Topología

Hugo Del Castillo Mola

9 de septiembre de 2022

Índice general

I	Topología General	2
1.	Espacios Topológicos y Funciones Continuas	3
	1.1. Espacios Topológicos	3

Parte I Topología General

Capítulo 1

Espacios Topológicos y Funciones Continuas

1.1. Espacios Topológicos

Definición 1.1 (Topología). Se llama topología sobre un conjunto X a $\forall \tau \in \mathcal{P}(X)$ que verifique:

- (I) $\emptyset, X \in \tau$.
- (II) $\forall A_1, A_2 \in \tau \Rightarrow A_1 \cap A_2 \in \tau$
- (III) $\forall \{A_j\}_{j\in J} \subset \tau \Rightarrow \bigcup_{j\in J} A_j \in \tau$

Observación. Al par (X, τ) se denomina espacio topológico y los elementos de X son puntos del espacio topológico.

Ejemplo. (I) Sea X un conjunto, entonces $\mathcal{P}(X) = \tau_D$ es una topología y se llama topología discreta.

- (II) La colección $\tau = \{X, \emptyset\}$ es también una topología y la llamamos topología trivial.
- (III) Sea (X,d) un espacio métrico y sea $\tau_d = \{U \subset X : \forall x \in U, \epsilon > 0 : B_\epsilon \subset U\}$ es una topología y la llamamos topología inducida por la métrica d.

Observación. Toda métrica induce un espacio topológico pero no todo espacio topológico es inducido por una métrica.

Definición 1.2 (Espacio Metrizable). Sea (X, τ) e.t., decimos que es un espacio matizable si d métrica sobre X tal que $= \tau_d$.

Definición 1.3 (Conjunto Abierto). Sea (x, τ) espacio topológico, decimos que $U \subset X$ es un conjunto abierto si $U \in \tau$.

Observación. Si U es un conjunto abierto, entonces $X \setminus U$ es un conjunto cerrado.

Observación. Existen conjuntos que son abiertos y cerrados simultáneamente. Y existen conjuntos que no son ni abiertos ni cerrados.

Ejemplo. Sea el espacio topológico (\mathbb{R}, τ_u) entonces S = (0, 1]) no es ni abierto ni cerrado.

Ejemplo. Sea el espacio topológico (X, τ_d) donde $\tau_d = \mathcal{P}(X)$ entonces $\forall S \subset X$, S es abierto y cerrado simultáneamente.

Definición 1.4 (Comparación de Topologías). Sean \mathcal{T} y \mathcal{T}' dos topologías sobre un conjunto $X \neq \emptyset$. Si $\mathcal{T} \subset \mathcal{T}'$ se dice que \mathcal{T}' es más fina (más fuerte) que \mathcal{T} . También podemos decir que \mathcal{T} es menos fina que \mathcal{T}' .

Notación. Sea (X, \mathcal{T}) e.t., $\mathcal{C}_{\mathcal{T}} = \{C \subset X : C \text{ es cerrado en } (X, \mathcal{T})\}.$

Proposición 1.1 (Dualidad conjuntos abiertos y cerrados). Sea (X, \mathcal{F})

- (I) \emptyset , X son cerrados.
- (II) $\forall C_1, C_2 \text{ cerrados} \Rightarrow C_1 \cup C_2 \text{ es cerrado.}$
- (III) $\forall \{C_j\}_{j\in J} \ \text{cerrados} \Rightarrow \bigcap_{j\in J} C_j \ \text{es cerrado.}$

Recíprocamente, si $X \neq \emptyset$, $\mathcal{F} \subset \mathcal{P}(X)$ y \mathcal{F} cumple (i, ii, iii) entonces la colección de los miembros complementarios a \mathcal{F} es una topología sobre X en donde la familia de cerrados es \mathcal{F} .

Observación. Este resultado muestra la relación entre las nociones de conjuntos abiertos y cerrados. Cualquier resultado sobre conjuntos abiertos en un espacio topológico se convierte en uno sobre cerrados al remplazar **abierto** por **cerrado** $y \cup por \cap$.

Definición 1.5 (Adherencia). Sea (X, \mathcal{T}) e.t. y $S \subset X$ se llama adherencia de S en (X, \mathcal{T}) al conjunto

$$\overline{S} = \bigcap \{C \subset X : C \text{ es cerrado y } S \subset C\}$$

Observación. \overline{S} es cerrado, $S \subset \overline{S}$ y \overline{S} es el menor cerrado que contiene a S.

Lema 1.0.1. Si $A \subset B$, entonces $\overline{A} \subset \overline{B}$.

Demostración. Como $B \subset \overline{B}$, $A \subset B \Rightarrow A \subset \overline{B}$ y por ser \overline{B} cerrado, se tiene que $\overline{A} \subset \overline{B}$.

Proposición 1.2 (Propiedades Adherencia). Sea (X, \mathcal{T}) e.t. entonces

- (1) $\overline{\emptyset} = \emptyset$,
- (II) $\forall S \subset X, S \subset \overline{S}$,
- (III) $\forall S \subset X, \overline{\overline{S}} = S$,
- (IV) $\forall A, B \subset X, \overline{A \cup B} = \overline{A} \cup \overline{B}$,
- (v) $\forall C \subset X$, C es cerrado $\Leftrightarrow C = \overline{C}$.

Demostración. (iv) Sea (X, \mathcal{T}) espacio topológico. Dado que $A \cup B \subset \overline{A \cup B}$ se tiene que $\overline{A \cup B} \subset \overline{A \cup B}$. Por otro lado, $A \subset A \cup B$ y $B \subset A \cup B$ entonces $\overline{A} \subset \overline{A \cup B}$ y $\overline{B} \subset \overline{A \cup B} \Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

Teorema 1.1. Sea $X \neq \emptyset$ y $\varphi : \mathcal{P}(X) \to \mathcal{P}(X) : S \mapsto \varphi(S) \equiv \overline{S}$ tal que φ cumple las 4 propiedades anteriores. Entonces, existe una única topología \mathcal{F} sobre X tal que $\forall S \subset X, (S)$ es la adherencia de S en (X, \mathcal{F}) .

Demostración. Sea $\mathcal{F} = \{F \subset X : \overline{F} = F\} \subset \mathcal{P}(X)$. Queremos ver que se cumplen las propiedades de Prop.1.1.(i, ii, iii).

(I) Por Prop.1.2(i, ii).

- (II) Por Prop.1.2(iv), sean $F_1, F_2 \in \mathcal{F}$. Entonces, $\overline{F_1 \cup F_2} = \overline{F_1} \cup \overline{F_2} = F_1 \cup F_2 \Rightarrow F_1 \cup F_2 \in \mathcal{F}$.
- (III) Si $F\subset G$ por Prop.1.2(iv) $\overline{G}=\overline{F}\cup(\overline{G\setminus F})\Rightarrow \overline{F}\subset \overline{G}$ Ahora, sean $F_j\in\mathcal{F}, \forall j\in J$ Entonces, $\bigcap_{j\in J}F_j\subset F_j, \forall j\in J\Rightarrow \overline{\bigcap_{j\in J}F_j}\subset \overline{F_j}, \forall j\in J$ y por tanto, $\overline{\bigcap_{j\in J}F_j}\subset \bigcap_{j\in J}\overline{F_j}=\bigcap_{j\in J}F_j$ y por Prop.1.2(ii) se tiene que $\overline{\bigcap_{j\in J}F_j}=\bigcap_{j\in J}F_j$, esto es, $\bigcap_{j\in J}F_j\in\mathcal{F}$.

Por tanto, \mathcal{F} es la familia de cerrados de algún e.t. (X,\mathcal{T}) . Falta por ver que la adherencia es la operación φ . Dado que $\overline{\overline{S}} = \overline{S}$ se tiene que $\overline{S} \in \mathcal{F}$ y por Prop.1.2(ii) $S \subset \overline{S}$. Si $C \in \mathcal{F}$ tal que $S \subset C$ entonces $\overline{S} \subset \overline{C} = C \Rightarrow \overline{S}$ es el elemento de \mathcal{F} más pequeño que contiene a S.

Observación. A la operación anterior se le llama operación de clausura de Kuratowski.

Definición 1.6 (Interior). Sea (X, \mathcal{T}) e.t., $S \subset X$ se llama interior de S en (X, \mathcal{T}) al conjunto

$$\mathring{S} = \bigcap \{G \subset X \text{ abierto } y \ G \subset E\}$$

Observación. \mathring{S} es abierto de \mathcal{T} , $\mathring{S} \subset S$ y es el mayor abierto contenido en S.

Proposición 1.3 (Propideades interior). *content*

Proposición 1.4. Sea (X, \mathcal{T}) e.t., $S \subset X$. Enotnces:

- (I) $X \setminus \overline{S} = (X \hat{\setminus} S)$.
- (II) $X \setminus \mathring{S} = \overline{X \setminus S}$.

Demostración. (I) $X \setminus \bigcap_{C \in \mathcal{F}: S \subset C} C = \bigcup_{C \in \mathcal{F}: S \subset S} X \setminus C = \bigcup_{G \in \mathcal{T}: G \subset X \setminus S} G = (X \mathring{\setminus} S)$

(II)
$$X \setminus \mathring{S} = X \setminus \bigcup_{G \in \mathcal{T}: G \subset S} G = \bigcap_{G \in \mathcal{T}: G \subset S} (X \setminus G) = \bigcap_{C \in \mathcal{F}: X \setminus S \subset C} C = X \setminus S$$

Definición 1.7 (Frontera). Sea (X,\mathcal{T}) e.t., $S\subset X$. Se llama frontera de S en (X,\mathcal{T}) a

 $Fr(S) = \overline{S} \cap \overline{(X \setminus S)}$

Observación. Fr(S) es cerrado

Observación. $Fr(S) = Fr(X \setminus S)$

Observación. $Fr(S) \not\subset S$

Proposición 1.5. Sea (X, \mathcal{T}) e.t., $S \subset X$. Entonces:

(I)
$$\overline{S} = S \cup Fr(S)$$

(II)
$$\mathring{S} = S \setminus Fr(S) = S \setminus (Fr(S) \cap S)$$

(III)
$$X = \mathring{S} \cup (X \mathring{\setminus} S) \cup Fr(S)$$

(IV)
$$Fr(S) = \overline{S} \setminus \mathring{S}$$

Demostración. (I)

$$S \cup Fr(S) = S \cup \left(\overline{S} \cap \overline{X \setminus S}\right) =$$
$$= (S \cup \overline{S}) \cap (S \cup \overline{X \setminus S}) = \overline{S}$$

(II)
$$S \setminus Fr(S) = S \setminus (\overline{S} \cap \overline{X \setminus S}) =$$
$$= (S \setminus \overline{S}) \cup (S \setminus \overline{X \setminus S}) = \emptyset \cup (S \cap (X \setminus \overline{X \setminus S})) =$$
$$= (S \cap (X \setminus (X \setminus \mathring{S}))) = (S \cap \mathring{S}) = \mathring{S}$$

(III)
$$X = \mathring{S} \cup (X \setminus \mathring{S}) = \mathring{S} \cup \overline{X \setminus S} =$$

$$= \mathring{S} \cup \left[(X \setminus S) \cup Fr(X \setminus S) \right] =$$

$$= \mathring{S} \cup \left[(X \setminus S) \cup \left(Fr(X \setminus S) \cap (X \setminus S) \right) \cup Fr(X \setminus S) \right] =$$

$$= \mathring{S} \cup (X \setminus S) \cup Fr(X \setminus S) = \mathring{S} \cup (X \setminus S) \cup Fr(S)$$

(IV)
$$Fr(S) = \overline{S} \cap \overline{(X \setminus S)} = \overline{S} \cap (X \setminus \mathring{S})$$

Definición 1.8. Sea (X,\mathcal{T}) e.t., $S\subset X$ se dice que es denso en (X,\mathcal{T}) si $\overline{S}=X$

Definición 1.9. Sea (X, \mathcal{T}) e.t., $x \in X$, $V \subset X$. Se dice que V es un entorno de x en (X, \mathcal{T}) si $\exists A \in \mathcal{T} : x \in A \subset V$.

Definición 1.10. Sea (X, \mathcal{T}) e.t., $x \in X$, $\mathcal{V}(x)$ es la colección de todos los entornos de x y se llama sistema de entornos de x en (X, \mathcal{T}) .

Observación. Si (X,\mathcal{T}) e.t., $x\in X$, $V\subset X$ entonces V es entorno de $x\Leftrightarrow x\in \mathring{V}$.

Notación. U^x, V^x entornos de x.

Proposición 1.6. Sea (X, \mathcal{T}) e.t., $\mathcal{V}(x)$ tiene las siguiente propiedades:

- (I) $\forall U \in \mathcal{V}(x) \Rightarrow x \in U$.
- (II) $\forall U, V \in \mathcal{V}(x) \Rightarrow U \cap V \in \mathcal{V}(x)$.
- (III) $\forall U \in \mathcal{V}(x), \exists V \in \mathcal{V}(x)$ tal que $\forall y \in V, U \in \mathcal{V}(y)$.
- (IV) $\forall U \in \mathcal{V}(x), \exists V \subset X : U \subset V \Rightarrow V \in \mathcal{V}(x).$

Demostración. (I) Trivial, a partir de la definición.

- (II) $x \in \mathring{U}, x \in \mathring{V} \Rightarrow x \in \mathring{U} \cap \mathring{V} \subset U \cap V \Rightarrow U \cap V \in \mathcal{V}(x)$.
- (III) Sean $U \in \mathcal{V}(x), V = \mathring{U}$ como $x \in \mathring{U} = V \Rightarrow \forall y \in V \in \mathcal{T}$ y $V \subset U \Rightarrow U \in \mathcal{V}(y)$.
- (IV) $U \in \mathcal{V}(x), U \subset V \Rightarrow x \in \mathring{U} \subset \mathring{V} \Rightarrow V \in \mathcal{V}(x).$

Proposición 1.7. Sea $X \neq \emptyset$, $\forall x \in X : \mathcal{V}(x) \subset \mathcal{P}(x)$ que cumple (i, ii, iii, iv) anteriores, entonces $\exists ! \mathcal{T}$ sobre $X : \forall x \in X, \mathcal{V}(x)$ es el sistema de entornos de x en (X, \mathcal{T}) .

Demostración. Sea $\mathcal{T} = \{G \subset X : \forall x \in G, G \in \mathcal{V}(x)\}$. Vemos que \mathcal{T} es una topología:

- (I) $Prop1.6.(i) X \in \mathcal{V}(x) \Rightarrow X \in \mathcal{T}$
- (II) $\forall G_1, G_2 \in \mathcal{T}, x \in G_1 \cap G_2 \Rightarrow G_1, G_2 \in \mathcal{V}(x), Prop.1.6.(b) \Rightarrow G_1 \cap G_2 \in \mathcal{V}(x).$
- (III) $\forall \{G_j\}_{j\in J} \subset \mathcal{T}, x \in \bigcup_{j\in J} G_j \Rightarrow \exists j_0 \in J : G_{j_0} \in \mathcal{V}(x), \ \textit{Prop.1.6.(iv)} \Rightarrow \bigcup_{j\in J} G_j \in \mathcal{V}(x) \Rightarrow \bigcup_{j\in J} G_j \in T$
- $\Rightarrow \mathcal{T}$ es topolgía.

Vemos ahora que S es entorno de $x \Leftrightarrow S \in \mathcal{V}(x)$.

- (\Rightarrow) S entorno de x en $(X, \mathcal{T}) \Rightarrow \exists G \in \mathcal{T} : x \in G \subset S \Rightarrow G \in \mathcal{V}(x)$ Prop.1.6.(iv) $\Rightarrow S \in \mathcal{V}(x)$.
- (\Leftarrow) $S \in \mathcal{V}(x)$. Sea $U \subset S$ ACABAR

Falta ver que T es única.

Definición 1.11 (Base de Entorno). Sea $x \in X$, $\mathcal{B}(x) \subset \mathcal{V}(x)$. Se dice que $\mathcal{B}(x)$ es una base de un entorno de x en (X, \mathcal{T}) si $\forall U \in \mathcal{V}(x), \exists B \in \mathcal{B}(x) : B \subset U$.

Observación. De la definición de base queda determinado un entorno como $\mathcal{V}(x) = \{U \subset X : \exists B \in \mathcal{B}(x) : B \subset U\}$

Ejemplo. $\forall (X, \mathcal{T})$ e.t. $\mathcal{V}(x)$ es una base de entornos de x.

Ejemplo. Sea $(X, \mathcal{T}_D), \mathcal{T}_D = \mathcal{P}(x), \forall x \in X$ entonces $\mathcal{B}(x) = \{\{x\}\}$ es base de entornos de x.

Ejemplo. Sea (X, \mathcal{T}) metrizable. $\mathcal{T} = \mathcal{T}_d$, d métrica tal que $\forall x \in X, \mathcal{B}(x) = \{B_{\epsilon}(x) : \epsilon > 0\}$ entonces $\mathcal{B}(x)$ es base de entornos de x.

Ejemplo. $\forall (X, \mathcal{T})$ e.t., $\mathcal{B}(x) = \{U : U \in \mathcal{V}(x)\}$ es base de entornos de x.

Ejemplo. Sea $(\mathbb{R}, \mathcal{T}_{\sqcap})$: $\forall x \in \mathbb{R}, \mathcal{B}(x) = \{[x - \epsilon, x + \epsilon] : \epsilon > 0\}$ entonces $\mathcal{B}(x)$ es base de entornos de x.

Proposición 1.8 (Propiedades de Bases). Sea (X, \mathcal{T}) e.t. $y \mathcal{B}(x)$ una base de entornos de x en (X, \mathcal{T}) , $\forall x \in \mathcal{T}$. Entonces:

- (I) $B \in \mathcal{B}(x) \Rightarrow x \in B$.
- (II) $B_1, B_2 \in \mathcal{B}(x) \Rightarrow \exists B_3 \in \mathcal{B}(x) : B_3 \subset B_1 \cap B_2$.
- (III) $B_1 \in \mathcal{B}(x) \Rightarrow \exists B_2 \in \mathcal{B}(x) : \forall y \in B_2, \exists B \in \mathcal{B}(y) \text{ tal que } B \subset B_1.$

Demostración. (I) $\mathcal{B}(x) \subset \mathcal{V}(x), B \in \mathcal{B}(x) \Rightarrow x \in B$.

- (II) $B_1, B_2 \in \mathcal{B}(x) \Rightarrow B_1 \cap B_2 \in \mathcal{B}(x) \subset \mathcal{V}(x) \Rightarrow \exists B_3 \in \mathcal{B}(x) : B_3 \subset B_1 \cap B_2.$
- (III) $B_1 \in \mathcal{B}(x) \subset \mathcal{V}(x)$ Prop.1.6.(iii) $\Rightarrow \exists U \in \mathcal{V}(x)$ tal que $\forall y \in U, B_1 \in \mathcal{B}(y) \Rightarrow \exists B_2 \in \mathcal{B}(x) : B_2 \subset U$ tal que $\forall y \in B_2, B_1 \in \mathcal{V}(y) \Rightarrow \exists B \in \mathcal{B}(y) : B \subset B_1$.

Proposición 1.9. Sea $X \neq \emptyset, \mathcal{B} : X \mapsto \mathcal{P}(\mathcal{P}(x))$ cumpliendo (i, ii, iii) anteriores, entonces $\mathcal{B}(x)$ define una topología en X.

Demostración. Sea $\forall x \in X, \mathcal{V}(x) = \{U \subset X : B \subset U \text{ para algún } B \in \mathcal{B}(x)\}$ tal que $\mathcal{B}(x) \subset \mathcal{V}(x)$

(I) $\forall U \in \mathcal{V}(x)$