

Guía de Ejercicios Nº 8: circuitos analógicos

Parte I: Amplificadores con TBJ

- 1. Se tiene el amplificador emisor común de la Fig. 1. Los datos del circuito son: $V_{CC}=5\,\mathrm{V},~R_B=172\,\mathrm{k}\Omega,~R_C=500\,\Omega,~v_s=12\,\mathrm{mV}\cdot\sin(2\pi\cdot f_s),~f_s=1\,\mathrm{kHz},~R_s=500\,\Omega,~R_L=950\,\mathrm{k}\Omega$ y $C_{in}=C_{out}=50\,\mathrm{\mu}\mathrm{F}.$ Los parámetros del transistor son: $\beta=200\,\mathrm{y}~V_A=130\,\mathrm{V}.$
 - a) Calcular el punto de polarización del circuito ¿Cual es el propósito de C_{in} y C_{out} ?
 - b) Hallar los parámetros de pequeña señal y dibujar el circuito equivalente de pequeña señal a frecuencias medias. ¿A qué nos referimos con frecuencias medias?
 - c) Calcular los parámetros del amplificador $A_{v0},\,A_{v},\,A_{vs},\,R_{IN}$ y $R_{OUT}.$
 - d) En un mismo gráfico dibujar $v_s,\,v_{in}$ y $v_{out}.$ ¿Distorsiona este amplificador?

Figura 1

- 2. En el circuito de la Fig. 2,
 - a) Calcule I_C y V_{BB} en términos de R_C y V_{CC} , tal que se verifique $V_{CEQ} = V_{CC}/2$.
 - b) Calcule g_m y r_{π} en términos de R_C y V_{CC} .
 - c) Demuestre que la única forma de aumentar A_v es aumentando V_{CC} . Para ello verifique que es cierta la relación $A_v = \frac{q \ V_{CC}}{2 \ k \ T}$.

Figura 2

DISPOSITIVOS SEMICONDUCTORES Última actualización: 1^{er} Cuatrimestre de 2023

3. Dado el circuito de la Fig. 3, se quiere implementar un amplificador emisor común que permita obtener una señal de $\hat{v}=0.75\,\mathrm{V}$ a la salida. Considerando que la señal de entrada está caracterizada por $\hat{v}_s=30\,\mathrm{mV},\ R_s=1\,\mathrm{k}\Omega,$ que se desea el mínimo consumo posible, y teniendo en cuenta que $V_{CC}=5\,\mathrm{V},$ $\beta=600\,\mathrm{y}\ V_A=75\,\mathrm{V},$ calcule $I_C,\ R_B\,\mathrm{y}\ R_C$ que cumplan las especificaciones.

Figura 3

- 4. Se desea que el amplificador de la Fig. 4 cumpla con los siguientes requerimientos: $A_{v0}=100$ y P<5 mW, donde P es la potencia total consumida por el circuito. Las características del transistor son: $V_{BE\ on}=-0.7\,\mathrm{V},\ \beta=200$ y $V_A\longrightarrow\infty$. La tensión de alimentación es $V_{CC}=5\,\mathrm{V}$ y la resistencia R_s del generador vale $50\,\Omega$.
 - a) Elegir un valor de R_B y uno de R_C tal que se cumplan ambas condiciones.
 - b) Determinar el rango admisible de R_C para que se cumplan los requerimientos y el transistor se mantenga en MAD.
 - c) Calcular R_{in} y R_{out} .
 - d) Si ahora se conecta una carga $R_L = 1 \,\mathrm{k}\Omega$ sin estar desacoplada por un capacitor, calcular la ganancia en funcionamiento A_{vs} . ¿Se sigue cumpliendo con los requerimientos iniciales? ¿La ganancia en funcionamiento cumple con el mismo requerimiento que la ganancia intrínseca A_{vo} ?

Figura 4

5. Se desea diseñar un amplificador emisor común tal que, para una señal de entrada de $\hat{v}=20\,\mathrm{mV}$ y $R_s=500\,\Omega$, se obtenga una señal de salida de al menos $\hat{v}=1\,\mathrm{V}$. Como restricciones, se tienen que la

DISPOSITIVOS SEMICONDUCTORES

Última actualización: $1^{\rm er}$ Cuatrimestre de 2023

tensión de alimentación sea $V_{CC}=5\,\mathrm{V}$, y que la tensión de continua en el nodo de salida sea $V_{CC}/2$. La Fig. 3 muestra una implementación donde se buscó una ganancia de aproximadamente 100 veces respecto de la fuente de señal, donde $R_C=1\,\mathrm{k}\Omega$, $R_B=860\,\mathrm{k}\Omega$, y para el transistor $\beta=500\,\mathrm{y}\,V_A=25\,\mathrm{V}$. La Fig. 5 muestra la señal de salida del amplificador donde se observa que se produce distorsión.

Figura 5

- a) Identifique qué tipo de distorsión se produce, justificando a partir de la forma de onda de la señal de salida de la figura 5.
- b) Explique qué nuevos valores de R_B y R_C son necesarios para eliminar la distorsión, manteniendo los requerimientos de ganancia y polarización.
- 6. Se desea diseñar un amplificador emisor común sin carga, alimentado por una fuente de 5 V, con ganancia $A_{vo}=150~{\rm y}~R_{IN}=1~{\rm k}\Omega.$
 - a) Calcule I_{CQ} y R_C que cumplen con el diseño. Considere para el TBJ: $V_{BE\,on}=0.7\,\mathrm{V},\,V_{CE\,sat}=0.2\,\mathrm{V},\,\beta=100$ y $V_A\to\infty$.
 - b) Si se conecta a la entrada una señal con amplitud v_s y resistencia serie de $R_s = 500 \,\Omega$. Si se aumenta la amplitud de la señal gradualmente, ¿cuál es el motivo por el cuál distorsiona primero? Indicar la opción correcta fundamentado todas las opciones.
 - Por alinealidad.
 - Por saturación.
 - Por corte.
 - Simultáneamente por alinealidad y saturación.
 - Simultáneamente por alinealidad, saturación y corte.
 - Ninguna de las opciones anteriores es correcta.
 - c) Si se cambia el transistor por otro idéntico salvo que $V_A = 26 \,\mathrm{V}$, ¿Cómo cambian los parámetros para los cuales fue diseñado? Indicar la opción correcta fundamentado todas las opciones.
 - A_{vo} y R_{IN} aumentan.
 - A_{vo} y R_{IN} disminuyen.
 - A_{vo} y R_{IN} se mantienen constantes.
 - A_{vo} disminuye y R_{IN} se mantiene constante.
 - A_{vo} se mantiene constante y R_{IN} disminuye.
 - Ninguna de las respuestas anteriores es correcta.
- 7. Dado el amplificador TBJ de la Fig. 6, con $V_{CC}=2.5\,\mathrm{V},\,R_s=100\,\Omega,\,R_L=10\,\mathrm{k}\Omega,\,\beta=100\,\mathrm{e}\,I_s=10\,\mathrm{fA}$ y sabiendo que puede considerarse r_o infinita para el TBJ,
 - a) Calcule los valores de R_C y V_{BB} tal que se obtenga $I_{CQ} = 500 \,\mu\text{A}$ y $V_{OUT} = 0 \,\text{V}$.

DISPOSITIVOS SEMICONDUCTORES Última actualización: $1^{\rm er}$ Cuatrimestre de 2023

- b) Dibuje la recta de carga estática.
- c) Calcule los parámetros R_{IN} (vista desde el generador) y R_{OUT} (desde la carga), A_v y A_{v0} .
- d) Repita los puntos anteriores para $I_{CQ}=50\,\mu\mathrm{A}$ y $V_{OUT}=0\,\mathrm{V}$, y compare los resultados.

Figura 6

Parte II: Amplificadores con MOSFET

- 8. Se tiene el ampilificador source común implementando con un transistor NMOS de la Fig. 7. Los datos del circuito son: $V_{DD}=12\,\mathrm{V},~R_{G1}=251\,\mathrm{k}\Omega,~R_{G2}=180\,\mathrm{k}\Omega,~R_{D}=1,2\,\mathrm{k}\Omega,~R_{L}=1,2\,\mathrm{M}\Omega,~v_{s}=250\,\mathrm{mV}\cdot\sin(2\pi\cdot f_{s}),~f_{s}=1\,\mathrm{kHz},~R_{s}=10\,\mathrm{k}\Omega$ y $C_{in}=C_{out}=50\,\mathrm{\mu}\mathrm{F}.$ Los parámetros del transistor son: $k=\frac{\mu_{n}~C_{ox}'}{2}\frac{W}{L}=405\,\mathrm{\mu}\mathrm{A}/\mathrm{V}^{2},~V_{T}=1,5~\mathrm{V},~\lambda=0,01~\mathrm{V}^{-1}$
 - a) Calcular el punto de polarización del circuito.
 - b) Hallar los parámetros de pequeña señal y dibujar el circuito equivalente de pequeña señal a frecuencias medias.
 - c) Calcular los parámetros del amplificador A_{v0} , A_{v} , A_{vs} , R_{IN} y R_{OUT} .
 - d) En un mismo gráfico dibujar v_s, v_{in} y v_{out} . ¿Distorsiona este amplificador?
 - e) ¿Por qué la ganancia de este source común es más baja que la del emisor común del ejercicio 1 a pesar de que ambos transistores están polarizados con corrientes similares?
 - f) ¿Por qué, en general, un source común admite valores de v_s más grandes que un emisor común? Comparar con el emisor común del ejercicio 1.

Figura 7

DISPOSITIVOS SEMICONDUCTORES Última actualización: 1^{er} Cuatrimestre de 2023

9. Dado el circuito amplificador de la Fig. 8, calcule A_v, A_{vs}, R_{IN} y R_{OUT} . Datos: $V_T = -1.5 \, \text{V}, \ \mu \ C'_{ox} = 500 \, \mu \text{A/V}^2, \ W = 100 \, \mu \text{m}, \ L = 1 \, \mu \text{m}, \ \lambda = 0.05 \, \text{V}^{-1}, \ V_{DD} = 5 \, \text{V}, \ \hat{v_s} = 50 \, \text{mV}, \ R_s = 1 \, \text{k}\Omega, \ R_{G1} = R_{G2} = 10 \, \text{k}\Omega, \ R_D = 100 \, \Omega.$

Figura 8

- 10. Se tiene un amplificador source común sin carga, alimentado por una fuente de 3,3 V con $I_{DQ}=-500\,\mu\text{A}$ y $R_D=5\,\text{k}\Omega$. Hallar la máxima señal a la salida (v_{out}) sin distorsión siendo un MOSFET tipo P con: $V_T=-0.8\,\text{V},~\mu_p~C'_{ox}=120\,\mu\text{A}/\text{V}^2,~W/L=25,~\lambda=0\,\text{V}^{-1}.$
- 11. Dado el amplificador de la Fig. 9, con $V_{DD}=2.5\,\mathrm{V},\ R_s=100\,\Omega,\ R_L=10\,\mathrm{M}\Omega,\ V_T=1\,\mathrm{V},\ \mu_n\,C_{ox}=50\,\mu\mathrm{A/V}^2,\ \lambda=0\,\mathrm{V}^{-1},\ \mathrm{y}\ W/L=10$:
 - a) Calcule los valores de R_D y V_G tal que $V_{OUT}=0$ V e $I_D=500\,\mu\mathrm{A}.$
 - b) Dibuje la recta de carga estática.
 - c) Calcule $g_m,\,R_{IN},\,R_{OUT},\,A_v$ y A_{vo} del modelo de pequeña señal.
 - d) Repita para $I_D = 50 \,\mu\text{A}$ y compare los valores de $g_m,\,R_{IN},\,R_{OUT},\,A_v$ y A_{vo} .

Figura 9

Parte III: Copia espejo de corriente

12. En la figura 10 se muestra un circuito elemental muy utilizado en diseños CMOS analógicos para generar una tensión de referencia. Asumiendo $I_{\rm REF}=40\,\mu{\rm A},\ V_{\rm DD}=3.3\,{\rm V},\ \mu_n\,C'_{\rm ox}=116\,\mu{\rm A}/{\rm V}^2,\ V_T=0.8\,{\rm V},\ \lambda=0.04\,{\rm V}^{-1},\ W/L=2.$

DISPOSITIVOS SEMICONDUCTORES Última actualización: $1^{\rm er}$ Cuatrimestre de 2023

- a) Calcular el punto de trabajo del transistor. ¿En qué región de operación se encuentra? ¿Depende de $I_{\rm REF}$?
- b) Suponer que ahora se reemplaza la fuente I_{REF} por una resistencia $R=10\,\text{k}\Omega$. Diseñar el transistor, es decir hallar W/L, para que $V_{\text{OUT}}=1.5\,\text{V}$.

Figura 10

- 13. Siendo el circuito de la Fig. 11 donde $V_{DD}=5$ V, $I_{REF}=1$ mA, $(W/L)_1=1$, $(W/L)_2=2$, $\frac{\mu_n C'_{ox}}{2}=1$ mA/V², $V_T=0.6$ V $\lambda\to0$.
 - a) ¿Cuál es la corriente de salida cuando ambos transistores están en saturación? ¿Cuál es el rango de R_L admitido para que M2 permanezca saturado?
 - b) Si ahora $\lambda=0.05\,\mathrm{V^{-1}}$ en M2, determinar I_D cuando $R_L=1\,\mathrm{k}\Omega.$

Figura 11

14. Se tiene el circuito de la Fig. 12, donde $V_{DD}=3.3\,\mathrm{V}$ e $I_{REF}=2\,\mathrm{mA}$. todos los NMOS comparten los siguientes valores: $V_T=0.4\,\mathrm{V}, \, \frac{\mu_n C'_{ox}}{2}=0.9\,\mathrm{mA/V^2}$ y $\lambda\longrightarrow 0$; mientras que todos los PMOS comparten $V_T=-0.5\,\mathrm{V}, \, \frac{\mu_p C'_{ox}}{2}=0.5\,\mathrm{mA/V^2}$ y $\lambda\longrightarrow 0$. Asegurarse de que todos los transistores estén saturados y calcular las corrientes ...

DISPOSITIVOS SEMICONDUCTORES Última actualización: 1^{er} Cuatrimestre de 2023

Figura 12

- 15. Dado el circuito de la Fig. 13 y sabiendo que $V_T=0.6$ V, $V_{DD}=3.3$ V, $(W/L)_1=10$, μ_n $C'_{ox}=80\,\mu\text{A/V}^2$ y asumiendo $\lambda=0\,\text{V}^{-1}$.
 - a) ¿Puede M₁ estar polarizado en régimen de triodo?
 - b) Describa el funcionamiento del circuito y explique para qué sirve.
 - c) Hallar R_{REF} tal que $I_{OUT} = 100 \,\mu\text{A}$.
 - d) Si $(W/L)_2 = 50$, encuentre el rango de valores de R_L para los cuales el circuito funciona correctamente.
 - e) Suponiendo que $\lambda \neq 0$, realice un gráfico de I_{OUT} vs. V_{OUT} . Explique cómo afecta la modulación del largo del canal a la corriente de salida.
 - f) ¿Qué criterio de diseño aplicaría a M_2 para reducir este efecto?

Figura 13

- 16. En la Fig. 14 se muestra una fuente de corriente donde $V_{To}=-0.9\,\mathrm{V},\,\mu_p\,C'_{ox}=25\,\mu\mathrm{A/V^2},\,\lambda_p=0.02\,\mathrm{V^{-1}},\,V_{DD}=5\,\mathrm{V}$ y $R_{REF}=36\,\mathrm{k}\Omega.$
 - a) Explique por qué \mathcal{M}_1 nunca puede estar en régimen de triodo.
 - b) Halle $(W/L)_1$ para que $I_{REF}=100\,\mu\text{A}$. ¿Cuánto vale V_{REF} en ese caso?
 - c) ¿Cuánto debe valer $(W/L)_2$ para que $I_{OUT}=500\,\mu\text{A}$?
 - d) Realice el gráfico exacto de $I_{OUT} = f(V_{OUT})$ para $0 < V_{OUT} < 5 \,\mathrm{V}.$
 - e) ¿A qué valores debe acotarse R_L para que el circuito funcione correctamente?

Figura 14

- 17. El circuito de la Fig. 15 representa una referencia de tensión y de corriente simultáneamente. Considere $V_{DD}=3.3\,\mathrm{V},\,V_{Tn}=0.7\,\mathrm{V},\,V_{Tp}=-0.9\,\mathrm{V},\,\mu_n\,C'_{ox}=3\,\mu_p\,C'_{ox}=120\,\mu\mathrm{A/V^2},\,\lambda_{n,p}=0\,\mathrm{y}\,(W/L)_{N1,N2,N3}=3.$
 - a) Explique cualitativamente cómo funciona el circuito.
 - b) Encuentre el valor de R tal que $I_{OUT}=50\,\mu\mathrm{A}.$
 - c) Dimensione el transistor P_1 de forma tal que $V_{REF}=2\,\mathrm{V}$.
 - d) ¿Cómo se modifica este valor si se conecta una resistencia de 100 k Ω entre V_{REF} y GND?
 - e) Si se conecta una carga resistiva entre V_{DD} y V_{OUT} , ¿cuál es el valor máximo que puede adoptar esta carga sin modificar el funcionamiento del circuito?

Figura 15

Parte IV: Integradores

18. Dado el amplificador MOSFET de la Fig. 16, con $V_{DD}=2.5\,\mathrm{V},~R_s=50\,\Omega,~R_L=20\,\mathrm{k}\Omega,~V_T=1\,\mathrm{V},~\mu_n\,C'_{ox}=50\,\mathrm{\mu A/V^2},~\lambda=0.1\,\mathrm{V^{-1}},~L=2\,\mathrm{\mu m},~\mathrm{y}$ sabiendo que puede considerarse infinita la r_{oc} de la fuente de corriente, calcule los valores de $V_G,~I_{SUP},~\mathrm{y}~W,$ tal de obtener $g_m\geq 2\,\mathrm{mS}~\mathrm{y}~A_v\geq |-20|,$ considerando $V_{OUT}=0.$

DISPOSITIVOS SEMICONDUCTORES Última actualización: $1^{\rm er}$ Cuatrimestre de 2023

Figura 16

- 19. El amplificador de la Fig. 17 posee los siguientes parámetros: $V_{DD}=3.3\,\mathrm{V},~I_{ref}=5\,\mathrm{mA},~R_{\mathrm{G1}}=3\,\mathrm{k}\Omega,$ $R_{\mathrm{G2}}=7\,\mathrm{k}\Omega,~R_s=50\,\Omega$ y $R_L=1\,\mathrm{k}\Omega.$ La propiedades del NMOS son: $V_T=0.8\,\mathrm{V},~\frac{\mu_n C'_{ox}}{2}=1.2\,\mathrm{mA/V^2},$ W/L=1 y $\lambda=0.01\,\mathrm{V^{-1}};$ y las del PMOS: $V_T=-0.8\,\mathrm{V},~\frac{\mu_p C'_{ox}}{2}=0.5\,\mathrm{mA/V^2},~W/L=5$ y $\lambda=0.01\,\mathrm{V^{-1}}.$ Ambos PMOS son idénticos.
 - a) Determinar el punto de polarización.
 - b) Calcular A_{v0} , A_{vs} , R_{in} y R_{out} .
 - c) Responda: ¿Qué ventaja tiene reemplazar la resistencia de drain por un PMOS?

Figura 17