EMPERICAL SETUP

Platform for performance results is a 1.66 GHz 32-bit Intel® Atom™ machine with 2 GB memory and running Windows 7 starter. The codes are compiled with the C++11 compiler. The average execution time of five independent runs for each experiment is reported.

ANALYSIS

First, the dependence of execution time on the problem size is studied. Graphs corresponding to V=5 and V=9 are **sparse graphs** and the ones corresponding to V=15, V=20 and V=25 are **dense graphs**. It is observed that New-Dijkstra and New-Dijkstra1 outperforms Dijkstra for sparse graphs and for dense graphs Dijkstra is faster than New-Dijkstra and New-Dijkstra1.

Next the performance of the algorithm on sparse and dense graphs as the value of K, the number of distinct edge weights is varied is studied.

Performance of New-Dijkstra and Dijkstra Single Source Shortest Path as the problem size is varied.

NO OF VERTICES	NEW-DIJKSTRA	DIJKSTRA
V=5	4.60E-06	1.51E-05
V=9	7.33E-06	1.81E-05
V=15	3.11E-05	2.78E-05
V=20	5.58E-05	3.59E-05
v=25	0.000102026	3.65E-05

For both dense and sparse graphs, Speedup decreases with increase in problem size. Also, the performance is better for smaller graph instances compared to larger ones for the graphs studied.

Performance for a sparse graph (V=5) as the value of K is varied.

K	NEW-DIJKSTRA	DIJKSTRA
k=1	4.50E-06	1.23E-05
k=2	4.60E-06	1.51E-05
k=3	4.87E-06	1.84E-05
k=4	5.27E-06	1.87E-05

Performance for a sparse graph (V=9) as the value of K is varied.

K	NEW-DIJKSTRA	DIJKSTRA
K=1	7.17E-06	1.69E-05
K=2	7.33E-06	1.81E-05
K=3	7.92E-06	1.87E-05
K=4	8.37E-06	2.24E-05

It is observed that New-Dijkstra is significantly faster than the Dijkstra but slower than Dijkstra with increase in K.

Performance for a dense graph (V=25) as the value of K is varied.

K	NEW-DIJKSTRA	DIJKSTRA
K=1	9.91E-05	3.52E-05
K=2	0.000102026	3.65E-05
K=3	0.00011071	3.69E-05
K=4	0.000112937	4.06E-05

Dijkstra is faster than New-Dijkstra for dense graphs.

For both dense and random graphs, performance and speedup are better for smaller values of k and decreases with increase in K.

Performance of A faster algorithm if K is permitted to grow with problem size (New-Dijkstra1) and Dijkstra Single Source Shortest Path as the problem size is varied.

NO OF VERTICES	NEW-DIJKSTRA1	DIJKSTRA
V=5	9.49E-06	1.33E-05
V=9	1.40E-05	1.92E-05
V=15	6.92E-05	2.29E-05
V=20	9.49E-05	3.15E-05
V=25	0.000134111	4.71E-05

Performance for a sparse graph (V=5) as the value of K is varied.

К	NEW-DIJKSTRA1	DIJKSTRA
K=4	8.24E-06	1.28E-05
K=6	8.85E-06	1.32E-05
K=8	9.49E-06	1.33E-05
K=10	9.66E-06	1.45E-05

Performance for a sparse graph (V=9) as the value of K is varied.

K	NEW-DIJKSTRA1	DIJKSTRA
K=4	1.36E-05	1.65E-05
K=6	1.40E-05	1.92E-05

Performance for a dense graph (V=25) as the value of K is varied.

K	NEW-DIJKSTRA1	DIJKSTRA
K=24	9.55E-05	3.78E-05
K=26	0.000103164	4.44E-05
K=28	0.000104618	4.58E-05
K=30	0.000105998	5.34E-05

New-Dijkstra and New-Dijkstra 1 have similar characteristics except that New-Dijkstra 1 is faster for even larger values of K.

Performance of New-Dijkstra and Dijkstra All Pair Shortest Path as the problem size is varied.

NO OF VERTICES	NEW-DIJKSTRA	DIJKSTRA
V=5	1.11E-05	2.94E-05
V=9	3.46E-05	7.52E-05
V=15	0.000363858	0.00018277
V=20	0.00101599	0.00037949
V=25	0.00212274	0.00062808

Performance of A faster algorithm if K is permitted to grow with problem size (New-Dijkstra1) and Dijkstra All Pair Shortest Path as the problem size is varied.

NO OF VERTICES	NEW-DIJKSTRA1	DIJKSTRA
V=5	2.63E-05	3.09E-05
V=9	7.07E-05	8.57E-05
V=15	0.000743658	0.00020267
V=20	0.00165824	0.00042299
V=25	0.00304099	0.00067985

