Sakarya Üniversitesi Bilgisayar Mühendisliği

BSM307 İşaretler ve Sistemler Örnek Ara Sınav Soruları

- 1. $a(n)=(0,2)^nu(n)$ ve $b(n)=(0,4)^nu(n)$ işaretleri için, c(n)=a(n)*b(n) konvolüsyon toplamını bulunuz. $c(n)=2(0,4)^n\left(1-\left(\frac{1}{2}\right)^{n+1}\right)u(n)$
- 2. Birim darbe cevabı h(n) = u(n) olarak verilen sistemin $x(n) = \left(\frac{1}{2}\right)^n u(n-1)$ işaretine olan cevabı y(n)' yi konvolüsyon ile bulunuz. $y(n) = \left(1 \left(\frac{1}{2}\right)^n\right) u(n-1)$
- 3. Birim darbe cevabı $h(n) = (-1)^n u(n)$ şeklinde verilen doğrusal zamanla değişmeyen sistemin x(n) = u(n) u(n-3) işaretine cevabı y(n)'yi hesaplayınız.
- 4. $n \ge 0$ için fark denklemi y(n) = 2y(n-1) y(n-2) + x(n) olarak verilen sistemin y(-1) = 1 ve y(-2) = 0 başlangıç koşulları ile x(n) = u(n) işaretine olan toplam çözümünü bulun. $y_t(n) = \left(3 + \frac{5}{2}n + \frac{1}{2}n^2\right)u(n)$
- 5. $n \ge 0$ için fark denklemi y(n) = y(n-1) + x(n) olarak verilen sistemin y(-1) = 1 başlangıç koşulu ile x(n) = u(n) işaretine olan toplam çözümünü bulunuz. $y_t(n) = (2 + n)u(n)$
- 6. Fark denklemi y(n) 4y(n-1) + 4y(n-2) = x(n) olarak verilen sistemin y(-1) = y(-2) = 0 başlangıç koşulları ile x(n) = u(n) işaretine cevabın
 - a. Doğal çözümünü $y_d(n) = 0$
 - b. Zorlanmış çözümünü bulunuz. $y_z(n) = (n2^{n+1} + 1)u(n)$
 - c. Toplam çözümünü bulunuz. $y_t(n) = y_d(n) + y_z(n) = (n2^{n+1} + 1)u(n)$
- 7. Fark denklemi y(n) 2y(n-1) + y(n-2) = x(n) + x(n-1) olarak verilen ikinci derece sistemin birim darbe cevabı h(n)' yi bulunuz. h(n) = (1 + 2n)u(n)
- 8. $n \ge 0$ için y(n) 4y(n-1) 4y(n-2) = x(n) + 2x(n-2) fark denklemi ile ifade edilen sistemin birim darbe cevabı h(n)' yi bulunuz.
- 9. $n \ge 0$ için y(n) y(n-2) = x(n-1) fark denklemi ile ifade edilen sistemin durum denklemlerini bulunuz.
- 10. $x(n) = \begin{cases} n & \text{, } 0 \le n \le N-1 \\ N & \text{, } N \le n \end{cases}$ olarak veriliyorsa X(z)' yi bulun. $X(z) = \frac{z^{-1}(1-z^{-N})}{(1-z^{-1})^2}$ ve |z| > 1
- 11. $x(n) = (-1)^n (2)^{-n} u(n)$ işaretinin z-dönüşümünü bulun. $X(z) = \frac{1}{1 + \frac{1}{z} z^{-1}}$ ve $|z| > \frac{1}{2}$
- 12. $x(n) = \left(\frac{1}{2}\right)^n u(-n+1)$ işaretinin z-dönüşümünü yakınsama bölgesi ile birlikte bulunuz.
- 13. Doğrusal zamanla değişmeyen bir sistemin $x(n) = \left(\frac{1}{3}\right)^n u(n) + (2)^n u(-n-1)$ işaretine olan cevabı $y(n) = 5\left(\frac{1}{3}\right)^n u(n) 5\left(\frac{2}{3}\right)^n u(n)$ olduğu veriliyorsa.
 - a. Sistemin transfer fonksiyonu H(z)' yi yakınsama bölgesi ile bulun. $H(z) = \frac{1-2z^{-1}}{1-\frac{2}{z^{-1}}}$ ve $|z| > \frac{2}{3}$
 - b. Sistemin birim darbe cevabı h(n)'yi yazın. $h(n) = \left(\frac{2}{3}\right)^n \left(u(n) 3u(n-1)\right)$
 - c. Sistemin fark denklemi olarak ifadesini yazın. $y(n) \frac{2}{3}y(n-1) = x(n) 2x(n-1)$

- 14. Doğrusal zamanla değişmeyen bir sistemin x(n)=u(n) işaretine olan cevabı y(n)=nu(n) olduğu veriliyorsa
 - a. Sistemin transfer fonksiyonu H(z)' yi yakınsama bölgesi ile bulunuz. $H(z) = \frac{z^{-1}}{1-z^{-1}} |z| > 1$
 - b. Sistemin birim darbe cevabı h(n)'yi yazınız. h(n) = u(n-1)
- c. Sistemin fark denklemi olarak ifadesini yazınız. y(n) y(n-1) = x(n-1)
- d. Sistemin kararlı olup olmadığını nedeniyle birlikte açıklayınız. $\sum_n h(n) = \sum_n u(n-1) = \sum_{n=1}^{\infty} 1 = \infty$ olduğu için kararsızdır.
- e. Sistemin nedensel olup olmadığını nedeniyle birlikte açıklayınız. n < 0 iken h(n) = 0 olduğundan nedensel.
- 15. y(n) = ay(n-1) + bx(n-1) fark denklemine ait sistemin birim darbe cevabının $\sum_n h(n) = 1$ eşitliğini sağlaması için b'nın a cinsinden karşılığını yazınız. b = 1 a
- 16. $x(n)=(n+1)a^nu(n-1)$ ayrık zaman işaretin z-dönüşümünü yakınsama bölgesi ile birlikte bulunuz. $X(z)=\frac{az^{-1}}{(1-az^{-1})^2}+\frac{az^{-1}}{1-az^{-1}}=\frac{az^{-1}(2-az^{-1})}{(1-az^{-1})^2}$ ve |z|>|a|
- 17. 7. soruda verilen sistemin transfer fonksiyonu H(z)' yi ve yakınsama bölgesini bulunuz. $H(z) = \frac{1+z^{-1}}{(1-z^{-1})^2}$ ve |z| > 1
- 18. Giriş işaretinin z dönüşümü $\frac{1}{5} < |z| < 3$ yakınsama bölgesi ile $X(z) = \frac{1}{\left(1 \frac{1}{5}z^{-1}\right)(1 + 3z^{-1})}$ ve sistemin transfer fonksiyonu $|z| > \frac{1}{3}$ yakınsama bölgesi ile $H(z) = \frac{1 + 3z^{-1}}{1 + \frac{1}{3}z^{-1}}$ olarak veriliyorsa. Çıkış işaretinin z dönüşümünü Y(z) yakınsama bölgesi ile birlikte belirleyin. $Y(z) = \frac{1}{\left(1 \frac{1}{5}z^{-1}\right)\left(1 + \frac{1}{3}z^{-1}\right)}$ ve $|z| > \frac{1}{3}$
- 19. Birim impuls cevabı $h(n)=(0.5)^nu(n)$ olarak verilen sistemin $x(n)=\delta(n-3)$ işaretine olan cevabı y(n)'i z dönüşümü kullanarak bulunuz. $y(n)=(0.5)^{n-3}u(n-3)$