Branch-and-Bound Algorithms(Maximization Problem)

Main Ingredients:

- 1) Branching scheme (branch-decision tree).
- 2) Upper Bound computation (Problem Relaxations).
- 3) Reduction Procedures. (RSC)
- 4) Dominance Criteria among the nodes of the branchdecision tree.
- 5) Parametric Techniques for the computation of the Upper Bound at each node of the branch-decision tree.
- 6) Lower Bound computation (Heuristic Procedures).
- 7) "Core problem" approach for large-size instances.

Branch-and-Bound Algorithms (2)

* Given the maximization problem P_0 : (P_0) $z(P_0) = \max \{ f(x) : x \in F(P_0) \}$

* Subdivide P_0 into m subproblems: $P_1, P_2, ..., P_m$ (m > 1): $z(P_k) = \max\{f(x) : x \in F(P_k)\}$ for k = 1, 2, ..., m (where $F(P_k)$ is the set of the feasible solutions of problem P_k)

so as to have: $F(P_1) \cup F(P_2) \cup ... \cup F(P_m) = F(P_0)$

Any feasible solution of problem P_0 must be a feasible solution of at least one of the subproblems $P_1, P_2, ..., P_m$ (and viceversa).

Branch-and-Bound Algorithms (3)

* Generally problem P_0 is "partitioned" into subproblems $P_1, P_2, ..., P_m$

so as to have: $F(P_k) \cap F(P_j) = \emptyset$ for each pair of subproblems P_k and P_j $(k = 1, 2, ..., m; j = 1, 2, ..., m; k \neq j).$

- * $z(P_0) = \max \{z(P_k) : k = 1, 2, ..., m\}$
- * If subproblem P_k cannot be directly solved, subdivide it.

Branch-and-Bound Algorithms (4)

- * The branching scheme is represented through a "branch-decision tree":
- a) each "node" k of the tree corresponds to a subproblem P_k
- b) the "root node" (i.e., node 0) corresponds to the original problem P_0
- * A node k of the tree (and the corresponding subproblem P_k) can be "fathomed" if:
 - 1) P_k is infeasible (i.e., if $F(P_k) = \emptyset$); or
 - 2) $UB(P_k) \le z^*$ (where: $UB(P_k)$ is an "upper bound" on $z(P_k)$, i.e., $UB(P_k) \ge z(P_k)$, and z^* is the value of the best feasible solution found so far)

Relaxations (Maximization Problem)

* An "upper bound" $UB(P_k)$ on $z(P_k)$ can be computed by solving to optimality a "Relaxed Problem" R_k :

$$UB(P_k) = z(R_k) = \max \{ g(x) : x \in F(R_k) \}$$

such that:

- 1) $F(P_k) \subseteq F(R_k)$,
- 2) $g(x) \ge f(x)$ for $x \in F(P_k)$.
- * A "good" upper bound $UB(P_k)$ must be:
- as "close" as possible to $z(P_k)$ ($z(R_k)$ small);
- with R_k "easy" to be solved (small computing time to solve R_k to optimality).

Two extreme (useless) cases: a) $UB(P_k) = \infty$; b) $UB(P_k) = z(P_k)$

Relaxations

Given the ILP model:

$$z(P) = \max \sum_{j=1,n} a_j x_j$$

$$\sum_{j=1,n} b_{ij} x_j \le c_i \qquad (i = 1, ..., m)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h$$
 $(h = 1, ..., k)$

$$x_j \in \{0, 1\}$$
 $(j = 1, ..., n)$

Relaxations: Constraint Elimination

(R)
$$UB = z(R) = \max \sum_{j=1,n} a_j x_j$$

$$\sum_{j=1,n} b_{ij} x_j \le c_i \qquad (i = 1, ..., m)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h \qquad (h = 1, ..., k)$$

$$x_j \in \{0, 1\} \qquad (j = 1, ..., n)$$
(EC)

- * R: "well-structured" Relaxed Problem
- * If the optimal solution (x) is feasible for problem P (i.e., constraints (EC) are satisfied), (x) is also optimal for P.

Continuous (LP) Relaxation (2)

$$(R) UB = z(R) = \max \sum_{j=1,n} a_j x_j$$

$$\sum_{j=1,n} b_{ij} x_j \le c_i (i = 1, ..., m)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h (h = 1, ..., k)$$

$$\underbrace{\sum_{j=1,n} d_{hj} x_j}_{0 \le 1} = 0 \le x_j \le 1 (j = 1, ..., n)$$

- * R: Linear Programming (LP) Problem
- •If the optimal solution (x) is feasible for problem P (i.e., (x) is integer), (x) is also optimal for P.
- If the coefficients (a_i) are integer: UB = $\lfloor z(R) \rfloor$

Surrogate Relaxation (1)

Consider an array (s_i) of m non-negative elements (surrogate multipliers) associated with the "inequality" constraints:

$$(R(s)) UB(s) = \max \sum_{j=1,n} a_j x_j$$

$$s_i \sum_{j=1,n} b_{ij} x_j \le s_i c_i (i = 1, ..., m) (SC)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h (h = 1, ..., k)$$

$$x_j \in \{0, 1\} (j = 1, ..., n)$$

* If "equality" constraints are considered, the corresponding surrogate multipliers can take any value.

Surrogate Relaxation (2)

Consider an array (s_i) of m non-negative elements:

$$(R(s)) UB(s) = \max \sum_{j=1,n} a_j x_j$$

$$s_i \sum_{j=1,n} b_{ij} x_j \le s_i c_i (i = 1, ..., m) (SC)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h (h = 1, ..., k)$$

$$x_j \in \{0, 1\} (j = 1, ..., n)$$

$$\sum_{i=1,m} s_i \sum_{j=1,n} b_{ij} x_j \le \sum_{i=1,m} s_i c_i (RSC)$$

Surrogate Relaxation (3)

Consider an array (s_i) of m non-negative elements:

$$(R(s)) \qquad UB(s) = \max \sum_{j=1,n} \sum_{j=1,n} a_j x_j$$

$$\sum_{i=1,m} s_i \sum_{j=1,n} b_{ij} x_j \leq \sum_{i=1,m} s_i c_i \qquad (RSC)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h \qquad (h = 1, ..., k)$$

$$x_j \in \{0, 1\} \qquad (j = 1, ..., n)$$

$$\sum_{j=1,n} B_j x_j \leq C \qquad (RSC)$$

with
$$C = \sum_{i=1,m} s_i c_i$$
, $B_j = \sum_{i=1,m} s_i b_{ij}$

Surrogate Relaxation (4)

$$(R(s)) UB(s) = \max \sum_{j=1,n} a_j x_j$$

$$\sum_{j=1,n} B_j x_j \leq C (RSC)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h (h = 1, ..., k)$$

$$x_j \in \{0, 1\} (j = 1, ..., n)$$
with $C = \sum_{i=1,m} s_i c_i$, $B_j = \sum_{i=1,m} s_i b_{ij}$

* Well-structured Problem

UB(s) is a valid Upper Bound for any non-negative array (s_i) .

Surrogate Relaxation (5)

$$(R(s)) UB(s) = \max \sum_{j=1,n} a_j x_j$$

$$\sum_{j=1,n} B_j x_j \le C (RSC)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h (h = 1, ..., k)$$

$$x_j \in \{0, 1\} (j = 1, ..., n)$$
with $C = \sum_{i=1,m} s_i c_i$, $B_j = \sum_{i=1,m} s_i b_{ij}$

UB(s) is a valid Upper Bound for any non-negative array (s_i) .

* If the optimal solution (x) is feasible for problem P (i.e., the m constraints (SC) are satisfied), (x) is also optimal for P.

Surrogate Relaxation (6)

$$(R(s)) UB(s) = \max \sum_{j=1,n} a_j x_j$$

$$\sum_{j=1,n} B_j x_j \le C (RSC)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h (h = 1, ..., k)$$

$$x_j \in \{0, 1\} (j = 1, ..., n)$$

- * UB(s) is a valid Upper Bound for any non-negative array (s_i) .
- * Find (s^*_i) (i = 1, 2, ..., m) so as to have:

$$UB(s^*) = Min \{UB(s) : s_i \ge 0 \text{ for } i = 1, 2, ..., m\}$$

* Surrogate Dual Problem (exact or heuristic procedures)

Lagrangian Relaxation of Equality Constraints (1)

Consider an array (u_h) of k elements (Lagrangian multipliers) associated with the "equality" constraints, and modify the objective function as follows:

$$(S(u)) \quad z(u) = \max \sum_{j=1,n} a_j x_j + \sum_{h=1,k} u_h (\sum_{j=1,n} d_{hj} x_j - e_h)$$

$$\sum_{j=1,n} b_{ij} x_j \leq c_i \qquad (i = 1, ..., m)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h \qquad (h = 1, ..., k) \qquad (LC)$$

$$x_i \in \{0, 1\} \qquad (j = 1, ..., n)$$

* Note that: z(u) = z(P) for any array (u_h) .

Lagrangian Relaxation of Equality Constraints (2)

* Eliminate the equality constraints (*LC*):

$$(R(u)) \ \ UB(u) = \max \sum_{j=1,n} a_j x_j + \sum_{h=1,k} u_h (\sum_{j=1,n} d_{hj} x_j - e_h)$$

$$\sum_{j=1,n} b_{ij} x_j \leq c_i \qquad (i = 1, ..., m)$$

$$x_j \in \{0, 1\} \qquad (j = 1, ..., n)$$

•
$$UB(u) = \max \left(\sum_{j=1,n} a_j(u) x_j \right) - \sum_{h=1,k} u_h e_h$$

with $a_j(u) = a_j + \sum_{h=1,k} u_h d_{hj} \quad (j = 1, ..., n)$

* Well-structured Relaxed Problem

Lagrangian Relaxation of Equality Constraints (3)

* Eliminate the equality constraints (*LC*):

$$(R(u)) \ \ UB(u) = \max \sum_{j=1,n} a_j x_j + \sum_{h=1,k} u_h (\sum_{j=1,n} d_{hj} x_j - e_h)$$

$$\sum_{j=1,n} b_{ij} x_j \leq c_i \qquad (i = 1, ..., m)$$

$$x_i \in \{0, 1\} \qquad (j = 1, ..., n)$$

•
$$UB(u) = \max \left(\sum_{j=1,n} a_j(u) x_j \right) - \sum_{h=1,k} u_h e_h$$

with $a_j(u) = a_j + \sum_{h=1,k} u_h d_{hj} \quad (j = 1, ..., n)$

* If the optimal solution (x) is feasible for problem P (i.e., the k constraints (LC) are satisfied), (x) is also optimal for P.

Lagrangian Relaxation of Equality Constraints (4)

$$(R(u)) \quad UB(u) = \max \left(\sum_{j=1,n} a_j(u) x_j \right) - \sum_{h=1,k} u_h e_h$$

$$\sum_{j=1,n} b_{ij} x_j \leq c_i \qquad (i = 1, ..., m)$$

$$x_i \in \{0, 1\} \qquad (j = 1, ..., n)$$

- with $a_j(u) = a_j + \sum_{h=1,k} u_h d_{hj}$ (j = 1, ..., n)
- •UB(u) is a valid Upper Bound for any array (u_h) .
- * Find (u_h^*) (h = 1, 2, ..., k) so as to have: $UB(u^*) = Min \{UB(u) : \text{for any } u_h \text{ with } h = 1, 2, ..., k\}$
 - * Lagrangian Dual Problem (exact or heuristic procedures)

Lagrangian Relaxation of Inequality Constraints (1)

Consider an array (v_i) of m non-negative elements (Lagrangian multipliers) associated with the "inequality" constraints, and modify the objective function as follows:

$$(T(v)) \quad z(v) = \max \sum_{j=1,n} a_j x_j + \sum_{i=1,m} v_i (c_i - \sum_{j=1,n} b_{ij} x_j)$$

$$\sum_{j=1,n} b_{ij} x_j \leq c_i \qquad (i = 1, ..., m) \qquad (LC)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h \qquad (h = 1, ..., k)$$

$$x_i \in \{0, 1\} \qquad (j = 1, ..., n)$$

* Note that: $z(v) \ge z(P)$ for any non-negative array (v_i) .

Lagrangian Relaxation of Inequality Constraints (2)

•Eliminate the inequality constraints (*LC*):

$$(R(v)) \quad UB(v) = \max \sum_{j=1,n} a_j x_j + \sum_{i=1,m} v_i (c_i - \sum_{j=1,n} b_{ij} x_j)$$

$$\sum_{j=1,n} d_{hj} x_j = e_h \qquad (h = 1, ..., k)$$

$$x_i \in \{0, 1\} \qquad (j = 1, ..., n)$$

Note that: $UB(v) \ge z(v) \ge z(P)$ for any non-negative array (v_i) .

$$UB(v) = \max \sum_{j=1,n} a_j(v) x_j + \sum_{i=1,m} v_i c_i$$

with
$$a_j(v) = a_j - \sum_{i=1,m} v_i b_{ij}$$
 $(j = 1, ..., n)$

Lagrangian Relaxation of Inequality Constraints (3)

$$(R(v)) \quad UB(v) = \max \sum_{j=1,n} a_j(v) x_j + \sum_{i=1,m} v_i c_i$$

$$\sum_{j=1,n} d_{hj} x_j = e_h \qquad (h = 1, ..., k)$$

$$x_i \in \{0, 1\} \qquad (j = 1, ..., n)$$

with
$$a_j(v) = a_j - \sum_{i=1,m} v_i b_{ij}$$
 $(j = 1, ..., n)$

- * Well-structured Relaxed Problem
- * If the optimal solution (x) is feasible for problem P (i.e., the m constraints (LC) are satisfied), (x) is also optimal for P if and

only if
$$UB(v) = \sum_{j=1,n} a_j x_j$$

Lagrangian Relaxation of Inequality Constraints (4)

$$(R(v))$$
 $UB(v) = \max \sum_{j=1,n} a_j(v) x_j + \sum_{i=1,m} v_i c_i$

$$\sum_{j=1,n} d_{hj} x_j = e_h \qquad (h = 1, ..., k)$$

$$x_i \in \{0, 1\} \qquad (j = 1, ..., n)$$

with
$$a_j(v) = a_j - \sum_{i=1,m} v_i b_{ij}$$
 $(j = 1, ..., n)$

- * UB(v) is a valid Upper Bound for any non-negative array (v_i) .
- * Find (v_i^*) (i = 1, 2, ..., m) so as to have:

$$UB(v^*) = Min \{UB(v) : v_i \ge 0 \text{ for } i = 1, 2, ..., m\}$$

* Lagrangian Dual Problem (exact or heuristic procedures)

Branching Strategies (1)

Start from the "root node" (level h = 0) and "examine" it.

- a) Depth-First Strategy:
 - * Forward Step: from each examined node at level h, generate the corresponding descendent nodes at level (h + 1), and examine them in sequence;
 - * Backtracking Step: when all the descendent nodes at level (h+1) have been examined, consider the next not yet examined node at level h and examine it.

Stop when level h = 0 is reached.

Generally: large number of nodes;

good feasible solutions found soon.

Branching Strategies (2)

Start from the "root node" (level h = 0) and "examine" it.

b) Highest-First Strategy:

- * from each "examined" node, generate the corresponding descendent nodes, and compute the associated Upper Bounds;
- * examine the not yet examined node of the tree having the highest Upper Bound;
- * stop when all the generated nodes have been examined.

Generally: small number of nodes;

many generated nodes not yet examined.