Intro. to Probability

Probability: Measure of uncertainty or likelihood associated with the occurrences or outcomes of events

$$P(z_i) \approx \frac{m}{N}$$

- N total number of all possible outcomes (sample space)
- m number of times a given outcome (event, z_i) is observed

Probability: Measure of uncertainty or likelihood associated with the occurrences or outcomes of events

$$P(z_i) \approx \frac{m}{N}$$

- N total number of all possible outcomes (sample space)
- m number of times a given outcome (event, z_i) is observed
- P(2) = 1/36
- P(3) = 2/36
- P(12) = 1/36

For discrete variables

For continuous variables

For continuous variables

Continuous variables can be measured with arbitrary precision, thus compute probabilities over an interval

$$P(z_1 \leq z \leq z_2) = \int_{z_1}^{z_2} p(z) dz$$

- Probability density function (PDF): Function (f(x)) of a continuous random variable that gives the probability (area under curve) for a given interval
 - Random variable: any variable whose value depends on an unknown event
 - f(x) > 0
 - $\int f(x)dx = 1$
- Cumulative density function:
 Gives the total probability of being less than some value

The normal PDF:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right]$$

Parameterized by:

- Mean (μ) : central location
- Variance (σ^2) : spread
- $N(\mu, \sigma^2)$

Statistical Inference

Statistical inference

What can we learn about the population from the sample?

Statistical inference

What can we learn about the population from the sample?

Goal: Estimate population mean (μ) for height from a sample of the population

Statistical inference - maximum likelihood

Goal is to estimate some unknown parameters (θ)

- ullet Write the probability of the data in terms of heta
 - The probability density function and likelihood function are given by the same equation.
 - PDF is a function of the data when parameters are fixed
 - Likelihood function is a function of the parameters when the data is fixed
- ullet Estimate $\hat{ heta}$, so that $\hat{ heta}$ maximizes the probability of the observed data
 - $\hat{\theta}$ is the maximum likelihood estimate (MLE)

Goal is to estimate the mean of a normal distribution

Recall, the normal PDF:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right]$$

Parameterized by:

- Mean (μ) : central location
- Variance (σ^2) : spread
- $N(\mu, \sigma^2)$

Goal is to estimate the mean of a normal distribution

Recall, the normal PDF:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right]$$

and the likelihood function is

$$L(\mu, \sigma^2 | \mathbf{x}) = \prod_{i=1}^n f(x_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Goal is to estimate the mean of a normal distribution

It is easier to work with the log likelihood, so the log likelihood function is

$$LL(\mu, \sigma^{2}|\mathbf{x}) = \sum_{i=1}^{n} log(f(x_{i}))$$

$$= \sum_{i=1}^{n} log\left(\frac{1}{\sqrt{2\pi\sigma^{2}}} exp\left[-\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}\right]\right)$$

$$= -\frac{N}{2}log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Goal is to estimate the mean of a normal distribution

We can take the partial derivative of the log likelihood function with respect to $\boldsymbol{\mu}$

$$\frac{\partial LL}{\partial \mu} = \frac{\partial}{\partial \mu} \left(-\frac{N}{2} log(2\pi\sigma^2) \right) + \frac{\partial}{\partial \mu} \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 \right)$$
$$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu)$$

Goal is to estimate the mean of a normal distribution

Finally, set this to zero and solve for μ

$$0 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu)$$
$$= \sum_{i=1}^{n} x_i - N\mu$$
$$N\mu = \sum_{i=1}^{n} x_i$$
$$\mu = \frac{\sum_{i=1}^{n} x_i}{N}$$

Goal is to estimate the mean of a normal distribution

- $\hat{\mu} = \bar{\mathbf{x}} = \frac{\sum_{i=1}^n \mathbf{x}_i}{N}$ is the MLE for μ
- Although this is intuitive, other parameters can be obtained using a similar approach

Statistical inference

What can we learn about the population from the sample?

Goal: Estimate population mean (μ) for height from a sample of the population

Sampling distributions

 \bullet Say we draw a random sample (n=18) from the population and calculate the mean, then draw a new sample and compute the mean. Will the sample means be the same?

Sampling distributions

- Say we draw a random sample (n = 18) from the population and calculate the mean, then draw a new sample and compute the mean. Will the sample means be the same?
- The **sampling distribution** is a theoretical probability distribution of the values of some sample statistic that would occur if we were to draw all possible samples of a given size from a population.
 - Can give us insight into how common or rare it is to observe a given value for that statistic.

Sampling distribution of the mean

If the distribution of ht. is normal:

- $\bar{x} \sim N(\mu, \frac{\sigma^2}{n})$
- *n* is sample size

Central limit theorem

If the distribution of ht. is non-normal:

- For large n the distribution of the sample means will be approximately normal
- CLT states the sum of a large number of independent identically distributed random variables with a finite variance will be approximately normal

Statistical Inference - Z-test

What is the probability that our sample mean $(\bar{x} = 1.702, n = 50)$ is different from the population mean (N(1.700, 0.0625))?

• Create a standardized statistic (N(0,1))

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{(n)}}$$
$$= \frac{0.002}{0.0353} = 0.0566$$

Compare observed stat. to null sampling distribution

$$P[x > 1.7] \int_{0.0566}^{\infty} \frac{1}{0.25\sqrt{2\pi}} \exp\left[-\frac{1}{2} \frac{(1.702 - 1.7)^2}{0.25^2}\right] = 0.477$$

• Since it is a two-sided test: $p = 0.477 \times 2 = 0.955$

p-values

How likely are we to observe a test statistic greater than observed value?

df = 3,
$$\alpha$$
 = 0.05, $t_{obs.}$ = 3.275

How precise is our estimate?

For sample mean:

$$SE[\bar{x}] = \frac{s}{\sqrt{n}}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

For other parameter estimates??

How precise is our estimate?

For sample mean:

$$SE[\bar{x}] = \frac{s}{\sqrt{n}}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

For other parameter estimates?? Resampling!

Bootstrap: Iterative resampling

• Jackknife: Leave-one-out

Bootstrap resampling

Given a large dataset, that adequately represents the population:

- Randomly draw samples from the data with replacement
- Estimate the mean (or other parameter) of this "new" dataset and record estimate
- Repeat desired number of times
- Oral Calculate the standard deviation of the estimates

Bootstrap resampling

Original sample size (n) is more important than the number of iterations (r)

- Three datasets with n= 100, 500, 10000
- Mean estimated from 80% of observations
- Number of resampling iterations: r = 100, 1000

Jackknife resampling

Given a small dataset:

- Sequentially delete one observation
- Estimate parameter on "new" dataset
- The standard error of the estimate is

$$SE[\bar{x}] = \sqrt{\frac{n-1}{n} \sum_{i=1}^{n} (\bar{x}_i - \bar{x}_{(\cdot)})^2}$$

• $\bar{x}_{(\cdot)}$ is the mean of the jackknife replicates

$$\bar{x}_{(\cdot)} = \frac{1}{n} \sum_{i=1}^{n} \bar{x}_i$$

Hypothesis testing

- Z-test requires either a large sample size or knowledge of the sample mean and variance
 - Many cases this is unknown
- If we have prior knowledge of the mean (μ_0) , then we can test to see if the sample mean (\bar{x}) is different from this value

- Z-test requires either a large sample size or knowledge of the sample mean and variance
 - Many cases this is unknown
- If we have prior knowledge of the mean (μ_0) , then we can test to see if the sample mean (\bar{x}) is different from this value

Test statistic (t-stat):

$$t = \frac{\bar{x} - \mu_0}{\text{SE}}$$

• Standard error (SE): $\frac{s}{\sqrt{n}}$

We estimate SE from the sample, need a distribution that accounts for uncertainty in estimate from sample size

We estimate SE from the sample, need a distribution that accounts for uncertainty in estimate from sample size

The t-distribution is only indexed by df

• Larger sample size \rightarrow s is closer to σ

Degrees of Freedom

Statistical currency: Earned by collecting independent observations, spent estimating population parameters or test statistics

- Number of pieces of new information that go into estimating some statistic
- Amount of useful information

Confidence intervals

Plausible range for parameter of interest.

 "X% chance that the interval contains the true value of the parameter"

$$\bar{x} \pm t_{(n-1),\alpha/2} SE[\bar{x}]$$