Un auto-morphisme bidendriforme de WQSym Séminaire IRIF

Hugo Mlodecki

Directeurs:

Florent Hivert Viviane Pons

18 Juin 2020

Introduction

•
$$abcd + badc - 3bcad - \frac{5}{3}dcba$$

Introduction

• $abcd + badc - 3bcad - \frac{5}{3}dcba$

Introduction

Exemples d'algèbres de Hopf

- Arbres binaires, PBT, Loday-Ronco
- Fonctions symétriques non-commutatives, Sym
- Fonctions quasi-symétriques, QSym
- Permutations, FQSym, Malvenuto-Reutenauer
- Mots tassés, WQSym, Hivert

3/23

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

 \bullet ϵ

4/23

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- ullet
- 1

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- \bullet ϵ
- 1
- 122111

Mots tassés

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- *\epsilon*
- 1
- 12 21 11
- 123 132 213 231 312 321
 122 212 221 112 121 211 111

Mots tassés Algèbre de Hopf Produits Coproduits Dualité

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- **●** €
- 1
- 122111
- 123
 132
 213
 231
 312
 321 212 221 112 121 211 122 111

Série des mots tassés

n	1	2	3	4	5	6	7	8
PW_n	1	3	13	75	541	4683	47293	545835

4/23

Tassement

Exemple

24154 **₹ PW**

5/23

24154 **∉ PW**

mais

 $pack(24154) = 23143 \in PW$

Tassement

Exemple

24154 **₹ PW**

mais

$$pack(24154) = 23143 \in PW$$

Une représentation : #lignes $\leq \#$ colonnes

retrait lignes vides

 \rightarrow pack \rightarrow

2 3 1

•
$$_{3112} + _{212} - 3 _{212341} - \frac{5}{3} _{111}$$

$$\bullet \ \mathbb{R}_{3112} + \mathbb{R}_{212} - 3\mathbb{R}_{212341} - \frac{5}{3}\mathbb{R}_{111}$$

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\mathbf{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$

Algèbre de Hopf

Exemple

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\bullet \ \Delta(\mathbb{R}_{24231}) = \mathbb{R}_{\epsilon} \otimes \mathbb{R}_{24231} + \mathbb{R}_{121} \otimes \mathbb{R}_{21} + \mathbb{R}_{1312} \otimes \mathbb{R}_1 + \mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon}$

Algèbre de Hopf

Exemple

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $ullet \Delta(\mathbb{R}_{24231}) = \mathbb{R}_{\epsilon} \otimes \mathbb{R}_{24231} + \mathbb{R}_{121} \otimes \mathbb{R}_{21} + \mathbb{R}_{1312} \otimes \mathbb{R}_1 + \mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon}$
- Un produit associatif unitaire ·
- Un coproduit coassociatif counitaire Δ
- La relation de Hopf $\Delta(a \cdot b) = \Delta(a) \cdot \Delta(b)$

7/23

7/23

WQSym Bigèbre bidendriforme Bases ℙ et ℂ Une bijection Mots tassés Algèbre de Hopf Produits Coproduits Dualité

WQSym Bigèbre bidendriforme Bases ℙ et □ Une bijection Mots tassés Algèbre de Hopf Produits Coproduits Dualité

 \mathbb{R}_{24231}

$$\mathbb{R}_\epsilon \otimes \mathbb{R}_{24231}$$

 \mathbb{R}_{24231}

 \mathbb{R}_{24231}

Déconcaténation

$$\mathbb{R}_\epsilon \otimes \mathbb{R}_{24231}$$

 \mathbb{R}_{24231}

Déconcaténation

$$\mathbb{R}_{\epsilon}\otimes\mathbb{R}_{24231}$$
 $\mathbb{R}_{121}\otimes\mathbb{R}_{21}$

 \mathbb{R}_{24231}

Déconcaténation

$$\mathbb{R}_{\epsilon}\otimes\mathbb{R}_{24231}$$
 $\mathbb{R}_{121}\otimes\mathbb{R}_{21}$

$$\mathbb{R}_{24231}$$
 $\overset{\Delta}{\longrightarrow}$

$$\mathbb{R}_{1312} \otimes \mathbb{R}_1$$
 + $\mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon}$

WQSym Bigèbre bidendriforme Bases ℙ et ① Une bijection Mots tassés Algèbre de Hopf Produits Coproduits Dualité

WQSym Bigèbre bidendriforme Bases ℙ et ① Une bijection Mots tassés Algèbre de Hopf Produits Coproduits Dualité

WQSym Bigèbre bidendriforme Bases ℙ et □ Une bijection Mots tassés Algèbre de Hopf Produits Coproduits Dualité

WQSym Bigèbre bidendriforme Bases ℙ et □ Une bijection Mots tassés Algèbre de Hopf Produits Coproduits Dualité

WQSym Bigèbre bidendriforme Bases ℙ et □ Une bijection Mots tassés Algèbre de Hopf Produits Coproduits Dualité

Désassemblage horizontale

2

4

1 3

Désassemblage horizontale

 \mathbb{Q}_{2413}

$$\mathbb{Q}_{\epsilon}\otimes\mathbb{Q}_{2413_{+}}\,\,\mathbb{Q}_{1}\otimes\mathbb{Q}_{132_{+}}\,\,\mathbb{Q}_{21}\otimes\mathbb{Q}_{21}$$

$$\mathbb{Q}_{2413}$$
 $\overset{\Delta}{\rightarrow}$ $\mathbb{Q}_{213}\otimes\mathbb{Q}_{1}$ $\mathbb{Q}_{2413}\otimes\mathbb{Q}_{\epsilon}$

$$\mathbb{R}_{221}\mathbb{R}_{21} = \mathbb{R}_{22143} + \mathbb{R}_{22413} + \mathbb{R}_{22431} + \\
\mathbb{R}_{24213} + \mathbb{R}_{24231} + \mathbb{R}_{24321} + \\
\mathbb{R}_{42213} + \mathbb{R}_{42231} + \mathbb{R}_{42321} + \\
\mathbb{R}_{43221}$$

$$\begin{split} \mathbb{R}_{221}\mathbb{R}_{21} = & \mathbb{R}_{22143} + \mathbb{R}_{22413} + \mathbb{R}_{22431} + \\ & \mathbb{R}_{24213} + \mathbb{R}_{24231} + \mathbb{R}_{24321} + \\ & \mathbb{R}_{42213} + \mathbb{R}_{42231} + \mathbb{R}_{42321} + \\ & \mathbb{R}_{43221} \end{split}$$

$$\Delta(\mathbb{Q}_{24231}) = \mathbb{Q}_{\epsilon} \otimes \mathbb{Q}_{24231} + \mathbb{Q}_{1} \otimes \mathbb{Q}_{1312} + \\ \mathbb{Q}_{221} \otimes \mathbb{Q}_{21} + \mathbb{Q}_{2231} \otimes \mathbb{Q}_{1} + \\ \mathbb{Q}_{24231} \otimes \mathbb{Q}_{\epsilon}$$

$$\mathbb{Q}_{121}\mathbb{Q}_{21} = \mathbb{Q}_{12143} + \mathbb{Q}_{13142} + \mathbb{Q}_{14132} +$$

$$\mathbb{Q}_{23241} + \mathbb{Q}_{24231} + \mathbb{Q}_{34321}$$

$$\begin{split} \mathbb{R}_{221}\mathbb{R}_{21} = & \mathbb{R}_{22143} + \mathbb{R}_{22413} + \mathbb{R}_{22431} + \\ & \mathbb{R}_{24213} + \mathbb{R}_{24231} + \mathbb{R}_{24321} + \\ & \mathbb{R}_{42213} + \mathbb{R}_{42231} + \mathbb{R}_{42321} + \\ & \mathbb{R}_{43221} \end{split}$$

$$\begin{split} \Delta(\mathbb{Q}_{24231}) = & \mathbb{Q}_{\epsilon} \otimes \mathbb{Q}_{24231} + \mathbb{Q}_{1} \otimes \mathbb{Q}_{1312} + \\ & \mathbb{Q}_{221} \otimes \mathbb{Q}_{21} + \mathbb{Q}_{2231} \otimes \mathbb{Q}_{1} + \\ & \mathbb{Q}_{24231} \otimes \mathbb{Q}_{\epsilon} \end{split}$$

$$\mathbb{Q}_{121}\mathbb{Q}_{21} = \mathbb{Q}_{12143} + \mathbb{Q}_{13142} + \mathbb{Q}_{14132} +$$

$$\mathbb{Q}_{23241} + \mathbb{Q}_{24231} + \mathbb{Q}_{34321}$$

$$\begin{aligned} \mathbb{R}_{221}\mathbb{R}_{21} = & \mathbb{R}_{22143} + \mathbb{R}_{22413} + \mathbb{R}_{22431} + \\ & \mathbb{R}_{24213} + \mathbb{R}_{24231} + \mathbb{R}_{24321} + \\ & \mathbb{R}_{42213} + \mathbb{R}_{42231} + \mathbb{R}_{42321} + \\ & \mathbb{R}_{43221} \end{aligned}$$

$$\begin{split} \Delta(\mathbb{Q}_{24231}) = & \mathbb{Q}_{\epsilon} \otimes \mathbb{Q}_{24231} + \mathbb{Q}_{1} \otimes \mathbb{Q}_{1312} + \Delta(\mathbb{R}_{24231}) = & \mathbb{R}_{\epsilon} \otimes \mathbb{R}_{24231} + \mathbb{R}_{121} \otimes \mathbb{R}_{21} + \\ & \mathbb{Q}_{221} \otimes \mathbb{Q}_{21} + \mathbb{Q}_{2231} \otimes \mathbb{Q}_{1} + & \mathbb{R}_{1312} \otimes \mathbb{R}_{1} + \mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon} \\ & \mathbb{Q}_{24231} \otimes \mathbb{Q}_{\epsilon} \end{split}$$

ullet et $\mathbb Q$ bases de WQSym et WQSym*

Auto-dualité

- ■ R et
 □ bases de WQSym et WQSym*
- 2001 Duchanp-Hivert-Thibon conjecturent l'auto-dualité de **WQSym**

Auto-dualité

- ■ R et
 □ bases de WQSym et WQSym*
- 2001 Duchanp-Hivert-Thibon conjecturent l'auto-dualité de **WQSym**
- 2005 Foissy démontre l'auto-dualité

Auto-dualité

- R et Q bases de WQSym et WQSym*
- 2001 Duchanp-Hivert-Thibon conjecturent l'auto-dualité de **WQSym**
- 2005 Foissy démontre l'auto-dualité
- Pas d'isomorphisme explicite

Définition récursive du produit de mélange

- $\bullet \ \epsilon \sqcup w = w \sqcup \epsilon = w$
- $ua \sqcup vb = (u \sqcup vb)a + (ua \sqcup v)b$

Définition récursive du produit de mélange

- $\bullet \ \epsilon \sqcup w = w \sqcup \epsilon = w$
- $ua \sqcup vb = (u \sqcup vb)a + (ua \sqcup v)b = ua \prec vb + ua \succ vb$

Demis produits

Définition récursive du produit de mélange

- $\bullet \ \epsilon \sqcup w = w \sqcup \epsilon = w$
- $ua \sqcup vb = (u \sqcup vb)a + (ua \sqcup v)b = ua \prec vb + ua \succ vb$

Exemple de produits gauche et droit

•
$$\mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$$

Définition récursive du produit de mélange

- $\bullet \ \epsilon \sqcup w = w \sqcup \epsilon = w$
- $ua \sqcup vb = (u \sqcup vb)a + (ua \sqcup v)b = ua \prec vb + ua \succ vb$

Exemple de produits gauche et droit

- $\mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\mathbb{R}_{12} \prec \mathbb{R}_{11} = \mathbb{R}_{1332} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\mathbb{R}_{12} \succ \mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{3123}$

Demis produits

Définition récursive du **produit de mélange**

- $\bullet \ \epsilon \sqcup w = w \sqcup \epsilon = w$
- $ua \sqcup vb = (u \sqcup vb)a + (ua \sqcup v)b = ua \prec vb + ua \succ vb$

Exemple de produits gauche et droit

- $\mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\mathbb{R}_{12} \prec \mathbb{R}_{11} = \mathbb{R}_{1332} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\mathbb{R}_{12} \succ \mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{3123}$

Exemple de coproduits gauche et droit

 $\bullet \ \ \tilde{\Delta}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321} + \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$

Demis produits

Définition récursive du produit de mélange

- $\bullet \ \epsilon \sqcup w = w \sqcup \epsilon = w$
- $ua \sqcup vb = (u \sqcup vb)a + (ua \sqcup v)b = ua \prec vb + ua \succ vb$

Exemple de produits gauche et droit

- $\mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\mathbb{R}_{12} \prec \mathbb{R}_{11} = \mathbb{R}_{1332} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\mathbb{R}_{12} \succ \mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{3123}$

Exemple de coproduits gauche et droit

- $\bullet \ \ \tilde{\Delta}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321} + \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$
- $\Delta_{\prec}(\mathbb{R}_{2425531}) = \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$
- $\Delta_{\succ}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321}$

Bigèbre bidendriforme

Définition

 Raffinement de l'associativité et la coassociativité $(a \sqcup b) \sqcup c = a \sqcup (b \sqcup c)$

Définition

- Raffinement de l'associativité et la coassociativité
 - $(a \prec b) \prec c = a \prec (b \prec c + b \succ c)$,
 - $(a \succ b) \prec c = a \succ (b \prec c)$,
 - $(a \prec b + a \succ b) \succ c = a \succ (b \succ c)$.

Bigèbre bidendriforme

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Bigèbre bidendriforme

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Théorème [Foissy]

Si A est une bigèbre bidendriforme alors A est généré librement par $\mathsf{TPrim}(A)$ en tant qu'algèbre dendriforme.

Demis produits et coproduits Éléments primitifs

Bigèbre bidendriforme

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Théorème [Foissy]

Si A est une bigèbre bidendriforme alors A est généré librement par $\mathsf{TPrim}(A)$ en tant qu'algèbre dendriforme.

Séries

n	1	2	3	4	5	6	7	8
WQSym _n	1	3	13	75	541	4 683	47 293	545 835
TPrim _n	1	1	4	28	240	2 384	26 832	337 168

14/23

Bigèbre bidendriforme

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Théorème [Foissy]

Si A est une bigèbre bidendriforme alors A est généré librement par $\mathsf{TPrim}(A)$ en tant qu'algèbre dendriforme.

Corollaire

WQSym est auto-duale.

Définitions

Élément primitif

P est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

 $Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$

Élément primitif

P est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

 $Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$

Elément totalement primitif

P est une élément totalement primitif $\iff \Delta_{\prec}(P) = \Delta_{\succ}(P) = 0$

 $Ex : \mathbb{R}_{12443} - \mathbb{R}_{21443} - \mathbb{R}_{23441} + \mathbb{R}_{32441}$

Isomorphisme bidendriforme explicite entre WQSym et sa duale

Isomorphisme bidendriforme explicite entre WQSym et sa duale Isomorphisme explicite entre TPrim(WQSym) et le dual

Mon but

Isomorphisme bidendriforme explicite entre **WQSym** et sa duale \$\precest\tau\$ Isomorphisme explicite entre TPrim(**WQSym**) et le dual

Construction de deux bases de totalement primitif (dans **WQSym** et **WQSym***)

Un exemple de forêt biplane décorée:

Un exemple de forêt biplane décorée:

En bijection avec: 8767595394312.

Algorithme sur 8767595394<u>312</u>

F(8767595394312)

F(8767595394312)

Factorisation en descentes globales

$$F(8767595394312) = T(65453731721) T(12)$$

Factorisation en descentes globales + tassement

T(65453731721)T(12)

T(65453731721)T(12)

Retrait des lettres de valeur max

T(65453731721)T(12)

Factorisation en descentes globales

T(65453731721)T(12)

Distinction de deux groupes de facteurs

T(65453731721)T(12)

Positions des max

T(12)

T(121)

T(11)

La base \mathbb{P}

$$\mathbb{P}_{\bigcirc} := \mathbb{R}_{1},$$

$$\mathbb{P}_{t_{1},...,t_{k}} := (...(\mathbb{P}_{t_{k}} \prec ...) \prec \mathbb{P}_{t_{2}}) \prec \mathbb{P}_{t_{1}},$$

$$\mathbb{P}_{\overbrace{r_{1} \ldots r_{d}}} := \Phi_{I}(\mathbb{P}_{r_{1},...,r_{d}}),$$

$$\mathbb{P}_{\underbrace{r_{1} \ldots r_{d}}} := \langle \mathbb{P}_{I_{1}}, \mathbb{P}_{I_{2}}, ..., \mathbb{P}_{I_{k}}; \Phi_{I}(\mathbb{P}_{r_{1},...,r_{d}}) \rangle.$$

La base $\mathbb P$

$$\mathbb{P}_{\bigcirc}:=\mathbb{R}_{1},$$
 $\mathbb{P}_{t_{1},...,t_{k}}:=\left(...(\mathbb{P}_{t_{k}}\prec...)\prec\mathbb{P}_{t_{2}}\right)\prec\mathbb{P}_{t_{1}},$
 $:=\Phi_{I}(\mathbb{P}_{r_{1},...,r_{d}}),$
 $\mathbb{P}_{r_{1}}....r_{r_{d}}$
 $:=\langle\mathbb{P}_{I_{1}},\mathbb{P}_{I_{2}},...,\mathbb{P}_{I_{k}};\Phi_{I}(\mathbb{P}_{r_{1},...,r_{d}})\rangle.$

Exemple

$$\mathbb{R}_{235541} - \mathbb{R}_{245531} - \mathbb{R}_{244531} - \mathbb{R}_{245431} - \mathbb{R}_{254431} + \mathbb{R}_{325541} - \mathbb{R}_{425531} - \mathbb{R}_{524431} + \mathbb{R}_{352541} - \mathbb{R}_{452531} + \mathbb{R}_{355241} - \mathbb{R}_{455231} + \mathbb{R}_{344521} + \mathbb{R}_{344521} + \mathbb{R}_{344521} + \mathbb{R}_{534421}$$

La base \mathbb{P}

$$\mathbb{P}_{\bigcirc} := \mathbb{R}_{1},$$

$$\mathbb{P}_{t_{1},...,t_{k}} := (...(\mathbb{P}_{t_{k}} \prec ...) \prec \mathbb{P}_{t_{2}}) \prec \mathbb{P}_{t_{1}},$$

$$\mathbb{P}_{\overbrace{r_{1} \ldots r_{d}}} := \Phi_{I}(\mathbb{P}_{r_{1},...,r_{d}}),$$

$$\mathbb{P}_{\underbrace{r_{1} \ldots r_{d}}} := \langle \mathbb{P}_{I_{1}}, \mathbb{P}_{I_{2}}, ..., \mathbb{P}_{I_{k}}; \Phi_{I}(\mathbb{P}_{r_{1},...,r_{d}}) \rangle.$$

Théorème

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_n}$ est une base de **WQSym**_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{T}_n}$ est une base de Prim_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{V}_n}$ est une base de TPrim_n.

200

F*(8967647523314)

F*(8967647523314)

Factorisation en descentes globales

 $F^*(8967647523314) =$ $T^*(67647523314)T^*(12)$ Factorisation en descentes globales + tassement + échange

 $T^*(67647523314)T^*(12)$

Retrait de la dernière lettre

 $T^*(67647523314)T^*(12)$

Factorisation en descentes globales

$$T^*(67647523314)T^*(12)$$

 $T^*(67647523314)T^*(12)$

Distinction de deux groupes de facteurs

 $T^*(12)$

$T^*(67647523314)T^*(12) =$

La dernière lettre est-elle présente dans le reste du mot ?

????

Algorithme sur 8967647523314

Algorithme sur 8967647523314

 $1 \bigstar$

 \mathbb{O}

$$\mathbb{O}_{\mathbb{O}}:=\mathbb{Q}_{1}, \ \mathbb{O}_{t_{1},...,t_{k}}:=(...(\mathbb{O}_{t_{k}}\prec...)\prec\mathbb{O}_{t_{2}})\prec\mathbb{O}_{t_{1}}, \ \mathbb{O}_{\stackrel{j^{lpha}}{=}}:=\Psi_{i}^{lpha}(\mathbb{O}_{r_{1},...,r_{d}}), \ \mathbb{O}_{\stackrel{j^{lpha}}{=}}:=\langle\mathbb{O}_{l_{1}},\mathbb{O}_{l_{2}},...,\mathbb{O}_{l_{k}};\Psi_{i}^{lpha}(\mathbb{O}_{r_{1},...,r_{d}})
angle.$$

La base $\mathbb O$

Exemple

$$\mathbb{Q}_{531442} + \mathbb{Q}_{521443} + \mathbb{Q}_{512443} - \mathbb{Q}_{534142} - \mathbb{Q}_{524143} - \mathbb{Q}_{514243} - \mathbb{Q}_{514432} - \mathbb{Q}_{524431} - \mathbb{Q}_{514423} + \mathbb{Q}_{541432} + \mathbb{Q}_{542431} + \mathbb{Q}_{541423}$$

290

 $:= \langle \mathbb{O}_{I_1}, \mathbb{O}_{I_2}, ..., \mathbb{O}_{I_k}; \Psi_i^{\alpha}(\mathbb{O}_{r_1,...,r_d}) \rangle.$

La base 🔘

$$\mathbb{O}_{\mathbb{O}}:=\mathbb{Q}_{1}, \ \mathbb{O}_{t_{1},...,t_{k}}:=(...(\mathbb{O}_{t_{k}}\prec...)\prec\mathbb{O}_{t_{2}})\prec\mathbb{O}_{t_{1}}, \ \mathbb{O}_{i_{1}}=\Psi_{i}^{lpha}(\mathbb{O}_{r_{1},...,r_{d}}),$$

Théorème

- $(\mathbb{O}_f)_{f \in \mathfrak{F}^*_n}$ est une base de **WQSym**_n*,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}^*_n}$ est une base de Prim_n*,
- $(\mathbb{O}_t)_{t\in\mathfrak{P}^*_n}$ est une base de TPrim_n.

$$[1-9]^{13}$$

$$T_1$$

$$T_2$$

$$[3-9]^{11}$$
 $[1,2]^2$

$$T_1$$

$$T_2$$

$$[3-9]^{11}$$
 $[1,2]^2$

89 676475**2331**4

$$[\mathbf{6} - \mathbf{8}]^{\mathbf{4}}[3 - 5, 9]^{7}12$$

89 67647523314

$$8[\mathbf{6},\mathbf{7}]^{\mathbf{3}}[3-5,9]^{\mathbf{7}}12$$

$$(???)$$
 $[1,2]^3$

122

 $[1, 2]^3$

 $[1, 2]^3$

122

89 67647523314

 $8[\mathbf{6},\mathbf{7}]^{\mathbf{3}}[3-5,9]^{\mathbf{7}}12$

$$3431421 = pack(6764754)$$

$$[1-4]^7 = pack([3-5,9]^7)$$

$$[1-4]^7$$

3431421

$$[1-4]^7$$

3431421

$$3431421 = pack(6764754)$$

$$[1-4]^7 = pack([3-5,9]^7)$$

$$[1-4]^7 = pack([4-7]^7)$$

$$3431421 = pack(5953943)$$

Théorèmes

Théorème

- $(\mathbb{O}_f)_{f \in \mathfrak{F}^*_n}$ base de **WQSym** $_n^*$,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}^*_n}$ base de Prim $_n^*$,
- $(\mathbb{O}_t)_{t\in\mathfrak{P}^*_n}$ base de TPrim_n^* .

Théorème

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_n}$ base de **WQSym**_n,
- \bullet $(\mathbb{P}_t)_{t\in\mathfrak{T}_n}$ base de Prim_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{P}_n}$ base de TPrim_n.

Bijection

$$\mathfrak{F}^* \longleftrightarrow \mathfrak{F}$$

$$\mathfrak{T}^* \quad \leftrightarrow \mathfrak{T}$$

$$\mathfrak{P}^* \leftrightarrow \mathfrak{P}$$

Isomorphisme bidendriforme

