Introduction & Supervised Learning

- Defination:
- Machine learning algorithms:
 - Supervised Learning:
 - Gradient descent

Defination:

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

Machine learning algorithms:

- 1. Supervised Learning;
- 2. Unsupervised Learning;
- 3. others, including Reinforcement learning, recommender systems.

Method	right answer	output
Supervised Learning	"right answer" given	Regression: Predict continuous valued output
Unsupervised Learning:	"right answer" ungiven	Classification: Discrete valued output

Supervised Learning:

Hyposthesis: $h_{ heta}(x)=\sum_{i=0}^n heta_i x^k$ CostFunctionJ: $J=rac{1}{2m}\sum_{i=1}^m (h_{ heta}(x^{(i)})-y^{(i)})^2$

Targer: choose θ to minimize CostFunction J

Gradient descent

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta)$$

when CostFunctionJ is shown above, $heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m [(h_ heta(x^{(i)}) - y^{(i)}) \cdot rac{\partial h_ heta(x^{(i)})}{\partial heta_j}]$

"Batch" Gradient Descent

Batch: Each step of gradient descent uses all the training examples.