1. Disprove the following statement: Let n be an integer. If $\frac{(n+1)(n+2)}{2}$ is odd then $\frac{n^2(n+1)^2}{2}$ is odd. [5 pts]

This is a universal statement (it asserts something is true for all n), so to disprove it we just need to find a single counterexample. Let's take n = 0. Then $\frac{(n+1)(n+2)}{2} = 1$ is odd but $\frac{n^2(n+1)^2}{2} = 0$ is even. Thus n = 0 is a counterexample to the implication being true.

2. Suppose that x is a rational number and y is an irrational number. Show that x + y is irrational. [5 pts]

Fix a rational number x and an irrational number y. We can write x as a fraction $x=\frac{a}{b}$ where both a and b are integers and $b\neq 0$. Now assume toward a contradiction that x+y is rational. Then we can write x+y as a fraction $x+y=\frac{c}{d}$ for some integers c,d with $d\neq 0$. But now $y=\frac{c}{d}-\frac{a}{b}=\frac{cb-ad}{bd}$ is written as a fraction of integers, contradicting our assumption that it was irrational.

3. Show that there are a rational number a and an irrational number b such that a^b is irrational. [5 pts]

(Hint: We proved in class that $\sqrt{2}$ is irrational and this easily implies that $\frac{1}{2\sqrt{2}}$ is also irrational. Now consider the number $2^{\frac{1}{2\sqrt{2}}}$. Depending on whether this is rational or irrational find a and b.)

Following the hint let us consider two cases, depending on whether $2^{\frac{1}{2\sqrt{2}}}$ is rational or irrational.

Case 1: If $2^{\frac{1}{2\sqrt{2}}}$ is irrational then we can just take a=2 and $b=\frac{1}{2\sqrt{2}}$ to satisfy the requirements of the problem.

Case 2: If $2^{\frac{1}{2\sqrt{2}}}$ is rational we can take $a=2^{\frac{1}{2\sqrt{2}}}$ and $b=\sqrt{2}$. This solves the problem since $a^b=2^{\frac{1}{2\sqrt{2}}\sqrt{2}}=2^{\frac{1}{1}}=\sqrt{2}$ is irrational.

Comment: Here is a solution to this problem which is much more elegant than my own. It goes as follows:

Fix irrational x, y such that x^y is rational; as mentioned above the existence of such x and y was proved in class. For the problem, take $a = x^y$ and $b = \frac{1}{y}$. Since y was irrational b is also irrational and a is rational by our choice of x and y. But this solves the problem, since $a^b = (x^y)^{\frac{1}{y}} = x$ is irrational.

4. Let n be a natural number. Show that $\sum_{k=0}^{n} (3k-2) = \frac{3n^2-n-4}{2}$. [5 pts] We prove this by induction on n.

In the base step we check that the equality holds when n=0. And it does, since $\sum_{k=0}^{0} (3k-2) = -2$ and $\frac{3(0)^2-0-4}{2} = -2$.

In the induction step we make the inductive hypothesis that $\sum_{k=0}^{n} (3k-2) = \frac{3n^2-n-4}{2}$ and try to prove that $\sum_{k=0}^{n+1} (3k-2) = \frac{3(n+1)^2-(n+1)-4}{2}$. We can proceed as follows

$$\sum_{k=0}^{n+1} (3k-2) = \sum_{k=0}^{n} (3k-2) + 3(n+1) - 2$$

$$= \frac{3n^2 - n - 4}{2} + 3(n+1) - 2 = \frac{3n^2 - n - 4 + 6n + 6 - 4}{2}$$

$$= \frac{3n^2 + 5n - 2}{2} = \frac{3(n+1)^2 - (n+1) - 4}{2}$$

where we used the inductive hypothesis to go from the first to the second line. This finishes the induction and the proof.

5. Show that $n! > 2^n$ for any natural number $n \ge 4$. [5 pts]

We prove this by induction on $n \geq 4$.

In the base step we check that the inequality holds when n = 4. And it does, since 4! = 24 and $2^4 = 16$.

In the induction step we make the inductive hypothesis that $n! > 2^n$ and try to prove that $(n+1)! > 2^{n+1}$. Now then,

$$(n+1)! = (n+1)n!$$

> $(n+1)2^n$
> $2 \cdot 2^n = 2^{n+1}$

where we used the inductive hypothesis to go from the first to the second line and the fact that n+1>2 to go from the second to the third line. This finishes the induction and the proof.

Comments: It is interesting to note that the induction step would have gone through even for $n \geq 1$. Nevertheless, we need $n \geq 4$ to do the base step (and to make the statement actually true).

6. (extra credit) Let x > -1 be a real number and n a natural number. Prove Bernoulli's inequality: [5 pts]

$$(1+x)^n \ge 1 + nx$$

(Hint: Argue by induction on n.)

We prove this by induction on n.

In the base step we check that the inequality holds when n = 0. And it does, since $(1+x)^0 = 1$ (it is *vital* here that $x \neq -1$ since the expression 0^0 is problematic) and 1+0x=1.

In the induction step we make the inductive hypothesis that $(1+x)^n \ge 1 + nx$ and try to prove that $(1+x)^{n+1} \ge 1 + (n+1)x$. The following works:

$$(1+x)^{n+1} = (1+x)^n (1+x)$$

$$\geq (1+nx)(1+x) = 1+x+nx+nx^2 = 1+(n+1)x+nx^2$$

$$\geq 1+(n+1)x$$

where we used the inductive hypothesis (and the fact that $1 + x \ge 0$) to go from the first to the second line and the fact that $nx^2 \ge 0$ (since $n \ge 0$ and $x^2 \ge 0$) to go from the second to the third line. This finishes the induction and the proof.