# NACA4409 airfoil MEK4470

Greger Svenn

December 14, 2015

# NACA geometry

- Geometry from formula
- Python script: Angle of attack, spline, blockMeshdict, loop



### Benchmark

- Two reports, same airfoil, different conditions:
  - US department of energy (Re: 0.5e+06, q = 277.7 Pa, M = 0.09)
  - NACA report no. 669 (Re: 8e+06, v: 21 m/s)

## Mesh





### RANS models

For external flow, the most suitable models are:

- The Spalart-Allmaras
- SST  $k \omega$

Solves the transport equation for kinematic eddy viscosity,  $\tilde{\nu}$ .

### **Boundary conditions and initial conditions**

I've used free stream values at all boundaries, except at the airfoils wall.

Because of high Reynolds number:

$$\tilde{\nu} = \nu_t$$

### **Boundary conditions and initial conditions**

I've tried two approximations for the turbulent viscosity,  $\nu_t$ . One based on guidelines, the second based on other CFD-airfoil experiments.

$$\nu_t = \sqrt{kL^2} = \sqrt{0.1U^2L^2} = \sqrt{0.1}UL \tag{1}$$

Where L is the chord length

$$\nu_t = 0.1\nu\tag{2}$$

Parameters fitted to match USDE report

| _ |     |     |     |    |
|---|-----|-----|-----|----|
| - | rec | est | rea | am |

| Approach:                        | 1              | 2                    |
|----------------------------------|----------------|----------------------|
| $\overline{\nu_t = \tilde{\nu}}$ | $2.95 \ m^2/s$ | $1.6287e - 06 m^2/s$ |
| U                                | 30.6 m/s       | 26.7 m/s             |
| ho                               | $0.7 \ kg/m^3$ | $0.8 \ kg/m^3$       |
| С                                | 0.305 m        | 0.305m               |
|                                  | airfoil        |                      |

#### airfoil

| Approach:              | 1      | 2      |
|------------------------|--------|--------|
| $\nu_t$ -wall function | 0      | 0      |
| $	ilde{ u}$            | 0      | 0      |
| - 11                   | 0  m/s | 0  m/s |

#### Lift coefficients

(a) 1

(b) 2





- 1: Does not work well for post stall and lower AoA's
- 2: Trouble with convergence at higher AoA's. Works well at lower AoA's

### **Drag coefficient**

(a) 1



(b) 2



### Lift/Drag

(a) 1



(b) 2



# SST $k-\omega$

Two eqa. solver

### SST k- $\omega$

### Parameters fitted to USDE report:

• 
$$v_t = \tilde{v} = 1.6287e - 06 m^2/s$$
,

- U = 26.7 m/s
- $\rho = 0.8 \ kg/m^3$
- $k = 0.1 U^2 I^2 = 0.2737$
- $\omega = \frac{0.09k}{\beta\nu}$
- c = 0.305 m

### SST $k-\omega$

#### Lift coefficients



Trouble with convergence at higher AoA's. Works well at lower AoA's

### SST k-ω

### **Drag coefficients**



Trouble with convergence at higher AoA's. Works well at lower AoA's

### SST k-ω

### Lift/Drag



Trouble with convergence at higher AoA's. Works well at lower AoA's

## Finite volume schemes

| Term       | Spalart-Allmaras           |
|------------|----------------------------|
| d/dt       | Steady state               |
| Convection | bounded Gauss linearUpwind |
| Diffusion  | bounded Gauss linearUpwind |
| Remaining  | Left as default            |
|            |                            |
|            |                            |
| Term       | SST k- $\omega$            |
| Term d/dt  | SST k- $\omega$            |
|            |                            |
| d/dt       | Steady state               |

# Summary

- Models works well for low angles of attack
- Convergence trouble at higher AoA's