33 34

1	
2	
3	
4	Abstract
5	
6	This invention is a reactor and system with a method for containing and
7	controlling a deuterium nuclear fusion reaction in a palladium host metal lattice, now
8	generally referred to as 'solid state fusion'. The reactor is designed for high
9	temperature operation at moderate deuterium gas pressures and is operable over a
10	temperature range of 400°C to more than 1400°C. The solid state fusion reaction is
11	enabled and controlled by providing specific combinations of reactor temperatures
12	and deuterium gas pressures. The invention is capable of generating heat densities
13	that are suitable for commercial applications. The highest heat densities are
14	produced at higher temperatures and moderate pressures where the system is most
15	efficient and cost effective.
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	