Matemática das Coisas

Parte 1

Modelos Matemáticos em Ciências da Vida e da Saúde

Aula de 22 de Fevereiro de 2022 Ana Jacinta Soares

Modelação Matemática

1. Dinâmica de uma população Modelos de referência para uma espécie

2. Dinâmica de duas populações

Competição de espécies Lotka-Volterra

3. Dinâmica de várias populações

Modelo SIR

Estudo do modelo SIR

Dinâmica de uma população

Modelo de Malthus

Evolução de uma população (nascimentos/mortes)

$$P'(t) = (n - m)P(t)$$

Thomas Malthus (1766-1834)

Economista
Reino Unido

- P(t) número de indivíduos da população, no tempo t
- P'(t) variação de P(t)
- n taxa de nascimentos
- *m* taxa de mortes

Modelo de Malthus

$$P'(t) = (n-m)P(t)$$

Solução do modelo ("crescimento" exponencial)

$$P(t)=P_0\;e^{(n-m)t},\quad P_0$$
 população inicial

Caso
$$n > m$$

$$\lim_{t\to+\infty}\,P(t)=+\infty$$

Crescimento não limitado (não controlado)

Modelo de Malthus |P'(t) = (n-m)P(t)

$$P'(t) = (n-m)P(t)$$

Solução do modelo ("crescimento" exponencial)

$$P(t)=P_0\;e^{(n-m)t},\quad P_0$$
 população inicial

Caso m > n

$$\lim_{t\to +\infty} P(t) = 0$$

Extinção da população

Modelo de Malthus

$$P'(t) = (n-m)P(t)$$

Solução do modelo ("crescimento" exponencial)

$$P(t)=P_0\;e^{(n-m)t},\quad P_0$$
 população inicial

Caso m = n

$$P(t) = P_0$$

População constante (sem interesse)

temno

Análise do Modelo de Malthus

- Modelo muito idealista
- ► Adequado a curtos intervalos de tempo População mundial entre 1700 e 1961
- Adequado a certas populações animais Evolução de bactérias em laboratório Praga biológica
- Caso contrário, por exemplo se n > m
 Superpopulação (até algum controlo externo)
 no caso de humanos, fome, guerra, doenças, miséria

Modelo de Verhulst

Evolução de uma população (com inibição)

$$P'(t) = \underbrace{(n-m)P(t)}_{\text{nascim \& mortes}} - \underbrace{kP^2(t)}_{\text{inibição}}$$

Pierre Verhulst (1804-1849) Matemático, Economista, Político Bélgica

ou
$$P'(t) = aP(t) - kP^{2}(t)$$
ou
$$P'(t) = \left[a - kP(t)\right]P(t)$$

$$P'(t) = aP(t)\left[1 - \frac{P(t)}{a/k}\right]$$

$$P'(t) = aP(t)\left[1 - \frac{P(t)}{s}\right]$$

Modelo de Verhulst

Solução do modelo ("crescimento" controlado)

$$P(t)=rac{aP_0}{kP_0+(a-kP_0)e^{-at}}\;,\;\;P_0$$
 população inicial

$$\lim_{t\to+\infty}P(t)=\frac{a}{k}$$

 $\frac{a}{k}$ capacidade ou nível de saturação do meio ambiente

Crescimento ou Decrescimento controlado, desde P_0 até $\frac{a}{k}$

Modelo de Verhulst (solução)

$$P(t) = rac{aP_0}{kP_0 + (a - kP_0)e^{-at}} \;, \quad \lim_{t o +\infty} P(t) = rac{a}{k}$$

Comportamento qualitativo da solução (possíveis trajectórias)

Modelo de Verhulst

Solução do modelo

$$P(t)=rac{aP_0}{kP_0+(a-kP_0)e^{-at}}\;,\;\;P_0$$
 população inicial

Caso
$$P_0 > \frac{a}{k}$$

$$\lim_{t \to +\infty} P(t) = \frac{a}{k}$$

População diminui

Modelo de Verhulst

Solução do modelo

$$P(t)=rac{aP_0}{kP_0+(a-kP_0)e^{-at}}\;,\;\;P_0$$
 população inicial

Caso
$$P_0 < \frac{a}{k}$$

$$\lim_{t\to+\infty}\,P(t)=\frac{a}{k}$$

População aumenta

Análise do Modelo de Verhulst

- Modelo menos idealista
- A evolução da população tem em conta os recursos disponíveis

alimentares, ambientais capacidade do meio

- Factores ecológicos
- Processos selectivos que controlam o crescimento da população

Aplicações notáveis

Medicina

Crescimento de tumores Inibição: quimioterapia, fármacos

Aplicações notáveis

Economia & Sociologia

Difusão de ideias novas tecnologias inovadoras Inibição: natural, espontânea associada ao consumo bem como às imitações

AZUL: Consumidores LARANJA: Saturação do mercado

Modelos Sazonais

- Evolução depende fortemente da estação do ano ou de outros fenómenos periódicos
- Há uma grande alternância de comportamento

Modelo típico

$$P'(t) = k \cos(\gamma t) P(t)$$

Solução

$$P(t) = P_0 e^{k/\gamma \operatorname{sen}(\gamma t)}$$

Modelos Sazonais

Aplicações: Turismo, alguns animais

Comportamento qualitativo da solução (possíveis trajectórias)

Dinâmica de duas populações

Modelos de Interacção (duas populações)

- Competição de espécies
- Duas espécies partilham um território comum ou dividem recursos alimentares
- Espécies que se inibem mutuamente
- Espécies que se favorecem mutuamente
- Sistemas de tipo Presa-Predador uma espécie é inibida e a outra é benificiada

Equações do modelo

- Duas populações P(t) e Q(t)
- Sistema de duas equações de evolução

Equações do modelo

Se as espécies evoluíssem sozinhas (Verhulst), teríamos

$$\begin{cases} P'(t) = \left[a - bP(t)\right]P(t) = aP(t)\left[1 - \frac{P(t)}{s}\right] \\ Q'(t) = \left[c - dQ(t)\right]Q(t) = cQ(t)\left[1 - \frac{Q(t)}{r}\right] \end{cases}$$

 $a \in c \longrightarrow taxas$ de crescimento intrínseco das populações $b \in d \longrightarrow taxas$ inibidoras de crescimento da espécie (competição intra-espécie) $s \in r \longrightarrow n$ íveis de saturação das espécies (número máx de indivíduos)

Mas não é assim ... porque as espécies interagem

Equações do modelo

As espécies interagem

Por exemplo, se competirem, então a presença de uma espécie é prejudicial para a outra

$$\begin{cases} P'(t) = \left[a - bP(t) - kQ(t)\right]P(t) \\ Q'(t) = \left[c - dQ(t) - \ell P(t)\right]Q(t) \end{cases}$$

a e $c\longrightarrow$ taxas de crescimento intrínseco das populações b e $d\longrightarrow$ taxas inibidoras de crescimento das espécies k e $\ell\longrightarrow$ efeito competitivo de uma espécie sobre a outra

Várias coisas podem acontecer

- Ocorre extinção das duas espécies
- Só uma das espécies sobrevive (a outra extingue-se)
- As duas espécies sobrevivem, e encontram uma "convivência estável"

Com técnicas da **Teoria dos Sistemas Dinâmicos**, podemos prever estas situações, fazendo uma **análise qualitativa da solução** do modelo (pontos de equilíbrio e estabilidade).

Equações do modelo

As espécies interagem

Numa relação de **mutualismo**, a presença de cada uma das espécies é benéfica para a outra

$$\begin{cases} P'(t) = \left[a - bP(t) + kQ(t)\right]P(t) \\ Q'(t) = \left[c - dQ(t) + \ell P(t)\right]Q(t) \end{cases}$$

 $a \in c \longrightarrow taxas$ de crescimento intrínseco das populações $b \in d \longrightarrow taxas$ inibidoras de crescimento das espécies $k \in \ell \longrightarrow efeito$ benéfico de uma espécie sobre a outra

Exemplo: ruminantes e micro-organismos nos seus estômagos, ajudam na digestão dos vegetais ingeridos pelos ruminantes

Outras variantes

- Parasita-Hospedeiro
 - uma espécie tira vantagens da outra pode haver ou não prejuízo para o hospedeiro
- Comensalismo
 - uma beneficia e para a outra é indiferente rémora (beneficia) e tubarão (transporta) a rémora rémora alimenta-se dos restos que o tubarão rejeita
- Presa-Predador
 - uma espécie alimenta-se da outra

Modelo Presa-Predador

Há uma competição feroz entre duas espécies

Predador ataca e Presa defende-se

O Predador alimenta-se da Presa

Pode ser uma relação de CANIBALISMO

populações da mesma "espécie" selecção natural dentro da espécie

para eliminar os indivíduos "defeituosos"

Modelo Lotka-Volterra

Alfred Lotka (1880–1949) Ucrânia

Vito Volterra (1860–1940) Itália

Lince ibérico & Coelho bravo

Lince (Predador)

Coelho bravo (Presa)

Modelo

$$\begin{cases} P'(t) = aP(t) - \alpha P(t)Q(t) \\ Q'(t) = -cQ(t) + \gamma P(t)Q(t) \end{cases}$$

Quem é quem?

Modelo

$$\begin{cases} P'(t) = aP(t) - \alpha P(t)Q(t) & (\text{Presa}) \\ Q'(t) = -cQ(t) + \gamma P(t)Q(t) & (\text{Predador}) \end{cases}$$

População de presas isolada
$$P'(t) = aP(t)$$
 crescimento exponencial

População de predadores isolada Q'(t) = -cQ(t) decrescimento exponencial (extinção)

Presas isoladas (solução exacta)

$$P(t) = P_0 e^{at}$$

Predadores isolados (solução exacta)

$$Q(t) = Q_0 e^{-ct}$$

Modelo completo

$$\begin{cases} P'(t) = aP(t) - \alpha P(t)Q(t) & (\text{Presa}) \\ Q'(t) = -cQ(t) + \gamma P(t)Q(t) & (\text{Predador}) \end{cases}$$

Analiticamente

não é possível determinar a solução exacta

Numericamente

procuramos uma solução aproximada

Estudamos

o comportamento qualitativo da solução (exacta)

Solução numérica (aproximada)

Populações

tempo

Comportamento qualitativo sua solução

Dinâmica de três populações

(próxima aula)