物理数学

Anko

2023年7月16日

1 特殊関数

定義.

複素平面上で $\operatorname{Re} z > 1$ を満たす領域内にある閉曲線 C 上の点 z に対して次の関数は一様収束し正則な関数となる.

$$\Gamma(z) := \int_0^\infty e^{-t} t^{z-1} \, \mathrm{d}t \tag{1}$$

命題 1.

$$\Gamma(z+1) = z\Gamma(z) \tag{2}$$

$$\Gamma(1) = 1 \tag{3}$$

$$\Gamma(n+1) = n! \tag{4}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \tag{5}$$

命題 2 (スターリングの公式 (Stirling's formula)).

$$\Gamma(x+1) = \sqrt{2\pi x}e^{-x}x^x \qquad (x \gg 1)$$
(6)

 \Diamond

 \Diamond

命題 3.

ガウスの公式 (Gauss's formula)

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$
(7)

(8)

 \Diamond

命題 4.

ワイエルシュトラスの公式 (Weierstrass' formula) γ はオイラーの定数 (Euler's constant) とする.

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-z/n} \tag{9}$$

$$\gamma := \lim_{n \to \infty} \left(\sum_{m=1}^{n} \frac{1}{m} - \log n \right) = 0.577216 \cdots$$
(10)

 \Diamond

定義.

ベータ関数 (Beta function)

$$B(z,\zeta) := \int_0^1 t^{z-1} (1-t)^{\zeta-1} dt$$
 (11)

命題 5.

 $B(z,\zeta) = B(\zeta,z) \tag{12}$

$$B(z,\zeta) = 2\int_0^{\pi/2} \sin^{2z-1}\theta \cos^{2\zeta-1}\theta \,\mathrm{d}\theta \tag{13}$$

$$B(z,\zeta) = \int_0^\infty \frac{u^{z-1}}{(1+u)^{z+\zeta}} d\theta$$
 (14)

$$B(z,\zeta) = \frac{\Gamma(z)\Gamma(\zeta)}{\Gamma(z+\zeta)} \tag{15}$$

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z} \tag{16}$$

\rightarrow

定義 (ルジャンドル微分方程式).

$$(1 - x^2)y'' - 2xy' + \lambda y = 0 (17)$$

$$y = \sum_{j=0}^{\infty} a_j x^j \tag{18}$$

定義 (ルジャンドルの陪微分方程式).

ルジャンドルの陪微分方程式

$$(1-x^2)y'' - 2xy' + \left(n(n+1) - \frac{m^2}{1-x^2}\right)y = 0$$
 (19)

これを満たす独立な 2 つの解 $P_n^m(x)$ と $Q_n^m(x)$ を第一種および第二種ルジャンドル陪関数はルジャンドル関数で表される。

定義.

ベッセルの微分方程式 (Bessel's equation)

$$x^{2}y'' + xy' + (x^{2} - \nu^{2})y = 0$$
(20)

定義.

ベッセルの微分方程式 (Bessel's equation)

$$x^{2}y'' + xy' + (x^{2} - \nu^{2})y = 0$$
(21)

定義.

ラゲール多項式

$$\frac{e^{-xz/(1-z)}}{1-z} = \sum_{n=0}^{\infty} L_n(x) \frac{z^n}{n!}$$
 (22)

命題 6.

$$L_n(x) = e^x \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^n e^{-x})$$
 (23)

$$L_n(x) = \sum_{l=0}^n \frac{(-1)^l (n!)^2}{(l!)^2 (n-l)!} x^l$$
(24)

$$L_{n+1}(x) = (2n+1-x)L_n(x) - n^2L_{n-1}(x)$$
(25)

$$xL'_n(x) = nL_n(x) - n^2L_{n-1}(x)$$
(26)

$$L_n(0) = n! (27)$$

 \Diamond

定義.

次の級数展開の右辺に現れる $H_n(x)$ をエルミート多項式 (Hermite polynomials) という.

$$e^{-t^2 + 2tx} = \sum_{n=0}^{\infty} \frac{1}{n!} H_n(x) t^n$$
 (28)

また, 左辺の関数はエルミート多項式の母関数 (generating function) という.

命題 7.

$$H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \tag{29}$$

定義.

超幾何関数

$$x(1-x)y'' + [c - (a+b+1)x]y' - aby = 0$$
(30)

命題 8.

$$e^x = \lim_{b \to \infty} {}_2F_1\left(1, b, 1; \frac{x}{b}\right) \tag{31}$$

$$\log(1+x) = x \cdot {}_{2}F_{1}(1,1,2;-x) \tag{32}$$

 \Diamond

1.1 境界值問題

定義.

ラプラス方程式 (Laplace equation)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{33}$$

ポアソン方程式 (Poisson equation)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\rho(x, y) \tag{34}$$

波動方程式 (wave equation)

$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \tag{35}$$

熱伝導方程式 (heat conduction equation)

 κ を熱伝導率 (thermal conductivity)

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} + q(x) \tag{36}$$

命題 9.

ラプラス方程式を満たし

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{37}$$

次の境界条件を満たす関数 u(x,y) を求める。

$$u(0,y) = 0, u(a,y) = 0, u(x,0) = f(x), u(x,b) = 0$$
(38)

 \Diamond

証明

これは変数分離法が使えないと思う。

$$u(x,y) = X(x)Y(y) \tag{39}$$

ラプラス方程式

$$X''(x)Y(y) + X(x)Y''(y) = 0 (40)$$

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} \tag{41}$$

$$X''(x) = -\lambda^2 X(x) \tag{42}$$

$$Y''(y) = \lambda^2 Y(y) \tag{43}$$

$$X(x) = \sin\left(\frac{n\pi x}{a}\right) \tag{44}$$

$$\lambda = \frac{n\pi}{a} \tag{45}$$

 \Diamond

$$f(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{a}\right) \sinh\left(\frac{n\pi b}{a}\right)$$
 (46)

定理 10 (ガウス積分).

$$\int_0^\infty e^{-\alpha x^2} \, \mathrm{d}x = \frac{1}{2} \sqrt{\frac{\pi}{a}} \tag{47}$$

$$\int_0^\infty x^{2n} e^{-x^2/a^2} \, \mathrm{d}x = \sqrt{\pi} (2n-1)!! \frac{a^{2n+1}}{2^{n+1}}$$
 (48)

$$\int_0^\infty x^{2n+1} e^{-x^2/a^2} \, \mathrm{d}x = \frac{n!}{2} a^{2n+2} \tag{49}$$

$$\int_{-\infty}^{\infty} e^{-k^2/4} e^{ikx} \, \mathrm{d}k = 2\sqrt{\pi} e^{-x^2} \tag{50}$$

証明

まず積分値を I とおく。

$$I := \int_{-\infty}^{\infty} e^{-\alpha x^2} \, \mathrm{d}x \tag{51}$$

ここで I^2 を変数変換して計算する。

$$I^{2} = \left(\int_{-\infty}^{\infty} e^{-\alpha x^{2}} dx \right) \left(\int_{0}^{\infty} e^{-\alpha x^{2}} dx \right)$$
 (52)

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\alpha(x^2 + y^2)} \, \mathrm{d}x \, \mathrm{d}y \tag{53}$$

$$= \int_0^\infty \int_0^{2\pi} e^{-\alpha r^2} r \,\mathrm{d}\theta \,\mathrm{d}r \tag{54}$$

$$=2\pi \left[-\frac{e^{-\alpha r^2}}{2\alpha} \right]_0^\infty = \frac{\pi}{a} \tag{55}$$

よって

$$I = \sqrt{\frac{\pi}{a}} \tag{56}$$

また

$$\int_0^\infty x^{2n} e^{-\alpha x^2} dx = (-1)^n \int_0^\infty \frac{\partial^n}{\partial \alpha^n} e^{-\alpha x^2} dx$$
 (57)

$$= (-1)^n \frac{\partial^n}{\partial \alpha^n} \int_0^\infty e^{-\alpha x^2} \, \mathrm{d}x \tag{58}$$

$$= (-1)^n \frac{\partial^n}{\partial \alpha^n} \left(\frac{1}{2} \sqrt{\frac{\pi}{\alpha}} \right) \tag{59}$$

$$=\sqrt{\pi} \frac{(2n-1)!!}{2^{n+1}} \alpha^{-(2n+1)/2} \tag{60}$$

$$\int_0^\infty x^{2n+1} e^{-\alpha x^2} dx = (-1)^n \int_0^\infty \frac{\partial^n}{\partial \alpha^n} x e^{-\alpha x^2} dx$$
 (61)

$$= (-1)^n \frac{\partial^n}{\partial \alpha^n} \int_0^\infty x e^{-\alpha x^2} \, \mathrm{d}x$$
 (62)

$$= (-1)^n \frac{\partial^n}{\partial \alpha^n} \frac{1}{2\alpha} \tag{63}$$

$$=\frac{n!}{2}\alpha^{-(n+1)}\tag{64}$$