Duration: 3 hrs

- Classification
- Hypothesis representation
- Decision boundary
- Cost function
- Multi-class classification: One-vs-all

Classification

Email: Spam / Not Spam?

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

 $y \in \{0, 1\}$

0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant tumor)

 $y \in \{0, 1, 2, 3\}$

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Classification: y = 0 or 1

 $h_{\theta}(x)$ can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

- Classification
- Hypothesis representation
- Decision boundary
- Cost function
- Multi-class classification: One-vs-all

Logistic Regression Model

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function Logistic function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\theta}(x) = 0.7$

Tell patient that 70% chance of tumor being malignant

$$h_{\theta}(x) = P(y = 1|x; \theta)$$
$$y = 0 \text{ or } 1$$

"probability that y = 1, given x, parameterized by θ "

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

 $P(y = 0|x; \theta) = 1 - P(y = 1|x; \theta)$

- Classification
- Hypothesis representation
- Decision boundary
- Cost function
- Multi-class classification: One-vs-all

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

when
$$z \ge 0$$
 or $\theta^T x \ge 0$

predict "
$$y=0$$
" if $h_{\theta}(x)<0.5$

when
$$z < 0$$
 or $\theta^T x < 0$

Decision Boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

$$x_1 + x_1 \ge 3$$

$$h_{\theta}(x) = 0.5$$

 $x_1 + x_1 = 3$
Decision boundary
 $x_1 + x_1 < 3$
 $y = 0$

Non-linear decision boundaries

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$$

- Classification
- Hypothesis representation
- Decision boundary
- Cost function

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$

$$x_0 = 1, y \in \{0, 1\}$$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{bmatrix} \qquad x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Cost function

Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$ Logistic regression: $cost(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) - y)^2$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$cost = 0 \text{ if } y = 0, h_{\theta}(x) = 0$$

But as $h_{\theta}(x) \to 1$
 $cost \to \infty$

$$p(y = 0|x; \theta) = 1 - h_{\theta}(x) = 0$$

- Classification
- Hypothesis representation
- Decision boundary
- Cost function
 - Simplified cost function and gradient descent
- Multi-class classification: One-vs-all

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\operatorname{Note:} \ y = 0 \text{ or } 1 \text{ always}$$

$$\operatorname{cost}(h_{\theta}(x), y) = -y \cdot \log(h_{\theta}(x)) - (1 - y) \cdot \log(1 - h_{\theta}(x))$$

$$\operatorname{If} \ y = 1 : \operatorname{cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

$$\operatorname{If} \ y = 0 : \operatorname{cost}(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x))$$

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$
 $p(y = 1|x; \theta)$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update all $heta_j$)

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_\theta(x^{(i)}))]$$
 Want $\min_\theta J(\theta)$: Repeat $\{$
$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$h_\theta(x) = \theta^T x$$
 (simultaneously update all θ_j)
$$h_\theta(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Algorithm looks identical to linear regression!

- Classification
- Hypothesis representation
- Decision boundary
- Cost function
 - Simplified cost function and gradient descent
 - Advanced optimization
- Multi-class classification: One-vs-all

Optimization algorithm

Cost function $J(\theta)$. Want $\min_{\theta} J(\theta)$.

Given $\underline{\theta}$, we have code that can compute

Gradient descent:

```
Repeat \{ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \}
```

Optimization algorithm

Given θ , we have code that can compute

-
$$J(\theta)$$

$$-\frac{\partial}{\partial \theta_j}J(\theta)$$
 (for $j=0,1,\ldots,n$)

Optimization algorithms:

- Gradient descent
- Conjugate gradient
- BFGS
- L-BFGS

Advantages:

- No need to manually pick lpha
- Often faster than gradient descent.

Disadvantages:

More complex

Example:

$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$$

$$\frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)$$

```
theta = \begin{bmatrix} \theta_1 \\ \theta_1 \\ \vdots \end{bmatrix}
function [jVal, gradient] = costFunction(theta)
         jVal = [code to compute J(\theta)];
         gradient(1) = [code to compute \frac{\partial}{\partial \theta_0} J(\theta)];
         gradient(2) = [code to compute \frac{\partial}{\partial \theta_1} J(\theta)];
         gradient(n+1) = [code to compute \frac{\partial}{\partial \theta_n} J(\theta) ];
```

- Classification
- Hypothesis representation
- Decision boundary
- Cost function
- Multi-class classification: One-vs-all

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

$$y = 1 \quad y = 2 \quad y = 3 \quad y = 4$$

Medical diagrams: Not ill, Cold, Flu

$$y = 1 \quad y = 2 \quad y = 3$$

Weather: Sunny, Cloudy, Rain, Snow

$$y = 1$$
 $y = 2$ $y = 3$ $y = 4$

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

Class 1: \triangle

Class 2:

Class 3: X

$$h_{\theta}^{(i)}(x) = P(y = i|x;\theta)$$
 $(i = 1, 2, 3)$

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$