SERIA 8

Twierdzenie (Kryterium Dirichleta). Załóżmy, że funkcje $f_n, g_n : X \to \mathbb{R}, n \in \mathbb{N}$ spełniają następujące warunki:

- (1) dla dowolnego $x \in X$ ciąg $(f_n(x))$ jest monotoniczny,
- (2) ciąg $(f_n(x))$ jest jednostajnie zbieżny do zera na zbiorze X,
- (3) ciąg sum częściowych szeregu $\sum_{n=1}^{\infty} g_n(x)$ jest jednostajnie ograniczony na X.

Wtedy szereg $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ jest jednostajnie zbieżny na zbiorze X.

Twierdzenie (Kryterium Abela). Załóżmy, że funkcje $f_n, g_n: X \to \mathbb{R}, n \in \mathbb{N}$, spełniają następujące warunki:

- (1) dla dowolonego $x \in X$ ciąg $(f_n(x))$ jest monotoniczny,
- (2) ciąg $(f_n(x))$ jest jednostajnie ograniczony na X,
- (3) szereg $\sum_{n=1}^{\infty} g_n(x)$ jest jednostajnie zbieżny na X.

Wtedy szereg $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ jest jednostajnie zbieżny na zbiorze X.

Zadanie 1. Wykazać, że szereg $\sum_{n=1}^{\infty} \frac{x \sin(n^2 x)}{n^2}$ jest zbieżny na \mathbb{R} i jego sumą jest funkcją ciągła na R. Zbadać zbieżność jednostajną tego szeregu.

Zadanie 2. Udowodnić zbieżność jednostajną na zbiorze X następujących szeregów:

- (a) $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$, $X = [\delta, 2\pi \delta]$, $0 < \delta < \pi$, (b) $\sum_{n=1}^{\infty} \frac{\sin(n^2x)\sin(nx)}{n+x^2}$, $X = \mathbb{R}$, (c) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^x}$, $X = [a, \infty)$, a > 0, (d) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x^2} \operatorname{arctg}(nx)$, $X = \mathbb{R}$.