6. Natural Deduction (continued)

Language & Logic

Dave Parker

University of Birmingham 2017/18

Module syllabus

- Syntax of formal & natural languages
 - grammars, parsing
- Propositional logic
 - truth tables, semantics, proofs via natural deduction
- Predicate calculus
 - proofs via natural deduction
- Program correctness
 - structural induction

Recap

- Natural deduction for propositional logic
 - introduction and elimination rules for each connective

New rules

- − ∨-introduction
- →-introduction, i.e. conditional proof
- − ∨-elimination, i.e. case analysis
- ¬-introduction, i.e. proof by contradiction
- New proof techniques/concepts
 - sub-proofs, hypotheses (assumptions) & discharging

Today

- Proof strategies
 - i.e. which inference rules to apply and when
- Primitive vs. derived inference rules
 - i.e. which rules do we assume and which can we prove?
- Theorems & theorem introduction
- Soundness and completeness

Basic proof strategy

- Choose the right inference rules
 - use introduction rules to add connectives to the conclusion
 - use elimination rules to work with premises
 - only apply them to the main connective
- Plan the proof
 - work backwards from the conclusion
 - and forwards from the premises
 - look carefully at the structure of the propositions
 - e.g. proving $Q \rightarrow (P \rightarrow R)$ vs. $Q \land (P \land R)$
- And remember each sub-proof changes the context...

Proof strategy: Rules of thumb

- Some rules of thumb (so-called "Golden Rules") for proofs:
- 1. If the main connective in the conclusion is an implication, use implication introduction
 - i.e., assume its antecedent and try to prove the consequent
- 2. If the main connective in any of the premises is a disjunction, try to use disjunction elimination
 - i.e., assume each disjunct separately and try to prove the same conclusion with both
- 3. If all else fails, try negation introduction
 - i.e., assume the opposite of what you want to prove and deduce a contradiction

Example

• $\neg (P \land (\neg Q \lor R)) : P \rightarrow Q$

1.	Р	Hypothesis	{1}
2.		Hypothesis	{2}
3.	$ \neg Q \lor R$	\vee -introduction ₂	{2}
4.	$ P \wedge (\neg Q \vee R) \rangle$	\land -introduction _{1,3}	{1,2}
5.	$ \begin{vmatrix} P \land (\neg Q \lor R) \\ \neg (P \land (\neg Q \lor R)) \end{vmatrix} $	Premise	{5 }
6.		\land – introduction _{4,5}	{1,2,5}
7.	$\neg \neg Q$	\neg -introduction _{2,6}	{1,5}
8.	Q	$\neg \neg - elimination_7$	{1,5}
9.	$P \rightarrow Q$	\rightarrow -introduction _{1,8}	{5 }

Inference rules for propositional logic

$$\frac{A \quad B}{A \wedge B} \land -introduction$$

$$\frac{A \wedge B}{A} \wedge -elimination$$

$$\frac{A}{A \vee B} \vee -introduction$$

$$\frac{A \lor B \quad A \vdash C \quad B \vdash C}{C} \quad \lor \text{-elimination}$$

$$\frac{A \vdash B}{A \to B} \to -introduction$$

$$\frac{A \rightarrow B \quad A}{B} \rightarrow -elimination$$

$$A \vdash \bot$$
 \neg -introduction

$$\frac{\neg \neg A}{A} \quad \neg \neg - elimination$$

(symmetric rules omitted for clarity)

Inference rules

- Which inference rules do we need to prove any valid argument? And do we need all of them?
- Primitive vs derived inference rules
 - primitive inference rules allow us to prove things that we would not be able to without them
 - derived rules do not allow us to prove anything new
 - and can be proved correct using primitive ones

• For example:

$$\frac{A \to B \quad \neg B}{\neg A} \quad \text{"modus tollens"}$$

Some derived inference rules

$$\frac{A \to B - B}{\neg A}$$
 "modus tollens"

$$\frac{A}{\neg \neg A}$$
 $\neg \neg -introduction$

$$\frac{A \vee B \quad \neg A}{B} \quad \text{"disjunctive syllogism"}$$

$$\frac{\bot}{A}$$
 "\proves anything"

Proof (disjunctive syllogism)

• A ∨ B, ¬A : B

1.	$A \vee B$	Premise	{1}	
2.	-A	Premise	{2}	Hypothesis
3.	Α	Hypothesis	{3}	not used
4.	-B	Hypothesis	{4}	at all
5.		\land -introduction _{2,3}	{2,3}	
6.	$\neg \neg B$	\neg -introduction _{4,5}	{2}	
7.	В	$\neg \neg - elimination_6$	{2}	
8.	В	Hypothesis	{8}	
9.	— В	∨-elimination _{1.3.7.8.8}	{1,2}	

Theorems

- A theorem is a formula (a proposition) which can be proved
 - i.e., a valid argument with no premises
- Examples of theorems
 - $\vdash P \rightarrow P$
 - $\vdash P \lor \neg P$ ("Law of Excluded Middle")
- We can rewrite valid arguments as theorems
 - $\vdash ((A \rightarrow B) \land \neg B) \rightarrow \neg A$ ("modus tollens")
 - $\vdash ((A \lor B) \land \neg A) \rightarrow B$ ("disjunctive syllogism")
- Closely related: a tautology is a formula that is always true
 - i.e., is true for any possible truth valuation (of atomic propositions)

Theorem introduction

- In general (exercises, exam questions, etc.)
 - use only the inference rules you are given/allowed
 - so what use are derived inference rules?

Theorem introduction

- insert a known theorem directly into a proof
- may yield shorter, clearer or more elegant proofs
- and provide a separate proof of the theorem (e.g. in exam)
- Using theorem introduction
 - apply a uniform substitution (like when applying inference rules)
 - e.g., if we know: $\vdash ((A \rightarrow B) \land \neg B) \rightarrow \neg A$ (modus tollens)
 - we can insert, e.g.: $(((P \land Q) \rightarrow R) \land \neg R) \rightarrow \neg (P \land Q)$

Example

• Prove: $P \vee \neg Q$, $P \rightarrow R$, $S \rightarrow Q \vdash R \vee \neg S$

1.
$$P \lor \neg Q$$
 Premise
 {1}

 2. P
 Hypothesis
 {2}

 3. $P \to R$
 Premise
 {3}

 4. R
 \rightarrow -elimination_{3,2}
 {2,3}

 5. $R \lor \neg S$
 \lor -introduction₄
 {2,3}

 6. P
 P
 P

 7. P
 P
 P

 8. P
 P
 P

 8. P
 P
 P

 8. P
 P
 P

 9. P
 P
 P

 9. P
 P
 P

 10. P
 P
 P

 10. P
 P
 P

 11. P
 P
 P

 12. P
 P
 P

 13. P
 P

 14. P
 P

 15. P
 P

 16. P
 P

 17. P
 P

 18. P
 P

 19. P
 P

 10. P
 P

 10. P
 P

 10. P
 P

 11. P
 P

 12. P

Proofs

Theorems

useful to know, even just to confirm validity or to guide the proof

Equivalences

- similarly, equivalences can be very helpful, e.g.:
- $\neg (A \land B) \equiv \neg A \lor \neg B$
- $\neg (A \lor B) \equiv \neg A \land \neg B$
- $A \rightarrow B \equiv \neg A \lor B$
- Natural deduction for propositional logic (using the set of inference rules) is sound and complete
 - soundness means, if we can prove an argument, then it is valid
 - completeness means, if it is valid, then we can prove it

Semantic and syntactic validity

- We've seen two methods to show validity of an argument
 - truth table construction & analysis (semantic validity)
 - natural deduction proofs (syntactic validity)

Semantic validity

 an argument is valid iff it cannot be the case that all the premises are true and the conclusion false at the same time

Syntactic validity

 an argument is valid iff the conclusion can be derived from the premises by means of stipulated rules of inference

Notation

- semantic validity: $A \rightarrow B$, $\neg B \models \neg A$
- syntactic validity: $A \rightarrow B$, $\neg B \vdash \neg A$

Soundness & completeness

Soundness

- any syntactically valid argument is semantically valid
- i.e. $A_1, ..., A_n \vdash B$ implies $A_1, ..., A_n \models B$
- (alternatively: all theorems are tautologies)

Completeness

- $-A_1, ..., A_n \models B \text{ implies } A_1, ..., A_n \vdash B$
- i.e., we can construct a proof of any valid argument in propositional logic using natural deduction
- (alternatively: all tautologies are theorems)

Summary

- Proof strategies: rules of thumb
 - if there is a \rightarrow in the conclusion, try \rightarrow -introduction
 - if there is a premise of the form $A \lor B$, try \lor -elimination
 - otherwise, try ¬−introduction
- Further concepts of natural deduction/propositional logic
 - primitive vs. derived inference rules
 - theorems (and tautologies)
 - soundness and completeness
- Practice / revision
 - exercise classes on Tue/Thur: practice on some harder proofs
 - see also examples in, e.g., Tomassi book