Работа 4.3.3

Исследование разрешающей способности микроскопа методом Аббе

Работу выполнил Матренин Василий Б01-006

Цель работы: изучение дифракционного предела разрешения объектива микроскопа.

В работе используются: лазер, кассета с набором сеток разного периода, линзы, щель с микрометрическим винтом, оптический стол с набором рейтеров и крепежных винтов, экран, линейка

1 Теория

Разрешающей способностью оптического прибора называется минимальное расстояние l_{min} между двумя точками предмета, изображения которых разрешаются методом Релея.

1.1 Подход Аббе к нахождению разрешающей способности микроскопа

Изображение в фокальной плоскости F - источник вторичных волн. Из этих волн возникает вторичное изображение.

Первичное изображение будет представлять собой дифракицонную картину Фраунгофера. Тогда для решетки с периодом d направления максимальной интенсивности ϕ_m определяются с помощью формулы:

$$d\sin\phi_m = m\lambda\tag{1}$$

При этом, так как линза конечна, будут наблюдаться дифракционные искажения. Если приоткрыть диафрагму, то будет наблюдаться переодическая картина. Условие разрешения решетки с периодом d:

$$d \ge \frac{\lambda}{2\sin u},\tag{2}$$

где и - апертурный угол.

2 Схема установки

Схема установки представлена на рисунке 1.

Рис 1. Схема установки

Ход работы 3

Длинна волны лазера: $\lambda = 532$ нм.

Расстояние от сетки до экрана: $L = (127 \pm 1)$ см.

Определение периода решеток по их пространственному спектру 3.1

Собрал установку. Вращая наружное кольцо кассеты, получил дифракционные картины для разных решеток. Измерил расстояния между соседними дифракционными максимумами. Данные представлены в таблице 1 (гор.) и таблице 2 (верт.).

Таблица 1.

	1	2	3	4	5
N	6	10	8	16	15
1	22,1	24,5	10,0	9,8	6,9
Δl	3,68	2,45	1,25	0,61	0,46

Таблица 2.

	1	2	3	4	5
N	6	10	8	16	16
1	22,0	24,5	9,9	9,8	7,5
Δl	3,67	2,45	1,24	0,61	0,47

По полученным данным рассчитал периоды решеток. $\sigma_d = d \frac{\sigma \Delta l}{l}$ Данные предоставлены в таблице 3.

Таблина 3.

	1	2	3	4	5	
d, мкм	18,4	27,6	54,5	110,8	143,8	
σd , MKM	0,5	1,1	4,4	18,2	30,1	

3.2 Определение периода решеток по изображению, увеличенному с помощью модели микроскопа

Собрал модель проекционного микроскопа. Параметры установки:

a1 = 6,0 cm

b1 = 51,0 cm

a2 = 5,0 cm

b2 = 57, 5 cm

Периоды сетки представлены в таблице 4.

Таблина 4

	1	2	3	4	5		
N	24	20	10	10	10		
l, см	4,2	5,3	5,5	10,5	14,3		

Посчитаю: $\Gamma=\frac{b1b2}{a1a2}=96,9$ Тогда посчитаю $d=\frac{\Delta l}{\Gamma}$. Результаты представлены в таблице 5.

Таолица 3

raoima o.						
	1	2	3	4	5	
d, мкм	18,1	27,3	56,7	108,4	147,6	
σd , mkm	0,5	1,1	4,5	18,1	30,3	

3.3 Определение периода решеток по оценке разрешающей сопсобности микроскопа

Поместил щелевую диафрагму с микрометрическим винтом в фокальную плоскость F линзы Л1. Определил для каждой сетки минимальный размердиафрагмы D, при котором на экране еще видно изображение сетки. Данные представлены в таблице 6.

Таблица 6.

	1	2	3	4	5
D, мкм	> 4	> 4	2,0	1,0	0,8
d, мкм	_	_	57,7	112,6	167,6
σd , mkm	_	_	12,0	19,3	32,0

3.4 Пространственная фильтрация и мультиплицирование

Получил необходимые изображения:

Рис 2. изображение 1

Рис 3. изображение 2

Рис 4. изображение 3

4 Вывод

Полученные разными способами значения d совпадают в пределах погрешности, что подтверждает теоретические сведения на практике.