中山大学研究生期末考试

考试科目:《计算复杂性》

三、解答题(每小题 10 分,共 30 分) 1,将下面布尔函数的 CNF-SAT 问题规约到子集合覆盖问题。	三、名词解释(每小题 4 分, 共 20 分) 1, NP 问题(两个定义); 3, Savitch 定理; 4, PCP;	 P 包含在 NP口co-NP 中。() BQFAxi∃xxyAxi [(xiv→xxvxi)∧(¬xivxxi)]不是可满足的。() L 和 NL 都属于 P。() 判定 GF(2)上多元二次方程组是否有解是 NPC 问题。() 所有的 NPC 问题都是自归约的。() 	二、判断正误,正确的打 / 并给出证明,错误的打×并举出反例。(每小题 7 (2+5) 分,共 35 分) 1, P 包含在 NP U co-NP 中。()	有:	有,	2,两类主要计算模型有	一、填空题(每小题 3 分, 共 15 分) 1、被认为是计算复杂性的奠基之作的是	考试时长: 120分钟 任课老师: 张方国	考试方式: 开卷	学院/系: 计算机学院	学年学期: 2023 学年秋季学期	
) 规约到子集合覆盖问题,	r) 2,PH 类问题; 5,P/poly	vx3)]不是可满足的。() 清解是 NPC 问题。() ()	男,错误的打×并举出反例。	, , , , , , , , , , , , , , , , , , , ,	1 关的复杂类问题	· *	5是年和		年级专业:	4:	姓 名:	
			(年小题	•	出烟	各自的代表	发表					

 $\Phi(x_1,\,x_2,\,x_3,\,x_4) = (x_1 \vee x_2 \vee \neg x_3 \vee x_4) \wedge (\neg x_1 \vee x_3 \neg x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3 \neg x_4)$

2, 下图给出了一个带子, Turing 机工用下面6个五元组来定义,(s0,0,s0,1,R),(s0,1,s1,1,R),(s1,0,s1,1,L),(s1,1,s2,1,L),(s2,B,R),(s2,1,s3,0,R), 描述这个工的工作过程,写出工从初始状态到停止状态的带子的样子。

в в 1 0 1	[5.	
_;			
0			
æ			
w			
B			
:			

3,模合数 n 的二次剩余问题是属于 NP 的。模合数 n 的二次非剩余问题,即 QNR $\{\langle x, n \rangle$: x \notin QRn,即 x 不是模 n 的二次剩余(即不存在 y,使得 y 2 = x mod n) $\}$,显然 QNR \in coNP,但不知道它是否属于 NP。请给出 QNR 问题的一个交互式证明系统,从而说明 QNR \in IP。