**WEEKS 5-9** 

# Introduction to Machine Learning

Dr Mykola Gordovskyy

#### Week 7

- Weighting
- Support Vector Machines
- Decision trees
- Supervised learning pipeline

### Weighting: why?

- Some data entries may be more or less reliable than others –
  use of different measurement tools, a large dataset created from
  smaller datasets obtained in different ways etc etc
- We may want to make some data entries more or less important based on their properties



Weighting

#### **Example: weighting in regression**

#### Simple linear regression with weighting

Find the values of a and b so that

$$\frac{\partial E}{\partial a} = \frac{\partial}{\partial a} \sum_{i} (Y_i - a - bX_i)^2 = -2 \sum_{i} (Y_i - a - bX_i) = 0$$

and

$$\frac{\partial E}{\partial b} = \frac{\partial}{\partial b} \sum_{i} (Y_i - a - bX_i)^2 = -2\sum_{i} X_i (Y_i - a - bX_i) = 0$$

$$b = \frac{\sum_{i} X_{i} Y_{i} - \frac{1}{N} \sum_{i} X_{i} \sum_{i} Y_{i}}{\sum_{i} X_{i}^{2} - \frac{1}{N} (\sum_{i} X_{i})^{2}}$$

$$a = \frac{1}{N} \sum_{i} Y_{i} - b \frac{1}{N} \sum_{Ni} X_{i}$$

#### **Example: weighting in regression**

#### Simple linear regression with weighting

Find the values of a and b so that

$$\frac{\partial E}{\partial a} = \frac{\partial}{\partial a} \sum_{i} W_{i} (Y_{i} - a - bX_{i})^{2} = -2 \sum_{i} W_{i} (Y_{i} - a - bX_{i}) = 0$$

and

$$\frac{\partial E}{\partial b} = \frac{\partial}{\partial b} \sum_{i} \mathbf{W}_{i} (Y_{i} - a - bX_{i})^{2} = -2 \sum_{i} \mathbf{W}_{i} X_{i} (Y_{i} - a - bX_{i}) = 0$$

$$b = \frac{\sum_{i} \mathbf{W_{i}} X_{i} Y_{i} - \frac{1}{\sum_{i} \mathbf{W_{i}}} \sum_{i} \mathbf{W_{i}} X_{i} \sum_{i} \mathbf{W_{i}} Y_{i}}{\sum_{i} \mathbf{W_{i}} X_{i}^{2} - \frac{1}{\sum_{i} \mathbf{W_{i}}} \left(\sum_{i} \mathbf{W_{i}} X_{i}\right)^{2}}$$

$$a = \frac{1}{\sum_{i} \mathbf{W_{i}}} \sum_{i} \mathbf{W_{i}} Y_{i} - b \frac{1}{\sum_{i} \mathbf{W_{i}}} \sum_{Ni} \mathbf{W_{i}} X_{i}$$

#### **Example: weighting in regression**

#### Linear regression with weighting

$$b = \frac{\sum_{i} \mathbf{W_{i}} X_{i} Y_{i} - \frac{1}{\sum_{i} \mathbf{W_{i}}} \sum_{i} \mathbf{W_{i}} X_{i} \sum_{i} \mathbf{W_{i}} Y_{i}}{\sum_{i} \mathbf{W_{i}} X_{i}^{2} - \frac{1}{\sum_{i} \mathbf{W_{i}}} \left(\sum_{i} \mathbf{W_{i}} X_{i}\right)^{2}}$$

$$a = \frac{1}{\sum_{i} \mathbf{W_{i}}} \sum_{i} \mathbf{W_{i}} Y_{i} - b \frac{1}{\sum_{i} \mathbf{W_{i}}} \sum_{Ni} \mathbf{W_{i}} X_{i}$$



$$b = \frac{\sum_{i} X_{i} Y_{i} - \frac{1}{N} \sum_{i} X_{i} \sum_{i} Y_{i}}{\sum_{i} X_{i}^{2} - \frac{1}{N} \left(\sum_{i} X_{i}\right)^{2}}$$

$$a = \frac{1}{N} \sum_{i} Y_{i} - b \frac{1}{N} \sum_{Ni} X_{i}$$

### **Weighting in kNN**

- The effect of neighbours may change with distance. We might want neighbours which are further away to have lower significance. How do we do this? – Weighting!
- $P_t = \operatorname{sign}(\sum_{j=0}^{k-1} W_j P_{i(j)})$
- E.g.  $P_t = \text{sign}(\sum_{j=0}^{k-1} e^{-L_j} P_{i(j)})$  in this case weights exponentially decrease with distance to the corresponding neighbour

# **Weighting in kNN**

- The effect of neighbours may depend on their reliability. We can give different 'voting weight' to each training data entry
- $P_t = \operatorname{sign}(\sum_{j=0}^{k-1} W_{i(j)} P_{i(j)})$  in this case each entry in the training data has its own weight







$$S = \begin{cases} +1 & \text{if } \overrightarrow{X}.\overrightarrow{w} + b \ge 0 \\ -1 & \text{if } \overrightarrow{X}.\overrightarrow{w} + b < 0 \end{cases}$$

- What is  $\vec{w} \cdot \vec{X} + b = 0$  ?
  - this is another way of representing a line

$$\vec{X} = [x, y]$$
$$\vec{w} = [w_1, w_2]$$

$$xw_1 + yw_2 + b = 0$$

$$y = -\frac{w_1}{w_2}x - \frac{b}{w_2}$$

We have two lines

$$xw_1 + yw_2 + b + 1 = 0$$
$$xw_1 + yw_2 + b - 1 = 0$$

■ The distance \( \Delta\) between them is

$$\Delta = \frac{2}{\sqrt{w_1^2 + w_1^2}} = \frac{2}{|\vec{w}|}$$

• Maximise  $\Delta$  = minimise absolute value of  $\overrightarrow{w}$ 

- Maximise  $\Delta$  = minimise absolute value of  $\overrightarrow{w}$
- Taking into account that

$$\overrightarrow{w} \bullet \overrightarrow{X} + b \ge 1$$
 when S = 1  
 $\overrightarrow{w} \bullet \overrightarrow{X} + b \le 1$  when S = -1

we can write

$$S_i(\overrightarrow{w} \bullet \overrightarrow{X_i}) \geq 1$$

- Linear = separated by line
- Non-linear = separated by curve



$$\mathsf{F}(\overrightarrow{w} \bullet \overrightarrow{X} + \overrightarrow{w} \bullet \overrightarrow{X^2} + \cdots) \ge 1$$



- Hard margin = clear separation between classes
- Soft margin = no clear separation, some entries will be in "the band"

#### **Decision Tree Classifier**



**Triangle:** has three angles and three sides

Square: has four angles and four sides, all angles are right angles, all sides are of equal length





Party A

**Party B** 





# Example 2a



Party A



Party B

# **Example 2a**



#### Recursive binary splitting



#### **Entropy**

$$H = -\sum_{i=1}^{K} p_i \log_2(p_i)$$



Leaf 1

Leaf 2

#### **Information gain**

**Information Gain = Information entropy (parent) – Information entropy (child split)** 

Information entropy (child split) = Fraction1 \* Entropy1 + Fraction2 \* Entropy2

Split criteria: maximise information gain