Hopfbündel

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

Die 3-Sphäre S^3

Die 3-Sphäre $S^3 \subset \mathbb{R}^4$ ist mit $\underline{p}=(p_1,p_2,p_3,p_4) \in \mathbb{R}^4$ definiert durch $\|\underline{p}\|=1$. Identifiziert man durch die Korrespondenz

$$(x^1, y^1, x^2, y^2) \leftrightarrow (x^1 + iy^1, x^2 + iy^2)$$

das Kontinuum \mathbb{R}^4 mit \mathbb{C}^2 , dann erhält man für die 3-Sphäre

$$S^{3} = \left\{ \left(z^{1}, z^{2} \right) \in \mathbb{C}^{2} : \left| z^{1} \right|^{2} + \left| z^{2} \right|^{2} = 1 \right\}.$$

Diese Darstellung von S^3 ist von 4 Parametern abhängig, es sind aber nur 3 nötig. Also macht man z.B. mit $r_1, r_2 \ge 0$ und $\xi_1, \xi_2 \in \mathbb{R}$ den Ansatz $z^1 = r_1 \exp{(i\xi_1)}$ und $z^2 = r_2 \exp{(i\xi_2)}$. Es muss dann $r_1^2 + r_2^2 = 1$ gelten. Man erhält so die Parametrierung für S^3 (siehe dazu im Anhang die Behauptung 1)

$$S^{3} = \left\{ (\cos(\phi) \exp(i\xi_{1}), \sin(\phi) \exp(i\xi_{2})) : \quad \xi_{1}, \xi_{2} \in \mathbb{R}, 0 \le \phi \le \frac{\pi}{2}, \right\}.$$
 (1)

Um sich eine Vorstellung dieser Parametrierung von S_3 machen zu können, werden im folgenden drei Fälle für die Beträge von z^1 und z^2 (und damit von $\cos(\phi)$ und $\sin(\phi)$) behandelt.

Fall 1: $|z^1|^2 = |z^2|^2$

Aus (1) folgt $\cos(\phi) = \sin(\phi)$ und damit $\phi = \frac{\pi}{4}$ und $\left|z^{1}\right| = \left|z^{2}\right| = \frac{\sqrt{2}}{2}$. Die 3-Sphäre S^{3} in diesem Fall ist der 2-dimensionale Torus (2D-Torus)

$$T = \left\{ \left(\frac{\sqrt{2}}{2} \exp\left(i\xi_1\right), \frac{\sqrt{2}}{2} \exp\left(i\xi_2\right) \right) : \quad \xi_1, \xi_2 \in \mathbb{R} \right\}.$$
 (2)

Fall 2: $|z^1|^2 \le |z^2|^2$

Abbildung 1: 2D-Torus T und horizontale Kreislinie $\{0\} \times S^1$, modifiziert nach [1]

Aus (1) folgt $\cos(\phi) \leq \sin(\phi)$ und wegen $\phi \in \left[0, \frac{\pi}{2}\right]$ ergibt sich $\frac{\pi}{4} \leq \phi \leq \frac{\pi}{2}$. Für das untere Limit $\phi = \frac{\pi}{4}$ ergibt sich der 2D-Torus T nach Gleichung (2).

Für das obere Limit $\phi = \frac{\pi}{2}$ folgt $z^1 = 0$, $z^2 = 1$ und das ergibt die horizontale Kreislinie $K_H = \{0\} \times S^1$

$$K_H = \left\{ \left(0, \frac{\sqrt{2}}{2} \exp\left(i\xi_2\right) \right) : \quad \xi_2 \in \mathbb{R} \right\}.$$

Für jeden Wert ϕ aus dem Intervall $\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$ ergibt sich jeweils ein 2D-Torus T_{ϕ} . Durch die Vereinigung all dieser 2-dimensionalen Tori T_{ϕ} und der Kreislinie K_H entsteht der 3D-Torus

$$K_1 = \{ (z^1, z^2) \in \mathbb{C}^2 : |z^1| \le |z^2| \},$$
 (3)

der T als Oberfläche hat (siehe Abbildung 1).

Fall 3: $|z^1|^2 \ge |z^2|^2$

Abbildung 2: 3D-Torus K_1 und vertikale Kreislinie $S^1 \times \{0\}$, modifiziert nach [1]

Aus (1) folgt $\cos(\phi) \ge \sin(\phi)$ und wegen $\phi \in \left[0, \frac{\pi}{2}\right]$ ergibt sich $0 \le \phi \le \frac{\pi}{4}$.

Für das obere Limit $\phi = \frac{\pi}{4}$ ergibt sich wieder der 2D-Torus T nach Gleichung (2).

Für das untere Limit $\phi = 0$ folgt $z^1 = 1$, $z^2 = 0$ und das ergibt die vertikale Kreislinie $K_V = S^1 \times \{0\}$

$$K_V = \left\{ \left(\frac{\sqrt{2}}{2} \exp\left(i\xi_1\right), 0 \right) : \quad \xi_1 \in \mathbb{R} \right\}.$$

 K_V erscheint in Abbildung 2 als Gerade, ist aber eine Kreislinie durch einen Punkt im Unendlichen.

Für jeden Wert ϕ aus dem Intervall $\left(0, \frac{\pi}{4}\right]$ ergibt sich jeweils ein 2D-Torus T_{ϕ} . Durch die Vereinigung all dieser 2-dimensionalen Tori T_{ϕ} und der Kreislinie K_V entsteht der 3D-Torus (siehe Abbildung 2)

$$K_2 = \left\{ \left(z^1, z^2 \right) \in \mathbb{C}^2 : \quad \left| z^1 \right| \ge \left| z^2 \right| \right\}.$$

Die Späre S_3 stellt sich also als Vereinigung zweier miteinander "verschränkter" 3D-Tori K_1 und K_2 dar, die den \mathbb{R}^3 vollständig ausfüllt.

Hauptfaserbündel (Prinzipalbündel)

Für $\underline{p} = (z^1, z^2) \in S_3$ und $g \in S^1$ gilt $\underline{p}g = (z^1, z^2) g = (z^1g, z^2g) \in S^3$, die Abbildung $(\underline{p}, g) \to \underline{p}g$ ist aus C^{∞} . Falls $g_1, g_2 \in S^1$ gilt für alle $\underline{p} \in S^3$ $(\underline{p}g_1) g_2 = \underline{p}(g_1g_2)$. Die Identität in S^1 ist $e = \exp(i0) = 1$ und es gilt $\underline{p}e = p$ für alle $p \in S^3$.

Diese Eigenschaften machen die Abbildung $(\underline{p}, g) \to \underline{p}g$ zu einer stetigen Rechtsoperation der Liegruppe S^1 auf der Mannigfaltigkeit S^3 .

Für einen fixen Punkt $\underline{p} \in S^3$ wird der Orbit von \underline{p} als die Teilmenge $\{\underline{p}g : g \in S^1\}$ von S^3 definiert, die durch das Durchlaufen aller $g \in S^1$ entsteht. Der Orbit von \underline{p} ist ein Kreis in S^3 durch den Punkt \underline{p} . Man kann zeigen, dass dieser Kreis sogar ein Grosskreis (also die Schnittmenge von $S^3 \subseteq \mathbb{R}^4$ mit einer linearen Hyperebene des \mathbb{R}^4) auf S^3 ist (siehe dazu im Anhang die Behauptung 2).

Anhang

Behauptung 1

Es existiert für jedes Tupel (r_1, r_2) mit $r_1, r_2 \ge 0$ und $r_1^2 + r_2^2 = 1$ ein eindeutig bestimmter Winkel $\phi \in \left[0, \frac{\pi}{2}\right]$ mit $r_1 = \cos(\phi)$ und $r_2 = \sin(\phi)$.

Beweis

Zu r_1 kann man den Winkel $\phi_1 = \arccos(r_1)$ hinzubestimmen und zu r_2 den Winkel $\phi_2 = \arcsin(r_2)$. Aus $r_1^2 + r_2^2 = 1$ folgt $r_2 = \pm \sqrt{1 - r_1^2}$. Wegen $r_2 \ge 0$ kommt nur das positive Vorzeichen in Frage. Also gilt $r_2 = \sqrt{1 - r_1^2}$.

Wegen der Identität (siehe dazu [2])

$$\arccos(x) = \arcsin(\sqrt{1-x^2})$$

ergibt sich

$$\phi_2 = \arcsin(r_2) = \arcsin\left(\sqrt{1 - r_1^2}\right) = \arccos(r_1) = \phi_1.$$

Die beiden Winkel ϕ_1 und ϕ_2 sind also identisch.

Für $x \ge 0$ gilt $0 \le \arcsin(x) \le \frac{\pi}{2}$ und $0 \le \arccos(x) \le \frac{\pi}{2}$. Für den Winkel ϕ gilt also $\phi \in \left[0, \frac{\pi}{2}\right]$.

Behauptung 2

Der Orbit $\{\underline{p}g:g\in S^1\}$ eines Punktes $\underline{p}\in S^3$ der stetigen Rechtsoperation $\underline{p}g$ bildet einen Grosskreis in S^3 .

Beweis

Der Orbit eines Punktes $p \in S^3$ lässt sich durch

$$\left\{ \left(z_{1}\exp\left(i\alpha\right),z_{2}\exp\left(i\alpha\right)\right):\quad\left|z^{1}\right|^{2}+\left|z^{2}\right|^{2}=1,\quad\alpha\in\left[0,2\pi\right)\right\}$$

darstellen, eine lineare Hyperebene des \mathbb{R}^4 durch

Literatur

- [1] Topology, Geometry and Gauge Fields; Naber, Gregory; Springer Science+Business Media; 2011
- $[2] \ https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie \#Additions theoreme; \ Abschnitt: \ Umrechnung in andere trigonometrische Funktionen$