# Biodiversity in National Parks Analysis

Shawn Craig

### Species\_info.csv

- Base data for analysis
- Columns are category, scientific name, common names, and conservation status
  - ► Each row is a single record of an animal or plant in a national park
  - Category = organism type (mammal, bird, reptile, etc)

- Scientific name is just that, the scientific name for the organism
- Common name = common name
- Conservation status = whether the organism is threated, endangered, a species of concern, or in recovery
  - These are fairly straight forward, in ascending order of concern, species of concern, threated, and endangered

### Species\_info.csv Analysis

- Data was fairly complete but required minor reorganization prior to analysis
- Pandas was used with python to count unique records, determine category values, and groupby to reorder data yielded the following:
  - ▶ Data set contained 5541 unique records (species)
  - ▶ 7 categories (Mammal, Bird, Reptile, Amphibian, Fish, Vascular Plant, Nonvascular Plant)
  - Conservation statuses were: nan, Species of Concern, Endangered, Threatened, In Recovery
- Null values in conservation were taken to mean no intervention was required, so nan was replaced with "No Intervention"

# Species\_info.csv Analysis II

Reorganizing yielded the following data:

| Conservation Status | Scientific Name |  |  |
|---------------------|-----------------|--|--|
| In Recovery         | 4               |  |  |
| Threatened          | 10              |  |  |
| Endangered          | 16              |  |  |
| Species of Concern  | 161             |  |  |
| No Intervention     | 5633            |  |  |

# Conservation Status Bar Graph



# Species\_info.csv Analysis III

- ▶ To further determine what was happening in the data I
  - Added an 'is protected' column to help sort the data
  - ▶ Grouped, pivoted, renamed, added % protected to the dataframe to produce:

| Category          | Not protected       | Protected | Percent protected |  |
|-------------------|---------------------|-----------|-------------------|--|
| Amphibian         | 72                  | 7         | 0.088             |  |
| Bird              | 413                 | 75        | 0.153             |  |
| Fish              | 115                 | 11        | 0.087             |  |
| Mammal            | 146                 | 30        | 0.1704            |  |
| Nonvascular Plant | 328                 | 5         | 0.015             |  |
| Reptile           | 73                  | 5         | 0.064             |  |
| Vascular Plant    | cular Plant 4216 46 |           | 0.0107            |  |

# Testing, Are Mammals more likely to be endangered than Birds?

- Because we have two or more categorical datasets the best test to apply is the Chi Squared test
  - ► To run a chi squared test, we first need to construct a contingency table with our data
  - contingency = [[146, 30], [413, 75]]
- Running the test we get a p value of 0.687, which is far to large to indicate a significant difference

# Testing 2, What about Reptiles compared to Mammals?

- Again, this is two sets of categorical data so I used the Chi Squared Test
  - Our contingency table was: contingency2 = [[146, 30], [73, 5]]
  - p value was 0.038
- This p value, generally anything 0.05 or lower, indicates there is a significant difference between Reptiles and Mammals
- Mammals are more likely to be endangered than Reptiles

#### Recommendation

- ▶ Based on the available data and my analysis:
- Conservationists should focus their efforts on Mammals
- However, birds are also threaten at nearly the same level as Mammals so initiatives that benefit both should be prioritized

#### Observations.csv

- Observations.csv was a dataset containing conservationists sightings of different species at several national parks over the course of a week
- We specifically focused our efforts on examining data related to sheep
- We modified our species dataframe with a new column called is\_sheep
  - ► This column returned a True or False indicating if the word sheep was present in a each record (row)
- Using this new column we filtered our dataframe to show only records that were both mammals and sheep

| Category | Scientific Name         | Common Name                                             | Conservation Status | Is protected | Is Sheep |
|----------|-------------------------|---------------------------------------------------------|---------------------|--------------|----------|
| Mammal   | Ovis aries              | Domestic Sheep,<br>Mouflon, Red Sheep,<br>Sheep (Feral) | No Intervention     | False        | True     |
| Mammal   | Ovis canadensis         | Bighorn Sheep, Bighorn Sheep Species of Concern         |                     | True         | True     |
| Mammal   | Ovis canadensis sierrae | Sierra Nevada Bighorn<br>Sheep Endangered               |                     | True         | True     |

# **Merging Dataframes**

After reconfiguring our observations data frame we merged it with our species dataframe we filtered to display just sheep

| Scientific Name         | Park Name                                 | Observation s | Category | Common Names                    | Conservation<br>Status | Is Protected | Is Sheep |
|-------------------------|-------------------------------------------|---------------|----------|---------------------------------|------------------------|--------------|----------|
| Ovis canadensis         | Yellowstone<br>National Park              | 219           | Mammal   | Bighorn Sheep,<br>Bighorn Sheep | Species of<br>Concern  | True         | True     |
| Ovis canadensis         | Bryce National<br>Park                    | 109           | Mammal   | Bighorn Sheep,<br>Bighorn Sheep | Species of<br>Concern  | True         | True     |
| Ovis canadensis         | Yosemite<br>National Park                 | 117           | Mammal   | Bighorn Sheep,<br>Bighorn Sheep | Species of<br>Concern  | True         | True     |
| Ovis canadensis         | Great Smoky<br>Mountains<br>National Park | 48            | Mammal   | Bighorn Sheep,<br>Bighorn Sheep | Species of<br>Concern  | True         | True     |
| Ovis canadensis sierrae | Yellowstone<br>National Park              | 67            | Mammal   | Bighorn Sheep,<br>Bighorn Sheep | Endangered             | True         | True     |

# Merged Dataframe Analysis

After merging we were able to use the groupby command to create the following dataframe, Observations by Park

| Park Name                           | Observations |
|-------------------------------------|--------------|
| Bryce National Park                 | 250          |
| Great Smoky Mountains National Park | 159          |
| Yellowstone National Park           | 507          |
| Yosemite National Park              | 282          |

This dataframe was plotted to create the chart found on the next slide

# Observations by Park



#### Foot and Mouth Disease Rates

- Scientists have reported that roughly 15% of the observed sheep in Bryce National Park have foot and mouth disease. Further it's estimated 10% of the population at Yellowstone have the disease as well.
- Scientists at Bryce have instituted a program to reduce the rate of foot and mouth disease
- Based on our observation numbers and the rates of disease supplied to us by park scientists I was able to calculate the required sample size to test whether their disease eradication program was having any effect

#### Foot and Mouth Disease II

- Using a sample size calculator, and a significance of 90%, I determined a sample size of 520 is required for Bryce National Park
- Using the same methods, a sample size of 370 would be required for Yellowstone National Park
- Using the previously supplied data regarding observations per week:
- It will take roughly <u>two weeks</u> to determine whether the program is having any effect in Bryce National Park
- ► It will take roughly <u>1 week</u> (about 5 days actually) to determine whether the program is having any effect in Yellowstone National Park