Student Name:	Maths Teacher
---------------	---------------

SYDNEY TECHNICAL HIGH SCHOOL

HSC ASSESSMENT TASK 1 DECEMBER 2004

MATHEMATICS

Time allowed: 70 minutes

¹nstructions

- * Write your details at the top of this page.
- * Attempt all questions. All questions are worth equal marks.
- * Answers are to be written on the paper provided.
- * Do **not** divide your pages into two columns of working.
- * You may write on the front and back of each page. Ask for more paper if required.
- * Marks may not be awarded for careless or badly arranged working.
- * Indicated marks are a guide and may be changed slightly if necessary.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	TOTAL
/7	/7	/7	/7	/7	/7	/7	/7	/56

Question 1

- 3 a) A parabola has its focus at (0, 2) and its directrix is the line y = -4. Find
 - i) the coordinates of the vertex.
 - ii) the equation of the parabola.
- 4 b) The roots of the equation $x^2 8x + 10 = 0$ are α and β . Find
 - i) $\alpha + \beta$
 - ii) αβ
 - iii) $\alpha^2 + \beta^2$

Question 2 (Begin a new page)

- 4 a) A parabola has equation $y = x^2 4x 21$. Find
 - i) the equation of the axis of symmetry.
 - ii) the coordinates of the vertex.
 - iii) the x intercept/s.
 - iv) the values of x for which $x^2 4x 21 < 0$.
- 3 b) Copy this diagram onto your page. AB || CD. Prove that triangle ACD is isosceles.

Question 3 (Begin a new page)

4 a) In this part **no** formal proofs are required but you must give full reasons for the statements you make.

- i) Find the value of x giving reasons.
- ii) Find the value of y giving reasons.

- 3 b) A parabola has equation $x^2 4y 4x + 16 = 0$.
 - i) Write the equation in the form $(x-h)^2 = 4a(y-k)$.
 - ii) Find the coordinates of the vertex.
 - iii) Find the coordinates of the focus.

Question 4 (Begin a new page)

- 2 a) Solve for x: $x^4 6x^2 + 8 = 0$.
- 5 b) For the diagram at the right:
 - i) Write expressions for the gradients of AP and OP.
 - ii) If ∠OPA is always 90°, show that the equation of the locus of P represents a circle.
 - iii) State the centre and radius of the circle.

Question 5 (Begin a new page)

- 3 a) i) Sketch the graph of $(y-2)^2 = 8(x+1)$ showing clearly the coordinates of the vertex..
 - ii) Draw and label the directrix and write its equation on the sketch.
- 4 b) In $\triangle ABC$, $\angle B = 90^{\circ}$. YM is the perpendicular bisector of AC. Copy the diagram onto your page.
 - i) Prove that $\triangle AYM \equiv \triangle CYM$.
 - ii) Suppose now that AY bisects ∠BAC. Find the size of ∠YCM (no reasons needed).

Question 6 (Begin a new page)

- 2 a) i) Write a quadratic equation with roots α and β if $\alpha + \beta = -2$ and $\alpha\beta = 6$.
 - ii) Write a quadratic equation with roots k and 2k.
- By making a suitable substitution find all real values of x which satisfy the equation $(x^2 1)^2 3(x^2 1) = 0$.
- 2 c) i) State the condition, in terms of b & c, for the graph of $y = x^2 + bx + c$ to be entirely above the x axis.
 - ii) What two word description is used for quadratics of this type?

Question 7 (Begin a new page)

- 3 a) Find the value/s of k for which the equation $x^2 + 4x + k = 0$ has roots which are real and distinct (unequal).
- Find possible values of m so that the line y = mx 9 will be a tangent to the curve $y = x^2 2x$.

Question 8 (Begin a new page)

EDFB is a rectangle with sides *x* and *y* inscribed in the triangle ABC. Side AB is 12 cm in length and side BC is 8 cm in length.

- 1 a) Which test would be used to show that $\triangle ABC \parallel \triangle DFC$?
- 2 b) Show that $\frac{8-x}{y} = \frac{8}{12}$ (give a reason).
- 2 c) Show that the area of the rectangle is $12x \frac{3}{2}x^2$.
- 2 d) Use the theory of quadratic functions (not calculus) to find the value of x which makes the rectangle area a maximum and find this maximum area.

MARKING SCHEME.

2UNIT HSC TASKI DEC 2004 STHS

Question 1

ii)
$$\underline{x^2 = 12(y+1)}$$

ii) Ofor correct form: X=4aY 1) for correct equation.

b) i)
$$\alpha + \beta = -\frac{b}{a} = \frac{8}{12}$$

$$||\hat{H}|| = (2 + \beta)^{2} - 2 \times \beta$$

$$= 8^{2} - 2 \times 10$$

$$= 44$$

allow errors Carried ii) (1) mark 5

(iii) (1) for correct answer

(1) for correct formula

Ovestion 2

i) axis of sym
$$x = \frac{4}{2}$$

(1) mark each part

Allow errors carried forward from i) to ii) and from

(vi of (iii)

ACD=65° (exterior angle of ______ all correct triangle)

—— (1) Correct reason - allow! (2 angles equal jets

Ovestion 3

a) i)
$$\frac{5}{x} = \frac{7}{2}$$
 (ratio of intercepts, parallel lines)

ii)
$$\frac{y}{12} = \frac{7}{9}$$
 (similar triangles corresponding sides in proportion)

D for reason which fits the equation _ Reason must clearly identify the theorem used for the written equation.

- DITTO

b) i)
$$x^2 - 4x = 4y - 16$$

 $x^2 - 4x + 4 = 4y - 16 + 4$
 $(x - 2)^2 = 4y - 12$
 $(x - 2)^2 = 4(y - 3)$

allow errors carried from

Overtion 4

a) Let uz or2

$$u^2 - 6u + 8 = 0$$

$$u = 4$$
 $u = 2$

$$x^2 = 4 \qquad x^2 = 2$$

b) i)
$$m_{OP} = \frac{y}{x}$$
 $m_{PA} = \frac{y}{x-4}$

ii)
$$\frac{4}{3c} \cdot (\frac{4}{3c-4}) = -1$$

$$y^{2} = - o(x-4)$$

 $y^{2} = -o(^{2} + 4x)$

$$4-4x+3(^2+y^2=\frac{4}{4})$$
i.e. $(x-2)^2+y^2=4$ which is
a circle

- 1) to here
- 1) for this operation as long as I value of u has been correctly solved for x.
- i) 1 both must be correct
- ii)->for correct statement allow E.C.F. from (i).
- 1) for rearranging into standard circle-even if incorrect eqn.
- I each. Allow if correctly deduced from an incorrect equation in (ii).

Question 5

- ii) $\lambda = -3$ (directix)
- 1) for correct shape
- O for correct vertex
- 1) for correct directrix & egn.

P)

QUESTION 5 (cont)	
i) In D'S AYM, CYM	(3) for correct proof
Am = mc (mis midpl of Ac)	ie Offer each correct line
AMY = CMY (supplementary angles and YM I AC:	- ignore conclusion.
both 90°)	
MY is common	
ARYM = ACYM (SAS)	
ii) Let BÂY = X : YÂM = X	
(AY bisect & BAC)	
and MCY= or (corsp. angles	
in congruent triangles)	
3 oc = 90	
Y(M= x = 30°	no working needed. Allow if degree sign missing.
Questionb	degree sign missing.
	-£0
a) i) $x^2 + 2x + 6 = 0$	
ii) (x-k)(x-2k) = 0 -	- 1 No need to expand.
$b) \alpha = x^2 - 1$	
$u^2 - 3u = 0$	Simplified equation
m(n-3)=0	
u=0	- Obrrect solutions
$\alpha^2 - 1 = 0 \qquad \alpha^2 - 1 = 3$	
$x^2 = 1 \qquad \qquad x^2 = 4$. 1 1
x=12 ===================================	
	tollowed through.
c)	
i) $\therefore (\Delta < 0) b^2 - 4c < 0$	- 1 Must be in terms of ble.
ii) positive definite	allow mis spelling

1) for rule \bigcirc for correctly finding \triangle (even if inequality is wrong) Correct solution of their

when solved simultaneously } 8 y = m > < -9 (4 = 312 - 2x mx1-9= x12-2x $0 = x^2 - 2x - mx + 9$ $0 = 3(^2 - 3((2+m) + 9))$

(1) initial substitution Correct.

1) for either of these

. A = 0 for this quadratick $(2+m)^2 - 4 \times 1 \times 9 = 0$ $4 + 4m + m^2 - 36 = 0$ $m^2 + 4m - 32 = 0$ (m+8)(m- 4) =0

(even if from an incorrect quadratic eqn.)

If m= -8 m= 4 line is tangent to cuive.

I correct solution of their inequality.

QUESTION 8 (cont)

- a) ARBCIII ADEC (equiangular)

- 1) FC = 8-x must be stated or indicated (eg. on a diagram) etc.
 - 1) for suitable reason.
 - No marks for writing the given statement.

$$\therefore y = \frac{12(8-x)}{8}$$

$$y = \frac{3(8-x)}{2}$$

Both must be correct. No E.C.F. allowed.

 $A = \frac{3}{2}(x^2 - 8x + 16)$

max of 24 when x = 4

$$\frac{1}{2} = 12x - \frac{3x^2}{2}$$

d) Let

$$A = -\frac{3x^2}{2} + 12x$$

axis of sym. x = -12

. max area

$$= 12 \times 4 - \frac{3}{2} (4)^2$$

(24) for correct value (24)

> Alternatively