SUMMER-2014

Q.1 a) Solve:
$$(D^2 - 3D + 2) y = xe^{3x} + \sin 2x$$
. (6)

b) Solve:
$$x^3 \frac{d^3y}{dx^3} + 2x^2 \cdot \frac{d^2y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$$
. (7)

Q.2 a) Solve by method of variation of parameters

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = \cos \cot x. \tag{7}$$

b) Solve:
$$(D^2 + 3D + 2) y = \sin(e^x)$$
. (6)

UNIT 2

Q.3 a) Find the Laplace transform of:
$$\int_{0}^{t} e^{t} \frac{\sin t}{t} dt$$
. (4)

b) Using convolution theorem, find inverse of:

$$\overline{f(s)} = \frac{1}{(s-2)(s+2)^2}$$
 (4)

c) Solve the differential equation using Laplace transform:

$$(D^2 + 4D + 8) y = 1, y(0) = 0, y'(0) = 1.$$
 (5)

Q.4 a) Find the inverse Laplace transform of:

$$\frac{s^2 + 2s - 4}{\left(s^2 + 2s + 5\right)\left(s^2 + 2s + 2\right)}.$$
 (4)

$$\frac{s^{2} + 2s - 4}{(s^{2} + 2s + 5)(s^{2} + 2s + 2)}.$$
(4) b) Evaluate:
$$\int_{0}^{\infty} e^{-2t} \frac{\sinh t \sin t}{t} dt.$$
(4)

c) Express:

$$f(t) = \cos t,$$
 $0 < 1 < \pi$
= $\cos 2t,$ $\pi < 1 < 2\pi$
= $\cos 3t,$ $t > 3\pi$

in terms of unit step function and hence find its Laplace transform. (5)

UNIT 3

Q.5 a) Solve the difference equations:

i.
$$(\Delta^2 + \Delta + 1) y = x^2$$
, **ii.** $u_{n+2} + u_n = \cos n/2$. (8)

b) Solve
$$y_{n+2} + 2y_{n+1} + y_n = 0$$
 using z-transform, given $y_0 = y_1 = 0$.

Q.6 a) i. Show that inverse z-transform of:

$$\frac{1}{(z-a)^3} = \frac{(k-1)(k-2)a^{k-3}}{2}.$$
 (5)

ii. Prove that:

$$Z((k+1)a^{k+1}) = \frac{az^2}{(z-a)^2}$$
 (5)

b)
$$u_{n+2} - 2u_{n+1} + u_n = 3n + 5.$$
 (4)

UNIT 4

Q.7 a) Solve the following partial differential equations:

i.
$$pq = x^m.y^n.z^{2l}$$
, (4)

i.
$$pq = x^m.y^n.z^{2l}$$
, (4)
ii. $x(z^2 - y^2)\frac{dz}{dx} + y(x^2 - z^2)\frac{dz}{dy} = z(y^2 - x^2)$. (4)

b) Find Fourier transform of:

$$f(x) = x,$$
 $0 < x < 1/2$
= $1 - x,$ $\frac{1}{2} < x < 1$
= $0,$ $x > 1.$ (6)

Q.8 a) Solve the following partial differential equations:

i.
$$(y + z) p + (z + x) q = x + y$$
 (4)

ii.
$$x^2p^2 + y^2q^2 = z^2$$
. (4)

b) Express the function:

$$f(x) = 1; |x| \le 1$$

= 0; |x| > 0, as

Fourier integral and hence evaluate:
$$\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda}{\lambda}$$
. (6)

UNIT 5

Q.9 a) If f(z) is analytic show that:

$$\left(\frac{d^2}{dx^2} + \frac{d^2}{dy^2}\right) |f(z)|^4 = 16.|f(z)|^2.|f'(z)|^2.$$
 (7)

b) Find the bilinear transformation which maps the point z = -1, 0, 1 form z-plane into w = 0, i, 3i in w-plane. (6)

Q.10 a) Expand
$$f(z) = \frac{z}{(z+1)(z+2)}$$
, about $z = -2$. (6)

b) Show that the transformation $w = \frac{2z+3}{z-4}$, maps the circle $x^2 + y^2 - 4x = 0$ into straight line 4u + 3 = 0. (7)

UNIT 6

Q.11 a) Prove that:

i.
$$\nabla^2(\phi\psi) = \phi\nabla^2\psi \neq 2\nabla\phi.\nabla\psi \neq \psi\nabla^2\phi$$

ii.
$$\nabla(\phi\nabla\psi + \psi\nabla\phi) = \phi\nabla^2\psi - \psi\nabla^2\phi.$$
 (6)

b) If the directional derivative of: $\phi = ax^2y + by^2z + cz^2x$ at a point (1, 1, 1) has maximum magnitude is in the direction parallel to the line $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$, find the value of a, b, c.

(7)

Q.12 a) A vector field given by: $\overline{F} \sin yi + x(1 + \cos y)j$.

Evaluate the line integral over the circular path given by $x^2 + y^2 = a^2$, z = 0. (6)

b) Evaluate: $\iint_S \overline{F} \circ \hat{n} dS$, where $\overline{F} = zi + xj - 3y^2zk$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5.