

Data Source

UCI Archive

https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

Two datasets related to red and white **Vinho Verde** wine samples, from the north of Portugal.

- winequality-red.csv
- winequality-white.csv

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

Data Cleaning

```
df = df.drop_duplicates(keep = 'first', inplace = False)
df = df.dropna(axis='columns', how='all')
df = df.reset_index(drop=True)
df
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	0.45	8.8	6
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	0.49	9.5	6
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	0.44	10.1	6
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
4	6.2	0.32	0.16	7.0	0.045	30.0	136.0	0.99490	3.18	0.47	9.6	6
		5870		275	***		5470	577			1777	
3952	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	0.50	11.2	6
3953	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	0.46	9.6	5
3954	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	0.46	9.4	6
3955	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	0.38	12.8	7
3956	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3.26	0.32	11.8	6

```
#import CSV file
df = pd.read_csv('Resources/Data/winequality-white.csv', delimiter=';')
df.head()
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

```
#import CSV file
df = pd.read_csv('Resources/Data/winequality-red.csv', delimiter=';')
df.head()
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

Red Wine Features

Red Wine

Correlation Heat Map

White Wine Features

CHABLIS CHA

White Wine

fixed acidity -		-0.02	0.29	0.09		-0.05			-0.43	-0.02	-0.12	-0.11
volatile acidity -	-0.02	1.00	-0.15	0.06	0.07	-0.10	0.09	0.03	-0.03	-0.04	0.07	-0.19
citric acid =	0.29	-0.15	1.00	0.09	0.11	0.09	0.12	0.15	-0.16	0.06	-0.08	-0.01
residual sugar -	0.09	0.06	0.09	1.00	0.09	0.30	0.40	0.84	-0.19	-0.03	-0.45	-0.10
chlorides -	0.02	0.07	0.11	0.09	1.00	0.10	0.20	0.26	-0.09	0.02	-0.36	-0.21
free sulfur dioxide -	-0.05	-0.10	0.09	0.30	0.10	1.00	0.62	0.29	-0.00	0.06	-0.25	0.01
total sulfur dioxide -	0.09	0.09	0.12	0.40	0.20	0.62	1.00	0.53	0.00	0.13	-0.45	-0.17
density -	0.27	0.03	0.15	0.84	0.26	0.29	0.53	1.00	-0.09	0.07	-0.78	-0.31
рн -	-0.43	-0.03	-0.16	-0.19	-0.09	-0.00	0.00	-0.09	1.00	0.16	0.12	0.10
sulphates -	-0.02	-0.04	0.06	-0.03	0.02	0.06	0.13	0.07	0.16	1.00	-0.02	0.05
alcohol -	-0.12	0.07	-0.08	-0.45	-0.36	-0.25	-0.45	-0.78	0.12	-0.02	1.00	0.44
quality -	-0.11	-0.19	-0.01	-0.10	-0.21	0.01	-0.17	-0.31	0.10		0.44	1.00
,	fixed acidity -	olatile acidity -	citric acid _	esidual sugar –	chlorides -	sulfur dioxide -	sulfur dioxide –	density –	Ŧ	sulphates -	alcohol –	quality –

Machine Learning

Quality

(Fair and Very Good)

Methods:

- Support Vector Machines
- Deep Learning
- K Nearest Neighbor
- Logistic Regression
- Random Forests
- XG Boost

Features:

All Features vs Top 5 Features

(Red Wine vs White Wine)

Support Vector Machines (SVM)

Red Wine

	precision	recall	f1-score	support
Fair	0.86	0.98	0.92	103
Very Good	0.67	0.20	0.31	20
accuracy			0.85	123
macro avg	0.76	0.59	0.61	123
weighted avg	0.83	0.85	0.82	123

	precision	recall	f1-score	support
Fair	0.91	0.97	0.94	110
Very Good	0.40	0.15	0.22	13
accuracy			0.89	123
macro avg	0.65	0.56	0.58	123
weighted avg	0.85	0.89	0.86	123

Support Vector Machines (SVM)

White Wine

	precision	recall	f1-score	support
Fair	0.83	0.97	0.89	278
Very Good	0.74	0.29	0.42	79
accuracy			0.82	357
macro avg	0.79	0.63	0.66	357
weighted avg	0.81	0.82	0.79	357

	precision	recall	f1-score	support
Fair	0.83	0.96	0.89	282
Very Good	0.66	0.25	0.37	75
accuracy			0.82	357
macro avg	0.74	0.61	0.63	357
weighted avg	0.79	0.82	0.78	357

Support Vector Machines (SVM) - Jupyter Notebook

Create a Train Test Split

All Features

```
# Split the data using train_test_split
# create the train and validation datasets
from sklearn.model_selection import train_test_split
X_train, X_left, y_train, y_left = train_test_split(X, y, train_size=.7)
X_val, X_test, y_val, y_test = train_test_split(X_left, y_left, train_size=.7)
X_train.shape, X_val.shape, X_test.shape
((2772, 11), (832, 11), (357, 11))
```

Pre-pocessing

```
# Scale your data
X_scale = StandardScaler().fit(X_train)

X_train_scaled = X_scale.transform(X_train)
X_test_scaled = X_scale.transform(X_test)
```


Train the Model

```
from sklearn.svm import SVC
model_svm = SVC()
model_svm.fit(X_train_scaled, y_train)
SVC()

#And score the model using the unseen testing data
model_svm.score(X_train, y_train), model_svm.score(X_val, y_val)
(0.7911255411255411, 0.7956730769230769)

# Overall Score for the model
model_svm.score(X_val, y_val)
0.7956730769230769

print(f"Training Data Score: {model_svm.score(X_train_scaled, y_train)}")
print(f"Testing Data Score: {model_svm.score(X_test_scaled, y_test)}")
Training Data Score: 0.8376623376623377
Testing Data Score: 0.834733893557423

predictions = model_svm.predict(X_test_scaled)
```

```
print(grid.best_params_)
print(grid.best_score_)

{'C': 10, 'gamma': 0.01, 'kernel': 'rbf'}
0.8188985273874764
```

Deep Learning

	precision	recall	f1-score	support
Fair	0.93	1.00	0.96	110
Very Good	1.00	0.38	0.56	13
accuracy			0.93	123
macro avg	0.97	0.69	0.76	123
weighted avg	0.94	0.93	0.92	123

support	f1-score	recall	precision	
108	0.94	0.99	0.89	Fair
15	0.22	0.13	0.67	Very Good
123	0.89			accuracy
123	0.58	0.56	0.78	macro avg
123	0.85	0.89	0.86	eighted avg

Deep Learning

White Wine

	precision	recall	f1-score	support		precision	recall	f1-score	support
Fair Very Good	0.81 0.74	0.97 0.27	0.88 0.40	273 84	Fair Very Good	0.85 0.59	0.97 0.21	0.91 0.31	295 62
accuracy macro avg weighted avg	0.78 0.80	0.62 0.81	0.81 0.64 0.77	357 357 357	accuracy macro avg weighted avg	0.72 0.81	0.59 0.84	0.84 0.61 0.80	357 357 357

Deep Learning- Jupyter Notebook

```
# Selected important features - top 5
selected features = X[['alcohol', 'density', 'free sulfur dioxide', 'residual sugar', 'pH']]
from sklearn.model selection import train test split
X_train, X_left, y_train, y_left = train_test_split(selected_features,y, train_size=.7)
X val. X test, v val. v test = train test split(X left, v left, train size=.7)
X train.shape, X val.shape, X test.shape, v train.shape, v val.shape, v test.shape
((2772, 5), (832, 5), (357, 5), (2772,), (832,), (357,))
Pre-pocessing ¶
# Scale the data using the StandardScaler and perform some feature selection
X scale = StandardScaler().fit(X train)
X train scaled = X scale.transform(X train)
X test scaled = X scale.transform(X test)
print(X_train_scaled.shape, X_test_scaled.shape, y_train.shape)
(2772, 5) (357, 5) (2772,)
# Step 1: Label-encode data set
label encoder = LabelEncoder()
label encoder.fit(y train)
encoded_y_train = label_encoder.transform(y_train)
encoded y test = label encoder.transform(y test)
# Step 2: Convert encoded labels to one-hot-encoding
v train categorical = to categorical(encoded v train)
y test categorical = to categorical(encoded y test)
 Quantify our Trained Model
 #evaluate the model
 deep_model_loss, deep_model_accuracy = deep_model.evaluate(
    X test scaled, v test categorical, verbose=2)
    f"Normal Neural Network - Loss: {deep model loss}, Accuracy: {deep model accuracy}")
```

12/12 - 0s - loss: 0.4010 - accuracy: 0.8263

Normal Neural Network - Loss: 0.40100419521331787, Accuracy: 0.8263305425643921

Train the Model

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.lavers import Dense
# Create model and add layers
deep_model = Sequential()
deep model.add(Dense(units=20, activation='relu', input dim=5))
deep model.add(Dense(units=20, activation='relu'))
deep model.add(Dense(units=2, activation='softmax'))
# Compile and fit the model
deep_model.compile(optimizer='adam',
             loss='categorical_crossentropy',
             metrics=['accuracy'])
deep model.summarv()
Model: "sequential"
Layer (type)
                           Output Shape
                                                   Param #
dense (Dense)
                           (None, 20)
                                                   120
dense 1 (Dense)
                           (None, 20)
                                                   420
dense 2 (Dense)
                           (None, 2)
                                                   42
----<del>-</del>
Total params: 582
Trainable params: 582
Non-trainable params: 0
```

```
# fit model
history = deep_model.fit(
    X_train_scaled,
    Y_train_cated,
    y_train_cated,
    validation_split=.2,
    epochs=30,
    shuffle=True,
    verbose=2,
    validation_data=(X_test_scaled, y_test_categorical)
}
```

```
EDOCH 1/30
70/70 - 0s - loss: 0.6170 - accuracy: 0.6640 - valloss: 0.4828 - vallaccuracy: 0.8000
EDOCH 2/30
70/70 - 0s - loss: 0.4633 - accuracy: 0.7988 - valloss: 0.4359 - vallaccuracy: 0.8018
EDOCH 3/30
70/70 - 0s - loss: 0.4338 - accuracy: 0.8074 - valloss: 0.4259 - vallaccuracy: 0.8018
EDOCH 4/30
70/70 - 0s - loss: 0.4245 - accuracy: 0.8065 - valloss: 0.4239 - vallaccuracy: 0.7982
EDOCH 5/30
70/70 - 0s - loss: 0.4198 - accuracy: 0.8051 - valloss: 0.4209 - vallaccuracy: 0.7982
EDOCH 6/30
70/70 - 0s - loss: 0.4198 - accuracy: 0.8088 - valloss: 0.4215 - vallaccuracy: 0.7982
```

KNN- K Nearest Neighbor

Red Wine

KNN- K Nearest Neighbor

White Wine

KNN- K Nearest Neighbor

```
#All features
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
X_value, X_test, y_value, y_test= train_test_split(X, y, random_state=42)

X_train.shape, X_value.shape, X_test.shape

((3673, 11), (3673, 11), (1225, 11))

# Create a StandardScater model and fit it to the training data

X_scaler = StandardScaler().fit(X_train)

X_train_scaled = X_scaler.transform(X_train)

X_test_scaled = X_scaler.transform(X_test)

print(X_train_scaled.shape, X_test_scaled.shape, y_train.shape)
```

(3673, 11) (1225, 11) (3673,)

```
# Loop through different k values to see which has the highest accuracy
# Note: We only use odd numbers because we don't want any ties
train scores = []
test scores = []
for k in range(1, 20, 2):
   knn = KNeighborsClassifier(n neighbors=k)
   knn.fit(X train scaled, y train)
   train score = knn.score(X train scaled, y train)
   test score = knn.score(X test scaled, y test)
   train scores.append(train score)
   test scores.append(test score)
   print(f"k: {k}, Train/Test Score: {train score:.3f}/{test score:.3f}")
k: 1. Train/Test Score: 1.000/0.860
k: 3. Train/Test Score: 0.913/0.834
k: 5. Train/Test Score: 0.877/0.836
k: 7. Train/Test Score: 0.869/0.829
k: 9. Train/Test Score: 0.857/0.819
k: 11. Train/Test Score: 0.851/0.825
k: 13, Train/Test Score: 0.843/0.815
k: 15, Train/Test Score: 0.844/0.820
k: 17. Train/Test Score: 0.841/0.810
k: 19, Train/Test Score: 0.840/0.814
#plt.plot(range(1, 20, 2), train scores, marker='o')
#plt.plot(range(1, 20, 2), test scores, marker="x")
#plt.xlabel("k neighbors")
#plt.ylabel("Testing accuracy Score")
#plt.savefig('Resources/images/white all features KNN.jpg')
#plt.show()
```

Note that k: 15 seems to be the best choice for this dataset

print('k=3 Test Acc: %.3f' % knn.score(X test scaled, y test))

knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X train scaled, v train)

Logistic Regression

Logistic Regression

Logistic Regression

```
x = df[df.columns[:-1]]
 y = df['quality']
 sc = StandardScaler()
 x = sc.fit transform(x)
 # Split our data into training and testing
 x train, x test, y train, y test = train test split(x, y, test size=.2, random state=42)
 for data in [y_train, y_test]:
     print(data.describe())
 count
           1279
 unique
           Fair
 top
 freq
           1109
 Name: quality, dtype: object
            320
 count
 unique
              2
 top
           Fair
 frea
            273
 Name: quality, dtype: object
 #Create a Logistic Regression Model
 classifier = LogisticRegression()
 classifier
 LogisticRegression()
  classifier.fit(x train, y train)
 LogisticRegression()
print(f"Training Data Score: {classifier.score(x train, y train)}")
 print(f"Testing Data Score: {classifier.score(x test, y test)}")
 Training Data Score: 0.8858483189992181
 Testing Data Score: 0.865625
```

	Prediction	Actual
0	Fair	Fair
1	Fair	Fair
2	Fair	Fair
3	Fair	Fair
4	Fair	Fair

315	Fair	Fair
316	Fair	Fair
317	Fair	Fair
318	Fair	Fair
319	Fair	Fair

320 rows × 2 columns

Random Forests - Red Wine

Random Forests - White Wine

All Features

TOP Features
Minus 'sulphates', 'fixed acidity' and 'volatile acidity'.

	precision	recall	f1-score	support		precision	recall	f1-score	support
Fair Very Good	0.87 0.78	0.96 0.51	0.91 0.61	305 91	Fair Very Good	0.87 0.78	0.96 0.51	0.91 0.61	305 91
accuracy macro avg weighted avg	0.82 0.85	0.73 0.85	0.85 0.76 0.84	396 396 396	accuracy macro avg weighted avg	0.82 0.85	0.73 0.85	0.85 0.76 0.84	396 396 396

Random Forests Classifier Jupyter Notebook

Create a Train Test Split

```
# Create the GridSearch estimator along with a parameter object containing the values to adjust
                                                                                 # Check it out how GridSearchCV can perform
: X train, X , y train, y = train test split(X,y,train size=.7,random state=3)
 X val, X test, y val, y test = train test split(X ,y ,test size=.333,random state=3)
 print(X train.shape, X val.shape, X test.shape, y train.shape, y val.shape, y test.shape)
 (2772, 11) (793, 11) (396, 11) (2772,) (793,) (396,)
                                                                                  print(grid.best params )
                                                                                  print(grid.best score )
 #Train your first model with choosen parameters
                                                                                  0.8326132630825771
 train scores = []
 val scores = []
                                                                                #1 - Previus tuning or
 oob scores = []
                                                                                #2 - GridSearch
 for k in range(1, 8, 1):
      rf = RandomForestClassifier(n estimators=100,
                                                                                #best rf = rf
                                                                                print(best rf)
                                        min samples leaf=k,
                                        n jobs=-1,
                                        oob score=True,
                                        criterion='gini')
                              k: 4, Train/Test Score: 0.948/0.821
                              OOB Score: 0.8318903318903319
   0.975
  0.950
   0.925
   0.900
  ₽ 0.875
  0.850
```

```
param grid = {'criterion':['gini', 'entropy'],
             'n estimators':[100, 200],
             'min samples leaf':[1,2,3,4,5,6]}
grid = GridSearchCV(rf, param grid, verbose=3, return train score=True)
 {'criterion': 'entropy', 'min samples leaf': 1, 'n estimators': 200}
#Choose the best parameter and run a final test from one of those:
best rf = grid.best estimator #Chose this because GridSearch got a 0.883 score
#Run one more time on the train data
best rf.fit(X train, y train)
print(f'Train Data: {best rf.score(X train, y train), best rf.score(X val, y val)}')
#Concatenate the train and test
X train c = pd.concat([X train, X val], ignore index=True)
y train c = pd.concat([y train, y val], ignore index=True)
best rf.fit(X train c, y train c)
print(f'Train and Validation Data Concat: {best_rf.score(X_train_c,y_train_c)}')
print(f'Validation Data : {best rf.score(X val, y val)}')
print(f'Final result Test Data: {best rf.score(X test,y test)}')
RandomForestClassifier(criterion='entropy', n estimators=200, n jobs=-1,
                        oob score=True)
Train Data: (1.0, 0.8095838587641866)
Train and Validation Data Concat: 1.0
Validation Data: 1.0
Final result Test Data: 0.853535353535353535
```

XG Boost- Red Wine

All Features

TOP Features
Minus 'chlorides', 'free sulfur dioxide' and 'pH'

					I	precision	recall	fl-score	support	
	precision	recall	f1-score	support						
					Fair	0.94	0.99	0.97	121	
Fair	0.94	0.98	0.96	121	Very Good	0.88	0.50	0.64	14	
Very Good	0.78	0.50	0.61	14	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
			0.00	105	accuracy			0.94	135	
accuracy			0.93	135	macro avg	0.91	0.75	0.80	135	
macro avg	0.86	0.74	0.79	135	weighted avg	0.94	0.94	0.93	135	
ghted avg	0.93	0.93	0.93	135	weighted avg	0.94	0.94	0.93	133	

XG Boost- White Wine

TOP Features Minus 'fixed acidity','density','sulphates'

- 250

- 200

- 150

- 100

- 50

25

All Features

	precision	recall	f1-score	support		precision	recall	il-score	support
Fair Very Good	0.84 0.55	0.94 0.29	0.89 0.38	316 79	Fair Very Good	0.85 0.58	0.94 0.32	0.89 0.41	316 79
accuracy macro avg weighted avg	0.69 0.78	0.62 0.81	0.81 0.63 0.79	395 395 395	accuracy macro avg weighted avg	0.71 0.79	0.63 0.82	0.82 0.65 0.80	395 395 395

XGBoost Classifier Jupyter Notebook

Create a Train Test Split ¶

```
# Split the data using train test split
X train, X , y train, y = train test split(X,y,train size=.7,random state=3)
X val,X test, y val, y test = train test split(X ,y ,test size=.332,random state=3)
X train.shape, X val.shape, X test.shape, y train.shape, y val.shape, y test.shape
((2769, 11), (793, 11), (395, 11), (2769,), (793,), (395,))
# Create a StandardScater model and fit it to the training data
X scaler = StandardScaler().fit(X train)
# Transform the training and testing data using the X scaler and y scaler models
X train = X scaler.transform(X train)
X val = X scaler.transform(X val)
X test = X scaler.transform(X test)
# Init classifier
xqb cl = xqb.XGBClassifier(use label encoder=False, objective="binary:logistic")
print(xqb cl)
xgb cl.fit(X train, y train)
print(f'Train Data Score: {xqb cl.score(X train, y train)}')
print(f'Validation Data Score: {xgb cl.score(X val, y val)}')
```

Train Data Score: 0.9992777175875768
Validation Data Score: 0.8272383354350568

```
# Create the GridSearch estimator along with a parameter object containing the values to adjust
from sklearn.model selection import GridSearchCV
param grid = {
    "max depth": [3, 4, 5],
    "learning rate": [0.01, 0.1, 0.2],
   "subsample": [0.5,0.7,0.9],
   "colsample bytree": [0.5, 0.7, 0.9],
# Init classifier
xgb cl = xgb.XGBClassifier(objective="binary:logistic", use label encoder=False)
# Init Grid Search
grid = GridSearchCV(xgb cl, param grid, n jobs=-1, verbose=3, cv=3, scoring="roc auc",return train score=True)
 print(grid.best params )
 print(grid.best score )
 {'colsample bytree': 0.9, 'learning rate': 0.1, 'max depth': 3, 'subsample': 0.5}
 0.8344659962039832
#Choose the best parameter and run a final test from one of those:
#1 - Previous tuning or
#2 - GridSearch
\#best xab cl = xab cl
best xqb cl = grid.best estimator #Chose this because GridSearch got a 0.834 score
print(best xqb cl)
best xgb cl.fit(X train, y train)
X train c = np.concatenate([X train, X val])
y train c = np.concatenate([y train, y val])
best xgb cl.fit(X train c, y train c)
print(f'Train and Validation Data Concat: {best xgb cl.score(X train c,y train c)}')
print(f'Validation Data: {best xgb cl.score(X val,y val)}')
print(f'Final result Test Data: {best_xgb_cl.score(X_test,y_test)}')
```

Train and Validation Data Concat: 0.8573834924199888 Validation Data: 0.8663303909205549
Final result Test Data: 0.810126582278481

Comparisons - Red Wine

Models Vs Accuracy

Comparisons - White Wine

Model Vs Accuracy

https://josiedeleon.github. io/Final-Project/

Wine Analyzer

With the use of Machine Learning, can you tell if a wine is good without having to taste it? The purpose of this project is to be able to analyze a variety of different data points to better predict the probability of a wine being good.

Data Source

Two datasets related to red and white Vinho Verde wine samples, from the north of Portugal.