

ETHEREUM & SMART CONTRACTS:

Enabling a Decentralized Future.

JANICE NG SANEEL SREENI

Meet Your Lecturers

Janice Ng
Head of Education

Saneel Sreeni Software Developer

Table of Contents

O1 Smart Contracts
O2 Ethereum
O3 EVM
O4 Use Cases

Smart Contracts

Bitcoin Review

Before we start..a question:

What makes Bitcoin so special?

A Distributed Network: Bitcoin's Bare Bones

A Distributed Network

Transferrable Benefits of Bitcoin

- Pseudonymous, cryptographic identities allow for accountability
- Democratic decisions made through consensus protocol that doesn't require trust
- Immutable ledger of truth
- Uncensorable, cannot be controlled by any one party
- Distributed: no central point of failure

Traditional Contracts

con-tract

(noun) / käntrakt/

1. a written or spoken agreement ... that is intended to be enforceable by law.

Smart Contracts

smart con·tract

(noun) /smärt 'käntrakt/

- 1. code that **facilitates**, **verifies**, or **enforces** the negotiation or execution of a digital contract.
 - a. Trusted entity must run this code

Ethereum

What is Ethereum?

Ethereum is a **decentralized** platform designed to run **smart contracts**

- Distributed computer to execute code
- Account-based blockchain
- Transactions == state transaction function

Ethereum has a native asset called ether

Basis of value in the Ethereum ecosystem

Ethereum

What is Ethereum?

Misc. Implementation Details

- Block creation time: ~13 sec (Ethereum) vs ~10 min (Bitcoin)
- Exchange Rate: \$367.75 (2020-10-16)

Ethereum vs Bitcoin...What is the difference? **WHO WOULD WIN?**

Bitcoin

- First successful cryptocurrency
- Trustless
- Immutable
- Uncensorable
- Pseudonymous
- No central point of failure
- One-CPU-One-Vote

Ethereum

7

Ethereum vs Bitcoin...What is the difference? Bitcoin Ethereum

- The "Gold Standard" of blockchains
- Asset: Bitcoins
 - Primary purpose of the Bitcoin blockchain
- Simple and robust
- Stack-based, primitive scripting language, not Turing-complete
- UTXO-based

- Smart Contract Blockchain Platform
- Asset: Ether
 - 1. Fund computation
- 2. Align incentives
- Complex and feature-rich
- Turing-complete scripting language
- Account-based

Ethereum Accounts

Ethereum: Bitcoin: Alice owns private keys to Bob owns private keys to Easy to make an account set of UTXOs transactions and Space-efficient to prevent double update balances spending instead of storing 5 BTC ⇒ Bob address: "0xfa38b..." **UTXOs** balance: 10 ETH 3 BTC ⇒ Bob code: c := a + bEasier to look up balance and 2 BTC ⇒ Bob transfer between accounts when programming

Ethereum Account Types

Externally Owned Accounts

- Owned by some external entity (person, corporation, etc.)
- Can send transactions to transfer ether or trigger contract code
- Contains:
 - Address
 - Ether Balance

Contract Accounts

- "Owned" by contract
- Code execution triggered by transactions or function calls (msg)
- Contains:
 - Address
 - Associated contract code
 - Persistent storage

Ethereum Smart Contracts: Control

Smart Contracts in Ethereum are like autonomous agents that live inside of the Ethereum network

- React to external world when "poked" by transactions (which call specific functions)
- Have direct control over:
 - internal ether balance
 - internal contract state

Ethereum Smart Contracts Purposes

Ethereum Contracts generally serve four purposes:

- Store and maintain data
 - Data represents something useful to users or other contracts
 - Ex: a token currency or organization's membership
- Manage contract or relationship between untrusting users
 - Ex: financial contracts, insurance
- Provide functions to other contracts
 - Serving as a software library
- Complex Authentication

Recipe for Mining: Ethereum

A full-fledged Ethereum miner must:

- 0. **Download** the entire Ethereum blockchain
- Verify incoming transactions and Run Smart Contract code invoked by transactions
- 2. **Create** a block
- 3. **Find** a valid nonce
- 4. **Broadcast** your block
- 5. **Profit!**

Image source: http://www.coindesk.com/information/how-to-set-up-a-miner.

Ethereum

The Distributed Computer

• Ethereum is a "distributed computer"

Ethereum's distributed consensus protocol is Proof-of-Work

Network consensus removes the need for Trusted Third Party

Secure Peer-to-Peer agreements that live on the blockchain forever

WHAT IS ETHEREUM?

COMPARISON WITH BITCOIN

Misc. Implementation Details

- o Block creation time: ™13 sec (Eurercann, 12 o Proof-of-Work: Ethash (currently ASIC resistant) vs SHA-256

Ethereum Smart Contracts Purposes

```
contract Betting {
     address public owner;
     address public gamblerA, gamblerB, oracle;
     uint[] outcomes;
     struct Bet {
                                         /* Defines a Bet */
        uint outcome;
        uint amount;
        bool initialized;
    mapping (address => Bet) bets; /* Keep track of every gambler's bet */
     mapping (address => uint) winnings; /* Keep track of every player's winnings */
     . . .
     function makeBet(uint _outcome) payable returns (bool) { ... }
     function makeDecision(uint _outcome) oracleOnly() { ... }
     function withdraw(uint withdrawAmount) returns (uint remainingBal) { ... }
```

Ethereum Virtual Machine

EVM: Compilation & Process

EVM: High Level Overview

- The EVM (Ethereum Virtual Machine) is a "mini computer" on your computer that runs contract code
- Contract code that actually gets executed on every node is EVM code
 - EVM code: low-level, stack based bytecode language (i.e. JVM bytecode)
- Every Ethereum node runs EVM

Ethereum Virtual Machine (EVM)

Question...

What if our contract has an infinite loop?

What if our contract has an infinite loop?

- Every node on the network will get stuck executing the loop forever!
- By the halting problem, it is impossible to determine ahead of time whether the contract will ever terminate
 - Lead to: Denial of Service (DoS) Attack

...is there a solution?

EVM: Gas & Fees

Ethereum's solution:

- Every contract requires "gas", which "fuels" contract execution
- Every EVM operation-code requires some gas in order to execute
- Every transaction specifies:
 - o startgas: Max quantity of gas it is willing to consume
 - gasprice: Fee in ether it is willing to pay per unit gas

EVM: Gas & Fees

- At the start of the transaction
 - startgas * gasprice (units = ether) are subtracted from the sender's account (the one "poking" the contract)
- If the contract successfully executes...
 - the remaining gas is refunded to the sender
- If the contract execution runs out of gas before it finishes...
 - execution reverts
 - startgas * gasprice are not refunded
- Purchasing gas == purchasing distributed, trustless computational power
- An attacker looking to launch a DoS attack will need to supply enough ether to fund the attack

Ethereum Network State: State Transition Function

(block_state, gas, memory, transaction, message, code, stack, pc)

Ethereum Virtual Machine (EVM)

Ethereum: Conclusions

- Ethereum is not about optimising efficiency of computation
- Its parallel processing is redundantly parallel
 - way to reach consensus on the system state without needing trusted third parties
- Contract executions are redundantly replicated across nodes
 - ⇒ expensive, slow, memory-intensive
 - creates an **incentive not to use the blockchain** for computation that can be done off chain

Ethereum Virtual Machine (EVM)

Ethereum: Conclusions

Use Blockchain:

- Need for a shared database with multiple writers
- Parties cannot trust one another, and no trusted third party or authority is available
- Interested in fault-tolerance, data immutability or censorship resistance

Use Centralised Database:

- Database does not need to be shared, or is shared by parties who trust one another
- Must keep data confidential
- Must handle complex and/or large amounts of data
- Need to be able to edit data
- Interested in cost-effectiveness, speed or efficiency

Use Cases

Basic Use Cases

Ethereum Tokens (ERC Tokens)

- Token System Implementation
 - Recreating Bitcoin in 4 lines of code
- Database with one operation
 - Ensure Alice has enough \$\$ and that she initiated the transaction
 - Subtract X from Alice, give X to Bob

```
def send(to, value):
    if self.storage[msg.sender] >= value:
        self.storage[msg.sender] = self.storage[msg.sender] - value
        self.storage[to] = self.storage[to] + value
```


Domain Naming System (DNS)

- DNS System
 - Maps domain name to IP address
 - "gillian.chu" → "12.34.56.78"
- Easy to implement in Ethereum

```
def register(name, value):
    if !self.storage[name]:
       self.storage[name] = value
```


Decentralized Finance (DeFi)

Problem:

- Most of traditional finance is closed to regular users
- Most derivatives or other assets built on top of cryptocurrencies are in centralized platforms

Pitfalls:

- Financial institutions can manipulate markets
- Retail users are priced out
- People distrustful of big banks

Decentralized Finance (DeFi)

The Ethereum Solution:

- Build out dApps (decentralized applications) using smart contracts to handle logic
- Use game theory and economics to find ways to cut on trust
- Rely on Ethereum blockchain to verify transactions

Decentralized Finance (DeFi)

Drawbacks:

- Capital inefficient
- Risk from composability, smart contracts, etc.
- Frontrunning in the mempool and adversarial miner behavior

Can you think of anything else?

Prediction Markets

Draws on the wisdom of the crowd

Ex: Who will win the 2020 Presidential Election? Trump or Biden?

- Bets are replaced with shares of outcomes
- 2. Oracles report the outcome

Prediction Markets

"A service that never crashes, a service that's completely transparent..."

Benefits:

- No restrictions on market types
- Shared liquidity
- Censorship-resistant
- Automated and trustless

Prediction Markets

Example Use Cases and Markets

- "Buying" information → Will Movie X flop?
- Hedging and Insurance → Will my house burn down?
- Security Bug Bounty → Is there a bug in my smart contract?

Prediction Markets

Also...

"I bet \$1 million that Bob will be alive on October 4." → **Assassination Market**

