16. In un recipiente alla temperatura di 295 K è presente una miscela di N_2O_4 e NO_2 alle pressioni rispettivamente di 2,4 atm e 1,2 atm.

$$N_2O_{4(g)} \rightleftharpoons 2 NO_{2(g)}$$

La K_p della reazione è uguale a 0,98 atm. Stabilire se NO_2 tende ad aumentare o a diminuire la propria pressione.

17. Una miscela di reazione contiene 0,3 moli di SO₂, 0,16 moli di Cl₂ e 0,5 moli di SO₂Cl₂ in un contenitore di 2 L:

$$SO_2Cl_{2(g)} \rightleftharpoons SO_{2(g)} + Cl_{2(g)}$$

In che direzione si sposta il sistema per raggiungere l'equilibrio se la K_c della reazione è uguale a 0,011.

18. Una miscela di reazione contiene 0,12 moli, di PCl₅, 0,9 moli di PCl₃ e 0,45 moli di Cl₂ in un contenitore di 5 L:

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

In che direzione si sposta il sistema per raggiungere l'equilibrio se la K_c della reazione è uguale a 0,56.

Concentrazione all'equilibrio di una specie chimica ▶ p. 365

19. Calcolare la concentrazione di SO₃ nella reazione di di ossidazione del diossido di zolfo:

$$2 SO_{2(g)} + O_{2(g)} \longrightarrow 2 SO_{3(g)}$$

sapendo che all'equilibrio le concentrazioni di SO_2 e O_2 sono uguali a 0,05 mol/L e la K_c è uguale a 85 $(\text{mol/L})^{-1}$.

20. Calcolare la concentrazione di PCl₃ e di Cl₂ nella reazione di analisi del pentacloruro di fosforo:

$$PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$$

sapendo che all'equilibrio la concentrazione di PCl_5 è uguale a 0,015 mol/L e che la K_c è uguale a 0,041 mol/L.

21. Calcolare la concentrazione di HI e I₂ nella reazione di analisi dello ioduro di idrogeno:

$$2 HI_{(g)} \longrightarrow H_{2(g)} + I_{2(g)}$$

sapendo che all'equilibrio la concentrazione di H_2 è uguale a 0,5 mol/L e che la K_c è uguale a 0,02.

22. Calcolare la concentrazione di HF e di F₂ nella reazione di analisi del fluoruro di idrogeno:

$$2 HF_{(g)} \longrightarrow H_{2(g)} + F_{2(g)}$$

sapendo che all'equilibrio la concentrazione di H_2 è uguale a 0,5 mol/L e che la K_c è uguale a 0,02.

23. Calcolare la concentrazione di HI nella reazione di analisi dello ioduro di idrogeno:

$$2 HI_{(g)} \longrightarrow H_{2(g)} + I_{2(g)}$$

- sapendo che all'equilibrio le concentrazioni di H_2 e I_2 sono uguali a $2 \cdot 10^{-4}$ mol/L e che la K_c è uguale a $1.4 \cdot 10^{-2}$.
- **24.** Calcolare la concentrazione di PCl₅ nella reazione di analisi del pentacloruro di fosforo:

$$PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$$

sapendo che in un recipiente di 2 L a 700 K sono presenti all'equilibrio $0.1 \text{ mol di PCl}_3 e 0.2 \text{ mol di Cl}_2 e la costante <math>K_c$ è uguale a 10 mol/L.

Tabelle dell'equilibrio

p. 366

25. In un recipiente da 1 L s'introducono 0,5 moli di N₂O₄. In seguito alla reazione:

$$N_2O_{4(g)} \rightleftharpoons 2 NO_{2(g)}$$

all'equilibrio sono presenti 0,427 moli di N_2O_4 . Calcolare il valore di K_c .

26. In un recipiente di 1 L s'introducono 0,075 moli di CO_2 e 0,044 moli di H_2 . Dopo aver portato il sistema alla temperatura di 1525 K si ha la reazione:

$$CO_{2(g)} + H_{2(g)} \xrightarrow{\longleftarrow} CO_{(g)} + H_2O_{(g)}$$

Sapendo che all'equilibrio sono presenti 0,045 moli di CO_2 , calcolare il valore di K_c .

27. In un recipiente da 1 L s'introducono 1 mole di N_2 e 3 moli di H_2 e si porta la temperatura a 100°C. In seguito alla reazione:

$$N_{2(g)} + 3 H_{2(g)} \longleftrightarrow 2 NH_{3(g)}$$

all'equilibrio sono presenti 0,96 moli di NH₃. Calcolare il valore di K_c e di K_p .

28. In un recipiente di 1 L s'introducono 92 g di NO₂. In seguito alla reazione:

$$2 \text{ NO}_{2(g)} \longrightarrow N_2 O_{4(g)}$$

all'equilibrio sono presenti 0,5 moli di N_2O_4 . Calcolare il valore di K_c .

29. In un recipiente di 10 L s'introducono 30,45 g di HI che ad una data temperatura si decompone secondo la reazione:

$$2 HI_{(g)} \longrightarrow H_{2(g)} + I_{2(g)}$$

Sapendo che all'equilibrio sono presenti 0,0275 moli di I_2 , calcolare il valore di K_c .

30. In un recipiente da 5 L a 400 °C s'introduce una mole di NH₃. Quando la reazione:

$$2 \text{ NH}_{3(g)} \longleftrightarrow N_{2(g)} + 3 \text{ H}_{2(g)}$$

ha raggiunto l'equilibrio sono presenti 0,086 moli di N_2 . Calcolare il valore di K_c e K_p .

31. In un recipiente da 5 L alla temperatura di 2000 °C viene introdotta 1 mole di N_2 e 1 mole di O_2 . Quanti moli di NO saranno presenti all'equilibrio sapendo che il valore di K_c è uguale a 0,10.

40. Stabilire come si modifica l'equilibrio della

$$CO_{2(g)} + H_{2(g)} \longrightarrow CO_{(g)} + H_2O_{(g)}$$
per le seguenti variazioni di concentrazione:

a) sottrazione di idrogeno

- b) aggiunta di monossido di carbonio
- c) aggiunta di biossido di carbonio
- pressione, nelle seguenti reazioni che hanno 41. Stabilire quale effetto esercita un aumento

raggiunto l'equilibrio:

- a) $2 H_{2(g)} + 2 MO_{(g)} \longrightarrow 2 MO_{(g)} + 2 H_2O_{(g)}$
- raggiunto l'equilibrio: temperatura sulle seguenti reazioni che harma 42. Determinare quale effetto ha un aumerra

 $M_{2(g)} = H\Delta_{2(g)} = H\Delta_{2(g)} + A\Delta_{2(g)} = A\Delta_{2$

- P = -276 Mb) 4 HBr(g) + $O_{2(g)} \longleftrightarrow 2 H_2O_{(g)} + 2 Br_{2g}$
- nella reazione: peratura sulla concentrazione dell'idrogene 43. Stabilire quale effetto avrà un aumento 🗅 💳

che ha raggiunto l'equilibrio. $CO^{(8)} + H^5O^{(8)} \longrightarrow CO^{5(8)} + H^{5(8)}$ ($\nabla H = -4$

peratura sulla concentrazione dell'ossigent dd. Stabilire quale effetto avrà un aumento di 💳

nella reazione:

che ha raggiunto l'equilibrio. $O6^{\circ} \angle 6 = H\nabla$) (8)S \longleftrightarrow (9)T O + (8)T OS \top

pressione di 20 atm: ge l'equilibrio alla temperatura di 25°C e 45. La reazione di sintesi dell'ammoniaca raggi

ne di NH3: Stabilire quale effetto avrà sulla concentrazzo $M^{5(8)} + 3 H^{5(8)} \longrightarrow NH^{3(8)}$

on sumento di temperatura a 300°C (n

Sono della reazione b) un aumento di pressione a 50 atm /211/1022/1/2/1/201/1/201/

> $H^{\Sigma(g)} + I^{\Sigma(g)} \longleftrightarrow \Sigma HI^{(g)}$ 32. Nella reazione reversibile:

HI sono presenti all'equilibrio. îl valore di $K_{\mbox{\tiny c}}$ è 50, calcolare quanti grammi di entrambi di 1 mol/L. Sapendo che all'equilibrio le concentrazioni iniziali di H_2 e I_2 sono

 $N^{5(g)} + O^{5(g)} \longrightarrow V O^{(g)}$ 33. A 2000 K la K_c della reazione:

lare i grammi di NO all'equilibrio. piente di 3 L14,01g di N_2 e 16 g di O2. Calcoè uguale a 2,05 • 10 $^{-4}$. Introducendo in un reci-

- ti 0,5 moli di SO $_3$. Calcolare il valore di $K_{\!\scriptscriptstyle c}$ e K $_{\!\scriptscriptstyle p}$. temperatura di 1000 K, all'equilibrio sono presendi SO_2 e 1 mole di O_2 Portando il sistema alla 34. In un recipiente di 5 L vengono introdotti I mole
- 35. Nella reazione di sintesi dello ioduro di idrogeno:

moli di H₂, 1 mole di I₂ e 1 mole di HI. do si introducono in un recipiente di 1 L 0,5 ni delle tre specie chimiche all'equilibrio quanall'equilibrio è 68,4. Calcolare le concentrazioalla temperatura di 360 °C il valore di K_c $H^{\Sigma(g)} + I^{\Sigma(g)} \longrightarrow \Sigma HI^{(g)}$

 $H^{\Sigma(g)} + I^{\Sigma(g)} \longleftrightarrow \Sigma H^{(g)}$ 36. Nella reazione di sintesi dello ioduro di idrogeno:

moli di H₂, 1,779 moli di I
2 e 1,589 moli di HI. si introducono in un recipiente di 1 L 0,779 delle tre specie chimiche all'equilibrio quando all'equilibrio è 50. Calcolare le concentrazioni alla temperatura di 448°C il valore di K_c

 $N^{5(g)} + O^{5(g)} \longrightarrow 2 NO^{(g)}$ 37. Nella reazione di sintesi del monossido di azoto:

concentrazione molare dei tre gas all'equilibrio? cono 0,025 moli di N_2 e 0,025 moli di O $_2$, qual è la librio è 0,012. Se in un recipiente da 10 Lsintrodualla temperatura di 2800 °C il valore di K_c all'equi-

4075 Il litelite le di 3 L vengono introdotti

40. Stabilire come si modifica l'equilibrio della rea-

$$CO_{\Sigma(g)} + H_{\Sigma(g)} \longleftrightarrow CO_{(g)} + H_2O_{(g)}$$

per le seguenti variazioni di concentrazione:

a) sottrazione di idrogeno

raggiunto l'equilibrio;

- b) aggiunta di monossido di carbonio
- c) aggiunta di biossido di carbonio

raggiunto l'equilibrio: pressione, nelle seguenti reazioni che hanno 41. Stabilire quale effetto esercita un aumento di

a) 2
$$M_{2(g)} + 2 M_{2(g)} + 2 M_{2(g)} + 2 M_{2(g)} + 2 M_{2(g)}$$

temperatura sulle seguenti reazioni che hanno d2. Determinare quale effetto ha un aumento di

a)
$$N_{2(g)} + O_{2(g)} \Longrightarrow 2 NO_{(g)} (\Delta H = 181 \text{ kJ/mol})$$

b) $4 \text{ HBr}_{(g)} + O_{2(g)} \Longrightarrow 2 NO_{(g)} (\Delta H = 181 \text{ kJ/mol})$

b) 4 HBr_(g) +
$$O_{2(g)} \rightleftharpoons 2 H_2O_{(g)} + 2 Br_{2(g)}$$

nella reazione: peratura sulla concentrazione dell'idrogeno 43. Stabilire quale effetto avrà un aumento di tem-

$$CO_{(g)} + H_2O_{(g)} \longrightarrow CO_{2(g)} + H_{2(g)}$$
 ($\Delta H = -41,84$ KJ) che ha raggiunto l'equilibrio.

nella reazione: peratura sulla concentrazione dell'ossigeno ملم. Stabilire quale effetto avrà un aumento di tem-

$$2 SO_{2(g)} + O_{2(g)} \Longrightarrow SO_{3(g)} \qquad (\triangle H = 97,90 \text{ kJ})$$

che ha raggiunto l'equilibrio.

pressione di 20 atm: ge l'equilibrio alla temperatura di 25°C e alla 45. La reazione di sintesi dell'ammoniaca raggiun-

$$N_{2(g)}+3$$
 $H_{2(g)} \longrightarrow NH_{3(g)}$ ($\Delta H=-92,46$ kJ) re di MH_3 :

a) un aumento di temperatura a 300 $^{\circ}$ C (man-

nendo costante la temperatura) b) un aumento di pressione a 50 atm (mantetenendo costante la pressione)

46. Stabilire quali effetti determinano sull'equili-

brio della reazione: 2
$$NO_{(g)} + H_{\Sigma(g)} \rightleftarrows N_2 O_{(g)} + H_2 O_{(g)} + H_2 O_{(g)}$$
 ($\triangle H = -364$ KJ) le seguenti azioni:

a) un aumento di temperatura

- b) un aumento di pressione
- d) l'aggiunta di un catalizzatore c) la sottrazione di moli di N_2O
- 47. Stabilire quali effetti determinano sull'equili-

brio della reazione:

 $CH^{\dagger(\hat{\epsilon})} + 5 H^5 2^{(\hat{\epsilon})} \longleftrightarrow C2^{5(\hat{\epsilon})} + 4 H^{5(\hat{\epsilon})} \quad (\nabla H > 0)$

 $H^{\Sigma(g)} + I^{\Sigma(g)} \longrightarrow \Sigma HI^{(g)}$ 32. Nella reazione reversibile:

HI sono presenti all'equilibrio. il valore di $K_{\mbox{\tiny c}}$ è 50, calcolare quanti grammi di entrambi di 1 mol/L. Sapendo che all'equilibrio le concentrazioni iniziali di H2 e I2 sono

 $N_{2(g)} + O_{2(g)} + O_{2(g)}$ 33. A 2000 K la K. della reazione:

lare i grammi di NO all'equilibrio. piente di 3 L 14,01 g di N2 e 16 g di O2. Calcoè uguale a 2,05 • 10-4. Introducendo in un reci-

ti 0,5 moli di SO3. Calcolare il valore di $K_{\!\scriptscriptstyle c}$ e $K_{\!\scriptscriptstyle p}$. temperatura di 1000 K, all'equilibrio sono presendi $\mathrm{SO}_{\scriptscriptstyle 2}$ e I mole di $\mathrm{O}_{\scriptscriptstyle 2}$ Portando il sistema alla 34. In un recipiente di 5 L vengono introdotti 1 mole

35. Nella reazione di sintesi dello ioduro di idrogeno:

moli di H₂, 1 mole di I₂ e 1 mole di HI. do si introducono in un recipiente di 1 L 0,5 ni delle tre specie chimiche all'equilibrio quanall'equilibrio è 68,4. Calcolare le concentrazioalla temperatura di 360 °C il valore di $K_{\!\scriptscriptstyle c}$ $H_{\Sigma(g)} + I_{\Sigma(g)} \longrightarrow 2 HI_{(g)}$

 $H^{\Sigma(g)} + I^{\Sigma(g)} \longrightarrow \Sigma HI^{(g)}$ 36. Nella reazione di sintesi dello ioduro di idrogeno:

moli di H_2 , 1,779 moli di I_2 e 1,589 moli di HI. si introducono in un recipiente di 1 L 0,779 delle tre specie chimiche all'equilibrio quando all'equilibrio è 50. Calcolare le concentrazioni alla temperatura di 448°C il valore di K_c

37. Nella reazione di sintesi del monossido di azoto:

concentrazione molare dei tre gas all'equilibrio? cono 0,025 moli di N_2 e 0,025 moli di O $_2$ o qual è la librio è 0,012. Se in un recipiente da 10 Lsintrodualla temperatura di 2800 °C il valore di $K_{\!\scriptscriptstyle c}$ all'equi- $N_{2(g)} + O_{2(g)} \longrightarrow 2 NO_{(g)}$

tura di 26°C, nel sistema si raggiunge l'equilibrio: 4,075 · 10-1 moli di $N_2 O_4$ · Quando, alla tempera-38. In un recipiente di 5 L vengono introdotti

pressione totale all'equilibrio. il valore di K_p è uguale a 0,172 atm. Calcolare la $N^{5}O^{\dagger(g)}$ \longrightarrow $N^{5}O^{\dagger(g)}$

89E .q < Il principio di Le Chatelier

39. Stabilire come si modifica l'equilibrio della rea-

$$H^{5(8)} + CI^{5(8)} \longleftrightarrow 5 HCI^{(8)}$$

per le seguenti variazioni di concentrazione:

- a) sottrazione di idrogeno
- b) aggiunta di acido cloridrico
- c) aggiunta di cloro