

2011—2012 学年第一学期《概率论与数理统计》试卷

专业班级	
姓 名_	
学 号	
开课系室	基础数学系
考试日期	2012年1月3号

页码	_	$\vec{-}$	=	四	五.	六	七	总 分
满分	20	15	10	20	12	13	10	100
得分								
阅卷人								

备注: 1. 本试卷正文共7页;

- 2. 封面及题目所在页背面和附页为草稿纸;
- 3. 答案必须写在该题后的横线上或指定的括号内,解的过程写在下方空白处,不得写在草稿纸中,否则答案无效;
- 4. 最后附页不得私自撕下,否则作废.
- 5. 可能用到的数值 $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$

一、填空题(每空1分,共10分)	本页共 20 分
1. 设 $P(A) = 0.4$, $P(A \cup B) = 0.7$, 那么	若 A,B 互不相容,则	得
<i>P</i> (<i>B</i>) = <u>0.3</u> ; 若 <i>A</i> , <i>B</i> 相互独立	,则 $P(B) =$	分
2.设事件 A, B 满足: $P(B \mid A) = P(\overline{B} \mid \overline{A})$	$P(A) = \frac{1}{3}, P(A) = \frac{1}{3}, M$	$P(B) =5/9_{_}$.
3.某盒中有 10 件产品, 其中 4 件次品,	今从盒中取三次产品,	一次取一件,不放
回,则第三次取得正品的概率为0.6_	;第三次才取得正品的	J概率为 <u>0.1</u> .
4. 设随机变量 <i>X</i> 与 <i>Y</i> 相互独立, 」	且都服从区间[0,3]上	的均匀分布,则
$P\{\max(X,Y) \le 2\} = \underline{4/9}$		
5.一批产品的次品率为 0.1, 从中任取 5	件产品,则所取产品中	的次品数的数学期
望为,均方差为	.45	
6.设总体 $X \sim P(\lambda), X_1, X_2, \cdots, X_n$ 为来	自 X 的一个简单随机样	本, \bar{X} 为样本均值
,则 $E\overline{X}=$, $D\overline{X}=$		
二、选择题(每题2分,共10分)		
1.设 $P(A) = a, P(B) = b, P(A \cup B) = c$,	则 $P(A\overline{B})$ 等于(B).	
(A) $a-b$ (B) $c-b$	(C) $a(1-b)$	(D) $b-a$
2.设随机变量 X 的概率密度为 $f(x)$,且	$f(-x) = f(x)$, $F(x) \not\equiv$	X 的分布函数,则
对任意实数 a 有(B).		
(A) $F(-a) = 1 - \int_0^a f(x) dx$	(B) $F(-a) = \frac{1}{2} - \int_0^a f(x) dx$	
(C) F(-a) = F(a)	(D) $F(-a) = 2F(a) - 1$	
3.设 $X \sim N(2,9), Y \sim N(2,1), E(XY) = 6$,	则 D(X-Y) 之值为(B).
(A) 14 (B) 6	(C) 12 (I	O) 4
4.设随机变量 X 的方差为 25 ,则根据切比	比雪夫不等式,有 $P(X-X)$	EX < 10) (C).
(A) ≤ 0.25 (B) ≤ 0.75	(C) ≥ 0.75 (D	$0) \ge 0.25$
5.维纳过程是(A).		
(A)连续型随机过程	(B)连续型随机序列	
(C)离散型随机过程	(D)离散型随机序列	

三、计算题(共6个题目,共45分)

1. (10 分) 设有相同的甲、乙两箱装有同类产品. 甲箱装 50 只其中 10 只正品; 乙箱装 20 只, 10 只正品. 今随机选一箱, 从中抽取 1 只产品, 求: (1) 取到的产品是次品的概率; (2) 若已知取到的产品是正品, 它来自甲箱的概率是多少?

本页共 15 分		
得分		

解:设A;A,分为来自甲乙箱;B为正品

(1)
$$P(\overline{B}) = \frac{1}{2}(\frac{4}{5} + \frac{1}{2}) = \frac{13}{20}$$
 (5 $\frac{4}{5}$)

(2)
$$P(A_1|B) = \frac{\frac{1}{2} \times \frac{1}{5}}{7/20} = 2/7$$
 (10 $\%$)

2. (5分)已知某种电子元件的寿命 *X* (以小时计) 服从参数为1/1000的指数分布. 某台电子仪器内装有 5 只这种元件,这 5 只元件中任一只损坏时仪器即停止工作,则仪器能正常工作 1000 小时以上的概率为多少?

解:
$$P\{X \ge 1000\} = \int_{1000}^{+\infty} \frac{1}{1000} e^{-\frac{1}{1000}x} dx = e^{-1}$$
 (4分)

干是,由独立性仪器正常1000小时以上的概率为

$$e^{-5}$$
 (5分)

3.(5分)设粒子按平均率为每分钟4个的泊松过程到达某计 数数器, N(t) 表示在[0,t]内到达计数器的粒子个数,试求:

本页共 10 分		
得 分		

- (1) N(t) 的均值、方差、自相关函数;
- (2) 相邻的两个粒子到达计数器的平均时间间隔.

(各一分, 共三分) \mathbb{R} : EN(t) = 4t; DN(t) = 4t; $EN(s)N(t) = 16st + 4min\{s, t\}$

(2) 平均间隔为 1/4 分钟

(5分)

4. (5 分) 设总体 $X \sim N(\mu, \sigma^2)$ 的方差为 1,根据来自 X 的容量为 100 的样本,测 得样本均值 \overline{X} 为5,求 μ 的置信度为0.95的置信区间(写出过程).

解: 由题知
$$\frac{|\bar{X}-\mu|}{\sigma/\sqrt{n}} \sim N(0,1)$$

(2分)

于是由 $U_{0.975}$ = 1.96 知置信区间为(4.804, 5.196) (5分)

5. (10 分) 一质点在 1、2、3 三个点上做随机游动,其中 1、3 是两个反射壁,当质点位于 2 时,下一时刻处于 1、2、3 是等可能的. 规定每个时刻质点只走一步,用 $X_n, n \ge 0$ 表示第 n个时刻质点所处的位置,初始分布为

本页共 20 分	
得 分	

$$P(X(0) = i) = \frac{1}{3}, i = 1, 2, 3.$$

- 求: (1)一步转移概率矩阵和二步转移概率矩阵;
- (2) $P\{X(0) = 1, X(1) = 2, X(2) = 3\}$;
- (3) $P\{X(2)=2\}$.

解: (1) 一步转移阵
$$\begin{pmatrix} 0 & 1 & 0 \\ 1/3 & 1/3 & 1/3 \\ 0 & 1 & 0 \end{pmatrix}$$
; 二步转移阵 $\begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/9 & 7/9 & 1/1 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$ (4分)

(2) 原式= $\frac{1}{3} \times 1 \times \frac{1}{3} = \frac{1}{9}$

(7分)

(10分)

6. (10 分) 设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} 2x, & a < x < b \\ 0, & 其他 \end{cases}$,且 $EX^2 = 1$.

求: (1) a,b 的值; (2) $P\{|X|<1\}$.

解: 由
$$1 = \int_a^b 2x dx = b^2 - a^2$$
; $1 = EX^2 = \int_a^b 2x^3 dx = \frac{1}{2}(b^4 - a^4)$

解得
$$a = \sqrt{\frac{1}{2}}; b = \sqrt{\frac{3}{2}}$$

(2) 原式=
$$\int_{\sqrt{1/2}}^{1} 2x dx = 1/2$$

四、(12 分) 设随机向量(X, Y) 的概率密度为

$$f(x,y) = \begin{cases} Ae^{-(x+2y)}, & x > 0, y > 0 \\ 0, 其他 \end{cases}$$

本页共 12 分 得 分

求: (1)常数 A;

- (2) 关于 X、Y 的边缘概率密度,并判断 X 与 Y 是否相互独立;
- (3) Z = X + 2Y 的概率密度.

解: (1)
$$1 = \int_{0}^{+\infty} \int_{0}^{+\infty} Ae^{-(x+2y)} = A/2; \therefore A = 2$$
 (2分)

$$f_{X}(x) = 2\int_{0}^{+\infty} e^{-(x+2y)} dy = \begin{cases} e^{-x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$(2)$$

$$f_{Y}(y) = 2\int_{0}^{+\infty} e^{-(x+2y)} dx = \begin{cases} 2e^{-2y} & y \ge 0\\ 0 & y < 0 \end{cases}$$

显然,独立

$$F_{Z}(z) = 2 \iint_{x+2y \le z} e^{-(x+2y)} dx dy = \begin{cases} 1 - e^{-z} - ze^{-z} & z \ge 0 \\ 0 & z < 0 \end{cases}$$

$$f_{Z}(z) = \begin{cases} ze^{-z} & z \ge 0 \\ 0 & z < 0 \end{cases}$$

$$(12 \%)$$

五、(13 分) 已知分子运动的速度 X 具有概率密度

$$f(x) = \begin{cases} \frac{4x^2}{\alpha^3 \sqrt{\pi}} e^{-(\frac{x}{\alpha})^2}, & x > 0, & \alpha > 0, \\ 0, & x \le 0. \end{cases}$$

本页共 13 分 得 分

 $X_1, X_2, X_3, \dots, X_n$ 为 X 的简单随机样本,求:

- (1)未知参数 α 的矩估计和极大似然估计;
- (2)验证所求得的矩估计是否为 α 的无偏估计.

解: (1)
$$EX = \int_0^{+\infty} \frac{4x^3}{\alpha^3 \sqrt{\pi}} e^{-(\frac{x}{\alpha})^2} dx = \frac{2\alpha}{\sqrt{\pi}} = \bar{X}$$

$$\therefore \hat{\alpha} = \frac{\sqrt{\pi}}{2} \, \bar{X} \tag{5 \(\frac{1}{2}\)}$$

$$L(\alpha) = \prod f(x_i, \alpha) = (4\pi^{-\frac{1}{2}})^n \prod x_i^2 \alpha^{-3n} e^{-\frac{1}{\alpha^2} \sum_{i=1}^n x_i^2}$$

$$\ln L = -3n \ln \alpha - \frac{1}{\alpha^2} \sum_{i=1}^n X_i^2 + \ln(^{\land \land} \overrightarrow{\wedge} \overrightarrow{\wedge} \overrightarrow{\wedge} \overrightarrow{\wedge} \alpha)$$

$$d \ln L / d\alpha = -\frac{3n}{\alpha} + \frac{2}{\alpha^3} \sum_{i=1}^n X_i^2 = 0$$

$$\hat{\alpha}_{MLE} = \sqrt{\frac{2}{3n} \sum_{i=1}^{n} X_i^2}$$
 (10 $\%$)

(2)
$$E\hat{\alpha} = E\frac{\sqrt{\pi}}{2}\bar{X} = \frac{\sqrt{\pi}}{2}\frac{2}{\sqrt{\pi}}\alpha = \alpha$$
 无偏 (13分)

六、(10 分) 从学校乘汽车到火车站的途中有 3 个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是 2/5. 设 X 为途中遇到红灯的次数.求 X 的分布律、分布函数、数学期望和方差.

本页共 10 分		
得 分		

解: 由题知, $X \sim B(3, \frac{2}{5})$

分布律
$$P{X = k} = C_3^k (\frac{2}{5})^k (\frac{3}{5})^{3-k};;;;k = 0,1,2,3$$
 (4分)

分布函数

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{27}{125} & 0 \le x < 1 \\ \frac{81}{125} & 1 \le x < 2 \\ \frac{117}{125} & 2 \le x < 3 \\ 1 & 3 \le x \end{cases}$$
 (6 $\frac{4}{17}$)

$$EX = np = 6/5; DX = npq = 18/25$$
 (10 $\%$)