

Unit 2: Boundary value problems

6. Analogy with eigenvalue-

Course > and PDEs

> <u>4. Boundary Value Problems</u> > eigenvector problems

6. Analogy with eigenvalue-eigenvector problems

To describe a function $v\left(x\right)$, one needs to give infinitely many numbers, namely its values at all the different input x-values. Thus $v\left(x\right)$ is like a vector of infinite length.

The linear differential operator $\frac{d^2}{dx^2}$ maps each function to a function, just as a 2×2 matrix defines a linear transformation mapping each vector in \mathbb{R}^2 to another vector in \mathbb{R}^2 . Thus $\frac{d^2}{dx^2}$ is like an $\infty \times \infty$ matrix.

The ODE $\frac{d^2}{dx^2}v=\lambda v$ (with boundary conditions) amounts to an infinite system of equations: the ODE consists of one equality of numbers at each x in the interval $(0,\pi)$, and boundary conditions are equalities at the endpoints. Thus the ODE with boundary conditions is like a system of equations $A\mathbf{v}=\lambda\mathbf{v}$. Nonzero solutions v(x) to $\frac{d^2}{dx^2}v=\lambda v$ exist only for special values of λ , namely

$$\lambda = -1, -4, -9, \ldots,$$

just as $A\mathbf{v}=\lambda\mathbf{v}$ has a nonzero solution \mathbf{v} only for special values of λ , namely the eigenvalues of A. But the differential operator $\frac{d^2}{dx^2}$ has infinitely many eigenvalues, as one would expect for an $\infty\times\infty$ matrix.

The nonzero solutions $v\left(x\right)$ to $\frac{d^2}{dx^2}v=\lambda v$ satisfying the boundary conditions are called **eigenfunctions** , since they act like eigenvectors.

Summary of the analogies:

n imes n matrix A

eigenvalue-eigenvector problem

$$A\mathbf{v} = \lambda \mathbf{v}$$

no more than n eigenvalues λ

no more than n eigenvectors ${f v}$

function $v\left(x\right)$

the linear operator $rac{d^2}{dx^2}$

boundary value problem

$$rac{d^{2}}{dx^{2}}v=\lambda v$$
 for $0< x<\pi$, $v\left(0
ight)=0$, $v\left(\pi
ight)=0$

eigenvalues
$$\lambda=-1,-4,-9,\ldots$$

eigenfunctions
$$v\left(x\right)=\sin\left(\sqrt{-\lambda}x\right)$$
, $\lambda=-1,-4,-9,\ldots$

6. Analogy with eigenvalue-eigenvector problems

Topic: Unit 2: Boundary value problems and PDEs / 6. Analogy with eigenvalue-eigenvector problems

Hide Discussion

Add a Post

Show all posts 💙	by recent activity 🗸
There are no posts in this topic yet.	
×	

© All Rights Reserved