1. a) Definiu el concepte de punt adherent a un conjunt. Calculeu l'adherència del conjunt

$$C = \{ (x, y) \in \mathbb{R}^2 : x^2 - 1 < y \le 0 \}.$$

b) Definiu el concepte de conjunt compacte. Si  $f: \mathbb{R}^2 \to \mathbb{R}^2$  és la funció definida per

$$f(x,y) = (e^{x-y}\sin(x^2y), \log(1+y^2e^{-x})),$$

proveu que  $f(\overline{C})$  és compacte.

Justifiqueu detalladament les respostes.

## Solució:

a) Concepte de punt adherent a un conjunt: Donem dues definicions equivalents:

Definició 1: Un punt  $a \in \mathbb{R}^n$  és adherent a un conjunt  $C \subset \mathbb{R}^n$  quan  $B(a,r) \cap C \neq \emptyset$ , per a cada r > 0.

Definició 2: Un punt  $a \in \mathbb{R}^n$  és adherent a un conjunt  $C \subset \mathbb{R}^n$  quan a és el límit d'una successió de punts de C.

El conjunt C està dibuixat en la figura següent:



Per tant,  $\overline{C}$  ha de ser el conjunt següent:



Així doncs, volem demostrar que

$$\overline{C} = \{ (x, y) \in \mathbb{R}^2 : x^2 - 1 \le y \le 0 \}.$$

Per fer això provarem les dues inclusions següents:

- $\overline{C} \subset \{(x,y) \in \mathbb{R}^2 : x^2 1 \leq y \leq 0\}$ : Sigui  $(x,y) \in \overline{C}$ . Aleshores, per la definició  $2, (x,y) = \lim(x_n,y_n)$ , essent  $\{(x_n,y_n)\}_n$  una successió de punts de C. Com que  $(x_n,y_n) \in C$ , tenim que  $x_n^2 - 1 < y_n \leq 0$ , i passant al límit obtenim que  $x^2 - 1 = \lim x_n^2 - 1 \leq y = \lim y_n \leq 0$ , és a dir,  $x^2 - 1 \leq y \leq 0$ , com voliem demostrar.
- $\{(x,y) \in \mathbb{R}^2 : x^2 1 \le y \le 0\} \subset \overline{C}$ : Sigui  $(x,y) \in \mathbb{R}^2$  tal que  $x^2 - 1 \le y \le 0$ . Si  $x^2 - 1 < y \le 0$  llavors  $(x,y) \in C \subset \overline{C}$ . Suposem doncs que  $x^2 - 1 = y \le 0$ , és a dir,  $y = x^2 - 1$  i  $x \in [-1,1]$ . Aleshores  $(x,y) = \lim(x_n,y_n)$ , essent  $(x_n,y_n) = (\frac{n}{n+1}x,(\frac{n}{n+1})^2y)$ . Com que  $(x_n,y_n) \in C$ , ja que

$$x_n^2 - 1 = \left(\frac{n}{n+1}\right)^2 x^2 - 1 < \left(\frac{n}{n+1}\right)^2 (x^2 - 1) = \left(\frac{n}{n+1}\right)^2 y = y_n,$$

hem provat que  $(x,y) \in \overline{C}$ , per la definició 2.

b) Concepte de conjunt compacte: Un conjunt  $C \subset \mathbb{R}^n$  és compacte quan cada successió de punts de C admet alguna successió parcial que té per límit un punt de C.

Recordeu que els conjunts compactes de  $\mathbb{R}^n$  es caracteritzen com els subconjunts de  $\mathbb{R}^n$  que són simultàniament tancats i acotats. En el nostre cas,  $\overline{C}$  és un conjunt tancat (ja que  $\overline{\overline{C}} = \overline{C}$ ) i acotat (ja que, com que  $\overline{C} = \{(x,y) \in \mathbb{R}^2 : x^2 - 1 \le y \le 0\}$ , tot punt  $(x,y) \in \overline{C}$  compleix que  $-1 \le y \le 0$  i que  $x^2 \le 1$ , és a dir,  $-1 \le x \le 1$ ). Per tant,  $\overline{C}$  és un conjunt compacte.

D'altra banda, f és una funció contínua ja que les seves funcions components o coordenades  $f_1(x,y) = e^{x-y}\sin(x^2y)$  i  $f_2(x,y) = \log(1+y^2e^{-x})$  són funcions contínues:

•  $f_1:\mathbb{R}^2 \to \mathbb{R}$  és contínua perquè és el producte de les funcions contínues

$$g, h: \mathbb{R}^2 \to \mathbb{R}$$
 definides per  $g(x, y) = e^{x-y}$  i  $h(x, y) = \sin(x^2 y)$ .

Les funcions g i h són contínues perquè són composicions de funcions contínues. Concretament,  $g = \exp \circ p$  i  $h_1 = \sin \circ q$ , essent  $\exp, \sin : \mathbb{R} \to \mathbb{R}$  les funcions exponencial i sinus i  $p, q : \mathbb{R}^2 \to \mathbb{R}$  els polinomis p(x, y) = x - y i  $q(x, y) = x^2y$ .

•  $f_2: \mathbb{R}^2 \to \mathbb{R}$  és contínua perquè és composició de funcions contínues:  $f_2 = \varphi \circ k$ , on  $\varphi: (-1, +\infty) \to \mathbb{R}$  i  $k: \mathbb{R}^2 \to \mathbb{R}$  són les funcions definides per  $\varphi(t) = \log(1+t)$  i  $k(x,y) = y^2 e^{-x}$  (Observeu que  $k(\mathbb{R}^2) \subset [0, +\infty) \subset (-1, +\infty)$ ). És obvi que  $\varphi$  és contínua. La funció k és contínua ja que és el producte de les funcions contínues  $k_1(x,y) = y^2$  (que és un polinomi) i  $k_2(x,y) = e^{-x}$  (que és contínua perquè és la composició del polinomi r(x,y) = -x i exp:  $\mathbb{R} \to \mathbb{R}$ , que són funcions contínues).

Finalment, com que la imatge per una funció contínua d'un conjunt compacte és un conjunt compacte, concloem que  $f(\overline{C})$  és compacte.

**2.** Per a cada  $\alpha > 0$  considereu la funció  $f_{\alpha} : \mathbb{R}^2 \to \mathbb{R}$  definida per

$$f_{\alpha}(x,y) = \begin{cases} \frac{\log(1+x^2y^4)}{(x^2+y^2)^{\alpha}}, & \text{si } (x,y) \neq (0,0) \text{ i } x \leq 0, \\ 0, & \text{si } (x,y) = (0,0) , \\ \frac{|\sin(xy)|^{\alpha}}{x^2+y^2}, & \text{si } (x,y) \neq (0,0) \text{ i } x > 0. \end{cases}$$

Determineu els valors d' $\alpha > 0$  per als quals  $f_{\alpha}$  és contínua en l'origen. Justifiqueu detalladament la resposta.

## Solució:

Recordeu que  $f_{\alpha}$  és contínua en l'origen si i només si  $\lim_{(x,y)\to(0,0)} f_{\alpha}(x,y) = f_{\alpha}(0,0)$ .

Però  $f_{\alpha}(0,0)=0,$ i per tant  $f_{\alpha}$  és contínua en l'origen si i només si

(1) 
$$\lim_{(x,y)\to(0,0)} f_{\alpha}(x,y) = 0.$$

Ara, com que  $\mathbb{R}^2 \setminus \{(0,0)\} = E_0 \cup E_1 \cup E_2$ , amb  $E_0 = [(\mathbb{R} \setminus \{0\}) \times \{0\}] \cup [\{0\} \times (\mathbb{R} \setminus \{0\})]$ ,  $E_1 = \{(x,y) \in \mathbb{R}^2 : x < 0, y \neq 0\}$  i  $E_2 = \{(x,y) \in \mathbb{R}^2 : x > 0, y \neq 0\}$ , i (0,0) és un punt d'acumulació de tots els  $E_j$ 's, resulta que (1) és equivalent a que es compleixin les condicions

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in E_i}} f_{\alpha}(x,y) = 0,$$

per a j = 0, 1, 2.

Com que  $f_{\alpha}(x,y) = 0$ , per a tot  $(x,y) \in E_0$  i cada  $\alpha > 0$ , és obvi que la condició  $(L_0)$  es compleix per a cada  $\alpha > 0$ .

Per a quins  $\alpha$ 's es compleix la condició (L<sub>1</sub>) ?

Si  $(x, y) \in E_1$  llavors  $f_{\alpha}(x, y) = g(x, y) h_{\alpha}(x, y)$ , amb

$$g(x,y) = \frac{\log(1+x^2y^4)}{x^2y^4}$$
 i  $h_{\alpha}(x,y) = \frac{x^2y^4}{(x^2+y^2)^{\alpha}}$ .

Ara 
$$\lim_{(x,y)\to(0,0)} g(x,y) = 1$$
, ja que  $\lim_{(x,y)\to(0,0)} x^2 y^4 = 0$  i  $\lim_{t\to 0} \frac{\log(1+t)}{t} = 1$ .

(El darrer límit és la definició de la derivada de la funció logaritme en el punt a=1).

Per tant, la condició  $(L_1)$  és equivalent a

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in E_1}} h_{\alpha}(x,y) = 0.$$

Observeu que  $0 \le h_{\alpha}(x,y) \le \|(x,y)\|^{6-2\alpha}$ , per a tot  $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ .

(Aqui hem utilitzat les designaltats trivials  $x^2 \leq \|(x,y)\|^2$  i  $y^4 \leq \|(x,y)\|^4$ .)

Quan 
$$6 - 2\alpha > 0$$
, és a dir, quan  $\alpha < 3$ , és clar que  $\lim_{(x,y)\to(0,0)} ||(x,y)||^{6-2\alpha} = 0$ ,

i per tant la desigualtat anterior implica que es compleix la condició  $(L'_1)$ .

D'altra banda, si  $\alpha \geq 3$  llavors no es compleix  $(L'_1)$  perquè el límit de  $h_{\alpha}$  en l'origen segons la semirrecta  $R_1 = \{(x, x) : x < 0\}$ , que està continguda en  $E_1$ , no és 0:

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in R_1}} h_{\alpha}(x,y) = \lim_{x\to 0^-} h_{\alpha}(x,x) = \lim_{x\to 0^-} \frac{(x^2)^{3-\alpha}}{2^{\alpha}} = \begin{cases} +\infty, & \text{si } \alpha > 3, \\ \frac{1}{8}, & \text{si } \alpha = 3. \end{cases}$$

En consequència, la condició (L<sub>1</sub>) es compleix si i només si  $0 < \alpha < 3$ .

Per a quins  $\alpha$ 's es compleix la condició (L<sub>2</sub>)?

Si  $(x,y) \in E_2$  llavors  $f_{\alpha}(x,y) = |G(x,y)|^{\alpha} H_{\alpha}(x,y)$ , amb

$$G(x,y) = \frac{\sin(xy)}{xy}$$
 i  $H_{\alpha}(x,y) = \frac{|xy|^{\alpha}}{x^2 + y^2}$ .

Ara  $\lim_{(x,y)\to(0,0)}|G(x,y)|^\alpha=1$  perquè  $\lim_{(x,y)\to(0,0)}G(x,y)=1,$  ja que

$$\lim_{(x,y)\to(0,0)} xy = 0 \qquad \text{ i } \qquad \lim_{t\to 0} \frac{\sin t}{t} = 1.$$

(El darrer límit és la definició de la derivada de la funció sinus en l'origen).

Observeu que  $0 \le H_{\alpha}(x,y) \le ||(x,y)||^{2\alpha-2}$ , per a tot  $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ .

(Aqui hem utilitzat que  $\alpha>0$  i les designal tats trivials  $|x|\leq \|(x,y)\|$  i  $|y|\leq \|(x,y)\|$ .)

Per tant, la condició (L<sub>2</sub>) és equivalent a

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in E_2}} H_{\alpha}(x,y) = 0.$$

Quan  $2\alpha - 2 > 0$ , és a dir, quan  $\alpha > 1$ , és clar que  $\lim_{(x,y)\to(0,0)} ||(x,y)||^{2\alpha-2} = 0$ ,

i per tant la desigualtat anterior implica que es compleix la condició  $(L'_2)$ .

D'altra banda, si  $0 < \alpha \le 1$  llavors no es compleix  $(L'_2)$  perquè el límit de  $H_{\alpha}$  en l'origen segons la semirrecta  $R_2 = \{(x, x) : x > 0\}$ , que està continguda en  $E_2$ , no és 0:

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in R_2}} H_{\alpha}(x,y) = \lim_{x\to 0^+} H_{\alpha}(x,x) = \lim_{x\to 0^+} \frac{(x^2)^{\alpha-1}}{2} = \begin{cases} +\infty, & \text{si } 0<\alpha\leq 1,\\ \frac{1}{2}, & \text{si } \alpha=1. \end{cases}$$

En consequència, la condició (L<sub>2</sub>) es compleix si i només si  $\alpha > 1$ .

En conclusió,  $f_{\alpha}$  és contínua en l'origen si i només si  $1 < \alpha < 3$ .

- **3.** a) Definiu els conceptes de derivada direccional i de diferencial. Enuncieu i proveu la relació entre aquests dos conceptes.
  - b) Per a cada enter n > 0 considereu la funció  $f_n : \mathbb{R}^2 \to \mathbb{R}$  definida per

$$f_n(x,y) = \begin{cases} \frac{(xy)^n}{(x^2 + y^2)^2}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (b.1) Calculeu les derivades direccionals de  $f_n$  en l'origen (quan existeixin).
- (b.2) Determineu els enters n > 0 per als quals  $f_n$  és diferenciable en l'origen. Justifiqueu detalladament les respostes.

## Solució:

a) Conceptes de derivada direccional i de diferencial:

Siguin U un subconjunt obert de  $\mathbb{R}^n$ ,  $a \in U$  i  $f: U \to \mathbb{R}$ .

La derivada direccional de f en a segons la direcció del vector unitari  $u \in \mathbb{R}^n$  és el límit

$$D_u f(a) := \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t},$$

quan aquest límit existeix i és finit.

Diem que f és diferenciable en a quan existeix una aplicació lineal  $L: \mathbb{R}^n \to \mathbb{R}$  tal que

(2) 
$$\lim_{x \to a} \frac{f(x) - f(a) - L(x - a)}{\|x - a\|} = 0.$$

Aquesta aplicació lineal L que, si existeix és única, es diu diferencial de f en a i es denota per  $df_a$  o bé per Df(a).

Relació entre els dos conceptes:

Si f és diferenciable en a, llavors existeixen les derivades direccionals en a segons qualsevol direcció i  $D_u f(a) = Df(a)(u)$ , per a cada vector unitari  $u \in \mathbb{R}^n$ .

Demostració:

Si f és diferenciable en a, llavors es compleix (2) amb L = Df(a) i per tant el corresponent límit en a segons la recta x = a + tu també val 0, és a dir,

$$\lim_{t \to 0} \frac{f(a+tu) - f(a) - Df(a)(tu)}{|t|} = 0.$$

Però això és equivalent a

$$0 = \lim_{t \to 0} \left| \frac{f(a+tu) - f(a) - Df(a)(tu)}{|t|} \right| = \lim_{t \to 0} \left| \frac{f(a+tu) - f(a) - Df(a)(tu)}{t} \right|.$$

Com que  $Df(a): \mathbb{R}^n \to \mathbb{R}$  és lineal obtenim que

$$\lim_{t \to 0} \left| \frac{f(a+tu) - f(a)}{t} - Df(a)(u) \right| = 0,$$

i això vol dir que

$$\lim_{t \to 0} \frac{f(a+tu) - f(a)}{t} = Df(a)(u),$$

que és el que voliem provar.

(b.1) Sigui  $u=(u_1,u_2)\in\mathbb{R}^2$  un vector unitari. Aleshores el límit

$$\lim_{t \to 0} \frac{f_n(tu_1, tu_2) - f_n(0, 0)}{t} = \lim_{t \to 0} \frac{t^{2n}(u_1u_2)^n}{t(t^2u_1^2 + t^2u_2^2)^2} = \lim_{t \to 0} t^{2n-5}(u_1u_2)^n$$

val 0 si  $u_1 = 0$  o bé  $u_2 = 0$  o bé 2n - 5 > 0, és a dir,  $n \ge 3$  (recordeu que n és enter).

Si  $u_1 \neq 0$  i  $u_2 \neq 0$  i  $2n - 5 \leq 0$  llavors 2n - 5 és un enter senar negatiu i per tant el límit anterior no existeix, ja que els dos límits laterals corresponents no coincideixen:

$$\lim_{t \to 0^{-}} t^{2n-5} (u_1 u_2)^n = \begin{cases} -\infty, & \text{si } (u_1 u_2)^n > 0, \\ +\infty, & \text{si } (u_1 u_2)^n < 0, \end{cases}$$

mentre que

$$\lim_{t \to 0^+} t^{2n-5} (u_1 u_2)^n = \begin{cases} +\infty, & \text{si } (u_1 u_2)^n > 0, \\ -\infty, & \text{si } (u_1 u_2)^n < 0. \end{cases}$$

En conclusió, la derivada direccional de  $f_n$  en l'origen segons la direcció d'u,  $D_u f_n(0,0)$ , existeix si i només si  $u_1 = 0$  o bé  $u_2 = 0$  o bé  $n \ge 3$ , i en tals casos  $D_u f_n(0,0) = 0$ .

(b.2) Sabem que si  $f_n$  és diferenciable en l'origen ha de tenir les derivades direccionals en l'origen segons totes les direccions, i per tant  $n \geq 3$  i  $Df_n(0,0)(u) = D_u f_n(0,0) = 0$ , per a tot vector unitari  $u \in \mathbb{R}^n$ , segons hem vist en (b.1). Llavors, com que  $Df_n(0,0) : \mathbb{R}^2 \to \mathbb{R}$  és lineal, deduïm que  $Df_n(0,0)(v) = 0$ , per a tot  $v \in \mathbb{R}^2$ .

Suposem doncs que  $n \geq 3$ . Pel que acabem d'argumentar,  $f_n$  és diferenciable en l'origen si i només si

(3) 
$$\lim_{(x,y)\to(0,0)} \frac{f_n(x,y)}{\|(x,y)\|} = 0.$$

Però

$$\left| \frac{f_n(x,y)}{\|(x,y)\|} \right| = \frac{(|x||y|)^n}{\|(x,y)\|^5} \le \|(x,y)\|^{2n-5}, \text{ per a cada } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$

(Aqui hem fet servir les designaltats trivials  $|x| \le ||(x,y)||$  i  $|y| \le ||(x,y)||$ .)

Com que  $n \geq 3$ , tenim que  $2n-5 \geq 1$  i per tant  $\lim_{(x,y)\to(0,0)} \|(x,y)\|^{2n-5} = 0$ . Això i la designaltat anterior asseguren que es compleix (3), és a dir,  $f_n$  és diferenciable en l'origen. En conclusió,  $f_n$  és diferenciable en l'origen si i només si  $n \geq 3$ .