

EVENT PROBABILITIES

Why

Since one and only one outcome occurs, given a distribution on outcomes, we define the probability of a set of outcomes as the sum of their probabilities.

Definition

Given a distribution $p: \Omega \to \mathbb{R}$, the probability of an event $A \subset \Omega$ is $\sum_{a \in A} p(a)$, the sum of the probabilities of its outcomes.

Define $P : \mathcal{P}(\Omega) \to R$ by $P(A) = \sum_{a \in A} p(a)$. We call P the event probability function (or the probability measure) induced by p. Clearly P depends on the set of outcomes Ω and the distribution $p : \Omega \to R$. We sometimes denote this dependence by $P_{\Omega,p}$ or P_p .

Example: die

Define $p:\{1,\ldots,6\}\to \mathbf{R}$ by $p(\omega)=1/6$ for $\omega=1,\ldots,6$. Define the event $E=\{2,4,6\}$. Then

$$P(E) = \sum_{\omega \in E} p(\omega) = p(2) + p(4) + p(6) = 1/2.$$

Properties of P

As a result of the conditions on p, P satisfies

- 1. $P(A) \ge 0$ for all $A \subset \Omega$;
- 2. $P(\Omega) = 1 \text{ (and } P(\emptyset) = 0);$
- 3. P(A)+P(B) for all $A, B \subset \Omega$ and $A \cap B = \emptyset$. This statement follows from the more general identity

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

for $A, B \subset \Omega$, by using $P(\emptyset) = 0$ of (2) above.

Do all such \mathbf{P} satisfying (1)-(3) have a corresponding underlying probability distribution? In other words, suppose $f: \mathcal{P}(\Omega) \to \mathbf{R}$ satisfies (1)-(3). These three conditions are sometimes called the axioms of probability for finite sets.

Define $q: \Omega \to \mathbb{R}$ by $q(\omega) = f(\{\omega\})$. If f satisfies the axioms, then q is a probability distribution. For this reason we call any function satisfying (i)-(iii) an event probability function (or a probability measure).

Probability by cases

Let **P** be a probability event function. Suppose A_1, \ldots, A_n partition Ω . Then for any $B \subset \Omega$,

$$\mathbf{P}(B) = \sum_{i=1}^{n} \mathbf{P}(A_i \cap B).$$

Some authors call this the law of total probability.

