PSC 202 SYRACUSE UNIVERSITY

INTRODUCTION TO POLITICAL ANALYSIS

HYPOTHESIS TESTING WHEN USING SAMPLES, PART 2

LAST TIME

Biden Approval Ratings Diverge by Gender, Education, Race

Job Approval Ratings of President Biden, by Subg	group		
	Approve	Disapprove	N
	%	%	
All U.S. adults	56	39	2,937
Gender			
Men	49	45	1,643
Women	62	34	1,294

PROBLEM

- We have a random sample
 - Men: 49% approval
 - Women: 62% approval
- Want to know: is mean approval rating of men and women in the population the same or not?

ERRORS

ERRORS

TYPE I ERROR

- We conclude there is a relationship between X and Y when in reality there is not
 - "Type I error"
 - We falsely reject H₀
 - Example: There is no difference between men and women in approval rating in the population, but we conclude there is

ERRORS

TYPE II ERROR

- We conclude there is no relationship between X and Y when in reality there is
 - "Type II error"
 - We falsely do not reject H₀
 - Example: There is a difference between men and women in approval rating in the population, but we conclude there is none

ERRORS

- It's really bad if we conclude there is a relationship when in reality there is not (Type I error)
 - Type II error is also not great, but not as bad
- We privilege H₀

- By default: We start out with assumption that there is no relationship in population (so H_0 is true)
 - No difference between men and women in Biden approval in population

- Ask: Is there enough evidence in the sample to reject H₀?
 - Is the observed difference between men and women in sample large enough to reject null hypothesis that no difference between them in population?

Job Approval Ratings of President Biden, by Subgr	roup		
	Approve	Disapprove	N
	%	%	
All U.S. adults	56	39	2,937
Gender			
Men	49	45	1,643
Women	62	34	1,294

 The larger the difference in approval ratings between men and women in our samples, the less likely it is that the mean in the population is the same

P-VALUE

- Q: When do we decide that we have "enough" evidence?
- A: When the chance of falsely rejecting H_0 is 5% or less
 - Equivalent: Change of Type I error less than 5%
 - Probability of falsely rejecting H₀ is called the "p-value"

IDEA

- We start out thinking H₀ is true
 - No difference between men and women in population
- We have a sample that shows some difference
 - Do we reject H₀?
- Ask: If H_0 is true, what is the probability (p) of observing a difference at least as large as we did in our sample?

SIGNIFICANCE

- If less than 5% (p<0.05): we reject H_0
 - "Statistically significant difference between men and women in support for Biden"
- If more than 5% (p>0.05): we don't reject H_0
 - "Difference between men and women in support for Biden is not statistically significant"

REJECTING HO

- So: High bar before we reject H₀ that X has no effect on Y
 - We are conservative and need a lot of evidence before we are willing to reject H₀

REJECTING HO

• longform.org/posts/longform-podcast-315-elizabeth-kolbert

NOW

- How exactly do we do this hypothesis testing?
 - How do we compute a p-value, etc.?

IN OUR CASE

Job Approval Ratings of President Biden, by Subg	roup		
	Approve	Disapprove	N
	%	%	
All U.S. adults	56	39	2,937
Gender			
Men	49	45	1,643
Women	62	34	1,294

- H_0 : No difference between men and women in population
- The survey does find a difference of 13 percentage points

IN OUR CASE

Job Approval Ratings of President Biden, by Subgroup			
	Approve	Disapprove	N
	%	%	
All U.S. adults	56	39	2,937
Gender			
Men	49	45	1,643
Women	62	34	1,294

- Question: What is the probability of getting sample means that are at least 13 points different, if in the population there actually is no difference between men and women?
 - Equivalent: If we reject H₀ based on this survey, what is probability of committing Type I error?

TEST STATISTIC

Test statistic t:

$$t = \frac{H_A - H_0}{\text{Standard Error of Difference}}$$

- H_A : observed difference between samples (here: 0.13)
- H_0 : difference between samples if H_0 is true (0.00)
- Standard Error of Difference between the two samples (here 0.018)

TEST STATISTIC

• H_A: 0.13

• H₀: 0

Standard Error of Difference: 0.018

$$t = \frac{H_A - H_0}{\text{Standard Error of Difference}}$$

$$t = \frac{0.13 - 0.00}{0.018} = 7.22$$

This is called the "t-statistic" or "t-ratio"

NORMAL DISTRIBUTION

- Remember: 95% between scores between -1.96 and 1.96
- 5% of scores outside of those scores
- T-statistic is (basically) normally distributed

- We reject H_0 (no difference between men and women) if t-value is such that it is unlikely that we commit a Type I error
 - 5% chance that we falsely reject H₀

• We reject H₀ if t<-1.96 or t>1.96

• t-score: 7.22

Job Approval Ratings of President Biden, by Subgr	oup		
	Approve	Disapprove	N
	%	%	
All U.S. adults	56	39	2,937
Gender			
Men	49	45	1,643
Women	62	34	1,294

 If there is no difference between men and women in population, chance that we find 13 percentage points difference in sample is less than 5 percent

Job Approval Ratings of President Biden, by Subgr	oup		
	Approve	Disapprove	N
	%	%	
All U.S. adults	56	39	2,937
Gender			
Men	49	45	1,643
Women	62	34	1,294

- So we reject the null hypothesis that there is no difference between men and women in approval of J. Biden
- In favor of the alternative hypothesis that he has higher support among women

ANOTHER EXAMPLE

- Survey: ANES 2016
- DV: Opinion about Obamacare
 - 1=favor a great deal, 7=oppose a great deal
 - mean=4.09
 - n=1,606

OBAMACARE

Partisanship	Mean Evaluation	Frequency
Dem	2.92	924
Rep	5.69	682
Total	4.09	1606

• Difference: 5.69-2.92=2.77

HYPOTHESIS TEST

- Assuming H₀ is true
 - No difference between R and D
- What is the probability that we observe a difference of 2.77 between R and D (in a random sample of 1,606)?

TEST STATISTIC

Test statistic t:

$$t = \frac{H_A - H_0}{\text{Standard Error of Difference}}$$

- H_A: 2.77 (observed difference)
- H₀: 0 (difference if H₀ is true)
- Standard Error of Difference: 0.098

TEST STATISTIC

• H_A: 2.77

• H₀: 0

Standard Error of Difference: 0.098

$$t = \frac{H_A - H_0}{\text{Standard Error of Difference}}$$

$$t = \frac{2.77 - 0.00}{0.098} = 28.26$$

- We reject H₀ if t<-1.96 or t>1.96
- This is equivalent to p<0.05

• t-score: 28.26

- With n=1,606, a mean difference of 2.77 (SE 0.098) produces a t-statistic of 28.26
- We reject H_0 if t < -1.96 or t > 1.96
 - It is extremely extremely unlikely to find such a large difference in a sample if there is no difference in the population
- So in this case, we reject null hypothesis that there is no difference between R and D in evaluation of Obamacare

EXAMPLE

 On a typical day, how many hours do you spend studying/ revising/preparing for your classes, not counting time in class itself?

GENDER AND STUDYING

Gender	Mean Hours	Frequency	Standard Error
Female	3.66	54	0.24
Male	3.05	27	0.30
Difference	0.61	81	0.39

Do men really study less than women?

TEST STATISTIC

• H_A: 0.61

• H₀: 0

• Standard Error of Difference: 0.39

TEST STATISTIC

H_A: 0.61

• H₀: 0

Standard Error of Difference: 0.39

$$t = \frac{H_A - H_0}{\text{Standard Error}}$$

$$=\frac{0.61-0.0}{0.39}$$

$$= 1.56$$

- We reject H₀ if t<-1.96 or t>1.96
- This is equivalent to p<0.05

• t-score: 1.56

- We cannot reject H₀
- Chance to get a difference of 0.61 hours (or larger) in sample of 81 students if there is no difference between men and women in population of students is larger than 5%