Discussion

• This paper has been composed to compare modeling strategies for detecting subject level associations in single-cell RNA sequencing data sets gathered over multiple subjects.

• In this paper we compared the estimates from five statistical models applied to single-cell RNA sequencing data from 15 subjects from a Lupus Nephritis study.

5

9

10

15

17

21

22

23

We compared estimate values of the fixed effect slope parameter, standard error, and
test statistic from each model method. These comparisons allowed us to find models
that produced similar estimates and discover models for which there is a large difference.
 I also performed several nested model comparisons to determine the suitability of each
variable under consideration.

• main results

- As a class of modeling techniques, LM and GEE have population average interpretations for fixed effect slope parameter estimates that tend to be similar to each other. Similarly, as a class of modeling techniques, LM-FE, LMM-RI, and LMM-RS have subject specific fixed effect slope parameter estimate interpretations that tend to be similar to each other. Inter-class comparisons of estimates tend to be more different than Intra-class comparisons.
- SE of LMM-RS model is higher than all other modeling methods. The LMM-RS method differs from all other methods with the incorperation of subject-specific variability relationships between predictor and response. Incorperation of this effect is reducing the influence (significance) of the fixed-effect slope by instead incorperating the effect into subject-specific variational response related to the covariate magnitude.
- SE of LMM-RI model is as low or lower than all other modeling methods. The LMM-RI model differs from all other models either by lacking the incorperation of subject-specific variability relationships between predictor and response, or

incorporating subject-specific variability information independent of predictor. In	27
either case, further emphasis is being placed on the fixed-effect slope parameter due	28
to a need to estimate subject-specific variability distributions with a zero-mean.	29
- The above conclusions were also supported by a similar analysis performed on test	30
statistics	31
- Nested model comparisons indicated that inclusion of subject-specific terms was	32
advisable at all levels (fixed and random, intercept and slope) with exception of	33
the FBLN1~CD34 variable pairing random slope.	34
• why it makes sense for GEE to be different from LMMs	35
 population average vs conditioning 	36
- but under the conditions of linearity and normality of error we can show	37
that LMMs can also be $\mathit{described}$ as marginalizing over the structure	38
• Drawbacks	39
– The results of this paper have been based on evidence obtained from two	40
scRNA-seq variable paring models.	41
	42
– More variable pairings would be needed to establish further conclusions, and	43
reinfornce current findings.	44
- scRNA-seq data is heavily influenced by protocol dependencies and measurement	45
inconsistencies. Quality control must be carefully considered and conducted prior	46
to any analysis.	47
• Future directions	48
- The evaluation of more variable pairings is the foremost objective outstanding in	49
this analysis.	50
• Summary	51
- scRNA-seq data sets with measurements taken over multiple individuals will	52
continue to rise in prevalence	53

_	we have pres	sented a	an initial	comparison	of methods	for (detecting	subject-level	5
associations in such data sets									5

References