Gyakorló feladatok 3.

(Vektoranalízis)

Programtervező matematikus

szakos hallgatóknak az

Analízis 7.

nevű tárgyhoz

1. Jelölések, elnevezések

• Skalármezők

D1. Lerögzítjük a közönséges térben az O origót és a pontokat helyvektoraikkal azonosítjuk. Legyen D a közönséges tér pontjainak (helyvektorainak) egy részhalmaza. Az $U(\mathbf{r})$ ($\mathbf{r} \in D$) függvényt **skalármezőnek** (vagy *skalár-vektor függvénynek*) nevezzük, ha minden $\mathbf{r} \in D$ vektorhoz pontosan egy $U(\mathbf{r})$ valós számot rendel hozzá. (Ilyen függvények írják le például rögzített időpontban a hőmérséklet, a nyomás vagy a "potenciál" eloszlását a tér egy részében.)

Megjegyzés. Ha a térben az O origó mellett lerögzítjük az $\mathbf{i}, \mathbf{j}, \mathbf{k}$ bázist, és az ezen alapuló Descartes-féle derékszögű koordinátarendszert, akkor minden helyvektor egyértelműen előállítható az $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ alakban, és a helyvektorok halmaza és a rendezett számhármasok között bijekció létesíthető. Ilyenkor az $U(\mathbf{r})$ ($\mathbf{r} \in D$) skalármező azal a háromváltozós $f \in \mathbb{R}^3 \to \mathbb{R}$ függvénnyel reprezentálható, amelyet az

$$f(x, y, z) := U(\mathbf{r}) \qquad (\mathbf{r} \in D)$$

összefüggés definiál, ha $\mathbf{r} := x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Azt is mondhatjuk, hogy **rögzített koordinátarendszerben** egy skalármező megadása ekvivalens egy háromváltozós függvény megadásával. A skalármező és a háromváltozós függvény fogalma között azonban *lényeges elvi különbség* van. Ha ugyanis egy helytől függő fizikai mennyiséget skalármezővel adunk meg, akkor e függvény kizárólag az adott mennyiség térbeli eloszlását (és az origó megválasztását), vagyis a *fizikai lényeget* tükrözi. (Az origó megválasztása ugyan önkényes, de ez az "önkény" matematikailag könnyen felismerhetően és egyszerűen tükröződik: az origó megváltoztatása egy állandó vektornak a független vektorhoz való hozzáadásával történik.) Ezzel szemben, ha a fizikai mennyiséget koordinátarendszer bevezetése után, háromváltozós függvénnyel adjuk meg, akkor e függvény nemcsak a fizikai lényeget, hanem a koordinátarendszer esetlegességét is tükrözi. Ugyanazon skalármező különböző koordinátarendszerben különböző háromváltozós függvénnyel ekvivalens. A továbbiakban az egyszerűség végett a skalármezőket azonosítani fogjuk az őket leíró háromváltozós függvénnyel (amit a rögzített, "szokásos" Descartes-féle koordinátarendszerben tekintünk), és jelölésükre is ugyanazt a szimbólumot fogjuk használni: $U(\mathbf{r}) \equiv U(x,y,z)$.

Skalármező szemléltetése. Skalármezőket *szintfelületekkel* lehet szemléltetni a háromdimenziós térben, azaz

rögzített $c \in \mathbb{R}$ esetén ábrázoljuk az $\{\mathbf{r} \in \mathbb{R}^3 \mid U(\mathbf{r}) = c\} \subset \mathbb{R}^3$ halmazt.

D2. Tekintsünk egy

$$U \in \mathbb{R}^3 \to \mathbb{R}$$
, $U(\mathbf{r}) = U(x, y, z)$, $\mathbf{r} = (x, y, z)$.

skalármezőt. Ha $\mathbf{r}_0 \in \operatorname{int} \mathcal{D}_U$ és $U \in D\{\mathbf{r}_0\}$, akkor

$$U'(\mathbf{r}_0) = (\partial_1 U(\mathbf{r}_0), \partial_2 U(\mathbf{r}_0), \partial_3 U(\mathbf{r}_0)) =: \operatorname{grad} U(\mathbf{r}_0)$$

az U skalármező gradiensvektora az \mathbf{r}_0 pontban.

• Vektormezők

D3. Lerögzítjük a közönséges térben az O origót és a pontokat helyvektoraikkal azonosítjuk. Legyen D a közönséges tér pontjainak (helyvektorainak) egy részhalmaza. A $\mathbf{V}(\mathbf{r})$ ($\mathbf{r} \in D$) függvényt **vektormezőnek** (vagy *vektor-vektor függvénynek*) nevezzük, ha minden $\mathbf{r} \in D$ vektorhoz pontosan egy $\mathbf{V}(\mathbf{r})$ vektort rendel hozzá. (Ilyen függvények írják le például rögzített időpontban a folyadékok, gázok áramlás-viszonyait, az elektromos, mágneses, gravitációs erőtereket.)

Megjegyzés. A skalármezőkhöz hasonlóan rögzített koordinátarendszerben egy vektormezőt három darab háromváltozós függvénnyel adhatunk meg. A továbbiakban nekünk ez a koordinátarendszer a "szokásos" Descartes-féle koordinátarendszer lesz, és a vektormezőt, valamint az őt leíró háromváltozós függvényeket ugyanazzal a szimbólummal fogjuk jelölni:

$$\mathbf{V} = (V_1, V_2, V_3) \in \mathbb{R}^3 \to \mathbb{R}^3, \quad \mathbf{V}(\mathbf{r}) = (V_1(\mathbf{r}), V_2(\mathbf{r}), V_3(\mathbf{r})) \quad \mathbf{r} = (x, y, z).$$

Azt is mondjuk, hogy vektormezőn $\mathbb{R}^3 \to \mathbb{R}^3$ típusú függvényt értünk.

Vektormező szemléltetése. A vektormezők szemléltetésére azok a görbék a legalkalmasabbak, amelyek érintői a tér minden pontjában párhuzamosak a görbeponthoz rendelt vektorral. Ezeket a görbéket vektorvonalaknak nevezzük. A vektorvonalak csupán a vektormező irányáról adnak szemléletes képet. A vektormezőnek nemcsak az irányáról, hanem a nagyságáról is szemléletes képet adnak az ún. **erővonalak** (vagy *áramvonalak*). Ezekhez a következőképpen juthatunk el: a vektorvonalak közül csak néhányat "rajzolunk meg" olyan módon, hogy a megmaradó vektorvonalak (erővonalak, áramvonalak) sűrűsége arányos legyen a vektormező nagyságával. Ezen azt értjük, hogy ha az \mathbf{r}_0 ponthoz rendelt vektor $\mathbf{V}(\mathbf{r}_0)$, akkor erre merőleges egységnyi területű felületdarabon $|\mathbf{V}(\mathbf{r}_0)|$ számú erővonal halad át.

D4. Legyen $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ egy vektormező. Ha $\mathbf{r}_0 \in \operatorname{int} \mathcal{D}_{\mathbf{V}}$ és $\mathbf{V} \in D\{\mathbf{r}_0\}$, akkor az \mathbf{r}_0 pontbeli **deriváltmátrix** (vagy Jacobi-mátrix):

$$\mathbf{V}'(\mathbf{r}_0) = \begin{bmatrix} \partial_1 V_1(\mathbf{r}_0) & \partial_2 V_1(\mathbf{r}_0) & \partial_3 V_1(\mathbf{r}_0) \\ \partial_1 V_2(\mathbf{r}_0) & \partial_2 V_2(\mathbf{r}_0) & \partial_3 V_2(\mathbf{r}_0) \\ \partial_1 V_3(\mathbf{r}_0) & \partial_2 V_3(\mathbf{r}_0) & \partial_3 V_3(\mathbf{r}_0) \end{bmatrix}.$$

Megjegyzés. A derváltmátrix elemei függenek a vektormezőt megadó függvény leírásához használt koordinátarendszer megválasztásától. Kiderült, hogy a deriváltmátrix elemeiből képzett bizonyos kifejezések függetlenek a koordinátarendszer megválasztásától, és csak a vektormezőtől függenek, ezért ezek a vektormezőt közvetlenül jellemző mennyiségek. Két ilyen invariáns jellemző van: az egyik a divergencia (ez egy szám, ezért ezt skalárinvariánsnak szokás nevezni), a másik egy vektor, ezt rotációnak szokás nevezni; ez a deriváltmátrix vektorinvariánsa.

D5. A $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektor-vektor függvény (vektormező) \mathbf{V}' deriváltmátrixának főátlójában álló elemeinek összegét a \mathbf{V} vektor-vektor függvény (vektormező) **divergenciájának** nevezzük és a div \mathbf{V} szimbólummal jelöljük:

$$\operatorname{div} \mathbf{V} := \partial_1 V_1 + \partial_2 V_2 + \partial_3 V_3 = \frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y} + \frac{\partial V_3}{\partial z}.$$

Megjegyzés. A divergencia fizikai tartalma: az erőtér forrása. A $\mathbf V$ vektormező az adott pontban forrásmentes, ha ott a div $\mathbf V=0$, ha div $\mathbf V>0$, akkor forrása van, és nyelője van, ha div $\mathbf V<0$.

D6. A $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektor-vektor függvény (vektormező) **rotációjának** a

$$rot \mathbf{V} := (\partial_2 V_3 - \partial_3 V_2, \partial_3 V_1 - \partial_1 V_3, \partial_1 V_2 - \partial_2 V_1)$$

függvényt nevezzük.

Megjegyzés. Kiderült, hogy a rotációvektorral a vektortér *örvényeit* vagy másképp fogalmazva az erővonalrendszerének a *csavarodását* lehet jellemezni. Sőt némi ügyeskedéssel nemcsak a csavarodás mértékét, hanem a csavarodás tengelyének az irányát is meg lehet adni.

• A "nabla szimbolika"

Megjegyzés. Skalármezők gradiensének, vektormezők divergenciájának és rotációjának felírását, az ezekkel a mennyiségekkel végzett számításokat megkönnyíti az ún. "nablaszimbolika" használata. ■

D7. Azt a "(vektor)differenciál-operátort", amelyet az **i**, **j**, **k** bázisban a

$$\nabla := (\partial_1, \partial_2, \partial_3) = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial y}$$

szimbólum jelöl, **nabla-operátornak** (vagy **Hamilton-féle differenciál-operátornak** nevezzük (ezt "virtuális vektornak" is tekinthetjük).

Ezzel a jelöléssel az $U \in \mathbb{R}^3 \to \mathbb{R}$ skalármező esetén

$$\operatorname{grad} U = \nabla U = (\partial_1 U, \partial_2 U, \partial_3 U);$$

a $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}$ vektormező esetén:

$$\operatorname{div} \mathbf{V} = \langle \nabla, \mathbf{V} \rangle = \nabla \cdot \mathbf{V} = \partial_1 V_1 + \partial_2 V_2 + \partial_3 V_3,$$

$$\operatorname{rot} \mathbf{V} = \nabla \times \mathbf{V} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_1 & \partial_2 & \partial_3 \\ V_1 & V_2 & V_3 \end{bmatrix}.$$

D8. A nabla vektor önmagával vett skaláris szorzatát **Laplace-operátornak** nevezik, és a \triangle szimbólummal jelölik:

$$\triangle := \langle \nabla, \nabla \rangle = \nabla \cdot \nabla = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right).$$

Ha egy skalármezőt a Descates-féle derékszögű koordinátarendszerben az $U\in\mathbb{R}^3\to\mathbb{R}$ háromváltozós függvény reprezentál, akkor

$$\triangle U = \operatorname{div} \operatorname{grad} U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}.$$

Megjegyzés. A nabla vektor többszöri alkalmazása lehetséges, de nem történhet "vaktában". Például a $\nabla \times (\nabla \times \mathbf{V}) = \operatorname{rot} \operatorname{rot} \mathbf{V}$ értelmezhető, de a $\nabla \times (\nabla \cdot \mathbf{V}) = \operatorname{rot} \operatorname{div} \mathbf{V}$ nem, mert div \mathbf{V} skalár és ennek nem értelmezhető a rotációja.

• Reguláris tartományok

D9. Az $\Omega \subset \mathbb{R}^3$ halmaznak $\mathbf{a} \in \mathbb{R}^3$ egy **határpontja**, ha **a** minden környezetében van Ω -hoz tartozó és Ω -hoz nem tartozó pont is, azaz

$$\forall r > 0$$
 esetén $k_r(\mathbf{a}) \cap \Omega \neq \emptyset$ és $k_r(\mathbf{a}) \cap (\mathbb{R}^3 \setminus \Omega) \neq \emptyset$.

Az Ω halmaz határpontjainak a halmazát a $\partial\Omega$ szimbólummal fogjuk jelölni.

- **D10.** A reguláris $\mathcal{F} \subset \mathbb{R}^3$ felületet **egyszerű zárt felületnek** nevezzük, ha a teret két részre V_1 -re és V_2 -re bontja úgy, hogy
 - (a) $V_1 \cup \mathcal{F} \cup V_2 = \mathbb{R}^3$,
 - (b) $V_1 \cap \mathcal{F} = \emptyset$, $V_2 \cap \mathcal{F} = \emptyset$ és $V_1 \cap V_2 = \emptyset$;
 - (c) $V_1 \cup V_2$ nem összefüggő halmaz;
 - (d) V_1 és V_2 is összefüggő halmaz;
 - (e) közülük az egyik, pl. V_1 korlátos halmaz.

Megjegyzés. A továbbiakban olyan korlátos $\Omega \subset \mathbb{R}^3$ tartományokat fogunk tekinteni, amelyeknek a $\partial\Omega$ határa egyszerű zárt felület. Megengedjük azt is, hogy a határhalmaz "élekben cstalakozó" reguláris felületdarabokból álljon. Az ilyen tartományokat röviden "jó" tartományoknak fogjuk majd nevezni.

• Feladatok

F1. Állapítsa meg, hogy mik lesznek az alábbi skalármezők szintfelületei:

(a)
$$U(\mathbf{r}) := z - x^2 - y^2, x, y, z \in \mathbb{R};$$

(b)
$$U(\mathbf{r}) := \mathbf{r}^2, \, \mathbf{r} \in \mathbb{R}^3.$$

- F2. Számítsa ki az alábbi vektomezők gradiensét a megadott pontokban:
 - (a) $U(\mathbf{r}) := z x^2 y^2$, $P_0(-1, 2, -3)$;
 - (b) $U(\mathbf{r}) := \mathbf{r}^2, \mathbf{r}_0(1, 2, 3).$
- F3. Szemléltesse az alábbi vektor-vektor függvényeket (vektormezőket):
 - (a) $\mathbf{V}(\mathbf{r}) := \mathbf{r} \ (\mathbf{r} \in \mathbb{R}^3);$
 - (b) $\mathbf{V}(\mathbf{r}) := \frac{\mathbf{r}}{|\mathbf{r}|} (\mathbf{r} \in \mathbb{R}^3 \setminus \{\mathbf{0}\});$
 - (c) $\mathbf{V}(\mathbf{r}) := -\mathbf{r} \ (\mathbf{r} \in \mathbb{R}^3).$
- **F4.** Számítsa ki az alábbi vektormezők divergenciáját és rotációját a megadott pontokban:
 - (a) $\mathbf{V}(\mathbf{r}) := \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \ (\mathbf{r} \in \mathbb{R}^3), \mathbf{r}_0 \text{ tetszőleges};$
 - (b) $\mathbf{V}(\mathbf{r}) := (3x 4y^2)\mathbf{i} + (x 4y + z^2)\mathbf{j} (3y + 5z)\mathbf{k} \ ((x, y, z) \in \mathbb{R}^3), \mathbf{r}_0 = (1, 2, -3).$
- **F5.** (a) Határozza meg div grad U értékét az $\mathbf{r}_0(-1,0,2)$ helyvektorú pontban, ha

$$U(x, y, z) := xe^y + x^2z^2 - y^3x$$
 $(x, y, z \in \mathbb{R}).$

(b) Határozza meg a rot rot V vektort a $P_0(1,2,3)$ pontban, ha

$$\mathbf{V}(\mathbf{r}) := x^2 y z \mathbf{i} + x y^2 z \mathbf{j} + x y z^2 \mathbf{k} \quad ((x, y, z) \in \mathbb{R}^3).$$

F6. (a) Írja át az

$$\frac{\partial^2 U(x,y)}{\partial x^2} + \frac{\partial^2 U(x,y)}{\partial y^2} = 0$$

kétdimenziós Laplace-féle differenciálegyenletet polárkoordinátákba.

(b) Írja fel térbeli polárkoordinátákban a (háromdimenziós) Laplace-operátort.

2. Skalármezők térfogati integrálja. Vektormezők vonal- és felületi integrálja

• Skalármező térfogati integrálja

Legyen $\Omega \subset \mathbb{R}^3$ korlátos, "jó" tartomány, és tegyük fel, hogy az

$$U \in \mathbb{R}^3 \to \mathbb{R}$$

skalármező folytonos az $\Omega \cup \partial \Omega$ halmazon. Az U skalármező térfogati integráljának nevezzük és

$$\iiint\limits_{\Omega}U(\mathbf{r})\,d\mathbf{r}$$

szimbólummal jelöljük az U(x, y, z) függvény Ω -n vett hármas integrálját.

- Vektormező vonalintegrálja
- **D11.** Legyen $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ folytonosan differenciálható vektormező. Tegyük fel, hogy a szakaszonként sima $\Gamma \subset \mathbb{R}^3$ görbének $\gamma : [\alpha, \beta] \to \Gamma$ egy paraméterezése. A \mathbf{V} vektormező Γ görbén vett **vonalintegrálján** a

$$\int_{\Gamma} \mathbf{V}(\mathbf{r}) d\mathbf{r} := \int_{\Omega}^{\beta} \mathbf{V}(\gamma(t)) \cdot \dot{\gamma}(t) dt$$

számot értjük.

Megjegyzés. A vonalintegrál fizikai jelentése: az erőtér által végzett munka. ■

Ismételni: primitív függvény; a vonalintegrál úttól való függetlensége. ■

• Vektormező felületi integrálja

Motiváció:

D12. Legyen $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ egy folytonos vektormező. Tegyük fel, hogy az $\mathcal{F} \subset \mathbb{R}^3$ egyszerű sima felületdarab és $F: T \to \mathcal{F}$ $(T \subset \mathbb{I}^2)$ ennek egy paraméterezése. A \mathbf{V} vektormező \mathcal{F} felületre vett **felületi integrálján** az

$$\iint_{\mathcal{F}} \mathbf{V}(\mathbf{r}) d\sigma := \iint_{T} \mathbf{V}(F(u, v)) \cdot \partial_{u} F(u, v) \cdot \partial_{v} F(u, v) du dv$$

számot értjük.

Fizikai tartalom: fluxus. Áramlásoknál: $\mathbf{V}(\mathbf{r})$ a sebesség, az integrál a folyadékmennyiség. Az erőtereknél a normális irányában áthaladó erővonalak száma.

Feladatok

F7. Számítsa ki az

$$U(\mathbf{r}) := \mathbf{r}^2 = x^2 + y^2 + z^2$$
 $((x, y, z) \in \mathbb{R}^3)$

függvény térfogati integrálját arra az egységnyi élhosszúságú kockára, amelynek egyik csúcsa az origóban van, az ebből a csúcsból kiinduló élei pedig a koordinátatengelyek pozitív felére illeszkednek.

F8. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := (xy - z)\mathbf{i} + (yz - x)\mathbf{j} + (zx - y)\mathbf{k} \qquad ((x, y, z) \in \mathbb{R}^3)$$

vektor-vektor függvény vonalintegrálját a

$$\gamma(t) := (t^2 + 1)\mathbf{i} + (1 - t)\mathbf{j} + (t^3 - t)\mathbf{k}$$
 $(t \in \mathbb{R})$

egyenletű görbe A(1,1,0) pontjától a görbe B(5,-1,6) pontjáig terjedő íve mentén.

F9. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := (2xy + z^2)\mathbf{i} + (2yz + x^2)\mathbf{j} + (2xz + y^2)\mathbf{k}$$
 $((x, y, z) \in \mathbb{R}^3)$

vektor-vektor függvény vonalintegrálját a $P_1(2,1,3)$ pontot a $P_2(-1,3,-2)$ ponttal összekötő egyenesszakasz mentén P_1 -től P_2 felé haladva.

F10. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := (z^2 - y)\mathbf{i} + (z^3 + x)\mathbf{j} + (xy)\mathbf{k} \qquad ((x, y, z) \in \mathbb{R}^3)$$

vektor-vektor függvény vonalintegrálját az x, y síkkal párhuzamos síkban elhelyezkedő C(2,3,4) középpontú 5 sugarú körvonal mentén.

- **F11.** Mutassa meg, hogy a $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektor-vektor függvénynek (vektormezőnek) egy (csillagszerű) tartományban pontosan akkor van primitív függvénye (potenciálja), ha a vektormező ott rotációmentes.
- F12. (a) Bizonyítsa be, hogy a

$$\mathbf{V}(\mathbf{r}) := (2xy + z^2)\mathbf{i} + (2yz + x^2)\mathbf{j} + (2xz + y^2)\mathbf{k}$$
 $((x, y, z) \in \mathbb{R}^3)$

vektor-vektor függvénynek van potenciálja. Határozza meg a potenciált.

(b) Számítsa ki a vektormező vonalintegrálját tetszőleges görbe mentén az A(2,1,3) és B(-1,3,-2) pontok között.

F13. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
 $((x, y, z) \in \mathbb{R}^3)$

vektor-vektor függvény felületi integrálját az

$$F(u,v) := [(3+\cos u)\cos v]\mathbf{i} + [(3+\cos u)\sin v]\mathbf{j} + (\sin u)\mathbf{k}$$

egyenletű tórusz x,y sík feletti darabja mentén "felfelé mutató" normális mellett.

3. Integrálátalakító tételek

T1. Gauss–Osztrogradszkij-tétel. Legyen $\Omega \subset \mathbb{R}^3$ egy olyan korlátos, mérhető térfogatú tartomány, amelynek $\partial\Omega$ határa olyan egyszerű zárt felület, amely "élekben csatlakozó" reguláris felületdarabokból áll. Tegyük fel továbbá azt, hogy a $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektor-vektor függvény (vektormező) folytonosan deriválható a $\Omega \cup \partial\Omega$ halmazon. A $\partial\Omega$ felület minden pontjában a felületi merőlegeseket a térrészből kifelé irányítjuk. Ekkor

$$\iint_{\partial\Omega} \mathbf{V}(\mathbf{r}) \, d\sigma = \iiint_{\Omega} \operatorname{div} \mathbf{V}(\mathbf{r}) \, d\mathbf{r},$$

vagyis a V függvénynek a $\partial\Omega$ felületen vett felületi integrálja egyenlő divergenciájának V-re vonatkozó hármas integráljával.

T2. Stokes tétele. Legyen \mathcal{F}_1 reguláris felületdarab, Γ pedig egy egyszerű, reguláris, zárt felületi görbe \mathcal{F}_1 -en. \mathcal{F}_1 normálvektorát irányítsuk úgy, hogy annak irányából nézve a Γ-n kijelölt haladási irány pozitív (az óramutató járásával ellenkező) legyen. \mathcal{F}_1 -nek Γ által határolt darabját \mathcal{F} -fel jelöljük. Legyen továbbá a $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektormező folytonosan deriválható az $\mathcal{F} \cup \Gamma$ halmazon. Ekkor **V**-nek Γ-ra vonatkozó vonalintegrálja egyenlő **V** rotációjának \mathcal{F} -re vett felületi integráljával:

$$\int_{\Gamma} \mathbf{V}(\mathbf{r}) d\mathbf{r} = \iint_{\mathcal{F}} \operatorname{rot} \mathbf{V}(\mathbf{r}) d\sigma.$$

T3. "Szimmetrikus Green-tétel". Legyen $\Omega \subset \mathbb{R}^3$ egy olyan korlátos, mérhető térfogatú tartomány, amelynek $\partial\Omega$ határa egyszerű zárt, reguláris felület kifelé irányított normálvektorral. Legyenek továbbá az $U_1, U_2 \in \mathbb{R}^3 \to \mathbb{R}$ skalármezők az $\Omega \cup \partial\Omega$ halmazon folytonosan deriválhatók. Ekkor

$$\iint_{\partial\Omega} (U_1 \operatorname{grad} U_2 - U_2 \operatorname{grad} U_1) d\sigma = \iiint_{\Omega} (U_1 \triangle U_2 - U_2 \triangle_1 U_1) d\mathbf{r}.$$

• Feladatok

F14. Legyen a

$$V(\mathbf{r}) := (-x^2 + y + z)\mathbf{i} + (x - y^2 + z)\mathbf{j} + (x + y - z^2)\mathbf{k}$$

vektormező a $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$ feltételekkel megadott kockán értelmezve. Igazolja a Gauss-Osztrogradszkij-tétel helyességét erre az alakzatra úgy, hogy egymástól függetlenül kiszámolja a tétel két oldalán álló integrálokat, belátja ezek egyenlőségét.

- **F15.** Szemléltesse az alábbi feladatokon a Gauss-Osztrogradszkij-tételt úgy, hogy mind a felületi, mind a térfogati integrált kiszámolja:
 - (a) $V(\mathbf{r}) := y\mathbf{i} + z\mathbf{j} + x\mathbf{k};$ a térrész: $x^2 + y^2 + z^2 \le 1, y \ge 0, z \ge 0;$
 - (b) $\mathbf{V}(\mathbf{r}) := (x 2z)\mathbf{i} + (2x + y)\mathbf{j} + (x y + z)\mathbf{k};$ a térrész: $x^2 + y^2 + z^2 < 4.$
- F16. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := x\mathbf{i} + 2y\mathbf{j} + 3z\mathbf{k} \qquad ((x, y, z) \in \mathbb{R}^3)$$

vektormező felületi integrálját az $x^2 + y^2 = 4$, z = -2, z = 3 egyenletekkel megadott körhenger felületére, kifelé mutató normálisok mellett.

F17. Tekintsük a

$$\mathbf{V}(\mathbf{r}) := (-x^2 + y + z)\mathbf{i} + (x - y^2 + z)\mathbf{j} + (x + y - z^2)\mathbf{k}$$
 $((x, y, z) \in \mathbb{R}^3)$

vektormezőt és azt a felületet, amelyet az A(2,0,0), B(0,2,0) és C(0,0,2) csúcspontú háromszöglap és az a két háromszöglap határol, amit az ABC sík az xz és az yz síkból kivág. (Az OAB háromszöglap tehát nem tartozik a felülethez.) Igazolja az alakzatra Stokes tételét.

- **F18.** Szemléltesse az alábbi feladatokon a Stokes-tételt úgy, hogy mind a felületi, mind a vonalintegrált kiszámolja:
 - (a) $\mathbf{V}(\mathbf{r}) := (x+z)\mathbf{i} + (3y-2z)\mathbf{j} + (5x-3y)\mathbf{k};$ a felület: $x^2+y^2=1, z=0$ alapkörű és (0,0,5) csúcspontú kúppalást;
 - (b) $\mathbf{V}(\mathbf{r}) := xz^2\mathbf{i} + zy^2\mathbf{j} + x^2y\mathbf{k}$; a felület a $z = x^2 + y^2$ forgásparaboloid azon része, amelyre $x^2 + y^2 \le 4$.
- F19. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := x^2 y z \mathbf{i} + x y^2 z \mathbf{j} - 2x y z^2 \mathbf{k} \qquad ((x, y, z) \in \mathbb{R}^3)$$

vektormező felületi integrálját az $x^2+y^2=4,\,z=0,\,z=6$ zárt hengerfelületre, kifele mutató normális mellett.