Auteur: Jeroen De Dobbelaere

Theorievraag 1:

Leg uit: Riemann integreerbaar, onder-, boven- en Riemannsommen

Theorievraag 1:

Leg uit: Riemann integreerbaar, ondersommen, bovensommen en Riemannsommen

Definitie Bovensom, ondersom en Riemannsom

Gegeven:

Een begrensde functie op het domein [a,b] en een net $N = \{a = x_0 < x_1 < ... < x_n = b\}$

Stel dan voor alle $i \in \{1,...,n\}$

$$M_i(f) := \sup_{x \in [x_{i-1}, x_i]} f(x)$$
 en $m_i(f) := \inf_{x \in [x_{i-1}, x_i]} f(x)$

Dan is:

De bovensom: $=U(N,f):=\sum M_i f(x) \Delta x_i$

De ondersom: $= L(N, f) := \sum m_i f(x) \Delta x_i$

Zij bovendien een selectie $T = \{t_1, t_2, ..., t_n\} \hookrightarrow N$ gegeven

 \Rightarrow De Riemannsom: $= S(N, T, f) := \sum f(t_i) \Delta x_i$

Waarbij $L(N,f) \leq S(N,T,f) \leq U(N,f)$

Definitie Riemann-integreerbaar, boven- en onderintegraal

Een begrensde functie f op het domein [a,b] noemen we Riemann-integreerbaar als en slechts als

$$\lim_{||N|| \to 0} L(N,f) = \lim_{||N|| \to 0} U(N,f)$$
 En deze limieten bestaan.

Opmerking: als deze limieten wel bestaan, maar niet gelijk zijn aan elkaar, dan spreken we van resp. een onder- en een bovenintegraal.

$$=\lim_{\|N\|\to 0} S(N,T,f) = \int_a^b f(x)dx$$
 voor elke T \hookrightarrow N