Выпуская квалификационная работа

Система физического моделирования на основе априорного подхода обнаружения столкновений

Владислав Прекель

ИКИТ СФУ КИ18-16б

Красноярск 2 июня 2022 г.

Модель

Формулы равноускоренного движения

Формулы для скорости (1) и положения тела (2):

$$\vec{v}(t) = \vec{v_0} + \vec{a}t \tag{1}$$

$$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2}, y(t) = y_0 + v_{0y}t + \frac{a_y t^2}{2}$$
 (2)

где $\vec{v}(t)$ – вектор скорости тела в момент времени t; $\vec{v_0}$ – вектор начальной скорости тела; \vec{a} – вектор ускорения тела; x(t) – координата тела в момент времени t по оси X; x_0 – координата начального положения тела по оси X; y(t) – координата тела в момент времени t по оси Y; y_0 – координата начального положения тела на ось Y; a_x – проекция вектора ускорения тела \vec{a} на ось X; a_y – проекция вектора ускорения тела \vec{a} на ось Y.

Тела столкнулись

Апостериорный подход

Априорный подход

Основан на том, что можно найти время столкновения через уравнение (3):

$$distance(t) = r_1 + r_2 \tag{3}$$

где distance(t) — расстояние между центрами двух тел в момент времени t;

 r_1 – радиус первого тела;

 r_2 – радиус второго тела.

Цель работы

Целью выпускной квалификационной работы является разработка физического движка, использующего априорный подход для обнаружения столкновений.

Уравнение обнаружения столкновения двух тел

$$\sqrt{(x_1(t)-x_2(t))^2+(y_1(t)-y_2(t))^2}=r_1+r_2 \tag{4}$$

где $x_1(t)$ – координата первого тела в момент времени t по оси X;

 $x_2(t)$ – координата второго тела в момент времени t по оси X;

 $y_1(t)$ – координата первого тела в момент времени t по оси Y;

 $y_2(t)$ – координата второго тела в момент времени t по оси Y;

 r_1 – радиус первого тела;

 r_2 – радиус второго тела.

$$+2(x_{01}v_{0x1}-x_{02}v_{0x2}+y_{01}v_{0y_1}-y_{02}v_{0y_2})t+ \tag{5}$$

$$+v_{0x_1}^{\ \ 2}+x_{01}^{\ 2}-v_{0x_2}^{\ \ 2}-x_{02}^{\ 2}+v_{0y_1}^{\ \ 2}+y_{01}^{\ 2}-v_{0y_2}^{\ 2}-y_{02}^{\ 2}-r_1^2-2r_1r_2-r_2^2=0$$
 где $x_{0_1}^{\ \ }$ — начальная координата первого тела по оси X ;
$$x_{0_2}^{\ \ }$$
 — начальная координата второго тела по оси X ;
$$y_{0_1}^{\ \ }$$
 — начальная координата первого тела по оси Y ;
$$y_{0_2}^{\ \ }$$
 — начальная координата второго тела по оси Y ;
$$v_{0x_1}^{\ \ }$$
 — проекция вектора начальной скорости I тела на ось X ;
$$v_{0y_1}^{\ \ }$$
 — проекция вектора начальной скорости I тела на ось X ;
$$v_{0x_2}^{\ \ }$$
 — проекция вектора начальной скорости II тела на ось X ;

 $v_{0_{\mathcal{Y}_2}}$ – проекция вектора начальной скорости II тела на ось Y;

 a_{y_0} – проекция вектора ускорения II тела на ось Y . Тель в распромения Y . Тель в распромения Y . Тель в распромения Y .

 a_{x_1} – проекция вектора ускорения I тела на ось X; a_{y_1} – проекция вектора ускорения I тела на ось Y; a_{x_2} – проекция вектора ускорения II тела на ось X;

 $+({v_0}_{x_1}a_{x_1}-{v_0}_{x_2}a_{x_2}+{v_0}_{y_1}a_{y_1}-{v_0}_{y_2}a_{y_2})t^3+\\$

 $+(x_{01}a_{x1}-x_{02}a_{x2}+y_{01}a_{y_1}-y_{02}a_{y_2})t^2+$

 $\frac{a_{x_1}^2 - a_{x_2}^2 + a_{y_1}^2 - a_{y_2}^2}{4} t^4 +$

Метод численного решения алгебрических уравнений

Рассмотрим на примере уравнения $x^3-2x^2-x+2=0$ (красное). Уравнение производной $3x^2-4x-1=0$ (синее).

Его корни: $x_{A,B} = \frac{4 \pm \sqrt{28}}{6}$.

Тогда, корни исходного уравнения можно найти методом бисекции:

 x_1 на промежутке $(-\infty; \frac{4-\sqrt{28}}{6}]$, будет равен -1

 x_2 на промежутке $[rac{4-\sqrt{28}}{6};rac{4+\sqrt{28}}{6}]$, будет равен 1

 x_3 на промежутке $[rac{4+\sqrt{28}}{6};+\infty)$, будет равен 2

Выбор нужного корня

Уравнение обнаружения столкновения с точкой

$$\sqrt{(x(t) - p_x)^2 + (y(t) - p_y)^2} = r \tag{6}$$

где x(t) – координата положения тела по оси X;

y(t) – координата положения тела по оси Y;

r – радиус тела;

 p_x – координата точки по оси X;

 p_y – координата точки по оси Y.

Уравнение обнаружения столкновения с прямой

$$\frac{|Ax(t) + By(t) + C|}{\sqrt{A^2 + B^2}} = r \tag{7}$$

где A, B, C – коэффициенты общего уравнения прямой; r – радиус тела; x(t), y(t) – координаты тела в момент времени t.

Обработка ударов

$$\vec{v_1'} = \vec{v_1} - \frac{2m_2}{m_1 + m_2} \frac{\langle \vec{v_1} - \vec{v_2}, \vec{r_1} - \vec{r_2} \rangle}{|\vec{r_1} - \vec{r_2}|^2} (\vec{r_1} - \vec{r_2})$$
 (8)

где \langle , \rangle – скалярное произведение векторов;

 $ec{v_1'}$ – вектор скорости первого тела после удара;

 $ec{v_1}$ – вектор скорости первого тела до удара;

 $ec{v_2}$ – вектор скорости второго тела до удара;

 $ec{r_1}$ – радиус-вектор положения первого тела;

 $ec{r_2}$ – радиус-вектор положения второго тела;

 m_1 – масса первого тела;

 m_2 – масса второго тела.

Использованные технологии

- OCaml язык программирования;
- Js_of_ocaml компилятор OCaml в JavaScript;
- Lwt библиотека для конкурентного программирования;
- Core стандартная библиотека;
- Dream web-фреймворк;
- ppx_inline_test, ppx_expect библиотеки юнит-тестирования;
- Sexplib библиотека для сериализации и десериализации S-выражений;
- Bulma CSS-фреймворк;
- Dune, opam система сборки и пакетный менеджер;
- ▶ VS Code, OCaml Platform среда разработки и плагин для работы с OCaml.

Реализация движка

```
S.Model.init ~g:1.
|> S.Engine.recv ~action:{ time = 0.
        ; action =
            AddBody { id = Some id1; x0 = 350.; y0 = 200.
                    ; r = 100.; mu = 1.; m = 10. 
        ; until = { timespan = Some 0.; quantity = None }}
|> S.Engine.recv ~action:{ time = 0.
        ; action =
            AddBody { id = Some id2; x0 = 700.; y0 = 200.
                    ; r = 100.; mu = 1.; m = 10. }
        : until = { timespan = Some 0.; quantity = None }}
|> S.Engine.recv ~action:{ time = 0.
        ; action = GiveVelocity \{ id = id2; v0 = -100., 0. \}
        : until = { timespan = None: quantity = None }}
```

Интерактивная демострация возможностей движка

https://prekel.github.io/chapgame/

Решённые задачи

- определена модель и математическая база, требующуюся для моделирования;
- программно реализован физический движок и интерактивная демонстрация его работы.

Выпуская квалификационная работа

Система физического моделирования на основе априорного подхода обнаружения столкновений

Владислав Прекель

ИКИТ СФУ КИ18-16б

Красноярск 2 июня 2022 г.