Прогнозирование высоковолатильностых временных рядов социальных трендов и общественных интересов

Егор Валерьевич Задворнов

Московский физико-технический институт

Курс: Автоматизация научных исследований (практика, В.В. Стрижов)/Группа 128

Эксперт: А.С. Малков

Консультант: А. В. Мацейко

Цель исследования

Цели

Основная цель - прогнозирование временных рядов социальных трендов и общественных интересов, характеризующихся высокой волатильностью

- разработать методы кластеризации топиков общественных интересов
- сравнить качество моделей Prophet, Arima, Exp smoothig в задаче предсказания полученных кластеров по метрике семантического расстояния

Доклад с одним слайдом

Постановка задачи

Пусть $T=\{T^k\}_{k=1}^K$ — множество уникальных топиков, где K — общее число различных топиков. Имеется временной ряд $\{t_i\}_{i=1}^N$, соответствующий последовательности дат, и на каждую дату t_i приходится набор $\{T_{ij}\}_{j=1}^{M_i}$ популярных топиков, где M_i — число популярных топиков в день t_i . Каждый $T_{ij} \in T$ представляет собой одно слово или фразу длиной до 4 слов. Цель данной работы — предсказать будущую популярность топиков. Для достижения этой цели предла- гается следующий алгоритм:

Решение

Вычислительный эксперимент

1. Выполняется кластеризация множества T на n семантических кластеров $c_m = \{T^k\}_{k=1}^{n_m}, \ m=1,\ldots,n$, где n_m – число топиков в кластере c_m .

Для определения оптимального числа кластеров n используется средняя мера когерентности C_{cv} , которая оценивает интерпретируемость кластеров человеком путем измерения семантической близости между словами внутри кластера:

$$n = \arg\min_{L \in \mathbb{N}} \frac{1}{L} \sum_{m=0,\dots,L-1} C_{\mathsf{cv}}(c_m) \tag{1}$$

$$C_{\mathsf{cv}} = \frac{1}{|S_{\mathsf{set}}^{\mathsf{one}}|} \sum_{(W_0, W_*) \in S_{\mathsf{set}}^{\mathsf{one}}} \tilde{m}_{\mathsf{cos}(\mathsf{nlr}, 1)}(W_0, W_*) \tag{2}$$

Вычислительный эксперимент

2. Для каждого кластера c_m строится временной ряд $\{t_i,y_m^i\}_{i=1}^N$, где y_m^i – число появлений топиков из кластера c_m в день t_i .

Prophet

$$y(t) = g(t) + s(t) + h(t) + \epsilon_t \tag{3}$$

SARIMA

$$(1-\phi_1 B)(1-\Phi_1 B^m)(1-B)^d(1-B^m)^D y_t = (1+\theta_1 B)(1+\Theta_1 B^m)\epsilon_t$$
(4)

Метод Хольта-Винтерса (Exponential Smoothing)

$$\hat{y}_{t+h|t} = I_t + hb_t + s_{t+h-m(k+1)}$$
(5)

Результаты кластеризации

Model	Mean Coherence	Coherence
K-means	0.63	0.69
LDA	0.69	0.71

Результаты прогнозирования

Model	Average MAE	Average MSE
Prophet	0.251	0.101
ARIMA	0.454	0.322
Exponential Smoothing	0.422	0.293

Заключение

Основные результаты

- Предложен гибридный подход, сочетающий методы прогнозирования временных рядов и тематического моделирования
- Разработан механизм оценки значимости трендов, повышающий точность прогнозирования
- Выявлены ограничения традиционных методов прогнозирования при наличии аномалий в данных
- Намечены пути дальнейшего развития, включая исследование алгоритмов обнаружения аномалий