

reducing cost of x_ij is written with Blue color

Based one last picture interring variable is X13 and leaving var is X23

We should follow this algorithm.
Because our old optimal solution does not satisfy new constraint that we've added we should add Artificial variable and then solve it by Dual simplex method as follows:

Q3)

Part 1) One way for solving this problem is by using "Sensitivity analysis " and "" shadow price" theorems.

Since the Dual price for X1 is Y5 and equal to -20 and we are in a Maximization problem and since 86 is in valid interval of change(85<= 86<=90)then it means if we reduce one unit of X1 it can increase –(-20) of objective function and we will have "32580" for the new optimal value of objective function due to the following calculation:

reducing amout increament
$$\begin{array}{c|c}
1 & +20 \\
\hline
2 & ?
\end{array}$$
? = 2*20 =40

Part 2) In this part we are adding new activity (variable):

After introducing slack, surplus, artificial variables and BEFORE ADDING NEW VAR

$$\frac{Max}{Z} = 300 \, X_1 + 400 \, X_2 - 50 \, M_1 + 0 \, S_1 + 0 \, S_2 + 0 \, S_3 + 0 \, S_4 + 0 \, S_5 + 0 \, S_6 - M \, A_1 - M \, A_2$$

First table BEFORE ADDING NEW VAR:

BV	X1	X2	M1	S1	S2	S 3	S4	S5	S6	A1	A2	RHS
S1	0.8	(1)	-1	1	0	0	0	0	0	0	0	0
S2	0	0	1	0	1	0	0	0	0	0	0	98
S3	0.6	0.7	0	0	0	1	0	0	0	0	0	73
S4	2	3	0	0	0	0	1	0	0	0	0	260
A1	1	0	0	0	0	0	0	-1	0	1	0	88
A2	0	1	0	0	0	0	0	0	-1	0	1	26
Z=-114M	-M-300	-M-400	50	0	0	0	0	M	M	0	0	-114M

Opt table BEFORE ADDING NEW VARIABLE (I mean Jeep machine)

Opt table										
BV	X_1	X_2	M_1	S_1	S_2	S_3	S_4	S_5	S_6	RHS
X_2	0	1	0	1	1	0	0	0.8	0	27.6
S_6	0	0	0	1	1	0	0	0.8	1	1.6
S_3	0	0	0	-0.7	-0.7	1	0	0.04	0	0.88
S_4	0	0	0	-3	-3	0	1	-0.4	0	1.2
X_1	1	0	0	0	0	0	0	-1	0	88
M_1	0	0	1	0	1	0	0	0	0	98
Z=	0	0	0	400	350	0	0	20	0	32540

0	0	0	0	1	0	
1	1	0	0	-0.8	0	
-0.7	-0.7	1	0	-0.04	0	
-3	-3	0	1	0.4	0	= R
-1	-1	0	0	0.8	1	
0	1	0	0	0	0	

$$\bar{a}_{x_{3}} = B^{-1}a_{x_{3}}$$

AFTER ADDING NEW VARIABLE:

Opt table											
BV	X_1	X_2	M_1	S_1	S_2	S_3	S_4	S_5	S_6	X_3	RHS
X_2	0	1	0	1	1	0	0	0.8	0	0	27.6
S_6	0	0	0	1	1	0	0	0.8	1	1.2	1.6
S_3	0	0	0	-0.7	-0.7	1	0	0.04	0	1.16	0.88
S_4	0	0	0	-3	-3	0	1	-0.4	0	0.4	1.2
X_1	1	0	0	0	0	0	0	-1	0	-1.2	88
M_1	0	0	1	0	1	0	0	0	0	0	98
Z=	0	0	0	400	350	0	0	20	0	-120	32540

Now since X_3 has a negative reduce cost, we are not in a OPT table. After elementary row operation and Minimum test we will have next table as follows:

BV	X1	X2	M1	X3	S1	S2	S3	S4	S5	S6	RHS
X2	0	1	0	0	1.7241	1.7241	-1.0345	0	0.7586	0	26.6897
S6	0	0	0	0	1.7241	1.7241	-1.0345	0	0.7586	1	0.6897
X3	0	0	0	1	-0.6034	-0.6034	0.8621	0	0.0345	0	0.7586
S4	0	0	0	0	-2.7586	-2.7586	-0.3448	1	-0.4138	0	0.8966
X1	1	0	0	0	0	0	0	0	-1	0	88
M1	0	0	1	0	0	1	0	0	0	0	98
Z=32631	0	0	0	0	327.5862	277.5862	103.4483	0	24.1379	0	32631.03

32631 is > than 32540 So we should Produce new variable.