Ph.D. Qualifying Exam, Real Analysis Fall 2014, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- Prove or disprove: If \mathcal{H} is an infinite dimensional separable Hilbert space, then $\mathcal{B}(\mathcal{H}, \mathcal{H})$ is separable in the operator-norm topology.
- 2 Let (S, μ) be a σ-finite measure space. Let $f \in L^{\infty}(S, \mu)$ and let M_f be the bounded linear operator on $L^2(S, \mu)$, $M_f(g) = fg$.
 - **a.** Find a necessary and sufficient condition (in terms of f and μ) for M_f to have an eigenvector.
 - **b.** Find a necessary and sufficient condition (in terms of f and μ) for M_f to be compact.
- Recall that a topological space S is first countable if at each point $p \in S$ there is a countable base for the topology, i.e. there exist O_n , $n \in \mathbb{N}$, open such that O open and $p \in O$ imply that for some n, $O_n \subset O$.
 - **a.** Suppose that X is a Banach space, $\{x_j\}_{j=1}^{\infty}$ is a sequence in X with the property that $\bigcup_{n=1}^{\infty} X_n = X$, where $X_n = \operatorname{span}\{x_1, \dots, x_n\}$. Show that X is finite dimensional.
 - **b.** Show that if a Banach space is first countable in its weak topology then it is finite dimensional. (*Hint:* show that the dual space has the property in part (i).)
- Recall that the Fourier transform of an $L^1(\mathbb{R}^n)$ function f is $(\mathcal{F}f)(\xi) = \int e^{-ix\cdot\xi}f(x)\,dx$, where \cdot is the standard inner product on \mathbb{R}^n .
 - Let A be a real symmetric matrix, and define the function f by $f(x) = e^{-iAx \cdot x/2}$, which is a tempered distribution. Find (with proof) its Fourier transform if $\det(A) \neq 0$. Make sure to give an explicit formula in terms of A, without involving any limits. (*Hint:* Write A as the limit of complex symmetric matrices with negative definite imaginary part.)
- For $k \in \mathbb{R}$, let \mathcal{H}_+^k denote the set of distributions f on $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ whose Fourier series $\hat{f} = \mathcal{F}f$ are rapidly decreasing as $n \to -\infty$ (i.e. for all N, $|\mathcal{F}f(n)| \leq C_N |n|^{-N}$ for n < 0), and which satisfy $|\hat{f}(n)| \leq C_k (n+1)^k$ for $n \geq 0$, with the natural seminorms induced by these estimates. Show that there is K such that for $f, g \in \mathcal{H}_+^k$, fg is well-defined in \mathcal{H}_+^K (extending the usual multiplication on $C^\infty(\mathbb{T})$) and $\mathcal{H}_+^k \times \mathcal{H}_+^k \ni (f,g) \to fg \in \mathcal{H}_+^K$ is continuous.

Ph.D. Qualifying Exam, Real Analysis

Fall 2014, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two quick problems.
 - **a.** Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a function with the property that for all $k \in \mathbb{N}$ and for all $x \in \mathbb{R}$ there exists a polynomial $P_{x,k}$ on \mathbb{R} such that $|f(y) P_{x,k}(y)| \le C_{x,k}|x y|^{k+1}$ if |x y| < 1. Is f infinitely differentiable? Prove this or give a counterexample.
 - **b.** Suppose that Y is a normed complex vector space with norm $\|.\|$, and $\lambda: Y \to \mathbb{C}$ is linear but is not continuous. Show that $N = \lambda^{-1}(\{0\})$ is dense in Y.
- Suppose A is compact operator on a Hilbert space \mathcal{H} . Prove that if zI A is injective, and $z \neq 0$, then the image of zI A is a closed subspace. Is this also true even if zI A is not injective?
- For $E \subset \mathbb{R}$ let $E + E = \{x + y : x, y \in E\}$, and define E E similarly. Show that if E is a measurable subset of \mathbb{R} of positive Lebesgue measure then E E and E + E contain non-empty open sets.
- 4 Consider the collection of seminorms $\rho_{k,m}(f) = \sup |x^{-k}\partial^m f|, k,m \ge 0$ integer, on the subspace X of C^{∞} functions on [0,1] vanishing with all derivatives at 0.
 - **a.** Show that the locally convex topology induced by these seminorms on X is the same as the restriction of the C^{∞} topology to X.
 - **b.** Show that every $\{\rho_{k,m}: k, m \geq 0\}$ -continuous linear functional ℓ on X has an extension to a continuous linear functional λ on $C^{\infty}([-1,1])$, with X identified with the subspace of $C^{\infty}([-1,1])$ consisting of functions vanishing on [-1,0].
- Let $\ell^2(\mathbb{Z})$ denote the Hilbert space of square summable bi-infinite complex valued sequences, and let L be the operator acting on $\ell^2(\mathbb{Z})$ defined by

$$(Lf)(n) = f(n) - \frac{1}{2}(f(n+1) + f(n-1)).$$

(L is called the discrete Laplacian.)

- **a.** Show that L is a bounded symmetric operator, with spectrum [0, 2], and find the eigenvalues of L.
- **b.** Let V denote multiplication by a real-valued function v: (Vf)(n) = v(n)f(n), and suppose $\lim_{|n|\to\infty}v(n)=0$. Show that the spectrum of H=L+V outside [0,2] is a discrete set.