GIẢI TÍCH I BÀI 12 CHƯƠNG III. HÀM SỐ NHIỀU BIẾN §1. CÁC KHÁI NIÊM CƠ BẢN

- Đặt vấn đề
- I. Các khái niệm cơ bản

Định nghĩa

 $\mathbb{R}^n = \{(x_1, x_2, ..., x_n)\}, x_i \in \mathbb{R}\}, x = (x_1, x_2, ..., x_n)$ gọi là điểm hay vector.

Phép toán: $x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$

 $\alpha x = (\alpha x_1, \ \alpha x_2, \ ..., \ \alpha x_n), \ \alpha \in \ \mathbb{R}$

Khoảng cách: $\rho(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$.

Định nghĩa

 $M_0 \in \mathbb{R}^n$, lân cận của M_0 là $S_r(M_0) = \{M \in \mathbb{R}^n : \rho(M, M_0) < r, 0 < r \in \mathbb{R}\}$.

Định nghĩa

 $A \subset \mathbb{R}^n$, $M \in \mathbb{R}^n$ là điểm trong của $A \Leftrightarrow \exists S_i(M) \subset A$

M là điểm biên của $A \Leftrightarrow S_r \cap A \neq \emptyset$, $S_r \cap CA \neq \emptyset$, $\forall S_r(M)$

Định nghĩa

 $A \subset \mathbb{R}^n$ là mở $\Leftrightarrow A$ chứa mọi điểm trong của nó (Khi đó kí hiệu là A°)

A đóng \Leftrightarrow A chứa các điểm biên của nó (Khi đó kí hiệu là \overline{A})

A là bị chặn (giới nội) $\Leftrightarrow \exists S_r(M) \supset A$

A là compact \Leftrightarrow A đóng và giới nội

A là liên thông $\Leftrightarrow \forall x, y \in A$ có thể nối với nhau bằng một đường cong liên tục $\subset A$

 $A \subset \mathbb{R}^n$ là miền $\Leftrightarrow A$ mở và liên thông

 $A \subset \mathbb{R}^n$ là miền đóng $\Leftrightarrow A$ là liên thông và đóng

Miền D là đơn liên $\Leftrightarrow D$ giới hạn bởi một mặt kín

Miền D là đa liên $\Leftrightarrow D$ giới hạn bởi nhiều mặt kín rời nhau từng đôi

II. Hàm nhiều biến

1. Định nghĩa. Ánh xạ $f: D \subset \mathbb{R}^2 \to \mathbb{R}$: được gọi là hàm hai biến số

Ánh xạ $f: D \subset \mathbb{R}^3 \to \mathbb{R}$: được gọi là hàm ba biến số

Khi đó D được gọi là TXĐ của hàm số, tập giá trị = $\{f(M), M \in D\}$

Ví du 1

a)
$$z = \sqrt{1 - x^2 - y^2}$$

b)
$$z = -\sqrt{1 - \frac{x^2}{4} - \frac{y^2}{9}}$$

c)
$$u = x \ln (1 - x^2 - y^2 - z^2)$$

d)
$$z^2 = 1 - x^2 - y^2$$

e)
$$z = \sqrt{1 - x^2 - y^2}$$

$$\sum_{x=-\sqrt{200}} (x^2 + y^2 - a^2) (4a^2 - x^2 - y^2)$$

$$f) z = \sqrt{\cos(x^2 + y^2)}$$

g) $u = \arcsin x + \arcsin y + \arcsin z$

Ý nghĩa hình học: Vận dụng vào bản đồ trắc địa, nhờ sử dụng đường mức: f(x, y) = c

Bản đồ địa hình quả đồi

Đồ thị hàm số z = xy

Việc vẽ đồ thị của hàm hai biến số có sự khác biệt đột phá so với hàm một biến số (đã được nghiên cứu tỉ mỉ trong chương I). Khi n = 2 có thể vẽ đồ thị kết hợp với sử dụng đường mức hoặc sử dụng các phần mềm đã có để nhận được đồ thị một cách trực tiếp. Khi $n \ge 3$, chỉ có thể mô tả đồ thị hàm số này thông qua các mặt mức trong không gian 3 chiều.

2. Giới hạn của hàm nhiều biến

Ví du 2

a)
$$\lim_{y\to 0} \left(\lim_{x\to 0} \frac{xy}{x^2 + y^2} \right)$$

a)
$$\lim_{y \to 0} \left(\lim_{x \to 0} \frac{xy}{x^2 + y^2} \right)$$
 b) $\lim_{x \to 0} \left(\lim_{y \to 0} \frac{xy}{x^2 + y^2} \right)$

c)
$$\lim_{\substack{y=kx\\ x\to 0}} \frac{xy}{x^2 + y^2}$$

Định nghĩa.

Ta bảo $M_n(x_n;y_n) \to M_0(x_0;y_0) \Leftrightarrow \lim_{n\to\infty} x_n = x_0 \text{ và } \lim_{n\to\infty} y_n = y_0$

Định nghĩa. Cho f(x, y) xác định trên D, $(x_0; y_0) \in \overline{D}$.

Ta bảo $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = I \Leftrightarrow \forall M_n(x_n;y_n) \to M_0(x_0;y_0) \Rightarrow \lim_{n\to\infty} f(x_n,y_n) = I$

hoặc: $\forall \ \varepsilon > 0 \text{ bé tuỳ } \acute{y}, \ \exists \ \delta(\varepsilon) > 0 \text{: } d(M_0 \ ; \ M) < \delta \Rightarrow |f(M) - I| < \varepsilon, \ \mathring{\sigma} \ \text{đó} \ M(x \ ; \ y) \in \ D.$

Ví dụ 3

a)
$$\lim_{(x;y)\to(0;0)} \frac{xy}{x^2+y^2}$$

d)
$$\lim_{(x;y)\to(0;0)} \sqrt{x^2 + y^2} \cos \frac{1}{xy}$$

e) $\lim_{(x;y)\to(0;0)} (x^2 + y^2)^{x^2y^2}$

b)
$$\lim_{(x;y)\to(0;0)} \frac{xy}{\sqrt{x^2+y^2}}$$

e)
$$\lim_{(x:y)\to(0:0)} (x^2 + y^2)^{x^2y^2}$$
 (0)

c)
$$\lim_{(x;y)\to(0;0)} \frac{x^2-y^2}{x^2+y^2}$$

Các phép toán

Tương tự như hàm một biến số

3. Hàm liên tục

Định nghĩa. Hàm f(M) xác định trên D, $M_0 \in D$, ta bảo hàm f(M) liên tục tại M_0 $\lim_{D\ni M\to M_0}f(M)=f(M_0)$ \Leftrightarrow

Hàm f(M) được gọi là liên tục trên $D \Leftrightarrow f(M)$ liên tục tại mọi điểm của D. Ví du 4. Xét tính liên tuc tai điểm (0; 0)

PGS. TS. Nguyễn Xuân Thảo

a)
$$z = \begin{cases} e^{\frac{1}{x^2 + y^2}}, & (x; y) \neq (0; 0) \\ 0, & (x; y) = (0; 0) \end{cases}$$

b)
$$z = \begin{cases} \frac{2xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

c)
$$z = \begin{cases} \frac{x^2y^3}{x^2 + y^2}, & (x; y) \neq (0; 0) \\ 0, & (x; y) = (0; 0) \end{cases}$$

d)
$$z = \begin{cases} \frac{x^4 - y^4}{x^2 + y^2}, & (x; y) \neq (0; 0) \\ 0, & (x; y) = (0; 0) \end{cases}$$

e)
$$z = \begin{cases} \frac{x^2(x^2 - y^2)}{x^4 + y^4}, & (x; y) \neq (0; 0) \\ a, & (x; y) = (0; 0) \end{cases}$$

PGS. TS. Nguyễn Xuân Thảo

a)
$$z = \begin{cases} e^{\frac{1}{x^2 + y^2}}, & (x; y) \neq (0; 0) \\ 0, & (x; y) = (0; 0) \end{cases}$$

b) $z = \begin{cases} \frac{2xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$

c) $z = \begin{cases} \frac{x^2y^3}{x^2 + y^2}, & (x; y) \neq (0; 0) \\ 0, & (x; y) = (0; 0) \end{cases}$

d) $z = \begin{cases} \frac{x^4 - y^4}{x^2 + y^2}, & (x; y) \neq (0; 0) \\ 0, & (x; y) = (0; 0) \end{cases}$

e) $z = \begin{cases} \frac{x^2(x^2 - y^2)}{x^4 + y^4}, & (x; y) \neq (0; 0) \\ a, & (x; y) = (0; 0) \end{cases}$

(không liên tục, $\forall a$)

f) $z = \begin{cases} \cos \frac{xy - y^2}{x^2 + y^2}, & (x; y) \neq (0; 0) \\ a, & (x; y) = (0; 0) \end{cases}$

$$\frac{x^2 \arcsin^2 y - y^2 \arcsin^2 x}{x^2 + y^2}, & (x; y) \neq (0; 0) \end{cases}$$

$$\frac{x^2 \arcsin^2 y - y^2 \arcsin^2 x}{x^2 + y^2}, & (x; y) \neq (0; 0) \end{cases}$$

g)
$$z = \begin{cases} \frac{x^2 \arcsin^2 y - y^2 \arcsin^2 x}{x^4 + y^4}, & (x; y) \neq (0; 0) \\ a, & (x; y) = (0; 0) \end{cases}$$

 $(a = 0, liên tục; a \neq 0, không liên tục)$

h)
$$z = \begin{cases} \frac{y^2 \arctan^2 x - x^2 \arctan^2 y}{x^4 + y^4}, (x; y) \neq (0; 0) \\ a, & (x; y) = (0; 0) \end{cases}$$

 $(a = 0, \text{ liên tục}; a \neq 0, \text{ không liên tục})$

i) Tìm a để (0; 0) là điểm liên tục của hàm số

1°)
$$z = \begin{cases} \frac{2x^2y - xy^2}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ a, & x^2 + y^2 = 0 \end{cases}$$
 (0)

1°)
$$z = \begin{cases} \frac{2x^2y - xy^2}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ a, & x^2 + y^2 = 0 \end{cases}$$
 (0)
2°) $z = \begin{cases} \frac{x^2y - 2xy^2}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ a, & x^2 + y^2 = 0 \end{cases}$ (0)

Định nghĩa. Hàm f(x) liên tục đều trên $D \Leftrightarrow \forall \varepsilon > 0$ bé tuỳ ý, $\exists \delta(\varepsilon) > 0$:

 $\forall M', M'' \in D: d(M'; M'') < \delta \Rightarrow |f(M') - f(M'')| < \varepsilon.$

Ví du. Xét tính liên tục đều của hàm f = x + y + 2Chú ý. f liên tục đều \Rightarrow f liên tục.

§2. ĐẠO HÀM RIÊNG VÀ VI PHÂN

Đạo hàm riêng Định nghĩa.

u = f(x, y) xác định trên $D \subset \mathbb{R}^2$, ta định nghĩa các đạo hàm riêng

$$f_x'\left(x_0\;;\;y_0\right) \equiv \frac{\partial}{\partial x} f\left(x_0\;;\;y_0\right) = \lim_{\Delta x \to 0} \frac{f\left(x_0 + \Delta x,\;y_0\right) - f\left(x_0,\;y_0\right)}{\Delta x}$$

$$f'_{y}(x_{0}; y_{0}) \equiv \frac{\partial}{\partial y} f(x_{0}; y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y}$$

Chú ý.

$$1^{\circ}/f_{x}'(x_{0},y_{0}) = \frac{d}{dx}f(x,y_{0})\Big|_{x=x_{0}}; f_{y}'(x_{0},y_{0}) = \frac{d}{dy}f(x_{0},y)\Big|_{y=y_{0}}$$

2°/ Tương tự có các định nghĩa $f_X'(x_0, y_0, z_0) = \frac{d}{dx} f(x, y_0, z_0)\Big|_{x=x_0}$;

$$f'_{y}\left(x_{0},y_{0},z_{0}\right) = \frac{d}{dy}f\left(x_{0},y,z_{0}\right)\bigg|_{y=y_{0}}; f'_{z}\left(x_{0},y_{0},z_{0}\right) = \frac{d}{dz}f\left(x_{0},y_{0},z\right)\bigg|_{z=z_{0}}$$

Ví dụ 1.

a)
$$u = x^{y^z}$$
, tính $u'_x(1;2;3)$, $u'_y(1;2;3)$, $u'_z(1;2;3)$

b)
$$u = \frac{z}{\sqrt{x^2 + y^2}}$$
, tính $u'_x(3; 4; 5)$, $u'_y(3; 4; 5)$, $u'_z(3; 4; 5)$

c)
$$z = \arctan \sqrt{x^y}$$
, tính u'_x , u'_y

d)
$$z = (1 + \log_y x)^3$$
, tính z'_x , z'_y

e)
$$f(x,y) = \begin{cases} \frac{x \tan y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
, $tinh f'_x(0, 0), f'_y(0, 0)$

$$(f'_{X}(0;0)=0, f'_{V}(0;0)=0)$$

f)
$$f(x, y) = \begin{cases} \frac{x \sin y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
, $tinh f'_x(0, 0), f'_y(0, 0)$

$$(f'_{x}(0;0)=0, f'_{y}(0;0)=0)$$

g)
$$z = \frac{y^2}{3x} + \arctan \frac{x}{y}$$
, tính $A = x^2 \frac{\partial z}{\partial x} - xy \frac{\partial z}{\partial y} + y^2$ (0)

h)
$$z = \frac{x^2}{3y} + \arctan \frac{y}{x}$$
, $tinh A = y^2 \frac{\partial z}{\partial y} - xy \frac{\partial z}{\partial x} + x^2$ $(\frac{2xy^2}{x^2 + y^2})$

Have a good understanding!