Úkol č. 3 do předmětu Teoretická informatika

Vojtěch Havlena (xhavle03)

1. Příklad

Jazyk Turingova stroje na obrázku lze pomocí regulárního výrazu zapsat jako $a(baa)^*$. Gramatika G generující tento jazyk je potom definována následovně $G = (\{S, B\}, \{a, b\}, P, S)$, kde množina přepisovacích pravidel je dána jako

$$P = \{S \to aB, B \to baaB, B \to \varepsilon\}.$$

Přijímající běh Turingova stroje pro řetězec abaa.

$$(0, \Delta abaa\Delta^{\omega}, 0) \vdash (1, \Delta abaa\Delta^{\omega}, 1) \vdash (2, \Delta abaa\Delta^{\omega}, 2) \vdash (3, \Delta abaa\Delta^{\omega}, 3)$$

$$\vdash (1, \Delta abaa\Delta^{\omega}, 4) \vdash (2, \Delta abaa\Delta^{\omega}, 5) \vdash (5, \Delta abaa\Delta^{\omega}, 4)$$

$$\vdash (6, \Delta aba\Delta^{\omega}, 4) \vdash (5, \Delta aba\Delta^{\omega}, 3) \vdash (6, \Delta ab\Delta^{\omega}, 3)$$

$$\vdash (5, \Delta ab\Delta^{\omega}, 2) \vdash (6, \Delta a\Delta^{\omega}, 2) \vdash (5, \Delta a\Delta^{\omega}, 1)$$

$$\vdash (6, \Delta^{\omega}, 1) \vdash (5, \Delta^{\omega}, 0) \vdash (7, \Delta^{\omega}, 1)$$

$$\vdash (8, \Delta Y\Delta^{\omega}, 1) \vdash (9, \Delta Y\Delta^{\omega}, 0)$$

Derivace řetězce abaa gramatikou G.

$$S \Rightarrow aB \Rightarrow abaaB \Rightarrow abaa$$

2. Příklad

Důkaz toho, že problém prázdnosti jazyka daného Turingova stroje (EMP) není ani částečně rozhodnutelný provedu redukcí z co-HP, kde

$$EMP = \{ \langle M \rangle \mid L(M) = \emptyset \} \text{ a co-HP } = \{ \langle M \rangle \# \langle w \rangle \mid M \text{ nezastaví při } w \}.$$

Jazyk co-HP není ani rekurzivně vyčíslitelný jazyk. Navrhneme tedy totální funkci $\sigma:\{0,1,\#\}^* \to \{0,1\}^*$, která zachovává členství v jazycích co-HP a EMP a je implementovatelná úplným TS. Funkce σ pro zadaný vstup $x \in \{0,1\}^*$ vygeneruje kód TS M_x (vygeneruje tedy $\langle M_x \rangle$) a M_x pracuje následovně:

- (a) M_x smaže obsah své vstupní pásky.
- (b) M_x zapíše na svou pásku řetězec x.
- (c) M_x otestuje, zda řetězec x má strukturu $x_1 \# x_2$, kde $x_1 = \langle M \rangle$ (x_1 je tedy kód TS M) a x_2 je kód jeho vstupu w. Pokud takovou strukturu nemá, přijme.

(d) Jinak M_x s využitím univerzálního TS odsimuluje běh TS M na vstupu w. Pokud M na w zastaví, M_x přijme řetězec x (jinak tedy cyklí).

Redukci σ lze implementovat úplným TS. Stačí, aby tento úplný TS byl schopen vygenerovat TS, který předává řízení mezi 4 komponentami, které implementují body (a) – (d). Komponenty (a), (b), (d) jsou nezávislé na x. Pro vypsání x na vstupní pásku stačí vygenerovat kód TS, který postupně zapisuje symboly z x na vstupní pásku a posunuje hlavu o jednu pozici doprava.

Jazyk $L(M_x)$ je buď prázdný nebo $\{0,1\}^*$, přičemž

- (a) $L(M_x) = \emptyset \Leftrightarrow x = x_1 \# x_2$, kde $x_1 = \langle M \rangle$ (x_1 je kód TS M) a $x_2 = \langle w \rangle$ (kód jeho vstupu) a M na w nezastaví.
- (b) $L(M_x) = \{0, 1\}^* \Leftrightarrow x$ není správně zformovaná instance co-HP nebo $x = x_1 \# x_2$, kde $x_1 = \langle M \rangle$ (x_1 je kód TS M) a $x_2 = \langle w \rangle$ (kód jeho vstupu) a M na w zastaví.

V posledním kroku důkazu zbývá ukázat, že σ zachovává členství v jazyce, tj. $x \in \text{co-HP} \Leftrightarrow \sigma(x) \in \text{EMP}$. Tedy

 $\sigma(x) = \langle M_x \rangle \in \text{EMP} \Leftrightarrow L(M_x) = \emptyset \Leftrightarrow x = x_1 \# x_2$, kde $x_1 = \langle M \rangle$ (x_1 je kód TS M) a $x_2 = \langle w \rangle$ (kód jeho vstupu) a M na w nezastaví $\Leftrightarrow x \in \text{co-HP}$. Problém prázdnosti jazyka daného Turingova stroje tedy není ani částečně rozhodnutelný.

3. Příklad

- (a) Předpokládejme, že existuje konečná množina P řetězců, pro kterou je HP P-rozhodnutelný. Tedy existuje TS M_P , který P-rozhoduje HP. Potom je jazyk $PHP = HP \setminus P$ rekurzivní úplný TS M, který rozhoduje jazyk PHP by pracoval následovně: TS M by zkontroloval, zda vstupní řetězec je obsažen v množině P (množina P je konečná, stačí projít všechny prvky a porovnávat). Pokud ano, M zamítne. Jinak pomocí univerzálního TS simuluje běh TS M_P , který P-rozhoduje HP se vstupním řetězcem. Pokud M_P přijme, tak přijme i M. Pokud M_P zamítne, zamítne i M.
 - Dále je možné si jazyk HP vyjádřit následovně: $HP = PHP \cup (HP \cap P)$. Vzhledem k tomu, že P je konečná množina, je i $HP \cap P$ konečná množina a tedy i rekurzivní jazyk. Vzhledem k tomu, že PHP je rekurzivní jazyk a rekurzivní jazyky jsou uzavřeny vůči sjednocení, je i $HP = PHP \cup (HP \cap P)$ rekurzivní jazyk, což je spor. Konečná množina P řetězců, pro kterou je HP P-rozhodnutelný tedy neexistuje.
- (b) Za P si zvolím celou množinu HP, tedy P=HP. Tato množina je nekonečná. Dále uvažujme TS M takový, který pro každý vstup okamžitě zastaví a nepřijme. Tedy $L(M)=\emptyset$. Tento TS pro každý vstup zastaví a ze slov mimo P přijímá právě ta, která patří do HP (což nejsou žádná slova). A tedy TS M P-rozhoduje HP.
- (c) Předpokládejme, že tvrzení platí, tedy pro všechny nekonečné množiny řetězců P je HP P-rozhodnutelný. Když platí pro všechny nekonečné, tak platí i pro

 $P = \{0, 1\}^*$. Nechť pro $x \in \{0, 1\}^*$ je M_x TS s kódem x, je-li x validní kód TS. Jinak M_x je pevně zvolený TS, který pro libovolný vstup okamžitě zastaví. Posloupnost $M_{\varepsilon}, M_0, M_1, \ldots$, idexovaná řetězci z $\{0, 1\}^*$ zahrnuje všechny Turingovy stroje nad $\{0, 1\}^*$. Podle předpokladu existuje TS K, který P-rozhoduje HP. Tento TS pro vstup $\langle M \rangle \# \langle w \rangle$ (platí, že $\langle M \rangle \# \langle w \rangle \notin P$):

- Zastaví a přijme právě tehdy, když TS M zastaví na w.
- Zastaví a odmítne právě tehdy, když TS M cyklí na w.

Dále je možné sestavit TS N, který pro vstup $x \in \{0, 1\}^*$:

- Sestaví M_x z x a zapíše $\langle M_x \rangle \# \langle x \rangle$ na svou pásku.
- Dále simuluje TS K na vstup $\langle M_x \rangle \# \langle x \rangle$ a přijme, pokud K odmítne. Pokud K přijme, přejde do nekonečného cyklu.

Potom ale N zastaví na $x \Leftrightarrow K$ odmítne $\langle M_x \rangle \# \langle x \rangle \Leftrightarrow M_x$ cyklí na x. TS N se tedy liší od každého M_x alespoň na jednom řetězci. Což je ovšem spor s tím, že posloupnost $M_{\varepsilon}, M_0, M_1, \ldots$ zahrnuje všechny Turingovy stroje nad $\{0,1\}$. Tvrzení tedy neplatí.

4. Příklad Pro simulaci Turingova stroje (TS) pomocí rendez-vous sítí (RVS) je nejprve nutné uvažovat kódování konfigurace TS pomocí rendez-vous sítí. Neformálně každý proces v RVS představuje políčko na pásce TS. Tyto procesy jsou lineárně zřetězeny pomocí komunikačních kanálů. Každý proces (vyjma procesu představující 1. políčko pásky a poslední neblankové políčko pásky) je pomocí jednoho kom. kanálu spojen s jedním sousedem a pomocí druhého kom. kanálu s druhým sousedem (lze si představit jako jakýsi lineárně vázaný seznam).

Ve stavech automatu popisující chování procesů ukládám informaci o aktuálním stavu TS, páskovém symbolu, který je uložen na políčku pásky reprezentovaném procesem, číslo procesu pro oddělení jednotlivých procesů a příznak, který udává, zda tento proces má řízení (= hlava TS je právě nad tímto políčkem pásky). Příznakem řízení může být označen pouze jeden proces Pro číselné oddělení jednotlivých procesů používám čísla ze \mathbb{Z}_3 , navíc s číslem 4 pro číslo nově přidaného procesu (=posunutí hlavy TS na pozici pásky, pro kterou zatím neexistuje proces). Stav konečného automatu je tedy čtveřice.

Abeceda je trojice stav TS (pro předávání řízení mezi procesy), identifikace procesu a příznak popisující, zda se jedná a nově vytvořený proces.

Pro daný TS $M = (Q_T, \Sigma_T, \Gamma, \delta_T, q_0^T, q_F^T)$ je konečný automat A popisující chování procesů definován následovně: $A = (Q, \Sigma \times \{0, 1\}, \delta, q_0, F)$, kde

- $-Q = Q_T \times \Gamma \times M \times \{0,1\}, \text{ kde } M = \mathbb{Z}_3 \cup \{4\}$
- $-\Sigma = Q_T \times M \times \{0, 1\}$
- $-q_0 = (q_0^T, \Delta, 4, 0)$
- $-F = \{q_F^T\} \times \Gamma \times M \times \{0, 1\}$

– Přechodová funkce $\delta: Q \times \Sigma \times \{0,1\} \to 2^Q$ je dána následovně (\oplus značí operaci sčítání v \mathbb{Z}_3 a \ominus odečítání v \mathbb{Z}_3):

$$\forall q_{1}, q_{2}, q_{3} \in Q_{T}, \forall a_{1}, a_{3} \in \Gamma, \forall v_{1}, v_{2}, v_{3} \in M, \forall Y_{1}, Y_{3}, new, i \in \{0, 1\}: \\ (q_{3}, a_{3}, v_{3}, Y_{3}) \in \delta((q_{1}, a_{1}, v_{1}, Y_{1}), ((q_{2}, v_{2}, new), i)) \Leftrightarrow \\ (new = 0 \land Y_{1} = 0 \land Y_{3} = 1 \land v_{1} = v_{2} = v_{3} \neq 4 \land a_{3} = a_{1} \land q_{3} = q_{2}) \lor \\ (new = 0 \land Y_{1} = 1 \land Y_{3} = 0 \land v_{2} = v_{1} \oplus 1 \land v_{3} = v_{1} \land a_{3} = a_{1} \land \\ q_{3} = q_{2} \land \delta_{T}(q_{1}, a_{1}) = (q_{2}, R)) \lor \\ (new = 0 \land Y_{1} = 1 \land Y_{3} = 0 \land v_{2} = v_{1} \oplus 1 \land v_{3} = v_{1} \land a_{3} = a_{1} \land \\ q_{3} = q_{2} \land \delta_{T}(q_{1}, a_{1}) = (q_{2}, L)) \lor \\ (new = 0 \land Y_{1} = 0 \land Y_{3} = 0 \land v_{2} = 4 \land v_{1} = v_{3} \neq 4 \land a_{3} = a_{1} \land q_{1} = q_{3}) \lor \\ (new = 0 \land Y_{1} = 1 \land Y_{3} = 1 \land v_{2} = 4 \land v_{1} = v_{3} \neq 4 \land \delta_{T}(q_{1}, a_{1}) = (q_{3}, a_{3})) \lor \\ (new = 1 \land Y_{1} = 1 \land Y_{3} = 0 \land v_{2} = v_{1} = v_{3} \land a_{3} = a_{1} \land \\ q_{3} = q_{2} \land \delta_{T}(q_{1}, a_{1}) = (q_{2}, R)) \lor \\ (new = 1 \land Y_{1} = 0 \land Y_{3} = 1 \land v_{1} = 4 \land v_{3} = v_{2} \oplus 1 \land a_{3} = a_{1} \land q_{3} = q_{2}) \end{aligned}$$

Sémantika: q je stav TS, a je symbol na pásce, v je identifikace procesu, Y je příznak řízení, new – zda se jedná o nový proces. První tři pravidla představují předání řízení z aktivního procesu do sousedního procesu (simulace posunu hlavy TS vlevo/vpravo). Další dvě pravidla představují simulaci pravidla, kdy v TS dojde k přepsání symbolu pod hlavou (samotná hlava není posunuta). Poslední dvě pravidla simulují posun hlavy vpravo za poslední neblankový symbol na pásce (dojde k vytvoření nového procesu, tomuto procesu se přiřadí identifikační číslo a předá se mu řízení).

Způsob kódování konfigurace TS pomocí RVS. Nechť $(q, \gamma \Delta^{\omega}, n)$ je konfigurace TS M, kde $\gamma \in \Gamma^*$ a $|\gamma| > n$. Potom této konfiguraci odpovídá konfigurace RVS (S, stav), kde S = (A, P, K). Konečný automat A je pro TS M definován, jak je popsáno výše. Množina procesů $P = \{p_0, \ldots, p_{m-1}\}$, kde $m = |\gamma|$. Množina komunikačních kanálů $K = \{(p_i, 1, p_{i+1}) | p_i, p_{i+1} \in P, i \text{ je sudé}\} \cup \{(p_i, 2, p_{i+1}) | p_i, p_{i+1} \in P, i \text{ je liché}\}$. Funkce stav je potom definována následovně:

$$stav(p_i) = \begin{cases} (q_0^T, \gamma_i, i \mod 3, 0) & \text{pokud } i \neq n \\ (q, \gamma_i, i \mod 3, 1) & \text{pokud } i = n \end{cases}$$

V případě, kdy máme zadanou konfiguraci RVS, tak odpovídající konfiguraci TS získáme tam, že nelezneme proces, který má nastaven příznak řízení. Z toho procesu získáme aktuální stav TS. Pozici hlavy získáme průchodem z aktivního procesu přes komunikační kanály směrem k procesům s nižším identifikačním číslem.

Tvrzení 1.1. Nechť M je Turingův stroj a $K_1 = (q, \gamma \Delta^{\omega}, n)$ a $K_2 = (q', \gamma' \Delta^{\omega}, m)$ jsou konfigurace M, přičemž $K_1 \neq K_2$. Dále předpokládejme, že (S, stav) je konfigurace RVS odpovídající konfiguraci K_1 a (S', stav') je konfigurace RVS odpovídající konfiguraci K_2 a navíc $(S, stav) \neq (S', stav')$. Potom $K_1 \vdash_M K_2$ právě tehdy když $(S, stav) \rightarrow (S', stav')$.

 $D\mathring{u}kaz$. (\Rightarrow) Mohou nastat následující 3 možnosti:

(a) m = n a $\gamma' = s_b^n(\gamma)$ a $\delta_T(q, \gamma_n) = (q', b)$.

V tomto případě $p_n \in P$ je proces, který má řízení a tedy $stav(p_n) = (q, \gamma_n, v_n, 1)$. Nehchť p_m je libovolný proces, který je s p_n spojen komunikačním kanálem $i \in \{0,1\}$ a tedy $stav(p_m) = (q'', a, v_m, 0)$, kde $v_m = v_n \oplus 1$ nebo $v_m = v_n \oplus 1$. Potom existuje $(q, 4, 0) \in \Sigma$ a

$$stav'(p_n) = \delta((q, \gamma_n, v_n, 1), ((q, 4, 0), i)) = (q', s_b^n(\gamma), v_n, 1)$$

$$stav'(p_m) = \delta((q'', a, v_m, 0), ((q, 4, 0), i)) = (q'', a, v_m, 0).$$

Tedy $(S, stav) \rightarrow (S, stav')$ a (S, stav') je konfigurace RVS, která odpovídá konfiguraci TS $M(q', \gamma' \Delta^{\omega}, m)$.

(b) m = n + 1 a $\gamma' = \gamma$ a $\delta_T(q, \gamma_n) = (q', R)$.

Opět $p_n \in P$ je proces, který má řízení a tedy $stav(p_n) = (q, \gamma_n, v_n, 1)$. Nejprve předpokládejme, že p_n je spojen oběma komunikačními kanály. Potom p_m je libovolný proces, který je s p_n spojen komunikačním kanálem $i \in \{0, 1\}$ a jeho identifikátor $v_m = v_n \oplus 1$ a tedy $stav(p_m) = (q'', a, v_n \oplus 1, 0)$. Potom existuje $(q', v_n \oplus 1, 0) \in \Sigma$ a

$$stav'(p_n) = (q', \gamma_n, v_n, 0) = \delta((q, \gamma_n, v_n, 1), ((q', v_n \oplus 1, 0), i))$$

$$stav'(p_m) = (q', a, v_n \oplus 1, 1) = \delta((q'', a, v_n \oplus 1, 0), ((q', v_n \oplus 1, 0), i)).$$

Tedy $(S, stav) \to (S, stav')$ a (S, stav') je konfigurace RVS, která odpovídá konfiguraci TS M $(q', \gamma'\Delta^{\omega}, m)$. Nyní uvažujme případ, kdy p_n není spojen s procesem, jehož identifikátor je $v_n \oplus 1$ (musíme tedy přidat nový proces p_m).

$$stav'(p_n) = (q', \gamma_n, v_n, 0) = \delta((q, \gamma_n, v_n, 1), ((q', v_n, 1), i))$$

$$stav'(p_m) = (q', \Delta, v_n \oplus 1, 1) = \delta((q_0^T, \Delta, 4, 0), ((q', v_n, 1), i)).$$

Opět tedy $(S, stav) \to (S', stav')$ a (S', stav') je konfigurace RVS, která odpovídá konfiguraci TS M $(q', \gamma' \Delta^{\omega}, m)$

(c) m = n - 1 a $\gamma' = \gamma$ a $\delta_T(q, \gamma_n) = (q', L), n > 0$.

Opět $p_n \in P$ je proces, který má řízení a tedy $stav(p_n) = (q, \gamma_n, v_n, 1)$ a p_m je proces, který je s p_n spojen komunikačním kanálem $i \in \{0, 1\}$ a pro jeho identifikátor platí $v_m = v_n \ominus 1$. Tedy $stav(p_m) = (q'', a, v_n \ominus 1, 0)$. Potom existuje $(q', v_n \ominus 1, 0) \in \Sigma$:

$$stav'(p_n) = (q', \gamma_n, v_n, 0) = \delta((q, \gamma_n, v_n, 1), ((q', v_n \ominus 1, 0), i))$$

$$stav'(p_m) = (q', a, v_n \ominus 1, 1) = \delta((q'', a, v_n \ominus 1, 0), ((q', v_n \ominus 1, 0), i)).$$

Tedy $(S, stav) \rightarrow (S, stav')$ a (S, stav') je konfigurace RVS, která odpovídá konfiguraci TS M $(q', \gamma' \Delta^{\omega}, m)$.

(⇐) Vzhledem k tomu, že $(S, stav) \neq (S', stav')$, tak spolu nemohly komunikovat žádné dva procesy, z nichž ani jeden nemá řízení. Jediná možnost komunikace mezi procesy bez řízení je totiž 4. pravidlo přechodové funkce a toto pravidlo nemění stav. Komunikace tedy musela proběhnout mezi dvěma procesy z nichž právě jeden proces má řízení. Vzhledem k tomu, jak je přechodová funkce δ definována, to znamená, že ze stavu a aktuálního symbolu, který reprezentuje aktivní proces existuje přechod v TS M. Tedy $K_1 \vdash_M K_2$ a nový stav RVS odpovídá konfiguraci TS K_2 .

Důsledek 1.1. Nechť M je TS, $(q, \gamma \Delta^{\omega}, n)$, $kde \gamma \in \Gamma^*$ je jeho konfigurace a (S, stav) je konfigurace RVS odpovídající konfiguraci $(q, \gamma \Delta^{\omega}, n)$. Potom $(q, \gamma \Delta^{\omega}, n)$ $\vdash_M^* (q_F^T, \gamma' \Delta^{\omega}, m)$, $kde \gamma' \in \Gamma^*$ právě tehdy když z konfigurace (S, stav) je dosažitelný koncový stav.

Dále předpokládejme, že existuje jednoznačné kódování stavu RVS pomocí symbolů z nějaké abecedy Σ . Kód konfigurace RVS S potom označuji jako $\langle (S, stav) \rangle$. (Například $\Sigma = \{0, 1, \#_1, \#_2\}$ a v kódu S jsou jednotlivé složky odděleny symbolem $\#_1$, kódování automatu pomocí řetězce $\{0, 1\}^*$ je podobné jako kódování TS. RVS od funkce stav potom může být oddělen symbolem $\#_2$ a kódování funkce stav může být provedeno tak, že jednotlivé procesy spolu s akt. stavy jsou odděleny symbolem $\#_1$).

Nyní k samotnému důkazu, že problém dosažitelnosti koncového stavu (DOS) je nerozhodnutelný. Uvažujme funkci $\sigma:\{0,1,\#\}^*\to \Sigma^*$, která provádí redukci z problému náležitosti MP.

$$DOS = \{\langle (S, stav) \rangle | Ze stavu (S, stav) dosáhne S konc. konfigurace \}$$

Funkce σ pro zadaný vstupní řetězec x funguje následovně:

- Pokud x není správně zformovanou instancí MP, vrať kód RVS, která nikdy nedosáhne koncového stavu.
- Pokud x je ve tvaru $x_1 \# x_2$, kde x_1 je kód TS M a x_2 je kód jeho vstupu w, vygeneruj kód RVS, která odpovídá počáteční konfiguraci TS M, tedy $(q_0^T, \Delta w \Delta^{\omega}, 0)$.

Podle důsledku 1.1. platí: $x \in MP \Leftrightarrow \sigma(x) \in DOS$. Tedy problém dosažitelnosti koncového stavu z dané konfigurace RVS je nerozhodnutelný.