考研高数习题集

枫聆

2021年12月3日

目录

1	极限	相关	5
	1.1	1 [∞] 类型极限	5
	1.2	10 类型极限	5
	1.3	夹逼准则应用	6
	1.4	级数相关的极限	7
	1.5	去除根式的尴尬	9
	1.6	换元取极限	11
	1.7	递归求极限	11
	1.8	中值定理	12
	1.9	含积分的极限	12
	1.10	没有具体的函数表达式	12
	1.11	三角函数相关	13
	1.12	极限存在性	14
	1.13	积分定义	14
2	导数		15
	2.1	导数定义相关的	15
	2.2	泰勒公式求高阶导数	15
	2.3	递归法求高阶导数	16
3	nte *k	孙 臣	17
o	函数		- •
	3.1	求零点	17
	3.2	经典证明题	17

4	不定	E <mark>积分</mark>	18				
	4.1	多项式分式	18				
	4.2	分母带根号	18				
	4.3	换元法	20				
	4.4	高次	20				
	4.5	分部积分	20				
	4.6	三角有理式	20				
	4.7	递归式	22				
	4.8	被积函数含不常见函数形式	22				
5	定积	只分	24				
	5.1	参数积分求导	24				
	5.2	奇怪的定积分					
	5.3	不太好积的带三角函数的积分	24				
	5.4	待定系数收敛反常积分	25				
	5.5	化为极限形式	25				
	5.6	被积函数带绝对值	25				
	5.7	级数定积分	26				
6	~	反常积分 2					
	6.1	含有 e^x 的被积函数 \dots	28				
	6.2	定积分的应用					
	6.3	待定参数					
	6.4	分离积分	30				
	6.5	求值	30				
7	微分方程 3						
	7.1	线性微分方程解的结构	32				
	7.2	带积分的微分方程	32				
	7.3	该死的绝对值					
	7.4	改变自变量	33				
8	解析	行几何	34				
	8.1	求直线在平面上的投影					
	8.2	旋转直线方程	34				

9	多元函数	35
	9.1 带不等式的条件极值	35
	9.2 可微定义	35
10	二重积分	36
	10.1 交换次序更好积分	36
	10.2 化极坐标	36
11	三重积分	37
	11.1 直角坐标	37
	11.2 柱坐标	37
	11.3 球坐标	37
12	多元积分的应用	38
	12.1 第一类曲线积分	38
	12.2 第二类曲线积分	38
	12.3 两类曲线积分关系	41
	12.4 第一类曲面积分	42
	12.5 第二类曲面积分	43
	12.6 两类曲面积分的联系	44
13	级数	45
	13.1 级数判定总结	45
	13.2 极限 test	45
	13.3 参数收敛	45
	13.4 带-1 的幂次	46
	13.5 不标准的幂级数	46
	13.6 利用傅里叶公式求和	47
	13.7 利用已有的幂级数求和	47
	13.8 构造微分方程	47
	13.9 化增量公式	48
14	综合证明题	49
	14.1 级数	49

15	tricks	5 1
	15.1 一些有趣的不等式	51
	15.2 Stirling 公式	51
	15.3 高数积分	51

极限相关

1^{∞} 类型极限

Example 1.1. 若 $\lim \alpha(x) = 0$, $\lim \beta(x) = \infty$, 且 $\lim \alpha(x)\beta(x) = A$, 其中 A 是一个常数,则 $\lim \left[1 + \alpha(x)\right]^{\beta(x)} = e^A.$

hints 带指数形式的表达式,第一想法是把指数拿下来

$$\lim \left[1+\alpha(x)\right]^{\beta(x)} = \lim e^{\beta(x)\ln(1+\alpha(x))} = \lim e^{\beta(x)\alpha(x)} = e^A.$$

Example 1.2. 求极限

$$\lim_{x \to \infty} \left[\frac{x^2}{(x-a)(x+b)} \right]^x.$$

hints

$$\left[\frac{x^2}{(x-a)(x+b)}\right]^x = \left(\frac{x}{x-a}\right)^x \cdot \left(\frac{x}{x+b}\right)^x = \left(1 + \frac{a}{x-a}\right)^x \cdot \left(1 - \frac{b}{x+b}\right)^x = e^{a-b}.$$

Example 1.3. 求极限

$$\lim_{n\to\infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c}}{3} \right)^n.$$

hints 往 $(1 + \alpha(x))^{\beta(x)}$ 上凑

$$\left(\frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c}}{3}\right)^{n} = \left(1 + \frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c} - 3}{3}\right)^{n}$$

考虑 $\alpha(x)\beta(x)$

$$\frac{(\sqrt[n]{a}-1)+(\sqrt[n]{b}-1)+(\sqrt[n]{c}-1)}{3}\cdot n = \frac{1}{3}\left(\frac{\sqrt[n]{a}-1}{\frac{1}{n}}+\frac{\sqrt[n]{b}-1}{\frac{1}{n}}+\frac{\sqrt[n]{c}-1}{\frac{1}{n}}\right)$$

其中

$$\lim_{n \to \infty} = \frac{a^{\frac{1}{n}} - 1}{\frac{1}{n}} = \ln a$$

10 类型极限

Example 1.4. 若 $\lim \alpha(x) = 0$, $\lim \beta(x)\alpha(x) = 0$, 则

$$(1 + \alpha(x))^{\beta(x)} - 1 \sim \alpha(x)\beta(x).$$

hints 取对数

$$e^{\beta(x)\ln(1+\alpha(x))} - 1 \sim e^{\beta(x)\alpha(x)} - 1 \sim \beta(x)\alpha(x).$$

夹逼准则应用

Example 1.5. 求极限

 $\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n} \right).$ hints

 $\frac{n^2}{n^2 + n} \le s \le \frac{n^2}{n^2 + 1}.$

Example 1.6. 求极限 $\lim_{n \to 0^+} x \left\lceil \frac{1}{x} \right\rceil.$

hints $x-1 \leq [x] \leq x$

 $|x-1| \le |x| \le x$

Example 1.7. 求极限 $\lim_{n \to \infty} \frac{2^n}{n!}.$

hints $\left(\frac{2}{1}\right) \times \frac{2}{2} \times \frac{2}{3} \times \cdots \times \frac{2}{n}.$

级数相关的极限

Example 1.8. $\stackrel{.}{=} \lim_{n \to \infty} a_n = A$, \mathbb{M}

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A.$$

hints 直接考察

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - A \right| = \left| \frac{(a_1 - A) + (a_2 - A) + \dots + (a_n - A)}{n} \right|$$

因为 $\lim_{n\to\infty}a_n=A$,即对任意的 $\varepsilon>0$,可以找到一个 n_1 ,使得 $n>n_1$ 时有 $|x_n-A|<\varepsilon$,那么

$$\left| \frac{(a_1 - A) + (a_2 - A) + \dots + (a_{n_1} - A)}{n} + \frac{(a_{n_1 + 1} - A) + (a_{n_1 + 2} - A) + \dots + (a_n - A)}{n} \right|$$

$$\leq \frac{|a_1 - A| + |a_2 - A| + \dots + |a_{n_1} - A|}{n} + \frac{|a_{n_1 + 1} - A| + |a_{n_1 + 2} - A| + \dots + |a_n - A|}{n}$$

上述不等式右边第一项,形如 $\frac{C}{n}$,因为先对任意 $n>n_1$ 都有上述不等式成立,那么只需要让 n 取的大一点,就能使得 $\frac{C}{n}<\varepsilon$ (阿基米德公理). 右边第二项显然小于 $\frac{n-n_1}{n}\varepsilon$,于是综上

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - A \right| < \varepsilon + \frac{n - n_1}{n} \varepsilon < 2\varepsilon.$$

如果题目中没有直接给出极限的具体值,我们可以用 O.Stolz 定理先猜出来,然后用初等方法来验证,再根据极限的唯一性,就得到了答案. 把 a_n 换成形式,例如

$$\lim_{n \to \infty} \frac{1 + \sqrt[2]{2} + \dots + \sqrt[n]{n}}{n} = \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

Example 1.9. 求极限

$$x_n = \frac{1^k + 2^k + \dots + n^k}{n^{k+1}}.$$

hints 用 O.Stolz 定理考虑

$$\lim_{n \to \infty} \frac{n^k}{n^{k+1} - (n-1)^{k+1}} = \frac{1}{1+k}$$

这道题初等方法似乎不能很好的把握,有一个很 trick 的方法是将其看做积分定义

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n} \right)^k = \int_0^1 x^k = \frac{1}{k+1}.$$

级数相关的问题往往可以尝试考虑用定积分的思路来解决. 下面是 $1^k + 2^k + \cdots + n^k$ 的转换思路

$$\sum_{i=1}^{n} i^{k} = n^{k+1} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n} \right)^{k} \sim_{\infty} n^{k+1} \int_{0}^{1} x^{k} dx = \frac{n^{k+1}}{k+1}$$

Example 1.10. $\stackrel{\mbox{\tiny def}}{=} \lim_{n \to \infty} a_n = a, a_n > 0, \ \ \mbox{\tiny M}$

$$\lim_{n \to \infty} \ln \sqrt[n]{a_1 a_2 \cdots a_n} = \ln a.$$

hints

$$\ln \sqrt[n]{a_1 a_2 \cdots a_n} = \frac{\ln a_1 + \ln a_2 + \cdots + \ln a_n}{n}.$$

因为 $\ln x$ 的连续性,所以 $\lim_{n\to\infty} \ln a_n = \ln a$,再根据1.8.

Example 1.11. $\stackrel{\text{def}}{=} \lim_{n \to \infty} a_n = a, a_n > 0, \text{ }$

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a.$$

hints 取对数再根据1.10

$$\sqrt[n]{a_1 a_2 \cdots a_n} = e^{\ln \sqrt[n]{a_1 a_2 \cdots a_n}} = e^{\ln a} = a.$$

Example 1.12. 求极限

$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}.$$

hints 由 1.11 可知 a_n 和 $b_n = \sqrt[n]{a_1 a_2 \cdots a_n}$ 的极限是相同的 (假设 a_n 的极限存在). 那么我们设 $a_n = \frac{c_n}{c_{n-1}}, n = 2, \cdots$, 其中 $a_1 = c_1$, 即下述队列数列

$$c_1, \frac{c_2}{c_1}, \frac{c_3}{c_2}, \cdots, \frac{c_{n+1}}{c_n}, \cdots$$

则 $\lim_{n\to\infty} \sqrt[n]{c_n} = \lim_{n\to\infty} \frac{c_n}{c_{n-1}}$,只要等式右边的极限存在就行. 在这里我们只要设 $c_n = \frac{n!}{n^n}$ 即可,那么

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n \to \infty} \sqrt[n]{c_n} = \lim_{n \to \infty} \frac{(n)!}{(n)^n} \cdot \frac{n - 1^{n-1}}{(n-1)!} = \lim_{n \to \infty} \frac{(n-1)^{n-1}}{(n)^{n-1}} = \left(1 - \frac{1}{n}\right)^{n-1} = \frac{1}{e}.$$

去除根式的尴尬

Example 1.13. 求极限

$$\lim_{x\to+\infty} \left[\sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)} - x \right].$$

hints

$$(x + a_1)(x + a_2) \cdots (x + a_k) = x^k \left(1 + \frac{a_1 + a_2 + \cdots + a_k}{x} + \mathcal{O}\left(\frac{1}{x^2}\right) \right)$$

那么

$$\lim_{x \to +\infty} \left[\sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)} - x \right] = \lim_{x \to +\infty} x \left(\sqrt[k]{1 + \frac{a_1 + a_2 + \dots + a_k}{x}} + \mathcal{O}(\frac{1}{x^2}) - 1 \right)$$

$$= \lim_{x \to +\infty} x \cdot \frac{1}{k} \left(\frac{a_1 + a_2 + \dots + a_k}{x} + \mathcal{O}(\frac{1}{x^2}) \right)$$

$$= \frac{a_1 + a_2 + \dots + a_k}{k}$$

还有一种升次的方法, 即下面的恒等式

$$y-z = \frac{y^k - z^k}{y^{k-1} + y^{k-2}z + \dots + z^{k-1}}.$$

这里我们使得 $y = \sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)}$ 及 z=x, 那么原式就变成了

分母中 $\sqrt[k]{(1+\frac{a_1}{x})(1+\frac{a_2}{x})\cdots(1+\frac{a_k}{x})}$ 是趋于 1 的,再用一下函数 $x^{\frac{m}{n}}$ 的连续性,取其函数值也是等于 1,所以分母就有 $k\cdot 1$.

Example 1.14. 求极限

$$\lim_{n \to \infty} \sqrt[n]{n} = 1.$$

hints 取对数应用 e^x 的连续性

$$\lim e^{\frac{\ln n}{n}} = e^{\lim \frac{\ln n}{n}} = 1.$$

也可以使用一下15.1的伯努利不等式来证明,这里设 $\sqrt[n]{n} = 1 + h$,那么

$$n = (1+h)^n = 1 + nh + \frac{n(n-1)}{2}h^2 + \cdots$$

$$\Rightarrow n \ge \frac{n(n-1)}{2}h^2$$

$$\Rightarrow h^2 \le \frac{2}{n-1}.$$

当 $n \to \infty$ 时, $h \to 0$,即 $\sqrt[n]{n} - 1 \to 0$,所以 $\lim \sqrt[n]{n} = 1$.

Example 1.15. 求极限

$$\lim_{x \to +\infty} (\sqrt[6]{x^6 + x^5} - \sqrt[6]{x^6 - x^5})$$

 ${\bf hints}$ 考虑把根式里面变成 $(1+\alpha(x))$ 的形式,因此考虑提出一个因子 x

$$\lim_{x \to +\infty} x(\sqrt[6]{1+\frac{1}{x}} - \sqrt[6]{1-\frac{1}{x}}) = \lim_{x \to +\infty} \left(\frac{\sqrt[6]{1+\frac{1}{x}}}{\frac{1}{x}} - \frac{\sqrt[6]{1-\frac{1}{x}}}{\frac{1}{x}} \right) = \frac{1}{3}.$$

换元取极限

Example 1.16. 求极限

$$\lim_{x \to 0} \frac{\sqrt[m]{x+1} - 1}{x}, \ m \in \mathbb{N}.$$

hints 设 $y = \sqrt[n]{x+1} - 1$, 显然 y 在 x = 0 处连续,所以当 $x \to 0$ 时有 $y \to 0$,那么此时的极限就变成了

$$\lim_{y \to 0} \frac{y}{(y+1)^m - 1} = \frac{1}{m}.$$

这样上下都变成我们熟悉的多项式,分母二项式展开.

Example 1.17. 求极限

$$\lim_{x \to 0} \frac{(x+1)^{\frac{n}{m}} - 1}{x}.$$

hints 还是使得 $y = (x+1)^{\frac{1}{m}} - 1$,那么就变成了

$$\lim_{y \to 0} \frac{(1+y)^n - 1}{(1+y)^m - 1} = \lim_{y \to 0} \frac{(1+y)^n - 1}{y} \frac{y}{(1+y)m - 1} = \frac{n}{m}.$$

Example 1.18. 求极限

$$I = \lim_{x \to 0} \frac{\cos(xe^x) - e^{-\frac{x^2}{2}e^{2x}}}{x^4}.$$

hints 这里设 $xe^x = t$,则有

$$I = \lim_{t \to 0} \frac{\cos(t) - e^{-\frac{t^2}{2}}}{t^4} \cdot e^{4x} = \lim_{t \to 0} \frac{\cos(t) - e^{-\frac{t^2}{2}}}{t^4},$$

这里用泰勒展开是比较好的,

$$\begin{aligned} \cos t &= 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + o(t^4) \\ e^{-\frac{t^2}{2}} &= 1 + \frac{-\frac{t^2}{2}}{1!} + \frac{t^4}{4!} + o(t^4) \end{aligned}$$

因此

$$I = \lim_{t \to 0} \frac{\frac{t^4}{24} - \frac{t^4}{8} + o(t^4)}{t^4} = -\frac{1}{12}.$$

递归求极限

Example 1.19. 1.7 单调数列求极限

hints 考虑递归式

$$x_{n+1} = x_n \cdot \frac{2}{n+1},$$

等式两边同时取极限则有

$$a = a \cdot 0 \Rightarrow a = 0.$$

中值定理

Example 1.20. 求极限

$$\lim_{x \to +\infty} \frac{1}{2} x^2 [\ln \arctan(x+1) - \ln \arctan x].$$

hints 对连续函数 ln arctan x 应用中值定理

$$\lim_{x \to +\infty} \frac{1}{2} x^2 \frac{1}{[1 + (\theta + x)^2] \arctan(\theta + x)},$$

其中 $0 < \theta < 1$. 那么即有

$$\lim_{x\to +\infty} \frac{1}{2} \frac{x^2}{1+(\theta+x)^2} \frac{1}{\arctan(\theta+x)} = \frac{1}{\pi}.$$

含积分的极限

Example 1.21. 求极限

$$\lim_{x\to 0^+}\frac{\int_0^x \sqrt{x-t}e^t dt}{\sqrt{x^3}}$$

hints 这样的含参数积分最好的办法就是洛必达,但是这里首先需要换元一下以免对参数积分求导,令 u=x-t,则

$$\int_0^x \sqrt{x-t}e^t dt = \int_0^x \sqrt{u}e^{x-u} du = e^x \sqrt{u}e^{-u} du.$$

再用洛必达

$$\lim_{x\to 0^+} = \frac{e^x \sqrt{u} e^{-u} du}{x^{\frac{3}{2}}} = \lim_{x\to 0^+} \frac{\left(\int_0^x \sqrt{u} e^{-u} du\right)'}{\left(x^{\frac{3}{2}}\right)'} = \frac{x^{\frac{1}{2}} e^{-x}}{\frac{3}{2} x^{\frac{1}{2}}} = \frac{2}{3}.$$

没有具体的函数表达式

$$L = \lim_{h \to 0} \frac{\frac{f(a+h) - f(a)}{h} - f'(a)}{h}.$$

hints 直觉告诉它的结果和二阶导有关,但是任何初等方法都化不出来二阶导的定义,这个时候可以考虑用一下 洛必达

$$L = \lim_{h \to 0} \frac{f(a+h) - f(a) - hf'(a)}{h^2} = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{2h} = \frac{1}{2}f''(a).$$

三角函数相关

Example 1.23. 求

$$\lim_{n\to\infty}\sin^2(\pi\sqrt{n^2+n}).$$

hints 这个积分有点反直觉,主要是变量放在了 \sin 里面.这里可以充分利用 $\sin x$ 的性质

$$\lim_{n\to\infty}\sin^2(\pi\sqrt{n^2+n})=\lim_{n\to\infty}\sin^2[\pi(\sqrt{n^2+n}-n)]=\lim_{n\to\infty}\sin^2\left(\pi\frac{n}{\sqrt{n^2+n}+n}\right)=\sin^2\frac{\pi}{2}=1.$$

再来搞点不是那么反直觉的东西,

$$\lim_{n\to\infty}\sin^2\left(\pi n\sqrt{1+\frac{1}{n}}\right),$$

这里可以尝试将 $\sqrt{1+\frac{1}{x}}$ 展开,首先

$$\sqrt{1+x} = 1 + \frac{x}{2} + o(x),$$

于是

$$\sqrt{1 + \frac{1}{x}} = 1 + \frac{1}{2} \cdot \frac{1}{x} + o(\frac{1}{x})$$

因此

$$\lim_{n\to\infty}\sin^2\left(\pi n(1+\frac{1}{2}\cdot\frac{1}{n}+o(\frac{1}{n}))\right)=\sin^2\frac{\pi}{2}$$

Example 1.24. 求极限

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x}$$

hints 方法 1: 直接泰勒爆算即可, 其中

$$\cos(\sin x) = 1 - \frac{\sin^2}{2!} + \frac{\sin^4}{4!} + o(\sin^4).$$

再把 $\sin^x = x - \frac{x^3}{3!} + o(x^3)$ 带入,

$$\cos(\sin x) = 1 - \frac{(x - \frac{x^3}{3!} + o(x^3))^2}{2!} + \frac{(x - \frac{x^3}{3!} + o(x^3))^4}{4!} + o(x^4),$$

这里泰勒余项要把握好,因为分母等价无穷小为 $\frac{x^4}{2}$. 整理一下即有

$$\cos(\sin x) = 1 - \frac{x^2}{2!} + (\frac{1}{3!} + \frac{1}{4!})x^4 + o(x^4),$$

方法 2: 对分子用和差化积简化直接泰勒的压力,即

$$\cos(\sin x) - \cos x = \cos\left(\frac{\sin x + x}{2} + \frac{\sin x - x}{2}\right) - \cos\left(\frac{\sin x + x}{2} - \frac{\sin x - x}{2}\right),$$

于是

$$\cos(\sin x) - \cos x = -2\sin\left(\frac{\sin x + x}{2}\right)\sin\left(\frac{\sin x - x}{2}\right) \sim \frac{(\sin x + x)(x - \sin x)}{2},$$

因此

$$\lim_{x\to 0}\frac{\cos(\sin x)-\cos x}{(1-\cos x)\sin^2 x}=\lim_{x\to 0}\frac{x^2-\sin^2}{x^4}=\lim_{x\to 0}\frac{x^2-(x-\frac{x^3}{3}+o(x^3))^2}{x^4}=\lim_{x\to 0}\frac{\frac{2}{3!}x^4+o(x^4)}{x^4}=\frac{1}{3}.$$

极限存在性

Annotation 1.25. 左极限和右极限是否存在且相等.

Example 1.26. 求下述函数 $x \to 1$ 时的极限是否存在

$$f(x) = \frac{\sin \pi x}{x - 1} e^{\frac{1}{(x - 1)^3}}.$$

hints 其中

$$\lim_{x \to 1} \frac{\sin \pi x}{x - 1} = \lim_{x \to 1} \frac{-\sin(\pi(x - 1))}{x - 1} = -\pi,$$

而

$$\lim_{x \to 1^+} e^{\frac{1}{(x-1)^3}} = +\infty, \lim_{x \to 1^-} e^{\frac{1}{(x-1)^3}} = 0,$$

因此 $\lim_{x\to 1} f(x)$ 不存在.

积分定义

Example 1.27. 求

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln(1 + \frac{k}{n}).$$

hints看见这种对求和取极限的,可以考虑一下积分的定义. 这里有

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln(1 + \frac{k}{n}) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \cdot \frac{k}{n} \ln(1 + \frac{k}{n}) = \int_{0}^{1} x \ln(1 + x) dx = \frac{1}{4},$$

求解上述积分可以用分部积分把 x 提到微分符号里面去.

导数

导数定义相关的

Example 2.1. 已知 $f'(x_0) = -1$, 求

$$\lim_{x \to 0} \frac{x}{f(x_0 - 2x) - f(x_0 - x)}.$$

hints直觉上就是想办法凑导数的定义出来

$$\lim_{x \to 0} \frac{f(x_0 - 2x) - f(x_0)}{-2x} = -1$$

$$\lim_{x \to 0} \frac{f(x_0 - x) - f(x_0)}{-x} = -1$$

求出需要 $\lim_{x\to 0} \frac{f(x_0-2x)-f(x_0)}{x}$ 和 $\lim_{x\to 0} \frac{f(x_0-x)-f(x_0)}{x}$, 两项相减再取倒.

Example 2.2. 已知 $f(x) = \begin{cases} x, & x \leq 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x < \frac{1}{n}, n = 0, 1, 2, \cdots \end{cases}$, 判断 f(x) 在 x = 0 是否可导. hints 当 $x \to 0^+$ 时, $n \to \infty$,那么 $\frac{1}{n} \to 0$,因此 f(x) 在 x = 0 这点连续. 再来研究 f(x) 在 x = 0 这一点

的右导数

$$\lim_{x \to 0^+} \frac{\frac{1}{n}}{x} = \frac{1}{nx},$$

显然有点无从下手,需要用一下分段函数的性质

$$\frac{1}{n+1} < x < \frac{1}{n} \Rightarrow n \le \frac{1}{x} \le n+1 \Rightarrow 1 \le \frac{1}{nx} \le \frac{n+1}{n},$$

对上面不等式取极限再用一下夹逼定理,可知 $\lim_{x\to 0^+} \frac{1}{nx} = 1$. 因此 f(x) 在 x=0 这里可导.

泰勒公式求高阶导数

Example 2.3. 已知函数 $f(x) = \frac{1}{1+x^2}$, 求 $f^{(3)}(0)$.

 ${\bf hints}$ 直接求 3 阶导是比较麻烦,这里可以使用泰勒展开再求导. 首先考虑 $\frac{1}{1+x}$ 在 x=0 处的展开

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n.$$

那么

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 \cdots$$

因此 $f^{(3)}(0) = 0$.

递归法求高阶导数

Example 2.4. 设

$$f(x) = \frac{\arcsin x}{\sqrt{1 - x^2}},$$

求 $f^{(n)}(0)$.

hints 这道题你想求它的麦克劳林级数其实不太好求 (https://math.stackexchange.com/questions/549028/deriving-maclaurin-series-for-frac-arcsin-x-sqrt1-x2), 实际上也不用求出通项,因为只需要求 x=0 的情况,这里有比较 trick 的利用递归式的手法. 先求它的一阶导

$$f'(x) = \frac{1 + \frac{x}{\sqrt{1 - x^2}} \arcsin x}{1 - x^2} = \frac{x}{(1 - x)^{3/2}} \arcsin x + \frac{1}{1 - x^2}.$$

这里构造一个微分方程

$$(1 - x^2)f'(x) - xf(x) - 1 = 0$$

两边求 n 次,根据 n 阶莱布尼茨公式有

$$(1 - x^{2})f^{(n+1)}(x) - (2n+1)xf^{n}(x) - n^{2}f^{(n-1)}(x) = 0.$$

带入 x=0, 这里就可能消掉 $f^{(n)}$ 的项,得到一个递归式

$$f^{(n+1)}(0) - n^2 f^{(n-1)}(0) = 0.$$

这里我们让 n = n + 1,则有

$$f^{(n+2)}(0) = (n+1)^2 f^{(n)}(0).$$

我们可以求出最前面的两项 f'(0) = 1 和 f''(0) = 0,于是这里有

$$f^{n}(0) = \begin{cases} 0 & n = \hat{\sigma} \\ (n-1)^{2} \times (n-2)! \times \dots \times 2! & n = \mathcal{M} \end{cases}$$

奇数下的情况可以化简为 $2^{n-1}((\frac{n-1}{2})!)^2$

函数性质

求零点

hints 这样的题目最好还是构造相应的函数,用罗尔定理来做. 简单分析一下,如果使用罗尔我们需要分别找到两对函数值相同的点对,每对点确定一个 f'(x) 的零点. 这里只有 f(a) 和 f(b) 给我们用,因此我们需要分别找到一个函数值和它们相等的点.

设 g(x) = f(x) - f(a) 和 h(x) = f(x) - f(b),那么我们思路就变为了确定 g(x) 和 h(x) 的一个零点.而确定 g(x) 和 h(x) 零点,我们可以用零点定理来做.由于 $f'_{+}(a) > 0$,根据导数的定义有

$$\lim_{x \to 0^+} \frac{f(a+x) - f(a)}{x} > 0 \Rightarrow f(a+\xi_1) > f(a), \xi_1 > 0$$

同理,由于 $f'_{-}(b) > 0$,我们可以得到

$$\lim_{x \to 0^+} \frac{f(b-x) - f(b)}{-x} > 0 \Rightarrow f(b-\xi_2) < f(b), \xi_2 > 0.$$

注意这里的 ⇒ 用到的是极限的保号性. 于是这里由零点定理有

$$g(a+\xi_1) > 0, g(b-\xi_1) < 0 \Rightarrow g(\theta_1) = 0, a+\xi_1 < \theta_1 < b-\xi_1$$

因此存在 $f(\theta_1) = f(a)$. 同理有

$$h(a + \xi_1) > 0, h(b - \xi_2) < 0 \Rightarrow g(\theta_2) = 0, a + \xi_1 < \theta_2 < b - \xi_1$$

其中因为 $f(a + \xi_i) > a \ge b$ 才有 $h(a + \xi_1) > 0$, 因此存在 $f(\theta_2) = f(b)$.

但是我们还不确定 θ_1 和 θ_2 的关系. 因此需要分类讨论一下,若 $\theta_1 \le \theta_2$,则根据罗尔定理我们可以在 (a, θ_1) 及 (θ_2, b) 上各找到一个零点. 若 $\theta_1 > \theta_2$,此时由 $g(a + \xi_1) > 0$, $g(\theta_2) \le 0$,存在一点 θ_3 使得 $f(\theta_3) = a$,同理由 $g(\theta_1) \ge 0$, $g(b - \xi_2) < 0$,可以找到一点 θ_4 使得 $f(\theta_4) = b$,这样 $\theta_3 < \theta_4$,回到了前面一种情况. 证闭!

经典证明题

不定积分

多项式分式

Example 4.1. 求

$$\int \frac{x^4 - x^2}{1 + x^2} dx.$$

hints 还是得部分分式

$$\frac{x^4 - x^2}{1 + x^2} = \frac{(x^4 - 1) - (x^2 + 1) + 2}{1 + x^2} = x^2 + \frac{2}{1 + x^2} - 2.$$

因此原函数为

$$\frac{x^3}{3} + 2\arctan x - 2x + C,$$

Example 4.2. 求

$$\int \frac{x+5}{x^2-6x+13} dx.$$

hints 观察分子多项式次数小于分母的,且只小一次,所以我们考虑这样部分分式

$$\frac{1}{2} \int \frac{2x-6}{x^2-6x+13} dx + 8 \int \frac{1}{x^2-6x+13} dx = \frac{1}{2} \int \frac{1}{x^2-6x+13} d(x^2-6x+13) + 8 \int \frac{1}{4+(x-3)^2} dx,$$

因此原函数为

$$\frac{1}{2}\ln(x^2 - 6x + 13) + 4\arctan\frac{x - 3}{2} + C.$$

Example 4.3. \bar{x}

$$\int \frac{x}{x^4 + 2x^2 + 5} dx$$

hints 观察分子多项式次数小于分母, 且小两次, 所以我们考虑这样部分分式

$$\int \frac{x}{4 + (x^2 + 1)^2} dx = \frac{1}{2} \int \frac{1}{4 + (x^2 + 1)^2} d(x^2 + 1) = \frac{1}{4} \arctan \frac{x^2 + 1}{2} + C$$

分母带根号

Example 4.4. 求

$$\int \frac{dx}{\sqrt{x(4-x)}}.$$

hints 根号下凑平方

$$\int \frac{1}{\sqrt{4 - (x - 2)^2}} d(x - 2) = \arcsin \frac{x - 2}{2} + C$$

Example 4.5. 求

$$\int \frac{2-x}{\sqrt{3+2x-x^2}} dx.$$

hints 先分式把分子根号里面的微分

$$\int \frac{2-x}{\sqrt{3+2x-x^2}} dx = \int \frac{1-x}{\sqrt{3+2x-x^2}} dx + \int \frac{1}{\sqrt{3+2x-x^2}} dx = \frac{1}{2} \int \frac{1}{\sqrt{3+2x-x^2}} d(3+2x-x^2) + \int \frac{1}{\sqrt{4-(x-1)^2}} dx,$$

因此原函数为

$$\sqrt{3+2x-x^2} + \arcsin\frac{x-1}{2} + C$$

Example 4.6. 求

$$\int \frac{x^2}{\sqrt{a^2 - x^2}} dx$$

hints 这是实在没办法处理根号的时候,考虑第二类换元,令 $x = a \sin t$,则

$$\int \frac{a^2 \sin^2 t}{a \cos t} \cdot a \cos t dt = \frac{a^2}{2} \int 1 - \cos 2t dt = \frac{a^2 t}{2} - \frac{a^2}{4} \sin 2t.$$

把 t 变成 x 也有一点技巧,第二项可以变成 $\frac{1}{2}(a\sin t)(a\cos t)$,其中 $a\sin t = x, a\cos t = \sqrt{a^2-x^2}$,这样会方便一点

$$\frac{a^2 \arcsin \frac{x}{a}}{2} - \frac{x}{2} \sqrt{a^2 - x^2} + C$$

Example 4.7. 求

$$\frac{dx}{x\sqrt{x^4+1}}.$$

hints 这里还是要凑根号下的微分,有比较多的凑法,这里提及一种凑微分再配合三角换元的,

$$\frac{dx}{x\sqrt{x^4+1}} = \int \frac{1}{2} \frac{dx^2}{x^2\sqrt{(x^2)^2+1}},$$

今 $x^2 = \tan u$,于是得到

$$\frac{1}{2} \int \frac{1}{\sin u} du = \frac{1}{2} \ln|\csc u + \cot u|.$$

再带回 x 即可.

Example 4.8. 求

$$\int \frac{dx}{\sqrt{1+x^2}(1+x^2)}.$$

hints 这里目标肯定是换元换成我们熟悉的积分,但是找不到因子提到微分符号里面,这时可以分母提一个 x^3 出来,就可以换元了

$$\int \frac{dx}{x^3 \sqrt{1 + \frac{1}{x^2}} (1 + \frac{1}{x^2})} = -\frac{1}{2} \int \frac{d(1 + \frac{1}{x^2})}{\sqrt{1 + \frac{1}{x^2}} (1 + \frac{1}{x^2})} = \frac{1}{\sqrt{1 + \frac{1}{x^2}}} + C$$

这里也可以尝试令 $x = \frac{1}{t}$, 有

$$-\int \frac{tdt}{\sqrt{1+t^2}(1+t^2)} = -\int \frac{d\sqrt{1+x^2}}{1+x^2}$$

当然也可以爆算设 $x = \tan u$,则

$$\int \frac{\sec^2 u}{\sec^3 u} du = \int \cos u dx$$
$$= -\sin u$$

我们可以计算得到 $\sec^2 u = 1 + x^2$,因此 $\sin u = \frac{\tan u}{\sec u} = \frac{x}{\sqrt{1+x^2}}$. 似乎这样更简单...

换元法

Example 4.9. 求

$$\int \sqrt{1+e^x} dx$$

hints 考虑第二类换元, 令 $x = \ln(t^2 - 1)$, 则

$$\int t \cdot \frac{2t}{t^2 - 1} dt = 2 \int 1 + \frac{1}{t^2 - 1} dt = 2t + \ln\left|\frac{t - 1}{t + 1}\right| + C$$

带入 $t = \sqrt{e^x + 1}$, 即得

$$2\sqrt{e^x + 1} + \ln\frac{\sqrt{e^x + 1} - 1}{\sqrt{e^x + 1} + 1} + C$$

高次

分部积分

三角有理式

Example 4.10. 求

$$\int \frac{dx}{\cos x (1 + \sin x)}.$$

hints 这里有一个非常巧妙的第二类换元, 令 $x = \arcsin u$, 则

$$\int \frac{1}{\sqrt{1-u^2}(1+u)} \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{(1+u)(1-u^2)} du.$$

再把有理式拆开,这过程使用待定系数的方法

$$\int \frac{1}{(1+u)(1-u^2)} du = \frac{1}{2} \int \frac{1}{1-u^2} + \frac{1}{(1+u)^2} du = -\frac{1}{4} \ln \left| \frac{1-u}{1+u} \right| - \frac{1}{2} \frac{1}{(1+u)}.$$

最后即有

$$-\frac{1}{4}\ln\left|\frac{1-\sin x}{1+\sin x}\right| - \frac{1}{2}\frac{1}{1+\sin x} + C.$$

这里还可以做一下变换

$$\int \frac{\cos x dx}{\cos^2 x (1+\sin x)} = \int \frac{d\sin x}{(1-\sin^2)(1+\sin x)}$$
$$= \int \frac{1}{4(1-\sin x)} + \frac{1}{4(1+\sin x)} + \frac{1}{2(1+\sin x)^2} d\sin x$$

这样做也比较简单.

Example 4.11. 求

$$\int \frac{dx}{\sin x (\sin x + \cos x)}.$$

hints 考虑第二类换元, 令 $x = \operatorname{arccot} u$, 则有

$$-\int \frac{1}{\frac{1}{\sqrt{1+u^2}}(\frac{1}{\sqrt{1+u^2}} + \frac{u}{\sqrt{1+u^2}})} \frac{1}{1+u^2} du = -\int \frac{1}{1+u} du = -\ln|u| + C = -\ln|1 + \cot x| + C.$$

也可以做一个小变换

$$\int \frac{\sin^2 x + \cos^2 x}{\sin x (\sin x + \cos x)} dx = \int \frac{\tan^2 + 1}{\tan(\tan + 1)} dx$$
$$= \int \frac{d \tan x}{\tan(\tan + 1)}$$
$$= \ln|\tan x| - \ln|\tan + 1| + C$$
$$= \ln\left|\frac{\tan x}{\tan x + 1}\right| + C$$

Example 4.12. 求

$$\int \frac{\sin x}{\sin x + \cos x} dx$$

hints 暴力合并

$$\int \frac{\sin x}{\sin x + \cos x} dx = \int \frac{\frac{1}{2} \sin 2x - \frac{1}{2} (1 - \cos 2x)}{\cos 2x} dx$$

$$= -\frac{1}{4} \int \frac{1}{\cos 2x} d\cos 2x - \frac{1}{2} \int \sec 2x dx + \frac{x}{2}$$

$$= -\frac{1}{4} \ln|\cos 2x| - \frac{1}{4} \ln|\sec 2x + \tan 2x| + \frac{x}{2} + C = -\frac{1}{4} \ln|1 + \sin 2x| + \frac{x}{2} + C$$

还有一种比较理想是思路,是把分子往 $d(\sin x + \cos x)$ 上凑,即

$$\int \frac{\sin x}{\sin x + \cos x} dx = \int \frac{\frac{1}{2}(\sin x - \cos x) + \frac{1}{2}(\sin x + \cos x)}{\sin x + \cos x}$$
$$= \int \frac{1}{2} dx - \frac{1}{2} \int \frac{d\sin x + \cos x}{\sin x + \cos x}$$
$$= \frac{x}{2} - \frac{1}{2} \ln|\cos x + \sin x| + C$$

其中 $1 + \sin 2x = (\sin x + \cos x)^2$.

递归式

Example 4.13. 求

$$\int e^{ax} \cos nx dx.$$

hints 连续分部积分 2 次回到原积分,总是把 e^{ax} 提到积分符号里面.

$$\int e^{ax} \cos nx dx = \frac{1}{a} \int \cos nx de^{ax} = \frac{1}{a} \left(e^{ax} \cos nx + n \int e^{ax} \sin nx dx \right)$$
$$= \frac{1}{a} \left[e^{ax} \cos nx + \frac{n}{a} \left(e^{ax} \sin nx - n \int e^{ax} \cos nx dx \right) \right]$$

整理两边即得

$$\frac{n^2 + a^2}{a^2} \int e^{ax} \cos nx dx = \frac{ae^{ax} \cos nx + ne^{ax} \sin nx}{a^2} \Rightarrow \int e^{ax} \cos nx dx = \frac{ae^{ax} \cos nx + ne^{ax} \sin nx}{a^2 + n^2}$$

类似的有

$$\int e^{ax} \sin nx dx = \frac{ae^{ax} \sin nx - ne^{ax} \cos nx}{a^2 + n^2}$$

被积函数含不常见函数形式

Example 4.14. 求

$$\int \frac{\arcsin e^x}{e^x} dx.$$

hints 必须得想办法处理 $arcsin e^x$,因为我们没有已知原函数导数为反三角的,这里自然地就要使用部分积分了

$$-\int \arcsin e^x d(e^{-x}) = -\frac{\arcsin e^x}{e^x} + \int e^{-x} \frac{e^x}{\sqrt{1 - e^{2x}}} dx = \int \frac{1}{\sqrt{1 - e^{2x}}} dx.$$

这里令 $t = \sqrt{1 - e^{2x}}$,那么 $x = \frac{\ln(1 - t^2)}{2}$, $dx = \frac{-t}{1 - t^2}dt$,于是

$$\int \frac{1}{t} \frac{-t}{1-t^2} dt = \int \frac{1}{t^2-1} dt = \frac{1}{2} \ln \left| \frac{t-1}{t+1} \right| + C = \frac{1}{2} \ln \frac{\sqrt{1-e^{2x}}-1}{\sqrt{1-e^{2x}}+1} + C.$$

因此

$$\int \frac{\arcsin e^x}{e^x} dx = -\frac{\arcsin e^x}{e^x} + \frac{1}{2} \ln \frac{\sqrt{1 - e^{2x}} - 1}{\sqrt{1 - e^{2x}} + 1} + C$$

Example 4.15. 求

$$\int \ln\left(1+\sqrt{\frac{1+x}{x}}\right)dx, x>0$$

hints 根号下的有理分式,得先有理化,同时这是 ln 结构的积分,再优先考虑分部积分,令 $t=\sqrt{\frac{1+x}{x}}$,那么 $x=\frac{1}{t^2-1}$,于是

$$\int \ln(1+t)d\left(\frac{1}{t^2-1}\right) = \frac{\ln(1+t)}{t^2-1} - \int \frac{1}{(1+t)^2(t-1)}dt,$$

其中

$$\int \frac{1}{(1+t)^2(t-1)} dt = \frac{1}{2} \int \frac{(t+1) - (t-1)}{(1+t)^2(t-1)} dt = \frac{1}{2} \int \frac{1}{t^2 - 1} - \frac{1}{(1+t)^2} dt = \frac{1}{4} \ln \left| \frac{t-1}{t+1} \right| + \frac{1}{2(1+t)} + C.$$

因此

$$\int \ln\left(1+\sqrt{\frac{1+x}{x}}\right)dx = \frac{\ln(1+t)}{t^2-1} + \frac{1}{4}\ln\left|\frac{t-1}{t+1}\right| + \frac{1}{2(1+t)} + C.$$

最后带入 x.

定积分

参数积分求导

Example 5.1. 设 f(x) 连续,求

$$\frac{d}{dx} \int_0^x t f(x^2 - t^2) dt.$$

hints 对于这种第二类的参数积分,应该有比较简洁的结果的,首先应该换元试试,令 $u=x^2-t^2$,那么即有

$$-\frac{1}{2} \int_{x^2}^0 f(u) du = \frac{1}{2} \int_0^{x^2} f(u) du$$

因此

$$\frac{1}{2}\frac{d}{dx}\int_0^{x^2} f(u)du = xf(x^2).$$

奇怪的定积分

hints 这题暂时有问题,题目似乎有问题,可以用分部积分

$$\int_0^{\pi} f(x)dx = xf(x)\big|_0^{\pi} - \int_0^{\pi} xf'(x)dx = \pi \int_0^{\pi} \frac{\sin x}{\pi - x}dx - \int_0^{\pi} x \cdot \frac{\sin x}{\pi - x}dx = \int_0^{\pi} \sin x dx = 2.$$

不太好积的带三角函数的积分

Example 5.3. 求

$$I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx.$$

hints 如果不能一眼看出来

$$I = -\int_0^\pi x d \arctan \cos x = - \left. x \arctan \cos x \right|_0^\pi + \int_0^\pi \arctan \cos x.$$

后面这个积分,令 $u = \pi - x$,则可以得到

$$\int_0^{\pi} \arctan\cos x = -\int_0^{\pi} \arctan\cos x,$$

即它是等于零的.

尝试方法 我们要充分利用三角函数的性质,一开始我们令 $u = \pi - x$,则有

$$I = \int_0^{\pi} \frac{(\pi - u)\sin u}{1 + \cos^2 u} \to 2I = \pi \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} dx = -\pi \arctan \cos x \Big|_0^{\pi} = \frac{\pi^2}{2}$$

待定系数收敛反常积分

Example 5.4. 求满足下式的 a, b

$$\int_{1}^{+\infty} \left[\frac{2x^2 + bx + a}{x(2x+a)} - 1 \right] dx = 1$$

hints 首先化简一下

$$\int_{1}^{+\infty} \frac{(b-a)x+a}{2x^2+ax} dx$$

若上述积分收敛,则 b = a. 于是

$$\int_{1}^{+\infty} \frac{a}{2x^2 + ax} dx = \int_{1}^{+\infty} \frac{1}{x} - \frac{2}{2x + a} dx = \ln \frac{x}{2x + a} \Big|_{1}^{+\infty} = \ln \frac{1}{2} - \ln \frac{1}{2 + a} = 1 \Rightarrow a = 2e - 2.$$

化为极限形式

Example 5.5. 求

$$\int_0^{+\infty} \frac{xe^{-x}}{(1+e^{-x})^2} dx$$

hints 考虑部分分式

$$\int_0^{+\infty} \frac{xe^{-x}}{(1+e^{-x})^2} dx = \int_0^{+\infty} x d\frac{1}{1+e^{-x}} = \frac{x}{1+e^{-x}} \bigg|_0^{+\infty} - \int_0^{+\infty} \frac{1}{1+e^{-x}} dx$$

你会发现第一个积分是发散的,这里我们考虑把它转换为极限的形式

$$\lim_{a \to +\infty} \left[\frac{x}{1 + e^{-x}} \right|_0^a - \int_0^a \frac{1}{1 + e^{-x}} dx \right] = \lim_{a \to +\infty} \left[\frac{a}{1 + e^{-a}} - \int_0^a \frac{e^x}{1 + e^x} dx \right] = \lim_{a \to +\infty} \left[\frac{a}{1 + e^{-a}} - \ln(1 + e^a) + \ln 2 \right]$$

其中

$$\lim_{a \to +\infty} \left[\frac{a}{1+e^{-a}} - \ln(1+e^a) \right] = \lim_{a \to +\infty} \frac{1}{1+e^{-a}} (a - (1+e^{-a}) \ln(1+e^a)) = \lim_{a \to +\infty} \ln e^a - \ln(1+e^a) - \frac{\ln(1+e^a)}{e^a} = 0$$

因此原积分等于 ln 2.

被积函数带绝对值

Example 5.6. 求曲线 $y = e^{-x} \sin x + 5 x$ 轴之间图形的面积.

hints 由题意面积 S 为

$$S = \int_0^{+\infty} e^{-x} |\sin x| dx,$$

没有办法直接计算, 因此考虑把它看成分段函数

$$S = \int_0^{\pi} e^{-x} \sin x dx - \int_{\pi}^{2\pi} e^{-x} \sin x dx + \int_{2\pi}^{3\pi} e^{-x} \sin x dx - \cdots,$$

我们再来研究一下被积函数的原函数

$$\int e^{-x} \sin x dx = -\int \sin x de^{-x}$$

$$= -e^{-x} \sin x + \int e^{-x} \cos x dx$$

$$= -e^{-x} \sin x - \int \cos x de^{-x}$$

$$= -e^{-x} \sin x - e^{-x} \cos x - \int e^{-x} \sin x dx$$

由此可以推出

$$\int e^{-x} \sin x dx = \frac{-e^{-x}(\sin x + \cos x)}{2}.$$

于是

$$\int_{k\pi}^{(k+1)\pi} e^{-x} \sin x dx = \frac{-e^{-(k+1)\pi} \cos(k+1)\pi + e^{-k\pi} \cos k\pi}{2} \quad k = 0, 1, \dots$$

$$= \frac{(-1)^k e^{-(k+1)\pi} + (-1)^k e^{-k\pi}}{2}$$

$$= (-1)^k \cdot \frac{e^{-(k+1)\pi} + e^{-k\pi}}{2}$$

最终

$$S = \sum_{k=0}^{+\infty} \frac{e^{-(k+1)\pi} + e^{-k\pi}}{2} = \frac{e^{-\pi} + 1}{2 - 2e^{-\pi}} = \frac{e^{\pi} + 1}{2e^{\pi} - 2}.$$

级数定积分

Example 5.7. 设 $a_n = \int_0^1 x^n \sqrt{1-x^2} dx$. 证明 $a_n = \frac{n-1}{n-2} a_{n-2}$.

hints 这道题主要就是在研究怎么拆 a_n , 首先你可以做一些尝试性的工作, 比如

$$a_{n-2} - a_n = \int_0^1 x^{n-2} (1-x)^{\frac{3}{2}} dx,$$

但是似乎还是没有什么用,先放着. 观察 a_n 的形式是一个多项式乘上一个函数,那么将 a_n 朝 a_{n-2} 努力,我们首先要拆出 x^{n-2} ,大致方向应该是朝部分积分努力. 于是

$$a_n = \int_0^1 x^n \sqrt{1 - x^2} dx = -\frac{1}{3} \int_0^1 x^{n-1} d(1 - x^2)^{\frac{3}{2}}$$

$$= -\frac{1}{3} x^{n-1} (1 - x^2)^{\frac{3}{2}} \Big|_0^1 + \frac{n-1}{3} \int x^{n-2} (1 - x^2)^{\frac{3}{2}} dx$$

$$= \frac{n-1}{3} \int x^{n-2} (1 - x^2)^{\frac{3}{2}} dx$$

结合前面我们前面得到的那个式子

$$a_n = \frac{n-1}{3}(a_{n-2} - a_n) \Rightarrow a_n = \frac{n-1}{n-2} \cdot a_{n-2}.$$

反常积分

含有 e^x 的被积函数

Example 6.1. 讨论下述积分的收敛性

$$\int_{a}^{+\infty} x^{\mu} e^{-ax} dx \ (\mu, a > 0).$$

hints 比较审敛法,取任意的 $\lambda > 1$, 即 $\frac{1}{x^{\lambda}}$ 是收敛的,于是

$$\lim_{x\to +\infty}\frac{x^{\mu}e^{-ax}}{\frac{1}{x^{\lambda}}}=\frac{x^{u+\lambda}}{e^{ax}}=0,$$

因此原无穷积分也是收敛的.

Example 6.2. 讨论下述积分的收敛性

$$\int_0^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}}.$$

hints 这里需要注意两个上下积分限都需要考察,我们可以将上述积分划分为

$$\int_0^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}} = \int_0^A \frac{x dx}{\sqrt{e^{2x} - 1}} + \int_A^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}},$$

其中 $A \in (0, +\infty)$. 当 $x \to 0$ 时,取 $0 < \lambda < 1$,于是

$$\lim_{x \to 0} \frac{\frac{x}{\sqrt{e^{2x} - 1}}}{\frac{1}{x}^{\lambda}} = \frac{x^{1+\lambda}}{\sqrt{e^{2x} - 1}} = 0,$$

即积分 $\int_0^A \frac{xdx}{\sqrt{e^{2x}-1}}$ 是收敛的. 当 $x \to \infty$ 时,取 $\lambda > 1$,于是

$$\lim_{x \to \infty} \frac{\frac{x}{\sqrt{e^{2x} - 1}}}{\frac{1}{x}^{\lambda}} = \frac{x^{1+\lambda}}{\sqrt{e^{2x} - 1}} = 0,$$

定积分的应用

Example 6.3. 设无穷长直线 L 的线密度为 1,引力常数为 k,求距 L 距离为 a 的单位质点与 L 的万有引力. hints 首先得知道万有引用公式 $F=k\frac{Mn}{r^2}$. 再考虑直线上某个点对给定单位质点的引力,然后考虑这些引力的合成. 示意图为

设 L 所在的直线为 x 轴, y 轴过给定的单位质点. 由示意图这些力的合成一定是在 y 轴上的,关于 F_y 的微分为

$$dF_y = k \frac{kdx}{a^2 + x^2} \cos b = \frac{kadx}{(a^2 + k^2)^{\frac{3}{2}}}$$

因此

$$F_y = \int_{-\infty}^{+\infty} \frac{kadx}{(a^2 + k^2)^{\frac{3}{2}}} = 2ka \int_0^{+\infty} \frac{dx}{(a^2 + k^2)^{\frac{3}{2}}}$$

$$F_y = 2ka \int_0^{\frac{\pi}{2}} \frac{a \sec^2 u}{a^3 \sec^3 du} du = \frac{2k}{a} \int_0^{\frac{\pi}{2}} \cos x dx = \frac{2k}{a}$$

待定参数

Example 6.4. 反常积分

$$\int_0^{+\infty} \frac{1}{x^a (1+x)^b} dx$$

收敛, 求 a,b.

hints 这道题还是用柯西审敛法,注意要同时考虑积分上下限. 当 $x\to +\infty$,那么就要和 $\frac{1}{x^{\lambda}}(\lambda>1)$ 比较,于是有

$$\lim_{x \to \infty} \frac{\frac{1}{x^a(1+x)^b}}{\frac{1}{x^{\lambda}}} = \frac{x^{\lambda - (a+b)}}{\left(\frac{1}{x} + 1\right)^b},$$

其中分母是趋于 1,为保证分子不趋于无穷,则需要 $\lambda \leq (a+b)$,即 a+b>1. 当 $x\to 0$ 时,那么就要和 $\frac{1}{x^{\lambda}}(\lambda < 1)$ 比较,于是有

$$\lim_{x \to 0} \frac{\frac{1}{x^a (1+x)^b}}{\frac{1}{x^{\lambda}}} = \frac{1}{x^{a-\lambda} (1+x)^b},$$

其中 $(1+x)^b \rightarrow 0$, 则 $a \le \lambda$, 即 a < 1.

分离积分

Example 6.5. 讨论下述积分的收敛性

$$\int_0^{+\infty} \frac{\sin x}{x^2} dx = \int_0^{\frac{\pi}{2}} \frac{\sin x}{x^2} dx + \int_{\frac{\pi}{2}}^{+\infty} \frac{\sin x}{x^2} dx$$

hints 其中后面这个积分在柯西判别法很容易确定是收敛的(实际上可以用狄利克雷判别法),因为总是满足

$$f(x) \le \frac{1}{x^2}$$

那么前面这个积分可以做一下变换

$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{x^2} dx = \int_0^{\frac{\pi}{2}} \frac{1}{x} \cdot \frac{\sin x}{x} dx \ge \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \frac{1}{x}$$

这是因为 $\frac{\sin x}{x}$ 在 $(0,\frac{\pi}{2}]$ 上是单调减的,因此 $\frac{\sin x}{x} \leq \frac{\pi}{2}, x \in (0,\frac{\pi}{2}]$ 这一点求两次导即可知道,所以前面这个积分是发散的. 因此整个积分是发散的.

推广导一般形式

$$\int_0^{+\infty} \frac{\sin x}{x^p} dx,$$

- 1. 当 $p \le 0$ 时,显然发散.
- 2. 当 0 时,条件收敛.
- 3. 当 1 时,绝对收敛.
- 4. 当 $p \ge 2$ 时,发散.

求值

Example 6.6. 求

$$I = \int_0^{+\infty} \frac{dx}{1 + x^4}.$$

hints 方法 1 设 $u=\frac{1}{x}$, 则有

$$I = \int_0^{+\infty} \frac{u^2}{1 + u^4} du$$

把这个积分和原积分加起来

$$2I = \int_0^{+\infty} \frac{1+x^2}{1+x^4} dx = \int_0^{+\infty} \frac{1+\frac{1}{x^2}}{\frac{1}{x^2}+x^2} dx = \int_0^{+\infty} \frac{1+\frac{1}{x^2}}{(x-\frac{1}{x})^2+2} dx$$

这里设 $t = x - \frac{1}{x}$,有

$$\int_{-\infty}^{+\infty} \frac{1}{t^2 + 2} dt = \frac{1}{\sqrt{2}} \arctan \frac{t}{\sqrt{2}} \Big|_{-\infty}^{+\infty} = \frac{\pi}{\sqrt{2}}$$

因此 $I = \frac{\pi}{2\sqrt{2}}$.

方法2可以考虑直接部分分式即,其中分母可以分解为

$$1 + x^4 = 1 + 2x^2 + x^4 - 2x^2 = (1 + x^2)^2 - 2x^2 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1).$$

因此

$$\frac{1}{1+x^2} = \frac{Ax+B}{x^2+\sqrt{2}x+1} + \frac{Cx+D}{x^2-\sqrt{2}x+1} = \frac{\frac{1}{2\sqrt{2}}x+\frac{1}{2}}{x^2+\sqrt{2}x+1} + \frac{-\frac{1}{2\sqrt{2}}x+\frac{1}{2}}{x^2-\sqrt{2}x+1}$$

即

$$\frac{2\sqrt{2}}{1+x^2} = \frac{x+\sqrt{2}}{x^2+\sqrt{2}x+1} - \frac{x-\sqrt{2}}{x^2-\sqrt{2}x+1}$$

原积分可以写作

$$I = \frac{1}{2\sqrt{2}} \int_0^{+\infty} \frac{x + \sqrt{2}}{x^2 + \sqrt{2}x + 1} - \frac{x - \sqrt{2}}{x^2 - \sqrt{2}x + 1} dx = \frac{1}{2\sqrt{2}} \int_0^{+\infty} \frac{x + \sqrt{2}}{(x + \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} - \frac{x - \sqrt{2}}{(x - \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} dx$$

再继续拆

$$I = \frac{1}{2\sqrt{2}} \int_0^{+\infty} \frac{x + \frac{\sqrt{2}}{2}}{(x + \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} + \frac{\frac{\sqrt{2}}{2}}{(x + \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} - \frac{x - \frac{\sqrt{2}}{2}}{(x - \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} + \frac{\frac{\sqrt{2}}{2}}{(x - \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} dx$$

第一项和第三项需要换元一下,令 $u = x + \frac{\sqrt{2}}{2}$

$$I = \frac{1}{2\sqrt{2}} \left[\int_{\frac{\sqrt{2}}{2}}^{+\infty} \frac{u}{u^2 + \frac{1}{2}} du + \arctan\sqrt{2} \left(x + \frac{\sqrt{2}}{2} \right) \Big|_{0}^{+\infty} - \int_{-\frac{\sqrt{2}}{2}}^{+\infty} \frac{u}{u^2 + \frac{1}{2}} du + \arctan\sqrt{2} \left(x - \frac{\sqrt{2}}{2} \right) \Big|_{0}^{+\infty} \right]$$

其中

$$\int_{\frac{\sqrt{2}}{2}}^{+\infty} \frac{u}{u^2 + \frac{1}{2}} du - \int_{-\frac{\sqrt{2}}{2}}^{+\infty} \frac{u}{u^2 + \frac{1}{2}} du = -\int_{-\frac{\sqrt{2}}{2}}^{+\frac{\sqrt{2}}{2}} \frac{u}{u^2 + \frac{1}{2}} du = 0.$$

因此

$$I = \frac{1}{2\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{4} + \frac{\pi}{2} + \frac{\pi}{4} \right) = \frac{\pi}{2\sqrt{2}}$$

微分方程

线性微分方程解的结构

Example 7.1. 已知 $y_1 = e^{3x} - xe^{2x}$, $y_2 = e^x - xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解, 求该方程的通解.

hints 这题考察线性微分方程解结构的一个非常典型的题,这里用到两个非齐次方程的解的差是齐次方程的解,则

$$y_2 - y_3 = e^x, y_1 - y_3 = e^{3x}.$$

它们是两个线性无关的解,因此它们是原方程导出的齐次方程的通解,我们再求一个特解即可,即 $y_1 - e^{3x} = -xe^{2x}$,则原方程的通解为

$$y = C_1 e^x + C_2 e^{3x} - x e^{2x}.$$

带积分的微分方程

Example 7.2. 设函数 f(x) 连续,且满足

$$\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$$

求 f(x).

hints 尝试去掉积分符号,求导前做一些变换,

$$\int_0^x f(u)du = x \int_0^x f(t)dt - \int_0^x t f(t)dt + e^{-x} - 1$$

$$f(x) = \int_0^x f(t)dt + x f(x) - x f(x) - e^{-x}$$

注意这里有 f(0) = -1(要善于发现这样的条件),设 $y = \int_0^x f(t)dt$,于是

$$y' - y = -e^{-x},$$

根据一阶线性方程的通解我们有

$$y = Ce^x + \frac{e^{-x}}{2},$$

则 $f(x) = Ce^x - \frac{e^{-x}}{2}$. 由于 f(0) = -1,因此 $C = -\frac{1}{2}$,最终 $f(x) = -\frac{e^x + e^{-x}}{2}$.

该死的绝对值

Annotation 7.3. 有时候的积分结果带 $\ln |f(x)|$,这个时候在考虑要不要去绝对值的时候,可以采取的下述的 手法

- 1. 如果提供了某个点 (x_0, y_0) , 那么这个时候我们可以考虑去掉绝对值保留 x_0 所在的定义域, 因为通解不需要表示全部的解, 只要保证我们最终我们可以根据这个特殊的点确定某个特解即可!
- 2. 如果没有提供某个点,那么这个时候我们可以有条件的去掉绝对值
 - (a) 若是可分离变量方程, 且里面没有无理数因子, 我们可以把绝对值去掉
 - (b) 若是一阶线性方程,在对 P(x) 积分结果中出现 $\ln |f(x)|$,根据 P(x) 中的是否有无理数因子或者分母为偶数的因子,如果有,那么这个绝对值不要去掉,最后分类讨论;若没有,可以直接去绝对值.
- 3. 拿不准的时候,就彻底不取,直接开讨论就行.

Example 7.4. 求 y(1) = 0,且满足下述方程的 y

$$y' = 1 + \frac{y}{x} + \left(\frac{y}{x}\right)^2$$

hints 显然这个是一个齐次微分方程, 令 $u = \frac{y}{x}$, 于是有

$$\frac{du}{1+u^2} = \frac{dx}{x} \Rightarrow \arctan u = \ln|x| + C$$

题目中已经给定了一个点(1,0),那么此时我们可以去掉绝对值,只考虑x>0的情况,即有

$$u = \tan(\ln x + C) \Rightarrow y = x \tan(\ln x + C).$$

最后带入特殊点,得到 C=0,最终有 $y=x\tan(\ln x+C)$

改变自变量

Example 7.5. 求下述方程的通解

$$\frac{dy}{dx} = \frac{y}{x + y^4}$$

hints 当且形式根本找不到方法求,那么我们考虑求以 y 为自变量的 x = f(y) 形式的函数,于是有

$$\frac{dx}{dy} = \frac{x + y^4}{y} \Rightarrow \frac{dx}{dy} - \frac{x}{y} = y^3$$

即是关于自变量 y 一个线性方程. 此时就可以直接用通项公式有

$$x = y(\frac{1}{3}y^3 + C)$$

解析几何

求直线在平面上的投影

Annotation 8.1. 如给定直线 L 和平面 S, 求 L 在 S 上投影直线方程.

- 1. 确定与 L 和 S 法向量 η 都垂直的向量 γ , 即 L 方向向量叉乘 η ;
- 2. 确定以 γ 为法向量, 包含 L 的平面 S', 将 L 上一点带人由 γ 确定的平面方程;
- 3. S 和 S' 相交的直线就是 L 在 S 上的投影直线方程.

旋转直线方程

Example 8.2. 求直线 $L: \frac{x-3}{2} = \frac{y-1}{3} = z+1$ 绕直线 $L_1: \begin{cases} x=2 \\ y=3 \end{cases}$ 旋转一圈所产生的曲面方程. hints 这里要用一个局部的思想,我们任取 L 上一点 (x_0,y_0,z_0) 考察它绕直线 L_1 旋转得到的方程

$$\begin{cases} z = z_0 \\ (x-2)^2 + (y-3)^2 = (x_0 - 2)^2 + (y_0 - 3)^2 \end{cases}$$

再考虑点 (x_0, y_0, z_0) 在直线 L,目的是为了让上述方程取遍所有 L 上的点. 这里有

$$\begin{cases} x_0 = 2z_0 + 5 \\ y_0 = 3z_0 + 4 \end{cases}$$

将它们带入第一个方程,即有

$$(x-2)^2 + (y-3)^2 = (2z+3)^2 + (3z+1)^2$$

这就是我们要求的曲线方程.

多元函数

带不等式的条件极值

Example 9.1. 求函数 $z = f(x,y) = x^2 - y^2 + 2$ 在椭圆域 $D = \{(x,y)|x^2 + y^2 \le 1\}$ 上的最大值和最小值.

hints 这个不等式的取值范围是一个闭连通域,我们只需要分别考虑它里面点构成的区域和边界上的点即可. 在这个椭圆里面唯一的驻点是 (0,0),其对应的函数值为 2; 在椭圆上的点满足 $y^2 = 4 - x^2$,则 f(x) 可以改写为

$$z = x^2 - (4 - x^2) + 22 = 5x^2 - 2$$

其中 $-1 \le x \le 1$, 那么其最大值为 3, 最小值为 -2. 三个驻点比较得出最终结果.

可微定义

Example 9.2. 设连续函数 z = f(x, y) 满足

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0,$$

求 $dz|_{(0,1)}$.

hints 显然要从定义出发,目标是整理出来定义的形式,先求 f(0,1),由上式极限存在,可以得到

$$\lim_{\substack{x \to 0 \\ y \to 1}} f(x, y) = 2x - y + 2,$$

再由 f(x,y) 连续, 上述等式左边就等于 f(0,1), 等式右边是个有限极限, 即 f(0,1) = 1. 我们再重新整理一下

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - f(0,1) - 2x + (y-1)}{\sqrt{x^2 + (y-1)^2}} = 0,$$

这就是 f(x) 在点 (0,1) 处可微定义,即 $dz|_{(0,1)} = 2dx - dy$.

二重积分

交换次序更好积分

Example 10.1. 求积分

$$\int_0^1 dy \int_y^1 \frac{\tan x}{x} dx.$$

hints 明显这个被积函数对 dx 是不好积的,于是考虑交换积分次序. 交换次序可以考虑画图来做,于是有

$$\int_0^1 dx \int_0^x \frac{\tan x}{x} dy = \int_0^1 \tan x dx = -\ln \cos x|_0^1 = -\ln \cos 1.$$

Example 10.2. 设 f(x) 为连续函数,定义

$$F(x) = \int_{1}^{x} dv \int_{u}^{x} f(u)du, x > 1,$$

求 F'(x).

hints 二重积分求导,这显然直接求不了. 考虑先计算这个二重积分,现在的积分次序导致我们无法对 $\int f(u)du$ 处理,所以先交换次序. 有

$$F(x) = \int_{1}^{x} du \int_{1}^{u} f(u)dv = \int_{1}^{x} (u-1)f(u)du.$$

被积函数是连续函数的变上限积分,它的导数为 (x-1)f(x).

化极坐标

Example 10.3. 求积分

$$\int_{0}^{2} dx \int_{0}^{\sqrt{2x-x^{2}}} \sqrt{x^{2}+y^{2}} dy.$$

hints 被积函数出现 x^2+y^2 ,考虑化极坐标. 首先把极坐标方程写出来,确定 θ 变限在 $[0,\frac{\pi}{2}]$,当固定一点 x 时,此时 $0 \le y \le \sqrt{2x-x^2}$,那么考虑这个积分域的边界就有

$$x^2 + y^2 = \rho^2 = 2\rho\cos\theta \Rightarrow \rho = 2\cos\theta.$$

于是原积分为

$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \rho^2 d\rho = \int_0^{\frac{\pi}{2}} \frac{8\cos^3\theta}{3} d\theta = \frac{8}{3} \int_0^{\frac{\pi}{2}} (1 - \sin^2\theta) d\sin\theta = \frac{8}{3} (\sin\theta - \frac{\sin^3\theta}{3}) \Big|_0^{\frac{\pi}{2}} = \frac{16}{9}.$$

三重积分

直角坐标

Example 11.1. 设 Ω 由 $x^2 + \frac{y^2}{2^2} + \frac{z^2}{3^2} \le 1, 0 \le z \le 1$ 所确定,求

$$\iiint z^2 dv$$

hints 显然这是一个椭圆区域,因此先考虑二重积分再单重积分, xOy 上椭圆方程为

$$\frac{x^2}{1 - \frac{z^2}{3}} + \frac{y^2}{2^2(1 - \frac{z^2}{3})} = 1$$

这里可以直接套公式得出该椭圆面积为 $S = \pi ab = 2\pi(1 - \frac{z^2}{3})$. 因此

$$\iiint_{\Omega} z^2 dv = 2\pi \int_0^1 z^2 (1 - \frac{z^2}{3}) dz = \frac{28}{45}\pi$$

Example 11.2. 设 Ω 是由曲面 $z=x^2+y^2, y=x, y=0, z=1$ 在第一卦限所围成的区域,f(x,y,z) 在 Ω 上连续,求 $\iiint_{\Omega} f(x,y,z) dv$ 直角坐标表示 $\int dy \int dx \int f(x,y,z) dz$.

hints 先是在 xOy 上积分,那么先确定 Ω 在其上的投影. 确定几条平面曲线: (1 因为 z=1,那么椭圆抛物面在 xOy 上投影为 $x^2+y^2=1$. (2 y=x (3 y=0 (4 第一象限. 借助前面这些条件 xOy 上的投影是可以确定了. 对 z 积分,可以想象我们在平面上对抛物线积分.

柱坐标

球坐标

多元积分的应用

第一类曲线积分

Annotation 12.1. 第一类曲线积分的一般解决方法:

- 1. 确定是平面曲线还是空间曲线;
- 2. 确定曲线方程的给定形式和自变量的变换范围, 注意无论怎样的曲线方程都是可以看做参数方程的;
- 3. 确定是否为特殊曲线做简化计算的操作,例如关于坐标轴的对称,轮换对称性等;
- 4. 若是曲线积分化定积分. 这一过程要注意弧长微分替换积分变量的过程,而提到的参数方程的弧长微分为 $\sqrt{x(t)'^2 + y(t)'^2 + z(t)'^2} dt$.

Example 12.2. 设 *L* 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线, 求

$$\oint_L xyds$$

hints 这里要充分考虑 L 的性质,对于任意 L 上一点 (x_0,y_0,z_0) ,显然点 (y_0,x_0,z_0) , (z_0,y_0,x_0) 也都在 L 上,因此 L 具有轮换对称性. 于是

$$\oint_L xyds = \oint_L yxds = \oint_L zyds$$

考虑所给 L 的特殊性,这里有

$$\oint_L (x+y+z)^2 - (x^2+y^2+z^2) = 2 \oint_L xy + yz + xz ds = 6 \oint_L xy ds = -2\pi,$$

因此

$$\oint_L xyds = -\frac{\pi}{3}.$$

第二类曲线积分

Annotation 12.3. 第二类曲线积分的一般解决方法:

- 1. 确定是平面曲线还是空间曲线;
- 2. 确定曲线方向;
- 3. 确定曲线方程的给定形式和自变量的变换范围 (1 常见的参数方程类型的曲线,这种曲线有可能直接计算或者路径无关; (2 方程组形式的曲线,例如两个曲面的交线,这里情况下可能无法直接将曲线转换为参数方程,就要小心比较巧妙的计算手法和化简步骤.

- 4. 确定<mark>平面曲线</mark>积分是否与路径无关,常见判定手法 (1 Pdx + Qdy) 是否是某个二元函数的全微分 $(2 \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. 若与路径无关考虑, (1 利用原函数直接计算) (2 化简单积分路线,例如平行于坐标轴,就化为两个定积分.
- 5. 确定是否为光滑的平面闭曲线,若为光滑曲线考虑使用格林公式化二重积分,注意曲线方向和其围成的区域 D 要遵守左手法则,即绕着曲线的方向绕一圈,区域 D 总是在观察者的左手边. 还需要注意被积函数 P,Q 在 D 上要有连续的一阶偏导;
- 6. 确定若不是平面闭曲线,可以考虑做补线让其变成一个闭曲线,再使用格林公式,可能可以简化计算.
- 7. 确定是否为<mark>空间闭曲线</mark>,若是空间闭曲线,考虑使用斯托克斯公式,注意曲线方向和曲面的法向量要遵守右手法则.

$$\int_{L} P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz = \int_{\Sigma} \int \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)dydz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)dzdx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)dxdy$$

8. 直接计算, 使用公式

$$\int_{L} P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz = \int_{\alpha}^{\beta} P[x(t),y(t),z(t)]x'(t) + Q[x(t),y(t),z(t)]y'(t) + R[x(t),y(t),z(t)]z'(t)dt$$

Example 12.4. 计算曲线积分

$$I = \int_{L} \frac{4x - y}{4x^2 + y^2} dx + \frac{x + y}{4x^2 + y^2} dy$$

其中 $L \in \mathbb{R}^2 + y^2 = 2$,方向为逆时针方向.

hints 千万注意这里不能直接使用格林公式,因为被积函数有个奇点 (0,0) 在圆里面.注意到

$$\frac{\partial}{\partial x} \left(\frac{x+y}{4x^2+y^2} \right) = \frac{\partial}{\partial y} \left(\frac{4x-y}{4x^2+y^2} \right),$$

因此考虑用一条闭曲线 $L_2(L_2 \text{ 在 } x^2 + y^2 = 2 \text{ 里面})$ 把这个奇点围起来,设它的方向还是为逆时针,那么可以两次用格林公式然后减去奇点所在的区域,对剩下的曲线积分还是零,即

$$\int_{L} \frac{4x - y}{4x^2 + y^2} dx + \frac{x + y}{4x^2 + y^2} dy - \int_{L_2} \frac{4x - y}{4x^2 + y^2} dx + \frac{x + y}{4x^2 + y^2} dy = 0,$$

因此

$$I = \int_{L_2} \frac{4x - y}{4x^2 + y^2} dx + \frac{x + y}{4x^2 + y^2} dy,$$

我们可以通过选择合适的 L_2 来避免引入奇点,例如令 $L_2:4x^2+y^2=1$,那么

$$I = \int_{L_2} 4x - y dx + x + y dy = \iint_D 2dx dy = 2 \cdot \frac{1}{2}\pi = \pi,$$

Example 12.5. 已知曲线 L 的方程为

$$\begin{cases} z = \sqrt{2 - x^2 - y^2} \\ z = x \end{cases}$$

起点为 $A(0,\sqrt{2},0)$, 终点为 $B(0,-\sqrt{2},0)$, 计算曲线积分

$$I = \int_{L} (y+z)dx + (z^{2} - x^{2} + y)dy + x^{2}y^{2}dz$$

hints 不能直接写出曲线的参数方程,意味我们可能不能直接求化为普通的单重积分. L 是一个空间曲线,且通过 $z=\sqrt{2-x^2-y^2}$ 我们知道 L 是一条半圆弧,A,B 是它的两个端点. 因此我们考虑补上直线段 L_{BA} ,与 L 的方向保持一至. 设 L 和 L_{BA} 围成的封闭平面区域为 Σ ,

Sigma 在平面 z=x 上那么我们就可以使用 stokes 公式得到

$$I = \iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y + z & z^2 - x^2 + y & x^2 y^2 \end{vmatrix} dS - \int_{L_{AB}} (y + z) dx + (z^2 - x^2 + y) dy + x^2 y^2 dz$$

根据右手定则知道 Σ 的法向量为 (1,0,-1), 因此方向余弦为 $(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})$. 于是

$$\iint_{\Sigma} \left| \frac{1}{\sqrt{2}} (2x^2y - 2z) - \frac{1}{\sqrt{2}} (-2x - 1) dS \right| dS = \frac{1}{\sqrt{2}} \iint_{\Sigma} 2x^2y + 1 dS = \frac{\sqrt{2}}{2} \pi$$

其中 Σ 关于平面 xOz 对称, 因此 $\iint_{\Sigma} 2x^2ydS = 0$. 而

$$\int_{L_{AB}} (y+z)dx + (z^2 - x^2 + y)dy + x^2y^2dz = \int_{L_{AB}} ydy = 0.$$

最终

$$I = \frac{\sqrt{2}}{2}\pi.$$

Example 12.6. 设 L 是柱面 $x^2 + y^2 = 1$ 与平面 y + z = 0 的交线,从 z 轴正向忘 z 轴负向看去为逆时针方向,求曲线积分

$$\oint_{T} z dx + y dz.$$

hints 这里直接用 stokes 公式

$$\oint_{L} z dx + y dz = \iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z & 0 & y \end{vmatrix} dS$$

其中 Σ 为闭曲线 L 围成的平面区域,其法向量为 (0,1,1),因此其方向余弦为 $(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$. 因此

$$I = \iint_{\Sigma} \frac{1}{\sqrt{2}} dS = \iint_{D_{xy}} \frac{1}{\sqrt{2}} \sqrt{1^2 + 1^2} dx dy = \pi$$

其中 Σ : $\begin{cases} x^2 + y^2 \le 1 \\ y + z = 0 \end{cases}$, 因此其在 xOy 上的投影区域 $D_{xy}: x^2 + y^2 \le 1$.

两类曲线积分关系

Example 12.7. 设 L 是圆周 $x^2 + y^2 = 1$, n 为 L 的外法线向量, $u(x,y) = \frac{1}{12}(x^4 + y^4)$, 求

$$\oint_L \frac{\partial u}{\partial \boldsymbol{n}} ds.$$

hints 由方向梯度有

$$\frac{\partial u}{\partial \mathbf{n}} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta,$$

其中 $\cos \alpha$, $\cos \beta$ 分别是 n 方向余弦. 这里有两种手法来尝试计算.

方法 1 先展开这个方向导数

$$\frac{\partial u}{\partial \mathbf{n}} = \frac{1}{3}x^3 \cos \alpha + \frac{1}{3}y^3 \cos \beta,$$

这里我们尝试把 $\cos \alpha$ 和 $\cos \beta$ 求出来. 将对 L 曲线积分变成在极坐标下的普通积分,

$$\begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases}$$

其上任意一点 $(\cos \theta, \sin \theta)$ 处的外法线向量为

$$n = (\cos \theta, \sin \theta),$$

因此

$$\cos \alpha = \frac{\cos \theta}{\sqrt{\cos \theta^2 + \sin^2 \theta}}, \cos \beta = \frac{\sin \theta}{\sqrt{\cos \theta^2 + \sin^2 \theta}},$$

最终积分变为

$$I = \int_0^{2\pi} \frac{\cos^4 \theta + \sin^4 \theta}{3} d\theta = \frac{\pi}{2}$$

方法 2 这里用到第一类曲线积分和第二类曲线积分的联系. 设 L 上任意一点 (x,y) 处的逆时针方向切线 l 与 x,y 轴的方向余弦分别为 $\cos\gamma,\cos\delta$. 那么这个 n 相当于是 l 顺时针旋转 $\frac{\pi}{2}$ 得到的,于是

$$\cos \alpha = \cos \delta, \cos \beta = -\cos \gamma.$$

因此原积分变为

$$\begin{split} I &= \oint_L \frac{\partial u}{\partial x} \cos \delta - \frac{\partial u}{\partial y} \cos \gamma ds \\ &= \oint_L \frac{\partial u}{\partial x} dy - \frac{\partial u}{\partial y} dx & (两类积分的转换) \\ &= \iint\limits_{x^2 + y^2 \le 1} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} d\sigma & (格林公式) \\ &= \int_0^{2\pi} d\theta \int_0^1 \rho^3 dp \\ &= \frac{\pi}{2} \end{split}$$

第一类曲面积分

Annotation 12.8. 第一类曲面积分的一般计算方法

- 1. 确定曲面方程,实际上只有一种 z = f(x,y),并没有复杂的参数方程,和其自变量变化范围;
- 2. 确定是否为特殊的曲面做简化计算,例如关于坐标轴平面对称,轮换对称性等;
- 3. 直接计算,使用曲面微分的变量替换,需要注意 x,y 的区域 D 的确定

$$\iint_{\Sigma} f(x,y,z)dS = \iint_{D} \sqrt{1 + f_x^2(x,y), f_y^2(x,y)} dxdy.$$

Example 12.9. 设 Σ 为球面 $x^2 + y^2 + z^2 = 2ax$, 求曲面积分

$$I = \iint_{\Sigma} (x^2 + y^2 + z^2) dS.$$

hints 这道理按照球面来积分,好像有点难受.首先我们做一个简单的代换

$$I = \iint_{\Sigma} 2axdS = 2a \iint_{\Sigma} xdS,$$

其中 $\iint_{\Sigma} x dS$ 可以看求曲面形心的 \bar{x} 中的分子,且球面的形心的 $\bar{x} = a$,从而

$$I = 2a \cdot a \cdot 4\pi a^2 = 8\pi a^4.$$

Example 12.10. 设薄片型物体 S 是圆锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 割下的有限部分,其上任一点的密度为 $u(x,y,x) = 9\sqrt{x^2 + y^2 + z^2}$. 求 S 的质量.

hints 这种题型看似复杂的曲面都难以想象,直接按照步骤来行. 先确定圆锥面和柱面的交线

$$\begin{cases} z = \sqrt{x^2 + y^2} \\ z^2 = 2x \end{cases} \Rightarrow (x - 1)^2 + y^2 = 0$$

它在 x0y 上的投影是一个我们熟悉的圆. 于是直接套公式就行

$$\begin{split} M &= \iint_{S} 9\sqrt{x^{2} + y^{2} + z^{2}} ds \\ &= \iint_{D} 9\sqrt{x^{2} + y^{2} + z^{2}} \sqrt{1 + \left(\frac{x}{\sqrt{x^{2} + y^{2}}}\right)^{2} + \left(\frac{y}{\sqrt{x^{2} + y^{2}}}\right)^{2}} dx dy \\ &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} 9\sqrt{2\rho^{2}} \sqrt{2\rho} d\rho \\ &= 64 \end{split}$$

其中 $(x-1)^2 + y^2 = 0$ 的极坐标方程为 $\rho = 2\cos\theta$.

第二类曲面积分

Annotation 12.11. 第二类曲面积分的一般计算方法

- 1. 确定曲面方程,实际上只有一种 z = f(x,y),并没有复杂的参数方程,和其自变量变化范围;
- 2. 确定曲面的方向;
- 3. 确定曲面是否可以围成一个闭区域,考虑使用高斯公式

$$\iint P dy dz + Q dz dx + R dx dy = \iint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv.$$

这里曲面需要取外侧方向,如果当且曲面是内侧方向则需要加负号,也需要确定 P,Q,R 是否具有一阶连续偏导.

- 4. 考虑是否可以增加补面围成一个闭区间来使用高斯公式.
- 5. 考虑将其转换为第一类曲面积分,计算每点的法向量 η ,利用法向量计算出对应的方向余弦,再利用

$$\iint_{\Sigma} P\cos\alpha + Q\cos\beta + R\cos\gamma = \iint_{\Sigma} Pdydz + Qdzdx + Pdxdy.$$

这样做的前提是可以化为第一类曲面积分之后可以简化计算.

6. 直接计算,上述给定是 z 关于 x,y 方程,那么曲线方向决定了曲面法线和 z 轴的夹角余弦值,若余弦值是负的,则需要在下式积分号就带负号

$$\iint_{S} f(x, y, z) dx dy = \pm \iint_{D_{xy}} f(x, y, f(x, y)) dx dy.$$

这里要注意若给定是 y 关于 x,z 的方程,这里的余弦值则是看曲面法向量和 y 轴的夹角.

两类曲面积分的联系

Example 12.12. 设 Σ 为曲面 $z = \sqrt{x^2 + y^2} (1 \le x^2 + y^2 \le 4)$ 的下侧, f(x) 为连续函数, 计算

$$I = \iint_{\Sigma} [xf(xy) + 2x - y]dydz + [yf(xy) + 2y + x]dzdx + [zf(xy) + z]dxdy.$$

hints 这里有未知函数 f(xy) 肯定不能硬积分. 考虑转换第一类曲面积分, 曲面 z 的法向量 η 为

$$(\frac{x}{\sqrt{x^2+y^2}}, \frac{y}{\sqrt{x^2+y^2}}, -1)$$

这里方向是是一致的,因为 $\varepsilon_z \cdot \eta < 0$. 为了方便计算方向余弦,令 $\eta = (x, y, -z)$,于是

$$\begin{split} I &= \iint_{\Sigma} \frac{x^2 f(xy) + 2x^2 - xy + y^2 f(xy) + 2y^2 + xy - z^2 f(xy) - z^2}{\sqrt{2(x^2 + y^2)}} dS \\ &= \iint_{\Sigma} \frac{(x^2 + y^2 - z^2) f(xy) + 2x^2 + 2y^2 - z^2}{\sqrt{2(x^2 + y^2)}} dS \\ &= \frac{\sqrt{2}}{2} \iint_{\Sigma} \sqrt{x^2 + y^2} dS \end{split}$$

这样我们得到一个简洁的第一类曲面积分,再将其放到 x0y 上的区域 $D=\{(x,y):1\leq x^2+y^2\leq 4\}$ 来计算,于是得到

$$\begin{split} I &= \frac{\sqrt{2}}{2} \iint_{D} \sqrt{x^{2} + y^{2}} \cdot \sqrt{\frac{x^{2}}{x^{2} + y^{2}} + \frac{y^{2}}{x^{2} + y^{2}} + 1} dx dy \\ &= \int_{0}^{2\pi} d\theta \int_{1}^{2} \rho^{2} dp \\ &= \frac{14\pi}{3} \end{split}$$

级数

级数判定总结

Annotation 13.1. 一些有用的资料

- 1. 遇到一个级数应该用怎样的手法总结.
- 2. 级数判定手法大全.

极限 test

Example 13.2. 讨论下述级数的收敛性

$$\sum_{n=1}^{\infty} (n \ln \frac{2n+1}{2n-1} - 1).$$

hints 这里很难拿哪一个级数来做极限 test, 观察 $n \ln t$, 我们可以将其泰勒展开, 找到最小的无穷小. 于是

$$\ln(1 + \frac{2}{2n-1}) = \frac{2}{2n-1} - \frac{1}{2}(\frac{2}{2n-1})^2 + \frac{1}{3}(\frac{2}{2n-1})^2 + o((\frac{2}{2n-1})^3).$$

那么

$$n\ln(1+\frac{2}{2n-1})-1 = -1 + \frac{2n}{2n-1} - \frac{n}{2}(\frac{2}{2n-1})^2 + \frac{n}{3}(\frac{2}{2n-1})^2 + o(n(\frac{2}{2n-1})^3)$$
$$= \frac{2n+3}{3(2n-1)}(\frac{1}{2n-1})^2 + o(\frac{8n}{(2n-1)}(\frac{1}{2n-1})^2)$$

因此

$$\lim_{n \to \infty} \frac{n \ln \frac{2n+1}{2n-1} - 1}{\left(\frac{1}{2n-1}\right)^2} = \frac{1}{3},$$

其中级数 $\sum\limits_{n \to \infty} (\frac{1}{2n-1})^2$ 是收敛的,所以原级数也是收敛的

参数收敛

Example 13.3. 讨论下列级数收敛性

$$\sum_{n=1}^{\infty} \frac{\ln(n!)}{n^{\alpha}}$$

hints 展开 ln n!, 有

$$\ln n! = \ln 1 + \ln 2 + \dots + \ln n < n \ln n < n^{1+\beta},$$

在 n 足够大的时候,对任何 $\beta > 0$ 都是成立. 因此

$$\frac{\ln(n!)}{n^{\alpha}} < \frac{n^{1+\beta}}{n^{\alpha}} = n^{1+\beta-\alpha},$$

因此取 $\alpha > 2$ 时,存在 β 使得

$$\frac{\ln(n!)}{n^{\alpha}} < \frac{1}{n} < \frac{n^{1+\beta}}{n^{\alpha}}.$$

即原级数在 a>2 是收敛的. 同理若 $\alpha\leq 2$ 时,是存在 β 使得 $1+\beta-\alpha>-1$ 的,此时是无法判定其是否收敛 的。

Example 13.4. 已知级数 $\sum\limits_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{\alpha}}$ 收敛,求 α 取值. hints 先用比较审敛法确定一收敛与原级数收敛性相同的级数,显然这样选择一个调和级数 $\frac{1}{n^{\alpha-\frac{1}{2}}}$,来验证 一下

$$\lim_{n \to \infty} \frac{\frac{\sqrt{n+1}}{n^{\alpha}}}{\frac{1}{n^{\alpha} - \frac{1}{n}}} = \lim_{n \to \infty} \sqrt{\frac{n+1}{n}} = 1.$$

判定调和级数的收敛性,需要 $\alpha > \frac{3}{2}$.

带-1 的幂次

Example 13.5. 判断下述级数的收敛性

$$\sum_{n=2}^{\infty} \frac{1 + (-1)^n}{\ln n}$$

hints 这个级数奇数时为零,因此我们写作

$$\sum_{n=1}^{\infty} \frac{2}{\ln 2n}$$

这个级数显然是发散的,因为在 n 足够大时 $\frac{2}{\ln 2n} \ge \frac{1}{n}$.

不标准的幂级数

Example 13.6. 求幂级数

$$\sum_{n=1}^{\infty} \frac{n}{2^n + (-3)^n} x^{2n-1}$$

的收敛半径.

hints这是一个不标准的幂级数,无法直接用结论. 所以先化标准的形式 $a_n x^n$. 先考虑积分,消掉指数的常 数,即有

$$\sum_{n=1}^{\infty} \int_{0}^{x} \frac{n}{2^{n} + (-3)^{n}} x^{2n-1} = \sum_{n=1}^{\infty} \frac{1}{2(2^{n} + (-3)^{n})} x^{2n}.$$

再令 $u=x^2$,求 $\sum\limits_{n=1}^{\infty}\frac{1}{2(2^n+(-3)^n)}u^n$ 的收敛半径,根据结论有

$$\lim_{n \to \infty} \left| \frac{2^n + (-3)^n}{2^{n+1} + (-3)^{n+1}} \right| = \frac{1}{3},$$

因此其收敛半径为 3, 所以 $|x| < \sqrt{3}$, 即原级数的收敛半径为 $\sqrt{3}$.

利用傅里叶公式求和

Example 13.7. 求下列级数的和

$$\sum_{n=1}^{+\infty} \frac{(-1)^n \sin n}{n}$$

hints 考虑 $s(x) = \frac{x}{\pi}$ 在 $(-\pi, pi)$ 上的傅里叶级数,它是一个奇函数因此

$$s(x) = \sum_{n=1}^{+\infty} b_n \sin nx = \sum_{n=1}^{+\infty} \left(\frac{2}{\pi} \int_0^{\pi} \frac{x}{\pi} \sin nx dx \sin nx \right) = \sum_{n=1}^{+\infty} -\frac{2}{\pi} \frac{(-1)^n \sin nx}{n}.$$

显然有

$$s(1) = -\frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n \sin n}{n} = \frac{1}{\pi},$$

因此
$$\sum_{n=1}^{+\infty} \frac{(-1)^n \sin n}{n} = -\frac{1}{2}$$
.

利用已有的幂级数求和

Example 13.8. 求下述幂级数的和函数

$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{(2n)!} x^{2n}.$$

hints 这个级数显然不能在有限次的积分或者求导来一般手法求和,考虑把它拆开成熟悉的级数,这里可以 拆成两个熟悉的三角函数:

$$S(x) = \sum_{n=1}^{\infty} (-1)^n \frac{1}{(2n-1)!} x^{2n-1} x + \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n} - 1 = -x \sin x + \cos x - 1.$$

构造微分方程

Annotation 13.9. 下面两种形式可以尝试构造微分方程:

- 1. 形如 $a_n x^{f(n)}$, a_n 里面含有关于 f(n).
- 2. 可以构造 $g(a_n)$ 使得其含有关于 f(n) 的因子.

Example 13.10. 求下述幂级数的和函数

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!!}$$

hints 连续的求导和积分似乎很难做到,这里就很有技巧了,可以构造含 S(x) 一阶微分方程. 其中

$$S'(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{(2n-2)!!} = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-2}x}{(2n-2)!!} = -xS(x),$$

解这个微分方程得到 $S(x)=Ce^{-\frac{1}{2}}$,因为这里 S(0)=1,最终得到 $S(x)=e^{-\frac{1}{2}x^2}$.

化增量公式

Example 13.11. 求下述幂级数的和函数

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

hints 观察这个系数有点像 e^x 的幂级数,但是只有奇数项. 那么偶数项其实就是 S'(x),因此 $S'(x)+S(x)=e^x$,由此解得 $S(x)=Ce^{-x}+\frac{1}{2}e^x$,由 S(0)=0,最终可得 $S(x)=-\frac{1}{2}e^{-x}+\frac{1}{2}e^x$

Example 13.12. 考虑调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 的收敛性.

hints 这次我们不从部分和出发,我们考虑它和另级一个发散的级数

$$\sum_{n=1}^{\infty} [\ln(n+1) - \ln n],$$

来比较. 考虑这个函数 $\ln(n+1) - \ln n$ 在 [n, n+1] 上的增量公式

$$\ln(n+1) - \ln n = \frac{1}{(n+\theta)}, \theta$$

于是

$$\frac{1}{(n+\theta)} < \frac{1}{n},$$

因此 $\frac{1}{n}$ 是收敛的.

Example 13.13. 考虑级数 $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \frac{1}{n^{1+s}}$ 的收敛性,其中 s > 0.

hints同样引入收敛级数 $\sum\limits_{n=0}^{\infty} \frac{1}{(n-1)^s} - \frac{1}{(n)^s}$ 来做比较. 考虑函数 $\frac{1}{(n-1)^s} - \frac{1}{(n)^s}$ 在 [n-1,n] 上的增量公式

$$\frac{1}{(n-1)^s} - \frac{1}{(n)^s} = \frac{1}{(n-\theta)^{1+s}}, 0 < \theta < 1,$$

那么

$$\frac{1}{n^{1+s}} < \frac{1}{(n-\theta)^{1+s}},$$

因此原级数收敛.

Example 13.14. 分析下述级数的收敛性

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}.$$

$$\sum_{n=2}^{\infty} \ln \ln(n+1) - \ln \ln n,$$

显然这级数是发散的,如果我们考虑函数 $\ln \ln (n+1) - \ln \ln n$ 在 [n, n+1] 上的增量公式

$$\ln \ln(n+1) - \ln \ln n = \frac{1}{(n+\theta)\ln(n+\theta)}, 0 < \theta < 1,$$

那么有

$$\frac{1}{(n+\theta)\ln(n+\theta)} < \frac{1}{n\ln n},$$

因此原级数发散.

综合证明题

级数

Example 14.1. 设数列 a_n, b_n 满足 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n - a_n = \cos b_n$,且级数 $\sum_{n=1}^{\infty} b_n$ 收敛. 证明:(1 $\lim_{n \to \infty} a_n = 0$; (2 级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$.

hints(1 由级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 因此 $\lim_{n\to\infty} b_n = 0$, 因此

$$\lim_{n \to \infty} \cos a_n - a_n = 1,$$

设辅助函数 $f(x) = \cos x - x$,其 $f'(x) = -\sin x - 1$,那么它在 $(0, \frac{1}{\pi})$ 是单调递减的,而 f(0) = 1,因此 $\lim_{n \to \infty} a_n = 0$.

(2 方法 1: 直接求

$$\lim_{n \to \infty} \frac{a_n}{b_n^2} = \lim_{n \to \infty} \frac{1 - \cos b_n}{b_n^2} \cdot \frac{a_n}{1 - \cos b_n}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{a_n}{1 - \cos b_n}$$

$$= \frac{1}{2} \frac{a_n}{1 + a_n - \cos a_n}$$

$$= \frac{1}{2}$$

方法 2(未完成): 想办法把 a_n 表示出来,稍微变换一下题目中的式子

$$(\cos a_n - a_n) - (\cos b_n - b_n) = b_n,$$

还是使用上面的辅助函数 f(x), 这里用一下中值定理有

$$f(a_n) - f(b_n) = (a_n - b_n)(-\sin\theta - 1)$$

其中 θ 在 a_n 和 b_n 之中. 于是

$$a_n = b_n - \frac{b_n}{1 + \sin \theta},$$

那么

$$\lim_{n \to \infty} \frac{\frac{a_{n+1}}{b_{n+1}}}{\frac{a_n}{b_n}} = \lim_{n \to \infty} \frac{b_n (b_{n+1} - \frac{b_{n+1}}{1 + \sin \theta_2})}{b_{n+1} (b_n - \frac{b_n}{1 + \sin \theta_1})} = \lim_{n \to \infty} \frac{\sin \theta_2 (1 + \sin \theta_1)}{\sin \theta_1 (1 + \sin \theta_2)}$$

tricks

一些有趣的不等式

Proposition 15.1.

$$a^{\frac{1}{n}} - 1 < \frac{a-1}{n}, \ a > 1.$$

hints 伯努利不等式.

$$(1+x)^n \le 1 + nx, \ n \ge 0, x \le -1.$$

使得 $(1+x) = a^{\frac{1}{n}}$, 即可得到上式.

Proposition 15.2.

$$\sin x < x, 0 < x < +\infty$$

Proposition 15.3.

$$\ln(1+x) < x, -1 < x < +\infty$$

Stirling 公式

Proposition 15.4.

$$\ln(n!) = n \ln n - n + O(\ln n).$$

经常用于拆解 ln n! 有奇效.

高数积分

Proposition 15.5.

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} \, dx = \sqrt{\frac{\pi}{\alpha}}$$