

IN4343 – Real Time Systems

April 13th 2017, from 09:00 to 12:00

Koen Langendoen

Question:	1	2	3	4	5	6	Total
Points:	15	25	5	15	10	25	95
Score:							

- This is a closed book exam
- You may use a **simple** calculator only (i.e. graphical calculators are not permitted)
- Write your answers with a black or blue pen, not with a pencil
- Always justify your answers, unless stated otherwise
- The exam covers the following material:
 - (a) chapters 1-6, 8-9 of the book "Hard Real-Time Computing Systems (3rd ed)" by G. Buttazzo
 - (b) the paper "The Worst-Case Execution-Time Problem" by Wilhelm et al. (except Section 6)
 - (c) the paper "Transforming Execution-Time Boundable Code into Temporally Predictable Code" by P. Puschner
 - (d) the paper "Best-case response times and jitter analysis of real-time tasks" by R.J. Bril, E.F.M. Steffens, and W.F.J. Verhaegh

	77 PM (21/m 1)
Liu and Layland (LL) bound	$U_{lub}^{RM} = n(2^{1/n} - 1)$
Hyperbolic (HB) bound	$\prod_{i=1}^{n} (U_i + 1) \le 2$
Response Time Analysis	$WR_i = C_i + \sum_{k=1}^{i-1} \left\lceil \frac{WR_i + AJ_k}{T_k} \right\rceil C_k$
	$BR_i = C_i + \sum_{k=1}^{i-1} \left(\left\lceil \frac{BR_i - AJ_k}{T_k} \right\rceil - 1 \right)^+ C_k$
	$w^+ = \max(w, 0)$
Processor Demand	$w^{+} = \max(w, 0)$ $g(t_{1}, t_{2}) = \sum_{r_{i} \geq t_{1}}^{d_{i} \leq t_{2}} C_{i} \qquad g(0, L) = \sum_{i=1}^{n} \left\lfloor \frac{L + T_{i} - D_{i}}{T_{i}} \right\rfloor C_{i}$
schedulability	$\forall L \in D, g(0, L) \le L$
	$D = \{d_k d_k \le \min(H, \max(D_{max}, L^*))\}$
	$H = lcm(T_1, \dots, T_n)$
	$\sum_{i=1}^{n} (T_i - D_i)U_i$
	$L^* = \frac{\widetilde{i=1}}{1 - II}$
Polling Server schedulability	$L^* = \frac{\overline{i=1}}{1-U}$ $U_{lub}^{RM+PS} = U_s + n \left[\left(\frac{2}{U_s+1} \right)^{1/n} - 1 \right]$
	$\prod_{i=1}^{n} (U_i + 1) \le \frac{2}{U_s + 1}$
response time	$R_a = C_a + \Delta_a + F_a(T_s - C_s)$
response time	
Deferrable Server schedulability	$\Delta_a = \left\lceil \frac{r_a}{T_s} \right\rceil T_s - r_a \qquad F_a = \left\lceil \frac{C_a}{C_s} \right\rceil - 1$ $U_{lub}^{RM+DS} = U_s + n \left\lceil \left(\frac{U_s + 2}{2U_s + 1} \right)^{1/n} - 1 \right\rceil$
	$\prod_{i=1}^{n} (U_i + 1) \le \frac{U_s + 2}{2U_s + 1}$
response time	$R_a = C_a + \Delta_a - C_0 + F_a(T_s - C_s)$
	$C_0 = \min(C_s(r_a), \Delta_a)$
	$\Delta_a = \left\lceil \frac{r_a}{T_s} \right\rceil T_s - r_a \qquad F_a = \left\lceil \frac{C_a - C_0}{C_s} \right\rceil - 1$
NP scheduling level-i busy period	$L_i = B_i + \sum_{h=1}^{i} \left\lceil \frac{L_i}{T_h} \right\rceil C_h \qquad N_i = \left\lceil \frac{L_i}{T_i} \right\rceil$
	$B_i = \max_{j>i} \{C_j\}$
response time	$s_{ik} = B_i + (k-1)C_i + \sum_{h=1}^{i-1} \left(\left\lfloor \frac{s_{ik}}{T_h} \right\rfloor + 1 \right) C_h$
	$R_{ik} = (s_{ik} + C_i) - (k - 1)T_i$
	$R_i = \max_{k \in [1, N_i]} \{R_{ik}\}$
Elastic Model utilization	$\forall i U_i = U_{i0} - (U_0 - U_d) \frac{E_i}{E_S}$ where $E_S = \sum_{i=1}^n E_i$

Given the following set of aperiodic, preemptable tasks

	A	В	С	D	\mathbf{E}	F	$\mid G \mid$
r_i	0	0	5	0	5	5	5
C_i	3	1	1	2	4	1	2
d_i	10	10	15	10	15	15	15

with precedent constraints:

$$A \rightarrow C$$
, $B \rightarrow C$, $B \rightarrow F$, $C \rightarrow E$, $C \rightarrow F$, $D \rightarrow F$, $E \rightarrow G$.

To determine if there is a feasible schedule EDF* can be employed, which transforms the precedence constraints into timing constraints by updating the release times and deadlines of the tasks.

(a) 2 points Which criterion does EDF* optimize?

Solution: The maximum lateness, L_{max}

(b) 3 points Explain that although EDF considers deadlines only for determining the priority among tasks, the release times must be adjusted too.

Solution: Consider a precedence $X \rightarrow Y$. If task Y is released before task X and there are no other ready tasks with a deadline earlier than Y, then EDF will run Y (while it should wait until X finishes). That can be fixed by ensuring that the release time of Y is larger than that of X.

(c) 3 points Transform the release times according to the precedence constraints.

Solution: Apply the max rule starting at the roots.

	A	В	\mathbf{C}	D	\mathbf{E}	F	G
r_i	0	0	5	0	6	6	10

(d) 3 points Transform the deadlines according to the precedence constraints.

Solution: Apply the min rule starting at the leaves.

			11 0				
	A	В	С	D	\mathbf{E}	F	G
d_i	8	8	9	10	13	15	15

(e) 4 points Determine if the task set is feasible. If so, what is the minimal slack? If not, what is the maximum lateness?

Solution: The schedule is feasible, and has a minimal slack of 1 (Lmax = -1) for task G (or F). Note that the picture shows the transformed release times and deadlines, but the task lateness must be computed using the original deadlines.

Question 2 [25 points]

Consider the following task set:

	C_i	D_i	T_i
$ au_1$	2	3	5
$ au_2$	4	6	8
$ au_3$	4	32	40

(a) 10 points Use the processor demand criterion to demonstrate that the above task set is unfeasible under EDF scheduling.

Solution: Processor utilization is 1 (!), so L^* can't be computed and we need to go as far as the Hyper period (40).

	Jr
	demand
g(0,3)	2
g(0,6)	6
g(0,8)	8
g(0,13)	10
g(0,14)	14
g(0,18)	16
g(0,22)	20
g(0,23)	22
g(0,28)	24
g(0,30)	28
g(0,32)	32
g(0,33)	34
	·

Task τ_1 (which must complete by t=33) misses its deadline!

(b) 5 points Determine the worst-case response times of the three tasks. *Hint: draw a time line*.

Task	Response time
$ au_1$	4
$ au_2$	8
$ au_3$	32

Alternative solution is to avoid a context switch at t=35 allowing task τ_2 to finish within its deadline, and task τ_1 to incur a second deadline violation.

Task	Response time
$ au_1$	5
$ au_2$	6
$ au_3$	32

Solution:

(c) 2 points Releasing all the tasks at once is creating the highest demand at the start of the schedule (à la the critical instant for RM scheduling). Articulate why starting task τ_3 later could be beneficial.

Solution: The "slack" between the deadline and the next period of task τ_3 can only be used at the end of the Hyper period, while it may be of better use at the beginning.

(d) 5 points Can you find a phase offset for task τ_3 that makes the schedule feasible under EDF?

Solution: Yes we can! The utilization is 1, so there must be enough space for hosting task τ_3 from the first bit of execution (at t=14) until the end of the Hyper period (at t=40). As task τ_3 's relative deadline is larger than the gap (32 > 26 = 40 - 14) any phase between 8 (= 40 - 32 = T_3 - D_3) and 14 will do:

(e) 3 points Provide a revised definition of the processor demand g(0, L) that takes phase offsets (for all tasks) into account.

Solution:

$$g(0,L) = \sum_{i=1}^{n} \left[\left(\frac{L - \phi_i + T_i - D_i}{T_i} \right)^+ \right] C_i$$

When jitter is not a factor, the best case response time of tasks under RM scheduling can be determined by iteratively computing the least fixed point of the following recursive equation:

$$BR_i = C_i + \sum_{k=1}^{i-1} \left(\left\lceil \frac{BR_i}{T_k} \right\rceil - 1 \right) C_k$$

(a) 3 points Explain why one cannot simply round down, as in $\left\lfloor \frac{BR_i}{T_k} \right\rfloor$, but has to round up and subtract 1.

Solution: The expressions $\lfloor x \rfloor$ and $\lceil x \rceil - 1$ and differ only for integral numbers of x. That is if BR_i is a multiple of T_k when constructing the optimal instant for task i. In that case task k will be executed first as it has higher priority, so there is no point in starting task i at that moment; one should wait until k finishes i.e., start task i later so k can interfere one time less. In other words, when rounding down the iterative procedure would stop too early when hitting such an integral point.

(b) 2 points Show that $BR_i^* = C_i + \sum_{k=1}^{i-1} \frac{BR_i^*}{T_k} C_k$ is a valid starting point.

Solution: We need to show that BR_i^* is larger than the true solution. It holds that $\lceil x \rceil - 1 < x \leq \lceil x \rceil$, also for x being an integral number, from which it follows that

$$BR_i^* = C_i + \sum_{k=1}^{i-1} \left(\frac{BR_i^*}{T_k}\right) C_k > C_i + \sum_{k=1}^{i-1} \left(\left\lceil \frac{BR_i^*}{T_k} \right\rceil - 1\right) C_k = BR_i$$

Question 4 [15 points]

Consider jitter analysis (RM scheduling) for the following task set:

	C_i	T_i
$ au_1$	2	5
$ au_2$	3	8
$ au_3$	4	25

(a) 3 points Draw the critical instant for task τ_3 and report its worst-case response time.

Task	Worst case
$ au_1$	2
$ au_2$	5
$ au_3$	23

(b) 4 points Draw the optimal instant for task τ_3 and report its best-case response time.

(c) 3 points Derive the response jitter of all three tasks.

|--|

(d) 5 points If task τ_2 would be subject to an activation jitter of one (1), what changes to the response jitter of the three tasks? *Hint: a time line tells more than a thousand equations*.

Solution: For task τ_1 (highest prio) and τ_2 (activation jitter is **not** part of the response time) nothing changes. Then for task τ_3 , the worst-case response time does not change as there is an extra unit of slack at t=23 that can accommodate the 1 unit of jitter by task τ_2 (whose deadline moves from 24 to 23). Likewise the best case does not change either as the extra unit of space does release task τ_2 earlier at t=-9, but it cannot run until t=-8 as before (task τ_1 has precedence). Thus, response jitter stays at 12!

Question 5 [10 points]

When mixing periodic and aperiodic tasks one can make use of a priority server to schedule the aperiodic tasks. Consider the following periodic tasks and aperiodic jobs (under EDF):

		C_i	D_i	T_i
	$ au_1$	2	4	8
	$ au_2$	3	6	10
	$ au_3$	3	9	12

$$\begin{array}{c|cccc}
 & a_i & C_i \\
\hline
J_1 & 4 & 2 \\
\hline
J_2 & 11 & 1 \\
\hline
J_3 & 20 & 2
\end{array}$$

(a) 5 points Determine the response times for the three jobs when being served by (plain) TBS.

Solution:

Max server utilization is $U_S = 1 - U_p = \frac{1}{5}$.

(b) 5 points Determine the response times for the three jobs when being served by **optimized** TBS.

Consider the following set of periodic tasks:

	C_i	$\mid T_i \mid$
$ au_1$	3	6
$ au_2$	3	8
τ_3	1	23
τ_4	2	30

(a) 7 points What is the maximum lateness of this task set under RM scheduling?

When switching to **non-preemptive** RM scheduling the self-pushing phenomenon complicates matters, and may require the analysis to extend beyond the first period of a task.

(b) 8 points Report how many periods we need to consider for the above tasks.

Solution: We can't take a shortcut as the task set is not feasible under preemptive scheduling, so we have to compute the level-i busy times.

Task Blocking		Level-i busy	Number	
$ au_1$	3	-	1	
$ au_2$	2	23	3	
$ au_3$	2	40	2	
$ au_4$	0	88	3	

(c) 10 points Report the worst-case response times for the four tasks, and conclude if the task set is feasible.

Task	Worst case	
$ au_1$	6	Task = missas its deadline as unfacible
_	_	Task τ_3 misses its deadline, so unfeasible.
$ au_4$	24	
	$ au_1 au_2 au_3$	$ \begin{array}{cccc} \tau_1 & 6 \\ \tau_2 & 8 \\ \tau_3 & 24 \end{array} $