Midterm 01 10 Kasım 2015 Salı

Sur/name: #:

1. A welding robot is given as a solid model. **Joint variables** and **assigned coordinate frames** are also provided.

Midterm 01 10 Kasım 2015 Salı

Sur/name: #:

- a. Determine the **kinematic parameters** (2 joint par. + 2 link par.) and show them in **kinematic parameter table**.
- b. Find out the link coordinate transformation matrices for each link
- c. Find out the arm matrix that relates the tip of the end effector to the base
- d. Cross check every transformation stage and final base → tool tip arm matrix so that they give correct results.

	θ	d	а	α
	mafsal	mafsal	kol	burgu
	açısı	uzunluğu	uzunluğu	açısı
1	90°	$q_{\scriptscriptstyle 1}$	0	90°
2	q_2	d_2	a ₂	0
3	0	q ₃	a ₃	-90°
4	0	q ₄	0	0
5	q ₅	d ₅	a ₅	0

Koordinat sistemleri arası dönüşümler	Açıklama	Tabana göre dönüşümler
$T_0^1 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & q_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	z ekseni x'e, x ekseni y'ye, y ekseni z'ye dönüşüyor. L ₁ , L ₀ 'a göre, z ekseninde q ₁ mesafesinde	$T_0^2 = \begin{bmatrix} 0 & 0 & 1 & d_2 \\ C_2 & -S_2 & 0 & a_2 C_2 \\ S_2 & C_2 & 0 & q_1 + a_2 S_2 \end{bmatrix}$
$T_1^2 = \begin{bmatrix} C_2 & -S_2 & 0 & a_2C_2 \\ S_2 & C_2 & 0 & a_2S_2 \\ 0 & 0 & 1 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	L ₂ , L ₁ ile aynı yönde z eksenine sahip	
$T_2^3 = \begin{bmatrix} 1 & 0 & 0 & a_3 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & q_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	x ekseni x'e, z ekseni y'ye, -y ekseni z'ye dönüşüyor. L ₃ , L ₂ 'a göre, z ekseninde q ₃ ve x yönünde a ₃ mesafesinde	$T_0^3 = egin{bmatrix} 0 & -1 & 0 & d_2 + q_3 \ C_2 & 0 & -S_2 & C_2(a_2 + a_3) \ S_2 & 0 & C_2 & q_1 + S_2(a_2 + a_3) \ 0 & 0 & 1 \end{bmatrix}$
$T_3^4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	x ekseni x'e, y ekseni y'ye, z ekseni z'ye dönüşüyor. L ₄ , L ₃ 'a göre, z ekseninde q ₄ mesafesinde	$T_0^4 = \begin{bmatrix} 0 & -1 & 0 & d_2 + q_3 \\ C_2 & 0 & -S_2 & C_2(a_2 + a_3) - q_4 S_2 \\ S_2 & 0 & C_2 & q_1 + S_2(a_2 + a_3) + q_4 C_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
$T_4^5 = \begin{bmatrix} C_5 & -S_5 & 0 & a_5C_5 \\ S_5 & C_5 & 0 & a_5S_5 \\ 0 & 0 & 1 & d_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	L ₅ , L ₄ ile aynı yönde z eksenine sahip	$T_0^5 = \begin{bmatrix} -S_5 & -C_5 & 0 & d_2 + q_3 - a_5 S_5 \\ C_2 C_5 & -C_2 S_5 & -S_2 & C_2 (a_2 + a_3) - S_2 (d_5 + q_4) + a_5 C_2 C_5 \\ S_2 C_5 & -S_2 S_5 & C_2 & q_1 + S_2 (a_2 + a_3) + C_2 (d_5 + q_4) + a_5 S_2 C_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Midterm 01 10 Kasım 2015 Salı

Sur/name:

#:

2. Arm matrix of a robot is given below.

$$T_0^5 = \begin{bmatrix} -S_5 & -C_5 & 0 & d_2 + q_3 - a_5 S_5 \\ C_2 C_5 & -C_2 S_5 & -S_2 & C_2 (a_2 + a_3) - S_2 (d_5 + q_4) + a_5 C_2 C_5 \\ S_2 C_5 & -S_2 S_5 & C_2 & q_1 + S_2 (a_2 + a_3) + C_2 (d_5 + q_4) + a_5 S_2 C_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Writing down **tool configuration vector**, obtain equations for joint variables in any order. (**inverse kin**.)

$$q_1$$
, q_2 , q_3 , q_4 , $q_5 = ?$

$$w(q) = \begin{bmatrix} a_2 + q_3 - a_5 S_5 \\ C_2(a_2 + a_3) - S_2(d_5 + q_4) + a_5 C_2 C_5 \\ q_1 + S_2(a_2 + a_3) + C_2(d_5 + q_4) + a_5 S_2 C_5 \\ 0 \\ -exp(^{q_5}/_{\pi})S_2 \\ exp(^{q_5}/_{\pi})C_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \\ w_6 \end{bmatrix}$$

$$q_{5} = \frac{pi}{2}\ln(w_{5}^{2} + w_{6}^{2})$$

$$q_{3} = w_{1} - d_{2} + a_{5}Sin\left[\frac{pi}{2}\ln(w_{5}^{2} + w_{6}^{2})\right]$$

$$q_{2} = atan2\left(-\frac{w_{5}}{w_{6}}\right)$$

$$q_{4} = \frac{a_{5}C_{2}C_{5} + C_{2}(a_{2} + a_{3}) - d_{5}S_{2} - w_{2}}{S_{2}}$$

$$q_{1} = w_{3} - S_{2}(a_{2} + a_{3}) - C_{2}(d_{5} + q_{4}) - a_{5}S_{2}C_{5}$$

$$L_{b} = \{x_{b}, y_{b}, z_{b}\}$$

$$L_{m} = \{x_{m}, y_{m}, z_{m}\}$$

$$L_{\delta} = \{x_{s}, y_{s}, z_{s}\}$$

$$L_{\delta} = \{x_{s}, y_{s}, z_{s}\}$$

$$L_{mu} = \{x_{mu}, y_{mu}, z_{mu}\}$$

$$L_{d} = \{x_{h}, y_{h}, z_{h}\}$$

$$L_{d} = \{x_{h}, y_{h}, z_{h}\}$$

Since coordinate frame centurs $\frac{1}{2} \int_{-\infty}^{\infty} |a|^{2} = \left\{0, 0, \frac{1}{2} \right\}$ $\frac{1}{2} \int_{-\infty}^{\infty} |a|^{2} = \left\{-a_{5}, 0, c_{5}\right\}$ $\frac{1}{2} \int_{-\infty}^{\infty} |a|^{2} = \left\{-a_{1}, 0, c_{5}\right\}$

$$T_{b} = \begin{bmatrix} 1 & 0 & 0 & 1 & -a_{h} \\ 1 & 0 & 0 & 1 & -a_{h} \\ 0 & 0 & 0 & 1 & -a_{h} \\ -0 & 0 & 0 & -a_{h} \end{bmatrix}$$

$$T_{b}^{IMU} = T_{b}^{h} = T_{b}^{h} = T_{MU}^{-1} T_{b}^{h}$$

$$T_{MU}^{IMU} = \begin{bmatrix} 1 & 0 & 0 & \frac{1}{4}I_{MU} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{4}I_{MU} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & \frac{1}{4}I_{MU} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{4}I_{MU} \end{bmatrix}$$

$$T^{-1} = \begin{bmatrix} R^{T} & -R^{T}p \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{4}I_{MU} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$T_{IMU}^{h} = \begin{bmatrix} 1 & 0 & 0 & | a_{IMU} \\ 0 & 1 & 0 & | 0 \\ 0 & 0 & 1 & | -c_{IMU} \\ 0 & 0 & 0 & | 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | -a_{L} \\ 0 & 1 & 0 & | 0 \\ 0 & 0 & | 1 \end{bmatrix}$$

$$T_{IMU}^{h} = \begin{bmatrix} 1 & 0 & 0 & | a_{IMU} - a_{L} \\ 0 & 1 & 0 & | 0 \\ 0 & 0 & 1 & | -c_{L} - c_{IMU} \\ 0 & 0 & 0 & | 1 \end{bmatrix}$$