Appln. No.: 10/005,656

Amendment dated March 9, 2004

Reply to Office Action of October 9, 2003

Amendments to the Specification

At page 17, please replace Table 4 with the following replacement Table 4:

Table 4

New [[Wre]] <u>WRe</u> -Recipe				
	•			
Туре	WRe 'Shell' material			
Batch Size	42		Сс	
Batching Temperature	150		Deg C	
Batching Speed	60		Rpm	
Material	Density (g/cc)	Volume %	Volume (cc)	Weight (g)
W,Re,HfC	19.300	52.63	22.10	426.62
EEA (MFI 20)	0.930	27.37	11.50	10.69
EEA (MFI 1.5)	0.930	20.00	8.40	7.81
		100.00	42.00	445.12

Appln. No.: 10/005,656

Amendment dated March 9, 2004

Reply to Office Action of October 9, 2003

Amendments to the Specification

Please delete the Abstract paragraph at page 28, beginning at line 3, and replace it with the following replacement paragraph:

-- Processes for mechanically fabricating two and three-dimensional fibrous monolith composites are provided. The processes include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.--