# Introduction to Econometrics

**Review Lecture** 

Edward Vytlacil

Yale University, Department of Economics

June 20, 2023

## **Overview for Today**

#### Agenda

- 1. Review Expectation, Rules for Expectations
- 2. Review Variance, Rules for Variance

#### Application

Asset Diversification

#### R Code

Code used in this lecture.

#### Random Variables - Notation

- ► We denote random variables with capital letters, like *X* or *Y*.
  - ► We will say things like: "Let X denote the outcome of rolling a fair die"

#### Random Variables - Notation

- ► We denote random variables with capital letters, like *X* or *Y*.
  - ► We will say things like: "Let X denote the outcome of rolling a fair die"

- For discrete random variables, we will enumerate the set of possible realizations of X as  $\{x_1, x_2, ..., x_K\}$ .
  - For example, if *X* is the outcome of rolling a 6-sided die, then the set of possible realization is  $\{1, 2, 3, 4, 5, 6\}$ .

#### Random Variables - Notation

- ► We denote random variables with capital letters, like *X* or *Y*.
  - ► We will say things like: "Let X denote the outcome of rolling a fair die"

- For discrete random variables, we will enumerate the set of possible realizations of X as  $\{x_1, x_2, ..., x_K\}$ .
  - For example, if *X* is the outcome of rolling a 6-sided die, then the set of possible realization is  $\{1, 2, 3, 4, 5, 6\}$ .
- For ease of exposition in this course, we will typically express results mathematically for discrete random variables, though our results will generally also hold for continuous random variables.

# Characterizing Central Tendency – Expected Value (Review)

► The **expected value** of a random variable is the probability-weighted average of its outcomes.

$$\mathbb{E}[X] \equiv \mu_X = \sum_{k=1}^K x_k \times \Pr\{X = x_k\}.$$

# Characterizing Central Tendency – Expected Value (Review)

► The **expected value** of a random variable is the probability-weighted average of its outcomes.

$$\mathbb{E}[X] \equiv \mu_X = \sum_{k=1}^K x_k \times \Pr\{X = x_k\}.$$

For example, if X denotes the outcome of rolling a fair die, then

$$\mathbb{E}[X] = \sum_{k=1}^{6} k \times \frac{1}{6}$$

$$= \frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6}$$

$$= 3.5.$$

► We say that *X* is a *dummy variable* (also called *indicator variable*) if it takes the value 1 if some underlying event is true, and equals zero otherwise,

$$X = \begin{cases} 1 & \text{if event occurs,} \\ 0 & \text{if event does not occur.} \end{cases}$$

► We say that *X* is a *dummy variable* (also called *indicator variable*) if it takes the value 1 if some underlying event is true, and equals zero otherwise,

$$X = \begin{cases} 1 & \text{if event occurs,} \\ 0 & \text{if event does not occur.} \end{cases}$$

Since X takes values in  $\{0, 1\}$ ,

$$\mathbb{E}[X] = \Pr\{X = 0\} \cdot 0 + \Pr\{X = 1\} \cdot 1$$
  
=  $\Pr\{X = 1\}$ 

where  $Pr\{X = 1\} = Pr\{\text{event occurs}\}.$ 

For example, let X denote the outcome of rolling a fair die, and . . .

Let Y denote a dummy variable for rolling an ace (a one):

$$Y = \begin{cases} 1 & \text{if } X = 1, \\ 0 & \text{if } X \neq 1. \end{cases}$$

then 
$$\mathbb{E}[Y] = \Pr\{X = 1\} = 1/6$$
.

For example, let *X* denote the outcome of rolling a fair die, and . . .

Let Y denote a dummy variable for rolling an ace (a one):

$$Y = \begin{cases} 1 & \text{if } X = 1, \\ 0 & \text{if } X \neq 1. \end{cases}$$

then 
$$\mathbb{E}[Y] = \Pr\{X = 1\} = 1/6$$
.

Let Z denote a dummy variable for rolling an even number:

$$Z = \begin{cases} 1 & \text{if } X = 2, 4 \text{ or } 6, \\ 0 & \text{if } X = 1, 3 \text{ or } 5. \end{cases}$$

then 
$$\mathbb{E}[Z] = \Pr\{X \text{ even }\} = 1/2.$$

## A Useful Rule for Expected Values – Linearity

► For any two random variables *X* and *Y*, and constants *a*, *b*, and *c*,

$$\mathbb{E}[a+bX+cY] = a+b\cdot\mathbb{E}[X] + c\cdot\mathbb{E}[Y].$$

## A Useful Rule for Expected Values - Linearity

► For any two random variables *X* and *Y*, and constants *a*, *b*, and *c*,

$$\mathbb{E}[a+bX+cY]=a+b\cdot\mathbb{E}[X]+c\cdot\mathbb{E}[Y].$$

Note that this implies the following special cases:

$$\mathbb{E}[a+X] = a + \mathbb{E}[X]$$

$$\mathbb{E}[b \cdot X] = b \cdot \mathbb{E}[X]$$

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

- We typically care about dispersion in addition to caring about central tendency.
- Consider the following scenario:
  - You are going to retire in one month, you have \$1 million in retirement savings, and need to select between two investments for those savings for the next month:

- We typically care about dispersion in addition to caring about central tendency.
- Consider the following scenario:
  - You are going to retire in one month, you have \$1 million in retirement savings, and need to select between two investments for those savings for the next month:
    - First option: invest in 30 day U.S. treasury bills, in which case at the end of the month you
      will with certainty have \$1 million dollars plus a \$1,500 interest payment.

- We typically care about dispersion in addition to caring about central tendency.
- Consider the following scenario:
  - You are going to retire in one month, you have \$1 million in retirement savings, and need to select between two investments for those savings for the next month:
    - First option: invest in 30 day U.S. treasury bills, in which case at the end of the month you
      will with certainty have \$1 million dollars plus a \$1,500 interest payment.
    - 2. Second option: invest full \$1 million in a startup. With probability 1/2 the startup will go bankrupt and you will lose the full investment, but with probability 1/2 the startup will succeed in which case you will have \$2,005,000 at the end of the month.

- We typically care about dispersion in addition to caring about central tendency.
- Consider the following scenario:
  - You are going to retire in one month, you have \$1 million in retirement savings, and need to select between two investments for those savings for the next month:
    - First option: invest in 30 day U.S. treasury bills, in which case at the end of the month you
      will with certainty have \$1 million dollars plus a \$1,500 interest payment.
    - 2. Second option: invest full \$1 million in a startup. With probability 1/2 the startup will go bankrupt and you will lose the full investment, but with probability 1/2 the startup will succeed in which case you will have \$2,005,000 at the end of the month.

What is the expected value of each?

- We typically care about dispersion in addition to caring about central tendency.
- Consider the following scenario:
  - You are going to retire in one month, you have \$1 million in retirement savings, and need to select between two investments for those savings for the next month:
    - First option: invest in 30 day U.S. treasury bills, in which case at the end of the month you
      will with certainty have \$1 million dollars plus a \$1,500 interest payment.
    - 2. Second option: invest full \$1 million in a startup. With probability 1/2 the startup will go bankrupt and you will lose the full investment, but with probability 1/2 the startup will succeed in which case you will have \$2,005,000 at the end of the month.

- What is the expected value of each?
- Which option would you prefer?

## Characterizing Dispersion – Variance

The variance of a random variable is the expected squared deviation from it's expected value:

$$Var[X] \equiv \sigma_X^2 = \mathbb{E}[(X - \mathbb{E}[X])^2]$$
$$= \sum_{i=1}^K (x_i - \mathbb{E}[X])^2 Pr\{X = x_i\}.$$

#### Characterizing Dispersion – Variance

The variance of a random variable is the expected squared deviation from it's expected value:

$$Var[X] \equiv \sigma_X^2 = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$= \sum_{i=1}^K (x_i - \mathbb{E}[X])^2 Pr\{X = x_i\}.$$

The standard deviation of a random variable is the square root of it's variance:

$$sd(X) \equiv \sigma_X = \sqrt{Var(X)}.$$

- You are going to retire in one month, you have \$1 million in retirement savings, and need to select between two investments for those savings for the next month:
  - 1. First option: invest in 30 day U.S. treasury bills, in which case at the end of the month you will with certainty have \$1 million dollars plus a \$1,500 interest payment.
  - 2. Second option: invest full \$1 million in a startup. With probability 1/2 the startup will go bankrupt and you will lose the full investment, but with probability 1/2 the startup will succeed in which case you will have \$2,005,000 at the end of the month.

- You are going to retire in one month, you have \$1 million in retirement savings, and need to select between two investments for those savings for the next month:
  - 1. First option: invest in 30 day U.S. treasury bills, in which case at the end of the month you will with certainty have \$1 million dollars plus a \$1,500 interest payment.
  - 2. Second option: invest full \$1 million in a startup. With probability 1/2 the startup will go bankrupt and you will lose the full investment, but with probability 1/2 the startup will succeed in which case you will have \$2,005,000 at the end of the month.
- ► What is the variance of each?

- You are going to retire in one month, you have \$1 million in retirement savings, and need to select between two investments for those savings for the next month:
  - 1. First option: invest in 30 day U.S. treasury bills, in which case at the end of the month you will with certainty have \$1 million dollars plus a \$1,500 interest payment.
  - 2. Second option: invest full \$1 million in a startup. With probability 1/2 the startup will go bankrupt and you will lose the full investment, but with probability 1/2 the startup will succeed in which case you will have \$2,005,000 at the end of the month.
- What is the variance of each?
- Typically we want higher expected return but lower risk (variance), typically a tradeoff.

# Application – Asset Diversification

Let *r* denote the rate of return on a security, defined as:

$$r=\frac{p_1+d-p_0}{p_0},$$

#### where

 $p_1 =$  price of security at end of time period, d = dividends (if any) paid during time period,  $p_0 =$  price of security at beginning of time period.

# Application – Asset Diversification

Let *r* denote the rate of return on a security, defined as:

$$r=\frac{p_1+d-p_0}{p_0},$$

#### where

 $p_1=$  price of security at end of time period, d= dividends (if any) paid during time period,  $p_0=$  price of security at beginning of time period.

- Investors like high expected returns, but dislike risk.
  - Risk typically quantified by the variance of the return.
  - Risk-Return tradeoff.

#### Asset Diversification – Expected Returns and Risks

Consider two Securities, Ford and Tesla stock, with returns r<sub>F</sub> and r<sub>T</sub>:

$$r_F = \begin{cases} .20 & \text{with probability .5} \\ -.10 & \text{with probability .5.} \end{cases}$$

$$r_T = \begin{cases} .60 & \text{with probability .5} \\ -.40 & \text{with probability .5.} \end{cases}$$

#### Asset Diversification – Expected Returns and Risks

Consider two Securities, Ford and Tesla stock, with returns  $r_F$  and  $r_T$ :

$$r_F = \begin{cases} .20 & \text{with probability .5} \\ -.10 & \text{with probability .5.} \end{cases} \Rightarrow \begin{cases} \mathbb{E}[r_F] = .05, \\ Var[r_F] = .0225 \end{cases}$$

$$r_T = \begin{cases} .60 & \text{with probability .5} \\ -.40 & \text{with probability .5.} \end{cases}$$

#### Asset Diversification - Expected Returns and Risks

Consider two Securities, Ford and Tesla stock, with returns  $r_F$  and  $r_T$ :

$$r_F = \begin{cases} .20 & \text{with probability .5} \\ -.10 & \text{with probability .5.} \end{cases} \Rightarrow \frac{\mathbb{E}[r_F]}{Var[r_F]} = .05,$$

$$r_{T} = \begin{cases} .60 & \text{with probability .5} \\ -.40 & \text{with probability .5.} \end{cases} \Rightarrow \begin{cases} \mathbb{E}[r_{T}] = .10, \\ Var[r_{T}] = .25 \end{cases}$$

#### Asset Diversification - Expected Returns and Risks

Consider two Securities, Ford and Tesla stock, with returns  $r_F$  and  $r_T$ :

$$r_F = \begin{cases} .20 & \text{with probability .5} \\ -.10 & \text{with probability .5.} \end{cases} \Rightarrow \begin{array}{c} \mathbb{E}[r_F] & = .05, \\ \textit{Var}[r_F] & = .0225 \end{cases}$$

$$r_{\tau} = \begin{cases} .60 & \text{with probability .5} \\ -.40 & \text{with probability .5.} \end{cases} \Rightarrow \frac{\mathbb{E}[r_{\tau}]}{Var[r_{\tau}]} = .10,$$

Which has higher expected return?

Which has higher risk?

#### Asset Diversification – Expected Returns and Risks

Consider two Securities, Ford and Tesla stock, with returns  $r_F$  and  $r_T$ :

$$r_F = \begin{cases} .20 & \text{with probability .5} \\ -.10 & \text{with probability .5.} \end{cases} \Rightarrow \begin{cases} \mathbb{E}[r_F] & = .05, \\ Var[r_F] & = .0225 \end{cases}$$

$$r_{T} = \begin{cases} .60 & \text{with probability .5} \\ -.40 & \text{with probability .5.} \end{cases} \Rightarrow \frac{\mathbb{E}[r_{T}]}{Var[r_{T}]} = .10,$$

Which has higher expected return?

Which has higher risk?

Which asset is the better investment?

#### Asset Diversification – Expected Returns and Risks

Consider two Securities, Ford and Tesla stock, with returns  $r_F$  and  $r_T$ :

$$r_F = \begin{cases} .20 & \text{with probability .5} \\ -.10 & \text{with probability .5.} \end{cases} \Rightarrow \frac{\mathbb{E}[r_F]}{Var[r_F]} = .05,$$

$$r_{T} = \begin{cases} .60 & \text{with probability .5} \\ -.40 & \text{with probability .5.} \end{cases} \Rightarrow \begin{cases} \mathbb{E}[r_{T}] = .10, \\ Var[r_{T}] = .25 \end{cases}$$

Which has higher expected return?

Which has higher risk?

Which asset is the better investment?

What if you could hold both securities in a portfolio?

#### Asset Diversification – Risk and Return Tradeoff

```
library(ggplot2)
 Company <- c("Tesla", "Ford")</pre>
> Er <- c(0.1,0.05)
 Var < -c(0.25, 0.0225)
 df <- data.frame(Company, Er, Var)</pre>
 ggplot(df, aes(x = Var, y = Er, color = Company))+
      geom_point(size = 5) +
     theme_bw() + ggtitle("Risk-Return Tradeoff") +
     xlab("Variance") + ylab("Expected Returns")
```

#### Asset Diversification - Risk and Return Tradeoff



Figure 1.1: Two Risky Assets in the Variance-Expected Return Space  $\,$ 

#### Asset Diversification – Expected Portfolio Return and Risk

- Let  $w_T$  and  $w_F$  denote the fraction of funds invested in Tesla and Ford.
- Return on portfolio:

$$r_p = w_F \cdot r_F + w_T \cdot r_T.$$

#### Asset Diversification – Expected Portfolio Return and Risk

- Let  $w_T$  and  $w_F$  denote the fraction of funds invested in Tesla and Ford.
- Return on portfolio:

$$r_p = w_F \cdot r_F + w_T \cdot r_T.$$

Expected return on portfolio:

$$E[r_p] = w_F \cdot \mathbb{E}[r_F] + w_T \cdot \mathbb{E}[r_T].$$

#### Asset Diversification – Expected Portfolio Return and Risk

- Let  $w_T$  and  $w_F$  denote the fraction of funds invested in Tesla and Ford.
- Return on portfolio:

$$r_p = w_F \cdot r_F + w_T \cdot r_T.$$

Expected return on portfolio:

$$E[r_p] = w_F \cdot \mathbb{E}[r_F] + w_T \cdot \mathbb{E}[r_T].$$

What is the risk of the holding the portfolio?

How does the risk of holding the portfolio compare to holding just Ford or Tesla?

#### Asset Diversification – Expected Portfolio Return and Risk

- Let  $w_T$  and  $w_F$  denote the fraction of funds invested in Tesla and Ford.
- Return on portfolio:

$$r_p = w_F \cdot r_F + w_T \cdot r_T.$$

Expected return on portfolio:

$$E[r_p] = w_F \cdot \mathbb{E}[r_F] + w_T \cdot \mathbb{E}[r_T].$$

What is the risk of the holding the portfolio?

How does the risk of holding the portfolio compare to holding just Ford or Tesla?

Depends on dependence between  $r_F$  and  $r_T$ , how they **covary**.

### Characterizing Dependence - Covariance

► The **covariance** of two random variables *X* and *Y* is the expected value of the product of their deviations from their individual expected values.

$$Cov(X,Y) \equiv \sigma_{XY} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$= \sum_{k=1}^{K} \sum_{j=1}^{J} (x_k - \mathbb{E}[X]) \cdot (y_j - \mathbb{E}[Y]) \operatorname{Pr}\{X = x_k, Y = y_j\}.$$

## Characterizing Dependence - Covariance

► The **covariance** of two random variables *X* and *Y* is the expected value of the product of their deviations from their individual expected values.

$$Cov(X,Y) \equiv \sigma_{XY} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$= \sum_{k=1}^{K} \sum_{j=1}^{J} (x_k - \mathbb{E}[X]) \cdot (y_j - \mathbb{E}[Y]) \operatorname{Pr}\{X = x_k, Y = y_j\}.$$

Covariance is a measure of linear dependence.

## Characterizing Dependence - Covariance

► The **covariance** of two random variables *X* and *Y* is the expected value of the product of their deviations from their individual expected values.

$$Cov(X,Y) \equiv \sigma_{XY} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$= \sum_{k=1}^{K} \sum_{j=1}^{J} (x_k - \mathbb{E}[X]) \cdot (y_j - \mathbb{E}[Y]) \operatorname{Pr}\{X = x_k, Y = y_j\}.$$

- Covariance is a measure of linear dependence.
- ightharpoonup Cov(X,X)= Var(X).

#### Example, Covariance

Consider returns to Morgan Stanley (MS) and Genworth Financial (GNW) shares.

```
> library(readstata13) #need this library for read.dta13
      function, data set is in STATA format.
  > data <- read.dta13("https://edward-vytlacil.github.io/Data</pre>
      /financeR.dta")
  >
4
    cov(data$r_B,data$r_C)
5
6
  >
    ggplot(data, aes(x=data$r_B, y=data$r_C))+
7
8
        geom_point()+
        xlab("Morgan Stanley Returns in Dollars")+
        ylab("Genworth Financial Returns in Dollars")
10 +
```

#### Example, Covariance

Consider returns to Morgan Stanley (MS) and Genworth Financial (GNW) shares.

```
> library(readstata13) #need this library for read.dta13
      function, data set is in STATA format.
  > data <- read.dta13("https://edward-vytlacil.github.io/Data</pre>
      /financeR.dta")
  >
4
    cov(data$r_B,data$r_C)
5
6
  >
    ggplot(data, aes(x=data$r_B, y=data$r_C))+
7
8
        geom_point()+
        xlab("Morgan Stanley Returns in Dollars")+
        ylab ("Genworth Financial Returns in Dollars")
10 +
```

#### which gives:

```
1 > cov(data$r_B,data$r_C)
2 [1] 0.01325161
```

# Scatter Plot, Morgan Stanley and Genworth Financial Returns in Dollars



Figure 1.2: Covariance is 0.01325

## Characterizing Random Variables – Correlation

#### Related Concept: Correlation

The correlation of two random variables X and Y is a scaled version of their covariance:

$$Corr(X, Y) \equiv \rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}.$$

## Characterizing Random Variables – Correlation

#### Related Concept: Correlation

The correlation of two random variables X and Y is a scaled version of their covariance:

$$Corr(X, Y) \equiv \rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}.$$

```
1 > cor(data$r_B,data$r_C)
2 [1] 0.5437336
```

## Characterizing Random Variables – Correlation

#### Related Concept: Correlation

The correlation of two random variables X and Y is a scaled version of their covariance:

$$Corr(X, Y) \equiv \rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}.$$

```
1 > cor(data$r_B,data$r_C)
2 [1] 0.5437336
```

- Why should we not be surprised that the returns to Morgan Stanley (a financial firm) and Genworth Financial are strongly positively correlated?
- When would we expect the returns to two assets to be highly correlated? Negatively correlated?

► Variance of a Sum of Random Variables:

$$Var(a + bX + cY) = b^{2} \cdot Var(X) + c^{2} \cdot Var(Y) + 2 \cdot b \cdot c \cdot Cov(X, Y).$$



Variance of a Sum of Random Variables:

$$Var(a + bX + cY) = b^2 \cdot Var(X) + c^2 \cdot Var(Y) + 2 \cdot b \cdot c \cdot Cov(X, Y).$$



Covariance of a linear function of X and Y:

$$Cov(a + bX, c + dY) = b \cdot d \cdot Cov(X, Y).$$

Variance of a Sum of Random Variables:

$$Var(a + bX + cY) = b^2 \cdot Var(X) + c^2 \cdot Var(Y) + 2 \cdot b \cdot c \cdot Cov(X, Y).$$



Covariance of a linear function of X and Y:

$$Cov(a + bX, c + dY) = b \cdot d \cdot Cov(X, Y).$$

Can show that:

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

$$\begin{aligned} \operatorname{Var}(a+bX+cY) &= b^2 \cdot \operatorname{Var}(X) + c^2 \cdot \operatorname{Var}(Y) + 2 \cdot b \cdot c \cdot \operatorname{Cov}(X,Y), \\ \operatorname{Cov}(a+bX,c+dY) &= b \cdot d \cdot \operatorname{Cov}(X,Y), \\ \operatorname{Var}(X) &= \mathbb{E}[X^2] - \mathbb{E}[X]^2. \\ \operatorname{Cov}(X,Y) &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]. \end{aligned}$$

- These rules are for population variance, covariance.
- However, parallel rules also hold for sample variance, covariance.

#### **ASSET DIVERSIFICATION**

Return on portfolio:

$$r_p = w_F \cdot r_F + w_T \cdot r_T.$$

Return on portfolio:

$$r_p = w_F \cdot r_F + w_T \cdot r_T.$$

Expected return on portfolio:

$$\mathbb{E}[r_p] = w_F \cdot \mathbb{E}[r_F] + w_T \cdot \mathbb{E}[r_T].$$

Return on portfolio:

$$r_p = w_F \cdot r_F + w_T \cdot r_T.$$

Expected return on portfolio:

$$\mathbb{E}[r_{\rho}] = w_{F} \cdot \mathbb{E}[r_{F}] + w_{T} \cdot \mathbb{E}[r_{T}].$$

Variance of return on portfolio:

$$Var(r_p) = w_F^2 \cdot Var(r_F) + w_T^2 \cdot Var(r_T) + 2 \cdot w_F \cdot w_T \cdot Cov(r_F, r_T).$$

Return on portfolio:

$$r_p = w_F \cdot r_F + w_T \cdot r_T.$$

Expected return on portfolio:

$$\mathbb{E}[r_{\rho}] = w_{F} \cdot \mathbb{E}[r_{F}] + w_{T} \cdot \mathbb{E}[r_{T}].$$

Variance of return on portfolio:

$$Var(r_p) = w_F^2 \cdot Var(r_F) + w_T^2 \cdot Var(r_T) + 2 \cdot w_F \cdot w_T \cdot Cov(r_F, r_T).$$

Need joint distribution of  $(r_F, r_T)$  to calculate  $Cov(r_F, r_T)$ !

- We will calculate  $Cov(r_F, r_T)$  under two scenarios:
  - Main uncertainty is total demand for cars, implying strong positive correlation in returns for Ford and Tesla.
  - Main uncertainty is nature of demand for cars, whether electric cars largely replace conventional cars, implying strong negative correlation in returns for Ford and Tesla.

| Returns  | Ford .2 | Ford1 |
|----------|---------|-------|
| Tesla .6 | 0.4     | 0.1   |
| Tesla4   | 0.1     | 0.4   |

| Returns  | Ford .2 | Ford1 |
|----------|---------|-------|
| Tesla .6 | 0.4     | 0.1   |
| Tesla4   | 0.1     | 0.4   |

$$Cov(r_F, r_T) = \mathbb{E}[(r_F - \mathbb{E}[r_F])(r_T - \mathbb{E}[r_T])]$$

| Returns  | Ford .2 | Ford1 |
|----------|---------|-------|
| Tesla .6 | 0.4     | 0.1   |
| Tesla4   | 0.1     | 0.4   |

$$Cov(r_F, r_T) = \mathbb{E}[(r_F - \mathbb{E}[r_F])(r_T - \mathbb{E}[r_T])]$$

$$= 0.4 \cdot (.2 - .05) \cdot (.6 - .1) + 0.1 \cdot (-.1 - .05) \cdot (.6 - .1)$$

$$+ 0.1 \cdot (.2 - .05) \cdot (-.4 - .1) + .4 \cdot (-.1 - .05) \cdot (-.4 - .1)$$

$$\begin{aligned} \text{Cov}(r_F, r_T) &= \mathbb{E}[(r_F - \mathbb{E}[r_F])(r_T - \mathbb{E}[r_T])] \\ &= 0.4 \cdot (.2 - .05) \cdot (.6 - .1) + 0.1 \cdot (-.1 - .05) \cdot (.6 - .1) \\ &+ 0.1 \cdot (.2 - .05) \cdot (-.4 - .1) + .4 \cdot (-.1 - .05) \cdot (-.4 - .1) \\ &= 0.045. \end{aligned}$$

| Returns  | Ford .2 | Ford1 |
|----------|---------|-------|
| Tesla .6 | 0.4     | 0.1   |
| Tesla4   | 0.1     | 0.4   |

$$Cov(r_F, r_T) = \mathbb{E}[(r_F - \mathbb{E}[r_F])(r_T - \mathbb{E}[r_T])]$$

$$= 0.4 \cdot (.2 - .05) \cdot (.6 - .1) + 0.1 \cdot (-.1 - .05) \cdot (.6 - .1)$$

$$+ 0.1 \cdot (.2 - .05) \cdot (-.4 - .1) + .4 \cdot (-.1 - .05) \cdot (-.4 - .1)$$

$$= 0.045.$$

$$\Rightarrow Corr(r_F, r_T) = .6.$$

Consider portfolio with equal investment in Ford and Tesla,  $w_F = w_T = 1/2$ .

Consider portfolio with equal investment in Ford and Tesla,  $w_F = w_T = 1/2$ .

$$\mathbb{E}[r_p] = .5 \cdot \mathbb{E}[r_F] + .5 \cdot \mathbb{E}[r_T] = .5 \cdot .05 + .5 \cdot .1 = .075.$$

Expected return on portfolio half way between expected return on Tesla and expected return on Ford.

Consider portfolio with equal investment in Ford and Tesla,  $w_F = w_T = 1/2$ .

$$\mathbb{E}[r_p] = .5 \cdot \mathbb{E}[r_F] + .5 \cdot \mathbb{E}[r_T] = .5 \cdot .05 + .5 \cdot .1 = .075.$$

$$Var[r_p] = .5^2 \cdot Var[r_F] + .5^2 \cdot Var[r_T] + 2 \cdot .5 \cdot .5 \cdot Cov(r_F, r_T)$$

$$= .5^2 \cdot .0225 + .5^2 \cdot .25 + 2 \cdot .5^2 \cdot .045$$

$$= .09.$$

- Expected return on portfolio half way between expected return on Tesla and expected return on Ford.
- Variance of portfolio return inbetween that on Ford and that on Tesla but not the average.

Consider portfolio with equal investment in Ford and Tesla,  $w_F = w_T = 1/2$ .

$$\mathbb{E}[r_p] = .5 \cdot \mathbb{E}[r_F] + .5 \cdot \mathbb{E}[r_T] = .5 \cdot .05 + .5 \cdot .1 = .075.$$

$$Var[r_p] = .5^2 \cdot Var[r_F] + .5^2 \cdot Var[r_T] + 2 \cdot .5 \cdot .5 \cdot Cov(r_F, r_T)$$

$$= .5^2 \cdot .0225 + .5^2 \cdot .25 + 2 \cdot .5^2 \cdot .045$$

$$= .09$$

- Expected return on portfolio half way between expected return on Tesla and expected return on Ford.
- Variance of portfolio return inbetween that on Ford and that on Tesla but not the average.
- How to evaluate risk-return tradeoff for portfolio vs. only Ford or Tesla?

```
> er_F <- 0.05 # Expected Returns
 > er T <- 0.1
 > var_F <- 0.0225 # Variances/Risk
 > var_T <- 0.25</pre>
 > cov FT <- 0.045 # Covariance
 > weights < seq(from = 0, to = 1, length.out = 1000)
| > tab <- data.frame(wF = weights, wT = 1 - weights)
9 > tab$er_p <- tab$wF * er_F + tab$wT * er_T
_{10} > tab$var_p <- tab$wF^2*var_F +tab$wT^2*var_T +2* tab$wF *(1 -
     tab$wF)*cov FT
11
   ggplot() + geom_point(data = tab,
                        aes(x = var_p, y = er_p, color = wF)) +
ylab("Expected Returns")
15 +
```



Figure 1.3: Portfolios of Two Positively Correlated Risky Assets

| Returns  | Ford .2 | Ford1 |
|----------|---------|-------|
| Tesla .6 | .1      | 0.4   |
| Tesla4   | 0.4     | 0.1   |

| Returns  | Ford .2 | Ford1 |
|----------|---------|-------|
| Tesla .6 | .1      | 0.4   |
| Tesla4   | 0.4     | 0.1   |

$$Cov(r_F, r_T) = \mathbb{E}[(r_F - \mathbb{E}[r_F])(r_T - \mathbb{E}[r_T])]$$

$$Cov(r_F, r_T) = \mathbb{E}[(r_F - \mathbb{E}[r_F])(r_T - \mathbb{E}[r_T])]$$

$$= 0.1 \cdot (.2 - .05) \cdot (.6 - .1) + 0.4 \cdot (-.1 - .05) \cdot (.6 - .1)$$

$$+ 0.4 \cdot (.2 - .05) \cdot (-.4 - .1) + .1 \cdot (-.1 - .05) \cdot (-.4 - .1)$$

$$Cov(r_F, r_T) = \mathbb{E}[(r_F - \mathbb{E}[r_F])(r_T - \mathbb{E}[r_T])]$$

$$= 0.1 \cdot (.2 - .05) \cdot (.6 - .1) + 0.4 \cdot (-.1 - .05) \cdot (.6 - .1)$$

$$+ 0.4 \cdot (.2 - .05) \cdot (-.4 - .1) + .1 \cdot (-.1 - .05) \cdot (-.4 - .1)$$

$$= -0.045.$$

$$Cov(r_{F}, r_{T}) = \mathbb{E}[(r_{F} - \mathbb{E}[r_{F}])(r_{T} - \mathbb{E}[r_{T}])]$$

$$= 0.1 \cdot (.2 - .05) \cdot (.6 - .1) + 0.4 \cdot (-.1 - .05) \cdot (.6 - .1)$$

$$+ 0.4 \cdot (.2 - .05) \cdot (-.4 - .1) + .1 \cdot (-.1 - .05) \cdot (-.4 - .1)$$

$$= -0.045.$$

$$Corr(r_F, r_T) = -.6.$$

Consider portfolio with equal investment in Ford and Tesla,  $w_F = w_T = 1/2$ .

Consider portfolio with equal investment in Ford and Tesla,  $w_F = w_T = 1/2$ .

$$\mathbb{E}[r_{\rho}] = .5 \cdot \mathbb{E}[r_{F}] + .5 \cdot \mathbb{E}[r_{T}] = .5 \cdot .05 + .5 \cdot .1 = .075.$$

Expected return on portfolio half way between expected return on Tesla and expected return on Ford.

Consider portfolio with equal investment in Ford and Tesla,  $w_F = w_T = 1/2$ .

$$\mathbb{E}[r_p] = .5 \cdot \mathbb{E}[r_F] + .5 \cdot \mathbb{E}[r_T] = .5 \cdot .05 + .5 \cdot .1 = .075.$$

$$Var[r_p] = .5^2 \cdot Var[r_F] + .5^2 \cdot Var[r_T] + 2 \cdot .5 \cdot .5 \cdot Cov(r_F, r_T)$$

$$= .5^2 \cdot .0225 + .5^2 \cdot .25 + 2 \cdot .5^2 \cdot (-.045)$$

$$= .046.$$

- Expected return on portfolio half way between expected return on Tesla and expected return on Ford.
- Recall variance on portfolio was .09 in first scenario, versus .046 here in second scenario. Explanation?

Consider portfolio with equal investment in Ford and Tesla,  $w_F = w_T = 1/2$ .

$$\mathbb{E}[r_p] = .5 \cdot \mathbb{E}[r_F] + .5 \cdot \mathbb{E}[r_T] = .5 \cdot .05 + .5 \cdot .1 = .075.$$

$$Var[r_p] = .5^2 \cdot Var[r_F] + .5^2 \cdot Var[r_T] + 2 \cdot .5 \cdot .5 \cdot Cov(r_F, r_T)$$

$$= .5^2 \cdot .0225 + .5^2 \cdot .25 + 2 \cdot .5^2 \cdot (-.045)$$

- = .046.
- Expected return on portfolio half way between expected return on Tesla and expected return on Ford.
- Recall variance on portfolio was .09 in first scenario, versus .046 here in second scenario. Explanation?
- How to evaluate risk-return tradeoff for portfolio vs. only Ford or Tesla?

lacktriangle Consider portfolio investing mostly in Ford but partially in Tesla,  $w_F=.9, w_T=.1.$ 

$$\mathbb{E}[r_p] = .9 \cdot \mathbb{E}[r_F] + .1 \cdot \mathbb{E}[r_T] = .9 \cdot .05 + .1 \cdot .1 = .055.$$

$$Var[r_p] = .9^2 \cdot Var[r_F] + .1^2 \cdot Var[r_T] + 2 \cdot .9 \cdot .1 \cdot Cov(r_F, r_T)$$
  
= .9^2 \cdot .0225 + .1^2 \cdot .25 + 2 \cdot .9 \cdot .1 \cdot (-.045)  
= .013.

In this scenario, would an investor ever wish to invest 100% in Ford?

```
1 library (ggplot2)
2 > er_F <- 0.05 # Expected Returns
3 > er_T <- 0.1
4 > var F <- 0.0225 # Variances/Risk
| > var_T < -0.25 |
6 > cov FT <- - 0.045 # Covariance
|s| > weights <- seq(from = 0, to = 1, length.out = 1000)
| > tab <- data.frame(wF = weights, wT = 1 - weights)
10 > tab$er_p <- tab$wF * er_F + tab$wT * er_T
_{11} > tab$var_p <- tab$wF^2*var_F +tab$wT^2*var_T +2* tab$wF *(1 -
      tab$wF)*cov FT
12 >
  > ggplot() + geom_point(data = tab,
                          aes(x = var_p, y = er_p, color = wF)) +
14
    theme_bw() +
15 +
| ggtitle("Possible....") +
| 17 | + xlab("Volatility") +
      ylab("Expected Returns")
18 +
```



Figure 1.4: Portfolios of Two Negatively Correlated Risky Assets

# Comparing the portfolois with pos. vs neg. covariance



### Diversification, Insurance

- For an investor initially only holding Ford, adding Telsa to portfolio provides insurance, with the lower the correlation between their returns the better the insurance.
- For an investor initially only holding Tesla, adding Ford to portfolio provides insurance, with the lower the correlation between their returns the better the insurance.

### Diversification, Insuranace

- Diversification central issue in finance, institutional investing.
- Also important for individual investing, e.g.,
  - How much should I invest in stock vs. bonds?
  - How do the equity options my employer gives me affect my investment decision?
- Central issue in private insurance and for public provision of insurance.
- Related: Risk sharing in village economies.

## **Pricing of Assets**

- Above discussion has implication for pricing of assets.
- ► Value of an asset to an investor depends not just on expected return and volatility of return, but on how return covaries with returns of other assets (market return).
- Investors willing to have lower expected return for asset that moves less with market returns.
- Investors require higher expected return to invest in asset whose return is strongly correlated with market return.
- One formal model: Capital Asset Pricing Model.

### Summary

- We can characterize distributions of random variables using measures of central tendency such as the expected value, dispersion such as the variance, and linear dependence such as the covariance.
- Dependencies between random variables are of central importance in many economic questions and applications.

### Proof: Variance of a Sum of Random Variables

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y).$$

Proof:

$$Var(aX + bY)$$

$$= \mathbb{E}[(aX + bY)^2] - (\mathbb{E}[aX + bY])^2$$

$$= \mathbb{E}[a^2X^2 + b^2Y^2 + 2aXbY] - (\mathbb{E}[aX]^2 + \mathbb{E}[bY]^2 + 2\mathbb{E}[aX]\mathbb{E}[bY])$$

$$= \mathbb{E}[a^2X^2] - \mathbb{E}[aX]^2 + \mathbb{E}[b^2Y^2] - \mathbb{E}[bY]^2 + 2(\mathbb{E}[aXbY] - \mathbb{E}[aX]\mathbb{E}[bY])$$

$$= a^2(\mathbb{E}[X^2] - \mathbb{E}[X]^2) + b^2(\mathbb{E}[Y^2] - \mathbb{E}[Y]^2) + 2ab(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

$$= a^2Var(X) + b^2Var(Y) + 2abCov(X, Y). \quad \Box$$

