This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-196436

(43) Date of publication of application: **06.08.1993**

(51)Int.CI.

G01B 11/24

(21) Application number : **04-007796** (71)Applicant: SHISEIDO CO LTD

(22) Date of filing: 20.01.1992 (72)Inventor: **YOSHIZAWA**

KOMATSUBARA

RYOHEI KATASE KAZUNOBU

TORU

KANEKO OSAMU

MEASURING THREE-DIMENSIONAL (54) LATTICE PLATE FOR MANUFACTURING APPARATUS THEREFOR AND MEASURING APPARATUS OF THREE-DIMENSIONAL SHAPE

(57) Abstract:

PURPOSE: To obtain a measuring apparatus for a threedimensional shape which can measure the shape accurately, by a method wherein the transmittance of light in a first direction is made unvaried and the transmittance of light in a second direction intersecting the first direction is made to have a distribution wherein it is repeated while changing in conformity with a prescribed continuous function. CONSTITUTION: beam from Α emitted semiconductor laser 10 is converged by a collimator lens 12 and turned into a slit-form light flux expanding only in a specified direction by a cylindrical lens 14. A photosensitive material is fixed on a motor- operated stage 18 and the laser light emitted from the semiconductor laser 10 is modulated in intensity by an instruction from a host computer 20 which is given through a D/A converter 22 and a laser diode drive circuit 24. Synchronously with this, the motor-operated stage 18 is driven through a motor drive circuit 26, a

motor 28 and a linear actuator 30, a strip-shaped pattern is drawn on the photosensitive film and subjected to a development treatment and thereby a sine lattice having an intensity distribution of a sine function is obtained. By using this lattice, a precise three-dimensional shape is obtained even for an object having large indentation.

[Date of request for examination]

08.09.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3236051

[Date of registration]

28.09.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出類公開番号

特開平5-196436

(43)公開日 平成5年(1993)8月6日

(51)Int.CL5 G0 IB 11/24 識別記号 庁内監理番号 K 9108-2F

FΙ

技術表示箇所

審査請求 未請求 請求項の数4(全 16 頁)

(21)出願番号	特 類平4-7796	(71) 出頭人 000001959
		株式会社資生堂
(22)出戰日	平成 4 年(1992) 1 月20日	東京都中央区銀座7丁目5巻5号
		(72)発明者 吉塚 徹
		夏京都府中市新町 1 - 19-5 府中第2住
		宅1-102
		(72)発明者 小松原 良平
		東京都小会井市中町 3 -14-38 メゾン・
		ド・アコー小金井201
		(72)発明者 片瀬 和棹
		東京都小会并市東町 2 - 21 - 8 スリーア
		ロウテラス205
		(74)代理人 弁理士 青木 朗 (外4名)
		最終頁に続く
		l .

(54) 【発明の名称 】 3次元形状測定用格子板とその製造装置および3次元形状測定装置

(57)【要約】

【目的】 測定対象物の表面の3次元形状を測定する3 次元形状測定装置、特に、測定対象物が生体であって も、支障なくその表面の微細な3次元形状を測定するこ との可能な3次元形状測定装置に関し、ロンキー格子を 使用した従来の装置よりもさらに正確な形状測定が可能 なる次元形状測定装置を実現することのできる測定用格 子板とその製造装置ならびにその3次元形状測定装置を 提供することを目的とする。

【構成】 半導体レーザ10、コリメータレンズ12、 シリンドリカルレンズ14により感光フィルム16上に 組状スポットを投影し、電動ステージ18の駆動に同期 して半導体レーザ10の輝度を変調することによって、 測定対象物上に正弦関数の強度分布を持つ格子を投影し うる正弦格子を得る。この格子を用いれば、幅の広い格 子ピッチが要求される凹凸の激しい対象物についても精 度の良い測定結果が得られる。

指予板製造装置の構成

特闘平5-196436

【特許請求の範囲】

【請求項1】 第1の方向における光の透過率が実質的 に一定であり、該第1の方向と交叉する第2の方向にお ける光の透過率が所定の連続関数に従って変化しつつ繰 り返す分布を有することを特徴とする3次元形状測定用

【請求項2】 前記第2の方向の透過率分布における繰 り返し単位のうち、

所定の繰り返し単位の幅は他よりも実質的に異なる3次 元形状测定用格子板。

【請求項3】 フィルム(16)の表面に線状スポット を投影する線状スポット投影手段(10,12,14)

該線状スポットの伸長方向と交叉する方向において、該 フィルム(16)を該線状スポット投影手段(10,1 2、14)に対して相対的に移動せしめる移動手段(2 6, 28, 30) &

該移動手段(26,28,30)による移動に同期して 該線状スポットの輝度を連続的に変化させる輝度変調手 段(20,22,24)とを具備することを特徴とする 20 ようになった。 3次元形状測定用格子の製造装置。

【請求項4】 請求項1または2記載の格子板(34) 1

該絡子板 (34) を透過して測定対象 (38) の表面に 格子パターンを投影するために配置された光学手段(3) 2.36) 논.

該格子パターンを提像して画像信号を出力する操像手段 $\{40\}$ &.

該格子パターンの位相を所定置ずつ移相すべく該格子板 (34)を所定量ずつ移跡せしめる格子板移動手段(4 30 6.48} Ł

該撮像手段(40)が出力する画像信号を該格子板移動 手段に同期して複数の位相についてそれぞれ取り込み記 健する画像信号取込記憶手段(4.4)と、

該画像信号取込記憶手段(44)が記憶する複数の画像 信号を解析して該測定対象(38)の3次元形状測定値 を算出する解析手段(42)とを具備することを特徴と する3次元形状測定装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、測定対象物の表面の3 次元形状を測定する3次元形状測定装置、特に、測定対 象物が生体であっても、支障なくその表面の微細な3次 元形状を測定することの可能な3次元形状測定装置に関 する。生体表面のしわ等の微細な3次元形状が測定でき れば、例えば、しわ取りクリームの効果の客観的な評価 が可能となる。しかしながら、測定対象が生体である場 台、種々の制約があり、また、深さが数10~100ヵ mである小じわまで検出しその形状を測定するためには 10 µmまでの分解能が要求される。

【0002】本発明は、このような副約のある測定環境 下においても、要求される仕様を満足する測定が可能な 3次元形状測定装置に言及する。

2

[0003]

【従来の技術】本願出願人は、既に特願平2-2158 85号において、上述の測定環境下における測定に最適 な3次元形状測定装置を提案している。この装置によれ は、黒白2値のみの濃淡を有する格子(ロンキー格子) を用いて測定対象に格子を投影し、操像して得られた信 10 号をA/D変換したものは、正弦波状の濃淡を持つ格子 (正弦格子) とみなせるとの発見にもとづき、格子パタ ーン投影法(精密工学会誌 53, (3), pp422 -426)で使用されるロンキー格子を用いて得られた 信号に縞走査法における解析手法を適用することによっ て、生体にとって安全上問題のあるレーザ光を使用する ことなく、除震装置が不要であるので測定上の幾何学的 制約が少なく、かつ、短時間で測定を完了することがで きる等の、生体の3次元形状測定に最適の環境で、縞走 査法による精密な3次元形状測定値を得ることができる

[0004]

【発明が解決しようとする課題】この装置においては、 例えば(). 33 mピッチの格子板を用いて約(). 5 mピ ッチの格子を投影する場合の様に、格子のピッチが細か いという条件のもとで、表面の凹凸が激しくない対象物 を測定する場合には精度の良い測定値が得られる。

【① 0 0 5 】しかしながら、測定対象の表面の凹凸が激 しい場合には以下の問題点があることが判明した。

1) 縞走査法では投影した格子の位相が算出されるが、 これは-πからπまでの値であるため、実際の座標算出 を行う場合はこれらの位相の接続を行う必要がある。と ころが、測定対象の凹凸が激しく、隣りあう画素間での 段差が2π以上あった場合には位相の接続が不可能とな る。この問題を解決するためには粗いヒッチの格子を投 影すればよいが、ピッチを組くすると後に詳述するよう に役影されたロンキー格子を正弦格子と見なせなくな り、測定精度が劣化することが判明した。

【0006】2)また、三次元計測では、測定対象を多 方向から観察し、それぞれの三次元座標を結合し、全体 40 の形状を把握することが望まれている。一般的な縞走査 法では投影した格子にラベリングを行えないため、算出 される座標は相対的なものである。しかし、多方向から の計測を行うためには、空間上に設定した一点を原点と する絶対座標の算出が不可欠である。

【①①①7】とれらの問題を解決するためには、投影し て撮影した段階で強度分布が正弦状に近く、またそのビ ッチを変化させてもその正弦性に影響がない格子を必要 とする。さらに、その格子はラベリングが可能なように 中心に何らかの目印が付加されている必要もある。した 50 がって本発明の目的は、前途の装置よりもさらに正確な (3)

形状測定が可能な3次元形状測定装置を実現することの できる測定用格子板とその製造装置ならびにその3次元 形状測定装置を提供することにある。

【①①08】本発明の他の目的は、絶対的な基準位置か らの絶対座標を算出するととの可能な 3 次元形状測定装 置を実現することのできる測定用格子板とその製造装置 ならびにその3次元形状測定装置を提供することにあ る。

[0009]

【課題を解決するための手段】前述の目的を達成する本 10 発明の3次元形状測定用格子は、第1の方向における光 の透過率が実質的に一定であり、該第1の方向と交叉す る第2の方向における光の透過率が所定の連続関数に従 って変化しつつ繰り返す分布を有することを特徴とする ものである。

【①①10】また、この格子板は、前記第2の方向の透 過率分布における繰り返し単位のうち、所定の繰り返し 単位の幅は他よりも実質的に異なることが好適である。 本発明の3次元形状測定用格子板の製造装置は、フィル 段と、該線状スポットの伸長方向と交叉する方向におい て、該フィルムを該線状スポット投影手段に対して相対 的に移動せしめる移動手段と、該移動手段による移動に 同期して該線状スポットの輝度を連続的に変化させる輝 度変調手段とを具備することを特徴とするものである。 【0011】本発明の3次元形状測定装置は、前述の格 子板と、該格子板を透過して測定対象に格子パターンを 投影するために配置された光学手段と、該格子パターン を撮像して画像信号を出力する緑像手段と、該格子パタ つ移動せしめる格子板移動手段と、該操像手段が出力す る画像信号を該格子板移動手段に同期して複数の位相に ついてそれぞれ取り込み記憶する画像信号取込記憶手段 と、該画像信号取込記憶手段が記憶する複数の画像信号 を解析して該測定対象の3次元形状測定値を算出する解 析手段とを具備することを特徴とするものである。

[0012]

【作用】所定の連続関数に従って変化しつつ繰り返す透 過率分布を有する格子板を用いて投影することにより、 格子のピッチが大きい場合であっても、より正弦関数に 40 近い強度分布の縞バターンを投影することができ、それ により正確な測定値が得られる。

【()() 13】また、所定の繰り返し単位のみについて幅 を異ならせることによって格子の番号の識別が可能とな り、絶対座標を得ることができるようになる。

$\{0014\}$

【庚能例】

格子板の作製

図1は本発明に係る3次元形状測定用格子板の製造装置 の一実施例を表わすブロック図である。波長780nm、 50 クタレンズ36も、モータ駆動装置48で駆動されるブ

出力20個の半導体レーザ10から出射されたビームは コリメータレンズ12で集光され、シリンドリカルレン ズ14で特定の方向のみに拡がるスリット状光束とな る。感光材としては35㎜白黒感光フィルム(富士写真 フィルム製ミニコピーフィルム)を使用し、電勤ステー ジ18上に固定する。半導体レーザ10から出射される レーザ光はホストコンピュータ20からの指令によりD /A変換器22およびレーザダイオード駆動回路24を 経て強度変調されるが、これと同期してモータ駆動回路 - 26、モータ28およびリニアアクチュエータ30を経 て電動ステージ18を駆動することによって帯状のバタ ーンを感光フィルム16上に描画する。作製されるバタ ーンの幅は約23mmである。以上の作業は暗室内で行 い。その後感光フィルム16を現像処理することによっ て格子を得る。 現像に際しては、現像時間、液温等を一 定に保つとともに、フィルムの感光特性も考慮した。 【0015】なお、図1に示した装置は半導体レーザ1 ()等の光学系を固定し、フィルム16を移動する構成で あるが、フィルム16を固定して光学系を移動する構成 ムの表面に線状スポットを投影する線状スポット投影手 20 としても良いことは勿論である。一般にレーザ光強度と フィルムの明暗は線形関係ではないため、任意の濃淡パ ターンの格子を作るためには、半導体レーザ注入電流と フィルムの階調との関係を求める必要がある。そのた め、注入電流をリニアに増加させることによって作製し たパターンをプロジェクタで投影し、CCDカメラで録 影を行い、画像入力装置でA/D変換した結果から図2 に示すようなフィルム階調と注入電流の関係を得た。こ の結果をもとにして注入電流とA/D変換結果との対応 表を作製し、この関係に基いて半導体レーザ10と電動 ーンの位相を所定置ずつ移相すべく該格子板を所定置ず 30 ステージ18を制御するととによって、任意の濃度バタ ーン、およびビッチを持つ格子を作製した。

3次元形状の測定

図3は本発明の3次元形状測定装置の一実施例の概略機 成を表わす図である。

【①①16】プロジェクタ32からの光は格子板34を 経てプロジェクタレンズ36で集光されて測定対象上に 格子パターンが結像される。格子板34は図1で説明し た装置により、正弦関数状の濃淡を有する格子バターン を投影するように調整されたものである。CCDカメラ 4.0 はこの測定対象3.8 上に結像された格子パターンを 撮影可能な位置に設置されている。CCDカメラ40が 出力する画像信号はコンピュータ42からの指令に従っ て画像入出力装置4.4へ一担記憶され、コンピュータ4 2へ入力される。

【①①17】格子移動用モータ46は、コンピュータ4 2からの制御信号に基づいてモータ駆動装置48が出力 する駆動電流により、格子板3.4上の格子のピッチの1 /4に相当する長さを単位として格子板34を光軸に直 角な方向へ移動させるように設計されている。プロジェ ロジェクタレンズ移動用モータ50で光軸方向に移動可 能である。

【0018】プロジェクタ32、格子移動用モータ4 6. プロジェクタレンズ移動用モータ50、およびCC Dカメラ4()は前後方向移動用ステージ52上の所定の 位置に固定されており、前後方向移動用ステージ52は 左右方向移動用ステージ54上に載せられ、左右方向移 動用ステージ54は上下方向移動用ステージ56上に戴 せられている。したがって装置全体の位置はつまみち る。また、電動モータ等の駆動手段を設けて、コンピュ ータ42からの制御信号により調節可能とすることもで

【①①19】コンピュータ42のキーボード(図示せ ず) から測定スタートの指令を入力すると、コンピュー* $\alpha = \tan^{-1}(i_1 - i_1) / (i_0 - i_1)$

により2次元平面上の各点(x,y)における強度 !。、!、,【2 ,!」から算出される。ただし、!。 \sim I 、は投影する縞の位相を 9.0° ずつずらした時の各 点(x、y)における強度である。なお、この例では、 4 通りの位相について測定した強度からαを算出してい るが、それ以上の数の位相について測定し、それからα を算出することも可能であり、そうすることによって精 度が向上する。

【0021】とのようにして算出された々の値を使っ て、 A点(x、y)に対応する測定対象表面上の点の三 次元座標値X、Y,2は

$$X = -s x$$
 (2)

$$Y = b + s (-c - y \cos \phi)$$
 (3)

$$2 = a + s (-d + y \sin \phi)$$
 (4)

$$s = (-b \cos \theta) / u$$
 (5)

$$\theta = tan^{-1} (p \alpha / a)$$
 (6)

$$u = (-c - y \cos \phi) \cos \theta$$
 (7)

$$\phi = tan^{-1} (b / a)$$
 (8)

$$c = a m$$
 (9)

$$d = b m$$
 (10)

【0024】ここで、下は周期、まは位相である。この 格子はレンズのOTF(光学伝達開教)によって変調を 受け、次のような強度分布で投影される。

*タ42から格子移動信号が出力され、モータ駆動装置4 8および格子移動用モータ46を介して格子板34が鉛 直方向に動く。格子板34が格子のビッチ1/4の距離 だけ動く毎に画像信号が取り込まれ、格子の位相が1/ 4ずつずれた4枚の画像データが入力される。

【0020】コンピュータ42は、小松原良平、吉澤 徹」"縞走査を導入した格子パターン投影法"、錆密工 学会誌、<u>55</u>、(10) p1817~1822、198 9に記載された手法に従って、入力された画像データお 6、60,62を手動調節することにより調節可能であ 10 よび定数から3次元形状の測定値を算出する。この手法 の概略を以下に説明する。鎬定査法によれば、正弦波状 の強度分布を有する縞を測定対象に投影し、投影方向と は異る方向から観察するとき、測定対象の形状に応じて 縞の位相が変調されて観察される。観察する2次元平面 上の各点(x、y)における変調分すなわち位組量では $\{1\}$

> ※で算出することができる。ただしaは測定対象付近に定 められた基準点からプロジェクタレンズ36の主点まで の距離、6はプロジェクタレンズ36の主点からCCD 20 カメラ4()のレンズの主点までの距離。血は画像の長さ と墓準面上の実長との比。pは前記墓準点を含み光軸に 垂直な基準面に投影された格子のピッチである。

正弦格子とロンキー格子

前述の特願平2-215885号に記載の測定装置の機 成は図3と同様であるが、格子板34として、白黒2値 のみの格子(ロンキー格子)を使用して格子を投影し、 それを正弦格子とみなして処理することにより縞走査を | 実現していた。しかし、この場合には、計測結果に生じ る誤差が投影する格子のビッチに依存するとともに、ビ 30 ッチの拡大につれて誤差も増大する。これは投影された 格子の正弦性がそのピッチによって変化しているためで あることが判明したので、この点についての解析結果を 説明する。

【0022】投影する格子を矩形波と考えた場合。その 強度分布は以下のように級数展開することができる。

[0023] 【數1】

×

$$\frac{2(2n+1)\pi\phi}{T} \tag{11}$$

[0025] 【數2】

$$\Gamma (\phi) = \frac{4}{\pi \tau} \sum_{a=0}^{r} a(a) \sin \frac{2(2n+1)\pi \phi}{T}$$
 (12) ただし、
$$a(x) = \frac{r-2x-1}{2x+1}$$

【0026】ただし、すを画像上の計測疑問におけるの 数の増加に対して一定の割合でコントラストが低下する よろに作用すると考える。図4に式(11)と式(1 2) による強度分布を示す。これより白黒の二値の強度 しか持たない格子もレンズによって投影されることによ*

*り変調され、エッジ部分が劣化していることがわかる。 格子の解像眼界とし、簡略化のため、OTFは空間周波 10 式(12)に示した格子を平面に投影し縞走査法によっ てえた位相分布ゆ、は次式のように表せる。

[0027]

【数3】

$$\phi_{r} = -\tan^{-1} \frac{\sum_{n=0}^{r} a(n)(-1)^{n} \cos \frac{2(2n+1)\pi \phi}{T}}{\sum_{n=0}^{r} a(n) \sin \frac{2(2n+1)\pi \phi}{T}}$$
(1.3)

【0028】また、正弦状の強度分布を持つ縞バターン を投影した場合の位相分布や。は次式のようになる。 ※

$$\phi_{s} = -\tan^{-1} \frac{\frac{2 \pi \phi}{T}}{\sin \frac{2 \pi \phi}{T}}$$
 (14)

【0030】式(12)に示すような格子パターンを用 ★【0031】 いて縮定査法を行ったときに発生する誤差はあ、とあ、 30 【数5】 の差であり、これを立るとすると次のように表せる。

$$\Delta \phi = \tan^{-1} \frac{\sum_{k=0}^{r/2} \left[a(k) \sin \frac{8k \pi \phi}{T} + a(k+1) \sin \frac{8(k+1) \pi \phi}{T} \right]}{\sum_{k=0}^{r/2} \left[a(k) \cos \frac{8k \pi \phi}{T} - a(k+1) \cos \frac{8(k+1) \pi \phi}{T} \right]}$$
(15)

として式(15)を計算したものである。これより、ロ ンキー格子を投影し、それを正弦格子とみなして縞定査 法を適用した場合には、ノコギリ状の誤差が生じ、それ は投影した格子の周期の4倍の成分を持つことがわか る。 図6 は誤差の大きさと投影する格子の周期Tの関係 を示したものである。実際の計測では、CCDカメラお よび画像入力装置内で標本化、置子化が行われるため、 図6の誤差は計測範囲を256画案で標本化するととも に、縞の強度を256階調で置子化して計算した。図6

【0032】図5は周期Tを2π、解像限界ェを100 40 々に小さくなり、周期が10画素以下の部分では標本化 等の影響により誤差がかなり減少していることが解る。 【0033】以上の解析より、ロンキー格子を導入した 縞走査法は、役影する格子のピッチが細かいときには格 子の正弦性に起因する誤差が減少し、十分計測可能であ る。しかし、計測精度を確保しつつ奥行き方向の計測レ ンジを拡大するためには、ビッチの太い格子が不可欠で あり、そのためには図1の装置で作製される正弦格子を 使用する必要があることが解る。

【①①34】図1の装置により作製した格子の透過率分 より、格子の周期が短くなるにしたがって誤差の霊が徐 50 布とその格子を使って平坦な物体を計測した結果をそれ

19

ぞれ図7の(a) および(b) に示す。図7(a) よ り、作製した格子によるバターンの強度分布が正弦状に なっており、また図7(b)より、計測結果も平坦にな っていることが解る。また、比較のために図りと同じピ ッチのロンキー格子を作製し、投影した結果を図8

(a) および (b) に示す。図8 (a) によれば、本来 明暗の二値した持たない格子がレンズを経て投影される と変形を受け、一見すると正弦波的な形状になっている が、実際にこれを用いて計測を行うと図8(り)のよう した格子のピッチの4倍の周期で発生しており、これは 誤差解析結果と一致している。

【0035】図9は製作したロンキー格子および正弦格 子を使った場合の計測誤差と格子ピッチの関係を示した ものである。ピッチが小さい場合は両者とも誤差が少な く、ロンキー格子でも十分計測が可能であるが、ビッチ が大きくなるとロンキー格子は使用できなくなることが 解る。それに対して正弦格子はピッチが大きくなっても 誤差の増加の割合が小さく、大きなビッチでも計測がで 劣化させずに計測することが可能となる。

【0036】図10~図13は種々のピッチの白黒格子 (ロンキー格子) および正弦格子を使用してコインの3 次元形状を測定した結果をワイヤープレームモデルで表 わす図である。図10はピッチの、2㎜(投影面での)。 3 mm) の白黒格子を使った場合の計測結果であり、凹凸 の変化より格子のピッチが細かいため、計測が正しく行 われていない(位相とび)ことがわかる。

【0037】図11はピッチ()、5mm(投影面で()、8 十分細かいため白黒二値の値した時たない格子でも縞走 査法を導入して計測できることが解かる。しかし、凹凸 がより激しい対象を計測する場合にはさらにピッチの粗 い格子が必要である。図12はピッチ1. ()mm(投影面) で1.6mm)の白黒格子を用いた計測結果を示す。図1 2にみられる如く、格子のピッチが組くなると格子が正 弦状でない誤差が増え、結果に周期的な誤差が発生して

【0038】図13は図12と同じピッチ(1.0mm) の正弦格子を用いた結果であり、格子の誤差もなく測れ 40 像の強度である。 ていることが解かる。前述したように、正弦格子を用い*

[0042] $I_1 = \sin(\theta + \pi/2)$ $I_{\bullet} = \sin \theta$. $I_2 = \sin(\theta + \pi)$, $I_3 = \sin \{ (2/3) \theta + (3/2) \pi \}$ (16) $\phi = \tan^{-1} \{ (!_{1} - l_{1}) / (l_{0} - l_{1}) \}$ = $tan^{-1} \left(-\cos(5/6) \theta \cdot \cos(1/6) \theta / \sin \theta \right)$ (17)

その他の区間についても同様にして求めることができ

【0043】実際の座標算出は以下の手順で行う。 1) 図16に示した太い縞の重なり合う区間の日とすの 対応表を上記の手法で予め計算しておく。

* た結果は、ビッチの増大に対する誤差の増加の割合が小 さいため、対象の凹凸に合ったピッチの格子を選んで位 相とびを起こさずに計測することが可能になる。図14 に、ビーナスの石膏像の顔面の計測結果をワイヤーフレ ームモデルで示す。

格子のラベリング

一般的に干渉縞やモアレ縞に縞走査法を用いる場合に は、対象物体上に投影された縞バターンの次数を絶対的 な値として求めることができないため、算出される座標 に周期的な誤差が発生していることが解る。誤差は投影 10 は物体上の特定点からの相対的な値となっている。対象 を一方向のみから測る場合にはこれで十分であるが、物 体形状を全国方向から捉えるためには計測装置を複数台 使用して多方向から同時に計測したり、対象を移動させ て広範囲な計測を行う必要があり、その結果を用いて復 数の座標データをつなぎ合わせて全体形状を計測するこ とが必要とされる。こうした場合には、データのつなぎ 合わせのための指針となる絶対的な原点が必要となって

【10039】特願平2-215885号において使用さ きる。このため、凹凸の変化が大きい測定対象を請度を 20 れた格子パターンは等間隔の格子であり、次数付けのた めの目的は付加されていないが、本願発明では従来の格 子バターン投影法(吉澤徹、鈴木賢策:格子パターン投 影法による3次元形状の自動測定、精密工学会誌。<u>5</u> 3、3(1987)66)と同様に中心の縞を太くする ことによって、縞次数の決定を行えるようにした。 【()()4()】使用する格子の透過率分布を図15(a)

に示す。中心の太い縞のビッチはその他の縞の1.5倍 である。図の格子を1/4ピッチずつシフトし、位相を 計算したものが図15(b)であるが、本来は直線的に mm) の白黒格子を用いた計測例を示す。格子のビッチが 30 変化すべき位相が太い縞の部分で変形していることが解 る。との影響を取り除くために次のような箱正を行う。 【0041】図16は太い縞が重なり合っている部分に おける強度!。~!」を表わす図である。!。から!」 は位相をπ/2ずつシフトさせた波形である。 この部分 をπ/2ずつ分割し、それぞれについて結正値を計算す る。例えば()からπ/2の区間の位組は次のように求め ることができる。ただし、θは投影した格子の位組、Φ は縞走査によって計算される位相の値であり、【。, [、 I 」, ! 」は位相がπ/2ずつシフトした4枚の画

- 2) 撮影した4枚の画像から式(1) により画面全体の 位組を算出する。
- 3) 太い縞の中心を位相の原点とし、その影響を受けて 位組が歪んでいる部分の補正を1)で求めた対応表をも 50 とにして行う。

(7)

11

【① 0 4 4 】 4) 箱正された位相値をもとに式(2)~ (10)により三次元座標の算出を行う。図17に正弦 状の透過率分布を持ち、その中心に次数付けのための太 い稿を持つ格子を使用した計測例を示す。対象は乗用車 のシフトノブであり、測定範囲は100mm×100mm、 投影面上での格子のピッチは約5 mmである。図17を参 照すれば、太い縞の部分の補正が良好に行なわれている ことが解る。計測結果に発生している小さな凹凸はシフ トノブ表面の人工皮草の影響である。この様に、従来困 難であった凹凸の大きなものの計測が可能になってい

[0045]

【発明の効果】以上述べてきたように本発明によれば、 測定対象の凹凸の程度に応じた任意のビッチで、錯度の 良い計測が可能であり、かつ、絶対座標を得ることもで きる3次元形状測定用格子板とその製造装置およびそれ を使用した3次元形状測定装置が提供される。

【図面の簡単な説明】

【図1】本発明に係る3次元形状測定用格子板の製造装 置のブロック図である。

【図2】半導体レーザの注入電流と投影パターンの像の A/D変換結果との関係を表わす図である。

【図3】本発明に係る3次元形状測定装置のブロック図 である。

【図4】白黒格子の透過度分布と投影された格子の強度 分布の解析結果を表わす図である。

【図5】図4の格子を使用した場合に発生する位相の測 定誤差の分布の解析結果を表わす図である。

【図6】誤差の大きさと格子のピッチとの関係の解析結 果を表わす図である。

【図7】図1の装置で作製された正弦格子による格子バ ターンの強度分布とその格子を用いて平坦な物体の形状 を測定した結果を表わす図である。

【図8】製作されたロンキー格子による格子パターンの 強度分布とその格子を用いて平坦な物体の形状を測定し た結果を表わす図である。

【図9】製作されたロンキー格子と正弦格子を使用した 場合の計測誤差と格子ピッチとの関係を表わす図であ

【図10】()、2mmピッチのロンキー格子を使用してコ インの形状を測定した結果をワイヤーフレームモデルで 表わす図である。

【図】1】(). 5 mmビッチのロンキー格子の場合の図1 ()と同様な図である。

【図12】1. ()mmピッチロンキー格子の場合の図1() と同様な図である。

【図13】1. 0mmピッチ正弦格子の場合の図10と同 10 様な図である。

【図14】本発明の装置によるビーナス像の顔面の測定 結果をワイヤーフレームモデルで表わす図である。

【図15】 ラベリングされた正弦格子の強度分布とその 格子を1/4ビッチずつシフトして位相を計算した結果 を表わす図である。

【図16】ラベリングされた部分の1。~!』の波形図 である。

【図17】ラベリングされた格子による測定結果を表わ す図である。

20 【符号の説明】

10…半導体レーザ

12…コリメータレンズ

14…シリンドリカルレンズ

16…感光フィルム

28…モータ

30…リニアアクチュエータ

32…プロジェクタ

34…格子板

36…プロジェクタレンズ

30 38…測定対象

4.0···CCDカメラ

46…格子移動用モータ

50…プロジェクタレンズ移動用モータ

52…前後方向移動用ステージ

54…左右方向移動用ステージ

56…上下方向移動用ステージ

58.60,62…つまみ

(8)

特闘平5-196436

[図1]

格子板製造装置の構成

(9) 特關平5-196436

特関平5-196436

[图7]

(11)

正弦格子による瀕定結果

(a)

特関平5-196436

(12)

[図8] ロンキー格子による測定結果

(13)

特開平5-196436

特闘平5-196436 **(14)**

[図14]

(15)

特関平5-196436

(16)

特闘平5-196436

[217] ワイヤーフレームモデル

フロントページの続き

(72) 発明者 金子 治 埼玉県蕨市錦町6-4-24