convex function = any function that has a shape like a bowl

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for all $x, y \in \mathcal{X}, t \in [0, 1]$. - (1)

Notice the equal in the "<=" sign!

From Rinaldi's whiteboard:

Interpretation: For any two points, we draw a line between them, and for any point on that line, the value of the function in this point is below the point on the line.

strictly convex function = has only one minimum (local = global)

$$f(tx+(1-t)y) < tf(x) + (1-t)f(y) \quad \text{for all } x \neq y \in \mathcal{X}, t \in (0,1).$$

Here we don't have the equal in the sign!

Examples for strictly convex:

Every strictly convex function is convex, but the reverse is not true. (see pictures above)

Strongly convex function = how "convex" or "curved" a convex function is.

It can be seen as a kind of "parameterized strict convexity".

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y) - \frac{1}{2}mt(1 - t)\|x - y\|_2^2$$
 for all $x, y \in \mathcal{X}, t \in [0, 1]$. $-(4)$

You can think of the parameter m as measuring how "curved" the function is: the larger m is the more curved f is. That is why $f(x) = \exp(x)$ is not strongly convex: as x goes to infinity, the curve becomes flatter and flatter (m -> 0).

From Rinaldi's whiteboard: (sigma is the same as m above)

Between two strongly convex functions, the function with the larger m is more strongly convex. => this function's curvature grows more rapidly

Extras for strong convexity:

From Rinaldi's slides (here lambda refers to t in above's equation):

Finally, by taking limit $\lambda \to 0$, we can write

$$f(x) \ge f(x^*) + \frac{\sigma}{2} ||x - x^*||^2,$$

Strong Convexity

A function f is strongly convex with parameter m > 0, or simply m-strongly convex, if

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) - \frac{m}{2} ||\mathbf{x}||^2$$

is convex.

Note. $f(x) = \frac{m}{2} ||x||^2 + \tilde{f}(x)$, i.e. f is $\frac{m}{2} ||x||^2$ plus an extra convex term. Informally, "m-strongly convex" means at least as "convex" as $\frac{m}{2} ||x||^2$.

Example. $f(x) = \frac{a}{2} ||x||^2$ is *m*-strongly convex iff $a \ge m$

Example. $f(x)=x^4$ is not m-strongly convex for any m>0, as $\tilde{f}(x)=x^4-\frac{m}{2}x^2$ is not convex,

$$\tilde{f}''(x) = 12x^2 - m < 0$$

for $|x| < \sqrt{m/12}$.

Useful link:

(Strictly/strongly) convex functions | Statistical Odds & Ends (wordpress.com)