

Donservative Q-Learning for Offline Reinforcement Learning

Hiroki Furuta

書誌情報

- タイトル: Conservative Q-Learning for Offline Reinforcement Learning
- 著者: Aviral Kumar¹, Aurick Zhou¹, George Tucker², Sergey Levine¹²
- 所属: ¹CC Berkeley, ²Google Research, Brain Team
- URL: https://arxiv.org/abs/2006.04779
- 概要: オフライン強化学習で、データセットと学習方策のdistributional shift によって起こる価値の過大評価を解決するConservative Q-Learning (CQL) を提案した

研究背景

- 最近Offline RL(Batch RL, Fully Off-Policy RL)が流行っている
 - ▶ ある挙動方策(複数の場合もある)によって集められたデータセットのみから学習方策を最適化、環境との相互作用はなし、実応用向き
 - BCQ[Fujimoto+ 2018], BEAR[@mar+ 2019], BRAC[Wu+ 2019], AWR[Pleng+ 2019], ABM[@legel+ 2020], QR-DQN[Dlabney+ 2018], REM[Algarwal+ 2020], MOPO[Yu+ 2020], BREMEN[Matsushima+ 2020]
- Offline RLではデータセットと学習方策のdistributional shiftが大きな問題となる
 - ➤ 通常のOff-Policyの手法ではデータが増えて緩和される
- 既存手法は学習方策が推定した挙動方策(データセットを集めた方策)から大きく離れないような制約をかけるが、不十分である

準備:問題設定

- 通常のMDP: (S, A, T, r, γ)
- データセットDを集めた挙動方策: $\pi_{\beta}(\mathbf{a}|\mathbf{s})$
- 挙動方策の元でのdiscounted state-marginal distribution: $d^{\pi_{\beta}}(\mathbf{s})$
- Q-Learningはベルマン最適作用素を繰り返し適用することでQ関数を学習する手法(actionが高次元の場合はCEMなどでmaxを計算) $\mathcal{B}^*Q(\mathbf{s},\mathbf{a}) = r(\mathbf{s},\mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}'\sim P(\mathbf{s}'|\mathbf{s},\mathbf{a})}[\max_{\mathbf{a}'} Q(\mathbf{s}',\mathbf{a}')]$

• Actor-Criticでは、
$$\mathcal{B}^{\pi}Q = r + \gamma P^{\pi}Q$$

$$P^{\pi}Q(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\mathbf{s}' \sim T(\mathbf{s}'|\mathbf{s}, \mathbf{a}), \mathbf{a}' \sim \pi(\mathbf{a}'|\mathbf{s}')} [Q(\mathbf{s}', \mathbf{a}')]$$

Distributional Shift

・ 挙動方策の下で集めたデータセットでQ関数と方策を交互に最適化

$$\hat{Q}^{k+1} \leftarrow \arg\min_{Q} \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}} \left[\left((r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{a}' \sim \hat{\pi}^{k}(\mathbf{a}' | \mathbf{s}')} [\hat{Q}^{k}(\mathbf{s}', \mathbf{a}')] \right) - Q(\mathbf{s}, \mathbf{a}) \right)^{2} \right]$$
(policy evaluation)
$$\hat{\pi}^{k+1} \leftarrow \arg\min_{\pi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \pi^{k}(\mathbf{a} | \mathbf{s})} \left[\hat{Q}^{k+1}(\mathbf{s}, \mathbf{a}) \right]$$
(policy improvement)

- Policy evaluationにおいて、学習方策に関する期待値をとってTarget Value の値を計算
- 学習方策からはデータセットの分布外(OOD)のactionがサンプルされる可能性があり、OODのactionの価値が過大評価されるDistributional Shiftの問題に繋がりうる

Conservative Off-Policy Evaluation

・ 特定の方策μに関するQ-valueの期待値を最小化する項を追加

$$\hat{Q}^{k+1} \leftarrow \arg\min_{Q} \left[\alpha \, \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] + \frac{1}{2} \, \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \hat{\mathcal{B}}^{\pi} \hat{Q}^{k}(\mathbf{s}, \mathbf{a}) \right)^{2} \right]$$

Policy evaluation

- $\hat{Q}^{\pi}(\mathbf{s}, \mathbf{a}) \leq Q^{\pi}(\mathbf{s}, \mathbf{a}) \quad \alpha > \frac{C_{r,T}R_{\max}}{1-\gamma} \cdot \max_{\mathbf{s}, \mathbf{a} \in \mathcal{D}} \frac{\hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})}{\mu(\mathbf{a}|\mathbf{s})}$ 十分大きなαの下で、
- データセットの方策に関するQ-valueの期待値を最大化する項を追加

$$\hat{Q}^{k+1} \leftarrow \arg\min_{Q} \ \alpha \cdot \left(\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] - \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right)$$

Q-valueの期待値について よりtightなバウンドとなる

$$+ \frac{1}{2} \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \hat{\mathcal{B}}^{\pi} \hat{Q}^{k}(\mathbf{s}, \mathbf{a}) \right)^{2} \right]$$

ト 十分大きな
$$\alpha$$
の下で、 $\hat{V}^{\pi}(\mathbf{s}) \leq V^{\pi}(\mathbf{s})$ $\alpha > \frac{C_{r,T}R_{\max}}{1-\gamma} \cdot \max_{\mathbf{s} \in \mathcal{D}} \left[\sum_{\mathbf{a}} \pi(\mathbf{a}|\mathbf{s}) (\frac{\pi(\mathbf{a}|\mathbf{s})}{\hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} - 1) \right]^{-1}$ $\hat{V}^{\pi}(\mathbf{s}) = \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [\hat{Q}^{\pi}(\mathbf{s}, \mathbf{a})]$

$$\alpha > \frac{C_{r,T}R_{\max}}{1-\gamma} \cdot \max_{\mathbf{s} \in \mathcal{D}} \left[\sum_{\mathbf{a}} \pi(\mathbf{a}|\mathbf{s})(\frac{\pi(\mathbf{a}|\mathbf{s})}{\hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s}))} - 1) \right]^{-1}$$
 Policy evaluation

Conservative Q-Learning for Offline RL

• 価値関数に関する最適化問題に加えて、方策に関する最適化も考慮

$$\begin{split} \min_{Q} \max_{\boldsymbol{\mu}} \ \alpha \left(\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \boldsymbol{\mu}(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] - \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right) \\ + \frac{1}{2} \ \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \hat{\mathcal{B}}^{\pi_{k}} \hat{Q}^{k}(\mathbf{s}, \mathbf{a}) \right)^{2} \right] + \mathcal{R}(\boldsymbol{\mu}) \quad (\text{CQL}(\mathcal{R})) \end{split}$$

- 上式によるQ-Learning (or Actor-Critic)をCQL(欠)と呼ぶ
 - $\triangleright \mathcal{R}$ は方策に関する正則化項で、事前分布 ρ とのKLやエントロピー \mathcal{H} を用いる

Variants of CQL

• $CQL(\mathcal{H})$ の目的関数: 方策 μ に関して、

$$\max_{\mu} \ \mathbb{E}_{\mathbf{x} \sim \mu(\mathbf{x})}[f(\mathbf{x})] + \mathcal{H}(\mu) \ \text{s.t.} \ \sum_{\mathbf{x}} \mu(\mathbf{x}) = 1, \ \mu(\mathbf{x}) \geq 0 \ \forall \mathbf{x},$$
$$\mu^*(\mathbf{x}) = \frac{1}{Z} \exp(f(\mathbf{x}))$$

• f = Qとして前項の期待値の計算に代入すると $CQL(\mathcal{H})$ の目的関数が得られる

$$\min_{Q} \alpha \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[\log \sum_{\mathbf{a}} \exp(Q(\mathbf{s}, \mathbf{a})) - \mathbb{E}_{\mathbf{a} \sim \hat{\pi}_{\beta}(\mathbf{a} | \mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right] + \frac{1}{2} \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}} \left[\left(Q - \hat{\mathcal{B}}^{\pi_k} \hat{Q}^k \right)^2 \right]$$

Gap Expanding

十分に大きいαの下で、

$$\mathbb{E}_{\pi_{\beta}(\mathbf{a}|\mathbf{s})}[\hat{Q}^k(\mathbf{s},\mathbf{a})] - \mathbb{E}_{\mu_k(\mathbf{a}|\mathbf{s})}[\hat{Q}^k(\mathbf{s},\mathbf{a})] > \mathbb{E}_{\pi_{\beta}(\mathbf{a}|\mathbf{s})}[Q^k(\mathbf{s},\mathbf{a})] - \mathbb{E}_{\mu_k(\mathbf{a}|\mathbf{s})}[Q^k(\mathbf{s},\mathbf{a})]$$

- CQLではデータセットの分布内の方策によるQ-valueの期待値と分布外の方策によるQ-valueの期待値の差が、真の価値関数による値の差よりも大きくなる
- 分布外のQ-valueが低めに評価されるので、相対的に正確な分布内のQ-valueに基づいて方策を学習できる

CQL vs BEAR(既存手法)

• OODのQ関数の値とデータセット内のQ関数の値の差

分布外の方策によるQ-valueの期待値が分布内の方策によるQ-valueの期待値より小さくなっている

アルゴリズム

 SACなど既存のQ-LearningやActor-Criticのコードに20行弱加えるだけの 簡潔な修正で実現できる

Algorithm 1 Conservative Q-Learning (both variants)

- 1: Initialize Q-function, Q_{θ} , and optionally a policy, π_{ϕ} .
- 2: **for** step t in $\{1, ..., N\}$ **do**
- 3: Train the Q-function using G_Q gradient steps on objective from Equation $\boxed{4}$

$$\theta_t := \theta_{t-1} - \eta_Q \nabla_{\theta} \text{CQL}(\mathcal{R})(\theta)$$

(Use \mathcal{B}^* for Q-learning, $\mathcal{B}^{\pi_{\phi_t}}$ for actor-critic)

4: (only with actor-critic) Improve policy π_{ϕ} via G_{π} gradient steps on ϕ with SAC-style entropy regularization:

$$\phi_t := \phi_{t-1} + \eta_{\pi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \pi_{\phi}(\cdot|\mathbf{s})} [Q_{\theta}(\mathbf{s}, \mathbf{a}) - \log \pi_{\phi}(\mathbf{a}|\mathbf{s})]$$

5: end for

評価実験: 環境など

- D4RL[Fu+ 2020] のベンチマーク環境で評価
 - > MuJoCo Gym: HalfCheetah, Hopper, Walker2d
 - ➤ AntMaze: MuJoCoのAntで迷路を解くタスク
 - ➤ Adoit: 24-DoFのハンドを制御、ペン回し、釘打ち、ドア開け、ボールのpick & place
 - ➤ Kitchen: 9-DoFのマニピュレーターで複数物体のマニピュレーション

結果: MuJoCo Gym

- Expertのパフォーマンスを100に正規化したスコア
- 様々なデータセットで既存手法を上回る成績

Task Name	SAC	BC	BEAR	BRAC-p	BRAC-v	$CQL(\mathcal{H})$
halfcheetah-random	2.1	30.5	25.5	23.5	28.1	35.4
hopper-random	9.8	11.3	9.5	11.1	12.0	10.8
walker2d-random	1.6	4.1	6.7	0.8	0.5	7.0
halfcheetah-medium	-4.3	36.1	38.6	44.0	45.5	44.4
walker2d-medium	0.9	6.6	33.2	72.7	81.3	79.2
hopper-medium	0.8	29.0	47.6	31.2	32.3	58.0
halfcheetah-expert	-1.9	107.0	108.2	3.8	-1.1	104.8
hopper-expert	0.7	109.0	110.3	6.6	3.7	109.9
walker2d-expert	-0.3	125.7	106.1	-0.2	-0.0	153.9
halfcheetah-medium-expert	1.8	35.8	51.7	43.8	45.3	62.4
walker2d-medium-expert	1.9	11.3	10.8	-0.3	0.9	98.7
hopper-medium-expert	1.6	111.9	4.0	1.1	0.8	111.0
halfcheetah-random-expert	53.0	1.3	24.6	30.2	2.2	92.5
walker2d-random-expert	0.8	0.7	1.9	0.2	2.7	91.1
hopper-random-expert	5.6	10.1	10.1	5.8	11.1	110.5
halfcheetah-mixed	-2.4	38.4	36.2	45.6	45.9	46.2
hopper-mixed	3.5	11.8	25.3	0.7	0.8	48.6
walker2d-mixed	1.9	11.3	10.8	-0.3	0.9	26.7

結果: D4RL

- Expertのパフォーマンスを100に正規化したスコア
- AdoitではKLによる正則化の方が良い(CQL(p))

Domain	Task Name	BC	SAC	BEAR	BRAC-p	BRAC-v	CQL(H)	$\mathbf{CQL}(\rho)$
	antmaze-umaze	65.0	0.0	73.0	50.0	70.0	74.0	73.5
	antmaze-umaze-diverse	55.0	0.0	61.0	40.0	70.0	84.0	61.0
AntMaze	antmaze-medium-play	0.0	0.0	0.0	0.0	0.0	61.2	4.6
Anuviaze	antmaze-medium-diverse	0.0	0.0	8.0	0.0	0.0	53.7	5.1
	antmaze-large-play	0.0	0.0	0.0	0.0	0.0	15.8	3.2
	antmaze-large-diverse	0.0	0.0	0.0	0.0	0.0	74.0 84.0 61.2 53.7 15.8 14.9 37.5 4.4 9.9 0.20 39.2 2.1 0.4 -0.1 43.8 49.8	2.3
	pen-human	34.4	6.3	-1.0	8.1	0.6	37.5 4.4 9.9	55.8
	hammer-human	1.5	0.5	0.3	0.3	0.2	4.4	2.1
	door-human	0.5	3.9	-0.3	-0.3	-0.3	9.9	9.1
A duale	relocate-human	0.0	0.0	-0.3	-0.3	-0.3	0.20	0.35
Adroit	pen-cloned	56.9	23.5	26.5	1.6	-2.5	39.2	40.3
	hammer-cloned	0.8	0.2	0.3	0.3	0.3	2.1	5.7
	door-cloned	-0.1	0.0	-0.1	-0.1	-0.1	0.4	3.5
	relocate-cloned	-0.1	-0.2	-0.3	-0.3	-0.3	-0.1	-0.1
	kitchen-complete	33.8	15.0	0.0	0.0	0.0	43.8	31.3
Kitchen	kitchen-partial	33.8	0.0	13.1	0.0	0.0	49.8	50.1
	kitchen-undirected	47.5	2.5	47.2	0.0	0.0	51.0	52.4

結果: Discrete Action

- 離散actionのAtariのゲーム環境にCQLを適用
- online DQN agentが集めた最初の1%(top)/10%(bottom)のデータ

Task Name	QR-DQN	REM	$\mathbf{CQL}(\mathcal{H})$
Pong (1%)	-13.8	-6.9	19.3
Breakout	7.9	11.0	61.1
Q*bert	383.6	343.4	14012.0
Seaquest	672.9	499.8	779.4
Asterix*	166.3	386.5	592.4
Pong (10%)	15.1	8.9	18.5
Breakout	151.2	86.7	269.3
Q*bert	7091.3	8624.3	13855.6
Seaquest	2984.8	3936.6	3674.1
Asterix*	189.2	75.1	156.3

Analysis of CQL

- ・ (学習したQ関数の期待値) (真の価値の期待値)
- CQL(升), CQL(データセットの方策による価値の最大化なし), Q関数のアンサンブル, BEAR(Offlineの既存手法)で比較
- 学習されるQ関数はtightな下界になっている

Task Name	$CQL(\mathcal{H})$	CQL (Eqn. 1)	Ensemble(2)	Ens.(4)	Ens.(10)	Ens.(20)	BEAR
hopper-medium-expert	-43.20	-151.36	3.71e6	2.93e6	0.32e6	24.05e3	65.93
hopper-mixed	-10.93	-22.87	15.00e6	59.93e3	8.92e3	2.47e3	1399.46
hopper-medium	-7.48	-156.70	26.03e12	437.57e6	1.12e12	885e3	4.32

参考: CQL(データセットの方策による価値の最大化なし) $\hat{Q}^{k+1} \leftarrow \arg\min_{Q} \alpha \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] + \frac{1}{2} \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \hat{\mathcal{B}}^{\pi} \hat{Q}^{k}(\mathbf{s}, \mathbf{a}) \right)^{2} \right]$

まとめ

- オフライン強化学習で、データセットと学習方策のdistributional shiftによって起こる価値の過大評価を解決するConservative Q-Learning (CQL)を提案
- 真の価値関数の値のtightな下界を与えるQ関数を学習できる
- データセットの分布内のactionのQ関数の期待値と分布外のactionのQ関数の期待値の差が、真の価値関数による値の差よりも大きくなる性質によってdistributional shiftの問題を解決