IDS Lecture 9: Active Domain & Translating Relational Algebra/Calculus

Active Domain

Active Domain (Adom(R) all constansts occuring in the database (a set of all values).

- Calulating queries with Adom makes for safe relational calculus
- queries are finite as there are finitly many elements

Evaluation of Quantifiers under active domain

Assume $Adom(D) = \{1,2,3\}$

$$D, v \models \exists x R(x, y) \land S(x)$$

$$\iff$$

$$D, v \models (R(1, y) \land S(1)) \lor (R(2, y) \land S(2)) \lor (R(3, y) \land S(4))$$

Relational Algebra $(RA) \equiv Safe Relational Calculus (RC)$

RA and RC are syntactically different but semantically equally expressive.

 important as your database engine needs to be able translate your what to a how.

Relational Algebra to Relational Calculus

Translate each RA expression E into a FOL formula φ .

Environment (η) *Injective Map* from attributes to values.

• map convention to be used in class $\eta(A) = x_A$

Base Relation

R over $A_1, ..., A_n$ is translated to $R(\eta(A_1), ..., \eta(A_n))$

Example: If R is a base realtion over A, B

$$\eta = \{A \mapsto x_A, B \mapsto x_B\}$$

Renaming

$$\rho_{\text{OLD} \to \text{NEW}}(E)$$

Process $Rename(\rho_{OLD \to NEW}(E)) \to RC$:

1. Translate E to φ .

- 2. If there is no mapping for NEW in η add {NEW $\mapsto x_{\text{new}}$ }.
- 3. Replace every occurrence of eta(NEW) in φ with a fresh variable.
- 4. Replace every (free) occurrence of $\eta(\text{OLD})$ in φ by $\eta(\text{NEW})$.

Example: If R is a base relation over A, B then translate the following (RA) to relational calculus, $\rho_{A\to B}(\rho_{B\to C}(R))$.

- 1. Translate inner bracket $\rho_{B\to C}(R)$)
 - 1. Translate inner bracket R over A, B gives

$$R(x_A, x_B)$$

2. No mapping for C (NEW) so adding C to map,

$$M = \{A \mapsto x_A, B \mapsto x_B, C \mapsto x_C\}$$

- 3. no occurrence of x_C ($\eta(\text{NEW})$) in $R(x_A, x_B)$ so this step does nothing.
- 4. Replacing x_B with x_C gives

$$R(x_A, x_C)$$

- 2. Mapping for B so does nothing.
- 3. No instance of x_B so this step does nothing.
- 4. Replacing x_A with x_B

$$R(x_B, x_C)$$

Hence,

$$\rho_{A\to B}(\rho_{B\to C}(R)) \iff R(x_B, x_C)$$

Projection

$$\pi(E)$$
 is translated to $\exists X \varphi$

where

- φ is the translation of E
- $X = \mathbf{free}(\varphi) \eta(\alpha)$
 - attributes that are *not* projected become quantified

Example: For a base relation R over A, B, translate $\pi_A(R)$.

$$\exists x_B R(a_A, x_B)$$

Selection

$$\sigma_{\theta}(E)$$
 is translated to $\varphi \wedge \eta(\theta)$

where

• φ is the translation of E

• $\eta(\theta)$ is obtained from θ by replacing each attribute A by $\eta(A)$

Example: For relation R over A, B, translate $\sigma_{A=B\vee B=21}(R)$.

$$R(x_A, x_B) \wedge (x_A = x_B \vee x_B = 21)$$

Product, Union, Difference

Product $E_1 \times E_2$ is translated to $\varphi \wedge \varphi$ **Union** $E_1 \cup E_2$ is translated to $\varphi \vee \varphi$ **Difference** $E_1 \times E_2$ is translated to $\varphi \wedge \neg \varphi$

Example: For Relations,

- Customer (C): CustID, Name
- Account (A): Number, CustID
- Environment : $\eta = \{ \text{CustID} \mapsto x_1, \text{Name} \mapsto x_2, \text{Number} \mapsto x_1 \}$

Translate the following, Customer \bowtie Account.

Solution: Expressing the join in primitive operations

$$\pi_{CustID,Name,Number}(\sigma_{CustID=CustID'}(C \times \rho_{CustID\rightarrow CustID'}(A)))$$

Translating to RC

- 1. Customer: $C \Rightarrow C(x_1, x_x)$
- 2. Account: $A \Rightarrow A(x_3, x_1)$
- 3. Renaming: $\rho_{CustID \to CustID'}(2) \Rightarrow A(x_3, x_1')$
- 4. Innermost product: $1 \times 3 \Rightarrow C(x_1, x_2) \wedge A(x_3, x_1)$
- 5. Selection: $\sigma_{CustID=CustID'}(4) \Rightarrow C(x_1, x_2) \land A(x_3, x_1) \land x_1 = x_4$
- 6. Projection: $\pi_{CustID,Name,Number}(5) \Rightarrow$

$$\exists x_4 \, C(x_1, x_2) \land A(x_3, x_1) \land x_1 = x_4$$