Convex Optimization - HW1

Théotime de Charrin

12 octobre 2023

1 Exercise 1: Which of the following sets are convex?

- 1) The rectangle set defined as $\{x \in \mathbb{R}^n | \forall i \in [1, n], \alpha_i \le x_i \le \beta_i\}$ For a given i, a $\{x_i\}$ is the intersection of two halfspaces $\{x \in \mathbb{R}^n | x_i \le \beta_i\}$ and $\{x \in \mathbb{R}^n | x_i \ge \alpha_i\}$ As i is finite, a rectangle is a finite intersection of halfspaces so it is a convex set.
- 2) The hyperbolic set defined as $\{H: x \in R^2_+ | x_1 x_2 \ge 1\}$. We take $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in R^2$ such that $x, y \in H$ and $\theta \in [0; 1]$ Hence, we have $x_1 x_2 \ge 1$ and the same for y.

Let's look at the convex combination of x and y:

$$\theta x + (1 - \theta) y = \begin{pmatrix} \theta x_1 + (1 - \theta) y_1 \\ \theta x_2 + (1 - \theta) y_2 \end{pmatrix}$$

$$= \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

$$z_1 z_2 = \theta^2 \overbrace{x_1 x_2}^{\ge 1} + (1 - \theta)^2 \overbrace{y_1 y_2}^{\ge 1} + \theta (1 - \theta) (x_1 y_2 + y_1 x_2)$$

Let's have a look at $x_1y_2 + y_1x_2$: we have $x_1x_2 \ge 1 \Leftrightarrow x_1y_2 \ge \frac{y_2}{x_2}$. In the same manner, $y_1x_2 \ge \frac{x_2}{y_2}$. We now have :

$$\begin{aligned}
x_{1y2} + y_1 x_2 &\geq \frac{y_2}{x_2} + \frac{x_2}{y_2} \\
&\geq \frac{y_2}{x_2} + \frac{1}{\frac{y_2}{x_2}} \\
&\geq \frac{y_2}{x_2} + \frac{1}{\frac{y_2}{x_2}} - 2
\end{aligned}$$

$$\geq \sqrt{\frac{y_2}{x_2}}^2 + \frac{1}{\sqrt{\frac{y_2}{x_2}}}^2 - 2 \frac{\sqrt{\frac{y_2}{x_2}}}{\sqrt{\frac{y_2}{x_2}}}$$

$$\geq \left(\sqrt{\frac{y_2}{x_2}} - \frac{1}{\sqrt{\frac{y_2}{x_2}}}\right)^2 \geq 0 \,\,\forall \, \{(x_1, x_2), (y_1, y_2)\}$$

We can conclude that $x_1y_2 + y_1x_2 \ge 2$ $\theta(1-\theta) \ge 0 \ \forall \theta \in [0,1] \ \text{so} \ \theta(1-\theta)(x_1y_2 + y_1x_2) \ge 2\theta(1-\theta) \ \text{and} :$

$$z_1 z_2 \ge \theta^2 + (1 - \theta)^2 + 2\theta(1 - \theta)$$

 $\ge (\theta + 1 - \theta)^2 \ge 1$

We have shown that $z_1 z_2 \ge 1$, i.e. $\theta x + (1 - \theta) y \in H$

A convex combination of two elements in H is also in H, so the hyperbolic set is convex as well.

3) The set of points closer to a given point than a given set, *i.e.*

$$A = \{x \mid ||x - x_0||_2 \le ||x - y||_2 \ \forall y \in S\} \text{ where } S \subseteq \mathbb{R}^n.$$

Let

 $y \in S$ and $x \in A$. Then we must have :

$$||x - x_{0}||_{2} \leq ||x - y||_{2}$$

$$(x - x_{0})^{T}(x - x_{0}) \leq (x - y)^{T}(x - y)$$

$$(x^{T} - x_{0}^{T})(x - x_{0}) \leq (x^{T} - y^{T})(x - y)$$

$$x^{T}x - x^{T}x_{0} - x_{0}^{T}x + x_{0}^{T}x_{0} \leq x^{T}x - x^{T}y - y^{T}x + y^{T}y$$

$$-2x^{T}x_{0} + ||x_{0}||_{2}^{2} \leq -2x^{T}y + ||y||_{2}^{2}$$

$$2x^{T}(y - x_{0}) \leq ||x_{0}||_{2}^{2} + ||y||_{2}^{2}$$

$$(y - x_{0})^{T}x \leq \frac{||x_{0}||_{2}^{2} + ||y||_{2}^{2}}{2}$$

This is the equation of an halfspace ($a^Tx \le b$), which is a convex set. S is the intersection over $y \in S$ of these halfspaces, hence it's also a convex set.

4) The set of points closer to one set than another, *i.e.*

$$A = \{x \mid \mathbf{dist}(x, S) \leq \mathbf{dist}(x, T)\}, \text{ where } S, T \subseteq \mathbb{R}^n, \text{ and } \mathbf{dist}(x, S) = \inf\{\|x - z\|_2 \mid z \in S\}$$

A visual example should better explain why this is not always a convex set:

Here, we see that x_1 and x_2 are closer to the set S rather than the set T. Therefore, they would be part of the set A. However, x_3 , a convex combination of x_1 , x_2 , *i.e.* on the same segment, is closer to the set T than the set S.

Therefore, A is not a convex set.

5) The set

$$A = \{x \mid x + S_2 \subseteq S_1\}$$

where S_1 , $S_2 \in \mathbb{R}^n$, S_1 convex.

$$x + S_2 \subseteq S_1 \Leftrightarrow \forall y \in S_2, x + y \in S_1$$

Let's look at the convex combination of $u, v \in A, \theta \in [0,1]$, and see if it's still in A:

$$\theta u + (1 - \theta)v + y = \theta(u + y) + (1 - \theta)(v + y) \in S_1$$

By definition, u + y, $v + y \in S_1$ because u, $v \in A$ and $y \in S_2$.

As S_1 is convex, any convex combination of $z \in S_1$ is also in S_1 . We conclude that A is a convex set.

2 Exercise 2: For each of the following functions determine whether it is convex or concave or not.

1)
$$f(x_1, x_2) = x_1 x_2$$
 on \mathbb{R}^2_{++}