Corso di Algebra Lineare e Geometria Coniche

Lucia Marino

Università di Catania

http://www.dmi.unict.it/Imarino

Testi consigliati

Libri esercizi:

- P. Bonacini, M.G. Cinquegrani, L. Marino, *Algebra Lineare: Esercizi svolti*, Ed. Cavallotto, Catania 2012
- P. Bonacini, M.G. Cinquegrani, L. Marino, Geometria Analitica: Esercizi
- svolti, Ed. Cavallotto, Catania 2012

Definizione di conica

Sia dato il piano $O\vec{x}\vec{y}$, studiamo le coniche.

Definizione di conica: Una conica è il luogo dei punti del piano che con le loro coordinate (x, y, 0) soddisfano un'equazione di secondo grado omogenea nelle variabili x, y del tipo

$$a_{11}x^2 + a_{22}y^2 + a_{33} + 2a_{12}xy + 2a_{13}x + 2a_{23}y = 0$$

$$B = \begin{pmatrix} a_{11}^{(x^2)} & \frac{2a_{12}}{2} (xy/2) & \frac{2a_{13}}{2} (\frac{x}{2}) \\ a_{12} & a_{22}^{(y^2)} & \frac{2a_{23}}{2} (\frac{y}{2}) \\ a_{13} & a_{23} & a_{33}^{(t.n.)} \end{pmatrix}; A = \begin{pmatrix} a_{11}^{(x^2)} & \frac{2a_{12}}{2} (xy/2) \\ a_{11} & \frac{2a_{12}}{2} (xy/2) \\ a_{12} & a_{22}^{(y^2)} \end{pmatrix}$$

Invarianti ortogonali

Per studiare una conica si considerino le seguenti entità:

- 1. Il **determinante di B**, det B;
- 2. Il rango di B, $\rho(B)$;
- 3. Il **determinante di A**, det A ottenuto tagliando la terza riga e la terza colonna della matrice B (cioè il complemento algebrico B_{33})
- 4. La traccia di A, $Tr(A) = a_{11} + a_{22}$

Queste quattro grandezze si dicono invarianti ortogonali poichè cambiando sistema di riferimento e quindi cambiando i coefficienti della conica il $\det B, \rho(B), \det A, P.C.(A)$ non variano

Osservazioni:

A. Se l'equazione si scompone come quadrato di trinomio del tipo $(ax + by + c)^2$ allora si dice che la conica si spezza in due rette coincidenti appunto di equazione r: ax + by + c = 0.

Figura: una conica spezzata in due rette reali e coincidenti

B. Se l'equazione si scompone in due fattori lineari: (ax + by + c)(a'x + b'y + c') = 0 allora si dice che la conica si spezza in due rette distinte appunto di equazioni rispettivamente r: ax + by + c = 0 e r': a'x + b'y + c' = 0

Figura: conica spezzata nell'unione di due rette distinte

C. Se l'equazione si scompone ad esempio nel seguente modo: $ax^2 + by^2 = 0$ allora si dice che la conica si spezza in due rette immaginarie e coniugate appunto di equazioni rispettivamente r: ax + iby = 0 e r': ax - iby = 0

Figura: una conica spezzata in due rette immaginarie e coniugate ha un solo punto reale P

Coniche non spezzate o irriducibili

Se una conica non è riducibile si dice irriducibile.

Figura: ellisse

Figura: iperbole

Figura: parabola

Studio di una conica tramite gli invarianti ortogonali

Data la conica del piano z=0 di equazione

$$a_{11}x^2 + a_{22}y^2 + a_{33} + 2a_{12}xy + 2a_{13}x + 2a_{23}y = 0$$

essa si può studiare usando gli invarianti ortogonali.

Calcoliamo det B, $\rho(B)$ det A, TrA.

Classificazione delle coniche riducibili o spezzate

Iniziamo e calcoliamo il det B.

Se risulta det B=0

- In tal caso la conica si spezza in due rette. A questo punto calcoliamo il rango $\rho(B) < 3$:
 - a) se $\rho(B) = 2$ allora la conica si spezza in due rette distinte
 - b) se $\rho(B) = 1$ allora la conica si spezza in due rette coincidenti.

Classificazione delle coniche irriducibili

Invece se risulta det $B \neq 0$

- In tal caso la conica si dice irriducibile e andremo a calcolare il det A:
 - a) se $\det A > 0$ allora la conica è: Ellisse reale se $TrA \cdot \det B < 0$; invece Ellisse immaginaria se $TrA \cdot \det B > 0$.
 - Infine se $a_{11} = a_{22} \neq 0$, $a_{12} = 0$ avremo Circonferenza;
 - b) se $\det A = 0$ allora la conica è Parabola;
 - c) se det A < 0 allora la conica è Iperbole. Se inoltre la Tr(A) = 0 allora si tratta di iperbole equilatera

Esercizi

Classificare le seguenti coniche:

1)
$$2x^2 - 4xy - y^2 - 3y - 2 = 0$$

2)
$$x^2 - y^2 - 6xy + 2x - 4y = 0$$

3)
$$x^2 + 2xy + y^2 - 3x + 2y - 1 = 0$$

4)
$$x^2 - 4y^2 - 2x + 1 = 0$$

5)
$$2x^2 + 2y^2 - 3x - 3y - 4 = 0$$

Definizione di fascio di coniche

Si dice Fascio di coniche individuato da \mathcal{C}_1 ed \mathcal{C}_2 la totalità delle coniche del piano z=0

$$\lambda f_1 + \mu f_2 = 0, \forall (\lambda, \mu) \neq (0, 0)$$

E' chiaro che le osservazioni fatte a proposito di dividere per un parametro ($\lambda \neq 0$ oppure $\mu \neq 0$) e lavorare con un solo parametro si possono ripetere. Non scordiamoci che quando si opera con un solo parametro si perde una conica del fascio di partenza che è quella per cui $\lambda = 0$ (oppure $\mu = 0$). Da cui

$$f_1 + h \cdot f_2 = 0, \forall h \in \mathbb{R}$$

dove abbiamo indicato con $h=\frac{\mu}{\lambda}, \lambda \neq 0$

Esercizi

Studiare i seguenti fasci di coniche:

1)
$$hx^2 + hy^2 + 4hxy + 6x + 1 = 0, \forall h \in \mathbb{R}$$

2)
$$x^2 + kxy + (1 - k)y^2 + ky - 1 = 0, \forall k \in \mathbb{R}$$

3)
$$x^2 + 2(h-1)xy + y^2 + 2hx = 0, \forall h \in \mathbb{R}$$

4)
$$(1 + \lambda)x^2 + xy - 2(1 + \lambda)x + \lambda = 0, \forall \lambda \in \mathbb{R}$$

5)
$$(1+h)x^2 + y^2 - hy - 1 - h = 0, \forall h \in \mathbb{R}$$

Equazione della conica in forma matriciale

Indicando con \underline{x} il vettore colonna $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ l'equazione di una conica in coordinate cartesiane si può scrivere in **forma compatta**:

$$\underline{x}^{T} B \underline{x} = 0$$

$$(x, y, 1) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$

Ellisse

Definizione di ellisse

Definizione di ellisse: E' il luogo dei punti del piano per cui è costante la somma delle distanze da due punti fissi detti fuochi. Significa che per tutti i punti P della figura avremo che

$$PF_1 + PF_2 = costante$$

Per sapere quanto vale la costante spostiamo il punto P fino a portarlo sull'asse orizzontale, coincidente con V_1 , allora si vede che la somma $PF_1 + PF_2$ è uguale alla distanza fra i due punti dell'ellisse che tagliano l'asse delle \vec{X} , cioè V_1V_3 . Chiamiamo questa distanza 2a.

Ellisse

Cominciamo col considerare l'equazione canonica dell'ellisse reale

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$$

con centro in O=(0,0) e assi di simmetria coincidenti con asse \vec{X} , e asse \vec{Y} .

Proprietà:

Ricavando $X^2=\left(1-\frac{Y^2}{b^2}\right)\cdot a^2=\frac{b^2-Y^2}{b^2}a^2$ si ha che i punti reali che la soddisfano sono tali che $b^2-Y^2\geq 0 \Rightarrow -b\leq Y\leq b$. In modo analogo $-a\leq X\leq a$. Andiamo a vedere la figura seguente:

Ellisse, a > b

$$-b \le Y \le b$$
; $-a \le X \le a$

Ipotizziamo che:

a>b , allora i fuochi $F_{1,2}=(\pm c,0)$, dove $c=\sqrt{a^2-b^2}$,

Ellisse, a < b

Se invece ipotizziamo che a < b, allora avremo $c = \sqrt{b^2 - a^2}$, $F_{1,2} = (0, \pm c)$.

Centro e assi di simmetria

Il centro di simmetria è l'origine O=(0,0): perchè se (α,β) soddisfa l'equazione anche $(-\alpha,-\beta)$ soddisfa; assi di simmetria sono asse \vec{X} e asse \vec{Y} .

Le direttrici dell'ellisse relative ai fuochi ed eccentricità

Le rette

$$X = -\frac{a^2}{c}, X = \frac{a^2}{c}$$

sono dette **direttrici** relative ai fuochi F_1 , e a F_2 .

Sussiste la seguente proprietà:

Il rapporto delle distanze dei punti propri e reali P dell'ellisse da un fuoco e dalla relativa direttrice è costante. Tale costante si dice l' **eccentricità**, e si indica con e. Risulta che $e = \frac{e}{a}$ nell'ellisse è sempre e < 1.

Casi particolari

Caso n.1: Se a = b l'ellisse degenera in una circonferenza di equazione $x^2 + y^2 = a^2$ di centro l'origine O e raggio a.

Caso n.2: Si dice ellisse immaginaria, la seguente equazione:

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = -1$$

che si traduce in termini di invarianti con la seguente condizione: $TrA \cdot \det B > 0$. (Per l'ellisse reale il prodotto $TrA \cdot \det B < 0$ si presente negativo).

Le due equazioni della circonferenza

Definizione di circonferenza: il luogo dei punti P del piano equidistanti da un punto fisso detto centro

L'equazione della circonferenza nel piano z=0, si presenta in due forme.

• Dato centro e raggio (r > 0), la circonferenza ha equazione

$$(x-\alpha)^2 + (y-\beta)^2 = r^2$$

Forma n.2 dell'equazione della circonferenza del piano z = 0:

$$x^2 + y^2 + ax + by + c = 0$$

con centro $C=(-\frac{a}{2},-\frac{b}{2})$ e raggio $r=\sqrt{(-\frac{a}{2})^2+(-\frac{b}{2})^2-c}$

Condizioni per la circonferenza

E' immediato vedere che sviluppando i calcoli nell'equazione della data circonferenza si ottiene una conica in cui

$$\begin{cases} a_{11} = a_{22} \neq 0 \\ a_{12} = 0 \end{cases}$$

Viceversa se una conica è tale che le precedenti condizioni sono verificate, allora la conica è una circonferenza

Esercizi sulla circonferenza

Varie tipologie

- Determinare la circonferenza passante per i punti A = (0,1), B = (2,-1), C = (-1,3)
- Determinare la circonferenza tangente alla retta r: 3x y = 0 nel punto P = (1,3) e avente il centro sulla retta s: x 3y + 2 = 0 (PS: devo costruire la retta t ortogonale ad r e passante per P per ricavare le coordinate del centro $C = t \cap s$. Per calcolare il raggio uso la distanza CP)
- Determinare la circonferenza passante per due punti A=(0,2), B=(0,8) e tangenti all'asse \vec{x} (PS: usare la condizione di tangenza $\Delta=0$)

Iperbole

Definizione di iperbole

Definizione di iperbole: E' il luogo dei punti del piano per cui è costante la differenza delle distanze da due punti fissi detti fuochi. Significa che per tutti i punti P della figura avremo che

$$|PF_1 - PF_2| = \text{costante}$$

Studio dell'iperbole in forma canonica

Cominciamo col considerare l'equazione canonica dell'iperbole reale

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$$

con centro in O=(0,0) e assi di simmetria coincidenti con asse \vec{X} , e asse \vec{Y} .

Proprietà:

Ricavando $Y^2 = (-1 + \frac{X^2}{a^2}) \cdot b^2 = \frac{-a^2 + X^2}{a^2} b^2$ si ha che i punti reali che la soddisfano sono tali che $X \le -a$ e $X \ge a$.

Iperbole

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$$

Ipotizziamo che a>b , allora $F_{1,2}=(\pm c,0)$, dove $c=\sqrt{a^2+b^2}$

Asintoti dell'iperbole

Il centro si simmetria è O, assi di simmetria sono asse \vec{X} e asse \vec{Y} .

Definizione di Asintoti: Gli asintoti di un'iperbole sono delle rette che approssimano il comportamento dei rami dell'iperbole all'infinito; in altri termini, man mano che i rami dell'iperbole si sviluppano tendono ad aderire agli asintoti dell'iperbole, senza mai toccarli.

Equazioni degli asintoti relativi alla forma canonica dell'iperbole:

$$Y=\pm \frac{b}{a}X.$$

$$F_1 = (-c, 0), F_2 = (c, 0), c = \sqrt{a^2 + b^2}.$$

 F_1, F_2 sono detti **fuochi**.

$$V_1 = (-a, 0), V_2 = (a, 0)$$
 sono detti **vertici**.

$$X = -\frac{a^2}{c}, X = \frac{a^2}{c}$$
 sono le **direttrici**.

Definiamo **eccentricità**= $\frac{distanzapunto-fuoco}{distanzapunto-relativadirettrice}$.

Risulta che $e = \frac{c}{a}$, e nel caso delliperbole essa è sempre > 1.

Iperbole, a > b

Iperbole, a < b

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} = -1$$

Ipotizziamo che a < b , allora $F_{1,2} = (0, \pm c)$, dove $c = \sqrt{a^2 + b^2}$

$$|PF_1 - PF_2| = 2b$$

$$V_1 = (0, b), V_2 = (0, -b)$$

Iperbole equilatera: asintoti ortogonali

Definizione di iperbole equilatera

Una iperbole si dice che è equilatera se ha gli asintoti ortogonali In particolare le coniche irriducibili tali che TrA = 0 sono tutte e sole iperboli equilatere.

Parabola

Definizione di parabola

Definizione di parabola: E' il luogo dei punti del piano equidistanti da un punto fisso detto fuoco e da una retta detta direttrice. Significa che per tutti i punti P della figura avremo che

$$PF = PH$$

Studio della parabola in forma canonica

Equazione canonica della parabola

$$Y^2 = 2pX$$

Supponiamo p > 0

Proprietà:

La parte reale si ha per $X \ge 0$.

Asse \vec{X} è l'asse di simmetria

Definizione di **vertice di una parabola**: è il punto di intersezione tra la parabola e il suo asse di simmetria

Parabola, p > 0

$$F = (\frac{p}{2}, 0)$$
 detto Fuoco
d: $X = -\frac{p}{2}$ detta direttrice

Parabola, p < 0

$$F = (\frac{p}{2}, 0)$$
 detto Fuoco
 $d: X = -\frac{p}{2}$ detta direttrice

eccentricità della parabola = $\frac{distanzapunto-fuoco}{distanzapunto-relativa direttrice}$. Risulta che $e=\frac{c}{a}$ Eccentricità della parabola è sempre = 1. (dato che i punti sono equidistanti)

Forme ridotte delle coniche

Teorema:

Data una conica Γ a coefficienti reali di equazione $x^tBx=0$ è sempre possibile operare una rototraslazione tale che Γ nel nuovo riferimento $O'\vec{X}\vec{Y}$ abbia una delle seguenti due forme:

$$I(\alpha X^2 + \beta Y^2 = \gamma)$$
, ellisse o iperbole

$II)\beta Y^2 = 2\gamma X$ parabola

Inoltre dette B e A la matrice della conica e la sottomatrice dei termini di secondo grado in x e in y e rispettivamente B' e A' le corrispondenti matrici per la conica in forma ridotta si ha:

- (a) $B \in B'$ hanno lo stesso determinante e lo stesso rango.
- (b) A e A' sono simili e hanno quindi lo stesso polinomio caratteristico, lo stesso determinante e la stessa traccia.

Le forme ridotte

Un'equazione polinomiale di secondo grado rappresenta una conica in **forma canonica** se ha una delle due forme seguenti:

I)
$$\alpha x^2 + \beta y^2 = \gamma \leftarrow$$
 ellisse o iperbole
II) $\beta y^2 = 2\gamma \cdot x \leftarrow$ parabola

Come ricavare la FORMA RIDOTTA dell'ellisse o iperbole

Se parliamo di ELLISSE O IPERBOLE abbiamo

$$I): \alpha x^2 + \beta y^2 = \gamma$$

Determinare α, β, γ .

$$B = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & -\gamma \end{pmatrix}, A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$$

 $\det B = -\alpha\beta\gamma, \det A = \alpha\beta$ Da cui

$$\gamma = -\frac{\det B}{\det A}$$

ed α , β si ricavano dal P.C.(A) poichè sono gli autovalori della matrice A. Nell'iperbole e nell'ellisse posso scegliere io chi chiamare α e chi chiamare β basta solo poi essere coerente a questa scelta.

Come ricavare la FORMA RIDOTTA della parabola

Se parliamo di PARABOLA la sua forma canonica è

$$\beta y^2 = 2\gamma \cdot x$$

Determinare β, γ .

$$B = \begin{pmatrix} 0 & 0 & -\gamma \\ 0 & \beta & 0 \\ -\gamma & 0 & 0 \end{pmatrix}, A = \begin{pmatrix} 0 & 0 \\ 0 & \beta \end{pmatrix}$$

 $\det B = -\beta \gamma^2, \det A = 0$ Da cui

$$\beta = TrA, \gamma = +\sqrt{-\frac{|B|}{TrA}}$$

Abbiamo preso il segno positivo per γ poichè per convenzione scegliamo il verso positivo dell'asse X.

Coordinate del Centro di simmetria di una ELLISSE O IPERBOLE

Se abbiamo ellisse o iperbole, le coordinate del **centro** soddisfano il seguente sistema:

$$\begin{cases} a_{11}x_C + a_{12}y_C + a_{13} = 0 \\ a_{21}x_C + a_{22}y_C + a_{23} = 0 \end{cases}$$

In tal caso il **centro** C coincide con il centro di simmetria.

La parabola non ammette centro di simmetria

Le parabole non hanno centro di simmetria, si vede pure dal sistema del centro che il determinante della matrice dei coefficienti è nullo mentre il rango della matrice completa è due quindi il sistema non ammette soluzioni

Equazioni generali degli ASSI di una iperbole ed ellisse

Se $a_{12} \neq 0$ Dati α, β gli autovalori della sottomatrice A, Per trovare le equazioni dei due **assi** iniziamo a calcolare l'autospazio V_{α} :

$$V_{\alpha} = \{(x, y) | (a_{11} - \alpha)x + a_{12}y = 0\}$$

dove la sua equazione può essere vista come una retta parallela all'asse di simmetria. Da cui abbiamo la formula del suo coefficiente angolare

$$m_{\alpha}=-\frac{\left(a_{11}-\alpha\right)}{a_{12}}$$

Quindi il il primo ASSE ha equazione

$$asse_1: y - y_C = m_\alpha(x - x_C)$$

dove (x_C, y_C) sono le coordinate del centro di simmetria.

In modo analogo calcoliamo V_{eta} : e troviamo l'analoga formula del coefficiente angolare

$$m_{\beta}=-\frac{\left(a_{11}-\beta\right)}{a_{12}}$$

Quindi il il secondo ASSE ha equazione

$$asse_2: y - y_C = m_\beta(x - x_C)$$

Se $a_{12} = 0$ gli assi di simmetria a_1, a_2 sono paralleli agli assi cartesiani che passano per il centro quindi le equazioni sono note:

$$a_1: x = x_C; a_2: y = y_C$$

Studio dell'ellisse

Consideriamo la conica di equazione:

$$3x^2 + 3y^2 + 2xy - 4x - 4y = 0.$$

Le matrici associate sono:

$$B = \begin{pmatrix} 3 & 1 & -2 \\ 1 & 3 & -2 \\ -2 & -2 & 0 \end{pmatrix} e A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \Rightarrow |B| = -16 \neq 0 e |A| = 8 > 0$$

Quindi la conica è un'ellisse reale o immaginaria.

Dato che $TrA = 6 \Rightarrow |B| \cdot Tr(A) < 0$ la conica è un'ellisse reale (ma potevamo arrivarci anche dal fatto che la conica passa per l'origine, per cui deve necessariamente essere reale. La sua forma ridotta è del tipo:

$$\alpha X^2 + \beta Y^2 = \gamma \Rightarrow \alpha X^2 + \beta Y^2 - \gamma = 0.$$

Le sue matrici associate sono:

$$B' = \left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & -\gamma \end{array}\right) \ \text{e} \ A' = \left(\begin{array}{cc} \alpha & 0 \\ 0 & \beta \end{array}\right).$$

Sappiamo che |B'| = |B|eche|A'| = |A|.

Inoltre, è anche evidente che $|B'| = -\alpha\beta\gamma$ e $|A'| = \alpha\beta$. Dunque:

$$\gamma = -\frac{|B|}{|A|} = -\frac{-16}{8} = 2.$$

Invece, α e β sono gli autovalori di A:

$$P_A(T) = \begin{vmatrix} 3-T & 1 \\ 1 & 3-T \end{vmatrix} = (3-T)^2 - 1 = T^2 - 6T + 8 = (T-2)(T-4).$$

Quindi, possiamo prendere $\alpha=2$ e $\beta=4$ oppure $\alpha=4$ e $\beta=2$.

Se scegliamo $\alpha=2$ e $\beta=4$, abbiamo:

$$2X^2 + 4Y^2 = 2 \Rightarrow X^2 + 2Y^2 = 1 \Rightarrow X^2 + \frac{Y^2}{\frac{1}{2}} = 1,$$

cioè è del tipo $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1cona^2 = 1eb^2 = \frac{1}{2}$. Con questa scelta siamo nel caso in cui a¿b.

Se scegliamo $\alpha=4$ e $\beta=2$, abbiamo:

$$4X^2 + 2Y^2 = 2 \Rightarrow 2X^2 + Y^2 = 1 \Rightarrow \frac{X^2}{\frac{1}{2}} + Y^2 = 1,$$

cioè è del tipo $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1cona^2=\frac{1}{2}eb^2=$. Con questa scelta siamo nel caso in cui a¡b.

Scegliamo $\alpha=2$ e $\beta=4$. In questo modo una sua FORMA RIDOTTA è $2X^2+4Y^2=2$ e una sua forma canonica è:

$$X^2 + 2Y^2 = 1.$$

Quindi,
$$c = \sqrt{a^2 - b^2} = \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}$$
. L'eccentricità è:

$$e = \frac{c}{a} = \frac{\frac{1}{\sqrt{2}}}{1} = \frac{1}{\sqrt{2}}.$$

CENTRO E ASSI DI SIMMETRIA.

Il centro di simmetria si trova risolvendo il sistema associato alle prime due righe di B:

$$B = \begin{pmatrix} 3 & 1 & -2 \\ 1 & 3 & -2 \\ -2 & -2 & 0 \end{pmatrix} \Rightarrow \begin{cases} 3x + y - 2 = 0 \\ x + 3y - 2 = 0 \end{cases} \Rightarrow \begin{cases} x = \frac{1}{2} \\ y = \frac{1}{2}. \end{cases}$$

Dunque, il centro di simmetria è il punto $C = (\frac{1}{2}, \frac{1}{2})$. Gli assi di simmetria si trovano utilizzando gli autovalori di A.

Sia $\alpha=2$. L'autospazio associato è determinato da:

$$V_2 = \{(x,y)|(a_{11} - \alpha)x + a_{12}y = 0\}$$

L'autospazio ha equazione (3-2)x+y=0. Un primo asse di simmetria è la retta parallela a x+y=0 e passante per $C=\left(\frac{1}{2},\frac{1}{2}\right)$. Le rette parallele a x+y=0 hanno coefficiente angolare $m_{\alpha}=-\frac{3-2}{1}$. $\rightarrow y-\frac{1}{2}=-x+\frac{1}{2}\rightarrow x+y-1=0$. Quindi, il primo asse di simmetria ha equazione x+y-1=0.

Sia $\beta = 4$. L'autospazio associato è determinato da:

$$A-4I=\left(\begin{array}{cc}3-4&1\\1&3-4\end{array}\right)=\left(\begin{array}{cc}-1&1\\1&-1\end{array}\right).$$

L'autospazio ha equazione -x+y=0. L'altro asse di simmetria è la retta parallela a x-y=0 e passante per $C=\left(\frac{1}{2},\frac{1}{2}\right)$. Le rette parallele a x-y=0 hanno coefficiente angolare 1. Imponendo il passaggio per C troviamo:

$$y - \frac{1}{2} = x - \frac{1}{2} \rightarrow x - y = 0$$
. Quindi, il secondo asse di simmetria ha equazione $x - y = 0$.

VERTICI

I vertici sono i punti d'intersezione dell'ellisse con i due assi di simmetria.

$$\begin{cases} 3x^2 + 3y^2 + 2xy - 4x - 4y = 0 \\ x + y - 1 = 0 \end{cases} \Rightarrow \begin{cases} y = 1 - x \\ 3x^2 + 3(1 - x)^2 + 2x(1 - x) - 4x - 4(1 - x) = 0 \\ \begin{cases} y = 1 - x \\ 4x^2 - 4x - 1 = 0 \end{cases} \Rightarrow \begin{cases} x = \frac{1 \pm \sqrt{2}}{2} \\ y = 1 - x. \end{cases}$$

Troviamo i due vertici $V_1 = (\frac{1+\sqrt{2}}{2}, \frac{1-\sqrt{2}}{2})eV_2 = (\frac{1-\sqrt{2}}{2}, \frac{1+\sqrt{2}}{2}).$ $\begin{cases} 3x^2 + 3y^2 + 2xy - 4x - 4y = 0 \\ x - y = 0 \end{cases} \Rightarrow \begin{cases} y = x \\ 8x^2 - 8x = 0. \end{cases}$ Troviamo i due vertici $V_3 = (0,0)$ e $V_4 = (1,1)$.

ASSE FOCALE.

L'asse focale è l'asse maggiore. Calcoliamo:

$$\frac{V_1 V_2}{V_3 V_4} = 2$$

Dato che $\overline{V_1V_2} > \overline{V_3V_4}$, la retta x + y - 1 = 0 è l'asse maggiore.

Studio dell'iperbole

Studio completo dell'iperbole.

Consideriamo la conica di equazione:

$$2x^2 + 2y^2 + 8xy - 8x - 4y + 5 = 0.$$

Le matrici associate sono:

$$B = \begin{pmatrix} 2 & 4 & -4 \\ 4 & 2 & -2 \\ -4 & -2 & 5 \end{pmatrix} e A = \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix} \Rightarrow |B| = -36 \neq 0 e |A| = -12 < 0,$$

per cui la conica è un'iperbole. Dato che $Tr(A) = 2 + 2 = 4 \neq 0$, l'iperbole non è equilatera.

FORMA CANONICA.

Una forma ridotta dell'iperbole è $\alpha X^2 + \beta Y^2 = \gamma \Rightarrow \alpha X^2 + \beta Y^2 - \gamma = 0$.

Le sue matrici associate sono:

$$B' = \left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & -\gamma \end{array}\right) \ \mathbf{e} \ A' = \left(\begin{array}{ccc} \alpha & 0 \\ 0 & \beta \end{array}\right).$$

Sappiamo che |B'| = |B| e che |A'| = |A|. Inoltre, è anche evidente che

$$|B'| = -\alpha \beta \gamma$$
 e $|A'| = \alpha \beta$. Dunque:

$$\gamma = -\frac{|B|}{|A|} = -\frac{-36}{-12} = -3.$$

Invece, α e β sono gli autovalori di A:

$$P_A(T) = \begin{vmatrix} 2-T & 4 \\ 4 & 2-T \end{vmatrix} = (2-T)^2 - 16 = T^2 - 4T - 12 = (T-6)(T+2).$$

Quindi, possiamo prendere $\alpha=6$ e $\beta=-2$ oppure $\alpha=-2$ e $\beta=6$. Se scegliamo $\alpha=6$ e $\beta=-2$, abbiamo:

Se scegliamo
$$\alpha = 6$$
 e $\beta = -2$, abbiamo:
$$6X^2 - 2Y^2 = -3 \Rightarrow 2X^2 - \frac{2}{3}Y^2 = -1 \Rightarrow \frac{X^2}{\frac{1}{2}} - \frac{Y^2}{\frac{3}{2}} = -1,$$

cioè è del tipo
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
 con $a^2 = \frac{1}{2}$ e $b^2 = \frac{3}{2}$.

Se scegliamo $\alpha = -2$ e $\beta = 6$, abbiamo:

$$-2X^{2} + 6Y^{2} = -3 \Rightarrow \frac{2}{3}X^{2} - 2Y^{2} = 1 \Rightarrow \frac{X^{2}}{\frac{3}{2}} - \frac{Y^{2}}{\frac{1}{2}} = 1,$$

cioè è del tipo $\frac{x^2}{3^2} - \frac{y^2}{4^2} = 1$

Scegliamo $\alpha = -2$ e $\beta = 6$. In questo modo una sua FORMA RIDOTTA .

è $-2X^2+6Y^2=-3$ e una sua forma canonica è: $\frac{2}{3}X^2-2Y^2=1$.

$$\frac{2}{3}X^2 - 2Y^2 = 1.$$

Quindi,
$$c = \sqrt{a^2 + b^2} = \sqrt{\frac{3}{2} + \frac{1}{2}} = \sqrt{2}$$
. L'eccentricità è:

$$e = \frac{c}{a} = \frac{\sqrt{2}}{\sqrt{\frac{3}{2}}} = \frac{2}{\sqrt{3}}.$$

CENTRO E ASSI DI SIMMETRIA.

Il centro si determina risolvendo il sistema associato alle prime due righe della matrice B:

$$B = \begin{pmatrix} 2 & 4 & -4 \\ 4 & 2 & -2 \\ -4 & -2 & 5 \end{pmatrix} \Rightarrow \begin{cases} 2x + 4y - 4 = 0 \\ 4x + 2y - 2 = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 1. \end{cases}$$

Quindi, il centro di simmetria è il punto C=(0,1). Gli assi di simmetria si trovano utilizzando gli autovalori di A. Sia $\alpha = 6$.

$$V_{\alpha} = \{(x, y) | (2 - 6)x + 4y = 0\}$$

vediamo che l'autospazio associato ha equazione -4x+4y=0. Dunque, un primo asse di simmetria è la retta parallela a quella di equazione x-y=0 e passante per C=(0,1). Le rette parallele a x-y=0 hanno coefficiente angolare $m_{\alpha}=1$ e imponendo il passaggio per C troviamo:

$$y - 1 = 1(x - 0) \rightarrow y = x + 1$$

Quindi, un primo asse di simmetria è la retta x - y + 1 = 0

Sia $\beta = -2$.

$$V_{\beta} = \{(x, y) | (2+2)x + 4y = 0\}$$

vediamo che l'autospazio associato ha equazione x+y=0. Dunque, un primo asse di simmetria è la retta parallela a quella di equazione x+y=0 e passante per C=(0,1). Le rette parallele a x+y=0 hanno coefficiente angolare $m_{\beta}=-1$ e imponendo il passaggio per C troviamo:

$$y - 1 = -1(x - 0) \rightarrow y = -x + 1$$

Quindi, l'altro asse di simmetria è la retta x + y - 1 = 0.

VERTICI

Uno dei due assi di simmetria è l'asse trasverso, cioè ha in comune con l'iperbole due punti reali, mentre l'altro la incontra in due punti immaginari e coniugati. Per determinare vertici e asse trasverso occorre fare le intersezioni.

Dato che
$$\begin{cases} x-y+1=0\\ 2x^2+2y^2+8xy-8x-4y+5=0 \end{cases} \Rightarrow \begin{cases} y=x+1\\ 2x^2+2(x+1)^2+8x(x+1)-8x-4(x+1)+5=0\\ \begin{cases} 12x^2+3=0\\ y=x+1 \end{cases} : \text{il sistema non ha soluzioni reali,} \end{cases}$$

possiamo concludere che l'asse trasverso è certamente l'altro asse di simmetria di equazione x + y - 1 = 0:

$$\begin{cases} x + y - 1 = 0 \\ 2x^2 + 2y^2 + 8xy - 8x - 4y + 5 = 0 \end{cases} \Rightarrow$$

$$\begin{cases} y = -x + 1 \\ 2x^2 + 2(-x + 1)^2 + 8x(-x + 1) - 8x - 4(-x + 1) + 5 = 0 \\ \Rightarrow \begin{cases} -4x^2 + 3 = 0 \\ y = -x + 1. \end{cases}$$

Il sistema ci dà come soluzioni i due punti $V_1=(\frac{\sqrt{3}}{2},1-\frac{\sqrt{3}}{2})$ e $V_2=(-\frac{\sqrt{3}}{2},1+\frac{\sqrt{3}}{2}).$

FORMA RIDOTTA della parabola

Consideriamo la conica di equazione:

$$4x^2 - 4xy + y^2 + 4x + 8y - 4 = 0.$$

Le matrici associate sono:

$$B = \begin{pmatrix} 4 & -2 & 2 \\ -2 & 1 & 4 \\ 2 & 4 & -4 \end{pmatrix} e A = \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \Rightarrow$$

$$|B| = -100 \neq 0 \text{ e } |A| = 0.$$

Quindi, la conica è una parabola.

Una FORMA RIDOTTA della conica è del tipo

$$\beta Y^2 = 2\gamma X \Rightarrow \beta Y^2 - 2\gamma X = 0$$
. Le sue matrici associate sono:

$$B'=\left(egin{array}{ccc} 0 & 0 & -\gamma \ 0 & eta & 0 \ -\gamma & 0 & 0 \end{array}
ight) \ \mathrm{e} \ A'=\left(egin{array}{ccc} 0 & 0 \ 0 & eta \end{array}
ight),$$

per cui $|B'| = -\beta \gamma^2 e \operatorname{Tr}(A') = \beta$. Sappiamo che

$$\beta = \mathsf{Tr}(A) = 4 + 1 = 5$$

e che

$$\gamma = \pm \sqrt{-\frac{|B|}{\mathsf{Tr}(A)}} = \pm \sqrt{-\frac{-100}{5}}.$$

Da cui se $\gamma = 2\sqrt{5}$ otteniamo l'equazione

$$5Y^2 = 4\sqrt{5}X$$

Mentre scegliendo $\gamma = -2\sqrt{5}$ otteniamo l'equazione $5Y^2 = -4\sqrt{5}X$.