ME3425 - MINI PROJECT

FINAL PRESENTATION

Hafis Muhammed V H ME19BTECH11028 Bhupesh Mehta ME19BTEH11046 Siddarth Pattil ME19BTECH11022

PROBLEM STATEMENT

It is difficult for a forklift to move in a warehouse with tight spaces.

SOLUTION

Octadirectional car with mecanum wheels

CONCEPT EVALUATION MATRIX

DECISION VARIABLES	CONCEPT 1	CONCEPT 2	CONCEPT 3
No. of Wheels	2	3	4
Movement along Y axis	Possible	Possible	Possible
Movement along X axis	Not Possible	Possible	Possible
Movement in XY plane	Possible (not preferred)	Possible	Possible
Rotation	Not Possible	Possible but, complex	Possible
Stability	Not Good	Good	Better
Wear & Tear	Less	High	Very High
Cost	Less	High	Very High

Calculations

Approx mass = 3 kg

4 Mecanum wheels (4*50g), 4 Stepper motors (4*250g), Battery (150g) Assuming, body of the vehicle and other electronic components weighs the rest 650g. Considering 1 kg as tolerance in calculations.

Assuming

AeroDynamic drag is negligible, since projected area as well as velocity is less.

Gradient Resistance is zero as we are driving it on plane surfaces.

The only force we have to overcome to move the vehicle is rolling resistance.

Rolling Resistance = mg(C.O.F)/sqroot(2)

C.O.F values for different material bases

Material base	C.O.F (experimental value)	
Concrete	0.65	
Aluminium	0.40	
Wet surface	0.30	
Wooden surface	0.21	
Painted surface	0.35	

Material base	Value of Traction force (N)	
Concrete	13.15	
Aluminium	8.3	
Wet	6.237	
Wooden	4.366	
Painted	7.28	

Torque for each wheel =

(Total Traction Force/4)*WheelRadius

Mecanum wheels of diameter 48 mm 0r 60mm

Torque on each wheel

Surface	48mm (Nm)	60mm (Nm)
Concrete	0.0789	0.099
Aluminium	0.049	0.062
Wet	0.037	0.047
Wooden	0.026	0.033
Painted	0.044	0.055

Stepper Motors

	Dimensions (mm)	Holding Torque upto (Nm)	
NEMA 8	20	0.03	Lower
NEMA 11	28	0.12	Compatible
NEMA 14	35/39	0.28	Compatible
NEMA 17	42	0.8	Compatible
NEMA 23	57/60	3.2	Higher
NEMA 34	86	12	Higher
NEMA 42	110	30	Higher

All components

- 4 Mecanum wheels
- 4 Stepper motors
- 4 DRV8825 motor drivers

Arduino UNO

Bluetooth module HC-05 : car is controlled by an app via bluetooth

12V battery

Toycar chassis

Design & Results

Schematic Diagram

Arduino Code

```
if (readString =="BACKWARDLEFT") ( // MOVE BACKWARD LEFT
                                                           if (readString == "BACKWARD") {
                                                                                             // MOVE BACKWARD
AF DCMotor motor1(1); //Front Left Wheel
                                                                                                                             motor1.run (RELEASE):
                                                             motor1.run (BACKWARD);
AF DCMotor motor2(2); //Back Left Wheel
                                                                                                                             motor2.run (BACKWARD);
                                                             motor2.run (BACKWARD);
AF DCMotor motor3(3); //Front Right Wheel
                                                                                                                             motor3.rum (RELEASE) /
                                                             motor3.run (BACKWARD):
AF DCMotor motor4(4); //Back Right Wheel
                                                                                                                             motor4.run (BACKWARD);
                                                             motor4.run (BACKWARD);
                                                                                                                           if (readString == "BACKWARDRIGHT") {
String readString;
                                                                                                                                                              // MOVE BACKWARD RIGHT
                                                           if (readString =="LEFT") {
                                                                                         // MOVE LEFT SIDE
                                                                                                                             motor1.run (BACKWARD);
                                                             motor1.run (FORWARD);
                                                                                                                             motor2.run (RELEASE):
void setup() {
                                                                                                                             motor3.run (BACKWARD);
                                                             motor2.run (BACKWARD);
  Serial.begin (9600);
                                                                                                                             motor4.run (RELEASE);
                                                             motor3.run (FORWARD);
  motor1.setSpeed(250);
                               //Set Motor Speed
                                                             motor4.run (BACKWARD);
  motor2.setSpeed(250);
                                                                                                                           if (readString == "ROTATELEFT") (
                                                                                                                                                           // ROTATE LEFT SIDE
                                                                                                                             motor1.run (BACKWARD);
  motor3.setSpeed(250);
                                                           if (readString == "RIGHT") {
                                                                                          // MOVE RIGHT SIDE
                                                                                                                             motor2.run (FORWARD);
  motor4.setSpeed(250);
                                                             motor1.run (BACKWARD);
                                                                                                                             motor3.run (FORWARD);
                                                             motor2.run (FORWARD);
                                                                                                                             motor4.run (BACKWARD);
                                                             motor3.run (BACKWARD):
void loop() {
                                                                                                                           if (readString == "ROTATERIGHT") (
                                                                                                                                                            // ROTATE RIGHT SIDE
                                                             motor4.run (FORWARD):
  while (Serial.available()) {
                                                                                                                             motor1.run (FORWARD);
    delay(50);
                                                                                                                             motor2.run (BACKWARD):
                                                           if (readString == "FORWARDLEFT") {
                                                                                                // MOVE FORWARD LEFT
                                                                                                                             motor3.run (BACKWARD);
     char c=Serial.read();
                                                             motor1.run (FORWARD);
                                                                                                                             motor4.run (FORWARD);
    readString+=c;
                                                             motor2.run (RELEASE);
                                                             motor3.run (FORWARD);
                                                                                                                           if (readString =="STOP") (
                                                                                                                                                      // STOP
  if (readString.length()>0) {
                                                             motor4.run (RELEASE);
                                                                                                                             motor1.run (RELEASE);
    Serial.println(readString);
                                                                                                                             motor2.run (RELEASE);
                                                                                                                             motor3.run (RELEASE);
    if (readString == "FORWARD") {
                                              // MOVE
                                                           if (readString == "FORWARDRIGHT") {
                                                                                                 // MOVE FORWARD RIGHT
                                                                                                                             motor4. run (RELEASE);
       motor1.run (FORWARD);
                                                             motor1.run (RELEASE):
       motor2.run (FORWARD);
                                                             motor2.run (FORWARD):
       motor3.run (FORWARD);
                                                            motor3.run (RELEASE);
                                                                                                                           readString="";
       motor4.run (FORWARD);
                                                             motor4.run (FORWARD);
```

Bluetooth app Interface

Improvements

Because of unavailability, we replaced stepper motors with PMDC motors which are seen in toy cars. Main advantage of using PMDC is that we can control all four motors with a single motor driver (we used L293D motor driver shield), require less power than stepper motors and still gives enough torque.

Since, PMDC uses only less power we could replace 12V with 9V as input voltage.