MDSA D207 Exploratory Data Analysis

Justin Jordan

3/24/2024

WGU

A. Describe a real-world organizational situation or issue in the Data Dictionary you chose, by doing the following:

- 1. Provide one question that is relevant to your chosen data set.
 - What factors, if any, can be used to predict a customers churn?
 - Null hypothesis(H0) Churn rate for TechSupport and No TechSupport has no significant association
 - Alternative hypothesis(H1) Churn rate for TechSupport and No TechSupport has significant association
- 2. Explain how stakeholders in the organization could benefit from an analysis of the data.
 - This analysis will help identify any factors that contribute to customer churn. By identifying factors that contribute to churn, the company can address these factors to reduce churn rate. Since it costs 10 times more to acquire a new customer than to retain an existing one, it could greatly reduce cost the company spends on marketing new customers. Lowering the annual churn rate could also lead to higher profits for the company.
- 3. Identify all of the data in your data set that are relevant to answering your question in part A1.
 - Churn (Categorical/Ordinal) if a customer has discontinued service within the last month (yes, no)
 - TechSupport (Categorical/Ordinal) if a customer has technical support add-on (yes, no)

B. Describe the data analysis by doing the following:

- 1. Using one of the following techniques, write code (in either Python or R) to run the analysis of the data set:
 - chi-square

- t-test
- ANOVA
- 2. Provide the output and the results of any calculations from the analysis you performed.

Below is the code and ouput for B1 & B2. A chi-square test will be used.

```
In []: # package imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from scipy.stats import chi2
In []: # code for data frame
churn = pd.read_csv("C:/users/jjord/Documents/WGU/D207/PA/churn_clean.csv")
In []: # Profile of Data Frame
churn.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):

Data	columns (total 50 colu	umns):	
#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	int64
1	Customer_id	10000 non-null	object
2	Interaction	10000 non-null	object
3	UID	10000 non-null	object
4	City	10000 non-null	object
5	State	10000 non-null	object
6	County	10000 non-null	object
7	Zip	10000 non-null	int64
8	Lat	10000 non-null	float64
9	Lng	10000 non-null	float64
10	Population	10000 non-null	int64
11	·		
	Area	10000 non-null	object
12	TimeZone	10000 non-null	object
13	Job	10000 non-null	object
14	Children	10000 non-null	int64
15	Age	10000 non-null	int64
16	Income	10000 non-null	float64
17	Marital	10000 non-null	object
18	Gender	10000 non-null	object
19	Churn	10000 non-null	object
20	Outage_sec_perweek	10000 non-null	float64
21	Email	10000 non-null	int64
22	Contacts	10000 non-null	int64
23	Yearly_equip_failure	10000 non-null	int64
24	Techie	10000 non-null	object
25	Contract	10000 non-null	object
26	Port_modem	10000 non-null	object
27	Tablet	10000 non-null	object
28	InternetService	7871 non-null	object
29	Phone	10000 non-null	object
30	Multiple	10000 non-null	object
31	OnlineSecurity	10000 non-null	object
32	OnlineBackup	10000 non-null	object
33	DeviceProtection	10000 non-null	object
34	TechSupport	10000 non-null	object
35	StreamingTV	10000 non-null	object
36	StreamingMovies	10000 non-null	object
37	PaperlessBilling	10000 non-null	object
38	PaymentMethod	10000 non-null	object
39	Tenure	10000 non-null	float64
40	MonthlyCharge	10000 non-null	float64
41	Bandwidth_GB_Year	10000 non-null	float64
42			int64
42	Item1	10000 non-null	
	Item2	10000 non-null	int64
44	Item3	10000 non-null	int64
45	Item4	10000 non-null	int64
46	Item5	10000 non-null	int64
47	Item6	10000 non-null	int64
48	Item7	10000 non-null	int64
49	Item8	10000 non-null	int64

dtypes: float64(7), int64(16), object(27)
memory usage: 3.8+ MB

```
Out[]: CaseOrder
                                     0
         Customer_id
                                      0
         Interaction
                                     0
         UID
                                     0
         City
                                     0
         State
                                     0
                                     0
         County
                                     0
         Zip
                                     0
         Lat
                                     0
         Lng
                                      0
         Population
                                     0
         Area
                                     0
         TimeZone
         Job
                                     0
         Children
                                     0
         Age
                                     0
         Income
                                     0
                                     0
         Marital
                                     0
         Gender
         Churn
                                     0
         Outage_sec_perweek
                                     0
         Email
                                     0
                                     0
         Contacts
         Yearly_equip_failure
                                      0
         Techie
                                     0
                                      0
         Contract
         Port_modem
                                     0
         Tablet
                                      0
         InternetService
                                  2129
         Phone
                                     0
                                      0
         Multiple
                                     0
         OnlineSecurity
         OnlineBackup
                                     0
         DeviceProtection
                                      0
         TechSupport
                                     0
                                     0
         StreamingTV
                                     0
         StreamingMovies
                                     0
         PaperlessBilling
         PaymentMethod
                                     0
         Tenure
                                      0
                                     0
         MonthlyCharge
                                     0
         Bandwidth_GB_Year
         Item1
                                     0
         Item2
                                     0
         Item3
                                     0
         Item4
                                     0
         Item5
                                     0
         Item6
                                     0
         Item7
                                     0
         Item8
                                     0
         dtype: int64
```

Columns Zip, Lat, Lng currently are floats or ints. There are not quantitative so will change datatype to object. These values are not meant for any type of calculation. Since the rest of the data types for categorical are set to object, these will aslo.

```
In [ ]: obj_columns = ["Zip", "Lat", "Lng"]
        churn[obj_columns] = churn[obj_columns].astype(object)
In [ ]: # rename item columns
        churn.rename(
            columns={
                "Item1": "Timely_response",
                "Item2": "Timely_fixes",
                "Item3": "Timely_replacements",
                "Item4": "Reliability",
                "Item5": "Options",
                "Item6": "Respectful response",
                "Item7": "Courteous_exchange",
                "Item8": "Active_listening",
            },
            inplace=True,
In [ ]: # Profile of Data Frame after additional cleaning
        churn.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):

Data	columns (total 50 colu	umns):	
#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	int64
1	Customer_id	10000 non-null	object
2	Interaction	10000 non-null	object
3	UID	10000 non-null	object
4	City	10000 non-null	object
5	State	10000 non-null	object
6	County	10000 non-null	object
7	Zip	10000 non-null	object
8	Lat	10000 non-null	object
9	Lng	10000 non-null	object
10	Population	10000 non-null	int64
11	Area	10000 non-null	object
12	TimeZone	10000 non-null	object
13	Job	10000 non-null	object
14	Children	10000 non-null	int64
15	Age	10000 non-null	int64
16	Income	10000 non-null	float64
17	Marital	10000 non-null	object
18	Gender	10000 non-null	object
			•
19	Churn	10000 non-null	object
20	Outage_sec_perweek	10000 non-null	float64
21	Email	10000 non-null	int64
22	Contacts	10000 non-null	int64
23	Yearly_equip_failure	10000 non-null	int64
24	Techie	10000 non-null	object
25	Contract	10000 non-null	object
26	Port_modem	10000 non-null	object
27	Tablet	10000 non-null	object
28	InternetService	10000 non-null	object
29	Phone	10000 non-null	object
30	Multiple	10000 non-null	object
31	OnlineSecurity	10000 non-null	object
32	OnlineBackup	10000 non-null	object
33	DeviceProtection	10000 non-null	object
34	TechSupport	10000 non-null	object
35	StreamingTV	10000 non-null	object
36	StreamingMovies	10000 non-null	object
37	PaperlessBilling	10000 non-null	object
38	PaymentMethod	10000 non-null	object
39	Tenure	10000 non-null	float64
40	MonthlyCharge	10000 non-null	float64
41	Bandwidth_GB_Year	10000 non-null	float64
42	Timely_response	10000 non-null	int64
43	Timely_fixes	10000 non-null	int64
44	Timely_replacements	10000 non-null	int64
45	Reliability	10000 non-null	int64
46	Options	10000 non-null	int64
47	Respectful_response	10000 non-null	int64
48	Courteous_exchange	10000 non-null	int64
49	Active_listening	10000 non-null	int64
	3		-

```
dtypes: float64(5), int64(15), object(30)
       memory usage: 3.8+ MB
In [ ]: # contingency table creation for columns Churn and TechSupport
        ct = pd.crosstab(
            churn["Churn"], churn["TechSupport"], margins=True, margins_name="Totals"
        print(ct)
       TechSupport
                     No Yes Totals
       Churn
       No
                    4634 2716
                                 7350
       Ves
                    1616 1034
                                  2650
       Totals
                    6250 3750
                                 10000
In [ ]: # chi-square test with chi2 contingency (WGU, 2024)
        chi_results = stats.chi2_contingency(ct)
        print(chi_results)
       Chi2ContingencyResult(statistic=3.5488469601677153, pvalue=0.4704900304752636, dof=
       4, expected freq=array([[ 4593.75, 2756.25, 7350. ],
              [ 1656.25,
                         993.75, 2650. ],
              [ 6250. , 3750. , 10000.
In [ ]: # results from above
        # statistic = 3.5488469601677153
        # pvalue = 0.4704900304752636
        \# dof = 4
        # expected_freq = ([[ 4593.75, 2756.25, 7350. ],[ 1656.25, 993.75, 2650. ],[
        pvalue = 0.4704900304752636
        # interpretation of results based on pvalue and an alpha of 5%
        alpha = 0.05
        if pvalue < alpha:</pre>
            print(
                "Churn rate for TechSupport and No TechSupport has no significant associati
        else:
            print(
                "Churn rate for TechSupport and No TechSupport has significant association.
```

Churn rate for TechSupport and No TechSupport has significant association. NOT REJE

B. Continued

- 3. Justify why you chose this analysis technique.
 - The analysis is using the categorical variables Churn and TechSupport. A chisquared test was used because it determines if an assocation exists between two
 categorical vairables(WGU, 2024). A t-test was not used becuase it compares means
 of continuous variables. An ANOVA test was not used becuase it also compares
 means of continuous variables. Since we are using categorical variables and we

needed to see if any association existed between them, a chi-squared test was the most suitable option.

C. Identify the distribution of two continuous variables and two categorical variables using univariate statistics from your cleaned and prepared data.

Represent your findings in Part C, visually as part of your submission.

Continuous Variables

- Bandwidth GB Year
- Outage_sec_perweek

Categorical Variables

- InternetService
- Contract

```
In []: # List creation for continuous variables
    cont_var = ["Bandwidth_GB_Year", "Outage_sec_perweek"]
    # continuous variable visualizations
    for n, col in enumerate(churn[cont_var]):
        try:
            plt.figure(n)
            sns.histplot(churn[col][churn[col] > 0], kde=True)
        except Exception:
            pass
```

```
c:\Users\jjord\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
  with pd.option_context('mode.use_inf_as_na', True):
c:\Users\jjord\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
  with pd.option_context('mode.use_inf_as_na', True):
```



```
In [ ]: # categorical variable visualizations
fig, axes = plt.subplots(1, 2, figsize=(20, 5))
sns.countplot(data=churn, x="InternetService", ax=axes[0])
axes[0].set_title("Internet Services")
```

```
sns.countplot(data=churn, x="Contract", ax=axes[1])
axes[1].set_title("Contract")
```

```
Out[]: Text(0.5, 1.0, 'Contract')
```



```
In [ ]: # descriptive stats Bandwidth_GB_Year
churn.Bandwidth_GB_Year.describe()
```

```
Out[]: count
                  10000.000000
         mean
                   3392.341550
         std
                   2185.294852
                    155.506715
         min
         25%
                   1236.470827
         50%
                   3279.536903
         75%
                   5586.141370
         max
                   7158.981530
```

Name: Bandwidth_GB_Year, dtype: float64

```
10000.000000
Out[]: count
         mean
                     10.001848
                      2.976019
         std
         min
                      0.099747
         25%
                      8.018214
         50%
                     10.018560
         75%
                     11.969485
                     21.207230
         max
```

Name: Outage_sec_perweek, dtype: float64

```
Out[]: InternetService
Fiber Optic 4408
DSL 3463
No Internet Service 2129
Name: count, dtype: int64
```

```
Out[]: Contract
```

Month-to-month 5456
Two Year 2442
One year 2102
Name: count, dtype: int64

Bandwidth_GB_Year has a distribution that is bimodal and Outage_sec_perweek has a normal distribution. InternetService shows Fiber Optic as the most popular choice followed by DSL and No Internet Service respectively. Contract shows the Month-to-month option being far more popular than Two Year and One year respectively.

D. Identify the distribution of two continuous variables and two categorical variables using bivariate statistics from your cleaned and prepared data.

Represent your findings in Part D, visually as part of your submission.

Continuous Variables

- Children
- MonthlyCharge

Categorical Variables

- Churn
- Gender

```
In [ ]: # bivariate stats continuous variables
sns.boxplot(x="Children", y="MonthlyCharge", data=churn)
Out[ ]: <Axes: xlabel='Children', ylabel='MonthlyCharge'>
```


 MonthlyCharge
 Children

 MonthlyCharge
 1.000000
 -0.009781

 Children
 -0.009781
 1.000000

In []: # bivariate stats categorical variables
sns.countplot(x="Churn", hue="Gender", data=churn)

Out[]: <Axes: xlabel='Churn', ylabel='count'>


```
In [ ]: # correlation between churn and gender
bv = pd.crosstab(churn["Churn"], churn["Gender"], margins=True)
print(bv)

Gender Female Male Nonbinary All
Churn
No 3753 3425 172 7350
Yes 1272 1319 59 2650
```

231 10000

E. Summarize the implications of your data analysis by doing the following:

1. Discuss the results of the hypothesis test.

5025 4744

- The alpha for the chi-square test is set to 0.05 The analysis shows a p-value of 0.47049 is greater than the alpha and fails to reject the null hypothesis. At this time, a conclusion cannot be made that there is a correlation between the variables used.
 - Null hypothesis(H0) Churn rate for TechSupport and No TechSupport has no significant association
 - Alternative hypothesis(H1) Churn rate for TechSupport and No TechSupport has significant association

```
In [ ]: # copy of code from section B to show what is discussed above
pvalue = 0.4704900304752636
# interpretation of results based on pvalue and an alpha of 5%
```

All

```
alpha = 0.05
if pvalue < alpha:
    print(
        "Churn rate for TechSupport and No TechSupport has no significant associati
    )
else:
    print(
        "Churn rate for TechSupport and No TechSupport has significant association.
    )</pre>
```

Churn rate for TechSupport and No TechSupport has significant association. NOT REJE CTFD

E.(continued)

- 2. Discuss the limitations of your data analysis.
 - The analysis is using the categorical variables Churn and TechSupport. A chisquared test was used because it determines if an assocation exists between two categorical vairables(WGU, 2024). A t-test was not used becuase it compares means of continuous variables. An ANOVA test was not used becuase it also compares means of continuous variables. Since we are using categorical variables and we needed to see if any association existed between them, a chi-squared test was the most suitable option as the other two require the use of numerical variables.
 - Another limitation of the analysis is that only two variables were used. In order to get a better understanding of customer Churn, it would be ideal to consider the addition of other variables for analysis. Trying to get insight into churn rate on only two variables is not ideal as there are other factors that contribute to churn.
- 3. Recommend a course of action based on your results.
 - The analysis showed to not reject the null hypothesis and that there was no correlation between the variables. Even though the null was not rejected, further analysis should be done. It is recommended that other variables to be added to the analysis and other test be explored as well. It would also be wise to commend the techincal support team for a job well done as there actions do not influence a customer's churn according to this analysis.

F. Panopto Link

https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f3c25a43-36ac-47cb-85b5-b1400017131e

G. Reference the web sources used to acquire segments of third-party code to support the analysis.

WGU (n.d.). A Guide to Conduc ng Chi-Square Test for Two Categorical Variables using Python. Retrieved March 24, 2024, from https://srm--c.vf.force.com/apex/CourseArticle?
id=kA03x0000015vjWCAQ

H. Acknowledge sources, using in-text citations and references, for content that is quoted, paraphrased, or summarized.

WGU (n.d.). A Guide to Conduc ng Chi-Square Test for Two Categorical Variables using Python. Retrieved March 24, 2024, from https://srm--c.vf.force.com/apex/CourseArticle?
id=kA03x0000015vjWCAQ