# cādence®

Hardware System Verification (HSV) Vertical Solutions Engineering (VSE)

ONFI 3.0 Flash
Palladium Memory Model
User Guide

**Document Version: 2.5** 

Document Date: July 2018

**Copyright** © 2013-2016, 2018 Cadence Design Systems, Inc. All rights reserved. Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

**Trademarks**: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders.

**Restricted Permission**: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this publication subject to the following conditions:

- 1. The publication may be used only in accordance with a written agreement between Cadence and its customer.
- 2. The publication may not be modified in any way.
- 3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary notices and this permission statement.
- 4. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration.

**Disclaimer**: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

**Restricted Rights**: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

# **Contents**

| GENE   | RAL INFORMATION                                | 4  |
|--------|------------------------------------------------|----|
| 1.1    | RELATED PUBLICATIONS                           | 4  |
| ONFI 3 | .0 FLASH PALLADIUM MEMORY MODELS               | 5  |
| 1.     | Introduction                                   | 5  |
|        | MODEL RELEASE LEVELS                           |    |
| 3.     | CONFIGURATIONS                                 | 7  |
| 4.     | MODEL PARAMETER DESCRIPTIONS                   | 9  |
| 5.     | MODEL BLOCK DIAGRAM                            | 9  |
| 6.     | ADDRESS MAPPING                                | 13 |
| 7.     | FEATURE ADDRESS DEFINITIONS                    | 15 |
| 8.     | ID OPERATIONS                                  | 16 |
| 8.1    | !. READ ID                                     | 16 |
| 8.2    | 2. READ PARAMETER PAGE                         | 16 |
| 8.3    | B. READ UNIQUE ID                              | 16 |
| 9.     | FEATURES                                       |    |
| 10.    | MMP AND ECC (ERROR CORRECTING CODE)            | 19 |
| 10     | .1. NAND FLASH and ECC (Error Correcting Code) | 19 |
| 11.    | INITIALIZATION SEQUENCE                        | 20 |
| 12.    | MODEL SIZE                                     | 22 |
| 13.    | LIMITATIONS                                    | 23 |
| 14.    | TIMING PARAMETER TRHOH                         | 23 |
| 15.    | EMULATION                                      | 23 |
| 15     | .1. Model file list                            | 24 |
| 16.    | SAMPLE WAVEFORM                                | 25 |
| 17.    | DEBUG DISPLAY                                  | 25 |
| 18.    | REVISION HISTORY                               | 25 |

# **General Information**

The Cadence Memory Model Portfolio provides memory device models for the Cadence Palladium XP, Palladium XP II and Palladium Z1 series systems. Optimizing the acceleration and/or emulation flow on these platforms for MMP memory models may require information outside the scope of the MMP user guides and related MMP documentation.

#### 1.1 Related Publications

For basic information regarding emulation and acceleration, please refer to the following documents:

4

For Palladium XP and Palladium XP II:

UXE User Guide
UXE Library Developer's Guide
UXE Known Problems and Solutions
UXE Command Reference Manual
Palladium XP Planning and Installation Guide
Palladium Target System Developer's Guide
What's New in UXE

#### For Palladium Z1:

VXE User Guide
VXE Library Developer's Guide
VXE Known Problems and Solutions
VXE Command Reference Manual
Palladium Z1 Planning and Installation Guide
Palladium Target System Developer's Guide
What's New in VXE

#### 1. Introduction

The Cadence Palladium ONFI 3.x-compliant Flash Models are based on data sheet specifications of the following Micron devices:

MT29F Flash memory with MLC technology (128Gb per die, ONFI 3.0, L85A)

MT29F Flash memory with MLC+ technology (128Gb per die, ONFI 3.0, L85C+)

MT29F Flash memory with MLC+ technology (64Gb per die, ONFI 3.0, L84C+)

MT29F Flash memory with MLC technology (128Gb per die, ONFI 3.2, L95B)

MT29F Flash memory with MLC+ technology (128Gb per die, ONFI 3.2, L95B+)

These models support asynchronous, synchronous NV-DDR, and synchronous NV-DDR2 I/O interfaces.

The models are available in several configurations with model sizes to match real devices manufactured by the following vendor: Micron.

Currently only a few different sizes are available, please consult the memory model catalog for the current available list.

Please note that the information in this user guide applies to both ONFI 3.0-compliant and ONFI 3.2-compliant models unless otherwise specified.

## 2. Model Release Levels

All models in the Memory Model Portfolio are graded with a release level. This release level informs users of the current maturity and status of the model. All families in the library are graded at one of these levels.

The different levels give an overall indication of the amount of testing, level of quality and feature availability in the model. For details on supported features check the User Guide for that particular model family.

There are three release levels for models in the MMP release.

| Release<br>Level      |    | Model Status                                                                                                                                                                                               | Available in Release | Listed in<br>Catalog | Requires<br>Beta<br>Agreement |
|-----------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------------------------------|
| Mainstream<br>Release | MR | Fully released and available in the catalog for all customers to use.                                                                                                                                      | Yes                  | Yes                  | No                            |
| Emerging<br>Release   | ER | Model has successfully completed Beta engagement(s). Most, but not all features have been tested. Documentation is available.                                                                              | No                   | Yes                  | Yes                           |
| Initial<br>Release    | IR | Model has completed initial development and has been released to Beta customer(s). The model may have missing features, may not be fully tested and may not have documentation. Model may contain defects. | No                   | Yes                  | Yes                           |

Access to Initial Release and Emerging Release versions of the models will require a Beta Agreement to be signed before the model can be delivered.

# 3. Configurations

The following tables list the configurations specified in the data sheets listed above. It is possible that not all configurations are available from all vendors. Please consult the appropriate vendor site for details on the parts they offer.

| Model (ONFI 3.0)  | Density | Level | # of<br>Die | # of CE# | # of R/B# | I/O        | Interface  |
|-------------------|---------|-------|-------------|----------|-----------|------------|------------|
| MT29F128G08CBCAB  | 128Gb   | MLC   | 1           | 1        | 1         | Common     | Sync/Async |
| MT29F256G08CECAB  | 256Gb   | MLC   | 2           | 2        | 2         | Separate   | Sync/Async |
| MT29F512G08CKCAB  | 512Gb   | MLC   | 4           | 2        | 2         | Separate   | Sync/Async |
| MT29F512G08CMCAB  | 512Gb   | MLC   | 4           | 4        | 4         | Separate   | Sync/Async |
| MT29F1024G08CUCAB | 1024Gb  | MLC   | 8           | 4        | 4         | Separate   | Sync/Async |
| MT29F128G08CBCBB  | 128Gb   | MLC+  | 1           | 1        | 1         | Common     | Sync/Async |
| MT29F256G08CECBB  | 256Gb   | MLC+  | 2           | 2        | 2         | Sep – 2 CH | Sync/Async |
| MT29F512G08CKCBB  | 512Gb   | MLC+  | 4           | 2        | 2         | Sep - 2 CH | Sync/Async |
| MT29F512G08CMCBB  | 512Gb   | MLC+  | 4           | 4        | 4         | Sep - 2 CH | Sync/Async |
| MT29F1T08CTCBB    | 1Tb     | MLC+  | 8           | 4        | 4         | Sep – 4 CH | Sync/Async |
| MT29F1T08CUCBB    | 1Tb     | MLC+  | 8           | 4        | 4         | Sep – 2 CH | Sync/Async |
| MT29F2T08CVCBB    | 2Tb     | MLC+  | 16          | 8        | 4         | Sep – 4 CH | Sync/Async |
| MT29F1T08CQCBB    | 1Tb     | MLC+  | 8           | 4        | 4         | Sep - 4 CH | Sync/Async |
| MT29F2T08CTCBB    | 2Tb     | MLC+  | 16          | 8        | 4         | Sep – 2CH  | Sync/Async |
| MT29F64G08CBCDB   | 64Gb    | MLC+  | 1           | 1        | 1         | Common     | Sync/Async |
| MT29F128G08CECDB  | 128Gb   | MLC+  | 2           | 2        | 2         | Sep - 2 CH | Sync/Async |
| MT29F192G08CGCDB  | 192Gb   | MLC+  | 3           | 3        | 3         | Sep - 3 CH | Sync/Async |
| MT29F256G08CKCDB  | 256Gb   | MLC+  | 4           | 2        | 2         | Sep – 2 CH | Sync/Async |
| MT29F256G08CMCDB  | 256Gb   | MLC+  | 4           | 4        | 4         | Sep – 2 CH | Sync/Async |
| MT29F512G08CUCDB  | 512Gb   | MLC+  | 8           | 4        | 4         | Sep – 2 CH | Sync/Async |
| MT29F1T08CVCDB    | 1Tb     | MLC+  | 16          | 8        | 4         | Sep – 4 CH | Sync/Async |

| Model (ONFI 3.2) | Density | Level | # of<br>Die | # of CE# | # of R/B# | I/O        | Interface  |
|------------------|---------|-------|-------------|----------|-----------|------------|------------|
| MT29F128G08CBECB | 128Gb   | MLC   | 1           | 1        | 1         | Common     | Sync/Async |
| MT29F256G08CEECB | 256Gb   | MLC   | 2           | 2        | 2         | Sep – 2 CH | Sync/Async |
| MT29F512G08CKECB | 512Gb   | MLC   | 4           | 2        | 2         | Sep – 2 CH | Sync/Async |
| MT29F512G08CMECB | 512Gb   | MLC   | 4           | 4        | 4         | Sep – 2 CH | Sync/Async |
| MT29F1T08CUECB   | 1Tb     | MLC   | 8           | 4        | 4         | Sep – 2 CH | Sync/Async |
| MT29F2T08CTECB   | 2Tb     | MLC   | 16          | 8        | 4         | Sep – 2 CH | Sync/Async |
| MT29F128G08CBCCB | 128Gb   | MLC+  | 1           | 1        | 1         | Common     | Sync/Async |
| MT29F256G08CECCB | 256Gb   | MLC+  | 2           | 2        | 2         | Sep – 2 CH | Sync/Async |
| MT29F512G08CKCCB | 512Gb   | MLC+  | 4           | 2        | 2         | Sep – 2 CH | Sync/Async |
| MT29F512G08CMCCB | 512Gb   | MLC+  | 4           | 4        | 4         | Sep – 2 CH | Sync/Async |
| MT29F512G08CLCCB | 512Gb   | MLC+  | 4           | 4        | 4         | Sep - 4 CH | Sync/Async |
| MT29F1T08CQCCB   | 1Tb     | MLC+  | 8           | 4        | 4         | Sep – 4 CH | Sync/Async |
| MT29F1T08CUCCB   | 1Tb     | MLC+  | 8           | 4        | 4         | Sep – 2 CH | Sync/Async |
| MT29F2T08CTCCB   | 2Tb     | MLC+  | 16          | 8        | 4         | Sep – 2 CH | Sync/Async |
| MT29F2T08CVCCB   | 2Tb     | MLC+  | 16          | 8        | 4         | Sep – 4 CH | Sync/Async |

**Notes:** MLC = 2bits/cell, 512 pages per block, 2K blocks per die

Separate I/O = 2 sets of pins Separate I/O 2 CH = 2 sets of pins Separate I/O 4 CH = 4 sets of pins

Common I/O = 1 set of pins

(pin set: ALE,CLE,DQ,DQS,RE#,WE#,WP#) Die and LUN are used interchangeably Target and CE# are used interchangeably

ONFI 3.0 models have 16KB (16384+1216 bytes) per page ONFI 3.2 models have 16KB (16384+1872 bytes) per page MLC+ models support SLC mode via Set Feature address 91h

## 4. Model Parameter Descriptions

The following table provides details on the user adjustable parameters for the Palladium ONFI 3.x Memory Model. These parameters may be modified when instantiating the model.

| User Adjustable<br>Parameter | Default Value | Description              |
|------------------------------|---------------|--------------------------|
| nb                           | 32            | Number of blocks per LUN |

The value of parameter nb is passed into the LUN core module's BLK\_IN\_MEMORY parameter. It specifies the number of blocks per LUN. This parameter can be adjusted when the model is instantiated by assigning a value to the nb parameter. The maximum value should limit the total address bits to 30. Total address bits = column address bits + page address bits + block address bits, as described in the vendor data sheet. For example, 16K page size requires 15 bits, 512 pages per block adds 9 bits, leaving only 6 bits or 64 blocks.

The following table provides some information about exposed parameters that are NOT user adjustable. On rare occasion the user may find one of these parameters needs adjusting for their configuration. If this case arises, please contact Cadence emulation or MMP support.

| User Adjustable<br>Parameter | Default Value | Description     |
|------------------------------|---------------|-----------------|
| data_bits                    | 8             | Width of DQ bus |

The parameter data\_bits should not be adjusted. It specifies the width for the DQ bus declaration.

# 5. Model Block Diagram

These models are implemented modularly based on the LUN core, which is instantiated as many times as needed within each model. The user does not need to instantiate the core directly. The user instantiate the model based on the model's number of dies.

A block diagram of a model that has 4 dies or LUNs with 2 CE# is shown below.

ONFI 3.0 Flash Palladium Memory Model



The following block diagram shows a model that has 4 LUNs with 4 CE#.

ONFI 3.0 Flash Palladium Memory Model



The following block diagram shows a model that has 8 LUNs with 4 CE#.



Note that the optional pin/signal DQS\_c is present but it is not required to be connected.

# 6. Address mapping

The array of the ONFI 3.x Flash model is mapped into the internal memory of the Palladium system. This array is a single two dimensional array. The mapping of lun, block, page and column addresses to the internal model array is as follows:

This information is required if the memory needs to be preloaded with user data. Here are the array organization and addressing cycle table for MLC models.

#### **Array Organization for MLC Array**



#### **Address Cycle Table for MLC Array**

| Cycle  | DQ7  | DQ6  | DQ5  | DQ4  | DQ3  | DQ2  | DQ1  | DQ0  |
|--------|------|------|------|------|------|------|------|------|
| First  | CA7  | CA6  | CA5  | CA4  | CA3  | CA2  | CA1  | CA0  |
| Second | LOW  | CA14 | CA13 | CA12 | CA11 | CA10 | CA9  | CA8  |
| Third  | PA7  | PA6  | PA5  | PA4  | PA3  | PA2  | PA1  | PA0  |
| Fourth | BA15 | BA14 | BA13 | BA12 | BA11 | BA10 | BA9  | PA8  |
| Fifth  | LOW  | LOW  | LOW  | LA0  | BA19 | BA18 | BA17 | BA16 |

Notes from Micron data sheet:

CAx = column address, PAx = page address, BAx = block address, LAx = LUN address; the page address, block address, and LUN address are collectively called the row address.

When using the synchronous interface, CA0 is forced to 0 internally; one data cycle always returns one even byte and one odd byte.

For ONFI 3.0 models column addresses 17,600 (44C0h) through 32,767 (7FFFh) are invalid, out of bounds, do not exist in the device, and cannot be addressed.

For ONFI 3.2 models column addresses 18,256 (4750h) through 32,767 (7FFFh) are invalid, out of bounds, do not exist in the device, and cannot be addressed.

BA[9] is the plane-select bit:

Plane 0: BA[9] = 0Plane 1: BA[9] = 1

LA0 is the LUN-select bit. It is present only when two LUNs are shared on the target; otherwise, it should be held LOW.

LUN 0: LA0 = 0 LUN 1: LA0 = 1

MLC+ models have 48 extended blocks per LUN which requires one additional block address bit BA20, and shifts LA0 up one bit to DQ5 in the fifth address cycle.

## 7. Feature Address Definitions

In the data sheets there are up to 256 feature addresses defined – a 256 x 32 array. The Palladium models implement the entire array. However the only features that can be activated are the synchronous data interfaces and volume configuration. Other addresses can be written to and read back using the Set and Get Feature commands but the set features will not be active. For example timing mode change and OTP are not supported. The following table shows the feature address definitions as described in the Micron data sheet.

| Feature Address | Definition                           |
|-----------------|--------------------------------------|
| 00h             | Reserved                             |
| 01h             | Timing mode and Data interface       |
| 02h             | NV-DDR2 configuration                |
| 03h-0Fh         | Reserved                             |
| 10h             | Programmable output drive strength   |
| 11h-2Fh         | Reserved                             |
| 30h             | Vpp                                  |
| 31h-57h         | Reserved                             |
| 58h             | Volume configuration                 |
| 59h-7Fh         | Reserved                             |
| 80h             | Programmable output drive strength   |
| 81h             | Programmable R/B# pull-down strength |
| 82h-88h         | Reserved                             |
| 89h             | Read Retry                           |
| 90h             | Array Operation Mode                 |
| 91h             | SLC mode for MLC+ models             |
| 92h-FFh         | Reserved                             |

## 8. ID Operations

#### **8.1. READ ID**

The READ ID parameters for addresses 00h, 20h and 40h have been hardcoded into each model. Therefore user data file is not required.

#### 8.2. READ PARAMETER PAGE

The data for the ONFI and JEDEC parameter pages are provided in the <model\_name><package\_code>\_param.dat and <model\_name><package\_code>\_jedec\_param.dat files. The package\_code is two characters. These data files should be preloaded into the model if the user wants to read ONFI and JEDEC information from the model. The LUN instance names are L<CE><LUN>. Using a model with 2 CEs and each CE has 2 LUNs as an example the paths to the parameter pages are as follows:

```
<path.to.model.inst>.L11.param_page
<path.to.model.inst>.L11.jedec_param_page
<path.to.model.inst>.L12.param_page
<path.to.model.inst>.L12.jedec_param_page
<path.to.model.inst>.L21.param_page
<path.to.model.inst>.L21.jedec_param_page
<path.to.model.inst>.L22.jedec_param_page
<path.to.model.inst>.L22.param_page
<path.to.model.inst>.L22.jedec_param_page
```

#### 8.3. READ UNIQUE ID

The READ UNIQUE ID command is used to read a unique identifier programmed into the target. Preloading the uid\_page is similar to preloading the param\_page mentioned in the previous section. The path to each LUN's unique id page is as follows:

```
<path.to.model.inst>.L11.uid_page
<path.to.model.inst>.L12.uid_page
<path.to.model.inst>.L21.uid_page
<path.to.model.inst>.L22.uid_page
```

# 9. Features

The following table shows a list of features for the NAND flash model:

| FEATURE                         | SUPPORT | NOTE                           |
|---------------------------------|---------|--------------------------------|
| COMMANDS                        |         |                                |
| Reset                           | Yes     |                                |
| Synchronous Reset               | Yes     |                                |
| Read ID                         | Yes     |                                |
| Read Parameter Page (ONFI)      | Yes     |                                |
| Read Parameter Page (JEDEC)     | Yes     |                                |
| Read Unique ID                  | Yes     |                                |
| Volume Select                   | Yes     |                                |
| Get Features                    | Yes     |                                |
| Set Features                    | Partial | Activate Synchronous Interface |
| Get Features by LUN             | Yes     | ONFI 3.2 models                |
| Set Features by LUN             | Partial | ONFI 3.2 models                |
| Read Status                     | Yes     |                                |
| Read Status Enhanced            | Yes     |                                |
| Change Read Column              | Yes     |                                |
| Change Read Column Enhanced     | Yes     |                                |
| (ONFI)                          | 100     |                                |
| Change Read Column Enhanced     | Yes     |                                |
| (JEDEC)                         |         |                                |
| Change Write Column             | Yes     |                                |
| Change Row Address              | Yes     |                                |
| Read Mode                       | Yes     |                                |
| Read Page                       | Yes     |                                |
| Read Page Multi-Plane           | Yes     |                                |
| Read Page Cache Sequential      | Yes     |                                |
| Read Page Cache Random          | Yes     |                                |
| Read Page Cache Last            | Yes     |                                |
| Program Page                    | Yes     |                                |
| Program Page Multi-Plane        | Yes     |                                |
| Program Page Cache              | Yes     |                                |
| Erase Block                     | Yes     |                                |
| Erase Block Multi-Plane (ONFI)  | Yes     |                                |
| Erase Block Multi-Plane (JEDEC) | Yes     |                                |
| Copyback Read                   | Yes     |                                |
| Copyback Program                | Yes     |                                |
| Copyback Program Multi-Plane    | Yes     |                                |
| Reset LUN                       | Yes     |                                |
| SPECIAL OPERATIONS              |         |                                |
| One-Time Programmable (OTP)     | No      |                                |
| Operations                      |         |                                |
| ODT Configure Operation         | No      |                                |
| Multi-Plane Operations          | Yes     |                                |
| Read Retry                      | No      |                                |
| Interleaved Die (Multi-LUN)     | Yes     |                                |
| Operations                      |         |                                |
| Error Management                | No      | Spare area is available        |

The following table shows the command set as described in the Micron data sheet.

| Command                           | Com-          | # of Valid | Data      | Com-     | # of Valid | Com-      | Valid while | Valid    | Notes  |
|-----------------------------------|---------------|------------|-----------|----------|------------|-----------|-------------|----------|--------|
| Command                           | mand          | Address    | Input     | mand     | Address    | mand      | se-lected   | while    | 140103 |
|                                   | Cycle         | Cycles     | Cycles    | Cycle #2 | Cycles     | Cycle #3  | LUN is      | other    |        |
|                                   | #1            | ,,,,,,     | , , , , , | -,       | #2         | , , , , , | busy (1)    | LUNs are |        |
|                                   |               |            |           |          |            |           | , ( . ,     | busy (2) |        |
| Reset Operations                  |               |            |           |          |            |           |             |          |        |
| RESET                             | FFh           | 0          | -         | -        | -          | -         | Yes         | Yes      |        |
| SYNCHRONOUS RESET                 | FCh           | 0          | -         | -        | -          | -         | Yes         | Yes      |        |
| RESET LUN                         | FAh           | 3          | -         | -        | -          | -         | Yes         | Yes      |        |
| Identification Operations         |               |            |           |          |            |           |             |          |        |
| READ ID                           | 90h           | 1          | -         | -        | -          | -         |             |          | 3      |
| READ PARAMETER PAGE               | ECh           | 1          | -         | -        | -          | -         |             |          |        |
| READ UNIQUE ID                    | EDh           | 1          | -         | -        | -          | -         |             |          |        |
| Configuration Operations          |               |            |           |          |            |           |             |          |        |
| VOLUME SELECT                     | E1h           | 1          | -         | -        | -          | -         |             |          |        |
| GET FEATURES                      | EEh           | 1          | -         | -        | -          | -         |             |          | 3      |
| SET FEATURES                      | EFh           | 1          | 4         | -        | -          | -         |             |          | 4      |
| GET FEATURES by LUN               | D4h           | 2          | -         | -        | -          | -         |             | Yes      | 3      |
| SET FEATURES by LUN               | D5h           | 2          | 4         | -        | -          | -         |             | Yes      | 4      |
| Status Operations                 |               |            |           |          |            |           |             |          |        |
| READ STATUS                       | 70h           | 0          | -         | -        | -          | -         | Yes         |          |        |
| READ STATUS ENHANCED              | 78h           | 3          | -         | -        | -          | -         | Yes         | Yes      |        |
| Column Address Operations         |               |            |           |          |            |           |             |          |        |
| CHANGE READ COLUMN                | 05h           | 2          | -         | E0h      | -          | -         |             | Yes      |        |
| CHANGE READ COLUMN                | 06h           | 5          | -         | E0h      | -          | -         |             | Yes      |        |
| ENHANCED (ONFI)                   |               |            |           |          |            |           |             |          |        |
| CHANGE READ COLUMN                | 00h           | 5          | -         | 05h      | 2          | E0h       |             | Yes      |        |
| ENHANCED (JEDEC)                  |               |            |           |          |            |           |             |          |        |
| CHANGE WRITE COLUMN               | 85h           | 2          | opt       | -        | -          | -         |             | Yes      |        |
| CHANGE ROW ADDRESS                | 85h           | 5          | opt       | 11h(opt) | -          | -         |             | Yes      | 5      |
| Read Operations                   |               |            |           |          |            |           |             |          |        |
| READ MODE                         | 00h           | 0          | -         | -        | -          | -         |             | Yes      |        |
| READ PAGE                         | 00h           | 5          | -         | 30h      | -          | -         |             | Yes      | 6      |
| READ PAGE MULTIPLANE              | 00h           | 5          | -         | 32h      | -          | -         |             | Yes      |        |
| READ PAGE CACHE<br>SEQUENTIAL     | 31h           | 0          | -         | -        | -          | -         |             | Yes      | 7      |
| READ PAGE CACHE RANDOM            | 00h           | 5          | -         | 31h      | -          | -         |             | Yes      | 6,7    |
| READ PAGE CACHE LAST              | 3Fh           | 0          | -         | -        | -          | -         |             | Yes      | 7      |
| Program Operations                |               |            |           |          |            |           |             |          |        |
| PROGRAM PAGE                      | 80h           | 5          | Yes       | 10h      |            |           |             | Yes      |        |
| PROGRAM PAGE MULTI-PLANE          | 80h or<br>81h | 5          | Yes       | 11h      |            |           |             | Yes      |        |
| PROGRAM PAGE CACHE                | 80h           | 5          | Yes       | 15h      |            |           |             | Yes      | 8      |
| Erase Operations                  |               |            |           |          |            |           |             |          |        |
| ERASE BLOCK                       | 60h           | 3          | -         | D0h      |            |           |             | Yes      |        |
| ERASE BLOCK MULTI-PLANE<br>(ONFI) | 60h           | 3          | -         | D1h      |            |           |             | Yes      |        |
| ERASE BLOCK MULTI-PLANE (JEDEC)   | 60h           | 3          | -         | 60h      | 3          | D0h       |             | Yes      |        |
| Copyback Operations               | 1             |            | <u> </u>  |          | <u> </u>   |           |             |          | 1      |
| COPYBACK READ                     | 00h           | 5          | -         | 35h      |            |           |             | Yes      | 6      |
| COPYBACK PROGRAM                  | 85h           | 5          | opt       | 10h      |            |           | İ           | Yes      | -      |
| COPYBACK PROGRAM MULTI-           | 85h           | 5          | opt       | 11h      |            |           | İ           | Yes      |        |
| PLANE                             |               |            | ٥,,       | <u> </u> |            |           |             |          |        |

Notes from Micron data sheet:

- 1. Busy means RDY = 0.
- 2. These commands can be used for interleaved die (multi-LUN) operations.
- 3. The READ ID (90h), GET FEATURES (EEh), and GET FEATURES by LUN (D4h) output identical data on rising and falling DQS edges.
- 4. The SET FEATURES (EFh) and SET FEATURES by LUN (D5h) commands require data transition prior to the rising edge of CLK, with identical data for the rising and falling edges.

- 5. Command cycle #2 of 11h is conditional. See CHANGE ROW ADDRESS (85h) (page 114 of data sheet) for more details.
- 6. This command can be preceded by READ PAGE MULTI-PLANE (00h-32h) command to accommodate a maximum simultaneous multi-plane array operation.
- 7. Issuing a READ PAGE CACHE-series (31h, 00h-31h, 00-32h, 3Fh) command when the array is busy (RDY = 1, ARDY = 0) is supported if the previous command was a READ PAGE (00h-30h) or READ PAGE CACHE-series command; otherwise, it is prohibited.

#### Set Feature Command for SLC mode:

| Mode | FA  | P1  | P2  | P3  | P4  |
|------|-----|-----|-----|-----|-----|
| SLC  | 91h | 00h | 01h | 00h | 00h |
| MLC  | 91h | 02h | 01h | 00h | 00h |

P2 = 01h means Non-squashed SLC address mode – address bits do not shift from MLC address (default).

# 10. MMP and ECC (Error Correcting Code)

MMP models do not support Error Correcting Code (ECC) functionality. ECC functions, if they are present in a memory device, are typically found in the NAND and DDRx families. The MMP product does not have any plans to provide such functions in the models. MMP models are provided as system level emulation models and not as verification IP. The below sections discuss work-arounds that enable the user to deal with some ECC scenarios. Note that ECC means different things to different device families.

## 10.1. NAND FLASH and ECC (Error Correcting Code)

MMP NAND models do not support Error Correcting Code (ECC) functionality. There will not be an ECC error in a Palladium MMP flash model; the data stored in a MMP model should not need to be corrected because the model does not degrade over time like the real device. The data returned is always correct. The paragraphs below provide details about host ECC in relation to MMP NAND Flash.

For NAND Flash devices, ECC means that the internal engine in the Flash device calculates the ECC when programming and writes the resulting value into the spare array. The low level details of this operation are in the device specification. The Flash then recalculates the ECC on reads and compares with the value stored in the spare array. If non-equivalence is found, bit error is indicated, and the device corrects and/or flags an error. There are several cases:

- If the controller relies on ECC generation internal to the Flash device, then the model needs to do nothing. This has worked for all users so far.
  - To support this scenario, model parameters can be modified to indicate that ECC is enabled. The controller is then happy. NOTE: the model will NOT actually do the ECC calculation.

All rights reserved.

P2 = 00h means Squashed address mode - address bits shift from MLC address.

- If the controller uses its own ECC and manually writes to the spare array in the device, then again the MMP model does not need to do anything.
  - There is a spare area is implemented in the NAND model for the host to store ECCs. This spare area allows the host to do data correction.
- If the controller relies on ECC generation internal to the memory device AND the controller reads and examines the spare calculation itself, then the MMP model will not work.
  - There is no MMP plan to enhance NAND FLASH MMP models to support this case. It is a large effort.

Occasionally, an issue may be seen due to the parameter page setting for the available number of bits of ECC correction. According to the ONFI standard this setting is handled by byte 112 of the parameter page. See the figure below for an example entry from the standard. Problems may occur with some controllers when byte 112 of the parameter page is set to the value '0'. If the controller requires some positive value for the *Number of bits ECC correctability*, then the user may need to change the setting to a value of '1'.

Table 13: Parameter Page Data Structure (Continued)

| Byte | Description                        | Device | Values |
|------|------------------------------------|--------|--------|
| 112  | Number of bits ECC correctability  | -      | 0Ch    |
| 113  | Number of interleaved address bits | _      | 01h    |

# 11. Initialization Sequence

The ONFI 3.x Flash model requires that the memory controller or host follows the initialization sequence as documented in the specification. The sequence basically entails the following steps.

For Single Volume (one package per CE# or host target):

- 1. The asynchronous interface is active by default for each target.
- 2. The RESET (FFh) command must be the first command issued to the target (CE#). The target will become busy. The RESET busy time can be monitored with the R/B# pin or checked by polling the status register with the 70h status command.
- 3. Read configuration data from the model using READ ID, READ PARAMETER PAGE, etc. (optional)
- 4. The model is now initialized and ready for normal operation.

For CE# Pin Reduction and Volume Addressing:

1. The asynchronous interface is active by default for each target.

- 2. Multiple Host Targets (CE#'s) can be active at the same time. See note below on how to properly issue multiple SET FEATURES (EFh) commands to appoint volume addresses.
- 3. The RESET (FFh) command must be the first command issued to the target (CE#) or targets. The target will become busy. The RESET busy time can be monitored with the R/B# pin or checked by polling the status register with the 70h status command.
- 4. R/B# goes LOW for tRST and can be monitored by the host by issuing READ STATUS (70h) commands and monitoring.
- 5. Read configuration data from the model using READ ID, READ PARAMETER PAGE, etc. (optional)
- 6. The host issues SET FEATURES (EFh) command to the Volume Configuration feature address to appoint the Volume address for the first NAND Target. The Volume Address specified shall be unique amongst all NAND Targets. After the SET FEATURE (EFh) command completes, ENo is set to one to enable the next volume in the chain to be appointed an address.
- 7. For each NAND Target connected to a CE# pin or Host Target, repeat step 6.
- 8. Repeat steps 3-7 for the next Host Target (CE# pin), if any.
- 9. To complete the initialization process, a VOLUME SELECT (E1h) command is issued to select the next Volume that is going to execute a command.

The model requires that these steps are performed in the correct sequence in order to complete initialization. The model will not respond to any others commands unless this sequence is completed.

Note: In cases where there are multiple NAND Targets within a package (i.e., multiple CE#'s), those NAND Targets share the same ENo signal, the host shall not stagger SET FEATURES (EFh) commands that appoint the Volume addresses. If the SET FEATURES (EFh) commands are not issued simultaneously then the host shall wait until Volume appointment for previous NAND Target(s) is complete before issuing the next SET FEATURES (EFh) command to appoint the Volume address for the next NAND Target that shares the ENo within a package.

A diagram of CE# Pin Reduction Topology with single channel is shown below:



## 12. Model Size

To reduce memory utilization each LUN has only 32 blocks (blocks 0 to 31) but the actual device has 2048 blocks. If larger size is needed please contact Customer Support.

#### 13. Limitations

- 1. The Set Features command supports activating synchronous modes, SLC mode, and appointing volume address only.
- 2. Model does not check illegal sequence of command cycles.
- 3. Model does not support timing parameters, except tRHOH.
- 4. The time to program a page or erase a block is 1 fclk (fast clock) per address location.
- 5. Unsupported and partially supported features are listed in Features table.

## 14. Timing Parameter tRHOH

The model does not generally support timing parameters because it is cycle based. However tRHOH (an asynchronous mode parameter that controls RE# HIGH to output hold) is supported in number of fclks (fast clocks). The user may define a macro at compile time to hold the data by a number of fclks after RE# goes high. Use this macro only if data output is not already held long enough. The model holds the data valid for 2 fclks by default. The data can be held 3 additional fclks by using the following example command line option in ixcom flow:

vlan +define+tRHOH=3

## 15. Compile and Emulation

The memory models are currently provided in one format: an encrypted RTL file(s) (\*.vp) that targets use in the IXCOM flows or in the ICE flow. The encrypted RTL (\*.vp) file(s) must be synthesized along with other design code prior to acceleration / emulation.

An example of the command for compilation (including synthesis) of this model in IXCOM flow is shown below:

```
ixcom -64bit +sv -ua +dut+mt29f128g08cbcab \
../tb.v ../src/mt29f_128.vp \
../src/mt29f128g08cbcab.vp \
-incdir ../../.utils/cdn_mmp_utils/sv \
../../.utils/cdn_mmp_utils/sv/cdn_mmp_utils.sv \
......

xeDebug -64 --ncsim \
-sv_lib ../../utils/cdn_mmp_utils/lib/64bit/libMMP_utils.so -- \
-input auto_xedebug.tcl
```

Note that +sv switch is needed.

ICE flow synthesis commands:

```
vavlog ../src/mt29f_128.vp ../src/mt29f128g08cbcab.vp
```

vaelab –keepRtlSymbol –keepAllFlipFlop –outputVlog mt29f128g08cbcab.vgp mt29f128g08cbcab

**NOTE:** It is common for Palladium flows to require –keepallFlipFlop since it removes optimizations that are in place by default. For example, without –keepAllFlipFlop, HDL-ICE can

remove flops with constant inputs and merge equivalent FF. The picture above is modified a bit when ICE ATB mode (—atb) is used since then a constant input FF is only optimized out when there is no initial value for it or the initial value is the same as the constant input value.

It is also common for Palladium flows to require –keepRtlSymbol. This option enables the HDL Compiler to keep original VHDL RTL symbols, such as ".", whenever possible. In other words, it maps VHDL RTL signal name a.b to the netlist entry, \a.b. Without this modifier, the signal name would otherwise be converted to a\_b in the netlist.

If the recommended compile script includes the aforementioned options, the user must include them to avoid affecting functionality of the design.

#### 15.1. Model file list

mt29f\_128.vp - LUN or die module that is instantiated by ONFI 3.0 and 3.2 models. It is located under flash/nand/onfi\_3.0 within MMP release.

<model\_name>.vp - model wrapper that instantiates one or more LUNs.

# 16. Sample Waveform

A waveform showing basic startup sequence - reset, read id, program page, read page, is available in the release under the onfi\_3.0/micron/golden\_waveform directory. It may be useful to have a look at this waveform when using the model for the first time. The waveform is also applicable to models in onfi\_3.2/micron directory.

# 17. Debug Display

Debug messaging can be enabled with ONFI 3.x models. Please refer to the MMP\_Debug\_Display user guide under <release\_dir>/docs directory for more details.

## 18. Revision History

The following table shows the revision history for this document

| Date           | Version | Revision                                                                                                                                                                                                                                                          |
|----------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| January 2013   | 1.0     | Initial Release                                                                                                                                                                                                                                                   |
| February 2014  | 1.1     | Added MLC+ models and SLC mode feature                                                                                                                                                                                                                            |
| July 2014      | 1.2     | Repaired doc property title                                                                                                                                                                                                                                       |
| September 2014 | 1.3     | Remove version from UG file name. Update UXE / IXE documentation reference titles.                                                                                                                                                                                |
| October 2014   | 1.4     | Remove beta watermark. Add notation about optional signal DQS_c                                                                                                                                                                                                   |
| November 2014  | 1.5     | Remove emulation capacity info.                                                                                                                                                                                                                                   |
| December 2014  | 1.6     | Add emulation script info for IXCOM compile, including +sv switch. Update related publications list.                                                                                                                                                              |
| March 2015     | 1.7     | Add timing parameter limitation and a section on tRHOH.                                                                                                                                                                                                           |
| May 2015       | 1.8     | Added some ONFI 3.0 and 3.2 models. Added Get/Set Features by LUN commands for ONFI 3.2 models. Replaced list of commands with features table. Added user adjustable parameter table. Added Sample Waveform and Debug Display sections.                           |
| July 2015      | 1.9     | Update Cadence naming on front page                                                                                                                                                                                                                               |
| September 2015 | 2.0     | Updated compile examples with .vp files. Removed references to <model_name>.vgp as an input file. Updated Limitations list. Updated initialization sequence with Read Configuration step as optional. Updated Set Features by LUN in Features table.</model_name> |
| January 2016   | 2.1     | Update for Palladium-Z1 and VXE                                                                                                                                                                                                                                   |
| July 2016      | 2.2     | Remove hyphen in Palladium naming                                                                                                                                                                                                                                 |
| January 2018   | 2.3     | Modify header and footer                                                                                                                                                                                                                                          |
| February 2018  | 2.4     | Ported ECC section from NAND UG to ONFI and TDDR UGs                                                                                                                                                                                                              |
| July 2018      | 2.5     | Update for new utility library                                                                                                                                                                                                                                    |