Application Case Study: Introduction

6.871-- Lecture 4

Questions About ...

- The Task
 - Is this the right problem to solve?
 - Is it important?
 - Is it valuable?
 - Can it be done?
 - How can progress be measured?
 - How will you know if it succeeds?
 - If you build a system, will anyone use it?
 - Who, and why?

Questions About ...

- The Task
 - If you build it, who will maintain it?
 - If you build it
 - Who will benefit from it?
 - Who will be threatened by it?
- The Technology
 - What can it do?

- Replicate knowledge and expertise
 - If only we had 5 more of Sally…

- Preserve knowledge and expertise Corporate Memory
 - Joe's getting ready to retire.
- Embed knowledge and expertise
 - Is it #*1 or ##2 to call-forward?!!

- Make knowledge accessible
 - Oh, HERE it is, on page 412 of volume 6.

- Apply knowledge consistently over time Provide an environment for knowledge standardization and growth
 - Why can't they do it in Chicago the way they do it in Seattle?
 - Why does every plant have to keep relearning this?
 - E.g.American Express Authorizer's Assistant

Leverage the expert
 Why can't we use Phil's time more
 productively?

Improve practice; support the average
 We can never find and train enough skilled people.

Help avoid disaster.
 How did that slip through?

Help manage change?
 Fifty new products this year! A technical success, and a marketing disaster.

 Distribute corporate policy
 Why don't the salesman read any of the 100 memos we sent this quarter?

Solve a variety of "part assembly" tasks.
 I can't keep track of all the combinations.

Analysis: What Is It?

- What is the task?
 - Specify in terms of input and output.
- When is it done and why?
- How often?
- How fast must it be done?
- How much does one "run" cost?
- What value is produced by a run?

Analysis: How Is It Done?

- Who does it?
- What do they do?
- How do they get trained?
- How available are they?
- How is the task organized?
- How accurately should it be done?
- What goes well about it now?
- What goes badly?

Analysis: Mistakes

- What is the nature and origin of a mistake?
 - What kinds of things go wrong?
 - Why?
 - too much detail
 - too much change
 - too much info to absorb
 - insufficiently trained people
 - too simple
 - too routine

Analysis: Mistakes

- What are the consequences of a mistake?
 - time: how much?
 - money: how much
 - image
- If something goes wrong now?
 - who spots it
 - who fixes it
 - who gets blamed

- Character of the problem
 - Narrow domain of application
 - Knowledge overload
 - Many different outcomes
 - Few outcomes but a lot to know
 - Task involves symbolic reasoning
 - Task uses symbolic information
 - No adequate algorithmic solution
 - Takes 20 minutes to a few days
 - Incremental progress is possible
 - Repetitive

- Character of the knowledge
 - Substantial specialized knowledge/expertise required
 - ⇒ accumulating relevant knowledge takes time
 - Knowledge is *relatively* stable
 - There are recognized experts
 - ... but too few of them
 - ... or they have other tasks that are more rewarding (for several senses of reward)

- Character of the knowledge
 - Experts are provably better than the amateur
 - Measure the difference
 - What dimension: speed, accuracy?
 - What is the right answer?
 - The experts can communicate the relevant knowledge
 - They can communicate it to you
 - You can become at least a talented amateur
 - One expert is enough (or, one chief expert)

- Character of the solution:
 - useful accuracy is reachable
- The skill is routinely taught
- Data and cases studies are readily available
 - Dead center cases
 - Extreme cases
 - Informative canonical cases

The Business Case

- Define the character of the payoff
 - revenue
 - improved competitive position
 - quality
 - speed
 - uniformity
 - cost reduction
 - new, different product
 - staff retention
 - staff reduction

The Business Case

- Calibrate the size of the payoff
 - What is half the distance to the expert worth?

Determine the chance for leverage

The Organizational Case

- An enthusiastic, committed expert is available
- Who will use it?
- End-users are identified/identifiable
- End-users are enthusiastic
 - Do they agree that
 - the problem exists?
 - the problem is important?
 - the program solves their problem?

The Organizational Case

- The organizational culture will support its use
- The answer is worth the difficulties
 - learning to use it, using it

If It's The First Problem

- Select one where knowledge is fairly clear
 - Needs formalization, not discovery eg. Procedures, manuals, etc.
- Select one that's too small
- Select one that matters
- Set up a skunkworks

Project Design

Expert-level performance is difficult, so...

Adopt an evolutionary approach
 It gets you started
 Useful wherever you stop

Project Design

- Build an assistant
 Inherently low profile
 Leverages the operator
 Keeps lines of accountability clear
- Manage expectations
- Provide a smooth adoption path
- Provide follow-on and support

Project Construction

- You don't know what you're trying to build Recall checkbook vs. supermarket
 - Not formally definable
 - Can't anticipate all contingencies
 - Can't specify procedure
 - Human performance is the metric
 - The task will change out from under you

Project Construction

- Nature of the solution changes
- Nature of the construction process changes

Rapid Prototyping

- Construction process involves
 - Intertwining of specification and implementation
 - Experimentation
 - Three-month prototype
 - prevents optimization
 - encourages experimentation
 - early feedback on technology and conception

PROTOTYPE \Leftrightarrow ENHANCE \Rightarrow SPECIFY \Rightarrow CODE

Rapid Prototyping: Advantages

- Handle ill-defined tasks.
- Check problem conception.
- Secure user buy-in.
- Refine user requirements.
- Refine production and integration requirements.
- Something works all the time.
- Get management support.
- It happens anyway.

Field Test and After

- Where to field test
 - Who wants it and is knowledgeable enough to evaluate it?
- KB development is never done
 - Determine who can take over
- What will happen to the expert?
 - attrition?
 - work on harder problems?
 - extend the knowledge base?

Design for Evolution

- If it's a success, how long will they use it for?
- If they use it, what else will they want?
- What do you suspect will happen to the hardware and software infrastructure that the application will rely on?
- How closely coupled to the underlying infrastructure will you need to be?
 - Will they let you do that?
 - Are there standard ways to do it?
 - How pervasive will these be in the end application?