ÁLGEBRA II (61.08 - 81.02)

Evaluación Integradora Duración: 90 minutos.

Primer cuatrimestre – 2020 3/II/21 - 13:00 hs.

Apellido y Nombres:

Padrón:

- **1.** Sea $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ el \mathbb{R} -espacio euclídeo respecto del cual el triángulo de vértices $\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ es un triángulo equilátero de área $\frac{\sqrt{3}}{4}$. Calcular la distancia del vector $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$ al subespacio gen $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$.
- **2.** Sea $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & a & b \\ 0 & 0 & 3 \end{bmatrix} \in \mathbb{R}^{3\times 3}$. Sabiendo que dim $(\operatorname{nul}(A 3I)) = 2$, hallar todos los $Y_0 \in \mathbb{R}^3$ tales que la solución del problema de valores iniciales

$$\begin{cases} Y' = AY \\ Y(0) = Y_0 \end{cases}$$

satisface que $\lim_{t\to +\infty} Y(t) = 0$.

- 3. Sea $T \in \mathcal{L}(\mathbb{R}^2)$ la transformación lineal definida por T(x) := Ax, donde $A = \begin{bmatrix} 7 & 5 \\ -1 & 5 \end{bmatrix}$. Caracterizar geométricamente y graficar la imagen por T de la circunferencia unitaria $S_1 = \{x \in \mathbb{R}^2 : ||x|| = 1\}$.
- **4.** Hallar el mínimo de $3x_1^2 + 8x_1x_2 + 9x_2^2$ sujeto a la restricción $x_1^2 + 3x_2^2 = 3$ y los vectores que lo realizan.