

Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte

Campus de Natal

Lista de Cálculo 1: Integral Indefinida

Prof. Dr. Irineu Lopes Palhares Junior

Lista de exercícios

Natal

Novembro de 2022

Sumário

1	Relação entre funções com derivadas iguais	2
2	Primitiva de uma função	6
3	Respostas dos exercícios	12

1	Relação entre funções com derivadas iguais

satisfaz as condições dadas. (A condição $x > \frac{1}{2}$ é para garantir que 1 pertença ao domínio de f.)

Exercícios 10.1

- 1. Seja $f : \mathbb{R} \to \mathbb{R}$, derivável e tal que para todo x, $f(x) = \alpha f(x)$, α constante não nula. Prove que existe uma constante k, tal que, para todo x, $f(x) = k e^{\alpha x}$.
- 2. Determine $y = f(x), x \in \mathbb{R}$, tal que

$$f'(x) = 2 f(x) e f(0) = 1.$$

(Sugestão: Utilize o Exercício 1.)

- 3. Uma partícula desloca-se sobre o eixo 0x, de modo que em cada instante t a velocidade é o dobro da posição x = x(t). Sabe-se que x(0) = 1. Determine a posição da partícula no instante t.
- 4. A função y = f(x), $x \in \mathbb{R}$, é tal que f(0) = 1 e f'(x) = -2 f(x) para todo x. Esboce o gráfico de f.
- 5. Seja y = f(x), $x \in \mathbb{R}$, derivável até a 2.ª ordem e tal que, para todo x, f''(x) + f(x) = 0. Seja g dada por g(x) = f(x) sen x f(x) cos x. Prove que g é constante.
- 6. Seja $f : \mathbb{R} \to \mathbb{R}$ derivável até a 2.ª ordem e tal que, para todo x, f''(x) + f(x) = 0. Prove que existe uma constante A tal que

$$\left[\frac{f(x) - A \cos x}{\sin x} \right]' = 0$$

para todo x em $]0, \pi[$. Conclua que exista outra constante B tal que, para todo x em $]0, \pi[$, $f(x) = A \cos x + B \sin x$.

(Sugestão: Utilize o Exercício 6.)

- 7. Seja $f : \mathbb{R} \to \mathbb{R}$ derivável até a 2.ª ordem e tal que, para todo x, f''(x) f(x) = 0.
 - *a*) Prove que $g(x) = e^x [f(x) f(x)], x \in \mathbb{R}$, é constante.

- *b*) Prove que existe uma constante A tal que, para todo $\left[\frac{f(x) - Ae^{-x}}{e^x} \right]' = 0.$
- c) Conclua de (b) que existe uma outra constante B tal que $f(x) = A e^{-x} + B e^{x}$, para todo x.
- Sejam f e g duas funções definidas e deriváveis em \mathbb{R} . Suponha que f (0) = 0, q(0) = 1 e que para todo x

$$f'(x) = g(x)$$
 e $g'(x) = -f(x)$.

a) Mostre que, para todo *x*,

$$(f(x) - \sin x)^2 + (g(x) - \cos x)^2 = 0.$$

- *b*) Conclua de (*a*) que $f(x) = \operatorname{sen} x \operatorname{e} g(x) = \cos x$.
- Utilizando o Exercício 1, determine a única função $y = y(x), x \in \mathbb{R}$, que satisfaça as condições dadas.

a)
$$\frac{dy}{dx} = 2y$$
 e y(0) = 1 b) $\frac{dy}{dx} = -y$ e y(0) = -1

b)
$$\frac{dy}{dx} = -y$$
 e y(0) = -1

c)
$$\frac{dy}{dx} = \frac{1}{2}y$$
 e $y(0) = 2$

c)
$$\frac{dy}{dx} = \frac{1}{2}y$$
 e $y(0) = 2$ d) $\frac{dy}{dx} = \sqrt{2}y$ e $y(0) = -\frac{1}{2}$

- 10. Determine a função cujo gráfico passe pelo ponto (0, 1) e tal que a reta tangente no ponto de abscissa x intercepte o eixo 0x no ponto de abscissa x + 1.
- 11. Determine uma função y = f(x), definida num intervalo aberto, satisfazendo as condições dadas

a)
$$\frac{dy}{dx} = \frac{x}{y^3}$$
, $y(0) = 1$

b)
$$\frac{dy}{dx} = y \operatorname{sen} x, y(0) = 1.$$

12. Seja $f: \mathbb{R} \to \mathbb{R}$ derivável até a 2.ª ordem e tal que, para todo x,

$$f''(x) = -f(x).$$

a) Mostre que, para todo *x*,

$$\frac{d}{dx}\left[(f'(x))^2 + (f(x))^2\right] = 0$$

b) Conclua que existe uma constante E tal que, para todo x,

$$[f(x)]^2 + [f(x)]^2 = E.$$

13. Sejam f(t), g(t) e h(t) funções deriváveis em \mathbb{R} e tais que, para todo t,

$$\begin{cases} f'(t) = g(t) \\ g'(t) = -f(t) - h(t) \\ h'(t) = g(t). \end{cases}$$

Suponha que f(0) = g(0) = h(0) = 1. Prove que, para todo t,

$$[f(t)]^2 + [g(t)]^2 + [h(t)]^2 = 3$$

14. Sejam f(t) e g(t) funções deriváveis em \mathbb{R} e tais que, para todo t,

$$\begin{cases} f'(t) = 2g(t) \\ g'(t) = -f(t). \end{cases}$$

Suponha, ainda, que f(0) = 0 e g(0) = 1. Prove que, para todo t, o ponto (f(t), g(t)) pertence à elipse $\frac{x^2}{2} + y^2 = 1$.

10.2. PRIMITIVA DE UMA FUNÇÃO

Seja f uma função definida num intervalo I. Uma primitiva de f em I é uma função F definida em I, tal que

$$f'(x) = f(x)$$

para todo x em I.

2 Primitiva de uma função

$$y = \frac{x^3}{6} + \frac{x^2}{2} + 1.$$

EXEMPLO 15. Uma partícula desloca-se sobre o eixo x e sabe-se que no instante t, $t \ge 0$, a velocidade é v(t) = 2t + 1. Sabe-se, ainda, que no instante t = 0 a partícula encontra-se na posição x = 1. Determine a posição x = x(t) da partícula no instante t.

Solução

$$\frac{dx}{dt} = 2t + 1$$
 e $x(0) = 1$.

Temos:

$$\frac{dx}{dt} = 2t + 1 \Rightarrow x = \int (2t + 1)dt = t^2 + t + k.$$

Para k = 1, teremos x = 1 para t = 0. Assim,

$$x(t) = t^2 + t + 1.$$

Exercícios 10.2 =

1. Calcule.

$$a) \int x dx$$

b)
$$\int 3 dx$$

c)
$$\int (3x+1) dx$$

$$d) \int (x^2 + x + 1) dx$$

$$e$$
) $\int x^3 dx$

$$f)\int (x^3 + 2x + 3) dx$$

$$g)\int \frac{1}{r^2}dx$$

$$h)\int \left(x+\frac{1}{x^3}\right)dx$$

i)
$$\int \sqrt{x} dx$$

$$j) \int \sqrt[3]{x} \ dx$$

$$l) \int \left(x + \frac{1}{x}\right) dx$$

$$m)\int (2+\sqrt[4]{x})\ dx$$

n)
$$\int (ax + b) dx$$
, $a \in b$ constantes

$$o) \int \left(3x^2 + x + \frac{1}{x^3}\right) dx$$

$$p) \int \left(\sqrt{x} + \frac{1}{x^2} \right) dx$$

$$q) \int \left(\frac{2}{x} + \frac{3}{x^2}\right) dx$$

$$r) \int (3\sqrt[5]{x^2} + 3) dx$$

$$s) \int \left(2x^3 - \frac{1}{x^4}\right) dx$$

$$t) \int \frac{x^2 + 1}{x} dx$$

2. Seja $\alpha \neq 0$ um real fixo. Verifique que

a)
$$\int \sin \alpha x \, dx = -\frac{1}{\alpha} \cos \alpha x + k$$
 b) $\int \cos \alpha x \, dx = \frac{1}{\alpha} \sin \alpha x + k$

b)
$$\int \cos \alpha x \, dx = \frac{1}{\alpha} \sin \alpha x + k$$

Calcule. 3.

$$a) \int e^{2x} dx$$

$$b) \int e^{-x} dx$$

$$c)\int (x+3e^x)dx$$

$$d$$
) $\int \cos 3x \, dx$

$$e$$
) $\int \text{sen } 5x \ dx$

$$f)\int (e^{2x}+e^{-2x})dx$$

$$g$$
) $\int (x^2 + \sin x) dx$

$$h$$
) $\int (3 + \cos x) dx$

$$i) \int \frac{e^x + e^{-x}}{2} dx$$

$$j) \int \frac{1}{e^{3x}} dx$$

$$l) \int (\sin 3x + \cos 5x) \, dx$$

$$m) \int \left(\frac{1}{x} + e^x\right) dx, \ x > 0$$

$$n) \int \sin \frac{x}{2} \, dx$$

$$o) \int \cos \frac{x}{3} \, dx$$

$$p) \int (\sqrt[3]{x} + \cos 3x) \, dx$$

$$q$$
) $\int (x + e^{3x}) dx$

$$r) \int (3 + e^{-x}) dx$$

$$s) \int 5e^{7x} dx$$

$$t) \int (1 - \cos 4x) \, dx$$

$$u) \int \left(2 + \sin\frac{x}{3}\right) dx$$

4. Verifique que

a)
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + k, -1 < x < 1$$

$$b) \int \frac{1}{1+x^2} dx = \operatorname{arctg} x + k$$

5. Determine a função $y = y(x), x \in \mathbb{R}$, tal que

a)
$$\frac{dy}{dx} = 3x - 1$$
 e y (0) = 2

b)
$$\frac{dy}{dx} = x^3 - x + 1$$
 e $y(1) = 1$

c)
$$\frac{dy}{dx} = \cos x \ e \ y(0) = 0$$

d)
$$\frac{dy}{dx} = \sin 3x \ e \ y(0) = 1$$

e)
$$\frac{dy}{dx} = \frac{1}{2}x + 3$$
 e y (-1) = 0 f) $\frac{dy}{dx} = e^{-x}$ e y (0) = 1

$$f) \frac{dy}{dx} = e^{-x} e y(0) = 1$$

6. Determine a função y = y(x), x > 0, tal que

a)
$$\frac{dy}{dx} = \frac{1}{x^2}$$
 e y(1) = 1

b)
$$\frac{dy}{dx} = 3 + \frac{1}{x}$$
 e $y(1) = 2$

c)
$$\frac{dy}{dx} = x + \frac{1}{\sqrt{x}}$$
 e y(1) = 0

c)
$$\frac{dy}{dx} = x + \frac{1}{\sqrt{x}}$$
 e y(1) = 0 d) $\frac{dy}{dx} = \frac{1}{x} + \frac{1}{x^2}$ e y(1) = 1

- Uma partícula desloca-se sobre o eixo x com velocidade v(t) = t + 3, $t \ge 0$. Sabe-se que, no instante t = 0, a partícula encontra-se na posição x = 2.
 - *a*) Qual a posição da partícula no instante *t*?
 - b) Determine a posição da partícula no instante t = 2.
 - *c*) Determine a aceleração.
- Uma partícula desloca-se sobre o eixo x com velocidade v(t) = 2t 3, $t \ge 0$. Sabe-se que no instante t = 0 a partícula encontra-se na posição x = 5. Determine o instante em que a partícula estará mais próxima da origem.
- 9. Uma partícula desloca-se sobre o eixo x com velocidade $v(t) = at + v_0$, $t \ge t$ 0 (a e v_0 constantes). Sabe-se que, no instante t=0, a partícula encontra-se na posição $x = x_0$. Determine a posição x = x(t) da partícula no instante t.
- 10. Uma partícula desloca-se sobre o eixo x com função de posição x = x (t), t \geq 0. Determine x = x(t), sabendo que

a)
$$\frac{dx}{dt} = 2t + 3 e x(0) = 2$$

b)
$$v(t) = t^2 - 1 e x(0) = -1$$

c)
$$\frac{d^2x}{dt^2} = 3$$
, $v(0) = 1$ e $x(0) = 1$

c)
$$\frac{d^2x}{dt^2} = 3$$
, $v(0) = 1$ e $x(0) = 1$ d) $\frac{d^2x}{dt^2} = e^{-t}$, $v(0) = 0$ e $x(0) = 1$

e)
$$\frac{d^2x}{dt^2} = \cos 2t$$
, $v(0) = 1$ e $x(0) = 0$

e)
$$\frac{d^2x}{dt^2} = \cos 2t$$
, $v(0) = 1$ e $x(0) = 0$ f) $\frac{d^2x}{dt^2} = \sin 3t$, $v(0) = 0$ e $x(0) = 0$

g)
$$\frac{dx}{dt} = \frac{1}{1+t^2}$$
 e $x(0) = 0$

11. Esboce o gráfico da função y = y(x), $x \in \mathbb{R}$, sabendo que

a)
$$\frac{dy}{dx} = 2x - 1$$
 e $y(0) = 0$

a)
$$\frac{dy}{dx} = 2x - 1$$
 e y (0) = 0 b) $\frac{d^2y}{dx^2} = -4\cos 2x$, y (0) = 1 e y' (0) = 0

c)
$$\frac{d^2y}{dx^2} = e^{-x}$$
, $y(0) = 0$ e $y'(0) = -1$ d) $\frac{dy}{dx} = \frac{1}{1+x^2}$ e $y(0) = 0$

d)
$$\frac{dy}{dx} = \frac{1}{1+x^2}$$
 e y (0) = 0

3 Respostas dos exercícios

$$f(3) = -\frac{87}{4} \text{ valor mín.}$$

2. f(-2) = -27 valor mín.

f(1) = 0 valor máx.

- 3. f(-3) valor mín.; f(-2) valor máx
- **4.** $f\left(\frac{3\pi}{4}\right)$ valor máx.; f(0) valor mín.
- 5. f(-1) valor mín.; f(0) = f(2) valor máx.
- **6.** $f\left(\frac{4}{3}\right)$ valor máx.

Não possui valor mínimo.

CAPÍTULO 10

10.1

2.
$$y = e^{2x}$$

3.
$$x(t) = e^{2t}$$

4.

9. a)
$$y = e^{2x}$$

b)
$$y = -e^{-x}$$

$$c) y = 2 e^{\frac{1}{2}x}$$

d)
$$y = -\frac{1}{2}e^{\sqrt{2}x}$$

10.
$$y = e^{-x}$$

11. a)
$$y = \sqrt[4]{2x^2 + 1}$$

b)
$$v = e^{(1 - \cos x)}$$

10.2

1. a)
$$\frac{x^2}{2} + k$$
 b) $3x + k$ c) $\frac{3x^2}{2} + x + k$ d) $\frac{x^3}{3} + \frac{x^2}{2} + x + k$

e)
$$\frac{x^4}{4} + k$$
 f) $\frac{x^4}{4} + x^2 + 3x + k$ g) $-\frac{1}{x} + k$ h) $\frac{x^2}{2} - \frac{1}{2x^2}$

i)
$$\frac{2}{3}\sqrt{x^3} + k$$
 j) $\frac{3}{4}\sqrt[3]{x^4}$ l) $\frac{x^2}{2} + \ln x + k$ m) $2x + \frac{4}{5}\sqrt[4]{x^5}$

n)
$$\frac{a}{2}x^2 + bx + k$$
 o) $x^3 + \frac{x^2}{2} - \frac{1}{2x^2} + k$ p) $\frac{2}{3}\sqrt{x^3} - \frac{1}{x} + k$

q)
$$2 \ln x - \frac{3}{x} + k$$
 r) $\frac{15}{7} \sqrt[5]{x^7} + 3x + k$

s)
$$\frac{x^4}{2} + \frac{1}{3x^3} + k$$
 t) $\frac{x^2}{2} + \ln x + k$

3. a)
$$\frac{1}{2}e^{2x} + k$$
 b) $-e^{-x} + k$ c) $\frac{x^2}{2} + 3e^x + k$ d) $\frac{1}{3}\sin 3x + k$

e)
$$-\frac{1}{5}\cos 5x + k$$
 f) $\frac{1}{2}e^{2x} - \frac{1}{2}e^{-2x} + k$ g) $\frac{x^3}{3} - \cos x + k$

h)
$$3x + \sin x + k$$
 i) $\frac{1}{2}(e^x - e^{-x}) + k$ j) $-\frac{1}{3}e^{-3x} + k$

1)
$$-\frac{1}{3}\cos 3x + \frac{1}{5}\sin 5x + k$$
 m) $\ln x + e^x + k$ n) $-2\cos \frac{x}{2} + k$

o)
$$3 \operatorname{sen} \frac{x}{3} + k$$
 $p) \frac{3}{4} \sqrt[3]{x^4} + \frac{1}{3} \operatorname{sen} 3x + k$ $q) \frac{x^2}{2} + \frac{1}{3} e^{3x} + k$

r)
$$3x - e^{-x} + k$$
 s) $\frac{5}{7}e^{7x} + k$

t)
$$x - \frac{1}{4} \sin 4x + k$$
 u) $2x - 3 \cos \frac{x}{3} + k$

5. a)
$$y = \frac{3x^2}{2} - x + 2$$

5. a)
$$y = \frac{3x^2}{2} - x + 2$$
 b) $y = \frac{x^4}{4} - \frac{x^2}{2} + x + \frac{1}{4}$ c) $y = \sin x$

d)
$$y = -\frac{1}{3}\cos 3x + \frac{4}{3}$$
 e) $y = \frac{x^2}{4} + 3x + \frac{11}{4}$ f) $y = -e^{-x} + 2$

$$e) \ y = \frac{x^2}{4} + 3x + \frac{11}{4}$$

$$f) y = -e^{-x} + 2$$

6. a)
$$y = -\frac{1}{x} + 2$$

$$b) y = 3x + \ln x - 1$$

c)
$$y = \frac{x^2}{2} + 2\sqrt{x} - \frac{5}{2}$$
 d) $y = \ln x - \frac{1}{x} + 2$

d)
$$y = \ln x - \frac{1}{x} + 2$$

7. *a*)
$$x = \frac{t^2}{2} + 3t + 2$$

b)
$$x(2) = 10$$

c)
$$a(t) = 1$$

8.
$$t = \frac{3}{2}$$

9.
$$x(t) = x_0 + v_0 t + \frac{a}{2} t^2$$

10. a)
$$x = t^2 + 3t + 2$$
 b) $x = \frac{t^3}{3} - t - 1$ c) $x = \frac{3}{2}t^2 + t + 1$

b)
$$x = \frac{t^3}{3} - t - 1$$

c)
$$x = \frac{3}{2}t^2 + t + 1$$

$$d) x = e^{-t} + t$$

d)
$$x = e^{-t} + t$$
 e) $x = -\frac{1}{4}\cos 2t + t + \frac{1}{4}$ f) $x = -\frac{1}{9}\sin 3t + \frac{1}{3}t$

$$f) \ x = -\frac{1}{9} \sin 3t + \frac{1}{3} t$$

$$g(x) = arc tg t$$

$$b) y = \cos 2x$$

c)
$$y = e^{-x} - 1$$

d) $y = \operatorname{arc} \operatorname{tg} x$

CAPÍTULO 11

11.5

- **1.** 7/2
- **2.** 2
- **3.** 2
- **4.** 0
- **5.** 2
- **6.** 12
- **7.** 4/9
- **8.** 10
- **9.** 8/3
- **10.** 3/4
- **11.** 0
- **12.** -4
- **13.** -1