

Multirate Signal Processing

EE 453 / CE 352 Saad Baig

N RSITIAN 2014

Multirate Signal Processing

- Multirate signal processing is the study of processing signals at multiple rates.
- It has important applications in many fields:
 - In wireless communications, efficient processing of signals at multiple rates is critical.
 - In image processing, multirate signal processing can be used to perform efficient image compression, image filtering, and image resizing.
 - In audio processing, it can be used to implement high-quality digital audio effects, such as time-stretching and pitch-shifting.
 - In control systems, multirate signal processing can be used to design digital control systems with reduced sampling rates.

Multirate Signal Processing

- Downsampling and upsampling operations
- Polyphase decomposition
- Design of digital filters for multirate signal processing

Sampling Rate Conversion

• The process of converting a signal from a given rate to a different rate is called sampling rate conversion.

- Two methods:
- 1. Convert to analog and then resample at a desired rate.
 - New rate is independent of previous rate.
 - D/A and A/D conversion can cause distortion and errors due to quantization.
- 2. Perform conversion in the digital domain.

Upsampling

• Add L-1 zeros in between samples to increase the rate.

• Upsampling is a shift varying operation.

Upsampling

- Upsampling adds high frequency content to your signal, due to discontinuities.
- To remove discontinuities, we would need to convolve with a low pass filter, which is known as an interpolating filter.

$$x_u[n] = \begin{cases} x[n/L], & n = kL \\ 0 & \text{else} \end{cases}$$

$$X_u(z) = \sum_{n = -\infty}^{\infty} x_u[n]z^{-n} = \sum_{n = -\infty}^{\infty} x[n/L]z^{-n}$$

$$X_u(z) = \sum_{k = -\infty}^{\infty} x[kL/L]z^{-kL} = \sum_{k = -\infty}^{\infty} x[k](z^L)^{-k}$$

$$X_u(z) = X(z^L)$$

$$X_u(e^{j\omega}) = X(e^{j\omega L})$$
At $\omega = \pi$, $X_u(e^{j\pi}) = X(e^{j\pi L})$.

Let
$$x(n) = \cos(\pi n)$$

Downsampling

- Keep only the M^{th} sample.
- Also varies with shifting.
- Decreases the rate, and also known as decimation.

$$x_d[n] = x[nD]$$

FIGURE 9.4 Operation of downsampling: (a) original signal x(n), (b) periodic impulse train p(n) with period D=3, (c) multiplication of x(n) with p(n), and (d) downsampled signal y(m)

Downsampling

• Can cause aliasing to occur. To reduce aliasing, we can pass the signal through a LPF to reduce the bandwidth to $F_{T_{\rm max}} = F_T/2M$.

Combine both upsampling and downsampling systems.

• Since both filters are performing at the same rate (LF_T) , they can be combined together into a single filter.

FIGURE 9.16 Examples of signals x(n), v(k), w(k), and y(m) in the sampling rate converter of Figure 9.15 for I=3 and D=2

