Euler's Formula:

•
$$e^{j\theta} = \cos\theta + j\sin\theta$$

•
$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

•
$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Table 1: PROPERTIES OF THE FOURIER TRANSFORM

Property	Aperiodic signal	Fourier Transform
	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{jwt} d\omega$	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-jwt}$
	y(t)	$Y(j\omega)$
Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency Shifting	$e^{j\omega_0t}x(t)$	$X\left(j(\omega-\omega_0)\right)$
Conjugation مزدوج	$x^*(t)$	$X^*(-j\omega)$
Time Reversal	x(-t)	$X(-j\omega)$
Time and Frequency Scaling	x(at)	$rac{1}{ a }X(rac{j\omega}{a})$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
Differentiation in Time	$rac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int\limits_{-\infty}^t x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$

Parsavel's Relation for Aperiodic Signals

$$\int\limits_{-\infty}^{+\infty}|x(t)|^2dt=\tfrac{1}{2\pi}\int\limits_{-\infty}^{+\infty}|X(j\omega)|^2d\omega$$

Table 2: BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier Transform
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$rac{2sin\omega T_1}{\omega}$
$rac{sinWT}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$
u(t)	$rac{1}{j\omega}+\pi\delta(\omega)$
$e^{-at}u(t), \Re e\{a\} > 0$	$rac{1}{a+j\omega}$

Table 3: PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Property	Aperiodic signal	Fourier Transform
	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{jwn} dw$	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jwn}$
	y[n]	$Y(e^{j\omega})$
Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Frequency Shifting	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
Time Reversal	x[-n]	$X(e^{-j\omega})$
Time Expansion	$x_{(k)}[n] = \begin{cases} x[\frac{n}{k}], & \text{if n is multiple of k} \\ 0, & \text{if n is not multiple of k} \end{cases}$	$X(e^{jk\omega})$
Time Expansion	0, if n is not multiple of k	21 (0)
Convolution	x[n]*y[n]	$X(e^{j\omega})Y(e^{j\omega})$
Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Differencing in Time	x[n]-x[n-1]	$(1 - e^{-j\omega})X(e^{j\omega})$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
Differentiation in Frequency	nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$

Parsavel's Relation for Aperiodic Signals

$$\sum\limits_{n=-\infty}^{+\infty}|x[n]|^2=\frac{1}{2\pi}\int_{2\pi}|X(e^{j\omega})|^2d\omega$$

Table 4: BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$
$x[n] = \begin{cases} 1, & n < N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{sin[\omega(N_1+\frac{1}{2})]}{sin(\frac{\omega}{2})}$
$\frac{W}{\pi} sinc(\frac{Wn}{\pi}), 0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$

Table 5: PROPERTIES OF THE LAPLACE TRANSFORM

Property	Signal	Laplace Transform	ROC
	x(t)	$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$	R
	$x_1(t)$	$X_1(s)$	R_1
	$x_2(t)$	$X_2(s)$	R_2
Time Shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shifting in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e s is in the ROC if $s-s_0$ is in R)
Time scaling	x(at)	$\frac{1}{ a }X(\frac{s}{a})$	Scaled ROC (i.e, s is in the ROC if s/a is in R
Conjugation	$x^*(-t)$	$X^*(s^*)$	R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Differentiation in Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R
Differentiation in the s -Domain	-tx(t)	$\frac{d}{ds}X(s)$	R
Integration in the Time Domain	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re e\{s\} > 0\}$

Table 6: LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

Signal	Transform	ROC
u(t)	$\frac{1}{s}$	$\Re e\{s\} > 0$
-u(-t)	$\frac{1}{s}$	$\Re e\{s\} < 0$
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -\alpha$
$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} < -\alpha$

Table 7: PROPERTIES OF THE z-TRANSFORM

Property	Signal	z-Transform	ROC
$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$	x[n]	X(z)	R
	$x_1[n]$	$X_1(z)$	R_1
	$x_2[n]$	$X_2(z)$	R_2
Time Shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R, except, for the possible addition or deletion of the origin
Scaling in the z-Domain	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R
	$z_0^n x[n]$	$X(\frac{z}{z_0})$	z_0R
	$a^n x[n]$	$X(a^{-1}z)$	Scaled version of R (i.e, $ a R$ = the set of points $\{ a z\}$ for z in R)
Time Reversal	x[-n]	$X(z^{-1})$	Inverted R (i.e, R^{-1} =the set of points z^{-1} , where z is in R)
Time Expansion	$x_{(k)}[n] = \begin{cases} x[r], & if n = rk \\ 0, & if n \neq rk \end{cases}$	$X(z^k)$	$R^{\frac{1}{k}}$ (i.e, the set of points $z^{\frac{1}{k}}$, where z is in R
Conjugation	$x^*[n]$	$X^*(z^*)$	R
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R_2
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
Differentiation in the z-domain	nx[n]	$-z\frac{dX(z)}{dz}$	R

Table 8: SOME COMMON z-TRANSFORM PAIRS

Signal	Transform	ROC
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha$
$-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha$