

N-Channel Enhancement Mode Field Effect Transistor

2N7000, 2N7002, NDS7002A

Description

These N-channel enhancement mode field effect transistors are produced using **onsemi**'s proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while providing rugged, reliable, and fast switching performance. These products are particularly suited for low-voltage, low-current applications, such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Features

- High Density Cell Design for Low R_{DS(on)}
- Voltage Controlled Small Signal Switch
- Rugged and Reliable
- High Saturation Current Capability
- This Device is Pb-Free and Halogen Free

MARKING DIAGRAM

\$Y = **onsemi** Logo &Z = Assembly Plant Code

&3 = Date Code

2N7000 = Specific Device Code

1 – Gate

2 - Source

3 – Drain

SOT-23 CASE 318-08

MARKING DIAGRAM

702 = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

ABSOLUTE MAXIMUM RATINGS Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

		Value			
Symbol	Parameter	2N7000	2N7002	NDS7002A	Unit
V _{DSS}	Drain-to-Source Voltage		60		V
V_{DGR}	Drain-Gate Voltage (R _{GS} ≤ 1 MW)		60		V
V _{GSS}	Gate-Source Voltage - Continuous	±20			V
	Gate-Source Voltage - Non Repetitive (tp < 50 ms)	±40			
I _D	Maximum Drain Current - Continuous	200	115	280	mA
	Maximum Drain Current - Pulsed	500	800	1500	
P _D	Maximum Power Dissipation Derated above 25°C	400	200	300	mW
		3.2	1.6	2.4	mW/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to 150 -65 to 150		°C	
TL	Maximum Lead Temperature for Soldering Purposes, 1/16-inch from Case for 10 s		300		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS Values are at $T_C = 25$ °C unless otherwise noted.

		Value			
Symbol	Parameter	2N7000	2N7002	NDS7002A	Unit
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	312.5	625	417	°C/W

ELECTRICAL CHARACTERISTICS

Values are at T_C = 25°C unless otherwise noted.

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Unit
FF CHARA	CTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 10 μA	All	60	-	-	٧
I _{DSS}	DSS Zero Gate Voltage Drain Current	V _{DS} = 48 V, V _{GS} = 0 V	2N7000	-	-	1	μΑ
		V _{DS} = 48 V, V _{GS} = 0 V, T _C = 125°C		-	-	1	mA
		V _{DS} = 60 V, V _{GS} = 0 V	2N7002	-	-	1	μΑ
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V},$ $T_C = 125^{\circ}\text{C}$	NDS7002A	-	-	0.5	mA
I _{GSSF}		V _{GS} = 15 V, V _{DS} = 0 V	2N7000	-	-	10	nA
	Forward	V _{GS} = 20 V, V _{DS} = 0 V	2N7002 NDS7002A	_	-	100	
I _{GSSR}	Gate – Body Leakage,	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$	2N7000	-	-	-10	nA
	Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$	2N7002 NDS7002A	-	-	-100	
N CHARAC	CTERISTICS						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2N7000	8.0	2.1	3	V
		$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2N7002 NDS7002A	1	2.1	2.5	

ELECTRICAL CHARACTERISTICS (continued)

Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Unit
N CHARAC	TERISTICS						
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 500 mA	2N7000	-	1.2	5	Ω
	On-nesistance	$V_{GS} = 10 \text{ V, } I_D = 500 \text{ mA,}$ $T_C = 125^{\circ}\text{C}$		-	1.9	9	
		$V_{GS} = 4.5 \text{ V}, I_D = 75 \text{ mA}$		-	1.8	5.3	
		V _{GS} = 10 V, I _D = 500 mA	2N7002	-	1.2	7.5	
		$V_{GS} = 10 \text{ V, } I_D = 500 \text{ mA,}$ $T_C = 100^{\circ}\text{C}$] [-	1.7	13.5	
		$V_{GS} = 5 \text{ V}, I_D = 50 \text{ mA}$		-	1.7	7.5	
		$V_{GS} = 5 \text{ V, I}_{D} = 50 \text{ mA,}$ $T_{C} = 100^{\circ}\text{C}$		-	2.4	13.5	
		V _{GS} = 10 V, I _D = 500 mA	NDS7002A	_	1.2	2	
		$V_{GS} = 10 \text{ V}, I_D = 500 \text{ mA},$ $T_C = 125^{\circ}\text{C}$		-	2	3.5	
		$V_{GS} = 5 \text{ V}, I_D = 50 \text{ mA}$		_	1.7	3	
		$V_{GS} = 5 \text{ V, I}_{D} = 50 \text{ mA,}$ $T_{C} = 125^{\circ}\text{C}$		-	2.8	5	
V _{DS(on)}	Drain-Source On-Voltage	V _{GS} = 10 V, I _D = 500 mA	2N7000	-	0.6	2.5	V
		$V_{GS} = 4.5 \text{ V}, I_D = 75 \text{ mA}$		-	0.14	0.4	
		V _{GS} = 10 V, I _D = 500 mA	2N7002	-	0.6	3.75	
		$V_{GS} = 5.0 \text{ V}, I_D = 50 \text{ mA}$		-	0.09	1.5	
		V _{GS} = 10 V, I _D = 500 mA	NDS7002A	-	0.6	1]
		$V_{GS} = 5.0 \text{ V}, I_D = 50 \text{ mA}$		-	0.09	0.15	
9FS	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_{D} = 200 \text{ mA}$	2N7000	100	320	-	mS
		$V_{DS} \ge 2 V_{DS(on)}$, $I_D = 200 \text{ mA}$	2N7002	80	320	-	
		$V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$	NDS7002A	80	320	-	
YNAMIC CH	HARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz	All	-	20	50	pF
C _{oss}	Output Capacitance	T = 1.0 WIHZ	All	-	11	25	
C _{rss}	Reverse Transfer Capacitance		All	-	4	5	
t _{on}	Turn-On Time	$\begin{aligned} & V_{DD} = 15 \text{ V, R}_{L} = 25 \ \Omega, \\ & I_{D} = 500 \text{ mA, V}_{GS} = 10 \text{ V,} \\ & R_{GEN} = 25 \ \Omega \end{aligned}$	2N7000	-	_	10	ns
		$\begin{split} &V_{DD}=30 \text{ V, R}_{L}=150 \ \Omega, \\ &I_{D}=200 \text{ mA, V}_{GS}=10 \text{ V,} \\ &R_{GEN}=25 \ \Omega \end{split}$	2N7002 NDS7002A	-	_	20	
t _{off}	Turn-Off Time	$\begin{aligned} & \text{V}_{\text{DD}} = 15 \text{ V, R}_{\text{L}} = 25 \ \Omega, \\ & \text{I}_{\text{D}} = 500 \text{ mA, V}_{\text{GS}} = 10 \text{ V,} \\ & \text{R}_{\text{GEN}} = 25 \ \Omega \end{aligned}$	2N7000	-	_	10	ns
		$\begin{aligned} &V_{DD}=30 \text{ V, R}_{L}=150 \ \Omega, \\ &I_{D}=200 \text{ mA, V}_{GS}=10 \text{ V,} \\ &R_{GEN}=25 \ \Omega \end{aligned}$	2N7002 NDS7002A	-	_	20	
RAIN-SOU	RCE DIODE CHARACTERISTIC	S AND MAXIMUM RATINGS					
Is	Maximum Continuous Drain-S	ource Diode Forward Current	2N7002	_	-	115	mA
			NDS7002A	_	_	280	1

ELECTRICAL CHARACTERISTICS (continued)

Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Unit		
DRAIN-SOUP	DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
I _{SM}	Maximum Pulsed Drain-Source	Maximum Pulsed Drain-Source Diode Forward Current		-	_	0.8	Α		
		NDS7002A	-	_	1.5				
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 115 mA (Note 1)	2N7002	-	0.88	1.5	V		
		$V_{GS} = 0 \text{ V, } I_{S} = 400 \text{ mA}$ (Note 1)	NDS7002A	ı	0.88	1.2			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. On-Resistance Variation with Gate Voltage and Drain Current

Figure 3. On–Resistance Variation with Temperature

Figure 4. On–Resistance Variation with Drain Current and Temperature

^{1.} Pulse test: Pulse Width ≤[300 μs, Duty Cycel ≤[2 %

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

Figure 5. Transfer Characteristics

Figure 6. Gate Threshold Variation with Temperature

Figure 7. Breakdown Voltage Variation with Temperature

Figure 8. Body Diode Forward Voltage Variation with

Figure 9. Capacitance Characteristics

Figure 10. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

Figure 11. Switching Test Circuit

Figure 12. Switching Waveforms

Figure 13. 2N7000 Maximum Safe Operating Area

Figure 14. 2N7002 Maximum Safe Operating Area

Figure 15. NDS7000A Maximum Safe Operating Area

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

Figure 16. TO-92, 2N7000 Transient Thermal Response Curve

Figure 17. SOT-23, 2N7002 / NDS7002A Transient Thermal Response Curve

ORDERING INFORMATION

Part Number	Marking	Package	Packing Method [†]	Min Order Qty / Immediate Pack Qty
2N7000	2N7000	TO-92 3L	Bulk	10000 / 1000
2N7000-D74Z		(Pb-Free)	Ammo	2000 / 2000
2N7000-D75Z			Tape and Reel	2000 / 2000
2N7000-D26Z				2000 / 2000
2N7002	702	SOT-23 3L	Tape and Reel	3000 / 3000
NDS7002A	712	(Pb-Free)		3000 / 3000

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TO-92 3 4.825x4.76 CASE 135AN ISSUE O

DATE 31 JUL 2016

NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS. A)
- ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M—2009.

DOCUMENT NUMBER:	98AON13880G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 3 4.825X4.76		PAGE 1 OF 1		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 3 4.83x4.76 LEADFORMED

CASE 135AR ISSUE O

DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DRAWING CONFORMS TO ASME Y14.5M-1994

DOCUMENT NUMBER:	98AON13879G	Electronic versions are uncontrolled except when accessed directly from the Document Reported versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 3 4.83X4.76 LEADF	ORMED	PAGE 1 OF 1		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

SCALE 4:1

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIM	ETERS			INCHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
Ε	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0*		10°	0*		10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	ı	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: I PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales