11.9 习题

张志聪

2025年1月6日

11.9.1

由命题 11.6.1 可知,单调函数 f 在 [0,1] 上是黎曼可积的。于是由定理 11.9.1 可知,F 函数在 [0,1] 上是连续的。有一点需要注意,虽然 f 在有理 数点不连续,但不能以此来推断 F 函数在有理数点处不可微。

• $q \in (0,1)$

q 同时是 $[0,1] \cap (q,+\infty)$ 和 $[0,1] \cap (-\infty,q)$ 的附着点, $\frac{F(x)-F(q)}{x-q}$ 在 q 处可微分(即存在极限),当且仅当左右极限存在且相等。我们按照这个框架来证明。(书中 P189 处有说明)

由习题 9.8.5 可知,存在一个某个自然数 n 使得 q = q(n)。

当 x > q 时,由习题 9.8.5(b) 可知

$$\frac{F(x) - F(q)}{x - q} = \frac{\int_{[q,x]} f}{x - q}$$

$$\ge \frac{(f(q) + 2^{-n})(x - q)}{x - q}$$

$$= f(q) + 2^{-n}$$

当 x < q 时,类似地

$$\frac{F(x) - F(q)}{x - q} \le f(q)$$

于是

$$\lim_{x \to q; x \in (q,1]} \ge f(q) + 2^{-n}$$

$$\lim_{x \to q; x \in [0,q)} \le f(q)$$

综上, F 在 q 处不可微。

• q = 0 or q = 1 通过左右极限的方式无法证明,当前还未找到解决方法。

11.9.2

(1) 方法 1,利用推论 10.2.9 如果 I 是空集或者单点集,那么结论是平凡的。

设 $x_0 \in I$,任意 $x \in I, x \neq x_0$ 。因为 F,G 都是 f 的原函数,由定义 11.9.3 可知,F,G 都在 I 上可微,于是由推论 10.2.9 可知,存在 $y \in [x,x_0]$ (这里假设 $x > x_0$, $x < x_0$ 同理) 使得

$$(F-G)'(y) = \frac{(F-G)(x) - (F-G)(x_0)}{x - x_0}$$

$$F'(y) - G'(y) = \frac{(F-G)(x) - (F-G)(x_0)}{x - x_0}$$

$$f(y) - f(y) = \frac{(F-G)(x) - (F-G)(x_0)}{x - x_0}$$

$$0 = \frac{(F-G)(x) - (F-G)(x_0)}{x - x_0}$$

$$0 = (F-G)(x) - (F-G)(x_0)$$

$$F(x) - G(x) = F(x_0) - G(x_0)$$

令 $C = F(x_0) - G(x_0)$, 于是任意 $x \in I \perp x \neq x_0$ 都有

$$F(x) = G(x) + C$$

 $\stackrel{\text{def}}{=} x = x_0$

$$G(x_0) + C$$

= $G(x_0) + F(x_0) - G(x_0)$
= $F(x_0)$

综上, 命题得证。

(2) 方法 2

任意 $x \in I$, 我们有

$$(F - G)'(x) = F'(x) - G'(x)$$
$$= f(x) - f(x)$$
$$= 0$$

令 $h: I \to \mathbb{R}, h = (F - G)'(x)$,于是 h 是 I 上的常数函数,常数值为 0,所以 h 是黎曼可积的。设 $x_0 \in I$,任意 $x \in I, x \neq x_0$,我们有(这里假设 $x > x_0$, $x < x_0$ 同理)

$$\int_{[x_0,x]} h = (F - G)(x) - (F - G)(x_0) = 0$$
$$F(x) - G(x) = F(x_0) - G(x_0)$$

令 $C = F(x_0) - G(x_0)$, 于是任意 $x \in I$ 且 $x \neq x_0$ 都有

$$F(x) = G(x) + C$$

 $\stackrel{\text{def}}{=} x = x_0$

$$G(x_0) + C$$

= $G(x_0) + F(x_0) - G(x_0)$
= $F(x_0)$

综上, 命题得证。

11.9.3

• =

f 是 [a,b] 上的单调递增函数,由命题 11.6.1 可知,f 在 [a,b] 上是黎 曼可积的。

于是由定理 11.9.1(微积分第一基本定理)可知,f 在 x_0 处连续,则 F 在 x_0 处可微。

 $\bullet \Rightarrow$

反证法,假设 f 在 x_0 处不连续,那么有定义 9.3.6 和 f 是单调递增函数可知,存在 $\epsilon_0>0$ 使得时

$$f(x) > f(x_0) + \epsilon_0, if \ x > x_0$$

 $f(x) < f(x_0) - \epsilon_0, if \ x < x_0$

我们有

$$\begin{cases} F'(x_0^-) = \lim_{x \to x_0^-} \frac{F(x) - F(x_0)}{x - x_0} \\ F'(x_0^+) = \lim_{x \to x_0^+} \frac{F(x) - F(x_0)}{x - x_0} \end{cases}$$

结合两组式子, 我们有

$$F'(x_0^-) = \lim_{x \to x_0^-} \frac{F(x) - F(x_0)}{x - x_0} \le f(x_0) - \epsilon$$
$$F'(x_0^+) = \lim_{x \to x_0^+} \frac{F(x) - F(x_0)}{x - x_0} \ge f(x_0) + \epsilon$$

于是

$$F'(x_0^-) \neq F'(x_0^+)$$

与题设 F 在 x_0 处可微矛盾。

特别地, x = a or x = b 还未找到证明方法。