

Curso Superior de Análise e Desenvolvimento de Sistemas - Prof: Andre Luiz Bedendo - Matemática Discreta

11. Sistemas de Numeração - Continuação

11.1 Sistema Octal (Base 8)

O sistema octal é um sistema de numeração posicional baseado em oito símbolos (dígitos), que vão de 0 a 7. Ou seja, cada dígito de um número octal pode assumir qualquer valor entre 0 e 7.

• Base: 8

Dígitos possíveis: 0, 1, 2, 3, 4, 5, 6, 7

Exemplo: O número octal 157₈ equivale a:

 $1 \times 8^2 + 5 \times 8^1 + 7 \times 8^0 = 64 + 40 + 7 = 111$ em decimal.

Utilizaedo na chamada Computação e Programação de Baixo Nível, é uma forma compacta de representar números binários, principalmente antes do uso mais difundido do hexadecimal. Em sistemas como UNIX, as permissões de arquivos são tradicionalmente representadas em octal (ex: chmod 755). Além disso, facilita a leitura e escrita de instruções para microcontroladores e dispositivos digitais, especialmente em contextos onde 3 bits binários podem ser representados por 1 dígito octal.

Conversão Binário ↔ Octal: cada dígito octal pode ser representado por 3 bits binários.

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Como funciona?

Para converter um grupo de 3 bits binários para octal, você deve calcular o valor decimal daquele grupo utilizando potências de base 2. Esse valor decimal obtido será exatamente o dígito octal correspondente.

Exemplo 1: Converta o número 1012 para a base octal.

$$|0|_z = 5_x$$

★ DICA! Utilize a tabela de conversão! Você ainda pode utilizar a tabela de conversão para facilitar o processo de cálculo.

Passo a passo:

- 1. Separe o número binário em grupos de 3 bits:
- Parte inteira: agrupar da direita para a esquerda
- Parte fracionária: agrupar da esquerda para a direita
- 2. Converta cada grupo para o valor correspondente em octal.

Na parte inteira, se faltar bits no grupo da esquerda, adicione zeros à esquerda. Na parte fracionária, se faltar bits no grupo da direita, adicione zeros à direita.

Exemplo 2. Converta o número 1101110.012 para a base octal.

11.1.2. Conversão Decimal ↔ Octal

Conversão	Método
Decimal → Octal (Base 10 para Base 8)	Divisões sucessivas da parte inteira por 8 + multiplicações da parte fracionária por 8.
Octal → Decimal (Base 8 para Base 10)	Soma dos dígitos multiplicados por potências base 8.

Exemplo 3. Converta os seguintes números.

a) 159,5 para a base 8

11.2 Sistema Hexadecimal (Base 16)

O sistema hexadecimal é um sistema de numeração posicional de base 16. Isso significa que ele utiliza 16 símbolos diferentes para representar os valores numéricos.

• Usa **16** dígitos: $de\ 0\ a\ 9\ e\ de\ A\ a\ F\ (A\ =\ 10, B\ =\ 11, C\ =\ 12, D\ =\ 13, E\ =\ 14, F\ =\ 15).$

Base 10	0	1	2	3	4	5	6	۰7	8	9	10	11	12	13	14	15
Base																
16	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F

- Cada posição representa uma potência de 16.
- Exemplo: O número octal 2F₁₆ equivale a:
- $2 \times 16^1 + 15 \times 16^0 = 32 + 15 = 47$ em decimal.

Muito utilizado em **programação**, **endereçamento de memória**, **cores em HTML/CSS** e representação de **valores binários** compactados em grupos de **4 bits**. Hexadecimal é amplamente utilizado em **debuggers**, **montadores**, e **desmontadores** para analisar dados de memória, bytes, instruções de máquina e endereços.

Conversão Binário ↔ Hexadecimal: cada dígito hexadecimal pode ser representado por 4 bits binários.

Como funciona?

Para converter um grupo de 4 bits binários para hexadecimal, você deve calcular o valor decimal daquele grupo utilizando potências de base 2. Esse valor decimal obtido será exatamente o dígito hexadecimal correspondente.

Exemplo 4: Converta o número 1110_2 para a base hexadecimal.

$$| \cdot Z^{3} + | \cdot Z^{2} + | \cdot Z^{1} + 0 \cdot Z^{0}$$

 $| \cdot Z^{3} + | \cdot Z^{2} + | \cdot Z^{1} + 0 \cdot Z^{0}$

• O valor 14 corresponde a E no hexadecimal, então,

★ DICA! Utilize a tabela de conversão! Você ainda pode utilizar a tabela de conversão para facilitar o processo de cálculo.

Passo a passo:

- 1. Separe o número binário em grupos de 4 bits:
- Parte inteira: agrupar da direita para a esquerda;
- Parte fracionária: agrupar da esquerda para a direita;
- 2. Converta cada grupo para o valor correspondente em hexadecimal.

Na parte inteira, se faltar bits no grupo da esquerda, adicione zeros à esquerda. Na parte fracionária, se faltar bits no grupo da direita, adicione zeros à direita.

Binário	Hexadecimal	Exemplo 5. Converta os seguintes números.
0000	0	
0001	1	a) 101101.10111 ₂ para a base hexadecimal;
0010	2	b) 2D. B8 ₁₆ para a base binária;
0011	3	
0100	4	a)00101.10111000, b) ZD.B816
0101	5	
0110	6	2. D. B 8 = 0010 1101
0111	7	4 7
1000	8	7, 0
1001	9	20 28
1010	Α	40.00
1011	В	
1100	C	101101101
1101	D	
1110	E	
1111	F	Ī

11.2.2. Conversão Decimal ↔ Hexadecimal

Conversão	Método
Decimal → Hexadecimal (Base 10 para Base 16)	Divisões sucessivas da parte inteira por 16 + multiplicações da parte fracionária por 16.
Hexadecimal → Decimal (Base 16 para Base 10)	Soma dos dígitos multiplicados por potências base 16.

OBS: Os restos ou partes inteiras de 10 a 15 são representados pelas letras A, B, C, D, E, F.

Tabela de Conversões Completa — Decimal, Binário, Octal e Hexadecimal

Decimal (10)	Binário (2)	Octal (8)	Hexadecimal (16) 0 1 2 3 4 5 6 7 8 9 A B		
0	0000	0			
1	0001	1			
2	0010	2			
3	0011	3			
4	0100	4			
5	0101	5			
6	0110	6			
7	0111	7			
8	1000	10			
9	1001	11			
10	1010	12			
11	1011	13			
12	1100	14	С		
13	1101	15	D		
14	1110	16	E F		
15	1111	17			

Exemplo 3. Converta os seguintes números.

a) 58,74609375 para a base 16

b) 3A. BF₁₆ para a base 10

3.
$$16^{4} + 16^{0}$$

Lista 11 - Sistema de Numeração Decimal, Binário, Octal e Hexadecimal

1. Cada número a seguir está representado em um sistema de numeração, 10, 2, 8 ou 16. Identifique qual base o número pertence e converta o número para as demais bases.

a) 29,5

b) 123,75

c) 55.7₈

d) 5FA. C₁₆

e) 1010.1011₂

f) 32.53₈

g) 33,15

h) 2025

i) 1011.0011₂

j) 1FB. 2D₁₆

 $k) 101.01(10)_2$

1) 7.368

m) 1011.01101010₂

n) $AAF6.3C_{16}$

o) 15,40

p) 155.8

- 2. Otimização de Armazenamento em Banco de Dados. Você está desenvolvendo uma aplicação web que lida com o armazenamento de grandes volumes de dados sensíveis em um banco de dados. Durante o desenvolvimento, um identificador único de usuário foi gerado no formato hexadecimal: $A7D.5E_{16}$. Esse identificador precisa ser interpretado corretamente em diferentes camadas da aplicação, que operam com representações em:
 - Binário, para processos de compressão e operações de baixo nível.
 - Octal, para sistemas legados que ainda operam nessa base.
 - Decimal, para relatórios gerenciais que são lidos por pessoas que não trabalham com programação.

Identifique esse número, nas respectivas representações solicitadas.

Respostas: a) 35.4₈; 1D.8₁₆; 11101.1₂

b) 173.6₈; 7B. C₁₆; 1111011.11₂

c) 45,875; $2D.E_{16}$; 101101.11_2

d) 2772.6₈; 1530,75; 10111111010.11₂

e) 10,6875; 12.54₈; A. B₁₆

f) 26,671875; 1A. AC₁₆; 11010.101011₂

g) $43.11(4631)_8$; $23.26(6)_{16}$; $100011.001(0011)_2$

h) 3751₈; 7E9₁₆; 111111101001₂

i) 11,1875; 12.54₈; A. B₁₆

j) 773.32₈; 507,17578125; 111111011.00101101₂

k) 5,4166...; $5.3(25)_8$; $5.6(A)_{16}$

I) 7,46875; 7.78₁₆; 111.01111₂

m) 11.4140625; $B.6A_{16}$; 13.324_8

n) 125366.17₈; 43766,234375; 1010101011110110.001111₂

o) 17. (3146)₈; F. (6)₁₆; 1111. (0110)₂

p) 233. $(6314)_8$; 9B. $(C)_{16}$; 10011011. $(1100)_2$

Número 2. 101001111101.0101111₂;5175.274₈; 2685,3671875