Formal Semantics

Jacob Andreas / MIT 6.804-6.864 / Spring 2020

Recap: trees

Syntax

Types & semantics

Highest-scoring parse

2. Fill in higher rows with highest-scoring product of child probs. times rule prob.

Supervised learning

For PCFGs—given a treebank,

$$p(S \to NP VP)$$

$$= \frac{\#(S \to NP VP)}{\#(S)}$$

I ate spaghetti with meatballs

This doesn't work very well: basic syntactic categories are too coarse.

Supervised learning: lexicalization

Idea: enrich nonterminal alphabet with information about the most important word underneath:

Supervised learning: Markovization

Idea: enrich nonterminal alphabet with more information about the local tree structure:

Supervised learning: features & NNs

Idea: Use the CRF version

$$P(T) \propto \exp \left\{ \sum_{(A \to B \ C, i, k, j)} w^{\mathsf{T}} \phi(A, B, C, i, k, j) \right\}$$

and give ϕ features like "A = NP and j:k contains fork" (or make it a neural network)

Unsupervised learning

Model	F_1	Training/Test PPL
Random Trees	19.5	
Right Branching	39.5	
Scalar PCFG (unsupervised)	< 35.0	> 350

worse than assuming every tree looks like this:

[Kim et al. 2018]

Unsupervised learning: embeddings

Model	F_1	Training/Test PPL
Random Trees	19.5	
Right Branching	39.5	
Scalar PCFG	< 35.0	> 350
Neural PCFG	52.6	≈ 250

"Grammar embeddings": $p(A \rightarrow B \ C) \propto \exp\{v_A^{\mathsf{T}} f(v_B, v_C)\}$

[Kim et al. 2018]

Better learning for CFGs

Supervised learning: lexicalization

Idea: enrich nonterminal alphabet with information about the most important word underneath:

Each of the three girls has a platypus.

Each of the three girls climbed the mountain.

How many platypuses?

How many mountains?

There are 128 cities in South Carolina.

name	type	coastal
Columbia	city	no
Cooper	river	yes
Charleston	city	yes

Barack Obama was the 44th President of the United States. Obama was born on August 4 in Honolulu, Hawaii. In late August 1961, Obama's mother moved with him to the University of Washington in Seattle for a year...

Is Barack Obama from the United States?

Compositional semantics

It's not enough to have structured representations of syntax: We also need structured representations of **meaning**.

Compositional semantics

It's not enough to have structured representations of syntax: We also need structured representations of **meaning**.

Today:

How do we get from language to meaning?

Representing meaning

Meaning in formal languages

Meaning in formal languages

$$a + b = 17$$

Meaning in formal languages

$$a = ?$$

$$b = ?$$

Meanings are sets of valid assignments

$$\{a=0, b=0\}$$
 $\{a=17, b=0\}$
 $\{a=3, b=10\}$ $\{a=10, b=7\}$
 $\{a=5, b=12\}$ $\{a=5, b=5\}$

Meanings are sets of valid assignments

$$a + b = 17$$

$$\{a=0, b=0\}$$

$$\{a=3, b=10\}$$
 X

$$\{a=5, b=12\}$$

$$\{a=17, b=0\}$$

$$\{a=10, b=7\}$$

$$\{a=5, b=5\}$$
 X

Meanings are sets of valid assignments

$$a + 3 = 20 - b$$

$$\{a=0, b=0\}$$

$$\{a=3, b=10\}$$
 X

$$\{a=5, b=12\}$$

$$\{a=17, b=0\}$$

$$\{a=10, b=7\}$$

$$\{a=5, b=5\}$$
 X

Meanings are functions that judge validity

$$[a+b=17]$$
 $\{a=5, b=12\}$

Meanings are functions that judge validity

$$[a + b = 17]_{3}$$
{ $a=3, b=10$ }

Lessons from math

$$[a + b = 17]$$

The meaning of a statement is the **set** of possible worlds consistent with that statement.

Here, a "possible world" is an assignment of values to variables.

$$\{a=3, b=10\}$$

Meaning in natural languages

Pat likes Sal.

Representing possible worlds

Individuals Pat Sal

Properties whale — sad —

Relations —loves→ —contains→

Example world

Sam

Pat

Sal

Lou

Example world

Different example world

Representing possible worlds

Individuals

Pat

Sal

Properties

whale={Lou}, sad={Pat,Sal}

Relations

likes={(Pat,Sal),(Sal,Sam)}

Interpretations of sentences

Pat likes Sal.

Interpretations of sentences

Lou is a shark.

Interpretations of sentences

Sam is inside Lou, a shark.

KEY IDEA

The meaning of a sentence is the set of possible worlds it picks out.

Possible worlds and logical forms

Explicit representation is too hard

Pat likes Sal.

Meanings as functions

Expressing functions with logic

```
Pat likes Sal
likes(Pat, Sal)
```

Louis a shark shark (Lou)

Sam is inside Lou, a shark

Sam is inside Lou, a shark shark(Lou) A contains(Lou, Sam)

Nobody likes Lou

```
Nobody likes Lou
∀x. ¬likes(x, Lou)
```

Everyone who knows Sal is happy

Everyone who knows Sal is happy $\forall x. \text{ knows}(x, \text{Sal}) \rightarrow \text{happy}(x)$

KEY IDEA

Collections of possible worlds can be compactly represented with logical forms.

Pat likes Sal

likes(Pat, Sal)

Lou is a shark

shark(Lou)

Sam is inside Lou, a shark

shark(Lou) \(\Lou\)
contains(Lou, Sam)

Nobody likes Lou

∀x.¬likes(x, Lou)

Pat likes Sal

likes (Pat, Sal)

Lou is a shark

shark(Lou)

Sam is inside Lou, a shark

shark(Lou) \(\Lou_{\text{s}} \)
contains(Lou_{\text{s}} \) Sam)

Nobody likes Lou

∀x.-<mark>likes</mark>(x, Lou)

Pat likes Sal

likes(Pat, Sal)

Lou is a shark

shark(Lou)

Sam is inside Lou, a shark

shark(Lou) \(\Lou_{\text{out}} \)
contains(Lou_{\text{ou}} \) Sam)

Nobody likes Lou

∀x.¬likes(x, Lou)

A Sal le gusta Pat

likes (Pat, Sal)

Lou es un tiburón

shark(Lou)

Sam está dentro de Lou, un tiburón shark(Lou) \(\Lou\)
contains(Lou, Sam)

A nadie le gusta Lou

∀x.-likes(x, Lou)

a12 b5 c67 a8

a12 b5 c0 a0

a12 b16 c12 c12

a53

likes(Pat, Sal)

shark(Lou)

shark(Lou) \(\Lou_i \)
contains(Lou_i Sam)

∀x.¬likes(x, Lou)

KEY IDEA

Pieces of logical forms correspond to pieces of language

Sam is inside Lou, a shark shark(Lou) \(\Lambda \) contains(Lou, Sam)

Pat: Pat

Sal: Sal

Sam: Sam

Lou: Lou

```
Sam is inside Lou, a shark shark(Lou) \( \Lou \) contains(Lou, Sam)
```

Pat: Pat shark:

Sal: Sal

Sam: Sam

Lou: Lou

```
Sam is inside Lou, a shark shark(Lou) \( \Lambda \) contains(Lou, Sam)
```

Pat: Pat shark: λx.shark(x)

Sal: Sal

Sam: Sam

Lou: Lou

```
Sam is inside Lou, a shark shark(Lou) \( \Lambda \) contains(Lou, Sam)
```

Pat: Pat

Sal: Sal

Sam: Sam

Lou: Lou

shark: λx.shark(x)

likes: λyx.likes(x, y)

nobody: $\lambda f \cdot \forall x \cdot \neg f(x)$

• • •

Learning semantic parsers

Seq-to-seq semantic parsing

```
- likes ( Pat , Sal )
```

transformer

Pat doesn't like Sal.

Decoder constraints

```
)
∀
Sal
¬ likes ( Pat , Lou
```

transformer

Pat doesn't like Sal.

Decoder constraints

transformer

Pat doesn't like Sal.

Tree-shaped decoders

Tree-shaped decoders

RNN states are updated based on parents and siblings, not arbitrary neighbors.

Learning from denotations

Logical form supervision:

Pat doesn't like Lou. -likes (Pat, Lou)

Answer supervision:

learn from (question, world, answer) triples without LFs!

Who does Pat like?

Maximum likelihood estimation

Maximum likelihood estimation

compare:

$$p(\text{sentence}) = \sum_{\text{tree}} p(\text{sentence} \mid \text{tree}) p(\text{tree})$$

syntactic parser

Computational challenges

Can't efficiently compute this sum: no way to factor scoring fn over pieces of LFs.

no dynamic program!

$$p(\text{answer} \mid \text{question}) = \sum_{\text{LF}}^{\bullet} p(\text{answer} \mid \text{LF}) \ p(\text{LF} \mid \text{question})$$

dynamic program (CKY)

$$p(\text{sentence}) = \sum_{\text{tree}}^{\downarrow} p(\text{sentence} \mid \text{tree}) \ p(\text{tree})$$

Computational challenges

Hard search problem!

This is o for almost all LFs

$$p(answer \mid question) = \sum_{l,F} p(answer \mid LF) p(LF \mid question)$$

"Hard EM"

Alternate between:

```
LF^* = argmax_{LF} p(answer | LF) p(LF | question; \theta)
```

 $\theta^* = \operatorname{argmax}_{\theta} p(\operatorname{answer} | \operatorname{LF}) p(\operatorname{LF} | \operatorname{question}; \theta)$

(pick a "pseudo-gold", treat it as gold, update params)

Lexicon-based semantic parsing

```
p(\lambda y. likes(Pat, y) | who does Pat like?)

\propto \exp \{ f(like, \lambda xy. likes(x, y)) + f(Pat, Pat) + ... \}
```


Semantic parsing via paraphrasing

1. Write a rule-based procedure for turning logical forms into sentences

```
\lambda y. likes(y, brother(Sal)) \longrightarrow what likes brother of Sal
```

2. Score LF based on similarity between the input sentence and fake one

```
p(LF \mid question) \propto \begin{cases} f(who is it that likes Sal's brother, \\ what likes brother of Sal) \end{cases}
```

use paraphrase features

Aside: program synthesis

```
\max_{\mathsf{LF}:\ p(\mathsf{answer}|\mathsf{LF})>0} f(\mathsf{LF} \mid \mathsf{question})
```

Huge amount of work on solving this problem in the programming languages literature!

(not widely used in NLP yet)

Why not just predict answers directly?

Still hard for "unstructured" neural models!

Structured attention mechanisms

What city is on the coast?

Charleston

[Yin et al. 2016]

Module networks

Does the blue cylinder have the same material as the big block on the right side of the red metallic thing?

Module networks

No need to hand-write "logical" primitives!

Does the blue cylinder have the same material as the big block on the right side of the red metallic thing?

Question answering

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

Greece last hosted the summer Olympics in which year?

Instruction following

move forward twice to the chair

 $\lambda a.move(a) \land dir(a, forward) \land len(a, 2) \land to(a, \iota x.chair(x))$

at the corner turn left to face the blue hall

 $\lambda a.pre(a, \iota x.corner(x)) \land turn(a) \land dir(a, left) \land post(a, front(you, \iota x.blue(x) \land hall(x)))$

Next class: ???