1. None. Presented here for reference.

1. (Original) A lift belt comprising: an elastomeric body having a width w and a thickness t and having a pulley engaging surface; the elastomeric body having an aspect ratio w/t that is greater than 1; a tensile cord contained within the elastomeric body and extending longitudinally; the pulley engaging surface having a ribbed profile; and the ribbed profile having a rib with an angle of approximately 90°.

GATES CORPORATION

- 2. (Original) The lift belt as in claim 1, wherein the tensile cord comprises a conductive material having a resistance.
- 3. (Original) The lift belt as in claim 2, wherein the resistance of the tensile cord varies to indicate a lifting belt load.
- 4. (Original) The lift belt as in claim 1 comprising a plurality of ribs.
- 5. (Original) The lift belt as in claim 4 having an end.
- 6. (Original) The lift belt as in claim 3 comprising a plurality of tensile cords.

- 7. (Original) The lift belt as in claim 3 further comprising:
 a jacket on a surface opposite the pulley engaging surface.
- 8. (Original) The lift belt as in claim 7, wherein the jacket comprises nylon.
- 9. (Original) The lift belt as in claim 8 wherein a tensile cord comprises a metallic material.
- 10. (Original) The lift belt as in claim 9 wherein a tensile cord comprises steel.
- 11. (Previously Amended) The lift belt as in claim 1 further comprising:

 an electrical circuit connected to the a tensile cord for measuring a tensile cord load.
- 12. (Original) The lift belt as in claim 1 further comprising:

 an electrical circuit for detecting a tensile cord failure.
- 13. (Original) An elevator lift system comprising:

 a belt having an elastomeric body having a width w and
 a thickness t and having a pulley engaging surface;
 the elastomeric body having an aspect ratio w/t that
 is greater than 1;
 a tensile cord contained within the elastomeric body
 and extending longitudinally;
 the pulley engaging surface having a ribbed profile;
 the ribbed profile having a rib with an angle of
 approximately 90°; and

- at least one pulley having a ribbed profile engaged with the pulley engaging surface.
- 14. (Original) The lift system as in claim 13, wherein the tensile cord comprises a conductive material having a resistance.
- 15. (Original) The lift system as in claim 14, wherein the resistance of the tensile cord varies according to a lifting belt load.
- 16. (Original) The lift system as in claim 13, wherein the pulley engaging surface comprises a plurality of ribs.
- 17. (Original) The lift system as in claim 16, wherein the belt has an end.
- 18. (Original) The lift system as in claim 15 comprising a plurality of tensile cords.
- 19.(Original) The lift system as in claim 15 further
 comprising:
 a jacket on a surface opposite the pulley engaging
 surface.
- 20. (Original) The lift system as in claim 19, wherein the jacket comprises nylon.
- 21. (Original) The lift system as in claim 18 wherein a tensile cord comprises a metallic material.
- 22. (Original) The lift system as in claim 21 wherein a tensile cord comprises steel.

- 23. (Original) The list system as in claim 13 further comprising:
- an electrical circuit connected to a tensile cord for measuring a tensile cord load.
- 24. (Original) The lift system as in claim 13 further comprising:
 an electrical circuit for detecting a tensile cord failure.
- 25. (Original) The lift belt as in claim 1 further comprising fibers extending from the pulley engaging surface.
- a belt having an elastomeric body having a width w and a thickness t and having a pulley engaging surface; the elastomeric body having an aspect ratio w/t that is greater than 1; a tensile cord contained within the elastomeric body and extending longitudinally; the pulley engaging surface having a ribbed profile; the ribbed profile having a rib with an angle of approximately 90°; at least one pulley having a ribbed profile engaged with the pulley engaging surface; and
- 27. (Previously Withdrawn) A method of operating a lift system comprising the steps of:

and for controlling operation of the system.

training a tensile cord over a pulley between a motor and a load;

an electric circuit for detecting a tensile cord load

measuring an electrical resistance of the tensile cord; and controlling an operation of the motor according to the

electrical resistance.

approximately 90°.

- an elastomeric body having a width w and a thickness t and having a pulley engaging surface; the elastomeric body having an aspect ratio w/t that is greater than 1; a tensile cord contained within the elastomeric body and extending longitudinally; the pulley engaging surface having a ribbed profile; and the ribbed profile having a rib with a rib angle of
- 29. (Original) The lift belt as in claim 28, wherein the tensile cord comprises a conductive material having a resistance.
- 30. (Original) The lift belt as in claim 29, wherein the resistance of the tensile cord varies to indicate a lifting belt load.
- 31. (Original) The lift belt as in claim 28, wherein the rib angle is in the range of approximately 60° to 120°.
- 32. (Previously Cancelled) The lift belt as in claim 287 wherein the rib angle is approximately 90°.
- 33. (Previously Added) The lift belt as in claim 1 further comprising a fiber loading in the elastomeric body.

- 34. (Previously Added) The lift belt as in claim 13 further comprising a fiber loading in the elastomeric body.
- 35. (Freviously Added) The lift belt as in claim 26 further comprising a fiber loading in the elastomeric body.
- 36. (Previously Added) The lift belt as in claim 33, wherein the fiber loading comprises one of cellulose, aramid, polyester, cotton, nylon, carbon, acrylic, polyurethane, or glass fibers individually or in combination with two or more of the foregoing.
- 37. (Previously Added) The lift belt as in claim 34, wherein the fiber loading comprises one of cellulose, aramid, polyester, cotton, nylon, carbon, acrylic, polyurethane, or glass fibers individually or in combination with two or more of the foregoing.
- 38. (Previously Added) The lift belt as in claim 35, wherein the fiber loading comprises one of cellulose, aramid, polyester, cotton, nylon, carbon, acrylic, polyurethane, or glass fibers individually or in combination with two or more of the foregoing.
- 39. (Previously Cancelled) A lift belt comprising:

 an elastomeric body having a width w and a thickness t

 and having a pulley engaging surface;

 the clastomeric body having an aspect ratio w/t that

 is greater than 1;

 a tensile cord contained within the clastomeric body

 and extending longitudinally;

 the pulley engaging surface having a ribbed profile;

 and,

 the ribbed profile having a rib with an angle in the

 range of approximately 60° to approximately 120°.

- 40. (Previously Cancelled) The lift belt as in claim 39 further comprising a fiber leading in the elastomeric body.
- 41. (Previously Cancelled) The lift belt as in claim 40, wherein the fiber loading comprises one of cellulose, aramid, polyester, cotton, nylon, carbon, acrylic, polyurethane, or glass fibers individually or in combination with two or more of the foregoing.
- 42. (Previously Cancelled) The lift belt as in claim 39, wherein the angle is approximately 90°.