The Logic of Hereditary Harrop Formulas as a Specification Logic for Hybrid

Chelsea Battell and Amy Felty

University of Ottawa

LFMTP-16 Porto, Portugal June 23, 2016

Object Logic (OL)

judgments defined inductively

Object Logic (OL)

judgments defined inductively

Reasoning Logic

Calculus of Inductive Constructions (Coq)

Object Logic (OL)

judgments defined inductively

Representing Higher-Order Abstract Syntax (HOAS)

- represent OL binders with lambda
- define Hybrid terms as de Bruijn terms using expr

Reasoning Logic

Calculus of Inductive Constructions (Coq)

The Logic of Hereditary Harrop Formulas

```
\begin{array}{ll} G & ::= & \top \mid A \mid G \& G \mid G \lor G \mid D \longrightarrow G \mid \forall_{\tau} x.G \mid \exists_{\tau} x.G \\ D & ::= & A \mid G \longrightarrow D \mid D \& D \mid \forall_{\tau} x.D \\ \Gamma & ::= & \emptyset \mid \Gamma, D \end{array}
```

The Logic of Hereditary Harrop Formulas

$$\begin{array}{ll} G & ::= & \top \mid A \mid G \& G \mid G \vee G \mid D \longrightarrow G \mid \forall_{\tau} x.G \mid \exists_{\tau} x.G \\ D & ::= & A \mid G \longrightarrow D \mid D \& D \mid \forall_{\tau} x.D \\ \Gamma & ::= & \emptyset \mid \Gamma, D \end{array}$$

ightharpoonup is restricted to second-order types

The Logic of Hereditary Harrop Formulas

$$\begin{array}{ll} G & ::= & \top \mid A \mid G \& G \mid G \lor G \mid D \longrightarrow G \mid \forall_{\tau} x.G \mid \exists_{\tau} x.G \\ D & ::= & A \mid G \longrightarrow D \mid D \& D \mid \forall_{\tau} x.D \\ \Gamma & ::= & \emptyset \mid \Gamma, D \end{array}$$

- τ is restricted to second-order types
- Higher-order in the sense of unrestricted implicational complexity

Goal-Reduction Sequent

 $\mathtt{grseq}:\mathtt{context}\to\mathtt{oo}\to\mathtt{Prop}$

 $\Gamma \rhd \beta$ is notation for grseq $\Gamma \beta$

Backchaining Sequent

 $\mathtt{bcseq}: \mathtt{context} o \mathtt{oo} o \mathtt{atm} o \mathtt{Prop}$

 $\Gamma, [eta] \rhd \alpha$ is notation for bcseq $\Gamma \mathrel{eta} \alpha$

Goal-Reduction Sequent

 $\texttt{grseq}: \boxed{\texttt{context}} \rightarrow \texttt{oo} \rightarrow \texttt{Prop}$

 $\Gamma \rhd \beta$ is notation for grseq $\Gamma \ \beta$

Backchaining Sequent

 $\texttt{bcseq}: \boxed{\texttt{context}} \rightarrow \texttt{oo} \rightarrow \texttt{atm} \rightarrow \texttt{Prop}$

 $\Gamma, [\beta] \rhd \alpha$ is notation for $\mathtt{bcseq} \; \Gamma \; \beta \; \alpha$

Goal-Reduction Sequent

 $\mathtt{grseq}:\mathtt{context}\to\!\mathtt{oo}\!\to\mathtt{Prop}$

 $\Gamma \rhd \beta$ is notation for grseq $\Gamma \beta$

Backchaining Sequent

 $\texttt{bcseq}: \texttt{context} \to \boxed{\texttt{oo}} \to \texttt{atm} \to \texttt{Prop}$

 $\Gamma, [eta] \rhd \alpha$ is notation for bcseq $\Gamma \mathrel{eta} \alpha$

Goal-Reduction Sequent

 $\mathtt{grseq}:\mathtt{context}\to\mathtt{oo}\to\mathtt{Prop}$

 $\Gamma \rhd \beta$ is notation for grseq $\Gamma \beta$

Backchaining Sequent

 $\texttt{bcseq}: \texttt{context} \to \texttt{oo} \to \boxed{\texttt{atm}} \to \texttt{Prop}$

 $\Gamma, [eta] \rhd \alpha$ is notation for bcseq $\Gamma \mathrel{eta} \alpha$

Goal-Reduction Rules

$$\begin{split} \frac{\Gamma, [OA] \rhd A}{\Gamma, [CA] \rhd A} & \text{ b_match } & \frac{\Gamma, [D1] \rhd A}{\Gamma, [D1 \& D2] \rhd A} \text{ b_and1} & \frac{\Gamma, [D2] \rhd A}{\Gamma, [D1 \& D2] \rhd A} \text{ b_and2} \\ \frac{\Gamma \rhd G}{\Gamma, [D] \rhd A} & \text{ b_imp} & \frac{\text{proper } E}{\Gamma, [A11 D] \rhd A} \text{ b_all} & \frac{\Gamma, [DE] \rhd A}{\Gamma, [A11 D] \rhd A} \text{ b_all} & \frac{\Gamma, [DE] \rhd A}{\Gamma, [A11 D] \rhd A} \text{ b_allx} \\ \frac{\forall (E : \text{expr} \ \text{con}), (\text{proper } E \to \Gamma, [DE] \rhd A)}{\Gamma, [\text{Some } D] \rhd A} & \text{b_some} \end{split}$$

Goal-Reduction Rules

$$\begin{split} \frac{\Gamma, [\langle A \rangle] \rhd A}{\Gamma, [\langle A \rangle] \rhd A} & \text{ b_match } & \frac{\Gamma, [D_1] \rhd A}{\Gamma, [D_1 \& D_2] \rhd A} \text{ b_and1} & \frac{\Gamma, [D_2] \rhd A}{\Gamma, [D_1 \& D_2] \rhd A} \text{ b_and2} \\ \frac{\Gamma \rhd G & \Gamma, [D] \rhd A}{\Gamma, [G \longrightarrow D] \rhd A} & \text{ b_imp } & \frac{\text{proper } E & \Gamma, [D E] \rhd A}{\Gamma, [\text{All } D] \rhd A} \text{ b_all } & \frac{\Gamma, [D E] \rhd A}{\Gamma, [\text{All } x D] \rhd A} \text{ b_allx} \\ & \frac{\forall (E : \text{expr con}), (\text{proper } E \rightarrow \Gamma, [D E] \rhd A)}{\Gamma, [\text{Some } D] \rhd A} & \text{b_some} \end{split}$$

Goal-Reduction Rules

$$\begin{array}{c|c} A:-G & \Gamma \rhd G \\ \hline \Gamma \rhd \langle \ A \ \rangle & \text{g_prog} \end{array} \begin{array}{c|c} D \in \Gamma & \Gamma, [D] \rhd A \\ \hline \Gamma \rhd \langle \ A \ \rangle & \text{g_dyn} \end{array} \begin{array}{c|c} \hline \Gamma \rhd G_1 & \Gamma \rhd G_2 \\ \hline \Gamma \rhd G_1 \& G_2 \end{array} \text{ g_and} \\ \hline \\ \frac{\Gamma, \ D \rhd G}{\Gamma \rhd D \longrightarrow G} \text{ g_imp} & \overline{\Gamma \rhd \Gamma} \text{ g_tt} & \overline{\Gamma \rhd \operatorname{Gne} G} \\ \hline \\ \frac{\forall (E: \operatorname{expr} \operatorname{con}), (\operatorname{proper} E \to \Gamma \rhd GE)}{\Gamma \rhd \operatorname{All} G} \text{ g_allx} \end{array} \begin{array}{c|c} \overline{\Gamma} \rhd \operatorname{Allx} G \end{array} \begin{array}{c|c} G = \operatorname{Gold} G =$$

$$\begin{split} \frac{\Gamma, [OA] \rhd A}{\Gamma, [CA] \rhd A} & \text{ b_match } & \frac{\Gamma, [D1] \rhd A}{\Gamma, [D1 \& D2] \rhd A} \text{ b_and1} & \frac{\Gamma, [D2] \rhd A}{\Gamma, [D1 \& D2] \rhd A} \text{ b_and2} \\ \frac{\Gamma \rhd G}{\Gamma, [D] \rhd A} & \text{ b_imp} & \frac{\text{proper } E}{\Gamma, [A11 D] \rhd A} \text{ b_all} & \frac{\Gamma, [DE] \rhd A}{\Gamma, [A11 D] \rhd A} \text{ b_all} & \frac{\Gamma, [DE] \rhd A}{\Gamma, [A11 D] \rhd A} \text{ b_allx} \\ \frac{\forall (E : \text{expr} \ \text{con}), (\text{proper } E \to \Gamma, [DE] \rhd A)}{\Gamma, [\text{Some } D] \rhd A} & \text{b_some} \end{split}$$

Goal-Reduction Rules

$$\frac{\Gamma, [D_1] \rhd A}{\Gamma, [(A \land)] \rhd A} \text{ b_match} \qquad \frac{\Gamma, [D_1] \rhd A}{\Gamma, [D_1 \& D_2] \rhd A} \text{ b_and1} \qquad \frac{\Gamma, [D_2] \rhd A}{\Gamma, [D_1 \& D_2] \rhd A} \text{ b_and2}$$

$$\frac{\Gamma \rhd G \quad \Gamma, [D] \rhd A}{\Gamma, [G \longrightarrow D] \rhd A} \text{ b_imp} \qquad \frac{\text{proper } E \quad \Gamma, [D E] \rhd A}{\Gamma, [\text{All } D] \rhd A} \text{ b_all} \qquad \frac{\Gamma, [D E] \rhd A}{\Gamma, [\text{All } x D] \rhd A} \text{ b_allx}$$

$$\frac{\forall (E : \text{expr con}), (\text{proper } E \rightarrow \Gamma, [D E] \rhd A)}{\Gamma, [\text{Some } D] \rhd A} \text{ b_some}$$
 b_some
$$\frac{\nabla, [\text{Some } D] \rhd A}{\Gamma, [\text{Some } D] \rhd A} \text{ b_some}$$

Encoding Sequents as Inductive Dependent Types

```
Inductive grseq : context -> oo -> Prop :=
forall (L : context) (D : oo) (A : atm),
elem D L -> bcseq L D A ->
grseq L (<A>)
with bcseq : context -> oo -> atm -> Prop :=
| b_imp :
forall (L : context) (F G : oo) (A : atm),
grseq L G -> bcseq L D A ->
bcseq L (G ---> D) A.
```

```
\operatorname{\mathtt{seq}} mutind: \forall (P_1:\operatorname{\mathtt{context}} \to \operatorname{\mathtt{oo}} \to \operatorname{\mathtt{Prop}})
                                                                                                                                                                                                                                                                                                                  (P_2: \mathtt{context} \to \mathtt{oo} \to \mathtt{atm} \to \mathtt{Prop}),
                                                                                                                                                                                                                                                                                                                       (\forall (c : \mathtt{context})(o : \mathtt{oo})(a : \mathtt{atm}),
                                                                                                                                                                                                                                                                                                                                    o \in c \to c, [o] \triangleright a \to P_2 \ c \ o \ a \to P_2 \
                                                             \frac{D \in \Gamma \quad \Gamma, [D] \rhd A}{\Gamma \rhd \langle A \rangle} \quad \mathsf{g\_dyn}
                                                                                                                                                                                                                                                                                                                                   P_1 \ c \langle a \rangle) \rightarrow
                                                                                                                                                                                                                                                                                                                       (\forall (c : \mathtt{context})(o : \mathtt{expr} \ \mathtt{con} \to \mathtt{oo}),
                                                                                                                                                                                                                                                                                                                                      (\forall (e : \mathtt{expr} \mathtt{con}), \mathtt{proper} \ e \rightarrow c \triangleright o \ e) \rightarrow
\forall (E \; \underline{:}\; \mathtt{expr} \;\; \mathtt{con}), (\mathtt{proper} \; E \to \Gamma \rhd G \, E)
                                                                                                                                                                                                                                                                                                                                    (\forall (e : \mathtt{expr} \mathtt{con}), \mathtt{proper} \ e \rightarrow P_1 \ c \ (o \ e) \rightarrow
                                                                                             \Gamma \rhd \overline{\mathsf{All}} G
                                                                                                                                                                                                                                                                                                                                    P_1 \ c \ (\text{All } o)) \rightarrow
                                                                                                                                                                                                                                                                                                                       (\forall (c: \mathtt{context})(o_1 \ o_2: \mathtt{oo})(a: \mathtt{atm}),
                                                                                                                                                                                                                                                                                                                                    c \triangleright o_1 \rightarrow P_1 \ c \ o_1 \rightarrow
                                                             \frac{\Gamma\rhd G\quad \Gamma,[D]\rhd A}{\Gamma,[G\longrightarrow D]\rhd A} \text{ b\_imp}
                                                                                                                                                                                                                                                                                                                                   c, [o_2] \triangleright a \rightarrow P_2 \ c \ o_2 \ a \rightarrow
                                                                                                                                                                                                                                                                                                                                   P_2 c (o_1 \longrightarrow o_2) a) \rightarrow
                                                                                                                                                                                                                                                                                           (\forall (c : context)(o : oo),
                                                                                                                                                                                                                                                                                                                                                                                                        c \triangleright o \rightarrow P_1 \cdot c \cdot o \land \land
                                                                                                                                                                                                                                                                                             (\forall (c : context)(o : oo)(a : atm),
                                                                                                                                                                                                                                                                                                                                                                                                       c, [o] \triangleright a \rightarrow P_2 \ c \ o \ a)
```

```
\operatorname{\mathtt{seq}} mutind: \forall (P_1:\operatorname{\mathtt{context}} \to \operatorname{\mathtt{oo}} \to \operatorname{\mathtt{Prop}})
                                                                                                                                                                                                                                                                                                                                                                                                (P_2: \mathtt{context} \to \mathtt{oo} \to \mathtt{atm} \to \mathtt{Prop}),
                                                                                                                                                                                                                                                                                                                                                                                                      (\forall (c : \mathtt{context})(o : \mathtt{oo})(a : \mathtt{atm}),
                                                                                                                                                                                                                                                                                                                                                                                                                   |o \in c| \rightarrow c, [o] \triangleright a \rightarrow P_2 \ c \ o \ a \rightarrow P_2 \
                                                                         \frac{\left\lfloor D \in \Gamma \right\rfloor \ \Gamma, [D] \rhd A}{\Gamma \rhd \langle A \rangle} \ \ \mathsf{g\_dyn}
                                                                                                                                                                                                                                                                                                                                                                                                                     P_1 \ c \langle a \rangle) \rightarrow
                                                                                                                                                                                                                                                                                                                                                                                                      (\forall (c : \mathtt{context})(o : \mathtt{expr} \ \mathtt{con} \to \mathtt{oo}),
                                                                                                                                                                                                                                                                                                                                                                                                                        (\forall (e : \mathtt{expr} \mathtt{con}), \mathtt{proper} \ e \rightarrow c \triangleright o \ e) \rightarrow
\forall (E \; \underline{:}\; \mathtt{expr} \;\; \mathtt{con}), (\mathtt{proper} \; E \to \Gamma \rhd G \, E)
                                                                                                                                                                                                                                                                                                                                                                                                                        (\forall (e : \mathtt{expr} \mathtt{con}), \mathtt{proper} \ e \rightarrow P_1 \ c \ (o \ e) \rightarrow
                                                                                                                     \Gamma \rhd \overline{\mathsf{All}} G
                                                                                                                                                                                                                                                                                                                                                                                                                      P_1 \ c \ (\text{All } o)) \rightarrow
                                                                                                                                                                                                                                                                                                                                                                                                      (\forall (c: \mathtt{context})(o_1 \ o_2: \mathtt{oo})(a: \mathtt{atm}),
                                                                                                                                                                                                                                                                                                                                                                                                                      c \triangleright o_1 \rightarrow P_1 \ c \ o_1 \rightarrow
                                                                             \frac{\Gamma \rhd G \quad \Gamma, [D] \rhd A}{\Gamma, [G \longrightarrow D] \rhd A} \text{ b\_imp}
                                                                                                                                                                                                                                                                                                                                                                                                                     c, [o_2] \triangleright a \rightarrow P_2 \ c \ o_2 \ a \rightarrow
                                                                                                                                                                                                                                                                                                                                                                                                                     P_2 c (o_1 \longrightarrow o_2) a) \rightarrow
                                                                                                                                                                                                                                                                                                                                                                   (\forall (c : context)(o : oo),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           c \triangleright o \rightarrow P_1 \cdot c \cdot o \land \land
                                                                                                                                                                                                                                                                                                                                                                    (\forall (c : context)(o : oo)(a : atm),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          c, [o] \triangleright a \rightarrow P_2 \ c \ o \ a)
```

```
seq_mutind : \forall (P_1 : context \rightarrow oo \rightarrow Prop)
                                                                                                                      (P_2: \mathtt{context} \to \mathtt{oo} \to \mathtt{atm} \to \mathtt{Prop}),
                                                                                                                        (\forall (c : \mathtt{context})(o : \mathtt{oo})(a : \mathtt{atm}),
                                                                                                                            o \in c \to c, [o] \triangleright a \to P_2 \ c \ o \ a \to c
                       \frac{D \in \Gamma \ \left[ \Gamma, [D] \rhd A \right]}{\Gamma \rhd \langle \ A \ \rangle} \mathsf{g\_dyn}
                                                                                                                             P_1 \ c \langle a \rangle) \rightarrow
                                                                                                                        (\forall (c : \mathtt{context})(o : \mathtt{expr} \ \mathtt{con} \to \mathtt{oo}),
                                                                                                                             (\forall (e : \mathtt{expr} \mathtt{con}), \mathtt{proper} \ e \rightarrow c \triangleright o \ e) \rightarrow
\forall (E \; \underline{:}\; \mathtt{expr} \;\; \mathtt{con}), (\mathtt{proper} \; E \to \Gamma \rhd G \, E)
                                                                                                                             (\forall (e : \mathtt{expr} \mathtt{con}), \mathtt{proper} \ e \rightarrow P_1 \ c \ (o \ e) \rightarrow
                                    \Gamma \triangleright \mathsf{All}\ G
                                                                                                                             P_1 \ c \ (\text{All } o)) \rightarrow
                                                                                                                        (\forall (c: \mathtt{context})(o_1 \ o_2: \mathtt{oo})(a: \mathtt{atm}),
                                                                                                                             c \triangleright o_1 \rightarrow P_1 \ c \ o_1 \rightarrow
                       \frac{\Gamma\rhd G\quad \Gamma,[D]\rhd A}{\Gamma,[G\longrightarrow D]\rhd A} \text{ b\_imp}
                                                                                                                            c, [o_2] \triangleright a \rightarrow P_2 \ c \ o_2 \ a \rightarrow
                                                                                                                            P_2 c (o_1 \longrightarrow o_2) a) \rightarrow
                                                                                                             (\forall (c : context)(o : oo),
                                                                                                                                                       c \triangleright o \rightarrow P_1 \cdot c \cdot o \land \land
                                                                                                             (\forall (c : context)(o : oo)(a : atm),
                                                                                                                                                      c, [o] \triangleright a \rightarrow P_2 \ c \ o \ a)
```

```
seq_mutind : \forall (P_1 : context \rightarrow oo \rightarrow Prop)
                                                                                                                    (P_2: \mathtt{context} \to \mathtt{oo} \to \mathtt{atm} \to \mathtt{Prop}),
                                                                                                                      (\forall (c : \mathtt{context})(o : \mathtt{oo})(a : \mathtt{atm}),
                                                                                                                           o \in c \to c, [o] \rhd a \to P_2 c o a \to c
                       \frac{D \in \Gamma \ \left[ \Gamma, [D] \rhd A \right]}{\Gamma \rhd \langle \ A \ \rangle} \mathsf{g\_dyn}
                                                                                                                           P_1 \ c \langle a \rangle) \rightarrow
                                                                                                                      (\forall (c : \mathtt{context})(o : \mathtt{expr} \ \mathtt{con} \to \mathtt{oo}),
                                                                                                                            (\forall (e : \mathtt{expr} \mathtt{con}), \mathtt{proper} \ e \rightarrow c \triangleright o \ e) \rightarrow
\forall (E \; \underline{:}\; \mathtt{expr} \;\; \mathtt{con}), (\mathtt{proper} \; E \to \Gamma \rhd G \, E)
                                                                                                                           (\forall (e : \mathtt{expr} \mathtt{con}), \mathtt{proper} \ e \rightarrow P_1 \ c \ (o \ e) \rightarrow
                                   \Gamma \triangleright \mathsf{All}\ G
                                                                                                                           P_1 \ c \ (\text{All } o)) \rightarrow
                                                                                                                      (\forall (c: \mathtt{context})(o_1 \ o_2: \mathtt{oo})(a: \mathtt{atm}),
                                                                                                                           c \triangleright o_1 \rightarrow P_1 \ c \ o_1 \rightarrow
                      \frac{\Gamma\rhd G\quad \Gamma,[D]\rhd A}{\Gamma,[G\longrightarrow D]\rhd A} \text{ b\_imp}
                                                                                                                           c, [o_2] \triangleright a \rightarrow P_2 \ c \ o_2 \ a \rightarrow
                                                                                                                           P_2 c (o_1 \longrightarrow o_2) a) \rightarrow
                                                                                                            (\forall (c : context)(o : oo),
                                                                                                                                                     c \triangleright o \rightarrow P_1 \cdot c \cdot o \land \land
                                                                                                            (\forall (c : context)(o : oo)(a : atm),
                                                                                                                                                     c, [o] \triangleright a \rightarrow P_2 \ c \ o \ a)
```

Generalized Specification Logic (GSL)

All rules of the SL have one of the following forms:

$$\begin{split} & \overline{Q_m}(c,o) \\ \forall \overline{(x_{n,s_n}:R_{n,s_n})}, & (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ & \underline{\forall (y_{p,t_p}:S_{p,t_p})}, & (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p})}_{c \rhd o} \text{ gr_rule} \end{split}$$

$$\begin{split} & \overline{Q_m}(c,o) \\ \forall \overline{(x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ & \frac{\forall \overline{(y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p})}{c,[o] \rhd a} \text{ bc_rule} \end{split}$$

SL Rules from GSL Rules

Rule	m	n	p	c	0
$\frac{\forall (E: \mathbf{X}), (\Gamma \rhd GE)}{\Gamma \rhd \mathtt{Allx} \ G} \ \mathtt{g_allx}$	0	1	0	Γ	$\mathtt{Allx}G$
$s_1 := 1$					
$x_{1,1} \coloneqq E$					
$R_{1,1}\coloneqq \mathtt{X}$					
$\gamma_1(\mathtt{Allx}\ G)\coloneqq\emptyset$					
$F_1(Allx G, E) := G E$					

Structural Rules

$$\begin{split} \frac{\Gamma \rhd \beta_2}{\Gamma, \beta_1 \rhd \beta_2} & \text{ gr_weakening } & \frac{\Gamma, [\beta_2] \rhd \alpha}{\Gamma, \beta_1, [\beta_2] \rhd \alpha} \text{ bc_weakening } \\ \frac{\Gamma, \beta_1, \beta_1 \rhd \beta_2}{\Gamma, \beta_1 \rhd \beta_2} & \text{ gr_contraction } & \frac{\Gamma, \beta_1, \beta_1, [\beta_2] \rhd \alpha}{\Gamma, \beta_1, [\beta_2] \rhd \alpha} \text{ bc_contraction } \\ \frac{\Gamma, \beta_2, \beta_1 \rhd \beta_3}{\Gamma, \beta_1, \beta_2 \rhd \beta_3} & \text{ gr_exchange } & \frac{\Gamma, \beta_2, \beta_1, [\beta_3] \rhd \alpha}{\Gamma, \beta_1, \beta_2, [\beta_3] \rhd \alpha} \text{ bc_exchange } \end{split}$$

These are all corollaries of a general theorem:

Theorem (monotone)

$$\frac{\Gamma \subseteq \Gamma' \quad \Gamma \rhd \beta}{\Gamma' \rhd \beta} \land \frac{\Gamma \subseteq \Gamma' \quad \Gamma, [\beta] \rhd \alpha}{\Gamma', [\beta] \rhd \alpha}$$

Theorem (monotone)

```
 \begin{array}{c} (\; \forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo}), \\ \hline \Gamma \rhd \beta \to \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta \;\;) \; \land \\ (\; \forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo})(\alpha : \mathtt{atm}), \\ \hline \Gamma, [\beta] \rhd \alpha \to \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha \;\;) \end{array}
```

Define

$$\begin{split} P_1 \coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo}) \; . \\ \forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta \\ P_2 \coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}) \; . \\ \forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha \end{split}$$

Proof

By induction over $\Gamma \rhd \beta$ and $\Gamma, [\beta] \rhd \alpha$ using seq_mutind.

Theorem (monotone)

$$\begin{array}{c} (\; \forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo}), \\ \hline \Gamma \rhd \beta \to \boxed{\forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta} \;) \; \land \\ (\; \forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo})(\alpha : \mathtt{atm}), \\ \hline \Gamma, [\beta] \rhd \alpha \to \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha \;\;) \end{array}$$

Define

$$\begin{split} P_1 \coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo}) \; . \\ \hline \forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta \\ P_2 \coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}) \; . \\ \hline \forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha \end{split}$$

Proof

By induction over $\Gamma \rhd \beta$ and $\Gamma, [\beta] \rhd \alpha$ using seq_mutind.

Theorem (monotone)

```
 \begin{array}{c} (\; \forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo}), \\ \hline \Gamma \rhd \beta \to \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta \;\;) \; \land \\ (\; \forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo})(\alpha : \mathtt{atm}), \\ \hline \Gamma, [\beta] \rhd \alpha \to \overline{} \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha \;\;) \end{array}
```

Define

$$\begin{split} P_1 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo}) \;. \\ &\forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta \\ P_2 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}) \;. \\ &\forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha \end{split}$$

Proof

By induction over $\Gamma \rhd \beta$ and $\Gamma, [\beta] \rhd \alpha$ using seq_mutind.

Proof Outline for monotone

Proof with 15 subcases proven automatically in Coq

```
Proof.
Hint Resolve context_sub_sup.
eapply seq_mutind; intros;
try (econstructor; eauto; eassumption).
Qed.
```

Cut Admissibility

Theorem (cut_admissible)

$$\frac{\left|\frac{\Gamma, \delta \rhd \beta}{\Gamma \rhd \beta}\right| \quad \Gamma \rhd \delta}{\Gamma \rhd \beta} \land \frac{\left|\frac{\Gamma, \delta, [\beta] \rhd \alpha}{\Gamma, [\beta] \rhd \alpha}\right| \quad \Gamma \rhd \delta}{\Gamma, [\beta] \rhd \alpha}$$

Proof by nested induction over δ then mutual structural induction over $\Gamma, \delta \rhd \beta$ and $\Gamma, \delta, [\beta] \rhd \alpha$

[Pfenning; 2000]

Theorem (cut_admissible)

```
 \begin{array}{c} (\; \forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo}), \Gamma \rhd \beta \to \\ \qquad \qquad \forall (\Gamma' : \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma' \rhd \beta \;\;) \; \land \\ (\; \forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo})(\alpha : \mathtt{atm}), \Gamma, [\beta] \rhd \alpha \to \\ \qquad \qquad \forall (\Gamma' : \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma', [\beta] \rhd \alpha \;\;) \end{array}
```

Define

$$\begin{split} P_1 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo}) \;. \\ &\forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma' \rhd \beta \\ P_2 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}) \;. \\ &\forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma', [\beta] \rhd \alpha \end{split}$$

Theorem (cut_admissible)

$$\begin{array}{l} (\;\forall (\Gamma: \mathtt{context})(\beta: \mathtt{oo}), \Gamma \rhd \beta \to \\ & \boxed{\forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma' \rhd \beta} \;) \; \land \\ (\;\forall (\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}), \Gamma, [\beta] \rhd \alpha \to \\ & \forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma', [\beta] \rhd \alpha \;\;) \end{array}$$

Define

$$\begin{split} P_1 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo}) \;. \\ & \quad \left[\forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma' \rhd \beta \right] \\ P_2 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}) \;. \\ & \quad \forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma', [\beta] \rhd \alpha \end{split}$$

Theorem (cut_admissible)

```
 \begin{array}{l} (\;\forall (\Gamma: \mathtt{context})(\beta: \mathtt{oo}), \Gamma \rhd \beta \to \\ \qquad \forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma' \rhd \beta \;\;) \; \land \\ (\;\forall (\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}), \Gamma, [\beta] \rhd \alpha \to \\ \qquad \qquad \left[ \forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma', [\beta] \rhd \alpha \; \right] ) \end{array}
```

Define

$$\begin{split} P_1 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo}) \;. \\ &\forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma' \rhd \beta \\ P_2 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}) \;. \\ &\boxed{\forall (\Gamma': \mathtt{context}), \Gamma = (\Gamma', \delta) \to \Gamma' \rhd \delta \to \Gamma', [\beta] \rhd \alpha} \end{split}$$

Proof Outline for cut_admissible

98 of 105 cases proven automatically in Coq


```
Proof.

Hint Resolve gr_weakening context_swap.
induction delta; eapply seq_mutind; intros;
subst; try (econstructor; eauto; eassumption).
...
```

Structural Induction over GSL

Suppose we wish to prove

$$\begin{array}{c} (\forall \; (c : \mathtt{context}) \; (o : \mathtt{oo}), \\ \hline (c \rhd o) \to (P_1 \; c \; o)) \; \; \land \\ \\ (\forall \; (c : \mathtt{context}) \; (o : \mathtt{oo}) \; (a : \mathtt{atm}), \\ \hline (c, [o] \rhd a) \to (P_2 \; c \; o \; a)) \end{array}$$

for some

$$\begin{split} P_1 &:= \lambda(c : \mathtt{context}) \; (o : \mathtt{oo}) \; . \\ &\forall (\Gamma' : \mathtt{context}), IA_1(\!(c, \Gamma')\!) \to \cdots \to IA_w(\!(c, \Gamma')\!) \to \underline{\Gamma' \rhd o} \\ P_2 &:= \lambda(c : \mathtt{context}) \; (o : \mathtt{oo}) \; (a : \mathtt{atm}) \; . \\ &\forall (\Gamma' : \mathtt{context}), IA_1(\!(c, \Gamma')\!) \to \cdots \to IA_w(\!(c, \Gamma')\!) \to \underline{\Gamma', [o] \rhd a} \end{split}$$

by induction over $c \triangleright o$ and $c, [o] \triangleright a$

Structural Induction over GSL

$$\begin{split} & \overline{H_m}: \overline{Q_m}(c,o) \\ & \overline{Hg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ & \overline{IHg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ & \overline{Hb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ & \overline{IHb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ & \overline{P_1\ c\ o} \end{split}$$

Structural Induction over GSL

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, P_1\ (c \cup \overline{\gamma_n}(o))\ (\overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{Hb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), \overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, P_2\ (c \cup \overline{\gamma_p'}(o))\ (\overline{F_p'}(o,\overline{y_{p,t_p}}))\ \overline{a_p} \\ &\overline{P_1\ c\ o} \end{split}$$

Next: unfold P_1 in goal

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ &\overline{Hb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), \overline{[F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ &\overline{\forall (\Gamma': \mathtt{context}), IA_1(c,\Gamma') \to \cdots \to} \\ &IA_w(c,\Gamma') \to \Gamma' \rhd o \end{split}$$

$$\begin{split} & \overline{H_m}: \overline{Q_m}\langle\!\langle c,o\rangle\!\rangle \\ & \overline{Hg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}\langle\!\langle o\rangle\!\rangle \overline{F_n}\langle\!\langle o, \overline{x_{n,s_n}}\rangle\!\rangle) \\ & \overline{IHg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, P_1\ (c \cup \overline{\gamma_n}\langle\!\langle o\rangle\!\rangle)\ (\overline{F_n}\langle\!\langle o, \overline{x_{n,s_n}}\rangle\!\rangle) \\ & \overline{Hb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}\langle\!\langle o\rangle\!\rangle, [\overline{F_p'}\langle\!\langle o, \overline{y_{p,t_p}}\rangle\!\rangle] \rhd \overline{a_p}) \\ & \overline{IHb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, P_2\ (c \cup \overline{\gamma_p'}\langle\!\langle o\rangle\!\rangle)\ (\overline{F_p'}\langle\!\langle o, \overline{y_{p,t_p}}\rangle\!\rangle)\ \overline{a_p} \\ & \overline{(\Gamma':\mathsf{context})}, IA_1\langle\!\langle c, \Gamma'\rangle\!\rangle \to \cdots \to \\ & IA_w\langle\!\langle c, \Gamma'\rangle\!\rangle \to \Gamma' \rhd o \end{split}$$

Next: introduce induction assumptions

 $\Gamma' \rhd o$

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, P_1 \ (c \cup \overline{\gamma_n}(o)) \ (\overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{Hb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, P_2 \ (c \cup \overline{\gamma_p'}(o)) \ (\overline{F_p'}(o,\overline{y_{p,t_p}})) \ \overline{a_p} \\ &\overline{IP_w}: \overline{IA_w}(c,\Gamma') \end{split}$$

$$\begin{split} & \overline{H_m}: \overline{Q_m}(c,o) \\ & \overline{Hg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ & \overline{IHg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ & \overline{Hb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ & \overline{IHb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ & \overline{IP_w}: \overline{IA_w}(c,\Gamma') \\ & \overline{\Gamma'} \rhd o \end{split}$$

Next: backchain with gr_rule

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \forall (\overline{x_{n,s_n}}: R_{n,s_n}), (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o, \overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \forall (\overline{x_{n,s_n}}: R_{n,s_n}), P_1 \ (c \cup \overline{\gamma_n}(o)) \ (\overline{F_n}(o, \overline{x_{n,s_n}})) \\ &\overline{Hb_p}: \forall (\overline{y_{p,t_p}}: S_{p,t_p}), (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o, \overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \forall (\overline{y_{p,t_p}}: S_{p,t_p}), P_2 \ (c \cup \overline{\gamma_p'}(o)) \ (\overline{F_p'}(o, \overline{y_{p,t_p}})) \ \overline{a_p} \\ &\overline{IP_w}: \overline{IA_w}(c, \Gamma') \\ &\overline{Q_m}(\Gamma', o), \\ &\forall (\overline{y_{p,t_p}}: S_{p,t_p}), (\Gamma' \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o, \overline{x_{n,s_n}})), \\ &\forall (\overline{y_{p,t_p}}: S_{p,t_p}), (\Gamma' \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o, \overline{y_{p,t_p}})] \rhd \overline{a_p}) \end{split}$$

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ &\overline{Hb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ &\overline{IP_w}: \overline{IA_w}(c,\Gamma') \\ &\overline{Q_m}(\Gamma',o), \\ &\overline{\forall (x_{n,s_n}:R_{n,s_n})}, [\Gamma' \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})), \\ &\overline{\forall (y_{p,t_p}:S_{p,t_p})}, (\Gamma' \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \end{split}$$

$$\begin{split} &\overline{H_m}: \overline{Q_m}(\!\langle c,o\rangle\!\rangle \\ &\overline{Hg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(\!\langle o\rangle\!\rangle \rhd \overline{F_n}(\!\langle o,\overline{x_{n,s_n}}\rangle\!\rangle) \\ &\overline{IHg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, P_1\ (c \cup \overline{\gamma_n}(\!\langle o\rangle\!\rangle)\ (\overline{F_n}(\!\langle o,\overline{x_{n,s_n}}\rangle\!\rangle) \\ &\overline{Hb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(\!\langle o\rangle\!\rangle, [\overline{F_p'}(\!\langle o,\overline{y_{p,t_p}}\rangle\!\rangle] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, P_2\ (c \cup \overline{\gamma_p'}(\!\langle o\rangle\!\rangle)\ (\overline{F_p'}(\!\langle o,\overline{y_{p,t_p}}\rangle\!\rangle)\ \overline{a_p} \\ &\overline{IP_w}: \overline{IA_w}(\!\langle c,\Gamma'\rangle\!\rangle \\ &\overline{Q_m}(\!(\Gamma',o)\!\rangle, \\ &\forall \overline{(x_{n,s_n}:R_{n,s_n})}, (\Gamma'\cup\overline{\gamma_n}(\!\langle o\rangle\!\rangle \rhd \overline{F_n}(\!\langle o,\overline{x_{n,s_n}}\rangle\!\rangle), \\ &\forall \overline{(y_{p,t_n}:S_{p,t_n})}, (\Gamma'\cup\overline{\gamma_n'}(\!\langle o\rangle\!\rangle \rhd \overline{F_n}(\!\langle o,\overline{y_{p,t_n}}\rangle\!\rangle \rhd \overline{a_p}) \end{split}$$

Next: apply induction hypothesis to sequent subgoals

$$\begin{split} & \overline{H_m}: \overline{Q_m}(c,o) \\ & \overline{Hg_n}: \forall (\overline{x_{n,s_n}}: R_{n,s_n}), (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o, \overline{x_{n,s_n}})) \\ & \overline{IHg_n}: \forall (\overline{x_{n,s_n}}: R_{n,s_n}), P_1 \ (c \cup \overline{\gamma_n}(o)) \ (\overline{F_n}(o, \overline{x_{n,s_n}})) \\ & \overline{Hb_p}: \forall (\overline{y_{p,t_p}}: S_{p,t_p}), (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o, \overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ & \overline{IHb_p}: \forall (\overline{y_{p,t_p}}: S_{p,t_p}), P_2 \ (c \cup \overline{\gamma_p'}(o)) \ (\overline{F_p'}(o, \overline{y_{p,t_p}})) \ \overline{a_p} \\ & \overline{IP_w}: \overline{IA_w}(c, \Gamma') \\ & \overline{IA_w}(c \cup \overline{\gamma_n}(o), \Gamma' \cup \overline{\gamma_n}(o)) \end{split}$$

$$\begin{split} & \overline{H_m}: \overline{Q_m}(c,o) \\ & \overline{Hg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ & \overline{IHg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ & \overline{Hb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ & \overline{IHb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ & \overline{IP_w}: \overline{IA_w}(c,\Gamma') \\ & \overline{IA_w}(c \cup \overline{\gamma_n}(o), \Gamma' \cup \overline{\gamma_n}(o)) \end{split}$$

Proof for monotone:

$$IA_1(c,\Gamma') := c \subseteq \Gamma'$$

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ &\overline{Hb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ &\underline{IP_1:c \subseteq \Gamma'} \\ &\underline{c \cup \overline{\gamma_n}(o)} \subseteq \Gamma' \cup \overline{\gamma_n}(o) \end{split}$$

Proof for monotone:

$$IA_1(c,\Gamma') := c \subseteq \Gamma'$$

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o)) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \forall \overline{(x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ &\overline{Hb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \forall \overline{(y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ &\underline{IP_1:c \subseteq \Gamma'} \\ &\underline{c \cup \overline{\gamma_n}(o) \subseteq \Gamma' \cup \overline{\gamma_n}(o)} \end{split}$$

Proof for monotone:

Backchain with context_sub_sup

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ &\overline{Hb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ &\underline{IP_1: c \subseteq \Gamma'} \\ &\overline{c \subseteq \Gamma'} \end{split}$$

Proof for monotone:

matches assumption IP_1

$$\begin{split} & \overline{H_m}: \overline{Q_m}(c,o) \\ & \overline{Hg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ & \overline{IHg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ & \overline{Hb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ & \overline{IHb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ & \overline{IP_w}: \overline{IA_w}(c,\Gamma') \\ & \overline{IA_w}(c \cup \overline{\gamma_n}(o), \Gamma' \cup \overline{\gamma_n}(o)) \end{split}$$

Proof for cut_admissibility

$$\mathit{IA}_1(\!(c,\Gamma')\!) := (c = \Gamma',\delta) \text{ and } \mathit{IA}_2(\!(c,\Gamma')\!) := \Gamma' \rhd \delta$$

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{HHg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ &\overline{Hb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{Hhb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ &IP_1: c = \Gamma', \delta \\ &IP_2: \Gamma' \rhd \delta \\ &\overline{(c \cup \overline{\gamma_n}(o))} = \Gamma' \cup \overline{\gamma_n}(o), \delta), (\Gamma' \cup \overline{\gamma_n}(o)) \rhd \delta) \end{split}$$

Proof for cut_admissibility

$$\mathit{IA}_1(\!(c,\Gamma')\!) \coloneqq (c=\Gamma',\delta) \text{ and } \mathit{IA}_2(\!(c,\Gamma')\!) \coloneqq \Gamma' \rhd \delta$$

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o)) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ &\overline{Hb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ &IP_1: c = \Gamma', \delta \\ &IP_2: \Gamma' \rhd \delta \\ & \overline{(c \cup \overline{\gamma_n}(o))} = \Gamma' \cup \overline{\gamma_n}(o), \delta), (\Gamma' \cup \overline{\gamma_n}(o)) \rhd \delta) \end{split}$$

Proof for cut_admissibility

Sequent subgoal: backchain with weakening

$$\begin{split} \overline{H_m} : \overline{Q_m}(c,o) \\ \overline{Hg_n} : \overline{\forall (x_{n,s_n} : R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o, \overline{x_{n,s_n}})) \\ \overline{HHg_n} : \overline{\forall (x_{n,s_n} : R_{n,s_n})}, P_1 \ (c \cup \overline{\gamma_n}(o)) \ (\overline{F_n}(o, \overline{x_{n,s_n}})) \\ \overline{Hb_p} : \overline{\forall (y_{p,t_p} : S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o, \overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ \overline{Hhb_p} : \overline{\forall (y_{p,t_p} : S_{p,t_p})}, P_2 \ (c \cup \overline{\gamma_p'}(o)) \ (\overline{F_p'}(o, \overline{y_{p,t_p}})) \ \overline{a_p} \\ \overline{HP_1} : c = \Gamma', \delta \\ \underline{HP_2} : \Gamma' \rhd \delta \\ \hline (c \cup \overline{\gamma_n}(o)) = \Gamma' \cup \overline{\gamma_n}(o), \delta), (\Gamma' \rhd \delta) \end{split}$$

Proof for cut_admissibility

Sequent subgoal: matches assumption IP2

$$\begin{split} \overline{H_m} : \overline{Q_m}(c,o) \\ \overline{Hg_n} : \overline{\forall (x_{n,s_n} : R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o, \overline{x_{n,s_n}})) \\ \overline{HHg_n} : \overline{\forall (x_{n,s_n} : R_{n,s_n})}, P_1 \ (c \cup \overline{\gamma_n}(o)) \ (\overline{F_n}(o, \overline{x_{n,s_n}})) \\ \overline{Hb_p} : \overline{\forall (y_{p,t_p} : S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o, \overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ \overline{Hhb_p} : \overline{\forall (y_{p,t_p} : S_{p,t_p})}, P_2 \ (c \cup \overline{\gamma_p'}(o)) \ (\overline{F_p'}(o, \overline{y_{p,t_p}})) \ \overline{a_p} \\ IP_1 : c = \Gamma', \delta \\ IP_2 : \Gamma' \rhd \delta \\ \hline (c \cup \overline{\gamma_n}(o)) = \Gamma' \cup \overline{\gamma_n}(o), \delta) \end{split}$$

Proof for cut_admissibility

Context equality subgoal: backchain with context_swap

$$\begin{split} & \overline{H_m}: \overline{Q_m}(c,o) \\ & \overline{Hg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ & \overline{IHg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ & \overline{Hb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ & \overline{IHb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ & IP_1: c = \Gamma', \delta \\ & IP_2: \Gamma' \rhd \delta \\ & \overline{(c \cup \overline{\gamma_n}(o))} = (\Gamma', \delta) \cup \overline{\gamma_n}(o)) \end{split}$$

Proof for cut_admissibility

Context equality subgoal: backchain with context_sub_sup

$$\begin{split} &\overline{H_m}: \overline{Q_m}(c,o) \\ &\overline{Hg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, (c \cup \overline{\gamma_n}(o) \rhd \overline{F_n}(o,\overline{x_{n,s_n}})) \\ &\overline{IHg_n}: \overline{\forall (x_{n,s_n}:R_{n,s_n})}, P_1\left(c \cup \overline{\gamma_n}(o)\right) \left(\overline{F_n}(o,\overline{x_{n,s_n}})\right) \\ &\overline{Hb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, (c \cup \overline{\gamma_p'}(o), [\overline{F_p'}(o,\overline{y_{p,t_p}})] \rhd \overline{a_p}) \\ &\overline{IHb_p}: \overline{\forall (y_{p,t_p}:S_{p,t_p})}, P_2\left(c \cup \overline{\gamma_p'}(o)\right) \left(\overline{F_p'}(o,\overline{y_{p,t_p}})\right) \overline{a_p} \\ &IP_1: c = \Gamma', \delta \\ &IP_2: \Gamma' \rhd \delta \end{split}$$

Proof for cut_admissibility

matches assumption IP1

Completed:

branches of proof for sequent premises

Completed:

branches of proof for sequent premises

To Do:

branches for non-sequent premises

$$\mathbf{Case}\,\frac{D\in\Gamma\quad\Gamma,[D]\rhd A}{\Gamma\rhd\langle\;A\;\rangle}\;\mathrm{g_dyn}\text{:}$$

$$H_1: D \in \Gamma$$

$$Hb_1: \Gamma, [D] \rhd a_1$$

$$IHb_1: P_2 \Gamma D a_1$$

$$\overline{IP_w}: \overline{IA_w} (\Gamma, \Gamma')$$

$$D \in \Gamma'$$

$$\textbf{Case} \ \frac{D \in \Gamma \quad \Gamma, [D] \rhd A}{\Gamma \rhd \langle \ A \ \rangle} \ \ \textbf{g_dyn:}$$

$$H_1: D \in \Gamma$$

$$Hb_1: \Gamma, [D] \rhd a_1$$

$$IHb_1: P_2 \Gamma D a_1$$

$$\overline{IP_w}: \overline{IA_w} \langle \Gamma, \Gamma' \rangle$$

$$D \in \Gamma'$$

Proof for monotone:

$$\mathit{IA}_1(\Gamma,\Gamma') \coloneqq \Gamma \subseteq \Gamma'$$

Case
$$\frac{D \in \Gamma \quad \Gamma, [D] \rhd A}{\Gamma \rhd \langle \ A \ \rangle}$$
 g_dyn:

$$H_1: D \in \Gamma$$

$$Hb_1: \Gamma, [D] \rhd a_1$$

$$IHb_1: P_2 \Gamma D a_1$$

$$IP_1: \Gamma \subseteq \Gamma'$$

$$D \in \Gamma'$$

Proof for monotone:

$$IA_1(\Gamma, \Gamma') := \Gamma \subseteq \Gamma'$$

$$\mathbf{Case}\,\frac{D\in\Gamma\quad\Gamma,[D]\rhd A}{\Gamma\rhd\langle\;A\;\rangle}\;\mathbf{g_dyn:}$$

$$H_1: D \in \Gamma$$

$$Hb_1: \Gamma, [D] \rhd a_1$$

$$IHb_1: P_2 \Gamma D a_1$$

$$IP_1: \Gamma \subseteq \Gamma'$$

$$D \in \Gamma'$$

Proof for monotone:

 $\mathsf{Unfold} \subseteq \mathsf{in}\; \mathit{IP}_1$

$$\textbf{Case} \, \frac{D \in \Gamma \quad \Gamma, [D] \rhd A}{\Gamma \rhd \langle \; A \; \rangle} \, \, \mathbf{g_dyn:}$$

$$\begin{split} H_1: D &\in \Gamma \\ Hb_1: \Gamma, [D] \rhd a_1 \\ IHb_1: P_2 \Gamma \ D \ a_1 \\ \hline IP_1: \forall (o: \circ \circ), o \in \Gamma \to o \in \Gamma' \\ \hline D &\in \Gamma' \end{split}$$

Proof for monotone:

Backchain over IP1

$$\textbf{Case} \ \frac{D \in \Gamma \quad \Gamma, [D] \rhd A}{\Gamma \rhd \langle \ A \ \rangle} \ \ \textbf{g_dyn:}$$

$$\begin{split} H_1: D \in \Gamma \\ Hb_1: \Gamma, [D] \rhd a_1 \\ IHb_1: P_2 \Gamma \ D \ a_1 \\ \hline IP_1: \forall (o: \circ \circ), o \in \Gamma \to o \in \Gamma' \\ \hline D \in \Gamma \end{split}$$

Proof for monotone:

Matches H_1

Completed:

- branches of proof for sequent premises
- branches of proof for non-sequent premises for monotone

Completed:

- branches of proof for sequent premises
- branches of proof for non-sequent premises for monotone

Not shown:

cut_admissibility subcases for rules with non-sequent premises (see paper)

Case studies to illustrate the benefit of the new SL

- Case studies to illustrate the benefit of the new SL
 - 1. correspondence between HOAS and de Bruijn encodings of untyped λ -terms [Wang, Chaudhuri, Gacek, Nadathur; 2012]

- Case studies to illustrate the benefit of the new SL
 - 1. correspondence between HOAS and de Bruijn encodings of untyped λ -terms [Wang, Chaudhuri, Gacek, Nadathur; 2012]
 - 2. structural characterization of reductions on untyped λ -terms [Wang, Chaudhuri, Gacek, Nadathur; 2012]

- Case studies to illustrate the benefit of the new SL
 - 1. correspondence between HOAS and de Bruijn encodings of untyped λ -terms [Wang, Chaudhuri, Gacek, Nadathur; 2012]
 - 2. structural characterization of reductions on untyped λ -terms [Wang, Chaudhuri, Gacek, Nadathur; 2012]
 - 3. algorithmic specification of bounded subtype polymorphism in System F [Pientka; 2007]

- Case studies to illustrate the benefit of the new SL
 - 1. correspondence between HOAS and de Bruijn encodings of untyped λ -terms [Wang, Chaudhuri, Gacek, Nadathur; 2012]
 - 2. structural characterization of reductions on untyped λ -terms [Wang, Chaudhuri, Gacek, Nadathur; 2012]
 - algorithmic specification of bounded subtype polymorphism in System F [Pientka; 2007]
- Apply generalized SL to other logics and proof to other metatheorems

- Case studies to illustrate the benefit of the new SL
 - 1. correspondence between HOAS and de Bruijn encodings of untyped λ -terms [Wang, Chaudhuri, Gacek, Nadathur; 2012]
 - 2. structural characterization of reductions on untyped λ -terms [Wang, Chaudhuri, Gacek, Nadathur; 2012]
 - algorithmic specification of bounded subtype polymorphism in System F [Pientka; 2007]
- Apply generalized SL to other logics and proof to other metatheorems
- Compare cut admissibility proof here to Abella

Add SL based on hereditary Harrop formulas to Hybrid

- Add SL based on hereditary Harrop formulas to Hybrid
- Prove structural properties of new SL

- Add SL based on hereditary Harrop formulas to Hybrid
- Prove structural properties of new SL
- Generalization of SL rules

- Add SL based on hereditary Harrop formulas to Hybrid
- Prove structural properties of new SL
- Generalization of SL rules
- Proof by structural induction over generalized SL (encapsulate collections of cases into one)

- Add SL based on hereditary Harrop formulas to Hybrid
- Prove structural properties of new SL
- Generalization of SL rules
- Proof by structural induction over generalized SL (encapsulate collections of cases into one)

Thank you!