Lecture 21. Semi-supervised and Active Learning

COMP90051 Statistical Machine Learning

Semester 2, 2015 Lecturer: Andrey Kan

Content is based on slides provided by Ben Rubinstein

Copyright
University of
Melbourne

Types of learning revisited

- Supervised methods
 - Linear and logistic regression
 - Support vector machines
 - Neural networks, including convolutional neural networks
 - Probabilistic graphical models
- Unsupervised methods
 - K-means and hierarchical clustering
 - Dimensionality reduction
 - Community detection methods
 - Probabilistic graphical models
- This lecture
 - Semi-supervised learning
 - Active learning

Semi-Supervised Learning

Training with instances, some of which are labelled

Motivating semi-supervised learning

- What if we had a small amount of labelled training data, and lots of unlabelled training data?
- What if we had a small amount of labelled training data and a limited budget to label more training data?
- What if we had same vs. different "constraints" instead of labels?
- Data is (often) cheap and abundant; labelling tends to be expensive
 - Example: Switchboard corpus -- 400 hours to label hour of speech data

Semi-supervised learning: Example 1

 Semi-supervised learning = learning from both labelled and unlabelled data

Semi-supervised learning: Example 2

 Semi-supervised learning = learning from both labelled and unlabelled data

Labelled points provide us with cluster labels

Semi-supervised learning

- Semi-supervised learning = learning from both labelled and unlabelled data
- Semi-supervised classification
 - * Training data consists of l labelled instances $\{(x_i, y_i)\}_{i=1}^l$ and u unlabelled instances $\{x_j\}_{j=l+1}^{l+u}$, often $u\gg l$
 - * **Goal**: learn a better classifier f than is possible from labelled data alone
- Constrained clustering
 - * A set of unlabelled instances $\{x_j\}_{j=1}^u$ and a set of constraints between some pairs of instances
 - Usually in the form "must-link" and "cannot-link"
 - * Goal: better clustering than from unlabelled data alone

Self training

- Perhaps the simplest example of semi-supervised learning is self-training (aka bootstrapping)
- 1. Initialise: $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$, $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$
- 2. Repeat:
 - a) Train f from L using supervised learning
 - b) Apply f to each instance in U (prediction)
 - c) Identify a subset $U' \subseteq U$ where $f(x_i)$ is "confident"
 - d) Construct set $U'' = \{(x_j, f(x_j)) | x_j \in U'\}$
 - e) Update $U \leftarrow U \setminus U'$, $L \leftarrow L \cup U''$
- 3. Until L is unchanged from one iteration to the next

Self training example

- Background: k-nearest neighbour classifier (supervised) predicts class of a new instances as majority class of the k closest training instances
- Propagating 1-nearest neighbour

1. Initialise:
$$L = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^l$$
, $U = \{\boldsymbol{x}_j\}_{j=l+1}^{l+u}$

- 2. Repeat:
 - a) Select $\{x, x'\} = \arg\min_{x \in L, x' \in U} d(x, x')$
 - b) Update $U \leftarrow U \setminus x'$, $L \leftarrow L \cup \{(x', f(x'))\}$
- 3. Until $U = \emptyset$

Co-training: background

- Assume each instance has two views: $x = [x^{(1)}, x^{(2)}]$
- Example: instance = pair (image + caption)
 - Instance features = [image based features, text based features]

"Carlton Gardens in autumn"

"The inner city is home to an extensive network of lively laneways and arcades."

Co-training: algorithm

1. Initialise:
$$L^{(1)} = \{(x_i^{(1)}, y_i)\}_{i=1}^l, L^{(2)} = \{(x_i^{(2)}, y_i)\}_{i=1}^l, U = \{x_j\}_{j=l+1}^{l+u}$$

2. Repeat:

- a) Train $f^{(1)}$ on $L^{(1)}$; train $f^{(2)}$ on $L^{(2)}$
- b) Apply $f^{(1)}$ and $f^{(2)}$ separately to U
- c) Identify a subset $U^{(1)} \subseteq U$ where $f^{(1)}$ is "confident"
- d) Identify a subset $U^{(2)} \subseteq U$ where $f^{(2)}$ is "confident"
- e) Label instances from $U^{(2)}$ according to $f^{(2)}$, and add them to $L^{(1)}$
- f) Label instances from $U^{(1)}$ according to $f^{(1)}$, and add them to $L^{(2)}$
- g) Update $U \leftarrow U \setminus (U^{(1)} \cup U^{(2)})$
- 3. Until U is unchanged from one iteration to the next

Co-training: Assumptions

- There is a feature split $x = [x^{(1)}, x^{(2)}]$ which leads to independent classifiers
 - * That is, $x^{(1)}$ and $x^{(2)}$ are conditionally independent given the label
- $x^{(1)}$ or $x^{(2)}$ alone is sufficient to train a good classifier

Active Learning

Iteratively request labels and use the model (trained thus far) to do so

Active learning

- Active learning builds off the hypothesis that a classifier can achieve higher accuracy with fewer training instances if it is allowed to have some say in the selection of training instances
- The underlying assumption is that labelling is a finite resource, which should be expended in a way which optimises machine learning effectiveness
- Active learners pose queries (unlabelled instances) for labelling by an oracle (e.g., a human annotator)

Active learning: Sampling

- There are three main sampling approaches in active learning
- 1. Membership query synthesis: the active learner synthesises queries for labelling
 - E.g., proposes a particular combination of chemicals to use in a yeast growth medium
- Stream-based selective sampling: for each instance from the stream, the model decides to query or discard
- Pool-based sampling: the active learner selects from a fixed set of unlabelled instances what it wants to be labelled

Active learning: Query strategies

 One simple query strategy is to query those instances the classifier is least confident of the classification for:

$$\mathbf{x}^* = \arg\max_{\mathbf{x} \in U} (1 - P(\hat{\mathbf{y}}|\mathbf{x}))$$

- * Where $\hat{y} = \arg \max_{y \in S} P(\hat{y}|x)$
- * and S is a set of possible labels
- Alternatively, it may be appropriate to perform "margin sampling":

$$\boldsymbol{x}_{M}^{*} = \arg\min_{\boldsymbol{x} \in U} (P(\hat{y}_{1}|\boldsymbol{x}) - P(\hat{y}_{2}|\boldsymbol{x}))$$

* Where \hat{y}_1 and \hat{y}_1 are the first and second most-probable label predictions for x

Active learning: Query strategies

Or better still, to use entropy as an uncertainty measure:

$$x_H^* = \arg\max_{\mathbf{x} \in U} - \sum_{y_i \in S} P(y_i | \mathbf{x}) \log_2 P(y_i | \mathbf{x})$$

 For binary classification with labels 0 and 1, entropy is:

$$H(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$
Where $p = P(y = 1|y)$

* Where p = P(y = 1|x)

Example: binary classification with labels 0 and 1

Query-by-committee

- A more complex strategy involving multiple classifiers is query-by-committee (QBC), where a suite of classifiers is trained over a fixed training set L, and the instance where there is the highest disagreement is selected for querying
- QBC assumes that it is possible to generate a suite of set of heterogeneous base classifiers, much like ...
- Determination of relative disagreement can again occur via entropy, or alternatively via one-vs-rest relative entropy

Active Learning: Practicalities

- Active learning is used increasingly widely, but must be handled with some care:
 - empirically shown to be a robust strategy, but a theoretical justification has been slower to prove
 - querying is inherently biased towards a particular class set and learning approach(es), which may limit the general utility of the resulting dataset
 - results to suggest that active learning is more highly reliant on "clean" labelling

Summary

- What are unsupervised and semi-supervised learning
- What is self-training, and how does it operate?
- What is co-training, and how does it operate? What assumptions is it based on?
- What is active learning?
- What are the main sampling strategies in active learning?
- Outline a selection of query strategies in active learning.