Digital Systems L2 - Computer Systems

Fang Yuan

School of Electronics Science and Engineering Nanjing University Nanjing 210046

2022

Outline

- MEMORY AND FILE SYSTEMS
 - Memory Architecture
 - Cache
 - Virtual Memory
 - Filesystem

Types of Memory

- Primary storage vs. secondary storage.
- Volatile vs. Non-volatile.
- Static RAM vs. dynamic RAM.
- Types of ROM, from Masked-ROM through Flash ROM.
- Physical memory vs. virtual memory.

Memory Hierarchy

READ BL and $\overline{
m BL}$ set to HIGH, $m WL_{HIGH}
ightarrow
m BL = Q$ WRITE set BL and $\overline{\text{BL}}$ different level, $\text{WL}_{\text{HIGH}} \to \text{Q}$ BL

4×4bit DRAM array

- higher density (lower cost per bit)
- capacitor needs recharge (refresh, more complex circuitry)

Bus Cycle

Bus Cycle is the cycle or time required to make a single read or write transaction between CPU and an external device (including memory).

FIAS

Dynamic RAM

 $(256K\times4bit)$ DRAM

SDRAM(Synchronous DRAM)

- Synchronized with the system bus
- PC66-, PC100-, PC133- (66MHz, 100MHz, 133MHz)
- SIMM/DIMM(in-line memory modules) DDR(dual data rate)-SDRAM

Combining bits to words

Expansion

Memory Expansion

MEMORY AND FILE SYSTEMS

Why use Cache

- Memory and I/O need to be synchronized with CPU
- SRAM is faster than DRAM, but also expensive.

Theory of Locality

Most programs trend to access memory within a limited range in a certain time:

- Spatial Locality
- Temporal Locality

Mapping DRAM to a small amount of SRAM (Cache) to accelerate access. Available mappings:

- Fully associative cache
- Direct-mapped cache
- Set associative

Cache Map

Consistency

Reading

Look through, always read from cache first

• Line fill

Consistency

Reading

Look aside, read both from cache and main

• Line fill

Consistency

- Writing(updating main memory) when multi-processors or DMA present
 - Write-through at the same time, increase bus

Invalidation

- Writing(updating main memory) when multi-processors or DMA present
 - Write-back at certain time(bus watching)

Invalidation

What Happens?

```
103ec: e3a02a02 MOV R2 , #8192
```

103f0: e5c23008 STRB R3 , [R2 , #8]

Read instructions and data

Segment Management

Address Conversion in Segment Unit

A logical (virtual) address consists of two parts: segment selector and offset.

Page Management

yfang@nju.edu.cn

X86(32bit) Segment Descriptor

$ BASE_{31-24} G D 0 AVL LIMIT_{19-16} $	$ P DPL S TYPE A BASE_{23-16} $
$BASE_{15-0}$	$LIMIT_{15-0}$

Page Item

Multilevel Page Table

Three level of paging designing can be easily configured to 2 level mode by folding middle level.

Translation Look-aside Buffer (TLB) is a part of the chip's memory-management unit (MMU) TLB is used to reduce the time taken to access a user memory location.

Intel's Nehalem (2008, core	i7/i5)
-------------------	------------	--------

cache	4KB	2MB (pagesize)
L1	32KB+32KB	64 entries
L2	256KB (unified TLB)	512 entries/4way
L3	4–12MB	

example: hit — 1 clock cycle, missing — 30 clock cycles, missing rate — 2%.

average cycle: 1*0.98 + 30*0.02≈1.6 cycles

Accessing an address that is not mapped to physical memory will trigger a page fault exception (interrupt).

- MMU finds a physical memory to be swapped (ether drop or backup).
- The page that is swapped out is marked as "unmapped".
- Copy data.
- Mark PFN in pagetable for this page.

- 8086 (1979)
- 80286 (1982), Protected virtual address mode, multi-task
- 80386 (1985), 32bit(80386DX) protected mode, v86 mode supported.
- 80486 (1989), Internal cache(8KB) and math coprocessor(486DX), PLL.
- Pentium(1993), 8KB D-cache and 8KB
 P-cache, Superscaler pipelining, : SMM
- Pentium-MMX. Multi-Media eXtension
 : (or maybe Matrix Math eXtension)
- PentiumPro (1995), L1-cache and L2-cache.
- IA-64(Itanium, new ISA) vs. AMD64

Filesystem describes the way the data is stored and retrieved by filename.

VFS is a common interface for all filesystems.

Types of filesystem (Linux)

- Disk-based: FAT-series, EXT-series, YAFFS2, NTFS, ISO, ...
- Network: NFS, SAMBA, ...
- Pseudo filesystems: PROCFS, SYSFS, ...

Filesystem

Disk Partition

MBR uses 4 bytes describing a disk, max. $2^{41}\,$ bytes of a disk.

Modern disk uses GPT format, which uses LBA (Logical Block Address, 8 bytes), allows $(2^{64}-1)\times 512=8$ ZiB of a disk size.

jump instruction (run boot code)

FAT description:

sectors/cluster, sectors/FAT FATs (usu. 2 FATs) root directory items

Boot Code

Partition Table (4 items, not necessary)

55 AA

FAT1 (sectors/FAT described before)

FAT2 (for redudant)

root directory (32bytes/item)

data, organized in cluster (begin with cluster no. 2)


```
80 Boot indicator
20 21 20 CHS (Start)
07 Filesystem type ID
59 1a bf CHS (End)
00 80 00 00 Relative sectors
00 0e 2e 00 Total sectors
```


FAT info

FAT for	mat is d	described in boot sector:
offset	bytes	
0000	3	JMP instruction
0003	8	Version info
000B	2	Bytes per sector
000D	1	Sectors per cluster
000E	2	Reserved sectors, incl.MBR
0010	1	Number of FATs
0011	2	Root entries,32B/entry
0013	2	Sectors (on small volumes)
0015	1	Media Descriptor
0016	2	Sectors per FAT

Data begin at (Reserved sectors + FATs + Root entries), marked as cluster No.2.

FAT info(cont.)

offset	bytes	meaning
0018	2	Sectors per track
001A	2	Heads
001C	4	Hidden sectors
0020	4	Sectors (on large volumes)
0024	1	Physical driver number
0025	1	Reserved
0026	1	Signature (0x28 or 0x29)
0027	4	Serial number (random)
002A	11	Volume label ('NO NAME ')
0036	8	FS type ('FAT12 ')

Directory Entry

offset	bytes	meaning
00	11	Filename(8.3)
0B	1	Attribute
0C	10	Reserved
16	2	Modified time
18	2	Modified date
1A	2	First cluster
1C	4	File length(bytes)

```
Cluster mark: 000:free, 001:reserved, 002—FEF:next cluster number, FF0—FF6: (reserved values), FF7: bad cluster, FF8-FFF: last cluster (Cluster No. 0 and 1 are for special purpose).
```


Ext2FS

Ext2 Layout

Inodes and block size are fixed once a disk is formatted. File attributes such as size. permission, owner/group, location, date/time, (but not filename) are stored in an inode.

INODE

Direct: 12*1KB

single indirect: 1KB/4*1KB=256KB

doubly indirect: 2562*1KB=64MB

trebly indirect: 2563*1KB=16GB

System crash may lead to the loss of data when file written. File system can be corrupted if not closed when the system shuts down. Using a journal allows data recovery of files and the data within it.

Summary

- Memory (RAM, ROM)
- Memory Organization
- Cache (SRAM vs. DRAM)
- Virtual Memory (Internal memory vs. Disk)
- Filesystem

