# Comparing the Speeds of HMAC and CMAC

資管三 B01705009 巫奕萱 資管三 B01705041 郝晉凱

#### I. Implementation

In the proposal, we've already mentioned in brief how we will implement. This time, we will describe it in more detail. Our purpose is to test the speed of 7 different MAC generation ways: HMAC with SHA-224, SHA-256, SHA-384, SHA-512 and CMAC with AES-128, AES-192, AES-256. Besides, the program is written in Python, using online open source references.

Each time we randomly generate keys for each method. The key length for HMAC is selectable. And the key length for CMAC depends on the kinds of AES, that is to say, the key size is 128 bits for AES-128, 192 bits for AES-192, etc. After the keys are selected, we start a timer and record the end time for each algorithm. Then we know how much time each process takes. For the case of fixed message size, the message size is 2048 bits. The process will repeated 100 times and generate a table at the same time.

Each time we randomly generate keys for each method. The key length for HMAC is selectable. And the key length for CMAC depends on the kinds of AES, that is to say, the key size is 128 bits for AES-128, 192 bits for AES-192, etc. After the keys are selected, we start a timer and record the end time for each algorithm. Then we know how much time each process takes. The program will generate a table. Each row indicates the different plain text size from  $2^{13}$  to  $2^{20}$  bits with distance of  $2^{13}$ bits.

Both methods use the time as the denominator. Then we can compare the speed of HMAC and CMAC. The bigger value indicated that the method is faster.

### II. Result and Implication—for fixed message size

Assume that the content of message will not influence the speed of HMAC and CMAC. Since we don't know whether different key size will have impacts on the result, we divided this case into four parts—HMAC & CMAC with AES-128, HMAC & CMAC with AES-192, HMAC & CMAC with AES-256 (key size is the same as the corresponding CMAC for the above cases), and the comparison between three different CMAC. For each case, the process will repeat 100 times.

For the first case, HMAC & CMAC with AES-128, the key lengths are all 128

bits. First, we have to check whether they are normally distributed.  $H_0$ : The population of the speed for method i is normally distributed;  $H_1$ : the population of the speed for method i is not normally distributed.  $\alpha = 0.05$ , d.f. = 2.

| Chi-Squared Test of Normality |              |          |          | Chi-Squared Test of Normality |              |          |          |
|-------------------------------|--------------|----------|----------|-------------------------------|--------------|----------|----------|
|                               | sha-224(128) | )        |          |                               | sha-256(128, | )        |          |
| Mean                          | 35608.85642  |          |          | Mean                          | 49010.82592  |          |          |
| Standard deviation            | 10195.6874   |          |          | Standard deviation            | 13038.7713   |          |          |
| Observations                  | 100          |          |          | Observations                  | 100          |          |          |
| Intervals                     | Probability  | Expected | Observed | Intervals                     | Probability  | Expected | Observed |
| (z <= -1.5)                   | 0.066807     | 6.6807   | 9        | (z <= -1.5)                   | 0.066807     | 6.6807   | 8        |
| (-1.5 < z <= -0.5)            | 0.24173      | 24.173   | 19       | (-1.5 < z <= -0.5)            | 0.24173      | 24.173   | 19       |
| (-0.5 < z <= 0.5)             | 0.382925     | 38.2925  | 35       | (-0.5 < z <= 0.5)             | 0.382925     | 38.2925  | 28       |
| (0.5 < z <= 1.5)              | 0.24173      | 24.173   | 36       | (0.5 < z <= 1.5)              | 0.24173      | 24.173   | 45       |
| (z > 1.5)                     | 0.066807     | 6.6807   | 1        | (z > 1.5)                     | 0.066807     | 6.6807   | 0        |
| chi-squared Stat              | 12.8122      |          |          | chi-squared Stat              | 28.7589      |          |          |
| df                            | 2            |          |          | df                            | 2            |          |          |
| p-value                       | 0.0017       |          |          | p-value                       | 0            |          |          |
| chi-squared Critical          | 5.9915       |          |          | chi-squared Critical          | 5.9915       |          |          |

| Chi-Squared Test of Normality |              |          |          | Chi-Squared Test of Normality |              |          |          |
|-------------------------------|--------------|----------|----------|-------------------------------|--------------|----------|----------|
|                               | sha-384(128, | )        |          |                               | sha-512(128, | )        |          |
| Mean                          | 48428.6803   |          |          | Mean                          | 52083.46424  |          |          |
| Standard deviation            | 14235.8165   |          |          | Standard deviation            | 13749.5245   |          |          |
| Observations                  | 100          |          |          | Observations                  | 100          |          |          |
| Intervals                     | Probability  | Expected | Observed | <u>Intervals</u>              | Probability  | Expected | Observed |
| (z <= -1.5)                   | 0.066807     | 6.6807   | 11       | (z <= -1.5)                   | 0.066807     | 6.6807   | 9        |
| (-1.5 < z <= -0.5)            | 0.24173      | 24.173   | 14       | (-1.5 < z <= -0.5)            | 0.24173      | 24.173   | 16       |
| (-0.5 < z <= 0.5)             | 0.382925     | 38.2925  | 31       | (-0.5 < z <= 0.5)             | 0.382925     | 38.2925  | 40       |
| (0.5 < z <= 1.5)              | 0.24173      | 24.173   | 44       | (0.5 < z <= 1.5)              | 0.24173      | 24.173   | 35       |
| (z > 1.5)                     | 0.066807     | 6.6807   | 0        | (z > 1.5)                     | 0.066807     | 6.6807   | 0        |
| chi-squared Stat              | 31.4056      |          |          | chi-squared Stat              | 15.1747      |          |          |
| df                            | 2            |          |          | df                            | 2            |          |          |
| p-value                       | 0            |          |          | p-value                       | 0.0005       |          |          |
| chi-squared Critical          | 5.9915       |          |          | chi-squared Critical          | 5.9915       |          |          |

| Chi-Squared Test of Normality |             |              |          |  |  |  |  |  |
|-------------------------------|-------------|--------------|----------|--|--|--|--|--|
|                               | cmac aes-12 | cmac aes-128 |          |  |  |  |  |  |
| Mean                          | 2808.599116 |              |          |  |  |  |  |  |
| Standard deviation            | 717.0382    |              |          |  |  |  |  |  |
| Observations                  | 100         |              |          |  |  |  |  |  |
| Intervals                     | Probability | Expected     | Observed |  |  |  |  |  |
| (z <= -1.5)                   | 0.066807    | 6.6807       | 10       |  |  |  |  |  |
| (-1.5 < z <= -0.5)            | 0.24173     | 24.173       | 18       |  |  |  |  |  |
| (-0.5 < z <= 0.5)             | 0.382925    | 38.2925      | 33       |  |  |  |  |  |
| (0.5 < z <= 1.5)              | 0.24173     | 24.173       | 39       |  |  |  |  |  |
| (z > 1.5)                     | 0.066807    | 6.6807       | 0        |  |  |  |  |  |
| chi-squared Stat              | 19.7322     |              |          |  |  |  |  |  |
| df                            | 2           |              |          |  |  |  |  |  |
| p-value                       | 0.0001      |              |          |  |  |  |  |  |
| chi-squared Critical          | 5.9915      |              |          |  |  |  |  |  |

Since all 5 methods have p-value  $< 0.05 = \alpha$ , we have overwhelming evidence to support the alternative hypothesis. Thus, according to chi-squared test for normality, we know none of these data are normal. Then we drew the histogram for each of them and found they are identical in shape and spread. It satisfies the required condition for Friedman Test.

 $H_0$ : The locations of all 5 populations are the same;  $H_1$ : at least two populations differ;  $\alpha = 0.05$ , d.f. = 4.

| Friedman Test     |            |
|-------------------|------------|
| Group             | Rank Sum   |
| sha 224           | 210.5      |
| sha 256           | 392        |
| sha 384           | 349        |
| sha 512           | 448.5      |
| aes 128           | 100        |
| Fr Stat           | 323.71     |
| df                | 4          |
| p-value           | 0          |
| chi-squared Criti | cal 9.4877 |

Since p-value < 0.05 =  $\,\alpha$ , we have overwhelming evidence to support the alternative hypothesis. It means that the locations are not the same for all populations. Then we use Wilcoxon sign rank sum test to compare the population pair by pair. H<sub>0</sub>: The two population locations are the same; H<sub>1</sub>: The population1 is located to the left/right of

population 2;  $\alpha = 0.05$ 

By comparing the z statistic and the z critical, we know the relationship between them.

| Wilcoxon Signed Rank    | Sum Test          |        | Wilcoxor            | Signed Ran    | k Sum Test        |        |
|-------------------------|-------------------|--------|---------------------|---------------|-------------------|--------|
| Difference              | sha 224 - aes 128 |        | Differenc           | Difference    |                   | ha 256 |
| T+                      | 5050              |        | T+                  |               | 5                 |        |
| T-                      |                   |        | T-                  |               | 4945              |        |
| Observations (for test) | 100               |        | Observati           | ons (for test | ) 99              |        |
| z Stat                  | 8.682             |        | z Stat              |               | -8.621            |        |
| P(Z<=z) one-tail        | 0                 |        | $P(Z \le z)$        | one-tail      | 0                 |        |
| z Critical one-tail     | 1.6449            |        | z Critical          | one-tail      | 1.6449            |        |
| P(Z<=z) two-tail        | 0                 |        | P(Z<=z)             | wo-tail       | 0                 |        |
| z Critical two-tail     | 1.96              |        | z Critical two-tail |               | 1.96              |        |
| Wilcoxon Signed Ranl    | Sum Test          |        | Wilcoxon S          | Signed Rank   | Sum Test          |        |
| Difference              | sha 256 - si      | ha 384 | Difference          |               | sha 256 - sha 512 |        |
| T+                      | 1468              |        | T+                  |               | 851               |        |
| T-                      | 1088              |        | T-                  |               | 2635              |        |
| Observations (for test) | 71                |        | Observation         | ns (for test) | 83                |        |
| z Stat                  | 1.089             |        | z Stat              |               | -4.05             |        |
| P(Z<=z) one-tail        | 0.1381            |        | P(Z<=z) one-tail    |               | 0                 |        |
| z Critical one-tail     | 1.6449            |        | z Critical one-tail |               | 1.6449            |        |
| P(Z<=z) two-tail        | 0.2762            |        | P(Z<=z) two-tail    |               | 0                 |        |
| z Critical two-tail     | 1.96              |        | z Critical to       |               | 1.96              |        |

| Chi-Squared Test of  | Normality    |          |          |
|----------------------|--------------|----------|----------|
|                      | sha-224(192) | )        |          |
| Mean                 | 39698.34776  |          |          |
| Standard deviation   | 8237.7644    |          |          |
| Observations         | 100          |          |          |
| Intervals            | Probability  | Expected | Observed |
| (z <= -1.5)          | 0.066807     | 6.6807   | 10       |
| (-1.5 < z <= -0.5)   | 0.24173      | 24.173   | 9        |
| (-0.5 < z <= 0.5)    | 0.382925     | 38.2925  | 46       |
| (0.5 < z <= 1.5)     | 0.24173      | 24.173   | 33       |
| (z > 1.5)            | 0.066807     | 6.6807   | 2        |
| chi-squared Stat     | 19.2271      |          |          |
| df                   | 2            |          |          |
| p-value              | 0.0001       |          |          |
| chi-squared Critical | 5.9915       |          |          |

Therefore, the speed of CMAC with AES-128 < HMAC with SHA-224 < HMAC with SHA-256 = HMAC with SHA-384 < HMAC with SHA-512.

For the second case, HMAC & CMAC with AES-192, the key lengths are all 192 bits. First, we have to check whether they are normally distributed.  $H_0$ : The population of the speed for method i is

normally distributed;  $H_1$ : the population of the speed for method i is not normally distributed.  $\alpha = 0.05$ , d.f. = 2.

| Chi-Squared Test of  | Normality    |          |          | Chi-Squared Test of  | Normality   |          |          |
|----------------------|--------------|----------|----------|----------------------|-------------|----------|----------|
|                      | sha-256(192) | )        |          |                      | sha-384(192 | )        |          |
| Mean                 | 55035.26163  |          |          | Mean                 | 53633.31917 |          |          |
| Standard deviation   | 11385.3365   |          |          | Standard deviation   | 11552.1185  |          |          |
| Observations         | 100          |          |          | Observations         | 100         |          |          |
| Intervals            | Probability  | Expected | Observed | Intervals            | Probability | Expected | Observed |
| (z <= -1.5)          | 0.066807     | 6.6807   | 12       | (z <= -1.5)          | 0.066807    | 6.6807   | 13       |
| (-1.5 < z <= -0.5)   | 0.24173      | 24.173   | 5        | (-1.5 < z <= -0.5)   | 0.24173     | 24.173   | 8        |
| (-0.5 < z <= 0.5)    | 0.382925     | 38.2925  | 51       | (-0.5 < z <= 0.5)    | 0.382925    | 38.2925  | 52       |
| (0.5 < z <= 1.5)     | 0.24173      | 24.173   | 32       | (0.5 < z <= 1.5)     | 0.24173     | 24.173   | 27       |
| (z > 1.5)            | 0.066807     | 6.6807   | 0        | (z > 1.5)            | 0.066807    | 6.6807   | 0        |
| chi-squared Stat     | 32.8746      |          |          | chi-squared Stat     | 28.7162     |          |          |
| df                   | 2            |          |          | df                   | 2           |          |          |
| p-value              | 0            |          |          | p-value              | 0           |          |          |
| chi-squared Critical | 5.9915       |          |          | chi-squared Critical | 5.9915      |          |          |
| Chi-Squared Test of  | Normality    |          |          | Chi-Squared Test of  | Normality   | 1        | 1        |
|                      | sha-512(192, | )        |          |                      | cmac aes-19 | 2        |          |
| Mean                 | 58031.75789  |          |          | Mean                 | 2988.301952 |          |          |
| Standard deviation   | 12270.9325   |          |          | Standard deviation   | 624.4023    |          |          |
| Observations         | 100          |          |          | Observations         | 100         |          |          |
| Intervals            | Probability  | Expected | Observed | Intervals            | Probability | Expected | Observed |
| (z <= -1.5)          | 0.066807     | 6.6807   | 13       | (z <= -1.5)          | 0.066807    | 6.6807   | 15       |
| (-1.5 < z <= -0.5)   | 0.24173      | 24.173   | 4        | (-1.5 < z <= -0.5)   | 0.24173     | 24.173   | 9        |
| (-0.5 < z <= 0.5)    | 0.382925     | 38.2925  | 53       | (-0.5 < z <= 0.5)    | 0.382925    | 38.2925  | 45       |
| (0.5 < z <= 1.5)     | 0.24173      | 24.173   | 30       | (0.5 < z <= 1.5)     | 0.24173     | 24.173   | 31       |
| (z > 1.5)            | 0.066807     | 6.6807   | 0        | (z > 1.5)            | 0.066807    | 6.6807   | 0        |
| chi-squared Stat     | 36.5466      |          |          | chi-squared Stat     | 29.6674     |          |          |
| df                   | 2            |          |          | df                   | 2           |          |          |
| p-value              | 0            |          |          | p-value              | 0           |          |          |
| chi-squared Critical | 5.9915       |          |          | chi-squared Critical | 5.9915      |          |          |

Since all 5 methods have p-value < 0.05 =  $\,\alpha$ , we have overwhelming evidence to support the alternative hypothesis. Thus, according to chi-squared test for normality, we know none of these data are normal.

| Friedman Tes  | t              |
|---------------|----------------|
| Group         | Rank Sum       |
| sha 224       | 211            |
| sha 256       | 374            |
| sha 384       | 357            |
| sha 512       | 458            |
| aes 192       | 100            |
| Fr Stat       | 326.44         |
| df            | 4              |
| p-value       | 0              |
| chi-squared C | ritical 9.4877 |

Then we drew the histogram for each of them and found they are identical in shape and spread. It satisfies the required condition for Friedman Test.

 $H_0$ : The locations of all 5 populations are the same;  $H_1$ : at least two populations differ;  $\alpha$  = 0.05, d.f. = 4.

Since p-value < 0.05 =  $\alpha$ , we have overwhelming evidence to support the

alternative hypothesis. It means that the locations are not the same for all populations. Then we use Wilcoxon sign rank sum test to compare the population pair by pair.  $H_0$ : The two population locations are the same;  $H_1$ : The population1 is located to the left/right of population 2;  $\alpha = 0.05$ 

By comparing the z statistic and the z critical, we know the relationship between them.

| Wilcoxon Si      | igned Ran    | k Sum Test   |        | Wilcoxor                                | n Signed Ra   | nk Sum Tes   | t       |
|------------------|--------------|--------------|--------|-----------------------------------------|---------------|--------------|---------|
| Difference       |              | aes 192 - s  | ha 224 | Difference                              | e             | sha 256 -    | sha 384 |
| T+               |              |              |        | T+                                      |               | 172          | 8       |
| T-               |              | 5050         |        | T-                                      |               | 104          | 7       |
| Observations     | s (for test) | 100          |        | Observat                                | ions (for tes | t) 7-        | 4       |
| z Stat           |              | -8.682       | ,      | z Stat                                  |               | 1.83         | 4       |
| $P(Z \le z)$ one | e-tail       | 0            |        | P(Z<=z)                                 | one-tail      | 0.033        | 3       |
| z Critical on    | e-tail       | 1.6449       |        | z Critical                              | one-tail      | 1.644        | 9       |
| P(Z<=z) two      | o-tail       | 0            |        | P(Z<=z) two-tail                        |               | 0.066        | 6       |
| z Critical tw    | o-tail       | 1.96         |        | z Critical two-tail                     |               | 1.9          | 6       |
| Wilcoxon Si      | gned Rank    | Sum Test     |        | Wilcoxon Signed Rank Sum Test           |               |              |         |
| Difference       |              | sha 224 - sh | a 384  | Difference                              |               | sha 256 - sl | na 512  |
| T+               |              | 85           |        | T+                                      |               | 380.5        |         |
| T-               |              | 4965         |        | T-                                      |               | 2545.5       |         |
| Observations     | s (for test) | 100          |        | Observation                             | ns (for test) | 76           |         |
| z Stat           |              | -8.39        |        | z Stat                                  |               | -5.604       |         |
| $P(Z \le z)$ one |              | 0            |        | P(Z<=z) on                              | e-tail        | 0            |         |
| z Critical one   |              | 1.6449       |        | z Critical o                            |               | 1.6449       |         |
| $P(Z \le z)$ two |              | 0            |        |                                         |               | 0            |         |
| z Critical two   | o-tail       | 1.96         |        | P(Z<=z) two-tail<br>z Critical two-tail |               | 1.96         |         |
|                  |              |              |        | z Cirucai iv                            | wo-tail       | 1.90         |         |

Therefore, the speed of CMAC with AES-192 < HMAC with SHA-224 < HMAC with SHA-384 < HMAC with SHA-256 < HMAC with SHA-512.

For the third case, HMAC & CMAC with AES-256, the key lengths are all 256 bits. First, we have to check whether they are normally distributed.  $H_0$ : The population of the speed for method i is normally distributed;  $H_1$ : the population of the speed for method i is not normally distributed.  $\alpha = 0.05$ , d.f. = 2.

| Chi-Squared Test of  | Normality   |            |          | Chi-Squared Test of  | Normality   |          |          |
|----------------------|-------------|------------|----------|----------------------|-------------|----------|----------|
|                      | sha-224 (25 | <i>(6)</i> |          |                      | sha-256(256 | )        |          |
| Mean                 | 39709.65685 |            |          | Mean                 | 54105.10271 |          |          |
| Standard deviation   | 9191.3158   |            |          | Standard deviation   | 11151.3728  |          |          |
| Observations         | 100         |            |          | Observations         | 100         |          |          |
| Intervals            | Probability | Expected   | Observed | Intervals            | Probability | Expected | Observed |
| (z <= -1.5)          | 0.066807    | 6.6807     | 10       | (z <= -1.5)          | 0.066807    | 6,6807   | 10       |
| (-1.5 < z <= -0.5)   | 0.24173     | 24.173     | 20       | (-1.5 < z <= -0.5)   | 0.24173     | 24.173   | 15       |
| (-0.5 < z <= 0.5)    | 0.382925    | 38.2925    | 39       | (-0.5 < z <= 0.5)    | 0.382925    | 38.2925  | 50       |
| $(0.5 < z \le 1.5)$  | 0.24173     | 24.173     | 30       | (0.5 < z <= 0.5)     | 0.24173     | 24.173   | 22       |
| (z > 1.5)            | 0.066807    | 6.6807     | 1        | ,,                   | 0.066807    | 6.6807   | 3        |
| chi-squared Stat     | 8.6177      |            |          | (z > 1.5)            |             | 0.0807   | 3        |
| df                   | 2           |            |          | chi-squared Stat     | 10.9327     |          |          |
| p-value              | 0.0134      |            |          | df                   | 2           |          |          |
| chi-squared Critical |             |            |          | p-value              | 0.0042      |          |          |
| on equator critical  | 2.2715      |            |          | chi-squared Critical | 5.9915      |          |          |

| Chi-Squared Test of Normality |              | Chi-Squared Test of | Normality |                      |              |          |          |
|-------------------------------|--------------|---------------------|-----------|----------------------|--------------|----------|----------|
|                               | sha-384(256, | )                   |           |                      | sha-512(256, | )        |          |
| Mean                          | 52087.44208  |                     |           | Mean                 | 56394.5169   |          |          |
| Standard deviation            | 11174.6033   |                     |           | Standard deviation   | 11389.7851   |          |          |
| Observations                  | 100          |                     |           | Observations         | 100          |          |          |
| Intervals                     | Probability  | Expected            | Observed  | Intervals            | Probability  | Expected | Observed |
| (z <= -1.5)                   | 0.066807     | 6.6807              | 9         | (z <= -1.5)          | 0.066807     | 6.6807   | 10       |
| (-1.5 < z <= -0.5)            | 0.24173      | 24.173              | 16        | (-1.5 < z <= -0.5)   | 0.24173      | 24.173   | 20       |
| (-0.5 < z <= 0.5)             | 0.382925     | 38.2925             | 45        | (-0.5 < z <= 0.5)    | 0.382925     | 38.2925  | 31       |
| (0.5 < z <= 1.5)              | 0.24173      | 24.173              | 29        | (0.5 < z <= 1.5)     | 0.24173      | 24.173   | 39       |
| (z > 1.5)                     | 0.066807     | 6.6807              | 1         | (z > 1.5)            | 0.066807     | 6.6807   | 0        |
| chi-squared Stat              | 10.5377      |                     |           | chi-squared Stat     | 19.5335      |          |          |
| df                            | 2            |                     |           | df                   | 2            |          |          |
| p-value                       | 0.0051       |                     |           | p-value              | 0.0001       |          |          |
| chi-squared Critical          | 5.9915       |                     |           | chi-squared Critical | 5.9915       |          |          |

| Chi-Squared Test of  | Normality   |          |          |  |  |  |  |  |  |
|----------------------|-------------|----------|----------|--|--|--|--|--|--|
| cmac aes-256         |             |          |          |  |  |  |  |  |  |
| Mean                 | 2968.018134 |          |          |  |  |  |  |  |  |
| Standard deviation   | 539.2198    |          |          |  |  |  |  |  |  |
| Observations         | 100         |          |          |  |  |  |  |  |  |
| Intervals            | Probability | Expected | Observed |  |  |  |  |  |  |
| (z <= -1.5)          | 0.066807    | 6.6807   | 6        |  |  |  |  |  |  |
| (-1.5 < z <= -0.5)   | 0.24173     | 24.173   | 24       |  |  |  |  |  |  |
| (-0.5 < z <= 0.5)    | 0.382925    | 38.2925  | 39       |  |  |  |  |  |  |
| (0.5 < z <= 1.5)     | 0.24173     | 24.173   | 31       |  |  |  |  |  |  |
| (z > 1.5)            | 0.066807    | 6.6807   | 0        |  |  |  |  |  |  |
| chi-squared Stat     | 8.6925      |          |          |  |  |  |  |  |  |
| df                   | 2           |          |          |  |  |  |  |  |  |
| p-value              | 0.013       |          |          |  |  |  |  |  |  |
| chi-squared Critical | 5.9915      |          |          |  |  |  |  |  |  |

Since all 5 methods have p-value <  $0.05 = \alpha$ , we have overwhelming evidence to support the alternative hypothesis. Thus, according to chi-squared test for normality, we know none of these data are normal.

Then we drew the histogram for each of them and found they are identical in shape and spread. It satisfies the required condition for

| Friedman Test        |          |
|----------------------|----------|
| Group                | Rank Sum |
| sha 224              | 210      |
| sha 256              | 388      |
| sha 384              | 345.5    |
| sha 512              | 456.5    |
| aes 256              | 100      |
| Fr Stat              | 329.626  |
| df                   | 4        |
| p-value              | 0        |
| chi-squared Critical | 9.4877   |

Friedman Test.

 $H_0$ : The locations of all 5 populations are the same;  $H_1$ : at least two populations differ;  $\alpha$  = 0.05, d.f. = 4. Since p-value < 0.05 =  $~\alpha$ , we have overwhelming evidence to support the alternative hypothesis. It means that the locations are not the same for all populations. Then we use Wilcoxon sign rank sum

Wilcoxon Signed Rank Sum Test Difference aes 256 - sha 224 T+ 5050 Observations (for test) 100 z Stat -8.682  $P(Z \le z)$  one-tail z Critical one-tail 1.6449  $P(Z \le z)$  two-tail 0 z Critical two-tail 1.96

test to compare the population pair by pair.  $H_0$ : The two population locations are the same;  $H_1$ : The population1 is located to the left/right of population 2;  $\alpha = 0.05$ . By comparing the z statistic and the z critical, we know the relationship between them.

| Wilcoxon Signed Rank Sum Test |             |        |  |  |  |
|-------------------------------|-------------|--------|--|--|--|
| Difference                    | sha 224 - s | ha 384 |  |  |  |
| T+                            | 182         |        |  |  |  |
| T-                            | 4868        |        |  |  |  |
| Observations (for test)       | 100         |        |  |  |  |
| z Stat                        | -8.056      |        |  |  |  |
| P(Z<=z) one-tail              | 0           |        |  |  |  |
| z Critical one-tail           | 1.6449      |        |  |  |  |
| P(Z<=z) two-tail              | 0           |        |  |  |  |
| z Critical two-tail           | 1.96        |        |  |  |  |
|                               |             |        |  |  |  |

| Wilcoxon Signed Rank Sum Test |              |        |  |  |  |
|-------------------------------|--------------|--------|--|--|--|
| Difference                    | sha 384 - sh | ıa 256 |  |  |  |
| T+                            | 802.5        |        |  |  |  |
| T-                            | 1972.5       |        |  |  |  |
| Observations (for test)       | 74           |        |  |  |  |
| z Stat                        | -3.152       |        |  |  |  |
| P(Z<=z) one-tail              | 0.0008       |        |  |  |  |
| z Critical one-tail           | 1.6449       |        |  |  |  |
| P(Z<=z) two-tail              | 0.0016       |        |  |  |  |
| z Critical two-tail           | 1.96         |        |  |  |  |

| Wilcoxon Signed Rank Sum Test |              |        |  |  |  |
|-------------------------------|--------------|--------|--|--|--|
| Difference                    | sha 256 - s. | ha 512 |  |  |  |
| T+                            | 779.5        |        |  |  |  |
| T-                            | 2541.5       |        |  |  |  |
| Observations (for test)       | 81           |        |  |  |  |
| z Stat                        | -4.148       |        |  |  |  |
| P(Z<=z) one-tail              | 0            |        |  |  |  |
| z Critical one-tail           | 1.6449       |        |  |  |  |
| P(Z<=z) two-tail              | 0            |        |  |  |  |
| z Critical two-tail           | 1.96         |        |  |  |  |

Therefore, the speed of CMAC with AES-256 < HMAC with SHA-224 < HMAC with SHA-384 < HMAC with SHA-256 < HMAC with SHA-512.

| Chi-Squared Test of  | Normality          |          |          |
|----------------------|--------------------|----------|----------|
|                      | CMAC AES-128       |          |          |
| Mean                 | 2895.061247        |          |          |
| Standard deviation   | 612.7248           |          |          |
| Observations         | 100                |          |          |
| <u>Intervals</u>     | <u>Probability</u> | Expected | Observed |
| (z <= -1.5)          | 0.066807           | 6.6807   | 14       |
| (-1.5 < z <= -0.5)   | 0.24173            | 24.173   | 10       |
| (-0.5 < z <= 0.5)    | 0.382925           | 38.2925  | 40       |
| (0.5 < z <= 1.5)     | 0.24173            | 24.173   | 36       |
| (z > 1.5)            | 0.066807           | 6.6807   | 0        |
| chi-squared Stat     | 28.8722            |          |          |
| df                   | 2                  |          |          |
| p-value              | 0                  |          |          |
| chi-squared Critical | 5.9915             |          |          |

For the last case, CMAC with AES-128, 192, and 256. First, we have to check whether they are normally distributed.  $H_0$ : The population of the speed for method i is normally distributed;  $H_1$ : the population of the speed for method i is not normally distributed.  $\alpha = 0.05$ , d.f. = 2.

| Chi-Squared Test of  | Normality          |          |          | Chi-Squared Test of  | Normality    |          |          |
|----------------------|--------------------|----------|----------|----------------------|--------------|----------|----------|
|                      | CMAC AES-192       |          |          |                      | CMAC AES-256 |          |          |
| Mean                 | 2943.853216        |          |          | Mean                 | 2981.041731  |          |          |
| Standard deviation   | 660.4299           |          |          | Standard deviation   | 650.7204     |          |          |
| Observations         | 100                |          |          | Observations         | 100          |          |          |
| Intervals            | <u>Probability</u> | Expected | Observed | Intervals            | Probability  | Expected | Observed |
| (z <= -1.5)          | 0.066807           | 6.6807   | 16       | (z <= -1.5)          | 0.066807     | 6.6807   | 15       |
| (-1.5 < z <= -0.5)   | 0.24173            | 24.173   | 10       | (-1.5 < z <= -0.5)   | 0.24173      | 24.173   | 10       |
| (-0.5 < z <= 0.5)    | 0.382925           | 38.2925  | 25       | (-0.5 < z <= 0.5)    | 0.382925     | 38.2925  | 31       |
| (0.5 < z <= 1.5)     | 0.24173            | 24.173   | 49       | (0.5 < z <= 1.5)     | 0.24173      | 24.173   | 44       |
| (z > 1.5)            | 0.066807           | 6.6807   | 0        | (z > 1.5)            | 0.066807     | 6.6807   | 0        |
| chi-squared Stat     | 58.1035            |          |          | chi-squared Stat     | 43.0015      | 0,000,   |          |
| df                   | 2                  |          |          | df                   | 2            |          |          |
| p-value              | 0                  |          |          | p-value              | 0            |          |          |
| chi-squared Critical | 5.9915             |          |          | chi-squared Critical | -            |          |          |

Since all 3 methods have p-value < 0.05 =  $\,\alpha$ , we have overwhelming evidence to support the alternative hypothesis. Thus, according to chi-squared test for normality, we know none of these data are normal.

Then we drew the histogram for each of them and found they are identical in shape and spread. It satisfies the required condition for Friedman Test.

| Friedman Test        |          |
|----------------------|----------|
| Group                | Rank Sum |
| CMAC AES-128         | 160      |
| CMAC AES-192         | 208      |
| CMAC AES-256         | 232      |
|                      |          |
| Fr Stat              | 26.88    |
| df                   | 2        |
| p-value              | 0        |
| chi-squared Critical | 5.9915   |
|                      |          |

 $P(Z \le z)$  two-tail

z Critical two-tail

 $H_0$ : The locations of all 3 populations are the same;  $H_1$ : at least two populations differ;  $\alpha$  = 0.05, d.f. = 2. Since p-value < 0.05 =  $~\alpha$ , we have overwhelming evidence to support the alternative hypothesis. It means that the locations are not the same for all populations. Then we use Wilcoxon sign rank sum test to compare the population pair by pair.

| Wilcoxon Signed Ran     | k Sum Test |         |     | - <u>-</u> | H <sub>0</sub> : |
|-------------------------|------------|---------|-----|------------|------------------|
| Difference              |            | S-128 - | CM  | AC AES-192 |                  |
| T+                      | 1599       |         |     |            | loca             |
| T-                      | 3252       |         |     |            | The              |
| Observations (for test) | 98         |         |     |            | -<br>- to tl     |
| z Stat                  | -2.929     |         |     |            |                  |
| P(Z<=z) one-tail        | 0.0017     |         |     |            | pop              |
| z Critical one-tail     | 1.6449     |         |     |            | com              |
| P(Z<=z) two-tail        | 0.0034     |         |     |            |                  |
| z Critical two-tail     | 1.96       |         |     |            | and              |
| Wilcoxon Signed Rank    | Sum Test   |         |     |            | the              |
| Difference              | CMAC AE    | S-192 - | CM. | AC AES-256 | ther             |
| Γ+                      | 1829       |         |     |            |                  |
| Г-                      | 2636       |         |     |            |                  |
| Observations (for test) | 94         |         |     |            | CMA              |
| z Stat                  | -1.522     |         |     |            | - CMA            |
| P(Z<=z) one-tail        | 0.0641     |         |     |            | CIVIA            |
| z Critical one-tail     | 1.6449     |         |     |            | CMA              |

0.1282

1.96

 $H_0$ : The two population locations are the same;  $H_1$ : The population1 is located to the left/right of population 2;  $\alpha = 0.05$ . By comparing the z statistic and the z critical, we know the relationship between them.

Therefore, the speed of CMAC with AES-128 < CMAC with AES-192 = CMAC with AES-256

According to the cases mentioned before, it is obvious that when the key lengths are the same, HMAC will always faster than CMAC. Also, among the four hash functions in SHA-2, SHA-512 is the fastest. Among the three cryptographic functions in AES, AES-256 is the fastest.

III. Result and implication –for increasing message size

Assume that the content of message will not influence the speed of HMAC

and CMAC. This time the variable is the length of message. We've already known that if the message size increases, the process will be more time consuming. This time, our purpose is to make sure the relationship we got from above will not alter owing to the change in length size. However, we still don't know whether different key size will have impacts on the result, we divided this case into four parts—HMAC & CMAC with AES-128, HMAC & CMAC with AES-192, HMAC & CMAC with AES-256 (key size is the same as the corresponding CMAC for the above cases), and the comparison between three different CMAC. For the first case, HMAC & CMAC with AES-128, there is a line chart.



According to the diagram, CMAC is much slower than HMAC. Besides, SHA-512 is faster than SHA-224. But we cannot say the conclusion made on previous part "HMAC with SHA-224 < HMAC with SHA-256 = HMAC with SHA-384 < HMAC with SHA-512" for sure.

For the second case, HMAC & CMAC with AES-192, there is a line chart.



According to the diagram, CMAC is much slower than HMAC. Besides, SHA-512 is faster than SHA-224. But we cannot say the conclusion made on previous part "HMAC with SHA-224 < HMAC with SHA-384 < HMAC with SHA-256 < HMAC with SHA-512" for sure.

For the third case, HMAC & CMAC with AES-256, there is a line chart.



According to the diagram, CMAC is much slower than HMAC. Besides, SHA-512 is faster than SHA-224. But we cannot say the conclusion made on previous part "HMAC with SHA-224 < HMAC with SHA-384 < HMAC with SHA-256 < HMAC with SHA-512" for sure.

For the last case, CMAC with AES-128, 192, and 256, since the values are similar, we cannot get any conclusion from the line chart. Therefore, we still have to check them step by step.

First, we have to check whether they are normally distributed.  $H_0$ : The population of the speed for method i is normally distributed;  $H_1$ : the population of the speed for method i is not normally distributed.  $\alpha = 0.05$ , d.f. = 2.

| Chi-Squared Test of  | Normality    |          |          | Chi-Squared Test of Normality |                    |          |          |
|----------------------|--------------|----------|----------|-------------------------------|--------------------|----------|----------|
|                      | CMAC AES-128 |          |          |                               | CMAC AES-192       |          |          |
| Mean                 | 33.64054435  |          |          | Mean                          | 35.4489673         |          |          |
| Standard deviation   | 65.7139      |          |          | Standard deviation            | 71.6093            |          |          |
| Observations         | 128          |          |          | Observations                  | 128                |          |          |
| Intervals            | Probability  | Expected | Observed | Intervals                     | <u>Probability</u> | Expected | Observed |
| (z <= -1.5)          | 0.066807     | 8.551296 | 0        | (z <= -1.5)                   | 0.066807           | 8.551296 | 0        |
| (-1.5 < z <= -0.5)   | 0.24173      | 30.94144 | 0        | (-1.5 < z <= -0.5)            | 0.24173            | 30.94144 | 0        |
| (-0.5 < z <= 0.5)    | 0.382925     | 49.0144  | 116      | (-0.5 < z <= 0.5)             | 0.382925           | 49.0144  | 115      |
| (0.5 < z <= 1.5)     | 0.24173      | 30.94144 | 6        | (0.5 < z <= 1.5)              | 0.24173            | 30.94144 | 7        |
| (z > 1.5)            | 0.066807     | 8,551296 | 6        | (z > 1.5)                     | 0.066807           | 8.551296 | 6        |
| chi-squared Stat     | 151,9048     |          | _        | chi-squared Stat              | 147.6121           |          |          |
| df                   | 2            |          |          | df                            | 2                  |          |          |
| p-value              | 0            |          |          | p-value                       | 0                  |          |          |
| chi-squared Critical | 5.9915       |          |          | chi-squared Critical          | 5.9915             |          |          |

| Chi-Squared Test of  | Normality          |          |          |
|----------------------|--------------------|----------|----------|
|                      | CMAC AES-256       |          |          |
| Mean                 | 35.0622036         |          |          |
| Standard deviation   | 71.4447            |          |          |
| Observations         | 128                |          |          |
| <u>Intervals</u>     | <u>Probability</u> | Expected | Observed |
| (z <= -1.5)          | 0.066807           | 8.551296 | 0        |
| (-1.5 < z <= -0.5)   | 0.24173            | 30.94144 | 0        |
| (-0.5 < z <= 0.5)    | 0.382925           | 49.0144  | 118      |
| (0.5 < z <= 1.5)     | 0.24173            | 30.94144 | 4        |
| (z > 1.5)            | 0.066807           | 8.551296 | 6        |
| chi-squared Stat     | 160.8066           |          |          |
| df                   | 2                  |          |          |
| p-value              | 0                  |          |          |
| chi-squared Critical | 5.9915             |          |          |

Since all 3 methods have p-value <  $0.05 = \alpha$ , we have overwhelming evidence to support the alternative hypothesis. Thus, according to chi-squared test for normality, we know none of these data are normal.

Then we drew the histogram for each of them and found they are identical in shape and spread. It satisfies the required condition for

| Friedman Test        |          |
|----------------------|----------|
| Group                | Rank Sum |
| CMAC AES-128         | 260      |
| CMAC AES-192         | 254      |
| CMAC AES-256         | 254      |
| Fr Stat              | 0.188    |
| df                   | 2        |
| p-value              | 0.9105   |
| chi-squared Critical | 5.9915   |

Friedman Test.  $H_0$ : The locations of all 3 populations are the same;

 $H_1$ : at least two populations differ;  $\alpha = 0.05$ , d.f. = 2.

Since p-value =  $0.9105 > \alpha = 0.05$ , we have no sufficient evidence to support the alternative hypothesis. It means that the speeds of three methods are the same.

According to the result got from these four cases, no matter how long the key size, the speeds of HMAC are fast than CMAC.

## IV. Conclusion

Though the results from previous two parts have some difference, it is for sure that HMAC works faster than CMAC as the length of key are the same.

### V. Appendix—Python Code

The Following is the Python code of the implementation of the method. For HMAC with SHA-224, SHA-256, SHA-384, SHA-512, the Python code is as follow:

```
def hmac_sha224(key, msg):
   start = time.clock()
   hash_obj = hmac.new(key = key, msg = msg, digestmod = hashlib.sha224)
   hash obj.hexdigest()
   return time.clock()-start
def hmac_sha256(key, msg):
   start = time.clock()
   hash_obj = hmac.new(key = key, msg = msg, digestmod = hashlib.sha256)
   hash_obj.hexdigest()
   return time.clock()-start
def hmac_sha384(key, msg):
   start = time.clock()
   hash_obj = hmac.new(key = key, msg = msg, digestmod = hashlib.sha384)
   hash_obj.hexdigest()
   return time.clock()-start
def hmac_sha512(key, msg):
   start = time.clock()
   hash_obj = hmac.new(key = key, msg = msg, digestmod = hashlib.sha512)
   hash obj.hexdigest()
   return time.clock()-start
```

While key refers to the key of the method, and msg is the sample message of the method. We use the standard library of Pyhton hmac and hashlib. For time calculating, we use Python time.clock() rather than time.time() which is more precise in UNIX system than the other. The above functions will return the time of generating the cipher code.

For CMAC, we use the Pyhton code as follow:

```
def cmac_aes(key, msg):
    start = time.clock()
    cipher = AES.new(key.decode('hex'), AES.MODE_CMAC)
    cipher.encrypt(msg).encode('hex')
    return time.clock()-start
```

Like HMAC, key and msg refers to key and messages used for CMAC-AES repectively, while the function return the time spent for the method as well. We use the 3rd-party library CryptoPlus.Cipher.AES for Python AES function. For key Generating and message generating, We use the following code.

```
def keyGenerate(bits):
    return Random.get_random_bytes(bits/8).encode('hex')

def msgGenerate(bits):
    return Random.get_random_bytes(bits/8).encode('hex')
```

We use the library Crypto.Random for random number generating, the code is generated by bytes, so we divid the key size of 8.