FACULDADE DE COMPUTAÇÃO E INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Linguagens Formais e Autômatos - Aula 2 - 1º SEMESTRE/2016

Prof. Luciano Silva

TEORIA: GRAMÁTICAS E HIERARQUIA DE CHOMSKY

Nossos **objetivos** nesta aula são:

- conhecer o conceito de gramática e a Hierarquia de Linguagens de Chomsky
- praticar com gramáticas

Para esta semana, usamos como referências as **Seções 2.3** (**Gramáticas**) e **2.6** (**Hierarquia de Chomsky**) do nosso livro da referência básica:

RAMOS, M.V.M., JOSÉ NETO, J., VEJA, I.S. Linguagens Formais: Teoria, Modelagem e Implementação. Porto Alegre: Bookman, 2009.

Não deixem de ler estas seções depois desta aula!

TEORIA: GRAMÁTICAS E HIERARQUIA DE CHOMSKY

- Uma gramática é uma quádrupla G=(N,T,P,S), onde:
 - N: conjunto finito e não-vazio de elementos chamados **não-terminais**
 - T: conjunto finito e não-vazio de elementos chamados terminais
 - P: conjunto finito e não-vazio de elementos chamados **produções** (ou **regras**)
 - S∈N é a raiz ou símbolo inicial da gramática.
 - Ex: G = $(\{S\}, \{a,b\}, \{S \rightarrow ab, S \rightarrow aSb\}, S)$
- Uma derivação em uma gramática G é uma sequência de substituições obtidas a partir das produções de G, tendo como base o seu símbolo inicial.
 - Ex: $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$

■ A linguagem L(G) gerada por uma gramática G é dada pelo conjunto:

$$L(G) = \{ \omega \in T^* \mid S \Rightarrow^+ \omega \}$$

- Ex: G = $\{S\}$, $\{a,b\}$, $\{S\rightarrow ab, S\rightarrow aSb\}$, S $\{S\rightarrow aSb\}$
- Hierarquia de Chomsky : classificação das linguagens formais, realizada em função do tipo de produção α \rightarrow β da gramática associada à linguagem. Para cada tipo de linguagem, temos um reconhecedor específico:

Linguagem	Gramática	Tipo de Produção	Reconhecedor
Regular	Regular (ou Tipo 3)	 α não-terminal β terminal ou β não-terminal ou β=NT ou β=TN ou β=ε 	Autômato Finito
Livre de Contexto	Livre de Contexto (GLC) (ou Tipo 2)	α não-terminalβ=(N∪T)*	Autômato à Pilha
Sensível ao Contexto	Sensível ao Contexto (ou Tipo 1)	• $\alpha = (N \cup T) * N(N \cup T) *$ • $\beta = (N \cup T) *$ • $ \alpha \le \beta $	Autômato Linearmente Limitado (Máquina de Turing com Fita Limitada)
Recursivamente enumerável	Irrestrita (ou Tipo 0)	• $\alpha = (N \cup T) * N(N \cup T) *$ • $\beta = (N \cup T) *$	Máquina de Turing

EXERCÍCIO TUTORIADO

Considere-se a gramática G=(N,T,P,S) definida como:

■ Mostre que a palavra 345+60+20 pode ser derivada por esta gramática.

 Descreva, informalmente, qual a linguagem formal gerada por esta gramática.
EXERCÍCIO COM DISCUSSÃO PAREADA
Considere-se a gramática G=(N,T,P,S) definida como:
N = { PAR }
T = {(,)}
$P = \{ PAR \rightarrow (), PAR \rightarrow (PAR), PAR \rightarrow PAR PAR \}$ S = PAR
 Mostre que a palavra (())() pode ser derivada por esta gramática.
 Descreva, informalmente, qual a linguagem formal gerada por esta gramática.

Uma construção bastante comum em linguagens imperativas como C e Pascal é o comando	de
atribuição com expressões aritméticas, conforme mostrado no exemplo (em C) abaixo:	

Para que se possa construir um compilador C que consiga verificar se uma atribuição possui algum erro sintático, é necessária uma gramática que consiga estabelecer as regras sintáticas de tal construção.

de tal cons	truçâ	ão.									
Construa u expressões					exto	(GLC)	que	permita	reconhecer	atribuições	com

1. Classifique as gramáticas G=(N,T,P,S) abaixo em regular, livre de contexto, sensível ao contexto ou irrestrita:

```
    (a) N = {S}
        T = {a}
        P = {S→a, S→aS}
        S

    (b) N = {expr, termo}
        T = {num,+,*,(,)}
        P = {expr → termo + termo, expr → termo, termo → num, termo → (expr)*(expr)}
        S = expr

    (c) N = {S,A,B}
        T = {a, b}
        P = {S→AB, AB → BA, A → aA, B → Bb}
        S

    (d) N = {S,A,B,C}
        T = {a, b, c}
        P = {S → AB, AB → BAC, A →aA, BAC→ Bb, C→cCc}
        S
```

2. Considere-se o alfabeto Σ ={0,1}. Construa uma gramática que consiga gerar a linguagem dos números binários que são potência de 2.

3. Considere-se a gramática G=(N,T,P,S) definida como:

```
N = { num }
T = { +, -, digitos, digito } // digito é qualquer símbolo dentre 0,1,2,3,4,5,6,7,8,9
P = { num → + digitos, num → - digitos, num → digitos, digitos → digito, digitos → digito digitos }
S = num

Descreva a linguagem gerada por esta gramática:
```

4. Por que o diagrama de inclusões de linguagens na Hierarquia de Chomsky, mostrado abaixo, é válido ?

