

INTERPOLATION POLYNOMIALE

Correction-Exercice 4

Enoncé

Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = \cos\left(\frac{\pi}{4}x\right).$$

- ① Déterminer l'expression du polynôme de Newton interpolant les points $M_0(0, f(0)), M_1(1, f(1))$ et $M_2(2, 0)$.
- ② Calculer la valeur approchée de f au point $x = \frac{1}{2}$, puis déterminer l'erreur d'interpolation en ce point.
- 3 Donner une majoration de l'erreur d'interpolation sur [0,2]. Conclure.
- 4 En ajoutant un point supplémentaire $M_3(3, f(3))$, déduire l'expression du nouveau polynôme qui interpole les points M_0, M_1, M_2 et M_3 .

Corrigé

Soit la fonction définie sur $\mathbb R$ par :

$$f(x) = \cos\left(\frac{\pi}{4}x\right).$$

1) Déterminer l'expression du polynôme de Newton interpolant les points $M_0(0,1)$, $M_1(1,\frac{\sqrt{2}}{2})$ et $M_2(2,\frac{1}{2})$.

Le polynôme de Newton s'exprime sous la forme :

$$P_2(x) = \beta_0 + \beta_1 x + \beta_2 x(x-1).$$

Calculons les coefficients β_0 , β_1 et β_2 :

- $\beta_0 = y_0 = 1$
- $\beta_1 = [y_0, y_1] = \frac{y_1 y_0}{x_1 x_0} = \frac{\frac{\sqrt{2}}{2} 1}{1 0} = -0.292$
- $\beta_2 = [y_0, y_1, y_2] = [y_1, y_2] [y_0, y_1] = -0.207$

2) Calculer la valeur approchée de f au point $x = \frac{1}{2}$, puis déterminer l'erreur d'interpolation en ce point.

La valeur approchée par le polynôme est donnée par :

$$P_2(0.5) = 0.905.$$

L'erreur d'interpolation est calculée comme suit :

$$E = |P_2(0.5) - f(0.5)| = |0.905 - 0.923| = 0.018.$$

3) Donner une majoration de l'erreur d'interpolation sur [0,2]. Conclure.

On sait que f est de classe C^3 sur [0,2] et les dérivées de f sont données par :

$$f'(x) = -\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}x\right),$$

$$f''(x) = -\left(\frac{\pi}{4}\right)^2\cos\left(\frac{\pi}{4}x\right),$$

$$f^{(3)}(x) = \left(\frac{\pi}{4}\right)^3\sin\left(\frac{\pi}{4}x\right).$$

D'où, on a:

$$\left| f^{(3)}(x) \right| \le \left(\frac{\pi}{4} \right)^3.$$

Par la suite, l'erreur d'interpolation est majorée par :

$$E(x) \le \frac{M}{(n+1)!} |x - x_0| |x - x_1| |x - x_2|,$$

où $M = (\frac{\pi}{4})^3$ et n = 2.

En remplaçant x par $\frac{1}{2}$, on obtient :

$$E\left(\frac{1}{2}\right) \le \frac{4}{3 \cdot 2 \cdot 6} \left(\frac{\pi}{4}\right)^3 \cdot \left|\frac{1}{2}\right| \left|\frac{1}{2} - 1\right| \left|\frac{1}{2} - 2\right| = 0.03.$$

4) En ajoutant un point supplémentaire $M_3(3, f(3))$, déduisons l'expression du nouveau polynôme qui interpole les points M_0, M_1, M_2 et M_3 . Le polynôme est donné par :

$$P_3(x) = \beta_0 + \beta_1 x + \beta_2 x(x-1) + \beta_3 x(x-1)(x-2).$$

avec:

$$\beta_3 = [y_0, y_1, y_2, y_3] = \frac{[y_1, y_2, y_3] - [y_0, y_1, y_2]}{x_3 - x_0} = \frac{0.207}{3} = 0.069.$$

Pour les différences divisées :

$$[y_1, y_2, y_3] = \frac{[y_2, y_3] - [y_1, y_2]}{x_3 - x_1} = \frac{\frac{y_3 - y_2}{x_3 - x_2} - [y_1, y_2]}{x_3 - x_1} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = 0.$$