Package 'holi'

August 25, 2024

Title Higher Order Likelihood Inference Web Applications

Version 0.1.1

Description Higher order likelihood inference is a promising approach for analyzing small sample size data. The 'holi' package provides web applications for higher order likelihood inference. It currently supports linear, logistic, and Poisson generalized linear models through the rstar_glm() function, based on Pierce and Bellio (2017) <doi:10.1111/insr.12232> and 'likelihoodAsy'.

The package offers two main features: LA_rstar(), which launches an interactive 'shiny' application allowing users to fit models with rstar_glm() through their web browser, and sim_rstar_glm_pgsql(), which streamlines the process of launching a web-based 'shiny' simulation application that saves results to a user-created 'PostgreSQL' database.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

URL https://github.com/mightymetrika/holi

BugReports https://github.com/mightymetrika/holi/issues

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Imports DT, ggplot2, likelihoodAsy, MASS, pool, RPostgres, shiny, shinythemes, sn

NeedsCompilation no

Author Mackson Ncube [aut, cre], mightymetrika, LLC [cph, fnd]

Maintainer Mackson Ncube <macksonncube.stats@gmail.com>

Repository CRAN

Date/Publication 2024-08-25 05:20:02 UTC

2 LA_rstar

Contents

LA_rstar	. 2
rstar_glm	. 3
run_sim_rstar_glm	. 5
sim_rstar_glm	. 7
sim_rstar_glm_pgsql	. 8

Index 10

LA_rstar

Launch Shiny App for likelihoodAsy rstar Analysis

Description

This function launches a Shiny application that facilitates the setup and execution of likelihoodAsy rstar analysis. The app allows users to upload a dataset, specify a model and parameters of interest, and perform the analysis with the option to compute confidence intervals for r^* statistics.

Usage

```
LA_rstar()
```

Value

A Shiny app object that can be run locally.

References

Pierce, D. A., & Bellio, R. (2017). Modern Likelihood-Frequentist Inference. International Statistical Review / Revue Internationale de Statistique, 85(3), 519–541. doi:10.1111/insr.12232

Bellio R, Pierce D (2020). likelihoodAsy: Functions for Likelihood Asymptotics. R package version 0.51, https://CRAN.R-project.org/package=likelihoodAsy.

Examples

```
if (interactive()) {
  LA_rstar()
}
```

rstar_glm 3

rstar_glm

Compute r* Statistics for Generalized Linear Models

Description

The rstar_glm function computes r* statistics for hypothesis testing on coefficients of interest in generalized linear models (GLMs). It supports logistic, linear, and Poisson regression models. For logistic models, the outcome must be binary.

Usage

```
rstar_glm(
  .formula,
  .data,
  .model = c("logistic", "linear", "poisson"),
  .psidesc = "Coefficient of Interest",
  .psival = 0,
  .fpsi = 2,
  .rstar.ci = FALSE,
  trace = FALSE,
)
## S3 method for class 'logistic'
rstar_glm(
  .formula,
  .data,
  .model = c("logistic", "linear", "poisson"),
  .psidesc = "Coefficient of Interest",
  .psival = 0,
  .fpsi = 2,
  .rstar.ci = FALSE,
  trace = FALSE,
)
## S3 method for class 'linear'
rstar_glm(
  .formula,
  .data,
  .model = c("logistic", "linear", "poisson"),
  .psidesc = "Coefficient of Interest",
  .psival = 0,
  .fpsi = 2,
  .rstar.ci = FALSE,
  trace = FALSE,
```

4 rstar_glm

```
)
## S3 method for class 'poisson'
rstar_glm(
  .formula,
  .data,
  .model = c("logistic", "linear", "poisson"),
  .psidesc = "Coefficient of Interest",
  .psival = 0,
  .fpsi = 2,
  .rstar.ci = FALSE,
  trace = FALSE,
)
## Default S3 method:
rstar_glm(
  .formula,
  .data,
  .model = c("logistic", "linear", "poisson"),
  .psidesc = "Coefficient of Interest",
  .psival = 0,
  .fpsi = 2,
  .rstar.ci = FALSE,
  trace = FALSE,
)
```

Arguments

.formula	A formula specifying the model.
.data	A data frame containing the variables in the model.
.model	The type of GLM model: "logistic", "linear", or "poisson".
.psidesc	A description of the parameter of interest.
.psival	The value of the parameter of interest under the null hypothesis.
.fpsi	The index of the parameter of interest.
.rstar.ci	Logical; if TRUE, compute confidence intervals for r*.
trace	Logical; if TRUE, print information about computation. (Default is FALSE)
	Additional arguments passed to the likelihoodAsy functions.

Value

A list with the object returned from likelihoodAsy::rstar (rs), the object returned from likelihoodAsy::rstar.ci (rs_ci), and the object returned from stats::glm (fit_glm).

run_sim_rstar_glm 5

References

Pierce, D. A., & Bellio, R. (2017). Modern Likelihood-Frequentist Inference. International Statistical Review / Revue Internationale de Statistique, 85(3), 519–541. doi:10.1111/insr.12232

Bellio R, Pierce D (2020). likelihoodAsy: Functions for Likelihood Asymptotics. R package version 0.51, https://CRAN.R-project.org/package=likelihoodAsy.

Examples

run_sim_rstar_glm

Run Multiple Iterations of Simulation and Summarize Results

Description

This function runs multiple iterations of simulation for the sim_rstar_glm function and summarizes the results, including rejection rates, bias, empirical standard error, mean squared error, and root mean squared error.

Usage

```
run_sim_rstar_glm(
    n_sims,
    alpha_level = 0.05,
    n_main,
    n_covariates,
    true_coef_main,
    n_control = NULL,
    true_coef_control = NULL,
    treatment_effect = NULL,
    model = c("logistic", "linear", "poisson"),
    skewness_main = NULL,
    skewness_control = NULL,
```

6 run_sim_rstar_glm

```
Sigma_main = NULL,
Sigma_control = NULL,
...
)
```

Arguments

Number of simulations to run. n_sims alpha_level Significance level for hypothesis tests. Number of observations in the main group. n_main Number of covariates. n_covariates true_coef_main True coefficients for the main group. Number of observations in the control group. n_control true_coef_control True coefficients for the control group. treatment_effect Treatment effect size. Type of model: "logistic", "linear", or "poisson". model Skewness for the main group covariates. skewness_main skewness_control Skewness for the control group covariates. Sigma_main Covariance matrix for the main group covariates. Covariance matrix for the control group covariates. Sigma_control

Value

A list with the results of each simulation and a summary of the results.

References

Pierce, D. A., & Bellio, R. (2017). Modern Likelihood-Frequentist Inference. International Statistical Review / Revue Internationale de Statistique, 85(3), 519–541. doi:10.1111/insr.12232 Bellio R, Pierce D (2020). likelihoodAsy: Functions for Likelihood Asymptotics. R package ver-

Additional arguments passed to sim_rstar_glm.

Examples

```
sim_summary <- run_sim_rstar_glm(
  n_sims = 2, alpha_level = 0.05,
  n_main = 100, n_covariates = 2, true_coef_main = c(0.5, -0.3),
  n_control = 100, true_coef_control = c(0.2, -0.1),
  treatment_effect = 1, model = "linear"
) |> suppressWarnings()
```

sion 0.51, https://CRAN.R-project.org/package=likelihoodAsy.

sim_rstar_glm 7

sim_rstar_glm

Simulate Data and Fit GLM and r* Models

Description

This function generates simulated data for main and control groups, fits a generalized linear model (GLM) and an r^* model, and returns the results.

Usage

```
sim_rstar_glm(
    n_main,
    n_covariates,
    true_coef_main,
    n_control = NULL,
    true_coef_control = NULL,
    treatment_effect = NULL,
    model = c("logistic", "linear", "poisson"),
    skewness_main = NULL,
    skewness_control = NULL,
    Sigma_main = NULL,
    Sigma_control = NULL,
    ...
)
```

Arguments

Number of observations in the main group. n_main Number of covariates. n_covariates true_coef_main True coefficients for the main group. n_control Number of observations in the control group. true_coef_control True coefficients for the control group. treatment_effect Treatment effect size. Type of model: "logistic", "linear", or "poisson". model skewness_main Skewness for the main group covariates. skewness_control Skewness for the control group covariates. Covariance matrix for the main group covariates. Sigma_main Sigma_control Covariance matrix for the control group covariates. Additional arguments passed to rstar_glm.

Value

A list with fitted GLM and r* models, and the simulated data.

References

Pierce, D. A., & Bellio, R. (2017). Modern Likelihood-Frequentist Inference. International Statistical Review / Revue Internationale de Statistique, 85(3), 519–541. doi:10.1111/insr.12232

Bellio R, Pierce D (2020). likelihoodAsy: Functions for Likelihood Asymptotics. R package version 0.51, https://CRAN.R-project.org/package=likelihoodAsy.

Examples

```
sim_result <- sim_rstar_glm(
   n_main = 100, n_covariates = 2, true_coef_main = c(0.5, -0.3),
   n_control = 100, true_coef_control = c(0.2, -0.1),
   treatment_effect = 0.5, model = "logistic"
) |> suppressWarnings()
```

 $sim_rstar_glm_pgsql$ Shiny App for Running r*GLM Simulations with PostgreSQL Integration

Description

This function launches a Shiny application for setting up and running simulations based on the rstar_glm function. The app allows users to input parameters for the simulation, run the simulation, view results, and save results to a PostgreSQL database.

Usage

```
sim_rstar_glm_pgsql(dbname, datatable, host, port, user, password)
```

Arguments

dbname The name of the PostgreSQL database.

datatable The name of the table in the PostgreSQL database to save the results.

host The host of the PostgreSQL database.
port The port of the PostgreSQL database.

user The username for accessing the PostgreSQL database.

password The password for accessing the PostgreSQL database.

Value

A Shiny app object that can be run locally.

sim_rstar_glm_pgsql 9

References

Pierce, D. A., & Bellio, R. (2017). Modern Likelihood-Frequentist Inference. International Statistical Review / Revue Internationale de Statistique, 85(3), 519–541. doi:10.1111/insr.12232 Bellio R, Pierce D (2020). likelihoodAsy: Functions for Likelihood Asymptotics. R package version 0.51, https://CRAN.R-project.org/package=likelihoodAsy.

Examples

```
if (interactive()) {
    sim_rstar_glm_pgsql(
        dbname = "mydb",
        datatable = "simulation_results",
        host = "localhost",
        port = 5432,
        user = "myuser",
        password = "mypassword"
    )
}
```

Index

```
LA_rstar, 2

rstar_glm, 3

run_sim_rstar_glm, 5

sim_rstar_glm, 7

sim_rstar_glm_pgsql, 8
```