Let's get (Cyber) Physical

Aligning SABSA and the ISA/IEC 62443 Standard Series

/whois @beLarge

- Operational Technology (OT) Security Team Leader at Powerlink
- A cyber security architecture enthusiast & infrastructure tourist
- SABSA SCF and (still...) working on my SCP A3 Paper
- Worked in IT and OT in Network & System Engineering and Cyber Security roles for 15 years
- I am the "Bruce" in Patrick Dunstan's SCM Thesis in Appendix A
- Chair of the Queensland Branch of the Information, Telecommunications and Electronics Engineering (ITEE) College of Engineers Australia

EXPERT

- Deputy Chair of the Queensland Branch of the Australian Information Security Association (AISA)
 and Chair of the AISA Security Architecture Special Interest Group (SIG)
- Bach Eng (Telecomms) QUT First Class Honours and Master Business (Applied Finance) with

Distinction QUT

Audience Poll

- 1. Who has experience with [Operational Technology/Industrial Control Systems/Cyber Physical Systems]?
- 2. Who has had experience with ISA/IEC 62443?
- 3. Who is certified (any level) in ISA/IEC 62443?
- 4. Who is a ISA/IEC 62443 Certified Expert?

4

Agenda

- 1. An Introduction to OT and why SABSA for OT
- 2. Overview and Alignment to ISA/IEC 62443
- 3. A Practical Application for an OT Scenario
- 4. Tips & references for working with your OT Stakeholders
- 5. End of Session Q&A

An Introduction to OT

And why SABSA For OT

IT, OT, ICS, IoT, Cyber Physical Systems

Industrial Automation & Control Systems (IACS)

An IACS is defined as a:

collection of personnel, hardware, software, and policies involved in the operation of the industrial process and that can affect or influence its safe, secure and reliable operation.

The Purdue Model

- Reference architecture developed in the 90s to guide the integration of business systems and Industrial Control Systems
- Originally was used to determine where best to interconnect different network technologies

"IT/OT convergence has been occurring since at least the 1990s when HMI/Operator Stations began running on Windows ... The skill sets required to deploy and manage these computer-, TCP-/IP-, Ethernet-based systems are the same in both IT and OT. So we are seeing some workforce convergence, as well."

Motivation for this presentation

- To help enable the true management of business risk for the enterprise we must have a common language and shared understanding between IT and OT
- To help educate SABSA practitioners about the nuance of Operational Technology and the ISA/IEC 62443 standard series
- Operational Technology is super cool!

Overview of ISA/IEC 62443

And alignment with SABSA

Does this look familiar ...

Function	Category	Subcategory	Informative References				
IDENTIFY (ID)	Asset Management (ID.AM): The data, personnel, devices, systems, and facilities that enable the organization to achieve business purposes are identified and managed consistent with their relative importance to	ID.AM-1: Physical devices and systems within the organization are inventoried	CIS CSC 1 COBIT 5 BAI09.01, BAI09.02 ISA 62443-2-1;2009 4.2.3.4 ISA 62443-3-3;2013 SR 7.8 ISO/IEC 27001;2013 A.8.1.1, A.8.1.2 NIST SP 800-53 Rev. 4 CM-8, PM-5				
	organizational objectives and the organization's risk strategy.	ID.AM-2: Software platforms and applications within the organization are inventoried	CIS CSC 2 COBIT 5 BAI09.01, BAI09.02, BAI09.05 ISA 62443-2-1:2009 4.2.3.4 ISA 62443-3-3:2013 SR 7.8 ISO/IEC 27001:2013 A.8.1.1, A.8.1.2, A.12.5.1 NIST SP 800-53 Rev. 4 CM-8, PM-5				
		ID.AM-3: Organizational communication and data flows are mapped	CIS CSC 12 COBIT 5 DSS05.02 ISA 62443-2-1:2009 4.2.3.4 ISO/IEC 27001:2013 A.13.2.1, A.13.2.2 NIST SP 800-53 Rev. 4 AC-4, CA-3, CA-9, PL-8				
		ID.AM-4: External information systems are catalogued	CIS CSC 12 COBIT 5 APO02.02, APO10.04, DSS01.02 ISO/IEC 27001:2013 A.11.2.6 NIST SP 800-53 Rev. 4 AC-20, SA-9				
		ID.AM-5: Resources (e.g., hardware, devices, data, time, personnel, and software) are prioritized based on their classification, criticality, and business value	CIS CSC 13, 14 COBIT 5 APO03.03, APO03.04, APO12.01, BAI04.02, BAI09.02 ISA 62443-2-1:2009 4.2.3.6 ISO/IEC 27001:2013 A.8.2.1 NIST SP 800-53 Rev. 4 CP-2, RA-2, SA-14, SC-6				
		ID.AM-6: Cybersecurity roles and responsibilities for the entire workforce and	CIS CSC 17, 19 COBIT 5 APO01.02, APO07.06, APO13.01, DSS06.03				

A quick overview

- ISA/IEC 62443 is a Standards Framework of Cyber Security Publications for Industrial Automation and Control Systems (IACS)
- The International Society for Automation (ISA) Working Group 99 are the main produces of the publications
- Originally published with ANSI as ISA 99 but are now published in partnership with the IEC and are designated ISA/IEC 62443
- You might see ISA 95 Enterprise-Control System Integration it is based on the Purdue Model but it is separate to ISA 62443
- ISA 62443 is referenced by the NIST Cyber Security Framework but only 2 of the 14 publications referenced (2-1 and 3-3)

ISA 62443 Framework

Other perspectives and views ...

Product Development Lifecycle

Integration

Part 1-1: Concepts and Models

Part 2-1: IACS requirements for Asset Owners

Part 2-2: IACS Security Program Rating

Part 2-3: IACS Patch management

Part 2-4: Security program requirements for IACS service providers

Part 3-2: Security risk assessment, system partitioning, and security levels

Part 4-1: Product development lifecycle

Part 4-2: Technical security requirements for IACS components

Figure 6: ISA/IEC 62443 Standards - Lifecycle View

Timeline of the Standards Development

ISA/IEC 62443 Part 1-1

Part 1-1 - Concepts and Models

- Definitions (e.g. What is an asset)
- Defines an asset model taxonomy
- Defines a model for Security
- Zones and Conduits
- Defines Security Levels (Target, Achieve, Capability)
- Defines Policies and Procedures Requirements
- and more ...

Figure 14 – Process Manufacturing Asset Model Example

- Domain
 environment or context that is defined by a
 security policy, security model, or security
 architecture to include a set of system
 resources and the set of system entities that
 have the right to access the resources [11].
- electronic security
 actions required to preclude unauthorized
 use of, denial of service to, modifications to,
 disclosure of, loss of revenue from, or
 destruction of critical systems or
 informational assets.
- enterprise system
 collection of information technology
 elements (i.e., hardware, software and
 services) installed with the intent to facilitate
 an organization's business process or
 processes (administrative or project).

- Risk
 expectation of loss expressed as the probability
 that a particular threat will exploit a particular
 vulnerability with a particular consequence.
- Safety freedom from unacceptable risk
- Security Architecture plan and set of principles that describe the security services that a system is required to provide to meet the needs of its users, the system elements required to implement the services, and the performance levels required in the elements to deal with the threat environment.
- security level level corresponding to the required effectiveness of countermeasures and inherent security properties of devices and systems for a zone or conduit based on assessment of risk for the zone or conduit.

Security Zone

grouping of logical or physical assets that share common security requirements

NOTE: All unqualified uses of the word "zone" in this standard should be assumed to refer to a security zone.

NOTE: A zone has a clear border with other zones. The security policy of a zone is typically enforced by a combination of mechanisms both at the zone edge and within the zone. Zones can be hierarchical in the sense that they can be comprised of a collection of subzones.

Conduit

logical grouping of communication assets that protects the security of the channels it contains.

NOTE: This is analogous to the way that a physical conduit protects cables from physical damage.

Figure 22 - SCADA Conduit Example

ISA/IEC 62443 Part 2-1

Part 2-1 - Establishing an IACS Security Program

- Defines a Cyber Security Management System (CSMS); The "OT ISMS"
- The Standard consists of:
 - Elements of the CSMS
 - Guidance for the development of the CSMS
 - Processes to develop a CSMS

Part 2-1 - Establishing an IACS Security Program (cont.)

Figure A.2 - Graphical view of category: Risk analysis

4.2.3 Element: Risk identification, classification, and assessment

Objective:

Identify the set of IACS cyber risks that an organization faces and assess the likelihood and severity of these risks.

Description:

Organizations protect their abilities to perform their missions by systematically identifying, prioritizing and analyzing potential security threats, vulnerabilities, and consequences using accepted methodologies. The first set of requirements presents the actions an organization takes to carry out both a high level and a detailed risk assessment that incorporates vulnerability assessment, in a typical chronological order. Among these requirements, those related to preparing for high level and detailed risk assessments are 4.2.3.1, 4.2.3.2 and 4.2.3.8. The last few requirements (4.2.3.10 to 4.2.3.14) are general requirements that apply to the overall risk assessment process. Section 4.3.4.2 covers the process of taking action based upon this assessment

Rationale:

Since the purpose of investing in cyber security is to lower risk, it is driven by an understanding of level of risk and potential mitigations.

	Description	Requirement				
4.2.3.1	Select a risk assessment methodology	The organization shall select a particular risk assessment and analysis approach and methodology that identifies and prioritizes risks based upon security threats, vulnerabilities and consequences related to its IACS assets.				
4.2.3.2	Provide risk assessment background information	The organization should provide participants in the risk assessment activity with appropriate information including methodology training, before beginning to identify the risks.				
4.2.3.3	Conduct a high-level risk assessment	A high-level system risk assessment shall be performed to understand the financial and HSE consequences in the event that availability, integrity or confidentiality of the IACS is compromised.				
4.2.3.4	Identify the industrial automation and control systems	The organization shall identify the various IACS, gather data about the devices to characterize the nature of the security risk, and group the devices into logical systems.				

4.2.3.5	Develop simple network diagrams	The organization shall develop simple network diagrams for each of the logically integrated systems showing the major devices, network types, and general locations of the equipment.
4.2.3.6	Prioritize systems	The organization shall develop the criteria and assign a priority rating for mitigating the risk of each logical control system.
4.2.3.7	Perform a detailed vulnerability assessment	The organization shall perform a detailed vulnerability assessment of its individual logical IACS, which may be scoped based on the high-level risk assessment results and prioritization of IACS subject to these risks.
4.2.3.8	ldentify a detailed risk assessment methodology	The organization's risk assessment methodology shall include methods for prioritizing detailed vulnerabilities identified in the detailed vulnerability assessment.
4.2.3.9	Conduct a detailed risk assessment	The organization shall conduct a detailed risk assessment incorporating the vulnerabilities identified in the detailed vulnerability assessment.
4.2.3.10	Identify the reassessment frequency and triggering criteria	The organization shall identify the risk and vulnerability reassessment frequency as well as any reassessment triggering criteria based on technology, organization, or industrial operation changes.
4.2.3.11	Integrate physical, HSE and cyber security risk assessment results	The results of physical, HSE and cyber security risk assessments shall be integrated to understand the assets' overall risk.
4.2.3.12	Conduct risk assessments throughout the lifecycle of the IACS	Risk assessments shall be conducted through all stages of the technology lifecycle including development, implementation, changes, and retirement.
4.2.3.13	Document the risk assessment	The risk assessment methodology and the results of the risk assessment shall be documented.
4.2.3.14	Maintain vulnerability assessment records	Up-to-date vulnerability assessment records should be maintained for all assets comprising the IACS.

Part 2-1 - Establishing an IACS Security Program (cont.)

ISA/IEC 62443 Part 3-2

Part 3-2 - Security risk assessment, system partitioning and security levels

- Defines Cyber Vulnerability Assessments (CVA), Cyber Risk Assessment (CRA) and the Cyber Security Risk Assessment
- Types of CVAs:
 - Bench Mark assessment (Gap Assessment)
 - Passive Vulnerability Assessment
 - Active Vulnerability Assessment
 - Penetration Testing
- This is the Standard that describes the process of determining Zones and Conduits and their respective Security Levels (Target, Capability and Achieved)

Part 3-2 - cont.

Part 3-2 - cont.

														<i>NN</i>				
		Thursday	-1-	Consequence Impact														4
Zone	Threat Source	Threat Scen	ario Vulnerabilities	Consequence Description	S I	E F	Т	Max	UTL	Risk	SL-T	Countermeasures	MTL	Risk	Recommendations	ATL	Risk	
		Inserts USB into Operation Station (OS) with General Malware	* OS Computers are in the Control Room * USB Ports are not blocked or disabled * Autorun not disabled * No Antivirus	* Denial of service on operator station that spreads to all OS on PCN * All OS and Servers need to be rebuilt * 24-72 hours downtime * Rework batch * Supply chain impact	1 :	1 2	3	3	5	15	2	* Policies and Procedures	5	15	* Disable unused USB prots (E.g. GPO, Registry, SEP, etc) * Relocate OS computers to the server room and KVM to Control Room * Segment the Tag & Batch servers and the EWS from the PCN and Control Lan (e.g. Elimiate all Dual Homed Computers) * Install and maintain Antivirus * Stricter enforcement of policies * Upgrade OS and application software to supported version	2	6	
		Inserts USB into Operator Station with targeted malware	* OS Computers are in the Control Room * USB Ports are not blocked or disabled * Autorun not disabled * No Antivirus	* Loss of control with potential compromise of the safety of the process * Runaway reaction leading to explosion	5 !	5 5	5	5	2	10	1	* Policies and Procedures	2	10	* Disable unused USB prots (E.g. GPO, Registry, SEP, etc) * Relocate OS computers to the server room and KVM to Control Room * Segment the Tag & Batch servers and the EWS from the PCN and Control Lan (e.g. Elimiate all Dual Homed Computers) * Install and maintain Antivirus * Stricter enforcement of policies * Upgrade OS and application software to supported version	1	5	
	Authorised Personnel	Plugs laptop infected with general malware into the Control LAN	* Unused ports on the Control LAN switch are enabled * No Policy governing use of Laptops * No antivirus on Tag and Batch servers * Lack of segmentation allows for propergation	* Denial of service on operator station that spreads to all OS on PCN * All OS and Servers need to be rebuilt * 24-72 hours downtime * Rework batch * Supply chain impact	1 :	1 2	3	3	4	12	2	* Laptops are running a supported OS, are patched and running Anti-Virus	4	12	* Develop policies to prohibit use of laptops on Control LAN * Block unused porst on Control LAN Switch * Segment the Tag & Batch servers and EWS from the PCN and Control LAN (e.g. eliminate all dual-homed computers) * Install and Maintain Antivirus	1	3	
Process Control Zone		Plugs laptop infected with targeted malware into the Control LAN	* Unused ports on the Control LAN switch are enabled * No Policy governing use of Laptops * No antivirus on Tag and Batch servers * Lack of segmentation allows for propergation	* Loss of control with potential compromise of the safety of the process * Runaway reaction leading to explosion	5 !	5 5	5	5	2	10	1		2	10	* Develop policies to prohibit use of laptops on Control LAN * Block unused porst on Control LAN Switch * Segment the Tag & Batch servers and EWS from the PCN and Control LAN (e.g. eliminate all dual-homed computers) * Install and Maintain Antivirus	1	5	
		Engineer remotes into the EWS from the Plant Business Zone using VNC and makes changes without knowledge of current process conditions	* By defualt VNC credentials are in 'clear text' * VNC file transfer capabilities * EWS is dua- homed	* Possible process upset or modification leading to loss of batch	1 :	1 2	1	2	4	8	1		4	8	* Develop and enforce MoC Process * Eliminate VNC	1	2	
		Unauthorised person uses the VNC credentials to gain access to the EWS	* No lock-out on VNC	* Loss of control with potential compromise of the safety of the process * Runaway reaction leading to explosion	5 !	5 5	5	5	3	15	2		3	15	* Develop and enforce MoC Process * Eliminate VNC	1	5	

Part 3-2 - risk (cont.)

- The Cyber Security Requirements Specification (CSRS) documents:
 - ZCR 6.2: System under Consideration (SuC) Description
 - ZCR 6.3: Zone and Conduit drawings
 - ZCR 6.4: Zone and Conduit Characteristics
 - ZCR 6.5: Operating environment assumptions
 - ZCR 6.6: Threat Environment
 - ZCR 6.7: Organisational security policies
 - ZCR 6.8: Tolerable Risk
 - ZCR 6.9: Regulatory Requirements

ISA/IEC 62443 Part 3-3

Part 3-3 - Controls

- Defines 100 Security Requirements (SR) which include Requirement Enhancements (RE)
- Grouped by 7 Foundational Requirements (FRs)
 - 1. IAC Identification and Authentication Control
 - 2. UC Use Control
 - 3. SI System Integrity
 - 4. DC Data Confidentiality
 - 5. RDF Restricted Data Flow
 - 6. TRE Timely Response to Events
 - 7. RA Resource Availability

Part 3-3 - Controls (cont.)

The 100 Requirements are assigned to Security Levels 1 to 4:

- SL 1 Prevent the unauthorized disclosure of information via eavesdropping or casual exposure.
- SL 2 Prevent the unauthorized disclosure of information to an entity actively searching for it using simple means with low resources, generic skills and low motivation.
- SL 3 Prevent the unauthorized disclosure of information to an entity actively searching for it using sophisticated means with moderate resources, IACS specific skills and moderate motivation.
- SL 4 Prevent the unauthorized disclosure of information to an entity actively searching for it using sophisticated means with extended resources, IACS specific skills and high motivation.

Security level -

level corresponding to the required effectiveness of countermeasures and inherent security properties of devices and systems for a zone or conduit based on assessment of risk for the zone or conduit.

From Part 1-1

Part 3-3 - Controls (cont.)

SRs and REs
FR 5 – Restricted data flow (RD
SR 5.1 – Network segmentation
RE (1) Physical network seg
RE (2) Independence from n networks
RE (3) Logical and physical inetworks
SR 5.2 – Zone boundary protection
RE (1) Deny by default, allov
RE (2) Island mode
RE (3) Fail close

9.3 SR 5.1 - Network segmentation

9.3.1 Requirement

The control system shall provide the capability to logically segment control system networks from non-control system networks and to logically segment critical control system networks from other control system networks.

SL₂

9.3.2 Rationale and supplemental guidance

SL 1

Network segmentation is used by organizations for a variety of purposes, including cyber security. The main reasons for segmenting networks are to reduce the exposure, or ingress, of network traffic into a control system and reduce the spread, or egress, of network traffic from a control system. This improves overall system response and reliability as well as provides a measure of cyber security protection. It also allows different network segments within the control system, including critical control systems and safety-related systems, to be segmented from other systems for an additional level of protection.

Access from the control system to the World Wide Web should be clearly justified based on

control system operational require

Network segmentation and the ler overall network architecture used within their control systems. Logic some measure of protection, but compromised. Physically segment that single-point-of-failure case, These trade-offs will need to ISA-62443-2-1 (99.02.01)).

In response to an incident, it manetwork segments. In that event,

9.3.3 Requirement enhancements

SL 3

SL 4

(1) Physical network segmentation

The control system shall provide the capability to physically segment control system networks from non-control system networks and to physically segment critical control system networks from non-critical control system networks.

(2) Independence from non-control system networks

The control system shall have the capability to provide network services to control system networks, critical or otherwise, without a connection to non-control system networks.

(3) Logical and physical isolation of critical networks

The control system shall provide the capability to logically and physically isolate critical control system networks from non-critical control system networks.

ISA/IEC 62443 Part 4-1

Part 4-1 - Secure Product Development Lifecycle Requirements

- Primary goal of the framework to produce a secure-by- design, defense-in-depth approach to designing, building, maintaining and retiring products in use in Industrial Automation and Control Systems
- Defines requirements per Practice:
 - Practice 1 Security Management
 - Practice 2 Specification of Security Requirements
 - Practice 3 Secure by Design
 - Practice 4 Secure Implementation
 - Practice 5 Security Verification and Validation testing activities
 - Practice 6 Management of security-related issues
 - Practice 7 Security Update Management
 - Practice 8 Security Guidance

ISA/IEC 62443 Part 4-2

Part 4-2 - Technical Security requirements for IACS components

- Provides Component Requirements (CRs) to meet Security Level Capabilities for Foundational Requirements from Part 3-3 along with Rationale and Guidance
- Defines four component types:
 - Software Application
 - Embedded Device
 - Host Device
 - Network Device
- Defines representative Device Categories in Appendix A

Questions?

Alignment and integration with SABSA

Layer by Layer

Alignment at a high level

SABSA Matrix - Contextual & Conceptual Layer

	ASSETS (What)	MOTIVATION (Why)	PROCESS (How)	PEOPLE (Who)	LOCATION (Where)	TIME (When)
CONTEXTUAL ARCHITECURE	Business Decisions	Business Risk	Business Processes	Business Governance	Business Geography	Business Time Dependence
	Taxonomy of Business Assets, including Goals & Objectives	Opportunities & Threats Inventory	Inventory of Operational Processes	Organisational Structure & the Extended Enterprise	Inventory of Buildings, Sites, Territories, Jurisdictions, etc.	Time dependencies of business objectives
		Part 3-2: Initial Risk Assessment		Part 3-2: Initial Risk Assessment (ZCR - 1)	Part 3-2: System Under Consideration (SuC)	
	Business Knowledge & Risk Strategy	Risk Management Objectives	Strategies for Process Assurance	Roles & Responsibilities	Domain Framework	Time Management Framework
CONCEPTUAL ARCHITECTURE	Business Attributes Profile	Enablement & Control Objectives; Policy Architecture	Process Mapping Framework; Architectural Strategies for ICT	Owners, Custodians and Users; Service Providers & Customers	Security Domain Concepts & Framework	Through-Life Risk Management Framework
		Part 3-2: Initial Risk Assessment			Part 3-2: System Under Consideration (SuC) & Part 1-1: Zones & Conduits	

SABSA Matrix - Logical

	Information Assets	Risk Management Policies	Process Maps & Services	Entity & Trust Framework	Domain Maps	Calendar & Timetable
LOGICAL ARCHITECTURE	Inventory of Information Assets	Domain Policies	Information Flows; Functional Transformations; Service Oriented Architecture	Entity Schema; Trust Models; Privilege Profiles	Domain Definitions; Inter-domain associations & interactions	Start Times, Lifetimes & Deadlines
		Part 2-1 : Security Policies & Procedures	Part 3-2: ZCR Partition the SuC into Zones & Conduits	Part 3-2: ZCR Partition the SuC into Zones & Conduits	Part 3-2: ZCR Partition the SuC into Zones & Conduits	

SABSA Matrix - Physical and Component

	Data Assets	Risk Management Practices	Process Mechanisms	Human Interface	ICT Infrastructure	Processing Schedule
PHYSICAL ARCHITECTURE	Data Dictionary & Data Inventory	Risk Management Rules & Procedures	Applications; Middleware; Systems; Security Mechanisms	User Interface to ICT Systems; Access Control Systems	Host Platforms, Layout & Networks	Timing & Sequencing of Processes and Sessions
		Part 2-1: Risk Identification, classification and assessment & Part 3-2: all	Part 3-3 & Part 4-2	Part 3-3 &	Part 3-3 FR SI, RDF, TRE and RA & Relevant Part 4-2 Sections	
	ICT Components	Risk Management Tools & Standards	Process Tools & Standards	Personnel Management Tools & Standards	Locator Tools & Standards	Step Timing & Sequencing Tools
COMPONENT ARCHITECTURE	ICT Components ICT Products, including Data Repositories and Processors	Risk Management Tools	Standards	_		

SABSA Matrix - Service Management

	Service Delivery Management	Operational Risk Management	Process Delivery Management	Personnel Management	Management of Environment	Time & Performance Management
SERVICE MANAGEMENT ARCHITECTURE	Assurance of Operational Continuity & Excellence	Risk Assessment;	Management & Support of Systems, Applications & Services	Account Provisioning; User Support Management	Management of Buildings, Sites, Platforms & Networks	Management of Calendar and Timetable
ARCHITECTORE		Part 2-1: Risk Identification, Classification and Assessment		Part 2-1: Access control: [Account Administration, Authentication, Authorisation]	Part 2-1: Physical and environmental security	Part 2-1: Conformance

SABSA Service Life Cycle Matrix - Contextual and Conceptual

	Business Driver Development	Business Risk Assessment	Service Management	Relationship Management	Point-of-Supply Management	Performance Management
CONTEXTUAL ARCHITECURE	Business Benchmarking & Identification of Business Drivers	Analysis of Internal & External Risk Factors	Managing Service Capabilities for Providing Value to Customers	Managing Service Providers & Service Customers; Contract Man'ment	Demand Man'ment; Service Supply, Deployment & Consumption	Defining Business-Driven Performance Targets
	Part 2-1: Business Rationale	Part 2-1: Risk Identification, Classification and Assessment		Part 2-4: Security Program Requriements for IACS Service Providers		Part 2-1: CSMS Scope; Business Rationale
	Proxy Asset Development	Developing ORM Objectives	Service Delivery Planning	Service Management Roles	Service Portfolio	Service Level Definition
CONCEPTUAL ARCHITECTURE	Defining Business Attributes Profile with Performance Criteria, KPIs & KRIs	Risk Analysis on Business Attributes Proxy Assets	SLA Planning; BCP; Financial Planning & ROI; Transition Planning	Defining Roles, Responsibilities, Liabilities & Cultural Values	Planning & Maintaining the Service Catalogue	Managing Service Performance Criteria and Targets
	Part 2-1: Risk Identification, Classification and Assessment	Part 2-1: Risk Identification, Classification and Assessment		Part 2-1: Organising for security		

SABSA Service Life Cycle Matrix - Logical

	Asset Management	Policy Management	Service Delivery Management	Service Customer Support	Service Catalogue Management	Evaluation Management
LOGICAL ARCHITECTURE	Knowledge Management; Release & Deployment Management; Test & Validation Management	Policy Development:	SLA Management; Supplier Management; BCM; Cost Management; Transition Management	Access Management; User Privileges, Account Administration & Provisioning	Configuration Management; Capacity Planning; Availability Management	Monitoring & Reporting Performance against KPIs and KRIs
	Part 2-1: System development and maintenance	Part 2-1: Security policies and procedures	Part 2-1: Business Continuity Plan	Part 2-1: Access control: [Account Administration, Authentication, Authorisation]	Part 2-1: System development and maintenance	Part 2-1: Conformance

SABSA Service Life Cycle Matrix - Physical and Component

	Asset Security & Protection	Operational Risk Data Collection	Operations Management	User Support	Service Resources Protection	Service Performance Data Collection
PHYSICAL ARCHITECTURE Part 2-1	Change Management; Software & Data Integrity Protection	Operational Risk Management Architecture	Job Scheduling; Incident & Event Management; Disaster Recovery	Service Desk; Problem Man'ment; Request Man'ment	Physical & Environmental Security Management	Systems and Service Monitoring Architecture
	Part 2-1: Physical and environmental security	Part 2-1: Risk management and implementation		Part 2-1: Access control: [Account Administration, Authentication, Authorisation]	Part 2-1: Physical and environmental security	
	Tool Protection	ORM Tools	Tool Deployment	Personnel Deployment	Security Management Tools	Service Monitoring Tools
COMPONENT ARCHITECTURE	Product & Tool Security & Integrity; Product & Tool Maintenance	ORM Analysis, Monitoring and Reporting Tools & Display Systems	Product & Tool Selection and Procurement; Project Management	Recruitment Process Disciplinary Process Training & Awareness Tools	Products & Tools for Managing Physical & Logical Security of Installations	Service Analysis, Monitoring and Reporting Tools & Display Systems
		Part 2-1: Risk management and implementation		Part 2-1: Staff training and security awareness; Part 2-1:Personnel security		

Alignment of FRs and Sample Security Services

62443 FR	Sample Security Services
Identification and Authentication Control	Entity Authentication, User Authentication
Use Control	Entity authorisation, Logical Access Control
System Integrity	Software Integrity Protection
Data Confidentiality	Traffic Flow Confidentiality
Restricted Data Flow	???
Timely Response to Events	Security monitoring Security alarm management Incident Response*
Resource Availability	???

A Practical Application

For an OT Scenario

A quick primer on Electricity Systems

An Overview of State Power Corporation

- State Power Corporation (SPC) owns, operates and maintains the electricity generation, transmission and distribution assets for the state
- The corporation is about to celebrate its 100th year anniversary and the current organisation is the amalgamation of multiple smaller government entities through it's life
- A change in government policy and economic conditions means SPC is investigating selling its existing fossil fuel assets to fund a 100% renewable assets electricity generation portfolio
- There has been a recent cyber security incident in it's electricity generation portfolio and the organisation is looking to conduct a root cause analysis to prevent a similar incident in it's other assets
- SPC has an inflight Digital Transformation program that is delivering change in both the IT and OT environments
- We have been engaged by the SPC Group CISO to articulate the Enterprise Conceptual Security Architecture and to inform their 5 year Security Management program

An Overview of State Power Corporation (cont.)

Energy Market Strategy and Research and Development

Energy System Planning and Asset Strategy

Engineering Design and Procurement

Electricity Generation Operations

Electricity Network Operations

Enterprise Group Support Services

Domain Model Derivation

Government

Public

Suppliers & Vendors

Sample Attribute Taxonomy

New Attributes for this example

Management Attributes

Safety – Does the security solution impact the safe operation of the system

Business Capex Funded – Given the regulated environment of utilities, Capital Expenditure (CapEx) solutions are preferred to Operational Expense Funded (OpEx) for the regulated network parts of the business

Technical

On Premise Hosted – For reliability and survivability reasons, solutions that are hosted on premise are preferred for OT

Cloud Native – For the Support Services group, the business strategy prefers and embraces cloud native solutions

Trust Decomposition for the an identity service

- Conflicting priorities of domain authorities!
- Conflict of attributes (OnPrem vs Cloud, Cost vs Availability, Fail-Open vs Fail-Close)
- Ongoing support and management of system
- What about cloud hosted identity infrastructure?
- ... All good sensible and traceable reasons for OT Hosted Identity Infrastructure

Operations (COO)

OT Systems

Questions?

Tips & References for working with your OT Stakeholders

Tips for working with OT

- 1. Take time to learn the physical process, visit the sites and genuinely learn the environment
- 2. SANS have awesome ICS posters including an ICS Site Visit Plan
- 3. Establish joint cyber security forums for IT and OT
- 4. Understand the context for why decisions have been made they usually have been made for a real reason and understanding the context goes a long way!
- 5. Help them with the IT Systems Security and Security Automation tasks

Useful References

- SANS Five ICS Cybersecurity Critical Controls
- ACSC Protecting Industrial Control Systems
- NCSC OT Security Design Principles
- SANS ICS Youtube Channel
- Improving ICS Security Defense in Depth & ICS-CERT recommended Practices
- S4 OnRamp and S4 Highway Sessions
- Dragos Year in Review
- ICS CERT VLP
- Knapp and Langill Industrial Network Security 2nd Ed

Useful IEC/ISA 62443 References

- Read the Quick Start Guide
- Read the other <u>ISAGCA ISA/IEC 62443 Resources</u>
- Join the ISA and View the Standards as a Member Benefit and join a branch
- Take the ISA/IEC 62443 Training Courses
- Exida Implementing 62443 A pragmatic Approach to Cybersecurity

Summary & Homework

What to do when you get back to work

Homework

1 Week

- Read the SANS 5 ICS Critical Security Controls
- Read the ISAGCA
 Quick Start Guide for 62443
- Watch the S4 Onramp and Highway videos

1 Month

- Establish IT and OT Security Forums
- Share the ICS-CERT Materials with your site team
- Organise a site visit and "walk the process"
- Do some OSINT and have an onsite Cyber Security workshop
- Start defining your OT Domain Models

6 Months

- Work with OT to build a training plan
- Work with OT to build a CSMS
- Start extending and integrating your ESA to OT (Security Patterns!)

Thank You, Questions?

https://linkedin.com/in/blargeau

https://github.com/beLarge

@beLarge