

Bach. em Ciência da Computação Estrutura de Dados

3º Período Prof. Hamilton J. Brumatto

11/05/2016

Nome: Prova 1

No:

Instruções:

- (a) A prova tem a duração de 90 minutos;
- (b) A prova é individual sendo proibida qualquer consulta ou o uso de qualquer meio de comunicação;
- (c) A interpretação do enunciado é parte integrante da prova;
- (d) O total de pontos é proporcional à nota, sendo que a nota equivalente à totalidade de pontos definidos na prova não é menor que 10;
- (e) INCLUA O RACIOCÍNIO (ou contas) para chegar à resposta.
- (f) Pode indicar o uso de algoritmos de apoio vistos em sala.
- (g) Na resposta de uma questão pode ser considerado que a função criada na questão anterior esteja correta.

Questão:	Max	Pontos
Q1	10	1 011000
Q2	10	
Q3	10	
Q4	10	
Q5	20	
Q6	20	
Q7	20	
Total	100	
Nota		

Boa Prova!

Em computação gráfica, as operações de movimento são normalmente apresentadas através de matrizes, pode ser uma matriz 3×1 ou uma matriz 3×3 aplicada sobre um vetor de posição (x,y,z). Os movimentos são realizados através de um conjunto de operações sobre o vetor posição. Dois exemplos, deslocar um objeto ao longo do vetor T, ou rotacionar um objeto de um ângulo θ em relação ao eixo x podem ser descritos pelas equações:

$$p' = T + p \tag{1}$$
$$p' = R_x \times p$$

Ou mais explicitamente:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} T_x \\ T_y \\ T_z \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Considere, de uma forma genérica, uma matriz de rotação R como:

$$\begin{pmatrix} R_{xx} & R_{yx} & R_{zx} \\ R_{xy} & R_{yy} & R_{zy} \\ R_{xz} & R_{yz} & R_{zz} \end{pmatrix}$$

Pede-se:

- 1. (10 pontos) Crie uma estrutura/classe para representar um vetor posição.
- 2. (10 pontos) Crie estruturas/classes para representar matriz de deslocamento e matriz de rotação

- 3. (10 pontos) Crie uma função/método que irá realizar o deslocamento de um objeto, dado o seu vetor de posição original e a matriz de deslocamento.
- 4. (10 pontos) Crie uma função/método que irá realizar a rotação de um objeto, dado o seu vetor de posição original e a matriz de rotação.
- 5. (20 pontos) Um movimento mais complexo envolve translações e rotações diversas. Podemos representar este movimento por uma sequência de operações de translações e rotações. Crie uma estrutura/classe de lista ligada para guardar uma sequência de movimentos que representa um movimento complexo.
- 6. (20 pontos) Crie uma função/método que irá inserir movimentos na lista ligada de movimentos. Dado uma lista de movimentos e o novo movimento, seja de rotação ou translação.
- 7. (20 pontos) Crie uma função/método que irá aplicar uma sequência de movimentos de uma lista ligada em um objeto, dado o seu vetor de posição e uma lista de movimentos.