Lecture 24

Similar story for photons.

 E_c - critical energy O($10^{-2} - 10^{-1}$ GeV)

Looks Similar to

Shower will stop growing when

$$E(t) \simeq E_c \equiv E(t_{max})$$

 t_{max} is point in shower with max particles

$$t_{max} = \frac{\ln \frac{E_0}{E_c}}{\ln 2}$$

 \Rightarrow shower depth grows as ln

 N_{max} given by E_0/E_c

For heavier particles, Brem does not kick in until much higher energies. eg: $E_c \sim 3000~{\rm GeV}$ for a muon in lead.

"Electromagnetic Shower"

- -) For each e (or γ) with $E > E_c$ travels
- ~ $1x_0$ then gives up 1/2 energy to γ (or ee).
- -) e's, γ 's with energy $< E_c$ get absorbed via ionization

If initial energy $E_0 >> E_c$ then after tradiation lengths there will be 2^t particles. Approximately equal e's and γ 's each with energy $E(t) \sim \frac{E_0}{2^t}$.

Nuclear Interactions

If the particle traversing the medium is a hadron, can interact via the strong interaction.

eg: π^{\pm} moving through detector material will suffer an inelastic collision in distance λ_i

This collision takes energy from π and converts it to additional hadrons (charged and neutral)

Leads to what is called "Hadronic Shower" - same basic idea as an EM shower, but much more complex. Involves a variety of processes at different length scales

At the inelastic collision, typically produce

 $\pi^+ \sim 1/3$ of the time. Travels like a MIP w/scale λ_i $\pi^0 \sim 1/3 \leftarrow Br(\gamma\gamma) \sim 100\%$ travels 10nm \Rightarrow EM shower w/ scale X_0 $\pi^- \sim 1/3$

Both π^{\pm} travel like MIPs of order λ_i . \Rightarrow Hadronic showers develop over larger distances and contain much more fluctuations.

Trackers

Ionization detectors in a magnetic field.

Charged particles traveling in a magnetic field move in circles.

$$\frac{1}{R[m]} = Q \cdot B[T] \cdot \frac{0.3}{p_T[\text{GeV}]}$$

Particle positions are measured by finely etched silicon sensors.

 $\sim 10 \mu m$ resolution

We measure the curvature $\sim \frac{1}{R} \sim \frac{1}{p_{\rm T}}$

$$s = \frac{qBL^2}{8p_{\rm T}}$$

(More important to have bigger length than larger B)

$$\Rightarrow \Delta \frac{1}{p_{\rm T}} = \frac{\Delta p_{\rm T}}{p_{\rm T}^2}$$

So the relative uncertainty in p_T degrades with p_T .

LHC typical performance

$$\frac{\Delta p_{\rm T}}{p_{\rm T}} \sim (\text{few \%}) \frac{p_{\rm T}}{100 \text{ GeV}}$$

4

EM Calorimeter

Contains and measures e's γ 's and $\pi^0 \to \gamma \gamma$.

Total depth $\sim 20X_0$ (Enough to contain high p_T showers)

Only energy deposited in Si/LAr is measured. Rest is lost in uninstrumented lead.

So only a small fraction of the total EM shower energy is collected (measured). $E \sim N_c$ amount collected scales like the number of electrons produced

$$\frac{\Delta E}{E} \sim \frac{\Delta N_c}{N_c} \sim \frac{1}{\sqrt{N_c}} \sim \frac{1}{\sqrt{E}}$$

At the LHC typical performance

$$\frac{\Delta E}{E} \sim \frac{10 \%}{\sqrt{E}}$$

5

Unlike trackers the relative energy measurement improves with E.

Hadronic Calorimeter

Compare shooting a π^{\pm} in the detector instead of an electron.

- π will travel further because it has to interact via the strong force (shorted range than EM)
- π will make other π^{\pm} and π^{0}
- Compared to electrons, make less particles (fewer at fixed E) b/c π mass is bigger.
- More varied showers depending on what particles are produced π^{\pm} vs π^{0} .

 \Rightarrow hadronic calorimeters need to be bigger, and will measure showers that have more fluctuations.

At the LHC typical performance worse than for EM calorimeters

$$\frac{\Delta E}{E} \sim \frac{50 \%}{\sqrt{E}}$$

Relative energy measurement also improves with E.

Muon Detectors

Put tracking detectors outside of the calorimeters.

If any charged particle makes it through ~ 3 m of lead it has to be a muon.

$$\mu$$
 no strong interaction only rarely radiate γ s (below ~ 3 TeV)

Neutrino Detectors at the LHC

 ν s leave no energy in detector.

Can infer their presence from momentum imbalance in the transverse plane.

Poor resolutions, b/c have to measure everything else in the event.

Trigger

LHC provides bunch crossings at 40 MHz and each event is ~ 2KB.

$$\Rightarrow$$
 80 Tb/s

Library of Congress is ~ 10 Tb

Can only afford to keep 2 GB/s

Only keep 1 out of 40,000 events.

(Will talk about this more in the next lecture)