

MSAI-6124 Neuro Evolution & Fuzzy Intelligence

Week 5 – Part 1 Clustering

Dr WANG Di wangdi@ntu.edu.sg

Evaluating the Efficiency of Algorithms

- Algorithm complexity
 - Differentiates algorithms based on the scale of running time or memory space
 - Expresses it as a function to show how fast it grows along with the input(s), normally using the Big-O notation
- Time complexity estimates the running time of an algorithm
- Space complexity estimates the amount of memory space that an algorithm requires

Formal Definition of Big-O

• f(n) is O(g(n)), if there exists a real constant c > 0 and an integer constant $n_0 \ge 1$, such that

$$f(n) \le c \cdot g(n), \forall n \ge n_0$$

Note: g(n) should be in the simplest form

In such a case, we say f(n) is in the order of g(n)

Example

- $rac{1}{2} f(n) = 3n + 5$
- If we select g(n) = n, it is easy to find c = 4 and $n_0 = 5$ that $f(n) = 3n + 5 \le c \cdot g(n) = 4n$, for $n \ge 5$
- \triangleright Thus, this function f(n) has a time complexity of O(n)

Time Complexity of Algorithms

```
def find_min(data):
    mindata=data[0]
    for value in data
        if value < mindata
            mindata = value
    return mindata</pre>
```

The time complexity of find_min() is O(n)

The time complexity of the most naïve sort function is $O(n^2)$

The time complexity of many advanced sort functions, e.g., quick_sort(), is O(nlog(n))

*Similar functions often do not differ much in space complexity, but may significantly differ in time complexity

See more details here

Common Functions' Complexity

Function	Expression	Complexity	
Constant	f(n) = C	0(1)	
Logarithm	f(n) = log(n)	$O(\log(n))$	
Linear	f(n) = n	O(n)	
N-log-N	$f(n) = n \log(n)$	$O(n \log(n))$	
Quadratic	$f(n) = n^2$	$O(n^2)$	
Cubic	$f(n) = n^3$	$O(n^3)$	
Polynomial	$f(n) = a_0 + a_1 n + a_2 n^2 + \dots + a_d n^d$	$O(n^d)$	
Exponential	$f(n) = 2^n$	$O(2^n)$	

Comparative Analysis of Complexity

• Because g(n) should be in the simplest form, if at the same level (e.g., in one loop), there are multiple operations having different complexity, take the highest:

$$f(n) = n(nlog(n) + n^2)$$

Its complexity is $O(n^3)$

 Always select/develop the algorithm with a lower complexity

What Is Clustering?

- Natural clusters exist in our real world
 - ➤ E.g., superstar, star, all-round player, defensive player, etc. in NBA; Size XS, S, M, L, XL, etc. for clothes
 - May or may not have clearly defined rules/criteria to categorize them precisely
 - Especially for the borderline objects
- In computer science, clustering is the task to group a set of objects, such that
 - Objects within each cluster are more similar to each other (homogeneous) than to those in other clusters (heterogeneous)

Unsupervised vs Supervised Learning

- Clustering algorithms aim to analyze entities by discovering their underlying structure and organize them into different categories without priori knowledge
 - Most well-known type of unsupervised learning method
- If we know the ground-truth labels of the objects
 - > Normally apply supervised learning methods for classification
 - > Could still apply clustering methods to differentiate the objects
 - ☐ Should not use the labels during learning
 - Nonetheless, the labels could be used as **external information** to evaluate the clustering results (see later slides)

Financial Applications of Clustering

- Customer profiling
 - Model the common behaviors and status of similar customers
 - ➤ Thus, specific strategies may be applied with group differences
- Fraud identification
 - Obtain the outlying clusters for further investigations
 - Thus, potential fraud cases may be identified from these outliers

Source: Internet

Desirable Properties

- Accurate, able to deal with noise and outliers
- Able to discover clusters with arbitrary shape and density
- Scalability (low complexity)
- Requiring minimal domain knowledge to set parameters
- Insensitive to the order of data inputs
- Robust in high dimensionality
- Incorporation of user-specific constraints
- Interpretability and usability

Cannot have it all!

How Clustering Is Carried Out?

- A proximity measure is required to quantify the similarity/dissimilarity among objects
- Proximity should not be affected by the direction
- One of the widely adopted metrics is distance
 - \blacktriangleright Minkowski distance: $d(x_i, x_j) = \left(\sum_{n=1}^{N} (x_i^n x_j^n)^p\right)^{\frac{1}{p}}$
 - \rightarrow When p=1: Manhattan distance (city block)
 - > When p=2: Euclidean distance: $\sqrt{\sum_{n=1}^{N}(x_i^n-x_j^n)^2}$

N denotes the dimensionality

Forming Clusters

Intra-cluster distances are Inter-cluster minimized distances are maximized

Cautious in Distance Measure

 Distance in the original data space may be dominated by large values

Cautious in Distance Measure

- Solution: Normalization in each dimension
 - \triangleright E.g., Age range: [15,65] \rightarrow [0,1]; Income range: [0,20000] \rightarrow [0,1]

What About Non-Numerical Values?

- Binary values: M vs F, absent vs present, etc.
- Derive a contingency table for binary vectors
 - Also known as a cross tabulation or crosstab

a+b+c+d=length of the binary vector

Symmetric Binary Attributes

- A binary attribute is symmetric if both states (0, 1) have equal importance
 - > E.g., male vs female
- Distance function: Simple matching coefficient
 - Proportion of mismatches of their values

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

Asymmetric Binary Attributes

- A binary attribute is asymmetric if one state is more important or more valuable than the other
 - ➤ By conversion, state 1 is normally more important: Generally rare or infrequent as positive for some tests
- Distance function: Jaccard coefficient

$$d(i,j) = \frac{b+c}{a+b+c}$$

May also apply weights to represent relative importance

Distance vs Similarity

Simple matching coefficient

$$d(i, j) = \frac{\text{number of non - common bit positions}}{\text{total number of bits}}$$
$$s(i, j) = 1 - d(i, j) = \frac{a + d}{a + b + c + d}$$

Jaccard coefficient

$$d(i, j) = 1 - \frac{\text{number of 1's in } i \wedge j}{\text{number of 1's in } i \vee j}$$
$$s(i, j) = 1 - d(i, j) = \frac{a}{a + b + c}$$

Example of Jaccard Coefficient

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	1	0	1	0	0	0
Ken	1	0	1	0	1	0
Bob	1	1	0	0	0	0

- All attributes are asymmetric binary
- 1 denotes presence or positive of test
- 0 denotes absence or negative of test

$$d(i,j) = \frac{b+c}{a+b+c}$$

$$d(Jack,Ken) = \frac{0+1}{2+0+1} = 0.33$$
$$d(Jack,Bob) = \frac{1+1}{1+1+1} = 0.67$$
$$d(Ken,Bob) = \frac{2+1}{1+2+1} = 0.75$$

Nominal Attributes

- Unlike binary attributes, a nominal attribute has more than two states or values
 - > E.g., ethnic group, nationality, etc.
- May still apply the simple matching method
 - Let r denote the total number of attributes
 - Let q denote the number of values that match between the two given objects

 $d(i,j) = \frac{r - q}{r}$

Combining Different Types of Attributes

• Option 1:

- Decide the dominate type
- Convert the others to the dominate type
- Calculate the distance
- Although this is one commonly adopted approach, sometimes may not make much sense to perform the conversion

• Option 2:

- Obtain the distance for each type individually
- Combine the distance by applying a weighted sum
- May not be straightforward to set the weights

Types of Clustering Algorithms

- Hierarchical vs Partitioning
- Online vs Offline
- Hard vs Soft (Fuzzy)
 - ➤ K-means vs Fuzzy C-means
- Density-based algorithms
- Model-based algorithms
 - > E.g., SOM, GMM

Hierarchical Clustering

- Build a tree-based hierarchical taxonomy, known as dendrogram:
 - Clusters are obtained by cutting the dendrogram at a selected level: Each connected component forms a cluster

Source: What is dendrogram

Two Approaches to Get Dendrograms

- Bottom-up approach: Agglomerative clustering
 - Each data element is treated as an initial cluster
 - Merge the most similar (or nearest) pair of clusters each time
 - Until all elements are merged into a single cluster
- Top-down approach: Divisive clustering
 - All data elements are grouped as one cluster called root
 - Recursively divide the cluster to obtain sub-clusters
 - Until only singleton clusters of individual elements remain or reach certain stopping criteria

Agglomerative Clustering Algorithm

- Basic algorithm is straightforward:
 - 1 Compute the proximity matrix
 - 2 Let each data element be a cluster
 - 3 Repeat
 - 4 Merge two closest clusters
 - 5 Update the proximity matrix
 - 6 Until only a single cluster remains

Agglomerative Clustering Algorithm

Complexity of Agglomerative Clustering

- Space complexity:
 - \triangleright O(N^2) for the proximity matrix
 - N denotes the number of data elements
- Time complexity:
 - \triangleright O(N^3) for many cases
 - □ N iterations
 - In each iteration, the proximity matrix needs to be searched and updated: N^2
 - \triangleright O($N^2\log(N)$) for some approaches

Partitioning Clustering

 Construct partitions (usually random) of the given dataset, then refine them using certain criteria

- By far, the most well-known algorithm is K-means
 - K-medoids: Instead of mean, use a data element in the cluster to represent the cluster medoid (exemplar)

K-means Clustering Algorithm

- Each cluster is associated with one and only one centroid (cluster mean)
- Each data element is assigned to the cluster with the closest centroid
- Need to predefine the number of clusters, i.e., K

Input: A set of data points D; Number of clusters K; Number of iterations G **Output:** Cluster assignment of each data point

- 1 Randomly select K data points (may not from D) as initial cluster centroids
- 2 repeat
- 3 Compute the distance between each data point and each centroid
- 4 Associate each data point with its closest centroid
- 5 All data points associated with the same centroid form a cluster
- 6 Recompute the centroid of each cluster
- 7 **until** centroids are stabilized or number of iterations equals to G

Step 1:

Random initialization of centroids

Source: Lecture slides by Carla Brodley, **Tufts University**

Step 2: Form

clusters

Step 3: Update the centroids

Step 4: Update clusters

Step 5: Update centroids again

Step 6: Algorithm converges

Convergence of K-means

- Does K-means always converge?
 - Yes, because it is a special case of a general procedure known as the <u>Expectation Maximization</u> (EM) algorithm
 - EM is known to guarantee convergence
 - But the number of iterations needed to converge may be large.
- For K-means:
 - Usually, the number of iterations needed to converge is not large
 - For complex datasets, no harm to set max_iteration

Complexity and Evaluation of K-means

- Time complexity of K-means is O(I·K·N·F)
 - > I: #iterations; K: #clusters; N: # data elements; F: #features
 - Faster than hierarchical methods
- Commonly use SSE to evaluate the clusters
 - > SSE = $\sum_{j=1}^{K} \sum_{x_i \in C_j} d(x_i, m_j)^2$
 - \Box C denotes the clusters, x_i denotes each data element, and m denotes the cluster center
 - May use SSE to determine when to stop, and compare two sets of clustering results

Limitations of K-means (1)

How to determine K?

Source:

How to
Determine
the Optimal K
for K-Means?

Determination of K

Use the elbow method

Source:

K-Mean: Getting The
Optimal Number Of Clusters

Limitations of K-means (2)

- Performance may vary drastically due to different initializations of cluster centroids
 - Trap in local minima, hard to find global minima

Source: Internet

Undesirable result

Initialization in K-means

- Try multiple times, then select the sensible cluster centroids as initializations
 - Computationally heavy, may not work for complex cases
- Pre-analyze the data distribution
 - > Require additional computation and prior knowledge
- Select many centroids to start with, then select the well separated ones
 - Investigation required
 - May help to determine K at the same time

Limitations of K-means (3)

 Assume clusters are spherical

 Also, may not well handle different sizes and densities

Source:

Learn Clustering Method 101 in 5 minutes

Limitations of K-means (4)

- Does not detect outliers and is sensitive to them
- Solution to limitations 3 & 4:
 - Use other clustering methods

Density-based Clustering Algorithms

- Clustering based on density (local cluster criterion), such as density-connected points
- Key features:
 - Able to discover clusters of arbitrary shape
 - Well handle noises / outliers
 - Need one or few scans only
 - Require density parameters to form clusters and know when to stop
- Representatives
 - > DBSCAN (KDD'96), CLIQUE (SIGMOD'98), OPTICS (SIGMOD'99)
 - DPC (Science'14) and its variants: <u>REDPC</u> (Neurocomputing'19), <u>McDPC</u> (NCAA'20), <u>VDPC</u> (Information Sciences'23), etc.

DBSCAN

- DBSCAN: <u>Density-based spatial clustering of applications with noise</u>
- Two parameters:
 - \triangleright ϵ : Radius of the neighborhood (*Eps*)
 - \blacktriangleright *MinPts*: A threshold to define density using the number of data points in the ϵ –neighborhood
- Neighborhood of data point p:
 - \triangleright All data points within distance ϵ from p
 - $\triangleright N_{Eps}(p) = \{q \mid d(p,q) \le \epsilon\}$

Definitions in DBSCAN

- If $|N_{Eps}(p)| \ge MinPts$, then p is called a core point
- A data point p is directly density-reachable from another data point q if
 - $\triangleright p \in N_{Eps}(q)$, i.e., $d(p,q) \le \epsilon$
 - $|N_{Eps}(q)| \ge MinPts$, i.e., q is a core point

MinPts = 5

Definitions in DBSCAN

- A data point p is density-reachable from another data point q if
 - There is a chain of points $p_1, ..., p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Definitions in DBSCAN

- A data point p is density-connected to another data point q if
 - ➤ There is a data point o such that both p and q are density-reachable from o

Cluster Formation in DBSCAN

- A cluster is defined as a maximal set of density-connected points
- If a data point is not included in any cluster:
 - It is labelled as an outlier

Algorithm of DBSCAN

Input: N objects to be clustered and global parameters Eps, MinPts.

Output: Clusters of objects.

Algorithm:

- Arbitrary select a point P.
- Retrieve all points density-reachable from P wrt Eps and MinPts.
- If P is a core point, a cluster is formed.
- 4) If P is a border point, no points are density-reachable from P and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.
- Time complexity: O(N log(N))
 - ➤ Worst case: O(N^2), when ϵ is ill selected (e.g., all distance < ϵ)

Limitations of DBSCAN

- Not entirely deterministic:
 - > The assignment of borderline points on multiple borders
- May not work well if the dataset has large differences in densities
 - Because the combination of MinPts and Eps cannot be chosen properly for all clusters
- Need to predetermine two parameters
 - > Although only two, not trivial, need to be carefully determined
- Hence, new algorithms such as DPC emerge

Validating Clusters

- In unsupervised learning, we need to define how to evaluate the goodness of the resulting clusters
 - Without ground-truth labels for measures like accuracy
- We need such evaluation criteria to:
 - > Avoid finding poor representative patterns, especially when the dataset is noisy and/or tricky
 - Benchmark clustering algorithms
 - Compare different clustering results

Similarity Matrix for Cluster Validation

- Visualize the similarity matrix
 - Order the data points according to cluster labels

Source: Internet

Similarity Matrix for Cluster Validation

Less well separated clusters

Source: Internet

Cohesion vs Separation

Cluster cohesion.

- Measures how closely the objects are within the clusters
- E.g., use within-cluster sum of squared errors (SSE): $WSS = \sum_{j=1}^{K} \sum_{x_i \in C_j} d(x_i, m_j)$

Cluster separation:

- Measures how distinct or well-separated the clusters are from the others
- E.g., Use between-cluster sum of errors: $BSS = \sum_i |C_i| d(m, m_i)$, where m denotes the centroid of the whole dataset and $|\cdot|$ denotes the size of the cluster

Cohesion vs Separation

Note that WSS + BSS = constant

 Cohesion: Sum of weights of all links within the cluster

• Separation: Sum of weights between data points in the cluster and those outside

Silhouette Coefficient (SC)

- It combines the ideas of both cohesion and separation
- For an individual data point $i \in C_I$:
 - Compute the mean distance between i and all other data points in the same cluster

$$a(i) = \frac{1}{|C_I| - 1} \sum_{j \in C_I, j \neq i} d(i, j)$$

 \succ Compute the mean dissimilarity of data point *i* to another cluster C_J as the mean of the distance from *i* to all data points in C_J , and select the minimum value among all such distances $b(i) = \min \frac{1}{|C_I|} \sum_{i \in C_I} d(i, j)$

$$b(i) = \min \frac{1}{|C_I|} \sum_{j \in C_I} d(i, j)$$

Silhouette Coefficient (SC)

Then the silhouette coefficient for data point i is

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}, if |C_I| > 1$$

$$s(i) = 1, if |C_I| = 1$$

Silhouette Coefficient (SC)

- $-1 \le s(i) \le 1$
 - > 1: Best matched to the cluster
 - > 0: On the border between two clusters
 - > -1: Better fit in the neighboring cluster

- Let SC = mean(s(i)), obviously $-1 \le SC \le 1$
 - > A larger value denotes an overall better clustering formation, usually

External Measures

- Evaluation of clustering results without ground-truth labels is called internal measure
- Evaluation with ground-truth labels (remember, not used during clustering) is called external measure
 - We can reuse the concept of confusion matrix
 - ► If the size of the dataset is N, TP+TN+FP+FN= C_N^2

	Same cluster in clustering	Different clusters in clustering	
Same class in ground-truth	TP	FN	
Different classes in ground-truth	FP	TN	

External Measures

Rand Index (RI):

$$RI = \frac{TP + TN}{TP + TN + FP + FN}$$

- Adjusted Rand Index (ARI)
 - > Adjusted measure using contingency table

• Jaccard Index (JI)
$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{TP}{TP + FP + FN}$$

Other Evaluation Measures

- A lot more measures proposed in literature to evaluate the clustering results
 - Internal measure (without ground-truth)
 - □ DBI (<u>Davies</u>—<u>Bouldin Index</u>), sensitive to #clusters
 - > External measure (with ground-truth)
 - NMI (<u>Normalized Mutual Information</u>)

Infusing Clustering into FNN

- Clustering has been used in FNNs, to generate fuzzy membership functions (fmf)
 - Data samples are grouped in the clustering process
 - > Representations of clusters are used to derive fmf
 - Thus, fmf are initialized rather than learned from scratch
 - Also, the structure of FNN is determined by the clustering results
- This leads to a family of self-organizing FNNs

Two Examples of Self-Organizing FNNs

DENFIS

- Dynamic Evolving Neural-Fuzzy Inference System
- Kasabov & Song, 2002
- Employs TS rules
- Evolving Clustering Method (ECM)
- Clusters are formed in the hyperspace
- Each cluster is transformed into a fuzzy rule

GenSoFNN

- Generic Self-organizing Fuzzy Neural Network
- > Tung & Quek, 2002
- Employs Mamdani rules
- Discrete Incremental Clustering (DIC)
- Clusters are formed on individual dimensions
- Rules are determined based on the selected rule generation scheme

Evolving Clustering Method in DENFIS

- Both online and offline modes supported
- Its idea is generic:
 - If the new data point is close enough to some clusters
 - Merge it into the nearest cluster, update cluster characteristics if needed (based on distance criteria)
 - > Else, create a new cluster
- Takes only one parameter
 - Dthr. A constant value as the threshold for distance constraint
- Use normalized Euclidean distance
 - $ho d(i,j) = \frac{\sqrt{\sum_q (x_i x_j)^2}}{\sqrt{q}}$, where q denotes the number of dimensions

ECM Algorithm

- 1 create a cluster using the first data point
- 2 for each subsequent data point i do
- 3 compute its distance to all cluster centers denoted as C
- find the nearest cluster m
- 5 if $d(i, C_m) \le R_m$, where R denotes the cluster radius, merge i into cluster m, no update needed
- 6 else
- compute distance $s(i,C_i)$ to all cluster centers, where $s(i,C_i)=d(i,C_i)+R_i$
- 8 find the nearest cluster a
- 9 if $s(i, C_{\alpha}) > 2Dthr$, create a new cluster
- **else** merge i into cluster a and if R_a < Dthr, update the center and radius 10

ECM in Action

(a)

(b)

ECM in Action

(c)

 Ru_2^1 Cc^2 $Ru_3^0 = 0$

(d)

Clusters Obtained Using ECM

- Hyperspheres
- Each cluster is formulated as one fuzzy rule in DENFIS
 - Generates lots of rules (to cover the high-D space)
 - Curse of dimensionality

Source: Karnowski's PhD Thesis

Triangular fmf

- b takes the value of the cluster centre on the respective dimension
- \triangleright $a = b \beta \cdot Dthr$
- $> c = b + \beta \cdot Dthr$
- $\triangleright \beta$ is a predetermined parameter in the [1.2, 2] value range

DENFIS Architecture

- Same as ANFIS
 - > #rules no longer p^N
- Same update mechanism for L4 parameters

- Different update mechanism for L1 parameters
 - Not learning from scratches means leads to shorter training time than ANFIS

Benchmark on MACKEY-GLASS

Methods	Net	urons or Ru	ıles	Epochs	Training Time (s)		Training NDEI	Testing NDEI
MLP-BP	60		50	1779		0.083	0.090	
MLP-BP		60		500	17928		0.021	0.022
ANFIS		81		50	2357	8	0.032	0.033
ANFIS		81		200	9421	0	0.028	0.029
DENFIS I		116		2	352	,	0.068	0.068
DENFIS I		883		2	1286	5	0.023	0.019
DENFIS II		58		100	351		0.017	0.016