

AI FACTORY FOR RAILWAYS (AIF/R)

Spatial data analytics

Light detection and ranging

- Transmit LASER beam
- Scanned by rotating mirrors
- Reflection sampled
- Time of flight to measure distance

- Aerial vehicle equipped with Lidar, GPS, Accelerometer and Gyroscope
- GPS provides location and altitude
- Accelerometer + Gyroscope provide yaw, pitch and roll of ariel vehicle
- Lidar scans the ground in a zig-zag manner
- Point values are translated based on GPS + Accelerometer + Gyroscope readings
- X, Y and Z coordinated for each point are stored

LIDAR INSPECTION

Light Detection And Ranging

POINT CLOUD DATA PROCESSING

Scanning

□Raw Point Cloud □ Registration

Pre-Processing

□ Filtering

Noise

Ground Plane

□Down-Sampling

Processing

- □ Cropping
 - Region of interest
 - Asset properties
 - Statistics
- □ Clustering
 - Asset properties
 - Data features
- □ Segmentation
 - Extraction

Post-Processing

- □ Classification
 - Asset properties
 - Statistics
- □ Export
 - Asset features
 - 3D Model
- □ Visualisation
 - Point cloud
 - VR
 - AR

POINT CLOUD

- Reduced density point cloud
- ≈ 72K points
- 70 meter of railway track

GROUND REMOVAL

- Ground plane may contain upto 70% of the points
- Reduce processing overhead

- Histogram of height component of all points
- The peak represents the mode of the sample
- Mode represents the ground points

PLANE DETECTION

 Random sample consensus (RANSAC)

CLOTH SIMULATION FILTERING

Mass and spring simulation

CLUSTERING

 Density-based spatial clustering of applications with noise (DBSCAN)

CLUSTERING

SEMANTIC ANALYSIS

Classification of Terrestrial Laser Scanner Point Clouds: A Comparison of Methods for Landslide Monitoring from Mathematical Surface Approximation

FEATURE EXTRACTION

Feature nb	Feature Name	Formula
1	Linearity	$\frac{\lambda_1 - \lambda_2}{\lambda_1}$
2	Planarity	$\frac{\lambda_2 - \lambda_3}{\lambda_1}$
3	Scattering	$\frac{\lambda_3}{\lambda_1}$
4	Omnivariance	$\lambda_1\lambda_2\lambda_3$
5	Anisotropy	$\frac{\lambda_1 - \lambda_3}{\lambda_1}$
6	Eigenentropy	$-\sum_{i=1}^{3} \lambda_i \ln \lambda_i$
7	Sum of eigenvalues	$\lambda_1 + \lambda_2 + \lambda_3$

Feature nb	Feature Name	Formula
8	Change of curvature	$\frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3}$
9	Mean Z	$\sum_{i=1}^{k_n+1} \frac{Z_i}{k_n+1}$
10	Z variance	$\sum_{i=1}^{k_n+1} \frac{Z_i - mean(Z)}{k_n + 1}$
11	Maximum Z difference	$Z_{max} - Z_{min}$
12	PCA1	$\frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3}$
13	PCA2	$\frac{\lambda_2}{\lambda_1 + \lambda_2 + \lambda_3}$
14	Roughness	d_r
15	normal vector x	n_x
16	normal vector y	n_y
17	normal vector z	n_z
18	Density	$\frac{k_n+1}{4/3r_{\max}}$
19	Verticality	$1-n_z$

THANK YOU

