Earth Materials: Intro to Silicates

Benjamin Bass

18 February 2016

Contents

1	Marching Throught the Silicates										2		
	1.1	Most Po	olymerized:	Tectosil	icates								2
		1.1.1	Silica Polym	orphs									2

1 Marching Throught the Silicates

Most Polymerized -> Least Polymerized.

1.1 Most Polymerized: Tectosilicates

Make up 2/3rds of the Crust Simplets = SiO_2 Group (silica group) We find that the SiO_2 group has many form Polymorphs (same chemical form, different groups)

1.1.1 Silica Polymorphs

Alpha Quartz Coesite really important environment of growth: quartz Environment:

- 2nd most abundant
- can grow or be found:
 - igneaus
 - Metamorphic
 - sedimentary
 - hydrothermal
 - These need silica saturated chemistry
 - they're Felsic (high in silica)
- Felsic
- Igneaus rocks
 - granite -> pegmatite (beautiful y economic) (ultra-felsic igneous rock)
 - rhyolite
 - _
- Metamorphic
 - almost any schist, queiss
 - Sedimentary

- * as common and detrital grains
- * as a chemical cement

Natural Fluids

- quartz precipitate
- can be very fine grained
 - "cryptocrystalline"
 - * agate
 - * chalcedony
 - * chert or flint

Fulgarite: if lightening hits silica-rich soil. Opal:

- Not quite a mineral because its Amorphous
- $\bullet \ \mathrm{SiO}_2 \, + \, \mathrm{H}_2\mathrm{O}$
- low T fluids
- also biomineral
- ex: plant phytoliths

Whats the most abundant mineral in the crust: Feldspar Quartz is in second place

Quartz: Crystal Shape, hexagonal prysm with degraded symmetry. Glassy luster. Color is no good. What causes color in Quartz:

- clear
- smokey (bc aluminum. if quartz in invironment

Feldspars most abundant in the crust (Si + Al)

$$O = 1/2$$

Structure < classPic >

hole = 9-fold distorted site: K, Na, Ca

$$T_1, T_2 = Si \text{ or } Al$$

Specific Felspar Minerals are distinguished by the 9-fold site Cation and Al_1 , Si content ordering

Feldspars

Feldspar composition

 $(K,Na)_{1-x}$ Ca_x Al_{1+x} Si_{3-x} O_8 where x=0 to 1

Ternary Diagram

3 Polymorphs @ Kspar differ only in their ordering of Al, Si

Sanidine: Complete Disorder -> monoclinic > 900 celcius Orthoclase: somewhere in the middle -> monoclinic Microcline: completely ordered -> triclinic (low symmetry) < 500 celcius

Plag:

- 1. albite
- 2. oligoclase
- 3. andesine
- 4. labradorite
- 5. bytonite
- 6. anorthite

recall exolution

• refers to chemical unmixing upon cooling below the soldus.

perthitic texture in K-spar Twinning 3 types of twins

- 1. Contact Twins: shares a plane
- 2. Interpenetration twin: grown together= might share rotational axis
- 3. Polysynthetic Twins: many repeated crystals

Twins get pink highlighter.