So far we've learned:

$$|AO.I_{IL}| = \left(| \times | \lambda^{2} + | A \times | \lambda^{1} + | O \times | \lambda^{2} + | \times | \lambda^{-1} \right)_{IO}$$

$$= \left(| 144 + | 120 + | O + | \frac{1}{12} | \right)_{IO}$$

$$= \left(| 264 + | 0833333.... \right)_{IO}$$

$$\frac{109111}{3^{3}} \frac{1}{3^{2}} \frac{1}{3^{1}} \frac{2}{3^{\circ}}$$

How do we convert fractional base 10 numbers to an arbitrary base r?

- 1. logical Hhinking method
- 2. algorithm method

$$.25 = \frac{1}{4} = \frac{1}{2^{2}} = 2^{-2}$$

$$.\frac{0}{2^{1}} \frac{1}{2^{2}} \frac{0}{2^{3}} \frac{0}{2^{3}}$$

absorption decimal * base you want
$$\frac{1}{4}$$
 decimal * base $\frac{1}{4}$ decimal * $\frac{1}$

EX: Convert .3, to base
$$2$$
.

| logical repeats | $\frac{O}{a^{-1}} = \frac{1}{a^{-2}} = \frac{O}{a^{-1}} = \frac{1}{a^{-1}} =$

$$3_{10} = .0100110011001...$$

$$= 100110011001...$$

Just because a number is finite in one base does not mean it is finite in another base.

(A)
$$75_{10} \rightarrow base 5$$

whole #/5 whole # remainler

 $75/5$ 15 0

 $15/5$ 3 0 \uparrow
 $3/5$ 0 3

Stop

 $75_{10} = 300_{5}$

B
$$.5_{10} \rightarrow base 5$$

define $*5$ whose desiral part

 $(.5).5$ 2 $.5$
 $(.5).5$ 2 $.5$
 $(.5).5$ 2 $.5$
 $.5_{10} = .\overline{2}_{5}$
 $.5_{10} = .\overline{2}_{5}$

base
$$r \rightarrow base 10$$

base $10 \rightarrow base r$

$$35_{6} = (3 \times 6^{1} + 5 \times 6^{\circ})_{10}$$

$$= (18 + 5)_{10}$$

$$= 23_{10}$$

$$\frac{23}{3}$$
 $\frac{7}{2}$ $\frac{2}{3}$ $\frac{7}{3}$ $\frac{7$

How do computers do arithmetic?

they do it in binary!

We will learn how to add, subtract, multiply, and divide in binary.

tuo methods: 1. convert to decimal do arithmetic convert back to binary

2. do it binary

Addition Facts in Binary:

EX: Add
$$101_2$$
 $\rightarrow 4+1=5_{10}$
 $+110_2$ $\rightarrow 4+2=6_{10}$
 11_{10}
 $\frac{1}{\lambda^3} \frac{0}{\lambda^2} \frac{1}{\lambda^4} \frac{1}{\lambda^5}$
 1011_2

