Statistical inference courese project 1

This document is written by Hyunsik Shim.

Overview - A simulation exercise

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also also 1/lambda. Set lambda = 0.2 for all of the simulations. In this simulation, you will investigate the distribution of averages of 40 exponential(0.2)s. Note that you will need to do a thousand or so simulated averages of 40 exponentials.

Simulation 1000 times for 40 exponentials

1. Show where the distribution is centered at and compare it to the theoretical center of the distribution.

```
mean(means$x)
## [1] 4.987
sd(means$x)
## [1] 0.8089
```

- Mean of my simulation is 4.987 and Expected mean is 5.
- SD of my simulation is 0.8089 and Expected SD is 0.7906.
- 2. Show how variable it is and compare it to the theoretical variance of the distribution.

```
var(means$x)
```

[1] 0.6543

- Variance of my simulation is 0.6543 and theoretical variance of the distribution is 0.625.
- 3. Show that the distribution is approximately normal.

We can evaluate the coverage of the confidence interval for 1/lambda: X±1.96S/sqrt(n).

```
mean(means$x) + c(-1,1)*1.96*sd(means$x)/sqrt(nrow(means))
## [1] 4.937 5.037
```

As above simulations, we know that the exponential distribution can be simulated and the mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda.