ML Evaluation

Courtesy Dr. Agha Ali Raza

	Gold	Labels
	Gold Positive	Gold Negative
Predicted Positiv		False Positives (fp)
Labels Predicte Negative		True Negatives (tn)

Performance Metrics

Accuracy

 $= \frac{My\ Correct\ Answers}{All\ Questions}$

 $= \frac{tp + tn}{tp + tn + fp + fi}$

What fraction of time am I correct in my classification

Precision

 $= \frac{True\ Positives}{My\ Positives}$

 $=\frac{tp}{tp+fp}$

- · How much should you trust me when I say that something tests positive
- What fraction of my positives are true positives

Recall = Sensitivity

 $= \frac{True\ Positives}{Real\ Positives}$

 $=\frac{tp}{tp+fn}$

- How much of the reality has been covered by my positive output?
- What fraction of the true positives is captured by my positives? E.g. How many sick people are correctly identified as having the condition?

Specificity

 $= \frac{True\ Negatives}{Real\ Negatives}$

 $=\frac{tn}{tn+fp}$

- How much of the reality has been covered by my negative output?
- What fraction of the true negatives is captured by my negatives? E.g. How many identified healthy people do not have the condition?

		Gold I	Labels		
		Gold Positive	Gold Negative		
Predicted	Predicted Positive	True Positives (tp)	False Positives (fp)	$\frac{tp}{tp + fp}$	"Precision" aka "Positive Predictive Value"
Labels	Predicted Negative	False Negatives (fn)	True Negatives (tn)	$\frac{tn}{fn+tn}$	"Negative Predictive Value"
		$\frac{tp}{tp + fn}$	$\frac{tn}{fp+tn}$		
		"Recall" aka "Sensitivity" aka "True Positive Rate"	"Specificity" aka "True Negative Rate"		tn ± tn
		$\frac{fn}{tp + fn}$	$\frac{fp}{fp+tn}$	Accura	$cy = \frac{tp + tn}{tp + fp + tn + fn}$
		1 - Sensitivity = "False Negative Rate" aka "False Rejection Rate"	1 - Specificity = "False Positive Rate" aka "False Acceptance Rate"		
100	tive Rate itive Rate	= "Positive Likelihood	Ratio"		
	gative Rate	<u>e</u> = "Negative Likelihoo e	d Ratio"		
Probabili 1 - Proba		Odds," often expressed	l as X:Y		

	Gold L	abels	
	Gold Positive	Gold Negative	
Predicted	True Positives (tp)	False Positives (fp)	$\dfrac{tp}{tp+fp}$ "Precision" aka "Positive Predictive Value"
Labels	False Negatives (fn)	True Negatives (tn)	$\frac{tn}{fn+tn}$ "Negative Predictive Value"
	$\frac{tp}{tp + fn}$	$\frac{tn}{fp + tn}$	
	"Recall" aka "Sensitivity" aka "True Positive Rate" "True Acceptance Rate"	"Specificity" aka "True Negative Rate" "True Rejection Rate"	tp + tn
	$\frac{fn}{tp+fn}$	$\frac{fp}{fp + tn}$	$Accuracy = \frac{tp + tn}{tp + fp + tn + fn}$
	1 - Sensitivity = "False Negative Rate" aka "False Rejection Rate"	1 - Specificity = "False Positive Rate" aka "False Acceptance Rate"	

		Gold L	abels		
		Gold Positive	Gold Negative	1	
Predicted	Predicted Positive	True Positives (tp)	False Positives (fp)	$\frac{tp}{tp + fp}$	"Precision" aka "Positive Predictive Value"
Labels	Predicted Negative	False Negatives (fn)	True Negatives (tn)	$\frac{tn}{fn+tn}$	"Negative Predictive Value"
		$tp+fn$ "Recall" aka "Sensitivity" aka "True Positive Rate" "True Acceptance Rate" $\frac{fn}{tp+fn}$ 1 - Sensitivity = "False Reparture Rate" aka "False Rejection Rate"	$\frac{fp + tn}{\text{"Specificity" aka}}$ "True Negative Rate" "True Rejection Rate" $\frac{fp}{fp + tn}$ 1 - Specificity = "false Positive Rate" aka "False Acceptance Rate"	Accu	$racy = \frac{tp + tn}{tp + fp + tn + fn}$
• Sensi	ivity, spec	ificity, FNR and FPR are	not influenced by re	al-world d	ata imbalances
	Those imb	palances impact the der	nominators		

		Gold I	abels				
		Gold Positive	Gold Negative]			
Predicted	Predicted Positive	True Positives (tp)	False Positives (fp)	$\frac{tp}{tp + fp}$		recision" aka Predictive Val	ue"
Labels	Predicted Negative	False Negatives (fn)	True Negatives (tn)	$\frac{tn}{fn+tn}$	"Negativ	e Predictive Va	lue"
		$\frac{tp}{tp + fn}$	$\frac{tn}{fp + tn}$				
		"Recall" aka "Sensitivity" aka "True Positive Rate" "True Acceptance Rate"	"Specificity" aka "True Negative Rate" "True Rejection Rate"			tp + tn	
		$\frac{fn}{tp + fn}$	$\frac{fp}{fp + tn}$	Accure	$cy = \frac{1}{tp + j}$	$\frac{tp+tn}{tp+tn+fn}$	
		1 - Sensitivity = "False Negative Rate" aka "False Rejection Rate"	1 - Specificity = "False Positive Rate" aka "False Acceptance Rate"				
 Sensit 	tivity, spec	cificity, FNR and FPR are	not influenced by re	al-world da	a imbala	ances	
	These imb	palances impact the de	nominators			Actual +	Actual
	E.g. a rare	disease, or a rare phe	nomena (like a fraud e	email)	Test +	5	5,000
					Test -	5	5,000
					ICSC	1 2	

Receiver Operating Characteristic (RoC)

 A graphical plot that illustrates the <u>diagnostic ability</u> of a binary classifier as its discrimination threshold is varied

Receiver Operating Characteristic (RoC)

- A graphical plot that illustrates the <u>diagnostic ability</u> of a binary classifier as its discrimination threshold is varied
- The method was originally developed for operators of military radar receivers starting in 1941, which led to its name.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Receiver Operating Characteristic (RoC)

- A graphical plot that illustrates the <u>diagnostic ability</u> of a binary classifier as its discrimination threshold is varied
- The method was originally developed for operators of military radar receivers starting in 1941, which led to its name.
- Plot the true positive rate (TPR) sensitivity against the false positive rate (FPR) – (1 - specificity) at various threshold settings

https://en.wikipedia.org/wiki/Receiver_operating_characteristic_

											1	hres	hold	s								
	Output Score (probability)		0	0.1		0.2 0.3		.3	0	.4	0.	.5	0	.6	0	.7	0.	.8	0.9		1.0	
12	0.12	n	У	fp	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn
82	0.82	у	у	tp	У	tp	У	tp	У	tp	У	tp	У	tp	У	tp	У	tp	n	fn	n	fn
18	0.18	n	у	fp	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn
60	0.6	У	У	tp	У	tp	У	tp	У	tp	У	tp	n	fn	n	fn	n	fn	n	fn	n	fn
72	0.72	У	У	tp	У	tp	У	tp	У	tp	У	tp	У	tp	У	tp	n	fn	n	fn	n	fn
55	0.55	n	у	fp	у	fp	У	fp	У	fp	У	fp	n	tn	n	tn	n	tn	n	tn	n	tn
48	0.48	У	У	tp	У	tp	У	tp	У	tp	n	fn	n	fn	n	fn	n	fn	n	fn	n	fn
24	0.24	n	У	fp	У	fp	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn
26	0.26	n	У	fp	У	fp	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn	n	tn
68	0.68	У	У	tp	У	tp	У	tp	У	tp		tp		tp		fn	n	fn	n		n	fn
	tp			_		5	_	5	_	5	_	4		3		2	- 1		0		0	
	fn)		0	0		0		1		2			3		4		5	5	
	fp			5	3			1		1		1)		0)		0		0
	tn		_)	0,6		0,2		4 4 0.2 0.2					5	5		5			5	_	5
	pecificity (FPR			1	_		_					.2	_)	_	_	_		_	0		0
Sensit	ivity (Recall, T	PR)		1		1		1		1	0	.8	0	.6	0	.4	0.	.2	_	0	_	0
	Precision		0	.5	0.6	525	0.8	333	0.8	333	0	.8		1		1	1	L	N.	AN	N/	AN
																			Precitive	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1	/	0.2

Characteristics

- The best possible prediction method would yield a point in the upper left corner (0,1) i.e.100% sensitivity (no false negatives) and 100% specificity (no false positives)
- A random guess would give a point along a diagonal line (the line of no-discrimination) from the left bottom to the top right corners (TPR = FPR)

Characteristics

- The best possible prediction method would yield a point in the upper left corner (0,1) i.e.100% sensitivity (no false negatives) and 100% specificity (no false positives)
- A random guess would give a point along a diagonal line (the line of no-discrimination) from the left bottom to the top right corners (TPR = FPR)
- The red diagonal divides the ROC space.
 Points above the diagonal represent good classification (better than random)
 - Points below the line represent bad results (worse than random)
 - The output of a consistently bad predictor could simply be inverted to obtain a good predictor.

Characteristics

- The best possible prediction method would yield a point in the upper left corner (0,1) i.e.100% sensitivity (no false negatives) and 100% specificity (no false positives)
- A random guess would give a point along a diagonal line (the line of no-discrimination) from the left bottom to the top right corners (TPR = FPR)
- The red diagonal divides the ROC space.
 - Points above the diagonal represent good classification (better than random)
 - Points below the line represent bad results (worse
 - The output of a consistently bad predictor could simply be inverted to obtain a good predictor.
- The blue diagonal is the Equal Error Diagonal
- Here FPR = FNR

 Where FNR = 1-TPR
- A viable way to locate desired threshold
- Smaller is better (in the graph: higher and to the left)

- It is hard to compare classifiers using ROC curves
- A way around that is to use AUC Area under the ROC Curve, A' (pronounced "a-prime") or "cstatistic" ("concordance statistic").
 - · Larger is better

- It is hard to compare classifiers using ROC curves
- A way around that is to use AUC Area under the ROC Curve, A' (pronounced "a-prime") or "cstatistic" ("concordance statistic").
 - Larger is better
- "AUC ROC can be interpreted as the probability that the scores given by a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one." (Page 54, Learning from Imbalanced Data Sets, 2018)
- For imbalanced datasets: "ROC analysis does not have any bias toward models that perform well on the minority class at the expense of the majority class—a property that is quite attractive when dealing with imbalanced data." (Page 27, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013)

- Bias is the difference between the average prediction of our model and the correct value which we are trying to predict.
 - · If the average predicted values are far off from the actual values, then the bias is high.
 - Model with high bias pays little attention to the training data and oversimplifies (presumes a lot about) the model.
 - High bias causes algorithm to miss relevant relationship between input and output variable.
 - When a model has a high bias then it implies that the model is too simple and does not capture the complexity of data thus underfitting the data.
 - . It leads to high error on training and test data.

Bias and Variance

- Bias is the difference between the average prediction of our model and the correct value which we are trying to predict.
 - · If the average predicted values are far off from the actual values, then the bias is high.
 - Model with high bias pays little attention to the training data and oversimplifies (presumes a lot about) the model.
 - High bias causes algorithm to miss relevant relationship between input and output variable.
 - When a model has a high bias then it implies that the model is too simple and does not
 capture the complexity of data thus underfitting the data.
 - . It leads to high error on training and test data.
 - Variance is the variability of model prediction for a given data point or a value which tells us spread of our data. Variance tells us how scattered are the predicted value from the actual value.
 - Model with high variance pays a lot of attention to training data and does not generalize on the data which it hasn't seen before.
 - As a result, such models perform very well on training data but has high error rates on test data.
 - High variance causes overfitting that implies that the algorithm models random noise present in the training data.

Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani and Jerome Friedman https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

- · Bias is the difference between the average prediction of our model and the correct value which we are trying to predict,
 - If the average predicted values are far off from the actual values, then the bias is high.
 - · Model with high bias pays little attention to the training data and oversimplifies (presumes a lot about) the model.
 - · High bias causes algorithm to miss relevant relationship between input and output
 - · When a model has a high bias then it implies that the model is too simple and does not capture the complexity of data thus underfitting the data.

 It leads to high error on training and test data.
- · Variance is the variability of model prediction for a given data point or a value which tells us spread of our data. Variance tells us how scattered are the predicted value from the actual value_
 - . Model with high variance pays a lot of attention to training data and does not generalize on the data which it hasn't seen before.
 - As a result, such models perform very well on training data but has high error rates
 - . High variance causes overfitting that implies that the algorithm models random noise present in the training data.

Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani and Jerome Friedman https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229 **Bias and Variance** Low Variance High Variance Model Complexity lements of Statistical Learning by Trevor Hastie, Robert Tibshirani and Jerome Friedman

Is there a way to find when we have a high bias or a high variance?

- · High Bias can be identified when we have
 - High training error
 - Validation error or test error is close to training error
- · High Variance can be identified when
 - Low training error
 - · High validation error or high test-error

How do we fix high bias or high variance in the data set?

- High bias is due to a simple model and we also see a high training error. To fix that
 we can do following things:
 - Add more input features
 - · Add more complexity by introducing polynomial features
 - · Decrease Regularization term

Elements of Statistical Learning by Trevor Hastle, Robert Tibshirani and Jerome Friedman https://medium.com/datadrivenimestor/blas-and-variance-in-machine-learning-51fdd38d1f86

Is there a way to find when we have a high bias or a high variance?

- · High Bias can be identified when we have
 - High training error
 - · Validation error or test error is close to training error
- · High Variance can be identified when
 - Low training error
 - · High validation error or high test-error

How do we fix high bias or high variance in the data set?

- · High bias is due to a simple model and we also see a high training error. To fix that we can do following things:
 - Add more input features
 - · Add more complexity by introducing polynomial features
 - · Decrease Regularization term
- · High variance is due to a model that tries to fit most of the training dataset points and hence gets more complex. To resolve high variance issue we need to work on
 - · Getting more training data
 - Reduce input features

Increase Regularization term

Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani and Jerome Friedman https://medium.com/datadriveninvestor/blas-and-variance-in-machine-learning-516d38d1866

Solutions

- · Reduce the number of features
 - Manually select features
 - · Model selection
- Regularization
 - Reduce magnitude/values of parameters θ_j .
 - Works well when we have a lot of features, each of which contributes a bit to predicting .
- · Bagging and Boosting