Waves booklet revision answers

1.

Waves	Mechanical	Electromagnetic	
Definition	Transfer of energy through a	Transfer of energy as	
	physical medium without	oscillating electric and	
	transfer of the medium	magnetic fields.	
	itself.		
Differences	Requires a medium	Does not require a medium	
Similarities	Transfers energy without transferring matter, takes the		
	form of an oscillation, speed varies with medium, exhibits		
	wave behaviour (reflection, refraction, etc.)		
Examples	Sound, earthquake waves,	Light, radio waves,	
	ultrasound, ocean waves	microwave radiation, X-rays,	
		γ-rays, IR light, UV light	

- 2. A time graph can show period but not wavelength while a distance graph can show wavelength but not period
- 3. Definitions
 - a. Amplitude: maximum variation in the displacement of individual particles in a the medium of a wave or maximum variation in the density/pressure of particles in the medium of a wave
 - b. Frequency- f (Hz): the number of oscillations per second/number of complete wave cycles per second
 - c. Wavelength λ (m): length of one complete wave
 - d. Period T (s): time for one complete oscillation/wave cycle
 - e. Speed $v (m s^{-1})$: rate of change of position of the wave(fronts)
- 4. In longitudinal waves the direction of the oscillations is parallel to the direction of wave propagation, while in transverse waves the direction of oscillation is perpendicular to the direction of wave propagation. Sound is a longitudinal wave while light is a transverse wave.

5.

	P waves or primary waves	S waves or secondary waves	Surface waves (Rayleigh and
	primary waves	secondary waves	Love waves)
Speed	Fastest	Medium	Slowest
Туре	Longitudinal	Transverse	Transverse and/or

			Longitudinal
Damage	Lowest	Moderate	Highest
Special		Only travel	Only travel along
		through solids	surface

6.

7. v=velocity, s=displacement, t=time, T=period, λ=wavelength, f=frequency

$$v = \frac{s}{t}$$
if $t = T$, then $s = \lambda$

$$v = \frac{\lambda}{T}$$

$$T = \frac{1}{f}$$

$$v = f \lambda$$

- 8. frequency is the inverse of period and vice versa
- 9. At the peaks and troughs
- 10. Greater distance = greater amplitude
- 11. 3.53 s
- 12. 332 m s⁻¹

13.

- a. Transverse mechanical
- b. Transverse mechanical
- c. Longitudinal mechanical
- d. Transverse electromagnetic
- e. Longitudinal mechanical
- 14. Longitudinal mechanical
- 15. Easiest is as a pressure/distance, pressure/time, displacement/distance or displacement/time graph all of these will look like a transverse wave

16.

c.

17.

- a. Each string has a different resonant frequency (caused by different mass of string and different tension) so each string creates sound waves of a different pitch. Additionally each string can effectively be shortened incrementally by placing a finger between frets. This increases the resonant frequency for the string, increasing the pitch of sound created.
- b. The column of air in the trombone has its own resonant frequency, the valves and slide function to change the length of the air column, changing the resonant frequency so changing the pitch of sound created.