

Department of Computer Engineering Academic Year: 2025-26

Experiment No.4
Perform data exploration
Name/Roll-No: Sumit Metkari/32
Branch/Div: Comps/TE-2
Date of Performance: 06-08-25

Date of Submission: 13-08-25

Department of Computer Engineering Academic Year: 2025-26

Aim: To implement data exploration on a given data set

Objective:-Develop a program to implement data exploration techniques

Theory: Why explore the data? Because before jumping into complex modeling or analysis, we must first understand the nature, structure, and distribution of the dataset. Data exploration helps us answer basic but critical questions such as:

What variables are present and what types are they?

How many records are there?

Are there missing values or extreme values?

What patterns or relationships exist between variables?

Why is data exploration important?

Data exploration serves as the first step in any data analysis or machine learning workflow. Without it we might overlook hidden data issues. We may choose incorrect preprocessing or modeling techniques. Our statistical tests may be invalid because assumptions about data distribution are wrong.

In short, quality insights and model performance depend on how well we know our data. By exploring data, we can detect outliers, understand variable distributions, identify correlations, and choose the right transformations and analysis methods.

The different data exploration steps and functions that can be applied are:

head() – Displays the first few rows to get a quick look at the structure and data types.

tail() – Displays the last few rows, useful for checking data consistency or issues at the end of the file.

shape – Returns the number of rows and columns to understand dataset size.

describe() – Provides summary statistics like mean, standard deviation, min, max, and quartiles.

Scatter plot – Shows the relationship between two variables, helping detect trends, clusters, or anomalies.

Department of Computer Engineering Academic Year: 2025-26

Histogram – Displays the distribution of a single variable to check skewness, modality, and spread.

Quantile-Quantile (Q-Q) plot – Checks if a variable follows a particular theoretical distribution (e.g., normal distribution).

Box plot – Highlights the spread, median, and potential outliers for a variable.

Code and output:

1)Scatter Plot

```
plt.scatter(df.iloc[:,0], df.iloc[:,1], c = clusters, s = 50, cmap = "viridis")
plt.scatter(centroids[:,0], centroids[:,1], c = "red", s = 250, alpha=0.75);
```


Department of Computer Engineering Academic Year: 2025-26

2)Boxplot

```
plt.figure(figsize=(15,8))
sns.boxplot(x="cylinders",y="mpg",data=df,palette="Spectral")
plt.show()
```


3)Head

df.head()

[19]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
0	18.0	8	307.0	130.0	3504	12.0	1970	usa
1	15.0	8	350.0	165.0	3693	11.5	1970	usa
2	18.0	8	318.0	150.0	3436	11.0	1970	usa
3	16.0	8	304.0	150.0	3433	12.0	1970	usa
4	17.0	8	302.0	140.0	3449	10.5	1970	usa

Department of Computer Engineering Academic Year: 2025-26

4)Shape

df.shape

[13]:

(392, 8)

5)Tail

df.tail()

[5]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
393	27.0	4	140.0	86.0	2790	15.6	82	usa
394	44.0	4	97.0	52.0	2130	24.6	82	europe
395	32.0	4	135.0	84.0	2295	11.6	82	usa
396	28.0	4	120.0	79.0	2625	18.6	82	usa
397	31.0	4	119.0	82.0	2720	19.4	82	usa

Department of Computer Engineering Academic Year: 2025-26

6)Describe

df.describe()								
[6]:								
	mpg	cylinders	displacement	horsepower	weight	acceleration	model_	
count	398.000000	398.000000	398.000000	392.000000	398.000000	398.000000	398.00	
mean	23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090	76.01	
std	7.815984	1.701004	104.269838	38.491160	846.841774	2.757689	3.69	
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.00	
25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	73.00	
50%	23.000000	4.000000	148.500000	93.500000	2803.500000	15.500000	76.00	
75%	29.000000	8.000000	262.000000	126.000000	3608.000000	17.175000	79.00	
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.00	

Conclusion: Data exploration plays a vital role in uncovering underlying patterns, trends, and relationships within a dataset. It informs better decision-making around feature selection, data transformation, and model selection. Without this step, critical issues such as outliers, bias, or class imbalance may remain undetected, potentially resulting in flawed analyses, underperforming models, and inaccurate conclusions.