

1 Claims:

2

3 1. A burner for fabricating aerosol doped waveguides,
4 the burner including:

5 a plurality of inlet ports each connected to a
6 respective torch conduit, said torch conduit connecting
7 its respective inlet port to a gas mixing region; and
8 including a gas expansion chamber provided for at least
9 one of said inlet ports upstream of said gas mixing
10 region.

11

12 2. A burner as claimed in Claim 1, wherein the gas
13 expansion chamber is in the form of a reservoir
14 chamber.

15

16 3. A burner as claimed in either preceding claim,
17 wherein the gas expansion chamber is located at the
18 junction of an inlet port and the respective torch
19 conduit.

20

21 4. A burner as claimed in Claim 1 or 2, wherein the
22 gas expansion chamber is located upstream of the
23 junction between the inlet port and the respective
24 torch conduit.

25

26 5. A burner as claimed in Claim 1 or 2, wherein the
27 gas expansion chamber is located downstream of the
28 junction between the inlet port and the respective
29 torch conduit.

30

31 6. A burner as claimed in any preceding claim,
32 wherein said inlet ports feed oxygen, hydrogen,
33 waveguide deposition material carried by a carrier gas,
34 and aerosol droplets of a dopant ion solution carried
35 by a carrier gas to the said burner.

36

1 7. A burner as claimed in Claim 6, wherein the
2 hydrogen port is located downstream of the waveguide
3 deposition material inlet port.

4

5 8. A burner as claimed in Claim 6 or 7, wherein the
6 aerosol inlet port is located downstream of the
7 hydrogen inlet port.

8

9 9. A burner as claimed in any one of Claims 6 to 8,
10 wherein the oxygen inlet port is located downstream of
11 the aerosol inlet port.

12

13 10. A burner as claimed in any preceding claim,
14 wherein said at least one inlet port is located in a
15 radial plane with respect to a longitudinal axis of the
16 burner which differs from a radial plane containing
17 said other inlet ports.

18

19 11. A burner as claimed in Claim 10, wherein said at
20 least one inlet port is located in a plane orientated
21 at 180° to the radial plane of the other inlet ports.

22

23 12. A burner as claimed in any preceding claim,
24 wherein said at least one inlet port is orientated at a
25 first angle with respect to the burner axis, and
26 wherein the other inlet ports are orientated at a
27 second angle with respect to the burner axis, said
28 first angle being less than said second angle.

29

30 13. A burner as claimed in Claim 12, wherein said
31 first angle lies in the range 5° to 45° .

32

33 14. A burner as claimed in Claim 13, wherein said
34 first angle lies in the range 5° to 25° .

35

36

12

Murba⁴

1 15. A burner as claimed in any preceding claim,
2 wherein said at least one inlet port is an aerosol
3 inlet port for providing aerosol droplets of a dopant
4 ion solution to said burner.

5

6 16. A burner substantially as described herein and
7 with reference to Fig. 3 of the accompanying drawings.

8

9