Test Inf	ormation						
Description After you completed the assignment, you may get a mark (probably 0), it is a dummy result and not the real result because the true answers have not been input to the systems yet. The real result will be published 2 weeks or more after the assignment deadline.							
Instructio	Hard deadline: late submission is not allowed. Please click on the "save and submit" button at the end of the page after you completed the assignment.						
	If your answer is not an integer, give it to the nearest 3 decimal places. If your answer is an integer, add decimal point has no harm. E.g. 3 = 3.0 = 3.00 = 3.000 etc.						
	Please complete the assignment before the deadline. Multiple attempts are allowed.						
Multiple Attempts	This test allows multiple attempts.						
Force Completio							
	Your answers are saved automatically.						
	o Completion Status: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16						
	ESTION 1	10 points	Save Answer				
A spe	ech signal (single channel) is sampled at 44100 Hz and the resolution is 16 bits. How many bytes are used to store 70 seconds of this signals?						
A spe	ech signal is sampled at 44100 Hz. The frame size is 477 ms and the overlapping ratio is 70%. Calculate the number of overlapped samples of adjacent frames. Your answer may not integer, give your answer in decimal points, however, our accepted answer is +/-1 sample.	10 points	Save Answer				
A spe	ESTION 3 ech signal is sampled at 1433 Hz . A low pass filter (from 0 to X Hz) should be placed between the microphone amplifier and the analogue-to-digital converter to avoid antialiasing e to sample). Calculate the value of X.	10 points	Save Answer				
The tr	ansformation from signal to Cepstral coefficients is achieved by the following 4 processors. Please select the order of execution on the left side of the processor shown below (order e first being processed etc.). IDFT IDFT windowing LOG X(m)	10 points	Save Answer				
A fran	ESTION 5 The segment of a sound signal X has a sequence of time domain samples: X=[1,3,6,1,6,7,1,8,3,6,6,7,9,5,8] hole sequence is one segment, no frame blocking and framing is required here. You can calculate the auto-correlation parameters r0, r1, r2, r3 and r4 from X. Find (r0 + r1 + r2 + r3 + r3 + r4 + r4 + r4 + r4 + r4 + r4	10 points	Save Answer				
Linea A fran	ESTION 6 predictive coding LPC coefficients ne segment of a sound signal X has a sequence of time domain samples: X=[1,3,6,1,6,7,1,8,3,6,6,7,9,5,8] near predictive coding LPC coefficients of order 4 are a1, a2, a3 and a4. Find a4.	10 points	Save Answer				
QU	ESTION 7	10 points	Save Answer				
X=[2.2 2.3 (0.2 (2.4 s) 4.5 (2.3 c) 5.5 s) 5.7 s 4.5 4.5 4	1.7 1.6 1.6 1.8 1.6 1.6 1.9						

Dynamic programming The codes of a reference sound segment, and an unknown input segment are listed below. reference = [1578425157]; % reference sound segment		
input = [1 4 6 8 4 3 4 2 5 6] %input segment		
Note: The distortion measure between two sound of code A and B is (A – B)^2. Use the dynamic programming method to find the optimal distortion between the two sounds.		
QUESTION 9	40	
The frequencies of two signals are 220 and 533 Hz. Find the difference between the two signals in MEL scale.	10 points	Save Answer
QUESTION 10	10 points	Save Answer
Fourier Transform A signal s= [2147231578543678740236]		
Using Fourier transform shown in the diagram to find Xm , where m=2 (the energy of the frequency at m.) Hint, you may use the link shown below or in the diagram to find the code for the calculation,		
Demo Matlab code: demo_dft_tutorial.rar (http://www.cse.cuhk.edu.hk/~khwong/www2/cmsc5707/demo_dft_tutorial.rar) ,		
The Fourier Transform FT method		
(Assume Signal S_k is already smoothed by a hamming window to		
simplify the discussion)		
• Forward Transform (FT) of N samples: $X_m = FT(s_k)$		
$X_{m=0,1,N-1}$ (complex numbers) = FT { $s_{k=0,1,2N-1}$ (real numbers)}, the equation is		
$X_{m=0,1,N-1}(\text{complex }numbers) = FT \{ s_{k=0,1,2,N-1}(\text{real numbers}) \}, the equation is $ $X_m = \sum_{k=0}^{N-1} s_k e^{-j\left(\frac{2\pi km}{N}\right)}, m = 0,1,2,3,,N-1, \text{ and } e^{j\theta} = \cos(\theta) + j\sin(\theta), j = \sqrt{-1}$		
Input (is in time domain) = $s_{k=0,1,2,N-1} = s_0, s_1, s_2,, s_{N-1}$ (total N samples)		
Output (is in Frequency domain) after $FT = X_{m=0,} X_{m=1,} X_{m=2,} \dots, X_{m=N-1,}$ which are (N) complex numbers		
$X_m = \ X_m\ _2 e^{j\theta_m}$, so X_m is complex. $\ \cdot\ _2 = \text{Euclidean norm}$, or 2-norm, i.e.		
If $Z = (z_1, z_2,, x_n)$, then $ Z _2 = \sqrt{z_1^2 + z_2^2 + + z_n^2}$ Demo Matlab code:		
s= †		
• https://ww2.mathworks.c n/matlabcentral/fileexcha		
s _{k-o} / / / nge/77789-discrete-		
Time k fourier-transform		
k=0 1 2 k=N-1		
QUESTION 11	10 points	Save Answer
speech signal frame blocking A speech signal is 2.25 seconds in duration. A frame blocking method is applied to obtain the frames, the frame size is 30ms and non-overlapping region is 20ms. Estimate how many		
A specin signal is 2.25 seconds in duration. A frame blocking method is applied to obtain the frames, the frame size is soms and non-overlapping region is zoms, estimate now many frames (+/-1 accuracy allowed) will you obtain for this signal.		
QUESTION 12	10 points	Save Answer
MFCC (multiple answer question)		
☐ The term MFCC0 (index 0) is smaller than other MFCC terms. ☐ The term MFCC0 (index 0) is bigger than other MFCC terms.		
 □ The term MFCCO (index 0) represents the highest frequency term of the signal. □ MFCCO (index 0) is not used in speech recognition because it represents the energy term and irrelevant to the frequency content of the signal. 		

10 points Save Answer

QUESTION 8

20 points Save Answer **QUESTION 13**

Dynamic programming

An accumulated distortion score matrix (using the format same as the lecture notes) of matching 2 sequences is shown in the table below.

The optimal distortion score of this accumulated distortion score matrix is P. The number of elements of the optimal path is N (including the first and last elements of the path). Find N+P. Hints: The diagonal path is preferred (see lecture notes for the definition), and assume we do not apply any restricted region in the optimal search.

60	60	69	70	34	49	37	46	26	26
59	71	107	91	30	24	21	25	22	46
55	71	99	75	29	20	21	21	21	61
39	35	39	39	20	38	27	39	12	13
35	51	79	47	11	2	3	3	12	61
19	15	31	11	2	11	15	24	24	40
18	6	10	2	6	31	47	72	76	75
17	5	1	5	30	79	89	120	95	71
1	1	10	11	15	40	56	75	70	71
0	4	20	24	25	41	50	66	67	76

QUESTION 14	20 points	Save Answer			
Autocorrelation programming exercise You need to use MATLAB for the programming exercises.					
Touried a use marker or the programming exercises. Obtain the data from http://www.cse.cuhk.edu.hb/-khwong/www2/cmsc5707/data57074_1.zip					
Unzip the files and follow the instructions in readme4b.docx. Run the code "demo_sign1_question".					
You will obtain a signal frame "x_frame", the autocorrelation parameters of x_frame are r0,r1,r2,r3,r4 etc. Find r2.					
QUESTION 15	20 points	Save Answer			
MFCC programming exercise					
Obtain the data from http://www.cse.cuhk.edu.hk/~khwong/www2/cmsc5707/data57074_1.zip					
Study the matlab documentation of the function "mfcc". Run the following code %% matlab code starts here %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%					
clear					
[audioIn,fs] = audioread("s4.wav");					
%the source .wav sound is stereo, the following uses one channel of the sound [coeffs,delta,deltaDelta,loc] = mfcc(audioIn(;,1),fs);					
% if W=window size in samples					
% M=overlapping sample					
% N=number of frames obtained. % P=number of MFCC parameters obtained.					
70 P=number of MPCC parameters obtained.					
Find W+M+N+P . Hints: +/- 3 is acceptable.					
QUESTION 16	20 points	Save Answer			
MFCC programming exercise					
Decad on the above acceptions automatical					
Based on the above questions, extraction					
xa= the 40-th frame of sound file "s4.wav"					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav"					
xa= the 40-th frame of sound file "s4.wav"					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs.					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs. E.g. the 40th row of coeffs is the mfcc vector of frame 40 of the sound file.					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs.					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs. E.g. the 40th row of coeffs is the mfcc vector of frame 40 of the sound file. (2) Assume the two mfcc vectors (coeffs) are [LogEnergy_m0, m,0,m1,m2m12], and [LogEnergy_n0,n0,n1,n2,n12]. The mfcc_distortion=sqrt [(m1-n1)^2+(m2-n2)^2+,+(m12-n12)^2]. Note that LogEnergy and m0 and n0 to trems are not used in the calculation. See details in https://ww2.mathworks.cn/help/audio/ref/mfcc.html?overload=mfcc+false					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs. E.g. the 40th row of coeffs is the mfcc vector of frame 40 of the sound file. (2) Assume the two mfcc vectors (coeffs) are [LogEnergy_m0, m0,m1,m2,m12], and [LogEnergy_n0,n0,n1,n2,,n12]. The mfcc_distortion=sqrt [(m1-n1)^2+(m2-n2)^2+,,+(m12-n12)^2]. Note that LogEnergy and m0 and n0 terms are not used in the calculation. See details in https://www.mathworks.cn/help/audio/ref/mfcc.html?overload=mfcc+false (3) % How to index a matrix in matlab,					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs. E.g. the 40th row of coeffs is the mfcc vector of frame 40 of the sound file. (2) Assume the two mfcc vectors (coeffs) are [LogEnergy_m0, m,0,m1,m2m12], and [LogEnergy_n0,n0,n1,n2,n12]. The mfcc_distortion=sqrt [(m1-n1)^2+(m2-n2)^2+,+(m12-n12)^2]. Note that LogEnergy and m0 and n0 to trems are not used in the calculation. See details in https://ww2.mathworks.cn/help/audio/ref/mfcc.html?overload=mfcc+false					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs. E.g. the 40th row of coeffs is the mfcc vector of frame 40 of the sound file. (2) Assume the two mfcc vectors (coeffs) are [LogEnergy_n0,n0,n1,n2,n12]. The mfcc_distortion=sqrt [(m1-n1)^2+(m2-n2)^2+,,+(m12-n12)^2]. Note that LogEnergy and m0 and n0 terms are not used in the calculation. See details in https://www.mathworks.cn/help/audio/ref/mfcc.html?overload=mfcc+false (3) % How to index a matrix in matlab, M=[1 2 3]					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs. E.g. the 40th row of coeffs is the mfcc vector of frame 40 of the sound file. (2) Assume the two mfcc vectors (coeffs) are [LogEnergy_m0, m0,m1,m2m12], and [LogEnergy_n0,n0,n1,n2,n12]. The mfcc_distortion=sqrt [(m1-n1)^2+(m2-n2)^2+,,+(m12-n12)^2]. Note that LogEnergy and m0 and nol to used in the calculation. See details in https://ww2.mathworks.cn/help/audio/ref/mfcc.htmi?overload=mfcc+false (3) % How to index a matrix in matlab, M=[1 2 3 4 5 6 7 8 9] M(1,1) %=1					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5,wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs. E.g. the 40th row of coeffs is the mfcc vector of frame 40 of the sound file. (2) Assume the two mfcc vectors (coeffs) are [LogEnergy_n0,n0,n1,n2,n12]. The mfcc_distortion=sqrt [(m1-n1)^2+(m2-n2)^2+,,+(m12-n12)^2]. Note that LogEnergy and m0 and n0 terms are not used in the calculation. See details in https://www2.mathworks.cn/help/audio/ref/mfcc.html?overload=mfcc+false (3) % How to index a matrix in matlab, M=[1 23 4 56 7 8 9] M(1,1) %=1 M(2,2) %=5					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5.wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs. E.g. the 40th row of coeffs is the mfcc vector of frame 40 of the sound file. (2) Assume the two mfcc vectors (coeffs) are [LogEnergy_m0, m0,m1,m2m12], and [LogEnergy_n0,n0,n1,n2,n12]. The mfcc_distortion=sqrt [(m1-n1)^2+(m2-n2)^2+,,+(m12-n12)^2]. Note that LogEnergy and m0 and nol to used in the calculation. See details in https://ww2.mathworks.cn/help/audio/ref/mfcc.htmi?overload=mfcc+false (3) % How to index a matrix in matlab, M=[1 2 3 4 5 6 7 8 9] M(1,1) %=1					
xa= the 40-th frame of sound file "s4.wav" xb= the 50-th frame of sound file "s5,wav" Find the mfcc_distortion between the MFCC vectors of xa and xb. Hints: (1) In the output "coeffs" of the MATLAB mfcc function, the n-th frame output is the n-th row of coeffs. E.g. the 40th row of coeffs is the mfcc vector of frame 40 of the sound file. (2) Assume the two mfcc vectors (coeffs) are [LogEnergy_n0,n0,n1,n2,n12]. The mfcc_distortion=sqrt [(m1-n1)^2+(m2-n2)^2+,,+(m12-n12)^2]. Note that LogEnergy and m0 and n0 terms are not used in the calculation. See details in https://www2.mathworks.cn/help/audio/ref/mfcc.html?overload=mfcc+false (3) % How to index a matrix in matlab, M=[1 23 4 56 7 8 9] M(1,1) %=1 M(2,2) %=5					

Click Save and Submit to save and submit. Click Save All Answers to save all answers.

Save All Answers Save and Submit