Ch.8: Subtractive Color Mixing. Ch.9: Color-Generating Mechanisms

- 1. Filters. Subtractive Primary Colors.
- 2. Pigments.
- 3. Structural Color.
- 4. Color in Gemstones.

1. Filters

Play the Interactive app:

http://www.physicsclassroom.com/Physics-Interactives/Light-and-Color/Color-Filters/Color-Filters-Interactive

Do q's 1 and 2 in WS 6

Fig. 8.1 A neutral density filter with T=0.6

Filters absorb part of the incident spectrum and transmit another part.

Fig.8.2 What is the color of the incident and transmitted light?

Transmittance curves of real filters – each of Cyan, Magenta, Yellow subtract the additive primary colors R, G, B:

Q: Which ones are complementary colors?

<u>Each filter subtracts</u> (absorbs) its complementary color. C,M,Y are subtractive primary colors.

Subtractively (filters): Red + Green = Black Additively (projectors): Red + Green = Yellow

Copyright @ 2011 by Elsevier Inc. All rights reserved.

Combining filters: the incident intensity is multiplied by the filter transmittance

	T _{yellow}	T_{cyan}	$T_y xT_c$
В	0	1	0
B G	1	1	1
R	1	0	0

What colors are these filters?

2. Pigments – the color depends on their reflectance and on the incident spectrum

Dependence on incident light:

Mixing paints:

reflectance curves for yellow, blue and yellow+blue acrylic paint

The idealized steep curves will tell B + Y = Black

The real reflectance curves are less steep, so the result is dark green.

8

Why do tree leafs change color in the fall?

Fig.9-1a

This is one of the topics to explore in Lab Journal 3.

Copyright © 2008 by Elsevier Inc. All rights reserved.

Fig.9-1b

Pigments (cont.)

Watch the video and answer the questions:

- What happens to sunlight illuminating the surface of an orange? A green leaf?
- Do pigments (paints) emit different colors of light? How do you explain their colors?

Dependence on reflectance: https://www.youtube.com/watch?v=yLshU-FokYl

Animal pigments:

- Melanin (black, gray, beige, or brown)
- Carotenoids (yellow, orange, pink, or red)

Plant pigments:

- Chlorophylls (green)
- Carotenoids (yellow, orange, pink, or red)
- Tannin (black or brown)
- Anthocyanins (red or bluish-purple)

Files are licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

3. Structural Color

Why is blue such a rare color in nature? https://www.youtube.com/watch?v=3g246 c6Bv58

Copyrgi © 2001 by Disease true. In sight measured.

Fig.9.2. There is no blue color in this butterfly – it is generated by iridescence. The color of beetle shells is similarly generated.

Copyright © 2008 by Elsevier Inc. All rights reserved.

Pits in CDs also produce structural color

Examples of interference of light

in thin films

Interference in soap bubbles.

<u>Public domain image by Brocken Inaglory</u>. This file is licensed under the <u>Creative Commons Attribution-Share Alike 3.0 Unported license</u>.

Figs. 9.3 - 9.5

Interference in air gaps between two lenses. In the public domain by user <u>Ulfbastel</u>

Example of soap bubbles changing thickness:

https://www.youtube.com/watch?v=4I34jA1fDp4

4. Colors of Gemstones

Fig.9.10 Different crystals with Cr impurities

Ruby: Al₂O₃ with Cr

Saphire: Al₂O₃ with Fe, Mg, Ti,

or other inclusions, causing various colors

Fig. 9.11 Same crystal (beryl) with different impurities

Copyright © 2008 by Elsevier Inc. All rights reserv