ELMo & BERT: Contextualized Word Representations

Presented by Dan Deutsch

Introduction

- Recently, contextual word representations have taken NLP by storm
 - ELMo & BERT
- In this talk:
 - What are contextual word representations
 - How do you train them (ELMo & BERT)
 - How do you use them

Timeline & Stats

- word2vec: 2013
 - 14,900 citations
- ELMo: Feb. 2018
 - Published June 2018
 - 1314 citations
- BERT: Oct. 2018
 - Published June 2019
 - 1545 citations

Outline

- Context-independent word representations
 - Word2vec
 - Updated NLP Pipeline
- Context-dependent word representations
 - Language Models
 - ELMo
 - Transformer
 - BERT
 - Rediscovering the NLP Pipeline

Outline

- Context-independent word representations
 - Word2vec
 - Updated NLP Pipeline
- Context-dependent word representations
 - Language Models
 - ELMo
 - Transformer
 - BERT
 - Rediscovering the NLP Pipeline

Distributional hypothesis: Use the distribution of a word (the other words it appears around) to create its representation (meaning)

```
: Center Word
: Context Word

c=0 The cute cat jumps over the lazy dog.

c=1 The cute cat jumps over the lazy dog.

c=2 The cute cat jumps over the lazy dog.
```

word2vec

Updated NLP Pipeline

Start with pre-trained word embeddings, end-to-end learning

<u>nπp://piog.ayiien.com/ieveraging-deep-learning-for-multilingual/</u>

- General representation of words useful across multiple tasks
- Led to updated NLP Pipeline
- Context-independent

Chico Ruiz made a spectacular <u>play</u> on Alusik's grounder...

Olivia De Havilland signed to do a Broadway play for Garson...

Source	Nearest Neighbors					
GloVe play	playing, game, games, played, players, plays, player, Play, football, multiplayer					

Problem with Context-Dependent Representations

Intuitively, the representation of a word should change depending on how it's being used

Chico Ruiz made a spectacular play on Alusik's grounder...

Olivia De Havilland signed to do a Broadway play for Garson...

Contextual word embeddings try to address this

Outline

- Context-independent word representations
 - Word2vec
 - Updated NLP Pipeline
- Context-dependent word representations
 - Language Models
 - ELMo
 - Transformer
 - BERT
 - Rediscovering the NLP Pipeline

Language Models

Using the previous tokens, predict the next one

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_1, t_2, \dots, t_{k-1})$$

Backwards

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_{k+1}, t_{k+2}, \dots, t_N)$$

Language Models

State-of-the-art uses LSTMs

ELMo

- Embeddings from Language Models
- Jointly train bidirectional LSTM Language Models
- Concatenate representations

ELMo Training

ELMo Embeddings

Downstream Tasks

Replace word2vec vectors with ELMo vectors

ELMo State-of-the-Art Results

TASK	K PREVIOUS SOTA			ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)	
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%	
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%	
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%	
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%	
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%	
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%	

SQuAD: Question-Answering

SNLI: Textual entailment SRL: Semantic role labeling Coref: Coreference resolution

NER: Named-entity recognition

SST-5: Sentiment analysis

ELMo: Contextual Word Embeddings

Nearest neighbors in the dataset

×	Source	Nearest Neighbors			
GloVe	play	playing, game, games, played, players, plays, player Play, football, multiplayer			
biLM	Chico Ruiz made a spectacular play on Alusik's grounder {} Olivia De Havilland signed to do a Broadway play for Garson {}	Kieffer, the only junior in the group, was commended for his ability to hit in the clutch, as well as his all-round excellent play. {} they were actors who had been handed fat roles in a successful play, and had talent enough to fill the roles competently, with nice understatement.			

Problems with ELMo

Transformer Encoder

Instead of recurrent encoding, deep feed forward

Self-Attention

Single head: Compute all pairwise similarities, perform weighted averaging

Self-Attention

Input: Vector for every word

Output: Vector for every word

Encoder

Multiple heads, multiple layers

Concatenate vectors for each head (per word), pass through feed forward to get a new vector for each word

BERT

- Bidirectional Encoder Representations from Transformers
- Encode words with a lot of transformer layers
- Masked word prediction, next sentence classification
 - Not traditional language modelling

BERT

- Two sentences encoded jointly
- Special [CLS] and [SEP] tokens
- Token representation:

BERT

- A lot of transformer layers
- Output final representations for each input token, T
- Special "classifier" representation C

Training Objectives

- Masked word prediction
- Next sentence classification

Masked Word Prediction

- Mask 15% of the words, try to re-predict
 - 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy → my dog is [MASK]
 - 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
 - 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

Next Sentence Classification

- Given sentences A and B, predict whether B followed A in the original data
- Negative sampling

Training Objectives

- Masked word prediction
 - Replace 15% of the input words with [MASK], try to re-predict hidden word
 - 80% of those [MASK], 10% a random word, 10% the real word
- Next sentence prediction
 - Given sentences A and B, predict whether B followed A in the original corpus with C representation
 - Negative sampling

Training Details

- BookCorpus (800M words) and English Wikipedia (2,500M words)
- Largest model 340M parameters and 24 Transformer layers and 16 self-attention heads
- 16 TPUs over 4 days

BERT Embeddings

Downstream Tasks

- Encode text and null sentence, use like word2vec
- Specialized setup for tasks with text pairs

State-of-the-Art Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MNLI: Multi-genre entailment

QQP: Predict if two questions are semantically equivalent QNLI: Question-Answering as binary classification task

SST-2: Sentiment prediction

CoLA: Prediction acceptability of a sentence STS-B: Predict how similar two sentences are MRPC: Predict if two phrases are paraphrases

RTE: Entailment with little training data

Model Ablation

Pre-Training Iterations

Model Size

Rediscovering the NLP Pipeline

Classical NLP

Rediscovering the NLP Pipeline

Rediscovering the NLP Pipeline

(a) he smoked **toronto** in the playoffs with six hits, seven walks and eight stolen bases ...

References

- "Distributed Representations of Words and Phrases and their Compositionality" Mikolov et al. 2013
- "Attention Is All You Need" Vaswani et al. 2017
- "Deep contextualized word representations" Peters et al. 2018
- "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2019
- "BERT Rediscovers the Classical NLP Pipeline" Tenney et al. 2019