Efficient Local Search for Nonlinear Real Arithmetic

Zhonghan Wang, Bohua Zhan, Bohan Li, Shaowei Cai

Institute of Software, Chinese Academy of Sciences

VMCAI 2024 15 January 2024

- 1. Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Incremental Computation
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Experiment

- 1. Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Incremental Computation
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Experiment

Syntax of SMT(NRA)

polynomial:
$$p::=x\mid c\mid p+p\mid p-p\mid p\times p$$
 atoms: $a::=b\mid p=0\mid p>0\mid p<0$ formula: $f::=a\mid \neg f\mid f\wedge f\mid f\vee f$

SMT: Determine whether the formula is satisfied by some assignment (local search focuses), or prove unsat

Example:

$$x^2+y^2\leq 1\land x+y<1\land x+z>0$$
 assignment with $\{x\to 0,y\to 0,z\to 1\}$ satisfies all clauses.

Fragment of Local Search

```
Input: A set of clauses F
Output: An assignment of variables that satisfy F.
         or failure
Initialize assignment to variables;
while \top do
   if all clauses satisfied then
       return success with assignment;
   end
   if time or step limit reached then
       return failure:
   end
   Critical move procedure.
end
  Algorithm 1: Basic Fragment of Local Search
```

Fragment of Local Search

```
var, new \ value, score \leftarrow best move according to
 make-break score:
if score > 0 then
    Perform move, assigning var to new value:
end
else
    Update clause weight according to PAWS
     scheme:
    repeat
        cls \leftarrow \text{random unsatisfied clause};
        var, new value, score \leftarrow critical move
         making cls satisfied;
       if score \neq -\infty then
           Perform move, assigning var to
             new value;
```

Local Search for SAT and SMT

Problem	SAT	SMT			
Operation (Move)	Flip	Critical Move			
Score Definition	Weighted unsat clauses				
Score Computation	Cached score	No Caching, time costly			

What LS for SAT brings us:

Maintain scoring information after each iteration.

Difficulty:

Predetermine critical move shift value.

Our Solution:

Introduce Scoring Boundaries.

- Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Incremental Computation
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Experiment

Make-break Intervals

make-break intervals¹

Combination of (in)feasible intervals of arithmetic variable x with respect to all clauses.

Example

Current assignment: $\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}$

- $x^2 + y^2 \le 1$ (unsat): $(-\infty, 0) \cup (0, \infty)$.
- x + y < 1 (unsat): $[0, \infty)$.
- x + z > 0 (sat): $(-\infty, -1]$.

Combined information: x: $(-\infty,-1]\mapsto 0$, $(-1,0)\mapsto 1$, $[0,0]\mapsto 1$, $(0,\infty)\mapsto 0$.

¹Bohan Li and Shaowei Cai. "Local Search For SMT On Linear and Multilinear Real Arithmetic". In: CoRR abs/2303.06676 (2023). accepted for FMCAD.. DOI: 10.48550/arXiv.2303.06676. arXiv: 2303.06676. URL: https://doi.org/10.48550/arXiv.2303.06676.

Traditional Computation

```
Input: unsat clauses F
Output: Best critical move (variable, value)
foreach variable v in unsat clauses do
   foreach unsat clause c with v do
       Compute interval-score info of v in c.
   end
   Combine interval-score information.
   Update best var-value move.
end
return best critical move
```

Repeated computation:

- variable's (in)feasible set
- clause's sat staus

Boundary

Definition. A quadruple $\langle val, is_open, is_make, cid \rangle$, where val is a real number, is_open and is_make are boolean values, and cid is a clause identifier.

Meaning

- val: make-break value.
- *is_open*: active or not at *val* point.
- is_make: make or break, increase or decrease score.
- cid: causing clause.

Sorting First ordered by val, then by $is_open (\bot < \top)$.

Boundary

Current assignment: $\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}$

- $x^2+y^2\leq 1$: starting score 0, boundary set $\{(0,\bot,\top,1),(0,\top,\bot,1)\}$, indicating no change for large negative values, *make* at boundary $[0,\cdots,$ followed by *break* at boundary $(0,\cdots)$
- x + y < 1: starting score 3, boundary set $\{(0, \perp, \perp, 2)\}$, indicating *make* at large negative values, and *break* at boundary $[0, \ldots]$
- x+z>0: starting score -2, boundary set $\{(-1, \top, \top, 3)\}$, indicating *break* at large negative values, and *make* at boundary $(-1, \ldots)$

sorted boundary set:

$$\{(-1, \top, \top, 3), (0, \bot, \top, 1), (0, \bot, \bot, 2), (0, \top, \bot, 1)\}$$

Boundary Example

boundary set:

$$\{(-1, \top, \top, 3), (0, \bot, \top, 1), (0, \bot, \bot, 2), (0, \top, \bot, 1)\}$$

starting score: Score when x moves to $-\infty$. Maintain and Change: We maintain the boundary info for all arithmetic variables, unless the neighbour does a critical move

Algorithm for computing boundary

```
Input: Variable v that is modified
Output: Make-break score for all variables
S \leftarrow \{\}; // set of updated variables
for clause cls that contains v do
   for variable v' appearing in cls do
       add v' to S:
       recompute starting score and boundary of v'
        with respect to cls;
   end
end
for variable y' in S do
   recompute best critical move and score in terms
    of boundary information;
end
```

- 1. Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Incremental Computation
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Experiment

Previous Algorithm and Difficulty

Number complexation in Local Search

When a variable chooses a complex value, the iteration is much slower, but sometimes we have to ... Reference² ignores equalities constraints due to its accurate value complexation.

We introduce Relaxation into strick equality constraints, resulting in temporary interval candidate (rather than a point).

²Bohan Li and Shaowei Cai. "Local Search For SMT On Linear and Multilinear Real Arithmetic". In: CoRR abs/2303.06676 (2023). accepted for FMCAD.. DOI: 10.48550/arXiv.2303.06676. arXiv: 2303.06676. URL: https://doi.org/10.48550/arXiv.2303.06676.

Local Search with Relaxation

```
Input: A set of clauses F
Output: An assignment of variables that satisfy F, or failure
Initialize assignment to variables;
while ⊤ do
     if all clauses satisfied then
          success \leftarrow find exact solution;
          if success then
              return success with assignment;
          end
          else
              Restore relaxed constraints to original form;
              success \leftarrow find exact solution by limited local search;
              if success then
                   return success with assignment;
              end
          end
     end
     if time or step limit reached then
          return failure;
     end
     Proceed traditional local search (slack).
end
```

- 1. Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Incremental Computation
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Experiment

Overall Result

Category	#inst	Z3	cvc5	Yices	Ours	Unique
20161105-Sturm-MBO	120	0	0	0	88	88
20161105-Sturm-MGC	2	2	0	0	0	0
20170501-Heizmann	60	3	1	0	8	6
20180501-Economics-Mulligan	93	93	89	91	90	0
2019-ezsmt	61	54	51	52	19	0
20200911-Pine	237	235	201	235	224	0
20211101-Geogebra	112	109	91	99	101	0
20220314-Uncu	74	73	66	74	70	0
LassoRanker	351	155	304	122	272	13
UltimateAtomizer	48	41	34	39	27	2
hycomp	492	311	216	227	304	11
kissing	42	33	17	10	33	1
meti-tarski	4391	4391	4345	4369	4351	0
zankl	133	70	61	58	100	27
Total	6216	5570	5476	5376	5687	148

References

```
[LC23] Bohan Li and Shaowei Cai. "Local Search For SMT On Linear and Multilinear Real Arithmetic". In: CoRR abs/2303.06676 (2023). accepted for FMCAD. DOI: 10.48550/arXiv.2303.06676. arXiv: 2303.06676. URL: https://doi.org/10.48550/arXiv.2303.06676.
```