Characterizaiton of Pu Separation by PUREX

Paul Mendoza

September 28, 2016

NUCLEAR SECURITY SCIENCE & POLICY INSTITUTE

Outline

Project Goals

Background

New MCNP6 Features

CGMF and FREYA

DRiFT

DANCE and NEUANCE

Stilbene Detector

MCNP6 Settings

GEB Parameters

DE and DF Cards

DRiFT

Future Work

Project Goals

- Study and benchmark code predictions against experimental data
- Determine parameters to match MCNP-simulated detector response functions to experimental stilbene measurements
- Add stilbene processing capabilities to DRiFT
- Improve NEUANCE detector array modeling and analysis using new MCNP6 and DRiFT features

Project Goals
Background
MCNP6 Settings
DRiFT
Future Work

Background

New MCNP6 Features

- New MCNP6 features will include two new event generators
 - Cascading Gamma-Ray Multiplicity with Fission (CGMF)
 - Fission Reaction Event Yield Algorithm (FREYA)
- CGMF and FREYA perform event-by-event Monte Carlo simulations of fission reactions
- Both code packages improve correlated fission and multiplicity models including angular correlations of emitted neutrons
- Project will attempt to benchmark code simulations to differential experimental measurements of fissionable materials

CGMF and FREYA

CGMF

- Uses MC Hauser-Feshbach approach
- Fission fragments are sampled from a joint probability distribution function of: Mass (A), Charge (Z), Total kinetic energy (TKE)
- Neutron/gamma ray competition treated throughout de-excitation process

FREYA

- Fission event generator for LLNL Fission Package
 - Includes tabulated and fitted data for major and minor actinides
- Uses MC Weisskopf approach
 - Neutrons are sampled from Weisskopf spectrum
 - Gamma rays are emitted from residual energy
- More computationally efficient

DRiFT

- Detector Response Function Toolkit for MCNP output
- Generates realistic detector response functions for scintillators
- Post-processes MCNP PTRAC files into light output
- User can specify PMT type, quenching data specific to detector material, and trigger threshold
- Future improvements include the addition semiconductor and gas detector response functions

DANCE

- Detector for Advanced Neutron Capture Experiments
- \bullet γ -ray calorimeter located at LANSCE
- 160 BaF₂ crystals covering 3.6π solid angle
- Very high efficiency detector array used to measure prompt fission and capture gamma rays
- Inner cavity: 17 cm diameter sphere

DANCE

DANCE

NEUANCE

- NEUtron detector Array at DANCE
- Designed to fit inside DANCE
- Will study capture cross section of isomeric states of actinides
- EJ-309 and stilbene were tested in earlier prototypes
- Stilbene was chosen due to higher light-output and better PSD performance

Stilbene Detector

- Organic scintillator
- Higher light output and better PSD performance than EJ-309
- NEUANCE detector array will incorporate 21 stilbene crystals
- Approximate size: 2.3 cm x 2.3 cm x 10 cm
- Each crystal will be coupled to a compact photomultiplier tube
- Current efforts include improving modeling accuracy of a single stilbene crystal

Photon Interactions in Stilbene

Project Goals
Background
MCNP6 Settings
DRiFT
Future Work

MCNP6 Settings

MCNP6 Settings

- Gaussian Energy Broadening (GEB)
 - Virtual peak-broadening technique
 - Converts gamma pulse height tally to approximate detector response function
 - No parameters available for stilbene
- DE/DF
 - Converts energy deposited by recoiled protons to electron equivalent energy
 - Equation found in (Hansen, 2002)[?]

GEB Parameters - Iterative Method [Kim, 2015]

• Calculate Compton edge for each peak

$$E_c = E_{e-}|_{(\theta=\pi)} = E_{\gamma} \left(\frac{2E_{\gamma}}{m_e c^2 + 2E_{\gamma}} \right) \tag{1}$$

Compton edges for gamma-ray sources:

Element	E_{γ} (keV)	Compton Edge (keV)
¹³³ Ba	356	207.25
¹³⁷ Cs	662	477.65
⁵⁴ Mn	835	639.36
²² Na (P.P.)	511	340.67
⁶⁰ Co `	1173	963.42
²² Na	1274	1061.18
⁶⁰ Co	1332	1118.10

GEB Parameter - Iterative Method [Baramsai, 2015]

Calibrate spectra using Compton edge as Compton maximum

Figure 1: First Calibration, Assumption: Compton Edge = Compton Maximum

GEB Parameters - Iterative Method [Kim, 2015]

 Fit Gaussian function to experimental data using equation 2. [?]

$$f(E) = Ce^{-\frac{2\sqrt{\ln 2}(E - E_0)}{FWHM}^2}$$
 (2)

- Set $E_0 = \text{Compton maxima}$
- Fit function to obtain constant (C) and FWHM

Figure 2: ²²Na Gaussian Peak Fit

GEB Parameters - Iterative Method [Kim, 2015]

Use FWHM from Eq. 2 to find fitting parameters (a, b, c)

$$FWHM(E_o) = a + b\sqrt{E_o + cE_o^2}$$
 (3)

After 1st iteration:

- a = -0.049702
- b = 0.267462
- c = -0.526174

Figure 3: FWHM Curve for Stilbene

GEB Parameters - Iterative Method

Figure 4: 1st MCNP Iteration

GEB Parameters - Iterative Method [Kim, 2015]

- Re-calibrate spectra using Compton maxima from MCNP
- Fit Gaussian functions to each peak
- Fit parameters:

$$FWHM(E_o) = a + b\sqrt{E_o + cE_o^2}$$

After 2nd iteration:

- a = -0.057192
- b = 0.249732
- c = -0.432120

Figure 5: FWHM Curves for Stilbene

GEB Parameters - Iterative Method

Figure 6: 2nd MCNP Iteration

DE and DF Cards [Hansen, 2002]

• Non-linear light output function for stilbene:

$$L = aE_p - b[1 - exp(-cE_p^d)] \tag{4}$$

• Converts recoil proton energy (E_p) , to light output due to energy deposited by the effective electron equivalent energy (L)

Optimization constants found in [Hansen, 2002]:

- a=0.693
- b=3.0
- c = 0.2
- \bullet d=0.965

Simulation Results: 252Cf

Figure 7: MCNP6 vs Experimental measurements using the DE/DF tally treatment

Project Goals Background MCNP6 Settings DRiFT Future Work

DRiFT

DRiFT

- Stilbene processing capabilities have been added to DRiFT
 - Light output function (Equation 4)
 - Light emission spectrum (Left)
 - Neutron and gamma pulse shapes in progress (Center)
 - PMT Quantum Efficiency(Right)

Preliminary DRiFT Results: Gamma Rays

Preliminary DRiFT Results - Neutrons

Project Goals Background MCNP6 Settings DRiFT Future Work

Future Work

Future Work

- Continue improving stilbene modeling parameters and capabilities in DRiFT
 - PSD using waveforms
 - Low-energy photon detection improvements

2

- Begin modeling multiple stilbene detectors in different angle configurations
- Model full NEUANCE detector array
- Study detector cross-talk
- Compare MCNP6/DRiFT simulations using CGMF/FREYA against experimental measurements
 - ²⁵²Cf: spontaneous fission
 - ²³⁹Pu and ²³⁵U: neutron-induced fission

Questions?

References I