Tecnología de Computación de Datos Masivos Presentación

Félix J. García, Diego Sevilla

Dpto. Ingeniería y Tecnología de Computadores Facultad de Informática Universidad de Murcia

dsevilla@um.esfgarcia@um.es

2021

Tecnología de Computación de Datos Masivos

CURSO ACADÉMICO 2021/2022

TITULACIÓN MÁSTER BIG DATA

CUATRIMESTRE PRIMERO
CURSO PRIMERO

CARÁCTER OBLIGATORIA

CRÉDITOS ECTS 4,5

DEPARTAMENTO INGENIERÍA Y TECNOLOGÍA DE

COMPUTADORES

Profesores y horario

	Profesor	Horario	Aula
Teoría	D. Sevilla/F.J. García	Lunes 16:00-17:30	Lab. 2.4
Prácticas	D. Sevilla/F.J. García	Miércoles 16:00-18:00	Lab. 2.4

Profesor	Tutorías	Contacto
D. Sevilla	Miércoles 11:00-14:00	Despacho 3.31
	(y tutorías electrónicas)	dsevilla@um.es
		868 88 7571
F.J. García	Miércoles 9:00-12:00	Despacho 3.30
	(y tutorías electrónicas)	fgarcia@um.es
		868 88 8513

Temario

- Big Data y MapReduce
 - Introducción al BigData
 - Modelo de programación MapReduce: ejemplos de uso, ejecución, optimizaciones, implementaciones
- Introducción a Hadoop
 - Introducción e instalación de Hadoop
 - Introducción a HDFS
 - Gestor de recursos y planificador de tareas: YARN
 - Introducción a MapReduce en Hadoop
- HDFS
 - Filesystems en Hadoop
 - Interfaces principales: línea de comandos y Java
 - Herramientas para la gestión del HDFS
 - Namenode principal y de checkpoint
 - Otras interfaces a HDFS

Temario (cont)

- MapReduce en Hadoop
 - Java MapReduce en Hadoop
 - Serialización y entrada/salida
 - Tareas MapReduce
 - Otros aspectos
 - Alternativas a Java
- Spark
 - Introducción a Apache Spark
 - API estructurada: DataFrames y DataSets
 - API de bajo nivel: RDDs
 - Despliegue y optimización de aplicaciones
 - Extensiones: Streaming, MLLib, GraphX
- Introducción al procesamiento en streaming con Apache Flink

Planificación del curso

Fecha	Teoría	Prácticas
13/09	Introducción a la asignatura	
20/09 y 22/09	Tema 1 Big Data y MapReduce	Práctica 1 Hadoop y HDFS (i)
29/09	NO LECTIVO	Práctica 1 Hadoop y HDFS (ii)
04/10 y 06/10	Tema 2 Hadoop y HDFS (i)	Práctica 1 Hadoop y HDFS (iii)
11/10 y 13/10	Tema 2 Hadoop y HDFS (ii)	Práctica 2 HDFS
18/10 y 20/10	Tema 2 Hadoop y HDFS (iii)	Práctica 3 MapReduce (i)
25/10 y 27/10	Tema 3 Apache Spark (i)	Práctica 3 MapReduce (ii)
03/11	NO LECTIVO	Práctica 4 Spark (i)
08/11 y 10/11	Tema 3 Apache Spark (ii)	Práctica 4 Spark (ii)
15/11 y 17/11	Tema 4 Tecnologías Avanzadas	Finalización de prácticas

Evaluación

Evaluación de teoría

- Examen teórico: tipo test
- Ponderación: 30 %

Evaluación de prácticas

- Documentación y entrevista final
- Ponderación: 70 %

Bibliografía recomendada

Bibliografía recomendada

- Tom White, Hadoop: The Definitive Guide, 4th Edition, O'Reilly, 2015
- Bill Chambers, Matei Zaharia, Spark: The Definitive Guide, O'Reilly, 2018
- Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia, Learning Spark. Lightning-Fast Big Data Analysis, O'Reilly, 2015
- Hueske F., Kalavri V, Stream Processing with Apache Flink, O'Reilly, 2019

Otros libros

- P. Zečević, M. Bonaći, Spark in action, Manning Pubs, 2017
- H. Karau, R. Warren, High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark, O'Reilly, 2017
- S. Ryza, U. Laserson, S. Owen, J. Wills, Advanced Analytics with Spark: Patterns for Learning from Data at Scale, O'Reilly, 2017

Uso del CESGA

- Cuentas del CESGA ya disponibles
- Usaremos la plataforma Big Data del CESGA:
 - Acceso por ssh: hadoop3.cesga.es
 - Interfaz web: https://bigdata.cesga.es/
- Necesitáis tener instalada la VPN del CESGA:
 - Id a https://portalusuarios.cesga.es/ y autenticaros
 - En Información → Conexión Remota → Conexión desde un centro no autorizado os indica cómo instalarla

Repositorio de la asignatura

- Guiones de prácticas e información adicional
- El repositorio está alojado en GitHub y se llama 'tcdm-public', dirección https://github.com/dsevilla/tcdm-public
- Para obtenerlo (rama 21-22):
 - \$ git clone https://github.com/dsevilla/tcdm-public.git \$ cd tcdm-public
- Para algunas cuestiones no hace falta bajarlo (usaremos Google Colab)
- (Esto requiere una cuenta Google)
- Los Notebooks se podrán guardar en Drive o en un repositorio
 GitHub y luego enviar al profesor