Kerberos

- a centralized authentication server provides mutual authentication between users and servers
 - a key distribution and user authentication service developed at MIT
 - works in an open distributed environment
- client-service model
- Kerberos protocol messages are protected against eavesdropping and replay attacks
- Kerberos v4 and v5 [RFC 4120]

A Simple Authentication Dialogue

- 1. C —> AS: ID_C | | P_C | | ID_V
- 2. AS \rightarrow C : Ticket = E(K_V, [ID_C | |AD_C | |ID_V])
- 3. C —> V: ID_C || Ticket

- AS authentication server
- ID* identifier
- P_C password of user
- AD_C network address of C
- K_V secret encryption key shared by AS and V

Advantage

- Client and malicious attacker cannot alter ID_C (impersonate), AD_C (change of address), $ID_V \rightarrow Certificate is encrypted by Symmetric tray$
- server V can verify the user is authenticated through ID $_{\rm C}$, and grants service to C $_{\rm Wesseye}$ 3, $_{\rm KV}$ As $_{\rm V}$
- guarantee the ticket is valid only if it is transmitted from the same client that initially requested the ticket

Secure?

- Insecure: password is transmitted openly and frequently
- Solution: no password transmitted by involving ticket-granting server (TGS)

1. C —>AS: ID_C ||P_C ||ID_V 2. AS —> C : Ticket = E(K_V, [ID_C ||AD_C ||ID_V]) 3. C —> V: ID_C || Ticket

A More Secure Authentication Dialogue

- Once per user logon session
 - (1) C \rightarrow AS: $ID_C | | ID_{tgs}$
 - (2) AS —> C: E(K_C, Ticket_{tgs})
- Once per type of service:
 - (3) C \rightarrow TGS: $|D_C| ||D_V||$ Ticket_{tg}
 - (4) TGS —> C: Ticket_V
- Once per service session:
 - (5) C -> V: ID_C || Ticket_V

$$Ticket_{tgs} = \mathbb{E}(K_{tgs}, [ID_C || AD_Q || ID_{tgs}) | TS_1 || Lifetime_1])$$

$$Ticket_v = \mathbb{E}(K_v, [ID_C || AD_C || ID_v || TS_2 || Lifetime_2])$$

- 1. C \rightarrow AS: $ID_C ||P_C||ID_V$
- 2. AS \longrightarrow C : Ticket = E(K_V, [ID_C | |AD_C | |ID_V]) 3. C \longrightarrow V: ID_C | | Ticket

Advantage

- No password transmitted in plaintext
- Timestamp is added to prevent reuse of ticket by an attacker

Secure?

Ticket hijacking

- Malicious user may steal the service ticket of another user on the same workstation and try to use it
 - Network address verification does not help
- Servers must verify that the user who is presenting the ticket is the same user to whom the ticket was issued

no user authentication

No server authentication

• Attacker may misconfigure the network so that he receives messages addressed to a legitimate server – man in the middle attack

- Capture private information from users and/or deny service
- Servers must prove their identity to users
- Solution: session key

Once per user logon session

- (1) C —>AS: ID_C | |ID_{tgs}
- (2) AS -> C: E(K_C, Ticket_{tgs})
- Once per type of service:
 - (3) C \rightarrow TGS: $ID_C ||ID_v|| Ticket_{tgs}$
 - (4) TGS —> C: Ticket_v
- Once per service session:
 - (5) C -> V: ID_C || Ticket_v

Kerberos v4. - once per user logon session

Kerberos v4. - once per type of service

