

Programmiermethodik 1 Programmiertechnik

Versionsverwaltung, Live Demo Raspberry Pi

Wiederholung

- Collections-Framework
- Verkettete Liste und Array-Liste
- Iteratoren
- Vergleichen
- Menge
- Map
- Collections-Operationen

Ausblick für heute

Use Cases

- Mehrere Personen arbeiten am gleichen Quellcode. Es wird gewünscht, dass
 - Änderungen nachverfolgt werden können
 - Änderungen zurückgenommen werden können
 - Konflikte (parallele Änderung des gleichen Quellcode-Fragments) aufgelöst werden können
 - Dritte einfachen Zugang zum Quellcode haben

Agenda

- Versionsverwaltung
- Git
- Live-Demo: Raspberry Pi

Datei.txt

Hello.

Beide wollen eine Datei bearbeiten

Datei.txt

Hello.

Datei.txt "Hello. Worlde"

Beide editieren gleichzeitig.

Datei.txt Hello World

Datei.txt

"Hello. Worlde"

Datei.txt "Hello. Worlde"

commit

Datei.txt
Hello World

- Zentraler (Server-)Ansatz
- Server synchronisiert die lokalen Kopien aller Entwickler

- mittlerweile üblich
 - dezentrale Versionsverwaltung
 - z.B. Mercurial, GIT

Entwickler, Entwicklungsumgebung, Arbeitskopie lokales Repository des Entwicklers (Bildquelle: [3]) allgemein zugängliches Repository auf Server


```
$ git config --global user.name "Your Name"
$ git config --global user.email
"your_email@whatever.com"
```

Name und E-Mail-Adresse angeben

Zum Index hinzufügen (stagen)

Auf das lokale Repo schreiben

Status des Staging-Bereichs angeben


```
$ edit Hallo.txt
$ git checkout master .
```

Hallo.txt verändern und Veränderung rückgäng machen


```
$ edit Hallo.txt
$ git checkout master
$ git checkout "Hallo.txt"
```

Hallo.txt verändern und Veränderung rückgäng machen

\$ git remote add origin https://github.com

GIT-Repositories

- Eigenes Netzlaufwerk
- Bitbucket (https://bitbucket.org/): Kostenlos für private Nutzung
- Github (https://github.com/): Kostenlos bei öffentlichen Repositories
- Sourceforge (http://sourceforge.net/): Open Source Projekte
- Angebot der HAW Informatik

Live Demo: Raspberry Pi

Aufbau

Department Informatik

Prof. Philipp Jenke

Raspberry Pi

GPIO (General Purpose I/O)

wiringPi (http://wiringpi.com/)

P1: The Main GPIO connector							
WiringPi Pin	BCM GPIO	Name	Header		Name	BCM GPIO	WiringPi Pin
		3.3v	1	2	5v		
8	Rv1:0 - Rv2:2	SDA	3	4	5v		
9	Rv1:1 - Rv2:3	SCL	5	6	0v		
7	4	GPIO7	7	8	TxD	14	15
		0v	9	10	RxD	15	16
0	17	GPI00	11	12	GPIO1	18	1
2	Rv1:21 - Rv2:27	GPIO2	13	14	0v		
3	22	GPIO3	15	16	GPIO4	23	4
		3.3v	17	18	GPIO5	24	5
12	10	MOSI	19	20	0v		
13	9	MISO	21	22	GPIO6	25	6
14	11	SCLK	23	24	CE0	8	10
		0v	25	26	CE1	7	11
WiringPi Pin	BCM GPIO	Name	Header		Name	BCM GPIO	WiringPi Pin

Verwendung in Java

Wrapper: Pi4J (http://pi4j.com/)

Projekt 1: LED

Projekt 2: Servo

Projekt 3: Ultraschallsensor

