## মন্তম অখ্যায় এই প্রাথের মেনা কত পুরনো?

### পূর্ববর্তী অধ্যায়ের পর

মহাজাগতিক কালের পাল্লায় ফেলে হিসেব করলে 'হাজার বছর' চট করে পার হয়ে যাওয়া এক ধূসর সন্ধ্যা ছাড়া আর কিছুই নয়। মোটা মোটা বই লেখা হয় মহামনিষীদের জীবন কাহিনী নিয়ে, কিন্তু কতদিনের জীবন সেটা? সত্তর-আশি-নব্বই বা একশো বছর? আর ওদিকে আমাদের এই বুড়ো পৃথিবীর বয়স হাজার নয়, লক্ষ নয়, এমনকি দুই এক কোটিও নয়, প্রায় সাড়ে চারশো কোটি বছর। মহাকালের বিস্তৃতিকে ঠিকমত উপলব্ধি করে ওঠা বা মাথা দিয়ে বুঝতে পারা আমাদের মত স্বল্পায়ু প্রাণীর জন্য এক দুসাঃধ্য প্রচেন্টাই বলতে হবে। আমরা যখন আমাদের ইতিহাসের কথা বলি আমরা হিসেব করি বছর, যুগ, শতাব্দীর বা খুব বেশি হলে সহস্রাব্দের। কিন্তু পৃথিবীর বয়সের হিসেব তো আর সেভাবে করলে হবে না! মহাজগতের সওয়ারী হয়ে ছুটে চলা আমাদের এই পৃথিবী নামক গ্রহটার ইতিহাস বিচার করতে হবে মহাকালের ঘড়ির কাঁটার হিসেব দিয়ে। শুধু প্রচলিত হিসেবের পদ্ধতিটাকেই নয়, আমাদের চিন্তার পদ্ধতিটাকেও বদলে ফেলতে হবে, টেনে লম্বা করে নিয়ে যেতে হবে অনেকখানি - লক্ষ, কোটি বছরের চৌহন্দিতে।



চিত্র ৭.১ : মহাজাগতিক ক্যালেন্ডার

চলুন, এই কোটি কোটি বছরের বিশাল ব্যপ্তিটাকে একটা সহজ এবং বোধগম্য উদাহরণ দিয়ে বোঝার চেন্টা করি। ধরুন, সাড়ে চারশো কোটি বছর ইতিহাসটাকে আমরা ১২ মাসের ক্যালেন্ডারে ফেলে প্রাণের বিকাশের সময়সীমাগুলো সম্পর্কে একটা আপেক্ষিক বা তুলনামুলক ধারণা পেতে চাই।

সেক্ষেত্রে ব্যাপারটা দাঁড়াবে অনেকটা এরকমঃ পৃথিবীর জন্ম প্রক্রিয়াটা শুরু হয়েছিলো বছরের প্রথম দিন বা পয়লা জানুয়ারীতে, আর ফেব্রুয়ারী বা মার্চে প্রথম উৎপত্তি ঘটলো ব্যকটেরিয়া বা নীলাভ শৈবাল জাতীয় প্রথম আদি প্রাণের। এই আদি জীবদের প্রতিপত্তি চলেছে বহুকাল ধরে। বছরের অর্ধেকেরও বেশী পেরিয়ে অক্টোবর মাস এসে গেছে বহুকোষী জীবের বিকাশ হতে হতে। জটিল ধরণের কোন প্রাণীর সন্ধান পেতে হলে আপনাকে কিন্তু সেই নভেম্বর মাসে এসে পৌঁছাতে হবে. যদিও তাদের রাজতু তখনও শুধুমাত্র পানিতেই সীমিত। নভেম্বরের শেষের দিকে প্রথমবারের মত পানিতে চোয়ালওয়ালা মাছ আর মাটিতে উদ্ভিদের সন্ধান পাওয়া যাচ্ছে, আর ওদিকে পানি থেকে ডাঙ্গায় বিবর্তিত হওয়া প্রাণীগুলো পৃথিবীর মাটিতে রীতিমত জাঁকিয়ে বসেছে ডিসেম্বর মাসের প্রথম দিকে। জুরাসিক পার্ক সিনেমায় দেখা সেই বড় বড ডায়নোসরগুলোর আধিপত্য শুরু হলো এ মাসের মাঝামাঝি, কিন্তু ২৬ তারিখ আসতে না আসতেই তারা আবার চিরতরে বিলুপ্ত হয়ে গেলো পৃথিবীর বুক থেকে। খেয়াল করে দেখুন যে বছর শেষ হতে আর মাত্র ৫ দিন বাকি. কিন্তু এখনও মানুষ নামক আমাদের এই বিশেষ প্রজাতিটির কোন নাম গন্ধও পাওয়া যাচ্ছে না পৃথিবীর বুকে। ডিসেম্বরের ২৬ তারিখের দিকে আমাদের পূর্বপুরুষের বিবর্তন শুরু হয়ে গেলেও বানর জাতীয় প্রাণীর দেখা মিলছে ২৯ তারিখে আর নর বানরের উৎপত্তি ঘটতে দেখা যাচ্ছে ৩০ তারিখে। বছরের শেষ দিনে এসে উৎপত্তি ঘটলো শিম্পাঞ্জির আর আমাদের এই মানুষ প্রজাতির কথা যদি বলেন তাহলে তাদের দেখা মিললো বছর শেষের ঘন্টা বাজার মাত্র ২০ মিনিট আগে। আমরা এই আধুনিক মানুষেরা ইউরোপ অক্টেলিয়ায় ছড়িয়ে পড়েছি এই তো মাত্র ৬ মিনিট আগে আর কৃষি কাজ করতে শিখেছি ঘডিতে রাত বারোটা বাজার ১ মিনিট আগে <sup>১</sup>।

এক্কেবারে হলফ করে সঠিক বয়সটা নির্ধারণ করতে না পারলেও ডারউইনের অনেক আগেই ভূতত্ত্ববিদেরা মোটামুটি ভাবে পৃথিবীর বিভিন্ন স্তরের আপেক্ষিক বয়সের ব্যাপারটা বের করে ফেলেছিলেন। দ্বিতীয় এবং তৃতীয় অধ্যায়েই আমরা দেখছি যে ডারউইনের বিবর্তন তত্ত্ব আবিষ্কারের পিছনে পৃথিবীর এই দীর্ঘ বয়সের ব্যাপ্তি এক অনিবার্য ভূমিকা পালন করেছিলো। ধীরে ধীরে কোটি কোটি বছরের সময়ের বিস্তৃতিতে জীবের মধ্যে গড়ে ওঠা মিউটেশন, হাজারো রকমের প্রকরণ, ভৌগলিকভাবে একত্রীকরণ বা বিচ্ছিন্নতা, তাদের টিকে থাকার জন্য নিয়ত সংগ্রাম ইত্যাদির সমন্বয় ঘটাতে না পারলে ডারউইনের পক্ষে প্রাকৃতিক নির্বাচনের তত্ত্বকে কোনভাবেই ব্যাখ্যা করা সম্ভব হত না।

বিংশ শতাব্দীর বেশ কিছুটা সময় পার করে দেওয়ার পরও কিন্তু বিজ্ঞানীদের ভূতাত্ত্বিক সময় মাপার জন্য আপেক্ষিক সময় নিরূপন বা আপেক্ষিক ডেটিং পদ্ধতি নিয়েই সন্তুন্ট থাকতে হয়েছিলো। শতাব্দীর মাঝামাঝি এসে রেডিওমেট্রিক ডেটিং বা তেজদ্রিয় সময় নিরূপন পদ্ধতির মাধ্যমে পরম সময় (Absolute Time) নির্ধারণের উপায় আবিল্কৃত হওয়ার আগে পর্যন্ত আপেক্ষিক পদ্ধতিতেই শীলাস্তর বা ফসিলের বয়স নির্ধারণ করা হত। কিন্তু আপেক্ষিক বা পরম ডেটিং পদ্ধতি বলতে কি বোঝায়? এখনও য়েহেতু আপেক্ষিক এবং পরম উভয় পদ্ধতি ব্যবহার করেই ভূতৃক, শিলাস্তর বা ফসিলের বয়স নির্ধারণ করা হয়, তাই পদ্ধতিগুলো নিয়ে একটু বিস্তারিতভাবে আলোচনা করলে বোধ হয় মন্দ হয় না। ফসিল কিভাবে তৈরি হয়, সেগুলো কিভাবে প্রাণ্ডের বিবর্তনের পক্ষে সাক্ষ্য বহন করে, তা নিয়ে আগে অনেক কথাই বলা হয়েছে, বিজ্ঞানমনষ্ক কৌতুহলী পাঠকের মনে এখন প্রশ্ন আসাই স্লাভাবিক – তাহলে বিজ্ঞানীরা কিভাবে এত নিশ্চিত হয়ে বলে দিচ্ছেন কোন ফসিলের বয়স কত, তারা কোন ভূতাত্ত্বিক সময়সীমার প্রতিনিধিত্ব করে, কি করেই বা ভূতৃকের বিভিন্ন স্তরের বয়স নির্ধারণ করা হয়, এর জন্য কোন্ ধরণের বৈজ্ঞানিক

পদ্ধতি ব্যবহার করা হচ্ছে, ইত্যাদি, ইত্যাদি?

ভারউইনের বেশ আগে উনবিংশ শতাব্দীতেই ভূতত্ত্ববিদেরা যে ভূতৃকের বিভিন্ন স্তরের আপেক্ষিক বয়স নির্ধারণ করতে শুরু করে দিয়েছিলেন তার ভিত্তি ছিলো কিন্তু বেশ সহজ। তারা বুঝতে পেরেছিলেন যে, আগের পাললিক শীলা স্তরের উপর ধীরে ধীরে নতুন পলিমাটি এসে জমা হতে হতে নতুন শীলাস্তরের জন্ম হয়, অর্থাৎ, খুব বেশি বড় ধরণের কোন ভূতাত্ত্বিক পরিবর্তন বা ওলটপালট ঘটে না গেলে আগের স্তরটি পরবর্তী সময়ে তৈরি নতুন স্তরের নীচেই অবস্থান করে। এগুলোকে বলে স্ট্যাটা (strata) বা স্তর। নীচে, বিশ্ব বিখ্যাত গ্র্যুন্ড ক্যানিয়নের ছবিতে, পরিষ্কারভাবে এই বিভিন্ন স্তরের খাঁজগুলো দেখা যাচ্ছে, এখানকার অনেক শীলাস্তরই তাদের সেই উৎপত্তির সময় থেকে এখন পর্যন্ত একই অবস্থাতে রয়ে গেছে। যোল'শ শতাব্দীতেই বিখ্যাত ডেনিশ বিজ্ঞানী নিকোলাস স্টেনো এই শীলাস্তরের আপেক্ষিক অবস্থানের ব্যাপারটি ব্যাখ্যা করেছিলেন। স্তরে স্তরে জমা হওয়াটা পাললিক শীলার অন্যতম বৈশিল্ট্য। এভাবে পুরনো স্তরের উপর নতুন স্তরের জমা হওয়ার পদ্ধতিকেই বলে স্তরের পর্যায়ক্রমিক উপরিপাতন (superposition)। আর এ থেকেই হিসেব কষে বের করা সন্তব বিভিন্ন স্তরের আপেক্ষিক বয়স। তারপর জেমস হাটন এবং চার্লস লায়েল যে পৃথিবী এবং তার বিভিন্ন শীলাস্তরের বয়স নির্ধারণের ক্ষেত্রে এক বিশাল ভূমিকা রেখেছিলেন তা তো আমরা আগের আধ্যায়েই দেখেছি। বিভিন্ন শীলাস্তরের আপেক্ষিক বয়স নির্ধারণের ব্যাপারে স্তরে স্তরে খুঁজে পাওয়া ফসিলগুলোও এক গুরুত্বপূর্ণ ভূমিকা পালন করেছিলো। সেই সময়েই বিজ্ঞানীরা খেয়াল করতে শুরু করেনে যে, একেক স্তরে একেক ধরণের ফসিল পাওয়া যাচ্ছে।



**চিত্র ৭.২ :**বিখ্যাত গিরিখাত গ্র্যান্ড ক্যানিয়নের স্তর



http://www.edu-source.com/CVOsuprt/gcstrata3.jpg

আঠার এবং উনিশ শতাব্দীতে ভুতত্ত্ববিদ উইলিয়াম স্মিথ এবং ফসিলবিদ জর্জ কুঁভিয়ে প্রথম দেখালেনঃ একই বয়সের পাথর বা শীলাস্তরে সাধারণভাবে একই রকমের ফসিল পাওয়া যাচ্ছে। এমনকি এই

শীলাস্তরগুলো একটা আরেকটা থেকে অনেক দুরে অবস্থিত হলেও বেশীরভাগ ক্ষেত্রেই তাদের ভিতর একই রকমের ফসিল খুঁজে পাওয়া যাচ্ছে। হাজার হাজার মাইল দুরের শীলাস্তরে যখন একই ধরণের প্রাণীগুলোর ফসিল পাওয়া যায় তখন তাদেরকে বলা হয় নির্দেশক ফসিল (Indicator Fossil)। এদের মাধ্যমে বিজ্ঞানীরা শীলাস্তরের বয়স সম্পর্কে একটা আপাত ধারণায় পৌছুতে পারেন। শীলাস্তরগুলো একটা আরেকটা থেকে বহুদূরে অবস্থিত হলেও তারা আসলে একই ভূতাত্ত্বিক সময়ের প্রতিনিধিত্ব করে কারণ সেই নির্দিষ্ট সময়সীমার মধ্যেই শুধুমাত্র এ ধরণের প্রাণীর অস্তিত্ব ছিলো।

এরকম বিভিন্ন ধরণের পর্যবেক্ষণ থেকেই বিজ্ঞানীরা ধীরে ধীরে পারস্পরিক সম্পর্কযুক্ত দু'টো অত্যন্ত গুরুত্বপূর্ণ সিদ্ধান্তে আসতে শুরু করেন, ব্যাপারটা যেনো অনেকটা একই মুদ্রার এ পিঠ আর ও'পিঠ। একদিকে তারা বিভিন্ন স্তরের অবস্থান অনুযায়ী ফসিলের আপেক্ষিক বয়স বের করতে শুরু করলেন. আর ঠিক উলটোভাবে একেক স্তরে পাওয়া ফসিলের বিশেষ বিশেষ বৈশিষ্ট্যেগুলোর উপর নির্ভর করে ভূতাত্ত্বিক স্তরগুলোর আপেক্ষিক বয়স এবং নামকরণ করলেন। উনিশ'শো শতাব্দীর প্রথম দিক থেকেই বিজ্ঞানীরা বুঝতে পারছিলেন যে, নীচের স্তরগুলো অপেক্ষাকৃত আদিমতর জীবের ফসিল বহন করে চলেছে. ধীরে ধীরে যতই উপরের স্তরে উঠে আসা হচ্ছে ততই আধুনিকতর জীবের ফসিল দেখা যেতে শুরু করছে <sup>২</sup>। ব্যাপারটা অনেকটা এরকম: ধরুন, আমি বা আপনি, ভৃতত্ত্ববিদ্যা এবং ফসিলবিদ্যা সম্পর্কে অত্যন্ত জ্ঞানী দু'জন ব্যক্তি. মাটি খুঁড়তে শুরু করলাম - আর আমরা এমনি ভাগ্যবান বা বৃদ্ধিমান যেটাই বলুন না কেনো. এমন সব জায়গায়ই খোড়ার সিদ্ধান্ত নিলাম যেখানে ভুরিভুরি ফসিল পাওয়া যাচ্ছে (যুক্তির খাতিরেই কেবল এটা ধরে নিচ্ছি, বাস্তবে মাটি খুডলেই যে ফসিল পাওয়া যাবে না সেটা নিয়ে তো আগেই আলোচনা করেছি)। সেক্ষেত্রে যতই আমরা নীচের দিকে খুড়তে থাকবো ততই আমরা কি দেখবো? আমরা যা দেখবো তার সারাংশ অনেকটা এরকমঃ উপরের দিকের স্তরে পর্যায়ক্রমিকভাবে খুঁজে পাবো মানুষ. তারপর বন মানুষ এবং বানরের ফসিল। কিন্তু যত নীচের দিকে যেতে থাকবো সময়ের সাথে সাথে ততই আর এদের ফসিলগুলো খুঁজে পাওয়া যাবে না। একটা একটা করে আরও নীচের দিকের স্তরগুলোতে নামতে থাকলে পর্যায়ক্রমিকভাবে দেখা যাবে প্রথমে সপুষ্পক উদ্ভিদের ফসিলগুলো হারিয়ে যাচ্ছে. ধীরে ধীরে হারিয়ে যাচ্ছে পাখি, স্তন্যপায়ী প্রাণী, সরীসূপ, চারপায়ী মেরুদন্টী প্রাণী, স্থলজ উদ্ভিদ, মাছগুলো, শেল বা খোলস-ওয়ালা শামুকজাতীয় প্রাণীগুলো, আদিম সরল বহুকোষী এবং এক কোষী জীবগুলোর ফসিল <sup>৩</sup>। আর তারপর এক্কেবারে নীচে, প্রায় সাড়ে তিনশো কোটি বছরের চেয়েও পুরনো স্তরগুলোতে নেমে আসলে কোনরকম কোন প্রাণেরই হদিস পাওয়া যাবে না।

অর্থাৎ, সঠিক সময়সীমাটা না জানলেও উনবিংশ শতাব্দীতেই এই আপেক্ষিক ভূতাত্ত্বিক সময়ের স্কেলটি তৈরি করা ফেলা হয়েছিল। এখানে মজার ব্যাপারটা হচ্ছে এই যে, বিভিন্ন শিলাস্তরে ধারাবাহিকভাবে পাওয়া ফসিল রেকর্ডগুলো এই সময়ক্রম নির্ধারণে অত্যন্ত গুরুত্বপূর্ণ ভূমিকা রাখলেও, ডারউইনের পূর্ববর্তী সময়ের এই বিজ্ঞানীরা কিন্তু প্রাণের বিবর্তনের ধারণাটাকে গ্রহনযোগ্য মনে করতেন না। অথচ, এই সময়সীমাগুলোকে ভাগ করা হয়েছিলো ফসিল রেকর্ডে পাওয়া প্রাণীকুলের বিবর্তনের অনুক্রম এবং বিভিন্ন যুগে ঘটা বিশাল গণ-বিলুপ্তিগুলোর উপর ভিত্তি করেই। তারপর ১৮৫৯ সালে ডারউইন তার অরিজিন অফ স্পেশিজ বইটি বের করার পর সব কিছুই আমাদের সামনে পানির মত পরিষ্কার হয়ে গেলো - বিবর্তনের ব্যাপারটা অস্বীকার করেই হোক বা না বুঝেই হোক বিজ্ঞানীরা এতদিন ধরে যে ভূতাত্ত্বিক সময়ক্রমটি তৈরি করেছেন তা আসলে সামগ্রিকভাবে প্রাণের বিবর্তনের ধারাবাহিকতাকেই যথাযথভাবে তুলে ধরে।

তবে প্রতিনিয়ত বিজ্ঞানের নতুন নতুন আবিষ্কারের ভিত্তিতে এই ভুতাত্ত্বিক সময়ের স্কেল বা অনুক্রমটিকেও অনবরত আপডেট করার প্রয়োজন হয় বৈকি। বিজ্ঞান বলেই তা করতে হয়। বিজ্ঞান তো স্থবির নয়, সতত গতিশীল সে। সে যাই হোক, এখন তাহলে চলুন দেখা যাক, এই ভুতাত্ত্বিক সময়ের স্কেল বা সময়ক্রমটিকে কিভাবে ভাগ করা হয়েছে। আমাদের এই ইতিহাসকে প্রথমে ৪ টি বড় ইয়ন বা অতিকল্পে ভাগ করা হয়েছেঃ ৪৫০ কোটি বছর আগে পৃথিবীর উৎপত্তি থেকে শুরু করে প্রায় ৩৮০ কোটি বছর পর্যন্ত বিস্তৃত রয়েছে প্রি-আরকিয়ান

| EON         | FORMS OF LIFE                                                                  |         |  |
|-------------|--------------------------------------------------------------------------------|---------|--|
| Phanerozoic | Animals with shells<br>or bones; land animals<br>and plants                    | * 河侧    |  |
| Proterozoic | Single and complex<br>single-celled<br>organisms, algae,<br>wormlike organisms | 10 25 6 |  |
| Archean     | Microscopic single-celled<br>or fliament-shaped<br>organisms                   | 512     |  |
| pre-Archean | No record of life                                                              |         |  |

চিত্র ৭.৩ :বিভিন্ন ইয়ন বা কল্পে প্রধান ধরণের প্রাণগুলোর উৎপত্তিঃ <a href="http://pubs.usgs.gov/gip/fossils/rocks-layers.html">http://pubs.usgs.gov/gip/fossils/rocks-layers.html</a>

যে সময়টাতে কোন জীবনের সন্ধান পাওয়া যায়নি। তারপর থেকে শুরু করে প্রায় ২৫০ কোটি বছর আগে পর্যন্ত সময়টাকে বলা হয় আরকিয়ান। এ সময়ই ব্যাকটেরিয়া জাতীয় বিভিন্ন ধরণের আদি কোষীজীবের উৎপত্তি ঘটতে শুরু করে। এর পরে প্রটেরোযোয়িক অতি কল্পটির বিস্তৃতি ব্যাপক, ২৫০ কোটি বছর আগে থেকে শুর করে প্রায় ৫৫ কোটি বছর পর্যন্ত। এ সময়েই বহুকোষী জীবের বিবর্তন ঘটে, আর তার সাথে সাথে দেখা যায় নরম শরীরের কিছু অমেরুদন্ডী প্রাণী। এর পরের সময়টিকে বলা হয় ফ্যানেরোযোয়িক

অতিকল্প. যাকে পর্যায়ক্রমিকভাবে শুরু থেকে আজকের আধুনিক সময় পর্যন্ত তিনটি ইরা বা প্যালিওযোয়িক, কল্পে ভাগ করা হয়: সিনযোয়িক। মেসযোয়িক। এবং বিকাশের ধারার উপর ভিত্তি করে এই কল্পগুলোকে আবার বিভিন্ন পিরিয়ড বা কালে ভাগ করা হয়েছে। এই তিনটি কালেই পৃথিবী বিভিন্ন ধরণের আধুনিক প্রাণী এবং উদ্ভিদের সমারোহে মুখরিত হয়ে উঠেছে। আমাদের কাছে কালগুলোর নাম বেশ খটমটা শোনালেও ভূতত্তবিদদের কাছে তারা কিন্তু বিশেষ অর্থ বহন করে। যেমন ধরুন, 'যোয়িক' অর্থ হচ্ছে প্রাণীর জীবন, আর 'প্যালিও' মানে প্রাচীন, 'মেসো' মানে মধ্যবর্তী এবং 'সিন'-এর অর্থ হচ্ছে আধুনিক। সুতরাং, সময়ের ধারাবাহিকতা অনুযায়ী জীবের বিকাশের সাথে অর্থবহুল করেই কল্পগুলোর নাম রাখা হয়েছে: প্যালিওযোয়িক. মেসোযোয়ক এবং সিনোযোয়িক। পাশের টেবিলটিতে এই অতিকল্প, কল্প, কাল এবং যুগের ভাগগুলোকে

| EON         | ERA                                                         | PERIOD        | EPOCH                                                   |
|-------------|-------------------------------------------------------------|---------------|---------------------------------------------------------|
|             |                                                             | Quaternary    | Holocene<br>Pleistocene                                 |
|             | Cenozolc                                                    | Tertiary      | Pilocene<br>Miocene<br>Oligocene<br>Eocene<br>Paleocene |
|             |                                                             | Cretaceous    | Late<br>Early                                           |
|             | Mesozole                                                    | Jurassic      | Late<br>Middle<br>Early                                 |
|             |                                                             | Triassic      | Late<br>Early                                           |
| Phanerozoic |                                                             | Permian       | Late<br>Early                                           |
|             |                                                             | Pennsylvanian | Late<br>Middle<br>Early                                 |
|             | Paleozoic                                                   | Mississippian | Late<br>Early                                           |
|             |                                                             | Devonian      | Late<br>Middle<br>Early                                 |
|             |                                                             | Silurian      | Late<br>Middle<br>Early                                 |
|             |                                                             | Ordovician    | Late<br>Middle<br>Early                                 |
|             |                                                             | Cambrian      | Late<br>Middle<br>Early                                 |
| Proterozoic | Late Proterozoic<br>Middle Proterozoic<br>Early Proterozoic |               |                                                         |
| Archean     | Late Archean<br>Middle Archean<br>Early Archean             |               |                                                         |
|             | pre-Arche                                                   | an            |                                                         |

সারনি ৭.১ আপেক্ষিক ভূতাত্ত্বিক স্কেলঃ

খুব সহজ করে দেখানো হয়েছে। আর নীচের

### http://pubs.usgs.gov/gip/fossils/scale.html

সারণিটিতে চমৎকারভাবে তুলে ধরা হয়েছে বিভিন্ন কালের সাপেক্ষে প্রাণের সামগ্রিক বিবর্তনের ধারাটিকে। এরকম ধারাভিকভাবে বিভিন্ন স্তরে ফসিল পাওয়া যাওয়াটকে বলে ফসিলের পর্যায়ক্রমের নীতি (Law of Fossil Succession), যা থেকে আমরা ৩ টি বিষয় সম্পর্কে অত্যন্ত স্লুচ্ছ ধারণা পাই : প্রথমতঃ ফসিলগুলো কোন এক সময়ের জীবিত প্রাণের নিদর্শন বহন করে, দ্বিতীয়তঃ এদের মধ্যে আনেকের অস্তিত্বই বিলুপ্ত হয়ে গেছে পৃথিবীর বুক থেকে এবং তৃতীয়তঃ বিভিন্ন ভূতাত্ত্বিক স্তরে এত ধরণের ফসিল পাওয়া যাওয়ার কারণ একটাই, আর তা হল সুদীর্ঘ সময়ের বিস্তৃতিতে প্রাণের বিবর্তন ঘটে অনবরতই নতুন নতুন প্রজাতির জন্ম হয়ে চলেছে। ফসিলের পর্যায়ক্রম এবং শিলাস্তরের পর্যায়ক্রমিক উপরিপাতনের নীতির উপর ভিত্তি করে ভূতত্ত্ববিদ এবং ফসিলবিদরা ১৮৪১ সালে, ডারউইনের বিবর্তন তত্ত্ব আবিষ্কারেরও প্রায় ১৮ বছর আগেই, আপেক্ষিক সময়ক্রমের ছকটি তৈরি করে ফেলেন। অবাক করা ব্যাপার হল য়ে, তারপর গত দেড়শো বছরে কালজয়ী সব আবিষ্কারের ভিত্তিতে এর অনেক পরিবর্তন করা হলেও মূল ছকটি আজও প্রায় একই



সারনি ৭.২: বিভিন্ন কালে প্রধান প্রধান প্রাণী এবং উদ্ভিদের বিবর্তনের আরেকটু বিস্তারিত চিত্রঃ http://pubs.usgs.gov/gip/fossils/succession.html

রকমই রয়ে গেছে। আধুনিক সব ডেটিং পদ্ধতি ব্যবহার করে আমরা আজকে বেশীরভাগ ফসিলের বয়সই আরও সঠিক এবং সুনির্দিণ্টভাবে বলে দিতে পারছি, এবং তার ফলে এই টেবিলটি প্রতিদিনই আরও সঠিক এবং পুর্নাংগ রূপ ধারণ করছে। এক নজরে এই বিশাল সময় ধরে প্রাণের বিবর্তনের ধারাটিকে তুলে ধরার জন্য নীচের টেবিলটিতে ভূতাত্ত্বিক সময়সীমা এবং বিভিন্ন যুগে প্রাণের বিবর্তনের প্রধান ঘটনাগুলোর সংক্ষিপ্ত বর্ণনা দেওয়া হল। কয়েকটি বিভিন্ন ধরণের ভূতাত্ত্বিক সময়ক্রমের প্রচলন থাকলেও বিভিন্ন পাঠ্যপুস্তকে বহুলভাবে ব্যবহৃত ছকটাই এখানে তুলে ধরা হল। সেই প্রাণের উৎপত্তি শুক্ত থেকে বর্তমান সময় পর্যন্ত কতদিন এই যুগগুলো টিকে ছিলো তার একটা মোটামুটি সময়সীমা এবং সেই সময়ে প্রাণের বিবর্তনের প্রধান ঘটনাগুলো দেখানো হলো নীচের সার্গিতে।

# মারনি ৭.৩: এক নজরে ভূতাক্ট্রিক মময়মীমা এবং বিবর্তনের প্রধান প্রটনাশুনো ই

| কম্প<br>(Era) | কাল<br>(Period)   | যুগ(Epoch) এবং সময়কাল (যুগের শুরু থেকে শেষ পর্যন্ত কত বছর) $M = মিলিয়ন বছর,$ $B = বিলিয়ন বছর$ | বিবর্তনের মূল ঘটনা বা ধাপগুলো                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|-------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| আরকিয়ান      | প্রিক্যম্লিয়ান   | ২৫০ কোটি বছরেরও<br>আগের সময়। (~<br>2.5B – 4.5B)                                                 | পৃথিবী উৎপত্তি থেকে পাললিক শীলার উৎপত্তি হওয়ার আগে পর্যন্ত সময়ে কোন ফসিল পাওয়া যায়নি, ৩৯০ কোটি বছর আগে পাললিক শীলার উৎপত্তি ঘটে। ঠিক কখন প্রাণের জন্ম হয় তা এক্কেবারে সঠিকভাবে নির্ধারণ করা না গেলেও বিজ্ঞানীরা এখন পর্যন্ত প্রায় সাড়ে তিনশো কোটি বছর আগের প্রাণের ফসিলের সন্ধান পেয়েছেন। এ সময়ই নীলাভ সবুজ শৈবাল, আরকিয়ান এবং ব্যাকটেরিয়া জাতীয় বিভিন্ন প্রোক্যারিয়ট বা আদি কোষী জীবের বিবর্তন ঘটে; অবায়ুজীবী বা অ্যনারোবিক ব্যকটেরিয়াদের সালোকসংশ্লেষন বা ফটোসিন্থেসিসের ফলে ধীরে ধীরে বায়ুমন্ডলে মুক্ত অক্সিজেনের সৃষ্টি হয় এবং তার ফলশ্রুতিতেই এ সময়ের শেষ দিকে জীবের মধ্যে প্রথম অ্যারোবিক বা বায়ুজীবী শ্বাসপ্রক্রিয়ার বিবর্তন ঘটে। |
| প্রটেরোযোয়িক | প্রিক্যন্ত্রিয়ান | প্রায় ৫৫ কোটি বছর<br>থেকে ২৫০ কোটি<br>বছর আগে পর্যন্ত (~<br>490 M- 2.5 B)                       | প্রায় ১৭০-১৯০ কোটি বছর আগে প্রথম ইউক্যারিয়ট (সুগঠিত নিউক্লিয়াস সহ জীব) বা<br>প্রকৃতকোষী জীবের উৎপত্তি ঘটে। বড় আকারের ইউক্যারিয়ট প্রাণী বিকাশ লাভ করতে<br>থাকে এবং যৌন প্রজননের উদ্ভব ঘটে; প্রায় সাড়ে পয়ষট্টি কোটি বছর আগে দেখা<br>যেতে শুরু করে বহুকোষী প্রাণী। সম্ভবত এই সময়েই আর্থপপোডা, আনেলিডা জাতীয়<br>প্রাণীর উদ্ভব ঘটে। এসময়ের অনেক বহুকোষী জেলিফিস, কৃমিজাতীয় প্রাণী, শৈবাল<br>ইত্যাদির ফসিল পাওয়া গেছে।                                                                                                                                                                                                                                |
| প্যালিওযোয়িক | ক্যন্ত্রিয়ান     | প্রায় ৪৯ কোটি বছর<br>থেকে ৫৪.৩ কোটি<br>বছর আগে পর্যন্ত (~<br>490M- 543 M)                       | এই যুগেই, খুব কম সময়ের ব্যবধানে, বিভিন্ন ধরণের প্রাণীর মধ্যে বিভিন্ন পর্বের (phyla) এবং শ্রেণীর (class) বিবর্তন ঘটে। অনেকে একে ক্যাম্ব্রিয়ান বিস্ফোরণ (Cambrian Explosion) হিসেবে আভিহিত করে থাকেন। প্রথম আদিম মেরুদন্ডী প্রাণী, শেল যুক্ত বিভিন্ন ধরণের সামুদ্রিক প্রাণী এবং শৈবালের বিকাশ ঘটতে থাকে অত্যন্ত দ্রুত গতিতে। এক বিশাল গণ-বিলুপ্তি ঘটে এ সময়ে, যার ফলশ্রুতিতে প্রায় ৫০% জীবের বিলুপ্তি ঘটে যায়।                                                                                                                                                                                                                                            |

|             | অরভোভিসিয়ান       | প্রায় ৪৪.৩ কোটি বছর<br>থেকে ৪৯ কোটি বছর<br>আগে পর্যন্ত (~ 443M-<br>490 M)         | প্রথম চোয়ালহীন মাছ এবং প্রবালের আবির্ভাব ঘটে, আদি মেরুদন্ডী প্রাণী দেখা<br>গেলেও, বিভিন্ন ধরণের অমেরুদন্ডী প্রাণীরই প্রাধান্য চলতে থাকে। আদি স্থলজ<br>উদ্ভিদের আবির্ভাব ঘটে। সম্ভবত, হিমায়নের ফলে এই যুগের শেষের দিকেও আরেক<br>বিশাল গণ-বিলুপ্তি ঘটে।                                  |
|-------------|--------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | সিলুরিয়ান         | প্রায় ৪১.৭ কোটি বছর<br>থেকে ৪৪.৩ কোটি<br>বছর আগে পর্যন্ত<br>(~417M- 443 M)        | প্রথম চোয়ালসহ মাছের আবির্ভাব ঘটে। টিস্যু বা সংবহনতন্ত্রসহ আদি স্থলজ উদ্ভিদ<br>দেখতে পাওয়া যায় এসময়ে। বিভিন্ন ধরণের শামুক জাতীয় প্রাণীর বিকাশ ঘটতে<br>থাকে।                                                                                                                          |
|             | ডেভোনিয়ান         | প্রায় ৩৫.৪ কোটি বছর<br>থেকে ৪১.৭ কোটি<br>বছর আগে পর্যন্ত<br>(~354M - 417 M)       | প্রথম উভচর প্রাণী, ফার্ণ, বীজসহ উদ্ভিদ, পাখাহীন পতক্ষের উৎপত্তি ঘটে। স্থলজ<br>উদ্ভিদ এবং মাছেরও প্রাধান্য দেখা যায়। আরেক গণ-বিলুপ্তির নিদর্শন পাওয়া যায় এই<br>যুগে।                                                                                                                   |
|             | কারবোলফেরাস        | প্রায় ২৯ কোটি বছর<br>থেকে ৩৫.৪ কোটি<br>বছর আগে পর্যন্ত<br>(~290M - 354 M)         | প্রথম সরীস্পের আবির্ভাব ঘটলো, পাখাওয়ালা পতঙ্গ, আদিম হাঙ্গরের দেখা মিললো।<br>উভচর প্রাণী, ফার্ণ, আদি উদ্ভিদের বিস্তার ঘটতে থাকে এসময়েই।                                                                                                                                                 |
|             | পারমিয়ান          | প্রায় ২৫.১ কোটি বছর<br>থেকে ২৯ কোটি বছর<br>আগে পর্যন্ত (~251M-<br>290 M)          | মহাদেশগুলো একসাথে হয়ে প্রকান্ড প্যাঞ্জিয়া গঠন করেছে। হিমায়নের ফলে সমুদ্রের<br>উচ্চতা নীচে নেমে এসেছে, আর ওদিকে উভচর প্রাণীর সংখ্যাও কমে যেতে শুরু<br>করেছে। সরীসৃপ, বিভিন্ন ধরণের উন্নত জাতের মাছ এবং পতঙ্গের দ্রুত বিকাশ ঘটছে।<br>সামুদ্রিক জীবের গণ-বিলুপ্তি ঘটতে শুরু করে এই যুগে. |
| त्रात्याधिक | ায়াসিক            | প্রায় ২০.৬ কোটি বছর<br>থেকে ২৫.১ কোটি বছর<br>আগে পর্যন্ত (~206M<br>- 251 M)       | মহাদেশগুলো আলাদা হতে শুরু করেছে, প্রথম ডায়নোসরের উৎপত্তি ঘটে, সরীসৃপ<br>থেকে স্তন্যপায়ী জাতীয় সরীসৃপ এবং প্রথম স্তন্যপায়ী প্রাণীর আবির্ভাব ঘটলো এ<br>সময়েই।                                                                                                                         |
|             | জু<br>জুরাসিক<br>স | প্রায় ১৪.৪ কোটি বছর<br>থেকে ২০.৬ কোটি বছর<br>(~144M -206 M)<br>৬.৫ কোটি থেকে ১৪.৪ | প্রথম পাখী এবং সপুষ্পক উদ্ভিদের আবির্ভাব ঘটলো এসময়ে, ডায়নোসর প্রবল প্রতাপ<br>চলেছে সারাটা যুগ ধরে, সাথে সাথে অন্যান্য সরীসৃপেরও দ্রুত প্রসার ঘটছে।                                                                                                                                     |

|             |              | কোটি বছর (65M -<br>144 M)                                                                                                                                                                                                                                                  | ইতোমধ্যেই বেশীরভাগ মহাদেশগুলোই আলাদা হয়ে গেছে, স্তন্যপায়ী প্রাণী, পাখি<br>এবং সপুষ্পক উদ্ভিদের বিকাশ অব্যাহত থাকে। আদি মারসুপিয়াল, সাপ, মৌমাছির<br>উৎপত্তি ঘটে। এই ক্রেটাসিয়াস যুগের শেষের দিকেই ডায়নোসরের বিলুপ্তি ঘটে যায়।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| সিনোয়োয়িক | টারশিয়ারি   | প্যালিয়োসিন যুগঃ ৫.৫ কোটি থেকে ৬.৫ কোটি থেকে ৬.৫ কোটি বছর (55-65 M)  ইয়োসিন যুগঃ ৩.৪ কোটি বছর(~34-55 M) ওলিগোসিন যুগঃ ২.৪ কোটি থেকে ৩.৪ কোটি বছর (24M-3.4M) মিয়োসিন যুগঃ ৫৩ লক্ষ থেকে ২.৪ কোটি বছর (~5.3M - 24M) প্রিয়োসিন যুগঃ ২০ লক্ষ থেকে ৫৩ লক্ষ বছর (~2.0M-5.3 M) | মহাদেশগুলো আধুনিক অবস্থানের কাছাকাছি পৌছুতে শুরু করেছে। জলবায়ু ক্রুমাগতভাবে ঠান্ডা এবং শুকনো হয়ে যেতে শুরু করেছে যার ফলশ্রুতিতে দেখা দিতে শুরু করেছে বিস্তীর্ণ তৃণভূমির এবং সেই সঙ্গে বিবর্তন ঘটতে শুরু করেছে তার সাথে খাপ খাওয়ানো প্রাণী এবং উদ্ভিদের। এসময়েই স্তন্যপায়ী প্রাণী, পাখি, সাপ, ফুলের পরাগ ঘটানো পোকা মাকড়ের বিকাশ ঘটতে শুরু করে। প্রাইমেটের বিবর্তন ঘটে প্যালিওসিন যুগে, লেমুর বা টারসিয়ারদের ইয়োসিন যুগে, বানরদের দেখা পাওয়া যায় ওলিগোসিন যুগে, বন মানুষ বা এপদের বিকাশ ঘটে মিয়োসিন যুগে, মানুষের আদি পুর্ব পুরুষ Australopithecus এর দেখা মিলছে প্লিয়োসিন যুগে এসে.                                                                                                                                           |
|             | কোয়াটারনারি | প্লিম্টোসিন যুগঃ ১০<br>হাজার থেকে ২০ লক্ষ<br>বছর (~ .01-2.0 M)  হলোসিন যুগঃ এখন<br>থেকে ১০ হাজার বছর<br>আগে পর্যন্ত। (.Recent<br>time01 M)                                                                                                                                 | গত ১৮ লক্ষ বছরে, কোয়াটারনারি যুগে, ক্রমাগত ধীর সঞ্চরণের ফলশ্রুতিতে মহাদেশগুলো এখনকার এই আধুনিক অবস্থানে এসে পৌছেছে, মা্যমথ, প্রকান্ড আকৃতির স্লখসহ বিভিন্ন বৃহৎ স্তন্যপায়ী প্রাণী এবং পাখির বিলুপ্তি ঘটেছে। প্লিস্টোসিন যুগে ঘন ঘন হিমায়নের ফলে সমুদ্রের পানির উচ্চতা নীচে নেমে যেতে থাকে। শেষ বরফ যুগের সমাপ্তি ঘটে হলোসিন যুগে, এই যুগকেই মানব সভ্যতা বিকাশের যুগ হিসেবে ধরা হয়। এতদিন বিজ্ঞানীরা ধারণা করতেন যে, দেড় লক্ষ বছর আগে আধুনিক মানুষ Homo sapiens(আমাদের প্রজাতি) এর বিবর্তন ঘটেছে homo erectus থেকে। এখন উন্নত ধরণের ডেটিং পদ্ধতি ব্যবহার করে বিভিন্ন পরীক্ষা থেকে মনে হচ্ছে যে, আধুনিক মানুষ হয়তো তারও কিছু সময় আগেই বিকাশ লাভ করেছিলো। পরবর্তী অধ্যায়ে আমাদের নিজেদের বিবর্তন নিয়ে বিস্তারিত আলোচনার ইচ্ছা রইলো। |

এই আপেক্ষিক সময় নিরূপণ বা ডেটিং পদ্ধতি দিয়ে মোটামুটিভাবে একটা আপেক্ষিক বয়স নির্ধারণ করা গেলেও কোন একটা ফসিলের আসল বয়সটা কত তা তো আর বলে দেওয়া সন্তব হচ্ছে না। এর জন্য বিজ্ঞানীদের অপেক্ষা করতে হয়েছে বিংশ শতাব্দীর মাঝামাঝি পর্যন্ত। পরম ডেটিং পদ্ধতি দিয়ে আজকে আমরা বেশীরভাগ ক্ষেত্রেই বলে দিতে পারি কত বছর আগে কোন শীলাটি তৈরি হয়েছিলো, পৃথিবীর বয়স কত এবং কোন একটা ফসিলেরই বা বয়সটা কত! আর এর জন্য প্রধানত রেডিওমেটিক বা তেজদ্রেয় ডেটিং পদ্ধতি ব্যবহার করা হয়। আপেক্ষিক ডেটিং ঘটনাগুলোকে তাদের ক্রমানুসারে সাজিয়ে দেয় আর তেজদ্রিয় ডেটিং তাদেরকে বেঁধে দেয় নির্দিশ্ট সময়ের ছকে। স্বভাবতই প্রশ্ন জাগে, হিসেব নিকেশ করে সুনির্দিশ্ট বয়সটাই যদি বলে দেওয়া যায় তবে আর আপেক্ষিক বয়স নিয়ে মাথা ঘামানো দরকারটা কি।

আসলে শুনতে যতটা সহজ শোনায় ব্যাপারটা ঠিক সেরকম নয়, ভূপৃষ্ঠের সব শীলা বা ফসিলের বয়স এই তেজদ্রিয় ডেটিং পদ্ধতি দিয়ে নির্ধারণ করা সম্ভব নয়, তাই সেসব ক্ষেত্রে বিজ্ঞানীদের আপেক্ষিক ডেটিং এর আশ্রয় নিতে হয়। আর তা ছাড়া, এই কোটি কোটি বছরের পুরনো শীলা বা ফসিলের বয়স বের করাটা তো আর কোন মুখের কথা নয়, এর জন্য বিজ্ঞানীদের বহু রকমের পদ্ধতি ব্যবহার করতে হয়। অনেক সময়ই বিজ্ঞানীরা একাধিক পরম এবং আপেক্ষিক পদ্ধতি ব্যবহার করে তবেই নিশ্চিতভাবে একটা ফসিলের বা শীলার বয়স নির্ধারণ করতে পারেন। একদিক থেকে চিন্তা করলে স্বীকার করতেই হয় যে, আমরা এ ব্যাপারে বেশ সৌভাগ্যবান, এত ধরণের পদ্ধতি না থাকলে বিজ্ঞানীরা বারবার ক্রস-নিরীক্ষণ করে এতো আস্থা নিয়ে হয়তো বয়সগুলো বলে দিতে পারতেন না।

সুনির্দিণ্টভাবে সময় নির্ধারণের জন্য প্রয়োজন ছিলো একধরণের ভূতাত্ত্বিক ঘড়ির, যা আমাদেরকে বলে দিবে পৃথিবীর বিভিন্ন শীলাস্তরের কবে তৈরি হয়েছিলো আর কোন প্রাণী বা উদ্ভিদের ফসিলটির বয়সই বা কত। আর বিজ্ঞানীরা সেটাই খুজেঁ পেলেন বিভিন্ন ধরণের তেজদ্ভিয় (Radioactive) পদার্থের মধ্যে, এই ভূতাত্ত্বিক ঘড়িগুলোকে বলা হয় রেডিওমেটিক ঘড়ি। কারণ, তারা প্রাকৃতিক তেজদ্ভিয়তার মাপ থেকে আমাদেরকে সময়ের হিসেব বলে দেয়। পদার্থের তেজদ্ভিয়তার ব্যাপারটা ঠিকমত বুঝতে হলে আমাদেরকে একটু জীববিদ্যার আঙিনা পেরিয়ে পদার্থবিদ্যা ও রসায়নবিদ্যার উঠোনে পা রাখতে হবে। আধুনিক বিজ্ঞান আজকে এমনি এক অবস্থায় চলে এসেছে যে, তার এক শাখা আরেক শাখার সাথে ওতপ্রতোভাবে জড়িয়ে গেছে, কোন এক শাখার মধ্যে গন্ডীবদ্ধ থেকে পুরোটা বোঝা প্রায় অসম্ভব হয়ে দাঁড়িয়েছে। সে যাই হোক, চলুন দেখা যাক, এত যে আমরা অহরহ তেজদ্ভিয়তা, তেজদ্ভিয় ক্ষয় (Radioactive decay) অথবা রাসায়নিক বা নিউক্লিয়ার বিক্রিয়ার কথা শুনি তার মুলে আসলে কি রয়েছে। চট করে, খুব সংক্ষেপে, একবার চোখ বুলিয়ে নেওয়া যাক অণু পরমাণুর গঠন এবং তাদের মধ্যে ঘটা বিভিন্ন বিক্রিয়া এবং তেজদ্ভিয়তার মূল বিষয়টির উপর।

উনবিংশ শতাব্দীর শেষ পর্যন্তও কিন্তু আমরা ভেবে এসেছি যে. কোন পদার্থের পরমাণু অবিভাজ্য. তাকে আর কোন মৌলিক অংশে ভাগ করা যায় না। একশোটির মত মৌলিক পদার্থ রয়েছে - লোহা সোনা, অক্সিজেন, ক্লোরিন বা হাইডোজেনের মত মৌলিক পদার্থগুলোর পরমাণই হচ্ছে তার সবচেয়ে ক্ষদ্রতম অংশ, একে আর ছোট অংশে ভেঙ্গে ফেলা সম্ভব নয়। কিন্তু আধুনিক বিজ্ঞান আমাদেরকে নিয়ে গেছে জ্ঞানের এক নতুন দিগন্তে। আমরা এখন জানি যে, প্রত্যেকটি মৌলিক পদার্থের প্রমাণুই ইলেকটন, প্রোটন এবং নিউটনের সমন্বয়ে তৈরি। পরমাণুর মাঝখানে কেন্দ্রে রয়েছে নিউক্লিয়াস যা প্রোটন এবং নিউটনের সমন্বয়ে তৈরি আর তার চারপাশের অক্ষে ঘুরছে ইলেক্ট্রনগুলো। নিউট্রনের কোন চার্জ নেই, সে নিরপেক্ষ, ইলেক্টেন ঋণাত্মক আর প্রোটন ধ্বনাত্মক চার্জবিশিষ্ট্য। সাধারণতঃ একটি প্রমাণুতে ইলেক্ট্রন্ প্রটোনের সংখ্যা



চিত্র ৭.৪: পরমাণুর গঠন

সমান থাকে বলে তাদের ধ্বনাত্মক এবং ঋণাত্মক চার্জ কাটাকাটি হয়ে তার মধ্যে নিরপেক্ষতা প্রতিষ্ঠিত হয়ে যায়। মৌলিক পদার্থগুলোর বৈশিষ্ট্যের মধ্যে আমরা যে আকাশ পাতাল পার্থক্য দেখি তার কারণ আর কিছুই নয়, তাদের পরমাণুর ভিতরে ইলেকটন, প্রোটন এবং নিউট্রনের সংখ্যার তারতম্য। অর্থাৎ সোনার পরমাণু বা নিউক্লিয়াস কিন্তু সোনা দিয়ে তৈরি নয়, তাদের মধ্যে সোনার কোন নাম গন্ধও নেই। অক্সিজেন বা হাইডোজেন বলুন, সোনা বলুন, রূপা বলুন, হেলাফেলা করা তামা বা সীসাই বলুন সব মৌলিক পদার্থই এই তিনটি মূল কণা, ইলেকটন, প্রোটন এবং নিউট্রনের সমন্বয়েই গঠিত। লোহার সাথে সোনার পার্থক্যের কারণ এই নয় যে তার নিউক্লিয়াস সোনার মত দামী বা চকচকে কণা দিয়ে তৈরি! এর কারণ তাদের পরামাণুর ভিতরে এই মূল কণাগুলোর সংখ্যার পার্থক্য- সোনার নিউক্লিয়াসে রয়েছে ৭৯টি প্রোটন এবং ১১৮টি নিউট্রন; আর ওদিকে লোহার নিউক্লিয়াসে রয়েছে ২৬টি প্রোটন এবং ৩০টি নিউট্রন। একই ধরণের ব্যাপার দেখা যায় আমাদের ডিএনএ–এর গঠনের ক্ষেত্রেও। মানুষ, ঘোড়া, ফুলকপি বা আরশোলার জিনের উপাদানে তাদের আলাদা আলাদা কোন বিশেষ বৈশিষ্ট্য খুঁজে পাওয়া যাবে না, তারা সবাই ডিএনএ–এর সেই চারটি নিউক্লিওটাইডের (A=adenine, G= guanine, C=cytosine T=thymine) বিভিন্ন রকমফেরে তৈরি ।

আমাদের চারদিকে আমরা যে সব পদার্থ দেখি তার বেশীরভাগই যৌগিক পদার্থ, সাধারণভাবে বলতে গেলে বিভিন্ন মৌলিক পদার্থগুলোর মধ্যে ইলেকট্রন বিনিময়ের ফলে রাসায়নিক বিক্রিয়ার মাধ্যমেই এই যৌগিক পদার্থগুলোর উৎপত্তি হয়। একটা ইলেকট্রন কণা শুষে নিয়ে একটা প্রোটন কণা নিউট্রনে পরিণত হয়ে যেতে পারে, আবার ঠিক উলটোভাবে একটা নিউট্রন তার ভিতরের একটি ঋণাত্মক চার্জ বের করে দিয়ে পরিণত হতে পারে প্রোটন কণায়। কিন্তু শুনতে যতটা সোজা সাপ্টা শোনাচ্ছে ব্যাপারটা আসলে কিন্তু ঠিক সেরকম নয়। এ ধরণের পরিবর্তন সন্তব শুধুমাত্র নিয়ক্লিয়ার বা পারমাণবিক বিক্রিয়ার মাধ্যমে। এর জন্য প্রয়োজন হয় বিশাল পরিমাণ শক্তির (energy), আর তাই যে কোন পারমাণবিক বিক্রিয়া থেকে যে শক্তি নির্গত হয় তার সাথে রাসায়নিক বিক্রিয়ার কোন তুলনাই করা সন্তব নয়। সাধারণ বোমার চেয়ে নিউক্লিয়ার বোমা বহুগুণ শক্তিশালী। হিরোসিমায় পারমাণবিক বোমা বিক্ষোরণের ভয়াবহতা তাই আমাদেরকে স্তন্তিত করে দেয়। নিউক্লিয়ারের কিন্তারার ফলে পরমাণুর নিউক্লিউয়াসের গঠন বদলে যায়, কিন্তু রাসায়নিক বিক্রিয়ার নিউক্লিয়ারে কান পরিবর্তন ঘটে না। আর ঠিক এ কারণেই সেই আরবীয় আ্যালকেমিন্টরা বহু শতকের চেন্টায়ও অন্য ধাতুকে সোনায় পরিণত করতে পারেননি, কারণ এর জন্য প্রয়োজন ছিলো নিউক্লিয়ার বিক্রিয়ার। প্রায় হাজার বছর আগে, সে সময়ে পরমাণুর গঠন বা পারমাণবিক বিক্রিয়ার কথা জানা না থাকায় তারা রাসায়নিক বিক্রিয়ার মাধ্যমেই মৌলিক ধাতুর পরিবর্তনের ব্যর্থ প্রচেন্টা চালিয়ে গিয়েছিলেন যুগ যুগ ধরে বি

প্রত্যেকটি মৌলিক পদার্থের নিউক্লিউয়াসেই নির্দিষ্ট সংখ্যক প্রোটন কণা থাকে, আর নিউক্লিয়াসে প্রটোনের এই সংখ্যাকে বলে পারমাণবিক সংখ্যা (atomic number) যা দিয়ে মূলতঃ মৌলিক পদার্থের বেশীরভাগ রাসায়নিক বৈশিষ্ট্য নির্ধারিত হয় (পরোক্ষভাবে একে ইলেকটনের সংখ্যাও বলা যেতে পারে কারণ সাধারণভাবে পরামাণুর কক্ষ পথে বিপরীত চার্জবিশিষ্ট্য ইলেকটনের সংখ্যাও সমান থাকে)। ইলেকটনের তুলনায় প্রোটন এবং নিউটনের ভার অপেক্ষাকৃত অনেক বেশী, তাই কোন পদার্থের ভর সংখ্যা (mass number) মাপা হয় তার প্রোটন এবং নিউটনের সংখ্যা দিয়ে। যেমন ধরুন, সাধারণত কার্বনের নিউক্লিউয়াসে ৬টি প্রোটন এবং ৬টি নিউটন থাকে, তাই তার ভর সংখ্যা হচ্ছে ১২, একে বলে কার্বন-১২। সাধারণভাবে নিউক্লিউয়াসে নিউটনের সংখ্যা প্রটোনের সংখ্যার সমান বা কয়েকটা বেশী থাকে। কিন্তু আবার কখনও কখনও কোন কোন পদার্থের নিউক্লিয়াসে সমান সংখ্যক প্রোটন থাকলেও তাদের বিভিন্ন ভারশান এর মধ্যে নিউটনের সংখ্যায় ভিন্নতা দেখা যায়। যেমন, কার্বন-১৩ এ রয়েছে ৭টি

নিউট্রন আর কার্বন-১৪এ থাকে ৮টি নিউট্রন, যদিও তাদের প্রত্যেকেরই প্রটোনের সংখ্যা সেই ৬টিই। আর মৌলিক পদার্থগুলোর মধ্যে যখন প্রটোনের সংখ্যা সমান থাকে কিন্তু নিউট্রনের সংখ্যায় তারতম্য দেখা যায় তখন তাদেরকে বলা হয় আইসোটোপ (Isotope)। তেজদ্রিয় ক্ষয় এবং তেজদ্রিয় ডেটিং বুঝতে হলে এই আইসোটোপের ব্যাপারটা ভালো করে বোঝা দরকার। এই আইসোটোপগুলোরই কোন কোনটা প্রকৃতিতে অস্থিত অবস্থায় থাকে এবং তারা ধীরে ধীরে ক্ষয়ের মাধ্যমে নিজেদের নিউক্লিয়াসের গঠনের পরিবর্তনের মাধ্যমে আরেক মৌলিক পদার্থে কপান্তরিত হয়। আইসোটোপের এই অস্থিরতারই আরেক নাম হচ্ছে 'রেডিওআ্যকটিভিটি' বা 'তেজদ্রিয়তা'। আর যে পদ্ধতিতে ক্ষয় হতে হতে তারা আরেক পদার্থে পরিণত হয় তাকেই বলে 'তেজদ্রিয় ক্ষয়'। যেমন ধরুন, সীসার ৪টি সুস্থিত, কিন্তু ২৫টি অস্থিত আইসোটোপ আছে, আর এই ২৫টি অস্থিত আইসোটোপই হচ্ছে তেজদ্রিয় পদার্থ। আবার ইউরেনিয়ামের সবগুলো আইসোটোপই অস্থিত এবং তেজদ্রিয় <sup>৫</sup>। আর আমাদের এই পরম ডেটিং পদ্ধতির মুল চাবিকাঠিই হচ্ছে পদার্থের এই তেজদ্রিয় বৈশিল্ট্য এবং তার ফলশুভিততে ঘটা তেজদ্রিয় ক্ষয়।

এই তেজব্রিয়ে ক্ষয় ঘটতে পারে বিভিন্নভাবে। আলফা এবং বেটা ক্ষয়ের কথা অনেক শুনি আমরা। আলফা ক্ষয়ের সময় আইসোটোপটি একটা আলফা কণা (দু'টো প্রোটন এবং দু'টো নিউট্রনের সমনুয়ে তৈরি এই আলফা কণা) হারায় তার নিউক্লিয়াস থেকে। অর্থাৎ তার ভারসংখ্যা ৪ একক কমে গেলেও পারমাণবিক সংখ্যা বা প্রটোনের সংখ্যা কমছে মাত্র ২ একক। কিন্তু এর ফলাফল কি দাঁডাচ্ছে? আর কিছুই নয়, নিউক্লিউয়াসের গঠনের পরিবর্তন হয়ে আইসোটোপটি এক মৌলিক পদার্থ থেকে আরেক মৌলিক পদার্থে পরিণত হয়ে যাচ্ছে। একটা উদাহরণ দিলে বোধ হয় ব্যাপারটা আরেকটু খোলাসা হবে - আলফা ক্ষয়ের ফলে ইউরেনিয়াম ২৩৮ (৯২ টি প্রোটন এবং ১৪৬ নিউট্রনের সমনুয়ে তৈরি এই মৌলিক পদার্থটি) পরিণত হচ্ছে সম্পর্ণ নতুন এক মৌলিক পদার্থ থোরিয়াম ২৩৪-এ (৯০ টি প্রোটন এবং ১৪৪ নিউটুনের সমনুয়ে তৈরি)। ওদিকে আবার বেটা ক্ষয়ের ক্ষেত্রে কিন্তু ঘটে আরেক ঘটনা। আইসোটোপের প্রমাণ থেকে একটি ইলেক্ট্রন বের করে দিয়ে নিউক্লিয়াসের ভিতরের একটি নিউট্রন প্রোটনে পরিণত হয়ে যায়। আরও বিভিন্ন ধরণের প্রক্রিয়ায় তেজস্ক্রিয় ক্ষয় ঘটতে পারে. সময় এবং জায়গার অভাবে এখন আর বিস্তারিত বর্ণনায় যাচ্ছি না। তেজঞ্জিয় ক্ষয়ের মূলে রয়েছে বিভিন্ন আইসোটোপের ভিতরের নিউক্লিয়াসের গঠনের পরিবর্তন বা পারমাণবিক পরিবর্তন এবং তার ফলশ্রুতিতেই এক মৌলিক পদার্থ থেকে আরেক নতন মৌলিক পদার্থে রূপান্তরিত হয় - এই ব্যাপারটা বোধ হয় এতক্ষনে আমাদের কাছে বেশ পরিষ্কার হয়ে উঠেছে। আর যেহেতু ভুতুকের বিভিন্ন শীলাস্তরে বিভিন্ন ধরনের আইসোটোপ পাওয়া যায় তাই এই তেজন্ত্রিয় ক্ষয়ের বৈশিষ্ট্যকে কাজে লাগিয়ে শীলা বা ফসিলের বয়স নির্ধারণ করা হয়। চলুন তাহলে দেখা যাক কিভাবে এই তেজষ্ক্রিয় আইসোটোপগুলোকে ভূতাত্ত্বিক ঘড়ি হিসেবে ব্যবহার করে পৃথিবী এবং তার প্রাণের বিবর্তনের ধারাবাহিক ইতিহাসের চিত্রটিকে বিজ্ঞানীরা কালি কলমে পরিষ্কারভাবে ফুটিয়ে তুলতে সক্ষম হয়েছেন।

বিভিন্ন শীলার মধ্যে বিভিন্ন ধরণের খনিজ পদার্থ বিদ্যমান থাকে, আর এই খনিজ পদার্থের মধ্যেই থাকে তেজদ্রিয় আইসোটোপগুলো। আধুনিক তেজদ্রিয় ডেটিং পদ্ধতিগুলোর মধ্যে ইউরেনিয়াম-সিরিজ ডেটিং বহুলভাবে ব্যবহৃত। তেজদ্রিয় ইউরেনিয়াম-২৩৮ ক্ষয় হতে হতে সীসা-২০৬ এ পরিণত হয় সুদীর্ঘ সাড়ে চারশো কোটি বছরে। এক এক করে, পুর্বনির্ধারিত একটি নির্দিষ্ট হারে এই তেজদ্রিয় আইসোটোপগুলো নতুন এক স্থিত এবং অতেজদ্রিয় পদার্থে পরিণত হয়ে যেতে থাকে। দীর্ঘ সময়ের বিস্তৃতিতে ঘটতে থাকলেও এই ক্ষয় কিন্তু ঘটে একটি সুনির্দিষ্ট হারে, আর সেখানেই লুকিয়ে রয়েছে আমাদের রেডিওমেটিক বা তেজদ্রিয় ডেটিং পদ্ধতির জীয়ণকাঠি। অত্যন্ত নির্ভর্বোগ্য এই ক্ষয়ের হার মাপার জন্য আইসোটোপের

হাফ-লাইফ (Half-Life) বা অর্ধ-জীবন -এর হিসাবটি ব্যবহার করা হয়। বিজ্ঞানীরা প্রথমে বিভিন্ন পরীক্ষা নিরীক্ষার মাধ্যমে. কোন এক আইসোটোপের নমুনার পারমাণুর অর্ধেকাংশের ক্ষয় হয়ে যেতে কত সময় লাগবে তার হিসেবটা বের করে ফেলেন। আইসোটোপের অর্ধ-জীবনের ব্যাপারটা একটা উদাহরণের মধ্যমে ব্যাখ্যা করে দেখা যাকঃ ধরুন, কোন একটি তেজব্রিয়ে আইসোটোপ 'ক' -এর অর্দ্ধ-জীবন এক লাখ বছর, সে ধীরে ধীরে তেজষ্ক্রিয় ক্ষয়ের মাধ্যমে মৌলিক পদার্থ 'ক' থেকে 'খ' এ পরিণত হয় এবং এক লাখ বছরের শুরুতে প্রমাণুর সংখ্যা ছিলো ১০০০। এখন প্রথম এক লাখ বছর বা এক অর্দ্ধ-জীবন পার করে দেওয়ার পর আমরা আইসোটোপটিকে কি অবস্থায় দেখতে পাবো? আইসোটোপ 'ক' -এর ১০০০ পরমাণুর অর্ধেক ৫০০ পরামাণু এখনও সেই আগের অবস্থা 'ক' তেই রয়ে গেছে আর বাকী অর্দ্ধেক বা ৫০০ পরমাণু 'খ'তে পরিণত হয়ে গেছে। তাহলে কি ২ লাখ বছর 'ক' -এর সবটাই 'খ' তে পরিণত হয়ে যাবে? না. অর্দ্ধ-জীবনের হিসেবের কায়দাটা বেশ সোজা হলেও ঠিক এরকম সরলরৈখিক নয়। দুই লাখ বছর পরে দেখা যাবে যে, 'ক' -এর অবশিষ্ট ৫০০ পরমাণুর অর্দ্ধেক অর্থাৎ আরও ২৫০টি 'খ' তে পরিণত হয়ে 'খ' -এর পরমাণুর মোট সংখ্যা দাঁড়িয়েছে ৭৫০ এ, আর তেজদ্রিয় ক্ষয়ের ফলশ্রুতিতে 'ক' তে এখন অবশিষ্ট রয়েছে ২৫০টি পরমাণু <sup>৬</sup>। তারপর তিন লাখ বছর পর 'খ' -এর পরমাণুর সংখ্যা এসে দাঁডাবে ৮৭৫ এ। এখন ধরুন, তিন লাখ বছর পর আজকে এখানে দাঁডিয়ে একজন বিজ্ঞানী খুব সহজেই বের করে ফেলতে পারবেন এই আইসোপটিসহ শীলাটির বয়স কত। আর তার জন্য তাকে জানতে হবে দু'টো তথ্যঃ আইসোটোপ 'ক' -এর অর্দ্ধ-জীবন কত (বিজ্ঞানীরা ইতোমধ্যেই তার বিস্তারিত তালিকা তৈরি করে রেখেছেন), আর ওই শীলায় 'ক' এবং 'খ' -এর পরিমানের আনুপাতিক হার কত।

ভূমিকম্প, আগ্নেয়গিরী ইত্যাদির ফলশ্রুতিতে ভূপুষ্ঠে লাভা নির্গত হয়। লাভা যে মুহুর্তে ঠান্ডা এবং শক্ত হয়ে কেলাষিত হতে শুরু করে. তখন থেকেই ঘুরতে শুরু করে এই তেজস্ক্রিয় ঘড়ির কাঁটা। তখন থেকেই ক্রমাগতভাবে নির্দিষ্ট হারে তেজস্ক্রিয় বিকিরণ এবং ক্ষয়ের প্রক্রিয়া শুরু হয়ে যায়, নির্দিষ্ট নিয়ম মেনে এই তেজন্ত্রিয় মৌলিক পদার্থগুলো রূপান্তরিত হতে শুরু করে আরও সৃস্থিত অন্য কোন মৌলিক পদার্থে। কিন্তু এই প্রক্রিয়া যখন চলতে থাকে তখন আংশিকভাবে রূপান্তরিত পদার্থটির অংশটিও শিলাস্তরে ভিতরেই রয়ে যায়। তাই এদের দু'টোর পরিমাণের আনুপাতিক হার নির্ধারণ করা কোন কঠিন কাজ নয়। যেমন ধরুন, পটাসিয়াম-৪০ যখন সৃস্থিত আর্গন-৪০ এ পরিণত হতে থাকে, তখন আর্গন-৪০ লাভার কেলামের মধ্যে গ্যাসের আকারে আটকে থাকে। বিভিন্ন শীলার মধ্যে বহুল পরিমাণে পটাসিয়াম-আর্গন পাওয়া যায় বলে বিজ্ঞানীরা বহুলভাবে পটাসিয়াম-আর্গন ডেটিং পদ্ধতি ব্যবহার করেন। ইউরেনিয়াম সিরিজের ডেটিং -এর কথা আগেই উল্লেখ করেছিলাম। ইউরেনিয়াম ২৩৮ -এর অর্ধ-জীবন সাড়ে চারশো কোটি বছর পটাসিয়াম ৪০ -এর হচ্ছে ১৩০ কোটি বছর, ইউরেনিয়াম ২৩৫ -এর ৭৫ কোটি বছর, ওদিকে আবার কার্বন ১৫ -এর অর্দ্ধ-জীবন হচ্ছে মাত্র ২.৪ সেকেন্ড। এত বিশাল সময়ের পরিসরে বিস্তৃত অর্ধ- জীবন সম্পন্ন তেজষ্ক্রিয় পদার্থগুলো রয়েছে বলেই বিজ্ঞানীরা আজকে একটি দু'টি নয়, বহু রকমের তেজষ্ক্রিয় ডেটিং বা অন্যান্য ডেটিং -এর সাহায্য নিতে পারেন কোন ফসিলের বয়স নির্ধারণের জন্য। ফসিলের আপেক্ষিক বয়স সম্পর্কে একটা ধারণা করতে পারলে সেই অনুযায়ী প্রযোজ্য ডেটিং পদ্ধতিটা ব্যবহার করেন তারা। বিভিন্ন পদ্ধতিতে ক্রস-নিরীক্ষণ করে তবেই তারা নিশ্চিত হন ফলাফল সম্পর্কে। আর তার ফলেই সম্ভব হয়ে ওঠে এত সুনির্দিশ্টভাবে এত প্রাচীন সব ফসিলের বয়স নির্ধারণ করা। চলুন দেখা যাক বিভিন্ন ধরণের ডেটিং পদ্ধতি ব্যবহার করে কি করে ফসিলের বয়স বের করা হয়।

অনেক শীলাস্তরে বিশেষ করে আগ্নেয় শীলাস্তরে প্রচুর পরিমাণে ইউরেনিয়াম, পটাসিয়াম জাতীয় তেজস্ক্রিয় পদার্থ পাওয়া যায়। আবার পাললিক শীলার মধ্যে তেমন কোন তেজঙ্কিয় পদার্থের অস্তিতই থাকে না। কিন্তু আমরা জানি যে, আগ্নেয় শীলায় ফসিল সংরক্ষিত হয় না, ফসিল পাওয়া যায় শুধু পাললিক শীলাস্তরে। তাহলে পাললিক শীলাস্তরের এই ফসিলগুলোর বয়স কিভাবে নির্ধারণ করা হয়? এক্ষেত্রে আপেক্ষিক এবং পরম দু'টো পদ্ধতিই ব্যবহার করা যেতে পারে। প্রথমে পাললিক শীলা স্তরের উপরে এবং নীচে যে আগ্নেয় শিলাস্তর দু'টো তাকে স্যান্ডুইচের মত আটকে রেখেছে, তাদের বয়স নির্ধারণ করা হয়। এখান থেকে বিজ্ঞানীরা বুঝতে পারেন যে মধ্যবর্তী পাললিক শিলাস্তরে সংরক্ষিত ফসিলের বয়স এই দুই আগ্নেয় শিলাস্তরের বয়সের মাঝামাঝিই হবে। এখন যদি দেখা যায় যে, ফসিলটির নিজের মধ্যে যথেন্ট পরিমাণে তেজদ্রিয় পদার্থ আটকে গেছে তাহলে তেজদ্রিয় ডেটিং –এর মাধ্যমে ফসিলটির বয়স সরাসরিই নির্ধারণ করা যেতে পারে। সরাসরি ফসিলের বয়স হিসেব করার জন্য তেজদ্রিয় ডেটিং পদ্ধতিগুলোর মধ্যে রেডিওকার্বন ডেটিং হচ্ছে অত্যন্ত বহুলভাবে ব্যবহৃত আরেকটি পদ্ধতি। এই পদ্ধতি দিয়ে শিলাস্তরের বয়স নয়, ফসিলের মধ্যে মৃত টিসুারই বয়স সরাসরি নির্ধারণ করে ফেলা যায়। কয়েক হাজার বছরের অর্থাৎ ভূতাত্ত্বিক সময়ের বিচারে অপেক্ষাকৃত সাম্প্রতিক কালের ইতিহাস জানার জন্য এই পদ্ধতি অত্যন্ত গুরুত্বপূর্ণ ভূমিকা পালন করে। বিশেষ করে মানুষ এবং তার পূর্বপুরুষদের ফসিলের বয়স নির্ধারণ ব্যাপকভাবে রেডিও কার্বন ডেটিং পদ্ধতি ব্যবহার করা হয়।

সাধারণত আমরা প্রকৃতিতে যে কার্বনের কথা শুনি তার প্রায় সবটাই সুস্থিত আইসোটোপ কার্বন ১২। তবে খুবই সামান্য পরিমাণে হলেও অস্থিত কার্বন-১৪ -এর অস্তিত্বও দেখতে পাওয়া যায় প্রকৃতিতে। কসমিক রেডিয়েশন বা বিচ্ছুরণের ফলে বায়ুমন্ডলে অনবরতই একটি নির্দিষ্ট হারে সৃস্থিত নাইটজেন ১৪ থেকে এই কার্বন-১৪ তৈরি হতে থাকে। এই কার্বন-১৪ -এর অর্ধ-জীবন হচ্ছে ৫,৭৩০ বছর, অর্থাৎ প্রতি ৫৭৩০ বছরে কার্বন-১৪ -এর অর্ধেকাংশ তেজষ্ক্রিয় ক্ষয়ের মাধ্যমে নাইট্রোজেন-১৪ এ রূপান্তরিত হয়। কার্বন-১৪ -এর অর্ধ-জীবন এত ছোট যে. খুবই অল্প পরিমাণে হলেও ক্রুমাগতভাবে নাইট্রজেন ১৪ থেকে কার্বন ১৪ তৈরি হতে না থাকলে প্রকৃতিতে এর অস্তিত বেশীদিন টিকে থাকতে পারতো না। যাই হোক, এর উৎপত্তি এবং ক্ষয়ের হার ধ্রুব হওয়ার কারণে প্রকৃতিতে কার্বন-১২ আর কার্বন-১৪ -এর আনুপাতিক হার সব সময় সমান থাকে। এই দুই রকমের কার্বন আইসোটোপই বায়ুমন্ডলে রাসায়নিকভাবে অক্সিজেনের সাথে যুক্ত হয়ে কার্বন ডাই অক্সাইডে পরিণত হয়ে যায়। উদ্ভিদ তার খাদ্য তৈরির জন্য এই কার্বন ডাই অক্সাইড গ্রহন করে, আর ওদিকে প্রাণীকুল গ্রহন করে উদ্ভিদকে তার খাদ্য হিসেবে, আবার তারাই হয়তো পরিণত হয় অন্য কোন প্রাণীর খাদ্যে। উদ্ভিদ যেহেতু কার্বন-১২ আর কার্বন-১৪ দিয়ে তৈরি উভয় কার্বন ডাই অক্সাইডই গ্রহন করে তাই সমগ্র ফুড চেইন বা খাদ্য শৃংখল জুড়েই এই দুই কার্বন আনুপাতিক হারে সমানভাবেই বিরাজ করে। বায়মন্ডল থেকে উদ্ভদে, উদ্ভিদ থেকে প্রাণীর দেহে সঞ্চারিত হয় এই কার্বন ১২ এবং কার্বন ১৪। কিন্তু এই চক্রের সব কিছই বদলে যায় যেই মাত্র প্রাণী বা উদ্ভিদের মৃত্যু ঘটে, সে আর নতুন কোন কার্বন ১৪ গ্রহন করতে পারে না, তখন তার দেহে বিদ্যমান কার্বন-১৪ একটি নির্দিষ্ট হারে নাইট্রজেন ১৪ এ রূপান্তরিত হতে থাকে। সূতরাং একটা মৃত জীবের দেহে কার্বন-১২ -এর তুলনায় কার্বন ১৪ -এর পরিমান আনুপাতিক হারে কমে যেতে শুরু করে। আর সে কারণেই ফসিলের দেহে বিদ্যমান কার্বন-১২ এবং কার্বন-১৪ -এর এই আনুপাতিক হার হিসেব করে সহজেই তার বয়স নির্ধারণ করে ফেলা যায়। তবে রেডিও কার্বন ডেটিং পদ্ধতি দিয়ে শুধুমাত্র অপেক্ষাকৃত সাম্প্রতিক কালের ফসিলের বয়স নির্ধারণ করা সম্ভব, ৩০ হাজার থেকে খুব বেশী হলে ৫০ হাজার বছরের পুরনো ফসিলের বয়স বের করা সম্ভব এই পদ্ধতিতে। আমরা আগেই দেখেছি, কার্বন-১৪ -এর অর্ধ-জীবন ভূতাত্ত্বিক সময়ের অনুপাতে খবই ক্ষদ্র, মাত্র ৫৭৩০ বছর <sup>৬</sup>। তাই, ৩০-৫০ হাজার বছরের চেয়েও পুরনো ফসিলে যে অতি সামান্য পরিমাণে কার্বন ১৪ বিদ্যমান থাকে তা দিয়ে আর যাই হোক সঠিকভাবে তার বয়স নির্ধারণ করা সম্ভব নয়। তবে কয়েক হাজার বছরের ফসিলের ডেটিং -এর জন্য এই পদ্ধতির জুড়ি

#### মেলা ভার।

তাহলে দেখা যাছে যে, তেজস্ক্রিয় পদার্থগুলোর এই সুনির্দিষ্ট অর্দ্ধ-জীবনের ব্যাপারটি আমাদের সামনে শীলাস্তরের এবং ফসিলের বয়স বের করার এই অনবদ্য সুযোগের দরজাটি খুলে দিয়েছে। বহু আগে থেকেই ধারণা করে আসলেও ১৯২০ সালের দিকেই প্রথম তেজব্রিয় ডেটিং পদ্ধতি ব্যবহার করে দেখানো হয়েছিলো যে, পৃথিবীর বয়স কয়েকশো কোটি বছর <sup>৭</sup>। তারপর থেকে বিজ্ঞানীরা নানাভাবেই নানা রকমের তেজদ্রিয় পদ্ধতিতে ভূতাত্ত্বিক বয়স নির্ধারণের উপায় বের করেছেন। আর শুধু তেজদ্রিয় ডেটিং ই তো নয়, এর সাথে সাথে আরও বিভিন্ন ধরণের আধুনিক পদ্ধতিও আবিষ্কার করা হয়েছে পৃথিবীর এই মহায়াত্রার সময়কাল নির্ধারণের জন্য। যেমন ধরুন, বিজ্ঞানীরা এখন জানেন যে, পৃথিবীর চৌম্বক ক্ষেত্র প্রায়শঃই তার দিক পরিবর্তন করে। 'প্রায়শঃ' বলতে আমাদের সাধারণ হিসেবে নয়, ভুতাত্ত্বিক বিশাল সময়ের তুলনায় 'প্রায়শঃই' বোঝানো হচ্ছে এখানে। গত এক কোটি বছরে পৃথিবী নাকি মোট ২৮২ বার উত্তর থেকে দক্ষিণে এবং দক্ষিণ থেকে উত্তরে তার চৌম্বক ক্ষেত্রের দিক পরিবর্তন করেছে  $^{lpha}$ । আর তার সাথে সাথে আমাদের পথিবীর অভ্যন্তরের আগ্নেয়গিরীর গলিত শীলার ভিতরের খনিজ পদার্থগুলোও কম্পাসের মতই দিক পরিবর্তন করে এবং তার একটা সুনির্দিষ্ট রেকর্ড রেখে দেয়। তারপর যখন এই লাভাগুলো শক্ত হয়ে শীলাস্তরে পরিণত হয় তখন এই রেকর্ডগুলো অবিকৃত অবস্থায় ওইভাবেই থেকে যায়। এ থেকেও ভূতত্ত্ববিদেরা অনেক শিলাস্তরেরই আপেক্ষিক বয়স নির্ধারণ করতে পারেন। এছাড়া আরও মজার মজার ধরণের কিছু ডেটিং পদ্ধতি রয়েছে, যেমন ধরুন, বড় বড় গাছের কান্ডে যে রিং বা বৃত্ত তৈরি হয় তার মাধ্যমেও উদ্ভিদের ফসিলের বা কাঠের বয়স বের করে ফেলা সম্ভব। বাৎসরিক বৃদ্ধির ফলে গাছের গোড়ায় যে স্তর বা কৃক্ষ-কৃত্তের সৃষ্টি হয় তা এক ধরণের প্রাকৃতিক নিয়ম মেনেই ঘটে, আর এর থেকেই বিজ্ঞানীরা হিসেব করে বের করতে পারেন তার বয়স। এরকম আরও বহু ধরণের ডেটিং পদ্ধতি রয়েছে, নীচের ছবিটিতে (চিত্র ৭.৫) এরকম বিভিন্ন ধরণের ডেটিং পদ্ধতি এবং তাদের দিয়ে কোন কোন সময়ের সীমা নির্ধারণ করা যায় তার একটা সংক্ষিপ্ত তালিকা দেওয়া হল <sup>৮</sup>। এখন আর আমাদের একটি বা দু'টি ডেটিং পদ্ধতির উপর নির্ভর করে শীলাস্তর বা ফসিলের বয়স নির্ধারণ করার প্রয়োজন হয় না।



চিত্র ৭.৫: পরমাণুর গঠন বিভিন্ন রেঞ্জের সময়ের জন্য বিভিন্ন ধরণের ডেটিং পদ্ধতি:

আমাদের হাতে আছে বহু রকমের পদ্ধতি যা দিয়ে কোন একটা ফলাফলকে বারবার বিভিন্নভাবে ক্রস চেক বা নিরীক্ষণ করে নিতে পারি। পদ্ধতিগুলো শুধু যে বৈজ্ঞানিক তাইই নয়, প্রয়োজন এবং গুরুত্ব অনুযায়ী বিজ্ঞানীরা এত রকমের পদ্ধতি ব্যবহার করেন যে, এর ফলাফলের সঠিকতা নিয়ে আর দ্বিমত বা সন্দেহ প্রকাশ করার তেমন অবকাশ থাকে না। খ্রিন্টীয় ধর্মাবলম্বী বিভিন্ন রক্ষণশীল দলগুলো এখনও যখন বাইবেলের সেই ছয় হাজার বছরের পৃথিবীর সৃষ্টির ইতিহাস নিয়ে হইচই করেন এবং এই ডেটিং পদ্ধতিগুলোকে ভুল বলে চালিয়ে দেওয়ার প্রচারণায় লিপ্ত হন তখন তাদের অজ্ঞতা দেখে স্তম্ভিত হয়ে যাওয়া ছাড়া আর কি বা করার থাকে? উট পাখীর মত বালিতে মাথা গুঁজে পড়ে থাকলেই তো আর বাস্তবতাকে অস্বীকার করা যাবে না। সত্যকে মেনে নিয়ে জ্ঞানের সীমাকে প্রসারিত করাই হচ্ছে মানব সভ্যতার রীতি, এভাবেই আমরা এগিয়েছি। একটু একটু করে, সেই গুহাবাস থেকে আজকের এই সীমাহীন মহাজাগতিক এক আধুনিক ভবিষ্যতের দিগন্তরেখার দিকে।

### তথ্যসূত্ৰ:

- s. Stringer C and Andrews P, 2005, The Complete World of Human Evolution, Thames and Hudson Ltd, London, p 22.
- http://www.actionbioscience.org/evolution/benton.html
- o. http://pubs.usgs.gov/gip/fossils/intro.html

- 8. Ridley M, 2004, Evolution, BlackwellPublishing, Oxford, UK, p 526.
- Futuyma DJ, 2005, Evolution, Sinauer Associates, INC, MA, USA, p.70
- Berra TM, 1990, Evolution and the Myth of Creationism, StanfordUniversity Press, Stanford, California, pp 35-78.
- আখতারজ্জামান ম , ২০০২, বিবর্তনবাদ, হাসান বুক হাউস, ঢাকা, বাংলাদেশ, পৃঃ ১৮১।
- http://www.enchantedlearning.com/subjects/Geologictime.html
- a. Dawkins, R, 2004, The Ancester's tale, Houghton Miffin Company, NY, Boston: USA, pp 516-523.
- **b.** Berra TM, 1990, Evolution and the Myth of Creationism, Stanford University Press, Stanford, California, pp 36-37.
- 9. http://www.actionbioscience.org/evolution/benton.html
- ъ. Stringer C and Andrews P, 2005, The Complete Wrold of Human Evolution, Thames and Hudson Ltd, London, p 32

অন্টম অধ্যায় দ্রন্টব্য

{বন্যা আহমেদের বিবর্তনের পথ ধরে বইটি অবসর প্রকাশনী থেকে ২০০৭-এর একুশে বইমেলায় প্রকাশিতব্য। এই অংশটি বইটির সপ্তম অধ্যায়।}