

Rec'd PCT/PTO 05 Feb 2005
05 Feb 2005

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2004年2月19日 (19.02.2004)

PCT

(10) 国際公開番号
WO 2004/014513 A1

- (51) 国際特許分類⁷: B01D 24/12, 24/46
(21) 国際出願番号: PCT/JP2003/009599
(22) 国際出願日: 2003年7月29日 (29.07.2003)
(25) 国際出願の言語: 日本語
(26) 国際公開の言語: 日本語
(30) 優先権データ:
特願2002-232973 2002年8月9日 (09.08.2002) JP
特願2002-271451 2002年9月18日 (18.09.2002) JP
特願2003-14293 2003年1月23日 (23.01.2003) JP
(71) 出願人(米国を除く全ての指定国について): 日本原料株式会社 (NIHON GENRYO CO., LTD.) [JP/JP]; 〒210-0005 神奈川県 川崎市 川崎区 東田町 1 番 2 Kanagawa (JP).
- (72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 斎藤 安弘 (SAITO,Yasuhiro) [JP/JP]; 〒210-0005 神奈川県 川崎市 川崎区 東田町 1 番地 2 日本原料株式会社内 Kanagawa (JP).
(74) 代理人: 柳田 征史, 外(YANAGIDA,Masashi et al.); 〒222-0033 神奈川県 横浜市 港北区 新横浜 3-18-3 新横浜 K S ビル 7 階 柳田国際特許事務所 Kanagawa (JP).
(81) 指定国(国内): CA, CN, KR, US.
(84) 指定国(広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).
添付公開書類:
— 國際調査報告書

[続葉有]

(54) Title: FILTER DEVICE

(54) 発明の名称: 濾過装置

(57) Abstract: A filter device where filter sand is less likely to clog and unevenness of the sand is less likely to occur. The device enables washing and rinsing of filter material in a short time. In a filter vessel (2), a screw conveyor (32) is provided in a wash vessel (38) hanged from the upper side. Space (52) is formed between a filter bed (4) and a metallic net (50) that are vertically separated. A filter material (14) is provided above the metal net (50), and filter material (54) having a larger grain size than the filter material (14) is provided in the space (52). Strainers (12) are provided in the filter bed (4). A wash water jet pipe (58) is installed on the outer wall of the space (52). After the screw conveyor (32) is rotated and the filter material (14) is washed, wash water is jetted from a clean water outlet pipe (46) and the wash water jet pipe (58), and muddy substances are discharged from a raw water inlet pipe (56).

(57) 要約: 濾過装置において、濾過砂の目詰まりや濾過砂の不陸を生じにくくし、効率的に短時間で濾過材の洗浄作業、およびすすぎ作業が行えるようにする。濾過槽2に、上部から垂下された洗浄槽38内にスクリューコンベア32が配置される。上下に離隔した濾床4、金網50との間に空間52が形成される。金網50の上には濾過材14が配置され、空間52には、濾過材14より大粒の濾過材54が配置される。また、濾床4には、複数のストレーナ12が配置されている。空間52の外壁には、洗浄水噴射管58が取り付けられている。スクリューコンベア32を回転させて濾過材14を洗浄した後、浄水出口管46と洗浄水噴射管58から洗浄水を噴出させて濁質を原水注入管56から排出する。

WO 2004/014513 A1

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明 稲田 書

濾過装置

5

技術分野

本発明は、水等の液体を濾過する濾過装置に関し、特に内部に濾過材洗浄機構を有する濾過装置に関するものである。

10

背景技術

濾過装置を長期間使用すると、濾過装置の濾過タンク（濾過槽）内の濾過材（濾過砂）が目詰まりし、効率的な濾過が行えなくなり、濾過された水等の質が悪化する。このため、濾過材に付着した汚濁物質（濁質）を取り除いて、目詰まりを解消することが行われている。濾過材からこの汚濁物質を取り除く作業、所謂、洗浄作業は、操業を効率よく行うためにできるだけ短時間で工数をかけず、また場所をとらずに行えることが望ましい。このため、濾過材を濾過タンクの外側に取り出すことなく、濾過タンク内に濾過材を収容したまま、短時間で効率よく洗浄できるよう濾過砂洗浄装置（濾過材洗浄機構）を濾過タンク内に設けることが考えられている。

このような観点で考えられた、従来技術の例として、例えば、特許第31491号明細書および実開昭63-98704号公報に開示された濾過器が知られている。前者の濾過器においては、濾過室（濾過槽）内に、下方に開放する中央管（洗浄槽）が筐（支持部）によって上方から吊り下げられ、この中央管の内部上方にプロペラ状の推進機が配置されている。推進機のさらに上には、中央管の上端の僅かに上の部分に側方に向けた、推進機と運動して回転し遠心力により洗浄液を高速度で放出する噴出口を有する管が配置されている。上記濾過室には、複数の孔を有する有孔偽底（濾床）が設けられており、通常の濾過時には、上方から濁質を含む原水が供給されて有孔偽底上に載置された濾過砂を経て濾過されるようになっている。濾過砂の洗浄時には、有孔偽底から洗浄水が上方に噴出するとともに、推進機

が回転する。そして、中央管の下部に開放した開口から濾過砂が吸引され、上昇した濾過砂が噴出口から放出される洗浄液により側方に放出され、その時に濾過砂から濁質が剥離して洗浄されるようになっている。

また、後者の濾過器においては、槽体内に上方から垂下した揚送管（洗浄槽）が
5 配置され、この揚送管内にらせん揚水機が回転可能に配置されている。この濾過器
は、通常の濾過においては、濾過砂中にある原水分散筒により原水が濾過砂中に放
出され、原水が濾過砂を下方から上方に通過して濾過された処理水（浄水）が濾過
砂の上方で排出されるようになっている。また、濾過砂の洗浄時には、らせん揚水
機が回転し、濁質を捕捉した濾過砂をらせん揚水機の下部から上昇させて、遠心分
10 離作用により濁質を濾過砂から剥離させて洗浄している。そして、洗浄された濾過
砂は揚送管の上部の濾過砂排出口から排出されて、再度槽体内に戻るよう構成さ
れている。

また、さらに他の従来例として、特開平8-215509号公報に開示されたろ
過機が知られている。このろ過機においては、前述の実開昭63-98704号公
15 報に開示された濾過器と同様に、ろ過槽の下部から供給される原水をろ過槽内を上
方に移動させて濾過するように構成されている。このろ過槽には、スクリューコン
ベアを内包する外筒がろ過槽の上部から垂下され、このスクリューコンベアにより
濾過砂を外筒の下端から上端に上昇させる間に濾過砂を洗浄するように構成され
ている。上昇された濾過砂は、外筒の上部に設けられた分離室でさらに攪拌されて、
20 汚濁物質が取り除かれるようになっている。そして、洗浄された濾過砂は、分離室
から再度ろ材層の上面部に返送されるよう構成されている。このろ過機は、洗浄時
においても、原水が下方から上方に向けて流されて、濾過は中断することなく連続
的に行われるようになっている。

また、従来、通常の濾過において、原水が上方から供給されて下方に浸透する形
25 式の濾過装置にあっては、濾床の上に大径の砂利の層を敷き、その上に細かい砂の
層を重ねて濾過材とした構成が知られている。

また、濾過材の洗浄は、毎日、例えば、始業時、或いは終業時に行なわれる場合
もある。また、24時間操業の場合は、濁質の詰まり具合をセンサで検知して、随
時、自動的に洗浄を行なったり、或いは、目詰まりが生じる前に所定の時間ごとに

作動するタイマーにより自動的に洗浄が行なわれる場合もある。

また、ストレーナとして、従来、多数の粒状体を粒状体同士の間隙が残る程度に押し固めたものが使用されることがある。

前者（特許第31491号）の濾過器においては、濾過材は有孔偽底上に直接配置されており、有孔偽底の孔から濾過砂が通り抜けて下方に流れ、さらに濾過後の水に混じりやすいという問題がある。また、濃い濁質を含む原水の場合には、この孔が目詰まりを起こしやすい。洗浄時においては、プロペラの回転による濁質除去とともに、有孔偽底から濾過砂の層に向けて洗浄水を逆流させることによって、濾過砂に付着した汚濁物質を濾過砂から剥離させて排出することが行われるが、有孔偽底に点在して設けられた複数の孔の総面積が限られており、即ち開口率が低く、有孔偽底上の濾過砂に均一に洗浄水を噴出することができない。その結果、濾過砂の汚濁物質のすすぎ効率が低く、洗浄作業も時間がかかるものとなってしまう。

また、実開昭63-98704号および特開平8-215509号の各公報に夫々開示された濾過器（ろ過機）の場合は、通常の濾過においては、原水が下方の原水供給口から供給されて上方に移動する所謂上向流式のものである。この種の上向流式の濾過器（ろ過機）は、一般的に、大量の原水処理量をこなすことを目的としているため、流速が早く上方の濾過材は浮き上がって濾過砂同士の間隙が大きくなり、原水の濁質が捕捉しにくくなるという問題がある。

特に、特開平8-215509号のろ過機の場合は、洗浄時にも濾過が停止されることはないので、細かい軽い砂は上方に押し上げられて、粗い砂が下方に溜まった状態になる。このような状態になった濾過材をらせん揚水機（スクリューコンベア）で上方に押し上げても、濾過砂の下層の粗い砂が上昇し、再度砂の層に放出された粗い砂が下に沈んで、細かい軽い砂は上部に残ったままになってしまう。従って、粗い砂だけが洗浄され、細かい砂は洗浄されないままになるという問題がある。このため、この連続的に濾過が行われるろ過機は実用化がなされていない。また、洗浄液を濾床から上に向けて逆流させることも行われないので、剥離した汚濁物質を排出する洗浄作業が効率的に行えず、時間がかかってしまう。

また、従来、大径の砂利の層の上に細かい砂の層を配置した濾過材層を使用している場合は、細かい砂は、大径の砂利により下方への落ち込みが防止され、濾床の

目詰まりも生じにくく、さらに大径の砂利の層により濾過される液体の流れが分散して均一になるという利点がある。しかし、このように配された濾過材を洗浄するときには次のような問題が起きる。

即ち、濾床から洗浄水を噴出させる逆洗洗浄のみによって洗浄する場合には、濾過材の層中で濁質により閉塞されていない水の通り道、所謂、水道から洗浄水が上方に噴出するので、その水道の周辺の濾過砂が移動して砂利層に不陸即ち砂利層表面の凹凸が生じやすい。そして洗浄後、濾過を行うときに濾過材中を通過する原水は不陸により水道が偏って均一に分散されないので、濾過効率が低下する、或いは濾過性能が安定しないという問題がある。また、スクリューコンベアを使用して砂利層の上の濾過砂を洗浄する場合は、スクリューコンベアの回転によって砂利層の上部が影響を受けて同様に不陸が生じる虞がある。

また、砂利の層の上に砂の層を配する場合は、小さい砂が、大きい砂利の中に落ち込まないように粒径の大きい砂利から、粒径の小さい砂まで3層乃至4層に重ねることが行われている。その場合、各層は同程度の厚さが必要なので、全体の層厚が大きくなり、その結果、濾過槽の高さも高くなり、濾過装置の屋内での設置場所に制約を受ける虞がある。さらに多種類の濾過材の洗浄等の維持管理が大変である。

また、ストレーナとして、多数の粒状体を押し固めたタイプのものは濁質によって、目詰まりしやすく、その目詰まりも除去しにくいという問題がある。

本発明は、以上の点に鑑みてなされたものであって、目詰まりが生じにくく、また、濾過材の不陸が生じることのない、長期間に亘って安定した性能を維持する濾過装置を提供することを目的とするものである。

さらに、本発明の他の目的は、効率的に短時間で濾過材の洗浄作業、およびすすぎ作業が行える維持管理の容易な濾過装置を提供することにある。

本発明の濾過装置は、粒状の濾過材の層を支持する濾床を有する濾過槽と、この濾過槽内に縦に配置された中空の洗浄槽、洗浄槽内で濾過材を上方に搬送しつつ濾過材を洗浄する洗浄手段および濾過材の洗浄時に濾過材から剥離した汚濁物質を

濾過槽の外部に排出する濁質排出手段を有する濾過材洗浄機構とを備え、通常の濾過時に濾過材により濾過された液体を濾床を通過させて排出する濾過装置において、濾床が、上下に間隔をおいた2つの濾床から構成され、上方の濾床が濾過材が通過しにくい大きさの多数の液体通過部を全面に有し、両濾床の間に前記濾過材より大きい濾過材の層が設けられていることを特徴とするものである。

また、前記洗浄手段は、濾過槽の上部から垂下されたスクリューコンベアであり、スクリューコンベアが濾過槽の上部に設けられた駆動部により回転されるように構成されていることが好ましい。また、スクリューコンベアの回転軸の下端の形状は円弧面であることが好ましい。なお、このスクリューコンベアの回転軸の下端は、下方から支持されていてもよい。

また、上方の濾床は、液体通過部を形成する網目を有する網状部材であることが好ましい。

また、2つの濾床のうち下方の濾床に、濾過された液体を排出する複数のストレーナが配置されていることが好ましい。このストレーナは、上部に傘形形状部分を有し、この傘形形状部分に液体を通過させるスロットを有することが好ましい。

濾過槽の外壁に、2つの濾床の間の濾過材の層に外部から液体を噴射する液体噴射部を設け、液体噴射部から該濾過材の層へ向けて洗浄液を噴射して、該洗浄液の水流により該濾過材に付着した汚濁物質を剥離するよう構成することができる。

液体噴射部は、濾床と略平行な平面内で角度を付けて設けられていることが好ましい。さらに、これらの液体噴射部は、濾過槽の外周に略等間隔に複数個が設けられていることが好ましい。

2つの濾床の間の濾過材の層に外部から振動を与える振動発生器を設け、振動発生器から該濾過材の層へ向けて伝搬する振動により該濾過材に付着した汚濁物質を剥離するよう構成することができる。

さらに、濾過槽に超音波発生装置を取り付けて、この超音波で発生する振動により濾過槽内の濾過材に付着した濁質を剥離するようにしてもよい。

本発明の濾過装置は、濾床を有する濾過槽と、中空の洗浄槽、洗浄槽内の洗浄手段および濁質排出手段を有する濾過材洗浄機構とを備えており、濾過材により濾過された液体を通過させる濾床は、上下に間隔をおいた2つの濾床から構成されてい

る。2つの濾床のうち、上方の濾床は、濾過材が通過しにくい大きさの多数の液体通過部を全面に有し、両濾床の間に前記濾過材より大きい濾過材の層が設けられているので次の効果を奏する。

即ち、濾過材が上下2つの濾床で仕切られ、上方の濾床に設けた濾過材と両濾床

5 間に設けた濾過材を夫々相対的に小径の濾過材、大径の濾過材（支持材）としたので、上方の小径の濾過材は、上方の濾床により下方への落下が防止され、濾過材を多層に重ねなくとも2層の目詰まりの生じにくい濾過材とすることができる。また、両濾床間に設けられた濾過材は、両濾床により閉鎖された所定の空間内にあるので、洗浄手段により上方の小径の濾過材が洗浄されても、大径の濾過材に不陸が生じることはない。その結果、均等な濾過が維持され、濾過効率のよい濾過装置が得られる。また、上方の濾過材のうち僅かな量が、上方の濾床を通過して下方の濾過材の層に落下したとしても、下方の濾過材を通り抜けることはない。従って、濾過後の淨水に濾過材が混じり込むことはない。そして大径の濾過材の層は、濁質による目詰まりが生じにくい。

15 また、洗浄手段が、濾過槽の上部から垂下されたスクリューコンベアであって、このスクリューコンベアが濾過槽の上部に設けられた駆動部により回転されるよう構成されている場合は、スクリューコンベアにより、上方の濾過材をもみ洗いすることができるので、濾過装置の洗浄を簡単に行うことができ、管理維持が容易である。また、このスクリューコンベアを回転させて上方の濾過材を洗浄しても、
20 上方の濾床の下に位置する濾過材の表面を不陸にする虞はない。

また、上方の濾床が、液体通過部を形成する網目を有する網状部材である場合は、濾床の開口率が大きいので、原水の濁質が濃い場合でも濾床に目詰まりを生じることなく効率的に濾過された液体を通過させることができる。また、逆流洗浄時にも、この開口率の大きい濾床から均一に洗浄水を吹き出すことができるので、すぎ効率が高く、短時間ですすぎ作業を完了させることができる。
25

また、2つの濾床のうち下方の濾床に、濾過された液体を排出する複数のストレーナが配置されている場合は、2つの濾床の間に配されている大きい濾過材が通過できない比較的大きめの液体通過部をストレーナに形成することができるので、一層目詰まりのしにくい濾過装置とすることができる。また、洗浄水の逆流噴射（逆

洗)を行った時に、ストレーナの液体通過部に詰まった濁質を容易に除去することができる。

濾過槽の外壁に、2つの濾床の間の濾過材の層に外部から液体を噴射する液体噴射部を設けて、この液体噴射部から該濾過材の層へ向けて洗浄液を噴射して、この洗浄液の水流により該濾過材に付着した汚濁物質を剥離するよう構成した場合は、両濾床の間の濾過材を濾過槽の外部に取り出すことなく、短時間で効率よく洗浄することができ、且つ濾過装置の維持管理が非常に簡単になる。

2つの濾床の間の濾過材の層に外部から振動を与える振動発生器を設けて、この振動発生器からこの濾過材の層へ向けて伝搬する振動により濾過材に付着した汚濁物質を剥離するよう構成した場合は、両濾床の間の濾過材を濾過槽の外部に取り出すことなく、短時間で効率よく洗浄することができ、濾過装置の維持管理が非常に簡単になる。

このように本発明に係る濾過装置は、非常に効率よく濾過材の洗浄およびすすぎ作業を行うことができ、例えば、逆洗による水流剪断のみによって濁質を剥離するものに比べて約3分の1の短時間で完了することができる。従って、洗浄作業が毎日行なわれる場合には、年間の総洗浄作業時間の差即ち削減可能な時間は非常に大きいものとなり、濾過効率、洗浄のためのエネルギー消費の観点から効果が大きい。さらに本発明の濾過装置は、上方から下方へと原水が流れる方式であるので、濾過砂が水流によって浮き上がることはなく、安定的に濁質を捕捉できる。

20

図面の簡単な説明

図1は、本発明の第1の実施形態の濾過装置の縦断面図である。

図2は、図1の濾過装置の濾過槽の平面図である。

図3は、下方の濾床を示し、(a)は、濾床の半分のみを示す平面図であり、(b)は、図3(a)の3b-3b線で切断した濾床の断面図である。

図4は、上方の濾床としての金網を示し、(a)は金網の半分のみを示す平面図であり、(b)は、(a)の4b-4b線に沿う、金網を含む濾過槽の要部断面図である。

図5は、図4の、2枚の金網の合わせ部分を示し、(a)は、ねじを省略して示す合わせ部分の部分拡大平面図であり、(b)は、図5(a)の5b-5b線に沿う拡大断面図である。

図6は、図4の金網の濾過槽への取付部を示し、(a)は部分拡大平面図であり、

5 (b)は、(a)の6b-6b線に沿う拡大断面図である。

図7は、図4の金網の取付に使用されるクランプボルトを示し、(a)は、クランプボルトの拡大平面図、(b)はクランプボルトの拡大側面図である。

図8は、本発明の第2の実施形態の濾過装置の縦断面図である。

図9は、濾過槽に接続された配管等との関係を示す、本発明の濾過装置の概略全体図である。

図10は、通常の濾過工程から洗浄工程を経て濾過工程に復帰するまでの各工程と、濾過装置の各部の作動との関係を示すタイムチャートである。

図11は、濾過槽に接続された配管等との関係を示す、図9に示した本発明の濾過装置と類似の他の濾過装置の他の具体例の概略全体図である。

15 図12は、通常の濾過工程から洗浄工程を経て濾過工程に復帰するまでの各工程と、図11に示す濾過装置の各部の作動との関係を示す他の具体例のタイムチャートである。

図13は、図1の濾過装置の変形例を示す概略縦断面図である。

図14は、図13の要部拡大図である。

20

発明を実施するための最良の形態

以下、本発明の濾過装置について添付図面を参照して詳細に説明する。図1は、第1の実施形態の濾過装置の縦断面図、図2は、図1の濾過装置の濾過槽の平面図である。以下、図1および図2を参照して説明する。

本発明の第1の実施形態の濾過装置1は、図1に示すように、上下が閉鎖された略円筒形の濾過槽2と、この濾過槽2の内側の下部に上下に間隔をおいて水平に配置された金網(濾床)50および4と、濾過槽2の湾曲した上壁20に取り付けられた濾過材洗浄機構(以下、単に洗浄機構という)6とを有する。この洗浄機構6

は、後述するモータ 26、減速機構部 27、台座 28、洗浄槽 38 およびスクリューコンベア 32 を含む。さらに、洗浄機構 6 は、濁質排出手段としての浄水出口管 46 および原水注入管 56 も含む。

濾過槽 2 には、4 本の支持脚 8 (図 1 では 1 本のみを示す) が取り付けられており、これによって、濾過槽 2 が床面 10 上に設置される。濾床 4 は、濾過槽 2 の湾曲した底壁 9 から上方に離隔して設けられており、この濾床 4 には、複数の濾過された液体 (濾水) を集水して下方に通過させる集水部即ちストレーナ 12 が設置されている (図 1)。なお、濾床 4 およびストレーナ 12 の詳細については後述する。

また、前述の原水注入管 56 は、図 1において、濾過槽 2 の右側に位置しており、原水の出口が上向きの略 L 字状を呈している。この注入管は、他の形状とすることも可能である。

前述の金網 50 上には、原水注入管 56 から注入された原水を濾過するための濾過材 (濾過砂) 14 の層が配される。金網 50 は、濾過材 14 が下方に落下しにくいうように、濾過材 14 の砂粒よりも概ね小さいメッシュ (網目) を有する。この濾過材 14 は、具体的には、約 0.4 mm ~ 2 mm の直径を有するものである。また、この直径は、約 0.6 ~ 1 mm であることが好ましい。メッシュの大きさは、最大直径が約 2 mm の濾過材 14 が下方に通過しない寸法に設定される。この金網の構造の詳細については、後述する。

金網 50 と濾床 4 との間の空間 52 には、濾過材 14 より大きい直径の砂利即ち濾過材 54 の層 (支持層) が配置される。この濾過材 54 は、濾過材 14 を支持する支持材として使用される。この濾過材 54 の直径は、例えば、約 2 ~ 4 mm のものが選択される。従って、濾過材 14 の上方から流入した原水は、濾過材 14 の層および金網 50 を通過した後、濾過材 54 の層およびストレーナ 12 を通過して浄化された液体として濾床 4 から下方に流れる。濾過材 54 の層は、上部が金網 50 により覆われており、濾過材 14 の層の方に移動することができないので、不陸が生じることがなく、水流が分散されて均一な濾過が可能となる。本実施形態の場合、濾過槽 2 の高さは約 2 m であり、空間 52 の高さは約 13 cm に設定されている。

濾過槽 2 の上壁 20 の中央部には、円形の取付口 22 が形成されており、この取付口 22 に洗浄機構 6 がボルト (図示せず) により取り付けられている。取付口 2

2の周縁は、取付用のリム24に形成されている。リム24上には、モータ26および減速機構部27を取り付けた台座28が取り付けられている(図1)。この台座28には、複数の軸受30を有する保持部36が形成されており、これらの軸受30により後述するスクリューコンベア(洗浄手段)32の軸34が、ぶれなく回転自在に支持されている。なお、モータ26および減速機構部27を駆動部という。

5 次に、この洗浄機構6について詳細に説明する。洗浄機構6の円筒形即ち筒状体の洗浄槽38は、上部に円板状の取付壁29を有する。そして、取付壁29が台座28とともにリム24にボルト(図示せず)により取り付けられている。図中、ボルトはその位置を示す中心線に代えて省略して示す。このようにして、洗浄槽38の上部がリム24に取り付けられると、洗浄槽38の略全体が濾過槽2の上部から垂下している構成となる。

10 図1に示すように洗浄槽38の下部は、開放した円形の下部開口40となっており、上部には洗浄槽38の外周に沿って所定間隔で形成された上下方向に延びる複数の上部開口42が形成されている。下部開口40は濾過材14の中に位置するよう15 に、濾過材14との位置関係が決められている。この洗浄槽38の内側には、スクリューコンベア32が配置されている。スクリューコンベア32の軸34は、比較的小径の縮径部34aと、直徑の大きい大直徑部34bから構成されている。

15 軸34は、継手49を介してモータ26と連結されている。軸34に強度を持たせるための大直徑部34bは、中空のパイプ状になっており、下端44は閉鎖されている。下端44の形状は、球面等の円弧面に形成されていることが好ましい。下端44が円弧面に形成されることにより、スクリューコンベア32を回転させて濾過材14を洗浄するときに渦を生じないようにして、下端44と接触する濾過材14を不必要に攪乱することが防止できる。軸34の大直徑部34bには、螺旋形のスクリューの羽根部43が形成されている。羽根部43は軸34の下端44近傍に至るまで形成されている。

20 このようにして、スクリューコンベア32の羽根部43が洗浄槽38内に配置されると、図1に示されるように、羽根部43の上端は上部開口42の下縁42a近傍に位置する。また、スクリューコンベア32の下端部35は、洗浄槽38の下部開口40から下方に突出し、軸34の下端44は、金網50の近傍に位置する。こ

の理由は、濾過材 1 4 の洗浄時に、できるだけ金網 5 0 近傍の濾過材 1 4 も効率よく上方に押し上げて洗浄できるようにするためである。

羽根部 4 3 の外縁は、洗浄槽 3 8 の内周面との間に僅かにギャップを形成して配置されているが、このギャップの寸法は、濾過材 1 4 の粒径の約 3 倍が望ましい。

5 このギャップにより、羽根部 4 3 と洗浄槽 3 8 との間に濾過材 1 4 が挟まても、濾過材 1 4 が破碎する虞が少なくなる。

次に、濾過槽 2 の外部に付属する部品について説明する。濾過槽 2 の湾曲した底壁 9 の中央には、下方に延びる浄水出口管 4 6 が取り付けられており、濾過材 1 4 、金網 5 0 、濾過材 5 4 、ストレーナ 1 2 を経て濾床 4 を通過した淨化された液体が、
10 この浄水出口管 4 6 を通って送出される。金網 5 0 と濾床 4 との間の濾過槽 2 の外壁に取り付けられているのは、洗浄水噴射管（液体噴射部） 5 8 である。また、濾過槽 2 の上部に突設されている、8 1 で示す部分は、濾過槽 2 内の空気を排出する空気抜弁である。

洗浄水噴射管 5 8 は、図 2 に最もよく示すように、濾過槽 2 の外壁に対し角度を付けて、濾過槽 2 の外周に沿って等間隔に 4 カ所取り付けられている。この洗浄水噴射管 5 8 には、外側から濾過槽 2 の内側に向けて渦を巻くように強力な洗浄水が噴射される。そしてこの水流により、空間 5 2 内の濾過材 5 4 から汚濁物質が剥離されて濾過材 5 4 を洗浄するようになっている。洗浄水は洗浄水出口管から取り出された洗浄水でもよいし、別の供給源（図示せず）から供給される洗浄水でもよい。

20 この洗浄の態様についての詳細は後述する。

次に、図 3 を参照して濾床 4 について説明する。図 3 は、濾床 4 を示し、図 3 (a) は、濾床 4 の半分のみを示す平面図であり、図 3 (b) は、図 3 (a) の 3 b - 3 b 線で切断した濾床 4 の断面図である。濾床 4 は、例えば、ステンレス鋼製の 4 つの板状部分から構成されている。即ち 1 対の半月状部分 4 a 、4 b (図 3 (a) では半月状部分 4 a 、4 b の半分のみを示す) および 1 対の略矩形部分 4 c 、4 c (図 3 (a) では 1 個のみを示す) から構成されている。従って、濾床 4 は、図 3 (a) において、直径の両側に線対称の円板状である。略矩形部分 4 c の一辺は弧状部分 4 7 に形成されている。

濾床 4 には、多数の孔 6 0 が穿設されており、これらの孔 6 0 に、前述のストレ

ーナ 1 2 が配置されている。また、各部分 4 a、4 b、4 c には、それらの外周に沿って所定間隔で複数個のねじ止め用の小孔 6 2 が穿設されている。他方、濾過槽 2 の内周には、その内周に沿った環状の取付リング 6 4 が突設されている。この取付リング 6 4 には、前述の小孔 6 2 に対応するねじ孔 6 3 が形成されている。また、各部分 4 a、4 b、4 c の相互の合わせ目に沿って、T 字状断面の支持梁 6 6 が濾過槽 2 に取り付けられている。そして、この支持梁 6 6 にも、ねじ孔 6 3 が形成されている。前述の部分 4 a、4 b、4 c は、前述の小孔 6 2 およびねじ孔 6 3 にねじ 6 1 が螺入されて、取付リング 6 4 およびこの支持梁 6 6 にねじ固定される。

また、支持梁 6 6 と直交する、濾過槽 2 の直径相当部分に、ねじ孔 6 3 を有する T 字状の支持梁 6 7 が、支持梁 6 6 と連結して略中央に配置され、部分 4 c がこのねじ孔 6 3 により同様にねじ固定される。また、図 3 (b) において、支持梁 6 7 の左右に支持梁 6 8 が設けられているが、この支持梁 6 8 は、単に部分 4 a の荷重を受けるためのものであり、部分 4 a、4 b は、この支持梁 6 8 には固定されない。

次に、この濾床 4 に配置されるストレーナ 1 2 について説明する。ストレーナ 1 2 は、管の先端が中空の傘状になった、ABストレーナーと称される市販のものであり、ABS樹脂製である。この傘状部分 1 8 には、前述の濾過材 5 4 が通過しない狭幅の複数のスロット（液体通過部）1 9 が同心円に沿って形成されており、濾過された液体のみを濾床 4 の下方に通過させるようにしている。

なお、スロット 1 9 は、図 3 (b) の中央のストレーナ 1 2 のみに示す。そして管の部分にはねじが形成され、この部分にナット 6 5 が螺合されて、傘状部分 1 8 とナット 6 5 により、濾床 4 に取り付けられるよう構成されている。スロット 1 9 は、濾過材 1 4 より大きい濾過材 5 4 が通過しない大きさのものであればよいので、濁質が詰まりにくいサイズのスロット幅とすることができます。傘状部分 1 8 にスロット 1 9 が形成されている効果については後述する。

次に、図 4 から図 7 を参照して、金網 5 0 について詳細に説明する。図 4 は、濾過槽 2 に取付けられた金網 5 0 を示し、図 4 (a) は金網 5 0 の半分のみを示す平面図であり、図 4 (b) は、金網 5 0 を含む濾過槽 2 の要部断面図である。図 5 は、2 枚の金網 5 0 の合わせ部分を示し、図 5 (a) は、ねじを省略してしめす合わせ部分の部分拡大平面図であり、図 5 (b) は、図 5 (a) の 5 b - 5 b 線に沿う拡

大断面図である。図6は、金網50の濾過槽2への取付部を示し、図6(a)は部分拡大平面図であり、図6(b)は、図6(a)の6b-6b線に沿う拡大断面図である。図7は、金網50の取付に使用されるクランプボルトを示し、図7(a)は、クランプボルトの拡大平面図、図7(b)はクランプボルトの拡大側面図を夫々示す。

まず、図4を参照すると、金網50はステンレス鋼製の板状の3つの部分、即ち2つの半月状部分50a、50bおよび逆向きの弧状部分53を有する1つの略矩形部分50cから構成されている。各部分50a、50b、50cは格子状のメッシュ（液体通過部）即ち網目51を有するとともに、各部分50a、50b、50cの周縁にはステンレス鋼製のフレーム70が設けられている。各部分50a、50b、50cのフレーム70が互いに当接する合わせ目71は、どの部分についても同様な構成になっているので、部分50aと50cの合わせ目71について、図5をさらに参照して説明する。

図5に示すように、金網50の部分50aのフレーム70と、部分50cのフレーム70の端縁には、互いに逆向きの半円形の切欠72が位置合わせして形成されている。この1組の切欠72により2つの互いに当接したフレーム70に円形の開口73が形成される。この開口73には、金網50の裏面から矩形のフランジ75を有するねじ74が挿通される。そしてねじ74には、フレーム70に沿って延びるフレーム押さえ板76が取り付けられる。フレーム押さえ板76は、ねじ孔77を有し、ねじ74はこのねじ孔77に挿入される。そしてねじ74にワッシャ79とナット80が装着されて固定される。これにより部分50aと部分50cとが互いに一体に合体される。

このようにして構成された網目状部材の円形の金網50が、次に、濾過槽2に取り付けられる。この取付の構成について、図6および図7を合わせて参考して説明する。図6に示すように、金網50の外周のフレーム70には所定の間隔で、タブ82が内向きに突設されている。このタブ82には、金網50の半径方向に延びる矩形の長穴83が形成されている。金網50は、このタブ82に、クランプボルト84を取り付けて濾過槽2に固定される。

このクランプボルト84は、図7に示すように、平面視で矩形であり、側面視で

L字状の頭部85を有する。この頭部85に円形の開口86が形成され、この開口86にボルトが溶接されて、全体として図7に示すクランプボルト84が構成されている。クランプボルト84の頸部87は、角ブロック状となっている。

再び図6を参照して、濾過槽2には、この濾過槽2の内周に沿って取付リング88(図6(b))が突設されている。金網50のフレーム70には、クランプボルト84が取り付けられる。このときクランプボルト84の頭部85の突出部85aが、取付リング88の反対側になるように取り付けられる。そして、クランプボルト84と金網50との間に取付リング88を挟み込み、ワッシャ89、90を取り付けた後、ナット91、92で固定する。ワッシャ89の下面には長穴83内に位置する角形の突起89aを有する。これによりフレーム70がクランプボルト84に対し、濾過槽2の半径方向の位置が決められ、金網50はこの半径方向に偏ることなく適切に濾過槽2に保持される。

次に、図1に示す濾過装置1の変形例を、図13および図14に示す。図13は、図1の濾過装置1の変形例を示す概略縦断面図、図14は、図13の要部拡大図である。まず、図13を参照して説明する。変形例の濾過装置200は、濾過槽238と、濾過材洗浄機構206と、この濾過材洗浄機構206に連結された洗浄槽238と、洗浄槽238内に配置されたスクリューコンベア232とを有する。濾過装置200と、図1に示す濾過装置1との主な相違点は、スクリューコンベア232と、洗浄槽238が、それらの下端で互いに係合している点である。換言すると、スクリューコンベア232の下端部235が、洗浄槽238の下端に設けられた支持部材(支持部)207により支持されている点である。この変形例では、スクリューコンベア232が、支持部材207によって支持されることにより、スクリューコンベア232の回転時におけるぶれ、振動が防止される。

このスクリューコンベア232の支持構造について、図14を参照してさらに説明する。スクリューコンベア232の下端233には、金属製の軸部材236が溶接により取り付けられている。軸部材236は、円板状の基部237と、この基部237の中央に基部237と一緒に形成された軸239とから構成されている。軸239とスクリューコンベア232とは、その中心軸が同一である。

他方、円筒形の洗浄槽238の下端には、円環状のプレート即ちリング208が、

溶接により固定されている。リング208には、複数のねじ孔205がリング208の円周に沿って所定間隔で均等に配置されている。そして、このリング208には、前述の支持部材207が取り付けられる。支持部材207は、前述のねじ孔205に対応する孔209が穿設された円環状の取付環213と、軸239を受容するハウジング248と、このハウジング248を取付環213に連結する複数本の放射状のステー249とから構成されている。支持部材207は、ねじ210によりリング208のねじ孔205に固定される。

ハウジング248は、上方に開放する円形の内壁と底壁248aから画成される凹所255を有する。凹所255の中心とスクリューコンベア232の回転中心は一致している。凹所255内には円筒形の軸受258が、凹所255の内壁に密接して配置されている。軸受258の内径は、軸239と密嵌するように寸法決めされている。凹所255の開放端には環状段部260が形成されており、この環状段部260に軸239と密接するシール部材262が配置されている。また、ハウジング248の上端の外周には環状のフランジ264が形成されている。このフランジ264には、押さえ板266がねじ（省略）により固定されて、シール部材262の飛び出しを防止している。押さえ板266には、軸239を受容する開口265が形成されているので、スクリューコンベア232と干渉することはない。

スクリューコンベア232は、このように支持部材207により支持されているので、スクリューコンベア232が回転すると、軸239は、この軸受258に支持されて回転し、下端部235がぶれることはない。軸239の下端239aは、底壁248aから離隔していることが好ましい。この理由は、軸239に下向きの荷重がかかるわけではなく、余分な摩擦抵抗が生じないようにするためである。

軸受258は、例えば、オイレスグライトロンF（登録商標）の如き、充填剤入り四ふっ化エチレン樹脂が好ましい。しかし、材質は、他の適切な合成樹脂であってもよいし、金属であってもよい。上記の四ふっ化エチレン樹脂は、耐摩耗性に優れ、低い摩耗係数を有するという特性を有しており、濾過装置200の軸受として好適である。また、上記の四ふっ化エチレン樹脂は、食品衛生法にも適合しているので、濾過された浄水を、飲料水等に使用するのに好適である。

次に、再び図1を参照して、この濾過槽2内で濾過がどのように行われるかにつ

いて説明する。まず、原水が、原水注入管 5 6 から濾過槽 2 内に注入される。原水の水位が上昇するにつれ、空気抜弁 8 1 から濾過槽 2 内の空気が排出される。水位は、本実施形態の場合、原水注入管 5 6 を越えて濾過槽 2 の上部まで達するように、即ち濾過槽 2 の略全体が水（原水） 1 6 で満たされるように設定される。原水は濾過材 1 4 に浸透するとともに、上部開口 4 2 からも洗浄槽 3 8 内に進入して洗浄槽 3 8 内の濾過材 1 4 に浸透し、洗浄槽 3 8 内においても濾過ができるようになって いる。

濾過材 1 4 を浸透し、濾過された水は、金網 5 0 を通過して濾過材 5 4 の層に浸透し、ストレーナ 1 2 を経て濾床 4 を通過して、濾過槽 2 の下部の浄水出口管 4 6 から外部に送出され、使用に供される。

次に、長期間使用して濾過材 1 4 に目詰まりが生じたときの、濾過材 1 4 の洗浄方法について説明する。スクリューコンベア 3 2 を回転させるためのモータ 2 6 を起動する前に、浄水出口管 4 6 から浄水を逆流させ、濾過材 5 4 を経て濾過材 1 4 中に浄水を噴出させて濾過材 1 4 を浮遊させる。これにより、モータ 2 6 起動時のモータ 2 6 への負荷が低減される。モータ 2 6 が駆動されて、スクリューコンベア 3 2 が回転すると、スクリューコンベア 3 2 の羽根部 4 3、特に洗浄槽 3 8 の下方に露出した部分の羽根部 4 3 により、濾過材 1 4 が上方の洗浄槽 3 8 内に押し上げられる。

スクリューコンベア 3 2 の回転の初期の段階では、前述の浄水の逆流が継続される。この理由は、スクリューコンベア 3 2 を逆流洗浄状態で回転させることによつて、洗浄槽 3 8 の外側の濾過材 1 4 と、洗浄槽 3 8 の内側の濾過材 1 4 が、スクリュー 3 2 の遠心力により容易に混ざり合い、且つ移動することで全体の濾過材 1 4 が満遍なく洗浄されるからである。浄水の逆流は、その後、流速を落として、集水部に汚れが落ち込まない程度に非常にゆっくりとした速度で継続される。また、スクリューコンベア 3 2 も、濾過砂 1 4 の洗浄のために回転が継続される。

押し上げられた濾過材 1 4 の粒子同士は、羽根部 4 3 の回転により互いにこすれあってもみ洗いされつつ上昇し、上部開口 4 2 から洗浄槽 3 8 外に排出される。このとき、濾過材 1 4 が水面上に落下したときの衝撃で、濁質が濾過材 1 4 から剥離することが促進される。落下した濾過材 1 4 は、洗浄の経過に従って下降し、再び

羽根部 4 3 により洗浄槽 3 8 内に押し上げられてもみ洗いされる。このようにして、濾過材 1 4 は洗浄槽 3 8 内で洗浄が繰り返されて汚濁物質が剥離される。前述のように、図 1 に示すようにスクリューコンベア 3 2 の下端 4 4 が、金網 5 0 の近傍に位置しているので、金網 5 0 に近い濾過材 1 4 も押し上げられて、全ての濾過材 1 5 4 が満遍なく洗浄されるようになっている。

洗浄が完了すると、スクリューコンベア 3 2 の回転が停止される前に、浄水出口管 4 6 から再度浄水を逆流させて、すぎ作業が行われる。このすぎ作業は、スクリューコンベア 3 2 の停止後も、引き続き逆流洗浄して継続される。浄水出口管 4 6 から逆流した液体は、濾床 4 のストレーナ 1 2 のスロット 1 9 から濾過材 5 4 10 の層に噴出し、さらに金網 5 0 を通過して濾過材 1 4 の層に上昇する。このとき、金網 5 0 近傍の濾過材 1 4 、5 4 の濁質は、逆洗水流により容易に除去される。また、ストレーナ 1 2 に詰まった濁質も、逆洗水流によりスロット 1 9 から容易に除去される。

そして、濾過材 1 4 から剥離した汚濁物質は、浮遊して原水注入管 5 6 から外部 15 へ濁質を含んだ水とともに排出される。逆流洗浄時に、洗浄水は、羽根部 4 3 の前述の間隙を通過して洗浄槽 3 8 内にも効果的に逆流するので、洗浄槽 3 8 内の濁質も排出される。この逆洗時には、ストレーナ 1 2 のスロット 1 9 から噴出する洗浄水は、均一に濾過材 5 4 の層に浸透する。即ち、スロット 1 9 はストレーナ 1 2 の傘状部分 1 8 に形成されているために、洗浄水は、ストレーナ 1 2 の周囲に角度を 20 付けて広範囲に噴出する。このため、洗浄作業およびすぎ作業を効果的に行うことができる。

また、すぎ作業時には、洗浄水噴射管 5 8 からも洗浄水が濾過槽 2 内の 2 つの濾床 5 0 、4 の間に強力に噴射される。噴射された洗浄水は、濾過材 5 4 の層中で渦流を形成し、濾過材 5 4 に付着している濁質は、この渦状の水流に曝されて濾過材 5 4 から剥離する。そして剥離した濁質は、金網 5 0 を通過して上方に押し流される。ストレーナ 1 2 からは、浄水出口管 4 6 からの浄水が噴出しているので、濾過材 5 4 から剥離した濁質は、濾床 4 の下に抜け出ることはない。前述のスロット 1 9 から噴出する洗浄液は、このときも濾過材 5 4 から剥離した濁質を短時間で効果的に上方に排出するのに役立つ。以上の逆流洗浄を必要な時間続行することによ

り、濾過槽 2 内に残留する濁質は全て除去される。なお、通常の濾過工程から洗浄工程を経て濾過工程に復帰するまでの各工程の具体例については後述する。

図 1 3 および図 1 4 に示す変形例の濾過装置 200 の場合も、図 1 の濾過装置 1 と同じ洗浄工程を経て濾過材 14 が洗浄される。しかし、洗浄過程で、濾過材 14 の挙動が僅かに相異するので、その相違点について以下に説明する。

濾過装置 200 のスクリューコンベア 232 の場合、その下端部 235 は、洗浄槽 238 から下方に突出していない。そのため濾過材 14 が、洗浄槽 238 内に吸引されやすいように、洗浄槽 238 の下部に矩形の下部開口 241 (図 1 4) が形成されている。この下部開口 241 は、洗浄槽 238 の周囲に所定の数が等間隔に形成されている。

洗浄工程の最初の段階で浄水を噴出させて、濾過材 14 を浮遊させた後、スクリューコンベア 232 を回転させるが、その時に、浮遊した濾過材 14 は、下部開口 241 から洗浄槽 238 内に移動する。下部開口 241 内に移動した濾過材 14 は、羽根部 243 により上方に搬送されつつもみ洗いされる。また、逆流洗浄時に、浄水は下部開口 241 から洗浄槽 238 内に移動する他に、ステー 249 の間からも洗浄槽 238 内に移動して、洗浄槽 238 内の濾過材 4 を浮遊させることができる。その他は、図 1 の濾過装置 1 の場合と同様である。

次に、本発明の第 2 の実施形態の濾過装置について、図 8 を参照して説明する。図 8 は、第 2 の実施形態の濾過装置 100 の縦断面図である。なお、第 1 の実施形態と同じ部品については、同一番号を使用して説明する。第 1 の実施形態と大きく異なる点は、2 つの濾床 50、4 の間の、濾過槽 2 の外壁に振動発生器 102 が取り付けられている点である。なお、この図では、振動発生器は 1 個のみを示す。

取付座 104 を介して濾過槽 2 に取り付けられたこの振動発生器 102 により、振動を発生させると、この振動は、濾過槽 2 の外壁から濾過材 54 の層に伝搬して、濾過材 54 を振動させる。この結果、濾過材 54 に付着している汚濁物質は剥離する。即ち濾過材 54 は洗浄されることとなる。この振動発生は、前述の逆流洗浄時に行われる。即ち浄水出口管 46 から浄水を逆流させるときであり、濾過材 54 から剥離した濁質は金網 50 を経て濾過材 14 を通って原水注入管 56 から排出される。

この振動発生器は、濾過材 5 4 の濁質の剥離に効果的な振動数、振幅を有する任意のものでよいが、振動を濾過材 5 4 の層の中心に向かわせるために、濾過槽 2 の外周に複数個、例えば 2 個或いは 3 個を略等間隔に配置することが好ましい。また、この振動発生器 102 は単独で使用してもよいし、洗浄水噴射管 58 と組み合せて使用してもよい。

次に、第 1 の実施形態および第 2 の実施形態に共通な、通常の濾過工程から洗浄工程を経て濾過工程に復帰するまでの各工程の具体例について、図 9 および図 10 を参照して説明する。図 9 は、濾過槽 2 に接続された配管等との関係を示す、本発明の濾過装置 1' の概略全体図である。図 10 は、通常の濾過工程から洗浄工程を経て濾過工程に復帰するまでの各工程と、濾過装置 1' の各部の作動との関係を示すタイムチャートである。

まず、図 9 を参照して、各配管と濾過槽 2 との接続関係の概略を説明する。濾過槽 2 の原水注入管 56 には、原水ポンプ P1 に接続された管 110 が連結されている。管 110 の途中には流路を開閉する原水弁 V1 が取り付けられている。また、管 110 には、排水溝 112 に至る管 114 が連結されており、管 114 の途中には、洗浄排水弁 V3 が設けられている。また、濾過槽 2 の下端中央に位置する浄水出口管 46 には、濾水弁 V2 を有する管 116 が連結されている。この管 116 からは、濾過された液体が排出される。なお、図 9において、各弁は M で示すモータにより駆動されるようになっている。また、各流路中に F で示す部分は流量計である。

また、管 116 には、逆洗ポンプ P2、P3 に接続された管 118 が連結されている。この管 118 には逆洗弁 V4 が取り付けられている。管 118 には離隔した位置に管 118a、118b が連結されており、夫々の管 118a、118b には、逆洗ポンプ P2、P3 が取り付けられている。また、管 116 と管 114 との間に 25 は、水位調整弁 V5 を有する管 120 が連結され、管 116、114 と連通するようになっている。濾過槽 2 の濾床 4 より上方に位置する濾過槽 2 の側壁 3 には、少なくとも 1 つの吐出管 5 が設けられている。この吐出管 5 には、水位調整弁 V6 を有する管 122 が連結され、管 122 は管 120 に連結されている。また、前述の管 116 と管 120 の間には、捨水弁 V7 を有する管 124 が配設され、管 116、

120と連通している。

次に、通常の濾過工程から洗浄工程を経て濾過工程に復帰するまでの各工程について説明する。まず、図10を参照して、通常の濾過が行われている状態の各部の作動状態について説明する。なお、図10中、斜線部分は各部が作動状態にあることを示しており、斜線部分の横方向の長さは時間の経過を示している。図10から判るように、通常の濾過時には原水弁V1と濾水弁V2が開いており、原水ポンプP1は作動状態にある。即ち、図9において、原水16が原水ポンプP1により管110内に供給され、開放された原水弁V1を通過し、原水注入管56から濾過槽2に供給される。濾過槽2に供給された原水16は、濾過材14、濾過材54の層を通過して濾過され、浄水出口管46から排出される。排出された濾水は管116内を通り、開放された濾水弁V2を通過して排出される。濾過時においては、原水16の水位は、原水注入管56の出口56aより上方に位置している。濾過槽2内に原水が満たされた満水状態にあってももちろんよい。

次に、通常の濾過工程から、洗浄工程に移行する際に、図10に示すように予め水位調整が行われる。この水位調整工程は、濾過材14、54の洗浄を効果的に行うために、濾過槽2内の水位を調節即ち低下させるためのものである。水位調整工程においては、原水弁V1および濾水弁V2は、閉鎖される。また、原水ポンプP1も停止される。これにより原水16の供給が停止されるとともに、濾水の排出も停止されるので、濾過槽2内には原水16等の液体が貯留された状態となる。各弁V1およびV2はモータにより駆動されるので、各弁V1、V2の作動の完了には若干の時間を要する。

かかる後、洗浄排水弁V3、水位調整弁V5およびV6が略同時期に開放される。洗浄排水弁V3が開放されると、原水注入管56より上に位置する濾過槽2内の原水16は、管110および114を通過して排水溝112に排水される。また、水位調整弁V5およびV6が開放されることにより、濾水は、浄水出口管46および吐出管5から夫々管116、122に流れ、管120および114を経て排水溝112に排出される。

図9に示すように、水位調整弁V5は、液面計128と電気的に接続されているので、ある水位になったときに水位調整弁V5が閉鎖されるようになっている。即

ち、図10中に示すように、破線128で表示した経過時間後に水位調整弁V5が閉鎖され、濾水は水位調整弁V6のみから少しづつ排出されることとなる。なお、減水時には、空気抜弁81を通じて外部の空気が濾過槽2内に導入され、濾過槽2内が負圧になって減水速度が低下するのを防止している。このように、洗浄排水弁V3、水位調整弁V5およびV6が同時に開放されることにより、例えば約2分程度で、速やかに液体の排出がなされて水位を急速に効率よく低下させることができる。このときの低下した水位は、洗浄に適した水位より低い位置にある。

そして、図10に示すように、水位調整弁V5が閉じられた直後に逆洗弁V4が開放され、逆洗ポンプP2が作動される。即ち逆洗ポンプP2により濾水が管118a、118、116を通過して、浄水出口管46から濾過槽2内に注入される。この逆洗ポンプP2は、容量が大きいため注入された濾水が、濾過材14内に勢いよく噴出して、洗浄槽38の周囲の濾過材14を浮遊させる。この濾過材14を浮遊させる工程は一次逆洗の工程となる。このように、逆洗ポンプP2を駆動して、予めスクリューコンベア32の回転時の抵抗を軽減した後、図10に示すようにモータ26が駆動され、スクリューコンベア32の回転が開始される。

スクリューコンベア32を回転させるモータ26は、逆洗ポンプP2の駆動開始の約5秒後に遅延して駆動される。逆洗ポンプP2の駆動により、濾過槽2内の液面が上昇して、逆洗ポンプP2が駆動されてから約10秒後に濾過材14の洗浄に適した所定の水位に達する。このときの水位は、濾過材14の表面上10cm乃至20cmの位置にある。この水位は、原水注入管56の出口56aより下方に位置し、後述する洗浄工程の際に、濾過材14が液体とともに原水注入管56から排出されるのを防止している。

図10に示すように、液体が所定の水位に達したところで、洗浄工程が開始される。この工程では、逆洗ポンプP2が停止され、代わって、容量が逆洗ポンプP2より小さい逆洗ポンプP3が駆動される。前述の水位調整弁V6は開放されたままであるので、逆洗ポンプP3から供給された濾水は、吐出管5から排出される。吐出管5から排水された濾水は、水位調整弁V6を通過して排水溝112に排出される。このとき、濾過槽2の底部の濁質、および濾過材54中の濁質が濾水とともに吐出管5から排出される。逆洗ポンプP3から供給される濾水と、水位調整弁V6

から排出される液体は、略同じ流量となっている。洗浄工程では、モータ26が引き続き連続運転され、スクリューコンベア32により濾過材14の濁質がもみ洗いにより濾過材14から剥離されている。この洗浄工程は、約1分間継続される。

次に、洗浄工程の後に、洗浄された濾過材14、54をすぐ工程、即ち二次逆洗工程が開始される。この工程では、洗浄排水弁V3と、逆洗弁V4は、開放されたままであるが、水位調整弁V6は閉鎖される。そして、逆洗ポンプP3が停止され、代わって大容量の逆洗ポンプP2が駆動される。これによって、浄水出口管46から、再度濾過槽2内に濾水が勢いよく噴出し、濾過材14、54のすすぎ洗いが開始される。そして、逆洗ポンプP2の運転開始後、約5秒後にスクリューコンベア32用のモータ26が停止される。この二次逆洗工程は、約5分間継続されるが、逆洗ポンプP2から濾過槽2内に流入した濾水は、すすぎによって浮遊した濁質とともに原水注入管56から管110、114を通って排水溝112に排水される。このときスクリューコンベア32は既に停止しているので、濾過材14がかき回されて原水注管56から流出する虞はない。

すすぎの工程、即ち二次逆洗工程が完了すると、次に捨水工程が開始される。この工程では、洗浄排水弁V3および逆洗弁V4が閉じられ、また、逆洗ポンプP2が停止される。これにより、濾過槽2内への濾水の噴出と、原水注入管56からの濁質を含んだ濾水の排出が停止される。そして、原水弁V1と捨水弁V7が開放され、その後、原水ポンプP1が駆動される。これにより、原水16が原水注入管56から濾過槽2内に再度供給される。そして濾過槽2内の濾水は、浄水出口管46を通して管124に流入し、捨水弁V7を通過して管120、114を経て排水溝112に排出される。これにより、濾過槽2の底部に浮遊する濁質を排出することができる。この捨水工程は処理目的により異なり2分乃至20分継続される。

この捨水工程で注目すべき点は、原水16の流入量と、管124からの流出量が略同じであり、比較的ゆっくりと原水16が排出されるという点である。この理由は、原水16の流出速度が早すぎると、換言すれば、流出量が流入量より多いと、濾過材14中に負圧による気泡が発生し、この気泡が、この後に引き続き行われる濾過工程でも残留して、濾過材14による濾過が効率よく行われなくなる虞があるためである。この捨水工程により濾過槽2内に残った濁質、汚泥等が完全に排出さ

れる。

捨水工程が完了すると、通常の濾過工程に復帰する。即ち、捨水弁V 7が閉じられた後、濾水弁V 2が開かれる。原水弁V 1は開放したままであり、原水ポンプP 1も運転を継続しているので、原水注入管5 6から供給される原水1 6は管1 1 6 5から排出される。

次に、図1 1および図1 2を参照して、通常の濾過工程から洗浄工程を経て濾過工程に復帰するまでの各工程の他の具体例について説明する。図1 1は、濾過槽2に接続された配管等との関係を示す、図9に示した本発明の濾過装置1' と類似の濾過装置1" の概略全体図である。図1 2は、通常の濾過工程から洗浄工程を経て濾過工程に復帰するまでの各工程と、濾過装置1" の各部の作動との関係を示す、図1 0と類似のタイムチャートである。なお、説明にあたり、図9と同じ部品については同じ参考番号を使用して説明する。

まず、図1 1を参照して、図9と異なる、各配管と濾過槽2との接続関係について説明する。図1 1に示す濾過装置1" では、濾過装置1' の捨水弁V 7および逆洗ポンプP 3が廃止され、管1 2 2が立ち上げられている。また、逆洗弁V 4' および水位調整弁V 5' は、各々弁(バルブ)の開度を調整可能な形式のものが使用されて、流量を変えることができるようになっている。その他の部分については、図9の濾過装置1' と同様である。

更に詳細に説明すると、浄水出口管4 6に接続された管1 1 6には、大容量の逆洗ポンプP 2のみが設けられており、先の具体例で使用された少容量の逆洗ポンプP 3は使用されていない。従って、逆洗ポンプP 2が接続された管1 1 8 aと、逆止弁1 2 4のみが使用される。また、前述の具体例では、管1 1 6と管1 2 0の間に、捨水弁V 7を有する管1 2 4が配設されていたが、この具体例では使用されていない。

また、吐出管5には、水位調整弁V 6を有する管1 2 2が連結され、管1 2 2は管1 2 0に連結されている点では、前述の具体例と同じであるが、管1 2 2が上方に立上がり部1 2 2 aを有する点が相違する。この立上がり部1 2 2 aの最上部は、洗浄時の濾過槽2内の好ましい水位の位置と略同じ位置になるようにその位置が設定されている。これによって、洗浄時の水位が常にこの位置に保たれることとな

る。以上の如く、本具体例では、逆洗ポンプP 3と捨水弁V 7を廃止することにより、濾過装置1”の初期投資コストを安価なものとしている。

次に、本具体例の場合の、通常の濾過工程から洗浄工程を経て濾過工程に復帰するまでの各工程について説明する。まず、図12を参照すると、通常の濾過時は、

5 先の具体例と同じであり、原水弁V 1と濾水弁V 2が開いており、原水ポンプP 1は作動状態にある。即ち、この間、原水1 6は、原水注入管5 6から濾過槽2に供給されている。濾過槽2に供給された原水1 6は、濾過材1 4、濾過材5 4の層を通過して濾過され、浄水出口管4 6から排出され、さらに、管1 1 6内を通り、開放された濾水弁V 2を通過して排出される。

10 次に、通常の濾過工程から、洗浄工程に移行する際に、図12に示すように、先の具体例と同様な水位調整が行われる。水位調整工程においては、原水弁V 1および濾水弁V 2は、閉鎖され、原水ポンプP 1も停止され、濾過槽2内には原水1 6等の液体が貯留された状態となる。しかる後、洗浄排水弁V 3、水位調整弁V 5'およびV 6が略同時期に開放され、原水1 6は、管1 1 0および1 1 4を通過して15 排水溝1 1 2に排水され、また、濾水は、浄水出口管4 6および吐出管5から管1 2 0および1 1 4を経て排水溝1 1 2に排出される。そして、図11に示すように、水位調整弁V 5'は、ある水位になったとき、即ち図12中に示すように、破線1 2 8で表示した経過時間後に閉鎖され、濾水は水位調整弁V 6のみから少しずつ排出されることとなる。

20 そして、図12に示すように、水位調整弁V 5'が閉じられた直後に逆洗弁V 4が開放され、逆洗ポンプP 2が作動される。即ち逆洗ポンプP 2により濾水が管1 1 8 a、1 1 8、1 1 6を通過して、浄水出口管4 6から濾過槽2内に注入される。この逆洗ポンプP 2は、容量が大きいため注入された濾水が、濾過材1 4内に勢いよく噴出して、洗浄槽3 8の周囲の濾過材1 4を浮遊させる。このように、逆洗ポンプP 2を駆動して、予めスクリューコンベア3 2の回転時の抵抗を軽減した後、25 図12に示すようにモータ2 6が駆動され、スクリューコンベア3 2の回転が開始される。この工程も先の具体例と同様である。

スクリューコンベア3 2を回転させるモータ2 6は、逆洗ポンプP 2の駆動開始の約1～2 0秒後に遅延して駆動される。逆洗ポンプP 2の駆動により、濾過槽2

内の液面が上昇して、逆洗ポンプ P 2 が駆動されてから約 5 ~ 10 秒後に濾過材 1 4 の洗浄に適した所定の水位に達する。

図 1 2 に示すように、液体が所定の水位に達したところで、先の具体例とは異なる態様で洗浄工程が開始される。この工程では、小容量の逆洗ポンプ P 3 が廃止されているため、大容量の逆洗ポンプ P 2 が引き続き駆動される。しかし、逆洗ポンプ P 2 から送出される濾水の量が多いため、流量が可変の逆洗弁 V 4' の開度が調節され、即ち絞られて、吐出量が少なくされる。また、前述の水位調整弁 V 6 は開放されたままであるので、逆洗ポンプ P 3 から供給された濾水は、吐出管 5 から排出される。

吐出管 5 から排水された濾水は、水位調整弁 V 6 および管 1 2 2 を通過して排水溝 1 1 2 に排出される。この管 1 2 2 は、前述したように、立上がり部 1 2 2 a を有しているので、濾過槽 2 内の液体はその水位が、洗浄に適した水位に自動的に調整される。即ち、水位が立上がり部 1 2 2 a の最上部より低いときは排水されず、上部を超えた高さになると自動的に濁質とともに排水され、その水位が略一定となる。洗浄工程では、モータ 2 6 が連続運転され、スクリューコンベア 3 2 により濾過材 1 4 の濁質がもみ洗いにより濾過材 1 4 から剥離されるのは、先の具体例と同様である。

次に、洗浄工程の後に、洗浄された濾過材 1 4 、 5 4 をすぐ工程、即ち逆洗工程が開始される。この工程では、逆洗弁 V 4' の開度が調整（増大）されて、再び大量の濾水が逆洗ポンプ P 2 から浄水出口管 4 6 を介して供給される。従って逆洗ポンプ P 2 は洗浄と、逆洗の両工程に亘って連続運転される。逆洗ポンプ P 2 が停止され、洗浄排水弁 V 3 と、逆洗弁 V 4' は、開放されたままであり、水位調整弁 V 6 が閉鎖されるのは先の具体例と同じである。

すすぎの工程、即ち逆洗工程が完了すると、次に捨水工程が開始される。この工程では、捨水弁 V 7 が廃止されているので、流量可変の水位調整弁 V 5' が捨水弁として使用される。この工程では濾水をゆっくり排水して、濾過槽 2 の底部に溜まった濁質を排出する必要があるので、水位調整弁 V 5' の開度が絞られて少ない流量で排出されるようになっている。この捨水弁としての水位調整弁 V 5' 以外の各部の作動状態は、先の具体例と同じである。

捨水工程が完了すると、通常の濾過工程に復帰する。このときの各部の作動状態は先の具体例と同じである。

以上各工程について、詳細に説明したが、各工程中で説明した時間の数値は、例示であり、これらに限定されるものではない。例えば、濾水を飲用として使用する場合は、工業用水として使用する場合に比べて、各工程に一層多くの時間を費やすことが必要とされる。また、各工程は、タイマーにより工程に付与される時間を自由に設定することができる。例えば、上記の実施例の場合、濾過は、1～72時間、洗浄は0～2分、二次逆洗は1～2分、捨水は1～30分の範囲で自由に設定し、且つ自動的に各工程を実施することができる。また、これらの設定可能な時間の範囲も、各工程ごとに拡大できることは勿論である。

以上、本発明の好適な実施の形態について、詳細に説明したが、上記の構成に限定されるものではない。たとえば、スクリューコンベア32の下端を支える構造として、上記変形例の他に、例えば、下端44を円錐形とし、金網50の支持梁にこの円錐形の先端を単に受ける凹みを有する部材（図示せず）を設けてもよい。これにより、スクリューコンベア32の横ぶれを低減することができる。また、このように構成しても、本発明の機能を損なうことはない。

また、濾過材54に代えて他の濾過材、例えば、ガラスピーズ、活性炭粒などを使用してもよい。活性炭粒の場合、使用中に濾過材層の表層から上層にかけて固着即ち連続的に板状に固まりやすい。板状になってしまふと、そのひび割れ等の部分から、濾過すべき液体が下方に浸透しても水道の周囲の部分でしか濾過作用が行われない。そのため、中層から下層にかけて位置する活性炭は、まだ吸着能力が残っているにもかかわらず、その機能を十分発揮することができない。このため、活性炭粒の入れ替え、焼成、再生という作業は従来不可欠のものであった。

本洗浄機構を設けて活性炭粒を攪拌して洗浄することにより、活性炭粒が固まる現象を回避できるので、全層を有效地に使用することが可能となり、活性炭を使用した濾過装置の性能を向上させることができる。また洗浄時に活性炭の表面に付着した有機物などの汚濁物質が剥離されるため、活性炭の入れ替えの間隔を飛躍的に延長させることができ、装置の維持管理が容易となり、またそれに要するコストも低減することができる。

また、上部開口 42 の位置は、洗浄槽 38 内を長い距離に亘って、濾過材 14 が
もみ洗いできるように、あまり低くない位置であることが好ましい。

濾過槽 2、202 の直径が大きい場合は、洗浄層 38、238 を複数個設けても
よい。この場合は、一層迅速、且つ効率的に濾過材 14 の洗浄を行うことができる。

- 5 なお、上記実施形態においては、水を濾過する場合の他にも、廃液、油などを濾
過するのに使用してもよい。

請求の範囲

1. 粒状の濾過材の層を支持する濾床を有する濾過槽と、該濾過槽内に縦に配置された中空の洗浄槽、該洗浄槽内で前記濾過材を上方に搬送しつつ該濾過材を洗浄する洗浄手段および前記濾過材の洗浄時に前記濾過材から剥離した汚濁物質を前記濾過槽の外部に排出する濁質排出手段を有する濾過材洗浄機構とを備え、通常の濾過時に前記濾過材により濾過された液体を前記濾床を通過させて排出する濾過装置において、
5 前記濾床が、上下に間隔をおいた2つの濾床から構成され、上方の濾床が前記濾過材が通過しにくい大きさの多数の液体通過部を全面に有し、両濾床の間に前記濾過材より大きい濾過材の層が設けられていることを特徴とする濾過装置。
- 10 2. 前記洗浄手段が、前記濾過槽の上部から垂下されたスクリューコンベアであり、該スクリューコンベアが前記濾過槽の上部に設けられた駆動部により回転される
15 ように構成されていることを特徴とする請求項1記載の濾過装置。
3. 前記上方の濾床が、前記液体通過部を形成する網目を有する網状部材であることを特徴とする請求項1または2記載の濾過装置。
4. 前記2つの濾床のうち下方の濾床に、前記濾過された液体を排出する複数のストレーナが配置されていることを特徴とする請求項1から3いずれか1項記載の
20 濾過装置。
5. 前記濾過槽の外壁に、前記2つの濾床の間の前記濾過材の層に外部から液体を噴射する液体噴射部が設けられ、該液体噴射部から該濾過材の層へ向けて洗浄液を噴射して、該洗浄液の水流により該濾過材に付着した汚濁物質を剥離するよう構成
されていていることを特徴とする請求項1から4いずれか1項記載の濾過装置。
- 25 6. 前記2つの濾床の間の前記濾過材の層に外部から振動を与える振動発生器が設けられ、該振動発生器から該濾過材の層へ向けて伝搬する振動により該濾過材に付着した汚濁物質を剥離するよう構成されていることを特徴とする請求項1から5
いずれか1項記載の濾過装置。

FIG. 1

FIG.2

FIG.3(a)**FIG.3(b)**

FIG.4(a)**FIG.4(b)**

FIG.5(a)**FIG.5(b)**

FIG.6(a)**FIG.6(b)**

FIG.7(a)

FIG.7(b)

FIG.8

FIG.9

FIG.10

FIG.11

FIG.12

FIG.13

FIG.14

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

Internal application No.

PCT/JP03/09599

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ B01D24/12, 24/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ B01D24/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1926-1996	Toroku Jitsuyo Shinan Koho	1994-2003
Kokai Jitsuyo Shinan Koho	1971-2003	Jitsuyo Shinan Toroku Koho	1996-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 01/83076 A1 (Nippon Genryo Kabushiki Kaisha), 08 November, 2001 (08.11.01), Full text & KR 2002026472 A	1-6
Y	Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 51478/1983 (Laid-open No. 158413/1984) (Mitsubishi Heavy Industries, Ltd.), 24 October, 1984 (24.10.84), Full text (Family: none)	1-6

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
17 September, 2003 (17.09.03)Date of mailing of the international search report
07 October, 2003 (07.10.03)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

BEST AVAILABLE COPIE

INTERNATIONAL SEARCH REPORT

Internal application No.

PCT/JP03/09599

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 54-010586 Y2 (Mitsubishi Heavy Industries, Ltd.), 16 May, 1979 (16.05.79), Full text (Family: none)	4
Y	JP 11-099398 A (Toto Ltd.), 13 April, 1999 (13.04.99), Full text (Family: none)	5
Y	Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 198553/1987(Laid-open No. 101690/1989) (NKK Corp.), 07 July, 1989 (07.07.89), Claims (Family: none)	6

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' B01D24/12, 24/46

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' B01D24/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1926-1996
日本国公開実用新案公報	1971-2003
日本国登録実用新案公報	1994-2003
日本国実用新案登録公報	1996-2003

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	WO 01/83076 A1 (日本原料株式会社), 2001. 11. 08, 全文 & KR 2002026472 A	1-6
Y	日本国実用新案登録出願 58-51478号 (日本国実用新案出願公開 59-158413号) の願書に添付された明細書及び図面のマイクロフィルム (三菱重工業株式会社), 1984. 10. 24, 全文, (ファミリーなし)	1-6
Y	JP 54-010586 Y2 (三菱重工業株式会社), 1979. 05. 16, 全文, (ファミリーなし)	4

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

17.09.03

国際調査報告の発送日

17.10.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

森 健一

4Q 9263

電話番号 03-3581-1101 内線 3466

国際調査報告

国際出願番号 PCT/JP03/09599

C (続き) 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
Y	JP 11-099398 A (東陶機器株式会社), 1999. 04. 13, 全文, (ファミリーなし)	5
Y	日本国実用新案登録出願62-198553号 (日本国実用新案出願公開1-101690号) の願書に添付された明細書及び図面のマイクロフィルム (日本鋼管株式会社), 1989. 07. 07 実用新案登録請求の範囲, (ファミリーなし)	6