МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ СИСТЕМ ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ И ФИЗИКО-МАТЕМАТИЧЕСКИХ НАУК КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Приложения комплексных чисел к решению геометрических задач

Оглавление

Введение	3
Основы метода комплексных чисел	Ē
Решение и разбор задач с применением метода	6
Список литературы	7

Введение

В настоящее время в большом количестве прикладных и научных областей возникает необходимость решения геометрических задач. Основные из них - производство различных деталей и конструкций, моделирование различных объектов и явлений. В данных областях возникает потребность поиска эффективного решения поставленных задач, что подразумевает выборку оптимального метода решения или соотношения между ними. Основные методы решения задач следующие[2]:

- 1. Аналитический. Состоит в представлении входных и требуемых данных в виде набора переменных и констант и взаимосвязи между ними в виде алгебраических уравнений с последующим их решением.
- 2. Графический. Состоит в построении рисунка, полноценно отражающего набор необходимых для решения задачи входных данных и взаимосвязей между ними. Решение состоит в последовательном применении известных фактов и теорем, приводящих к получению ответа.
- 3. Комбинация двух предыдущих. При ручном решении применяется чаще всего.

Метод комплексных чисел является расширением аналитического метода (метод №1). Он позволяет представить геометрические объекты 2-мерной плоскости в виде набора комплексных чисел и равенств, отражающих взаимосвязи между ними.

При этом данный метод рассматривается в школах только как материал для самостоятельного изучения[4],[1, стр.6]. Особенность данного метода состоит в его контринтуитивности и сложности (например, спиральное подобия – части основ метода) Проблема состоит в том, что для данного метода отсутствуют программные материалы для внедрения в среду самостоятельного обучения.

Целью данной работы является изучение метода комплексных чисел при решении геометрических задач, реализация программной верификации решения выбранных задач.

Для достижения цели необходимо выполнить следующие задачи:

- 1. Изучить имеющиеся способы применения алгебры комплексных чисел при решении геометрических задач.
- 2. Выбрать задачи, на которых будет рассматриваться практическое применение метода.

- 3. Решение задач с применением метода комплексных чисел и без них
- 4. Сравнение решений задач.
- 5. Реализация программной верификации решения задач с применением метода.

Основы метода комплексных чисел

Комплексное число z — число вида x+iy, где $x,y\in {\bf R}, i=\sqrt{-1}, z\in {\bf C}, {\bf C}$ — поле комплексных чисел. У числа z можно выделить действительную x=Re(z) и мнимую y=Im(z) части.

На плоскости зададим прямоугольную декартову систему координат Oxy и отображение $f: M(x;y) \leftrightarrow z = x+iy$, где $M \in \mathbf{P}$ — точка плоскости с координатами $x,y \in \mathbf{R},\mathbf{P}$ — множество точек евклидовой плоскости.

Отображение f биективно. Метод комплексных чисел основан на данном факте. Таким образом, свойства и операции комплексных чисел можно перенести на прямоугольную декартову систему координат евклидовой плоскости.

Для примера рассмотрим некоторые из свойств:

- 1. Модуль числа $z=|z|=\sqrt{x_0^2+y_0^2}=r$ расстояние между точкой O и M (рис. 1).
- 2. Если $\angle \varphi$ ориентированный, образованный \overrightarrow{OM} с осью Ox, то $x_0=r\cos\varphi,\ y_0=r\sin\varphi.$ Тогда $z_0=r(\cos\varphi+i\sin\varphi)$

Рис. 1: Изображение числа z на плоскости

Решение и разбор задач с применением метода

Задача 1

Постановка задачи: Доказать, что если некоторая прямая пересекает прямые, содержащие стороны BC, CA, AB треугольника ABC, в точках A_1 , B_1 , C_1 соответственно, то середины отрезков AA_1 , BB_1 , CC_1 коллинеарны.

Решение задачи: Условие коллинеарности троек точек $A, B_1, C; C, A_1, B; B, C_1, A; A_1, B_1, C_1$:

$$\begin{cases}
a(\bar{b_1} - \bar{c}) + b_1(\bar{c} - \bar{a}) + c(\bar{a} - \bar{b_1}) = 0 \\
b(\bar{c_1} - \bar{a}) + c_1(\bar{a} - \bar{b}) + a(\bar{b} - \bar{c_1}) = 0 \\
c(\bar{a_1} - \bar{b}) + a_1(\bar{b} - \bar{c}) + b(\bar{c} - \bar{a_1}) = 0 \\
a_1(\bar{b_1} - \bar{a_1}) + b_1(\bar{a_1} - \bar{a_1}) + a_1(\bar{a_1} - \bar{b_1}) = 0
\end{cases} \tag{1}$$

Если M, N, P – середины отрезков AA_1, BB_1, CC_1 , то предстоит показать, что

$$m(\bar{n} - \bar{p}) + n(\bar{p} - \bar{m}) + p(\bar{m} - \bar{n}) = 0,$$
 (2)

Так как $m=\frac{1}{2}(a+a_1),\ n=\frac{1}{2}(b+b_1),\ p=\frac{1}{2}(c+c_1),$ то доказываемое равенство (2) эквивалентно такому:

 $(a+a_1)(\bar{b}+\bar{b_1}-\bar{c}-\bar{c_1})+(b+b_1)(\bar{c}+\bar{c_1}-\bar{a}-\bar{a_1})+(c+c_1)(\bar{a}+\bar{a_1}-\bar{b}-\bar{b_1})=0,$ или, после перемножения,

$$a(\bar{b}_1 - \bar{c}) + a(\bar{b} - \bar{c}_1) + a_1(\bar{b}_1 - \bar{c}_1) + a_1(\bar{b} - \bar{c}) + b(\bar{c}_1 - \bar{a}) + b(\bar{c} - \bar{a}_1) + b_1(\bar{c}_1 - \bar{a}_1) + b_1(\bar{c} - \bar{a}) + c(\bar{a}_1 - \bar{b}) + c(\bar{a} - \bar{b}_1) + c_1(\bar{a}_1 - \bar{b}_1) + c_1(\bar{a} - \bar{b}) = 0.$$
(3)

Теперь легко видеть, что (3) получается при почленном сложении равенств (1)

Алгоритм программного решения задачи: На вход программы передаются координаты свободных точек, в данном примере это координаты точек A, B, C, A_1 . По данным входным данным строится прямая, соответствующая условиям задачи.

Литература

- [1] Алгебра комплексных чисел в геометрических задачах: Книга для учащихся математических классов школ, учителей и студентов педагогических вузов. М.: МЦНМО, 2004. 160 с.
- [2] Обучение методам решения геометрических задач https://cyberleninka.ru/article/n/obuchenie-metodam-resheniya-geometricheskih-zadach/viewer
- [3] Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов.— 13-е изд., исправленное. М.: Наука, Γ л. ред. физ.-мат. лит., 1986. 544 с.
- [4] Жмурова И. Ю. Изучение комплексных чисел в общеобразовательной школе / И. Ю. Жмурова, С. В. Баринова. // Молодой ученый. 2020. № 5 (295). С. 312-314. URL: https://moluch.ru/archive/295/67123/ (дата обращения: 17.05.2022).