МС-17: Аудиторное задание

Метод моментов получения оценок

1. В таблице представлены данные по числу сделок на фондовой бирже за квартал для 400 инвесторов:

Ī	x_i	0	1	2	3	4	5	6	7	8	9	10
	n_i	146	97	73	34	23	10	6	3	4	2	2

В предположении, что случайное число сделок описывается распределением **Пуассона**, оценить параметр λ методов моментов. Определить вероятность того, что число сделок за квартал будет не менее двух, применяя, метод моментов, и непосредственно по таблице.

Ответ: $\hat{\lambda} = 1,535$. На основе метода моментов – 46%, по таблице – 39%.

- 2. Пусть случайная величина X равномерно распределена на [a;b]. Найдите методом моментов оценки для параметров a и b.
- 3. Случайная величина X (срок службы изделия) имеет **показательное** распределение $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$. В таблице приведены сгруппированные данные по срокам службы (в часах) для n = 200 изделий:

x_i	2,5	7,5	12,5	17,5	22,5	27,5
n_i	133	45	15	4	2	1

Найти методом моментов точечную оценку неизвестного параметра λ показательного распределения. Исследовать полученную оценку на несмещённость и при необходимости подправить. Используя полученную несмещённую оценку, оцените время, которое изделие прослужит с вероятностью 90%.

- 4. Известно, что доля возврата по кредитам в банке имеет **распределение** $F(x) = x^{\beta}$, $0 \le x \le 1$. Наблюдения показали, что в среднем она составляет 90%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 75%. Ответ: $\hat{\beta} = 9$; 0,0751.
- 5. Случайная величина X (отклонение размера изделия от номинала) подчинена **нормальному закону распределения** с неизвестными параметрами a и σ . Ниже приведена таблица наблюдаемых отклонений от номинала, подвергнутых группировке, для n=200 изделий. В первой строке указаны середины интервалов отклонений x_i (мм); во второй строке приведена частота n_i число наблюдений, попадающих в данный интервал:

x_i	0,3	0,5	0,7	0,9	1,1	1,3	1,5	1,7	1,9	2,2	2,3
n_i	6	9	26	25	30	26	21	24	20	8	5

Найти методом моментов оценки неизвестных параметров a и σ нормального распределения. Оценить долю изделий с отклонением менее 1,5 мм в генеральной совокупности, используя нормальное приближение, и непосредственно по таблице.

6. Выполнение некоторой работы занимает случайное время с распределением Симпсона на отрезке [a;b]. Хронометраж 20 испытаний дал среднее время работы 30 мин и исправленную выборочную дисперсию 24 мин². Определить параметры a и b методом моментов. Оценить, за какое время работа будет выполняться с вероятностью 98%.

Определение. Случайная величина имеет треугольное распределение (распределение Симпсона) на отрезке [a;b] (a < b), если

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{2(x-a)^2}{(b-a)^2}, & a \le x < \frac{a+b}{2}; \\ 1 - \frac{2(b-x)^2}{(b-a)^2}, & \frac{a+b}{2} \le x \le b; \\ 1, & x > b. \end{cases}$$

$$E(X) = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{24}.$$

7. Устройство состоит из элементов, время безотказной работы которых подчинено **гамма-распределению**. Испытания пяти элементов дали следующие наработки (время работы элемента в часах до отказа): 50, 75, 125, 250, 300. Найти методом моментов точечные оценки неизвестных параметров α и β , которыми определяется гамма-распределение.

Определение. Случайная величина имеет гамма-распределение, если

$$f(x) = \frac{1}{\beta^{\alpha+1}\Gamma(\alpha+1)} x^{\alpha} e^{-\frac{x}{\beta}} (\alpha > -1, \beta > 0, x \ge 0);$$

$$E(X) = (\alpha+1)\beta, \quad Var(X) = (\alpha+1)\beta^{2}.$$

8. «Насяльника» отправил Равшана и Джамшуда измерить ширину и длину земельного участка. Равшан и Джамшуд для надежности измеряют длину и ширину 100 раз. Равшан меряет длину, результат каждого измерения — случайная величина $X_i = a + e_i$, где a — истинная длина участка, а $e_i \sim N$ (0, 1) — ошибка измерения. Джамшуд меряет ширину, результат каждого измерения — случайная величина $Y_i = b + u_i$, где b — истинная ширина участка, а $u_i \sim N$ (0, 1) — ошибка измерения. Все ошибки независимы. Думая, что «насяльника» хочет измерить площадь участка, Равшан и Джамшуд каждый раз сообщают «насяльнику» только величину $S_i = X_i Y_i$. Помогите «насяльнику» оценить параметры a и b по отдельности методом моментов. По выборке оказалось, что $\sum s_i = 3600$ сотен метров, $\sum s_i^2 = 162500$ квадратных сотен метров.

Домашнее задание

1. Ежедневный спрос на некоторый товар имеет **распределение Симпсона** на отрезке [a;b]. За 25 рабочих дней спрос составлял в среднем 100 кг с исправленной выборочной дисперсией 54 кг². Определить параметры и методом моментов Оценить, сколько нужно товара, чтобы удовлетворить ежедневный спрос с вероятностью 92%.

Определение. Случайная величина имеет треугольное распределение (распределение Симпсона) на отрезке [a;b] (a < b), если

$$f(x) = \begin{cases} \frac{2}{b-a} - \frac{2}{(b-a)^2} |a+b-2x|, & x \in [a;b] \\ 0, & x \notin [a;b]. \end{cases}$$
$$E(X) = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{24}.$$

Вычислить для этого распределения его функцию распределения.

2. Случайная величина X – ошибка измерения дальности радиодальномером – имеет **равномерное распределение** на [a;b], где a,b – неизвестные параметры. Эмпирическое распределение ошибки n=200 независимых измерений имеет вид:

x_i	3	5	7	9	11	13	15	17	19	21
n_i	21	16	15	26	22	24	21	22	18	25

Найти методом моментов значения точечных оценок неизвестных параметров a, b.

Otbet: $\hat{a} = 2.242641855978304$; $\hat{b} = 22.3773581440217$