

Lecture 6

Charts

Announcements

- HW 3 due Wednesday (1/31) at 11pm
- Lab 4 is due Friday at 5pm

Weekly Goals

- Monday (Today)
 - Attribute Types
 - Visualizing data: Relationships
 - Distributions
- Wednesday
 - Visualizing Data: Histograms
 - Height as Density

Table Review

Table Methods

- Creating and extending tables:
 - Table.read table and Table().with columns
- Finding the size: num rows and num columns
- Referring to columns: by labels or indices
 - column indices start at 0
- Accessing data in a column
 - column takes a label or index and returns an array
- Using array methods to work with data in columns
 - o item, sum, min, max, and so on
- Creating new tables containing some of the original columns:
 - select, drop

Manipulating Rows

- t.sort(column, descending=True) sorts the rows in decreasing order
- t.take(row_numbers) keeps the numbered rows
 - Each row has an index, starting at 0
- t.where(column, are.condition) keeps all rows for which a column's value satisfies a condition
- t.where(column, are.equal_to(value)) keeps all rows for which a column's value equals some particular value
 - Shorter form: t.where(column, value)

Discussion Questions

The table nba has columns PLAYER, POSITION, and SALARY.

 a) Create an array containing the names of all point guards (PG) who made more than \$15M

b) After evaluating these two expressions in order, what's the result of the second one?

```
nba.drop('POSITION')
nba.num columns (Demo)
```

Attribute Types

Types of Attributes

All values in a column of a table should be both the same type **and** be comparable to each other in some way

- Numerical Each value is from a numerical scale
 - Numerical measurements are ordered
 - Differences are meaningful
- Categorical Each value is from a fixed inventory
 - May or may not have an ordering
 - Examples of ordered categorical values?
 - Categories are the same or different

Attribute Types ≠ Python Types

Name	ZIP Code	Age	Favorite Color	Savings
Alice	15203	42	Red	100 USD
Bob	23059	24.1	Green	20000 KRW
Carol	94703	39.2	Blue	40 EUR
Dan	91125	21.3	Yellow	Nothing
str	int	float	str	str

The Python type doesn't fully convey the meaning of the data.

In this class, we will talk about Attribute Types to describe the "kind of data".

Attribute Types ≠ Python Types

Name	ZIP Code	Age	Favorite Color	Savings
Alice	15203	42	Red	100 USD
Bob	23059	24.1	Green	20000 KRW
Carol	94703	39.2	Blue	40 EUR
Dan	91125	21.3	Yellow	Nothing
Categorical	Categorical Nume	prical	Categorical	Numerical*

"Numerical" Attributes

Just because the values are numbers, doesn't mean the attribute is numerical

- Census example has numerical SEX code (0, 1, and 2)
- It doesn't make sense to perform arithmetic on these "numbers", e.g. (0+1+2)/3 is meaningless
- The attribute SEX is still categorical, even though numbers were used for the categories

Numerical Data

Plotting Two Numerical Variables

Line plot: plot

Scatter plot: scatter

Anthony Daniels, actor

Line vs Scatter Plot

- t.plot(x_label, y_label)
- t.scatter(x_label, y_label)
- Use line plots for sequential quantitative data: if...
 - ...your x-axis has an order
 - ...sequential differences in y values are meaningful
 - ...there's only one y-value for each x-value
 - Often: x-axis is time or distance
- Use scatter plots for non-sequential quantitative data
 - If you are looking for associations

Categorical and Numerical Variables

Highest Grossing Movies as of 2017

Title	Studio	Gross	Gross (Adjusted)	Year
Gone with the Wind	MGM	198676459	1796176700	1939
Star Wars	Fox	460998007	1583483200	1977
The Sound of Music	Fox	158671368	1266072700	1965
E.T.: The Extra-Terrestrial	Universal	435110554	1261085000	1982
Titanic	Paramount	658672302	1204368000	1997

(Demo)

How Do You Generate This Chart?

Visualization Fundamentals

Don't Do This

Do This Instead

Median Net Incomes

Source: Ross Ihaka

Good Practices

- Less can be more
 - Minimize decoration
 - Choose colors carefully
 - Minimize the number of different colors
- If data are numerical, preserve their relative values and distances between them

See Edward Tufte's "The Visual Display of Quantitative Information"

Importance of the Y-Axis

