VJEROJATNOST I STATISTIKA

ZADACI ZA VJEŽBU

6. Primjeri neprekinutih razdioba

FER, Zagreb

SADRŽAJ:

Zadaci za vježbu iz udžbenika Nevena Elezovića: Slučajne varijable Cjelina 6 – Primjeri neprekinutih razdioba

*** Prije rješavanja zadataka treba proći teoretsko gradivo ove cjeline ***

1. Formule	3
2. Zadaci	4
3. Rješeni zadaci	8
4. Službena rješenja	18
5. Tablica normalne razdiobe	19
6. Literatura	21

NAPOMENA

Zadaci KOJI SU potrebni rješavati su od 1-5, te zadaci 11-43, ostali zadaci su teoretskog tipa i nisu potrebni.

Zadaci koji nedostaju: 18,19,36

Posebna zahvala LORD OF THE LIGHT na rješenjima nekoliko zadataka(5.,23.)

FORMULE:

6. PRIMIERI NEPREKINUTIH RAZDIOBA

EKSPONENCIJALNA RAZDIOBA

Opisuje vrijeme između događaja. Kao na primjer vrijeme ispravnog rada uređaja čije se karakteristike ne mijenjaju tokom vremena kao vrijeme do prvog poziva itd.

Oznaka: $\mathcal{E}(\lambda)$

Gustoća razdiobe: $f(x) = \lambda e^{-\lambda x}$, x > 0

Funkcija razdiobe: $F(x) = 1 - e^{-\lambda x}$, x > 0

Vjerojatnost: $P(X < x) = 1 - e^{-\lambda x}$, x > 0

Karakteristična funkcija: $\vartheta(t) = \frac{\lambda}{\lambda - it}$

Očekivanje: $E(X) = \frac{1}{\lambda}$

Disperzija: $D(X) = E(X^2) - (E(X))^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$

Ishodišni moment reda n: $E(X^n) = \frac{n!}{\lambda^n}$

Odsustvo pamćenja: $P(X < x + t \mid X > t) = P(X < x)$

NORMALNA RAZDIOBA

Normalna ili Gaussova razdioba najvažnija je neprekinuta razdioba. Javlja se kao granična u svim situacijama kada je slučajna varijabla dobivena kao zbroj velikog broja međusobno nezavisnih pribrojnika. Ova distribucija je poznata kao i zvonolika razdioba zbog svog specifičnog oblika.

Oznaka: $\mathcal{N}(a, \sigma^2)$

Gustoća razdiobe: $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp{\left(-\frac{(x-a)^2}{2\sigma^2}\right)}$

Vjerojatnost jedinične normalne razdiobe:

$$P(a < X < b) = \Phi(b) - \Phi(a) = \frac{1}{2} (\Phi^*(b) - \Phi^*(a)) ; \Phi^* - u \text{ tablici!}$$

$$P(X < a) = \Phi(a) = \frac{1}{2} + \frac{1}{2}\Phi^*(a)$$

$$P(X > a) = 1 - \Phi(a) = \frac{1}{2} - \frac{1}{2}\Phi^*(a)$$

Vjerojatnost opće normalne razdiobe:

$$P(x_1 < X < x_2) = P\left(\frac{x_1 - a}{\sigma} < \frac{X - a}{\sigma} < \frac{x_2 - a}{\sigma}\right) = \Phi\left(\frac{x_2 - a}{\sigma}\right) - \Phi\left(\frac{x_1 - a}{\sigma}\right) = \frac{1}{2}\left[\Phi^*\left(\frac{x_2 - a}{\sigma}\right) - \Phi*\left(\frac{x_1 - a}{\sigma}\right)\right]$$

$$P(X < x) = \Phi\left(\frac{x-a}{\sigma}\right) = \frac{1}{2} + \frac{1}{2}\Phi^*\left(\frac{x-a}{\sigma}\right)$$

$$P(X > x) = 1 - \Phi\left(\frac{x-a}{\sigma}\right) = \frac{1}{2} - \frac{1}{2}\Phi^*\left(\frac{x-a}{\sigma}\right)$$

Karakteristična funkcija jedinične normalne razdiobe: $\vartheta(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} e^{itx} dx$

Karakteristična funkcija opće normalne razdiobe: $\vartheta_{a+\sigma X}(t)=e^{ita-\frac{1}{2}\sigma^2t^2}$

Veza između jedinične i opće normalne razdiobe:

$$X \sim \mathcal{N}(0,1) \Rightarrow a + \sigma X \sim \mathcal{N}(a, \sigma^2)$$

Očekivanje: E(X) = a

$$X \sim \mathcal{N}(a, \sigma^2) \Rightarrow \frac{X-a}{\sigma} \sim \mathcal{N}(0,1)$$

Disperzija: $D(X) = \sigma^2$

Pravilo 3σ

$$\overline{\mathbf{P}(|\mathbf{X} - \mathbf{a}| < k\sigma)} = \mathbf{P}(-\mathbf{k}\sigma < X - a < k\sigma) = \mathbf{P}(-\mathbf{k} < \overline{\mathbf{X}} < k) = \Phi^*(\mathbf{k}) \quad , \mathbf{k} = 1, 2, 3 \dots$$

Vrijedi $\Phi^*(1) = 0.6827$, $\Phi^*(2) = 0.9545$, $\Phi^*(3) = 0.9973$

Normalna varijabla praktički sigurno uzima vrijednosti unutar intervala: $\mathbf{a} - 3\sigma$, $\mathbf{a} + 3\sigma$ (pravilo 3σ)

$$\begin{array}{c} \underline{\text{Stabilnost normalne razdiobe:}} \ \ X_1 \sim \mathscr{N}(a_1,\sigma_1^2) \text{ , } X_2 \sim \mathscr{N}(a_2,\sigma_2^2) \\ s_1 X_1 + s_2 X_2 \sim \mathscr{N}(\,s_1 a_1 + s_2 a_2,\,\, s_1^2 \sigma_1^2 + s_2^2 \sigma_2^2) \end{array}$$

Aproksimacija binomne razdiobe normalnom:

Varijabla binomne razdiobe za veliki n nalikuje na funkciju gustoće normalne varijable.

Neka je $X \sim \mathcal{B}(n,p)$ onda je $Y \sim \mathcal{N}(np, npq)$

$$P(m) = f(m) = \frac{1}{\sqrt{2npq}} \exp\left(-\frac{(m-np)^2}{2npq}\right)$$

1. Odredi očekivanje i disperziju slučajne varijable zadane gustoćom razdiobe

$$f(x) = 10e^{-10x}, \quad x > 0.$$

- 2. Duljina X ispravnog rada nekog uređaja je slučajna varijabla s eksponencijalnom razdiobom. Ako je poznato da će s vjerojatnošću 0.4 uređaj raditi ispravno tijekom jedne godine, kolika je vjerojatnost da će od 50 takvih uređaja njih barem 40 ispravno raditi tijekom prvih šest mjeseci?
- 3. Slučajna varijabla X zadana je gustoćom razdi-

$$f(x) = \frac{1}{3}e^{-x/3}, \quad x > 0.$$

Izračunaj vjerojatnost događaja

$$A=(X>3),$$

$$B = (X > 6 \mid X > 3),$$

$$C = (X > t+3 \mid X > t).$$

- 4. Vrijeme ispravnog rada sklopa A u nekom uređaju je slučajna varijabla X s eksponencijalnom razdiobom i očekivanjem E(X)=6 mjeseci. Ako se sklop A pokvari, u rad se uključuje rezervni sklop B s istim karakteristikama. Kolika je vjerojatnost da će uređaj ispravno raditi tijekom jedne godine?
- 5. Vrijeme (u danima) ispravnog rada nekog stroja je eksponencijalna slučajna varijabla s parametrom $\lambda = \frac{1}{200}$. Nakon godinu dana ispravnog rada, stroj se servisira (bez obzira na ispravan rad). Izračunaj očekivano vrijeme rada stroja do servisiranja.
- **6.** Neka X ima eksponencijalnu razdiobu $E(\lambda)$. Izračunaj $E(X^k)$.
- 7. Neka je X slučajna varijabla: vrijeme ispravnog rada nekog uređaja. Pretpostavimo da je uvjetna vjerojatnost da će uređaj prestati s radom unutar kratkog vremenskog intervala $(x, x + \Delta x)$, ako je poznato da je ispravno radio do trenutka x, jednaka

$$P(X < x + \Delta x \mid X > x) = \lambda(x)\Delta x + r,$$

$$\frac{r}{\Delta x} \to 0 \quad \text{kad} \quad \Delta x \to 0.$$

Pokaži da funkcija razdiobe varijable X glasi

$$F(x) = 1 - \exp\left(-\int_0^x \lambda(u)du\right).$$

- **8.** Ako je u prethodnom zadatku $\lambda(x) = \lambda$ (konstanta, nepromjenjiva u vremenu), dokaži da X ima eksponencijalnu razdiobu. Često se vrijeme ispravnog rada elektroničkih uređaja ravna po Weibullovoj razdiobi, kod koje je $\lambda(x) = C\alpha x^{\alpha-1}$. $(\alpha < 1)$. Odredi pripadnu funkciju razdiobe i gus-
- 9. Slučajna varijabla X ima Erlangovu distribuciju, s gustocom

$$f(x) = \frac{x^n e^{-x}}{n!}, \qquad x \geqslant 0,$$

a slučajna varijabla Y ima Poissonovu razdiobu

$$p_n = \frac{\lambda^n}{n!} e^{-\lambda}.$$

Pokaži da vrijedi $1-F(\lambda)=G(n)$, gdje su F, G redom funkcije razdioba varijabli X i Y.

10. Odredi konstantu C tako da

$$f(x) = Ce^{-x^2 + 4x}, x \in \mathbf{R}$$

bude gustoća (normalne) razdiobe. Izračunaj očekivanje i disperziju te razdiobe.

11. Neka je X jedinična normalna slučajna varijabla. Odredi vjerojatnost sljedećih događaja

A. 0 < X < 1.42;

B. $-0.73 \leqslant X < 0$;

C. -1.73 < X < 2.01;

D. $0.65 \le X \le 1.26$;

E. -1.79 < X < -0.54; F. X > 1.13; G. $|X| \le 0.5$.

12. Neka je X jedinična normalna varijabla. Odredi broj t tako da bude **A.** P(0 < X < t) = 0.4236, **B.** P(X < t) = 0.7967, **C.** P(t < X < 2) = 0.1.

13. Neka je X normalna varijabla s očekivanjem 8 i odstupanjem 4. Odredi

A. P(5 < X < 10)

B. P(10 < X < 15), C. P(X > 15), D. $P(X \le 5)$.

14. Slučajna varijabla X ima normalnu razdiobu $\mathcal{N}(2,4)$. Izračunaj uvjetnu vjerojatnost

$$P(-1 < X < 1 \mid 0 < X < 3).$$

- 15. Greška pri mjerenju je normalna varijabla s parametrima a = 0 i $\sigma = 30$ m. Odredi vjerojatnost da je greška po apsolutnoj vrijednosti manja od 42 m.
- 16. Slučajna varijabla X ima normalnu razdiobu s očekivanjem a = 3, i vrijedi P(X < 5) = 0.6915. Izračunaj vjerojatnost događaja $\{-1 < X < 6\}$.
- 17. Slučajna varijabla X distribuirana je po normalnom zakonu $\mathcal{N}(4, \sigma^2)$. Odredi σ ako je poznato P(2 < X < 6) = 0.8664.
- 18. Neka je slučajna varijabla X distribuirana po normalnom zakonu $\mathcal{N}(0, \sigma^2)$ i neka su 0 < a < bzadani brojevi. Uz koje će odstupanje σ vjerojatnost događaja (a < X < b) biti najveća?
- 19. Slučajna varijabla X distribuirana je po normalnom zakonu $\mathcal{N}(a, \sigma^2)$. Odredi E(|X-a|).
- **20.** Slučajna varijabla Y zadana je formulom Y = $\sqrt{|X|}$. Odredi gustoću razdiobe varijable Y ako X ima jediničnu normalnu razdiobu.
- 21. Duljina nekih detalja distribuirana je po zakonu normalne razdiobe. Srednja vrijednost duljine je 50 cm, a 10 % proizvoda ima duljinu veću od 52 cm. Odredi simetrični interval oko srednje vrijednosti unutar kojeg se s vjerojatnošću 99% nalaze duljine tih detalja.
- 22. Slučajna varijabla X ima normalnu razdiobu $\mathcal{N}(a, \sigma^2)$. Odredi gustoću i očekivanje slučajne varijable $Y = (X - a)^2$.

* * *

- **24.** Težina serijski rađenog građevinskog elementa slučajna je varijabla podvrgnuta normalnoj razdiobi s parametrima a=0.5 tona, $\sigma=0.01$ tona. Kolika je vjerojatnost da težina 5 takvih elemenata premaši 2.55 tona?
- **25.** U paket stavljamo 3 proizvoda tipa A i 2 proizvoda tipa B. Ako je težina proizvoda A normalna varijabla

$$X \sim \mathcal{N}(a_X = 200p, \sigma_X = 10p),$$

a težina proizvoda B također normalna varijabla

$$Y \sim \mathcal{N}(a_Y = 100p, \sigma_Y = 20p),$$

kolika je vjerojatnost da težina paketa bude veća od 750 p?

- **26.** Slučajne varijable X_1, X_2, X_3 su međusobno nezavisne, s normalnim razdiobama $\mathcal{N}(0,1)$, $\mathcal{N}(1,1)$, $\mathcal{N}(2,4)$ redom. Izračunaj vjerojatnost događaja $(X_1 < X_3 X_2)$.
- 27. Međusobno nezavisne slučajne varijable X, Y, Z podvrgavaju se normalnim radiobama, redom $X \sim \mathcal{N}(1,1)$, $Y \sim \mathcal{N}(4,4)$, $Z \sim \mathcal{N}(9,9)$. Izračunaj vjerojatnost događaja $(X \leqslant 3Y 2Z)$.
- **28.** Nezavisne slučajne varijable X i Y podvrgavaju se normalnim razdiobama sa sredinama $a_X=2$, $a_Y=3$ te disperzijom $\sigma_X^2=\sigma_Y^2=\sigma^2$. Odredi σ^2 ako događaj (X>Y) ima vjerojatnost 40%.
- **29.** Nezavisne slučajne varijable X i Y imaju normalne razdiobe s parametrima $a_X=1$, $a_Y=3$ i nepoznatim σ_X , σ_Y . Ako vrijedi

$$P(0 < X < 1) = P(2 < Y < 4) = 0.4,$$

kolika je vjerojatnost događaja (2 < X + Y < 6)?

- **30.** Neka su X_1 i X_2 međusobno nezavisne slučajne varijable s normalnim distribucijama: $X_1 \sim \mathcal{N}(5,4)$, $X_2 \sim \mathcal{N}(4,9)$, nadalje, neka je $Z=2X_1+X_2$, $W=X_1+2X_2$. Izračunaj vjerojatnost događaja (Z>W).
- 31. Težina proizvoda A je normalna slučajna varijabla s parametrima $\mu_A=3$, $\sigma_A=0.7$, a težina proizvoda B normalna slučajna varijabla s parametrima $\mu_B=4$, $\sigma_B=0.2$. Ako na prvi krak vage stavimo 6 proizvoda tipa A, a na drugi krak iste vage 5 proizvoda tipa B, kolika je vjerojatnost da će drugi krak pretegnuti?

32. Nađi vjerojatnost da se broj devetki među 10 000 na sreću odabranih znamenki nalazi između 940 i 1060.

* * *

- 33. Kocka je bačena 1200 puta, pritom se broj 1 pojavio 140 puta. Može li se prihvatiti hipoteza o ispravnosti ove kocke?
- **34.** Slučajna varijabla X zadana je funkcijom razdiobe $F(x) = x^2$, 0 < x < 1. Izračunaj vjerojatnost da u 50 nezavisnih pokusa varijabla X poprimi vrijednost između 0.25 i 0.5 barem 10 puta.
- 35. Vjerojatnost rođenja dječaka približno je jednaka 0.515. Kolika je vjerojatnost da među 100 novorođene djece bude od 50 do 55 dječaka?
- 36. Koliko puta treba baciti kocku da vjerojatnost događaja

$$\left(\left| \frac{m}{n} - \frac{1}{6} \right| \leqslant 0.01 \right)$$

bude barem 0.5, gdje je m broj pojavljivanja jedinice u n bacanja.

37. Neprekidna slučajna varijabla X zadana je funkcijom razdiobe

$$F(x) = ax^2, \qquad 0 \leqslant x \leqslant 3.$$

Odredi konstantu a. Izračunaj vjerojatnost da u 100 nezavisnih pokusa slučajna varijabla X poprimi vrijednost između 1 i 2 barem 30 puta.

- **38.** Neki stroj proizvodi 60 % proizvoda prve kvalitete. Izračunaj vjerojatnost da među 75 proizvoda barem 40 bude prve kvalitete.
- **39.** Vjerojatnost realizacije događaja A u jednom pokusu je 0.1. Koliko nezavisnih pokusa moramo učiniti da bi se s vjerojatnošću 0.8 događaj A realizirao barem 5 puta?
- **40.** Neki stroj proizvodi 40% proizvoda prve kvalitete. Koliko je proizvoda u svakoj seriji potrebno proizvesti, da bi s vjerojatnošću 70% u svakoj seriji imali barem 30 proizvoda prve kvalitete?
- **41.** Bacamo par kocaka. Neka je $A = \{$ zbroj brojeva na obje kocke je barem $10 \}$. Izračunaj P(A). Odredi potreban broj bacanja tako da vjerojatnost pojavljivanja događaja A barem jednom, bude veća od 0.8. Izračunaj očekivanje broja bacanja do pojavljivanja događaja A.
- **42.** Vjerojatnost pojavljivanja događaja A u svakom od nezavisnih pokusa je 0.8. Koliko pokusa treba napraviti da bi s vjerojatnošću 0.9 broj pojavljivanja događaja A bio veći od 75?
- **43.** Točka se bira na sreću unutar kvadrata stranice 1. Kolika je vjerojatnost da će od 50 izabranih točaka barem 40 pasti unutar kruga upisanog tom kvadratu?

* * *

44. Slučajna varijabla X distribuirana je po Laplaceovom zakonu ako je njezina gustoća

$$f(x) = \frac{1}{2\alpha} \exp\left(-\frac{|x-a|}{\alpha}\right)$$

gdje je $a \in \mathbb{R}$ proizvoljan te $\alpha > 0$. Odredi očekivanje i disperziju od X.

45. Slučajna varijabla X ima lognormalnu razdiobu ako je njezina gustoća

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - a)^2}{2\sigma^2}\right), x > 0$$

gdje je $a \in \mathbf{R}$ proizvoljan te $\sigma > 0$. (X opisuje razdiobu veličine čestica pri mrvljenju, npr. veličinu čestica zrnca pijeska, također i distribuciju veličine plaća.) Odredi očekivanje i disperziju od X.

46. Slučajna varijabla X ima Rayleighovu razdiobu, s gustoćom

$$f(x) = 2h^2xe^{-h^2x^2}, \quad x > 0.$$

Odredi očekivanje i disperziju od X.

47. Slučajna varijabla X ima gama razdiobu s parametrima (α, β) , ako je njezina gustoća

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \ x > 0.$$

Izračunaj a) E(X), b) D(X), c) $E(X^n)$.

48. Izračunaj mod, očekivanje i disperziju slučajne varijable s gustoćom

$$f(x) = \frac{\gamma^{m-1}}{(m-2)!} x^{-m} e^{-\gamma/x}, \ x > 0.$$

(Piersonov zakon prvog tipa.)