Analisis Regresi Setelah *Pre-Processing* Data Iklim di Indonesia Tahun 2011-2015

Dengan menggunakan minitab didapatkan hasil analisis regresi pada data yang sebelumnya telah dilakukan *pre-processing* yaitu sebagai berikut.

a. Missing Value

Berikut ini merupakan hasil analisis regresi pada data iklim yang telah dilakukan deteksi *missing value* dan diatasi menggunakan imputasi *mean*.

```
S R-sq R-sq(adj) R-sq(pred)
603,048 47,29% 45,35% 42,48%

Regression Equation

Jumlah Curah Hujan (mm) = -4158 + 11,50 Jumlah Hari Hujan (hari)
+ 4,74 Tekanan Udara (mb)

- 3,60 Penyinaran Matahari (%) - 86,8 Suhu (°C)
+ 20,3 Kecepatan Angin (m/det) + 25,6 Kelembaban
```

Hasil di atas menunjukkan bahwa R-*square* atau koefisien determinasi berganda yang diperoleh sebesar 47,29%.

b. Missing Value dan Outlier

Berikut ini merupakan hasil analisis regresi pada data iklim yang telah dilakukan deteksi *missing value* dan *outlier* yang kemudian diatasi menggunakan imputasi *mean* dan penghapusan *outlier*.

```
Model Summary

S R-sq R-sq(adj) R-sq(pred)

575,097 51,39% 49,43% 46,33%

Regression Equation

Jumlah Curah Hujan (mm) = 10171 + 10,63 Jumlah Hari Hujan (hari)

- 12,2 Tekanan Udara (mb)

- 0,61 Penyinaran Matahari (%) - 51,3 Suhu (°C)

+ 32,8 Kecepatan Angin (m/det) + 46,8 Kelembaban
```

Hasil di atas menunjukkan bahwa R-square yang diperoleh sebesar 51,39%, dimana hasil ini memiliki koefisien determinnasi berganda yang lebih besar dari analisis sebelumnya.

c. Missing Value dan Transformasi

1. Normalisasi

Berikut ini merupakan hasil analisis regresi pada data iklim yang telah dilakukan deteksi *missing value* dan diatasi menggunakan imputasi *mean*. Serta variabel prediktornya telah ditransformasi menggunakan metode normalisasi.

```
S R-sq R-sq(adj) R-sq(pred)
609,428 46,17% 44,19% 41,21%

Regression Equation

Jumlah Curah Hujan (mm) = 51970 + 2422 Jumlah Hari Hujan (hari)
- 52226 Tekanan Udara (mb)
- 9070 Penyinaran Matahari (%) - 24556 Suhu (°C)
```

```
+ 26508 Kecepatan Angin (m/det) + 26155 Kelembaban
```

Hasil di atas menunjukkan bahwa R-*square* atau koefisien determinasi berganda diperoleh lebih rendah dari analisis sebelumnya yaitu sebesar 46,17%.

2. Minmax

Berikut ini merupakan hasil analisis regresi pada data iklim yang telah dilakukan deteksi *missing value* dan diatasi menggunakan imputasi *mean*. Serta variabel prediktornya telah ditransformasi menggunakan metode minmax.

Model Summary

```
S R-sq R-sq(adj) R-sq(pred)
603,048 47,29% 45,35% 42,48%

Regression Equation

Jumlah Curah Hujan (mm) = 271 + 478,3 Jumlah Hari Hujan (hari)
+ 88,0 Tekanan Udara (mb)

- 44,7 Penyinaran Matahari (%) - 93,2 Suhu (°C)
+ 77,9 Kecepatan Angin (m/det) + 223 Kelembaban
```

Hasil di atas menunjukkan bahwa R-*square* atau koefisien determinasi berganda yang diperoleh sebesar 47,29%.

3. 3Sigmoid

Berikut ini merupakan hasil analisis regresi pada data iklim yang telah dilakukan deteksi *missing value* dan diatasi menggunakan imputasi *mean*. Serta variabel prediktornya telah ditransformasi menggunakan metode 3 sigmoidal.

```
S R-sq R-sq(adj) R-sq(pred)
609,435 46,17% 44,18% 41,21%

Regression Equation

Jumlah Curah Hujan (mm) = 60035 + 5021 Jumlah Hari Hujan (hari)
- 130488 Tekanan Udara (mb)
- 18101 Penyinaran Matahari (%) - 48828 Suhu (°C)
+ 52998 Kecepatan Angin (m/det) + 52451 Kelembaban
```

Hasil di atas menunjukkan bahwa R-square atau koefisien determinasi berganda yang diperoleh sebesar 46,17%.

d. Missing Value, Outlier dan Transformasi

1. Normalisasi

Berikut ini merupakan hasil analisis regresi pada data iklim yang telah dilakukan deteksi *missing value* dan *outlier* yang kemudian diatasi menggunakan imputasi *mean* dan penghapusan *outlier*. Serta variabel prediktor telah ditransformasi menggunakan metode normalisasi.

```
Model Summary

S R-sq R-sq(adj) R-sq(pred)
573,103 51,72% 49,78% 47,13%

Regression Equation

Jumlah Curah Hujan (mm) = 58148 + 1451 Jumlah Hari Hujan (hari)
- 59571 Tekanan Udara (mb)
- 4577 Penyinaran Matahari (%) - 47642 Suhu (°C)
+ 38056 Kecepatan Angin (m/det) + 45399 Kelembaban
```

Hasil di atas menunjukkan bahwa R-*square* yang diperoleh sebesar 51,72%, dimana hasil ini memiliki koefisien determinasi berganda yang lebih besar dari analisis sebelum-sebelumnya.

2. Minmax

Berikut ini merupakan hasil analisis regresi pada data iklim yang telah dilakukan deteksi *missing value* dan *outlier* yang kemudian diatasi menggunakan imputasi *mean* dan penghapusan *outlier*. Serta variabel prediktor telah ditransformasi menggunakan metode minmax.

```
Model Summary

S R-sq R-sq(adj) R-sq(pred)
575,097 51,39% 49,43% 46,33%

Regression Equation

Jumlah Curah Hujan (mm) = 1087 + 442,1 Jumlah Hari Hujan (hari)
- 114 Tekanan Udara (mb)

- 6,3 Penyinaran Matahari (%) - 37,4 Suhu (°C)
+ 67,1 Kecepatan Angin (m/det) + 159,2 Kelembaban
```

Hasil di atas menunjukkan bahwa R-square yang diperoleh sebesar 51,39%.

3. 3Sigmoid

Berikut ini merupakan hasil analisis regresi pada data iklim yang telah dilakukan deteksi *missing value* dan *outlier* yang kemudian diatasi menggunakan imputasi *mean* dan penghapusan *outlier*. Serta variabel prediktor telah ditransformasi menggunakan metode 3 sigmoidal.

```
Model Summary

S R-sq R-sq(adj) R-sq(pred)
573,094 51,73% 49,78% 47,13%

Regression Equation

Jumlah Curah Hujan (mm) = 67444 + 3057 Jumlah Hari Hujan (hari)
- 149044 Tekanan Udara (mb)
- 9110 Penyinaran Matahari (%) - 95054 Suhu (°C)
+ 76108 Kecepatan Angin (m/det) + 90986 Kelembaban
```

Hasil di atas menunjukkan bahwa R-square yang diperoleh sebesar 51,73%, yang artinya variabel jumlah curah hujan (Y) dapat dijelaskan oleh variabel-variabel prediktor (X) secara simultan sebesar 51,73%, dan sisanya dijelaskan oleh variabel lain di luar model. Nilai ini adalah yang paling besar dari analisis sebelumnya yang telah dilakukan. Sehinga dapat disimpulkan bahwa model regresi terbaik dengan nilai R-square paling besar adalah data dengan pre-processing yaitu missing value, outlier dan transformas i menggunakan metode 3 sigmoidal.