13436 - Anitmetica modulara (in Zn) (Zn, +, ·) inel comutativ ->(Zn,+) grup comptte >(Zn, ·) monoid comutative Ex: Z7 = 40,1,2,3,4,5,64 -a = opresul elen. a = simetual à raport as ", t" -3 = x pt care 3+x=0=7-3=4à = inversul elen-a = simetimel fut à de ..." 3=x, trave 3x=1=73=5=75=32=4=)4=2; 6=6 Z10=40,1,...,94 3=7; 5 znu exista grundfilor sut: U(Zn)={x ∈ Zn | existà x } The: U(Za)=4x + Zal cumdc(x,n)=1}

$$U(Z_{10}) = \{1, 3, 7, 9\}$$
 $3^{-1} = 7 = 3$
 $(U(Z_{10}),)$ $3^{-1} = 1$ $3^{-1} = 9$
 $(U(Z_{10}),)$ $3^{-1} = 9$

$$3x+2=1 \text{ in } Z_{7}$$

$$3^{-1} \cdot 3 \cdot X = (-1) \cdot 3^{-1}$$

 $X = (-1) \cdot 5 = -5 = 2$

$$2x^{2}-5x+1=3 \text{ in } Z_{11}$$

$$2x^{2}-5x-2=0$$

$$\Delta = 25 - 4.2.(-2) = 3 + 5 = 8$$

$$\sqrt{8} = a(=) \ a = 8$$

$$\sqrt{2} = 0, 1^{2} = 1, 2^{2} = 4, 3^{2} = 9, 4 = 5, 5^{2} = 3, 6 = 3, 6 = 3, 6 = 3, 6 = 3, 6 = 3, 6 = 3, 6 = 10$$

$$= 1 \sqrt{8} \text{ m. exista in } Z_{11} = 1 = 1$$

•
$$x^{2}-5x+6=0$$
 i \mathbb{Z}_{13}
 $\Delta = 25-24=1=1$ $\int \Delta = \{1,12\} - \{1,-1\}$
 $x_{12} = (5\pm\sqrt{1}) \cdot 2^{-1}$
 $x_{1} = (6\cdot7=42=3) = 12 \times (2\cdot3)$
 $x_{2} = (4\cdot7) = 28=2$

logation diocet logab = C = 0 a = b log3 in $Z_5 = 0$ $2^{x} = 3$ in Z_5 $2^{0} = 1$; $2^{1} = 2^{2}$; $2^{2} = 4$; $2^{3} = 3$ in Z_5

log3 i
$$Z_7 = 12^x = 3$$
 i Z_7
 $2^0 = 1^1$, $2^7 = 2$; $2^2 = 4$; $2^3 = 1$; $2^4 = 2$; $2^5 = 4$

=) Am existi.

log 5 in $Z_n (=) Q^x = b$ in Z_n , $x \in \{0,1,...,n-1\}$

Teorema his Lagrange of Jupani

 (G, \cdot) Jup, $g \in G/=)$ $g^n = e$.

Dacā #G=n

Obs: (Z_p^*) Jup # $Z_p^* = p-1$.

p W. prim

 (Z_{231}^{*}) log 11 in Z_{23} $5^{\times} = 11$ in Z_{23} , $\times \in \{0, ..., 2^{2}\}$

$$4^{100} = (4^{2})^{50} = (16)^{50} = 5^{50} = (5^{2})^{25} = 1^{25} = 1$$

$$= 3^{25} = (3^{5})^{5}$$

$$3^{5} = 3^{2} \cdot 3^{2} \cdot 3 = 1$$

AEMn(Zt)

inversabil in Zt (=) det A etr element

inversabil in Zt (=) det A EU(Zt) (=)

coundc(det A, t) = 1