Flexible scientific data management for plant phenomics research

Dr Xavier Sirault
CSIRO High Resolution Plant Phenomics Centre
Canberra

Database Management Tradeoffs

Quality Flexibility

Performance

PODD Object Model

OWL, stored as RDF Graphs, named using version IRIs

Versions

PODD

Mistea

Each version is static

Import schemas using version IRI

PODD Artifact Ontologies

Projects Experiments

Images

Variable until published

PODD Data Management

Quality

- Semantic and structural
- Both correct and complete

Flexibility

- Controlled, optional migration of data
- Based on OWL Version IRIs and OWL Imports

Performance

- Scales by OWL performance for updating
- Scales by SPARQL performance for querying

PODD Client Workflow

Closed Source (over HTTP)

PODD Events

- Event created in PODD for each set of images from a platform
- Pots linked to images using events
- Pots currently linked to:
 - Genus, species, and wild type
 - Planting date
- Pots will be linked to more events in future:
 - Watering
 - Client reviews

Conclusion

- Overall goal to allow for federated SPARQL queries across PODD instances to reuse existing plant phenomics data whereever possible
 - Already implemented, but datasets are small so far
- Flexible integration of all project management data for a research group in a single PODD instance using the most relevant schema ontologies in each project
- Similar SPARQL queries across all artifacts, regardless of the schema ontologies they are currently using
 - Results would be limited of course by the practicality of the query for the particular schema ontologies in use