# Bilgisayar Mimarileri

Bilgisayarların Dili Komut Kümesi Mimarisi – 3

(Instruction Set Architecture (ISA))

### Okuma Listesi

#### Gerekli

- Computer Organization and Design: The Hardware Software Interface [RISC-V Edition] David A. Patterson, John L. Hennessy
  - 2. Bölüm (2.6, 2.7, 2.8, 2.10)

#### Önerilen

- Computer Organization and Design: The Hardware Software Interface [RISC-V Edition] David A. Patterson, John L. Hennessy
  - 2. ve 3. Bölümler

#### **RISC-V** operands

| Name                            | Example                                                          | Comments                                                                                                                                                                             |
|---------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32 registers                    | x0-x31                                                           | Fast locations for data. In RISC-V, data must be in registers to perform arithmetic.<br>Register x0 always equals 0.                                                                 |
| 2 <sup>61</sup> memory<br>words | Memory[0], Memory[8],,<br>Memory[18,446,744,073,709,551,<br>608] | Accessed only by data transfer instructions. RISC-V uses byte addresses, so sequential doubleword accesses differ by 8. Memory holds data structures, arrays, and spilled registers. |

| Category                                | Instruction   | Example         | Meaning      | Comments                          |
|-----------------------------------------|---------------|-----------------|--------------|-----------------------------------|
|                                         | Add           | add x5, x6, x7  | x5 = x6 + x7 | Three register operands; add      |
| Arithmetic                              | Subtract      | sub x5, x6, x7  | x5 = x6 - x7 | Three register operands; subtract |
| -11111111111111111111111111111111111111 | Add immediate | addi x5. x6. 20 | x5 = x6 + 20 | Used to add constants             |

| W 444 - V44   | SIINTFORE                  | LEADS WE WE WILL                      | U 5 - W 5 - W./                 | Three register appropriate subtract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------|----------------------------|---------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Category      | Instruction                | Example                               | Meaning                         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|               | Load doubleword            | ld x5, 40(x6)                         | x5 = Memory[x6 + 40]            | Doubleword from memory to register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|               | Store doubleword           | sd x5, 40(x6)                         | Memory[x6 + 40] = x5            | Doubleword from register to memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|               | Load word                  | 1w x5. 40(x6)                         | x5 = Memory[x6 + 40]            | Word from memory to register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|               | Load word, unsigned        | 1wu x5. 40(x6)                        | x5 = Memory[x6 + 40]            | Unsigned word from memory to register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|               | Store word                 | sw x5, 40(x6)                         | Memory[x6 + 40] = x5            | Word from register to memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|               | Load halfword              | 1h x5, 40(x6)                         | x5 = Memory[x6 + 40]            | Halfword from memory to register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Data transfer | Load halfword,<br>unsigned | 1hu x5. 40(x6)                        | x5 = Memory[x6 + 40]            | Unsigned halfword from memory to register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|               | Store halfword             | sh x5, 40(x6)                         | Memory[x6 + 40] = x5            | Halfword from register to memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|               | Load byte                  | 1b x5, 40(x6)                         | x5 = Memory[x6 + 40]            | Byte from memory to register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|               | Load byte, unsigned        | 1bu x5. 40(x6)                        | x5 = Memory[x6 + 40]            | Byte unsigned from memory to register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|               | Store byte                 | sb x5, 40(x6)                         | Memory[x6 + 40] = x5            | Byte from register to memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|               | Load reserved              | 1r.d x5, (x6)                         | x5 = Memory[x6]                 | Load; 1st half of atomic swap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|               | Store conditional          | sc.d x7, x5, (x6)                     | Memory[x6] = $x5$ ; $x7 = 0/1$  | Store; 2nd half of atomic swap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|               | Load upper immediate       | 1ui x5, 0x12345                       | x5 = 0x12345000                 | Loads 20-bit constant shifted left<br>12 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|               | 2 200                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TARREST OF CHARLES OF COLUMN TO | Change of the Control |  |

| Category | Instruction            | Example         | Meaning        | Comments                            |
|----------|------------------------|-----------------|----------------|-------------------------------------|
|          | And                    | and x5, x6, x7  | x5 = x6 & x7   | Three reg. operands; bit-by-bit AND |
|          | Inclusive or           | or x5, x6, x8   | x5 = x6   x8   | Three reg. operands; bit-by-bit OR  |
| Laginal  | Exclusive or           | xor x5. x6. x9  | $x5 = x6 ^ x9$ | Three reg. operands; bit-by-bit XOR |
| Logical  | And immediate          | andi x5, x6, 20 | x5 = x6 & 20   | Bit-by-bit AND reg, with constant   |
|          | Inclusive or immediate | ori x5, x6, 20  | x5 = x6   20   | Bit-by-bit OR reg. with constant    |
|          | Exclusive or immediate | xori x5. x6. 20 | $x5 = x6 ^ 20$ | Bit-by-bit XOR reg. with constant   |

| Category | Instruction                      | Example        | Meaning       | Comments                            |
|----------|----------------------------------|----------------|---------------|-------------------------------------|
|          | Shift left logical               | s11 x5. x6. x7 | x5 = x6 << x7 | Shift left by register              |
|          | Shift right logical              | sr1 x5, x6, x7 | x5 = x6 >> x7 | Shift right by register             |
|          | Shift right arithmetic           | sra x5, x6, x7 | x5 = x6 >> x7 | Arithmetic shift right by register  |
| Shift    | Shift left logical immediate     | s111 x5. x6. 3 | x5 = x6 << 3  | Shift left by immediate             |
|          | Shift right logical immediate    | srli x5, x6. 3 | x5 = x6 >> 3  | Shift right by immediate            |
|          | Shift right arithmetic immediate | sraf x5, x6, 3 | x5 = x6 >> 3  | Arithmetic shift right by immediate |
|          |                                  |                |               |                                     |

**x**30

### 

| Take the court of the state of | Example                                                                                                                   | Meaning                                                                                                                                                                                                                                                            | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| anch if equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | beq x5, x6, 100                                                                                                           | if (x5 == x6) go to PC+100                                                                                                                                                                                                                                         | PC-relative branch if registers equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| anch if not equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bne x5. x6. 100                                                                                                           | if (x5 != x6) go to PC+100                                                                                                                                                                                                                                         | PC-relative branch if registers not equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| anch if less than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | blt x5, x6, 100                                                                                                           | if (x5 < x6) go to PC+100                                                                                                                                                                                                                                          | PC-relative branch if registers less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| anch if greater or<br>jual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bge x5. x6. 100                                                                                                           | if (x5 >= x6) go to PC+100                                                                                                                                                                                                                                         | PC-relative branch if registers greater<br>or equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| anch if less, unsigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bltu x5, x6, 100                                                                                                          | if (x5 < x6) go to PC+100                                                                                                                                                                                                                                          | PC-relative branch if registers less, unsigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| anch if greater or<br>qual, unsigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bgeu x5, x6, 100                                                                                                          | if (x5 >= x6) go to PC+100                                                                                                                                                                                                                                         | PC-relative branch if registers greater<br>or equal, unsigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| mp and link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | jal x1, 100                                                                                                               | x1 = PC+4; go to PC+100                                                                                                                                                                                                                                            | PC-relative procedure call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mp and link register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | jalr x1, 100(x5)                                                                                                          | x1 = PC+4; go to $x5+100$                                                                                                                                                                                                                                          | Procedure return; indirect call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nch if not equal nch if less than nch if greater or ial nch if less, unsigned nch if greater or ial, unsigned np and link | nch if not equal bne x5, x6, 100 hch if less than blt x5, x6, 100 hch if greater or hall blt x5, x6, 100 hch if less, unsigned blt x5, x6, 100 hch if greater or hal, unsigned hp and link bne x5, x6, 100 hch if greater or hal, unsigned hp and link jal x1, 100 | nch if equal beq x5, x6, 100 if (x5 == x6) go to PC+100 nch if not equal bne x5, x6, 100 if (x5 != x6) go to PC+100 nch if less than blt x5, x6, 100 if (x5 < x6) go to PC+100 nch if greater or bge x5, x6, 100 if (x5 >= x6) go to PC+100 nch if less, unsigned bltu x5, x6, 100 if (x5 < x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 < x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if greater or bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 nch if gr |

# Hafıza İşlemleri

- RISC-V hafıza ve Registerlar arasında veri transferi yapan komutlar içerir.
- Bu tür komutlara Veri Aktarım Komutları (Data Transfer Instructions) denir.
- Verileri hafızadan bir registıra kopyalayan veri aktarım komutu yükleme (load) olarak adlandırılır.
- Bu komutun RISC-V adı **ld**'dir ve **load doubleword** anlamına gelir.
- g $\rightarrow$ x20 h $\rightarrow$ x21 A (Base Address)  $\rightarrow$  x22 (Base Register) 8 $\rightarrow$  offset
- $\bullet g = h + A[8]$
- ld x9, 8(x22)// önce A[8]'i bir registıra transfer etmeliyiz
- add x20, x21, x9
- sd x20, 0(x23)

# Sabit veya Anında İşlenenler (Constant or İmmediate Operands)

- Çoğu zaman bir program bir işlemde bir sabit kullanır; örneğin, bir dizideki bir sonraki öğeyi işaret edecek şekilde bir dizini artırmak.
- Bir sabit değerli hızlı toplama komutuna **add immediate** veya **addi** denir. x22 yazmacına 4 eklemek için sadece şunu yazarız.
- addi x22, x22, 4 // x22 = x22 + 4
- Aynı komutla bir değişkene değer de atanabilir. X0 içinde her zaman 0 değeri vardır.
- addi x22, x0, 4 // x22 = 4

### Tüm RISC-V Komut Tipleri

RISC -V mimarisinde toplamda 6 adet komut türü vardır.



Komut türlerde aynı işlevlerin aynı sıraya koyulduğu görülüyor.

Bunun amacı -ileride de bahsedileceği gibi- daha sade devre tasarımıdır.

### MIPS Komut Tipleri Karşılaştırması

MIPS'de 3 tip komut vardır: R - I ve J



### RISC-V R-tipi Komut Kodlaması

| fonk7 | kr2   | kr1   | fonk3 | hr    | işkodu |
|-------|-------|-------|-------|-------|--------|
| 7 bit | 5 bit | 5 bit | 3 bit | 5 bit | 7 bit  |

#### RISC-V Komut Alanları

İşkodu(OpCode): (İşlem Kodu) İşlemi ve komutun formatını belirten alan.

hr: Hedef registırın adresini tutan alandır.

fonk3: (İşlev Kodu) İşkoduna ek olarak fazladan işkodu alanı.

kr1: Birinci kaynak registerın adresini tutan alandır.

kr2: İkinci kaynak registerin adresini tutan alandır.

fonk7: Fazladan işkodu alanı.

| Ingilizce: funct7 rs2 rs1 funct3 rd opcode | İngilizce: | funct7 | rs2 | rs1 | funct3 | rd | opcode |
|--------------------------------------------|------------|--------|-----|-----|--------|----|--------|
|--------------------------------------------|------------|--------|-----|-----|--------|----|--------|

### RISC-V R-tipi Komut Kodlaması

| fonk7 | kr2   | kr1   | fonk3 | hr    | işkodu |
|-------|-------|-------|-------|-------|--------|
| 7 bit | 5 bit | 5 bit | 3 bit | 5 bit | 7 bit  |

Farklı aritmetik buyrukların **işkodu alanı aynı fonk3 ve fonk7 alanları** farklıdır:

| Komut | Format | fonk7   | kr2      | kr1      | fonk3 | hr       | işkodu  |
|-------|--------|---------|----------|----------|-------|----------|---------|
| topla | R-tipi | 000000  | register | Register | 000   | register | 0110011 |
| çıkar | R-tipi | 0100000 | register | register | 000   | register | 0110011 |

### RISC-V R-tipi Komut Kodlaması

Bu kodlama her komut için uygun mu?

LD komutunu nasıl kodlayabiliriz?

**a=b+c** Gibi bir işlem için kulllanılır

| fonk7 | anlık | kr1   | fonk3 | hr    | işkodu |
|-------|-------|-------|-------|-------|--------|
| 7 bit | 5 bit | 5 bit | 3 bit | 5 bit | 7 bit  |

ld x1, 17(x2) 
$$//x1 = bellek[x2+17]$$
  
ld x1, 743(x2)  $//x1 = bellek[x2+743]$ 

5-bit alan büyük anlık değerleri kodlamak için yeterli değil.

• Buyruk boyutlarının **sabit kalması** için **farklı komut tiplerine** ihtiyacımız var.

İyi tasarım bedel ödeme gerektirir.

### RISC-V I-tipi Komut Kodlaması

Şu ana kadar gördüğümüz RISC-V kodlaması **R-tipi** (*register*) komutlar içindi.

I-tipi (immediate). Anlık değer, kaynak ve hedef register.

• Anlıkla topla (addi) ve yükle (1d) buyrukları.

| anlık                                                       | kr1   | fonk3 | hr    | işkodu |  |  |  |  |
|-------------------------------------------------------------|-------|-------|-------|--------|--|--|--|--|
| 12 bit                                                      | 5 bit | 3 bit | 5 bit | 7 bit  |  |  |  |  |
| 12-bit 2'ye tümleyen değeri.  • Negatif ve pozitif sayılar. |       |       |       |        |  |  |  |  |

a=b+5 a=b[5]

Gibi bir işlemler için kulllanılır

### RISC-V S-tipi Komut Kodlaması

Kaydet (sd) komutu için de yeni bir kodlamaya ihtiyacımız var.

• İki kaynak registerı, bir anlık değer.

#### **S-tipi** komut formatı:

| anlık [11:5] | kr2   | kr1   | fonk3 | anlık [4:0] | işkodu |
|--------------|-------|-------|-------|-------------|--------|
| 7 bit        | 5 bit | 5 bit | 3 bit | 5 bit       | 7 bit  |

Kaynak registerlarının tüm formatlarda aynı yerde bulunması için S-tipi komutlarda anlık iki parçaya ayrılmıştır.

• Basit donanım.

### RISC-V Komut Kodlaması

Her komut yapısı özel bir işkodu değerine sahiptir.

Donanım işkodu değerine bakarak komut formatını anlayabilir.

Şu ana kadar gördüğümüz komutların formatları ve komut alanları:

| Komut            | Format | fonk7      | kr2 | kr1 | fonk3 | hr    | işkodu  |
|------------------|--------|------------|-----|-----|-------|-------|---------|
| topla            | R-tipi | 0000000    | Reg | Reg | 000   | Reg   | 0110011 |
| çıkar            | R-tipi | 0100000    | Reg | Reg | 000   | Reg   | 0110011 |
| Komut            | Format | Anlık      |     | kr1 | fonk3 | hr    | işkodu  |
| anlıkla<br>topla | I-tipi | sabit değe | er  | Reg | 000   | Reg   | 0010011 |
| yükle            | I-tipi | sabit değe | er  | Reg | 011   | Reg   | 0000011 |
| Komut            | Format | anlık      | kr2 | kr1 | fonk3 | anlık | işkodu  |
| kaydet           | S-tipi | adres      | Reg | Reg | 011   | adres | 0100011 |

### C Kodundan RISC-V Makine Koduna

A[30] = h + A[30] + 1;

| Komut | Format | fonk7   | kr2 | kr1 | fonk3 | hr  | işkodu  |
|-------|--------|---------|-----|-----|-------|-----|---------|
| topla | R-tipi | 0000000 | Reg | Reg | 000   | Reg | 0110011 |
| çıkar | R-tipi | 0100000 | Reg | Reg | 000   | Reg | 0110011 |

| Komut   | Format | Anlık       | kr1 | fonk3 | hr  | işkodu  |
|---------|--------|-------------|-----|-------|-----|---------|
| a-topla | I-tipi | sabit değer | Reg | 000   | Reg | 0010011 |
| yükle   | I-tipi | sabit değer | Reg | 011   | Reg | 0000011 |

| Komut  | Format | anlık | kr2 | kr1 | fonk3 | anlık | işkodu  |
|--------|--------|-------|-----|-----|-------|-------|---------|
| kaydet | S-tipi | adres | Reg | Reg | 011   | adres | 0100011 |

Derleyici Değişken Eşleştirmesi

A'nın başlangıç adresi → x10 h → x21

### C Kodundan RISC-V Makine Koduna

$$A[30] = h + A[30] + 1;$$

#### Derleyici Değişken Eşleştirmesi

A'nın başlangıç adresi → x10

$$h \rightarrow x21$$

| ld   | x9, | 240(x10) |
|------|-----|----------|
| add  | x9, | x21, x9  |
| addi | x9, | x9, 1    |
| sd   | x9, | 240(x10) |

| (1) a                        | nlık    |     |       | hr             |        |
|------------------------------|---------|-----|-------|----------------|--------|
| (R) fonk7<br>(S) anlık[11:5] | (R) kr2 | kr1 | fonk3 | (S) anlık[4:0] | işkodu |
| <b>2</b> 4                   | 10      | 10  | 3     | 9              | 3      |
| 0                            | 9       | 21  | 0     | 9              | 51     |
| 1                            | [       | 9   | 0     | 9              | 19     |
| 7                            | 9       | 10  | 3     | 16             | 35     |

| 000011  | 110000 | 01010 | 011 | 01001 | 0000011 |
|---------|--------|-------|-----|-------|---------|
| 0000000 | 01001  | 10101 | 000 | 01001 | 0110011 |
| 000000  | 000001 | 01001 | 000 | 01001 | 0010011 |
| 0000111 | 01001  | 01010 | 011 | 10000 | 0100011 |



# Mantıksal İşlem Buyrukları

| Mantıksal İşlemler            | C/Java Dili Karşılığı | RISC-V buyrukları |
|-------------------------------|-----------------------|-------------------|
| Sola kaydır                   | <<                    | sll, slli         |
| Sağa kaydır                   | >>                    | srl, srli         |
| Aritmetik sağa kaydır         | >>                    | sra, srai         |
| VE (bit düzeyinde)            | &                     | and, andi         |
| VEYA (bit düzeyinde)          | 1                     | or, ori           |
| DIŞLAYAN VEYA (bit düzeyinde) | ^                     | xor, xori         |
| DEĞİL (bit düzeyinde)         | ~                     | xori              |

 $\mathbf{DE\check{G}IL}$  işlemini gerçekleştirmenin bir yolu her biti 1 olan bir sayı (FFFF FFFF FFFF FFFF $_{\mathrm{hex}}$ ) ile  $\mathbf{DI\$LAYAN}$   $\mathbf{VEYA}$  işlemi yapılmasıdır.

### Dallanma Komutları





Koşullu Dallanma

### Dallanma Komutları



### Koşullu Dallanma Komutları



#### Döngü:

```
for (int i = 0; i < 20; i++) {
...
}
for (int i = 30; i >= 20; i--) {
...
}
```

eşit veya büyükse atla
bge rs1, rs2, L1
blt rs1, rs2, L2
küçükse atla

### Koşulsuz Atlama

jal x1, A Adresi

**Atla ve kaydet** (*jump and link*) **komutu, A adresine** atlar ve dönüş adresini **x1**'e kaydeder.

jalr x0, 0(x1)

Registıra atla ve kaydet (*jump and link register*) komutu, x1 Registırındaki adrese atlar ve dönüş adresini x0'a kaydeder.



### Koşulsuz Atlama

jal x1, A Adresi

**Atla ve kaydet** (*jump and link*) **buyruğu, A adresine** atlar ve dönüş adresini **x1**'e kaydeder.

jalr x0, 0(x1)

Yazmaca atla ve kaydet (jump and link register) buyruğu, x1 yazmacındaki adrese atlar ve dönüş adresini x0'a kaydeder.



### if-then-else Koşullu Dallanma Yapısının

### Derlenmesi

```
if (i == j) {
    f = g + h;
}else{
    f = g -h;
}
```

```
bne x22, x23, else // i=j ise else'git
add x19, x20, x21 // f = g + h
beq x0, x0, exit // if 0=0 ise exit'e git
else:
sub x19, x20, x21 // f = g -h
exit:
```



### Döngüler: While.

```
while (dizi[i] == k)
    i += 1;
```

```
k \rightarrow x24 dizi \rightarrow x25 (Base)
```

 $i \rightarrow x22$ 

- İlk adım dizi[i]'yi geçici bir registıra yüklemektir.
  - Ve dizi[i]'yi geçici bir registıra yükleyebilmemiz için önce dizi'nin base adresini bilmemiz gerekir.
- Adresi oluşturmak için i'yi dizi kaydının tabanına eklemeden önce, bayt adresleme sorunu nedeniyle i indeksini 8 ile çarpmamız gerekir.

```
Loop: slli x10, x22, 3 // Geçici register x10 = i * 8
```

- Döngünün sonunda bu komuta geri dönebilmemiz için ona «loop» gibi bir etiket eklememiz gerekir.
- dizi[i] adresini almak için x10'u ve dizi[] tabanını x25'e kaydetmemiz gerekir:

```
add x10, x10, x25 // x10 = dizi[i]'nin adresi
```

• Artık bu adresi dizi[i]'yi geçici bir registıra yüklemek için kullanabiliriz:

```
ld x9, 0(x10) // Geçici reg x9 = dizi[i]
```

• Bir sonraki komut döngü sorgusunu gerçekleştirir ve dizi[i] ≠ k ise exit etiketine atlar:

```
bne x9, x24, exit // eğer dizi[i] \neq k ise exit etiketine git
```

### Döngüler: While

Aşağıdaki komut i'ye 1 ekler:

```
addi x22, x22, 1 // i = i + 1
```

• Döngünün sonu, döngünün tepesindeki **while** sorgusuna (loop etiketine) geri döner. Hemen arkasına **exit** etiketini ekliyoruz.

```
beq x0, x0, Loop // loop etiketine atla exit:
```

• Tüm While döngüsü

# Fonksiyonlar (-ing. Functions)

Kodu kolayca **tekrar kullanabilmek** ve kod yazarken **tek bir hedefe** odaklanmak için programcılar **fonksiyon** adı verilen yapılardan faydalanırlar.

- x10-x17 arasındaki yazmaçlar fonksiyonlara parametre olarak verilen değerleri ve işlemlerin döndüğü değerleri (Return Values) barındırır.
- x1 fonksiyonunun döneceği adresi barındırır.

# Program Yığını (Program Stack)

Çağrılan fonksiyon x8 ve x9 registirlarını kullanırsa (üzerine yazarsa) ne olur?

Program yanlış çalışır.

- →Fonksiyonlara ait veri program yığınında (-ing. stack) saklanır.
  - →Yığıt: Öğelerden son gelenin ilk işlem görecek biçimde üst üste yığıldığı varsayılan veri yapısı.
  - →Kodun belleğe saçılması fonksiyona ait yerel değişkenlerin program yığınına yazılması ile gerçekleşir.

# Program Yığını

Yığın bellekte tutulur. Yığının bellekteki adresi **yığın işaretçisi** (-ing. stack pointer) ile belirtilir.

→RISC-V'de yığın işaretçisi **x2 yazmacında** tutulur.

Push: Yığının en üstüne veri eklemek.

Pop: Yığından en üstteki veriyi çıkarmak.

- →Yığın "yukarıdan aşağıya" doğru genişler.
  - → Push: Yığın işaretçisini **azaltır**.
  - → Pop: Yığın işaretçisini **artırır**.

RISC-V'de **push** ve **pop** komutkları yoktur.

→ Kaydet ve yükle komutkları kullanılır.

### Program Yığını

```
sp \rightarrow x2
```

```
Çağıran fonksiyonun
                                                                            register değerlerini
                                            addi sp, sp, -16
                                                                            yığına kaydet.
                                                 x8, 8(sp)
int çağrılan_fonk(int x)
                                            sd
                                                 x9, 0(sp)
                                            sd
 int a = 5;
                                                                        // int a = 5
 int b = 8;
                                            addi x8, x0, #5
                                                                        // int b = 8
                                            addi x9, x0, #8
 return a + b + x;
                                                 x8, 8(sp)
                                                                            Çağıran fonksiyonun
                                                 x9, 0(sp)
                                            ld
                                                                            register değerlerini
                                            addi sp, sp, 16
                                                                            yığından geri yükle.
                                            add x9, x8, x9
                                                                        // x9 = a + b
```

add x10, x10, x9

// x10 = x + x9 = x + a + b

### Program Yığını

```
addi sp, sp, -16
sd x8, 8(sp)
sd x9, 0(sp)
```

addi x8, x0, #5 addi x9, x0, #8

ld x8, 8(sp) ld x9, 0(sp) addi sp, sp, 16

add x9, x8, x9 add x10, x10, x9



### RISC-V Adresleme Kipleri

Anlık adresleme (Immediate addressing)



→ İşlenen komutun içinde.



### RISC-V Adresleme Kipleri



→ İşlenen bellekte, bir registıra anlık değerin **eklenmesi** ile adresleniyor.

### RISC-V Adresleme Kipleri

Göreceli Adresleme (PC-relative addressing) Bellek anlık [11:5] anlık [4:0] işkodu iş3 ky1 ky2 Program Sayacı Register Öbeği

→ Dallanma adresi program sayacı ve anlık değerin toplamı olarak hesaplanır.

### Özet

- Bilgisayarların Dili: Komut Kümesi Mimarisi
- Von Neumann ve Harvard Mimarileri
- RISC ve CISC Mimariler
- Sabit ve Değişken Boyutlu Komutlar
- RISC-V İşlemleri
  - Aritmetik İşlemler
  - Bellek İşlemleri
- RISC-V İşlenenleri
  - RISC-V Registırları
  - Anlık Değerler
- RISC-V Bellek Adreslemesi
  - Bayt adresleme
  - Adres hizalaması
- RISC-V Komutları
  - RISC-V Komut Kodlaması
  - RISC-V Komut Formatları

- RISC-V Dallanma Komutları
- RISC-V Mantıksal İşlem Komutları
- İşlevler ve Program Yığıtı
- RISC-V Adresleme Kipleri