Machine Learning 01 02 03 04

Machine Learning

Use Overfitting To Evaluate Different Models

Project Explanation:

Determining which model is the better model.

Suppose we collect a set of sample data and distribute the sample data by

Training phase: 50%, Validation phase: 25%, Test phase: 25%

Training Phase				Validation Phase				Test Phase	
Real Data Set 1 50% of the collcted data		Model 1: Linear Regression	Model 2: Non-Linear Regression	Real Data Set 2 25% of the collcted data		Linear	Model 2: Non-Linear Regression	Real Data Set 3 25% of the collcted data	The better model
×	у	ŷ = a1 + b1 * x	$\hat{y} = a2 + b2 * x^2$	×	у	ŷ = a1 + b1 * x	$\hat{y} = a2 + b2 * x^2$	×	
1	1.8			1.5	1.7			1.4	
2	2.4	Find Y	values	2.9	2.7			2.5	
3.3	2.3			3.7	2.5			3.6	
4.3	3.8			4.7	2.8			4.5	
5.3	5.3			5.1	5.5			5.4	
1.4	1.5			Х	Х	Х	Х	X	X
2.5	2.2			X	Х	X	Х	X	X
2.8	3.8			Х	Х	Х	Х	X	Х
4.1	4			Х	Х	Х	Х	X	X
5.1	5.4			Х	Х	Х	Х	X	X

02

03

04

Model 1: Linear Regression Find Y values

01

N = 10

Count the number of values.

04

Slope(b) = 0.863177681

 $(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$

02

Find

X * Y and X * X.

Real Data X * Y and X * X.

05

Intercept(a) = 0.505094974

 $(\Sigma Y - b(\Sigma X)) / N$

03

Find

 $\Sigma X, \Sigma Y, \Sigma XY, \Sigma P.$

 $\Sigma P = \Sigma X^* X = 121.34,$ $\Sigma X = 31.8, \ \Sigma Y = 32.5,$ $\Sigma XY = 120.8.$

06

Regression Equation(y)

= a + bx

Use real data X to calculate.

Model 2: Non-Linear Regression

01

N = 10

Count the number of values.

04

Slope(b) = 0.134562411

 $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P^2 - (\Sigma P)^2)$

02

Find X * Y and X * X.

Real Data X * Y and X * X.

05

Intercept(a) = 1.6172197

 $(\Sigma Y - b(\Sigma P)) / N$

03

Find

 ΣX , ΣY , ΣXY , ΣP , ΣPY , ΣP^2

 $\Sigma P = \Sigma X^* X = 121.34, \Sigma X = 31.8,$ $\Sigma Y = 32.5, \Sigma X Y = 120.8,$ $\Sigma P Y = 509.762,$ $\Sigma P P = 2329.9862$

06

Regression Equation(y) $= a + bx^2$

Use real data X to calculate.

Data Table:

After used both linear and non-linear regression to calculate the Y value. Next step is to determining which model is the better model.

	Train	ning Phase		Validation Phase				
Real Da 1 50% of the c	L	Linear	Model 2: Non-Linear Regression	Real Data Set 2 25% of the collcted data		Model 1: Linear Regression	Model 2: Non-Linear Regression	
x	у	$\hat{y} = a1 + b1 * x$	ŷ=a2 + b2 * x ²	x	у	ŷ=a1 + b1 * x	ŷ=a2 + b2 * x ²	
$\Sigma X = 31.8$, $\Sigma Y = 32.5$, $\Sigma XY = 120.8$, $\Sigma P = 121.34$, $\Sigma PY = 509.762$, $\Sigma PP = 2329.9862$		a = 0.505094974 b = 0.863177681	a = 1.6172197 b = 0.134562411			a = 0.505094974 b = 0.863177681	a = 1.6172197 b = 0.134562411	
1	1.8	1.3683	1.7518	1.5	1.7	1.7999	1.9200	
2	2.4	2.2315	2.1555	2.9	2.7	3.0083	2.7489	
3.3	2.3	3.3536	3.0826	3.7	2.5	3.6989	3.4594	
4.3	3.8	4.2168	4.1053	4.7	2.8	4.5620	4.5897	
5.3	5.3	5.0799	5.3971	5.1	5.5	4.9073	5.1172	
1.4	1.5	1.7135	1.8810	Х	X	Х	X	
2.5	2.2	2.6630	2.4582	X	X	Х	X	
2.8	3.8	2.9220	2.6722	X	X	Х	X	
4.1	4	4.0441	3.8792	Х	Х	Х	Х	
5.1	5.4	4.9073	5.1172	X	Х	Х	X	

03

04

Use Overfitting To Evaluate Different Models

max(Training_Set_MSE, Validation_Set_MSE) / min(Training_Set_MSE, Validation_Set_MSE)

Training Set

 $((1.3686-1.8)^2 + (2.2315-2.4)^2 +$

Model 1 (5.0799-5.3)^2 + (2.6630-2.2)^2 +

Model 2

Validation Set

Better

4.9983274

2.82227077

= 1.771030425

4.3208015

2.35553231

= 1.834320625

Training Phase				Validation Phase				Test Phase	
Real Data Set 1 50% of the collcted data		Model 1: Linear Regression	Model 2: Non-Linear Regression	Real Data Set 2		Model 1: Linear Regression	Model 2: Non-Linear Regression	Real Data Set 3 25% of the collcted data	The better model selected depending on the analysis of overfitting
x	у	ŷ = a1 + b1 * x	$\hat{y} = a2 + b2 * x^2$	x	у	ŷ = a1 + b1 * x	$\hat{y} = a2 + b2 * x^2$	x	Use Model 1: ŷ = a1 + b1 * x
1	1.8	1.3683	1.7518	1.5	1.7	1.7999	1.9200	1.4	1.7135
2	2.4	2.2315	2.1555	2.9	2.7	3.0083	2.7489	2.5	2.6630
3.3	2.3	3.3536	3.0826	3.7	2.5	3.6989	3.4594	3.6	3.6125
4.3	3.8	4.2168	4.1053	4.7	2.8	4.5620	4.5897	4.5	4.3894
5.3	5.3	5.0799	5.3971	5.1	5.5	4.9073	5.1172	5.4	5.1663
1.4	1.5	1.7135	1.8810	Х	Х	Х	Х	X	Х
2.5	2.2	2.6630	2.4582	Х	Х	Х	Х	X	Х
2.8	3.8	2.9220	2.6722	Х	Х	Х	Х	Х	Х
4.1	4	4.0441	3.8792	Х	Х	Х	Х	X	Х
5.1	5.4	4.9073	5.1172	Х	Х	Х	Х	X	Х