CSED601 Dependable Computing Lecture 4

Jong Kim
Dept. of CSE
POSTECH

Copyright, 2018 © JKim POSTECH HPC

Review of Previous Lecture

- Fault / Error /Failure
- Fault
 - Cause of faults
 - Fault classification
 - Fault modeling
 - Fault avoidance
- Error
 - Error model
 - Fault masking

Fault Tolerance

- Informal definition
 - The ability of a system to continue to perform its tasks after the occurrence of faults.
 - Consists of a series of actions
 - Fault-detection
 - Fault-location
 - Fault containment
 - Damage assessment
 - Reconfiguration
 - Recovery

Fault-Tolerance Idea

- Protective redundancy
 - Provide redundancy to protect resources
- Types of redundancy
 - Hardware
 - Software
 - Information
 - Time

Hardware redundancy

- Original concept of redundancy
- Three forms of H/W redundancy
 - Passive : no action
 - fault-masking: prevent the faults from resulting in errors
 - Active : dynamic method
 - fault-detection, fault-location, reconfiguration, recovery
 - Hybrid : combining the above two
 - combines the attractive features of both the passive and active approaches (eg. replacing the faulty module with spares)

 POSTECH CSED601 Fa18 5

Passive H/W redundancy

- Relies on voting mechanism to mask the occurrence of faults
- Triple Modular Redundancy (TMR)
 - triplicate the hardware and perform a majority vote to determine the output of a system
 - can also be applied to software
 - problem voter < not larger than that of a voter (single-point-of-failure : SPF)

Enhancement of TMR

- Problem of TMR : SPF in voter
- Enhancement

Restoring organ

Generalization of TMR

- N-Modular-Redundancy (NMR)
 - The same principle
 - Can tolerate more modular faults
 - Up to floor(N/2), N should be odd number

Voter

- Voter types
 - H/W (majority logic), S/W
 - H/W is fast; S/W is easier to implement and flexible
- Timing problem
 - H/W : Use flip/flop, two phase clock
 - − S/W : No imminent problem
- Data imprecision problem
 - Three inputs have different values (sensor input)
 - Have a snowball effect
 - Solution
 - Mid-value select
 - Ignore LSB bits

Active H/W redundancy

- Attempt to achieve fault-tolerance by a series of actions such as fault-detection, fault-location, and fault-recovery
- Most common in applications
- Do not have the property of fault-masking
- Methods
 - Duplication with comparison
 - Stand-by sparing
 - Pair and a spare
 - Watchdog timer

Duplication with comparison

Structure

Two identical pieces of hardware with comparator

Operation

- Perform the same computations in parallel
- Compare the results of those computations

Result

Can only detect a fault : cannot decide which one is faulty

Problem

- Cannot detect input errors
- Comparator may not be able to perform an exact comparison
- An error in the comparator
- Imprecise results (Use only MSB)

Stand-by sparing

• Structure

- One module operational
- One or more modules serve as standbys or spares
- Use various fault-detection or error detection schemes (to decide when an where): key component

Types

- Hot-standby sparing : standby operates in synchrony
- Cold-standby sparing : standby is unpowered
- Advantages of standby sparing
 - Low overhead

Pair and a spare technique

• Idea

 Combines the features present in both stand-by sparing and duplication with comparison

Method

- Approach 1: select 2 outputs / compare /detect / use spare
- Approach 2: use pair as a set / discard a pair / use a pair

Watchdog timer

Properties

- Used for detecting a fault
- Some action is required on the part of the system to indicate a fault-free status
- System is fault-free if it possesses the capability to repetitively perform a function such as setting a tier
- The frequency at which the timer must be reset is a function of the system
- Watchdog timers are particularly useful for detecting a lack of response
- Can be implemented by software

Hybrid H/W redundancy

Idea

- Combines the attractive features of both the active and the passive approaches
- Most often used in applications that require extremely high integrity of computations

Method

- NMR with sparing
- Self-purging redundancy
- Sift-out modular redundancy
- Triple-duplex architecture

NMR with spares

- Idea
 - Spares are provided to replace failed units in the NMR core
- Structure

NMR with spares

- Characteristics
 - Only NMR approach : fault-masking
 - NMR with spares : fault-detection, location, and reconfiguration
 - How to detect/locate : compare individual output
 with voter output

Self purging redundancy

- Idea
 - Similar to NMR with spares
 - Difference: All units are actively participating in the system

Self-purging redundancy

Characteristics

- Each module is designed with the capability to remove itself from the system in the event that its output disagrees with the voted output of the system
- How to adjust a voter to reduced inputs : a threshold voter
 - A threshold voter is like a neuron in neural network
 - Adjust the threshold value according to the input

Sift-out modular redundancy

Structure

– Use N elements, comparators, detectors, collectors

Sift-out modular redundancy

Role of each component

- Comparators
 - Compare each module's output with the remaining modules' output: N(N-1) comparisons
- Detector
 - Determine which disagreements are reported by the comparator and to disable a unit that disagrees with a majority of the remaining modules

Collector

• To produce the system's output, given the outputs of the individual modules and the signals from the detector that indicate which module is faulty

Triple-duplex architecture

Structure

- Combines duplication with comparison and TMR
- Use duplication for error-detection
- Use TMR for fault-masking

Summary of H/W redundancy

- Critical computation applications
 - Mandate passive or hybrid redundancy
- The highest reliability
 - Can be achieved by hybrid
- Long life and high availability
 - Active approaches are used
 - It is acceptable to have a temporary, erroneous outputs
- Hardware cost
 - Active / Passive / Hybrid