Álgebra Relacional

31/Marzo/2017

Álgebra Relacional

Introducción Operaciones Unarias Operaciones Binarias SELECT PROJECT RENAME

AR - SELECT

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F} (EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• σ_{Sexo=F} AND Salario>\$15.000 (EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00

Genera una partición horizontal de la relación

Álgebra Relacional

Operaciones Unarias
Operaciones Binarias

Marco General

AR - Marco General

- Álgebra Relacional. Lenguaje formal utilizado en el modelo relacional
- Permite a usuarios especificar consultas sobre instancias de relaciones
- El resultado de una consulta es una nueva relación
- Importancia.
 - Provee fundamento formal a las operaciones asociadas al modelo relacional
 - Base para implementar y optimizar queries en RDBMS
 - Principales operaciones y funciones del los módulos internos de la mayoría de los sistemas relacionales están basados en operaciones del AR
- Técnica. Procedural (a diferencia del Cálculo Relacional que es de tipo declarativo)
- Operadores. Unarios y Binarios

Álgebra Relacional

Introducción Operaciones Unarias Operaciones Binarias SELECT PROJEC

AR - SELECT - Propiedades

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$
- La fracción de tuplas seleccionadas se denomina selectividad de la condición
- Conmutatividad. $\sigma_{c_1}(\sigma_{c_2}(R)) = \sigma_{c_2}(\sigma_{c_1}(R))$
- Cascada de SELECTs. $\sigma_{c_1}(\sigma_{c_2}(...\sigma_{c_n}(R))) = \sigma_{c_1 \text{ AND } c_2 \text{ AND } ... \text{ AND } c_n}(R)$
- SQL. Se especifica típicamente en la cláusula WHERE
- **Ejemplo.** $\sigma_{Sexo=F \text{ AND } Salario>\$15,000}(EMPLEADO)$ se puede corresponder con:

SELECT *

FROM EMPLEADO

WHERE Sexo=F AND Salario>\$15.000;

Operaciones |

AR - PROJECT

- Función. Selecciona un subconjunto de columnas de una relación
- Notación. $\pi_{< lista de atributos>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

π_{DNI}, Salario</sub> (EMPLEADO)

DNI	Salario
20222333	\$20.000,00
33456234	\$25.000,00
45432345	\$10.000,00

Genera una partición vertical de la relación

Álgebra Relacional

Introducción
Operaciones Unarias
Operaciones Binarias

SELECT PROJECT

AR - PROJECT - Propiedades (Cont.)

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre, Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

Sexo M F

- $\pi_{Nombre, Sexo}(\pi_{Sexo}(EMPLEADO))$ ¡NO ES POSIBLE!
- SQL. Se especifica típicamente en la cláusula SELECT DISTINCT
- **Ejemplo.** $\pi_{Sexo,Salario}(EMPLEADO)$ se puede corresponder con:

SELECT DISTINCT Sexo, Salario **FROM** EMPLEADO

Álgebra Relacional

Introducción
Operaciones Unarias
Operaciones Binarias

SELECT PROJECT RENAME

AR - PROJECT - Propiedades

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• π_{Sexo}(EMPLEADO)

Sexo
М
F

• Conservación # tuplas. En $\pi_{< lista\ de\ atributos>}(R)$, si $< lista\ de\ atributos>$ es súper clave de R entonces $|\pi_{< lista\ de\ atributos>}(R)|=|R|$

Álgebra Relacional

Introducción Operaciones Unarias Operaciones Binarias SELECT PROJECT RENAME

AR - RENAME

- Función. Asigna nombre a atributos / relación resultado
- Muy útil para asignar nombre a resultados intermedios
- Notación. $\rho_{S(B_1,B_2,...,B_n)}(R)$ ó $\rho_S(R)$ ó $\rho_{(B_1,B_2,...,B_n)}(R)$
- Ejemplo 1. Relaciones

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Nombre, Sexo}(\sigma_{Salario} > \$15.000(EMPLEADO))$

2 RESULT $\leftarrow \pi_{Nombre, Sexo}(SAL\overline{A}RIO_MAYOR)$

SALARIO_MAYOR

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00

RESULT

Nombre	Sexo
Diego	М
Laura	F

Operaciones Unarias Operaciones Binarias AR - Ejercicio 1

SELECT PROJECT RENAME

AR - RENAME (Cont.)

• Ejemplo 2. Atributos

EMPLEADO

2 2220			
DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $EMP(id, Ingreso) \leftarrow \pi_{DNI,Salario}(EMPLEADO)$

EMP

id	Ingreso
20222333	\$20.000,00
33456234	\$25.000,00
45432345	\$10.000,00

- SQL. Se especifica típicamente en la cláusula AS
- Ejemplo.

SELECT EMP.DNI AS id, EMP.Salario AS Ingreso FROM EMPLEADO AS EMP

Álgebra Relacional

Introducción Operaciones Unarias Operaciones Binarias UNION, INTERSECTION, MINUS CARTESIAN PRODUCT / JOIN DIVISION

AR - UNION, INTERSECTION, MINUS

- Función. Equivalente a operaciones matemáticas sobre conjuntos
- Notación, $R \cup S$, $R \cap S$, R S
- Duplicados. La relación resultante no contiene duplicados
- Unión Compatible. Se dice que dos relaciones $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$ son unión compatibles (o compatibles por tipos) si:
 - Ambas tienen grado n
 - $(\forall i, 1 \leq i \leq n) \operatorname{tipo}(A_i) = \operatorname{tipo}(B_i)$
- UNION. R ∪ S. Relación que incluye todas las tuplas que están en R, S o en ambas relaciones a la vez. Duplicados son eliminados
- INTERSECTION. $R \cap S$. Relación que incluye todas las tuplas que están a la vez en R y S
- SET DIFFERENCE (o MINUS). R-S. Relación que incluye todas las tuplas que están R, pero no incluye aquellas que aparecen en S
- Convención. Relación resultante conserva los nombres de atributo de la primer relación.

VUELO

AEROPUERTO

PASAJERO

RESERVA

Número	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

Código	Nombre	Ciudad
MAD	Barajas	Madrid
LGW	Gatwick	Londres
LHR	Heathrow	Londres
ORY	Orly	París
CDG	Charles de Gaulle	París

DNI	Nombre
123	María
456	Pedro
789	Isabel

Fecha	Precio
07-01-11	210
20-12-10	170
15-12-10	250
03-11-10	190
	07-01-11 20-12-10 15-12-10

- 1 Retornar Código y Nombre de Aeropuertos de Londres
- 2 ¿Qué retorna $Cities(City) \leftarrow \pi_{Ciudad}(\sigma_{C\'odigo} = ORY OR C\'odigo} = CDG(AEROPUERTO))$
- 3 Obtener vuelos que van desde CDG hacia LHR
- 4 Obtener vuelos que van desde CDG hacia LHR o viceversa
- 5 Devolver las fechas de las reservas cuyos Precios son mayores a 200

Álgebra Relacional

Introducción Operaciones Unarias Operaciones Binarias UNION, INTERSECTION, MINUS
CARTESIAN PRODUCT / JOIN

AR - UNION, INTERSECTION, MINUS (Cont.)

• Ejemplo 1. UNION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

$ALUMNOS_TLENG$

id	Nombre
2	Laura
4	Alejandro

RESULT_1 ← ALUMNOS_BD ∪ ALUMNOS_TLENG

RESULT_1

id	Nombre
1	Diego
2	Laura
3	Marina
4	Alejandro

Álgebra Relacional

AR - UNION, INTERSECTION, MINUS (Cont.)

• Ejemplo 2. INTERSECTION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

■ RESULT_2 ← ALUMNOS_BD ∩ ALUMNOS_TLENG

RESULT_2

id	Nombre
2	Laura

Álgebra Relacional

Operaciones Unarias Operaciones Binarias UNION, INTERSECTION, MINUS

AR - UNION, INTERSECTION, MINUS (Cont.)

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$
- Asociatividad.
 - $R \cup (S \cup T) = (R \cup S) \cup T$
 - $R \cap (S \cap T) = (R \cap S) \cap T$
- Equivalencia. $R \cap S = ((R \cup S) (R S)) (S R)$
- SQL 1. Operaciones en SQL UNION, INTERSECT, EXCEPT funcionan como en AR
- SQL 2. Operaciones en SQL UNION ALL, INTERSECT ALL, EXCEPT ALL no eliminan duplicados

AR - UNION, INTERSECTION, MINUS (Cont.)

Operaciones Unarias

• Ejemplo 3. SET DIFFERENCE

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

■ RESULT_3 ← ALUMNOS_BD – ALUMNOS_TLENG

RESULT_3

id	Nombre
1	Diego
3	Marina

Álgebra Relacional

Operaciones Unarias Operaciones Binarias UNION, INTERSECTION, MINUS

AR - Ejercicio 2

VUELO

Vúmero	Origen	Destino	Salida
145	MAD	CDG	12:30
21	MAD	ORY	19:05
.65	LHR	CDG	09:55
03	CDG	LHR	14:40
47	CDG	LHR	17:00

AEROPUERTO

Código	Nombre	Ciudad
MAD	Barajas	Madrid
LGW	Gatwick	Londre
LHR	Heathrow	Londre
ORY	Orly	París
CDG	Charles de Gaulle	París

PASAJERO

ĺ	DNI	Nombre	DNI	Nro_Vuelo	Fecha	Prec
Ì	123	María	789	165	07-01-11	210
ł	456	Pedro	123	345	20-12-10	170
ł			789	321	15-12-10	250
Į	789	Isabel	456	345	03-11-10	190

RESERVA

- Devolver los códigos de vuelo que tienen reservas generadas (utilizar ∩)
- 2 Devolver los códigos de vuelo que aún no tienen reservas
- 3 Retornar los códigos de aeropuerto de los que parten o arriban los vuelos

Álgebra Relacional

AR - CARTESIAN PRODUCT

- Función. Produce una nueva relación que combina cada tupla de una relación con cada una de las tuplas de la otra relación
- Notación. RXS
- Ejemplo. PERSONA

Nombre Nacionalidad		
Diego	AR	
Laura	BR	
Marina	AR	

NACIONALIDADES

TW TOTAL TELEVISION		
IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

RESULT ← PERSONA X NACIONALIDADES
 RESULT T

Nombre	Nacionalidad	IDN	Detalle
Diego	AR	AR	Argentina
Diego	AR	BR	Brasilera
Diego	AR	CH	Chilena
Laura	BR	AR	Argentina
Laura	BR	BR	Brasilera
Laura	BR	CH	Chilena
Marina	AR	AR	Argentina
Marina	AR	BR	Brasilera
Marina	AR	CH	Chilena

Álgebra Relacional

Introducción Operaciones Unarias Operaciones Binarias UNION, INTERSECTION, MINUS
CARTESIAN PRODUCT / JOIN
DIVISION

AR - JOIN

- Función. Permite combinar pares de tuplas relacionadas entre dos relaciones
- Notación. $R \bowtie_{< condición >} S$
- Ejemplo.

PERSONA

Nombre Nacionalidad			
Diego	AR		
Laura	BR		
Marina	AR		

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

• RESULT \leftarrow PERSONA $\bowtie_{Nacionalidad=IDN}$ NACIONALIDADES

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	AR	AR	Argentina
Laura	BR	BR	Brasilera
Marina	AR	AR	Argentina

AR - CARTESIAN PRODUCT (Cont.)

- Unión compatible. Las relaciones no tienen que ser unión compatibles
- Grado. Si T = R X S entonces grado(T) = grado(R) + grado(S)
- SQL. CROSS JOIN

Álgebra Relacional

Introducción Operaciones Unarias Operaciones Binarias UNION, INTERSECTION, MINUS CARTESIAN PRODUCT / JOIN

AR - JOIN (Cont.)

- CARTESIAN PRODUCT vs JOIN.
 - CARTESIAN PRODUCT aparecen todas las combinaciones de tuplas
 - JOIN aparecen sólo combinaciones de tuplas que satisfacen condición
- Condición 1. En general, formato de condición de JOIN entre R y S:
 condición > AND < condición > AND...AND < condición >
- Condición 2. Forma de < condición > es $A_i \theta B_j$, siendo A_i atributo de R y B_j atributo de S
- Condición 3. $dom(A_i) = dom(B_i)$
- Condición 4. $\theta \in \{=, <, \le, >, \ge, \ne\}$
- NULL. Tuplas cuyos atributos de JOIN son NULL o cuya condición es falsa no aparecen en el resultado

Álgebra Relacional

Operaciones Binarias

AR - JOIN (Cont.)

- EQUIJOIN. JOIN donde sólo se utiliza la operación = en la < condición >.
- Duplicación de campos. Al utililzar la igualdad, se generan campos duplicados.
- Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

• RESULT \leftarrow PERSONA $\bowtie_{Nacionalidad=IDN}$ NACIONALIDADES

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	AR	AR	Argentina
Laura	BR	BR	Brasilera
Marina	AR	AR	Argentina

- NATURAL JOIN. Realiza el JOIN entre campos de mismo nombre y deja sólo uno de los campos duplicados
- Notación. $R \bowtie S$ (también en la bibliografía R * S)
- Requerimiento. Requiere que atributos de JOIN tengan el mismo nombre. De no ser el caso, se debe hacer un RENAME previo

Álgebra Relacional

Introducción **Operaciones Unarias** Operaciones Binarias CARTESIAN PRODUCT / JOIN

AR - JOIN (Cont.)

- SQL. Se Puede realizar de múltiples maneras.

 $NACIONALIDADES_TEMP(Nacionalidad, Detalle) \leftarrow \pi_{IDN, Detalle}(NACIONALIDADES)$ RESULT ← PERSONA ⋈ NACIONALIDADES_TEMP se puede corresponder con:

SELECT Persona. Nombre, Persona. Nacionalidad, NACIONALIDADES. Detalle FROM PERSONA. NACIONALIDADES WHERE PERSONA.Nacionalidad=NACIONALIDADES.IDN;

Operaciones Unarias Operaciones Binarias

UNION, INTERSECTION, MINUS CARTESIAN PRODUCT / JOIN

AR - JOIN (Cont.)

Ejemplo NATURAL JOIN.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

	_
IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

- $\bullet \quad \textit{NACIONALIDADES_TEMP}(\textit{Nacionalidad}, \textit{Detalle}) \leftarrow \pi_{\textit{IDN}, \textit{Detalle}}(\textit{NACIONALIDADES})$
- RESULT ← PERSONA ⋈ NACIONALIDADES_TEMP

RESULT

Nombre	Nacionalidad	Detalle
Diego	AR	Argentina
Laura	BR	Brasilera
Marina	AR	Argentina

- Tamaño resultado JOIN(S,R). Puede ir de 0 a S*R registros
- Selectividad de JOIN. Es una tasa y corresponde a: $\frac{|resultado\ JOIN(S,R)|}{|SUIDE}$

Álgebra Relacional

Operaciones Unarias Operaciones Binarias CARTESIAN PRODUCT / JOIN

AR - OUTER JOIN

- INNER JOIN. JOIN donde tuplas que no cumplen condición de JOIN son eliminadas del resultado (Ej. NULL en atributo de JOIN)
- OUTER JOIN. JOIN en el cual se incorpora adicionalmente al resultado las tuplas de R, S, o ambas relaciones, que no cumplen la condición de JOIN
- LEFT OUTER JOIN. $R \bowtie S$. Conserva todas las tuplas de R. Si no se encuentra ninguna tupla de S que cumpla con condición de JOIN, entonces los atributos de S en el resultado se completan en NULL

Álgebra Relacional

Operaciones Unarias Operaciones Binarias

UNION, INTERSECTION, MINUS CARTESIAN PRODUCT / JOIN

AR - OUTER JOIN

Ejemplo.

PERSONA

I LINSON/		
Nombre	Nacionalidad	
Diego	BR	
Laura	NULL	
Marina	AR	
Santiago	UY	

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

■ RESULT ← PERSONA ⋈ Nacionalidad = IDN NACIONALIDADES

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Marina	AR	AR	Argentina

 $\bullet \quad \textit{RESULT} \leftarrow \textit{PERSONA} \quad \boxtimes \quad \textit{Nacionalidad} = \textit{IDN} \quad \textit{NACIONALIDADES}$

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Laura	NULL	NULL	NULL
Marina	AR	AR	Argentina
Santiago	UY	NULL	NULL

Álgebra Relacional

Introducción **Operaciones Unarias** Operaciones Binarias CARTESIAN PRODUCT / JOIN

AR - Ejercicio 3

VUELO

Número	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Ciudad Código Nombre MAD Barajas Madrid LGW Gatwick Londres LHR Heathrow Londres Orly París Charles de Gaulle París

PASAJERO

DNI	Nombre
123	María
456	Pedro
789	Isabel

DNI Nro_Vuelo Fecha Precio 123 345 789 321 456 345

RESERVA

07-01-11 210

20-12-10 170

15-12-10 250

03-11-10 190

1	Devolver	Ciudad	de	Partida	de	vuelo	número	165
•	Devolvei	Ciuuuu	ac	. u. c.uu	uc	vacio	mannero	100

- 2 Retornar Nombre de las personas que realizaron reservas a un valor menor a 200
- 3 Obtener Nombre, Fecha y Destino de viaje de todos los pasajeros que vuelan desde Madrid

AR - OUTER JOIN (Cont.)

- RIGHT OUTER JOIN. $R \bowtie S$. Conserva todas las tuplas de S. Si no se encuentra ninguna tupla de R que cumpla con condición de JOIN, entonces los atributos de R en el resultado se completan en NULL
- FULL OUTER JOIN. R > S. Conserva todas las tuplas de R y S. Si no se encuentra ninguna tupla de R o S que cumpla con condición de JOIN, entonces sus atributos en el resultado se completan en NULL
- SQL. Las tres operaciones de OUTER JOIN son parte del estándar SQL2

Álgebra Relacional

Introducción **Operaciones Unarias** Operaciones Binarias UNION, INTERSECTION, MINUS DIVISION

AR - DIVISION

- Función. Retorna los valores de R que se encuentran emparejados con TODOS los valores de S
- Notación. $R \div S$. Requiere que atributos de $S \subset$ atributos de R. Resultado contiene atributos de R menos atributos de S

Álgebra Relacional

Operaciones Unarias Operaciones Binarias DIVISION

AR - DIVISION (Cont.)

• Ejemplo. ALUMNOS

ALUMINOS		
Nombre	Materia	
Diego	BD	
Diego	PLP	
Laura	BD	
Laura	PLP	
Laura	TLENG	
Marina	BD	
Marina	TLENG	
Santiago	BD	
Santiago	PLP	
Santiago	TLENG	

ATERIAS_	1
Materia	
BD	

MATERIAS_2

Mat	eri	ia
BD		
TLE	N	G

MATERIAS_3

Materia
BD
PLP
TLENG

ALUMNOS÷MATERIAS_1 ALUMNOS÷MATERIAS_2 ALUMNOS÷MATERIAS_3

Nombre
Laura
Marina
Santiago

Nombre
Laura
Santiago

Álgebra Relacional

Introducción Operaciones Unarias Operaciones Binarias DIVISION

AR - Bibliografía

• Capítulo 6 (hasta 6.5 inclusive) Elmasri/Navathe - Fundamentals of Database Systems, 6th Ed., Pearson, 2011.

Álgebra Relacional

Operaciones Unarias Operaciones Binarias

UNION, INTERSECTION, MINUS DIVISION

AR - DIVISION

• Operación compuesta. Se puede expresar como secuencia de otras operaciones

En ejemplo anterior (ALUMNOS÷MATERIAS_3):

- $TEMP_1 \leftarrow \pi_{Nombre}(ALUMNOS)$
- $TEMP_2 \leftarrow \pi_{Nombre}((TEMP_1 X MATERIAS_3) ALUMNOS)$
- $RESULT \leftarrow TEMP_1 TEMP_2$

 $TEMP_{-1}$

Nombre Diego Laura Marina Santiago TEMP_2

Nombre Diego Marina

RESULT

Nombre Laura Santiago

• SQL. No suele implementar DIVISION

