Understanding and implementation of the algorithm for three-coloring in triangle-free planar graphs

Bachelor Thesis Defense

Qianli Wang

06.05.2021

Outline

- Introduction
- Safety of multigrams
- Main argument for detecting multigrams
- Proof of Grötzsch's theorem
- Implementation

Introduction

Definition 1:

Given a graph G = (V, E) and a positive integer K such that K < |V|. The graph K-COLORING problem is to determine whether there exists a conflict-free vertex coloring using K colors or less.

- What we focus on is 3 COLORING problem. However, 3 – COLORING problem is NP-complete.
- Assume that the given graph G = (V, E) is planar and triangle-free.

Introduction

- In 1959, Grötzsch's theorem stated 3-colorability of a planar and triangle-free graph.
- In 2003, Thomassen's proofs can be developed an algorithm for 3-coloring in $\mathcal{O}(n^2)$ time.
- In 2004, Kowalik found a $\mathcal{O}(nlogn)$ -time algorithm.
- In 2011, Dvorak, Kawaravayashi and Thomas designed a linear-time algorithm.

Introduction

Definition 2:

Given a graph G=(V,E), identifying a pair of vertices means that the two selected vertices $u,v\in V(G)$ will be glued as a vertex s and the neighbor of s is the union of u,v's neighbors. So we get a new graph G'=(V',E'), where $V'=V\setminus\{u,v\}\cup\{s\}$ and E' will be obtained by deleting parallel edges from E after gluing the vertices.

Introduction - Core idea

- (1) Detection and Reduction
- (2) Reconstruction

Definition 3:

A *tetragram* is a sequence (v_1, v_2, v_3, v_4) of vertices of G such that it can build a facial cycle in this listed order. Analogously, we can define a *hexagram* $(v_1, v_2, v_3, v_4, v_5, v_6)$. And a *pentagram* $(v_1, v_2, v_3, v_4, v_5)$ is also defined likewise and v_1, v_2, v_3, v_4 have degree exactly three.

Definition 4.1 (Safety of tetragrams and hexagrams):

Assume that k=4, 5, 6 and $(v_1,v_2,...,v_k)$ be a tetra-, penta- or hexagram in a triangle-free planar graph G. The tetragram or hexagram is safe if every path in G of length at most three with ends v_1 and v_3 is a subgraph of cycle $v_1v_2...v_k$.

Definition 4.2 (Safety of pentagrams):

Let x_i be the neighbor of v_i different from v_{i-1} and v_{i+1} , where $v_0 = v_5$ and $\forall x_i \notin \{v_1, v_2, v_3, v_4, v_5\}, i \in \{1, 2, 3, 4\}$. A pentagram $(v_1, v_2, v_3, v_4, v_5)$ is *safe*, if

- the vertices x_1, x_2, x_3, x_4 are pairwise distinct and pairwise non-adjacent, and
- there is no path in $G\setminus\{v_1,v_2,v_3,v_4\}$ of length at most three from x_2 to v_5 , and
- every path in $G\setminus\{v_1,v_2,v_3,v_4\}$ of length at most three from x_3 to x_4 has length exactly two, and its completion via the path $x_3v_3v_4x_4$ results in a facial cycle of length five in G.

How to identify vertices in multigrams?

For tetragram (v_1, v_2, v_3, v_4) , G' can be obtained by identifying vertices v_1 with v_3 .

Reconstruction Step:

In graph G', let c_1 be the color of v_2 , c_2 be the color of v_1 and c_3 be the color of v_4 .

How to identify vertices in multigrams?

For hexagram $(v_1, v_2, v_3, v_4, v_5, v_6)$, G' can be obtained by identifying vertices v_1 with v_3 .

Reconstruction Step:

In graph G', let c_1 be the color of v_2 , c_2 be the color of v_1 . Assume that the color of v_4 and v_6 is c_3 and the color of v_5 is c_1 . Apparently, the color c_2 can be designated for v_3 as well.

How to identify vertices in multigrams?

For pentagram $(v_1, v_2, v_3, v_4, v_5)$, G' will be attained from $G \setminus \{v_1, v_2, v_3, v_4\}$ by identifying v_5 with x_2 and x_3 with x_4 .

How to identify vertices in multigrams?

Reconstruction Step:

In graph G', let c_1 be the color of x_1 , c_2 the color of x_2 and v_5 , and c_3 the color of x_3 and x_4 . Consider the following cases:

- $c_1 = c_2$, we will color the remaining vertices in this order (v_4, v_3, v_2, v_1) . Since there are at most two remaining colors when v_i is colored, we can simply choose the third color for it.
- $c_2 = c_3$, similarly, we will color the vertices in the reversed order as in the first case.
- $c_1 \neq c_2$ and $c_2 \neq c_3$, we can color v_2 with c_1 , v_1 with c_3 , v_3 with c_2 and v_4 with c_1 .

Demonstration

Figure: The input graph

Figure: Remove vertices with degree one

Demonstration

Figure: Identify vertices 7 and 9

Figure: Remove vertices with degree one

Demonstration

Figure: Identify vertices 1 and 3

Figure: Identify vertices 6 and 11

Main argument for detecting multigrams

Lemma 1:

Every triangle-free plane graph G of minimum degree at least three has a safe tetragram, a safe pentagram or a safe hexagram.

Proof of Grötzsch's Theorem

Grötzsch's Theorem:

Every triangle-free planar graph is 3-colorable.

Proof of Grötzsch's Theorem:

Let G as stated to be a triangle-free graph.

- (1) If there is a vertex v with degree one or two, delete it. While reconstructing, give v a color different from its neighbor(s).
- (2) If the minimum degree is at least three, apply Lemma 1 on the graph.

Implementation

Brute Force Algorithm:

- (1) Start with a vertex $v \in V$ and just go through all its adjacent vertices which should be pairwise distinct. In this step, we will use multiple inner for-loops to achieve that.
- (2) Check the condition whether the detected multigram is safe or not.
- (3) If the founded multigram is safe, then identify vertices.
- (4) Reconstruct the coloring of the graph

Implementation

How to check the safety?

Testing safety:

- Found multigram is tetragram/hexagram. We can use the same way by using two for-loops to go through all neighbors and neighbors of neighbors so that we can check that there is no path of length at most three from v_1 to v_3 which is not part of the tetragram/hexagram. This can be done in $\mathcal{O}(m^2)$ time, where m = |E|.
- Found multigram is pentagram. As mentioned in the former case, we can also use two for-loops to check whether there is no path in $G\setminus\{v_1,v_2,v_3,v_4\}$ of length at most three from x_2 to v_5 , and every path in $G\setminus\{v_1,v_2,v_3,v_4\}$ of length at most three from x_3 to x_4 has length exactly two. This can be done in $\mathcal{O}(m^2)$ time as well.

Implementation - Running time analyse

Observation:

The running time of the Brute Force algorithm is $\mathcal{O}(m^8)$ in the worst case.

Java Implementation

```
Vertex 0 ---> Color 0
The info of input graph:
                                                       Vertex 1 ---> Color 0
Tetragram:
                                                       Vertex 2 ---> Color 0
[6, 10, 11, 12]
                                                       Vertex 3 ---> Color 0
Pentagram:
[1, 2, 3, 4, 5]
                                                       Vertex 4 ---> Color 0
                                                       Vertex 5 ---> Color 0
Hexagram:
Number of tetragram: 1
                                                       Vertex 6 ---> Color 0
Number of pentagram: 1
                                                       Vertex 7 ---> Color 0
Number of hexagram: 0
                                                       Vertex 8 ---> Color 0
Remaining #vertex: 12
                                                       Vertex 9 ---> Color 0
                                                       Vertex 10 ---> Color 1
Identified vertices: [6, 11] in 0-th iteration
                                                       Vertex 11 ---> Color 0
Tetragram:
                                                       Vertex 12 ---> Color 1
Pentagram:
                                                        ********
[1, 2, 3, 4, 5]
Hexagram:
                                                       Vertex 0 ---> Color 0
Number of tetragram: 0
                                                       Vertex 1 ---> Color 1
Number of pentagram: 1
                                                       Vertex 2 ---> Color 2
Number of hexagram: 0
                                                       Vertex 3 ---> Color 1
Remaining #vertex: 11
                                                       Vertex 4 ---> Color 2
                                                       Vertex 5 ---> Color 0
Identified vertices: [7, 5] in 1-th iteration
                                                       Vertex 6 ---> Color 0
Identified vertices: [8, 9] in 2-th iteration
                                                       Vertex 7 ---> Color 0
Tetragram:
                                                       Vertex 8 ---> Color 0
Pentagram:
                                                       Vertex 9 ---> Color 0
Hexagram:
Number of tetragram: 0
                                                       Vertex 10 ---> Color 1
Number of pentagram: 0
                                                       Vertex 11 ---> Color 0
Number of hexagram: 0
                                                       Vertex 12 ---> Color 1
Remaining #vertex: 5
                                                       *******
```

Implementation - Virtualization

Figure: The input graph

Figure: The proper coloring

Implementation - Improvments

Tetragram.

- (1) Use two loops to go through all edges $e_1, e_2 \in E$, where $e_1 \neq e_2$ and check whether they form a cycle.
- (2) Check the condition of safety by using BFS.

The running time of this improved algorithm for detecting tetragrams is $\mathcal{O}(m^3)$.

Hexagram.

- (1) Use three loops to go through all edges $e_1, e_2, e_3 \in E$, where $e_1 \neq e_2$ and $e_2 \neq e_3$ and check whether they form a cycle.
- (2) Check the condition of safety by using BFS analogously.

Totally, the running time is $\mathcal{O}(m^4)$.

Implementation - Improvments

• **Pentagram.** We use two loops to go through all edges $e_1, e_2 \in E$, where $e_1 \neq e_2$ and another loop to go through all remaining vertices. Then, we apply BFS to check wether there is a path in $G \setminus \{v_1, v_2, v_3, v_4\}$ of length at most three from x_2 to v_5 and every path in $G \setminus \{v_1, v_2, v_3, v_4\}$ of length at most three has length exactly two. Therefore, the running time is $\mathcal{O}(m^4)$.

Conclusion:

As a result, the running time can be improved to $\mathcal{O}(m^4)$ in the worst case.

Thank you for your attention!

