Chapter 7

Space and Time Tradeoffs

Space-for-time tradeoffs

Two varieties of space-for-time algorithms:

- <u>input enhancement</u> preprocess the input (or its part) to store some info to be used later in solving the problem
 - counting sorts
 - string searching algorithms
- prestructuring preprocess the input to make accessing its elements easier
 - hashing
 - indexing schemes (e.g., B-trees)

Review: String searching by brute force

pattern: a string of m characters to search for

text: a (long) string of n characters to search in

Brute force algorithm

- Step 1 Align pattern at beginning of text
- Step 2 Moving from left to right, compare each character of pattern to the corresponding character in text until either all characters are found to match (successful search) or a mismatch is detected
- Step 3 While a mismatch is detected and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2

Brute-force string matching

```
for (i=0; T[i] != '\0'; i++)
{
for (j=0; T[i+j] != '\0' && P[j] != '\0' && T[i+j]==P[j]; j++);
if (P[j] == '\0') found a match
}
```

String searching by preprocessing

Several string searching algorithms are based on the input enhancement idea of preprocessing the pattern

- ► Knuth-Morris-Pratt (KMP) algorithm preprocesses pattern left to right to get useful information for later searching
- **Boyer Moore** algorithm preprocesses pattern right to left and store information into two tables
- Horspool's algorithm simplifies the Boyer-Moore algorithm by using just one table

REF: Knuth-Morris-Pratt (KMP)

http://www.ics.uci.edu/~eppstein/161/960227.html

```
0 1 2 3 4 5 6 7 8 9 10 11
T: b a n a n a n o b a n o
```

```
i=0: X
i=1: X
i=2: n a n X
i=3: X
i=4:
         nano
i=5:
          X
i=6:
           n X
i=7:
              X
i=8:
               X
i=9:
                 n X
i=10:
                  X
```

KMP

String matching with skipped outer &inner iterations: KMP, version 1:

```
i=0;
o=0;
while (i<n)
{
for (j=o; T[i+j] != '\0' && P[j] != '\0' && T[i+j]==P[j]; j++);
if (P[j] == '\0') found a match;
o = overlap(P[0..j-1],P[0..m]);
i = i + max(1, j-o);
}</pre>
```

KPM

```
KMP, version 2:
 j = 0;
 for (i = 0; i < n; i++)
 for (;;) {  // loop until break
   if (T[i] == P[j]) { // matches?
   j++; // yes, move on to next state
   if (j == m) { // maybe that was the last state
      found a match;
      j = overlap[j];
    break;
    } else if (j == 0) break; // no match in state j=0, give up
    else j = overlap[j]; // try shorter partial match
```

KPM

KMP overlap computation:

```
overlap[0] = -1;
  for (int i = 0; pattern[i] != '\0'; i++) {
  overlap[i + 1] = overlap[i] + 1;
  while (overlap[i + 1] > 0 &&
      pattern[i] != pattern[overlap[i + 1] - 1])
    overlap[i + 1] = overlap[overlap[i + 1] - 1] + 1;
  return overlap;
Overlap: O(m)
Scan: O(n) time
Total: O(m+n).
```

Horspool's Algorithm

A simplified version of Boyer-Moore algorithm:

- preprocesses pattern to generate a shift table that determines how much to shift the pattern when a mismatch occurs
- always makes a shift based on the text's character *c* aligned with the <u>last</u> character in the pattern according to the shift table's entry for *c*

How far to shift?

Look at first (rightmost) character in text that was comparedThe character is not in the pattern
BAOBAB
► The character is in the pattern (but not the rightmost) ○ (O occurs once in pattern) BAOBAB A (A occurs twice in pattern
BAOBAB
The rightmost characters do match BAOBAB

Shift table

► Shift sizes can be precomputed by the formula distance from c's rightmost occurrence in pattern among its first m-1 characters to its right end

► Shift table is indexed by text and pattern alphabet Eg, for BAOBAB:

A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	x	Y	Z
1	2	6	6	6	6	6	6	6	6	6	6	6	6	3	6	6	6	6	6	6	6	6	6	6	6

Example of Horspool's alg. application

```
      A
      B
      C
      D
      E
      F
      G
      H
      I
      J
      K
      L
      M
      N
      O
      P
      Q
      R
      S
      T
      U
      V
      W
      X
      Y
      Z
      -

      1
      2
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
```

```
BARD LOVED BANANAS

BAOBAB (L=6)

BAOBAB (B=2)

BAOBAB (N=6)

BAOBAB (unsuccessful search)
```

PINGADO em

ALMOCEI PINGA COM LINGUADO PINGADO

```
▶ PINGADO outras
▶ 6543217 7
1234567890123456789012345678901234
▶ ALMOCEI PINGA COM LINGUADO PINGADO
▶ PINGADO (I=5)
• -----PINGADO (^G=3)
---PINGADO (^C=7)
         -----PINGADO (^G=3)
                ---PINGADO (^D=1)
                   -PINGADO (^=ADO, U)
                    PINGADO (^U=7)
                    -----PINGADO (^D=1)
                           -PINGADO (=PINGADO)
```

Boyer-Moore algorithm

Based on same two ideas:

- comparing pattern characters to text from right to left
- precomputing shift sizes in two tables
 - bad-symbol table indicates how much to shift based on text's character causing a mismatch
 - good-suffix table indicates how much to shift based on matched part (suffix) of the pattern

Bad-symbol shift in Boyer-Moore algorithm

- If the rightmost character of the pattern doesn't match, BM algorithm acts as Horspool's
- If the rightmost character of the pattern does match, BM compares preceding characters right to left until either all pattern's characters match or a mismatch on text's character c is encountered after k > 0 matches

bad-symbol shift $d_1 = \max\{t_1(c) - k, 1\}$

Good-suffix shift in Boyer-Moore algorithm

• Good-suffix shift d_2 is applied after 0 < k < m last characters were matched

→ d₂(k) = the distance between matched suffix of size k and its rightmost occurrence in the pattern that is not preceded by the same character as the suffix

Example: CABABA $d_2(1) = 4$

If there is no such occurrence, match the longest part of the k-character suffix with corresponding prefix; if there are no such suffix-prefix matches, $d_2(k) = m$

Example: WOWWOW $d_2(2) = 5$, $d_2(3) = 3$, $d_2(4) = 3$, $d_2(5) = 3$

Boyer-Moore Algorithm

After matching successfully 0 < k < m characters, the algorithm shifts the pattern right by

$$d = \max \left\{ d_1, d_2 \right\}$$

where $d_1 = \max\{t_1(c) - k, 1\}$ is bad-symbol shift $d_2(k)$ is good-suffix shift

Example: Find pattern AT_THAT in WHICH_FINALLY_HALTS. _ _ AT_THAT

Boyer-Moore Algorithm (cont.)

- Step 1 Fill in the bad-symbol shift table
- Step 2 Fill in the good-suffix shift table
- Step 3 Align the pattern against the beginning of the text
- Step 4 Repeat until a matching substring is found or text ends: Compare the corresponding characters right to left. If no characters match, retrieve entry $t_1(c)$ from the bad-symbol table for the text's character c causing the mismatch and shift the pattern to the right by $t_1(c)$. If 0 < k < m characters are matched, retrieve entry $t_1(c)$ from the bad-symbol table for the text's character c causing the mismatch and entry $d_2(k)$ from the goodsuffix table and shift the pattern to the right by

$$d = \max \{d_1, d_2\}$$

where $d_1 = \max\{t_1(c) - k, 1\}$.

Example of Boyer-Moore alg. application

A	В	С	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	Т	U	V	W	X	Y	Z	_
1	2	6	6	6	6	6	6	6	6	6	6	6	6	3	6	6	6	6	6	6	6	6	6	6	6	6

$$d_1 = t_1(\mathbf{K}) = 6$$
 B A O B A B $d_1 = t_1(\underline{\ }) - 2 = 4$

 $d_2(2) = 5$

k	pattern	d_2
1	BAO B A B	2
2	B AOB AB	5
3	BAOBAB	5
4	BAOBAB	5
5	BAOBAB	5

B A O B A B
$$d_1 = t_1() - 1 = 5$$
 $d_2(1) = 2$

B A O B A B (success)

 $max\{d1,d2\}$

Hashing

- A very efficient method for implementing a dictionary, i.e., a set with the operations:
 - find
 - insert
 - delete
- Based on representation-change and space-for-time tradeoff ideas
- Important applications:
 - symbol tables
 - databases (extendible hashing)

Hash tables and hash functions

The idea of *hashing* is to map keys of a given file of size *n* into a table of size *m*, called the *hash table*, by using a predefined function, called the *hash function*,

 $h: K \to \text{location (cell) in the hash table}$

Example: student records, key = SSN. Hash function: $h(K) = K \mod m$ where m is some integer (typically, prime) If m = 1000, where is record with SSN= 314159265 stored?

Generally, a hash function should:

- be easy to compute
- distribute keys about evenly throughout the hash table

Collisions

If $h(K_1) = h(K_2)$, there is a *collision*

- **▶** Good hash functions result in fewer collisions but some collisions should be expected (*birthday paradox*)
- **▶** Two principal hashing schemes handle collisions differently:
 - Open hashing
 - each cell is a header of linked list of all keys hashed to it
 - Closed hashing
 - one key per cell
 - in case of collision, finds another cell by
 - linear probing: use next free bucket
 - double hashing: use second hash function to compute increment

Open hashing (Separate chaining)

Keys are stored in linked lists <u>outside</u> a hash table whose elements serve as the lists' headers.

Example: A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED h(K) = sum of K 's letters' positions in the alphabet MOD 13

Key	A	FOOL	AND	HIS	MONEY	ARE	SOON	PARTED
h(K)	1	9	6	10	7	11	11	12

Example: Search for KID

Open hashing (cont.)

- If hash function distributes keys uniformly, average length of linked list will be $\alpha = n/m$. This ratio is called *load factor*.
 - file of size *n* into a table of size *m*
- ► Average number of probes in successful, S, and unsuccessful searches, U:

$$S \approx 1 + \alpha/2$$
, $U = \alpha$

- ► Load a is typically kept small (ideally, about 1)
- Open hashing still works if n > m

Closed hashing (Open addressing)

Keys are stored <u>inside</u> a hash table.

Key	A	FOOL	AND	HIS	MONEY	ARE	SOON	PARTED
h(K)	1	9	6	10	7	11	11	12

0	1	2	3	4	5	6	7	8	9	10	11	12
	A											
	A								FOOL			
	A					AND			FOOL			
	A					AND			FOOL	HIS		
	A					AND	MONEY		FOOL	HIS		
	A					AND	MONEY		FOOL	HIS	ARE	
	A					AND	MONEY		FOOL	HIS	ARE	SOON
PARTED	A					AND	MONEY		FOOL	HIS	ARE	SOON

Closed hashing (cont.)

- **Does not work if** n > m
 - file of size *n* into a table of size *m*
- Avoids pointers
- **▶** Deletions are *not* straightforward
- Number of probes to find/insert/delete a key depends on load factor $\alpha = n/m$ (hash table density) and collision resolution strategy. For linear probing:

$$S = (\frac{1}{2}) (1 + \frac{1}{(1 - \alpha)})$$
 and $U = (\frac{1}{2}) (1 + \frac{1}{(1 - \alpha)^2})$

As the table gets filled (α approaches 1), number of probes in linear probing increases dramatically:

α	$\frac{1}{2}(1+\frac{1}{1-\alpha})$	$\frac{1}{2}(1+\frac{1}{(1-\alpha)^2})$
50%	1.5	2.5
75%	2.5	8.5
90%	5.5	50.5

indexing schemes (e.g., B-trees)

- Idea
- **Example**
- **▶** Height
- **▶** B* : redistribuição
- **▶** B+: chaves nas folhas