

INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

Jl. Ganesha No 10 Bandung 40132 Indonesia

SOLUSI UJIAN II FISIKA DASAR IIA (FI-1201) SEMESTER 2, TAHUN 2023/2024 KAMIS, 30 MEI 2024, PUKUL 13.00-15.00 WIB

Gunakan konstanta berikut: $c = 3 \times 10^8 \text{ m/s}, \mu_0 = 4\pi \times 10^{-7} \text{ Tm/A}, \varepsilon_0 = 8,85 \times 10^{-12} \text{ F/m}.$

1. Sebuah kawat dibentuk menjadi setengah lingkaran dengan luas setengah lingkaran 10 cm². Kawat tersebut lalu dihubungkan dengan resistor dengan besar hambatan, $R = 25~\Omega$ seperti terlihat pada gambar. Kawat setengah lingkaran tersebut kemudian diputar dengan kelajuan sudut konstan, $\omega = 40~\text{rad/s}$, di tengah-tengah medan magnet homogen 20 mT.

b. Tentukan besar daya disipasi rata-rata pada hambatan.

Solusi:

a. Dari persamaan hukum Faraday-Lenz

$$\varepsilon = -\frac{d\varphi}{dt} \operatorname{dengan} \varphi = BA_{total} \cos \theta$$

Total fluks yang menembus bidang adalah $\varphi = BA_0 \cos 0 + BA \cos \theta$ dimana A_0 adalah luas area ketika kawat setengah lingkaran berada pada kondisi sudut $\theta = 90^\circ$ dan 270° atau luas permukaan jika kawat di bagian atas berbentuk lurus sedangkan A adalah luas setengah lingkaran.

Maka besar ggl nya adalah
$$\varepsilon=-rac{d\varphi}{dt}=-rac{d(BA_0\cos0+BA\cos\theta)}{dt}=BA\;rac{d\theta}{dt}\sin\theta$$

Maka nilai ggl maksimumnya adalah $\varepsilon_m = 0.02 \times 0.001 \times 40$

$$\varepsilon_m = 8 \times 10^{-4} \text{ V}$$

b. Daya disipasi rata-rata adalah
$$P=\frac{\varepsilon_m^2}{2R}$$
 maka $P=\frac{(8\times 10^{-4})^2}{2\times 25}$

$$P = 1.28 \times 10^{-8} W$$

2. Gambar di samping menunjukkan rangkaian RLC dengan dua kapasitor identik dan dua saklar yang dihubungkan dengan sumber tegangan AC dengan gaya gerak listrik (ggl) maksimum 12,0 V, dan frekuensi sudutnya ω =100 rad/s. Nilai hambatan pada resistor adalah R = 120 Ω , kapasitansi pada masing-masing kapasitor adalah C = 200 μ F, dan induktansi pada induktor adalah 100 mH. Mula-mula kedua saklar dalam keadaan terbuka, lalu kemudian saklar S1 tertutup, sedangkan saklar S2 dibiarkan terbuka.

- a. Tentukan besar impedansi rangkaian.
- b. Tentukan besar arus maksimum, I_{max} .
- c. Tentukan faktor daya rangkaian.

Solusi:

a. Ketika kedua saklar terbuka maka arus akan melewati satu kapasitor, induktor, dan resistor.

Untuk satu kapasitor, nilai reaktansinya adalah $X_C = \frac{1}{\omega C}$ maka $X_C = 50 \ \Omega$.

Nilai reaktansi induktifnya $X_L = \omega L$ adalah $X_L = 10~\Omega$

Total impendansinya $Z = \sqrt{R^2 + (X_L - X_C)^2}$

 $Z = \sqrt{120^2 + (10 - 50)^2}$ sehingga $Z = 40\sqrt{10} \Omega$.

b. Besar arus maksimumnya adalah $I_m = \frac{\varepsilon_m}{Z}$

$$I_m = \frac{12}{40\sqrt{10}}$$

$$I_m = \frac{3\sqrt{10}}{100} A$$

c. Faktor daya rangkaian adalah $\cos \varphi = \frac{R}{z}$ maka nilainya adalah $\frac{3\sqrt{10}}{10}$

3. Gelombang elektromagnetik merambat sejajar arah sumbu x di ruang vakum dan memiliki vektor medan magnet

$$\vec{B}(x,t) = -(8 \times 10^{-9}) \cos[(3 \times 10^4 \pi)x + \omega t]\hat{j} T$$

dengan x dalam meter dan t dalam sekon.

- a. Tentukan arah perambatan gelombang elektromagnetik tersebut.
- b. Tentukan frekuensi dari gelombang elektromagnetik tersebut.
- c. Tentukan vektor medan listrik, $\vec{E}(x, t)$ dari gelombang elektromagnetik tersebut.

Solusi

a. Gelombang EM merambat ke arah sumbu x negatif

b.
$$k = \frac{2\pi}{\lambda} = 3 \times 10^4 \pi \rightarrow \lambda = \frac{2\pi}{3 \times 10^4 \pi} = \frac{2}{3} \times 10^{-4} \text{ m}$$

 $c = \lambda f \rightarrow f = \frac{c}{\lambda} = \frac{3 \times 10^8}{\frac{2}{3} \times 10^{-4}} = \frac{9}{2} \times 10^{12} \text{ Hz}$

c.
$$c = \frac{E_m}{B_m} \to E_m = cB_m = 3 \times 10^8 \times (8 \times 10^{-9}) = 2.4 \frac{\text{V}}{\text{m}}$$

 $\omega = 2\pi f = 2\pi \left(\frac{9}{2} \times 10^{-12}\right) = 9\pi \times 10^{12} \text{ rad/s}$
 $\vec{E}(x,t) = -E_0 \cos\{(3 \times 10^4 \pi)x + \omega t\} \hat{k}$
 $\vec{E}(x,t) = (-2.4 \frac{\text{V}}{\text{m}}) \cos\{(3\pi \times 10^4)x + (9\pi \times 10^{12})t\} \hat{k}$

Tanda negatif (-) karena gelombang merambat ke sumbu X negatif, sedangkan arah rambat gelombang elektromagnetik searah dengan $\vec{E} \times \vec{B}$

$$(-\hat{k}) \times (-\hat{j}) = (-\hat{i})$$

- 4. Cahaya monokromatik dengan panjang gelombang 580 nm melewati sebuah celah sempit tunggal dan membentuk pola difraksi. Jarak antara celah sempit dengan layar cukup jauh.
 - I. Jika posisi difraksi minimum pertama berada pada sudut $\pm 90^{\circ}$, dimana maksimum pusat memenuhi seluruh layar, tentukan lebar celah tersebut.
 - b. Tentukan perbandingan intensitas difraksi yang terbentuk pada sudut 30° relatif terhadap titik pusat maksimum utama.

Solusi:

a) Titik minimum pertama difraksi (m = 1) dapat diperoleh dengan:

 $a \sin \theta = \lambda$

$$\sin\theta = \sin 90^{\circ} = \frac{\lambda}{a}$$

$$1 = \frac{\lambda}{a}$$

Sehingga, lebar celah sempit: $a = \lambda = 580 \text{ nm}$

b) Perbandingan intensitas difraksi yang terbentuk pada sudut 30° relatif terhadap titik pusat maksimum utama:

$$\frac{I}{I_m} = \left[\frac{\sin \left[\frac{\pi a}{\lambda} \sin \theta \right]}{\frac{\pi a}{\lambda} \sin \theta} \right]^2 = \left[\frac{\sin \left[\pi \sin (30^\circ) \right]}{\pi \sin (30^\circ)} \right]^2 = \left[\frac{\sin \left[0.5\pi \right]}{0.5\pi} \right]^2 = \frac{4}{\pi^2}$$

Atau

$$\frac{I}{I_m} \approx 0.41$$

- 5. Sebuah elektron bergerak dalam vakum dan memiliki energi kinetik sebesar 0,90 eV. Massa elektron adalah 9×10^{-31} kg dan konstanta planck h = 6.6 x 10^{-34} J.s. $(1 \text{ eV} = 1.6 \text{ x } 10^{-19} \text{ J})$
 - a. Tentukan laju elektron tersebut.
 - b. Tentukan panjang gelombang de-Broglie dari elektron tersebut.
 - c. Tentukan panjang gelombang dari sebuah foton dengan energi yang sama besar dengan energi kinetik elektron tersebut.

Solusi:

a. Energi kinetik elektron $K = (m_e v^2)/2$, sehingga $v = (2K/m_e)^{1/2}$, maka

$$v = (2 \text{ x } 0.90 \text{ x } 1.6 \text{ x } 10^{-19}/9 \text{ x } 10^{-31})^{1/2} = 4\sqrt{2} \times 10^5 \text{ ms}^{-1}$$

b. Dari hubungan de Broglie $\lambda = h/p$, maka diperoleh

$$\lambda = (6.6 \text{ x } 10^{-34})/(4\sqrt{2} \times 10^5 \text{ x } 9 \text{ x } 10^{-31}) = \frac{11\sqrt{2}}{120} \times 10^{-8} \text{ m}$$

c. Untuk foton berlaku $E_{\rm f}=hc/\lambda$ atau $\lambda=hc/E_{\rm f}$, maka

$$\lambda = (6.6 \text{ x } 10^{-34} \text{ x } 3 \text{ x } 10^8)/(0.90 \text{ x } 1.6 \text{ x } 10^{-19}) = 1.375 \text{ x } 10^{-6} \text{ m} = 1375 \text{ nm}$$