facts and definitions

Definition 1. Let (A, \preceq) and (B, \vdash) be partially-ordered sets (that is, \preceq is a partial order on A and \vdash is a partial order on B). We call $f: A \to B$ monotone if one of the following two conditions holds:

- $\forall x_1, x_2 \in A, x_1 \leq x_2 \Rightarrow f(x_1) \vdash f(x_2)$ or
- $\forall x_1, x_2 \in A, x_1 \leq x_2 \Rightarrow f(x_2) \vdash f(x_1)$

If $f: A \to B$ is monotone with respect to \leq and \vdash , we often write $f: (A, \leq) \to (B, \vdash)$.

exercises These problems don't require you to write proofs.

- 1. Let $f: X \to Y$. Explain why $f_*: 2^X \to 2^Y$.
- 2. In the definition of *monotone*, \vdash does not have to be a total order. But let's assume it was. Explain two things: first, why someone might think *every* function to a totally ordered set is monotone; second, what mistake they would be making. One might think every totally ordered set is monotone since every term is comparable, given a $f(x_1)$, $f(x_2)$, $f(x_1) \vdash f(x_2)$ or $f(x_2) \vdash f(x_1)$. However, only one can hold, so given leq, and given f maps to $\{1\}$, both would hold, and therefore this wouldn't be a monotone.

proofs Write a complete proof for each of the following statements.

1. Show that for any function $f: A \to B$, there is at most one function $g: B \to A$ so that $g \circ f = I_A$ and $f \circ g = I_B$.

Claim 1. For any function $f: A \to B$, there is at most one function $g: B \to A$ so that $g \circ f = I_A$ and $f \circ g = I_B$.

Proof. Let us assume there is another function, h which satisfies the conditions of g. For h=g, they must have the same domain and same rule. Since By definition domain(h)=B and domain(g)=B, this is satisfied. Now let f(a)=b where $a \in A$ and $b \in B$. So h(f(a))=a (Identity). Soh(b)=a. Now consider g(f(a))=a. So g(b)=a (Identity). So h=g, so g is unique.

- 2. If $f: A \to B$ and there is a function $g: B \to A$ with the property that $g \circ f = I_A$ and $f \circ g = I_B$, then $f^{-1}: B \to A$.
- 3. Let $f: X \to Y$ be a function. Assume that $f^{-1}: Y \to X$.
 - (a) Show that for any $Z \subseteq Y$, $(f^{-1})_*(Z) = f^*(Z)$.

Claim 2. For any $Z \subseteq Y$, $(f^{-1})_*(Z) = f^*(Z)$.

Proof. Functions are equal when they have the same rule and Domain. $Z = Domain(f_*^{-1}) = Domain(f^*(Z))$. Given $(f^*(z) = x \text{ for } z \in Z \text{ and } x \in X$. Therefor $f^{-1*}(x) = z$ (Inverse). Therefore the pullback can be defined as $f_*^{-1}(z) = x$. Since both functions have the same rule and domain, they are equal.

- (b) Explain why that makes it kind of okay that SEStA (and many others) use the notation $f^{-1}(C)$ where we use $f^*(C)$. Because $f^*(C)$ is equal to the inverse if f is bijective.
- 4. Let $h: X \to Y$ be a function and $C \subseteq Y$. Show that $h^*(C^c) = (h^*(C))^c$.

Claim 3. Let $h: X \to Y$ be a function and $C \subseteq Y$. Show that $h^*(C^c) = (h^*(C))^c$.

Proof. Let $j \in h^*(C^c)$. So j = (a,b) where $a \in C^c$ and $b \in X$. Since $h : X \to Y$, for all $x_1, x_2 \in X$, if $h(x_1) = h(x_2)$, then $x_1 = x_2$. So $j \in (h^*(C))^c$

- 5. Let $f: X \to Y$ be a function, A, B subsets of X, and C, D subsets of Y.
 - (a) $f_*(A \cup B) = f_*(A) \cup f_*(B)$.

Claim 4. $f_*(A \cup B) = f_*(A) \cup f_*(B)$.

Proof. Let $j \in f_*(A \cup B)$. So j = f(a) where $a \in A \cup B$. So $a \in A$ or $a \in B$. So either $j \in f_*(A)$ or $j \in f_*(B)$. Therefore $j \in f_*(A \cup B)$.

Let $k \in f_*(A) \cup f_*(B)$. So k = f(b) where $b \in X$. So $k \in f_*(A)$ or $k \in f_*(B)$. So $b \in A \cup B$. Therefore $k \in f_*(A \cup B)$. So $f_*(A \cup B) = f_*(A) \cup f_*(B)$.

(b) $f_*(A \cap B) \subseteq f_*(A) \cap f_*(B)$.

Claim 5. $f_*(A \cap B) \subseteq f_*(A) \cap f_*(B)$.

Proof. Let $j \in f_*(A \cap B)$. So j = f(a) where $a \in A \cap B$. So $a \in A$ and $a \in B$. Since j maps to a unique output, and $a \in A \cap B$, $f_*(A) \cap f_*(B)$. Therefore $a \in f_*(A \cap B) \subseteq f_*(A) \cap f_*(B)$.

(c) $f^*(C \cup D) = f^*(C) \cup f^*(D)$.

Claim 6. $f^*(C \cup D) = f^*(C) \cup f^*(D)$.

Proof. Let $x \in f^*(C \cup D)$. So $x \in X$. Since f is a function, elements in X can only be related to one element in Y. So $x \in f(C) \cup f(D)$ (since $x \in f^*(C \cup D)$ and $f^*(C \cup D)$ are linked to a unique element in $C \cup D$, they must be related to the element in $f^*(C)$ or $f^*(D)$). So $f^*(C \cup D) \subseteq f^*(C) \cup f^*(D)$.

Let $x \in f^*(C) \cup f^*(D)$. So $x \in X$. Since f is a function, elements in X can only be related to one element in Y. So $x \in f^*(C)$ or $x \in f^*(D)$. Since x is linked with a unique element in C or D (Definition of a function), $x \in f^*(C \cup D)$. So $f^*(C \cup D) = f^*(C) \cup f^*(D)$.

- (d) $f^*(C \cap D) = f^*(C) \cap f^*(D)$.
- 6. Let $g: X \to Y$ be a function. Show that for any finite collection A_1, \ldots, A_n of subsets of X, we have

$$g_* \left(\bigcup_{k=1}^n A_k \right) = \bigcup_{k=1}^n g_*(A_k)$$

(*Hint.* n is a natural number.)

Proof. (Proof by Mathematical Induction)

Base Case (n=1): $g_*A_1 = g_*A_k$

Inductive hypothesis r = n: $g_* (\bigcup_{k=1}^r A_k) = \bigcup_{k=1}^r g_*(A_k)$

Inductive Step:

$$\bigcup_{k=1}^{r+1} g_*(A_k) = \bigcup_{k=1}^{r+1} g_*(A_k)$$

$$= \bigcup_{k=1}^r g_*(A_k) \cup g_*(A_{r+1})$$

$$= g_* \left(\bigcup_{k=1}^r A_k\right) \cup g_*(A_{r+1})$$
(Used inductive hypothesis)
$$= g_* \left(\bigcup_{k=1}^{r+1} A_k\right)$$

(Since input is either A_{r+1} or $g_* (\bigcup_{k=1}^r A_k)$, the input of g_* is $\bigcup_{k=1}^{r+1} A_k$)

Therefore, through proof by mathematical induction, $g_*(\bigcup_{k=1}^n A_k) = \bigcup_{k=1}^n g_*(A_k)$.

7. Give an example which shows that we might not have equality in 5(b).

Proof. Let
$$f(x) = x^2$$
, $A = \{-3, -2, -1, 0\}$ and $b = \{0, 1, 2, 3\}$. So $f_*(A) \cap f_*(B)$, $f_*(A) = \{4, 1, 0, 9\}$ and $yf_*(B) = \{0, 1, 4, 9\}$, so $f_*(A) \cap f_*(B) = \{1, 4, 0, 9\}$. $f_*(A \cap B) \neq f_*(A) \cap f_*(B)$.

8. (\star) Let $f: X \to Y$. Assume that f is onto. Let \mathcal{P} be a partition of Y. Define

$$f^*\mathcal{P} = \{ f^*(A) | A \in \mathcal{P} \}$$

Show that $f^*\mathcal{P}$ is a partition of X.

Claim 7. $f^*\mathcal{P}$ is a partition of X.

Proof. Since \mathcal{P} is a partition on $Y, Y = \bigcup_{x \in \mathcal{P}} P$. Since Y is surjective on $X, f^*\mathcal{P} \subseteq X$, and according to the definition of a function $f^*\mathcal{P} = X$ ($f^*\mathcal{P} \subseteq X$ since Y is surjective and partitioned by \mathcal{P} and $X \subseteq f^*\mathcal{P}$ as by definition of a function, all elements in X are related to an element in Y). Furthermore, since $\forall x_1, x_2 \in X$ if $f(x_1) = f(x_2)$ then $x_1 = x_2$, this implies that given an element, $y \in Y$, $f^*(y)$ will be unique so $\bigcup_{Y \in \mathcal{P}} f^*(Y)$. Since this satisfies all conditions of a partition, $f^*\mathcal{P}$ is a partition on X.

- 9. $(\star\star)$ Assume that $h:X\to Y$ is onto. Consider an equivalence relation R on Y. Give an explicit expression for the equivalence classes of h^*R (defined in HW 8) in terms of the other objects in play. (*Hint.* Recall that equivalence classes of h^*R are subsets of X. Consider another problem on this sheet.)
- 10. (*) Let $f: X \to Y$. Assume f is injective. If \leq is a partial order on Y, show that the relation \vdash given by

$$\alpha \vdash \beta \text{ iff } f(\alpha) \leq f(\beta)$$

is a partial order on X.

Claim 8. Let $f: X \to Y$. Assume f is injective. If \leq is a partial order on Y, show that the relation \vdash given by

$$\alpha \vdash \beta \text{ iff } f(\alpha) \leq f(\beta)$$

is a partial order on X.

Proof. (Reflexivity) Let $x \in X$. Since $f(x) \leq f(x)$ (by definition of partial order, and since x maps to a unique value), $x \vdash x$ (Since f(x) goes to a unique value due to injectivity). So \vdash is reflexive on X.

(Transitivity) Let $x, y \in (\vdash, X)$ where x = (a, b) and y = (b, c). By the definition of \preceq , $f(a) \preceq f(b)$ and $f(b) \preceq f(c)$. Since \preceq is a parital order, $f(a) \preceq f(c)$. By definition of \vdash and a function, $a \vdash c$. So \vdash is transitive on X.

(Antisymmetry) Let $x, y \in (\vdash, X)$ where x = (a, b) and y = (b, a). By the definition of \preceq , $f(a) \preceq f(b)$ and $f(b) \preceq f(a)$. Since \preceq is a parital order, a = b. So since if $x, y \in (\vdash, X)$ a = b, \vdash is antisymmetric. So \vdash is a partial order on X.

11. (*) Let (Z, \preceq) and (W, \vdash) be partially ordered sets. Assume \preceq is a total order. Assume $g: (Z, \preceq) \to (W, \vdash)$ is monotone. Show that g is injective.