Testes

separei 3 cases, que são diferentes formas de fazer extração de bordas utilizando canny.

Tambem fiz variação na inclusão das etapas de filtragem e preprocessamento no fluxo todo, com o objetivo de ver se influenciam de forma positiva ou negativa no processo de estimação de posicição.

Case 1: (filtro std, sigma, canny)

• sigma: sqtr(entropia/2)

Case 2: ILS_norm filter, sigma, canny

Case 3: sigma, canny

```
C = 0.2;
threshold_low = max(1,C*(mean2(I)-std2(I)))/255;
threshold_high = min(254,C*(mean2(I)+std2(I)))/255;
threshold = [threshold_low threshold_high];
sigm = mean(threshold)/C;
```

DataSet SP – tamx_calc 800 px

Para o Dataset de sp, com um **tamx_calc 800**, ou seja uma imagem geo de 1600x1600 px o case 1 mostrou melhores resultados com a configuração de aplicar filtro nas imagens.

Filtro - preprocessamento	Case 1	Case 2	Case 2
0 - 0	72.77	106.45	84.57
0 - 1	66.11	89.72	87.62
1 - 0	58.52	96.72	81.88
1 - 1	69.87	69.95	80.35

DataSet SP - tamx_calc 300 px

Para o Dataset de sp, com um **tamx_calc 300**, ou seja uma imagem geo de 600x600 px (que foi a conf utilizada no paper do Braga) o case 1 mostrou melhores resultados com a configuração de não aplicar filtro nem preprocessamento nas imagens.

Filtro - preprocessamento	Case 1	Case 2	Case 2
0 - 0	49.33	62.81	68.95
0 - 1	58.32	62.33	63.23
1 - 0	57.07	76.25	61.27
1 - 1	49.92	67.26	75.85

DataSet SP - tamx_calc 300 px - crop 390

Nos experimentos anteriores, notei que o processo de fazer o crop e deixar a area util, estava influenciando no resultado da est. de posiçao. Fiz uma alteraçao, deixando uma imagem constante de 390 px tomando como referencia o px central após a correçao da rotaçao. Os resultados melhoraram em funçao da est. de posiçao.

Desta forma o case 1 e o case 3 mostraram os melhores resultados, a configuração de aplicar filtro ou preprocessamento nas imagens ajudou a melhorar os resultados.

Filtro - preprocessamento	Case 1	Case 2	Case 3
0 - 0	38.38	44.47	38.43
0 - 1	35.21	40.00	38.59
1 - 0	36.68	52.27	39.64
1 - 1	39.08	37.12	37.56

DataSet Suecia – tamx_calc 600 px

para o DataSet da suecia, a variação entre o filtro e a inclusão da etapa de preprocessamento não apresentou melhoras significativas (acredito que seja por a imagem ter menor textura que as imagem de SP), mas o case 1 apresenteou melhores resultados que o case2 e case 3.

Filtro - preprocessamento	Case 1	Case 2	Case 2
0 - 0	31.82	29.30	30.81
0 - 1	32.75	34.99	35.16
1 - 0	31.66	43.31	38.48
1 - 1	34.31	37.48	38.25

0 - 0

1-0

