

FANCONN TM	文档编号	产品版本	密级
开源 NBIOT 开发平台	V1.0	V1.0	公开
	文档名称: LiteOne GPIO 配置		共8页

FANCONN 开源 NBIOT 开发平台 LiteOne GPIO 配置

广州准捷电子科技有限公司

版本: V1.0

地址:广州市天河区软件路17号亿牛大厦5楼

电话: +86 18078868880

电子邮件: yellow@fanconn.com

版权声明

本手册版权属广州准捷电子科技有限公司(以下简称"准捷电子")所有,并保留一切权利。非准捷电子同意(书面形式),任何单位及个人不得擅自摘录本手册部分或全部,违者我们将追究其法律责任。

版本记录

版本号	作者	版本说明	日期
V1.0	九月阁	初始版本	2018-10-31

地址:广州市天河区软件路17号亿牛大厦5楼

电话: +86 18078868880 电子邮件: yellow@fanconn.com

目录

1.	GPIO 引脚对应图	. 4
2.	初始化函数	6
3.	设置 GPIO 电平	. 7
4.	获取 GPIO 电平	. 7
	GPIO 特殊配置	

1. GPIO 引脚对应图

丝印	可的对应引脚名:		软件 SDK 对应引脚名:	
0	NC	NC		
2	SWD-C	SWD-D	NULL	NULL
8	RTS	VDDEXT	PINNAME_RST	NULL
4	GPIO9	CTS	PINNAME_USIM_DETECT	PINNAME_CTS
6	RI	DTR	NULL	PINNAME_DTR
6	RX1	TX1	NULL	NULL
0	REST	NETLIGHT	NULL	NULL(*特殊配置)
8	GND	GND		
9	5V	5V		
1	SPI2-SI	SPI2-CKL	PINNAME_SPI_SI	PINNAME_SPI_CLK
•	SPI2-SO	SPI2-CS	PINNAME_SPI_SO	PINNAME_SPI_CS
1	TX29	RX28	PINNAME_UART_TX3	PINNAME_UART_RX3
1	RXDB	TXDB	PINNAME_DBG_RXD	NULL(*特殊配置)
1	ADC	NC	NULL	NULL
(SPI1-CS	SPI1-CL	PINNAME_SPI_CS2	PINNAME_SPI_CLK2
16	SPI1-SI	SPI1-SO	PINNAME_SPI_SI2	PINNAME_SPI_SO2
•	GND	GND		
18	3.3	3.3		

可以参考开箱说明书。

根据移远提供的资料不是很完善导致引脚丝印一些地方出现小瑕疵,具体正确引脚图请参考上面的开箱说明书为准

地址:广州市天河区软件路17号亿牛大厦5楼

程序配置参考对应例程:

程序配置三个 GPIO 进行高低电平切换,间隔时间 3 秒,并且通过串口打印 PINNAME SPI SO 的电平。

地址:广州市天河区软件路17号亿牛大厦5楼

2. 初始化函数

```
GPIO 初始化函数如下:
QOCPU_RET ql_gpio_init( Enum_PinName
                                         pinName,
                      Enum_PinDirection
                                         dir,
                      Enum PinLevel
                                         level
                     );
   pinName: GPIO 引脚
   dir: 配置方向
       PINDIRECTION IN: 输入
       PINDIRECTION_OUT: 输出
   Level: 初始化 GPIO 引脚电平
       PINLEVEL LOW:
                    低电平
       PINLEVEL HIGH: 高电平
       PINLEVEL NONE: 不配置
   在配置 GPIO 输入模式的时候第三个参数选择 PINLEVEL NONE。
   返回:判断是否是 QOCPU_RET_OK, 否则初始化出错
参考配置:
if(ql_gpio_init(PINNAME_SPI_SO,PINDIRECTION_OUT,PINLEVEL_HIGH)!=QOCPU_RET_OK)
QDEBUG_ERROR("gpio init err");
```

if(ql_gpio_init(PINNAME_UART_TX3,PINDIRECTION_IN, PINLEVEL_NONE)!=QOCPU_RET_OK)

QDEBUG_ERROR("gpio init err");

其中配置 PINNAME UART TX3 引脚作为输入,不配置电平,判断初始化是否成功。

其中配置 PINNAME_SPI_SO 引脚作为输出,初始化电平为高电平,判断初始化是否成功。

地址:广州市天河区软件路17号亿牛大厦5楼

电话: +86 18078868880 电子邮件: yellow@fanconn.com

3. 设置 GPIO 电平

GPIO 设置引脚函数如下:

QOCPU_RET ql_gpio_set_level(Enum_PinName pinName, Enum_PinLevel level);

pinName: GPIO 引脚

level: 设置电平

PINLEVEL_LOW: 低电平 PINLEVEL_HIGH: 高电平

参考配置:

ql_gpio_set_level(PINNAME_SPI_SO,PINLEVEL_HIGH); //高电平

ql_gpio_set_level(PINNAME_SPI_SO,PINLEVEL_LOW); //低电平

4. 获取 GPIO 电平

GPIO 设置引脚函数如下:

bool ql_gpio_get_level(Enum_PinName pinName);

pinName: GPIO 引脚

返回: GPIO 的引脚电平

参考配置

APP_DEBUG("level:%d",ql_gpio_get_level(PINNAME_SPI_SO)); //获取该引脚的电平

关于 APP DEBUG 函数需要自己定义,可以参考 GPIO 例程,直接输出电平的状态

地址:广州市天河区软件路17号亿牛大厦5楼

电话: +86 18078868880 电子邮件: yellow@fanconn.com

5. GPIO 特殊配置

该配置只针对引脚对应图的那两个特殊标注的两个引脚。这两个引脚只能作为 GPIO 输出使用,不能作为输入。

丝印	的对应引脚名:		软件 SDK 对应引脚名:	
0	NC	NC		
0	SWD-C	SWD-D	NULL	NULL
3	RTS	VDDEXT	PINNAME_RST	NULL
4	GPIO9	CTS	PINNAME_USIM_DETECT	PINNAME_CTS
6	RI	DTR	NULL	PINNAME_DTR
6	RX1	TX1	NULL	NULL
0	REST	NETLIGHT	NULL	NULL(*特殊配置)
8	GND	GND	_	
9	5V	5V		
10	SPI2-SI	SPI2-CKL	PINNAME_SPI_SI	PINNAME_SPI_CLK
0	SPI2-SO	SPI2-CS	PINNAME_SPI_SO	PINNAME_SPI_CS
Ø	TX29	RX28	PINNAME_UART_TX3	PINNAME_UART_RX3
13	RXDB	TXDB	PINNAME_DBG_RXD	NULL(*特殊配置)
14	ADC	NC	NULL	NULL
B	SPI1-CS	SPI1-CL	PINNAME_SPI_CS2	PINNAME_SPI_CLK2
16	SPI1-SI	SPI1-SO	PINNAME_SPI_SI2	PINNAME_SPI_SO2
D	GND	GND		
13	3.3	3.3		

配置函数如下

gpio_claim(PIN_11, GPIO_DIRECTION_OUTPUT); //配置 NETLIGHT 为 GPIO gpio_claim(PIN_16, GPIO_DIRECTION_OUTPUT); //配置 TXDB 为 GPIO

在使用下面函数之前必须确保该引脚已经配置为 GPIO

应用函数如下

```
gpio_set(PIN_11); //NETLIGHT 输出高电平 gpio_set(PIN_16); //TXDB 输出高电平
```

gpio_clear(PIN_11); //NETLIGHT 输出低电平 gpio_clear(PIN_16); //TXDB 输出低电平

地址:广州市天河区软件路17号亿牛大厦5楼