#### Parameter Estimation for Network Processes

#### Steven Munn

University of California, Santa Barbara sjmunn@umail.ucsb.edu

June 2, 2016

### Overview

Graph Attributes

Reaction Networks

Gibbs Sampling

### Section 1

## **Graph Attributes**

## Attributed Graphs



## Traffic Example



## Website Visits Example



### Section 2

### Reaction Networks

## Reaction Attributes



## **Graph Weights**

$$\mathbf{W} = \left[ \begin{array}{ccc} w_{00} & w_{01} & w_{02} \\ w_{10} & w_{11} & w_{12} \\ w_{20} & w_{21} & w_{22} \end{array} \right]$$



### Reaction ODE

$$dM^T = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} imes \begin{bmatrix} w_{00} & w_{01} & w_{02} & \dots \\ w_{10} & w_{11} & w_{12} & \dots \\ w_{20} & w_{21} & w_{22} & \dots \\ \dots & \dots & \dots \end{bmatrix} imes \begin{bmatrix} 1 & M_0 & M_0 & \dots \\ M_1 & 1 & M_1 & \dots \\ M_2 & M_2 & 1 & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

## Example: Homework One

$$dM^{T} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & \theta_{1} \\ 0 & 0 & \theta_{1} \\ 0 & \theta_{2} & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & M_{0} & M_{0} \\ M_{1} & 1 & M_{1} \\ M_{2} & M_{2} & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & \theta_{1} M_{0} \\ 0 & 0 & \theta_{1} M_{1} \\ 0 & \theta_{2} M_{2} & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \theta_{2} M_{2} & \theta_{1} (M_{0} + M_{1}) \end{bmatrix}$$

### Section 3

# Gibbs Sampling

## Multiple Parameters Estimation

Start with parameters  $\theta^{(t)}$  (e.g. sampled from a uniform distribution) Update each component one after the other as follows:

- Sample  $\theta_1^{(t+1)}$  from  $p(\theta_1|\mathsf{data},\theta_2,\theta_3,...)$
- Sample  $\theta_2^{(t+1)}$  from  $p(\theta_2|\mathsf{data},\theta_1,\theta_3,...)$
- ...

## Gibbs Sampling for Reaction Networks

#### Step 1

Define an upper and lower bound (  $m{W}_{\!\mathit{up}}$  and  $m{W}_{\!\mathit{low}}$  ) on the graph weights.

### Step 2

Initialize the probability for each parameter as a uniform distribution between the upper and lower bounds,

$$p(w_{ij}) = u\left(\left(\boldsymbol{W}_{up}\right)_{ij}, \left(\boldsymbol{W}_{low}\right)_{ij}\right)$$

## Gibbs Sampling for Reaction Networks

### Step 3

We now have an initial guess for the weights matrix  $\boldsymbol{W}$ . Next, we will update each component one at a time.

### Gibbs Update for first component

We need to compute,

$$p(w_{00}|data, w_{01}, w_{02}, w_{10}, w_{11}, ...)$$

to sample a new value for  $w_{00}$ . Currently, we do this using the same Bayesian inference method from homework one.

### An example with two parameters

True parameters,

$$\mathbf{W} = \left[ \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & -1.45 & 0 \end{array} \right]$$

$$\mathbf{W_{lower}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1.45 & 0 \end{bmatrix}$$

$$\mathbf{W_{lower}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1.45 & 0 \end{bmatrix} \qquad \mathbf{W_{upper}} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & -1.45 & 0 \end{bmatrix}$$

### $w_{02}$ Estimate at step 1



### w<sub>02</sub> Estimate at step 8



### w<sub>02</sub> Estimate at step 9



### w<sub>02</sub> Estimate at step 10



### $w_{02}$ Estimate at step 11



### $w_{02}$ Estimate at step 12



### Gibbs Sampling Problems

### Probability density in parameter space is too focused

Most of the parameter space has near-zero probability. The space over plausible parameters is very small. This is espcially true for runaway reactions (where the rates are all positive).

#### Particle Filters

### My bootstrap method probably has bugs

Perhaps a regularized particle filter would be effective?