PROBLEMAS DE SATÉLITES

Exemplos de resolución coa folla de cálculo: «SatelitesGal.ods»

Comezo

Ao abrir a folla de cálculo, mostrarase unha alerta de seguridade. Premer sobre o botón Activar macros. Para ir ao enunciado, elixir unha destas opcións:

- Premer sobre a pestana in Enunciado situada na parte inferior.
- Pulsar a tecla [Ctrl] mentres se preme sobre a cela <u>Enunciado</u>, situada na parte superior dereita. Para ver a axuda, unha destas opcións:
 - Premer sobre a pestana Axuda situada na parte inferior.
 - Pulsar a tecla [Ctrl] mentres se preme sobre a cela Axuda situada na parte superior dereita.

[←] ([Intro] ou [Enter] ou [Entrar])

• Teclado e rato

Teclas

Aceptar

-		
Borrar á dereita	[Supr] (ou [Del] ou [Delete])	[Supr]
Borrar á esquerda	[∝] [←] ou [Backspace])	$[\propto]$
Espazador	[Esp]	[Esp]
Frecha abaixo		$\bar{\downarrow}$
Maiúscula	[♠] ou ([Shift] ou [Mayús])	[4]
Tabulador	[≒] (ou [Tab] ou [tabulador])	$[{\bowtie}]$
Teclas simples		
<u> </u>		
Aceptar	$[\leftarrow]$	[←]
Cela seguinte	[K]]	[\]

Abreviatura

[←]

Combinación de teclas	Premer ao mesmo tempo as teclas:	Abreviatura
Ir ao principio da páxina	[Ctrl] e [Inicio]	
Cela anterior	[�] e [≒]	
Desfacer acción anterior	[Ctrl] e [Z]	([Ctrl]+[Z])
Copiar	[Ctrl] e [C]	([Ctrl]+[C])
Pegar (Desaconsellado)	[Ctrl] e [V]	([Ctrl]+[V])
Pegar sen formato (menú)	[Ctrl], [♠] e [V]	([Ctrl]+[Alt]+[V])
Pegar sen formato (rápido)	[Ctrl], [Alt], [�] e [V]	$([Ctrl]+[Alt]+[\triangle]+[V])$
Punto multiplicación	[♠] e [3]	([合]+[3])
Subíndice	$[\boldsymbol{\Delta}]$ e $[_]$, {número ou signo} e $\{$, $[\leftrightarrows]$ ou $[\leftarrow]$ $\}$	([_]+n.°+[←])
Superíndice	$[\Delta]$ e $[^{\wedge}]$, {número ou signo} e { $[Esp]$, $[\leftrightarrows]$ ou $[\leftarrow]$ }	([�]+[^]+n.°+[←])
Ver opcións	[Alt] e [↓]	$([Alt]+[\downarrow])$
Limpar formato	[Ctrl] e [M]	([Ctrl]+[M])

Rato

Seleccionar Premer dúas veces (dobre clic)

Teclado e rato

Seguir ligazón (na folla cálculo) [Ctrl] e premer na ligazón, ou facer dobre clic na ligazón.

Datos

Para borrar os datos, elixir unha destas opcións:

- Datos, instrucións e enunciado:
 - 1. Premer sobre o menú: Editar \rightarrow Seleccionar \rightarrow Seleccionar celas desprotexidas
 - 2. Pulsar a tecla Supr.
- Tódolos datos:
 - 1. Premer sobre calquera cela de datos:
 - 2. Premer sobre o botón Borrar datos

3. No diálogo «Borrar os datos desta folla?», premer sobre o botón Aceptar.

Só algúns dos datos:

- 1. Seleccionar co rato unha área na que se atopen os datos que se desexan borrar.
- 2. Premer sobre o botón Borrar datos
- 3. No diálogo «Borrar os datos no intervalo seleccionado?», premer sobre o botón Aceptar.

Para elixir unha opción seguir estes pasos:

- 1. Premer sobre a cela:
- 2. Premer sobre a frecha <u>▶</u>, para ver a lista despregable.
- 3. Desprazarse pola lista e elixa unha opción.

Para anotar unha cantidade:

Premer sobre unha cela: , e escribir nela a cantidade.

Se o formato no que se mostra un valor non é o axeitado (por exemplo 1,00E-01), premer sobre a cela e pulsar ao mesmo tempo as teclas [Ctrl] e [M] para limpar o formato (verase 0,1).

Para poñer un valor en notación científica, elixir unha destas opcións:

- Escribir o número en formato científico 0,0E-0 da folla de cálculo.
- Escribir o número en formato habitual 0,0·10⁻⁰.
- Seleccionar o valor noutro documento, copialo ([Ctrl]+[C]) e pegalo ([Ctrl]+[Alt]+[♠]+[V]).

Exemplos de escritura en formato científico:

Escriba: Na cela aparecerá:

Folla de cálculo: 3E-9

3,00[�][3]10[�]^-[Esp][☒][�]^9[←]

3,00E-09 3,00·10⁻⁹

(Despois do signo – pulsar o espazador [Esp]. Pulsar a tecla [☒] para borrar o espazo). Se ese número xa estaba nun documento, pódese copiar e pegar seguindo estes pasos:

1. Seleccionar: premer sobre o comezo do número e arrastrar o rato ata o final ou dobre clic

- 2. Copialo: menú Editar → Copiar ou [Ctrl]+[C]
- 3. Premer sobre a cela:
- 4. Pegalo: menú Editar \rightarrow Pegado especial \rightarrow Pegar texto sen formato ou [Ctrl]+[Alt]+[\triangle]+[V]

Resultados

Formato habitual:

Na páxina Enunciado, onde ten escrito os datos, xa aparecen os resultados. Se quere consultar as ecuacións coas que se teñen calculado, manteña pulsada a tecla Ctrl mentres fai clic co rato no Tema que contén a magnitude calculada, ou faga clic co rato na lapela inferior correspondente.

Outros cálculos

Nalgunhas follas aparece unhas celas baixo o epígrafe: OUTROS RESULTADOS.

Nela pódense escribir fórmulas para facer cálculos.

Para poñer unha fórmula nunha cela, hai que empezar escribindo «=» e logo poñer símbolos de operacións («+», «-» «*» ou «/») e facer clic nas celas coas que operar.

Por exemplo, para que a cela A3 faga a suma entre os números qua hai nas celas A1 e B1:

- 1. **Seleccione a cela** na que queres introducir a fórmula.
- 2. Escriba un signo igual (=) na cela. Isto indica a LibreOffice que o que segue é unha fórmula.
- 3. Agora pode seguir de calquera destas maneiras:
 - Faga clic na cela A1. Escriba «+». Faga clic na cela B1.
 - Ou, escriba fórmula. Para sumar as dúas celas, escriba "=A1+B1", onde "A1" e "B1" son as coordenadas das celas que quere sumar.
- 4. **Prema a tecla Enter** (ou Intro ou ←) para completar a entrada.

A cela mostrará agora o resultado da fórmula.

Lembre que pode usar unha variedade de funcións matemáticas na súa fórmula, como SUM para sumar, RAÍZC para calcular a raíz cadrada, e así sucesivamente. Consulte a axuda de LibreOffice para obter unha lista completa das funcións dispoñibles.

Cando a cela que contén o dato está en formato científico, como 6,67·10⁻¹¹, ten que empregar a función AVALOR, para que o transforme nun número. Por exemplo, a fórmula para calcular $v = \sqrt{\frac{G \cdot M}{r}}$, vendo que os datos atópanse nas celas do cadro (e que r é a suma: R + h), sería: =RAÍZC(AVALOR(J8)*J2/(J3+J6))

	Н	I	J	K
2	Masa	<i>M</i> =	5,97E+24	kg
3	Raio	R =	6,37E+06	m
4				
5	Masa	<i>m</i> =		kg
6	Altura	h =	693 000	m
7				
8	Constante da gravitación	<i>G</i> =	6,67·10 ⁻¹¹	N⋅m²/kg²

A cela onde escribise a fórmula, por exemplo H22, presentaría o resultado: 7508,53966 609 457. Para obter un aspecto mellor podería empregar a función: NUMFORMA. Se noutra cela, por exemplo J22, escribe a función: =NUMFORMA(H22), o que vería en J22 sería: 7,51·10³.

Na lapela «Introd» ten máis información das funcións exclusivas que pode empregar facendo clic en <u>funcións</u>.

 Período
 Altura
 Peso
 Enerxía

<u>Período:</u> Raio de la órbita, masa do astro, velocidade lineal e angular, período, frecuencia do satélite. <u>Altura:</u> Raio da órbita, altura.

<u>Peso:</u> Valor da gravidade no chan, á altura da órbita, relación entre elas, peso do satélite e momento angular.

Enerxía: Enerxía potencial, cinética e mecánica na órbita, enerxía potencial no chan, e a enerxía ou velocidade necesaria para alcanzar a altura ou poñelo en órbita, velocidade de escape no chan e na órbita.

♦ PROBLEMAS

- 1. O satélite SpainSat NG I, da empresa española Hisdesat, lanzouse con éxito dende Cabo Cañaveral ás 2:34 do 30 de xaneiro de 2025, a bordo dun foguete Falcon 9 da empresa SpaceX.
 - Cun peso de 6,1 toneladas e unha altura de 7,2 metros, o novo satélite leva un equipo especial que o protexe das interferencias e garante que as comunicacións sigan sendo privadas e seguras. Tras o lanzamento, o satélite viaxará ata a súa posición final en órbita xeoestacionaria a 35 786 km sobre a Terra, case tres veces o diámetro da Terra mesma.
 - a) Responda estes tres apartados.
 - (a.1) Debuxe un esquema da órbita do satélite, indicando a dirección e o sentido da forza gravitacional que experimenta o satélite.
 - (a.2) Calcule a aceleración gravitacional que experimenta o satélite.
 - (a.3) Calcule a velocidade do satélite na súa órbita.
 - b) Indique e xustifique a resposta correcta.
 - Se o satélite na órbita ao redor da Terra perde masa no seu percorrido, o seu período de rotación: A) redúcese na mesma proporción; B) aumenta nesa proporción; C) non varía.
 - c) Responda estes dous apartados.
 - (c.1) Calcule o traballo mínimo que é necesario realizar sobre o satélite para situalo na órbita circular xeoestacionaria.
 - (c.2) Calcule a velocidade mínima que necesita o satélite para abandonar esa órbita e afastarse definitivamente da Terra.

DATOS: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$; $R(T) = 6.37 \times 10^6 \text{ m}$; $M(T) = 5.98 \times 10^{24} \text{ kg}$. (P.A.U. ord. 25)

Introdución de datos. (Lapela 🙃 Enunciado)

Enunciado	Datos:	<i>G</i> =	6,67·10 ⁻¹¹	$N \cdot m^2 / kg^2$
Un satélite de masa		<i>m</i> =	6100	kg
xira arredor dun astro de masa		<i>M</i> =	$5,98 \times 10^{24}$	kg
e raio		R =	6,37×10 ⁶	m
O satélite xira cun	período	T =	1	días

Respostas. (Lapela 🙃 Enunciado)

a.2) Elixir Campo gravitacional na órbita.

,	1	3					
	Campo gravitacional na órbita			$0,223 \text{ m/s}^2$			
a.3) Elixir	as unida	des de «Ve	elocidade»				
					Velocidade		
Órbita		•			$3,07 \cdot 10^3 \text{m/s}$		
c.1) Elixir	Enerxía	no chan p	ara <mark>poñelo en ó</mark> i	rbita.			
		Enerxía	no chan para		poñelo en órbita	3,53·10 ¹¹ J	
c.2) Elixir	c.2) Elixir <mark>Velocidade de escape</mark> na órbita.						
			Velocidade de es	cape	na órbita	$4,35 \cdot 10^3 \text{ m/s}$	

Cálculo do período. (Lapela 🔒 Período)

Período $T = 1,00 \cdot 24 \cdot 3600 = 8,64 \cdot 10^4 \text{ s}$

Cálculo do raio da órbita. (Lapela 🔒 Altura)

Raio da órbita
$$G \cdot M = g_o \cdot R^2 \qquad G \cdot M = \frac{6,67 \cdot 10^{-11} \cdot 5,98 \cdot 10^{24}}{3,99 \cdot 10^{14} \cdot (8,64 \cdot 10^4)^2} = 3,99 \cdot 10^{14} \text{ m}^{3/5}$$

$$r = \sqrt[3]{\frac{G \cdot M \cdot T^2}{4 \pi^2}} \qquad r = \sqrt[3]{\frac{3,99 \cdot 10^{14} \cdot (8,64 \cdot 10^4)^2}{4 \cdot 3,14^2}} = 4,23 \cdot 10^7 \text{ m}$$

Cálculo da aceleración gravitacional do satélite (Gravidade na altura). (Lapela 🔒 Peso)

Gravidade na altura

$$g = \frac{G \cdot M}{r^2}$$

$$g = \frac{3,99 \cdot 10^{11}}{(4,23 \cdot 10^7)^2} = 0,223 \text{ m/s}^2$$

Cálculo da velocidade do satélite, do traballo mínimo (enerxía no chan para poñelo en órbita) e a velocidade mínima para afastarse da Terra (velocidade de escape na órbita). (Lapela fin Enerxía)

I	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
Velocidade na órbita	$v = \frac{2 \cdot \pi \cdot r}{T}$	<i>v</i> =	$\frac{2 \cdot 3,14 \cdot 4,23 \cdot 10^{7}}{8,64 \cdot 10^{4}}$	=	4,35·10 ³ m/s
Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c =$	$6,10\cdot10^3\cdot\left(8,64\cdot10^4\right)^2$ / 2	=	2,88·10 ¹⁰ J
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = \frac{1}{2}$	$\frac{-3,99 \cdot 10^{14} \cdot 6,10 \cdot 10^{3}}{4,23 \cdot 10^{7}}$	=	−5,76·10 ¹⁰ J
Enerxía mecánica na órbita	$E = E_c + E_p$	E =	$-5,76\cdot10^{10} + 2,88\cdot10^{10}$	=	$-2,88\cdot10^{10} \text{ J}$
Velocidade de escape na órbita	$v_e = \sqrt{\frac{2G \cdot M}{r}} v_e$	= \sqrt{1}	$2 \cdot 3,99 \cdot 10^{14}$ $4,23 \cdot 10^{7}$	=	4,35·10 ³ m/s
Enerxía potencial no chan	$E_p = \frac{-G \cdot M \cdot m}{R}$	$E_p =$	$\frac{-3,99 \cdot 10^{14} \cdot 6,10 \cdot 10^{3}}{6,37 \cdot 10^{6}}$	=	−3,82·10 ¹¹ J
Velocidade de escape no chan	$v_e = \sqrt{\frac{2 G \cdot M}{R}} v_e$	= \sqrt{1}	$\frac{2 \cdot 3,99 \cdot 10^{14}}{6,37 \cdot 10^{6}}$	=	1,12·10 ⁴ m/s
Enerxía no chan para poñelo en órbita	$\Delta E_o = E (\acute{o}rb) - E_p (chan)$) ΔE _o =	$-2,88\cdot10^{10} - (-3,82\cdot10^{11})$	=	3,53⋅10¹¹ J

- 2. Un satélite artificial de 64,5 kg xira arredor da Terra nunha órbita circular de raio r = 2,32 R. Calcula:
 - a) O período de rotación do satélite.
 - b) O peso do satélite na órbita.

Datos: Terra: $g_0 = 9,80 \text{ m/s}^2$; R = 6370 km

Rta.: a) T = 4 h 58 min.; b) $P_h = 117 \text{ N}$

(P.A.U. Xuño 05)

Introdución de datos. (Lapela Enunciado)

Un satélite de masa	<i>m</i> =	64,5	kg
xira arredor dun astro de masa	M =		kg
e raio	R =	6370	km
no que a gravidade no chan é	$g_o =$	9,8	m/s²
A órbita é circular de	raio r =	2,32	R astro

Respostas. (Lapela i Enunciado)

Elixir Período e as súas unidades, e Forza gravitacional na órbita.

	clic ↓	Velocidade	clic↓	Período	
Órbita				04:58:20	h:m:s
	Forza gravitacional	na órbita		117	N

Cálculo do período. (Lapela i Período)

Raio da órbita $r = 2,32 \cdot 6,37 \cdot 10^{6} = 1,48 \cdot 10^{7} \text{ m}$ $G \cdot M = g_{0} \cdot R^{2} \qquad G \cdot M = 9,80 \cdot (6,37 \cdot 10^{6})^{2} = 3,98 \cdot 10^{14} \text{ m}^{3}/\text{s}^{2}$ $Velocidade do satélite <math display="block">v = \sqrt{\frac{G \cdot M}{r}} \qquad v = \sqrt{\frac{3,98 \cdot 10^{14}}{1,48 \cdot 10^{7}}} = 5,19 \cdot 10^{3} \text{ m/s}$ $T = \frac{2 \cdot \pi \cdot r}{v} \qquad T = \frac{2 \cdot 3,14 \cdot 1,48 \cdot 10^{7}}{5,19 \cdot 10^{3}} = 1,79 \cdot 10^{4} \text{ s}$

Cálculo do peso do satélite (forza gravitacional). (Lapela 1 Peso)

Calculo do peso do sate	iite (1012a gravitacion	ai). (Lapeia	(30)			
Cuarrida da an la altruma	$G \cdot M$		3,98.1014		1 92 / 2	
Gravidade en la altura	$g = {r^2}$	g =	$(1,48\cdot10^7)^2$	=	1.82 m/s^2	
Peso do satélite	$P = m \cdot g$	P =	$64,5 \cdot 1,82$	=	117 N	

- 3. A nave espacial Discovery, lanzada en outubro de 1998, describía arredor da Terra unha órbita circular cunha velocidade de 7,62 km·s⁻¹:
 - a) A que altura sobre a superficie da Terra atopábase?
 - b) Canto tempo tardaba en dar unha volta completa?
 - c) Cantos amenceres vían cada 24 horas os astronautas que ían no interior da nave?

Datos: $G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$; $R_T = 6370 \text{ km}$; $M_T = 5,98 \cdot 10^{24} \text{ kg}$

(P.A.U. Xuño 16)

Rta.: a) h = 503 km; b) T = 1 h 34 min; c) n = 15

Introdución de datos. (Lapela 🙃 Enunciado)

Un satélite de masa		<i>m</i> =		kg
xira arredor dun astro de masa		<i>M</i> =	5,98E+024	kg
e raio		R =	6370	km
O satélite xira cunha	velocidade	ν =	7,62	km/s

Respostas. (Lapela 🙃 Enunciado)

Elixir Altura e as súas unidades, e Período e as súas unidades.

	Altura	Velocidade	clic↓	Período	
Órbita	503 <mark>km</mark>			01:34:27	h:m:s

Para o apartado c), cambie Período por Frecuencia e escolla como unidades dia⁻¹.

	Altura	Velocidade clic	Frecuencia	
Órbita	503 <mark>km</mark>		15,2	día ⁻¹

Cálculo do período e da frecuencia. (Lapela 🙃 Período)

Carculo do período e da frecuencia. (Lapela								
		$G \cdot M = 6,67 \cdot 10^{-11} \cdot 5,98 \cdot 10^{24}$	=	$3,99 \cdot 10^{14} \text{ m}^3/\text{s}^2$				
Raio da órbita	$r = \frac{G \cdot M}{v^2}$	$r = \frac{3,99 \cdot 10^{14}}{(7,62 \cdot 10^3)^2}$	=	6,87·10 ⁶ m				
Período do satélite	$T = \frac{2 \cdot \pi \cdot r}{v}$	$T = \frac{2 \cdot 3,14 \cdot 6,87 \cdot 10^6}{7,62 \cdot 10^3}$	=	5,67·10 ³ s				
Frecuencia do satélite	$f = \frac{1}{T}$	$f = \frac{86400 \text{ s} \cdot \text{día}^{-1}}{5,67 \cdot 10^3 \text{ s}}$	=	15,2 día ⁻¹				

Cálculo da altura. (Lapela 🔒 Altura)

Altura da órbita $h = 6.87 \cdot 10^6 - 6.37 \cdot 10^6 = 5.04 \cdot 10^5 \text{ m}$

- 4. Un satélite artificial de masa 10² kg xira arredor da Terra a unha altura de 4⋅10³ km sobre a superficie terrestre. Calcula:
 - a) A súa velocidade orbital, aceleración e período, suposta a órbita circular.
 - b) Acha o módulo do momento angular do satélite respecto do centro da Terra.
 - c) Enuncia as leis de Kepler.

Datos: $R_T = 6.37 \cdot 10^6 \text{ m}$; $g_0 = 9.81 \text{ m/s}^2$

(P.A.U. Set. 16)

Rta.: a) v = 6,20 km/s; T = 2 h 55 min; $a = 3,70 \text{ m/s}^2$; b) $L_0 = 6,42 \cdot 10^{12} \text{ kg} \cdot \text{m}^2/\text{s}$

Respostas. (Lapela 💼 Enunciado)

Elixir as unidades de Velocidade, Período e as súas unidades, e Campo gravitacional na órbita.

Raio Velocidade Período

Órbita $1,04\cdot10^7$ m $6,20\cdot10^3$ m/s 02:55:16 h:m:s

Terra $M = 5,96\cdot10^{24}$ kg

no chan para

Campo gravitacional na órbita 3,70 m/s²

Para o apartado b) cambie Campo gravitacional por Momento angular.

Momento angular ea órbita 6,42·10¹² kg·m²/s

Cálculo da velocidade orbital e o período. (Lapela Período)

Cálculo da aceleración e do momento angular. (Lapela neso)

Gravidade ea altura	$g = \frac{G \cdot M}{r^2}$	$g = \frac{3,98 \cdot 10^{14}}{(1,04 \cdot 10^7)^2} = 3,70 \text{ m/s}^2$
Momento angular	$I_m = r \cdot m \cdot v$	$L_0 = 1.04 \cdot 10^7 \cdot 100 \cdot 6.20 \cdot 10^3 = 6.42 \cdot 10^{12} \text{ kg} \cdot \text{m}^2/\text{s}$

 Un satélite artificial de 500 kg describe unha órbita circular arredor da Terra cun raio de 2·10⁴ km. Calcula:

500 kg

- a) A velocidade orbital e o período.
- b) A enerxía mecánica e a potencial.
- c) Si por fricción pérdese algo de enerxía, que lle ocorre ao raio e á velocidade? Datos $g_0 = 9.8 \text{ m/s}^2$; R = 6370 km

Rta.: a) v = 4,46 km/s; T = 7 h 50 min; b) $E = -4,97 \cdot 10^9$ J; $E_p = -9,94 \cdot 10^9$ J

(P.A.U. Set. 10)

Introdución de datos. (Lapela Enunciado)
Un satélite de masa

On satente de masa		111 –	300	NS
xira arredor dun astro de masa		<i>M</i> =		kg
e raio		<i>R</i> =	6370	km
no que a gravidade no chan é		$g_o =$	9,8	m/s ²
A órbita é circular de	raio	<i>r</i> =	2,00E+04	km

Cálculo da velocidade orbital e do período. (Lapela i Período)

Cálculo da enerxía mecánica e da enerxía notencial. (Lapela Finerxía)

Carculo da cherxia necamea e da cherxia potenciai. (Lapeia						
Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c = 500 \cdot (4.46 \cdot 10^3)^2 / 2 = 4.97 \cdot 10^9 \text{ J}$				
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = \frac{-3.98 \cdot 10^{14} \cdot 500}{2.00 \cdot 10^7} = -9.94 \cdot 10^9 \mathrm{J}$				
Enerxía mecánica na órbita	$E = E_c + E_p$	$E = -9.94 \cdot 10^9 + 4.97 \cdot 10^9 = -4.97 \cdot 10^9 \text{ J}$				

- Un satélite artificial de 500 kg de masa xira nunha órbita circular a 5000 km de altura sobre a superficie da Terra. Calcula:
 - a) A súa velocidade orbital.
 - b) A súa enerxía mecánica na órbita.
 - c) A enerxía que hai que comunicarlle para que, partindo da órbita, chegue ao infinito.

Datos: R = 6370 km; $g_0 = 9.8 \text{ m} \cdot \text{s}^{-2}$ (P.A.U. Set. 15) **Rta.**: a) v = 5.91 km/s; b) $E = -8.74 \cdot 10^9 \text{ J}$; c) $\Delta E = 8.74 \cdot 10^9 \text{ J}$

Respostas. (Lapela | Enunciado) Elixir as unidades de Velocidade, e Enerxía na órbita.

Cálculo da velocidade orbital. (Lapela Período)

Raio de la órbita
$$r = R + h$$
 $r = 6,37 \cdot 10^6 + 5,00 \cdot 10^6 = 1,14 \cdot 10^7 \text{ m}$ $G \cdot M = g_o \cdot R^2$ $G \cdot M = 9,80 \cdot (6,37 \cdot 10^6)^2 = 3,98 \cdot 10^{14} \text{ m}^3/\text{s}^2$ Velocidade do satélite $v = \sqrt{\frac{G \cdot M}{r}}$ $v = \sqrt{\frac{3,98 \cdot 10^{14}}{1,14 \cdot 10^7}} = 5,91 \cdot 10^3 \text{ m/s}$

Cálculo da enerxía mecánica. (Lapela i Enerxía)

Enerxía cinética na órbita
$$E_c = \frac{1}{2} \frac{m \cdot v^2}{m \cdot v^2}$$
 $E_c = 500 \cdot (5,91 \cdot 10^3)^2 / 2 = 8,74 \cdot 10^9 \text{ J}$

Enerxía potencial na órbita $E_p = \frac{-G \cdot M \cdot m}{r}$ $E_p = \frac{-3,98 \cdot 10^{14} \cdot 500}{1,14 \cdot 10^7} = -1,75 \cdot 10^{10} \text{ J}$

Enerxía mecánica na órbita $E = E_c + E_p$ $E = -1,75 \cdot 10^{10} + 8,74 \cdot 10^9 = -8,74 \cdot 10^9 \text{ J}$

A enerxía que hai que comunicarlle para que, partindo da órbita, chegue ao infinito, é a diferenza entre a enerxía no infinito, que é nula, e a que ten na órbita.

$$\Delta E = 0 - E = 8.74 \cdot 10^9 \text{ J}$$

- 7. Deséxase pór en órbita un satélite de 1800 kg que vire a razón de 12,5 voltas por día. Calcula:
 - a) O período do satélite.
 - b) A distancia do satélite á superficie terrestre.
 - c) A enerxía cinética do satélite nesa órbita.

Datos: $G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$; R = 6378 km; $M = 5,98 \cdot 10^{24} \text{ kg}$ (P.A.U. Set. 09) **Rta.**: a) T = 1 h 55 min; b) h = 1470 km; c) $E_c = 4,58 \cdot 10^{10} \text{ J}$

Introdución de datos. (Lapela Fnunciado)

Respostas. (Lapela 🙃 Enunciado)

Elixir Período e as súas unidades, Altura e as súas unidades, e Enerxía na órbita.

	Altura	Velocidade	Período
Órbita	1,47·10³ km	7,13 km/s	01:55:12 h:m:s
	cinética	potencial	mecánica <mark>GJ</mark>
Enerxía na órbita	45,8 GJ	-91,6 GJ	-45,8 GJ

Cálculo do período. (Lapela i Período)

-			
Período do satélite	$T = \frac{1}{f}$	$T = \frac{86400}{12,5} =$	6,91⋅10 ³ s

Cálculo da distancia do satélite á superficie terrestre. (Lapela 🔒 Altura)

Raio da órbita
$$r = \sqrt[3]{\frac{G \cdot M}{4 \pi^2}} \qquad r = \sqrt[3]{\frac{G \cdot M \cdot T^2}{4 \pi^2}} \qquad r = \sqrt[3]{\frac{3,99 \cdot 10^{14} \cdot (6,91 \cdot 10^3)^2}{4 \cdot 3,14^2}} = 3,99 \cdot 10^{14} \text{ m}^3/\text{s}^2}$$
Altura da órbita
$$h = r \cdot R \qquad h = 7,85 \cdot 10^6 - 6,38 \cdot 10^6 = 1,47 \cdot 10^6 \text{ m}$$

Cálculo da enerxía cinética. (Lapela 🙃 Enerxía)

Na órbita	$2 \cdot \pi \cdot r$	$2 \cdot 3.14 \cdot 7.85 \cdot 10^6$
Velocidade na órbita	$v = {T}$	$v = {6,91 \cdot 10^3} = 7,13 \cdot 10^3 \text{ m/s}$
Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c = 1800 \cdot (7,13 \cdot 10^3)^2 / 2 = 4,58 \cdot 10^{10} \text{ J}$
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = \frac{-3.99 \cdot 10^{14} \cdot 1800}{7.85 \cdot 10^6} = -9.16 \cdot 10^{10} \mathrm{J}$

Enerxía mecánica na órbita $E = E_c + E_p$

$$E = -9.16 \cdot 10^{10} + 4.58 \cdot 10^{10} = -4.58 \cdot 10^{10} \text{ J}$$

- A luz do Sol tarda 5·10² s en chegar á Terra e 2,6·10³ s en chegar a Xúpiter. Calcula:
 - a) O período de Xúpiter orbitando arredor do Sol.
 - b) A velocidade orbital de Xúpiter.
 - c) A masa do Sol.

Datos: T (Terra) arredor do Sol: 3,15·10⁷ s; $c = 3\cdot10^8$ m/s; $G = 6,67\cdot10^{-11}$ N·m²·kg⁻². (Suponse as órbitas (P.A.U. Set. 12) circulares)

Rta.: a) $T = 3.73 \cdot 10^8$ s; $v = 1.31 \cdot 10^4$ m/s; b) $M = 2.01 \cdot 10^{30}$ kg

Calcúlase primeiro a masa do Sol escribindo os datos da Terra.

Introdución de datos. (Lapela **i** Enunciado)

	\ I		,		
A órbita é circular de		raio	<i>r</i> =	5,00E+02	s luz
O satélite xira cun		período	T =	3,15E+07	S

Respostas. (Lapela in Enunciado)

2,01·10³⁰ kg Sol M =

Cálculo da masa do Sol. (Lapela | 1 Período)

 $M = \frac{4 \cdot 3,14^2 \cdot (1,50 \cdot 10^{11})^3}{6,67 \cdot 10^{-11} \cdot (3,15 \cdot 10^7)^2}$ Masa do astro = **2,01·10**³⁰ kg

Introdución de novos datos. (Lapela 🙃 Enunciado)

Borre a opción, o dato e as unidades de período.

Escriba a masa do Sol e o raio da órbita de Xúpiter:

	Escriba a masa do sor e o raio da orbita de Aupiter.							
J	Jn satélite de masa		<i>m</i> =		kg			
X	xira arredor dun astro de masa		<i>M</i> =	2,01E+30	kg			
e	e raio		<i>R</i> =					
F	A órbita é circular de	raio	<i>r</i> =	2,60E+03	s luz			

Respostas. (Lapela in Enunciado)

Elixir Período e as súas unidades, e as unidades de Velocidade.

,,,,,,,,,,				
	clic ↓	Velocidade	Período	
Órbita		13,1 km/s	11,8 <mark>anos</mark>	

Cálculo do período e da velocidade (Lanela Período)

	Calculo do periodo e da velocidade. (Lapela	1 errodo)		
	Raio de la órbita	$r = 2,60 \cdot 10^3 \cdot 3,00 \cdot 10^8$	$= 7,79 \cdot 10^{11} \text{ m}$	
		$G \cdot M = 6,67 \cdot 10^{-11} \cdot 2,01 \cdot 10^{30}$	$= 1.34 \cdot 10^{20} \text{ m}^3/\text{s}^2$	
Velocidade do satélite	Velocidade do satélite $v = \sqrt{\frac{G \cdot M}{}}$	$v = \sqrt{\frac{1,34 \cdot 10^{20}}{}}$	= 1,31·10 ⁴ m/s	
	r	$v = \sqrt{\frac{7,79 \cdot 10^{11}}{}}$	- 1,31 10 III/3	
	Período do satélite $T = \frac{2 \cdot \pi \cdot r}{}$	$T = \frac{2 \cdot 3,14 \cdot 7,79 \cdot 10^{11}}{}$	$= 3,73 \cdot 10^8 \text{ s}$	
	v	$1.31 \cdot 10^4$	- 3,73 10 3	

- Os satélites Meteosat son satélites xeoestacionarios (situados sobre o ecuador terrestre e con período orbital dun día). Calcula:
 - a) A altura á que se atopan, respecto da superficie terrestre.
 - b) A forza exercida sobre o satélite.
 - c) A enerxía mecánica.

Datos:
$$R = 6,38 \cdot 10^6$$
 m; $M = 5,98 \cdot 10^{24}$ kg; $m = 8 \cdot 10^2$ kg; $G = 6,67 \cdot 10^{-11}$ N·m²·kg⁻² (*P.A.U. set. 08*) **Rta.**: a) $h = 3,60 \cdot 10^7$ m; b) $F = 179$ N; c) $E_c = 3,78 \cdot 10^9$ J; $E_p = -7,56 \cdot 10^9$ J; $E = -3,78 \cdot 10^9$ J

	Cálculo da forza exercida sobre o satélite. (Lapela 🔃 Peso)						
	Cuarridada an la altruma	$G \cdot M$		$3,99 \cdot 10^{14}$		0.002 /2	
Gravidade en la altura	$g = \frac{r^2}{r^2}$	g =	$(4,23\cdot10^7)^2$	— =	$0,223 \text{ m/s}^2$		
	Peso del satélite	$P = m \cdot g$	P =	$800 \cdot 0,223$	=	179 N	

Cálculo da enerxía cinética. (Lape	la 🔒 Enerxía)		
Na órbita	$v = \frac{2 \cdot \pi \cdot r}{}$	$v = \frac{2 \cdot 3,14 \cdot 4,23 \cdot 10^7}{8,64 \cdot 10^4} = 3,07$	10^3 m/s
Velocidade na órbita	$v = \frac{1}{T}$	$V = \frac{1}{8,64 \cdot 10^4} = \frac{3,07}{8,64 \cdot 10^4}$	10 111/8
Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c = 800 \cdot (3,07 \cdot 10^3)^2 / 2 = 3,78$	10° J
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = \frac{-3,99 \cdot 10^{14} \cdot 800}{4,23 \cdot 10^7} = -7,56$	10° J
Enerxía mecánica na órbita	$E = E_c + E_p$	$E = -7,56 \cdot 10^9 + 3,78 \cdot 10^9 = -3,78 \cdot$	10 9 J

- 10. Un satélite artificial de 200 kg describe unha órbita circular a unha altura de 650 km sobre a Terra. Calcula:
 - a) O período e a velocidade do satélite na órbita.
 - b) A enerxía mecánica do satélite.
 - c) O cociente entre os valores da intensidade de campo gravitacional terrestre no satélite e na superficie da Terra.

Datos:
$$M = 5.98 \cdot 10^{24} \text{ kg}$$
; $R = 6.37 \cdot 10^6 \text{ m}$; $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$ (P.A.U. Set. 11)
Rta.: a) $v = 7.54 \text{ km/s}$; $T = 1 \text{ h} 38 \text{ min}$; b) $E = -5.68 \cdot 10^9 \text{ J}$; c) $g_b/g_0 = 0.824$

Introdución de datos. (Lapela	Enunciado)			
Un satélite de masa		<i>m</i> =	200	kg
xira arredor dun astro de masa		<i>M</i> =	5,98E+24	kg
e raio		R =	6378	km
A órbita é circular de	altura	h =	650	km

Respostas. (Lapela 🔒 Enunciado)

Elixir as unidades de Velocidade, Período e as súas unidades, Enerxía na órbita e Gravidade relativa na órbita.

	Raio	Velocidade	Período
Órbita	7,03·10 ³ k	m 7,54 km/s	01:37:39 h:m:s
	cinética	potencial	mecánica
Enerxía na órbita	5,68·10° J	$-1,14\cdot10^{10} \text{ J}$	-5,68 ⋅10 ⁹ J
	Gravidade relativa	na órbita	$0.824 g_0$

Cálculo do período e da velocidade orbital. (Lapela Período)

Calculo do periodo e da vero	Cidade of bital. (Lapeia	1 renout)
Raio da órbita	r = R + h	$r = 6.38 \cdot 10^6 + 6.50 \cdot 10^5 = 7.03 \cdot 10^6 \text{ m}$
		$G \cdot M = 6,67 \cdot 10^{-11} \cdot 5,98 \cdot 10^{24} = 3,99 \cdot 10^{14} \text{ m}^3/\text{s}^2$
Velocidade do satélite	$v = \sqrt{\frac{G \cdot M}{r}}$	$v = \sqrt{\frac{3,99 \cdot 10^{14}}{7,03 \cdot 10^6}} = 7,54 \cdot 10^3 \text{ m/s}$
Período do satélite	$T = \frac{2 \cdot \pi \cdot r}{v}$	$T = \frac{2 \cdot 3,14 \cdot 7,03 \cdot 10^6}{7,54 \cdot 10^3} = 5,86 \cdot 10^3 \text{ s}$

Cálculo da enerxía mecánica. (Lapela 🔒 Enerxía)

	` -				
Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c =$	$200 \cdot (7,54 \cdot 10^3)^2 / 2$	=	5,68·10° J
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = -$	$-3,99 \cdot 10^{14} \cdot 200$ $7,03 \cdot 10^{6}$	- =	−1,14·10 ¹⁰ J
Enerxía mecánica na órbita	$E = E_c + E_p$	E =	$-1,14\cdot10^{10} + 5,68\cdot10^{9}$	=	-5,68⋅10 ⁹ J

Cálculo do cociente das intensidades de campo gravitacional. (Lapela Peso)

	-	· 1	r
Gravidade no chan	$g_o = \frac{G \cdot M}{R^2}$	$g_0 = \frac{3,99 \cdot 10^{14}}{(6,38 \cdot 10^6)^2}$	= 9,81 m/s ²
Gravidade na altura	$g = \frac{G \cdot M}{r^2}$	$g = \frac{3,99 \cdot 10^{14}}{(7,03 \cdot 10^6)^2}$	= 8,08 m/s ²
Gravidade relativa		$\frac{g}{g_o} = \frac{8,08}{9,81}$	- = 0,824

- 11. Ceres é o planeta anano máis pequeno do sistema solar e ten un período orbital arredor do Sol de 4,60 anos, unha masa de 9,43·10²⁰ kg e un raio de 477 km. Calcula:
 - a) O valor da intensidade do campo gravitacional que Ceres crea na súa superficie.
 - b) A enerxía mínima que ha de ter unha nave espacial de 1000 kg de masa para que, saíndo da superficie, poida escapar totalmente da atracción gravitacional do planeta.
 - c) A distancia media entre Ceres e o Sol, tendo en conta que a distancia media entre a Terra e o Sol é de 1,50·10¹¹ m e que o período orbital da Terra arredor do Sol é dun ano.

Dato: $G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$ (P.A.U. Set. 14) **Rta.**: a) $g = 0,277 \text{ m/s}^2$; b) $E = 1,32 \cdot 10^8 \text{ J}$; c) $r = 4,15 \cdot 10^{11} \text{ m}$

Introdución de datos. (Lapela 🔒 Enunciado)

Respostas. (Lapela Enunciado)

Elixir Enerxía no chan para mandalo ao infinito.

Astro $g_o = 0,277 \text{ m/s}^2$ Enerxía no chan para mandalo ao infinito 1,32·10⁸ J

Cálculo da intensidade de campo gravitacional no chan. (Lapela 🙃 Peso)

Gravidade no chan $g_o = \frac{G \cdot M}{R^2} \qquad g_o = \frac{6,29 \cdot 10^{10}}{(4,77 \cdot 10^5)^2} = \mathbf{0,277} \text{ m/s}^2$

Cálculo de $G \cdot M$. (Lapela Período)

 $G \cdot M = 6,67 \cdot 10^{-11} \cdot 9,43 \cdot 10^{20} = 6,29 \cdot 10^{10} \text{ m}^3/\text{s}^2$

Cálculo da enerxía no chan. (Lapela 🔒 Enerxía)

Enerxía potencial no chan $E_p = \frac{-G \cdot M \cdot m}{R} \qquad E_p = \frac{-6.29 \cdot 10^{10} \cdot 1.00 \cdot 10^3}{4.77 \cdot 10^5} \quad -1.32 \cdot 10^8 \, \text{J}$

A enerxía para mandalo ao infinito é a diferencia entre a enerxía no infinito, que é nula, e a enerxía potencial que ten no chan, porque a enerxía cinética debida á rotación do asteroide é desprezable.

$$\Delta E = 0 - E = 1,32 \cdot 10^8 \,\mathrm{J}$$

Introdución de datos. (Lapela 🔒 Enunciado)

Para o apartado c) hai que comezar un problema distinto, porque agora o astro central é o Sol.

Calcúlase primeiro a masa do Sol escribindo os datos da Terra.

A órbita é circular de	raio	<i>r</i> =	1,50E+11	m
O satélite xira cun	período	<i>T</i> =	1	anos

Respostas. (Lapela 🙃 Enunciado)

Sol $M = 2,00 \cdot 10^{30} \text{ kg}$

Cálculo da masa do Sol. (Lapela Período)

Período $T = 1,00 \cdot 365,25 \cdot 24 \cdot 3600 = 3,16 \cdot 10^7 \text{ s}$

Masa do astro $M = \frac{4 \cdot \pi^2 \cdot r^3}{G \cdot T^2} \qquad M = \frac{4 \cdot 3,14^2 \cdot (1,50 \cdot 10^{11})^3}{6,67 \cdot 10^{-11} \cdot (3,16 \cdot 10^7)^2} = 2,00 \cdot 10^{30} \text{ kg}$

Introdución de datos. (Lapela in Enunciado)

Para o apartado c) borre a opción, o valor e as unidades do raio da órbita da Terra e escriba a masa do Sol e o período de Ceres:

Un satélite de masa m= kg xira arredor de un astro de masa M= 2,00E+30 kg e raio R= O satélite xira con un período T= 4,6 anos

Respostas. (Lapela Enunciado)
Elixir Raio e as súas unidades.

Cálculo do raio da órbita. (Lapela 🔒 Altura)

Raio da órbita
$$r = \sqrt[3]{\frac{G \cdot M = g_0 \cdot R^2}{4 \pi^2}}$$
 $r = \sqrt[3]{\frac{G \cdot M \cdot T^2}{4 \cdot 3.14^2}} = 1.33 \cdot 10^{20} \text{ m}^3/\text{s}^2$ $r = \sqrt[3]{\frac{1.33 \cdot 10^{20} \cdot (1.45 \cdot 10^8)^2}{4 \cdot 3.14^2}} = 4.15 \cdot 10^{11} \text{ m}$

Cálculo do período. (Lapela 🔒 Período)

Período $T = 4,60 \cdot 365,25 \cdot 24 \cdot 3600 = 1,45 \cdot 10^8 \text{ s}$

Actualizado: 23/06/25

Sumario

PROBLEMAS DE SATÉLITES
• Comezo
• Teclado e rato
• Datos
• Resultados 2
• Outros cálculos
♦ PROBLEMAS
1. O satélite SpainSat NG I, da empresa española Hisdesat, lanzouse con éxito dende Cabo Cañaveral ás 2:34 do 30 de xaneiro de 2025, a bordo dun foguete Falcon 9 da empresa SpaceX. Cun peso de 6,1 toneladas e unha altura de 7,2 metros, o novo satélite leva un equipo especial que o protexe das interferencias e garante que as comunicacións sigan sendo privadas e seguras. Tras o lanzamento, o satélite
viaxará ata a súa posición final en órbita xeoestacionaria a 35 786 km sobre a Terra, case tres veces o
diámetro da Terra mesma
2. Un satélite artificial de 64,5 kg xira arredor da Terra nunha órbita circular de raio r = 2,32 R. Calcula:
3. A nave espacial Discovery, lanzada en outubro de 1998, describía arredor da Terra unha órbita cir- cular cunha velocidade de 7,62 km·s ⁻¹ :6
4. Un satélite artificial de masa 10² kg xira arredor da Terra a unha altura de 4·10³ km sobre a superfi- cie terrestre. Calcula:
5. Un satélite artificial de 500 kg describe unha órbita circular arredor da Terra cun raio de 2·10⁴ km. Calcula:7
6. Un satélite artificial de 500 kg de masa xira nunha órbita circular a 5000 km de altura sobre a super- ficie da Terra. Calcula:8
7. Deséxase pór en órbita un satélite de 1800 kg que vire a razón de 12,5 voltas por día. Calcula:9 8. A luz do Sol tarda 5·10² s en chegar á Terra e 2,6·10³ s en chegar a Xúpiter. Calcula:
10. Un satélite artificial de 200 kg describe unha órbita circular a unha altura de 650 km sobre a Terra. Calcula:11
11. Ceres é o planeta anano máis pequeno do sistema solar e ten un período orbital arredor do Sol de 4,60 anos, unha masa de 9,43·10²º kg e un raio de 477 km. Calcula:12