Niech G=(X,Y,E) będzie nieskierowanym grafem dwudzielnym (to znaczy $X\cap Y=\varnothing$ oraz dla każdego $\{x,y\}\in E, \{x,y\}\cap X\neq\varnothing$ i $\{x,y\}\cap Y\neq\varnothing$). Zbiór krawędzi $S\subseteq E$ nazywamy skojarzeniem w G wtw, gdy żadne dwie krawędzie w S nie są incydentne, tzn. dla każdych dwóch różnych krawędzi $e_1\in S$ i $e_2\in S, e_1\cap e_2=\varnothing$. Wierzchołek $x\in X\cup Y$ nazywamy skojarzonym względem S, gdy istnieje $y\in X\cup Y$, takie że $\{x,y\}\in S$. Skojarzenie S nazywamy doskonalym wtw, gdy wszystkie wierzchołki z $X\cup Y$ są skojarzone względem S.

Załóżmy, że krawędzie G są ważone wagami dodatnimi, tzn. zdefiniowana jest funkcja $w:E\to\mathbb{N}\setminus\{0\}$. Zadanie polega na napisaniu programu szukającego doskonałego skojarzenia w G o maksymalnej wadze. Waga skojarzenia S jest zdefiniowana następująco:

$$w(S) = \min\{w(e) : e \in S\},\$$

czyli wagą skojarzenia jest waga najlżejszej krawędzi w nim zawartej. Uwaga! Nie jest to definicja standardowo przyjmowana.

Należy napisać program, który

- \bullet wczyta ze standardowego wejścia dwudzielny graf G,
- ullet sprawdzi, czy w G istnieje skojarzenie doskonałe i jeżeli tak, to zwróci wagę maksymalnego skojarzenia doskonałego w G,
- $\bullet\,$ wypisze na standardowym wyjściu opis maksymalnego skojarzenia doskonałego wG.

Wejście

- 1. Program czyta dane ze standardowego wejścia.
- 2. W pierwszym wierszu znajdują się dwie liczby całkowite N i M oddzielone spacjami, $1 \le N \le 500000$, $1 \le M \le 100000$. M oznacza liczbę wierzchołków grafu G, N oznacza liczbę krawędzi. Wierzchołki są numerowane od 1 do M.
- 3. Każdy z następnych N wierszy zawiera po trzy liczby całkowite x, y, w oddzielone spacjami ($1 \le w \le 100000000$), oznaczające krawędź $\{x,y\}$ o wadze w, taką że $x \in X$ oraz $y \in Y$.

4. Jeśli dane wejściowe nie spełniają powyższej specyfikacji, program powinien wypisać na standardowy strumień błędów komunikat o błędzie i zakończyć działanie (np. w formacie ERR msg, gdzie msg to opis błędu). Można przyjąć, że na wejściu jest zawsze graf dwudzielny (tzn. pierwszy element każdej trójki opisującej krawędź należy do X, zaśdrugi do Y).

Wyjście

- 1. Program wypisuje wyniki na standardowe wyjście.
- 2. W pierwszym wierszu wyjścia powinna zostać wypisana jedna liczba całkowita waga maksymalnego skojarzenia doskonałego w G lub -1, jeżeli w G nie ma skojarzenia doskonałego.
- 3. Jeżeli w G istnieje skojarzenie doskonałe, to w kolejnych wierszach należy wypisać krawędzie wchodzące w skład skojarzenia doskonałego o maksymalnej wadze. Każdy z tych wierszy powinien zawierać trzy liczby całkowite x,y i w oddzielone spacjami, opisujące krawędź $\{x,y\}$ o wadze w w taki sposób, że $x\in X$ oraz $y\in Y$.
- 4. Program może wypisać dowolne skojarzenie doskonałe z G, które ma maksymalną wagę.

Ustalenia techniczne

Jako rozwiązanie należy dostarczyć plik skojarzenie.cc. Rozwiązanie zadania należy zdeponować w repozytorium w katalogu \$USERID/skojarzenie/, gdzie \$USERID to identyfikator konta studenckiego (inicjały plus numer indeksu). W pliku \$USERID/skojarzenie/zespol należy zapisać identyfikatory osób tworzących parę (lub trójkę), która opracowała rozwiązanie. W rozwiązaniu zadania zalecane jest jak najszersze zastosowanie struktur danych i algorytmów oferowanych przez STL.

Przykład

Dla danych wejściowych:

- 7 6
- 1 2 7
- 3 2 6
- 3 4 5
- 1 4 6
- 1 6 5
- 3 6 1
- 5 6 7

Twój program powinien wypisać:

6

1 4 6

3 2 6

5 6 7

Bonus

Graf podany na wejściu nie musi być dwudzielny. Rozpoznając poprawność danych wejściowych należy sprawdzać czy graf jest dwudzielny. Jeżeli nie jest, należy wypisać odpowiedni komunikat i zakończyć działanie programu.

Algorytm

Problem należy rozwiązać w oparciu o Algorytm 1 opisany poniżej. W ramach tego algorytmu wyszukiwane są skojarzenia doskonałe w podgrafach grafu wejściowego. Wyznaczania skojarzenia doskonałego w grafie należy zrealizować w oparciu o opisany poniżej Algorytmu 2. W ramach tego algorytmu wyznaczane są ścieżki rozszerzające w grafie wejściowym względem skojarzenia w tym grafie. Ścieżka rozszerzająca względem skojarzenia S to ciąg wierzchołków (v_0,\ldots,v_{2n-1}) , taki że v_0 jest nieskojarzony w S oraz v_{2n-1} jest nieskojarzony w S, dla każdego $0 \le i < n$ $\{v_{2i},v_{2i+1}\} \notin S$ i dla każdego $1 \le i < n$ $\{v_{2i-1},v_{2i}\} \in S$, oraz każdy wierzchołek grafu występuje na ścieżce co najwyżej raz. Innymi słowy, ścieżka rozszerzająca zaczyna się i kończy na nieskojarzonych wierzchołkach, składa się z krawędzi, które na przemian nie są i są w S oraz nie zawiera cykli (w szczególności ścieżka złożona z jednej krawędzi łączącej dwa nieskojarzone wierzchołki jest rozszerzająca).

```
Algorithm 1: Szukanie skojarzenia doskonałego o maksymalnej wadze
```

```
Input: graf dwudzielny G = (X, Y, E), w_1, \dots, w_m – wagi krawędzi
       G(E) uporządkowane rosnąco
if \#X = \#Y then
   /* \#Z oznacza liczność zbioru Z
                                                               */
   l := 1;
   r := m + 1;
   while l < r do
      j := (l+r)/2;
      w := w_i;
      niech G_w podgraf G zawierający tylko krawędzie o wadze nie
      mniejszej niż w i wszystkie wierzchołki G;
      if w G_w istnieje skojarzenie doskonałe then
      \lfloor l := j+1;
      \mathbf{else}
      /* jeżeli w G jest skojarzenie doskonałe, to w_{l-1} jest
      wagą skojarzenia doskonałego o maksymalnej wadze
      (wystarczy zwrócić dowolne skojarzenie doskonałe w
      G_{w_{l-1}})
else
G nie zawiera skojarzenia doskonałego;
```

```
Algorithm 2: Szukanie skojarzenia doskonałego
Input: graf dwudzielny G = (X, Y, E)
if G zawiera wierzchołki nienależące do żadnej krawędzi {\bf then}
 /* w G nie ma skojarzenia doskonałego
                                                                    */
else
    /* jest szansa na skojarzenie doskonałe w G,
       konstruujemy początkowe skojarzenie
                                                                    */
    S := \varnothing:
    foreach x \in X do
       if istnieje nieskojarzone y, takie że \{x,y\} \in E then
           weź dowolne y jak wyżej;
           S := S \cup \{x, y\};
    /* rozszerzamy S dopóki się da, szukając ścieżek
        rozszerzających
    while istnieje wierzchołek nieskojarzony względem S i jest szansa
    na skojarzenie doskonałe w G do
       niech v_0 będzie dowolnym wierzchołkiem nieskojarzonym
       względem S;
       startując z v_0, przeszukujemy G w głąb, przechodząc na
       przemian krawędziami nie należącymi i należącymi do S w
       poszukiwaniu wierzchołka różnego od v_0 i nieskojarzonego
       względem S;
       if wierzchołek nieskojarzony nie został znaleziony then
        \mid /* w G nie ma skojarzenia doskonałego
                                                                    */
       else
           niech v_{2n-1} będzie znalezionym wierzchołkiem, zaś
           (v_0, \ldots, v_{2n-1}) znalezioną ścieżką, która do niego prowadzi;
           /* (v_0,\ldots,v_{2n-1}) jest ścieżką rozszerzającą,
              rozszerzamy S usuwając z niego te krawędzie,
              które należą do ścieżki, a następnie dodając
              do niego te krawędzie ścieżki, które nie
              należą do skojarzenia
                                                                    */
           S := (S \setminus \{\{v_1, v_2\}, \dots, \{v_{2n-3}, v_{2n-2}\}\}) \cup
           \{\{v_0, v_1\}, \ldots, \{v_{2n-2}, v_{2n-1}\}\};
/* Jeżeli w G jest skojarzenie doskonałe, to S jest takim
    skojarzeniem
```

*/