OpenClassrooms

Projet P7:

Sommaire

- Contexte
- Présentation des informations disponibles
- Modélisation
- Tableau de bord (dashboard)
- Conclusion et perspectives

- Contexte
- Présentation des informations disponibles
- Modélisation
- Tableau de bord
- Conclusion et perspectives

Contexte

La société financière « Prêt à dépenser » propose des crédits à la consommation. Elle souhaite évaluer le risque crédit : la probabilité qu'un client ne rembourse pas son crédit.

- ⇒ Conception d'une modélisation du risque client,
- ⇒ Développement d'un Tableau de bord

Prêt à dépenser

- Contexte
- Présentation des informations disponibles
- Modélisation
- Tableau de bord
- Conclusion et perspectives

Présentation des informations disponibles

Les informations disponibles sont issues de la <u>plateforme Kaggle</u>:

- Données : fichiers au format csv,
- Notebooks de compétiteurs.

Ligne → un client Colonne → caractéristiques clients :

- > Identifiant client,
 - > montant du crédit,
 - ressources du client, etc.

La plateforme kaggle

- Contexte
- Présentation des informations disponibles
- Modélisation
- Tableau de bord
- Conclusion et perspectives

Modélisation

L'entraînement:

- Jeu d'entraînement et de test (80% / 20%)
- Distribution déséquilibré (92 % / 8 %):
 - ⇒ utilisation de la librairie smote
- Optimisation d'hyperparamètres:
- ⇒ nombre d'estimateurs, de feuilles, de profondeur et paramètre pour l'équilibrage de données.

Modélisation

Le modèle:

- Problème de classification binaire : probabilité de défaut client
 - Algorithme ensembliste: Lightgbm
- Métrique : matrice de confusion , accuracy, précision, rappel.

		Classe réelle	
		-	+
Classe prédite	-	True Negatives (vrais négatifs)	False Negatives (faux négatifs)
	+	False Positives (faux positifs)	True Positives (vrais positifs)

Matrice de confusion

Modélisation

Le modèle, résultats:

- accuracy ~ 0,75
- précision ~ 30%
- rappel (sensibilité) ~ 30%

Modélisation

Les variables les plus contributrices retenues:

- score provenant d'un calcul externe (EXT_SOURCE)
- annuité (AMT_ANNUITY)
- montant du crédit (AMT_CREDIT)
- nombre de jours en emploi (DAYS_EMPLOYED)
- montant du bien (AMT GOODS PRICE)
- ressources du client (AMT INCOME TOTAL)

- Contexte
- Présentation des informations disponibles
- Modélisation
- · Tableau de bord
- Conclusion et perspectives

Tableau de bord

- Langages : Python, Flask
- Requête avec une méthode 'get' à une url, retour des données au format json.
- Stockage sur la plateforme Heroku

Tableau de bord:

- Langage/Outil:Python, Streamlit, Matplotlib
- Sélection d'un client, requête de l'api, affichage des résultats
- Stockage sur la plateforme Streamlit

- Contexte
- Présentation des informations disponibles
- Modélisation
- Tableau de bord
- Conclusion et perspectives

Conclusion et perspectives

<u>Tableau de bord</u>: Maquette Heroku et Streamlit ⇒ BI, python/dash ou html, css, javascript, d3js, php/sql etc.

Modélisation:

- · Rappel de 30 % et 75 % d'accuracy
- · Difficulté : le feature engineering
- · Pistes d'améliorations :
 - ⇒ notebook kaggle
 - ⇒ modèle ensembliste ou réseaux de neurones
 - ⇒ retour métiers (technique et éthique)

