Working Title: Brain network dynamics over the human lifespan

Paderborn University

Christian Goelz

25.06.2021

Contents

A	Acknowledgement					
Abstract						
Figures						
Tables						
Li	st of	Abrev	viations		vi	
Pι	ublic	ations	and oth	er scientific contributions	vii	
1	Inti	oduct	ion		1	
2	The	eoretic	al Backs	ground	3	
	2.1	The b	rain as a	complex Network	3	
		2.1.1		Networks and their Dynamics	3	
		2.1.2		s over the Lifespan	3	
		2.1.3		outing Factors		
	2.2	Metho		l Approaches	3	
		2.2.1		k Neuroscience	3	
			2.2.1.1			
				activity	3	
		2.2.2	Neural	Datascience	3	
			2.2.2.1	Dimensionality reduction	3	
			2.2.2.2	Machine Learning	3	
3	Ain	ns and	\mathbf{scope}		4	
4	Ger	neral n	nethodo	logy	5	

5	Publications								
	5.1 Paper 1								
	5.2 Paper 2								
	5.3 Paper 3								
	5.4 Paper 4								
6	General discussion								
7	Bibliography								
8	Statutory Declaration								

Acknowledgement

Abstract

Aim: Apply data science methods to questions in aging Neuroscience Methods: Supervised and unsupervised methods in different settings

Results: Novel Data Driven insights

Coclusion: ML rocks!

Figures

Tables

List of Abreviations

Publications and other scientific contributions

Introduction

- ML as the next frontier in science
- Open questions in aging neuroscience
- What can ML tell us?
- Age related changes occur at different scales and are manifestet at several levels.
- There is a wide variety in how this changes occur
- Changes are e.g. neural dedifferentiation and compensatory mechanisms (see Reuter Lorenz et al. 2010) and are noticable brain network level and dynamics
- NOTE: Check what EEG studies said about this...
- The idea is to model these changes with tools from datascience to answer questions in aging neuroscience
- First study is about detecting dedifferentiated and compensatory mechanisms with EEG
- Tools used are DMD and Machine learning
- Main idea: Study classification performance as proxy for age related changes in different motor control tasks
- Expertise as possible way of builing a reserve:
- Higher individuality

- Dynamics of dedifferentiation and how do they relate to fitness
- Basic for targeted interventions
- How much and what (relate to Julia)
- Background of ML
- ML as tool
- novel insights
- Problem: Data is multidimensional and we have often limited data
- Solution: Use DMD to reduce Complexity and "model" evolution of signal
- Dynamic Mode Decompsition
- DMD extracts coupled spatio-temporal modes and is able to kind of model the evolution of the signal
- Backgrouund + Papers
- Mathematical Formulation
- What can ML tell us?
- ML applied in aging Neuroscience
- Formulating Aims and goals
- Formulation expectred outcomes

Theoretical Background

- 2.1 The brain as a complex Network
- 2.1.1 Brain Networks and their Dynamics
- 2.1.2 Changes over the Lifespan
- 2.1.3 Contributing Factors
- 2.2 Methodological Approaches
- 2.2.1 Network Neuroscience
- 2.2.1.1 Electrophysiological markers of brain network activity
- 2.2.2 Neural Datascience
- 2.2.2.1 Dimensionality reduction
- 2.2.2.2 Machine Learning

Aims and scope

General methodology

Publications

- 5.1 Paper 1
- 5.2 Paper 2
- 5.3 Paper 3
- 5.4 Paper 4

General discussion

Bibliography

Statutory Declaration