Fonctions Holomorphes et Séries Entières

Exercice 1 (Un phénomène d'extension) Soit Ω un ouvert de \mathbb{C} et S un ensemble discret dans Ω . Soit f une fonction continue sur Ω et holomorphe sur $\Omega \setminus S$. Montrer que f est holomorphe sur Ω . Indication : utiliser la formule de Cauchy pour un disque épointé de la forme $\{z \in \mathbb{C} : 0 < |z - z_0| < A\}$.

Solution:

Soit $z_0 \in S$, Montrons que f est holomorphe sur un disque centrée en z_0 . Soit $D(z_0, r_0) \in \Omega$, tel que z_0 soit le seul élément de S sur ce disque. Soit $z \in D(z_0, r_0) \setminus \{z_0\}$ et $r < r_0$. Par la formule intégrale de Cauchy, on a:

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(z_0 + re^{it})re^{it}}{z_0 + re^{it} - z} dt$$

Puis, par continuité de f sur le compact $D(z_0, r_0)$, On peut passer à la limite sous le signe intégrale et :

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) re^{it} dt$$

d'où l'holomorphie de f en z_0 .

On aurait pu aussi remarquer que f est égale à sa transformé de Cauchy sur le disque et conclure avec le cours.

Exercice 2 (Principe d'équivalence Taylor/Fourier) Soit Ω un ouvert de \mathbb{C} et $D(z_0, r)$ un disque fermé contenu dans Ω . Montrer que pour tout $f \in O(\Omega)$ et tout entier $n \geq 0$, on a

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta.$$

Solution:

Pour tout
$$z \in D(z_0, r_0)$$
, on $a : f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$

Donc:

$$\int_{0}^{2\pi} f(z_{0} + re^{i\theta})e^{-in\theta}d\theta = \int_{0}^{2\pi} \sum_{k=0}^{\infty} \frac{f^{(k)}(z_{0})}{k!} (re^{i\theta})^{k} e^{-in\theta}d\theta$$

$$= \sum_{k=0}^{\infty} \frac{f^{(k)}(z_{0})}{k!} \int_{0}^{2\pi} r^{k} e^{ik\theta} e^{-in\theta}d\theta$$

$$= \sum_{k=0}^{\infty} \frac{f^{(k)}(z_{0})}{k!} r^{k} \underbrace{\int_{0}^{2\pi} e^{i\theta(k-n)}d\theta}_{=2\pi \ si \ n=k, \ 0 \ sinon}$$

$$= \frac{f^{(n)}(z_{0})}{n!} r^{n} 2\pi$$

Exercice 3 Soit Ω un ouvert connexe de \mathbb{C} , montrer que $O(\Omega)$ est un anneau intègre.

Solution:

Soient f et g deux fonctions holomorphes sur Ω non nulles.

On pose $Z(f) := \{z \in \Omega; f(z) = 0\}$ et $Z(g) := \{z \in \Omega; g(z) = 0\}$.

Alors, Z(f) et Z(g) sont des ensembles discrets par le principe des zéros isolés, et comme $Z(fg) = Z(f) \cup Z(g)$ reste discret, $fg \not\equiv 0$ sur Ω .

Exercice 4 (Points singuliers d'une série entière) Dans tout l'exercice, on désigne par S une série entière $\sum_{n\geq 0} a_n z^n$ de rayon de convergence égal à 1. On note $f(z) := \sum_{n\geq 0} a_n z^n$ la somme de cette série sur le disque unité D. On dit que $\eta \in bD$ est un point régulier de S s'il existe un disque ouvert $D(\eta, r)$ et une fonction holomorphe φ sur ce disque qui prolonge f, c'est-à-dire telle que $f = \varphi$ sur $D \cap D(\eta, r)$. Un point de bD qui n'est pas régulier est dit singulier. On note Sing(S) l'ensemble des points singuliers de S.

- 1. Déterminer Sing(S) lorsque $S = \sum_{n \geq 0} z^n$ et $S = \sum_{n \geq 0} (-1)^n z^n$.
- 2. Montrer que Sing(S) n'est jamais vide.
- 3. Est-il vrai que si $\sum_{n\geq 0} a_n \eta^n$ converge (resp. diverge) pour $\eta \in bD$, alors $\eta \notin \operatorname{Sing}(S)$ (resp. $\eta \in \operatorname{Sing}(S)$)?

Solution:

Q.1: Soit $S_1 = \sum_{n\geq 0} z^n$, alors S converge sur le disque unité et pour tout z tels que |z| < 1, on $a: f(z) = \frac{1}{1-z}$. Donc, $Sing(S_1) = \{1\}$.

Soit $S_2 = \sum_{n\geq 0} (-1)^n z^n$, alors S converge sur le disque unité et pour tout z tels que |z| < 1, on $a: f(z) = \frac{1}{1+z}$. Donc, $Sing(S_2) = \{-1\}$.

Q.2: Montrons que Sing(S) est non vide. Supposons par l'absurde qu'il le soit. Alors, pour tout $\eta \in b\Omega$, il existe $r_{\eta} > 0$ et $f_{\eta} \in O(D(\eta, r_{\eta})$ tels que $f = f_{\eta}$ sur $D \cap D(\eta, r_{\eta})$. Le bord du disque étant un compact de \mathbb{C} , il existe $\eta_1, \ldots, \eta_n \in bD$ et $r_1, \ldots, r_n > 0$ tels

qu'il existe un prolongement holomorphe f_j de f sur $D(\eta_j, r_j)$ pour tout 1 < j < n. Et en outre, il existe $1 < R < +\infty$ tel que

$$D(0,R) \subset D \cup \left(\bigcup_{j=1}^{n} D(\eta_j, r_j)\right)$$

Enfin, remarquons que si $I_{j,k} := D(\eta_j, r_j) \cap D(\eta_k, r_k) \neq \emptyset$ Alors $f_j = f_k$ sur $I_{j,k}$ puisque $(f_j - f_k) \in O(I_{j,k})$ et que $f_j - f_k = 0$ sur $D \cap I_{j,k}$ donc, pas le principe des zéros isolés, comme $I_{j,k}$ est connexe, on a $f_j - f_k = 0$ sur $I_{j,k}$.

On peut alors définir $\phi \in O(D(0,R))$ par : $\phi = f$ sur D et $\phi = f_j$ sur $D \cap D(\eta_j, r_j)$. Et, par holomorphie de ϕ , pour tout $z \in D(0,R)$ on a :

$$\phi(z) = \sum_{n=0}^{\infty} b_n z^n$$

qui admet un rayon de convergence au moins égal à R, donc strictement supérieur à 1. Or,

$$b_n = \frac{\phi^{(n)}(0)}{n!} = \frac{f^{(n)}(0)}{n!} = a_n$$

Donc, S aurait un rayon de convergence strictement supérieur à 1 : Absurde 4

Q.3: Ni l'une, ni l'autre des deux propositions n'est vraie. En effet, si on prend S_1 définie en Q.1, -1 est un point régulier mais $\sum_{n=0}^{\infty} (-1)^n$ diverge. Pour l'autre proposition, on peut regarder $\ln(1+z) = \sum_{n\geq 1} (-1)^{n-1} \frac{z^n}{n}$ qui converge en -1 par le critère des séries alternées, mais qui ne peut pas se voir prolongées holomorphiquement en un voisinage de -1.

Exercice 5 (Séries entières à coefficients positifs) Le but est de montrer que si $\sum_{n\geq 0} a_n z^n$ est de rayon de convergence égal à 1 et si tous les a_n sont réels positifs ou nuls, alors $1 \in \text{Sing}(S)$. L'idée est de considérer la série de Taylor $g(z) := \sum_{p\geq 0} \frac{f^{(p)}(1/2)}{p!} (z-1/2)^p$ où $f(z) := \sum_{n\geq 0} a_n z^n$.

- 1. Montrer que la série définissant g a un rayon de convergence $R \geq 1/2$ et que si R = 1/2 alors $1 \in \text{Sing}(S)$.
- 2. Montrer que $\frac{f^{(p)}(1/2)}{p!} = \sum_{n=p}^{\infty} {n \choose p} a_n (1/2)^{n-p}$.
- 3. Montrer que si $\frac{1}{2} \le x < R + 1/2$ alors $g(x) = \sum_{n \ge 0} a_n x^n$ et conclure.

Solution:

Q.1: g est a série de Taylor de f au point $\frac{1}{2}$, donc f=g sur un disque centré en $\frac{1}{2}$, le rayon R de ce disque est au moins égal $d(\frac{1}{2},bD)=\frac{1}{2}$. Maintenant, si $R=\frac{1}{2}$, Montrons que 1 est singulier pour f.

Par l'absurde, si tel n'était pas le cas il existerait un voisinage autour de 1, V_1 tel que f y soit prolongeable. Or, l'ouvert $D(\frac{1}{2},\frac{1}{2}) \cup V_1$ est connexe, et g = f sur $D(\frac{1}{2},\frac{1}{2}) \cap V_1$. Donc

par le principe du prolongement analytique, g prolonge f sur $D(\frac{1}{2}, \frac{1}{2}) \cup V_1$, donc $R > \frac{1}{2}$: Absurde ζ

$$Q.2$$
: On $a f(z) = \sum_{n=0}^{\infty} a_n z^n$, donc:

$$\frac{f^{(p)}(z)}{p!} = \frac{1}{p!} \sum_{p \ge n}^{\infty} n(n-1)...(n-p)a_n z^{n-p}$$

$$= \frac{1}{p!} \sum_{p \ge n}^{\infty} \frac{n!}{(n-p)!} a_n z^{n-p}$$

$$= \sum_{p \ge n}^{\infty} \binom{n}{p} a_n z^{n-p}$$

d'où le résultat.

Q.3:

D'après la question précédente, on a :

$$g(x) = \sum_{p \ge 0} \left(\sum_{n \ge p} \binom{n}{p} a_n (1/2)^{n-p} \right) (x - 1/2)^p$$

Cette somme converge, et les termes sont positifs, donc par Fubini :

$$g(x) = \sum_{n \ge p} \left(\sum_{p \ge 0} \binom{n}{p} a_n (1/2)^{n-p} (x - 1/2)^p \right)$$

$$= \sum_{n \ge 0} \left(\sum_{p=0}^{+\infty} \binom{n}{p} a_n (1/2)^{n-p} (x - 1/2)^p \right)$$

$$= \sum_{n \ge 0} a_n \left(\sum_{p=0}^{+\infty} \binom{n}{p} a_n (1/2)^{n-p} (x - 1/2)^p \right)$$

$$= \sum_{n \ge 0} a_n x^n$$

Donc $g(x) = f(x) \ pour \ 1/2 \ge x < R + 1/2$.

Si R > 1/2, il existe un x > 1 tel que S converge et donc elle admet un rayon de convergence strictement supérieur à 1: absurde 4 Donc R = 1/2 et $1 \in Sing(S)$.

Exercice 6 (Un exemple de série lacunaire) Montrer que la série $S = \sum_{n\geq 0} z^{n!}$ est de rayon de convergence égal à 1 et que $\partial D = \operatorname{Sing}(S)$.

Indication: considérer $S(\eta_0 e^{i\frac{p}{q}z})$ où $\eta_0 \in \text{Sing}(S)$ et p/q est rationnel.

Solution:

Dans un premier temps, remarquons que pour z = 1, S diverge grossièrement, puis pour |z| < 1, $|z^{n!}| \le |z|^n$ et donc S converge. Donc S a un rayon de convergence de 1.

Montrons à présent que $Sing(S) = b_D$.

Comme Sing(S) n'est jamais vide, il existe $\eta_0 \in b_D \cap Sing(S)$. On peut par ailleurs, quitte à remplacer S par $\sum_{n\geq 0} (\eta_0 z)^{n!}$, supposer que $\eta_0 = 1$. Montrons à présent que $e^{i\pi \frac{p}{q}} \in Sing(S)$ pour $\frac{p}{a} \in \mathbb{Q}$.

Si $n \leqslant q \ alors \ (e^{i\pi \frac{p}{q}})^{n!} = e^{i\pi \frac{pn!}{q}} = 1.$

Puis, considérons $\tilde{S}(z) = S(e^{i\pi\frac{p}{q}}z) = \sum_{n=0}^{+\infty} (e^{i\pi\frac{p}{q}}z)^{n!} = \sum_{n=0}^{q-1} (e^{i\pi\frac{p}{q}}z)^{n!} + \sum_{n\leqslant q}^{+\infty} z^{n!}$ Le premier terme est un polynôme donc holomorphe sur \mathbb{C} , tandis que le second admet 1 comme point singulier par hypothèse, donc \tilde{S} admet aussi 1 comme point singulier. Donc $e^{i\pi\frac{p}{q}}$ est un point singulier de S. Puis, on peut conclure par densité des complexes d'argument rationnel sur le cercle unité.

Exercice 7 (Séries lacunaires de Hadamard) Soit $(p_n)_{n\geq 0}$ une suite d'entiers telle que $\frac{p_{n+1}}{p_n} \geq c > 1$. On considère la série entière $S = \sum_{n\geq 0} z^{p_n}$. On note f la somme de S dans le disque unité D. Le but est de montrer que $\mathrm{Sing}(S) = \partial D$.

- 1. Montrer que le rayon de convergence de S est égal à 1.
- 2. Montrer qu'il existe un entier M tel que $Mp_{n+1} > (M+1)p_n$ pour tout entier $n \ge 0$.
- 3. Soit $e^{i\theta} \in \partial D$ fixé et soit Q le polynôme défini par $Q(X) = \frac{e^{i\theta}}{2} \left((e^{-i\theta}X)^{M+1} + (e^{-i\theta}X)^M \right)$. Montrer que |Q(z)| < 1 si $z \in D \setminus \{e^{i\theta}\}$.
- 4. On note F la fonction définie sur D par F(z)=f(Q(z)), et F_0 celle définie par $F_0(z)=f(e^{-i\theta}Q(z))$.

Montrer qu'il existe des séries entières $\sum_{n\geq 0} b_n z^n$ et $\sum_{n\geq 0} b_{n,0} z^n$ telles que : $F(z) = \sum_{n\geq 0} b_n z^n$ et $F_0(z) = \sum_{n\geq 0} b_{n,0} z^n$. Montrer que : $\sum_{k=0}^n (e^{-i\theta}Q)^{p_k} = \sum_{m=0}^{(M+1)p_n} b_{m,0} X^m$. En déduire que le rayon de convergence des séries $\sum_{n\geq 0} b_{n,0} z^n$ et $\sum_{n\geq 0} b_n z^n$ est égal à 1.

5. Montrer que si $\eta = e^{i\theta}$ est un point régulier pour S, alors F se prolonge holomorphiquement à un voisinage de D. Conclure.

Exercice 8 (Le théorème de d'Alembert) Montrer le théorème de d'Alembert à partir de celui de Liouville.

Solution:

Soit $P \in \mathbb{C}[X]$ non nul. Si P n'a pas de racines, alors la fonction $z \mapsto \frac{1}{P(z)} \in \mathcal{O}(\mathbb{C})$. Elle est de plus bornée puisque $|P(z)| \underset{|z| \to +\infty}{\longrightarrow} +\infty$. Alors, par le théorème de Liouville, cette fonction est constante, donc P aussi.

Exercice 9 (Une extension du théorème de Liouville) Soit $f \in O(\mathbb{C})$. Montrer que si $|f|^2$ est Lebesgue-intégrable sur \mathbb{C} alors f est identiquement nulle.

Solution:

Soit f une telle fonction, on sait que pour tout $z \in \mathbb{C}$ on a :

$$f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} z^n$$

Montrons alors que $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$. Soit r > 0, on a par la formule de Cauchy:

$$f^{(n)}(0) = \frac{n!}{2\pi r^n} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta$$

Donc,

$$|f^{(n)}(0)| \leq \frac{n!}{2\pi r^n} \int_0^{2\pi} |f(re^{i\theta})| d\theta$$

Or par Cauchy-Schwarz,

$$\int_0^{2\pi} |f(re^{i\theta})| d\theta \leqslant \left(\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \right)^{\frac{1}{2}} \left(\int_0^{2\pi} 1 d\theta \right)^{\frac{1}{2}}$$

$$= \sqrt{2\pi} \left(\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \right)^{\frac{1}{2}}$$

$$\leqslant \sqrt{2\pi} ||f||_2 < \infty \qquad Par \ hypothèse$$

 $Donc, \ |f^{(n)}(0)|\leqslant \tfrac{n!}{\sqrt{2\pi}r^n}\|f\|_2 \underset{|r|\to +\infty}{\longrightarrow} 0, \ d\text{'où le r\'esultat}.$

Exercice 10 (Deux caractérisations des polynômes) Soit $f \in O(\mathbb{C})$. Montrer que si l'une des deux conditions suivantes est satisfaite, alors f est un polynôme :

- 1. Il existe d > 0 tel que : $\limsup_{|z| \to +\infty} \frac{|f(z)|}{|z|^d} < +\infty$.
- $2. \lim_{|z| \to +\infty} |f(z)| = +\infty$

Solution:

 $\overline{Q.1: On \ suppose \ qu'il \ existe \ un \ entier \ d \ tel \ que \ \lim_{|z| \to +\infty} \sup_{|z| \to +\infty} \frac{|f(z)|}{|z|^d} < +\infty$

 $\text{Il existe } c>0 \text{ tel que } \limsup_{|z|\to +\infty} \left|\frac{f(z)}{z^d}\right| = c, \text{ donc il existe } R>0 \text{ tel que } |z|\geqslant R \Rightarrow \left|\frac{f(z)}{z^d}\right|\leqslant 2c.$

De plus, pour $z \in \mathbb{C}$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Soit r > 0, et |z| > r > R:

$$|a_n| = \frac{1}{2\pi r^n} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta$$

$$\leq \frac{1}{2\pi r^n} \int_0^{2\pi} |f(re^{i\theta})| d\theta$$

$$\leq \frac{1}{2\pi r^n} \int_0^{2\pi} 2c|z|^d d\theta$$

$$\leq \frac{2c}{r^n} |z|^d$$

$$\leq \frac{2cr^d}{r^n}$$

 $Or, r^{d-n} \xrightarrow[r \to \infty]{} \begin{cases} 0 & si \ d < n, \\ \infty & si \ d > n. \end{cases} Donc \ les \ a_n \ sont \ nuls \ pour \ n > d, \ d'où \ le \ résultat.$

Q.2: On suppose à présent que $\lim_{|z| \to \infty} |f(z)| = +\infty$;

Remarquons que si f ne s'annule pas, alors $g:=\frac{1}{f}$ est holomorphe sur \mathbb{C} et $\lim_{|z|\to+\infty}|g(z)|=0$

g=0: absurde 4.

Essayons alors de débarrasser f de ses zéros.

f a un nombre fini de zéros, il exister un R > 0 tel que $f(z_0) = 0 \rightarrow z_0 \in D(0, R)$. Donc les zéros de f sont isolés dans le compact D(0, R), si ils étaient en nombre infini, la suite $(z_{0_n})_{n \in \mathbb{N}}$ admettrait une valeur d'adhérence par Bolzano-Weierstrass, donc il existerait des zéros non isolés : 4

Soit $z_1, ..., z_n \in \mathbb{C}$ les zéros de f et α_i la multiplicité de z_i . Soit V_i un voisinage de z_i tel que ce soit le seul zéro dedans. Alors, sur V_i ,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = (z - z_i)^{\alpha_i} g_i(z)$$

avec g_i holomorphe sur V_i et telle que $g_i(z_i) \neq 0$. Considérons alors la fonction

$$g(z) := \frac{f(z)}{\prod_{i=1}^{n} (z - z_i)^{\alpha_i}}$$

Cette fonction est bien holomorphe sur $\mathbb{C} \setminus \{z_1, ..., z_n\}$. De plus, elle est continue sur \mathbb{C} puisque : :

$$\lim_{z \to z_i} g(z) = \frac{g_i(z_i)}{\prod_{k=1, k \neq i}^n (z_i - z_k)^{\alpha_k}}$$

Donc, g est prolongeable de manière holomorphe sur tout \mathbb{C} . De plus, g est non nulle donc $h := \frac{1}{g}$ est bien définie et holomorphe sur \mathbb{C} . Posons $d = \alpha_1 + ... + \alpha_n$,

$$\lim_{|z| \to +\infty} \frac{|h(z)|}{|z|^d} = \lim_{|z| \to +\infty} \frac{\prod_{i=1}^n |z - z_i|^{\alpha_i}}{|z|^d} \frac{1}{|f(z)|} = 0$$

Car, $\frac{\prod_{i=1}^{n}|z-z_{i}|^{\alpha_{i}}}{|z|^{d}}=O(|z|^{d})$. Donc, d'après la question 1, h est polynomiale, puis par D'Alembert, elle est constante. Donc g est aussi constante. Donc f est polynomiale.

Exercice 11 (Un calcul standard) Montrer qu'une fonction holomorphe dont le module est constant est elle-même constante.

Indication : on calculera $\frac{\partial}{\partial \overline{z}} \left(\frac{\partial |f|^2}{\partial z} \right)$.

Solution:

Soit f holomorphe sur Ω non nulle et telle que |f|=c sur Ω . Montrons que f est constante.

D'une part, $\frac{\partial |f|^2}{\partial \overline{z}} = 0 \ sur \ \Omega$.

D'autre part,
$$\frac{\partial |f|^2}{\partial \overline{z}} = \frac{\partial f\overline{f}}{\partial \overline{z}} = \underbrace{\frac{\partial f}{\partial \overline{z}}}_{=0} = \underbrace{\frac{\partial f}{\partial \overline{z}}}_{=0} f + \underbrace{\frac{\partial \overline{f}}{\partial \overline{z}}}_{=0} f = f \underbrace{\frac{\partial \overline{f}}{\partial \overline{z}}}_{=\overline{z}} = f \underbrace{\frac{\partial f}{\partial \overline{z}}}_{=\overline{z}}. Donc \underbrace{\frac{\partial f}{\partial z}}_{=\overline{z}} = 0 sur \Omega.$$