REAL & FUNCTIONAL ANALYSIS QUALIFYING EXAM – JANUARY 2016

Mathematics Department, Tulane University

Solve | At Least | 5 Problems

Problem 1. Let $f(x), f_1(x), f_2(x), \ldots$ and $g(x), g_1(x), g_2(x), \ldots$ be almost everywhere finite valued measurable functions defined on a measurable set $E \subset \mathbb{R}^d$ with $m(E) < \infty$. Suppose that $f_k \to f$ and $g_k \to g$ in measure on E. Show that $f_k \cdot g_k \to f \cdot g$ in measure on E.

Problem 2. Let f(x) is a non-negative integrable function defined on a measurable set $E \subset \mathbb{R}^n$. Let

$$E_k = \{x \in E : f(x) \ge 2^k\}, \ k = 1, 2, \dots$$

Show that

$$\sum_{k=1}^{\infty} 2^k m(E_k) < \infty.$$

Problem 3. Let $f \in L([0,1])$. Show that

$$\lim_{n \to \infty} \int_0^1 n \ln \left(1 + \frac{|f(x)|^2}{n^2} \right) dx = 0.$$

Problem 4. Let $\{f_n(x)\}_{n=1}^{\infty}$ be a sequence of monotone increasing functions defined on [a,b]. Suppose that the series $\sum_{n=1}^{\infty} f_n(x)$ is convergent on [a,b]. Show that

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x), \quad \text{a.e. } x \in [a, b].$$

Problem 5. Is $L^{\infty}((0,1))$ separable? Justify your answer.

Problem 6. Let $\{x_n\}$ be a sequence of pairwise orthogonal vectors in a Hilbert space H. Show that the following are equivalent:

- (a) $\sum_{n=1}^{\infty} x_n$ converges in the norm topology of H. (b) $\sum_{n=1}^{\infty} \|x_n\|^2 < \infty$. (c) $\sum_{n=1}^{\infty} < x_n, y >$ converges for every $y \in H$.

Problem 7. Let H be a Hilbert space. Show that if $T: H \to H$ is symmetric, i.e. $\langle x, Ty \rangle =$ $\langle Tx, y \rangle$ for all $x, y \in H$, then T is linear and continuous.

Complex Analysis

- 1. Consider the function $f(z)=z\mathrm{Re}(z)+\overline{z}\mathrm{Im}(z)+\overline{z}.$
 - (a) Determine all points where f is differentiable.
 - (b) Determine all points where f is holomorphic.

2. Does there exist a function f holomorphic on some open disk $\{z \in \mathbb{C} : |z| < \epsilon\}$ with $\epsilon > 0$ such that $f(1/n) = f(-1/n) = 1/n^3$ for all integers $n > 1/\epsilon$? If yes, exhibit such a function. If no, prove that no such function exists.

- 3. Evaluate the following integrals.
 - (a) $\int_C z^n e^{1/z} dz$, where C is the unit circle oriented counterclockwise (b) $\int_0^\infty \frac{x^2}{x^4+6x^2+25} dx$

- 4. A meromorphic function f is said to be doubly periodic if there exist two non-zero complex numbers ω_1 and ω_2 such that $\omega_2/\omega_1 \notin \mathbb{R}$ and $f(z+n_1\omega_1+n_2\omega_2)=f(z)$ for all $z\in\mathbb{C}$ and all $n_1,n_2\in\mathbb{Z}$. (If f has a pole at z, then the equation should be interpreted as saying that f also has a pole at each $z+n_1\omega_1+n_2\omega_2$ for $n_1,n_2\in\mathbb{Z}$.) Let \mathcal{P} denote the parallelogram consisting of the four line segments from 0 to ω_1, ω_1 to $\omega_1+\omega_2, \omega_1+\omega_2$ to ω_2 and ω_2 to 0. (Note that \mathcal{P} is indeed a parallelogram because of the condition that $\omega_2/\omega_1 \notin \mathbb{R}$.)
 - (a) Suppose that f is an entire doubly periodic function. Prove that f is constant.
 - (b) Let f be a doubly periodic meromorphic function and assume that f has no zeroes or poles on \mathcal{P} . Prove that the number of zeroes inside \mathcal{P} (counted with multiplicity) is equal to the number of poles inside \mathcal{P} (counted with multiplicity).