NPS ARCHIVE 1963 BELL, G.

AN INVESTIGATION OF THE EFFECT OF AUTO-THROTTLE DEVICES ON AIRCRAFT CONTROL IN THE CARRIER LANDING APPROACH
GERALD R. BELL

D LEY KNOX LINGARY NAVAL POSTGRADILATE SCHOOL W TEREY, CALIFORNIA 83840

AN INVESTIGATION OF THE EFFECT OF AUTO-THROTTLE DEVICES ON AIRCRAFT CONTROL IN THE CARRIER LANDING APPROACH

* * * * *

Gerald R. Bell

AN INVESTIGATION OF THE EFFECT OF AUTO-THROTTLE DEVICES ON AIRCRAFT CONTROL IN THE CARRIER LANDING APPROACH

by

Gerald R. Bell

Lieutenant Commander, United States Navy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

United States Naval Postgraduate School Monterey, California

1963

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

DUTLEY KNITY LI RARY

NALAL PL

"TE SCHOOL

"TEREY, CALIFORNIA 93940

AN INVESTIGATION OF THE EFFECT OF AUTO-THROTTLE DEVICES ON AIRCRAFT CONTROL IN THE CARRIER LANDING APPROACH

by

Gerald R. Bell

This work is accepted as fulfilling
the thesis requirements for the degree of
MASTER OF SCIENCE

IN

AERONAUTICAL ENGINEERING

from the

United States Naval Postgraduate School

ABSTRACT

An automatic-throttle compensation system has the capability of removing the problem of aircraft speed instability in the carrier landing approach. Various systems have been proposed and tested, each differing in input sensed variables. Two representative systems are investigated analytically and by the use of digital programmed Nyquist plots and analog simulations. An attempt is made to determine optimum gain constants by using various forcing functions in the analog simulation. Comparisons of the responses of the two systems are made using time history analog records. A digital computer stability program, applicable to any aircraft, is included.

The writer wishes to express his appreciation for the assistance and encouragement given him by Professor E. J. Andrews of the U. S. Naval Postgraduate School. Gratitude is also due Ling-Temco-Vought Incorporated, Specialties Incorporated and Bell Aerosystems for providing the necessary data used in the investigation. In particular, the author wishes to thank the Stability and Control Section, Airframe Design Division, of the Bureau of Naval Weapons for the valuable assistance supplied in the form of pertinent technical reports.

TABLE OF CONTENTS

Section	Title	Page
	Table of Symbols	vili
1.	Introduction	ĩ
2.	Discussion	3
3.	Artificial Speed Stability Through Automatic- Throttle Techniques	Ž
4.	Experimental Methods and Results	14
5.	Conclusions	25
	Bibliography	66
Appendix I	Derivation of Transfer Functions	87
Appendix II	Dynamic Stability Fortran Program	75.
Appendix III	System Mechanization for the Analog Computer	89

LIST OF ILLUSTRATIONS

Table		Page
Ι.	Computed F-8 Airplane Stability Derivatives and Associated Aircraft Parameters	27
н.	Sample Printout, Fortran Stability Program, LONGSTAB	29
Figure		
1.	Thrust Required Versus Airspeed	30
2.	C _L Versus L/D, F-8 Airplane	31
3.	Block Diagram, System 1 Auto-Throttle, with Transfer Functions	32
4.	Block Diagram, System 2 Auto-Throttle and Engine, with Transfer Functions	33
5.	Nyquist Diagram of System 2 Auto-Throttle Open Loop Transfer Function	3 5
6.	Composite Block Diagram of Complete Automatic Throttle-Airframe System	36
7.	Angular Definitions and Signs	37
8.	Photograph of Analog Setup	38
9.	Photograph of Analog Setup	39
10.	Time History, 1.3° Up Elevator Deflection Input, System 1-a	40
11,	Time History, 1.3° Up Elevator Deflection Input, System 1-b	41
12.	Time History, 1.3° Up Elevator Deflection Input, System 2	42
13.	Time History, 5 Knots Horizontal Gust Input, System 1-a	43
14.	Time History, 5 Knots Horizontal Gust Input, System 1-b	44

15.	Time History, 5 Knots Horizontal Gust Input, System 2	45
16.	Time History, 4^O Step Input Pitch Angle, θ , System 1-a	46
17.	Time History, 4° Step Input Pitch Angle, &, System 1-b	47
18.	Time History, 4° Step Input Pitch Angle, 0, System 2	48
19.	Time History, 4° Step Input Pitch Angle, 0, Basic Airframe	49
20.	Time History, .02 cps. Triangular 1.32° Elevator Deflection Input, System 1-a	50
21.	Time History, .02 cps. Triangular 1.32° Elevator Deflection Input, System 1-b	51
22.	Time History, .02 cps. Triangular 1.32° Elevator Deflection Input, System 2	5 2
23.	Time History, .06 cps. Triangular 1.32° Elevator Deflection Input, System 1-a	53
24.	Time History, .06 cps. Triangular 1.32° Elevator Deflection Input, System 1-b	54
25.	Time History, .06 cps. Triangular 1.32 Elevator Deflection Input, System 2	55
26.	Time History, .06 cps. Triangular 1.32° Elevator Deflection Input, Basic Airframe	56
27.	Time History, Human Pilot Controlled Flight on Glide Slope, System 1-a	57
28.	Time History, Human Pilot Controlled Flight on Glide Slope, System 1-b	58
29.	Time History, Human Pilot Controlled Flight on Glide Slope, System 2	59
30.	Time History, Human Pilot Controlled Flight on Glide Slope, Sinusoidal Input of 5 Knots Horizontal Gust, System 1-a	60

	31.	Slope, Sinusoidal Input of 5 Knots Horizontal Gust, System 1-b	61
	32.	Time History, Human Pilot Controlled Flight on Glide Slope, Sinusoidal Input of 5 Knots Horizontal Gust, System 2	62
	33.	Time History, Human Pilot Controlled Flight on Glide Slope, Sinusoidal Input of 5 Knots Horizontal Gust, without Auto-Throttle	63
	34.	Time History, 5 Knots Step Horizontal Gust Input, Anti-Thrust System	64
	35.	Time History, 5 Knots Step Horizontal Gust Input, Anti-Thrust System with Changed Gain Constants	65
Apj	pendix	I, Table I-A Longitudinal Dimensional Stability Derivative Parameters	69
App	pendix	I, Table I-B Longitudinal Non-Dimensional Stability Derivatives	70
Apı	pendix	I, Table II Dimensional Stability Derivatives	71
Apı	pendix	II, Table I Program Symbols and Meanings	75
Apj	pendix	II, Fig. 1 Sample Data Cards, LONGSTAB	77
App	pendix	II, Fig. 2 Fortran Program LONGSTAB	80
App	pendix	III, Table I Potentiometer Settings	90
App	pendix	III, Table II Scale Factors Used in Analog Simulation	92
App	pendix	III, Table III Potentiometer Setting Calculations	94
App		III, Fig. 1 Analog Schematic, Airframe Equations of Motion	98

Appendix III, Fig. 2 Analog Schematic, System 1 Auto-Throttle, Aircraft Engine, Stick System Dynamics	99
Appendix III, Fig. 3 Analog Mechanization, System 2 Auto-Throttle	101

TABLE OF SYMBOLS

For those symbols not defined in the text.

 C_D = Drag coefficient, Drag/qS

C_{Do} = Drag coefficient in trimmed condition

C_{I.} = Lift coefficient, Lift/qS

 $a = dC_{I}/dx$, Lift curve slope

 dC_D/dC_I = Rate of change of drag with lift

T = Thrust, lbs.

S = Wing area, sq. ft.

q = Dynamic pressure, $1/2 p V^2$, lbs./sq.ft.

V,U = Forward velocity, reference steady state, ft./sec.

V_{SL} = Stall velocity, ft./sec.

u = Perturbation forward velocity, ft./sec.

w = Perturbation vertical velocity, ft./sec.

Flight path angle, measured from the horizontal, radians

Pitch angle, measured from horizontal to FRL, radians

△ () = Error quantity, increment, perturbation

 n_Z = Normal load factor, g units

 ΔT_{dC} = Thrust command increment, lbs.

 C_{AS} = Equivalent propulsion system drag = $-\frac{1}{S}\frac{\partial T}{\partial R}$

Time constant, time in seconds to reach 63% steady state

 K_{α} = Gain constant for α input

 Kn_2 = Gain constant for n_2 input

K₈ = Gain constant for pitch error input

 K_{V1} Ku = Gain constant for airspeed error input

 K_{V2} , $K_{\int} u = Gain constant for integral of airspeed error input$

 ω_n = Undamped natural frequency, radians/sec.

5 = Damping ratio

1. Introduction

The carrier landing approach speed of current swept wing aircraft is influenced by many factors. One of the most important of these factors is often referred to as speed instability. Speed instability can be explained with the help of Fig. 1. It will be noted that for Aircraft "A", a slight deviation in airspeed from the normal approach speed makes very little difference in thrust required. This curve is typical of the AF-1E type aircraft. On the other hand, a deviation towards slower speed for Aircraft "B" causes a large increase in thrust required. This increase, if uncorrected, causes a loss of altitude. Thus, in effect, the normal approach of Aircraft "B" is made on the "backside" of the thrust versus airspeed curve. This curve is typical of the F-8 aircraft. Essentially this steep backside of the curve is caused by a high value of C_{DOC} , drag increase due to angle of attack (or lift).

Still another factor contributing to airspeed instability is slow engine response. With a comparatively long time lag in engine response, any hesitation on the part of the pilot in correcting an incipient airspeed loss leads to wide variations in altitude or airspeed before effective thrust can be realized.

With an aircraft that displays speed instability tendencies, either a faster approach speed or an automatic compensating device is required to prevent undesired altitude loss due to airspeed deviations. Faster

approach speeds are not desirable for carrier approaches. It will be the purpose of this paper to investigate some methods of applying automatic power compensation to counteract airspeed instability. A swept wing fighter, patterned after the F-8 airplane is used as the vehicle of the investigation. Both digital and analog computers are exploited in simulating auto-throttle and anti-drag system response to various inputs. Real-time, pilot controlled, analog simulated mirror approaches are also used in qualitatively evaluating each system.

This investigation is the first of a continuing series to be conducted at the U.S. Naval Postgraduate School to evaluate systems of automatic airplane control.

2. Discussion

The aircraft-carrier mirror-landing approach is made at a constant speed and a constant angle of glide slope. This type of approach allows precision control of the landing, a factor of the utmost importance in carrier operations. However, the approach is usually made at a minimum airspeed that is dictated by performance and/or aircraft flying qualities. Thus, the airspeed must be monitored closely while making flight path angle adjustments. A simplified equation (given in Ref. 1) shows that flight path angle, %, is approximated by the formula:

Eq. (1)
$$8 \cong \frac{D}{L} - \frac{T}{w} + \frac{dV}{dt} \frac{1}{9} \qquad (= 2 - \frac{1}{w} + \frac{1}{2})$$

Flight path angle, then, is dependent on lift/drag (L/D) ratio, thrust/weight ratio, and rate of speed change. In the mirror approach the pilot can adjust \mbedef{Y} and airspeed by manipulating the throttle and elevator. The manner in which each of these controls can be used, however, is dependent upon the L/D ratio. For aircraft with a high L/D ratio, the elevator is used to control \mbedef{Y} , while thrust is used to maintain constant airspeed. With a L/D ratio in the vicinity of 4 - 5 the rate of speed change is large during maneuvers. If, in addition, the L/D ratio decreases with increasing $\mbedef{C}_{\mbedef{T}}$, in the approach speed range then speed instability is accentuated.

A variation of lift/drag ratio versus lift coefficient for the F-8 airplane is shown as Fig. 2. It can be seen that at the approach speeds used, (1.1 - 1.2 $\rm V_{SL}$), L/D decreases rapidly with increase in $\rm C_{L^{\circ}}$ As reported in Ref. 1, pilots stated that in order to change $\rm Y$ for an

airplane of this class, increased reliance on thrust rather than elevator was necessary. In the case of the F-8 airplane, however, height response to throttle input is slow due to small thrust line angle of attack and negligible trim changes due to power. The F-8 pilot, therefore, is forced into using the stick as the primary flight path control. Then, since the airspeed mode of oscillation (the phugoid) is lightly damped, the aircraft will hunt about a new equilibrium airspeed and glide slope angle in response to an elevator deflection. These speed changes in the 5 to 10 seconds following elevator input are disturbing to the pilot.

Another way of interpreting airspeed instability is referred to in Ref. 2. A curve similar to Fig. 1 can be drawn for thrust required versus dynamic pressure, q. A definition of a stable speed regime can then be postulated as that portion of the curve where

Ineq. (2)
$$\frac{d T_{regulared}}{d q} > 0$$

To express this inequality in terms of the lift and drag coefficients, we use the fundamental equilibrium equations for level flight:

$$C_{D}'S_{Q} = Drag = Treq$$

$$C_{L}S_{Q} = Liff = W$$
therefore
$$Treq = W \frac{C_{D}'}{C_{L}}$$
and
$$Q = \frac{W}{SC_{L}}$$

$$\frac{dT_{req}}{dQ} = \frac{d(W \frac{C_{D}'}{C_{L}})}{d(\frac{W}{SC_{L}})} = \frac{Wd(\frac{C_{D}'}{C_{L}})}{Wd(\frac{C_{L}'}{C_{L}})}$$

since W and S are constant.

$$\frac{d \operatorname{Treq}}{d q} = \frac{\operatorname{Sd}\left(\frac{\operatorname{Co}'}{\operatorname{CL}}\right)}{\operatorname{d}\left(\frac{\operatorname{L}}{\operatorname{L}}\right)}$$

which result is substituted into Ineq. (2).

$$\frac{d\left(\frac{cr}{c^{p}}\right)}{d\left(\frac{cr}{c^{p}}\right)} > 0$$

Since S is greater than O, this implies that
$$d\left(\frac{c_p}{c_L}\right)/d\left(\frac{1}{c_L}\right) > 0$$

Taking the differentials of numerator and denominator:

or

Ineq. (3):
$$\frac{C_D'}{C_L} - \frac{dC_D'}{dC_L} > 0$$

Thus, satisfaction of Ineq. (3) implies speed stability.

The C_D term used above is composed of $C_D + C_{AS}$, where C_{AS} is equivalent propulsion system drag. C_{AS} is defined as $C_{AS} \stackrel{\triangle}{=} -\frac{1}{5} \stackrel{\partial T}{\partial a}$

$$C_{AS} \triangleq -\frac{1}{5} \frac{\partial T}{\partial q}$$

or for constant altitude and slow speeds, $C_{AS} = -\frac{K}{S} \frac{\partial T}{\partial V^{*}}$

$$C_{AS} = -\frac{S}{K} \frac{\partial V}{\partial V}$$

 $\mathbf{C}_{\mathbf{AS}}$ is seen to be proportional to the negative of the thrust change with respect to the velocity change. Inequality (3) may then be written as

Ineq. (4)
$$I = \frac{Co + CAS}{CL} - \frac{dCo}{dCL} > 0$$

A more sophisticated approach, based on the suppression of altitude disturbances by the pilot's use of the elevator, and originating with the basic equations of motion, would produce essentially the same inequality, with a small modification factor included. (See Ref. 2) The resulting inequality is

$$\frac{C_D + C_{AS}}{C_L} = \frac{\frac{dC_D}{dC_L}}{1 + \frac{C_D}{2}} > 0$$

However, the correction term, $C_{D/a}$ is of relatively small magnitude and may be ignored. From this same analysis the time constant, \mathcal{T} , of the subsidence of an airspeed error is shown to be proportional to:

Typical values of the parameter I for the F-8 are given below. At 1.1 $V_{\rm SL}$, I = .22 - .548 = - .328, showing distinct speed instability. At 1.2 $V_{\rm SL}$, I = .200 - .222 = - .022, a less unstable value.

From an examination of the speed instability parameter, Ineq. (4), it will be seen that positive stability can be produced if either drag in trimmed conditions (C_{DO}) or C_{AS} is artificially increased.

 C_{DO} could be increased, for example, by extending the speed brakes during an approach. This would accomplish two objectives; one, increase C_{DO} in the stability formula, and two, cause the engine to operate in a higher RPM range to produce the added thrust necessary, thus effectively causing a slight decrease in the inherent engine time constant.

Remembering the definition for C_{AS} , the drag coefficient corresponding to the thrust/speed variation, it will be seen that an artificial means of increasing thrust with decreasing airspeed accomplishes the desired objective. This is exactly what automatic throttle or approach

power compensator devices are intended to do. Still another method of increasing C_{AS} is by the use of an anti-drag technique. This may be accomplished by having a drag producing device (such as side extending speed brakes) extended during the approach. Then, by using an airspeed controller type device to regulate the amount of drag produced (by opening or closing the speed brakes) in response to thrust (or anti-drag) required, airspeed deviations can be closely controlled. This particular method, within its limitations of having enough anti-drag available, theoretically has the advantage of a much shorter time lag than an engine response scheme.

3. Artificial Speed Stability through Automatic-Throttle Techniques

There is a choice of inputs to an automatic-throttle type controller, including various combinations of derivatives and integrals of airspeed error, pitch attitude error, angle of attack error, and normal acceleration. There are also many different philosophies by manufacturers concerning the ideal combination for best performance under all conditions. Two representative systems, one utilizing angle of attack and normal acceleration, and the other using airspeed error and pitch angle, were chosen for investigation.

A) Angle of Attack, Normal Acceleration Inputs

The Specialties, Inc. Automatic Power Compensator, (APC), an auto-throttle in use in the F-8 and F-4 aircraft, is an example of a control using these inputs. A block diagram, typical of this type of system is shown in Fig. 3. In this system, constant angle of attack is maintained in the landing approach using the two sensed inputs of instantaneous angle of attack and acceleration normal to the glide slope in g units. The normal g input supplies anticipation whenever the aircraft is not in a one g flight condition. A thrust command is calculated in the system computer dependent upon error signals and chosen gain and temperature factors. This thrust command then becomes an input to the engine which in turn adds an appropriate thrust to the airframe. This thrust, acting as the forcing function to the airframe modes of motion, changes the velocity of the aircraft. Thus the APC computer indirectly controls airframe velocity through the equations

$$\Delta T = K_{x} \Delta x + K_{n} \Delta n_{z} ; \quad \Delta V = K_{T} \Delta T$$
Eq. (6)
$$\therefore \quad \Delta V = K_{x} \Delta x + K_{n} \Delta n_{z}$$

where the K values are appropriate shaping, filtering and simulation networks.

Or, looking at it differently, the C_{AS} of Ineq. (4) has now been given a greater value $\left(C_{AS} \cong -\frac{\partial T}{\partial V}\right)$

artifically, thus making the speed stability parameter more positive or stable.

The transfer function equations for this auto-throttle as supplied by Specialties, Inc., are also shown in Fig. 3. It will be noted that the throttle servo is simulated by a .1 second time constant first order lag. Angle of attack input is treated by both an integrator and lag network. Normal g input is also integrated.

The results of the analog simulation runs using this type of control are reported in Section IV of this paper, Experimental Methods and Results.

B) Pitch Angle, Airspeed Change Input

Flight path angle, \forall , is given by the equation

Eq. (7) $\forall = \bigcirc - \bigcirc$

4,5

During constant airspeed flight, pitch attitude change ($\Delta\theta$) and flight path angle change ($\Delta\delta$) are proportional; but dynamically, $\Delta\theta$ -occurs before $\Delta\delta$. Thus the means of anticipating flight path angle changes is available through pitch attitude changes recorded by a

vertical gyro mounted in the aircraft. This is the theory underlying the pitch angle, airspeed change type of automatic-throttle controller.

Through the use of a properly designed network, these inputs make it possible to minimize transient airspeed changes and to eliminate steady state airspeed changes resulting from variations in flight path.

The governing equation for this controller may be of the form:

Eq. (8)
$$\Delta T_{SC} = \left[K_{0} \Delta \theta - \frac{K_{V_{1}} \Delta V}{(1 + \gamma_{a} \Delta)} - \frac{K_{V_{2}} \Delta V}{\Delta (1 + \gamma_{a} \Delta)} \right]$$

Here the K_{V2} term is inserted as a steady state error washout term. The lag term ($I + \mathcal{T}_a \mathcal{A}$) simulates the airspeed sensor and filter. The filter attenuates the short period wind gust signals entering the system and acts as a smoothing influence.

This equation was reduced to a linear open loop transfer function of the auto-throttle controller. The block diagram for this system, combined with the analytically derived block diagram and transfer functions of the airframe and engine, are shown in Fig. 4. The stability derivatives for the F-8 in landing configuration were used for the airframe transfer functions. The derivation is shown in Appendix I.

The system open loop transfer function was calculated as:

Eq. (9)
$$-\frac{u}{u_{\varepsilon}} = \frac{\left(\frac{\Delta T}{u_{\varepsilon}}\right)_{AT} \left(\frac{u}{\Delta T}\right)_{AF}}{1 + \left(\frac{\Theta}{\delta e}\right)_{AF} \left(\frac{\delta e}{u}\right)_{AF} \left(\frac{\Delta T}{\Theta}\right)_{AT} \left(\frac{u}{\Delta T}\right)_{AF}}$$

where;
$$\left(\frac{\Delta T}{U_{E}}\right)_{AT} = \frac{A K_{U} + K_{SU}}{A (1+1.16A)(1+.1A)}$$

 $\left(\frac{U}{\Delta T}\right)_{AF} = \frac{.624 \times 10^{-5} \left(1 + 272 \Delta + 18.9 4^{2} + 23.25 \Delta^{3}\right)}{.416 \left(1 + 1.67 \Delta + 27.7 4^{2} + 2.08 \Delta^{3} + 2.402 \Delta^{4}\right)}$
 $\left(\frac{\Theta}{Se}\right)\left(\frac{Se}{U}\right)_{AF} = \frac{-.0142 \left(1 + 37.9 \Delta + 176 \Delta^{2}\right)}{16.8 \left(1 + 5.29 \Delta + .01173 \Delta^{2}\right)}$
 $\left(\frac{\Delta T}{\Theta}\right)_{AT} = \frac{K\Theta}{(1+1.16\Delta)}$

This equation was programmed on the digital computer to produce a series of Nyquist plots, each utilizing different gain constants.

Fig. 5 shows the Nyquist plot for the equation using the same gain constants as were used in the analog simulation. From this figure the open loop gain margin is seen to be 19.2.

The system closed loop transfer function, $-\overline{U_{ref}}$ was then derived. This is shown symbolically as follows:

Eq. (10)
$$-\frac{u}{V_{ref}} = \frac{\left(\frac{\Delta T}{\Delta u}\right)_{AT}\left(\frac{u}{\Delta T}\right)_{AF}}{1 + \left(\frac{\Delta T}{\Delta \Theta}\right)_{AT}\left(\frac{\Theta}{\delta e}\right)\left(\frac{\delta e}{u}\right)\left(\frac{\omega}{\Delta T}\right)_{AF} + \left(\frac{\Delta T}{u_{\epsilon}}\right)_{AT}\left(\frac{u}{\Delta T}\right)_{AF}}$$

A digital program was devised to calculate the values of the poles of the closed loop transfer function for various values of auto-throttle K's. This procedure would have produced families of Root Loci Plots. However, because of lack of time and computer malfunctions, this particular investigation was not completed. Equation (10) would be used in an optimizing analysis for gain constants.

In addition the equations of the auto-throttle were set up on the

the analog computer. This was incorporated into the complete system using approximately optimum values of K_e, Ku, and K_fu. All simulation was done in real time. These results are also reported in Section IV. Analog mechanization is shown in Appendix III. A composite block diagram showing the relative positions of the two automatic throttle systems in the airspeed loop is presented as Fig. 6.

C) Auto-Throttle Controller Linked to Anti-Thrust Device Another possible approach to the airspeed instability problem is the use of an auto-throttle controlling an anti-thrust or drag device. This could be accomplished by flying the approach with speed brakes extended. The output of the auto-throttle would then reduce or increase the drag by closing or opening the speed brakes as required. Thus, instead of supplying additional thrust when the airspeed drops, the speed brakes would be closed a proportionate amount, reducing the drag and in effect accomplishing the same purpose as an increase in thrust. Note that the time lag of the hydraulically actuated speed brake system is much less than that of the engine, thus allowing a faster response. The time constant of the hydraulic system is of the order of .1 second, while that of the F-8 engine is about 1.16 seconds. This approach was also investigated on the analog computer by replacing the engine with a first order time lag of .1 seconds (simulating the hydraulic system) and using the thrust command output of the auto-throttle computer to control the speed brakes.

Obviously the limiting feature to such a system is the amount of drag the speed brakes are capable of supplying. Of course it goes without saying that such a device can not be installed on an aircraft incapable of completing an approach while varying the positioning of the speed brakes. An airplane in this category is the F-8 which has a lower fuselage speed brake. Insufficient deck clearance is available when this brake is extended, thereby prohibiting its use during an approach.

- 4. Experimental Methods and Results
 - A) Equations and Analysis

The basic 3-degrees of freedom aircraft longitudinal equations of motion (in British notation) used in the analysis are shown below. The equations are based on the small perturbation linear theory. Lower case letters represent perturbation quantities. Upper case, subscripted o, letters represent initial steady state conditions. Body axes are used throughout. The assumptions made are as follows:

- 1. The airplane has a longitudinal plane of symmetry.
- 2. The direction of the relative wind, in steady flight, lies in the plane of symmetry, and in steady state, all angular velocities are zero.
 - 3. Initial flight condition is wings level.
- 4. Products and squares of perturbation velocities are small and are ignored, and sines of all perturbation angles are approximated by the angle itself in radians.
- The longitudinal modes of motion are independent of the lateral modes.
 - 6. Structural deformations are not considered.

Three degree of freedom non-dimensional equations of motion,

British notation: (See Ref. 3) Figure 7 displays angular definitions and signs.

X Force Equation:
$$\left[\frac{d}{dx} - x_u\right] \frac{u}{v_o} - x_w \frac{w}{v_o} - \left[x_o - x_o \frac{d}{dx}\right] \theta = x_T \Delta T$$

Z Force Equation:

Moment Equation:

where symbols are defined as follows:

$$\hat{t} = \frac{m}{\rho V S}$$
, air secs.

$$\frac{d()}{d} = \frac{\hat{t}d()}{dt}$$

u = perturbation horizontal velocity, ft/sec.

w = perturbation vertical velocity, ft./sec.

 $\gamma
 = elevator deflection, positive down, radians$

 ΔT = change in thrust required, lbs.

 $\frac{\omega}{U_0} =$, angle of attack, radians

• pitch angle, radians

 $\dot{\mathcal{L}}_{b} = \frac{I_{by}}{m \mathcal{L}_{t}^{2}}$, Inertia Coefficient

 $I_{yy} = Moment of inertia, slug - ft^2$

mass, slugs

 $l_t = tail length, ft.$

 $\mu_1 = \frac{m}{65l_{+}}$ = relative density

C = mean wing chord, ft.

S = reference Wing area, square ft.

 χ = Force parallel to x - axis, lbs.

 \overline{Z} = Force parallel to \overline{z} - axis, lbs.

M = Moment about lateral axis, lbs. - ft.

distance from thrust line to CG, ft. non-dimensional Force Stability derivative and similar identities obtained by permuting x, 2 and u, ω independently. non-dimensional stability derivative and similar identities obtained by permuting x, non-dimensional stability derivative and similar identify obtained by permuting x and 3 , n and T non-dimensional moment stability derivative and similar identities obtained by permuting u and w non-dimensional stability derivative and similar identities obtained by permuting x, non-dimensional stability derivative

 $m_7 = \chi_7 \frac{h}{\ell_t}$ non-dimensional stability derivative h = distance from thrust line to C.G. position

The necessary stability derivatives were evaluated by making use of a longitudinal dynamic stability Fortran program, designated LONGSTAB. The program was compiled while undertaking the course in dynamic aircraft stability given at the Postgraduate School. This program computed the necessary British stability derivatives and then used these derivatives in the aerodynamic equations of motion. The resulting stability quartic was then solved, by the program, for the phugoid and short period complex roots. Finally, the periods and times to damp to 1/2 amplitude

were computed for both modes. Necessary aircraft parameters used by the program were taken from F-8 data supplied by Ling-Temco-Vought, Inc. or calculated. The program-computed stability-derivatives used in the investigation are shown in Table I, as are the other aircraft parameters. All program-computed derivatives, after necessary conversions were found to be in close agreement with those listed in Ref. 6¹. The computer program is explained in Appendix II. A sample printout is shown in Table II.

From the program printout, the phugoid period is 33.5 seconds and that of the short period mode is 6.06 seconds. Times to damp to 1/2 amplitude are 29.9 and 1.73 seconds respectively. Undamped natural frequency, $\omega_{\rm n}$ phugoid, is calculated as .189 radians/sec., ζ as .123. Short period $\omega_{\rm n}$ is calculated as 1.19 rad./sec., ζ as .360.

Ref. 6 lists a phugoid ω_n of 0.188 rad /sec., and a \mathcal{G} of .12. Short period results found were listed as $\omega_n = 1.19 \text{ rad./sec.}$, $\mathcal{G} = 0.35$. The results given by LONGSTAB and those given by Ref. 6 are in excellent agreement.

Thus, as previously remarked, it is seen that the phugoid is very lightly damped.

¹Ref. 6 reports on the results of an investigation conducted along similar lines as the subject of this paper. The two investigations were performed concurrently and independently of each other. After completion, the results of the author's analysis were verified insofar as possible with those given in Ref. 6.

These non-dimensional equations of motion were dimensionalized for the analog simulation. The engine time lag and auto-throttle blocks were next added. Real time stick and throttle simulators were then introduced into the system, together with the F-8 linearized longitudinal control system dynamics supplied by Ling-Temco-Vought. All analog runs were conducted in real time. The analog computers used were Donner 3100 and 3400 machines. An eight channel Brush recorder was used to record the time histories.

The following types of computer runs were then conducted:

- (a) Transient analysis runs using step inputs of elevator deflection, horizontal velocity gusts, and pitch attitude; first with basic airframe alone and then with the two basic types of auto-throttle controllers incorporated. Finally sample runs were made with the speed brake device replacing the engine.
- (b) Optimizing runs using triangular inputs of elevator deflection, to determine the optimum gain for this type of forcing function.
 - (c) Sinusoidal gust inputs.
- (d) Real time pilot controlled runs using a simulated glide slope, with and without the aid of the auto-throttle. Horizontal turbulence was also added to determine the controller effectiveness.

Analog mechanization diagrams are shown in Appendix III. Potentiometer settings are shown in Table 1 to Appendix III. Time histories for these runs are displayed in Figs. 10 to 35.

B) Evaluations of Experimental Analog Runs

The systems referred to are as follows:

System 1, Inputs of angle of attack, and normal acceleration in g units.

System Equation:
$$\Delta T = \frac{1}{1+.14} \left[\frac{K\alpha \Delta \alpha}{1+.54} - \frac{K\Delta \nu \Delta V}{1+\Delta} + \frac{K_{\infty} \Delta \kappa}{\Delta} \right]$$

System 1-a gain constants;

 $K_{\infty} = 1970 \text{ lbs./degree}$

 $K_{\Delta V} = 280 \text{ lbs./knot}$

 $K_{\gamma} = 183 \text{ lbs./degree - sec.}$

System 1-b gain constants;

 $K_{\propto} = 3420 \text{ lbs./degree}$

 $K_{\Delta V} = 72$ lbs./knot

 $K_{3} = 190 \text{ lbs./degree - sec.}$

System 2, Inputs of pitch angle, airspeed error

System Equation:
$$\Delta T = K_0 \Delta O - \frac{u}{1 + .1 A} \left[K_u + K_y u \right]$$

Gain constants;

Ke = 318 lbs./degree

 $K_{\mu} = 360 \text{ lbs./knot}$

 $K_{fu} = 22.3 lbs./knot - sec.$

1) Step input of 1.32° up elevator deflection

Fig. 10 is the analog time history response to a 1.3° step of up elevator deflection, using the System 1-a auto-throttle. Airspeed displays a slight oscillatory tendency, reaching an equilibrium speed of +.6% of V_{\circ} (.8 kts. above V_{\circ}). Thrust is applied smoothly in response to demand.

Fig. 11 shows the response of System 1-b. This system had the gain factors optimized for a step input of horizontal gust velocity. Note the high airspeed overshoot due to step elevator input.

Fig. 12 is the same situation using System ?. Airspeed is much more highly damped as compared to Fig. 11. Equilibrium airspeed is -1% of $V_{\rm O}$ (1.39 kts. below $V_{\rm O}$). Thrust is also applied smoothly.

2) 5 knots of horizontal gust input

Fig. 13 displays the record of System 1-a in response to this input. The system is oscillatory with an approximate damping ratio of S=.15, $\omega_n=.677$ rad/sec. The initial velocity overshoot is 61% of initial error. These values of gain constants are less than optimum for this type of input disturbance.

Fig. 14 displays the response of 3, stem 1-b, which has been optimized to this input disturbance. Equivalent f is now .58, ω_n is .73 rad/sec. Thrust response is somewhat oscillatory. Final value of airspeed is +.2% of V_0 .

Fig. 15 is the record of System 1. This shows a damped response with final airspeed of about -2.2% V . Thrust changes are less than that required by System 1.

3) 4° step input of pitch andie.

Fig. 16 shows the response of System 1-a to this input. Initial velocity transient is $\pm .8\%~\rm V_\odot$ or 1.12 kms. Steady state error is $\pm .4\%~\rm V_\odot$. Thrust application is slightly oscillatory.

Fig. 17 shows System 1-2 response. Initial velocity transient is .6% V . Steady state error is also .6% V .

Fig. 18 displays the response of System I. Initial velocity transient amounts to +1.6% V_{\odot} . Airspeed damps to +.4% V_{\odot} steady state error in 19

seconds, reaching less than 1% error in 9 seconds.

Fig. 19 shows the response of the basic airframe to this same input disturbance, without the aid of the auto-throttle. Airspeed oscillation is +1% $\rm V_{\odot}$, with a steady state value of about .5% $\rm V_{\odot}$.

4) Optimizing runs using triangular elevator input

Fig. 20 shows System 1-a under the influence of a .02 cps triangular elevator deflection (maximum amplitude 1.32°) forcing function. Airspeed error is kept within a range of +2% to -1% of V_{\circ} . Thrust varies within the range of +1600 to -2400 lbs. about the trim setting. Thrust application follows elevator movement closely.

Fig. 21 shows the reaction of System 1-b. Note how airspeed fluctuates \pm 4% V (\pm 5.56 kts.). Thrust has very noticeable oscillatory tendencies and gyrates within rather wide limits.

Fig. 22 shows System 2 under the inflhence of this same forcing function. Airspeed is seen to vary \pm 1.7 kts. or \pm 1.2% of V_0 . Thrust varies approximately 2400 lbs. about trim thrust. Application of thrust, however, is smoother and displays less hunting characteristics than shown by System 1-a.

Figs. 23, 24 and 25 show the response of these same systems to a triangular elevator forcing function of the same magnitude as previously, but of .06 cps frequency.

Fig. 26 shows the reaction of the airplane to this same forcing function without the benefit of the auto-throttle. Note airspeed deviation is less than that obtained with System 1-b engaged.

5) Human pilot controlled flight on simulated glide slope

For this series of runs a pilot flew the simulated airplane on the glide slope, using the auto-throttle. Glide slope reference was obtained from a zero centered panel meter. The zero voltage level was considered the correct glide slope. This is shown on Channel 1 of Figs. 27, 28 and 29. The pilot was then told to manipulate the stick to fly the aircraft to a new 4° higher glide slope. This corresponded to a+14 volt reading on channel 1, or 14 volts on his reference meter. This simulated a low "meatball" on a mirror approach and the flight path correction necessary. This new flight path angle was held momentarily. The pilot was then told to fly the airplane down to $a-4^{\circ}$ glide slope, after which he was to return to the normal flight path (0 volts).

The response of the aircraft, and speed control is shown in Figs. 27, 28 and 29 for Systems 1-a, 1-b and 2 respectively.

It will be noted that Systems 1-a and 2 maintain airspeed close to within 1% of $V_{\rm O}$, whereas System 1-b has much greater airspeed fluctuations. Thrust application is again much more oscillatory in System 1-b.

6) Human pilot controlled flight on glide slope with sinusoidal input of 5 knots horizontal velocity gust

Figs. 30 and 31 are records of System 1 runs utilizing a pilot controlled stick with a forcing function sinusoidal input of 5 knots of horizontal velocity, frequency .05 cps. The pilot was again attempting to fly the glide slope 4° up and down.

Fig. 32 is the record of the response to this same forcing function under the influence of the pilot and the System 2 auto-throttle.

Fig. 33 displays the record of the pilot attempting to maintain original glide slope while the aircraft was being influenced by a sinusoidal u turbulence forcing function, without the benefit of the autothrottle.

7) Speed brake anti-thrust system

Fig. 34 shows the history of the speed brake anti-thrust system in response to a 5 knot horizontal velocity step input. Mechanically, the System 2 auto-throttle was used to supply a thrust command, but this thrust command was used to drive a .1 second time constant anti-drag device, simulating the movement of the speed brakes. It will be noted that in comparison with Fig. 15, (standard System 2 setup) response and damping is faster. It required 9 seconds for the transient to steady within 1% of V_O in the case of Fig. 34, while it required 11 seconds for System 2.

Fig. 35 shows the response of the anti-thrust system to the same forcing function, but utilizing different gain factors. Response is more oscillatory.

C) Summary of Analog Results

From the foregoing evaluations it can be seen that the response of the different systems investigated is dependent upon the sensed variables and the applied forcing functions. System 1-a, optimized to an elevator deflection input, is marginal to unsatisfactory in performance when subjected to a horizontal gust input. On the other hand, system 1-b, using the same sensed variables, but with gains optimized to horizontal

velocity input, does not perform well when subjected to elevator deflection inputs. System 2, utilizing different sensed inputs, also displays varying reactions to each of the forcing functions.

In general, it can be seen that System 2 has the capability of a smoother application of thrust in response to an airspeed error. System 1 has the capability of a more highly damped response, but causes a more erratic application of thrust. Further investigation as to the optimum values of gain constants is required to accomplish the desired task more efficiently.

It is further recommended that additional sensed variables or integrals of such terms be added to the analog set-up to help optimize system response. A fruitful area might be to incorporate a normal g input to System 2 to help the damping characteristics. It is anticipated that further investigations along this line will be conducted at the U.S. Naval Postgraduate School. These investigations will attempt to utilize the simplified equations obtained by the elimination of the short period mode, to develop a more tractable analysis.

5. Conclusions

The two major approach power compensator systems investigated appear to have the capability of performing the desired task. The major difference are degree of anticipation and erraticism of thrust application. With proper choice of gains and input variables, it seems feasible that a composite system can be designed to provide the advantages of both individual systems.

The speed brake or anti-thrust system has the capability of providing faster response, but is limited by drag area available and the physical feasibility of approaching with speed brakes extended.

The preceding investigation has firmly convinced the author that an auto-throttle mechanism is an important contribution to carrier aviation safety. An aircraft that is difficult to fly in the approach because of inherent speed instability problems, can have its whole character changed by an auto-throttle. By removing the undesired instability an auto-throttle relieves the pilot of concentrating on airspeed control, thus allowing more precision in glide slope and line-up control. This advantage by itself, should tend to reduce the frequency of ramp accidents.

In addition, when an automatic landing system is considered, the pilot-controlled airspeed loop must be replaced by an automatic system to provide consistency and predictability of response.

Still another advantage of the automatic airspeed control system is the reduction of minimum approach speed below that recommended by the pilots when airspeed is controlled by manual throttle manipulation. In addition the automatic device can be designed to provide the anticipation and instant response that can only be obtained from much actual pilot experience. Thus it is seen that the auto-throttle can act as the great equalizer in carrier approach training.

TABLE I

Computed F8 Stability Derivatives and Associated Aircraft Parameters British Non-Dimensional Notation

$$X_{ij} = -.2630$$

$$X_{w} = .16996$$

$$x_{q} = 0.0$$

$$X_{0} = -.450$$

$$Z_{11} = -.90$$

$$Z_{w} = -1.5915$$

$$z_q = -.5878$$

$$M_{11} = .006052$$

$$M_{w} = -.15896$$

$$\bar{M}_{\hat{w}} = -.1422$$

$$M_q = -.5119$$

$$i_{\beta} = .7081$$

$$\hat{t} = 3.2772$$

$$C_L = .90$$

$$C_D = .263$$

$$_{\rm CT}$$
 = .195

$$s_w = 375 \text{ ft}^2$$

$$\frac{\partial \mathcal{E}}{\partial \alpha} = .4772$$

 C_g position = 24%

Weight = 22,000 lbs

 $V_0 = 139 \text{ kts} = 234 \text{ ft/sec}$

 $Z_{\gamma} = -.1949$

 $M_{\eta} = -.349$

 $X_{T} = .2046X10^{-4}$

 $M_{\rm T} = -.635X10^{-6}$

INPUT PARAMETERS

STABILITY OFRIVATIVES

FORWARD VELOCITY= 234.00C T CARAT= 3.277273 G= 65.1049

C SUBL= .90000C C SUPD= .26300C

XU= -.2630 XW= .16996 XQ= .C000 XTHETA= -.45000 ZU= -.90000 ZW= +1.5915 TOTAL ZQ= -.5878

ZTHETA= -.0640 YU= .C06052 MW= -.15896 MBAR W.DGT= -.5422 MC= -.5119 MUCNE= 54.466 I SUB BETA= .7081

A= 1.00000 B= 2.776C4 C= 14.0%677 C= 3.02029 E= 5.08454

THE VALUE OF ROUTHS DESCRIMINANT = 69.47
THE AIRCRAFT IS STABLE

RUN 3 C.G. 24, V=139 KTS,234 FPS 3/3/63 LEVEL FLITE THE COEFFICIENTS CF THE GIVEN PCLYNOMIAL ARE

ROOT REAL PART IMAG PART PERICC TIME TO CAMP TO HALF AMPL
NUMBER OF ROOT OF ROCT OF ROOT OF RO

Table II

Sample Printout, Fortran Stability Program, LONGSTAB

tig. 3

Block Diagram, System 1 Auto-Throttle with Transfer Functions

· Auto throttle Equation:

Where:

AT = Thrust Command

1 = Angle of attack error

Xo = Reference Angle of attack

a = True Angle of attack

ang = change of normal exceleration

AV = Vo (Ang - Da), speed change parameter

Vo = Reference Airspeed

Ke = Angle of attack gain factor

Kv = Speed Change gain factor

Kr : Integral of angle of attack gain factor

7 = Servo and actuator time lag (.1 sec)

Ti = Angle of ettack shaping time lag. (.5 sec)

Fig 4

Block Diagram, System 2 Auto Troottle and Engine With Transfer Functions

Auto Throttle and Engine Equation:

$$\Delta T = \frac{1}{1+7e^{\Delta}} \frac{K_0 \theta - ce_{\epsilon}}{(1+7e^{\Delta})(-7e^{\Delta})} \left[\frac{K_1 c_{\epsilon}}{2} \right]$$

Je = Engine Time Constant

Je = Airspeed Sensor Time Constant

0 = Pitch Angle Change

Vret = Reference Airspeed

UE : Airspeed Error

Ku = Airspeed Gain Constant

Kru = Integral of Airspeed orein content

Ko = Pitch Angle Gain Constant

(AT) - Auto Throttle Transfer Furction = Ka

(aT) Airframe Airframe Transfer Finetis (N. (a) Koi Di (a)

Fig. 4 (continued)

(Se) = KOI DI(2) KN2 N2(2)

(Se) Airframe = Kn3 N3 (1)
KD1 D1 (4)

Kni = Gain Constant = . 824 × 10 = 5 Ni(a) = [1+2724+18.942+23.254]

Koi = Characteristic Equation Gain Constant = .416

Dila) = Stability Characteristic Quartic

=[1+1.67A+27.7A+208A+2.402A4]

 $K_{N2} = Gain Constant = 6.8$ $N_2(A) = [1 + 5.29 A + .01173 a]$ $K_{N3} = Gain Constant = -0142$ $N_3(A) = [1 + 37.9 A + 176 a]$

Fig. 5

Nyquist Diagram of System 2 Auto-Throttle Open Loop Transfer Function

Fig. 6 Composite Block Diagram of Complete Automatic Throttle-Airframe System

Fig. 7

Angular Definitions and Signs

Fig. 8
Analog Computer Setup
38

Fig. 9
Analog Computer Sctup
39

Time History, 1.3° Up Elevator Deflection Input, System 1-a

Time History, 1.3° Up Elevator Deflection Input, System 1-b

Time History, 1.3° Up Elevator Deflection Input, System 2 ce 9,04

Time History, 5 Knots Horizontal Gust Input, System 1-a

Fig. 14
Time History, 5 Knots Horizontal Gust Input,
System 1-b

Time History, 5 Knots Horizontal Gust Input, System 2 45

Fig. 16
Time History, 4° Step Input Pitch Angle, 0,
System 1-a

Time History, 4° Step Input Pitch Angle, O, System 1-b

Fig. 18
Time History, 4° Step Input Pitch Angle, 0,
System 2

Fig. 19
Time History, 4° Step Input Pitch Angle, O,
Basic Airframe

Time History, . 02 cps. Triangular 1.32° Elevator Deflection Input, System 1-6.

F 9

Time History, .OZ cps. Triangular 132° Elevator Deflection Input, System 2

Time History, . 06 cps Triangular 1.32° Elevator Deflection Input, System 1-a

Time History, .06 cps. Triangular 1.32° Elevelies Will office Injust, Souther 1-16

Time History, . 06 cps. Triangular 1.32° Elevator Deflection, Input, System 2

Time History, .06 eps. Triangular 1.32° Elevator Deflection Input, Basic Airframe

Fig. 27
Time History, Human Polot Controlled Flight on Glide Slope,
System 1-a

Time History, Human Pilot Controlled Flight on Glide Slope, System 1-b

Time History, Human Pilot Controlled Flight on Glide Slope, System 2.

Time History, Human Pilot Controlled Flight on Glide Slope, Sinusoidal Input of 5 Knots Horizontal Gust, System 1-a

Time History, Human Pilot Controlled Flight on Glide Slope, Sinusoidal Input of 5 Knots Horizontal Gust, System 1-b

Time History, Human Pilot Confinalled Flight on Glide Slope, Sinusoidal Input of 5 Knots Horizontal Gust, System 2.

Time History, Human Pilot Controlled Flight on Glide Slope, Sinusoidal Input of 5 Knots Horizontal Gust, Without Auto-Throttle

Fig. 34
Time History, 5th Knots Horizontal Gust Input,
Anti-Thrust System

Time History, 5 Knots Step Horizontal Gust Input, Anti-Thrust System with Changed Gain Constants

BIBLIOGRAPHY

- Drinkwater, Fred J. III, George E. Cooper and Maurice D. White, An Evaluation of the Factors Which Influence the Selection of Approach Speeds, Advisory Group for Aeronautical Research and Development, Report 230, October, 1958.
- Lean, D., and R. Eaton, The Influence of Drag Characteristics on the Choice of Landing Approach Speeds, Advisory Group for Aeronautical Research and Development, Report 122, May, 1957.
- Anon., Dynamic Stability of an Airplane in Straight Flight with Plane of Symmetry Vertical, Royal Aeronautical Society, Aircraft 00.00.02, July, 1947.
- 4. Anon., Model F8U-2N Airplane Landing Configuration Data, Chance Vought Corporation, Division of Ling-Tempo-Vought Inc., Report 2-53300/2L2048, September, 1962.
- 5. Richards, D. B., Approach Power Control System F8U, Specialties, Inc., ltr of 4 September, 1982.
- 6. Anon., Comparison of Two Automatic Throttle Controllers for the F8U-2NE Aircraft, U.S. Naval Air Development Center, Engineering Development Laboratory Report No. NADO-ED-L6292, 30 November, 1982.

APPENDIX I

Derivation of Transfer Functions

The dimensional derivatives shown in Table I were used to calculate the analytic transfer functions. Calculated values of these derivatives using F8 data, are shown in Table II.

The longitudinal Equations of Motion written in Matrix Laplace Form are (neglecting negligible terms);

The Transfer function $\left(\frac{u}{\delta e}\right)$ Airframe then can be written as (in determinant form):

Where D, = determinant of homogeneous equations

Expanded D₁ =
$$AA^4 + BA^3 + CA^2 + DA + E$$

Where A = 1

Expanded
$$Nu = Bus^2 + Cus + Du$$

Where
$$Bu = Z_{se} Xw$$

$$Cu = -Z_{se} (gMw + M_g Xw) + M_{se} (U_o Xw - g)$$

$$Du = g(M_{se} Zw - Mw Z_{se})$$

Substituting values for these derivatives

$$\left(\frac{u}{\delta e}\right)_{Airframe} = \frac{.1971[\Delta^2 + 4504 + 85.2]}{\Delta^4 + .865\Delta^3 + 11.529\Delta^2 + .696\Delta + .416} = \frac{Nu}{Di}$$

By a similar procedure,

$$\frac{\left(\frac{\Theta}{\delta e}\right)_{\text{Airframe}}}{\left(\frac{\Theta}{\delta e}\right)_{\text{Airframe}}} = \frac{-2.50\left[4^2 + .21554 + .00568\right]}{D_1}$$

(Positive elevator deflection is dov

Expanded:

Where

$$A_{T} = X_{\Delta T}$$

$$B_{T} = -X_{\Delta T} \left[Z_{w} + M_{g} \right] + U_{o} M_{w}$$

$$C_{T} = X_{\Delta T} \left[Z_{w} M_{g} - U_{o} M_{w} \right] + M_{\Delta T} \left[U_{o} X_{w} - 9 \right]$$

$$D_{T} = M_{\Delta T} 9 Z_{w}$$

After substituting in values:
$$\frac{(u)}{\Delta T}_{Airfreme} = \frac{.00145 \left[\Delta^3 + .8049 \, \Delta^2 + 1/.59 \, \Delta + .00430 \right]}{D_r}$$

APPENDIX - I TABLE I-A

LONGITUDINAL DIMENSIONAL STABILITY DERIVATIVE

PARAMETERS

(STABILITY AXIS SYSTEM)

		OF BASIC STA	BILITY DERIVATIVES	IN TERMS OF NON-		
QUANTITY	DIMENSION	IAL	NON-DIMENSIONAL	DIMENSIONAL STABILITY DERIVATIVE		
	DEFINITIONS	UNIT		PARAMETERS		
X _u	$J = \frac{1}{n} \cdot \frac{3x}{3u}$	1 sec	$= \frac{\rho SU}{m} \left(-C_D - C_{D_B} \right)$	- 1/7 × u		
X _e	$-\frac{1}{m}\frac{\partial X}{\partial w}$	1 sec	$-\frac{cSU}{2m} \left(C_L - C_{D_{\alpha}} \right)$	- 1/7 X _v		
x ₈ g	- 1 3x	sec ² rad	= $\frac{\Delta SU^2}{2m} \left(-C_{D_{g_g}} \right)$.	* ¥ × _P x		
y Zu	- 1 2Z m 3u.	l sec	$=\frac{e^{SU}}{n}\left(-C_{L}-C_{L_{u}}\right)$	= 1 zu		
Z,	- 1 22 m 54	1 sec	$-\frac{e^{SJ}_{2m}}{2m}\left(-C_{L_{\alpha}}-C_{p}\right)$	* 1/r z,		
Zı	# 9%	1 1	$=\frac{a^{SC}}{4\pi}\left(-C_{L_{\dot{\alpha}}}\right)$	e c zu		
Z _q	- 1 3Z - 2q	sec-rad	$=\frac{\rho SJC}{4\pi}\left(-C_{L_{\mathbf{q}}}\right)$	- C Zq		
Ząg	m 28g	1 sec²rad	$=\frac{dS_1^{-1}}{2m}\left(-C_{1-q}\right)$	- U z _t		
щ	- 1, 24 3u	1 sec-ft	$= \frac{\varrho \underbrace{\text{SUC}}}{i_{y}} \left(C_{m} + C_{n_{y}} \right)$	= 7 m _e		
н.	n 1 y dw	1 sec-ft	· Paic Cea	= $\frac{1}{\tau c}$ m_{η}		
r,	1 204 200	1 <u>f</u> t	$=\frac{e^{SC^2}}{4l_y}C_{n_{k}}$	= 1/U m ty		
и _q	- 1 2M 2Q	sec rad	- SUC2 Cm	= \frac{1}{\tau} n_q		
Nag	-1, 5%	sec ² rad	" FNIC C" E	= U mgg		

APPENDIX -I

TABLE I-B

LONGITUDINAL NON-DIMENSIONAL STABILITY DERIVATIVES

(STABILITY AXIS SYSTEM)

BASIC	NON-DEMENS	IONAL SȚABILITY DERIVATIVES	NON-DIMENSIONAL
TOTAL AIRFR	AME	THEORETICAL HORIZONTAL .	STABILITY DERIVATIVE
DEFINITIONS	UNIT	TAIL CONTRIBUTION	PARAMETERS
C. DRAG	1 1		
$c_0 \sim \frac{u}{2} \frac{\partial c_0}{\partial u}$	+		х ^м - (-С ^В -С ^р ")
Coa · dCD	1 rad		1 00 1 (CL - CDA)
$C_{D_A} \sim \frac{\partial S_B}{\partial C_D}$	1 rad		x _{3 E} + =1 C _D .
C. · Lift	1 1		
$c^{r^{*}} \cdot \frac{3}{n} \frac{gn}{gc^{r}}$	1 1		7 _u · (-C _L -C _L)
Cr . 3 4 9 5 4	l rad	$\left[C^{\Gamma}\alpha\right]^{N} + C^{\Gamma}\alpha^{N} = \frac{d^{N}}{d^{N}} \cdot \frac{2}{2^{N}} \cdot \left(1 - \frac{g\alpha}{g\varepsilon}\right)$	$z_{\infty} = \frac{1}{2} (-C_{L_{\alpha}} - C_{\alpha})$
$c_{L_{\dot{\alpha}}} = \frac{\delta c_{L_{\dot{\alpha}}}}{\delta \left(\frac{\dot{\alpha}c}{20}\right)}$	1 rad	$\begin{bmatrix} c_{L_{\dot{\alpha}}} \end{bmatrix}_{N} = 2c_{L_{\dot{\alpha}_{\dot{\alpha}_{\dot{\alpha}}}}} \frac{a_{\dot{\eta}}}{\dot{q}} \frac{S_{\dot{\eta}}}{\dot{s}} \frac{t_{\dot{\eta}}}{\dot{\epsilon}} \frac{3\epsilon}{\delta \dot{\alpha}}$	54 - 4 Chá
$c_{L_q} \cdot \frac{3c_L}{3(\frac{qc}{20})}$	1 rad	$\begin{bmatrix} C_{L_q} \end{bmatrix}_{N} \sim 2C_{L_{\mathcal{O}_{N}}} \frac{\eta_{N}}{q} \frac{S_{N}}{S} \frac{\ell_{N}}{c}$	Eq = = 1 CLq
Cr2 - 98 K	1 rad	$C^{\Gamma^{\underline{a}^{\underline{a}}}} \cdot C^{\Gamma^{\underline{a}^{\underline{a}}}} \cdot \frac{\underline{d}}{u^{\overline{a}}} \cdot \frac{\underline{g}}{z^{\overline{a}}} \cdot \frac{\underline{g}}{\underline{g}^{\underline{a}^{\underline{a}}}}$	z _E 1/2 C _L
Cm , Mg.	1 1		
C	1 1		$m_u = \frac{1}{2} \left(\frac{c}{k_y} \right)^2 (C_u + C_{u_u})$
c"" - <u>9a</u>	rad ·	$\begin{bmatrix} \mathbf{C}_{\mathbf{m}} \mathbf{\alpha} \end{bmatrix}_{\mathbf{M}} \leftarrow \frac{\mathbf{l}_{\mathbf{M}}}{\mathbf{c}} \begin{bmatrix} \mathbf{C}_{\mathbf{L}} \mathbf{\alpha} \end{bmatrix}_{\mathbf{M}}$	$m_o = \frac{1}{2} \left(\frac{c}{k_y} \right)^2 C_{m_{QL}}$
$c_{a} \cdot \frac{9(\frac{\overline{0}}{\overline{0}})}{9c_{a}}$	1 rad	$\begin{bmatrix} C_{m\dot{\alpha}} \end{bmatrix}_{M} = \frac{-l_{M}}{c} \begin{bmatrix} C_{L\dot{\alpha}} \end{bmatrix}_{M}$	$m_{\psi} = \frac{1}{4} \left(\frac{c}{k_y}\right)^2 C_{m_{\dot{\alpha}}}$
$C^{-4} - \frac{3\left(\frac{50}{4c}\right)}{9\left(\frac{c}{c}\right)}$	1 rad	$\begin{bmatrix} C_{mq} \end{bmatrix}_{H} = -\frac{1}{c} \begin{bmatrix} C_{Lq} \end{bmatrix}_{H}$	$m_q = \frac{1}{4} \left(\frac{c}{k_y} \right)^2 C_{m_q}$
C"1" 21"	1 rad	$C_{\mathbf{n}_{\mathbf{g}_{\mathbf{g}}}} = -\frac{L}{c}C_{\mathbf{L}_{\mathbf{g}_{\mathbf{g}}}}$	$m_{\delta_{\mathbf{g}}} = \frac{1}{2} \left(\frac{\mathbf{c}}{\mathbf{k}_{\mathbf{y}}} \right)^{2} \mathbf{C}_{\mathbf{m}_{\delta_{\mathbf{g}}}}$

Appendix I Table II

Dimensional Stability. Derivatives

$$M_{g} = \frac{9USC^{2}Cm_{g}}{4T_{yy}} = \frac{2.08(11.78)^{2}(-4.5)}{4(96,000)} = -.338 \frac{1}{sec.Red}$$

$$M_{W} = \frac{9SC^{2}}{4T_{yy}} C_{mk} = \frac{(2.378\cdot10^{3})(375)(11.78)^{2}(-55)}{(4)(96,000)} = -.0001766 \frac{1}{ft}$$

$$M_{W} = \frac{9USC}{4T_{yy}} C_{mq} = \frac{(208)(11.78)(-380)}{(2)(96,000)} = -.0485 \frac{1}{sec.ft}$$

$$M_{W} = \frac{9USC}{2T_{yy}} (C_{mu} + C_{m}) = \frac{(208)(11.78)(.0074)}{96,000} = -.000189 \frac{1}{sec.ft}$$

$$Z_{W} = \frac{9US}{2T_{yy}} (-C_{L_{K}} - C_{D}) = \frac{(208)}{2(683)} (-2.598-197) = -.426 \frac{1}{sec.}$$

$$Z_{W} = \frac{9US}{2T_{yy}} (-C_{L_{W}} - C_{D}) = \frac{(208)}{683} (-.197) = -.060 \frac{1}{sec.}$$

$$X_{W} = \frac{9US}{2T_{yy}} (-C_{DU} - C_{D}) = \frac{208}{683} (-.197) = -.060 \frac{1}{sec.}$$

$$Z_{W} = \frac{9US}{2T_{yy}} (-C_{D} - C_{D}) = \frac{208}{683} (-.197) = -.01415 \frac{1}{sec.}$$

$$Z_{W} = \frac{9US}{2T_{yy}} (-C_{D} - C_{D}) = \frac{208}{683} (-.197) = -.01415 \frac{1}{sec.}$$

$$Z_{W} = \frac{9US}{2T_{yy}} (-C_{D} - C_{D}) = \frac{208}{683} (-.197) = -.01415 \frac{1}{sec.}$$

$$Z_{W} = \frac{9US}{2T_{yy}} (-C_{D} - C_{D}) = \frac{(65.105)(375)(11.78)(-835)}{683} = -2.50 \frac{1}{sec.^{2}Red}$$

$$M_{S} = \frac{9USC}{2T_{yy}} (-C_{m} - C_{D}) = \frac{(65.105)(375)(11.78)(-835)}{(96,000)} = -2.50 \frac{1}{sec.^{2}Red}$$

$$X_{M} = \frac{9USC}{2T_{yy}} (-C_{D} - C_{D}) = \frac{(65.105)(375)(11.78)(-835)}{(96,000)} = -2.50 \frac{1}{sec.^{2}Red}$$

$$M_{M} = -\frac{2}{2T_{yy}} = -\frac{2}{3} = -\frac{2}{3$$

APPENDIX II

DYNAMIC STABILITY FORTRAN PROGRAM

Longitudinal - Program LONGSTAB

This program, once entered with required airplane parameters, computes the longitudinal stick fixed and/or stick free (when pertinent) stability derivatives, and the corresponding stability equation coefficients. It then solves these equations for roots, periods, and times to damp to 1/2 amplitude for both the phugoid and short period modes. In addition the value of Routh's discriminant is determined. The sequence of computations can be repeated for as many different flight regimes as desired.

There are a total of five data cards required for the stick-fixed only solutions, with an additional two cards required for a stick-free solution. Thus for a combination stick-fixed and free solution, there will be a total of seven data cards required for each flight regime desired.

The initial data card controls the types of solutions desired (stick-fixed, free, or both), and the number of consecutive runs to be made. A list of program symbols with their meanings appear in Table I to this Appendix.

The second card contains an alpha-numeric run identification or an arbitrary title.

The third card is the first of the general input data cards. This card should have entered on it:

 S_t (tail area), S_w (wing area), $C_{L \times t}$, γ_{tail} , S_B (body area), l_B (body length), ζ , g(acceleration).

The parameters are entered eight to a card, each being allowed 10 columns. There are 80 columns on each card. Each parameter may be entered anywhere in its assigned ten columns, but must have a decimal point included in it. This same format is followed for each of the succeeding cards.

The fourth card should have the following aircraft parameters entered on it:

W (aircraft weight, lbs.); $\frac{\partial \mathcal{E}}{\partial \mathbf{x}}$; \mathcal{O}_{o} in degrees; h, (distance from c.g. to thrust line, ft.); \mathbf{C}_{t} (coefficient of thrust); $\mathbf{C}_{m\mathbf{x}}$; \mathbf{I}_{YY} (slug ft.); V (forward velocity ft./sec.).

The fifth card should have the following:

 C_D ; $C_{L \propto}$; $e\pi A$; $C_{L \text{ wing}}$; c (wing chord); l_t (c.g. to a.c. tail, ft.); Xc.g. (x distance of c.g., ft.); XAC (x distance of wing a.c. in ft.).

Cards 2 through 5 are repeated for each different run, stick fixed.

If it is desired to compute a stick free solution simultaneously, then

two additional data cards (6 and 7) are required for each run.

Card 6 contains the following parameters:

 C_T (tail chord, ft.); K_e^2 (radius of gyration, squared); $\mathcal{M}_{\mathcal{E}}$; B_1 ; B_2 ; B_2 ; C_2 ; C_3 ; C_4 .

Card 7 contains the following parameters:

m₁; m₂; m_e (mass elevator, slugs); S_e (area elevator, ft²).

Thus for one aircraft flight regime (say Sea Level, Mach 0.6), for both stick fixed and free, there would be required data cards 1 through 7. For each succeeding run, cards 2 through 7 would have to be repeated with the new parameters entered. Card one would have to be suitably prepared to reflect the total number of runs and mode of runs desired. See Fig. 1 this Appendix for sample data cards. Note the first card is of format 13 for the number of runs, and I1 for mode of operation. All other data cards are of 8F10.0 format (each card holds 8 fields of 10 columns, each, one data number to be entered per field, in floating point format; i.e., with a decimal point somewhere in the number.)

The program prints out the calculated stability derivatives as well as the computed solutions to equations.

TABLE I

PROGRAM SYMBOLS AND MEANINGS

Program LONGSTAB

Program mnenonic	Meaning
NOS	Number of runs to be made. I3 format. card 1
MODE	Decision stick fixed (1), or stick free (2). I1. card 1
ST	\mathbf{S}_{t} , tail area. card 3.
sw	S _w , wing area. card 3.
CLALFAT	$C_{ extsf{LMT}}$, Tail lift curve slope. card 3.
ETATAIL	η_{T} , Tail efficiency, $\text{C}_{\text{L}}/\text{C}_{\text{L}}.$ card 3.
SB	S _B , Body area card 3.
BL	l _B , Body length card 3.
RHO	? , Atmospheric density, card 3.
G	g, Acceleration due to gravity. card 3.
w	w, aircraft weight. card 4.
EPSALFA	de card 4.
THETAl	$\mathcal{O}_{\mathbf{o}}$, initial angle of pitch, degrees. card 4.
YH	h, distance from c.g. to thrust line. card 4.
CT	C _t , coefficient of thrust. card 4.
CMALFA	C_{mod} , per radian. card 4.
YI	Iyy' moment of inertia. card 4.
V	V, forward velocity, ft./sec. card 4.
CSUBD	CD, coefficient of drag. card 5.

CLALFA C_{IN} , winglift curve slope. card 5.

EPIA eMA, card 5.

CSUBL C_{I. wing} card 5.

C c, wing chord. card 5.

TL l_{t} , c.g. to a.c. tail. card 5.

XCG $x_{C,q}$ x distance of c.g. card 5.

XAC $x_{a.c.}$, x distance of wing a.c. card 5.

CTAIL C, Tail chord. card 6.

XXE k_{e}^{2} radius of gyration squared. card 6.

UE με, relative elevator density. card 6.

B1 $B_1, C_{h_{XT}}$. card 6.

 B_2 B_2 , $C_{h_{e}}$. card 6.

B2PRIME B_2 , $1/2 C_{his}$. card 6.

ZETA 37, card 6.

ZETADOT 3; card 6.

AMETA m, card 7.

AMETADT m; , card 7.

XME me, mass elevator. card 7.

SE S_e, area elevator. card 7.

Fig. 1 Sample Data Cards LONGSTAB

NOS MODE Longstab Data 1

Data 1 Control Card

AI.T	1	I Ù,	7,1,1(-		2	r. F	}	r.t	. V	't-	F.,								l,	IH	CF	1		0,	D					_					1		4	~		-										
- COMENT	ž	_		-	-		-	_	_	-				-	-	_	_	-		-		-					-1	4	24	4		7	7	ŀŁ)	-4		4	1	Ą.	6	_	_	_		\dashv					
PATEM' 4T	COSTIBBAT								i							F	С	R	1	-[7.5	11	1		9	T	_	T	Ε	M	ΙE	.	Т	-	(K	-1	Af	P	A	1						ID	ENT	FIC	AT	н
000	0		0	0 (0		0 (0	0	0	0	0 1	0 0	0	0 0	0	0 8	0	0	0 0	0	0 (0 (0	0	0	0 0	0 0	0	0 0	0	0 0	0 (0	0 0	0	0 0	0 (0 (0 (10	0 0	0 (0 0	0	0 0	0	0 0	0	8 8	8
3 3 4 6	П	7 6	9	10 1	1 12	13	14 1	5 16	17	16 11	20	71 2	2 23	74	25 21	5 27	70 7	0 30	31 3	12 33	34	35 3	@ 27	38 3	36 40	41 4	12 43	44 4	346	17 40	49 :	50 51	52 5	3 54	55 30	57 5	is 59	60 6	1 62	63 6	4 65	66 6	7 60	60 7	0 71	27 7.	3 74	73 71	77	70 7	19
ן די דין	1	1 1	1	1 1	1	1	1_	1	1	1 1	1	1]	1	1	1 1	1	1 1	1	1	1 1		1.1	1 1	1	1.1	1	1 1	1.1	1	1 1	1	1 1	1 1	11	11	1 '	1 1	11	1	1 1	11	1.1	1	1 1	1	1/1	1	1 1	1	1 1	ļ
2 2 2 2	,	• •	9	9 1			9 9	1	9	9 9	2	2	2 2	2	2 2	2	2 -	1 1	9 4	2 1	1	, ,		2	2 2	2	2 2	2 1	9	2 2	2	1 1	9 1	١.				2 (2.0		0 1	1 1	2	. 4	2 2	1	2 4	2
12 4 4 2	1	2 2	4	4 4	4		4 4	4	4	4 2	Z	2 .	2	2	2 2	Z	2 4		2 /	2 2	Z	2 4		Z	2 2	2	2 2	2 2	Z	2 2	Z.	۷ ۷	6 4	2 2	2 2	2 .	2 2	2 4	2 2	2 4	2 2	2 4		2 4		44	4	2 2	Z	2 4	Z
3 3	3	3	3	3 3	3	3	3 3	3		3 3	3		3 3	3	3 3	3	3 3	3	3 :	3 3	3	-	3	3	3	3	3 3	3 3	3	3 3	3	3 3	3 :	3 3	3 3	3	3 3	3 3	3	3 3	1 3	3 3	3 3	3 3	3	3 3	3	3 3	3	3 :	3
1	_																J																																		
4 4 4 4	4	4		4 4	1 4	4	4.4	4	4	4 4	4	4	1 4	4	4 4	4	4 4	4	4	4	4	4 4	1 4	4	4 4	4	4 4	4.4	4	4 4	4	4 4	44	14	4.4	4	14	4 4	14	4 4	14	4 4	14	4.4	4	44	14	4 4	4	4 4	4
5 5 5 5	5	C E							E			6 1	: 6	5	c C		6 6		6 1		. 6	5 1		6	E E		E E	6 6	E	E 6	E	E E	E (E E			6 1		E 6		6 6		E 6				E E	E	6 1	E
																																																	1		
8666	6	8 6		8 6	6	6	6 6	6	6	6 6	6	6 (6 6	6	6 6	6	6 6	6	6 (6 6	6	6 (6 6	6	6 6		6 6	6 6	6	6 6	6	6 6	6 1	6 6	6 6	8	6 6	6 6	6	6 8	8 6	6 6	6	6 6	6	6 6	6	6 6	6	6 (6
																																														П					
7777	7	7 7	7	7 7	7	7	7 7	7	7	7 7	7	7 7	1 7	7	7 7	7	7 1	7	7	7 7	7	7	17	7	1 1	7	7 7	11	7	7 7	7	7 7	7	17	7 7	7	7	7 1	17	7 7	1 7	7 7	1 7	7 7	7	7 7	17	7 7	7	7	7
8 8 8 8																																																			
0000	0	0		9 (1 0			0		0 0		0 1	0 0	0	0 0	9	0 1	0	6	6 6	8	8	8	8	ō	8	0 0	8 5	0	8 8	8	9 9	8	8 8	8 8	8	9 9	8 1	5 8	8 8	5 8	8	8 8	8 8	9 9	8	5 8	8 8	8	8	8
9999		9 9		9 9	9	9	9 9	9	9	9 9	9	9	9 9	9	9 9	9	9 9	9	9	9 9	9	9 9	9 9	9	9 9	8	9 9	9 9	9	9 9	9	9 9	9	9 9	9 9	9	9 9	9 9	9 9	9 0	9 9	9 9	9	9 9	9	9 9	9	9 9	9	9	9
12 2 4 6	í	7 8	•	0 1	1 12	13	14 1	16	17 1	10	38	21 2	2 23	24 :	25 71	27	28 2	9 30	31 3	12 13	3 34	35 3	e 37	38	10 40	61	12 43	44	5 49	i) 41	46 :	50 51	52 5	3 54	55 51	57 :	\$ 59	80 6	1 62	63 6	4 65	96 0	7 64	64 7	0 71	77 7	3 74	75 7	177	70 7	71
J 66.1	,	19.40	P	15	7	~	43	>,	Ē.		_		- 4		A 4	ĺĬ	-	_		_		9:	-	_				Ō.	.00			_		-	66				3.			-	-		_			4 4	_		

66.6		4,011 0.95	220.0 43.66	0.002378 32.17	,
>T	SW.	- Clar no	SB la	16 9:	
ATEMENT S		FORTRAN	STATEMENTOTA	B A 3	IFFCATIO
8000	00000000000000	0000 0000000 0000	00000:0:0000000000000000000000000000000	0010110000000000008	800
11111	1111111111111	11111 [111111111111111	11111111111111111111111111		111
2 2 2 2 2	22222222 2222	2222222222222222	2223 3 22222222222222	2222222 [2222222] 222	2 2 2
3 3 3 [3	333333 33 3333	333 33333333 333	333333 _ 3333333 _ ,333	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3
4444	4444444_44444	44_444444444444	144444444444444		444
5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5	5555555555555555	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5
6 [[[6 6	6188681666666	66666866666666666	666666666666666666666666666666666666666	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	666
7 7 7 7	,,,,,,,,,,,,,,,	111111111111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ווווווווי ווווווווווווווווווווווווווו	777
8818	111111111111111111111111111111111111111	888_8888888_888	888888_88888888888	888888888888888888888888888888888888888	888
99999	9999999999999				

II - Fig. 1 continued

						•			
0	12230.0	0.50	0.0	4514	.01928		16000.0	670.14	
	w .	24	00	□ h	□ C _T	Cmk	Lyy	V	,
1	80000 0 0 0 0 0 0 0	• '' • • • • • • •			LONGS	TAB DI	4VA 4		
	7 2 3 4 5 6 7 6 6 18 17 1	2 I3 H IS N I7 N 19 29 2	1 22 23 24 25 28 27 28 21 31	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 48 47 48 4	4 50 51 52 53 54 55 56 57 58 56	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70 71 72 72 14 75 76 77 76 79 80	
						•		11111111111	
1	22;								
1	444444444		***						
1 .	55555555555								
3								66,6666666.	
-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					4-0			
						88 888888			
[99999999999	99999999		999999999			999999999		
-	2 1 4 5 6 7 9 6 16 11 1	2 13 84 15 16 17 18 19 20 2	227 23 24 25 26 27 29 29 30	31 32 33 34 35 36 37 38 3P 48	41 42 43 44 45 46 41 46 41	9 50 51 52 53 54 55 56 57 58 59	50 81 82 63 64 65 66 67 88 69	70 11 12 13 14 75 76 77 78 79 80	
W	0.01828 4	4.350) • C. .	11.85 <i>PITA</i>	.0669 • C _{Lb}	8.68 C	22.05 L _t	1.969 Xcg.	2.17 X2.c.	,
	u.	40					reg.	7-2.C.	
	0 10 10 00 80 00 0	0000'00000	0000000000	LONG-STA	B DA	TA 3	0000000000	00000000000	
	17345626616111	2 13 14 15 16 17 18 18 18 28 2 	11111111	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 49 41	50 51 52 53 54 55 58 57 56 59	60 61 62 83 84 65 66 67 69 69 1 1 1 1 1 1 1 1 1 1	70 71 72 73 74 75 76 77 76 79 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .	3
	222222 22221	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	272222222	222222222	22222222	22 - 22222	222222222	22 22222222	The Suppose
1	33[333333333					• •			- /
	444444444								A . 44 . 4
:	5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5	555 5555	555555555	555555555	555555]555	5 5 5 5 5 5 5 5 5 5	55555555555	3.
	66668866666	6 8 6 8 6 6 6 6	666666666	6663366666	666]6666	6666666666	66666]6666	6666666666	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,	111111111	1111111111	111111111	1111111111	1111111111	11111]11111	10. 90
	8 8 8 8 8 8 8 8 8 8		8 8 8 8 8 8	8 8 8 8 8 8 8 8	8 3 3 8 8 8 8	8888 18888	8888888888	888888888888888888888888888888888888888	A-741
	99999999999	999999999	999999999	99999 9999	999999999	9999999999	9999 9 999	9999999999	
	1 2 4 4 5 0 7 6 0 16 11 1	2 13 14 15 16 17 10 19 20 2	1 22 23 24 25 26 27 28 29 31 4	31 32 33 34 35 36 37 38 39 40	47 42 43 44 45 46 47 46 41	0 50 51 52 53 54 55 56 57 58 59	60 61 62 83 64 65 68 87 68 89	79 17. 12 13 14 15 16 12 76 79 80	7 - 20-060
1		12			-, 565 P	6604	1585	0744	
	14	Re M			Bz	. B2'	34	34	1
n					LONGS	TAB DA	TA 6		On Ch
1	234507001111	13 14 15 19 17 16 16 20 21 :	22 23 24 25 26 27 28 29 30	11 32 33 34 35 36 37 38 39 40 4	1 42 40 44 45 46 47 48 49 1	50 51 52 53 54 55 58 67 58 59 8 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1
-	22222222222								200
2	3_33333333								400
	6444444444								
	5555555555								4
	6666666666								-
	111111111111	and other state and							
	8.88888888								
9	999999999	99999999	99999999	9999999999	99999999	9999999999	999999999	9999999999	
i	7 3 4 8 8 7 9 9 19 11 12	12 14 15 10 17 10 10 20 21	222233173033	11 22 33 34 35 38 37 30 30 44 4	14464444	SO 51 32 53 54 55 50 57 50 59 6	0 0 1 2 2 1 4 6 6 6 6 6 6 7	0 71 72 73 74 75 76 77 79 79 80	

11 - rig. 1.

79

Fortran Program LONGSTAB

```
1.5 MINUTES
.. JOE
                                           EELL*LCNGSTAE
                                                    PROGRAM LONGSTAB
                                           PROGRAM FOR THE COMPUTATION OF THE ROCIS OF THE CHARACTERISTIC DYNAMIC LONGITUDINAL STABILITY (STICK FIXEC) EQUATIONS CIMENSION KAPPA(10), CPR(129), CPI(129), ROOTR(128), ROOTI(128) DIMENSION CRR(129), CRI(129), XR(4), XI(4), FXR(4), FXI(4), SR(3) (SE(3))
                                          REAC 66, NOS, MCDE
FORMAT (13,11)
CO 777 J = 1, NCS
                                  ICOUNT = 0

OCALL INPUT1 (CLALFA, EPIA, C, TL, XCG, XAC, ST, SK, CLALFAT, ETATAIL, SE, EL,

1 RHO, G, h, EPSALFA, THETAI, YH, CT, CMALFA, YI, V, CSUED, CSUEL, KAPPA

COMPUTATION OF STABILITY OF STABIL
                                                                                              *RHO * V**2
* W /(G*RHC*V*SW)
* THETA1 / 57.2957795
                                            TCARAT
                                       THETAC = THETA1 / 57.2957795

XU = -CSLBD

XW = .5*CSUBL*(1.C-(2.0*CLALFA/EPIA))

ZW = -.5*(CLALFA + CSUBD)

APRIME = .44 + 2.0*((XAC-XCG)/C)

BPRIME = -.58 - CLALFA * APRIME * ((XAC-XCG)/C)

WINGMC = 0.25 *((C/TL)**2)*BPRIME

TAILMC = -.50* CLALFAT * (ST/SW) * ETATAIL

BODYMC = -0.01* (SB/SW)*((EL/TL)**2)

TOTALMQ = WINGMC + TAILMC + BODYMC

YIB = YI/((k/G)*TL**2)

WINGZC = -.25*CLALFA*(C/TL)*(.44+(XAC-XCG)*2.0/C)

TAILZG = -.5*CLALFAT*(ST/SW)*ETATAIL

U1 = k/(G*R*HO*SW*TL)

BARMWCT = -.5*CLALFAT*ETATAIL*(ST/SW)*EPSALFA

TOTALZQ = WINGZC + TAILZQ

ZU = -CSUBL

XTHETA = -.5*CSUBL
                                           THETAC
         ZU = -CSUBL

XTHETA = -.5*CSUBL

ZTHETA = -.5*CSUBL*TANF(THETAC)

AMU = -CT *YH/TL

AMW = .5 * CMALFA * C/TL

PRINT 5C5, ST, SW, CLALFAT, ETATAIL, SB, BL, RHO, G, W, EPSALFA, THETAI, YH,

1 CT, CMALFA, YI

5050FORMAT (1H1 /40H

INPUT PARAMETERS

111H TAIL AREA= F8.4, 2X11H WING AREA= F9.4, 2X, 14H CL ALFA TAIL=

2 F9.6, 2X, 1CH ETA TAIL= F9.6, 2X, 11H BCDY AREA= F9.2 /

3 13H BCCY LENGTH= F8.5, 2X, 5H RHO= F1C.7, 2X, 5H GEE= F8.5, 2X,

4 EH WEIGHT= F12.4, 1X, 3H BS 2X, 18H D EPSILCN/D ALFA= F9.6 /

5 21H INITIAL PITCH ANGLE= F9.6, 1X, 7HGEGREES 2X, 22H THRUST LINE DI

6STANCE= F8.5, 1X, 4HFEET 2X, 16H THRUST CCEF CT= F8.6 /

7 EH CMALFA= F9.6, 2X, 10H I SUB YY= F12.3, 1X, 15HSLUG FT SCUARED//)

WRITE CUIPUT TAPE 5, 101

1C1 FORMAT (/// 47H

WRITE OUTPUT TAPE 5, 1C5, V, TCARAT, Q

105 FORMAT (19H FORWARD VELOCITY= F12.3, 10H I CARAT= F1C.6, 4H C=
      UTPUT TAPE 5, 105 .V.TCARAT.C
(19H FORWARD VELOCITY= F12.3,10H T CARAT= F10.6, 4H C=
                                        CONTINUE
N = 4
                                                                           FOLYMUL (CRR, CRI, N, KAPPA, TCARAT)
```

```
ISION FOR LONG OR LATERAL, STICK FIXED (999); OR STICK FREE (201) TO (777,201,202,204), MODE
C
                 DECISION
                 GD
                 CONTINUE
WRITE CLIPUT
     2 C 1
                                                           TAPE 5,301
STICK FREE LONGITUCINAL DYNAMIC STABILITY COEFF
     3010FORMAT ( / / / / 80H
     IICIENTS
WRITE OLTPUT TAPE 51, 302, KAPPA
3C2 FORMAT ( 1GAB )
OCALL INPUT 2 (CTAIL/, XKE, UE, B1, B
                                                       (CTAIL, XKE, UE, B1, B2, B2PRIME, ZETA, ZETADOT, AMETA6
             AMETADT )

XKE = SCRTF(XKE)

ZQ = TCTALZQ

AMQ = TCTALMQ

CCALL PREROT2 (CT
                   ALL PREROT2 (CTAIL', EPSALFA, XKE, YIB, U1, UE, TE, E1; E2; E2PRIME, ZW, ZTHETA, ZG, ZETA, ZETADOT, AMW, AMQ, BARMWOT, AMETA, 'AMETADT, CRR, CRI
                 CALL FCLYMUL (CRR.CRI.N.KAPPA.TCARAT)
                CONTINUE
END FILE 5
STOP2
STOP4
STOP5
     777
     202
203
204
                   STOPE
                 END
             OSUBROLTINE INPUT: (CLALFA, EPIA, C.TL, XCG, XAC, ST, SW, CLALFAT, ETATA'L, SB, BL, RHO, G, W, EPSALFA, THETAI, YH, CT, CMALFA, YI, V, CSUBC, CSUBL, KAFFA) DIMENSION KAPPA(10), CPR(129), CPI(129), ROOTR(128), ROETI(128) DIMENSION CRR(129), CRI(129), XR(4), XI(4), FXR(4), FXI(4), SR(3), SI(3) READ (5, KAPPA FORMAT (8F10,0))
     1 04
                               104,ST,SW,CLALFAT,ETATAIL,SB,BL,RHO,G
1C4, W.EPSALFA,THETA1,YH,CT,CMALFA,YI,V
104,CSUBD,CLALFA,EPIA,CSUBL,C,TL,XCG,XAC
T (1CA8)
                READ
                FORMAT
                 RETURN
             RETURN
END
SUBROLTINE PREROCT (XU,XW,XQ,XTHETA,ZU,ZW,JOTALZQ,ZTFETA,AMU,ANW,
1BARMWCT,TOTALMQ,U1,YIB,TCARAT,A1,B1,C1,D1,E1, CRI, CRR)
DIMENSION KAPPA(10),CPR(129),CPI(129),RGGTR(128),RCCTI(128)
DIMENSION CRR(129),CRI(129),XR(4),XI(4),FXR(4),FXI(4),SR(3),SI(3)
A1 = 1.C
ZQMU = (1.C +(TGTALZQ / U1))
E1 = -(XU + ZW)-(TGTALMQ/YIB)-(ZQMU * BARMACT/YIB)
CC1 = (X4 * ZW - XW * ZU ) + (TGTALMG/YIB)*(XU* ZW) + (XU*ZQMU - ZU *
   ZQMU = (1.0 +(TOTALZQ / U1))
2 e1 = -(xu + zw)-(TOTALMQ/YIB)-(ZQMU * EARMACT/YIB)
3 cc1 = (xu + zw - xw zu) + (TOTALMQ/YIE)*(xu* zw) + (xu*zqmu - zu
1(xQ/U1) - ZTHETA)* (8ARMADT/YIB) -(U1*AMA/YIB)*(ZQMU + XQ/U1)
4 0D1 = -(TOTALMQ/YIE)* (XU*ZW - xw * zu) +(-xiHeta* zu + zTHETA*
1 xu) *(BARMADT/YIE)*(U1*AMW/YIB)*(xu* ZQMU + Zw* xQ/U1 - ziHeta)
2 (U1*AMU/YIB)*(-xTHETA* xw + zqMu + zw* xQ/U1 )
50e1 = (U1*AMM/YIB)*(-xTHETA* zu + zTHETA*xu)-(U1*AMU/YIB)**(-xTHETA*
WRITE CUTPUT TAPE 5,1c1, A1,B1,C1,D1,E1
1c10FCRMAT (/3H A= 1x,F13.5,4H B= 1x,F13.5, 4H C= 1x,F13.5, 4H C=
CRR(1) = A1
CRR(2) = B1
                                                                                                                                                                ZU + ZTHETA * XC/U1 -ZTHETA)+
                CRR(1)
CRR(2)
CRR(3)
CRR(4)
CRR(5)
CRI(1)
CRI(2)
CRI(3)
CRI(4)
                                          B1
                                          ČI
                                    =
                                   =
                                          EI
                                  =
                                   = 0.0
                                          C.C
                                   =
                                    =
                                   =
                CRI(5) = RETURN
                                          0.0
                   END
              OSUBROUTINE
                                                INPUT2 (CTAIL *XKE, UE, B1, B2, B2 PRIME, ZETA, ZETACCT, AMETA,
                 SUBROUTINE BRINGS
                               UTINE BRINGS IN STICK FREE FACTORS
1.CTAIL.XKE.UE.B1.B2.B2PRIME.ZETA.ZETACOTGAMETA.AMETACT.XME.
             OREAC
                FORMAT ( 8F10.0 /4F10.0)
```

```
WRITE OUTPUT TAPE ARTHER ARTHER
                                              EPSFACT +
C = C1 + C2
WRITE OUTPUT
                                                                                                                                                              BARMWCT/U1)
                                                                                                                                                                                                            5, 8, C1, C2, C3,
5,6,D1,C2,D3,D4,D
5,7, E1,E2,E3,E
= F15.8, 4H C2= F1
                                                                                                                                                                                                                                                                                                                                                                  F15.8, 4H C3= F15.8,9H C TCTAL=
                                               END
                                               SUBROLTINE POLYMUL (GRR, CRI, N, KAPPA, TCARAT)
                                             CIMENSION KAPPA(10), CPR(129), CPI(129), ROOTR(128), RCCTI(128)
DIMENSION CRR(129), CRI(129), XR(4), XI(4), FXR(4), FXI(4), SR(3), SI(3)
IMAX = 50
DEL = C.1
NUM = 5
RATIO = 5.0
RATIO = 5.0
                                             ALTER =1.COCOO1

EP1 =.CCCOOCOOOOOCCCCOOOOOO1

EP2 =.COCCOCOO1

EP3 =.OCCCGC1

EP4 =.CCCCCCCOO1

SR(1) = -.5
                                            ALTER = CC
EP1 = ...
EP2 = ...
EP4 (1) = SR((2) = SR((2)) = SR((2)
                                                                                                              0.5
                                                                                                               C . C
                                                                                                              0.0
                                             NNN = N+1
IF (CRR
                                             IF (CRR(1))

EO 753 L=1, NNN

M = L +1

CRR(L) = CRR(M)

CONTINUE
                                                                                                                                                                                          750,751,750
                                            N = N-1
GO TO 749
CONTINUE
FORMAT (1CA8)
DO 5 I=1,1C
        750
65
                                                        KON=EF
                                                        IF (KAPPA(I)-KON) 2,5,2
                                                     IF(KAPPA(I)-KON) 2,5,2

CONTINLE

GO TC 959

PRINT 65,KAPPA

FORMAT(2X,2HN=I4,12X,5HIMAX=I3,10X,4HNUM=I3,11X,4FDEL=E8.26

6X,6FRATIC=E8.2,4X,6HALTER=F10.8/

2X,4FEP1=E8.2,6X,4HEP2=E8.2,6X,4HEP3=E8.2,6X,4HEP4=E8.2/)

MODE=MODE+1

FORMAT(6H SR1= E12.5,6H SI1= E12.5,6H SR2= E12.5,6H SI2

E12.5,6H SR3= E12.5,6H SI3= E12.5)

NP1=N+1
                           5
                 2
66
                  661
662
                 67
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SI2=
                  671
       710FORMAT (46HCTHE COEFFICIENTS OF THE GIVEN POLYNOMIAL ARE 1 11H REAL PART )
501 WRITE CUTPUT TAPE 5,71
6810FORMAT(11CH A B C D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Æ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1)
                                              CONTINUE
WRITE CUT
        687
                                            WRITE CUTPUT TAPE 5, 680, (CRR(J), J=1, NP1) FORMAT (1H 8F15.7 /) WRITE OUTPUT TAPE 5, 682 FORMAT (16H IMAGINARY PART ) WRITE CUTPUT TAPE 5, 680, (CRI(J), J=1, NP1)
        086
                                 WRITE CUTPUT TAPE 5, 680, (CRI(J), J=1, NP1)

O 6 I=1, NP1

CPR(I)=CRR(I)

CPI(I)=CRI(I)

CALL COMAG(CRR(I), CRI(I), C1, KE)

DO 3C5 K=1, N

GO TC(9,609), MODE

FORMAT(1102×4 HRCOT5×7 HITERANT6×2(10HREAL PAR
1,10HRCOT IS IN/2×6 HNUMBER4×6 HNUMBER7×2(9H CF
2Z)11×1,11HA RACIUS CF)

PRINT 53
        682
        502
                            ć
53
                                                                                                                                                                                                                                                                                                                                                                                                                                                         PARTICXIONIMAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PART 10X)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ROOT 11X),2(9H CF
```

```
609
                        I = 1
                      IF(K+1-N)13,12,11
CALL DIVD(-CRR(2),-CRI(2),CRR(1),CRI(1),XR(1),XR(1),KE)
K1=1
K2=1
                      K2=1
GO TC 16
AR=CRR(1)
BR=CRR(2)
BI=CRI(2)
CR=CRR(2)
CI=CRI(3)
K1=1
K2=1
M4=2
     12
                       M4 = 2
                      GOTO 123
XR(1)=CEARR
XI(1)=CEARI
GO TC 16
DO 15 J=1,3
     14
                     DO 15 J=1,3

XR(J)=SR(J)

XI(J)=SI(J)

K1=1

K2=3

M1=1

M2=1

M3=1

M4=1
     13
     15
     16
                       M4=1
DO 717 L=K1,K2
700
701
702
                        ZR=XR(L)
                      ZR=XR(L)
ZI=XI(L)
CALL PCLYNCM(NP1,ZR,ZI,CRR,CRI,RR,RI,KE)
FXR(L)=RR
FXI(L)=RI
CALL CCMAG(RR,RI,PMAG,KE)
RAD=ALTER*(PMAG/C1)**(1.0/FLOATF(NN))
GO TC (715,19,175),M3
GO TC(716,718),MODE
FORMAT( 2(16,4X), 4E20.11, 5X, E1/PRINT 55, K,I,ZR,ZI,RR,RI,RAC
POLYC=PCLYN
POLYC=PCLYN
POLYN=PMAG
IF(PMAG)717,300,717
I=I+1
710
713
714
715
715
716
718
                                                                                                                                                                                                     E10.4
717
                        I = I + 1
                       I=1+1
IF(K+1-N)17,300,300
GO TC (18,200),M1
VAL=CEL*PCLYN
DBARR=RAD
     17
     18
                       DBARI=0.0
                      K1=4
K2=4
M1=2
M3=1
     19
                     M3=1

ABARR=XR(1)-XR(3)

ABARI=XI(1)-XI(3)

BBARR=XR(2)-XR(3)

BBARI=XI(2)-XI(3)

AMIBR=XR(1)-XR(2)

AMIBI=XI(1)-XI(2)

CALL MULT(ABARR, ABARI, BBARR, BBARR, DENI, KE2)

CALL CCMAG(DENR, DENI, TA, KE)

CALL CCMAG(XR(3), XI(3), T4, KE)

IF(TA-EP1*T4)110, 110, 111

CALL CERIV(NP1, XR(3), XI(3), CRR, CRI, DR, DI, K50)

CALL CCMAG(RR, RI, TR, KE)

CALL CCMAG(CR, DI, TC, KE)

IF(TR-EP4*TC)192, 171, 171

DELAR=FXR(1)-FXR(3)

DELAR=FXR(2)-FXR(3)
101
102
103
104
105
106
 1 Č8
110
111
112
113
```

```
MULT(BBARR, BBARI, DELAR, CELAI, TA, TB, KES)
MULT(ABARR, ABARI, CELER, CELBI, TC, TD, KE6)
CIVD(TA-TC, TB-TC, DENR, DENI, AR, AI, KÉ7)
MULT(ABARR, ABARI, TC, TD, TI, T2, KE8)
MULT(BBARR, BBARI, TA, TB, T3, T4, KE5)
CIVD(TI-T3, T2-T4, DENR, DENI, BR, BI, KE10)
(R(3)
      114
                                 DELBI=FXI(2)-FXI(3)
     115
                                 CALL
                                 CALL
                                 CALL
                               CALL MULT(EBARR, EBARI, TA, TE, T3, T4
CALL CIVD(T1-T3, T2-T4, DENR, DENI, B
CR=FXR(3)
CI=FXI(3)
CALL MULT(ER, BI, ER, EI, T1, T2, KE11)
CALL MULT(AR, AI, CR, CI, T3, T4, KE12)
      120
     123
                                TA=T1-4.C+T3
TB=T2-4.O+T4
CALL CSQRT(TA,TB,TC,TD)
T1=-ER+IC
      147
                                T2=-EX+1C
T2=-EI+TD
T3=-ER-TC
T4=-EI-TD
CALL CCMAG(T1,T2,TA,KE14)
CALL COMAG(T3,T4,TB,KE15)
IF(TA-TE)154,168,168
     148
149
150
                              CALL COMAG(T3.14,18,KE15)
IF(TA-TE)154,168,168
TA=TE
T1=T2
T2=T4
GO TC (157,159), M4
IF(TA)161,161,158
CALL COMAG(2.0*CR,2.0*CI,T8,KE16)
IF(TE-RAD*TA)159,180
CALL CIVD(2.0*CR,2.0*CI,T1,T2,DBARR,DBARI,KE17)
GO TC (161,14),M4
XR(4)=XR(3)+CBARR
XI(4)=XI(3)+DBARI
TR=AESF(XR(4))
TI=AESF(XI(4))
IF(TR)167,167,169
IF(TR-TI)164,167,163
IF(TI-EP2*TR)165,167,167
XI(4)=C.C
GO TC(5C3,504),MCDE
FORMAT(40HCITERANT ALTERED TO BE PURE REAL NUME
PRINT 56
GO TC 167
IF(TR-EP2*TI)166,167,167
XR(4)=0.0
     153
155
156
156
157
158
      159
      161
     140
169
163
165
    56
503
504
164
166
                                                                                                                                       ALTERED TO BE PURE REAL NUMBER.')
                               IF(TR-EP2*TI)166,167,167
XR(4)=0.0
GO TC(5C5,167),MGDE
FORMAT(45HCITERANT ALTERED TO BE PURE IMAGINARY NUMBER.)
PRINT:57
    57
505
167
180
  57 FORMAT (45HCITERANT ALTERED TO BE PURE IMAGINARY NUMBER.)
505 PRINT 57
167 GO TC 7CC
180 CALL DIVD(CR,CI,TB,C.O,CR,CI,K21)
CALL DIVD(CR,CI,TB,C.O,CR,CI,K21)
CALL MULT(CR,CI,RAC,C.O,CR,CI,K22)
GO TC (5C6,507),MCDE
58 FORMAT(87H ITERANT IS CUTSICE CIRCLE WHICH BOUNDS A ROOT. IN
500 PRINT 58
501 LATE ITERANT TO ECGE OF CIRCLE.)
506 PRINT 58
507 GO TC 159
171 CALL COMAG(ABARR,ABARI,TI,KR1)
ENA(1) STA(ITA) ENA(3) STA(ITB)
IF(T1-EP3*T4)174,174,172
CALL COMAG(BBARR,BEARI,TZ,KR2)
ENA(2) STA(ITA) ENA(3) STA(ITB)
IF(T2-EP3*T4)175,175,173
173 CALL CCMAG(AMIBR,AMIBI,T3,KR3)
ENA(1) STA(ITA) ENA(2) STA(ITB)
IF(T3-EP3*T4)174,174,111
174 ENA(1) STA(K1) STA(K2) ENA(2) STA(M3) SLJ(178)
175 ENA(2) STA(K1) STA(K2) ENA(3) STA(M3)
176 XR(K1)=XR(K1)*(1.C+2.O*EP3)
GO TC (5C8.5C9),MODE
FORMAT(11HOITERANTS X11,6H AND X11,41H ARE JOC CLOSE TOGETFER
                                                                                                                                                                                                                                                                                                                                                                         INTERP
                                                                                                                                                                                                                                                                                                                                       SLJ(178)
6C
                                                                                                                                                                                                                                                                                                                                                                                        ALT
```

```
PRINT 6C, ITA, ITB, ITA
GO TC 7CO
PCLYC=PMAG
GO TC 19
IF (PCLYN-VAL) 201, 2C1, 210
VAL=CEL*POLYN
      5 C 8 5 C 9 1 7 9
     200
201
202
203
                                    LIM=I+NUM
M2=2
                             M2=2
CALL CERIV(NP1,XR(4),XI(4),CRR,CRI,DR,DI,K60)
CALL CCMAG(RR,RI,TR,KE)
CALL COMAG(DR,DI,TC,KE)
IF(TR=EP4*TC)192,21C,21C
DLT=RATIO*POLYO/PCLYN
IF(1.0-CLT)22C,22C,212
CALL MULT(CBARR,DEARI,DLT,C.C,DBARR,DEARI,K3C)
LIM=LIM+1
GO TC (510,511), MCDE
FORMAT(120HOPCLYNOMIAL HAS INCREASED IN MAGNITUREENT STEP.
     210
211
212
215
     72 FORMA
72 TRRENT
510 PRINT
511 GO TO
220 GO TO
221 IF(I-
222 PRINT
                                                                                                      PCLYNOMIAL HAS INCREASED IN MAGNITUDE TOO MUCH WITH THEREFORE REDUCE CURRENT STEP.
                            RRENT STEP. THEREFORE
PRINT 72
GD TC 161
GD TC (221,231), M2
IF (I-IMAX) 250,250,222
PRINT 62
PRINT 62
    | K = 1 | GO TO 687 | C2 | FORMAT(69HOMAXIMUM NUMBER OF ITERATIONS REACHED WITHOUT REDUCING 621P(Z) BY CELTA.) | S13 | GO TC 777 | RETURN 231 | IF(1-LIM)250,250,300 | C250 | DO 251 | L=1,3 | XR(L)=XR(L+1) | XI(L)=XR(L+1) | FXR(L)=FXR(L+1) | FXR(L)=FXR(L+1) | GO TC 1C1 | C1 | C2 | GO TC (514,300), MODE | GO TC (514,30
   303
304
   PRINT CC,

3C5 CONTINUE
GO TC (515,516), MCDE
515 PRINT 75
516 PRINT 8C
80CFORMAT(1HC42X14HTABLE OF RCOTS//3X4HRCCT8X 1CHRE/
1G PART 10X 6HPERIOC 10X 26HTIME TO CAMP JO HALF
2 /2X6HNUMBER7X2(9H OF ROOT11X))

COOTR(I), RCOTI(I), CPR, CPISRR, RI
                                                                                                                                                                                                                                                                                                           1 CHREAL
                                                                                                                                                                                                                                                                                                                                                                     PARTICXIONINA
     DO 3C6 I=1,N

CALL PCLYNOM(N+1,ROOTR(I),RCOTI(I),CFR,CPISRR,RI,KE)

THALF = -.6931471 &C6/ROOTR(I) * TCARAT

PERIOC = 6.2831853C72 /ABSF(RGOTI(I)) * TCARAT

3C6 WRITE OUTPUT TAPE 5, 84, I, RGOTR(I),RCCTI(I),PERIOC,THALF
```

```
ORMAT (16,4x,F16.6,3x,F16.6,7x,F10.4,8H SECS FORMAT(16, 4x, 4E2C.11)
PRINT 75
FORMAT(1H1)
IMAX = 50
   84
83
          FORMAT
                                                                                                                                                                         5x. F10.4.5H SECS1
         FORMAT(1H1)

IMAX = 50

NUM = 5

CEL = C.1

RATIO = 5. C

ALTER = 1.COCCOO1

EP1 = .CCCCCCCOOOOO CCCCCCCCC

EP2 = .CCCCCCCOOOO

SR(1) = -0.0

SR(1) = -0.5

SI(1) = 0.0

SR(2) = 0.5

SI(2) = C.C

SR(3) = C.O

MODE = 1

GO TC 1

RETURN

CONTINUE

END

SUBR(UTINE DERIV(N, ZR, ZI, CR, CI, DR, DI, KER)

DIMENSION CR(129), CI(129)

ENA(C) STA(DR) STA(DI) STA(RR)

OO Z J=1, N

CALL MULT(ZR, ZI, RR, RI, TRR, TRI, K1)

CALL MULT(ZR, ZI, CR, CI, TDR, TDI, K2)

RSO(K1) AJP1(L+2) RSO(K2)

AJP(1)

DR=TER+RR

DI=TCI+RR

DI=TCI+RR

DI=TCI+RI

RR=TRR+CR(J)
   75
999
                                                                                                                                                          STA(RI)ENA(1)STA(KER).
                                                                                                                                                          ENA(2) STAKKER)SLJ(3).
      1
               DI=TEI+RI
RR=TRR+CR(J)
RI=TRI+CI(J)
CONTINUE
END
               END
SUBROUTINE PCLYNOM(N, ZR, ZI, CR, CI, RR, RI, KER)
DIMENSION CR(129), CI(129)
ENA(0) STA(RR) STA(RI) ENA(1) STA
DO 2 J=1, N
CALL MULT(ZR, ZI, RR, RI, TR, TI, K1)
RSC(K1) AJP(1) ENA(2) STA(KER) SER
RR=TR+CR(J)
RI=TI+CI(J)
CONTINUE
                                                                                                                                                          STA(KER)
                                                                                                                                                          SUJ(3)
              LAC(XR)
STG(C)
+FDV(SC2)
+STA(C)
FDV(B)
STA(T)
                                                                                                                                                         CJP2(L+1) LCC(XI)
SLJ4(8) +STA(P)SLJ(5).
STA(P)
SLJ(5)
STA(T) STA(R)SLJ(4)
LCA(1.C) STA(R)SLJ(4)
      1
      23784
                                                                                                                         SLJ4(8)
SLJ4(8)
STA(C)
LCC(P)
STC(YI)
STQ(YI)
                                                                                                                                                      +FAD(R)
                                                                                                                                                                                          FCV(2:0)
STA(P)
      5
                                                                                                                                                          AJP2(L+1)
                                                                                                                                                                                         LAC(C)
                                                                                                                                                          STULL+3)
      6
               END
               SUBRCUTINE
LCA(XR)
SIQ(I)
SIA(H)
Y=SQRTF(H)
-FMU(I)
SIQ(KER)
                                                  COMAG(XR, XI, Z, KER)

LDQ(XI) AJP2(L+1)

+THS(T) LLS(48)

FMU(H) FAD(1.0)
                                                                                                                         LAC(XR)
QJP(3)
STA(H)
                                                                                                                                                         QJP2(L+1)
STC(T)
                                                                                                                                                                                         LCC(XI)
FCV(T)
                                                      +EXF7(1418)SLJ(L+2)STA(Z)
                                                                                                                          ENG (1)
                                                                                                                                                          SEJ131
                                                                                                                                                                                         ENC(2)
      3
               END
             SUBROUTINE
                                                         DIVC(XR,XI,YR,YI,ZR,ZI,KER)
```

```
CALL PRCD(XR,XI,YR,-YI,B1,B2,PR,PI,DR,DI)

LCA(B2) AJP1(1) ENA(3) SLJ(3)

ENA(2) SLJ(3)
                    T=DR +DR+DI +DI
                            LCA(PI)
LCA(PI)
LCA(PI)
                                                    -FDV(B2)
FDV(T)
FCV(T)
                                                                                +EXF7(1418)SLJ(2) STA(81)
-FMU(81) +EXF7(1418)SLJ(2)
-FMU(81) +EXF7(1418)SLJ(2)
                                                                                                                                                                    STA(ZR)
STA(ZI)ENA(1)
            3
                            STA(KER)
                    ENC
                   STA(E1)
STA(ZR)
STA(ZI)
            1
                    ENC
                    SUBROUTINE PROC(XR,XI,YR,YI,B1,B2,PR,PI,ER,CI)
CALL NORM(XR,XI,B1,AR,AI)
CALL NORM(YR,YI,B2,CR,DI)
PR=AR+DR-AI+DI
                    PI=AI*DR+AR*DI
                   ENC
SUBRCUTINE
SLJ(1)
LDA(1A+1)
QJP2(L+1)
+AJP1(L+2)
LCA(A1)
                                                     NCR M(A1, A2, B1, S1, S2)
+SEV7(70000B)
LDQ(A1) CJP2(L+1)
LQC(A2) LCL(1A+1)+
STA(S1) STA(B1)
FDV(B1) STA(S1)
                                                                                   +ZRC(4000E)ZRC(C)
STL(E) LCC(A2)
SLJ(L+2) LDA(E)
+ACC(1A+2) STA(E1)
FDV(B1) +STA(S2)
         14
                    END
CO31
RUN 1 CG 26 V
93.4 375.0
21000.0 .4772
.195 2.759
F8U LONGITLEINAL
93.4 375.0
2.59
RUN 3 C.6. 24.
93.4 375.0
2.63 2.920
                                             224 FPS

2.393 1.437

9.3845 902

RUN2 STICK FIXED

2.393 -95

5.6 -90

7.3845 90

V=139 KTS.234 FPS

2.393 1.0

8.1 -90

9.3845 90
                                                                                               1.29.63 BELL
288.5
7 C.195
11.78
                                                                                                                                        NUMBERS
52.8
-.2937
14.08
                                                                                                                                                                    .002378
32200.0
29.625
3VSL
.002378
.66000.0
29.375
                                                                                                                                                                                                   224
                                                                                                    M=.209, V=234
232.c
.C511
11.78
                                                                                                                                        CG24, V=1
52.8
-.380
                                                                                                                                                                                                   32.
234.
29.
                                                                                                                                        14.08
FLITE
52.8
-.380
14.08
                                                                                                    3/3/63 LEVEU
288.5
0.195
11.78
                                                                                                                                                                       .002376
96000.0
29.375
                                                                                                                                                                                                   32.
```

APPENDIX III

SYSTEM MECHANIZ ATION FOR THE ANALOG COMPUTER

Fig. 1 to this Appendix displays the analog schematic for the equations of motion of the airframe. Fig. 2 includes the schematic for the System I auto-throttle, aircraft engine, and stick system dynamics simulations. Fig. 3 shows the System 2 auto-throttle schematic.

Table II lists the potentiometer settings for all systems.

Table II lists the scale factors used in computing these settings.

Table III describes the calculations used in arriving at these values.

rotentionneter Jellings										
Machine input voricble	Pot Munber	Resistor	Amplifier Number		Setting Syst. IA	Setting Syst. 1B	Syst. 2			
-u	1	IM	1		.056	.056	.056			
	2	IM	27		. 408	.408				
-~	3	IM	1		.013	.013	.013			
-0-	4	IM	1		.349	.349	.349			
+T	5	IM	1		.640	.640	.640			
+00	6	.IM	30		.678	.678	.678			
+4	7	·IM	30		.449	.449	.449	,		
+0-	8	IM	30		.641	.641	.641	,		
- DO	9	.1 M	30		.998	.998	.998			
2, 6e	10	IM	30		.794	.794	.794			
.+D6	11	1 M	2		.215	.215	.215			
+0(12	.1 M	2		.169	.169	.169			
+DX	13	IM	2		.061	.061	.061			
-u	14	IM	2		.014	.014	.014			
2,60	15	.IM	2		.260	.260	.260			
+7"	16.	IM	2		.517	.517	. 517	1		
100	17	IM	3		.312	.312	.312	•		
+DK	18.	IM	4		.778	.778	778			
-DO	19	IM	26	,	.998	.998	.998			
- Theonic	20				.500	.500	.500			
Simulator		IM	5	~	.443	,443	.443			
- 2, se	22	IM	29		.200	.200	.200			
+DT	23	IM	5		.874	.874	.874			
+0(24	.025M	_6		.680	.980				
	25	.IM	6		.500	.500				
	26	.IM	8		.618	.618	.182			
	27	.5M	12		.583	.583	.155			
	28	10K	12		.69 5	.115	.250			
	29	.5M	12		.856	. 856	1.00			
	30	IM	9		. 614	. 614	.814			
n se	31	.5M	15		. 653	.653	. 653			
+0	32	.IM	10		.700	.145				
	33	.IM	11		.301	.301				
+DX	34	IM	26		1.000	1.000	1.000			
+ 0	35	LM	26		.398	.398				
stick Simulator	36	IM	20				≈,544			

12HD HPS 95 (11-59) Appendix III Table I

	Po	Tent	iome	eter	Jet	ting	5	
Mechine Input Variable	Pot	Resistor	To		Setting	Setting Syst. 18	Setting	
Variable_	Number	KESIS ION	Number		Syst. IA	3451.10	Syst. Ž	
- Spilot F	37	.5 M	29		.192	.192	.192	
- 58+4	38_	10 K	_6		.380	.380	.380	
	39	.IM	27		.132	.132	.132	
oftes Voltage Limiter	40	Diode			.330	.330	.330	
-SF3	41	IM	13		.571	.571	.571	
+ + 1	42	.IM	13		.303	. 303	.303	
- F3	43	.IM	13		.598	.598	.598	
-F3	44	·IM	15		.625	.625	.625	
+ 0(45	IM	23		.410	.410		
-100V	46	IM	24		1.00	1.00	1.00	
-DO	47	IM	21		0.350	1.350	.350	
†Da	48	IM	21		.440			
-								
	•				•			
						- 1-	-	1/2
				33 77 77				
						Nessedan		THE RESERVE
								•
	1							

12ND NPS 95 (11-59)

Appendix III Table I (concluda)

TABLE H

SCALE FACTORS USED IN ANALOG SIMULATION

Scale Facto	r	Value
×0	=	.005 radians/volt = .286 degrees/volt
∝ _D o	=	005 radians/volt = .286 degrees/volt
XX	=	.002 radians/volt = .115 degrees/volt
	=	.005 radians/volt = .286 degrees/ olt
× u	=	.002V = .2% of V = .278 Kts/volt
× se	=	.002 madians/volt = .115 degrees/ olt
≪r ·	=	200 lbs/volt
≪Tc1	=	40 lbs/radians - volt
≪7C2	=	50 lbs/kt - volt
≪T¢3	=	12) Pos/railans -sec - volt
≪otc1	=	210 The/maltens - sec - volt
XOTC2	=	30 Mbs/radians - sec ² - volt
OLDTC3	=	300 Ma/adians - sec ² - volt
≪ _{∆∨}	=	2.5 Kts, voit
U TCT	=	100 H s/rott for System I, 80 Hbs/volt for System 2
Archilot	=	50 lbs,%olf
≪FI	=	2 lbs/well
XF3	=	.01 radians/vol.
≪DF3	=	.l lb/sec - volt
×Pilot F	=	.75 lbs/soit

 $\alpha_{\frac{H}{16}} = .01 \text{ ft/ft/sec - volt}$

Appendix III Table III

Potentiometer Setting Calculations

Potentioneter	Calculation	R value	((= pet unless specified otherwise)
1.	$\chi_{u} \frac{1}{d_{t}} RC_{t} =058$	1 M	
2.	$\frac{\alpha_{TC2}}{\alpha_{TCT}}R = .4$	1 M	
3	xu da R = 01435	1 M	
4.	YO QO R = 3433	IM	
5	$\frac{\chi_T \chi_T R}{\chi_u \chi_t} = .6243$	IM	
6	Zw Kx R =556	./ M	Rf= ./M
7.	$Zu\underline{Nu}R =36$.1 M	
8.	$Z_0 \frac{\alpha_0}{\alpha_{D\alpha}} R =641$	i M	
9.	$\left(\frac{Z_{q}+1}{u!}\right)\frac{dDO}{dDA}R = .990$	-1 M	
10.	₹7 αse R = .780	IM.	
11.	$\frac{m_q}{c_b} \frac{RC_t}{Rt} =2139$	IM	,
12.	mw 11. 00 R = -149	.I M	
13.	$\frac{m_{ir}}{ib} \frac{\alpha_{0a}}{\alpha_{DB}\alpha_{e}} R =061$	IM	
14.	$\frac{mulc. \alpha_{lb}}{cb} \frac{\alpha_{lb}}{\alpha_{DD}} \frac{R}{\alpha_{e}} = .0149$	IM	

	Appendix	III Table	111 (continue	ed	
Potention	eter	Calculation		RV	alve	
15.		mylli dse =	-,3279	ι	I M	
16.		mr druiR =	517		IM	
17.		QDA RCF =	.3055		M	
18.		CDA RG =			1 M	
19.	•	KAV KDO R =	.995		l M	$R_f = 1 M$
20.		XTCZ R =	.500		IM	
21.	Ą	1 XTCT RG =			1 M	
22.	•	KplotForce R =	.200		1 M	Rf = IM
23.		Rf (f =				Rf = 1M
24.		Ka CXa R =			.IM	
25.		J. J. KTCI R .			. IM	
26.		ODTC1 R	= ,50	0	.) M	
27.		3:+1 RG	= .55)	.5M	Cf=.1 puf
28.		KV XAV R J. XDTCZ			10K	
29	•	T. OLDTER	= .8	33	.5M	

Appena	lix III Table III	continued	
Potentiometer	Calculation	Rvalue	
30.	$\frac{\text{KDTC2}}{\text{ATC2}}R = .600$	IM	
31	= R (+ = .625	.5M	Cf=.luf
32.	Kran = .145	.IM	
33.	$\frac{\text{Kores}R}{\text{KTes}} = .301$.1 M	
34.	KINAX R = .996	I M	Rf = 1 M
35.	$K_2 \frac{\kappa_\alpha}{\alpha \alpha} R = .388$	1 M	
36.	Stick Trimmer = 508		
37.	Opilot Force R = . 1875	.5M	
3 <i>8</i> .	$\frac{3.+7.}{7.7.}R = .120$	10K	
39.	$\frac{\alpha_{TC3}}{\alpha_{TCT}}R = .120$.1 M	
40.	Thrust limiter = .330		
41.	$\frac{b}{m}R = .490$	IM	
42.	$\frac{K_1}{m} \frac{\alpha_{F_1}}{\alpha_{DF3}} R C_f = .270$.IM	G=.luf
43.	$\frac{R}{m}\frac{KE_3}{KDF_3}R = .515$	IM	
44.	$\frac{1}{7}\frac{\alpha_{F3}}{\alpha_{Se}}R = 625$, I M	

	Appendix III Table III	concluded
Potentiometer	Calculation	R value
45.	$\frac{\alpha_{\alpha}}{\alpha_{8}}R = .400$	IM
47.	Kna Kna R = ,907	IM
48	Knz L XDX R= .440	IM

Equations:

Appendix III Fig. 1

Analog Schematic, Airframe Equations of Motion

System 1 Auto-Throttle, Aircraft Engine, Stick System Dynamics Appendix III Analog Schematic

$$\Delta T = \frac{1}{1 + .14} \left[\frac{K_X \Delta X}{1 + .5A} - \frac{K_{\Delta V} \Delta V}{1 + \Delta} + \frac{K_{\delta} \Delta X}{A} \right]$$

where
$$\Delta V = (\Delta n_z - \Delta x)$$

 $\Delta n_z = \text{change of normal acceleration, g'a}$
 $\Delta v_o = \text{reference angle of attack}$

Longitudinal Control System Dynamics, Linearized

Variable Gain = 3° de/inch Stick m = .0388 16. sec²/inch b = 1.9 16. / Inch stick / sec K = 20 16. / Inch stick T = 1/12.5 sec F = 9.27 16s/rad/sec² F = 2.56 16s/g

Appendix III Fig. 2 continued

Analog Mechanization System 2 Auto-Throttle

Equation: $\Delta T = K_0 \Delta \theta - \frac{u}{(1+.14)} \left[Ku + K_s u \right]$

Appendix III . Fig. 3

thesB3614
An investigation of the effect of autoth

3 2768 002 12973 6
DUDLEY KNOX LIBRARY