Project Title: Gesture-Based Human-Computer Interaction System using OpenCV, MediaPipe,

and Palm's text-bison-001

Team Name: Tech Smashers

Team Members:

Shaik Sameer Anwar

- Ammar Mohiuddin
- Syed Saifuddin

Phase-1: Brainstorming & Ideation

Objective:

Develop an Al-powered Gesture-Based Human-Computer Interaction System that enables users to interact with computers through intuitive hand movements.

Key Points:

Problem Statement:

- Many users require touchless interaction with devices for accessibility, gaming, and public kiosks.
- Existing systems lack real-time responsiveness and Al-based contextual interpretation of gestures.

Proposed Solution:

- A computer vision-based system using OpenCV and MediaPipe to recognize hand gestures.
- Integration with Palm's text-bison-001 Al model to provide descriptive feedback for gestures.
- A user-friendly interface built with Streamlit to allow seamless interaction.

Target Users:

- Users at public kiosks (airports, museums, malls) who need touchless interaction.
- Individuals requiring assistive technology for computer control.
- Gamers looking for gesture-based gaming experiences.

Expected Outcome:

 A fully functional gesture-based system that provides Al-powered interpretations of gestures for various applications.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements of the Gesture-Based HCI System.

Key Points:

Technical Requirements:

• **Programming Language:** Python

Computer Vision: OpenCV, MediaPipe

• Al Integration: Palm's text-bison-001

• Frontend: Streamlit Web Framework

• Hardware: Webcam for gesture recognition

Functional Requirements:

- Detect and recognize hand gestures in real time.
- Interpret gestures using Al-based descriptions.
- Provide a visual and text-based response for recognized gestures.
- Offer a smooth, interactive experience via Streamlit.

Constraints & Challenges:

- Ensuring real-time gesture recognition with low latency.
- Handling variations in hand size, lighting, and occlusions.
- Optimizing AI response time for gesture interpretation.

Phase-3: Project Design

Objective:

Develop the system architecture and define user interaction flow.

Key Points:

System Architecture:

- 1. User performs a hand gesture in front of the webcam.
- 2. OpenCV and MediaPipe process the video feed to detect hand landmarks.
- 3. Recognized gestures are passed to Palm's text-bison-001 for Al-based interpretation.
- 4. The Al-generated description is displayed in the Streamlit UI.

User Flow:

- 1. Step 1: User performs a hand gesture.
- 2. Step 2: The system recognizes and classifies the gesture.
- 3. Step 3: Al generates a meaningful description for the gesture.
- 4. Step 4: The description and a visual indicator are displayed on the UI.

UI/UX Considerations:

- Clean and intuitive UI for seamless interaction.
- Gesture response time should be under 500ms.
- Dark & light mode for better user experience.

Phase-4: Project Planning (Agile Methodologies)

Sprint Planning with Priorities:

Sprin t	Task	Priorit y	Duratio n	Deadlin e	Assign ed To	Dependenci es	Expected Outcome
Sprint 1	Environmen t Setup & Library Installation	High	4 hours	End of Day 1	Sameer	Python, OpenCV, MediaPipe setup	Developme nt environment ready
Sprint 1	Basic Gesture Recognition	H igh	3 hours	End of Day 1	Ammar	OpenCV, MediaPipe setup	System detects hand gestures

Sprint 2	Al Integration for Gesture Interpretatio n	High	5 hours	Mid-Day 2	Saif	Gesture recognition working	Al-based gesture descriptions
Sprint 2	UI Developme nt with Streamlit	Mediu m	3 hours	End of Day 2	Team	Al response, basic UI elements	Functional UI with gesture response
Sprint 3	Testing & Performanc e Optimization	Mediu m	2 hours	Mid-Day 2	Ammar	Working prototype	Real-time, smooth gesture recognition
Sprint 3	Final Presentatio n & Deployment	Low	2 hours	End of Day 2	Entire Team	Completed project	Ready-to-de mo project

Phase-5: Project Development

Objective:

Implement core features of the Gesture-Based HCI System.

Technology Stack Used:

• Frontend: Streamlit

• Backend: OpenCV, MediaPipe, Palm's text-bison-001

• **Programming Language:** Python

Development Process:

- 1. Implement gesture recognition with OpenCV & MediaPipe.
- 2. Integrate AI for gesture interpretation.
- 3. Develop a user-friendly Streamlit interface.
- 4. Optimize system for real-time interaction.

Challenges & Fixes:

- Challenge: High latency in gesture processing.
 - Fix: Optimize image processing pipeline.
- Challenge: Limited AI response time.
 - o Fix: Implement caching for frequent gestures.

Phase-6: Functional & Performance Testing

Objective:

Ensure the system functions as expected.

Test Case ID	Category	Test Scenario	Expected Outcome	Status	Tester
TC-001	Functional Testing	Detect "thumbs up" gesture	Recognized & AI description displayed	✓ Passed	Samee r
TC-002	Functional Testing	Recognize "fist" gesture	Correct interpretation displayed	✓ Passed	Ammar
TC-003	Performance Testing	Response time under 500ms	System responds instantly		Saif

TC-004	UI Testing	Display on different screen sizes	UI adapts correctly	✓ Passed	Tester 2
TC-005	Deployment Testing	Host app on Streamlit	App accessible online		DevOp s

Final Submission

- Project Report (based on the above format)
- **Demo Video** (3-5 minutes)
- GitHub Repository Link
- Final Presentation