Un petit langage impératif, IMP.

1 Syntaxe et sémantique opérationnelle.

On se donne $\mathbb Z$ et V un ensemble infini de variables IMP, notées x,y,z. On définit plusieurs grammaires :

Arith. Les expressions arithmétiques $a := k \mid a_1 \oplus a_2 \mid x$;

Valeurs booléennes. $bv := true \mid false;$

Bool. Les expressions booléennes $b := bv \mid b_1 \wedge b_2 \mid a_1 \geq a_2$;

Com. Les commandes $c := x := a \mid c_1$; $c_2 \mid$ if b then c_1 else $c_2 \mid$ while b do $c \mid$ skip.

Sans explicitement le dire, on s'autorise à étendre les expressions arithmétiques avec, par exemple, les produits, les soustractions. De même pour les expressions booléennes.

On définit, par induction sur c, $\mathsf{Vars}(c)$ l'ensemble des variables dans la commande c. Il y a 5 cas.

Exemple 1. La commande

$$z:=1$$
 ; while $(x>0)$ do $(z:=z\times x$; $x:=x-1)$

représente un programme calculant la factorielle d'un nombre x. On le notera c_{fact} .

 $^{1.\,}$ Et on arrêtera rapidement de mettre des barres sous les entiers et d'entourer les plus.

Sémantique opérationnelle à grands pas.

Définition 1 (États mémoire). On se donne \mathcal{M} un ensemble de dictionnaires, notés σ, σ' , etc sur (V, \mathbb{Z}) .

Si $x \in \text{dom}(\sigma)$ et $k \in \mathbb{Z}$ on note $\sigma[x \mapsto k]$ l'état mémoire σ' défini

$$\triangleright \ \sigma'(x) := k \, ;$$

 $\label{eq:sigma} \begin{array}{l} \rhd \ \sigma'(x) := k \,; \\ \rhd \ \sigma'(y) := \sigma(y) \ \text{si} \ y \in \mathrm{dom}(\sigma) \setminus \{x\}. \end{array}$ Ici, on *écrase* la valeur de x dans l'état mémoire $\sigma.$

On définit $c, \sigma \Downarrow \sigma'$ (l'évaluation de c sur σ produit σ' , c fait passer de σ à σ') par les règles d'inférences ci-dessous

$$\frac{}{\mathtt{skip},\sigma \Downarrow \sigma} \; \mathscr{E}_{\mathrm{skip}} \quad \frac{c_1,\sigma \Downarrow \sigma' \quad c_2,\sigma' \Downarrow \sigma''}{c_1 \; ; \; c_2,\sigma \Downarrow \sigma''} \; \mathscr{E}_{\mathrm{seq}}$$

$$\frac{b,\sigma \Downarrow \mathsf{true} \quad c_1,\sigma \Downarrow \sigma'}{\mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2,\sigma \Downarrow \sigma'} \ \mathscr{E}_{\mathsf{it}} \qquad \frac{b,\sigma \Downarrow \mathsf{false} \quad c_2,\sigma \Downarrow \sigma'}{\mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2,\sigma \Downarrow \sigma'} \ \mathscr{E}_{\mathsf{if}}$$

$$\sigma' = \sigma[x \mapsto k] \ \frac{a, \sigma \Downarrow k}{x := a, \sigma \Downarrow \sigma'} \ \mathcal{E}_{\mathrm{aff}} \qquad \frac{b, \sigma \Downarrow \mathtt{false}}{\mathtt{while} \ b \ \mathtt{do} \ c, \sigma \Downarrow \sigma} \ \mathcal{E}_{\mathrm{wf}}$$

$$\frac{b,\sigma \Downarrow \mathsf{true} \quad c,\sigma \Downarrow \sigma' \quad \mathsf{while} \ b \ \mathsf{do} \ c,\sigma' \Downarrow \sigma''}{\mathsf{while} \ b \ \mathsf{do} \ c,\sigma \Downarrow \sigma''} \ \mathscr{E}_{\mathsf{wf}}$$

où l'on a deux autres relations (la couleur a de l'importance ici) :

 \triangleright l'évaluation des expressions arithmétiques $a, \sigma \Downarrow k$ (a s'évalue en k dans σ)

$$\frac{1}{\underline{k}, \sigma \Downarrow k} \qquad \sigma(x) = k \quad \frac{1}{x, \sigma \Downarrow k} \qquad k = k_1 + k_2 \quad \frac{a_1, \sigma \Downarrow k_1}{a_1 \oplus a_2, \sigma \Downarrow k}$$

 $ightharpoonup l'évaluation des expressions booléennes <math>b, \sigma \Downarrow bv$ (b s'évalue en bv dans σ)

$$\frac{bv = \text{true ssi } bv_1 \text{ et } bv_2}{bv, \sigma \Downarrow bv} \qquad bv = \text{true ssi } bv_1 \text{ et } bv_2 \quad \frac{b_1, \sigma \Downarrow bv_1}{b_1 \land b_2, \sigma \Downarrow bv}$$

$$bv = \text{true ssi } k_1 \ge k_2 \quad \frac{a_1, \sigma \Downarrow k_1 \quad a_2, \sigma \Downarrow k_2}{a_1 \ge a_2, \sigma \Downarrow bv}.$$

Remarque 1 (des « variables » partout!).

- \triangleright Les variables dans FUN sont les paramètres des fonctions, elles peuvent être liées, libres, et on peut procéder à de l' α -conversion. 2
- ▷ Les variables d'unification sont des inconnues. Il y a une notion de substitution, mais pas de liaison.
- ▷ Les variables dans IMP sont des cases mémoire, des registres, et il n'y a pas de liaison.

Remarque 2. Soit c une commande, et $\sigma \in \mathcal{M}$. Il peut arriver que, quel que soit $\sigma' \in \mathcal{M}$, on n'ait pas $c, \sigma \Downarrow \sigma'$, soit parce que dom (σ) est trop petit, et l'exécution se bloque; soit parce que le programme diverge, par exemple

while true do skip

diverge car on n'a pas de dérivation finies :

$$\frac{\mathsf{true}, \sigma \Downarrow \mathsf{true}}{\mathsf{skip}, \sigma \Downarrow \sigma} \quad \text{while true do skip}, \sigma \Downarrow ?} \\ \quad \mathsf{while true do skip}, \sigma \Downarrow ?$$

On peut définir des petits pas pour IMP (vu plus tard en cours, ou en TD), mais on s'intéresse plus à une autre sémantique, la sémantique dénotationnelle.

^{2.} C'est similaire au cas de la variable x dans $\int_0^7 f(x) dx$.

2 Sémantique dénotationnelle de IMP.

relation binaire sur ${\mathcal M}$ déterministe/fonctionnelle

On définit les relations

- $\triangleright \mathfrak{D}(a) \subseteq \mathcal{M} \times \mathbb{Z}$ fonctionnelle;
- $\triangleright \mathfrak{D}(b) \subseteq \mathcal{M} \times \{\mathtt{true}, \mathtt{false}\}\$ fonctionnelle;
- $\triangleright \mathfrak{D}(c) \subseteq \mathcal{M} \times \mathcal{M}$ fonctionnelle.

On ne traitera que la définition de $\mathfrak{D}(c)$, les autres sont laissées en exercice.

On définit $\mathfrak{D}(c)$ par induction sur c, il y a 5 cas.

- $\triangleright \mathfrak{D}(\mathtt{skip}) = \{(\sigma, \sigma)\};$
- $\triangleright \ \mathfrak{D}(x := a) = \{(\sigma, \sigma') \mid x \in \text{dom}(\sigma), \sigma' = \sigma[x \mapsto k] \text{ et } (\sigma, k) \in \mathfrak{D}(a)\};$
- $\mathfrak{D}(\texttt{if }b \texttt{ then } c_1 \texttt{ else } c_2) = \{(\sigma,\sigma' \mid (\sigma,\texttt{true}) \in \mathfrak{D}(b), (\sigma,\sigma') \in \mathfrak{D}(c_1))\} \cup \\ \{(\sigma,\sigma' \mid (\sigma,\texttt{false}) \in \mathfrak{D}(b), (\sigma,\sigma') \in \mathfrak{D}(c_2))\};$
- $\triangleright \mathfrak{D}(c_1 := c_2) = \{(\sigma, \sigma'') \mid \exists \sigma', (\sigma, \sigma') \in \mathfrak{D}(c_1) \text{ et } (\sigma', \sigma'') \in \mathfrak{D}(c_2)\};^3$
- $\triangleright \ \mathfrak{D}(\mathtt{while}\ b\ \mathtt{do}\ c) = ???.$

Pour la sémantique dénotationnelle de la boucle while, on s'appuie sur l'« équivalence » des commandes

while b do c et if b then (c := while b do c) else skip.

On introduit, pour $R \subseteq \mathcal{M} \times \mathcal{M}$, la relation

$$F(\mathsf{R}) = \{(\sigma, \sigma) \mid (\sigma, \mathtt{false}) \in \mathfrak{D}(b)\}$$

$$\cup \{(\sigma, \sigma') \mid (\sigma, \mathtt{true}) \in \mathfrak{D}(b), \exists \sigma', (\sigma, \sigma') \in \mathfrak{D}(c) \text{ et } (\sigma', \sigma'') \in \mathsf{R}\}.$$

On a envie de définir $\mathfrak{D}(\mathtt{while}\ b\ \mathtt{do}\ c)$ comme un point fixe de F.

^{3.} C'est la composée de $\mathfrak{D}(c_2)$ avec $\mathfrak{D}(c_1)$.

L'ensemble des relations binaires fonctionnelles sur \mathcal{M} n'est pas un treillis complet (à cause se $R_1 \cup R_2$ qui n'est pas nécessairement fonctionnelle). On ne peut donc pas appliquer le théorème de Knaster-Tarski.

En revanche, c'est un domaine : si $e_0 \subseteq e_1 \subseteq \cdots \subseteq e_n \subseteq \cdots$ alors l'union $\bigcup_{i>0} e_i$ existe. L'inclusion $e\subseteq e'$ signifie que e' est « plus définie » que e. L'ensemble des relations fonctionnelles sur \mathcal{M} est donc un domaine avec $\perp = \emptyset$. On sait donc que, pour toute fonction F continue, alors F admet un point fixe, qui est égal à

$$\emptyset \cup F(\emptyset) \cup F^2(\emptyset) \cup \cdots = \bigcup_{i \ge 0} F^i(\emptyset).$$

La fonction F définie plus haut est continue, ce qui nous permet de définir

$$\mathfrak{D}(\mathtt{while}\ b\ \mathtt{do}\ c) = \bigcup_{i \geq 0} F^i(\emptyset).$$

Exemple 2. On considère $c_0 = \text{while } x \neq 3 \text{ do } x := x - 1$. Ainsi, la fonction F définie avant $c=c_0$ est

$$F_0(\mathsf{R}) = \{(\sigma, \sigma) \mid \sigma(x) = 3\}$$

$$\cup \{(\sigma, \sigma'') \mid \sigma(x) \neq 3, \exists \sigma', \sigma = [x \mapsto \sigma(x) - 1], (\sigma, \sigma') \in \mathsf{R}\}.$$

On a

$$F_0^0(\emptyset) = \{ (\sigma, \sigma) \mid \sigma(x) = 3 \} ;$$

$$\, \triangleright \, F_0^1(\emptyset) = \{(\sigma,\sigma) \mid \sigma(x) = 3\} \cup \{(\sigma,\sigma') \mid \sigma' = [x \mapsto 3], \sigma(x) = 4\} \, ;$$

$$F_0^2(\emptyset) = \{ (\sigma, \sigma) \mid \sigma(x) = 3 \} \cup \{ (\sigma, \sigma') \mid \sigma' = [x \mapsto 3], \sigma(x) \in \{4, 5\} \}$$

$$\begin{array}{l} \rhd \ F_0^2(\emptyset) = \{(\sigma,\sigma) \mid \sigma(x) = 3\} \cup \{(\sigma,\sigma') \mid \sigma' = [x \mapsto 3], \sigma(x) \in \{4,5\}\}\,; \\ \rhd \ F_0^2(\emptyset) = \{(\sigma,\sigma) \mid \sigma(x) = 3\} \cup \{(\sigma,\sigma') \mid \sigma' = [x \mapsto 3], \sigma(x) \in \{4,5,6\}\}\,; \end{array}$$

$$\emptyset \subseteq F_0(\emptyset) \subseteq F_0^2(\emptyset) \subseteq \cdots$$
.

Si $\sigma(x) = 0$, alors quel que soit σ' , on a $(\sigma, \sigma') \notin \mathfrak{D}(c_0)$.

Exemple 3. Ainsi défini,

$$\mathfrak{D}(\mathtt{while}\ \mathtt{true}\ \mathtt{do}\ \mathtt{skip}) = \emptyset.$$

Théorème 1. On a $c, \sigma \Downarrow \sigma'$ si et seulement si $(\sigma, \sigma') \in \mathfrak{D}(c)$.

Preuve. \rhd « \Longrightarrow » Par induction sur la relation $c, \sigma \Downarrow \sigma'$. \rhd « \Longleftrightarrow » Par induction sur c, où l'on utilise le résultat suivant :

$$\forall n, (\sigma, \sigma') \in F^n(\emptyset) \implies c, \sigma \Downarrow \sigma'.$$

Lemme 1. Quels que soient c, σ, σ_1 , si c, σ, σ_1 alors,

$$\forall \sigma_2, \quad c, \sigma \Downarrow \sigma_2 \implies \sigma_1 = \sigma_2.$$

Preuve. Une mauvaise idée est de procéder par induction sur c. Il y a 5 cas, et dans le cas while, ça bloque parce que la relation grands pas n'est pas définie par induction sur c dans le cas while.

On procède par induction sur
$$c, \sigma \downarrow \sigma_1$$
.

De manière générale, avec IMP, on ne montre pas des résultats de la forme $c, \sigma \Downarrow \sigma' \implies \mathcal{P}$ par induction sur c, car cela ne fonctionne pas, on n'a pas les bonnes hypothèses. On procède par induction sur la relation $c, \sigma \Downarrow \sigma'$.

3 Coinduction.

On retourne sur le théorème de Knaster-Tarski pour la définition d'ensembles et de relations. En notant E l'ensemble ambiant, on travaille dans le treillis complet $(\wp(E),\subseteq)$, avec des fonctions f croissantes dans $\wp(E)$. Le théorème de Knaster-Tarski nous donne ainsi le plus

petit pré-point fixe de f, que l'on notera μf . Le principe de la preuve par induction est ainsi :

si
$$A \subseteq E$$
 vérifie $f(A) \subseteq A$ alors on a $\mu f \subseteq A$.

De plus, si f est continue (car $(\wp(E), \subseteq)$ est un domaine), alors on peut calculer explicitement ce plus petit (pré)-point fixe avec la formule $\bigcup_{n\in\mathbb{N}} f^n(\emptyset)$. On part du « bas » et on ajoute des éléments un par un.

Exemple 4. Pour l'exemple de nat, on a

$$\forall A \subseteq E, \qquad f(A) = \{0\} \cup \{S \ x \mid x \in A\},\$$

c'est une fonction continue, et on a

$$\mu f = \{ \mathbf{S}^n \mathbf{O} \mid n \in \mathbb{N} \},$$

avec S^n x = S S \cdots S x et la convention S^0 x = x. En effet, on a l'appartenance de $S^n O \in \bigcup_{m \in \mathbb{N}} f^m(\emptyset)$ et $f(\{S^n O\}) = \{S^{n+1} O\}$.

Remarque 3 (Remarque fondamentale!). Considérons un treillis complet (E, \sqsubseteq) . Alors, le treillis (E, \supseteq) est complet, où l'on note $y \supseteq x$ dès lors que $x \sqsubseteq y$ (on renverse l'ordre).

Un majorant pour \sqsubseteq est un minorant pour \supseteq et inversement. Ainsi, le plus plus petit des majorants $\bigsqcup_{\sqsubseteq} A$ pour \sqsubseteq est le plus petit des minorants $\bigcap_{\supseteq} A$ pour \supseteq . Réciproquement, le plus petit des majorants pour \sqsubseteq , $\bigcap_{\sqsubseteq} A$ est égal au plus grand majorant pour la relation \supseteq , $\bigsqcup_{\supseteq} A$.

On se place ainsi sur le treillis complet $(\wp(E), \supseteq)$. Une fonction est croissante pour \subseteq si et seulement si elle est croissante pour \supseteq (attention, elle n'est pas décroissance pour cette deuxième relation). Appliquons le théorème de Knaster-Tarski sur ce nouveau treillis complet à une fonction croissante. Le théorème nous fournis un pré-point fixe pour l'ordre \supseteq (i.e. qui vérifie $f(A) \supseteq A$), c'est-à-dire un post-point

fixe pour l'ordre \subseteq (*i.e.* qui vérifie $A \subseteq f(A)$). Et, c'est le plus petit point fixe pour \supseteq , donc le plus grand point fixe pour \subseteq , que l'on notera νf .

Avec le théorème de point fixe sur les domaines, et en supposant f continue, on calcule explicitement que le plus grand point fixe νf vaut l'intersection $\bigcap_{n\in\mathbb{N}} f^n(E)$. On part du haut, et on nettoie progressivement, on raffine notre partie de E.

Ce que l'on a fait là, cela s'appelle de la *coinduction*.

Exemple 5. Par exemple, on définit **conat** par coinduction. En Rocq, cela donne le code ci-dessous.

CoInductive conat : Set := c0 | cS (n : conat). $Code \ 1 \ | \ D\'{e}finition \ de$ conat

Pour illustrer le « nettoyage » effectué dans la définition coinductive, on considère une feuille étiquetée par le mot « banane ». A-t-on cS banane \in conat? Premièrement, on a cS banane \in E car E est l'ensemble (très grand) des arbres étiquetés par des chaînes de caractères. Deuxièmeement, on a cS banane \in E0 car c'est le successeur de banane E0. Troisièmement, et c'est là où ça casse, on a cS banane E1 parce que banane E2.

Avec la fonction f définie précédemment, on a

$$f^n(E) = \{ \mathsf{c0}, \mathsf{cS} \; \mathsf{c0}, \dots, \mathsf{cS}^{n-1} \; \mathsf{c0} \} \cup \{ \mathsf{cS}^n \; x \mid x \in E \}.$$

Ainsi, on récupère tous les entiers de nat, mais d'autres entiers (oui, il y en a plusieurs) infinis, ayant ainsi une dérivation infinie. Par exemple, il existe $\omega \in \mathsf{conat}$ tel que $\omega = \mathsf{cS}\ \omega$. En Rocq, pour le définir, on ferai :

CoFixpoint ω := cS ω

Code 2 | Définition de ω , un entier infini

Pour montrer que $\omega \in \mathsf{conat}$, il faut et il suffit de montrer l'inclusion $\{\omega\} \subseteq f(\{\omega\}) = \{\mathsf{cO}, \mathsf{cS}\ \omega\} = \{\mathsf{cO}, \omega\}$, qui est vraie, et on a ainsi $\{\omega\} \subseteq \mathsf{conat}$.

Le principe de la preuve par coinduction permet d'établir qu'un ensemble est contenu dans le plus grand point fixe. Avec le treillis des parties muni de \subseteq , cela permet de montrer que $A \subseteq E$ est inclus dans le plus grand post-point fixe de f et, pour cela, il suffit de montrer que $A \subseteq f(A)$, c'est-à-dire que A est un post-point fixe de f. C'est ce que l'on a fait dans l'exemple avec ω .

Par coinduction, on peut par exemple montrer que l'on a, pour tous états mémoire σ, σ' ,

while true do skip, $\sigma \Downarrow \sigma'$.

4 Divergences en IMP.

On donne une définition coinductive de la divergence en IMP, que l'on notera $c,\sigma\uparrow$ avec les règles

$$\frac{c_1,\sigma \Uparrow}{c_1 \text{ ; } c_2,\sigma \Uparrow} \quad \frac{c_1,\sigma \Downarrow \sigma' \quad c_2,\sigma' \Uparrow}{c_1 \text{ ; } c_2,\sigma \Uparrow} \quad \frac{b,\sigma \Downarrow \text{ true} \quad c_1,\sigma \Uparrow}{\text{if } b \text{ then } c_1 \text{ else } c_2,\sigma \Downarrow}$$

$$\frac{b,\sigma \Downarrow \text{ false} \quad c_2,\sigma \Uparrow}{\text{if } b \text{ then } c_1 \text{ else } c_2,\sigma \Downarrow} \quad \frac{b,\sigma \Downarrow \text{ true} \quad c,\sigma \Uparrow}{\text{while } b \text{ do } c,\sigma \Uparrow}$$

$$\frac{b,\sigma \Downarrow \text{ true} \quad c,\sigma \Downarrow \sigma' \quad \text{ while } b \text{ do } c,\sigma' \Uparrow}{\text{while } b \text{ do } c,\sigma' \Uparrow}$$

On n'a pas de règle pour la divergence si $b, \sigma \downarrow false$, car dans ce cas là, on ne peut pas diverger (c'est équivalent à un skip).

Le plus grand point fixe ne contient que des dérivations infinies, qui correspondent à des exécutions divergentes d'un programme IMP à partir d'un état mémoire donné. En effet, ceci vient du fait que, si on interprète ces règles comme des règles inductives, la relation obtenue est l'ensemble vide...

5 Logique de Floyd-Hoare.

On considère des formules logiques, des assertions (définies formellement ci-après), que l'on notera A, A', B, etc. Un triplet de Hoare est de la forme $\{A\}c\{A'\}$ (la notation est inhabituelle pour les triplets, mais c'est une notation commune dans le cas des triplets de Hoare), où l'on nomme A la précondition et A' la postcondition.

Exemple 6. Les triplets suivants sont des triplets de Hoare :

- 1. $\{x \ge 1\}y := x + 2\{x \ge 1 \land y \ge 3\}$ qui est une conclusion naturelle;
- 2. $\{n \geq 1\}c_{\text{fact}}\{r=n!\}$ où l'on note c_{fact} la commande

$$x := n \; ; \; z := 1 \; ; \; \text{while} \; (x > 0) \; \text{do} \; (z := z \times x \; ; \; x := x - 1) \; ,$$

qui calcule naturellement la factorielle de n;

- 3. $\{x < 0\}c\{\text{true}\}$ même s'il ne nous dit rien d'intéressant (tout état mémoire vérifie true);
- 4. $\{x < 0\}c\{\text{false}\}\$ qui diverge dès lors que x < 0.

On considère un ensemble $I \ni i$ infini d'index, des « inconnues ». On commence par définir les expressions arithmétiques étendues

$$a := \underline{k} \mid a_1 \oplus a_2 \mid x \mid i$$
,

puis définit les assertions par la grammaire ci-dessous :

$$A ::= bv \mid A_1 \vee A_2 \mid A_1 \wedge A_2 \mid a_1 \geq a_2 \mid \exists i, A.$$

On s'autorisera à étendre, implicitement, les opérations réalisées dans les expressions arithmétiques, et les comparaisons effectuées dans les assertions.

On ajoute la liaison d' α -conversion : les assertions $\exists i, x = 3 * i$ et $\exists j, x = 3 * j$ sont α -équivalentes. On note $i\ell(A)$ l'ensemble des index libres de l'assertion A, et on dira que A est close dès lors que $i\ell(A) = \emptyset$. On note aussi $A[^k/i]$ l'assertion A où $k \in \mathbb{Z}$ remplace $i \in I$.

Définition 2. Considérons A close et $\sigma \in \mathcal{M}$. On définit par induction sur A (4 cas) une relation constituée de couples (σ, A) , notés $\sigma \models A$ (« σ satisfait A »), et en notant $\sigma \not\models A$ lorsque (σ, A) n'est pas dans la relation :

- $\triangleright \ \sigma \models \mathsf{true} \ \forall \sigma \in \mathcal{M} ;$
- $\triangleright \ \sigma \models A_1 \lor A_2 \text{ si et seulement si } \sigma \models A_1 \text{ ou } \sigma \models A_2;$
- $\triangleright \sigma \models a_1 \geq a_2$ si et seulement si on a $a_1, \sigma \Downarrow k_1$ et $a_2, \sigma \Downarrow k_2$ et $k_1 \geq k_2$;
- $\triangleright \sigma \models \exists i, A \text{ si et seulement s'il existe } k \in \mathbb{Z} \text{ tel que } \sigma \models A[k/i].$

On écrit $\models A$ (« A est valide ») lorsque pour tout σ tel que $dom(\sigma) \supseteq vars(A)$, on a $\sigma \models A$.

5.1 Règles de la logique de Hoare : dérivabilité des triplets de Hoare.

Les triplets de Hoare, notés $\{A\}c\{A'\}$ avec A et A' closes, où A est $pr\'{e}condition$, c est commande IMP, et A' est postcondition. On définit une relation $\vdash \{A\}c\{A'\}$ sur les triplets de Hoare :

La dernière règle semble à l'envers, mais c'est parce que la logique de Hoare fonctionne fondamentalement à l'envers.

Dans la règle de dérivation pour la boucle while, l'assertion manipulée, A, est un invariant.

L'avant dernière règle s'appelle la *règle de conséquence* : on ne manipule pas le programme, la commande, mais plutôt les pré- et post-conditions.

La relation $\vdash \{A\}c\{A'\}$ s'appelle la sémantique opérationnelle de IMP.

Définition 3. On définit la relation de satisfaction, sur les triplets de la forme $\{A\}c\{A'\}$ avec A, A' closes, avec $\sigma \models \{A\}c\{A'\}$ si et seulement si dès lors que $\sigma \models A$ et $c, \sigma \Downarrow \sigma'$ alors on a $\sigma' \models A'$.

On définit ensuite la relation de validité par $\models \{A\}c\{A'\}$ si et seulement si pour tout $\sigma \in \mathcal{M}$, $\sigma \models \{A\}c\{A'\}$.

Théorème 2 (Correction de la logique de Hoare.). Si $\vdash \{A\}c\{A'\}$ alors $\models \{A\}c\{A'\}$.

Preuve. On procède par induction sur $\vdash \{A\}c\{A'\}$. Il y a 6 cas.

▶ Règle de conséquence. On sait

$$\models B \implies A \text{ et } \models A' \implies B',$$

et l'hypothèse d'induction. On doit montrer $\models \{B\}c\{B'\}$. Soit σ tel que $\models B$, et supposons $c, \sigma \Downarrow \sigma'$. On a $\models A$ par hypothèse. Puis, par hypothèse d'induction, $\sigma' \models A'$ et donc $\sigma' \models B'$.

- $ightharpoonup Règle \ while.$ Considérons c= while b do c_0 . On sait par induction que $\models \{A \land b\}c_0\{A\}$ et l'hypothèse d'induction. Il faut montrer $\models \{A\}$ while b do $c_0\{A \land \neg b\}$, c'est à dire, si $\sigma \models A$ et (\star) : while b do $c_0, \sigma \Downarrow \sigma'$ alors $\sigma' \models A \land \neg b$. Pour montrer cela, il est nécessaire de faire une induction sur la dérivation de (\star) , « sur le nombre d'itérations dans la boucle ».
- ▷ Autres cas en exercice.

Le sens inverse, la réciproque, s'appelle la *complétude*. On l'étudiera rapidement après.

Remarque 4. Concrètement, on écrit des programmes annotés.

$$\begin{cases} \{x \geq 1\} \\ \{x \geq 1 \land x + 2 + x + 2 \geq 6\} \end{cases}$$

$$y := x + 2 ;$$

$$\{x \geq 1 \land y + y \geq 6\}$$

$$z := y + y$$

$$\begin{cases} \{x \geq 1 \land z \geq 6\} \\ \{x \geq 1 \land z \geq 6\} \end{cases}$$

5.2 Complétude de la logique de Hoare

Pour démontrer la complétude de la logique de Hoare, on s'appuie sur la notion de plus faible précondition : étant données une commande c et une assertion B, alors la plus faible précondition associée à c, B est l'ensemble des états mémoire

$$wp(c, B) := \{ \sigma \mid c, \sigma \Downarrow \sigma' \implies \sigma' \models B \}.$$

Ainsi, wp(c, B) est l'ensemble des états mémoire à partir duquels on aboutit à un état satisfaisant B, après une exécution terminante de c.

Proposition 1. Pour toute commande c et toute formule B, il existe une assertion W(c, B) telle que $\sigma \models W(c, B)$ si et seulement si $\sigma \in wp(c, B)$.

Preuve. On procède par induction sur c. Tout fonctionne, sauf pour while... Pour le cas de la boucle while, on utilise la caractérisation suivante :

$$\sigma \in \operatorname{wp}(\mathtt{while}\ b\ \mathtt{do}\ c_0, B)$$

$$\forall k, \forall \sigma_0, \dots, \sigma_k \text{ si } \sigma_0 = \sigma \text{ et } \forall i < k, (\sigma_i, b \downarrow \text{ true et } c_0, \sigma_i \downarrow \sigma_{i+1})$$

alors $\sigma_k \models b \lor B$.

On peut définir cette assertion en définissant des assertions pour :

- \triangleright décrire un état mémoire σ_i $(X_1^i = v_1 \land \cdots \land X_n^i = v_n)$;
- \triangleright exprimer les conditions $\sigma_i, c \downarrow \sigma_{i+1}$ par induction;
- \triangleright exprimer les quantifications $\forall k, \sigma_0, \ldots, \sigma_k \ldots$ on demande à Kurt Gödel.

Ainsi, on a bien une assertion W(c, B) telle que

$$\forall \sigma, \qquad \sigma \in \operatorname{wp}(c, B) \iff \sigma \models \operatorname{W}(c, B).$$