Introduction

Simulated Annealing

Flowchart


```
Sudo Code
x := x0; e := f(x)
xbest := x; xbest := x
 k := 0
while (k < kmax)
      while (ind1 == ind2)
         ind1 = ceil(rand.*num_cities);
         ind2 = ceil(rand.*num_cities);
       end
      if ind1 < ind2
         route_new (1:ind1-1) = best_route(1:ind1-1);
         route_new (ind1:ind2) = flipIr(best_route(ind1:ind2));
         route_new (ind2+1:num_cities) = best_route(ind2+1:num_cities);
       else
         route_new (1:ind2-1) = best_route(1:ind2-1);
         route_new (ind2:ind1) = flipIr(best_route(ind2:ind1));
         route_new (ind1+1:num_cities) = best_route(ind1+1:num_cities);
       end
   T := temperature(t0)
   xnew := neighbour(x)
   enew := f(xnew)
   if P(e,enew,T) > R(0,1) then
   x := xnew; e := enew
   if enew < ebest then
   xbest := xnew; ebest := enew.
   k := k + 1
 Output xbest
```

Tabu Search algorithms

Flowchart


```
while twoopt_index < 10
    ind1 = 0; ind2 = 0;
    while (ind1 == ind2 || ind1 == 1 || ind2 == 1)
         ind1 = ceil(rand.*num_cities);
         ind2 = ceil(rand.*num_cities);
    end
   if ind1 < ind2
         route_new (2:ind1-1) = best_route(2:ind1-1);
         route_new (ind1:ind2) = flipIr(best_route(ind1:ind2));
         route_new (ind2+1:num_cities) = best_route(ind2+1:num_cities);
    else
         route_new (2:ind2-1) = best_route(2:ind2-1);
         route_new (ind2:ind1) = fliplr(best_route(ind2:ind1));
         route_new (ind1+1:num_cities) = best_route(ind1+1:num_cities);
    end
    twoopt_temp = cities(best_route,:);
    current_length = sumdistance(twoopt_temp);
    if current_length < first_length</pre>
         first_length = current_length
           disp('fuzhi')
         first_route = route_new;
    end
    twoopt_index = twoopt_index + 1;
end
if ismember(first_route, TabuList, 'rows')
    iterations = iterations + 1
else
         if first_length < best_length</pre>
              best_route = first_route
              best_length = first_length
         end
         if tabu_index <= TabuNum
              TabuList(tabu_index,:) = best_route;
              tabu_index = tabu_index+1;
         else
                                                % 重新开始录入 TabuList
              tabu_index = 1;
         end
         temp_cities = cities(best_route,:);
         candidate_length= sumdistance(temp_cities);
```

```
end iterations = iterations + 1; end
```

Tune Parameters

Simulated Annealing

The main parameters in Simulated Annealing are in the process of Temperature Calculation. And in this process, the main factors are:

• Parameters of Temperature cooling Function:

First through searching online, get the approximate range of this parameter. Then, select several values of this parameters and do the experiment. Using the same iteration times 500 and the same start/end temperature, and different parameters of Temperature cooling Function, to compare the result. Each parameter runs for 5 times and calculate the average Minimum distance which shows below.

Parameters of Temperature cooling Function	Average Minimum distance	
0.7	8552	
0.8	7539	
0.9	7382	
0.95	7112	
0.93	7140	
0.97	7112	
0.98	7100	
0.99	7052	

We could see 0.99 are the relatively better parameters. So Finally select 0.99 as the Parameters of Temperature cooling Function.

Start Temperature and end Temperature:

First through searching online, get the approximate range of start Temperature and end Temperature. Then, select several values of this parameters and do the experiment. With the same Parameters of Temperature cooling Function and same iteration times 500, and different start/end time. Each parameter runs for 5 times and calculate the average Minimum distance, choosing some representative values which show below.

Parameters of Start Temperature	Average Minimum distance
100	7110
90	7100
95	7083
97	7013

We could see 97 are the relatively better start temperature. So Finally select 97 as the start temperature. Using the similar method, select the end temperature 3.

Tabu Search algorithms

The main parameters in Tabu Search algorithms are the times of 2-opt algorithms in one iteration and the length of Tabu List.

To tune the parameters, through searching online, I first got the approximate range of this parameter. Then, select several values of this parameters and do the experiment. Using the same iteration times 500 and other initialized values, and different the times of 2-opt algorithms in one iteration and the length of Tabu List., to compare the result. Each parameter runs for 5 times and calculate the average Minimum distance which shows below.

• Times of 2-opt algorithms in one iteration

Times of 2-opt algorithms in one iteration	Average Minimum distance	
4	7179	
10	7132	
20	7214	
5	7175	
6	7185	

We could see 10 are the relatively better start temperature. So Finally select 10 as the start temperature.

the length of Tabu List

According the calculus TabuLength=round((num_cities*(num_cities-1)/2)^0.5), we could get the round `number of Tabu List's length is 115. After using the similar method to tune the parameters and record the results, the change rate of distance decreasing trend is considered comprehensively. Finally choose the length of Tabu List 100.

Average Result & Standard Deviations

Simulated Annealing

1	7039
2	7013
3	7019

4	7013
5	7013
6	7092
7	7013
8	7013
9	7097
10	7013
11	7013
12	7013
13	7087
14	7013
15	7091
16	7087
17	7019
18	7092
19	7013
20	7013
21	7013
22	7013
23	7100
24	7066
25	7029
26	7013
27	7083
28	7019
29	7087
30	7013
31	7039

Average Result: 7040

Standard Deviations: 35.4235

Tabu Search algorithms

1	7105
2	7015
3	7013
4	7195
5	7114
6	7239
7	7092
8	7218

9	7100
10	7113
11	7174
12	7114
13	7210
14	7013
15	7116
16	7190
17	7092
18	7087
19	7195
20	7013
21	7195
22	7092
23	7287
24	7159
25	7143
26	7013
27	7227
28	7116
29	7105
30	7219
31	7143

Average Result: 7132

Standard Deviations: 74.0963

Compare the Results

Using the statistic method: Wilcoxon signed-rank test to analyze the 31 results generated by Simulated Annealing and Tabu Search algorithms, which shows below:

Wilcoxon signed-rank test

Name	Sample Size	Median	Statistical Magnitude	P
Simulated Annealing	31	7019	4.928	0.000**
Tabu Search algorithmss	31	7116	4.863	0.000**

^{*} p<0.05 ** p<0.01