Properties of Regular Languages

1

For regular languages $L_{\! 1}$ and $L_{\! 2}$ we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1^*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Are regular Languages

We say Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1^*

Reversal: L_1^R

Complement: $\overline{L_{\rm l}}$

Intersection: $L_1 \cap L_2$

Costas Busch - LSU

3

A useful transformation: use one accept state NFA a b a costas Busch-LSU A useful transformation: use one accept state 2 accept states 1 accept state

NFA without accepting state

Add an accepting state without transitions

Take two languages

Regular language $L_{\rm l}$ Regular language $L_{\rm 2}$

$$L(M_1) = L_1$$

 $L(M_2) = L_2$

NFA M_1

NFA M_2

Single accepting state

Single accepting state

Costas Busch - LSU

7

Example

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$b$$

$$L_2 = \{ba\} \qquad b \qquad a \qquad b$$

Costas Busch - LSU

NFA for $L_1L_2=\{a^nb\}\{ba\}=\{a^nbba\}$ $L_1=\{a^nb\}$ $L_2=\{ba\}$ $\lambda \qquad b \qquad a$ Costas Busch-LSU

Example

NFA for $L_1^* = \{a^n b\}^*$ $L_1 = \{a^n b\}$ a bCostas Busch - LSU

Reverse

NFA for L^R

- 1. Reverse all transitions
- 2. Make the initial state accept state and the accept state initial state

15

Example

$$L_1 = \{a^n b\}$$

$$M_1$$

$$a$$

$$b$$

$$L_1^R = \{ba^n\}$$

Costas Busch - LSU

Complement

- 1. Take the ${f DFA}$ that accepts L
- 2. Make accept states regular and vice-versa

Costas Busch - LSU

17

Example

$$L_1 = \{a^n b\}$$

$$A_1 = \{a^n b\}$$

$$A_2 = \{a^n b\}$$

Costas Busch - LSU

NFAs cannot be used for complement

Make accept states regular and vice-versa

$$\overline{L(M)} = \Sigma^* = \{a, b\}^*$$

it is **not** the complement

Costas Busch - LSU

19

19

Same example with DFAs

Make accept states regular and vice-versa

$$\overline{L(M)} = \Sigma^* = \{a, b\}^*$$

DFA M' a,b $L(M') = \{a,b\}^* = \overline{L(M)}$

it is the complement

Costas Busch - LSU

20

<u>Intersection</u>

$$L_1$$
 regular $L_1 \cap L_2$ L_2 regular regular

potos Pusob I CII

21

DeMorgan's Law:
$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

$$L_1, L_2 \qquad \text{regular, regular}$$

$$\longrightarrow \overline{L_1}, \overline{L_2} \qquad \text{regular, regular}$$

$$\longrightarrow \overline{L_1} \cup \overline{L_2} \qquad \text{regular}$$

$$\longrightarrow \overline{L_1} \cup \overline{L_2} \qquad \text{regular}$$

$$\longrightarrow L_1 \cap L_2 \qquad \text{regular}$$

$$\longrightarrow L_1 \cap L_2 \qquad \text{regular}$$

Example

$$L_1 = \{a^nb\}$$
 regular
$$L_1 \cap L_2 = \{ab\}$$

$$L_2 = \{ab,ba\}$$
 regular regular

Costas Busch - LSU

22

23

Another Proof for Intersection Closure

Machine M_1

DFA for L_1

Machine M_2

DFA for L_2

Construct a new DFA M that accepts $L_1 \cap L_2$

M simulates in parallel M_1 and M_2

Costas Busch - LSU

24

DFA M_1 q_i accept state

DFA M_2 p_j q_i q_i q_i p_j q_i q_i p_j q_i q_i

-

Construction procedure for intersection

- 1. Build Initial State
- 2. For each new state and for each symbol add transition to either an existing state or create a new state and point to it
- 3. Repeat step 3 until no new states are added
- 4. Designate accept states

Costas Busch - LSU

31

31

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^m\} = \{ab\}$$

initial state

Costas Busch - LSU

33

Automaton for intersection $L = \{a^nb\} \cap \{ab^m\} = \{ab\}$ $\downarrow q_0, p_0 \qquad a \qquad \downarrow q_0, p_1 \qquad \downarrow b \qquad \downarrow q_1, p_2 \qquad \downarrow$

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^m\} = \{ab\}$$

Repeat until no new states can be added a,b

Costas Busch - LSU

35

35

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^m\} = \{ab\}$$

 $q_{\scriptscriptstyle 1}$ accept state for $M_{\scriptscriptstyle 1}$

 p_1 accept state for M_2 \Longrightarrow add Accept state

Costas Busch - LSU

36

Intersection DFA M:

simulates in parallel $\,M_1\,$ and $\,M_2\,$

accepts string $\,w\,$ if and only if: $M_1\,\, {\rm accepts}\, {\rm string}\,\, w$ and $M_2\,\, {\rm accepts}\, {\rm string}\,\, w$

$$L(M) = L(M_1) \cap L(M_2)$$

Costas Busch - LSU