

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

UNIVERSITY EXAMINATIONS 2020/2021

FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE

DEGREE OF BACHELORS OF ELECTRICAL ENGINEERING, MECHANICAL ENGINEERING, CIVIL ENGINEERING, BED CIVIL, BED EEE, BED MECHANICAL, BSC GEGIS & GIS, BSC MATHEMATICAL MODELLING, BSC INDUSTRIAL CHEMISTRY, BSC POLYMER TECHNOLOGY CHEMICAL ENGINEERING, BSC. COMPUTER SCIENCE, BSC. I.T

Instructions To Candidates

- 1. Answer Question ONE and ANY OTHER TWO Questions.
 - 2. Show your working

QUESTION ONE (30 marks)

a) If

$$f(x) = \begin{cases} 3x & x < -1 \\ 2x - 1 & -1 \le x \le 5 \\ x + 3 & x > 5 \end{cases}$$

Find
$$f(3)$$
 (2 Marks)

b) Given that $f(x) = \frac{1}{3 - x^2}$, $g(x) = \sqrt{x^2 - 1}$ determine the domain of $f \circ g(x)$

(4 Marks)

c) Find the derivative of
$$f(x) = (1 + x^4 - \frac{1}{x})^{\frac{5}{3}}$$
 when $x = 1$ (3 Marks)

d) Let

$$f(x) = \begin{cases} 3x^2 - 1, x < 0 \\ cx + d, 0 \le x \le 1 \\ \sqrt{x + 8}, x > 1 \end{cases}$$

Determine c and d so that f is continuous everywhere.

e) Find
$$\lim_{x \to \infty} \frac{4 - 3x^2}{\sqrt{16x^4 - 5}}$$
 (3 Marks)

f) Find the inverse of
$$f(x) = \frac{x-1}{1+4x}$$
 (4 Marks)

- g) Use linear approximation to estimate $\sqrt[3]{8.5}$ (3 Marks)
- h) $\int_{1}^{2} \left(\frac{7 x^4 + 4x^7}{x^2} \right)$ (4 Marks)
- i) A function is given by $f(x) = 3x^4 + 4x^3 12x^2$. Find the coordinates of the stationary points and distinguish between them. (3 Marks)

QUESTION TWO (20marks)

a) Evaluate the following limits

i)
$$\lim_{x \to 0} \frac{-3 + \sqrt{3 + x}}{x}$$
 (4 Marks)

ii)
$$\lim_{x \to 2} \left(\frac{1}{x - 2} - \frac{4}{x^2 - 4} \right)$$
 (5 Marks)

- b) Find the domain and range of the function $f(x) = \sqrt{4-7x}$ (4 Marks)
- c) Let $f(x) = \frac{5}{2}x^2 e^x$. Find the value of x for which the second derivative is zero (4 Marks)

d) If the function
$$f(x) = \begin{cases} \frac{x^2 - 16}{x - 4} & x \neq 4 \\ c & x = 4 \end{cases}$$

is continuous, find the value of c (3 Marks)

QUESTION 3 (20marks)

Differentiate the following functions with respect to x

a)
$$y = \frac{1}{(3x^2 + 5)^4}$$
 (5 Marks)

b)
$$y = e^x \sin 2x$$
 (5 Marks)

c)
$$y = \frac{\ln x}{x}$$
 (5 Marks)

d)
$$y = \sqrt{\frac{(x-2)^2}{x^2 + 5}}$$
 (5 Marks)

QUESTION 4 (20MARKS)

a) Differentiate
$$f(x) = \sqrt{x^2 + 4}$$
 from first principles (5 Marks)

b) By using a suitable substitution find

$$\int \frac{1}{\left(9-x\right)^4} \, dx \tag{5 Marks}$$

- c) Find the equation of the tangent to the curve given by the parametric equations $x = 2\cos t$, $y = 4\sin t$ at the point $(\sqrt{2}, 2\sqrt{2})$ (5 Marks)
- d) Oil is leaking onto a floor creates a circular pool with an area that increases at a rate of $5cm^2$ per minute. How fast is the radius of the pool increasing when the radius is 20 cm? (5 Marks)

QUESTION 5 (20marks)

- a) The distance x meters travelled by a vehicle in time t seconds after the brakes are applied is given by $x = 20t \frac{5}{3}t^2$. Determine
 - i) The speed of the vehicle at the instant the brakes are applied (3 Marks)
 - ii) The distance the car travels before it stops (2 Marks)
- b) Determine the height and radius of a cylinder of volume $200cm^3$ which has the least surface area. (5 marks)
- c) Determine the coordinates of the maximum and minimum values of the curve $y = x^3 3x + 5$ (5 marks)
- d) Find the equation of the normal to the curve $y = \frac{2x}{x^2 5}$ at the point (2, -4). (5 Marks)