IIT BOMBAY

EE619 COURSE PROJECT

CASCODE CS-LNA DESIGN

 $Spring\ 2022$

Suraj Sarvesha Samaga (190020114) Sai Saketika Chekuri (190070054) Bagul Siddhi Ganesh (190070015) Apoorva Jangir

Contents

1	Preliminaries	2
2	Noise Figure	2
3	Transmission and Reflection Coefficients	3
4	Non-Linearity	4
5	Stability	5
6	Final Results	6
7	References	7

1 Preliminaries

- Output Load Capacitance $C_L=200~\mathrm{fF}$
- \bullet Frequency of Operation 2.3 to 2.4 GHz
- $V_{DD}=1.8~\mathrm{V}$ and input and output impedances matched to 50 Ω

Figure 1: LNA Schematic

2 Noise Figure

Figure 2: Noise Figure

3 Transmission and Reflection Coefficients

Figure 3: Forward Voltage Gain S_{21}

Figure 4: Input and Output port Voltage Reflection Coefficients \mathcal{S}_{11} and \mathcal{S}_{22}

4 Non-Linearity

Figure 5: IIP_3 (represented by M3)

Figure 6: 1 dB compression point

5 Stability

Figure 7: Stability Analysis - K > 1

Figure 8: Stability Analysis - $\Delta < 1$

Since K>1 and $\Delta<1$, we can see that the system will be unconditionally stable for all passive sources and loads.

6 Final Results

Parameters	Specifications	Results
Noise Figure	$\leq 2 \text{ dB}$	$\leq 0.562 \text{ dB}$
Forward Voltage Gain (S_{21})	> 15 dB	> 15.15 dB
Input port voltage reflection coefficient S_{11}	< -10 dB	< -17.13 dB
Output port voltage reflection coefficient S_{22}	< -10 dB	< -13.09 dB
IIP_3	> -8 dBm	11.61 dBm

Table 1: Final Results

7 References

References

[1] Behzad Razavi. 2011. RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series) (2nd. ed.). Prentice Hall Press, USA.