Problem Set #1

OSM

Sophie Sun

Exercise 1.3

- Not an algebra
- Algebra
- Algebra and σ -algebra

Exercise 1.7

 $\{\emptyset, X\}$ is the smallest possible σ -algebra because by definition, a σ -algebra must have an empty set, which is included in this, and its complement must also be in the set, which is also included in $\{\emptyset, X\}$. On the other hand, the power set is the largest possible σ -algebra because it lists basically all the combinations of X.

Exercise 1.10

- Since each S_{α} is a σ -algebra, that means that $\emptyset \in S_{\alpha}$ for all α , which implies that $\emptyset \in \cap_{\alpha} S_{\alpha}$
- If $A \in S_{\alpha}$ for all α , then $A^c \in S_{\alpha}$ for all α because each S_{α} is a σ -algebra, which implies that $A^c \in \cap S_{\alpha}$
- If $A \in S_{\alpha}$ for all α , then $\cup A \in S_{\alpha}$ for all α because each S_{α} is a σ -algebra, which implies that $\cup A \in \cap_{\alpha} S_{\alpha}$
- Therefore, if $\{S_{\alpha}\}$ is a σ -algebra, then $\cap_{\alpha} S_{\alpha}$ is also a σ -algebra.

Exercise 1.17

• Because μ is a nonnegative function and

$$\mu(\cup_{i=1}^{\infty})A_i = \sum_{i=1}^{\infty} \mu A_i$$

then

$$B = A \cup (B \cap A^c) because A \subset B$$

then

$$\mu(A) + \mu(B \cap A^c) = \mu(B)$$

then

$$\mu(A) \le \mu(B)$$

then

$$A, B \in S, A \subset B \ then \ \mu(A) \le \mu(B)$$

• Let A_m , $A_n \in A$.

Let
$$D = A_m \cap A_n^c$$
, $E = A_n \cap A_m^c$, and $F = A_m \cap A_n$.

Because

$$\mu(\cup_{i=1}^{\infty})A_i = \sum_{i=1}^{\infty} \mu A_i$$

then $\mu(A_n \cup A_m) = \mu(D \cup E \cup F)$, and because D, E, and F are disjoint, then

$$\mu(A_n \cup A_m) = \mu(D) + \mu(E) + \mu(F)$$

. Solving for the left side of the equation:

$$\mu(A_n) + \mu(A_m) = \mu(D \cup F) + \mu(E \cup F)$$

$$\mu(A_n) + \mu(A_m) = \mu(D) + \mu(F) + \mu(E) + \mu(F)$$

which means

$$\mu(D) + \mu(E) + \mu(F) \le \mu(D) + \mu(F) + \mu(E) + \mu(F)$$

which means if

$$\{A_i\}_{i=1}^{\infty} \subset A , then \ \mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$$

Exercise 1.18

• Because $B \in S$ then $(A \cap B) \in S$. Because $\lambda(A) = \mu(A \cap B)$ and $B \in S$, then $\lambda(A) = \mu(A \cap B)$ is also a measure (X, S).

Exercise 1.20

• Let $B_1 = A_1$ and $B_i = A_i \cap A_{i-1}^c$ for $i \leq 2$. Also, $A = \bigcup_{n \in N} B_n$ and $A_n = \bigcup_{n=1}^n B_n$. This means that $\lim_{n \to \infty} (A_1 \cap A_n^c) = A_1 \cap A^c$ Using the proof from i),

$$\mu(A_1) - \mu(A_n) = \lim_{n \to \infty} \mu(A_1 \cap A_n^c) = \mu(A_1 \cap A^c) = \mu(A_1) = \mu(A_n)$$

which means

$$\lim_{n \to \infty} \mu(A_n) = \mu(\cap_{i=1}^{\infty} A_i)$$

Exercise 2.10

Since both $E \in X$ and $B \in X$, we know that both are in X. Therefore, there are three options: E = B, $E \cap B = \emptyset$ or $E \cap B \neq \emptyset$.

If E = B, then $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$ where $\mu^*(B \cap E) = \mu^*(B)$ and $\mu^*(B \cap E^c) = 0$, which means $\mu^*(B) = \mu^*(B)$, which means $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$.

If $E \cap B = \emptyset$, then $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$ where $\mu^*(B \cap E) = 0$ and $\mu^*(B \cap E^c) = \mu^*(B)$, which means $\mu^*(B) = \mu^*(B)$, which means $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$.

If $E \cap B \neq \emptyset$, then $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$ where $\mu^*(B \cap E) + \mu^*(B \cap E^c) = \mu^*(B)$, which means $\mu^*(B) = \mu^*(B)$, which means $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$.

This means that

$$\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$$

Exercise 2.14

Let O be the set of open sets and let A be defined as $O \subset A$. Because $B(\mathbb{R}) = \sigma(O) \subset \sigma(A) \subset \{S_{\alpha}\}$

Exercise 3.1

Let $\{x_i\}_{i=1}^{\infty}$ be elements of X. For any $\epsilon > 0$, $A_i = (x_i - \frac{\epsilon}{2^i}, x_i + \frac{\epsilon}{2^i})$, then $X \subset \bigcup_{i=1}^{\infty} A_i$ and $M(\bigcup A_i) \leq \sum_{i=1}^{\infty} (2^{1-i}\epsilon) = 2\epsilon$, which means M(X) = 0.

Exercise 4.15

Because $\{s: 0 \le s \le f\}$ and $\{s: 0 \le s \le g\}$ where s is simple, measurable, $\int_E f d\mu = \int_E g d\mu$

Note:

Sorry I just don't understand much of this math at all, even after working with other people in the program and watching multiple YouTube videos on measure theory. I especially don't understand how to prove things and what certain equations mean - I've never taken a proof-based math class. I genuinely feel bad for not turning in a complete problem set, but I really don't understand this and feel like this math is beyond my level - is there any advice you could give me in terms of how to catch up to this level?