Tema 6 Introducción a las redes de ordenadores

Fundamentos de Computadores Curso 2020/21

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2 Asignación de direcciones IP
- 6.3.3. Identificación de procesos: puertos

6.4. Servicios de aplicación en Internet

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2 Asignación de direcciones IP
- 6.3.3. Identificación de procesos: puertos

6.4. Servicios de aplicación en Internet

¿Qué es Internet?

- La RAE (<u>www.rae.es</u>) define Internet como:
 - "Red informática mundial, descentralizada, formada por la conexión directa entre computadoras mediante un protocolo especial de comunicación."
- La Wikipedia (<u>www.wikipedia.es</u>) define Internet como:
 - "Un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolos TCP/IP, lo cual garantiza que las redes físicas heterogéneas que la componen constituyan una red lógica única de alcance mundial. Sus orígenes se remontan a 1969, cuando se estableció la primera conexión de computadoras, conocida como ARPANET, entre tres universidades en California (Estados Unidos)."
- Internet:
 - International Networking o
 - Internetworking o
 - Interconnect network

¿Qué es Internet? (ii)

- La RAE (<u>www.rae.es</u>) define Internet como:
 - "Red informática mundial, descentralizada, formada por la conexión directa entre computadoras mediante un protocolo especial de comunicación."
- La Wikipedia (<u>www.wikipedia.es</u>) define Internet como:
 - "Un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolos TCP/IP, lo cual garantiza que las redes físicas heterogéneas que la componen constituyan una red lógica única de alcance mundial. Sus orígenes se remontan a 1969, cuando se estableció la primera conexión de computadoras, conocida como ARPANET, entre tres universidades en California (Estados Unidos)."
- Internet:
 - International Networking o
 - Internetworking o
 - Interconnect network

Componentes de Internet

- Millones de dispositivos
 - Conocidos como hosts o sistemas finales
 - Ejecutan aplicaciones de red
- Enlaces de comunicación
 - Fibra, cobre, radio
 - Cada uno con un ancho de banda determinado
- Equipos de interconexión
 - Routers, conmutadores
 - Reenvío y procesado de paquetes

Sistemas finales

Hosts:

- Ejecutan programas de aplicación
 - Web, email
- Están en el extremo de la red
- Distintos tipos:
 - Ordenadores
 - Portátiles
 - PDAs
 - Teléfonos móviles
 - Sensores

Modelos de comunicación cliente/servidor

- Cliente-Servidor
 - Navegadores/servidores Web, clientes/servidores de correo
- Peer to Peer (P2P)
 - Skype, BitTorrent

Tipos de redes de acceso

- Redes de acceso a Internet
 - Redes de acceso residencial
 - Redes institucionales
 - Redes de acceso móvil
- Consideraciones
 - Distinto ancho de banda
 - Distinta calidad de servicio
 - Redes dedicadas o compartidas

- Componentes típicos de una red doméstica:
 - Módem ADSL o de cable.
 - Router (con cortafuegos habitualmente).
 - Red Ethernet.
 - Puntos de acceso inalámbricos 802.11 (wifi).

 Varios de estos elementos lógicos pueden estar en un solo elemento físico

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2 Asignación de direcciones IP
- 6.3.3. Identificación de procesos: puertos

6.4. Servicios de aplicación en Internet

Protocolos

- Los protocolos definen:
 - El formato
 - El orden de los mensajes enviados y recibidos entre entidades
 - Las acciones realizadas al enviar o recibir los mensajes
- Analogía entre protocolos humanos y de red

Necesidad de arquitecturas de red

- Las redes son complejas, muchos componentes:
 - Hosts, routers, enlaces de distinto tipo, aplicaciones, protocolos, hardware, software...
- Es aconsejable estructurar las redes en capas
 - Una estructura explícita permite identificar los componentes y sus relaciones en sistemas complejos
 - La modularización facilita el mantenimiento y la actualización
 - En cambio en la implementación de un servicio en una capa es transparente para el resto del sistema
- **Principios** de la división en capas:
 - Cada capa realiza un conjunto de tareas relacionadas
 - Cada capa proporciona servicios a la capa superior (ocultando todos los detalles de implementación) usando únicamente servicios de la capa inferior
 - Las entidades en la misma capa pero en distintos hosts reciben el nombre de procesos pares
 - Los procesos pares dialogan mediante un protocolo
 - Al conjunto de capas (conjuntos de servicios) y protocolos usados en cada capa se le denomina arquitectura de red (pila de protocolos)

Arquitectura de capas de Internet

Aplicación:

- Transferencia de archivos, email, Web
- Protocolos: **FTP**, (File Transfer Protocol) **HTTP**, (HyperText Transfer Protocol), SMTP, (Simple Mail Transfer Protocol), POP3 (Post Office Protocol), **BitTorrent**, ...

Transporte:

- Transferencia de información entre procesos
- Protocolos: **TCP**, (*Transmission Control Protocol*), **UDP** (*User* Datagram Protocol). Proporcionan un mecanismo para distinguir distintas aplicaciones dentro de una misma máquina a través del concepto de puerto

TCP: Orientado a conexión y fiable, garantiza datos entregados sin errores y en el mismo orden al transmitido

UDP: No orientado a conexión y no fiable, muy utilizado para envío de audio y video en tiempo real

Red:

- Encaminamiento de paquetes desde el origen hacia el destino
- Protocolo **IP** (*Internet Protocol*), algoritmos de encaminamiento

Enlace:

- Transferencia de datos entre elementos conectados directamente.
- Protocolos: **PPP** (*Point to Point Protocol*), **Ethernet** (IEEE 802.3), **WiFi** (IEEE802.11), **HDLC**(*High-Level Data Link Control*)

Física:

Transmisión de bits sobre el medio

Flujo de Información entre capas

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2 Asignación de direcciones IP
- 6.3.3. Identificación de procesos: puertos

6.4. Servicios de aplicación en Internet

Fundamentos del Direccionamiento IP

- Direccionamiento IP (<u>versión 4</u>)
 - Cada interfaz de red tiene asignada una dirección IP de 32 bits
 - La dirección IP suele expresarse de forma más cómoda como 4 números entre 0 y 255 separados por puntos:

- Las direcciones IP son únicas:
 - Los routers suelen tener varias interfaces de red, por tanto varias direcciones IP
 - Los hosts sólo suelen tener una
- La dirección IP se compone de dos partes:
 - Dirección de red (netid)
 - Dirección de host (hostid)

An Internet address is made of four bytes (32 bits) that define a host's connection to a network.

 El organismo responsable es el ICANN: Internet Corporation for Assigned Names and Numbers

Fundamentos del Direccionamiento IP

- Encaminamiento en IP
 - Si dos hosts están en la misma red, pueden comunicarse directamente
 - Se puede determinar si dos hosts se encuentran en la misma red comparando el *netid* de sus direcciones IP
 - Si dos hosts no se encuentran en la misma red, el host origen envía el paquete al *router* por defecto
 - El router por defecto actúa como nexo de unión con otras redes
 - Todos los equipos deben tener configurada la dirección IP del *router* por defecto al que enviar los paquetes destinados a una red diferente
 - La dirección IP del paquete es la del host destino
- Direcciones especiales
 - Dirección de broadcast (difusión): Cuando la dirección de host (hostid) está formada por 1's
 - Dirección de red: Cuando la dirección de host (hostid) está formada por 0's

CIDR (Classless InterDomain Routing)

Características:

- Esquema de direccionamiento IP que permite un mayor aprovechamiento del espacio de direcciones IP
- Cada dirección IP se expresa como a.b.c.d/x donde x es el número de bits de la máscara de red
 - Todas las interfaces que pertenezcan a la misma red tendrán los mismos x bits iniciales
- Máscara de red (netid a 1 y hostid a 0)
 - Ejemplo: 155.54.12.219/20, es decir, la máscara de red es 255.255.240.0 (11111111111111111111110000.00000000)
- Ejemplo para la red 141.14.0.0/16

Configuración de dirección IP

- La configuración de un host consta de tres valores principales:
 - Dirección IP del host
 - Máscara de subred
 - Dirección IP de un router/gateway (router por defecto)
- La especificación de estos valores puede realizarse mediante dos alternativas:
 - Mediante configuración manual realizada por un administrador de red
 - Mediante **DHCP** (Dynamic Host Configuration Protocol)
 - Protocolo de configuración dinámica de hosts que automatiza la asignación de los valores antes mencionados y otros parámetros de TCP/IP desde un servidor DHCP

Puertos

Motivación:

- En un mismo host puede haber distintas aplicaciones de red ejecutándose
- Un mismo servidor puede atender a varios clientes simultáneamente
- Las direcciones IP de los equipos finales no son suficiente para la comunicación entre procesos
- En el **nivel de transporte**, cada proceso de un equipo queda identificado mediante un número de puerto
- Consecuentemente, cada conexión de transporte está identificada por los siguientes 4 valores:
 - Dirección IP de origen
 - Dirección IP de destino
 - Puerto de origen
 - Puerto de destino

Puertos

Ejemplo

- Servidor web que procesa múltiples conexiones a un mismo puerto desde distintos hosts origen:

PO: Puerto Origen; PD: Puerto Destino; IP-O: IP Origen; IP-D: IP Destino

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2 Asignación de direcciones IP
- 6.3.3. Identificación de procesos: puertos

6.4. Servicios de aplicación en Internet

World Wide Web

Terminología

- Una página Web está formada por objetos
- Un objeto puede ser una página HTML (HyperText Markup) Language), una imagen JPG, un applet Java, un archivo de audio...
- Una página Web consiste en un fichero base HTML que incluye referencias a otros objetos
- Cada objeto está identificado por una **URL** (*Uniform* Resource Locator)
- Ejemplo de URL:

```
http://www.someschool.edu/someDept/pic.gif
protocolo
             nombre del host
                                     trayectoria
```


Protocolo HTTP (Hypertext transfer protocol)

- Protocolo utilizado para el Web
- Sigue el modelo cliente-servidor:
 - Cliente: navegador que solicita, recibe y muestra objetos Web
 - Servidor: envía objetos en respuesta a solicitudes
- Usa el protocolo TCP
 - Habitualmente el servidor escucha en el puerto 80
- Es un protocolo sin estado, no se recuerdan conexiones

Mensajes HTTP

- 2 tipos de mensajes HTTP: request, response
 - Principalmente basados en ASCII
- HTTP request:

HTTP response:

```
Línea de estado -
                   HTTP/1.1 200 OK
                   Connection close
                   Date: Thu, 06 Aug 2008 12:00:15 GMT
                   Server: Apache/1.3.0 (Unix)
           Cabecera
                   Last-Modified: Mon, 22 Jun 2008 .....
                   Content-Length: 6821
                   Content-Type: text/html
                  → data data data data ...
```

Datos solicitados