

CIRCUITOS DIGITAIS FATORAÇÃO LÓGICA

Marco A. Zanata Alves

UMA ÁLGEBRA DIFERENTE

Variável booleana: pode assumir um dos dois valores booleanos válidos.

Os valores são denotados:

- F e V;
- false e true (ou F e T);
- desligado e ligado;
- nível baixo e nível alto de um sinal;
- 0 e 1, etc.

As **variáveis** são geralmente denotadas por uma letra maiúscula: A, B, C, X, Y, Z, . . .

AULA PASSADA: EXPRESSÕES E FUNÇÕES LÓGICAS

Tabela verdade da conjunção (e)

X	Y	$X \cdot Y$
V	V	V
V	F	F
F	٧	F
F	F	F

Tabela verdade da disjunção (ou)

X	Y	X + Y
V	٧	V
V	F	V
F	٧	V
F	F	F

Tabela verdade da negação (não)

X	\overline{X}
٧	F
F	V

Conjunção (e): resultado verdadeiro apenas se X e Y forem verdadeiros.

Disjunção (ou): resultado verdadeiro apenas se Y ou Y forem verdadeiros.

Negação (não): resultado só será verdadeiro se X não for verdadeiro.

REGRAS BÁSICAS DA ÁLGEBRA BOOLEANA

	NLUNAS	DAJICAJ DA ALULDI	A DUULLANA
	Propriedade	OU	E
P1	Identidade	X + 1 = 1	$X \cdot 0 = 0$
P2	Elemento Neutro	X + 0 = X	$X \cdot 1 = X$
Р3	Idempotência	X + X = X	$X \cdot X = X$
P4	Involução	$\overline{\overline{X}} = X$	$\overline{\overline{X}} = X$

 $X + \overline{X} = 1$

X + Y = Y + X

(X+Y)+Z=X+(Y+Z)

 $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

 $X \cdot (X + Z) = X$

 $(X \cdot Y) + \left(X \cdot \overline{Y}\right) = X$

 $(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z)$

 $\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$

 $= (X \cdot Y) + (\overline{X} \cdot Z)$

 $X \cdot \overline{X} = 0$

 $X \cdot Y = Y \cdot X$

 $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

 $X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$

 $X + (X \cdot Y) = X$

 $(X+Y)\cdot \left(X+\overline{Y}\right)=X$

 $(X+Y)\cdot (\overline{X}+Z)\cdot (Y+Z)$

 $\overline{(X \cdot Y)} = \overline{X} + \overline{Y}$

 $= (X + Y) \cdot (\overline{X} + Z)$

P.5

P6

P7

P8

P9

P10

P11

P12

Complemento

Comutatividade

Associatividade

Distributividade

Cobertura

Consenso

Combinação

De Morgan

OBTENDO UMA EXPRESSÃO ATRAVÉS DA TABELA VERDADE

UM PROBLEMA METEOROLÓGICO

Exemplo 1: O tempo para o dia seguinte na cidade de Booleville é bem regular e fácil de prever.

V – se está ventando

F – se faz frio

U – se está úmido

N – se está nublado

As quatro variáveis são medidas pelo meteorologista e ele atribui um valor 0 (falso) ou 1 (verdadeiro) para cada uma delas.

UM PROBLEMA METEOROLÓGICO

Exemplo 1: O tempo para o dia seguinte na cidade de Booleville é bem regular e fácil de prever.

V – se está ventando

F – se faz frio

U – se está úmido

N – se está nublado

As quatro variáveis são medidas pelo meteorologista e ele atribui um valor 0 (falso) ou 1 (verdadeiro) para cada uma delas.

O meteorologista da cidade criou uma tabela para prever se haverá chuva no dia seguinte (representada pela variável C) a partir de quatro variáveis cujo valor depende das condições meteorológicas do dia anterior.

Previsão do tempo em Booleville: C (chuva amanhã) função lógica de V (vento hoje), F (frio hoje), U (dia úmido hoje) e N (nublado hoje).

V	F	U	N	С
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1

V	F	U	N	С
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Previsão do tempo em Booleville: C (chuva amanhã) função lógica de V (vento hoje), F (frio hoje), U (dia úmido hoje) e N (nublado hoje).

V	F	U	N	С		V	F	U	N	С
0	0	0	0	0						
0	0	0	1		Problema: como	obte	er a	exp	res	são
0	0	1	0		lógica dessa to	abe	la v	erdo	ade	
0	0	1	1			-	J	-	•	
0	1	0	0	0		1	1	0	0	0
0	1	0	1	1		1	1	0	1	0
0	1	1	0	1		1	1	1	0	1
0	1	1	1	1		1	1	1	1	1

FORMAS CANÔNICAS

EXTRAINDO FUNÇÕES DE TABELAS VERDADE

Determine, se possível, uma expressão para a função F dada pela seguinte tabela verdade.

A	B	С	F(A, B, C)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

FORMAS NORMAIS (CANÔNICAS)

Toda expressão booleana pode ser escrita em uma forma padronizada, denominada forma normal ou forma canônica

Duas formas normais são:

Forma Normal Disjuntiva (FND),
 Soma de Produtos ou Soma de Mintermos

Forma Normal Conjuntiva (FNC),
 Produto de Somas ou Produto de Maxtermos

MINTERMOS

Mintermos (ou minitermos)

Variável com valor 1 é deixada intacta

Variável com valor 0 é alterada pela sua negação

Variáveis de uma linha são conectadas por (e lógico)

Vamos utilizar apenas os mintermos que levam a saída = 1

Α	В	С	MINTERMO
0	0	0	$= \overline{A} \cdot \overline{B} \cdot \overline{C}$
0	0	1	$= \overline{A} \cdot \overline{B} \cdot C$
0	1	0	$= \overline{A} \cdot B \cdot \overline{C}$
0	1	1	$= \overline{A} \cdot B \cdot C$
1	0	0	$= A \cdot \overline{B} \cdot \overline{C}$
1	0	1	$= A \cdot \overline{B} \cdot C$
1	1	0	$=A\cdot B\cdot \overline{C}$
1	1	1	$= A \cdot B \cdot C$

MAXTERMOS

Maxtermos (ou maxitermos)

Variável com valor 0 é deixada intacta

Variável com valor 1 é alterada pela sua negação

Variáveis de uma linha são conectadas por (ou lógico)

Vamos utilizar apenas os maxtermos que levam a saída = 0

Α	В	С	MAXTERMO
0	0	0	=A+B+C
0	0	1	$=A+B+\overline{C}$
0	1	0	$=A+\overline{B}+C$
0	1	1	$=A+\overline{B}+\overline{C}$
1	0	0	$=\overline{A}+B+C$
1	0	1	$= \overline{A} + B + \overline{C}$
1	1	0	$=\overline{A}+\overline{B}+C$
1	1	1	$= \overline{A} + \overline{B} + \overline{C}$

EXEMPLO

Casos	A	В	С	Saída
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Podemos gerar:

- Soma de Mintermos → 1
- Produto de Maxtermos \rightarrow 0

Vamos extrair os mintermos e maxtermos dessa tabela verdade.

EXEMPLO COM MINTERMOS

Podemos gerar:

- Soma de Mintermos → 1

Casos	A	В	С	Saída	MINTERMOS
0	0	0	0	0	$\overline{A}\cdot \overline{B}\cdot \overline{C}$
1	0	0	1	0	$\overline{A}\cdot\overline{B}\cdot C$
2	0	1	0	1	$\overline{A} \cdot B \cdot \overline{C}$
3	0	1	1	1	$\overline{A} \cdot B \cdot C$
4	1	0	0	0	$A \cdot \overline{B} \cdot \overline{C}$
5	1	0	1	1	$A \cdot \overline{B} \cdot C$
6	1	1	0	1	$A \cdot B \cdot \overline{C}$
7	1	1	1	0	$A \cdot B \cdot C$

EXEMPLO COM MAXTERMOS

Podemos gerar:

- Produto de Maxtermos → 0

Casos	A	В	С	Saída	MAXTERMO
0	0	0	0	0	A+B+C
1	0	0	1	0	$A + B + \overline{C}$
2	0	1	0	1	$A + \overline{B} + C$
3	0	1	1	1	$A + \overline{B} + \overline{C}$
4	1	0	0	0	$\overline{A} + B + C$
5	1	0	1	1	$\overline{A} + B + \overline{C}$
6	1	1	0	1	$\overline{A} + \overline{B} + C$
7	1	1	1	0	$\overline{A} + \overline{B} + \overline{C}$

FORMA NORMAL DISJUNTIVA

Mintermo (ou minitermo) é o **termo produto** associado à cada linha da tabela verdade, no qual todas as variáveis de entrada estão presentes

Dado um mintermo, se substituirmos os valores das variáveis associadas, obteremos 1 (saída verdadeira)

Porém, se substituirmos nesse mesmo mintermo quaisquer outras combinações de valores, obteremos 0

→ Dessa forma, basta adicionarmos a operação OU entre os mintermos associados aos 1s da função

FND: EXEMPLO

Saída S é uma função das variáveis de entrada A, B e C

Os valores de (A,B,C) para os quais S=1 encontram-se nas situações 2, 3, 5 e 6

Os mintermos associados a essas condições (ou seja, os mintermos 1) são mostrados na tabela ao lado

Logo, a expressão em soma de produtos (FND) para S será o OU entre estes produtos

$$S = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

Entrada	A	В	C	S	MINTERMO
0	0	0	0	0	
1	0	0	1	0	
2	0	1	0	1	$\overline{A} \cdot B \cdot \overline{C}$
3	0	1	1	1	$\overline{A} \cdot B \cdot C$
4	1	0	0	0	
5	1	0	1	1	$A \cdot \overline{B} \cdot C$
6	1	1	0	1	$A \cdot B \cdot \overline{C}$
7	1	1	1	0	

FORMA NORMAL CONJUNTIVA

Maxtermo (ou maxitermo) é **o termo soma** associado à cada linha da tabela verdade, no qual todas as variáveis de entrada estão presentes

Dado um maxtermo, se substituirmos os valores das variáveis associadas, obteremos O

Porém, se substituirmos nesse mesmo maxtermo quaisquer outras combinações de valores, obteremos 1 (saída verdadeira)

→ Dessa forma, basta adicionarmos a operação E entre os maxtermos associados aos Os da função

FNC: EXEMPLO

Saída S é uma função das variáveis de entrada A, B e C

Os valores de (A,B,C) para os quais S=0 encontram-se nas situações 0, 1, 4 e 7

Os maxtermos associados a essas condições (ou seja, os maxtermos 0) são mostrados na tabela ao lado

Logo, a expressão em produto de somas (FNC) para S será o E entre estas somas

$$S = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + \overline{C})$$

Entrada	A	В	C	S	MAXTERMO
0	0	0	0	0	A + B + C
1	0	0	1	0	$A + B + \overline{C}$
2	0	1	0	1	
3	0	1	1	1	
4	1	0	0	0	$\overline{A} + B + C$
5	1	0	1	1	
6	1	1	0	1	
7	1	1	1	0	$\overline{A} + \overline{B} + \overline{C}$

SIMPLIFICAÇÃO A PARTIR DA FORMA NORMAL

É importante lembrar que qualquer expressão booleana pode ser escrita de forma padronizada, obtida a partir da tabela verdade

- Produto de Maxtermos
- Soma de Mintermos

Uma vez obtida a forma normal de uma função booleana, é possível simplificá-la por meio de manipulação algébrica, respeitando os postulados e propriedades da álgebra booleana, com visto anteriormente

RETORNANDO AO EXEMPLO DE BOOLEVILLE

Previsão do tempo em Booleville: C (chuva amanhã) função lógica de V (vento hoje), F (frio hoje), U (dia úmido hoje) e N (nublado hoje).

V	F	U	N	С
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1

V	F	U	N	С
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Qual expressão lógica expressa essa tabela verdade?

Previsão do tempo em Booleville: C (chuva amanhã) função lógica de V (vento hoje), F (frio hoje), U (dia úmido hoje) e N (nublado hoje).

V	F	U	N	С
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1

$$\to \overline{V} \cdot \overline{F} \cdot U \cdot N$$

V	F	U	N	С
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Previsão do tempo em Booleville: C (chuva amanhã) função lógica de V (vento hoje), F (frio hoje), U (dia úmido hoje) e N (nublado hoje).

V	F	U	N	С	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	1	$\to \overline{V} \cdot \overline{F} \cdot U \cdot N$
0	1	0	0	0	
0	1	0	1	1	$\to \overline{V} \cdot F \cdot \overline{U} \cdot N$
0	1	1	0	1	$\to \overline{V} \cdot F \cdot U \cdot \overline{N}$
0	1	1	1	1	$\to \overline{V} \cdot F \cdot U \cdot N$

	С		N	U	F	V	
	0	Ī	0	0	0	1	
$V \cdot \overline{F} \cdot \overline{U} \cdot \Lambda$	1 _		Ĩ	0	0	1	
$V \cdot \overline{F} \cdot U \cdot \overline{\Lambda}$	1 _		0	1	0	1	
	0		1	1	0	1	
	0		0	0	1	1	
	0		1	0	1	1	
$V \cdot F \cdot U \cdot \overline{\Lambda}$	1 -		0	1	1	1	
$V \cdot F \cdot U \cdot \Lambda$	1 -		1	1	1	1	

$$C(V, F, U, N) = (\overline{V} \cdot \overline{F} \cdot U \cdot N) + (\overline{V} \cdot F \cdot \overline{U} \cdot N) + (\overline{V} \cdot F \cdot U \cdot \overline{N}) + (\overline{V} \cdot F \cdot U \cdot N) + (\overline{V} \cdot \overline{F} \cdot \overline{U} \cdot N) + (\overline{V} \cdot \overline{F} \cdot U \cdot \overline{N}) + (\overline{V} \cdot F \cdot U \cdot \overline{N}) + (\overline{V} \cdot F \cdot U \cdot N)$$

V	F	U	N	С	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	1	$\rightarrow \overline{V} \cdot \overline{F} \cdot U \cdot N$
0	1	0	0	0	
0	1	0	1	1	$\to \overline{V} \cdot F \cdot \overline{U} \cdot N$
0	1	1	0	1	$\to \overline{V} \cdot F \cdot U \cdot \overline{N}$
0	1	1	1	1	$\to \overline{V} \cdot F \cdot U \cdot N$

V	F	U	N	С
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Para facilitar a escrita, quando escrevemos uma conjunção, podemos considerar que o sinal "·" está implícito, como fazemos na álgebra comum

$$C(V,F,U,N) = (\overline{V} \overline{F}UN) + (\overline{V}F\overline{U}N) + (\overline{V}FU\overline{N}) + (\overline{V}FU\overline{N}) + (\overline{V}FUN) + (V\overline{F}\overline{U}N) + (V\overline{F}U\overline{N}) + (VFUN)$$

Para casa depois da aula: simplificar a expressão acima

Para facilitar a escrita, quando escrevemos uma conjunção, podemos considerar que o sinal "·" está implícito, como fazemos na álgebra comum

$$C(V, F, U, N) = (\overline{V} \overline{F}UN) + (\overline{V}F\overline{U}N) + (\overline{V}FU\overline{N}) + (\overline{V}FU\overline{N}) + (\overline{V}FUN) + (V\overline{F}\overline{U}N) + (V\overline{F}U\overline{N}) + (VFUN)$$

Para casa depois da aula: simplificar a expressão acima

Desafio, chegar na expressão: $FU + \overline{V}FN + \overline{V}UN + VU\overline{N} + V\overline{F}\overline{U}N$

FATORAÇÃO LÓGICA

MOTIVAÇÃO

O estudo da simplificação de circuitos lógicos requer o conhecimento da álgebra de Boole, por meio de seus postulados, propriedades, equivalências, etc.

De fato, na álgebra de Boole encontram-se os fundamentos da eletrônica digital de circuitos

POSTULADOS & PROPRIEDADES

Na álgebra booleana há postulados (axiomas) a partir dos quais são estabelecidas várias propriedades

Existem várias propriedades da negação (complemento, inversor), adição (porta E) e soma (porta OU)

Estas propriedades podem ser verificadas como equivalências lógicas

Para demonstrar cada uma, basta utilizar as tabelas-verdade, constatando a equivalência

SIMPLIFICAÇÃO DE EXPRESSÕES BOOLEANAS

Usando a álgebra booleana é possível simplificar expressões

A fatoração que consiste na aplicação dos postulados e propriedades da álgebra booleana, com o objetivo de simplificar a expressão

Como cada circuito corresponde a uma expressão, simplificações de expressões levam a simplificações de circuitos

Há duas formas para simplificar expressões

- Fatoração
- Mapas de Veitch-Karnaugh

Veremos, a seguir, o processo de fatoração

DECDAC DÁCICAC DA ÁICEDDA DODIEANA

	KEUKAS	DASICAS DA ALGEDI	A DUULEANA
	Propriedade	OU	E
P1	Identidade	X + 1 = 1	$X \cdot 0 = 0$
P2	Elemento Neutro	X + 0 = X	$X \cdot 1 = X$
Р3	Idempotência	X + X = X	$X \cdot X = X$
P4	Involução	$\overline{\overline{X}} = X$	$\overline{\overline{X}} = X$
P5	Complemento	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$

X + Y = Y + X

(X + Y) + Z = X + (Y + Z)

 $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

 $X \cdot (X + Z) = X$

 $(X \cdot Y) + (X \cdot \overline{Y}) = X$

 $(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z)$

 $\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$

 $= (X \cdot Y) + (\overline{X} \cdot Z)$

 $X \cdot Y = Y \cdot X$

 $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

 $X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$

 $X + (X \cdot Y) = X$

 $(X+Y)\cdot \left(X+\overline{Y}\right)=X$

 $(X+Y)\cdot (\overline{X}+Z)\cdot (Y+Z)$

 $\overline{(X \cdot Y)} = \overline{X} + \overline{Y}$

 $= (X + Y) \cdot (\overline{X} + Z)$

P6

P7

P8

P9

P10

P11

P12

Comutatividade

Associatividade

Distributividade

Cobertura

Consenso

Combinação

De Morgan

EXERCÍCIO

Mostre, usando simplificação por postulados e propriedades, ou seja, por transformações algébricas que:

$$A + A \cdot B = A$$

$$A \cdot (A + B) = A$$

	Propriedade	OU	E
P1	Identidade	X + 1 = 1	$X \cdot 0 = 0$
P2	Elemento Neutro	X + 0 = X	$X \cdot 1 = X$
Р3	Idempotência	X + X = X	$X \cdot X = X$
P4	Involução	$\overline{\overline{X}} = X$	$\overline{\overline{X}} = X$
P5	Complemento	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$
P6	Comutatividade	X + Y = Y + X	$X \cdot Y = Y \cdot X$
P7	Associatividade	(X+Y)+Z=X+(Y+Z)	$(X\cdot Y)\cdot Z=X\cdot (Y\cdot Z)$
P8	Distributividade	$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$	$X\cdot (Y+Z)=(X\cdot Y)+(X\cdot Z)$
Р9	Cobertura	$X\cdot (X+Z)=X$	$X+(X\cdot Y)=X$
P10	Combinação	$(X\cdot Y)+\left(X\cdot\overline{Y}\right)=X$	$(X+Y)\cdot \left(X+\overline{Y}\right)=X$
P11	Consenso	$(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z)$ = $(X \cdot Y) + (\overline{X} \cdot Z)$	$(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z)$ = $(X + Y) \cdot (\overline{X} + Z)$
P12	De Morgan	$\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$	$\overline{(X\cdot Y)}=\overline{X}+\overline{Y}$

SOLUÇÃO

$$A + A \cdot B = A$$

- \bullet A + AB
- = A(1+B) distributiva
- ullet = A(1) cobertura da adição
- ullet = A identidade da multiplicação

$$A \cdot (A + B) = A$$

- A(A+B)
- $\bullet = (AA) + (AB)$ distributiva
- ullet = A + (AB) cobertura da multiplicação
- ullet = A pela prova do exercício acima

EXERCÍCIO

Idem ao exercício anterior

$$A + \overline{A}B = A + B$$

 $(A+B)\cdot (A+C) = A + B \cdot C$

Т	D'	U		
		Propriedade	OU	E
	P1	Identidade	X + 1 = 1	$X \cdot 0 = 0$
	P2	Elemento Neutro	X + 0 = X	$X \cdot 1 = X$
	Р3	Idempotência	X + X = X	$X \cdot X = X$
	P4	Involução	$\overline{\overline{X}} = X$	$\overline{\overline{X}} = X$
	P5	Complemento	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$
	P6	Comutatividade	X + Y = Y + X	$X \cdot Y = Y \cdot X$
	P7	Associatividade	(X+Y)+Z=X+(Y+Z)	$(X\cdot Y)\cdot Z=X\cdot (Y\cdot Z)$
	Р8	Distributividade	$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$	$X\cdot (Y+Z)=(X\cdot Y)+(X\cdot Z)$
	Р9	Cobertura	$X\cdot (X+Z)=X$	$X + (X \cdot Y) = X$
	P10	Combinação	$(X\cdot Y)+\left(X\cdot\overline{Y}\right)=X$	$(X+Y)\cdot \left(X+\overline{Y}\right)=X$
	P11	Consenso	$(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z)$ = $(X \cdot Y) + (\overline{X} \cdot Z)$	$(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z)$ = $(X + Y) \cdot (\overline{X} + Z)$
	P12	De Morgan	$\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$	$\overline{(X\cdot Y)}=\overline{X}+\overline{Y}$

SOLUÇÃO

$$A + \overline{A} \cdot B = A + B$$

- $A + \overline{A}B = \overline{(A + \overline{A}.B)}$ identidade do complemento
- $\overline{ }=(\overline{A}.\overline{(\overline{A}.B)})=\overline{(\overline{A}.(A+\overline{B})}$ De Morgan
- $ullet = (\overline{A}.A + \overline{A}.\overline{B})$ distributiva
- $ullet = (0 + \overline{A}.\overline{B})$ elemento neutro da multiplicação
- ullet = $(\overline{A}, \overline{B})$ identidade da adição
- \blacksquare = A + B De Morgan

$$A + \overline{A} \cdot B = A + B$$

- $A + \overline{A}B = (A + \overline{A}).(A + B)$ distributiva
- = 1.(A + B) elemento neutro da adição
- \bullet = A + B identidade da multiplicação

SOLUÇÃO

$$(A + B) \cdot (A + C) = A + B \cdot C$$
• $(A + B) \cdot (A + C)$
• $= A \cdot A + A \cdot C + B \cdot A + B \cdot C$ distributiva
• $= A \cdot A + A \cdot C + A \cdot B + B \cdot C$ comutativa
• $= A + A \cdot C + A \cdot B + B \cdot C$ cobertura da multiplicação
• $= A + A \cdot (C + B) + B \cdot C$ distributiva
• $= A \cdot (1 + (C + B)) + B \cdot C$ distributiva
• $= A \cdot (1) + B \cdot C$ identidade da adição
• $= A + B \cdot C$ identidade da multiplicação

EXERCÍCIO

Simplifique as expressões:

$$S = \overline{A} \overline{B} \overline{C} + \overline{A}B\overline{C} + A\overline{B}C$$

$$S = \overline{A}B + \overline{A}\overline{B}$$

Para casa depois da aula: simplificar as expressões acima

SOLUÇÃO

$$S = A'.B'.C' + A'.B.C' + A.B'.C$$

$$-$$
 = A'.C'.B' + A'.C'.B + A.B'.C

$$-$$
 = A'.C'.(B' + B) + A.B'.C

$$-$$
 = A'.C'.(1) + A.B'.C

$$-$$
 = A'.C' + A.B'.C

$$S = A'.B + A'.B'$$

$$- = A'.(B+B')$$

$$- = A'.(1)$$

EXERCÍCIO

Simplifique as expressões:

$$S = A'.B'.C' + A'.B.C + A'.B.C' + A.B'.C' + A.B.C'$$

$$S = (A+B+C).(A'+B+C)$$

Para casa depois da aula: simplificar as expressões acima

SOLUÇÃO

SOLUÇÃO

$$S = (A+B+C).(A'+B+C)$$

 $= A.A' + A.B + A.C + B.A' + B.B + B.C + C.A' + C.B + C.C$
 $= O + A.B + A.C + 'A.B + B + A'.C + C$
 $= A.B + A'.B + A.C + A'.C + B + C$
 $= B \cdot (A+A') + C \cdot (A + A') + B + C$
 $= B + B + C + C$

MAIS EXERCÍCIOS

Simplifique as seguintes equações:

$$Y = (A \cdot C) + (\overline{A} \cdot \overline{B} \cdot C) = C \cdot (A + \overline{B})$$

$$Y = \overline{A} \cdot \overline{B} + \overline{A} \cdot B \cdot \overline{C} + (\overline{A + \overline{C}}) = \overline{A}$$

$$Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C \cdot \overline{D} + ABD + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + B \cdot \overline{C} \cdot D + \overline{A} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + B \cdot D$$

Para casa depois da aula: simplificar as expressões acima