/Users/bps/PycharmProjects/hypothesis_tesing/venv/bin/python /Users/bps/PycharmProjects/hypothesis_tesing/main.py

Welcome to the Hypothesis Testing calculator made by ALIAS GEORGE

Select the Calculator (type the no corresponding eg 1 for one mean Large sample)

- 1. One Mean Large sample
- 2. One Mean Small sample
- 3. Two Mean Large sample
- 4. Two Mean Small sample with both normal and $\sigma 1 = \sigma 1$
- 5. Matched Pair t-Test
- 6. One Variance Test
- 7. Two Variance Test
- 8. One Proportion Test
- 9. Multi Proportion Test
- 10. Two Proportion Difference Test
- 11. R and C Analysis Test
- 12. Goodness Fit Test

12

12. Goodness Fit Test

Select the Calculator

Discrete Distribution

- 1. Goodness Fit for Poisson Test
- 2. Goodness Fit for Binomial Test
- 3. Goodness Fit for Geometric Test
- 4. Goodness Fit for Hyper Geometric Test
- 5. Goodness Fit for Uniform Discrete Test

Continuous Distribution

- 6. Goodness Fit for Normal Test
- 7. Goodness Fit for Log Normal Test
- 8. Goodness Fit for Alpha Test
- 9. Goodness Fit for Beta Test
- 10. Goodness Fit for Gamma Test
- 11. Goodness Fit for Weibull Test
- 12. Goodness Fit for Exponential Test
- 13. Goodness Fit for Uniform Continuous Test
- 1. Goodness Fit for Poisson Test

```
Level of significance: 0.05
Enter the \lambda: 4.6
Enter the no of Categories: 14
Does the random variable values is in the order 0,1,3,....,12,13
1. yes
2. no
1
Enter the Observed Frequency for 0 3
Enter the Observed Frequency for 1 15
Enter the Observed Frequency for 2 47
Enter the Observed Frequency for 3 76
Enter the Observed Frequency for 4 68
Enter the Observed Frequency for 5 74
Enter the Observed Frequency for 6 46
Enter the Observed Frequency for 7 39
Enter the Observed Frequency for 8 15
Enter the Observed Frequency for 9 9
Enter the Observed Frequency for 10 5
Enter the Observed Frequency for 11 2
Enter the Observed Frequency for 12 0
Enter the Observed Frequency for 13 1
```

X	Observed Frequency	Poisson Probabilities	Expected Frequency
+	+ 3	+ 0.01	+
1	15	0.046	18.4
2	47	0.106	42.4
3	76	0.163	65.2
4	68	0.188	75.2
5	74	0.173	69.1
6	46	0.132	52.8
7] 39	0.087	34.8
8	15	0.05	20.0
9	9	0.026	10.4
10	J 5	0.012	4.8
11	1 2	0.005	2.0
12	0	0.002	0.8
13	1	0.001	0.4

Combined categories (initial, final) [(0, 1), (10, 13)]

| Observed Frequency | Poisson Probabilities | Expected Frequency |

1	18		0.056	1	22.4	
	47		0.106	1	42.4	
	76	1	0.163	1	65.2	
	68	1	0.188	1	75.2	
	74		0.173	1	69.1	
	46		0.132	1	52.8	
	39		0.087	1	34.8	
	15		0.05	1	20.0	
	9	1	0.026	1	10.4	
1	8	0.	0200000000000000	004	8.0	1

Null hypothesis: Random variable has a Poison distribution with λ = 4.6. Alternative hypothesis: Random variable does not have the Poison distribution with λ = 4.6.

Calculations

Total Chi_square: 7.01024417983987

Decision

The null must be rejected if $\chi^2 > 16.919$

Since $\chi^2 = 7.01024417983987$ does not exceed 16.919, the null hypothesis cannot be

rejected; we cannot reject that the Poisson distribution with λ = 4.6 provides a good fit at level α = 0.05.

Process finished with exit code 0