

Ti-Bot[©]

Direct Chemical Mechanical Actuation System

Program Goals

- Define feasibility of direct conversion of chemical to actuator output
- Phase I SBIR
 - Conduct trade studies of actuators and power supplies
 - Develop preliminary math model of system
 - Demonstrate feasibility of actuator
- Phase II SBIR
 - Refine trade studies
 - Simulate power supply and actuators
 - Design/build/test level I & II prototypes
 - Validate Simulation

Program Plan

ID	Task Name	1999			2000			2001			2002			
		Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2
1	Phase I SBIR													
2	Establish Design Requirements													
3	Conduct Trade Studies													
4	Design Selected Actuation Options													
5	Conduct In-house Proof-of-Principal Testing													
6	Conduct Commercialization Study													
7														
8	Phase II SBIR													
9	Systems Engineering													
14	Dynamic Performance Analysis													
15	Design Trade Studies													
16	Prototype I													
17	Prototype II													
18	System Testing													
19	Scaling Analysis													
20	Conduct Commercialization Study													

Contractors and Roles

- Quoin International
- SCION Systems
- GMS
- Adams
- Prime Contractor
 - ♦ Requirements analysis
 - ♦ Mechanical design
 - ♦ System integration
- Servo electronics
 - ♦ Test equipment development
 - ♦ System software
- Precision Machining
- Solid Works (Ideas)

Accomplishments 6/99- 6/00

- Phase I contract award 11/99
- Completion of trade studies 2/00
 - ♦ Reversing Turbines
 - ♦ Free Piston Engine
- Technology Demonstration
for reversing turbine actuator 5/00

Requirements/Approach

- Use fuel/air as primary power source.
- Precision position and velocity control loops.
- 15-20 Hz bandwidth.
- High efficiency.
- Compressed air/fuel with catalyst bed reactor.
- Digital control with optical encoder.
(0.005 inch resolution)
- 25 hz open loop.
- Peak 15% now up to 25% future.

System Schematic

System Schematic describes the complete power and control system

Quoin Free Piston Compressor-Ti-BOT

Free-Piston-Powered Alternator

High Specific Energy Output Engine-Generator

Robo Guy

Turbine Design

Prototype Test Data

25 & 50-lb Tests

Conclusions

- Ti-Bot is best for exo-skeleton
 - ♦ High force of hydraulic
 - ♦ Stiffness of electro-mechanical
 - ♦ 1/4 the weight of electro-mechanical and 1/5 fuel flow of hydraulic.
 - ♦ Free Piston Engine is smallest size and most fuel efficient.