Dérivabilité Dérivabilité d'un point

MPSI 2

Soit I un intervalle réel non réduit à un point. Soit $f: I \to \mathbb{R}$ une fonction numérique.

1 Définition

Soit x_0 un élément de I.

On pose $\phi: I \setminus \{x_0\} \longrightarrow \mathbb{R}$

$$x \longmapsto \frac{f(x) - f(x_0)}{x - x_0}$$

Définition 1.0.1

• On dit que f est dérivable en x_0 si $\phi(x)$ admet une limite finie notée L lorsque x tend vers x_0 sur $i \setminus \{x_0\}$:

On note
$$f'(x) = L = \lim_{\substack{x \to x_0 \\ x \in I \setminus \{x_0\}}} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)$$

Cette limite, quand elle existe, s'appelle le nombre dérivé de f en x_0 .

• On dit que f est dérivable à gauche en x_0 si $\phi(x)$ admet une limite finie à gauche, L_g :

On note
$$f'_g(x) = L_g = \lim_{\substack{x \to x_0 \\ x < x_0}} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)$$

• On dit que f est dérivable à droite en x_0 si $\phi(x)$ admet une limite finie à droite, L_d :

On note
$$f'_d(x) = L_d = \lim_{\substack{x \to x_0 \\ x > x_0}} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)$$

1

Remarque: f est dérivable en x_0 ssi: $\begin{cases} f \text{ est dérivable à droite en } x_0 \\ f \text{ est dérivable à gauche en } x_0 \\ f'_d(x_0) = f'_g(x_0) \end{cases}$

2 Interprétation géométrique

Soit x_0 un élément de I qui ne soit pas une borne de I. Pour $x \neq x_0, \ \phi(x) = \frac{f(x) - f(x_0)}{x - x_0}$

Définition 2.0.2

f est dérivable en x_0 si il existe un réel L, un réel α strictement positif et une application $\varepsilon:]x - \alpha, x + \alpha[\to \mathbb{R} \text{ tels que:}$

$$\begin{cases} \forall x \in I, \ x \in]x - \alpha, x + \alpha[\ et \ x \neq x_0, \ f(x) = f(x_0) + L f(x - x_0) + \varepsilon(x) (x - x_0) \\ \varepsilon(x) \underset{x \to x_0}{\longrightarrow} 0 \end{cases}$$

On dit que f admet un développement limité à l'ordre 1 au voisinage de x_0 .

3 Fonctions à valeurs complexes

Soit $f: I \longrightarrow \mathbb{C}$ $x \longmapsto f_1(x) + i f_2(x)$

- f_1 et f_2 sont a valeurs réelles et définies sur I.
- Soit x_0 un élément de I. On dit que f est dérivable en x_0 si f_1 et f_2 le sont, et $f'(x_0) = f'_1(x) + i f'_2(x)$