

Übungsblatt zu Haskell

Learn You a Haskell for Great Good!

1 Aufwärmübungen in GHCi

Aufgabe 1. Verschachtelte Tupel

Benutze die vordefinierten Funktionen fst :: (a, b) -> a und snd :: (a, b) -> b , um das Textzeichen aus (1, ('a', "foo")) zu extrahieren.

Aufgabe 2. Medianbestimmung

Sei xs eine unsortierte Liste von Zahlen, z. B. let xs = [3, 7, -10, 277, 89, 13, 22, -100, 1]. Schreibe einen Ausdruck, der den Median (das mittlere Element in einer Sortierung der Liste) von xs berechnet. Verwende dazu length, div und !! .

Aufgabe 3. Der Smiley-Operator erster Ordnung

Was könnte der Ausdruck (.) . (.) bewirken? Finde es heraus mit Hilfe von GHCi!

2 Spiel und Spaß mit Listenfunktionen

Aufgabe 4. Groß- und Kleinschreibung

- a) Verwende map, um einen String in eine Liste von Bools zu verwandeln, die angeben, ob das entsprechende Zeichen im String ein Groß- oder Kleinbuchstabe war. Beispielsweise soll bei "aBCde" das Ergebnis [True,False,False,True,True] sein.

 Hinweis. Verwende isLower :: Char -> Bool aus Data.Char.
- b) Berechne die Anzahl der Kleinbuchstaben in einem gegebenen String.

Aufgabe 5. Typfehler

Erkläre den Typfehler, der bei folgendem Ausdruck entsteht: $\x \rightarrow x x$

3 Funktionsdefinitionen

Aufgabe 6. Fibonacci-Zahlen

Die Fibonacci-Folge $0, 1, 1, 2, 3, 5, 8, \ldots$ ist bekanntermaßen rekursiv definiert durch:

Die nullte Fibonacci-Zahl ist null, die erste Fibonacci-Zahl ist eins, jede weitere Fibonacci-Zahl ist die Summe ihrer Vorgänger.

- a) Verwende diese Definition direkt, um eine Haskell-Funktion fib :: Int -> Int zu schreiben, die die n-te Fibonacci-Zahl berechnet.
- b) Berechne fib 35. Was ist das Problem?
- c) Implementiere fibs :: [Int] , eine unendliche Liste aller Fibonacci-Zahlen. Lass dir mit take 100 fibs die ersten hundert Folgeglieder in GHCi ausgeben.

Hinweis. Du bekommst massig Bonuspunkte, wenn du zipWith verwendest.

Aufgabe 7. Die Collatz-Vermutung

- Beginne mit irgendeiner natürlichen Zahl n > 0.
- Ist n gerade, so nimm als Nächstes $\frac{n}{2}$,
- Ist n ungerade, so nimm als Nächstes 3n + 1.
- Wiederhole die Vorgehensweise mit der erhaltenen Zahl.

Zum Beispiel erhält man für n=19 die Folge

```
19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, \dots
```

- a) Schreibe eine Funktion collNext :: Int -> Int , welche Collatz-Iteration durchführt.
- b) Implementiere die Funktion collSeq :: Int -> [Int], die die Folge der Collatz-Iterierten berechnet: collSeq 10 = [10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, ...]

Die bisher ungelöste Collatz-Vermutung besagt, dass man ausgehend von jeder beliebigen Zahl n irgendwann bei 1 landet.

- c) Schreibe die Funktion collTest :: Int \rightarrow Bool , welche die Collatz-Vermutung für eine Eingabe n testet. Falls die Collatz-Vermutung für n falsch sein sollte, so muss die Funktion nicht terminieren.
- d) Überprüfe die Collatz-Vermutung für alle natürlichen Zahlen kleiner als eine Million.

Aufgabe 8. Die Prelude

Informiere dich, was folgende Funktionen aus der Standardbibliothek tun, und implementiere so viele wie du willst neu:

```
head, tail, init, last, length, reverse, (++), map, filter, intersperse, concat, zipWith, repeat, and, takeWhile, dropWhile, maximum
```

Aufgabe 9. Pointless/pointfree programming

Vereinfache folgende Funktionsdefinitionen:

```
multMany a xs = map (x \rightarrow a*x) xs filterMap f g xs = filter f (map g xs)
```

Aufgabe 10. Kettenbrüche

Jede reelle Zahl $r \in \mathbb{R}$ kann als unendlicher Kettenbruch

$$r = b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \frac{1}{\ddots}}}}$$

mit $b_0 \in \mathbb{Z}$ und $b_i \in \mathbb{N}$, $i \geq 1$ geschrieben werden. Überlege dir einen Algorithmus, der die unendliche Folge der b_i 's berechnet und implementiere ihn in Haskell. Überprüfe deinen Algorithmus anhand der Kettenbruchentwicklung von π (in Haskell: pi).

Aufgabe 11. Run-Length-Encoding

Zur effizienten Speicherung von Daten mit vielen Zeichenwiederholungen bietet es sich an, nicht jedes einzelnes Zeichen, sondern Zeichen mit der jeweiligen Anzahl Wiederholungen zu speichern:

```
Prelude> encode ['a', 'a', 'a', 'a', 'b', 'c', 'c', 'a', 'a', 'd', 'e', 'e', 'e', 'e']
[(4, 'a'), (1, 'b'), (2, 'c'), (2, 'a'), (1, 'd'), (4, 'e')]

Implementiere die Funktion encode :: String -> [(Int, Char)] und die Umkehrfunktion decode :: [(Int, Char)] -> String!
```

Aufgabe 12. Longest subsequence

Schreibe eine Funktion longestSubsequence :: (a -> Bool) -> [a] -> [a] . Diese soll die längste zusammenhängende Unterliste in einer Liste berechnen, für die das übergebene Prädikat vom Typ a -> Bool den Wert True liefert. Wenn beispielsweise xs :: [Date] die Liste der letzten 365 Tage ist, und p :: Date -> Bool angibt, ob ein gewisser Benutzer an einem gegebenen Tag auf Github aktiv war, so berechnet longestSubsequence xs p die längste Strähne auf Github.

Aufgabe 13. Türme von Hanoi

Die Aufgabe bei Hanoi ist es, einen Turm von Scheiben von einem Steckplatz zu einem anderen zu transportieren. Dabei darf man nur je eine Scheibe einzeln bewegen und es darf niemals eine größere Scheibe auf einer kleineren liegen. Man hat einen Steckplatz als Zwischenlager zur Verfügung. Implementiere eine Funktion toh:: Int -> [(Int, Int)], welche die Hanoi-Züge (Bewegungen von einzelnen) berechnet, mit denen man einen Turm einer gewissen Größe von Steckplatz 1 zu Steckplatz 3 mit Steckplatz 2 als Zwischenlager bewegen kann.


```
Prelude> toh 3
[(1,3), (1,2), (3,2), (1,3), (2,1), (2,3), (1,3)]
```

Tipp. Definiere eine Hilfsfunktion moveTower:: Int -> (Int, Int, Int) -> [(Int, Int)], sodass moveTower n (x, y, z) die nötigen Schritte ausgibt, um n Scheiben von x nach y unter Verwendung von z als Zwischenlager zu bewegen.

Aufgabe 14. Origami

Implementiere eine Funktion maximum' :: [Int] -> Int, die die größte Zahl in einer Liste zurückliefert oder null, falls die Liste leer ist oder alle Zahlen negativ sind. Verwende dazu foldl :: (b -> a -> b) -> b -> [a] -> b.

Aufgabe 15. Fizz buzz

Beim Spiel Fizz buzz stehen alle Spieler im Kreis. Reihum wird nun von eins hoch gezählt. Anstatt von Zahlen, die durch drei teilbar sind, muss man jedoch "fizz" sagen und "buzz" bei Zahlen, die durch fünf teilbar sind. Ist eine Zahl sowohl durch drei als auch durch fünf teilbar, so sagt man "fizz buzz". Wer einen Fehler macht, scheidet aus.

Implementiere die unendliche Liste

4 Eigene Datentypen

Aufgabe 16. Binäre Bäume

Im Folgenden verwenden wir folgende Definition für binäre Bäume, deren Verzweigungsknoten mit Werten vom Typ Int dekoriert sind.

```
data Tree = Nil | Fork Int Tree Tree
  deriving (Show)
```

- a) Schreibe eine Funktion, die die Gesamtzahl Blätter eines Baums berechnet: numberOfLeaves :: Tree -> In
- b) Schreibe eine Funktion, die die Höchsttiefe eines Baums berechnet.
- c) Schreibe eine Funktion, die die Int-Werte der Verzweigungsknoten in einer Reihenfolge deiner Wahl als Liste zurückgibt.

Aufgabe 17. Binäre Bäume bilden einen Funktor

a) Verallgemeinere die vorherige Aufgaben auf Bäume, die Werte von einem beliebigen Typ a statt Int tragen. Vervollständige dazu zunächst folgende Definition:

```
data Tree a = Nil | ...
  deriving (Show)
```

b) Implementiere eine Funktion tmap :: (a -> b) -> Tree a -> Tree b.

Aufgabe 18. Unendliche Bäume

- a) Schreibe eine Funktion cutoff :: Int -> Tree a -> Tree a , die eine Maximaltiefe und einen Baum als Argumente nimmt und einen neuen Baum zurückgibt, der sich aus dem gegebenen durch Abschneidung bei der gegebenen Maximaltiefe ergibt.
- b) Definiere eine Funktion, die eine unendliche Liste von Werten nimmt und einen Baum zurückgibt, auf dessen Verzweigungsknoten die Elemente der Liste sitzen. Suche dir selbst aus, in welcher Reihenfolge die Listenelemente auf dem Baum platziert werden sollen.

Aufgabe 19. Der Stern-Brocot-Baum (für Fans von Kettenbrüchen)

Informiere dich auf Wikipedia über den Stern-Brocot-Baum und implementiere ein Haskell-Programm, dass diesen unendlichen Baum berechnet. Hole dir gegebenenfalls einen (stark spoilernden) Tipp ab.

Aufgabe 20. Termbäume

a) Implementiere einen Datentyp für Funktionsterme. Zum Beispiel soll

$$(x \cdot x + 3) - x$$

so repräsentiert werden: Sub (Add (Mul Var Var) (Lit 3)) Var.

- b) Schreibe eine Funktion eval :: Exp \rightarrow Double \rightarrow Double , die in einem gegebenen Term für die Variable x einen konkreten Wert einsetzt.
- c) Schreibe eine Funktion diff :: Exp -> Exp , die einen gegebenen Funktionsterm ableitet. Zum Beispiel soll diff (Mul Var Var) im Wesentlichen äquivalent sein zu Mul (Lit 2) Var .

Aufgabe 21. Isomorphe Typen

Manche Typen lassen sich verlustfrei ineinander umwandeln, zum Beispiel die folgenden beiden:

```
data Bool = False | True -- schon vordefiniert
data Aussage = Falsch | Wahr
```

Man spricht in einem solchen Fall von zueinander isomorphen Typen. Die Umwandlungsfunktionen heißen Isomorphismen und können in diesem Fall wie folgt definiert werden:

```
iso :: Bool -> Aussage
iso False = Falsch
iso True = Wahr

osi :: Aussage -> Bool
osi Falsch = False
osi Wahr = True
```

Das charakteristische an diesen beiden Funktionen ist, dass osi . iso == id und iso . osi == id.

Folgende Typen sind jeweils zueinander isomorph. Implementiere auf analoge Weise Funktionen iso und osi, die das bezeugen!

```
a) (a, b) versus (b, a)
b) ((a, b), c) versus (a, (b, c))
c) (a, Either b c) versus Either (a, b) (a, c)
d) a -> (b, c) versus (a -> b, a -> c)
e) (a, b) -> c versus (a -> b -> c)
```

5 Typklassen

Aufgabe 22. Eigene Show-Instanzen

Für Debugging-Zwecke oder auch zum Datenaustausch ist die Show-Klasse nützlich, deren Definition in etwa die folgende ist:

```
class Show a where
    show :: a -> String
```

Bei der Deklaration eines neuen Datentyps hat man die Möglichkeit, mit einer deriving -Klausel den Compiler anzuweisen, automatisch eine geeignete Show-Instanz zu generieren:

```
data Tree a = Nil | Fork a (Tree a) (Tree a)
  deriving (Show)
```

In dieser Aufgabe aber sollst du den dafür nötigen Boilerplate-Code von Hand schreiben. Such dir einen Datentyp deiner Wahl aus und schreibe eine individuelle Show-Instanz für ihn.

Aufgabe 23. Die Monoid-Typklasse

Das Modul Data.Monoid definiert die Monoid-Typklasse:

```
class Monoid a where
  mempty :: a
  mappend :: a -> a -> a
  mconcat :: [a] -> a
```

Ihr gehören solche Typen an, die eine sog. *Monoidstruktur* tragen. (Wenn du diesen Begriff nicht kennst, dann frag kurz nach!) Das neutrale Element soll durch mempty angegeben werden, die Monoidoperation durch mappend. Die Funktion mconcat soll gleich mehrere Elemente miteinander verknüpfen.

- a) Gebe einer Nachimplementierung des Listen-Datentyps, etwa data List a = Nil | Cons a (List a) eine Monoid-Instanz. Vergiss nicht, zu Beginn deines Programmtexts mit die Definition der Monoid-Klasse zu laden.
- b) Implementiere folgende Funktion:

```
cata :: (Monoid m) => (a -> m) -> ([a] -> m)
```

Aufgabe 24. Sortierung nach mehreren Kriterien

Oft steht man vor folgendem Problem: Eine Liste von Dingen soll nach mehreren Kriterien sortiert werden. Etwa zunächst nach Nachname, unter gleichen Nachnamen aber nach Vorname und unter gleichem Namen nach Geburtsdatum. Die in Haskell idiomatische Herangehensweise an dieses Problem verwendet . . . Monoide!

- a) Schlage den Ordering Typ nach.
- b) Reimplementiere die Funktion

¹Die Funktionen mappend und mconcat lassen sich gegenseitig ausdrücken. Fällt dir ein Grund ein, wieso trotzdem beide Funktionen Teil der Klasse sind? Hätte man nicht auch einfach mconcat außerhalb der Klasse definieren können?

c) Trägt ein Typ a eine Monoidstruktur, so auch der Typ e -> a der Funktionen von e nach a. Bestätige das, indem du folgenden Code vervollständigst:

```
instance (Monoid a) => Monoid (e -> a) where
```

Da diese Instanz schon in Data.Monoid vordefiniert ist, musst du für diese Teilaufgabe den Import von Data.Monoid entfernen und die Monoid-Typklasse selbst definieren.

d) Was macht folgender Code? Wieso tut er das? Informiere dich dazu über die Monoid-Instanz von Ordering und erinnere dich an die Monoid-Instanz von Funktionstypen.

```
sortBy $ mconcat
    [ comparing lastName
    , comparing firstName
    , comparing birthday
]
```

Aufgabe 25. Endliche Typen

Manche Typen fassen nur endlich viele Werte, zum Beispiel Bool und Either Bool Bool. Für solche Typen ist es gelegentlich praktisch, eine vollständige Liste ihrer Werte zu kennen. Aus diesem Grund führen wir folgende Klasse ein:

```
class Finite a where
    elems :: [a]
```

- a) Implementiere eine Finite-Instanz für Bool.
- b) Implementiere folgende allgemeinen Instanzen:

```
instance (Finite a, Finite b) => Finite (a,b) where ...
instance (Finite a, Finite b) => Finite (Maybe a) where ...
instance (Finite a, Finite b) => Finite (Either a b) where ...
```

c) Wenn du Lust auf eine Herausforderung hast, dann implementiere auch folgende Instanz. Sie ist für die weiteren Teilaufgaben aber nicht nötig.

```
instance (Eq a, Finite a, Finite b) => Finite (a -> b) where ...
```

- d) Implementiere eine Funktion exhaustiveTest :: (Finite a) => (a -> Bool) -> Bool.
- e) Die Gleichheit zweier Funktionen (vom selben Typ) ist im Allgemeinen nicht entscheidbar, denn zwei Funktionen sind genau dann gleich, wenn sie auf allen Eingabewerten übereinstimmen. Um das zu überprüfen, muss man im Allgemeinen unendlich viele Fälle in Augenschein nehmen. Wenn der Quelltyp aber endlich ist, geht es doch. Implementiere also:

```
instance (Finite a, Eq b) => Eq (a -> b) where ...
```

Aufgabe 26. Abzählbare Typen

Manche Typen sind zwar nicht endlich, aber immer noch abzählbar: Das heißt, dass es eine unendliche Liste gibt, in der alle Werte des Typs vorkommen. Zum Beispiel ist der Typ Integer abzählbar, denn in der Liste [0, 1, -1, 2, -2, ...] kommen alle ganzen Zahlen vor.

- a) Definiere nach dem Vorbild der Finite-Typklasse aus der vorherigen Aufgabe eine Countable-Typklasse.
- b) Implementiere eine Countable-Instanz von Integer.

c) Vervollständige folgenden Code:

```
instance (Countable a, Countable b) => Countable (a,b) where ...
```

d) Vervollständige folgenden Code (schwierig!):

```
instance (Countable a) => Countable [a] where ...
```

Dabei soll [a] für den Typ der endlichen Listen mit Werten in a stehen – obwohl der Typ [a] ja auch unendliche Listen enthält. Solche sozialen Verträge sind in Haskell leider gelegentlich nötig – man benötigt abhängige Typen und andere Entwicklungen, um sie vollständig zu vermeiden. Sauberer wäre an dieser Stelle, einen neuen Datentyp FiniteList a zu definieren, der isomorph zum gewöhnlichen Listentyp ist, aber den sozialen Vertrag an zentraler Stelle kundtut.

Aufgabe 27. Überabzählbare Typen

Diese Aufgabe richtet sich nur an Leute, die das sog. Cantorsche Diagonalargument und die Russelsche Antinomie kennen. Sorry! Bei Gelegenheit suchen wir eine einführende Referenz.

Wir definieren ein Typalias für Mengen:

```
type Set a = a -> Bool

-- Ist 'f :: Set a', so soll 'f x == True' bedeuten, dass 'x' in
-- der Menge 'f' liegt.
```

- a) Setze in diesem Modell die leere Menge, die Universalmenge (welche alle Werte überhaupt enthält) und die Menge, die nur ein bestimmtes Element enthält, um. Welche Voraussetzung an den Typ a musst du im letzten Teil stellen?
- b) Implementiere folgende Funktionen:

```
member :: a -> Set a -> Bool
union :: Set a -> Set a -> Set a
intersection :: Set a -> Set a -> Set a
complement :: Set a -> Set a
```

- c) Setze die Russelsche Antinomie in Haskell um. Definiere also eine Menge all derjenigen Mengen, die sich nicht selbst enthalten. Wie äußert sich das paradoxe Verhalten in Haskell?
- d) Setze das Cantorsche Diagonalargument in Haskell um. Definiere also eine Funktion

```
cantor :: (a -> Set a) -> Set a
```

die folgendes leistet: Für jede Funktion f :: a -> Set a soll cantor f eine Menge sein, die nicht im Bild (in der Wertemenge) von f enthalten ist.

e) Bonusfrage zum Grübeln: Die vorherige Teilaufgabe zeigt, dass es in Haskell überabzählbare Typen gibt. Andererseits ist die Menge der Haskell-Programme abzählbar. Wie passt das zusammen?

6 Ideen für größere Projekte

Aufgabe 28. Ein Zahlenrätsel

Wie muss man die Zahlen 1, 3, 4 und 6 mit Klammern und den Operatoren +*-/ergänzen, damit das Ergebnis 24 ist? Die Zahlen dürfen und müssen dabei alle genau

einmal verwendet werden. Sie können aber in einer beliebigen Reihenfolge auftreten. Denkbar wäre also etwa die Lösung 3+((1-4)/6), aber dieser Term hat den Wert 2,5.

Schreibe ein Haskell-Programm, das für dich die Lösung findet! Ein mögliches Vorgehen ist folgendes.

- a) Definiere einen Datentyp Exp von Termen zu definieren. Das Beispiel könnte dabei durch Add (Lit 3) (Div (Sub (Lit 1) (Lit 4)) (Lit 6)) ausgedrückt werden.
- b) Schreibe eine Funktion eval :: (Fractional a) => Exp a -> a.
- c) Schreibe eine Funktion groups :: [a] -> [([a],[a])], die folgendes leistet: Gegeben eine Liste, berechnet alle Möglichkeiten, diese Liste in zwei Teile zu zerlegen: einen vorderen und einen hinteren. Zum Beispiel:

```
> groups "abc"
[("abc",""),("ab","c"),("a","bc"),("","abc")]
```

- d) Schreibe eine Funktion arb :: [a] -> [Exp a], die folgendes leistet: Gegeben eine Liste xs von (zum Beispiel) Zahlen, gibt eine Liste von allen Termbäumen zurück, an deren Blättern (in genau der gegebenen Reihenfolge) die Zahlen aus xs stehen. Alle Zahlen müssen verwendet werden, und zwar jeweils genau einmal.
- e) Importiere oder reimplementiere die Funktion permutations :: [a] -> [[a]] aus Data.List.
- f) Füge alle Puzzleteile zusammen.

7 Die IO-Monade und andere Monaden

Aufgabe 29. IO-Stringmanipulation

Schreibe ein Programm, das eine Zeichenkette einliest und diese ruckwärts wieder ausgibt. Die Funktion reverse :: [a] -> [a] könnte hilfreich sein, wenn du dir sie nicht selbst schreiben willst.

Aufgabe 30. Überprüfung von Nutzereingaben

Schreibe ein Programm, das den Benutzer solange nach einer Zahl fragt, bis dieser eine Zahl angibt, die durch 3 teilbar ist. Erinnere dich an die Typklasse Read!

Aufgabe 31. Monadische Schleifen

- a) Schreibe eine Funktion, die eine gegebene IO-Aktion (oder eine andere Art Aktion) eine gewisse Anzahl von Malen wiederholt. Die Typsignatur sollte also

 replicateM :: Int -> [IO a] -> IO [a] (oder allgemeiner replicateM :: (Monad m) => Int -> [m a] -> m

 erinnere dich, dass IO eine Instanz von Monad ist!) sein.
- b) Schreibe eine Funktion for M := (Monad m) => [a] -> (a -> m b) -> m [b] die das tut, was ihr Name und ihre Typsignatur versprechen.
- c) Schreibe eine Funktion, die es erlaubt, eine IO-Aktion (oder eine andere Art Aktion) unendlich oft zu wiederholen. Die Typsignatur sollte forever :: (Monad m) => m a -> m b sein. Erinnere dich, dass IO eine Instanz von Monad ist!

Schreibe ein Programm, das versucht eine Zahl zwischen 0 und 100 zu erraten, die sich die Nutzerin oder der Nutzer ausgedacht hat. Der Nutzende soll jeweils bei jedem Rateversuch angeben, ob die geratene Zahl kleiner oder größer als die tatsächliche ist. Du kannst das Problem mit einer binären Suche lösen.