Analysis

Robin Rausch, Florian Maslowski 5. Juli 2022

Inhaltsverzeichnis

1	Eigenwerttheorie	2			
2	Quadrik				
3	3 Satz von Bolzano-Weierstrass				
4	Grenzwert				
5	Cauchykriterium	2			
6	Konvergenzkriterium 6.1 Satz der monotonen Konvergenz 6.2 Leibniz-Kriterium 6.3 Regel von L'Hospital 6.4 Sandwich-Prinzip 6.5 Wurzel-/Quotientenkriterium 6.6 Integralkriterium 6.7 Majoranten-/Minorantenkriterium 6.8 Stetigkeit 6.9 Konvergenzradius 6.10 Wichtigste Potenzreihen	2 3 3 3 3 3 3 4 4			
7	Kurvendiskussion7.1 Newtonverfahren	4 4 5 5 5 5 5			
8	Taylor Entwicklung	5			

1 Eigenwerttheorie

Der Eigenvektor \overrightarrow{x} ist der Vektor einer Matrix A, der sich bei der Multiplikation mit der Matrix nur um die Länge mit dem ändert:

$$A \cdot \overrightarrow{x} = \lambda \cdot \overrightarrow{x}$$
 sdfs

2 Quadrik

Die Quadrik ist die Lösungsmenge von quadratischen Gleichungen mit mehreren Variablen.

3 Satz von Bolzano-Weierstrass

- 1. Jede beschränkte Folge in $\mathbb R$ oder $\mathbb C$ hat wenigstens einen Häufungspunkt
- 2. Jede beschränkte Folge in $\mathbb R$ oder $\mathbb C$ hat wenigstens eine konvergente Teilfolge

4 Grenzwert

A ist Grenzwert
$$\iff \lim_{n \to \infty} a_n = A \iff \forall_{\epsilon > 0} \ \exists_{n_0 \in \mathbb{N}} \ \forall_{n \le n_0} : |a_n - A| < \epsilon$$

Für alle Epsilon die Größer als 0 sind, gibt es ein n_0 <u>ab dem</u> alle Folgenden $n > n_0$ Glieder innerhalb des Epsilon-Gürtels liegen. (Das heißt a_n - Grenzwert ist kleiner als Epsilon)

Jede Geometrische Folge: $a_n = q^n$ ist eine Nullfolge, wenn -1 < q < 1

Geometrische Folgen haben ihre Variablen immer nur als Potenz bsp.: $a_n: \frac{1}{2^n}$

5 Cauchykriterium

$$\forall_{\epsilon>0} \ \exists_{n_0 \in \mathbb{N}} \ \forall_{n \geq n_\epsilon, m \geq n_\epsilon} : |a_n - a_m| < \epsilon$$

Für jedes $\epsilon>0$ gibt es einen Index $n_\epsilon\in\mathbb{N}$, so dass für all $n\geq n_\epsilon$ und $m\geq n_\epsilon$, die Abschätzung $|a_n-a_m|<\epsilon$ erfüllt ist.

Ist das Cauchy kriterium erfüllt ist die Folge konvergent, und hat einen Grenzwert

6 Konvergenzkriterium

 $\lim_{n\to\infty} a_n = a \Leftrightarrow \forall_{\varepsilon>0} \exists_{n_{\varepsilon} \in \mathbb{N}}$

 $\forall_{\epsilon}>0, n\in\mathbb{N}\;\exists\;n_{\epsilon}:n>n_{\epsilon}\Rightarrow|g-a_n|<\epsilon\;\text{Für alle positiven Epsilon und natürliche n, gibt es eine Grenze <math>n_{\epsilon}$, nach der alle Folgenglieder um weniger als epsilon vom Grenzwert entfernt sind.

Satz der monotonen Konvergenz

Jede noch monoton wachsende/fallende nach oben/unten beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ ist konvergent.

6.2 Leibniz-Kriterium

$$\sum_{n=0}^{\infty} (-1)^k * a_n$$

Sei a_n eine monotone, reelle Nullfolge, dann konvergiert die alternierende Reihe

6.3 Regel von L'Hospital

Für Grenzwerte bei Brüchen, wenn:

- 1. Zähler und Nenner gegen 0 oder $\pm \infty$ gehen
- 2. Grenzwert des Bruchs $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ existiert

Regel:
$$\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$

Sandwich-Prinzip 6.4

Wenn eine Folge zwischen 2 konvergierenden Folgen mit dem selben Grenzwert liegt, konvergiert diese auch gegen den selben Grenzwert.

Wurzel-/Quotientenkriterium 6.5

Eine Reihe $\sum a_k$ ist absolut konvergent wenn:

$$1.\lim_{k\to\infty} \sqrt[k]{|a_k|} = q < 1$$

$$2. \lim_{k \to \infty} \frac{|a_{k+1}|}{a_k} = q < 1$$

 $2.\lim_{k\to\infty}\frac{|a_{k+1}|}{a_k}=q<1$ Wenn $q\geqslant 1$ gilt, ist die Reihe divergent.

6.6 Integralkriterium

6.7 Majoranten-/Minorantenkriterium

Majorantenkriterium: Die Reihe wird durch eine größere ersetzt, deren Konvergenz bekannt

Minorantenkriterium: Die Reihe wird durch eine kleinere ersetzt, deren Divergenz bekannt ist.

6.8 Stetigkeit

Eine Funktion ist stetig, falls die Funktion keine Sprünge hat. Linke Seite der Funktion ist gleich rechte Seite der Funktion.

$$f(x_0) = \lim_{x \to x_{0-}} f(x) = \lim_{x \to x_{0+}} f(x)$$

6.9 Konvergenzradius

Potenzreihen						
$\sum_{k=0}^{n} a_k z^k, \qquad f(z) \coloneqq \lim_{n \to \infty} \sum_{k=0}^{n} a_k z^k = \sum_{k=0}^{\infty} a_k z^k$						
Potenzreihen konvergieren absolut im inneren einer Kreisscheibe. Deren Radius heißt Konvergenzradius.						
Wurzelkriterium	Quotientenkriterium	Für				
$ z < \frac{1}{\lim_{n \to \infty} \sqrt[k]{ a_k }} \coloneqq R$	$ z < \frac{1}{\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n }} \coloneqq R$	$\sum_{k=0}^{\infty} a_k z^k$				
$ z < \frac{1}{\sqrt[p]{\lim_{n \to \infty} \sqrt[k]{ a_k }}} \coloneqq R$	$ z < \frac{1}{\sqrt{\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n }}} := R$	$\sum_{k=0}^{\infty} a_k z^{pk+r}$				

6.10 Wichtigste Potenzreihen

Funktion Potenzreihe Bereich
$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n - 1 < x < 1$$

$$f(x) = \ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} * x^n - 1 < x < 1$$

$$f(x) = e^x = \sum_{n=0}^{\infty} \frac{1}{n!} * x^n$$

$$g(x) = x * e^{x^2} = x * \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$$

$$f(x) = \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} * x^{2n}$$

$$f(x) = sin(x)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} * x^{2n+1}$$

7 Kurvendiskussion

7.1 Newtonverfahren

Annähern an Nullstellen durch Rekursion:

$$x_{n+1} = x_n + \frac{f(x_n)}{f(x_n)}$$

7.2 Ableitungen

7.2.1 Grundfunktionen

f'(x)				
$n*x^{n-1}$				
e^x				
$\frac{1}{x}$				
$\cos(x)$				
$-\sin\left(x\right)$				
$\cosh\left(x\right)$				
$\sinh\left(x\right)$				

7.2.2 Regeln

Name	Vorher	Nachher
Summenregel	$(f \pm g)$	$f'\pm g'$
Produktregel	(f*g)	f' * g + f * g'
Quotientenregel	$\left(\frac{f}{g}\right)$	$\frac{f'*g-f*g'}{g^2}$
Kettenregel	f(g(x))	f'(g(x)) * g'(x)

7.3 Tangentengleichung

$$t(x) = f(x_0) + f'(x_0) * (x - x_0)$$

8 Taylor Entwicklung

Wird genutzt um aus Funktionen Reihen zu machen.

Formel:
$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_0)}{i!} \cdot (x - x_0)^i$$

1.