Ph.D. Qualifying Exam, Real Analysis

Fall 2019, part I

Do all five problems. Write your solution for each problem in a separate blue book.

Let \mathcal{H} be a Hilbert space. We say that a linear operator A on \mathcal{H} is bounded below if there exists c > 0 such that for all $x \in \mathcal{H}$, $c||x|| \le ||Ax||$.

Suppose $T: \mathcal{H} \to \mathcal{H}$ is a bounded linear operator. Prove that T is invertible if and only if T and T^* are both bounded below.

- Let $X \subseteq \mathbb{R}$ be a Borel set and μ be the Lebesgue measure. Suppose there exist $1 \le p < q < +\infty$ such that $L^q(X,\mu) \subseteq L^p(X,\mu)$. Prove that $\mu(X) < +\infty$. (Hint: First show that the inclusion is continuous.)
- 3 Prove that a closed linear subspace of a reflexive Banach space is reflexive.
- **4** Suppose $f \in \mathcal{D}'(\mathbb{R})$, with $\mathcal{D}'(\mathbb{R})$ denoting the space of distributions on \mathbb{R} .
 - **a.** Show that there exists $u \in \mathcal{D}'(\mathbb{R})$ such that u' = f.
 - **b.** Show that if v' = f as well, then u v is a distribution given by a constant function.
- For $s \geq 0$ define $H^s(\mathbb{R}^n)$ to be the subspace of $L^2(\mathbb{R}^n)$ consisting of $f \in L^2(\mathbb{R}^n)$ with

$$\int_{\mathbb{D}^n} (1 + |\xi|^2)^s |\hat{f}(\xi)|^2 d\xi < \infty,$$

and let $||f||_{H^s(\mathbb{R}^n)} := ||(1+|\xi|^2)^{\frac{s}{2}} \hat{f}(\xi)||_{L^2(\mathbb{R}^n)}$, where \hat{f} denotes the Fourier transform of f.

a. Prove that there is no continuous map

$$P:L^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\to L^2(\mathbb{R}^n)$$

so that P(u,v)=uv for $u,v\in C_0^\infty(\mathbb{R}^n)$ (compactly supported smooth functions).

b. On the other hand, for $s > \frac{n}{2}$, show that there is a continuous map

$$P: H^s(\mathbb{R}^n) \times H^s(\mathbb{R}^n) \to H^s(\mathbb{R}^n)$$

so that P(u,v)=uv for $u,v\in C_0^\infty(\mathbb{R}^n)$. (Hint: First prove that for p>0, there is C=C(p) so that

$$(1+|\xi|^2)^p \le C(1+|\xi-\xi'|^2)^p + C(1+|\xi'|^2)^p,$$

for any $\xi, \xi' \in \mathbb{R}^n$.)

Ph.D. Qualifying Exam, Real Analysis Fall 2019, part II

Do all five problems. Write your solution for each problem in a separate blue book.

1 Two short problems.

5

a. For a topological space M, let C(M) denote the vector space of real valued continuous functions on M.

Suppose X,Y are compact Hausdorff topological spaces. Let D be the linear span of functions of the form $u(x,y)=\phi(x)\psi(y), \phi\in C(X), \psi\in C(Y)$. Show that D is dense in $C(X\times Y)$.

- **b.** Let X be a separable Hilbert space. Show that if K is a compact operator on X, then K is the norm limit of finite rank operators.
- Let X be a complex vector space. Suppose that $\{\rho_\alpha:\alpha\in A\}$ is a collection of seminorms on X such that for each $x\in X\setminus\{0\}$ there is $\alpha\in A$ such that $\rho_\alpha(x)\neq 0$, and $B:X\times X\to\mathbb{C}$ is a (jointly) continuous bilinear map in the locally convex topology generated by the ρ_α . Show that there exist $\alpha_1,\ldots,\alpha_n\in A,$ C>0, such that for all $x,y\in X$,

$$|B(x,y)| \le C(\rho_{\alpha_1}(x) + \ldots + \rho_{\alpha_n}(x))(\rho_{\alpha_1}(y) + \ldots + \rho_{\alpha_n}(y)).$$

- For (X, μ) measure space with $\mu(X) < \infty$, show that if $f_i \to f$ in measure and $\sup_i \|f_i\|_{L^p} < \infty$ for some p > 1 then $f_i \to f$ in L^1 .
- Suppose that $f:[0,\infty)\to [0,\infty)$ is continuous and for any x in $[0,\infty)$ the sequence f(x),f(2x),f(3x),... tends to zero. Show that $\lim_{x\to\infty}f(x)=0$.
 - **a.** Show that for each L>0 there exists C_L so that if $f\in C_c^\infty(\mathbb{R})$ and the support of f is contained inside the interval [-L,L] then

$$\int_{-L}^{L} |f(x)|^2 dx \le C_L \int_{-L}^{L} |f'(x)|^2 dx.$$

- **b.** Assume that an inequality of the form $\|f\|_{L^2} \leq C\|f\|_{L^1}^a\|\nabla f\|_{L^2}^b$ holds for all f in the Schwartz class $\mathcal{S}(\mathbb{R}^n)$. Find the only possible values of a and b note that they depend on the dimension n.
- c. Use the Plancherel identity to show that if $\hat{f}(\xi) = 0$ for $|\xi| \leq R$ then $||f||_{L^2}^2 \leq \frac{C_1}{R^2} ||\nabla f||_{L^2}^2$, and that if $\hat{f}(\xi) = 0$ for $|\xi| \geq R$, then $||f||_{L^2}^2 \leq C_1 R^n ||f||_{L^1}^2$, with a constant C_1 that depends only on the dimension n. Combine these estimates to prove an inequality of the form $||f||_{L^2} \leq C||f||_{L^1}^a ||\nabla f||_{L^2}^b$ with a and b you have found in part (b), and a constant C that depends only on the dimension n.