

TT200201 - FUP - Exponential and Logarithmic Functions

Note	This Support Knowledge Base article KB is the result of a support request.
	It is not part of the official documentation of DEOS AG and does not claim to be complete.
	The article is intended to support the solution of a similar problem.
	If you have any questions, comments or additions, please contact DEOS AG Support.
Title	Exponential and Logarithmic Functions (TT200201)
Object	FUP
Reference version	2
Date	02.2020
Author	EK
Goal	To explain the usage of the Exponential and Logarithmic Function Blocks

Content:

TT200201 - FUP - Exponential and Logarithmic Functions

1. Beside basic calculation, we can also perform complex calculation like exponential and logarithm calculation

Exponentiation is a mathematical operation, written as b^n , involving two numbers, the *base* b and the *exponent* or *power* n. When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b^n is the product of multiplying n bases:

$$b^n = \underbrace{b \times \cdots \times b}_{n \text{ times}}.$$

2. The exponentiation module in FUP is POT_B, under the Math_Ext folder. Drag and drop the module, and connect the Input and Output like below for testing

3. Try in simulation, base is "b" and exponent is "n", so 2³ is 8 and 10⁴ is 10,000

4. In mathematics, the logarithm is the inverse function to exponentiation

$$\log_b(x)=y$$
 exactly if $b^y=x$ and $x>0$ and $b>0$ and $b\neq 1$. For example, $\log_2 64=6$, as $2^6=64$.

5. The Logarithmic module in FUP is LOG_B, under the Math_Ext folder.

6. Try in simulation, base is "b" and exponent is "z", so log₁₀ (1000) is 3 and log₂ (16) is 4

7. We also have natural logarithm calculation in FUP, which is "LN", same as log_e(x)

The **natural logarithm** of a number is its logarithm to the base of the mathematical constant e, where e is an irrational and transcendental number approximately equal to 2.718 281 828 459. The natural logarithm of x is generally written as $\ln x$, $\log_e x$, or sometimes, if the base e is implicit, simply $\log x$.^[1]

8. The inverse function of "LN" in FUP is POT E, which is the same as ex

The natural logarithm function, if considered as a real-valued function of a real variable, is the inverse function of the exponential function, leading to the identities:

$$e^{\ln x} = x$$
 if $x > 0$,
 $\ln e^x = x$.

9. Both functions are also under "Math-Ext"

10. Try in simulation, In (e) is 1 and e2 is 7.39

```
POT E 0 7.3890562 7.3890562 2 [x]

LN 1 1 1 2.718282 2.718282 [x]
```

11. The last module to show you is square root, which is called "ROOT", under "Math-Ext"

12. You can easily try it in simulation.

```
ROOT 4 15 15 225 [radicand]
```