- 1.6.3 Min-Max Trees and the cd-Index
 - T(w) (w の Cartesian tree) の変形を考える。

相異なる整数の列 $w=a_1a_2\cdots a_n$ の \min -max tree M(w) を次のように定義する。

- 1. $a_i = \min a_i$ または $a_i = \max a_i$ を満たす最小の j をとる。
- 2. a_j を M(w) の根とし、左側の部分木を $M(a_1,\ldots,a_{j-1})$ 、右側の部分木 を $M(a_{j+1},\ldots,a_n)$ とする。
- M(w) の頂点で、左の子だけを持つようなものは存在しないことに注意。 Min-max tree M(w) と $1 \leq i \leq n$ について、M(w) の頂点の並び替え $\psi_i M(w)$ を次のように定める。
- 1. M(w) 上で、頂点 a_i とその右側の部分木をまとめて M_{a_i} とする。
- 2. $a_i = \min V(M_{a_i})$ の場合は、 a_i を $\max V(M_{a_i})$ に置き換え、 M_{a_i} の残り の部分では頂点同士の大小関係を保つように並び変える。
- 3. $a_i = \max V(M_{a_i})$ の場合は、 a_i を $\min V(M_{a_i})$ に置き換え、残りは同様にする。

図1: (a) M(5, 10, 4, 6, 7, 2, 12, 1, 8, 11, 9, 3)(b) $\psi_7 M(...)$

Fact 1. ψ_1,\ldots,ψ_n の合成は可換であり、 $\psi_i\circ\psi_i=\mathrm{id}$ 。ゆえにこれらは可換群 \mathfrak{G}_w を生成する。 \mathfrak{G}_w は $(\mathbb{Z}/2\mathbb{Z})^{\iota(w)}$ と同型(ただし $\iota(w)$ は M(w) が持つ葉でない頂点の個数)。したがって、 $\psi M(w)$ ($\psi\in\mathfrak{G}_w$) として得られる木は $2^{\iota(w)}$ 通り。

 $w \in \mathfrak{S}_n$ 、 $\psi \in \mathfrak{G}_w$ について、 $\psi M(w) = M(\psi w)$ となるように ψw を定める。 $v, w \in \mathfrak{S}_n$ について、 $v = \psi w$ となるような $\psi \in \mathfrak{G}_w$ が存在するときv と w は M-**同値**であるといい、 $v \overset{M}{\sim} w$ で表す。これは同値関係。Fact 1 より、w を含む同値類 [w] の要素数は $2^{\iota(w)}$ 。

Fact 2. M(w) の頂点 a_i が、右の子のみを持つとする。このとき

$$D(\psi_i w) = egin{cases} D(w) \cup \{i\} & ext{if } i
otin D(w), \ D(w) - \{i\} & ext{if } i
otin D(w). \end{cases}$$

 a_i が左の子と右の子を持つとき、 $i\in D(w)$ と $i-1\in D(w)$ のちょうど片方が成立し、

$$D(\psi_i w) = egin{cases} (D(w) \cup \{i\}) - \{i-1\} & ext{if } i
otin D(w), \ (D(w) \cup \{i-1\}) - \{i\} & ext{if } i
otin D(w). \end{cases}$$

Descent set D(w) や木の構造の情報を、非可換な不定元 a, b, c, d, e を用いた単項式で表すことを考える。

集合 $S \subseteq [n-1]$ について、その characteristic monomial を

$$u_S=e_1e_2\cdots e_{n-1},$$

で定める。ここで

$$e_i = egin{cases} a & ext{if } i
otin S, \ b & ext{if } i
otin S, \end{cases}$$

とする。例えば、 $u_{D(37485216)}=ababbba$ 。

$$f_i = f_i(w) = egin{cases} c & ext{if } a_i \ ext{\it if } M(w) \ ext{\it L}$$
で右の子のみを持つ, $d & ext{if } a_i \ ext{\it if } a_i \ ext{\it of}$ を持たない,

とする。 $\Phi_w'=\Phi_w'(c,d,e)=f_1f_2\cdots f_n$ とし、そこから e を削除したものを $\Phi_w=\Phi_w(c,d)$ とする。例えば、w=5,10,4,6,7,2,12,1,8,11,9,3 に対して

$$\Phi_w' = edcededcedce,$$

 $\Phi_w = dcddcdc.$

 Φ_w に対して末尾と各 d の直前に e を挿入すれば Φ_w' が復元できる。 $v \overset{M}{\sim} w$ ならば、 $\Phi_v' = \Phi_w'$ と $\Phi_v = \Phi_w$ が成り立つ。

Fact 3. $w \in \mathfrak{S}_n$ とし、w が属する M-同値類を [w] で表すとき、

$$\Phi_w(a+b,ab+ba) = \sum_{v \in [w]} u_{D(v)}.$$

これが成り立つことは Fact 2. から確認できる。 たとえば、w=5,10,4,6,7,2,12,1,8,11,9,3 に対して、

$$\sum_{v \in [w]} u_{D(v)} = (ab+ba)(a+b)(ab+ba)(ab+ba)(a+b)(ab+ba)(a+b).$$

Fact 4. 各同値類 [w] は、ちょうど一つの alternating permutation (とちょうど一つの reverse alternating permutation) を含む。したがって、 $w \in \mathfrak{S}_n$ が動くときの [w] の種類数はオイラー数 E_n 。

これは Fact 3. から分かる。

ここで、母関数

$$egin{aligned} \Psi_n &= \Psi_n(a,b) = \sum_{w \in \mathfrak{S}_n} u_{D(w)} \ &= \sum_{S \in [n-1]} eta(S) u_S, \end{aligned}$$

を考える。たとえば $\Psi_3=aa+2ab+2ba+bb$ 。この多項式 Ψ_n は \mathfrak{S}_n の $ab ext{-index}$ と呼ばれる。

ここで

$$\Psi_n=\sum_{[w]}\sum_{v\in [w]}u_{D(v)}=\sum_{[w]}\Phi_w(a+b,ab+ba),$$

であるから、次が成り立つ。

定理 1.6.1. c=a+b、d=ab+ba とすると、ab-index Ψ_n は c、d の単項式 E_n 個からなる多項式として表せる。

この c、d の多項式を Φ_n とし、 \mathfrak{S}_n の cd-index と呼ぶ。 Φ_n の相異なる項の個数は、 Φ_w としてありうる c、d の単項式の個数、すなわちフィボナッチ数 F_n である。

 $S \subseteq [n-1]$ に対して、

 $\omega(S)=\{i\in[n-2]:i\in S\ \hbox{$\it C$}\ i+1\in S\ \hbox{$\it O$}$ のちょうど一方が成立する $\},$ とする。

命題 1.6.2. $S,T\subseteq [n-1]$ とする。 $\omega(S)\subset \omega(T)$ ならば $\beta_n(S)<\beta_n(T)$ 。

証明. $w \in \mathfrak{S}_n$ 、 $\Phi'_w = f_1 f_2 \cdots f_n \ (f_i \in \{c,d,e\})$ とする。

$$S_w = \{i - 1 : f_i = d\},\,$$

とするとき、

$$\Phi_w(a+b,ab+ba) = \sum_{v \in [w]} u_{D(v)} = \sum_{\omega(X) \supseteq S_w} u_X,$$

である。

$$\Psi_n = \sum_S eta_n(S) u_s = \sum_{[w]} \sum_{v \in [w]} u_{D(v)} = \sum_{[w]} \sum_{\omega(X) \supseteq S_w} u_X$$

より、 $\omega(S)\subseteq\omega(T)$ ならば $\beta_n(S)\leq\beta_n(T)$ 。 $\omega(S)\subsetneq\omega(T)$ のとき、 $\omega(T)\supseteq S_w$ かつ $\omega(S)\not\supseteq S_w$ なる w が存在するので、 $\beta_n(S)<\beta_n(T)$ 。

系 1.6.3. $S\subseteq [n-1]$ のとき、 $\beta_n(S)\leq E_n$ 。等号成立は $S=\{1,3,5,\ldots\}\cap [n-1]$ または $S=\{2,4,6,\ldots\}\cap [n-1]$ のとき。