Learning Dexterous In-Hand Manipulation (18.08)

Seungjae Ryan Lee

Human vs Robot

- Humans perform various dexterous manipulation tasks with hands
- Robots are designed for specific tasks in constrained settings
 - Unable to utilize complex end-effectors

Robot with Hand

- Human hand has been an inspiration for research
- Limited results due to complexity of system
 - Simulation-only manipulation (no attempt on transferring)
 - Physical-only manipulation (slow and costly to run)

The Task: In-Hand Object Reorientation

- Object placed on robot hand
- Redirect the object to desired target configuration in-hand
- New goal provided if current goal achieved
- Continues until the object is dropped or after 50 successes

Dactyl: Approach

- Transfer Learning from simulator to real environment
 - Use extensive randomization and effects
 - Use memory augmented control policies to learn how to adapt
 - Use distributed RL

Dactyl: Results

- Shows unprecedented levels of dexterity
- Discovers human-like grasp types without guidance

The Real World: Shadow Dexterous Hand

- 24 Degrees of Freedom (DOF)
- Hand: Cartesian position of 5 fingertips
- Object: Cartesian position and 3 RGB cameras (to handle real-world)

The Simulation: MuJoCo and Unity

- Simulate the physics with MuJoCo
- Render images with Unity
- Rough approximation of physical setup
 - Direct torque vs. Tendon-based actuation
 - Rigid body vs. Deformable body contact model
 - Creates a "reality gap"

Actions and Rewards

- Actions: relative joint angles
 - Discretized action into 11 bins (better performance than continuous)
 - Smoothed with exponential moving average to prevent robot breakage
- Reward: $r_t = d_t d_{t+1}$
 - d_t , d_{t+1} are angles between desired and goal object orientation before and after transition
 - +5 when goal is achieved
 - -20 when object is dropped

Fostering Transferability: Observations

- Avoid adding some sensors as observations
 - Subject to state-dependent noise that cannot be modelled
 - Can be noisy and hard to calibrate
- Ex) Fingertip tactile sensor
 - Atmospheric pressure
 - Temperature
 - Shape of contact
 - Intersection geometry

Fostering Transferability: Randomization

- Robust: Less likely to overfit to the simulated environment
- More likely to transfer successfully to the physical robot

- Types of randomizations:
 - Observation noise
 - Physics randomizations
 - Unmodeled effects
 - Visual appearance randomizations

Randomization: Observation Noise

- Correlated noise sampled each episode
- Uncorrelated noise sampled each timestep

Table 7: Standard deviation of observation noise.

Measurement	Correlated noise	Uncorrelated noise
fingertips positions	1mm	2mm
object position	5mm	1mm
object orientation	0.1rad	0.1rad
fingertip marker positions	3mm	
hand base marker position	1mm	

Randomization: Physics

- Parameters centered around values found during model calibration
- Sampled each episode

Table 1: Ranges of physics parameter randomizations.

Parameter	Scaling factor range	Additive term range
object dimensions	uniform($[0.95, 1.05]$)	
object and robot link masses	uniform([0.5, 1.5])	
surface friction coefficients	uniform([0.7, 1.3])	
robot joint damping coefficients	loguniform([0.3, 3.0])	
actuator force gains (P term)	loguniform([0.75, 1.5])	
joint limits		$\mathcal{N}(0, 0.15) \text{ rad}$
gravity vector (each coordinate)		$\mathcal{N}(0, 0.4)~\mathrm{m/s^2}$

Randomization: Unmodeled effects

- Physical robot experiences effects not modeled in simulation
- Accommodated by simulating such effects
 - Simulate motor backlash
 - Simulate action delay and noise
 - Simulate motion capture tracking errors
- Sometimes apply random forces on object

Randomization: Visual Appearance

- Randomize various visual aspects
 - camera position / intrinsics
 - Lighting conditions
 - Pose of hand and object
 - Materials and textures

Step A: Collect Data

- Use just simulations to generate data
- Randomized environments

Step B: Train Control Policy for Simulation

- Map observed states and rewards to actions
 - Fingertip locations: available in both simulation and physical robot
 - Object pose: available only in simulation

Policy Architecture: LSTM

- Randomizations persist across episode
- Agent can identify the environment's property and adapt accordingly
- Use Long Short-term Memory (LSTM)

Policy Architecture: PPO

- Trained with Proximal Policy Optimization (PPO)
 - Policy network (actor) and value network (critic) has same architecture

Policy Architecture: Asymmetric AC

- Value network has access to more info not available in real robots
- Simplifies learning good value estimates

Table 2: Observations of the policy and value networks, respectively.

Input	Dimensionality	Policy network	Value network
fingertip positions	15D	✓	✓
object position	3D	\checkmark	\checkmark
object orientation	4D (quaternion)	\times^4	\checkmark
target orientation	4D (quaternion)	×	\checkmark
relative target orientation	4D (quaternion)	\checkmark	\checkmark
hand joints angles	24D	×	\checkmark
hand joints velocities	24D	×	\checkmark
object velocity	3D	×	\checkmark
object angular velocity	4D (quaternion)	×	✓

Distributed Training with Rapid

Same distributed implementation as OpenAl Five

Step C: Train Pose Estimator

- Estimate the object's pose from vision
 - Object's pose is not available in real-world

State Estimation from Vision

- Gather 1M states from simulator with trained policy
 - 3 RGB cameras with different viewpoints
- Predict both position and orientation of object
- Use minibatch gradient descent to minimize MSE
 - Shared CONV, RESNET, SSM layers between cameras
 - Use data augmentation

Step D: Combine and Transfer

Combine B and C to create an agent usable in real world

Qualitative Results

• Naturally learn humanlike grasps dexterous manipulation strategies

Quantitative Results

- # of consecutive successful rotations up to 50 until object is dropped
- Challenging to obtain due to robot breakage during experiments

Simulated task	Mean	Median	Individual trials (sorted)
Block (state)	43.4 ± 13.8	50	-
Block (state, locked wrist)	44.2 ± 13.4	50	-
Block (vision)	30.0 ± 10.3	33	-
Octagonal prism (state)	29.0 ± 19.7	30	-
Physical task			
Block (state)	18.8 ± 17.1	13	50, 41, 29, 27, 14, 12, 6, 4, 4, 1
Block (state, locked wrist)	26.4 ± 13.4	28.5	50, 43, 32, 29, 29, 28, 19, 13, 12, 9
Block (vision)	15.2 ± 14.3	11.5	46, 28, 26, 15, 13, 10, 8, 3, 2, 1
Octagonal prism (state)	7.8 ± 7.8	5	27, 15, 8, 8, 5, 5, 4, 3, 2, 1

Quantitative Results: Reality Gap

• # of consecutive successful rotations up to 50 until object is dropped

Simulated task	Mean	Median	Individual trials (sorted)	
Block (state)	43.4 ± 13.8	50	-	
Block (state, locked wrist)	44.2 ± 13.4	50	-	
Block (vision)	30.0 ± 10.3	33	-	
Octagonal prism (state)	29.0 ± 19.7	30	-	
Physical task				
Block (state)	18.8 ± 17.1	13	50, 41, 29, 27, 14, 12, 6, 4, 4, 1	
Block (state, locked wrist)	26.4 ± 13.4	28.5	50, 43, 32, 29, 29, 28, 19, 13, 12, 9	
Block (vision)	15.2 ± 14.3	11.5	46, 28, 26, 15, 13, 10, 8, 3, 2, 1	
Octagonal prism (state)	7.8 ± 7.8	5	27, 15, 8, 8, 5, 5, 4, 3, 2, 1	

Quantitative Results: Vision

Vision model is comparable to state model in real world

Simulated task	Mean	Median	Individual trials (sorted)
Block (state)	43.4 ± 13.8	50	-
Block (state, locked wrist)	44.2 ± 13.4	50	-
Block (vision)	30.0 ± 10.3	33	-
Octagonal prism (state)	29.0 ± 19.7	30	-
Physical task			
Block (state)	18.8 ± 17.1	13	50, 41, 29, 27, 14, 12, 6, 4, 4, 1
Block (state, locked wrist)	26.4 ± 13.4	28.5	50, 43, 32, 29, 29, 28, 19, 13, 12, 9
Block (vision)	15.2 ± 14.3	11.5	46, 28, 26, 15, 13, 10, 8, 3, 2, 1
Octagonal prism (state)	7.8 ± 7.8	5	27, 15, 8, 8, 5, 5, 4, 3, 2, 1

Quantitative Results: Different Object

- Learn successful policies that transfer, but larger reality gap
- Failed on spheres due to rolling behaviors

Simulated task	Mean	Median	Individual trials (sorted)
Block (state)	43.4 ± 13.8	50	-
Block (state, locked wrist)	44.2 ± 13.4	50	-
Block (vision)	30.0 ± 10.3	33	-
Octagonal prism (state)	29.0 ± 19.7	30	-
Physical task			
Block (state)	18.8 ± 17.1	13	50, 41, 29, 27, 14, 12, 6, 4, 4, 1
Block (state, locked wrist)	26.4 ± 13.4	28.5	50, 43, 32, 29, 29, 28, 19, 13, 12, 9
Block (vision)	15.2 ± 14.3	11.5	46, 28, 26, 15, 13, 10, 8, 3, 2, 1
Octagonal prism (state)	7.8 ± 7.8	5	27, 15, 8, 8, 5, 5, 4, 3, 2, 1

Ablation of Randomizations

• Randomizations are vital to real-world performance

Training environment	Mean	Median	Individual trials (sorted)
All randomizations (state)	18.8 ± 17.1	13	50, 41, 29, 27, 14, 12, 6, 4, 4, 1
No randomizations (state)	1.1 ± 1.9	0	6, 2, 2, 1, 0, 0, 0, 0, 0, 0
No observation noise (state)	15.1 ± 14.5	8.5	45, 35, 23, 11, 9, 8, 7, 6, 6, 1
No physics randomizations (state)	3.5 ± 2.5	2	7, 7, 7, 3, 2, 2, 2, 2, 2, 1
No unmodeled effects (state)	3.5 ± 4.8	2	16, 7, 3, 3, 2, 2, 1, 1, 0, 0
All randomizations (vision)	15.2 ± 14.3	11.5	46, 28, 26, 15, 13, 10, 8, 3, 2, 1
No observation noise (vision)	5.9 ± 6.6	3.5	20, 12, 11, 6, 5, 2, 2, 1, 0, 0

Ablation of Randomizations: Observation

- Little performance drop for observation noise
 - Due to accurate motion capture system
 - Vital when pose estimates are much more noisy

Training environment	Mean	Median	Individual trials (sorted)
All randomizations (state)	18.8 ± 17.1	13	50, 41, 29, 27, 14, 12, 6, 4, 4, 1
No randomizations (state)	1.1 ± 1.9	0	6, 2, 2, 1, 0, 0, 0, 0, 0, 0
No observation noise (state)	15.1 ± 14.5	8.5	45, 35, 23, 11, 9, 8, 7, 6, 6, 1
No physics randomizations (state)	3.5 ± 2.5	2	7, 7, 7, 3, 2, 2, 2, 2, 2, 1
No unmodeled effects (state)	3.5 ± 4.8	2	16, 7, 3, 3, 2, 2, 1, 1, 0, 0
All randomizations (vision)	15.2 ± 14.3	11.5	46, 28, 26, 15, 13, 10, 8, 3, 2, 1
No observation noise (vision)	5.9 ± 6.6	3.5	20, 12, 11, 6, 5, 2, 2, 1, 0, 0

Ablation of Randomizations: Limitations

• Takes ≈ 33 times more time (100 years of experience vs 3 years)

Effect of Memory in Policies

- LSTM achieves better performance than feedforward (FF) network
 - Was able to predict environment randomizations
 - Ex) 80% accuracy in predicting if the block's size was bigger or smaller than the average

Network architecture	Mean	Median	Individual trials (sorted)
LSTM policy / LSTM value (state)	18.8 ± 17.1	13	50, 41, 29, 27, 14, 12, 6, 4, 4, 1
FF policy / LSTM value (state)	4.7 ± 4.1	3.5	15, 7, 6, 5, 4, 3, 3, 2, 2, 0
FF policy / FF value (state)	4.6 ± 4.3	3	15, 8, 6, 5, 3, 3, 2, 2, 2, 0

Effect of Memory in Policies

Sample Complexity and Scale

Diminishing return with further scaling

Sample Complexity and Scale

• Little affect on how fast the agent learns w.r.t years of experience

Vision Performance

- Low error on synthetic data
 - Successful Unity-to-MuJoCo transfer
- Higher error on real data
 - Reality gap, noises, occlusions, etc...
 - Still performs reasonably well

	•	-
Test set	Rotation error	Position error
Rendered images (Unity)	$2.71^{\circ} \pm 1.62$	$3.12\mathrm{mm}\pm1.52$
Rendered images (MuJoCo)	$3.23^{\circ} \pm 2.91$	$3.71\mathrm{mm} \pm 4.07$
Real images	$5.01^{\circ} \pm 2.47$	$9.27\text{mm} \pm 4.02$

What Surprised Us

- 1. Tactile sensing was not necessary
- 2. Randomization for one object generalized to similar objects
 - System for a block worked well for an octagonal prism
 - Had trouble with sphere due to its rolling behavior
- 3. System engineering is as important as good algorithm
 - System without timing bug performed consistently better

What Didn't Work

- 1. Faster reaction time ≠ Better Performance
 - No noticeable difference between 40ms and 80ms
- 2. Using real data for training vision model did not work
 - Latency and measurement error
 - Hassle to collect due to configuration changes

Thank you!

Original Paper: https://arxiv.org/abs/1808.00177

Paper Recommendations:

- Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping
- Asymmetric Actor Critic for Image-Based Robot Learning
- Generalizing from Simulation

You can find more content in www.endtoend.ai/slides

