Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 5346 Avaliação III – 2015/1 (07/07/2015)

Questão 1: [4,0 pontos] Dado o circuito com MOSFET reforço (V_T =1V, K=500 μ A/ V^2 , $|V_A| \rightarrow \infty$) a seguir, determine: (a) o ponto de operação quiescente (I_{DSQ} , V_{GS}); (b) a região de operação do transistor. Justifique todas as decisões e desenvolva na forma literal, apresentando os resultados numéricos apenas no final.

Questão 2: [4,0 pontos] Assumindo que g_{m1} e g_{m2} são conhecidos e que $|V_A| \rightarrow \infty$, determine: (a) a representação do circuito para pequenos sinais na forma transversal com v_i a esquerda e v_o a direita; (b) a ganho de tensão do amplificador; (b) a impedância de saída do amplificador sendo R_3 a resistência de carga.

<u>Questão 3:</u> [2,0 pontos] Implemente a função lógica: $S = \overline{\overline{A} + C}$ de acordo com os conteúdos vistos em sala de aula.

FORMULÁRIO

• MOSFET reforço (enriquecimento, acumulação, intensificação):

NMOS	Equações	PMOS
$V_T > 0 V_{DS} > 0$	$K = k' \left(\frac{W}{L}\right)$ $k' = \mu C_{ox} , \lambda = 1/V_A$	$V_T < 0 V_{DS} \le 0$
$V_{GS} < V_T$	(a) Região de Corte I _D =0	$V_{GS} \ge V_T$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} < V_{GS} - V_T \\ V_{GD} \ge V_T \end{cases}$	(b) Região de Triodo $I_D = K \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} > V_{GS} - V_T \\ V_{GD} \leq V_T \end{cases}$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} \ge V_{GS} - V_T \\ V_{GD} \le V_T \end{cases}$	(c) Região de Saturação $I_D = \frac{K}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} \leq V_{GS} - V_T \\ V_{GD} \geq V_T \end{cases}$
(a) V _{0S}		V ₀₅₀ (c) (b) V ₀₅₁ (a)

• Modelo de pequenos sinais do MOSFET reforço: $r_d=|V_A|/I_D$; $g_m=K\cdot(V_{GS}-V_T)$

