Examen de probabilités

USTC, 2023, cours de P. Marchal

Soient $p, q \in [0, 1]$ deux réels, Y une variable aléatoire telle que

$$\mathbb{P}(Y=1) = q = 1 - \mathbb{P}(Y=-1)$$

et $(X_n, n \ge 2)$ des variables aléatoires iid, indépendantes de Y, telles que

$$\mathbb{P}(X_2 = 1) = p = 1 - \mathbb{P}(X_2 = -1)$$

Enfin, soient $(T_n, n \ge 2)$ des variables aléatoires indépendantes, indépendantes de Y et des X_n et telles que pour tout n, T_n est uniforme dans $\{0, \ldots n-2\}$. On pose $S_0 = 0$, $S_1 = Y$ et pour $n \ge 2$,

$$S_n = S_{n-1} + X_n (S_{T_n+1} - S_{T_n})$$

- 1) Supposons $Y=1,~X_3=X_4=X_6=1,~X_2=X_5=-1,~T_2=T_4=0,~T_3=1,~T_5=2,~T_6=4.$ Calculer S_n pour $n\leq 6.$
- 2) Montrer que si p=1, (S_n) est une chaine de Markov dont on donnera la matrice de transition. Quels sont les états récurrents ?
- 3) Montrer que si p=q=1/2, (S_n) est une chaine de Markov dont on donnera la matrice de transition. Quels sont les états récurrents ?
- 4*) Pour p = q = 1/2, montrer qu'il existe c > 0 et $N \ge 0$ tel que pour tout $n \ge N$, $E(|S_n|) \ge c\sqrt{n}$.
- 5) Montrer que si p = 1/2, $q \neq 1/2$, (S_n) n'est pas une chaine de Markov. On pourra comparer $P(S_3 = 1 | S_1 = 1, S_2 = 0)$ et $P(S_1 = 1)$.
- 6) Montrer que si $p \neq 1/2$, (S_n) n'est pas une chaine de Markov.
- 7) Soit F_n la tribu engendrée par $S_0, S_1, \dots S_n$. Montrer que $E[(S_{T_{n+1}+1}-S_{T_{n+1}})|F_n]=S_n/n$
- 8) Montrer que pour tout n, il existe $c_n > 0$ tel que $\mathbb{E}(S_{n+1}|F_n) = c_n S_n$.
- 9) Soit $C_n = c_1 c_2 \dots c_n$. Montrer qu'il existe un réel $k_p > 0$ tel que $C_n \sim k_p n^{2p-1}$ quand n tend vers l'infini.
- 10) Soit $M_n = S_n/C_{n-1}$. Que peut-on dire de la suite (M_n) ?
- 11) Calculer $E[S_{n+1}^2|F_n]$ puis $\mathbb{E}[(M_{n+1}-M_n)^2|F_n]$ en fonction de S_n .
- 12) On suppose que p > 3/4. Montrer que M_n est bornée dans L^2 . En déduire que S_n/n^{2p-1} converge dans L^2 vers une variable aléatoire qui n'est pas presque sûrement nulle.