From Diagrams to Dialogue Understanding Miro Boards with VLMs

What is the Million Dollar Idea \$:

The Rough Idea is to Extract Information Visual Board Either it is Miro , Mural or Lucid etc

Vision Encoder:

(High Level VIT)CLIP ,SigLIP etc

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

Swim Transformer:

Simple Math Behind It

VIT (Vision Transformation) Patches per row = $224 \div 16 = 14$ Patches per column = $224 \div 16 = 14$

Total patches = $14 \times 14 = 196$ patches

Each patch = $16 \times 16 \times 3 = 768$ dimensions

All patches = 196 patches × 768 dimensions Attention Matrix = 196 × 196 = 38,416 computations Every patch attends to ALL other patches Complexity = $O(N^2)$ where N = 196

Simple Math Behind It

Initial patches = 4×4 pixels (smaller than ViT)

Patches per row = $224 \div 4 = 56$ Patches per column = $224 \div 4 = 56$ Total patches = $56 \times 56 = 3,136$ patches

Windowing Window size = 7×7 patches Patches per window = $7 \times 7 = 49$ patches Total windows = $3,136 \div 49 = 64$ windows Attention per window = $49 \times 49 = 2,401$ computations Total attention = 64 windows $\times 2,401 = 153,664$ computations

Simple Math Behind It

Swin Transform Operation > VIT Operation 153,664 38,416

But Swin Transform Operation = Complexity = O(N) - Linear!

For 448×448 image (2x larger):

ViT:

- Patches = $28 \times 28 = 784$
- Attention = 784^2 = 614,656 operations

Swin:

- Windows still $7 \times 7 = 49$ patches per window
- More windows, but attention per window stays constant

Baby Step:

Figuring out the Layout in the Board

ScreenAI:

https://research.google/blog/screenai-a-visual-language-model-for-ui-and-visually-situated-language-understanding/

Simple Idea:

First Figure out the Layout and different Components in the Board

Pass down the Split images to Multi Model LLM (Preferable InternVL my personal Favorite for Diagram Analysis)

Dolphin Model (Document Image Parsing via Heterogeneous Anchor Prompting)

Repo

Profile