1. Find the limit of the sequence of functions

$$\left\{\frac{n^2x^3 + 3nx}{2n^2x + 1}\operatorname{Tan}^{-1}\left(\frac{nx}{n+3}\right)\right\}$$

on the interval $0 \le x \le 3$, if it exists. Justify your answer.

2. Determine whether the following series converge or diverge. Justify you answers. If a series

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{1+2n^2}$$

(b)
$$\sum_{n=3}^{\infty} \frac{2^n}{3^{n+1}}$$

- 3. (a) Find the first four Taylor polynomials $P_0(x)$, $P_1(x)$, $P_2(x)$, and $P_3(x)$ about x=0 for the 12
 - (b) Use Taylor's remainder formula to verify that the Maclaurin series for $\cos 3x$ converges to $\cos 3x$
- 4. Find the interval of convergence for the power series

$$\sum_{n=3}^{\infty} \frac{(-1)^{n+1} n^2}{3^n} x^{2n+1}.$$

5. Find the open interval of convergence for the power series

$$\sum_{n=2}^{\infty} \frac{2^{n+1}}{n^3 + 100n^2} (x+2)^n.$$

Answers by Dawit yohannes (ydawit @ yahov. Com)

- 1). $\frac{\chi^2}{2}$ Tan'x, $0 \le x \le 3$ 2) a) diverges (by the nth term test)
 - b) Converges (Geometric Series, r=3/3<1)
 With Sum = 8/27
- 3) a. $P_0(x) = 1$, $P_1(x) = 1$, $P_2(x) = 1 \frac{9x^2}{2}$, $P_3(x) = 1 \frac{9x^2}{2}$
 - b) $\lim_{n\to\infty} |R_n(0,x)| \leq \lim_{n\to\infty} \frac{|3x|^{n+1}}{(n+1)!} = 0$ (for all x)
- 4) $-\sqrt{3} < x < \sqrt{3}$

5) -5/2 < x < -3/2