ALLOWED CLAIMS (5576,200)

(1, 5, 13, 16-18, 22, 23, 30, 43-46, 49, 51, 53, 55-57, 59, 63, 68-71, 87-90 and 92-118)

1. A compound of formula (I):

$$V^{A} Y^{Z} Y^{B} X^{D}$$
 (I)

wherein

V is -COOH

A is

-NR7CH2-,

wherein

b is 0 or 1,

n is 0, 1, 2 or 3,

R7 is hydrogen, C1-8-alkyl or C3-8-cycloalkyl-C1-8-alkyl,

 R^{α} and R^{θ} independently are hydrogen or $C_{1:\alpha}\text{-alkyl},$

Y is -C(O)-,

Z is

ALLOWED CLAIMS IN US SERIAL NO. 09/572,553 (1, 5, 13, 16-18, 22, 23, 30, 43-46, 49, 51, 53, 55-57, 59, 63, 68-71, 87-90 and 92-118)

1. A compound of formula (I):

$$V = \begin{bmatrix} F \\ N \\ X \end{bmatrix}$$
 (I)

wherein

V is -COOH

A is

$$\frac{R^{\frac{8}{4}}R^{\frac{8}{4}}}{-(CH_{2})_{n}} \cdot \frac{R^{\frac{8}{4}}R^{\frac{8}{4}}}{(CH_{2})_{n}} \cdot \frac{R^{\frac{8}{4}}R^{\frac{9}{4}}}{(CH_{2})_{n}} \cdot \frac{R^{\frac{9}{4}}R^{\frac{9}{4}}}{(CH_{2})_{n}} \cdot \frac{R^{\frac{9}{4}}R^{\frac{9}{4}}}{($$

b is 0 or 1,

n is 0, 1, 2 or 3,

R⁷ is hydrogen, C₁₋₆-alkyl or C₃₋₈-cycloalkyl-C₁₋₆-alkyl,

 R^{θ} and R^{θ} independently are hydrogen or $C_{1-\theta}\text{-alkyl},$

Y is -C(O)-,

Z is

wherein R^{48} and R^{47} independently are selected from hydrogen, halogen, - CN, - CF_3 , - OCF_3 , - NO_2 , - OR^{10} , - $NR^{10}R^{11}$ and $C_{1.6}$ -alkyl,

wherein R^{10} and R^{11} independently are hydrogen or $C_{1\text{-}6}$ -alkyl,

R1 is hydrogen or C1-8-alkyl,

r is 0 or 1,

q and s independently are 0, 1, 2 or 3,

 R^{12} , R^{13} , and R^{14} independently are hydrogen or C_{1-8} -alkyl,

D is

$$R^{16}$$
 R^{17} R^{16} R

wherein

R¹⁶, R¹⁷, R¹⁸ and R¹⁹ independently are

- hydrogen, halogen, CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCH₂CF₃, -OCH₂CF₃, -OCF₂CHF₂, -OS(O)₂CF₃, -SCF₃, -NO₂, OR²¹, -NR²¹R²², -SR²¹, -NR²¹S(O)₂R²², -S(O)₂NR²¹R²², -S(O)NR²¹R²², -S(O)R²¹, -S(O)₂R², -OS(O)₂R²¹, -C(O)NR²¹R²², -CH₂C(O)NR²¹R²², -OCH₂C(O)NR²¹R²², -CH₂OR²¹, -CH₂OR²¹, -CH₂NR²¹R²², -OC(O)R²¹, -C(O)R²¹ or -C(O)OR²¹,
- C_{1-8} -alkyl, C_{2-8} -alkenyl or C_{2-6} -alkynyl,

optionally substituted with one or more substituents selected from -CHF₂, -CF₃, -OCF₃, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃ \int -OR²¹, -NR²¹R²², -SR²¹, -S(O)R²¹, -S(O)₂R²¹, -C(O)NR²¹R²², -OC(O)NR²¹R²², -NR²¹C(O)R²², -OCH₂C(O)NR²¹R²², -C(O)R²¹ and -C(O)OR²¹,

C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl, heterocyclyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkyloxy, C₃₋₈-cycloalkyl-C₁₋₆-alkylthio, C₃₋₈-cycloalkyl-C₂₋₆-alkynyl, C₄₋₈-cycloalkyl-C₂₋₆-alkyl, C₄₋₈-cycloalkyl-C₁₋₆-alkyl, C₄₋₈-cycloalkyl-C₂₋₆-alkyl, C₄₋₈-cycloalkyl-C₂₋₆-alkyl, C₄₋₈-cycloalkyl-C₁₋₆-alkyl, C₄₋₈-cycloalkyl-C₂₋₆-alkyl, C₄₋₈-cycloalkyl-C₁₋₆-alkyl, C₄₋₈-cycloalkyl-C₁₋₆-alkyl,

OCT. 2.2002 3:03PM NNNA LEGAL DEPT.

 $_8$ -cycloalkenyl- C_{2-8} -alkenyl, C_{4-8} -cycloalkenyl- C_{2-8} -alkynyl, heterocyclyl- C_{1-8} -alkyl, heterocyclyl- C_{2-8} -alkenyl or heterocyclyl- C_{2-8} -alkynyl,

of which the cyclic moleties optionally are substituted with one or more substituents selected from

```
-CHF<sub>2</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, -OCH<sub>2</sub>, -OCH<sub>2</sub>CF<sub>3</sub>, -OCF<sub>2</sub>CHF<sub>2</sub>, -SCF<sub>3</sub>, -OR<sup>21</sup>, -NR<sup>21</sup>R<sup>22</sup>, -SR<sup>21</sup>, -S(O)R<sup>21</sup>, -S(O)<sub>2</sub>R<sup>21</sup>, -C(O)NR<sup>21</sup>R<sup>22</sup>, -OC(O)NR<sup>21</sup>R<sup>22</sup>, -OC(O)R<sup>21</sup>, -OCH<sub>2</sub>C(O)NR<sup>21</sup>R<sup>22</sup>, -C(O)R<sup>21</sup> and -C(O)OR<sup>21</sup>,
```

C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

```
optionally substituted with one or more substituents selected from -CHF<sub>2</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, -OCH<sub>2</sub>CF<sub>3</sub>, -OCF<sub>2</sub>CHF<sub>2</sub>, -SCF<sub>3</sub>, -OR<sup>21</sup>, -NR<sup>21</sup>R<sup>22</sup>, -SR<sup>21</sup>, -S(O)R<sup>21</sup>, -S(O)<sub>2</sub>R<sup>21</sup>, -C(O)NR<sup>21</sup>R<sup>22</sup>, -OC(O)NR<sup>21</sup>R<sup>22</sup>, -NR<sup>21</sup>C(O)R<sup>22</sup>, -OCH<sub>2</sub>C(O)NR<sup>21</sup>R<sup>22</sup>, -C(O)R<sup>21</sup> and -C(O)OR<sup>21</sup>,
```

aryl, aryloxy, aryloxycarbonyl, aroyl, aryl-C₁₋₆-alkoxy, aryl-C₁₋₆-alkyl, aryl-C₂₋₆-alkenyl, aryl-C₂₋₆-alkynyl, heteroaryl-C₁₋₆-alkyl, heteroaryl-C₂₋₆-alkenyl or heteroaryl-C₂₋₆-alkynyl,

of which the aryl and heteroaryl moieties optionally are substituted with one or more substituents selected from

```
halogen, {}^{\circ}CN, {}^{\circ}CH<sub>2</sub>CN, {}^{\circ}CHF<sub>2</sub>, {}^{\circ}CF<sub>3</sub>, {}^{\circ}OCF<sub>3</sub>, {}^{\circ}OCH<sub>2</sub>C, {}^{\circ}CH<sub>2</sub>CF<sub>3</sub>, {}^{\circ}CF<sub>2</sub>CHF<sub>2</sub>, {}^{\circ}CS(O)<sub>2</sub>CF<sub>3</sub>, {}^{\circ}SCF<sub>3</sub>, {}^{\circ}NO<sub>2</sub>, {}^{\circ}OR<sup>21</sup>, {}^{\circ}NR<sup>21</sup>R<sup>22</sup>, {}^{\circ}S(O)<sub>2</sub>R<sup>21</sup>, {}^{\circ}S(O)<sub>2</sub>R<sup>21</sup>R<sup>22</sup>, {}^{\circ}S(O)<sub>2</sub>R<sup>21</sup>R<sup>22</sup>, {}^{\circ}S(O)<sub>2</sub>R<sup>21</sup>, {}^{\circ}C(O)<sub>2</sub>R<sup>21</sup>, {}^{\circ}C(O)<sub>2</sub>R<sup>21</sup>
```

C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

1,10.212

optionally substituted with one or more substituents selected from -CHF₂, -CF₃, -OCF₃, -OCH₂, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -OR²¹, -NR²¹R²², -SR²¹, -S(O)R²¹, -S(O)₂R²¹, -C(O)NR²¹R²², -OC(O)NR²¹R²², -NR²¹C(O)R²², -OCH₂C(O)NR²¹R²², -C(O)R²¹ and -C(O)OR²¹,

wherein \mathbb{R}^{21} and \mathbb{R}^{22} independently are hydrogen. $-\mathbb{CF}_3$ \mathbb{C}_{1-8} -alkyl, tri- \mathbb{C}_{1-8} -alkylsilyl, \mathbb{C}_{3-8} -cycloalkyl- \mathbb{C}_{1-8} -alkyl, aryl- \mathbb{C}_{1-8} -alkyl or heteroaryl,

or R²¹ and R²² when attached to the same nitrogen atom together form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

or two of the groups R¹⁶ to R¹⁹ when placed in adjacent positions together form a bridge –(CR¹⁶'R¹⁷)_a-O-(CR¹⁸'R¹⁹)_c-O-,

wherein

a is 0, 1 or 2,

c is 1 or 2.

 $R^{16'}$, $R^{17'}$, $R^{18'}$ and $R^{19'}$ independently are hydrogen, C_{1-8} -alkyl or halogen,

E is a 3 to 9 membered mono- or bicyclic ring optionally containing one or two double bonds wherein one or two groups R²³ and R²⁴ are attached to the same or different ring carbon atoms or

wherein

m and p independently are 0, 1, 2, 3 or 4, with the proviso that when both m and p are present in the same formula at least one of m and p is different from 0,

R²³ and R²⁴ independently are

- hydrogen, $-CHF_2$, $-CF_3$, $-OCF_3$, $-OCH_2$, $-OCH_2CF_3$, $-OCF_2CHF_2$, $-SCF_3$, $-OR^{36}$, $-NR^{36}R^{37}$, $-SR^{36}$, $-S(O)R^{36}$, $-S(O)_2R^{36}$, $-C(O)NR^{36}R^{37}$, $-OC(O)NR^{36}R^{37}$, $-NR^{36}C(O)R^{37}$, $-OCH_2C(O)NR^{36}R^{37}$, $-C(O)R^{36}$ or $-C(O)OR^{36}$.
- C₁₋₈-alkyl, C₂₋₈-alkenyl or C₂₋₈-alkynyl,

NO.212 1.20

optionally substituted with one or more substituents selected from -CHF₂, -CF₃, -OCF₃, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -OR³⁶, -NR³⁶R³⁷, -SR³⁶, -S(O)₂R³⁶, -C(O)NR³⁶R³⁷, -OC(O)NR³⁶R³⁷, -NR³⁶C(O)R³⁷, -OCH₂C(O)NR³⁶R³⁷, -C(O)R³⁶ and -C(O)OR³⁶,

C₃₋₈-cycloalkyl, C₃₋₈-cycloalkylidene, C₄₋₈-cycloalkenyl, heterocyclyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkyl-C₂₋₆-alkenyl, C₃₋₈-cycloalkyl-C₂₋₆-alkynyl, C₄₋₈-cycloalkenyl-C₁₋₆-alkyl, C₄₋₈-cycloalkenyl-C₂₋₆-alkynyl, heterocyclyl-C₁₋₆-alkyl, heterocyclyl-C₂₋₆-alkenyl or heterocyclyl-C₂₋₆-alkynyl,

of which the cyclic moleties optionally are substituted with one or more substituents selected from

```
-CHF<sub>2</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, -OCHF<sub>2</sub>, -OCH<sub>2</sub>CF<sub>3</sub>, -OCF<sub>2</sub>CHF<sub>2</sub>, -SCF<sub>3</sub>, -OR<sup>36</sup>, -NR<sup>36</sup>R<sup>37</sup>, -SR<sup>36</sup>, -S(O)R<sup>36</sup>, -S(O)<sub>2</sub>R<sup>36</sup>, -C(O)NR<sup>36</sup>R<sup>37</sup>, -OC(O)NR<sup>36</sup>R<sup>37</sup>, -OC(O)NR<sup>36</sup>R<sup>37</sup>, -OC(O)R<sup>36</sup>, -OCH<sub>2</sub>C(O)NR<sup>36</sup>R<sup>37</sup>, -C(O)R<sup>36</sup> and -C(O)OR<sup>36</sup>,
```

C1-6-alkyl, C2-6-alkenyl and C2-6-alkynyl,

optionally substituted with one or more substituents selected from -CHF₂. -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -OR³⁶, -NR³⁶R³⁷, -SR³⁶, -S(O)R³⁶, -S(O)₂R³⁶, -C(O)NR³⁶R³⁷, -OC(O)NR³⁶R³⁷, -NR³⁸C(O)R³⁷, -OCH₂C(O)NR³⁶R³⁷, -C(O)R³⁶ and -C(O)OR³⁶,

aryl, aryloxy, aroyl, aryl-C₁₋₈-alkoxy, aryl-C₁₋₈-alkyl, aryl-C₂₋₈-alkenyl, aryl-C₂₋₈-alkynyl, heteroaryl-C₁₋₈-alkyl, heteroaryl-C₂₋₈-alkenyl or heteroaryl-C₂₋₆-alkynyl,

of which the aryl and heteroaryl moieties optionally are substituted with one or more substituents selected from

```
halogen, -CN, -CH<sub>2</sub>CN, -CHF<sub>2</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, -OCHF<sub>2</sub>, -OCH<sub>2</sub>CF<sub>3</sub>, -OCF<sub>2</sub>CHF<sub>2</sub>, -OS(O)<sub>2</sub>CF<sub>3</sub>, -SCF<sub>3</sub>, -NO<sub>2</sub>, -OR<sup>36</sup>, -NR<sup>36</sup>R<sup>37</sup>, -SR<sup>36</sup>, -NR<sup>36</sup>S(O)<sub>2</sub>R<sup>37</sup>, -S(O)<sub>2</sub>NR<sup>36</sup>R<sup>37</sup>, -S(O)NR<sup>36</sup>R<sup>37</sup>, -S(O)R<sup>36</sup>, -S(O)<sub>2</sub>R<sup>96</sup>.
```

 $-OS(O)_{p}R^{36}$, $-C(O)NR^{36}R^{37}$, $-OC(O)NR^{36}R^{37}$, $-NR^{36}C(O)R^{37}$, -CH2C(O)NR36R37, -CH2C(O)NR36R37, -CH2OR36, -CH2NR36R37, -OC(O)R36, -C(O)R36 and -C(O)OR36,

C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

optionally substituted with one or more substituents selected from -CHF2, -CF3, -OCF3, -OCHF2, -OCH2CF3, -OCF2CHF2, -SCF3, -OR36, -NR36R37, -SR36, -S(O)R36, -S(O)2R36, -C(O)NR36R37, -OC(O)NR36R37, -NR36C(O)R37, -OCH2C(O)NR36R37, -C(O)R36 and -C(O)OR36,

wherein R³⁶ and R³⁷ independently are hydrogen, C₁₋₆-alkyl or aryl,

of which the anyl mojety optionally is substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁶, -NR³⁶R³⁹ and C1-8-alkyl,

wherein R38 and R39 independently are hydrogen or C1-8-alkyl,

or R35 and R37 when attached to the same nitrogen atom together form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

or R²³ and R²⁴ when attached to the same ring carbon atom or different ring carbon atoms together form a radical -O-(CH₂)_CCR⁴⁰R⁴¹-(CH₂)_I-O-, -(CH₂)_I-CR⁴⁰R⁴¹-(CH₂)_I- or -S-(CH₂)_t-CR⁴⁰R⁴¹-(CH₂)_t-S-,

wherein

t and I independently are 0, 1, 2, 3, 4 or 5,

R⁴⁰ and R⁴¹ independently are hydrogen or C_{1.6}-alkyl,

R²⁵ to R³⁰ independently are hydrogen, halogen, -CN, -CF₃, -NO₂, -OR⁴², -NR⁴²R⁴³, C₁₋₈-alkyl, C₃₋₈-cycloalkyl or C₄₋₈-cycloalkenyl,

wherein R⁴² and R⁴³ independently are hydrogen or C₁₋₆-alkyl, or

R⁴² and R⁴³ when attached to the same nitrogen atom together form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

R31, R32 and R33 independently are hydrogen or C1-6-alkyl,

R³⁴ and R³⁵ independently are

- hydrogen, C₁₋₆-alkyl, C₁₋₆-alkoxy, C₁₋₆-alkanoyl, -C(O)NR⁴⁴R⁴⁵ or -S(O)₂R⁴⁵
- aryi, aroyi, aryi-C₁₋₆-aikoxy, aryi-C₁₋₆-aikanoyi or aryi-C₁₋₆-aikyi,

of which the aryl moieties optionally are substituted with one or more substituents selected from halogen, -CN. -CF₃, -OCF₃, -OR⁴⁴. -NR⁴⁴R⁴⁵ and C_{1.6}-alkyl,

wherein R^{44} and R^{45} independently are hydrogen or $C_{1\text{--}0}$ alkyl, or

R³⁴ and R³⁵ when attached to a carbon atom together form a 3 to 8 membered cyclic ring optionally containing one or two heteroatoms selected from nitrogen, oxygen or sulfur, and optionally containing one or two double bonds, or

R³⁴ and R³⁵ when attached to a nitrogen atom together form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen or sulfur, and optionally containing one or two double bonds.

as well as any optical or geometric isomer or tautomeric form thereof or a pharmaceutically acceptable salt thereof.

110.515

5. A compound according to claim 1, wherein A is

$$-CH_2-NR^{7}$$
, $-(CH_2)_2-NR^{7}$, $-NR^{7}$, $-(CH_2)_3$ or $-NR^{7}$ - CH_2

wherein R^7 is as defined in claim 1.

13. A compound according to claim 1, wherein Z is

16. A compound according to claim 1, wherein X is

wherein q, r, s, R^{12} , R^{13} and R^{14} are as defined in claim 1.

17. A compound according to claim 16, wherein X is

wherein q is 0 or 1, r is 0 or 1, s is 0, 1 or 2, and R^{13} is hydrogen or C_{1-6} -alkyl.

- 18. A compound according to claim 17, wherein X is -C(O)NH-, -C(O)NHCH₂-, -C(O)NHCH(CH₃)-, -C(O)NHCH₂CH₂-, or -NHC(O)-.
- 22. A compound according to claim 1, wherein D is

wherein R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are as defined in claim 1.

23. A compound according to claim 22, wherein D is

$$R^{16}$$
, or R^{16}

wherein R^{16} , R^{17} , R^{18} and R^{19} are as defined in claim 1.

43. A compound according to claim 1, wherein E is

wherein

m, p and R^{23} to R^{30} and R^{32} to R^{35} are as defined in claim 1.

wherein m, p and R^{23} to R^{35} are as defined in claim 1.

$$R^{23} \xrightarrow{R^{24}} R^{24} \xrightarrow{R^{24}} R^{24} \xrightarrow{R^{24}} R^{24} \xrightarrow{R^{23}} R^{24} \xrightarrow{R^{24}} R^{25} \xrightarrow{R^{24}} R^{25} \xrightarrow{R^{24}} R^{25} \xrightarrow{R^{24}} R^{25} \xrightarrow{R^{24}} R^{25} \xrightarrow{R^{25}} R^{26} \xrightarrow{R^{25}} R^{2$$

wherein p, R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{34} and R^{35} are as defined in claim 1.

46. A compound according to claim 45, wherein E is

wherein R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{34} and R^{35} are as defined in claim 1.

49. A compound according to claim 45, wherein E is

wherein R^{23} and R^{24} are as defined in claim 1.

- 51. A compound according to claim 49, wherein R^{23} and R^{24} independently are selected from hydrogen, C_{1-6} -alkyl, C_{3-8} -cycloalkyl, C_{3-8} -cycloalkylidene, phenoxy, phenyl, $-C(O)NR^{36}R^{37}$ and -OC(O)NH-phenyl, of which the phenyl moiety optionally may be substituted with $-OCF_3$, wherein R^{36} and R^{37} are as defined in claim 1, or R^{23} and R^{24} together form the radical $-(CH_2)_t-CR^{40}R^{41}-(CH_2)_t-CR^{40}R^{41}-(CH_2)_t-CR^{40}R^{41}-(CH_2)_t-CR^{40}R^{41}$ are as defined in claim 1.
- 53. A compound according to claim 46, wherein E is

$$R^{26}$$
 R^{27} R^{25} R^{27} or R^{26} R^{27} $(CH_2)_2$

wherein R^{25} , R^{26} and R^{27} are as defined in claim 1.

55. A compound according to claim 53, wherein R²⁵, R²⁶ and R²⁷ independently are selected from hydrogen, halogen, C₁₋₆-alkyl, C₁₋₆-alkoxy, C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl, -CF₃, -OCF₃ or -NR⁴²R⁴³, wherein R⁴² and R⁴³ are as defined in claim 1.

56. A compound according to claim 55, wherein E is

wherein \mathbb{R}^{25} is $-\text{OCF}_3$, $-\text{CF}_3$, C_{1-6} -alkyl, piperidyl, C_{3-8} -cycloalkyl or C_{4-8} -cycloalkenyl.

57. A compound according to claim 46, wherein E is

59. A compound according to claim 1 of formula (I_1) :

$$\begin{array}{c} V \\ A \\ R^{47} \\ \end{array}$$

$$\begin{array}{c} R^{46} \\ N \\ X \\ \end{array}$$

$$\begin{array}{c} I_{1} \\ I_{2} \\ I_{3} \\ \end{array}$$

$$(I_{1})$$

wherein V, A, R^{46} , R^{47} , R^{1} , E, X and D are as defined in claim 1.

63. A compound according to claim 1 of formula (I₅):

wherein R⁴⁶, R⁴⁷, R¹, E, X and D are as defined in claim 1.

- 68. A compound according to claim 59, wherein R⁴⁶ and R⁴⁷ are both hydrogen.
- 69. A compound according to claim 1, which has an IC₅₀ value of no greater than 5 μ M as determined by a Glucagon Binding Assay (I), Glucagon Binding Assay (II) or Glucagon Binding Assay (III).
- 70. A compound according to claim 69 having a glucagon antagonistic activity as determined by the Glucagon Binding Assay (I), Glucagon Binding Assay (II) or Glucagon Binding Assay (III) corresponding to an IC₅₀ value of less than $1 \mu M$.
- 71. A compound according to claim 1, which is useful for treating Type 2 diabetes.
- 87. A method for treating Type 2 diabetes, said method comprising administering to a subject in need thereof an effective amount of a pharmaceutical composition of claim 89.
 - 88. The method according to claim 87, wherein the effective amount of the compound is in the range of from about 0.05 mg to about 2000 mg.
 - 89. A pharmaceutical composition comprising, as an active ingredient, an effective amount of at least one compound of claim 1 together with one or more pharmaceutically acceptable carriers or excipients.

- 92. A method for treating hyperglycemia, said method comprising administering to a subject in need thereof an effective amount of a pharmaceutical composition of claim 89.
- 93. A compound according to claim 1, which is useful for treating hyperglycemia.
- 94. A compound according to claim 5, wherein A is

95. A compound according to claim 5, wherein A is

96. A compound according to claim 5, wherein A is

97. A compound according to claim 5, wherein A is

- 98. A compound according to claim 1, wherein R¹ is hydrogen.
- NO 99. A compound according to claim 1, wherein R^1 is methyl.

100. A compound according to claim 18, wherein X is -C(O)NH-.

- 101. A compound according to claim 18, wherein X is -C(O)NHCH(CH₃)-.
- 102. A compound according to claim 23, wherein D is

wherein R¹⁶, R¹⁷ and R¹⁸ are as defined in claim 1.

103. A compound according to claim 30, wherein R¹⁶, R¹⁷ and R¹⁸ independently are

hydrogen, halogen, -CN, -NO₂, -CF₃, OCF_3 , -SCF₃, C_{1-6} -alkyl, C_{1-6} -alkyl substituted with hydroxy, C_{1-6} -alkyl substituted with -S(O)₂R²¹, C_{1-6} -alkoxy, -S-C₁₋₆-alkyl, -C(O)OR²¹, -C(O)R²¹, -C(O)R²¹, -C(O)R²¹, -C(O)R²¹, -S(O)₂R²¹, -S(O)₂R²¹, -S(O)₂CF₃, -S(O)₂NR²¹R²², C_{3-8} -cycloalkyl- C_{1-6} -alkoxy, C_{3-8} -cycloalkylthio,

wherein R^{21} and R^{22} independently are hydrogen, C_{1-6} -alkyl, tri- C_{1-6} -alkylsilyl, C_{3-8} -cycloalkyl, C_{3-8} -cycloalkyl- C_{1-6} -alkyl, phenyl or 2,3-dihydroindolyl, or R^{21} and R^{22} together with the nitrogen atom to which they are attached form a piperidine ring,

phenoxy, phenyl, benzyl, furanyl, tetrazolyl, benzoxazolyl or oxadiazolyl, of which the ring systems optionally may be substituted with halogen, $-C(O)OR^{21}$ or C_{1-6} -alkyl, wherein R^{21} is hydrogen or C_{1-6} -alkyl, or

wherein R^{16} and R^{17} in adjacent positions form the radical -CF₂-O-CF₂-O or -O-CF₂-CF₂-O-, and R^{18} is hydrogen.

. 2.2002 3.03FH NITH EGGE VELT.

104. A compound according to claim 103, wherein R¹⁶, R¹⁷ and R¹⁸ independently are

hydrogen, halogen, -CN, -NO₂, -CF₃, -OCF₃, -SCF₃, C_{1-6} -alkyl, C_{1-6} -alkyl substituted with hydroxy, C_{1-6} -alkoxy, -S- C_{1-6} -alkyl, -C(O)OR²¹, -C(O)R²¹, -CH₂(O)R²¹, -C(O)R²¹, -

wherein R^{21} and R^{22} independently are hydrogen, C_{1-6} -alkyl, tri- C_{1-6} -alkylsilyl, phenyl or 2,3-dihydroindolyl,

phenoxy, phenyl, benzyl, furanyl, tetrazolyl, benzoxazolyl or oxadiazolyl, of which the ring systems optionally may be substituted with halogen, $-C(O)OR^{21}$ or C_{1-6} -alkyl, wherein R^{21} is hydrogen or C_{1-6} -alkyl, or

wherein R^{16} and R^{17} in adjacent positions form the radical -CF₂-O-CF₂-O- or -O-CF₂-CF₂-O-, and R^{18} is hydrogen.

- 105. A compound according to claim 104, wherein R^{16} , R^{17} and R^{18} independently are hydrogen, halogen, -CN, -NO₂, -CF₃, -OCF₃, -SCF₃, C₁₋₆-alkyl, C₁₋₆-alkoxy, -S-C₁₋₆-alkyl, -C(O)OC₁₋₆-alkyl, -S(O)₂CC₁₋₆-alkyl, -S(O)₂CF₃, -C(O)N(C₁₋₆-alkyl)(C₁₋₆-alkyl), -S(O)₂N(phenyl)(C₁₋₆-alkyl), -C(=O)C₁₋₆-alkyl, -CH₂OH, -CH₂O(tri-C₁₋₆-alkylsilyl), 2,3-dihydroindol-1-ylsulfonyl, phenoxy, phenyl, 4-chlorophenyl, 1,3,5-trimethylbenzyl, benzoxazolyl, 2-methyltetrazol-5-yl, 2-methyl-3-methoxycarbonylfuran-5-yl or 3-isopropyl-[1,2,4]oxadiazol-5-yl).
- 106. A compound according to claim 30, wherein one of \mathbb{R}^{16} to \mathbb{R}^{18} is hydrogen.
- 107. A compound according to claim 30, wherein two of R¹⁶ to R¹⁸ are hydrogen.
- 108. A compound according to claim 30, wherein R^{16} and R^{17} are both hydrogen and R^{18} is -OCF₃, -SCF₃ -CF₃, -S(O)₂CH₃, phenyl, halogen, C₁₋₆-alkyl, nitro, -S-C₁₋₆-alkyl or -S(O)₂NR²¹R²², wherein R^{21} is C_{1-6} -alkyl and R^{22} is phenyl.

109. A compound according to claim 30, wherein R¹⁶ and R¹⁷ are both hydrogen and R¹⁸

J. 60LH

is -OCF3 or halogen.

ULI. C. CUUC

- 110. A compound according to claim 30, wherein R^{16} is hydrogen and R^{17} and R^{18} are both halogen or are both $-CF_3$.
- 111. A compound according to claim 30, wherein R¹⁶ is hydrogen, R¹⁷ is -CF₃ and R¹⁸ is halogen, -CN, C₁₋₆-alkoxy or -OCF₃.
- 112. A compound according to claim 30, wherein R¹⁶ is hydrogen, R¹⁷ is -OCF₃ and R¹⁸ is -S(O)₂CH₃, -CH₂O-tri-C₁₋₆-alkylsilyl, benzoxazolyl or -CH₂OH.
- 113. A compound according to claim 30, wherein R^{16} is hydrogen, R^{17} is C_{1-6} -alkyl and R^{18} is $-S(O)_2NR^{21}R^{22}$, wherein R^{21} is C_{1-6} -alkyl and R^{22} is phenyl.
- 114. A compound according to claim 30, wherein R¹⁶, R¹⁷ and R¹⁸ are selected from hydrogen, -OCF₃, -CF₃, -Br, -F and -Cl.
- 115. A method for treating impaired glucose tolerance, said method comprising administering to a subject in need thereof an effective amount of a pharmaceutical composition of claim 89.
- 116. A compound according to claim 1, which is useful for treating impaired glucose tolerance.
- 117. A method for treating obesity, said method comprising administering to a subject in need thereof an effective amount of a pharmaceutical composition of claim 89.
- 118. A compound according to claim 1, which is useful for treating obesity.

Attorney Docket No.: 5576,200-US PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Lau et al.

Application No.: 09/572,553

Group Art Unit: 1624

Filed: May 16, 2000

Examiner: S. Patel

· Confirmation No: 5348

For: Glucagon Antagonists/Inverse Agonists

AMENDMENT UNDER 37 C.F.R. 1.312

Commissioner for Patents Arlington, VA 22202-3513 Attn: Box Issue Fee

Sir:

This Amendment is submitted in response to a May 23, 2002 Notice of Allowance and is made because each of allowed claims 23, 44, 45, 46, 49, 51, 53, 55 and 102 were in improper form as they depended both on claim 1 and on another claim.

IN THE CLAIMS:

Please amend the following claims:

23. (Twice Amended) A compound according to claim 22, wherein D is

$$R^{16}$$
 or R^{17}

44. (Amended) A compound according to claim 43, wherein E is

45. (Amended) A compound according to claim 44, wherein E is

46. (Amended) A compound according to claim 45, wherein E is

$$R^{23} \longrightarrow R^{24}$$

$$R^{25} \longrightarrow R^{27}$$

$$R^{25} \longrightarrow R$$

49. (Amended) A compound according to claim 45, wherein E is

- 51. (Amended) A compound according to claim 49, wherein R^{23} and R^{24} independently are selected from hydrogen, C_{1-6} -alkyl, C_{3-8} -cycloalkyl, C_{3-8} -cycloalkylidene, phenoxy, phenyl, $-C(O)NR^{36}R^{37}$ and -OC(O)NH-phenyl, of which the phenyl moiety optionally may be substituted with $-OCF_3$, or R^{23} and R^{24} together form the radical $-(CH_2)_1-CR^{40}R^{41}-(CH_2)_1-CR^{40}R^{41}-(CH_2)_1-CR^{40}R^{41}-(CH_2)_1-S-$.
- 53. (Amended) A compound according to claim 46, wherein E is

$$R^{25}$$
 R^{27} R^{29} R^{27} R^{25} R^{27} R^{27} R^{27} R^{27} R^{28} R^{27} R^{28} R^{29} R

- 55. (Amended) A compound according to claim 53, wherein R^{25} , R^{26} and R^{27} independently are selected from hydrogen, halogen, C_{1-6} -alkyl, C_{1-6} -alkoxy, C_{3-8} -cycloalkyl, C_{4-8} -cycloalkenyl, -CF₃, -OCF₃ or -NR⁴²R⁴³,
 - 102. (Amended) A compound according to claim 23, wherein D is