Fraktály

Peter Markoš Fyzikálny ústav SAV

Katedra fyziky FEI STU

Abstract

- 1. Motivácia
- 2. Fraktál čo to je
- 3. Príklady fraktálov
- 4. Rôzne definície fraktálnej dimenzie
- 5. Multifraktály

Klasické geometrické útvary

Sledujme, ako sa mení objem V objektu s jeho veľkosťou L:

- úsečka: $V = L^1$ d = 1
- štvorec: $V = L^2$ d = 2
- kocka: $V = L^3$ d = 3

Jednoduché, l'ahko pochopitel'né. V prírode však mô'ze nastat' aj iné:

$$V = L^{\frac{d}{f}} \tag{1}$$

 d_f . . . neceločíselná fraktálna dimenzia.

Príklad: Kochova krivka

Iterujme takúto krivku:

Kochova krivka II

Kochova krivka III

– Typeset by FoilTEX –

Kochova krivka IV

Kochova krivka: postup

Ak lineárna škála narastie $3\times$, tak objem narastie $4\times$.

Takže máme

$$L \to 3L$$
 $V \to 4V$ (2)

$$V = L^{d_f} d_f = \frac{\ln 4}{\ln 3} (3)$$

Fraktálna dimenzia d_f je neceločíselná, definuje, ako rastie "objem" Kochovej krivky.

– Typeset by Foil $T_{\!E\!}X$ –

Kochova krivka V

Kochova krivka VI

Na čo je to dobré?

Klasické príklady:

- Pobrežie Veľkej Británie
- Tvar ostrovov
- Oblaky
- Blesk
- Elektrický prieraz
- Snehová vločka
- Kotolný kameň

Príroda vytvára v'ačšinou "brčkavé" objekty, nie priamky, roviny, gule a kocky.

Abstrakcia

V geometrickej konštrukcii fraktálu môžeme iterovať donekonečna. To v reálnom svete nemá zmysel.

Každý fyzikálny objekt možno charakterizovať jeho typickými dĺžkami: maximálnou $L_{\rm max}$ a minimálnou $L_{\rm min}$. O fraktálnych vlastnostiách má význam hovoriť len v škálach medzi týmito dĺžkami.

$$L_{\min} < L < L_{\max}$$
 (4)

Aj vtedy však má pojem fraktálu zmysel. Odchylky od "normálnej" geometrie môžu vysvetliť viaceré fyzikálne javy.

- Typeset by Foil T_EX -

"Dvojrozmerné" fraktály

Rozdelím štvorec na $3 \times 3 = 9$ častí, a ponechám si len 8 z nich. Potom zväčším systém $3\times$ v oboch smeroch. Rozmer systému narástol $3 \times$, plocha narástla len $8 \times$

Fraktálna dimenzia:
$$d_f = \frac{\ln 8}{\ln 3} \tag{5}$$

"Dvojrozmerné" fraktály

Sierpinski gasket

Fraktál s dimenziou
$$d_f = \frac{\ln 8}{\ln 3}$$

Postup: štvorec rozdelím na 9 častí a prostrednú vyberiem. Po transformácii $L \to 3L$ mi zostane len 8 štvorcov.

– Typeset by Foil T_{EX} –

Self-similarita

Pretože sa "motív", podľa ktorého fraktál konštruujeme, neustále opakuje, je fraktál "sebepodobný" (self-similar).

Ak zv'ačšíme nejakú časť fraktálu na na veľkosť celého systému, dostaneme "to isté".

Fraktály v teoretickej fyzike

Mnohé javy, napríklad fázové prechody, závisia od dimenzie systému. V normálnom svete máme k dispozícii len celočíselné dimenzie. V počitači si ale môžeme vyrobiť fraktálne mriežky, na ktorých sa dajú testovať teoretické predpovede.

Iné fraktály

Všetky tri majú tú istú fraktálnu dimenziu, $d_q = \ln 3/\ln 2$.

– Typeset by Foil $T_{\!E}\!X$ –

17

Očividne sa ale líšia svojou štruktúrou: počtom najbližších susedov, možnosťou vytvárať slučky (kruhové dráhy). Preto neprekvapuje, že fyzikálne deje na takýchto mriežkach môžu byť rôzne. Preto definujeme ďalšie paramterje, ktoré charakterizujú mriežku.

Spektrálna dimenzia

Mriežka atómov kmitá (teplotné kmity). Frekvencia kmitov a ich vlnová dĺžka závisia od štruktúry mriežky. Počet rôznych módov s danou frekvenciou (hustota stavov) závisí od frekvencie ocninne:

$$n(\omega) = \omega^{d_S} \tag{6}$$

kde d_s je spektrálna dimenzia mriežky - definovaná z fyzikálnych princípov !

Pre regulárne mriežky je $d_s=d$. Pre fraktály môže byť $d_s \neq d_f$.

Ukazuje sa, že vo fyzikálnych aplikáciách je d_s dôležitejšia ako fraktálna dimenzia d_f .

Tieto fraktály majú tú istú fraktálnu dimenziu, $d_f=\ln 3/\ln 2\approx 1.585$, ale majú rôznu spektrálnu dimenziu. Fraktály A a B majú $d_s=1.365$, ale fraktál C má $d_s=1.226$

– Typeset by FoilT $_{\!E\!X}$ –

Náhodný fraktál I

Predtým: každá plocha mala dú istú hustotu: alebo 1, alebo 0.

Teraz: každý štvorec i má inú hustotu p_i tak, aby $\sum_i^N p_i = C$ (C sa môže meniť).

Ďalší krok: v každom iteračnom kroku zvolíme hodnoty p_i nanovo - vznikne náhodný fraktál.

Náhodný fraktál I

Predchádzajúci príklad bol príliš jednoduchý. Mali sme totiž pravidelný algoritmus tvorby nasledujúcej generácie.

Zovšeobecnenia:

- vyberieme l'ubovol'ný štvorec, nielen stredný. Vol'bu vynechaného štvorca ponecháme zakaždým náhode.
- Každému štvorčeku priradíme náhodne inú váhu

Multifraktály

Ak má každý štvorček inú "váhu", potom v jednej štruktúre vidíme veľa rôznych fraktálov. Môžeme totiž vyberať len body s danou váhou, a tie vytvoria "svoju" fraktálnu štruktúru.

Preto musíme systém charakterizovať nekonečným množstvom faktálnych dimenzií.

Multifraktály

Definícia: majme dvojrozmerný systém veľkosti $L\times L$, s $N=L^2$ bodmi. Každý bod i je obsadený s pravdepodobnosťou p_i . Definujme

$$I_{\mathbf{q}} = \sum_{i}^{N} p_{i}^{\mathbf{q}}. \tag{7}$$

Uvažujme jednoduché príklady:

- (1) homogénne rozdelenie hmoty: $p_i = 1/L^2$. Potom $I_q = L^{-2(q-1)}$
- (2) obsadený je len jediný bod. Zrejme $I_q=1=L^{-\mathbf{0}(q-1)}$

Ak je p_i náhodné číslo, potom s adá očakávať, že

$$I_q \propto L^{d_q(q-1)}$$
 (8)

kde d_q sú multifraktálne dimenzie.

Príklad: priestorové rozdelenie elektrónu v dvojrozmernej mriežke

Kvantovaný Hallov jav

Rozloženie elektrónov v kritickom bode (prechod z jedného plateau na druhé) je multifraktálne. Teória predpoverá, že

$$d_q = 2 - \frac{q}{2\pi\sigma} \tag{9}$$

kde σ je elektrická vodivosť.

Záver

Fraktály sú zajímavé, užitočné, a nevyhnutné pre popis rôznmych fyzikálnych javov. O mnohých z nich sme sa nezmienili, ale zmienime neskôr: napr. nelineárne systémy, podivný atraktor . . .

- Typeset by Foil $T_{\rm F}X$ -