Programming Language: MatLab 1st Semester 2015

Chong-Wai

W02, 21st Sep

Content

- Index of an array
- Matrix operation
 - > Add
 - > Subtract
 - Multiply
 - > Divide
- Variable/Data type
- Data import
- Plotting a 3D figure
- Homework

Index of an array

Two methods to access the element(s) of an array:

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \qquad \mathbf{m}_{\mathbf{i},\mathbf{j}}$$
index i index j

Single index counting along the 1st column and then 2nd column, then ...

e.g.
$$M = \begin{bmatrix} 8 & 1 & 6 \\ \hline 3 & 5 & 7 \\ \hline 4 & 9 & 2 \end{bmatrix} \qquad M(2,3) = 7$$
$$M(3,1) = 4$$
$$M(2:3,1:2) = \begin{bmatrix} 3 & 5 \\ 4 & 9 \end{bmatrix}$$

$$M(2) = 3$$

 $M(5) = 5$
 $M(7) = 6$

M(2:5) = [3 4 1 5]

Index of an array

	For physics	For MatLab/ programming language
$\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$	n-dimension 1 st rank tensor, Vector	1-dimension array with n elements
$\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & \dots & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}$	mxn-dimension 2 st rank tensor, Matrix	2-dimension array with mxn elements
p	mxnxp-dimension 3 rd rank tensor	3-dimension array with mxnxp elements

Matrix creation:

1) User define
e.g. M = [8 1 6; 3 5 7;4 9 2] or [8,1,6; 3,5,7; 4,9,2]

"" or "," => switch to next element in the same row

(the number of elements in each row should be the same)

=> switch to next column

2) zeros(m,n)

3) ones(m,n)

>> zeros(3,2)

>> ones(2,3)
ans =

4) eye(m)

5) rand(m,n)

>> rand(3,2)

ans =

0.8147 0.9134

0.9058 0.6324

0.1270 0.0975

...

Add and subtract:

1) With scalar

e.g.
$$a = 3$$
, $a+M = [a + m_{ii}]$

2) With matrix

M

M = 8 1 6 3 5 7 4 9 2

0

a + M

M+O

a - M

M-O

Elements are directly added/subtracted

(the dimension and size of two matrices should be the same)

Matrix multiplication:

1) With scalar

e.g.
$$a = 3$$
, $a*M = [a*m_{ij}]$

2) With matrix, "*" and ".*"

For A*B:
$$AB_{ij} = \sum_{p} A_{ip} B_{pj}$$

M

M =		
8	1	6
3	5	7
4	9	2

a*M

Α

	, ,	
A =		
1	2	3
1	2	
4	5	6

A*B

>> A*B		
ans =		
1	2	3
4	5	6

В

В =			
	1	0	0
	0	1	0
	0	0	1

(* the number of elements in row of first matrix should be the same as the number of elements in the column of the second matrix)

Matrix multiplication:

1) With scalar

e.g.
$$a = 3$$
, $a*M = [a*m_{ij}]$

2) With matrix, "*" and ".*"

For A*B:
$$AB_{ij} = \sum_{p} A_{ip} B_{pj}$$

For A.*C: $AC_{ij} = A_{ij}C_{ij}$

С

A.*C

>> A.*C

ans =

2 6 12
20 30 42

M

M =		
8	1	6
3	5	7
4	9	2

В

В =			
	1	0	0
	0	1	0
	0	0	1

a*M

A*B

A.*B = ?

(* the number of elements in the row of first matrix should be the same as the number of elements in the column of the second matrix)

(.* the dimension of two matrix should be identical => elements by elements multiplication)

Matrix division:

1) With scalar

e.g.
$$a = 3$$
, $a \setminus M = M / a = [m_{ij}/a]$

a / M or M \ a =>

M

2

>> M\a

Error using <u>A</u>
Matrix dimensions must agree

```
>> a/M
Error using <u>/</u>
Matrix dimensions must agree.
```

$$a./M = M.\a = [a/m_{ij}]$$

```
>> a./M

ans =

0.3750 3.0000 0.5000

1.0000 0.6000 0.4286

0.7500 0.3333 1.5000
```

a.\M = M./a =
$$[m_{ij}/a]$$

a\M >> a\M ans = 2.6667 0.3333 2.0000 1.0000 1.6667 2.3333 1.3333 3.0000 0.6667

M/a

>> M/a		
ans =		
2.6667	0.3333	2.0000
1.0000	1.6667	2.3333
1.3333	3.0000	0.6667
1.0000	1.6667	2.3333

$$M./a = a.\M$$

(Please beware "." and the direction of "\" or "/")

Matrix division:

2) With matrix, "\" and ".\"

where
$$M^{*}M^{-1} = I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Identity matrix

$$M.\ B = B./M = B_{ij}/M_{ij}$$

$$B.\ M = M./B = M_{ij}/B_{ij}$$

Element by element division

В

$$M B = B/M$$

$$M.\B = B./M$$

$$B.\ M = M./B$$

Variable/Data type

Typical data type:

Data type	Size (bit)	Range
uint8	8	0 ~ 255 (2^8 - 1)
uint16	16	0 ~ 65535 (2^16 - 1)
uint32	32	0~2^32 - 1
uint64	64	0~2^64-1
int8	8	-128 ~ 127 (2^7 – 1)
int16	16	-32,768 ~ 32,767 (2^15 - 1)
int32	32	-2^31 ~ 2^31 - 1
int64	64	-2^63 ~ 2^63 – 1
double	64	Homework
single	32	Homework

Variable/Data type

Different data types can be converted by using the build-in function

http://www.mathworks.com/help/matlab/numeric-types.html

Functions

double	Convert to double precision
single	Convert to single precision
int8	Convert to 8-bit signed integer
int16	Convert to 16-bit signed integer
int32	Convert to 32-bit signed integer
int64	Convert to 64-bit signed integer
uint8	Convert to 8-bit unsigned integer
uint16	Convert to 16-bit unsigned integer
uint32	Convert to 32-bit unsigned integer
uint64	Convert to 64-bit unsigned integer

Data import

Data type

e.g. Number

Method 1:

1) Choosing the button "Import Data" on the upper panel

2) Selection your file

3) Specify the range, the variable name and data type

4) Press the button "Import selection"

Variable name e.g. T, X and Y				
	A		¢	
_	T Number ▼	X Number ▼	Y Number ▼	
1	Т	X	Y	
2	0.0500	0.1564	0.9877	
3	0.1000	0.3090	0.9511	
4	0.1500	0.4540	0.8910	
5	0.2000	0.5878	0.8090	
6	0.2500	0.7071	0.7071	
7	0.3000	0.8090	0.5878	
8	0.3500	0.8910	0.4540	
9	0.4000	0.9511	0.3090	
10	0.4500	0.9877	0.1564	
11	0.5000	1.0000	2.6795e-08	
12	0.5500	0.9877	-0.1564	
13	0.6000	0.9511	-0.3090	
14	0.6500	0.8910	-0.4540	
15	0.7000	0.8090	-0.5878	

Data import

Method 1:

5) Confirm the data you just imported

Data import

Size

200x3

196x1

200x1

196x1

200x1

196x1

200x1

Method 2:

1) using the function "xlsread"

Plotting a 3D figure

Plot3(x,y,z)

$\gg plot3(X2,Y2,T2)$ fx >>4 Figure 1 Insert Tools Desktop Window 🔍 🔍 🖑 🗑 🐙 🔏 🔻 10 5 0 0.5 0 0 -0.5

Subplot(m,n,p)

m and n: number of figure in x and y direction, respectively p: plot ID

Homework

- 1) Figure out what is the different between "double" and "single" and their range.
- Using "help" in MatLab to learn how to use the function "hist" (histogram)
- 3) Using function "rand" and "randn" to generate two 5000x1 arrays "xU" and "xN", respectively, and try to plot the figure shown below (50 bins)

Homework

Cation:

- Please naming the file name of you home work as "HW01_G##_XXX_XXX.ppt", where ## and XXX are the group number and your name, respectively.
- Please submit your homework on time (before Friday noon)
- 3) Please specify the contribution of each member in the first page
- 4) Please do not copy your HW from your classmate, but you can discuss