

数学笔记

目录

第一章	MEX	1
§1.1	符号定义	1
	1.1.1 常用符号	1
§1.2	环境	2
	1.2.1 公式	2
ᄷᅩᅩ	高等数学	3
\$2.1	微积分纵览	3
	2.1.1 高等数学的主要内容	3
	2.1.2 计算平面图形的面积	3
	2.1.3 计算无穷个数的和	3
60.0	2.1.4 如何学习微积分	3
\$2.2	如何用 Mathematica 做微积分	4
	2.2.1 Mathematica 基本操作	4
\$2.3	集合与映射	4
	2.3.1 集合的概念与运算	4
	2.3.2 确界与连续性公理	4
	2.3.3 映射	4
	2.3.4 集合的比较	5
\$2.4	函数的概念与性质	5
	2.4.1 函数的概念	5
	2.4.2 函数的例子	5
	2.4.3 函数的运算	5
§2.5	初等函数	6
	2.5.1 基本初等函数	6
\$2.6	曲线的参数方程与极坐标方程	8
\$2.7	数列极限的概念	8
-	数列极限的性质	8
\$2.9	数列收敛的判定方法	8
\$2.10	0 子数列与聚点原理	8
\$2.1	1 无穷级数的概念与运算性质	8
\$2.12	2 正项级数收敛性判别方法	8
§2.13	3 变号级数收敛性判别方法	8
\$2.14	4 函数极限的概念	8
\$2.15	5 函数极限的性质与运算法则	8
§2.10	6 函数极限存在性的判定准则	8
§2.17	7 无穷小量与无穷大量	8
	8 函数连续的概念	
§2.19	9 连续函数的运算	8

-) 闭区间上连续函数的性质	
第三章	数学思想	9
§3.1	比喻	9
	3.1.1 类比	9
§3.2	数形结合	9
§3.3	抽象	9

第一章 MEX

§1.1 符号定义

1.1.1 常用符号

代码(小写)	代码(大写)	符	号	名称	代码(小写)	代码(大写)	符	号	名称
\a	Α	α	\boldsymbol{A}	alpha	\n	N	ν	N	nu
\b	В	β	B	beta	\x	\Xi	ξ	Ξ	xi
\g	\Gamma	γ	Γ	gamma	0	0	0	O	omicron
\d	\Delta	δ	Δ	delta	\pi	\Pi	π	П	pi
\e	E	ϵ	\boldsymbol{E}	epsilon	\r	P	ρ	P	rho
\z	Z	ζ	Z	zeta	\s	\Sigma	σ	Σ	sigma
\h	H	η	H	eta	\t	T	au	T	tau
\q , \t	\Theta	θ	Θ	theta	\u	Υ	ν	Υ	upsilon
\i	I	ι	I	iota	\f	\Phi	ϕ	Φ	phi
\ka	K	К	K	kappa	\c	X	X	\boldsymbol{X}	chi
\1	\Lambda	λ	Λ	lambda	\y	\Psi	ψ	Ψ	psi
\m	M	μ	M	mu	\o,\w	\Omega	ω	Ω	omega

表 1.1: 希腊字母

意义
圆周率
自然常数
虚数单位
微分
偏微分
变分
绝对值

表 1.2: 运算符、常数、函数

代码	符号	意义
Х	х	变量
\mathrm{x}	X	符号
\sR	$\mathcal R$	手写体
\vec{a}	\vec{a}	向量(形式 A)
\vecb{a}	а	向量(形式 B)
\R	\mathbb{R}	实数集

表 1.3: 修饰符

§1.2 环境

1.2.1 公式

定义	用法	说明
mytable	<对齐方式><标题><内容>	用于生成一个简单的三线表格。
vuyi	<内容>	用于生成一段注意的内容。
liti	<内容>	用于生成一道例题。

代码	符号	名称	代码	符号	名称
\ve	ε	epsilon	\Q,\Th	Θ	theta
\vq,\vth	ϑ	theta	\L	Λ	lambda
\vk	×	kappa	\X	${\it \Xi}$	xi
\vp	σ	pi	\P	П	pi
\vr	ϱ	rho	\vS	${\it \Sigma}$	sigma
\vs	ς	simga	\U	γ	upsilon
\j,\vf	arphi	phi	\F	Φ	phi
\G	Γ	gamma	\Y	Ψ	psi
\D	Δ	delta	\O,\W	Ω	omega

表 1.4: 希腊字母变体

定义	用法	说明
mytable	{<对齐方式>}{<标题>}{<内容>}	用于生成一个简单的三线表格。
vuyi	{<内容>}	用于生成一段注意的内容。
liti	{<内容>}	用于生成一道例题。

表 1.5: 环境

定义	用法	说明
fm	<空>	在一个段落前面产生一个标记。
dfa	{<定义>}	用于标明一个定义。

表 1.6: 命令

第二章 高等数学

§2.1 微积分纵览

2.1.1 高等数学的主要内容

一元函数微分学、一元函数积分学、矢量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数、常微分方程.

2.1.2 计算平面图形的面积

计算半径为r的圆的面积:

假设圆的半径为 r, 内接正 n 边形, 每条边所对的圆的弧度为 $\frac{2n}{n}$, 根据三角形的面积公式, 每个三角形的面积为 $r^2 \sin \frac{2n}{n}$, 所以正 n 边形的面积为 $nr^2 \sin \frac{2n}{n}$. 当 $n \to \infty$ 时, 正 n 边形的面积等于圆形的面积. 则有:

$$A = \lim_{n \to \infty} A_n = \lim_{n \to \infty} n \cdot \frac{1}{2} r^2 \sin \frac{2\pi}{n} = \pi r^2 \lim_{n \to \infty} \frac{\sin \frac{2\pi}{n}}{\frac{2\pi}{n}} = \pi r^2$$
 (2.1)

求解以抛物线和 x 轴所围成的图形的面积:

将要求的区间进行 n 等分,则产生了 n+1 个横坐标,分别是 $0,1/n,2/n,\cdots,1$. 每个小矩形的宽为 1/n,每个小矩形的高为其左端或右端的函数值. 所以有左和和右和之分. 左和为($k=0,1,2,\cdots,n$):

$$\sum_{k=0}^{n-1} \frac{1}{n} \cdot f\left(\frac{k}{n}\right) \tag{2.2}$$

同理,右和为:

$$\sum_{k=1}^{n} \frac{1}{n} \cdot f\left(\frac{k}{n}\right) \tag{2.3}$$

显然, 曲边图形的面积介于左和与右和之间, 当 $n\to\infty$ 时, 三者的大小相等, 即为图形的面积. 思考: 如何求证圆锥的体积为 $V=\frac{1}{3}\pi r^2 h$?

2.1.3 计算无穷个数的和

求三角形数 $(1,3,6,10,\cdots)$ 的倒数和 $s=1/1+1/3+1/6+\cdots$:

2.1.4 如何学习微积分

明确学习微积分的目的:从实际问题抽象出数学模型的能力、计算与分析的能力、了解和使用现代数学语言和符号的能力、使用数学软件学习和应用数学的能力.

数学的三大特点:研究对象的抽象性、论证方法的演绎性以及应用的广泛性.

怀着浓厚的兴趣学习数学:数学本身体现体现着美的神奇——和谐、简洁、对称. 因为数学是美丽的,所以需要欣赏;因为数学是有趣的,故而数学可以欣赏;因为数学是有用的,因此数学值得欣赏.

\$2.2 如何用 Mathematica 做微积分

2.2.1 Mathematica 基本操作

操作	键盘快捷方式
执行一个单元	Shift+Enter
停止一个单元	Alt+.

表 2.1: 基本操作快捷方式

输入	意义
Pi	圆周率
Degree	角度(角度制)
E	自然常数
Infinity	无穷大
I	虚数单位

表 2.2: 数学常数

§2.3 集合与映射

2.3.1 集合的概念与运算

自然数集 \mathbb{N} ,整数集 \mathbb{Z} ,有理数集 \mathbb{Q} (分子、分母都是整数的小数,分母不为 \mathbb{O}),实数集 \mathbb{R} ,复数集 \mathbb{C} .

列 证明: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

$$\forall x \in A \cap (B \cup C) \Rightarrow x \in A \perp x \in B \cup C \Rightarrow x \in A \perp x \in B \Rightarrow x \in C \Rightarrow x \in A \cap B \Rightarrow x \in A \cap C$$

$$\Rightarrow x \in (A \cap B) \cup (A \cap C) \Rightarrow A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C);$$

$$\forall x \in (A \cap B) \cup (A \cap C) \Rightarrow x \in A \cap B \Rightarrow x \in A \cap C \Rightarrow x \in A \perp x \in B \Rightarrow x \in A \perp x \in C$$

$$\Rightarrow x \in A \perp x \in B \Rightarrow x \in C \Rightarrow x \in A \perp x \in B \cup C \Rightarrow x \in A \cap (B \cup C) \Rightarrow (A \cap B) \cup (A \cap C) \subset A \cap (B \cup C).$$

$$\Leftrightarrow x \in A \perp x \in B \Rightarrow x \in C \Rightarrow x \in A \perp x \in B \cup C \Rightarrow x \in A \cap (B \cup C) \Rightarrow (A \cap B) \cup (A \cap C) \subset A \cap (B \cup C).$$

$$\Leftrightarrow x \in A \perp x \in B \Rightarrow x \in C \Rightarrow x \in A \perp x \in B \cup C \Rightarrow x \in A \cap (B \cup C) \Rightarrow (A \cap B) \cup (A \cap C) \subset A \cap (B \cup C).$$

$$\Leftrightarrow x \in A \perp x \in B \Rightarrow x \in C \Rightarrow x \in A \perp x \in B \cup C \Rightarrow x \in A \cap (B \cup C) \Rightarrow (A \cap B) \cup (A \cap C) \subset A \cap (B \cup C).$$

◆ 直积(笛卡尔积): $A \times B = \{(x, y) | x \in A, y \in B\}$. 已知 $A = \{1, 2\}, B = \{2, 3, 4\},$ 那么 $A \subseteq B$ 的直积为 $A \times B = \{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)\}$.

2.3.2 确界与连续性公理

- **上界** 设 E 是一个非空实数集, M 是一个实常数, 如果对于 E 中的任何元素 x, 均有 $x \leq M$, 则称 M 为数集 E 的一个上界, 并称 E 有上界。上界中最小的为上确界, 记为 $\sup E$ 。
- * **下界** 设 E 是一个非空实数集, m 是一个实常数, 如果对于 E 中的任何元素 x, 均有 $x \ge M$, 则称 M 为数集 E 的一个下界, 并称 E 有下界。上界中最大的为下确界, 记为 inf E。
- ▶ 注意上下界不一定是属于集合的一部分,它只是边界。

2.3.3 映射

*** 像和原像** 当 $f: x \mapsto y$ 时,称 $y \ni x$ 的像,记作 y = f(x),并称 $x \ni y$ 的原像。图:单射和满射和双射

2.3.4 集合的比较

- * **等势** 设 $A \cdot B$ 是两个集合, 若存在一个一一映射 $\varphi : A \to B$, 则称集 A 和集 B 是等势的。 两个有限集是等势的, 当且仅当它们的元素个数相等。
- ▶ 注意 有理数集与无理数集是不等势的。

§2.4 函数的概念与性质

2.4.1 函数的概念

* 一元函数 设 D 是中的非空子集, 称映射 $f: D \to R$ 为定义在 D 上的一元函数。

2.4.2 函数的例子

函数	函数表达式
常值函数	y = C
绝对值函数	y = x
符号函数	$y = \operatorname{sgn} x$
取整函数	y = [x]
狄利克雷函数	$D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$

表 2.3: 函数的例子

2.4.3 函数的运算

黎 复合函数 设有两个函数 $f: A \to B_1$ 与 $g: B \to C$, 且满足 $B_1 \subset B$, 函数 $h: A \to C$ 定义为:对任意 $x \in A$, 有 h(x) = g(f(x))。称 h 为 f 与 g 的复合函数, 记作: $h = g \circ f$ 。

函数 y = f(x) 与 $x = f^{-1}(y)$ 的图形是同一个。并非是关于原点对称,当交换了位置以后 $(y = f^{-1}(x))$ 两个函数关于原点对称。

严格单调增加(减少)函数的反函数也是严格单调增加(减少)。

- ▶ 注意 因为有理数和一个有理数的和是一个有理数,有理数和无理数的和是无理数,所以狄利克雷函数是一个以任意有理数为周期的周期函数。因为在数轴上关于原点对称的两个点的性质相同,所以该函数也是一个偶函数。
- **例** 证明函数 f(x) = x [x] 为周期函数,且 T = 1 是它的最小正周期。

$$f(x+1) = (x+1) - [x+1] = (x+1) - ([x]+1) = x - [x] = f(x)$$

所以 $T = 1$ 是 $f(x) = x - [x]$ 的一个周期。

下面证明 T = 1 是 f(x) 的最小正周期。如果 T = 1 不是 f(x) 的最小正周期,则存在 $r \in (0,1)$ 使得 f(x+r) = f(x) 对任意的 $x \in \mathbb{R}$ 成立。取 x = 0,则有 f(x) = f(0),即 r = 0,矛盾! 所以 T = 1 是 f(x) 的最小正周期。

§2.5 初等函数

2.5.1 基本初等函数

幂函数

- §2.6 曲线的参数方程与极坐标方程
 - §2.7 数列极限的概念
 - §2.8 数列极限的性质
 - §2.9 数列收敛的判定方法
 - §2.10 子数列与聚点原理
- §2.11 无穷级数的概念与运算性质
 - **§2.12** 正项级数收敛性判别方法
 - §2.13 变号级数收敛性判别方法
 - §2.14 函数极限的概念
- §2.15 函数极限的性质与运算法则
- \$2.16 函数极限存在性的判定准则
 - §2.17 无穷小量与无穷大量
 - §2.18 函数连续的概念
 - §2.19 连续函数的运算
 - §2.20 闭区间上连续函数的性质
 - §2.21 函数的一致连续性

第三章 数学思想

§3.1 比喻

3.1.1 类比

比如用学号到名字的对应关系称为一种映射,并且这种映射是一种双射。而学号到性别之间的关系是一种满射。诸如此类,还有很多可以类比的例子。使用类比可以降低对新东西的陌生感,更快地理解,并且可以加强记忆。

Times New Roman

§3.2 数形结合

§3.3 抽象