ELEC2070 2023 Assignment 2 Questions (Solve at Home and Submit to iLearn by the due date)

Total 80 marks. PLEASE USE NEAT HANDWRITING. Assignments with poor handwriting will not be marked.

- 1. (10 marks) For the circuit in Fig. 1, the switch has been closed for a long time prior to t=0.
 - a) Determine the values of $i_L(t)$ just before t=0 and a long time after t=0.
 - b) Determine the time constant after the switch opens and the expression for $i_L(t)$.
 - c) Find $i_L(t)$ for t=15.8 μ s, t=31.5 μ s and 78.8 μ s

- 2. (10 marks) The switch shown in Fig. 2 has been closed for a long time prior to t=0, then it opens at t=0.
 - a) Find $v(0^+)$
 - b) Find the expression for v(t) for t>0.
 - c) Calculate the voltage v(t) for t = τ , 2τ , 5τ
 - d) Sketch v(t) to scale versus time for $-\tau \le t \le 5\tau$ s.

3. (15 marks) Consider the circuit shown in Fig. 3. Obtain expressions for both $i_1(t)$ and $i_2(t)$ for t>0.

4. (10 marks) Consider the circuit shown in Fig. 4. (a) Obtain an expression for $v_c(t)$ for all values of t. (b) Sketch $v_c(t)$ over the range $0 \le t \le 4 \mu s$.

5. (15 marks) A motor coil having an inductance of 8 H is in parallel with a 2 μ F capacitor and a resistor of unknown value. The response of the circuit is determined to be critically damped. (a) Determine the value of the resistor. (b) Compute α . (c) Write the equation for the current flowing into the resistor if the top node is labelled v, the bottom node is grounded, and v = R i_R. (d) Verify that your equation is a solution to the circuit differential equation

$$\frac{d^2i_R}{dt} + 2\alpha \frac{di_R}{dt} + \alpha^2 i_R = 0$$

6. (20 marks) Determine i(t) for t>0 for the circuit in Fig. 5.

