Лабораторная работа №7

Хватов Максим, НФИбд-04-22

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	9
4	Вывол	11

Список иллюстраций

3.1	(рис. 1. Программный код приложения, реализующего режим	
	однократного гаммирования)	10

Список таблиц

1 Цель работы

Освоить на практике применение режима однократного гаммирования.

2 Теоретическое введение

Предложенная Г. С. Вернамом так называемая «схема однократного использования (гаммирования)» является простой, но надёжной схемой шифрования данных. [0]

Гаммирование представляет собой наложение (снятие) на открытые (зашифрованные) данные последовательности элементов других данных, полученной с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. Иными словами, наложение гаммы — это сложение её элементов с элементами открытого (закрытого) текста по некоторому фиксированному модулю, значение которого представляет собой известную часть алгоритма шифрования.

В соответствии с теорией криптоанализа, если в методе шифрования используется однократная вероятностная гамма (однократное гаммирование) той же длины, что и подлежащий сокрытию текст, то текст нельзя раскрыть. Даже при раскрытии части последовательности гаммы нельзя получить информацию о всём скрываемом тексте.

Наложение гаммы по сути представляет собой выполнение операции сложения по модулю 2 (XOR) (обозначаемая знаком \blacksquare) между элементами гаммы и элементами подлежащего сокрытию текста. Напомним, как работает операция XOR над битами: $0 \blacksquare 0 = 0, 0 \blacksquare 1 = 1, 1 \blacksquare 0 = 1, 1 \blacksquare 1 = 0$.

Такой метод шифрования является симметричным, так как двойное прибавление одной и той же величины по модулю 2 восстанавливает исходное значение, а шифрование и расшифрование выполняется одной и той же про-

граммой.

Если известны ключ и открытый текст, то задача нахождения шифротекста заключается в применении к каждому символу открытого текста следующего правила:

```
Ci = Pi ☒ Ki,
```

где Ci — i-й символ получившегося зашифрованного послания, Pi — i-й символ открытого текста, Ki — i-й символ ключа, i = 1, m. Размерности открытого текста и ключа должны совпадать, и полученный шифротекст будет такой же длины.

Если известны шифротекст и открытый текст, то задача нахождения ключа решается также в соответствии с (7.1), а именно, обе части равенства необходимо сложить по модулю 2 с Pi:

```
Ci ĭ Pi = Pi ĭ Ki ĭ Pi = Ki,
Ki = Ci ĭ Pi.
```

Открытый текст имеет символьный вид, а ключ — шестнадцатеричное представление. Ключ также можно представить в символьном виде, воспользовавшись таблицей ASCII-кодов.

К. Шеннон доказал абсолютную стойкость шифра в случае, когда однократно используемый ключ, длиной, равной длине исходного сообщения, является фрагментом истинно случайной двоичной последовательности с равномерным законом распределения. Криптоалгоритм не даёт никакой информации об открытом тексте: при известном зашифрованном сообщении С все различные ключевые последовательности К возможны и равновероятны, а значит, возможны и любые сообщения Р.

Необходимые и достаточные условия абсолютной стойкости шифра:

- полная случайность ключа;
- равенство длин ключа и открытого текста;
- однократное использование ключа.

Рассмотрим пример.

Ключ Центра:

05 0C 17 7F 0E 4E 37 D2 94 10 09 2E 22 57 FF C8 0B B2 70 54 Сообщение Центра:

Штирлиц – Вы Герой!!

D8 F2 E8 F0 EB E8 F6 20 2D 20 C2 FB 20 C3 E5 F0 EE E9 21 21 Зашифрованный текст, находящийся у Мюллера:

DD FE FF 8F E5 A6 C1 F2 B9 30 CB D5 02 94 1A 38 E5 5B 51 75 Дешифровальщики попробовали ключ:

05 0C 17 7F 0E 4E 37 D2 94 10 09 2E 22 55 F4 D3 07 BB BC 54 и получили текст:

D8 F2 E8 F0 EB E8 F6 20 2D 20 C2 FB 20 C1 EE EB E2 E0 ED 21 Штирлиц - Вы Болван!

Другие ключи дадут лишь новые фразы, пословицы, стихотворные строфы, словом, всевозможные тексты заданной длины.

3 Выполнение лабораторной работы

Нужно подобрать ключ, чтобы получить сообщение «С Новым Годом, друзья!». Требуется разработать приложение, позволяющее шифровать и дешифровать данные в режиме однократного гаммирования. Приложение должно:

- 1. Определить вид шифротекста при известном ключе и известном открытом тексте.
- 2. Определить ключ, с помощью которого шифротекст может быть преобразован в некоторый фрагмент текста, представляющий собой один из возможных вариантов прочтения открытого текста.

Для решения задачи написан программный код:

```
In [1]: import random
In [2]: from random import seed
In [3]: import string
In [4]: # сложение двух строк по модулю
         def xor_text_f(text,key):
              if len(key) != len (text): return "Ошибка: Ключ и текст разной длины"
              xor_text =
              for i in range(len(key)):
    xor_text_symbol = ord(text[i]) ^ ord(key[i])
    xor_text += chr(xor_text_symbol)
return xor_text
In [5]: # ввод исходного текста
text = "С Новым Годом, друзья!"
In [6]: # создание ключа
         key =
          seed(22)
         for i in range(len(text)):
             key += random.choice(string.ascii_letters + string.digits)
Out[6]: '96ipbNClShVP4wY4for9du'
In [7]: # получение шифротекста
         xor_text = xor_text_f(text,key)
xor_text
Out[7]: 'И\x16VюèSѾLpiЪѮJ[уÈЦЬхvЫТ'
In [8]: # открытый текст
         xor_text_f(xor_text,key)
Out[8]: 'С Новым Годом, друзья!'
In [9]: # получение ключа
         xor_text_f(text,xor_text)
Out[9]: '96ipbNClShVP4wY4for9du'
```

Рис. 3.1: (рис. 1. Программный код приложения, реализующего режим однократного гаммирования)

4 Вывод

В ходе выполнения данной лабораторной работы было освоено на практике применение режима однократного гаммирования.