A general non-Markovian master equation for time-dependent Hamiltonians with coupling that is weak, strong, or anything in between

Nike Dattani* Harvard-Smithsonian Center for Astrophysics

> Camilo Chaparro Sogamoso[†] National University of Colombia

I. THE HAMILTONIAN

We start with a time-dependent Hamiltonian of the form:

$$H(t) = H_S(t) + H_I + H_B,$$
 (1)

$$H_S(t) = \varepsilon_0(t) |0\rangle\langle 0| + \varepsilon_1(t) |1\rangle\langle 1| + V_{10}(t) |1\rangle\langle 0| + V_{01}(t) |0\rangle\langle 1|, \tag{2}$$

$$H_I = |0\rangle\langle 0| \sum_{\mathbf{k}} \left(g_{0\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^* b_{\mathbf{k}} \right) + |1\rangle\langle 1| \sum_{\mathbf{k}} \left(g_{1\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^* b_{\mathbf{k}} \right), \tag{3}$$

$$H_B = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}. \tag{4}$$

For the states $|0\rangle, |1\rangle$ we have the ortonormal condition:

$$\langle i|j\rangle = \delta_{ij} \tag{5}$$

II. UNITARY TRANSFORMATION INTO THE VARIATIONALLY OPTIMIZABLE FRAME

We will apply to H(t), the unitary transformation defined by $e^{\pm V}$ where is the variationally optimizable anti-Hermitian operator:

$$V \equiv |0\rangle\langle 0| \sum_{\mathbf{k}} \left(\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right) + |1\rangle\langle 1| \sum_{\mathbf{k}} \left(\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right)$$
(6)

in terms of the variational scalar parameters $v_{i\mathbf{k}}$ defined as:

$$v_{i\mathbf{k}} = \omega_{\mathbf{k}} \alpha_{i\mathbf{k}} \tag{7}$$

which will soon be optimized in order to give the most accurate possible master equation for the system's dynamics in the presence of this bath. We define the following notation for the function (6):

$$\hat{\varphi}_i \equiv \sum_{\mathbf{k}} \left(\frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^*}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right), \tag{8}$$

$$V = |0\rangle\langle 0|\hat{\varphi}_0 + |1\rangle\langle 1|\hat{\varphi}_1. \tag{9}$$

Here * denotes the complex conjugate. Expanding $e^{\pm V}$ using the notation (6) will give us the following result:

$$e^{\pm V} = e^{\pm (|0\rangle\langle 0|\hat{\varphi}_0 + |1\rangle\langle 1|\hat{\varphi}_1)} \tag{10}$$

$$= \mathbb{I} \pm (|0\rangle\langle 0|\hat{\varphi}_0 + |1\rangle\langle 1|\hat{\varphi}_1) + \frac{(\pm (|0\rangle\langle 0|\hat{\varphi}_0 + |1\rangle\langle 1|\hat{\varphi}_1))^2}{2!} + \dots$$
 (11)

$$= |0\rangle\langle 0| + |1\rangle\langle 1| \pm (|0\rangle\langle 0|\hat{\varphi}_0 + |1\rangle\langle 1|\hat{\varphi}_1) + \frac{|0\rangle\langle 0|\hat{\varphi}_0^2}{2!} + \frac{|1\rangle\langle 1|\hat{\varphi}_1^2}{2!} + \dots$$
 (12)

$$= |0\rangle\langle 0| \left(1 \pm \hat{\varphi}_0 + \frac{\hat{\varphi}_0^2}{2!} \pm ...\right) + |1\rangle\langle 1| \left(1 \pm \hat{\varphi}_1 + \frac{\hat{\varphi}_1^2}{2!} \pm ...\right)$$
 (13)

$$= |0\rangle\langle 0|e^{\pm\hat{\varphi}_0} + |1\rangle\langle 1|e^{\pm\hat{\varphi}_1} \tag{14}$$

$$= |0\rangle\langle 0|e^{\pm\sum_{\mathbf{k}}(\alpha_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} - \alpha_{0\mathbf{k}}^{*}b_{\mathbf{k}})} + |1\rangle\langle 1|e^{\pm\sum_{\mathbf{k}}(\alpha_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} - \alpha_{1\mathbf{k}}^{*}b_{\mathbf{k}})}$$

$$\tag{15}$$

$$= |0\rangle\langle 0|B_{0\pm} + |1\rangle\langle 1|B_{1\pm},\tag{16}$$

$$B_{i\pm} \equiv e^{\pm \sum_{\mathbf{k}} \left(\frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^*}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right)}. \tag{17}$$

Let's recall the Zassenhaus formula:

$$e^{t(X+Y)} = e^{tX} e^{tY} e^{-\frac{t^2}{2}[X,Y]} e^{\frac{t^3}{6}(2[Y,[X,Y]] + [X,[X,Y]])} e^{\frac{-t^4}{24}([[X,Y],X],X] + 3[[X,Y],X],Y] + 3[[X,Y],Y],Y] \cdots$$

$$(18)$$

Since $\left[\frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}, \frac{v_{j\mathbf{k}'}}{\omega_{\mathbf{k}}}b_{\mathbf{k}'}^{\dagger} - \frac{v_{j\mathbf{k}'}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}'}\right] = 0$ for all \mathbf{k}' , \mathbf{k} and i, j we can show making t = 1 in (18) the following result:

$$e^{\left(\frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right) + \left(\frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right)} = e^{\frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{-\frac{1}{2}\left[\frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}, \frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}, \frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right]} \dots$$

$$(19)$$

$$= e^{\frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}} e^{\frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}} e^{-\frac{1}{2}0} \cdots$$
(20)

$$=e^{\frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^*}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^*}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}$$
(21)

By induction of this result we can write expresion of $B_{i\pm}$ as a product of exponentials, which we will call "displacement" operators $D\left(\pm v_{i\mathbf{k}}\right)$:

$$B_{i\pm} = \prod_{\mathbf{k}} D\left(\pm \frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right),\tag{22}$$

$$D\left(\pm v_{i\mathbf{k}}\right) \equiv e^{\pm \left(\frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right)}.$$
(23)

this will help us to write operators O in the variational frame :

$$\overline{O} \equiv e^V O e^{-V}. \tag{24}$$

We use the following identities:

(66)

```
\overline{|0\rangle\langle 0|} = e^V |0\rangle\langle 0|e^{-V}
                                                                                                                                                                                                                                                                                       (25)
              = (|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+})|0\rangle\langle 0|(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (26)
              = (|0\rangle\langle 0|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|0\rangle\langle 0|B_{1+}) (|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (27)
              = |0\rangle\langle 0|0\rangle\langle 0|B_{0+}(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (28)
              = |0\rangle\langle 0|B_{0+} (|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (29)
              = |0 \times 0| 0 \times 0 |B_{0+} B_{0-} + |0 \times 0| 1 \times 1 |B_{0+} B_{1-}
                                                                                                                                                                                                                                                                                       (30)
              = |0\rangle\langle 0|,
                                                                                                                                                                                                                                                                                       (31)
\overline{|1\rangle\langle 1|} = (|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+})|1\rangle\langle 1|(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (32)
              = (|0\rangle\langle 0|1\rangle\langle 1|B_{0+} + |1\rangle\langle 1|1\rangle\langle 1|B_{1+}) (|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (33)
              = |1\rangle\langle 1|B_{1+}(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (34)
              = |1 \times 1| 0 \times 0 |B_{1+}B_{0-} + B_{1+} |1 \times 1| 1 \times 1 |B_{1-}|
                                                                                                                                                                                                                                                                                       (35)
              = B_{1+}|1\rangle\langle 1|1\rangle\langle 1|B_{1-}
                                                                                                                                                                                                                                                                                       (36)
              = |1\rangle\langle 1|B_{1+}B_{1-}
                                                                                                                                                                                                                                                                                       (37)
              = |1\rangle\langle 1|,
                                                                                                                                                                                                                                                                                       (38)
\overline{|0\rangle\langle 1|} = e^V |0\rangle\langle 1|e^{-V}
                                                                                                                                                                                                                                                                                       (39)
              = (|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+})|0\rangle\langle 1|(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (40)
              = (|0\rangle\langle 0|0\rangle\langle 1|B_{0+} + |1\rangle\langle 1|B_{1+}|0\rangle\langle 1|) (|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (41)
              = (|0\rangle\langle 0|0\rangle\langle 1|B_{0+} + |1\rangle\langle 1|0\rangle\langle 1|B_{1+}) (|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (42)
              = |0\rangle\langle 1|B_{0+}(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (43)
              = |0\rangle\langle 1|0\rangle\langle 0|B_{0+}B_{0-} + |0\rangle\langle 1|1\rangle\langle 1|B_{0+}B_{1-}
                                                                                                                                                                                                                                                                                       (44)
              = |0\rangle\langle 1|B_{0+}B_{1-},
                                                                                                                                                                                                                                                                                       (45)
\overline{|1\rangle\langle 0|} = e^V |1\rangle\langle 0|e^{-V}
                                                                                                                                                                                                                                                                                       (46)
              = (|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+})|1\rangle\langle 0|(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (47)
              = (|0\rangle\langle 0|1\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+}|1\rangle\langle 0|)(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (48)
              = (|0\rangle\langle 0|1\rangle\langle 0|B_{0+} + |1\rangle\langle 1|1\rangle\langle 0|B_{1+}) (|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (49)
              = |1\rangle\langle 0|B_{1+}(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (50)
              = |1\rangle\langle 0|B_{1+}|0\rangle\langle 0|B_{0-} + |1\rangle\langle 0|B_{1+}|1\rangle\langle 1|B_{1-}|
                                                                                                                                                                                                                                                                                       (51)
              = |1\rangle\langle 0|B_{1+}B_{0-} + |1\rangle\langle 0|1\rangle\langle 1|B_{1+}B_{1-}
                                                                                                                                                                                                                                                                                       (52)
              = |1\rangle\langle 0|B_{1+}B_{0-},
                                                                                                                                                                                                                                                                                       (53)
       \overline{b_{\mathbf{k}}} = e^{V} b_{\mathbf{k}} e^{-V}
                                                                                                                                                                                                                                                                                       (54)
              = (|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+}) b_{\mathbf{k}} (|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (55)
              = |0 \lor 0|B_{0+}b_{\mathbf{k}}B_{0-}|0 \lor 0| + |0 \lor 0|B_{0+}b_{\mathbf{k}}|1 \lor 1|B_{1-} + |1 \lor 1|B_{1+}b_{\mathbf{k}}|0 \lor 0|B_{0-} + |1 \lor 1|B_{1+}b_{\mathbf{k}}B_{1-}|1 \lor 1|
                                                                                                                                                                                                                                                                                       (56)
              = |0\rangle\langle 0|0\rangle\langle 0|B_{0+}b_{\mathbf{k}}B_{0-} + |0\rangle\langle 0|1\rangle\langle 1|B_{0+}b_{\mathbf{k}}B_{1-} + |1\rangle\langle 1|0\rangle\langle 0|B_{1+}b_{\mathbf{k}}B_{0-} + |1\rangle\langle 1|B_{1+}b_{\mathbf{k}}B_{1-}
                                                                                                                                                                                                                                                                                       (57)
             = |0\rangle\langle 0| \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1| \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right)
                                                                                                                                                                                                                                                                                       (58)
             = (|0\rangle\langle 0| + |1\rangle\langle 1|) b_{\mathbf{k}} - |1\rangle\langle 1| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - |0\rangle\langle 0| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}
                                                                                                                                                                                                                                                                                       (59)
             = b_{\mathbf{k}} - |1\rangle\langle 1| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - |0\rangle\langle 0| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}},
                                                                                                                                                                                                                                                                                       (60)
   \overline{b_{\mathbf{k}}}^{\dagger} = e^{V} b_{\mathbf{k}}^{\dagger} e^{-V}
                                                                                                                                                                                                                                                                                       (61)
              = (|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+}) b_{\mathbf{L}}^{\dagger} (|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})
                                                                                                                                                                                                                                                                                       (62)
              = |0\rangle\langle 0|B_{0+}b_{\mathbf{k}}^{\dagger}B_{0-}|0\rangle\langle 0| + |0\rangle\langle 0|B_{0+}b_{\mathbf{k}}^{\dagger}|1\rangle\langle 1|B_{1-} + |1\rangle\langle 1|B_{1+}b_{\mathbf{k}}^{\dagger}|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1+}b_{\mathbf{k}}^{\dagger}B_{1-}|1\rangle\langle 1|
                                                                                                                                                                                                                                                                                       (63)
              = |0\rangle\langle 0|0\rangle\langle 0|B_{0+}b_{\mathbf{L}}^{\dagger}B_{0-} + |0\rangle\langle 0|1\rangle\langle 1|B_{0+}b_{\mathbf{L}}^{\dagger}B_{1-} + |1\rangle\langle 1|0\rangle\langle 0|B_{1+}b_{\mathbf{L}}^{\dagger}B_{0-} + |1\rangle\langle 1|1\rangle\langle 1|B_{1+}b_{\mathbf{L}}^{\dagger}B_{1-}
                                                                                                                                                                                                                                                                                       (64)
             = |0\rangle\langle 0| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)
                                                                                                                                                                                                                                                                                       (65)
```

 $=b_{\mathbf{k}}^{\dagger}-|1\rangle\langle 1|\frac{v_{1\mathbf{k}}^{*}}{\omega_{1\mathbf{k}}}-|0\rangle\langle 0|\frac{v_{0\mathbf{k}}^{*}}{\omega_{1\mathbf{k}}}.$

We have used the following:

$$B_{i+}b_{\mathbf{k}}B_{i-} = b_{\mathbf{k}} - \frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}},\tag{67}$$

$$B_{i+}b_{\mathbf{k}}^{\dagger}B_{i-} = b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}.$$
(68)

We therefore have the following relationships:

$$\overline{\varepsilon_0(t)|0\rangle\langle 0|} = \varepsilon_0(t)|0\rangle\langle 0|, \tag{69}$$

$$\overline{\varepsilon_1(t)|1\rangle\langle 1|} = \varepsilon_1(t)|1\rangle\langle 1|, \tag{70}$$

$$\overline{V_{10}(t)|1\rangle\langle 0|} = V_{10}(t)|1\rangle\langle 0|B_{1+}B_{0-},\tag{71}$$

$$\overline{V_{01}(t)|0\rangle\langle 1|} = V_{01}(t)|0\rangle\langle 1|B_{0+}B_{1-},\tag{72}$$

$$\overline{g_{i\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{i\mathbf{k}}^{*}b_{\mathbf{k}}} = g_{i\mathbf{k}} \left(|0\rangle\langle 0| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right) \right) + g_{i\mathbf{k}}^{*} \left(|0\rangle\langle 0| \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1| \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right)$$

$$(73)$$

$$=g_{i\mathbf{k}}\left((|0\rangle\langle 0|+|1\rangle\langle 1|)b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-\frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}|0\rangle\langle 0|\right)+g_{i\mathbf{k}}^{*}\left((|0\rangle\langle 0|+|1\rangle\langle 1|)b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}|0\rangle\langle 0|\right)$$
(74)

$$=g_{i\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{i\mathbf{k}}^{*}b_{\mathbf{k}}-g_{i\mathbf{k}}\frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}|0\rangle\langle 0|-g_{i\mathbf{k}}^{*}\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}|0\rangle\langle 0|-g_{i\mathbf{k}}\frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-g_{i\mathbf{k}}^{*}\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}|1\rangle\langle 1|$$
(75)

$$= g_{i\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{i\mathbf{k}}^{*}b_{\mathbf{k}} - \left(g_{i\mathbf{k}}\frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*}\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)|0\rangle\langle 0| - \left(g_{i\mathbf{k}}\frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*}\frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right)|1\rangle\langle 1|, \tag{76}$$

$$\overline{|0\rangle\langle 0|(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{0\mathbf{k}}^{*}b_{\mathbf{k}})} = (|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+})|0\rangle\langle 0|\left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right)(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})$$

$$(77)$$

$$= |0\rangle\langle 0|B_{0+}|0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right) |0\rangle\langle 0|B_{0-}$$

$$(78)$$

$$= |0\rangle\langle 0|B_{0+} \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right)B_{0-} \tag{79}$$

$$= |0\rangle\langle 0| \left(g_{0\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \right) + g_{0\mathbf{k}}^* \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right), \tag{80}$$

$$\overline{|1\rangle\langle 1|(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{1k}^{*}b_{\mathbf{k}})} = (|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+})|1\rangle\langle 1|(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{1k}^{*}b_{\mathbf{k}})(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})$$
(81)

$$= |1\rangle\langle 1|B_{1+}|1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1k}^{*}b_{\mathbf{k}}\right)|1\rangle\langle 1|B_{1-}$$

$$\tag{82}$$

$$=|1\rangle\langle 1|B_{1+}\left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{1\mathbf{k}}^{*}b_{\mathbf{k}}\right)B_{1-}$$
(83)

$$= |1\rangle\langle 1| \left(g_{1\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \right) + g_{1\mathbf{k}}^{*} \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right), \tag{84}$$

$$\overline{\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}} = \omega_{\mathbf{k}} \left(|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+} \right) b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} \left(|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-} \right)$$

$$\tag{85}$$

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0|B_{0+}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}B_{0-} + |1\rangle\langle 1|B_{1+}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}B_{1-} \right)$$

$$\tag{86}$$

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| \prod_{\mathbf{k'}} D\left(\frac{v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right) + |1\rangle\langle 1| \prod_{\mathbf{k'}} D\left(\frac{v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right) \right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \left(|0\rangle\langle 0| \prod_{\mathbf{k'}} D\left(-\frac{v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right) + |1\rangle\langle 1| \prod_{\mathbf{k'}} D\left(-\frac{v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right) \right)$$

$$(87)$$

$$= \omega_{\mathbf{k}} \left(|0 \times 0| D \left(\frac{v_0 \mathbf{k}}{\omega_{\mathbf{k}}} \right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D \left(-\frac{v_0 \mathbf{k}}{\omega_{\mathbf{k}}} \right) \Pi_{\mathbf{k}' \neq \mathbf{k}} D \left(\frac{v_0 \mathbf{k}'}{\omega_{\mathbf{k}'}} \right) D \left(-\frac{v_0 \mathbf{k}'}{\omega_{\mathbf{k}'}} \right) H^{1} \times 1 |D \left(\frac{v_1 \mathbf{k}}{\omega_{\mathbf{k}}} \right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D \left(-\frac{v_1 \mathbf{k}}{\omega_{\mathbf{k}}} \right) \Pi_{\mathbf{k}' \neq \mathbf{k}} D \left(\frac{v_1 \mathbf{k}'}{\omega_{\mathbf{k}'}} \right) D \left(-\frac{v_1 \mathbf{k}'}{\omega_{\mathbf{k}'}} \right$$

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0|D\left(\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D\left(-\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \mathbb{I} + |1\rangle\langle 1|D\left(\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D\left(-\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \mathbb{I} \right)$$
(89)

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) + |1\rangle\langle 1| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right)$$
(90)

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} + \left| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} \right) + |1\rangle\langle 1| \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} + \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} \right) \right)$$
(91)

$$=\omega_{\mathbf{k}}\left(|0\rangle\langle 0|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+|1\rangle\langle 1|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+|1\rangle\langle 1|\left(\left|\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2}-\frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}\right)+|0\rangle\langle 0|\left(\left|\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2}-\frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}-\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}\right)\right)$$
(92)

$$= \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} - \frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) + |0\rangle\langle 0| \left(\left| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} - \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) \right)$$
(93)

$$= \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} - \frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) + |0\rangle\langle 0| \left(\left| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} - \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) \right)$$

$$(94)$$

$$= \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}|^2}{\omega_{\mathbf{k}}} - v_{1\mathbf{k}}^* b_{\mathbf{k}} - v_{1\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}|^2}{\omega_{\mathbf{k}}} - v_{0\mathbf{k}}^* b_{\mathbf{k}} - v_{0\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right)$$

$$(95)$$

$$= \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}|^2}{\omega_{\mathbf{k}}} - \left(v_{1\mathbf{k}}^* b_{\mathbf{k}} + v_{1\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right) \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}|^2}{\omega_{\mathbf{k}}} - \left(v_{0\mathbf{k}}^* b_{\mathbf{k}} + v_{0\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right) \right). \tag{96}$$

So all parts of H(t) can be written in the variationally optimizable frame now:

$$\overline{H_S(t)} = \overline{\varepsilon_0(t)|0\rangle\langle 0|} + \overline{\varepsilon_1(t)|1\rangle\langle 1|} + \overline{V_{10}(t)|1\rangle\langle 0|} + \overline{V_{01}(t)|0\rangle\langle 1|}$$

$$(97)$$

$$= \varepsilon_0(t) |0\rangle\langle 0| + \varepsilon_1(t) |1\rangle\langle 1| + V_{10}(t) |1\rangle\langle 0| B_{1+}B_{0-} + V_{01}(t) |0\rangle\langle 1| B_{0+}B_{1-}, \tag{98}$$

$$\overline{H_I} = \overline{\sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^*b_{\mathbf{k}}\right) + \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^*b_{\mathbf{k}}\right)}$$
(99)

$$= \overline{\sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right)} + \overline{\sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^{*}b_{\mathbf{k}}\right)}$$

$$(100)$$

$$= \sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \right) + g_{0\mathbf{k}}^* \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right) + \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}} \right) + g_{1\mathbf{k}}^* \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right)$$
(101)

$$= \sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right) + \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^{*}b_{\mathbf{k}}\right) - \sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}\frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} + g_{0\mathbf{k}}^{*}\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) - \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}\frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} + g_{1\mathbf{k}}^{*}\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right), \tag{102}$$

$$\overline{H_B} = \overline{\sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}}$$
 (103)

$$= \sum_{\mathbf{k}} \left(\omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}|^{2}}{\omega_{\mathbf{k}}} - \left(v_{1\mathbf{k}}^{*} b_{\mathbf{k}} + v_{1\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right) \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}|^{2}}{\omega_{\mathbf{k}}} - \left(v_{0\mathbf{k}}^{*} b_{\mathbf{k}} + v_{0\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right) \right) \right)$$

$$(104)$$

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{\mathbf{k}} \left(|1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}|^2}{\omega_{\mathbf{k}}} - \left(v_{1\mathbf{k}}^* b_{\mathbf{k}} + v_{1\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right) \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}|^2}{\omega_{\mathbf{k}}} - \left(v_{0\mathbf{k}}^* b_{\mathbf{k}} + v_{0\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right) \right) \right). \tag{105}$$

Finally merging these expressions gives the transformed Hamiltonian:

$$\overline{H(t)} = \sum_{j} \varepsilon_{j}(t) |j\rangle\langle j| + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| B_{j} + B_{j'} + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{j\mathbf{k}} |j\rangle\langle j| \left((g_{j\mathbf{k}} - v_{j\mathbf{k}}) b_{\mathbf{k}}^{\dagger} + (g_{j\mathbf{k}} - v_{j\mathbf{k}})^{*} b_{\mathbf{k}} + \left| \frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} - \left(g_{j\mathbf{k}} \frac{v_{j\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} + g_{j\mathbf{k}}^{*} \frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right)$$

$$(106)$$

Also we may write this transformed Hamiltonian as a sum of the form:

$$\overline{H(t)} = \overline{H_{\overline{S}}} + \overline{H_{\overline{I}}} + \overline{H_{\overline{B}}} \tag{107}$$

Let's define:

$$R_{i} \equiv \sum_{\mathbf{k}} \left(\frac{\left| v_{i\mathbf{k}} \right|^{2}}{\omega_{\mathbf{k}}} - \left(g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*} \frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right), \tag{108}$$

$$B_{iz} \equiv \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^* b_{\mathbf{k}} \right). \tag{109}$$

We assume that the bath is at equilibrium with inverse temperature $\beta = 1/k_BT$, considering the stationary bath state as reference written in the following way:

$$\rho_B = \frac{e^{-\beta H_B}}{\text{Tr}\left(e^{-\beta H_B}\right)} \tag{110}$$

We can show using the coherence representation of the creation and annihilation operators that:

$$b^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & \dots \\ \sqrt{1} & 0 & 0 & \dots & 0 & \dots \\ 0 & \sqrt{2} & 0 & \dots & 0 & \dots \\ 0 & 0 & \sqrt{3} & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \dots \\ 0 & 0 & 0 & \dots & \sqrt{n} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} . \tag{111}$$

$$b = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \dots & 0 & \dots \\ 0 & 0 & \sqrt{2} & 0 & \dots & 0 & \dots \\ 0 & 0 & 0 & \sqrt{3} & \dots & 0 & \dots \\ 0 & 0 & 0 & 0 & \ddots & \vdots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \sqrt{n} & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & \ddots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \tag{112}$$

So the product of the matrix representation of b^{\dagger} and b is:

$$-\beta \omega b^{\dagger} b = -\beta \omega \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & \dots \\ 0 & 1 & 0 & \dots & 0 & \dots \\ 0 & 0 & 2 & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \dots \\ 0 & 0 & \dots & n & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$
(113)

$$=\sum_{j=0}^{\infty} -j\beta\omega |j\rangle\langle j|, \qquad (114)$$

So the density matrix ρ_B written in the coherence representation can be obtained using the Zassenhaus formula and the fact that $[|j\rangle\langle j|, |i\rangle\langle i|] = 0$ for all i, j.

$$\exp\left(-\beta\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\right) = \sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right) |j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|, \tag{115}$$

$$\exp\left(-\beta \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}\right) = \prod_{\mathbf{k}} \sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}\right) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|.$$
(116)

The value of Tr $\left(\exp\left(-\beta\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\right)\right)$ is:

$$\operatorname{Tr}\left(\exp\left(-\beta\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\right)\right) = \operatorname{Tr}\left(\sum_{j_{\mathbf{k}}}\exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right)|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right)$$
(117)

$$= \sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}\right) \tag{118}$$

$$= \sum_{j_{\mathbf{k}}} \exp\left(-\beta \omega_{\mathbf{k}}\right)^{j_{\mathbf{k}}} \tag{119}$$

$$= \frac{1}{1 - \exp(-\beta \omega_{\mathbf{k}})}$$
 (by geometric series) (120)

$$\equiv f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}} \right). \tag{121}$$

$$\operatorname{Tr}\left(\exp\left(-\beta\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\right)\right) = \operatorname{Tr}\left(\prod_{\mathbf{k}}\sum_{j_{\mathbf{k}}}\exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right)|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right)$$
(122)

$$= \prod_{\mathbf{k}} \operatorname{Tr} \left(\sum_{j_{\mathbf{k}}} \exp \left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}} \right) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}| \right)$$
 (123)

$$= \prod_{\mathbf{k}} f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}} \right). \tag{124}$$

So the density matrix of the bath is:

$$\rho_B = \frac{e^{-\beta H_B}}{\text{Tr}\left(e^{-\beta H_B}\right)} \tag{125}$$

$$= \frac{\prod_{\mathbf{k}} \sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}\right) |j_{\mathbf{k}} \rangle |j_{\mathbf{k}}|}{\prod_{\mathbf{k}} f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}}\right)}$$
(126)

$$= \frac{\prod_{\mathbf{k}} \sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{\prod_{\mathbf{k}} f_{\text{Bose-Einstein}} (-\beta \omega_{\mathbf{k}})}$$

$$= \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{f_{\text{Bose-Einstein}} (-\beta \omega_{\mathbf{k}})}.$$
(126)

Now, given that creation and annihilation satisfy:

$$b_{\mathbf{k}} \mid j_{\mathbf{k}} \rangle = \sqrt{j_{\mathbf{k}}} \mid j_{\mathbf{k}} - 1 \rangle,$$
 (128)

$$b_{\mathbf{k}}^{\dagger} |j_{\mathbf{k}}\rangle = \sqrt{j_{\mathbf{k}} + 1} |j_{\mathbf{k}} + 1\rangle. \tag{129}$$

Then we can prove that $\langle B_{iz} \rangle_{\overline{H_{\overline{B}}}} = 0$ using the following property based on (128)-(129):

$$\langle B_{iz}\rangle_{\overline{H_{\overline{B}}}} = \text{Tr}\left(\rho_B B_{iz}\right) = \text{Tr}\left(B_{iz}\rho_B\right)$$
 (130)

$$= \operatorname{Tr}\left(\left(\sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right)^{*} b_{\mathbf{k}}\right)\right) \rho_{B}\right)$$
(131)

$$= \sum_{\mathbf{k}} \operatorname{Tr} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) b_{\mathbf{k}}^{\dagger} \rho_B \right) + \sum_{\mathbf{k}} \operatorname{Tr} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^* b_{\mathbf{k}} \rho_B \right)$$
(132)

$$= \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}}) \operatorname{Tr} \left(b_{\mathbf{k}}^{\dagger} \rho_B \right) + \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}})^* \operatorname{Tr} \left(b_{\mathbf{k}} \rho_B \right)$$
(133)

$$= \sum_{\mathbf{k}} \operatorname{Tr} \left((g_{i\mathbf{k}} - v_{i\mathbf{k}}) b_{\mathbf{k}}^{\dagger} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \times j_{\mathbf{k}}|}{f_{\operatorname{Bose-Einstein}}(-\beta \omega_{\mathbf{k}})} \right) + \sum_{\mathbf{k}} \operatorname{Tr} \left((g_{i\mathbf{k}} - v_{i\mathbf{k}})^* b_{\mathbf{k}} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \times j_{\mathbf{k}}|}{f_{\operatorname{Bose-Einstein}}(-\beta \omega_{\mathbf{k}})} \right)$$

$$= \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}}) \operatorname{Tr} \left(b_{\mathbf{k}}^{\dagger} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \times j_{\mathbf{k}}|}{f_{\operatorname{Bose-Einstein}}(-\beta \omega_{\mathbf{k}})} \right) + \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}})^* \operatorname{Tr} \left(b_{\mathbf{k}} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \times j_{\mathbf{k}}|}{f_{\operatorname{Bose-Einstein}}(-\beta \omega_{\mathbf{k}})} \right),$$

$$(135)$$

$$= \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}}) \operatorname{Tr} \left(b_{\mathbf{k}}^{\dagger} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle |j_{\mathbf{k}}|}{f_{\text{Bose-Einstein}} (-\beta \omega_{\mathbf{k}})} \right) + \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}})^* \operatorname{Tr} \left(b_{\mathbf{k}} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle |j_{\mathbf{k}}|}{f_{\text{Bose-Einstein}} (-\beta \omega_{\mathbf{k}})} \right), \quad (135)$$

$$\operatorname{Tr}\left(b_{\mathbf{k}}^{\dagger} \sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle |j_{\mathbf{k$$

$$= \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right)\right) \sqrt{j_{\mathbf{k}} + 1} |j_{\mathbf{k}} + 1\rangle\langle j_{\mathbf{k}}|\right)$$
(137)

$$=0, (138)$$

$$\operatorname{Tr}\left(b_{\mathbf{k}} \sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle |j_{\mathbf{k}} \rangle$$

$$= \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right)\right) \sqrt{j_{\mathbf{k}}} \left|j_{\mathbf{k}} - 1\right\rangle \langle j_{\mathbf{k}}\right| \right)$$
(140)

$$=0. (141)$$

we therefore find that:

$$\langle B_{iz} \rangle_{\overline{H_{\overline{B}}}} = 0 \tag{142}$$

Another important expected value is $B = \langle B_{\pm} \rangle_{\overline{H_{\overline{B}}}}$, where $B_{\pm} = e^{\pm \sum_{\mathbf{k}} \left(\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right)}$ is given by:

$$\langle B_{\pm} \rangle_{H_B} = \text{Tr} \left(\rho_B B_{\pm} \right) = \text{Tr} \left(B_{\pm} \rho_B \right) \tag{143}$$

$$= \operatorname{Tr}\left(e^{\pm \sum_{\mathbf{k}} \left(\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}\right)} \rho_{B}\right)$$
(144)

$$= \prod_{\mathbf{k}} \operatorname{Tr} \left(D \left(\pm \alpha_{\mathbf{k}} \right) \rho_{B} \right) \tag{145}$$

$$= \prod_{\mathbf{k}} \langle D\left(\pm \alpha_{\mathbf{k}}\right) \rangle. \tag{146}$$

Given that we can write a density operator as:

$$\rho = \int P(\alpha) |\alpha\rangle \langle \alpha| d^2 \alpha$$
 (147)

where $P(\alpha)$ satisfies $\int P(\alpha) d^2\alpha = 1$ and describes the state. It follows that the expectation value of an operator A with respect to the density operator described by $P(\alpha)$ is given by:

$$\langle A \rangle = \text{Tr}(A\rho)$$
 (148)

$$= \int P(\alpha) \langle \alpha | A | \alpha \rangle d^{2} \alpha \tag{149}$$

We are typically interested in thermal state density operators, for which it can be shown that $P\left(\alpha\right) = \frac{1}{\pi N} \exp\left(-\frac{|\alpha|^2}{N}\right)$ where $N=\left(e^{\beta\omega}-1\right)^{-1}$ is the average number of excitations in an oscillator of frequency ω at inverse temperature

Using the integral representation (149) we could obtain that the expected value for the displacement operator D(h) with $h \in \mathbb{C}$ is equal to:

$$\langle D(h) \rangle = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \langle \alpha | D(h) | \alpha \rangle d^2 \alpha$$
 (150)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \langle 0|D(-\alpha)D(h)D(\alpha)|0\rangle d^2\alpha$$
(151)

$$D(h) D(\alpha) = D(h+\alpha) e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(152)

$$D(-\alpha)(D(h)D(\alpha)) = D(-\alpha)D(h+\alpha)e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(153)

$$= D(h) e^{\frac{1}{2}(-\alpha(h+\alpha)^* + \alpha^*(h+\alpha))} e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(154)

$$= D(\alpha) e^{\frac{1}{2}(-\alpha h^* - |\alpha|^2 + \alpha^* h + |\alpha|^2)} e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(155)

$$= D\left(\alpha\right)e^{(h\alpha^* - h^*\alpha)},\tag{156}$$

$$\langle D(h) \rangle = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \langle 0|D(h) \exp(h\alpha^* - h^*\alpha) |0\rangle d^2\alpha$$
(157)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0|D(h)|0\rangle d^2\alpha \tag{158}$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0|h\rangle d^2\alpha \tag{159}$$

$$|\alpha\rangle = \exp\left(-\frac{|\alpha|^2}{2}\right) \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle,$$
 (160)

$$\langle D(h)\rangle = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0| \exp\left(-\frac{|h|^2}{2}\right) \sum_{n=0}^{\infty} \frac{h^n}{\sqrt{n!}} |n\rangle d^2\alpha \tag{161}$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \exp\left(h\alpha^* - h^*\alpha\right) \exp\left(-\frac{|h|^2}{2}\right) d^2\alpha \tag{162}$$

$$= \frac{\exp\left(-\frac{|h|^2}{2}\right)}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N} + h\alpha^* - h^*\alpha\right) d^2\alpha, \tag{163}$$

$$\alpha = x + iy, \tag{164}$$

$$\langle D(h) \rangle = \frac{\exp\left(-\frac{|h|^2}{2}\right)}{\pi N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2 + y^2}{N} + h\left(x - iy\right) - h^*\left(x + iy\right)\right) dxdy \tag{165}$$

$$= \frac{\exp\left(-\frac{|h|^2}{2}\right)}{\pi N} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{N} + hx - h^*x\right) dx \int_{-\infty}^{\infty} \exp\left(-\frac{y^2}{N} - ihy - ih^*y\right) dy, \tag{166}$$

$$-\frac{x^2}{N} + hx - h^*x = -\frac{1}{N}(x^2 - Nhx + Nh^*x)$$
(167)

$$= -\frac{1}{N} \left(x + \frac{(Nh^* - Nh)}{2} \right)^2 + \frac{N(h^* - h)^2}{4},\tag{168}$$

$$-\frac{y^2}{N} - ihy - ih^* y = -\frac{1}{N} (y^2 + iNhy + iNh^* y)$$
(169)

$$= -\frac{1}{N} \left(y^2 + \frac{iN(h+h^*)}{2} \right) - \frac{N(h+h^*)^2}{4}, \tag{170}$$

$$\langle D(h) \rangle = \frac{\exp\left(-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}\right)}{\pi N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{N}\left(x + \frac{(Nh^* - Nh)}{2}\right)^2 - \frac{1}{N}\left(y^2 + \frac{\mathrm{i}N(h + h^*)}{2}\right)\right) \mathrm{d}x \mathrm{d}y, \tag{171}$$

$$\sqrt{2\pi}\sigma = \int_{-\infty}^{\infty} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx,\tag{172}$$

$$\langle D(h) \rangle = \frac{\exp\left(-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}\right)}{\pi N} \int_{-\infty}^{\infty} \exp\left(-\frac{\left(x + \frac{\left(Nh^* - Nh\right)}{2}\right)^2}{2\left(\sqrt{\frac{N}{2}}\right)^2}\right) dx \int_{-\infty}^{\infty} \exp\left(-\frac{\left(y^2 + \frac{iN(h + h^*)}{2}\right)}{2\left(\sqrt{\frac{N}{2}}\right)^2}\right) dy \quad (173)$$

$$= \frac{\exp\left(-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}\right)}{\pi N} \left(\sqrt{2\pi}\sqrt{\frac{N}{2}}\right)^2 \tag{174}$$

$$= \exp\left(-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}\right)$$
 (175)

$$= \exp\left(-\frac{|h|^2}{2} + \frac{N\left(h^{*2} - 2hh^* + h^2\right) - N\left(h^2 + 2hh^* + h^{*2}\right)}{4}\right)$$
(176)

$$=\exp\left(-|h|^2\left(N+\frac{1}{2}\right)\right) \tag{177}$$

$$=\exp\left(-|h|^2\left(\frac{1}{e^{\beta\omega}-1}+\frac{1}{2}\right)\right) \tag{178}$$

$$= \exp\left(-\frac{|h|^2}{2} \left(\frac{e^{\beta\omega} + 1}{e^{\beta\omega} - 1}\right)\right) \tag{179}$$

$$= \exp\left(-\frac{|h|^2}{2}\coth\left(\frac{\beta\omega}{2}\right)\right). \tag{180}$$

In the last line we used $\frac{e^{\beta\omega}+1}{e^{\beta\omega}-1}=\coth\left(\frac{\beta\omega}{2}\right)$. So the value of (145) using (180) is given by:

$$B = \exp\left(-\sum_{\mathbf{k}} \frac{|\alpha_{\mathbf{k}}|^2}{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$
 (181)

We will now force $\langle \overline{H_I} \rangle_{\overline{H_B}} = 0$. We will also introduce the bath renormalizing driving in $\overline{H_S}$ to treat it non-perturbatively in the subsequent formalism, we associate the terms related with $B_+\sigma_+$ and $B_-\sigma_-$ with the interaction part of the Hamiltonian $\overline{H_I}$ and we subtract their expected value in order to satisfy $\langle \overline{H_I} \rangle_{\overline{H_B}} = 0$.

A final form of the terms of the Hamiltonian \overline{H} is:

$$\overline{H(t)} = \sum_{j} \varepsilon_{j}(t) |j\rangle\langle j| + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| B_{j} + B_{j'} - \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{j\mathbf{k}} |j\rangle\langle j| \left((g_{j\mathbf{k}} - v_{j\mathbf{k}}) b_{\mathbf{k}}^{\dagger} + (g_{j\mathbf{k}} - v_{j\mathbf{k}})^{*} b_{\mathbf{k}} + \frac{\left|v_{j\mathbf{k}}\right|^{2}}{\omega_{\mathbf{k}}} \left(g_{j\mathbf{k}} \frac{v_{j\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} + g_{j\mathbf{k}}^{*} \frac{v_{j\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right)$$

$$(182)$$

$$= \sum_{j} \varepsilon_{j}(t) |j\rangle\langle j| + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| B_{jj'} + \sum_{j} |j\rangle\langle j| B_{jz} + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| \Big(B_{j+} B_{j'-} - B_{jj'} \Big) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}$$

$$(183)$$

$$\equiv \overline{H_{\overline{S}}(t)} + \overline{H_{\overline{I}}} + \overline{H_{\overline{B}}}. \tag{184}$$

The parts of the Hamiltonian splitted are obtained using the following expected value:

$$\langle B_{1+}B_{0-}\rangle = B_{10}$$
 (185)

$$= \left\langle \prod_{\mathbf{k}} D\left(\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \prod_{\mathbf{k}} D\left(-\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right\rangle \tag{186}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right) D\left(-\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right) \right\rangle \tag{187}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \right)} \right) \right\rangle$$
(188)

$$= \prod_{\mathbf{k}} \left\langle D\left(\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right\rangle e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)}$$
(189)

$$= \prod_{\mathbf{k}} \exp\left(-\frac{1}{2} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)\right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)}$$
(190)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)}. \tag{191}$$

From the definition $B_{01} = \langle B_{0+}B_{1-} \rangle$ using the displacement operator we have:

$$\langle B_{0+}B_{1-}\rangle = B_{01} \tag{192}$$

$$= \left\langle \prod_{\mathbf{k}} D\left(\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \prod_{\mathbf{k}} D\left(-\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right\rangle \tag{193}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) D\left(-\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right) \right\rangle \tag{194}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D \left(\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}} \right)} \right) \right\rangle$$
(195)

$$= \prod_{\mathbf{k}} \left\langle D\left(\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right\rangle e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)}$$
(196)

$$= \prod_{\mathbf{k}} \exp\left(-\frac{1}{2} \left| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)\right) e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)}$$
(197)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)}$$
(198)

This can be checked in the following way:

$$\langle B_{0+}B_{1-}\rangle = B_{01} \tag{199}$$

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)}$$
(200)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)^*}$$
(201)

$$= \langle B_{1+}B_{0-}\rangle^* \tag{202}$$

$$=B_{10}^*$$
 (203)

The parts of the Hamiltonian splitted are:

$$\overline{H_{\overline{S}}(t)} \equiv \left(\varepsilon_0(t) + R_0\right) \left|0\right\rangle \left(0\right| + \left(\varepsilon_1(t) + R_1\right) \left|1\right\rangle \left(1\right| + V_{10}(t) B_{10}\sigma_+ + V_{01}(t) B_{01}\sigma_-, \tag{204}$$

$$\overline{H_{\overline{I}}} \equiv V_{10}(t) \left(B_{1+} B_{0-} - B_{10} \right) \sigma_{+} + V_{01}(t) \left(B_{0+} B_{1-} - B_{01} \right) \sigma_{-} + |0\rangle\langle 0|B_{0z} + |1\rangle\langle 1|B_{1z}, \tag{205}$$

$$\overline{H_{\overline{B}}} \equiv \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \tag{206}$$

$$=H_{B}. (207)$$

Note that $\overline{H_B}$, which is the bath acting on the effective "system" \overline{S} in the variational frame, is just the original bath, H_B , before transforming to the variational frame.

For the Hamiltonian (205) we can verify the condition $\langle \overline{H_I} \rangle_{\overline{H_B}} = 0$ in the following way:

$$\left\langle \overline{H_{\overline{I}}} \right\rangle_{\overline{H_{\overline{B}}}} = \left\langle \sum_{n\mathbf{k}} \left((g_{n\mathbf{k}} - v_{n\mathbf{k}}) b_{\mathbf{k}}^{\dagger} + (g_{n\mathbf{k}} - v_{n\mathbf{k}})^* b_{\mathbf{k}} \right) |n\rangle\langle n| + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| \left(B_{j+} B_{j'-} - B_{jj'} \right) \right\rangle_{\overline{H_{\overline{B}}}}$$
(208)

$$= \left\langle \sum_{n\mathbf{k}} \left((g_{n\mathbf{k}} - v_{n\mathbf{k}}) b_{\mathbf{k}}^{\dagger} + (g_{n\mathbf{k}} - v_{n\mathbf{k}})^* b_{\mathbf{k}} \right) |n\rangle\langle n| \right\rangle_{\overline{H_{\overline{D}}}} + \left\langle \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| \left(B_{j} + B_{j'} - B_{jj'} \right) \right\rangle_{\overline{H_{\overline{D}}}}$$
(209)

$$=\sum_{n\mathbf{k}}\left(\left\langle(g_{n\mathbf{k}}-v_{n\mathbf{k}})b_{\mathbf{k}}^{\dagger}\right\rangle_{\overline{H_{\overline{B}}}}+\left\langle(g_{n\mathbf{k}}-v_{n\mathbf{k}})^{*}b_{\mathbf{k}}\right\rangle_{\overline{H_{\overline{B}}}}\right)|n\rangle\langle n|+\sum_{j\neq j'}|j\rangle\langle j'|\left(\left\langle V_{jj'}(t)B_{j+}B_{j'-}\right\rangle_{\overline{H_{\overline{B}}}}-\left\langle V_{jj'}(t)B_{jj'}\right\rangle_{\overline{H_{\overline{B}}}}\right) \tag{210}$$

$$= \sum_{n\mathbf{k}} \left((g_{n\mathbf{k}} - v_{n\mathbf{k}}) \left\langle b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{\overline{B}}}} + (g_{n\mathbf{k}} - v_{n\mathbf{k}})^* \left\langle b_{\mathbf{k}} \right\rangle_{\overline{H_{\overline{B}}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'}(t) \left(\left\langle B_{j+} B_{j'-} \right\rangle_{\overline{H_{\overline{B}}}} - \left\langle B_{jj'} \right\rangle_{\overline{H_{\overline{B}}}} \right)$$
(211)

$$= \sum_{n\mathbf{k}} \left((g_{n\mathbf{k}} - v_{n\mathbf{k}}) \left\langle b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{\overline{B}}}} + (g_{n\mathbf{k}} - v_{n\mathbf{k}})^* \left\langle b_{\mathbf{k}} \right\rangle_{\overline{H_{\overline{B}}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'}(t) \left(B_{jj'} - B_{jj'} \right). \tag{212}$$

$$=0. (213)$$

We used (142) and (191) to evaluate the expected values.

Let's consider the following Hermitian combinations:

$$B_x = B_x^{\dagger} \tag{214}$$

$$=\frac{B_{1+}B_{0-}+B_{0+}B_{1-}-B_{10}-B_{01}}{2}, (215)$$

$$B_y = B_y^{\dagger} \tag{216}$$

$$=\frac{B_{0+}B_{1-}-B_{1+}B_{0-}+B_{10}-B_{01}}{2i},$$
(217)

$$B_{iz} = B_{iz}^{\dagger} \tag{218}$$

$$= \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^* b_{\mathbf{k}} \right). \tag{219}$$

Writing the equations (204) and (205) using the previous combinations we obtain that:

$$\overline{H_{\overline{S}}}(t) = (\varepsilon_0(t) + R_0)|0\rangle\langle 0| + (\varepsilon_1(t) + R_1)|1\rangle\langle 1| + V_{10}(t)B_{10}\sigma_+ + V_{01}(t)B_{01}\sigma_-$$

$$(220)$$

$$= (\varepsilon_{0}(t) + R_{0})|0\rangle\langle 0| + (\varepsilon_{1}(t) + R_{1})|1\rangle\langle 1| + V_{10}(t) B_{10} \frac{\sigma_{x} + i\sigma_{y}}{2} + V_{01}(t) B_{01} \frac{\sigma_{x} - i\sigma_{y}}{2}$$

$$(221)$$

$$= (\varepsilon_0(t) + R_0) \\ 0 \\ 0 \\ 0 \\ | + (\varepsilon_1(t) + R_1) \\ 1 \\ 1 \\ 1 \\ | + V_{10}(t) \\ (\Re(B_{10}(t)) + \\ i \\ \Im(B_{10}(t))) \\ \frac{\sigma_x + \\ i \\ \sigma_y}{2} \\ + V_{01}(t) \\ (\Re(B_{10}(t)) - \\ i \\ \Im(B_{10}(t))) \\ \frac{\sigma_x - \\ i \\ \sigma_y}{2} \\ (222)$$

$$= (\varepsilon_0(t) + R_0[0] \\ (0) \\ (1) \\ (1) \\ (1) \\ (2) \\ (1) \\ (1) \\ (2) \\ (1) \\ (2) \\ ($$

$$= (\varepsilon_{0}(t) + R_{0})|0\rangle\langle 0| + (\varepsilon_{1}(t) + R_{1})|1\rangle\langle 1| + \Re\left(B_{10}\left(t\right)\right)\left(\sigma_{x}\Re\left(V_{10}\left(t\right)\right) - \sigma_{y}\Im\left(V_{10}\left(t\right)\right)\right) + i\Im\left(B_{10}\left(t\right)\right)\left(i\sigma_{x}\Im\left(V_{10}\left(t\right)\right) + i\sigma_{y}\Re\left(V_{10}\left(t\right)\right)\right)\right)$$

$$= (\varepsilon_0(t) + R_0)(0)(0) + (\varepsilon_1(t) + R_1)(1)(1) + (\sigma_x\Re(B_{10}(t))\Re(V_{10}(t)) - \sigma_y\Re(B_{10}(t))\Im(V_{10}(t))) - (\sigma_x\Im(B_{10}(t))\Im(V_{10}(t)) + \sigma_y\Im(B_{10}(t))\Re(V_{10}(t)))$$

$$(227)$$

$$= (\varepsilon_0(t) + R_0) \otimes (1 + (\varepsilon_1(t) + R_1) \otimes (1) + (\varepsilon_1(t) + R_1) \otimes (1) \otimes (1 + \varepsilon_1(t) \otimes (1) \otimes (1)$$

$$=\left(\varepsilon_{0}\left(t\right)+R_{0}\right)\left|0\right\rangle\left\langle 0\right|+\left(\varepsilon_{1}\left(t\right)+R_{1}\right)\left|1\right\rangle\left\langle 1\right|+\sigma_{x}\left(B_{10}^{\Re}\left(t\right)V_{10}^{\Re}\left(t\right)-B_{10}^{\Im}\left(t\right)V_{10}^{\Im}\left(t\right)\right)-\sigma_{y}\left(B_{10}^{\Re}\left(t\right)V_{10}^{\Im}\left(t\right)+B_{10}^{\Im}\left(t\right)V_{10}^{\Re}\left(t\right)\right).\tag{229}$$

$$\overline{H_T} V_{10}(t) \left(\sigma_+ B_{1+} B_0 - \sigma_+ B_{10}\right) + V_{01}(t) \left(\sigma_- B_0 + B_1 - \sigma_- B_{01}\right) + |0\rangle \langle 0| B_{0z} + |1\rangle \langle 1| B_{1z}$$

$$(230)$$

$$\exists 0 \langle 0 | B_{0z} + | 1 \rangle \langle 1 | B_{1z} + (\Re(V_{10}(t)) + i \Im(V_{10}(t))) (\sigma_{+} B_{1+} B_{0-} - \sigma_{+} B_{10}) + (\Re(V_{10}(t)) - i \Im(V_{10}(t))) (\sigma_{-} B_{0+} B_{1-} - \sigma_{-} B_{01})$$

$$(231)$$

$$= \sum_{i} B_{iz} |i\rangle\langle i| + \Re(V_{10}(t)) \left(\sigma_{+} B_{1+} B_{0-} - \sigma_{+} B_{10} + \sigma_{-} B_{0+} B_{1-} - \sigma_{-} B_{01}\right) + i\Im(V_{10}(t)) \left(\sigma_{+} B_{1+} B_{0-} - \sigma_{+} B_{10} - \sigma_{-} B_{0+} B_{1-} + \sigma_{-} B_{01}\right)$$

$$(232)$$

$$= \sum_{i} B_{iz} |i\rangle \langle i| + \Re(V_{10}(t)) \left(\frac{\sigma_x + i\sigma_y}{2} B_{1+} B_{0-} - \frac{\sigma_x + i\sigma_y}{2} B_{10} + \frac{\sigma_x - i\sigma_y}{2} B_{0+} B_{1-} - \frac{\sigma_x - i\sigma_y}{2} B_{01} \right) \tag{233}$$

$$= \sum_{i} B_{iz} |i\rangle\langle i| + \Re V_{10}(t) \left(\frac{\sigma_x + i\sigma_y}{2} B_1 + B_0 - \frac{\sigma_x + i\sigma_y}{2} B_{10} + \frac{\sigma_x - i\sigma_y}{2} B_{00} + B_1 - \frac{\sigma_x - i\sigma_y}{2} B_{01} \right) + i\Im (V_{10}(t)) \left(\frac{\sigma_x + i\sigma_y}{2} B_1 + B_0 - \frac{\sigma_x + i\sigma_y}{2} B_{10} - \frac{\sigma_x - i\sigma_y}{2} B_0 + B_1 - \frac{\sigma_x - i\sigma_y}{2} B_0 + \frac{\sigma_x - i$$

$$+\frac{\sigma_x - i\sigma_y}{2} B_{01}$$
 (235)

$$= \sum_{i} B_{iz} |i\rangle \langle i| + V_{10}^{\Re}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} - B_{01}}{2} + i\sigma_{y} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{10} + B_{10} + B_{10}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{10} + B_{10} + B_{10}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{10} + B_{10} + B_{10}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{10} + B_{10}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{0} - B_{10} + B_{10} + B_{10}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{10} + B_{10} + B_{10}}{2}\right) + iV_{10}^{\Im}(t) \left(\sigma_{x} \frac{B_{1} + B_{10} + B_{10}}{2}\right) + iV_{10}^{\Im}($$

$$+i\sigma_y \frac{B_1+B_0-B_0+B_1-B_{01}}{2}$$
 (237)

$$= \sum_{i} B_{iz} |i\rangle\langle i| + V_{10}^{\Re}(t) \left(\sigma_x B_x + \sigma_y B_y\right) + V_{10}^{\Im}(t) \left(i\sigma_x \frac{B_1 + B_0 - B_0 + B_1 - B_{10} + B_{01}}{2} - \sigma_y \frac{B_1 + B_0 + B_0 + B_1 - B_{10} - B_{01}}{2}\right)$$

$$(238)$$

$$= \sum_{i} B_{iz} |i\rangle\langle i| + V_{10}^{\Re}(t) \left(\sigma_{x} B_{x} + \sigma_{y} B_{y}\right) + V_{10}^{\Im}(t) \left(i^{2} \sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2i} - \sigma_{y} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} - B_{01}}{2}\right)$$

$$(239)$$

$$= \sum_{i} B_{iz} |i\rangle\langle i| + V_{10}^{\Re}(t) \left(\sigma_{x} B_{x} + \sigma_{y} B_{y}\right) + V_{10}^{\Im}(t) \left(i^{2} \sigma_{x} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} + B_{01}}{2i} - \sigma_{y} \frac{B_{1} + B_{0} - B_{0} + B_{1} - B_{10} - B_{01}}{2}\right) \tag{240}$$

$$=\sum_{i} B_{iz} |i\rangle\langle i| + V_{10}^{\Re}(t) \left(\sigma_x B_x + \sigma_y B_y\right) + V_{10}^{\Im}(t) \left(i^2 \sigma_x (-B_y) - \sigma_y B_x\right)$$

$$(241)$$

$$=\sum_{i} B_{iz} |i\rangle\langle i| + V_{10}^{\Re}(t) \left(\sigma_{x} B_{x} + \sigma_{y} B_{y}\right) + V_{10}^{\Re}(t) \left(\sigma_{x} B_{y} - \sigma_{y} B_{x}\right). \tag{242}$$

III. FREE-ENERGY MINIMIZATION

The true free energy *A* is bounded by the Bogoliubov inequality:

$$A \le A_{\rm B} \equiv -\frac{1}{\beta} \ln \left(\operatorname{Tr} \left(e^{-\beta \left(\overline{H_{\overline{S}}}(t) + \overline{H_{\overline{B}}} \right)} \right) \right) + \left\langle \overline{H_{\overline{I}}} \right\rangle_{\overline{H_{\overline{S}}}(t) + \overline{H_{\overline{B}}}} + O\left(\left\langle \overline{H_{\overline{I}}}^2 \right\rangle_{\overline{H_{\overline{S}}}(t) + \overline{H_{\overline{B}}}} \right). \tag{243}$$

We will optimize the set of variational parameters $\{v_{ik}\}$ in order to minimize A_B (i.e. to make it as close to the true free energy A as possible). Neglecting the higher order terms and using $\langle \overline{H_{\overline{I}}} \rangle_{\overline{H_{\overline{S}}}(t) + \overline{H_{\overline{B}}}} = 0$ we can obtain the following condition to obtain the set $\{v_{i\mathbf{k}}\}$:

$$\frac{\partial A_{\rm B}}{\partial v_{\rm ak}} = 0. \tag{244}$$

Using this condition and given that $[\overline{H_{\overline{S}}}(t), \overline{H_{\overline{B}}}] = 0$, we have:

$$e^{-\beta\left(\overline{H}_{\overline{S}}(t) + \overline{H}_{\overline{B}}\right)} = e^{-\beta\overline{H}_{\overline{S}}(t)}e^{-\beta\overline{H}_{\overline{B}}}.$$
(245)

Then using the fact that $\overline{H_S}(t)$ and $\overline{H_B}$ relate to different Hilbert spaces, we obtain:

$$\operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}}(t)}e^{-\beta \overline{H_{\overline{B}}}}\right) = \operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}}(t)}\right)\operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{B}}}}\right). \tag{246}$$

So Eq. (244) becomes:

$$\frac{\partial A_{\rm B}}{\partial v_{i\mathbf{k}}} = -\frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \left(\overline{H_{\overline{S}}}(t) + \overline{H_{\overline{B}}} \right)} \right) \right)}{\partial v_{i\mathbf{k}}}$$

$$= -\frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}(t)} \right) \operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{B}}}} \right) \right)}{\partial v_{i\mathbf{k}}}$$
(247)

$$= -\frac{1}{\beta} \frac{\partial \ln \left(\text{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}(t)} \right) \text{Tr} \left(e^{-\beta \overline{H_{\overline{B}}}} \right) \right)}{\partial v_{i\mathbf{k}}}$$
(248)

$$= -\frac{1}{\beta} \frac{\partial \left(\ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}}(t) \right) \right) + \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{B}}}} \right) \right) \right)}{\partial v_{i\mathbf{k}}}$$
(249)

$$= -\frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}(t)} \right) \right)}{\partial v_{i\mathbf{k}}} - \frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{B}}}} \right) \right)}{\partial v_{i\mathbf{k}}}$$
 (250)

$$= 0$$
 (by Eq. (244)). (251)

But since $\bar{H}_{\overline{B}} = H_B$ which doesn't contain any $v_{i\mathbf{k}}$, a derivative of any function of H_B that does not introduce new $v_{i\mathbf{k}}$ will be zero. We therefore require the following:

$$\frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}(t)} \right) \right)}{\partial v_{i\mathbf{k}}} = \frac{1}{e^{-\beta \overline{H_{\overline{S}}}(t)}} \frac{\partial \operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}(t)} \right)}{\partial v_{i\mathbf{k}}}$$

$$= 0.$$
(252)

This means we need to impose:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}}(t)}\right)}{\partial v_{ik}} = 0. \tag{254}$$

First we look at:

$$-\beta \overline{H_{\overline{S}}}(t) = -\beta \left((\varepsilon_0(t) + R_0) |0\rangle\langle 0| + (\varepsilon_1(t) + R_1) |1\rangle\langle 1| + V_{10}(t) B_{10}\sigma_+ + V_{01}(t) B_{01}\sigma_- \right). \tag{255}$$

Then the eigenvalues of $-\beta \overline{H_S}(t)$ satisfy the following relationship deduced from the Caley-Hamilton theorem:

$$\lambda^{2} - \operatorname{Tr}\left(-\beta \overline{H_{\overline{S}}}(t)\right) + \operatorname{Det}\left(-\beta \overline{H_{\overline{S}}}(t)\right) = 0.$$
(256)

Let's define:

$$\varepsilon(t) \equiv \operatorname{Tr}\left(\overline{H_S}(t)\right),\tag{257}$$

$$\eta \equiv \sqrt{\left(\operatorname{Tr}\left(\overline{H_{\overline{S}}}\left(t\right)\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\overline{S}}}\left(t\right)\right)}.$$
(258)

The solutions of the equation (256) are:

$$\lambda = \beta \frac{-\text{Tr}\left(\overline{H_{\overline{S}}}(t)\right) \pm \sqrt{\left(\text{Tr}\left(\overline{H_{\overline{S}}}(t)\right)\right)^2 - 4\text{Det}\left(\overline{H_{\overline{S}}}(t)\right)}}{2}$$
(259)

$$=\beta \frac{-\varepsilon \left(t\right) \pm \eta \left(t\right) }{2}\tag{260}$$

$$=-\beta \frac{\varepsilon \left(t\right) \mp \eta \left(t\right) }{2}. \tag{261}$$

The value of $\operatorname{Tr}\left(e^{-\beta \overline{H_S}(t)}\right)$ can be written in terms of this eigenvalues as (since there's only 2 eigenvalues of a 2×2 matrix):

$$\operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}}(t)}\right) = \exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right) \exp\left(\frac{\eta\left(t\right)\beta}{2}\right) + \exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right) \exp\left(-\frac{\eta\left(t\right)\beta}{2}\right) \tag{262}$$

$$=2\exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right)\cosh\left(\frac{\eta\left(t\right)\beta}{2}\right). \tag{263}$$

Given that $v_{i\mathbf{k}}$ is a complex number then we will optimize in the real and complex parts of this element, this can be seen in the following reasoning.

Using the chain rule on the function $\operatorname{Tr}\left(e^{-\beta\overline{H_{\overline{S}}}(t)}\right)=A\left(\varepsilon\left(t\right),\eta\left(t\right)\right)$ to calculate $\frac{\partial\operatorname{Tr}\left(e^{-\beta\overline{H_{\overline{S}}}(t)}\right)}{\partial\Re(v_{i\mathbf{k}})}$ can lead to:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}}(t)}\right)}{\partial \Re\left(v_{i\mathbf{k}}\right)} = \frac{\partial\left(2\exp\left(-\frac{\varepsilon(t)\beta}{2}\right)\cosh\left(\frac{\eta(t)\beta}{2}\right)\right)}{\partial \Re\left(v_{i\mathbf{k}}\right)}$$
(264)

$$=2\left(-\frac{\beta}{2}\frac{\partial\varepsilon\left(t\right)}{\partial\Re\left(v_{i\mathbf{k}}\right)}\right)\exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right)\cosh\left(\frac{\eta\left(t\right)\beta}{2}\right)+2\left(\frac{\beta}{2}\frac{\partial\eta\left(t\right)}{\partial\Re\left(v_{i\mathbf{k}}\right)}\right)\exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right)\sinh\left(\frac{\eta\left(t\right)\beta}{2}\right)\tag{265}$$

$$= -\beta \exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right) \left(\frac{\partial \varepsilon\left(t\right)}{\partial \Re\left(v_{i\mathbf{k}}\right)} \cosh\left(\frac{\eta\left(t\right)\beta}{2}\right) - \frac{\partial \eta\left(t\right)}{\partial \Re\left(v_{i\mathbf{k}}\right)} \sinh\left(\frac{\eta\left(t\right)\beta}{2}\right)\right). \tag{266}$$

Making the derivate equal to zero make us suitable to write:

$$\frac{\partial \varepsilon(t)}{\partial \Re(v_{i\mathbf{k}})} \cosh\left(\frac{\eta(t)\beta}{2}\right) - \frac{\partial \eta(t)}{\partial \Re(v_{i\mathbf{k}})} \sinh\left(\frac{\eta(t)\beta}{2}\right) = 0. \tag{267}$$

The derivates included in the expression given are related to:

$$\langle B_{0+}B_{1-}\rangle = \left(\prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)}\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left|\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)$$
(268)

$$= \left(\prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \right)} \right)^* \left(\exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right)$$
(269)

$$=\langle B_{1+}B_{0-}\rangle^*,$$
 (270)

$$R_{i} = \sum_{\mathbf{k}} \left(\frac{|v_{i\mathbf{k}}|^{2}}{\omega_{\mathbf{k}}} - \left(g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*} \frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right) \tag{271}$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{i\mathbf{k}}|^2}{\omega_{\mathbf{k}}} - g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^*}{\omega_{\mathbf{k}}} - g_{i\mathbf{k}}^* \frac{v_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right), \tag{272}$$

$$\langle B_{0+}B_{1-}\rangle = \left(\prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{\mathbf{k}\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{\mathbf{1}\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{\mathbf{0}\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{\mathbf{1}\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)}\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left|\frac{v_{\mathbf{0}\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{\mathbf{1}\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)$$
(273)

$$= \left(\prod_{\mathbf{k}} \exp \left(\frac{1}{2\omega_{\mathbf{k}}^2} (v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*) \right) \right) \left(\exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth \left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right), \tag{274}$$

$$v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^* = (\Re(v_{0\mathbf{k}}) - i\Im(v_{0\mathbf{k}}))(\Re(v_{1\mathbf{k}}) + i\Im(v_{1\mathbf{k}})) - (\Re(v_{0\mathbf{k}}) + i\Im(v_{0\mathbf{k}}))(\Re(v_{1\mathbf{k}}) - i\Im(v_{1\mathbf{k}}))$$

$$(275)$$

$$=\Re(v_{0\mathbf{k}})\Re(v_{1\mathbf{k}}) + i\Re(v_{0\mathbf{k}})\Im(v_{1\mathbf{k}}) - i\Im(v_{0\mathbf{k}})\Re(v_{1\mathbf{k}}) + \Im(v_{0\mathbf{k}})\Im(v_{1\mathbf{k}}) - \Re(v_{0\mathbf{k}})\Re(v_{1\mathbf{k}}) - i\Re(v_{0\mathbf{k}})\Im(v_{1\mathbf{k}}) + i\Im(v_{0\mathbf{k}})\Re(v_{1\mathbf{k}}) + \Im(v_{0\mathbf{k}})\Re(v_{1\mathbf{k}}) + \Im(v_{0\mathbf{k}})\Im(v_{1\mathbf{k}}) + \Im(v_{0\mathbf{k}})\Im($$

$$=2i(\Re(v_{0\mathbf{k}})\Im(v_{1\mathbf{k}})-\Im(v_{0\mathbf{k}})\Re(v_{1\mathbf{k}})),\tag{277}$$

$$|v_{1\mathbf{k}} - v_{0\mathbf{k}}|^2 = (v_{1\mathbf{k}} - v_{0\mathbf{k}})(v_{1\mathbf{k}} - v_{0\mathbf{k}})^*$$
(278)

$$= |v_{1\mathbf{k}}|^2 + |v_{0\mathbf{k}}|^2 - (v_{1\mathbf{k}}v_{0\mathbf{k}}^* + v_{1\mathbf{k}}^*v_{0\mathbf{k}})$$
(279)

$$= (\Re(v_{1\mathbf{k}}))^2 + (\Im(v_{1\mathbf{k}}))^2 + (\Re(v_{0\mathbf{k}}))^2 + (\Im(v_{0\mathbf{k}}))^2 + (\Im(v_{0\mathbf{k}}))^2 + (\Im(v_{0\mathbf{k}}) + i\Im(v_{0\mathbf{k}}) + i\Im(v_{0\mathbf{k}$$

$$= (\Re(v_{1k}))^{2} + (\Im(v_{1k}))^{2} + (\Re(v_{0k}))^{2} + (\Im(v_{0k}))^{2} + (\Im(v_{0k}))^{2} - 2(\Re(v_{1k})\Re(v_{0k}) + \Im(v_{1k})\Im(v_{0k}))$$
(281)

$$= \left(\Re\left(v_{1\mathbf{k}}\right) - \Re\left(v_{0\mathbf{k}}\right)\right)^{2} + \left(\Im\left(v_{1\mathbf{k}}\right) - \Im\left(v_{0\mathbf{k}}\right)\right)^{2}. \tag{282}$$

Rewriting in terms of real and imaginary parts.

$$R_{i} = \sum_{\mathbf{k}} \left(\frac{\Re(v_{i\mathbf{k}})^{2} + \Im(v_{i\mathbf{k}})^{2}}{\omega_{\mathbf{k}}} - \left(g_{i\mathbf{k}} \frac{\Re(v_{i\mathbf{k}}) - i\Im(v_{i\mathbf{k}})}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*} \frac{\Re(v_{i\mathbf{k}}) + i\Im(v_{i\mathbf{k}})}{\omega_{\mathbf{k}}} \right) \right)$$
(283)

$$= \sum_{\mathbf{k}} \left(\frac{\Re \left(v_{i\mathbf{k}} \right)^2 + \Im \left(v_{i\mathbf{k}} \right)^2}{\omega_{\mathbf{k}}} - \Re \left(v_{i\mathbf{k}} \right) \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^*}{\omega_{\mathbf{k}}} - i\Im \left(v_{i\mathbf{k}} \right) \frac{g_{i\mathbf{k}}^* - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right), \tag{284}$$

$$\langle B_{0+}B_{1-}\rangle = \left(\prod_{\mathbf{k}} \exp\left(\frac{v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{2\omega_{\mathbf{k}}^2}\right)\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left|\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)$$
(285)

$$= \left(\prod_{\mathbf{k}} \exp\left(\frac{2\mathrm{i}(\Re(v_{0\mathbf{k}})\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}})\Re(v_{1\mathbf{k}})}{2\omega_{\mathbf{k}}^2}\right)\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \frac{(\Re(v_{1\mathbf{k}}) - \Re(v_{0\mathbf{k}}))^2 + (\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)$$

$$= \left(\prod_{\mathbf{k}} \exp\left(\frac{\mathrm{i}(\Re(v_{0\mathbf{k}})\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}})\Re(v_{1\mathbf{k}}))}{\omega_{\mathbf{k}}^2}\right)\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \frac{(\Re(v_{1\mathbf{k}}) - \Re(v_{0\mathbf{k}}))^2 + (\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right),$$
(286)

$$= \left(\prod_{\mathbf{k}} \exp\left(\frac{i(\Re(v_{0\mathbf{k}})\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}})\Re(v_{1\mathbf{k}})}{\omega_{\mathbf{k}}^2}\right)\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \frac{(\Re(v_{1\mathbf{k}}) - \Re(v_{0\mathbf{k}}))^2 + (\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right), \quad (287)$$

Calculating the derivates respect to $\Re(\alpha_{i\mathbf{k}})$ and $\Im(\alpha_{i\mathbf{k}})$ we have:

(300)

$$\frac{\frac{\partial \varepsilon(t)}{\partial \Re(v_{ik})}}{\frac{\partial \Re(v_{ik})}{\partial \Re(v_{ik})}} = \frac{\frac{\partial (\varepsilon_{1}(t) + R_{1} + \varepsilon_{0}(t) + R_{0})}{\partial \Re(v_{ik})} \frac{1}{2} \frac{e^{\varepsilon_{1}(t)}}{w_{1}^{2}} \frac{e^{\varepsilon_{1}(t)}}{e^{\varepsilon_{1}(t)}} \frac{e^{\varepsilon_{1}(t)}}{w_{1}^{2}} \frac{e^{\varepsilon_{1}(t)}}{e^{\varepsilon_{1}(t)}} \frac{e^{\varepsilon_{1}(t)}}{w_{1}^{2}} \frac{e^{\varepsilon_{1}(t)}}{e^{\varepsilon_{1}(t)}} \frac{e^{\varepsilon_{1}(t)}}{e^{\varepsilon_{1}(t)}}} \frac{e^{\varepsilon_{1}(t)}}{e^{\varepsilon_{1}(t)}} \frac{e^{\varepsilon_{1}(t)}}{e^{\varepsilon_{1}(t)}} \frac{e^{\varepsilon_{1}(t)}}{e^{\varepsilon$$

From the equation (267) and replacing the derivates obtained we have:

$$tanh\left(\frac{\beta\eta(t)}{2}\right) = \frac{\frac{\partial \varepsilon(t)}{\partial \Re(v_{ik})}}{\frac{\partial \eta(t)}{\partial \Re(v_{ik})}} = \frac{\frac{2\Re(v_{ik})}{\partial \Re(v_{ik})} - \frac{2\Re(g_{ik})}{\omega_{k}}}{\frac{2\Re(v_{ik})}{\omega_{k}} - \frac{2\Re(g_{ik})}{\omega_{k}}} = \frac{\frac{2\Re(v_{ik})}{\omega_{k}} - \frac{2\Re(g_{ik})}{\omega_{k}}}{\frac{2\Re(v_{ik})}{\omega_{k}} - \frac{2\Re(g_{ik})}{\omega_{k}}}{\frac{2\Re(v_{ik})}{\omega_{k}} - \frac{2\Re(v_{ik})}{\omega_{k}} + 2\frac{\Re(v_{ik})}{\omega_{k}} + 2\frac{\Re(v_{ik})}{\omega_{k}} + 2\frac{\Re(v_{ik})}{\omega_{k}} - \frac{\Re(g_{ik})}{\omega_{k}} - \frac{\Re(g_{ik})}{\omega_{k}}}{\frac{2\Re(v_{ik})}{\omega_{k}} - \frac{2\Re(g_{ik})}{\omega_{k}} + 2\frac{\Re(v_{ik})}{\omega_{k}} - \frac{2\Re(g_{ik})}{\omega_{k}} - \frac{2\Re(g_{i$$

Rearrannging this equation will lead to:

 $+4\frac{\Re\left(v_{i'\mathbf{k}}\right)}{\omega_{i}^{2}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)$

$$\begin{aligned} &\tanh\left(\frac{\beta\eta(t)}{2}\right) = \frac{\left(2v_{i\mathbf{k}}^{\Re} - g_{i\mathbf{k}} - g_{i\mathbf{k}}^{*}\right)\eta(t)}{v_{i\mathbf{k}}^{\Re}\left(2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) - \frac{4|V_{10}(t)|^{2}|B_{10}|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - \left(g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}\right)\left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right)\right) + 4\frac{\Re\left(v_{i'\mathbf{k}}\right)}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}\left(2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) - \frac{4|V_{10}(t)|^{2}B_{10}^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}\left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right)\right) + 4\frac{v_{i'\mathbf{k}}^{\Re}}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}\left(2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) - \frac{4|V_{10}(t)|^{2}B_{10}^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}\left(2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)\right) + 4\frac{v_{i'\mathbf{k}}^{\Re}}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}\left(2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) - \frac{4|V_{10}(t)|^{2}|B_{10}|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}\left(2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)\right) + 4\frac{v_{i'\mathbf{k}}^{\Re}}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}\left(2\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) - \frac{2|V_{10}(t)|^{2}|B_{10}|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - g_{i\mathbf{k}}^{\Re}\left(2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)\right) + 2\frac{v_{i'\mathbf{k}}^{\Re}}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}\left(2\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) - \frac{2|V_{10}(t)|^{2}|B_{10}|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - g_{i\mathbf{k}}^{\Re}\left(2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)\right) + 2\frac{v_{i'\mathbf{k}}^{\Re}}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}\left(2\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) - \frac{2|V_{10}(t)|^{2}|B_{10}|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - g_{i\mathbf{k}}^{\Re}\left(2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)\right) + 2\frac{v_{i'\mathbf{k}}^{\Re}}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) - g_{i\mathbf{k}}^{\Re}\left(2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)\right) + 2\frac{v_{i'\mathbf{k}}^{\Re}}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) - g_{i\mathbf{k}}^{\Re}\left(2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)\right) + 2\frac{v_{i'\mathbf{k}}^{\Re}}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}$$

Separating (305) such that the terms with v_{ik} are located at one side of the equation permit us to write

$$\Re(v_{i\mathbf{k}}) - \Re(g_{i\mathbf{k}}) = \Re(v_{i\mathbf{k}}) \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(\varepsilon(t) - 2(\varepsilon(t) - \varepsilon_i(t) - R_i) - \frac{2|V_{10}(t)|^2 |B_{10}|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \Re(g_{i\mathbf{k}}) \left(2\varepsilon_i(t) + 2R_i - \varepsilon(t)\right)$$

$$(308)$$

$$+2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{\Re\left(v_{i'\mathbf{k}}\right)}{\omega_{\mathbf{k}}}|_{B_{10}}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)$$
(309)

$$\Re(v_{i\mathbf{k}}) = \frac{\Re(g_{i\mathbf{k}}) \left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} (2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)\omega_{\mathbf{k}}} \frac{\Re\left(v_{i'\mathbf{k}}\right)}{\Re(g_{i\mathbf{k}})} |B_{10}|^{2} |V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(\varepsilon(t) - 2(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}) - \frac{2|V_{10}(t)|^{2} |B_{10}|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}\right)$$
(310)

$$\Re(v_{i\mathbf{k}}) = \frac{\Re(g_{i\mathbf{k}}) \left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} (2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)\omega_{\mathbf{k}}} \frac{\Re(v_{i'\mathbf{k}})}{\Re(g_{i\mathbf{k}})} |B_{10}|^{2} |V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(\varepsilon(t) - 2(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}) - \frac{2|V_{10}(t)|^{2} |B_{10}|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}$$
(311)

The imaginary part can be found in the following way

$$\frac{\partial \varepsilon(t)}{\partial \Im(v_{i\mathbf{k}})} = \frac{\partial (\varepsilon_1(t) + R_1 + \varepsilon_0(t) + R_0)}{\partial \Im(v_{i\mathbf{k}})} \tag{312}$$

$$= \frac{\partial \left(\left(\frac{\Re(v_{i\mathbf{k}})^2 + \Im(v_{i\mathbf{k}})^2}{\omega_{\mathbf{k}}} - \Re(v_{i\mathbf{k}}) \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^*}{\omega_{\mathbf{k}}} - i\Im(v_{i\mathbf{k}}) \frac{g_{i\mathbf{k}}^* - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right)}{\partial \Im(v_{i\mathbf{k}})}$$
(313)

$$=2\frac{\Im(v_{i\mathbf{k}})}{\omega_{\mathbf{k}}} - i\frac{g_{i\mathbf{k}}^* - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \tag{314}$$

$$\frac{\frac{\partial |B_{10}|^2}{\partial \Im(v_{i\mathbf{k}})}}{\frac{\partial |\mathcal{B}_{10}|^2}{\partial \Im(v_{i\mathbf{k}})}} = \frac{\frac{\partial \left(\exp\left(-\sum_{\mathbf{k}} \frac{(\Re(v_{1\mathbf{k}}) - \Re(v_{0\mathbf{k}}))^2 + (\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)}{\partial \Im(v_{i\mathbf{k}})}$$
(315)

$$= -\frac{2(\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))}{\omega_{\mathbf{k}}^{2}} \frac{\partial(\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))}{\partial\Im(v_{i\mathbf{k}})} \exp\left(-\sum_{\mathbf{k}} \frac{(\Re(v_{1\mathbf{k}}) - \Re(v_{0\mathbf{k}}))^{2} + (\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))^{2}}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$

$$= -\frac{2(\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))}{\omega_{\mathbf{k}}^{2}} \frac{\partial(\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))}{\partial\Im(v_{i\mathbf{k}})} |B_{10}|^{2}$$
(316)

$$= -\frac{2(\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))}{\omega_{\mathbf{k}}^2} \frac{\partial(\Im(v_{1\mathbf{k}}) - \Im(v_{0\mathbf{k}}))}{\partial\Im(v_{1\mathbf{k}})} |B_{10}|^2$$
(317)

$$\frac{\partial \eta(t)}{\partial \Re(v_{i\mathbf{k}})} = \frac{\partial \sqrt{\left(\text{Tr}\left(\overline{H_{\overline{S}}(t)}\right)\right)^{2} - 4\text{Det}\left(\overline{H_{\overline{S}}(t)}\right)}}{\partial \Re(v_{i\mathbf{k}})} \\
= \frac{2\text{Tr}\left(\overline{H_{\overline{S}}(t)}\right) \frac{\partial \text{Tr}\left(\overline{H_{\overline{S}}(t)}\right)}{\partial \Im(v_{i\mathbf{k}})} - 4\frac{\partial \text{Det}\left(\overline{H_{\overline{S}}(t)}\right)}{\partial \Im(v_{i\mathbf{k}})}}{2\sqrt{\left(\text{Tr}\left(\overline{H_{\overline{S}}(t)}\right)\right)^{2} - 4\text{Det}\left(\overline{H_{\overline{S}}(t)}\right)}} \tag{319}$$

$$=\frac{{}^{2\text{Tr}}\left(\overline{H_{\overline{S}}(t)}\right)\frac{\partial \text{Tr}\left(\overline{H_{\overline{S}}(t)}\right)}{\partial \Im\left(v_{i\mathbf{k}}\right)} - 4\frac{\partial \text{Det}\left(\overline{H_{\overline{S}}(t)}\right)}{\partial \Im\left(v_{i\mathbf{k}}\right)}}{2\sqrt{\left(\text{Tr}\left(\overline{H_{\overline{S}}(t)}\right)\right)^{2} - 4\text{Det}\left(\overline{H_{\overline{S}}(t)}\right)}}$$
(319)

$$= \frac{\varepsilon(t) \left(2\frac{\Im(v_{i\mathbf{k}})}{\omega_{\mathbf{k}}} - i\frac{g_{i\mathbf{k}}^* - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right) - 2\frac{\partial\left((\varepsilon_1(t) + R_1)(\varepsilon_0(t) + R_0) - |V_{10}(t)|^2|B_{10}(t)|^2\right)}{\partial\Im(v_{i\mathbf{k}})}}{\eta(t)}$$
(320)

$$=\frac{\varepsilon(t)\!\!\left(2\frac{\Im(v_{i\mathbf{k}})}{\omega_{\mathbf{k}}}\!-\!\mathrm{i}\frac{g_{i\mathbf{k}}^*\!-\!g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\!-\!2\!\left((\varepsilon(t)\!-\!\varepsilon_{i}(t)\!-\!R_{i})\!\!\left(2\frac{\Im(v_{i\mathbf{k}})}{\omega_{\mathbf{k}}}\!-\!\mathrm{i}\frac{g_{i\mathbf{k}}^*\!-\!g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\!+\!\frac{2\!\!\left(\Im(v_{1\mathbf{k}})\!-\!\Im(v_{0\mathbf{k}})\!\!\right)}{\omega_{\mathbf{k}}^2}\frac{\partial\!\left(\Im(v_{1\mathbf{k}})\!-\!\Im(v_{0\mathbf{k}})\!\!\right)}{\partial\!\left(\Im(v_{i\mathbf{k}})\right)}|B_{10}|^2|V_{10}(t)|^2\mathrm{coth}\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\!\!\right)}{\eta(t)}$$

$$=\frac{\varepsilon(t)\left(2\frac{\Im(v_{i\mathbf{k}})}{\omega_{\mathbf{k}}}-\mathrm{i}\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)-2\left(\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}\right)\left(2\frac{\Im(v_{i\mathbf{k}})}{\omega_{\mathbf{k}}}-\mathrm{i}\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)+\frac{2\left(\Im(v_{i\mathbf{k}})-\Im\left(v_{i'\mathbf{k}}\right)\right)}{\omega_{\mathbf{k}}^{2}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\eta(t)}$$

$$(322)$$

$$= \frac{\Im(v_{i\mathbf{k}})}{\omega_{\mathbf{k}}} \left(\frac{2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) - \frac{4}{\omega_{\mathbf{k}}} |B_{10}|^{2} |V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\eta(t)} \right) + \frac{1}{\eta(t)} \left(-\mathrm{i} \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \varepsilon(t) + 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) \mathrm{i} \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$

$$(323)$$

$$+4\frac{\Im\left(v_{\underline{i}'k}\right)}{\omega_{\mathbf{k}}^{2}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \tag{324}$$

From the equation (267) and replacing the derivates obtained we have:

$$_{\tanh\left(\frac{\beta\eta(t)}{2}\right)} = \frac{\frac{\partial \varepsilon(t)}{\partial \Im(v_{i\mathbf{k}})}}{\frac{\partial \eta(t)}{\partial \Im(v_{i\mathbf{k}})}} \tag{325}$$

$$= \frac{\frac{2\frac{\Im\left(v_{i\mathbf{k}}\right)}{\omega_{\mathbf{k}}} - \mathrm{i}\frac{g_{i\mathbf{k}}^* - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}}{\frac{\Im\left(v_{i\mathbf{k}}\right)}{\omega_{\mathbf{k}}}}}{\frac{\Im\left(v_{i\mathbf{k}}\right)}{\omega_{\mathbf{k}}} + 2\frac{\Im\left(v_{i^*\mathbf{k}}\right)}{\omega_{\mathbf{k}}} + 2\frac{\Im\left(v_{i^*\mathbf{k}}\right)}{\omega_{\mathbf{k}}^*} + 2\frac{\Im\left(v_{i^*\mathbf{k}}$$

Rearranging this equation will lead to:

$$\frac{(2\Im(v_{i\mathbf{k}}) - i(g_{i\mathbf{k}}^* - g_{i\mathbf{k}}))\eta(t)}{\Im(v_{i\mathbf{k}})\left(2\varepsilon(t) - 4(\varepsilon(t) - \varepsilon_i(t) - R_i) - \frac{4|V_{10}(t)|^2|B_{10}|^2\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - i\left(g_{i\mathbf{k}}^* - g_{i\mathbf{k}}\right)(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_i(t) - R_i\right) + 4\frac{\Im(v_{i'\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^2|V_{10}(t)|^2\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - i\left(g_{i\mathbf{k}}^* - g_{i\mathbf{k}}\right)(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_i(t) - R_i\right) + 4\frac{\Im(v_{i'\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^2|V_{10}(t)|^2\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2\Im(g_{i\mathbf{k}})(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_i(t) - R_i\right)) + 4\frac{\Im(v_{i'\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^2|V_{10}(t)|^2\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2\Im(g_{i\mathbf{k}})(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_i(t) - R_i\right)) + 4\frac{\Im(v_{i'\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^2|V_{10}(t)|^2\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2\Im(g_{i\mathbf{k}})(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_i(t) - R_i\right)) + 4\frac{\Im(v_{i'\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^2|V_{10}(t)|^2\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2\Im(g_{i\mathbf{k}})(2\varepsilon_i(t) + 2R_i - \varepsilon(t)) + 4\frac{\Im(v_{i'\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^2|V_{10}(t)|^2\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 3(g_{i\mathbf{k}})(2\varepsilon_i(t) + 2R_i - \varepsilon(t)) + 2\frac{\Im(v_{i'\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^2|V_{10}(t)|^2\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}$$
(330)

Separating (330) such that the terms with v_{ik} are located at one side of the equation permit us to write

$$\Im(v_{i\mathbf{k}}) - \Im(g_{i\mathbf{k}}) = \Im(v_{i\mathbf{k}}) \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_i(t) - R_i\right) - \frac{2|V_{10}(t)|^2|B_{10}|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)$$
(332)

$$-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\Im(g_{i\mathbf{k}})(2\varepsilon_{i}(t)+2R_{i}-\varepsilon(t))+2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{\Im(v_{i}'\mathbf{k})}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)$$
(333)

$$\frac{-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\Im(g_{i\mathbf{k}})(2\varepsilon_{i}(t)+2R_{i}-\varepsilon(t))+2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{\Im(v_{i}\prime_{\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}} = \frac{\Im(g_{i\mathbf{k}})\left(1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}(2\varepsilon_{i}(t)+2R_{i}-\varepsilon(t))\right)+2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{\Im(v_{i}\prime_{\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}} = \frac{1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}\right)-\frac{2|V_{10}(t)|^{2}|B_{10}|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}{\omega_{\mathbf{k}}}$$
(334)

$$\Im\left(v_{i\mathbf{k}}\right) = \frac{\Im\left(g_{i\mathbf{k}}\right)\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)\right)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \frac{\Im\left(v_{i'\mathbf{k}}\right)}{\omega_{\mathbf{k}}} |B_{10}|^{2} |V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}$$

$$1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(\varepsilon(t) - 2(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}) - \frac{2|V_{10}(t)|^{2} |B_{10}|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)$$
(335)

The variational parameters are:

$$v_{i\mathbf{k}} = \Re\left(v_{i\mathbf{k}}\right) + i\Im\left(v_{i\mathbf{k}}\right) \tag{336}$$

$$= \frac{\Re(g_{i\mathbf{k}})\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t) + 2R_{i} - \varepsilon(t)\right)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{\Re(v_{i}'\mathbf{k})}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\frac{1 - \tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}\right) - \frac{2|V_{10}(t)|^{2}|B_{10}|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}\right)}$$
(337)

$$+i\frac{\Im\left(g_{i\mathbf{k}}\right)\left(1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t)+2R_{i}-\varepsilon(t)\right)\right)+2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{\Im\left(v_{i}\prime_{\mathbf{k}}\right)}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}$$

$$1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}\right)-\frac{2|V_{10}(t)|^{2}|B_{10}|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)$$
(338)

$$= \frac{g_{i\mathbf{k}} \left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(2\varepsilon_{i}\left(t\right) + 2R_{i} - \varepsilon\left(t\right)\right)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \frac{v_{i'\mathbf{k}}}{\omega_{\mathbf{k}}} \left|B_{10}\right|^{2} \left|V_{10}\left(t\right)\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(\varepsilon\left(t\right) - 2\left(\varepsilon\left(t\right) - \varepsilon_{i}\left(t\right) - R_{i}\right) - \frac{2\left|V_{10}\left(t\right)\right|^{2}\left|B_{10}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}{u_{\mathbf{k}}}\right)}$$
(339)

IV. MASTER EQUATION

In order to describe the dynamics of the QD under the influence of the phonon environment, we use the timeconvolutionless projection operator technique. The initial density operator is $\rho_T(0) = \rho_S(0) \otimes \rho_B^{\text{Thermal}}$, the transformed density operator is equal to:

$$\overline{\rho_T(0)} \equiv e^V \rho_T(0) e^{-V} \tag{340}$$

$$= (|0\rangle\langle 0|B_{0+} + |1\rangle\langle 1|B_{1+}) \left(\rho_S(0) \otimes \rho_B^{\text{Thermal}}\right) (|0\rangle\langle 0|B_{0-} + |1\rangle\langle 1|B_{1-})$$
(341)

for
$$\rho_S(0) = |0\rangle\langle 0|: |0\rangle\langle 0|0\rangle B_{0+}\langle 0|\rho_B^{\text{Thermal}}|0\rangle\langle 0|B_{0-}$$
 (342)

$$=|0\rangle B_{0+}\langle 0|\rho_B^{\text{Thermal}}|0\rangle\langle 0|B_{0-} \tag{343}$$

$$= |0\rangle\langle 0| \otimes B_{0+}\rho_B^{\text{Thermal}} B_{0-} \tag{344}$$

for
$$\rho_S(0) = |1\rangle\langle 1|: |1\rangle\langle 1|B_{1+}|1\rangle\langle 1|\rho_B^{\text{Thermal}}|1\rangle\langle 1|B_{1-}$$
 (345)

$$=|1\rangle\langle 1|B_{1+}\rho_R^{\text{Thermal}}B_{1-} \tag{346}$$

$$= |1\rangle\langle 1| \otimes B_{1+}\rho_B^{\text{Thermal}} B_{1-} \tag{347}$$

for
$$\rho_S(0) = |0\rangle\langle 1| : |0\rangle\langle 0|B_{0+}|0\rangle\langle 1|\rho_R^{\text{Thermal}}|1\rangle\langle 1|B_{1-}$$
 (348)

$$|0\rangle = |0\rangle 1| : |0\rangle 0|B_{0+}|0\rangle 1|\rho_B^{\text{maximal}}|1\rangle 1|B_{1-}$$
(348)

$$=|0\rangle\langle 1|B_{0+}\rho_B^{\text{Thermal}}|1\rangle\langle 1|B_{1-} \tag{349}$$

$$= |0\rangle\langle 1|1\rangle\langle 1|B_{0+}\rho_B^{\text{Thermal}}B_{1-} \tag{350}$$

$$= |0\rangle\langle 1| \otimes B_{0+}\rho_B^{\text{Thermal}} B_{1-} \tag{351}$$

for
$$\rho_S(0) = |1\rangle\langle 0| : |1\rangle\langle 1|B_{1+}|1\rangle\langle 0|\rho_B^{\text{Thermal}}|0\rangle\langle 0|B_{0-}$$
 (352)

$$=|1\rangle\langle 0|\otimes B_{1+}\rho_B^{\text{Thermal}}B_{0-} \tag{353}$$

We transform any operator *O* into the interaction picture in the following way:

$$\widetilde{O}(t) \equiv U^{\dagger}(t)O(t)U(t) \tag{354}$$

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_{0}^{t} dt' \overline{H_{\overline{S}}}(t')\right). \tag{355}$$

Here \mathcal{T} denotes a time ordering operator. Therefore:

$$\widetilde{\overline{\rho_S}}(t) = U^{\dagger}(t)\overline{\rho_S}(t)U(t), \text{ where}$$
 (356)

$$\overline{\rho_{\overline{S}}}(t) = \text{Tr}_B\left(\overline{\rho}_T(t)\right) \tag{357}$$

. In order to separate the Hamiltonian we define the matrix $\Lambda(t)$ such that $\Lambda_{1i}(t) = A_i$, $\Lambda_{2i}(t) = B_i$ and $\Lambda_{3i}(t) = A_i$ $C_i(t)$ written as:

$$\begin{pmatrix}
A(t) \\
B(t) \\
C(t)
\end{pmatrix} = \begin{pmatrix}
\sigma_x & \sigma_y & \frac{I - \sigma_z}{2} & \sigma_x & \sigma_y & \frac{I + \sigma_z}{2} \\
B_x & B_y & B_{1z} & B_y & B_x & B_{0z} \\
\Re(V_{10}(t)) & \Re(V_{10}(t)) & 1 & \Im(V_{10}(t)) & -\Im(V_{10}(t)) & 1
\end{pmatrix}$$
(358)

In this case $|1\rangle\langle 1| = \frac{I - \sigma_z}{2}$ and $|0\rangle\langle 0| = \frac{I + \sigma_z}{2}$ with $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = |0\rangle\langle 0| - |1\rangle\langle 1|$.

The previous notation allows us to write the interaction Hamiltonian $\overline{H_I}(t)$ as pointed in the equation (242):

$$\overline{H_{\overline{I}}}(t) = \sum_{i} B_{iz} |i\rangle\langle i| + \Re\left(V_{10}(t)\right) \left(\sigma_{x} B_{x} + \sigma_{y} B_{y}\right) + \Im\left(V_{10}(t)\right) \left(\sigma_{x} B_{y} - \sigma_{y} B_{x}\right)$$
(359)

$$= B_{0z}|0\rangle\langle 0| + B_{1z}|1\rangle\langle 1| + \Re(V_{10}(t))\sigma_x B_x + \Re(V_{10}(t))\sigma_y B_y + \Im(V_{10}(t))\sigma_x B_y - \Im(V_{10}(t))\sigma_y B_x$$
(360)

$$=\sum_{i}C_{i}\left(t\right)\left(A_{i}\otimes B_{i}\left(t\right)\right)\tag{361}$$

As the combined system and environment is closed, within the interaction picture the system-environment density operator evolves according to:

$$\frac{\mathrm{d}\widetilde{\rho_{T}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\widetilde{\overline{H_{T}}}(t), \widetilde{\rho_{T}}(t)\right]. \tag{362}$$

This equation has the formal solution

$$\widetilde{\rho_T}(t) = \rho(0) - i \int_0^t [\widetilde{\overline{H_T}}(s), \widetilde{\rho_T}(s)] ds.$$
 (363)

Replacing the equation (363) in the equation (362) give us:

$$\frac{\mathrm{d}\widetilde{\rho_{T}}(t)}{\mathrm{d}t} = -\mathrm{i}[\widetilde{\overline{H_{\overline{I}}}}(t), \rho_{T}(0)] - \int_{0}^{t} [\widetilde{\overline{H_{\overline{I}}}}(t), [\widetilde{\overline{H_{\overline{I}}}}(s), \widetilde{\rho_{T}}(s)]] \mathrm{d}s. \tag{364}$$

This equation allow us to iterate and write in terms of a series expansion with $\rho_T(0)$ the solution as:

$$\widetilde{\rho_T}(t) = \rho_T(0) + \sum_{n=0}^{\infty} (-\mathrm{i})^n \int_0^t \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \dots \int_0^{t_{n-1}} \mathrm{d}t_n [\widetilde{\overline{H_T}}(t_1), [\widetilde{\overline{H_T}}(t_2), \cdots [\widetilde{\overline{H_T}}(t_n), \rho_T(0)]] \dots]$$
(365)

Taking the trace over the environmental degrees of freedom, we find

$$\widetilde{\rho}_{\overline{S}}(t) = \rho_{\overline{S}}(0) + \sum_{n=1}^{\infty} (-\mathrm{i})^n \int_0^t \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \dots \int_0^{t_{n-1}} \mathrm{d}t_n \mathrm{Tr}_B[\widetilde{\overline{H}_{\overline{I}}}(t_1), [\widetilde{\overline{H}_{\overline{I}}}(t_2), \dots [\widetilde{\overline{H}_{\overline{I}}}(t_n), \rho_{\overline{S}}(0) \rho_B^{\mathrm{Thermal}}]] \dots]$$
(366)

here we have assumed that $\rho_T\left(0\right)=\rho_{\overline{S}}(0)\otimes \rho_B^{\mathrm{Thermal}}.$ Consider the following notation:

$$\widetilde{\rho}_{\overline{S}}(t) = (1 + W_1(t) + W_2(t) + \dots) \rho_S(0)$$
(367)

$$=W(t)\,\rho_{\overline{S}}(0)\tag{368}$$

in this case

$$W_{n}(t) = (-\mathrm{i})^{n} \int_{0}^{t} \mathrm{d}t_{1} \int_{0}^{t_{1}} \mathrm{d}t_{2} \dots \int_{0}^{t_{n-1}} \mathrm{d}t_{n} \operatorname{Tr}_{B}[\widetilde{\overline{H_{\overline{I}}}}(t_{1}), [\widetilde{\overline{H_{\overline{I}}}}(t_{2}), \dots [\widetilde{\overline{H_{\overline{I}}}}(t_{n}), (\cdot) \rho_{B}^{\mathrm{Thermal}}]] \dots]$$
(369)

are superoperators acting on the initial system density operator. Differentiating with respect to time, we have:

$$\frac{\mathrm{d}\widetilde{\rho}_{\overline{S}}(t)}{\mathrm{d}t} = \left(\dot{W}_{1}(t) + \dot{W}_{2}(t) + \ldots\right)\rho_{\overline{S}}(0) \tag{370}$$

$$= \left(\dot{W}_{1}(t) + \dot{W}_{2}(t) + ...\right) W(t)^{-1} W(t) \rho_{\overline{S}}(0)$$
(371)

$$= \left(\dot{W}_{1}\left(t\right) + \dot{W}_{2}\left(t\right) + ...\right) W\left(t\right)^{-1} \widetilde{\rho}_{\overline{S}}(t) \tag{372}$$

where we assumed that W(t) is invertible. Usually, it is convenient (and possible) to define the interaction Hamiltonian such that $\operatorname{Tr}_B[\widetilde{\overline{H_I}}(t)\rho_B(0)]=0$ so $W_1(t)=0$. Thus, to second order and taking $W(t)\approx\mathbb{I}$ then the equation (370) becomes:

$$\frac{\mathrm{d}\rho_{\overline{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[H_{\overline{S}}, \rho_{\overline{S}}(t)\right] - \int_{0}^{t} \mathrm{d}\tau \left[H_{I}, \left[\widetilde{H}_{I}(-\tau), \rho_{\overline{S}}(t)\rho_{B}^{\mathrm{Thermal}}\right]\right]$$
(373)

Replacing $t_1 \rightarrow t - \tau$

$$W_{n}(t) = (-\mathrm{i})^{n} \int_{0}^{t} \mathrm{d}t_{1} \int_{0}^{t_{1}} \mathrm{d}t_{2} \dots \int_{0}^{t_{n-1}} \mathrm{d}t_{n} \operatorname{Tr}_{B}[\widetilde{H}_{I}(t_{1}), [\widetilde{H}_{I}(t_{2}), \dots [\widetilde{H}_{I}(t_{n}), (\cdot) \rho_{B}^{\mathrm{Thermal}}]] \dots]$$

$$(374)$$

Taking as reference state ρ_B^{Thermal} and truncating at second order in $\overline{H_{\overline{I}}}(t)$, we obtain our master equation in the interaction picture in the transformed frame:

$$\frac{d\widetilde{\widetilde{\rho_{\overline{S}}}}(t)}{dt} = -\int_{0}^{t} \operatorname{Tr}_{B}\left[\widetilde{\overline{H_{\overline{I}}}}(t), \left[\widetilde{\overline{H_{\overline{I}}}}(s), \widetilde{\widetilde{\rho_{\overline{S}}}}(t)\rho_{B}^{\operatorname{Thermal}}\right]\right] ds \tag{375}$$

From the interaction picture applied on $\overline{H_{\overline{I}}}(t)$ we find:

$$\widetilde{\overline{H_{\overline{I}}}}(t) = U^{\dagger}(t) e^{iH_B t} \overline{H_{\overline{I}}}(t) e^{-iH_B t} U(t)$$
(376)

we use the time-ordering operator \mathcal{T} because in general $\overline{H_{\overline{S}}}(t)$ doesn't conmute with itself at two different times. We write the interaction Hamiltonian as:

$$\widetilde{\overline{H}_{\overline{I}}}(t) = \sum_{i} C_{i}(t) \left(\widetilde{A}_{i}(t) \otimes \widetilde{B}_{i}(t) \right)$$
(377)

$$\widetilde{A_i}(t) = U^{\dagger}(t) e^{iH_B t} A_i e^{-iH_B t} U(t)$$
(378)

$$= U^{\dagger}(t) A_i U(t) e^{iH_B t} e^{-iH_B t}$$

$$(379)$$

$$=U^{\dagger}\left(t\right) A_{i}U\left(t\right) \mathbb{I} \tag{380}$$

$$=U^{\dagger}\left(t\right) A_{i}U\left(t\right) \tag{381}$$

$$\widetilde{B_i}(t) = U^{\dagger}(t) e^{iH_B t} B_i(t) e^{-iH_B t} U(t)$$
(382)

$$= U^{\dagger}(t) U(t) e^{iH_B t} B_i(t) e^{-iH_B t}$$
(383)

$$= \mathbb{I}e^{iH_B t} B_i(t) e^{-iH_B t} \tag{384}$$

$$= e^{iH_B t} B_i(t) e^{-iH_B t}$$
(385)

Here we have used the fact that $\left[\overline{H_S}\left(t\right),H_B\right]=0$ because these operators belong to different Hilbert spaces, so $\left[U\left(t\right),\mathrm{e}^{\mathrm{i}H_Bt}\right]=0$.

Using the expression (377) to replace it in the equation (375)

$$\frac{d\widetilde{\overline{\rho_{\overline{S}}}}(t)}{dt} = -\int_{0}^{t} \text{Tr}_{B} \left[\widetilde{\overline{H_{T}}}(t), \left[\widetilde{\overline{H_{T}}}(s), \widetilde{\overline{\rho_{\overline{S}}}}(t) \rho_{B}^{\text{Thermal}} \right] \right] ds$$
(386)

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{i} C_{i}(t) \left(\widetilde{A}_{i}(t) \otimes \widetilde{B}_{i}(t)\right), \left[\sum_{i} C_{i}(s) \left(\widetilde{A}_{i}(s) \otimes \widetilde{B}_{i}(s)\right), \widetilde{\rho_{S}}(t) \rho_{B}^{\operatorname{Thermal}}\right]\right] ds \tag{387}$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t)\right), \sum_{i} C_{i}(s) \left(\widetilde{A_{i}}(s) \otimes \widetilde{B_{i}}(s)\right) \widetilde{\rho_{\overline{S}}}(t) \rho_{B}^{\operatorname{Thermal}} - \widetilde{\rho_{\overline{S}}}(t) \rho_{B}^{\operatorname{Thermal}} \sum_{i} C_{i}(s) \left(\widetilde{A_{i}}(s) \otimes \widetilde{B_{i}}(s)\right)\right] \mathrm{d}s$$

$$\tag{388}$$

$$=-\int_{0}^{t}\operatorname{Tr}_{B}\left(\sum_{j}C_{j}(t)\widetilde{\left(A_{j}(t)\otimes\widetilde{B_{j}}(t)\right)}\sum_{i}C_{i}(s)\left(\widetilde{A_{i}}(s)\otimes\widetilde{B_{i}}(s)\right)\widetilde{\widetilde{\rho_{S}}}(t)\rho_{B}^{\operatorname{Thermal}}-\sum_{j}C_{j}(t)\left(\widetilde{A_{j}}(t)\otimes\widetilde{B_{j}}(t)\right)\widetilde{\widetilde{\rho_{S}}}(t)\rho_{B}^{\operatorname{Thermal}}-\sum_{i}C_{i}(s)\left(\widetilde{A_{i}}(s)\otimes\widetilde{B_{i}}(s)\right)$$

In order to calculate the correlation functions we define:

$$\Lambda_{ji}\left(\tau\right) = \left\langle \widetilde{B}_{j}\left(t\right)\widetilde{B}_{i}\left(s\right)\right\rangle_{B} \tag{391}$$

$$= \left\langle \widetilde{B_j} \left(\tau \right) \widetilde{B_i} \left(0 \right) \right\rangle_{\mathcal{B}} \tag{392}$$

The correlation functions relevant that appear in the equation (390) are:

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(s\right)\rho_{B}^{\operatorname{Thermal}}\right) = \left\langle \widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(s\right)\right\rangle_{B} \tag{393}$$

$$= \left\langle \widetilde{B_{i}} \left(\tau \right) \widetilde{B_{i}} \left(0 \right) \right\rangle_{B} \tag{394}$$

$$=\Lambda_{ji}\left(\tau\right)\tag{395}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\rho_{B}^{\operatorname{Thermal}}\widetilde{B_{i}}\left(s\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(s\right)\widetilde{B_{j}}\left(t\right)\rho_{B}^{\operatorname{Thermal}}\right) \tag{396}$$

$$= \left\langle \widetilde{B}_{i}\left(s\right)\widetilde{B}_{j}\left(t\right)\right\rangle_{B} \tag{397}$$

$$= \left\langle \widetilde{B_i} \left(-\tau \right) \widetilde{B_j} \left(0 \right) \right\rangle_B \tag{398}$$

$$=\Lambda_{ij}\left(-\tau\right)\tag{399}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B}_{i}\left(s\right)\rho_{B}^{\operatorname{Thermal}}\widetilde{B}_{j}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B}_{j}\left(t\right)\widetilde{B}_{i}\left(s\right)\rho_{B}^{\operatorname{Thermal}}\right) \tag{400}$$

$$= \left\langle \widetilde{B}_{j}\left(t\right)\widetilde{B}_{i}\left(s\right)\right\rangle_{R} \tag{401}$$

$$= \left\langle \widetilde{B}_{j}\left(\tau\right)\widetilde{B}_{i}\left(0\right)\right\rangle_{B} \tag{402}$$

$$=\Lambda_{ji}\left(\tau\right)\tag{403}$$

$$\operatorname{Tr}_{B}\left(\rho_{B}^{\operatorname{Thermal}}\widetilde{B_{i}}\left(s\right)\widetilde{B_{j}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(s\right)\widetilde{B_{j}}\left(t\right)\rho_{B}^{\operatorname{Thermal}}\right) \tag{404}$$

$$= \left\langle \widetilde{B}_{i}\left(s\right)\widetilde{B}_{j}\left(t\right)\right\rangle_{B} \tag{405}$$

$$= \left\langle \widetilde{B_i} \left(-\tau \right) \widetilde{B_j} \left(0 \right) \right\rangle_{\mathcal{B}} \tag{406}$$

$$=\Lambda_{ij}\left(-\tau\right)\tag{407}$$

The cyclic property of the trace was use widely in the development of equations (393) and (407). Replacing in (390)

$$\frac{d\widetilde{\rho_{S}}(t)}{dt} = -\int_{0}^{t} \sum_{ij} (C_{i}(t)C_{j}(s)(\Lambda_{ij}(\tau)\widetilde{A_{i}}(t)\widetilde{A_{j}}(s)\widetilde{\rho_{S}}(t) - \Lambda_{ji}(-\tau)\widetilde{A_{i}}(t)\widetilde{\rho_{S}}(t)\widetilde{A_{j}}(s)) + C_{i}(t)C_{j}(s)(\Lambda_{ji}(-\tau)\widetilde{\rho_{S}}(t)\widetilde{A_{i}}(s)\widetilde{A_{i}}(t) - \Lambda_{ij}(\tau)\widetilde{A_{j}}(s)\widetilde{\rho_{S}}(t)\widetilde{A_{i}}(t))) ds$$

$$(408)$$

$$= -\int_0^t \sum_{ij} \left(C_i(t) C_j(s) \left(\Lambda_{ij}(\tau) \left[\widetilde{A_i}(t), \widetilde{A_j}(s) \widetilde{\overline{\rho_S}}(t) \right] + \Lambda_{ji}(-\tau) \left[\widetilde{\overline{\rho_S}}(t) \widetilde{A_j}(s), \widetilde{A_i}(t) \right] \right) \right) ds$$

$$(409)$$

We could identify the following commutators in the equation deduced:

$$\Lambda_{ij}\left(\tau\right)\widetilde{A_{i}}\left(t\right)\widetilde{A_{j}}\left(s\right)\widetilde{\overline{\rho_{S}}}(t) - \Lambda_{ij}\left(\tau\right)\widetilde{A_{j}}\left(s\right)\widetilde{\overline{\rho_{S}}}(t)\widetilde{A_{i}}\left(t\right) = \Lambda_{ij}\left(\tau\right)\left[\widetilde{A_{i}}\left(t\right),\widetilde{A_{j}}\left(s\right)\widetilde{\overline{\rho_{S}}}(t)\right]$$
(410)

$$\Lambda_{ji}\left(-\tau\right)\widetilde{\rho_{S}}(t)\widetilde{A_{j}}\left(s\right)\widetilde{A_{i}}\left(t\right)-\Lambda_{ji}\left(-\tau\right)\widetilde{A_{i}}\left(t\right)\widetilde{\rho_{S}}(t)\widetilde{A_{j}}\left(s\right)=\Lambda_{ji}\left(-\tau\right)\left[\widetilde{\rho_{S}}(t)\widetilde{A_{j}},\widetilde{A_{i}}\left(t\right)\right]$$
(411)

Returning to the Schroedinger picture we have:

$$U(t)\widetilde{A_{i}}(t)\widetilde{A_{j}}(s)\widetilde{\rho_{S}}(t)U^{\dagger}(t) = U(t)\widetilde{A_{i}}(t)U^{\dagger}(t)U(t)\widetilde{A_{j}}(s)U^{\dagger}(t)U(t)\widetilde{\rho_{S}}(t)U^{\dagger}(t)$$
(412)

$$= \left(U\left(t\right)\widetilde{A_{i}}\left(t\right)U^{\dagger}\left(t\right)\right)\left(U\left(t\right)\widetilde{A_{j}}\left(s\right)U^{\dagger}\left(t\right)\right)\left(U\left(t\right)\widetilde{\rho_{S}}\left(t\right)U^{\dagger}\left(t\right)\right) \tag{413}$$

$$=A_{i}\widetilde{A_{j}}\left(s,t\right) \overline{\rho_{S}}(t) \tag{414}$$

This procedure applying to the relevant commutators give us:

$$U\left(t\right)\left[\widetilde{A_{i}}\left(t\right),\widetilde{A_{j}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}(t)\right]U^{\dagger}\left(t\right)=\left(U\left(t\right)\widetilde{A_{i}}\left(t\right)\widetilde{A_{j}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}(t)U^{\dagger}\left(t\right)-U\left(t\right)\widetilde{A_{j}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}(t)\widetilde{A_{i}}\left(t\right)U^{\dagger}\left(t\right)\right)$$
(415)

$$=A_{i}\widetilde{A_{j}}\left(s,t\right)\overline{\rho_{S}}(t)-\widetilde{A_{j}}\left(s,t\right)\overline{\rho_{S}}(t)A_{i}\tag{416}$$

$$= \left[A_i, \widetilde{A_j} \left(t - \tau, t \right) \overline{\rho_S}(t) \right] \tag{417}$$

Introducing this transformed commutators in the equation (409) allow us to obtain the master equation of the system

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}(t), \overline{\rho_{S}}(t)\right] - \sum_{ij} \int_{0}^{t} \mathrm{d}\tau \left(C_{i}(t)C_{j}(t-\tau)\Lambda_{ij}(\tau)\left[A_{i}, \widetilde{A_{j}}(t-\tau, t)\overline{\rho_{S}}(t)\right]\right)$$
(418)

$$+C_{j}\left(t\right)C_{i}\left(t-\tau\right)\Lambda_{ji}\left(-\tau\right)\left[\overline{\rho_{S}}\left(t\right)\widetilde{A_{j}}\left(t-\tau,t\right),A_{i}\right]\right)$$
(419)

where $i, j \in \{1, 2, 3, 4, 5.6\}$.

Here $A_j(s,t) = U(t)U^{\dagger}(s)A_jU(s)U^{\dagger}(t)$ where U(t) is given by (355). The equation obtained is a non-Markovian master equation which describes the QD exciton dynamics in the variational frame with a general time-dependent Hamiltonian, and valid at second order in $H_I(t)$. The environmental correlation functions are given by:

$$\Lambda_{ij}\left(\tau\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(t\right)\widetilde{B_{j}}\left(s\right)\rho_{B}^{\operatorname{Thermal}}\right) \tag{420}$$

$$= \operatorname{Tr}_{B}\left(\widetilde{B}_{i}\left(\tau\right)\widetilde{B}_{j}\left(0\right)\rho_{B}^{\operatorname{Thermal}}\right) \tag{421}$$

Calculating the correlation functions allow us to obtain:

$$\langle \widetilde{B_{jz}}(\tau)\widetilde{B_{jz}}(0)\rangle_{_{B}} = \text{Tr}_{B}(\widetilde{B_{jz}}(\tau)\widetilde{B_{jz}}(0)\rho_{B}^{\text{Thermal}})$$
 (422)

$$= \int d^{2}\alpha P(\alpha) \left\langle \alpha \left| \widetilde{B_{jz}}(\tau) \widetilde{B_{jz}}(0) \right| \alpha \right\rangle$$
(423)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha\right|^2}{N}\right) \left\langle \alpha \left| \widetilde{B_{jz}} \left(\tau\right) \widetilde{B_{jz}} \left(0\right) \right| \alpha \right\rangle d^2 \alpha \tag{424}$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \left\langle \alpha \left| \widetilde{B_{jz}} \left(\tau\right) \widetilde{B_{jz}} \left(0\right) \right| \alpha \right\rangle d^2 \alpha \tag{425}$$

$$\widetilde{B_{jz}}(\tau) = \sum_{\mathbf{k}} \left((g_{j\mathbf{k}} - v_{j\mathbf{k}}) b_{\mathbf{k}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + (g_{j\mathbf{k}} - v_{j\mathbf{k}})^* b_{\mathbf{k}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right)$$
(426)

$$\widetilde{B_{jz}}(0) = \sum_{\mathbf{k}'} \left(\left(g_{j\mathbf{k}'} - v_{j\mathbf{k}'} \right) b_{\mathbf{k}'}^{\dagger} + \left(g_{j\mathbf{k}'} - v_{j\mathbf{k}'} \right)^* b_{\mathbf{k}'} \right)$$

$$(427)$$

$$\left\langle \widetilde{B_{jz}}(\tau)\widetilde{B_{jz}}(0)\right\rangle_{B} = \operatorname{Tr}_{B}\left(\widetilde{B_{jz}}(\tau)\widetilde{B_{jz}}(0)\rho_{B}\right) \tag{428}$$

$$=\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}\left(\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\right)b_{\mathbf{k}}^{\dagger}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}+\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\right)^{*}b_{\mathbf{k}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right)\sum_{\mathbf{k}'}\left(\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}\right)b_{\mathbf{k}'}^{\dagger}+\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}\right)^{*}b_{\mathbf{k}'}\right)\rho_{B}\right)$$

$$(429)$$

$$=\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}\neq\mathbf{k}'}\left(\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\right)b_{\mathbf{k}}^{\dagger}e^{i\omega_{\mathbf{k}}\tau}+\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\right)^{*}b_{\mathbf{k}}e^{-i\omega_{\mathbf{k}}\tau}\right)\left(\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}\right)b_{\mathbf{k}'}^{\dagger}+\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}\right)^{*}b_{\mathbf{k}'}\right)\rho_{B}\right)$$

$$(430)$$

$$+\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}\left(\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\right)b_{\mathbf{k}}^{\dagger}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}+\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\right)^{*}b_{\mathbf{k}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right)\left(\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\right)b_{\mathbf{k}}^{\dagger}+\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\right)^{*}b_{\mathbf{k}}\right)\rho_{B}\right)$$

$$(431)$$

$$g_{j\mathbf{k}} - v_{j\mathbf{k}} = p_{j\mathbf{k}} \tag{432}$$

$$\langle \widetilde{B}_{12}(\tau) \widetilde{B}_{12}(0) \rangle_{\mathcal{D}} = \operatorname{Tr}_{\mathcal{B}} \left(\sum_{\mathbf{b}, \mathbf{b}, \mathbf{b}} (p_{1k} \mathbf{b}_{\mathbf{b}}^{\dagger} \mathbf{b}_{\mathbf{c}}^{\dagger} \mathbf{b}_{\mathbf{b}} \mathbf{k}^{-1} \mathbf{b}_{\mathbf{k}} \mathbf{b}^{\dagger} (p_{1k} \mathbf{b}_{\mathbf{b}}^{\dagger} \mathbf{b}_{\mathbf{c}}^{\dagger} \mathbf{b}_{\mathbf{b}} \mathbf{k}^{-1} \mathbf{b}_{\mathbf{c}}^{\dagger} \mathbf{b}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}^{\dagger} \mathbf{c}_{\mathbf{c}}^{\dagger} \mathbf{b}_{\mathbf{c}}^{\dagger} \mathbf{b}_{\mathbf{c}}^{\dagger} \mathbf{b}_{\mathbf{c}}^{\dagger} \mathbf{b$$

$$=0+\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}\left(p_{i\mathbf{k}}b_{i}^{\dagger}e^{i\omega_{\mathbf{k}}\tau}+p_{i\mathbf{k}}^{*}b_{\mathbf{k}}e^{-i\omega_{\mathbf{k}}\tau}\right)\left(p_{i\mathbf{k}}b_{i}^{\dagger}+p_{i\mathbf{k}}^{*}b_{\mathbf{k}}\right)\rho_{B}\right)$$

$$(434)$$

$$=\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}\left(p_{j\mathbf{k}}^{2}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}^{\dagger}e^{i\omega_{\mathbf{k}}\tau}+|p_{j\mathbf{k}}|^{2}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}e^{i\omega_{\mathbf{k}}\tau}+|p_{j\mathbf{k}}|^{2}b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}e^{-i\omega_{\mathbf{k}}\tau}+p_{j\mathbf{k}}^{*2}b_{\mathbf{k}}b_{\mathbf{k}}e^{-i\omega_{\mathbf{k}}\tau}\right)\rho_{B}\right)$$

$$(435)$$

$$=\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}p_{j\mathbf{k}}^{2}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}^{\dagger}e^{i\omega_{\mathbf{k}}\tau}\rho_{B}\right)+\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}e^{i\omega_{\mathbf{k}}\tau}\rho_{B}\right)+\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}b_{\mathbf{k}}b_{\mathbf{k}}e^{-i\omega_{\mathbf{k}}\tau}\rho_{B}\right)+\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}p_{j\mathbf{k}}^{*2}b_{\mathbf{k}}b_{\mathbf{k}}e^{-i\omega_{\mathbf{k}}\tau}\rho_{B}\right)$$

$$(436)$$

$$= \operatorname{Tr}_{B} \left(\sum_{\mathbf{k}} |p_{j\mathbf{k}}|^{2} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \rho_{B} \right) + \operatorname{Tr}_{B} \left(\sum_{\mathbf{k}} |p_{j\mathbf{k}}|^{2} b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \rho_{B} \right)$$
(437)

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(e^{i\omega_{\mathbf{k}}\tau} \operatorname{Tr}_B \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \rho_B \right) + e^{-i\omega_{\mathbf{k}}\tau} \operatorname{Tr}_B \left(b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} \rho_B \right) \right)$$
(438)

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(e^{i\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle \alpha_{\mathbf{k}} | b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} | \alpha_{\mathbf{k}} \right\rangle d^2 \alpha_{\mathbf{k}} + e^{-i\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle \alpha_{\mathbf{k}} | b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} | \alpha_{\mathbf{k}} \right\rangle d^2 \alpha_{\mathbf{k}} \right)$$
(439)

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle \alpha_{\mathbf{k}} \left| b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \right| \alpha_{\mathbf{k}} \right\rangle \mathrm{d}^2 \alpha_{\mathbf{k}} \right) + \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle \alpha_{\mathbf{k}} \left| b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right| \alpha_{\mathbf{k}} \right\rangle \mathrm{d}^2 \alpha_{\mathbf{k}} \right)$$
(440)

$$= \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^2}{N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}}^{\dagger} \mathbf{b}_{\mathbf{k}} D(\alpha_{\mathbf{k}}) \mathbf{b} \right\rangle d^2\alpha_{\mathbf{k}} \right) \\ + \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^2}{N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}} \mathbf{b}_{\mathbf{k}}^{\dagger} D(\alpha_{\mathbf{k}}) \mathbf{b} \right\rangle d^2\alpha_{\mathbf{k}} \right) \\ + \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^2}{N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}} \mathbf{b}_{\mathbf{k}}^{\dagger} D(\alpha_{\mathbf{k}}) \mathbf{b} \right\rangle d^2\alpha_{\mathbf{k}} \right) \\ + \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^2}{N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}} \mathbf{b}_{\mathbf{k}} D(\alpha_{\mathbf{k}}) \mathbf{b} \right\rangle d^2\alpha_{\mathbf{k}} \right) \\ + \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^2}{N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}} \mathbf{b}_{\mathbf{k}} D(\alpha_{\mathbf{k}}) \mathbf{b} \right\rangle d^2\alpha_{\mathbf{k}} \right) \\ + \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^2}{N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}} \mathbf{b}_{\mathbf{k}} D(\alpha_{\mathbf{k}}) \mathbf{b} \right\rangle d^2\alpha_{\mathbf{k}} \right) \\ + \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^2}{N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}} \mathbf{b}_{\mathbf{k}} D(\alpha_{\mathbf{k}}) \mathbf{b} \right\rangle d^2\alpha_{\mathbf{k}} \right) \\ + \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^2}{N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}} \mathbf{b}_{\mathbf{k}} D(\alpha_{\mathbf{k}}) \mathbf{b} \right\rangle d^2\alpha_{\mathbf{k}} \right) \\ + \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^2}{N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}} \mathbf{b}_{\mathbf{k}} D(\alpha_{\mathbf{k}}) \mathbf{b} \right\rangle d^2\alpha_{\mathbf{k}} \right) \\ + \sum_{\mathbf{k}} \left| p_{j\mathbf{k}} \right|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \right) \left\langle \mathbf{d}D(-\alpha_{\mathbf{k}}) \mathbf{b}_{\mathbf{k}} \mathbf{b} D(\alpha_{\mathbf{k}}) \right\rangle d^2\alpha_{\mathbf{k}}$$

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle \mathrm{d}D(-\alpha_{\mathbf{k}}) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D(\alpha_{\mathbf{k}}) b\right\rangle \mathrm{d}^2 \alpha_{\mathbf{k}}\right) + \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle \mathrm{d}D(-\alpha_{\mathbf{k}}) b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} D(\alpha_{\mathbf{k}}) b\right\rangle \mathrm{d}^2 \alpha_{\mathbf{k}}\right) \tag{442}$$

$$=\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle \left(D(-\alpha_{\mathbf{k}})b_{\mathbf{k}}^{\dagger}D(\alpha_{\mathbf{k}})D(-\alpha_{\mathbf{k}})b_{\mathbf{k}}D(\alpha_{\mathbf{k}})D\right)\right\rangle d^{2}\alpha_{\mathbf{k}}\right)$$

$$(443)$$

$$+\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{-i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left(0\left|D(-\alpha_{\mathbf{k}})b_{\mathbf{k}}D(\alpha_{\mathbf{k}})D(-\alpha_{\mathbf{k}})b_{\mathbf{k}}^{\dagger}D(\alpha_{\mathbf{k}})\right|0\right)d^{2}\alpha_{\mathbf{k}}\right)$$

$$(444)$$

$$=\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle \mathbf{q}\left(b_{\mathbf{k}}^{\dagger}+\alpha_{\mathbf{k}}^{*}\right)\left(b_{\mathbf{k}}+\alpha_{\mathbf{k}}\right)\right\rangle d^{2}\alpha_{\mathbf{k}}\right)+\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{-i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle \mathbf{q}\left(b_{\mathbf{k}}+\alpha_{\mathbf{k}}\right)\left(b_{\mathbf{k}}^{\dagger}+\alpha_{\mathbf{k}}^{*}\right)\right\rangle d^{2}\alpha_{\mathbf{k}}\right)$$

$$(445)$$

$$=\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left(0|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+b_{\mathbf{k}}^{\dagger}\alpha_{\mathbf{k}}+b_{\mathbf{k}}\alpha_{\mathbf{k}}^{*}+|\alpha_{\mathbf{k}}|^{2}}0\right)d^{2}\alpha_{\mathbf{k}}+e^{-i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left(0|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}+b_{\mathbf{k}}^{\dagger}\alpha_{\mathbf{k}}+b_{\mathbf{k}}\alpha_{\mathbf{k}}^{*}+|\alpha_{\mathbf{k}}|^{2}}0\right)d^{2}\alpha_{\mathbf{k}}\right)$$

$$(446)$$

$$=\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(\left(e^{i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle\mathbf{d}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+|\alpha_{\mathbf{k}}|^{2}\mathbf{b}\right\rangle\mathbf{d}^{2}\alpha_{\mathbf{k}}\right)+\left(e^{i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle\mathbf{d}b_{\mathbf{k}}^{\dagger}\alpha_{\mathbf{k}}+b_{\mathbf{k}}\alpha_{\mathbf{k}}^{*}\mathbf{b}\right\rangle\mathbf{d}^{2}\alpha_{\mathbf{k}}\right)$$

$$(447)$$

$$+\left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right) \left\langle \left(b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger} + |\alpha_{\mathbf{k}}|^{2} |0\rangle \mathbf{1}^{2} \alpha_{\mathbf{k}}\right) + \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right) \left\langle \left(b_{\mathbf{k}}^{\dagger}\alpha_{\mathbf{k}} + b_{\mathbf{k}}\alpha_{\mathbf{k}}^{*} |0\rangle \mathbf{1}^{2} \alpha_{\mathbf{k}}\right)\right\rangle \right)$$

$$(448)$$

$$=\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle 0\left|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+|\alpha_{\mathbf{k}}|^{2}\left|0\right\rangle \mathrm{d}^{2}\alpha_{\mathbf{k}}\right)\right.\right)+\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle 0\left|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}+|\alpha_{\mathbf{k}}|^{2}\left|0\right\rangle \mathrm{d}^{2}\alpha_{\mathbf{k}}\right)\right.$$

$$=\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left(0|\alpha_{\mathbf{k}}|^{2}|0\right)d^{2}\alpha_{\mathbf{k}}\right)+\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left(0|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}|0\right)d^{2}\alpha_{\mathbf{k}}\right)$$

$$(450)$$

$$+\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{-i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle 0\left|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}\right|0\right\rangle \mathbf{i}^{2}\alpha_{\mathbf{k}}\right)+\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{-i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle 0\left|\alpha_{\mathbf{k}}\right|^{2}|0\right\rangle \mathbf{i}^{2}\alpha_{\mathbf{k}}\right)$$

$$(451)$$

$$1 = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) d^2 \alpha_{\mathbf{k}}$$
 (452)

$$b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\left|0\right\rangle = 0\tag{453}$$

$$b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}|0\rangle = |0\rangle \tag{454}$$

$$\langle \widetilde{B_{jz}}(\tau)\widetilde{B_{jz}}(0)\rangle_{B} = \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^{2} \left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right) \langle 0|\alpha_{\mathbf{k}}|^{2}|0\rangle \mathrm{d}^{2}\alpha_{\mathbf{k}}\right) + \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^{2} \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right) \langle 0|\alpha_{\mathbf{k}}|^{2}|0\rangle \mathrm{d}^{2}\alpha_{\mathbf{k}}\right)$$

$$(455)$$

$$+\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{-i\omega_{\mathbf{k}}}\frac{\tau_{1}}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\left\langle 0|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}|0\right\rangle d^{2}\alpha_{\mathbf{k}}\right) \tag{456}$$

$$=\sum_{\mathbf{k}}|p_{j\mathbf{k}}|^{2}\left(e^{i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\|\alpha_{\mathbf{k}}\|^{2}\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)d^{2}\alpha_{\mathbf{k}}+e^{-i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\|\alpha_{\mathbf{k}}\|^{2}\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)d^{2}\alpha_{\mathbf{k}}+e^{-i\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)d^{2}\alpha_{\mathbf{k}}\right)$$

$$(457)$$

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(\left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \frac{1}{\pi N} \int |\alpha_{\mathbf{k}}|^2 \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N} \right) \mathrm{d}^2 \alpha_{\mathbf{k}} \right) + \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N} \right) \mathrm{d}^2 \alpha_{\mathbf{k}} \right)$$

$$(458)$$

$$\frac{1}{\pi N} \int_0^{2\pi} \int_0^{\infty} r^2 \exp\left(-\frac{r^2}{N}\right) r dr d\theta = \frac{1}{\pi N} \int \alpha_{\mathbf{k}} |^2 \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) d^2 \alpha_{\mathbf{k}}$$

$$(459)$$

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(2\cos\left(\omega_{\mathbf{k}}\tau\right)N\right) + \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}$$
(460)

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(2\cos\left(\omega_{\mathbf{k}}\tau\right) N + e^{-i\omega_{\mathbf{k}}\tau} \right) \tag{461}$$

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(\frac{2\cos(\omega_{\mathbf{k}}\tau)}{e^{\beta\omega_{\mathbf{k}}} - 1} + e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right)$$
(462)

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(\frac{2\cos(\omega_{\mathbf{k}}\tau)}{e^{\beta\omega_{\mathbf{k}}} - 1} + \cos(\omega_{\mathbf{k}}\tau) - i\sin(\omega_{\mathbf{k}}\tau) \right)$$
(463)

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(\frac{\left(2 + e^{\beta \omega_{\mathbf{k}}} - 1\right) \cos\left(\omega_{\mathbf{k}}\tau\right)}{e^{\beta \omega_{\mathbf{k}}} - 1} - i \sin\left(\omega_{\mathbf{k}}\tau\right) \right)$$
(464)

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(\frac{\left(1 + e^{\beta \omega_{\mathbf{k}}}\right) \cos\left(\omega_{\mathbf{k}}\tau\right)}{e^{\beta \omega_{\mathbf{k}}} - 1} - i\sin\left(\omega_{\mathbf{k}}\tau\right) \right)$$
(465)

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(\frac{\left(e^{-\frac{\beta\omega_{\mathbf{k}}}{2} + e^{\frac{\beta\omega_{\mathbf{k}}}{2}}} \right) \cos(\omega_{\mathbf{k}}\tau)}{e^{-\frac{\beta\omega_{\mathbf{k}}}{2} - e^{-\frac{\beta\omega_{\mathbf{k}}}{2}}} - i\sin(\omega_{\mathbf{k}}\tau) \right)$$
(466)

$$= \sum_{\mathbf{k}} |p_{j\mathbf{k}}|^2 \left(\coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right) \cos(\omega_{\mathbf{k}} \tau) - i \sin(\omega_{\mathbf{k}} \tau) \right)$$
(467)

$$= \sum_{\mathbf{k}} |g_{j\mathbf{k}} - v_{j\mathbf{k}}|^2 \left(\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \cos(\omega_{\mathbf{k}}\tau) - i\sin(\omega_{\mathbf{k}}\tau) \right)$$
(468)

$$\left\langle \widetilde{B_{jz}}(\tau)\widetilde{B_{j'z}}(0)\right\rangle_{R} = \int d^{2}\alpha_{\mathbf{k}}P(\alpha_{\mathbf{k}})\left\langle \alpha_{\mathbf{k}}\middle|\widetilde{B_{jz}}(\tau)\widetilde{B_{j'z}}(0)\middle|\alpha_{\mathbf{k}}\right\rangle \tag{469}$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle \alpha_{\mathbf{k}} \middle| \widetilde{B_{jz}}(\tau) \widetilde{B_{j'z}}(0) \middle| \alpha_{\mathbf{k}} \right\rangle d^2 \alpha_{\mathbf{k}}$$
(470)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right) (\alpha_{\mathbf{k}}|\sum_{\mathbf{k}} ((g_{j\mathbf{k}} - v_{j\mathbf{k}})b_{\mathbf{k}}^{\dagger} e^{i\omega_{\mathbf{k}}\tau} + (g_{j\mathbf{k}} - v_{j\mathbf{k}})^{*}b_{\mathbf{k}} e^{-i\omega_{\mathbf{k}}\tau})\sum_{\mathbf{k}'} ((g_{j'\mathbf{k}'} - v_{j'\mathbf{k}'})b_{\mathbf{k}'}^{\dagger} + (g_{j'\mathbf{k}'} - v_{j'\mathbf{k}'})^{*}b_{\mathbf{k}'}) |\alpha_{\mathbf{k}}\rangle d^{2}\alpha_{\mathbf{k}}$$

$$(471)$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle \alpha_{\mathbf{k}} | \sum_{\mathbf{k} \neq \mathbf{k'}} \left(\left(g_{j\mathbf{k}} - v_{j\mathbf{k}}\right) b_{\mathbf{k}}^{\dagger} e^{i\omega_{\mathbf{k}} \tau} + \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}\right)^* b_{\mathbf{k}} e^{-i\omega_{\mathbf{k}} \tau} \right) \left(\left(g_{j'\mathbf{k'}} - v_{j'\mathbf{k'}}\right) b_{\mathbf{k'}}^{\dagger} + \left(g_{j'\mathbf{k'}} - v_{j'\mathbf{k'}}\right)^* b_{\mathbf{k'}} \right) |\alpha_{\mathbf{k}}\rangle d^2 \alpha_{\mathbf{k}}$$

$$(472)$$

$$+\frac{1}{\pi N}\int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)\langle\alpha_{\mathbf{k}}|\sum_{\mathbf{k}}\left((g_{j\mathbf{k}}-v_{j\mathbf{k}})b_{\mathbf{k}}^{\dagger}e^{i\omega_{\mathbf{k}}\tau}+(g_{j\mathbf{k}}-v_{j\mathbf{k}})^{*}b_{\mathbf{k}}e^{-i\omega_{\mathbf{k}}\tau}\right)\left(\left(g_{j'\mathbf{k}}-v_{j'\mathbf{k}}\right)b_{\mathbf{k}}^{\dagger}+\left(g_{j'\mathbf{k}}-v_{j'\mathbf{k}}\right)^{*}b_{\mathbf{k}}\right)|\alpha_{\mathbf{k}}\rangle d^{2}\alpha_{\mathbf{k}}$$

$$(473)$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle \alpha_{\mathbf{k}}| \sum_{\mathbf{k}} \left((g_{j\mathbf{k}} - v_{j\mathbf{k}}) b_{\mathbf{k}}^{\dagger} e^{i\omega_{\mathbf{k}}\tau} + (g_{j\mathbf{k}} - v_{j\mathbf{k}})^* b_{\mathbf{k}} e^{-i\omega_{\mathbf{k}}\tau} \right) \left((g_{j'\mathbf{k}} - v_{j'\mathbf{k}}) b_{\mathbf{k}}^{\dagger} + (g_{j'\mathbf{k}} - v_{j'\mathbf{k}})^* b_{\mathbf{k}} \right) |\alpha_{\mathbf{k}}\rangle d^2\alpha_{\mathbf{k}}$$

$$(474)$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle \alpha_{\mathbf{k}} | \sum_{\mathbf{k}} (g_{j\mathbf{k}} - v_{j\mathbf{k}}) \langle g_{j'\mathbf{k}} - v_{j'\mathbf{k}} \rangle^* b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} e^{i\omega_{\mathbf{k}}\tau} | \alpha_{\mathbf{k}} \rangle i^2 \alpha_{\mathbf{k}} + \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle \alpha_{\mathbf{k}} | \sum_{\mathbf{k}} (g_{j\mathbf{k}} - v_{j\mathbf{k}}) \langle g_{j'\mathbf{k}} - v_{j'\mathbf{k}} \rangle b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} e^{-i\omega_{\mathbf{k}}\tau} | \alpha_{\mathbf{k}} \rangle i^2 \alpha_{\mathbf{k}}$$

$$(475)$$

$$=\sum_{\mathbf{k}}(g_{j\mathbf{k}}-v_{j\mathbf{k}})(g_{j'\mathbf{k}}-v_{j'\mathbf{k}})^{*}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)(\alpha_{\mathbf{k}}|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}|\alpha_{\mathbf{k}}\rangle\mathrm{d}^{2}\alpha_{\mathbf{k}}+\sum_{\mathbf{k}}(g_{j\mathbf{k}}-v_{j'\mathbf{k}})^{*}(g_{j'\mathbf{k}}-v_{j'\mathbf{k}})e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)(\alpha_{\mathbf{k}}|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\rangle\mathrm{d}^{2}\alpha_{\mathbf{k}}$$

$$(476)$$

$$\frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle \alpha_{\mathbf{k}} | b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} | \alpha_{\mathbf{k}} \rangle d^2 \alpha_{\mathbf{k}} = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle dD(-\alpha_{\mathbf{k}}) b_{\mathbf{k}}^{\dagger} D(\alpha_{\mathbf{k}}) D(-\alpha_{\mathbf{k}}) b_{\mathbf{k}} D(\alpha_{\mathbf{k}}) \rangle d^2 \alpha_{\mathbf{k}}$$

$$(477)$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right) \left\langle 0 \left|D\left(-\alpha_{\mathbf{k}}\right) b_{\mathbf{k}}^{\dagger} D\left(\alpha_{\mathbf{k}}\right) D\left(-\alpha_{\mathbf{k}}\right) b_{\mathbf{k}} D\left(\alpha_{\mathbf{k}}\right)\right| 0 \right\rangle d^{2} \alpha_{\mathbf{k}}$$

$$(478)$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| \left(b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}}^*\right) \left(b_{\mathbf{k}} + \alpha_{\mathbf{k}}\right) \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}}$$
(479)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) |\alpha_{\mathbf{k}}|^2 d^2 \alpha_{\mathbf{k}}$$
(480)

$$=N \tag{481}$$

$$\frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle \alpha_{\mathbf{k}}|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}|\alpha_{\mathbf{k}}\rangle d^2\alpha_{\mathbf{k}} = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle dD(-\alpha_{\mathbf{k}})b_{\mathbf{k}}D(\alpha_{\mathbf{k}})D(-\alpha_{\mathbf{k}})b_{\mathbf{k}}^{\dagger}D(\alpha_{\mathbf{k}})b\rangle d^2\alpha_{\mathbf{k}}$$

$$(482)$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| (b_{\mathbf{k}} + \alpha_{\mathbf{k}}) \left(b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}}^* \right) \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}}$$
(483)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \alpha_{\mathbf{k}}^* + |\alpha_{\mathbf{k}}|^2 \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}}$$
(484)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + |\alpha_{\mathbf{k}}|^2 \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}}$$
(485)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle 0|\alpha_{\mathbf{k}}|^2 |0\rangle d^2\alpha_{\mathbf{k}} + \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle 0|\alpha_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b \rangle d^2\alpha_{\mathbf{k}}$$
(486)

$$N = N + 1$$
 (487)

$$\left\langle \widetilde{B_{jz}} \left(\tau \right) \widetilde{B_{j'z}} \left(0 \right) \right\rangle_{B} = \sum_{\mathbf{k}} \left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right) \left(g_{j'\mathbf{k}} - v_{j'\mathbf{k}} \right)^{*} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} N + \sum_{\mathbf{k}} \left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right)^{*} \left(g_{j'\mathbf{k}} - v_{j'\mathbf{k}} \right) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(N + 1 \right)$$

$$(488)$$

$$= \sum_{\mathbf{k}} \left(\left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right)^* \left(g_{j'\mathbf{k}} - v_{j'\mathbf{k}} \right) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} + N \left(\left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right) \left(g_{j'\mathbf{k}} - v_{j'\mathbf{k}} \right)^* e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + \left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right)^* \left(g_{j'\mathbf{k}} - v_{j'\mathbf{k}} \right) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \right)$$
(489)

$$D(h') D(h) = \exp\left(\frac{1}{2}(h'h^* - h'^*h)\right) D(h' + h)$$
(490)

$$\left\langle D\left(h'\right)D\left(h\right)\right\rangle _{B}=\operatorname{Tr}_{B}\left(\exp\left(\frac{1}{2}\left(h'h^{*}-h'^{*}h\right)\right)D\left(h'+h\right)\rho_{B}^{\operatorname{Thermal}}\right)\tag{491}$$

$$= \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \operatorname{Tr}_B\left(D\left(h' + h\right)\rho_B^{\text{Thermal}}\right)$$
(492)

$$= \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \frac{1}{\pi N} \int d^2 \alpha P\left(\alpha\right) \left\langle \alpha \left| D\left(h' + h\right) \right| \alpha \right\rangle \tag{493}$$

$$= \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \exp\left(-\frac{|h + h'|^2}{2}\coth\left(\frac{\beta\omega}{2}\right)\right)$$
(494)

$$h' = h \exp\left(i\omega\tau\right) \tag{495}$$

$$\langle D(h\exp(\mathrm{i}\omega\tau))D(h)\rangle_B = \exp\left(\frac{1}{2}(hh^*\exp(\mathrm{i}\omega\tau) - h^*h\exp(-\mathrm{i}\omega\tau))\right)\exp\left(-\frac{|h + h\exp(\mathrm{i}\omega\tau)|^2}{2}\coth\left(\frac{\beta\omega}{2}\right)\right)$$
(496)

$$\frac{1}{2}|h|^2\left(\exp\left(\mathrm{i}\omega\tau\right) - \exp\left(-\mathrm{i}\omega\tau\right)\right) = \frac{1}{2}\left(hh^*\exp\left(\mathrm{i}\omega\tau\right) - h^*h\exp\left(-\mathrm{i}\omega\tau\right)\right) \tag{497}$$

$$= \frac{1}{2} |h|^2 \left(\cos(\omega \tau) + i\sin(\omega \tau) - \cos(\omega \tau) + i\sin(\omega \tau)\right) \tag{498}$$

$$= \frac{1}{2} |h|^2 (2i \sin(\omega \tau))$$
 (499)

$$=\mathrm{i}\,|h|^2\sin\left(\omega\tau\right)\tag{500}$$

$$-\frac{|h + h\exp(i\omega\tau)|^2}{2} = -|h|^2 \frac{|1 + \exp(i\omega\tau)|^2}{2}$$
(501)

(511)

$$= -|h|^2 \frac{|1 + \cos(\omega \tau) + i\sin(\omega \tau)|^2}{2}$$

$$= -|h|^2 \frac{(1 + \cos(\omega \tau))^2 + \sin^2(\omega \tau)}{2}$$

$$= -|h|^2 \frac{(1 + 2\cos(\omega \tau)) + \sin^2(\omega \tau)}{2}$$

$$= -|h|^2 \frac{(1 + 2\cos(\omega \tau) + \cos^2(\omega \tau)) + \sin^2(\omega \tau)}{2}$$

$$= -|h|^2 \frac{2 + 2\cos(\omega \tau)}{2}$$

$$= -|h|^2 (1 + \cos(\omega \tau))$$

$$(506)$$

$$\langle D(h\exp(i\omega \tau))D(h)\rangle_B = \exp(i|h|^2 \sin(\omega \tau)) \exp(-|h|^2 (1 + \cos(\omega \tau)) \coth(\frac{\beta \omega}{2}))$$

$$= \exp\left(i|h|^2 \sin(\omega \tau) - |h|^2 (1 + \cos(\omega \tau)) \coth(\frac{\beta \omega}{2})\right)$$

$$= \exp\left(-|h|^2 \left(-i\sin(\omega \tau) + \cos(\omega \tau) \coth(\frac{\beta \omega}{2})\right)\right) \exp\left(-|h|^2 \coth(\frac{\beta \omega}{2})\right)$$

$$= \exp\left(-|h|^2 \left(-i\sin(\omega \tau) + \cos(\omega \tau) \coth(\frac{\beta \omega}{2})\right)\right) \exp\left(-|h|^2 \coth(\frac{\beta \omega}{2})\right)$$

$$(509)$$

$$= \langle D(h) \rangle_B \exp(-\phi(\tau)) \tag{510}$$

$$\exp\left(-\phi\left(\tau\right)\right) = \exp\left(-|h|^2 \left(\cos\left(\omega\tau\right) \coth\left(\frac{\beta\omega}{2}\right) - i\sin\left(\omega\tau\right)\right)\right)$$

$$\phi\left(\tau\right) = |h|^2 \left(\cos\left(\omega\tau\right) \coth\left(\frac{\beta\omega}{2}\right) - i\sin\left(\omega\tau\right)\right)$$
(511)

$$\langle D(h') D(h) \rangle_{B} = \exp\left(\frac{1}{2} \left(h'h^{*} - h'^{*}h\right)\right) \exp\left(-\frac{|h + h'|^{2}}{2} \coth\left(\frac{\beta\omega}{2}\right)\right)$$
(513)

$$h' = v \exp(i\omega\tau) \tag{514}$$

$$\left\langle \widetilde{B_{1+B_{0-}}}(\tau)\widetilde{B_{1+B_{0-}}}(0)\right\rangle _{B}=\operatorname{Tr}_{B}\left(\widetilde{B_{1+B_{0-}}}(\tau)\widetilde{B_{1+B_{0-}}}(0)\widetilde{\rho_{B}^{\operatorname{Thermal}}}\right) \tag{515}$$

$$=\operatorname{Tr}_{B}\left(\widetilde{B_{1+}B_{0-}}(\tau)\widetilde{B_{1+}B_{0-}}(0)\widetilde{\rho_{B}^{\operatorname{Thermal}}}\right) \tag{516}$$

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{i\omega\tau} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*} v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \right)} \right) \prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*} v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \right)} \right) \rho_{B}^{\text{Thermal}} \right)$$

$$(517)$$

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} \left(D \left(\frac{v_{1} \mathbf{k}^{-v_{0}} \mathbf{k}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega\tau} \right) e^{\frac{1}{2} \left(\frac{v_{1}^{*} \mathbf{k}}{\omega_{\mathbf{k}}} \frac{v_{0} \mathbf{k}}{\omega_{\mathbf{k}}} - \frac{v_{1} \mathbf{k}}{\omega_{\mathbf{k}}} \frac{v_{0}^{*} \mathbf{k}}{\omega_{\mathbf{k}}} \right) } D \left(\frac{v_{1} \mathbf{k}^{-v_{0}} \mathbf{k}}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{1}^{*} \mathbf{k}}{\omega_{\mathbf{k}}} \frac{v_{0} \mathbf{k}}{\omega_{\mathbf{k}}} - \frac{v_{1} \mathbf{k}}{\omega_{\mathbf{k}}} \frac{v_{0}^{*} \mathbf{k}}{\omega_{\mathbf{k}}} \right) } \right) \rho_{B}^{\mathrm{Thermal}}$$

$$(518)$$

$$= \prod_{\mathbf{k}} \left(\exp \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \right) \operatorname{Tr}_B \left(\prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}}\tau} \right) D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right) \rho_B^{\mathbf{Thermal}} \right)$$
(519)

$$= \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \right) \prod_{\mathbf{k}} \left(\exp\left(-\left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2} \right) \right) \right) \exp\left(-\left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2} \right) \right) \right) \right)$$
(520)

$$= \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \exp\left(-\left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \right) \exp\left(-\left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \right)$$
(521)

$$\left\langle \widetilde{B_{0+}B_{1-}}(\tau)\widetilde{B_{0+}B_{1-}}(0)\right\rangle_{B} = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{0\mathbf{k}}^{*}v_{1\mathbf{k}} - v_{0\mathbf{k}}v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}}\right) \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2} \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right) \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)$$
(522)

$$\left\langle \widehat{B_{1+}B_{0-}}(\tau)\widehat{B_{0+}B_{1-}}(0)\right\rangle_{B} = \operatorname{Tr}_{B}\left(\prod_{\mathbf{k}}\left(D\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}e^{\mathrm{i}\omega\tau}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}}-v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{*}}\right)\right)\prod_{\mathbf{k}}\left(D\left(\frac{v_{0\mathbf{k}}-v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right)e^{\frac{1}{2}\left(\frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}-\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right)}\right)\rho_{B}^{\mathrm{Thermal}}\right)$$
(523)

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega\tau} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{*}} \right) \right) \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \right) \right) \rho_{B}^{\mathrm{Thermal}} \right)$$
(524)

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} \left(e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*} v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right)} e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^{*} v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right)} \right) \prod_{\mathbf{k}} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega\tau} \right) \prod_{\mathbf{k}} D\left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \rho_{B}^{\mathrm{Thermal}} \right)$$

$$(525)$$

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega \tau} \right) \prod_{\mathbf{k}} D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \rho_{B}^{\mathrm{Thermal}} \right)$$
(526)

$$= \prod_{\mathbf{k}} \operatorname{Tr}_{B} \left(\left(D \left(\frac{v_{1} \mathbf{k}^{-v_{0}} \mathbf{k}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega\tau} \right) D \left(\frac{v_{0} \mathbf{k}^{-v_{1}} \mathbf{k}}{\omega_{\mathbf{k}}} \right) \right) \rho_{B}^{\mathrm{Thermal}} \right)$$
(527)

$$= \prod_{\mathbf{k}} \operatorname{Tr}_{B} \left(\left(D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}(\omega \tau + \pi)} \right) D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right) \rho_{B}^{\mathrm{Thermal}} \right)$$
(528)

$$= \prod_{\mathbf{k}} \exp\left(-\left|\frac{v_0 \mathbf{k} - v_1 \mathbf{k}}{\omega_{\mathbf{k}}}\right|^2 \left(-i\sin(\omega \tau + \pi) + \cos(\omega \tau + \pi) \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)\right)\right) \exp\left(-\left|\frac{v_0 \mathbf{k} - v_1 \mathbf{k}}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)\right)$$
(529)

$$= \prod_{\mathbf{k}} \exp\left(-\left|\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2} \left(i \sin(\omega \tau) - \cos(\omega \tau) \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)\right)\right) \exp\left(-\left|\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)\right)$$
(530)

$$\left\langle \widetilde{B_{0+B_{1-}}(\tau)}\widetilde{B_{1+B_{0-}}(0)}\right\rangle_{B} = \operatorname{Tr}_{B}\left(\prod_{\mathbf{k}}\left(D\left(\frac{v_{0\mathbf{k}}-v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\right)e^{\frac{1}{2}\left(\frac{v_{0\mathbf{k}}^{*}v_{1\mathbf{k}}-v_{0\mathbf{k}}v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{*}}\right)\right)}\prod_{\mathbf{k}}\left(D\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}}-v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{*}}\right)\right)}e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}^{*}}\right)e^{\frac{1}{2}\left($$

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}} \tau} \right) \prod_{\mathbf{k}} D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \rho_{B}^{\mathrm{Thermal}} \right)$$

$$= \prod_{\mathbf{k}} \operatorname{Tr}_{B} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}(\omega_{\mathbf{k}} \tau + \pi)} \right) D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \rho_{B}^{\mathrm{Thermal}} \right)$$
(532)

$$= \prod_{\mathbf{k}} \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2} \left(-i\sin(\omega\tau + \pi) + \cos(\omega\tau + \pi)\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right) \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$
(534)

$$= \left\langle |\widetilde{B_{1+B_0-}(\tau)B_{0+B_1-}(0)} \right\rangle_B \tag{535}$$

$$\left\langle \widehat{B_{0+B_{1-}}(\tau)}\widehat{B_{jz}}(0)\right\rangle_{B} = \operatorname{Tr}_{B}\left(\prod_{\mathbf{k}}\left(D\left(\frac{v_{0\mathbf{k}}-v_{1}\mathbf{k}}{\omega_{\mathbf{k}}}e^{i\omega_{\mathbf{k}}\tau}\right)e^{\frac{1}{2}\left(\frac{v_{0\mathbf{k}}^{*}v_{1}\mathbf{k}}-v_{0\mathbf{k}}v_{1}^{*}\mathbf{k}}{\omega_{\mathbf{k}}^{2}}\right)\right)\sum_{\mathbf{k'}}\left(\left(g_{j\mathbf{k'}}-v_{j\mathbf{k'}}\right)b_{\mathbf{k'}}^{\dagger}+\left(g_{j\mathbf{k'}}-v_{j\mathbf{k'}}\right)^{*}b_{\mathbf{k'}}\right)\rho_{B}^{\mathrm{Thermal}}\right)$$
(536)

$$\langle D(h)b\rangle_B = \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \langle \alpha | D(h)b | \alpha \rangle \tag{537}$$

$$=\frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle \alpha | D(-\alpha) D(h) b D(\alpha) | \alpha \rangle \tag{538}$$

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \langle 0 | D(-\alpha) D(h) b D(\alpha) | 0 \rangle$$
(539)

$$=\frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle 0 | D(-\alpha) D(h) D(\alpha) D(-\alpha) b D(\alpha) | 0 \rangle$$
(540)

$$=\frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right) \left\langle 0\left|D\left(-\alpha\right)D\left(h\right)D\left(\alpha\right)\left(b+\alpha\right)\right|0\right\rangle \tag{541}$$

$$=\frac{1}{\pi N} \int d^{2} \alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \exp\left(h\alpha^{*}-h^{*}\alpha\right) \left\langle 0\left|D\left(h\right)\left(b+\alpha\right)\right| 0\right\rangle \tag{542}$$

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle \mathrm{d}D(h)b\mathrm{D}\rangle + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle \mathrm{d}D(h)\alpha\mathrm{D}\rangle \tag{543}$$

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0 | D(h) \alpha | 0 \rangle \tag{544}$$

$$= \frac{1}{\pi N} \int \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \exp\left(-\frac{|h|^2}{2}\right) d^2\alpha \tag{545}$$

$$=hN\left\langle D\left(h\right) \right\rangle _{B} \tag{546}$$

$$\left\langle D\left(h\right)b^{\dagger}\right\rangle _{B}=\frac{1}{\pi N}\int\mathrm{d}^{2}\alpha\mathrm{exp}\left(-\frac{\left|\alpha\right|^{2}}{2}\right)\left\langle \alpha\left|D\left(h\right)b^{\dagger}\right|\alpha\right\rangle \tag{547}$$

$$=\frac{1}{\pi N} \int d^{2} \alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \left\langle 0 \left| D\left(-\alpha\right) D\left(h\right) b^{\dagger} D\left(\alpha\right) \right| 0 \right\rangle \tag{548}$$

$$=\frac{1}{\pi N} \int d^{2} \alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \left\langle 0 \left| D\left(-\alpha\right) D\left(h\right) b^{\dagger} D\left(\alpha\right) \right| 0 \right\rangle \tag{549}$$

$$=\frac{1}{\pi N}\int \mathrm{d}^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right)\left\langle 0\left|D\left(-\alpha\right)D\left(h\right)D\left(\alpha\right)D\left(-\alpha\right)b^{\dagger}D\left(\alpha\right)\right|0\right\rangle \tag{550}$$

$$=\frac{1}{\pi N} \int d^{2} \alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \left\langle 0 \left| D\left(-\alpha\right) D\left(h\right) D\left(\alpha\right) \left(b^{\dagger} + \alpha^{*}\right) \right| 0 \right\rangle \tag{551}$$

$$=\frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right) \exp\left(h\alpha^{*}-h^{*}\alpha\right) \left\langle 0\left|D\left(h\right)\left(b^{\dagger}+\alpha^{*}\right)\right| 0\right\rangle \tag{552}$$

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \left\langle dD(h)b^{\dagger} b \right\rangle + \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \left\langle dD(h)\alpha^* b \right\rangle$$
(553)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle |D(h)| 1\rangle + \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \alpha^* \langle |D(h)| 0\rangle$$
(554)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) (-h|1\rangle + \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \alpha^* \langle 0|D(h)|0\rangle$$
(555)

$$\langle -h| = \exp\left(-\frac{\left|-h^*\right|^2}{2}\right) \sum_{n} \frac{\left(-h^*\right)^n}{\sqrt{n!}} \left\langle n\right| \tag{556}$$

$$\langle -h|1\rangle = \exp\left(-\frac{|-h^*|^2}{2}\right)(-h^*) \tag{557}$$

$$\left\langle D\left(h\right)b^{\dagger}\right\rangle_{B} = \frac{1}{\pi N}\int d^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \exp\left(h\alpha^{*}-h^{*}\alpha\right) \exp\left(-\frac{|-h^{*}|^{2}}{2}\right) \left(-h^{*}\right) + \frac{1}{\pi N}\int d^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \exp\left(h\alpha^{*}-h^{*}\alpha\right) \alpha^{*} \exp\left(-\frac{|-h^{*}|^{2}}{2}\right)$$

$$= -h^{*}\left\langle D\left(h\right)\right\rangle_{B}\left(N+1\right)$$
(558)

$$=-h^* \langle D(h) \rangle_B (N+1) \tag{559}$$

$$\langle bD(h)\rangle_B = \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \langle \alpha | bD(h) | \alpha \rangle$$
 (560)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \exp\left(-\frac{|h|^2}{2}\right) h + \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \alpha \exp\left(-\frac{|h|^2}{2}\right)$$
(561)

$$= h \langle D(h) \rangle_B (N+1) \tag{562}$$

$$\left\langle b^{\dagger}D\left(h\right)\right\rangle _{B}=\frac{1}{\pi N}\int\mathrm{d}^{2}\alpha\mathrm{exp}\left(-\frac{\left|\alpha\right|^{2}}{2}\right)\left\langle \alpha\left|b^{\dagger}D\left(h\right)\right|\alpha\right\rangle \tag{563}$$

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \exp\left(-\frac{|h|^2}{2}\right) h + \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \alpha \exp\left(-\frac{|h|^2}{2}\right)$$
(564)

$$=-h^*\langle D(h)\rangle_B N \tag{565}$$

$$\left\langle \widetilde{B_{1+B_0}}_{-}(\tau) \right\rangle_{B} = \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}} \tau} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \right)} \right) \right\rangle_{B}$$
(566)

$$= \prod_{\mathbf{k}} \left(e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{2} v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \right)} \right) \prod_{\mathbf{k}} \left\langle D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}} \tau} \right) \right\rangle_{B}$$

$$(567)$$

$$= \prod_{\mathbf{k}} \left(e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \right)} \right) \prod_{\mathbf{k}} \left\langle D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \right\rangle_{B}$$

$$(568)$$

$$= \prod_{\mathbf{k}} \left(\exp \left(\frac{1}{2} \left(\frac{v_{\mathbf{k}k}^*}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}} \right) \right) \right) \prod_{\mathbf{k}} \exp \left(-\frac{1}{2} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth \left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right)$$
(569)

$$=B_{10}$$
 (570)

The correlation functions can be found readily as:

$$\widetilde{B_{1+}B_{0-}}(\tau) = \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\right) \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \right)$$
(571)

$$\widetilde{B_{0+}B_{1-}}(\tau) = \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\right) \exp\left(\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \right)$$
(572)

$$\widetilde{B_x}(0) = \frac{B_{1+}B_{0-} + B_{0+}B_{1-} - B_{10} - B_{10}^*}{2}$$
(573)

$$\widetilde{B_y}(0) = \frac{B_{0+}B_{1-} - B_{1+}B_{0-} + B_{10} - B_{10}^*}{2i}$$
(574)

$$B_{10} = \left(\prod_{\mathbf{k}} \exp \left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \right) \right) \left(\exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth \left(\frac{\beta \omega}{2} \right) \right) \right)$$
(575)

$$B_{iz} = \sum \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^* b_{\mathbf{k}} \right)$$
(576)

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{jz}}(0)\right\rangle_{B} = \left\langle \sum_{\mathbf{k}} \left((g_{i\mathbf{k}} - v_{i\mathbf{k}}) b_{\mathbf{k}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + (g_{i\mathbf{k}} - v_{i\mathbf{k}})^{*} b_{\mathbf{k}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \sum_{\mathbf{k}} \left((g_{j\mathbf{k}} - v_{j\mathbf{k}}) b_{\mathbf{k}}^{\dagger} + (g_{j\mathbf{k}} - v_{jk})^{*} b_{\mathbf{k}} \right) \right\rangle_{B}$$

$$(577)$$

$$= \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}}) \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}\right)^* e^{\mathrm{i}\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}})^* \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}\right) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1\right)$$
(578)

$$\left\langle \widetilde{B_x} \left(\tau \right) \widetilde{B_x} \left(0 \right) \right\rangle_B = \left\langle \frac{B_{1+} B_{0-} \left(\tau \right) + B_{0+} B_{1-} \left(\tau \right) - B_{10} - B_{10}^*}{2} \frac{B_{1+} B_{0-} + B_{0+} B_{1-} - B_{10} - B_{10}^*}{2} \right\rangle_B \tag{579}$$

$$= \frac{1}{4} \left\langle \left(B_{1+} B_{0-} \left(\tau \right) + B_{0+} B_{1-} \left(\tau \right) - B_{10} - B_{10}^* \right) \left(B_{1+} B_{0-} + B_{0+} B_{1-} - B_{10} - B_{10}^* \right) \right\rangle_B$$
(580)

$$= \frac{1}{4} \langle B_{1+} B_{0-}(\tau) B_{1+} B_{0-} + B_{1+} B_{0-}(\tau) B_{0+} B_{1-} - B_{1+} B_{0-}(\tau) B_{10} - B_{1+} B_{0-}(\tau) B_{10} + B_{0+} B_{1-}(\tau) B_{1+} B_{0-} + B_{0+} B_{1-}(\tau) B_{0+}(\tau) B_{0+}(\tau$$

$$-B_{0+}B_{1-}(\tau)B_{10} - B_{0+}B_{1-}(\tau)B_{10}^*B_{10}B_{10}B_{10} + B_{10}B_{0+}B_{1-} + B_{10}B_{10} + B_{10}B_{10}^* - B_{10}^*B_{10} + B_{10}B_{10} +$$

$$= \frac{1}{4} \langle B_{1+}B_{0-}(\tau)B_{1+}B_{0-} + B_{1+}B_{0-}(\tau)B_{0+}B_{1-} - B_{1+}B_{0-}(\tau)B_{10} - B_{1+}B_{0-}(\tau)B_{10}^* + B_{0+}B_{1-}(\tau)B_{1+}B_{0-}$$

$$(583)$$

$$+B_{0+}B_{1-}(\tau)B_{0+}B_{1-} - B_{0+}B_{1-}(\tau)B_{10} - B_{0+}B_{1-}(\tau)B_{10}^*$$
 (584)

$$\left\langle \widehat{B_{0+B_{1-}}(\tau)}\widehat{B_{0+B_{1-}}(\tau)}\widehat{B_{0+B_{1-}}(\tau)}\right\rangle_{B} = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{0\mathbf{k}}^*v_{1\mathbf{k}} - v_{0\mathbf{k}}v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right) \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \cdot \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right) \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \cdot \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right) \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \cdot \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)$$
(585)

$$U = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \right)$$
 (586)

$$\phi\left(\tau\right) = \sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} \left(-i\sin\left(\omega_{\mathbf{k}}\tau\right) + \cos\left(\omega_{\mathbf{k}}\tau\right) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \tag{587}$$

$$S = \prod_{\mathbf{k}} \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$
(588)

$$\left\langle \widetilde{B_{0+}B_{1-}}(\tau)\widetilde{B_{0+}B_{1-}}(0)\right\rangle _{B}=U\exp\left(-\phi\left(\tau\right)\right)S\tag{589}$$

$$\langle \widetilde{B_{1+B_0-}}(\tau)\widetilde{B_{1+B_0-}}(0)\rangle_B = U^* \exp(-\phi(\tau))S$$

$$(590)$$

$$\langle \widetilde{B_{1+}B_{0-}}(\tau)\widetilde{B_{0+}B_{1-}}(0)\rangle_{B} = \exp\left(\phi\left(\tau\right)\right)S \tag{591}$$

$$\left\langle \widetilde{B_{0+}B_{1-}(\tau)B_{1+}B_{0-}(0)}\right\rangle_{B} = \left\langle \widetilde{B_{1+}B_{0-}}(\tau)\,\widetilde{B_{0+}B_{1-}(0)}\right\rangle_{B} \tag{592}$$

$$\left\langle \widetilde{B_{1+}B_{0-}}(\tau) \right\rangle_{B} = \prod_{\mathbf{k}} \left(\exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} \right) \right) \right) \prod_{\mathbf{k}} \exp\left(-\frac{1}{2} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right) \right)$$
(593)

$$=U^{*1/2}S^{1/2} (594)$$

$$\left\langle \widetilde{B_{x}}\left(\tau\right)\widetilde{B_{x}}\left(0\right)\right\rangle _{B}=\frac{1}{4}\left\langle B_{1}+B_{0}-\left(\tau\right)B_{1}+B_{0}-+B_{1}+B_{0}-\left(\tau\right)B_{0}+B_{1}-B_{1}+B_{0}-\left(\tau\right)B_{10}-B_{1}+B_{0}-\left(\tau\right)B_{10}+B_{10}-B_{1}+B_{0}-\left(\tau\right)B_{10}+B_{10}-B_{10}+B_{10}-B_{10}+B_{10}-B_{10}+B_{10}-B_{10}+B_{10}-B_{10}-B_{10}+B_{10}-B_{1$$

$$+B_{0+}B_{1-}(\tau)B_{0+}B_{1-} - B_{0+}B_{1-}(\tau)B_{10} - B_{0+}B_{1-}(\tau)B_{10}^{*}$$

$$\tag{596}$$

$$\left\langle \widetilde{B_{x}}(\tau)\widetilde{B_{x}}(0)\right\rangle _{B}=\frac{1}{4}\left\langle B_{1+}B_{0-}(\tau)B_{1+}B_{0-}+B_{1+}B_{0-}(\tau)B_{0+}B_{1-}-B_{1+}B_{0-}(\tau)B_{10}-B_{1+}B_{0-}(\tau)B_{10}^{*}+B_{0-}B_{1-}(\tau)B_{1+}B_{0-}+B_{0+}B_{1-}(\tau)B_{0+}B_{1-}(\tau)B_{0-}B_{1-}B_{1-}B_{0-}(\tau)B_{10}^{*}+B_{10}^{$$

$$-B_{0+}B_{1-}(\tau)B_{10}-B_{0+}B_{1-}(\tau)B_{10}^{*}$$
(598)

$$=\frac{1}{4}\left(U^{*}\exp\left(-\phi\left(\tau\right)\right)S+\exp\left(\phi\left(\tau\right)\right)S-B_{10}^{2}-\left|B_{10}\right|^{2}+\exp\left(\phi\left(\tau\right)\right)S+U\exp\left(-\phi\left(\tau\right)\right)S-B_{10}^{*2}-\left|B_{10}\right|^{2}\right) \tag{599}$$

$$= \frac{1}{4} \left(2\Re (U) \exp (-\phi (\tau)) S + 2\exp (\phi (\tau)) S - 2\Re (B_{10}^2) - 2|B_{10}|^2 \right)$$
(600)

$$=\frac{1}{4}\left(2\Re\left(U\right)\exp\left(-\phi\left(\tau\right)\right)S + 2\exp\left(\phi\left(\tau\right)\right)S - 2\Re\left(U^{*}\right)S - 2S\right) \tag{601}$$

$$=\frac{S}{2}\left(\Re\left(U\right)\exp\left(-\phi\left(\tau\right)\right)+\exp\left(\phi\left(\tau\right)\right)-\Re\left(U^{*}\right)-1\right)\tag{602}$$

$$\left\langle \widetilde{B_{y}}(\tau)\widetilde{B_{y}}(0)\right\rangle _{B} = \left\langle \frac{B_{0} + B_{1} - (\tau) - B_{1} + B_{0} - (\tau) + B_{10} - B_{10}^{*}}{2i} \frac{B_{0} + B_{1} - B_{1} + B_{10} - B_{10}^{*}}{2i} \right\rangle _{B}$$

$$(603)$$

$$= -\frac{1}{4} \left\langle \left(B_{0+} B_{1-} \left(\tau \right) - B_{1+} B_{0-} \left(\tau \right) + B_{10} - B_{10}^* \right) \left(B_{0+} B_{1-} - B_{1+} B_{0-} + B_{10} - B_{10}^* \right) \right\rangle_B$$
 (604)

$$=-\frac{1}{4}(B_{0+}B_{1-}(\tau)B_{0+}B_{1-}-B_{0+}B_{1-}(\tau)B_{1+}B_{0-}+B_{0+}B_{1-}(\tau)B_{10}-B_{0+}B_{1-}(\tau)B_{10}^*-B_{1+}B_{0-}(\tau)B_{10}+B_{1-}+B_{1+}B_{0-}(\tau)B_{1+}B_{0-}$$

$$-B_{1} + B_{0} - (\tau) B_{10} + B_{1} + B_{0} - (\tau) B_{10}^{*} + B_{10} B_{0} + B_{1} - B_{10} B_{1} + B_{0} - B_{10} B_{10} - B_{10} B_{10} - B_{10}^{*} B_{10}^{*} - B_{10}^{*} B_{0} + B_{1} - B_{10}^{*} B_{1} + B_{0} - B_{10}^{*} B_{10} + B_{10}^{*} B_{10}^{*} + B_{10$$

$$= -\frac{1}{4}(B_{0+}B_{1-}(\tau)B_{0+}B_{1-} - B_{0+}B_{1-}(\tau)B_{1+}B_{0-} + B_{0+}B_{1-}(\tau)B_{10} - B_{0+}B_{1-}(\tau)B_{10}^{*}$$

$$\tag{607}$$

$$-B_{1+}B_{0-}(\tau)B_{0+}B_{1-}+B_{1+}B_{0-}(\tau)B_{1+}B_{0-}-B_{1+}B_{0-}(\tau)B_{10}+B_{1+}B_{0-}(\tau)B_{10}^{*}$$

$$(608)$$

$$=-\frac{1}{4}\left\langle B_{0+}B_{1-}(\tau)B_{0+}B_{1-}-B_{0+}B_{1-}(\tau)B_{1+}B_{0-}+B_{10}^{*}B_{10}-B_{10}^{*}B_{10}^{*}-B_{1+}B_{0-}(\tau)B_{0+}B_{1-}+B_{1+}B_{0-}(\tau)B_{1+}B_{0-}-B_{10}B_{10}+B_{10}B_{10}^{*}\right\rangle \tag{609}$$

$$=-\frac{1}{4}\left(U\exp(-\phi\left(\tau\right))S-\exp\left(\phi\left(\tau\right)\right)S-\exp\left(\phi\left(\tau\right)\right)S+U^{*}\exp\left(-\phi\left(\tau\right)\right)S+2S-2\Re\left(U^{*}\right)S\right)\tag{610}$$

$$=-\frac{S}{4}\left(2\Re(U)\exp\left(-\phi\left(\tau\right)\right)-2\exp\left(\phi\left(\tau\right)\right)+2-2\Re\left(U\right)\right)\tag{611}$$

$$=\frac{S}{2}\left(\exp\left(\phi\left(\tau\right)\right)-\Re\left(U\right)\exp\left(-\phi\left(\tau\right)\right)-1+\Re\left(U\right)\right)\tag{612}$$

$$\left\langle \widetilde{B}_{x}(\tau)\widetilde{B}_{y}(0)\right\rangle_{B} = \left\langle \frac{B_{1+}B_{0-}(\tau) + B_{0+}B_{1-}(\tau) - B_{10} - B_{10}^{*}}{2} \frac{B_{0+}B_{1-} - B_{1+}B_{0-} + B_{10} - B_{10}^{*}}{2i}\right\rangle_{B}$$
(613)

$$= \frac{1}{4i} \left\langle \left(B_{1+} B_{0-} \left(\tau \right) + B_{0+} B_{1-} \left(\tau \right) - B_{10} - B_{10}^* \right) \left(B_{0+} B_{1-} - B_{1+} B_{0-} + B_{10} - B_{10}^* \right) \right\rangle_B$$
 (614)

$$= \frac{1}{41} \langle B_{1+}B_{0-}(\tau)B_{0+}B_{1-} - B_{1+}B_{0-}(\tau)B_{1+}B_{0-} + B_{1+}B_{0-}(\tau)B_{10} - B_{1+}B_{0-}(\tau)B_{10}^* + B_{0+}B_{1-}(\tau)B_{10} + B_{1-}B_{1-}(\tau)B_{1+}B_{0-} - B_{1-}B$$

$$+B_{0}+B_{1}-(\tau)B_{10}-B_{0}+B_{1}-(\tau)B_{10}^{*}-B_{10}B_{0}+B_{1}-+B_{10}B_{1}+B_{0}-B_{10}B_{10}+B_{10}B_{10}^{*}-B_{10}^{*}B_{0}+B_{1}-+B_{10}^{*}B_{1}+B_{0}-B_{10}^{*}B_{10}+B_{10}^{*}B_{10}^{*}$$

$$(616)$$

$$\begin{split} &=\frac{1}{6i}(u_{11}u_{0-i}(r)u_{0+i}u_{1-i}u_{0-i}u_{1+i}u_{0-i}ru_{0-i}ru_{1+i}u_{0-i}ru_{0-i}$$

$$\omega_{\mathbf{k'}} / \omega_{\mathbf{k'}} / \omega_{\mathbf{k'}}$$

$$B_{1+B_{0}-(\tau)} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* b_{\mathbf{k'}} \rangle_{B} = (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}^2} e^{i\omega_{\mathbf{k'}} \tau}\right) N_{\mathbf{k'}} \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}} \tau}\right)\right)\right\rangle$$

$$(640)$$

$$\langle B_{1} + B_{0} - (\tau) \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right)^{*} b_{\mathbf{k}'} \rangle_{B} = \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right)^{*} \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1} \mathbf{k}^{0} 0 \mathbf{k}^{-2} v_{1} \mathbf{k}^{0} 0 \mathbf{k}}{\omega_{\mathbf{k}'}^{2}} \right) \right) \left(\frac{v_{1} \mathbf{k}' - v_{0} \mathbf{k}'}{\omega_{\mathbf{k}'}} e^{i\omega_{\mathbf{k}'} \tau} \right) N_{\mathbf{k}'} \left\langle \prod_{\mathbf{k}} \left(D \left(\frac{v_{1} \mathbf{k}^{-2} v_{0} \mathbf{k}}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}} \tau} \right) \right) \right\rangle$$

$$(640)$$

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^* \left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} e^{i\omega_{\mathbf{k}'}\tau}\right) N_{\mathbf{k}'} B_{10}$$

$$(641)$$

$$\left\langle B_{0+}B_{1-(\tau)}\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)b_{\mathbf{k'}}^{\dagger}\right\rangle _{B}=-\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)^{*}\left(N_{\mathbf{k'}}+1\right)B_{10}^{*}$$
(642)

$$\langle B_{0+}B_{1-}(\tau)(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^*b_{\mathbf{k'}}\rangle_B = (g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^* \left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}^*$$
(643)

$$\left\langle \widetilde{B_{\boldsymbol{x}}}(\tau)\widetilde{B_{\boldsymbol{i}\boldsymbol{z}}}(0)\right\rangle_{B} = \frac{1}{2} \sum_{\mathbf{k'}} \left(-\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(\frac{v_{1}\mathbf{k'} - v_{0}\mathbf{k'}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau}\right)^{*} \left(N_{\mathbf{k'}} + 1\right) B_{10} - \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(\frac{v_{0}\mathbf{k'} - v_{1}\mathbf{k'}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau}\right)^{*} \left(N_{\mathbf{k'}} + 1\right) B_{10}^{*} \right)$$

$$(644)$$

$$+\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{1}\mathbf{k'}^{'}-v_{0}\mathbf{k'}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}+\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{0}\mathbf{k'}^{'}-v_{1}\mathbf{k'}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}^{*}\right)$$

$$(645)$$

$$=\frac{1}{2}\sum_{\mathbf{k'}}\left(-\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)^{*}\left(N_{\mathbf{k'}}+1\right)B_{10}-\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)^{*}\left(N_{\mathbf{k'}}+1\right)B_{10}^{*}$$

$$(646)$$

$$+\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{1}\mathbf{k'}-v_{0}\mathbf{k'}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}+\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{0}\mathbf{k'}-v_{1}\mathbf{k'}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}^{*}\right)\tag{647}$$

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left(-\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(N_{\mathbf{k'}} + 1 \right) \left(\left(\frac{v_1 \mathbf{k'} - v_0 \mathbf{k'}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}} \tau} \right)^* B_{10} + \left(\frac{v_0 \mathbf{k'} - v_1 \mathbf{k'}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}} \tau} \right)^* B_{10}^* \right)$$

$$(648)$$

$$+\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^*N_{\mathbf{k'}}\left(\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)B_{10}+\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)B_{10}^*\right)$$

$$(649)$$

$$=\frac{1}{2}\sum_{\mathbf{k'}}\left(-\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(N_{\mathbf{k'}}+1\right)\left(\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}}\right)^{*}B_{10}-\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}}\right)^{*}B_{10}^{*}\right)+\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}N_{\mathbf{k'}}\left(\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}}\right)^{*}B_{10}-\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}}\right)^{*}B_{10}\right)\right)$$

$$(650)$$

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left(-(g_{i\mathbf{k'}} - v_{i\mathbf{k'}})(N_{\mathbf{k'}} + 1) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau} \right)^* (B_{10} - B_{10}^*) + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* N_{\mathbf{k'}} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau} \right) (B_{10} - B_{10}^*) \right)$$
(651)

$$= \frac{1}{2} \sum_{\mathbf{k}'} 2i\Im \left(B_{10}\right) \left(\left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'}\right)^* N_{\mathbf{k}'} \left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} e^{i\omega_{\mathbf{k}'}\tau}\right) - \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'}\right) \left(N_{\mathbf{k}'} + 1\right) \left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} e^{i\omega_{\mathbf{k}'}\tau}\right)^* \right)$$
(652)

$$= i \sum_{\mathbf{k'}} \Im \left(B_{10}\right) \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^* N_{\mathbf{k'}} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau}\right) - \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(N_{\mathbf{k'}} + 1\right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau}\right)^* \right)$$

$$(653)$$

$$= i \sum_{\mathbf{k'}} \Im \left(B_{10}\right) \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^* N_{\mathbf{k'}} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right) e^{i\omega_{\mathbf{k'}}\tau} - \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(N_{\mathbf{k'}} + 1\right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^* e^{-i\omega_{\mathbf{k'}}\tau} \right)$$
(654)

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{x}}(0)\right\rangle_{B} = \left\langle \sum_{\mathbf{k'}} \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)b_{\mathbf{k'}}^{\dagger} e^{i\omega}\mathbf{k'}^{\tau} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^{*}b_{\mathbf{k'}} e^{-i\omega}\mathbf{k'}^{\tau} \right) \left(\frac{B_{1} + B_{0} + B_{0} + B_{1} - B_{10} - B_{10}^{*}}{2}\right) \right\rangle_{B}$$

$$(655)$$

$$= \sum_{\mathbf{k'}} \left\langle \left((g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}}\tau} \right) \left(\frac{B_{1+}B_{0-} + B_{0+}B_{1-} - B_{10} - B_{10}^*}{2} \right) \right\rangle_B$$
(656)

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left\langle \left((g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* b_{\mathbf{k'}} e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau} \right) (B_{1+}B_{0-} + B_{0+}B_{1-} - B_{10} - B_{10}^*) \right\rangle_B$$
(657)

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left\langle \left((g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}}\tau} \right) (B_{1} + B_{0} - + B_{0} + B_{1}) \right\rangle_{B}$$
(658)

$$= \frac{1}{2} \sum_{\mathbf{k}'} \langle (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) b_{\mathbf{k}'}^{\dagger} e^{i\omega_{\mathbf{k}'} \tau} B_{1+} B_{0-} + (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) b_{\mathbf{k}'}^{\dagger} e^{i\omega_{\mathbf{k}'} \tau} B_{0+} B_{1-} + (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) b_{\mathbf{k}'}^{\dagger} e^{-i\omega_{\mathbf{k}'} \tau} B_{1+} B_{0-}$$

$$(659)$$

$$+\left\langle e_{i\mathbf{k}'} - v_{i\mathbf{k}'}\right\rangle \hat{b}_{\mathbf{k}'}^{\prime} e^{-i\omega_{\mathbf{k}'}\tau_{B_0+B_1}}$$

$$\tag{660}$$

$$\left\langle \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)b_{\mathbf{k'}}^{\dagger}e^{i\omega}\mathbf{k'}^{\tau}B_{1+}B_{0-}\right\rangle_{B} = \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)\left\langle b_{\mathbf{k'}}^{\dagger}e^{i\omega}\mathbf{k'}^{\tau}B_{1+}B_{0-}\right\rangle_{B}$$

$$(661)$$

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) \left\langle b_{\mathbf{k}'}^{\dagger} e^{i\omega_{\mathbf{k}'}\tau} \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right) \right) \right) \right\rangle_{B}$$
(662)

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle \prod_{\mathbf{k} \neq \mathbf{k}'} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right\rangle_B \left\langle b_{\mathbf{k}'}^{\dagger} e^{i\omega_{\mathbf{k}'} \tau} D\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)\right\rangle_B$$
(664)

$$= (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle \prod_{\mathbf{k} \neq \mathbf{k'}} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right\rangle_{B} \left\langle b_{\mathbf{k'}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k'}} \tau} D\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\right\rangle_{B}$$
(665)

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle \prod_{\mathbf{k} \neq \mathbf{k}'} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right\rangle_{B} \left\langle b_{\mathbf{k}'}^{\dagger} D\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)\right\rangle_{B} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}$$
(666)

$$=\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\prod_{\mathbf{k}}\exp\left(\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}}-v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{*}}\right)\right)\left\langle\prod_{\mathbf{k}\neq\mathbf{k'}}D\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right\rangle_{B}\left(-\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^{*}\left\langle D\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\right\rangle_{B}N_{\mathbf{k'}}\right)e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}$$

$$(667)$$

$$= -\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)^* (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle \prod_{\mathbf{k}} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right\rangle_{R} N_{\mathbf{k}'} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}$$
(668)

$$= -\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)^* \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'}\right) B_{10} N_{\mathbf{k}'} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau} \tag{669}$$

$$\left\langle \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}} B_{0+} B_{1-}\right\rangle_{B} = -\left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^{*} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)B_{10}^{*} N_{\mathbf{k'}} e^{i\omega_{\mathbf{k'}}}$$

$$(670)$$

$$\left\langle \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}}\right)^* \right\rangle_{\mathbf{k}'} e^{-\mathrm{i}\omega_{\mathbf{k}'} \tau_{B_{1} + B_{0}}} = \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'}\right)^* e^{-\mathrm{i}\omega_{\mathbf{k}'} \tau} \left\langle b_{\mathbf{k}'} B_{1} + B_{0} - \right\rangle_{B}$$

$$(671)$$

$$= \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^* e^{-i\omega_{\mathbf{k'}}\tau} \left\langle b_{\mathbf{k'}} \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \exp\left(\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right)\right)\right\rangle$$
(672)

$$= \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^* e^{-i\omega_{\mathbf{k'}}\tau} \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{i\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle b_{\mathbf{k'}} D\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right) \right\rangle_B \left\langle \prod_{\mathbf{k} \neq \mathbf{k'}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right)\right\rangle_B$$

$$(673)$$

$$=\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)_{e}^{*}^{*}^{-i\omega}\mathbf{k'}^{T}\prod_{\mathbf{k}}\exp\left(\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}}-v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}}\right)\right)\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\left(N_{\mathbf{k'}}+1\right)\left\langle D\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\right\rangle _{B}\left\langle \Pi_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right)\right\rangle _{B}$$

$$(674)$$

$$= \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^* e^{-\mathrm{i}\omega} \mathbf{k'}^{\tau} \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \left(N_{\mathbf{k'}} + 1 \middle\langle D\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right) \middle\rangle_{B} \middle\langle \Pi_{\mathbf{k} \neq \mathbf{k'}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right) \middle\rangle_{B}$$
(675)

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^* e^{-i\omega_{\mathbf{k}'}\tau} \frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} (N_{\mathbf{k}'} + 1) B_{10}$$
(676)

$$\langle (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* b_{\mathbf{k'}} e^{-i\omega} \mathbf{k'}^{\tau_{B_{0+}B_{1-}}} \rangle_B = (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* e^{-i\omega} \mathbf{k'}^{\tau} \frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}} (N_{\mathbf{k'}} + 1) B_{10}^*$$
(677)

$$\left\langle \widetilde{B_{iz}} \left(\tau \right) \widetilde{B_{x}} \left(0 \right) \right\rangle_{B} = \frac{1}{2} \sum_{\mathbf{k}'} \left(-\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right)^{*} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) B_{10} N_{\mathbf{k}'} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau} - \left(\frac{v_{0\mathbf{k}'} - v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right)^{*} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) B_{10}^{*} N_{\mathbf{k}'} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}$$
(678)

$$+(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^{*}e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau}\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}(N_{\mathbf{k'}}+1)B_{10}+(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^{*}e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau}\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}(N_{\mathbf{k'}}+1)B_{10}^{*}$$
(679)

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) N_{\mathbf{k'}} e^{i\omega_{\mathbf{k'}} \tau} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{1\mathbf{k'}}} \right)^* \left(B_{10}^* - B_{10} \right) + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{1\mathbf{k'}}} e^{-i\omega_{\mathbf{k'}} \tau} \left(N_{\mathbf{k'}} + 1 \right) \left(B_{10} - B_{10}^* \right) \right)$$
(680)

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) N_{\mathbf{k'}} e^{i\omega_{\mathbf{k'}}} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* \left(B_{10}^* - B_{10} \right) - \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{-i\omega_{\mathbf{k'}}} \left(N_{\mathbf{k'}} + 1 \right) \left(B_{10}^* - B_{10} \right) \right)$$
(681)

$$= i \sum_{\mathbf{k'}} \Im(B_{10}) \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) N_{\mathbf{k'}} e^{i\omega_{\mathbf{k'}} \tau} \left(\frac{v_{1}\mathbf{k'} - v_{0}\mathbf{k'}}{\omega_{\mathbf{k'}}} \right)^* - \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \frac{v_{1}\mathbf{k'} - v_{0}\mathbf{k'}}{\omega_{\mathbf{k'}}} e^{-i\omega_{\mathbf{k'}} \tau} \left(N_{\mathbf{k'}} + 1 \right) \right)$$

$$\tag{682}$$

$$\left\langle \widetilde{B_{y}}(\tau)\widetilde{B_{iz}}(0)\right\rangle_{B} = \left\langle \left(\frac{B_{0} + B_{1-}(\tau) - B_{1} + B_{0-}(\tau) + B_{10} - B_{10}^{*}}{2i}\right) \sum_{\mathbf{k'}} \left((g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^{*} b_{\mathbf{k'}}\right)\right\rangle_{B}$$
(683)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left\langle \left(B_{0+} B_{1-}(\tau) - B_{1+} B_{0-}(\tau) + B_{10} - B_{10}^* \right) \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* b_{\mathbf{k'}} \right) \right\rangle_B$$
(684)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left\langle (B_{0+} B_{1-}(\tau) - B_{1+} B_{0-}(\tau)) \left((g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* b_{\mathbf{k'}} \right) \right\rangle_{B}$$
 (685)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \langle g_{0+} B_{1-}(\tau) (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} - B_{1+} B_{0-}(\tau) (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} + B_{0+} B_{1-}(\tau) (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}} - B_{1+} B_{0-}(\tau) (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{*} \rangle$$
(686)

$$\left\langle B_{0+}B_{1-}(\tau)\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\right\rangle_{\mathbf{k'}}^{\dagger}\right\rangle_{B} = -\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)^{*}\left(N_{\mathbf{k'}}+1\right)B_{10}^{*}$$
(687)

$$\left\langle B_{0+}B_{1-}(\tau)\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}b_{\mathbf{k'}}\right\rangle_{B}=\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}^{*}$$

$$(688)$$

$$\langle B_{1+}B_{0-}(\tau)(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})b_{\mathbf{k'}}^{\dagger}\rangle_{B} = -(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau})^{*}(N_{\mathbf{k'}}+1)B_{10}$$

$$(689)$$

$$\left\langle B_{1} + B_{0} - \left(\tau \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^{*}b_{\mathbf{k'}}\right\rangle_{B} = \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}$$

$$(690)$$

$$\left\langle \widetilde{B_{\boldsymbol{y}}}(\tau)\widetilde{B_{\boldsymbol{i}\boldsymbol{z}}}(0)\right\rangle_{B} = \frac{1}{2\mathrm{i}}\sum_{\mathbf{k'}} \left(-\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)^{*} \left(N_{\mathbf{k'}} + 1\right)B_{10}^{*} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)^{*} \left(N_{\mathbf{k'}} + 1\right)B_{10}$$

$$\tag{691}$$

$$+\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}^{*}-\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}\right)\tag{692}$$

$$= \frac{1}{2\mathrm{i}} \sum_{\mathbf{k'}} \left(-\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(\frac{v_0 \mathbf{k'} - v_1 \mathbf{k'}}{\omega_{\mathbf{k'}}} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)^* \left(N_{\mathbf{k'}} + 1\right) B_{10}^* + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(\frac{v_1 \mathbf{k'} - v_0 \mathbf{k'}}{\omega_{\mathbf{k'}}} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)^* \left(N_{\mathbf{k'}} + 1\right) B_{10}$$

$$\tag{693}$$

$$+\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}\left(\frac{v_{0\mathbf{k}'}-v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}}e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\right)N_{\mathbf{k}'}B_{10}^{*}-\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}\left(\frac{v_{1\mathbf{k}'}-v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\right)N_{\mathbf{k}'}B_{10}\right) \tag{694}$$

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(N_{\mathbf{k'}} + 1 \right) e^{-i\omega_{\mathbf{k'}}} \tau \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* \left(B_{10} + B_{10}^* \right) + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* N_{\mathbf{k'}} e^{i\omega_{\mathbf{k'}}} \tau \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right) \left(-B_{10} - B_{10}^* \right) \right)$$
(695)

$$=\frac{1}{2\mathrm{i}}\sum_{\mathbf{k'}}\left(\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(N_{\mathbf{k'}}+1\right)e^{-\mathrm{i}\omega_{\mathbf{k'}}}{}^{\tau}\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^{*}\left(B_{10}+B_{10}^{*}\right)-\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}N_{\mathbf{k'}}e^{\mathrm{i}\omega_{\mathbf{k'}}}{}^{\tau}\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\left(B_{10}+B_{10}^{*}\right)\right) \tag{696}$$

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{y}}(0)\right\rangle_{B} = \left\langle \sum_{\mathbf{k'}} \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}} \tau} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}} \tau} \right) \left(\frac{B_{0} + B_{1} - B_{1} + B_{0} - B_{10} - B_{10}^{*}}{2i} \right) \right\rangle_{B}$$

$$(697)$$

$$= \frac{1}{2i} \left\langle \sum_{\mathbf{k'}} \left((g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}} \tau} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^{*} b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}} \tau} \right) (B_{0} + B_{1} - B_{1} + B_{0} - B_{10}) \right\rangle_{R}$$

$$(698)$$

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left\langle \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}}\tau} \right) \left(B_{0+} B_{1-} - B_{1+} B_{0-} \right) \right\rangle_{\mathcal{B}}$$

$$(699)$$

$$= \frac{1}{2\mathrm{i}} \sum_{\mathbf{k'}} \left\langle \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k'}} \tau_{B_{0+} B_{1-}}} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k'}} \tau_{B_{1+} B_{0-}}} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} e^{-\mathrm{i}\omega_{\mathbf{k'}} \tau_{B_{1+} B_{0-}}} \right\rangle$$

$$(700)$$

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(e^{i\omega_{\mathbf{k'}} \tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left\langle b_{\mathbf{k'}}^{\dagger} B_{0+} B_{1-} \right\rangle - e^{i\omega_{\mathbf{k'}} \tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left\langle b_{\mathbf{k'}}^{\dagger} B_{1+} B_{0-} \right\rangle + e^{-i\omega_{\mathbf{k'}} \tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^{*} \left\langle b_{\mathbf{k'}} B_{0+} B_{1-} \right\rangle - e^{-i\omega_{\mathbf{k'}} \tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle \right)$$

$$(701)$$

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(e^{i\omega_{\mathbf{k'}} \tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \langle b_{\mathbf{k'}}^{\dagger} B_{0} + B_{1} - \rangle - e^{i\omega_{\mathbf{k'}} \tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \langle b_{\mathbf{k'}}^{\dagger} B_{1} + B_{0} - \rangle + e^{-i\omega_{\mathbf{k'}} \tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^{*} \langle b_{\mathbf{k'}} B_{0} + B_{1} - \rangle - e^{-i\omega_{\mathbf{k'}} \tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^{*} \langle b_{\mathbf{k'}} B_{1} + B_{0} - \rangle \right)$$
(702)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(e^{i\omega_{\mathbf{k'}}\tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left\langle b_{\mathbf{k'}}^{\dagger} B_{0+} B_{1-} \right\rangle - e^{i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left\langle b_{\mathbf{k'}}^{\dagger} B_{1+} B_{0-} \right\rangle + e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{0+} B_{1-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{0+} B_{1-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{0+} B_{1-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{0+} B_{1-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{0+} B_{1-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{0+} B_{1-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{0+} B_{1-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{0+} B_{1-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} B_{1+} B_{0-} \right)^{*} \left\langle b_{\mathbf{k'}} B_{1+} B_{0-} \right\rangle - e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} B_$$

$$\left\langle b_{\mathbf{k}'}^{\dagger} B_{1+} B_{0-} \right\rangle_{B} = -\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{1\cdot t'}} \right)^{*} B_{10} N_{\mathbf{k}'} \tag{704}$$

$$\left\langle b_{\mathbf{k}'}^{\dagger} B_{0+} B_{1-} \right\rangle_{B} = -\left(\frac{v_{0} \mathbf{k}' - v_{1} \mathbf{k}'}{\omega_{\mathbf{k}'}} \right)^{*} B_{10}^{*} N_{\mathbf{k}'} \tag{705}$$

$$\langle b_{\mathbf{k}'} B_{1+} B_{0-} \rangle_B = \left(\frac{v_1 \mathbf{k}'^{-v_0} 0 \mathbf{k}'}{\omega_{\mathbf{k}'}} \right) (N_{\mathbf{k}'} + 1) B_{10}$$
 (706)

$$\left\langle b_{\mathbf{k'}}^{B_{0+}B_{1-}} \right\rangle_{B} = \left(\frac{v_{0\mathbf{k'}}^{-v_{1\mathbf{k'}}}}{\omega_{\mathbf{k'}}} \right) \left(N_{\mathbf{k'}}^{+1} \right) B_{10}^{*}$$
 (707)

$$\left\langle \widetilde{B}_{iz}(\tau)\widetilde{B}_{y}(0)\right\rangle_{B} = \frac{1}{2i} \sum_{\mathbf{k}'} \left(e^{i\omega_{\mathbf{k}'} \tau} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) \left(-\left(\frac{v_{0\mathbf{k}'} - v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right)^{*} B_{10}^{*} N_{\mathbf{k}'} \right) - e^{i\omega_{\mathbf{k}'} \tau} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) \left(-\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right)^{*} B_{10} N_{\mathbf{k}'} \right) \right)$$
(708)

$$+e^{-i\omega_{\mathbf{k'}}\tau}\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{1\mathbf{k'}}}\right)\left(N_{\mathbf{k'}}+1\right)B_{10}^{*}\right)-e^{-i\omega_{\mathbf{k'}}\tau}\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{1\mathbf{k'}}}\right)\left(N_{\mathbf{k'}}+1\right)B_{10}\right)$$
(709)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(e^{i\omega_{\mathbf{k'}} \tau} \left(-\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* B_{10}^* N_{\mathbf{k'}} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* B_{10} N_{\mathbf{k'}} \right)$$
(710)

$$+e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}\left(\left(\frac{v_{0\mathbf{k}'}-v_{1\mathbf{k}'}}{\omega_{1,t}}\right)\left(N_{\mathbf{k}'}+1\right)B_{10}^{*}\right)\right)-\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}\left(\left(\frac{v_{1}\mathbf{k}'}{\omega_{1,t}}\right)\left(N_{\mathbf{k}'}+1\right)B_{10}\right)\right)$$

$$(711)$$

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(e^{i\omega_{\mathbf{k'}} \tau} \left(\left(-g_{i\mathbf{k'}} + v_{i\mathbf{k'}} \right) \left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{1t'}} \right) \right) B_{10}^* N_{\mathbf{k'}} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{1t'}} \right) B_{10}^* N_{\mathbf{k'}} \right)$$

$$(712)$$

$$+e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}\left(\left(\frac{v_{0\mathbf{k}'}-v_{1}\mathbf{k}'}{\omega_{\mathbf{k}'}}\right)\left(N_{\mathbf{k}'}+1\right)B_{10}^{*}\right)\right)-\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}\left(\left(\frac{v_{1}\mathbf{k}'-v_{0}\mathbf{k}'}{\omega_{\mathbf{k}'}}\right)\left(N_{\mathbf{k}'}+1\right)B_{10}\right)\right)}$$

$$(713)$$

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(e^{i\omega_{\mathbf{k'}} \tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{1}} \right)^* \left(B_{10} + B_{10}^* \right) N_{\mathbf{k'}} - e^{-i\omega_{\mathbf{k'}} \tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{1}} \right) \left(B_{10} + B_{10}^* \right) N_{\mathbf{k'}} - e^{-i\omega_{\mathbf{k'}} \tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{1}} \right) \left(B_{10} + B_{10}^* \right) N_{\mathbf{k'}} - e^{-i\omega_{\mathbf{k'}} \tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(g_{i\mathbf{k'}} - g_{i\mathbf{k'}} \right) \left($$

$$= \frac{1}{\mathrm{i}} \sum_{\mathbf{k'}} \left(e^{\mathrm{i}\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* \Re \left(B_{10} \right) N_{\mathbf{k'}} - e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right) \Re \left(B_{10} \right) (N_{\mathbf{k'}} + 1) \right)$$
(715)

$$=\mathrm{i}\sum_{\mathbf{k}'}\left(e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}\left(\frac{v_{1\mathbf{k}'}-v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)\Re\left(B_{10}\right)\left(N_{\mathbf{k}'}+1\right)-e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)\left(\frac{v_{1\mathbf{k}'}-v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)^{*}\Re\left(B_{10}\right)N_{\mathbf{k}'}\right)$$
(716)

$$= i \sum_{\mathbf{k'}} \left(e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right) \Re \left(B_{10} \right) \left(N_{\mathbf{k'}} + 1 \right) - e^{i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* \Re \left(B_{10} \right) N_{\mathbf{k'}} \right)$$
(717)

$$= i\Re\left(B_{10}\right) \sum_{\mathbf{k'}} \left(e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^* \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right) \left(N_{\mathbf{k'}} + 1\right) - e^{i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^* N_{\mathbf{k'}}\right)$$
(718)

The correlation functions are equal to:

$$\left\langle \widetilde{B_{iz}} \left(\tau \right) \widetilde{B_{jz}} \left(0 \right) \right\rangle_{B} = \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) \left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right)^{*} e^{i\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^{*} \left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right) e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right)$$

$$(719)$$

$$U = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \right)$$
 (720)

$$\phi(\tau) = \sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right)$$
(721)

$$\left\langle \widetilde{B_x}\left(\tau\right)\widetilde{B_x}\left(0\right)\right\rangle_B = \frac{\left|B_{10}\right|^2}{2}\left(\Re\left(U\right)\exp\left(-\phi\left(\tau\right)\right) + \exp\left(\phi\left(\tau\right)\right) - \Re\left(U\right) - 1\right) \tag{722}$$

$$\left\langle \widetilde{B}_{y}\left(\tau\right)\widetilde{B}_{y}\left(0\right)\right\rangle _{B}=\frac{\left|B_{10}\right|^{2}}{2}\left(\exp\left(\phi\left(\tau\right)\right)-\Re\left(U\right)\exp\left(-\phi\left(\tau\right)\right)-1+\Re\left(U\right)\right)\tag{723}$$

$$\left\langle \widetilde{B_{x}}\left(\tau\right)\widetilde{B_{y}}\left(0\right)\right\rangle _{B}=\frac{\Im\left(U\right)\left|B_{10}\right|^{2}}{2}\left(\exp\left(-\phi\left(\tau\right)\right)-1\right)\tag{724}$$

$$\left\langle \widetilde{B_{y}}\left(\tau\right)\widetilde{B_{x}}\left(0\right)\right\rangle _{B}=\frac{\Im\left(U\right)\left|B_{10}\right|^{2}}{2}\left(\exp\left(-\phi\left(\tau\right)\right)-1\right)\tag{725}$$

$$\left\langle \widetilde{B_{iz}} \left(\tau \right) \widetilde{B_{x}} \left(0 \right) \right\rangle_{B} = i\Im \left(B_{10} \right) \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) N_{\mathbf{k}} e^{i\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^{*} - \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^{*} \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right)$$
(726)

$$\left\langle \widetilde{B_x} \left(\tau \right) \widetilde{B_{iz}} \left(0 \right) \right\rangle_B = i \Im \left(B_{10} \right) \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^* N_{\mathbf{k}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) - \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^* e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right)$$
(727)

$$\left\langle \widetilde{B_{iz}} \left(\tau \right) \widetilde{B_{y}} \left(0 \right) \right\rangle_{B} = i \Re \left(B_{10} \right) \sum_{\mathbf{k}} \left(e^{-i\omega_{\mathbf{k}}\tau} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^{*} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(N_{\mathbf{k}} + 1 \right) - e^{i\omega_{\mathbf{k}}\tau} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^{*} N_{\mathbf{k}} \right)$$
(728)

$$\left\langle \widetilde{B_{y}}\left(\tau\right)\widetilde{B_{iz}}\left(0\right)\right\rangle _{B}=\mathrm{i}\Re\left(B_{10}\right)\sum_{\mathbf{k}}\left(\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)^{*}N_{\mathbf{k}}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)-\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)\left(N_{\mathbf{k}}+1\right)e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^{*}\right)$$

$$(729)$$

The spectral density is defined in the usual way:

$$J_i(\omega) \equiv \sum_{\mathbf{k}} |g_{i\mathbf{k}}|^2 \delta(\omega - \omega_{\mathbf{k}})$$
 (730)

$$v_{i\mathbf{k}} = g_{i\mathbf{k}} F_i \left(\omega_{\mathbf{k}} \right) \tag{731}$$

it takes account of the density of states, dispersion relation and interaction mechanism with the environment. In the continuous case a way to measure the strength of the system-environment coupling is:

$$\lambda_i = \int_0^\infty \frac{J_i(\omega)}{\omega} d\omega \tag{732}$$

The integral version of the correlation functions are given by:

$$\left\langle \widetilde{B}_{iz}(\tau)\widetilde{B}_{jz}(0) \right\rangle_{B} = \sum_{\mathbf{k}} \left((g_{i\mathbf{k}} - v_{i\mathbf{k}}) (g_{j\mathbf{k}} - v_{j\mathbf{k}})^{*} e^{i\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + (g_{i\mathbf{k}} - v_{i\mathbf{k}})^{*} (g_{j\mathbf{k}} - v_{j\mathbf{k}}) e^{-i\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1) \right)$$

$$= \sum_{\mathbf{k}} \left((g_{i\mathbf{k}} - g_{i\mathbf{k}}F_{i}(\omega_{\mathbf{k}})) (g_{j\mathbf{k}} - g_{j\mathbf{k}}F_{j}(\omega_{\mathbf{k}}))^{*} e^{i\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + (g_{i\mathbf{k}} - g_{i\mathbf{k}}F_{i}(\omega_{\mathbf{k}}))^{*} (g_{j\mathbf{k}} - g_{j\mathbf{k}}F_{j}(\omega_{\mathbf{k}})) e^{-i\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1) \right)$$

$$= \sum_{\mathbf{k}} \left(g_{i\mathbf{k}} (1 - F_{i}(\omega_{\mathbf{k}})) g_{j\mathbf{k}}^{*} (1 - F_{j}(\omega_{\mathbf{k}}))^{*} e^{i\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + g_{i\mathbf{k}}^{*} (1 - F_{i}(\omega_{\mathbf{k}}))^{*} g_{j\mathbf{k}} (1 - F_{j}(\omega_{\mathbf{k}})) e^{-i\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1) \right)$$

$$\approx \int_{0}^{\infty} \left(\sqrt{J_{i}(\omega)J_{j}(\omega)^{*}} (1 - F_{i}(\omega)) (1 - F_{j}(\omega)^{*}) e^{i\omega\tau} N(\omega) + \sqrt{J_{i}(\omega)^{*}J_{j}(\omega)} (1 - F_{i}(\omega)^{*}) (1 - F_{j}(\omega)) e^{-i\omega\tau} (N(\omega) + 1) \right) d\omega$$

$$U = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{0\mathbf{k}}^{*}v_{1\mathbf{k}} - v_{0\mathbf{k}}v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right) \right)$$

$$= \exp\left(\sum_{\mathbf{k}} \frac{v_{0\mathbf{k}}^{*}v_{1\mathbf{k}} - v_{0\mathbf{k}}v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right)$$

$$(738)$$

$$\left(\sum_{\mathbf{k}} g_{0\mathbf{k}}^{*}F_{0}(\omega_{\mathbf{k}})^{*} g_{1\mathbf{k}}F_{1}(\omega_{\mathbf{k}}) - g_{0\mathbf{k}}F_{0}(\omega_{\mathbf{k}}) g_{1\mathbf{k}}^{*}F_{1}(\omega_{\mathbf{k}})^{*} \right)$$

$$= \exp\left(\sum_{\mathbf{k}} \frac{g_{0\mathbf{k}}^* F_0(\omega_{\mathbf{k}})^* g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}}) g_{1\mathbf{k}}^* F_1(\omega_{\mathbf{k}})^*}{\omega_{\mathbf{k}}^2}\right)$$
(739)

$$= \exp\left(\sum_{\mathbf{k}} \frac{g_{0\mathbf{k}}^* F_0(\omega_{\mathbf{k}})^* g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}}) g_{1\mathbf{k}}^* F_1(\omega_{\mathbf{k}})^*}{\omega_{\mathbf{k}}^2}\right)$$
(740)

$$= \exp\left(\sum_{\mathbf{k}} \frac{g_{0\mathbf{k}}^* g_{1\mathbf{k}} F_0(\omega_{\mathbf{k}})^* F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} g_{1\mathbf{k}}^* F_0(\omega_{\mathbf{k}}) F_1(\omega_{\mathbf{k}})^*}{\omega_{\mathbf{k}}^2}\right)$$
(741)

$$\approx \exp\left(\int_0^\infty \frac{\sqrt{J_0(\omega)^* J_1(\omega)} F_0(\omega)^* F_1(\omega) - \sqrt{J_0(\omega) J_1(\omega)^*} F_0(\omega) F_1(\omega)^*}{\omega^2} d\omega\right)$$
(742)

$$\phi(\tau) = \sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right)$$
(743)

$$= \sum_{\mathbf{k}} \left| \frac{g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} \right|^2 \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right)$$
(744)

$$\approx \int_{0}^{\infty} \left| \frac{\sqrt{J_{1}(\omega)} F_{1}(\omega) - \sqrt{J_{0}(\omega)} F_{0}(\omega)}{\omega} \right|^{2} \left(-i \sin(\omega \tau) + \cos(\omega \tau) \coth\left(\frac{\beta \omega}{2}\right) \right) d\omega$$
 (745)

$$B_{10} = \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \exp\left(\sum_{\mathbf{k}} \frac{1}{2} \left(\frac{v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \frac{v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}}\right)\right)$$
(746)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\left|\frac{g_{1\mathbf{k}}F_{1}\left(\omega_{\mathbf{k}}\right)}{\omega_{\mathbf{k}}} - \frac{g_{0\mathbf{k}}F_{0}\left(\omega_{\mathbf{k}}\right)}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \exp\left(\sum_{\mathbf{k}}\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}}\right)\right)$$
(747)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\left|\frac{g_{1\mathbf{k}}F_{1}(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} - \frac{g_{0\mathbf{k}}F_{0}(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \exp\left(\sum_{\mathbf{k}}\frac{1}{2}\left(\frac{g_{0\mathbf{k}}F_{0}(\omega_{\mathbf{k}})g_{1\mathbf{k}}^{*}F_{1}(\omega_{\mathbf{k}})^{*} - g_{1\mathbf{k}}F_{1}(\omega_{\mathbf{k}})g_{0\mathbf{k}}^{*}F_{0}(\omega_{\mathbf{k}})^{*}}{\omega_{\mathbf{k}}^{2}}\right)\right)$$
(748)

$$\approx \exp\left(-\frac{1}{2} \int_{0}^{\infty} \left| \frac{\sqrt{J_{1}(\omega)} F_{1}(\omega) - \sqrt{J_{0}(\omega)} F_{0}(\omega)}{\omega} \right|^{2} \coth\left(\frac{\beta\omega}{2}\right) d\omega\right) \exp\left(\int_{0}^{\infty} \frac{1}{2} \left(\frac{\sqrt{J_{0}(\omega) J_{1}(\omega)^{*}} F_{0}(\omega) F_{1}(\omega)^{*} - \sqrt{J_{0}(\omega)^{*} J_{1}(\omega)} F_{0}(\omega)^{*} F_{1}(\omega)}{\omega^{2}}\right) d\omega\right) \tag{749}$$

$$\left\langle \widetilde{B_{x}}(\tau)\widetilde{B_{x}}(0)\right\rangle _{B}=\frac{|B_{10}|^{2}}{2}(\Re(U)\exp(-\phi(\tau))+\exp(\phi(\tau))-\Re(U)-1) \tag{750}$$

$$\left\langle \widetilde{B_y}(\tau)\widetilde{B_y}(0)\right\rangle_B = \frac{|B_{10}|^2}{2}(\exp(\phi(\tau)) - \Re(U)\exp(-\phi(\tau)) - 1 + \Re(U)) \tag{751}$$

$$\left\langle \widetilde{B_x}(\tau)\widetilde{B_y}(0)\right\rangle_B = \frac{\Im(U)|B_{10}|^2}{2}(\exp(-\phi(\tau)) - 1) \tag{752}$$

$$\left\langle \widetilde{B_y}(\tau)\widetilde{B_x}(0)\right\rangle_{\mathcal{B}} = \frac{\Im(U)|B_{10}|^2}{2}(\exp(-\phi(\tau)) - 1) \tag{753}$$

$$\left\langle \widetilde{B}_{iz}(\tau)\widetilde{B}_{x}(0)\right\rangle _{B}=\mathrm{i}\Im\left(B_{10}\right)\sum_{\mathbf{k}}\left(\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)N_{\mathbf{k}}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^{*}-\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)^{*}\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left(N_{\mathbf{k}}+1\right)\right)$$

$$(754)$$

$$= i\Im(B_{10}) \sum_{\mathbf{k}} \left((g_{i\mathbf{k}} - g_{i\mathbf{k}} F_i(\omega_{\mathbf{k}})) N_{\mathbf{k}} e^{i\omega_{\mathbf{k}} \tau} \left(\frac{g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} \right)^* - (g_{i\mathbf{k}} - g_{i\mathbf{k}} F_i(\omega_{\mathbf{k}}))^* \frac{g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} e^{-i\omega_{\mathbf{k}} \tau} (N_{\mathbf{k}} + 1) \right)$$
(755)

$$= i \Im(B_{10}) \sum_{\mathbf{k}} \left(g_{i\mathbf{k}} (1 - F_i(\omega_{\mathbf{k}})) N_{\mathbf{k}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left(\frac{g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} \right)^* - g_{i\mathbf{k}}^* (1 - F_i(\omega_{\mathbf{k}}))^* \frac{g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1) \right) \tag{756}$$

$$Q(\omega) = \sqrt{J_i(\omega)} \left(1 - F_i(\omega)\right) \left(\frac{\sqrt{J_1(\omega)} F_1(\omega) - \sqrt{J_0(\omega)} F_0(\omega)}{\omega}\right)^*$$
(757)

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{x}}(0)\right\rangle _{B}\approx\mathrm{i}\Im\left(B_{10}\right)\int_{0}^{\infty}\left(Q\left(\omega\right)N\left(\omega\right)e^{\mathrm{i}\omega\tau}-Q\left(\omega\right)^{*}\left(N\left(\omega\right)+1\right)e^{-\mathrm{i}\omega\tau}\right)\mathrm{d}\omega\tag{758}$$

$$\left\langle \widetilde{B_{x}}(\tau)\widetilde{B_{iz}}(0)\right\rangle_{B} = i\Im\left(B_{10}\right)\sum_{\mathbf{k}}\left(\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)^{*}N_{\mathbf{k}}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) - \left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^{*}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left(N_{\mathbf{k}}+1\right)\right)$$
(759)

$$= i\Im(B_{10}) \sum_{\mathbf{k}} \left(g_{i\mathbf{k}}^* (1 - F_i(\omega_{\mathbf{k}})^*) \frac{v_1 \mathbf{k}^{-v_0} \mathbf{k}}{\omega_{\mathbf{k}}} N_{\mathbf{k}} e^{i\omega_{\mathbf{k}} \tau} - g_{i\mathbf{k}} (1 - F_i(\omega)) \left(\frac{v_1 \mathbf{k}^{-v_0} \mathbf{k}}{\omega_{\mathbf{k}}}\right)^* e^{-i\omega_{\mathbf{k}} \tau} (N_{\mathbf{k}} + 1)\right)$$

$$(760)$$

$$\approx i\Im \left(B_{10}\right) \int_{0}^{\infty} \left(Q\left(\omega\right)^{*} N\left(\omega\right) e^{i\omega\tau} - Q\left(\omega\right) \left(N\left(\omega\right) + 1\right) e^{-i\omega\tau}\right) d\omega \tag{761}$$

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{y}}(0)\right\rangle _{B}=\mathrm{i}\Re\left(B_{10}\right)\sum_{\mathbf{k}}\left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)^{*}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\left(N_{\mathbf{k}}+1\right)-e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^{*}N_{\mathbf{k}}\right)$$

$$(762)$$

$$= i\Re(B_{10}) \sum_{\mathbf{k}} \left(e^{-i\omega_{\mathbf{k}}\tau} g_{i\mathbf{k}}^* (1 - F_i(\omega_{\mathbf{k}})^*) \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) (N_{\mathbf{k}} + 1) - e^{i\omega_{\mathbf{k}}\tau} g_{i\mathbf{k}} (1 - F_i(\omega_{\mathbf{k}})) \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^* N_{\mathbf{k}} \right)$$

$$(763)$$

$$\approx i\Re\left(B_{10}\right) \int_{0}^{\infty} \left(e^{-i\omega\tau}Q\left(\omega\right)^{*}\left(N\left(\omega\right)+1\right)-e^{i\omega\tau}Q\left(\omega\right)N\left(\omega\right)\right) d\omega \tag{764}$$

$$\left\langle \widetilde{B_{y}}(\tau)\widetilde{B_{iz}}(0)\right\rangle_{B} = i\Re\left(B_{10}\right)\sum_{\mathbf{k}}\left(\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)^{*}N_{\mathbf{k}}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) - \left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)\left(N_{\mathbf{k}}+1\right)e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^{*}\right)$$
(765)

$$= i\Re(B_{10}) \sum_{\mathbf{k}} \left(g_{i\mathbf{k}}^* (1 - F_i(\omega_{\mathbf{k}})^*) N_{\mathbf{k}} e^{i\omega_{\mathbf{k}} \tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) - g_{i\mathbf{k}} (1 - F_i(\omega_{\mathbf{k}})) (N_{\mathbf{k}} + 1) e^{-i\omega_{\mathbf{k}} \tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^* \right)$$

$$(766)$$

$$=\mathrm{i}\Re(B_{10})\int_0^\infty \left(e^{\mathrm{i}\omega\tau}Q(\omega)^*N(\omega)-e^{-\mathrm{i}\omega\tau}Q(\omega)(N(\omega)+1)\right)\mathrm{d}\omega \tag{767}$$

The eigenvalues of the Hamiltonian $\overline{H_S}$ are given by the solution of the following algebraic equation:

$$\lambda^2 - \text{Tr}\left(\overline{H_S}\right)\lambda + \text{Det}\left(\overline{H_S}\right) = 0 \tag{768}$$

The solutions of this equation written in terms of η and ξ as defined in the previous section are given by $\lambda_{\pm} = \frac{\xi \pm \eta}{2}$ and they satisfy $H_S |\pm\rangle = \lambda_{\pm} |\pm\rangle$. Using this notation is possible to write $H_S = \lambda_{+} |+\rangle \langle +|+\lambda_{-}|-\rangle \langle -|$.

The time-dependence of the system operators $A_i(t)$ may be made explicit using the Fourier decomposition:

$$\widetilde{A_i}(\tau) = e^{i\overline{H_S}\tau} A_i e^{-i\overline{H_S}\tau} \tag{769}$$

$$=\sum_{w}e^{-\mathrm{i}\mathbf{w}\tau}A_{i}\left(w\right)\tag{770}$$

Where the sum is defined on the set of all the differences between the eigenvalues of the system, in our case $w \in \{0, \pm \eta\}$.

In order to use the equation (770) to descompose the equation (355) we need to consider the time ordering operator \mathcal{T} , it's possible to write using the Dyson series or the expansion of the operator of the form $U(t) \equiv \mathcal{T}\exp\left(-\mathrm{i}\int_0^t \mathrm{d}t'\overline{H_S}\left(t'\right)\right)$ like:

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_{0}^{t} dt' \overline{H_{S}}(t')\right)$$
(771)

$$= \mathbb{I} + \sum_{n=1}^{\infty} (-i)^n \int_0^t dt_1 \int_0^{t_1} dt_2 ... \int_0^{t_{n-1}} dt_n H(t_1) H(t_2) ... H(t_n)$$
(772)

Here $0 < t_1 < t_2 < ... < t_{n-1} < t_n = t$ is a partition of the set [0,t]. We will use a perturbative solution to the exponential of a time-varying operator, this can be done if we write an effective hamiltonian $H_E(t)$ such that $\mathcal{T}\exp\left(-\mathrm{i}\int_0^t \mathrm{d}t' \overline{H_S}\left(t'\right)\right) \equiv \exp\left(-\mathrm{i}tH_E\left(t\right)\right)$. The effective Hamiltonian is expanded in a series of terms of increasing order in time $H_E(t) = H_E^{(0)}(t) + H_E^{(1)}(t) + H_E^{(2)}(t) + ...$ so we can write:

$$U(t) = \exp\left(-it\left(H_E^{(0)}(t) + H_E^{(1)}(t) + H_E^{(2)}(t) + \dots\right)\right)$$
(773)

The terms can be found expanding $\mathcal{T}\exp\left(-\mathrm{i}\int_0^t\mathrm{d}t'\overline{H_S}\left(t'\right)\right)$ and $U\left(t\right)$ then equating the terms of the same power. The lowest terms are:

$$H_E^{(0)}(t) = \frac{1}{t} \int_0^t \overline{H_S}(t') \, dt'$$
 (774)

$$H_E^{(1)}(t) = -\frac{\mathrm{i}}{2t} \int_0^t \mathrm{d}t' \int_0^{t'} \mathrm{d}t'' \left[\overline{H_S}(t'), \overline{H_S}(t'') \right]$$
 (775)

$$H_{E}^{(2)}(t) = \frac{1}{6t} \int_{0}^{t} dt' \int_{0}^{t'} dt'' \int_{0}^{t''} dt''' \left(\left[\left[\overline{H_{S}}(t'), \overline{H_{S}}(t'') \right], \overline{H_{S}}(t''') \right] + \left[\left[\overline{H_{S}}(t'''), \overline{H_{S}}(t''') \right], \overline{H_{S}}(t'') \right] \right)$$
(776)

In this case the Fourier decomposition using the Magnus expansion is

$$\widetilde{A_i}(t) = e^{iH_E(t)t} A_i(t) e^{-iH_E(t)t}$$
(777)

$$=\sum_{w(t)}e^{-\mathrm{i}w(t)t}A_{i}\left(w\left(t\right)\right)\tag{778}$$

 $w\left(t\right)$ belongs to the set of differences of eigenvalues that depends of the time. As we can see the eigenvectors are time dependent as well.

Extending the Fourier decomposition to the matrix $\widetilde{A}_{i}(t-\tau,t)$ using the Magnus expansion generates:

$$\widetilde{A_{j}}(t-\tau,t) = U(t-\tau)U^{\dagger}(t)A_{j}(t)U(t)U^{\dagger}(t-\tau)$$
(779)

$$= e^{-i(t-\tau)H_E(t-\tau)}e^{iH_E(t)t}A_i(t)e^{-iH_E(t)t}e^{i(t-\tau)H_E(t-\tau)}$$
(780)

$$= e^{-i(t-\tau)H_{E}(t-\tau)} \sum_{w(t)} e^{-iw(t)t} A_{j}(w(t)) e^{i(t-\tau)H_{E}(t-\tau)}$$
(781)

$$= \sum_{w(t),w'(t-\tau)} e^{-iw(t)t} e^{iw'(t-\tau)} A'_{j}(w(t), w'(t-\tau))$$
(782)

where $w'(t-\tau)$ and w(t) belongs to the set of the differences of the eigenvalues of the Hamiltonian $H_S(t-\tau)$ and $H_S(t)$ respectively.

In order to show the explicit form of the matrices present in the RHS of the equation (770) for a general 2×2 matrix in a given time let's write the matrix A_i in the base $V = \{ |+\rangle , |-\rangle \}$ in the following way:

$$A_{i} = \sum_{\alpha, \beta \in V} \langle \alpha | A_{i} | \beta \rangle | \alpha \rangle \langle \beta | \tag{783}$$

Given that $[|+\rangle \langle +|, |-\rangle \langle -|] = 0$, then using the Zassenhaus formula we obtain:

$$e^{i\overline{H_S}\tau} = e^{i(\lambda_+|+\rangle\langle+|+\lambda_-|-\rangle\langle-|)\tau}$$
(784)

$$=e^{i\lambda_{+}|+\rangle\langle+|\tau}e^{i\lambda_{-}|-\rangle\langle-|\tau} \tag{785}$$

$$= (|-\rangle \langle -| + e^{i\lambda_{+}\tau} |+\rangle \langle +|) (|+\rangle \langle +| + e^{i\lambda_{-}\tau} |-\rangle \langle -|)$$
(786)

$$=e^{i\lambda_{+}\tau}\left|+\right\rangle\left\langle+\right|+e^{i\lambda_{-}\tau}\left|-\right\rangle\left\langle-\right|\tag{787}$$

Calculating the transformation (770) directly using the previous relationship we find that:

$$\widetilde{A_{i}}(\tau) = \left(e^{\mathrm{i}\lambda_{+}\tau} \mid +\rangle \left\langle +\mid + e^{\mathrm{i}\lambda_{-}\tau} \mid -\rangle \left\langle -\mid \right) \left(\sum_{\alpha,\beta \in \mathcal{V}} \left\langle \alpha\mid A_{i}\mid\beta\right\rangle \mid \alpha\rangle \left\langle \beta\mid \right) \left(e^{-\mathrm{i}\lambda_{+}\tau}\mid +\rangle \left\langle +\mid + e^{-\mathrm{i}\lambda_{-}\tau}\mid -\rangle \left\langle -\mid \right) \right)$$
(788)

$$= \langle + | A_i | + \rangle | + \rangle \langle + | + e^{i\eta\tau} \langle + | A_i | - \rangle | + \rangle \langle - | + e^{-i\eta\tau} \langle - | A_i | + \rangle | - \rangle \langle + | + \langle - | A_i | - \rangle | - \rangle \langle - |$$

$$(789)$$

Here $\eta = \lambda_+ - \lambda_-$. Comparing the RHS of the equations (770) and the explicit expression for $\widetilde{A}_i(\tau)$ and we obtain the form of the expansion matrices of the Fourier decomposition for a general 2×2 matrix:

$$A_{i}(0) = \langle +|A_{i}|+\rangle |+\rangle \langle +|+\langle -|A_{i}|-\rangle |-\rangle \langle -|$$

$$(790)$$

$$A_{i}(w) = \langle +|A_{i}|-\rangle |+\rangle \langle -| \tag{791}$$

$$A_{i}(-w) = \langle -|A_{i}|+\rangle |-\rangle \langle +| \tag{792}$$

For a decomposition of the interaction Hamiltonian in terms of Hermitian operators, i.e. $\widetilde{A_i}(\tau) = \widetilde{A_i}^{\dagger}(\tau)$ and $\widetilde{B_i}(\tau) = \widetilde{B_i}^{\dagger}(\tau)$ we can use the equation (770) to write the master equation in the following neater form:

$$\frac{d\overline{\rho}_{S}}{dt} = -i\left[\overline{H}_{\overline{S}}(t), \overline{\rho}_{S}(t)\right] - \frac{1}{2}\sum_{ij}\sum_{w,w'}\gamma_{ij}(w,w',t)\left[A_{i},A_{j}(w,w')\overline{\rho}_{S}(t) - \overline{\rho}_{S}(t)A_{j}^{\dagger}(w,w')\right] - i\sum_{ij}\sum_{w}S_{ij}(w,w',t)\left[A_{i},A_{j}(w,w')\overline{\rho}_{S}(t) + \overline{\rho}_{S}(t)A_{j}^{\dagger}(w,w')\right]$$
(793)

where $A_{j}^{\dagger}(w)=A\left(-w\right)$ as expected from the equations (791) and (792). As we can see the equation shown contains the rates and energy shifts $\gamma_{ij}\left(w,w',t\right)=2\Re\left(K_{ij}\left(w,w',t\right)\right)$ and $S_{ij}\left(w,w',t\right)=\Im\left(K_{ij}\left(w,w',t\right)\right)$, respectively, defined in terms of the response functions

$$K_{ij}\left(w,w',t\right) = \int_{0}^{t} C_{i}\left(t\right) C_{j}\left(t-\tau\right) \Lambda_{ij}\left(\tau\right) e^{\mathrm{i}w\tau} e^{-\mathrm{i}t\left(w-w'\right)} d\tau \tag{794}$$

$$=K_{ijww'}(t) \tag{795}$$

If we extend the upper limit of integration to ∞ in the equation (794) then the system will be independent of any preparation at t = 0, so the evolution of the system will depend only on its present state as expected in the Markovian approximation.

We are interested in recover the density matrix in the lab frame from the density matrix of the transformed frame. At first let's recall the transformation using the master equation:

$$\frac{\mathrm{d}\overline{\rho}_{\overline{S}}}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H}_{\overline{S}}(t), \overline{\rho}_{\overline{S}}(t)\right] - \sum_{ijww'} K_{ijww'}(t) \left[A_i, A_{jww'}\overline{\rho}_{\overline{S}}(t) - \overline{\rho}_{\overline{S}}(t) A_{jww'}^{\dagger}\right]$$
(796)

Applying the inverse transformation we will obtain that:

$$e^{-V}\frac{\mathrm{d}\overline{\rho}_{\overline{S}}}{\mathrm{d}t}e^{V} = \frac{\mathrm{d}\left(e^{-V}\overline{\rho}_{\overline{S}}e^{V}\right)}{\mathrm{d}t}$$
(797)

$$=\frac{\mathrm{d}\rho_{\overline{S}}}{\mathrm{d}t}\tag{798}$$

$$=-\mathrm{i}e^{-V}\left[\overline{H}_{\overline{S}}(t),\overline{\rho}_{\overline{S}}(t)\right]e^{V}-\sum_{ijww'}K_{ijww'}(t)e^{-V}\left[A_{i},A_{jww'}\overline{\rho}_{\overline{S}}(t)-\overline{\rho}_{\overline{S}}(t)A_{jww'}^{\dagger}\right]e^{V}$$
(799)

For a product we have the following:

$$e^{-V}\overline{AB}e^{V} = e^{-V}\overline{A}\overline{\mathbb{I}B}e^{V} \tag{800}$$

$$= e^{-V} \overline{A} e^{V} e^{-V} \overline{B} e^{V} \tag{801}$$

$$= \left(e^{-V}\overline{A}e^{V}\right)\left(e^{-V}\overline{B}e^{V}\right) \tag{802}$$

$$= AB \tag{803}$$

We can use this to prove the following property for the inverse transformation of a commutator:

$$e^{-V}\overline{[A,B]}e^{V} = e^{-V}\overline{(AB-BA)}e^{V}$$
(804)

$$=e^{-V}\overline{AB}e^{V}-e^{-V}\overline{BA}e^{V} \tag{805}$$

$$= AB - BA \tag{806}$$

$$= [A, B] \tag{807}$$

So we will obtain that

$$\frac{\mathrm{d}\rho_{\overline{S}}}{\mathrm{d}t} = -\mathrm{i}e^{-V} \left[\overline{H}_{\overline{S}}(t), \overline{\rho}_{\overline{S}}(t) \right] e^{V} - \sum_{ijww'} K_{ijww'}(t) e^{-V} \left[A_{i}, A_{jww'} \overline{\rho}_{\overline{S}}(t) - \overline{\rho}_{\overline{S}}(t) A_{jww'}^{\dagger} \right] e^{V}$$

$$(808)$$

$$=-\operatorname{i}\left[H_{\overline{S}}\left(t\right),\rho_{\overline{S}}\left(t\right)\right]-\sum_{ijww'}K_{ijww'}\left(t\right)\left[e^{-V}A_{i}e^{V},e^{-V}A_{jww'}\overline{\rho_{\overline{S}}}\left(t\right)e^{V}-e^{-V}\overline{\rho_{\overline{S}}}\left(t\right)A_{jww'}^{\dagger}e^{V}\right]\tag{809}$$

$$=-\operatorname{i}\left[H_{\overline{S}}(t),\rho_{\overline{S}}(t)\right]-\sum_{ijww'}K_{ijww'}(t)\left[e^{-V}A_{i}e^{V},e^{-V}A_{jww'}e^{V}e^{-V}\overline{\rho}_{\overline{S}}(t)e^{V}-e^{-V}\overline{\rho}_{\overline{S}}(t)e^{V}e^{-V}A_{jww'}^{\dagger}e^{V}\right]$$
(810)

$$=-i\left[H_{\overline{S}}(t),\rho_{\overline{S}}(t)\right]-\sum_{ijww'}K_{ijww'}(t)\left[e^{-V}A_{i}e^{V},e^{-V}A_{jww'}e^{V}\rho_{\overline{S}}(t)-\rho_{\overline{S}}(t)e^{-V}A_{jww'}^{\dagger}e^{V}\right]$$
(811)

$$=-i\left[H_{\overline{S}}(t),\rho_{\overline{S}}(t)\right]-\left(\sum_{ijww'}K_{ijww'}(t)\left(\left[e^{-V}A_{i}e^{V},e^{-V}A_{jww'}e^{V}\rho_{\overline{S}}(t)\right]-\left[e^{-V}A_{i}e^{V},\rho_{\overline{S}}(t)e^{-V}A_{jww'}^{\dagger}e^{V}\right]\right)\right)$$
(812)

V. LIMIT CASES

In order to show the plausibility of the master equation (793) for a time-dependent Hamiltonian we will show that this equation reproduces the following cases under certain limits conditions that will be pointed in each subsection.

A. Time-independent variational quantum master equation

At first let's show that the master equation (793) reproduces the results of the reference [1], for the latter case we have that $i, j \in \{1, 2, 3\}$ and $\omega \in (0, \pm \eta)$. The Hamiltonian of the system considered in this reference written in the same basis than the Hamiltonian (1) is given by:

$$H = \left(\delta + \sum_{j} g_k \left(b_k^{\dagger} + b_k\right)\right) |1\rangle\langle 1| + \frac{\Omega}{2} \sigma_x + \sum_{k} \omega_k b_k^{\dagger} b_k \tag{813}$$

After performing the transformation (24) on the Hamiltonian (813) it's possible to split that result in the following set of Hamiltonians:

$$\overline{H_S} = (\delta + R)|1\rangle\langle 1| + \frac{\Omega_r}{2}\sigma_x \tag{814}$$

$$\overline{H_I} = B_z |1\rangle\langle 1| + \frac{\Omega}{2} \left(B_x \sigma_x + B_y \sigma_y \right) \tag{815}$$

$$H_B = \sum_k \omega_k b_k^{\dagger} b_k \tag{816}$$

The Hamiltonian (814) differs from the transformed Hamiltonian H_S of the reference written like $H_S = \frac{R}{2}\mathbb{I} + \frac{\epsilon}{2}\sigma_z + \frac{\Omega_r}{2}\sigma_x$ by a term proportional to the identity, this can be seen in the following way taking $\epsilon = \delta + R$

$$(\delta + R)|1\rangle\langle 1| - \frac{\delta}{2}\mathbb{I} = \left(\frac{\delta}{2} + R\right)|1\rangle\langle 1| - \frac{\delta}{2}|0\rangle\langle 0| \tag{817}$$

$$=\frac{R}{2}\mathbb{I} + \frac{\delta + R}{2}\sigma_z \tag{818}$$

$$=\frac{R}{2}\mathbb{I} + \frac{\epsilon}{2}\sigma_z \tag{819}$$

In this Hamiltonian we can write $A_i = \sigma_x$, $A_2 = \sigma_y$ and $A_3 = \frac{I + \sigma_z}{2}$. In order to find the decomposition matrices of the Fourier decomposition let's obtain the eigenvalues and eigenvectors of the matrix $\overline{H_S}$.

$$\lambda_{+} = \frac{\epsilon + \eta}{2} \tag{820}$$

$$\lambda_{-} = \frac{\epsilon - \eta}{2} \tag{821}$$

$$|+\rangle = \frac{1}{\sqrt{(\epsilon + \eta)^2 + \Omega_r^2}} \begin{pmatrix} \epsilon + \eta \\ \Omega_r \end{pmatrix}$$
 (822)

$$|-\rangle = \frac{1}{\sqrt{(\epsilon + \eta)^2 + \Omega_r^2}} \begin{pmatrix} -\Omega_r \\ \epsilon + \eta \end{pmatrix}$$
 (823)

Using this basis we can find the decomposition matrices using the equations (791)-(792) and the fact that $|+\rangle = \cos{(\theta)} |1\rangle + \sin{(\theta)} |0\rangle$ and $|-\rangle = -\sin{(\theta)} |1\rangle + \cos{(\theta)} |0\rangle$ with $\sin{(\theta)} = \frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$ and $\cos{(\theta)} = \frac{\epsilon+\eta}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$:

$$\langle + | \sigma_x | + \rangle = (\cos(\theta) \sin(\theta)) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$
 (824)

$$= 2\sin\left(\theta\right)\cos\left(\theta\right) \tag{825}$$

$$=\sin\left(2\theta\right) \tag{826}$$

$$\langle -|\sigma_x|-\rangle = \left(-\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} -\sin\left(\theta\right)\\ \cos\left(\theta\right) \end{pmatrix}$$
 (827)

$$= -2\sin\left(\theta\right)\cos\left(\theta\right) \tag{828}$$

$$= -\sin\left(2\theta\right) \tag{829}$$

$$\langle -|\sigma_x|+\rangle = \left(-\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos\left(\theta\right)\\ \sin\left(\theta\right) \end{pmatrix}$$
 (830)

$$=\cos^2\left(\theta\right) - \sin^2\left(\theta\right) \tag{831}$$

$$=\cos\left(2\theta\right) \tag{832}$$

$$\langle + | \sigma_y | + \rangle = (\cos(\theta) \sin(\theta)) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$
 (833)

$$= i \sin (\theta) \cos (\theta) - i \sin (\theta) \cos (\theta)$$
(834)

$$=0 \tag{835}$$

$$\langle -|\sigma_y|-\rangle = \left(-\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} -\sin\left(\theta\right)\\ \cos\left(\theta\right) \end{pmatrix}$$
 (836)

$$= -i\sin(\theta)\cos(\theta) + i\sin(\theta)\cos(\theta)$$
(837)

$$=0 (838)$$

$$\langle -|\sigma_y|+\rangle = \left(-\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix} \begin{pmatrix} \cos\left(\theta\right) \\ \sin\left(\theta\right) \end{pmatrix}$$
 (839)

$$= i\cos^2(\theta) + i\sin^2(\theta) \tag{840}$$

$$= i \tag{841}$$

$$\langle + | \frac{1 + \sigma_z}{2} | + \rangle = (\cos(\theta) \sin(\theta)) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$
 (842)

$$=\cos\left(\theta\right)\cos\left(\theta\right)\tag{843}$$

$$=\cos^2\left(\theta\right) \tag{844}$$

$$\langle -|\frac{1+\sigma_z}{2}|-\rangle = \left(-\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} -\sin\left(\theta\right)\\ \cos\left(\theta\right) \end{pmatrix} \tag{845}$$

$$=\sin\left(\theta\right)\sin\left(\theta\right)\tag{846}$$

$$=\sin^2\left(\theta\right) \tag{847}$$

$$\langle -|\frac{1+\sigma_z}{2}|+\rangle = \left(-\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\left(\theta\right)\\ \sin\left(\theta\right) \end{pmatrix} \tag{848}$$

$$= -\sin(\theta)\cos(\theta) \tag{849}$$

$$= -\sin(\theta)\cos(\theta) \tag{850}$$

Composing the parts shown give us the Fourier decomposition matrices for this case:

$$A_1(0) = \sin(2\theta) \left(|+\rangle \langle +|-|-\rangle \langle -| \right) \tag{851}$$

$$A_1(\eta) = \cos(2\theta) \left| -\right\rangle \left\langle +\right| \tag{852}$$

$$A_2(0) = 0 (853)$$

$$A_{2}(\eta) = i \left| -\right\rangle \left\langle +\right| \tag{854}$$

$$A_3(0) = \cos^2(\theta) |+\rangle \langle +| + \sin^2(\theta) |-\rangle \langle -|$$
(855)

$$A_3(\eta) = -\sin(\theta)\cos(\theta) |-\rangle \langle +| \tag{856}$$

Now to make comparisons between the model obtained and the model of the system under discussion we will define that the correlation functions of the reference [1] denoted by $\Lambda'_{ij}(\tau)$ relate with the correlation functions defined in the equation (421) in the following way:

$$\Lambda'_{ij}(\tau) = C_i(t) C_j(t - \tau) \Lambda_{ij}(\tau)$$
(857)

Using the notation of the master equation (793), we can say that $C_1(t) = \frac{\Omega}{2} = C_2(t)$ and $C_3(t) = 1$, being Ω a constant. Furthermore given that $\overline{H_S}$ is time-independent then B(t) = B. Taking the equations(719)-(729) we find that the correlation functions of the reference [1] written in terms of the RHS of the equation (421) are equal to:

$$\Lambda'_{11}(\tau) = \left(\frac{\Omega}{2}\right)^2 \operatorname{Tr}_B\left(\widetilde{B_1}(\tau)\,\widetilde{B_1}(0)\,\rho_B\right) \tag{858}$$

$$= \frac{\Omega_r^2}{8} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} - 2 \right)$$
 (859)

$$\Lambda_{22}'(\tau) = \left(\frac{\Omega}{2}\right)^2 \operatorname{Tr}_B\left(\widetilde{B}_2(\tau)\,\widetilde{B}_2(0)\,\rho_B\right) \tag{860}$$

$$=\frac{\Omega_r^2}{8}\left(e^{\phi(\tau)} + e^{-\phi(\tau)}\right) \tag{861}$$

$$\Lambda_{33}'(\tau) = \int_0^\infty d\omega J(\omega) (1 - F(\omega))^2 G_+(\tau)$$
(862)

$$\Lambda_{32}'(\tau) = \frac{\Omega_r}{2} \int_0^\infty d\omega \frac{J(\omega)}{\omega} F(\omega) (1 - F(\omega)) iG_-(\tau)$$
(863)

$$\Lambda_{32}'(\tau) = -\Lambda_{23}'(\tau) \tag{864}$$

$$\Lambda'_{12}(\tau) = \Lambda'_{21}(\tau) = \Lambda'_{13}(\tau) = \Lambda'_{31}(\tau) = 0$$
(865)

Finally taking the Hamiltonian (813) and given that to reproduce this Hamiltonian we need to impose in (5) that $V_{10}(t) = \frac{\Omega}{2}$, $\varepsilon_0(t) = 0$ and $\varepsilon_1(t) = \delta$, then we obtain that $\operatorname{Det}\left(\overline{H_S}\right) = -\frac{\Omega_r^2}{4}$, $\operatorname{Tr}\left(\overline{H_S}\right) = \epsilon$. Now $\eta = \sqrt{\epsilon^2 + \Omega_r^2}$ and using the equation (336) we have that:

$$f_k = \frac{g_k \left(1 - \frac{\epsilon \tanh\left(\frac{\beta\eta}{2}\right)}{\eta}\right)}{1 - \frac{\tanh\left(\frac{\beta\eta}{2}\right)}{\eta} \left(\epsilon - \frac{\Omega_r^2 \coth\left(\frac{\beta\omega_k}{2}\right)}{2\omega_k}\right)}$$
(866)

$$= \frac{g_k \left(1 - \frac{\epsilon \tanh\left(\frac{\beta\eta}{2}\right)}{\eta}\right)}{1 - \frac{\epsilon \tanh\left(\frac{\beta\eta}{2}\right)}{\eta} \left(1 - \frac{\Omega_r^2 \coth\left(\frac{\beta\omega_k}{2}\right)}{2\epsilon\omega_k}\right)}$$
(867)

This shows that the expression obtained reproduces the variational parameters of the time-independent model of the reference. In general we can see that the time-independent model studied can be reproduced using the master equation (419) under a time-independent approach providing similar results.

Given that the Hamiltonian of this system is time-independent, then $U(t)U^{\dagger}(t-\tau) = U(\tau)$. From the equation (793) and using the fact that

$$\widetilde{A}_{i}(t-\tau,t) = U(\tau)A_{i}U(-\tau) \tag{868}$$

$$=\sum_{w}e^{\mathrm{i}w\tau}A_{i}\left(-w\right)\tag{869}$$

$$=\sum_{w}e^{-\mathrm{i}w\tau}A_{i}\left(w\right)\tag{870}$$

because the matrices U(t) and $U(t-\tau)$ commute from the fact that $H_S(t)$ and $H_S(t-\tau)$ commute as well for time independent Hamiltonians. The master equation is equal to:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}\left(t\right), \overline{\rho_{S}}(t)\right] - \frac{1}{2}\sum_{ij}\sum_{w}\gamma_{ij}\left(w,t\right)\left[A_{i}, A_{j}\left(w\right)\overline{\rho}_{S}\left(t\right) - \overline{\rho}_{S}\left(t\right)A_{j}^{\dagger}\left(w\right)\right] \tag{871}$$

$$-\sum_{ij}\sum_{w}S_{ij}\left(w,t\right)\left[A_{i},A_{j}\left(w\right)\overline{\rho}_{S}\left(t\right)+\overline{\rho}_{S}\left(t\right)A_{j}^{\dagger}\left(w\right)\right]\tag{872}$$

where $A_j^{\dagger}(w) = A(-w)$, as we can see the equation (872) contains the rates and energy shifts $\gamma_{ij}(w,t) = 2\Re(K_{ij}(w,t))$ and $S_{ij}(w,t) = \Im(K_{ij}(w,t))$, respectively, defined in terms of the response functions

$$K_{ij}(w,t) = \int_0^t \Lambda'_{ij}(\tau) e^{iw\tau} d\tau$$
(873)

B. Time-dependent polaron quantum master equation

Following the reference [1], when $\Omega_k \ll \omega_k$ then $f_k \approx g_k$ so we recover the full polaron transformation. It means from the equation (109) that $B_z = 0$. The Hamiltonian studied is given by:

$$H = \left(\delta + \sum_{\mathbf{k}} \left(g_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{\mathbf{k}}^{*} b_{\mathbf{k}}\right)\right) |1\rangle\langle 1| + \frac{\Omega(t)}{2} \sigma_{x} + \sum_{k} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}$$
(874)

If $v_{\mathbf{k}} \approx g_{\mathbf{k}}$ then $B(\tau) = B$, so B is independent of the time. In order to reproduce the Hamiltonian of the equation (874) using the Hamiltonian of the equation (1) we can say that $\delta = \varepsilon_1(t)$, $\varepsilon_0(t) = 0$, $V_{10}(t) = \frac{\Omega(t)}{2}$. Now given that $v_{\mathbf{k}} \approx g_{\mathbf{k}}$ then, in this case and using the equation (223) and (242) we obtain the following transformed Hamiltonians:

$$\overline{H_S} = (\delta + R_1)|1\rangle\langle 1| + \frac{B\sigma_x}{2}\Omega(t)$$
(875)

$$\overline{H_{\rm I}} = \frac{\Omega(t)}{2} \left(B_x \sigma_x + B_y \sigma_y \right) \tag{876}$$

In this case $R_1 = \sum_{\mathbf{k}} \left(\omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2 \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} g_{\mathbf{k}} \right)$ from (27) and given that $v_{\mathbf{k}} \approx g_{\mathbf{k}}$ and $\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} = g_{\mathbf{k}}/\omega_{\mathbf{k}}$ then $R_1 = \sum_{\mathbf{k}} \left(-\omega_{\mathbf{k}}^{-1} |g_{\mathbf{k}}|^2 \right) = \sum_{\mathbf{k}} \left(-\omega_{\mathbf{k}} |\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}|^2 \right)$ as expected, take $\delta + R_1 = \delta'$. If $F(\omega_{\mathbf{k}}) = 1$ and using the equations (858)-(865) we can deduce that the only terms that survive are $\Lambda_{11}(\tau)$ and $\Lambda_{22}(\tau)$. The phonon propagator for this case is:

$$\phi(\tau) = \int_0^\infty \frac{J(\omega)}{\omega^2} G_+(\tau) d\omega \tag{877}$$

Writing $G_{+}\left(au
ight) = \coth \left(rac{eta \omega}{2}
ight) \cos \left(\omega au
ight) - i \sin \left(\omega au
ight)$ so (877) can be written as:

$$\phi(\tau) = \int_0^\infty \frac{J(\omega)}{\omega^2} \left(\coth\left(\frac{\beta\omega}{2}\right) \cos(\omega\tau) - i\sin(\omega\tau) \right) d\omega$$
 (878)

Writing the interaction Hamiltonian (876) in the similar way to the equation (242) allow us to to write $A_1=\sigma_x$, $A_2=\sigma_y$, $B_1\left(t\right)=B_x$, $B_2\left(t\right)=B_y$ and $C_1\left(t\right)=\frac{\Omega(t)}{2}=C_2\left(t\right)$. Now taking the equation (223) with $\delta'|1\rangle\langle 1|=\frac{\delta'}{2}\sigma_z+\frac{\delta'}{2}\mathbb{I}$ help us to reproduce the hamiltonian of the reference [2]. Then $\overline{H_S}$ is equal to:

$$\overline{H_S} = \frac{\delta'}{2}\sigma_z + \frac{B\sigma_x}{2}\Omega(t) \tag{879}$$

As we can see the function B is a time-independent function because we consider that g_k doesn't depend of the time. In this case the relevant correlation functions are given by:

$$\Lambda_{11}(\tau) = \operatorname{Tr}_{B}\left(\widetilde{B}_{1}(\tau)\widetilde{B}_{1}(0)\rho_{B}\right) \tag{880}$$

$$= \frac{B^2}{2} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} - 2 \right)$$
 (881)

$$\Lambda_{22}(\tau) = \operatorname{Tr}_{B}\left(\widetilde{B}_{2}(\tau)\widetilde{B}_{2}(0)\rho_{B}\right) \tag{882}$$

$$= \frac{B^2}{2} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} \right)$$
 (883)

These functions match with the equations $\Lambda_x(\tau)$ and $\Lambda_y(\tau)$ of the reference [2] and $\Lambda_i(\tau) = \Lambda_i(-\tau)$ for $i \in \{x,y\}$ respectively. The master equation for this section based on the equation(419) is:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\frac{\delta'}{2}\sigma_{z} + \frac{\Omega_{r}(t)\sigma_{x}}{2}, \rho_{S}(t)\right] - \sum_{i=1}^{2} \int_{0}^{t} \mathrm{d}\tau \left(C_{i}(t)C_{i}(t-\tau)\Lambda_{ii}(\tau)\left[A_{i},\widetilde{A_{i}}(t-\tau,t)\rho_{S}(t)\right]\right)$$
(884)

$$+C_{i}\left(t\right)C_{i}\left(t-\tau\right)\Lambda_{ii}\left(-\tau\right)\left[\rho_{S}\left(t\right)\widetilde{A_{i}}\left(t-\tau,t\right),A_{i}\right]\right)\tag{885}$$

Replacing $C_i(t) = \frac{\Omega(t)}{2}$ and $\widetilde{A}_i(t-\tau,t) = \widetilde{\sigma}_i(t-\tau,t)$, also using the equations (880) and (883) on the equation (885) we obtain that:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\frac{\mathrm{i}}{2} \left[\delta' \sigma_{z} + \Omega_{r}(t) \sigma_{x}, \rho_{S}(t) \right] - \frac{\Omega(t)}{4} \int_{0}^{t} \mathrm{d}\tau \Omega\left(t - \tau\right) \left(\left[\sigma_{x}, \widetilde{\sigma_{x}}\left(t - \tau, t\right) \rho_{S}(t) \right] \Lambda_{x}(\tau)$$
(886)

$$+\left[\sigma_{y},\widetilde{\sigma_{y}}\left(t-\tau,t\right)\rho_{S}\left(t\right)\right]\Lambda_{y}\left(\tau\right)+\left[\rho_{S}\left(t\right)\widetilde{\sigma_{x}}\left(t-\tau,t\right),\sigma_{x}\right]\Lambda_{x}\left(\tau\right)+\left[\rho_{S}\left(t\right)\widetilde{\sigma_{y}}\left(t-\tau,t\right),\sigma_{y}\right]\Lambda_{y}\left(\tau\right)\right)\tag{887}$$

As we can see $\left[A_j, \widetilde{A_i}(t-\tau,t) \rho_S(t)\right]^{\dagger} = \left[\rho_S(t) \widetilde{A_i}(t-\tau,t), A_j\right]$, $\Lambda_x(\tau) = \Lambda_x(-\tau)$ and $\Lambda_y(\tau) = \Lambda_y(-\tau)$, so the result obtained is the same master equation (21) of the reference [2] extended in the hermitian conjugate.

C. Time-Dependent Weak-Coupling Limit

In order to prove that the master equation deduced reproduces the equation (S17) of the reference [3] we will impose that $F(\omega)=0$, so there is no transformation in this case. As we can see from the definition (421) the only term that survives is Λ_{33} (τ) . Taking $\bar{h}=1$ the Hamiltonian of the reference can be written in the form:

$$H = \Delta |1\rangle\langle 1| + \frac{\Omega(t)}{2} (|1\rangle\langle 0| + |0\rangle\langle 1|) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \sum_{\mathbf{k}} \left(g_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{\mathbf{k}}^{*} b_{\mathbf{k}} \right)$$
(888)

Using the equation (793), from the fact that the Hamiltonian is time-independent in the evolution time allow us to write:

$$\frac{\mathrm{d}\rho_{S}}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}(t), \rho_{S}(t)\right] - \frac{1}{2}\sum_{w}\gamma_{33}(w, t)\left[A_{3}, A_{3}(w)\rho_{S}(t) - \rho_{S}(t)A_{3}^{\dagger}(w)\right]$$
(889)

$$-\sum_{w} S_{33}(w,t) \left[A_3, A_3(w) \rho_S(t) + \rho_S(t) A_3^{\dagger}(w) \right]$$
(890)

The correlation functions are relevant if $F(\omega) = 0$ for the weak-coupling approximation are:

$$\Lambda_{33}(\tau) = \int_0^\infty d\omega J(\omega) G_+(\tau)$$
(891)

$$\Lambda_{33}(-\tau) = \int_0^\infty d\omega J(\omega) G_+(-\tau)$$
(892)

In our case $A_3 = \frac{\mathbb{I} + \sigma_z}{2}$, the equation (890) can be transformed in

$$\frac{\mathrm{d}\rho_{S}}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}\left(t\right), \rho_{S}\left(t\right)\right] - \sum_{w}\left(K_{33}\left(w, t\right)\left[A_{3}, A_{3}\left(w\right)\rho_{S}\left(t\right)\right] + K_{33}^{*}\left(w, t\right)\left[\rho_{S}\left(t\right)A_{3}\left(w\right), A_{3}\right]\right)$$
(893)

As the paper suggest we will consider that the quantum system is in resonance, so $\Delta=0$ and furthemore, the relaxation time of the bath is less than the evolution time to be considered, so the frequency of the Rabi frequency of the laser can be taken as constant and equal to $\widetilde{\Omega}$ To find the matrices $A_3(w)$, we have to remember that $H_S=\frac{\Omega(t)}{2}(|1\rangle\langle 0|+|0\rangle\langle 1|)$, this Hamiltonian have the following eigenvalues and eigenvectors:

$$\lambda_{+} = \frac{\widetilde{\Omega}}{2} \tag{894}$$

$$|+\rangle = \frac{1}{\sqrt{2}} \left(|1\rangle + |0\rangle \right) \tag{895}$$

$$\lambda_{-} = -\frac{\widetilde{\Omega}}{2} \tag{896}$$

$$|-\rangle = \frac{1}{\sqrt{2}} \left(-|1\rangle + |0\rangle \right) \tag{897}$$

The elements of the decomposition matrices are:

$$\langle + | \frac{1 + \sigma_z}{2} | + \rangle = \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (898)

$$=\frac{1}{2}\tag{899}$$

$$= \frac{1}{2}$$

$$\langle -|\frac{1+\sigma_z}{2}|-\rangle = \frac{1}{2} \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$(899)$$

$$=\frac{1}{2}\tag{901}$$

$$\langle -|\frac{1+\sigma_z}{2}|+\rangle = \frac{1}{2} \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{902}$$

$$=-\frac{1}{2}$$
 (903)

The decomposition matrices are

$$A_3(0) = \frac{1}{2} |+\rangle \langle +| + \frac{1}{2} |-\rangle \langle -|$$
 (904)

$$=\frac{\mathbb{I}}{2}\tag{905}$$

$$A_3(\eta) = -\frac{1}{2}|-\rangle\langle+|\tag{906}$$

$$=\frac{1}{4}\left(\sigma_{z}+i\sigma_{y}\right)\tag{907}$$

$$A_3(-\eta) = -\frac{1}{2}|+\rangle\langle -| \tag{908}$$

$$=\frac{1}{4}\left(\sigma_z - i\sigma_y\right) \tag{909}$$

Neglecting the term proportional to the identity in the Hamiltonian we obtain that:

$$\frac{\mathrm{d}\rho_{S}(t)}{\mathrm{d}t} = -\mathrm{i}\frac{\widetilde{\Omega}}{2}\left[\sigma_{x},\rho_{S}\left(t\right)\right)\left[-K_{33}\left(\widetilde{\Omega},t\right)\left[\frac{\sigma_{z}}{2},\frac{1}{4}\left(\sigma_{z}+\mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right] - K_{33}\left(-\widetilde{\Omega},t\right)\left[\frac{\sigma_{z}}{2},\frac{1}{4}\left(\sigma_{z}-\mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right]$$
(910)

$$-K_{33}^{*}\left(\widetilde{\Omega},t\right)\left[\rho_{S}\left(t\right)\frac{1}{4}\left(\sigma_{z}+i\sigma_{y}\right),\frac{\sigma_{z}}{2}\right]-K_{33}^{*}\left(-\widetilde{\Omega},t\right)\left[\rho_{S}\left(t\right)\frac{1}{4}\left(\sigma_{z}-i\sigma_{y}\right),\frac{\sigma_{z}}{2}\right]$$
(911)

Calculating the response functions extending the upper limit of τ to ∞ , we obtain:

$$K_{33}\left(\widetilde{\Omega}\right) = \int_{0}^{\infty} \int_{0}^{\infty} J\left(\omega\right) G_{+}\left(\tau\right) e^{i\widetilde{\Omega}\tau} d\tau d\omega \tag{912}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{i\widetilde{\Omega}\tau} \left((n(\omega) + 1) e^{-i\tau\omega} + n(\omega) e^{i\tau\omega} \right) d\tau d\omega$$
 (913)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{i\widetilde{\Omega}\tau} (n(\omega) + 1) e^{-i\tau\omega} d\tau d\omega$$
 (914)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) (n(\omega) + 1) e^{i\widetilde{\Omega}\tau - i\tau\omega} d\tau d\omega$$
 (915)

$$= \int_{0}^{\infty} J(\omega) (n(\omega) + 1) \pi \delta \left(\widetilde{\Omega} - \omega \right) d\omega$$
 (916)

$$= \pi J\left(\widetilde{\Omega}\right) \left(n\left(\widetilde{\Omega}\right) + 1\right) \tag{917}$$

$$K_{33}\left(-\widetilde{\Omega}\right) = \int_{0}^{\infty} \int_{0}^{\infty} J\left(\omega\right) G_{+}\left(\tau\right) e^{-\mathrm{i}\widetilde{\Omega}\tau} \mathrm{d}\tau \mathrm{d}\omega \tag{918}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{-i\widetilde{\Omega}\tau} \left((n(\omega) + 1) e^{-i\tau\omega} + n(\omega) e^{i\tau\omega} \right) d\tau d\omega$$
 (919)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{-i\widetilde{\Omega}\tau} n(\omega) e^{i\tau\omega} d\tau d\omega$$
 (920)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) n(\omega) e^{-i\tilde{\Omega}\tau + i\tau\omega} d\tau d\omega$$
 (921)

$$= \int_{0}^{\infty} J(\omega) \, n(\omega) \, \pi \delta \left(-\widetilde{\Omega} + \omega \right) d\omega \tag{922}$$

$$=\pi J\left(\widetilde{\Omega}\right)n\left(\widetilde{\Omega}\right)\tag{923}$$

Here we have used $\int_0^\infty \mathrm{d}s \, e^{\pm i\varepsilon s} = \pi \delta\left(\varepsilon\right) \pm \mathrm{i} \frac{\mathrm{V.P.}}{\varepsilon}$, where $\mathrm{V.P.}$ denotes the Cauchy's principal value. Theses principal values are ignored because they lead to small renormalizations of the Hamiltonian. Furthermore we don't take account of value associated to the matrix $A_3\left(0\right)$ because the spectral density $J\left(\omega\right)$ is equal to zero when $\omega=0$. Replacing in the equation (910) lead us to obtain:

$$\frac{\mathrm{d}\rho_{S}(t)}{\mathrm{d}t} = -\mathrm{i}\frac{\widetilde{\Omega}}{2} \left[\sigma_{x}, \rho_{S}(t)\right] - \frac{\pi}{8} J\left(\widetilde{\Omega}\right) \left(\left(n\left(\widetilde{\Omega}\right) + 1\right) \left[\sigma_{z}, \left(\sigma_{z} + \mathrm{i}\sigma_{y}\right)\rho_{S}(t)\right] + n\left(\widetilde{\Omega}\right) \left[\sigma_{z}, \left(\sigma_{z} - \mathrm{i}\sigma_{y}\right)\rho_{S}(t)\right]\right) - \frac{\pi}{8} J\left(\widetilde{\Omega}\right) \left(\left(n\left(\widetilde{\Omega}\right) + 1\right) \left[\rho_{S}(t)\left(\sigma_{z} + \mathrm{i}\sigma_{y}\right), \sigma_{z}\right] + n\left(\widetilde{\Omega}\right) \left[\rho_{S}(t)\left(\sigma_{z} - \mathrm{i}\sigma_{y}\right), \sigma_{z}\right]\right) \tag{924}$$

This is the same result than the equation (S17), so we have proved that our general master equation allows to reproduce the results of the weak-coupling time-dependent. Now the master equation in the evolution time is given by

$$\frac{\mathrm{d}\rho_{S}(t)}{\mathrm{d}t} = -\mathrm{i}\frac{\Omega\left(\mathrm{t}\right)}{2}\left[\sigma_{x},\rho_{S}\left(t\right)\right] - \frac{\pi}{8}J\left(\Omega\left(t\right)\right)\left(\left(n\left(\Omega\left(t\right)\right) + 1\right)\left[\sigma_{z},\left(\sigma_{z} + \mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right] + n\left(\Omega\left(t\right)\right)\left[\sigma_{z},\left(\sigma_{z} - \mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right] - \frac{\pi}{8}J\left(\Omega\left(t\right)\right)\left(\left(n\left(\Omega\left(t\right)\right) + 1\right)\left[\rho_{S}\left(t\right)\left(\sigma_{z} + \mathrm{i}\sigma_{y}\right),\sigma_{z}\right] + n\left(\Omega\left(t\right)\right)\left[\rho_{S}\left(t\right)\left(\sigma_{z} - \mathrm{i}\sigma_{y}\right),\sigma_{z}\right]\right) \tag{925}$$

VI. TIME-DEPENDENT MULTI-SITE MODEL WITH V BATHS COUPLING

Let's consider the following Hamiltonian for a system of m-level system coupled to v-baths. We start with a time-dependent Hamiltonian of the form:

$$H(t) = H_S(t) + H_I + H_B, (928)$$

$$H_S(t) = \sum_{n} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m|, \tag{929}$$

$$H_I = \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right), \tag{930}$$

$$H_B = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}}.$$
 (931)

A. Variational Transformation

We consider the following operator:

$$V = \sum_{nu\mathbf{k}} |n\rangle\langle n|\omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)$$
(932)

At first let's obtain $e^{\pm V}$ under the transformation (932), consider $\hat{\varphi}_n = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)$, so the equation (932) can be written as $V = \sum_n |n\rangle\langle n|\hat{\varphi}_n$, then we have:

$$e^{\pm V} = e^{\pm \sum_{n} |n\rangle\langle n|\hat{\varphi}_{n}} \tag{933}$$

$$= \mathbb{I} \pm \sum_{n} |n\rangle\langle n|\hat{\varphi}_{n} + \frac{\left(\sum_{n} |n\rangle\langle n|\hat{\varphi}_{n}\right)^{2}}{2!} + \dots$$
 (934)

$$= \mathbb{I} \pm \sum_{n} |n\rangle\langle n|\hat{\varphi}_{n} + \frac{\sum_{n} |n\rangle\langle n|\hat{\varphi}_{n}^{2}}{2!} + \dots$$
 (935)

$$= \sum_{n} |n\rangle\langle n| \pm \sum_{n} |n\rangle\langle n| \hat{\varphi}_{n} + \frac{\sum_{n} |n\rangle\langle n| \hat{\varphi}_{n}^{2}}{2!} + \dots$$
 (936)

$$= \sum_{n} |n\rangle\langle n| \left(\mathbb{I} \pm \hat{\varphi}_n + \frac{\hat{\varphi}_n^2}{2!} + \dots \right)$$
 (937)

$$=\sum_{n}|n\rangle\langle n|e^{\pm\hat{\varphi}_{n}}\tag{938}$$

Given that $\left[f_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger}-f_{nu\mathbf{k}}^{*}b_{u\mathbf{k}},f_{nu'\mathbf{k}'}b_{u'\mathbf{k}'}^{\dagger}-f_{nu'\mathbf{k}'}^{*}b_{u'\mathbf{k}'}\right]=0$ for all \mathbf{k}' , \mathbf{k} and u,u' then we can proof using the Zassenhaus formula and defining $D\left(\pm\alpha_{nu\mathbf{k}}\right)=e^{\pm\left(\alpha_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger}-\alpha_{nu\mathbf{k}}^{*}b_{u\mathbf{k}}\right)}$ in the same way than (23) with $\alpha_{nu\mathbf{k}}=\frac{f_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}}$:

$$e^{\pm \sum_{u\mathbf{k}} \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)} = \prod_{u} e^{\pm \sum_{\mathbf{k}} \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)}$$
(939)

$$= \prod_{u} \left(\prod_{\mathbf{k}} e^{\pm \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)} \right)$$
(940)

$$= \prod_{u} \left(\prod_{\mathbf{k}} D\left(\pm \alpha_{nu\mathbf{k}} \right) \right) \tag{941}$$

$$= \prod_{u\mathbf{k}} D\left(\pm \alpha_{nu\mathbf{k}}\right) \tag{942}$$

$$=\prod_{u}B_{nu\pm} \tag{943}$$

$$B_{nu\pm} \equiv \prod_{\mathbf{k}} D\left(\pm \alpha_{nu\mathbf{k}}\right) \tag{944}$$

As we can see $e^{-V} = \sum_n |n\rangle\langle n| \prod_u B_{nu-}$ and $e^V = \sum_n |n\rangle\langle n| \prod_u B_{nu+}$ this implies that $e^{-V}e^V = \mathbb{I}$. This allows us to write the canonical transformation in the following explicit way:

$$e^{V} A e^{-V} = \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu+}\right) A \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu-}\right)$$
(945)

Now let's obtain the canonical transformation of the principal elements of the Hamiltonian (928):

(972)

$$\begin{split} |\overline{0}|\overline{0}|\overline{0}| &= \left(\sum_{n} |n_{j} n_{j}| \prod_{n} B_{n_{1} + j} \right) |0j\langle 0| \left(\sum_{n} |n_{j} n_{j}| \prod_{n} B_{n_{2} - j}\right), \\ &= \prod_{n} B_{0n_{2} + j} |0j\langle 0| 0j\langle 0| 0j\langle 0| j| \prod_{n} B_{0n_{2} - j} \right), \\ &= |0j\langle 0| \prod_{n} B_{0n_{2} + j} \prod_{n} B_{0n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{0n_{2} + j} \prod_{n} B_{0n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{0n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} + j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \prod_{n} D \left(-\alpha_{n_{2} + k}\right) \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} + j} \prod_{n} B_{n_{2} - j} \prod_{n} D \left(-\alpha_{n_{2} + k}\right) \right. \\ &= |0j\langle 0| \prod_{n} B_{n_{2} - j} \prod_{n} D \left(D \left(\alpha_{n_{2} + k} B_{n_{2} - j} \right) \prod_{n} D \left(-\alpha_{n_{2} + k} A_{n_{2} + k} A_{n_{$$

The transformed Hamiltonians of the equations (929) to (931) written in terms of (946) to (970) are:

 $=\sum_{\mathbf{n},\mathbf{k}}\omega_{u\mathbf{k}}b_{u\mathbf{k}}^{\dagger}b_{u\mathbf{k}}+\sum_{\mathbf{n},\mathbf{k}}|n\rangle\langle n|\left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}}-\left(v_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger}+v_{nu\mathbf{k}}^{*}b_{u\mathbf{k}}\right)\right)$

$$\overline{H_S(t)} = \overline{\sum_{n} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m|}$$
(973)

$$= \overline{\sum_{n} \varepsilon_{n}(t) |n \rangle \langle n|} + \overline{\sum_{n \neq m} V_{nm}(t) |n \rangle \langle m|}$$
(974)

$$=\sum_{n}\varepsilon_{n}\left(t\right)\left|n\right\rangle\left|n\right\rangle+\sum_{n\neq m}V_{nm}\left(t\right)\left|n\right\rangle\left|m\right\rangle\prod_{u}\left(B_{mu+}B_{nu-}\right)$$
(975)

$$\overline{H_I} = \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu+}\right) \left(\sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{nu\mathbf{k}}^* b_{u\mathbf{k}}\right)\right) \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu-}\right)$$
(976)

$$= \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu+}\right) \left(\sum_{u\mathbf{k}} |0\rangle\langle 0| \left(g_{0u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{0u\mathbf{k}}^{*} b_{u\mathbf{k}}\right) + \dots\right) \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu-}\right)$$
(977)

$$= \prod_{u} B_{0u+\sum_{u\mathbf{k}}} |0\rangle\langle 0| \left(g_{0u\mathbf{k}}b_{u\mathbf{k}}^{\dagger} + g_{0u\mathbf{k}}^{*}b_{u\mathbf{k}}\right) \prod_{u} B_{0u-} + \prod_{u} B_{1u+\sum_{u\mathbf{k}}} |1\rangle\langle 1| \left(g_{1u\mathbf{k}}b_{u\mathbf{k}}^{\dagger} + g_{1u\mathbf{k}}^{*}b_{u\mathbf{k}}\right) \prod_{u} B_{1u-} + \dots$$

$$(978)$$

$$=\sum_{u\mathbf{k}}|0\rangle\langle 0\left(g_{0u\mathbf{k}}\Pi_{u}\ B_{0u+}b_{u\mathbf{k}}^{\dagger}\Pi_{u}\ B_{0u-}+g_{0u\mathbf{k}}^{*}\Pi_{u}\ B_{0u+}b_{u\mathbf{k}}\Pi_{u}\ B_{0u-}\right)+\sum_{u\mathbf{k}}|1\rangle\langle 1|\left(g_{1u\mathbf{k}}\Pi_{u}\ B_{1u+}b_{u\mathbf{k}}^{\dagger}\Pi_{u}\ B_{1u-}+g_{1u\mathbf{k}}^{*}\Pi_{u}\ B_{1u+}b_{u\mathbf{k}}\Pi_{u}\ B_{1u-}\right)+\dots$$

$$(979)$$

$$=\sum_{u\mathbf{k}}|0\rangle\langle 0|\left(g_{0u\mathbf{k}}\left(b_{u\mathbf{k}}^{\dagger}-\frac{v_{0u\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}}\right)+g_{0u\mathbf{k}}^{*}\left(b_{u\mathbf{k}}-\frac{v_{0u\mathbf{k}}}{\omega_{u\mathbf{k}}}\right)\right)+\sum_{u\mathbf{k}}|1\rangle\langle 1|\left(g_{1u\mathbf{k}}\left(b_{u\mathbf{k}}^{\dagger}-\frac{v_{1u\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}}\right)+g_{1u\mathbf{k}}^{*}\left(b_{u\mathbf{k}}-\frac{v_{1u\mathbf{k}}}{\omega_{u\mathbf{k}}}\right)\right)+\dots$$

$$(980)$$

$$= \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} \left(b_{u\mathbf{k}}^{\dagger} - \frac{v_{nu\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}} \right) + g_{nu\mathbf{k}}^{*} \left(b_{u\mathbf{k}} - \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(981)

$$= \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{nu\mathbf{k}}^{*} b_{u\mathbf{k}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}} + g_{nu\mathbf{k}}^{*} \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(982)

$$\overline{H_B} = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} + \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(\frac{|v_{nu\mathbf{k}}|^2}{\omega_{u\mathbf{k}}} - \left(v_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + v_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right) \right)$$
(983)

Joining this terms allow us to write the transformed Hamiltonian as:

$$\overline{H} = \sum_{n} \varepsilon_{n}(t) |n\rangle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle m| \prod_{u} (B_{mu} + B_{nu}) + \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + b_{u\mathbf{k}} + \sum_{nu\mathbf{k}} |n\rangle n| \left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}} - \left(v_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + v_{nu\mathbf{k}}^{*} b_{u\mathbf{k}} \right) \right)$$

$$(984)$$

$$+\sum_{nu\mathbf{k}}|n\rangle\langle n|\left(g_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger}+g_{nu\mathbf{k}}^{*}b_{u\mathbf{k}}-\left(g_{nu\mathbf{k}}\frac{v_{nu\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}}+g_{nu\mathbf{k}}^{*}\frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}}\right)\right)$$

$$(985)$$

Let's define the following functions:

$$R_n(t) = \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^2}{\omega_{u\mathbf{k}}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^*}{\omega_{u\mathbf{k}}} + g_{nu\mathbf{k}}^* \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(986)

$$B_{z,n}(t) = \sum_{u\mathbf{k}} \left(\left(g_{nu\mathbf{k}} - v_{nu\mathbf{k}} \right) b_{u\mathbf{k}}^{\dagger} + \left(g_{nu\mathbf{k}} - v_{nu\mathbf{k}} \right)^* b_{u\mathbf{k}} \right)$$
(987)

Using the previous functions we have that (984) can be re-written in the following way:

$$\overline{H} = \sum_{n} \varepsilon_{n}(t) |n\rangle\langle n| + \sum_{n\neq m} V_{nm}(t) |n\rangle\langle m| \prod_{u} (B_{mu} + B_{nu}) + \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} + \sum_{n} R_{n}(t) |n\rangle\langle n| + \sum_{n} B_{z,n}(t) |n\rangle\langle n|$$

$$(988)$$

(989)

Now in order to separate the elements of the hamiltonian (989) let's follow the references of the equations (223) and (242) to separate the hamiltonian, before proceding to do this we need to consider the term of the form:

$$\left\langle \prod_{u} (B_{mu} + B_{nu}) \right\rangle_{\overline{H_0}} = \left\langle \prod_{u\mathbf{k}} \left(D(\alpha_{mu\mathbf{k}} - \alpha_{nu\mathbf{k}}) \exp\left(\frac{1}{2} \left(-\alpha_{mu\mathbf{k}} \alpha_{nu\mathbf{k}}^* + \alpha_{mu\mathbf{k}}^* \alpha_{nu\mathbf{k}} \right) \right) \right) \right\rangle_{\overline{H_0}}$$
(990)

$$= \left(\prod_{u\mathbf{k}} \exp\left(\frac{1}{2} \left(-\alpha_{mu\mathbf{k}} \alpha_{nu\mathbf{k}}^* + \alpha_{mu\mathbf{k}}^* \alpha_{nu\mathbf{k}} \right) \right) \right) \left\langle \prod_{u\mathbf{k}} D(\alpha_{mu\mathbf{k}} - \alpha_{nu\mathbf{k}}) \right\rangle_{\overline{H_0}}$$
(991)

$$= \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^* \right)}{2\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^2}{\omega_{n\mathbf{k}}^2} \coth\left(\frac{\beta \omega_{u\mathbf{k}}}{2} \right) \right)$$
(992)

$$\equiv B_{nm} \tag{993}$$

$$\left\langle \prod_{u} (B_{nu+} B_{mu-}) \right\rangle_{\overline{H_0}} = \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{nu\mathbf{k}}^* v_{mu\mathbf{k}} - v_{nu\mathbf{k}} v_{mu\mathbf{k}}^*\right)}{2\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left| v_{mu\mathbf{k}} - v_{nu\mathbf{k}} \right|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta \omega_{u\mathbf{k}}}{2} \right) \right)$$
(994)

$$=B_{nm}^{*} \tag{995}$$

Following the reference [4] we define:

$$J_{nm} = \prod_{u} (B_{mu} + B_{nu}) - B_{nm} \tag{996}$$

As we can see:

$$J_{nm}^{\dagger} = \left(\prod_{u} \left(B_{mu+}B_{nu-}\right) - B_{nm}\right)^{\dagger} \tag{997}$$

$$= \prod_{n} (B_{nu} + B_{mu}) - B_{nm}^* \tag{998}$$

$$=\prod_{u} (B_{nu+}B_{mu-}) - B_{mn} \tag{999}$$

$$=J_{mn} \tag{1000}$$

We can separate the Hamiltonian (989) on the following way using similar arguments to the precedent sections to obtain:

$$\overline{H_{\overline{S}}(t)} = \sum_{n} (\varepsilon_n(t) + R_n) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| B_{nm}$$
(1001)

$$\overline{H_{\overline{I}}} = \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| J_{nm} + \sum_{n} B_{z,n}(t) |n\rangle\langle n|, \qquad (1002)$$

$$\overline{H_{\overline{B}}} = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} \tag{1003}$$

B. Free-energy minimization

As first approach let's consider the minimization of the free-energy through the Feynman-Bogoliubov inequality

$$A \le A_{\rm B} \equiv -\frac{1}{\beta} \ln \left(\operatorname{Tr} \left(e^{-\beta (\overline{H_{\overline{S}}(t) + H_{\overline{B}}})} \right) \right) + \left\langle \overline{H_{\overline{I}}} \right\rangle_{\overline{H_{\overline{S}}(t) + H_{\overline{B}}}} + O\left(\left\langle \overline{H_{\overline{I}}^2} \right\rangle_{\overline{H_{\overline{S}}(t) + H_{B}}} \right). \tag{1004}$$

Taking the equations (244)-(252) and given that $\operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}(t)}}\right) = C\left(R_0, R_1, ..., R_{d-1}, B_{01}, ..., B_{0(d-1)}, ..., B_{(d-2)(d-1)}\right)$, where each R_i and B_{kj} depend of the set of variational parameters $\{v_{nu\mathbf{k}}\}$. Given that the numbers $v_{nu\mathbf{k}}$ are complex then we can separate them as $v_{nu\mathbf{k}} = \Re\left(v_{nu\mathbf{k}}\right) + \mathrm{i}\Im\left(v_{nu\mathbf{k}}\right)$. So our approach will be based on the derivation respect to $\Re\left(v_{nu\mathbf{k}}\right)$ and $\Im\left(v_{nu\mathbf{k}}\right)$. The Hamiltonian $\overline{H_{\overline{S}}(t)}$ can be written like:

$$\overline{H_{\overline{S}}(t)} = \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^{*} + g_{nu\mathbf{k}}^{*} v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right) \right) |n\rangle\langle n|$$

$$+ \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| \left(\prod_{u\mathbf{k}} \exp\left(\frac{(v_{mu\mathbf{k}}^{*} v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^{*})}{2\omega_{u\mathbf{k}}^{2}} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth}\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right)$$

$$= \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}} - \frac{g_{nu\mathbf{k}} v_{nu\mathbf{k}}^{*} + g_{nu\mathbf{k}}^{*} v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right) |n\rangle\langle n|$$

$$+ \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| \left(\prod_{u\mathbf{k}} \exp\left(\frac{(v_{mu\mathbf{k}}^{*} v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}}{2\omega_{u\mathbf{k}}^{2}} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth}\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right)$$

$$= \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{(\Re(v_{nu\mathbf{k}}))^{2} + (\Im(v_{nu\mathbf{k}}))^{2}}{2\omega_{u\mathbf{k}}^{2}} \right) - \frac{(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}^{*})\Re(v_{nu\mathbf{k}}) + i\Im(v_{nu\mathbf{k}})(g_{nu\mathbf{k}}^{*} - g_{nu\mathbf{k}}}{2} \right) \right) |n\rangle\langle n|$$
(1008)

$$= \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{(u(v_{nu\mathbf{k}})) - ((v_{nu\mathbf{k}}))}{\omega_{u\mathbf{k}}} - \frac{(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}) + ((v_{nu\mathbf{k}}) + (v_{nu\mathbf{k}}) + (g_{nu\mathbf{k}} + g_{nu\mathbf{k}}))}{\omega_{u\mathbf{k}}} \right) |n\rangle\langle n|$$

$$(1010)$$

$$+\sum_{n\neq m} V_{nm}(t)|n\rangle\langle m|\left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^* v_{nu\mathbf{k}}^{-v} v_{mu\mathbf{k}} v_{nu\mathbf{k}}^*\right)}{2\omega_{u\mathbf{k}}^2}\right)\right)\prod_{u} \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}}^{-v} v_{nu\mathbf{k}}|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta_u \omega_u \mathbf{k}}{2}\right)\right)$$
(1010)

$$v_{mu\mathbf{k}}^*v_{nu\mathbf{k}} - v_{mu\mathbf{k}}v_{nu\mathbf{k}}^* - v_{mu\mathbf{k}}v_{nu\mathbf{k}}^* = (\Re(v_{mu\mathbf{k}}) - i\Im(v_{mu\mathbf{k}}))(\Re(v_{nu\mathbf{k}}) + i\Im(v_{nu\mathbf{k}})) - (\Re(v_{mu\mathbf{k}}) + i\Im(v_{mu\mathbf{k}}))(\Re(v_{nu\mathbf{k}}) - i\Im(v_{nu\mathbf{k}}))$$

$$(1011)$$

$$= (\Re(v_{mu\mathbf{k}})\Re(v_{nu\mathbf{k}}) + i\Im(v_{nu\mathbf{k}})\Re(v_{mu\mathbf{k}}) - i\Im(v_{mu\mathbf{k}})\Re(v_{nu\mathbf{k}}) + \Im(v_{mu\mathbf{k}})\Im(v_{nu\mathbf{k}}))$$

$$(1012)$$

$$-(\Re(v_{mu\mathbf{k}})\Re(v_{nu\mathbf{k}}) - i\Im(v_{nu\mathbf{k}})\Re(v_{mu\mathbf{k}}) + i\Im(v_{mu\mathbf{k}})\Re(v_{nu\mathbf{k}}) + \Im(v_{mu\mathbf{k}})\Im(v_{nu\mathbf{k}}))$$
(1013)

$$= 2i \left(\Im \left(v_{nuk}\right) \Re \left(v_{muk}\right) - \Im \left(v_{muk}\right) \Re \left(v_{nuk}\right)\right)$$
(1014)

$$\overline{H_{\overline{S}}(t)} = \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{(\Re(v_{nu\mathbf{k}}))^{2} + (\Im(v_{nu\mathbf{k}}))^{2}}{\omega_{u\mathbf{k}}} - \frac{(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}^{*})\Re(v_{nu\mathbf{k}}) + i\Im(v_{nu\mathbf{k}}) (g_{nu\mathbf{k}}^{*} - g_{nu\mathbf{k}})}{\omega_{u\mathbf{k}}} \right) |n\rangle\langle n|$$

$$(1015)$$

$$+\sum_{n\neq m} V_{nm}(t)|n\rangle m|\left(\prod_{u\mathbf{k}} \exp\left(\frac{\mathrm{i}\left(\Im\left(v_{nu\mathbf{k}}\right)\Re\left(v_{mu\mathbf{k}}\right)-\Im\left(v_{mu\mathbf{k}}\right)\Re\left(v_{nu\mathbf{k}}\right)\right)}{\omega_{u\mathbf{k}}^2}\right)\right)\prod_{u} \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \frac{\left|v_{mu\mathbf{k}}-v_{nu\mathbf{k}}\right|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta_u\omega_{u\mathbf{k}}}{2}\right)\right) \quad \textbf{(1016)}$$

$$|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^2 = (v_{mu\mathbf{k}} - v_{nu\mathbf{k}})(v_{mu\mathbf{k}} - v_{nu\mathbf{k}})^*$$
(1017)

$$= |v_{muk}|^2 + |v_{nuk}|^2 - (v_{nuk}v_{muk}^* + v_{nuk}^*v_{muk})$$
(1018)

$$=\Re(v_{mu\mathbf{k}})^2 + (\Im(v_{mu\mathbf{k}}))^2 + (\Re(v_{nu\mathbf{k}}))^2 + (\Im(v_{nu\mathbf{k}}))^2 - (\Re(v_{nu\mathbf{k}}) + i\Im(v_{nu\mathbf{k}}) + i\Im(v_{mu\mathbf{k}}) - i\Im(v_{mu\mathbf{k}}))$$

$$\tag{1019}$$

$$-(\Re(v_{nu\mathbf{k}})-i\Im(v_{nu\mathbf{k}}))(\Re(v_{mu\mathbf{k}})+i\Im(v_{mu\mathbf{k}}))$$
(1020)

$$= (\Re(v_{mu\mathbf{k}}))^2 + (\Im(v_{mu\mathbf{k}}))^2 + (\Re(v_{nu\mathbf{k}}))^2 + (\Im(v_{nu\mathbf{k}}))^2 - 2(\Re(v_{nu\mathbf{k}})\Re(v_{mu\mathbf{k}}) + \Im(v_{nu\mathbf{k}})\Im(v_{mu\mathbf{k}}))$$

$$\tag{1021}$$

$$= \left(\Re\left(v_{mu\mathbf{k}}\right) - \Re\left(v_{nu\mathbf{k}}\right)\right)^{2} + \left(\Im\left(v_{mu\mathbf{k}}\right) - \Im\left(v_{nu\mathbf{k}}\right)\right)^{2}$$
(1022)

$$R_n(t) = \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^2}{\omega_{u\mathbf{k}}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^*}{\omega_{u\mathbf{k}}} + g_{nu\mathbf{k}}^* \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(1023)

$$= \sum_{u\mathbf{k}} \left(\frac{\left(\Re\left(v_{nu\mathbf{k}}\right)\right)^{2} + \left(\Im\left(v_{nu\mathbf{k}}\right)\right)^{2} - \left(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}^{*}\right)\Re\left(v_{nu\mathbf{k}}\right) - i\Im\left(v_{nu\mathbf{k}}\right)\left(g_{nu\mathbf{k}}^{*} - g_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}} \right)$$
(1024)

$$= \sum_{u\mathbf{k}} \left(\frac{\left(\Re\left(v_{nu\mathbf{k}}\right)\right)^{2} + \left(\Im\left(v_{nu\mathbf{k}}\right)\right)^{2} - 2\Re\left(g_{nu\mathbf{k}}\right)\Re\left(v_{nu\mathbf{k}}\right) - 2\Im\left(g_{nu\mathbf{k}}\right)\Im\left(v_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}} \right)$$
(1025)

$$B_{mn} = \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^*}{2\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left| v_{mu\mathbf{k}} - v_{nu\mathbf{k}} \right|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2} \right) \right)$$
(1026)

$$= \left(\prod_{u\mathbf{k}} \exp\left(\frac{i(\Im(v_{nu\mathbf{k}})\Re(v_{mu\mathbf{k}}) - \Im(v_{mu\mathbf{k}})\Re(v_{nu\mathbf{k}}))}{\omega_{u\mathbf{k}}^2} \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{(\Re(v_{mu\mathbf{k}}) - \Re(v_{nu\mathbf{k}}))^2 + (\Im(v_{mu\mathbf{k}}) - \Im(v_{nu\mathbf{k}}))^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\Im(u_{nu\mathbf{k}}) - \Im(v_{nu\mathbf{k}}) - \Im(v_{nu\mathbf{k}})}{\omega_{u\mathbf{k}}^2} \right) \right) (1027)$$

Then we can obtain using the chain rule that:

$$\frac{\partial R_{n'}}{\partial \Re\left(v_{nu\mathbf{k}}\right)} = \frac{\partial}{\partial \Re\left(v_{nu\mathbf{k}}\right)} \sum_{u\mathbf{k}} \left(\frac{\left(\Re\left(v_{nu\mathbf{k}}\right)\right)^2 + \left(\Im\left(v_{nu\mathbf{k}}\right)\right)^2 - 2\Re\left(g_{nu\mathbf{k}}\right)\Re\left(v_{nu\mathbf{k}}\right) - 2\Im\left(g_{nu\mathbf{k}}\right)\Im\left(v_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}} \right) \tag{1028}$$

$$=\frac{2\Re\left(v_{nu\mathbf{k}}\right)-2\Re\left(g_{nu\mathbf{k}}\right)}{\omega_{n\mathbf{k}}}\delta_{nn'}\tag{1029}$$

$$=2\frac{\Re\left(v_{nu\mathbf{k}}\right)-\Re\left(g_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}}\delta_{nn'}\tag{1030}$$

$$\frac{\partial R_{n'}}{\partial \Im(v_{nu\mathbf{k}})} = \frac{\partial}{\partial \Im(v_{nu\mathbf{k}})} \sum_{u\mathbf{k}} \left(\frac{(\Re(v_{nu\mathbf{k}}))^2 + (\Im(v_{nu\mathbf{k}}))^2 - 2\Re(g_{nu\mathbf{k}}) \Re(v_{nu\mathbf{k}}) - 2\Im(g_{nu\mathbf{k}}) \Im(v_{nu\mathbf{k}})}{\omega_{u\mathbf{k}}} \right)$$
(1031)

$$=\frac{2\Im\left(v_{nu\mathbf{k}}\right)-2\Im\left(g_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}}\delta_{nn'}\tag{1032}$$

$$=2\frac{\Im(v_{nu\mathbf{k}})-\Im(g_{nu\mathbf{k}})}{\omega_{u\mathbf{k}}}\delta_{nn'}$$
(1033)

Given that:

$$\ln B_{mn} = \ln \left(\left(\prod_{u\mathbf{k}} \exp \left(\frac{\mathrm{i}(\Im(v_{nu\mathbf{k}})\Re(v_{mu\mathbf{k}}) - \Im(v_{mu\mathbf{k}})\Re(v_{nu\mathbf{k}}))}{\omega_{u\mathbf{k}}^{2}} \right) \right) \prod_{u} \exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{(\Re(v_{mu\mathbf{k}}) - \Re(v_{nu\mathbf{k}}))^{2} + (\Im(v_{mu\mathbf{k}}) - \Im(v_{nu\mathbf{k}}))^{2}}{\omega_{u\mathbf{k}}^{2}} \coth \left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{\omega_{u\mathbf{k}}^{2}} \right) \right) \right)$$

$$= \sum_{u\mathbf{k}} \ln \exp \left(\frac{\mathrm{i}(\Im(v_{nu\mathbf{k}})\Re(v_{mu\mathbf{k}}) - \Im(v_{mu\mathbf{k}})\Re(v_{nu\mathbf{k}}))}{\omega_{u\mathbf{k}}^{2}} \right) + \sum_{u} \ln \exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{(\Re(v_{mu\mathbf{k}}) - \Re(v_{nu\mathbf{k}}))^{2} + (\Im(v_{mu\mathbf{k}}) - \Im(v_{nu\mathbf{k}}))^{2}}{\omega_{u\mathbf{k}}^{2}} \coth \left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right)$$

$$= \sum_{u\mathbf{k}} \left(\frac{\mathrm{i}(\Im(v_{nu\mathbf{k}})\Re(v_{mu\mathbf{k}}) - \Im(v_{mu\mathbf{k}})\Re(v_{nu\mathbf{k}}))}{\omega_{u\mathbf{k}}^{2}} \right) + \sum_{u\mathbf{k}} \left(-\frac{1}{2} \frac{(\Re(v_{mu\mathbf{k}}) - \Re(v_{nu\mathbf{k}}))^{2} + (\Im(v_{mu\mathbf{k}}) - \Im(v_{nu\mathbf{k}}))^{2}}{\omega_{u\mathbf{k}}^{2}} \coth \left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right)$$

$$= \frac{-\mathrm{i}\Im(v_{mu\mathbf{k}}) - (\Re(v_{nu\mathbf{k}}) - \Re(v_{mu\mathbf{k}})) \coth \left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right)}{\omega_{u\mathbf{k}}^{2}}$$

$$= \frac{-\mathrm{i}\Im(v_{mu\mathbf{k}}) - (\Re(v_{nu\mathbf{k}}) - \Re(v_{mu\mathbf{k}})) \coth \left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right)}{\omega_{u\mathbf{k}}^{2}}$$

$$(1037)$$

$$\frac{\partial \ln B_{mn}}{\partial \Im \left(v_{nu\mathbf{k}}\right)} = \frac{i\Re \left(v_{mu\mathbf{k}}\right) - \left(\Im \left(v_{nu\mathbf{k}}\right) - \Im \left(v_{mu\mathbf{k}}\right)\right) \coth \left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2}$$
(1038)

$$\frac{\partial \ln B_{mn}}{\partial a} = \frac{1}{B_{mn}} \frac{\partial B_{mn}}{\partial a} \tag{1039}$$

$$\frac{\partial B_{mn}}{\partial a} = B_{mn} \frac{\partial \ln B_{mn}}{\partial a} \tag{1040}$$

$$\frac{\partial B_{mn}}{\partial a} = \frac{\partial \left(B_{nm}\right)^{\dagger}}{\partial a} \tag{1041}$$

$$\frac{\partial B_{mn}}{\partial \Re\left(v_{nu\mathbf{k}}\right)} = B_{mn} \frac{\partial \ln B_{mn}}{\partial \Re\left(v_{nu\mathbf{k}}\right)} \tag{1042}$$

$$=B_{mn}\left(\frac{-i\Im\left(v_{mu\mathbf{k}}\right)-\left(\Re\left(v_{nu\mathbf{k}}\right)-\Re\left(v_{mu\mathbf{k}}\right)\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1043)

$$=B_{mn}\left(\frac{-i\Im\left(v_{mu\mathbf{k}}\right)+\left(\Re\left(v_{mu\mathbf{k}}\right)-\Re\left(v_{nu\mathbf{k}}\right)\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1044)

$$\frac{\partial B_{nm}}{\partial \Re\left(v_{nu\mathbf{k}}\right)} = \left(\frac{\partial B_{mn}}{\partial \Re\left(v_{nu\mathbf{k}}\right)}\right)^{\dagger} \tag{1045}$$

$$= \left(B_{mn} \left(\frac{-i\Im\left(v_{mu\mathbf{k}}\right) + \left(\Re\left(v_{mu\mathbf{k}}\right) - \Re\left(v_{nu\mathbf{k}}\right)\right) \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)\right)^{\dagger}$$
(1046)

$$=B_{nm}\left(\frac{i\Im\left(v_{mu\mathbf{k}}\right)+\left(\Re\left(v_{mu\mathbf{k}}\right)-\Re\left(v_{nu\mathbf{k}}\right)\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1047)

$$\frac{\partial B_{mn}}{\partial \Im (v_{nu\mathbf{k}})} = B_{mn} \frac{\partial \ln B_{mn}}{\partial \Im (v_{nu\mathbf{k}})} \tag{1048}$$

$$=B_{mn}\left(\frac{i\Re\left(v_{mu\mathbf{k}}\right)-\left(\Im\left(v_{nu\mathbf{k}}\right)-\Im\left(v_{mu\mathbf{k}}\right)\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1049)

$$=B_{mn}\left(\frac{i\Re\left(v_{mu\mathbf{k}}\right)+\left(\Im\left(v_{mu\mathbf{k}}\right)-\Im\left(v_{nu\mathbf{k}}\right)\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1050)

$$\frac{\partial B_{nm}}{\partial \Im \left(v_{nu\mathbf{k}}\right)} = \left(\frac{\partial B_{mn}}{\partial \Im \left(v_{nu\mathbf{k}}\right)}\right)^{\dagger} \tag{1051}$$

$$= (B_{mn})^{\dagger} \tag{1052}$$

$$=B_{nm}\left(\frac{-i\Re\left(v_{mu\mathbf{k}}\right)+\left(\Im\left(v_{mu\mathbf{k}}\right)-\Im\left(v_{nu\mathbf{k}}\right)\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1053)

Introducing this derivates in the equation (1028) give us:

$$\frac{\partial A_{\mathrm{B}}}{\partial \Re(v_{nu\mathbf{k}})} = \frac{\partial A_{\mathrm{B}}}{\partial R_{n}} \left(2 \frac{\Re(v_{nu\mathbf{k}}) - \Re(g_{nu\mathbf{k}})}{\omega_{u\mathbf{k}}} \right) + \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}} B_{nm} \left(\frac{i\Im(v_{mu\mathbf{k}}) + (\Re(v_{mu\mathbf{k}}) - \Re(v_{nu\mathbf{k}})) \cdot \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right) \right)$$

$$(1054)$$

$$+\frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\left(\frac{-i\Im(v_{mu\mathbf{k}})+\Re(v_{mu\mathbf{k}})-\Re(v_{nu\mathbf{k}}))\coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)\right) \tag{1055}$$

$$=0 ag{1056}$$

We can obtain the variational parameters:

$$\frac{-2\frac{\partial A_{\rm B}}{\partial R_{n}}\frac{\Re\left(v_{nuk}\right)}{\omega_{uk}} + \sum_{n < m}\left(\frac{\partial A_{\rm B}}{\partial B_{nm}}B_{nm}\frac{\Re\left(v_{nuk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} + \frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\frac{\Re\left(v_{nuk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right)}{\omega_{uk}^{2}}\right) \qquad (1057)$$

$$= -\frac{\partial A_{\rm B}}{\partial R_{n}}\frac{2\Re\left(g_{nuk}\right)}{\omega_{uk}} + \sum_{n < m}\left(\frac{\partial A_{\rm B}}{\partial B_{nm}}B_{nm}\left(\frac{i\Im\left(v_{muk}\right) + \Re\left(v_{muk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\left(\frac{-i\Im\left(v_{muk}\right) + \Re\left(v_{muk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right)\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\left(\frac{-i\Im\left(v_{muk}\right) + \Re\left(v_{muk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right)\right) \\
= \frac{\frac{\partial A_{\rm B}}{\partial R_{n}}\frac{2\Re\left(g_{nuk}\right)}{\omega_{uk}} - \sum_{n < m}\left(\frac{\partial A_{\rm B}}{\partial B_{nm}}B_{nm}\left(\frac{i\Im\left(v_{muk}\right) + \Re\left(v_{muk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\left(\frac{-i\Im\left(v_{muk}\right) + \Re\left(v_{muk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right)}{2\frac{\partial A_{\rm B}}{\partial R_{n}}\frac{1}{\omega_{uk}} - \sum_{n \neq m}\left(\frac{\partial A_{\rm B}}{\partial B_{nm}}B_{nm}\frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right)}{2\omega_{uk}}\right)} \\
= \frac{2\Re\left(g_{nuk}\right)\omega_{uk}\frac{\partial A_{\rm B}}{\partial R_{n}} - \sum_{n < m}\left(\frac{\partial A_{\rm B}}{\partial B_{nm}}B_{nm}\left(i\Im\left(v_{muk}\right) + \Re\left(v_{muk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\left(-i\Im\left(v_{muk}\right) + \Re\left(v_{muk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)\right)\right)}{2\omega_{uk}\frac{\partial A_{\rm B}}{\partial R_{n}} - \sum_{n < m}\left(\frac{\partial A_{\rm B}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\left(-i\Im\left(v_{muk}\right) + \Re\left(v_{muk}\right)\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)\right)\right)}{2\omega_{uk}\frac{\partial A_{\rm B}}{\partial R_{n}} - \sum_{n < m}\left(\frac{\partial A_{\rm B}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)\right)}{(1060)}$$

Let's consider the imaginary part of the variation parameters

$$\frac{\partial A_{\rm B}}{\partial \Im\left(v_{nu\mathbf{k}}\right)} = \frac{\partial A_{\rm B}}{\partial R_{n}} \left(2^{\frac{\Im\left(v_{nu\mathbf{k}}\right) - \Im\left(g_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}}}\right) + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{-\mathrm{i}\Re\left(v_{mu\mathbf{k}}\right) - \Im\left(v_{nu\mathbf{k}}\right) - \Im\left(v_{mu\mathbf{k}}\right)\right) \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$

$$\tag{1061}$$

$$+\frac{\partial A_{\rm B}}{\partial B_{mn}}B_{mn}\left(\frac{i\Re(v_{mu\mathbf{k}}) - (\Im(v_{nu\mathbf{k}}) - \Im(v_{mu\mathbf{k}}))\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)\right) \tag{1062}$$

$$=0$$
 (1063)

$$-2\frac{\partial A_{R}}{\partial R_{n}}\frac{\Im(v_{nuk})}{\omega_{uk}} + \sum_{n < m} \left(\frac{\partial A_{B}}{\partial B_{nm}}B_{nm} \frac{\Im(v_{nuk})\coth\left(\frac{\beta_{n}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} + \frac{\partial A_{B}}{\partial B_{nm}}B_{nm} \frac{\Im(v_{nuk})\coth\left(\frac{\beta_{n}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right) + \frac{\partial A_{B}}{\partial B_{nm}}B_{nn} \left(\frac{i\Re(v_{nuk}) + \Im(v_{nuk})\coth\left(\frac{\beta_{n}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right) + \frac{\partial A_{B}}{\partial B_{nn}}B_{nn} \left(\frac{i\Re(v_{nuk}) + \Re(v_{nuk}) \coth\left(\frac{\beta_{n}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right) + \frac{\partial A_{B}}{\partial B_{nn}}B_{nn} \left(\frac{i\Re(v_{nuk}) + \Re(v_{nuk}) \coth\left(\frac{\beta_{n}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}}\right)} \right)$$

$$= \frac{2\Re(v_{nuk}) \omega_{uk} \frac{\partial A_{B}}{\partial B_{n}} - \sum_{n < m} \left(\frac{\partial A_{B}}{\partial B_{nn}}B_{nn} \cot\left(\frac{\beta_{n}\omega_{uk}}{2}\right) + \frac{\partial A$$

C. Master Equation

Let's consider that the initial state of the system is given by $\rho(0) = |0\rangle\langle 0| \otimes \rho_B$, as we can see this state is independent of the variation transformation:

$$e^{V}\rho\left(0\right)e^{-V} = \left(\sum_{n} |n\rangle\langle n|B_{n+}\right)\left(|0\rangle\langle 0|\otimes\rho_{B}\right)\left(\sum_{n} |n\rangle\langle n|B_{n+}\right)$$
(1077)

$$0 = (B_{0+}|0\rangle\langle 0|B_{0-}) \otimes \rho_B \tag{1078}$$

$$0 = \rho\left(0\right) \tag{1079}$$

We transform any operator *O* into the interaction picture in the following way:

$$\widetilde{O} \equiv U^{\dagger}(t)OU(t) \tag{1080}$$

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_0^t dt' \overline{H_S}(t')\right). \tag{1081}$$

Therefore:

$$\widetilde{\overline{\rho_S}}(t) = U^{\dagger}(t)\overline{\rho_S}(t)U(t), \text{ where}$$
 (1082)

$$\overline{\rho_S}(t) = \text{Tr}_B\left(\bar{\rho}(t)\right) \tag{1083}$$

We can re-write the transformed interaction Hamiltonian operator using the following matrices:

$$\sigma_{nm,x} = |n\langle m| + |m\langle n| \tag{1084}$$

$$\sigma_{nm,y} = \mathrm{i}\left(|n\rangle\langle m| - |m\rangle\langle n|\right) \tag{1085}$$

$$B_{nm,x} = \frac{B_{nm} + B_{mn}}{2} \tag{1086}$$

$$B_{nm,x} = \frac{B_{nm} - B_{mn}}{2i} \tag{1087}$$

We can proof that $B_{nm} = B_{mn}^{\dagger}$

$$B_{mn}^{\dagger} = (B_{m+}B_{n-} - B_m B_n)^{\dagger} \tag{1088}$$

$$=B_{n-}^{\dagger}B_{m+}^{\dagger} - B_n B_m \tag{1089}$$

$$= B_{n+}B_{m-} - B_n B_m ag{1090}$$

$$=B_{nm} \tag{1091}$$

So we can say that the set of matrices (1084) are hermetic. Re-writing the transformed interaction Hamiltonian using the set (1084) give us.

$$\overline{H_I} = \sum_{n \neq m} V_{nm}(t) |n\rangle m |B_{nm} + \sum_n B_{z,n}(t) |n\rangle n|, \qquad (1092)$$

$$= \sum_{n} B_{z,n}(t) |n\rangle\langle n| + \sum_{n < m} (V_{nm}(t) |n\rangle\langle m| B_{nm} + V_{mn}(t) |m\rangle\langle n| B_{mn})$$
(1093)

$$=\sum_{n}B_{z,n}\left(t\right)\left|n\right\rangle\left|n\right\rangle+\sum_{n< m}\left(\Re\left(V_{nm}\left(t\right)\right)B_{nm}\left(\frac{\sigma_{nm,x}-\mathrm{i}\sigma_{nm,y}}{2}\right)+\mathrm{i}\Im\left(V_{nm}\left(t\right)\right)B_{nm}\left(\frac{\sigma_{nm,x}-\mathrm{i}\sigma_{nm,y}}{2}\right)\right)$$
(1094)

$$+\Re\left(V_{nm}\left(t\right)\right)B_{mn}\left(\frac{\sigma_{nm,x}+\mathrm{i}\sigma_{nm,y}}{2}\right)-\mathrm{i}\Im\left(V_{nm}\left(t\right)\right)B_{mn}\left(\frac{\sigma_{nm,x}+\mathrm{i}\sigma_{nm,y}}{2}\right)\right)\tag{1095}$$

$$= \sum_{n} B_{z,n}(t) |n\rangle\langle n| + \sum_{n < m} \left(\Re(V_{nm}(t)) \sigma_{nm,x} \left(\frac{B_{nm} + B_{mn}}{2} \right) + \Re(V_{nm}(t)) \sigma_{nm,y} \frac{i(B_{mn} - B_{nm})}{2} \right)$$
(1096)

$$+i\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,x}\left(\frac{B_{nm}-B_{mn}}{2}\right)+\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}\left(\frac{B_{nm}+B_{mn}}{2}\right)\right)$$
(1097)

$$= \sum_{n} B_{z,n}(t) |n\rangle\langle n| + \sum_{n < m} (\Re(V_{nm}(t)) \sigma_{nm,x} B_{nm,x} - \Im(V_{nm}(t)) \sigma_{nm,x} B_{nm,y} + \Re(V_{nm}(t)) \sigma_{nm,y} B_{nm,y}$$
(1098)

$$+\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}B_{nm,x}\right)\tag{1099}$$

Let's define the set

$$P = \{(n, m) \in \mathbb{N}^2 | 0 \le n, m \le d - 1 \land (n = m \lor n < m)\}$$
(1100)

Now consider the following set of operators,

$$A_{1,nm}(t) = \sigma_{nm,x} (1 - \delta_{mn})$$

$$A_{2,nm}(t) = \sigma_{nm,y} (1 - \delta_{mn})$$

$$A_{3,nm}(t) = \delta_{mn} |n\rangle m|$$

$$A_{4,nm}(t) = A_{2,mn}(t)$$

$$A_{5,nm}(t) = A_{1,nm}(t)$$

$$B_{1,nm}(t) = B_{nm,x}$$

$$B_{2,nm}(t) = B_{nm,y}$$

$$B_{3,nm}(t) = B_{2,n}(t)$$

$$B_{4,nm}(t) = B_{1,nm}(t)$$

$$B_{5,nm}(t) = B_{2,nm}(t)$$

$$B_{5,nm}(t) = B_{2,nm}(t)$$

$$C_{1,nm}(t) = \Re(V_{nm}(t))$$

$$C_{1,nm}(t) = \Re(V_{nm}(t))$$

$$C_{3,nm}(t) = 1$$

$$C_{4,nm}(t) = \Im(V_{nm}(t))$$

$$C_{5,nm}(t) = -\Im(V_{nm}(t))$$

$$C_{1,111}$$

The previous notation allows us to write the interaction Hamiltonian in $\overline{H_I}(t)$ as:

$$\overline{H_I} = \sum_{j \in J, p \in P} C_{jp}(t) \left(A_{jp} \otimes B_{jp}(t) \right)$$
(1116)

Here $J = \{1, 2, 3, 4, 5\}$ and P the set defined in (1100).

We write the interaction Hamiltonian transformed under (1080) as:

$$\widetilde{H}_{I}\left(t\right) = \sum_{j \in J, p \in P} C_{jp}\left(t\right) \left(\widetilde{A_{jp}}\left(t\right) \otimes \widetilde{B_{jp}}\left(t\right)\right) \tag{1117}$$

$$\widetilde{A_{jp}}(t) = U^{\dagger}(t) A_{jp} U(t)$$
(1118)

$$\widetilde{B_{jp}}(t) = e^{iH_B t} B_{jp}(t)(t) e^{-iH_B t}$$
(1119)

Taking as reference state ρ_B and truncating at second order in $H_I(t)$, we obtain our master equation in the interaction picture:

$$\frac{\mathrm{d}\widetilde{\rho_{S}}(t)}{\mathrm{d}t} = -\int_{0}^{t} \mathrm{Tr}_{B} \left[\widetilde{H}_{I}(t), \left[\widetilde{H}_{I}(s), \widetilde{\rho_{S}}(t) \rho_{B} \right] \right] \mathrm{d}s \tag{1120}$$

Replacing the equation (1117) in (1120) we can obtain:

$$\frac{d\widetilde{\rho_{S}}(t)}{dt} = -\int_{0}^{t} \operatorname{Tr}_{B}\left[\widetilde{H_{I}}(t), \left[\widetilde{H_{I}}(s), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds \qquad (1121)$$

$$= -\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j \in J, p \in P} C_{jp}(t) \left(\widetilde{A_{jp}}(t) \otimes \widetilde{B_{jp}}(t)\right), \left[\sum_{j' \in J, p' \in P} C_{j'p'}(s) \left(\widetilde{A_{j'p'}}(s) \otimes \widetilde{B_{j'p'}}(s)\right), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds \qquad (1122)$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j\in J,p\in P} C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right),\sum_{j'\in J,p'\in P} C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\widetilde{\rho_{S}}(t)\rho_{B}\right]\right]$$
(1123)

$$-\widetilde{\rho_{S}}(t)\rho_{B}\sum_{j'\in J, p'\in P}C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\right]\mathrm{d}s\tag{1124}$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left(\sum_{j\in J, p\in P} C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right) \sum_{j'\in J, p'\in P} C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right) \widetilde{\rho_{S}}(t)\rho_{B}\right)$$
(1125)

$$-\sum_{j\in J, p\in P} C_{jp}\left(t\right) \left(\widetilde{A_{jp}}\left(t\right) \otimes \widetilde{B_{jp}}\left(t\right)\right) \widetilde{\rho_{S}}(t) \rho_{B} \sum_{j'\in J, p'\in P} C_{j'p'}\left(s\right) \left(\widetilde{A_{j'p'}}\left(s\right) \otimes \widetilde{B_{j'p'}}\left(s\right)\right)$$

$$(1126)$$

$$-\sum_{j'\in J,p'\in P}C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\widetilde{\rho_{S}}(t)\rho_{B}\sum_{j\in J,p\in P}C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right)$$
(1127)

$$+\widetilde{\rho_{S}}(t)\rho_{B}\sum_{j'\in J,p'\in P}C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\sum_{j\in J,p\in P}C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right)\right)ds$$
(1128)

In order to calculate the correlation functions we define:

$$\Lambda_{jpj'p'}(\tau) = \left\langle \widetilde{B_{jp}}(t) \, \widetilde{B_{j'p'}}(s) \right\rangle_{B} \tag{1129}$$

$$= \left\langle \widetilde{B_{jp}} \left(\tau \right) \widetilde{B_{j'p'}} \left(0 \right) \right\rangle_{B} \tag{1130}$$

Here $s \to t - \tau$ and $\operatorname{Tr}_B\left(\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right) = \left\langle \widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right\rangle_B$. To evaluate the trace respect to the bath we need to recall that our master equation depends of elements related to the bath and represented by the operators $\widetilde{B_{jp}}\left(t\right)$ and elements related to the system given by $\widetilde{A_{jp}}\left(t\right)$. The systems considered are in different Hilbert spaces so $\operatorname{Tr}\left(\widetilde{A_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(t\right)\right) = \operatorname{Tr}\left(\widetilde{A_{jp}}\left(t\right)\right)\operatorname{Tr}\left(\widetilde{B_{j'p'}}\left(t\right)\right)$. The correlation functions relevant of the master equation (1128) are:

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\rho_{B}\right) = \left\langle\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right\rangle_{B} \tag{1131}$$

$$= \left\langle \widetilde{B_{jp}} \left(0 \right) \widetilde{B_{j'p'}} \left(0 \right) \right\rangle_{R} \tag{1132}$$

$$=\Lambda_{jpj'p'}\left(\tau\right)\tag{1133}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jp}}\left(t\right)\rho_{B}\widetilde{B_{j'p'}}\left(s\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'p'}}\left(s\right)\widetilde{B_{jp}}\left(t\right)\rho_{B}\right) \tag{1134}$$

$$= \left\langle \widetilde{B_{j'p'}}(s) \, \widetilde{B_{jp}}(t) \right\rangle_{\mathcal{B}} \tag{1135}$$

$$= \left\langle \widetilde{B_{j'p'}} \left(-\tau \right) \widetilde{B_{jp}} \left(0 \right) \right\rangle_{R} \tag{1136}$$

$$=\Lambda_{j'p'jp}\left(-\tau\right)\tag{1137}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j'p'}}\left(s\right)\rho_{B}\widetilde{B_{jp}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\rho_{B}\right) \tag{1138}$$

$$= \left\langle \widetilde{B_{jp}}(t) \, \widetilde{B_{j'p'}}(s) \right\rangle_{R} \tag{1139}$$

$$= \left\langle \widetilde{B_{jp}} \left(\tau \right) \widetilde{B_{j'p'}} \left(0 \right) \right\rangle_{\mathcal{B}} \tag{1140}$$

$$=\Lambda_{jpj'p'}\left(\tau\right)\tag{1141}$$

$$\operatorname{Tr}_{B}\left(\rho_{B}\widetilde{B_{j'p'}}\left(s\right)\widetilde{B_{jp}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'p'}}\left(s\right)\widetilde{B_{jp}}\left(t\right)\rho_{B}\right) \tag{1142}$$

$$= \left\langle \widetilde{B_{j'p'}}(s)\,\widetilde{B_{jp}}(t) \right\rangle_{B} \tag{1143}$$

$$= \left\langle \widetilde{B_{j'p'}} \left(-\tau \right) \widetilde{B_{jp}} \left(0 \right) \right\rangle_{R} \tag{1144}$$

$$=\Lambda_{j'p'jp}\left(-\tau\right)\tag{1145}$$

We made use of the cyclic property for the trace to evaluate the correlation functions, from the equations obtained in (1121) and (1128) and using the equations (1131)-(1145) we can re-write:

$$\frac{\widetilde{d\widetilde{\rho_{S}}}(t)}{dt} = -\int_{0}^{t} \sum_{j,j',p,p'} \left(C_{jp}(t) C_{j'p'}(s) \left(\Lambda_{jpj'p'}(\tau) \widetilde{A_{jp}}(t) \widetilde{A_{j'p'}}(s) \widetilde{\rho_{S}}(t) - \Lambda_{j'p'jp}(-\tau) \widetilde{A_{jp}}(t) \widetilde{\rho_{S}}(t) \widetilde{\rho_{S}}(t$$

$$+C_{jp}\left(t\right)C_{j'p'}\left(s\right)\left(\Lambda_{j'p'jp}\left(-\tau\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{j'p'}}\left(s\right)\widetilde{A_{jp}}\left(t\right)-\Lambda_{jpj'p'}\left(\tau\right)\widetilde{A_{j'p'}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{jp}}\left(t\right)\right)\right)ds\tag{1147}$$

$$= -\int_{0}^{t} \sum_{jj'pp'} \left(C_{jp}(t) C_{j'p'}(s) \left(\Lambda_{jpj'p'}(\tau) \left[\widetilde{A_{jp}}(t), \widetilde{A_{j'p'}}(s) \widetilde{\rho_{S}}(t) \right] + \Lambda_{j'p'jp}(-\tau) \left[\widetilde{\rho_{S}}(t) \widetilde{A_{j'p'}}(s), \widetilde{A_{jp}}(t) \right] \right) \right)$$

$$(1148)$$

Rearranging and identofying the commutators allow us to write a more simplified version

$$\frac{\mathrm{d}\,\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\int_{0}^{t} \sum_{jj'pp'} \left(C_{jp}\left(t\right) C_{j'p'}\left(t-\tau\right) \left(\Lambda_{jpj'p'}\left(\tau\right) \left[A_{jp}\left(t\right), A_{j'p'}\left(t-\tau,t\right) \overline{\rho_{S}}(t) \right] + \Lambda_{j'p'jp}\left(-\tau\right) \left[\overline{\rho_{S}}(t) A_{j'p'}\left(t-\tau,t\right), A_{jp}\left(t\right) \right] \right) \right) \mathrm{d}\tau - \mathrm{i}\left[H_{S}\left(t\right), \overline{\rho_{S}}(t) \right]$$

$$\tag{1149}$$

For this case we used that $A_{jp}\left(t-\tau,t\right)=U\left(t\right)U^{\dagger}\left(t-\tau\right)A_{jp}\left(t\right)U\left(t-\tau\right)U^{\dagger}\left(t\right)$. This is a non-Markovian equation.

VII. TIME-DEPENDENT MULTI-SITE MODEL WITH ONE BATH COUPLING

Let's consider the following Hamiltonian for a system of d-levels (qudit). We start with a time-dependent Hamiltonian of the form:

$$H(t) = H_S(t) + H_I + H_B, (1150)$$

$$H_S(t) = \sum_{n=0} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|, \qquad (1151)$$

$$H_{I} = \left(\sum_{n=0} \mu_{n}(t) |n\rangle\langle n|\right) \left(\sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)\right), \tag{1152}$$

$$H_B = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}. \tag{1153}$$

We will start with a system-bath coupling operator of the form $\sum_{n=0} \mu_n(t) |n\rangle\langle n|$.

A. Variational Transformation

We consider the following operator:

$$V = \left(\sum_{n=1} |n\rangle\langle n|\right) \left(\sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}}\right)\right)$$
(1154)

At first let's obtain e^V under the transformation (1154), consider $\hat{\varphi} = \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}} \right)$:

$$e^{V} = e^{\sum_{n=1} |n\rangle\langle n|\hat{\varphi}} \tag{1155}$$

$$= \mathbb{I} + \sum_{n=1} |n\rangle\langle n|\hat{\varphi} + \frac{\left(\sum_{n=1} |n\rangle\langle n|\hat{\varphi}\right)^2}{2!} + \dots$$
 (1156)

$$= \mathbb{I} + \sum_{n=1} |n\rangle\langle n|\hat{\varphi} + \frac{\sum_{n=1} |n\rangle\langle n|\hat{\varphi}^2}{2!} + \dots$$
 (1157)

$$= \mathbb{I} - \sum_{n=1} |n\rangle\langle n| + \sum_{n=1} |n\rangle\langle n| \left(\mathbb{I} + \hat{\varphi} + \frac{\hat{\varphi}^2}{2!} + \dots \right)$$
 (1158)

$$=|0\rangle\langle 0|+\sum_{n=1}|n\rangle\langle n|e^{\hat{\varphi}}\tag{1159}$$

$$=|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B_{+} \tag{1160}$$

Given that $\left[b_{\mathbf{k'}}^{\dagger}-b_{\mathbf{k'}},b_{\mathbf{k}}^{\dagger}-b_{\mathbf{k}}\right]=0$ if $\mathbf{k'}\neq\mathbf{k}$ then we can proof using the Zassenhaus formula and defining $D\left(\pm\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\right)=e^{\pm\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\left(b_{\mathbf{k}}^{\dagger}-b_{\mathbf{k}}\right)}$ in the same way than (23):

$$e^{\sum_{\mathbf{k}} \pm \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}} \right)} = \prod_{\mathbf{k}} e^{\pm \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}} \right)}$$
(1161)

$$= \prod_{\mathbf{k}} D\left(\pm \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \tag{1162}$$

$$=B_{\pm} \tag{1163}$$

As we can see $e^{-V}=|0\rangle\langle 0|+\sum_{n=1}|n\rangle\langle n|B$. because this form imposes that $e^{-V}e^{V}=\mathbb{I}$ and the inverse of a operator is unique. This allows us to write the canonical transformation in the following explicit way:

$$e^{V}Ae^{-V} = \left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B_{+}\right)A\left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B_{-}\right)$$
(1164)

Now let's obtain the canonical transformation of the principal elements of the Hamiltonian (1150):

$$\overline{|0\rangle\langle0|} = \left(|0\rangle\langle0| + \sum_{n=1} |n\rangle\langle n|B_{+}\right)|0\rangle\langle0| \left(|0\rangle\langle0| + \sum_{n=1} |n\rangle\langle n|B_{-}\right),\tag{1165}$$

$$=|0\rangle\langle 0|, \tag{1166}$$

$$\overline{|m\langle n|} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_{+}\right) |m\rangle\langle n| \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_{-}\right),\tag{1167}$$

$$=|m\langle m|B_{+}|m\langle n|n\langle n|B_{-}, \tag{1168}$$

$$=|m\rangle\langle n|, \ m\neq 0, \ n\neq 0, \tag{1169}$$

$$\overline{|0\rangle\langle m|} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_{+}\right)|0\rangle\langle m|\left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_{-}\right),\tag{1170}$$

$$=|0\rangle\langle m|B_{-} m\neq 0, \tag{1171}$$

$$\overline{|m\rangle\langle 0|} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_{+}\right) |m\rangle\langle 0| \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_{-}\right)$$
(1172)

$$=|0\rangle m|B_{+} m \neq 0, \tag{1173}$$

$$\overline{\sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_{+} \right) \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_{-} \right)$$
(1174)

$$=|0\rangle\langle 0|\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+\sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\omega_{\mathbf{k}}B_{+}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}B_{-}$$
(1175)

$$= |0\rangle\langle 0| \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(B_{+} b_{\mathbf{k}}^{\dagger} B_{-} \right) (B_{+} b_{\mathbf{k}} B_{-})$$
(1176)

$$= |0\rangle\langle 0| \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$
(1177)

$$= |0\rangle\langle 0| \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$
(1178)

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \right)$$
(1179)

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \sum_{n=1} |n\rangle\langle n| \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1180)

$$\overline{H_{\overline{S}}(t)} = \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|$$
(1181)

$$= \overline{\sum_{n=0} \varepsilon_n(t) |n\rangle\langle n|} + \overline{\sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|}$$
(1182)

$$=\sum_{n=0}^{\infty}\varepsilon_{n}\left(t\right)\left|n\right\rangle\left|n\right\rangle+\sum_{n=1}^{\infty}\left(V_{0n}\left(t\right)\left|0\right\rangle\left|n\right\rangle+V_{n0}\left(t\right)\left|n\right\rangle\left|0\right\rangle+\sum_{m,n\neq0}^{\infty}V_{mn}\left(t\right)\left|m\right\rangle\left|n\right\rangle$$
(1183)

$$= \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) |\overline{0\rangle\langle n|} + V_{n0}(t) |\overline{n\rangle\langle 0|} \right) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |\overline{m}\rangle\langle n|$$
(1184)

$$= \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} (V_{0n}(t) B_- |0\rangle\langle n| + V_{n0}(t) B_+ |n\rangle\langle 0|) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1185)

$$= \sum_{n=0}^{\infty} \varepsilon_{n}(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} (V_{0n}(t) |0\rangle\langle n|B_{-} + V_{n0}(t) |n\rangle\langle 0|B_{+}) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1186)

$$\overline{H_I} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_+ \right) \left(\left(\sum_{n=0} \mu_n\left(t\right) |n\rangle\langle n| \right) \left(\sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^\dagger + b_{\mathbf{k}} \right) \right) \right) \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B_- \right)$$
(1187)

$$= \left(\mu_0\left(t\right)|0\rangle\langle 0| + \sum_{n=1}\mu_n\left(t\right)|n\rangle\langle n|B_+\right) \left(\sum_{\mathbf{k}}g_{\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)\right) \left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B_-\right)$$
(1188)

$$= \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} g_{\mathbf{k}} B_+ \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) B_-$$
(1189)

$$= \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} - 2 \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$

$$(1190)$$

$$\overline{H_B} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \sum_{n=1} |n\rangle\langle n| \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$
(1191)

Joining this terms allow us to write:

$$\overline{H} = \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} (V_{0n}(t) |0\rangle\langle n|B_- + V_{n0}(t) |n\rangle\langle 0|B_+) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1192)

$$+\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\omega_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \sum_{n=1}|n\rangle\langle n|\omega_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$
(1193)

$$+\sum_{n=0} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) - \sum_{n=1} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} 2g_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}$$
(1194)

$$= \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} (V_{0n}(t) |0\rangle\langle n|B_- + V_{n0}(t) |n\rangle\langle 0|B_+) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1195)

$$+\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\left(\omega_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2\mu_{n}\left(t\right)g_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\right) + \mu_{0}\left(t\right)|0\rangle\langle 0|\sum_{\mathbf{k}}g_{\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$
(1196)

$$+\sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \left(g_{\mathbf{k}} \mu_n(t) - \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1197)

Let's define the following functions:

$$R_n(t) = \sum_{\mathbf{k}} \left(\omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2\mu_n(t) g_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$
(1198)

$$= \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(\omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2\mu_n(t) g_{\mathbf{k}} \right)$$
(1199)

$$B_{z,n}(t) = \sum_{\mathbf{k}} \left(g_{\mathbf{k}} \mu_n(t) - \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1200)

Using the previous functions we have that (1197) can be re-written in the following way:

$$\overline{H} = \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} (V_{0n}(t) |0\rangle\langle n|B_{-} + V_{n0}(t) |n\rangle\langle 0|B_{+}) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1201)

$$+\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \sum_{n=1}R_{n}|n\rangle\langle n| + \sum_{n=1}B_{z,n}|n\rangle\langle n| + \mu_{0}(t)|0\rangle\langle 0| \sum_{\mathbf{k}}g_{\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$
(1202)

Now in order to separate the elements of the hamiltonian (1202) let's follow the references of the equations (242) and (223) to separate the hamiltonian like:

$$\overline{H_S\left(t\right)} = \sum_{n=0}^{\infty} \varepsilon_n\left(t\right) |n\rangle\langle n| + B \sum_{n=1}^{\infty} \left(V_{0n}\left(t\right) |0\rangle\langle n| + V_{n0}\left(t\right) |n\rangle\langle 0|\right) + \sum_{m,n\neq 0}^{\infty} V_{mn}\left(t\right) |m\rangle\langle n| + \sum_{n=1}^{\infty} R_n |n\rangle\langle n|$$
(1203)

$$\overline{H_{I}} = \sum_{n=1} B_{z,n} |n\rangle\langle n| + \mu_{0}(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \left(V_{0n}(t) |0\rangle\langle n| \left(B_{-} - B \right) + V_{n0}(t) |n\rangle\langle 0| \left(B_{+} - B \right) \right),$$
(1204)

$$\overline{H_B} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \tag{1205}$$

Here B is given by:

$$B = \langle B_+ \rangle$$
$$= \langle B_- \rangle$$

The transformed Hamiltonian can be written in function of the following set of hermitian operators:

$$\sigma_{nm,x} = |n\rangle\langle m| + |m\rangle\langle n| \tag{1206}$$

$$\sigma_{nm,y} = i\left(|n\langle m| - |m\langle n|\right) \tag{1207}$$

$$B_x = \frac{B_+ + B_- - 2B}{2} \tag{1208}$$

$$B_y = \frac{B_- - B_+}{2i} \tag{1209}$$

Using this set of hermitian operators to write the Hamiltonians (1151)-(1153)

$$\overline{H_{S}\left(t\right)}=\varepsilon_{0}\left(t\right)\left|0\right\rangle\!\left(0\right|+\sum_{n=1}\left(\varepsilon_{n}\left(t\right)+R_{n}\right)\left|n\right\rangle\!\left(n\right|+B\sum_{n=1}\left(V_{0n}\left(t\right)\left|0\right\rangle\!\left(n\right|+V_{n0}\left(t\right)\left|n\right\rangle\!\left(0\right|\right)+\sum_{m.n\neq0}V_{mn}\left(t\right)\left|m\right\rangle\!\left(n\right|$$

$$= \varepsilon_0(t) |0\rangle\langle 0| + B \sum_{n=1} (V_{0n}(t) |0\rangle\langle n| + V_{n0}(t) |n\rangle\langle 0|) + \sum_{0 < m < n} (V_{mn}(t) |m\rangle\langle n| + V_{nm}(t) |n\rangle\langle m|)$$
(1211)

$$+\sum_{n=1}^{\infty}\left(\varepsilon_{n}\left(t\right)+R_{n}\right)\left|n\right\rangle\left|n\right\rangle$$
(1212)

$$= \sum_{0 \le m \le n} \left(\left(\Re \left(V_{mn} \left(t \right) \right) + i \Im \left(V_{mn} \left(t \right) \right) \right) |m\rangle\langle n| + \left(\Re \left(V_{mn} \left(t \right) \right) - i \Im \left(V_{mn} \left(t \right) \right) \right) |n\rangle\langle m| \right) + \varepsilon_0 \left(t \right) |0\rangle\langle 0|$$
(1213)

$$+B\sum_{n=1}\left(V_{0n}\left(t\right)\left|0\right\rangle\left(n\right|+V_{n0}\left(t\right)\left|n\right\rangle\left(0\right|\right)+\sum_{n=1}\left(\varepsilon_{n}\left(t\right)+R_{n}\right)\left|n\right\rangle\left(n\right|$$
(1214)

$$= \sum_{0 < m < n} \left(\left(\Re \left(V_{nm} \left(t \right) \right) + i \Im \left(V_{mn} \left(t \right) \right) \right) \frac{\sigma_{nm,x} - i \sigma_{nm,y}}{2} + \left(\Re \left(V_{nm} \left(t \right) \right) - i \Im \left(V_{mn} \left(t \right) \right) \right) \frac{\sigma_{nm,x} + i \sigma_{nm,y}}{2} \right)$$

$$(1215)$$

$$+B\sum_{n=1}\left(V_{0n}\left(t\right)\frac{\sigma_{0n,x}-\mathrm{i}\sigma_{0n,y}}{2}+V_{n0}\left(t\right)\frac{\sigma_{0n,x}+\mathrm{i}\sigma_{0n,y}}{2}\right)+\varepsilon_{0}\left(t\right)\left|0\right\rangle\langle 0|+\sum_{n=1}\left(\varepsilon_{n}\left(t\right)+R_{n}\right)\left|n\right\rangle\langle n|\tag{1216}$$

$$= \sum_{0 < m < n} (\Re (V_{nm}(t)) \sigma_{nm,x} + \Im (V_{nm}(t)) \sigma_{nm,y}) + B \sum_{n=1} (\Re (V_{0n}(t)) \sigma_{0n,x} + \Im (V_{mn}(t)) \sigma_{0n,y})$$
(1217)

$$+ \varepsilon_0(t) |0\rangle\langle 0| + \sum_{n=1} (\varepsilon_n(t) + R_n) |n\rangle\langle n|$$
(1218)

$$\overline{H_{I}(t)} = \sum_{n=1}^{\infty} B_{z,n} |n\langle n| + \mu_{0}(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right) + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n| \left(B_{-} - B\right) + V_{n0}(t) |n\rangle\langle 0| \left(B_{+} - B\right)\right) (1219)$$

$$= \sum_{n=1}^{\infty} \left(\left(\Re\left(V_{0n}(t)\right) + i\Im\left(V_{0n}(t)\right)\right) \left(B_{-} - B\right) \frac{\sigma_{0n,x} - i\sigma_{0n,y}}{2} + \left(\Re\left(V_{0n}(t)\right) - i\Im\left(V_{0n}(t)\right)\right) \left(B_{+} - B\right) \frac{\sigma_{0n,x} + i\sigma_{0n,y}}{2} \right) (1220)$$

$$+\sum_{n=1} B_{z,n} |n\rangle\langle n| + \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1221)

$$= \sum_{n=1} B_{z,n} |n\rangle\langle n| + \sum_{n=1} \left(\frac{\sigma_{0n,x}}{2} \left((B_{-} - B) \left(\Re \left(V_{0n} \left(t \right) \right) + i\Im \left(V_{0n} \left(t \right) \right) \right) + (B_{+} - B) \left(\Re \left(V_{0n} \left(t \right) \right) - i\Im \left(V_{0n} \left(t \right) \right) \right) \right) \right)$$

$$(1222)$$

$$+\frac{i\sigma_{0n,y}}{2}\left(\left(B_{+}-B\right)\left(\Re\left(V_{0n}\left(t\right)\right)-i\Im\left(V_{0n}\left(t\right)\right)\right)-\left(B_{-}-B\right)\left(\Re\left(V_{0n}\left(t\right)\right)+i\Im\left(V_{0n}\left(t\right)\right)\right)\right)\right)$$
(1223)

$$+ \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
 (1224)

$$= \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \left(\frac{\sigma_{0n,x}}{2} \left(B_+ + B_- - 2B \right) \Re \left(V_{0n}(t) \right) + i \left(B_- - B_- + B_+ + B \right) \Im \left(V_{0n}(t) \right) \right)$$
(1225)

$$+\frac{i\sigma_{0n,y}}{2}\left(\left(B_{+}-B-B_{-}+B\right)\Re\left(V_{0n}\left(t\right)\right)+i\left(B-B_{-}+B-B_{+}\right)\Im\left(V_{0n}\left(t\right)\right)\right)+\sum_{n=1}B_{z,n}|n\rangle\langle n|\tag{1226}$$

$$= \sum_{n=1}^{\infty} B_{z,n} |n| \langle n| + \mu_0(t) |0| \langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1}^{\infty} \left(\sigma_{0n,x} \left(B_x \Re \left(V_{0n}(t) \right) - B_y \Im \left(V_{0n}(t) \right) \right) \right)$$
(1227)

$$+\sigma_{0n,y}\left(B_{y}\Re\left(V_{0n}(t)\right) + B_{x}\Im\left(V_{0n}(t)\right)\right)\right) \tag{1228}$$

B. Free-energy minimization

As first approach let's consider the minimization of the free-energy through the Feynman-Bogoliubov inequality

$$A \le A_{\rm B} \equiv -\frac{1}{\beta} \ln \left(\text{Tr} \left(e^{-\beta (\overline{H_S} + \overline{H_B})} \right) \right) + \left\langle \overline{H_I} \right\rangle_{\overline{H_S} + \overline{H_B}} + O\left(\left\langle \overline{H_I^2} \right\rangle_{\overline{H_S} + \overline{H_B}} \right). \tag{1229}$$

Taking the equations (244)-(252) and given that $\operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right) = C\left(R_1, R_2, ..., R_{d-1}, B\right)$, where each R_i and B depend of the set of variational parameters $\{v_k\}$. From (252) and using the chain rule we obtain that:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right)}{\partial v_{\mathbf{k}}} = \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right)}{\partial B} \frac{\partial B}{\partial v_{\mathbf{k}}} + \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right)}{\partial R_n} \frac{\partial R_n}{\partial v_{\mathbf{k}}},\tag{1230}$$

$$=0 (1231)$$

Let's recall the equations (1198) and (1200), we can write them in terms of the variational parameters

$$B = \exp\left(-\left(1/2\right) \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}^{2}} \coth\left(\beta \omega_{\mathbf{k}}/2\right)\right)$$
(1232)

$$R_n = \sum_{\mathbf{k}} \omega_{\mathbf{k}}^{-1} \left(v_{\mathbf{k}} - 2\mu_n \left(t \right) g_{\mathbf{k}} v_{\mathbf{k}} \right)$$
(1233)

The derivates needed to obtain the set of variational parameter are given by:

$$\frac{\partial B}{\partial v_{\mathbf{k}}} = -\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}^2} \coth(\beta \omega_{\mathbf{k}}/2) B \tag{1234}$$

$$\frac{\partial R_n}{\partial v_{\mathbf{k}}} = \omega_{\mathbf{k}}^{-1} \left(2v_{\mathbf{k}} - 2\mu_n \left(t \right) g_{\mathbf{k}} \right) \tag{1235}$$

Introducing this derivates in the equation (1230) give us:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial v_{\mathbf{k}}} = \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial B} \left(-\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}^{2}} \coth\left(\beta \omega_{\mathbf{k}}/2\right) B\right) + \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial R_{n}} \omega_{\mathbf{k}}^{-1} \left(2v_{\mathbf{k}} - 2\mu_{n}\left(t\right) g_{\mathbf{k}}\right) \tag{1236}$$

$$= v_{\mathbf{k}} \left(\frac{2}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial R_{n}} - \frac{\coth\left(\beta \omega_{\mathbf{k}}/2\right) B}{\omega_{\mathbf{k}}^{2}} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial B}\right) - \frac{2g_{\mathbf{k}}}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial R_{n}} \mu_{n}\left(t\right) \tag{1237}$$

We can obtain the variational parameters:

$$v_{\mathbf{k}} = \frac{\frac{2g_{\mathbf{k}}}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta H_{S}(t)}\right)}{\partial R_{n}} \mu_{n}(t)}{\frac{2}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta H_{S}(t)}\right)}{\partial R_{n}} - \frac{\coth(\beta \omega_{\mathbf{k}}/2)B}{\omega_{\mathbf{k}}^{2}} \frac{\partial \text{Tr}\left(e^{-\beta H_{S}(t)}\right)}{\partial B}}$$
(1238)

$$= \frac{2g_{\mathbf{k}}\omega_{\mathbf{k}}\sum_{n=1}\frac{\partial \text{Tr}\left(e^{-\beta\overline{H}_{S}(t)}\right)}{\partial R_{n}}\mu_{n}\left(t\right)}{2\omega_{\mathbf{k}}\sum_{n=1}\frac{\partial \text{Tr}\left(e^{-\beta\overline{H}_{S}(t)}\right)}{\partial R_{n}} - B\coth\left(\beta\omega_{\mathbf{k}}/2\right)\frac{\partial \text{Tr}\left(e^{-\beta\overline{H}_{S}(t)}\right)}{\partial B}}$$
(1239)

Now taking $v_{\mathbf{k}} = g_{\mathbf{k}}v_{\mathbf{k}}$ then we can obtain $v_{\mathbf{k}}$ like:

$$v_{\mathbf{k}} = \frac{2\omega_{\mathbf{k}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} \mu_{n}(t)}{2\omega_{\mathbf{k}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} - B \coth\left(\beta \omega_{\mathbf{k}}/2\right) \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial B}}.$$
(1240)

C. Master Equation

Let's consider that the initial state of the system is given by $\rho(0) = |0\rangle\langle 0| \otimes \rho_B$, as we can see this state is independent of the variational transformation:

$$e^{V}\rho(0)e^{-V} = \left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B_{+}\right)(|0\rangle\langle 0| \otimes \rho_{B})\left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B_{-}\right)$$
(1241)

$$0 = |0\rangle\langle 0| \otimes \rho_B \tag{1242}$$

$$0 = \rho(0) \tag{1243}$$

We transform any operator *O* into the interaction picture in the following way:

$$\widetilde{O} \equiv U^{\dagger}(t)OU(t) \tag{1244}$$

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_0^t dt' \overline{H_S}(t')\right). \tag{1245}$$

Therefore:

$$\widetilde{\overline{\rho_S}}(t) = U^{\dagger}(t)\overline{\rho_S}(t)U(t), \text{ where}$$
 (1246)

$$\overline{\rho_S}(t) = \text{Tr}_B\left(\bar{\rho}(t)\right) \tag{1247}$$

We can re-write the transformed interaction Hamiltonian operator like:

$$\overline{H_{I}(t)} = B_{z,0}|0\rangle\langle 0| + \sum_{n=1}^{\infty} (\Re(V_{0n}(t))) B_{x}\sigma_{0n,x} + \Re(V_{0n}(t)) B_{y}\sigma_{0n,y} + B_{z,n}|n\rangle\langle n|$$
(1248)

$$+\Im\left(V_{0n}\left(t\right)\right)B_{x}\sigma_{0n,y}-\Im\left(V_{0n}\left(t\right)\right)B_{y}\sigma_{0n,x}$$
(1249)

where

$$B_{z,0} = \sum_{\mathbf{k}} g_{\mathbf{k}} \mu_0 \left(t \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \tag{1250}$$

$$B_{z,n} = \sum_{\mathbf{k}} \left(g_{\mathbf{k}} \mu_n \left(t \right) - \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \text{ if } n \neq 0$$
(1251)

Now consider the following set of operators:

$$A_{1n}(t) = \sigma_{0n,x}$$

$$A_{2n}(t) = \sigma_{0n,y}$$

$$A_{3n}(t) = |n\rangle\langle n|$$

$$A_{4n}(t) = A_{2n}(t)$$

$$A_{5n}(t) = A_{1n}(t)$$

$$B_{1n}(t) = B_x$$

$$B_{2n}(t) = B_y$$

$$B_{3n}(t) = B_{2n}(t)$$

$$B_{1n}(t) = B_{2n}(t)$$

$$B_{5n}(t) = B_{2n}(t)$$

$$C_{10}(t) = 0$$

$$C_{20}(t) = 0$$

$$C_{20}(t) = 0$$

$$C_{30}(t) = 1$$

$$C_{1n}(t) = \Re(V_{0n}(t))$$

$$C_{2n}(t) = \Im(V_{0n}(t))$$

$$C_{5n}(t) = \Im(V_{0n}(t))$$

$$C_{5n}(t) = \Im(V_{0n}(t))$$

$$C_{5n}(t) = -\Im(V_{0n}(t))$$

$$C_{5n}(t) = -\Im(V_{0n}(t))$$

$$C_{1270}(t) = 0$$

$$C_{1269}(t) = 0$$

$$C_{1269}(t) = 0$$

$$C_{1269}(t) = 0$$

$$C_{2n}(t) = -\Im(V_{0n}(t))$$

The previous notation allows us to write the interaction Hamiltonian in $\overline{H_I}(t)$ as:

$$\overline{H_I} = \sum_{j \in J} \sum_{n=1} C_{jn} \left(t \right) \left(A_{jn} \otimes B_{jn} \left(t \right) \right) \tag{1272}$$

Here $J = \{1, 2, 3, 4, 5\}.$

We write the interaction Hamiltonian transformed under (1244) as:

$$\widetilde{H_{I}}(t) = \sum_{j \in J} \sum_{n=1} C_{jn}(t) \left(\widetilde{A_{jn}}(t) \otimes \widetilde{B_{jn}}(t) \right)$$
(1273)

$$\widetilde{A_{i}}(t) = U^{\dagger}(t) A_{i}U(t)$$
(1274)

$$\widetilde{B_i}(t) = e^{iH_B t} B_i(t) e^{-iH_B t}$$
(1275)

Taking as reference state ρ_B and truncating at second order in $H_I(t)$), we obtain our master equation in the interaction picture:

$$\frac{\widetilde{d\widetilde{\rho_S}}(t)}{dt} = -\int_0^t \operatorname{Tr}_B\left[\widetilde{H_I}(t), \left[\widetilde{H_I}(s), \widetilde{\overline{\rho_S}}(t)\rho_B\right]\right] ds \tag{1276}$$

Replacing the equation (1273)in (1276)we can obtain:

$$\frac{d\widetilde{\rho_{S}}(t)}{dt} = -\int_{0}^{t} \operatorname{Tr}_{B}\left[\widetilde{H_{I}}(t), \left[\widetilde{H_{I}}(s), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds$$

$$= -\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j \in J} \sum_{n=1} C_{jn}\left(t\right) \left(\widetilde{A_{jn}}(t) \otimes \widetilde{B_{jn}}(t)\right), \left[\sum_{j' \in J} \sum_{n'=1} C_{j'n'}\left(s\right) \left(\widetilde{A_{j'n'}}(s) \otimes \widetilde{B_{j'n'}}(s)\right), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds$$
(1277)

$$=-\int_{0}^{t} \operatorname{Tr}_{B} \left| \sum_{j \in J} \sum_{n=1} C_{jn}(t) \left(\widetilde{A_{jn}}(t) \otimes \widetilde{B_{jn}}(t) \right), \sum_{j' \in J} \sum_{n'=1} C_{j'n'}(s) \left(\widetilde{A_{j'n'}}(s) \otimes \widetilde{B_{j'n'}}(s) \right) \widetilde{\rho_{S}}(t) \rho_{B} \right|$$

$$(1279)$$

$$-\widetilde{\rho_{S}}(t)\rho_{B}\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\right]\mathrm{d}s\tag{1280}$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left(\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\widetilde{\rho_{S}}(t)\rho_{B}\right)\right)$$
(1281)

$$-\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)\widetilde{\widetilde{\rho_{S}}}(t)\rho_{B}\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)$$
(1282)

$$-\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\widetilde{\rho_{S}}(t)\rho_{B}\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)$$
(1283)

$$+\widetilde{\rho_{S}}(t)\rho_{B}\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)\right)ds$$
(1284)

In order to calculate the correlation functions we define:

$$\Lambda_{jnj'n'}(\tau) = \left\langle \widetilde{B_{jn}}(t)(t)\widetilde{B_{j'n'}}(t)(s) \right\rangle_{B}$$
(1285)

$$= \left\langle \widetilde{B_{jn}} \left(\tau \right) \widetilde{B_{j'n'}} \left(0 \right) \right\rangle_{B} \tag{1286}$$

Here $s \to t - \tau$ and $\mathrm{Tr}_B\left(\widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\rho_B\right) = \left\langle \widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\right\rangle_B$. To evaluate the trace respect to the bath we need to recall that our master equation depends of elements related to the bath and represented by the operators $\widetilde{B_{jn}}\left(t\right)$ and elements related to the system given by $\widetilde{A_{jn}}\left(t\right)$. The systems considered are in different Hilbert spaces so $\mathrm{Tr}\left(\widetilde{A_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(t\right)\right) = \mathrm{Tr}\left(\widetilde{A_{jn}}\left(t\right)\right)\mathrm{Tr}\left(\widetilde{B_{j'n'}}\left(t\right)\right)$. The correlation functions relevant of the master equation (1284) are:

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\rho_{B}\right) = \left\langle \widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\right\rangle_{B} \tag{1287}$$

$$= \left\langle \widetilde{B_{jn}}(0) \, \widetilde{B_{j'n'}}(0) \right\rangle_{R} \tag{1288}$$

$$=\Lambda_{jnj'n'}\left(\tau\right)\tag{1289}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jn}}\left(t\right)\rho_{B}\widetilde{B_{j'n'}}\left(s\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'n'}}\left(s\right)\widetilde{B_{jn}}\left(t\right)\rho_{B}\right) \tag{1290}$$

$$= \left\langle \widetilde{B_{j'n'}}(s) \, \widetilde{B_{jn}}(t) \right\rangle_{R} \tag{1291}$$

$$= \left\langle \widetilde{B_{j'n'}} \left(-\tau \right) \widetilde{B_{jn}} \left(0 \right) \right\rangle_{R} \tag{1292}$$

$$=\Lambda_{j'n'jn}\left(-\tau\right)\tag{1293}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j'n'}}\left(s\right)\rho_{B}\widetilde{B_{jn}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\rho_{B}\right) \tag{1294}$$

$$= \left\langle \widetilde{B_{jn}}(t) \, \widetilde{B_{j'n'}}(s) \right\rangle_{R} \tag{1295}$$

$$= \left\langle \widetilde{B_{jn}} \left(\tau \right) \widetilde{B_{j'n'}} \left(0 \right) \right\rangle_{R} \tag{1296}$$

$$=\Lambda_{jnj'n'}\left(\tau\right)\tag{1297}$$

$$\operatorname{Tr}_{B}\left(\widetilde{\rho_{B}B_{j'n'}}\left(s\right)\widetilde{B_{jn}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'n'}}\left(s\right)\widetilde{B_{jn}}\left(t\right)\widetilde{\rho_{B}}\right)$$
(1298)

$$= \left\langle \widetilde{B_{j'n'}}(s) \, \widetilde{B_{jn}}(t) \right\rangle_{B} \tag{1299}$$

$$= \left\langle \widetilde{B_{j'n'}} \left(-\tau \right) \widetilde{B_{jn}} \left(0 \right) \right\rangle_{R} \tag{1300}$$

$$=\Lambda_{j'n'jn}\left(-\tau\right)\tag{1301}$$

We made use of the cyclic property for the trace to evaluate the correlation functions, from the equations obtained in (1277) and (1284) and using the equations (1287)-(1301) we can re-write:

$$\frac{\widetilde{d\widetilde{\rho_S}}(t)}{dt} = -\int_0^t \sum_{j,j',n,n'} \left(C_{jn}(t) C_{j'n'}(s) \left(\Lambda_{jnj'n'}(\tau) \widetilde{A_{jn}}(t) \widetilde{A_{j'n'}}(s) \widetilde{\rho_S}(t) - \Lambda_{j'n'jn}(-\tau) \widetilde{A_{jn}}(t) \widetilde{\rho_S}(t) \widetilde{A_{j'n'}}(s) \right)$$
(1302)

$$+C_{jn}\left(t\right)C_{j'n'}\left(s\right)\left(\Lambda_{j'n'jn}\left(-\tau\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{j'n'}}\left(s\right)\widetilde{A_{jn}}\left(t\right)-\Lambda_{jnj'n'}\left(\tau\right)\widetilde{A_{j'n'}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{jn}}\left(t\right)\right)\right)ds\tag{1303}$$

$$=-\int_{0}^{t}\sum_{j,j',n,n'}\left(C_{jn}\left(t\right)C_{j'n'}\left(s\right)\left(\Lambda_{jnj'n'}\left(\tau\right)\left[\widetilde{A_{jn}}\left(t\right),\widetilde{A_{j'n'}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\right]+\Lambda_{j'n'jn}\left(-\tau\right)\left[\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{j'n'}}\left(s\right),\widetilde{A_{jn}}\left(t\right)\right]\right)\right)$$
(1304)

$$\frac{\mathrm{d}\,\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\int_{0}^{t} \sum_{j,j',n,n'} \left(C_{jn}\left(t\right) C_{j'n'}\left(t-\tau\right) \left(\Lambda_{jnj'n'}\left(\tau\right) \left[A_{jn}\left(t\right), A_{j'n'}\left(t-\tau,t\right) \overline{\rho_{S}}(t) \right] + \Lambda_{j'n'jn}\left(-\tau\right) \left[\overline{\rho_{S}}(t) A_{j'n'}\left(t-\tau,t\right), A_{jn}\left(t\right) \right] \right) \right) \mathrm{d}\tau - \mathrm{i}\left[H_{S}\left(t\right), \overline{\rho_{S}}(t) \right]$$

$$\tag{1305}$$

For this case we used that A_{jn} $(t - \tau, t) = U(t) U^{\dagger}(t - \tau) A_{jn}(t) U(t - \tau) U^{\dagger}(t)$. This is a non-Markovian equation and if we take n = 2 (two sites), $\mu_0(t) = 0$, $\mu_1(t) = 1$ then we can reproduce a similar expression to (419) as expected.

VIII. BIBLIOGRAPHY

- [1] McCutcheon D P S, Dattani N S, Gauger E M, Lovett B W and Nazir A 2011 Phys. Rev. B 84 081305
- [2] Dara P S McCutcheon and Ahsan Nazir 2010 New J. Phys. 12 113042
- [3] Supplement: Theoretical model of phonon induced dephasing. A.J. Ramsay ey al 2009.
- [4] Felix A Pollock et al 2013 New J. Phys. 15 075018

^{*} n.dattani@cfa.harvard.edu † edcchaparroso@unal.edu.co