Problem 2: Adaptive step-size integrator

First, I will explain how the recursive algorithm designed in class works. Then, I will describe the modifications I made to it.

(i) The in-class integrator function (integrate_lazy): Suppose I'm given an interval [a,b] and a function f(x), $x \in [a,b]$ and I would like to compute $I = \int_a^b f(x) dx.$

Suppose also that I'm given a numerical tolerance tol".

Step 1: Partition [a,b] into 4 lequal) intervals

Step 2: Evaluate the 3-point (Simpson's Rule) integral using $\{a, x_2, b\}$ (I,) and the extended integral using $\{a, x_1, x_2 + x_2, x_3, b\}$ (Iz) If $|I_2 - I_1| < tol$, return I, and exit function. Else if $|I_2 - I_1| > tol$, go to step 3.

Step 3: Partition [916] into two intervals, [a, x2] and [x2,6].

Call integrate_lazy() on the two intervals separately, where for $[a_1x_2]$, a=a and $b=x_2$ and for $[x_2,b]$, $a=x_2$ and b=b, with tol/2 as the tolerance for these new integrals (call them int 1 and int 2). (For future iterations, both a and b will differ from the original integration limits for some subintervals).

Return the sum int1+int2 and exit the function.

Step 3 invokes the function recursively, so if after the second iteration, if say int 1 does not meet the tolerance requirement, then the interval is further subdivided into two and so on, until the tolerance requirement is met for both int 1 and int 2 (whose sum will now be the sum of the integral over <u>all</u> the subintervals) and int 1 + int 2 is finally returned and the recursion stops.

(ii) My modification (integrate_adaptive ()):

· First iteration: I check the length of the "extra" variable. Because of the way I will design my code, if np. size (extra) == 1 that means that extra == None. If this is true, then I divide the interval [a,b] into 4 equal subintervals and call the function at the 5 endpoints of the intervals and to Step 1 from the class algorithm.

If $|I_2 - I_1| < tol$, 9 again return I_2 as before.

If $|I_2-I_1| >= 61$, I recursively call integrate_adaptive () with the endpoints modified as before, but now, I change extra to hold the

array $[y(a), y(x_1), y(x_2)]$ for the interval $[a_1x_2]$ and extra = $[y(x_2), y(x_3), y(b)]$ for the second interval.

I also return the sum of the integrals in case they both meet tolerance requirements.

Next iterations: Now np. size (extra) = 3 > 1. In this case, I define 2 new x-points: $x_1 = a' + (b'-a')$, $x_2 = a' + \frac{3}{4}(b'-a')$

Where a' is the smallest x in said interval and b' is the largest. Note that extra now contains the y-values y(a'), y(b') and $y(\underline{a'+b'})$

$$\frac{dx' = x_1 - a'}{2} \leftarrow \text{Modify } dx$$

$$\frac{a'+b'}{2} \qquad x_3 \qquad b'$$
Taken from extra

I then define a new y array = $\left[y(a'), y(b'), y(\frac{a'+b'}{2}), y(x_s)\right]$

and repeat Step 1 from class again.

If the tolerance requirement is met, the extended sum is returned. Else

[a', b'] is divided into two intervals again as done earlier and integrate adaptive () is recursively called an each interval with tol \rightarrow tol/2 and with extra (interval 1) = [y(a'), y(x₁), y(\frac{a'+b'}{2})] and

extra (interval 2) = $\left[y\left(\frac{a'+b'}{2}\right), y\left(x_1\right), y\left(b'\right)\right]$.

The sum of these two integrals is returned, and the rest of the functioning

is the same as the integrator from class.

Some extra mods made later

- · I use two global variables to count the number of function calls made by each integrator.
- I check each function call to see if any $y(x_i)$ diverge and print an Error message and replace $y(x_i) \to 0$.