Functions						
Function	Convex?		Proof			
$\mathbf{y} = \max(f_1, f_2)$	Yes, if f_1 and f_2 are convex functions					
$\mathbf{y} = \min(f_1, f_2)$	Not always					
$C = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m \}$	It is an affine set (all affine set is a convex set)					
$y = \mathbf{c}^T \mathbf{x}$ (linear function)	Yes (but not strictly convex)					
$y = \ \mathbf{x}\ _p \text{ (p-norm)}$	Yes (for any $p \in \mathbb{N}_+$)		$\ \theta \mathbf{x} + (1 - \theta)\mathbf{y}\ \le \theta \ \mathbf{x}\ + (1 - \theta) \ \mathbf{y}\ $ (triangular inequality)			
$f(g(\mathbf{x}))$	Yes, if f, g are convex					
Function	Domain		Codomain	Comments		

Function	Domain	Codomain	Comments
System of linear equation: $\mathbf{b} = f(\mathbf{x}) = \mathbf{A}\mathbf{x}$	$D = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b} \in C, \mathbf{A} \in \mathbb{R}^{m \times n} \}$	$C = \{ \mathbf{b} \in \mathbb{R}^m \mathbf{b} = \mathbf{A}\mathbf{x}, \ \forall \ \mathbf{x} \in D \}$	If D is an affine set, so C is also
			affine set which, in turn, is a con-
			vex set.

		vex set.
	Sets	
Set	Convex?	Commens
Convex hull: $\operatorname{conv} C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C, 0 \leq \theta_{i} \leq 1, i = 1, \dots, k, \sum_{i=1}^{k} \theta_{i} = 1 \right\}$	Yes.	 A will be the smallest convex set that contains C. conv C will be a finite set as long as C is also finite.
Affine hull: $\operatorname{aff} C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, i = 1, \dots, k, \sum_{i=1}^k \theta_i = 1 \right\}$	Yes.	 A will be the smallest affine set that contains C. Different from the convex set, θ_i is not restricted between 0 and 1 aff C will always be an infinite set. If aff C contains the origin, it is also a subspace.
Conic hull: $A = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i > 0, i = 1, \dots, k \right\}$	Yes.	 A will be the smallest convex conic that contains C. Different from the convex and affine sets, θ_i does not need to sum up 1.
Euclidean ball: $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \ \mathbf{x} - \mathbf{x}_c\ _2 \le r\}$ $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r\}$ $B(\mathbf{x}_c, r) = \{\mathbf{x}_c + r \ \mathbf{u}\ \mid \ \mathbf{u}\ \le 1\}$	Yes	 B(x_c, r) as long as r < ∞. x_c is the center of the ball. r is its radius.
Ellipsoid: $\mathcal{E} = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \leq 1 \right\}$ $\mathcal{E} = \left\{ \mathbf{x}_c + \mathbf{A} \mathbf{u} \mid \mathbf{u} \leq 1 \right\}$	Yes	
$C = A \cup B$	Not always.	
$C = A \cap B$ $C = A \cap B$	Yes, if A and B are convex set	S.