

Stellaris® RNA FISH Alternative Protocol for Adherent Cells

LGC Biosearch Technologies

Abstract

This alternative adherent cell protocol utilizes a methanol based fixation which can be effective at reducing background fluorescence

under certain circumstances.

Citation: LGC Biosearch Technologies Stellaris® RNA FISH Alternative Protocol for Adherent Cells. protocols.io

dx.doi.org/10.17504/protocols.io.eksbcwe

Published: 23 Feb 2016

Guidelines

Preparation of Reagents

NOTE: When performing Stellaris RNA FISH, it is imperative to limit RNA degradation. Please ensure that all consumables and

reagents are RNase-free. Recipes below are for set volumes. Please adjust accordingly.

Reconstituting the dried probe stock:

ShipReady Probe Set (1 nmol): A ShipReady probe set can provide up to 80 hybridizations. Re-dissolve the dried oligonucleotide

probe blend in 80 µL of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to create a probe stock of 12.5 µM. Mix well by pipetting

up and down, and then vortex and centrifuge briefly.

DesignReady or Custom Probe Set (5 nmol): A DesignReady or custom probe set can provide up to 400 hybridizations.

Re-dissolve the dried oligonucleotide probe blend in 400 μL of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to create a probe

stock of 12.5 µM. Mix well by pipetting up and down, and then vortex and centrifuge briefly.

Fixation Solution:

Final composition is 3:1 Methanol-Glacial Acetic Acid

Make fresh for each experiment.

For a final volume of 10 mL, mix:

7.5 mL Methanol

2.5 mL Glacial Acetic Acid

Hybridization Buffer:

Final composition is 10% (vol./vol.) formamide in Hybridization Buffer

Hybridization Buffer should be mixed fresh for each experiment:

Due to viscosity of the solution, we recommend accounting for a 10% final volume excess in order to have enough Hybridization

Buffer for all of your samples.

For a final volume of 1 mL, mix:

900 µL Stellaris RNA FISH Hybridization Buffer (Biosearch Technologies Cat# SMF-HB1-10)

100 µL Deionized Formamide

NOTE: Do not freeze Hybridization Buffer.

WARNING! Formamide is a teratogen that is easily absorbed through the skin and should be used in a chemical fume hood.

WARNING! Be sure to let the formamide warm to room temperature before opening the bottle.

Wash Buffer A (10 mL):

Final composition is 10% (vol./vol.) formamide in 1X Wash Buffer A

Mix and dilute Wash Buffer A fresh for each experiment:

For a final volume of 10 mL, mix:

2 mL Stellaris RNA FISH Wash Buffer A (Biosearch Technologies Cat# SMF-WA1-60)

Add 7 mL Nuclease-free water

Add 1 mL Deionized Formamide

Mix well by vortexing gently.

Wash Buffer B:

Add Nuclease-free water to Wash Buffer B bottle upon first use.

Add 88 mL of Nuclease-free water to bottle (Biosearch Technologies Cat# SMF-WB1-20) before use. Mix thoroughly.

Nuclear Stain for use after hybridization:

4',6-diamidino-2-phenylindole (DAPI) prepared in Wash Buffer A (see above) at 5 ng/mL. This solution is to be used in Step J

below.

Mounting media:

Vectashield Mounting Medium from Vector Laboratories (#H-1000).

NOTE: For best results, samples mounted with Vectashield Mounting Medium should be imaged the same day.

Before start

Storage Guidelines

Stellaris RNA FISH Probes

Stellaris RNA FISH Probes are shipped dry and can be stored at +2 to +8 °C in this state. Dissolved probe mix should be subjected

to a minimum number of freeze-thaw cycles. For daily and short-term use of dissolved probe mix, storage at +2 to +8 °C in the

dark for up to a month is recommended. For storage lasting longer than a month, we recommend aliquoting and freezing probes

in the dark at -15 to -30 °C.

Stellaris RNA FISH Hybridization Buffer

Stellaris RNA FISH Hybridization Buffer should be stored at +2 to +8 °C for short-term and long-term use.

Stellaris RNA FISH Wash Buffer A and Wash Buffer B

Stellaris RNA FISH Wash Buffers A and B should be stored at room temperature for short-term and long-term use.

Reagents and Equipment

Reagents and Consumables:

- a) TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)
- b) Methanol
- c) Glacial Acetic Acid
- d) 10X Phosphate Buffered Saline (PBS), RNase-free
- e) Nuclease-free water
- f) Deionized Formamide
- g) Stellaris RNA FISH Hybridization Buffer (Biosearch Technologies Cat# SMF-HB1-10)
- h) Stellaris RNA FISH Wash Buffer A (Biosearch Technologies Cat# SMF-WA1-60)

- i) Stellaris RNA FISH Wash Buffer B (Biosearch Technologies Cat# SMF-WB1-20)
- j) 4',6-diamidino-2-phenylindole (DAPI)
- k) Vectashield® Mounting Medium (Vector Laboratories Cat #H-1000)
- I) 18 mm round #1 coverglass
- m) 12-well culture plates
- n) RNase free consumables such as pipette tips
- o) Humidified chamber (or equivalent): 150 mm tissue culture plate; bottom lined evenly with a flat water-saturated paper towel

and a single layer of Parafilm® placed on top of the paper towel

- p) Superfrost™ Plus Microscope slides
- q) 37 °C laboratory oven

Microscope:

- a) Wide-field fluorescence microscope (e.g., Nikon Eclipse Ti or equivalent). We provide limited support for confocal applications.
- b) A high numerical aperture (>1.3) and 60-100x oil-immersion objective.
- c) Strong light source, such as a mercury or metal-halide lamp (newer LED-based light sources may also be sufficient).
- d) Filter sets appropriate for the fluorophores.
- e) Standard cooled CCD camera, ideally optimized for low-light level imaging rather than speed (13 μ m pixel size or less is ideal).

Preparation of Reagents

NOTE: When performing Stellaris RNA FISH, it is imperative to limit RNA degradation. Please ensure that all consumables and

reagents are RNase-free. Recipes below are for set volumes. Please adjust accordingly.

Reconstituting the dried probe stock:

ShipReady Probe Set (1 nmol): A ShipReady probe set can provide up to 80 hybridizations. Re-dissolve the dried oligonucleotide

probe blend in 80 μ L of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to create a probe stock of 12.5 μ M. Mix well by pipetting

up and down, and then vortex and centrifuge briefly.

DesignReady or Custom Probe Set (5 nmol): A DesignReady or custom probe set can provide up to 400 hybridizations.

Re-dissolve the dried oligonucleotide probe blend in 400 μ L of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to create a probe

Materials

- Stellaris® RNA FISH Wash Buffer A SMF-WA1-60 by Biosearch Technologies
- Stellaris® RNA FISH Wash Buffer B <u>SMF-WB1-20</u> by <u>Biosearch Technologies</u> VECTASHIELD Mounting Medium H-1000 by Vector Laboratories
- Stellaris(R) RNA FISH Hybridization Buffer SMF-HB1-10 by Biosearch Technologies

Protocol

Alternative Fixation of Adherent Cell Lines

Step 1.

Grow cells on 18 mm round #1 coverglass in a 12-well cell culture plate.

Alternative Fixation of Adherent Cell Lines

Step 2.

Aspirate growth medium, and wash with 1 mL of 1X PBS.

■ AMOUNT

1 ml Additional info:

Alternative Fixation of Adherent Cell Lines

Step 3.

To fix and permeabilize cells, add 1 mL of methanol-acetic acid (MeOH-AcOH) fixation solution.

■ AMOUNT

1 ml Additional info:

Alternative Fixation of Adherent Cell Lines

Step 4.

Incubate at room temperature for 10 minutes.

© DURATION

00:10:00

Alternative Fixation of Adherent Cell Lines

Step 5.

Cells can be stored at +2 to +8 °C in MeOH-AcOH up to 48 hours before hybridization. Do not use a coverglass containing adherent cells if the MeOH-AcOH has completely evaporated.

Hybridization in Adherent Cells

Step 6.

If frozen before using, warm the reconstituted probe solution to room temperature. Mix well by vortexing, then centrifuge briefly.

Hybridization in Adherent Cells

Step 7.

To prepare the Hybridization Buffer containing probe, add 1 μ L of probe stock solution to 100 μ L of Hybridization Buffer, and then vortex and centrifuge (enough for one coverglass). This creates a working probe solution of 125 nM. This solution will be used on steps d and e.

Hybridization in Adherent Cells

Step 8.

Aspirate the MeOH-AcOH off the coverglass containing adherent cells within the 12-well plate.

Hybridization in Adherent Cells

Step 9.

Add 1 mL of Wash Buffer A (see recipe above), and incubate at room temperature for 2-5 minutes.

AMOUNT

1 ml Additional info:

Stellaris® RNA FISH Wash Buffer A <u>SMF-WA1-60</u> by <u>Biosearch Technologies</u>

O DURATION

00:05:00

Hybridization in Adherent Cells

Step 10.

Assemble humidified chamber: 150 mm tissue culture plate; bottom lined evenly with a flat water-saturated paper towel and a single layer of Parafilm placed on top of the paper towel. This chamber will help prevent evaporation of the probe solution from under the coverglass.

Hybridization in Adherent Cells

Step 11.

Within the humidified chamber, dispense 100 μL of the Hybridization Buffer containing probe onto the Parafilm.

AMOUNT

100 μl Additional info:

Stellaris(R) RNA FISH Hybridization Buffer SMF-HB1-10 by Biosearch Technologies

Hybridization in Adherent Cells

Step 12.

Gently transfer the coverglass, cells side down, onto the 100 μL drop of Hybridization Buffer containing probe.

Hybridization in Adherent Cells

Step 13.

Cover the humidified chamber with the tissue culture lid, and seal with Parafilm.

Hybridization in Adherent Cells

Step 14.

Incubate in the dark at 37 °C for 2 hours. (Incubation can be continued up to 16 hours).

O DURATION

02:00:00

Hybridization in Adherent Cells

Step 15.

Gently transfer the coverglass, cells side up, to a fresh 12-well plate containing 1 mL of Wash Buffer Δ

■ AMOUNT

1 ml Additional info:

Stellaris® RNA FISH Wash Buffer A SMF-WA1-60 by Biosearch Technologies

Hybridization in Adherent Cells

Step 16.

Incubate in the dark at 37 °C for 30 minutes.

© DURATION

00:30:00

Hybridization in Adherent Cells

Step 17.

Aspirate Wash Buffer A, and then add 1 mL of DAPI nuclear stain (Wash Buffer A consisting of 5 ng/mL DAPI) to counterstain the nuclei.

■ AMOUNT

1 ml Additional info:

Stellaris® RNA FISH Wash Buffer A SMF-WA1-60 by Biosearch Technologies

Hybridization in Adherent Cells

Step 18.

Incubate in the dark at 37 °C for 30 minutes.

O DURATION

00:30:00

Hybridization in Adherent Cells

Step 19.

Aspirate the DAPI staining buffer, and then add 1 mL of Wash Buffer B. Incubate at room temperature for 2-5 minutes.

AMOUNT

1 ml Additional info:

REAGENTS

Stellaris® RNA FISH Wash Buffer B <u>SMF-WB1-20</u> by <u>Biosearch Technologies</u>

O DURATION

00:05:00

Hybridization in Adherent Cells

Step 20.

Add a small drop (approximately 15 µL) of Vectashield Mounting Medium onto a microscope slide, and mount coverglass onto the slide, cells side down.

■ AMOUNT

15 μl Additional info:

REAGENTS

VECTASHIELD Mounting Medium <u>H-1000</u> by <u>Vector Laboratories</u>

Hybridization in Adherent Cells

Step 21.

Gently wick away excess anti-fade from the perimeter of the coverglass.

Hybridization in Adherent Cells

Step 22.

Seal the coverglass perimeter with clear nail polish, and allow to dry.

Hybridization in Adherent Cells

Step 23.

If necessary, gently wipe away any dried salt off the coverglass using water.

Hybridization in Adherent Cells

Step 24.

Proceed to Imaging

Warnings

WARNING! Formamide is a teratogen that is easily absorbed through the skin and should be used in a chemical fume hood.

WARNING! Be sure to let the formamide warm to room temperature before opening the bottle.