Basics

Notations

• $\binom{V}{k} := \{A : A \subseteq V \land |A| = k\}$ • $[n] := \{1, \dots, n\} \subset \mathbb{N}$ • Power set $2^X := \{A : A \subseteq X\}$

Graphs

- **Definition**: G = (V, E) with $E \subseteq V^2$, $V \cap E = \emptyset$
- Vertex: $v \in V$ for graph G = (V, E)
 - $\circ \ \ v \ incident \ with \ e \Longleftrightarrow v \in e$
 - $\circ v_1, v_2$ ends of $e \Leftrightarrow e = v_1 v_2$
- $\circ v_1, v_2 \ adjacent/neighbors \iff v_1v_2 \in E$
- Edge: $e = \{x, y\} \in E$ for graph G = (V, E) (short e = xy)
- \circ e edge at $v \Leftrightarrow v$ incident with e
- \circ e joins $v_1, v_2 \Leftrightarrow e = v_1 v_2$
- $\circ \ \ xy \text{ is X-Y-edge} \Longleftrightarrow x \in X \land y \in Y$
- $\circ \ e_1, e_2 \ \textit{adjacent/neighbors} \Leftrightarrow \ \exists \ v : v \in e_1 \ \land \ v \in e_2$
- Vertex sets:
- $\circ V(G) = V \text{ for graph } G = (V, E)$
- o $\ X \in V(G)$ independent \Leftrightarrow no $x_1, x_2 \in X$ are adjacent
- neighborhood of $v \in V(G)$: $N(v) = \{u \in V(G) : uv \in E(G)\}$
- - \circ E(G) = E for graph G = (V, E)
 - E(X,Y): set of edges between $X \subset V(G)$ and $Y \subset V(G)$
 - E(x, Y): set of edges between vertex $x \in V(G)$ and $Y \subset V(G)$
- \circ E(v): set of edges at $v \in V(G)$
- Order: = |V(G)|, short |G|
- Size: = |E(G)|, short ||G||
- Trivial graph: graph of order 0 or 1
- Incidence graph of $G: IG = (V \cup E, \{\{v, e\} : v \in e, e \in E\})$
- Isomorphic (G_1 to another graph G_2 , write $G_1 \cong G_2$ or even $G_1 = G_2$): $\exists \ \text{bijection} \ f: V_1 \to V_2: \{u,v\} \in E_1 \Leftrightarrow \{f(u),f(v)\} \in E_2$ • Graph union: $G \cup G' = (V(G) \cup V(G'),E(G) \cup E(G'))$

- Graph intersection: $G \cap G' = (V(G) \cap V(G'), E(G) \cap E(G'))$ Graph multiplication: G * G': join all $v \in G$ with all $v' \in G'$ (with $V(G) \cap V(G') = \emptyset$)
- Subgraph G' of G (write $G' \subseteq G$): if $V(G') \subseteq V(G)$ and $E(G') \subseteq E(G)$
- G contains G
- o G' proper subgraph of G: if $G' \subseteq G$ and $G' \neq G$ o G' induced subgraph of G: $G' \subseteq G$ and E(G') contains all edges of G with both ends in V(G'), V(G') induces G', write G' = G[X] (with X = V(G'))
- o $\mathit{Edge\text{-}induced}$ $\mathit{subgraph}$: subgraph induced by $X \subseteq E(G)$, note G[X]
- \circ G' spanning subgraph of G: V(G') = V(G)
- Supergraph: G of G' (write $G\supseteq G'$): as above. Vertex cover: $V'\subseteq V(G)$ s.t. any $e\in E(G)$ is incident to a vertex in V'
- · Graph subtraction:
- $\circ G U = G[V(G) \setminus U]$ for some vertex set U
- $G v = G[V(G) \setminus \{v\}]$ for some vertex v○ $G G' = G[V(G) \setminus V(G')]$ for some graph G'
- Edge addition: $G + F = (V(G), V(E) \cup F)$ for some $F \subseteq V(G)^2$
- Complement: $\overline{G} = (V(G), V^2 \setminus E(G))$
- Line graph of $G: L(G) = (E(G), \{xy \in E(G)^2 : x, y \text{ adjacent in } G\})$ Complete graph: (X, X^2) with vertex set X
- $\circ K_n$: complete graph on n vertices

Vertex degrees

- Degree of $v \in V$: $d(v) = \deg(v) = |N(v)|$
- $v \in V(G)$ isolated: d(v) = 0
- $v \in V(G)$ leaf: d(v) = 1
- $\circ \;$ number of vertices of odd degree is even
- Minimum degree of graph $G: \delta(G) = \min\{d(v) : v \in V(G)\}$
- Maximum degree of graph $G: \Delta(G) = \max\{d(v) : v \in V(G)\}$
- Degree sum: $\sum_{v \in V(G)} \deg(v) = 2|E(G)|$
- Average degree of graph $G: d(G) = \frac{1}{|G|} \sum_{v \in V} d(v)$
 - $\circ \ \delta(G) \le d(G) \le \Delta(G)$
- k-regular graph: $\forall v \in V(G) : d(v) = k$
- o cubic graph: 3-regular graph
- Vertex-Edge-ratio of graph $G: \varepsilon(G) = \frac{\|G\|}{\|G\|}$
- $\circ \ \varepsilon(G) = \frac{1}{2}d(G)$
- every graph with $||G|| \ge 1$ has $H \subseteq G$ with $\delta(H) > \varepsilon(H) \ge \varepsilon(G)$

Paths

- Path: $(\{v_1,\ldots,v_n\},\{\{v_1,v_2\},\ldots,\{v_{n-1},v_n\}\})$ (read: v_0v_n -path)
 - \circ shorthand: $v_1 \dots v_n$
 - $\circ v_0, v_n$ linked by path
 - $\circ \ v_0, v_n$ end-vertices/ends of path
 - $\circ v_1, \ldots, v_{n-1}$ inner vertices of path
- Length: $|E(P)| \neq |V(P)|$
- Shorthands $(0 \le i \le j \le k)$:
- $P = x_0 \dots x_k, \mathring{P} = x_1 \dots x_{k-1}$
- $\circ \ Px_i = x_0 \dots x_i, P\mathring{x_i} = x_0 \dots x_{i-1}$
- $\circ \ x_i \overset{.}{P} = x_i \dots x_k, \mathring{x_i} P = x_{i+1} \dots x_k$
- $\circ \ x_i P x_j = x_i \dots x_j, \mathring{x_i} P \mathring{x_j} = x_{i+1} \dots x_{j-1}$
- Path concatenation: $Px \cap xQy \cap yR = PxQyR$
- A-B-path: $V(P) \cap A = \{x_0\} \land V(P) \cap B = \{x_n\}$
- **H-path**: graph H, P meets H exactly in its ends
- **Independent**: two ab-paths are independent \Leftrightarrow they only share a and b
- Path existence: Every G with $\delta(G) \ge 2$ contains path of length $\delta(G)$
- Distance: $d_G(x,y) = \min(\{k: \exists x-y\text{-path of length } k\} \cup \{\infty\})$
- Central: $v \in V(G)$ where cen = $\max\{d_G(v,x) : v \neq x \in V(G)\}$ is minimal
- Radius: $\operatorname{rad}(G)$ = minimal cen = $\min_{x \in V(G)} \max_{y \in V(G)} d_G(x,y)$
- Diameter of G: diam $(G) = \max\{d_G(x,y) : x,y \in V(G)\}$
- o radius-diameter-relation: $rad(G) \le diam(G) \le 2rad(G)$
- o radius-degree-vertex-restriction:

$$\operatorname{rad}(G) \leq k \wedge \Delta(G) \leq d \geq 3 \Rightarrow |G| \leq \frac{d}{d-2}(d-1)^k$$
• Walk: alternating sequence $v_0 e_0 \dots e_{k-1} v_k$ s.t. $e_i = v_i v_{i+1} \ (\forall i < k)$

- - \circ closed walk: $v_k = v_0$
- o walk-path-relation: all vertices in walk distinct → path
- \circ walk-path-induction: $\exists v_0 v_k$ -walk $\Rightarrow \exists v_0 v_k$ -path

Cycles

- Cycle: C = P + $x_{k-1}x_0$ with path P = $x_0 \dots x_{k-1}$ (k \geq 3)
 - \circ shorthand: $x_0 \dots x_{k-1} x_0$
- Length: = |C| = ||C||
- **k-cycle**: C_k = cycle of length k
- Girth of graph $G: g(G) = \min (\{k : G \text{ contains } C_k\} \cup \{\infty\})$
- \circ girth-diameter-relation: $g(G) \le 2 \operatorname{diam}(G) + 1$
- girth-vertex-relation: $\delta(G) \ge 3 \Rightarrow g(G) < 2\log|G|$
- Circumference of graph G: = max ($\{k : G \text{ contains } C_k\} \cup \{0\}$)
- Chord of cycle $C \subseteq G$: = $xy \in E(G)$ with $xy \notin E(C)$, but $x, y \in V(C)$
- **Induced cycle**: induced subgraph of G that is a cycle (= cycle in G with no chords)
- Cycle existence: Every G with $\delta(G) \ge 2$ contains cycle of length $\ge \delta(G) + 1$
- Odd closed walk, odd cycle: G has odd closed walk \Rightarrow G has odd cycle

Connectivity

- Connected graph $G: \forall x, y \in V(G): \exists xy$ -path
- connected subset $U \subseteq V(G)$: if G[U] is connected
- Vertex enumeration: G connected \Rightarrow vertices can be enumerated v_1, \dots, v_n s.t. $G_i := G[v_1, \dots, v_i]$ is connected $(\forall i \leq n)$
- · Component: maximal connected subgraph
 - graph partitioning: components partition G
- Subgraph separation: $X \subset V(G)$ separates $A, B \subset V(G) \Leftrightarrow$ any A-B-pathhas vertex in X
- Cut-Vertex: vertex separating two other vertices of the component
- Bridge: edge separating its ends (= edges of component not lying on any cycle)
- **k-connected**: if $|G| > k \land G X$ is connected $\forall X \subseteq V(G)$ with |X| < k
- ightharpoonup no two vertices in G are separated by fewer than k other vertices
- \rightarrow any two vertices can be joined by k independent paths
- **k-linked**: if for any 2k vertices $(s_1,\ldots,s_k,t_1,\ldots,t_k)$ \exists pairwise disjoint s_it_i paths (*note*: k-connected $\Rightarrow k$ -linked)
- Connectivity: $\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}$
- 1-edge-connected: if $|G| > 1 \land G F$ is connected $\forall F \subseteq E(G)$ with |F| < l
- Edge-connectivity: $\kappa'(G) = \lambda(G) = \max\{l : G \text{ is } l\text{-edge-connected}\}\$
- Connectivity and smallest degree: $\kappa(G) \le \kappa'(G) \le \delta(G)$
- Connectivity and average degree: $d(G) \ge 4k \Rightarrow G$ has k-connected subgraph
- Menger's theorem: for $A, B \subseteq V(G)$:
 - \min # of vertices separating A and $B = \max$ # of disjoint A-B-paths \circ edge corollary: minimum number of edges separating a and b = maximum number of edge-disjoint a-b-paths
- · Menger global:
 - k-connected $\iff \forall a, b \in V(G) \exists k$ pairwise independent ab-paths
 - o k-edge-connected $\Leftrightarrow \forall a, b \in V(G) \exists k$ pairwise edge-disjoint ab-paths

Trees and forests

- Forest: Graph with no cycle as subgraph
- · Tree: Graph that is connected and acyclic
- \Leftrightarrow G is connected and $\forall e \in E(G) : G e$ is disconnected (minimal-connected)
- $\Leftrightarrow G$ is acyclic and $\forall xy \notin E(G) : G \cup xy$ has cycle (maximal-acyclic)
- \Leftrightarrow G is connected and 1-degenerate $(\forall G' \subseteq G : \delta(G') \le 1)$
- $\Leftrightarrow G \text{ is connected and } ||G|| = |G| 1$
- \Leftrightarrow G is acyclic and ||G|| = |G| 1
- $\Leftrightarrow \forall u, v \in V(G) \exists \text{ unique } uv\text{-path}$
- · Special trees: path, star, spider, caterpillar, broom
- Leaf existence: Tree T, $|T| \ge 2 \Rightarrow T$ has leaf
- Edge count: Tree T, $|T| = n \Rightarrow ||T|| = n 1$

Bipartite graphs

- **r-partite** graph G:V(G) allows partitioning in r classes s.t. $\forall e=xy\in E(G)$: \boldsymbol{x} and \boldsymbol{y} are in different classes
- · Bipartite graph: 2-partite graph
- $\iff G$ contains no cycles of odd length
- \circ complete bipartite: $K_{m,n} = (A \cup B, \{a,b\} : a \in A, b \in B)$

Contraction and minors

- Subdivision of graph G: any graph obtained from G by subdividing edges
- Topological minor: H is topological minor if $TH \subseteq G$ where TH is built from H by subdividing edges
- $\circ \ \mathit{branch\ vertices} \colon \text{original\ vertices\ of\ } H$
- o *subdividing vertices*: vertices placed on edges joining branch vertices
- MH: $G \stackrel{(*)}{=} MH$ is minor of H if
- $\circ \ V(G) = V_1 \stackrel{\cdot}{\cup} \cdots \stackrel{\cdot}{\cup} V_n \text{ with } n = |H|$
- $\circ \ \ G[V_i] \ \text{connected} \ (\forall i=1,\ldots,n)$
- o If V(H) = $\{v_1,\dots,v_n\}$ and $v_iv_j\in E(H)$, then \exists edge between V_i and V_j (*): Notation abuse: MH is class of graphs
- Branch sets: V_i 's from above
- · Extended branch graph: Branch set together with incident edges
- **Minor** (H of G, noted $H \leq G$): $\iff MH \subseteq G$
- \rightarrow $H \leq G \Leftrightarrow H$ can be obtained by edge/vertex deletions + **contractions**.
- Note: $TH \subseteq MH$
- Edge contraction:

$$G \circ xy = ((V \setminus \{x,y\}) \cup v_{xy},$$

$$(E \setminus \{e : x \in E \lor y \in e\}) \cup \{v_{xy}z : z \in (N_G(x) \cup N_G(y)) \setminus \{x,y\}\})$$
th $xy \in E(G)$

• De-contraction: if $\exists xy \in E(G) : \kappa(G \circ xy) \ge 3$ (for G with $\kappa(G) \ge 3$, $|G| \ge 5$)

Euler tours

- Definition: closed walk with
- \circ no edges of G are repeatedly used
- all edges of G are used
- Eulerian graph: graph containing an Euler tour $\Leftrightarrow \forall v \in V(G) : d(v)$ even

Algebraic assets

• Adjacency matrix: $A(G) = \mathbb{R}^{n \times n} \ni A_{i,j} = \begin{cases} 1, & ij \in E \\ 0, & \text{else} \end{cases}$

Other graph notions

- Digraph: G = (V, E) with vertex set V and edge set $E \subseteq \{(u, v) : u, v \in V\}$
- Multigraph: G = (V, E) with vertex set V and multiset E of V-pairs
- Multigraph: G = (V, E) with vertex set V and edge set $E \subseteq 2^V = \{A : A \subseteq A \subseteq A \}$

Matching, Covering, Packing

Matching in bipartite graphs

• Vertex cover: $U \subseteq V(G)$ s.t. all edges in G are incident to a vertex $\in U$

- Matching M: set of independent edges in a graph
 - matching graph: $\delta(G) = \Delta(G) = 1$
- saturating: $G = (A \cup B, E)$ has matching saturating A
- $\Leftrightarrow \forall S \subseteq A : N(S) \geq |S| \ \ (N(S) \coloneqq \{b \in B : ab \in E, a \in S\})$ \circ nearly: $G = (A \cup B, E), \forall S \subseteq A : |N(S)| \ge |S| - d \quad (d \ge 1).$ $\Rightarrow \exists$ matching M saturating all but at most d vertices of A
- k-factor: k-regular spanning subgraph
- Matching vs vertex cover: size of largest matching = size of smallest vertex cover (Königs theorem)
- · Matching existence:
 - neighbor-based: $G = (A \cup B, E)$ contains matching of $A \Leftrightarrow |N(S)| \ge |S|$
 - o regular + bipartite: G is k-regular + bipartite ($k \ge 1$) $\implies G$ has 1-factor
 - o 2k-regular: graph 2k-regular (k \geq 1) \Longrightarrow has 2-factor
- · Marriages: make matchings based on preferences
- \circ preferences: family $(\leq_v)_{v\in V}$ of linear orderings \leq_v on E(v)
- stable matching M:
 - $\forall e \in E \setminus M \; \exists \; f \in M : e \text{ and } f \text{ have common vertex } v \text{ with } e <_v f$
- o stable matching existence: For every set of preferences, G has stable matching
- **f-factor**: spanning subgraph $H \subseteq G$ with $\deg_H(v) = f(v)$, $f: V(G) \to \{0, 1, \dots\} \text{ with } f(v) \le \deg(v) \quad (\forall v \in V)$
- **H-factor** (aka perfect H-packing): spanning subgraph s.t. each component is $\cong H$

• existence: if $\delta(G) \ge \left(1 - \frac{1}{k}|V(G)|\right)$ and k divides |G|, then G has K_k -factor

Matchings in general graphs

- Perfect matching: spanning + matching subgraph of G (aka 1-factor)
- existence (Tutte): G has perfect matching $\Leftrightarrow \forall S \subseteq V(G) : q(G-S) \leq S$ (Tutte's condition, q(G) = number of components in G with odd order)
- existence (Petersen): G bridgeless + cubic $\Rightarrow G$ has 1-factor

Connectivity

2-connected graphs and subgraphs

- 2-connected construction: G is 2-connected \Leftrightarrow it can be constructed by successively adding paths to a cycle (removing those paths: ear-decomposition)
- Block: maximal 2-connected subgraph or bridge
 - o share < 1 vertices with another
 - \circ cycles of G = cycles of its blocks
 - bounds of G = minimal cuts of its blocks
- · Block-cut-vertex graph
- $\circ V = \text{set of blocks} \cup \text{set of vertices}$
- $\circ E = \{\{v, B\} : v \in V(B), \text{ cut-vertex } v, \text{ block } B\}$
- o block-cut-vertex graph of connected graph is tree

Structure of 3-connected graphs

- 3-connected + decontraction: all 3-connected graphs can be built by iteratively de-contracting vertices of K_4
- 3-connected + contraction: 3-connected $\iff \exists$ separate G_0,\ldots,G_k with $G_0 = K_4, G_k = G, G_i = G_{i+1} \circ xy$ with $deg(x), deg(y) \ge 3$

Rest

- Degree sequence: multiset of degrees of vertices in V(G)
- \circ graphic: deg. seq. (d_1,\ldots,d_n) , iff

 - 1. $d_1 + \dots + d_n$ even 2. $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=1}^k i = k+1^n \min(d_i, k)$ $(\forall 1 \le k \le n)$

Planar graphs

Basic definitions

- · Plane graph: graph drawn without intersecting edges
- Planar graph: graph that can be dran as plane graph
- Homeomorphism: $f: \mathbb{R}^n \to \mathbb{R}^n$ continuous s.t. f^{-1} is also continuous
- Arc: homeomorphic image of [0,1] in \mathbb{R}^2 under f
 - endpoints: f(0) and $f(1) \rightarrow arc$ "joins" endpoints
 - o polynomial arc: arc that is union of finitely many straight line segments

- Region $Y \subseteq \mathbb{R}^2 \setminus X$: any two points $\in Y$ could be joined by arc and Y is maximal $(X \subseteq \mathbb{R}^2)$
- Boundary of $X \subseteq \mathbb{R}^2$:

 $\delta X = \{y \mid \forall \varepsilon > 0 : B(y, \varepsilon) \text{ contains points of } X \text{ and not of } X\}$

• Jordan curve theorem: If $X \subseteq \mathbb{R}^2$ and homeomorphic to $\{\overline{x} : \text{dist}(\overline{x}, 0) = 1\}$ (unit circle), then $\mathbb{R}^2 \setminus X$ has two regions R_1 , R_2 and $\delta R_1 = X = \delta R_2$.

Plane graphs

- **Definition**: graph such that E(G) is set of arcs in \mathbb{R}^2 and endpoints of arcs in E(G) are vertices and:
- $\bullet \ \forall e, e' \in E, e \neq e' : e \text{ and } e' \text{ have distinct sets of edge sets}$
- $\forall e \in E, e = e \setminus \{\text{endpoints}\}\ \text{doesn't contain any vertices and points from}$
- Faces: regions of $\mathbb{R}^2 \setminus \left(\bigcup_{e \in E} e \cup V\right)$ face set of graph G: F(G)
- · Maximally plane: no edges can be added without breaking planarity
- $\circ \ \ \textit{plane triangulation} : every face is bounded by triangle \\ \Longleftrightarrow \\ \text{graph is maximally plane}$
- Edge limitation 1: Plane graph: $|G| \ge 3 \Rightarrow ||G|| \le 3n 6$
- Edge limitation 2: Plane graph with no \triangle : $||G|| \le 2|G| 4$
- **Properties**: Let G be plane graph and $H \subseteq G$.
- o face inheritance: $\forall f \in F(G) \exists f' \in F(H) : f' \supseteq f$
- \circ border inheritance: $\delta f \subseteq H \Rightarrow f' = f$
- \circ edge-border relations: $e \in E(G), f \in F(G) \Rightarrow e \subseteq \delta f \vee \delta f \cap \mathring{e} = \emptyset$
- o edges in circles:
 - $e \in E(G)$ is edge of a cycle $\Rightarrow e$ is on boundary of exactly 2 faces

not edge of a cycle $\Rightarrow e$ is on boundary of exactly 1 face

- faces in cycles: $f_1, f_2 \in F(G)$. $f_1 \neq f_2 \land \delta f_1 = \delta f_2 \Rightarrow G$ is cycle
- cyclic boundaries: $\kappa(G) \ge 2 \Rightarrow$ each face is bounded by cycle
- o plane forests: plane forests have exactly 1 face
- 2-connected: 2-connected plane graph $\Rightarrow \forall f \in F(G)$ bounded by cycle
- o 3-connected: boundaries of 3-connected plane graph = its non-separating in-
- ∘ order ≥ 3 : plane graph of order ≥ 3 maximally plane \iff is plane triangulation
- Euler's formula: If G is connected plane graph with f faces, then

|G| - ||G|| + f = 2

- Dual multigraph: Given plane G:
- 1. Insert vertex in each face
- 2. Put edge \tilde{e} between vertices if respective faces share e (s.t. \tilde{e} and e cross once)
- 3. Result: Dual graph G' of G (plane multigraph)
- \rightarrow faces of G properly k-colored $\iff \exists$ proper k-coloring of vertices of G'

Planar graphs

- **Definition**: graph s.t. \exists plane graph G' and bijection $f:V(G)\to V(G')$ s.t. $\forall u, v \in V(G), uv \in E(G) : f(u), f(v)$ are endpoints of arc in G'
- Planar embedding of G: f from the definition
- Planar because of minors: The following statements are equivalent:
 - \circ G is planar
 - \circ $G \not\supseteq MK_5 \land G \not\supseteq MK_{3,3}$
 - \circ $G \not\supseteq TK_5 \land G \not\supseteq TK_{3,3}$
- $\delta(G)$ limitation: Planar graph $\delta(G) \leq 5$
- Non-planar graphs: K_5 and $K_{3,3}$ are not planar
- Kuratowski's lemmas:
- 1. $(TK_5 \subseteq G \vee TK_{3,3} \subseteq G) \Longleftrightarrow MK_5 \subseteq G \vee MK_{3,3} \subseteq G$
- 2. $\kappa(G) \ge 3 \land MK_5 \not\subseteq G \land MK_{3,3} \not\subseteq G \Rightarrow G$ is planar
- 3. $\kappa(G) \geq 3$, G edge-maximal wrt not containing TX. If S is vertex-cut of G, $|S| \le 2 \land G = G_1 \cup G_2, S = V(G_1) \cap V(G_2)$, then G_i is edge-maximal with no TX and S induces an edge
- 4. $|G| \ge 3$, G edge-maximal wrt not containing TK_5 and $TK_{3,3} \Rightarrow \kappa(G) \ge 3$
- 2-cell (embedding of G on surface S): any closed simple curve in any region of S-G is continuously contractible into a point
- Euler characteristic: G embedded on surface $S \Rightarrow n-e+f$ = Euler characteristic is invariant
- Euler genus: $n e + f = 2 2\gamma \Rightarrow$ Euler genus 2γ of S
- Heawood's formula: $\chi(G) \leq$

(for G embedded on S with Euler char $2-2\gamma$)

• Klein bottle: $K_{f(\gamma)}$ is embeddable on S, unless S is klein bottle

Algebraic planarity criteria — Posets

- **Definition**: antisymmetric, reflexive, transitive relation on \boldsymbol{X} (write $x \le y$ instead of (x, y))
- Incidence poset of G: poset whose cover diagram is represented by IG with vertices all below the edges
- Poset dimension: $\dim(R)$ = smallest $k \in \mathbb{N}$: R is intersection of k total orders

• Poset dimension in planar graphs: G planar $\Leftrightarrow \dim(\text{incidence poset}) \leq 3$

Coloring

Base definitions

- Vertex coloring: map $c: V(G) \to S$ with $c(v) \neq c(w)$ for adjacent v, w
 - o k-coloring: coloring $c:V(G)\to S$ with |S|=k
- (Vertex) chromatic number: = $\chi(G) := \min\{k \in \mathbb{N} : G \text{ has } k\text{-coloring}\}$
- $\circ \ \chi(G) \ge \omega(G)$
- $\circ \ \chi(G) \ge \frac{|G|}{\alpha(G)}$
- $\circ \chi(G) \leq \Delta(G) + 1$ (greedy coloring)
- G connected, not complete, no odd cycles $\Rightarrow \chi(G) \leq \Delta(G)$
- k-chromatic graph: $\chi(G) = k$
- ∘ k-colorable graph: $\chi(G) \le k$
- Color classes: partitions of V(G) with same color
- Equitable coloring: proper coloring + color classes have almost (± 1) equal size • existence: any graph has equitable coloring in $(\Delta(G) + 1)$ colors
- ij-flip: $c':V(G) \to [k]$ is ij-flip at $v \in V(G)$
- $\Leftrightarrow c'$ obtained by flipping colors i and j in max. conn. component containing v
- Edge coloring: map $c: E(G) \to S$ with $c(e) \neq c(f)$ for adjacent e, f
- edge coloring of $G \Leftrightarrow$ vertex coloring of L(G)
- o k-edge-coloring: edge-coloring $c: E(G) \to S$ with |S| = k
- Edge chromatic number: = $\chi'(G) := \min\{k \in \mathbb{N} : G \text{ has } k\text{-edge-coloring}\}$

Coloring maps and planar graphs

- · 4-color-theorem: every planar graph is 4-colorable
- 3-color-theorem: every triangle-free planar graph is 3-colorable

Coloring vertices

- Chromatic number upper bound: $\chi(G) \le \frac{1}{2} + \sqrt{2||G||} + \frac{1}{4}$
- Greedy coloring: sort vertices v_1,\dots,v_n , color them with the smallest possible color starting at v_1
- \rightarrow never uses more than $\Delta(G) + 1$ colors
- coloring number of graph G: col(G) := smallest k s.t. G has vertex enumeration where each vertex is preceded by < k neighbors

Coloring edges

- Vizing's theorem: for every graph $G, \chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$
- Bipartite graphs: $\chi'(G) = \Delta(G)$

List coloring

- L-list-colorable: if $\exists c: V \to \mathbb{N} \ \forall v \in V : c(v) \in L(v)$ (for *list of colors* $L(v) \subseteq \mathbb{N}$ for each vertex, adjacent vertices receive different colors)
- **k-list-colorable**/-**choosable**: if G is L-list-colorable for each list L
- List chromatic number: $\chi_l(G) = \operatorname{ch}(G)$
- $= \min \left\{ k : G \text{ is L-colorable } \forall L : V \to 2^{\mathbb{N}} : |L(v)| = k \, \forall v \in V(G) \right\}$ • $\chi_l(G) \ge \chi(G)$ because we can choose $L(v) = \{1, \dots, k\} (\forall v \in V(G))$ $\circ \ \, \text{often} \, \chi_l(G) \gg \chi(G) \, (\text{see} \, K_{m,n} \colon \chi = 2, \chi_l \approx \log n)$
- Planar graphs: $\chi_l(G) \leq 5$
- Locally planar graphs: $\chi_l(G) \le 5$

Perfect graphs

- Clique number of graph $G: \omega(G) := \max\{k \in \mathbb{N} : K_k \subseteq G\}$
- Co-clique number of graph G: $\alpha(G) \coloneqq$ largest order of independent set in G
- Independence number of graph G: size of largest independent vertex set
- Perfect graph: $\forall H \subseteq G : \chi(H) = \omega(H)$
- **Perfect complement**: G is perfect $\iff \overline{G}$ is perfect
- Perfect graph conjecture: G is perfect \Leftrightarrow
 - $C_{2k+1} \not\subseteq G$ for $k \ge 2 \land \overline{C_{2k+1}} \not\subseteq G$

Extremal Graph Theory

Base definitions

- Sparse graph: $||G|| \sim |G|$
- Dense graph: $||G|| \sim |G|^2$
- Density: ||X,Y|| := # edges between X and Y, $d(X,Y) := \frac{||X,Y||}{||X|||Y||}$
- Edge density of graph $G: ||G||/\binom{|G|}{2}$ ε -regular pair (X,Y): if $|d(X,Y)-d(A,B)| \le \varepsilon$ for $\varepsilon > 0$ and all $A \subseteq X$, $B \subseteq Y \text{ with } |A| \ge \varepsilon |X|, |B| \ge \varepsilon |Y|$
- ε -regular partition: = $V_0 \dot{\cup} \cdots \dot{\cup} V_k = V$ with
- 1. $|V_0| \le \varepsilon |V|$
- 2. $|V_1| = \cdots = |V_k|$ 3. all but at most εk^2 of (V_i, V_j) -pairs $(1 \le i < j \le k)$ are ε -regular

Subgraphs

- Extremal number: $ex(n, H) := max\{||G|| : |G| = n \land H \not\subseteq G\}$
- Extremal set: $\mathrm{EX}(n,H)\coloneqq\{G:|G|=n\land\|G\|=\mathrm{ex}(n,H)\land H\nsubseteq G\}$
- Turán graph: T(n,r) = unique complete r-partite graph with |T(n,r)| = n, partite sets differing at most by $1 (1 \le r \le n)$
- \circ $K_{r+1} \not\subseteq T(n,r)$
- \circ size: ||T(n,r)|| =: t(n,r)
- special Turán graph: $K_r^s := T(n,r)$ if n = r * s
- o Turán-graphs edge-maximal: among all r-partite graphs of order n, T(n,r) has largest size
- $\circ t(n,r) = t(n-r,r) + (n-r)(r-1) + {r \choose 2}$

$$\lim_{n\to\infty} \frac{t(n-r)}{\binom{n}{2}} = \left(1 - \frac{1}{r}\right)$$

- size difference to complete graph: $\lim_{n\to\infty}\frac{t(n-r)}{\left(\frac{n}{2}\right)}=\left(1-\frac{1}{r}\right)$ Turán's theorem: $\forall r>1, n\geq 1$, any graph G with |G|=n, ||G||=1 $\operatorname{ex}(n,K_r)$ and $K_r \not\subseteq G$ is a T(n,r-1)
- \Leftrightarrow EX $(n, K_r) = \{T(n, r-1)\}$
- Szemerédi's regularity lemma: $\forall \varepsilon > 0 \forall 1 \le m \in \mathbb{N} \ \exists \ M \in \mathbb{N}$: every graph G with $|G| \ge m$ has ε -regular partition $V_0 \cup \cdots \cup V_k$ with $m \le k \le M$.
- Erdős-Stone theorem: \forall integers $r>s\geq 1$ and any $\varepsilon>0$ \exists $n_0\in\mathbb{N}$: every graph with $|G| = n \ge n_0$ and $||G|| \ge t(n, r-1) + \varepsilon n^2$ has $K_r^s \subseteq G$.
- o *corollary*: the theorem together with the size difference to complete graph yields

$$\lim_{n\to\infty} \frac{ex(n,H)}{\binom{n}{2}} = \frac{\chi(H)-2}{\chi(H)-1}$$

- $\lim_{n\to\infty}\frac{ex(n,H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}$ Chvátal-Szemerédi theorem: $\forall \varepsilon>0$ and any integer $r\geq 3$, any graph with |G|=n and $\|G\|\geq (1-\frac{1}{r-1}+\varepsilon)\left(\frac{n}{2}\right)$ has $K_r^t\subseteq G$ with $t=\frac{\log n}{500\log\left(\frac{1}{\varepsilon}\right)}$
 - existance: $\exists G \text{ with } |G| = n \text{ and } ||G|| = (1 \frac{1+\varepsilon}{r-1}) \binom{n}{2}$ with $G \not\subseteq K_r^t$ for $t = \frac{5\log n}{\log(\frac{1}{\varepsilon})}$
- Zarankiewicz function: $z(m,n;s,t) = \max \# \text{ of edges that bipartite}$ graph with parts of size m and n can have without containing $K_{s,t}$
- Kővári-Sós-Turán: $z(m,n;s,t) \le (s-1)^{\frac{1}{t}}(n-t+1)m^{1-\frac{1}{t}}+(t-1)m$ m=n,t=s: $z(n,n;t,t) \le c_1nn^{1-\frac{1}{t}}+c_2n=\mathcal{O}(n^{2-\frac{1}{t}})$
- Bound for ex $(n,K_{t,s})$: $\leq \frac{1}{2}z(n,n;s,t) \leq cn^{2-\frac{1}{s}}$ $(t \geq s \geq 1)$ ot = s = 2: $ex(n, C_4) \le \frac{n}{4}(1 + \sqrt{4n - 3})$
- Bound for ex $(n, K_{r,r})$: $\geq cn^{2-\frac{2}{r+1}} \ (\forall n, r \in \mathbb{N})$
- Bound for ex (n, P_{k+1}) : $\leq \frac{n(k-1)}{2}$

Minors

- Hadwiger conjecture: $\chi(G) \ge r \Rightarrow MK_r \subseteq G$
- $r \in \{1, 2, 3, 4\}$: easy to see
- $r \in \{5, 6\}$: proven using 4-color theorem
- o r ≥ 7: still open
- Bollobás-Thomason theorem: $d(G) \ge cr^2 \Rightarrow TK_r \subseteq G$
- Minimum degree + girth = minor: $\delta(G) \ge d$, $g(G) \ge 8k + 3$ $(d, k \in \mathbb{N}, d \le 3)$. Then $MH \subseteq G$ with $\delta(H) \ge d(d-1)^k$.
- Thomassen's theorem: $\forall r \in \mathbb{N} \ \exists \ f : \mathbb{N} \to \mathbb{N} \ \text{s.t.}$ every G with $\delta(G) \geq 3$ and $g(G) \ge f(r)$ has K_r minor
- Kühn-Osthus theorem: $\forall r \in \mathbb{N} \exists g \in \mathbb{N} : TK_r \subseteq G \text{ for all } G \text{ with } \delta(G) \ge G$ r-1 and $g(G) \ge g$

Ramsey theory

Base definitions

- · Monochromatic edge coloring: all edges have same color
- · Rainbow edge coloring: no two edges have same color
- Lexical edge coloring: two edges have same color \Leftrightarrow have same lower endpoint in some vertex ordering
- Ramsey number $R(k) \in \mathbb{N}$: smallest n s.t. every 2-edge-coloring of K_n contains monochromatic K_k $(n \in \mathbb{N})$
- Asymmetric Ramsey number R(k,l): smallest $n \in \mathbb{N}$ s.t. every 2-edgecoloring of K_n contains red K_k or blue K_l $(k, l \in \mathbb{N})$
- **Graph Ramsey number** R(G, H): smallest $n \in \mathbb{N}$ s.t. every 2-edge-coloring of K_n contains red G or blue H
- **Hypergraph Ramsey number** $R_r(l_1,\ldots,l_k)$: smallest $n\in\mathbb{N}$ s.t. for every kcoloring of $\binom{[n]}{r}$ $\exists i \in \{1, ..., k\}$ and a $V \subseteq [n]$ with |V| = l s.t. all sets in
- Induced Ramsey number $R_{\mathrm{ind}}(G,H)$: smallest $n\in\mathbb{N}$ s.t. \exists graph F with |F| = n with every 2-coloring of it containing red G or blue H
- Anti Ramsey number AR(n, H): maximum number of colors that edgecoloring on K_n can have without containing rainbow copy of H
- **r-regular matrix**: if there is a monochromatic solution of Ax = 0 for any rcoloring $c: \mathbb{N} \to [r]$ of \mathbb{N}
- **column condition**: matrix fulfills it if there is partition $C_1 \dot{\cup} \cdots \dot{\cup} C_l$ of A-columns s.t. the following holds:
 - Let $s_i \coloneqq \sum_{c \in C_i} c$ for $i \in [l]$. Then $s_1 = 0$ and every s_i is linear combination of columns in $C_1 \dot{\cup} \cdots \dot{\cup} C_{i-1}$ (2x₁ + x₂ + x₃ - 4x₄ fulfills: 2 + 1 + 1 - 4 = 0)

Observations

- R(3) = 6
- R(2,k) = R(k,2) = k
- Ramsey theorem: $\forall k \in \mathbb{N} : \sqrt{2}^k \le R(k) \le 4^k$
- → (Asymmetric) Ramsey numbers and graph Ramsey numbers are finite
- Induction theorem: $\forall k, l \in \mathbb{N} : R(k, l) \leq R(k 1, l) + R(k, l 1)$ $\rightarrow R(k,l) \le \binom{k+l-2}{k-1}$
- · Hypergraph recursion:

$$\forall r, p, q \in \mathbb{N} : R_r(p, q) \le R_{r-1}(R_r(q-1, q), R_r(p, q-1)) + 1$$

• 2-Hypergraph boundary: $c_1 2^k \le R_2 (\underbrace{3*\cdots*3}) \le c_2 k!$ for some $c_1, c_2 > 0$

Ramsey theory applications

- Erdős-Szekeres subsequences: Any sequence of (r-1)(s-1)+1 distinct real numbers contains increasing subsequence of length r or a decreasing subsequence
- Erdős-Szekeres m-gons: $\forall m \in \mathbb{N} \exists N \in \mathbb{N}$: every set of $\geq N$ points in general position in \mathbb{R}^2 contains the vertex set of a convex m-gon
- Schur: Let $c: \mathbb{N} \to [r]$ be coloring of the natural numbers with $r \in \mathbb{N}$ colors. Then there are $x, y, z \in \mathbb{N}$ of same color with x + y = z
- Rado theorem: A fulfills column condition \Rightarrow A is r-regular $\forall r \in \mathbb{N}$ $(A \in \mathbb{Z}^{n \times k})$
- $\forall s, t \in \mathbb{N}$ with $s \ge t \ge 1$: $R(sK_2, tK_2) = 2s + t 1$
- $\forall s, t \in \mathbb{N}$ with $s \ge t \ge 1$: $R(sK_3, tK_3) = 3s + 2t$
- Chvátal-Harary: $R(G, H) \ge (\chi(G) 1)(c(H) 1) + 1$ (c(H)) order of largest component of H)
- $R_{\text{ind}}(G, H)$ is finite for all graphs G, H
- Canonical Ramsey theorem: $\forall k \in \mathbb{N} \; \exists \; n \in \mathbb{N}$: any edge coloring of K_n with arbitrarily many colors contains monochromatic, rainbow or lexical K_k
- $\forall \Delta \in \mathbb{N} \ \exists \ c \in \mathbb{N}$: for every graph H with $\Delta(H) = \Delta$ we have $R(H,H) \leq$
- For any n-vertex graph H with $\Delta(H) = 3$ we have $R(H,H) \leq cn$ for some c > 0, which grows way slower than $R(K_n, K_n) \ge \sqrt{2}$
- Anti-Ramsey theorem:

$$\forall n, r \in \mathbb{N} : AR(n, K_r) = \binom{n}{2} \left(1 - \frac{1}{r-2}\right) (1 - o(1))$$

Flows

Circulations

- · Circulation:
- $\begin{array}{l} \circ \ H\coloneqq \text{abelian semigroup,}\ G\ \text{multigraph,}\ \widetilde{E}\coloneqq \{(x,y): xy\in E(G)\}\\ \circ \ f:\widetilde{E}\to H, X,Y\subseteq V \leadsto f(X,Y)\coloneqq \sum_{(x,y)\in (X\times Y)\cap \widetilde{E}} f(x,y) \end{array}$

 $\circ f : \widetilde{E} \to H \text{ is circulation on } G \Leftrightarrow$

1. $f(x,y) = -f(y,x) (\forall xy \in E(G)),$

2. $f(v, V) = 0 (\forall v \in v)$.

H-flow: circulation f: E
 → H with abelian group H

• nowhere-zero-flow: $\forall xy \in E : f(x,y) \neq 0$

• **k-flow**: \mathbb{Z} -flow f with $\forall xy \in E : 0 < |f(x,y)| < k$

• flow number $\varphi(G)$: min $\{k \in \mathbb{N} : G \text{ has } k\text{-flow}\}$

Networks

Network:

 \circ $s, t \in V, s \neq t, c : \widetilde{E} \to \mathbb{N}_0$

 \circ network (G, s, t, c) with

- source s

- sink t

- capacity function c

• Network flow: $f: \widetilde{E} \to \mathbb{R}$ with $\forall x, y \in V$:

1. f(x,y) = -f(y,x)

2. $x \notin \{s, t\} \Rightarrow f(x, V) = 0$

3. $f(x,y) \le c(x,y)$

• Cut: $(S, V \setminus S)$ with $s \in S, t \notin S$ (for any $S \subseteq V$)

 \circ capacpity $c(S, V \setminus S)$

Value of f: = |f| := f(s, V)

· Basic network properties:

 \circ \forall circulation $f, X \subseteq V$: $f(X, X) = f(X, V) = f(X, V \setminus X) = 0$

• \forall network flow f, cut S, \overline{S} : $f(S, \overline{S}) = |f|$

Ford-Fulkerson: ∀ networks:

• max value of a flow = min capacity of a cut

o $\ \exists \ \mathrm{integral} \ \mathrm{flow} \ f:\widetilde{E} \to \mathbb{N}_0$ with max flow value

• Tutte: \forall multigraph $G \exists$ polynomial $P \in \mathbb{Z}[X]$: \forall finite Abelian group H: number of nowhere-zero H-flows on G is P(|H|-1)

- Abelian group can be exchanged: H-flow on G exists (Abelian group H) \Rightarrow $\exists \widetilde{H}$ -flow on G (\forall finite Abelian groups \widetilde{H} with $|\widetilde{H}| = |H|$)

 $\rightarrow \mathbb{Z}_4$ -flow exists $\Rightarrow \mathbb{Z}_2 \times \mathbb{Z}_2$ -flow exists

- Flow can be \mathbb{Z}_k -substituted: multigraph admits k-flow \Leftrightarrow admits \mathbb{Z}_k -flow

• Flows in planar graphs: planar graph G, dual G^* : $\chi(G) = \varphi(G^*)$

• 2-flow only on even degrees: graph has 2-flow ⇔ all degrees are even

3-flow on bipartite graphs: 3-regular graph has 3-flow ⇔ bipartite

• Tutte on 5-flows: every bridgeless multigraph has flow number ≤ 5

• **Seymour on 6-flows**: every brigeless graph has flow number ≤ 6

Random Graphs

Erdős-Rényi Model

• Erdős-Renyi Model: $\mathcal{G}(n,p)$ probability space on n-vertex graphs resulted by independently deciding whether to include each of the $\binom{n}{2}$ possible edges with fixed probability $p \in [0, 1]$

• Property \mathcal{P} : set of graphs (e.g. $\mathcal{P} = \{G : G \text{ is } k\text{-connected}\}$)

• Almost always: let $(p_n) \in [0,1]^{\mathbb{N}}$. $G \in \mathcal{G}(n,p_n)$ has property \mathcal{P} almost always $\Leftrightarrow \lim_{n\to\infty} \operatorname{Prob}(G \in \mathcal{G}(n,p_n) \cap \mathcal{P}) = 1$

• Almost all: like almost always, but (p_n) = constant p

• Threshold function: $f(n): \mathbb{N} \to [0,1]$ threshold function for property \mathcal{P} if

1. $\forall (p_n) \in [0,1]^{\mathbb{N}}, p_n/f(n) \xrightarrow{n \to \infty} 0 : G \in \mathcal{G}(n,p_n)$ almost always does **not** have property ${\cal P}$

2. $\forall (p_n) \in [0,1]^{\mathbb{N}}$, $p_n/f(n) \stackrel{n \to \infty}{\longrightarrow} \infty$: $G \in \mathcal{G}(n,p_n)$ almost always has propertpy \mathcal{P}

! not all properties $\mathcal P$ have a threshold function

Basic probability properties

• $G \text{ with } |G| = n, ||G|| = m : \text{Prob}(G = \mathcal{G}(n, p)) = p^m (1 - p)^{\binom{n}{2} - m}$

• $\operatorname{Prob}(G \in \mathcal{G}(n,p), \alpha(G) \ge k) \le \binom{n}{k} (1-p)^{\binom{k}{2}} \quad (n \ge k \ge 2)$

• $\operatorname{Prob}(G \in \mathcal{G}(n, p), \omega(G) \ge k) \le \binom{n}{k} p^{\binom{n}{k}}$

More complex results

• Exp(#k-cycles in $G \in \mathcal{G}(n,p)) = \frac{n_k}{2k} p^k (n_k = n(n-1)\cdots(n-k+1))$ • Erdős: $\forall k \in \mathbb{N} \exists \text{ graph } H : g(H) \ge k \land \chi(H) \ge k$

• $\forall p \in (0,1)$, graph H, almost all $G \in \mathcal{G}(n,p)$ contain H as induced subgraph

- $\forall p \in (0,1), \varepsilon > 0$, almost all $G \in \mathcal{G}(n,p)$ fulfill

 $\chi(G) > \frac{\log(1/(1-p))}{2} \frac{n}{1-p}$

• Asymptotic behaviour of $\mathcal{G}(n,p)$ for some properties:

• $p_n = \sqrt{n}/n^2 \Rightarrow G$ almost always has component with > 2 vertices

o $p_n = 1/n \Rightarrow G$ almost always has a cycle

o $p_n = \log n/n \Rightarrow G$ is almost always connected

 $p_n = (1+\varepsilon)\log n/n \Rightarrow G$ almost always has Hamiltonian cycle $p_n = n^{-2/(k-1)}$ is the threshold function for containing K_k

• Lovász Local: A_1, \ldots, A_n events in some probabilistic space. If $Prob(A_i) \le$ $p \in (0,1)$, each A_i is mutually independent from all but at most $d \in \mathbb{N}$ A_i s and $ep(d+1) \le 1$, then

$$\operatorname{Prob}\left(\bigwedge_{i=1}^{n} \overline{A_i}\right) > 0$$

• Van der Waerden's number: W(k) = smallest n s.t. any 2-coloring of [n] contains monochromatic arithmetic progression of length \boldsymbol{k}

 \rightarrow using Lovász Local Lemma: $W(k) \ge 2k - 1/(ek^2)$

Hamiltonian Cycles

Definitions

• Hamiltonian cycle: Closed walk on G containing all $v \in V(G)$ exactly once

• Hamiltonian graph: graph containing Hamiltonian cycle

- Hamiltonian path: Path on G containing all $v \in V(G)$ exactly once

• Square of graph $G: G^2 := (V, E')$ with $E' := \{uv : u, v \in V, d_G(u, v) \le 2\}$

Results

• Necessary condition: G has Hamiltonian cycle $\Rightarrow \forall \emptyset \neq S \subseteq V$: graph G - Scannot have more than |S| components

• Dirac: Every graph with $|G| \ge 3$ and $\delta(G) \ge \frac{n}{2}$ has Hamiltonian cycle

• Clique: Every graph with $|G| \ge 3$ with $\alpha(G) \le \kappa(G)$ is Hamiltonian

• Fleischner: G is 2-connected $\Rightarrow G^2$ is Hamiltonian

- Chvátal: graph with degree sequence a_1,\dots,a_n is Hamiltonian $\Leftrightarrow a_i \leq i$ implies $a_{n-i} \ge n-1$ ($\forall i < n/2, 0 \le a_1 \le \cdots \le a_n < n$)