots:x_n]:=\operatorname{span}_k \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$$

mit $[x_0:\dots:x_n]=[y_0,\dots,y_n] \Leftrightarrow \exists \lambda \in k^{\times}$ mit $x_i=\lambda y_i \forall i$. Damit gilt dann, dass $\mathbb{P}^n(k)=k^{n+1}/\sim$, wobei \sim die gerade eben definierte Äquivalenzrelation bezeichnet.

Überdeckung $\mathbb{P}^n(k) = \bigcup_{i=0}^n U_i$ mit

$$U_i = \{ [x_0 : \dots : x_n] \in \mathbb{P}^n(k) \mid x_i \neq 0 \} \ni [x_0 : \dots : x_0]$$

$$\downarrow b_{ij}$$

$$\downarrow k^n$$

$$\ni \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i} \right)$$

als "Karten".

Beachte
$$\mathbb{P}^n(k)\setminus U_i = \{[x_0:\dots:0:\dots:x_n]\mid (x_0,\dots,1,\dots,x_n)\neq 0\} \xrightarrow{1-1} \mathbb{P}^{n-1}(k)$$

Bemerkung 4.1. • $\mathbb{RP}^n := \mathbb{P}^n(\mathbb{R})$

- $\mathbb{CP}^n := \mathbb{P}^n(\mathbb{C})$
- $\mathbb{CP}^1 \approx S^2$

4.2 $\mathbb{P}^n(k)$ als Schema

Statt einem Körper k können wir einen Ring A betrachten.

4.2.1 1. Variante

Betrachte $U_i := \operatorname{Spec} A[x_0, \dots, \not 1, \dots, x_n] = \mathbb{A}_A^n$.

In \mathbb{RP}^n würden wir diese mit dem Kartenwechsel verkleben:

Betrachte also

$$U_{ij} := \operatorname{Spec} A[x_0, \dots, \not i, \dots, x_n][x_j^{-1}] \hookrightarrow \operatorname{Spec} A[x_0, \dots, \not i, \dots, x_n] = U_i$$

$$U_{ji} := \operatorname{Spec} A[x_0, \dots, \not j, \dots, x_n][x_i^{-1}] \hookrightarrow \operatorname{Spec} A[x_0, \dots, \not j, \dots, x_n] = U_j$$

und wähle einen Isomorphismus

$$\begin{array}{cccc} \phi_{ij}: & U_{ij} & \to & U_{ji} \\ & x_k & \mapsto & \frac{x_k}{x_i} & \text{für } k \neq j \\ & x_j & \mapsto & \frac{1}{x_i}. \end{array}$$

Es gilt nun $\phi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$, denn

$$U_{ij} \cap U_{ik} = D(x_j x_k) \subseteq U_i$$

$$U_{ii} \cap U_{ik} = D(x_i x_k) \subseteq U_i$$

sowie

$$\phi_{ik}\big|_{U_{ij}\cap U_{ik}} = \phi_{jk} \circ \phi_{ij}\big|_{U_{ij}\cap U_{ik}}$$

Wir haben also eine Familie $(U_i)_{i=0,\dots,n}$ von (affinen) Schemata. Für jedes Paar (i,j) eine offene Imersion $U_{ij} \hookrightarrow U_i$ mit (affinen) Schemata und Isomorphismen $\phi_{ij}: U_{ij} \xrightarrow{\cong} U_{ji}$, so dass $\phi_{ik}|_{U_{ij}\cap U_{ik}} = \phi_{jk} \circ \phi_{ij}|_{U_{ij}\cap U_{ik}}$.

Bleibt zur Übung lediglich zu zeigen, dass ein (bist auf Isomorphie) eindeutiges Schema \mathbb{P}_A^n mit Überdeckung $\mathbb{P}_A^n = \bigcup_{i=0}^n V_i$ für $V_i \subseteq \mathbb{P}_A^n$ offen und Isomorphismen $V_i \xrightarrow{\cong} U_i$ von (affinen) Schemata existiert.

4.2.2 2. Variante (Die Proj-Konstruktion)

Definition 4.2 (graduierte A-Algebra).

Sei A ein Ring, dann heißt

$$S := \bigoplus_{n \in \mathbb{N}_0} S_n$$

eine graduierte A-Algebra, wenn

- S ein Ring,
- $S_n \subset S$ ein \mathbb{Z} -Untermodul,
- $S_n S_m \subseteq S_{n+m}$ ist,
- wir einen Ringhomomorphismus $A \xrightarrow{\varphi} S$ haben und
- die S_n A-Untermoduln sind.

Ein $s \in S_n$ heißt homogen vom Grad n.

Definition 4.3 (homogenes Ideal).

Ein Ideal $\mathfrak{a} \triangleleft S$ heißt homogen, wenn

$$\mathfrak{a} = \bigoplus_{n \in \mathbb{N}_0} \mathfrak{a} \cap S_n$$
.

Lemma 4.4. Es ist äquivalent

- a homogen,
- a wird von homogenen Elementen erzeugt
- Aus $a \in \mathfrak{a}$ mit $a = \sum_{n \in \mathbb{N}_0} a_n$ für $a_n \in S_n$ folgt $a_n \in \mathfrak{a}$.

Beispiel 4.5. $S = A[x_0, \ldots, x_n] = \bigoplus_{m>0} S_m$ mit

$$S_m = \{ f(x_0, \dots, x_n) \mid f \text{ homogen von Grad } m \},$$

d.h.

$$f \in S_m \quad \Leftrightarrow \quad f = \sum_{\nu \in \mathbb{N}_0^{n+1}} \alpha_{\nu} X_0^{\nu_0} \dots X_n^{\nu_n} \quad \text{mit } \nu_0 + \dots + \nu_n = m.$$

Definition 4.6 (Proj(S)). -

Setze $S_+ := \bigoplus_{n \geq 1} S_n$, dann ist das projektive Spektrum Proj S von S definiert als

$$\operatorname{Proj}(S) := \{ \mathfrak{p} \in \operatorname{Spec} S \text{ homogen } | S_+ \subsetneq \mathfrak{p} \}.$$

Definition 4.7 (Zariski Topologie auf Proj(S)).

Für ein homogenes Ideal $\mathfrak{a} \lhd S$ setze

$$V_{+}(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{a} \subseteq \mathfrak{p} \} \subseteq \operatorname{Proj}(S).$$

Dann bilden diese $V_{+}(\mathfrak{a})$ die abgeschlossenen Mengen einer Topologie, der Zariski-Topologie auf Proj(S).

Bemerkung 4.8. Ein homogenes $\mathfrak{a} \triangleleft S$, $\mathfrak{a} \neq S$, ist prim genau dann, wenn gilt:

$$xy \in \mathfrak{a} \quad \Rightarrow \quad x \in \mathfrak{a} \text{ oder } y \in \mathfrak{a}$$

für alle homogenen x, y.

Definition 4.9 (basisoffenen Mengen auf Proj(S)). -

Analog zu Spec A bilden für $f \in S$ die basisoffenen Mengen in Proj(S)

$$D_+(f) := {\mathfrak{p} \in \operatorname{Proj}(S) \mid f \notin \mathfrak{p}} \subseteq \operatorname{Proj}(S)$$

eine Basis der Topologie auf Proj(S).

Definition 4.10 (homogene Lokalisierung).

• Für $\mathfrak{p} \in \text{Proj}(S)$ heißt

$$S_{(\mathfrak{p})} := \left\{ \frac{s}{t} \mid s,t \in S, \ t \notin \mathfrak{p}, \ s,t \text{ homogen von gleichem Grad} \right\}$$

homogene Lokalisierung von p.

• Für $f \in S$ homogen von Grad m heißt

$$S_{(f)} := \left\{ \frac{s}{f^k} \mid s \in S, \ k \in \mathbb{N}_0, \ s \text{ homogen von Grad } k \deg f \right\}$$

homogene Lokalisierung bezüglich f.

Lemma 4.11. Es gilt: $S_{(\mathfrak{p})}$ ist ein lokaler Ring mit maximalem Ideal

$$\mathfrak{p}_{(\mathfrak{p})} := \left\{ \frac{s}{t} \mid s \in \mathfrak{p} \right\}.$$

Satz 4.12.

 $Auf \operatorname{Proj}(S)$ gibt es eine (bis auf Isomorphie) eindeutige Ringgarbe $\mathcal{O}_{\operatorname{Proj}(S)}$ mit:

1. Für alle homogenen $f \in S_+$ hat man den Isomorphismus

$$(\varphi, \varphi^{\#}): \left(D_{+}(f), \mathcal{O}_{\operatorname{Proj}(S)}|_{D_{+}(f)}\right) \to \operatorname{Spec}(S_{(f)}, \mathcal{O}_{S_{(f)}})$$

2. Diese induzieren Isomorphismen

$$\mathcal{O}_{\operatorname{Proj}(S),\mathfrak{p}} \xrightarrow{\cong} S_{(\mathfrak{p})}.$$

Damit wird $(\operatorname{Proj}(S), \mathcal{O}_{\operatorname{Proj}(S)})$ zu einem Schema.

Lemma 4.13. Ist $f \in S_+$ homogen, so ist

$$\phi: \ D_+(f) \ \to \ \operatorname{Spec}(S_{(f)}) \\ \mathfrak{p} \ \mapsto \ \mathfrak{p} S_f \cap S_{(f)}$$

ein Homöomorphismus.

Hilfslemma 4.14. $\mathfrak{p} := \lambda^{-1}(\sqrt{\mathfrak{q}S_f})$ ist homogenes Primideal in S.

wir definieren $\mathbb{P}_A^n := \operatorname{Proj}(A[X_0, \dots, X_n])$ als Schema. Dabei stellen sich aber die Fragen, was dabei $D_+(X_i)$ sein soll und ob die beiden Varianten übereinstimmen.

Lemma 4.15. Die beiden Varianten der Definition von \mathbb{P}^n_A stimmen überein und es gilt

$$D_+(X_i) \cong \operatorname{Spec} S_{(X_i)} \cong \mathbb{A}_A^n$$
.

4.3 Immersionen und projektive A-Schemata

Definition 4.16 (offene und abgeschlossene Immersion). -

Ein Morphismus $f:Y\to X$ von Schemata heißt

1. offene Immersion, wenn es $U \subseteq^{\circ} X$ gibt, so dass

$$f: (Y, \mathcal{O}_Y) \xrightarrow{\cong} (U, \mathcal{O}_X|_U) \xrightarrow{\iota, \iota^\#} (X, \mathcal{O}_X)$$

- 2. abgeschlossene Immerson, wenn gilt:
 - f ist topologisch ein Homöomorphismus auf im $f := Z \subset X$ abgeschlossen,
 - $f^{\#}: \mathcal{O}_X \to f_*\mathcal{O}_Y$ ist ein surjektiver Garbenmorphismus, d.h. für alle $y \in Y$ ist

$$f_{(f(y))}^{\#}: \mathcal{O}_{X,f(y)} \to \mathcal{O}_{Y,y}$$

surjektiv.

Wir schreiben dann auch $Y \hookrightarrow X \to Y$.

Beispiel 4.17. Ist A ein Ring, $a \triangleleft A$, so induziert

$$A \xrightarrow{\pi} A/\mathfrak{a}$$

eine abgeschlossene Immersion

$$f: \operatorname{Spec} A/\mathfrak{a} \to \operatorname{Spec} A$$

Bemerkung 4.18. Es ist $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}}) = V(\mathfrak{b})$ genau dann, wenn $\sqrt{a} = \sqrt{b}$. Aber es folgt nicht notwendigerweise $A/\mathfrak{a} \stackrel{?}{\cong} A/\mathfrak{b}!$

Dazu betrachte einen Ring A mit nilpotenten Elementen, d.h. Nil $A := \sqrt{(0)} \neq (0)$ und

$$f: \operatorname{Spec} A / \operatorname{Nil}(A) \hookrightarrow \operatorname{Spec} A$$

ist eine abgeschlossene Immersion mit

$$\operatorname{im} f = V(\operatorname{Nil}(A)) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \operatorname{Nil}(A) \subseteq \mathfrak{p} \} = \operatorname{Spec} A.$$

Jedoch ist dies kein Isomorphismus.

Definition 4.19 (abgeschlossenes Unterschema).

Ist $f: Y \to X$ eine abgeschlossene Immersion, so nennen wir Y ein (bzgl. f) abgeschlossenes Unterschema von X.

Definition 4.20 (projektives Schema über A).

Sei A ein Ring. Ein projektives Schema über A ist ein A-Schema X mit einer abgeschlossenen Immersion, so dass

für ein $n \in \mathbb{N}_0$ kommutiert.

Bemerkung 4.21. Leider noch nicht fertig :-(

4.3.1 Beispiele

Zunächst ein etwas abstrakteres Beispiel.

Satz 4.22.

Sei $S := A[X_0, ..., X_n]$. Ist $\mathfrak{b} \triangleleft S$ ein homogenes Ideal, so ist $B := S/\mathfrak{b}$ in natürlicher Weise eine graduierte A-Algebra und Proj(B) ein projektives A-Schema.

Und nun einige konkrete!

1. $\mathbb{P}^n_{\text{klass}}(k)$ und \mathbb{P}^n_k . Sei k ein Körper. Wir haben $\mathbb{P}^n_{\text{klass}}(k) := k^{n+1} \setminus \{0\} / \sim$ und dagegen $\mathbb{P}^n_k := \text{Proj } k[T_0, \dots, T_n]$. Eine algebraische Menge in $\mathbb{P}^n_{\text{klass}}(k)$ ist per definitionem

$$Z := \{ [x_0 : \ldots : x_n] \in \mathbb{P}^n_{\text{klass}}(k) \mid f_i(x_0, \ldots, x_n) = 0 \}$$

für $f_1(T_0,...,T_n),...,f_r(T_0,...,T_n) \in k[T_0,...,T_n]$ homogen.

Satz 4.23. -

Die Abbildung

$$\rho: \quad \mathbb{P}^n_{klass}(k) \quad \to \quad \mathbb{P}^n_k \\ [x_0:\ldots:x_n] \quad \mapsto \quad \langle x_iT_j - x_jT_i \mid i,j \rangle$$

ist eine Bijektion auf

$$\mathbb{P}^n_k(k) = \{ \mathfrak{p} \in \mathbb{P}^n_k \mid \mathfrak{p} \text{ ist } k\text{-rational} \} = \operatorname{Hom}_{\mathbf{Sch}_k}(\operatorname{Spec} k, \mathbb{P}^n_k).$$

Bemerkung 4.24. Wir haben dies auch schon affin gesehen:

$$k^n = \mathbb{A}_{\mathrm{klass}}^n(k) \rightarrow \mathbb{A}_k^n = \operatorname{Spec} k[X_1, \dots, X_n] .$$

 $(\alpha_1, \dots, \alpha_n) \mapsto (X_1 - \alpha_1, \dots, X_n - \alpha_n)$

Bemerkung 4.25. Sei X ein Schema. Wir erinnern daran, dass

$$X(K) := \operatorname{Hom}_{\mathbf{Sch}}(\operatorname{Spec} k, X) = \{(\varphi, \varphi^{\#}) : \operatorname{Spec} k \to X\}$$

mit

Wir folgern eine Seite später dass

 $k(x) \stackrel{\rightharpoonup}{\cong} k$ kanonisch. Das ist mir

nicht klar :-(

 $\varphi_{\eta}: \mathcal{O}_{X,x} \to \mathcal{O}_{\operatorname{Spec} k,\eta} = k$

mit $x = \varphi(\eta)$, wobei topologisch Spec $k = {\eta}$. Damit haben wir

$$\overline{\varphi_n^n}: \mathcal{O}_{X,x}/\mathfrak{m}_x = k(x) \hookrightarrow k$$

(Körperhomomorphismen sind immer injektiv) und wir erhalten folgende 1-1 Beziehung:

$$X(k) \stackrel{\text{\scriptsize 1-1}}{=} \{x \in X \text{ zusammen mit Inklusionen } \iota : k(x) \hookrightarrow k\}.$$

Beachte dabei:

$$X \in \text{Obj}(\mathbf{Sch}) \longrightarrow X(k) := \text{Hom}_{\mathbf{Sch}}(\text{Spec } k, X)$$

$$Y \in \mathrm{Obj}(\mathbf{Sch}\big|_k) \quad \rightsquigarrow \quad Y(k) := \mathrm{Hom}_{\mathbf{Sch}\big|_k}(\mathrm{Spec}\,k, X) = \left\{ \begin{array}{c} \varphi : \mathrm{Spec}\,k \xrightarrow{\mathrm{id}} Y \\ \\ \mathrm{Spec}\,k \end{array} \right\}$$

In diesem Sinne ist \mathbb{P}^n_k als k-Schema zu lesen mit $\mathbb{P}^n_k \to \operatorname{Spec} k$.

2. Projektiver Abschluss Sei $\mathfrak{a} \triangleleft k[Y_1, \ldots, Y_n]$, so hat man die abgeschlossene Immersion

$$\operatorname{Spec} k[Y_1,\ldots,Y_n]/\mathfrak{a} \hookrightarrow \mathbb{A}^n_k$$

mit Bild $V(\mathfrak{a})$.

Betrachte die Homogenisierung von \mathfrak{a} in $k[T_0,\ldots,T_n]$: Sei $\mathfrak{a}=(f_1,\ldots,f_1)$. Definiere

$$f_i^{\text{homo}}(T_0, \dots, T_n) := T_0^{\deg f_i} f_i(\frac{T_1}{T_0}, \dots, \frac{T_n}{T_0}) \in k[T_0, \dots, T_n].$$

Damit können wir nun folgenden Satz formulieren.

Satz 4.26. -

Ist $\iota: X \hookrightarrow \mathbb{A}^n_k$ eine abgeschlossene Immersion, $X = \operatorname{Spec} k[Y_1, \ldots, Y_n]/\mathfrak{a}$ und $\mathfrak{a} = (f_1, \ldots, f_r)$, so nennen wir

$$\bar{X} := \operatorname{Proj} k[T_0, \dots, T_n] / \mathfrak{a}^{homo} \hookrightarrow \mathbb{P}^n_k$$

 $mit \ \mathfrak{a}^{homo} := (f_1^{homo}, \dots, f_r^{homo}) \ den \ projektiven \ Abschluss \ von \ X \ in \ \mathbb{P}_k^n$. Es gilt

wobei die Isomorphie an dieser Stelle durch die Definition der homogenen Polynome herrührt.

None

Beispiel 4.27. Sei
$$E=\operatorname{Spec} k[X,Y]\big/(Y^2-X^3-aX-b)\subseteq \mathbb{A}^2_k,$$
 so ist

$$\bar{E} = \operatorname{Proj} k[X, Y, Z] / (Y^2 Z - X^3 - aXZ^2 - bZ^3) \subseteq \mathbb{P}^2_k.$$

Als Übung überlege man sich was $\bar{E} \cap (\mathbb{P}^2_k \setminus D_+(T_0))$ ist.

Bei mir steht "offene Inklusion", soll wohl aber offene Immersion gemeint sein !?

Eigenschaften von Schemata

5

5.1 Noethersch

Definition 5.1 ((lokal) noethersch).

X heißt noethersch, wenn es eine endliche affine offene Überdeckung gibt, d.h.

$$X = \bigcup_{i=1}^{r} \operatorname{Spec} A_i$$

mit noetherschen Ringen A_i .

X heißt lokal noethersch, wenn jeder Punkt $x \in X$ eine affine offene Umgebung Spec $A \subseteq X$ hat mit A noethersch.

Bemerkung 5.2. Aus X lokal noethersch folgt $\mathcal{O}_{X,x}$ noethersch (Übungsaufgabe). Die Umkehrung gilt i.A. jedoch nicht.

5.2 k-Varietäten

Definition 5.3 (algebraische/projektive k-Varietät). –

Sei k ein Körper. Eine algebraische k-Varietät ist ein k-Schema X, das eine endliche offene Überdeckung

$$X = \bigcup_{i=1}^{r} \operatorname{Spec} A_i$$

mit endlich erzeugten k-Algebren A_i besitzt.

Eine $projektive\ k$ -Varietät ist ein projektives k-Schema.

Bemerkung 5.4.

Immersion

ullet Eine projektive k-Varietät ist eine algebraische k-Varietät, da wir die abgeschlossene

$$X \hookrightarrow \mathbb{P}_k^n = \bigcup_{i=0}^n D_+(T_i) \cong \operatorname{Spec} k[Y_0, \dots, i, \dots, Y_n]$$

haben.

 \bullet Eine k-Alegbra A ist endlich erzeugt, wenn es $n \in \mathbb{N}$ gibt und surjektive k-Algebranhomomorphismen

$$k[Y_1, \dots, Y_n] \xrightarrow{\mathcal{A}} A$$
 $Y_i \mapsto a_i.$

Die a_i sind dabei die Erzeuger von A.

5.3 Reduzierte Schemata

Definition 5.5 (reduzierte Ringe).

Ein Ring A heißt reduziert, wenn

$$\sqrt{(0)} =: Nil(A) = (0),$$

also wenn A keine nilpotenten Elemente hat.

Definition 5.6 (reduzierte lokal geringte Räume). -

X heißt reduziert, wenn $\mathcal{O}_{X,x}$ für jedes $x \in X$ reduziert ist.

Satz 5.7. -

Es ist äquivalent:

- 1. X ist reduziert.
- 2. Zu jedem $x \in X$ existiert eine affin offene Umgebung $U = \operatorname{Spec} A$ um x mit A reduziert.
- 3. $O_X(U)$ ist reduziert für alle offenen $U \subseteq^{\circ} X$.

5.4 Garbifizierung

Definition 5.8 (Garbifizierung). -

Sei X ein topologischer Raum und $\mathcal P$ eine Prägarbe auf X. Dann ist die Garbifizierung von $\mathcal P$

$$\mathcal{P}^{\dagger} := \left(U \mapsto \mathcal{P}^{\dagger}(U) := \left\{ f : U \to \coprod_{x \in U} \mathcal{P}_{x} \middle| \begin{array}{l} f(x) \in \mathcal{P}_{x} \ \forall x \in U \\ \forall x \in U \exists V \ \text{mit} \ x \in V \subseteq^{\circ} U \\ \text{und} \ \exists s \in \mathcal{P}(V) \ \text{mit} \ \forall z \in V : \ f(z) = s_{z} := [s] \in \mathcal{P}_{z}. \end{array} \right\} \right)$$

Satz 5.9. -

- 1. \mathcal{P}^{\dagger} ist eine Garbe und man hat einen kanonischen Prägarbenmorphismus $\mathcal{P} \to \mathcal{P}^{\dagger}$.
- 2. Ist \mathcal{F} eine Garbe, so ist $\mathcal{F}^{\dagger} \cong \mathcal{F}$ kanonisch via 1.
- 3. Für alle $x \in X$ ist $(\mathcal{P}^{\dagger})_x \cong \mathcal{P}_x$ kanonisch via 1.
- 4. \mathcal{P}^{\dagger} erfüllt die offenbare universelle Eigenschaft.

Bemerkung 5.10. Für einen Ring A und $\mathfrak{a} \triangleleft A$ ist

$$\operatorname{Spec} A/\mathfrak{a} \to \operatorname{Spec} A$$

ein Homöomorphismus auf $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}}) \subseteq \operatorname{Spec} A$.

Satz 5.11.

Sei X ein Schema. Dann existiert eine eindeutig bestimmte abgeschlossene Immersion eines reduzierten Schemas X^{red}

 $mit\; \mathrm{topRaum}(X^{red}) = \mathrm{topRaum}(X).$

Definition 5.12 (Kern- und Bildgarbe). -

Sei $\alpha: \mathcal{F} \to \mathcal{G}$ ein Garbenmorphismus. Dann heißen

$$\ker \alpha : (U \mapsto \ker(\alpha(U)))$$

$$\operatorname{im} \alpha : (U \mapsto \operatorname{im}(\alpha(U)))^{\dagger}$$

Kern- und Bildgarbe von α .

Bemerkung 5.13. In der Tat ist ker α bereits eine Garbe.

5.5 Sequenzen von Garben und der Homomorphiesatz

Definition 5.14 (Exakte Sequenz von Garben).

Eine Sequenz von Garben

$$0 \to \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H} \to 0$$

heißt exakt, falls

- $\operatorname{im} \alpha = \ker \beta$
- $\ker \alpha = 0$
- $\operatorname{im} \beta = \mathcal{H}$

im Sinne von Definition 5.12 gilt.

Satz 5.15. -

Eine Sequenz von Garben

$$0 \to \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H} \to 0$$

ist exakt genau dann, wenn sie halmweise exakt ist, d.h.

$$0 \to \mathcal{F}_x \xrightarrow{\alpha_x} \mathcal{G}_x \xrightarrow{\beta_x} \to 0$$

für jedes $x \in X$ exakt ist.

Satz 5.16. —

Ist $\alpha: \mathcal{F} \to \mathcal{G}$ ein Garbenmorphismus. Es ist äquivalent:

- 1. α ist ein Garbenisomorphismus ist, d.h. für alle $U \subseteq {}^{\circ} X$ ist $\alpha(U)$ ein Isomorphismus (von Ringen),
- 2. $\alpha_x: \mathcal{F}_x \to \mathcal{G}_x$ ist ein Isomorphismus.

Satz 5.17 (Homomorphiesatz für Garben).

Ist

$$0 \to \mathcal{N} \to \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \to 0$$

eine kurze exakte Sequenz von Garben, so induziert α einen Isomorphismus

$$\bar{\alpha}: \mathcal{F}/\ker \alpha \xrightarrow{\cong} \mathcal{G}.$$

5.6 Reduzierte Schemata II

Satz 5.18.

Sei X ein Schema, $Z \subseteq X$ eine abgeschlossene Teilmenge. Dann kann man auf Z eine Schemastruktur definieren, so dass $(Z, \mathcal{O}_Z) \hookrightarrow (X, \mathcal{O}_X)$ eine abgeschlossene Immersion ist und (Z, \mathcal{O}_Z) reduziert ist. Diese ist eindeutig und heißt reduzierte Unterschema-Strukur.

5.7 Integere Schemata

Definition 5.19 (integeres Schema). -

Ein Schema X heißt integer, wenn für jedes $U \subseteq^{\circ} X$ offen der Ring $\mathcal{O}_X(U)$ nullteilerfrei ist.

Bemerkung 5.20. $X = \operatorname{Spec} A$ ist integer genau dann, wenn A nullteilerfrei.

Lemma 5.21. Ist A nullteilerfrei, so ist für jedes $U \subseteq^{\circ} X = \operatorname{Spec} A$ der kanonische Morphismus

$$\mathcal{O}_X(U) \to \mathcal{O}_{X,\eta} = \operatorname{Quot}(A)$$

für $\eta = (0)$ injektiv. Ferner ist für $V \subseteq^{\circ} U$ die Restriktion $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ injektiv.

Satz 5.22.

 $Ein\ Schema\ X\ ist\ genau\ dann\ integer,\ wenn\ X\ reduziert\ und\ irreduzibel\ ist.$

Faserprodukt

6

Definition 6.1 (Faserprodukt). -

Seien $f: X \to Y$ und $g: Z \to Y$ Schemamorphismen. Dann ist das Faserprodukt $X \times_Y Z$ ein Schema zusammen mit Morphismen $X \times_Y Z \xrightarrow{\alpha} X$ und $X \times_Y Z \xrightarrow{\beta} Z$, so dass

$$\begin{array}{ccc} X \times_Y Z & \xrightarrow{\alpha} & X \\ \downarrow^{\beta} & & \downarrow^{f} \\ Z & \xrightarrow{g} & Y \end{array}$$

kommutiert und $(X \times_Y Z, \alpha, \beta)$ damit universell ist, d.h.

6.1 Anwendungen

6.1.1 Faser eines Morphismus

Definition 6.2 (Faser eines Morphismus). -

Ist $f: X \to Y$, Spec $k \to Y$ ein k-rationaler Punkt in Y (beispielsweise $k := k(y) := \mathcal{O}_{Y,y}/\mathfrak{m}_y$), so heißt

$$X \times_Y \operatorname{Spec} k =: X_u$$

die Faser von f über $y \in Y$.

6.1.2 Basiswechsel

Definition 6.3. -

Sei X ein S-Schema. Ist T ein weiteres S-Schema, so heißt

$$X \times_S T =: X_T$$

der Basiswechsel vom S-Schema X zum T-Schema X_T .

Bemerkung 6.4. In der Tat ist $X \times_S T$ in natürlicher Weise ein T-Schema. Seien nämlich $f: X \to S$ und $g: T \to S$ die Strukturmorphismen, so haben wir

$$\begin{array}{ccc} X \times_S T & \xrightarrow{\alpha} X \\ \downarrow^{\beta} & \downarrow^{f} \\ T & \xrightarrow{g} S. \end{array}$$

Bemerkung 6.5. Man kann die Definition des Basiswechsels auch kategoriell lesen: Zu $g: T \to S$ hat man einen Funktor

$$\begin{array}{ccc} \mathbf{Sch}_S & \to & \mathbf{Sch}_T \\ (X \xrightarrow{f} S) & \mapsto & (X \times_S T \xrightarrow{\beta} T). \end{array}$$

Definition 6.6 (pull-back von Schemata). -

In obiger Situation heißt ein A mit

$$\begin{array}{ccc}
A & \longrightarrow X \\
\downarrow & \Gamma & \downarrow \\
Z & \longrightarrow Y
\end{array}$$

pull-back, falls $A = X \times_Y Z$.

Satz 6.7. -

In Sch existiert zu jedem $X \xrightarrow{f} Y$, $Z \xrightarrow{g} Y$ ein Faserprodukt $X \times_Y Z$. Es ist eindeutig bis auf eindeutige Isomorphie.

 $F\ddot{u}r X = \operatorname{Spec} A, Y = \operatorname{Spec} B, Z = \operatorname{Spec} R \ gilt \ sogar$

$$X \times_Y Z = \operatorname{Spec} A \otimes_R B.$$

Bemerkung 6.8. Es gilt:

- $\bullet \ X \times_S S = X.$
- $\bullet \ X \times_S Y = Y \times_S X.$
- $(X \times_S Y) \times_S Z = X \times_S (Y \times_S Z)$.
- Für $X \to S$ und $Z \to Y \to S$ gilt

$$(X \times_S Y) \times_Y Z = X \times_S Z.$$

Lemma 6.9. Sei $f: X \to Y$. $y \in Y$ mit Restklassenkörper $k(Y) = \mathcal{O}_{Y,y}/\mathfrak{m}_y$. In

$$X \times_Y \operatorname{Spec} k(y) =: X_y \xrightarrow{p} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} k(y) \xrightarrow{} Y$$

ist p ein Homöomorphismus auf $f^{-1}(y) \subseteq X$.

Beispiel 6.10. Sei $a \in \mathbb{Z} \setminus \{0\}$ und $X := \operatorname{Spec} \mathbb{Z}[T_1, T_2] / (T_1 T_2^2 - a) \xrightarrow{f} \operatorname{Spec} \mathbb{Z}$. Die Fasern zu Punkten in Spec \mathbb{Z} sind:

• $(p) \in \operatorname{Spec} \mathbb{Z}, p$ Primzahl. Haben

$$X_{p} \xrightarrow{X} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} \mathcal{F}_{p} \xrightarrow{\iota_{p}} \operatorname{Spec} \mathbb{Z}$$

mit

$$X_p = \text{Spec} \left(\mathcal{F}_p[T_1, T_2/(T_1 T_2^2 - \bar{a}) \right)$$

1. Fall: $p \nmid a$. Dann ist

$$X_p \cong \operatorname{Spec} \mathcal{F}_p[T, T^{-1}].$$

2. Fall: $p \mid a$. Dann hat $\mathcal{F}_p[T_1, T_2]/(T_1T_2^2)$ nilpotente Elemente, also ist X_p nicht reduziert und nicht irreduzibel.

Man nennt X_p auch oft die Reduktion von $X \mod p$.

• $(0) \in \operatorname{Spec} \mathbb{Z}$, so hat man

$$X_{\mathbb{Q}} := X_0 \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} \mathbb{Q} \longrightarrow \operatorname{Spec} \mathbb{Z}$$

und $X_{\mathbb{Q}} = \operatorname{Spec}(\mathbb{Q}[T_1, T_2]/(T_1T_2^2 - a)) \cong \mathcal{G}_{m,\mathbb{Q}}.$

Definition 6.11 (multiplikative Gruppe von k). -

Ist k ein Körper, so heißt

$$\mathbb{G}_{m,k} := \operatorname{Spec} k[T, T^{-1}]$$

die multiplikative Gruppe von k als k-SChema. Man definiert auch

$$\mathbb{G}_m := \operatorname{Spec} \mathbb{Z}[T, T^{-1}].$$

Bemerkung 6.12. Man hat

$$\mathbb{G}_{m,k} = \operatorname{Spec} k[T, T^{-1}] \to \operatorname{Spec} k[T] = \mathbb{A}^1_k$$

einen Homöomorphismus auf $D(T) \subseteq^{\circ} \mathbb{A}^1_k$.

6.1.3 Basiswechsel und projektive Schemata

Satz 6.13. -

Sei A ein Ring, $S = \bigoplus_{d>0} S_d$ eine graduierte A-Algebra. Sei B eine A-Algebra via $\varphi : A \to B$ und

$$T := S \otimes_A B = \bigoplus_{d > 0} (S_d \otimes_A B)$$

eine graduierte B-Algebra. Dann gilt:

$$\operatorname{Proj}(T) \cong \operatorname{Proj}(S) \times_{\operatorname{Spec} A} \operatorname{Spec} B.$$

Definition 6.14 (n-dimensionale projektive Raum über S). -

Ist Sein Schema, so heißt

$$\mathbb{P}^n_S := \mathbb{P}^n_{\operatorname{Spec} \mathbb{Z}} \times_{\operatorname{Spec} \mathbb{Z}} S$$

der n-dimensionale projektive Raum über S.

Bemerkung 6.15. Ist $S=\operatorname{Spec} A,$ so stimmen die Definitionen von $\mathbb{P}^n_{\operatorname{Spec} A}$ überein.

Definition 7.1 (Zariski-Tangentialraum).

Der Zariski-Tangentialraum von X bei x_0 ist

$$T_{x_0}X := \operatorname{Hom}_{k(x_0)}(\mathfrak{m}/\mathfrak{m}^2, k(x_0)).$$

7.1 Dimensionsbegriff

Definition 7.2 (Krull-Dimension, lokale Dimension, Kodimension).

(i) Sei X ein topologischer Raum. Die $\mathit{Krull-Dimension}\ \mathit{von}\ X$ ist

 $\dim X := \sup\{n \in \mathbb{N}_0 \mid \exists Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_n \text{ von irreduziblen Teilmengen von } X\}$

(ii) Sei X ein topologischer Raum. $x_0 \in X$. Die lokale Dimension bei x_0 ist

$$\dim_{x_0} X := \inf \{ \dim U \mid x_0 \in U \subseteq^{\circ} X \}.$$

(iii) Sei X ein topologischer Raum. $Y \subset X$ irreduzibel und abgeschlossen.

 $\operatorname{codim}(Y,X) := \sup\{n \in \mathbb{N}_0 \mid \exists Y = Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_n \text{ von irreduziblen Teilmengen von } X\}$ heißt Kodimension von Y in X.

(iv) Sei X ein topologischer Raum. Sei $Y \subset X$ abgeschlossen.

 $\operatorname{codim}(Y, X) := \inf\{\operatorname{codim}(Z, X) \mid Z \subset Y \text{ abgeschlossen, irreduzibel}\}\$

heißt Kodimension von Y in X.

Bemerkung 7.3. Speziell für $X = \operatorname{Spec} A$ hat man für $\mathfrak{p} \in \operatorname{Spec} A$

$$\dim_{\mathfrak{p}} A := \inf \{ \dim A_f \mid f \in A, f \notin \mathfrak{p} \}.$$

Lemma 7.4. Sei X ein topologischer Raum. Ist $Z \subseteq X$ abgeschlossener Teilraum. Dann gilt

$$\operatorname{codim}(Z, X) + \dim Z \le \dim X.$$

Definition 7.5 (Höhe, Krull-Dimension von Ringen).

Sei A ein Ring.

(i) Für $\mathfrak{p} \in \operatorname{Spec} A$ heißt

$$\operatorname{ht}(\mathfrak{p}) := \sup\{n \in \mathbb{N}_0 \mid \exists \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n = \mathfrak{p}, \mathfrak{p}_i \lhd A \text{ Primideale}\}$$

die $H\ddot{o}he\ von\ \mathfrak{p}$.

(ii) Für $\mathfrak{a} \triangleleft A$ heißt

$$\operatorname{ht}(\mathfrak{a}) := \inf \{ \operatorname{ht}(\mathfrak{p}) \mid \mathfrak{a} \subseteq \mathfrak{p} \in \operatorname{Spec} A \}$$

die Höhe von a.

(iii) Die Krull-Dimension von A ist

$$\dim A := \sup \{ n \in \mathbb{N}_0 \mid \exists \mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_n, \ \mathfrak{p}_i \in \operatorname{Spec} A \}$$
$$= \sup \{ \operatorname{ht}(\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Spec} A \}$$

Satz 7.6. -

Für einen Ring A und $\mathfrak{p} \in \operatorname{Spec} A$ gilt:

$$\dim A = \dim \operatorname{Spec} A$$

$$\operatorname{codim}(V(\mathfrak{p}),\operatorname{Spec} A) = \operatorname{ht}(\mathfrak{p})$$

Lemma 7.7. (i) $F\ddot{u}r \mathfrak{p} \in \operatorname{Spec} A \ gilt$

$$\operatorname{ht}(\mathfrak{p}) = \dim A_{\mathfrak{p}}.$$

(ii)

$$\dim A = \sup \{\dim A_{\mathfrak{m}} \mid \mathfrak{m} \triangleleft A \ maximal \}.$$

Bemerkung 7.8. Ist A nullteilerfrei, so beginnt eine aufsteigende Kette von Primidealen bei $\mathfrak{p}_0 = (0)$. Hat A Nullteiler, so ist (0) kein Primideal.

Beispiel 7.9. • Ist k ein Körper, so ist dim k = 0.

- Ist A ein nullteilerfreier Hauptidealring, so ist dim A = 1.
- Ist $K \mid \mathbb{Q}$ ein Zahlkörper, $\mathcal{O}_K \subseteq K$ der Ring der ganzen Zahlen, so ist dim $\mathcal{O}_K = 1$.

Bemerkung 7.10. In der Tat gilt für einen nullteilerfreien Ring A:

$$\dim A = 1 \Leftrightarrow \operatorname{Jedes Primideal} \mathfrak{p} \neq (0) \text{ ist maximal.}$$

Satz 7.11 (Krulls-Hauptidealsatz). –

Sei A noethersch und $f \in A \setminus A^{\times}$. Ferner sei $\mathfrak{p} \in \operatorname{Spec} A$ mit $f \in \mathfrak{p}$ und \mathfrak{p} minimal mit dieser Eigenschaft. Dann gilt

$$ht(\mathfrak{p}) \leq 1.$$

Zum Beweis benötigt man:

Lemma 7.12 (Nakajomas Lemma). Sei (A, \mathfrak{m}) ein lokaler Ring und M ein endlich erzeugter A-Modul mit $M = \mathfrak{m}M$. Dann gilt

$$M = (0)$$

Korollar 7.13. Sei (A, \mathfrak{m}) ein lokaler Ring und M ein endlich erzeugter A-Modul. Sei $N \subseteq M$ ein A-Untermodul mit $M \subseteq N + \mathfrak{m}M$. Dann gilt

$$N = M$$

Lemma 7.14. Sei A noethersch und nullteilerfrei und M ein endlich erzeugter A-Modul. Ist ferner $\mathfrak{q} \triangleleft A$ ein echtes Ideal, so gilt

$$\bigcap_{n\in\mathbb{N}}\mathfrak{q}^nM=0.$$

Ein Beispiel zu Krulls-Hauptidealsatz:

Beispiel 7.15. Sei $A = k[X_1, \ldots, X_n]$, $f = f(X_1, \ldots, X_n)$ und \mathfrak{p} wie in Krulls-Hauptidealsatz, so ist $V((f)) \supseteq V(\mathfrak{p})$, d.h. $V(\mathfrak{p})$ ist maximal unter den abgeschlossenen Teilmengen von V((f)).

Ein Korollar zu Krulls-Hauptidealsatz:

Korollar 7.16. Sei A noethersch, $f \in A$ und

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n = \mathfrak{p}$$

eine Primidealkette mit $f \in \mathfrak{p}$. Dann existiert eine Primidealkette

$$\mathfrak{q}_1 \subsetneq \mathfrak{q}_2 \subsetneq \ldots \subsetneq \mathfrak{q}_n = \mathfrak{p}$$

 $mit f \in \mathfrak{q}_1.$

Korollar 7.17. Sei A noethersch, $\mathfrak{a} = (a_1, \ldots, a_r) \triangleleft A$. Dann gilt: Ist $\mathfrak{p} \in \operatorname{Spec} A$ minimal mit $a \subseteq \mathfrak{p}$, so ist

$$ht(\mathfrak{p}) \leq r$$
.

Insbesondere ist also

$$\operatorname{ht}(\mathfrak{p}) \leq r$$
.

Korollar 7.18. Ist (A, \mathfrak{m}) ein noetherscher, lokaler Ring, so ist dim $A < \infty$ und

$$\dim A \leq \dim_{A/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2.$$

Bemerkung 7.19. Erinnern wir an den Tangentialraum, so haben wir in obigem Fall

$$T_{\mathfrak{m}}\operatorname{Spec} A = (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$$

wobei $^{\vee}$ den Dualraum als A/\mathfrak{m} -Vektorraum meint.

Folgerung 7.20. Ist X ein lokal, noethersches Schema und $x \in X$. Dann gilt

$$\dim \mathcal{O}_{X,x} \leq \dim_{k(x)} T_x X.$$

7.2 Regularität

Definition 7.21 (regulär). -

- (i) Ein lokaler noetherscher Ring (A, \mathfrak{m}) heißt $regul\ddot{a}r$, wenn $\dim A = \dim_{A/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2$.
- (ii) Ein lokal noethersches Schema X heißt regulär bei $x \in X$, wenn $\mathcal{O}_{X,x}$ regulär ist.

Lemma 7.22. Sei (A, \mathfrak{m}) ein noetherscher, lokaler Ring. Dann gilt

 $A \text{ regul\"{a}r} \Leftrightarrow \mathfrak{m} \text{ wird von } \dim A\text{-vielen } Elementen \text{ erzeugt.}$

Bemerkung 7.23. Im C^{∞} Fall haben wir

$$C^{\infty}(\mathbb{R}^n)_0 = \{ [f] \mid f : U \ni 0 \xrightarrow{C^{\infty}} \mathbb{R}^n \}$$

mit dem maximalen Ideal

$$\mathfrak{m} = \{ [f] \mid f(0) = 0 \}.$$

Dann kann man $g \in \mathfrak{m}$ darstellen durch

$$g(y) = \sum_{i=1}^{n} g_i(y)y_i$$

mit $y_i:(x_1,\ldots,x_n)\mapsto x_i$.

Satz 7.24. -

Sei (A, \mathfrak{m}) ein lokaler noetherscher Ring und $f \in \mathfrak{m}$. Dann gilt:

- (i) $\dim A/(f) \ge \dim A 1$.
- (ii) Ist f nicht in einem minimalen Primideal enthalten, so gilt

$$\dim A/(f) = \dim A - 1.$$

Bemerkung 7.25. Ist in obigem Fall A nullteilerfrei, so gilt insbesondere

f nicht in einem Primideal enthalten $\Leftrightarrow f \neq 0$

Lemma 7.26. Sei (A, \mathfrak{m}) ein lokaler noetherscher Ring und $\mathfrak{n} \triangleleft A[T]$ maximal mit $\mathfrak{n} \cap A = \mathfrak{m}$, so gilt

$$\operatorname{ht}^{A[T]}(\mathfrak{n}) = \dim A + 1$$

Korollar 7.27. Ist A noetherscher Ring, so folgt

$$\dim A[T_1,\ldots,T_n] = \dim A + n.$$

Korollar 7.28. Es gilt

$$\dim \mathbb{A}_k^n = \dim k[T_1, \dots, T_n] = n.$$

Satz 7.29. -

Jeder regulärer, lokaler, noetherscher Ring ist nullteilerfrei.

Definition 7.30 (Koordinatensystem).

Ist (A, \mathfrak{m}) ein regulärer, lokaler, noetherscher Ring und dim A = d, dann nennt man ein Erzeugendensystem $\mathfrak{m} = (x_1, \dots, x_d)$ ein Koordinatensystem von (A, \mathfrak{m}) oder System von Parametern

Satz 7.31. -

Sei k ein Körper und

$$X = \operatorname{Spec} k[X_1, \dots, X_n] / \mathfrak{a} \hookrightarrow \mathbb{A}_k^n$$

 $mit \ \mathfrak{a} = (f_1, \ldots, f_r), \ so \ gilt:$

$$X \text{ regul\"{a}r bei } x \in X(k) \quad \Leftrightarrow \quad \operatorname{rk} \left(\left. \frac{\partial f_i}{\partial x_j} \right|_{a} \right) = n - \dim \mathcal{O}_{X,x}$$

wobei
$$x = (X_1 - a_1, ..., X_n - a_n)$$
 und $a = (a_1, ..., a_n)$ ist.

Bemerkung 7.32. In obiger Situation gilt:

$$x \in V(\mathfrak{a}) \Leftrightarrow (X_1 - a_1, \dots, X_n - a_n) \in V(\mathfrak{a})$$

 $\Leftrightarrow f_i(a_1, \dots, a_n) = 0 \ \forall i = 1, \dots, r.$

7.3 Glattheit

Definition 7.33 (glatt). -

Eine k-Varietät $X \in \mathbf{Var}_k$ heißt glatt bei $x \in X$, wenn die Punkte $\bar{x} \in X_{\bar{k}}$ regulär sind.

Bemerkung 7.34. In obiger Situation ist dabei $\bar{k} \mid k$ ein algebraischer Abschluss und

 \bar{x} ist dabei nicht eindeutig.

k-Varietät

8

Beispiel 8.1. Ein einführendes Beispiel einer k-Varietät ist gegeben durch abgeschlossene Unterschemata, wie beispielsweise

 $\operatorname{Spec} k[X_1,\ldots,X_n]/\mathfrak{a} \to \operatorname{Spec} k[X_1,\ldots,X_n] = \mathbb{A}_k^n.$

Definition 8.2 (endlich).

Ein Ringhomomorphismus $\varphi: B \to A$ heißt endlich, wenn A dadurch zu einem endlich erzeugten B-Modul wird.

Satz 8.3 (Noether-Normalisierung).

Sei A eine endlich erzeugte k-Algebr. Dann existiert $d \ge 0$ und ein endlicher injektiver Ringhomomorphismus

 $k[T_1,\ldots,T_n] \hookrightarrow A.$

Korollar 8.4. Ist A eine endlich erzeugte k-Algebra und $\mathfrak{m} \triangleleft A$ maximal, dann ist A/\mathfrak{m} eine endliche Körpererweiterung von k.

Korollar 8.5. Sei X eine k-Varietät und $x \in X$ ein abgeschlossener Punkt, so ist $k(x) \mid k$ endlich.

Satz 8.6 ((schwacher) Hilbertscher Nullstellensatz).

Sei k algebraisch abgeschlossen, $\mathfrak{m} \triangleleft k[X_1, \ldots, X_n]$ ein maximales Ideal, so gilt

$$\mathfrak{m} = (X_1 - a_1, \dots, X_n - a_n)$$

für geeignete $a_1, \ldots, a_n \in k$.

Lemma 8.7. Sei X eine irreduzible algebraische k-Varietät, dann gilt für $x \in |X|$:

 $\dim \mathcal{O}_{X,x} = \dim X.$

Lemma 8.8. Ist $\mathfrak{m} \triangleleft k[X_1,\ldots,X_n]$ ein maximales Ideal, so existieren Polynome

$$f_1(X_1), f_2(X_1, X_2), \dots, f_n(X_1, \dots, X_n)$$

mit

$$\mathfrak{m}=(f_1,\ldots,f_r).$$

Folgerung 8.9. \mathbb{A}^n_k ist regulär bei allen $x \in |\mathbb{A}^n_k|$.

Der Punktefunktor

9

Ein wenig Kategorientheorie:

Definition 9.1 (treu, volltreu). -

Ein Funktor $F: \mathcal{C} \to \mathcal{D}$ heißt treu, falls für alle $X, Y \in \text{Obj}(\mathcal{C})$

$$F: \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y))$$

injektiv ist.

Er heißt volltreu, falls für alle $X, Y \in \text{Obj}(\mathcal{C})$

$$F: \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y))$$

eine Bijektion ist.

Notation 9.2. -

Sind \mathcal{A} , \mathcal{B} Kategorien, so definieren wir

$$\mathcal{B}^{\mathcal{A}} := \begin{cases} \text{Obj} : \text{ Funktoren } F : \mathcal{A} \to \mathcal{B} \\ \text{Morph} : \text{Hom}_{\mathcal{B}^{\mathcal{A}}} = \text{ natürliche Transformationen} \end{cases}$$

Definition 9.3 (Punktefunktor, darstellbar). -

Zu $X \in \text{Obj}\,\mathcal{C}$ heißt

$$\begin{array}{ccc} h_X: \ \mathcal{C}^{\mathrm{op}} & \to & \mathbf{Set} \\ T & \mapsto & \mathrm{Hom}_{\mathcal{C}}(T,X) \end{array}$$

der Punktefunktor zu X. Es ist $h_X \in \text{Obj}(\mathbf{Set}^{\mathcal{C}^{\text{op}}})$.

Ein Funktor $F \in \text{Obj}(\mathbf{Set}^{\mathcal{C}^{\text{op}}})$ heißt darstellbar, wenn es ein $X \in \text{Obj}(\mathcal{C})$ gibt, so dass

$$F \cong h_X$$

in $\mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$ gilt.

Lemma 9.4 (Yoneda Lemma). (i) Ist $F: \mathcal{C}^{op} \to \mathbf{Set}$ beliebig, so ist für $X \in \mathrm{Obj} \mathcal{C}$:

$$\operatorname{Hom}_{\mathbf{Set}^{\mathcal{C}^{\operatorname{op}}}}(h_X, F) \quad \to \quad F(X) \\ \tau \quad \mapsto \quad \tau_X(\operatorname{id}_X)$$

eine Bijektion, wobei

$$\tau_X: h_X(X) = \operatorname{Hom}(X, X) \to F(X).$$

(ii) Es ist

$$h: \begin{tabular}{ccc} \mathcal{C} &
ightarrow & \mathbf{Set}^{\mathcal{C}^{\mathrm{op}}} \ X & \mapsto & h_X \end{tabular}$$

eine Äquivalenz von C zur vollen Unterkategorie der darstellbaren Funktoren, d.h. h ist volltreu und jeder darstellbare Funktor ist insomorph zu einem h_X . Insbesondere gilt:

$$h_X \cong h_{\widetilde{X}} \ als \ Funktoren \ \Rightarrow \ X \cong \widetilde{X} \ in \ \mathcal{C}$$

Definition 9.5 (Gruppenschema). -

Ein Gruppenschema ist ein Schema G, so dass

über Gr faktorisiert.

Bemerkung 9.6. Das bedeutet: Für jedes $T \in \mathbf{Sch}$ ist $G(T) = \mathrm{Hom}(T,G)$ ein Gruppe.

Beispiel 9.7. Sei k ein algebraisch abgeschlossener Körper, $X \in \mathbf{Sch}|_k$ so hat man den Funktor

$$\text{Hilb}_{X|k,n}: \ \mathbf{Sch}|_k^{\text{op}} \ \to \ \mathbf{Set}$$

$$T \ \mapsto \ \left\{ Z \hookrightarrow X \times_{\operatorname{Spec} k} T \middle| \begin{matrix} Z \text{ ist abgeschlossenes Unterschema; } Z \to T \text{ flach; jede Faster } Z_t \\ \text{für einen k-rationalen Punkt t ist } \end{matrix} \right\}$$

Betrachte nun

 $\mathrm{Hilb}_{X|_k,n}(\mathrm{Spec}\,k)=\{Z\hookrightarrow X\mid Z \text{ abgeschlossenes Unterschema }, \dim Z=0, \dim_k\mathcal{O}_Z(Z)=n\}$ so stellt sich die Frage: Gibt es ein Schema H mit

$$H(\operatorname{Spec} k) = \operatorname{Hilb}_{X|_k,n}(\operatorname{Spec} k).$$

Die Antwort sei vorweg genommen: Ja, falls X gewisse Voraussetzungen erfüllt.

\mathcal{O}_X -Moduln

10

10.1 \mathcal{O}_X -Moduln

Definition 10.1 (\mathcal{O}_X -Modul). -

Ein \mathcal{O}_X -Modul (oder eine \mathcal{O}_X -Modulgarbe) ist eine Garbe \mathcal{M} zusammen mit einer $\mathcal{O}_X(U)$ -Modulstruktur auf $\mathcal{M}(U)$ für jedes offene $U \subseteq^{\circ} X$, so dass für $V \subseteq^{\circ} U \subseteq^{\circ} X$ folgendes Diagramm kommutiert:

$$\mathcal{O}_X(U) \times \mathcal{M}(U) \longrightarrow \mathcal{M}(U)$$

$$\downarrow \cdot |_{_V} \times \cdot |_{_V} \qquad \qquad \downarrow \cdot |_{_V}$$

$$\mathcal{O}_X(V) \times \mathcal{M}(V) \longrightarrow \mathcal{M}(V)$$

Ein Morphismus $\mathcal{M} \to \mathcal{M}'$ von solchen ist ein Garbenmorphismus $\alpha : \mathcal{M} \to \mathcal{M}'$, so dass für jedes $U \subseteq^{\circ} X \alpha(U) : \mathcal{M}(U) \to \mathcal{M}'(U) \mathcal{O}_X(U)$ -linear ist.

Bemerkung 10.2. Man hat einige Konstruktionen aus der kommutativen Algebra auch für \mathcal{O}_X -Moduln, wie z.B.

- $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{M}' : U \mapsto \mathcal{M}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{M}'(U)$.
- $\bigoplus_{i \in I} \mathcal{M}_i$ von \mathcal{O}_X -Moduln \mathcal{M}_i .
- Für $\alpha: \mathcal{M} \to \mathcal{M}'$ \mathcal{O}_X -Modul-Morphismus haben wir ker α und im α , wobei Kern und Bild in \mathbf{Sh}_X zu lesen sind.

Definition 10.3 (frei, lokal frei).

Ein \mathcal{O}_X -Modul \mathcal{M} heißt

• frei, wenn es eine Menge I und einen \mathcal{O}_X -Modul-Isomorphismus

$$\mathcal{O}_X^{(I)} := \bigoplus_{i \in I} \mathcal{O}_X \xrightarrow{\cong} \mathcal{M}$$

gibt,

• lokal frei oder Vektorbündel von Rang r, wenn es zu jedem $x \in X$ ein $x \in U \subseteq^{\circ} X$ und einen \mathcal{O}_U -Modul-Isomorphismus

$$\mathcal{O}_U^r \xrightarrow{\cong} \mathcal{M}|_U$$

gibt.

10.2 Exkurs: Vektorbündel in der Topologie

Sei X ein topologischer Raum. Dann ist ein \mathbb{R} -Vektorbündel vom Rang r eine stetige Abbildung $\pi: E \to X$ mit einer \mathbb{R} -Vektorraumstruktur auf $E_x := \pi^{-1}(\{x\})$ zusammen mit einem sog Bündelatlas, bestehend aus Karten

$$\psi_U : E|_U := \pi^{-1}(U) \to U \times \mathbb{R}^r$$

mit $\operatorname{pr}_U \circ \psi_U = \pi \big|_{\pi^{-1}(U)}$, d.h.

$$E|_{U} = \pi^{-1}(U) \xrightarrow{\approx} U \times \mathbb{R}$$

kommutiert und die Karten sind

- Homöomorphismen und so, dass
- $\psi_x: E_x \to \{x\} \times \mathbb{R}^r$ ein linearer Isomorphismus ist.

Wie verstehen wir das als Garbe von Moduln? Setze $\mathcal{O}_X := U \mapsto \mathcal{O}_X(U) := \{f : U \to \mathbb{R} \mid f \text{ stetig}\}$, also die Garbe der stetigen Funktionen. Dann ist (X, \mathcal{O}_X) ein lokal geringter Raum. Weiter haben wir $E \xrightarrow{\pi} X$ stetig. Setze

$$\mathcal{E}: U \mapsto \mathcal{E}(U) := \{ \sigma: U \to \pi^{-1}(U) \subseteq E \mid \sigma \text{ stetig}, \ \pi \circ \sigma = \mathrm{id}_U \}.$$

Dies ist eine Garbe. $\mathcal E$ ist sogar eine $\mathcal O_X$ –Modulgarbe: Für $U\subseteq^\circ X$ gilt

$$\mathcal{O}_X(U) \times \mathcal{E}(U) \to \mathcal{E}(U), \ (f, \sigma) \mapsto f \cdot \sigma.$$

wobei

$$\begin{array}{cccc} f \cdot \sigma : & U & \to & \pi^{-1}(U) \\ & x & \mapsto & \underbrace{f(x)}_{\in \mathbb{R}} \underbrace{\sigma(x)}_{\in E_x} \end{array}$$

und E_x ein \mathbb{R} -Vektorraum ist.

Bleibt nur noch zu klären, wie die Bündelkarten $\psi_U: E\big|_U = \pi^{-1}(U) \xrightarrow{\cong} U \times \mathbb{R}^r$ eingehen:

 $\alpha: U \to \mathbb{R}^r$ ist eine stetige Abbildung, also $\alpha \in \mathcal{O}_X(U)^r$. Weiter liefert ψ_U einen $\mathcal{O}_X(U)$ -Modul-Isomorphismus

$$\mathcal{E}(U) \xrightarrow{\cong} \mathcal{O}_X(U)^r \\
\sigma \mapsto \operatorname{pr}_{\mathbb{R}^r} \circ \psi_U \circ \sigma \\
\psi_U^{-1} \circ (\operatorname{id}_U \times \alpha) \longleftrightarrow \alpha.$$

Schränkt man auf $V \subseteq^{\circ} U$ ein, ist dies verträglich. Also

$$\mathcal{E}\big|_{U} \cong \mathcal{O}_{X}\big|_{U}^{r}$$

als $\mathcal{O}_X|_U$ -Modulgarben.

10.3 Quasi-Kohärenz

Definition 10.4 (quasi-kohärent). -

Eine \mathcal{O}_X -Modulgarbe \mathcal{M} heißt *quasi-kohärent*, wenn es zu jedem $x \in X$ ein $x \in U \subseteq^{\circ} X$ und Mengen I, J und eine exakte Sequenz von \mathcal{O}_U -Modulgarben

$$\mathcal{O}_X|_U^{(J)} \longrightarrow \mathcal{O}_X|_U^{(J)} \longrightarrow \mathcal{M}|_U \longrightarrow 0$$

gibt.

Definition 10.5 (von seinen globalen Schnitten erzeugt).

Ein \mathcal{O}_X -Modul \mathcal{M} wird von seinen globalen Schnitten erzeugt, wenn für jedes $x \in X$ der Morphismus von $\mathcal{O}_{X,x}$ -Moduln

$$\mathcal{M}(X) \otimes_{\mathcal{O}_X(X)} \mathcal{O}_{X,x} \to \mathcal{M}_x$$

surjektiv ist.

Mit anderen Worten: Jeder Keim $m_x \in \mathcal{M}_x$ lässt sich schreiben als

$$m_x = \sum_{\text{endl. viele } i} \lambda_i [\sigma_i]_x$$

für $\lambda_i \in \mathcal{O}_{X,x}$ und $\sigma_i \in \mathcal{M}(X)$.

Dies gilt nicht für \mathcal{O}_X selbst; betrachte beispielsweise $X = \mathbb{CP}^1$ und \mathcal{O}_X die Garbe der holomorphen Funktionen.

Bemerkung 10.6. Es existiert ein surjektives $\mathcal{O}_X|_U^{(I)} \twoheadrightarrow \mathcal{M}|_U$ genau dann, wenn $\mathcal{M}|_U$ durch seine auf U globalen Schnitte erzeugt wird.

 \mathcal{M} ist quasi-kohärent genau dann, wenn $\mathcal{M}|_U$ durch seine globalen Schnitte erzeugt wird und die Relationen (also $\ker(\mathcal{O}_X|_U^{(I)}) \to \mathcal{M}$)) auch.

10.4 Quasikohärente Garben auf Spec A

Beachte folgende Konstruktion Ist M ein A-Modul, so betrachte

- für $f \in A$: $M_f = M \otimes_A A_f$ als $A_f = \mathcal{O}_{\operatorname{Spec} A}(D(f))$ -Modul.
- für $\mathfrak{p} \in \operatorname{Spec} A$: $M_{\mathfrak{p}} = M \otimes_A A_{\mathfrak{p}}$ als $A_{\mathfrak{p}} = \mathcal{O}_{\operatorname{Spec} A, \mathfrak{p}}$ -Modul.

Dies ist eine \mathfrak{B} -Garbe für $\mathfrak{B} = \{D(f) \mid f \in A\}$ der Basis der Topologie auf Spec A. Dann folgt analog zu Satz 2.33 folgender Satz.

Satz 10.7. -

Zu gegebenem A-Modul M existiert (bis auf Isomorphie) genau eine $\mathcal{O}_{\operatorname{Spec} A}$ -Modulgarbe M^{\sim} auf $X = \operatorname{Spec} A$ mit

$$M^{\sim}(D(f)) \cong M_f$$

 $(M^{\sim})_{\mathfrak{p}} \cong M_{\mathfrak{p}}$

Insbesondere ist $M^{\sim}(\operatorname{Spec} A) = M$.

Satz 10.8.

Der Funktor

$$\stackrel{\sim}{\cdot} : A\text{-}\mathbf{Mod} \to \mathcal{O}_{\operatorname{Spec} A}\text{-}\mathbf{Mod}$$

$$M \mapsto M^{\sim}$$

$$(M \xrightarrow{\varphi} N) \mapsto (M^{\sim} \xrightarrow{\varphi^{\sim}} N^{\sim})$$

ist exakt.

Korollar 10.9. Für einen A-Modul M ist M^{\sim} quasi-kohärent.

Bemerkung 10.10. Sind M und N A-Moduln, so ist

$$(M \otimes_A N)^{\sim} = M^{\sim} \otimes_{\mathcal{O}_{Spec} A} N^{\sim}.$$

Satz 10.11. -

Sei (X, \mathcal{O}_X) ein Schema. Dann ist eine \mathcal{O}_X -Modulgarbe \mathcal{M} genau dann quasi-kohärent, wenn für jede affin offene Teilmenge U ein Isomorphismus

$$\mathcal{M}|_{U} \cong (\mathcal{M}(U))^{\sim}$$

existiert.

Hilfslemma 10.12. In der Situation von Satz 10.11 gilt: Für jedes $x \in X$ existiert ein affin offenes $x \in U \subseteq^{\circ} X$ mit $\mathcal{M}|_{U} \cong (\mathcal{M}(U))^{\sim}$.

Hilfslemma 10.13. In der Situation von Satz 10.11 gilt: Für beliebiges $U = \operatorname{Spec} A \subseteq^{\circ} X$ und $f \in A = \mathcal{O}_X(U)$ gilt

$$\mathcal{M}(U)_f \cong \mathcal{M}(D(f)).$$

Satz 10.14. -

 $Ist X = \operatorname{Spec} A \ affin \ und$

$$0 \longrightarrow \mathcal{M}' \stackrel{\alpha}{\longrightarrow} \mathcal{M} \stackrel{\beta}{\longrightarrow} \mathcal{M}'' \longrightarrow 0$$

eine kurze exakte Sequenz von \mathcal{O}_X -Modulgarben und ist \mathcal{M}' quasikohärent, so ist

$$0 \longrightarrow \mathcal{M}'(X) \xrightarrow{\alpha(X)} \mathcal{M}(X) \xrightarrow{\beta(X)} \mathcal{M}''(X) \longrightarrow 0$$

 $eine\ kurze\ exakte\ Sequenz\ von\ A\text{-}Moduln.$

Bevor wir den Beweis des Satzes angeben, wollen wir in folgendem Lemma und anschließendem Beispiel sehen, dass die Bedingung der Quasikohärenz wirklich notwendig ist, um Rechtsexaktheit zu garantieren.

Lemma 10.15. Für jeden topologischen Raum X ist

$$\Gamma(X, \underline{\hspace{0.3cm}}) : \mathbf{Sh}_X \to \mathbf{Ab}, \ \mathcal{F} \mapsto \mathcal{F}(X) =: \Gamma(X, \mathcal{F})$$

linksexakt, d.h. ist

$$0 \longrightarrow \mathcal{F} \stackrel{\alpha}{\longrightarrow} \mathcal{G} \stackrel{\beta}{\longrightarrow} \mathcal{H} \longrightarrow 0$$

eine kurze exakte Sequenz in \mathbf{Sh}_X , so ist

$$0 \longrightarrow \mathcal{F}(X) \xrightarrow{\alpha(X)} \mathcal{G}(X) \xrightarrow{\beta(X)} \mathcal{H}(X)$$

eine exakte Sequenz in Ab.

Beispiel 10.16. In Lemma 10.15 ist die Rechtsexaktheit im Allgemeinen nicht gegeben, wie man am Beispiel $X = \mathbb{C} \setminus \{0\}$ sieht: Setze $\mathcal{G} := \mathcal{O}_{\mathbb{C}^{\times}}$ die Garbe der holomorphen Funktionen und $\mathcal{H} := \mathcal{O}_{\mathbb{C}^{\times}}^{\times}$ die Garbe der nirgends verschwindenden holomorphen Funktionen, so ist

$$0 \longrightarrow 2\pi i \mathbb{Z} \longrightarrow \mathcal{G} \xrightarrow{\exp} \mathcal{H} \longrightarrow 0$$

eine kurze exakte Sequenz, aber

$$0 \longrightarrow 2\pi i \mathbb{Z} \longrightarrow \mathcal{G}(X) = \mathcal{O}_{\mathbb{C}^{\times}}(\mathbb{C} \setminus \{0\}) \xrightarrow{\exp} \mathcal{H}(X) = \mathcal{O}_{\mathbb{C}^{\times}}^{\times}(\mathbb{C} \setminus \{0\})$$

ist alles, da die letzte Abbildung nicht surjektiv ist (es gibt keinen komplexen Logarithmus auf $\mathbb{C} \setminus \{0\}$).

10.5 Der Čech-Komplex

Wir gehen hier genauer auf die Verwendung des d in vorherigem Beweis ein. Der Beweis liefert nämlich gerade, dass $\check{\mathbf{H}}^1(\mathcal{U}, \mathcal{M}'') = 0$, wie wir mit nachstehender Definition sehen.

Definition 10.17 (Čech-Komplex, Čech-Kohomologie). -

Sie X ein topologischer Raum. $\mathcal{U} = (U_i)_{i \in I}$ eine offene Überdeckung, $\mathcal{F} \in \mathbf{Sh}_X$. Betrachte den folgenden Kettenkomplex

$$\overset{\circ}{\mathbf{C}}^{0} \longrightarrow \overset{\circ}{\mathbf{C}}^{1} \longrightarrow \cdots \longrightarrow \overset{\circ}{\mathbf{C}}^{2} \longrightarrow \cdots$$

$$\prod_{i \in I} \mathcal{F}(U_{i}) \stackrel{d}{\longrightarrow} \prod_{(i,j) \in I^{2}} \mathcal{F}(U_{ij}) \stackrel{d}{\longrightarrow} \prod_{(i,j,k) \in I^{3}} \mathcal{F}(U_{ijk}) \stackrel{d}{\longrightarrow} \cdots$$

$$(\eta_i)_i \longmapsto (\eta_i \big|_{U_{ij}} - \eta_j \big|_{U_{ij}})_{i,j}$$

$$(y_{ij})_{i,j} \longmapsto (y_{ij}\big|_{U_{ijk}} - y_{ik}\big|_{U_{ijk}} + y_{jk}\big|_{U_{ijk}})_{i,j,k},$$

so heißt

$$\check{\operatorname{H}}^k(\mathcal{U},\mathcal{F}) := \operatorname{H}^k(\check{\operatorname{Cech-Komplex}}) := \ker(d : \check{\operatorname{C}}^k \to \check{\operatorname{C}}^{k+1}) / \operatorname{im}(d : \check{\operatorname{C}}^{k-1} \to \check{\operatorname{C}}^k)$$

die k-te $\check{C}ech$ - $Kohomologie von <math>\mathcal{F}$ $bzgl. \mathcal{U}$.

Bemerkung 10.18. Da \mathcal{F} eine Garbe ist, haben wir $\check{\mathrm{H}}^0(\mathcal{U},\mathcal{F})=\mathcal{F}(X)!$ Ferner gilt $d\circ d=0$ und für $[(y_{ij})_{i,j}]\in\check{\mathrm{H}}^1$ haben wir $d(y_{ij})_{i,j}=0$, d.h.

$$(y_{ij}|_{U_{ijk}} - y_{ik}|_{U_{ijk}} + y_{jk}|_{U_{ijk}})_{i,j,k}$$

Diese Bedingung nennen wir Ko-Zykel-Bedingnung. Ferner ist $[(y_{ij})_{i,j}] \in \check{\mathbf{H}}^1$ per definitionem, falls ein $(\eta_i)_i \in \check{\mathbf{C}}^0$ existiert, so dass $(y_{ij})_{i,j} = d(\eta_i)_i$, also

$$y_{ij} = \eta_i \big|_{U_{ij}} - \eta_j \big|_{U_{ij}}.$$

Daher nennen wir in dieser Situation $(y_{ij})_{i,j}$ einen Ko-Rand.

10.6 Kohärenz

Definition 10.19 (endlich erzeugt, kohärent).

• Eine \mathcal{O}_X -Modulgarbe \mathcal{M} heißt endlich erzeugt, falls es zu jedem $x \in X$ ein offenes $x \in U \subseteq^{\circ} X$ gibt und eine exakte Sequenz

$$\mathcal{O}_X\big|_U^n \to \mathcal{M}\big|_U \to 0$$

für ein $n \in \mathbb{N}$ gibt.

• \mathcal{M} heißt kohärent, falls \mathcal{M} endlich erzeugt ist und wenn für jedes α in

$$\mathcal{O}_X\big|_U^n \xrightarrow{\alpha} \mathcal{M}\big|_U \to 0$$

der ker α als \mathcal{O}_U -Modulgarbe endlich erzeugt ist.

Bemerkung 10.20. Sei A ein Ring, so ist ein endlich erzeugter A-Modul M nicht anderes, als dass analog zu oben eine exakte Sequenz $A^n \xrightarrow{\alpha} M \to 0$ für ein $n \in \mathbb{N}$ gibt. M ist kohärent (oder endlich präsentierter), falls M endlich erzeugt ist und ker α endlich erzeugt ist. Letzteres ist bei immer der Fall, falls A noethersch ist.

Der Unterschied zu Ringmoduln wird in nachstehendem Satz deutlich, wo wir die Quasikohärenz fordern müssen, um garantieren zu können, dass $\mathcal{M}(U)$ überhaupt erzeugbar ist.

Satz 10.21. -

Sei (X, \mathcal{O}_X) ein lokal noethersches Schema und \mathcal{F} eine quasikohärente \mathcal{O}_X -Modulgarbe. Dann ist äquivalent:

- (i) \mathcal{F} ist kohärent.
- (ii) \mathcal{F} ist endlich erzeugt.
- (iii) $\forall U \subseteq^{\circ} X$ affin und offen ist $\mathcal{F}(U)$ ein endlich erzeugter $\mathcal{O}_X(U)$ -Modul.

Hilfslemma 10.22. Ist

$$0 \to \mathcal{K} \to \mathcal{M} \xrightarrow{\alpha} \mathcal{N} \to 0$$

eine kurze exakte Sequenz \mathcal{O}_X -Moduln und sind \mathcal{M} und \mathcal{N} quasikohärent, so ist \mathcal{K} quasikohärent.

10.7 Direktes und inverses Bild

Definition 10.23 (direktes Bild). -

 $f_*: \mathbf{Sh}_X \to \mathbf{Sh}_Y$ ist in natürlicher Weise auch ein Funktor

$$f_*: \mathcal{O}_X\text{-}\mathbf{Mod} \to \mathcal{O}_Y\text{-}\mathbf{Mod},$$

denn für $V\subseteq^{\circ} Y$ ist

$$\mathcal{O}_Y(V) \times (f_*\mathcal{F})(V) \to \mathcal{O}_Y(V) \times \mathcal{F}(f^{-1}(V)) \to \mathcal{F}(f^{-1}(V))$$

 $(\lambda, \sigma) \mapsto (f^{\#}(V)(\lambda)) \cdot \sigma$

eine Modulstruktur. f_* heißt direktes Bild von \mathcal{O}_X -Moduln.

10.7.1 Inverses Bild

Man hat

$$(f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X) \in \operatorname{Hom}_{\mathbf{Sh}_Y}(\mathcal{O}_Y, f_*\mathcal{O}_X) = \operatorname{Hom}_{\mathbf{Sh}_X}(f^{-1}\mathcal{O}_Y, \mathcal{O}_X)$$

da f^{-1} nach ?? linksadjungiert zu f_* . Damit ist $f^{-1}\mathcal{G}$ ion natürlicher Weise ein $f^{-1}\mathcal{O}_Y$ -Modul:

$$(f^{-1}\mathcal{O}_Y)(U) \times (f^{-1}\mathcal{G})(U) \longrightarrow (f^{-1}\mathcal{G})(U)$$

$$\parallel \qquad \qquad \parallel$$

$$\varinjlim_{f(U) \subseteq V} \mathcal{O}_Y(V) \times \varinjlim_{f(U) \subseteq V} \mathcal{G}(V) \longrightarrow \varinjlim_{f(U) \subseteq V} \mathcal{G}(V)$$

$$([\lambda], [\sigma]) \longmapsto [\lambda|_{V \cap W} \sigma|_{V \cap W}]$$

für $\lambda \in \mathcal{O}_Y(V)$ und $\sigma \in \mathcal{G}(W)$. Damit können wir definieren

Definition 10.24 (inverses Bild). —

Der inverse Bildfunktor ist definiert als

$$f^*: \mathcal{O}_Y ext{-}\mathbf{Mod} o \mathcal{O}_X ext{-}\mathbf{Mod} \ \mathcal{G} \mapsto f^{-1}\mathcal{G}\otimes_{f^{-1}\mathcal{O}_Y}\mathcal{O}_X$$

10.8 Abgeschlossene Unterschemata

Wir wiederholen zunächst ein paar Begriffe: Sei X ein Scheam. $Z \subset X$ mit Strukturgarbe \mathcal{O}_Z auf Z heißt abgeschlossenes Unterschema, wenn $i:(Z,\mathcal{O}_Z)\hookrightarrow (X,\mathcal{O}_X)$ eine abgeschlossene Immersion ist. Zu bemerken sei, dass $Z\subset X$ als abgeschlossene Teilmgene noch keine Schemastruktur festlegt, wie folgendes Beispiel zeigt: Sei A ein Ring und $\mathfrak{a},\mathfrak{b} \triangleleft A$.

$$\operatorname{Spec} A/\mathfrak{a}$$

$$V(\mathfrak{a}) = V(\mathfrak{b}) \Leftrightarrow \sqrt{\mathfrak{a}} = \sqrt{\mathfrak{b}}$$

$$\operatorname{Spec} A/\mathfrak{b}$$

Es gilt nämlich $A/\mathfrak{a} \cong A/\mathfrak{b} \Rightarrow \mathfrak{a} = \mathfrak{b}$.

Das heißt, ein abgeschlossenes Unterschema definieren wir besser wie folgt:

Definition 10.25 (abgeschlossenes Unterschema).

Ein abgeschlossenes Unterschema in X ist eine Isomorphieklasse von abgeschlossenen Immersionen, wobei $(i: Z \hookrightarrow X) \cong (j: Y \hookrightarrow X)$, falls

Satz 10.26. -

Sei X ein Schema. Dann ist

$$\left\{\begin{array}{c} abgeschlossene\ Unterschemata\\ von\ X \end{array}\right\} \rightarrow \left\{\begin{array}{c} quasikoh\"{a}rente\ Idealgarben\\ auf\ X \end{array}\right\}$$

eine Bijektion.

10.9 Quasikohärente Moduln auf projektiven Schemata

Satz 10.27.

Sei $B = \bigoplus_{d \geq 0} B_d$ ein graduierter Ring, so dass B von B_1 als B_0 -Algebra erzeugt ist, $M = \bigoplus_{n \in \mathbb{Z}} M_n$ ein graduierter B-Modul. Dann existiert auf Proj B eine eindeutige $\mathcal{O}_{\operatorname{Proj} B}$ -Modulgarbe M^{\sim} , die quasikohärent ist und folgende Eigenschaften besitzt:

• Ist $f \in B_+$ homogen, nicht nilpotent, so ist

$$M^{\sim}|_{D_{+}(f)} \cong (M_{(f)})^{\sim}.$$

• $F\ddot{u}r \mathfrak{p} \in \operatorname{Proj} B ist$

$$(M^{\sim})_{\mathfrak{p}} \cong M_{(\mathfrak{p})}.$$

Lemma 10.28. Sei $M = \bigoplus_{n \in \mathbb{Z}} M_n$ ein graduierter B-Modul. Setze $N := \bigoplus_{n \geq n_0} M_n \subset M$ einen Untermodul. Dann ist $M^{\sim} = N^{\sim}$ auf Proj B.

Bemerkung 10.29. Für das affine $^{\sim}$ hat man mehr: Ist $X = \operatorname{Spec} A$ affin und \mathcal{M} eine quasikohärente Modulgarbe auf X, so ist nach Satz 10.7 $\mathcal{M} = (M(X))^{\sim}$, also ist \mathcal{M} bereits durch seine globalen Schnitte festgelegt. Im projektiven Fall sind diese zu wenig.

10.9.1 Wichtigstes Beispiel: Der Twist

Definition 10.30 (n-Twist). –

Sei $B=\oplus_{d\geq 0}$ ein graduierter Ring, so dass B von B_1 als B_0 -Algebra erzeugt wird. Für $n\in\mathbb{Z}$ setze

$$B(n) := \bigoplus_{d \in \mathbb{Z}} B(n)_d \quad \text{mit } B(n)_d := B_{n+d}$$

den n-Twist von B.

Damit wird B(n) zu einem graduierten B-Modul und induziert eine quasikohärente \mathcal{O}_X -Modulgarbe auf $X = \operatorname{Proj} B$, nämlich

$$\mathcal{O}_X(n) := (B(n))^{\sim},$$

den n-Twist von \mathcal{O}_X .

Bemerkung 10.31. Es ist $\mathcal{O}_X(0) = \mathcal{O}_X$, denn

$$\mathcal{O}_X \big|_{D_+(f)} = B_{(f)} = \{ \frac{b}{f^r} \mid b \in B_{r \deg f} \}$$

 $\mathcal{O}_X(0) \big|_{D_+(f)} = B(0)_{(f)} = \{ \frac{b}{f^r} \mid b \in B_{r \deg f + 0} \}$

Bemerkung 10.32. Im affinen Fall ist M bereits durch \mathcal{M} festgelegt, da

$$\mathcal{M}(X) = M^{\sim}(X) = M^{\sim}(D(1)) = M_1 = M.$$

Im projektiven Fall geht dies nicht, da sich kein $D_{+}(f)$ finden lässt, das X überdeckt!

Satz 10.33.

Sei $X = \operatorname{Proj} B$, $B = \bigoplus_{n \geq 0} B_n$ von B_1 als B_0 -Algebra erzeugt. Dann sind alle $\mathcal{O}_X(n)$ Geradenbündel (d.h. lokal frei von Rang 1).

10.9.2 Wiederholung Geradenbündel

Definition 10.34 (Geradenbündel). -

Ein Geradenbündel \mathcal{L} ist eine lokal freie \mathcal{O}_X -Modulgarbe von Rang 1, d.h.

- es gibt eine Überdeckung $\mathcal{U} := (U_i)_{i \in I}, U_i \subseteq^{\circ} X$,
- mit Trivialisierungen

$$\mathcal{L}\big|_{U_i} \xrightarrow{\varphi} \mathcal{O}_X\big|_{U_i} = \mathcal{O}_{U_i}$$

• und Basiswechselisomorphismen

$$\mathcal{O}_{X}\big|_{U_{i}\cap U_{j}} \overset{\cong}{\underset{\varphi_{i}}{\longleftarrow}} \mathcal{L}\big|_{U_{i}\cap U_{j}} \overset{\cong}{\underset{\varphi_{j}}{\longrightarrow}} \mathcal{O}_{X}\big|_{U_{i}\cap U_{j}}$$

Lemma 10.35. Bis auf Verfeinerung von \mathcal{U} gilt: Sind \mathcal{L} und \mathcal{L}' zwei Geradenbündel auf X, die über \mathcal{U} trivialisieren, so gilt:

$$\mathcal{L} \cong \mathcal{L}' \quad \Leftrightarrow \quad [\gamma_{\mathcal{L}}] = [\gamma_{\mathcal{L}'}] \in \check{\operatorname{H}}^{1}(\mathcal{U}, \mathcal{O}_{X}^{\times})$$

$$\Leftrightarrow \quad \gamma_{\mathcal{L}} - \gamma_{\mathcal{L}'} \in \operatorname{im} d$$

Lemma 10.36. Sei $B := A[T_0, \dots, T_n]$. Dann gilt auf $X = \operatorname{Proj} B = \mathbb{P}^n_A$

$$\mathcal{O}_X(m)(X) = \Gamma(X, \mathcal{O}_X(m)) = \begin{cases} B_m & m \ge 0 \\ 0 & sonst \end{cases}$$

Korollar 10.37. Das tautologische Bündel $\mathcal{O}_X(-1)$ ist nicht trivial $(d.h. \not\cong \mathcal{O}_X)$.

Definition 10.38 (projektiv, projektives S-Schema).

(i) Sei S ein Basisschema. Definiere

$$\mathbb{P}^n_S := \mathbb{P}^n_{\operatorname{Spec} \mathbb{Z}} \times_{\operatorname{Spec} \mathbb{Z}} S.$$

(ii) Ein Morphismus von Schemata $f:X\to Y$ heißt projektiv, wenn er als

faktorisiert.

(iii) Ein S-Schema X heißt projektives S-Schema, wenn der Strukturmorphismus $f:X\to S$ projektiv ist.

Bemerkung 10.39. Zu (i). Ist $S = \operatorname{Spec} A$, so ist $\mathbb{P}_A^n = \mathbb{P}_{\operatorname{Spec} A}^n$.

Zu (iii). Ein Proj A-Schema ist ein abgeschlossenes Unterschema von $\mathbb{P}_A^n = \operatorname{Proj} A[T_0, \dots, T_n]$.

Beispiel 10.40. Sei $\mathfrak{a} \triangleleft A[T_0, \ldots, T_n]$ homogen, dann ist

$$\operatorname{Proj} A[T_0, \dots, T_n]/\mathfrak{a} \hookrightarrow \operatorname{Proj} A[T_0, \dots, T_n] = \mathbb{P}_A^n$$

ein projektives A-Schema.

Definition 10.41 (sehr ample Geradenbündel).

Sei A ein Ring und X ein A-Schema mit einer Immersion $i:X\to\mathbb{P}^n_A$ (d.h. $i:X\hookrightarrow Z\hookrightarrow\mathbb{P}^n_A$), dann heißt

$$i^*\mathcal{O}_{\mathbb{P}^n_A}(1) =: \mathcal{O}_X(1)$$

das zu i gerhörige sehr ample Geradenbündel auf X. Schreibe analog $\mathcal{O}_X(m) := \mathcal{O}_{\mathbb{P}_A^n}(m)$.

Bemerkung 10.42. Lokal betrachtet, falls U klein genug ist, haben wir $\mathcal{F}(n)|_{U} \cong \mathcal{F}|_{U}$.

$oxed{10.10}$ Morphismen in den \mathbb{P}^d_A und Geradenbündel

Bemerkung 10.43. Idee klassisch: Leider noch nicht fertig:-(.

Definition 10.44 (global von Elementen erzeugt). -

Ein \mathcal{O}_X -Modul \mathcal{F} heißt global von $s_0, \ldots, s_d \in \mathcal{F}(X)$ erzeugt, wenn für alle $x \in X$ gilt

$$\mathcal{F}_x = \operatorname{span}_{\mathcal{O}_{X,x}} \{ [s_0]_x, \dots, [s_d]_x \} = \sum_{i=0}^d \mathcal{O}_{X,x} [s_i]_x.$$

Notation 10.45.

Ist \mathcal{L} ein Geradenbündel auf X und $s \in \mathcal{L}(X)$, so setze

$$X_s := \{ x \in X \mid \mathcal{L}_x = \mathcal{O}_{X,x}[s]_x \}$$

Die Stellen, wo \mathcal{L} "gut" ist.

Bemerkung 10.46. $X_s \subseteq X$ offen.

Bemerkung 10.47. \mathcal{L} wird von $s_0, \ldots, s_d \in \mathcal{L}(X)$ erzeugt, genau dann, wenn $X = \bigcup_{i=0}^d X_{s_i}$.

Satz 10.48.

Sei X ein Schema, \mathcal{L} ein Geradenbündel, so dass es eine endliche affin offene Überdeckung von X gibt, $X = \bigcup_{i=0}^{d} U_i$, so dass $\mathcal{L}|_{U_i}$ frei ist. Sei $s \in \mathcal{L}(X)$ und \mathcal{F} ein quasikohärenter \mathcal{O}_X -Modul.

(i) Ist $f \in \mathcal{F}(X)$ und $f|_{X_s} = 0$, so existiert $n \geq 1$, so dass

$$f \otimes s^{\otimes n} = 0 \in (\mathcal{F} \otimes \mathcal{L}^{\otimes n})(X).$$

(ii) Ist $g \in \mathcal{F}(X)$, so existiert $n_0 \ge 1$, so dass $\forall n \ge n_0$ gilt

$$g\otimes s\big|_{X_s}^{\otimes n}=\tilde{f}\big|_{X_s}\quad \text{für ein }\tilde{f}\in (\mathcal{F}\otimes\mathcal{L}^{\otimes n})(X).$$

Satz 10.49.

Ist X ein projektives A-Schema und \mathcal{F} ein endlich erzeugtes quasikohärenter \mathcal{O}_X -Modul. Dann existiert $n_0 \geq 1$, so dass

$$\mathcal{F}(n) := \mathcal{F} \otimes \mathcal{O}_X(n) = \mathcal{F} \otimes \mathcal{O}_X(1)^{\otimes n}$$

für alle $n \ge n_0$ von globalen Schnitten erzeugt wird.

Korollar 10.50. Ist \mathcal{F} endlich erzeugt und quasikohärent auf $X \hookrightarrow \mathbb{P}^d_A$, dann existiert eine Surjektion $\mathcal{O}_X(m)^{\oplus r} \twoheadrightarrow \mathcal{F}$.

Bemerkung 10.51. Sei \mathcal{L} ein Geradenbündel auf X. Dann entspricht \mathcal{O}_X den zulässigen Funktionen auf X

Satz 10.52. -

 $Sei\ X\ ein\ A ext{-}Schema.$

- (i) Ist $f: X \to \mathbb{P}^d_A$ ein A-Schemamorphismus, so ist $f^*\mathcal{O}_{\mathbb{P}^d_A}(1)$ ein Geradenbündel, das von d+1 globalen Schnitten erzeugt wird.
- (ii) Ist \mathcal{L} ein Geradenbündel auf X, das von d+1 globalen Schnitten $s_0, \ldots, s_d \in \mathcal{L}(X)$ erzeugt wird, so existiert ein Morphismus $f: X \to \mathbb{P}^d_A$ mit $\mathcal{L} \cong f^*\mathcal{O}_{\mathbb{P}^d}$ und $f^*T_i = s_i$.

Definition 10.53 (ampel).

Sei X quasikohärent und \mathcal{L} ein Geradenbündel auf X. Dann heißt \mathcal{L} ampel, wenn gilt: Für jedes quasikohärente \mathcal{F} auf X existiert $n_0 \in \mathbb{N}$, so dass $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}$ von globalen Schnitten erzeugt für $n \geq n_0$.

Bemerkung 10.54. Sei $X \hookrightarrow \mathbb{P}^d_A$ ein projektives A-Schema und \mathcal{L} sehr ampel auf X. Dann ist \mathcal{L} ampel auf X.

Die Definition "sehr ampel" hängt in der Tat von $X \hookrightarrow \mathbb{P}^d_A$ ab, die Definition "ampel" ist in dieser Hinsicht absolut.

Definition 10.55 (von endlichem Typ).

Sei X ein A-Schema mit Strukturmorphismus $f:X\to\operatorname{Spec} A.$ X heißt $von\ endlichem\ Typ,$ falls für alle affin offenen $U\subseteq^\circ\operatorname{Spec} A$ mit $U=\operatorname{Spec} \tilde{A}$ gilt

$$f^{-1}(U) = \bigcup_{i \text{ endl. viele}} \operatorname{Spec} B_i$$

mit endlich erzeugten \tilde{A} -Algebren B_i .

Satz 10.56.

Sei X ein A-Schema von endlichen Typ und noethersch. Ist \mathcal{L} ein amples Geradenbündel auf X, so existiert $m \geq 1$, so dass $\mathcal{L}^{\otimes m}$ sehr ampel ist. Insbesondere haben wir $X \hookrightarrow Z \hookrightarrow \mathbb{P}^d_A$.

Lemma 10.57. Ist X noethersch und \mathcal{L} ein Geradenbündel auf X. Weiter existieren $s_1, \ldots, s_r \in \mathcal{L}(X)$ mit X_{s_i} affin und $X = \bigcup_{i=1}^r X_{s_i}$. Dann ist \mathcal{L} ampel.

Bemerkung 10.58. Für $X = \mathbb{P}^d_A$ ist $\mathcal{O}_X(1)$ sehr ampel, da wir hier id : $X \to \mathbb{P}^d_A$ haben.

Ferner ist $\mathcal{O}_{\mathbb{P}^d_A}(n)$ sehr ampel, genau dann, wenn $n \geq 1.$ (vgl. Übungsaufgabe)

11.1 Cartier-Divisoren

Definition 11.1 (Garbe der Keime meromorpher Funktionen).

Die Garbe

a(')

mit

$$\mathcal{K}_X: U \mapsto \mathcal{O}_X(U)[S(U)^{-1}]$$

für

$$S(U) := \{ \sigma \in \mathcal{O}_X(U) \mid [\sigma]_x \in \mathcal{O}_{X,x} \text{ regulär } \forall x \in X \}$$

heißt Garbe der meromorphen Funktionen.

Bemerkung 11.2. Ist X ganz, dann ist \mathcal{K}_X die konstante Garbe mit Wert K(X), schreibe $\mathcal{K}_X = K(X)$.

Definition 11.3 (Cartier-Divisor). -

Sei X ein Schema.

- (i) Dann heißt $\mathrm{Div}(X) := \Gamma(X, \mathcal{K}_X^{\times}/\mathcal{O}_X^{\times})$ die Gruppe der Cartier-Divisoren auf X.
- (ii) Das Bild von div : $\mathcal{K}_X^{\times}(X) \to \text{Div}(X)$, $f \mapsto \text{div}(f)$ sind die Hauptdivisoren.
- (iii) Zwei Divisoren $D_1, D_2 \in \text{Div}(X)$ heißen linear äquivalent, falls $D_1 D_2$ ein Hauptdivisor ist.
- (iv) Die Cartier-Divisoren-Klassengruppe von X ist

$$CaCl(X) := Div(X) / \sim$$
,

wobei \sim lineare Äquivalenz ist.

Bemerkung 11.4. Ein

$$D \in \operatorname{Div}(X) = \mathcal{K}_X^\times \big/ \mathcal{O}_X^\times(X) = \varinjlim_{\mathcal{U}} \check{\operatorname{H}}^0(\mathcal{U}, \mathcal{K}_X^\times \big/^{\operatorname{pre}} \mathcal{O}_X^\times)$$

entspricht einer Familie

$$D = [(U_i, f_i)_{i \in I}]$$

mit $X = \bigcup_i U_i$ einer offenen Überdeckung und $\mathcal{K}_X^{\times}(U_i) \ni f_i = \frac{a_i}{b_i}$ mit $a_i, b_i \in \mathcal{O}_X^{\times}(U_i)$ halmweise regulär.

11.1.1 Cartier-Divisoren und Geradenbündel

Lemma 11.5. Es existiert eine eindeutig bestimmte Untergarbe (\mathcal{O}_X -Modul-Untergarbe) $\mathcal{O}_X(D) \subseteq \mathcal{K}_X$ mit

$$\mathcal{O}_X(D) = f_i^{-1} \mathcal{O}_X \big|_{U_i}.$$

Sie ist unanbhängig von der Darstellung $D = (U_i, f_i)_{i \in I}$.

Satz 11.6.

Die Abbildung $\rho: \mathrm{Div}(X) \to \mathrm{Pic}(X), \ D \mapsto \mathcal{O}_X(D)$ ist additiv und induziert einen injektiven Gruppenhomomorphismus

$$\rho: \operatorname{CaCl}(X) \hookrightarrow \operatorname{Pic}(X).$$

Es ist $\operatorname{im}(\rho) = \{ [\mathcal{L}] \in \operatorname{Pic}(X) \mid \mathcal{L} \subseteq \mathcal{K}_X \}.$

Satz 11.7.

Ist X ganz, so ist $\rho : \operatorname{CaCl}(X) \xrightarrow{\cong} \operatorname{Pic}(X)$ ein Isomorphismus.

11.2 Weil-Divisoren

Definition 11.8 (Primzykel, Zykel, Träger eines Zykels, Zykel von Kodimension 1). -

Sei X noethersch.

- (i) Ein *Primzykel in X* ist eine irreduzible, abgeschlossene Teilmenge.
- (ii) Ein Zykel in X ist ein Element der abelschen Gruppe

$$\mathbb{Z}^{(X)} := \{ Z = \sum_{x \in X} n_x \overline{\{x\}} \mid n_x \in \mathbb{Z}, \ n_x = 0 \text{ für fast alle } x \}.$$

(iii) Für $Z = \sum n_x \overline{\{x\}}$ heißt

$$\operatorname{supp} Z := \bigcup_{x \in X \atop n_x \neq 0}$$

 $\mathrm{der}\ \mathit{Tr\"{a}\mathit{ger}\ von\ Z}.$

(iv) Ein Zykel Z heißt von Kodimension 1, wenn alle x mit $n_x \neq 0$ von Kodimension 1 sind, d.h. $\operatorname{codim}_X \overline{\{x\}} = 1$. Äquivalent dazu ist zu fordern, dass $\dim \mathcal{O}_{X,x} = 1$. $Z^1(X) \subseteq \mathbb{Z}^{(X)}$ bezeichne die Untergruppe dieser.

Definition 11.9 (Weil-Divisoren).

Sei X noethersch und integer, so heißt $Z^1(X)$ die Gruppe der Weil-Divisoren.

Satz 11.10.

Sei X noethersch und integer, $0 \neq f \in K(X) = \mathcal{O}_{X,\eta}$. Dann gilt $f \in \mathcal{O}_{X,x}^{\times}$ für fast alle $x \in X$ mit $\dim \mathcal{O}_{X,x} = 1$.

Einschub:

Sei X integer.

Definition 11.11 (normal, ganzabgeschlossen). -

X heißt normal, wenn für jedes $x \in X$ der lokale Ring $\mathcal{O}_{X,x}$ in $Quot(\mathcal{O}_{X,x})$ ganzabgeschlossen ist, d.h. ist $\sigma \in Quot(\mathcal{O}_{X,x})$, welches einer Polynomgleichung $f(\sigma) = 0$ mit $f \in \mathcal{O}_{X,x}[X]$, f normiert, genügt, so ist $\sigma \in \mathcal{O}_{X,x}$.

Bemerkung 11.12. Ist X lokal noethersch, integer, normal und $x \in X$ ein Punkt mit Kodimension 1, so ist $\mathcal{O}_{X,x}$ ein lokaler Dedekindring.

Lemma 11.13. Jeder lokale Dedekindring (A, \mathfrak{m}) ist ein Hauptidealring.

Folgerung 11.14. $\mathcal{O}_{X,x}$ trägt die kanonische diskrete Bewertung

$$\nu_x: \qquad \mathcal{O}_{X,x} \rightarrow \mathbb{N} \cup \{\infty\}$$

$$0 \neq a = u\pi^r \mapsto r = \sup\{k \mid a \in \mathfrak{m}^k\}$$

$$0 \mapsto \infty$$

wobei das maximale Ideal $\mathfrak{m} = (\pi)$ sei. Fortgesetzt auf Quot $(\mathcal{O}_{X,x})$ ergibt sich

$$\nu_x : \operatorname{Quot}(\mathcal{O}_{X,x}) = K(X) \to \mathbb{Z} \cup \{\infty\}.$$

Das bedeutet, man hat die diskrete Bewertung

$$\operatorname{mult}_x: K(X) \to \mathbb{Z} \cup \{\infty\}$$

 $_{
m mit}$

- $\operatorname{mult}_x(f) = \infty \Leftrightarrow f = 0.$
- $\operatorname{mult}_x(fg) = \operatorname{mult}_x(f) + \operatorname{mult}_x(g)$.
- $\operatorname{mult}_x(f+g) \ge \min{\{\operatorname{mult}_x(f), \operatorname{mult}_x(g)\}}.$

Definition 11.15 (Hauptdivisor). -

Sei X noethersch und normal. Für $f \in K(X) \setminus \{0\}$ heißt

$$(f) := \sum_{\substack{x \in X \\ \dim \mathcal{O}_{X,x} = 1}} \operatorname{mult}_x(f) \cdot \overline{\{x\}} \in Z^1(X)$$

 ${\rm der}\ {\it Haupt divisor}\ zu\ f.$

Garbenkohomologie

12

Differentiale 13

Definition 13.1.

Eine A-Derivation von B nach M ist eine Abb

$$D: B \to M$$

die

- A-linear ist
- die Leibnitz-Regel $D(b \cdot \tilde{b}) = bD(\tilde{b}) + \tilde{b}D(b)$ erfüllt

Definition 13.2.

Der B-Modul der 1-Formen $\Omega^1_{B|A}$ ist ein B-Modul zusammen mit einer Derivation

$$d: B \to \Omega^1_{B|A}$$

die universell unter allen A-Derivationen von B nach M ist.

Bemerkung 13.3. Auch bezeichnet als Kähler-1-Formen

Einschub:

Satz 13.4 (satz B von Serre). -

X affin, qua.koh. $Modulgarbe \Rightarrow H^q(X,) = 0$ für $q \ge 1$

Leider noch nicht fertig :-(

Kähler-Differentialformen $A \rightarrow B$, M ein B-Modul:

$$Der_A(M) := \{D : B \to M \mid A \text{ linear}, D(b\tilde{b}) = D(b)\tilde{b} + bD(\tilde{b})\}$$

Definition 13.5. -

 $K\ddot{a}hler$ -1- $Formen := univ. Derivationen =: (<math>\Omega^1_{B|A}, d$)

Satz 13.6. -

 $(\Omega^1_{B|A}, d)$ existiert immer.

Bemerkung 13.7. ist D eine A-Derivation, so ist:

$$D(a) = D(a \cdot 1) = aD(1)$$
 sowie

und damit D(a) = 0

Lemma 13.8. ist
$$B = A[X_i]_{i \in \{1,\dots,n\}}$$
, dann ist $\Omega^1_{B|A} = \bigoplus_{i=1}^n B \cdot dX_i$

Betrachte $\mu: B \otimes_A B \to B, b \otimes b' \mapsto bb'$, welches *B*-linear ist. $B \otimes_A B$ ein *B*-Modul (links-Multiplikation). Sei $I := \ker \mu \triangleleft B \otimes_A B$ und $I^2 \triangleleft B \otimes_A B$.

D(a) = 1D(a) + aD(1)

Wir haben damit: $d: B \to I/I^2, b \mapsto 1 \otimes b - b \otimes 1 \mod I^2$.

Bemerkung 13.9. d ist eine A-Derivation. (Beweis leicht)

Satz 13.10. -

$$(I/I^2,d)\cong (\Omega^1_{B|A},d)$$

Satz 13.11. -

 $Erste\ und\ zweite\ Fundamentale\text{-}Sequenz$

• 1. fund-Sequenz: für $A \to B \to C$ ex. Sequenz von C-Moduln

$$\Omega^1_{B|A} \otimes_B C \xrightarrow{\quad \alpha \quad} \Omega^1_{C|A} \xrightarrow{\quad \beta \quad} \Omega^1_{C|B} \xrightarrow{\quad \ \ } 0$$

$$db \otimes c \longmapsto c \cdot db$$

$$dc \longmapsto dc$$

• 2. fund-Sequenz: Ist $J \triangleleft B$, so hat man die ex. Sequenz von C := B/J-Moduln

$$J/J^2 \xrightarrow{\quad \quad \delta \quad \quad } \Omega^1_{B|A} \otimes_B C \xrightarrow{\quad \quad \alpha \quad \quad } \Omega^1_{C|A} \xrightarrow{\quad \quad } 0$$

$$b \mod J^2 \longmapsto db \otimes 1$$

Lemma 13.12. Ist $A \to B$ und $S \subset B$ multiplikative Teilmenge in B, so gilt

$$\Omega^1_{S^{-1}B|A} = S^{-1}\Omega^1_{B|A}$$

(Beweis leicht)

$$\ddot{\mathbf{U}}. \\ \mathrm{Aufg:} \ L = K(\alpha) | K \ \mathrm{und \ damit:} \ \Omega^1_{L|K} = \begin{cases} L \cdot d\alpha & \alpha \ \mathrm{transzendent} \\ 0 & \alpha \ \mathrm{alg. \ und \ sep.} \\ L \cdot d\alpha & \alpha \ \mathrm{alg. \ und \ nicht \ sep.} \end{cases}$$

Idee: Leider noch nicht fertig :-(

Bemerkung 13.13. $X \to k$ von endlichem Typ:

Xglatt $\Leftrightarrow \Omega^1_{X|k}$ lokal frei von Rang $\dim X$

Definitionen

B -(Prä-)Garbe, 21	$\mathcal{O}_X ext{-}\mathrm{Modul}$
Čech-Kohomologie, 67	direktes Bild, 69
Čech-Komplex, 67	endlich erzeugt, 67
Coon Hompion, or	frei, 60
Abgeschlossener Punkt, 13	inverses Bild, 70
affines Schema, 21	
annies Schema, 21	kohärent, 67
D:	lokal frei, 60
Basisoffene Menge, 13	quasi-kohärent, 61
auf Proj, 35	von seinen globalen Schnitten erzeugt,
Bewertungsring, 29	62
diskreter, 29	
Restklassenkörper, 29	Prägarbe, 5
	Morphismus von Prägarben,
Diskrete Bewertung, 28	5
<i>O</i> ,	Punktefunktor, 58
Funktor	,
darstellbar, 58	Ring
treu, 58	Höhe eines (Prim-)Ideals,
volltreu, 58	50
vontieu, 56	
C_{-} - C_{-}	Krull-Dimension, 50
Garbe, 6	lokal, 8
exakte Sequenz, 43	Koordinatensystem,
Garbenmorphismus	54
Bildgarbe, 42	regulär, 53
Kerngarbe, 42	lokaler Ringhomomorphismus,
Halm, 7	10
Keim, 7	Lokalisierung, 18
push-forward, 8	Multiplikative Teilmenge,
Garbifizierung, 42	18
Generischer Punkt, 13	Nilradikal, 16
Graduierte Algebra, 33	Radikal, 14
homogenes Ideal, 34	radiziell, 14
nomogenes ideai, 94	reduziert, 41
V ann an	•
Körper	regulär
multiplikative Gruppe,	Koordinatensystem,
48	54
Kategorie der Garben, 7	Ringhomormophismus
Kategorie der Prägarben,	endlich, 56
7	
Krull-Dimension, 50	Schema, 21
Kodimension, 50	S-Schema, 24
lokale Dimension, 50	abgeschlossenes Unterschema,
	37
lokal geringter Raum, 9	Basiswechsel, 45
Morphismus lokal geringter Räume,	Faserprodukt, 45
10	Faser eines Morphismus,
reduziert, 42	45
Lokalisierung	Gruppenschema, 59
9	* *
homogene, 35	integer, 44

Morphismus von Schemata, 21 noethersch, 41 lokal noethersch, 41 projektiver Raum über S , 49 projektives Schema über A , 38 pull-back, 46 regulär, 53	reduzierte Unterschema-Struktur, 44 Zariski-Tangentialraum, 50 topologischer Raum irreduzibel, 15 noethersch, 16 topoloischer Raum quasi-kompakt, 18
Schemamorphismus abgeschlossene Immersion, 37 offene Immersion, 37 Unterschema	Varietät algebraische, 41 projektive, 41 Zariski Topologie, 12 auf Proj, 34