

INTERNAL COLOR GRADIENTS AND DISTRIBUTIONS OF STELLAR POPULATIONS OF EARLY-TYPE GALAXIES IN THE CLASH MACS 1206 CLUSTER

V. Marian, B. Ziegler

Introduction, Data, Analysis,...

INTRODUCTION

- Evolution and mass assembly of early-type galaxies in clusters
- Variation in color = variation of stellar population
- Due to age and/or metallicity?
- → comparison with models: constraints on possible evolutionary scenarios

DATA

- CLASH (Postman et al., 2012):
 - "Cluster Lensing And Supernova survey with Hubble"
 - 25 X-ray selected, massive clusters
 - $-0.2 \le z \le 0.9$
 - I6 HST bands (ACS, WFC3/UVIS/IR)
- **CLASH VLT** (Rosati et al., 2014):
- Spectroscopic follow-up for 13 clusters
- $-0.2 \lesssim z \lesssim 0.6$
- ~500 − 1000 members/cluster
- \blacksquare MACS J1206.2-0847 at $z\sim0.44$

Postman et al., 2012

- Simultaneous multi-band fitting of intensity profile
- MegaMorph (Häußler et al., 2013)
- Based on Galapagos (Barden et al., 2012)
- Combining Source Extractor & Galfit(-M)
- Sérsic profile (early-type: n > 2.5)
- Increases S/N:
- Lower mag-limit
- Enhances stability
- One component fit

Peng et al., 2010

- Simultaneous multi-band fitting of intensity profile
- MegaMorph (Häußler et al., 2013)
- Based on Galapagos (Barden et al., 2012)
- Combining Source Extractor & Galfit(-M)
- Sérsic profile (early-type: n > 2.5)
- Increases S/N:
- Lower mag-limit
- Enhances stability
- One component fit

- Simultaneous multi-band fitting of intensity profile
- MegaMorph (Häußler et al., 2013)
- Based on Galapagos (Barden et al., 2012)
- Combining Source Extractor & Galfit(-M)
- Sérsic profile (early-type: n > 2.5)
- Increases S/N:
- Lower mag-limit
- Enhances stability
- One component fit

- 79 galaxies
- With m_{tot} , Sérsic index n and effective radius $r_e \rightarrow$ surface brightness profiles
- → color profiles
- Logarithmic slope of profile → color gradient

$$\nabla_{\lambda_2-\lambda_1} = \frac{\Delta \left[\mu_{\lambda_2}(R) - \mu_{\lambda_1}(R)\right]}{\Delta \log R}$$

Results

STRUCTURAL PARAMETERS

STRUCTURAL PARAMETERS

$$\mathbf{N} = \mathbf{n}_{\mathbf{H}_{160}}/\mathbf{n}_{\mathbf{r}_{625}}$$

$$R = r_{e_{H,160}}/r_{e_{r,625}}$$

- $^{ ext{-}}$ mean of ratios between $^{ ext{n}}$ and $^{ ext{r}}_{ ext{e}}$ in $^{ ext{H}}_{160}$ and $^{ ext{r}}_{625}$
- ightharpoonup N < 1
 ightharpoonuphigher light concentration in bluer band
- $ightharpoonup R < 1 \rightarrow$ larger size in bluer band

$$N = 0.92 \pm 0.02$$

 $R = 0.75 \pm 0.02$

- n constant, re decreases with wavelength
- → Indicates **negative** color gradient

Peng et al., 2010

- **0.1 2**r_e
- Two different methods:
- LSQ fit to color profile
- -, Analytical approach' (La Barbera et al. (2002))
- Four colors:

•
$$g_{475} - I_{814} \sim U - V$$

$$r_{625} - Y_{105} \sim B - I$$

$$I_{814} - H_{160} \sim V - Y$$

$$Y_{105} - H_{160} \sim I - Y$$

Color	∇ mean,fit [mag dex ⁻¹]	∇ mean,anal [mag dex ⁻¹]	
$g_{475} - I_{814}$	-0.17 ± 0.08	-0.12 ± 0.08	
$r_{625} - Y_{105}$	-0.18 ± 0.08	-0.15 ± 0.08	
$I_{814} - H_{160}$	-0.15 ± 0.12	-0.15 ± 0.11	
$Y_{105} - H_{160}$	-0.07 ± 0.09	-0.07 ± 0.09	

No obvious correlations of color gradients with:

- Cluster-centric distance
- Total magnitude
- Stellar mass

STELLAR POPULATIONS

- Simple Stellar Population models
 - (Bruzual & Charlot, 2003)
- Chabrier IMF
- Breaking age-Z-degeneracy
- Compared colors at 0.1, 0.5, I and 2r_e
- $\blacksquare B I \text{ vs. } I Y$

STELLAR POPULATIONS

Parameter	0. 1r _e	0.5r _e	1r _e	2r _e
Age [Gyr]	11.5 ± 0.3	11.2 ± 0.3	10.1 ± 0.3	10.1 ± 0.3
$\mathbf{Z} \left[\log(\mathbf{Z}/\mathbf{Z}_{\odot}) \right]$	0.2 ± 0.03	0.1 ± 0.02	0.0 ± 0.02	0.0 ± 0.02

- Decrease in age and metallicity with radius
 - → both, age and metallicity have effect on observed color gradients

Summary

SUMMARY

- $lap{r_e} \sim 25\%$ smaller in H_{160} than in $r_{625} \rightarrow$ indicating negative color gradients
- n appears constant over same wavelength range
- Color gradients on average negative
- No correlation of gradients with cluster-centric distance, total magnitude or stellar mass
- Age and metallicity are drivers for color gradients
- Inside-out growth of early-type galaxies plausible evolution scenario

Xkcd.com