CSC236 fall 2014

Theory of computation

Danny Heap

heap@cs.toronto.edu 🚄

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~csc236h/fall/ 416-978-5899

Using Introduction to the Theory of Computation, Section 1.2

Outline

Introduction

Chaper 1, Simple induction

Notes

Why reason about computing?

Testing isn't enough infinite # of test cases, some

You might get to like it (?!*)

Computer Sciented's

Now

Your might get to like it (?!*)

Feally !

How to reason about computing

- ▶ It's messy... many, many drafts+
- ► It's art... there's golden algorithm
 for a Solution.

How to do well at this course

▶ Read the course information sheet as a two-way promise

▶ Question, answer, record, synthesize

► Collaborate with respect

What should you already know?

Chapter 0 material from Introduction to Theory of Computation

Sequence, Sub Sequence

CSC165 material, especially the mathematical prerequisites (Chapter 1.5), proof techniques (Chapter 3), and the introduction to big-Oh (Chapter 4).

What'll you know by December?

- Understand, and use, several flavours of induction

 Simple, complete, well-ordering principle,

 Structural induction
- Complexity and correctness of programs both recursive and iterative 165 topic

▶ Formal languages, regular languages, regular expressions

$$(|*+0*)$$

Domino fates foretold

count subsets

How many subsets does {1} have? How do you know?

How many subsets does {1, 2} have? How do you know?

What about $\{a\}$ and $\{a, b\}$?

counting systematically

Count the subsets of $\{1\}$ by enumerating them, in a power set.

How do you get from the set of subsets of $\{1\}$ to the set of subsets for $\{1, 2\}$?

$$P(\S^{1,23}) = \S \S 1 \S, \S \S$$

$$\S_{2,1} \S, \S 2 \S$$

gathering data systematically

set	number of subsets
{}	1
{1}	2
{1, 2}	4
{1, 2, 3}	ģ
:	
$\{1,2,3,\ldots,n\}$	2 ⁿ

$$2 \times 2 + \cdots \times 2$$
 n times

$$2^{n} = \begin{cases} 1 & \text{if } n = 0 \\ 2 \times 2^{n-1} & \text{if } n > 0 \end{cases}$$

Every set with n elements has exactly 2^n subsets The only sel of Size 0 as the empty set, and it has exactly 1 = 2° subsets. Now assume n is some natural number, and that any set of 5120 n has 2" subsels Suppose |5| = n+1 >, 0, so there is some XES. Split (partition) the subsets of S into those that contain X and those that don't. Since the subsels, that so not contain X are the subsets of S- Exis, which has n elements, hence 2h subsets. There is a matching (add on remove of believen Subsets with a without χ , so there as also 2° subsets of S in contain χ .

So S has 2° +2° = 2.2° = 2° +1° subsets.

Every set with n elements has exactly 2^n subsets

why?

Size n+1 has 2" elements

Conclude (by Induction)
Every set of Size n elements
has 2" subsets, In CIN

$$P(0) \land (\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$$

prove the antecedent, then you know the consequent

Every set with n elements has exactly 2^n subsets...

Use: $[P(0) \land (\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Rightarrow \forall n \in \mathbb{N}, P(n)$ $P(n) : \text{ Oll sets of Size n have } 2^{n} \text{ Subsets }$

Proof (induction)

-Prove P(0) - Prove that In (N, P(n) => P(n+1) Every set with n elements has exactly 2^n subsets...

Use: $[P(0) \land (\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Rightarrow \forall n \in \mathbb{N}, P(n)$ Proof: By induction: Basi cose A set with A elements must be the empty set, and A has shortly A subsets (itself). So A (itself).

Induction Step assume n is some typical natural number and that P(a) is true: every set with n elements has 2" subsets (this assumption is called the Inductor Hypothesis, IH).

on choose some $x \in S$ and partition the subsets of $x \in S$ and partition the subsets of $x \in S$ into those that include $x \in S$ and those that to $x \in S$ into the subsets that do not include $x \in S$ are the subsets of $x \in S$, a set of $x \in S$ which $x \in S$ by $x \in S$ subsets. There is a natural mat ching between the subsets of $x \in S$ that include $x \in S$ and those that don't just remove on $x \in S$ to a subset $x \in S$

Every set with n elements has exactly 2^n subsets...

Use: $[P(0) \land (\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$ So there are the same number $-2^n - subsets$ of s with and without α . Altogether s has $2^n + 2^n = 2 \times 2^n = 2^{n+1}$ sakets, $so \ P(n+1)$. We've shown that the N, P(n) => P(n+1) Conclude: $\forall n, P(n) - Every set with n elements has exactly <math>2^n$ subsets - by induction.

fill in the table rows

patterns?

Any patterns about a(n) that are true no matter which natural number you substitute for n?

Any patterns about consecutive pairs (a(n), a(n+1))?

Prove that some pattern is true for all a(n), no matter which natural number you substitute for n.

▶ is it true at the beginning?

▶ is it preserved from one to the next?

$$yos \quad a(n) < 1$$

$$\Rightarrow \quad a(n) + 1 < 2$$

$$\Rightarrow \quad a(n) + 1 < 2/2 = 1$$

$$\Rightarrow \quad (a(n+1) < 1)$$

induction steps...

NO NEVER EVER DO THIS

devise a predicate, P(n), in other words a sentence that is open

in n. show that your predicate is true at the beginning (where's the

beginning)? Show Plo) true, ie a(0) = 1/2 < 1

show that your predicate is preserved from one natural number to the next $p(n) \Rightarrow p(n+1)$, in other show $\forall n$, $\forall n \in \mathbb{R}$ p(n+1) < 1.

know (conclude) that your predicate is true (preserved) no matter which natural number is substituted for n

tren, Plas.

general form of induction

$$[\ P(0) \ \land \ (\, orall n \in \mathbb{N}, P(n) \Rightarrow P(n+1) \,) \,] \Longrightarrow orall n \in \mathbb{N}, P(n)$$

technique is to prove the antecedent, then conclude the consequent

prove: $\forall n \in \mathbb{N}, a(n) < 1$

conventional form

For every $n \in \mathbb{N}$, $12^n - 1$ is a multiple of 11

n	$12^{n} - 1$	11 × ?
0		
1		
2		
2 3 4		
4		
:		

For every $n \in \mathbb{N}$, $12^n - 1$ is a multiple of 11

Use: $[P(0) \land (\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

Use
$$[P(0) \land (\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$$

What's P(n)?

Use $[P(0) \land (\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

Use $[P(0) \land (\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

Use $[P(0) \land (\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

Notes

