

Bachelorarbeit

Die Multilevel Monte Carlo Methode und deren Anwendung am Beispiel der linearen Transportgleichung

Tim Buchholz

??.??.??

Betreuung: Prof.Dr. Christian Wieners und M.Sc. Niklas Baumgarten

Fakultät für Mathematik

Karlsruher Institut für Technologie

Inhaltsverzeichnis

1	Einleitung	3
2	Grundlagen2.1 analytische/numerische Grundlagen2.2 stochastische Grundlagen2.3 Monte Carlo Methoden	
3	Multilevel Monte Carlo Methode (MLMC)	5
4	0 1	5 5 5 5
5	Beispiel/Experiment 5.1 Konkretes Problem	
6	Ausblick und Fazit	5

1 Einleitung

Monte Carlo Methoden sind weit verbreitet und finden in verschiedenen Bereichen der Mathematik ihre Anwendung. Neben der numerischen Integration können sie unter anderem auch bei der Lösung von partiellen Differentialgleichungen auf Grundlage unsicherer Daten genutzt werden. So entstehende Problemstellungen fallen in das Gebiet der Uncertainty Quantification, einem 'Zusammentreffen der Wahrscheinlichkeitstheorie, Numerik, Statistik und der echten Welt' [3]. Allerdings besitzt die Monte Carlo Methode einen entscheidenden Nachteil, will man sie im Zusammenhang unsicherer Ausgangsdaten für die Lösung von partiellen Differentialgleichungen nutzen, sie konvergiert im Normalfall relativ langsam und das (numerische) Lösen von PDE's ist oft sehr aufwändig. Es werden also unter Umständen sehr viele, sehr teure (Zufalls-)Samples benötigt, um ein vernünftiges Ergebnis zu erhalten.

Diese Thesis soll sich daher mit der Multilevel Monte Carlo Methode (im Folgenden MLMC Methode genannt) beschäftigen, welche an die Monte Carlo Methode angelehnt ist, aber durch die geschickte Auswertung der (Zufalls-Samples) deutliche Effizienzvorteile gegenüber der Standard Monte Carlo Methode besitzt. Die MLMC Methode soll, nach einer ausführlichen theoretischen Analyse auch praktisch auf das (lineare) Transportproblem angewandt werden. Genauer soll für

- ein beschränktes Gebiet $\mathbb{D} \subseteq \mathbb{R}^d$
- ein Zeitintervall $\mathbb{T} = [0, T]$
- ein (unsicheres) Flussvektorfeld $q: \overline{\mathbb{D}} \to \mathbb{R}^d$
- eine Anfangskonzentration eines (zu transportierenden) Stoffes $\rho_0: \overline{\mathbb{D}} \to \mathbb{R}^d$
- einen Einfluss $\rho_{in}: \Gamma_{in} \times \mathbb{T} \to \mathbb{R}$ über einen vordefinierten Einflussrand $\Gamma_{in} \subset \partial \mathbb{D}$

die Konzentration des Stoffes $\rho: \overline{\mathbb{D}} \times \mathbb{T} \to \mathbb{R}_{\geq 0}$ als Lösung der folgenden (partiellen) Differentialgleichung bestimmt werden.

Bestimme
$$\rho : \overline{\mathbb{D}} \times \mathbb{T} \to \mathbb{R}_{\geq 0}$$
, sodass
$$(\text{TP}) \begin{cases} \partial_t \rho + \operatorname{div}(\rho q) = 0 & \text{in } \mathbb{D} \times (0, T) \\ \rho(x, t) = \rho_{\text{in}}(x, t) & \text{auf } \Gamma_{\text{in}} \times (0, T) \\ \rho(x, 0) = \rho_0(x) & \text{auf } \mathbb{D}. \end{cases}$$

Außerdem muss zunächst ein zwar zufälliges aber dennoch sinnvolles Vektorfeld q erzeugt werden. Wir nutzen hierbei das Darcy-Gesetz $q = -\kappa(\nabla p + G)$, welches als Modellierung von Fluiden in porösen Bodenschichten bereits oft genutzt wurde (vgl. z.B. [2]). Dabei ist

- $p: \mathbb{D} \to \mathbb{R}$ der hydrostatische Druck
- $\kappa: \mathbb{D} \to (\mathbb{R}_{\text{sym}})^{d \times d}$ der Permeabilitätstensor

• $G = (0, 0, p_0 g_0)^{\top}$ der Gravitationsvektor

und es soll später, bevor wir das eigentliche Transportproblem lösen, stets zunächst für ein zufälliges κ ein entsprechendes Flussvektorfeld q über das sogenannte Potentialströmungsproblem, welches sich aus dem Darcy-Gesetz ableitet, berechnet werden. Die genauere Modellierung des so entstehenden Gesamtproblems soll aber an späterer Stelle erfolgen.

Die Thesis ist dazu folgendermaßen unterteilt:

Abschnitt 2 sammelt verschiedene Grundlagen aus den Bereichen der Stochastik, der Analysis und Numerik partieller Differentialgleichungen, sowie einige Aspekte der (standard) Monte Carlo Methoden, welche auch der MLMC Methode als theoretischer Unterbau dienen soll.

In Abschnitt 3 wird anschließend die MLMC Methode an sich erklärt, ohne die Theorie hierbei allzu sehr auf die Anwendung auf das Transportproblem zu beschränken.

In Abschnitt 4 werden dann das (lineare) Transportproblem und das Potentialströmungsproblem beschrieben, welches wir lösen müssen, um an die entsprechenden Ausgangsdaten zu kommen. Anschließend wird die numerische Lösung der beiden Probleme mit Finite Elementen Methoden behandelt, bevor schließlich auf die Anwendung der MLMC Methode auf das Transportproblem mit unsicheren Ausgangsdaten am Beispiel der Permeabilität κ eingegangen wird.

Der fünfte und letzte Abschnitt befasst sich mit konkreten Durchführung und Implementierung des zuvor theoretisch beleuchteten Problem innerhalb der parallelen Finte Elemente Softwarebibliothek "M++"[1], welche am Institut für Angewandte und Numerische Mathematik 3 (KIT) von Herrn Prof. Dr. C. Wieners entwickelt wurde.

Am Schluss der Thesis steht eine kleine Zusammenfassung der bis dahin erarbeiteten Resultate und der Ausblick auf Möglichkeiten vielfältiger Art an diese in weiteren Arbeiten anzuknüpfen.

- 2 Grundlagen
- 2.1 analytische/numerische Grundlagen
- 2.2 stochastische Grundlagen
- 2.3 Monte Carlo Methoden
- 3 Multilevel Monte Carlo Methode (MLMC)
- 4 MLMC angewandt auf das Transportproblem
- 4.1 Problemstellung
- 4.2 Numerische Lösung des Potentialströmungsproblem
- 4.3 Numerische Lösung des Transportproblem
- 4.4 Anwendung der MLMC Methode auf das Transportproblem für unsichere Permeabilität κ
- 5 Beispiel/Experiment
- 5.1 Konkretes Problem
- 5.2 Ergebnisse
- 6 Ausblick und Fazit

Literatur

Literatur

- [1] M++ (meshes, multigrid and more). http://www.math.kit.edu/ianm3/page/mplusplus/de. Accessed: 2019-10-17.
- [2] G. De Marsily. Quantitative hydrogeology. Technical report, Paris School of Mines, Fontainebleau, 1986.
- [3] T. J. Sullivan. *Introduction to uncertainty quantification*, volume 63. Springer, 2em015.

Erklärung

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde, sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.

Ort, den Datum