CS 320: Examples Operational Semantics

December 2, 2023

Problem 1. Booleans and Integers

Consider the following language with booleans, and integers L_0 :

constants
$$\langle const \rangle ::= boolean \mid int \mid error$$

expressions $\langle expr \rangle ::= \langle const \rangle \mid add (\langle expr \rangle, \langle expr \rangle) \mid eq (\langle expr \rangle, \langle expr \rangle)$

Consider the following rules defining the operational semantics of L_0 . In this operational semantics a configuration is just an expression, which we will denote using the meta-variables x, y, \ldots . We use the notation $x \Rightarrow y$ to say that from the configuration/expression x we can get in one step to the configuration/expression y. Similarly, we use the notation $x \Rightarrow^n y$ to say that from the configuration/expression x we can get, in $x \Rightarrow^n y$ to the configuration/expression y. Here $x \Rightarrow^n y$ is the set of all integers, and $x \Rightarrow^n y$ is the set of all booleans. $x \Rightarrow^n y$ to say that from the configuration/expression x we can get, in $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that from the configuration/expression $x \Rightarrow^n y$ to say that $x \Rightarrow^n y$ to say

$$\frac{x \Rightarrow^{n} x}{x \Rightarrow^{0} x} \text{MULTI-BASE} \qquad \frac{x \Rightarrow^{n} y \qquad y \Rightarrow z}{x \Rightarrow^{n+1} z} \text{MULTI-IND} \qquad \frac{x \Rightarrow x'}{\text{add } (x, y) \Rightarrow \text{add } (x', y)} \text{ADD-LEFT}$$

$$\frac{x \in \mathbb{Z} \qquad y \Rightarrow y'}{\text{add } (x, y) \Rightarrow \text{add } (x, y')} \text{ADD-RIGHT} \qquad \frac{x \in \mathbb{Z} \qquad y \in \mathbb{Z}}{\text{add } (x, y) \Rightarrow (x + y)} \text{ADD-SUCCESS}$$

$$\frac{x \in \mathbb{B} \cup \{\text{error}\}}{\text{add } (x, y) \Rightarrow \text{error}} \text{ADD-LEFT-ERROR} \qquad \frac{x \in \mathbb{Z} \qquad y \in \mathbb{B} \cup \{\text{error}\}}{\text{add } (x, y) \Rightarrow \text{error}} \text{ADD-RIGHT-ERROR}$$

$$\frac{x \Rightarrow x'}{\text{eq } (x, y) \Rightarrow \text{eq } (x', y)} \text{EQ-LEFT} \qquad \frac{x \in \mathbb{Z} \qquad y \Rightarrow y'}{\text{eq } (x, y) \Rightarrow \text{eq } (x, y')} \text{EQ-RIGHT}$$

$$\frac{x \in \mathbb{Z}}{\text{eq } (x, x) \Rightarrow \text{true}} \text{EQ-TRUE} \qquad \frac{x, y \in \mathbb{Z} \qquad x \neq y}{\text{eq } (x, y) \Rightarrow \text{false}} \text{EQ-FALSE}$$

$$\frac{x \in \mathbb{B} \cup \{\text{error}\}}{\text{eq } (x, y) \Rightarrow \text{error}} \text{EQ-LEFT-ERROR}$$

$$\frac{x \in \mathbb{Z} \qquad y \in \mathbb{B} \cup \{\text{error}\}}{\text{eq } (x, y) \Rightarrow \text{error}} \text{EQ-RIGHT-ERROR}$$

Prove the following judgements by drawing their derivation trees.

- **add** $(1, add (2,3)) \Rightarrow^2 6$
- eq (add (1,2)), add (2,1)) \Rightarrow^3 true
- add (add (1,2), eq (1,2)) \Rightarrow^3 error