1 Grundlegende Datenstrukturen

1.1 Stacks

Abstrakter Datentyp Stack

- new S() Erzeugt neuen (leeren) Stack
- s.isEmpty() Gibt an, ob Stack s leer ist
 - s.pop() Gibt oberstes Element vom Stack s zurück und löscht es vom Stack
 - Gibt Fehlermeldung aus, falls der Stack leer ist
 - s.push(k) Schreibt k als neues oberstes Element auf Stack s

Abstrakter Aufbau LIFO-Prinzip - Last in, First out

Abbildung 1: Abstrakter Aufbau eines Stacks

Beispiel Bitcoin

$$\label{eq:control_control} \begin{split} & \text{scriptPubKey:} \\ & \text{OP_DUP OP_HASH160 56fa64a8bd7852d2c58095fa9a2fcd52d2c580b65d35549d} \\ & \text{OP_EQUALVERIFY OP_CHECKSIG} \end{split}$$

1

Stacks als Array

```
S 12 47 17 98 72 8
```

Abbildung 2: Beispiel: Stack als Array

s.top zeigt immer auf oberstes Element

pop() führt dazu, dass s.Top sich eins nach links bewegt

push(k) führt dazu, dass s.Top sich eins nach rechts bewegt

Stacks als Array - Methoden, falls maximale Größe bekannt

```
isEmpty(S)
new(S)
S.A[]=ALLOCATE(MAX);
                                              IF S.top<0 THEN
                                                return true;
S.top=-1;
                                              ELSE
                                                return false;
pop(S)
                                              push(S)
                                              IF S.top==MAX-1 THEN
IF isEmpty(S) THEN
                                                error "overflow";
  error "underflow";
                                              ELSE
ELSE
                                                S.top=S.top+1;
  s.top=s.top-1;
                                                S.A[S.top]=k;
  return S.A[S.top+1];
```

Stacks mit variabler Größe - Einfach

- Falls push(k) bei vollem Array ⇒ VergöSSerung des Arrays
- \bullet Erzeugen eines neuen Arrays mit Länge + 1 und Umkopieren aller Elemente
- Durchschnittlich $\Omega(n)$ Kopierschritte pro **push**-Befehl

Stacks mit variabler Größe - Verbesserung

```
Idee - Stacks mit Variabler Größe
Wenn Grenze erreicht, Verdopplung des Speichers und Kopieren der Elemente
Falls weniger als ein Viertel belegt, schrumpfe das Array wieder
```

Methoden: $\mathsf{RESIZE}(\mathsf{A},\mathsf{m})$ reserviert neuen Speicher der Größe m und kopiert A um

```
new(S)
                                             isEmpty(S)
                                             IF S.top<0 THEN
S.A[]=ALLOCATE(1);
S.top=-1;
                                                  return true;
                                             ELSE
S.memsize=1;
                                                  return false;
pop(S)
                                             push(S)
                                             S.top=S.top+1;
IF isEmpty(S) THEN
                                             S.A[S.top]=k;
    error "underflow";
                                             IF S.top+1>=S.memsize THEN
ELSE
                                                 S.memsize=2*S.memsize;
    S.top=S.top-1;
                                                 RESIZE(S.A, S.memsize);
    IF 4*(S.top+1)==S.memsize THEN
        S.mensize=s.memsize/2;
        RESIZE(S.A,S.memsize);
    return S.A[S.top+1];
```

Im Durchschnitt für jeder der mindestens n Befehle $\Theta(1)$ Umkopierschritte

1.2 Verkettete Listen

Aufbau

(doppelt) verkettete Liste 12 17 47 72 98 5 head Jedes Element x besteht aus: zeigt auf key - Wert erstes Element prev - Zeiger auf Vorgänger (bzw. nil) (bzw. ist nil für next - Zeiger auf Nachfolger (bzw. nil) leere Liste)

Abbildung 3: Aufbau Verkettete Liste

Verkettete Listen durch Arrays

Entspricht doppelter Verkettung zwischen 45 und 12

Abbildung 4: Beispiel Verkettete Liste durch Arrays

1.2.1 Elementare Operationen auf Listen

Suche nach Element

```
search(L,k) // Returns pointer to k in L (or nil)

current = L.head;
WHILE current != nil AND current.key != k D0
current = current.next;
return current;
```

Laufzeit beträgt im Worst Case $\Theta(n) \Rightarrow$ Keine Überprüfung, ob Wert bereits in Liste, sonst $\Theta(n)$

Abbildung 5: Grafische Darstellung einer Suche in Listen

Einfügen eines Elements am Kopf der Liste

Löschen eines Elements aus Liste

```
insert(L,x)

insert(L,x)

insert(L,x)

x.next = l.head;
x.prev = nil;
IF L.head != nil THEN
L.head.prev = x;
L.head = x;

delete(L,x)

IF x.prev != nil THEN
x.prev.next = x.next
L.head = x.next;
IF L.head = x.next;
IF x.next != nil THEN
x.next.prev = x.prev;
```

Laufzeit beträgt $\Theta(1)$, da Einfügen am Kopf

Laufzeit beträgt $\Theta(1)$, da hier Pointer auf Objekt gegeben Löschen eines Wertes k mithilfe von Suche beträgt $\Omega(n)$

Vereinfachung per Wächter/Sentinels

Ziel ist die Eliminierung der Spezialfälle für Listenanfang/-ende

Abbildung 6: Beispiel Sentinel

Löschen mit Sentinels:

```
deleteSent(L,x)

1    x.prev.next = x.next;
2    x.next.prev = x.prev;
```

1.3 Queues

Abstrakter Datentyp Queue

- new Q() Erzeuge neue (leere) Queue
- q.dequeue() Gibt vorderstes Element aus q zurück und löscht es auf Queue
 - Fehlermeldung, falls Queue leer ist
- q.enqueue(k) Schreibt k als neues hinterstes Element auf q
 - Fehlermeldung, falls Queue voll ist

Abstrakter Aufbau

FIFO-Prinzip / First in, First out

Abbildung 7: Beispiel FIFO

Queues als (virtuelles) zyklisches Array

Bekannt: Maximale Elemente gleichzeitig in Queue

Abbildung 8: Beispiel Queue als Zyklisches Array

Problem, falls Q.rear und Q.front auf selbes Element zeigen

- Speichere Information, ob Schlange leer oder voll, in boolean empty
- Alternativ: Reserviere ein Element des Arrays als Abstandshalter

Methoden für zyklisches Array:

```
new(Q)
                                            isEmpty(Q)
                                             return Q.empty;
Q.A[]=ALLOCATE(MAX);
Q.front=0;
Q.rear=0;
Q.empty=true;
dequeue(Q)
                                            enqueue(Q,k)
                                            IF Q.rear==Q.front AND !Q.isEmpty
IF isEmpty(Q) THEN
                                            THEN error "overflow";
    error "underflow";
ELSE
                                            ELSE
    Q.front=Q.front+1 mod MAX;
                                                 Q.A[Q.rear]=k;
    IF Q.front==Q.rear THEN
                                                 Q.rear=Q.rear+1 mod MAX;
        Q.empty=true;
                                                 Q.empty=false;
    return Q.A[Q.front-1 mod MAX];
```

Queues durch einfach verkettete Listen

(einfach) verkettete Liste

Abbildung 9: Beispiel Queue durch einfach verkettete Liste

Methoden:

```
new(Q)
                                                    isEmpty(Q)
   Q.front=nil;
                                                     IF Q.front==nil THEN
   Q.rear=nil;
                                                         return true;
                                                     ELSE
                                                         return false;
   dequeue(Q)
                                                     enqueue(Q,k)
   IF isEmpty(Q) THEN
    error "underflow";
                                                     IF isEmpty(Q) THEN
                                                         Q.front=x;
   ELSE
                                                     ELSE
4
5
        x=Q.front;
                                                         Q.rear.next=x;
        Q.front=Q.front.next;
                                                     x.next=nil;
        return x;
                                                     Q.rear=x;
```

Laufzeit:

- Enqueue: $\Theta(1)$
- Dequeue: $\Theta(1)$

1.4 Binäre Bäume

Bäume durch verkettete Listen

Baum-Bedingung: Baum ist leer oder...
es gibt einen Knoten r ("Wurzel"), so dass jeder Knoten v von der Wurzel aus
per eindeutiger Sequenz von child-Zeigern erreichbar ist:
v = r.child[i1].child[i2].....child[im]

Abbildung 10: Binärbaum-Beispiel

Bäume sind "azyklisch" (also "keine Schleifen zwischen Knoten")

Darstellung als (ungerichteter) Graph

Allgemeine Begrifflichkeiten

Höhe des Baumes/ tree height = maximale Tiefe eines Knoten

- Blatt: Knoten ohne Nachfolger
- Nachkomme von x: Erreichbar durch Pfad ausgehend von x

Begrifflichkeiten Binärbaum

- Jeder Knoten hat maximal zwei Kinder left=child[0] und right=child[1]
- Ausgangsgrad jedes Knoten ist ≤ 2
- Höhe leerer Baum per Konvention −1
- Hohe (nicht-leerer) Baum: $\max\{\text{H\"{o}he aller Teilb\"{a}ume der Wurzel}\} \,+\, 1$
- Halbblatt: Knoten mit nur einem Kind

Traversieren von Bäumen

- Darstellung eines Baumes mithilfe einer Liste der Werte aller Knoten
- Laufzeit bei n Knoten: T(n) = O(n)
- Nutzung der Preorder für das Kopieren von Bäumen
 - 1. Preorder betrachtet Knoten und legt Kopie an
 - 2. Preorder geht dann in Teilbäume und kopiert diese
- Nutzung der Postorder für das Löschen von Bäumen
 - 1. Postorder geht zuerst in Teilbäume und löscht diese
 - 2. Betrachten des Knoten erst danach und dann Löschung dieses

inorder (T.root) ergibt 9 17 23 23 24 25 preorder (T.root) ergibt 17 9 23 24 25 23 postorder (T.root) ergibt 23 17 25 24 23

Code:

```
inorder(x)
                                      preorder(x)
                                                                        postorder(x)
   IF x != nil THEN
                                      IF x != nil THEN
                                                                        IF x != nil THEN
                                                                            postorder(x.left);
2
        inorder(x.left);
                                          print x.key;
                                          preorder(x.left);
                                                                            postorder(x.right);
        print x.key;
        inorder(x.right);
                                          preorder(x.right);
                                                                            print x.key;
```

Eindeutige Bestimmbarkeit von Bäumen

- Nur In-, Pre-, Postorder reichen nicht zur eindeutigen Bestimmbarkeit von Bäumen
 - ⇒ Preorder/Postorder + Inorder + eindeutige Werte sind notwendig

Bilde Teilbäume rekursiv

(2) Identifiziert Werte im linken und rechten Teilbaum

1.4.1 Abstrakter Datentyp Baum

Abstrakter Aufbau:

new T() • Erzeugt neuen Baum namens t

t.search(k) • Gibt Element x in Baum t mit x.key == k zurück

t.insert(k) • Fügt Element x in Baum t hinzu

t.delete(x) • Löscht x aus Baum t

Suche nach Elementen Starte mit search(T.root, k) Code:

```
search(x,k)

IF x == nil THEN return nil;
IF x.key == k THEN return x;
y = search(x.left,k);
IF y != nil THEN return y;
return search(x.right,k);
```

Laufzeit = $\Theta(n)$ (Jeder Knoten maximal einmal, jeder Knoten im schlechtesten Fall)

Einfügen von Elementen

Hier wird als Wurzel eingefügt (Achtung: Erzeugt linkslastigen Baum) Code:

```
insert(T,x) // x.parent == x.left == x.right == nil;

IF T.root != nil THEN
    T.root.parent = x;
    x.left = T.root;
    T.root = x;
```

 $Laufzeit = \Theta(1)$

Löschen von Elementen

Hier: Ersetze \boldsymbol{x} durch Halbblatt ganz rechts

Abbildung 11: Löschen des Knoten 17

Connect-Algorithmus:

```
connect(T,y,w) // Connects w to y.parent

v = y.parent;
IF y != T.root THEN

IF y == v.right THEN

v.right = w;

ELSE

v.left = w;

ELSE

T.root = w;

IF w != nil THEN

w.parent = v;
```

Laufzeit = $\Theta(1)$

Abbildung 12: Beispiel Connect-Algorithmus Binärbaum

Delete-Algorithmus:

Laufzeit = $\Theta(h)$ (Höhe des Baumes, h = n möglich)

Abbildung 13: Beispiel Delete-Algorithmus Binärbaum

1.5 Binäre Suchbäume

```
Definition — Binärer Suchbaum

Totale Ordnung auf den Werten

Für alle Knoten z gilt:

Wenn x Knoten im linken Teilbaum von z, dann x.key \leq z.key

Wenn y Knoten im rechten Teilbaum von z, dann y.key \geq z.key

Preorder/Postorder + eindeutige Werte \Rightarrow Eindeutige Identifizierung
```

Suchen im Binären Suchbaum

Code:

```
search(x,k) // 1. Aufruf: x = root

IF x == nil OR x.key == k THEN
    return x;

IF x.key > k THEN
    return search(x.left,k);

ELSE
    return search(x.right,k);
```

Iterativer Code:

Laufzeit (beide) = O(h) (Höhe)

Abbildung 14: Beispiel Search-Algorithmus im Binärbaum

Einfügen im Binary Search Tree

Aufwendiger, da Ordnung erhalten werden muss Code:

```
insert (T,z) // z.left == z.right == nil;
   x = T.root;
2
3
4
5
6
7
8
   px = nil;
   WHILE x != nil DO
     px = x;
     IF x.key > z.key THEN
          x = x.left;
     ELSE
          x = x.right;
   z.parent = px;
   IF px == nil THEN
     T.root = z;
   ELSE
     IF px.key > z.key THEN
          px.left = z;
     ELSE
          px.right = z;
```

Laufzeit = O(h)

Abbildung 15: Beispiel einfügen in Binären Suchbaum

Löschen im BST

wir Unterscheiden drei verschiedene Fälle:

Löschen im BST (I) zu löschender Knoten z hat maximal ein Kind

Löschen im BST (II) rechtes Kind von Knoten z hat kein linkes Kind

Löschen im BST (III) "kleinster" Nachfahre vom rechten Kind von z

Code:

```
delete(T,z)
   IF z.left == nil THEN
2
3
4
5
6
7
8
9
        transplant(T, z, z.left)
   ELSE
        IF z.right == nil THEN
            transplant(T, z, z, left)
        ELSE
            y = z.right;
            WHILE y.left != nil DO y = y.left;
            IF y.parent != z THEN
                 transplant(T,y,y.right)
                 y.right = z.right;
                 y.right.parent = y;
            transplant(T,z,y)
            y.left = z.left;
            y.left.parent = y;
```

Laufzeit = O(h)

Laufzeit ist damit besser, wenn viele Suchoperationen und h klein relativ zu n

Höhe eines BST

Best Case

- Vollständiger Baum (Alle Blätter gleiche Tiefe)
- $h = O(log_2 n)$
- Laufzeit = $O(log_2n)$

Worst Case

- Degenerierter Baum (links- bzw. rechtslastiger Baum)
- h = n 1
- Laufzeit = $\Theta(n)$

Durchschnittliche Höhe

• Erwartete Höhe: $\Theta(log_2n)$

Suchbäume als Suchindex

- Knoten speichert nur Primärschlüssel und Zeiger auf Daten
- Zusätzliche Indizes möglich, kosten aber Speicherplatz

Abbildung 16: Suchbäume als Suchindex