

Exponentielles Zurückweichen

- Retransmission Timout (RTO)
 - regelt Zeitraum zwischen Senden von Datenduplikaten, falls Bestätigung ausbleibt
- Wann wird ein TCP-Paket nicht bestätigt?
 - Wenn die Bestätigung wesentlich länger benötigt, als die durchschnittliche Umlaufzeit (RTT/round trip time)
 - 1. Problem: Messung der RTT
 - 2. Problem: Bestätigung kommt, nur spät
 - Sender
 - Wartet Zeitraum gemäß RTO
 - Sendet Paket nochmal und setzt
 - RTO ← 2 RTO (bis RTO = 64 Sek.)
- Neuberechnung von RTO, wenn Pakete bestätigt werden

Schätzung der Umlaufzeit 1: R= M4 M3 M2 M1 M0 (RTT/Round Trip Time)

2 R = 0,5N4 + 0,1M3 3: R= 0,140,52N4 + 0,9.0,1M,

 $A \leftarrow (1-g)A + gM$

- TCP-Paket gilt als nicht bestätigt, wenn Bestätigung "wesentlich" länger dauert als RTO Y: R=0,8Ny+0,3.0,1N2
 - RTT nicht on-line berechenbar (nur rückblickend)
 - RTT schwankt stark
- Daher: Retransmission Timeout Value aus großzügiger Schätzung:
 - RFC 793: (M := letzte gemessene RTT)
 - R $\leftarrow \alpha$ R + (1- α) M, wobei α = 0,9
 - RTO $\leftarrow \beta$ R, wobei β = 2
 - Jacobson 88: Schätzung nicht robust genug, daher
 - A \leftarrow A + g (M A), wobei g = 1/8
 - D \leftarrow D + h (|M A| D), wobei h = 1/4
 - RTO ← A + 4D
- Aktualisierung nicht bei mehrfach versandten Pakete

+0,9.0,7 N,

TCP - Algorithmus von Nagle

- Wie kann man sicherstellen,
 - dass kleine Pakete zeitnah ausgeliefert werden
 - und bei vielen Daten große Pakete bevorzugt werden?
- Algorithmus von Nagle:
 - Kleine Pakete werden nicht versendet, solange Bestätigungen noch ausstehen.
 - Paket ist klein, wenn Datenlänge < MSS
 - Trifft die Bestätigung des zuvor gesendeten Pakets ein, so wird das nächste verschickt.
- Beispiel:
 - Telnet versus ftp
- Eigenschaften
 - Selbst-taktend: Schnelle Verbindung = viele kleine Pakete

Flusskontrolle

- Problem: Schneller Sender und langsamer Empfänger
 - Der Sender lässt den Empfangspuffer des Empfängers überlaufen
 - Übertragungsbandweite wird durch sinnlosen Mehrfachversand (nach Fehlerkontrolle) verschwendet
- Anpassung der Frame-Sende-Rate an dem Empfänger notwendig

Langsamer Empfänger

Schneller Sender

Gleitende Fenster (sliding windows)

- Datenratenanpassung durch Fenster
 - Empfänger bestimmt Fenstergröße (wnd) im TCP-Header der ACK-Segmente
 - Ist Empfangspuffer des Empfängers voll, sendet er wnd=0
 - Andernfalls sendet Empfänger wnd>0
- Sender beachtet:
 - Anzahl unbestätigter gesender Daten ≤ Fenstergröße

Slow Start Congestion Fenster

- Sender darf vom Empfänger angebotene Fenstergröße nicht von Anfang wahrnehmen
- 2. Fenster: Congestion-Fenster (cwnd/Congestion window)
 - Von Sender gewählt (FSK)
 - Sendefenster: min {wnd,cwnd}
 - S: Segmentgröße
 - Am Anfang:
 - cwnd ← S
 - Für jede empfangene Bestätigung:
 - cwnd ← cwnd + S
 - Solange bis einmal Bestätigung ausbleibt
- "Slow Start" = Exponentielles Wachstum

TCP Tahoe: Congestion Avoidance

Jacobson 88:

x: Anzahl Pakete pro RTT

- Parameter: cwnd und Slow-Start-Schwellwert (ssthresh=slow start threshold)
- S = Datensegmentgröße = maximale Segmentgröße
- Verbindungsaufbau:
 - cwnd ← S

ssthresh \leftarrow 65535

x ← **1**

y ← max

- Bei Paketverlust, d.h. Bestätigungsdauer > RTO,
 - multiplicatively decreasing
 cwnd ← S sst

 $\underline{\text{ssthresh}} \leftarrow \max \left\{ 2S, \frac{1}{2} \min \left\{ \text{cwnd}, \text{wnd} \right\} \right\}$

x ← 1

y ← x/2

- Werden Segmente bestätigt und cwnd ≤ ssthresh, dann
 - slow start: cwnd ← cwnd + S

 $x \leftarrow 2 \oplus x$, bis x = y

Werden Segmente bestätigt und cwnd > ssthresh, dann additively increasing

cwnd
$$\leftarrow$$
 cwnd + S $\frac{S}{cwnd}$. $\frac{S}{S}$ $\frac{cwnd}{S}$ $\frac{cwnd}{S}$

x ← x +1

TCP Tahoe

Fast Retransmit und Fast Recovery

TCP Tahoe [Jacobson 1988]:

- Geht nur ein Paket verloren, dann
 - Wiederversand Paket + Restfenster
 - Und gleichzeitig Slow Start
- Fast retransmit
 - Nach drei Bestätigungen desselben Pakets (triple duplicate ACK),
 - sende Paket nochmal, starte mit Slow Start

TCP Reno [Stevens 1994]

- Nach Fast retransmit:
 - ssthresh ← min(wnd,cwnd)/2
 - cwnd ← ssthresh + 3 S
- Fast recovery nach Fast retransmit
 - Erhöhe Paketrate mit jeder weiteren Bestätigung
 - cwnd ← cwnd + S
- Congestion avoidance: Trifft Bestätigung von P+x ein:
 - cwnd ← ssthresh

$$x \leftarrow y + 3$$

Stauvermeidungsprinzip: AIMD

- Kombination von TCP und Fast Recovery verhält sich im wesentlichen wie folgt:
 - Verbindungsaufbau:

- Bei Paketverlust, MD:multiplicative decreasing

- Werden Segmente bestätigt, AI: additive increasing

Beispiel: TCP Reno in Aktion

Durchsatz und Antwortzeit

Klippe:

- Hohe Last
- Geringer Durchsatz
- Praktisch alle Daten gehen verloren

Knie:

- Hohe Last
- Hoher Durchsatz
- Einzelne Daten gehen verloren

Ein einfaches Datenratenmodell

- n Teilnehmer, Rundenmodell
 - Teilnehmer i hat Datenrate x_i(t)
 - Anfangsdatenrate x₁(0), ..., x_n(0) gegeben
- Feedback nach Runde t:

$$- y(t) = 0, falls$$

- y(t) = 0, falls
$$\sum_{i=1}^{n} x_i(t) \leq K$$

-
$$y(t) = 1$$
, falls

- y(t) = 1, falls
$$\sum_{i=1}^{n} x_i(t) > K$$

- wobei K ist Knielast
- Jeder Teilnehmer aktualisiert in Runde t+1:

$$- x_i(t+1) = f(x_i(t), y(t))$$

- Increase-Strategie
$$f_0(x) = f(x,0)$$

$$f_0(x) = f(x,0)$$

- Decrease-Strategie
$$f_1(x) = f(x,1)$$

$$f_1(x) = f(x,1)$$

Wir betrachten lineare Funktionen:

$$f_0(x) = a_I + b_I x$$
 und $f_1(x) = a_D + b_D x$.

Lineare Datenratenanpassung

Interessante Spezialfälle:

AlAD: Additive Increase
 Additive Decrease

$$f_0(x) = a_I + x \qquad \text{und} \qquad f_1(x) = a_D + x \; ,$$
 wobei $a_I > 0$ und $a_D < 0$.

 MIMD: Multiplicative Increase/Multiplicative Decrease

$$f_0(x) = b_I x \qquad {\sf und} \qquad f_1(x) = b_D x \; ,$$
 wobei $b_I > 1 \; {\sf und} \; b_D < 1.$

- AIMD: Additive Increase Multiplicative Decrease

$$f_0(x) = a_I + x \qquad \text{und} \qquad f_1(x) = b_D x \; ,$$
 wobei $a_I > 0$ und $b_D < 1$.

Fairness und Effizienz

Effizienz

- Last:

$$X(t) := \sum_{i=1}^{n} x_i(t)$$

- Maß

$$|X(t) - K|$$

Fairness: Für $x=(x_1, ..., x_n)$:

$$F(x) = \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n \sum_{i=1}^{n} (x_i)^2}$$

- $-1/n \le F(x) \le 1$
- $F(x) = 1 \leftrightarrow absolute Fairness$
- Skalierungsunabhängig
- Kontinuierlich, stetig, differenzierbar
- Falls k von n fair, Rest 0, dann F(x) = k/n

$$F(x) = \frac{\left(\sum_{i=1}^n x_i\right)^2}{n\sum_{i=1}^n (x_i)^2} . \qquad f(x) = \frac{\left(\sum_{i=1}^n x_i\right)^2}{n \cdot n \cdot x^2} .$$
 where some simples are some simples and the second sec

$$F(x) = \frac{x_1 - x_2 - \dots - x_n = 0}{x_1 - x_2} = \frac{1}{x_1}$$

Konvergenz

- Konvergenz unmöglich
- Bestenfalls Oszillation um Optimalwert
 - Oszillationsamplitude A
 - Einschwingzeit T

Vektordarstellung (I)

Vektordarstellung (II)

AIAD Additive Increase/ Additive Decrease

MIMD: Multiplicative Incr./ CoNe Freiburg Multiplicative Decrease

AIMD: Additively Increase/ CoNe Freiburg Multiplicatively Decrease

