Functional Analysis

陈辉

Contents

1	Met	tric Spaces	2
	1.1	Metric Space	4
		Further Examples of Metric Spaces	
	1.3	Open Set, Closed Set, Neighborhood	6

1 Metric Spaces

1.1 Metric Space

- (P18) **Definition 1.1.1 (Metric space,metric)** A metric space is a pair (X, d) where X is a set and $d: X \times X \to R$
 - 1. d is real-valued, finite and nonnegative.
 - 2. d(x, y) = 0 iff x=y.
 - 3. d(x,y) = d(y,x)
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (Triangle inequality).

Examples

Example 1.1.6 (Sequence space l^{∞})

- $x = (\xi_i)$
- $|\xi_j| \leq c_x$, where c_x is a real number may depend on x, but not on j.
- $d(x,y) = \sup_{j \in N} |\xi_j \eta_j|$

Example 1.1.7 (Function space C[a,b]) X is the set of all real-valued functions defined on closed interval J = [a, b] and

$$d(x,y) = \max_{t \in J} |x(t) - y(t)|,$$

1.2 Further Examples of Metric Spaces

(P24)

Example 1.2.1 (Sequence space s) In contrast with l^{∞}

1.3 Open Set, Closed Set, Neighborhood

Definition 1.3.1 (Open Set) Given a point $x_0 \in X$ and a real number $r \geq$.