1 MMQKLQMYVY 10	11 IYLFMLIAAG 20	21 PVDLNEGSER 30 Mouse
1 M I QKPQMYVY 10	11 IYLFVLI AAG 20	21 PVDLNEDSER 30 Rat
1 -M QKLQ L CVY 9	10 IYLFMLI VAG 19	20 PVDLNENSEQ 29 Human
1 -M QKLQ L CVY 9	10 IYLFMLI VAG 19	20 PVDLNENSEQ 29 Baboon
1 –M QKLQ I SVY 9	10 IYLFMLI VAG 19	20 PVDLNENSEQ 29 Bovine
1-M QKLQ I YVY 9	10 IYLFMLI VAG 19	20 PVDLNENSEQ 29 Porcine
1 –M QKLQ I FVY 9	10 IYLFMLLVAG 19	20 PVDLNENSEQ 29 Ovine
1 -M QKLA VYVY 9	10 IYLFMQI AVD 19	20 PVALDGSSQP 29 Chicken
-1 -M Q I LA VYVY 9	10 IYLFMQ I LVH 19	20 PV——ALDGSSQP 29 Turkey
1 -MH FTQVL 7	8 ISLS VL I ACG 17	18 PVGYGDITAHQQP 30 Zebrafish
31 EENVEKEGLC 40	41 NACA WRQNTR 50	51 YS RIE AIKIQ 60 Mouse
31 EANVEKEGLC 40	41 NACA WRQNTR 50	51 YS RIE AIKIQ 60 Rat
30 KENVEKEGLC 39	40 NACT WRONTK 49	50 SS RIE AIKIQ 59 Human
30 KENVEKEGLC 39	40 NACT WRQNTK 49	50 SS RIE AIKIQ 59 Baboon
30 KENVEKEGLC 39	40 NACL WRE NTT 49	50 SS RLE AIKIQ 59 Bovine
30 KENVEKEGI C 30	40 NACMWRQNTK 49	50 SS RLE AIKIQ 59 Porcine
30 KENVEKKGLC 39	40 NACL WRQNNK 49	50 SS RLE AIKIQ 59 Ovine
30 TENAEKDGLC 39	40 NACT WRQNTK 49	50 SS RIE AIKIQ 59 Chicken
30 TENAEKDGLC 39	40 NACT WRONTK 49	50 SS RI E AIKIQ 59 Turkey
31 STAT EES ELC 40	41 S TCE FRQHSK 50	51 LM RLHAIKSQ 60 Zebrafish
100 E		
61 ILSKLRLETA 70	71 PNISKDA IRQ 80	81 LLPRAPPLRE 90 Mouse
61 ILSKLRLETA 70	71 PNISKDA IRQ 80	81 LLPRAPPLRE 90 Rat
60 ILSKLRLETA 69	70 PNISKDV IRQ 79	80 LLPKAPPLRE 89 Human
60 ILSKLRLETA 69	70 PNISKDA IRQ 79	80 LLPKAPPLRE 89 Baboon
60 ILSKLRLETA 69	70 PNISKDA IRQ 79	80 LLPRAPPLLE 89 Bovine
60 ILSKLRLETA 69	70 PNISKDA IRQ 79	80 LLPRAPPLRE 89 Porcine
60 ILSKLRLETA 69	70 PNISKDA IRQ 79	80 LLPRAPPLRE 89 Ovine
60 ILSKLRLEQA 69	70 PNISRDV IKQ 79	80 LLPRAPPLQE 89 Chicken
60 ILSKLRLEQA 69	70 PNISRDV IKQ 79	80 LLPRAPPLQE 89 Turkey
61 ILSKLRLKQA 70	71 PNISRDVVKQ 80	81 LLPRAPPLQQ 90 Zebrafish
	•	
91 LI DQYDVQRD 100	101 DS SDGSLEDD 110	111 DYH ATTET I I 120 Mouse
91 LI DQYDVQRD 100	101 DS SDGSLEDD 110	111 DYH ATTET I I 120 Rat
90 LI DQYDVQRD 99	100 DS SDGSLEDD 109	110 DYH ATTET I I 119 Human
90 LI DQYDVQRD 99	100 DS SDGSLEDD 109	110 DYH ATTET I I 119 Baboon
90 LI DQFDVQRD 99	100 AS SDGSLEDD 109	110 DYH ARTETV I 119 Bovine
90 LI DQYDVQRD 99	100 DS SDGSLEDD 109	110 DYH ATTET I I 119 Porcine
90 LI DQYDVQRD 99	100 DS SDGSLEDD 109	110 DYH VTTETV I 119 Ovine
90 LI DQYDVQRD 99	100 DS SDGSLEDD 109	110 DYH ATTET I I 119 Chicken
90 LI DQYDVQRD 99	100 DS SDGSLEDD 109	110 DYH ATTET I I 119 Turkey
91 LLDQYDVLGD 100	101 DSKDGAVEED 110	111 DEH ATTET IM 120 Zebrafish

FIG. 1A

121 TMP7	TESDFLM 130	131 QADGKPKCCF 140	141 FKFSSKIQYN 150 Mouse
121 TMP7	TESDFLM 130	131 QADGKPKCCF 140	141 FKFSSKIQYN 150 Rat
120 TMP7	TESDFLM 129	130 QVDGKPKCCF 139	140 FKFSSKIQYN 149 Human
120 TMP7	TESDFLM 129	130 QVDGKPKCCF 139	140 FKFSSKIQYN 149 Baboon
120 TMP	TESDLL T 129	130 QVEGKPKCCF 139	140 FKFSSKIQYN 149 Bovine
	TESDLLM 129	130 QVEGKPKCCF 139	140 FKFSSKIQYN 149 Porcine
	TESDLL A 129	130 EVQEKPKCCF 139	140 FKFSSKIQHN 149 Ovine
	TESDFL V 129	130 QMEGKPKCCF 139	140 FKFSSKIQYN 149 Chicken
	TESDFL V 129	130 QMEGKPKCCF 139	140 FKFSSKIQYN 149 Turkey
	TEPDPI V 130	131 QVDRKPKCCF 140	141 FS FSPKIQAN 150 Zebrafish
. Complet as L		131 Q V DIGILIZAÇÃO TO	1111010111110111101
151 KVV	KAQLW IY 160	161 LRP VKTPTTV 170	171 FVQILRLIKP 180 Mouse
151 KVV	KAQLW IY 160	161 LRAVKTPTTV 170	171 FVQILRLIKP 180 Rat
150 KVV	KAQLW IY 159	160 LRP VETPTTV 169	170 FVQILRLIKP 179 Human
150 KVV	KAQLW IY 159	160 LRP VETPTTV 169	170 FVQILRLIKP 179 Baboon
	KAQLW IY 159	160 LRP VKTPATV 169	170 FVQILRLIKP 179 Bovine
	KAQLW IY 159	160 LRP VKTPTTV 169	170 FVQILRLIKP 179 Porcine
	KAQLW IY 159	160 LRP VKTPTTV 169	170 FVQILRLIKP 179 Ovine
	KAQLW IY 159	160 LRQVQKPTTV 169	170 FVQILRLIKP 179 Chicken
	KAQLW IY 159	160 LRQVQKPTTV 169	170 FVQILRLIKP 179 Turkey
	RAQLWVH 160	161 LRP AEEATTV 169	170 FLQISRLM-P 179 Zebrafish
ļus k			
☐ 181 MKD	GTRYTGI 190	191 RSLKLDMSPG 200	201 TGIWQSIDVK 210 Mouse
181 MKD	GTRYTGI 190	191 RSLKLDMSPG 200	201 TGIWQSIDVK 210 Rat
	GTRYTGI 189	190 RSLKLDMNPG 199	200 TGIWQSIDVK 209 Human
180 MKD	GTRYTGI 189	190 RSLKLDMNPG 199	200 TGIWQSIDVK 209 Baboon
180 MKD	GTRYTGI 189	190 RSLKLDMNPG 199	200 TGIWQSIDVK 209 Bovine
180 MKD	GTRYTGI 189	190 RSLKLDMNPG 199	200 TGIWQSIDVK 209 Porcine
180 MKD	GTRYTGI 189	190 RSLKLDMNPG 199	200 TGIWQSIDVK 209 Ovine
180 MKD	GTRYTGI 189	190 RSLKLDMNPG 199	200 TGIWQSIDVK 209 Chicken
180 MKD	GTRYTGI 189	190 RSLKLDMNPG 199	200 TGIWQSIDVK 209 Turkey
180 V KD	GGRHR-I 188	189 RSLK IDV NAG 198	199 VTSWQSIDVK 208 Zebrafish
			•
	NWLKQP 220	221 ESNLGIEIKA 230	231 LD ENGHDLAV 240 Mouse
211 TVL(QNWLKQP 220	221 ESNLGIEIKA 230	231 LD ENGHDLAV 240 Rat
210 TVL	QNWLKQP 219	220 ESNLGIEIKA 229	230 LD ENGHDLAV 239 Human
	QNWLKQP 219	220 ESNLGIEIKA 229	230 LD ENGHDLAV 239 Baboon
	QNWLKQP 219	220 ESNLGIEIKA 229	230 LD ENGHDLAV 239 Bovine
	QNWLKQP 219	220 ESNLGIEIKA 229	230 LD ENGHDLAV 239 Porcine
	QNWLKQP 219	220 ESNLGIEIKA 229	230 LD ENGHDLAV 239 Ovine
	QNWLKQP 219	220 ESNLGIEIKA 229	230 FD ETGRDLAV 239 Chicken
	NWLKQP 219	220 ESNLGIEIKA 229	230 FD ENGRDLAV 239 Turkey
209 QVL	TVWLKQP 218	219 ETNRGIEINA 228	229 YDAKGNDLAV 238 Zebrafish

FIG. 1B

241 TFPGPGEDGL 250	251 NPFLEVKVTD 260	261 TPKRSRRDFG 270 Mouse
241 TFPGPGEDGL 250	251 NPFLEVKVTD 260	261 TPKRSRRDFG 270 Rat
240 TFPGPGEDGL 249	250 NPFLEVKVTD 259	260 TPKRSRRDFG 269 Human
240 TFPGPGEDGL 249	250 NPFLEVKVTD 259	260 TPKRSRRDFG 269 Baboon
240 TFPEPGEDGL 249	250 TPFLEVKVTD 259	260 TPKRSRRDFG 269 Bovine
240 TFPGPGEDGL 249	250 NPFLEVKVTD 259	260 TPKRSRRDFG 269 Porcine
240 TFPEPGEEGL 249	250 NPFLEVKVTD 259	260 TPKRSRRDFG 269 Ovine
240 TFPGPGEDGL 249	250 NPFLEVRVTD 259	260 TPKRSRRDFG 269 Chicken
240 TFPGPGEDGL 249	250 NPFLEVRVTD 259	260 TPKRSRRDFG 269 Turkey
239 TSTETGEDGL 248	249 LPFMEVKI SE 258	259 GPKRIRRDSG 268 Zebrafish
ing is		
271 LDCDEHSTES 280	281 RCCRYPLTVD 290	291 FEAFGWDWII 300 Mouse
271 LDCDEHSTES 280	281 RCCRYPLTVD 290	291 FEAFGWDWII 300 Rat
270 LDCDEHSTES 279	280 RCCRYPLTVD 289	290 FEAFGWDWII 299 Human
270 LDCDEHSTES 279	280 RCCRYPLTVD 289	290 FEALGWDWII 299 Baboon
270 LDCDEHSTES 279	280 RCCRYPLTVD 289	290 FEAFGWDWII 299 Bovine
270 LDCDEHSTES 279	280 RCCRYPLTVD 289	290 FEAFGWDWII 299 Porcine
270 LDCDEHSTES 279	280 RCCRYPLTVD 289	290 FEAFGWDWII 299 Ovine
270 LDCDEHSTES 279	280 RCCRYPLTVD 289	290 FEAFGWDWII 299 Chicken
270 LDCDEHSTES 279	280 RCCRYPLTVD 289	290 FEAFGWDWII 299 Turkey
269 LDCDENSSES 278	279 RCCRYPLTVD 288	289 FEDFGWDWII 298 Zebrafish
loss h		
301 APKRYKANYC 310	311 SGECE FV FLQ 320	321 KYPHTHLVHQ 330 Mouse
301 APKRYKANYC 310	311 SGECE FV FLQ 320	321 KYPHTHLVHQ 330 Rat
300 APKRYKANYC 309	310 SGECE FV FLQ 319	320 KYPHTHLVHQ 329 Human
300 APKRYKANYC 309	310 SGECE FV FLQ 319	320 KYPHTHLVHQ 329 Baboon
300 APKRYKANYC 309	310 SGECE FV FLQ 319	320 KYPHTHLVHQ 329 Bovine
300 APKRYKANYC 309	310 SGECE FV FLQ 319	320 KYPHTHLVHQ 329 Porcine
300 APKRYKANYC 309	310 SGECE FL FLQ 319	320 KYPHTHLVHQ 329 Ovine
300 APKRYKANYC 309	310 SGECE FV FLQ 319	320 KYPHTHLVHQ 329 Chicken
300 APKRYKANYC 309	310 SGECE FV FLQ 319	320 KYPHTHLVHQ 329 Turkey
299 APKRYKANYC 308	309 SGECDYMYLQ 318	319 KYPHTHLVNK 328 Zebrafish
331 ANPRGSAGPC 340	341 CTPTKMSPIN 350	351 MLYFNGKEQI 360 Mouse
331 ANPRGSAGPC 340	341 CTPTKMSPIN 350	351 MLYFNGKEQI 360 Rat
330 ANPRGSAGPC 339	340 CTPTKMSPIN 349	350 MLYFNGKEQI 359 Human
330 ANPRGSAGPC 339	340 CTPTKMSPIN 349	350 MLYFNGKEQI 359 Baboon
330 ANPRGSAGPC 339	340 CTPTKMSPIN 349	350 MLYFNGEGQI 359 Bovine
330 ANPRGSAGPC 339	340 CTPTKMSPIN 349	350 MLYFNGKEQI 359 Porcine
330 ANPKGSAGPC 339	340 CTPTKMSPIN 349	350 MLYFNGKEQI 359 Ovine
330 ANPRGSAGPC 339	340 CTPTKMSPIN 349	350 MLYFNGKEQI 359 Chicken
330 ANPRGSAGPC 339	340 CTPTKMSPIN 349	350 MLYFNGKEQI 359 Turkey
329 ASPRGTAGPC 338	339 CTPTKMSPIN 248	349 MLYFNGKEQI 359 Zebrafish

FIG. 1C

```
361 IYGKIPAMVV 370
361 IYGKIPAMVV 370
360 IYGKIPAMVV 369
```

371 DRCGCS 376 Mouse 371 DRCGCS 376 Rat 370 DRCGCS 375 Human 370 DRCGCS 375 Baboon 370 DRCGCS 375 Bovine 370 DRCGCS 375 Porcine 370 DRCGCS 375 Ovine 370 DRCGCS 375 Chicken 370 DRCGCS 375 Turkey 369 DRCGCS 374 Zebrafish

FIG. 1D

GGA TCC CGT TCT CGT CGC GAC TTT GGT CTG GAC TGC GAC GAA CAT
Gly Ser Arg Ser Arg Arg Asp Phe Gly Leu Asp Cys Asp Glu His

50 60 TCT ACC GAA AGA TCT Ser Thr Glu Arg Ser

FIG. 2

GGA TCC TCT CGT TGC TGT CGC TAT CCG CTG ACC GTT GAC TTC GAA
Gly Ser Ser Arg Cys Cys Arg Tyr Pro Leu Thr Val Asp Phe Glu

50 AGA TCT

FIG. 3

GGA TCC TTC GAA GCT TTT GGT TGG GAC TGG ATC ATT GCA CCG AAA

50 CGT TAT AGA TCT Arg Tyr Arg Ser

FIG. 4

GGA TCC AAA CGT TAT AAA GCT AAC TAT TGC TCT GGT GAA TGC GAA
Gly Ser Lys Arg Tyr Lys Ala Asn Tyr Cys Ser Gly Glu Cys Glu

50 TTC AGA TCT Phe Arg Ser

FIG. 5

GGA TCC GAA TTC GTT TTC CTG CAG AAA TAT CCG CAT ACC CAT CTG

50 60 70 GTT CAT CAG GCT AAC CCG CGT AGA TCT Val His Gln Ala Asn Pro Arg Arg Ser

FIG. 6

GGA TCC GCT GGT CCG TGC TGT TAT CCG ACC AAA ATG TCT CCG ATC

AAC ATG CTG TAT TTC AAC GGT GAA TGC CAG AGA TCT

Asn MET Leu Tyr Phe Asn Gly Glu Cys Gln Arg Ser

FIG. 7

GGA TCC GAA TGC CAG ATC ATT TAT TGC AAA ATC CCG GCT ATG GTT
Gly Ser Glu Cys Gln Ile Ile Tyr Cys Lys Ile Pro Ala MET Val

GTA GAC CGT TGC GGT TGT TCT AGA TCT

Val Asp Arg Cys Gly Cys Ser Arg Ser

FIG. 8

GGA TCC GAA CAG AAA GAA AAC GTT GAA AAA GAA GGT CTG TGC AAC
Gly Ser Glu Gln Lys Glu Asn Val Glu Lys Glu Gly Leu Cys Asn

GCT TGC CTG TGG AGA TCT

Ala Cys Leu Trp Arg Ser FIG. 9

GGA TCC CAT GAC CTG GCT GTT ACC TTC CCG GAA CCG GGT GAA GAC
Gly Ser His Asp Leu Ala Val Thr Phe Pro Glu Pro Gly Glu Asp

GGT CTG ACC AGA TCT
Gly Leu Thr Arg Ser

FIG. 10

FIG. 12

GGA TCC CGT TCT CGT CGC GAC TTT GGT CTG GAC TGC GAC GAA CAT Gly Ser Arg Ser Arg Arg Asp Phe Gly Leu Asp Cys Asp Glu His TCT ACC GAA AGA TCC TCT CGT TGC TGT CGC TAT CCG CTG ACC GTT Ser Thr Glu Arg Ser Ser Arg Cys Cys Arg Tyr Pro Leu Thr Val GAC TTC GAA GCT TTT GGT TGG GAC TGG ATC ATT GCA CCG AAA CGT Asp Phe Glu Ala Phe Gly Trp Asp Trp Ile Ile Ala Pro Lys Arg TAT AĞA TCC AAA CGT TAT AAA GCT AAC TAT TGC TCT GGT GAA TGC Tyr Arg Ser Lys Arg Tyr Lys Ala Asn Tyr Cys Ser Gly Glu Cys GAA TTC GTT TTC CTG CAG AAA TAT CCG CAT ACC CAT CTG GTT CAT Glu Phe Val Phe Leu Gln Lys Tyr Pro His Thr His Leu Val His CAG GCT AAC CCG CGT AGA TCC GCT GGT CCG TGC TGT TAT CCG ACC Gln Ala Asn Pro Arg Arg Ser Ala Gly Pro Cys Cys Tyr Pro Thr AAA ATG TCT CCG ATC AAC ATG CTG TAT TTC AAC GGT GAA TGC CAG Lys MET Ser Pro Ile Asn MET Leu Tyr Phe Asn Gly Glu Cys Gln ATC ATT TAT TGC AAA ATC CCG GCT ATG GTT GTA GAC CGT TGC GGT

٠٠ يغين

TGT TCT AGA TCT Cys Ser Arg Ser

FIG. 13

Ile Ile Tyr Cys Lys Ile Pro Ala MET Val Val Asp Arg Cys Gly

FIG. 14

FIG. 15A

GCT GCT TTA ATT GCT TCT ACT GTT TCT CTT GCG ATT AGC CCA TTA Ala Ala Leu Ile Ala Ser Thr Val Ser Leu Ala Ile Ser Pro Leu GCA TTT GCC GGT ATT GCC GAT AAA TTT AAT CAT GCA AAA AGT TTA Ala Phe Ala Gly Ile Ala Asp Lys Phe Asn His Ala Lys Ser Leu GAG AGT TAT GCC GAA CGC TTT AAA AAA TTA GGC TAT GAC GGA GAT Glu Ser Tyr Ala Glu Arg Phe Lys Lys Leu Gly Tyr Asp Gly Asp AAT TTA TTA GCA GAA TAT CAG CGG GGA ACA GGG ACT ATT GAT GCA Asn Leu Leu Ala Glu Tyr Gln Arg Gly Thr Gly Thr Ile Asp Ala TCG GTT ACT GCA ATT AAT ACC GCA TTG GCC GCT ATT GCT GGT GGT Ser Val Thr Ala IIe Asn Thr Ala Leu Ala Ala Ile Ala Gly Gly GTG TCT GCT GCA GCC GAT TTA ACA TTT GAA AAA GTT AAA CAT Val Ser Ala Ala Ala Asp Leu Thr Phe Glu Lys Val Lys His AAT CTT GTC ATC ACG AAT AGC AAA AAA GAG AAA GTG ACC ATT CAA Asn Leu Val Ile Thr Asn Ser Lys Lys Glu Lys Val Thr Ile Gln AAC TGG TTC CGA GAG GCT GAT TTT GCT AAA GAA GTG CCT AAT TAT Asn Trp Phe Arg Glu Ala Asp Phe Ala Lys Glu Val Pro Asn Tyr AAA GCA ACT AAA GAT GAG AAA ATC GAA GAA ATC ATC GGT CAA AAT Lys Ala Thr Lys Asp Glu Lys Ile Glu Glu Ile Ile Gly Gln Asn

FIG. 15C

FIG. 15D

1 ATGCAAAAC TGCAAATCTC TGTTTATATT TACCTATTTA CGCTGATTGT 51 TGCTGGCCCA GTGGATCTGA ATGAGAACAG CGAGCAGAAG GAAAATGTGG 101 AAAAAGAGGG GCTGTGTAAT GCATGTTTGT GGAGGGAAAA CACTACATCC 151 TCAAGACTAG AAGCCATAAA AATCCAAATC CTCAGTAAAC TTCGCCTGGA 201 AACAGCTCCT AACATCAGCA AAGATGCTAT CAGACAACTT TTGCCCAAGG 251 CTCCTCCACT CCTGGAACTG ATTGATCAGT TCGATGTCCA GAGAGATGCC 301 AGCAGTGACG GCTCCTTGGA AGACGATGAC TACCACGCCA GGACGGAAAC 351 GGTCATTACC ATGCCCACGG AGTCTGATCT TCTAACGCAA GTGGAAGGAA 401 AACCCAAATG TTGCTTCTTT AAATTTAGCT CTAAGATACA ATACAATAAA 451 CTAGTAAAGG CCCAACTGTG GATATATCTG AGGCCTGTCA AGACTCCTGC 501 GACAGTGTTT GTGCAAATCC TGAGACTCAT CAAACCCATG AAAGACGGTA 551 CAAGGTATAC TGGAATCCGA TCTCTGAAAC TTGACATGAA CCCAGGCACT 601 GGTATTTGGC AGAGCATTGA TGTGAAGACA GTGTTGCAGA ACTGGCTCAA 651 ACAACCTGAA TCCAACTTAG GCATTGAAAT CAAAGCTTTA GATGAGAATG 701 GCCATGATCT TGCTGTAACC TTCCCAGAAC CAGGAGAAGA TGGACTGACT 751 CCTTTTTAG AAGTCAAGGT AACAGACAC CCAAAAAGAT CTAGGAGAGA 801 TTTTGGGCTT GATTGTGATG AACACTCCAC AGAATCTCGA TGCTGTCGCT 851 ACCCCTCAC GGTGGATTTT GAAGCTTTTG GATGGGATTG GATTATTGCA 901 CCTAAAAGAT ATAAGGCCAA TTACTGCTCT GGAGAATGTG AATTTGTATT 951 TTTGCAAAAG TATCCTCATA CCCATCTTGT GCACCAAGCA AACCCCAGAG 1001 GTTCAGCCGG CCCCTGCTGT ACTCCTACAA AGATGTCTCC AATTAATATG 1051 CTATATTTTA ATGGCGAAGG ACAAATAATA TACGGGAAGA TTCCAGCCAT 1101 GGTAGTAGAT CGCTGTGGGT GCTCATGA

FIG. 16A

1 MQKLQISVYI YLFTLIVAGP VDLNENSEQK ENVEKEGLCN ACLWRENTTS
51 SRLEAIKIQI LSKLRLETAP NISKDAIRQL LPKAPPLLEL IDQFDVQRDA
101 SSDGSLEDDD YHARTETVIT MPTESDLLTQ VEGKPKCCFF KFSSKIQYNK
151 LVKAQLWIYL RPVKTPATVF VQILRLIKPM KDGTRYTGIR SLKLDMNPGT
201 GIWQSIDVKT VLQNWLKQPE SNLGIEIKAL DENGHDLAVT FPEPGEDGLT
251 PFLEVKVTDT PKRSRRDFGL DCDEHSTESR CCRYPLTVDF EAFGWDWIIA
301 PKRYKANYCS GECEFVFLQK YPHTHLVHQA NPRGSAGPCC TPTKMSPINM
351 LYFNGEGQII YGKIPAMVVD RCGCS

FIG. 16B

