

MMRR:

Multiple Matrix Regression with Randomization

Anne Chambers & Anusha Bishop (2024)

Isolation by distance

Geographic distance

Isolation by environment

Environmental distance

Isolation by environment

Natural selection

Sexual selection

- Hybrids have reduced fitness
- Biased dispersal

IBD and IBE can covary with one another

Geo. Dist. ---

Isolation by environment

Multiple matrix regression with randomization (MMRR)

Geographic distance matrix

Environmental distance matrix

Multiple matrix regression with randomization (MMRR)

Geographic distance matrix

Environmental distance matrix

Relationship between y_{ij} and x_{1ij} when x_{2ij} constant

Multiple matrix regression with randomization (MMRR)

Geographic distance matrix

Environmental distance matrix

Relationship between y_{ij} and x_{2ij} when x_{1ij} constant

Significance testing & variable selection in MMRR

Backward elimination

Interpreting MMRR results

Interpreting MMRR results

Intercept + β 1(geo dist) + β 2(enviro dist) + Error

Take ratio of IBD:IBE coefficients $(\beta 1/\beta 2)$

EXERCISE

Process input data files

```
# Convert genetic data to matrix
Y <- as.matrix(liz_gendist)</pre>
```


Run MMRR

Try out the other two options for the **plot_type** argument. What is plotted?

var	estimate	р	95% Lower	95% Upper
CA_rPCA1	-0.10	0.06	-0.14	-0.07
CA_rPCA2	0.01	0.78	-0.03	0.05
CA_rPCA3	-0.05	0.36	-0.08	-0.01
geodist	0.58	0.00	0.54	0.61
Intercept	0.00	0.30	-0.04	0.04
D 0 0.05				

R-Squared: 0.35

F-Statistic: 181.28

F p-value: 0.00

See what other arguments there are within the **mmrr_table** function and try them out!

Exercise

- 1. Load the example dataset
- 2. Calculate environmental distances using env_dist()
- 3. Run MMRR using mmrr_run() with and without variable selection
- 4. Visualize MMRR results using mmrr_plot() and mmrr_table()