18-661: Introduction to ML for Engineers

Multi-Armed Bandits

Spring 2025

ECE - Carnegie Mellon University

Multi-Armed Bandit

\$1 \$0 \$0 \$1

\$1 \$4 \$0 \$2

\$1 \$1 \$0 \$2

Stochastic Bandit: Setting

At each time-step $t = 1, 2, \dots, T$,

Stochastic Bandit: Setting

At each time-step
$$t=1,2,\ldots,T$$
, pull/play arm $i_t \in \{1,\ldots,n\}$

Stochastic Bandit: Setting

At each time-step $t=1,2,\ldots,T$, pull/play arm $i_t \in \{1,\ldots,n\}$ and receive reward $r(i_t)$

Stochastic Bandit: Performance Metric

Goal: maximize total reward accumulated over time

Stochastic Bandit: Performance Metric

Goal: maximize total reward accumulated over time

Performance Metric: Regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T r(i^\star)\right] - \mathbb{E}\left[\sum_{t=1}^T r(i_t)\right]$$

Stochastic Bandit: Performance Metric

Goal: maximize total reward accumulated over time Performance Metric: Regret

$$R_{T} = \mathbb{E}\left[\sum_{t=1}^{T} r(i^{*})\right] - \mathbb{E}\left[\sum_{t=1}^{T} r(i_{t})\right]$$
$$= T\rho^{*} - \mathbb{E}\left[\sum_{t=1}^{T} r(i_{t})\right]$$

\$1

-

-

-\$1

_

-\$1

- \$1
- -
- \$0
- _

- -\$1
- -
- -

- -
- -
- \$1

- -\$0 -
- _

- -
- -

- -
- _ _
- \$1
- \$1
- \$0

\$1 --\$0 -

- -\$1 -
- --\$4

- 9
 - \$1 -
 - \$1
- \$0

\$0

-	
-	
\$	
-	
\$	
\$0	
-	
-	

\$0

\$1

\$4

\$0

\$2

\$1

\$1

\$0

UCB: Optimism in the face of Uncertainty

Algorithm 1 UCB

$$\begin{array}{l} \textbf{for} \ t=1,2,\ldots, T \ \textbf{do} \\ \\ \text{Play arm} \ i_t = \text{arg max}_i \, \mathsf{UCB}_{i,t} = \left(\frac{\sum\limits_{u=0}^t r(i_u) \mathbb{1}_{i_u=i}}{T_i} + \sqrt{\frac{2 \log t}{T_i}}\right) \\ \\ \text{Observe reward} \ r_{i_t} \\ \\ \textbf{end for} \end{array}$$

UCB: Optimism in the face of Uncertainty

Bernoulli Bandit with means 0.4, 0.7, 0.5

Thompson Sampling

Algorithm 2 Thompson Sampling

```
\begin{array}{l} \text{for } t=1,2,\ldots,T \text{ do} \\ \text{Sample } \hat{\mu}_{i,t} \sim P_{i,t-1} \text{ for each arm } i \in \{1,\ldots,n\} \\ \text{Play arm } i_t = \arg\max_i \hat{\mu}_{i,t} \\ \text{Observe reward } r_{i_t,t} \text{ and update posterior } P_{i,t} \\ \text{end for} \end{array}
```

Thompson Sampling

Bernoulli Bandit with means 0.4, 0.7, 0.5