(Dot Matrix Liquid Crystal Graphic Display Common Driver)

Description

The HD61105, HD61105A is a common signal driver for dot matrix liquid crystal graphic display systems. It provides 80 driver output lines and the impedance is low enough to drive a large screen.

As the HD61105, HD61105A is produced in a CMOS process, it is fit for use in portable battery drive equipments utilizing the liquid crystal display's low power consumption.

Features

- Dot matrix liquid crystal graphic display common driver with low impedance
- Internal liquid crystal display driver circuit: 80 circuits
- Display duty ratio factor: 1/64-1/200
- Internal 80-bit shift register
- Power supply for logic circuit: 5 ± 10%
- Power supply for LCD drive circuits:
 —10 to 26 V (HD61105)
 - -10 to 28 V (HD61105A)
- CMOS process
- 100-pin plastic OFP (FP-100)

Ordering Information

Type No.	LCD Driving Level (V)	Package	
HD61105	10 to 26	100 pin	
HD61105A	10 to 28	- plastic QFP (FP-100)	
HD61105TF	10 to 28	100 pin plastic T-QFP (TFP-100)	

Pin Arrangement

Block Diagram

Absolute maximum ratings

	Symbol	Value	Unit	Note
-	Vcc	- 0.3 to + 7.0	V	2
HD61105	VEE	V _{CC} - 28.0 to V _{CC} + 0.3	V	5
HD61105A	-	V _{CC} - 28.5 to V _{CC} + 0.3		
	V _{T1}	- 0.3 to V _{CC} +0.3	V	2, 3
Terminal voltage (2)		V _{EE} - 0.3 to V _{CC} +0.3	٧	4, 5
Operating temperature		- 20 to + 75	°C	
	Tstg	- 55 to + 125	.c	
		Vcc HD61105 VEE HD61105A VT1 VT2 Topr		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Notes: 1. LSIs may be permanently destroyed if used beyond the absolute maximum ratings. In ordinary operation, it is desirable to use them within the limits of electrical characteristics, because using them beyond these conditions may cause malfunction and poor reliability.
 - 2. All voltage values are referred to GND = 0 V.
 - 3. Applies to input terminals except V₁, V₂, V₅, and V₆.
 - 4. Applies to V_1 , V_2 , V_5 , and V_6 .
 - 5. $V_{CC} \ge V_1 \ge V_6 \ge V_5 \ge V_2 \ge V_{EE}$ must be maintained.

Electrical Characteristics

DC Characteristics

 $(V_{CC} = 5 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V}, V_{CC} - V_{EE} = 10 \text{ to } 26 \text{ V} \text{ (HD61105)}, V_{CC} - V_{EE} = 10 \text{ to } 28 \text{ V}$ (HD61105A), $T_a = -20 \text{ to } + 75^{\circ}\text{C}$

	Specifications					
Symbol	Min	Тур	Max	Unit	Test Condition	Note
ViH	0.7 × V _{CC}	_	Vcc	V		1
VIL	GND	_	0.3 × V _{CC}	V		1
Voн	V _{CC} - 0.4	_	_	V	$I_{OH} = -0.4 \text{mA}$	2
VoL	_	_	0.4	V	I _{OL} = 0.4mA	2
Ron	_	_	2.0	kΩ	V _{CC} - V _{EE} = 10 V Load current ± 150 μA	5
I _{IL1}	- 1.0	_	1.0	μА	V _{IN} = 0 to V _{CC}	3
l _{IL2}	- 25	_	25	μА	V _{IN} = V _{EE} to V _{CC}	4
f _{CL}	_		100	kHz	Transfer clock CL	-
I _{GG1}		-	200	μΑ	at 1/200 duty cycle operation	6
IEE	_	-	100	μΑ	at 1/200 duty cycle operation	7
	VIH VIL VOH VOL RON IIL1 IIL2 fcL IGG1	Symbol Min V _{IH} 0.7 × V _{CC} V _{IL} GND V _{OH} V _{CC} - 0.4 V _{OL} R _{ON} I _{IL1} - 1.0 I _{IL2} - 25 f _{CL} I _{GG1}	Symbol Min Typ V _{IH} 0.7 × V _{CC} — V _{IL} GND — V _{OH} V _{CC} = 0.4 — V _{OL} — — R _{ON} — — I _{IL1} — 1.0 — I _{IL2} — 25 — f _{CL} — — — I _{GG1} — — —	Symbol Min Typ Max V _{IH} 0.7 × V _{CC} — V _{CC} V _{IL} GND — 0.3 × V _{CC} V _{OH} V _{CC} – 0.4 — — V _{OL} — — 0.4 R _{ON} — — 2.0 I _{IL1} — 1.0 — I _{IL2} — 25 — 25 f _{CL} — — 100 I _{GG1} — — 200	Symbol Min Typ Max Unit V_{IH} 0.7 × V_{CC} — V_{CC} V V_{IL} GND — 0.3 × V_{CC} V V_{OH} V_{CC} – 0.4 — — V V_{OL} — — 0.4 V R_{ON} — — 2.0 $k\Omega$ I_{IL1} — 1.0 μ A I_{IL2} — 25 — 25 μ A I_{GG1} — — 100 μ A	Symbol Min Typ Max Unit Test Condition V_{IH} 0.7 × V_{CC} - V V_{IL} GND - 0.3 × V_{CC} V V_{OH} V_{CC} - 0.4 - - V I_{OH} = - 0.4mA V_{OL} - - 0.4 V I_{OL} = 0.4mA I_{OL} - - 2.0 kΩ V_{CC} - V_{EE} = 10 V Load current ± 150 μA I_{IL1} - 1.0 - 1.0 μΑ V_{IN} = 0 to V_{CC} I_{IL2} - 25 - 25 μΑ V_{IN} = V_{EE} to V_{CC} I_{GG1} - - 100 V_{IR} at 1/200 duty cycle operation I_{EE} - - 100 V_{IR} at 1/200 duty

- Notes: 1. Applies to input terminals FCS, SHL, DI, M, and CL.
 - Applies to output terminal of D0.
 - 3. Applies to the terminals NC, and the input terminals FCS, SHL, DI, M, and CL.
 - 4. Applies to V₁, V₂, V₅, and V₆. No wire should be connected to X₁-X₈₀.
 - 5. Resistance value between terminal X (one of X₁ to X₈₀) and terminal V (one of V₁, V₂, V₅, and V₆) when load current is applied to one of terminals X₁ to X₈₀. This value is specified under the following conditions:

$$V_{CC} - V_{EE} = 26 V$$

$$V_{1}, V_{6} = V_{CC} - 1/10 (V_{CC} - V_{EE})$$

$$V_{2}, V_{6} = V_{EE} + 1/10 (V_{CC} - V_{EE})$$

$$V_{1} - V_{6} - V_{EE}$$

$$V_{5} - V_{6} - V_{6} - V_{6}$$

$$V_{7} - V_{7} -$$

The following is a description of the range of power supply voltage for liquid crystal display drives. Apply positive voltage to V₁ and V_6 , and negative voltage to V_2 and V_6 , within

the $\triangle V$ range. This range allows stable impedance on driver output (Ron). Notice that $\triangle V$ depends on power supply voltage VCC-VEE.

Correlation between Driver Output Waveform and Power Supply Voltages for Liquid Crystal Display Drive Correlation between Power Supply Voltage $V_{\text{CC}}{-}V_{\text{EE}}$ and $\triangle V$

6. The currents flowing through the GND terminal. Specified when display data is transferred under following conditions:

CL frequency

f_{CL} = 14kHz (data transfer rate)

M frequency

fM = 35 Hz (frame frequency/2) 1/200

Display duty ratio

 $V_{IH} = V_{CC}, V_{IL} = GND$

No load on outputs

 The currents flowing through the V_{EE} terminal in the conditions of note 6. No line should be connected to the V terminal.

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, GND = 0 V, $T_a = -20 \text{ to} + 75^{\circ}\text{C}$)

Symbol	Min	Тур	Max	Unit	Note
t _{WL1}	5.0			μS	
t _{WH1}	125			ns	
tw.2	125			ns	
t _{WH2}	5.0			μS	
tos	100			ns	
toH	100			ns	
too			3.0	μS	1
t _{DHW}	100			ns	-
t _r	W		30	ns	
t _f			30	ns	
	twl1 twH1 twL2 twH2 tos tDH toD tDHW tr	twL1 5.0 twH1 125 twL2 125 twH2 5.0 tos 100 tDH 100 tDD tDH 100 tr	twL1 5.0 twH1 125 twL2 125 twH2 5.0 t _{DS} 100 t _{DH} 100 t _{DH} 100 t _{DHW} 100	twL1 5.0 twH1 125 twL2 125 twH2 5.0 tDS 100 tDH 100 tDD 3.0 tDHW 100 t, 30	twL1 5.0 μs twH1 125 ns twL2 125 ns twH2 5.0 μs tos 100 ns toh 100 ns toh 100 ns toh 100 ns toh 3.0 μs toh 100 ns

Note: 1. The following load circuits are connected for specification:

Terminal Configuration

Input Terminal

Applicable Terminals: DI, CL, SHL, FCS, M

Output Terminal

Applicable Terminal: DO

Output Terminal

Applicable Terminals: X₁-X₈₀

5

Block Diagram

5

Block Functions

Bidirectional Shift Register

This is a 80-bit bidirectional register. The data from the DI terminal is shifted by the shift clock CL. The output terminal DO outputs the last shifted data. In case of serial cascade connection, terminal DO functions as the data input to the next LSI. Terminal SHL selects the data shift direction (table 1), and the terminal FCS selects the shift clock phase (table 2).

Liquid Crystal Display Driver Circuit

The combination of the data from the shift register with M signal allows one of the four liquid crystal display driver levels V1, V2, V5, and V6 to be transferred to the output terminals (table 3).

Table 1 SHL Truth Table

(Positive Logic)

SHL	Data Shift Direction			
1	DI → SR1 → SR2 → SR3 ······ SR79 → SR80 → DO			
0	DI → SR80 → SR79 → SR78 ······· SR2 → SR1 → DO			

Table 2 FCS Truth Table

FCS	Shift Clock Phase
0	Shifted at the falling edge of CL
1	Shifted at the rising edge of CL

Table 3 M Truth Table

(Positive Logic)

Data from the Shift Register	M	Output level
0	0	V ₅
1	0	V ₁
0	1	V ₆
1	1	V ₂

HD61105 Terminal Functions

Terminal Name	Number of Terminals	I/O	Connected to	Functions	
V _{CC} GND V _{EE}	1 1 1		Power supply	V _{CC} — GND: Power supply for internal logic V _{CC} — V _{EE} : Power supply for LCD drive circuit	
V ₁ V ₂ V ₅ V ₆	4		Liquid crystal drive level power supply	Power supply for liquid crystal drive V_1 , V_2 : selection level V_5 , V_6 : non-selection level	
FCS	1	1	V _{CC} or GND	Selects shift clock phase. FCS = V _{CC} Shift register operates at the rise of CL FCS = GND Shift register operates at the fall of CL	
М	1	1	Controller	Signal to convert LCD driver signal into AC	
CL	1	ı	Controller	Shift clock FCS = V_{CC} Shift register operates at the rise of CL FCS = GND Shift register operates at the fall of CL	
Di	1	1	Controller or terminal DO of HD61105	Shift register data input In case of cascade connection, the terminal DI is connected to the terminal DO of the preceding LSI.	
DO	1	0	Open or terminal DI of HD61105	Shift register data output In case of cascade connection, the terminal DO is connected to the terminal DI of the next LSI.	
SHL	1	ı	V _{CC} or GND	Selects shift direction of bidirectional shift register.	
				SHL Shift Direction Common Scanning Direction	
				V_{CC} DI \rightarrow SR1 \rightarrow SR2 \rightarrow SR80 $X_1 \rightarrow X_{80}$	
				GND DI \rightarrow SR80 \rightarrow SR79 \rightarrow SR1 $X_{80} \rightarrow X_1$	
X ₁ X ₈₀	80	0	Liquid crystal display	Liquid crystal display driver output Outputs one of the four liquid crystal display driver levels V ₁ , V ₂ , V ₅ , and V ₆ with the combination of the data from the shift register and M signal. M 1 0 Data 1 0 1 0	
				Output level Data 1: Selection level Data 0: Non-selection level When SHL is V _{CC} , X ₁ corresponds to COM1 and X ₈₀ corresponds to COM80. When SHL is GND, X ₈₀ corresponds to COM1 and X ₁ corresponds to COM80.	
NC	7		Open	Unused. No line should be connected.	

Outline of HD61105 System Configuration

When display duty ratio of LCD is 1/80

When display duty ratio of LCD is 1/100

When display duty ratio of LCD is 1/160

When display duty ratio of LCD is 1/160

When display duty ratio of LCD is 1/200

Example of Connection

1/200 duty ratio

Note: 1. The values of R1 and R2 vary with the LCD panel used. When bias factor is 1/15, the values of R1 and R2 should satisfy $\frac{R1}{4R1+R2} = \frac{1}{15}$ For example, R1 = 3 K Ω , R2 = 33 K Ω

Figure 1 Example of Connection (SHL = V_{CC} , FCS = GND)

Figure 2 Waveform Example
HITACHI

Figure 3 Example of Connection 1 (SHL = V_{CC} , FCS = GND)

Figure 4 Waveform Example
HITACHI

Figure 5 Example of Connection 2 (SHL = GND, FCS = Vcc)

Figure 6 Waveform Example HITACHI