Exercice supplémentaire sur CH3 traité au dépannage

Dans cet exercice on utilise un schéma équivalent simplifié en "L" de la machine asynchrone en négligeant la résistance R_S des enroulements du stator. Dans tout l'exercice, les pertes mécaniques et magnétiques de la machine asynchrone et les pertes mécaniques dans la boîte d'engrenages sont négligées.

Une centrale hydraulique d'un producteur privé, reliée au réseau, comporte une turbine hydraulique qui entraîne une génératrice asynchrone à cage par l'intermédiaire d'une boîte d'engrenages. La machine asynchrone à 4 pôles utilisée en génératrice est reliée au réseau triphasé 60Hz de tension nominale ligne à ligne U_s =600V. La machine devant être reconditionnée, on décide de faire des essais sur l'installation existante pour identifier ses caractéristiques.

1) La vanne d'admission d'eau de la turbine étant fermée, on réalise d'abord un essai à rotor bloqué en alimentant la machine asynchrone à tension réduite. Les résultats de l'essai à rotor bloqué sont les suivants:

Essai à rotor bloqué: Tension efficace ligne-ligne U_{scc} =153V, Courant I_{scc} =480A, Puissance active totale P_{cc} = 7533W.

On réalise un deuxième essai dans les conditions suivantes : la vanne d'admission d'eau de la turbine étant fermée, on démarre la machine asynchrone en alimentant son stator par le réseau ; on ouvre alors légèrement la vanne d'admission d'eau de la turbine jusqu'à ce que la vitesse de l'entraînement soit rigoureusement égale à 1800rpm. On effectue alors les mesures de tension, courant et puissance active pour ce point de fonctionnement, on obtient :

Tension efficace ligne-line nominale U_{S1800} =600V Courant I_{S1800} =346A Puissance P_{1800} pratiquement nulle donc négligeable.

En tenant compte des hypothèses, déterminer les éléments R'_T, X du schéma équivalent choisi à partir des résultats des essais (*ATTENTION Compte-tenu des faibles impédances de ces dispositifs de puissance élevée, conserver au moins 3 décimales dans les valeurs en Q des résistances et des réactances dans tous les calculs)*. Démontrer clairement qu'avec les hypothèses adoptées, le deuxième essai à 1800rpm permet de déterminer la réactance X_m du circuit monophasé équivalent de la machine.

2) A partir du point de fonctionnement à 1800rpm, on ouvre progressivement la vanne d'admission d'eau de la turbine et on fait fonctionner le groupe de production de manière à ce que la puissance active nominale P_{Out1} fournie au réseau triphasé 60Hz U_S=600V et mesurée par le wattmètre de la centrale à la sortie des enroulements du stator de la génératrice asynchrone soit égale à P_{Out}=435kW. Calculer le glissement g₁ et la vitesse N₁ en rpm de la génératrice asynchrone (garder 3 chiffres significatifs sur le glissement g₁). Calculer le courant I_{S1} au stator de la génératrice asynchrone, son facteur de puissance cosφ₁ et son rendement η₁.

(Les questions 3 et 4 sont indépendantes)

- 3) On veut amener l'valeur absolue du facteur de puissance global de la centrale vue du réseau à $|\cos \varphi|$ =.9. Pour cela on dispose sur le réseau triphasé 60Hz U_S=600V une batterie de condensateurs de correction du facteur de puissance en parallèle avec la génératrice asynchrone. Calculer la puissance réactive Q_C que doit fournir cette batterie de condensateurs pour que le facteur de puissance global de la centrale vu du réseau soit égal à $\cos \varphi$ =.9, lorsque la génératrice asynchrone produit P_{Out}=435kW comme dans la question 2. (**10 pts**).
- 4) Lorsque la vanne d'admission d'eau de la turbine est maintenue ouverte dans la même position que celle de la question 2, la turbine hydraulique exerce un couple moteur T_m proportionnel au carré de la vitesse $T_m = k.\Omega^2$ (Ω vitesse de l'arbre en rad/s, T_m en Nm). Calculer k à partir des résultats de la question 2. Montrer clairement par un graphique dans le plan couple-vitesse, qu'il existe une valeur minimale U_{smin} de la tension ligne à ligne du réseau en dessous de laquelle un fonctionnement stable du groupe de production est impossible. Calculer la vitesse maximale du groupe N_{max} en rpm correspondant à cette limite de stabilité et la tension minimale U_{smin} . En déduire, la chute de tension maximale admissible (en % par rapport à la tension nominale) sur le réseau à l'entrée du groupe de production qui garantit un fonctionnement stable.

p_	2	
fs_	60	
ws_	376.991118	
Ns_	1800	
Us_	600	
Vs_	346.410162	
Uscc_	153	
Iscc_	480	
Pcc_	7533	
Us1800_	600	
Is1800_	346	
QUESTION 1		
Rr_	0.011	
X	0.184	
Xm_	1.001	
QUESTION 2		
Pout_	-4.35E+05	
Tem1_	-2307.7467	
Tr1_	-2307.7467	
Tem1Tr1_	8.47E-06	
g1_	-0.014	
N1_	1825	
lr1_	430	
tphir1_	-0.234	
cphir1_	0.974	
sphiri1_	-0.228	
Is1_	487	
cosphi1_	0.860	
eta1_	0.986	
QUESTION 3		
Q1_	257718	
cosphi_	0.9	
Qtot_	210680	
Qc_	-47038	
Itot_	465	
Stot_	483333	
QUESTION 4		
k_	-0.063	
gmax_	-0.059	
Nmax_	1907	
TemaxUs_	-5198	
TemaxUsmin_	-2519	
Usmin_	418	
deltaUs%_	30%	
	· · · · · · · · · · · · · · · · · · ·	

@ P.Viarouge 2013

EXERCICE SUPPLÉMENTAIRE MOTEUR CC

Un moteur à courant continu série alimenté par une source de tension V_a , entraı̂ne un treuil qui exerce sur l'arbre un couple résistant T_r constant quelque soit la vitesse.

<u>Hypothèses:</u> Les pertes mécaniques de rotation et les pertes magnétiques du moteur sont négligées. La réaction d'induit est négligée ainsi que la saturation.

Essais: Les résultats des mesures des résistances des enroulements du moteur sont :

Résistance de l'induit : $R_a=1 \Omega$, Résistance de l'inducteur série: $R_s=.8 \Omega$

On a réalisé un essai à vide de cette machine à courant continu en la câblant en génératrice à excitation indépendante (dans cet essai particulier, l'inducteur de résistance R_S est alimenté par une source de tension continue auxiliaire) et en l'entraînant par un autre moteur. Pour une vitesse N_0 =2000rpm et un courant circulant dans l'inducteur égal à 5A, on obtient une tension à vide mesurée aux bornes de l'induit égale à 73.3V.

- 1) On entraîne le treuil par la machine à courant continu câblée en moteur série (induit de résistance R_a en série avec l'inducteur de résistance R_s). En régime permanent, la source d'alimentation de ce moteur série délivre une tensionV_{a1} =240V et fournit un courant I_{a1}= 14.63A. Calculer le couple résistant T_r exercé sur l'arbre par le treuil. Calculer la vitesse N₁ du moteur en rpm
- 2) On décide sans changer la source V_{a1} de placer une résistance R en série avec le moteur afin de faire varier la vitesse du treuil. Quelle valeur de résistance R doit-on utiliser pour que le moteur série entraîne le treuil à $N_2 = N_1/2$. Calculer alors le courant I_{a2} circulant dans le moteur. Calculer le rendement du moteur *eta* et le rendement *etaalim* de tout le système vu de la source d'alimentation V_a .
- 3) Quelle tension d'alimentation V_{a3} doit on appliquer directement (sans la résistance R de la question 2) pour que le moteur série entraı̂ne le treuil à $N_3=N_2=N_1/2$. Calculer alors le courant I_{a3} circulant dans le moteur. Calculer le rendement du moteur *eta* et le rendement *etaalim* de tout le système vu de la source d'alimentation V_a .
- 4) Quel est la stratégie de réglage de vitesse du treuil la plus intéressante parmi celles utilisées dans les questions 2 et 3. Justifier clairement votre réponse.

Corrigé

	T	I		
Ra_	1	Ohm		
Rs_	0.8	Ohm		
Essai à vide détermination KK_				
No_	2000	rpm		
Wo_	209.44	rad/s		
Ifo_	5	Α		
Eo_	73.3	V		
KK_	0.070			
Q1				
Va1_	240	V		
la1_	14.63	А		
Tr_	14.98	Nm		
E1_	213.67	٧		
W1_	208.65	rad/s		
N1_	1992.45	rpm		
Q2				
Va2_	133.17	V		
la2_	14.63	А		
E2_	106.83	V		
W2_	104.32	rad/s		
N2_	996.22	rpm		
R_	5.50	Ohm		
eta2_	0.80			
etaalim2_	0.45			
Q3				
Va3_	133.167	V		
la3_	14.63	Α		
eta3_	0.80			
etaalim3_	0.80			
etaalim_ Rei	etaalim_ Rendement vus de l'alimentation (Pout/(Vala))			