1 Basic Concepts

We study properties and structures of algebraic objects called rings. One example of a ring to always keep in mind is \mathbb{Z} , the ring of integers.

$$\{..., -10, ..., -2, -1, 0, ..., 10, ..., 10^6\}$$

1.1 Some properties of \mathbb{Z}

Can add integers to get another integer

$$a+b\in\mathbb{Z}$$
 $\forall a,b\in\mathbb{Z}$

Addition in \mathbb{Z} is associative

$$(a+b)+c=a+(b+c)=a+b+c \qquad \forall a,b,c \in \mathbb{Z}$$
 (1)

Addition in \mathbb{Z} is *commutative*

$$a+b=b+a \qquad \forall a,b \in \mathbb{Z}$$
 (2)

There is an identity for addition in \mathbb{Z} , namely 0

$$a+0=0+a=a \qquad \forall a \in \mathbb{Z}$$
 (3)

Each integer can be negated

$$-a \in \mathbb{Z}$$
 $\forall a \in \mathbb{Z}$

And this is an additive inverse

$$a + (-a) = (-a) + a = 0 (4)$$

Previous four points summarised as

Definition 1.1. \mathbb{Z} is an abelian group under addition

We can also multiply two integers to get another integer $ab \in \mathbb{Z} \forall a,b \in \mathbb{Z}$ and multiplication is associative

$$a(bc) = (ab)c = abc \forall a, b, c \in \mathbb{Z}$$
 (5)

The two operations, addition and multiplication, obey distributive laws

$$a(b+c) = ab + ac (a+b)c = ac + bc$$
 $\forall a, b, c \in \mathbb{Z}$ (6)

The above specific properties of \mathbb{Z} can be generalized to *axioms* that collectively define any (abstract ring)

Before the formal definition, another useful and quite different example $M_2(\mathbb{R})$.

Example 1.1. Let $M_2(\mathbb{R})$ denote the set of all 2x2 matrices with entries in \mathbb{R} , the real numbers

We can add elements of $M_2(\mathbb{R})$:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} \sqrt{2} & 3 \\ 5 & -7 \end{pmatrix} = \begin{pmatrix} (1+\sqrt{2}) & 4 \\ 5 & -6 \end{pmatrix} \qquad \in M_2(\mathbb{R})$$
 (7)

$$a + b \in M_2(\mathbb{R}) \forall a, b \in M_2(\mathbb{R})$$
 (8)

Note. Notice how we are doing addition in \mathbb{R} to do addition in $M_2(\mathbb{R})$

Note. Also nothing special about $M_2\mathbb{R}$, also possible for $M_3(\mathbb{R}),\ M_4(\mathbb{R}),\ ...,\ M_n(\mathbb{R})$

Matrix addition is associative and commutative

Example 1.2.

$$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \end{pmatrix} + \begin{pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} \end{pmatrix} + \begin{pmatrix} w & x \\ y & z \end{pmatrix} \end{pmatrix} \in M_2(\mathbb{R})$$
(9)

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} e & f \\ g & h \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
(10)

Note. Again these properties hold for $M_2\mathbb{R}$ because they hold in \mathbb{R} . $M_2\mathbb{R}$ has a zero namely the zero matrix.

Every element of $M_2\mathbb{R}$ has an additive inverse, see \mathbb{Z} example.

Definition 1.2 (Basic Concepts). $M_2\mathbb{R}$ is an *abelian* group under matrix addition

Just as with addition, $M_2\mathbb{R}$ has multiplication and is associative. And distributes over addition

Remark. Matrix multiplication is **not** commutative

1.2 Axiomatic Definitions

An algebraic structure is a set on which(unary,binary,ternary,...) operations are defined, & usually the operation/s obey laws(axioms)

Definition 1.3. A Group is a set G with a binary operation, denoted \cdot , a unary operation

 $x \in G \to x^- 1 \in G$ such that

i)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 $\forall a, b, c \in G$

ii)
$$a \cdot 1 = 1 \cdot a = a$$
 $\forall a \in G$

iii)
$$a \cdot a^- 1 = a^- 1 \cdot a = 1$$
 $\forall a \in G$

Remark. .

- 1) i) is the associative law
- 2) 1 is the identity of G, this 1 is unique
- 3) x^{-1} is the inverse of x
- 4) The operation \cdot is usually called *multiplication* and is usually omitted i.e, $ab=a\cdot b$
- 5) If \cdot is commutative then G is called abelian
- 6) If we drop axioms ii),iii) and dont require inverses or identity then the structure is a semigroup
- 7) Not requiring inverses we have a monoid

Definition 1.4. A non-empty set R is a Ring equipped with two binary operations (addition and multiplication) connected by distributive laws

- \bullet R is an abelian group wrt +
- R is a semigroup wrt multiplication
- Distributivity:

$$a(b+c) = ab + ac (a+b)c = ac + bc$$
 $\forall a, b, c \in R$ (11)

Remark. See text for examples of rings, too lazy to type them

2 Elementary Properties of Rings

Here we study the basic properties of a ring

Lemma 2.1. if R is a ring, then
$$\forall r, s \in R$$
 (i) $r0 = 0r = 0//$ (ii) $(-r)s = r(-s) = -rs$ (iii) $(-r)(-s) = rs$

Proof. .

i) 0+0=0Hence r(0+0)=r) $\Rightarrow r0+r0$ by distributivity $\Rightarrow r0+r0-r0=r0-r0$ $\Rightarrow r0+0=0$ Similarly, 0r=0ii) (-r)s+rs=(-r+r)s =0s =0

Hence (-r)s is the additive inverse of rs

iii)
$$(-r)(-s) + (-rs)$$

= $(-r)(-s) + r(-s)$ by ii)

$$=(-r+r)(-s)$$
 distributivity

$$= o(-s) = 0$$

Hence,
$$(-r)(-s) = -(-rs) = rs$$

2.1 Special Kinds of Rings

• A ring R is commutative if $ab = ba \forall a, b \in R$

 \bullet A ring R has multiplicative identity if \exists element $1 \in R$ such that $1r = r1 = r \forall r \in R$

 \bullet The multiplicative identity is unique: if e is identity too then 1e=1 but 1e=e since 1 is identity. So 1=e

Definition 2.1. An *Integral Domain* is a commutative ring with $1 \neq 0$ and no zero-divisors

Note. 1 = 0 in a ring $R \leftrightarrow R = \{0\}$

Example 2.1.

$$\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{C}$$

are all integral domains. $M_n(\mathbb{C})$ is not an integral domain

Lemma 2.2. Let R be an integral domain, $a \in R \setminus \{0\}$, and $x, y \in R$ Then

$$ax = ay \Rightarrow x = y \tag{12}$$

The cancellation laws for multiplication in integral domains

Proof.

$$ax = ay (13)$$

$$\Rightarrow ax - ay = 0 \tag{14}$$

$$\Rightarrow a(x-y) = 0 \tag{15}$$

$$\Rightarrow x - y = 0 \tag{16}$$

$$\Rightarrow x = y \tag{17}$$

(18)

(15) because 'a' is not a zer0-divisor

Definition 2.2. A *Field* is a commutative ring in which the set of non-zero elements i a group under multiplication

- So if F is a field then $\exists 1 \in F$ such that $1x = x \forall x \in F \setminus \{0\}$, Since $1 \cdot 0 = 0$ by an earlier Lemma 1 really is the multiplicative identity of F
- Also for each $a \in F \setminus \{0\}$,
- $\exists a^- 1 \in F \setminus \{0\} \text{ such that } aa^- 1 = 1$
- Every field is an integral domain. For if $a \in F \setminus \{0\}$, $\exists a^-1 \in F \setminus \{0\}$ such that ab = 0 then b = 1 be $a^-1(ab) = a^1 \cdot 0 = 0$