Smooth Manifolds

Nutan Nepal

September 29, 2022

Homework 1

1. Prove that the open disks $D_r(p)$ are open subsets of \mathbb{R}^n .

Solution: To prove that the open disks $D_r(p)$ are open subsets of \mathbb{R}^n , we show that for every point $x \in D_r(p)$ we have another open disk $D_{\epsilon}(x)$, $\epsilon > 0$ such that $D_{\epsilon}(x) \subset D_r(p)$.

For any $x \in D_r(p)$, we have $\delta = d(x,p) < r$, we take $0 < \epsilon < r - \delta$. Then we see that for all $y \in D_{\epsilon}(x)$

$$d(p,y) \le d(p,x) + d(x,y) < \delta + \epsilon < \delta + r - \delta = r.$$

Hence, $y \in D_r(p)$ for all $y \in D_\epsilon(x)$ which implies that $D_\epsilon(x) \subset D_r(p)$. So, $D_r(p)$ is an open subset.

2. Prove the second part of Proposition 2.17 (a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous everywhere if and only if for all open subsets V of \mathbb{R}^m , the preimage $f^{-1}(V)$ of V under f is open in \mathbb{R}^n).

Solution: The Proposition 2.17 is reproduced below:

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function and let $p \in \mathbb{R}^n$. Let q = f(p).

- i. f is continuous at p if and only if for any open neighborhood V of q in \mathbb{R}^m , the preimage of V under f (i.e. $f^{-1}(V)$) contains an open subset U of \mathbb{R}^n which in turn contains p, i.e. there is some open neighborhood U of $p \in \mathbb{R}^n$ such that f sends U inside V.
- ii. f is continuous (everywhere) if and only if for any open subset V of \mathbb{R}^m , the preimage of V under f (i.e. $f^{-1}(V)$) is an open subset of \mathbb{R}^n .

For \Leftarrow : If for all open subsets V of \mathbb{R}^m the preimage $f^{-1}(V)$ of V under f is open in \mathbb{R}^n , then f is continuous.

Let $V \subset \mathbb{R}^m$ be an open subset such that $f(x) \in V$. Then we have an open disk $D_{\epsilon}(f(x)) \subset V$. As the disk $D_{\epsilon}(f(x))$ is open in \mathbb{R}^m , we have the preimage $f^{-1}(D_{\epsilon}(f(x))) \subset \mathbb{R}^n$ which is open and contains x. Then we can find a $\delta > 0$ such that $D_{\delta}(x) \subset f^{-1}(D_{\epsilon}(f(x)))$. That is, for every ϵ -ball around f(x), we can find a δ -ball around x such that

$$y \in D_{\delta}(x) \implies f(y) \in D_{\epsilon}(f(x))$$

for some y. Hence f is continuous.

3. Show that a composition of continuous functions $\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m \xrightarrow{g} \mathbb{R}^k$ is continuous.

Solution: Since g is continuous, we have $g^{-1}(V)$ open for all open set $V \subset \mathbb{R}^k$. Similarly we have f continuous, so $f^{-1}(U)$ is open for all open sets $U \subset \mathbb{R}^m$. Then, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is open for all open sets V in \mathbb{R}^k . Hence the composition is continuous.

4. Show that a function $f: X \to Y$ between sets is invertible if and only if it is bijective.

Solution: A function $f: X \to Y$ is invertible if there exists a function $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y$ and $g \circ f = \mathrm{id}_X$.

i. f invertible $\implies f$ bijective

Note that since id_Y is surjective, f must be surjective. Now for injectivity, we observe that if f(x) = f(y) then

$$x = (g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y) = y.$$

Hence, f is bijective.

ii. f bijective $\implies f$ invertible

Since f is both injective and surjective, we define a function $g: Y \to X$ by g(y) = x for $y \in Y$ whenever f(x) = y. Note that g is well-defined since there exists only one y for each x. Then, for all $x \in X$, $g(f(x)) = g(y) = x \implies g \circ f = \mathrm{id}_X$. Similarly, for all $y \in Y$, $f(g(y)) = f(x) = y \implies f \circ g = \mathrm{id}_Y$. So, f is invertible.

5. Show that the product topology on a product $X \times Y$ of topological spaces is a valid topology.

Solution: X and Y are topological spaces. We define a set $U \subset X \times Y$ to be open if for all $(x, y) \in U$ we have open neighborhoods $U_x \subset X$ and $U_y \subset Y$ such that $U_x \times U_y \subset U$.

- i. Clearly the null set ϕ and the whole set $X \times Y$ are open since X is open in X and Y is open in Y.
- ii. Arbitrary union $\bigcup U_{\alpha}$ of open sets is open.

Let (x, y) be an arbitrary point in $\bigcup U_{\alpha}$, then $(x, y) \in U_i$ for some i. Then, by definition, there are open neighborhoods $U_x \subset X$ and $U_y \subset Y$ such that $U_x \times U_y \subset U_i \subset \bigcup U_{\alpha}$.

iii. Finite intersection $U_i \cap U_j$ of open sets is open.

Let (x,y) be an arbitrary point of $U_i \cap U_j$, then $(x,y) \in U_i$ and $(x,y) \in U_j$. Then, by definition, there are open neighborhoods $U_{ix}, U_{jx} \subset X$ and $U_{iy}, U_{jy} \subset Y$ such that $U_{ix} \times U_{iy} \subset U_i$ and $U_{jx} \times U_{jy} \subset U_j$. Then

$$U_i \cap U_j \supset (U_{ix} \times U_{iy}) \cap (U_{ix} \times U_{iy}) = (U_{ix} \cap U_{ix}) \times (U_{iy} \cap U_{iy}) \ni (x, y).$$

Since $(U_{ix} \times U_{jx})$ and $(U_{iy} \times U_{jy})$ are open in X and Y respectively, we see that $U_i \cap U_j$ is open.

6. Verify the three basic properties of closed sets that correspond to the three axioms for open sets.

Solution: We define a set $V \subset X$ to be closed if its complement V^c is open in X.

i. The null set ϕ and the whole set X are closed.

 $\phi^c = X$ and $X^c = \phi$ which are open in X.

ii. Arbitrary intersection $\bigcap V_{\alpha}$ of closed sets is closed.

Here we use the set-theoretic fact that

$$\left(\bigcup U_{\beta}\right)^{c} = \bigcap U_{\beta}^{c} \tag{1}$$

where $\{U_{\beta}\}$ is the collection of indexed sets. Since each sets V_{α} are closed, we write V_{α} as U_{α}^{c} where U_{α} is

an open set of X. Then from 1 we have

$$\bigcap V_{\alpha} = \bigcap U_{\alpha}^{c} = \left(\bigcup U_{\alpha}\right)^{c} \tag{2}$$

Hence, since $\bigcup U_{\alpha}$ is open in $X, \bigcap V_{\alpha}$ must be closed.

iii. Finite union $V_i \cup V_j$ of closed sets is closed.

We have $V_i \cup V_j = U_i^c \cup U_j^c = (U_i \cap U_j)^c$. Since finite intersection of open sets are open, we observe that $V_i \cup V_j$ is the complement of an open set. Hence $V_i \cup V_j$ is closed.

7. Show that if we have $X'' \subset X' \subset X$, then the "subspace of a subspace" topology on X'' is the same as the "subspace of the biggest space" topology on X''.

Solution: Suppose (X,τ) is a topological space. The subspace topology on X' is given by

$$\tau' = \{ U' \subset X' : U' = U \cap X' \text{ for some } U \in \tau \}$$

and the subspace topology on X'' induced by τ' is given by

$$\tau'' = \{ U'' \subset X'' : U'' = U' \cap X'' \text{ for some } U' \in \tau' \}.$$

We need to show that τ'' is equal to the subspace topology on X'' induced by τ

$$T = \{U'' \subset X'' : U'' = U \cap X'' \text{ for some } U \in \tau\}.$$

Let $A \in \tau''$, then $A = U' \cap X''$ for some $U' \in \tau'$. Since $U' = U \cap X'$ for some $U \in \tau$ we have, $A = U \cap X' \cap X'' = U \cap X'' \in T$. Hence $\tau'' \subset T$. Similarly, let $B \in T$, then $B = U \cap X''$ for some $U \in \tau$. Since we can write X'' as $X' \cap X''$ we have $B = U \cap X' \cap X'' = U' \cap X'' \in \tau''$ for some U' in τ' . Hence $T \subset \tau''$ which gives $T = \tau''$ ending our proof.

Homework 2

1. Do Exercise 2.6 (show that for topological spaces X, Y, Z, the "rearrange-the-parentheses" map from $(X \times Y) \times Z$ to $X \times (Y \times Z)$ is a homeomorphism).

Solution: Let the function $f:(X\times Y)\times Z\to X\times (Y\times Z)$ be defined as

$$f((x,y),z) = f(x,(y,z))$$

where x, y and z are respective points of the topological spaces. We see that the map is clearly bijective and hence invertible.

Now, for each open set $U_x \times (U_y \times U_z)$, the preimage of f is given by $(U_x \times U_y) \times U_z$ which is open in $(X \times Y) \times Z$. Similarly, for each open set $(U_x \times U_y) \times U_z$, the preimage of f^{-1} is given by $U_x \times (U_y \times U_z)$ which is open in $X \times (Y \times Z)$. Hence f and f^{-1} are both continuous and the "rearrange the parentheses" map is homeomorphism.

2. Do Exercise 2.7 (show that the product topology and the usual topology on \mathbb{R}^n agree).

Solution: Suppose \mathscr{P} be the product topology and \mathscr{T} be the usual topology in \mathbb{R}^n . Let U be open in the product topology, then for all $x=(x_1,\ldots,x_n)\in U$ there exists open neighborhoods $U_i\in\mathbb{R}$ such that $x_i\in U_i$ and $U_1\times\cdots\times U_n\subset U$. Then for all x_i , there exists an open interval $(x_i-\delta_i,x_i+\delta_i)$ for some $\delta_i>0$. Let $\delta=\min\{\delta_i\}$ taken over all i from 1 to n. Clearly, $\delta>0$ and $x\in B_\delta(x)\subset U_1\times\cdots\times U_n\subset U$. This shows that $\mathscr{P}\subset\mathscr{T}$.

Now let U be open with respect to the usual topology. Then for all $x \in U$, there exists an open ball $B_{\delta}(x)$ containing x such that $B_{\delta}(x) \subset U$ for some $\delta > 0$. Let $\delta_i = \delta/\sqrt{2}$. Then each x_i is contained in the interval $U_i = (x_i - \delta_i, x_i + \delta_i)$ and we see that $B_{\delta}(x) \supset U_1 \times \cdots \times U_n$. Then $x \in U_1 \times \cdots \times U_n \subset B_{\delta}(x) \subset U$. Hence U is open in the product topology and $\mathscr{P} \supset \mathscr{T}$. So we see that the two topologies agree.

- 3. The following exercises are about the "line with two origins" of Example 2.44, which we will call X.
 - (a) Show that the construction in Example 2.44 defines a topology on X.
 - (b) Show that with this topology, X is locally homeomorphic to R.
 - (c) Show that X is not Hausdorff.

Solution: The construction in Example 2.44 is reproduced below:

Let \mathcal{B} be the set of subsets of X that have one of the following two forms:

- i. open intervals $(a, b) \subset \mathbb{R}$ (with a and b finite and a < b);
- ii. sets of the form $((a,b)\setminus 0)\cup \overline{0}$ whenever a<0< b.
- (a) We declare a subset U of X to be open if, for all $x \in U$, there exists a subset B of \mathscr{B} with $x \in B$ and $B \subset U$.

Let \mathcal{T} be the collection of open sets as defined above. We now show that it is a topology.

- a. Clearly, $\phi \in \mathcal{T}$ and also $X \in \mathcal{T}$.
- b. Let $A = \bigcup_i U_i$ be the union of arbitrary collection of indexed open sets. For all $x \in A$ then there exists a U_i such that $x \in U_i$. So, there exists a subset B of \mathcal{B} with $x \in B$ and $B \subset U_i \subset A$. Hence, A is open.
- c. Let $A = U_1 \cap U_2$ be the finite intersection of open sets of X. For any $x \in A$ we see that $x \in U_1$ and $x \in U_2$. Then there exists a subset B_1 of \mathscr{B} with $x \in B_1$ and $B_1 \subset U_1$ and there exists a subset B_2 of \mathscr{B} with $x \in B_2$ and $B_2 \subset U_2$. If $x \neq \overline{0}$ then the problem reduces to \mathbb{R} which implies that A is open. If $x = \overline{0}$ then we see that $B_1 \cap B_2$ is the intersection of open intervals and $\overline{0}$ which is again open in X.

Thus X is a topological space with the topology \mathcal{T} .

- (b) For any point $x \neq \overline{0}$ in X, we observe that there is an open ball $(x \delta, x + \delta)$ around x for some $\delta > 0$. Since any open intervals of \mathbb{R} are homeomorphic to \mathbb{R} itself, we see that X is locally homeomorphic \mathbb{R} for every point $x \neq \overline{0}$.
 - Now, when $x = \overline{0}$ we take $Y = (-\delta, 0) \cup (0, \delta) \cup \{\overline{0}\}$ and define a function $f : Y \to \mathbb{R}$ by $f(\overline{0}) = 0$ and $f(y) = \tan(\pi y/2\delta)$. We see that f is invertible, continuous and has a continuous inverse and hence is a homeomorphism. Thus, X is locally homeomorphic to \mathbb{R} .
- (c) For every $\epsilon > 0$, the neighborhood $N_{\epsilon}(0)$ of the point 0 intersects with the neighborhood around the point $\overline{0}$ non-trivially. So, X is not Hausdorff.

Homework 3

1. Do Exercise 3.1 (show that if $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ are open, then a function $f: U \to V$ is smooth if and only if each of its component functions $f^i: U \to R$ are smooth).

Solution: If $f(x_1, \ldots, x_n) = (f^1(x_1, \ldots, x_n), \ldots, f^m(x_1, \ldots, x_n))$ then for $i \in \{1, 2, \ldots, n\}$, the first-order partial derivative at p is given by the limit

$$\lim_{t \to 0} \frac{f(p + te_i) - f(p)}{t} = \lim_{t \to 0} \frac{(f^1(p + te_i) - f^1(p), \dots, f^j(p + te_i) - f^j(p), \dots, f^m(p + te_i) - f^m(p))}{t}$$
(3)

Then for each $i \in \{1, 2, ..., n\}$ and $j \in \{1, 2, ..., m\}$, the partial derivative exists at $p \in U$ iff the limit

$$\lim_{t \to 0} \frac{f^j(p_1, \dots, p_i + t, \dots, p_n) - f^j(p_1, \dots, p_n)}{t} \tag{4}$$

exists at p. But the limit on equation (2) is the partial derivative of the component function f^j at x_i . Hence, the derivative of f exists at p iff each of its component functions are differentiable. The partial derivative at a point p, again, is a function $g: U \to \mathbb{R}^m$. Then, as above, we see that the partial derivatives of g exist iff each of its component functions are differentiable.

If $f: U \to V$ is smooth then all k^{th} -order partial derivatives exist on U for all k. Then, inductively, from above, all k^{th} -order partial derivatives of each component functions also exist on U for all k. Similarly, if all k^{th} -order partial derivatives of each component functions exist on U for all k, then f is also smooth.

2. Check that Definition 3.6 gives an equivalence relation (a binary relation that is reflexive, symmetric, and transitive) on the set of smooth at lases on a given topological manifold X.

Solution: Let $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha}) : \alpha \in A\}$ and $\mathcal{B} = \{(V_{\beta}, \psi_{\beta}) : \beta \in B\}$ be smooth atlases on the topological manifold X for some indexed set A and B. We say that $\mathcal{A} \sim \mathcal{B}$ if their union is a smooth atlas on X. The reflexive $(\mathcal{A} \sim \mathcal{A})$ and symmetric $(\mathcal{A} \sim \mathcal{B} \implies \mathcal{B} \sim \mathcal{A})$ properties are obvious. We now prove for the transitivity of the relation \sim .

If $A \sim \mathcal{B}$ and $\mathcal{B} \sim \mathcal{C}$, with $\mathcal{C} = \{(W_{\gamma}, \zeta_{\gamma}) : \gamma \in C\}$ for some indexed set C, then for all $\alpha \in A$ and $\beta \in B$ such that $U_{\alpha} \cap V_{\beta}$ is non-empty, the map

$$\psi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap V_{\beta}) \to \psi_{\beta}(U_{\alpha} \cap V_{\beta})$$

$$\tag{5}$$

is smooth, and for all $\gamma \in C$ and $\beta \in B$ such that $W_{\gamma} \cap V_{\beta}$ is non-empty, the map

$$\zeta_{\gamma} \circ \psi_{\beta}^{-1} : \psi_{\beta}(W_{\gamma} \cap V_{\beta}) \to \zeta_{\gamma}(W_{\gamma} \cap V_{\beta})$$

$$\tag{6}$$

is smooth. Then, we take all $\alpha \in A$ and $\gamma \in C$ such that $U_{\alpha} \cap W_{\gamma}$ is non-empty. For each $x \in U_{\alpha} \cap W_{\gamma}$, we take a chart $(V, \psi) \in \mathcal{B}$ that contains $x \in X$. Then from (3) and (4), we get the composition of smooth maps

$$\zeta_{\gamma} \circ \psi^{-1} \circ \psi \circ \varphi_{\alpha}^{-1} = \zeta_{\gamma} \circ \varphi_{\alpha}^{-1}$$

from $\varphi_{\alpha}(U_{\alpha} \cap W_{\gamma}) \to \zeta_{\gamma}(U_{\alpha} \cap W_{\gamma})$ which is smooth. Analogously, we can show that the inverse map

$$\varphi_{\alpha} \circ \zeta_{\gamma}^{-1} : \zeta_{\gamma}(U_{\alpha} \cap W_{\gamma}) \to \varphi_{\alpha}(U_{\alpha} \cap W_{\gamma})$$

is also smooth. Hence, this proves transitivity and that \sim is an equivalence relation.

3. Do Exercise 3.2 (Let X and Y be topological manifolds equipped with smooth atlases \mathcal{A} and \mathcal{B} respectively. Show that $\{U \times V : U \in \mathcal{A}, V \in \mathcal{B}\}$ is a smooth atlas on the topological manifold $X \times Y$).

Solution: Let $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha}) : \alpha \in A\}$ and $\mathcal{B} = \{(V_{\beta}, \psi_{\beta}) : \beta \in B\}$ be smooth at lases on the topological manifolds X and Y respectively for some indexed set A and B. Then the product of the smooth at lases is defined by

$$\mathcal{A} \times \mathcal{B} = \{ (U_{\alpha} \times V_{\beta}, \varphi_{\alpha} \times \psi_{\beta}) : \alpha \in A, \beta \in B \}.$$

1. If X is m-manifold and Y is n-manifold, then $\varphi_{\alpha} \times \psi_{\beta} : U_{\alpha} \times V_{\beta} \to \mathbb{R}^{m+n}$ is given by

$$(\varphi_{\alpha} \times \psi_{\beta})(x,y) = (\varphi_{\alpha}^{1}(x), \dots, \varphi_{\alpha}^{m}(x), \psi_{\beta}^{1}(y), \dots, \psi_{\beta}^{n}(y))$$

for all $x \in U_{\alpha}$ and $y \in V_{\beta}$. Since, each component functions are smooth, we see that $\varphi_{\alpha} \times \psi_{\beta}$ is a smooth function on the product topology.

2. Each φ_{α} is a homeomorphism from U_{α} to an open disk $D_{\alpha} \subset \mathbb{R}^m$ and ψ_{β} is a homeomorphism from V_{β} to an open disk $D_{\beta} \subset \mathbb{R}^n$. Clearly, $D_{\alpha} \times D_{\beta}$ is an open disk in \mathbb{R}^{m+n} . We define $\varphi_{\alpha}^{-1} \times \psi_{\beta}^{-1} : D_{\alpha} \times D_{\beta} \to U_{\alpha} \times V_{\beta}$ by

 $(\varphi_{\alpha}^{-1} \times \psi_{\beta}^{-1})(z_1, \dots, z_m, z_{m+1}, \dots, z_{m+n}) = (\varphi^{-1}(z_1, \dots, z_m, z_{m+1}), \psi_{\beta}^{-1}(z_{m+1}, \dots, z_{m+n}))$

Since each component functions are continuous, we see that $\varphi_{\alpha}^{-1} \times \psi_{\beta}^{-1}$ is the continuous inverse of the map $\varphi_{\alpha} \times \psi_{\beta}$. Hence $\varphi_{\alpha} \times \psi_{\beta}$ is a homeomorphism from $U_{\alpha} \times V_{\beta}$ to an open disk in \mathbb{R}^{m+n} .

- 3. Since every point of X is in at least one U_{α} and every point of Y is in V_{β} , every point of $X \times Y$ is in some $U_{\alpha} \times V_{\beta}$ (by definition of the product topology).
- 4. If $(U_{\alpha} \times V_{\beta}) \cap (U_{\alpha'} \times V_{\beta'})$ is non-empty, then the transition map $(\varphi_{\alpha'} \times \psi_{\beta'}) \circ (\varphi_{\alpha} \times \psi_{\beta})^{-1} : (\varphi_{\alpha} \times \psi_{\beta})((U_{\alpha} \times V_{\beta}) \cap (U_{\alpha'} \times V_{\beta'})) \rightarrow (\varphi_{\alpha'} \times \psi_{\beta'})((U_{\alpha} \times V_{\beta}) \cap (U_{\alpha'} \times V_{\beta'}))$ is given by $(\varphi_{\alpha'} \times \psi_{\beta'}) \circ (\varphi_{\alpha} \times \psi_{\beta})^{-1}(z_1, \ldots, z_m, z_{m+1}, \ldots, z_{m+n}) =$

$$(\varphi_{\alpha'} \circ \varphi_{\alpha}^{-1}(z_1), \dots, \varphi_{\alpha'} \circ \varphi_{\alpha}^{-1}(z_m), \psi_{\beta'} \circ \psi_{\beta}^{-1}(z_{m+1}), \dots \psi_{\beta'} \circ \psi_{\beta}^{-1}(z_{m+n}))$$

Since each component functions are smooth, we see that the transition map is smooth.

Hence the product of atlases is an atlas in the product of topological manifolds.

4. Define $f: \mathbb{R}^2 \to \mathbb{R}^3$ by

$$f(u,v) = \left(\cos(u^2v) - e^{u-v}, \frac{u^2 - 3}{u^2 + v^2}, e^{e^{uv}}\right)$$

Compute the Jacobian matrix of f.

Solution:

$$(Jf)_{(u,v)} = \begin{bmatrix} -2uv\sin(u^2v) - e^{u-v} & u^2\sin(u^2v) + e^{u-v} \\ \frac{2uv^2 - 6u}{(u^2 + v^2)^2} & \frac{2v(3 - u^2)}{u^2 + v^2} \\ ve^{e^{uv} + uv} & ue^{e^{uv} + uv} \end{bmatrix}.$$

Homework 4

1. Precisely specify a function f and an element c of the codomain of f such that the level set of f at level c is the ellipsoid in \mathbb{R}^3 defined by the equation

$$x^2 + 2y^2 + 3z^2 = 4.$$

Solution: The given equation is the level set of the function $f: \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x, y, z) = x^2 + 2y^2 + 3z^2$$

at level c = 4.

2. Precisely specify a function f and an element c of the codomain of f such that the level set of f at level c is the graph of

$$g: \mathbb{R}^2 \to \mathbb{R}$$
$$g(x,y) = x^3 - y^4.$$

Solution: The graph of g is given by the set

$$\{(x, y, z) \in \mathbb{R}^3 : z = x^3 - y^4\}.$$

Then, this graph of g is the level set of the function $f: \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x, y, z) = x^3 - y^4 - z$$

at level c = 0.

3. Precisely specify a function f whose image is the line in \mathbb{R}^3 defined by the system of equations

$$\begin{cases} y = 2; \\ x - 3z = 5. \end{cases}$$

Solution: In the given line, the second coordinate is always 2 and the first coordinate can be written as a function of the third coordinate as x = 5 + 3z. Then, the function $f : \mathbb{R} \to \mathbb{R}^3$ defined as

$$f(x) = (5+3x, 2, x)$$

has the given line as its image.

4. Do Exercise 3.3: check that the total derivative T of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ at a point p of \mathbb{R}^n (if it exists) is unique.

Solution: Let T and T' both be the derivative of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ at the point p. Then for the total derivative T,

$$\lim_{q\to p}\frac{f(q)-f(p)-T(q-p)}{\|q-p\|}=0.$$

Let h = q - p, so we have,

$$\lim_{h \to 0} \frac{f(p+h) - f(p) - T(h)}{\|h\|} = 0.$$

Now, for T and T',

$$0 \le \lim_{h \to 0} \frac{\|T(h) - T'(h)\|}{\|h\|} = \lim_{h \to 0} \frac{\|f(p+h) - f(p) - T'(h) - (f(p+h) - f(p) - T(h))\|}{\|h\|}$$
$$\le \lim_{h \to 0} \frac{\|f(p+h) - f(p) - T'(h)\| + \|(f(p+h) - f(p) - T(h))\|}{\|h\|}$$
$$= 0$$

Then, since $tx \to 0$ as $t \to 0$, we can say that, for $x \neq 0$ and h = tx we have, (by linearity of T and T')

$$0 = \lim_{h \to 0} \frac{\|T(h) - T'(h)\|}{\|h\|} = \lim_{t \to 0} \frac{\|T(tx) - T'(tx)\|}{\|tx\|} = \lim_{t \to 0} \frac{|t|\|T(x) - T'(x)\|}{\|tx\|} = \frac{\|T(x) - T'(x)\|}{\|x\|}.$$

Hence $||T(x) - T'(x)|| \implies T = T'$. So, the total derivative T is unique.

5. Do Exercise 3.4: establish the given formula for the Jacobian of the "matrix multiplication" map

$$\mu: \mathbb{R}^{km} \times \mathbb{R}^{mn} \to \mathbb{R}^{kn}$$
.

Solution: Let T be the Jacobian of the map $\mu: \mathbb{R}^{km} \times \mathbb{R}^{mn} \to \mathbb{R}^{kn}$ at (a,b). Then T is given by

$$\lim_{(A,B)\to 0} \frac{\mu(a+A,b+B) - \mu(a,b) - T(A,B)}{\|(A,B)\|} = 0.$$

Here μ is the matrix multiplication map that takes $k \times m$ matrix and $m \times n$ matrix.

Furthermore,

$$\begin{split} &\lim_{(A,B)\to 0} \frac{\mu(a+A,b+B) - \mu(a,b) - T(A,B)}{\|(A,B)\|} = 0 \\ &\implies \lim_{(A,B)\to 0} \frac{\|\mu(a+A,b+B) - \mu(a,b) - T(A,B)\|}{\|(A,B)\|} = 0. \end{split}$$

Since $tA \to 0$ as $t \to 0$ and $tB \to 0$ as $t \to 0$, when $(A, B) \neq 0$, we can write the above limit as

$$\lim_{t \to 0} \frac{\|\mu(a+tA,b+tB) - \mu(a,b) - T(tA,tB)\|}{\|(tA,tB)\|} = \lim_{t \to 0} \frac{\|ab+tAb+taB+t^2AB - ab - tT(A,B)\|}{\|(tA,tB)\|}$$

$$= \lim_{t \to 0} \frac{|t|\|Ab+aB+tAB - T(A,B)\|}{|t|\|(A,B)\|}$$

$$= \lim_{t \to 0} \frac{\|Ab+aB+tAB - T(A,B)\|}{\|(A,B)\|}$$

$$= \frac{\|Ab+aB - T(A,B)\|}{\|(A,B)\|}$$

Since above limit equals 0, we see that the Jacobian T(A,B) evaluated at (a,b) equals Ab+aB.