IT-309 EXPERIMENT 5 REPORT

Indian Institute of Information Technology, Vadodara

Group-1

Contents

	Experiment -5: Implementation of Google's PageRank Algorithm		2
	0.1.1	Theory	2
	0.1.2	Experiment	3

O.1 EXPERIMENT -5: IMPLEMENTATION OF GOOGLE'S PAGERANK ALGORITHM

0.1.1 Theory

- In this experiment, we run Google's page rank Algorithm
- This involves the computation of the Google matrix Given by -

$$G = \alpha S + (1 - \alpha)(1/n)ee^{T}$$
(1)

where-

- G is the Google Matrix
- S is stochastically adjusted Hyperlink Matrix, H that prevents Any random surfer stuck at a dangling page go to any other page randomly.
- α is the probability with which a random surfer will follow the hyperlinks and $(1-\alpha)$ is the probability with which he will randomly teleport to a new web page.
- n is the number of web pages and e is a 1xn vector with all it's entries 1.
- This makes $(1/n)ee^T$ a teleportation matrix.
- *G* is stochastic, aperiodic and irreducible.
- After calculating G the next step is to solve the following eigen vector problem -

$$\pi^T = \pi^T G \tag{2}$$

and

$$\pi^T e = 1 \tag{3}$$

- This is solved through the power method.
- We have used the Python library to perform the Page Ranking Algorithm on the given data source.
- \bullet Since G is stochastic, and primitive, it takes only about 50 power iterations to converge to a eigen-vector.

• The convergence rate depends on the rate at which $|\lambda_2/\lambda_1|^k \to 0$ where λ_1 and λ_2 are the highest and the second highest eigen values of G. Since G is Stochastic, $\lambda_1 = 1$ and $\lambda_1 \le 1$

0.1.2 Experiment

- The given data set is an adjacency list of the hyperlink graph. consisting of 2,18,888 nodes.
- The program gives output of the dictionary in which keys are the page numbers (or ids) and values are the fraction of usage.

• Sorting the keys according to the values in descending order gives us the rank

 $\bullet\,$ Run Time of the Algorithm for this data set: 43.85716223716736 seconds