

BorderDet: Border Feature for Dense Object Detection

Han Qiu, Yuchen Ma, Zeming Li, Songtao Liu, and Jian Sun

yy/mm/dd 調和 太郎

Myself

- Name: Hossain Md Saddam
- Profile
 - July 2019, Joined Chowagiken Corporation as a ML Engineer.
 - I worked on both CV and NLP team.
- Today I am going to present a state of the art detection approach called borderDet.

Brief summary of the BorderDet

- There are two types of conventional approach for the detection task which are single-stage and two-stage detection.
- BorderDet added a module call BAM on both single-stage and two stage. Its achieved state of the art result.
- In this paper BorderDet proprosed a method which is called Border-Align to extract the border features which are extreme points of the border.
- With ResNet-50 backbone, this method improves single-stage detector FCOS by 2.8 AP gains (38.6 to 41.4). With the ResNeXt-101-DCN backbone, BorderDet obtains 50.3 AP, outperforming the existing state-of-the-art approaches

Established detection methods

Conventional Approach

Densebox, YOLO, SSD, RetinaNet, and FCOS are the single-stage object detectors, have demonstrated the effectiveness to densely predict the classification and localization scores.

YOLO object detection architecture

Conventional Approach

- For the two-stage, object Detectors, R-CNN series (R-CNN, Fast R-CNN, Faster R-CNN) adopt the region proposal network (RPN) that based on the sliding-window mechanism.
- To generate the initial proposals, and then a refinement stage that consists of a RoIAlign.
- R-CNN is performed to warp the feature maps of the region-of-interests (RoI) and generate the accurate predictions.

BorderDet(Single-Stage Architecture)

- Adopted a simple anchor-free object detector FCOS as baseline.
- Taking the pyramid feature maps as input. The BorderDet first predicts the coarse classification scores and coarse bounding box locations.
- The coarse bounding box locations and the feature maps are fed into the BAM to generate the feature maps which contain explicit border information.
- Finally, we apply a 1 × 1 convolutional layers to predict the border classification score and border locations.

BorderDet Approach(Motivation)

- As we can see in the table, only single point feature is not perform well compared to cosidering other features.
- It performs better than by 1.3 AP when consider region, border, middle border features.
- BorderDet comes into action behide this concepts.

F_{point}	$F_{point}^{'}$	F_{region}	F_{border}	F_{middle}	AP	AP_{50}	AP_{75}	AP_S	AP_{M}	$AP_L \mid N$
✓					38.6	57.2	41.7	23.5	42.8	48.9 0
√ √ √	√ √ √	√	√		39.9 39.6	58.9 58.5	$43.4 \\ 43.2$	$24.6 \\ 24.2$	44.1 43.8	$\begin{array}{c cc} 49.3 & 1 \\ 50.8 & n^2 + 1 \\ 50.4 & 4n + 1 \\ 50.4 & 4 + 1 \end{array}$

Feature Extraction

- First figure demonstrated different feature extraction strategy.
- Visualization of the border-sensitive feature maps. The orange circle on the border indicate the extreme points.

BorderRPN(two-stage)

- BorderDet method can also be served as a better proposal generator for the typical two-stage detectors.
- Added the border alignment module to RPN and denote the new structure as BorderRPN.

Loss function

BorderDet defined training loss as follows

$$\mathcal{L} = \mathcal{L}_{cls}^C + \mathcal{L}_{reg}^C + \frac{1}{\mathcal{N}_{pos}} \sum_{x,y} \mathcal{L}_{cls}^B(\mathcal{P}^B, \mathcal{C}^*) + \mathcal{L}_{reg_{\{\mathcal{C}^* > 0\}}}^B(\Delta, \Delta^*),$$

 In the implementation, focal loss and IoU loss are used as the classification loss and regression loss respectively, which are the same as FCOS.

Experiments

- BorderDet experiments are trained on COCO trainval35k set and evaluated on COCO minival set (5K images).
- As a standard settings, It used ResNet-50 with FPN as backbone network for all the experiments.
- With an initial learning rate of 0.01, BorderDet decrease it by a factor of 10 after 60k iterations and 80k iterations respectively.
- Weight decay of 0.0001 and momentum of 0.9 are used.
- Unless specified, the input images are resized to ensure their shorter edge being 800 and the longer edge less than 1333.

Experiments

- Below table demonstrated the difference between applying class-BAM and reg-BAM.
- With Border Alignment Module, the AP values are outperforming than without BAM.

Cls-BAM	Reg-BAM	AP	AP_{50}	AP_{60}	AP_{70}	AP_{80}	AP_{90}
		38.6	57.2	53.3	46.7	35.3	16.0
✓		39.7	58.4 57.3 59.4	54.8	48.5	36.2	15.9
	✓	39.7	57.3	53.3	47.3	36.9	18.6
✓	✓	41.4	59.4	55.4	49.4	38.6	19.5

Comparison with Other Feature Extraction Operators

- BorderAlign outperforms than other feature extraction operators by 1.0 AP at least.
- Below are the comparison of different feature extraction strategies.

Method	AP	AP_{50}	AP_{75}	AP_S	AP_{M}	AP_L	fps
FCOS [21]	38.6	57.2	41.7	23.5	42.8	48.9	18.4
w/Iter-Box [5]	39.0	58.0	42.0	21.8	42.9	50.7	18.3
w/Adaptive Conv [23]	39.6	58.5	42.8	22.0	43.5	51.3	16.8
w/Deformable Conv [2]	39.5	58.5	42.9	22.0	43.5	52.0	16.8
w/RoIAlign [9]	40.4	58.6	43.6	22.6	44.1	53.1	12.6
$w/\mathbf{BorderAlign}$	41.4	59.4	44.5	23.6	45.1	54.6	16.7

Generalization of BorderDet

- BorderDet can be easily integrated with the many popular object detectors, e.g. RetinaNet and FPN.
- To prove the generalization of the BorderDet, we first add the proposed border alignment module to the RetinaNet.
- BorderDet can consistently improve the RetinaNet by 2.3 AP.
- For the two-stage method FPN, our experiments show that the proposed BorderRPN gains 3.6 AP improvement.

Method	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Retinanet [16] BD-Retinanet	36.1 38.4	$55.0 \\ 56.5$	$38.4 \\ 55.5$	$19.1 \\ 22.4$	$39.6 \\ 41.6$	$48.2 \\ 51.0$
FPN [20] BD-FPN	37.1 40.7	$58.7 \\ 57.8$	$40.3 \\ 44.3$	21.1 21.9	$40.3 \\ 43.7$	$48.6 \\ 54.8$

Comparisons with State-of-the-art Detectors

- The BorderDet, based on FCOS, ResNet-101 backbone, is the state-of-the-art methods in below table under standard setting and advanced setting.
- With the standard setting, the proposed BorderDet achieves an AP of 43.2.
- By adopting advanced settings, BorderDet reaches 50.3 AP, the state of the art among existing one-stage methods and twostage methods.

Method	Backbone	Iter.	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
FPN [15]	ResNet-101-FPN	180k	36.2	59.1	39.0	18.2	39.0	48.2
Mask R-CNN [9]	ResNet-101-FPN	180k	38.2	60.3	41.7	20.1	41.1	50.2
Cascade R-CNN [1]	ResNet-101	280k	42.8	62.1	46.3	23.7	45.5	55.2
RefineDet512 [27]	Resnet-101	280k	41.8	62.9	45.7	25.6	45.1	54.1
RetinaNet [16]	ResNet-101-FPN	135k	39.1	59.1	42.3	21.8	42.7	50.2
FSAF [30]	ResNet-101-FPN	135k	40.9	61.5	44.0	24.0	44.2	51.3
FCOS [21]	ResNet-101-FPN	180k	41.5	60.7	45.0	24.4	44.8	51.6
FCOS-imprv [21]	ResNet-101-FPN	180k	43.0	61.7	46.3	26.0	46.8	55.0
CenterNet [3]	Hourglass-104	500k	44.9	62.4	48.1	25.6	47.4	57.4
BorderDet	ResNet-101-FPN	90k	43.2	62.1	46.7	24.4	46.3	54.9
BorderDet†	ResNet-101-FPN	180k	45.4	64.1	48.8	26.7	48.3	56.5
BorderDet†	ResNeXt-64x4d-101	180k	46.5	65.7	50.5	29.1	49.4	57.5
BorderDet†	ResNet-101-DCN	180k	47.2	66.1	51.0	28.1	50.2	59.9
BorderDet†	ResNeXt-64x4d-101-DCN	180k	48.0	67.1	52.1	29.4	50.7	60.5
BorderDet‡	ResNeXt-64x4d-101-DCN	180k	50.3	68.9	55.2	32.8	52.8	62.3

Details and Implementation

- Paper: https://arxiv.org/abs/2007.11056
- Implementation: https://github.com/Megvii-BaseDetection/BorderDet

Thank you!