Email: sohamc@cmi.ac.in Roll: BMC202175
Course: Analysis 2 Date: March 31, 2022

Problem 1 Rudin Chapt. 9 Problem 6

If f(0,0) = 0 and

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$

prove that $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ exist at every point of \mathbb{R}^2 , although f is not continuous at (0,0).

Solution: When $(x, y) \neq 0$ then

$$(D_1 f)(x,y) = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}$$
 and $(D_2 f)(X,y) = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$

Now at (0,0)

$$(D_1 f)(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{|h|}$$

$$= \lim_{h \to 0} \frac{\frac{h \times 0}{h^2 + 0} - 0}{|h|}$$

$$= \lim_{h \to 0} \frac{\frac{0 \times k}{h^2 + 0} - 0}{|h|}$$

$$= \lim_{h \to 0} \frac{0}{|h|}$$

$$= \lim_{k \to 0} \frac{0}{|k|}$$

$$= \lim_{k \to 0} \frac{0}{|k|}$$

$$= 0$$

Hence $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ exists at every point of \mathbb{R}^2 .

Now if we approach (0,0) along the line then it approaches to 0. But if we approach (0,0) along the line y=x then

$$\lim_{h\to 0}f(h,h)=\lim_{h\to 0}\frac{h^2}{2h^2}=\frac{1}{2}$$

Hence f is not continuous at (0,0)

Problem 2 Rudin Chapt. 9 Problem 7

Suppose that f is a real-valued function defined in an open set $E \subset \mathbb{R}^n$, and that the partial derivatives $D_1 f, \ldots, D_n f$ are bounded in E. Prove that f is continuous in E.

Hint: Proceed as in the proof of Theorem 9.21.

Solution: We have to show that $\forall \epsilon > 0$

Problem 3 Rudin Chapt. 9 Problem 8

Suppose that f is a differentiable real function in an open set $E \subset \mathbb{R}^n$, and that f has a local maximum at a point $x \in E$. Prove that f'(x) = 0.

Solution:

Problem 4 Rudin Chapt. 9 Problem 10

If f is a real function defined in a convex open set $E \subset \mathbb{R}^n$, such that $(D_1 f)(x) = 0$ for every $x \in E$, prove that f(x) depends only on x_2, \ldots, x_n .

Show that the convexity of E can be replaced by a weaker condition, but that some condition is required. For example, if n = 2 and E is shaped like a horseshoe, the statement may be false.

Solution:

Problem 5 Rudin Chapt. 9 Problem 13

Suppose f is a differentiable mapping of R^1 into R^3 such that |f(t)| = 1 for every t. Prove that $f'(t) \cdot f(t) = 0$.

Interpret this result geometrically.

Solution:

2