CH_7

CH 7

7.1 Entropy

Clausius Inequality

Special Case: Internally Reversible Isothermal Heat Transfer Processes

- 7.2 The Increase of Entropy Principle
- 7.3 Entropy Change of Pure Substances
- 7.4 Isentropic Processes
- 7.5 Property Diagrams Involving Entropy
- 7.6 What is Entropy

Boltzmann Relation

Gibbs's Formulation

Third Law of Thermodynamics

- 7.7 The T ds Relations
- 7.8 Entropy Change of Liquids and Solids
- 7.9 The Entropy Change of Ideal Gases

Variable Specific Heats

Constant Specific Heat

Relative Pressure and Relative Specific Volume

- 7.10 Reversible Steady-Flow Work
- 7.11 Minimizing the Compressor Work

Multistage Compression with Intercooling

7.12 Isentropic Efficiencies of Steady-Flow Devices

Isentropic Efficiency of Turbines

Isentropic Efficiency of Compressors and Pumps

Isentropic Efficiency of Nozzles

7.1 Entropy

Clausius Inequality

$$\oint \frac{\delta Q}{T} \leq 0$$

This inequality is valid for all cycles

And this property is named as **entropy**, which designated S and defined as

$$\mathrm{d}S = \left(\frac{\delta Q}{T}\right)_{int\ rev}$$

The entropy of a system during a process can be determined by integrating between the initial and the final states

$$\Delta S = S_2 - S_1 = \int_1^2 \left(rac{\delta Q}{T}
ight)_{int\;rev}$$

Special Case: Internally Reversible Isothermal Heat Transfer Processes

$$\Delta S = \int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{int\ rev} = \int_{1}^{2} \left(\frac{\delta Q}{T_{0}}\right)_{int\ rev} = \frac{1}{T_{0}} \int_{1}^{2} (\delta Q)_{int\ rev}$$

$$\Delta S = \frac{Q}{T_{0}}$$

where T_0 is the constant temperature of the system and Q is the heat transfer fo the internally reversible process

7.2 The Increase of Entropy Principle

$$\oint \frac{\delta Q}{T} \le 0$$

or

$$\int_{1}^{2} \frac{\delta Q}{T} + \int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{int\ rev} \leq 0$$

while the second integral in the previous relation is recognized as the entropy change

$$\int_1^2 rac{\delta Q}{T} + S_1 - S_2 \leq 0$$
 $S_2 - S_1 \geq \int_1^2 rac{\delta Q}{T}$

which can also be arranged as in differential form as

$$\mathrm{d}S \geq rac{\delta Q}{T}$$

some entropy is generated or created during an irreversible process, which is due entirely to the presence of irreversibilities.

The entropy generated during a process is called **entropy generation** and is denoted by S_{gen}

$$\Delta S_{sys} = S_2 - S_1 = \int_1^2 rac{\delta \mathrm{Q}}{T} + s_{gen}$$

for an isolated system, the heat transfer is zero and the former equation reduces to

$$\Delta S_{isolated} \geq 0$$

The equation can be expressed as **the entropy of an isolated system during a process always increases or, in the limiting case of a reversible process, remains constant**. In other words, it *never* decreases. This is known as the **increase of entropy principle**

$$S_{gen} = \Delta S_{total} = \Delta S_{sys} + \Delta S_{surr} \ge 0$$

Since the entropy change of a system can be negative during a process, but entropy generation cannot. The increase of entropy can be summarized as follows:

$$S_{gen} \left\{ egin{aligned} > 0 & ext{Irreversible Process} \ = 0 & ext{Reversible Process} \ < 0 & ext{Impossible Process} \end{aligned}
ight.$$

7.3 Entropy Change of Pure Substances

The value of entropy at a specified state is determined just like any other property. Similarly, in the saturated mixture region, it's determined from

$$s = s_f + x s_{fq}$$

The entropy change of a specified mass m during a process is simply

$$\Delta S = m\Delta s = m(s_1 - s_1)$$

7.4 Isentropic Processes

$$\Delta s = 0$$
 or $s_1 = s_2$

It should be recognized that *a reversible adiabatic process* is necessarily *isentropic* ($s_2 = s_1$), but an *isentropic process* is not necessarily a *reversible adiabatic process*.

7.5 Property Diagrams Involving Entropy

$$\delta Q_{int\ rev} = T \mathrm{d} S$$

$$Q_{int\;rev} = \int_1^2 T \mathrm{d}S$$

7.6 What is Entropy

Boltzmann Relation

$$S = k \ln W$$

Gibbs's Formulation

$$S = -k \sum p_i \log p_i \qquad p_i = rac{1}{W} << 1$$

Third Law of Thermodynamics

the entropy of a pure crystalline substance at absolute zero temperature is zero

7.7 The T ds Relations

$$\delta Q_{int \ rev} - \delta W_{int \ rev,out} = dU$$

And

$$\delta Q_{int\ rev} = T \mathrm{d} S$$

$$\delta W_{int\ rev,out} = P dV$$

Therefore,

$$T ds = du + P dv$$

$$ds = \frac{1}{T} (du + P dv)$$

the second equation is obtained by h

$$\mathrm{d}h = \mathrm{d}u + P\mathrm{d}V + v\mathrm{d}P = T\mathrm{d}s + v\mathrm{d}P$$

$$\mathrm{d}s = \frac{1}{T}(\mathrm{d}h - v\mathrm{d}P)$$

7.8 Entropy Change of Liquids and Solids

since liquids and solids can be approximated as incompressible substances

$$\mathrm{d}s = rac{\mathrm{d}u}{T} = rac{c\mathrm{d}T}{T} \ s_2 - s_1 = \int_1^2 c(T) rac{\mathrm{d}T}{T} pprox c_{avg} \lnrac{T_2}{T_1}$$

when the progress is isentropic, the entropy change equals to 0

7.9 The Entropy Change of Ideal Gases

$$\mathrm{d}s = c_v rac{\mathrm{d}T}{T} + Rrac{\mathrm{d}v}{v} \ s_2 - s_1 = \int_1^2 c_v(T) rac{\mathrm{d}T}{T} + R \lnrac{v_2}{v_1} = \int_1^2 c_p(T) rac{\mathrm{d}T}{T} - R \lnrac{P_2}{P_1}$$

Variable Specific Heats

choose absolute zero as the reference temperature and define a function s^o as

$$s^o = \int_0^T c_p(T) rac{\mathrm{d}T}{T} \ s_2 - s_1 = s_2^o - s_1^o - R \ln rac{P_2}{P_1}$$

Constant Specific Heat

during the isentropic progress, the change of the entropy equals to 0, therefore,

$$egin{aligned} \ln rac{T_2}{T_1} &= -rac{R}{c_v} \ln \left(rac{v_w}{v_q}
ight) \ \ln rac{T_2}{T_1} &= \ln \left(rac{v_1}{v_2}
ight)^{R/c_v} \ \left(rac{T_2}{T_1}
ight) &= \left(rac{v_1}{v_2}
ight)^{R/c_v} &= \left(rac{v_1}{v_2}
ight)^{k-1} \end{aligned}$$

where $R=c_p-c_v$, $k=c_p/c_v$ and $R/c_v=k-1$

similarly, the another equation comes to

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{P_2}{P_1}\right)^{(k-1)/k}$$

$$\left(\frac{P_2}{P_1}\right) = \left(\frac{v_1}{v_2}\right)^k$$

Relative Pressure and Relative Specific Volume

similarly, from the equation we can get

$$rac{P_2}{P_1} = \exp rac{s_2^o - s_1^o}{R} = rac{\exp s_2^o / R}{\exp s_1^o / R}$$

define $\exp s^o/R$ as the relative pressure P_r

$$\left(\frac{P_2}{P_1}\right)_{s=const} = \frac{P_{r2}}{P_{r1}} \qquad \left(\frac{v_2}{v_1}\right)_{s=const} = \frac{v_{r2}}{v_{r1}}$$

7.10 Reversible Steady-Flow Work

the energy transform for a steady-flow device undergoing an internally reversible process can be expresses in differential form as

$$\delta q_{rev} - \delta w_{rev} = \mathrm{d}h + \mathrm{d}ke + \mathrm{d}pe$$

since $\delta q_{rev} = \mathrm{d}h - v\mathrm{d}P$

$$-\delta w_{rev} = v dP + dke + dpe$$

therefore,

$$w_{rev} = -\int_{1}^{2} v \mathrm{d}P - \Delta ke - \Delta pe$$

when the changes in energy are negligible

$$w_{rev} = -\int_{1}^{2}v\mathrm{d}P$$

to avoid the negative sign, define the work input to steady flow system as

$$w_{rev,in} = \int_{1}^{2} v \mathrm{d}P + \Delta k e + \Delta p e$$

for steady flow system that involves no work interactions

$$w_{rev} = v(P_2 - P_1) + rac{V_2^2 - V_1^2}{2} + g(z_2 - z_1) = 0$$

which becomes the famous Bernoulli Equation

7.11 Minimizing the Compressor Work

from the former equation, we can claim that when the changes in kinetic and potential energies are negligible, the compressor work is given by

$$w_{rev,in} = \int_1^2 v \mathrm{d}P$$

- minimizing the irreversibilities such as friction, turbulence and nonquasi-equilibrium compression
- keep the specific volume of the gas as small as possible during the compression process

the second minimizing could be done by **maintaining the temperature of the gas as low as possible during compression** since the specific volume of a gas is proportional to temperature

• Isentropic ($Pv^k = \text{constant}$)

$$w_{comp,in} = rac{kR(T_2 - T_1)}{k - 1} = rac{kRT_1}{k - 1} [\left(rac{P_2}{P_1}
ight)^{(k - 1)/k} - 1]$$

• Polytropic ($Pv^n = \text{constant}$)

$$w_{comp,in} = rac{nR(T_2 - T_1)}{n-1} = rac{nRT_1}{n-1} [\left(rac{P_2}{P_1}
ight)^{(n-1)/n} - 1]$$

• Isothermal (Pv = constant)

$$w_{comp,in} = RT \ln rac{P_2}{P_1}$$

Multistage Compression with Intercooling

the technique where gas is compressed in stages and cooled between each stage by passing it through a heat exchanger called an intercooler

$$egin{align*} w_{comp,in} &= w_{compI,in} + w_{compII,in} \ &= rac{nRT_1}{n-1} [\left(rac{P_x}{P_1}
ight)^{(n-1)/n} - 1] + rac{nRT_1}{n-1} [\left(rac{P_2}{P_x}
ight)^{(n-1)/n} - 1] \ &P_x = (P_1P_2)^{1/2} \qquad rac{P_x}{P_1} = rac{P_2}{P_x} \end{split}$$

7.12 Isentropic Efficiencies of Steady-Flow Devices

Isentropic Efficiency of Turbines

$$\eta_T = rac{ ext{Actual turbine work}}{ ext{Isentropic turbine work}} = rac{w_a}{w_s} pprox rac{h_1 - h_{2a}}{h_1 - h_{2s}}$$

Isentropic Efficiency of Compressors and Pumps

$$\eta_C = rac{ ext{Isentropic turbine work}}{ ext{Actual turbine work}} = rac{w_s}{w_a} pprox rac{h_{2s} - h_1}{h_{2a} - h_1}$$

Isentropic Efficiency of Nozzles

$$\eta_N = rac{ ext{Actual KE at nozzle exit}}{ ext{Isentropic KE at nozzle exit}} = rac{V_{2a}^2}{V_{2s}^2} pprox rac{h_1 - h_{2a}}{h_1 - h_{2s}}$$