# Московский физико-технический институт (национальный исследовательский университет)

Физтех-школа радиотехники и компьютерных технологий Кафедра мультимедийных технологий и телекоммуникаций

# Практическое задание №1 Энтропия языка

Назмиев Айрат, 5 курс, группа М01-305

#### Цель работы

В данной работе требуется провести оценку энтропии текста на естественном языке. Оценка производится при помощи последовательных оценок n-граммных условных энтропий  $F_n$  и n-мерной средней энтропии на букву  $H_n$ . Также находится средняя энтропия слова на букву. Для анализы выбраны несколько художественных текстов на русском и английском языках.

#### Введение

Энтропия есть статистический параметр, который измеряет в известном смысле среднее количество информации, приходящейся на одну букву языкового текста. Если данный язык перевести на язык двоичных знаков (0 или 1) наиболее эффективным образом, то двоичная энтропия H равна среднему числу двоичных знаков (бит), приходящихся на одну букву исходного языка [3]. Энтропия дискретного ансамбля  $X = \{x, p(x)\}$  определяется следующим образом:

$$H(X) = \mathbb{E}\left[-\log p(x)\right] = -\sum_{x \in X} p(x)\log p(x). \tag{1}$$

В нашем случае X является символами текста, а точнее буквы алфавита и символ пробела. Здесь и всюду ниже логарифм берется по основанию 2, единицей измерения является бит. Можно заметить, что  $H(X) \geq 0$  (из  $p(x) \in [0;\ 1]$ ) и  $H(X) \leq \log_2 |X|$  (максимум энтропии достигается при равномерном распределении символов).

Введем понятие условной энтропии. Рассмотрим второй дискретный ансамбль  $Y = \{y, p(y)\}$ , произведением ансамблей является  $XY = \{(x,y), p(x,y)\}$ . Условная энтропия X при условии Y определяется как:

$$H(X|Y) = \mathbb{E}_Y \left[ -\sum_{x \in X} p(x|y) \log p(x|y) \right] = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log p(x|y). \tag{2}$$

Из определения следует, что  $H(X|Y) \geq 0$ . Кроме того, добавление условия не увеличивает энтропию, то есть  $H(X|Y) \leq H(X)$ , равенство достигается только при независимости X и Y. Из цепного правила для вероятностей можно вывести цепное свойство энтропии:

$$H(X_1...X_n) = H(X_1) + H(X_2|X_1) + ... + H(X_n|X_1...X_{n-1}).$$
(3)

Как можно видеть, при добавлении случайной величины энтропия не уменьшается. Текст рассматривается нами как стационарный источник, поэтому можно ввести понятие n-мерной энтропии текста:  $H(X_1...X_n) = H(X^n)$ , то есть здесь нет зависимости от позиции блока букв в тексте.  $H(X^n)$ , нормированная на блока n, называется n-мерной средней энтропией на букву:

$$H_n(X) = \frac{H(X^n)}{n}. (4)$$

При увеличении n величина  $H_n(X)$  может являться оценкой энтропии стационарного источника H. Другим подходом к оценке H явлется рассмотрение условных n-граммных энтропий:

$$F_n = H(X_n|X_1...X_{n-1}) = H(X|X^{n-1}).$$
(5)

Из-за стационарности источника индексы также могут быть опущены. Заметим, что из определения  $F_n$  и 3 следует, что  $F_n = H(X^n) - H(X^{n-1})$ .

Опишем основные свойства  $H_n(X)$  и  $F_n(X)$ .  $F_n(X)$  и  $H_n(X)$  не возрастают при росте n. Для  $F_n(X)$  это сразу следует из невозрастания энтропии при добавлении условия, а для доказательства утверждения с  $H_n(X)$  предварительно также нужно использовать свойство 3 и неотрицательность энтропии. Из свойства 3 также следует неравенство  $H_n(X) \geq F_n(X)$ . Энтропия стационарного источника вводится как предел при стремлении размера блока/глубины памяти к бесконечности, при этом пределы для  $H_n(X)$  и  $F_n(X)$  совпадают:

$$H = \lim_{n \to \infty} H_n(X) = \lim_{n \to \infty} F_n(X). \tag{6}$$

Из-за ограниченности вычислительных ресурсов и данных, в работе для оценки H будут рассмотрены N до 6 включительно.

#### Эксперимент

Рассмотрим по три текста на русском и английском языках: «Мастер и Маргарита» Булгакова, «Доктор Живаго» Пастернака, «Тhe Tragedy of Hamlet, Prince of Denmark» Шекспира, «1984» Оруэлла. В работе также используется «Война и Мир» Толстого на двух языках, также рассмотрен вариант объединения трех текстов для каждого из языков в один. Построим зависимости последовательных приближений  $F_n$ ,  $n=\overline{0,6}$ . Также найдем энтропию по словам и посчитаем для нее среднюю энтропию на букву. Пробел считаем символом, разбиение текста на блоки происходит с перекрытием. Результаты приведены в таблице 1.

|   | Text                 | #Symbols | Alphabet | $F_0$ | $F_1$ | $F_2$ | $F_3$ | $F_4$ | $F_5$ | $F_6$ | $F_{ m word}$ |
|---|----------------------|----------|----------|-------|-------|-------|-------|-------|-------|-------|---------------|
| 1 | «1984»               | 569310   | 27       | 4.76  | 4.09  | 3.30  | 2.65  | 2.05  | 1.64  | 1.33  | 2.15          |
| 2 | ${ m st Hamlet}$ »   | 163012   | 27       | 4.76  | 4.07  | 3.31  | 2.63  | 2.05  | 1.62  | 1.22  | 2.34          |
| 3 | «War & Peace»        | 3107847  | 27       | 4.76  | 4.08  | 3.31  | 2.67  | 2.09  | 1.73  | 1.49  | 2.24          |
| 4 | 1-3                  | 3840171  | 27       | 4.76  | 4.08  | 3.32  | 2.69  | 2.13  | 1.77  | 1.54  | 2.24          |
| 5 | «Мастер и Маргарита» | 712333   | 33       | 5.04  | 4.37  | 3.59  | 3.01  | 2.35  | 1.82  | 1.36  | 2.18          |
| 6 | «Доктор Живаго»      | 1007311  | 34       | 5.09  | 4.4   | 3.59  | 3.03  | 2.47  | 1.97  | 1.52  | 2.25          |
| 7 | «Война и Мир»        | 2750968  | 34       | 5.09  | 4.38  | 3.56  | 2.92  | 2.31  | 1.89  | 1.58  | 2.22          |
| 8 | 5-7                  | 4470614  | 34       | 5.09  | 4.38  | 3.58  | 3.00  | 2.42  | 2.01  | 1.7   | 2.29          |

Таблица 1. Приближения  $F_n$ 

Можно видеть, что  $F_n$  при росте длины контекста не возрастает. Самую длинную из рассмотренных (n=6) условных энтропий можем рассматривать как грубую оценку энтропии источника (языка). Из-за ограниченности выборки текстов дальнейшее увеличение n не приводит к сходимости истинной энтропии H,  $F_n$  стремится к нулю, так как достаточно длинный контекст для данной выборки будет уникален и с вероятностью 1 определять дальнейший символ. Кроме приближений  $F_n$  также были найдены  $H_n$ , но чтобы не загромождать таблицу, они не были приведены в отчете. Также рассмотрение групп символов без перекрытия снижает выборку, что приводит к заниженным оценкам  $F_n$  и  $H_n$ . Средние длины слов на английском и русском оказались равны 4.30 и 5.21 соответственно. Даже с учетом довольно ограниченной выборки, оценка  $F_n$  и энтропия на букву в словах оказались довольно близки для соответствующих длин слов (n=3-4 для английского и n=4-5 для русского языка). Однако важны также и взаимосвязи между словами, фразами, более длинные статистические связи, которые принципиально не могут быть учтены

в  $F_{\text{word}}$ . Также длины слов могут изменяться в широких диапазонах от одной буквы (предлоги, артикли) до нескольких десятков, что дополнительно ограничивает уместность сравнения. Кроме того, при подсчете  $F_n$  используется пробел. В «Мастер и Маргарита» 33 символа, так как в тексте не используется буква «ё».

В качестве примера ниже будет дан график для  $F_n$  и  $H_n$  объединенного текста соответственно на английском и русском языках (рис. 2).



Рис. 1. Энтропии  $F_n$  и  $H_n$ 

На графиках можно увидеть, что  $F_n$  и  $H_n$  являются невозрастающими функциями от n, кроме того, выполняется  $H_n(X) \geq F_n(X)$ , что согласуется с теоретическими результатами. Текст на русском оказывается заметно более избыточным, чем на английском, что особенно видно при сравнении переводного текста (на примере романа «Война и Мир»). Построим гистограммы символов и наиболее частых слов для обоих языков:



Рис. 2. Частоты букв (символов) и наиболее распространенных слов

Ожидаемо, для английского самыми распространенными словами являются артикли и предлоги, а для русского— предлоги и частицы. В обоих языках чаще всего встречается пробел, а в русском самыми частотными, очевидно, являются несколько гласных.

### Выводы

В ходе работы были произведены оценки n-граммных условных энтропий  $F_n$  и n-мерных средних энтропии на букву  $H_n$ , данные подтверждают основные свойства условной и многомерной энтропии. Шеннон оценил энтропию английского языка в 1.3 бит/символ [2], полученная величина условной энтропии  $F_6 = 1.54$  бит/символ оказалась довольно близка к шенноновской, но, однако, по построению не учитывает длинные зависимости в тексте.

## Список литературы

- [1] Shannon, C. E. A Mathematical Theory of Communication, 1948
- [2] Shannon, C. E. Prediction and Entropy of Printed English, 1951
- [3] Фоминых, А. Лекции по курсу «Семантическое кодирование», 2024