Esercitazione 5: Carmine D'Angelo, Emanule Vitale, Francesco Aurilio

GPU: Tesla K80

Compute capability: 3.7

Massimo numero di thread per blocco per SM: 2048 Numero massimo di blocchi residenti per SM: 16

Massimo numero di registri a 32 bit per multiprocessor/thread: 131072

Configurazione 1:8 x8

N	Tempo CPU	Tempo GPU	Sp
1024	11	0,411552	26,53441
2048	29,727648	0,97136	30,60415
3200	67,965088	2,2880288	29,70465
4096	116,97242	3,454048	33,86531
7200	344,287384	10,925344	31,51273
8192	453,549683	14,20416	31,93076

8x8 = 64 thread: 2048/64=32 blocchi per occupare tutto un SM.

Con un massimo di 16 blocchi per SM : 64x16 = 1024 thread per SM su un totale di 2048 disponibili.

Uso dei registri

Eseguendo l'istruzione "!nvcc -Xptxas -v" ottengo che il numero di registri utilizzato da ogni thread è 10.

Dunque, moltiplicando il numero di registri, per il numero di thread e per il numero di blocchi ottengo:

10*64*16= 10.240< 131K

Configurazione 2:16 x 16

N	Tempo CPU	Tempo GPU	Sp
1024	8,73472	0,450112	19,40566
2048	28,589249	2,135105	13,39009
3200	68,790527	2,135104	32,21882
4096	115,138145	3,301984	34,86938
7200	368,981812	9,500576	38,83784
8192	462,916077	11,713824	39,51878

16x16 = 256 thread : 2048/256 = 8 blocchi per occupare tutto un SM. Con 8 blocchi: 256x8 = 2048 thread per SM. Piena occupazione dello SM!

Uso dei registri

Eseguendo l'istruzione "!nvcc -Xptxas -v" ottengo che il numero di registri utilizzato da ogni thread è 10.

Dunque, moltiplicando il numero di registri, per il numero di thread e per il numero di blocchi ottengo:

10*256*8= 20.480< 131K

Configurazione 3 : 32 x 32

N	Tempo CPU	Tempo GPU	Sp
1024	7,520256	0,502048	14,97916
2048	28,731615	0,93456	30,74347
3200	72,711906	2,212416	32,86539
4096	114,571266	3,344256	34,25912
7200	351,909332	10,53376	33,40776
8192	457,405121	13,645024	33,52175

32x32=1024 thread : 2048/1024=2 blocchi per occupare tutto un SM. Con 2 blocchi: 1024x2=2048 thread per SM. Piena occupazione dello SM ma minore parallelismo potenziale

Uso dei registri

Eseguendo l'istruzione "!nvcc -Xptxas -v" ottengo che il numero di registri utilizzato da ogni thread è 10.

Dunque, moltiplicando il numero di registri, per il numero di thread e per il numero di blocchi ottengo:

10*1024*2= 20.480< 131K

