EJEMPLO 6.3.12 La mejor aproximación cuadrática media a e^x

Del ejemplo 6.3.10, el polinomio de segundo grado que mejor se aproxima a e^x sobre [0, 1], en el sentido del error cuadrático medio, está dado por

$$p_2(x) \approx 1.01 + 0.85x + 0.84x^2$$

RESUMEN 6.3

• Espacio con producto interno

El espacio vectorial complejo V se llama un **espacio con producto interno** si para cada par de vectores \mathbf{u} y \mathbf{v} en V existe un número complejo único (\mathbf{u}, \mathbf{v}) denominado el **producto interno** de \mathbf{u} y \mathbf{v} , tal que si \mathbf{u} , \mathbf{v} y \mathbf{w} están en V y $\alpha \in \mathbb{C}$, entonces

- i) $(v, v) \ge 0$
- ii) $(\mathbf{v}, \mathbf{v}) = 0$ si v sólo si $\mathbf{v} = 0$
- **iii)** (u, v + w) = (u, v) + (u, w)
- iv) (u + v, w) = (u, w) + (v, w)
- iv) $(\mathbf{u}, \mathbf{v}) = (\overline{\mathbf{v}, \mathbf{u}})$
- vi) $(\alpha \mathbf{u}, \mathbf{v}) = \alpha(\mathbf{u}, \mathbf{v})$
- **vii)** $(\mathbf{u}, \alpha \mathbf{v}) = \overline{\alpha}(\mathbf{u}, \mathbf{v})$
- Producto interno en \mathbb{C}^n

$$(\mathbf{x},\mathbf{y}) = x_1 \overline{y}_1 + x_2 \overline{y}_2 + \cdots + x_n \overline{y}_n$$

• Sea V un espacio con producto interno y suponga que u y v están en V. Entonces

$$\mathbf{u} \ \mathbf{v} \ \mathbf{v} \ \mathbf{son} \ \mathbf{ortogonales} \ \mathbf{si} \ \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

• La norma de u, denotada por ||u||, está dada por

$$|\mathbf{u}|| = \sqrt{(\mathbf{u}, \mathbf{u})}$$

• Conjunto ortonormal

El conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es un **conjunto ortonormal** en V si

$$(\mathbf{v}_i, \mathbf{v}_i) = 0$$
 para $i \neq j$

У

$$||\mathbf{v}_i|| = \sqrt{(\mathbf{v}_i, \mathbf{v}_i)} = 1$$

Si sólo se cumple la primera condición, entonces se dice que el conjunto es ortogonal.

• Proyección ortogonal

Sea H un subespacio vectorial con producto interno V con una base ortonormal $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$. Si $\mathbf{v} \in V$, entonces la **proyección ortogonal** de \mathbf{v} sobre H, denotada por proy $_H\mathbf{v}$, está dada por

$$\operatorname{proy}_{H} \mathbf{v} = \langle \mathbf{v}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} + \langle \mathbf{v}, \mathbf{u}_{2} \rangle \mathbf{u}_{2} + \cdots + \langle \mathbf{v}, \mathbf{u}_{k} \rangle \mathbf{u}_{k}$$

• Complemento ortogonal

Sea H un subespacio del espacio con producto interno V. Entonces el **complemento ortogonal** de H, denotado por H^{\perp} , está dado por

$$H^{\perp} = \{ \mathbf{x} \in V : (\mathbf{x}, \mathbf{h}) = 0 \text{ para toda } \mathbf{h} \in H \}$$