Reproducible Research: Activity Monitoring Data

Leonardo Simioni

2022-09-21

Loading and preprocessing the data

```
act <- read.csv("activity.csv")
head(act)</pre>
```

Loading the data

```
## steps date interval
## 1 NA 2012-10-01 0
## 2 NA 2012-10-01 5
## 3 NA 2012-10-01 10
## 4 NA 2012-10-01 15
## 5 NA 2012-10-01 20
## 6 NA 2012-10-01 25
```

```
act_nona <- na.omit(act)
head(act_nona)</pre>
```

Processing the data into a suitable format for analysis

```
##
                 date interval
      steps
## 289
       0 2012-10-02
## 290
         0 2012-10-02
                           5
## 291
         0 2012-10-02
                           10
## 292
      0 2012-10-02
                           15
## 293
      0 2012-10-02
                           20
## 294
       0 2012-10-02
                           25
```

The mean total number of steps taken per day

```
act_date <- aggregate(steps~date, act_nona, sum)
library(ggplot2)
ggplot(data=act_date, aes(steps)) + geom_histogram(binwidth=500, fill="red", col="black") + labs(title=</pre>
```

Calculating and making a histogram of the total number of steps taken each day

Total number of steps taken each day


```
summary(act_date$steps)
```

Calculating the mean and median of the total number of steps taken per day

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 41 8841 10765 10766 13294 21194
```

The average daily activity pattern

```
act_int <- aggregate(steps~interval, act_nona, mean)
ggplot(data=act_int, aes(x=interval,y=steps)) + geom_line() + labs(title="Average number of steps taken</pre>
```

Time series plot of the 5-minute interval and the average number of steps taken Average number of steps taken


```
act_int[which.max(act_int$steps),]
```

5-minute interval containing the maximum number of steps

```
## interval steps
## 104 835 206.1698
```

Imputing missing values

```
colSums(is.na(act))
```

Calculating the total number of missing values in the dataset

```
## steps date interval ## 2304 0 0
```

```
act_fill <- act
act_fill$steps <- ifelse(is.na(act_fill$steps) == TRUE, act_int$steps[act_int$interval %in% act_fill$in
head(act_fill)</pre>
```

Filling all of the missing values in the dataset

```
## steps date interval
## 1 1.7169811 2012-10-01 0
## 2 0.3396226 2012-10-01 5
## 3 0.1320755 2012-10-01 10
## 4 0.1509434 2012-10-01 15
## 5 0.0754717 2012-10-01 20
## 6 2.0943396 2012-10-01 25
```

```
act_fill_date <- aggregate(steps~date, act_fill, sum)

p1 <- ggplot(data=act_date, aes(steps)) + geom_histogram(binwidth=500, fill="green", col="black") + lab
p2 <- ggplot(data=act_fill_date, aes(steps)) + geom_histogram(binwidth=500, fill="red", col="black") +
library(ggpubr)
p1_p2 <- ggarrange(p1, p2, labels = c("Without missing data", "With missing data"), ncol = 2, nrow = 1,
annotate_figure(p1_p2, top = text_grob("Histograms of total number of steps taken each day", face="bold")</pre>
```

Making a histogram of the total number of steps taken each day and calculating the mean and

Histograms of total number of steps

median total number of steps taken per day

total number of steps taken each

Differences in activity patterns between weekdays and weekends

```
act_week <- act_fill
Sys.setlocale("LC_TIME", "English")</pre>
```

Creating a vector variable indicating whether a given date is a weekday or weekend day

```
## [1] "English_United States.1252"
```

```
act_week$day <- as.factor(weekdays(as.Date(act_week$date)))
act_week$WD_WE <- as.factor(ifelse(act_week$day == "Saturday" | act_week$day == "Sunday", "weekend", "weekend",
```

```
##
                                             WD_WE
         steps
                     date interval
                                       day
## 1 1.7169811 2012-10-01
                                 0 Monday weekday
## 2 0.3396226 2012-10-01
                                 5 Monday weekday
## 3 0.1320755 2012-10-01
                                10 Monday weekday
## 4 0.1509434 2012-10-01
                                15 Monday weekday
## 5 0.0754717 2012-10-01
                                20 Monday weekday
## 6 2.0943396 2012-10-01
                                25 Monday weekday
```

```
act_week_date <- aggregate(steps ~ interval + WD_WE, act_week, mean)
head(act_week_date)</pre>
```

Making a plot containing a time series plot of the 5-minute interval and the average number of steps taken

```
## Interval WD_WE steps
## 1 0 weekday 2.25115304
## 2 5 weekday 0.44528302
## 3 10 weekday 0.17316562
## 4 15 weekday 0.19790356
## 5 20 weekday 0.09895178
## 6 25 weekday 1.59035639
```

ggplot(data=act_week_date, aes(colour=WD_WE, x=interval, y=steps)) + geom_line()+labs(x="interval (1 in

5-minute interval and the average number of steps taken

