Question number	Scheme	Marks
3 (a)	(Midpoint of $AB = (5,5)$	B1
	(Gradient of $AB = $) $\frac{3-7}{9-1} = \left(-\frac{1}{2}\right)$ oe	M1
	(Gradient of $l = 1$) $-\left(\frac{1}{-\frac{1}{2}}\right)$ (= 2)	A1ft
	y-"5" = "2"(x-"5") oe	M1 A1 (5)
ALT	Let $D(x, y)$ be any point on the line	
	Let $D(x, y)$ be any point on the line $x-1^{2} + y-7^{2} = x-9^{2} + y-3^{2}$	{B1}
	$x^{2} - 2x + 1 + y^{2} - 14y + 49 = x^{2} - 18x + 81 + y^{2} - 6y + 9$	{M1} {A1ft}
	$16x - 40 = 8y \to (y = 2x - 5)$	M1 A1
(b)	$x = \frac{5}{2}$	B1ft
	(length of C to midpoint of $AB = \sqrt{("5"-0)^2 + ("5"-2.5)^2} \left(= \frac{5\sqrt{5}}{2} \right)$	M1
	$(\text{length of } AB =) \sqrt{8^2 + 4^2} \left(= 4\sqrt{5} \right)$	B1 (A1 on ePen)
	$\frac{1}{2} \times 4\sqrt{5} \times "\frac{5\sqrt{5}}{2}"$	M1
	25	A1 [5]
ALT1	Use of determinant	
	$x = \frac{5}{2}$	B1ft
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1
	$\left(\frac{1}{2}\right)\left \left(1\times3+9\times0+"2.5"\times7\right)-\left(1\times0+"2.5"\times3+9\times7\right)\right $ oe	M1
	25	A1 [5]

ALT2	Area of rectangle – (sum of areas of 3 triangles)	
	$x = \frac{5}{2}$	B1ft
	$\frac{1}{2} \times \left(\frac{5}{2} - 1 \right) \times 7 + \frac{1}{2} \times \left(9 - \frac{5}{2} \right) \times 3 + \frac{1}{2} (9 - 1)(7 - 3)$	M1
	$\left(= \frac{21}{4} + \frac{39}{4} + 16 = 31 \right)$	1011
	$(9-1)\times 7=56$	A1
	56 – "31"	M1
	35	A1
		[5]
	Total 10 mark	

Part	Marks	Notes
(a)	B 1	For midpoint of $AB = (5,5)$
	M1	For correctly finding the unsimplified gradient of $AB = \frac{3-7}{9-1}$ oe
	A1ft	For correctly finding the unsimplified gradient of line l , use of their gradient for AB to find the negative reciprocal. $-\left(\frac{1}{-\frac{1}{2}}\right)$
	M1	For a correct method to find the equation of l using their midpoint and their gradient, which must have involved finding the negative reciprocal of the gradient of AB
	A1	For $y-5 = 2(x-5)$ ft oe
ALT	B1	For correctly equating the two expressions for AD^2 and AB^2 to give the equation shown
	M1	For an expansion of either their LHS or their RHS provided their equation is in the form. $x-a^2+y-b^2=x-c^2+y-d^2$ Allow one numerical or algebraic slip.
	A1ft	For a correct expansion of both their LHS and their RHS provided their equation is in the form. $x-a^2 + y-b^2 = x-c^2 + y-d^2$
	M1	For simplifying leading to a linear equation
	A1	For $y = 2x - 5$ oe
(b)	B1ft	For $x = \frac{5}{2}$ ft their equation from part (a) with $y = 0$
	M1	For finding the unsimplified length of C to midpoint of AB = $\sqrt{("5"-0)^2 + ("5"-"2.5")^2} \left(= \frac{5\sqrt{5}}{2} \right)$ All arranges of the in (5, 5) and the in C
	B1 (A1 on ePen)	Allow use of their (5, 5) and their <i>C</i> For finding the unsimplified length of $AB = \sqrt{8^2 + 4^2} \left(= 4\sqrt{5} \right)$
	M1	For area of triangle = $\frac{1}{2} \times 4\sqrt{5} \times "\frac{5\sqrt{5}}{2}"$
	A1	For 25
ALT1	B1ft	As main
	M1	For the determinant set up with their C
	A1	For the determinant set up fully correctly
	M1	For correctly evaluating their determinant, with their <i>C</i> , full working must be shown.
ATES	A1	25
ALT2	B1ft M1	As main For the correct colculation of the three cross using their C
	M1	For the correct ractonals area
	A1	For the correct rectangle area