Midterm [Part 2]

2019.10.20.

Hao Zhiyu

Outline

- 1. Logic circuit
- 2. Optimization

Theorems

• (a)
$$x + x = x$$
;

• (a)
$$x + 1 = 1$$
;

•
$$(x')' = x;$$

• (a)
$$x + y = y + x$$
;

• (a)
$$x + (y + z) = (x + y) + z$$
;

• (a)
$$x(y + z) = xy + xz$$
;

• (a)
$$x + xy = x$$
;

• (a)
$$xy + xy' = x$$
;

• (a)
$$x + x^2y = x + y$$

(b)
$$x \cdot 0 = 0$$
; (theorem 1)

(b)
$$\mathbf{x} \cdot \mathbf{x}' = 0$$
; (theorem 2)

(b)
$$x \cdot x = x$$
; (theorem 3)

(b)
$$x \cdot 1 = x$$
; (theorem 4) (involution)

(b)
$$xy = yx$$
; (commutative)

(b)
$$x(yz) = (xy)z$$
; (associative)

(b)
$$x + yz = (x+y)(x+z)$$
; (distributive)

(b)
$$x(x + y) = x$$
; (absorption)

(b)
$$(x + y)(x + y') = x$$
 (theorem 5)

(b)
$$x(x' + y) = xy$$
 (theorem 6)

Hw2

- 9. Problem 6.4, using both algebraic methods and K-map. (10 points)
- 6.4 Perform two-level logic size optimization for F(a,b,c) = a + a'b'c + a'c using a K-map.

$$F(a,b,c) = a+a'c = a + ac + a'c = a + (a+a') c = a + c.$$

Read through the question carefully!!!

Boolean Algebra

- De Morgan's Law
- Minterm and Maxterm

			Minterms		Maxterms		
X	y	Z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	m ₀	x+y+z	M_0	
0	0	1	x'y'z	m ₁	x+y+z'	M_1	
0	1	0	x'yz'	m ₂	x+y'+z	M_2	
0	1	1	x'yz	m ₃	x+y'+z'	M_3	
1	0	0	xy'z'	m ₄	x'+y+z	M_4	
1	0	1	xy'z	m ₅	x'+y+z'	M ₅	
1	1	0	xyz'	m ₆	x'+y'+z	M ₆	
1	1	1	xyz	m ₇	x'+y'+z'	M ₇	

(a)
$$(x + y)' = x'y'$$

(b)
$$(xy)' = x' + y'$$

For the final result, it is better to simplify the answer.

Find Expression

- First to minterms
- Know how to transfer to maxterms
- Don't Care Situation

Truth Table x y z F1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1

Sum-of-minterms

$$F1 = x'y'z + xy'z' + xy'z$$
$$xyz' + xyz$$

$$F1 = m_1 + m_4 + m_5 + m_6 + m_7$$

$$F1 = \Sigma (1, 4, 5, 6, 7)$$

Product-of-maxterms

$$F1 = (x+y+z) \cdot (x+y'+z) \cdot (x+y'+z')$$

$$F1 = M_0 \bullet M_2 \bullet M_3$$

$$F1 = \Pi(0, 2, 3)$$

Logic gates

- 1 gate 1 delay (invertor ignored, XOR treated as usual)
- 2 transistors (size) for each gate input

2-input AND gate

2-input OR gate

NOT gate/Inverter

- NAND: Opposite of AND ("NOT AND")
- NOR: Opposite of OR ("NOT OR")
- XOR: outputs 1 when inputs have odd number of 1's
- XNOR: Opposite of XOR ("NOT XOR")

Hw3

10. Highlight the critical paths of the following circuit. Assume that each gate (including the individual inverters and XOR gates) has a delay of 1 ns and each wire has a delay of 0.5 ns.
(5 points)

K-map

- Building from truth table
- Grouping
- Find Pls and EPls
- Practice makes perfect!!!

Building

- From truth table
- From current equation (first transfer to truth table)

W	X	Y	Z	F		
0	0	0	0	1	m0	W'X'Y'Z'
0	0	0	1	0	m1	W'X'Y'Z
0	0	1	0	1	m2	W'X'YZ'
0	0	1	1	1	m3	W'X'YZ
0	1	0	0	0	m4	W'XY'Z'
0	1	0	1	0	m5	W'XY'Z
0	1	1	0	0	m6	W'XYZ'
0	1	1	1	1	m7	W'XYZ
1	0	0	0	1	M8	WX'Y'Z'
1	0	0	1	1	m9	WX'Y'Z
1	0	1	0	0	M10	WX'YZ'
1	0	1	1	0	m11	WX'YZ
1	1	0	0	1	m12	WXY'Z'
1	1	0	1	0	m13	WXY'Z
1	1	1	0	0	m14	WXYZ'
1	1	1	1	1	m15	WXYZ

WX YZ	00	01	11	10
	Y 'Z'	Y 'Z	YZ	YZ '
w'x'	1	0	1	1
	m0	m1	m3	m2
W'X	0	0	1	0
	m4	m5	m7	m6
WX	1	0	1	0
	m12	m13	m15	m14
WX'	1	1	0	0
	m8	m9	m11	m10

PI and EPI

 A prime implicant (PI) is a group that cannot be entirely contained by another implicant

• A prime implicant (PI) is essential if one of its cells is covered

ONLY by that PI

12	00	01	11	10
00	1	0	1	1
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

Essential PI: XZ

No essential PIs found