

AI-Powered Insurance Premium Estimator Dynamic Pricing Model with CSV Integration

In partial fulfilment of the requirements for the license of International Certificate of Artificial Intelligence.

Dr. Soha Farahat

Associate professor of Immunology, AI Practitioner, ICAIL Program (2025-icail-1233)

Omar Medhat

Computer and Communication Engineering Student at Alexandria University, AI Practitioner, ICAIL Program (2025-icail-1301)

Yasmine Mostafa

Actuarial Science Student at Cairo University, AI Practitioner, ICAIL Program (2025-icail-1356)

Contents

- Project Overview
- Problem Statement
- Goal and Objectives
- Data Overview
- CSV Analyzer
- Model Building
- Dashboard
- Conclusion and Future Work

Project Overview

Our project developed a machine learning system to predict insurance premiums, and was built using historical data, customer demographics, and medical risk factors.

The system includes:

- •A CSV analyzer for uploading datasets and running bulk predictions.
- •A trained predictive model.
- •An interactive dashboard for visualizing insights.

Problem Statement

Traditional pricing is often *manual*, *very complex* and *time consuming*.

There's a need in the market for:

- High-accuracy
- Data-driven predictions
- Transparency on how variables like BMI and smoking affect cost
- Real-time, bulk decision support

Goal and Objectives

Goal: Develop a machine learning-based system that accurately predicts insurance premiums using customer data.

Objectives:

- Read and parse CSV files.
- Generate statistical summaries.
- Display interactive dashboards.
- Implement an AI model for premiums prediction.
- Ensure the system is scalable and easy to update with new data or features.

Data Overview

Dataset used: Health care insurance (Kaggle) – 1338 records

Features:

- age: age of primary beneficiary
- sex: insurance contractor gender, female, male
- **bmi**: Body mass index, providing an understanding of body, weights that are relatively high or low relative to height
- children: Number of children covered by health insurance / Number of dependents
- smoker: Smoking status
- **region**: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.
- charges: Individual medical costs billed by health insurance

CSV Analyzer

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
```

```
def dataInfo(df):
    print(df.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column
              Non-Null Count Dtype
              1338 non-null
                             int64
 0
    age
              1338 non-null
                             object
    sex
    bmi
              1338 non-null
                             float64
 2
 3
    children 1338 non-null
                             int64
    smoker 1338 non-null
                             object
    region
                             object
 5
             1338 non-null
    charges
             1338 non-null
                             float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```


age

charges

egion

CSV Analyzer

```
27.900
                                                                    southwest
                                                                              16884.92400
                                              33.770
                                                                               1725.55230
                                   18
                                                                    southeast
def catEncoding(df):
                                              33 000
                                                                    southeast
                                                                              4449.46200
<class 'pandas.core.frame.DataFrame'>
                                                                    northwest
                                                                              21984.47061
RangeIndex: 1338 entries, 0 to 1337
                                                                               3866.85520
Data columns (total 10 columns):
                                                        es
                         Non-Null Count
     Column
                                          Dtype
                                                        alues
                                                        alues
                                           int64
                         1338 non-null
     age
                                                                      charges region northeast
                                                        en
                         1338 non-null
                                           int8
     sex
                                                                  16884.92400
     bmi
 2
                         1338 non-null
                                           float64
                                                                   1725.55230
     children
                         1338 non-null
                                           int64
                                                                   4449.46200
                                           int8
                                                         0
                                                                  21984.47061
     smoker
                         1338 non-null
                                                                   3866.85520
                                           float64
     charges
                         1338 non-null
     region_northeast 1338 non-null
                                           int64
                                                        southeast
                                                                  region southwest
                                           int64
     region_northwest 1338 non-null
     region_southeast 1338 non-null
                                           int64
     region_southwest 1338 non-null
                                           int64
dtypes: float64(2), int64(6), int8(2)
memory usage: 86.4 KB
```

children

CSV A

def dfVisual
 plt.figure
 sns.heatma

- 1. Problem Understanding
- 2. Data Characteristics
- 3. Model Selection According to Evaluation

Problem Understanding

SUPERVISED LEARNING

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

Predict insurance charges (continuous)

→ This is a regression problem

Mixed features (numeric: age, bmi; categorical: sex, smoker, region)

(potential non-linear relationships, and outliers)

Model Selection Criteria

- Regression Model
- Capture non-linear relationships

Models to Evaluate

- Linear Regression
- Decision Tree

Models Evaluated

Random Forest

• Addressed Decision Tree's overfitting via ensemble learning and showed better accuracy.

Random Forest Regression Model

```
    3.1 Model Training

Random Forest Regressor
     x = df.drop('charges', axis=1)
     v = df['charges']
    x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2)
     model = RandomForestRegressor()
     model.fit(x_train, y_train)
 ₹
        RandomForestRegressor 1 2
      RandomForestRegressor()
```


Grid Search Cross-Validation

```
[28] param_
          [29] best_params = {'max_depth': 5, 'min_samples_split': 10, 'n_estimators': 200}
                optimized model = RandomForestRegressor(
                    max depth=best params['max depth'],
                    min_samples_split=best_params['min_samples_split'],
    model
                    n_estimators=best_params['n_estimators'],
    grid s
                    random state=42
    grid_s
    print(
                optimized model.fit(x train, y train)
→▼ Best h
                y_pred = optimized_model.predict(x_test)
           [30] optimized_model.score(x_test, y_test)
                0.9011441343410856
```


0.042 -0.025

0.0025 -0.00041 -0.012 0.01

1.00

Importance Features

Dashboard

Conclusion and Future Work

A CSV analyzer for uploading datasets and running bulk predictions. A trained predictive model using Random forest Regressor.

A Dashboard for visualizing insights.

Updating the analyzer to fetch data from different sources and warehouses

GitHub Repository

