More Ado about Nothing?

Questioning the Short and Long-term Effects of Data Breaches on Hospital Finances

J.L. Black

November 2024

25

Definition

Motivation

"A breach is ... an impermissible use or disclosure under the Privacy Rule that compromises the security or privacy of the protected health information." – Health and Human Services

NIH

Motivation

"The frequency of healthcare data breaches, magnitude of exposed records, and financial losses due to breached records are increasing rapidly." – National Institute for Health 2020

News & Law

News:

Motivation

- 112 million patients records breached in 2023 (Health IT Security.com)
- "Fifty-eight [data breach] lawsuits were filed in 2021, with 43 of them filed against healthcare organizations, the largest percentage among all industries." (HealthcareFinanceNews.com 2022)
- Johnson Memorial ransomware attack 2021 (NPR.org)
- OPM Hack of 21 million people included health data (OPM.gov)
- HCA Healthcare hack of 11 million patients (hcahealthcare.com)

Law:

- ARRA (American Recovery and Reinvestment Act of 2009)
- HITECH (Health Information Technology for Economic and Clinical Health Act of 2009)
- HIPAA (Health Insurance Portability and Accountability Act of 1996)
- ACA (Affordable Care Act of 2010)
- State Law (Mass 2006, Texas TDPSA 2023)

Literature

Majority of Papers:

- Trends: Rate ↑, Cost ↑
- Calls for accounting, reckoning, punishment
- Set optimal IT spending (Huang et al. 2014)
- Call for government action (Seh et al. 2020)

Causal Papers:

- 26% ↑ in hospital IT spending in the year after a breach (Choi & Johnson 2020)
- No change to hospital productivity (Choi et al. 2020)
- "Much Ado about Nothing: The (Lack of) Economic Impact of Data Privacy Breaches" found: "less than -0.3% cumulative abnormal financial returns" (Richardson et al. 2019)

- Selection:
 - Choice

- Selection:
 - Choice
 - Large vs. small hospitals

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size
- Effects:

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size
- Effects:
 - + Liabilities

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size
- Effects:
 - + Liabilities
 - + Liability funds

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size
- Effects:
 - + Liabilities
 - + Liability funds
 - + Mitigation expenses

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size
- Effects:
 - + Liabilities
 - + Liability funds
 - + Mitigation expenses
 - + IT spending (investment, total assets)

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size
- Effects:
 - + Liabilities
 - + Liability funds
 - + Mitigation expenses
 - + IT spending (investment, total assets)
 - + Preparations for IT spending (cash on hand, current assets)

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size
- Effects:
 - + Liabilities
 - + Liability funds
 - + Mitigation expenses
 - + IT spending (investment, total assets)
 - + Preparations for IT spending (cash on hand, current assets)
 - Productivity

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size
- Effects:
 - + Liabilities
 - + Liability funds
 - + Mitigation expenses
 - + IT spending (investment, total assets)
 - + Preparations for IT spending (cash on hand, current assets)
 - Productivity
 - + or Revenue, net income

- Selection:
 - Choice
 - Large vs. small hospitals
 - Breach size
- Effects:
 - + Liabilities
 - $+ \ Liability \ funds \\$
 - + Mitigation expenses
 - + IT spending (investment, total assets)
 - + Preparations for IT spending (cash on hand, current assets)
 - Productivity
 - + or Revenue, net income
 - + or Wage index

Data Sources

Motivation

- 2009-2017
- 7,515 hospitals (90% of all US hospitals)
- Claims (Medicare & private)

Health and Human Services (HHS)

- Mandatory report breach affecting 500+ people
- 2009-2018

Financial Indicators - Y (Averages at Hospital-Year level)

	Unbala	Unbalanced Panel		Balanced Panel	
\$ in Millions	Breached	Un-Breached	Breached	Un-Breached	
	(1)	(2)	(3)	(4)	
Cash On Hand	47.2 (136)	7.837 (58.4)	37.7 (104)	9.928 (47)	
Investment	85.8 (285)	17.0 (92.1)	120 (390)	27.1 (185)	
Total Revenue	1370 (1900)	335 (599)	1330 (1570)	399 (749)	
Total Current Liabilities	100 (272)	20.2 (67.7)	96.6 (197)	21.3 (89.8)	
Wage Index	1.017 (0.190)	0.968 (0.186)	0.980 (0.139)	0.963 (0.182)	
Beds (Average)	269 (258)	109 (323)	328 (304)	122 (224)	
Hospitals (Total)	599	6916	281	3407	
Observations (N)	75,150		36,880		

Financial Indicators Plot - Y (Averages at Hospital-Year level)

Empirical Strategy

Motivation

Difference in Differences:

- Callaway and Sant'anna Specification
- Two-Way Fixed Effects Specification
- Synthetic Difference in Differences Specification

→ Go to Detailed Slides

Research Question

What is the impact of a hospital data breach on hospital finances?

DiD with Multiple Time Periods

Estimated Effects of a Breach on Wage Index & Current Liabilities

DiD with Multiple Time Periods

Estimated Effects of a Breach on Cash on hand & Revenue

➤ See More Charts

DiD with Multiple Time Periods

Estimated Effects of a Breach on Investment

Results Comparison

	CS	TWFE		
	Avg. Effect	Avg. Effect	Std. Er.	P-Value
Cash on Hand	-10.83	4.30	5.63	0.445
Investments	21.24	19.20	14.90	0.197
Total Revenue	99.30	344.00	47.10	0.001
Total Current Liabilities	56.64	21.20	9.00	0.018
Wage Index	0.000034	-0.0032	0.0022	0.150

Conclusion – More Ado about Nothing?

- Calls into question the (nearly) unanimous interpretation of descriptive and TWFE-based papers
- Breach effects are heterogeneous
- Costs diverge from and regress to "steady state"
- Existing financial mechanisms mitigate mid-term financial impacts.
- CS estimate → Hospital data breaches caused an 8.7% increase in average yearly revenue (\$115.8 million increase from a baseline of \$1.332 billion).
- Policy implications
- Future opportunities:
 - Estimate effects of breach size
 - Use pre-HITECH Act data to isolate the effect of the law
 - Heterogeneity
 - CMS data

Discussion

Questions?

Thank you!

Multi-time period difference in differences

Callaway and Sant'anna (CS)

Motivation

$$ATT(g,t) = E\left[\left(\frac{G_g}{E[G_g]} - \frac{\frac{\hat{\rho}(X)}{C}}{1 - \hat{\rho}(X)} \cdot \frac{1}{E\left[\frac{\hat{\rho}(X)}{C} \cdot \frac{1}{1 - \hat{\rho}(X)}\right]}\right) (Y_t - Y_{g-1})\right]$$
(1)

- ATT(g, t) is the Average Treatment Effect on the Treated for group g at time t
- G_g is an indicator variable that equals 1 if a hospital belongs to group g and 0 otherwise.
- C is an indicator that equals 1 if a hospital is in the control group at time t.
- $\hat{p}(X)$ represents a propensity score.
- X : Observed hospital characteristics
- $lackbox{ } Y_t$ and Y_{g-1} is the outcome variables for time t and the period before the breach for group g

Assumptions:

- Constant treatment effects
- Irreversibility of treatment
- Random sampling (iid)
- Limited treatment anticipation
- Conditional parallel trends from "Not-Yet-Treated" or "Never-Treated" Group
- Stable Unit Treatment Value Assumption (SUTVA)

Dack

J.L. Black

Two-Way Fixed Effects – TWFE

$$ATT_{it} = \beta_0 + \beta_1 Breach_{it} + \alpha_i + \delta_t + \varepsilon_{it}$$
 (2)

- ATT(g, t) is the Average Treatment Effect on the Treated
- Breach_{it}: Breach indicator
- α_i: Hospital fixed effects
- \bullet δ_t : Year fixed effects

Assumptions:

Motivation

- Parallel trends
- Constant treatment effect over time (else possible negative weights)
- Limited treatment anticipation
- Exogenous treatment timing
- Stable Unit Treatment Value Assumption (SUTVA)

▶ Back to Summary

Synthetic Difference in Differences

Clarke et. al. Synth-DID

Motivation

$$\hat{\tau}_{\mathsf{sdid}} = \arg\min_{\mu,\alpha,\beta,\tau} \sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2 \hat{\omega}_{\mathsf{sdid},i} \hat{\lambda}_{\mathsf{sdid},t}$$
(3)

- ullet $\hat{ au}_{ extsf{sdid}}$: average treatment effect on the treated (ATT)
- lacktriangledarg arg min: minimizes the sum of squared differences for (μ, α, β, au)
- μ is the overall intercept
- \bullet α_i is the fixed effect for hospital i
- β_t represents fixed effect for time period t
- W_{it} is the treatment indicator for hospital i at time t
- \bullet τ is the parameter of interest
- $lacktriangleq Y_{it}$ is the outcome variable for hospital i at time t
- $\hat{\omega}_{\mathrm{sdid},i}$ and $\hat{\lambda}_{\mathrm{sdid},t}$ weights for hospital i time t

Assumptions:

- Parallel trends
- Constant treatment effects
- Limited treatment anticipation
- Exogenous treatment timing
- Stable Unit Treatment Value Assumption (SUTVA)

▶ Back to Summary

DiD with Multiple Time Periods - Detailed Charts 1/4

▶ Back to Overview

DiD with Multiple Time Periods - Detailed Charts 2/4

DiD with Multiple Time Periods - Detailed Charts 3/4

DiD with Multiple Time Periods - All Detailed Charts 4/4

Literature & Theory Empirical Strategy Backup 0000000

Synthetic DiD

Revenue (\$ Millions)

