Entregable 1

Minimización de funciones y simulación con ISE

Rafael Gómez Guillén 1º Grado Informática Universidad de La Laguna 21/3/2022

Índice

- 1. Introducción y objetivos 1
- 2. Tablas de verdad 1
- 3. Mapas de Karnaugh 2
- 4. Código VHDL 2
- 5. Test bench 3
- 6. Cronograma de simulación 4

1.- Introducción y objetivos

En esta práctica se va a proceder a la simplificación de funciones booleanas empleando los mapas de Karnaugh. A continuación, se muestra el código VHDL de dichas funciones lógicas simplificadas, el test-bench y la simulación.

Las funciones lógicas asignadas son las siguientes:

Alumno	F1	F2
86 Rafael Gómez Guillén	9417	05FD

2.- Tablas de verdad

Las tablas de verdad de las funciones son:

	abcd	f1	f2
0	0000	1	1
1	0001	1	0
2	0010	1	1
3	0011	0	1
4	0100	1	1
5	0101	0	1
6	0110	0	1
7	0111	0	1
8	1000	0	1
9	1001	0	0
10	1010	1	1
11	1011	0	0
12	1100	1	0
13	1101	0	0
14	1110	0	0
15	1111	1	0

3.- Mapas de Karnaugh

Los mapas de Karnaugh de las funciones son:

 $F1 = \overline{A} \ \overline{B} \ \overline{C} + \overline{B} \ C \ \overline{D} + B \ \overline{C} \ \overline{D} + ABCD$

Verde: B \(\overline{C} \) \(\overline{D} \)
 Rojo: \(\overline{A} \) \(\overline{B} \) \(\overline{C} \)
 Azul: \(\overline{B} \) \(C \) \(\overline{D} \)
 Naranja: \(ABCD \)

AB/CD	00	01	11	10
00	1	1	0	1
01	1	0	0	0
11	1	0	1	0
10	0	0	0	1

 $F2 = \overline{B} \ \overline{D} + \overline{A}B + \overline{A}C$

• Verde: \overline{B} \overline{D} • Azul: $\overline{A}C$

• Rojo: $\overline{A}B$

AB/CD	00	01	11	10
00	1	0	1	1
01	1	1	1	1
11	0	0	0	0
10	1	0	0	1

4.- Código VHDL

A continuación, se muestra el código VHDL:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity funciones is
    Port ( a : in STD_LOGIC;
```

```
b: in STD_LOGIC;
    c: in STD_LOGIC;
    d: in STD_LOGIC;
    f1: out STD_LOGIC;
    f2: out STD_LOGIC);
end funciones;

architecture Behavioral of funciones is

begin
    f1 <= (a and b and c and d) or (not a and not b and not c) or (not b and c and not d) or (b and not c and not d);
    f2 <= (not b and not d) or (not a and b) or (not a and c);
end Behavioral;</pre>
```

5.- Test bench

A continuación, se muestra el código VHDL del test bench:

```
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
USE ieee.std logic unsigned.ALL;
USE ieee.numeric std.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric std.ALL;
ENTITY funciones th IS
END funciones tb;
ARCHITECTURE behavior OF funciones tb IS
    -- Component Declaration for the Unit Under Test (UUT)
    COMPONENT funciones
    PORT (
         a : IN std logic;
         b : IN std logic;
         c : IN std logic;
         d: IN std logic;
         f1 : OUT std logic;
         f2 : OUT std logic
        );
```

```
END COMPONENT;
   --Inputs
   signal a : std logic := '0';
   signal b : std logic := '0';
   signal c : std logic := '0';
   signal d : std logic := '0';
     --Outputs
   signal f1 : std logic;
   signal f2 : std logic;
    -- No clocks detected in port list. Replace <clock>
below with
   -- appropriate port name
BEGIN
     -- Instantiate the Unit Under Test (UUT)
   uut: funciones PORT MAP (
           a \Rightarrow a
           b \Rightarrow b
           c \Rightarrow c
           d \Rightarrow d
           f1 \Rightarrow f1
           f2 => f2
         );
     d <= not d after 10 ns;</pre>
     c <= not c after 20 ns;
     b <= not b after 40 ns;
     a <= not a after 80 ns;
END;
```

6.- Cronograma de simulación

A continuación, se muestra el cronograma de simulación de las funciones implementadas:

Se aprecia que los resultados son consistentes con los que aparecen en la Tabla de verdad del apartado 2.