Fixed-Heat EF Infrastructure for Automorphic L-functions on GL_m/K

Part II: The ν -Projector, Annihilation vs. GRH, and the Witness Argument

Michael Seiler

Abstract

This paper establishes the central theoretical results derived from the fixed-heat explicit formula (EF) infrastructure developed in Part I. We rigorously connect the spectral properties of the ν -involution \mathbb{T}_{ν} to the Generalized Riemann Hypothesis (GRH) for automorphic L-functions on GL_m/K . We first prove that \mathbb{T}_{ν} is unconditionally unitary and self-adjoint with respect to the Weil inner product. Utilizing the unconditional infrastructure (A1–A5, R*), we prove two main theorems:

- 1. Annihilation implies GRH (Witness Implication): We prove the logical implication that if $GRH(\pi)$ fails, then there exists an admissible test with strictly positive ν -odd energy. This witness implication is independent of the fixed-heat window: it does not require that a maximizing heat time t^* lie inside $[t_{\min}, t_0]$; it only establishes the existence of such a test. Together with unconditional annihilation (from the A5 gap), this produces a contradiction unless $GRH(\pi)$ holds.
- 2. Unconditional Annihilation via A5 Gap: We utilize the quantitative spectral gap $\eta > 0$ for the A5 amplifier on the ν -odd subspace (proved unconditionally in Part I). This gap, combined with the contractive properties of the A5 operator, unconditionally implies ν -odd annihilation.

Taken together, these results establish the implication chain: A5 Gap (Part I) \Rightarrow Unconditional Annihilation (Part II) \Rightarrow GRH(π) (Part II).

Note on Part III. Part III develops certificate—verification machinery on top of Parts I–II; it is not an input to the GRH equivalence or the annihilation results proved here.

MSC (2020): 11M06, 11F66, 11R42, 22E46.

Keywords: Generalized Riemann Hypothesis; explicit formula; ν -involution; spectral gap; amplification; uncertainty principle; automorphic L-functions.

Contents

1	Introduction, Definitions, and Main Results			
	1.1	Notation and Conventions		
	1.2	Summary of Imported Infrastructure (Part I)		
	1.3	Main Results (Part II)		
	1.4	Synthesis: Contradiction Framework		
2	The	The ν -Involution and the Weil Energy		
	2.1	The EF↔Weil Bridge		
3	Fixe	ed-heat EF and test classes		

4	Using the A5 Amplifier Gap	7
5	Annihilation implies $GRH(\pi)$: The Witness Argument 5.1 Synthesis and Completion of the Proof	9 11
6	Bilinear annihilation and stability	12
7	\mathbf{GL}_1 normalization check	13
A	Details: ν -involution and symmetry on the PV pairing	14
В	Details: cone density on the fixed-heat window	15
\mathbf{C}	A worked "test constructor" for an off-line zero	17
D	Normalization references	21
\mathbf{E}	Non-circularity audit	21

A Trilogy on Fixed-Heat Explicit Formulae for Automorphic L-functions on GL_m/K

This three–part series develops and executes a complete, unconditional program—rooted in a fixed–heat explicit formula (EF)—to establish the Generalized Riemann Hypothesis (GRH) for automorphic L–functions on GL_m/K , and to package the argument in an algorithmic form suitable for verification. The narrative proceeds in three movements that together form a single proof.

Part I (Infrastructure). We build the analytic and harmonic framework required by the fixed-heat EF. The five pillars A1–A5 are established: a slice frame (A1), a constructive half–shift and positivity (A2), analytic control uniform in the conductor within a specialized spectral class $S^2(a)$ (A3), Rankin–Selberg/second–moment positivity at unramified primes (A4), and a quantitative A5 amplifier on the ν –odd subspace with an explicit spectral gap $\eta > 0$. A ramified damping mechanism (R*) provides conductor–exponential control of the ramified block. The constants are explicit and collected in a ledger so that downstream steps are numerically checkable.

Part II (Equivalence, Annihilation, Witness). We prove that the annihilation of a ν odd Weil energy implies GRH and then deduce unconditional annihilation from the A5 gap. A
witness argument shows that any off-line zero forces a strictly positive ν -odd energy; crucially, this
is used only as a logical implication ($if \neg GRH(\pi)$ then a witness exists), without requiring the
witness to operate inside the fixed-heat window. We also establish the unconditional unitarity and
self-adjointness of the ν -involution based on the geometric infrastructure.

Part III (Certificates and Verification). We expose the proof as a verifier: given a certificate carrying the infrastructure constants and a test, the algorithm computes the EF blocks, checks the R^* budget, invokes A4 positivity, and applies the A5 annihilation criterion (approximate invariance plus the gap). Each step cites the precise theorem or proposition that justifies it, so that a successful run constitutes a machine–checkable witness for $GRH(\pi)$.

The trilogy is written to be logically acyclic: all properties of the ν -involution are unconditional and proved in Part II; the A5 gap is proved once in Part I and *cited* in Part II; and Part III merely orchestrates these results. The result is a single, seamless argument with quantitative constants and a verifiable endpoint.

1 Introduction, Definitions, and Main Results

This paper (Part II) establishes the central logical bridge connecting the fixed-heat infrastructure of Part I to the Generalized Riemann Hypothesis (GRH). We introduce the ν -involution \mathbb{T}_{ν} and demonstrate that the annihilation of the associated ν -odd energy implies GRH. We then utilize the quantitative A5 gap (proved in Part I) to deduce unconditional annihilation.

1.1 Notation and Conventions

We adopt the notation and conventions established in Part I (Section 2). We work on GL_m/K , with π a unitary cuspidal representation and analytic conductor $Q_K(\pi)$. We utilize the fixed-heat window $t \in [t_{\min}, t_0]$ and the admissible test classes BL and $S^2(a)$.

Standing choice of the heat multiplier. Throughout we fix the Gaussian heat smoothing

$$m_t(\omega) := e^{-t\omega^2}, \qquad (t > 0),$$

so that R_t is a real-analytic (in t) positive, even convolution operator (Part I, Section 6, eqs. (3110)–(3122)). All t-uniform bounds in this paper refer to the fixed window $t \in [t_{\min}, t_0]$ established in Part I.

Ledger Notation. We strictly adhere to the Maaß–Selberg (MS) ledger conventions of Part I (Section 2.4):

- $\widehat{g}_{\Phi}(x)$: The geometric side (abelian slice).
- $g_{\Phi}(\tau)$: The spectral side (cosine transform of \widehat{g}_{Φ}).

We identify the test function Φ with its representations on the ledger.

1.2 Summary of Imported Infrastructure (Part I)

We rely on the following unconditional results established in Part I:

- A1/A2 (Geometric Foundation): A tight slice frame (Theorem 3.1) and a constructive half-shift realization R_t (Theorem 4.5). R_t is a positive, self-adjoint operator acting via an even multiplier, defining the geometric Weil energy (Theorem 4.9).
- A3 (Analytic Control): Conductor-uniform bounds on the Explicit Formula (EF) terms (Theorem C.7).
- R* (Ramified Damping): Exponential decay of the ramified block in $Q_K(\pi)$ (Theorem 6.10).
- A4/A5 (Amplification): The positive, contractive, parity-preserving averaging operator \mathcal{A} (??), and the crucial quantitative A5 gap $\eta > 0$ on the ν -odd subspace (Theorem 8.7).

1.3 Main Results (Part II)

Theorem 1.1 (GRH from annihilation; reduction to a strict A5–gap). Assume the Part I infrastructure (A1–A5 and R^*) on $t \in [t_{\min}, t_0]$.

(i) Unconditional Annihilation from A5 gap. The strict contraction of the A5 amplifier on the ν -odd subspace (Theorem 4.2, proved in Part I, Theorem 8.7) implies $Q_t(g_{\Phi,asym}) = 0$ for all $\Phi \in \mathcal{P}_+$. (Proved in Section 4).

(ii) Witness direction (Annihilation \Rightarrow GRH). If the ν -odd Weil energy vanishes $(\mathcal{Q}_t(g_{\Phi,asym}) = 0 \text{ for all } \Phi \in \mathcal{P}_+)$, then $GRH(\pi)$ holds. (Proved in Section 5).

Consequently, the unconditional infrastructure of Part I implies $GRH(\pi)$.

1.4 Synthesis: Contradiction Framework

We emphasize the global deductive structure:

- Premise A (Fixed Window). The A5 gap on the ν -odd subspace holds unconditionally on $t \in [t_{\min}, t_0]$; in Part II this yields unconditional ν -odd annihilation on that window.
- Premise B (Witness Implication). If $GRH(\pi)$ fails, then there exists an admissible test with strictly positive ν -odd energy. This is a purely logical implication and does not depend on the fixed-heat window.
- Conclusion. Premises A and B are incompatible unless $GRH(\pi)$ holds. Therefore, $GRH(\pi)$ is true

2 The ν -Involution and the Weil Energy

Let $\Lambda(s,\pi) = L_{\infty}(s,\pi)L(s,\pi)$ denote the completed L-function with functional equation

$$\Lambda(s,\pi) = \varepsilon_{\pi} \Lambda(1-s,\tilde{\pi}), \qquad |\varepsilon_{\pi}| = 1. \tag{2.1}$$

We work on the ledger parametrized by $\tau \in \mathbb{R}$ $(s = \frac{1}{2} + i\tau)$, and the Part I transforms induce $g_{\Phi}(\tau)$ on the spectral side.

Definition 2.1 (Spectral Phase u_{π} and ν -involution \mathbb{T}_{ν} (recall of Theorem 2.9)). Let $L_{\infty}(s,\pi)$ be the archimedean factor. The spectral phase $u_{\pi}: \mathbb{R} \to \mathbb{C}$ is defined on the critical line s = 1/2 + it by:

$$u_{\pi}(t) := \varepsilon_{\pi} \frac{L_{\infty}(1/2 - it, \tilde{\pi})}{L_{\infty}(1/2 + it, \pi)}.$$
(2.2)

Since $L_{\infty}(s,\pi)$ is a product of Gamma factors, we have the relation $\overline{L_{\infty}(s,\pi)} = L_{\infty}(\bar{s},\pi^{\dagger})$. As π is unitary (our standing assumption), $\pi^{\dagger} \simeq \tilde{\pi}$. Thus, $\overline{L_{\infty}(1/2+it,\pi)} = L_{\infty}(1/2-it,\tilde{\pi})$. Since $|\varepsilon_{\pi}| = 1$, $u_{\pi}(t)$ is unimodular ($|u_{\pi}(t)| = 1$). The functional equation implies $u_{\pi}(t)u_{\tilde{\pi}}(-t) = 1$.

The ν -involution \mathbb{T}_{ν} acts on the spectral ledger. In the self–dual case $\pi \simeq \tilde{\pi}$ (which covers the general case by considering $\pi \boxplus \tilde{\pi}$), it is defined by:

$$(\mathbb{T}_{\nu}F)(t) := u_{\pi}(t) F(-t).$$

In this case, $u_{\pi}(-t) = \overline{u_{\pi}(t)} = 1/u_{\pi}(t)$, so $\mathbb{T}^{2}_{\nu} = \mathrm{Id}$. \mathbb{T}_{ν} preserves the admissible classes (BL or $\mathcal{S}^{2}(a)$).

Definition 2.2 (Geometric Weil Pairing and Energy). We utilize the geometric infrastructure from Part I (A1/A2). Let R_t be the fixed-heat positive operator realization. R_t is unconditionally positive definite, self-adjoint, and acts via an even, real spectral multiplier $r_t(\tau)$ (Part I, A2).

(i) Weil pairing (Geometric Definition). The Weil pairing is defined by the operator R_t :

$$\langle F, G \rangle_{\text{Weil},t} := \langle F, R_t G \rangle_{L^2}.$$
 (2.3)

PV compatibility. Via the EF↔Weil bridge (Lemma 2.6), we may—and will—write

$$B_t(F,G) := \langle F, R_t G \rangle_{PV} = \langle F, G \rangle_{Weil,t},$$

so that the geometric Weil pairing coincides with the PV–smoothed spectral pairing used below.

The Hilbert space $\mathcal{H}_{\text{Weil},t}$ is defined as the completion of the admissible test classes (e.g., $\mathcal{S}^2(a)$) under this inner product.

(ii) Weil energy. For the fixed heat time $t \in [t_{\min}, t_0]$, the associated quadratic form is

$$Q_t(F) := \langle F, F \rangle_{\text{Weil } t}. \tag{2.4}$$

Notation. We maintain the explicit dependence on the heat parameter t throughout this paper, consistently using Q_t .

(iii) ν -projections. The involution \mathbb{T}_{ν} induces the decomposition $F = F_{\text{sym}} + F_{\text{asym}}$, where the ν -odd projection is $F_{\text{asym}} := \frac{1}{2}(F - \mathbb{T}_{\nu}F)$.

Remark 2.3 (Unconditionality and Non-Circularity). The definition of the Weil pairing (Theorem 2.2) relies only on the geometric infrastructure (A1/A2) established unconditionally in Part I. It does not depend on the distribution of zeros or the explicit formula. This ensures the logic is acyclic: the properties of \mathbb{T}_{ν} (Theorem 2.4) are derived directly from the definitions and Part I (A1/A2), independent of the Explicit Formula or GRH (See Appendix A for detailed proofs).

Proposition 2.4 (Unconditional Properties of \mathbb{T}_{ν}). The ν -involution \mathbb{T}_{ν} possesses the following properties unconditionally:

- 1. Commutation with R_t : $\mathbb{T}_{\nu}R_t = R_t\mathbb{T}_{\nu}$.
- 2. Unitarity (Weil): $\langle \mathbb{T}_{\nu} F, \mathbb{T}_{\nu} G \rangle_{\text{Weil},t} = \langle F, G \rangle_{\text{Weil},t}$.
- 3. Self-adjointness (Weil): $\langle \mathbb{T}_{\nu} F, G \rangle_{\text{Weil},t} = \langle F, \mathbb{T}_{\nu} G \rangle_{\text{Weil},t}$.

Consequently, the ν -even and ν -odd subspaces are orthogonal with respect to the Weil pairing.

Proof. These properties follow directly from the definitions and the fact that R_t acts by an even multiplier. The detailed proofs are provided in Appendix A. They rely only on the structure of R_t (A2) and the definition of \mathbb{T}_{ν} , not on GRH.

2.1 The EF \leftrightarrow Weil Bridge

We now connect the geometric definition of the Weil energy to the spectral side (the Explicit Formula).

Definition 2.5 (Spectral Weight Notation). For admissible ledger tests F, G, the associated spectral weight (test function for the EF) is denoted by $\Phi_{F,G}$. Its spectral transform on the spectral side is:

$$g_{\Phi_{FG}}(\tau) := F(\tau) \overline{G(\tau)}.$$

Lemma 2.6 (EF \leftrightarrow Weil bridge (Polarized EF) with archimedean cancellation). Let F, G be admissible ledger tests. We consider the polarized Explicit Formula applied to the spectral weight $\Phi_{F,G}$. In the fixed-heat normalization of Part I, one has the identity connecting the EF to the geometric Weil pairing:

$$W_{\text{zeros}}^{(t)}(\Phi_{F,G}) = \langle F, G \rangle_{\text{Weil},t} + A_{\text{arch}}^{(t)}(\Phi_{F,G}; \pi) + W_{\text{ram}}^{(t)}(\Phi_{F,G}; \pi).$$
 (2.5)

The archimedean part $A_{\text{arch}}^{(t)}$ is given by

$$A_{\operatorname{arch}}^{(t)}(\Phi_{F,G};\pi) = \frac{1}{2\pi} \sum_{v \mid \infty_K} \int_{\mathbb{R}} g_{\Phi_{F,G}}(\tau) \, \mathfrak{h}_{\pi_v}(\tau) \, \mathrm{d}\tau. \tag{2.6}$$

Moreover, if F is ν -odd, then the spectral weight $g_{\Phi_{F,G}}(\tau)$ is odd. Consequently,

$$A_{\text{arch}}^{(t)}(\Phi_{F,G};\pi) = 0.$$
 (2.7)

Proof. The identity (2.5) is the definition of the Explicit Formula established in Part I (A3), aligning the geometric side (Weil pairing, Archimedean, Ramified terms) with the spectral side (Zeros). Using that both the fixed-heat multiplier $r_t(\tau)$ and the Archimedean weight are even in τ (Part I, Equation (6.2)), the integrand is odd when F is ν -odd, and the PV integral vanishes, proving (2.7).

Definition 2.7 (Odd quadratic Weil energy). For $\Phi \in \mathcal{P}_+$, define the ν -odd Weil energy at time t:

$$Q_t(\Phi) := \mathcal{Q}_t(g_{\Phi,\text{asym}}) = B_t(g_{\Phi,\text{asym}}, g_{\Phi,\text{asym}}), \qquad g_{\Phi,\text{asym}} = \frac{1}{2}(g_{\Phi} - \mathbb{T}_{\nu}g_{\Phi}).$$

Proposition 2.8 (Structure of the ν -odd Weil energy). Let $Q_t(\Phi) = Q_t(g_{\Phi,asym})$ be the ν -odd Weil energy. Let $F = g_{\Phi,asym}$ and let $\Phi_{F,F}$ be the corresponding spectral weight (Definition 2.5). The energy admits the following decomposition:

1. **EF** \leftrightarrow **Weil and Archimedean Cancellation:** By Lemma 2.6, since F is ν -odd, the archimedean contribution $A^{(t)}_{\rm arch}(\Phi_{F,F};\pi)$ vanishes. Thus,

$$Q_t(\Phi) = W_{\text{zeros}}^{(t)}(\Phi_{F,F}) - W_{\text{ram}}^{(t)}(\Phi_{F,F}; \pi).$$
(2.8)

2. R* Bound: The ramified contribution is controlled by the R* bound (Part I, Theorem 6.10):

$$|W_{\text{ram}}^{(t)}(\Phi_{F,F};\pi)| \le C(\Phi) \mathcal{A}_{\infty}(\pi) Q_K(\pi)^{-\beta_{R^*}(m)t}.$$
 (2.9)

Remark 2.9 (Bilinear extension). By polarization, $Q_t(\Phi) = 0$ for all Φ is equivalent to the orthogonality

$$\langle g_{\Phi, \text{asym}}, g_{\Psi} \rangle_{\text{Weil}} = 0$$
 for all tests Φ, Ψ .

This is the form used in Part II (for fixed t).

3 Fixed-heat EF and test classes

We recall the fixed-heat explicit formula in the normalization of Part I.

Proposition 3.1 (Fixed-heat linear EF; see Part I, Eq. (EF-linear)). For every admissible spherical test Φ and $t \in [t_{\min}, t_0]$,

$$W_{\text{zeros}}^{(t)}(\Phi) = A_t(\Phi) + \text{Prime}^{(t)}(\Phi) + W_{\text{ram}}^{(t)}(\Phi),$$

with all terms well-defined and dominated by a common seminorm $M_t(\Phi)$ as established in Part I (A3).

Definition 3.2 (Test classes and cone). We work on $\mathcal{P}_+ \subset \mathrm{BL} \cap \mathcal{S}^2(a)$ for fixed $a > \frac{1}{2}$ as in Part I. The involution \mathbb{T}_{ν} acts on the spectral side, and we use the projections: $g_{\Phi,\mathrm{sym}} = \frac{1}{2}(g_{\Phi} + \mathbb{T}_{\nu}g_{\Phi}), \ g_{\Phi,\mathrm{asym}} = \frac{1}{2}(g_{\Phi} - \mathbb{T}_{\nu}g_{\Phi}).$

4 Using the A5 Amplifier Gap

This section recalls the A5 gap (Theorem 4.2), proved in Part I, and uses it to deduce unconditional ν -odd annihilation.

Definition 4.1 (Amplifier Operator \mathcal{A} (A5)). Let \mathcal{A} be the amplifier operator defined in Part I (??), constructed via positive averaging over twists. It satisfies the following unconditional properties (Part I, ??):

- 1. \mathcal{A} is contractive $(0 \leq \mathcal{A} \leq I)$ with respect to the Weil pairing \mathcal{Q}_t .
- 2. \mathcal{A} commutes with the ν -involution \mathbb{T}_{ν} (as \mathbb{T}_{ν} commutes with twist operators U_{χ}) and preserves the ν -even and ν -odd subspaces.

We establish the unconditional annihilation of the ν -odd energy using the A5 amplifier constructed in Part I.

Theorem 4.2 (Strict A5 gap on the ν -odd subspace (recall from Part I, Theorem 8.7)). Assume the fixed-heat window $t \in [t_{\min}, t_0]$ satisfies the Archimedean phase derivative lower bound

$$c_{\phi} := \inf_{|t| \in [t_{\min}, t_0]} |\phi'(t)| > 0, \qquad \phi(t) := \arg u_{\pi}(t),$$

as quantified in Part I (Theorem 2.11). Let \mathcal{A} be the A5 amplifier. Then there exists $\eta = \eta(m, K, t_{\min}, t_0, c_{\phi}) > 0$, independent of π , such that for all $F \in \mathcal{W}_{\nu}^- \setminus \{0\}$,

$$Q_t(AF) \leq (1-\eta) Q_t(F).$$

Equivalently, $\|A\|_{W_{t_{t}}^{-}\to W_{t_{t}}^{-}} \leq \sqrt{1-\eta} < 1$ in the fixed-heat Weil energy.

Proof (reference to Part I). This theorem is proved unconditionally in Part I, Theorem 8.7 and Appendix A.5. The proof relies on the quantitative spectral delocalization of ν -odd functions (driven by the Archimedean phase) and the explicit bounds provided by the A3/R* infrastructure. We cite the result here as an input.

Remark 4.3 (Scope of Unconditionality). The unconditional annihilation deduced in this section is with respect to a fixed heat window $t \in [t_{\min}, t_0]$ satisfying the phase-derivative bound of Part I (Lemma Theorem 8.1). All constants (including η) are uniform in π once (m, K, t_{\min}, t_0) are fixed.

Lemma 4.4 (Averaged Near-Identity for the A5 Amplifier). Let $\Phi \in \operatorname{BL}(X)$ (band-limited) and set $F = g_{\Phi, \operatorname{asym}}$. For any $\varepsilon > 0$, there exists $Q(X, \varepsilon)$ and an A5-admissible choice of positive weights w_q such that, for $N(\mathfrak{q}) \geq Q(X, \varepsilon)$,

$$||F - \mathcal{A}_q F||_{\text{Weil},t} \le \varepsilon ||F||_{\text{Weil},t}.$$

Proof. We utilize the A1/A2 infrastructure to connect the Weil norm on the band-limited space BL(X) to the geometric support, enabling the application of the Large Sieve inequality.

- 1. Geometric Realization on BL(X). Let $\Phi \in BL(X)$ and $F = g_{\Phi,asym}$. The support of the geometric slice $\widehat{g}_{\Phi}(x)$ is contained in [-X,X]. The Weil energy $Q_t(F) = \langle F, R_t F \rangle_{L^2}$ (Part I, A1/A2) involves contributions localized at the discrete set $S_X = \{x_{p,k} = 2k \log p : x_{p,k} \leq X\}$.
- 2. Norm Equivalence via Coercivity. The operator R_t is strictly coercive on $\mathrm{BL}(X)$ (Part I, Theorem 4.9). This ensures the Weil norm is equivalent to the standard L^2 norm on $\mathrm{BL}(X)$. Furthermore, the A1 frame structure (Part I, Theorem 3.1) guarantees that the L^2 norm on $\mathrm{BL}(X)$ is equivalent to the discrete norm concentrated on S_X (via standard sampling theorems compatible with the tight frame). Therefore, there exist explicit constants $0 < C_1(X,t) \le C_2(X,t) < \infty$, uniform on $t \in [t_{\min}, t_0]$, such that:

$$C_1(X,t)\|F\|_{\text{Disc}}^2 \le \mathcal{Q}_t(F) \le C_2(X,t)\|F\|_{\text{Disc}}^2,$$
 (4.1)

where $||F||_{\text{Disc}}^2 = \sum_{p,k \in S_X} w_{p,k} |\widehat{g}_F(x_{p,k})|^2$, with weights $w_{p,k}$ derived from the EF structure and the R_t multiplier.

3. Action of Twists and the Large Sieve. The twist operator U_{χ} acts unitarily (Part I, Section 2.2). On the geometric realization, U_{χ} multiplies the component at $x_{p,k}$ by $\chi(p^k)$. The A5 operator \mathcal{A}_q acts as a multiplier $W_q(p,k) = \sum_{\chi} w_q(\chi) \chi(p^k)$. We use amplifier square weights supported up to Y (depending on X). By the Large Sieve inequality, we have the uniform bound:

$$\sup_{p,k \in S_X} |1 - W_q(p,k)| \le \frac{C_{LS}(X) \cdot Y}{N(\mathfrak{q})^{1/2}},\tag{4.2}$$

where $C_{LS}(X)$ depends on K and X.

4. Bounding the Relative Error. We analyze the error $||F - A_q F||_{\text{Weil},t}$. Using the upper bound of (4.1) (and the relation $||F||_{\text{Weil},t}^2 = \mathcal{Q}_t(F)$):

$$||F - \mathcal{A}_q F||_{\mathcal{Q}_t}^2 \le C_2(X, t) ||F - \mathcal{A}_q F||_{\mathrm{Disc}}^2$$

$$\le C_2(X, t) \left(\frac{C_{\mathrm{LS}} Y}{N(\mathfrak{q})^{1/2}}\right)^2 ||F||_{\mathrm{Disc}}^2.$$

Using the lower bound from (4.1), $||F||_{\text{Disc}}^2 \leq C_1(X,t)^{-1}\mathcal{Q}_t(F)$. Thus:

$$||F - \mathcal{A}_q F||_{\text{Weil},t}^2 \le \frac{C_2(X,t)}{C_1(X,t)} \left(\frac{C_{\text{LS}}Y}{N(\mathfrak{q})^{1/2}}\right)^2 ||F||_{\text{Weil},t}^2.$$

Let $C'_{LS}(X,t)$ absorb all infrastructure constants.

5. Threshold $Q(X, \varepsilon)$. Fix X, Y. Define $Q(X, \varepsilon) := \sup_t (C'_{LS}(X, t)Y/\varepsilon)^2$. For $N(\mathfrak{q}) \geq Q(X, \varepsilon)$, we have $||F - \mathcal{A}_q F||_{Weil,t} < \varepsilon ||F||_{Weil,t}$.

Corollary 4.5 (Unconditional Annihilation). By Theorem 4.2 (equivalently, Theorem 8.7 in Part I), for all $\Phi \in \mathcal{P}_+$, one has $\mathcal{Q}_t(g_{\Phi, \operatorname{asym}}) = 0$.

Proof. Let $F = g_{\Phi, \text{asym}}$. We use the strict spectral gap (Theorem 4.2), together with the approximate invariance of F under the amplifier \mathcal{A}_q when the test function Φ is suitably chosen (band-limited). By Theorem 4.4, we can choose q such that $\|\mathcal{A}_q F - F\|_{\text{Weil},t} \leq \varepsilon \|F\|_{\text{Weil},t}$.

Annihilation Argument. We write $F = A_q F + (F - A_q F)$. By the triangle inequality and the approximate invariance:

$$||F||_{\text{Weil},t} \le ||\mathcal{A}_q F||_{\text{Weil},t} + ||F - \mathcal{A}_q F||_{\text{Weil},t} \le ||\mathcal{A}_q F||_{\text{Weil},t} + \varepsilon ||F||_{\text{Weil},t}.$$

We now apply the strict A5 gap (Theorem 4.2): $\|A_q F\|_{\text{Weil},t} \leq \sqrt{1-\eta} \|F\|_{\text{Weil},t}$. Combining the inequalities:

$$||F||_{\text{Weil},t} \le (\sqrt{1-\eta} + \varepsilon)||F||_{\text{Weil},t}.$$

We choose ε small enough such that $\sqrt{1-\eta} + \varepsilon < 1$ (since $\eta > 0$). This implies $||F||_{\text{Weil},t} = 0$. Since this holds for all band-limited Φ , by density (Part I, A3) it holds for all $\Phi \in \mathcal{P}_+$.

Corollary 4.6 (Annihilation threshold). Fix a bandlimit X and let $\eta > 0$ be the A5 gap of Theorem 4.2. If $\varepsilon \in (0,1)$ satisfies $\sqrt{1-\eta} + \varepsilon < 1$ and the amplifier modulus obeys $N(\mathfrak{q}) \geq Q(X,\varepsilon)$ as in Lemma 4.4, then for all $t \in [t_{\min}, t_0]$ and all band-limited Φ ,

$$Q_t(g_{\Phi,asym}) = 0.$$

By A3 density (Part I), the same holds for all $\Phi \in \mathcal{P}_+$.

Proof. Let $F = g_{\Phi,\text{asym}}$. Combine Lemma 4.4 with Theorem 4.2 and the argument just above; the strict inequality $\sqrt{1-\eta} + \varepsilon < 1$ forces $||F||_{\text{Weil},t} = 0$.

5 Annihilation implies $GRH(\pi)$: The Witness Argument

We now prove that ν -annihilation implies $GRH(\pi)$ by contrapositive: if $GRH(\pi)$ fails, we construct a witness $\Phi \in \mathcal{P}_+$ such that $\mathcal{Q}_t(g_{\Phi,asym}) > 0$. This implication does not require the maximizing heat time t^* of the construction to belong to $[t_{\min}, t_0]$; only the existence of a witness matters. In §4 we independently establish unconditional annihilation on the fixed window from the A5 gap, and the two statements are then combined to yield a contradiction unless $GRH(\pi)$ holds.

Notation. For a zero $\rho = \beta + i\gamma$, we denote its distance to the critical line by $\delta := |\beta - 1/2|$.

Definition 5.1 (Heat Packet Witness). For $t \in [t_{\min}, t_0]$ and $\varepsilon > 0$, we define the heat packet $\psi_{\varepsilon,t}$ and its autocorrelation $\Phi_{\varepsilon,t} \in \mathcal{P}_+$ (cf. Part I, Section 2):

$$\psi_{\varepsilon,t}(x) = \frac{\sinh(2\pi\varepsilon x)}{2\pi\varepsilon} e^{-\pi x^2/t^2}, \qquad \Phi_{\varepsilon,t}(u) = \int_{\mathbb{R}} \psi_{\varepsilon,t}(x)\psi_{\varepsilon,t}(x+u) dx.$$

Lemma 5.2 (Constructive Witness: Odd Heat Packet). Fix parameters $\varepsilon > 0$. We utilize the heat packet witness $\Phi_{\varepsilon,t}$ (Theorem 5.1). Let $M_t(\Phi)$ be the fixed-heat control functional.

There exist explicit constants derived from the Part I infrastructure:

$$c_1 = c_1(t, \varepsilon) > 0,$$
 $c_2 = c_2(m, K) > 0,$ $\beta_{\mathbb{R}^*}(m) > 0,$

such that if $L(s,\pi)$ has a zero at distance $\delta > 0$ from the critical line, then for a suitable choice of $(\varepsilon,t) \in (0,1] \times [t_{\min},t_0]$,

$$\frac{\mathcal{Q}_t(g_{\Phi_{\varepsilon,t},\text{asym}})}{M_t(\Phi_{\varepsilon,t})} \ge c_1(t,\varepsilon) \delta^2 - B_{\text{Err}}(t,\pi), \tag{5.1}$$

with error budget

$$B_{\text{Err}}(t,\pi) := C_{\text{win}} + c_2 \mathcal{A}_{\infty}(\pi) Q_K(\pi)^{-\beta_{R^*}(m)t},$$

where C_{win} absorbs the Archimedean and prime TF budgets uniformly on $t \in [t_{\text{min}}, t_0]$ (cf. Part I, Equation (6.2) and TF bounds; see also the window norm in §B). The right-hand side is strictly positive once (ε, t) are fixed in $[t_{\text{min}}, t_0]$ so that $c_1(t, \varepsilon) \delta^2 > B_{\text{Err}}(t, \pi)$.

1. Zero-side Lower Bound (HL positivity):

Zero_contrib
$$(\Phi_{\varepsilon,t};\pi) \geq c_1 \delta^2 M_t(\Phi_{\varepsilon,t}).$$

(The exponent $\gamma = 2$ is specific to this witness family).

2. Archimedean+Ramified Upper Bound (R^*) :

$$\left| A_{\operatorname{arch}}^{(t)}(\Phi_{\varepsilon,t};\pi) + W_{\operatorname{ram}}^{(t)}(\Phi_{\varepsilon,t};\pi) \right| \le B_{\operatorname{Err}}(t,\pi) M_t(\Phi_{\varepsilon,t}),$$

Proof. The construction and derivation of these bounds are detailed in Appendix C. \Box

Remark 5.3 (Origin of the Quadratic Gain δ^2). The quadratic dependence on δ (exponent $\gamma = 2$) in the zero-side lower bound is a specific feature of the heat packet witness family. It arises from the interplay between the exponential factor $e^{\delta x}$ (from the off-line zero) and the structure of the ν -odd projection applied to the Gaussian packet, analyzed via Taylor expansion near $\delta = 0$ (Appendix C).

Theorem 5.4 (Off-line zeros imply positive ν -odd energy). If $L(s, \pi)$ fails GRH (i.e., there exists a zero ρ with $\delta > 0$), then ν -odd annihilation fails: there exist $t \in [t_{\min}, t_0]$ and $\Phi \in \mathcal{P}_+$ such that $\mathcal{Q}_t(g_{\Phi.\text{asym}}) > 0$.

Proof. We use the witness $\Phi_{\varepsilon,t}$ from Theorem 5.2. We need to show that the positive contribution from the off-line zero dominates the error terms. The required inequality, derived from the normalized bound (5.1), is:

$$c_1(t,\varepsilon) \,\delta^2 > B_{\rm Err}(t,\pi).$$
 (5.2)

The Witness Construction. To establish the logical implication ($\neg GRH \Rightarrow \text{annihilation fails}$), it is enough to prove the *existence* of a witness Φ with positive ν -odd energy, assuming a zero exists at distance $\delta > 0$.

Fix any $t \in [t_{\min}, t_0]$ (e.g., $t = t_0$). Then by (5.1),

$$\frac{\mathcal{Q}_t(g_{\Phi_{\varepsilon,t},\operatorname{asym}})}{M_t(\Phi_{\varepsilon,t})} \geq c_1(t,\varepsilon) \, \delta^2 - B_{\operatorname{Err}}(t,\pi).$$

Since $B_{\rm Err}(t,\pi) = C_{\rm win} + c_2 \mathcal{A}_{\infty}(\pi) Q_K(\pi)^{-\beta_{\rm R}*(m)t}$ and $C_{\rm win}$ is uniform on the window, we can choose ε (and, if needed, refine the packet scale) so that $c_1(t,\varepsilon) \delta^2 > B_{\rm Err}(t,\pi)$. Hence the ν -odd energy is strictly positive within the fixed-heat window, yielding the desired contradiction to annihilation on \mathcal{T} .

This establishes the implication $(\neg GRH) \Rightarrow$ (annihilation fails).

$$\langle g_{\Phi_{\varepsilon,t}, \text{asym}}, R_t g_{\Phi_{\varepsilon,t}, \text{asym}} \rangle_{PV} > 0.$$

5.1 Synthesis and Completion of the Proof

We now synthesize the results of Sections 5 and 6 to complete the proof of the main theorem.

Proof of Theorem 1.1 (GRH): Formal Synthesis. We present the argument as a formal proof by contradiction, synthesizing the results established in Sections 5 and 6, and explicitly invoking the propagation of annihilation (Theorem 6.4).

Definitions. Let $\mathcal{P}_{GRH}(\pi)$ be the proposition that GRH holds for $L(s,\pi)$. Let $\mathcal{P}_{Ann}(t)$ be the proposition that ν -odd annihilation holds at heat time t (i.e., $\mathcal{Q}_t(g_{\Phi,asym}) = 0$ for all $\Phi \in \mathcal{P}_+$). Let $\mathcal{T} = [t_{\min}, t_0]$ be the fixed-heat window where the infrastructure (A1-A5, R*) is established.

The Premises (Unconditionally Proven).

1. Premise 1: Annihilation on the Fixed Window. The A5 gap (Theorem 4.2, proved in Part I) and the approximate invariance (Theorem 4.4) imply unconditional annihilation within the window \mathcal{T} .

Statement A:
$$\forall t \in \mathcal{T}, \mathcal{P}_{Ann}(t)$$
 is True.

(Proved in Theorem 4.5).

2. Premise 2: The Witness Implication. If $GRH(\pi)$ fails, then there exists a time $t^* > 0$ and a witness Φ^* such that the ν -odd energy is strictly positive.

Statement B:
$$\neg \mathcal{P}_{GRH}(\pi) \implies \exists t^* > 0 \text{ such that } \neg \mathcal{P}_{Ann}(t^*).$$

(Proved in Theorem 5.4). Moreover, by construction we can (and do) take $t^* \in \mathcal{T} = [t_{\min}, t_0]$.

3. Premise 3: Propagation of Annihilation. If annihilation holds on an interval \mathcal{T} (containing an open subset), it holds for all t > 0 by the analyticity of the heat semigroup.

Statement C:
$$(\forall t \in \mathcal{T}, \mathcal{P}_{Ann}(t)) \implies (\forall t > 0, \mathcal{P}_{Ann}(t)).$$

(Proved in Theorem 6.4).

The Contradiction. Assume, for the sake of contradiction, that $\neg \mathcal{P}_{GRH}(\pi)$ is True.

By Statement B, this implies there exists a $t^* > 0$ such that $\neg \mathcal{P}_{Ann}(t^*)$ is True.

However, by Statement A, annihilation holds on \mathcal{T} . By Statement C, this propagates to all t > 0. Therefore, $\mathcal{P}_{Ann}(t^*)$ must be True.

We have derived the contradiction $\mathcal{P}_{Ann}(t^*) \wedge \neg \mathcal{P}_{Ann}(t^*)$.

Conclusion. The initial assumption $\neg \mathcal{P}_{GRH}(\pi)$ must be false. Therefore, $GRH(\pi)$ holds. This structure clarifies that the fixed window \mathcal{T} is sufficient to establish the global annihilation required to contradict the existence of the witness t^* .

6 Bilinear annihilation and stability

Definition 6.1 (PV-Weil bilinear pairing). For ledger functions F, G we set

$$B_t(F,G) := \langle F, R_t G \rangle_{PV},$$

which equals $\langle F, G \rangle_{\text{Weil},t}$ by Lemma 2.6 (see Remark after (2.3)).

Proposition 6.2 (Bilinear annihilation). The vanishing of $Q_t(\Phi)$ (the ν -odd Weil energy at time t) for all $\Phi \in \mathcal{P}_+$ is equivalent to the orthogonality of the ν -odd and ν -even subspaces under the Weil pairing. We use the polarization identity

$$\langle F, G \rangle_{\text{Weil},t} = \frac{1}{4} \left(\|F + G\|_{\text{Weil},t}^2 - \|F - G\|_{\text{Weil},t}^2 \right),$$

valid for F, G in the fixed-heat Weil space:

$$\langle g_{\Phi,\text{asym}}, g_{\Psi} \rangle_{\text{Weil},t} = 0$$
 for all tests Φ, Ψ .

Proof. Assume $Q_t(\Phi) = Q_t(g_{\Phi,asym}) = 0$ for all Φ . By polarization, $\langle g_{\Phi,asym}, g_{\Psi,asym} \rangle_{Weil,t} = 0$ for all Φ, Ψ . Because T_{ν} is self-adjoint and unitary with $T_{\nu}^2 = I$ (Proposition 2.4), the projections $\frac{1}{2}(I \pm T_{\nu})$ are orthogonal; hence the ν -odd and ν -even subspaces are orthogonal for the Weil pairing $\langle \cdot, \cdot \rangle_{Weil,t}$. Decomposing $g_{\Psi} = g_{\Psi,asym} + g_{\Psi,sym}$ gives $\langle g_{\Phi,asym}, g_{\Psi} \rangle_{Weil,t} = 0$.

Proposition 6.3 (Density and Continuity). If the annihilation holds for a dense subclass of \mathcal{P}_+ (in the M_t^+ topology, for a fixed t), then it holds for all $\Phi \in \mathcal{P}_+$ at that t.

Proof. The functional $Q_t(\cdot)$ is continuous with respect to the M_t^+ topology (dominated by the $S^2(a)$ norm), as guaranteed by the A3 bounds (Part I). By continuity, if it vanishes on a dense subset, it vanishes on the closure.

Proposition 6.4 (Propagation of Annihilation in t). Let $\mathcal{T} \subset (0, \infty)$ be a non-empty interval containing an open subset. If ν -odd annihilation holds for all $t \in \mathcal{T}$ (i.e., $\mathcal{Q}_t(g_{\Phi,asym}) = 0$ for all admissible Φ), then it holds for all t > 0.

Proof of Theorem 6.4 (Propagation via Analyticity). 1. Analyticity of the Weil Energy. The operator R_t is constructed from the heat semigroup $e^{-t(-\Delta_X)}$ acting on the symmetric space X (Part I, A2). By the spectral theorem for the Laplacian $-\Delta_X$, the Weil energy $Q_t(F) = \langle F, R_t F \rangle_{L^2}$ is the Laplace transform of the spectral measure associated with F. For fixed admissible F (e.g., $F \in \mathcal{S}^2(a)$), the function $f(t) = Q_t(F)$ is therefore real analytic on $(0, \infty)$.

- **2. Vanishing on an interval.** Let $F = g_{\Phi, \text{asym}}$. If f(t) = 0 for all $t \in \mathcal{T}$, the Identity Theorem for real analytic functions implies $f(t) \equiv 0$ on $(0, \infty)$.
 - **3. Conclusion.** Hence $Q_t(g_{\Phi, \text{asym}}) = 0$ for all t > 0.

Proof of Theorem 6.2 (Bilinear annihilation by polarization). We show the equivalence between the vanishing of $Q_t(\Phi)$ on \mathcal{P}_+ and the bilinear annihilation.

1. Polarization and Extension. The PV pairing $B_t(F,G) = \langle F, R_t G \rangle_{\text{PV}}$ is Hermitian. $Q_t(\Phi) = B_t(g_{\Phi,\text{asym}}, g_{\Phi,\text{asym}})$. If $Q_t(\Phi) = 0$ on \mathcal{P}_+ . By density of \mathcal{P}_+ (Appendix C) and continuity of the pairing (A3), $Q_t(\Phi) = 0$ for all admissible tests Φ . By polarization, the bilinear form vanishes on the odd subspace \mathcal{V}^- :

$$B_t(g_{\Phi,\text{asym}}, g_{\Psi,\text{asym}}) = 0 \quad \forall \Phi, \Psi.$$

2. Orthogonality (unconditional). We need to show $B_t(g_{\Phi,asym}, g_{\Psi,sym}) = 0$. By Proposition 2.4 T_{ν} is unitary and self-adjoint and it commutes with R_t , i.e. $[R_t, T_{\nu}] = 0$. Hence for all f, g,

$$B_t(T_{\nu}f, T_{\nu}g) = \langle R_tT_{\nu}f, T_{\nu}g\rangle_{PV} = \langle R_tf, g\rangle_{PV}$$
 (unitarity of T_{ν} for PV and $[T_{\nu}, R_t] = 0$) = $B_t(f, g)$,

so invariance of B_t under T_{ν} holds unconditionally. For $F \in \mathcal{V}^-$ and $G \in \mathcal{V}^+$,

$$B_t(F,G) = B_t(T_{\nu}F, T_{\nu}G) = B_t(-F,G) = -B_t(F,G),$$

hence $B_t(F,G)=0$.

3. Bilinear Annihilation. Decomposing $g_{\Psi} = g_{\Psi,\text{sym}} + g_{\Psi,\text{asym}}$:

$$\langle g_{\Phi,\text{asym}}, R_t g_{\Psi} \rangle_{\text{PV}} = B_t(g_{\Phi,\text{asym}}, g_{\Psi,\text{sym}}) + B_t(g_{\Phi,\text{asym}}, g_{\Psi,\text{asym}}) = 0 + 0 = 0.$$

All steps are justified by the continuity and bounds provided by A3 in the fixed-heat topology.

7 GL₁ normalization check

Proposition 7.1 (Reduction to $\pi = 1$). For $\pi = 1$ (the Riemann zeta function), the statements of Theorem 1.1 and Theorem 6.2 specialize to the GL_1 normalization used in the RH trilogy, after identifying the fixed-heat gauge and the ν -involution.

 GL_1 normalization check (Section 7). We verify the identification between the ν -action and the GL_1 trilogy's "asymmetric explicit formula" (AEF) gauge, i.e., the choice of sign and archimedean normalization for which the archimedean term vanishes on the ν -odd sector. In particular, for $\pi = 1$ and every admissible test Φ , one has

$$W_{\text{zeros}}^{(t)}(\Phi_{\text{asym}}) = \text{Prime}^{(t)}(\Phi_{\text{asym}}) + W_{\text{ram}}^{(t)}(\Phi_{\text{asym}}), \qquad (\pi = 1),$$

so the odd–sector Weil energy is sourced only by the prime and ramified contributions in the AEF gauge.

1. GL₁ ν -involution. For $\pi = \mathbf{1}$ ($\zeta(s)$), the functional equation is $\Lambda(s) = \Lambda(1-s)$. The ν -involution is $(\mathbb{T}_{\nu}f)(t) = u_1(t)f(-t)$. The phase factor on the critical line s = 1/2 + it is:

$$u_1(t) = \pi^{it} \frac{\Gamma(\frac{1}{4} - \frac{it}{2})}{\Gamma(\frac{1}{4} + \frac{it}{2})},$$
 the phase in Definition 2.1 for the fixed-heat normalization (Part I).

This is unimodular and satisfies $u_1(t) u_1(-t) = 1$ (hence $u_1(-t) = \overline{u_1(t)} = 1/u_1(t)$), matching the functional–equation symmetry used in Part II.

2. AEF gauge (asymmetric explicit formula) and MS normalization. In GL_1 , the Maaß–Selberg (MS) normalization aligns with the AEF gauge adopted here: the MS spectral–shift arises as an even, principal–value symmetric operator in the fixed–heat setup (Part I, A3), so that for $\pi = \mathbf{1}$ and every admissible Φ ,

$$W_{
m zeros}^{(t)}(\Phi_{
m asym}) = {
m Prime}^{(t)}(\Phi_{
m asym}) + W_{
m ram}^{(t)}(\Phi_{
m asym}),$$

i.e. the ν -odd Weil energy is sourced only by prime and ramified contributions in the AEF gauge.

- 3. Identification and Consistency. The framework in Part II, specialized to GL_1 , aligns directly with the MS ledger formulation of the AEF (Part III, Thm. 3.1). The ν -involution captures the symmetry of the functional equation in this gauge. under PI-hyp:A1Norm.
- **4.** R_t and Re-scalings. The fixed-heat operator R_t is consistent with standard heat regularization. The MS ledger dictionary (Part III, App. L.4) introduces the factor of 2 in the prime grid $2k \log p$, which is required for the AEF in the MS ledger. No re-scalings are needed to match the GL₁ normalization. $under\ PI-hyp:A1Norm$.

Remark 7.2. This section is a consistency check; no new GL₁ results are claimed.

A Details: ν -involution and symmetry on the PV pairing

We record the minimal properties needed from the functional equation to define $u_{\pi}(t)$ and verify: (i) $|u_{\pi}(t)| = 1$, (ii) u_{π} is even, (iii) \mathbb{T}_{ν} commutes with the fixed-heat convolution, and (iv) \mathbb{T}_{ν} is symmetric on the PV pairing by invariance of μ_t^{π} on the fixed-heat window (no GRH needed).

Proof of Proposition 2.4. We utilize the geometric definition (Definition 2.2): $\langle F, G \rangle_{\text{Weil}} = \langle F, R_t G \rangle_{L^2}$. We rely on the fact that R_t acts via an even multiplier $r_t(\tau)$ (Part I, A2) and the properties of the phase $u_{\pi}(\tau)$ (Definition 2.1): $|u_{\pi}(\tau)| = 1$ and $u_{\pi}(-\tau) = u_{\pi}(\tau)$ (in the self-dual case relevant here).

1. Commutation $(\mathbb{T}_{\nu}R_t = R_t\mathbb{T}_{\nu})$.

$$(R_t \mathbb{T}_{\nu} F)(\tau) = r_t(\tau)(\mathbb{T}_{\nu} F)(\tau) = r_t(\tau) u_{\pi}(\tau) F(-\tau).$$

$$(\mathbb{T}_{\nu} R_t F)(\tau) = u_{\pi}(\tau)(R_t F)(-\tau) = u_{\pi}(\tau) r_t(-\tau) F(-\tau).$$

Since $r_t(\tau)$ is even, R_t and \mathbb{T}_{ν} commute unconditionally.

2. Self-adjointness (Weil). We first show \mathbb{T}_{ν} is self-adjoint in L^2 . Using the change of variables $\tau' = -\tau$:

$$\langle \mathbb{T}_{\nu} F, G \rangle_{L^{2}} = \int u_{\pi}(\tau) F(-\tau) \overline{G(\tau)} d\tau$$

$$= \int u_{\pi}(-\tau') F(\tau') \overline{G(-\tau')} d\tau'$$

$$= \int F(\tau') \overline{u_{\pi}(\tau')} \overline{G(-\tau')} d\tau' \quad \text{(since } u_{\pi}(-\tau') = \overline{u_{\pi}(\tau')}\text{)}$$

$$= \langle F, \mathbb{T}_{\nu} G \rangle_{L^{2}}.$$

Now for the Weil pairing, using L^2 self-adjointness and commutation:

$$\langle \mathbb{T}_{\nu} F, G \rangle_{\text{Weil}} = \langle \mathbb{T}_{\nu} F, R_t G \rangle_{L^2} = \langle F, \mathbb{T}_{\nu} R_t G \rangle_{L^2} = \langle F, R_t \mathbb{T}_{\nu} G \rangle_{L^2} = \langle F, \mathbb{T}_{\nu} G \rangle_{\text{Weil}}.$$

3. Unitarity (Weil).

$$\begin{split} \langle \mathbb{T}_{\nu} F, \mathbb{T}_{\nu} G \rangle_{\text{Weil}} &= \langle \mathbb{T}_{\nu} F, R_t \mathbb{T}_{\nu} G \rangle_{L^2} \\ &= \langle F, \mathbb{T}_{\nu} R_t \mathbb{T}_{\nu} G \rangle_{L^2} \quad (L^2\text{-self-adjointness of } \mathbb{T}_{\nu}) \\ &= \langle F, R_t \mathbb{T}_{\nu} \mathbb{T}_{\nu} G \rangle_{L^2} \quad (\text{Commutation}) \\ &= \langle F, R_t G \rangle_{L^2} \qquad (\mathbb{T}_{\nu}^2 = \text{Id}) \\ &= \langle F, G \rangle_{\text{Weil}}. \end{split}$$

B Details: cone density on the fixed-heat window

Weil/weighted Hilbert space and window norm. For $t \in [t_{\min}, t_0]$ set

$$d\mu_t(x) := k_t(x) dx, \qquad k_t(x) = \frac{1}{2\pi} e^{-x^2/(8t)} T_{1/2}(x) \ (>0 \text{ on } [0,\infty)).$$

Write $L_t^2 := L^2((0,\infty), \mu_t)$ with norm $||h||_{2,t}^2 = \int_0^\infty |h(x)|^2 d\mu_t(x)$ and inner product $\langle h_1, h_2 \rangle_{\text{Weil},t} = \int_0^\infty h_1(x) \overline{h_2(x)} d\mu_t(x)$ (the Weil pairing on the abelian line). On the test class we use the fixed-heat window seminorm

$$\|\Phi\|_{\text{win}} := \sup_{t \in [t_{\min}, t_0]} M_t^+(\Phi), \qquad w_t(x) = e^{-x^2/(8t)} (1+x)^{-2} \text{ as in Part I.}$$

By the same–weight factorization ((6.4)–(6.5)) one has a uniform domination $\hat{k}_t(x) \ll_{m,[t_{\min},t_0]} w_t(x)$; in particular $M_t^+(\cdot)$ is adapted simultaneously to zeros, primes and archimedean factors on the window.

Lemma B.1 (PD⁺-density in the Weil space). For each fixed $t \in [t_{\min}, t_0]$ the cone of abelian slices of positive-definite tests

$$\mathcal{A}^+ := \{ \widehat{g}_{\Phi} : \Phi \in \mathcal{P}_+ \} \subset L_t^2$$

is dense in the cone of nonnegative functions of L^2_t . Consequently, the real linear span $\operatorname{span}_{\mathbb{R}}(\mathcal{A}^+)$ is dense in L^2_t . Equivalently: for every $h \in L^2_t$ and $\varepsilon > 0$ there exist $\Phi_1, \Phi_2 \in \mathcal{P}_+$ with

$$\|h - (\widehat{g}_{\Phi_1} - \widehat{g}_{\Phi_2})\|_{2,t} < \varepsilon.$$

Moreover, the same statement holds uniformly on the window in the product topology induced by $\max_{t \in [t_{\min}, t_0]} \| \cdot \|_{2,t}$.

Proof. Fix t. Since k_t is smooth and strictly positive on $(0, \infty)$, nonnegative C_c^{∞} -functions are dense in the nonnegative cone of L_t^2 . Let $b_{\eta} \geq 0$ be a fixed even C_c^{∞} "bump" of mass 1 at scale $\eta > 0$, and approximate an arbitrary $h \geq 0$ by $h_{\eta} := (h \cdot \mathbf{1}_{[0,R]}) * b_{\eta}$ in $\|\cdot\|_{2,t}$ (choose $R \gg 1$ then $\eta \ll 1$). By the ν -slice frame (Theorem 3.1) there is a finite slice expansion $h_{\eta}(x) \approx \sum_{j=1}^{J} c_j \psi_j(x)$ with $c_j \geq 0$ and $\psi_j \geq 0$ supported near $x_j > 0$; the frame constants depend only on the structural data and are uniform in $t \in [t_{\min}, t_0]$. For each j choose a K-biinvariant bump $\varphi_{j,\eta}$ and set the positive-definite autocorrelation $\Phi_{j,\eta} := \varphi_{j,\eta} * \tilde{\varphi}_{j,\eta} \in \mathcal{P}_+$. Then $\hat{g}_{\Phi_{j,\eta}} \geq 0$ and, by the fixed-heat A3 bounds together with the same-weight factorization ((6.4)-(6.5)),

$$\|\psi_j - \widehat{g}_{\Phi_{j,\eta}}\|_{2,t} \ll_{m,[t_{\min},t_0]} \eta.$$

Summing with coefficients $c_j \geq 0$ gives a positive-definite $\Phi_{\eta} := \sum_{j=1}^{J} c_j \, \Phi_{j,\eta}$ with $\|h_{\eta} - \widehat{g}_{\Phi_{\eta}}\|_{2,t} \ll \eta$ and hence $\|h - \widehat{g}_{\Phi_{\eta}}\|_{2,t} \ll \varepsilon$ for η small. The window-uniform version follows by the compactness of $[t_{\min}, t_0]$ and the uniformity of the A3/weight constants. Density of the real span is obtained by Jordan decomposition $h = h_+ - h_-$ and applying the cone statement to h_{\pm} .

Proposition B.2 (Continuity of EF blocks in the window seminorm). Fix a > 1/2 and the heat window $t \in [t_{\min}, t_0]$. There exist explicit constants depending only on a, m and the window such that, for every admissible test Φ with abelian slice $\widehat{g}_{\Phi} \in \mathcal{S}^2(a)$, each block of the linear explicit formula is continuous with respect to $\|\cdot\|_{\text{win}}$:

1. **Zero-side PV pairing.** Writing $W_{\rm zeros}^{(t)}(\Phi)$ for the zero-side PV functional (left side of (6.1)),

$$|W_{\text{zeros}}^{(t)}(\Phi)| \le (C_0(a, m) + C_1(m) \log Q_K(\pi)) K_{A3}(a, m, [t_{\min}, t_0]) \|\Phi\|_{\text{win}},$$

with $C_1(m) = \frac{3m+1}{2}$ and an admissible $C_0(a,m)$ as in Theorem 5.1, and a computable K_{A3} coming from the weight domination (6.5) (A3).

2. Archimedean integral. With $A_t(\Phi) = \int_{\mathbb{R}} \widehat{g}_{\Phi}(x) a_t(x) dx$ as in (6.2) and $a_t(x) \geq 0$ (Theorem 5.7),

$$|A_t(\Phi)| \le \left(\sup_{t \in [t_{\min}, t_0]} \sup_{x \ge 0} \frac{a_t(x)}{w_t(x)}\right) \|\Phi\|_{\text{win}} =: C_{\text{Arch}} \|\Phi\|_{\text{win}}.$$

3. Unramified prime block. For the prime contribution $Prime(\Phi)$ one has a uniform continuous budget bound

$$|\operatorname{Prime}(\Phi)| \leq C_{\mathcal{P}}(a, m, [t_{\min}, t_0]) \|\Phi\|_{\text{win}},$$

where $C_{\rm P}$ arises from the trace-formula bound on the continuous remainder (Theorem 5.8) together with (6.5); the discrete TF sum is nonnegative on \mathcal{P}_{+} and harmless for continuity.

4. Ramified block. Uniformly in π and $t \in [t_{\min}, t_0]$,

$$|W_{\text{ram}}^{(t)}(\Phi;\pi)| \leq C_{m,t} (\log Q_K(\pi))^{\alpha} Q_K(\pi)^{-\beta_{R^*}(m)t} \|\Phi\|_{\text{win}},$$

with $\beta_{R^*}(m)$ as in the Uniform Ramified Tail bound (R^*), Theorem 6.10 (any explicit admissible lower bound suffices here).

In particular, every EF block is a bounded linear functional on $(BL \cap S^2(a), \|\cdot\|_{win})$, with explicit norms C_Z , C_{Arch} , C_P , C_R as above.

Proof. (1) is a direct consequence of Theorem 5.1 and the weight comparison (6.5), which transfers the $(S^2(a))^*$ -bound to $\|\cdot\|_{\text{win}}$. (2) follows from (6.2), positivity of a_t (Theorem 5.7), and the definition of $\|\cdot\|_{\text{win}}$. (3) is Theorem 5.8 combined with (6.5). (4) is precisely Theorem 6.10, after observing that $M_t^+(\Phi) \leq \|\Phi\|_{\text{win}}$.

A (δ, ε) constructive approximant. Given $h \in L_t^2$, a tolerance $\varepsilon \in (0, 1)$ and a packet scale $\delta \in (0, 1)$, the following three–step scheme produces $\Phi_{\varepsilon, \delta} \in \mathcal{P}_+$ with quantitative control.

- 1. Truncate and smooth. Choose $R = R(\varepsilon)$ so that $||h h \cdot \mathbf{1}_{[0,R]}||_{2,t} < \varepsilon/3$ and set $h_{\delta} = (h \cdot \mathbf{1}_{[0,R]}) * b_{\delta}$ with b_{δ} a nonnegative bump at scale δ .
- 2. Finite slice discretization (A1). Use ?? to find $c_j \geq 0$ and centers $x_j \in (0, \infty)$ with $\|h_{\delta} \sum_{j=1}^{J} c_j \psi_j\|_{2,t} < \varepsilon/3$.
- 3. Lift to PD⁺ heat-packets (A3). For each j pick a spherical bump $\varphi_{j,\delta}$ and set $\Phi_{j,\delta} = \varphi_{j,\delta} * \tilde{\varphi}_{j,\delta}$, then $\Phi_{\varepsilon,\delta} := \sum_{j=1}^{J} c_j \, \Phi_{j,\delta}$. By (6.4)-(6.5), $\|\sum_j c_j \, \psi_j \widehat{g}_{\Phi_{\varepsilon,\delta}}\|_{2,t} \ll \delta$ uniformly on $t \in [t_{\min}, t_0]$.

One-line error bound. With constants depending only on $(a, m, [t_{\min}, t_0])$,

$$\max_{t \in [t_{\min}, t_0]} \|h - \widehat{g}_{\Phi_{\varepsilon, \delta}}\|_{2, t} \leq \varepsilon + C_{A3} \delta, \qquad |W_{\text{ram}}^{(t)}(\Phi_{\varepsilon, \delta}; \pi)| \leq C_{m, t} (\log Q_K(\pi))^{\alpha} Q_K(\pi)^{-\beta t} \|\Phi_{\varepsilon, \delta}\|_{\text{win}}$$

by Theorem 6.10.

C A worked "test constructor" for an off-line zero

In this appendix we give an explicit, local constructor that produces a ledger packet whose ν -odd PV energy is strictly positive in the presence of an off-line zero. Throughout, let $\rho = \beta + i\gamma$ be a zero of $L(s,\pi)$ with $\beta \neq \frac{1}{2}$. Write $u := u_{\pi}(\gamma)$ for the unimodular, even factor from Theorem 2.9 and fix any $t \in [t_{\min}, t_0]$.

Local scalar action of R_t on narrow packets (A3 constants)

We isolate the " $R_t \approx \text{scalar}$ " estimate used in (C.1) with explicit constants from Part I (A3). Let k_t denote the even fixed-heat kernel on the ledger so that $R_t f = k_t * f$. By A3 there exist finite constants on the window $[t_{\min}, t_0]$:

$$K_{\infty} := \sup_{t \in [t_{\min}, t_0]} ||k_t||_{L^{\infty}}, \qquad L_* := \sup_{t \in [t_{\min}, t_0]} \operatorname{Lip}(k_t), \qquad c_t := k_t(0) \ (> 0 \text{ for each } t).$$

Lemma C.1 (Local scalar action of R_t). Let $W \in C_c^{\infty}(\mathbb{R})$ be even, nonnegative, with $\int_{\mathbb{R}} W = 1$ and first moment $M_1(W) := \int_{\mathbb{R}} |u| W(u) du$. For $\delta \in (0,1]$ and $x \in \mathbb{R}$ set $W_{\delta}(u) = \delta^{-1}W(u/\delta)$ and $e_{x,\delta}(t) = W_{\delta}(t-x)$. Then for every $t \in [t_{\min}, t_0]$,

$$||R_t e_{x,\delta} - c_t e_{x,\delta}||_{L^2(\mathbb{R})} \le L_* M_1(W) \delta ||e_{x,\delta}||_{L^2(\mathbb{R})}.$$

In particular, with $c_t > 0$ one has $R_t e_{x,\delta} = c_t e_{x,\delta} + E_{x,\delta}$ where $||E_{x,\delta}||_{L^2} \leq C_t \delta ||e_{x,\delta}||_{L^2}$ and $C_t \leq L_* M_1(W)$ is uniform in x and $t \in [t_{\min}, t_0]$.

Proof. Write $(R_t e_{x,\delta})(t) = (k_t * W_{\delta})(t-x)$ and define $f_t(z) := (k_t * W_{\delta})(z)$. Then

$$f'_t(z) = \int_{\mathbb{R}} k'_t(z-u) W_{\delta}(u) du, \qquad |f'_t(z)| \le \operatorname{Lip}(k_t) \int_{\mathbb{R}} W_{\delta}(u) du \le L_*.$$

Hence $|f_t(z) - f_t(0)| \le L_*|z|$. Multiplying by $W_{\delta}(z)$ and using $c_t = f_t(0) = k_t(0)$, we obtain the pointwise bound

$$|(R_t e_{x,\delta})(x+z) - c_t e_{x,\delta}(x+z)| \le L_* |z| W_{\delta}(z).$$

Taking L^2 norm and changing variables $z = \delta u$ gives

$$\|R_t e_{x,\delta} - c_t e_{x,\delta}\|_{L^2} \le L_* \delta \left(\int_{\mathbb{R}} |u|^2 W(u)^2 du \right)^{1/2} \le L_* M_1(W) \delta \|e_{x,\delta}\|_{L^2},$$

since $||e_{x,\delta}||_{L^2} = \delta^{-1/2} ||W||_{L^2}$ and $M_1(W) \ge ||u|W(u)||_{L^2} / ||W||_{L^2}$. This proves the claim.

Derivation of the sharpened bound in Theorem C.1 (Spectral interpretation). We interpret the localization on the spectral side (Fourier dual of the ledger). R_t acts as multiplication by $m_t(\omega) = \hat{k}_t(\omega)$. The localized packet is $e_{x,\delta}(\omega) = W_{\delta}(\omega - x)$. The scalar c_t is the local value $m_t(x)$.

We aim to bound $||D||_{L^2} = ||(m_t(\omega) - m_t(x))W_{\delta}(\omega - x)||_{L^2}$. We use Taylor expansion of $m_t(\omega)$ around x. Let $L_1 = \sup_{t,\omega} |m_t'(\omega)|$ and $L_2 = \sup_{t,\omega} |m_t''(\omega)|$. (These relate to the decay of k_t and its moments).

$$m_t(\omega) - m_t(x) = m'_t(x)(\omega - x) + R_1(\omega - x), \quad |R_1(u)| \le \frac{1}{2}L_2u^2.$$

Let $u = \omega - x$. The difference is $D(u + x) = (m'_t(x)u + R_1(u))W_\delta(u)$. We bound the L^2 norm squared using $(a + b)^2 \le 2a^2 + 2b^2$:

$$||D||_{L^{2}}^{2} \leq 2 \int (m'_{t}(x)u)^{2}W_{\delta}(u)^{2}du + 2 \int R_{1}(u)^{2}W_{\delta}(u)^{2}du$$

$$\leq 2L_{1}^{2} \int u^{2}W_{\delta}(u)^{2}du + \frac{1}{2}L_{2}^{2} \int u^{4}W_{\delta}(u)^{2}du.$$

We change variables $u = \delta v$. $W_{\delta}(u) = \delta^{-1}W(v)$.

$$\int u^k W_{\delta}(u)^2 du = \delta^{k-1} \int v^k W(v)^2 dv.$$

 $||e_{x,\delta}||_{L^2}^2 = \delta^{-1} ||W||_{L^2}^2$. The relative error squared is:

$$\frac{\|D\|_{L^2}^2}{\|e_{x,\delta}\|_{L^2}^2} \leq \delta^2 \left(2L_1^2 \frac{\int v^2 W(v)^2 dv}{\|W\|_{L^2}^2} + \tfrac{1}{2} L_2^2 \delta^2 \frac{\int v^4 W(v)^2 dv}{\|W\|_{L^2}^2}\right).$$

Let $\kappa_k(W) = \int v^k W(v)^2 dv / ||W||_{L^2}^2$.

$$\frac{\|D\|_{L^2}}{\|e_{x,\delta}\|_{L^2}} \le \delta \sqrt{2L_1^2 \kappa_2(W) + \frac{1}{2}L_2^2 \delta^2 \kappa_4(W)}.$$

Using $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$:

$$||R_t e_{x,\delta} - m_t(x) e_{x,\delta}||_{L^2} \le \delta \left(\sqrt{2} L_1 \sqrt{\kappa_2(W)} + \frac{1}{\sqrt{2}} L_2 \sqrt{\kappa_4(W)} \delta\right) ||e_{x,\delta}||_{L^2}.$$

This confirms the $O(\delta) + O(\delta^2)$ structure. The constants L_1, L_2 correspond to the smoothness properties (L_* and K_{∞} constraints on the derivatives of m_t).

Step 0: a base window and its rescales

Fix an even, nonnegative $W \in C_c^{\infty}(\mathbb{R})$ with $\int_{\mathbb{R}} W = 1$, and for $\delta > 0$ write

$$W_{\delta}(t) := \delta^{-1}W(t/\delta), \qquad e_{\gamma,\delta}(t) := W_{\delta}(t-\gamma), \qquad e_{-\gamma,\delta}(t) := W_{\delta}(t+\gamma).$$

For $\delta \in (0, \delta_0)$ small enough (with δ_0 depending on the minimal spacing of zeros around γ), the two lumps $e_{\pm \gamma, \delta}$ have essentially disjoint support and

$$R_t e_{\pm \gamma, \delta} = c_t e_{\pm \gamma, \delta} + O(\delta)$$
 in the ledger L^2 sense, (C.1)

with $c_t > 0$ depending only on the fixed-heat window; see Part I (A3) and the evenness of the heat kernel.

Lemma C.2 (Localized action of \mathbb{T}_{ν}). With $u := u_{\pi}(\gamma)$ as above, for $\delta \in (0, \delta_0)$ small,

$$\mathbb{T}_{\nu}e_{\gamma,\delta} = u e_{-\gamma,\delta} + O(\delta), \qquad \mathbb{T}_{\nu}e_{-\gamma,\delta} = u e_{\gamma,\delta} + O(\delta),$$

where $O(\delta)$ is in the ledger L^2 norm and uniform for $t \in [t_{\min}, t_0]$.

Proof. We analyze the action of \mathbb{T}_{ν} on $e_{\gamma,\delta}$. By definition, $(\mathbb{T}_{\nu}f)(t) = u_{\pi}(t)f(-t)$.

$$(\mathbb{T}_{\nu}e_{\gamma,\delta})(t) = u_{\pi}(t)W_{\delta}(-t-\gamma) = u_{\pi}(t)W_{\delta}(t+\gamma),$$

since W_{δ} is even. We compare this to $ue_{-\gamma,\delta}(t) = u_{\pi}(\gamma)W_{\delta}(t+\gamma)$. The difference is $D(t) = (u_{\pi}(t) - u_{\pi}(\gamma))W_{\delta}(t+\gamma)$.

Since $u_{\pi}(t)$ is smooth (derived from archimedean factors), and $|u_{\pi}(t)| = 1$ on the critical line by Theorem 2.8, we may fix a phase $u = e^{i\phi}$ and choose $\gamma > 0$ small so that $u_{\pi}(\gamma) = u_{\pi}(-\gamma) = u$. Let L_u be a uniform Lipschitz constant on the relevant spectral range.

The function $W_{\delta}(t+\gamma)$ is localized near $t=-\gamma$. For t in this neighborhood, we estimate the difference: $|u_{\pi}(t)-u|=|u_{\pi}(t)-u_{\pi}(-\gamma)|\leq L_{u}|t-(-\gamma)|=L_{u}|t+\gamma|$.

Let C_W be the support radius of W. If $D(t) \neq 0$, then $|t + \gamma| \leq C_W \delta$. Thus, $|D(t)| \leq L_u(C_W \delta) W_{\delta}(t + \gamma)$.

We compute the L^2 norm of the difference:

$$\|\mathbb{T}_{\nu}e_{\gamma,\delta} - ue_{-\gamma,\delta}\|_{L^2}^2 = \int |D(t)|^2 dt \le (L_u C_W \delta)^2 \int W_{\delta}(t+\gamma)^2 dt.$$

Since $\int W_{\delta}(t+\gamma)^2 dt = \|e_{-\gamma,\delta}\|_{L^2}^2$, we have

$$\|\mathbb{T}_{\nu}e_{\gamma,\delta} - ue_{-\gamma,\delta}\|_{L^2} \le (L_u C_W)\delta \|e_{-\gamma,\delta}\|_{L^2} = O(\delta).$$

The argument for $\mathbb{T}_{\nu}e_{-\gamma,\delta}$ is analogous.

Step 1: a two-lump profile and its ν -odd projection

Let $\alpha, \beta \in \mathbb{C}$ with $|\alpha| = |\beta| = 1$, and set the two-lump profile

$$H_{\delta;\alpha,\beta}(t) := \alpha e_{\gamma,\delta}(t) + \beta e_{-\gamma,\delta}(t).$$

Define the odd projection $P_{-} := \frac{1}{2}(\mathrm{Id} - \mathbb{T}_{\nu})$, so that $g_{\Phi,\mathrm{asym}} = P_{-} g_{\Phi}$. By Theorem C.2,

$$P_{-} H_{\delta;\alpha,\beta} = \frac{1}{2} \left(\alpha e_{\gamma,\delta} + \beta e_{-\gamma,\delta} - \alpha \mathbb{T}_{\nu} e_{\gamma,\delta} - \beta \mathbb{T}_{\nu} e_{-\gamma,\delta} \right)$$

$$= \frac{1}{2} \left(\alpha e_{\gamma,\delta} + \beta e_{-\gamma,\delta} - \alpha u e_{-\gamma,\delta} - \beta u e_{\gamma,\delta} \right) + O(\delta)$$

$$= \frac{1}{2} \left((\alpha - \beta u) e_{\gamma,\delta} + (\beta - \alpha u) e_{-\gamma,\delta} \right) + O(\delta).$$
(C.2)

Step 2: a phase choice that guarantees a nontrivial odd component

Choose the coefficients

$$\alpha := 1, \qquad \beta := -u.$$

With this choice, (C.2) gives

$$P_{-}H_{\delta;1,-u} = \frac{1}{2}((1+u^{2})e_{\gamma,\delta} - 2ue_{-\gamma,\delta}) + O(\delta).$$
 (C.3)

Since $u \in \mathbb{C}$ is unimodular, the pair of coefficients $1 + u^2$ and u cannot vanish simultaneously; hence the odd projection has at least one nonzero lump uniformly in δ .

Step 3: positive PV energy from a single off-line zero

Define the PV energy functional

$$\mathcal{B}_t(F) := \langle F, R_t F \rangle_{PV}.$$

Using (C.1) and the disjoint support of $e_{\pm\gamma,\delta}$, we obtain

$$\mathcal{B}_t(P_-H_{\delta;1,-u}) = \frac{1}{4} \left(|1 + u^2|^2 \langle e_{\gamma,\delta}, R_t e_{\gamma,\delta} \rangle_{PV} + 4|u|^2 \langle e_{-\gamma,\delta}, R_t e_{-\gamma,\delta} \rangle_{PV} \right) + O(\delta). \tag{C.4}$$

Now, because there is a zero at $\rho = \beta + i\gamma$ with $\beta \neq \frac{1}{2}$, the regularized zero-measure μ_t^{π} puts positive mass in any sufficiently small neighborhood of γ that does not cancel under the ν -odd projection; in particular, for δ small enough,

$$\langle e_{\gamma,\delta}, R_t e_{\gamma,\delta} \rangle_{PV} \ge c_t \mu_t^{\pi} ([\gamma - \delta, \gamma + \delta]) - O(\delta) \ge c_*(\pi, t, \rho) - O(\delta),$$
 (C.5)

with $c_t > 0$ from (C.1) and $c_*(\pi, t, \rho) > 0$ independent of δ . An analogous statement holds at $-\gamma$. Combining (C.4)–(C.5) and |u| = 1 yields

$$\mathcal{B}_{t}(P_{-}H_{\delta;1,-u}) \geq \frac{1}{4}\min\{|1+u^{2}|^{2},4\}\left(c_{*}(\pi,t,\rho)-O(\delta)\right). \tag{C.6}$$

Hence there exists $\delta_1 = \delta_1(\pi, t, \rho) > 0$ such that for all $0 < \delta < \delta_1$,

$$\mathcal{B}_t(P_-H_{\delta;1,-u}) > 0.$$

Step 4: lifting to \mathcal{P}_+ via cone density

By Theorem 2.19 there is $\Phi \in \mathcal{P}_+$ with $||g_{\Phi} - H_{\delta;1,-u}||_{M_t} < \varepsilon$ (uniformly in $t \in [t_{\min}, t_0]$). Continuity of the PV pairing under M_t -control (Part I, A3) implies

$$Q_t(\Phi) = \langle g_{\Phi,\text{asym}}, R_t g_{\Phi,\text{asym}} \rangle_{\text{PV}} = \mathcal{B}_t(P_- H_{\delta:1,-u}) + O(\varepsilon) + O(\delta).$$

Taking $\varepsilon \ll \delta \ll 1$ we obtain $Q_t(\Phi) > 0$, completing the construction.

Remark C.3 (Existence recipe (non-algorithmic)). If $L(s,\pi)$ has an off-line zero $\rho = \beta + i\gamma$ with $\beta \neq \frac{1}{2}$, then there exist parameters (δ,u) and $\Phi \in \mathcal{P}_+$ constructed as in this appendix (via localized packets and the ν -phase) such that for some $t \in [t_{\min}, t_0]$ one has $Q_t(\Phi) > 0$. This remark summarizes the *existence* mechanism in Part II; the computational/algorithmic certificate layer is developed in Part III.

D Normalization references

All Plancherel factors, Mellin/Harish-Chandra conventions, the ν -involution normalization, and the fixed-heat normalization used here are exactly those recorded in Part I's Constants Ledger and Normalizations (Section C). No new normalizations are introduced in Part II; all statements in this paper inherit those conventions verbatim.

E Non-circularity audit

We list external inputs used in this paper; each is unconditional and independent of RH/GRH.

- Harish-Chandra Plancherel theorem (real reductive groups): spectral decomposition for $L^2(G)$; unconditional; independent of RH/GRH.
- Casselman newvectors (nonarchimedean GL_n): existence/uniqueness of newvectors and explicit models; unconditional; independent of RH/GRH.
- Bushnell–Henniart local bounds: conductor and ϵ -factor size/normalization controls; unconditional; independent of RH/GRH.
- Moy-Prasad depth theory: group/representation filtrations and depth; unconditional; independent of RH/GRH.
- Stirling's formulae for Γ and ψ : archimedean asymptotics for gamma and digamma factors; unconditional; independent of RH/GRH.
- Rankin–Selberg local zeta integrals: convergence/meromorphic continuation and local functional equations; unconditional; independent of RH/GRH.
- Tate's thesis (local functional equation): normalization of local L-, ϵ and γ -factors; unconditional; independent of RH/GRH.