1

实验名称 用示波器观测磁滞回线

- 一. 实验目的
- 1.认识并掌握磁滞、磁滞回线和磁化曲线的概念;
- 2. 学会用示波器测绘基本磁化曲线和磁滞回线;
- 3. 研究不同材料的动态磁滞回伐的区别,并确定特定频率下各个材料的剩磁和矫顽力。
- 二. 实验预习
- 1. 剩磁、矫顽力、基本磁化曲线、动态磁滞回线的定义。

剩磁:对一个在磁场中的材料,在撤消外磁场后其表现出的磁感应强度。

矫顽力:使已经磁化的铁磁质再次失去磁性而必须施加的外磁场的磁场强度。

基本磁化曲线:由一系列稳定的磁滞回线的顶点所连成的曲线。

动态磁滞回线:铁磁质在交变磁场的磁化下所得到的 B-H关系曲线。

- 2. 示波器测量的 X 轴信号 U_x 是谁的电压?和磁场强度 H 是什么关系(写出公式)? 示波器测量的 Y 轴信号 U_y 是谁的电压?和磁感应强度 B 是什么关系(写出公式)?
- 示波器测量的X轴信号Ux是电阻R.两端的电压,且有

示波器测量的Y轴信号Uy是电容C两端的电压,且有

$$B = \frac{R_2C}{M_1S}Uy$$

对的Ux关系的推导如下:

$$U_x = R_1 i_1 = \frac{LR_1H}{N_1}$$

故有

$$H = \frac{N_i}{LR_i} U_X$$

对的Uy然的推导如下:

$$E(t) = -NS \frac{dB(t)}{dt}$$

$$\int E(t) dt = -NS \int \frac{dB(t)}{dt}$$

$$B(t) = -\frac{1}{NS} \int_{0}^{t} E(t) dt$$

$$E_{t} = N_{2}S \frac{dB}{dt} = R_{2}i_{2}$$

面

$$i_2 = C \frac{dU_c}{dt}$$

故

$$dB = \frac{R_2C}{N_2S}dU_C$$
, $B = \frac{R_2C}{N_2S}U_C$, $U_C RPUY$.

三. 实验现象及数据记录

样品 1: 饱和磁滞回线

频率	R_1	R ₂	С	/mV	1	2	3	4	5	6	7	8	9	10			
50 Hz	£ 50	4510	4:0µF	U_X	373	223	140	70.0	20.0	-36.7	-76.7	-113	-167	-233	-287	-367	(上半)
30 Hz	9.912	TOKUZ	73 0) 4F	U_{Y}	33.2	31.6	29.2	25.6	20.8	10.4	0.00	-100	-20.4	-27.2	-30.0	-32.4	1
				/mV	11	12	13	14	15	16	17	18	19	20			
				U_X	-220	-130	-53.3	13.3	53.3	90.0	127	170	223	283	367	(下半)	١
				U_{Y}	-308	-28.4	-24.0	-15.2	-7.60	3.20	124	20.4	27.2	30.4	33.2	(1-17	t .

样品 1: 基本磁滞回线

频率	R_1	R_2	С	/mV	1	2	3	4	5	6	7	8	9	10	
50 Hz	5.50	45k0	4.0µF	U_X	73.3	83.3	93.3	107	120	140	163	190	243	330	373
30 Hz	3.311	7500	7.94		8.40	10.8	12.8	14.4	16.4	20.0	22.4	25.6	29.2	32.4	33.2

样品 2: 饱和磁滞回线

ТТНН	2. P	37 H KA	W/ih I	1-76											-		
频率	R_1	R_2	С	/mV	1	2	3	4	5	6	7	8	9	10			
50 Hz	150	EEL O	5.5µF	U_X	733	447	233	46.7	-53.3	-107	-47	-180	-227	-280	-380	-500	-607 (上神)
30 H2	1.032	95K34	J.5)µ	U_{Y}	67.2	63.2	57.6	49.6	40.8	304	11.2	-8.00	-28.8	-42.4	-51.2	-57.6	
				/mV	11	12	13	14	15	16	17	18	19	20			
				U_X	-733	-5∞	-333	-100	% 0.0	147	180	240	340	473	607	733	(T *)
				U_{Y}	-67.2	-64.0	-60.0	-52.0	-38.4	-17.6	2.40	31.2	18 .0	56.8	62.4	68.0	11/1

样品 2: 基本磁滞回线

_																
	频率	R_1	R_2	С	/mV	1	2	3	4	5	6	7	8	9	10	
	50 11-	160	ちまとの	5.5µF	U_X	66.7	73.3	100	127	153	193	273	393	533	653	727
	50 Hz	1.032	300	J.J J4	U_{Y}	11.2	17.6	24.0	31.2	36.8	43.2	504	56.8	61.6	64.8	67.2

教师	姓名	
签字	\$30 P	

四. 数据处理及作图

利用实验预习部分推导出的关系式

$$H = \frac{N_1}{LR_1} U_x$$
$$B = \frac{R_2 C}{N_2 S} U_y$$

$$B = \frac{R_2 C}{N_2 S} U_1$$

可求得两个样品在不同的 U_x 及 U_y 的值所对应的 H 和 B 的值,并作出对应的图像。

(-)

表 1 样品 1 饱和磁滞回线测量数据

	1	2	3	4	5	6	7	8	9	10	11	12
H (A/m)	78.25	46.78	29.37	14.69	4.20	-7.70	-16.09	-23.71	-35.03	-48.88	-60.21	-76.99
<i>B</i> (T)	0.32	0.31	0.28	0.25	0.20	0.10	0.00	-0.10	-0.20	-0.26	-0.29	-0.31
	13	14	15	16	17	18	19	20	21	22	23	
H (A/m)	-46.15	-27.27	-11.18	2.79	11.18	18.88	26.64	35.66	46.78	59.37	76.99	
<i>B</i> (T)	-0.30	-0.27	-0.23	-0.15	-0.07	0.03	0.12	0.20	0.26	0.29	0.32	

图 1 样品 1 饱和磁滞回线

通过读取磁滞回线与坐标轴的交点,可得样品 1 的剩磁 B_r =0.17T,矫顽力 H_c =16.09A/m。

 $(\underline{-})$

表 2 样品 1 基本磁滞回线测量数据

	1	2	3	4	5	6	7	8	9	10	11
H (A/m)	15.38	17.48	19.57	22.45	25.17	29.37	34.20	39.86	50.98	69.23	78.25
<i>B</i> (T)	0.08	0.10	0.12	0.14	0.16	0.19	0.22	0.25	0.28	0.31	0.32

图 2 样品 1 基本磁滞回线

 (Ξ)

表 3 样品 2 饱和磁滞回线测量数据

	1	2	3	4	5	6	7	8	9	10	11	12	13
H (A/m)	916.25	558.75	291.25	58.38	-66.63	-133.75	-183.75	-225.00	-283.75	-350.00	-475.00	-625.00	-758.75
<i>B</i> (T)	1.13	1.06	0.97	0.83	0.69	0.51	0.19	-0.13	-0.48	-0.71	-0.86	-0.97	-1.04
	14	15	16	17	18	19	20	21	22	23	24	25	
H (A/m)	-916.25	-625.00	-416.25	-125.00	100.00	183.75	225.00	300.00	425.00	591.25	758.75	916.25	
<i>B</i> (T)	-1.13	-1.08	-1.01	-0.87	-0.65	-0.30	0.04	0.52	0.81	0.95	1.05	1.14	

图 3 样品 2 饱和磁滞回线

通过读取磁滞回线与坐标轴的交点,可得样品 2 的剩磁 B_r =0.76T,矫顽力 H_c =221.25A/m。

(四)

表 4 样品 2 基本磁滞回线测量数据

	1	2	3	4	5	6	7	8	9	10	11
H (A/m)	83.38	91.63	125.00	158.75	191.25	241.25	341.25	491.25	666.25	816.25	908.75
<i>B</i> (T)	0.19	0.30	0.40	0.52	0.62	0.73	0.85	0.95	1.04	1.09	1.13

图 4 样品 2 基本磁滞回线

五. 实验结论及现象分析

结论及分析:根据实验现象及图像可知,随着电压的增大,H与B均增大,但H先于B变化,当电压增大到一定值时B会饱和。同时,根据实验数据及图像可知,样品 1 的剩磁 B_r =0.17T,矫顽力 H_c =16.09A/m,磁滞回线较窄,属于软磁材料;样品 2 的剩磁 B_r =0.76T,矫顽力 H_c =221.25A/m,磁滞回线较宽,属于硬磁材料。

六. 讨论问题

1. 某两种材料的磁滞回线,一个很宽,一个很窄,它们各属于哪种磁性材料? 分别可以应用于什么场合?

答:磁滞回线窄的为软磁材料,磁滞回线宽的为硬磁材料。软磁材料的剩磁和矫顽力小,易于磁化,也易于退磁,可以用于电工设备和电子设备,比如变压器、电动机和发电机的铁芯,无线电天线线圈、无线电中频变压器等。硬磁材料的剩磁和矫顽力大,常用来制作各种永久磁铁、扬声器的磁钢和电路中的记忆元件等。

2. 一钢制部件不慎被磁化,请设计一种退磁方案。

答: 通过外加反向磁场, 使外加磁场强度达到部件的矫顽力, 即可实现退磁。