XAI ES, Course 3

Neurons and neural networks

Example Application

Handwriting Digit Recognition

Handwriting Digit Recognition

INPUT

x_1 \mathcal{X}_{2} $16 \times 16 = 256$ Ink \rightarrow 1 No ink \rightarrow 0

OUTPUT

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

Element of Neural Network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

Neural Network neuron

Deep means many hidden layers

Example of Neural Network

Example of Neural Network

Example of Neural Network

$$f: R^2 \to R^2$$

$$f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix} \quad f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51 \\ 0.85 \end{bmatrix}$$

Different parameters define different function

Matrix Operation

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

$$= \sigma(W^{L} \dots \sigma(W^{2} \sigma(W^{1} x + b^{1}) + b^{2}) \dots + b^{L})$$

Softmax

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Softmax

Softmax layer as the output layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

Softmax Layer

How to set network parameters $\theta = \{W^1, b^1, W^2, b^2, \dots W^L, b^L\}$

Ink \rightarrow 1 No ink \rightarrow 0 Set the network parameters θ such that

Input: y_1 has the maximum value

Input:

y₂ has the maximum value

Training Data

Preparing training data: images and their labels

Using the training data to find the network parameters.

Given a set of network parameters θ , each example has a cost value.

Cost $L(\theta)$ target

Cost can be Euclidean distance or cross entropy of the network output and target

Total Cost

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters θ is on this task

Find the network parameters θ^* that minimize this value

Gradient Descent

Assume there are only two parameters w₁ and w₂ in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

Gradient Descent

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

Local Minima

Gradient descent never guarantee global minima

Besides local minima

In physical world

Momentum

Momentum

Still not guarantee reaching global minima, but give some hope

Mini-batch

- \triangleright Randomly initialize θ^0
- Pick the 1st batch

$$C = L^1 + L^{31} + \cdots$$

$$\theta^1 \leftarrow \theta^0 - \eta \nabla C(\theta^0)$$

Pick the 2nd batch

$$C = L^2 + L^{16} + \cdots$$
$$\theta^2 \leftarrow \theta^1 - \eta \nabla C(\theta^1)$$

:

C is different each time when we update parameters!

Mini-batch

Original Gradient Descent

1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

With Mini-batch

The colors represent the total C on all training data.

Faster

Better!

Mini-batch

 \triangleright Randomly initialize θ^0

Pick the 1st batch

$$C = C^1 + C^{31} + \cdots$$

$$\theta^1 \leftarrow \theta^0 - \eta \nabla C(\theta^0)$$

Pick the 2nd batch

$$C = C^2 + C^{16} + \cdots$$

$$\theta^2 \leftarrow \theta^1 - \eta \nabla C(\theta^1)$$

Until all mini-batches have been picked

one epoch

Repeat the above process

Backpropagation

A network can have millions of parameters.

- Backpropagation is the way to compute the gradients efficiently (not today)
- Ref:
 http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%
 20backprop.ecm.mp4/index.html

Many toolkits can compute the gradients automatically

theano

Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Theano%20DNN.ecm.mp4/index.html

Deeper is Better?

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4	Not surpris	ed, more
3 X 2k	18.4	parameter	s, better
4 X 2k	17.8	performan	ce
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Shallow

Deep

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	→ 1 X 4634	22.6
		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deep?

Deep → Modularization

Why Deep?

Each basic classifier can have sufficient training examples.

Deep → Modularization

Classifiers for the attributes

Why Deep? can be trained by little data Deep → Modularization Classifier Girls with long hair Boy or Girl? Classifier Boys with Little data fine Basic **Image** Classifier Classifier Girls with short hair Long or 3 short? Classifier Boys with Sharing by the short hair following classifiers

as module

Why Deep?

Deep Learning also works on small data set like TIMIT.

Deep → Modularization

→ Less training data?

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

Deep Learning

Source of image: http://www.gipsa-lab.grenoble-inp.fr/transfert/seminaire/455_Kadri2013Gipsa-lab.pdf

Hard to get the power of Deen

Recipe for Learning

Modify the Network

 New activation functions, for example, ReLU or Maxout

Better optimization Strategy

Adaptive learning rates

Prevent Overfitting

Dropout

Only use this approach when you already obtained good results on the training data.

ReLU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

Vanishing Gradient Problem

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

Vanishing Gradient Problem

Intuitive way to compute the gradient ...

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

a = zReLU a = 0 y_2

ReLU is a special cases of Maxout

Maxout

Learnable activation function [Ian J. Goodfellow, ICML'13]

You can have more than 2 elements in a group.

ReLU is a special cases of Maxout

Maxout

Learnable activation function [Ian J. Goodfellow, ICML'13]

- Activation function in maxout network can be any piecewise linear convex function
- How many pieces depending on how many elements in a group

Learning Rate

Set the learning rate η carefully

Learning Rate

Can we give different parameters different learning rates?

Original Gradient Descent

Adagrad

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Each parameter w are considered separately

$$w^{t+1} \leftarrow w^t - \eta_w \underline{g}^t \qquad \underline{g}^t = \frac{\partial C(\theta)}{\partial w}$$

Parameter dependent learning rate

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

constant

Summation of the square of the previous derivatives

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

Adagrad

 w_1 0.1

 $w_2 = \frac{g^0}{20.0}$

Learning rate:

$$\frac{\eta}{\sqrt{0.12}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

Learning rate:

$$\frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

Observation:

- 1. Learning rate is smaller and smaller for all parameters
 - 2. Smaller derivatives, larger learning rate, and vice versa

Why?

2. Smaller derivatives, larger learning rate, and vice versa

Not the whole story

Adagrad [John Duchi, JMLR'11]

RMSprop

https://www.youtube.com/watch?v=O3sxAc4hxZU

Adadelta [Matthew D. Zeiler, arXiv'12]

Adam [Diederik P. Kingma, ICLR'15]

AdaSecant [Caglar Gulcehre, arXiv'14]

"No more pesky learning rates" [Tom Schaul, arXiv'12]

Pick a mini-batch

- > Each time before computing the gradients
 - Each neuron has p% to dropout

Pick a mini-batch

- > Each time before computing the gradients
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout Testing:

No dropout

- If the dropout rate at training is p%,
 all the weights times (1-p)%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

- ➤ When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Dropout - Intuitive Reason

Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Ensemble

- ➤ Using one mini-batch to train one network
- Some parameters in the network are shared

More about dropout

- More reference for dropout [Nitish Srivastava, JMLR'14] [Pierre Baldi, NIPS'13][Geoffrey E. Hinton, arXiv'12]
- Dropout works better with Maxout [lan J. Goodfellow, ICML'13]
- Dropconnect [Li Wan, ICML'13]
 - Dropout delete neurons
 - Dropconnect deletes the connection between neurons
- Annealed dropout [S.J. Rennie, SLT'14]
 - Dropout rate decreases by epochs
- Standout [J. Ba, NISP'13]
 - Each neural has different dropout rate

Deep Learning

ReLU is a special cases of Maxout

Maxout

ReLU is a special cases of Maxout

Maxout

