Lab 3 Instructions

Dr. Bing Han

Email: Bing.Han@xjtlu.edu.cn

Office: EE220

Components

西交利和海大學 Xian Jastong-Userpool University

- Transistor BJT 2N3904
- Resistor $R_L = 3.9 \text{ k}\Omega$
- Resistor R_c , R_e , R_1 and R_2
 - According to calculations
- Capacitors
 - $2 \times 1 \mu F$
 - $2 \times 47 \mu F$

Objectives

西交利和滴大學 Xan Jisating-Liverpool University

- Find β of the Transistor
- Simulate frequency response of a common emitter amplifier
- Simulate frequency response of a common collector amplifier

Find β of the Transistor

Find the Transistor

Find the NPN transistor 2N3904

Built the Circuit

- Input the circuit schematic as follows
- Pull down the "Simulate" window, select "Edit Simulation Cmd"

Find β of the Transistor

西交利物演大學 Xian disotong Liverpool University

- Set the value of I_B
 - $0, 5, 10, \dots, 40 \mu A$
- Set the value of V_{CE}
 - 0, 1, 2, · · · , 10 V
- The unit " μ A" is represented by 'uA' in LTSpice

• Calculate the dc current gain β at $I_c = 5 \text{ mA}$

Common Emitter Amplifier

Common Emitter Amplifier

- Calculate the values of R_c , R_e , R_1 and R_2
 - DC Bias: $V_{CC} = 10 \text{ V}, V_{CE} = 5 \text{ V}, I_{CQ} = 5 \text{ mA}$
- R_1 and R_2 form a potential divider
 - Fix the base voltage of the transistor
- $I_R = 10I_{BQ}$, $V_{BE} = 0.7 \text{ V}$
- R_E helps to stabilize the bias
 - If the temperature increases, then extra collector current will flow.
 - If I_{CQ} increases, then I_{EQ} increases
 - V_E increases, and reducing the effective base emitter voltage and therefore stabilizing the collector current.

Calculations

- Assume $V_E = \frac{1}{10} V_{CC}$, $I_R = 10 I_{BQ}$, $V_{CC} = 10$ V, $V_{CE} = 5$ V, $I_{CQ} = 5$ mA
- Determine R_C , R_E , R_1 and R_2

$$V_{CC} = I_{CQ}R_C + V_{CE} + I_{EQ}R_E$$

$$I_{CQ} \cong I_{EQ}$$

$$V_B = V_E + 0.7$$

$$R_1 = \frac{V_{CC} - V_B}{I_R} = \frac{V_{CC} - V_B}{10I_{BO}}$$

$$R_2 = \frac{V_B}{9I_{BO}}$$

Common Collector Amplifier

Common Collector Amplifier

西交利均滴大學 Xian Jiaotang-Liverpool University

- Calculate the values of R_E , R_1 and R_2
 - DC Bias: $V_{CC} = 10 \text{ V}, V_{CE} = 5 \text{ V}, I_C = 5 \text{ mA}$
- R₁ and R₂ form a potential divider
 - Fix the base voltage of the transistor

Calculations

- Assume $I_R = 10I_{BQ}$, $V_{CC} = 10 \text{ V}$, $V_{CE} = 5 \text{ V}$, $I_{CQ} = 5 \text{ mA}$
- Determine R_E , R_1 and R_2

$$V_{CC} = V_{CE} + I_{EQ}R_E$$
$$I_{CQ} \cong I_{EQ}$$

$$V_B = V_E + 0.7$$

$$R_1 = \frac{V_{CC} - V_B}{I_R} = \frac{V_{CC} - V_B}{10I_{BO}} \qquad \qquad R_2 = \frac{V_B}{9I_{BQ}}$$