Atividade 1 - Gráfico de Bode

João Wallace Lucena Lins Bacharelando em Engenharia de Computação - Matrícula 20180027213 jwallace.lucena@gmail.com

19/09/2022

N este relatório, iremos expor os resultados de um experimento envolvendo a análise de um amplificador simulado no software LTSpice, observaremos então o seu ganho em certas frequências fornecidas pelo professor.

Primeiramente, tivemos de definir a resistência R_c :

$$R_c = 1, 3 + 0, 1 = 1, 4 \text{ k}\Omega$$

Com ela em mãos, pudemos começar a modelagem do circuito no software LTSpice:

Então, tendo o circuito pronto, foram realizadas múltiplas aferições da tensão na resistência R_L , que representa a saída V_{out} do nosso circuito, alterando a frequência da fonte de tensão V_g . O resultado pode ser visto na tabela abaixo.

Frequência (Hz)	V _{out}	A _V	$A_{V_{dB}}$
1	9,865 μV	9,87 × 10 ⁻⁴	-60,1
10	0,628 mV	$6,28 \times 10^{-2}$	-24,0
100	31,923 mV	3,19	10,1
200	85,892 mV	8,59	18,7
500	210,287 mV	21,03	26,5
1k	301,904 mV	30,19	29,6
10k	368,572 mV	36,86	31,3
100k	368,809 mV	36,88	31,3
1M	339,818 mV	33,98	30,6
2M	296,084 mV	29,61	29,4
10M	97,008 mV	9,70	19,7

As medidas foram feitas a partir do uso da ferramenta de cursores disponível no LTSpice. Com ela, é possível obter a diferença de tensão entre dois cursores posicionados em um pico e um vale da senóide resultante, da maneira a nos entregar a amplitude do sinal. A partir disso, basta dividir por 2 para obter a tensão V_{out} de saída.

Por fim, plotamos o gráfico scatter dos pontos aferidos, elaborado no Python com o auxílio da matplotlib.

