Climate Data Forecasting -

Atmospheric ${\cal C}{\cal O}_2$ Concentration / Temperature / Precipitation

Wolfgang Vollmer

2023-02-20

Contents

1	For	ecastir	ng of Cottbus - Temperature Climate Analysis	2	
	1.1	Statio	narity and differencing	2	
		1.1.1	Ljung-Box Test - independence/white noise of the time series	3	
		1.1.2	Unitroot KPSS Test - fix number of seasonal differences/differences required $$	3	
		1.1.3	ACF Plots of Differences	4	
		1.1.4	Time Series, ACF and PACF Plots of Differences - for ARIMA p, q check	5	
2	Exp	onenT	Tial Smoothing (ETS) Forecasting Models	6	
	2.1	ETS I	Models and their componentes	7	
		2.1.1	Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE $$	8	
		2.1.2	Ljung-Box Test - independence/white noise of the forecasts residuals	9	
		2.1.3	${\rm ETS~Models~-~components~of~ETS}(A,N,A),~{\rm ETS}(A,A,A),~{\rm ETS}(A,Ad,A),~{\rm models}~~.$	9	
		2.1.4	Forecast Accuracy with Training/Test Data	9	
	2.2	Foreca	Forecasting with selected ETS model $<$ ETS(A,A,A) $>$		
		2.2.1	Forecast Plot of selected ETS model	10	
		2.2.2	Residual Stationarity	11	
		2.2.3	Histogram of forecast residuals with overlaid normal curve	12	
3	ARIMA Forecasting Models - AutoRegressive-Integrated Moving Average				
	3.1	Season	nal ARIMA models	13	
		3.1.1	Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE $$	15	
		3.1.2	Ljung-Box Test - independence/white noise of the forecasts residuals	15	
		3.1.3	Forecast Accuracy with Training/Test Data	15	
	3.2	Temp	erature - Forecasting with selected ARIMA model $<$ ARIMA $(0,1,2)(0,1,2)[12]>$	16	
		3.2.1	Forecast Plot of selected ARIMA model	16	
		3.2.2	Residual Stationarity	17	
		3.2.3	Histogram of forecast residuals with overlaid normal curve	18	

4	ARIMA vs ETS			
	4.0.1	Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model $$.	19	
	4.0.2	Forecast Plot of selected ETS and ARIMA model	19	
	4.0.3	Ljung-Box Test - independence/white noise of the forecasts residuals	21	
5	Yearly Da	ta Forecasts with ARIMA and ETS	21	
	5.0.1	Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model $$.	21	
	5.0.2	Forecast Plot of selected ETS and ARIMA model	22	
	5.0.3	Ljung-Box Test - independence/white noise of the forecasts residuals	23	
6	Backup		23	

1 Forecasting of Cottbus - Temperature Climate Analysis

1.1 Stationarity and differencing

Stationary time series is one whose properties do not depend on the time at which the series is observed. Thus, time series with trends, or with seasonality, are not stationary — the trend and seasonality will affect the value of the time series at different times. On the other hand, a white noise series is stationary — it does not matter when you observe it, it should look much the same at any point in time.

Stationary time series will have no predictable patterns in the long-term. Time plots will show the series to be roughly horizontal (although some cyclic behaviour is possible), with constant variance.

If Time Series data with seasonality are non-stationary

- => first take a seasonal difference
- if seasonally differenced data appear are still non-stationary
- => take an additional first seasonal difference

The model fit residuals have to be stationary. For good forecasting this has to be verified with residual diagnostics.

Essential:

- Residuals are uncorrelated
- The residuals have zero mean

Useful (but not necessary):

- The residuals have constant variance.
- The residuals are normally distributed.

1.1.1 Ljung-Box Test - independence/white noise of the time series

The Ljung-Box Test becomes important when checking independence/white noise of the forecasts residuals of the fitted ETS rsp. ARIMA models. There we have to check whether the forecast errors are normally distributed with mean zero

Null Hypothesis of independence/white noise in a given time series

- $=> H_0$ to be rejected for $p < \alpha = 0.05$
- => data in the given time series are dependent
- => even differenced data are dependent if $p < \alpha = 0.05$
- => independence/white noise of residuals of fitted models to be verified

```
#> Ljung-Box test with (count), w/o differences
#> # A tibble: 1 x 3
#>
     Measure
                  lb_stat lb_pvalue
#>
                    <dbl>
                               <dbl>
#> 1 Temperature
                    5707.
#> Ljung-Box test on (difference(count, 12))
#> # A tibble: 1 x 3
#>
     Measure
                  lb_stat lb_pvalue
#>
                    <dbl>
                               <dbl>
     \langle fct \rangle
                                   0
#> 1 Temperature
                     100.
#> Ljung-Box test on (difference(count, 12) + difference())
#> # A tibble: 1 x 3
#>
     Measure
                  lb_stat lb_pvalue
                               <dbl>
#>
     <fct>
                    <dbl>
#> 1 Temperature
                     285.
```

1.1.2 Unitroot KPSS Test - fix number of seasonal differences/differences required

kpss test of stationary Null Hypothesis of stationary in a given time series $=>H_0$ to be rejected for $p<\alpha=0.05$

unitroot_nsdiffs/ndiff provides minimum number of seasonal differences/differences required for a stationary series. First fix required seasonal differences and then apply ndiffs to the seasonally differenced data.

• returns 1 = for stationarity one seasonal difference rsp. difference is required

```
#> ndiffs gives the number of differences required rsp.
#> nsdiffs gives the number of seasonal differences required to make
#> a series stationary (test is based on the KPSS test
#> kpss test, nsdiffs & ndiffs on (count), w/o differences
#> # A tibble: 1 x 5
#>
     Measure
                 kpss_stat kpss_pvalue nsdiffs ndiffs
     <fct>
                     <dbl>
                                  <dbl>
#>
                                          <int>
                     0.633
                                0.0197
#> 1 Temperature
                                              1
#> kpss test, nsdiffs & ndiffs on (difference(count, 12)
#> # A tibble: 1 x 5
                 kpss_stat kpss_pvalue nsdiffs ndiffs
#>
     Measure
                     <dbl>
                                  <dbl>
                                          <int>
                                                 <int>
#>
     <fct>
#> 1 Temperature
                   0.00818
                                    0.1
                                              0
#> kpss test, nsdiffs & ndiffs on (difference(count, 12) %>% difference(1))
#> # A tibble: 1 x 5
#>
     Measure
                 kpss_stat kpss_pvalue nsdiffs ndiffs
     <fct>
                                  <dbl>
                                          <int>
#>
                     <dbl>
#> 1 Temperature
                   0.00568
                                    0.1
```

1.1.3 ACF Plots of Differences

1.1.4 Time Series, ACF and PACF Plots of Differences - for ARIMA p, q check

#> # A tibble: 1 x 2
#> Sum Mean
#> <dbl> <dbl>
#> 1 33.0 0.0207

#> # A tibble: 1 x 2
#> Sum Mean

#> # A tibble: 1 x 2
#> Sum Mean
#> <dbl> <dbl>
#> 1 -4.93 -0.00309

2 ExponenTial Smoothing (ETS) Forecasting Models

Forecasts produced using exponential smoothing methods are weighted averages of past observations, with the weights decaying exponentially as the observations get older.

The parameters are estimated by maximising the "likelihood". The likelihood is the probability of the data arising from the specified model. AIC, AICc and BIC can be used here to determine which of the ETS models is most appropriate for a given time series (see output glance(fit_ets)).

The model selection is based on recognising key components of the time series (trend and seasonal) and the way in which these enter the smoothing method (e.g., in an additive, damped or multiplicative manner).

- Mauna Loa CO_2 data best Models: ETS(M,A,A) & ETS(A,A,A)
- Basel Temperature data best Models: ETS(A,N,A), ETS(A,A,A), ETS(A,Ad,A) (close togehter). Best Forecast accuracy is with ETS(A,A,A), ETS(A,Ad,A).
- Basel Precipitation data best Models: ETS(A,N,A), ETS(A,Ad,A), ETS(A,A,A) (close togehter). Best Forecast accuracy is with ETS(A,A,A), ETS(A,Ad,A), ETS(A,N,A),

Trend term "N" for Basel Temperature/Precipitation correspondends to a "pure" exponential smooothing which results in a slope $\beta = 0$. This results in a forecast predicting a constant level. This does not fit to the result of the STL decomposition. Therefore best model choice is **ETS**(**A**,**A**,**A**).

Method Selection

Error term: either additive ("A") or multiplicative ("M").

Both methods provide identical point forecasts, but different prediction intervals and different likelihoods. AIC & BIC are able to select between the error types because they are based on likelihood.

Nevertheless, difference is for

- Mauna Loa CO_2 not relevant and AIC/AICc/BIC values are only a little bit smaller for multiplicative errors. The prediction interval plots are fully overlapping.
- Basel Temperature AIC/AICc/BIC of additive error types are much better than the multiplicative
 ones.
- Basel Precipitation AIC/AICc/BIC of additive error types are much better than the multiplicative
 ones

Note: For Basel Temperature and Precipitation Forecast plots the models ETS_MAdA, ETS_MMA, ETS_MMA are to be taken out since forecasts with multiplicative errors are exploding (forecast > 3 years impossible !!)

Therefore finally Error term = "A" is chosen in general.

Trend term: either none ("N"), additive ("A"), multiplicative ("M") or damped variants ("Ad", "Md").

Note: Mauna Loa CO_2 model ETS(A,Ad,A) fit plot shows to strong damping. For Basel Temperature model ETS(A,N,A) and ETS(A,Ad,A) are providing more or less the same forecast. This means that forecast remains on constant level since Trend "N" means "pure" exponentiall smoothing without trend (see above).

Therefore finally Trend term = "A" is chosen in general.

Seasonal term: either none ("N"), additive ("A") or multiplicative ("M").

For CO2 and Temperature Data we have a clear seasonal pattern and seasonal term adds always a (more or less) fix amount on level and trend component. Therefore "A" additive term is chosen. For Precipitation the seasonal pattern is only slight. Indead, a multiplicative seasonal term results in "exploding" forecasts.

Since monthly data are strongly seasonal $\mathbf{seasonal}$ \mathbf{term} "A" is chosen.

2.1 ETS Models and their componentes

```
#> [1] "model(ETS(count)) => provides best automatically chosen model"
#> # A tibble: 1 x 11
#>
     City
             Measure
                          .model
                                  sigma2 log lik
                                                    AIC AICc
                                                                 BIC
                                                                       MSE
                                                                            AMSE
#>
     <chr>
             <fct>
                          <chr>>
                                    <dbl>
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                    3.86 -2317. 4664. 4664. 4730. 3.77
#> 1 Cottbus Temperature ETS(co~
                                                                           3.83 1.50
#> Series: count
#> Model: ETS(A,N,A)
#>
     Smoothing parameters:
#>
       alpha = 0.05714372
#>
       gamma = 0.0001000122
#>
#>
     Initial states:
#>
       1[0]
                  s[0]
                           s[-1]
                                      s[-2]
                                              s[-3]
                                                        s[-4]
                                                                 s[-5]
                                                                           s[-6]
    8.83005 -7.809344 -4.755159 0.0331151 4.66287 9.067921 9.659431 7.916954
#>
#>
                  s[-8]
                            s[-9]
       s[-7]
                                      s[-10]
                                                s[-11]
    4.308015 -0.409232 -5.117443 -8.501505 -9.055624
#>
#>
     sigma^2:
              3.855
#>
#>
        AIC
                AICc
#>
                           RTC
#> 4663.615 4664.437 4729.569
#> Model Selection by Information Criterion - lowest AIC, AICc, BIC
#> # A tibble: 8 x 11
```

```
sigma2 log_lik
#>
     City
                                                    AIC AICc
                                                                 BIC
                                                                       MSE
                                                                             AMSE
                                                                                    MAE
             Measure
                          .model
#>
     <chr>
             <fct>
                          <chr>
                                    <dbl>
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
#> 1 Cottbus Temperature ETS_ANA
                                     3.86
                                           -2317. 4664. 4664. 4730.
                                                                      3.77
                                                                             3.83 1.50
#> 2 Cottbus Temperature ETS_AMA
                                     3.86
                                           -2316. 4666. 4667. 4741.
                                                                      3.76
                                                                             3.84 1.51
#> 3 Cottbus Temperature ETS_AAA
                                     3.86
                                           -2316. 4667. 4668. 4742.
                                                                      3.76
                                                                             3.85 1.51
#> 4 Cottbus Temperature ETS_AA~
                                           -2316. 4668. 4669. 4747.
                                                                      3.75
                                     3.86
                                                                             3.83 1.51
                                           -3549. 7132. 7133. 7207.
                                                                      4.79
#> 5 Cottbus Temperature ETS MAA
                                     6.02
                                                                             5.33 0.861
#> 6 Cottbus Temperature ETS MA~
                                     7.27
                                           -3617. 7270. 7271. 7349.
                                                                      4.28
                                                                             4.32 0.849
#> 7 Cottbus Temperature ETS_MNA
                                    12.7
                                           -3764. 7558. 7559. 7624.
                                                                      4.47
                                                                             4.51 1.06
#> 8 Cottbus Temperature ETS_MMA
                                    13.0
                                           -3774. 7581. 7583. 7656.
                                                                      4.27
                                                                             4.31 1.04
```


2.1.1 Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE

Residual accuracy can be computed directly from models as the one-step-ahead fitted residuals are available. Select forecast models that minimises for lowest

- MAE (Mean absolute error, will lead to forecasts of the median) and
- RMSE (Root mean squared error, lead to forecasts of the mean)

```
#> # A tibble: 8 x 12
#>
     City
             Measure
                                               ME
                                                   RMSE
                                                           MAE
                                                                 MPE
                                                                      MAPE
                                                                           MASE RMSSE
                          .model
                                   .type
#>
     <chr>
             <fct>
                          <chr>>
                                  <chr>>
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
#> 1 Cottbus Temperature ETS_AA~ Trai~
                                          0.0293
                                                   1.94
                                                          1.51 - 68.0
                                                                      145. 0.724 0.708
#> 2 Cottbus Temperature ETS AMA Trai~
                                                          1.51 -66.9
                                                                      142. 0.726 0.708
                                          0.0194
                                                   1.94
#> 3 Cottbus Temperature ETS_AAA Trai~
                                                   1.94
                                                          1.51 -68.6
                                                                      145. 0.727 0.709
                                          0.00372
#> 4 Cottbus Temperature ETS_ANA Trai~
                                          0.0558
                                                   1.94
                                                          1.50 - 68.2
                                                                      143. 0.723 0.709
#> 5 Cottbus Temperature ETS_MMA Trai~ -0.0618
                                                   2.07
                                                          1.58 -66.3
                                                                      151. 0.761 0.755
#> 6 Cottbus Temperature ETS_MA~ Trai~ -0.0692
                                                   2.07
                                                          1.59 -67.2
                                                                      157. 0.767 0.756
#> 7 Cottbus Temperature ETS_MNA Trai~
                                                   2.11
                                                         1.62 -52.9
                                         0.0359
                                                                      142. 0.781 0.773
#> 8 Cottbus Temperature ETS_MAA Trai~
                                         0.0144
                                                   2.19
                                                         1.72 -82.9
                                                                     152. 0.826 0.800
#> # ... with 1 more variable: ACF1 <dbl>
```

2.1.2 Ljung-Box Test - independence/white noise of the forecasts residuals

```
#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 8 x 5
#>
     City
             Measure
                         .model
                                   lb_stat lb_pvalue
             <fct>
                                     <dbl>
#>
     <chr>>
                         <chr>
                                               <dbl>
#> 1 Cottbus Temperature ETS_AAA
                                      38.1
                                            1.46e- 1
#> 2 Cottbus Temperature ETS_AMA
                                      38.3
                                            1.43e- 1
#> 3 Cottbus Temperature ETS_AAdA
                                      38.8
                                           1.31e- 1
                                           1.06e- 1
#> 4 Cottbus Temperature ETS_ANA
                                      40.0
#> 5 Cottbus Temperature ETS_MNA
                                      43.0
                                            5.90e- 2
#> 6 Cottbus Temperature ETS_MAA
                                      61.4
                                            6.29e- 4
#> 7 Cottbus Temperature ETS_MAdA
                                      93.0
                                            2.27e- 8
#> 8 Cottbus Temperature ETS_MMA
                                     130.
                                            1.74e-14
```

2.1.3 ETS Models - components of ETS(A,N,A), ETS(A,A,A), ETS(A,Ad,A), models

2.1.4 Forecast Accuracy with Training/Test Data

```
#> # A tibble: 5 x 12
#>
     .model
             City Measure .type
                                    ME
                                       RMSE
                                               MAE
                                                      MPE MAPE MASE RMSSE
                                                                              ACF1
#>
                           <chr> <dbl> <dbl> <dbl>
                                                    <dbl> <dbl> <dbl> <dbl>
     <chr>>
              <chr> <fct>
#> 1 ETS_AAA Cott~ Temper~ Test  0.767
                                        1.98
                                              1.57 -83.5
                                                           135. 0.754 0.722 0.0439
#> 2 ETS ANA Cott~ Temper~ Test 0.924
                                        2.05
                                              1.64 -92.9
                                                           147. 0.788 0.747 0.0636
#> 3 ETS_AAdA Cott~ Temper~ Test  0.910
                                        2.05
                                              1.63 -83.0
                                                           137. 0.787 0.747 0.0490
#> 4 ETS_MAA Cott~ Temper~ Test
                                 0.949
                                        2.18
                                              1.76 -90.1
                                                           149. 0.850 0.795 0.126
#> 5 ETS_ANN Cott~ Temper~ Test 9.76 12.0
                                                     5.55 169. 4.79 4.37 0.795
                                              9.94
```


2.2 Forecasting with selected ETS model <ETS(A,A,A)>

2.2.1 Forecast Plot of selected ETS model

```
#> Provide model coefficients by report(fit_model)
#> Series: count
#> Model: ETS(A,A,A)
#>
     Smoothing parameters:
       alpha = 0.08922747
#>
       beta = 0.0001000092
#>
#>
       gamma = 0.0001000074
#>
     Initial states:
#>
#>
        1[0]
                                s[0]
                                                            s[-3]
                     b[0]
                                         s[-1]
                                                   s[-2]
                                                                      s[-4]
                                                                                s[-5]
    9.497501 \ 0.002108919 \ -7.869804 \ -4.876889 \ -0.04908 \ 4.763188 \ 9.081588 \ 9.671608
#>
#>
       s[-6]
                 s[-7]
                            s[-8]
                                       s[-9]
                                                 s[-10]
                                                           s[-11]
#>
    7.923166 4.473912 -0.5832224 -5.037017 -8.387651 -9.109798
#>
     sigma^2: 3.8634
#>
#>
#>
        AIC
                 AICc
                           BIC
#> 4666.864 4667.915 4741.612
```


2.2.2 Residual Stationarity

Required checks to be ready for forecasting:

- ACF Forecast Residual: all spikes are within the significance limits, so the residuals appear to be white noise
- The Ljung-Box test also shows that the residuals have no remaining autocorrelations
- Forecast Residuals are more or less normally distributed with roughly centred on zero

Histogram of forecast residuals with overlaid normal curve

18

12

lag [1M]

Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject #0 #> # A tibble: 1 x 5 City Measure .model lb_stat lb_pvalue <chr> <fct> <chr> <dbl> <dbl> #> #> 1 Cottbus Temperature ets 25.5 0.699

-5

0

.resid

3 ARIMA Forecasting Models - AutoRegressive-Integrated Moving Average

Exponential smoothing and ARIMA (AutoRegressive-Integrated Moving Average)models are the two most widely used approaches to time series forecasting, and provide complementary approaches to the problem.

While exponential smoothing models are based on a description of the trend and seasonality in the data, ARIMA models aim to describe the autocorrelations in the data.

3.1 Seasonal ARIMA models

Non-seasonal ARIMA models are generally denoted ARIMA(p,d,q) where parameters p, d, and q are non-negative integers, * p is the order (number of time lags) of the autoregressive model * d is the degree of differencing (number of times the data have had past values subtracted) * q is the order of the moving-average model of past forecast errors .

The value of d has an effect on the prediction intervals — the higher the value of d, the more rapidly the prediction intervals increase in size. For d=0, the point forecasts are equal to the mean of the data and the long-term forecast standard deviation will go to the standard deviation of the historical data, so the prediction intervals will all be essentially the same.

Seasonal ARIMA models are usually denoted ARIMA(p,d,q)(P,D,Q)m, where m refers to the number of periods in each season, and the uppercase P,D,Q refer to the autoregressive, differencing, and moving average terms for the seasonal part of the ARIMA model.

```
#> # A tibble: 1 x 10
    City
            Measure
                        .model sigma2 log_lik
                                                AIC AICc
                                                            BIC ar_roots
                                                                           ma_ro~1
    <chr>
            <fct>
                        <chr>
                                <dbl>
                                        <dbl> <dbl> <dbl> <dbl> <
#>
                                                                           t>
                                 5.39 -3610. 7229. 7230. 7256. <cpl [26]> <cpl>
#> 1 Cottbus Temperature arima
#> # ... with abbreviated variable name 1: ma_roots
#> Series: count
```

```
#> Model: ARIMA(2,0,0)(2,1,0)[12]
#>
#>
  Coefficients:
#>
            ar1
                     ar2
                              sar1
                                       sar2
#>
         0.2546
                  0.0475
                          -0.6141
                                    -0.2684
         0.0251
                  0.0250
                           0.0242
                                     0.0242
#>
#> sigma^2 estimated as 5.392:
                                  log likelihood=-3609.74
#> AIC=7229.48
                  AICc=7229.52
                                  BIC=7256.36
```



```
choose p, q parameter accordingly - but only for same d, D values
#> # A tibble: 13 x 10
#>
        City
                  Measure
                                   .model
                                               sigma2 log_lik
                                                                      AIC AICc
                                                                                      BIC ar_ro~1 ma_ro~2
#>
        <chr>
                   <fct>
                                   <chr>
                                                 <dbl>
                                                           <dbl> <dbl> <dbl> <dbl> <br/> </br/> </br/> 
                                                                                                       st>
#>
     1 Cottbus Temperature ARIMA_2~
                                                  3.71
                                                          -1245. 2499. 2499. 2521. <cpl>
                                                                                                       <cpl>
#>
     2 Cottbus Temperature ARIMA_1~
                                                  3.71
                                                          -1245. 2499. 2500. 2521. <cpl>
                                                                                                       <cpl>
#>
     3 Cottbus Temperature ARIMA_1~
                                                  3.70
                                                          -1244. 2499. 2500. 2526. <cpl>
                                                                                                       <cpl>
                                                          -1245. 2501. 2501. 2523. <cpl>
     4 Cottbus Temperature ARIMA_0~
                                                  3.72
                                                                                                       <cpl>
#>
     5 Cottbus Temperature ARIMA_1~
                                                  5.06
                                                          -1312. 2632. 2632. 2650. <cpl>
                                                                                                       <cpl>
     6 Cottbus Temperature ARIMA_1~
                                                  5.65
                                                          -1343. 2696. 2697. 2718. <cpl>
                                                                                                       <cpl>
#>
     7 Cottbus Temperature ARIMA_2~
                                                  5.65
                                                          -1343. 2696. 2697. 2718. <cpl>
                                                                                                       <cpl>
     8 Cottbus Temperature ARIMA 3~
                                                          -1374. 2764. 2764. 2799. <cpl>
                                                  5.54
                                                                                                       <cpl>
     9 Cottbus Temperature ARIMA_2~
                                                  6.95
                                                          -1402. 2813. 2813. 2830. <cpl>
                                                                                                       <cpl>
#> 10 Cottbus Temperature ARIMA_1~
                                                  7.35
                                                          -1421. 2847. 2847. 2860. <cpl>
                                                                                                       <cpl>
#> 11 Cottbus Temperature ARIMA_0~
                                                  7.36
                                                          -1421. 2848. 2848. 2861. <cpl>
                                                                                                       <cpl>
   12 Cottbus Temperature ARIMA_0~
                                                  9.51
                                                          -1495. 2994. 2994. 3003. <cpl>
                                                                                                       <cpl>
                                                10.3
                                                          -1517. 3039. 3039. 3047. <cpl>
                                                                                                       <cpl>
   13 Cottbus Temperature ARIMA_1~
#> # ... with abbreviated variable names 1: ar_roots, 2: ma_roots
```

#> Model Selection by Information Criterion - lowest AIC, AICc, BIC

Good models are obtained by minimising the AIC, AICc or BIC (see glance(fit_arima) output). The preference is to use the AICc to selec p and q.

These information criteria tend not to be good guides to selecting the appropriate order of differencing (d) of a model, but only for selecting the values of p and q. This is because the differencing changes the

data on which the likelihood is computed, making the AIC values between models with different orders of differencing not comparable.

3.1.1 Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE

Residual accuracy can be computed directly from models as the one-step-ahead fitted residuals are available. Select forecast models that minimises for lowest

- MAE (Mean absolute error, will lead to forecasts of the median) and
- RMSE (Root mean squared error, lead to forecasts of the mean)

```
#> # A tibble: 14 x 12
                                                ME
#>
      City
              Measure
                                                     RMSF.
                                                              MAE
                                                                     MPF. MAPE
                                                                                   MASE
                           .model .type
              <fct>
                                                                                  <dbl>
#>
      <chr>>
                           <chr> <chr>
                                             <dbl>
                                                     <dbl>
                                                            <dbl>
                                                                   <dbl> <dbl>
#>
   1 Cottbus Temperature ARIMA~ Trai~
                                           0.0657
                                                     1.90
                                                             1.45
                                                                   -86.8
                                                                           157.
                                                                                  0.698
   2 Cottbus Temperature ARIMA~ Trai~
                                           0.0640
                                                     1.90
                                                             1.45
                                                                   -84.3
                                                                           154.
                                                                                  0.697
   3 Cottbus Temperature ARIMA~ Trai~
                                           0.0641
                                                     1.90
                                                             1.45
                                                                   -85.6
                                                                           156.
                                                                                  0.698
#>
#>
   4 Cottbus Temperature ARIMA~ Trai~
                                           0.0674
                                                     1.90
                                                             1.45
                                                                   -88.3
                                                                           159.
                                                                                  0.698
    5 Cottbus Temperature ARIMA~ Trai~
                                           0.0573
                                                             1.71
                                                                   -47.5
                                                                           176.
                                                     2.22
                                                                                  0.822
    6 Cottbus Temperature ARIMA~ Trai~
                                           0.0322
#>
                                                     2.34
                                                             1.83
                                                                   -57.4
                                                                           204.
                                                                                  0.879
#>
                                                             1.80
                                                                   -38.6
   7 Cottbus Temperature ARIMA~ Trai~
                                           0.00333
                                                     2.35
                                                                           192.
                                                                                  0.865
   8 Cottbus Temperature ARIMA~ Trai~
                                           0.00333
                                                     2.35
                                                             1.80
                                                                   -38.6
                                                                           192.
                                                                                  0.865
                                                             2.03
   9 Cottbus Temperature ARIMA~ Trai~
                                          -0.0130
                                                     2.60
                                                                   -60.6
                                                                           214.
                                                                                  0.978
#> 10 Cottbus Temperature ARIMA~ Trai~
                                          -0.0265
                                                     2.68
                                                             2.01
                                                                   -11.8
                                                                           221.
                                                                                  0.968
#> 11 Cottbus Temperature ARIMA~ Trai~
                                          -0.0263
                                                     2.68
                                                             2.01
                                                                   -14.7
                                                                           221.
                                                                                  0.969
#> 12 Cottbus Temperature ARIMA~ Trai~
                                          -0.00915
                                                     3.05
                                                             2.34 - 103.
                                                                           317.
                                                                                  1.13
#> 13 Cottbus Temperature ARIMA~ Trai~
                                          -0.00749
                                                     3.17
                                                             2.45
                                                                    15.1
                                                                           283.
#> 14 Cottbus Temperature ARIMA~ Trai~ NaN
                                                   NaN
                                                           {\tt NaN}
                                                                   NaN
                                                                           NaN NaN
#> # ... with 2 more variables: RMSSE <dbl>, ACF1 <dbl>
```

3.1.2 Ljung-Box Test - independence/white noise of the forecasts residuals

```
\#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 14 x 5
#>
      City
              Measure
                           .model
                                         lb_stat lb_pvalue
#>
      <chr>
              <fct>
                           <chr>
                                           <dbl>
                                                     <dbl>
   1 Cottbus Temperature ARIMA_211_011
                                            27.4
                                                  6.02e- 1
#>
   2 Cottbus Temperature ARIMA_111_012
                                            27.7
                                                  5.89e- 1
    3 Cottbus Temperature ARIMA 111 112
                                            28.7
                                                  5.35e- 1
#>
   4 Cottbus Temperature ARIMA_012_012
                                            29.0
                                                  5.18e- 1
#>
   5 Cottbus Temperature ARIMA_301_200
                                            88.1
                                                  1.28e- 7
   6 Cottbus Temperature ARIMA_100_210
                                            98.4
                                                  3.31e- 9
   7 Cottbus Temperature ARIMA_100_110
                                           107.
                                                  1.26e-10
   8 Cottbus Temperature ARIMA_200_110
                                           107.
                                                  1.26e-10
   9 Cottbus Temperature ARIMA_010_110
                                           263.
#> 10 Cottbus Temperature ARIMA_012_010
                                           179.
                                                  0
#> 11 Cottbus Temperature ARIMA_110_010
                                           314.
                                                  0
#> 12 Cottbus Temperature ARIMA_111_010
                                           179.
                                                  0
                                                  0
#> 13 Cottbus Temperature ARIMA_210_110
                                           167.
#> 14 Cottbus Temperature ARIMA_002_200
                                                 NA
```

3.1.3 Forecast Accuracy with Training/Test Data

```
#> # A tibble: 4 x 12
#> .model City Measure .type ME RMSE MAE MPE MAPE MASE RMSSE ACF1
#> <chr> <chr> <chr> <chr> <dbl> <dbl>
```

```
#> 1 ARIMA_1~ Cott~ Temper~ Test 0.414 1.87 1.46 -102.
                                                         148. 0.705 0.682 0.0394
                                             1.47 -116.
#> 2 ARIMA_2~ Cott~ Temper~ Test 0.419 1.88
                                                          162. 0.710 0.684 0.0523
#> 3 ARIMA_0~ Cott~ Temper~ Test  0.690
                                       1.95
                                             1.54 -84.5 134. 0.743 0.712 0.0433
#> 4 ARIMA_1~ Cott~ Temper~ Test 1.01
                                                          158. 0.902 0.897 0.0103
                                        2.46
                                             1.87
                                                  144.
```


Temperature - Forecasting with selected ARIMA model $\langle ARIMA(0,1,2)(0,1,2)[12] \rangle$ 3.2

3.2.1Forecast Plot of selected ARIMA model

```
#> Provide model coefficients by report(fit_model)
#> Series: count
#> Model: ARIMA(0,1,2)(0,1,2)[12]
#>
#> Coefficients:
#>
             ma1
                      ma2
                              sma1
                                        sma2
#>
         -0.8173
                  -0.1826
                           -0.9818
                                    -0.0180
          0.0443
                   0.0398
                            0.0863
                                     0.0429
#> s.e.
#>
#> sigma^2 estimated as 3.72: log likelihood=-1245.36
#> AIC=2500.73
                AICc=2500.83
                               BIC=2522.6
```


3.2.2 Residual Stationarity

Required checks to be ready for forecasting:

- ACF Forecast Residual: all spikes are within the significance limits, so the residuals appear to be white noise
- The Ljung-Box test also shows that the residuals have no remaining autocorrelations
- Forecast Residuals are more or less normally distributed with roughly centred on zero

3.2.3 Histogram of forecast residuals with overlaid normal curve

#> 1 Cottbus Temperature arima

#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 1 x 5
#> City Measure .model lb_stat lb_pvalue
#> <chr> <fct> <chr> <dbl> <dbl>

19.6

0.926

4 ARIMA vs ETS

In particular, all ETS models are non-stationary, while some ARIMA models are stationary.

The ETS models with seasonality or non-damped trend or both have two unit roots (i.e., they need two levels of differencing to make them stationary). All other ETS models have one unit root (they need one level of differencing to make them stationary).

We compare for the chosen ETS rsp. ARIMA model the RMSE / MAE values. Lower values indicate a more accurate model based on the test set RMSE, ..., MASE.

- Residual Accuracy with one-step-ahead fitted residuals
- Forecast Accuracy with Training/Test Data

Note: a good fit to training data is never an indication that the model will forecast well. Therefore the values of the Forecast Accuracy are the more relevant one.

4.0.1 Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model

```
#> # A tibble: 4 x 12
#>
     City Measure .model .type
                                         RMSE
                                                        MPE
                                                            MAPE
                                                                  MASE RMSSE
                                                                                  ACF1
                                      ME
                                                 MAE
     <chr> <fct>
                                   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                                                 <dbl>
                   <chr>
                          <chr>
#> 1 Cott~ Temper~ ets
                           Trai~ 0.00372
                                          1.94
                                                1.51 -68.6
                                                             145. 0.727 0.709 0.120
#> 2 Cott~ Temper~ arima Trai~ 0.0674
                                                             159. 0.698 0.695 0.00712
                                          1.90
                                                1.45 - 88.3
#> 3 Cott~ Temper~ ETS_A~ Test  0.767
                                          1.98
                                                1.57 -83.5
                                                            135. 0.754 0.722 0.0439
#> 4 Cott~ Temper~ ARIMA~ Test
                                 0.690
                                                            134. 0.743 0.712 0.0433
                                          1.95
                                                1.54 - 84.5
```

4.0.2 Forecast Plot of selected ETS and ARIMA model


```
#> # A tsibble: 6 x 8 [1M]
```

#> # Key: City, Measure, .model [2]
#> # Groups: City, Measure, .model [2]

```
'80%'
#>
    City
            Measure
                        .model Year_M~1
                                             count .mean
    <chr>>
            <fct>
                        <chr>
                                <mth>
                                             <dist> <dbl>
                                                                            <hilo>
#> 1 Cottbus Temperature arima 2023 Jan N(1.5, 3.8) 1.54 [-0.9633695, 4.041349]80
#> 2 Cottbus Temperature arima 2023 Feb N(2.3, 3.9) 2.33 [-0.2116345, 4.880317]80
#> 3 Cottbus Temperature arima 2023 Mrz N(5.7, 3.9) 5.67 [ 3.1194228, 8.211374]80
                                                     1.66 [-0.8596157, 4.178277]80
#> 4 Cottbus Temperature ets
                               2023 Jan N(1.7, 3.9)
                               2023 Feb N(2.4, 3.9)
                                                     2.38 [-0.1454615, 4.912491]80
#> 5 Cottbus Temperature ets
#> 6 Cottbus Temperature ets
                               2023 Mrz N(5.7, 3.9) 5.74 [ 3.1977534, 8.275731]80
#> # ... with 1 more variable: '95%' <hilo>, and abbreviated variable name
#> # 1: Year_Month
#> # A tsibble: 6 x 8 [1M]
               City, Measure, .model [2]
#> # Key:
#> # Groups:
               City, Measure, .model [2]
#>
    City
                        .model Year_M~1
                                                                             '80%'
                                             count .mean
            Measure
#>
    <chr>>
            <fct>
                        <chr>
                               <mth>
                                             <dist> <dbl>
                                                                            <hilo>
#> 1 Cottbus Temperature arima 2052 Okt N(12, 4.1) 11.9 [ 9.327194, 14.486248]80
#> 2 Cottbus Temperature arima 2052 Nov N(7.1, 4.1)
                                                    7.06 [ 4.479732, 9.638786]80
#> 3 Cottbus Temperature arima 2052 Dez
                                          N(4, 4.1) 4.02 [ 1.441216, 6.600464]80
#> 4 Cottbus Temperature ets
                               2052 Okt
                                          N(12, 20) 11.6 [ 5.844455, 17.261379]80
                                                    6.73 [ 1.010146, 12.444434]80
                               2052 Nov N(6.7, 20)
#> 5 Cottbus Temperature ets
#> 6 Cottbus Temperature ets
                               2052 Dez N(3.7, 20) 3.74 [-1.989384, 9.462268]80
#> # ... with 1 more variable: '95%' <hilo>, and abbreviated variable name
    1: Year_Month
#> #
```

Forecasts by ETS <ETS(A,A,A)> and ARIMA model <ARIMA(0,1,2)(0,1,2)[12]>

#> # A tibble: 180 x 5 City, Measure, .model, Year [60] #> # Groups: #> City Measure .model Year Year_avg #> <chr>> <fct> <chr> <dbl> <dbl> 2023 1.54 #> 1 Cottbus Temperature arima 2 Cottbus Temperature arima 2023 2.33 3 Cottbus Temperature arima 2023 5.67 2024 1.65 #> 4 Cottbus Temperature arima #> 5 Cottbus Temperature arima 2024 2.32

```
6 Cottbus Temperature arima
                                   2024
                                            5.72
                                   2025
   7 Cottbus Temperature arima
                                            1.69
  8 Cottbus Temperature arima
                                   2025
                                            2.36
#> 9 Cottbus Temperature arima
                                   2025
                                            5.76
#> 10 Cottbus Temperature arima
                                   2026
                                            1.73
#> # ... with 170 more rows
#> # A tibble: 180 x 5
#> # Groups:
               City, Measure, .model, Year [60]
#>
      City
              Measure
                           .model Year Year avg
#>
      <chr>
              <fct>
                          <chr>
                                  <dbl>
                                           <dbl>
                                   2023
                                           10.8
#>
   1 Cottbus Temperature arima
   2 Cottbus Temperature arima
                                   2023
                                            5.91
  3 Cottbus Temperature arima
                                   2023
                                            2.86
  4 Cottbus Temperature arima
                                   2024
                                           10.8
#>
#>
  5 Cottbus Temperature arima
                                   2024
                                            5.95
   6 Cottbus Temperature arima
                                   2024
                                            2.91
   7 Cottbus Temperature arima
                                   2025
                                           10.8
                                   2025
  8 Cottbus Temperature arima
                                            5.99
#> 9 Cottbus Temperature arima
                                   2025
                                            2.95
#> 10 Cottbus Temperature arima
                                   2026
                                           10.9
#> # ... with 170 more rows
```

4.0.3 Ljung-Box Test - independence/white noise of the forecasts residuals

```
#> # A tibble: 2 x 5
#>
     City
             Measure
                           .model lb_stat lb_pvalue
#>
     <chr>
             <fct>
                          <chr>
                                    <dbl>
                                              <dbl>
                                     29.0
#> 1 Cottbus Temperature arima
                                              0.518
#> 2 Cottbus Temperature ets
                                              0.146
                                     38.1
```

5 Yearly Data Forecasts with ARIMA and ETS

For yearly data the seasonal monthly data are replaced by the yearly average data. Therefore the seasonal component of the ETS and ARIMA model are to be taken out.

The ETS model < ETS(A,A,N) > with seasonal term change "A" -> "N" is chosen. For ARIMA models the seasonal term (P,D,Q)m has to be taken out and an optimal ARIMA(p,1,q) with one differencing (d=1) is selected. However, for Mauna Loa two times differencing had to be selected $CO_2 < ARIMA(0,2,1) \text{ w/ poly} >$. For Temperature and Precipitation the same model as for monthly data can be taken by leaving out the seasonal term < ARIMA(0,1,2)w/drift >.

5.0.1 Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model

5.0.2 Forecast Plot of selected ETS and ARIMA model


```
#> # A tsibble: 6 x 8 [1Y]
                City, Measure, .model [2]
#> # Key:
                City, Measure, .model [2]
#> # Groups:
                                                                          '80%'
#>
     City
             Measure
                         .model Year
                                         Year_avg .mean
             <fct>
                         <chr>
                                <dbl>
                                            <dist> <dbl>
#> 1 Cottbus Temperature arima
                                 2023 N(11, 0.53)
                                                   10.9 [9.961655, 11.82869]80
                                 2024 N(11, 0.58)
                                                   10.8 [9.790333, 11.73954]80
#> 2 Cottbus Temperature arima
#> 3 Cottbus Temperature arima
                                 2025 N(11, 0.58)
                                                   10.8 [9.830426, 11.77963]80
#> 4 Cottbus Temperature ets
                                 2023 N(11, 0.56)
                                                   10.7 [9.753664, 11.66702]80
#> 5 Cottbus Temperature ets
                                 2024 N(11, 0.56)
                                                   10.8 [9.793373, 11.70673]80
                                 2025 N(11, 0.56) 10.8 [9.833081, 11.74644]80
#> 6 Cottbus Temperature ets
#> # ... with 1 more variable: '95%' <hilo>
#> # A tsibble: 6 x 8 [1Y]
                City, Measure, .model [2]
#> # Key:
#> # Groups:
                City, Measure, .model [2]
#>
     City
             Measure
                         .model Year
                                                                          '80%'
                                         Year avg .mean
#>
     <chr>
             <fct>
                         <chr> <dbl>
                                            <dist> <dbl>
                                                                         <hilo>
#> 1 Cottbus Temperature arima
                                 2050 N(12, 0.58)
                                                   11.8 [10.83275, 12.78196]80
#> 2 Cottbus Temperature arima
                                 2051 N(12, 0.58)
                                                   11.8 [10.87285, 12.82205]80
#> 3 Cottbus Temperature arima
                                 2052 N(12, 0.58)
                                                   11.9 [10.91294, 12.86215]80
#> 4 Cottbus Temperature ets
                                 2050 N(12, 0.56)
                                                   11.8 [10.82572, 12.73927]80
                                 2051 N(12, 0.56)
                                                   11.8 [10.86543, 12.77899]80
#> 5 Cottbus Temperature ets
                                 2052 N(12, 0.56) 11.9 [10.90513, 12.81871]80
#> 6 Cottbus Temperature ets
#> # ... with 1 more variable: '95%' <hilo>
```

arly Data Forecasts by ETS <ETS(A,A,N)> and ARIMA model <ARIMA(0,1,2) w/ drift> w/ Prediction Interval

5.0.3 Ljung-Box Test - independence/white noise of the forecasts residuals

#> # A tibble: 2 x 5
#> City Measure .model lb_stat lb_pvalue
#> <chr> <fct> <chr> <chr> <1 Cottbus Temperature arima 39.2 0.121
#> 2 Cottbus Temperature ets 52.3 0.00712

6 Backup