UNIT-II

Combinational Logic System

Lecture 14
Prepared By:
Dr.Krishan Arora
Assistant Professor and Head

KMAP

Karnaugh map is a tool for simplification of Boolean algebra

K-Map diagram is made up of squares

K-map is a graphical representation of SOP (Minterm)

K-Map extensively reduce the calculation and provides best minimized solution

K-map solve the expression with grouping of neighbor cells

Kmap Simplification Rule

- 1) Construct kmap and place 1's in the squares according to the truth table.
- 2) Groupings can contain only 1s
- 3) Groups can be formed only at right angles; diagonal groups are not allowed.
- 4) The number of 1's in a group must be a power of 2
- 5) The groups must be made as large as possible.
- 6) Groups can overlap and wrap around the sides of the Kmap.
- 7) Every group puts a term in the solution

Optimized Solution

Minimum number of group

Each group covers maximum possible squares

Out = \overline{A}

Output =
$$AB + BC + AC$$

Out = $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}$

Out =
$$\overline{A}$$
 + B

Out = $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}B\overline{C}$

Out= $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B\overline{C} + \overline{A}B\overline{C} + \overline{A}B\overline{C}$

Out=
$$\overline{A} + \overline{C}$$

Out= $\overline{AB}CD+\overline{AB}CD+ABCD+A\overline{B}CD+AB\overline{C}\overline{D}+AB\overline{C}D+AB\overline{C}\overline{D}$

Out=
$$\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD$$

+ $\overline{B}\overline{C}\overline{D} + \overline{B}C\overline{D} + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}D + \overline{A}\overline{B}C\overline{D}$

Out=
$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

Practice Question

Quick Quiz (Poll 1)

- There are _____ cells in a 4-variable K-map.
 - a) 12
 - b) 16
 - c) 18
 - d) 8

Quick Quiz (Poll 2)

- These logic gates are widely used in

 design and therefore are available in IC form.
 - a) Sampling
 - b) Digital
 - c) Analog
 - d) Systems