10-30-00

PTO/SB/05 (08-00)

Under the	Pape	rwo	rk Red	iuc	tion	A	ct of	199	35 ,	no	pe	rsor	ns a	re i	re
					U	T	<u>IL</u>	ΙT	Υ	,					

Approved for use through 10/31/2002, OMB 0651-0032 Please type a plus sign (+) inside this box — X U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE equired to respond to a collection of information unless it displays a valid OMB control number.

47675-14 Attorney Docket No. Markl, Isabel et al. PATENT APPLICATION First Inventor **TRANSMITTAL** METHYLATION ALTERED DNA SEQUENCE Mail about No EL695285386US

Tarmy in the transportation of the	il applications under 37 CFR 1.53(D)) E)	kpress Mail La	abei ivo.				
APPLICAT	ION ELEMENTS		ADDRESS TO: Assistant Commissioner for Patents Box Patent Application					
	ming utility patent application cont	ents.			Washingt			
1. Fee Transmittal For (Submat and original and a data Applicant claims sm See 37 CFR 1.27. 3. Specification (preferred arrangement single properties of the Discovery of the Di	m (e.g., PTO/SB/17) plicate for fee processing) all entity status. [Total Pages 14] et forth below) If the invention to Related Applications ding Fed sponsored R & D uence listing, a table, gram listing appendix e Invention If the Drawings (if filed) ion [Total Pages] [Total Pages] ad (original or copy) rior application (37 CFR 1.63 (d)) Indivisional with Box 17 completed		8. Nucleotide ar (if applicable a. X Corr b. Specificat i. C X State ACCOM 9. Assig 10. 37 C (whe 11. Engli 12. Infon State 13. Preli	OM or CD- uter Program d/or Amin , all neces aputer Rea ion Seque CD-ROM o paper ements ve PANYIN Inment Pal FR 3.73(b) in there is i	R in dupl am (Appe- to Acid Se sary) dable For nce Listin r CD-R (2 rifying ide IG APP pers (cowe statement an assign ation Docu- closure b)/PTO-14 tendment	icate, lar andix) equence im (CRF) g on: copies) entity of a LICAT er sheet int ee) ument (if	ge table or Submission or shove copies ION PARTS & document(s)) Power of Attorney applicable) Copies of IDS Citations	
Signed state	ON OF INVENTOR(S) ment attached deleting inventor(s) prior application, see 37 CFR d 1.33(b).			ified Copy reign prior	of Priority ity is clair	Docum ned)	ent(s)	
6. Application Data SI	neet. See 37 CFR 1.76			******	• • • • • • • • • • • • • • • • • • • •	••••••	***************************************	
17. If a CONTINUING APPLICA or in an Application Data Sheet Continuation Prior application Information: For CONTINUATION OR DIVISION Box 5b, is considered a part of the	Divisional Continuation-in-part Examiner ALL		of prior applic	ation No Unit: om which a	n oath or o	/	n is supplied under	
The incorporation can only be rel				submitted			prated by reference.	
<u> </u>				y				
X Customer Number or Bar Code La	PATENENT & TRAD	· .	≣ .	or	Corresp	oondence a	ddress below	
Name	Davis Wright Trema:	ine LL	P					
	2600 Century Square					······································		
Address	1501 Fourth Avenue							
City	Seattle	Sta	te WA		Zij	Code	98101-1688	
Country	US	Telepho	ne 206-62	2-3150		Fax	2066287699	
Name (Print/Type)	Barry L. Davison		Registration I	Vo. (Attor	ney/Age	nt) P	47,309	
Signature	Ban 2 41.				Date	9 10 -	27-2000	

Burden Hour Statement: This form is estimated to lake 0.2 hours to complete Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231, DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231

the state of the s

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Markl, Isabel et al.

Filing Date: October 27, 2000

Serial No.: to be assigned

For: METHYLATION ALTERED DNA SEQUENCES AS MARKERS ASSOCIATED

WITH HUMAN CANCER

Docket: 47675-15

Date: October 27, 2000

Assistant Commissioner for Patents Box Patent Application Washington, DC 20231

STATEMENT UNDER 37 C.F.R. §1.821

Sir:

I hereby state that the content of the paper and computer-readable copies of the Sequence Listing, submitted in accordance with 37 C.F.R. §1.821, are the same.

Respectfully submitted,

Barry L. Davison

Attorney for Applicants Registration No. P47,309

Davis Wright Tremaine LLP 2600 Century Square 1501 Fourth Avenue Seattle, WA 98101-1688

Tel: 206-628-7621 Fax: 206-628-7699

METHYLATION ALTERED DNA SEQUENCES AS MARKERS ASSOCIATED WITH HUMAN CANCER

Technical Field of the Invention

The present invention relates to novel human DNA sequences that exhibit altered methylation patterns (hypermethylation or hypomethylation) in cancer patients. These novel methylation-altered DNA sequences are useful as diagnostic, prognostic and therapeutic markers for human cancer.

10

5

Background of the Invention

The identification of early genetic changes in tumorigenesis is a primary focus in molecular cancer research. Characterization of the nature and pattern of cancer-associated genetic alterations will allow for early detection, diagnosis and treatment of cancer. Such genetic alterations in vertebrates fall generally into one of three categories: gain or loss of genetic material; mutation of genetic material; or methylation at cytosine residues in CpG dinucleotides within "CpG islands." Among these, DNA methylation is uniquely reversible, and changes in methylation state are known to affect gene expression (e.g., transcriptional initiation of genes where CpG islands located at or near the promoter region) or genomic stability.

20

25

15

Methylation of CpG dinucleotides within CpG islands. DNA, in higher order eukaryotic organisms, is methylated only at cytosine residues located 5' to guanosine residues in CpG dinucleotides. This covalent modification of the C-5 position of the cytosine base by the enzyme DNA (cytosine-5)-methyltransferase results in the formation of 5-methylcytosine (5-mCyt), and gives this base unique properties (e.g., susceptibility to undergo spontaneous deamination). This enzymatic conversion is the only epigenetic modification of DNA known to exist in vertebrates, and is essential for normal embryonic development (Bird, A.P., Cell 70:5-8, 1992; Laird & Jaenisch, Human Molecular Genetics 3:1487-1495, 1994; Li et al., Cell 69:915-926, 1992).

30

35

The presence of 5-mCyt at CpG dinucleotides has resulted in the 5-fold depletion of this sequence in the genome during the course of vertebrate evolution (Schroderet & Gartler, *Proc. Nat. Acad. Sci. USA* 89:957-961, 1992), presumably due to spontaneous deamination of 5-mCyt to Thymidine. Certain areas of the genome, however, do not show such depletion, and are referred to as "CpG islands" (Bird, A.P., *Nature* 321:209-213, 1986; Gardiner-Garden & Frommer, *J. Mol. Biol.* 196:261-282, 1987). These CpG islands comprise only approximately 1% of the vertebrate genome, yet account for about 15% of the total number of genomic CpG dinucleotides (Antequera & Bird, *Proc. Nat. Acad. Sci. USA* 90:11995-11999, 1993). CpG islands contain the expected (*i.e.*, the non-evolutionarily depleted) frequency of

10

15

20

25

30

35

CpGs (with an Observed/Expected Ratio¹ >0.6), are GC-rich (with a GC Content² >0.5) and are typically between about 0.2 to about 1 kb in length.

Methylation within CpG islands affects gene expression. CpG islands are located upstream of many housekeeping and tissue-specific genes, but may also extend into gene coding regions (Cross & Bird, Current Opinions in Genetics and Development 5:309-314, 1995; Larsen et al., Genomics 13:1095-1107, 1992). The methylation of cytosines within CpG islands in somatic tissues is believed to affect gene expression. Methylation has been inversely correlated with gene activity and may lead to decreased gene expression by a variety of mechanisms including inhibition of transcription initiation (Bird, A.P., Nature 321:209-213, 1986; Delgado et al., EMBO Journal 17:2426-2435, 1998), disruption of local chromatin structure (Counts & Goodman, Molecular Carcinogenesis 11:185-188, 1994; Antequera et al., Cell 62:503-514, 1990), and recruitment of proteins that interact specifically with methylated sequences and thereby directly or indirectly prevent transcription factor binding (Bird, A.P., Cell 70:5-8, 1992; Counts & Goodman, Molecular Carcinogenesis 11:185-188, 1994; Cedar, H., Cell 53:3-4, 1988). Many studies have demonstrated the effect of methylation of CpG islands on gene expression (e.g., the CDKN2A/p16 gene; Gonzalez-Zulueta et al., Cancer Research 55:4531-4535, 1995), but most CpG islands on autosomal genes remain unmethylated in the germline, and methylation of these islands is usually independent of gene expression. Tissue-specific genes are typically unmethylated in the respective target organs but are methylated in the germline and in non-expressing adult tissues, while CpG islands of constitutively expressed housekeeping genes are normally unmethylated in the germline and in somatic tissues.

Methylation within CpG islands affects the expression of genes involved in cancer. Data from a group of studies show the presence of altered methylation in cancer cells relative to non-cancerous cells. These studies show not only alteration of the overall genomic levels of DNA methylation, but also changes in the distribution of methyl groups. For example, abnormal methylation of CpG islands that are associated with tumor suppressor genes or oncogenes within a cell may cause altered gene expression. Such altered gene expression may provide a population of cells with a selective growth advantage and thereby result in selection of these cells to the detriment of the organism (i.e., cancer).

Insufficient correlative data. Unfortunately, the mere knowledge of the basic existence of altered methylation of CpG dinucleotides within CpG islands of cancer cells relative to normal cells, or of the fact that in particular instances such methylation changes result in altered gene expression (or chromatin structure or stability), is inadequate to allow for effective diagnostic, prognostic and therapeutic application of this knowledge. This is

¹ Calculated as: [number of CpG sites / (number of C bases X number of G bases)] X band length for each fragment.

² Calculated as: (number of C bases + number of G bases) / band length for each fragment.

10

15

20

25

30

35

because only a limited number of CpG islands have been characterized, and thus there is insufficient knowledge, as to which particular CpG islands, among many, are actually involved in, or show significant correlation with cancer or the etiology thereof. Moreover, complex methylation patterns, involving a plurality of methylation-altered DNA sequences, including those that may have the sequence composition to qualify as CpG islands, may exist in particular cancers.

Therefore there is a need in the art to identify and characterize specific methylation altered DNA sequences, and to correlate them with cancer to allow for their diagnostic, prognostic and therapeutic application.

Summary of the Invention

The present invention provides for a diagnostic or prognostic assay for cancer, comprising: obtaining a tissue sample from a test tissue; performing a methylation assay on DNA derived from the tissue sample, wherein the methylation assay determines the methylation state of a CpG dinucleotide within a DNA sequence of the DNA, and wherein the DNA sequence is a sequence selected from the group consisting of sequences of SEQ ID NOS:1-103, sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, and combinations thereof, wherein the CpG island sequence associated with the sequence of the particular SEO ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5; and determining a diagnosis or prognosis based, at least in part, upon the methylation state of the CpG dinucleotide within the DNA sequence. Preferably, the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, and combinations thereof. Preferably, the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS: 2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90, and combinations thereof. Preferably, the methylation assay procedure is selected from the group consisting of MethyLight, MS-SnuPE (methylation-sensitive single nucleotide primer extension), MSP (methylation-specific PCR), MCA (methylated CpG island amplification), COBRA (combined bisulfite restriction analysis), and combinations thereof. Preferably, the methylation state of the CpG dinucleotide within the DNA sequence is that of hypermethylation, hypomethylation or normal methylation. Preferably, the cancer is selected

10

15

20

25

35

from the group consisting of bladder cancer, prostate cancer, colon cancer, lung cancer, renal cancer, leukemia, breast cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma. Preferably, the cancer is bladder cancer, or prostate cancer.

The present invention further provides a kit useful for the detection of a methylated CpG-containing nucleic acid comprising a carrier means containing one or more containers comprising: a container containing a probe or primer which hybridizes to any region of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103; and additional standard methylation assay reagents required to affect detection of methylated CpG-containing nucleic acid based on the probe or primer. Preferably, the additional standard methylation assay reagents are standard reagents for performing a methylation assay from the group consisting of MethyLight, MS-SNuPE, MSP, MCA, COBRA, and combinations thereof. Preferably, the probe or primer comprises at least about 12 to 15 nucleotides of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103.

The present invention further provides an isolated nucleic acid molecule comprising a methylated or unmethylated polynucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:97, and SEQ ID NO:100. Preferably the nucleic acid is methylated. Preferably, the nucleic acid is unmethylated.

Detailed Description of the Invention

30 **Definitions:**

"GC Content" refers, within a particular DNA sequence, to the [(number of C bases + number of G bases) / band length for each fragment].

"Observed/Expected Ratio" ("O/E Ratio") refers to the frequency of CpG dinucleotides within a particular DNA sequence, and corresponds to the [number of CpG sites / (number of C bases X number of G bases)] X band length for each fragment.

"CpG Island" refers to a contiguous region of genomic DNA that satisfies the criteria of (1) having a frequency of CpG dinucleotides corresponding to an "Observed/Expected Ratio" >0.6), and (2) having a "GC Content" >0.5. CpG islands are

10

15

20

25

30

typically, but not always, between about 0.2 to about 1 kb in length. A CpG island sequence associated with a particular SEQ ID NO sequence of the present invention is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6), and a GC Content >0.5.

"Methylation state" refers to the presence or absence of 5-methylcytosine ("5-mCyt") at one or a plurality of CpG dinucleotides within a DNA sequence.

"Hypermethylation" refers to the methylation state corresponding to an *increased* presence of 5-mCyt at one or a plurality of CpG dinucleotides within a DNA sequence of a test DNA sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

"Hypomethylation" refers to the methylation state corresponding to a *decreased* presence of 5-mCyt at one or a plurality of CpG dinucleotides within a DNA sequence of a test DNA sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

"Methylation assay" refers to any assay for determining the methylation state of a CpG dinucleotide within a sequence of DNA.

"MS.AP-PCR" (Methylation-Sensitive Arbitrarily-Primed Polymerase Chain Reaction) refers to the art-recognized technology that allows for a global scan of the genome using CG-rich primers to focus on the regions most likely to contain CpG dinucleotides, and described by Gonzalgo et al., *Cancer Research* 57:594-599, 1997.

"MethyLight" refers to the art-recognized fluorescence-based real-time PCR technique described by Eads et al., Cancer Res. 59:2302-2306, 1999.

"Ms-SNuPE" (Methylation-sensitive Single Nucleotide Primer Extension) refers to the art-recognized assay described by Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997.

"MSP" (Methylation-specific PCR) refers to the art-recognized methylation assay described by Herman et al. *Proc. Natl. Acad. Sci. USA* 93:9821-9826, 1996, and by US Patent No. 5,786,146.

"COBRA" (Combined Bisulfite Restriction Analysis) refers to the art-recognized methylation assay described by Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997.

"MCA" (Methylated CpG Island Amplification) refers to the methylation assay described by Toyota et al., *Cancer Res.* 59:2307-12, 1999, and in WO 00/26401A1.

35 Overview

The present invention provides for 103 DNA sequences (*i.e.*, "marker sequences") having distinct methylation patterns in cancer, as compared to normal tissue. These methylation-altered DNA sequence embodiments correspond to 103 DNA fragments isolated

35

5

10

15

from bladder and prostate cancer patients, and in many instances, represent novel sequences not found in the GenBank database. *None* of the instant sequence embodiments have previously been characterized with respect to their methylation pattern in human cancers including, but not limited to, those of the bladder and prostate. The significance of such methylation patterns lies in the value of altered fragments as potential prognostic, diagnostic and therapeutic markers in the treatment of human cancers.

Identification of Methylation-altered Marker Sequences in Genomic DNA

The MS.AP-PCR technique was used to scan the genomes of bladder or prostate cancer patients for DNA methylation changes relative to normal individuals, because the pattern is known to be highly conserved. A total of 103 DNA sequence embodiments (methylation-altered DNA sequences; "marker sequences") were isolated and characterized as having distinct methylation patterns in cancer, as compared to normal tissue.

Methods for the Identification of Marker Sequences in Genomic DNA. There are a variety of art-recognized genome scanning methods that have been used to identify altered methylation sites in cancer cells. For example, one method involves restriction landmark genomic scanning (Kawai et al., Mol. Cell. Biol. 14:7421-7427, 1994), another involves MCA (methylated CpG island amplification; Toyota et al., Cancer Res. 59:2307-12, 1999), and yet another involves MS.AP-PCR (Methylation-Sensitive Arbitrarily-Primed Polymerase Chain Reaction; Gonzalgo et al., Cancer Res. 57:594-599, 1997), which allows for a global scan of the genome using CG-rich primers to focus on the regions most likely to contain CpG dinucleotides. The MS.AP-PCR technique used in the present invention is a rapid and efficient method to screen ("scan") for altered methylation patterns in genomic DNA and to isolate specific sequences associated with these changes.

Briefly, genomic DNA from the tissue of bladder or prostate cancer patients was prepared using standard, art-recognized methods. Restriction enzymes (e.g., HpaII) with different sensitivities to cytosine methylation in their recognition sites were used to digest these genomic DNAs prior to arbitrarily primed PCR amplification with GC-rich primers. Fragments that showed differential methylation (e.g., hypermethylation or hypomethylation, based on the methylation sensitivity of the restriction enzyme, or upon DNA sequence analysis or Ms-SNuPE analysis; Gonzalgo & Jones, Nucleic Acids Res 25:2529-2531, 1997) were cloned and sequenced after resolving the PCR products on high-resolution polyacrylamide gels. The cloned fragments were used as probes for Southern blot analysis to confirm differential methylation of these regions in the tissue. Methods for DNA cloning, sequencing, PCR, high-resolution polyacrylamide gel resolution and Southern blot analysis are well known by those of ordinary skill in the relevant art.

Results. A total of 500 DNA fragments that underwent either hypermethylation (an increase in the level of methylation relative to normal) or hypomethylation (a decrease in the

10

15

20

25

30

level of methylation relative to normal) were isolated from the scanned patients genomic DNA. A total of 178 of these fragments were sequenced, of which 103 were *novel* in that they corresponded to DNA loci whose methylation pattern had not previously been characterized. The corresponding sequences are disclosed as [SEQ ID NOS:1-103], wherein for certain sequences, the letter "n" refers to an undetermined nucleotide base.

Novel marker sequences identified by MS.AP-PCR. Table I shows an overall summary of methylation patterns and sequence data corresponding to the 103 DNA fragments identified by MS.AP-PCR. A total of 103 fragments were sequenced following identification as becoming either hypermethylated (gain of methylation; noted as having a hypermethylation pattern) or hypomethylated (loss of methylation; noted as having a hypomethylation pattern) relative to normal tissue. For the fragments of each category, the "Average GC Content" is shown, calculated as (number of C bases + number of G bases)/band length for each fragment, as well as the average Observed/Expected Ratio ("O/E Ratio"), calculated as [number of CpG sites/(number of C bases X number of G bases)] X band length for each fragment. Additionally, the percent of fragments that qualify as CpG islands is listed, and corresponds to the percentage of all fragments within each category that have sequence compositions that satisfy the criteria of having a "GC Content" >0.5 and an "O/E Ratio" >0.6.

Thus, of these 103 fragments identified by MS.AP-PCR, 60 showed hypermethylation (Table I, upper row; Table II, [SEQ ID NOS:1-60]) while 43 showed hypomethylation (Table I, lower row; Table II, [SEQ ID NOS:61-103]). Moreover, 55 (43 hypermethylated, and 12 hypomethylated) of the 103 fragments correspond to CpG islands (*i.e.*, fulfill the criteria of a GC content >0.5 and an Observed/Expected Ratio >0.6;), whereas the other 48 (17 hypermethylated and 31 hypomethylated) fragments do not meet the criteria for CpG islands (*see* Table II).

TABLE I. Summary of 103 DNA Fragments Identified by MS.AP-PCR

DNA Fragment Type	Methylation Pattern (relative to normal)	Number of Fragments (103 total)	Average GC Content	Average O/E Ratio	Percent that correspond to CpG Islands
Hypermethylated Fragments	Hyper- methylation	60	0.54	0.72	72%
Hypomethylated Fragments	Hypo-methylation	43	0.52	0.48	28%

Table II shows a summary of methylation pattern and sequence data for each *individual* sequence embodiment ([SEQ ID NOS:1-103]), corresponding to the 103 DNA fragments identified by MS.AP-PCR. Data for the 103 fragments was divided into either hypermethylated ([SEQ ID NOS:1-60]) or hypomethylated ([SEQ ID NOS:61-103]) categories. Table II also lists, for each sequence embodiment, the corresponding "Fragment

10

15

20

Name," fragment "Size" (in base pairs; "bp"), "GC Content," Observed/Expected Ratio ("O/E Ratio"), "Description" (i.e., as a CpG island if criteria are met), "Inventor Initials" (IDCM = Isabel D.C. Markl, JC = Jonathan Cheng, GL = Gangning Liang, HF = Hualin Fu, YT = Yoshitaka Tomigahara), "Cancer Source," and "Chromosome Match" to the GenBank database. A dash ("-") indicates that no GenBank chromosome match existed, or that only a low-scoring partial match was found. Averages of the "GC Content" and "O/E Ratio," along with the percent of fragments that are CpG islands, are listed after the last member of both the hypermethylated and hypomethylated categories.

Therefore, the present invention provides for 103 DNA fragments and corresponding marker sequence embodiments (*i.e.*, methylation-altered DNA sequences) that are useful in cancer prognostic, diagnostic and therapeutic applications.

Additionally, at least 55 of these 103 sequences correspond to CpG islands (based on GC Content and O/E ration); namely [SEQ ID NOS:2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90]. Thus, based on the fact that the methylation state of a portion of a given CpG island is generally representative of the island as a whole, the present invention further encompassed the novel use of the 55 CpG islands associated with [SEQ ID NOS:2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90] in cancer prognostic, diagnostic and therapeutic applications, where a CpG island sequence associated with the sequence of a particular SEQ ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5.

TABLE II. Summary of MS.AP-PCR Fragments Sequenced

Methylation	Fragment	Size	GC	O/E	Description	Inventor	Cancer	Chromosome	SEQ
Pattern	Name	(bp)	Content	Ratio	ļ	Initials	Source	Matches	ID NO]
Hyper-									
methylation	·	ł	j				l		
category	11-1A	510	0.44	0.74		IDCM	Bladder	_ '	1
	14-3B	313	0.58	0.74	CpG Island	IDCM	Bladder	2	2
	18-2B	165	0.57	0.45	_	IDCM	Bladder	7	3
	24-1B	601	0.51	0.72	CpG Island	IDCM	Bladder	Xp11	4
	26-1B	801	0.48	0.56	-	IDCM	Bladder	-	5
	26-2C	204	0.50	0.63	CpG Island	IDCM	Bladder	_	6
	30-3D	205	0.55	1.25	CpG Island	IDCM	Bladder	14	7
	32-3E	597	0.57	0.10	_	IDCM	Bladder	20q12-13.1	8
	34-2B	500	0.62	0.66	CpG Island	IDCM	Bladder	20	9
	34-4B	343	0.70	0.81	CpG Island	IDCM	Bladder	-	10
	34-5D	291	0.62	0.96	CpG Island	IDCM	Bladder	9	11
į.	34-6A	266	0.64	0.93	CpG Island	IDCM	Bladder	-	12
	35-1C	553	0.64	0.63	CpG Island	IDCM	Bladder	-	13
	36-2D	156	0.60	0.58	CpG Island	IDCM	Bladder	10	14
ì	38-1A	300	0.70	0.80	CpG Island	IDCM	Bladder	10	15
l	38-2B	196	0.56	0.89	CpG Island	IDCM	Bladder	15	16
Į.	7-8E	299	0.59	0.39	_	IDCM	Bladder	17q21-22	17
ļ	83-4B	363	0.54	0.49		IDCM	Bladder	-	18

Methylation	Fragment	Size	GC	O/E	Description	Inventor	Cancer	Chromosome	[SEQ
Pattern	Name	(bp)	Content	1	•	Initials	Source	Matches	ID NO
	84-1D	322	0.55	0.90	CpG Island	IDCM	Bladder	7	19
	101-3E	255	0.57	0.83	CpG Island	IDCM	Bladder	17	20
	M1-5A	406	0.45	0.96	1	IDCM	Bladder	1	21
ĺ	U2-8E	210	0.56	0.61	CpG Island	IDCM	Bladder	2	22
i l	U12-1A	310	0.56	0.81	CpG Island	IDCM	Bladder	2	23
1	U7-4A	305	0.59	0.80	CpG Island	IDCM	Bladder	-	24
<u> </u>	NU9-5A	379	0.67	0.83	CpG Island	JC	Bladder	-	25
i	3-17-8-B	625	0.48	0.72	CpG Island	GL	Bladder	18	26
	4-10-4-A	499	0.55	0.30	CpG Island	GL	Bladder	7	27
	1-1-1-A	561	0.58	0.98	CpG Island	GL	Bladder	20	28
	3-17-8-A	717	0.50	0.68	CpG Island	GL	Bladder	17	29
	G145-H	280	0.50	1.10	CpG Island	GL	Bladder	11	30
	1-1-1-D	270	0.50	0.60	CpG Island	GL	Bladder	2	31
	1-1-1-C	347	0.65	1.25	CpG Island	GL	Bladder	-	32
	G178-A	342	0.55	0.85	CpG Island	GL	Bladder	2	33
	34-A	370	0.62	0.44	ļ	HF	Prostate	-	34
	34-D	213	0.53	0.74	CpG Island	HF	Prostate	2	35
1	35-D	173	0.56	0.66	CpG Island	HF	Prostate	3	36
l F	36-A	369	0.67	0.70	CpG Island	HF	Prostate	-	37
1	40-A	123	0.60	1.16	CpG Island	HF	Prostate	-	38
l f	91-1	450	0.64	0.86	CpG Island	YT	Bladder	5 or 16q24.3	39
! 1	93-2	593	0.51	0.68	CpG Island	YT	Bladder	Xp11	40
	93-3	457	0.52	0.94	CpG Island	YT	Bladder	Xp22.1-22.3	41
į į	94-8	211	0.66	0.96	CpG Island	YT	Bladder	-	42
	95-5	141	0.63	0.79	CpG Island	YT	Bladder	14	43
	97-5	559	0.56	0.40	ļ [—]	YT	Bladder	-	44
	98-1	433	0.46	0.96		YT	Bladder	1	45
	100-1	487	0.59	0.58	į	YT	Bladder	14	46
	100-2	403	0.60	0.47	į	YT	Bladder	3	47
	100-6	155	0.57	0.99	CpG Island	YT	Bladder	20	48
	4-2	256	0.57	0.40		YT	Bladder	7	49
	5-8	224	0.47	0.96		YT	Bladder	5	50
	6-4	313	0.70	0.82	CpG Island	YT	Bladder	-	51
	7-6	385	0.70	0.88	CpG Island	YT	Bladder	-	52
	13-3	307	0.59	0.89	CpG Island	YT	Bladder	10	53
	15-2	182	0.62	0.92	CpG Island	YT	Bladder	13	54
	23-2		0.54	0.87	CpG Island	YT	Bladder		55
	39-2	795	0.46	0.64		YT	Bladder	13	56
	40-2 41-3	438	0.62	0.51		YT YT	Bladder Bladder	10	57 59
	105-4	611 291	0.47 0.58	0.70 0.71	CpG Island	YT	Bladder	18 5	58 50
	107-8	226	0.58	0.71	CpG Island	YT	Bladder	11	59 60
	107-8	220	0.55	0.90	CpG Island	11	Diaduel	11	00
AVERAGE	i		0.54	0.72	72% islands			1	
Hypo-			0.54	0.72	7270 isianas				
methylation									
	14-2B	580	0.55	0.51		IDCM	Bladder	2	61
	16-1B	633	0.56	0.39		IDCM	Bladder	-	62
	18-1B	703	0.45	0.35	,	IDCM	Bladder	17	63
	19-1B	420	0.66	0.87	CpG Island	IDCM	Bladder		64
	20-1B	496	0.61	0.59	F =	IDCM	Bladder	- I	65
	21-2C	637	0.60	0.33		IDCM	Bladder	9q34	66
	29-1A	595	0.55	0.27	1	IDCM	Bladder	Xp11.23	67
	29-2B	580	0.47	0.77		IDCM	Bladder	_	68
	32-1A	589	0.59	0.48		IDCM	Bladder	- 1	69
	34-1B	450	0.42	0.46		IDCM	Bladder	_	70
ξ.									

10

Methylation	Fragment	Size	GC	O/E	Description	Inventor	Cancer	Chromosome	[SEQ
Pattern	Name	(bp)	Content	Ratio		Initials	Source	Matches	ID NO]
	32-2B	748	0.47	0.24		IDCM	Bladder	2	72
į	32-4B	599	0.57	0.15		IDCM	Bladder	20q12-13.1	73
	32-5B	614	0.58	0.20		IDCM	Bladder	-	74
	33-1A	552	0.54	0.32	į	IDCM	Bladder	10	75
}	5-1E	501	0.61	1.04	CpG Island	IDCM	Bladder	-	76
Ì	6-1A	826	0.55	0.36		IDCM	Bladder	22q13.32-	77
		1						13.33	
	7-5D	433	0.59	0.85	CpG Island	IDCM	Bladder	5	78
	8-7C	424	0.58	0.83	CpG Island	IDCM	Bladder	5	79
	30-6D	285	0.63	0.72	CpG Island	IDCM	Bladder	1	80
	66-2E	401	0.54	0.82	CpG Island	IDCM	Bladder	16	81
}	78-1C	268	0.54	0.41		IDCM	Bladder	-	82
ì	97-2E	989	0.53	0.16		IDCM	Bladder	-	83
l	M1-8C	250	0.64	0.99	CpG Island	IDCM	Bladder	-	84
	M2-5A	402	0.50	0.45	}	IDCM	Bladder	5	85
•	M1-4P	595	0.43	0.41		IDCM	Bladder	-	86
}	M12-10A	304	0.53	0.76	CpG Island	IDCM	Bladder	7	87
	M12-12C	296	0.51	0.64	CpG Island	IDCM	Bladder	17	88
<u> </u>	M2-8M	220	0.67	0.62	CpG Island	IDCM	Bladder	6q27	89
	NU4-3A	273	0.63	1.02	CpG Island	JC	Bladder	-	90
l	NU5-2A	361	0.44	0.73		JC	Bladder	6q14.3-15	91
	88-5	462	0.62	0.39	j	YT	Bladder	_	92
	90-1	591	0.66	0.45		YT	Bladder	19	93
,	91-3	279	0.58	0.45	ł	YT	Bladder	5 or 16q24.3	94
	91-4	351	0.55	0.30	1	YT	Bladder	18 q2 3	95
}	91-7	171	0.61	0.59		YT	Bladder	11	96
	89-3	743	0.55	0.43		YT	Bladder	-	97
	94-2	589	0.53	0.41		YT	Bladder	22q13.31- 13.32	98
į	94-3	538	0.53	0.49		YT	Bladder	5 or 18	99
	94-4	486	0.61	0.57]	YT	Bladder	-	100
	94-5	450	0.60	0.45		YT	Bladder	1p36.2-36.3	101
1	94-6	292	0.58	0.32	}	YT	Bladder	8 or 9	102
	96-4	395	0.63	0.54		YT	Bladder	9	103
AVERAGE	i		0.52	0.48	28% islands				

Diagnostic and Prognostic Assays for Cancer. The present invention provides for diagnostic and prognostic cancer assays based on determination of the methylation state of one or more of the disclosed 103 methylation-altered DNA sequence embodiments. Typically, such assays involve obtaining a tissue sample from a test tissue, performing a methylation assay on DNA derived from the tissue sample, and making a diagnosis or prognosis based thereon.

The methylation assay is used to determine the methylation state of one or a plurality of CpG dinucleotide within a DNA sequence of the DNA sample. According to the present invention, possible methylation states include *hypermethylation* and *hypomethylation*, relative to a normal state (*i.e.*, non-cancerous control state). Hypermethylation and hypomethylation refer to the methylation states corresponding to an *increased* or *decreased*, respectively,

10

15

20

25

30

35

presence 5-methylcytosine ("5-mCyt") at one or a plurality of CpG dinucleotides within a DNA sequence of the test sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

A diagnosis or prognosis is based, at least in part, upon the determined methylation state of the sample DNA sequence compared to control data obtained from normal, non-cancerous tissue.

Methylation Assay Procedures. Various methylation assay procedures are known in the art, and can be used in conjunction with the present invention. These assays allow for determination of the methylation state of one or a plurality of CpG dinucleotides (e.g., CpG islands) within a DNA sequence. Such assays involve, among other techniques, DNA sequencing of bisulfite-treated DNA, PCR (for sequence-specific amplification), Southern blot analysis, use of methylation-sensitive restriction enzymes, etc.

For example, genomic sequencing has been simplified for analysis of DNA methylation patterns and 5-methylcytosine distribution by using bisulfite treatment (Frommer et al., *Proc. Natl. Acad. Sci. USA* 89:1827-1831, 1992). Additionally, restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA is used, *e.g.*, the method described by Sadri & Hornsby (*Nucl. Acids Res.* 24:5058-5059, 1996), or COBRA (Combined Bisulfite Restriction Analysis) (Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997).

COBRA analysis is a quantitative methylation assay useful for determining DNA methylation levels at specific gene loci in small amounts of genomic DNA (Xiong & Laird, Nucleic Acids Res. 25:2532-2534, 1997). Briefly, restriction enzyme digestion is used to reveal methylation-dependent sequence differences in PCR products of sodium bisulfitetreated DNA. Methylation-dependent sequence differences are first introduced into the genomic DNA by standard bisulfite treatment according to the procedure described by Frommer et al. (Proc. Natl. Acad. Sci. USA 89:1827-1831, 1992). PCR amplification of the bisulfite converted DNA is then performed using primers specific for the interested CpG islands, followed by restriction endonuclease digestion, gel electrophoresis, and detection using specific, labeled hybridization probes. Methylation levels in the original DNA sample are represented by the relative amounts of digested and undigested PCR product in a linearly quantitative fashion across a wide spectrum of DNA methylation levels. In addition, this technique can be reliably applied to DNA obtained from microdissected paraffin-embedded tissue samples. Typical reagents (e.g., as might be found in a typical COBRA-based kit) for COBRA analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); restriction enzyme and appropriate buffer; gene-hybridization oligo; control hybridization oligo; kinase labeling kit for oligo probe; and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g.,

10

15

20

25

30

35

precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

Preferably, assays such as "MethyLight" (a fluorescence-based real-time PCR technique) (Eads et al., *Cancer Res.* 59:2302-2306, 1999), Ms-SNuPE (Methylation-sensitive Single Nucleotide Primer Extension) reactions (Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997), methylation-specific PCR ("MSP"; Herman et al., *Proc. Natl. Acad. Sci. USA* 93:9821-9826, 1996; US Patent No. 5,786,146), and methylated CpG island amplification ("MCA";Toyota et al., *Cancer Res.* 59:2307-12, 1999) are used alone or in combination with other of these methods.

MethyLight. The MethyLight assay is a high-throughput quantitative methylation assay that utilizes fluorescence-based real-time PCR (TaqMan ®) technology that requires no further manipulations after the PCR step (Eads et al., Cancer Res. 59:2302-2306, 1999). Briefly, the MethyLight process begins with a mixed sample of genomic DNA that is converted, in a sodium bisulfite reaction, to a mixed pool of methylation-dependent sequence differences according to standard procedures (the bisulfite process converts unmethylated cytosine residues to uracil). Fluorescence-based PCR is then performed either in an "unbiased" (with primers that do not overlap known CpG methylation sites) PCR reaction, or in a "biased" (with PCR primers that overlap known CpG dinucleotides) reaction. Sequence discrimination can occur either at the level of the amplification process or at the level of the fluorescence detection process, or both.

The MethyLight may assay be used as a quantitative test for methylation patterns in the genomic DNA sample, wherein sequence discrimination occurs at the level of probe hybridization. In this quantitative version, the PCR reaction provides for unbiased amplification in the presence of a fluorescent probe that overlaps a particular putative methylation site. An unbiased control for the amount of input DNA is provided by a reaction in which neither the primers, nor the probe overlie any CpG dinucleotides. Alternatively, a qualitative test for genomic methylation is achieved by probing of the biased PCR pool with either control oligonucleotides that do not "cover" known methylation sites (a fluorescence-based version of the "MSP" technique), or with oligonucleotides covering potential methylation sites.

The MethyLight process can by used with a "TaqMan®" probe in the amplification process. For example, double-stranded genomic DNA is treated with sodium bisulfite and subjected to one of two sets of PCR reactions using TaqMan® probes; e.g., with either biased primers and TaqMan® probe, or unbiased primers and TaqMan® probe. The TaqMan® probe is dual-labeled with fluorescent "reporter" and "quencher" molecules, and is designed to be specific for a relatively high GC content region so that it melts out at about 10 °C higher temperature in the PCR cycle than the forward or reverse primers. This allows the TaqMan® probe to remain fully hybridized during the PCR annealing/extension step. As the

10

15

20

25

30

35

Taq polymerase enzymatically synthesizes a new strand during PCR, it will eventually reach the annealed TaqMan® probe. The Taq polymerase 5' to 3' endonuclease activity will then displace the TaqMan® probe by digesting it to release the fluorescent reporter molecule for quantitative detection of its now unquenched signal using a real-time fluorescent detection system.

Typical reagents (e.g., as might be found in a typical MethyLight-based kit) for MethyLight analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); TaqMan® probes; optimized PCR buffers and deoxynucleotides; and Taq polymerase.

Ms-SNuPE. The Ms-SNuPE technique is a quantitative method for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA, followed by single-nucleotide primer extension (Gonzalgo & Jones, Nucleic Acids Res. 25:2529-2531, 1997). Briefly, genomic DNA is reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence is then performed using PCR primers specific for bisulfite-converted DNA, and the resulting product is isolated and used as a template for methylation analysis at the CpG site(s) of interest. Small amounts of DNA can be analyzed (e.g., microdissected pathology sections), and it avoids utilization of restriction enzymes for determining the methylation status at CpG sites. Typical reagents (e.g., as might be found in a typical Ms-SNuPE-based kit) for Ms-SNuPE analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); optimized PCR buffers and deoxynucleotides; gel extraction kit; positive control primers; Ms-SNuPE primers for specific gene; reaction buffer (for the Ms-SNuPE reaction); and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

MSP. MSP (methylation-specific PCR) allows for assessing the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes (Herman et al. Proc. Natl. Acad. Sci. USA 93:9821-9826, 1996; US Patent No. 5,786,146). Briefly, DNA is modified by sodium bisulfite converting all unmethylated, but not methylated cytosines to uracil, and subsequently amplified with primers specific for methylated versus unmethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and can be performed on DNA extracted from paraffin-embedded samples. Typical reagents (e.g., as might be found in a typical MSP-based kit) for MSP analysis may include, but are not limited to: methylated and unmethylated PCR primers for specific gene (or methylation-altered DNA sequence or CpG island), optimized PCR buffers and deoxynucleotides, and specific probes.

10

15

20

25

MCA. The MCA technique is a method that can be used to screen for altered methylation patterns in genomic DNA, and to isolate specific sequences associated with these changes (Toyota et al., Cancer Res. 59:2307-12, 1999). Briefly, restriction enzymes with different sensitivities to cytosine methylation in their recognition sites are used to digest genomic DNAs from primary tumors, cell lines, and normal tissues prior to arbitrarily primed PCR amplification. Fragments that show differential methylation are cloned and sequenced after resolving the PCR products on high-resolution polyacrylamide gels. The cloned fragments are then used as probes for Southern analysis to confirm differential methylation of these regions. Typical reagents (e.g., as might be found in a typical MCA -based kit) for MCA analysis may include, but are not limited to: PCR primers for arbitrary priming Genomic DNA; PCR buffers and nucleotides, restriction enzymes and appropriate buffers; gene-hybridization oligos or probes; control hybridization oligos or probes.

Kits for Detection of Methylated CpG-containing Nucleic Acid. The reagents required to perform one or more art-recognized methylation assays (including those identified above) are combined with primers or probes comprising the sequences of SEQ ID NOS:1-103, or portions thereof, to determine the methylation state of CpG-containing nucleic acids. For example, the MethyLight, Ms-SNuPE, MCA, COBRA, and MSP methylation assays could be used alone or in combination, along with primers or probes comprising the sequences of SEQ ID NOS:1-103, or portions thereof, to determine the methylation state of a CpG dinucleotide within a genomic sequence corresponding to SEQ ID NOS:1-103, or to CpG island sequences associated with sequences of SEQ ID NOS:1-103, where the CpG island sequence associated with the sequence of the particular SEQ ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5.

SEQUENCE LISTING

5	<110> Markl, Isabel Tomigahara, Yoshitaka Liang, Gangning Fu, Hualin Jones, Peter	
10	<120> Methylation Altered DNA Sequences as Markers Associated with E	Human
	<130> 47465-14	
15	<160> 103	
13	<170> PatentIn version 3.0	
20	<210> 1 <211> 510 <212> DNA <213> Homo sapiens	
25	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
30	<400> 1	60
30	ttgcaagccc ccttngctct tcctttgncc tcgcctacat attcagggga tcgcaatctc	
	actcgcgaaa taatttnttt ctgtaagagg aagccgcctt tcccctctcc caccgccaag	120
35	gtaaaggctg ctaaagtagc tcttcttgga aggaaaaata ttttaaaaaag cagctgggtt	180
	gctctccaca agaagatggc agttttggga aaacccatta tgtgtccaaa tgccggtttc	240
	cttttcttgt ttaacgcttt ttagagggca aaaatgacgc tcatgtgaag cccacaggct	300
40	cgagccaatg tcgctgggct aattatgagt ctgcttatcc cactcccaaa tatccgagac	360
	gactcactca naagacattt ttactcttcc aagaattgng aattcagaan cagcttcccc	420
45	acattctaag agaaaaaaa acttgtttaa cgggcacgtt tttgattttt ttgccgctgg	480
	cgaccttaat taaaagccgg gagctncnna	510
50	<210> 2 <211> 313 <212> DNA <213> Homo sapiens	
<i>5 5</i>	<400> 2	
55	gcactettaa aacgeetete tgeagteeca ggteegeget eeccaagaac tggeeagate	60
	gcgccgggct tggcccctga caactctgcc tcctccacct gttgcgttta ctccgtttag	120
60	ttggctgtgc agtctctggc cccaggtgtg cttttaaaac tcgaggaacg cgggtgttgg	180
	actcattcgc agcctcttgc ctctggttcc cgtgatccca cggtggcgag cttccaggct	240

	cagcgaggag atctgggttt gaacattca	t ctcccatgtt	actcttttct	tgctcctcgc	300
5	gtccccaagc cga				313
10	<210> 3 <211> 165 <212> DNA <213> Homo sapiens				
	<400> 3 gcttagcaaa tttccctttt ttattgttg	g ttttgtctgt	tggctcttac	cccctttcct	60
15	tttcctgctt cccctgagtc agcaatgct	g agcccagcga	agcacagggg	gccaaaggga	120
	gagacacacg gagcgccccg gggtccccc	a gcctcggcgg	ccaaa		165
20	<210> 4 <211> 601 <212> DNA <213> Homo sapiens				
25	<400> 4 ggggggagtc gtgcgtgtca gatttaggc	c aggaagcgga	agtcgccagc	agcgagagtt	60
	taacctctgt gggcgcagag ggttgcggg	g attcagcgcc	cgggaccgtg	gatctgtgca	120
30	gggagtcata ggtgtgtgtg acatcagtg	g tggaacattt	tggctcgttt	tcacaattca	180
·.	gtcattatcc tttctgcttt cctcctgga	a gcattaaggt	tgaagttttc	ttctaaagat	240
35	caaagttttg atttgttata ttagttcgg	a tttgtttgat	ttttgtttgt	gttcggtttc	300
33	aagtgctgat ttgtaacttt tctccccc	c cacacacacg	ccttttgacc	cctgaattat	360
	ttaaaagtcc attgttggag tggcaaaca	t cctccgagac	tcaaagggca	aggccatggg	420
40	cgctttattc cggctgctgc tccaggaac	g tgggaaagca	gcggagtttt	attctagggg	480
	aaggaaacaa aggcggccga gtgccagct	g cacgtttggt	gggatttggt	catcaggggt	540
45	ggacatgctg cccaatggag ctgtcggca	g tttgacccag	cttggtccgt	cgcgtcccga	600
1.5	a				601
50	<210> 5 <211> 801 <212> DNA <213> Homo sapiens				
55	<220> <221> misc_feature <222> ()() <223> "n" refers to an undeter	mined base			
60	<400> 5 gagtacgcgg ggcagaacca gcgcaatac	a gcattctggt	aggggaacta	attttgacta	60

		aaacacccgc	Caactctaat	ccccaacccc	eggacereeg	ggragergge	aaygtattt	120
	5	atgttagatg	tgtctggagt	aaggtgcacc	ggagtatttc	gacaagagac	tcaattcaat	180
	3	gcgtattaaa	acttgattga	gagagggaga	gagagaggtc	attttataaa	gaaagacctg	240
		tgaacactgt	agattggaaa	tttatgtttg	caaaataaaa	ggatgggttt	atcaagtgga	300
	10	tgcatttaca	aaatgtggca	tccaggtttc	gtaaaattag	ctgaattcta	cgggtaagat	360
		tatgaatgtg	gctcataaat	aattaatagg	tagtgaaaaa	gaatgtattt	tgcattaggc	420
	15	agtgcattca	atagtatttc	ggaaatgagc	acttcgattt	cctcggnttc	catgcgnggc	480
	13	cacctctcca	gagcagggca	ggcacccagg	gnggtgccca	cacaaacaag	cgcgtgtggg	540
		cattttcttg	gctcgtgcgc	tgaagtgcac	gctgggcctt	ggtgcccgca	ccctcagcct	600
	20	gggagatagg	gaggtggtgc	tacctgcagg	ccgattgtgt	ccccgccata	ggacactagt	660
		gggcggcaaa	cctcacaaga	ctcttgcagc	cagccttcag	cagagccagc	aaacccagcc	720
	25	gccaccgagg	gaggactgct	ccatgcagat	ggtcaggggc	tttcttctga	agacgcctcc	780
Marie Marie	20	cccacgatct	ctcaagttca	С				801
A H WING MANN MANN MANN MANN MANN	30	<210> 6 <211> 204 <212> DNA <213> Homo	o sapiens					
H. 5	35	<400> 6 ccggttgctg	ctggaggatg	ggactacgaa	ggatggggac	teegetegge	caccgctcct	60
		gaatggcctc	taatctcggt	gttaaatact	ttatgagagt	atcaatacca	cctaatcctt	120
Hall then their had	40	tgctgagaat	tactgctaga	aatgtagatt	ctgaggttcc	gaaagtttgt	ttttggttac	180
THE HITE	40	cccctccagc	tcctcccgcg	gcaa				204
	45	<210> 7 <211> 205 <212> DNA <213> Homo	o sapiens					
	50	<400> 7	addagatasa	taaaataaat	aattaatatt	tttaataaat	attaanaan	C 0
	50				cgttcgtgtt			60
					gagtatacag			120
	55		acccgcacgt		cgtttctacc	LECGGAACGC	racatotoga	180 205
	60	<210> 8 <211> 597 <212> DNA						

		<210><211><212><213>	10 343 DNA Homo	o sapiens					
	5	<400>	10						
		gccaac	ccac	accagtacct	gggaccgggg	ggagcccggt	ccggccgcta	aaccgggctg	60
	10	gctggc	gcca	gggctccggg	aggtgcggtc	cggcggggaa	gccgtgatgg	gaagcgactc	120
		tgtcca	ggga	gtgtccttca	ccaccacact	cctcacgtcc	aggcagtgat	cgacggcctg	180
		gcggca	ccct	cacagcgggc	ccatagcacg	gggccacaca	cgtcccctga	gcttagcctg	240
	15	ggcacai	ttcg	tctgccgccg	agggcttaag	ccagtctgca	gcccgcgccc	cgtcactcgg	300
		acgcaa	gtcc	gtcgtccgct	ctgccacgcg	gccgctaagc	cga		343
	20	<210><211><211><212><213>	11 291 DNA Homo	o sapiens					
	25	<400> gtccta	11 caca	ctccgcacac	aacgeggeeg	gtgttaagtc	tccaaacgcc	ccgagagctc	60
		caagga	ccgc	gcgcgcgaag	gcgccgtagc	aagtgggcac	acaccagaca	ccaccccggc	120
	30	gtgttc	cgcg	ggagaagcca	gtgcacacat	cctcccgcaa	ggcggggttg	ccagtgcaac	180
# # .		acaggaa	atcc	tgcccttttt	ctagaaaagc	cccctcccc	actttccctc	caatacactc	240
\$ 1 <u>11</u>	35	acctgc	gtct	caacagtttc	cttcttgcgc	tacacgcggc	cgctaagccg	a	291
Hall they have hall he	40	<210><211><211><212><213>	12 266 DNA Homo	o sapiens					
		<400> gtccgga	12 atca	gtttccccgg	ccaggtcgct	teceggtete	aaccatttcg	cgctctgctc	60
	45	tgtccg	ctgg	tttgtccctg	cccggttcct	ctccccgggc	ctgtcagcct	ccgcttctct	120
		ggaggtt	cct	gggactcatc	tctgatccac	cgtcttgcgt	tctctgggcg	catcgacttc	180
	50	tctccat	cctt	cgggctcact	cctgactccc	tcgctgccgc	ccccgggggt	ttccacgcgt	240
	50	gtctcta	aacc	gcggccgcta	agccga				266
	55	<210><211><212><212><213>	13 553 DNA Homo	sapiens					
	60	<220> <221> <222>	misc	_feature ()					

		<400> 13	
	5	gatcctggtc catcgaaacc ttgtgtgcat cggttagtgc ttcctgggcg tttgcttcta	60
		gccgacgctg acagtggagt gccagaaaga gggagaggac cgtcatggct actctgcccc	120
	10	tggtgtcacc atgcgctctc ccccggcacc ggcgaggcga	180
	10	gaggeeeete ggteagggea geageateee tgeaeeetet eegeaggtgg teteeeegae	240
		gccacaggtg gccagcaggg cgcgggtggg ggcaggagcg cctctcccct gcccaggcct	300
	15	cccgctcctt ctcggagcgc tgtggcgggg tggagagaca gccttctaca gctagtctag	360
		cteggegegg tteeegtetg tggeeteeta ateceaeage caeagegeet teetetaace	420
	20	tccctcggtg ggcttaaagc ctcccgttcc ttctgtctca ttccttctgc tccctcccc	480
	20	cgaaaccccc agatganagc tgggaacctg gcnccantna ctgagcnaac agtgttgacg	540
		ggccgnggcc caa	553
TOTAL CONTROL OF THE PARTY OF T	2530	<210> 14 <211> 156 <212> DNA <213> Homo sapiens <400> 14	
		gcgcacacag tgggtacaag gatgagctcg gtgtaaggaa tggaaagccc ccagtctaaa	60
H .	35	ccaccgcccc ctagacacgg gtgaaaacct gcctaaaagc taactcaggc agtgactcta	120
ill Holl	33	tcacccgaag gggccctggg ccgcggccca agccga	156
MAN HAN HER HAN	40	<210> 15 <211> 300 <212> DNA <213> Homo sapiens	
	45	<221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	50	<400> 15 gttcacagcc cataaggtgg gggtggcccg aacctgaaac ggagcctgag ccaggatcct	60
		gcaaccaaag totgaagogo coccoggtgg gggoogagag ogotgcaggo aggtggnggo	120
	55	geggggeagg egggegggeg aagggagete eggntaegea ganaaegegg agegeeeet	180
		teccaectge gegaggeat cetgeceggg ggaggaaagg egggagteeg aggegggteg	240
	60	gattcccagc cagctccctc ctcacaggag gcggcccatt atccggcgtc gcaaagccga	300

<211> 322

		<212> DNA <213> Homo sapiens	
	5	<400> 19 ccggcccgtc cctcttaata tggcctcagt tccgaaaacc acagaataga accgcggtcc	60
		tattccatta ttcctagctg aggtatccag gcggctcgga cctgctttga acactctaat	120
	10	tttttcaaag taaacgcttc gggctgcagg acactcagct aagagcatca ggggggcgcc	180
	10	aagaggcaag gggcggggat gggtggtggc tcgcctcgtg gcagaccgcc cgcccgctcc	240
		caagatccaa ctacgagctt tttaactgca gcaactttaa tatacgctat tggagctgga	300
	15	attaccgcgg ccgctaagcc ga	322
	20	<210> 20 <211> 255 <212> DNA <213> Homo sapiens	
	25	<400> 20 taataagata ccaaatcggg cgagaaacga aaagctcctg gcctccgtat ttggggccag	60
		agacaccgca gggagtcagg tccccgccga caaatcggaa gaggcctgcg ggagttagcc	120
in.		agataatgct ctccctgtcc tacccgtccc caccaatttg ccttttacct gccgcagagc	180
	30	ttgcttgaac caaaggggtt tgcggtcttc tcctcctcaa cttgcgatcc ccaggccttc	240
25.		gcgtcccgaa gccga	255
Here had be the	35	<210> 21 <211> 406 <212> DNA <213> Homo sapiens	
	40	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	45		
		<400> 21 atgtgnnaag getegetnte catttetett tteeteette teeetetete atgtgeggte	60
	50	teceteaaca tecaaaceaa eegagtgegt etgaggtgaa ategtgeeag aettagagae	120
		ggctgccagg tttctctcaa gtcttggctt aacaaaagaa agcaaattac aaaaatggaa	180
		attttcaaac tagcgttcag tggtattcaa atcgacgttt gggtagcgca caggcacaga	240
	55	ccgcattcgt gctattttgt gattaaaatg ataccaaaaa tacctccttg ctttggtttt	300
		cgtcttcgaa aacgacttct ttccttcttc taatttcccc cttacttttg ggagcggcaa	360
	60	acccctgacc actctagaat tgctaacatt tggaccggcg tcgcaa	406

	gaaagcagcg agcttcaccg ggcgggctac gatgagtagc atgacgggca gcagcagcag	180
	ccagcaaaag ccctcgcaaa gtgtccagct gctgcactgc cgcggggact cccacagcac	240
	catgactagt tegtgegaet etgeaneane aaaeggette egaggaaeae angategegg	300
	gggca	304
	0	
2	<pre><220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base</pre>	
	<400> 25 aaaacncatn tgnagagcnc ntcggcagag ncgcagctgg ctgacccagg agaaggcgcg	60
2:	5 ctgggtgtgg ctgggacggc caaggccgcg gcttcccgcg tggggatgcg ctntggcgca	120
	aagetggtee eggegggee aggegtttgt gggegggtga eggggateta gggetteege	180
<u> </u>	tcgngattcc tcttgggctg tctttncggg tttggactcg cctgccaggc tgtgtgcagg	240
65. H H 65. H H 65. H 65. H 65. H 65. H	gttecegetg eetetggeeg geaggegtee gggetgeagg tgggeeggea ggeaggtgtt	300
### ·	agcgggaagg gagcacaggt agcgaggtgg gatcggcgac ctggctaggg tgtcggcaga	360
35	atggaatgcg cggccgcta	379
40	<210> 26 <211> 625) <212> DNA <213> Homo sapiens	
45	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
50	<400> 26 gggacgcnag ccagggantt tgatccgttt tgaatgaaaa gaaagagaan ccaaaccaaa	60
	cctntcagtc atccaaaacc ttcaggcttc cagggaggtt ttgctataat tttctctaag	120
55	catgactgtt tctgggggag gggaaagggg tggttgtatt tactgaaaat tcaaatcgaa	180
	ataataaatg gccaaatttg gacacttacg gacccaaaca gttttgctca cgccagagaa	240
	accgagagca cagggcttgc gtgaagccta tctcggcaga aggcaacatt ctaataaagc	300
60	ccgtgggaaa acagattaca ttttcgccat gaataagtca tgcagtgaaa aatattgcct	360

		acageetgte gaettatatt attateaegt tttteaaete ggegtgagga gggagaggag	420
		tgttcatatt tgactaggaa ttgcaggatc gatgcaaact ccagggcagc agccagactg	480
	5	gcatatgtgg ggctctccgg ttactttctc tgtatgtcgc gggtgagagg aacagcgagg	540
		acaatttagc gcaaacacac gaagggtcgg atctcaaggg ggcagcgctg ggagaaaggt	600
	10	tagggctgna gagcgnanag ncaaa	625
	15	<210> 27 <211> 499 <212> DNA <213> Homo sapiens	
	20	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	25	<400> 27 gneteenegt teeceteggg eggaaeggag geaaetttee ggagtetatt tttgttaaga	60
Annual Control of the		caatcaactc caataactga gctgaagttt ttgtttaaaa agaaaaaaat ctgataagtg	120
The state		atgattttac ctacttgtgg acactagatt tcaattagga aggttttttt aaacggcttt	180
	30	ttgtaacttc gctgcaggaa gcaggtttgt ttctttttct tttcttttta agagaaggtg	240
		tatttcactg gtgcaatggc ttggcacctc cggggcctgg gaggacctca gacctcccca	300
E	35	gccctgggtt tctccgtctt caagaccaac taggaagggt caagcgggga gagggagtgg	360
H		agggtcaggt gagatetcag agetgeeceg geeggeecee gtetetttet aceteetett	420
al Gran Seri And		ccagagaacc agcggctcac accettetca acgcaggaca tgeteggegg ccaaageega	480
	40	attctgcaga tatccatca	499
se?	45	<210> 28 <211> 561 <212> DNA <213> Homo sapiens	
	50	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	55	<400> 28	
		gggcgattgt tattcaaacn ngntanctct ctgcggggnn gagnaatgng ggcctcgcac	60
		ggctncatcc ccgtcgagcn cagggcctcc ctgttctnct agacatncca aggagccaac	120
(60	tcctccgcag aagttccccg cttctgctct tatttccaag cttcgcgctt tctacaaact	180
		ccctgttgcc ttgactttqa tttccaqccq tqqtqaqqqt caqaqtqaac cccqqqqqqq	240

	tccccgacgg	catccccgca	caccaggata	ggagaaattg	gagggcctgg	gcctcggctc	300
5	ccgcagtcgt	cggaggaaga	acccaccgcg	gggtccccaa	gggaaagtga	agaggcccgg	360
	gatttttcca	aagcgctgcc	aggaccccga	aggaagggga	ggagtcacct	gaagccgggg	420
	aagctccttg	ggtgctctcc	ttggatcctt	atgttcactg	actttcgcga	ngccccctgg	480
10	aggnggaaaa	teegegetgt	ttcccccaac	ttaacttcac	gcggccgcta	agccgaattc	540
	tgcngaaatc	attacactng	С				561
15	<210> 29 <211> 717 <212> DNA <213> Homo	o sapiens					
20	<222> ()	c_feature .() refers to a	an undetermi	ined base			
25							
	<400> 29 actctccgcg	gtntcntggt	gcctcacagg	aggtggggct	ccctccaccc	ggtccccagg	60
30	cctctccctc	tgcccgagct	tcccggtcct	gcctccttcg	cctcgcctgc	ctgcccgact	120
	ctgaaccctg	ctcctcttct	aactaaaagt	cagtgtttta	tttcctccgc	agtccaatgc	180
	ccgcgtttta	ccttattcaa	taagaagggc	ttcatttatg	gcaagacagg	acagccaggt	240
35	aataagggcc	tctgcacacg	cgggcccatt	ggaggggcgg	aactgcgaag	tcttcccgga	300
	agagcttcct	ggagagaagg	ggaacgagcc	agcgtttatt	gagcatctat	tatactaagc	360
40	atctgcttgg	cagttcacga	cggtcgcatt	ttttcatcct	tacagcgatc	cctattgtgt	420
	cgcttgcttt	aaagcctcac	agctcacaaa	gggctgggat	ttattccaga	tetetetete	480
	agatgccatc	tcacttccag	gtgtctctgc	tgctttgaac	gcgggaaacc	cacgcaaagg	540
45	agtgatttcc	aaggccttct	gtttggaata	tctttaatcc	tccccttatt	aactggaaaa	600
	actcccacgc	atccttcagg	gctcagctca	aatgtccttt	atntctgcag	ngaaactttc	660
50	ccaaggaaaa	ttagttacac	agctaatttt	agataaattg	agccagttga	tagaatt	717
55	<220>	sapiens feature					
60	<222> ()	()	n undetermi	ned base			

	<pre><400> 30 tgatggatat gtggagatt gggggtttgn gagggggggg aggaggtagg gaaagtagg</pre>	~ ~
5	tgatggatat ctgcagaatt cgggctttgn gacgccgggc acgcagtagg gaaaacagta	60
5	ttaaaacgcc ctacagaaaa tctcggcgaa gtccccggag aactctggtt tctaagatca	120
	gctgggcgca ctttctccgg gacgtccctt cttctcggtc tcagcgcctt cctgccctca	180
10	geogegeeng tnttgttttg gtggeaaact gaaataagaa atggaaatat attggeettt	240
	gctgctgcca gggatgagag gttgttgacg tcggcgcaaa	280
15	<210> 31 <211> 270 <212> DNA <213> Homo sapiens	
20	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
25	<400> 31 gnggnngnna nncggcgatg gatntnngna ganttnggtg atggatatct gcagaattcg	60
	gcttagcggc cgcgaacaaa gagcgaacca aaggatgctt cgaattttta aaacggaatc	120
30	tctgcaccca aatgcaggac tggtgactta aggagctgcg aagtctgatt taccgggcct	180
	actotogaco tgococcoca coccagotoa gggggacott tttatontga acgocagago	240
35	tacnnaccaa gtcgggtggc cacnnccaaa	270
40	<210> 32 <211> 347 <212> DNA <213> Homo sapiens	
45	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
50	<400> 32 tttggannta ngggggcgtg gcgtggatcc agtttccccc ggccaggtcn gcttcccggt	60
- =	ctcaaccatt tegegetetg etetgteege tggtttgtee etgeeeggtt eeteteeeeg	120
	ggcctgtcag cctccgcttc tctggaggtt cctgggactc atctctgatc caccgtcttg	180
55	cgttctctgg gcgcatcgac ttctctccat cttcgggctc actcctgact ccctcgctgc	240
	cgccccgggg gtttccacgc gtgtctctaa ccgcggccgc taagccgaat tctgcagata	300
60	tccatcacng aantetgcag anatneateg negaannnea eegeact	347

```
<210> 33
        <211> 342
        <212> DNA
        <213> Homo sapiens
    5
        <220>
        <221> misc feature
        <222>
               () .. ()
        <223> "n" refers to an undetermined base
   10
        <400> 33
        gtagggcgcc gccgtgacag attagtccta aagggaacgg ggttgttagt tcaattggct
                                                                               60
   15
        accggaaaaa accaggctgg gctgggcgcc cgccatgaca accgataccg gaaaaqqcqq
                                                                              120
        gtcgttcccc ccggacagcc ctacgccggc aaaggtctcg agatgtgagt agtgagagcg
                                                                              180
        cctaccccat acngtcggcc ggctcccctt cttttaccca gtgatctaga cctagtctag
                                                                              240
   20
        gacctcggga actaggacca gcctccctcc ttcttggaga tctgaccctc aggattcann
                                                                              300
        nnctttgctc acgagctcca acccnacnca tccaaannnc aa
                                                                              342
   25
        <210> 34
        <211> 370
        <212> DNA
        <213> Homo sapiens
30
        <220>
255
255
255
255
255
        <221>
               misc feature
        <222>
              ()..()
112
        <223> "n" refers to an undetermined base
   35
        <400> 34
        cattgtttac tttcgtctaa acgcggtgga agcccatgga agaaagcggt tagcagcaag
                                                                               60
  40
        gcagagccct gctccctctg cagccccagc tcccagcgcc ctgqqctttc caqqcacctq
                                                                              120
        tccgggtagg ggattgaggg ccgtggccag gcccgcactt tcctgctagc cgcagctggc
                                                                              180
        cacatgccca tctgaccctc cgagttctcc tctaaaaatg gggctgacag ccgctacctc
                                                                              240
   45
        acaaagtcca caccgggctc aacccgntgc cttcctcccc aacaggactc tgccaccctc
                                                                              300
        cctcaggatg cctgaggcc ccganctgca cctggccagc cantttgtga atgaggcctg
                                                                              360
   50
        nggggcgntt
                                                                              370
        <210>
               35
        <211> 213
  55
        <212> DNA
        <213> Homo sapiens
        <220>
        <221> misc_feature
  60
        <222>
              ()..()
              "n" refers to an undetermined base
```

1.2

i T

Here.

ž

13

Till I

1.4

		<400> 35	
	5	aaaatacnan taaagcgatg cttcgaattt ttaaaacgga atctctgcac ccaaatgcag	60
		gactggtgac ttaaggaget gegaagtetg atttacegge etaetetega eetgeeeece	120
		acccccagct caggggacct tttgtctgaa cgccagagct actgaccagg tcggggggcc	180
	10	gcggcccaag ccgaattctg cagatatcca tca	213
	15	<210> 36 <211> 173 <212> DNA <213> Homo sapiens	
	20	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	25	<400> 36	
13	25	gacnncgggt ttgtgtgtaa cagggtcagt ccccgtatct actttgcgaa agcttcgagg	60
112		cgagcgtgaa gtcaagggct gcggtggatg ggggtaaaan gcctcctcnt cccactgcct	120
And had too had built built	30	gcnccgtctt ggggtaaccc ctanccccca cccggngttn cnctttaatg ctc	173
The Comment of Street	35	<210> 37 <211> 369 <212> DNA <213> Homo sapiens	
Hall Hall Mr. House the	40	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	45	<400> 37 tcactgtgcc gggtctctcc tncccggtcc aactccctta cttgtcctca tctctgtccc caaggtccgt gacccgcgga ggtgatgggg gggataggag agccccaggg accgcagagg	60 120
		tgacacaatc gcccgcccgt cctccctcgc tgggagccga ttcagcctgt gccgagcctc	
	50	tecettegeg tgeetetgeg cacageggtg geacegeagg acteegggte eeeeeegget	180 240
		ctccatcggg aagccggcaa atgcgcttcc tcagccagac cgcggcgggg tgggggggg	300
		gggggggaa gttgaaatac tgggacagaa acacctgccc gtcccaaggg acggaaaact	360
	55	ggatgccaa	369
	60	<210> 38 <211> 123 <212> DNA	

		<213> Homo sapiens	
	5	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	10	<400> 38 gtcccttcgc cccgcttttn ctttccccna ggtcccagcg nccgaaccgg cggatgtcca	60
		cgaaacatag ggcgagccgg gggccangcg gggccgtgta aaatctcntg tggtcatttt	120
	15	gtg	123
	20	<210> 39 <211> 450 <212> DNA <213> Homo sapiens	
	25	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	30	<400> 39 ctagccctgg aagagaatcc gaggctcagc cntgctgcag cacccaggac actgcatccc	60
		agcacctgcc cgaagatcag cccaggaccc aaaggaaagc aggctccaag ctccccggaa	120
i.i.		gccaaggaaa ataggaaaac atatcctgcc ccggggacac cttctggaac tatgaccaca	180
;; <u> </u>	35	tgcacttgac cttccggaac aatcaccgca tgcacctgac ctcccggaac tgtcaccacc	240
200		gegegeacet gaeeteeegg caetgteacg acegegegea cetgaeetee eggeactgte	300
;; ====	40	atcaccgcgc gcacctcacc tcccggaact gtcaccaccg cgcgcacctg acctcccggc	360
W HT.	40	actgtcacga ccgcgcgcac ctgacctccc ggaactgtca tcaccaggcg cacctgaccc	420
		cccggcactg tcacgaccgc gcgcacctca	450
	45 50	<210> 40 <211> 593 <212> DNA <213> Homo sapiens	
		<400> 40	
		ggaccaaget gggtaaactg ccgacagete cattgggcag catgtccace cctgatgace	60
	55	aaatcccacc aaacgtgcag ctggcactcg gccgcctttg tttccttccc ctagaataaa	120
		acteegetge ttteecaegt teetggagea geageeggaa taaagegeee atggeettge	180
		cctttgagtc tcggaggatg tttgccactc caacaatgga cttttaaata attcaggggt	240
	60	caaaaggcgt gtgtgtgggg ggggagaaaa gttacaaatc agcacttgaa accgaacaca	300

		aacaaaat	c aaacaaatco	gaactaatat	aacaaatcaa	aactttgatc	tttagaagaa	360
		aacttcaac	cc ttaatgette	caggaggaaa	gcagaaagga	taatgactga	attgtgaaaa	420
	5	cgagccaaa	a tgttccacca	ctgatgtcac	acacacctat	gactccctgc	acagatccac	480
		ggtcccggg	gc gctgaatccc	cgcaaccctc	tgcgcccaca	gaggttaaac	tctcgctgct	540
	10	ggcgactto	cc getteetgge	ctaaatctga	cacgcacgac	tccccccgcg	gca	593
	15	<210> 41 <211> 45 <212> DN <213> HO	57					
		<400> 41	c aaatagggcc	tttcctgtta	acgaccacgc	ggcaaggggg	ccgggccctc	60
	20	gcacgcctc	g acggeeteec	ccactccaaa	gggactccga	tttcgcagga	tctcccgcct	120
		cccgcctct	g ctcccaacac	cctacgtttt	tctcttcctc	ctcatttacg	tatttacaat	180
	25	aaaacagcg	a agctgcacag	tctgtctcta	aatcaaacgc	ggttaccatc	aaagcctcag	240
And the wine that the		actctatgt	c tcaaccgcaa	aaggtctgac	aggaaatcaa	ctcgggagtt	tgtcaattct	300
in a		ttaaactca	a agctctgtta	acgaaatctg	gatctttcct	cgctccccac	ctgcctcccc	360
- Ann	30	tgacaggag	a atgactgtaa	aaggatcctg	tcgtccccga	aagtcagcac	caagcacttc	420
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		acaaattgt	c aaatctcaaa	agcttacacg	cgcggca			457
the three three three trees	35	<210> 42 <211> 21 <212> DN <213> Ho	1					
1: 22	40	<400> 42		- 				
1 2			g aatgacgcgc					60
	45		g cttgggtgta					120
	73		t gegeggteee			ctggtcgtca	ttetegttge	180
		caccegeee	c cttgtccgac	acgreggege	a			211
	50	<210> 43 <211> 143 <212> DNZ <213> Hor						
	55	<400> 43		GG2 GGG2 G2 G	~~~~~~			
			c cgggggccca					60
	60		caggggcgct		ayaattcayc	cacciccag	calcectgtt	120
	50	accegagga	a cgcgcctctc	a				141

5	<210> 44 <211> 559 <212> DNA <213> Homo sapiens		
	<400> 44 acccactttc cattaacact aaataaaacg catccatgga tttcctct	cc attccgaggc	60
10	aacaggagtg catggcacat tgccctactc ccctgaagct cttcgcta	ac ctaagactcc	120
	agggtgagga agttagctgg agctttttaa agtgcatctc caaagaga	at tttgctcaca	180
15	ccatgagagc ccccaagaaa caccagggcc cccttagatg ccggagac	ca cgccctccag	240
13	gaataagccg caccetetge ceageagate ettgegegag tageeete	tt tccctggggc	300
	taatcaagtg catgecacat gtcaccacte teagetggea attettee	tc agaggcgcag	360
20	actttcacgg aatccccagc agggggggtt aagagattca ggggaggc	cc cgcccgtgcc	420
	ttccacaaaa gtcgctttac cgtggctcgt gtcctgcggc cccaaggg	gg tagcctggga	480
25	cgtgtattgg gagggcatag aggctccttc caggacaagc tgccagcc	tc cagtgggcaa	540
	ccatgtgaga ggcaaaatt		559
30	<210> 45 <211> 433 <212> DNA <213> Homo sapiens		
35	<400> 45 gcgaacagca caaaggcttc attcctacga gagattaagt tttagagc	aa atggacacga	60
	tcgttaaaga atttgatatt tccatgtaaa ctgcattagc aggttatg	cg atccaaactc	120
40	acaggaacaa ctccaactct cggccatgcc ctatttcatg tctagatt	tg tttaaccgac	180
10	ttacatcata atccaagaat acgaactaca gtatattctt acagcaaa	gt tattccttaa	240
•	aagcaaaacc gagccacctt tgaaaacacg cacacacatt atccacgg	ca ctaaaacccc	300
45	agtettgace gagaaagace aacaacttgg gggggaagaa aacaactt	ca gagccagagc	360
	teccaaagea gaaagegetg geggetgaag ggeacaegag gtteeget	cc cgggcgaacg	420
50	ggcggcgtcg caa		433
55	<210> 46 <211> 487 <212> DNA <213> Homo sapiens		
	<400> 46 cccttagtat tccatgagcc accattttcc ccacgatccc tccagcct	ga acgatcacat	60
60	cctactgtgg accacgactc tcccagcagc gggcgtttaa tatccagt	ta gcaggttctc	120

Hold Hack State Will Sail Ho

		accacccccc	egetggeteg	aatacagcat	etgeaeegag	ttcccgagaa	tcgtcaaccc	180
		agcaaatccc	ttaattggtg	gacatgaaaa	tccagggctt	tgtgctgtaa	taacagagtc	240
,	5	ctgggggcct	ggggagtttg	tgccgcttgg	agctcaggtt	tctgggacag	aggctgagcg	300
		cagggcaggg	aggcaggtct	cacctggcac	ctcccagagt	cctcgccgag	cagatggaag	360
	10	cagaggctct	cgcgcccggc	ccccgccggg	agacctctct	ctctttccct	cggcctgctc	420
	10	tgccctctcc	cgccttctcc	ctgtctgatc	cttctctgct	gtcatgttct	ttgtcctcgc	480
		gccccga						487
	15	<210> 47						
	20	<211> 403 <212> DNA	o sapiens					
		<400> 47 gtcatataag	cacaaccatt	cccagggcca	ccctggatgc	atcagatcag	tcccccact	60
	25	ggtgaccaca	atggctggct	cagagtgcct	ttgaacagac	aggagaaaca	gacttcttgg	120
Hall that	25	agggagggac	cttcccacag	ggaatggcca	aggagctagg	tcttcagggc	ttgcatggcg	180
	30	tggagtgtgt	gctcaggtgc	acagtgaagc	aaacctgagg	ggacttgggc	cctgcgtcct	240
		ccagcacaca	cgcacccttt	cgccgtcaca	tccggggcac	ccacccgtgg	aatatgtgag	300
		ccgcacttgg	ccagccacga	gttccagggc	caggaagtcg	tgcttctcgt	tcaggcgccc	360
The Harm	35	gttgtagaag	agcagcccgc	tctgctgcac	tgtcgcgtcc	cga		403
Har Han Ang		<210> 48						
	40	<211> 155 <212> DNA						
The House	40	<213> Homo	sapiens					
			ggaggggca	gaaactcagc	cgcccctacg	tttgctaaac	tgcgtccgcc	60
	45	agggggcgta	tttttctaaa	acgcacaaga	cgtttcgtgg	gttatcgatg	gtctcttgag	120
		cctccttgac	tgatggggat	tgaccgggcg	ggata			155
	50	<210> 49 <211> 256 <212> DNA <213> Homo	sapiens					
	55	<400> 49 tctactgagc	ttttctttaa	atagaaccac	aagtgctggg	atgagaggga	aaggatggga	60
		gtgcgtccaa						120
	60	ccccggaaag						180
			_				_ ~ ~	

		tgacacag	gtg	cccctccgcg	tgtgagtcca	cgaaggtcac	tactgaggct	ttgtgcttgt	240
		aaaaggcc	cgc	cccgca					256
	5	<211> 2 <212> D	50 224 DNA						
	10	<400> 5	50	sapiens tgggggaacc	ggcgggagct	gttcgctggc	cggcctcact	ggagtaggaa	60
	15	ttttagat	cga	aactgagtcc	gtttctcctt	gaaggcaggc	agtattctta	gatctactat	120
		tcatttaa	aaa	agaaggaaaa	gaaaaaaaaa	tgactgctac	ttactgagaa	gaaaatttct	180
	20	gttctcct	ccc	gattccgctg	atcccgcttt	atccgcgcac	ctca		224
	25	<211> 3 <212> D <213> H		o sapiens					
Pal hall the			51 gga	cggcccaggc	cgcggcttcc	cgcgtgggga	tgcgctgtgg	cgcagagctg	60
1.4 1.1	30	gtcccggc	gg	ggccaggcgt	ttgtgggcgg	gtgacgggga	tctagggctt	ccgctcgtga	120
		ttcctctt	gg	gctgtctttc	cgggtttgga	ctcgcctgcc	cggctgtgtg	cagggttccc	180
1.1		gctgcctc	etg	gccggcaggc	gtccgggctg	caggtgggcc	ggcaggcagg	tgttagcggg	240
**************************************	35	aagggagd	cac	aggtagcgag	gtgggatcgg	cgacctggct	agggtgtcgg	cagaatggaa	300
the true tab		tgcgcggc	ccg	cta					313
	40	<211> 3 <212> D	52 885 ONA Homo	sapiens					
	45		i2 cgc	attcattctg	ccgacaccct	agccggtcgc	cgatgccacc	tcgctacctg	60
		tgctccct	tc	ccgctaacac	ctgcctgccg	gcccacctgc	agcccggacg	cctgccggcc	120
	50	agaggcag	lca	ggaaccctgc	acacagccgg	gcaggcgagt	ccaaacccgg	aaagacagcc	180
		caagagga	at	cacgagcgga	agccctagat	ccccgtcacc	cgcccacaaa	cgcctggccc	240
	55	cgccggga	cc	agctctgcgc	cacagcgcat	ccccacgcgg	gaagccgcgg	cctgggccgt	300
		cccagcca	ca	cccagcgcgc	cttctccagg	gtcagccagc	tgcggctctg	ccgaagcgct	360
		cctccgct	cc	tttctcgcgc	cccga				385
	60								

<210> 53

		<211> <212> <213>	DNA Homo	sapiens					
	5	<400> aacccgg	53 gctc	ggttcggcaa	ggttcaggga	gacaaggtag	agaaggctgg	ggtgagcaag	60
		aagtcg	ggcg	gccgatcgtc	agggccacga	gcctcgcctt	gccttcttgg	aatcccaccc	120
	10	aacttta	aaag	gcccaaagat	cctgaaaatt	ccgaaagcga	aactgcgggc	tggtctccag	180
		aagttt	gaga	acggtctccc	aggctttcca	gcgtcgtccc	gggattctcg	gacaccacaa	240
	15	acgccat	caa	ccacgagcac	cggtgtccgt	ggctattgcc	ccgaatggtc	cccatccgcg	300
	13	tccccta	ā						307
	20	<210><211><211><212><213>	54 182 DNA Homo	o sapiens					
ii	25	<400> cgatgto	54 cgaa	gccgtttgga	gggaacagcg	gtttccaagt	tcctgctgac	ttgagaagcc	60
		tctgcgg	ggtt	tccgaatctc	cggcgcactc	ctgggcgcgc	tgcgggagct	gtagctcagc	120
1.3	30	cagccag	ggga	gtagcggctt	tcatccgccg	ggaggagtct	ttcgagttca	atcgcggggg	180
***************************************	20	ca							182
Les him had be die	35	<210><211><211><212><213>	55 523 DNA Homo	o sapiens					
	40	<400> tcgggtt	55 tga	tccgccccaa	ccaaataggg	cctttcctgt	taacgaccac	gcggcaaggg	60
: #1 : m		ggccggg	gccc	tcgcacgcct	cgacggcctc	ccccactcca	aagggactcc	gatttcgcag	120
	45	gateted	ccgc	ctcccgcctc	tgctcccaac	accctacgtt	tttctcttcc	tcctcattta	180
	10	cgtattt	caca	ataaaacagc	gaagctgcac	agtctgtctc	taaatcaaac	gcggttacca	240
		tcaaago	cctc	agactctatg	tctcaaccgc	aaaaggtctg	acaggaaatc	aactcgggag	300
	50	tttgtca	aatt	ctttaaactc	aaagctctgt	taacgaaatc	tggatccttc	ctcgctcccc	360
		acctgc	ctcc	cctgacagga	gaatgactgt	aaaaggatcc	tgtcgtcccc	gaaagtcagc	420
	55					aaagcttaca		ctccggaaag	480
		gctgtgg	gga	ccacccaaag	caccccctc	cacaccgcgg	gca		523
	60	<210> <211>	56 795						

<212> DNA

5	<210> 58 <211> 611 <212> DNA <213> Homo sapiens	
J	<400> 58 getteccect teettetee egegetgeee cettgagate egaceetteg tgtgtttgeg	60
10	ctaaattgtc ctcgctgttc ctctcacccg cgacatacag agaaagtaac cggagagccc	120
10	tacatatgcc agtctggctg ctgccctgga gtttgcatcg atcctgcaat tcctagtcaa	180
	atatgaacac tecteteet ceteaegeeg agttgaaaaa egtgataata atataagteg	240
15	acaggetgta ggeaatattt tteaetgeat gaettattea tggegaaaat gtaaactgtt	300
	ttcccacggg ctttattaga atgttgcctt ctgccgagat aggcttcacg caagccctgt	360
20	gctctcagtt tctctggcgt gagcaaaact gtttgggtcc ataagtgtcc acatttggcc	420
_,	atttattatt tcgatttgaa ttttcagtaa atacaaccac ccctttcccc tcccccagaa	480
	acagtcatgc ttagagaaaa ttatagcaaa acctccctgg aagcctgaag gttttggatg	540
25	actgagaggt ttggtttggt ttctctttct tttcattcaa aacggatcaa actccctggc	600
	tcgcgtcccc a	611
30	<210> 59 <211> 291 <212> DNA <213> Homo sapiens	
35	<400> 59	60
	gagtttggca ggccccggat tccacaaagg agtaggcgcg gccagccgcc tccagccctg	60
40	ageteagtaa atteggtgte etgaatgete eetteetgte ettaceaetg egagetetet	120
-1 0	tgggacaget ttetaggtte caetgegace taettteege teeetgagtg ettetttget	180
	gaaactgcag gcgaaaagat ctctttccca gaccgcagcg cactttgaga aggggctcaa agtcgcccgc tctgaatccg gcaccggcaa ataggagtag ccgcatgcgc a	240 291
45		
50	<210> 60 <211> 226 <212> DNA <213> Homo sapiens	
	<400> 60 gaaaacagat aaaacgccct acagaaaatc tcggcgaagt cccggaggac tctggtttct	60
55	aagatcagct gggcgcactt tctccgggac gtcccttctt ctcggtctca gcgccttcct	120
	gccctcagcc gcgcgcagct ttgttttggt gacaaactga aataagaaat ggaaatatat	180
60	tggcctttgc tgctgccagg gatgagaggt tgttgacgtc ggcgca	226

1,1

	5	<210><211><212><212><213>	61 580 DNA Homo	sapiens					
	J	<400>	61 cqca	ctcqqcqqat	ctcggtggca	gctgcctcct	tcatctccag	tgacgcctgc	60
						atgagatttg			120
	10					aagccaaggg			180
						tccaccaggc			240
	15	_							300
	13					gtaaagtcat			
						tcactctgat			360
	20					ctctctatct			420
						gctcaaactg			480
		ccgaago	ccca	tgaggcctag	cgtcttccac	gaatgagggc	cactcccatg	gccacctcga	540
Bull Ha	25	gaatct	gctc	cacgctctga	acccgcgcac	ctcaagccga			580
I then that they was half that	30	<210><211><211><212><213>	62 633 DNA Homo	sapiens					
The state of	35	<400> gcccagg	62 gaga	agccctccac	ggtgggcgtc	ctcctagaca	accagcaccc	cctgcaggca	60
Hall His	33	ccctcgt	ctg	gcagaatcag	ccctttccca	cctgcaggcc	cttctcagcg	cctctgactt	120
the free		cccacac	caca	gcacaggtta	caaactggtc	cctggcagtg	cactctagcg	ggcctctctc	180
	40	acaagtt	ctg	cgggcctcgt	ttcatggaaa	gcgggttgtg	gattcctgct	gcccttggat	240
The state of the s		ggcccct	gcg	cacgcacacc	tctgagcggg	cactgagcga	gcgtggggag	ctgctccctg	300
	45	ggaacta	aggc	aggagctttt	aaacaccctt	acacacagcc	attctgcggg	aatacatgct	360
	43	ttcccgg	gtaa	ggcttttact	gttcattcca	ggtaaattgg	aagtcgcaca	ccccaagctc	420
		caaatao	caac	tcgttagctg	gcaggtctct	gaagccaatt	ccttctgagg	aaaatggaga	480
	50	taatago	cagc	taccctccca	ggtgactggg	ggagaataaa	gtggctgtgc	atagtggtgt	540
		ttgcago	ctgg	tggctgctat	tatccttcat	tacagcttgt	aaaaagggtg	tctaggccat	600
	55	ttacaca	ıcag	ataggccggg	tggggtaagc	cga			633
	60	<210><211><212><213>	63 703 DNA Homo	sapiens					

300

aggtgcgggc atcgggcaga gcagctccag caggcaggac ctggggcctc caccctgcac

ctccggcaag tcaatccagt tccagctggt gctgcctccc ttgcctcatg ggctttattt tagaactctg agcaataata aaaaagacgc tacccgctac aatagatgtg gcagagaatc ttggctctca cttcatcana gatcaccctg aaatgatggt tgttgttaa 10 <pre></pre>		ccctgtgccc cgcgtgtggc ggaaccgccc cgaggggagg ctgtcaccac ggtgacaggc	360
tagaactctg agcaataata aaaaagacgc tacccgctac aatagatgtg gcagagaatc tagcctctca cttcatcana gatcaccctg aaatgatggt tgttgttaa 10		agccccacgc gagcctgaga accctcagcc cacctttttc tgtaatcaca gcaggcatct	420
tggctcttca cttcatcana gatcaccctg aaatgatggt tgttgttaa 10	5	ctccggcaag tcaatccagt tccagctggt gctgcctccc ttgcctcatg ggctttattt	480
210> 70 211> 748 212> DNA 15		tagaactctg agcaataata aaaaagacgc tacccgctac aatagatgtg gcagagaatc	540
<pre></pre>	10	tggctcttca cttcatcana gatcaccctg aaatgatggt tgttgttaa	589
<pre></pre>	15	<211> 748 <212> DNA	
gctacatctn ctctacattc taactaacac ttgttatttt ctgtttttgt ttgtttgtt ttaatagcca ttctagtagg catgaagtgg tgtttgcctg cttttttga tggaggtgga ggaatagggt ggaattggtc cttaaccatc aattaagctg ggggccttag acctctgtga attggctgtg acaatagcta aaggaggctg ctacctcata ctgaagagat gtttcctaag tttgtcaccg gagagggcac cgaaccaact tattgtcttg gagggaagaa gcagcaaggc agaagacttg aacttctcag agaaaaaaac agtctacaga cttcatttta tgctgtcctc acacactact gaaagctcta ccctggggac ctggcttgac ttctaaccta cncctgtgtt atttaggaag agctcccagc tgctctgagt ctcagtctcc caatcagtga aatggaggca 40 atagcacctg cctggctgca tcgcccaca gtgctgcaat gagcatccaa cgagagaaag cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc tagaagaaaa tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg ctgacagaat gtatgttgcg gctgtccc 50 <pre> <210> 71 <211> 599 <212> DNA <213> Homo sapiens </pre> 5220> <pre> <220> misc_feature <222> ()() <223> "n" refers to an undetermined base</pre>	20	<221> misc_feature <222> ()()	
ttaatagcca ttctagtagg catgaagtgg tgtttgcctg cttttttga tggaggtgga ggaatagggt ggaattggtc cttaaccatc aattaagctg ggggccttag acctctgtga attggctgtg acaatagcta aaggaggctg ctacctcata ctgaagagat gtttcctaag tttgtcaccg gagagggcac cgaaccaact tattgtcttg gagggaagaa gcagcaaggc agaagacttg aacttctcag agaaaaaaac agtctacaga cttcattta tgctgtcctc acaccactact gaaagctcta ccctggggac ctggcttgac ttctaaccta cncctgtgtt atttaggaag agctcccagc tgctctgagt ctcagtctcc caatcagtga aatggaggca 40 atagcacctg cctggctgca tcgccccaca gtgctgcaat gagcatccaa cgagagaaag cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc tagaagaaaa tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg ctgacagaat gtatgttgcg gctgtccc 50 <pre> <210 > 71 <211 > 599 <212 > DNA <213 > Homo sapiens </pre> <pre> <220 > <221 > misc_feature <222 > () () <223 > "n" refers to an undetermined base</pre>	25		60
attggctgtg acaatagcta aaggaggctg ctacctcata ctgaaggat gtttcctaag tttgtcaccg gagagggcac cgaaccaact tattgtcttg gagggaagaa gcagcaaggc agaagacttg aacttctcag agaaaaaaac agtctacaga cttcattta tgctgtcctc acacactact gaaagctcta ccctggggac ctggcttgac ttctaaccta cncctgtgtt atttaggaag agctcccagc tgctctgagt ctcagtctcc caatcagtga aatggaggca 40 atagcacctg cctggctgca tcgccccaca gtgctgcaat gagcatccaa cgagagaaag cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc tagaagaaaa tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa 45 aagccaggaa ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg ctgacagaat gtatgttgcg gctgtccc 50 <210> 71 <211> 599 <212> DNA <213> Homo sapiens 55 <220> <221> misc_feature <222> ()() <223> "m" refers to an undetermined base	25	ttaatagcca ttctagtagg catgaagtgg tgtttgcctg ctttttttga tggaggtgga	120
tttgtcaccg gagagggcac cgaaccaact tattgtcttg gagggaagaa gcagcaaggc agaagacttg aacttctcag agaaaaaaac agtctacaga cttcatttta tgctgtcctc acacactact gaaagctcta ccctggggac ctggcttgac ttctaaccta cncctgtgtt atttaggaag agctcccagc tgctctgagt ctcagtctcc caatcagtga aatggaggca 40 atagcacctg cctggctgca tcgccccaca gtgctgcaat gagcatccaa cgagagaaag cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc tagaagaaaa tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg ctgacagaat gtatgttgcg gctgtccc 50 <pre></pre>		ggaatagggt ggaattggtc cttaaccatc aattaagctg ggggccttag acctctgtga	180
agaagacttg aacttetcag agaaaaaaac agtetacaga etteattta tgetgteete acacactact gaaageteta eeetggggae etggettgae teetaaceta encetgtgtt atttaggaag ageteecage tgetetgagt eteagtetee caateagtga aatggaggea 40 atageacetg eetggetgea tegeeceaca gtgetgeaat gageateeaa egagagaaag ettgteacet gtgttgeaaa etaagttaca eaaatgeagg eagtageage tagaagaaaa tggttgggaa tetgaaaaga attaaageee eeeatgaatt tetteteacg eeteeteeaa aageeaggga etgetteace eegeeteeag gaetgetege teeageattt eeggeagetg etgacagaat gtatgttgeg getgteee 50 <pre> <210> 71 <211> 599 <212> DNA <213> Homo sapiens 55 </pre> <pre> <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base</pre>	30	attggctgtg acaatagcta aaggaggctg ctacctcata ctgaagagat gtttcctaag	240
acacactact gaaageteta eeetggggae etggettgae ttetaaceta encetgtgtt atttaggaag ageteeeage tgetetgagt eteagtetee eaateagtga aatggaggea 40 atageacetg eetggetgea tegeeeeaca gtgetgeaat gageateeaa egagagaaag ettgteacet gtgttgeaaa etaagttaca eaaatgeagg eagtageage tagaagaaaa tggttgggaa tetgaaaaga attaaageee eecatgaatt tetteteaeg eeteeteeaa 45 aageeaggga etgetteaee eegeeteeag gaetgetege teeageattt eeggeagetg etgacagaat gtatgttgeg getgteee 50 <pre></pre>		tttgtcaccg gagagggcac cgaaccaact tattgtcttg gagggaagaa gcagcaaggc	300
acacactact gaaagctcta ccctggggac ctggcttgac ttctaaccta cncctgtgtt atttaggaag agctcccagc tgctctgagt ctcagtctcc caatcagtga aatggaggca 40 atagcacctg cctggctgca tcgccccaca gtgctgcaat gagcatccaa cgagagaaag cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc tagaagaaaa tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg ctgacagaat gtatgttgcg gctgtccc 50 <pre> <210> 71 <211> 599 <212> DNA <213> Homo sapiens 55 </pre> <pre> <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base</pre>	35	agaagacttg aacttctcag agaaaaaaac agtctacaga cttcatttta tgctgtcctc	360
atagcacctg cctggctgca tcgccccaca gtgctgcaat gagcatccaa cgagagaaag cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc tagaagaaaa tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg ctgacagaat gtatgttgcg gctgtccc 50 <pre></pre>	55	acacactact gaaagctcta ccctggggac ctggcttgac ttctaaccta cncctgtgtt	420
cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc tagaagaaaa tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg ctgacagaat gtatgttgcg gctgtccc 50 <pre></pre>		atttaggaag agctcccagc tgctctgagt ctcagtctcc caatcagtga aatggaggca	480
tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg ctgacagaat gtatgttgcg gctgtccc 50 <pre></pre>	40	atagcacctg cctggctgca tcgccccaca gtgctgcaat gagcatccaa cgagagaaag	540
aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg ctgacagaat gtatgttgcg gctgtccc 50 <pre></pre>		cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc tagaagaaaa	600
ctgacagaat gtatgttgcg gctgtccc 50 <210> 71 <211> 599 <212> DNA <213> Homo sapiens 55 <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	45	tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa	660
50 <pre></pre>		aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg	720
<pre></pre>		ctgacagaat gtatgttgcg gctgtccc	748
<pre><220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base</pre>		<211> 599 <212> DNA	
VV	60	<221> misc_feature <222> ()()	

Harry H. H. Marrie Land Harl Wall Bash Marth

		gctttttccg ttttgtctag aaatttgggt tgcactaaat tctcagctga atgaagatga	180
		gaaggggctg gcagaggggg tggctccagc tctctgagaa cctggctcct tcccgggtgg	240
	5	cagggagaga tggcccctgg ggagacgggg agggtgcact gcctcatgcc caaaccacca	300
		gcttctagtt gagaaatcag aattttctct gcagaataag gaaaaagcat tgtcaccatg	360
	10	attcacgtgg agctggccac actcaggaaa ttcaatgggg tcccacaggg gctccgaggg	420
	10	ggaaggagag ggcctgggac atgcccctcc agccatcatg gaacaggatg ggcagggccg	480
		gccctcactg ctctctaaca gtgaaaagcc acatctccac tttggaaaac acaggcatgt	540
	15	gagagcctgg gg	552
	20	<210> 74 <211> 450 <212> DNA <213> Homo sapiens	
# EE	25	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
Hear has had may	30	<400> 74 tggaggcttc gagggaagtg aggttccctc ggacacccta gtgggaaggc tccacgcggt	60
:= ::		aatggaacca cgctgtgaaa cctttgcctt tgggtgtcat ggtggaagca aatcttagaa	120
¥:	35	gacatttaat ttaaaaaatt cagttttaaa aaatgttgac ttaaaaagca gttttgaaaa	180
1		acaacctgga attagcctga gatcgatgcc aactcttagc agtctgtata ctaaacacag	240
thin him		ttaaacaact gtagctgctg gcaagctgga acctttttgt aaagaagcac ataaaaagga	300
77	40	cagaactggt ggaaggtgca ctggtctttc cacatcgcca ccaggcgttt tgaagcgtgc	360
		tgctgacacg ctactcanat gcttctggaa gccaaacaat aanaaaaanc cccattgttt	420
	45	cccttgctgg gttttacccn ccatggtgga	450
	50	<210> 75 <211> 432 <212> DNA <213> Homo sapiens	
	55	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	60	<400> 75 ggacaatgag gagggggtgc acgtggaatc cccacggata ggccggacgc cgggcaggag	60
	UU	cetttacaga gatacacage etcetetaga aggestagte getgestagt gestactaga	120

The second second

1

3:22

1.1

į. ±

#<u>!</u>

accegataac ggeteecaag geecegtgtt tacattettt eecaetggaa geagaaatta

	tcacgcccaa	attcctacct	gccttccctg	gattcctggt	ttcctaagaa	acgggtttgg	300
5	cccacccctg	ggcgttcgaa	cagtccacag	aagcgggcaa	aggaaagacg	actcagtctt	360
J	tcccctccgc	caatctcttc	tccgggacca	caaatcccag	aagtcaccgc	ggccgctaag	420
	ccga						424
10 15	<210> 80 <211> 285 <212> DNA <213> Homo	o sapiens					
20	<222> ()	c_feature .() refers to a	an undeterm:	ined base			
	<400> 80 caaccggggg	gcanaggcga	tcaaaantgg	ggtgcgctgt	ggtgggcgac	acgtgtggcg	60
25	cgggtctcat	tatccgccct	tttcacttcc	tggactggaa	atggcagacc	atatgatggc	120
	aatgaaccac	gggcgcttcc	ccgacggcac	caatgggctg	caccatcacc	ctgcccaccg	180
30	catgggcatg	gggcagttcc	cgagccccca	tcaccaccag	cagcagcagc	cccagcacgc	240
30	cttcaacgcc	ctaatgggcg	agcacataca	ctacggcgcg	ggcaa		285
35	<210> 81 <211> 401 <212> DNA <213> Homo	o sapiens					
40	<400> 81 cagatatgta	tcctcctctt	tccaaccctg	cgtccctttg	aggcctggtc	ggcgttccca	60
	acctgcccct	accccaccaa	cccctgtccc	tttggccatt	agtcccggat	tatctagcga	120
45	tgccccgtgt	accgtctggc	tttgctgttt	actccgcgct	cggccagttg	aggccttttg	180
73	tatttattcc	tgattttctc	ataggggtaa	agtgccttcg	ggaggatagg	acaagtccca	240
	tcctgttcat	acgaattaca	gctcggactt	cgggcccttt	tacactgcct	tttgtatctg	300
50	ttaacttgcg	ctaaaaacga	ttcggttctt	ttttttgagg	aagggggttg	gggggcggag	360
	actctgtcgc	ccagtcctga	gggccgcggc	gcgcaagccg	a		401
55	<210> 82 <211> 268 <212> DNA <213> Homo	o sapiens					
60	<400> 82	annatatata	tattagggag	ggagatggag	tatoootoat	accaataast	60

"n" refers to an undetermined base

50

<223>

89

220

60

<210>

<211>

		<212> DNA <213> Homo sapiens	
	5	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	10	<400> 89 attggcccgn caggcgggaa acangctgnn nttctctnac cgttntccag cactgcccag	60
		accaggaggc gcagggagag gaggggncag cggttccgng accgctcctc ccgctgtccc 1	20
	15	tgctctccag cctntgcctc tgcaggagcc cgcgggantt gccccaggcc cctgtcccca 1	.80
		cctgtggctc ccgtcctggt cgctcccggg gccgcggcaa 2	20
	20	<210> 90 <211> 273 <212> DNA <213> Homo sapiens	
Hard Time Hard Hand	25	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
in H Herry Hart Hard South Ball	30	<400> 90 gnagggnggn ggtcgcggac gccggtgggc agttcttgtt cggtgatgtg ggttaaaaag	60
1.4		gactgcagcg aggagccggg gcggcgctcg gagtaatcac cggcggcatc aaaaagcgcc 1	20
4	35	atcatggcat cgaggtcgcg gtctgcttgg gagccggtgg cgccgccgcg caaggcagat 1	.80
flus King Rad		gcctgcaggc gcatatccag ctcggtagcg ctccatacct cccacaggat ttcttccaca 2	240
H., P. Ruff A	40	gaggettggg ettgtatage etgeegeece gea	273
	45	<210> 91 <211> 361 <212> DNA <213> Homo sapiens	
	50	<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
	55	<400> 91 acggcttctn tnctaagtga cacggtgtgt gaaattcggt tggggaggta gttctgtaaa	60
		ctgcgtctcc ccgccagcta aggaagttga gtgaagggag cgttgccgtc tgggaatcgt 1	120
	60	agtcctcaca aaggcgtgag taggcggcaa ataaggattt gggtttagcc ttggggattc 1	180

actcctgtca aagctgttag agaagctccc anaactcnta aagtaacaga aactacttgc

	ggcaacattt	gtaacttcca	cctggctcat	tatcttccac	tgttaccttg	tgttctagat	300
~	aagttataat	ttattctaca	tatcgttcag	aagtcttgtg	cctgttccat	attgtnagca	360
5	t						361
10	<210> 92 <211> 462						
	<212> DNA <213> Homo	sapiens					
	<400> 92	-					
15	gctgcccaca	ctggatggga	aggaccggcg	cctgcagcat	ctgccctcca	agccttcgta	60
	gctccctcct	tectgcagga	taaactctaa	actccttagc	acaacgtggg	agccttctca	120
20	gagactgggt	ccaacccatc	tccagccgca	gcctcccctc	ctggccccac	tgccacaccc	180
20	cegggcctcc	ggccacactg	agcctctccc	ggtttcccag	gatacaacac	tcgcccattc	240
	atagtgtggt	gccttttgca	cgtgctgttc	ctctgcttgg	ggatgctgtt	ggtctttctc	300
25	agccaggtga	agaggacgct	gaatgtcacc	tgcttgagta	tcaggaccgg	ggactgggcg	360
	ctggacctag	actcttggcc	ctggagagaa	gccctgcatg	gggccgcagc	ctgcccccgt	420
20	ccctgctcac	agaaaagctc	agccttgcag	ccgcgtggga	ga		462
30							
	<210> 93 <211> 591						
35	<212> DNA <213> Homo	sapiens					
	<400> 93						
						tgtcggggaa	60
40						gagtccgaac	120
	tgtccccact	tggccgttcc	ctccccactg	gggggccctg	agccagtggc	ctcctctctc	180
45	ggggcctccc	cggaaggagc	caaggtctgt	ctgcgaggca	ccggtccccg	gccacggcca	240
	tcagccccca	gaggtggatc	agggcatcac	ccccactcca	cagctgaggc	cagggggtca	300
	gggaggcaac	cagggcagac	ctggaacctg	gctctgagac	aggacggccg	agggcccctc	360
50	cactctccct	ccctcggggt	gggcactgac	ctggacgcca	aagatgtcct	cacactggtg	420
	gcgtttgagt	agggcccact	cggacatctg	gccctgcagc	aggttggtgc	agacggccat	480
55	ctctccacat	gtcacatccg	ccccgaagcg	cttgcagatc	cgtcggaagg	gcaggttccc	540
55	acactgcggg	gggagcagga	cagacacaca	tgctcttgca	cgcgcacctc	a	591
	<210> 94						

<211> 279 <212> DNA

120

180

240

279

60

120

180

240

300

351

60

120

171

<221> misc_feature

()..()

"n" refers to an undetermined base

<220>

<222>

<223>

60

<213> Homo sapiens

_	<400> 97 cctccctggc	ccttgttccc	aaggagcttc	ccttgtccca	gcctcttcgc	cagtgacttc	60
5	tcactggacc	attcctttac	aaggagcctg	ttttttgtgt	tttttttta	caccttttt	120
	cttctatttc	acagaaggaa	caccggacgt	ccctntgtga	tggcagcagc	catgctgcct	180
10	ntgtttccgc	tcaggggttc	tntgccacct	ccaattccac	ccagtctntt	ggcctcggct	240
	gggcttcggc	tcccgcctnt	gngccaaaaa	ttgcaatgcc	cgcggtcagg	gcnctttgcg	300
15	gagtctcacc	gcctgcggag	gcttgattcc	ctcctcacag	gcagcagcgt	ttgatggccg	360
13	gtgacncccc	cctttccaag	cacatntntc	atggcccctg	aatgccactt	acagggcgtc	420
	cctccctgtg	ctaagtgctg	cctgganctt	tgggtgtggc	agcagcaaan	acctctaccc	480
20	ttgnggatgt	tcgtttcggg	gnggaaagac	anatancaaa	gttggtcgta	aactgtaaag	540
	tgtgctggga	ggaaactgag	gcagggaggg	cctggtgcca	ctggggagcn	ctgccccgac	600
25	cccatgtgct	tcccaggctc	ccttggagcc	acgtggatgg	cgacttcctg	accttggagg	660
23	ccgnggncct	cantcctcat	gctcgatggc	gtcanccccc	tcttggggaa	atccaancat	720
	tcctgacctg	aaaatgcacc	cnc				743
30 35	<210> 98 <211> 589 <212> DNA <213> Home	o sapiens					
33	<400> 98 ttgccgcgct	gataaaggaa	gcgtctagaa	ggtctcccca	gccttcatca	tctgagactt	60
40	ggctttcagc	cccaaagcac	taggccctgc	tgttaacctt	ccaccattaa	cctttggtgc	120
40	tcttcaatta	gcagcagcca	ggggtccttg	gcaggtatga	gaatttggaa	ggacagcccc	180
	agggcatggc	ccccggctgc	agcaaaagtt	ctaagtgttc	ttctgttgga	aggaagccca	240
45	ggagatattg	atcagctgca	ggtggggag	gccccagatc	ccacccttgc	ctgcctccag	300
	gagaaggttc	tccatgggcc	aaaatggagg	cagagtccca	ctttgcctgg	gcagctccct	360
50	gagcatggct	ccctgtggac	ggagctgagt	gacgtcatga	ctctaggcct	caacaaaaga	420
30	gctttggaaa	atcccgatga	ttcgaattgt	attaaatcaa	caaacatcgg	gttgcacagt	480
	tactagaaaa	cggagatctg	cgtcatcact	tactagacac	gtgaccttga	. acggcggctt	540
55	ccccgtgtga	aacagcaaag	ttctgtaacc	cccatgaacg	cgcctctca		589

<210> 99

<211> 538

60 <212> DNA

<213> Homo sapiens

<400> 99

	tgccgcgtct	gaccctactc	tcacaaagac	tttccaacta	gcataattga	gttaaatggt	60
5	cccccaact	cccttaattc	aagctaaact	tgcagtttaa	caactatagg	agtgatatct	120
	acacattaat	gccacacttt	aacatgccta	acactacaca	tgaacacgct	tccgggtgct	180
10	gttacatccc	gctctctccc	aagcacgaga	cacaggcagg	atgctgacgt	cctgcttctc	240
10	tgctgcgggc	gggaagtcaa	gactccggat	ttgctgcagg	agttgccgtg	gggatcctga	300
	cttcacgcag	gagatggtcg	gcctctggaa	gtgcctggcc	cgtttatcct	tgaaatctac	360
15	ctgtgcaggt	ggtccttgcc	tcagcccctc	aggacaacac	aggtctttcc	taagttacag	420
	ggagaccatc	agattgtcgt	gtccgagccc	cctgaagtgg	aacccacagt	ctccattcag	480
20	tetgecetca	gtttccctcc	cctctgcagg	gccattgctg	ctgtggacgc	gcctctca	538
25	<210> 100 <211> 486 <212> DNA <213> Homo	o sapiens					
	<400> 100 agaggtagaa	aaaggagtta	gaagcaaaga	ggaaaaaata	aataaacagg	caacaaaaac	60
30	ccaacccagc	cagcctgagc	catttgcatt	agtgttcatt	taggaaatta	gcagacggga	120
	aacgctgggg	agtggagtgg	gccccggcct	tggggactgc	agagcccgct	cagccctggg	180
25	tggctgggcc	cacatgggct	gtgccccagg	agcacaggag	gacccagagg	gtggccgaga	240
35	gagcctcgcc	gggctccggt	atgggtcctg	gcccctcaca	ggtgcgagcc	tggcccagtg	300
	actgtggacg	ctgtgggaga	gcaggcctcc	gatacgcagg	gctgggactg	ctgacctgga	360
40	aggtggtgcc	gggcgtgtct	ggtgaaggcg	ccgttggcag	ctagagagag	acggcggatg	420
	gggtgacgcc	attacccacg	gtcccagttt	tgaggcttga	cggtgacgga	aaaggacgtc	480
45	ggcgca						486
50	<210> 101 <211> 450 <212> DNA <213> Homo	o sapiens					
	<400> 101 aattgaacca	gggtgcacgg	ccagcgccag	acacagtgag	cttcatggca	actccagttt	60
55	accggtgaga	accatggggc	cactcagaga	ggcaaagagc	ctcacccgag	tgagtcctct	120
	ggcttctccc	cacctgggcc	gggccccagg	ccgcgctgtg	gttccctttc	cagccgtcat	180
60	ccctgggtga	tgggaggtgg	gcattctgtt	caaccttgtg	ggtcagggag	ccagggccag	240
00	tgtgcagatg	agaagaggct	gcggttactg	gcgatgcgag	ggactgtccc	cttcgtgggc	300

		actiticiti itgaggedag tgaaatgigt teeciggggi igiatieeig agaaggeete	360
	5	atttaaaggg agccgccaaa ccaagtgggc ttagcaaaag cagtttgtca cctggcagca	420
	3	cgtgtgagcc tcgcccggac gcgcctctca	450
	10	<210> 102 <211> 292 <212> DNA <213> Homo sapiens	
	15	<400> 102 agcgcggcct ggcagattgc ccattaatga aactcagtgg gcagaggctg ctgagggaca	60
		cggattccca ctccccgggg gagggggtgg aaatggcttc ctccctctgc ttccctacca	120
	20	ccagtaatgg ggagctcacc atgcttagaa gactcttcct tgcatggagt tcgggcctcc	180
	20	tccctgcacc taccacccta gtggccccaa gtcttaaggc tgaaggttaa tcctgtgtcc	240
		ttcagaagca aaggctgcaa ccgataccaa acagaggtgg ccagcgcggg ca	292
	25	<210> 103 <211> 395 <212> DNA	
	30	<213> Homo sapiens	
,		<220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base	
ie ne	35		
think theelt Minn firm days		<400> 103 agagettate cegegageae aagggageeg gggeetggge egeegtggga aggggeteet	60
huff Had	40	gccttccggg gacgcggtca gggaagtcca gccggggtgc tctctgcact gcgggtgccg	120
		ggctcggcag aggccaaccc ggcaaaacga gcaggatctc ccggccccac cctagtgggc	180
	45	tccgcctgcc ccaacaacca tcctgccatc ctccctgcga gacaggtgac tttcctctct	240
		gatgcggtgc atctgtcatc tgtctaacgg gcccattccc cagtgaaaca cccccaacca	300
		aagacacgaa ggggaaggcg caagcttcta ccaagctcan tttgcccatc tggtgcccac	360
	50	ctgcctngta tttggtgact tggaggatag gaagg	395

We claim:

5

15

20

25

30

- 1. A diagnostic or prognostic assay for cancer, comprising:
- obtaining a tissue sample from a test tissue; (a)
- performing a methylation assay on DNA derived from the tissue sample, (b) wherein the methylation assay determines the methylation state of a CpG dinucleotide within a DNA sequence of the DNA, and wherein the DNA sequence is a sequence selected from the group consisting of sequences of SEQ ID NOS:1-103, sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID 10 NOS:1-103, and combinations thereof, wherein the CpG island sequence associated with the sequence of the particular SEQ ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5; and
 - determining a diagnosis or prognosis based, at least in part, upon the (c) methylation state of the CpG dinucleotide within the DNA sequence.
 - The diagnostic or prognostic assay of claim 1 wherein the DNA sequence is a 2. sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, and combinations thereof.
 - 3. The diagnostic or prognostic assay of claim 2 wherein the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS: 2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90, and combinations thereof.
 - The diagnostic or prognostic assay of claim 1 wherein the methylation assay procedure is selected from the group consisting of MethyLight, MS-SNuPE, MSP MCA, COBRA, and combinations thereof.
 - The diagnostic or prognostic assay of claim 1 wherein the methylation state of 5. the CpG dinucleotide within the DNA sequence is that of hypermethylation, hypomethylation or normal methylation.
 - 6. The diagnostic or prognostic assay of claim 1 wherein the cancer is selected from the group consisting of bladder cancer, prostate cancer, colon cancer, lung cancer, renal cancer, leukemia, breast cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma.
 - A kit useful for the detection of a methylated CpG-containing nucleic acid 7. comprising a carrier means containing one or more containers comprising:

10

15

- (a) a container containing a probe or primer which hybridizes to any region of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103; and
- (b) additional standard methylation assay reagents required to affect detection of methylated CpG-containing nucleic acid based, at least in part, on the probe or primer.
- 8. The kit of claim 7, wherein the additional standard methylation assay reagents are standard reagents for performing a methylation assay from the group consisting of MethyLight, MS-SNuPE, MSP MCA, COBRA, and combinations thereof.
- 9. The kit of claim 7, wherein the probe or primer comprises at least about 12 to 15 nucleotides of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103.
 - 10. An isolated nucleic acid molecule comprising a methylated or unmethylated polynucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:97, and SEQ ID NO:100.
 - 11. The nucleic acid of claim 10, wherein the nucleic acid is methylated.
 - 12. The nucleic acid of claim 10, wherein the nucleic acid is unmethylated.

Abstract

5

There is disclosed 103 novel methylation-altered DNA sequences ("marker sequences") that have distinct methylation patterns in cancer, compared to normal tissue. In many instances, these marker sequences represent novel sequences not found in the GenBank data base, and none of these marker sequences have previously been characterized with respect to their methylation pattern in human cancers including, but not limited to those of bladder and prostate. These 103 sequences have utility as diagnostic, prognostic and therapeutic markers in the treatment of human cancer, and as reagents in kits for detecting methylated CpG-containing nucleic acids.