BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-333257

(43) Date of publication of application: 17.12.1993

(51)Int.CI.

G02B 7/08

(21)Application number: 04-164229

(71)Applicant : CANON INC

(22)Date of filing:

29.05.1992

(72)Inventor: KAWAI TORU

(54) LENS DRIVING DEVICE

(57)Abstract:

PURPOSE: To obtain a lens driving device capable of always performing focusing and zooming in the shortest time irrespective of the load fluctuation of a lens.

CONSTITUTION: The device is provided with detecting means 2 and 3 for detecting a lens driving condition, a driving condition storing means for storing plural driving conditions which are previously obtained in accordance with the load fluctuation, a driving condition selecting means 4 for selecting the driving condition detected by the detecting means 2 and 3 out of the driving condition storing means 1 and a lens driving means 5 for driving the lens in accordance with the selected driving condition.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

庁内整理番号

(11)特許出願公開番号

特開平5-333257

(43)公開日 平成5年(1993)12月17日

(51) Int.Cl.5

識別記号

FΙ

技術表示箇所

G 0 2 B 7/08

С

審査請求 未請求 請求項の数2(全 7 頁)

(21)出願番号

特願平4-164229

(22)出願日

平成4年(1992)5月29日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 河合 徹

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 高梨 幸雄

(54) 【発明の名称】 レンズ駆動装置

(57)【要約】

【目的】 レンズの負荷変動にかかわらず、常に最短時 間でフォーカミング及びズーミングが行えるレンズ駆動 装置を得ること。

【構成】 レンズの駆動条件を検知する検知手段2,3 と、負荷変動に対応してあらかじめ求められた複数の駆 動条件を記憶している駆動条件記憶手段1と、前記検知 手段2,3により検知された駆動条件を前記駆動条件記 憶手段1から選択する駆動条件選択手段4と、選択され た駆動条件でレンズを駆動するレンズ駆動手段5とを備 えたこと。

20

1

【特許請求の範囲】

【請求項1】 レンズの駆動条件を検知する検知手段 と、負荷変動に対応してあらかじめ求められた複数の駆 動条件を記憶している駆動条件記憶手段と、前記検知手 段により検知された駆動条件を前記駆動条件記憶手段か ら選択する駆動条件選択手段と、選択された駆動条件で レンズを駆動するレンズ駆動手段とを備えたことを特徴 するレンズ駆動装置。

【請求項2】 負荷変動に対応してあらかじめ求められ た複数の駆動条件を記憶する駆動条件記憶手段と、前記 10 駆動条件記憶手段に記憶された駆動条件を選択する駆動 条件選択手段と、選択された駆動条件でレンズを駆動す るレンズ駆動手段と、前記選択された駆動条件で駆動さ れる駆動状態を検知する駆動状態検知手段と、あらかじ め設定された適正駆動状態を記憶する適正駆動状態記憶 手段と、前記駆動状態検知手段の出力と前記適正駆動状 態記憶手段の出力を比較する比較手段とを有し、前記選 択された駆動条件で駆動される駆動状態が適正駆動状態 と一致してない場合は前記駆動条件選択手段により別の 駆動条件を選択する学習機能を有することを特徴とする レンズ駆動装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は例えば光学機器におい て、オートフォーカス及びオートズーム等の撮影レンズ を所定位置に駆動するためのレンズ駆動装置に関するも のである。

[0002]

【従来の技術】従来のこの種のレンズ駆動装置は、オー トフォーカスの場合は焦点検出手段によりピントのズレ 量を検出し、このピントのズレ量に相当するフォーカス レンズの移動量を演算し、その演算で求めた量だけフォ ーカスレンズを駆動する。また、オートズームの場合 は、撮影条件に応じてあらかじめ設定されたズーム位置 と現在のズーム位置を比較してズームレンズの移動量を 演算し、その演算で求めた量だけズームレンズを駆動す る。

【0003】このレンズ駆動は、上記いずれの場合も、 できるだけ迅やかに行うことが好ましく、加速時間・減 速時間が最短になるように駆動を行っている。

【0004】ところが、一般に撮影場所の温度や撮影姿 勢は一定ではなく、特に撮影姿勢は水平位置とは限ら ず、カメラを上下方向に向けたりするので、例えばレン ズの自重が重力に逆らう向きの場合、重力と同じ向きの 場合とでは、停止位置精度を満足し最短時間で駆動する ための駆動条件が異なる。しかし、実際には両方を満足 する条件として駆動時間が延びるのを許容して共通の駆 動条件でレンズ駆動を行っている。

【0005】近年、オートフォーカス及びオートズーム の高速化に伴い、フォーカスやズームの回転角を極力少 50 よって選択された駆動条件にしたがってレンズを駆動す

なくし、駆動時間の短縮を計っているが、ヘリコイドネ ジやカムリード角を大きくせざるを得ず、上記姿勢差の 影響が無視できなくなってきている。

[0006]

【発明が解決しようとしている課題】しかしながら上記 従来例では、カメラを上下方向に向けたときの駆動条件 を満足させるための構成とするため、使用頻度の高い水 平状態での駆動時間が短縮できないという問題点があっ

【0007】本発明は上記のような問題点を解消したレ ンズ駆動装置を得ることを目的とする。

[0008]

【課題を解決するための手段】

(1) レンズの駆動条件を検知する検知手段と、負荷変 動に対応してあらかじめ求められた複数の駆動条件を記 憶している駆動条件記憶手段と、前記検知手段により検 知された駆動条件を前記駆動条件記憶手段から選択する 駆動条件選択手段と、選択された駆動条件でレンズを駆 動するレンズ駆動手段とを備えたことにより、撮影条件 の変化にかかわらず、常に最短時間でフォーカシング及 びズーミングを行うことができる。

【0009】(2)負荷変動に対応してあらかじめ求め られた複数の駆動条件を記憶する駆動条件記憶手段と、 前記駆動条件記憶手段に記憶された駆動条件を選択する 駆動条件選択手段と、選択された駆動条件でレンズを駆 動するレンズ駆動手段と、前記選択された駆動条件で駆 動される駆動状態を検知する駆動状態検知手段と、あら かじめ設定された適正駆動状態を記憶する適正駆動状態 記憶手段と、前記駆動状態検知手段の出力と前記適正駆 動状態記憶手段の出力を比較する比較手段とを有し、前 記選択された駆動条件で駆動される駆動状態が適正駆動 状態と一致してない場合は前記駆動条件選択手段により 別の駆動条件を選択する学習機能を有することにより、 負荷特性検知用の別の検知手段を必要とせず製造コスト を上げることなく、負荷条件が変化しても駆動条件を最 適にして最短時間でレンズ駆動の終了を可能にできる。

[0010]

【実施例】

実施例1

図1は本発明の実施例1を示し、この図1は本発明の特 徴を最もよく表わすプロック図であり、同図において、 1は撮影場所の温度、撮影姿勢差により、あらかじめ実 測して確認されたレンズの負荷変動に対応した複数の駆 動条件を記憶している駆動条件記憶手段、2はサーミス 夕等による温度検知手段、3は水銀スイッチ等の重力方 向を検知する姿勢差検知手段、4は上記温度検知手段2 及び上記姿勢差検知手段3からの検知情報を選択要素の 1つとして上記駆動条件記憶手段1より駆動条件を選択 する駆動条件選択手段、5は上記駆動条件選択手段4に

るレンズ駆動手段である。

【0011】図2は本発明の実施例1によるレンズ駆動 最 - 速度との関係を示す線図である。図中 a - b - d f-gの線図は常温で撮影姿勢が水平時の負荷(適量負 荷)の加速開始から減速停止までのレンズ駆動量と速度 の関係を表わしている。

【0012】負荷が重い場合、例えば低温でレンズを重 力に逆らって駆動する撮影状態の時は、レンズ自らの負 荷がブレーキとなって急激に減速するので、停止位置g に近いe点の位置から減速を開始するa-b-e-fgの線図となるように駆動条件を設定すると、最短時間 で駆動を終了することができる。

【0013】また、負荷が軽い場合、例えば高温でレン ズを重力と同じ向きに駆動する撮影状態の時は、レンズ 白らの負荷によるプレーキが得られないのでなかなか減 速されないことになり、停止位置gに対しかなり手前の c点の位置から減速を開始するa-b-c-f-gの線 図の駆動条件を設定することが必要となる。

【0014】なお、加速時の駆動量と速度の関係は負荷 負荷の場合も同じとして表わしている。

【0015】図示例はいずれも両極端の例であって、撮 影温度と撮影姿勢差の組合わせは独立条件なのでほかの 組合わせもあるが省略している。また、本発明の実施例 におけるレンズ駆動量の検出手段としては、レンズ駆動 用アクチュエータ、レンズ又は連動機構のいずれかに移 動量に比例した出力を発生するパルスエンコーダがあれ ば良く、レンズの速度はパルス間隔によって検出可能で ある。

【0016】次に上記構成からなる実施例1の動作を説 30 明する。温度検出手段2で検出した撮影温度が常温で姿 勢差検出手段3で検出した撮影姿勢が水平状態であると すると、a-b-d-e-f-gの線図となる駆動条件 を駆動条件記憶手段1から選択する。また、レンズを上 向きや下向きにした場合は、その駆動の向きによってa -b-c-f-gの線図又はa-b-e-f-gの線図 となる駆動条件を駆動条件記憶手段1から選択する。そ して、この選択された駆動条件にしたがってレンズ駆動 手段5でレンズを駆動するものである。

実施例2

図3は本発明の実施例2を示すプロック図であり、11 は撮影場所の温度、撮影姿勢差により、あらかじめ実測 して確認されたレンズの負荷変動に対応した複数の駆動 条件を記憶している駆動条件記憶手段、12は前記複数 の駆動条件のうち1つを選択する駆動条件選択手段、1 3は前記駆動条件選択手段12によって選択された駆動 条件でレンズを駆動するレンズ駆動手段、14はレンズ の駆動状態を検出する駆動状態検出手段、15は適正駆 動条件記憶手段、16は前記適正駆動状態記憶手段15 に記憶されている適正駆動状態と前記駆動状態検出手段 50

14で検出した駆動状態を比較する比較手段であり、比 較結果を前記駆動条件選択手段12に戻して選択条件に 加える。

【0017】次に図4にフローチャートに従って動作を 説明する。まず、レンズの駆動命令があると(ST4-1)、減速開始位置が選択されているかどうか判別する (ST4-2)。例えば電源がOFFされて駆動条件が 設定されていない場合、つまり、判別結果がNOの場合 は標準減速開始位置として標準減速開始位置dを選択す 10 る (ST4-3)。

【0018】一方、上記の判別結果がYESの場合はレ ンズ駆動を行い(ST4-4)、この時の低速駆動量 g -g'を検出する。図5(a)に示すように減速開始位 置dで減速を開始するがレンズの負荷が温度や姿勢差に より重くなっていると、a-b-c-d-f'-f-g 線図となり、低速駆動がg'-g間で発生する(ST4 -5)。次いで、このg-g'が $0 \le g-g$ ' $\le -$ 定か をST4-6で判断し、YESであればST4-1に戻 り、NOであればg-g'>一定かをST4-7で判断 によって厳密には異なるが、図2では便宜的にいずれの 20 する。図5 (a) の場合は上記ST4-7の判断結果が YES、つまり、あらかじめ設定された所定量より大き いので、減速開始位置をdからeに変更し(ST4-8)、次の駆動命令を待つ。

> 【0019】また、レンズ負荷が軽い場合は図5(b) のように所定停止位置 g では十分減速しきれず g'の位 置で低減駆動となり低速駆動区間はg-g'で負の値と なりオーパーランしたことになる。この場合はST4-7の判断結果がNOとなり、減速開始位置をdからcに 変更する(ST4-9)。

【0020】また、姿勢差は駆動の向きにより、負荷条 件が逆になるので、駆動条件の選択は2系統必要とな る。

【0021】図6は本発明による他の実施例を示すフロ ーチャートであり、本実施例は適正駆動状態を判別する 要素として低速駆動区間の量ではなく、低速駆動区間の 時間 t g - t g'を使用した点がことなるだけ、動作工 程はST6-1~ST6-9に示すように前記実施例1 のST4-1~ST4-9と同じである。本実施例でオ ーパーランした場合は図5 (b) の駆動量gの時刻と停 40 止位置g'の時刻の差でオーバー時間を演算可能であ る。

[0022]

【発明の効果】以上説明したように、請求項1の発明に よれば、レンズの負荷変動を検知し、その検知した負荷 変動に応じたレンズ駆動条件を選択するように構成した ので、最短時間でフォーカシング及びズーミングが行え

【0023】また、請求項2の発明によれば、レンズの 駆動状態が適正駆動状態と一致しているかを判断し、-致していない場合は別の駆動条件を選択してレンズを駆

動するように学習機能を持たせることにより、負荷特性 検知用の別の検知手段を必要とせず、簡単かつ安価な構 成によって最適な駆動条件を設定できる等の効果があ る。

【図面の簡単な説明】

【図1】図1は本発明の実施例1を示すプロック図。

【図2】図2は実施例1のレンズ駆動量と速度との関係 図。

【図3】図3は本発明の実施例2を示すプロック図。

【図4】図4は実施例2の動作を説明するフローチャー 10 5 レンズ駆動手段 ト図。

【図5】図5は実施例2のレンズ駆動量と速度との関係

【図6】図6は実施例3の動作を説明するフローチャー ト図。

【符号の説明】

- 1 駆動条件記憶手段
- 2 温度検知手段(検知手段)
- 3 姿勢差検知手段(検知手段)
- 4 駆動条件選択手段

【図4】

【図5】

【図6】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.