

컴 퓨 터 특 강 중 간 발 표

Computer Architecture

숙명여자대학교 전자공학과 1810818 김상은

#Q1. Explain why you have to learn the topic every week?

#Q2. Explain what's the most important thing in each topic and why it is the most important.

- 1) Introduction to Memory
- 2) Basis and Theory for Digital Circuits
- 3) Introduction to CPU
- 4) Physical Implementation

#Q1. Explain why you have to learn the topic every week?

컴퓨터 구조를 안 이후

어? 프로그램이 안 돌아가네,,, 디버깅 해봐야겠군 0xbfffe1fc 이건 뭐지?

16진수로 표현된 메모리 주소구나!

CLK

1. CLK으로 인해 더 정교한 동기화를 할 수 있게 되었고, 이는 인간이 복잡한 회로를 제어하기 쉽게 만들어주었다.

Flip-Flop

Q

Latch

□ Latch

- Level Sensitive

□ Flip-Flop

- Edge Sensitive

CLK

2. CLK은 디지털회로가 안정적으로 동작할 수 있게 도와주는 기준이 되고 기술의 성능을 분석하는 역할도 가능하다.

Operating frequency =
$$\frac{1}{Critical\ path}$$

Analysis Type	Cycle Counts	Critical Path Delay /Operating Frequency	Execution Time (Cycle Count x Critical Path Delay)	Speed-Up (SW Ex' Time / HW EX' Time)
Software	3915	10 ns / 100 MHz	3915 x 10 ns = 39150 ns	-
Hardware	111	12 ns / 83 MHz	111 x 12 ns = 1332 ns	29.4 X Faster (= 39150 ns / 1332 ns)

1) Introduction to Memory

2) Basis and Theory for Digital Circuits

· Boolean Algebra

- Boolean Identities

x + 0 = x x · 1 = x	Identity Law	x + (y + z) = (x + y) + z x(yz) = (xy)z	Associative Law
x + 1 = 1 x · 0 = 0	Domination law	x(y + z) = xy + xz x + yz = (x + y)(x + z)	Distributive Law
X + X = X	Idempotent Law	(x y)' = x' + y' (x + y)' = x' y'	De Morgan's Law
(x')' = x	Complementation Law	x + xy = x $x (x + y) = x$	Absorption Law
x + y = y + x $xy = yx$	Commutative Law	x + x' = 1 x x' = 0	Complement Law

Claude Shannon

3) Introduction to CPU

*메모리 관점에서 단순화 시킨 GPP

Data Path

* Data Path 관점에서 본 동작

3) Introduction to CPU

4) Physical Implementation

4) Physical Implementation

Such memory in FPGA known as Lookup Table (LUT)

감사합니다.