TLDR

- Texture Synthesis: Goal is to generate a realistic, yet different, version of a reference texture.
- We propose a modified Sliced Wasserstein Loss to capture long-range constraints in neural texture synthesis.
- An additional height-dimension loss term/multi-scale approach to improve structure without manual masks or alternative regularization terms.

Texture Synthesis and SW Loss

- Let layer ℓ of an L layer convolutional neural network have N_ℓ channels and M_ℓ pixels in each channel.
- p^{ℓ} , \hat{p}^{ℓ} : probability density functions for vectors $\{F_m^{\ell}\}$ and $\{\hat{F}_m^{\ell}\}$ associated to images I_1 and I_2 .
- We assume that the probability density functions take the form

$$p^{\ell}(x) = rac{1}{M_{\ell}} \sum_{m=1}^{M_{\ell}} \delta_{F_m^{\ell}}(x).$$
 (1

The Sliced Wasserstein Loss between two images, $\{w_\ell\}$ are weight terms

$$\mathcal{L}_{\mathsf{SW}}(I_1,I_2) = \sum_{\ell=1}^L w_\ell \mathcal{L}_{\mathsf{SW},\ell}(p^\ell,\hat{p}^\ell),$$
 (2)

where the Sliced Wasserstein Distance between two feature distributions is given by

$$\mathcal{L}_{\mathsf{SW},\ell}(p^\ell,\hat{p}^\ell) = \mathbb{E}_V[\mathcal{L}_{\mathsf{SW1D}}(p_V^\ell,\hat{p}_V^\ell)].$$
 (3)

Let V be a random direction on the unit sphere of dimension N_ℓ . Here, we define (with corresponding definitions for \hat{p}^ℓ) $p_V^\ell := \{\langle F_m^\ell, V \rangle\}$ as a set consisting of batched projections of the feature maps F_m^ℓ onto V; define vector P_V^ℓ consisting of the elements of p_V^ℓ and

$$\mathcal{L}_{\mathsf{SW1D}}(p_V^\ell, \hat{p}_V^\ell) = \frac{1}{\mathsf{len}(P_V^\ell)} \left\| \mathsf{sort}(P_V^\ell) - \mathsf{sort}(\hat{P}_V^\ell) \right\|_2^2. \tag{4}$$

- Convolution operators are local, so (1) ignores correlations between distant pixels (e.g. long-range structure).
- Consider a set of feature maps $F^{\ell} \in \mathbb{R}^{H_{\ell} \times W_{\ell} \times N_{\ell}}$ and a feature vector of shape $W_{\ell} \times N_{\ell}$, which we denote by $F_{H,n}^{\ell} \in \mathbb{R}^{H_{\ell}}$, where $n \in \{1, \dots, W_{\ell} \times N_{\ell}\}$.
- We have another set of probability distributions to match, which incorporate locality:

$$p_H^{\ell}(x) = \frac{1}{W_{\ell} \times N_{\ell}} \sum_{n=1}^{W_{\ell} \times N_{\ell}} \delta_{F_{H_n}^{\ell}}(x). \tag{5}$$

Consider distributions p_H^ℓ and \hat{p}_H^ℓ associated with I_1 and I_2 . The corresponding additional loss term is

$$\mathcal{L}_{\mathsf{SW},H}(I_1,I_2) = \sum_{\ell=1}^L w_\ell \mathcal{L}_{\mathsf{SW},\ell} \left(p_H^\ell, \hat{p}_H^\ell \right),$$
 (6)

Texture Synthesis and SW Loss Continued

We minimize

$$\mathcal{L}_{\mathsf{Slicing}}(I_1, I_2) = \mathcal{L}_{\mathsf{SW}}(I_1, I_2) + \mathcal{L}_{\mathsf{SW}, H}(I_1, I_2). \tag{7}$$

Algorithm 1: Synthesis Algorithm

Denote the feature map extraction of image I from VGG19 as $\operatorname{Extract}(I)$; $I_{\mathsf{WN}} \leftarrow$ white noise to be updated by optimizer via backpropagation; $I_{\mathsf{Ref}} \leftarrow$ reference texture;

for $k \leftarrow 1$ to M;

Calculate $\operatorname{Extract}(I_{\mathsf{WN}})$;

Calculate $\operatorname{Extract}(I_{\mathsf{Ref}})$;

Calculate $\operatorname{Extract}(I_{\mathsf{Ref}})$;

Calculate $\operatorname{Extract}(I_{\mathsf{NN}}, I_{\mathsf{Ref}})$;

Backpropagate and update I_{WN} ;

Example Results

return I_{WN} as synthesized texture;

For more periodic textures (first two rows), the performance varies between algorithms, but proposed algorithm has more consistent performance on nonstationary textures (last two rows).

Fig. 1: Comparison of results for textures. **Left:** Reference. **Mid Left:** SW Loss. **Mid Right:** Spectrum. **Right:** Using new loss (Ours).

Multi-scale Algorithm

To improve the results of our algorithm, we incorporate a multi-scale approach previously seen in [1].

Algorithm 2: Multi-scale Algorithm

Initialize $I_{\mathsf{Synthesis}}$ as white noise, equal to the reference texture downsampled by 2^K ; Let $I_{\mathsf{ref},i}$ be the reference texture downsampled by 2^i ; Let $\mathsf{SWSynthesis}$ be synthesis using Algorithm 1; for $i \leftarrow 0$ to K do $I_{\mathsf{Synthesis}} \leftarrow \mathsf{SWSynthesis}(I_{\mathsf{Synthesis}}, I_{\mathsf{ref},K-i})$;

 $I_{\text{Synthesis}} \leftarrow 2 \times \text{Upsample}(I_{\text{Synthesis}});$

return $I_{\text{Synthesis}}$ as the synthesized texture;

More scales, means better synthesis, but possible repetition.

Fig. 2: Multi-scale procedure at different scales. Left: Reference. Mid Left: K=0. Mid Right: K=1. Right: K=2

Fig. 3: Progression of synthesis that lead to repetitions. Left: Reference Texture. Middle Left: K = 0. Middle Right: K = 1. Right: K = 2.

Fig. 4: Ablation study: results with only (2) Left: Reference. Mid Left: K = 0. Mid Right: K = 1. Right:

- Quant comparison with other methods using set of 34 textures.
- K=1 shows the best results for 256×256 images.

Method	LPIPS	FID	c-FID	KID	c-KID
K=0	.44	107.2	72.3 ± 0.34	014	$.073 \pm 0.0008$
SW	.45	101.8	78.7 ± 0.48	016	$.084 \pm 0.001$
Spec.	.45	99.6	78.3 ± 0.57	016	$.085 \pm 0.001$
Gonthier	.42	77.6	68.3 ± 0.35	018	$.069 \pm 0.0009$
K=1	.38	67.1	53.5 ± 0.32	018	$.043 \pm 0.0006$
K=2	25	38.3	40.5 ± 0.6	-022	0.028 ± 0.000

Tab. 1: Perceptual Metric Comparison, (C-FID/C-KID scores [2] have SE for runs)

References

- [1] Nicolas Gonthier, Yann Gousseau, and Saïd Ladjal. "High resolution neural texture synthesis with long range constraints," in Journal of Mathematical Imaging and Vision 64:478-492, 2022.
- [2] Guilin Liu, Rohan Taori, Ting-Chun Wang, Zhiding Yu, Shiqiu Liu, Fitsum A. Reda, Karan Sapra, Andrew Tao, and Bryan Catanzaro "Transposer: Universal Texture Synthesis Using Feature Maps as Transposed Convolution Filter," in arXiv:2007.07243 [cs.CV], July 2020.