Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Normally the first step in debugging is to attempt to reproduce the problem. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Programmable devices have existed for centuries. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Many applications use a mix of several languages in their construction and use. Integrated development environments (IDEs) aim to integrate all such help. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Use of a static code analysis tool can help detect some possible problems. Different programming languages support different styles of programming (called programming paradigms). Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Computer programmers are those who write computer software. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. There are many approaches to the Software development process.