Exact Results for $\mathcal{N}=1$ Theories of Class \mathcal{S}_k

Thomas Bourton

DESY

17/10/2019

Introduction

Motivation: Exact results for $\mathcal{N}=1$ Theories?

Review: Class ${\mathcal S}$

Class S_k

Exact Results for Class S_k

Moduli Space of SUSY Vacua Supersymmetric Index and Special Limits Instanton Counting for Class S_k

Introduction

Motivation: Exact results for $\mathcal{N}=1$ Theories?

Review: Class S

Class S_k

Exact Results for Class S_k

Moduli Space of SUSY Vacua Supersymmetric Index and Special Limits Instanton Counting for Class \mathcal{S}_k

Motivation

Ambition: Understand the non-perturbative dynamics of QFTs

This is a **hard** problem (QCD confinement, Yang-Mills mass-gap, etc) \implies consider simplified models \implies supersymmetry

- ▶ For $\mathcal{N} \ge 2$ a lot is understood \implies Exact results!
- ▶ But, $N \ge 2$ is far away from 'real-world physics'

 $\mathcal{N}=1$ is a lot closer e.g. $\mathcal{N}=1$ SQCD exhibits [Seiberg '94]:

- Color confinement
- Chiral symmetry breaking
- Conformal phase

 $\mathcal{N}=1$ SUSY \Longrightarrow more control over theory than $\mathcal{N}=0$ - still potentially constraining enough to understand the dynamics non-perturbatively \Longrightarrow exact results?.

Exact Results

By 'exact result' we mean any quantity that we compute that is valid for any value of the parameter space. They give us a window into the non-perturbative dynamics of a theory. Some examples for $\mathcal{N}=2$

- Moduli space M of SUSY vacua
 - Coulomb branch CB Seiberg-Witten Theory: Exact computation of low-energy effective action
 - ► Higgs branch **HB** Quantum mechanically exact
- Exact evaluation (localisation) of path integral on various manifolds: \mathbb{S}^4 , $\mathbb{S}^1 \times \mathbb{S}^3$ [Pestun '07] [Romelsberger '05] [...]
- Nekrasov's instanton counting [Nekrasov '02]: path integral $Z_{\text{inst}} = \sum_{K>0} q^K Z_K$ over instanton moduli space
- 2d/4d correspondences: AGT, TQFT-Index, ... [Alday, Gaiotto, Tachikawa '10] [Gadde, Pomoni, Rastelli, Razamat '10]

What about exact results for $\mathcal{N}=1$?

Introduction

Motivation: Exact results for $\mathcal{N}=1$ Theories?

Review: Class ${\mathcal S}$

Class S_k

Exact Results for Class S_k

Moduli Space of SUSY Vacua Supersymmetric Index and Special Limits Instanton Counting for Class \mathcal{S}_k

Class S Theories

A large class of 4d $\mathcal{N}=2$ theories: [Gaiotto '09] [Gaiotto, Moore, Neitzke '09]

▶ 6d $\mathcal{N}=(2,0)$ SCFT (stack of *N* M5 branes) on $\mathbb{R}^4 \times \mathcal{C}$ where \mathcal{C} is a compact Riemann surface

		\mathbb{C}	2	(?		\mathbb{C}	2 `_	\mathbb{S}^1			
N M5	_	_	_	_	-	_	•				•]

lackbox We take Area $(\mathcal{C}) o 0 \implies$ 4d $\mathcal{N}=2$ theory on \mathbb{R}^4

 $\mathcal{C} = \mathsf{four} \ \mathsf{punctured} \ \mathsf{sphere} \Leftrightarrow \mathcal{N} = 2 \ \mathsf{SQCD}$

Introduction

Motivation: Exact results for $\mathcal{N}=1$ Theories?

Review: Class S

Class S_k

Exact Results for Class S_k

Moduli Space of SUSY Vacua Supersymmetric Index and Special Limits Instanton Counting for Class S_k

Class S_k

Natural generalisation of Class ${\cal S}$

Instead: Compactify a 6d $\mathcal{N}=(1,0)$ theory on $\mathcal{C}.$

- ▶ The 6d $\mathcal{N} = (1,0)$ theory we use is a \mathbb{Z}_k orbifold of the 6d $\mathcal{N} = (2,0)$ theory [Gaiotto, Razamat '15]
- ▶ The \mathbb{Z}_k breaks supersymmetry by 1/2, leaving $\mathcal{N}=1$ in 4d

		\mathbb{C}	2		(?	\mathbb{C}^2_{\perp}				\mathbb{S}^1
N M5	_	_	_	_	_	_					
\mathbb{Z}_k	•						×	×	×	×	

$$\mathbb{Z}_k: (v_{\perp}, w_{\perp}) \mapsto (e^{2\pi i/k} v_{\perp}, e^{-2\pi i/k} w_{\perp})$$

 $lackbox{ Class of 'nice' 4d } \mathcal{N}=1$ theories classified by punctured Riemann surfaces \mathcal{C}

Example

C = four punctured sphere

▶ For k = 2 - $\mathcal{N} = 1$ superconformal quiver

- $ightharpoons W \simeq \left(Q\Phi\widetilde{Q}-\widetilde{Q}\Phi Q
 ight)-rac{i au}{8\pi^2}\operatorname{tr} W^lpha W_lpha$
- $> SU(2)_{R_{\mathcal{N}=2}} \times U(1)_{r_{\mathcal{N}=2}} \xrightarrow{\mathbb{Z}_k} U(1)_r \times U(1)_t$
- ► Global Symmetry: $SU(2,2|1) \times U(1)_t \times U(1)_{\gamma}^{k-1} \times U(1)_{\beta}^{k-1} \times SU(N)^{2k} \times U(1)_{\alpha}^{2k}$

Introduction

Motivation: Exact results for $\mathcal{N}=1$ Theories?

Review: Class S

Class S_k

Exact Results for Class S_k Moduli Space of SUSY Vacua

Supersymmetric Index and Special Limits Instanton Counting for Class S_k

Moduli space

 $\mathcal{N}=1$ theories can have a *moduli space* of susy vacua

$$\mathbf{M} = \left\{\Phi, Q, \widetilde{Q} \middle| V(\Phi, Q, \widetilde{Q}) = 0\right\} / ext{(gauge transformations)}$$

Kähler manifold **M** param'd by top components of $\frac{1}{2}$ -BPS multiplets $\overline{\mathcal{B}}_{r(0,0)}$ of SU(2,2|1).

For class S_k we have **distinct** Higgs and Coulomb branches [TB, A. Pini, E. Pomoni (to appear)].

For generic $\mathcal{N}=1$ theories such distinction is not possible!

The non-anomalous $U(1)_r \times U(1)_t$ global symmetries means these branches are separate and cannot mix.

Higgs Branch

 $U(1)_r$ is the $\mathcal{N}=1$ R-symmetry. $U(1)_t$ inherited from the broken $\mathcal{N}=2$ R-Symmetry group

F	ield	E	$U(1)_r$	$U(1)_t$
	Q	1	2/3	1/2
	\widetilde{Q}	1	2/3	1/2
	Φ	1	2/3	-1

$$\mathbf{HB} = \mathbf{M}|_{\Phi=0} \,, \quad E = \frac{3}{2}r = 2q_t$$

- ► Gauge invariants: $Q_i\widetilde{Q}_i$, det Q_i , det \widetilde{Q}_i
- ▶ As with $\mathcal{N} = 2$ SUSY **HB** is *exact*
- On the other hand only Kähler (rather than hyperKähler).

Coulomb Branch

$$\left[\mathsf{CB} = \mathsf{M} \right]_{Q = \widetilde{Q} = 0}, \quad E = \frac{3}{2} r = -q_t$$

- ▶ Gauge invariants: $u_n = \operatorname{tr}(\Phi_1 \dots \Phi_k)^n$ and $B_i = \det \Phi_i$
- ▶ As with $\mathcal{N}=2$ Coulomb branch superpotential has quantum corrections encoded by Seiberg-Witten curve $\Sigma \hookrightarrow \mathcal{T}^*\mathcal{C}$ fibred over CB

Curve can be defined for $\mathcal{N}=1$ theories [Intrilgator, Seiberg '94]

$$\Sigma : z^{kN} + \sum_{l=1}^{N} z^{k(N-l)} \phi_{kl}(t; u_n, B_i) = 0$$

[Coman, Pomoni, Taki, Yagi '15], [TB, Pomoni (to appear)]

$$W_{ ext{eff}} = rac{i au_{ ext{eff}}}{8\pi} W_lpha W^lpha \,, \quad au_{ ext{eff}} = rac{\oint_B \lambda}{\oint_\Lambda \lambda} \,, \quad \lambda = rac{ ext{v}}{t} dt$$

Introduction

Motivation: Exact results for $\mathcal{N}=1$ Theories?

Review: Class S

Class S_k

Exact Results for Class S_k

Moduli Space of SUSY Vacua

Supersymmetric Index and Special Limits

Instanton Counting for Class S_k

Supersymmetric Index ($\mathbb{S}^3 \times \mathbb{S}^1$ partition function)

Pick
$$\mathcal{Q} = \widetilde{\mathcal{Q}}_{\dot{-}} \implies \left[2\{\mathcal{Q}, \mathcal{Q}^{\dagger}\} = E - 2j_2 - 3r/2 = 0 \right]$$

$$\mathcal{I} = \text{Tr}(-1)^F p^{j_1 + j_2 + \frac{r}{2} - \frac{2}{3}q_t} a^{-j_1 + j_2 + \frac{r}{2} - \frac{2}{3}q_t} t^{q_t} e^{-2\beta \{\mathcal{Q}, \mathcal{Q}^{\dagger}\}}$$

Witten index graded by fugacities for maximal commutant in $SU(2,2|1)\times U(1)_t\times H$

Counts all short multiplets modulo recombination to long ones

$$\mathcal{I}(\mathcal{S}) = \chi_{\mathcal{S}}, \quad \mathcal{I}(\mathcal{A}) = \mathcal{I}(\mathcal{S}) + \mathcal{I}(\mathcal{S}') = 0$$

Use localisation (k = N = 2)

$$\mathcal{I} = (p; p)^{2} (q; q)^{2} \int \frac{dz_{1}dz_{2}}{(4\pi i)^{2}} \prod_{i=1}^{k=2} \frac{\Gamma_{e}(\sqrt{t}z_{i}^{\pm 1})^{2} \Gamma_{e}(\frac{pq}{t}z_{i}^{\pm 1}z_{i-1}^{\pm 1})}{\Gamma_{e}(z_{i}^{\pm 2})}$$

2d/4d relation: Equal to 2d TQFT correlator on $\mathcal C$ [Gaiotto, Razamat '15] \implies comes 'for free' from 6d construction

Supersymmetric Localisation

Localisation principle: [Witten '88]

We would like to compute observables:

$$\langle \mathcal{O}[\phi] \rangle = \int_{\mathbf{C}(\mathcal{M})} [\mathcal{D}\phi] \, e^{-S[\phi]} \, \mathcal{O}[\phi]$$

Assume $\exists \mathfrak{Q}$ such that $\mathfrak{Q}S = \mathfrak{Q}\mathcal{O} = 0 \& \mathfrak{Q}^2 = 0$. We can then deform $S \rightarrow S + t\mathfrak{Q}V$

$$\langle \mathcal{O}[\phi] \rangle_t = \int_{\mathbf{C}(\mathcal{M})} [\mathcal{D}\phi] \, \mathrm{e}^{-S[\phi] - t\mathfrak{Q}V[\phi]} \, \mathcal{O}[\phi] \,, \quad t \in \mathbb{R}$$

The answer is independent of t! we can take $t \to \infty$ $\mathfrak{Q}V = 0$

$$\langle \mathcal{O}[\phi] \rangle_t = \int_{\mathbf{C}_{BPS}} da \frac{e^{-S[a]} \mathcal{O}[a]}{\mathsf{SDet} \left[\frac{\delta^2 \mathfrak{Q} V[a]}{\delta a^2} \right]} \,, \quad \mathbf{C}_{BPS} = \{ a \in \mathbf{C}(\mathcal{M}) | \mathfrak{Q} V = 0 \}$$

Limits of the Index

First defined for **all** $\mathcal{N}=2$ SCFTs [Gadde, Rastelli, Razamat, Yan '11]. The limits can be defined for 'all' class \mathcal{S}_k theories [TB, Pini, Pomoni (to appear)]

▶ Hall-Littlewood $p, q \rightarrow 0$, t fixed $(2q_t = E + j_2, j_1 = 0)$

$$HL = Tr_{HL}(-1)^{F} t^{q_{t}} = \int \frac{dz_{1}dz_{2}}{(4\pi i)^{2}} \prod_{i=1}^{k=2} \frac{(1-z_{i}^{\pm 2})(1-tz_{i-1}^{\pm 1}z_{i}^{\pm 1})}{(1-\sqrt{t}z_{i}^{\pm 1})^{2}}$$

Coulomb $t, p, q \rightarrow 0$, T = pq/t, V = p/q fixed $(E + 2j_2 + \frac{r}{2} + \frac{4q_t}{3} = 0)$

$$\mathcal{I}^C = \operatorname{Tr}_C(-1)^F T^{E+j_2} V^{j_1} = \int \frac{dz_1 dz_2}{(4\pi i)^2} \prod_{i=1}^{k=2} \frac{(1-z_i^{\pm 2})}{(1-Tz_i^{\pm 1}z_{i-1}^{\pm 1})}$$

Can also define Macdonald $p/\sqrt{t} \to 0$, q fixed and Schur q=t limits. Such limits **do not** exist for generic $\mathcal{N}=1$ theories!

Introduction

Motivation: Exact results for $\mathcal{N}=1$ Theories?

Review: Class S

Class S_k

Exact Results for Class S_k

Supersymmetric Index and Special Limits

Instanton Counting for Class \mathcal{S}_k

Instantons for Class S_k

Partition function over Instantons

- Nekrasov instanton partition function: $Z_{\text{inst}} = \sum_n q^K Z_K$ for $\mathcal{N} = 2$ theories. $Z_{\mathbb{S}^4} \sim \int da Z_{\text{pert}} |Z_{\text{inst}}|^2$
- ▶ Instantons in susy gauge theories embed in string theory \Longrightarrow can compute Z_K 's for class S_k

$$Z_{K} \sim \int_{\mathbf{M}_{\mathrm{inst}}} e^{-S[A_{\mathrm{inst}}]}$$
 ['t Hooft '76]

String theory construction

► Embed in Type-IIA [Witten '97]

	\mathbb{C}^2					2	\mathbb{S}^1	\mathbb{R}^3_{\perp}		
N D4	_	_	_	_		•	_			•
NS5	_	_	_	_	_	_			•	
\mathbb{Z}_k				•	×	×		×	×	
K D0							_			

ADHM Construction

$$K$$
 instantons in a D p -brane $\equiv KD(p-4)-branes$

▶ D0 Higgs branch = ADHM moduli space of instantons

$$\textbf{HB}^{\text{D0}} \cong \textbf{M}^{\text{D4}}_{\text{inst}}$$

[Douglas '95 '96] [Witten '95]

lacktriangle Od susy matrix model with two supercharges $\mathcal{Q}_+, \widetilde{\mathcal{Q}}_+$

Computation of Z_{inst}

- ▶ Partition function Z_{D0} for sigma model living on K D0-branes equals Z_K
- ▶ 2× T-duality D0 \to D2 and we compute $\mathbb{S}^1 \times \mathbb{S}^1$ partition function (supersymmetric index) of the 2d theory

$$Z_K = Z_{D0} = \lim_{\beta_1, \beta_2 \to 0} \mathcal{I}_{D2}$$

 $ightharpoonup Q_+$ is preserved by the \mathbb{Z}_k orbifold

$$\mathcal{I}_{D2} = \text{Tr}(-1)^F q^{H_-} v^{2j_1} t^{2j_D} \mathbf{x}^{\mathbf{f}}$$

Count gauge & \mathbb{Z}_k invariant operators which have $\{\mathcal{Q}_+,\mathcal{Q}_+^\dagger\}=0$ [TB, Pomoni '17]

Orbifolding to Class S_k

$$\mathcal{I}_{\mathsf{D2}} = \int \left[d\mu_{\mathsf{G}}(\mathbf{z}) \right] \mathrm{PE} \left[\sum_{\{\mathsf{multiplets}\}} \mathit{i}_{\mathit{multiplet}}^{\mathsf{orb}}(q, \mathbf{z}, \dots) \right]$$

Take the limit

$$\begin{split} \lim_{\beta_{1},\beta_{2}\to 0} \mathcal{I}_{\text{D2}} & \propto \prod_{i=1}^{k} \int \prod_{I=1}^{K_{i}} du_{i,I} \prod_{I=1}^{K_{i}} \frac{u'_{ii,IJ} \prod_{j\neq i} \prod_{J=1}^{K_{j}} \left(u_{ij,IJ} - 2\epsilon_{+}\right)}{\prod_{j=1}^{k} \prod_{J=1}^{K_{j}} \left(u_{ij,IJ} + \epsilon_{1}\right) \left(u_{ij,IJ} + \epsilon_{2}\right)} \\ & \times \prod_{j=1}^{k} \prod_{I=1}^{K_{i}} \prod_{A=1}^{N} \frac{\left(u_{i,I} - \widetilde{m}_{L,j,A}\right) \left(u_{i,I} - \widetilde{m}_{R,j,A}\right)}{\left(u_{i,I} - \widetilde{a}_{j,A} - \epsilon_{+}\right) \left(u_{i,I} - \widetilde{a}_{j,A} + \epsilon_{+}\right)} \end{split}$$

We expect this to be equal to the integration over the moduli space of $\{K_1, K_2, \dots, K_k\}$ instantons for this $\mathcal{N} = 1$ theory

Conclusions and Future Directions

Class \mathcal{S}_k provides a host of 'non-generic' $\mathcal{N}=1$ theories which lend themselves to computing exact results

- They have distinct Higgs and Coulomb branches
- ightharpoonup Several 'nice' simple limits of the index \mathcal{I} & TQFT structure
- lacktriangle Via orbifold projection $\Longrightarrow Z_{\mathsf{inst}}$ instanton partition function

Future Directions:

- Localisation on other manifolds e.g. $\mathbb{S}^2 \times T^2$ [Closset, Shamir '14]. \mathbb{S}^4 partition function? and relation with deconstruction of $\mathcal{N}=(1,1)$ LST [Hayling, Panerai, Papageorgakis '18]
- ▶ Z_{inst} equal to W_{kN} conformal blocks Hints towards AGT for class S_k ? [Mitev, Pomoni '17]
- ▶ S_k Index I = (TQFT Correlator) but explicit construction of TQFT currently unknown
- ▶ Gauging of discrete symmetries \implies new 'exotic' $\mathcal{N}=1,2,3$ theories: \mathcal{I} , Hilbert series, ... [TB, Pini, Pomoni '18]

Appendix: Limits of the Index and Hilbert Series

HL index: counts $Q, \widetilde{Q}, \widetilde{Q}_{\dotplus} \overline{\Phi} = \overline{\lambda} \Longrightarrow$ these have $2q_t = E + j_2, j_1 = 0 \Longrightarrow$ Higgs branch **HB** type operators (plus the fermions). For genus zero Lagrangian theories in class \mathcal{S}_k

$$\mathrm{HL} = \mathrm{Hilb}(t; \mathbf{HB})$$

True for all genus zero in class ${\cal S}$ [Gadde, Rastelli, Razamat, Yan '11]

Coulomb index: counts $\Phi \implies$ these have $E + 2j_2 + \frac{r}{2} + \frac{4q_t}{3} = 0$ and are Coulomb branch **CB** type operators and we have

$$\mathcal{I}^{C} = \operatorname{Hilb}(T; CB)$$

The Hilbert series of the variety **M** counts independent holomorphic functions

$$\mathrm{Hilb}(t;\mathbf{M}) = \mathrm{Tr}_{\mathbf{M}} \, t^{\mathcal{E}} \,, \quad \frac{\mathrm{Hilb}(t;\mathbb{C}^2) = 1 + 2t + 3t^2 + \dots = (1-t)^{-2}}{1,\, [z_1,z_2],\, [z_1^2,z_2^2,z_1z_2]}$$