AMENDMENTS TO THE CLAIMS:

Complete Listing of Claims

1	1. (original) A bit-rate detection circuit, comprising:
2	a plurality of shift registers adapted to serially shift in bits of data having a
3	data frequency from a first transceiver, said shift registers being clocked at a first
4	predetermined rate; and
5	logic circuitry responsively coupled to said shift registers providing an
6	output signal indicative of the data frequency.
1	2. (original) The bit-rate detection circuit of Claim 1 wherein said first
2	predetermined rate is the highest possible data rate that the incoming data
3	frequency can be.
1	3. (original) The bit-rate detection circuit of Claim 1 wherein said logic
2	circuitry is coupled to nodes defined between said shift registers.
1	4. (original) The bit-rate detection circuit of Claim 3 wherein said logic
2	circuitry comprises a first logic set and a second logic set each providing an
3	output signal, said first logic set being coupled to a first set of said nodes
4	between said shift registers, and said second logic set being coupled to a second
5	set of said nodes between said shift registers.

1 5. (original) The bit-rate detection circuit of Claim 4 wherein said first 2 logic set determines if said incoming data frequency is a first predetermined 3 frequency, and said second logic set determines if said incoming data frequency 4 is a second predetermined frequency being less than said first predetermined 5 frequency. 1 6. (original) The bit-rate detection circuit of Claim 5 wherein said first 2 predetermined frequency is a multiple of said second predetermined frequency. 1 7. (original) The bit-rate detection circuit of Claim 4 further comprising 2 output logic circuitry responsively coupled to said first logic set and said second 3 logic set, said output logic circuitry providing said output signal indicative of the 4 data frequency. 1 8. (original) The bit-rate detection circuit of Claim 4 further comprising a 2 third logic set coupled to a third set of said nodes being different than said first 3 and second sets of nodes. 1 9. (original) The bit-rate detection circuit of Claim 8 wherein said third 2 logic set determines if said incoming data frequency is a third predetermined 3 frequency being less than said second predetermined frequency. 1 10. (original) The bit-rate detection circuit of Claim 9 wherein said first 2 predetermined frequency is in multiple of said third predetermined frequency. 1 11. (original) The bit-rate detection circuit of Claim 10 wherein said third 2 predetermined frequency is also a multiple of said second predetermined 3 frequency.

1 12. (original) The bit-rate detection circuit of Claim 1 further comprising a 2 communications transceiver module responsively coupled to said logic circuitry 3 output signal and adapted to transmit data back to said first transceiver at said 4 incoming data frequency. 1 13. (original) The bit-rate detection circuit of Claim 1 wherein said logic 2 circuitry includes a single clock operating at a first frequency. 1 14. (original) The bit-rate detection circuit of Claim 1 wherein said logic 2 circuit provides said output signal as a function of framing data clocked into said 3 shift registers. 1 15. (original) The bit-rate detection circuit of Claim 14 wherein said 2 framing data is A1 and A2 SONET framing bytes. 1 16. (original) A data transceiver, comprising: 2 a data receiver circuit; 3 logic circuitry responsively coupled to said receiver circuit determining a 4 data rate of data received by said data receiver, said logic circuit including and

5

6

7

operating off a single clock operating at a first predetermined frequency; and

to transmit data at a data rate as a function of said output signal.

a data transmitter responsively coupled to said logic circuitry and adapted

1 2	17. (original) The bit-rate detection circuit of Claim 16 wherein said logic circuitry comprises;
3	a plurality of shift registers adapted to serially shift in data having a data
4	frequency from a first transceiver, said shift registers being clocked at a first
5	predetermined rate; and
6	logic circuitry responsively coupled to said shift registers providing an
7	output signal indicative of the incoming data frequency.
1	18. (original) The bit-rate detection circuit of Claim 17 wherein said first
2	predetermined rate is the highest possible data rate that the incoming data
3	frequency can be.
1	19. (original) The bit-rate detection circuit of Claim 17 wherein said logic
2	circuitry is coupled to nodes defined between said shift registers.
1	20. (original) The bit-rate detection circuit of Claim 19 wherein said logic
2	circuitry comprises a first logic set and a second logic set each providing an
3	output signal, said first logic set being coupled to a first set of said nodes defined
4	between said shift registers, and said second logic set being coupled to a second
5	set of said nodes defined between said shift registers.
1	21. (original) A method of detecting a bit-rate of data incoming to a
2	receiver, comprising the steps of:
3	a) clocking said incoming bit data at a first frequency into a
4	plurality of shift registers having a node between each said shift register; and
5	b) analyzing data at a plurality of said nodes to determine the bit-
6	rate of said incoming bit data.

22. (original) The method as specified in Claim 21 wherein said first 1 2 frequency is the maximum possible data bit-rate of said incoming bit data. 1 23. (currently amended) The method as specified in Claim 22 wherein 2 logic circuitry analyzes said bit data, said logic circuitry having a first logic set 3 coupled to a first set of said nodes determining if said data bit-rate could be a 4 first data rate, and a second logic set coupled to a second set of said <u>nodes</u> 5 determining if said data bit-rate could be a second data rate being less than said 6 first data rate. 1 24. (original) The method of Claim 23 wherein said first data rate is said 2 first frequency, and said first data rate is also a multiple of said second data rate. 1 25. (original) The method of Claim 21 further comprising the step of 2 responsively transmitting data from a transmitter at a data rate being said 3 determined incoming data bit-rate. 1 26. (original) The method of Claim 21 wherein frame data is said 2 analyzed data in said step b). 1 27. (original) The method of Claim 26 where in said frame data is a A1 2 and A2 SONET framing byte.

- 28. (original) A bit-rate detection circuit, comprising:

 a plurality of shift registers adapted to shift in bits of data having a data

 rate in parallel from a first transceiver, said shift registers being clocked at a

 predetermined clock rate; and
- logic circuitry responsively coupled to said shift registers providing an output signal indicative of the data rate.
- 29. (original) The bit-rate detection circuit as specified in Claim 28, wherein said clock rate is less than the maximum data rate.
- 30. (original) The bit-rate detection circuit as specified in Claim 29, wherein said data rate is a multiple of said clock rate.