

SF1625 Envariabelanalys Tentamen Fredagen 9 juni

Skrivtid: 8:00-13:00 Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen utgörs av de första tre uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt och antalet bonuspoäng framgår av din resultatsida.

De tre följande uppgifterna utgör del B och de sista tre uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	Е	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

DEL A

- 1. Halveringstiden för den radioaktiva isotopen kol-14 är cirka 5730 år. Levande organismer har en ungefärligen konstant halt kol-14, men i döda organismer minskar ämnet i en takt som är proportionell mot mängden av ämnet, dvs mängden y(t) uppfyller en differentialekvation på formen y' = ky för någon konstant k. Ett visst benfragment innehåller 80% av den ursprungliga mängden kol-14. Hur gammalt är benfragmentet? (4 p)
- 2. Låt R vara det begränsade område i första kvadranten som ligger över kurvan $y=x^2$ och under kurvan $y=8-x^2$. Bestäm volymen av den rotationskropp som genereras då R roteras ett varv runt y-axeln. (4 p)
- 3. Ellipsen E ges som lösningar till ekvationen $3x^2+4y^2=5$. Bestäm en ekvation för linjen L som tangerar E i punkten $P=(1,\sqrt{2}/2)$. (4 p)

DEL B

4. Beräkna nedanstående integraler:

(a)
$$\int_{1}^{e} x^{5} \ln x \, dx.$$
 (2 p)

(a)
$$\int_{1}^{e} x^{5} \ln x \, dx$$
. (2 p)
(b) $\int_{3}^{4} \frac{6}{x^{2} - x - 2} \, dx$. (2 p)

- 5. Låt P(x) vara andra ordningens Taylorpolynom kring x = 0 till funktionen $f(x) = e^x$.
 - (a) Använd P(x) för att ge ett närmevärde till \sqrt{e} .
- (2p)(2 p)
- (b) Avgör om felet i närmevärdet är större eller mindre än 0.02.
- 6. Betrakta funktionen f som ges av $f(x) = \frac{x^3}{2x^2 1}$. Skissa kurvan y = f(x) med hjälp av en undersökning där det framgår var funktionen är växande respektive avtagande, vilka lokala extrempunkter funktionen har, vilka funktionens nollställen är och vilka asymptoter funktionskurvan har. (4 p)

DEL C

- 7. (a) För vilka reella x gäller sambandet $\sin(\arcsin x) = x$? (2 p)
 - (b) Härled derivatan av $\arcsin x$ genom implicit derivering av detta samband. (2 p)
- 8. Bevisa, genom beräkning av en integral, formeln $A=\pi ab$ för arean A av en ellips med halvaxlarna a och b. (4 p)
- 9. Bevisa att formeln

$$\int_0^{\pi/2} \sin^n x \, dx = \frac{n-1}{n} \int_0^{\pi/2} \sin^{n-2} x \, dx$$
 gäller för alla heltal $n \ge 2$. (4 p)