

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий (ИТ)

Кафедра Промышленной информатики (ПИ)

ОТЧЕТ ПО ПРАКТИЧЕСКИМ РАБОТАМ

по дисциплине

«Проектирование баз данных»

Выполнил студент группы ИКБО-13-22			Тринеев П. С.	
Принял ассистент кафедры промы информатики	шленной	Кон	овалов А.И.	
Практическая работа выполнена	« <u> » </u>	202r.	(подпись студента)	
«Зачтено»	«»	202 г.	(подпись руководителя)	

Москва 2024

Содержание

введение
Общая цель
Задачи
ПРАКТИЧЕСКИЕ РАБОТЫ
1 Моделирование системы в методологии IDEF0
2 Моделирование системы в методологии DFD10
3 Проектирование диаграммы вариантов использования (Use Case Diagram)1.
4 Проектирование диаграммы классов (Class Diagram) 14
5 Проектирование диаграммы кооперации (Collaboration Diagram) 1:
6 Проектирование диаграммы последовательности (Sequence Diagram)10
7 Проектирование диаграммы деятельности (Activity Diagram) 1'
8 Проектирование диаграммы состояний (State Diagram) 19
9 Разработка реляционной алгебры системы20
10 Моделирование системы в нотации Чена
11 Моделирование системы в методологии IDEF1X20
ВЫВОД 28

ВВЕДЕНИЕ

В наше время информационные технологии играют ключевую роль в эффективном управлении бизнес-процессами. Одной из важных составляющих такого управления является проектирование баз данных, особенно в сфере здравоохранения. В рамках данной практической работы мы сосредоточимся на проектировании базы данных для судового порта.

Общая цель

Целью данной практической работы является разработка эффективной базы данных для судового порта, которая позволит эффективно управлять информацией о заказчиков, перевозимых товарах, прием и отправка товаров, а также других аспектах работы порта.

Задачи

- 1. Моделирование системы в методологии IDEF0;
- 2. Моделирование системы в методологии DFD;
- 3. Проектирование диаграммы вариантов использования (Use Case Diagram);
- 4. Проектирование диаграммы классов (Class Diagram);
- 5. Проектирование диаграммы кооперации (Collaboration Diagram);
- 6. Проектирование диаграммы последовательности (Sequence Diagram);
- 7. Проектирование диаграммы деятельности (Activity Diagram);
- 8. Проектирование диаграммы состояний (State Diagram);
- 9. Разработка реляционной алгебры системы;
- 10. Моделирование системы в нотации Чена;
- 11. Моделирование системы в методологии IDEF1X.

ПРАКТИЧЕСКИЕ РАБОТЫ

1 Моделирование системы в методологии IDEF0

Цель работы: разработать структурированную иерархическую модель функциональных аспектов системы для обеспечения понимания её работы, оптимизации процессов и улучшения эффективности функционирования.

Задачи работы:

- 1. Построить контекстную диаграмму;
- 2. Построить диаграммы декомпозиции;
- 3. Построить диаграмму дерева узлов.

В современном мире моделирование процессов играет ключевую роль в оптимизации работы различных организаций. В сфере перевозки товаров, в частности, судовые компании также стремятся к повышению эффективности и качества перевозки товаров. Для достижения этих целей они обращаются к методологиям моделирования, таким как IDEF0 (Integration Definition for Function Modeling).

Методология IDEF0 предоставляет инструменты для анализа и проектирования бизнес-процессов.

Первый шаг в моделировании стоматологической клиники в методологии IDEF0 — это определение основных функций, которые выполняются в рамках клиники и построение контекстной диаграммы (рисунок 1).

Рисунок 1. – Контекстная диаграмма

Здесь выделяются основные входы и выходы каждой функции, а также определяются элементы управления и механизмы.

Затем происходит построение диаграммы функций – декомпозиция (рисунок 2), которая наглядно отображает все функции клиники и их взаимосвязи.

Рисунок 2. - Декомпозиция контекстной диаграммы

Наконец, после построения диаграммы декомпозиции в методологии IDEF0, проведем дополнительный анализ и для каждой функции проведем декомпозицию (рисунок 3-5). Это поможет определить какие элементы были упущены в предыдущих диаграммах и обеспечить внедрение новых технологий.

Рисунок 3. – Декомпозиция функции регистрации товаров/пассажиров

Рисунок 4. – Декомпозиция функции досмотр товаров/пассажиров

Рисунок 5. – Декомпозиция функции отправки/прибытия товаров/пассажиров

Таким образом, моделирование порта в методологии IDEF0 представляет собой мощный инструмент для повышения эффективности и качества услуг, предоставляемых судовой компанией, и способствует достижению ее стратегических целей. Все рассматриваемые процессы можно отследить с помощью дерева узлов, где представлена иерархия всех функций (рисунок 6).

Рисунок 6. - Дерево узлов рассматриваемой системы

2 Моделирование системы в методологии DFD

Цель работы: создать визуальную диаграмму, которая отображает поток данных в системе, их обработку и хранение. Это позволяет понять структуру системы, выявить её основные компоненты и взаимосвязи между ними, что способствует оптимизации процессов, выявлению проблем и разработке решений для их устранения.

Задачи работы:

- 1. Построить контекстную диаграмму;
- 2. Построить диаграммы декомпозиции.

Методология DFD (Data Flow Diagram) предоставляет эффективный инструмент для анализа и проектирования информационных потоков в системах.

Первый этап моделирования порта в методологии DFD — это идентификация основных процессов и информационных потоков внутри судовой компании.

Затем происходит построение диаграммы потоков данных, которая отображает взаимосвязи между различными процессами и данными в компании (рисунок 7).

Рисунок 7. - Контекстная диаграмма

Далее необходимо определить уровни детализации для каждого процесса и информационного потока (рисунок 8).

Рисунок 8. - Декомпозиция контекстной диаграммы

Наконец, после построения модели в методологии DFD, можно провести анализ эффективности текущих информационных потоков, так проведем дополнительную декомпозицию процесса работы с клиентами, чтобы удостовериться, что никакие потоки не упущены (рисунок 9).

Рисунок 9. - Декомпозиция процесса работы с клиентами

Таким образом, моделирование судовой компании в методологии DFD является эффективным способом анализа и оптимизации информационных потоков внутри порта, что способствует повышению ее эффективности и качества предоставляемых услуг.

3 Проектирование диаграммы вариантов использования (Use Case Diagram)

Цель работы: представить функциональные требования к системе через идентификацию акторов и вариантов использования, обеспечивая лучшее понимание пользовательских потребностей, взаимодействия между системой и её окружением, а также определение основных функций, которые система должна поддерживать (рисунок 10).

Рисунок 10. – Диаграмма вариантов использований

4 Проектирование диаграммы классов (Class Diagram)

Цель работы: представить структуру системы, выявить основные классы, их атрибуты и взаимосвязи, что позволит разработчикам лучше понять организацию данных и логику работы системы, обеспечивая более эффективное проектирование, реализацию и поддержку программного обеспечения (рис. 11).

Рисунок 11. Диаграмма классов

5 Проектирование диаграммы кооперации (Collaboration Diagram)

Цель работы: иллюстрация взаимодействия между объектами или классами в системе с акцентом на передаче сообщений и синхронизации действий. Это помогает разработчикам лучше понять, как объекты или классы взаимодействуют друг с другом для достижения определенных целей, что способствует более эффективной реализации и улучшению дизайна системы (рисунок 12).

Рисунок 12. - Диаграмма кооперации

6 Проектирование диаграммы последовательности (Sequence Diagram)

Цель работы: иллюстрация последовательности взаимодействия между объектами или компонентами системы во времени, отображая передачу сообщений между ними. Это позволяет разработчикам визуализировать поток выполнения операций, идентифицировать возможные проблемы синхронизации и оптимизировать процессы взаимодействия, что способствует более эффективной разработке и пониманию системы (рисунок 13).

Рисунок 13. – Диаграмма последовательности

7 Проектирование диаграммы деятельности (Activity Diagram)

Цель работы: визуализация последовательности действий, процессов или потоков работ в системе. Это позволяет разработчикам и аналитикам лучше понять порядок выполнения задач, выявить возможные узкие места и оптимизировать процессы, что способствует более эффективному проектированию, реализации и управлению системой (рисунок 14).

Рисунок 14. – Диаграмма деятельности

8 Проектирование диаграммы состояний (State Diagram)

Цель работы: визуализация всех возможных состояний, переходов и событий, которые может испытывать объект, система или компонент в течение своего жизненного цикла. Это позволяет разработчикам лучше понять поведение системы, выявить потенциальные проблемы и обеспечить более эффективное управление её состояниями, что способствует созданию более надежного и стабильного программного обеспечения (рисунок 15).

Рисунок 15. - Диаграмма состояний

9 Разработка реляционной алгебры системы

Цель работы: создать набор операций и правил, которые позволяют манипулировать данными в базе данных, используя стандартные операции реляционной алгебры. Это включает операции выбора, проекции, объединения, разности и соединения, а также определение оптимальных методов для выполнения запросов к базе данных, обеспечивая эффективное извлечение, модификацию и управление данными.

Разработка реляционной алгебры системы — это процесс создания и определения структур и операций, которые позволяют эффективно управлять данными и их отношениями в реляционных базах данных. Реляционная алгебра является формальной математической моделью, основанной на теории множеств и логике предикатов, и используется для описания запросов к данным и их манипуляций.

Таблица 1 заказы

id заказа	Ф.И.О Заказчика	Тип заказчика	Тип заказа	Время на выполнение
1	Алексей Иванович Смирнов	Компания	Перевоз товара	1 месяц.
2	Елена Сергеевна Петрова	Частное лицо	Перевоз пассажира	3 дня.
3	Дмитрий Николаевич Соколов	частное лицо	Перевоз пассажира	4 дня.
	Мария Владимировна			
4	Иванова	Компания	Перевоз товара	2 месяц.
5	Андрей Павлович Кузнецов	Компания	Перевоз товара	3 месяц.

Таблица 2 скорые заказы

Ф.И.О Заказчика	Тип заказчика	Тип заказа	Время на выполнение
Алексей Сергеевич Волков	Компания	Перевоз товара	2 месяц.
Владимир Андреевич		Перевоз	
Ковалёв	Частное лицо	пассажира	1 день.
		Перевоз	
Екатерина Павловна Орлова	частное лицо	пассажира	2 дня.
Сергей Иванович Лебедев	Компания	Перевоз товара	3 месяц.
Анна Юрьевна Федорова	Компания	Перевоз товара	1 месяц.

Таблица 3 завершенные заказы

id заказа	Ф.И.О Заказчика	Тип заказчика	Тип заказа	Время на выполнение
6	Михаил Дмитриевич Соколов	Компания	Перевоз товара	1 месяц.
7	Юлия Александровна Белова	Частное лицо	Перевоз пассажира	3 дня.
3	Дмитрий Николаевич Соколов	частное лицо	Перевоз пассажира	4 дня.
	Мария Владимировна			- Henry
4	Иванова	Компания	Перевоз товара	2 месяц.
8	Илья Павлович Тихомиров	Компания	Перевоз товара	3 месяц.

1. Операция перечисления

 $T4 = T1 \cap T3$

Таблица 4 Результат выполнения операции Пересечение

id заказа	Ф.И.О Заказчика	Тип заказчика	Тип заказа	Время на выполнение
3	Дмитрий Николаевич Соколов	частное лицо	Перевоз пассажира	4 дня.
	Мария Владимировна			
4	Иванова	Компания	Перевоз товара	2 месяц.

2. Операция выборки

 $T5 = \sigma \text{ (Время >= 1 месяц)} T1$

Таблица 5 Результат выполнения операции Выборка

id заказа	Ф.И.О Заказчика	Тип заказчика	Тип заказа	Время на выполнение
1	Алексей Иванович Смирнов	Компания	Перевоз товара	1 месяц.
	Мария Владимировна			
4	Иванова	Компания	Перевоз товара	2 месяц.
5	Андрей Павлович Кузнецов	Компания	Перевоз товара	3 месяц.

3. Операция естественное соединение

T6 = T1 JOIN T2

Таблица 6 Результат выполнения операции Естественного соединения

id заказа	Ф.И.О Заказчика	Тип заказчика	Тип заказа	Время на выполнение
1	Алексей Иванович Смирнов	Компания	Перевоз товара	1 месяц.
2	Елена Сергеевна Петрова	Частное лицо	Перевоз пассажира	3 дня.

3	Дмитрий Николаевич Соколов	частное лицо	Перевоз пассажира	4 дня.
	Мария Владимировна			
4	Иванова	Компания	Перевоз товара	2 месяц.
5	Андрей Павлович Кузнецов	Компания	Перевоз товара	3 месяц.
null	Алексей Сергеевич Волков	Компания	Перевоз товара	2 месяц.
null	Владимир Андреевич Ковалёв	Частное лицо	Перевоз пассажира	1 день.
null	Екатерина Павловна Орлова	частное лицо	Перевоз пассажира	2 дня.
null	Сергей Иванович Лебедев	Компания	Перевоз товара	3 месяц.
null	Анна Юрьевна Федорова	Компания	Перевоз товара	1 месяц.

4. Операция проекции

 $T7 = \pi$ (Тип заказа, Время на выполнение) T2 Таблица 7 Результат выполнения операции Проекция

Тип заказа	Время на выполнение
Перевоз товара	2 месяц.
Перевоз	
пассажира	1 день.
Перевоз	
пассажира	2 дня.
Перевоз товара	3 месяц.
Перевоз товара	1 месяц.

5. Операция деления

T9 = T2/T8

Таблица 8

Тип заказчика	Тип заказа
Компания	Перевоз товара

Таблица 9 Результат выполнения операции Деление

Ф.И.О Заказчика	Время на выполнение
Алексей Сергеевич Волков	2 месяц.
Сергей Иванович Лебедев	3 месяц.
Анна Юрьевна Федорова	1 месяц.

Таким образом, разработка реляционной алгебры системы является важным этапом в проектировании баз данных и систем управления данными, позволяя эффективно организовывать и манипулировать информацией в соответствии с требованиями бизнеса и пользователями.

10 Моделирование системы в нотации Чена

Цель работы: создать детальную модель системы, используя графические этой символы структуры, определенные В нотации. Это позволяет разработчикам и аналитикам визуализировать структуру системы, её компоненты что способствует лучшему взаимосвязи между ними, функциональных и структурных аспектов проектируемой системы и обеспечивает основу для её дальнейшей разработки и реализации.

Моделирование системы в нотации Чена представляет собой процесс создания графических диаграмм, которые визуализируют структуру и поведение системы с помощью стандартизированных символов и конструкций. Нотация Чена широко используется в инженерии систем для анализа, проектирования и документирования различных типов систем, включая информационные системы, программное обеспечение, аппаратные компоненты и процессы бизнеса (рисунок 16).

Рисунок 16. - Диаграмма ЕК-модели в нотации Чена

Таким образом, моделирование системы в нотации Чена представляет собой мощный инструмент для анализа и проектирования систем, позволяя инженерам и разработчикам визуализировать структуру и поведение системы и обеспечивая лучшее понимание её функциональности и взаимосвязей.

11 Моделирование системы в методологии IDEF1X

Цель работы: создать точную и наглядную модель данных, которая отражает структуру информации в предметной области. Это включает определение сущностей, атрибутов и связей между ними с использованием стандартных символов и правил нотации IDEF1X. Цель состоит в том, чтобы обеспечить понимание структуры данных системы и её взаимосвязей, что поможет разработчикам лучше понять требования к базе данных и эффективно реализовать их в проекте.

Задачи работы:

- 1. Построить логическую модель системы;
- 2. Построить физическую модель системы.

Моделирование системы в методологии IDEF1X является эффективным инструментом для проектирования баз данных, который позволяет описать структуру информации и её взаимосвязи с использованием стандартизированных символов и правил. IDEF1X (Integrated Definition for Information Modeling) предоставляет нотацию и методологию для создания четких и понятных моделей данных, которые могут быть использованы для анализа, проектирования и реализации информационных систем.

Логическая модель системы описывает структуру и взаимосвязи между компонентами или сущностями системы независимо от конкретных технических реализаций и платформ (рисунок 17).

Рисунок 17. - Логическая модель

Физическая модель системы определяет спецификации и детали реализации системы, включая выбранные технологии, архитектурные решения, структуру баз данных, сетевые конфигурации и т.д. (рисунок 18).

Рисунок 18. - Физическая модель

Таким образом, моделирование системы в методологии IDEF1X является важным этапом в проектировании баз данных, обеспечивая эффективное представление структуры информации и её взаимосвязей и помогая создать четкие и понятные модели данных для анализа и разработки информационных систем.

ВЫВОД

В ходе практических работ по проектированию баз данных для грузового порта были выполнены различные этапы анализа и моделирования информационной системы. Каждая из проведенных работ позволила более глубоко проникнуть в специфику работы порта и выработать оптимальное решение для управления информацией о грузах, операциях и организации работы.

Моделирование системы с использованием различных методологий, таких как IDEF0, DFD, и создание диаграмм Use Case, классов, коопераций, последовательности, активности, состояния и реляционной алгебры, позволило получить полное представление о бизнес-процессах порта и их взаимосвязях. Эти методологии помогли выявить ключевые процессы, такие как приемка и отгрузка грузов, складирование, обработка документов и взаимодействие с клиентами.

Применение нотации Чена и методологии IDEF1X дало возможность более детально описать структуру базы данных и взаимосвязи между сущностями. Это позволило разработать эффективную и масштабируемую систему управления данными, способную обрабатывать большой объем информации о грузах, транспортных средствах, заказах и клиентах.

Кроме того, анализ потоков данных и моделирование бизнес-процессов способствовали оптимизации рабочих процессов и повышению эффективности работы порта. В результате проектирования был создан функциональный и надежный инструмент для управления всеми аспектами деятельности порта, что способствует улучшению качества обслуживания клиентов и увеличению пропускной способности порта.