75.31 Teoría de Lenguaje 75.24 Teoría de la Programación

Primer Cuatrimestre de 2015

Fecha límite de presentación: 19/06/2014

El TP se debe enviar en formato digital (pdf) y el código fuente asociado (archivos .oz) en un archivo zip a la siguiente dirección de correo electrónico: leanrafa+tdl2015@gmail.com hasta la fecha de entrega inclusive.

1 Referencias externas

Para cada una de las siguientes definiciones de procedimiento, liste las referencias externas

```
    proc {P X Y} local Z in {Q Z U} end end
    proc {P X Y} local Z in {Q Z Y} end end
    proc {P X Y} local Z in {P Z Y} end end
```

2. Ejemplo de ejecución:

Ejecute el siguiente programa a mano usando la máquina abstracta vista en clase, y mostrando en cada paso el estado del stack y del store:

3. Hilos

Probar el siguiente ejemplo y utilizar el panel de OZ para ver cuantos hilos se crean. ¿Cuantos hilos están simultaneamente en estado runnable?

```
fun {Fib N}
  case N of O then O
  [] 1 then 1
  else
      thread {Fib N-1} end + thread {Fib N-2} end
  end
end
```

4. Evaluación perezosa

Considere las siguientes definiciones de una funcion para revertir una lista

```
fun lazy {Reverse1 S}
  fun {Rev S R}
    case S of nil then R
    [] X|S2 then {Rev S2 X|R} end
  end

in {Rev S nil} end
fun lazy {Reverse2 S}
  fun lazy {Rev S R}
    case S of nil then R
    [] X|S2 then {Rev S2 X|R} end
  end

in {Rev S nil} end
```

¿Cúal es la diferencia en comportamiento entre {Reverse1 [a b c]} y {Reverse2 [a b c]}? ¿Ambos llamados devuelven el mismo resultado? Explique en cada caso.

5. Parámetros

Comparar en Oz y en el lengua je asignado en el TP qué tipos de pasa je por parámetros se soportan.

6. Mensajes

Escribir un agente que muestre en el Browser cada uno de los mensajes recibidos.

7. Celdas de memoria

¿Qué mostrará el siguiente programa? ¿Porqué?

```
declare
X={NewCell 0}
{Assign X 5}
Y=X
{Assign Y 10}
{Browse {Access X}==10}
{Browse X==Y}
Z={NewCell 10}
{Browse Z==Y}
{Browse @X==@Z}
```

8. Abstracción de datos

Implementar en Oz un procedimiento que reciba una lista con letras y muestre por pantalla la frecuencia de aparición de cada letra, ordenada por frecuencia y a igual cantidad de apariciones ordenadas alfabéticamente, usando como estructura de datos un diccionario con las siguientes primitivas:

- NewDicc: Crea un diccionario nuevo y vacio.
- Put: Inserta una clave y su correspondiente valor en el diccionario.
- Get: Obtiene el valor asociado a la clave ingresada.
- Domain: Retorna una lista con todas las claves del diccionario.

Siguiendo la sección 6.4 del libro, desarrollar 8 implementaciones del diccionario implementado con un árbol binario, siguiendo los ejes bundled-unbundled, opened-secure, y explicit state - declarative. Realizar una de las implementacione en el lenguaje asignado para el TP grupal

9. Más abstracción de datos

Implementar un TDA Carta, uno Mazo de carta y otro que sea Juego (en Oz con las 8 implementaciones y una en el lenguaje propio). El juego a implementar es a elección, se suguiere uno con reglas sencillas, como ser "La casita robada" o la "Escoba de 15".

Describa las primitivas de cada TDA y ejemplifique la utilización de una de las implementaciones.