# New\_York\_TLC\_3\_MultipleLinearRegression

April 1, 2025

# 1 New York TLC project

## Part 3 - Multiple Linear Regression

In this activity, you will build a multiple linear regression model. As you've learned, multiple linear regression helps you estimate the linear relationship between one continuous dependent variable and two or more independent variables. For data science professionals, this is a useful skill because it allows you to consider more than one variable against the variable you're measuring against. This opens the door for much more thorough and flexible analysis to be completed.

Completing this activity will help you practice planning out and building a multiple linear regression model based on a specific business need. The structure of this activity is designed to emulate the proposals you will likely be assigned in your career as a data professional. Completing this activity will help prepare you for those career moments.

The purpose of this project is to demostrate knowledge of EDA and a multiple linear regression model

**The goal** is to build a multiple linear regression model and evaluate the model *This activity has three parts:* 

**Part 1:** EDA & Checking Model Assumptions \* What are some purposes of EDA before constructing a multiple linear regression model?

**Part 2:** Model Building and evaluation \* What resources do you find yourself using as you complete this stage?

Part 3: Interpreting Model Results

- What key insights emerged from your model(s)?
- What business recommendations do you propose based on the models built?

# 2 Build a multiple linear regression model

### 2.0.1 Task 1. Imports and loading

Import the packages that you've learned are needed for building linear regression models.

```
[1]: # Imports
# Packages for numerics + dataframes
import numpy as np
```

```
import pandas as pd

# Packages for visualization
import seaborn as sns
import matplotlib.pyplot as plt

# Packages for date conversions for calculating trip durations
from datetime import datetime
from datetime import timedelta

# Packages for OLS, MLR, confusion matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import sklearn.metrics as metrics # For confusion matrix
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error,r2_score,mean_squared_error
```

**Note:** Pandas is used to load the NYC TLC dataset. As shown in this cell, the dataset has been automatically loaded in for you. You do not need to download the .csv file, or provide more code, in order to access the dataset and proceed with this lab. Please continue with this activity by completing the following instructions.

```
[2]: # Load dataset into dataframe df0=pd.read_csv("2017_Yellow_Taxi_Trip_Data.csv")
```

## 2.0.2 Task 2a. Explore data with EDA

Analyze and discover data, looking for correlations, missing data, outliers, and duplicates.

Start with .shape and .info().

(22699, 18)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 18 columns):

```
Column
     #
                               Non-Null Count Dtype
         _____
                                -----
     0
         Unnamed: 0
                               22699 non-null int64
     1
         VendorID
                               22699 non-null int64
     2
        tpep_pickup_datetime
                               22699 non-null object
     3
        tpep_dropoff_datetime 22699 non-null object
         passenger count
                               22699 non-null int64
     5
        trip_distance
                               22699 non-null float64
     6
        RatecodeID
                               22699 non-null int64
     7
         store_and_fwd_flag
                               22699 non-null object
     8
        PULocationID
                               22699 non-null int64
         DOLocationID
                               22699 non-null int64
                               22699 non-null int64
     10 payment_type
                               22699 non-null float64
        fare_amount
     12 extra
                               22699 non-null float64
                               22699 non-null float64
     13 mta_tax
     14
        tip_amount
                               22699 non-null float64
     15 tolls_amount
                               22699 non-null float64
     16 improvement_surcharge 22699 non-null float64
     17 total amount
                                22699 non-null float64
    dtypes: float64(8), int64(7), object(3)
    memory usage: 3.1+ MB
    Check for missing data and duplicates using .isna() and .drop_duplicates().
[6]: # Check for missing data and duplicates using .isna() and .drop_duplicates()
     # Check for duplicates
    print('Shape of dataframe:', df.shape)
    print('Shape of dataframe with duplicates dropped:', df.drop_duplicates().shape)
     # Check for missing values in dataframe
    print('Total count of missing values:', df.isna().sum().sum())
     # Display missing values per column in dataframe
    print('Missing values per column:')
    df.isna().sum()
    Shape of dataframe: (22699, 18)
```

[6]: Unnamed: 0 0

VendorID 0

tpep\_pickup\_datetime 0

tpep\_dropoff\_datetime 0

passenger\_count 0

Missing values per column:

Total count of missing values: 0

Shape of dataframe with duplicates dropped: (22699, 18)

```
0
trip_distance
{\tt RatecodeID}
                           0
store_and_fwd_flag
                           0
PULocationID
                           0
{\tt DOLocationID}
                           0
payment_type
                           0
fare_amount
                           0
extra
                           0
mta_tax
                           0
tip_amount
                           0
tolls_amount
                           0
improvement_surcharge
                           0
total_amount
                           0
dtype: int64
```

Note: There are no duplicates or missing values in the data.

Use .describe().

```
[7]: # Use .describe()
df.describe()
```

| [7]: |       | Unnamed: 0   | VendorID             | passenger_cou        | nt trip_dista           | nce \        |   |
|------|-------|--------------|----------------------|----------------------|-------------------------|--------------|---|
|      | count | 2.269900e+04 | 22699.000000         | 22699.0000           | 00 22699.000            | 000          |   |
|      | mean  | 5.675849e+07 | 1.556236             | 1.6423               | 19 2.913                | 313          |   |
|      | std   | 3.274493e+07 | 0.496838             | 1.2852               | 31 3.653                | 171          |   |
|      | min   | 1.212700e+04 | 1.000000             | 0.0000               | 0.000                   | 000          |   |
|      | 25%   | 2.852056e+07 | 1.000000             | 1.0000               | 00 0.990                | 000          |   |
|      | 50%   | 5.673150e+07 | 2.000000             | 1.0000               | 00 1.610                | 000          |   |
|      | 75%   | 8.537452e+07 | 2.000000             | 2.0000               | 00 3.060                | 000          |   |
|      | max   | 1.134863e+08 | 2.000000             | 6.0000               | 00 33.960               | 000          |   |
|      |       |              |                      |                      |                         |              |   |
|      |       | RatecodeID   | ${\tt PULocationID}$ | ${\tt DOLocationID}$ | <pre>payment_type</pre> | fare_amount  | \ |
|      | count | 22699.000000 | 22699.000000         | 22699.000000         | 22699.000000            | 22699.000000 |   |
|      | mean  | 1.043394     | 162.412353           | 161.527997           | 1.336887                | 13.026629    |   |
|      | std   | 0.708391     | 66.633373            | 70.139691            | 0.496211                | 13.243791    |   |
|      | min   | 1.000000     | 1.000000             | 1.000000             | 1.000000                | -120.000000  |   |
|      | 25%   | 1.000000     | 114.000000           | 112.000000           | 1.000000                | 6.500000     |   |
|      | 50%   | 1.000000     | 162.000000           | 162.000000           | 1.000000                | 9.500000     |   |
|      | 75%   | 1.000000     | 233.000000           | 233.000000           | 2.000000                | 14.500000    |   |
|      | max   | 99.000000    | 265.000000           | 265.000000           | 4.000000                | 999.990000   |   |
|      |       |              |                      |                      |                         |              |   |
|      |       | extra        | mta_tax              | tip_amount           | tolls_amount            | \            |   |
|      | count | 22699.000000 | 22699.000000         | 22699.000000         | 22699.000000            |              |   |
|      | mean  | 0.333275     | 0.497445             | 1.835781             | 0.312542                |              |   |
|      | std   | 0.463097     | 0.039465             | 2.800626             | 1.399212                |              |   |
|      | min   | -1.000000    | -0.500000            | 0.000000             | 0.000000                |              |   |
|      | 25%   | 0.000000     | 0.500000             | 0.000000             | 0.000000                |              |   |

| 50%   | 0.000000                     | 0.50 |       | 1.350            | 0000 | 0.  | 000000 |
|-------|------------------------------|------|-------|------------------|------|-----|--------|
| 75%   | 0.500000                     | 0.50 | 0000  | 2.450            | 0000 | 0.  | 000000 |
| max   | 4.500000                     | 0.50 | 0000  | 200.000          | 0000 | 19. | 100000 |
|       |                              |      |       |                  |      |     |        |
|       | <pre>improvement_surch</pre> | arge | total | ${\tt \_amount}$ |      |     |        |
| count | 22699.00                     | 0000 | 22699 | .000000          |      |     |        |
| mean  | 0.29                         | 9551 | 16    | .310502          |      |     |        |
| std   | 0.01                         | 5673 | 16    | .097295          |      |     |        |
| min   | -0.30                        | 0000 | -120  | .300000          |      |     |        |
| 25%   | 0.30                         | 0000 | 8     | .750000          |      |     |        |
| 50%   | 0.30                         | 0000 | 11    | .800000          |      |     |        |
| 75%   | 0.30                         | 0000 | 17    | .800000          |      |     |        |
| max   | 0.30                         | 0000 | 1200  | .290000          |      |     |        |
|       |                              |      |       |                  |      |     |        |

Note: Some things stand out from this table of summary statistics. For instance, there are clearly some outliers in several variables, like tip\_amount (\$200) and total\_amount (\$1,200). Also, a number of the variables, such as mta\_tax, seem to be almost constant throughout the data, which would imply that they would not be expected to be very predictive.

## 2.0.3 Task 2b. Convert pickup & dropoff columns to datetime

```
[8]: # Check the format of the data df['tpep_dropoff_datetime'][0]
```

[8]: '03/25/2017 9:09:47 AM'

Data type of tpep\_pickup\_datetime: object
Data type of tpep\_dropoff\_datetime: object

```
Data type of tpep_pickup_datetime: datetime64[ns] Data type of tpep_dropoff_datetime: datetime64[ns]
```

| [9]: |        | Unnamed: 0 V                      | VendorID tpep_                                   | pickup_datetime    | tpep_dropoi                        | f_dateti                        | me \                         |   |
|------|--------|-----------------------------------|--------------------------------------------------|--------------------|------------------------------------|---------------------------------|------------------------------|---|
| (    | 0      | 24870114                          | 2 2017                                           | -03-25 08:55:43    | 3 2017-03-2                        | 25 09:09:                       | 47                           |   |
| :    | 1      | 35634249                          | 1 2017                                           | -04-11 14:53:28    | 3 2017-04-1                        | 15:19:                          | 58                           |   |
| 2    | 2      | 106203690                         | 1 2017                                           | -12-15 07:26:56    | 2017-12-1                          | 15 07:34:                       | 80                           |   |
|      |        |                                   |                                                  |                    |                                    |                                 |                              |   |
|      |        | passenger_com                     | unt trip_dist                                    | ance Ratecodel     | D store_and_                       | _fwd_flag                       | \                            |   |
| (    | 0      |                                   | 6                                                | 3.34               | 1                                  | N                               | ·                            |   |
| :    | 1      |                                   | 1                                                | 1.80               | 1                                  | N                               | ·                            |   |
| 2    | 2      |                                   | 1                                                | 1.00               | 1                                  | N                               |                              |   |
|      |        |                                   | <b>-</b>                                         | 1.00               | -                                  | 14                              |                              |   |
|      |        |                                   | •                                                | 1.00               | -                                  | 14                              |                              |   |
|      |        | PULocationID                      | -                                                | payment_type       | _                                  | _                               | mta_tax                      | \ |
| (    | 0      | PULocationID 100                  | -                                                | payment_type       | _                                  | t extra                         |                              | \ |
|      | 0<br>1 |                                   | DOLocationID                                     | payment_type       | fare_amount                        | t extra                         | mta_tax                      | \ |
| :    |        | 100                               | DOLocationID                                     | payment_type 1 1   | fare_amount<br>13.0<br>16.0        | extra                           | mta_tax                      | \ |
| :    | 1      | 100<br>186                        | DOLocationID<br>231<br>43                        | payment_type 1 1   | fare_amount<br>13.0<br>16.0        | extra 0.0 0.0                   | mta_tax<br>0.5<br>0.5        | \ |
| :    | 1      | 100<br>186<br>262                 | DOLocationID<br>231<br>43<br>236                 | payment_type 1 1   | fare_amount<br>13.0<br>16.0<br>6.5 | extra 0 0.0 0 0.0 0 0.0         | mta_tax<br>0.5<br>0.5<br>0.5 | \ |
| :    | 1      | 100<br>186<br>262                 | DOLocationID<br>231<br>43<br>236                 | payment_type 1 1 1 | fare_amount<br>13.0<br>16.0<br>6.5 | extra 0 0.0 0 0.0 0 0.0         | mta_tax<br>0.5<br>0.5<br>0.5 | \ |
| :    | 1      | 100<br>186<br>262<br>tip_amount t | DOLocationID<br>231<br>43<br>236<br>tolls_amount | payment_type 1 1 1 | fare_amount<br>13.0<br>16.0<br>6.8 | t extra 0 0.0 0 0.0 0 0.0 5 0.0 | mta_tax<br>0.5<br>0.5<br>0.5 | \ |

## 2.0.4 Task 2c. Create duration column

Create a new column called duration that represents the total number of minutes that each taxi ride took.

```
[10]: # Create `duration` column

df['duration'] = (df['tpep_dropoff_datetime'] - df['tpep_pickup_datetime'])/np.

→timedelta64(1,'m')
```

## 2.0.5 Outliers

Call df.info() to inspect the columns and decide which ones to check for outliers.

## [11]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 19 columns):

| # | Column                | Non-Null Count | Dtype          |
|---|-----------------------|----------------|----------------|
|   |                       |                |                |
| 0 | Unnamed: 0            | 22699 non-null | int64          |
| 1 | VendorID              | 22699 non-null | int64          |
| 2 | tpep_pickup_datetime  | 22699 non-null | datetime64[ns] |
| 3 | tpep_dropoff_datetime | 22699 non-null | datetime64[ns] |
| 4 | passenger_count       | 22699 non-null | int64          |
| 5 | trip_distance         | 22699 non-null | float64        |

```
RatecodeID
                            22699 non-null
                                             int64
 6
 7
     store_and_fwd_flag
                            22699 non-null
                                            object
                                             int64
 8
     PULocationID
                            22699 non-null
 9
     DOLocationID
                            22699 non-null
                                             int64
 10
    payment_type
                            22699 non-null
                                            int64
    fare_amount
                            22699 non-null
 11
                                            float64
 12
    extra
                            22699 non-null float64
 13
    mta_tax
                            22699 non-null float64
                            22699 non-null float64
 14
    tip_amount
 15
    tolls_amount
                            22699 non-null
                                            float64
 16
     improvement_surcharge
                            22699 non-null
                                            float64
    total_amount
                            22699 non-null
 17
                                            float64
                            22699 non-null
    duration
                                            float64
 18
dtypes: datetime64[ns](2), float64(9), int64(7), object(1)
memory usage: 3.3+ MB
```

Keeping in mind that many of the features will not be used to fit your model, the most important columns to check for outliers are likely to be: \* trip\_distance \* fare\_amount \* duration

## 2.0.6 Task 2d. Box plots

Plot a box plot for each feature: trip\_distance, fare\_amount, duration.

```
[12]: fig, axes = plt.subplots(1, 3, figsize=(15, 2))
    fig.suptitle('Boxplots for outlier detection')
    sns.boxplot(ax=axes[0], x=df['trip_distance'])
    sns.boxplot(ax=axes[1], x=df['fare_amount'])
    sns.boxplot(ax=axes[2], x=df['duration'])
    plt.show();
```







## **Questions:** 1. Which variable(s) contains outliers?

- 2. Are the values in the trip\_distance column unbelievable?
- 3. What about the lower end? Do distances, fares, and durations of 0 (or negative values) make sense?

#### **Answers:**

1. All three variables contain outliers. Some are extreme, but others not so much.

- 2. It's 30 miles from the southern tip of Staten Island to the northern end of Manhattan and that's in a straight line. With this knowledge and the distribution of the values in this column, it's reasonable to leave these values alone and not alter them. However, the values for fare\_amount and duration definitely seem to have problematic outliers on the higher end.
- 3. Probably not for the latter two, but for trip\_distance it might be okay.

## 2.0.7 Task 2e. Imputations

trip\_distance outliers You know from the summary statistics that there are trip distances of 0. Are these reflective of erroneous data, or are they very short trips that get rounded down?

To check, sort the column values, eliminate duplicates, and inspect the least 10 values. Are they rounded values or precise values?

```
[13]: # Are trip distances of 0 bad data or very short trips rounded down? sorted(set(df['trip_distance']))[:10]
```

```
[13]: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]
```

The distances are captured with a high degree of precision. However, it might be possible for trips to have distances of zero if a passenger summoned a taxi and then changed their mind. Besides, are there enough zero values in the data to pose a problem?

Calculate the count of rides where the trip\_distance is zero.

```
[14]: sum(df['trip_distance']==0)
```

[14]: 148

Note: 148 out of ~23,000 rides is relatively insignificant. You could impute it with a value of 0.01, but it's unlikely to have much of an effect on the model. Therefore, the trip\_distance column will remain untouched with regard to outliers.

## fare\_amount outliers

```
[15]: df['fare_amount'].describe()
```

```
[15]: count
                22699.000000
      mean
                   13.026629
      std
                   13.243791
                 -120.000000
      min
      25%
                    6.500000
      50%
                    9.500000
      75%
                   14.500000
      max
                  999.990000
```

Name: fare\_amount, dtype: float64

Question: What do you notice about the values in the fare\_amount column?

Answers:

The range of values in the fare\_amount column is large and the extremes don't make much sense.

- Low values: Negative values are problematic. Values of zero could be legitimate if the taxi logged a trip that was immediately canceled.
- **High values:** The maximum fare amount in this dataset is nearly \\$1,000, which seems very unlikely. High values for this feature can be capped based on intuition and statistics. The interquartile range (IQR) is \\$8. The standard formula of Q3 + (1.5 \* IQR) yields \$26.50. That doesn't seem appropriate for the maximum fare cap. In this case, we'll use a factor of 6, which results in a cap of \$62.50.

Impute values less than \$0 with 0.

```
[16]: # Impute values less than $0 with 0
df.loc[df['fare_amount'] < 0, 'fare_amount'] = 0
df['fare_amount'].min()</pre>
```

[16]: 0.0

Now impute the maximum value as Q3 + (6 \* IQR).

```
[18]: def outlier_imputer(column_list, iqr_factor):
          Impute upper-limit values in specified columns based on their interquartile \Box
       ⇒range.
          Arguments:
               column_list: A list of columns to iterate over
              igr factor: A number representing x in the formula:
                           Q3 + (x * IQR). Used to determine maximum threshold,
                           beyond which a point is considered an outlier.
          The IQR is computed for each column in column list and values exceeding
          the upper threshold for each column are imputed with the upper threshold \sqcup
       \hookrightarrow value.
          111
          for col in column list:
               # Reassign minimum to zero
              df.loc[df[col] < 0, col] = 0
               # Calculate upper threshold
              q1 = df[col].quantile(0.25)
              q3 = df[col].quantile(0.75)
              iqr = q3 - q1
              upper_threshold = q3 + (iqr_factor * iqr)
              print(col)
              print('q3:', q3)
              print('upper_threshold:', upper_threshold)
```

```
# Reassign values > threshold to threshold
df.loc[df[col] > upper_threshold, col] = upper_threshold
print(df[col].describe())
print()
```

```
[19]: outlier_imputer(['fare_amount'], 6)
```

#### q3: 14.5 upper\_threshold: 62.5 count 22699.000000 12.897913 mean std 10.541137 0.000000 min 25% 6.500000 50% 9.500000 75% 14.500000 62.500000 max

fare\_amount

Name: fare\_amount, dtype: float64

### duration outliers

```
[20]: # Call .describe() for duration outliers
df['duration'].describe()
```

```
[20]: count
               22699.000000
                   17.013777
      mean
      std
                   61.996482
      min
                  -16.983333
      25%
                    6.650000
      50%
                   11.183333
      75%
                   18.383333
      max
                 1439.550000
```

Name: duration, dtype: float64

The duration column has problematic values at both the lower and upper extremities.

- Low values: There should be no values that represent negative time. Impute all negative durations with 0.
- **High values:** Impute high values the same way you imputed the high-end outliers for fares: Q3 + (6 \* IQR).

```
[21]: # Impute a 0 for any negative values
df.loc[df['duration'] < 0, 'duration'] = 0
df['duration'].min()</pre>
```

[21]: 0.0

```
[22]: # Impute the high outliers
outlier_imputer(['duration'], 6)
```

#### duration

q3: 18.383333333333333

upper\_threshold: 88.783333333333333

count 22699.000000 14.460555 mean std 11.947043 0.000000 min 25% 6.650000 50% 11.183333 75% 18.383333 88.783333 max

Name: duration, dtype: float64

## 2.0.8 Task 3a. Feature engineering

Create mean\_distance column When deployed, the model will not know the duration of a trip until after the trip occurs, so you cannot train a model that uses this feature. However, you can use the statistics of trips you do know to generalize about ones you do not know.

In this step, create a column called mean\_distance that captures the mean distance for each group of trips that share pickup and dropoff points.

For example, if your data were:

The results should be:

A -> B: 1.25 miles C -> D: 2 miles D -> C: 3 miles

Notice that C -> D is not the same as D -> C. All trips that share a unique pair of start and end points get grouped and averaged.

Then, a new column mean\_distance will be added where the value at each row is the average for all trips with those pickup and dropoff locations:

| Trip | Start        | End          | Distance | $mean\_distance$ |
|------|--------------|--------------|----------|------------------|
| 1    | A            | В            | 1        | 1.25             |
| 2    | $\mathbf{C}$ | D            | 2        | 2                |
| 3    | A            | В            | 1.5      | 1.25             |
| 4    | D            | $\mathbf{C}$ | 3        | 3                |

Begin by creating a helper column called pickup\_dropoff, which contains the unique combination of pickup and dropoff location IDs for each row.

One way to do this is to convert the pickup and dropoff location IDs to strings and join them, separated by a space. The space is to ensure that, for example, a trip with pickup/dropoff points of 12 & 151 gets encoded differently than a trip with points 121 & 51.

So, the new column would look like this:

| Trip | Start        | End          | pickup_dropoff |
|------|--------------|--------------|----------------|
| 1    | A            | В            | 'A B'          |
| 2    | $\mathbf{C}$ | D            | 'C D'          |
| 3    | A            | В            | 'A B'          |
| 4    | D            | $\mathbf{C}$ | 'D C'          |

```
[23]: # Create `pickup_dropoff` column

df['pickup_dropoff'] = df['PULocationID'].astype(str) + ' ' +

df['DOLocationID'].astype(str)

df['pickup_dropoff'].head(2)
```

variable named grouped.

Now, use a groupby() statement to group each row by the new pickup\_dropoff column, compute the mean, and capture the values only in the trip\_distance column. Assign the results to a

grouped is an object of the DataFrame class.

1. Convert it to a dictionary using the to\_dict() method. Assign the results to a variable called grouped\_dict. This will result in a dictionary with a key of trip\_distance whose values are another dictionary. The inner dictionary's keys are pickup/dropoff points and its values are mean distances. This is the information you want.

### Example:

```
grouped dict = {'trip distance': {'A B': 1.25, 'C D': 2, 'D C': 3}
```

2. Reassign the grouped\_dict dictionary so it contains only the inner dictionary. In other words, get rid of trip\_distance as a key, so:

### Example:

```
grouped_dict = {'A B': 1.25, 'C D': 2, 'D C': 3}
```

```
[25]: # 1. Convert `grouped` to a dictionary
grouped_dict = grouped.to_dict()

# 2. Reassign to only contain the inner dictionary
grouped_dict = grouped_dict['trip_distance']
```

- 1. Create a mean\_distance column that is a copy of the pickup\_dropoff helper column.
- 2. Use the map() method on the mean\_distance series. Pass grouped\_dict as its argument. Reassign the result back to the mean\_distance series. When you pass a dictionary to the Series.map() method, it will replace the data in the series where that data matches the dictionary's keys. The values that get imputed are the values of the dictionary.

## Example:

df['mean\_distance']

| mean_distance |
|---------------|
| 'A B'         |
| 'C D'         |
| 'A B'         |
| 'D C'         |
| 'E F'         |
|               |

```
grouped_dict = {'A B': 1.25, 'C D': 2, 'D C': 3}
df['mean_distance`] = df['mean_distance'].map(grouped_dict)
df['mean_distance']
```

| mean_c | listance |
|--------|----------|
| 1.2    | 25       |
| 2      | 2        |
| 1.2    | 25       |
| 3      | 3        |
| Na     | ιN       |

When used this way, the map() Series method is very similar to replace(), however, note that map() will impute NaN for any values in the series that do not have a corresponding key in the mapping dictionary, so be careful.

```
# Confirm that it worked
df[(df['PULocationID']==100) & (df['DOLocationID']==231)][['mean_distance']]
```

```
[26]: mean_distance
0 3.521667
4909 3.521667
16636 3.521667
18134 3.521667
19761 3.521667
20581 3.521667
```

Create mean\_duration column Repeat the process used to create the mean\_distance column to create a mean\_duration column.

```
[27]: grouped = df.groupby('pickup_dropoff').mean(numeric_only=True)[['duration']]
    grouped

# Create a dictionary where keys are unique pickup_dropoffs and values are
# mean trip duration for all trips with those pickup_dropoff combos
grouped_dict = grouped.to_dict()
grouped_dict = grouped_dict['duration']

df['mean_duration'] = df['pickup_dropoff']
df['mean_duration'] = df['mean_duration'].map(grouped_dict)

# Confirm that it worked
df[(df['PULocationID']==100) & (df['DOLocationID']==231)][['mean_duration']]
```

```
[27]: mean_duration
0 22.847222
4909 22.847222
16636 22.847222
18134 22.847222
19761 22.847222
20581 22.847222
```

Create day and month columns Create two new columns, day (name of day) and month (name of month) by extracting the relevant information from the tpep\_pickup\_datetime column.

```
[28]: # Create 'day' col
df['day'] = df['tpep_pickup_datetime'].dt.day_name().str.lower()

# Create 'month' col
df['month'] = df['tpep_pickup_datetime'].dt.strftime('%b').str.lower()
```

Create rush\_hour column Define rush hour as: \* Any weekday (not Saturday or Sunday) AND \* Either from 06:00-10:00 or from 16:00-20:00

Create a binary rush\_hour column that contains a 1 if the ride was during rush hour and a 0 if it was not.

```
[29]: # Create 'rush_hour' col
      df['rush_hour'] = df['tpep_pickup_datetime'].dt.hour
      # If day is Saturday or Sunday, impute 0 in `rush_hour` column
      df.loc[df['day'].isin(['saturday', 'sunday']), 'rush_hour'] = 0
[30]: def rush_hourizer(hour):
          if 6 <= hour['rush_hour'] < 10:</pre>
              val = 1
          elif 16 <= hour['rush_hour'] < 20:</pre>
              val = 1
          else:
              val = 0
          return val
[31]: # Apply the `rush_hourizer()` function to the new column
      df.loc[(df.day != 'saturday') & (df.day != 'sunday'), 'rush hour'] = df.
       →apply(rush_hourizer, axis=1)
      df.head()
[31]:
         Unnamed: 0 VendorID tpep_pickup_datetime tpep_dropoff_datetime \
                            2 2017-03-25 08:55:43
      0
           24870114
                                                      2017-03-25 09:09:47
           35634249
                            1 2017-04-11 14:53:28
                                                      2017-04-11 15:19:58
      1
      2
          106203690
                            1 2017-12-15 07:26:56
                                                      2017-12-15 07:34:08
      3
           38942136
                            2 2017-05-07 13:17:59
                                                      2017-05-07 13:48:14
           30841670
                            2 2017-04-15 23:32:20
                                                      2017-04-15 23:49:03
         passenger_count trip_distance RatecodeID store_and_fwd_flag
      0
                       6
                                   3.34
                                                   1
                                                                      N
      1
                       1
                                   1.80
                                                   1
                                                                      N
      2
                       1
                                   1.00
                                                   1
                                                                      N
      3
                       1
                                   3.70
                                                   1
                                                                      N
      4
                       1
                                   4.37
                                                   1
                                                                      N
         PULocationID DOLocationID ... tolls_amount
                                                       improvement_surcharge \
                                                  0.0
                                                                          0.3
      0
                  100
                                231 ...
                                                  0.0
                                                                          0.3
      1
                  186
                                 43
      2
                  262
                                236 ...
                                                  0.0
                                                                          0.3
      3
                  188
                                                  0.0
                                                                          0.3
                                 97
                                     •••
      4
                    4
                                112 ...
                                                  0.0
                                                                          0.3
         total_amount
                        duration pickup_dropoff mean_distance mean_duration \
                16.56 14.066667
                                          100 231
                                                        3.521667
                                                                      22.847222
      0
      1
                20.80 26.500000
                                                        3.108889
                                           186 43
                                                                      24.470370
```

```
2
           8.75
                  7.200000
                                    262 236
                                                  0.881429
                                                                  7.250000
3
          27.69 30.250000
                                     188 97
                                                  3.700000
                                                                 30.250000
4
          17.80 16.716667
                                      4 112
                                                  4.435000
                                                                 14.616667
        day month rush_hour
  saturday
0
               mar
    tuesday
1
               apr
                           0
2
     friday
               dec
                           1
3
     sunday
                           0
               may
4 saturday
               apr
                           0
[5 rows x 25 columns]
```

## 2.0.9 Task 4. Scatter plot

Create a scatterplot to visualize the relationship between mean\_duration and fare\_amount.



The mean\_duration variable correlates with the target variable. But what are the horizontal lines around fare amounts of 52 dollars and 63 dollars? What are the values and how many are there?

You know what one of the lines represents. 62 dollars and 50 cents is the maximum that was imputed for outliers, so all former outliers will now have fare amounts of \$62.50. What is the other line?

Check the value of the rides in the second horizontal line in the scatter plot.

**Note:** There are 514 trips whose fares were \$52.

Examine the first 30 of these trips.

Name: fare\_amount, dtype: int64

```
pd.set_option('display.max_columns', None)
      df[df['fare_amount']==52].head(30)
[34]:
            Unnamed: 0
                         VendorID tpep pickup datetime tpep dropoff datetime \
      11
                                   2017-03-05 19:15:30
                                                           2017-03-05 19:52:18
              18600059
      110
              47959795
                                1
                                   2017-06-03 14:24:57
                                                           2017-06-03 15:31:48
      161
                                   2017-11-11 20:16:16
                                                           2017-11-11 20:17:14
              95729204
      247
             103404868
                                   2017-12-06 23:37:08
                                                           2017-12-07 00:06:19
      379
              80479432
                                   2017-09-24 23:45:45
                                                           2017-09-25 00:15:14
      388
                                   2017-02-28 18:30:05
                                                           2017-02-28 19:09:55
              16226157
                                1
      406
              55253442
                                2
                                   2017-06-05 12:51:58
                                                           2017-06-05 13:07:35
      449
                                2
                                   2017-08-03 22:47:14
                                                           2017-08-03 23:32:41
              65900029
      468
              80904240
                                2
                                   2017-09-26 13:48:26
                                                           2017-09-26 14:31:17
      520
              33706214
                                2
                                   2017-04-23 21:34:48
                                                           2017-04-23 22:46:23
      569
              99259872
                                   2017-11-22 21:31:32
                                                           2017-11-22 22:00:25
                                   2017-07-18 13:29:06
      572
              61050418
                                                           2017-07-18 13:29:19
      586
              54444647
                                2
                                   2017-06-26 13:39:12
                                                           2017-06-26 14:34:54
      692
                                   2017-11-07 22:15:00
                                                           2017-11-07 22:45:32
              94424289
                                2
      717
             103094220
                                1
                                   2017-12-06 05:19:50
                                                           2017-12-06 05:53:52
      719
                                   2017-08-04 17:53:34
                                                           2017-08-04 18:50:56
              66115834
                                1
      782
                                2
              55934137
                                   2017-06-09 09:31:25
                                                           2017-06-09 10:24:10
                                   2017-02-21 06:11:03
                                                           2017-02-21 06:59:39
                                2
      816
              13731926
      818
                                   2017-06-20 08:15:18
                                                           2017-06-20 10:24:37
              52277743
      835
               2684305
                                   2017-01-10 22:29:47
                                                           2017-01-10 23:06:46
      840
                                2
                                   2017-10-27 21:50:00
                                                           2017-10-27 22:35:04
              90860814
      861
             106575186
                                1
                                   2017-12-16 06:39:59
                                                           2017-12-16 07:07:59
      881
             110495611
                                2
                                   2017-12-30 05:25:29
                                                           2017-12-30 06:01:29
      958
                                   2017-10-15 22:39:12
                                                           2017-10-15 23:14:22
              87017503
                                1
      970
              12762608
                                   2017-02-17 20:39:42
                                                           2017-02-17 21:13:29
      984
              71264442
                                   2017-08-23 18:23:26
                                                           2017-08-23 19:18:29
      1082
                                                           2017-02-07 17:34:41
              11006300
                                   2017-02-07 17:20:19
              68882036
      1097
                                   2017-08-14 23:01:15
                                                           2017-08-14 23:03:35
                                   2017-09-06 10:46:17
                                                           2017-09-06 11:44:41
      1110
              74720333
                                1
      1179
              51937907
                                   2017-06-19 06:23:13
                                                           2017-06-19 07:03:53
                                              RatecodeID store_and_fwd_flag
            passenger_count
                              trip_distance
      11
                                                        2
                                                                            N
                           2
                                       18.90
                                                        2
      110
                           1
                                       18.00
                                                                            N
      161
                           1
                                        0.23
                                                        2
                                                                           N
      247
                           1
                                                        2
                                                                           N
                                       18.93
                                                        2
                                                                           N
      379
                           1
                                       17.99
      388
                           1
                                       18.40
                                                        2
                                                                           N
                           1
                                                        2
                                                                           N
      406
                                       4.73
      449
                           2
                                       18.21
                                                        2
                                                                           N
                                                        2
      468
                           1
                                       17.27
                                                                           N
                                                        2
      520
                           6
                                       18.34
                                                                            N
```

[34]: # Set pandas to display all columns

| 569        |              | 1 18         | .65 | 2            | N     |            |   |
|------------|--------------|--------------|-----|--------------|-------|------------|---|
| 572        |              | 1 0          | .00 | 2            | N     |            |   |
| 586        |              | 1 17         | .76 | 2            | N     |            |   |
| 692        |              | 2 16         | .97 | 2            | N     |            |   |
| 717        |              | 1 20         | .80 | 2            | N     |            |   |
| 719        |              | 1 21         | .60 | 2            | N     |            |   |
| 782        |              | 2 18         | .81 | 2            | N     |            |   |
| 816        |              | 5 16         | .94 | 2            | N     |            |   |
| 818        |              | 1 17         | .77 | 2            | N     |            |   |
| 835        |              | 1 18         | .57 | 2            | N     |            |   |
| 840        |              |              | .43 | 2            | N     |            |   |
| 861        |              |              | .80 | 2            | N     |            |   |
| 881        |              |              | .23 | 2            | N     |            |   |
| 958        |              |              | .80 | 2            | N     |            |   |
| 970        |              |              | .57 | 2            | N     |            |   |
| 984        |              |              | .70 | 2            | N     |            |   |
| 1082       |              |              | .09 | 2            | N     |            |   |
| 1097       |              |              | .12 | 2            | N     |            |   |
| 1110       |              |              | .10 | 2            | N     |            |   |
| 1179       |              | 6 19         | .77 | 2            | N     |            |   |
|            | DIII         | DOI TD       |     |              |       |            | , |
| 4.4        | PULocationID | DOLocationID |     | fare_amount  | extra | mta_tax    | \ |
| 11         | 236          | 132          | 1   | 52.0         | 0.0   | 0.5        |   |
| 110        | 132          | 163          | 1   | 52.0         | 0.0   | 0.5        |   |
| 161<br>247 | 132<br>132   | 132<br>79    | 2 2 | 52.0         | 0.0   | 0.5        |   |
| 379        | 132          | 234          | 1   | 52.0<br>52.0 | 0.0   | 0.5<br>0.5 |   |
| 388        | 132          | 48           | 2   | 52.0         | 4.5   | 0.5        |   |
| 406        | 228          | 88           | 2   | 52.0         | 0.0   | 0.5        |   |
| 449        | 132          | 48           | 2   | 52.0         | 0.0   | 0.5        |   |
| 468        | 186          | 132          | 2   | 52.0         | 0.0   | 0.5        |   |
| 520        | 132          | 148          | 1   | 52.0         | 0.0   | 0.5        |   |
| 569        | 132          | 144          | 1   | 52.0         | 0.0   | 0.5        |   |
| 572        | 230          | 161          | 1   | 52.0         | 0.0   | 0.5        |   |
| 586        | 211          | 132          | 1   | 52.0         | 0.0   | 0.5        |   |
| 692        | 132          | 170          | 1   | 52.0         | 0.0   | 0.5        |   |
| 717        | 132          | 239          | 1   | 52.0         | 0.0   | 0.5        |   |
| 719        | 264          | 264          | 1   | 52.0         | 4.5   | 0.5        |   |
| 782        | 163          | 132          | 1   | 52.0         | 0.0   | 0.5        |   |
| 816        | 132          | 170          | 1   | 52.0         | 0.0   | 0.5        |   |
| 818        | 132          | 246          | 1   | 52.0         | 0.0   | 0.5        |   |
| 835        | 132          | 48           | 1   | 52.0         | 0.0   | 0.5        |   |
| 840        | 132          | 163          | 2   | 52.0         | 0.0   | 0.5        |   |
| 861        | 75           | 132          | 1   | 52.0         | 0.0   | 0.5        |   |
| 881        | 68           | 132          | 2   | 52.0         | 0.0   | 0.5        |   |
| 958        | 132          | 261          | 2   | 52.0         | 0.0   | 0.5        |   |
| 970        | 132          | 140          | 1   | 52.0         | 0.0   | 0.5        |   |
|            |              |              |     |              |       |            |   |

| 984  | 13         | 2 23          | 0 1            | 52.0         | 4.5         | 0.5   |   |
|------|------------|---------------|----------------|--------------|-------------|-------|---|
| 1082 | 17         | 0 48          | 8 2            | 52.0         | 4.5         | 0.5   |   |
| 1097 | 26         | 5 26          | 5 2            | 52.0         | 0.0         | 0.5   |   |
| 1110 | 23         | 9 13:         | 2 1            | 52.0         | 0.0         | 0.5   |   |
| 1179 | 23         | 8 13:         | 2 1            | 52.0         | 0.0         | 0.5   |   |
|      |            |               |                |              |             |       |   |
|      | tip_amount | tolls_amount  | improvement_su | rcharge tota | l_amount \  |       |   |
| 11   | 14.58      | 5.54          |                | 0.3          | 72.92       |       |   |
| 110  | 0.00       | 0.00          |                | 0.3          | 52.80       |       |   |
| 161  | 0.00       | 0.00          |                | 0.3          | 52.80       |       |   |
| 247  | 0.00       | 0.00          |                | 0.3          | 52.80       |       |   |
| 379  | 14.64      | 5.76          |                | 0.3          | 73.20       |       |   |
| 388  | 0.00       | 5.54          |                | 0.3          | 62.84       |       |   |
| 406  | 0.00       | 5.76          |                | 0.3          | 58.56       |       |   |
| 449  | 0.00       | 5.76          |                | 0.3          | 58.56       |       |   |
| 468  | 0.00       | 5.76          |                | 0.3          | 58.56       |       |   |
| 520  | 5.00       | 0.00          |                | 0.3          | 57.80       |       |   |
| 569  | 10.56      | 0.00          |                | 0.3          | 63.36       |       |   |
| 572  | 11.71      | 5.76          |                | 0.3          | 70.27       |       |   |
| 586  | 11.71      | 5.76          |                | 0.3          | 70.27       |       |   |
| 692  | 11.71      | 5.76          |                | 0.3          | 70.27       |       |   |
| 717  | 5.85       | 5.76          |                | 0.3          | 64.41       |       |   |
| 719  | 12.60      | 5.76          |                | 0.3          | 75.66       |       |   |
| 782  | 13.20      | 0.00          |                | 0.3          | 66.00       |       |   |
| 816  | 2.00       | 5.54          |                | 0.3          | 60.34       |       |   |
| 818  | 11.71      | 5.76          |                | 0.3          | 70.27       |       |   |
| 835  | 13.20      | 0.00          |                | 0.3          | 66.00       |       |   |
| 840  | 0.00       | 5.76          |                | 0.3          | 58.56       |       |   |
| 861  | 6.00       | 5.76          |                | 0.3          | 64.56       |       |   |
| 881  | 0.00       | 0.00          |                | 0.3          | 52.80       |       |   |
| 958  | 0.00       | 0.00          |                | 0.3          | 52.80       |       |   |
| 970  | 11.67      | 5.54          |                | 0.3          | 70.01       |       |   |
| 984  | 42.29      | 0.00          |                | 0.3          | 99.59       |       |   |
| 1082 | 0.00       | 5.54          |                | 0.3          | 62.84       |       |   |
| 1097 | 0.00       | 0.00          |                | 0.3          | 52.80       |       |   |
| 1110 | 15.80      | 0.00          |                | 0.3          | 68.60       |       |   |
| 1179 | 17.57      | 5.76          |                | 0.3          | 76.13       |       |   |
|      |            |               |                |              |             |       |   |
|      | duration p | ickup_dropoff | mean_distance  | mean_duratio | n day       | month | \ |
| 11   | 36.800000  | 236 132       | 19.211667      | 40.50000     | 0 sunday    | mar   |   |
| 110  | 66.850000  | 132 163       | 19.229000      | 52.94166     | 7 saturday  | jun   |   |
| 161  | 0.966667   | 132 132       | 2.255862       | 3.02183      | 9 saturday  | _     |   |
| 247  | 29.183333  | 132 79        | 19.431667      | 47.27500     | 0 wednesday | dec   |   |
| 379  | 29.483333  | 132 234       | 17.654000      | 49.83333     | •           |       |   |
| 388  | 39.833333  | 132 48        | 18.761905      | 58.24603     | •           | -     |   |
| 406  | 15.616667  | 228 88        | 4.730000       | 15.61666     | •           |       |   |
| 449  | 45.450000  | 132 48        | 18.761905      | 58.24603     | •           | Ū     |   |
| -    |            |               |                |              | J           |       |   |

| 468  | 42.850000 | 186 | 132  | 17.096 | 000 | 42.9 | 20000 | tuesda   | ıy sep |
|------|-----------|-----|------|--------|-----|------|-------|----------|--------|
| 520  | 71.583333 | 132 | 148  | 17.994 | 286 | 46.3 | 40476 | sunda    | y apr  |
| 569  | 28.883333 | 132 | 144  | 18.537 | 500 | 37.0 | 00000 | wednesda | ıy nov |
| 572  | 0.216667  | 230 | 161  | 0.685  | 484 | 7.9  | 65591 | tuesda   | y jul  |
| 586  | 55.700000 | 211 | 132  | 16.580 | 000 | 61.6 | 91667 | monda    | ıy jun |
| 692  | 30.533333 | 132 | 170  | 17.203 | 000 | 37.1 | 13333 | tuesda   | ıy nov |
| 717  | 34.033333 | 132 | 239  | 20.901 | 250 | 44.8 | 62500 | wednesda | ıy dec |
| 719  | 57.366667 | 264 | 264  | 3.191  | 516 | 15.6 | 18773 | frida    | ıy aug |
| 782  | 52.750000 | 163 | 132  | 17.275 | 833 | 52.3 | 38889 | frida    | ıy jun |
| 816  | 48.600000 | 132 | 170  | 17.203 | 000 | 37.1 | 13333 | tuesda   | y feb  |
| 818  | 88.783333 | 132 | 246  | 18.515 | 000 | 66.3 | 16667 | tuesda   | ıy jun |
| 835  | 36.983333 | 132 | 2 48 | 18.761 | 905 | 58.2 | 46032 | tuesda   | ıy jan |
| 840  | 45.066667 | 132 | 163  | 19.229 | 000 | 52.9 | 41667 | frida    | y oct  |
| 861  | 28.000000 | 75  | 132  | 18.442 | 500 | 36.2 | 04167 | saturda  | ıy dec |
| 881  | 36.000000 | 68  | 132  | 18.785 | 000 | 58.0 | 41667 | saturda  | ıy dec |
| 958  | 35.166667 | 132 | 261  | 22.115 | 000 | 51.4 | 93750 | sunda    | y oct  |
| 970  | 33.783333 | 132 | 140  | 19.293 | 333 | 36.7 | 91667 | frida    | y feb  |
| 984  | 55.050000 | 132 | 230  | 18.571 | 200 | 59.5 | 98000 | wednesda | ıy aug |
| 1082 | 14.366667 | 170 | 48   | 1.265  | 789 | 14.1 | 35965 | tuesda   | y feb  |
| 1097 | 2.333333  | 265 | 265  | 0.753  | 077 | 3.4  | 11538 | monda    | ıy aug |
| 1110 | 58.400000 | 239 | 132  | 19.795 | 000 | 50.5 | 62500 | wednesda | ıy sep |
| 1179 | 40.666667 | 238 | 132  | 19.470 | 000 | 53.8 | 61111 | monda    | ıy jun |
|      |           |     |      |        |     |      |       |          |        |

|     | rush_hour |
|-----|-----------|
| 11  | 0         |
| 110 | 0         |
| 161 | 0         |
| 247 | 0         |
| 379 | 0         |
| 388 | 1         |
| 406 | 0         |
| 449 | 0         |
| 468 | 0         |
| 520 | 0         |
| 569 | 0         |
| 572 | 0         |
| 586 | 0         |
| 692 | 0         |
| 717 | 0         |
| 719 | 1         |
| 782 | 1         |
| 816 | 1         |
| 818 | 1         |
| 835 | 0         |
| 840 | 0         |
| 861 | 0         |
| 881 | 0         |

| 958  | 0 |
|------|---|
| 970  | 0 |
| 984  | 1 |
| 1082 | 1 |
| 1097 | 0 |
| 1110 | 0 |
| 1179 | 1 |

Question: What do you notice about the first 30 trips?

#### **Answers:**

It seems that almost all of the trips in the first 30 rows where the fare amount was \$52 either begin or end at location 132, and all of them have a RatecodeID of 2.

There is no readily apparent reason why PULocation 132 should have so many fares of 52 dollars. They seem to occur on all different days, at different times, with both vendors, in all months. However, there are many toll amounts of \$5.76 and \\$5.54. This would seem to indicate that location 132 is in an area that frequently requires tolls to get to and from. It's likely this is an airport.

The data dictionary says that RatecodeID of 2 indicates trips for JFK, which is John F. Kennedy International Airport. A quick Google search for "new york city taxi flat rate \$52" indicates that in 2017 (the year that this data was collected) there was indeed a flat fare for taxi trips between JFK airport (in Queens) and Manhattan.

Because RatecodeID is known from the data dictionary, the values for this rate code can be imputed back into the data after the model makes its predictions. This way you know that those data points will always be correct.

### 2.0.10 Task 5. Isolate modeling variables

Drop features that are redundant, irrelevant, or that will not be available in a deployed environment.

## [35]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698

Data columns (total 25 columns):

| # | Column                       | Non-Null Count | Dtype          |
|---|------------------------------|----------------|----------------|
|   |                              |                |                |
| 0 | Unnamed: 0                   | 22699 non-null | int64          |
| 1 | VendorID                     | 22699 non-null | int64          |
| 2 | tpep_pickup_datetime         | 22699 non-null | datetime64[ns] |
| 3 | tpep_dropoff_datetime        | 22699 non-null | datetime64[ns] |
| 4 | passenger_count              | 22699 non-null | int64          |
| 5 | trip_distance                | 22699 non-null | float64        |
| 6 | RatecodeID                   | 22699 non-null | int64          |
| 7 | ${	t store\_and\_fwd\_flag}$ | 22699 non-null | object         |
| 8 | PULocationID                 | 22699 non-null | int64          |
| 9 | DOLocationID                 | 22699 non-null | int64          |

```
11 fare_amount
                          22699 non-null float64
 12 extra
                           22699 non-null float64
 13 mta_tax
                          22699 non-null float64
 14 tip amount
                          22699 non-null float64
 15 tolls amount
                           22699 non-null float64
 16 improvement surcharge 22699 non-null float64
 17 total amount
                           22699 non-null float64
 18 duration
                          22699 non-null float64
                          22699 non-null object
 19 pickup_dropoff
 20 mean_distance
                          22699 non-null float64
21 mean_duration
                          22699 non-null float64
22 day
                           22699 non-null object
                           22699 non-null object
 23 month
                           22699 non-null int64
 24 rush_hour
dtypes: datetime64[ns](2), float64(11), int64(8), object(4)
memory usage: 4.3+ MB
```

22699 non-null int64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 6 columns):

| #                            | Column          | Non-Null Count | Dtype   |  |
|------------------------------|-----------------|----------------|---------|--|
|                              |                 |                |         |  |
| 0                            | VendorID        | 22699 non-null | int64   |  |
| 1                            | passenger_count | 22699 non-null | int64   |  |
| 2                            | fare_amount     | 22699 non-null | float64 |  |
| 3                            | mean_distance   | 22699 non-null | float64 |  |
| 4                            | mean_duration   | 22699 non-null | float64 |  |
| 5                            | rush_hour       | 22699 non-null | int64   |  |
| dtypes: float64(3), int64(3) |                 |                |         |  |

memory usage: 1.0 MB

10 payment\_type

## 2.0.11 Task 6. Pair plot

Create a pairplot to visualize pairwise relationships between fare\_amount, mean\_duration, and mean\_distance.

```
[37]: # Create a pairplot to visualize pairwise relationships between variables in the data sns.pairplot(df2[['fare_amount', 'mean_duration', 'mean_distance']], plot_kws={'alpha':0.4, 'size':5}, );
```



These variables all show linear correlation with each other. Investigate this further.

## 2.0.12 Task 7. Identify correlations

mean distance

mean\_duration

rush\_hour

Next, code a correlation matrix to help determine most correlated variables.

```
[38]: # Correlation matrix to help determine most correlated variables
      df2.corr(method='pearson')
[38]:
                       VendorID
                                                   fare_amount
                                                                mean_distance \
                                 passenger_count
      VendorID
                       1.000000
                                         0.266463
                                                      0.001045
                                                                     0.004741
      passenger_count
                       0.266463
                                         1.000000
                                                      0.014942
                                                                     0.013428
      fare_amount
                       0.001045
                                         0.014942
                                                      1.000000
                                                                     0.910185
```

0.013428

0.015852

-0.022035

0.910185

0.859105

-0.020075

1.000000

0.874864

-0.039725

```
mean_durationrush_hourVendorID0.001876-0.002874passenger_count0.015852-0.022035fare_amount0.859105-0.020075mean_distance0.874864-0.039725mean_duration1.000000-0.021583rush_hour-0.0215831.000000
```

0.004741

0.001876

-0.002874

Visualize a correlation heatmap of the data.



Question: Which variable(s) are correlated with the target variable of fare\_amount?

Answers: mean\_duration and mean\_distance are both highly correlated with the target variable of fare\_amount They're also both correlated with each other, with a Pearson correlation of 0.87.

Recall that highly correlated predictor variables can be bad for linear regression models when you want to be able to draw statistical inferences about the data from the model. However, correlated predictor variables can still be used to create an accurate predictor if the prediction itself is more important than using the model as a tool to learn about your data.

This model will predict fare\_amount, which will be used as a predictor variable in machine learning models. Therefore, try modeling with both variables even though they are correlated.

Try modeling with both variables even though they are correlated.

## 2.0.13 Task 8a. Split data into outcome variable and features

### [40]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 6 columns):

```
Non-Null Count Dtype
 #
    Column
                     _____
    VendorID
 0
                     22699 non-null int64
 1
    passenger_count 22699 non-null int64
    fare amount
 2
                     22699 non-null float64
 3
    mean distance
                     22699 non-null float64
    mean duration
                     22699 non-null float64
    rush hour
                     22699 non-null int64
dtypes: float64(3), int64(3)
memory usage: 1.0 MB
```

Set your X and y variables. X represents the features and y represents the outcome (target) variable.

```
[41]: # Remove the target column from the features
X = df2.drop(columns=['fare_amount'])

# Set y variable
y = df2[['fare_amount']]

# Display first few rows
X.head()
```

| [41]: | VendorID | passenger_count | mean_distance | ${\tt mean\_duration}$ | rush_hour |
|-------|----------|-----------------|---------------|------------------------|-----------|
| 0     | 2        | 6               | 3.521667      | 22.847222              | 0         |
| 1     | 1        | 1               | 3.108889      | 24.470370              | 0         |
| 2     | 1        | 1               | 0.881429      | 7.250000               | 1         |
| 3     | 2        | 1               | 3.700000      | 30.250000              | 0         |
| 4     | 2        | 1               | 4.435000      | 14.616667              | 0         |

## 2.0.14 Task 8b. Pre-process data

Dummy encode categorical variables

```
[42]: # Convert VendorID to string
X['VendorID'] = X['VendorID'].astype(str)

# Get dummies
X = pd.get_dummies(X, drop_first=True)
X.head()
```

```
[42]:
         passenger_count
                          mean_distance mean_duration rush_hour
                                                                      VendorID 2
      0
                        6
                                3.521667
                                               22.847222
                                                                   0
                                                                               1
      1
                        1
                                3.108889
                                               24.470370
                                                                   0
                                                                               0
      2
                        1
                                0.881429
                                                7.250000
                                                                   1
                                                                               0
      3
                        1
                                3.700000
                                               30.250000
                                                                   0
                                                                               1
      4
                        1
                                4.435000
                                               14.616667
                                                                   0
                                                                               1
```

## 2.0.15 Split data into training and test sets

Create training and testing sets. The test set should contain 20% of the total samples. Set random\_state=0.

#### 2.0.16 Standardize the data

Use StandardScaler(), fit(), and transform() to standardize the X\_train variables. Assign the results to a variable called X\_train\_scaled.

```
[44]: # Standardize the X variables
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
print('X_train scaled:', X_train_scaled)

X_train scaled: [[-0.50301524   0.8694684   0.17616665  -0.64893329   0.89286563]
[-0.50301524  -0.60011281  -0.69829589   1.54099045   0.89286563]
[ 0.27331093  -0.47829156  -0.57301906  -0.64893329  -1.11998936]
...

[-0.50301524  -0.45121122  -0.6788917   -0.64893329  -1.11998936]
[-0.50301524  -0.58944763  -0.85743597   1.54099045  -1.11998936]
[ 1.82596329   0.83673851   1.13212101  -0.64893329   0.89286563]]
```

### 2.0.17 Fit the model

Instantiate your model and fit it to the training data.

```
[45]: # Fit your model to the training data
lr=LinearRegression()
lr.fit(X_train_scaled, y_train)
```

[45]: LinearRegression(copy\_X=True, fit\_intercept=True, n\_jobs=None, normalize=False)

#### 2.0.18 Task 8c. Evaluate model

## 2.0.19 Train data

Evaluate your model performance by calculating the residual sum of squares and the explained variance score (R^2). Calculate the Mean Absolute Error, Mean Squared Error, and the Root Mean Squared Error.

```
[46]: # Evaluate the model performance on the training data
r_sq = lr.score(X_train_scaled, y_train)
print('Coefficient of determination:', r_sq)
y_pred_train = lr.predict(X_train_scaled)
```

```
print('R^2:', r2_score(y_train, y_pred_train))
print('MAE:', mean_absolute_error(y_train, y_pred_train))
print('MSE:', mean_squared_error(y_train, y_pred_train))
print('RMSE:',np.sqrt(mean_squared_error(y_train, y_pred_train)))
```

Coefficient of determination: 0.8398434585044773

R^2: 0.8398434585044773 MAE: 2.186666416775414 MSE: 17.88973296349268 RMSE: 4.229625629236313

### 2.0.20 Test data

Calculate the same metrics on the test data. Remember to scale the X\_test data using the scaler that was fit to the training data. Do not refit the scaler to the testing data, just transform it. Call the results X\_test\_scaled.

```
[47]:  # Scale the X_test data

X_test_scaled = scaler.transform(X_test)
```

```
[48]: # Evaluate the model performance on the testing data
    r_sq_test = lr.score(X_test_scaled, y_test)
    print('Coefficient of determination:', r_sq_test)
    y_pred_test = lr.predict(X_test_scaled)
    print('R^2:', r2_score(y_test, y_pred_test))
    print('MAE:', mean_absolute_error(y_test, y_pred_test))
    print('MSE:', mean_squared_error(y_test, y_pred_test))
    print('RMSE:',np.sqrt(mean_squared_error(y_test, y_pred_test)))
```

Coefficient of determination: 0.8682583641795454

R^2: 0.8682583641795454 MAE: 2.1336549840593864 MSE: 14.326454156998944 RMSE: 3.785030271609323

#### Note:

The model performance is high on both training and test sets, suggesting that there is little bias in the model and that the model is not overfit. In fact, the test scores were even better than the training scores. For the test data, an R2 of 0.868 means that 86.8% of the variance in the fare\_amount variable is described by the model. The mean absolute error is informative here because, for the purposes of the model, an error of two is not more than twice as bad as an error of one.

## 2.0.21 Task 9a. Results

Use the code cell below to get actual, predicted, and residual for the testing set, and store them as columns in a results dataframe.

```
[50]: actual predicted residual 5818 14.0 12.356503 1.643497 18134 28.0 16.314595 11.685405 4655 5.5 6.726789 -1.226789 7378 15.5 16.227206 -0.727206 13914 9.5 10.536408 -1.036408
```

## 2.0.22 Task 9b. Visualize model results

Create a scatterplot to visualize actual vs. predicted.



Visualize the distribution of the residuals using a histogram.

```
[52]: # Visualize the distribution of the `residuals`
sns.histplot(results['residual'], bins=np.arange(-15,15.5,0.5))
plt.title('Distribution of the residuals')
plt.xlabel('residual value')
plt.ylabel('count');
```



```
[53]: # Calculate residual mean results['residual'].mean()
```

## **[53]**: -0.01544262152868053

**Note:** The distribution of the residuals is approximately normal and has a mean of -0.015. The residuals represent the variance in the outcome variable that is not explained by the model. A normal distribution around zero is good, as it demonstrates that the model's errors are evenly distributed and unbiased.

Create a scatterplot of residuals over predicted.

```
[54]: # Create a scatterplot of `residuals` over `predicted`
    sns.scatterplot(x='predicted', y='residual', data=results)
    plt.axhline(0, c='red')
    plt.title('Scatterplot of residuals over predicted values')
    plt.xlabel('predicted value')
    plt.ylabel('residual value')
    plt.show()
```



Note: The model's residuals are evenly distributed above and below zero, with the exception of the sloping lines from the upper-left corner to the lower-right corner, which you know are the imputed maximum of \\$62.50 and the flat rate of \\$52 for JFK airport trips.

### 2.0.23 Task 9c. Coefficients

Use the coef\_ attribute to get the model's coefficients. The coefficients are output in the order of the features that were used to train the model. Which feature had the greatest effect on trip fare?

```
[55]: # Output the model's coefficients
coefficients = pd.DataFrame(lr.coef_, columns=X.columns)
coefficients
```

```
[55]: passenger_count mean_distance mean_duration rush_hour VendorID_2 0 0.030825 7.133867 2.812115 0.110233 -0.054373
```

What do these coefficients mean? How should they be interpreted?

The coefficients reveal that mean\_distance was the feature with the greatest weight in the model's final prediction. Be careful here! A common misinterpretation is that for every mile traveled, the fare amount increases by a mean of \$7.13. This is incorrect. Remember, the data used to train the model was standardized with StandardScaler(). As such, the units are no longer miles. In other words, you cannot say "for every mile traveled...", as stated above. The correct interpretation of this coefficient is: controlling for other variables, for every +1 change in standard deviation, the fare amount increases by a mean of \$7.13.

Note also that because some highly correlated features were not removed, the confidence interval of this assessment is wider.

So, translate this back to miles instead of standard deviation (i.e., unscale the data).

- 1. Calculate the standard deviation of mean\_distance in the X\_train data.
- 2. Divide the coefficient (7.133867) by the result to yield a more intuitive interpretation.

```
[56]: # 1. Calculate SD of `mean_distance` in X_train data
print(X_train['mean_distance'].std())

# 2. Divide the model coefficient by the standard deviation
print(7.133867 / X_train['mean_distance'].std())
```

- 3.574812975256415
- 1.9955916713344426

Now you can make a more intuitive interpretation: for every 3.57 miles traveled, the fare increased by a mean of \\$7.13. Or, reduced: for every 1 mile traveled, the fare increased by a mean of \\$2.00.

## 2.0.24 Task 9d. Conclusion

- 1. What are the key takeaways from this notebook?
- Multiple linear regression is a powerful tool to estimate a dependent continuous variable from several independent variables.
- Exploratory data analysis is useful for selecting both numeric and categorical features for multiple linear regression.
- Fitting multiple linear regression models may require trial and error to select variables that fit an accurate model while maintaining model assumptions (or not, depending on your use case).
- 2. What results can be presented from this notebook?
- You can discuss meeting linear regression assumptions, and you can present the MAE and RMSE scores obtained from the model.

## 3 NOTES

1. When the mean\_distance and mean\_duration columns were computed, the means were calculated from the entire dataset. These same columns were then used to train a model that was used to predict on a test set. A test set is supposed to represent entirely new data that the model has not seen before, but in this case, some of its predictor variables were derived using data that was in the test set. This is known as data leakage. Data leakage is when information from your training data contaminates the test data. If your model has unexpectedly high scores, there is a good chance that there was some data leakage. To avoid data leakage in this modeling process, it would be best to compute the means using only the training set and then copy those into the test set, thus preventing values from the test set from being included in the computation of the means. This would have created some problems because it's very likely that some combinations of pickup-dropoff locations would only appear in the test data (not the train data). This means that there would be NaNs

- in the test data, and further steps would be required to address this. In this case, the data leakage improved the R2 score by  $\sim 0.03$ .
- 2. Imputing the fare amount for RatecodeID 2 after training the model and then calculating model performance metrics on the post-imputed data is not best practice. It would be better to separate the rides that did not have rate codes of 2, train the model on that data specifically, and then add the RatecodeID 2 data (and its imputed rates) after. This would prevent training the model on data that you don't need a model for, and would likely result in a better final model. However, the steps were combined for simplicity.