Rancangan Dua Faktor Tanpa Interaksi: Pengaruh Tetap

Responsi 11 STA1333 Pengantar Model Linear

Review Materi:

1. Rancangan Dua Faktor Tanpa Interaksi: Pengaruh Tetap

Model Linier Rancangan Dua Faktor Tanpa Interaksi Secara Umum

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

$$i = 1, 2, ..., a; \quad j = 1, 2, ..., b;$$

Keterangan:

yii : Nilai respon Faktor A taraf ke-i dan Faktor B taraf ke-j

μ : Rataan Umum

τ_i: Pengaruh Faktor A taraf ke-i

 β_i : Pengaruh Faktor B taraf ke-j

ANOVA Model Dua Faktor Tanpa Interaksi:

Sumber	db	JK
Model Regresi Penuh	(a+b-1)	$\sum_{i} y_{i.}^{2}/b + \sum_{j} y_{.j}^{2}/a - y_{.}^{2}/ab$
Nilai Tengah	1	y_2/ab
Model Hipotesis I	(a-1)	$\sum_{i} y_{i.}^2/b - y_{}^2/ab$
Model Hipotesis II	(b-1)	$\sum_{j} y_{.j}^2/a - y_{.}^2/ab$
Residual/Galat	(a-1)(b-1)	$JK_{Total} - JK_{Reg(Penuh)}$
Total (tidak terkoreksi)	ab	$\sum_{i}\sum_{j}y_{ij}^{2}$

ANOVA berdasarkan total terkoreksi:

Sumber	db	JK
Model Regresi Penuh	(a+b-1)	$\sum_{i} y_{i.}^{2}/b + \sum_{j} y_{.j}^{2}/a - y_{}^{2}/ab$
Model Hipotesis I	(a-1)	$\sum_{i} y_{i.}^2/b - y_{}^2/ab$
Model Hipotesis II	(b-1)	$\sum_{j} y_{.j}^2/a - y_{}^2/ab$
Residual/Galat	(a-1)(b-1)	$JK_{Total} - JK_{Reg(Penuh)}$
Total (terkoreksi)	ab-1	$\sum_{i}\sum_{j}y_{ij}^{2}-y_{}^{2}/ab$

Review Materi:

2. Rancangan Acak Kelompok Lengkap (RAKL)

Model Linier RAKL

Model dari design ini:

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$
, i=1,2,...a, j=1,2,...b

- τ_i merupakan efek dari perlakuan, β_j merupakan efek dari block.
- Model yang digunakan sama dengan model dalam kasus model 2 factor tanpa interaksi yang telah dibahas sebelum nya.
- Terdapat perbedaan yang penting dari model 2 factor tanp a interaksi yaitu pengacakan hanya dilakukan sekali. Peng acakan hanya dilakukan pada perlakuan dalam satu block, dan tidak dilakukan pengacakan block.

- Pengujian Perlakuan: H₀: τ₁ = τ₂ = ··· = τ_a
 Pengujian untuk hipotesis ini sama dengan pengujian pada model 2 factor tanpa interaksi.
- Pengujian Blok: H₀: β₁ = β₂ = ··· = β_b
 Pengujian hipotesis ini tidak bisa dilakukan menggunakan uji F.
- Untuk mengetahui kegunaan dari block dengan menghitung Relatif Efisi ensi RAKL dibandingan dengan model 1 factor (dalam percobaan Ranca ngan Acak Lengkap(RAL))
- Relatif Efisiensi RAKL dibandingkan model 1 factor (RAL):

$$RE = \frac{SS_{Blocks} + b(a-1)s^2}{(ab-1)s^2}$$

Dimana s² merupakan jumlah kuadrat galat/ jumlah kuadrat residual dan

$$SS_{Blocks} \sum_{j=1}^{b} \frac{y_{,j}^2}{a} - \frac{y_{,j}^2}{ab}$$

- SS blocks dalam model 2 factor tanpa interaksi disebut dengan SS_{Reg(HipotesisII)}
- Untuk nilai RE jika lebih dari 1 mengindikasikan dengan adanya block efektif.
- Selain itu untuk mengetahui efektifitas blocking Uji F pseudo yang sama dengan uji Hipotesis factor kedua dalam model 2 factor tanpa interaksi.

$$F_{pseudo} = \frac{SS_{Blocks}/(b-1)}{SS_{res}/(a-1)(b-1)}$$

 Arnold, Lentner, dan Hinkleman menunjukkan hubungan antara F_{pseudo} dengan RE yaitu:

$$RE = c + (1 - c)F_{pseudo}$$

- dimana c=b(a-1)/(ab-1). Terlihat bahwa c≤1 sehingga
 - Jika F_{pseudo}<1, RE<1
 - Jika F_{pseudo}=1, RE=1
 - Jika F_{pseudo}>1, RE>1
- F_{pseudo} tidak bisa digunakan sebagai Uji Formal F untuk menguji perbedaan antar block namun hanya digunakan untuk mengetahui efekti vitas dari blocking atau pengelompokan.

LATIHAN SOAL

- 1. Diketahui model dua faktor tanpa interaksi $y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$; i = 1,2; j = 1,2
 - a. Susun model dalam bentuk matriks
 - b. Tentukan matriks X, X'X, dan X'y
 - c. Berapa rank(X)?
 - d. Tentukan penduga kuadrat terkecil bagi parameter model pada poin a dengan persyaratan $\sum_{i=1}^{2} \hat{\tau}_i = 0$ dan $\sum_{i=1}^{2} \hat{\beta}_i = 0$.
 - e. Apakah H_0 : $\tau_1 = \tau_2$ dapat diuji?
 - f. Ujilah hipotesis H_0 : $\tau_1 = \tau_2 \, \text{dan} \, H_0$: $\beta_1 = \beta_2 \, \text{pada taraf nyata 5}\%$ Dengan menggunakan total terkoreksi

1. Diketahui model dua faktor tanpa interaksi $y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$; i = 1,2; j = 1,2

a. Susun model dalam bentuk matriks

Model Linear:

$$y_{11} = \mu + \tau_1 + \beta_1 + \varepsilon_{11}$$

$$y_{12} = \mu + \tau_1 + \beta_2 + \varepsilon_{12}$$

$$y_{21} = \mu + \tau_2 + \beta_1 + \varepsilon_{21}$$

$$y_{22} = \mu + \tau_2 + \beta_2 + \varepsilon_{22}$$

$$y = X\beta + \varepsilon$$

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{21} \\ \varepsilon_{22} \end{bmatrix}$$

b. Tentukan matriks X, X'X, dan X'y dengan $y' = [7 \ 6 \ 2 \ 5]$

$$X = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}; \quad X'X = \begin{bmatrix} 4 & 2 & 2 & 2 & 2 \\ 2 & 2 & 0 & 1 & 1 \\ 2 & 0 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 0 \\ 2 & 1 & 1 & 0 & 2 \end{bmatrix}; \quad X'y = \begin{bmatrix} 20 \\ 13 \\ 7 \\ 9 \\ 11 \end{bmatrix}$$

c. Berapa rank(X)?

$$r(X) = r(X'X) = a + b - 1 = 2 + 2 - 1 = 3$$

d. Tentukan penduga kuadrat terkecil bagi parameter model pada poin a dengan persyaratan $\sum_{i=1}^{2} \hat{\tau}_i = 0$ dan $\sum_{i=1}^{2} \hat{\beta}_i = 0$.

$$\begin{bmatrix} 4 & 2 & 2 & 2 & 2 \\ 2 & 2 & 0 & 1 & 1 \\ 2 & 0 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 0 \\ 2 & 1 & 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} y_{..} \\ y_{1.} \\ y_{2.} \\ y_{.1} \\ y_{.2} \end{bmatrix}$$

$$= \begin{bmatrix} y_{..} \\ y_{1.} \\ y_{2.} \\ y_{.1} \\ y_{.2} \end{bmatrix}$$

$$= \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} y_{..} \\ y_{1.} \\ y_{2.} \\ y_{.1} \\ y_{.2} \end{bmatrix}$$

$$= \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \beta_1 \\ \gamma_2 \end{bmatrix}$$

$$= \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \beta_1 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \gamma_2 \end{bmatrix}$$

$$= \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \gamma_2 \end{bmatrix}$$

$$(X'X)\beta = X'y$$

$$2 \begin{vmatrix} \mu \\ \tau_1 \\ \tau_2 \end{vmatrix} = \begin{bmatrix} y_{..} \\ y_{1.} \\ y_{2.} \end{vmatrix}$$

$$2\mu + 2\tau_1 + 2\tau_2 + 2\beta_1 + 2\beta_2 = y_{..}$$

$$2\mu + 2\tau_1 + \beta_1 + \beta_2 = y_{1.}$$

$$2\mu + 2\tau_2 + \beta_1 + \beta_2 = y_{2.}$$

$$2\mu + \tau_1 + \tau_2 + 2\beta_1 = y_{.1}$$

$$2\mu + \tau_1 + \tau_2 + 2\beta_2 = y_{.2}$$

$$b = \begin{bmatrix} \widehat{\mu} \\ \widehat{\tau_{1}} \\ \widehat{\tau_{2}} \\ \widehat{\beta_{1}} \\ \widehat{\beta_{2}} \end{bmatrix} = \begin{bmatrix} \bar{y}_{..} \\ \bar{y}_{1.} - \bar{y}_{..} \\ \bar{y}_{2.} - \bar{y}_{..} \\ \bar{y}_{.1} - \bar{y}_{..} \\ \bar{y}_{.2} - \bar{y}_{..} \end{bmatrix} = \begin{bmatrix} 5 \\ 1.5 \\ -1.5 \\ -0.5 \\ 0.5 \end{bmatrix}$$

e. Apakah
$$H_0$$
: $\tau_1 = \tau_2$ dapat diuji?
$$H_0: \tau_1 = \tau_2 \text{ atau } H_0: \begin{bmatrix} 0 & 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \beta_2 \end{bmatrix} = 0 \text{ atau } h_0: \mathbf{t}' \boldsymbol{\beta} = \mathbf{0}$$

 $t'\beta$ dapat diduga jika $t'H = t' \ dengan \ H = (X'X)^C X'X$

$$t'H = \begin{bmatrix} 0 & 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$t'H = \begin{bmatrix} 0 & 1 & -1 & 0 & 0 \end{bmatrix}$$
$$t'H = t'$$

Karena t'H = t' maka $t'\beta$ estimable sehingga hipotesis H_0 : $\tau_1 = \tau_2$ testable

f. Ujilah hipotesis H_0 : $\tau_1 = \tau_2 \, \text{dan} \, H_0$: $\beta_1 = \beta_2 \, \text{pada taraf nyata 5}$ IPB University

Dengan menggunakan total terkoreksi

Hipotesis: H_0 : $\tau_1 = \tau_2 \operatorname{dan} H_0$: $\beta_1 = \beta_2$

Statistik Uji Fhitung:

ANOVA berdasarkan total terkoreksi :							
Sumber	db	JK					
Model Regresi Penuh	(a+b-1)	$\sum_{i} y_{i.}^{2}/b + \sum_{j} y_{.j}^{2}/a - y_{}^{2}/ab$					
Model Hipotesis I	(a-1)	$\sum_{i} y_{i.}^2/b - y_{}^2/ab$					
Model Hipotesis II	(b-1)	$\sum_{j} y_{.j}^2/a - y_{}^2/ab$					
Residual/Galat	(a-1)(b-1)	$JK_{Total} - JK_{Reg(Penuh)}$					
Total (terkoreksi)	ab-1	$\sum_{i}\sum_{j}y_{ij}^{2}-y_{}^{2}/ab$					

Sumber	db	Jumlah Kuadrat	Kuadrat Tengah	F hitung
Model Regresi Penuh	2	10		
Model Hipotesis I	1	9	9	2.25
Model Hipotesis II	1	1	1	0.25
Galat	1	4	4	
Total (terkoreksi)	3	14		

Hipotesis: H_0 : $\tau_1 = \tau_2$

Statistik Uji F hitung:

Fhit = 2.25

Titik Kritis: $F_{(1,1)0.05} = 161$

Kriteria Penolakan H0: H0 ditolak jika Fhit > Ftabel

Keputusan: Fhit = 2.25 < 161 maka tak tolak H0

Kesimpulan: tidak cukup bukti untuk menyatakan bahwa terdapat minimal satu perbedaan rataan respon dari kedua perlakuan faktor 1 yang berbeda pada taraf nyata 5%

Hipotesis: H_0 : $\beta_1 = \beta_2$

Statistik Uji F hitung:

Fhit = 0.25

Titik Kritis: $F_{(1,1)0.05} = 161$

Kriteria Penolakan H0: H0 ditolak jika Fhit > Ftabel

Keputusan: Fhit = 0.25 < 161 maka tak tolak H0

Kesimpulan: tidak cukup bukti untuk menyatakan bahwa terdapat minimal satu perbedaan rataan respon dari kedua perlakuan faktor 2 yang berbeda pada taraf nyata 5%

Terima Kasih

Departemen Statistika
Fakultas Matematika dan Ilmu Pengetahuan Alam
JI Meranti Wing 22 Level 4
Kampus IPB Darmaga - Bogor 16680
0251-8624535 | http://stat.ipb.ac.id