USTC_CG HW4 MinSurMeshPara

张继耀,PB20000204

2023年6月18日

目录

1	问题介绍	1
	1.1 主要目的	1
	1.2 实验内容	2
2	算法设计	2
	2.1 极小曲面	2
	2.2 参数化	3
3	结果展示	3
	3.1 程序界面	3
	3.2 实验结果	4
	3.2.1 测试样例	4
	3.2.2 两种参数化的对比	4
41	^{总结与讨论} 问题介绍	5
1.	1 主要目的	
	• 初步理解*.obj数据(*.obj,*.mtl)	
	。 安装MeshLab查看三维数据文件	
	• 学习网格的数据结构及操作	
	。 使用MeshFrame框架	
	。 寻找非封闭网格曲面的边界	
	• 实现极小曲面与网格参数化	
	。 极小曲面: 边界固定, 求解方程组	
	○ 参数化: 边界映射到平面,求解方程组	
	0 多数化: 22 作队为到下面,不胜力任组	

1.2 实验内容

- 极小化曲面类:MinSurf.h 和 MinSurf.cpp, 在其中完成极小曲面对应的算法。
- 参数化类:Paramaterize.h 和 Paramaterize.cpp , 在其中完成网格参数化算法, 并要求实现
 - o Uniform weight
 - o Cotangent weight
 - 。 显示纹理映射结果
- 在UEngine中添加功能,主要有
 - 。 求给定边界的极小曲面
 - 非封闭网格曲面的参数化(圆形边界和正方形边界,两种权重的选取)
 - 。 显示纹理映射

2 算法设计

2.1 极小曲面

考虑曲面的微分坐标,即

$$\delta_i = \nu_i - \sum_{\nu \in N(j)} \omega_j \nu_j$$

这里N(i)是和 μ_i 相连的所有顶点的下标, ω_j 为权重,在求极小曲面的时候取了 $\omega_j = \frac{1}{d_j}$,这里 d_j 是顶点的度。

为了方便起见,可直接规定 $\sum \omega_i = 1$ 。对于极小曲面,有 $\delta_i = 0$ 成立。而边界上的点是固定不动的,于是我们得到线性方程组:

$$\begin{cases} Lx = \delta = 0 \\ x_i = \nu_i \text{ on Boundary} \end{cases}$$

其中 $L = I - D^{-1}A$,且有

$$A_{ij} = \begin{cases} 1, i \in N(j) \\ 0, otherwise \end{cases}$$

$$D_{ij} = \begin{cases} d_i, i = j \\ 0, otherwise \end{cases}$$

于是这个问题就变成了与HW3中类似的问题。还是利用Eigen库来求解方程组。

2.2 参数化

参数化与极小曲面相比,只多了一步就是将边界固定到平面凸多边形(例如正方形或圆形)上。 只需将边界点按顺序均匀的分布在边界上即可。

定义嵌入:

其中

$$\begin{cases} Wx = b_x \\ Wy = b_y \end{cases}$$

$$w_{ij} = \begin{cases} <0, (i,j) \in E \\ -\sum_{j \neq i} \omega_{ij}, (i,i) \\ 0, otherwise \end{cases}$$

考虑如下两种权重:

 \bullet Uniform weight

$$\circ \omega_j = 1$$

• Cotangent weight

$$\circ \ \omega_j = (\cot\alpha + \cot\beta)$$

剩下的步骤就与极小曲面的一样了。

3 结果展示

3.1 程序界面

图 1: 程序界面

程序界面如上所示

- 添加了两个按钮ParamaterizeShape和ParamaterizeWeight,用于选择参数化时边界的形状和 选择的权重
- Paramaterize时完成参数化, ParamaterizeMesh时显示输出的结果

3.2 实验结果

3.2.1 测试样例

使用方法 测试例子	原图	极小曲面	纹理(Uniform参数化)	纹理(CoTan参数化)
Ball				
Bunny Head				
Cat Head				
David				
Face				

表 1: 主要结果

3.2.2 两种参数化的对比

以下是测试两种参数化在映射到圆形边界或正方形边界的例子,第一个表格是对Ball做的测试

人脸的例子可能会更明显一些。可以看出Cot方式基本能看出清晰的轮廓,Uni方式就要差一些。

表 2: 对Ball做的测试结果

图 2: Uni方式

图 3: Cot方式

4 总结与讨论

- 通过选取不同的权重和边界条件,参数化的结果也是不同的。可以看到,Cot方式一般会比Uni方式要好一些。通常来说,Cot方式产生的图像纹理更平整、光滑。
- 正方形边界有时会出现缺角的情况,需要特殊处理。
- 在写参数化时,可以调用极小曲面已有的函数来得到结果,代码会更简洁一些。