FAST School of Computing

Fall-2022

Islamabad Campus

Question 1 [20 Marks]

1. Consider the following code snippet of pancake sorting algorithm.

```
rimb o e g
```

```
void flip(int arr[], int i)
{
     int temp, start = 0;
     while (start < i) {</pre>
                                       WI 1
         temp = arr[start];
                                                               \circ
         arr[start] = arr[i];
                                         0
         arr[i] = temp;
         start++;
         i--;
    }
int findMax(int arr[], int n)
{
    int mi, i;
     for (mi = 0, i = 0; i < n; ++i)
         if (arr[i] > arr[mi])
              mi = i;
      return mi;
  void pancakeSort(int* arr, int n)
      for (int curr_size = n; curr_size > 1; --curr_size) 9
           int mi = findMax(arr, curr_size);
                                                               0111
           if (mi != curr_size - 1) {
               flip(arr, mi); // Flip Up
               flip(arr, curr_size - 1); // Flip Down
           }
       }
   int main()
       int arr[] = { 1, 4, 5, 2, 3, 8, 6, 7, 9, 0 };
       int n = sizeof(arr) / sizeof(arr[0]);
       pancakeSort(arr, n);
       return 0;
```

S CamScanner

FAST School of Computing

Fall-2022

Islamabad Campus

Perform dry run and write the output of each iteration after flip up and flip down in the table below. 9794 252 386 7990 [8 marks]

irr_size	mi	arrafter flip(arr,mi)	arrafter flip(arr, curr_size-1)
10	8	9, 7, 6, 8, 3, 2, 5, 4, 1, 0	0, 1, 4, 5, 2, 3, 8/6, 7, 9
Ø	8	7,6,83,2,554,09	0,758
9	60	8, 3,2,5, 4, 1, 0, 6, 7/9	7,60,1,4,5,3,8,9
8	0	7,6,0,1,4,5,0,3,8,9	3, 3, 5, 9, 1, 0, 6/7/8, 9
7	6	6,0,1,4,50,3,7,8,9	3, 6, 5, 4, 1, 0, 6, 7, 8,9
6	20	5,0,3,4,1,0,6,7,8,9	0,1,4,13,10/5,6,7,89
5	12	4,1,0,3,0,5,6,7,6,9	0, 3, 02, 1, 4,5,6,7,8,9
14	1	3,0,0,1,4,5,6,7,87	1,0,0,3,4,5,6,7,8,9
5	3 18	01,0,0,3,4,5,6,7,8,9	0,01,2,3,4,5,6,8,9
			05
		9	

b) What is the worst-case time complexity of the above algorithm? Justify your answer by providing the time complexity of flip and findMax operations. [2 marks]

· ref Max	runs till	n n-1	pr	0
- Flip Up 17/1	mi	,		
Flin down to	11 n	٠٠. ن		
Papiake litsel	F hus	lan n	loop	
So 04		X		

Page 3 of 14

FAST School of Computing

. Consider the following code snippet.

```
4, (, 4, 12, 8, 02
```

```
5,1,4,2,8,02
void CocktailSort(int a[], int n)
                                           1,41,12,5,0,2,8
    bool swapped = true;
                                           1,2,4,0,2,5,8
    int start = 0;
                                           1, 2, 0, 2, 4,5,8
   int end = n - 1;
                                            1,0,2,2,4 5,8
   while (swapped) {
       for (int i = start; i < end; ++i) { //Forward pass | 6 | if (a[i] \ a[i]
           if (a[i] > a[i + 1]) {
              swap(a[i], a[i + 1]);
              swapped = true;
      if (!swapped)
          break;
      swapped = false;
       --end;
       for (int i = end - 1; i >= start; --i) { //backward pass
           if (a[i] > a[i + 1]) {
                swap(a[i], a[i + 1]);
                swapped = true;
                                              5, 1, 4, 2, 8,0,2
            }
                                              / 4 2 5 0025
         ++start;
                                              1248, 2,58
     }
                                               r 2 8 42,4 T (
 int main()
                                               10,22,4,5,1
     int a[] = { 5, 1, 4, 2, 8, 0, 2 };
     int n = sizeof(a) / sizeof(a[0]);
     CocktailSort(a, n);
     return 0;
  }
```

a) Perform dry and write the output after each forward and backward pass in the table below. [5 marks]

FAST School of C	Computing Fall-2	2022 Islamabad Campus
Pass (Forward/backward)	Starting value of i	a (Elements in array after the pass)
Foucid	0.	44079 474727550,5 (DD) (55,5) (D) 6,2,5.
F	1	hate () 6 2 5 602
F	2	1 2 ().1-258
F	3	1 2 0 3 6 5.8
F	L	1 2 0 1 2 5 18
BOB	5 0 g.	0,1,2,2,4,5,8
		0
the tu	o loops ore	
	t-case time complexity of the	above algorithm? Justify your answer! [1 mark]
		e Cocktail-Sort tend to solve to improve the
d) What problem performance?		e Cocktail-Sort tend to solve to improve the

FAST School of Computing

Fall-2022

Question 2 [20 Marks]

1. You are given a multidimensional array containing information regarding final exam scores of top students of fast from different campuses. Your array is given as

int Campus=5, school=3, students=10, final_scores=6; double score [campus][school][students][final_scores]

180

a) Given the base Address as 1000, find the address of score [2][1][7][4]. [7 Marks]

Formula is 5 (A + (* (school * students) * final-scores) + (1 * (students * final-scores)) + (7* final-scores) + (6))) * size-of (double) for? o Locore [2] [1] [7] (47 = 4728 3:5

```
Consider the following code snippet:
     void foo(int A[], int n)
                                                                          WI
             if (n < 1) return;
                                                                          (69
             int write_index = n - 1;
             int read \overline{index} = n - 1;
             while(read_index >= 0)
                     if(A[read_index] != 0)
                             A[write_index] = A[read_index];
                             write index--;
                      read index--;
               while(write index \geq 0)
                       A[write\_index] = 0;
                       write_index--;
                 }
```

a) Perform the complete dry run on the given algorithm and show array content on each iteration.

Assume contents of array are {1, 10, 20, 0, 59, 63, 0, 88, 0}.

[6 marks]

Iteration	Array
٥	1, 10, 20, 5, 59, 63, 0, 88, 0
, (1, 10, 20, 0, 59, 63, 0, 0, 88
2-	1, 10, 20, 0; 59, 63, 0, 0, 88
3	(, 10, 20, 0, 59, 0, 63, 88
Ĺ,	1, 10, 20 0, 0 0 59 63, 88
5	1, 10, 0, 0, 0, 20, 59, 63, 88
Š	1, 6, 0, 0 10 20, 59 63, 68 4.5.
7	0, 0, 0, 1, 10, 20, 59, 62, 88
8 -	0,0,0,1,10,20,59,63,88
9	0'0'0 1' 10' 20' 59' 62' 88
(0	000110205968 100
\$ 150	6 Low
,	Melax Melax
	10/18800
	J
	,
	,

Page 7 of 14

National University of Computer	Islamabad Campus	
FAST School of Computing Fall-2022		Narks]
b) What is the purpose of the given algorithm? to bring all 0 elements to	Jest 2	
a) What will be the final output of foo()?	[1]	Mark]
nothing as void		
d) What is the complexity of given code in terms of Big-Oh?	[2 N	Marks]
e) What will be the best-case scenario for the given algorithm?	[2	Marks]
\sim \sim		

FAST School of Computing

Fall-2022

Islamabad Campus

Question 3 [20 Marks]

1. Consider the following code snippet:

```
void list::Game1()
      node* headref = head;
      genrated = NULL;
      node* current = headref;
      while (current != NULL) {
              node* next = current->next;
              Game2(current);
              current = next;
       head = genrated;
}
void list::Game2(node* newnode)
        if (genrated == NULL || genrated->data >= newnode->data) {
               newnode->next = genrated;
               genrated = newnode;
        else {
               node* current = genrated;
               while (current->next != NULL
                      && current->next->data < newnode->data) {
                      current = current->next;
               newnode->next = current->next;
              current->next = newnode;
```

a) Given a linked list (given below), perform a complete dry run of the algorithm and at each iteration, display the structure of linked list. [7 Marks]

FAST School of Computing Linked List (Structure) Iteration generated=NULL 14 -+ 25 -+ 4 -+ 7 -+ 9 -+ 17 -+ 12 -+ 21 -- NULL Page 10 of 14

National University of Computer and Emergi	ing Sciences
FAST School of Computing Fall-2022 Islama	bad Campus
FAST School of Computing Fall-2022 Islama What is the wors complexity of the above code in terms of Big-Oh? Justify y	our answer! [1 Marks]
(n) Se The while loop is	run for each
and else cose of time 2 is liggered	
that is the best-case time complexity of the above flgorithm? Justify your	answer! [2 Marks]
o(1) if list is empty	
hat is the purpose of the given algorithm? and write down the name of al	gorithm. [2 Marks]
the purpose of the given algorithm; and write down the hame of all	goritiiii. [2 iviarks]
en the following code of selection sort.	
void Func()	· ·
(
node* ptr_1, * ptr_2, * min;	im
ptr_1 = head;	
while (ptr_1->next != NULL)	
$\frac{\text{ptr}_2 = \text{ptr}_1}{\text{min}_2 = \text{hull}_1} < \text{Statement is missing here}$	
while (ptr_2 != NULL)	
if (min->data > ptr_2->data)	
min = ptr_2;	
ptr_2 = ptr_2->next;	
Pulls pulls money	
int tmp = ptr_1->data;	
ptr_1->data = min->data;	
min->data = tmp;	
pli_1 = pl_1 next < Statement is missing	hara
Statement is missing	, nore
}	
a) Add the missing lines of code to the above-mentioned function.	[3 Marks]
a) Add the missing lines of code to the above-mentioned function.	[3 Marks]
a) Add the missing lines of code to the above-mentioned function. b) What is the complexity of the above-code in terms of Big-Oh?	[3 Marks]

FAST School of Computing Fall-2022		Islamabad Campus		
Consider the following function				A CONTRACTOR OF THE PARTY OF TH
void fun(node* ptr)			- and a	
1		1	0	
# (ptr == NULL)		1	5	
return;		ş	f	(- 4
fun(ptr->next);				
H(ptr->data%2==0)				
cout << ptr->data << '	**			
		Market State of the Control of the C		

output

