

A Tutorial on Feature Extraction Methods

Tianyi Wang GE Global Research

Subrat Nanda GE Power & Water

September 24, 2012

Outline

- Introduction
- Data characteristics
- Application & domain
- Feature extraction methods
- Feature dimensionality reduction
- Issues in real applications
- Summary

Where Feature Extraction fits in a PHM System

Advisory Generation (AG) Prognostics Assessment (PA) Health Assessment (HA) a.k.a. *Feature Extraction* in data-driven PHM solutions State Detection (SD) such as normalization, Data Manipulation (DM) smoothing, outlier removal, missing data imputation, ... Data Acquisition (DA)

source: MIMOSA OSA CBM architecture

Feature extraction: what and why

What:

Feature extraction transforms raw signals into more informative signatures or fingerprints of a system

Why:

- Extract information from data
- Serve the need of follow-up modeling procedures
- Achieve intended objectives

Example of feature extraction

Problem: bearing health assessment

Data: vibration (from accelerometers)

Extract frequency domain features:

- Segment the data with a certain time window
- Transform each segment into frequency spectrum with FFT
- Calculate energy for each frequency band around interested frequency F

$$E_F = \sum_{|f-F|<\Delta} A_f^2$$

where A_f is the amplitude of frequency f

Obtain feature vector [E_{F1}, E_{F2}, ...]

Feature extraction process

What features to extract? Factors to consider...

What data are available and what are their properties Data What feature extraction algorithms are available and applicable Algorithm **Application** & Domain What domain the application is; what knowledge and GE imagination at work requirements are present

7

Outline

- Introduction
- Data characteristics
- Application & domain
- Feature extraction methods
- Feature dimensionality reduction
- Issues in real applications
- Summary

Data (signal) properties

Data sampling (time discretization)

Transaction/event (data are "pushed" by data originator)

- Data records occur only at the specified time stamp.
- Data between the time stamps (interpolation) are undefined.

Sensor (data are "pulled" from data originator)

- Data samples are acquired only at the specified time stamp
- Data between the time stamps are just not observed.
- Sampling rate
 - Evenly sampled controlled (e.g. 100 Hz)
 - Unevenly sampled triggered

Sample value discretization

Binary

Events status, on/off sensor

Discrete nominal (categorical)

Event code, operating mode, asset ID

Discrete ordinal (integer)

 If interpolation is meaningful, treat as continuous; otherwise, treat as discrete nominal

Continuous (real number)

Most sensors

Signal dynamics (relative to sampling)

Stationary (constant + white noise)

 Power, speed, temperature in steady state of motors, gas turbines, etc.

Stochastic (non-cyclic)

Power, speed in wind turbine operation

Cyclic (consider each period individually)

• Power, speed, pressure in manufacturing process, gas turbine startup, etc.

Waveform (consider multiple period together)

Vibration sensors, acoustic sensors

Outline

- Introduction
- Data characteristics
- Application & domain
- Feature extraction methods
- Feature dimensionality reduction
- Issues in real applications
- Summary

Properties of extracted features

Application domain

Category

Mechanical, structural, thermal, electrical, chemical, ...

Systems

 Machine tool, vehicle, aircraft, locomotive, wind turbine, construction machinery, ...

Common components

 Bearing, gearbox, motor, pump, engine, gas turbine, battery, ...

Many features extraction methods and data processing procedures come from domain know-how

Domain specific feature extraction

Failure Mode: depending upon the failure type, certain rations, differences, DFEs, etc. are extracted for tracking over time

Operating Mode: specific sensors can be more/less critical in different operating conditions of machines...

- raw sensors to be used for feature extraction...
- variances under different conditions itself can form basis for further feature extraction

Component Function: Features extracted on basis of knowledge about specific components for which PHM desired...

Known Relations: Certain relation types can be assumed between variables of interest...this can affect features calculated for those relations

Outline

- Introduction
- Data characteristics
- Application & domain
- Feature extraction methods
- Feature dimensionality reduction
- Issues in real applications
- Summary

Feature extraction method overview

Data descriptive statistics

- For sensors: RMS, variance, kurtosis, crest factor, correlation coefficient, ...
- For events: count, occurrence rate, duration, time delays, ...

Data descriptive models

- Distribution models: Parametric distributions, histogram, ...
- Information-based models: mutual information, minimal description length, ...
- Regression models (use model parameters or modeling errors): curve fitting, AR models, ...
- Classification/clustering models (use class label as feature), sequence matching likelihood

• <u>Time-independent transforms</u>

- Explicit mathematical operations: difference, summation, ratio, logarithm, power n, ...
- Principal component analysis, Independent component analysis, etc.
- <u>Time series transforms</u> (mainly for waveform signal)
 - Frequency domain, time-frequency domain, wavelet domain, EMD
- Domain dependent feature extraction
 - Physics based features: expected input-output or output-output relations, derived hidden states, etc.
 - _{GE in}Special procedures for data processing: operational regime segmentations, envelop analysis, etc.

Data descriptive statistics

For sensors:

 One variable: RMS, mean, variance, kurtosis, crest factor, peak2peak, auto correlation...

crest factor =
$$\frac{0.5(x_{\text{max}} - x_{\text{min}})}{\text{RMS}}$$

Two variables: cross correlation

For events:

Count, occurrence rate, duration, time delays, ...

Data descriptive models

Distribution models:

- Parametric distributions, histogram, ...
- Information-based models:
- mutual information, minimal description length, ...
 Regression models (use model parameters or modeling errors):
- Curve fitting (linear, exponential, etc.), AR models, ... Classification/clustering models (use class label as feature):
- Any pattern classifiers (Fisher discriminant, Bayes, etc.)
- Sequence matching likelihood

Time-independent transforms

Explicit mathematical operations:

Difference, summation, ratio, logarithm, power n, ...

Data dimension reduction transforms:

Principal component analysis, Independent component analysis, etc.

Notes: These transforms

- Do not alter the number of samples
- Are usually used to produce feature from features

Time series transforms

Methods mainly for vibration analysis/waveform data

Feature extraction ≠ vibration analysis

Domain dependent feature extraction

Physics based features

- Simple input-output or output-output relations
- Errors between model output and observations
- Estimated unobservable states
- System identification parameters

Model based FDI approaches

Special procedures for data preprocessing

- Time synchronous averaging
- Enveloping/demodulation
- Operational regime segmentation
- •

Domain dependent feature extraction: an example for bearing

Bearing characteristic frequencies

Outer Race
$$(BPFO) = \frac{N}{2} \left(1 - \frac{D_b}{D_p} \cos \theta \right) \times f_{sh}$$

Inner Race (BPFI) =
$$\frac{N}{2} \left(1 + \frac{D_b}{D_p} \cos \theta \right) \times f_{sh}$$

Ball / Roller (BSF) =
$$\frac{D_p}{2D_b} \left(1 - \left(\frac{D_b}{D_p} \cos \theta \right)^2 \right) \times f_{sh}$$

$$Cage\left(FTF\right) = \frac{1}{2} \left(1 - \frac{D_b}{D_p} \cos\theta\right) \times f_{sh}$$

N – number of rotating elements

 D_b – rolling element diameter

 D_p – pitch diameter of rolling elements

 θ – contact angle

 f_{sh} – shaft speed (Hz)

Domain dependent feature extraction: an example for gearbox

Requirements/limitations of algorithms

Examples of what a feature extraction algorithm may care

- Continuous value?
- Evenly sampled data?
- Missing data handled first?
- Waveform? e.g. frequency domain analysis applicable?
- Presence of special signals? e.g. to apply Time Synchronous Averaging (TSA), Tacho & Vibration signals are required
- One, or two, or more sensors together? e.g. to apply correlation, PCA
- Similar measurements? e.g. to apply mathematical difference

Exhaustive feature generation

Outline

- Introduction
- Data characteristics
- Application & domain
- Feature extraction methods
- Feature dimensionality reduction
- Issues in real applications
- Summary

Feature extraction process

Feature selection: what are good features

Desired characteristics of features

- High relevance to the objective, e.g., anomaly detection, diagnosis, degradation, PoD/FDR, etc.
- Low redundancy (linearly independent) among the features

Additional characteristic that are frequently overlooked

• Low relevance to non-objective factors, e.g. across assets, environment, usage pattern/ operating conditions, etc.

Feature selection strategies

Filter approach

- Metrics defined using local criteria different from the target models
- Search for 'Good' representation of raw data/features
- Computationally less-expensive

Wrapper

- Metrics defined by the performance (accuracy) of the target models
- 'Application' specific
- Computationally expensive

Embedded approach

- Feature selection built into the target model
- Regression: sparse regression, LASSO, etc.
- Classification: decision tree, regularized random forest

Filter approaches

Search methods

Examples

- mRMR (Minimumredundancy-maximumrelevance)
- Fisher score
- Gini score
- Kruskal Wallis statistics

Evaluation criteria

Feature transformation

Linear

- PCA (Principal Component Analysis)
- ICA (Independent component analysis)
- LDA (Latent Dirichlet Allocation)
- Latent semantic indexing
- Genetic Programming

Non-linear

- NPCA or KPCA
- NLDA or KLDA
- MDS (Multidimensional scaling)
- Principal curves
- Neural networks
- Genetic Programming

Outline

- Introduction
- Data characteristics
- Application & domain
- Feature extraction methods
- Feature dimensionality reduction
- Issues in real applications
- Summary

Issues in real applications

ssues:

- Features have high inconsistent (seemingly noisy) due to
 - Varying operating conditions
 - Asset-to-asset variations
- Features have low sensitivity to faults or degradation

Handling methods

- Normalization / Standardization
- Feature of features (find generalizable features)
- Operating condition clustering & time series segmentation
- Use of local models for post-feature-extraction processing

Example: aircraft engine

Ref: 2008 PHM data challenge

Domain: Aircraft engine

Signals:

- Operational variables: altitude, speed, thrust, ambient temperature
- Measurements: pressure, temperature at multiple location inside the engine

Feature extraction:

- Average of each signal during flight cruise (steady state).
- One feature vector per flight; one scalar per signal channel

Example: aircraft engine (2)

Ref: 2008 PHM data challenge

Run-to-failure time series of one feature: line plot

Seemingly random noise when considering the features time series as a whole

Run-to-failure time series of the same feature : dot plot

Trend more clear under each operating condition

Example: aircraft engine (3)

Ref: 2008 PHM data challenge

Handling methods:

- Feature normalization
 - with physics model
 - with data-driven model
- Use of local models /multiple models for follow-up procedures
- Generate feature of features that is invariant to operating conditions

Run-to-failure time series of the same feature : dot plot

Trend more clear under each operating condition

Key takeaways

- Procedure: feature extraction + dimension reduction
- What to extract: data property vs. application domain vs. algorithm requirements
- Feature extraction vs. signal processing
- Feature goodness: relevance and redundancy
- Feature selection: wrapper approach vs. filter approach
- Feature consistency and sensitivity issues

A Tutorial on Feature Extraction Methods

Tianyi Wang GE Global Research

Subrat Nanda GE Power & Water

September 24, 2012

