Correction Evaluation blanche (Chap. 5, 6 et7)

Exercice 1: Stabiliser l'atome d'azote /10,5

	Tableau périodique incomplet						
H Hydrogène							He hélium
		B Bore	C Carbone	N azote			Ne Néon
Na Sodium			Si Silicium				Ar Argon
				As Arsenic			Kr Krypton
					Te Tellure		Xe Xénon

- 1- (Emplacement dans le tableau **0,5 point**). La couche de valence est la n°2 **(0,5 point)**. Il y a 3+2=5 électrons de valence **(0,5 point)**.
- L'azote veut ressembler au Néon pour être stable(**0,5 point**). L'atome d'azote va gagner 3 électrons pour avoir la même configuration électronique que le Néon (**0,5 point**). Il aura donc 8 électrons de valence : c'est la règle de l'octet(**0,5 point**). Le symbole de l'ion nitrure est N³⁻(**0,5 point**).
- 3- Les questions 3 et 4 sont corrigées dans la vidéo suivante : http://acver.fr/correc

Nom de l'atome	Configuration	Nombre d'électrons de	Symbolisation avec les	Nombre d'électrons à
	électronique	valence	électrons de valence	gagner pour être stable
			(ajouter les électrons de	
			valence autour sous forme	
			de points)	
Azote (N)	$1s^22s^22p^3$	5	• 1/4 -	3
Fluor (F)	$1s^2 2s^2 2p^5$	7	;F;	1
Hydrogène (H)	1s ¹	1	•H	1 (règle du duet !)

3 points (-0,5par mauvaise réponse)

4-

Symbolisation avec les électrons de valence (Placer les électrons de valence sous la forme de points. Mettre les points de telle manière à matérialiser les doublets du schéma de lewis à droite)			
	H-N-H		
	F-N-F1		
	IN=N1		

3 points (1 point par schéma de Lewis)

5- L'énergie de liaison de l'ammoniac est plus faible que celle du diazote (6, 5 × 10⁻²² kJ<1, 6 × 10⁻²¹ kJ). En regardant les schémas de Lewis, on remarque que dans le diazote, les deux atomes sont reliés par une triple liaison covalente alors que les atomes de l'ammoniac ne sont reliés que par des liaisons covalentes simples. C'est pour cela qu'il faut fournir plus d'énergie pour séparer N-H que N≡N. (1,5 points)

Evaluation par compétence- Réaliser : Je sais tracer les schémas de Lewis						
A- Bonne maitrise	B- Maitrise fragile	C- Maitrise insuffisante	D- Maitrise très insuffisante			
Je sais tracer tous les schémas de Lewis	Je sais presque tracer tous les schémas de Lewis (au moins 2 bons sur 3).	J'ai du mal à tracer les schémas de Lewis mais j'arrive à compter les électrons de valence pour chaque atome.	Je n'arrive pas à compter les électrons de valence pour chaque atome.			