

Camera Trace Erasing

Chang Chen*¹, Zhiwei Xiong [™]¹, Xiaoming Liu ², and Feng Wu¹

¹ University of Science and Technology of China ² Michigan State University

changc@mail.ustc.edu.cn, {zwxiong, fengwu}@ustc.edu.cn, liuxm@cse.msu.edu

What is camera trace?

Noise produced by camera sensor

due to the different response characteristics to light

then, manipulated by the in-camera processing pipeline [1]

implicitly encodes the type information of camera into the imaging results

by-product: magnitude is small → trace

In-camera processing pipeline from RAW to RGB space

Camera trace erasing – an adversarial case

to verify the security of trace-based forensic methods

Method – Siamese Trace Erasing

im/lb: captured image and origin

 $F_{\Theta}(\cdot)$: trace erasing method

 $E(\cdot)$: embedding function

 $C(\cdot)$: origin identification method

Blue: trainable model, Green: fixed oracle, and Red: loss functions.

 L_{es} : embedded similarity, L_{tf} : truncated fidelity, L_{ce} : cross-entropy

Experiments – classification / clustering / verification

Analysis on camera trace

Figure 7. Visualization of camera trace extracted by SiamTE in spatial and frequency domains. Image patches in smooth areas are cropped from VISION with a size of 500×500 . Brightness and contrast of camera trace in spatial domain are adjusted for a better visual experience.

Analysis on camera trace

Figure 8. Visualization of camera trace extracted by SiamTE in a single image from KCMI-550. From left to right: original image, extracted camera trace, patches in spatial and frequency domains.

Thanks for your listening!

