na equação, e obtemos

$$c''e^{\alpha x} + 2\alpha c'e^{\alpha x} + \alpha^2 ce^{\alpha x} - 2\alpha(c'e^{\alpha x} + \alpha ce^{\alpha x}) + \alpha^2 ce^{\alpha x} = 0.$$

Isto simplifica-se para c'' = 0, que, através de duas integrações, fornece

$$c = k_1 x + k_2.$$

Donde

$$y = (k_1 x + k_2)e^{\alpha x},$$

como se esperava.

EXERCÍCIOS

Nos Exercícios de 1 a 6, encontre a solução geral de cada uma das equações diferenciais, usando a solução dada da equação homogênea associada.

1.
$$y'' + xy' = 3x$$
, 1

2.
$$xy'' - (x + 2)y' + 2y = x^3 + x$$
, e^x

3.
$$xy'' - y' = 0$$
, 1

4.
$$xy'' + (2 + x)y' + y = e^{-x}$$
, $1/x$

3.
$$xy'' - y' = 0$$
, 1
4. $xy'' + (2 + x)y' + y = e^{-x}$, $1/x$
5. $4x^2y'' - 8xy' + 9y = 0$, $x^{3/2}$ 6. $xy'' + (x - 1)y' - y = 0$, e^{-x}

7. Começando com a solução $y = e^{-\int [a_0(x)/a_1(x)]dx}$ da equação normal de primeira ordem

$$a_1(x)\frac{dy}{dx}+a_0(x)y=0,$$

use o método de redução de ordem, para encontrar a solução geral de

$$a_1(x)\frac{dy}{dx}+a_0(x)y=h(x).$$

8. A equação de segunda ordem

$$(1-x^2)y''-2xy'+2y=0$$

tem y = x como solução particular. Use o método de variação dos parâmetros para reduzir a ordem desta equação e, a seguir, encontre uma segunda solução linearmente independente em cada um dos intervalos $(-\infty, -1)$, (-1, 1), $(1, \infty)$, nos quais a equação é normal.

9. Pode-se demonstrar que a equação

$$xy'' + y' + xy = 0$$

tem uma solução $J_0(x)$ no intervalo $(0, \infty)$, que pode ser desenvolvida

^{*} Esta equação é conhecida como equação de Bessel de ordem zero e será estudada com detalhes no Cap. 15.

em uma série de potências como

$$J_0(x) = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^4(2!)^2} - \frac{x^6}{2^6(3!)^2} + \cdots$$

Encontre uma segunda solução, linearmente independente de $J_0(x)$ em $\mathfrak{C}(0, \infty)$, da forma

$$J_0(x) = \int \frac{dx}{x[J_0(x)]^2},$$

e, a seguir, demonstre que esta solução pode ser escrita sob a forma

$$J_0(x) \ln x + (\text{série de potências em } x)$$
.

Qual é a natureza desta solução quando $x \rightarrow 0$?

10. Sejam y_1 e y_2 soluções linearmente independentes de uma equação diferencial linear homogênea de terceira ordem, normal, Ly=0 em um intervalo I e seja My=0 a equação de segunda ordem, obtida com o emprêgo da solução y_1 para reduzir a ordem de Ly=0 de uma unidade. Demonstre que $(y_2/y_1)'$ é uma solução de My=0 em qualquer subintervalo de I no qual y_1 não possui zeros.