

Project title:

Detecting true cases of Pulmonary Embolism in MIMIC-III dataset.

Instructor: Andrew Nguyen

Student: Omid Khazaie

HS 619: NATURAL LANGUAGE PROCESSING

FALL 2018

What is Pulmonary Embolism (PE)?

PE Symptoms

Common signs and symptoms include:

- Shortness of breath
- Chest pain
- Cough

Other signs and symptoms:

- Leg pain or swelling, or both, usually in the calf
- Clammy or discolored skin
- Fever
- Excessive sweating
- Rapid or irregular heartbeat
- Lightheadedness or dizziness [2]

Risk factors:

Medical history:

Family members history of venous blood clots or pulmonary embolism

Medical conditions and treatments:

- Heart disease
- Cancer
- Surgery

Prolonged immobility:

- Bed rest
- Long trips

Other risk factors:

- Smoking
- Being overweight
- Supplemental estrogen
- Pregnancy

Issues and Background

Recent study by patient safety experts at Johns Hopkins Medicine in Baltimore:

- 40,500 ICU adult patients a year die with an unknown medical condition
- Doctors receive about 7,000 pieces of information a day in this complex, distracting environment
- Misdiagnoses also occur frequently in emergency rooms, where doctors are scrambling to decide whether patients should be admitted to the hospital or sent home.
- Just five conditions account for more than one-third of all missed diagnoses in the ICU

5 Most Commonly Misdiagnosed Conditions in the ICU:

- Heart attack
- 2. Pulmonary embolism
- 3. Pneumonia
- 4. Aspergillosis
- 5. Abdominal bleeding

Dataset: MIMIC-III

- MIMIC is an openly available dataset developed by the MIT Lab for Computational Physiology
- Comprising de-identified health data associated with ~40,000 critical care patients.
- 26 tables
 - Track patient stays
 - Data collected in the critical care unit
 - Data collected in the hospital record system
 - Dictionaries

Data Extraction

noteevents table:

- Number of rows: 2,083,180
- TEXT is often large and contains many newline characters
- Some reports are available for both inpatient and outpatient stays
- If a patient is an outpatient, there will not be an HADM_ID associated with the note

Processing all the notes?

- Computationally expensive
- Not required for this project

How to extract data?

- Use ICD codes (billing code) to filter cases with PE or similar conditions
- Filter Discharge summary notes

Data Extraction

diagnoses_icd table:

- The ICD codes are generated for billing purposes at the end of the hospital stay.
- All ICD codes in MIMIC-III are ICD-9 based
- Number of rows: 651,047
- SEQ_NUM: provides the order in which the ICD diagnoses relate to the patient.

ICD codes used to extract data:

- Asthma, Pneumonia, Bronchitis, Heart attack
- Total of 101 ICD codes

Use the most recent note for each patient

Data extraction diagram

MIMIC-III

noteevents

Number of rows: 2,083,180

MIMIC-III

diagnoses_icd

Number of rows: 651,047

Join

Filter on 101 ICD codes

Filter Discharge summary notes

Number of rows: 48,153

Latest notes

Sort by Row Id (Noteevents)
Remove Addendum notes
Keep nth(-1) record

Number of rows: 23,907

Latest notes reduced

Random sample 0.2

Number of rows: 4,781

Data extraction tools and techniques

- Postgres server
- pgAdmin
- Tableau
- IntelliJ
- R
- Spark
- Python

Remote ssh connection

Postgres:

ssh -L 9000:localhost:5432 mimicuser@138.202.150.160

psql -h localhost -p 9000 -U mimicuser -d mimic

IntelliJ

Spark set-up and challenges

- Java 8
- Docker set-up
- Dependency hell

Docker set-up


```
val spark = SparkSession
   .builder()
   .master( master = "spark://spark-master:7077")
   .appName( name = "Spark")
   .getOrCreate()
val conf = new SparkConf()
   .setMaster("spark://spark-master:7077")
   .setAppName("Spark")
   .setJars()
```

Dependency hell

cTAKES and Spark both were built on carrotsearch but Spark is using the older version of carrotsearch

```
// https://mvnrepository.com/artifact/org.t3as/metamap-tagger
libraryDependencies += "org.t3as" % "metamap-tagger" % "1.3.4"
libraryDependencies += "au.com.bytecode" % "opencsy" % "2.4"
// https://mvnrepository.com/artifact/org.apache.spark/spark-core
libraryDependencies += "org.apache.spark" % "spark-core" % "2.3.2" exclude("com.carrotsearch", "hppc")
libraryDependencies += "org.apache.spark" % "spark-sql" % "2.3.2" exclude("com.carrotsearch", "hppc")
libraryDependencies += "org.apache.spark" % "spark-streaming" % "2.3.2" % "provided" exclude("com.carrotsearch", "hppc")
libraryDependencies += "org.apache.spark" % "spark-mllib" % "2.3.2" % "runtime" exclude("com.carrotsearch", "hppc")
libraryDependencies += "org.apache.spark" % "spark-hive" % "2.3.2" % "provided" exclude("com.carrotsearch", "hppc")
```

NLP pipeline

Input

cTAKES processing

Ontology processing

Output

Sentence detector

Tokenizer

Context dependent tokenizer

POS tagger

Chunker

UMLS dictionary look-up annotator

Dependency parser

Semantic role labeler

Cui resolver

Polarity resolver

Uncertainty resolver

Signsymptom resolver

New NLP pipeline

Input

cTAKES processing

Ontology Concept processing

Output

Sentence detector

Tokenizer

Context dependent tokenizer

POS tagger

Chunker

UMLS dictionary look-up annotator

Dependency parser

Semantic role labeler

Cui resolver

Polarity resolver

Uncertainty resolver

Signsymptom resolver

OntologyConcept processing

```
print umls size: 2
>>>>>>
        printing cui:
                      C0039239<<<<< i index: 0
                                              <<<<<
                                                       high index: 3
>>>>>>
        printing cui:
                      C0039239<<<<<
                                      index: 1
                                               <<<<<
                                                        high index: 3
>>>>>>
        print umls size: 12
>>>>>
        printing cui:
                      C0423772<<<<< i index: 0
                                                        high index: 4
>>>>>>
                                              <<<<<<
        printing cui:
                      C0016169<<<<<
                                      index: 1
                                                        high index: 4
>>>>>
                                               <<<<<
        printing cui:
                                      index: 2
                                                        high index: 4
                      C0016169<<<<<
                                               <<<<<
>>>>>
        printing cui:
                                                        high_index: 4
                      C0423772<<<<<
                                      index: 3
                                               <<<<<
>>>>>>
                                                        high index: 4
        printing cui:
                      C0423772<<<<<
                                      index: 4
                                               <<<<<
>>>>>>
        printing cui:
                      C0016169<<<<<
                                                        high index: 4
                                      index: 5
                                              <<<<<
>>>>>
        printing cui:
                                                        high index: 4
                      C0423772<<<<<
                                      index: 6
                                               <<<<<
>>>>>
        printing cui:
                                                        high index: 4
                      C0016169<<<<<
                                      index: 7
>>>>>>
                                               <<<<<
        printing cui:
                                      index: 8
                                                        high index: 4
                      C0423772<<<<<
                                               <<<<<
>>>>>>
        printing cui:
                      C0423772<<<<< i index: 9
                                                        high index: 4
                                               <<<<<
>>>>>
        printing cui:
                      C0016169<<<<<
                                      index: 10
                                                        high index: 4
                                                <<<<<
>>>>>
        printing cui:
                      C0423772<<<<<
                                      index: 11 <<<<<<
                                                        high index: 4
>>>>>
```

OntologyConcept processing

```
val diseaseOrDisorders = JCasUtil.select(aJCAS, classOf[DiseaseDisorderMention])
val diseaseOrDisorders_array = diseaseOrDisorders.toArray(new Array[DiseaseDisorderMention](0))
for(d <- diseaseOrDisorders array) {</pre>
  var umlsconcept = JCasUtil.select(d.getOntologyConceptArr(), classOf[UmlsConcept])
 var umlsconcept array = umlsconcept.toArray(new Array[UmlsConcept](0))
  //println(">>>>> print umls size: " + umlsconcept array.size)
  var pos = 0
  for (con <- umlsconcept_array) {</pre>
   //println(">>>>> printing cui: " + con.getCui + "<<<<< index: " + pos + " <<<<<
   if (con.getCui == "C0034065" | con.getCui == "C0919697" |
                                                             con.getCui == "C2747923"
       con.getCui == "C0157540"
                                | con.getCui == "C1535887" |
                                                             con.getCui == "C0151947"
       con.getCui == "C0034074" | con.getCui == "C0520546" |
                                                             con.getCui == "C2721578"
       con.getCui == "C0151946" | con.getCui == "C4524050" | con.getCui == "C0392108"
       con.getCui == "C1868769") {
      positive case = true
      if (d.getPolarity == -1){
        polarity case = true
      if (d.getUncertainty == 1) {
       uncertainty case = true
      println(">>>>> index: " + pos + " <<<<<  high index: " +p)</pre>
      println(">>>>>> CUI: "+ con.getCui)
      println(">>>>>>>> POLARIY: " + d.getPolarity)
     println(">>>>>>>> Uncertainty: " + d.getUncertainty)
      println(">>>>>>> Confidence: " + d.getConfidence +"\n\n")
    pos += 1
```

Features extracted

Out[77]:

	cui_exist	negation_exist	uncertainty_exist
0	0	0	0
1	0	0	0
2	1	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	1	0	0
10	0	0	0

What is my gold standard?

Machine Learning - Gold Standard

The ICD codes are generated for billing purposes at the end of the hospital stay:

- 4150
- 41511
- 41512
- 41513
- 41519

	cui_exist	negation_exist	uncertainty_exist	hadm_id	seq_number	target
0	0	0	0	111544	16	0
1	1	0	0	166737	2	1
2	0	0	0	137804	15	0
3	1	1	0	162201	2	0
4	1	1	0	168769	6	0

ML Model- DNN

```
col_names = list(train x.columns)
col names.remove('hadm id')
feature columns = [tf.feature column.numeric column(key = key, shape=[1]) for key in col names]
model_dir = os.path.join('.', 'model', 'dnn_classifier threelayers 2')
model = tf.estimator.DNNClassifier(
    feature columns=feature columns,
    hidden units=[32,16],
    dropout=0.2,
    model dir-model dir,
    n classes=2,
    optimizer=tf.train.ProximalAdagradOptimizer(
      learning rate=0.001,
      11 regularization strength=0.001))
```

Results-AUC

DNN-Layer activity

ML-Other models:

Imbalanced data: 0.07 have PE

Model	AUC with Negation and Uncertainty	AUC with Negation	AUC without Negation & Uncertainty
DNN	0.92	0.91	0.88
Gaussian Naive Bayes Classifier	0.82	0.82	0.80
Random Forest Classifier	0.79	0.80	0.78

RF Feature Importance

1. Do Negation and Uncertainty improve our model?

2. Does training with gold standard make our result worse?

363	0	0	0	141664	41519	2	1
370	0	0	0	147390	41519	2	1

cui_exist

negation_exist uncertainty_exist hadm_id icd_code seq_number

Future work

Improve the results:

- Train the model with the gold standard (clinical notes reviewed by medical annotators)
- Extract more features from clinical notes:
 - Number of times cui found in the text
 - Number of time negation found in the text
 - Number of time uncertainty found in the text
 - Bag of cui's for sign and symptoms found in the text

next step FUTURE

Improve the model:

- Optimize the algorithm
- Try other biomedical semantic annotation tools like MetaMap

Optimize the algorithm $O(n^2) \rightarrow O(n)$

```
wal diseaseOrDisorders = JCasUtil.select(aJCAS, classOf[DiseaseDisorderMention])
val diseaseOrDisorders_array = diseaseOrDisorders.toArray(new Array[DiseaseDisorderMention](0))
for(d <- diseaseOrDisorders_array) {</pre>
  var umlsconcept = JCasUtil.select(d.getOntologyConceptArr(), classOf[UmlsConcept])
                                                                                            .sConcept])
  var umlsconcept_array = umlsconcept.toArray(new Array[UmlsConcept](0))
 //println(">>>>>> print umls size: " + umlsconcept_array.size)
 var pos = 0
                                                                                            mlsConcept](0)))
                                                                                            :lem.getCui))
  for (con <- umlsconcept array) {</pre>
   //println(">>>>>> printing cui: " + con.getCui + "<<<<< index: " + pos + " <<<<<< h
   if (con.getCui == "C0034065"
                                 con.getCui == "C0919697"
                                                            con.getCui == "C2747923"
       con.getCui == "C0157540"
                                 con.getCui == "C1535887"
                                                            con.getCui == "C0151947"
       con.getCui == "C0034074"
                                 con.getCui == "C0520546"
                                                            con.getCui == "C2721578"
       con.getCui == "C0151946"
                                 con.getCui == "C4524050"
                                                            con.getCui == "C0392108"
       con.getCui == "C1868769") {
      positive case = true
      if (d.getPolarity == -1){
       polarity case = true
      if (d.getUncertainty == 1) {
       uncertainty_case = true
     println(">>>>>> index: " + pos + " <<<<<< high index: " +p)</pre>
     println(">>>>>> CUI: "+ con.getCui)
     println(">>>>>>>> POLARIY: " + d.getPolarity)
     println(">>>>>>>> Uncertainty: " + d.getUncertainty)
     println(">>>>>>>
                             Confidence: " + d.getConfidence +"\n\n")
    pos += 1
                                                                                            🏡 UNIVERSITY OF SAN FRANCISCO
                                                                                                CHANGE THE WORLD FROM HERE
```

References:

- 1. https://commons.wikimedia.org/wiki/File:SaddlePE.PNG
- 2. https://www.mayoclinic.org/diseases-conditions/pulmonary-embolism/symptoms-causes/syc-2 0354647
- 3. https://www.flickr.com/photos/easy-pics/9609168594
- 4. https://pixabay.com/en/anatomy-blood-vessel-red-156854/

Thank you!

