Лабораторная работа 3.2 В. Ф. Климкин

Внимание! В данном описании существенно сокращен теоретический раздел! Для подготовки к сдаче работы используйте полный вариант!

Внешний фотоэлектрический эффект

Введение

При взаимодействии электромагнитного излучения с материальной средой, состоящей из атомов, может происходить перераспределение электронов по энергетическим состояниям, в ряде случаев приводящее к возникновению свободных электронов с относительно высокой кинетической энергией.

Фотоэлектрический эффект возникает при столкновении фотона со связанным электроном (электроны в индивидуальных атомах, твердых телах и жидкостях). При этом фотон поглощается, и электрон приобретает энергию, близкую к энергии самого фотона. Энергия фотонов в видимой и примыкающей к ней ультрафиолетовой области спектра сравнима с работой выхода электронов проводимости из чистых металлов (несколько электрон-вольт). В зависимости от того, остаются ли эти электроны в данной среде или выходят из нее через границу раздела с другой средой, различают фотоэффект внутренний и внешний.

Внешний фотоэффект представляет собой испускание электронов, которое происходит в вакуум или другую разреженную среду при падении светового потока на поверхность твердого тела или жидкости. Внешний фотоэффект был обнаружен в 1887 г. немецким физиком Г. Герцем. Экспериментальные исследования этого процесса проведены А. Г. Столетовым, В. Гальваксом, П. Ленардом и др. Теоретическое объяснение законов фотоэффекта дал А. Эйнштейн (1905 г.). За работы в области теоретической физики и, в частности, за открытие закона фотоэлектрического эффекта А. Эйнштейну в 1921 г. была присуждена Нобелевская премия.

Закономерности внешнего фотоэлектрического эффекта

При описании внешнего фотоэффекта используется следующая терминология. Свободные электроны, вышедшие под действием светового излучения из кристаллической решетки твердого тела в вакуум, называют фотоэлектронами, а электрод, из которого они выходят, — фотокатодом. Если рядом с фотокатодом в вакууме поместить электрод, к которому приложить положительный относительно фотокатода потенциал, то этот электрод будет собирать фотоэлектроны и во внешней цепи потечет электрический ток. Положительный электрод получил название анода, а вакуумный прибор, состоящий из двух электродов, — вакуумного фотодиода, или фотоэлемента. Существуют и более сложные вакуумные приборы, использующие фотокатод в качестве источника свободных электронов. К ним относятся фототриоды, фотоэлектронные коммутаторы, фотоэлектронные умножители, электронно-оптические преобразователи и др.

Экспериментальные исследования позволили установить основные закономерности, которым подчиняется внешний фотоэлектрический эффект в области слабых световых потоков [1].

- 1. При фиксированной частоте излучения (ω = const) величина тока фотоэлектронов на анод в режиме насыщения (т. е. когда все эмитируемые электроны достигают анода) прямо пропорциональна интенсивности падающего на поверхность катода света (закон Столетова).
- 2. Максимальная кинетическая энергия фотоэлектронов не зависит от плотности потока излучения, т. е. от амплитуды электрического вектора световой волны (П. Ленард, 1902) [2]. Она линейно зависит от частоты света ω.
- 3. Для каждого материала, из которого сделан фотокатод, существует длина волны излучения λ_0 , при превышении которой фотоэмиссия электронов полностью прекращается. Эту длину волны называют *красной границей* фотоэффекта, а соответствующую ей частоту $\omega_0 = 2 \pi c/\lambda_0 граничной частотой.$

Физический механизм внешнего фотоэлектрического эффекта

Для объяснения явления внешнего фотоэффекта А. Эйнштейн предположил, что поток энергии в пучке монохроматического света состоит из дискретных порций, называемых *квантами*, или фотонами (корпускулярная теория света). Энергия фотона для света с частотой ω равна $\hbar \omega$, где $\hbar = 1,05 \times 10^{-34}$ Дж·с — постоянная Планка. При столкновении фотона со связанным электроном последний может полностью поглотить всю энергию фотона. Если энергия электрона достаточно велика, то он может преодолеть силы связи, удерживающие его в металле, и выйти из вещества. Закон сохранения энергии для процесса столкновения двух частиц можно записать в виде

$$\hbar \, \omega = \frac{1}{2} \, m_0 \, V_{\text{max}}^2 + \Phi \,. \tag{1}$$

Здесь V_{max} — максимальная скорость электрона непосредственно после выхода его из металла, Φ — работа выхода. Соотношение (1) называется *уравнением Эйнштейна для фотоэффекта*. Оно позволяет объяснить особенности внешнего фотоэлектрического эффекта.

Число фотонов, падающих в единицу времени на нормальную единичную площадку поверхности фотокатода (N_f) , линейно зависит от интенсивности света (I):

$$N_f = I/\hbar \, \omega \tag{2}$$

Число вышедших в вакуум в единицу времени электронов N_e прямо пропорционально плотности потока фотонов:

$$N_e = \gamma N_f \tag{3}$$

из чего следует закон Столетова для фотоэффекта. Действительно, ток фотоэлектронов в режиме, когда они все собираются анодом фотоэлемента, выражается в следующем виде: $I_n = e N_e$. С учетом выражений (2) и (3) получаем

$$I_n = \frac{e}{\hbar \omega} \gamma I = (\text{const}) \cdot I$$
.

Поглотившие кванты излучения электроны выходят из кристаллической решетки в вакуум с различными значениями кинетической энергии. Минимумом энергетических затрат при выходе фотоэлектрона из металла в вакуум является энергия, которая необходима электрону, находящемуся на самом верхнем уровне в зоне проводимости, для преодоления потенциального барьера на границе металл—вакуум (рис. 1, *a*). Из соотношения (1) непосредственно следует, что максимальная

кинетическая энергия, с которой фотоэлектрон покидает твердое тело, линейно растет с частотой света (энергией фотонов) и не зависит от его интенсивности (числа фотонов).

Уравнение Эйнштейна позволяет определить красную границу фотоэффекта. Действительно, кинетическая энергия электрона лишь тогда будет больше нуля, когда энергия фотона $\hbar\omega$ превышает работу выхода электрона из металла Φ . Отсюда следует, что для каждого вещества существует граничная частота $\omega_0 = \Phi/\hbar$, такая, что при $\omega < \omega_0$ фотон уже не сможет обеспечить выход электрона в свободное пространство.

Таким образом, внешний фотоэлектрический эффект можно объяснить в рамках электронной теории строения твердого тела и квантовой теории электромагнитного излучения. Это явление – результат трех последовательно протекающих процессов: 1) поглощение фотона с появлением электрона с относительно высокой энергией; 2) движение этого электрона к поверхности раздела двух сред, в ходе которого часть энергии электрона может рассеяться; 3) выход электрона в другую среду через поверхность раздела (см. рис. 1).

 $Puc.\ 1.$ Потенциальная энергия электронов на границе «металл–вакуум» (относительно энергии электрона в вакууме в отсутствие внешних полей и при нулевой скорости движения): E_{Φ} – энергия Ферми, Φ – работа выхода электрона из металла.

Так как при температуре твердого тела, отличной от абсолютного нуля, энергетическое распределение электронов, находящихся в кристаллической решетке, не имеет строго заданной границы, то картина на рис. 1 соответствует случаю нулевой температуры.

Для большинства металлов работа выхода сравнительно велика ($\Phi \ge 2$ эВ). Поэтому фотоэффект для них может наблюдаться лишь в коротковолновой части видимой области либо только в ультрафиолетовой области. Напомним, что видимая область излучения, т. е. электромагнитное излучение, которое воспринимает глаз человека, занимает интервал длин волн от 400 до 760 нм, что соответствует частотам $\omega \sim 4.7 \cdot 10^{15} - 2.5 \cdot 10^{15}$ с $^{-1}$ и энергиям квантов от 3,1 до 1,6 эВ.

Количественной характеристикой эмиссионных свойств фотокатода является *квантовый выход* γ – число вылетевших из металла электронов в расчете на один падающий фотон. При энергии фотонов, слабо превышающей работу выхода (т. е. вблизи порога фотоэффекта), для большинства металлов квантовый выход не превышает 10^{-4} электрон/фотон. Малость γ связана с тем, что свет проникает в

металл на сравнительно большую глубину ($\sim 10^{-5}$ см), где он в основном и поглощается. Возникающие на этой глубине фотоэлектроны при движении к поверхности тела интенсивно взаимодействуют с электронами проводимости, которых в металле достаточно много, и быстро рассеивают свою энергию. Энергия, достаточная для преодоления потенциального барьера, остается лишь у тех фотоэлектронов, которые были образованы в непосредственной близости от поверхности (на глубине, не превышающей 10^{-7} см). Кроме того, поверхность металлов сильно отражает видимое и ультрафиолетовое излучение.

Резкое увеличение квантового выхода (до нескольких десятков процентов) и сдвиг порога фотоэффекта в видимую область спектра из ультрафиолетовой достигаются покрытием поверхности металлов и полупроводников слоями электроположительных атомов щелочных металлов с низкой энергией ионизации (Cs, Rb, K, Na) или молекул с большим дипольным моментом (BaO, CsF, Cs₂O).

Для фотокатодов из щелочных металлов и их сплавов наблюдается спектральная селективность фотоэффекта — повышенный квантовый выход в определенной, хотя и довольно широкой, порядка 1000 Å, области спектра. Начиная с красной границы кривая спектральной чувствительности (зависимость фототока насыщения от длины волны падающего света при постоянных значениях его интенсивности) быстро возрастает и достигает максимума при некоторой длине волны. С дальнейшим ростом частоты чувствительность фотокатода падает вблизи края области поглощения.

Методика измерений

Уравнение Эйнштейна было подтверждено Р. А. Милликеном (1916 г.) в результате тщательно выполненных опытов [8].

Электроны, вылетающие из фотокатода под действием падающего света, обладают кинетической энергией и, достигая анода, создают во внешней замкнутой цепи ток. Если в этот момент между анодом и катодом создать электрическое поле, которое тормозит фотоэлектроны, то ток будет уменьшаться. Такое тормозящее поле создается путем прикладывания к аноду отрицательного напряжения, и этот метод задерживающего потенциала обычно используется для измерения максимальной кинетической энергии фотоэлектронов. Действительно, при увеличении абсолютного значения отрицательного потенциала на аноде U ток фотоэлектронов падает. При некотором значении $U=U_3$ (потенциал запирания) даже самые быстрые фотоэлектроны не смогут достигнуть анода и ток в цепи прекращается. Таким образом, максимальная кинетическая энергия фотоэлектронов $\frac{1}{2}m_0V_{\rm max}^2$ связана с потенциалом запирания U_3 соотношением:

$$\frac{1}{2}m_0V_{\text{max}}^2 = eU_{\varsigma}. \tag{4}$$

Для экспериментальной проверки закона Эйнштейна в лабораторной работе измеряется зависимость электронного тока в фотоэлементе от величины отрицательного задерживающего потенциала U на аноде. Полученная в эксперименте зависимость фототока от задерживающего потенциала, как правило, представляет собой кривую, плавно подходящую к оси абсцисс (рис. 2). Это обусловлено разбросом вылетающих из фотокатода электронов по скоростям, что в значительной степени затрудняет получение точного значения запирающего потенциала U_3 .

Рис. 2. Вольтамперная характеристика фотоэлемента

Для определения потенциала запирания U_3 предлагается подход, заключающийся в экстраполяции линейного участка вольтамперной характеристики до пересечения с осью абсцисс, как это показано штриховой линией на рис. 2.

Из выражений (1) и (4) следует, что запирающий потенциал U_3 находится в прямой пропорциональной зависимости от частоты света, падающего на фотоэлемент:

$$\hbar\,\omega = \Phi + e\,U_{_{\mathcal{C}}}$$
, или $\,U_{_{\mathcal{C}}} = -rac{\hbar\,\omega - \Phi}{|e|}\,.$

Измеряя вольтамперную характеристику фотоэлемента при различных длинах волн падающего излучения и определяя по ним потенциал запирания U_3 , можно проверить линейный характер зависимости потенциала запирания U_3 от частоты излучения ω .

 $Puc.\ 3.\$ Зависимость потенциала запирания U_3 от частоты излучения

Если по результатам проведенных опытов построить график зависимости U_3 от ω , как показано на рис. 3, то тангенс угла наклона линейной зависимости $U_3(\omega)$ к оси частот дает оценку постоянной Планка \hbar . Пересечение этой прямой с осью частот дает значение граничной частоты ω_0 , а отрезок, отсекаемый на оси U, определяет работу выхода электронов Φ из данного материала.

Экспериментальная установка

Принципиальная схема экспериментальной установки приведена на рис. 3, 4. Световой поток от источника (1) с помощью линзы (2) собирается на входной щели монохроматора (3), который выделяет из него узкий спектральный интервал. Полученное таким образом излучение падает на катод фотоэлектронного умножителя (ФЭУ). В качестве источника света в работе используется в зависимости от задачи либо лампа накаливания, либо лампа дневного света. Последняя имеет линейчатый спектр излучения, определяемый свечением люминофора на стенках колбы и паров ртути. Поворачивая призму монохроматора путем вращения барабана, можно направлять на выходную щель излучение того или иного участка спектра источника света. Сопоставляя выделяемые монохроматором спектральные линии лампы с известными спектрами ртути и неона, можно произвести градуировку монохроматора, т. е. каждому делению барабана идентифицировать определенную длину волны. При получении вольтамперных характеристик фотоумножителя электронный ток регистрируется цифровым вольтметром с высоким входным сопротивлением, подключенным к аноду ФЭУ.

Рис. 4. Принципиальная схема экспериментальной установки: 1 – источник света; 2 – линза; 3-монохроматор; 4-ФЭУ-84; 5 – блок питания ФЭУ

Порядок выполнения работы

В данной работе используется фотоумножитель Φ ЭУ-84 с мультищелочным фотокатодом. Это химическое соединение (Na_2 K Sb-Cs), обладающее отчетливо выраженными полупроводниковыми

свойствами [5]. Между фотокатодом Φ ЭУ и фокусирующим электродом (модулятором) подключен через делитель гальванический источник напряжения (батарейка). Это позволяет изменять напряжение между фотокатодом и модулятором в пределах \pm 9 В. В зависимости от знака приложенного к фотокатоду напряжения, фотоэлектроны, выбитые квантами света из фотокатода, будут либо ускоряться и попадать на первый динод, либо тормозиться. При некотором положительном потенциале на фотокатоде наблюдается полное запирание Φ ЭУ, и прибор перестает реагировать на засветку.

Электроны, достигшие первого динода, выбивают из него вторичные электроны, ускоряющиеся в направлении следующего динода и т.д. У ФЭУ-84 таких динодов 14. Через резистивный делитель к ним приложено напряжение около 700 В, т.е. перепад потенциала между двумя соседними динодами составляет около 50 В. Коэффициент усиления тока за счет размножения электронов на динодах может достигать 10^6 .

Рис. 5. Внешний вид лабораторной работы

1. Градуировка монохроматора «УМ-2» и снятие дисперсионной кривой

Рекомендуем выполнять работу, сразу же обрабатывая полученные данные при помощи файла Photoeffect. mcd

Убедитесь, что на ФЭУ не подано высокое напряжение. Осторожно снимите ФЭУ с оптического рельса. Уберите выходную щель монохроматора и вместо нее установите зрительную трубу. Схема

устройства монохроматора показана на рис. 5. Вначале производится градуировка барабана монохроматора по известному спектру излучения люминесцентной лампы. Для этого необходимо:

установить лампу перед входной щелью монохроматора;

Внимание! Нужно иметь в виду, что

- 1) переставлять лампу можно, только если она отключена от сети;
- 2) за кожух лампы нельзя браться руками, нужно переставлять лампу, держась за ее основание.
- зажечь ртутную лампу, включив вилку в сеть
- настроить изображение на резкость, добиваясь, чтобы в окуляре монохроматора были четко видны линии спектра и указатель (рис. 6);
- уменьшить ширину входной щели (рис. 6, 2) монохроматора так, чтобы получить изображения линий возможно более тонкими;
- вращая барабан поворота призмы (рис. 6, 6), последовательно совместите с указателем изображения красной, желтой, зеленой, темно-зеленой, голубой и фиолетовой линий спектра ртути (рис. 7а, б, табл. 1) и запишите показания барабана m для каждой из этих линий. Отсчет читается против индекса, скользящего по спиральной канавке;

Рис. 6. Схема монохроматора УМ-2: 1 – источник света; 2 – входная щель; 3 – объектив коллиматора; 4 – дисперсионная призма; 5 – окуляр; 6 – барабан поворота призмы

В качестве реперных точек следует использовать спектральные линии с длинами волн, отмеченные на рис. 7.

Рис. 7а. Спектр излучения люминесцентной лампы. Спектр состоит из узких линий, принадлежащих ртути и широких линий, излучаемых люминофором, которым покрыты стенки лампы.

Рис. 76. Распределение интенсивности в спектре люминесцентной лампы в зависимости от длины волны. На нижнем рисунке показана красная часть спектра в увеличенном масштабе.

— Используя результаты измерений, постройте дисперсионную кривую $\lambda(m)$. Для построения кривой рекомендуем использовать файл Photoeffect.mcd, имеющийся на компьютерах в практикуме (C:\Спектры). Примерный вид дисперсионной кривой показан на рис. 8. Измеренные вами значения делений барабана могут значительно отличаться от показанных на рисунке, т.к. бегунок, скользящий в спиральной канавке барабана, переставляется.

Следует иметь в виду, что если полученная вами дисперсионная кривая имеет заметные «горбы» или «впадины», то это означает, что измерения были проведены неаккуратно и их придется повторить.

Рис. 8. Дисперсионная кривая спектрометра УМ-2. • - линии ртути

2. Регистрация вольтамперных характеристик фотоэлемента в режиме ускоряющего потенциала. Определение работы выхода катода методом запирающего потенциала и оценка постоянной Планка

Измерения вольтамперных характеристик фотоэлемента следует провести для нескольких различных участков спектра видимого излучения, используя лампу накаливания. В случае лампы накаливания обеспечивается высокая стабильность интенсивности излучения, но для нее характерна сравнительно большая ширина спектра излучения, поступающего на фотоэлемент.

Уберите с выхода монохроматора зрительную трубу. Выходную щель монохроматора закрепите в рабочем положении на прежнем месте. Начинайте измерения зависимости тока фотоэлемента от напряжения на аноде с длины волны фиолетовой линии ртути.

- 1. УБЕДИТЕСЬ, ЧТО ПИТАНИЕ НА ФЭУ НЕ ПОДАНО!
- 2. Включите тестер, измеряющий запирающее напряжение. УЧТИТЕ, ЧТО НА КЛЕММАХ ЭТОГО ПРИБОРА ПОТЕНЦИАЛЫ ОТНОСИТЕЛЬНО «ЗЕМЛИ» ОКОЛО 700 В! НИ В КОЕМ СЛУЧАЕ НЕ ОТСОЕДИНЯЙТЕ ОТ ТЕСТЕРА ИЗМЕРИТЕЛЬНЫЕ КАБЕЛИ!!!

Рис. 9. Тестер для измерения запирающего напряжения. Учтите, что тестер «подвешен» относительно земли на 700 В. Это означает, что хотя напряжение между двумя подключенными к нему проводами и не превышает 9 В, однако напряжение между любым из этих проводов и землей около 700 В. Ни в коем случае не отсоединяйте провода от тестера!

3. Включите блок питания ФЭУ (рис. 10). На нем должно быть выставлено и индицироваться напряжение в диапазоне 600 – 700 В. Если значение напряжения существенно отличается от указанного, то обратитесь к преподавателю.

Рис. 10. Высоковольтный источник питания ФЭУ. Напряжение питания должно находиться в диапазоне 600 - 700 В

- 4. Включите цифровой вольтметр, регистрирующий сигнал ФЭУ.
- 5. Установите на монохроматоре длину волны 4050 Å, используя построенную дисперсионную кривую.
- 6. Запишите значение показаний вольтметра U_0 при закрытом затворе монохроматора. Рукоятка, расположенная за входной щелью монохроматора, управляет движением затвора.

7. Переключателем на передней панели управляющего блока (рис. 11) установите максимальное значение ускоряющего напряжения (около -9 В, но может быть и меньше, если батарея разряжена).

Рис. 11. Блок управления запирающим напряжением

- 8. Подберите интенсивность светового потока изменением ширины входной и выходной щелей монохроматора (цена деления отсчетных устройств 0,01 мм) так, чтобы максимальное значение сигнала с фотоумножителя не превышало 10 В. Этого ограничения следует придерживаться при измерениях на всех длинах волн! Рекомендуем не раскрывать входную щель более 0.5 мм.
- 9. Измерьте величину сигнала, последовательно меняя ускоряющее напряжение от –9 В до +2В. Границы диапазона указаны приблизительно, но максимальное значение положительного потенциала должно превышать 2 В. Напряжение прикладывается к фотокатоду, поэтому знак « » соответствует ускорению электронов, а знак « + » их запиранию. Шаг изменения напряжения определяется дискретным резистивным делителем, на рис. 3 он обозначен в виде двух переменных сопротивлений. Изменение полярности ускоряющего напряжения производится переключателем на лицевой панели блока. На каждой длине волны вы должны произвести 15 измерений. Шаг изменения напряжения в диапазоне –2..2 В не должен превышать 0.3 В.

- 10. Снимите вольтамперные характеристики для следующих длин волн: 4050, 4400, 4900, 5500, 5800, 6200, 6900 Å. Для установки на монохроматоре нужной длины волны используйте построенную дисперсионную кривую. Записывайте показания барабана, при которых производите измерения.
- 11. По результатам измерений постройте графики зависимости тока от напряжения, используя файл Photoeffect.mcd. Следуйте инструкциям, имеющимся в файле.
- 12. Постройте график зависимости запирающего потенциала от частоты излучения $U_3(\omega)$.
- 13. По построенной зависимости $U_3(\omega)$ определите работу выхода Φ и граничную частоту ω_0 . С целью проверки надежности полученных результатов определите постоянную Планка.
- 14. Оцените погрешности измерений.

3. Проверка закона Столетова

Данное задание выполняется с лампой накаливания. Её спектральная плотность излучения относительно слабо изменяется в видимой области, и поэтому интенсивность светового потока, падающего на фотоэлемент, оказывается пропорциональной ширине выходной щели монохроматора. Ширину входной щели монохроматора установите примерно 0,3–0,5 мм, а выходную щель следует варьировать в пределах от 0 до 2 мм.

- 1) Выставьте на монохроматоре длину волны приблизительно 5500 Å.
- 2) В режиме ускоряющего напряжения (на фотокатод подается напряжение \sim -2 В), изменяя интенсивность падающего на фотоэлемент света варьированием ширины выходной щели монохроматора D, проверьте выполнение закона Столетова. Начните измерения c максимальной ширины выходной щели D=2 мм. Подберите ширину входной щели так, чтобы сигнал c Φ 3V не превышал 10 B.

Заполните таблицу:

D, мм	0.3	0.6	0.8	1.2	1.6	2.0
U _{ФЭ} , В						

4) Постройте график $U_{\Phi \ni}(D)$, используя файл Photoeffect. mcd

4. Прямое определение красной границы фотоэффекта

В режиме ускоряющего потенциала просканируйте с помощью барабана длин волн монохроматора весь спектр лампы накаливания, начиная с фиолетовой области ($\lambda = 4000~\text{Å}$) и до длины волны 7000 Å. Регистрируя сигнал ФЭУ, определите красную границу фотоэффекта, т. е. длину волны, начиная с которой фототок резко падает и принимает значения, близкие к нулю. Полученную в этих опытах граничную частоту сравните с частотой, определенной ранее. Заполните таблицу:

т, дел.	850	1000	1200	1400	1600	1800	2000	2200	2400	2800
$U_{\Phi ightarrow y}$										

Значения делений барабана в ваших измерениях могут отличаться от указанных в таблице! Вам нужно получить 10 экспериментальных точек, равномерно распределенных по длинам волн в интервале 4100 - 7100 Ангстрем.

Постройте график $U_{\Phi \ni y}(\lambda(m))$, используя файл Photoeffect.mcd.

5. Выключение установки

- 1. Выключите тумблеры «Высокое» и «Сеть» на блоке питания ФЭУ
- 2. Выключите лампу накаливания
- 3. Выключите тестер, измеряющий запирающее напряжение
- 4. Выключите вольтметр, измеряющий сигнал с ФЭУ
- 5. Выключите блок управления запирающим напряжением (светодиод должен погаснуть)

Библиографический список

- 1. Матвеев А. Н. Атомная физика. М.: Высш. шк., 1989.
- 2. Поль Р. В. Оптика и атомная физика. М.: Наука, 1966.
- 3. **Мирдель Г.** Электрофизика: Пер. с нем. М.: Мир, 1972.
- 4. Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. М.: Наука, 1990.
- 5. Соболева Н. А., Меламид А. Е. Фотоэлектронные приборы. М.: Высш. шк., 1974.
- 6. Белл Р. Л. Эмиттеры с отрицательным электронным сродством: Пер. с англ. М.: Энергия, 1978.
- 7. Бломберген Н. Нелинейная оптика: Пер. с англ. М.: Мир, 1966.
- 8. Вихман Э. Квантовая физика: Пер. с англ. М.: Наука, 1986. Т. 4: Берклеевский курс физики.

Приложение. Текст файла Photoeffect.mcd

Лабораторная работа 3.2 "Фотоэффект"

1. Построение дисперсионной кривой спектрометра. Заполните матрицу D. В первом столбце - деления барабана, во втром столбце - длина волны соответствующей спектральной линии ртути

$$c := 3 \cdot 10^{10}$$
 Скорость света $e := 4.8 \cdot 10^{-10}$ Заряд электрона

$$Dvx_i := D_{i,1}$$
 $Dvy_i := D_{i,2}$ $x := D_{1,1}...D_{9,1}$

Интерполируем полученные данные кубическим сплайном (полиномом третьей степени)

$$Dvs := cspline(Dvx, Dvy)$$
 $Df(x) := interp(Dvs, Dvx, Dvy, x)$

2. Определение задерживающего потенциала. Заполните матрицу U1столько раз, сколько требуется и определите для каждого случая задерживающий потециал. Длина волны света должна меняться с шагом около 500 Ангстрем. Измерений должно быть 6!

$$j := 1...15$$
 N := 15

$$U1 := \begin{pmatrix} 0.9 & 0.8 & 0.7 & 0.6 & 0.5 & 0.4 & 0.3 & 0.2 & 0.1 & 0 & -0.1 & -0.2 & -0.3 & -0.4 & -0.5 \\ 2.03 & 2.00 & 1.96 & 1.90 & 1.81 & 1.66 & 1.47 & 1.23 & 0.92 & 0.56 & 0.16 & 0.00 & 0.00 & 0.0 & 0 \end{pmatrix}$$

Определите на графике ниже номера точек, через которые будет проводиться прямая, с помощью которой находится задерживающий потенциал и присвойте соответствующие значения переменным s1 и f1. Номера точек растут справа налево!

$$s1 := 9$$
 $f1 := 11$ $x1 := -1, -0.95..1$ $U1_{1,s1} = 0.1$ $U1_{2,s1} = 0.92$ $U1_{1,f1} = -0.1$ $U1_{2,f1} = 0.16$

Определяем параметры прямой:

$$vx_{i1} := U1_{1, s1+i1-1}$$
 $vy_{i1} := U1_{2, s1+i1-1}$ $SV := slope(vx, vy)$ $IV := intercep(vx, vy)$ $SV = 3.8$ $IV = 0.547$

$$fV(x1) := SV \cdot x1 + IV \qquad UB := \frac{-IV}{SV}$$

Задерживающий потенциал для данной длины волны:

 ${
m UB}=-0.144$ Запишите в свой лабораторный журнал эту величину, а также значение делений барабана спектрометра. при которых она была получена. Определив задерживающие потенциалы для всех длин волн, для которых вы проводили измерения, переходите к следующему разделу.

3. Определение работы выхода и постоянной Планка. Заполните матрицу F. В первой строке - деления барабан монохроматора, при которых вы проводили измерения задерживающего потенциала, во второй строке - полученные значения задерживающего потенциала.

$$k := 1..6$$

$$F := \begin{pmatrix} 200 & 800 & 1400 & 1800 & 2000 & 2200 \\ 0.352 & 0.316 & 0.248 & 0.210 & 0.197 & 0.144 \end{pmatrix} \qquad \omega_k := \frac{10^8 \cdot c}{\mathrm{Df}\big(F_{1,\,k}\big)}$$

 $\mathrm{UF}_k \coloneqq \mathrm{F}_{2,\,k}$ Переобозначение, для удобства

Частота света, на которой проводились измерения задерживающего потенциала, Гц

$$PC := slope(\omega, UF)$$
 Fe := intercept(\omega, UF)

$$PC = 7.938 \times 10^{-16}$$
 $Fe = -0.232$ Апроксимируем точки прямой линией $x := 0, 10^{13}...10^{15}$ $L(x) := PC \cdot x + Fe$

 $PC = 7.938 \times {10}^{-16}$ Экспериментально определенная постоянная Планка. Размерность?

4. Проверка закона Столетова. Заполните матрицу SD. В первой строке - ширина щели, во второй строке - сигнал с фотоэлемента. Всего измерений должно быть 6.

$$k := 1..6 \qquad \qquad SD := \begin{pmatrix} 0.3 & 0.6 & 1.1 & 1.4 & 1.7 & 2 \\ 0.2 & 0.55 & 1 & 1.3 & 1.51 & 1.74 \end{pmatrix}$$

5. Измерение красной границы фотоэффекта. Заполните матрицу RB. В первой строке - длеления барабана монохроматора, во второй строке - сигнал с фотоэлемента. Всего измерений должно быть 10.

$$m := 1..10$$

$$RB := \begin{pmatrix} 200 & 400 & 600 & 800 & 1000 & 1200 & 1400 & 1800 & 2000 & 2200 \\ 0.04 & 0.09 & 0.19 & 0.30 & 0.51 & 0.82 & 1.28 & 1.86 & 1.53 & 0.14 \end{pmatrix}$$

$$\lambda_m := Df(RB_{1,m})$$

Скопируйте графики и необходимые данные из каждого пункта задания и вставьте их как "Рисунок" в файл Word. Используйте опции "Правка" и "Специальная вставка". Распечатайте картинку, вы будете использовать ее при сдаче работы.