Chapter 1 FUNCTIONS AND GRAPHS

LEARNING OBJECTIVES

- ★ Determine the domain, range, and zeros of a function.
- * Analyze the symmetry of the graph of a function.
- * Create new functions from old functions.

WHY STUDY THIS CHAPTER?

- * Calculus is the mathematics that describes changes in functions.
- * The fundamental objects that we deal with in calculus are functions.
- * Functions are used as mathematical models of real-world phenomena.

FUNCTIONS

Definition. A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

- \star The set D is called the **domain** of the function f
- * The range of f is the set of all possible values of f(x) as x varies throughout the domain

FUNCTIONS - EXAMPLE

Prob 1. Find the domain of each function:

a)
$$f(x) = \sqrt{x+2}$$

b)
$$f(x) = \frac{1}{x^2 - x}$$

c)
$$f(x) = \ln(x+1) - \frac{x}{\sqrt{x-1}}$$

Prob 2. Find the range of each function:

a)
$$f(x) = \sqrt{x-1}$$

b)
$$f(x) = x^2 - 2x$$

c)
$$f(x) = 2x^2 - 1$$

$$d) f(x) = \sin x$$

The graph of f is the set of all points (x, y) in the coordinate plane such that y = f(x) and x is in the domain of f.

The graph of f also allows us to picture:

- \star The domain of f on the x-axis
- \star Its range on the y-axis

MAE101—Calculus—Chap1

- a) Find the values of f(1) and f(5).
- b) What is the domain and range of f?

- a) Find the values of f(1) and f(5).
- b) What is the domain and range of f?

$$\star f(1) = 3$$

- a) Find the values of f(1) and f(5).
- b) What is the domain and range of f?

$$\star f(1) = 3$$

$$\star f(1) = 3$$

$$\star f(5) \approx -0.7$$

- a) Find the values of f(1) and f(5).
- b) What is the domain and range of f?

$$\star f(1) = 3$$

$$★ f(5) ≈ -0.7$$

$$\star D = [0, 7]$$

- a) Find the values of f(1) and f(5).
- b) What is the domain and range of f?

$$\star f(1) = 3$$

$$\star$$
 f(5) ≈ -0.7

$$\star D = [0, 7]$$

* Range
$$(f) = [-2, 4]$$

ZEROS OF A FUNCTION

Definition. If f(a) = 0, then a is called a **zero of** f.

Example. Find all zeros of $f(x) = x^3 - 3x^2 + 2x$.

Solution.

$$x^3 - 3x^2 + 2x = 0$$

$$\Leftrightarrow x = 0, x = 1, x = 2.$$

 \Rightarrow Zeros of f are: 0, 1, 2

MAE101—Calculus—Chap1

Prob 3. Find all zeros, if any, of the functions.

a)
$$f(x) = \sqrt{8x - 1}$$

b)
$$g(x) = \frac{3}{x-4}$$

c)
$$h(x) = 4|x-5|$$

MAE101—Calculus—Chap1

REPRESENTATIONS OF FUNCTIONS

There are four possible ways to represent a function:

- * Algebraically (by an explicit formula)
- ★ Visually (by a graph)
- ⋆ Numerically (by a table of values)
- ★ Verbally (by a description in words)

EXAMPLE

The human population of the world P depends on the time t.

- The table gives estimates of the world population P(t) at time t, for certain years.
- ★ However, for each value of the time t, there is a corresponding value of P, and we say that P is a function of t.

Year	Population (millions)			
1900	1650			
1910	1750			
1920	1860			
1930	2070			
1940	2300			
1950	2560			
1960	3040			
1970	3710			
1980	4450			
1990	5280			
2000	6080			
1	l .			

© 2007 Thomson Higher Education

EXAMPLE

"When you turn on a hot-water faucet, the temperature T of the water depends on how long the water has been running".

Draw a rough graph of T as a function of the time t that has elapsed since the faucet was turned on.

THE VERTICAL LINE TEST

A curve in the xy-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

SYMMETRY: EVEN FUNCTION

Definition. If a function f satisfies:

$$f(-x) = f(x)$$
, for all x in D

then f is called an even function.

The geometric significance of an even function is that its graph is symmetric with respect to the y-axis.

SYMMETRY: ODD FUNCTION

Definition. If a function f satisfies:

$$f(-x) = -f(x)$$
, for all x in D

then f is called an odd function.

The graph of an odd function is symmetric about the origin.

Prob 4. Let f is an **odd function**. If (-3,5) is in the graph of f then which point is also in the graph of f?

a) (3,5)

b) (-3, -5)

c) (3, -5)

d) All of the others

Prob 5. Suppose f is an odd function and g is an even function. What can we say about the function f.g defined by (f.g)(x) = f(x)g(x)? Prove your result.

Prob 6. Determine whether is even, odd, or neither:

a)
$$f(x) = x^2 - 3$$

b)
$$g(x) = x^3 + 4x$$

c)
$$h(x) = \frac{3x}{x^2 + 4}$$

d)
$$k(x) = x^4 - x$$

e)
$$p(x) = \sqrt{3x - 1}$$

INCREASING AND DECREASING FUNCTIONS

A function f is called **increasing on an interval** I if:

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$ in I

It is called **decreasing on** *I* if:

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$ in I

EXAMPLE

The function f is said to be increasing on the interval [a,b], decreasing on [b,c], and increasing again on [c,d].

QUIZ QUESTIONS

- **1.** If f is a function then f(x+2) = f(x) + f(2)
 - a) True

b) False

- **2.** If f(s) = f(t) then s = t
 - a) True

- b) False
- 3. Let f be a function. We can find s and t such that s=t and f(s) is not equal to f(t)
 - a) True

b) False

Combining Functions with Mathematical Operators

Given two functions f and g, we can define four new functions:

1.
$$(f+g)(x) = f(x) + g(x)$$

2.
$$(f-g)(x) = f(x) - g(x)$$

3.
$$(f \cdot g)(x) = f(x)g(x)$$

4.
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 for $g(x) \neq 0$.

MAE101—Calculus—Chap1

Example. Given the functions f(x) = 2x - 3 and $g(x) = x^2 - 1$, find each of the following functions and state its domain.

a)
$$(f+g)(x)$$

b)
$$(f - g)(x)$$
 c) $(f \cdot g)(x)$

c)
$$(f \cdot g)(x)$$

$$\mathsf{d)} \, \left(\frac{f}{g} \right) (x)$$

Solution.

a)
$$(f+g)(x) = f(x) + g(x) = x^2 + 2x - 4$$
. The domain $D = (-\infty, \infty)$.

b)
$$(f-g)(x) = f(x) - g(x) = -x^2 + 2x - 2$$
. The domain $D = (-\infty, \infty)$.

c)
$$(f \cdot g)(x) = f(x)g(x) = 2x^3 - 3x^2 - 2x + 3$$
. The domain $D = (-\infty, \infty)$.

d)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{2x-3}{x^2-1} = \frac{2x-3}{(x+1)(x-1)}$$
. The domain $D = \{x \in \mathbb{R} \mid x \neq \pm 1\}$.

26 / 37

MAE101—Calculus—Chap1 HCM Ver3.1

Function composition

Definition. Consider the functions $f:A\to B$, and $g:D\to E$. If B is a subset of D, then the composite function $(g\circ f)(x)$ is the function with domain A such that

$$(g \circ f)(x) = g(f(x)).$$

Example. Consider the functions $f(x) = x^2 + 1$ and $g(x) = \frac{1}{x}$.

- a) Find $(g \circ f)(x)$ and state its domain and range.
- b) Evaluate $(g \circ f)(4), (g \circ f)(-1/2)$.
- c) Find $(f \circ g)(x)$ and state its domain and range.
- d) Evaluate $(f \circ g)(4), (f \circ g)(-1/2)$

MAE101 — Calculus — Chap1

HCM Ver3.1

Solution.

(1)
$$(g \circ f)(x) = g(f(x)) = g(x^2 + 1) = \frac{1}{x^2 + 1}$$
.

- Since $x^2+1\neq 0$ for all real numbers x, the domain of $(g\circ f)(x)$ is the set of all real numbers.
- Since $0 < \frac{1}{x^2 + 1} \le 1$, the range is, at most, the interval (0, 1].

(2)
$$(g \circ f)(4) = \frac{1}{17}$$
, and $(g \circ f)(-1/2) = \frac{4}{5}$. 3

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \frac{1}{x^2} + 1.$$

- The domain of $f \circ g$ is the set of all real numbers x such that $x \neq 0$.
- The range of $f \circ g$ is the set $\{y \mid y > 1\}$.

(4)
$$(f \circ g)(4) = \frac{17}{16}$$
, and $(f \circ g)(-\frac{1}{2}) = 5$.

MAE101—Calculus—Chap1

A vertical shift

- (a) For c > 0, the graph of y = f(x) + c is a vertical shift up c units of the graph of y = f(x).
- (b) For c>0, the graph of y=f(x)-c is a vertical shift down c units of the graph of y=f(x).

A horizontal shift

- (a) For c>0, the graph of y=f(x+c) is a **horizontal shift left** c units of the graph of y=f(x).
- (b) For c > 0, the graph of y = f(x c) is a **horizontal shift right** c units of the graph of y = f(x).

Vertical stretch(giãn) and compression (co)

- (a) If c > 1, the graph of y = cf(x) is a vertical stretch of the graph of y = f(x).
- (b) If 0 < c < 1, the graph of y = cf(x) is a vertical compression of the graph of y = f(x)

Horizontal stretch (giãn) and compression (co)

- (a) If c > 1, the graph of y = f(cx) is a horizontal compression of the graph of y = f(x).
- (b) If 0 < c < 1, the graph of y = f(cx) is a horizontal stretch of the graph of y = f(x).

Reflections

- (a) The graph of y = -f(x) is the graph of y = f(x) reflected about the x -axis.
- (b) The graph of y = f(-x) is the graph of y = f(x) reflected about the y-axis.

MAE101—Calculus—Chap1

Summary

	Effect on the graph of f		
f(x) + c	Vertical shift up c units		
f(x) - c	Vertical shift down c units		
f(x+c)	Shift left by c units		
f(x-c)	Shift right by c units		
cf(x)	Vertical stretch if $c > 1$;		
	vertical compression if $0 < c < 1$		
f(cx)	Horizontal stretch if $0 < c < 1$;		
	horizontal compression if $c > 1$		
-f(x)	Reflection about the x -axis		
f(-x)	Reflection about the y -axis		

Prob 7. Let $f(x) = \sqrt{x+1}$ and $g(x) = \sqrt{5+x}$. Find $g \circ f$?

Prob 8. Use the table to evaluate the expression $(f \circ g)(2)$:

x	1	2	3	4	5	6
f(x)	3	4	2	0	1	2
g(x)	3	6	1	3	4	0

Prob 9. Let $f(x) = \frac{x^2 + x + 1}{x}$. Find

a)
$$f\left(x+\frac{1}{x}\right)$$

b)
$$f(2x-1)$$

Prob 10. Explain how the following graphs are obtained from the graph of f(x)

a)
$$f(x-4)$$

b)
$$f(x) + 3$$

c)
$$f(x-2)-3$$

37 / 37

MAE101 — Calculus — Chap1

HCM Ver3.1