Hard diffraction at HERA

Frank-Peter Schilling (DESY)

www.desy.de/ $^{\sim}$ fpschill

H1 Collaboration

- Introduction
- ullet Diffractive Structure Function F_2^D
- NLO QCD fit and diffractive pdf's
- Diffractive final states
- Summary

Preface: Why is diffraction (still) interesting?

- Early observation:
 total hadronic cross sections rise at high s
- $m{\sigma}_{
 m tot}$ dominated by soft processes, where pQCD does not apply large fraction of elastic / diffractive processes
- Parameterized in terms of Regge phenomenology:

$$egin{aligned} rac{d\sigma}{dt} \sim rac{1}{s^2} |T(s,t)|^2 &= f(t) \left(rac{s}{s_0}
ight)^{2lpha(t)-2} \ \sigma_{tot} \sim rac{1}{s} \mathrm{Im}(T(s,t))|_{(t=0)} &= s^{lpha(0)-1} \end{aligned}$$

- At high s: the pomeron trajectory (vacuum quantum numbers, elastic scattering) $lpha(t) = lpha(0) + lpha't = 1.08 + 0.25 \ t$
- Diffraction exists also in <u>hard</u> processes

Total cross sections at high energy:

→ QCD (quark-gluon) structure of diffraction!

Diffraction in DIS at HERA

Early Observation at HERA:

10% of low-x DIS events are diffactive ep
ightarrow e'p'X

Colour-singlet or "pomeron" exchange

Can be viewed as diffractive $\gamma^* p$ interaction:

More generally: $\gamma^{(*)} p o XY$

COLOUR SINGLET EXCHANGE PROCESSES IN γ^* -p INTERACTIONS

All can be measured by varying Q^2, W, t, M_X, M_Y

This talk mostly $\gamma^* p o X p$ (large Q^2 , small |t|)

Diffractive DIS

$$x_{I\!\!P}=m{\xi}=rac{Q^2+M_X^2}{Q^2+W^2}=x_{I\!\!P/p}$$
 (momentum fraction of colour singlet exchange)

$$oldsymbol{eta} = rac{Q^2}{Q^2 + M_X^2} = oldsymbol{x}_{q/I\!\!P}$$
 (fraction of exchange momentum carried by $oldsymbol{q}$ coupling to $oldsymbol{\gamma}^*$, hence $oldsymbol{x} = oldsymbol{x}_{I\!\!P}oldsymbol{eta}$)

$$t = (p - p')^2$$
(4-momentum transfer squared at p vertex)

Diffractive reduced cross section σ_r^D :

$$rac{d^4\sigma}{dx_{I\!\!P} \; dt \; deta \; dQ^2} = rac{4\pilpha^2}{eta Q^4} \left(1 - y + rac{y^2}{2}
ight) \sigma_r^{D(4)}(x_{I\!\!P}, t, eta, Q^2)$$

Structure functions $oldsymbol{F}_2^D$ and $oldsymbol{F}_L^D$:

$$\sigma_r^{D(4)}=F_2^{D(4)}-rac{y^2}{2(1-y+y^2/2)}~F_L^{D(4)}$$
 Integrated over t : $F_2^{D(3)}=\int dt~F_2^{D(4)}$

Probe QCD (quark-gluon) structure of diffraction (Pomeron exchange)!

Experimental Techniques

Forward Proton Spectrometer at $z=65...90~\mathrm{m}$

Measure leading proton

- Free of **p** dissociation bkgd.
- Measure t distribution
- low statistics (acceptance)

Rapidity Gap Selection in central detector

Require large rapidity gap

- ullet $\Delta\eta$ large when $M_X\ll W$
- ullet integrate over M_Y , t
- high statistics

Factorization Properties of F_2^D

QCD Factorization for diffractive DIS:

• Diffractive parton distributions (Trentadue, Venezianio, Berera, Soper, Collins, ...):

$$rac{d^2\sigma(x,Q^2,x_{I\!\!P},t)^{\gamma^*p o p'X}}{dx_{I\!\!P}\,dt} = \sum_i \int_x^{x_{I\!\!P}} d\xi \hat{\sigma}^{\gamma^*i}(x,Q^2,\xi) \; p_i^D(\xi,Q^2,x_{I\!\!P},t)$$

- $\hat{\sigma}^{\gamma^*i}$ hard scattering part, as in incl. DIS
- p_i^D diffractive PDF's in proton, conditional probabilities, valid at fixed $x_{I\!\!P}, t$, obey DGLAP
- not proven for diffractive hadron-hadron scattering

Regge Factorization / resolved Pomeron model:

 $x_{I\!\!P}, t$ dependence factorizes out: Donnachie, Landshoff, Ingelman, Schlein, ...)

- additional assumption, no proof!
- consistent with present data if sub-leading \(\mathbb{R} \) included

New $F_2^{D(3)}$ measurement (Rapidity gap)

5 times more statistics than previous data

Fit to $x_{I\!\!P}$ dependence: effective $\alpha_{I\!\!P}(0)$ $F_2^D(x_{I\!\!P},\beta,Q^2) \sim B(\beta,Q^2) \left(\frac{1}{x_{I\!\!P}}\right)^{2\alpha_{I\!\!P}-1}$

Inclusive

■ H1 F₂ 96-97 Diffractive

▲ H1 F₂D(3) 94

• H1 F₂^{D(3)} 97 (prel.)

 $lpha_{I\!\!P}(0) = 1.173 \pm 0.02 \pm 0.02^{+0.06}_{-0.03}$

Growth with Q^2 slower in diffractive case?

$F_2^{D(3)}$: eta and Q^2 dependence overview

 β dependence at fixed Q^2 :

 Q^2 dependence at fixed β :

sensitive to diffr. pdf's integrated over $m{t}$

Different behaviour than for proton !

Taking out the $x_{I\!\!P}$ dependence ...

Data divided by flux factor $f_{I\!\!P}(x_{I\!\!P})$

 $\boldsymbol{\beta}$ dependence at fixed $\boldsymbol{Q^2}$:

 Q^2 dependence at fixed β :

 $oldsymbol{eta}$ dep.: $F_2^D = \sum e_i^2 (q_i + ar{q}_i)$

Scaling violations: gluon

Data consistent with Regge factorization

Modelling of $\sigma_n^{D(3)}$:

NLO DGLAP QCD Fit

• Shape of Q^2, β dep. of σ_x^D observed to be largely independent of $x_{\mathbb{P}}$:

$$\sigma_r^{D(4)}(x_{I\!\!P},t,eta,Q^2) = f_{I\!\!P}(x_{I\!\!P},t) * \sigma_r^{D(2)}(eta,Q^2)$$

 \bullet $x_{I\!\!P}$ dependence conveniently parameterized as

$$f_{I\!\!P}(x_{I\!\!P}) = \int \, dt \, \, x_{I\!\!P}^{1-2lpha_{I\!\!P}(t)} e^B t$$

using $\alpha_{I\!\!P}(0)=1.173\pm0.018$ (determined from data)

ullet Small contribution from sub-leading exchange at large $x_{I\!\!P}>0.01$ required

PDF parameterization:

- At starting scale $Q_0^2 = 3 \text{ GeV}^2$:
 - Singlet distribution $\Sigma(z,Q_0^2)$
 - Gluon distribution $g(z, Q_0^2)$
- Parameterization using unbiased, flexible functional form: Chebychev polynomials

Technique:

- Charm treatment in massive approach (BGF)
- Cut $M_X > 2 \text{ GeV}$ justifies leading twist analysis
- Full propagation of exp. and model systematic uncertainties!

 $(\Sigma=6u,\,u=d=s=ar{u}=ar{d}=ar{s})$

Result of NLO fit

H1 2002 σ_r^D NLO QCD Fit

- pdfs extending to large fractional momenta z
- ullet precise measurement of singlet distribution $\Sigma(oldsymbol{z},oldsymbol{Q}^2)$
- ullet hard gluon distribution, flat or rising towards $m{z}
 ightarrow m{1}$ (LO fit more peaked than central NLO fit)
- ullet large uncertainty for $g(z,Q^2)$ at z>0.6 (mainly related to model)

Comparison of NLO QCD fit with Data: Q^2 dep.

Two example $x_{I\!\!P}$ bins

 $oldsymbol{Q^2}$ scaling violations well constrained by data

Rising except at highest β

Well reproduced by QCD fit up to $oldsymbol{Q^2} = 800~\mathrm{GeV^2}$

Sub-leading contribution at $m{x}_{I\!\!P} = m{0.03}$, smaller than for previous data

Comparison of NLO QCD fit with Data: β , x dep.

Example $x_{I\!\!P}$ bin at 0.003:

Rising behaviour at eta o 1, low Q^2 reflected by $\Sigma(z,Q^2)$

 $oldsymbol{eta}$ dependence independent of $oldsymbol{x}_{I\!\!P}$

high $y \leftrightarrow \text{low } x$ or $oldsymbol{eta}$ at fixed $x_{I\!\!P}$: Effect of F_L^D

presently no direct handle on $oldsymbol{F_L^D}$ from data

Gluon Momentum Fraction

From NLO Fit:

- Integration of pdf's in measured range 0.01 < z < 1
- ullet Momentum fraction of colour singlet exchange carried by gluons 75% for $6.5 < Q^2 < 800~{
 m GeV}^2$
- Fully consistent with results from previous
 H1 data

Comparison with H1 diffractive DIS final states

Use pdf's from LO fit to predict dijets / \boldsymbol{D}^* cross sections in diffractive DIS as measured by H1:

Comparison based on MC model (RAPGAP) $\mu^2 = Q^2 + p_T^2 + m^2$

Diffferential distributions remain well described Normalization: pdf/NLO/scale uncertainty

⇒ Consistent with QCD factorization!

Comparison with CDF diffractive Dijet cross sections

Dijet production with tagged leading anti-proton at TEVATRON:

Effective diffractive structure function $ilde{F}_{jj}^D$:

$$ilde{F}_{jj}^D(eta) = \int dx_{I\!\!P} dt f(x_{I\!\!P},t) \; eta \left[g(eta,Q^2) + rac{4}{9} \Sigma(eta,Q^2)
ight] \qquad (Q^2 = 75 \; GeV^2)$$

- New fit confirms serious breakdown of factorization (gap survival, absorptive corrections)
- β dependence similar (except highest β)
- NOTE $x_{I\!\!P}$ domain: 50% contribution from sub-leading exchange in this kinematic regime

Conclusions

In diffractive DIS at HERA, the QCD structure of diffractive interactions (pomeron)
 can be probed using a virtual photon

- Experimental data have reached high precision
- Proof of QCD factorization in diffractive DIS provides firm theoretical basis
- ullet Diffractive pdf's determined from F_2^D are dominated by large gluon contribution (75%) extending to large fractional momenta
- Comparisons with diffractive final states (dijets, charm):
 Consistent with QCD factorization
- Diffractive jets in $p\bar{p}$:
 Breakdown of factorization (gap survival, absorptive corrections)

Precision QCD in hard diffraction!