11) Fixed Effects

Vitor Kamada

August 2018

Tables, Graphics, and Figures from

Mastering 'Metrics: The Path from Cause to Effect

Angrist & Pischke (2014): Chapter 5.2

Fixed Effects (Time-Demeaned)

$$y_{it} = \beta_1 x_{it} + \alpha_i + u_{it}$$
 (1)
 $\bar{y}_i = \beta_1 \bar{x}_i + \alpha_i + \bar{u}_i$ (2)

$$y_{it} - \bar{y}_i = \beta_1(x_{it} - \bar{x}_i) + u_{it} - \bar{u}_i$$

 $\ddot{y}_{it} = \beta_1 \ddot{x}_{it} + \ddot{u}_{it}$

Du Mouchel, Williams, and Zador (1987)

Raising the Alcohol Purchase Age: Its Effects on Fatal Motor Vehicle Crashes in Twenty-Six States. The Journal of Legal Studies, Vol. 16(1), pp. 249-266

$$Y_{st} = \alpha + \delta Legal_{st} + \sum_{k=Alaska}^{Wyoming} \beta_k State_{ks} + \sum_{j=1971}^{1983} \gamma_j Year_{jt} + e_{st}$$

 Y_{st} : death rates in state s and year t

Legal_{st}: proportion of 18-20-year olds allowed to drink

State Trends :
$$\sum\limits_{k=Alaska}^{Wyoming} heta_k(State_{ks} imes t)$$

Estimates of MLDA Effects on Death Rates

Dependent variable	(1)	(2)	(3)	(4)
All deaths	10.80 (4.59)	8.47 (5.10)	12.41 (4.60)	9.65 (4.64)
Motor vehicle accidents	7.59 (2.50)	6.64 (2.66)	7.50 (2.27)	6.46 (2.24)
Suicide	.59 (.59)	.47 (.79)	1.49 (.88)	1.26 (.89)
All internal causes	1.33 (1.59)	.08 (1.93)	$\frac{1.89}{(1.78)}$	1.28 (1.45)
State trends	No	Yes	No	Yes
Weights	No	No	Yes	Yes

All models control for state and year effects

Estimates of MLDA Effects Controlling for Beer Taxes

	Without trends		With trends	
Dependent variable	Fraction legal (1)	Beer tax (2)	Fraction legal (3)	Beer tax (4)
All deaths	10.98	1.51	10.03	-5.52
	(4.69)	(9.07)	(4.92)	(32.24)
Motor vehicle	7.59	3.82	6.89	26.88
accidents	(2.56)	(5.40)	(2.66)	(20.12)
Suicide	.45	-3.05	.38	-12.13
	(.60)	(1.63)	(.77)	(8.82)
Internal causes	1.46 (1.61)	-1.36 (3.07)	.88 (1.81)	-10.31 (11.64)

All models control for state and year effects

from linearmodels import PanelOLS

```
df = pd.read stata('C:\\Users\\Vitor\\Desktop\\ECO 6100
Introduction to Econometrics (Fall 2018)\\Lectures\\10)
Difference-in-Difference (DiD)\\deaths.dta')
df = df[df['year'] \le 1983]
df = df[df['agegr'] == '18-20 yrs']
df = df[df['dtype'] == 'all'] # All deaths
df['Weight'] = (df['pop'])
df['Trend'] = df['year']
Dstate = pd.Categorical(df.state)
Dyear = pd.Categorical(df.year)
df = df.set index(['state', 'year'])
```

mod1 = PanelOLS(df.mrate, df.legal, entity_effects=True, time_effects=True)

print(mod1.fit(cov_type='clustered', cluster_entity=True))

```
Parameter Std. Err. T-stat P-value
legal 10.804 4.5501 2.3745 0.0179
```

```
\label{local_panelols} $$\mod 2= PanelOLS.from\_formula('mrate\sim legal + Dyear + Dstate', df)$$ $$ print(mod 2.fit(cov\_type='clustered', cluster\_entity=True)) $$
```

```
Dstate[T.54]
              -3.7739
                         2.6938
                                  -1 4010
                                             0.1617
Dstate[T.55]
                         2.7074
                                  -7.9541
              -21.535
                                             0.0000
Dstate[T.56]
           92.053
                         0.5169
                                   178.09
                                             0.0000
legal
               10.804
                         4.5501
                                   2.3745
                                             0.0179
```

mod3 = PanelOLS.from_formula('mrate ~ legal + Trend*Dstate', df)

print(mod3.fit(cov_type='clustered', cluster_entity=True))

Dstate[55]	4440.3	3.7650	1179.4	0.0000
Dstate[56]	1.283e+04	397.44	32.285	0.0000
legal	9.8573	3.7650	2.6181	0.0091
Trend	-3.9542	0.2611	-15.145	0.0000
Trend:Dstate[T.2]	1.8937	0.2204	8.5921	0.0000

Result is different from the Book, bc I didn't include Time Fixed Effets, given multicollinearity problem

mod4 = PanelOLS(df.mrate, df.legal, weights=df.Weight, entity_effects=True, time_effects=True)

print(mod4.fit(cov_type='clustered', cluster_entity=True))

	Parameter	Std. Err.	T-stat	P-value
legal	12.413	4.5572	2.7237	0.0066

F-test for Poolability: 46.173

P-value: 0.0000

Distribution: F(63,649)

Included effects: Entity, Time