Instituto Politécnico de Setúbal Escola Superior de Tecnologia de Setúbal

DEPARTAMENTO DE MATEMÁTICA MÉTODOS ESTATÍSTICOS

 $2.^{\circ}$ Semestre - 2022/2023

2.º Teste (recuperação)

Data: 11 de julho de 2023 Duração: 2 horas

Resolução

O teste foi resolvido recorrendo ao software R: ver script_2TesteRecup_ME_22_23.

1. Populações:

 X_A – velocidade do vento da localização A

 X_B- velocidade do vento da localização B

Amostras: $n_A = 11$ e $n_B = 13$

(a) verificar a normalidade dos dados da Localização A

Hipóteses: $H_0: X_A \sim Normal$ contra $H_1: X_A \nsim Normal$

Escolha do Teste: Como se pretende saber se X_A tem comportamento normal (sem mais informação) numa amostra com número de elementos inferior a 50, deve-se recorrer ao teste de ajustamento Shapiro-Wilk.

Tomada de Decisão: Como valor-p= 0.6715 > 0.1, então Não se rejeita H_0

verificar a normalidade dos dados da Localização B

Hipóteses: $H_0: X_B \sim Normal$ contra $H_1: X_B \nsim Normal$

Escolha do Teste: À semelhança da localização A deve-se recorrer ao teste de ajustamento Shapiro-Wilk.

Tomada de Decisão: Como valor-p= 0.208 > 0.1, então Não se rejeita H_0

Conclusão: Com base nas amostras e para um nível de signicfiância de 1% há evidência estatística que os dados de ambas as localizações podem ser de populações com distribuição Normal.

(b) Estimativas pontuais para μ e para σ^2

Localização A: $\overline{x}_A = 42$ e $s_A^2 = 108.2$

Localização B: $\overline{x}_B = 39.92$ e $s_B^2 = 209.7436$

(c) Como a População pode ser considerada Normal (alínea (a)), então o Intervalo de confiança a $(1-\alpha)\times 100\%$ para σ^2 é

$$\left[\frac{(n-1)s^2}{\chi_{n-1;1-\frac{\alpha}{2}}^2}, \frac{(n-1)s^2}{\chi_{n-1;\frac{\alpha}{2}}^2} \right]$$

e sabe-se que o intervalo de confiança obtido para o desvio padrão é]7.6878;16.5710[, ou seja, para a variância fica $]7.6878^2;16.5710^2[$ então considerando, por exemplo, o limite superior tem-se

$$\frac{(n-1)s^2}{\chi^2_{n-1;\frac{\alpha}{2}}} = 16.5710^2 \Leftrightarrow \frac{(11-1)\times 108.2}{\chi^2_{11-1;\frac{\alpha}{2}}} = 16.5710^2 \Leftrightarrow \chi^2_{10;\frac{\alpha}{2}} = \frac{10\times 108.2}{16.5710^2} \Leftrightarrow \frac{(11-1)\times 108.2}{\chi^2_{10}} = \frac{10\times 108.2}{16.5710^2} \Leftrightarrow \frac{(11-1)\times 108.2}{\chi^2_{10}} = \frac{10\times 108.2}{\chi^2_{1$$

$$\Leftrightarrow \chi^2_{10;\frac{\alpha}{2}} = 3.940305 \Leftrightarrow \frac{\alpha}{2} = F\left(3.940305\right) \underset{X^2 \sim \chi^2_{(10)}}{\Leftrightarrow} \frac{\alpha}{2} = 0.05 \Leftarrow \alpha = 0.10$$

O grau de confiança utilizado foi de 90%.

(d) Interpretação das Hipóteses:

$$\begin{cases} H_0: \mu_A=40 \to & \text{a velocidade média do vento na localização A é de 40 nós} \\ \text{contra} \\ H_1: \mu_A \neq 40 \to & \text{a velocidade média do vento na localização A não é de 40 nós} \end{cases}$$

Teste das Hipóteses:

$$H_0: \mu_A = 40$$
 contra $H_1: \mu_A \neq 40$

Estatística de Teste: População Normal e σ_A desconhecido

$$T = \frac{\overline{X}_A - \mu_A}{\frac{S_A}{\sqrt{n_A}}} \sim t_{(n_A - 1)}$$

Nível de significância = $\alpha = 0.01$

Tipo de teste: o teste é Bilateral

Estatística de Teste: $T_{obs} = 0.63769$

Região Crítica:
$$\left] -\infty, t_{\left(\frac{0.01}{2}, 10\right)} \right] \cup \left[t_{\left(1 - \frac{0.01}{2}, 10\right)}, +\infty \right[= \left] -\infty, -3.1693 \right] \cup \left[3.1693, +\infty \right[$$

Decisão: Como T_{obs} não pertence à região crítica Não se Rejeita ${\cal H}_0$

Conclusão: Com base na amostra e para um nível de significância de 1%, existe evidência estatística de que a média da velocidade do vento seja de 40 nós.

(e) Como as populações podem ser consideradas Normais(alínea (a)) e as amostras são independentes, então o Intervalo de confiança a $(1-\alpha) \times 100\%$ para $\frac{\sigma_A^2}{\sigma_D^2}$ é

$$\left[\frac{1}{f_{n_A-1;n_B-1;1-\frac{\alpha}{2}}} \times \frac{s_A^2}{s_B^2}, \frac{1}{f_{n_A-1;n_B-1;\frac{\alpha}{2}}} \times \frac{s_A^2}{s_B^2} \right]$$

logo o Intervalo de confiança a 90% para $\frac{\sigma_A^2}{\sigma_P^2}$ é

Como $\frac{\sigma_A^2}{\sigma_P^2} = 1$ pertence ao intervalo encontrado, para um grau de confiança de 90% e com base nas amostras dadas, pode-se considerar que a variabilidade da velocidade do vento nas duas localizações é idêntica.

(f) Pretende-se testar

$$\begin{cases} H_0: \mu_A = \mu_B \\ contra \\ H_1: \mu_A < \mu_B \end{cases} \Leftrightarrow \begin{cases} H_0: \mu_A - \mu_B = 0 \\ contra \\ H_1: \mu_A - \mu_B < 0 \end{cases}$$

Nível de significância: $\alpha = 0.10$

Tipo de teste: o teste é unilateral esquerdo

Estatística de Teste:

Populações Normais (*)
$$\sigma_A, \sigma_B \text{ desconhecidos} \\ \sigma_A = \sigma_B \text{ (**)} \\ \text{Amostras independentes} \end{cases} T = \frac{\left(\overline{X}_A - \overline{X}_B\right) - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}} \sim t_{(n_A - n_B - 2)} \Leftrightarrow T \sim t_{(22)}$$

- (*) As Populações podem ser consideradas Normais pois na alínea (a). vimos que para $\alpha = 0.10$ não se rejeita a hipótese de Normalidade.
- (**) Os desvios padrão podem ser considerados iguais, pela alínea (e).

Tomada de Decisão pelo valor-p: Como valor-p= $0.652 > 0.10 = \alpha$, então Não se Rejeita H_0 .

Conclusão: Com 10% de significância e com base nas amostras, conclui-se que não existe evidência estatística que, em média, a velocidade do vento na localização A não seja inferior à velocidade média do vento na localidade B, pelo que a localização B não apresenta melhores condições para a instalação da central.

(a) Seja X- quantidade de açúcar existente nos cereais de pequeno almoço

Hipóteses: $H_0: X \sim Exp(8)$ contra $H_1: X \nsim Exp(8)$

Escolha do Teste: Como se pretende-se testar se X se comporta de acordo com uma Distribuição Exponencial de média 8 (uma distribuição contínua e completamente especificada) vamos recorrer ao teste de ajustamento de Kolmogorov-Smirnov.

Tomada de Decisão: Como valor $-p = 0.0452 \le \alpha = 0.06$, então Rejeita-se H_0 .

Conclusão: Com base na amostra e para um nível de significância de 6%, não há evidência estatística que a quantidade de açúcar existente nos cereais de pequeno almoço segue uma distribuição Exponencial de média 8 gramas.

(b) Populações:

 X_I = quantidade de açúcar nos cereais de pequeno almoço destinados aos consumidores infantis X_A = quantidade de açúcar nos cereais de pequeno almoço destinados aos consumidores adultos Amostras: amostras aleatórias independentes

Escolha do teste: Como pretende-se um teste de hipóteses não paramétrico, então vamos recorrer ao testes de Mann-Whitney pois as amostras são independentes.

Hipóteses:

 $H_0: Mediana_{X_I} \leq Mediana_{X_A}$ os cereais de pequeno almoço destinados ao consumidor infantil não contra $H_1: Mediana_{X_I} > Mediana_{X_A} \quad \text{os cereais de pequeno almoço destinados ao consumidor infantil contêm mais açúcar do que os destinados ao adultos}$

$$\Leftrightarrow \qquad H_0: Mediana_{X_I} - Mediana_{X_A} \leq 0 \quad \text{contra} \quad H_1: Mediana_{X_I} - Mediana_{X_A} > 0$$

Tipo de teste: o teste é unilateral direito

Tomada de decisão: se valor- $p \le \alpha$, então Rejeita-se H_0 , ou seja, a suspeita pode ser considerada verdadeira.

Como valor-p= 0.0151, então a partir de $\alpha \ge 0.0151$ Rejeita-se H_0 , ou seja, a partir de $\alpha \ge 0.0151$ há evidência estatística que a suspeita é verdadeira.

(c) Seja p = a proporção de cereais que estão na prateleira mais alta, uma estimativa pontual é

$$p^* = \frac{\text{número de cereais na prateleira mais alta na amostra}}{\text{número de cereais na amostra}} = \frac{36}{77} = 0.4675$$

(d) Populações:

 p_1 = proporção de cereais que estão na prateleira mais alta num hipermercado

 p_2 = proporção de cereais que estão na prateleira mais alta noutro hipermercado

Amostras Aleatórias:

amostras de dimensões $n_1 = 77$ e $n_2 = 96$

amostras aleatórias independentes

Escolha do Intervalo de confiança:

Como temos populações binomiais e $n_1 = 77 \ge 30$ e $n_2 = 96 \ge 30$ o intervalo de confiança a $(1-\alpha) \times 100\%$ para $p_1 - p_2$ é dado por:

$$\left] (p_1^* - p_2^*) - z_{1-\frac{\alpha}{2}} \sqrt{\frac{p_1^* q_1^*}{n_1} + \frac{p_2^* q_2^*}{n_2}}; (p_1^* - p_2^*) + z_{1-\frac{\alpha}{2}} \sqrt{\frac{p_1^* q_1^*}{n_1} + \frac{p_2^* q_2^*}{n_2}} \right[$$

logo, o intervalo de confiança a 97% para $p_1 - p_2$ é:

$$]-0.0493, 0.2760[$$

Como $0 \in]-0.0493, 0.2760[$, então, com 97% de confiança há a possibilidade da percentagem de embalagens de cereais na prateleira mais alta ser idêntica em ambos os hipermercados.

(e) População:

 p_{3I} = proporção de cereais na prateleira mais alta destinados aos consumidores infantis Amostra aleatória:

dimensão da amostras $n_3 = 36$

Hipóteses:

 $\begin{cases} H_0: p_{3I} \geq 0.10 \longrightarrow & \text{na prateleira mais alta, a percentagem de embalagens destinadas} \\ & \text{ao consumidor infantil não \'e inferior a } 10\% \\ & \text{contra} \\ \\ H_1: p_{3I} < 0.10 \longrightarrow & \text{na prateleira mais alta, a percentagem de embalagens destinadas} \\ & \text{ao consumidor infantil \'e inferior a } 10\% \end{cases}$

Nível de significância = $\alpha = 0.04$

Tipo de teste: o teste é Unilateral Esquerdo

Estatística de Teste: Como temos uma população binomial e $n_3 = 36 \ge 30$, a estatística de teste é:

$$Z = \frac{p^* - p}{\sqrt{\frac{pq}{n}}} \stackrel{\cdot}{\sim} N(0, 1)$$

Tomada de Decisão pelo valor-p: Como valor-p = $0.7817 > 0.04 = \alpha$, então Não se Rejeita H_0 OU

Tomada de Decisão pela Região crítica:

$$RC =]-\infty, z_{\alpha}] =]-\infty, z_{0.04}] =]-\infty, -1.7507]$$

Como $Z_{obs} = 0.7778 \notin RC$, então Não se Rejeita H_0 .

Conclusão: Com base na amostra e para um nível de significância de 4%, não há evidência estatística que este hipermercado esteja a cumprir a orientação dos responsáveis.

(f) Variáveis:

shelf - variável qualitativa ordinal

client - variável qualitativa nominal

Escolha do Teste:

Como as variáveis são qualitativas e pretende-se verificar se as variáveis estão associadas, vamos recorrer ao teste de independência do Qui-Quadrado.

Hipóteses a testar:

 H_0 : Não existe associação entre a prateleira onde se encontra a embalagem de cereais e o consumidor a quem se destina, ou seja, as variáveis shelf e client são independentes contra

 H_1 : Existe associação entre a prateleira onde se encontra a embalagem de cereais e o consumidor a quem se destina, ou seja, as variáveis shelf e client não são independentes

nível de significância = $\alpha = 0.06$

Tabela de contingência entre shelf e client:

		Consumidor		
		Adulto	Infantil	Total
prateleira	mais baixa	15	5	20
	do meio	6	15	21
	mais alta	31	5	36
	Total	52	25	77

a tabela de contingência tem r=3 linhas e c=2 colunas

Estatística de Teste:

$$Q \sim \chi^2_{(r-1)\times(c-1)} \Leftrightarrow Q \sim \chi^2_{(2)}$$

Tomada de Decisão pelo valor-p
: Como valor-p = $0.00003 \le 0.06 = \alpha$, então Rejeita-se H_0 . OU

Tomada de Decisão pela Região crítica:

$$RC = [x_{(r-1)\times(c-1);1-\alpha}^2, +\infty[=[x_{(2);1-0.06}^2, +\infty[=[5.6268, +\infty[$$

Como $Q_{obs} = 20.7143 \in RC$, então Rejeita-se H_0 .

Conclusão: Com base nas amostras e para um nível de significância de 6%, há evidência estatística que existe associação entre a prateleira onde se encontra a embalagem de cereais e o consumidor a quem se destina.

Como existe associação entre as variáveis, então vamos medir essa associação. Como uma das variáveis é qualitativa nominal, então só é possível calcular o coeficiente de contingência e o coeficiente V de Crámer:

- coeficiente de contingência = $0.4604 \in [0.30, 0.50] \mapsto associação moderada$
- coeficiente V de Crámer = $0.5186 \ge 0.50 \quad (k=2) \quad \mapsto$ associação elevada

A associação existente pode ser considerada entre moderada e elevada.