

Do You Know Existing Accuracy Metrics Overrate Time-Series Anomaly Detections?

Won-Seok Hwang, Jeong-Han Yun, Jonguk Kim, Byung Gil Min The Affiliated Institute of ETRI Daejeon, South Korea

2024년 7월 9일

이규원

Department of Computer Science and Engineering Chung-Ang University

Background

• Detection method

- o A detection method is used to identify anomalies in (time-series) data
- o A detection method is an assistance tool of anomaly detection

Accuracy metric

Indicator of the detection method's performance

Motivation

Purpose

○ Time-Series Anomaly Detection의 예측이 전문가에게 더 도움이 되는 것.(accuracy metric)

Motivation

• Limitation of existing accuracy metrics

overrate imprecise/insufficient cases

fail to penalize long incorrect prediction

Proposed Metrics: eTaPR

• eTaR (recall like score)

$$\circ eTaR = \frac{1}{|A|} \sum_{a \in A} \left(\frac{s^d(a) + s^d(a) \times s^p(a)}{2} \right)$$

$$\circ \quad s^{d}(a) = \begin{cases} 1, & \text{if } a \in A^{d} \\ 0, & \text{otherwise} \end{cases} \quad s^{p}(a) = \frac{\sum_{p \in P^{c}} |a \cap p|}{|a|}$$

weighting scheme

eTaP(precision like score)

$$\circ eTaP = \sum_{p \in P} \left(\frac{s^d(p) + s^d(p) \times s^p(p)}{2} \right) \times w_p$$

$$\circ \quad s^{d}(p) = \begin{cases} 1, & \text{if } p \in P^{c} \\ 0, & \text{otherwise} \end{cases} \quad s^{p}(p) = \frac{\sum_{a \in A^{d}} |a \cap p|}{|p|} \quad w_{p} = \frac{\sqrt{|p|}}{\sum_{q \in P} |q|}$$

• Weighting scheme – long incorrect predicton

 \circ prediction 길이를 가중치로 하는 w^p 를 precision like score eTaP에 사용한다.

$$\circ w_p = \frac{\sqrt{|p|}}{\sum_{q \in P} \sqrt{|q|}}$$

Cross-referencing – imprecise, insufficient

- \circ A^d 집합과 P^c 집합이 서로 cross-reference해서 insufficient case, imprecise case를 filter한다.
- \circ A^d 집합과 P^c 집합을 eTaP, eTaR에 사용한다.

$$\circ A^d = \left\{ a \mid a \in A \text{ and } \frac{\sum_{p \in P^c} |a \cap p|}{|a|} \ge \theta_r \right\}$$

$$P^c = \left\{ p \mid p \in P \text{ and } \frac{\sum_{a \in A^d} |a \cap p|}{|p|} \ge \theta_p \right\}$$

• Cross-referencing – imprecise, insufficient

 \circ A^d 집합과 P^c 집합이 서로 cross-reference해서 insufficient case, imprecise case를 filter한다.

$$\circ A^d = \left\{ a \mid a \in A \text{ and } \frac{\sum_{p \in P^c} |a \cap p|}{|a|} \ge \theta_r \right\}$$

$$\circ P^{c} = \left\{ p \mid p \in P \text{ and } \frac{\sum_{a \in A^{d}} |a \cap p|}{|p|} \ge \theta_{p} \right\}$$

$$\circ \ \mathsf{P} \to A^d(1), A^d(1) \to P^c(1)$$

$$\bigcirc \quad P^c(1) \rightarrow A^d(2) \text{ , } A^d(2) \rightarrow P^c(2), P^c(2) \rightarrow A^d(3) \text{ ... until } P^c(i) = P^c(i-1) \text{ and } A^d(i) = A^d(i-1)$$

• Cross-referencing - imprecise, insufficient

o A^d 집합과 P^c 집합이 서로 cross-reference해서 insufficient case, imprecise case를 filter한다.

$$\circ A^d = \left\{ a \mid a \in A \text{ and } \frac{\sum_{p \in P^c} |a \cap p|}{|a|} \ge \theta_r \right\}$$

$$\circ P^{c} = \left\{ p \mid p \in P \text{ and } \frac{\sum_{a \in A^{d}} |a \cap p|}{|p|} \ge \theta_{p} \right\}$$

$$\circ \mathsf{P} \to A^d(1), A^d(1) \to P^c(1)$$

$$\bigcirc \quad P^c(1) \rightarrow A^d(2) \text{ , } A^d(2) \rightarrow P^c(2), P^c(2) \rightarrow A^d(3) \text{ ... until } P^c(i) = P^c(i-1) \text{ and } A^d(i) = A^d(i-1)$$

• Cross-referencing - imprecise, insufficient

 \circ A^d 집합과 P^c 집합이 서로 cross-reference해서 insufficient case, imprecise case를 filter한다.

$$\circ A^d = \left\{ a \mid a \in A \text{ and } \frac{\sum_{p \in P^c} |a \cap p|}{|a|} \ge \theta_r \right\}$$

$$\circ P^{c} = \left\{ p \mid p \in P \text{ and } \frac{\sum_{a \in A^{d}} |a \cap p|}{|p|} \ge \theta_{p} \right\}$$

$$\circ \mathsf{P} \to A^d(1), A^d(1) \to P^c(1)$$

$$\bigcirc \quad P^c(1) \rightarrow A^d(2) \text{ , } A^d(2) \rightarrow P^c(2), P^c(2) \rightarrow A^d(3) \text{ ... until } P^c(i) = P^c(i-1) \text{ and } A^d(i) = A^d(i-1)$$

• Cross-referencing - imprecise, insufficient

 \circ A^d 집합과 P^c 집합이 서로 cross-reference해서 insufficient case, imprecise case를 filter한다.

$$\circ A^d = \left\{ a \mid a \in A \text{ and } \frac{\sum_{p \in P^c} |a \cap p|}{|a|} \ge \theta_r \right\}$$

$$\circ P^{c} = \left\{ p \mid p \in P \text{ and } \frac{\sum_{a \in A^{d}} |a \cap p|}{|p|} \ge \theta_{p} \right\}$$

$$\circ \ \mathsf{P} \to A^d(1), A^d(1) \to P^c(1)$$

$$\bigcirc \quad P^c(1) \rightarrow A^d(2) \text{ , } A^d(2) \rightarrow P^c(2), P^c(2) \rightarrow A^d(3) \text{ ... until } P^c(i) = P^c(i-1) \text{ and } A^d(i) = A^d(i-1)$$

Proposed Metrics: eTaPR

• eTaR (recall like score)

$$\circ eTaR = \frac{1}{|A|} \sum_{a \in A} \left(\frac{s^d(a) + s^d(a) \times s^p(a)}{2} \right)$$

$$\circ \quad s^{d}(a) = \begin{cases} 1, & \text{if } a \in A^{d} \\ 0, & \text{otherwise} \end{cases} \quad s^{p}(a) = \frac{\sum_{p \in P^{c}} |a \cap p|}{|a|}$$

cross-referencing

weighting scheme

• eTaP(precision like score)

$$\circ eTaP = \sum_{p \in P} \left(\frac{s^d(p) + s^d(p) \times s^p(p)}{2} \right) \times w_p$$

$$\circ \quad s^{d}(p) = \begin{cases} 1, & \text{if } p \in P^{c} \\ 0, & \text{otherwise} \end{cases} \quad s^{p}(p) = \frac{\sum_{a \in A^{d}} |a \cap p|}{|p|} \quad w_{p} = \frac{\sqrt{|p|}}{\sum_{q \in P} |q|}$$

Hypothetical datasets

Imprecise cases (also lengthy incorrect prediction)

(b) Recall-like scores

Experimental Results

Hypothetical datasets

Imprecise cases (also lengthy incorrect prediction)

Table 2: Evaluations on the first hypothetical dataset (i.e., A^h and P^{α})

Pred.	PR			PA-PR			TSAD			TaPR			eTaPR		
	Prec.	Rec.	F1	Prec.	Rec.	F1	RbP	RbR	F1	TaP	TaR	F1	eTaP	eTaR	F1
$P^{\alpha=25K}$	0.18	1.00	0.31	0.18	1.00	0.31	0.97	1.00	0.98	0.97	1.00	0.98	0.70	0.74	0.72
$P^{\alpha=50K}$	0.10	1.00	0.18	0.10	1.00	0.18	0.96	1.00	0.98	0.96	1.00	0.98	0.53	0.50	0.51
$P^{\alpha=75K}$	0.07	1.00	0.13	0.07	1.00	0.13	0.92	1.00	0.96	0.93	1.00	0.96	0.31	0.24	0.27
$P^{\alpha=100K}$	0.05	1.00	0.10	0.05	1.00	0.10	0.00	1.00	0.00	0.03	1.00	0.06	0.00	0.00	-

Hypothetical datasets

insufficient cases

(b) Recall-like scores

Hypothetical datasets

incorrect predictions(length and frequency)

Experimental Results

SWaT dataset

(a) Predictions and anomalies on SWaT dataset.

Table 3: Evaluations for the detection methods on the SWaT dataset (Bold indicates the best F1 score in each metric.)

Pred.	PR			PA-PR			TSAD			TaPR			eTaPR		
	Prec.	Rec.	F1	Prec.	Rec.	F1	RbP	RbR	F1	TaP	TaR	F1	eTaP	eTaR	F1
RNNv1	0.81	0.78	0.79	0.84	0.95	0.89	0.49	0.41	0.45	0.68	0.53	0.60	0.59	0.55	0.57
RNNv2	0.19	0.80	0.31	0.21	0.92	0.34	0.55	0.59	0.57	0.83	0.63	0.72	0.17	0.20	0.18
OCSVM	0.65	0.75	0.70	0.68	0.85	0.76	0.07	0.27	0.11	0.07	0.30	0.11	0.23	0.28	0.25
iForest	0.17	0.95	0.29	0.18	0.99	0.30	0.04	0.68	0.08	0.05	0.82	0.09	0.07	0.12	0.09

Experimental Results

HAI dataset

(b) Predictions and anomalies on HAI dataset.

Table 4: Evaluations for the detection methods on the HAI datase (Bold indicates the best F1 score in each metric.)

Pred.	PR			PA-PR			TSAD			TaPR			eTaPR		
	Prec.	Rec.	F1	Prec.	Rec.	F1	RbP	RbR	F1	TaP	TaR	F1	eTaP	eTaR	F1
RNNv1	0.80	0.73	0.76	0.85	0.95	0.90	0.74	0.35	0.48	0.84	0.82	0.83	0.77	0.80	0.78
RNNv2	0.23	0.84	0.36	0.25	0.93	0.39	0.56	0.79	0.66	0.73	0.84	0.78	0.51	0.72	0.60
OCSVM	0.03	0.49	0.06	0.03	0.52	0.06	0.03	0.50	0.06	0.05	0.57	0.09	0.00	0.01	-
iForest	0.06	0.51	0.11	0.06	0.55	0.11	0.03	0.40	0.06	0.05	0.44	0.09	0.00	0.01	-

CAU

Conclusion

- Time-Series Anomaly Detection : Expert Scenario를 생각해야한다.
- cross-referencing (eTaPR)
 - imprecise, insufficient prediction, anomaly에 점수 주는 것을 방지
- weighting scheme (eTaP)
 - o penalize lengthy incorrect prediction