THÉORIE DES GROUPES. — Invariants géométriques supérieurs d'un groupe discret. Note de Robert Bieri et Burkhardt Renz, présentée par Jean-Pierre Serre.

On associe à un groupe discret G certains ensembles ouverts Σ^k de la sphère S^{m-1} , m étant le rang de l'abélianisation de G. Ces invariants géométriques généralisent celui de Bieri-Neumann-Strebel. Ils permettent de distinguer, parmi les sous-groupes normaux de G à quotient abélien, ceux qui admettent des résolutions libres de type fini en dimension $\leq k$.

GROUP THEORY. — Higher geometric invariants for discrete groups.

We associate to a group G certain open subsets Σ^k of the sphere S^{m-1} , where m is the rank of the Abelianisation of G. This generalizes the geometric invariant Σ^1 of Bieri-Neumann-Strebel. Σ^k captures, in particular, complete information as to which normal subgroups of G with Abelian factor group admit free resolutions which are finitely generated in dimensions $\leq k$.

1. Dans cette Note nous considérons un groupe G de type $(FP)_n$, n étant un entier ≥ 1 . Autrement dit, G est un groupe discret ayant la propriété que le G-module $\mathbb Z$ admet une résolution :

$$\mathscr{F}: \to F_n \overset{\partial}{\to} F_{n-1} \to \ldots \to F_1 \overset{\partial}{\to} F_0 \to \mathbb{Z},$$

où F_i est un G-module libre de type fini pour tout $i \le n$.

Pour chaque $i \le n$, on choisit une base X_i du G-module F_i avec la propriété que $\partial x \ne 0$ pour tout $x \in X_i$. Relativement à ces bases on définit le *support* d'une chaîne $c \in F_i$; c'est un sous-ensemble fini de G, noté supp(c), et défini de la manière inductive suivante : c étant donné par l'expression unique $c = \sum n_y y$, avec $y \in GX_i$ et $n_y \in Z$, on pose

$$\operatorname{supp}(c) = \{ g \in G \mid \text{il existe } y \in g X_0 \text{ avec } n_y \neq 0 \} \qquad \text{pour } i = 0$$

et

$$supp(c) = \bigcup \{ supp(\partial y) | n_y \neq 0 \}$$
 pour $i > 0$.

Considérons maintenant un homomorphisme non trivial $\chi: G \to \mathbf{R}$ de G dans le groupe additif des nombres réels. En utilisant la notion de support ci-dessus on définit des applications $\chi: F_i \to \mathbf{R} \cup \{\infty\}$ en posant $\chi(0) = \infty$ et $\chi(c) = \min \chi$ (supp(c)) si $c \neq 0$. Ces applications satisfont aux relations:

$$\begin{cases} \chi(c+d) \ge \min \{ \chi(c), \chi(d) \} \\ \chi(\partial c) \ge \chi(c) & c, d \in \mathbb{F}_i, g \in \mathbb{G}. \end{cases}$$

$$\chi(gc) = \chi(g) + \chi(c)$$

Il en résulte que la résolution \mathcal{F} admet une filtration par les sous-complexes sur \mathbb{Z} [et même sur \mathbb{Z} (ker χ)]:

$$\mathscr{F}_{\chi,r} = \{ c \in \mathscr{C} \mid \chi(c) \geq -r \}, \quad r \in \mathbb{R},$$

DEFINITION. — On dit que le sous-complexe $\mathscr{F}_{\chi} = \mathscr{F}_{\chi,0}$ est essentiellement k-exact pour un nombre $0 \le k \le n$, s'il existe un nombre réel r > 0 tel que l'homomorphisme $\widetilde{H}_i(\mathscr{F}_{\chi}) \to \widetilde{H}_i(\mathscr{F}_{\chi,r})$ induit par l'inclusion soit nul pour tout $i \le k$ (\widetilde{H} désigne l'homologie réduite).

Théorème 1. — La validité de l'énoncé « \mathcal{F}_{n} est essentiellement k-exact » ne dépend ni du choix des bases $X_{i} \subseteq F_{i}$ ni du choix de la résolution \mathcal{F} .

La démonstration utilise des modifications algébriques de la résolution \mathscr{F} qui imitent les expansions et contractions d'un CW-complexe au sens de l'homotopie simple de J. H. C. Whitehead.

0249-6291/86/03030435 \$ 2.00 © Académie des Sciences

2. Soit m le rang (sur \mathbb{Z}) de l'abélianisé G/G' de G. Alors l'ensemble S(G) des homomorphismes non triviaux $\chi: G \to \mathbb{R}$, modulo multiplication par les nombres réels positifs, s'identifie à la sphère S^{m-1} . Le théorème 1 permet maintenant d'associer à G le sous-ensemble Σ^k de la sphère S(G) consistant en les points $[\chi] \in S(G)$ représentés par un homomorphisme $\chi: G \to \mathbb{R}$ pour lequel \mathscr{F}_{γ} est essentiellement (k-1)-exact.

On peut démontrer que Σ^1 n'est rien d'autre que l'invariant géométrique Σ associé à G par Bieri-Neumann-Strebel [3]. Par définition, c'est l'ensemble des points $[\chi] \in S(G)$ ayant la propriété suivante : il existe un sous-monoïde de type fini $M \subseteq G$, avec $\chi(M) \ge 0$, tel que le groupe G' des commutateurs de G soit de type fini comme M-groupe. Rappelons que Σ a aussi des interprétations dans la théorie des actions sur un arbre [5], dans la théorie des valuations sur un corps [1], [2], et dans la théorie des 1-formes « complètes » au sens de [6] sur les variétés différentielles (cela nous a été signalé par G. Levitt).

3. En généralisant les résultats correspondants de [3] on obtient :

Théorème 2. $-\Sigma^k$ est un sous-ensemble ouvert de S(G).

Théorème 3. — Soit G un groupe de type $(FP)_n$. Alors les propriétés suivantes sont équivalentes pour un sous-groupe normal N de G à quotient abélien et un nombre naturel $k \le n$:

- (a) N est de type (FP)_k;
- (b) Σ^k contient la sous-sphère $S(G, N) = \{ [\chi] | \chi(N) = 0 \}$.
- 4. L'ensemble E(j) des sous-groupes normaux N de G à quotient abélien libre de rang j est muni de la topologie induite par la topologie de la variété grassmannienne des sous-espaces $N/G' \otimes R$ de codimension j dans $G/G' \otimes R = R^m$.

COROLLAIRE. — Le sous-ensemble de E(j) formé des groupes de type $(FP)_k$ est une partie ouverte de E(j).

 $D\acute{e}monstration$. — Si ce sous-ensemble est non-vide, il y a une suite exacte $1 \to N \to G \to Z^j \to 1$ telle que N est de type $(FP)_k$. Puisque Z^j est de type $(FP)_{\infty}$ il en découle que G est de type $(FP)_k$. Comme S(G, N) est compacte et Σ^k est ouvert, cela entraı̂ne que, si S(G, N) est contenu dans Σ^k , alors il en est de même pour $S(G, N_1)$ lorsque N_1 est un sous-groupe normal avec $G/N_1 \cong Z^j$ suffisamment proche de N.

4. Remarques. -1° La définition de Σ^k utilise la filtration de G par les sous-ensembles $\{g \in G \mid \chi(g) \ge -r\}$, $r \in \mathbb{R}$, pour obtenir la filtration $\{\mathscr{F}_{\chi,r}\}$ de la résolution \mathscr{F} . Si N est un sous-groupe normal de G avec $G/N \cong \mathbb{Z}^j$, on peut plonger G/N dans l'espace \mathbb{R}^n et utiliser la filtration de G par les boules $\{g \in G \mid ||gN|| \le r\}$, $0 < r \in \mathbb{R}$. On obtient ainsi une filtration de \mathscr{F} par des sous-complexes

$$\mathscr{F}_r = \{ c \in \mathscr{F} \mid \| \operatorname{supp}(c) \mathbf{N} \| \leq r \}, \quad 0 < r \in \mathbb{R},$$

qui sont de type fini sur $\mathbb{Z}N$. Si $\chi(N)=0$ on peut interpréter la filtration $\mathscr{F}_{\chi,r}$ comme la filtration \mathscr{F}_{r} « localisée au point $[\chi]$ ».

Selon un critère de K. S. Brown ([4], Theorem 2.2) N est de type $(FP)_k$ si et seulement si, pour chaque nombre réel r>0, il existe un nombre réel $s \ge r$ tel que l'homomorphisme $\widetilde{H}_i(\mathscr{F}_r) \to \widetilde{H}_i(\mathscr{F}_s)$ induit par l'inclusion soit nul pour tout i < k. La condition $[\chi] \in \Sigma^k$ exprime donc une espèce de « propriété $(FP)_k$ locale » pour $N \subseteq \ker \chi$. Et l'énoncé du théorème 3 permet donc de passer du local au global.

2° Dans le cas où N est un sous-groupe normal de G avec $G/N \cong \mathbb{Z}$ (1), le théorème 3 a une démonstration simple utilisant le critère de Brown. En effet, dans ce cas on a $\mathscr{F}_r = \mathscr{F}_{-\chi,r} \cap \mathscr{F}_{-\chi,r}$ l'homomorphisme $\chi: G \to \mathbb{R}$ étant donné par $G \to G/N \cong \mathbb{Z} \to \mathbb{R}$.

De plus, puisque \mathscr{F} est de type fini en dimension $\leq n$, l'ensemble $\mathscr{F}_{\chi,r} \cup \mathscr{F}_{-\chi,r}$ contient F_i pour tout $i \leq n$ lorsque r est suffisamment grand. Vu la suite exacte de Mayer-Vietoris on a donc des isomorphismes

$$\widetilde{\mathbf{H}}_{i}(\mathscr{F}_{r}) \cong \widetilde{\mathbf{H}}_{i}(\mathscr{F}_{\chi, r}) \oplus \widetilde{\mathbf{H}}_{i}(\mathscr{F}_{-\chi, r}),$$

pour $r\gg 0$ et $0 \le i < n$. Il en découle que \mathscr{F}_r satisfait au critère de Brown ([4], Theorem 2.2) si et seulement si $\mathscr{F}_{z,r}$ et $\mathscr{F}_{-z,r}$ sont k-exacts, d'où le théorème 3 dans ce cas. La démonstration du cas général est plus difficile. Elle ne s'appuie pas sur le critère de Brown mais utilise une définition « par équations » de Σ^k dans l'esprit de la proposition 2.1 de [3].

- 3° Il est utile de modifier la définition homologique de Σ^{k} donnée ci-dessus en introduisant une version homotopique de ces invariants. Cela sera l'objet d'une publication ultérieure.
- (1) Ross Geoghegan a obtenu indépendamment un résultat qui correspond à ce cas. Reçue le 7 juillet 1986.

RÉFÉRENCES BIBLIOGRAPHIQUES

- [1] R. BIERI et R. STREBEL, A geometric invariant for modules over an Abelian group, Journal für die reine und angewandte Mathematik (Crelles Journal), 322, 1981, p. 170-189.
- [2] R. BIERI et J. R. J. GROVES, The geometry of the set of characters induced by valuations, *Journal für die reine und angewandte Mathematik (Crelles Journal*), 347, 1984, p. 168-195.
 - [3] R. BIERI, W. D. NEUMANN et R. STREBEL, A geometric invariant for discrete groups (à paraître).
 - [4] K. S. Brown, Finiteness properties of groups, Journal of pure and appl. Algebra (à paraître).
 - [5] K. S. Brown, Trees, HNN-extensions, and the Bieri-Neumann-Strebel invariant, Preprint, 1986.
- [6] G. LEVITT, Geometry and ergodicity of closed 1-forms, Proc. V. Escola Geom. Diff. São Paulo, 1984, p. 109-118.

Mathematisches Seminar,

Johann Wolfgang Goethe-Universität, D-6000 Frankfurt am Main, Allemagne.