

Data: Problem Hamiltonian H, Annealing Schedule τ , Number of Annealing Steps TResult: Solution State $|y|_{\theta=0.1}$

Result: Solution State $|\psi_{\text{final}}\rangle$ 1 Initialize a quantum system in an initial state $|\psi\rangle$;

2 for t=1 to T do

Calculate the annealing parameter s=t/T;

Generate the time-dependent Hamiltonian $H_t = (1-s) \cdot H_0 + s \cdot H_P$, where H_0 is the initial Hamiltonian and H_P is the problem Hamiltonian;

Evolve the quantum system according to H_t for a time step Δt using a quantum gate or simulation technique;

6 end

- 7 Measure the quantum state $|\psi\rangle$ to obtain a classical bit string;
- 8 Return the classical bit string as the solution state $|\psi_{\text{final}}\rangle$;

