Конспект по математическому анализу (1-й семестр)

Латыпов Владимир (конспектор) t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

Виноградов Олег Леонидович (лектор) olvin@math.spbu.ru

16 октября 2021 г.

Содержание

1	Введение		3
	1.1	Множества	3
		1.1.1 Определения	3
2	Веш	дественные числа	3
3	Ото	рбражения	3
		3.0.1 Инъекция, сюрьекция, биекция	5
	3.1	Графики	5
	3.2	Операции над функициями	6
		3.2.1 Многомерные отображения	6
	3.3	Счётные множества	6
4	Пос	ледовательности в метрических пространствах	9
	4.1	Предел последовательности	9
5	Мет	рические пространства	10
6	Предел в метрический пространствах		12
	6.1	Арифметические действия над сходящимися последова-	
		тельностями	13
		6.1.1 Бесконечно малые последовательности	13
	6.2	Нормы и полунормы	14

1. Введение

•••

1.1. Множества

1.1.1. Определения

Определение 1 (Множество). X - множество, это аксиома, его метафизическая сущность не подлежит обсуждению.

$$\begin{cases} x \in X \\ x' \notin X \end{cases} \tag{1}$$

Пример. Задания множества:

$$set = \{1, 2, 3\}$$
 (2)

$$set = \{x | x \in \mathbb{N}\} \tag{3}$$

$$set = \{\{1, 4\}, 898\} \tag{4}$$

Определение 2 (Подмножество).

$$A \subset B \iff \forall a \in A : a \in B$$
 (5)

2. Вещественные числа

Множество вещестыенных чисел - множество, удовлетворяющее 16-и аксиомам.

1. Аксиомы поля (9 штук)

3. Оторбражения

Определение 3 (Отображение). $]\exists X,Y-sets,f-rule$ Говорят, что задано оторбражение, если $f:X\longrightarrow !Y$ (сопоставляет единстыенный Y каждому $x\in X$)

Отображение называют f, но оно включает как f, так и X,Y

$$f: X \longrightarrow Y \stackrel{\text{def}}{\Longleftrightarrow} f: X \mapsto Y \stackrel{\text{def}}{\Longleftrightarrow} X \stackrel{f}{\longrightarrow} Y$$
 (6)

Если X,Y - числовые множества, то f - функция. Если Y - числовое множество, X - любое, то это "функционал".

X - область задания, область отправления. Y - множество значений, область прибытия.

 $x \in X$ - аргумент, независимая переменная.

Определение 4 (Последователности). Последовательность - функция натурального аргумента.

Если при этом Y - число, то f - числовая последовательность. А если $\forall y \in Y: y \in \mathbb{Z}$, то это двусторонняя последовательность.

$$\{x_n\}_{n=1}^{\infty} \tag{7}$$

Определение 5. Семейство - это то же, что и отображение.

Определение 6 (Естественная область определения). Естественная область определения: то, где выражение имеет смысл.

Определение 7.

$$id_X: X \mapsto X$$
 (8)

$$f^{-1} \circ = id_X \tag{9}$$

Определение 8 (Образ).

$$B = f(A) = \{ y \in Y : \exists x \in A : f(x) = y \}$$
 (10)

Определение 9 (Прообраз). Прообраз множества B:

$$A = f^{-1}(B) = \{x \in X : f(x) \in B\}$$
(11)

Определение 10 (Композиция). ...

3.0.1. Инъекция, сюрьекция, биекция...

$$\langle f: X \longrightarrow Y$$

Определение 11 (Инъективное оторбражение). Если $\forall x_1, x_2 \in X: f(x_1) \neq f(x_2)$, то отображение инъективно, *обратимо*.

Определение 12 (Обратимое отображение).

$$f \text{ is } reversable \iff \exists f^{-1} : \dots$$
 (12)

Определение 13 (Сюрьективное оторбражение). Если f(X) = Y, то f сюрьективно или *отображение на*.

Определение 14. Если f одновременно и инективно, и сюрьективно, то f - взаимно-однозначное соответствие или *биективно*.

3.1. Графики

Определение 15 (График оторбражения).

$$\Gamma_f = \{(x,y): x \in X, y = f(x)\} \subset X \times Y \tag{13}$$

Теорема 1.

$$\Gamma_f \Longleftrightarrow f$$
 (14)

Определение 16. Отображение, сопоставляющее каждому

 $y\in f(X)\longrightarrow y\in Y$, для которого

$$f^{-1}(x):f(X)\mapsto X\tag{15}$$

Но что такое f^{-1} ? Прообраз или обратное отображение?

Если обратимо, и имеет значение, то они совпадают

Определение 17 (Сужение, распространение, расширение, привЕдение).

$$]f:X\mapsto Y,X_0\subset X$$
 (16)

$$f|_{X_0}$$
 (17)

3.2. Операции над функициями

- Сложение: (f+g)(x) = f(x) + g(x)
- Умножение: ...
- Деление: ...
- Вычитание: ...

• ...

3.2.1. Многомерные отображения

 f_i - Координатные функции отображения f

3.3. Счётные множества

Если множества конечны, легко сравнить количество элементов. Если одно конечно, другое - бес, то понятно.

А вот вопрос - одинаковы ли бесконечности?!

Определение 18 (Равномощные множества). Множества называют *равномощными*

или *эквивалентными (по мощности),* если ∃ биекция (взаимно однозначное соответствие) между ними

Определение 19 (Бесконечное множество). Не равномощно никакому подотрезку натурального ряда ⇔ никогда не исчерпается.

Замечание. Равномощность множеств - отношение эквивалентности. Существут классы эквивалентности по мощности.

Пример. Пример равномощных множеств:

- Отрезки (возможно, разных длин)
- Концентрические (и не только) окружности
- ...
- Плоскость и сфера
- Отрезок и плоскость
- Полуинтервал и окружность

Определение 20. A - счётно $\Longleftrightarrow A \sim \mathbb{N}$

Эквивалетное определение: можно занумеровать натуральными числами, то есть расположить в виде последовательности

Пример. Положительные, чётные, квадраты натуральных, целые, ...- всё счётные

Теорема 2. Всякое бесконечное множество содержит счётное подмножество

Доказательство. Есть хотя бы один элемент. Обозначим его a_1 , удалим его.

induction

Теорема 3. Всякое подмножество счётного множества - счётно.

Доказательство. $b_{n+1} = A_{min(\{n|n \in A_{indexes}\})}$, $\overset{induction}{\dots}$

Предыдущие 2 теоремы - о бедности натурального ряда.

Определение 21 (Не более, чем счётное (НБЧС)). = пустое, конечное или счётное.

Лемма 1. $\mathbb{N}^n, n \in \mathbb{N}$ - счётное множество

Доказательство. Заполняем матрицу змейкой по диагонали. Для n измерений: $^{induction}\blacksquare$

Теорема 4. Не более чем счётное объединение (множество индексов НБЧС) не более чем счётных множеств - не более чем счётное.

Доказательство.

$$B = \bigcup_{k=1}^{n} A_k \quad or \quad B = \bigcup_{k=1}^{\infty} A_k \tag{18}$$

Запишем в матрицу: A_1,A_2 $A_1,...$ Получили не более чем множество $\mathbb{N}\times\mathbb{N}$. \blacksquare

Теорема 5. Множество ℚ - счётно.

Доказательство. Догадайтесь! 🗖

Теорема 6. Множество $\mathbb{R} \cap [0,1]$ - несчётно.

Доказательство. Пусть несчётно.

$$[0,1] = \{x_1, x_2, \ldots\} \tag{19}$$

Разобьём орезок на три части: $[0,\frac{1}{3}]$, $[\frac{1}{3},\frac{2}{3}]$, $[\frac{2}{3},1]$ Рассмотрим отрезок, в котором нет точки x_1 , затем - тот, в котором нет x_2 , деля на три до бесконечности. Получим последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^\infty$. Тогда по аксиоме о вложенных отрезках $\exists x^*: \forall n: x^* \in [a_n,b_n]$. Если пронумеровали, значит, был некий m, который Но, по построению, мы строили такой подотрезок \blacksquare

Следствие 1 (Некоторые множества тоже несчётны). $\qquad \cdot \quad \mathbb{R}$ - несчётно, так как иначе его бесконечное подмножество было счётно.

- Любой невырожденный отрезок несчётен
- Любой невырожденный интервал, полуинтервал несчётен

Как строить биекцию, если выколотые точки?

Утверждение 1. Если A - бесконечно, а B - не более чем счётно, то A

Свойство 1 (Характеристическое свойство бесконечных множеств). Если

Определение 22 (|A|<|B|). $|A|<|B| \stackrel{\mathrm{def}}{\Longleftrightarrow} (\exists biection \ A \leftrightarrow part(B) \land \not \exists biection \ A \leftrightarrow B)$

Теорема 7 (Теорема Кантора-Бершнейна). Если $A \sim part(B) \&\& B \sim part(A)$, то $A \sim B$

(Теорема о том, что мощности можно сравнивать: либо)

Утверждение 2. Множество всех подмножеств имеют мощность б \acute{o} лышую,чем само множнство.

4. Последовательности в метрических пространствах

4.1. Предел последовательности

Определение 23.

$$A = \lim x_n \overset{\text{def}}{\Longleftrightarrow} \forall \varepsilon > 0: \exists N_0: \forall n > N_0: |A - x_n| < \varepsilon \tag{20}$$

Определение 24 (Сходящиеся, расходящиеся последовательности).

Пример.

$$\lim_{n \to \infty} \frac{1}{n} = 0 \tag{21}$$

$$\lim_{n \to \infty} A = A \tag{22}$$

Пример.

(!)
$$\forall A : \lim \{-1, 1, -1, ...\} \neq A$$
 (23)

Предъявим $\varepsilon=0.1$: $\exists n_1,n_2: \forall n>n_1: |A-a_n|<\varepsilon$

Замечание. Если проверено малое эпсилон, можно не проверять большие эпсилон. Например, достаточно проверять для всех $|\varepsilon| < 1$

Замечание. Не обязательно находить самый маленький номер, для данного ε .

Замечание. Одно или оба (из 2, 3) строгих неравенства можно заменить на нестрогие, это непложно доказать.

Замечание. Если заменить конечное число членов, то сходимость не нарушится и предел не изменится.

Замечание. Последнее неравенство с модулем можно переписать как двойное. Это может быть полезно при некоторых доказательствах. Интервал $(A-\varepsilon,A+\varepsilon)$ - ε -окресность точки A. Тогда можно записать предел словами: Для любой окресности точки все члены за исключением конечного множества принадлежат этой окрестности.

5. Метрические пространства

Определение 25. Функция $\rho: X \times X \mapsto \mathbb{R}_+$ называется метрикой или расстоянием в множестве X, если:

1.
$$\rho(x,y)=0 \Leftrightarrow x=y$$

2.
$$\rho(x,y) = \rho(y,x)$$

3.
$$\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$$

Определение 26 (Метрическое пространство). Пара (X, ρ) называется метрическим пространством, если выполняются свойства (1-3), а сами свойства - метриечские пространства.

Пример. Если

$$\rho(x,y) = \begin{cases} 0, x = y \\ 1, x \neq y \end{cases}$$
 (24)

, то пространство/метрика дискретная

Пример.

$$X = \mathbb{R}, \rho(x, y) = |x - y| \tag{25}$$

Пример.

$$X = \mathbb{R}^m \ or \ \mathbb{C}^m, \rho(x, y) = \sqrt{\sum_{k=1}^m |x_k - y_k|^2}$$
 (26)

- это Евклидовы расстоянине и пространство

Пример.

$$X = \mathbb{R}^m \ or \ \mathbb{C}^m, \rho(x,y) = \sqrt{\sum_{k=1}^m |x_k - y_k|^2} \tag{27}$$

- это Евклидовы расстоянине и пространство

Пример.

$$X = \mathbb{R}^m \ or \ \mathbb{C}^m, \rho(x,y) = \sum_{k=1}^m |x_k - y_k| \tag{28}$$

- это Манхеттновские расстоянине и пространство

Пример.

$$X=\mathbb{R}^m \ or \ \mathbb{C}^m, \rho(x,y)=\max_{k=1}^m |x_k-y_k| \tag{29}$$

- это (КАКОЕ?) расстоянине и пространство

Пример. Расстояние на сфере

$$\dots smallest \ arc$$
 (30)

- это расстояние на сфере

Замечание. Метрические пространства - это пары множества и метрики, поэтому, если они различаются лишь одним, то это уже ражные пространства.

Определение 27 (Подпространство). (X, ro), $Y \subset X$, $\Rightarrow \rho|_{Y \times Y}$ - расстояние в Y. Тогда Y - подпространство X.

Определение 28 (Шары). $a \in X$

$$\begin{cases} r > 0 & B(a,r) = \{x \in X : \rho(a,x) < r\} - open \ ball \\ r \geqslant 0 & \overline{B}(a,r) = \{x \in X : \rho(a,x) \leqslant r\} - closed \ ball \\ r \geqslant 0 & S(a,r) = \{x \in X : \rho(a,x) = r\} - sphere \end{cases} \tag{31}$$

6. Предел в метрический пространствах

Определение 29 (Предел в метрический пространствах). $a \in X$, точка a - предел последовательности, если

$$\forall \varepsilon \exists N : \forall n > N : \rho(x_n, a) < \varepsilon \tag{32}$$

Теорема 8 (Единстыенность предела последовательности в метрических пространствах). Предел последовательности в метрических пространствах единстенен.

Доказательство. Запросим $\varepsilon=\frac{1}{2}\rho(a,b)$, возьмём ε окрестности обеих кандидатов на предел. Возьмём $n=max(N_1,N_2)$, тогда для него значение одновременно принадлежит обоим шарам. И тогда $\rho(a,b)=\leqslant \rho(a,x_n)+\rho(x_n,b)<2\varepsilon=\rho(a,b)$, пришли к противоречию! (!!!)

Определение 30. Подмножество D некоего метрического пространства D является ограниченным, если оно содержится в некотором шаре.

Замечание. Заметим, что не важно, обязательно ли фиксировать конкретную точку и обязательно ли фиксиовать открытуб или нет сферу: ограниченная - она и в Африке ограниченная.

Замечание. $x_n \to a \Leftrightarrow \rho(x_n,a) \to 0$

Теорема 9. Сходящаяся последователность ограничена

Доказательство. Запросим номер для $\varepsilon = 1$, возьмём центр за предел,

а радиус - за максимум из всех расстояний до него и 1-цы (все последующие и так в шаре) ■

Замечание. Обратное, конечно, неверно: послежовательность может быть ограниченной, но расходиться

Теорема 10 (Предельный переод в неравенстве). Для сходящихся последовательностей: если одна всегда больше другой, то и предел у неё больше

Доказательство. Докажем от противного: возьмём половинную окрестность, придём к противоречию ■

Замечание. Строгое для элементов неравентство превращается в нестрогое для пределов в общем случае

Определение 31 (Замкнутое множество).

Теорема 11 (Теорема о двух милиционерах, также известная как теорема о сжатой последовательности). Если каждый элемент послеовательности зажат между двумя соответствующими элементами двух других (милиционеров), и милиционеры стремятся в одно и то же, то и подсудимый стрмится туда же (в участок)

Доказательство. Просто распишем по определению

Замечание. В теоремах о милиционерах и о предельном переходе достатосчно потребовать, чтобы требуемое выполнялось лишь начиная с некоторого номера, так как изменение конечного числа членов не может повлиять на предел последовательности.

6.1. Арифметические действия над сходящимися последовательностями

6.1.1. Бесконечно малые последовательности

Определение 32 (Бесконечно малые последовательности). Такая, которая стремится к нулю, Корректно лишь для вещественно- и комплексно- значных последовательностей

Лемма 2. Произведение бесконечно малой и ограниченной - бесконечно малая

Доказательство. Очевидно (берём $\frac{\varepsilon}{K}$) \blacksquare

Замечание. Следующей теореме нужны как поддержка операций, так и расстояние. Пространство, на котором определены *привычные* операции

Определение 33 (Векторы). Это такие объекты, с короными можно производить нужные операции

Определение 34 (Векторные пространства).]K-pole, X-set, определены операции $X\times X\stackrel{+}{\longrightarrow} X$, $K\times X\stackrel{\cdot}{\longrightarrow} X$

И выполняются следующие свойства:

- Ассоциативность сложения в X
- \cdot Коммутатичность сложения в X
- Существует нулевой элемент

Тогда X называется векторым пространством или линейным множеством над полем K

Пример. Простейший пример - просто пространства \mathbb{R}^n , \mathbb{C}^n

Пример. Другой занятный пример - функции. В качестве нудевого элемента выступает тождественный ноль. Также примером будут являться векторнозначные функции

Так что функции - тоже вектора. Однако важнее будут не все функции, а функции с какими-то свойствами.

Замечание. Из полей мы будем рассматривать только вещественные и комплексные пространства

6.2. Нормы и полунормы

Определение 35 (Норма). Пусть X - векторное пространство над $\mathbb R$ или $\mathbb C$. Функция $p:X\mapsto R_+$ называется нормой в X, если удовлетворяет этим условиям:

- 1. $p(x) = 0 \Longleftrightarrow x = \theta$ положительная определённость
- 2. $p(\lambda x) = |\lambda| p(x)$ (полодительная) однородность
- 3. $p(x+y)\leqslant p(x)+[(y)]$ неравенство треугольника

Обозначение: p(x) = ||x||

Замечание. Если отказаться от первого свойства, то получится полунорма (ноль может приниматься не только на нулевом векторе)

Пример полунормы - длина проекции на координатные оси

Лемма 3 (Свойства полунорм). 1. $p(\sum_{k=1}^n \lambda_k x_k) \leqslant \sum_{k=1}^n \lambda_k |x_k|$ (очевидно по индукции по n)

- **2**. $p(\theta) = 0$
- 3. p(-x) = p(x) (подставим lambda = -1)
- 4. $|p(x) p(y)| = \leqslant p(x y)$ (доказывается через неравенство треугольника)

Бывает Евклидова норма (понятно, какая)

Замечание. Метрическое пространство не обязано быть векторным!

Определение 36 (Метрика порождена нормой). Если $\rho(x,y) = \|x-y\|$

Определение 37. Сходимость по норме - это сходимость по метрике, порождённой этой нормой

Замечание. "Многочлены степени не больше n" - векторное простран-

ство

$$N \in \mathbb{Z}_+$$
 (33)

$$P(z) = \sum_{k=0}^{N} c_k z^k \tag{34}$$

$$||P|| = \sum |c_k| \tag{35}$$

$$||P|| = max \ at \ segment \tag{36}$$

$$||f|| = oversetsupx \in \mathcal{D}|f(x)|$$
 (37)

Теорема 12 (Арифметические действия над сходящимися последовательностями в нормированном пространстве). Лямбда - обязаельно числовая!

- 1. $x_n + y_n \to x_0 + y_0$
- 2. $\lambda_n x_n \to \lambda_0 x_0$
- 3. $x_n y_n \to x_0 y_0$
- **4.** $||x_n|| \to ||x_0||$

Теорема 13 (Арифметические действия над сходящимися числовыми последовательностями). (числовые - комплексные или вещественные)

- 1. $|x_n| \to |x_0|$
- 2. если $y_n \neq 0 \forall n \wedge y_0 \neq 0$, то $rac{x_n}{y_n}
 ightarrow rac{x_0}{y_0}$

Следствие 2 (Неравенство КБШ и неравество треугольника в \mathbb{R}^m и \mathbb{C}^m).

Определение 38 (Покоординатная сходимость). Покоординатная сходимость имеет место, если:

$$\forall j \in [1:m]: \tag{38}$$

На матанале будем сравнивать векторы, но не все. Один вектор больше другого, если он доминатор.

Определение 39 (Математик). Это такая сущность, которая будет решать задачу о вскипячивании чайника с водой, выливая воду из него, тем самым сводя задачу к уже решённой: "вскипятить чайник без воды". (В отличие от физика)