Sewing and Factorization of Smooth and Nodal Conformal Blocks in Logarithmic CFT

Hao Zhang Tsinghua University

Algebraic, Topological and Probabilistic approaches in CFT
Orsay, France
October 2025

4 D F 4 D F 4 D F 4 D F 4 D F 4 D F

The goal of my talk

This talk is based on the following papers.

```
GZ1 arXiv:2305.10180
GZ2 arXiv:2411.07707 to appear in CCM
★ GZ3 arXiv:2503.23995
★ Zhang 25 arXiv:2509.07720
```

- The goal is to introduce sewing-factorization (SF) theorem in logarithmic CFT (GZ1-GZ3) and the non-equivalence of smooth and nodal conformal block functors (Zhang 25).
- Throughout my talk, I will fix a C_2 -cofinite \mathbb{N} -graded VOA \mathbb{V} , which is not necessarily self dual or rational. The representation category of \mathbb{V} is denoted by $\operatorname{Mod}(\mathbb{V})$.

Hao Zhang October 2025 2 / 17

Smooth conformal block functors

• Let $\mathfrak{X} = (C; x_1, \cdots, x_N; \eta_1, \cdots, \eta_N)$ be an N-pointed compact Riemann surface with local coordinates. The **smooth conformal** block (CB) functor is the left exact contravariant functor

$$CB(\mathfrak{X}, -) : \operatorname{Mod}(\mathbb{V}^{\otimes N}) \to \mathcal{V}ect$$

 $\mathbb{W} \mapsto CB(\mathfrak{X}, \mathbb{W}),$

where $CB(\mathfrak{X}, \mathbb{W})$ is the space of smooth conformal blocks (CB) described as follows.

• Associate $\mathbb{W} \in \operatorname{Mod}(\mathbb{V}^{\otimes N})$ to the ordered marked points x_1, \dots, x_N . Then $CB(\mathfrak{X}, \mathbb{W})$ consists of linear functionals $\mathbb{W} \to \mathbb{C}$ invariant under certain intertwining properties.

Hao Zhang October 2025 3 / 17

Graphical calculus

• The picture for $CB(\mathfrak{X}, \mathbb{W})$ is

$$CB(\bigcirc) = CB(\bigcirc)$$

The marked points is typically partitioned into several subsets.

$$CB(\times \mathcal{T}) = CB(\times \mathcal{T}')$$

Any CB $\phi: \mathbb{X} \otimes \mathbb{Y}' \to \mathbb{C}$ in the above space can also be viewed as a linear map $\phi^{\sharp}: \mathbb{X} \to \overline{\mathbb{Y}} = (\mathbb{Y}')^*$ satisfying certain intertwining properties.

Towards higher genus: sewing/composing CB

Let $\mathbb{X}\in\mathrm{Mod}(\mathbb{V}^{\otimes N}), \mathbb{Y}\in\mathrm{Mod}(\mathbb{V}^{\otimes K}), \mathbb{M}\in\mathrm{Mod}(\mathbb{V}^{\otimes L})$ and

$$\varphi \in CB(\text{ }\forall\text{ }CB(\text{ }\forall\text{ }CB(\text{ }\forall\text{ }CB(\text{ })\text{ })\text{ })),$$

The **sewing/composition** of ϕ and ψ is defined as

$$(\psi \circ \varphi)^{\sharp}(w) := \sum_{\lambda_{\bullet} \in \mathbb{C}^K} \psi^{\sharp} (P_{\lambda_{\bullet}}(\varphi^{\sharp}(w)))$$

Theorem (GZ2, to appear in CCM)

$$\psi \circ \varphi$$
 converges to a CB in $CB(\times \mathbb{R}^m)$.

Hao Zhang October 2025

SF theorem A: horizontal composition

Fix $\mathbb{X} \in \operatorname{Mod}(\mathbb{V}^{\otimes N})$, $\mathbb{M} \in \operatorname{Mod}(\mathbb{V}^{\otimes L})$. For each $\mathbb{Y} \in \operatorname{Mod}(\mathbb{V}^{\otimes K})$, sewing CB gives a linear map

$$\mathcal{S}_{\mathbb{Y}}: CB(\mathbf{x}) \otimes CB(\mathbf{y}) \rightarrow CB(\mathbf{x}) \rightarrow CB(\mathbf{x})$$

Theorem (GZ3, SF theorem A)

As $\mathbb{Y} \in \mathrm{Mod}(\mathbb{V}^{\otimes K})$ varies, the dinatural transform $\mathcal{S}_{\mathbb{Y}}$ is a coend, i.e.,

$$\int^{\mathbb{Y}\in \operatorname{Mod}(\mathbb{V}^{\otimes K})} CB(\mathbf{x}) \otimes CB(\mathbf{y}) \otimes CB(\mathbf{y}) \otimes CB(\mathbf{y}) \otimes CB(\mathbf{y})$$

Genus 0: Huang-Lepowsky-Zhang, Moriwaki.

Hao Zhang October 2025

Fusion products and canonical CB

Fix $\mathbb{X} \in \operatorname{Mod}(\mathbb{V}^{\otimes N})$ and $\mathfrak{X} = \emptyset$. Associate \mathbb{X} to the blue points of \mathfrak{X} .

• Since every left exact linear functor from a finite \mathbb{C} -linear category to $\mathcal{V}ect$ is representable (Douglas-SchommerPries-Snyder 19),there exists a \mathbb{Y} -natural isomorphism

$$\operatorname{Hom}_{\mathbb{V}\otimes K}(\boxtimes_{\mathfrak{X}}(\mathbb{X}),\mathbb{Y})\simeq CB(\mathsf{X})$$

for some unique $\boxtimes_{\mathfrak{X}}(\mathbb{X}) \in \mathrm{Mod}(\mathbb{V}^{\otimes K})$ (called **fusion product**).

• The CB $\mathfrak{I}_{\mathfrak{X}} \in CB(X)$ corresponding to $\mathrm{id} \in \mathrm{End}_{\mathbb{V} \otimes K}(\mathbb{X})$ is called the **canonical CB**.

To summarize: fusion products represent smooth CB functors.

Hao Zhang October 2025

SF theorem B: fusion products

Recall the canonical CB $\mathfrak{I}_{\mathfrak{X}} \in CB(\mathfrak{A}_{\mathfrak{X}})$.

Theorem (GZ3, SF theorem B)

The linear map $\psi \mapsto \psi \circ \mathbb{J}_{\mathfrak{X}}$ gives an isomorphism

$$CB(\text{ M_X(N)}) \xrightarrow{\simeq} CB(\text{ X}) \xrightarrow{\cong} M)$$

This isomorphism is called the **SF** isomorphism.

In short: replace the red part with the fusion product.

SF theorem A implies B

We have

$$CB(\mathbf{X}) \longrightarrow \mathbf{M}$$

$$\simeq \int_{\mathbb{Y} \in \mathrm{Mod}(\mathbb{Y} \otimes K)} CB(\mathbf{X}) \otimes CB(\mathbf{Y}) \otimes CB(\mathbf{$$

The last isomorphism is due to Lyubashenko 96, Fuchs-Schweigert 17.

Application: self-sewing via the end $\mathbb E$

The end $\mathbb{E}:=\int_{\mathbb{X}\in\mathrm{Mod}(\mathbb{V})}\mathbb{X}\otimes\mathbb{X}'\in\mathrm{Mod}(\mathbb{V}^{\otimes 2})$ is a fusion product of \mathbb{C} :

$$\boxtimes_{\mathbb{Q}^{\mathbb{Q}}} \mathbb{E}$$
. Let $\omega \in CB(\bigcirc_{\mathbb{Q}^{\mathbb{Q}}} \mathbb{E})$ be the canonical CB.

Corollary (GZ3)

The linear map $\psi \mapsto \omega \circ \psi$ gives an SF isomorphism

$$CB(\bigvee E) \xrightarrow{\simeq} CB(\bigvee E)$$

To summarize: factorization of smooth CB is given by the end $\mathbb{E}.$

Remark: When $\mathbb V$ is $\mathbb N$ -graded, C_2 -cofinite and rational, factorization of smooth CB is given by Damiolini-Gibney-Tarasca.

Hao Zhang October 2025 10 / 17

Factorization of CB in rational CFT

We briefy recall how algebraic geometers obtain factorization of smooth CB via nodal CB in rational CFT. We assume that \mathbb{V} is \mathbb{N} -graded, C_2 -cofinite and *rational* in the following two pages.

- Virasoro algebras, higher genus: Beilinson-Feigin-Mazur 91.
- Affine Lie algebras, higher genus: Tsuchiya-Ueno-Yamada 89, Bakalov-Kirillov 01. Looijenga 13.
- General VOA, genus 0: Nagatomo-Tsuchiya 05.
- General VOA, higher genus: Damiolini-Gibney-Tarasca 19.

I will use the setting of Damiolini-Gibney-Tarasca 19 to give an introduction.

Hao Zhang October 2025 11 / 17

Factorization of CB in rational CFT

- The definition of CB can be generalized to nodal curves.
- Factorization of nodal CB is given by irreducible V-modules.

- By infinitesimal smoothing of the above isomorphism, the spaces of conformal blocks form a vector bundle over $\overline{\mathcal{M}}_{q,N}$.
- In particular, we have factorization of smooth CB given by irreducible V-modules.

Hao Zhang October 2025 12 / 17

Factorization of nodal CB in logarithmic CFT

We return to the assumption that $\mathbb V$ is $\mathbb N$ -graded and C_2 -cofinite.

The mode transition algebra (MTA) $\mathfrak A$ was introduced by Damiolini-Gibney-Krashen in 2022. As an object in $\operatorname{Mod}(\mathbb V^{\otimes 2})$, $\mathfrak A$ is defined by the two-sided induction of Zhu algebra.

Theorem (Damiolini-Gibney-Krashen 22)

We have the factorization of nodal CB:

$$CB($$
 \times $A) \simeq CB($ \times $A)$

To summarize: factorization of nodal CB is given by the MTA \mathfrak{A} .

Hao Zhang October 2025 13/17

Genus 0 CB via the end and the MTA

For each $X, Y \in Mod(V)$, the theorem of Damiolini-Gibney-Krashen implies the factorization of genus 0 nodal CB:

$$CB(\ \bigcirc \) \simeq CB(\ \bigcirc \) \simeq \operatorname{Hom}_{\mathbb{V}^{\otimes 2}}(\mathfrak{A}, \mathbb{X}' \otimes \mathbb{Y}')$$

On the other hand, by Fuchs-Schaumann-Schweigert 16, we have the factorization of genus 0 smooth CB:

$$CB(\ \bigcirc) \simeq \operatorname{Hom}_{\mathbb{V}}(\mathbb{Y}, \mathbb{X}') \simeq \operatorname{Hom}_{\mathbb{V}^{\otimes 2}}(\mathbb{E}, \mathbb{X}' \otimes \mathbb{Y}').$$

Hao Zhang October 2025

Non-equivalence of genus 0 smooth and nodal CB

In the rest of this talk, let \mathbb{V} be a C_2 -cofinite \mathbb{N} -graded VOA admitting a module that is not generated by its lowest weight subspace (e.g., the triplet algebra \mathcal{W}_p and the even symplectic fermion VOA).

Theorem (Zhang 25)

There exist $X, Y \in Mod(V)$ such that

$$\dim CB(\ \overline{\bigvee_{\mathbf{x}}}) \neq \dim CB(\ \overline{\bigvee_{\mathbf{x}}})$$

By propagation of CB, the spaces of CB associated to $\mathbb{X}, \mathbb{Y}, \mathbb{V}, \cdots, \mathbb{V}$ do not form a vector bundle on $\overline{\mathcal{M}}_{0,N}$ for $N \geqslant 4$.

Hao Zhang October 2025 15 / 17

The choice of X and Y

- In the proof of the above theorem, we choose $\mathbb X$ to be an indecomposible projective $\mathbb V$ -module that is not generated by its lowest weight subspace, and $\mathbb Y$ to be an indecomposible projective module or irreducible module.
- If \mathbb{V} is the triplet algebra \mathcal{W}_p , then \mathbb{X} can be chosen to be the projective cover of X_1^- , where X_1^- is the unique irreducible module with maximal conformal weight.

Hao Zhang October 2025 16 / 17

The end $\mathbb E$ is not isomorphic to the MTA $\mathfrak A$

Recall that

$$CB(\text{proj}) \simeq \operatorname{Hom}_{\mathbb{V}^{\otimes 2}}(\mathbb{E}, \mathbb{X}' \otimes \mathbb{Y}')$$

$$CB(\text{proj}) \simeq \operatorname{Hom}_{\mathbb{V}^{\otimes 2}}(\mathfrak{A}, \mathbb{X}' \otimes \mathbb{Y}')$$

for each $\mathbb{X}, \mathbb{Y} \in \operatorname{Mod}(\mathbb{V})$. Therefore,

Corollary (Zhang 25)

The end $\mathbb{E} = \int_{\mathbb{M} \in \operatorname{Mod}(\mathbb{V})} \mathbb{M} \otimes \mathbb{M}'$ is not isomorphic to the MTA \mathfrak{A} as an object in $\operatorname{Mod}(\mathbb{V}^{\otimes 2})$.

Hao Zhang October 2025 17/17