Algebra

- 1. If the sum of zeroes of the polynomial $p(x) = 2x^2 k\sqrt{2}x + 1$ is $\sqrt{2}$, then value of k is:
 - (a) $\sqrt{2}$
 - (b) 2
 - (c) $2\sqrt{2}$
 - (d) $\frac{1}{2}$
- 2. If the roots of the equation $ax^2 + bx + c = 0$, $a \ne 0$ are real and equal, then which of the following relations is true?
 - (a) $a = \frac{b^2}{c}$
 - (b) $b^2 = ac$
 - (c) $ac = \frac{b^2}{4}$
 - (d) $c = \frac{b^2}{a}$
- 3. In an A.P., if the first term a = 7, nth term $a_n = 84$, and the sum of the first n terms $s_n = \frac{2093}{2}$, then n is equal to:
 - (a) 22
 - (b) 24
 - (c) 23
 - (d) 26
- 4. The zeroes of a polynomial $x^2 + px + q$ are twice the zeroes of the polynomial $4x^2 5x 6$. The value of p is:
 - (a) $-\frac{5}{2}$
 - (b) $\frac{5}{2}$
 - (c) -5
 - (d) 10

5. In the given figure, graphs of two linear equations are shown. The pair of these linear equations is:

Figure 1

- (a) consistent with a unique solution.
- (b) consistent with infinitely many solutions.
- (c) inconsistent.
- (d) inconsistent but can be made consistent.

Statistics and Probability

6.	If the probability of a player winning a game is 0.79, then the probability of his losing the same game is:
	(a) 1.79
	(b) 0.31
	(c) 0.21
	(d) 0.21
7.	From the data 1, 4, 7, 9, 16, 21, 25, if all the even numbers are removed, then the probability of getting at random a prime number from the remaining is:
	(a) $\frac{2}{5}$ (b) $\frac{1}{5}$ (c) $\frac{1}{7}$ (d) $\frac{2}{7}$
8.	For some data $x_1, x_2,, x_n$ with respective frequencies $f_1, f_2,, f_n$, the value of $\sum_{i=1}^{n} f_i(x_i - \overline{x})$ is equal to:
	(a) $n\overline{x}$
	(b) 1
	(c) Σf_i
	(d) 0
9.	The middle-most observation of every data arranged in order is called:
	(a) mode
	(b) median
	(c) mean
	(d) deviation

- 10. Two dice are rolled together. The probability of getting a sum of numbers on the two dice as 2, 3, or 5 is:
 - (a) $\frac{7}{36}$

 - (b) $\frac{11}{36}$ (c) $\frac{5}{36}$ (d) $\frac{4}{9}$

Geometry

- 11. A solid sphere is cut into two hemispheres. The ratio of the surface areas of the sphere to that of the two hemispheres taken together is:
 - (a) 1:1
 - (b) 1:4
 - (c) 2:3
 - (d) 3:2
- 12. The volume of the largest right circular cone that can be carved out from a solid cube of edge 2 cm is:
 - (a) $\frac{4\pi}{3}$ cucm
 - (b) $\frac{5\pi}{3}$ cucm
 - (c) $\frac{8\pi}{3}$ cucm
 - (d) $\frac{2\pi}{3}$ cucm
- 13. **Assertion** (A): The tangents drawn at the end points of a diameter of a circle are parallel.

Reason (R): The diameter of a circle is the longest chord.

- (a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation for Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.

Co-ordinate Geometry

- 14. AD is a median of $\triangle ABC$ with vertices A(5, -6), B(6, 4), and C(0, 0). The length of AD is equal to:
 - (a) $\sqrt{68}$ units
 - (b) $2\sqrt{15}$ units
 - (c) $\sqrt{101}$ units
 - (d) 10 units
- 15. If the distance between the points (3, -5) and (x, -5) is 15 units, then the values of x are:
 - (a) 12, -18
 - (b) -12, 18
 - (c) 18, 5
 - (d) -9, -12
- 16. The center of a circle is at (2,0). If one end of a diameter is at (6,0), then the other end is at:
 - (a) (0,0)
 - (b) (4,0)
 - (c) (-2,0)
 - (d) (-6,0)

Number System

- 17. If two positive integers p and q can be expressed as $p = 18a^2b^4$ and $q = 20a^3b^2$ where a and b are prime numbers, then LCM(p,q) is:
 - (a) $2a^2b^2$
 - (b) $180a^2b^2$
 - (c) $12a^2b^2$
 - (d) $180a^3b^4$

Trigonomentry

- 18. If $\sec \theta \tan \theta = m$, then the value of $\sec \theta + \tan \theta$ is:
 - (a) $1 \frac{1}{m}$
 - (b) $m^2 1$
 - (c) $\frac{1}{m}$
 - (d) -m
- 19. If $cos(\alpha + \beta) = 0$ then the value of $cos(\frac{\alpha + \beta}{2})$ is equal to:
 - (a) $\frac{1}{\sqrt{2}}$
 - (b) $\frac{1}{2}$
 - (c) 0
 - (d) $\sqrt{2}$