1 1

1.1 a

We know that, for a basic feasible solution x associated with basis matrix B, that $\bar{c}_i > 0$, for all indices i within the set of nonbasic indices N. We must show that x is a unique optimal solution.

Consider any arbitrary feasible solution y, and the vector y - x. Since both x and y are feasible, we have Ax = Ay = b, meaning that Ad = Ax - Ay = b - b = 0.

Ad is equivalent to the form

$$Bd_B + \sum_{i \in N} A_i d_i = 0$$

Since B is invertible, we have

$$d_B = -\sum_{i \in N} B^{-1} A_i d_i$$

and

$$c'd = c'_B d_B + \sum_{i \in N} c_i d_i = \sum_{i \in N} (c_i - c'BB^{-1}A_i)d_i = \sum_{i \in N} \bar{c}_i d_i$$

For all nonbasic indices $i \in N$, we have $x_i = 0$, and since y is a feasible solution, we have $y_i \ge 0$. Therefore $d_i \ge 0$. We also know that $c_i > 0$ for all $i \in N$. Therefore $c'd \ge 0$.

Furthermore, since all $c_i > 0$, we know that c'd = 0 only if $d_i = 0$ for all $i \in N$. If this is the case, then we have

$$d_B = -\sum_{i \in N} B^{-1} A_i d_i d_B = -\sum_{i \in N} B^{-1} A_i(0) d_B = 0$$

Thus d=0, and y=x. This means that for any $y\neq x$, c'd>0, meaning c'y>c'x for any feasible y. Thus, by definition, x is a unique optimal solution.

1.2 b

We know that x is a unique optimal nondegenerate solution, and we must show that $\bar{c} > 0$.

Suppose that x is uniquely optimal, nondegenerate basic feasible solution, and that $\bar{c}_i \leq 0$ for some index j.