OM 040128F

Supporting Information

OM040128F

Metallaboratrane Formation – The Missing Link: The First Iridaboratranes $[IrH(CO)(PPh_3)\{\kappa^3-B,S,S'-B(mt)_2R\}]$ (Ir \rightarrow B; mt = methimazolyl, R = mt, H).

Ian R. Crossley, Anthony F. Hill,* and Anthony C. Willis

Research School of Chemistry, Institute of Advanced Studies, Australian National
University, Canberra, A. C. T., Australia, Email: a.hill@anu.edu.au

- (A) Synthetic Procedural Details
- (B) Crystal Structure Determination report: [HIr(C₈H₁₁BN₄S₂)(CO)(C₁₈H₁₅P)].CHCl₃.

A full Crystallographic Information File has been deposited with the Cambridge Crystallographic Data Centre:

CCDC 252699

Summary of Data CCDC 252699

Authors: A.C.Willis, I.R.Crossley, A.F.Hill

Journal: Organometallics (0579)

Formula: C28 H28 B1 Cl3 Ir1 N4 O1 P1 S2

Unit cell parameters: a 9.3509(2) b 9.7847(2) c 19.1038(5) alpha 92.7592(16) beta 99.6612(11) gamma 110.9262(14) space group P-1

(A) Synthetic Procedural Details

Synthesis of [IrH(CO)(PPh₃){ κ^3 -B,S,S'-B(mt)₃}] (5). Under an atmosphere of N₂; to a solution of [IrCl(CO)(PPh₃)₂] (1.00 g, 1.28 mmol) in dichloromethane (30 cm³) was added Na[HB(mt)₃]^{1a} (0.50 g, 1.34 mmol). The mixture was stirred for 3 h and then the resulting pale yellow solution filtered anaerobically to remove residual Na[HB(mt)₃] and resultant NaCl, and subsequently concentrated *in vacuo* until a solid began to form. The addition of diethyl ether (ca. 50 cm³) resulted in precipitation of an off-white solid, which was collected by filtration, recrystallized from chloroform/hexane, then dried *in vacuo*. Yield 0.70 g, 66 %.

Synthesis of $[IrH(CO)(PPh_3)\{\kappa^3-B,S,S'-B(mt)_2H\}]$ (6). In an analogous procedure to 5, a solution of $[IrCl(CO)(PPh_3)_2]$ (2.00 g, 2.40 mmol) in dichloromethane (100 cm³) was allowed to react with $Na[H_2B(mt)_2].H_2O^{7b}$ (0.70 g, 2.50 mmol) for 3 h. The crude product was isolated as for 5, then recrystallized from chloroform/hexane to afford an off-white solid, which was dried *in vacuo*. Yield 1.40 g, 83 %.

16 Sep 2004

Crystal structure of [HIr(C₈H₁₁BN₄S₂)(CO)(C₁₈H₁₅P)].CHCl₃ -irc06

ANTHONY C. WILLIS, IAN R. CROSSLEY AND ANTHONY F. HILL

Research School of Chemistry, Australian National University, Canberra, A. C. T. 0200, Australia. E-mail: willis@rsc.anu.edu.au

Abstract

The crystal structure of $[HIr(C_8H_{11}BN_4S_2)(CO)(C_{18}H_{15}P)]$. CHCl₃ is reported.

Comment

The crystallographic asymmetric unit consists of one $[HIr(C_8H_{11}BN_4S_2)(CO)(C_{18}H_{15}P)]$ molecule and one chloroform molecule of solvation.

A peak attributable to the hydride was observed in a difference electron density map. It was included in the structure as a H atom and refined positionally with restraints that the H—Ir—(cis-atom) angles should be near equal and the Ir—H distance should tend to 1.65 Å (to match the bond length reported for Ir-hydrides in neutron studies). Distances and angles involving the hydride should not be regarded as being very reliable as it is in close proximity to a very heavy atom with its associated series-termination features.

The biggest peaks in the final difference electron density map are located near the Ir atom.

Experimental

The compound was prepared by IRC and recrystallized from chloroform/diethylether. The sample ID was irc-226.

© 2005 American Chemical Society, Organometallics, Crossley om040128f Supporting Info Page 6

Crystal data

 $C_{27}H_{27}BIrN_4OPS_2.CHCl_3$

 $M_r = 841.05$

Triclinic

 $P\overline{1}$

a = 9.3509(2) Å

b = 9.7847(2) Å

c = 19.1038 (5) Å

 $\alpha=92.7592\,(16)^{\rm o}$

 $\beta = 99.6612\,(11)^{\rm o}$

 $\gamma = 110.9262 (14)^{\circ}$

 $V = 1598.35 (7) \text{ Å}^3$

Z = 2

 $D_x = 1.747 \; {\rm Mg \; m^{-3}}$

 D_m not measured

Mo $K\alpha$ radiation

 $\lambda = 0.71073 \text{ Å}$

 $Data\ collection$

Nonius Kappa CCD diffractometer

 φ and ω scans with CCD

Absorption correction:

by integration \emph{via} Gaussian method (Cop-

pens, 1970) implemented in maXus (2000)

 $T_{\min} = 0.338, T_{\max} = 0.656$

30196 measured reflections

7345 independent reflections

Cell parameters from 106915 reflections

 $\theta = 3-27^{\circ}$

 $\mu = 4.638 \; \rm mm^{-1}$

 $T=200~\mathrm{K}$

Plate

Yellow

 $0.30\,\times\,0.21\,\times\,0.10~\mathrm{mm}$

Crystal source: ?

6032 reflections with

I > 3.0u(I)

 $R_{\rm int} = 0.07$

 $\theta_{\rm max}=27.611^{\rm \circ}$

 $h = -12 \rightarrow 12$

 $k = -12 \rightarrow 12$

 $l = -24 \rightarrow 24$

every 0 reflections $\,$

frequency: 0 min

intensity decay: none

$@\ 2005\ American\ Chemical\ Society,\ Organometallics,\ Crossley\ om 040128f\ Supporting\ Info\ Page\ 7$

Refinement	
Refinement on F	Method, part 1, Chebychev polyno-
R = 0.0300	mial, (Watkin, 1994, Prince, 1982)
wR = 0.0347	[weight] = $1.0/[A_0 * T_0(x) + A_1 * T_1(x) \dots$
S = 1.0943	$+A_{n-1}] * T_{n-1}(x)$
6032 reflections	where A_i are the Chebychev coefficients
373 parameters	listed below and $x=$ Fcalc/Fmax Method
H atoms treated by a mixture of independent	= Robust Weighting (Prince, 1982) $W =$
and constrained refinement	[weight] * [1-(deltaF/6*sigmaF) ²] ² A_i are
	1.55 -0.678 1.14 -0.205
•	$(\Delta/\sigma)_{\mathrm{max}} = 0.0009$
	$\Delta ho_{ m max}=1.33$ e Å $^{-3}$
	$\Delta ho_{ m min}=-1.92$ e Å $^{-3}$
	Extinction correction: none
•	Scattering factors from International Tables
	for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters (A	, °,)
---	------	---

Ir1—S1	2.4847 (11)	N25—C21	1.360 (5)
Ir1—S2	2.4173 (10)	N25C24	1.388 (7)
Ir1—P1	2.4113 (10)	N25—C26	1.455 (7)
Ir1—C1	1.826 (5)	C13C14	1.344 (8)
Ir1—B1	2.210 (5)	C23—C24	1.339 (8)
Cl1C501	1.781 (6)	C111—C112	1.403 (6)
Cl2—C501	1.743 (6)	C111—C116	1.374 (6)
Cl3—C501	1.746 (6)	C112—C113	1.398 (6)
S1—C11	1.717 (5)	C113—C114	1.374 (7)
S2—C21	1.703 (5)	C114—C115	1.380 (7)
P1—C111	1.838 (4)	. C115—C116	1.393 (6)
P1—C121	1.832(4)	C121—C122	1.398 (6)
P1—C131	1.836(4)	C121—C126	1.394 (6)
O1—C1	1.149 (6)	C122—C123	1.388 (6)
N12C11	1.340 (6)	C123—C124	1.385 (8)
N12—C13	1.392 (6)	C124—C125	1.384 (7)
N12—B1	1.557 (6)	C125—C126	1.397 (6)
N15—C11	1.357 (6)	C131—C132	1.393 (6)
N15C14	1.382 (7)	C131—C136	1.394 (6)
N15—C16	1.459 (7)	C132—C133	1.396 (7)
N22—C21	1.341 (6)	C133—C134	1.381 (8)
N22—C23	1.390 (6)	C134—C135	1.394 (8)
N22—B1	1.581 (6)	C135—C136	1.388 (7)

S1—Ir1—S2	91.69 (4)	S2C21N25	127.4(4)
S1—Ir1—P1	100.14 (3)	S2C21N22	124.5 (3)
S2—Ir1—P1	88.46 (4)	N25—C21—N22	108.0 (4)
S1—Ir1—C1	92.19 (15)	N22C23C24	107.8 (5)
S2Ir1C1	167.76 (14)	N25—C24—C23	107.6 (4)
P1—Ir1—C1	102.27 (14)	P1—C111—C112	118.5 (3)
S1—Ir1—B1	85.90 (13)	P1-C111-C116	122.5(3)
S2—Ir1—B1	86.01 (12)	C112—C111—C116	119.0 (4)
P1—Ir1—B1	171.94 (13)	C111—C112—C113	119.8 (4)
C1—Ir1—B1	82.69 (18)	C112—C113—C114	120.2 (4)
Ir1—S1—C11	96.27 (16)	C113—C114—C115	120.1(4)
Ir1—S2—C21	97.18 (15)	C114—C115—C116	119.8 (4)
Ir1P1C111	118.04 (13)	C115—C116—C111	121.0 (4)
Ir1—P1—C121	116.75 (13)	P1—C121—C122	118.7 (3)
C111—P1—C121	101.81 (18)	P1—C121—C126	122.2(3)
Ir1—P1—C131	111.90 (13)	C122—C121—C126	119.0 (4)
C111—P1—C131	102.96 (18)	C121—C122—C123	120.1 (4)
C121—P1—C131	103.46 (18)	C122—C123—C124	120.4 (5)
C11—N12—C13	107.6 (4)	C123—C124—C125	120.2(4)
C11—N12—B1	124.9 (4)	C124—C125—C126	119.6 (5)
C13—N12—B1	127.4 (4)	C125—C126—C121	120.7 (4)
C11—N15—C14	108.3 (4)	P1—C131—C132	117.6 (3)
C11—N15—C16	125.2 (4)	P1—C131—C136	123.1 (3)
C14—N15—C16	126.5 (4)	C132—C131—C136	119.3 (4)
C21—N22—C23	108.4 (4)	C131—C132—C133	120.1(4)
C21—N22—B1	122.6 (3)	C132—C133—C134	120.3(5)
C23—N22—B1	128.7 (4)	C133—C134—C135	119.9 (4)
C21-N25-C24	108.1 (4)	C134—C135—C136	119.9 (5)
C21N25C26	124.5 (5)	C131—C136—C135	120.6(4)
C24—N25—C26	127.3 (4)	Cl1—C501—Cl3	109.6 (3)
Ir1C1O1	175.6 (4)	Cl1—C501—Cl2	109.2 (3)
S1—C11—N15	127.0 (4)	Cl3—C501—Cl2	110.8 (4)
S1C11N12	. 124.4 (4)	N22—B1—Ir1	106.5 (3)
N15C11N12	108.6 (4)	N22—B1—N12	107.4(3)
N12C13C14	108.4 (5)	Ir1—B1—N12	107.8 (3)
N15—C14—C13	107.1 (4)		

The hydride was refined positionally, with restraints, while other H atoms were included at idealized positions and ride on the atom to which they are attached.

Data collection: COLLECT (Nonius BV, 1997). Cell refinement: Denzo/Scalepack (Otwinowski & Minor, 1996). Data reduction: Denzo/Scalepack (Otwinowski & Minor, 1996). Program(s) used to solve structure: PATTY in *DIRDIF* (Beurskens *et al.* 1996) implemented in maXus (2000). Program(s) used to refine structure: *CRYSTALS* (Watkin *et al.*2003). Molecular graphics: *ORTEP*–II (Johnson 1976) in teXsan (MSC, 1992–1997). Software used to prepare material for publication: *CRYSTALS* (Watkin *et al.*2003).

References

- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (2000). maXus Computer Program for the Solution and Refinement of Crystal Structures. Nonius, The Netherlands, MacScience, Japan & The University of Glasgow.
- Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. Crystallographic Computing. F. R. Ahmed, S. R. Hall and C. P. Huber, Editors., Munksgaard. Copenhagen. pp 255–270.
- Beurskens, P. T., Beurskens, G., Bosman, W. P., de Gelder, R. S. García-Granda, S., Gould,
 R. O. & Smits, J. M. M. (1996). The DIRDIF96 program system, Technical Report of the
 Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Nonius BV, COLLECT Software, 1997-2001)
- Otwinowski, Z. & Minor, W. (1996). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 276, 1997, 307–326. Ed Carter, C. W. & Sweet, R. M., Academic Press.
- Prince, E. Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, New York, 1982.
- Watkin D. J. (1994). Acta Cryst, A50, 411-437
- Molecular Structure Corporation. (1992–1997). teXsan. Single Crystal Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Johnson, C. K. (1976). ORTEP-II, A Fortran Thermal-Ellipsoid Plot Program, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Supplementary data

Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\mathring{A}^2)

 $U_{\rm eq} = (1/3) \Sigma_i \Sigma_j U^{ij} a^i a^j \mathbf{a}_i.\mathbf{a}_j.$

	•	4 (/ / /)	• ,	
Ir1	x 0.790196 (17)	y 0.805640 (16)	z 0.254344 (9)	$U_{ m eq}$ 0.0274
CH	0.3144 (2)	0.6606 (2)	0.45023 (12)	
Cl2	0.4759 (2)	, ,	` '	0.0841
Cl2 Cl3	0.19554 (18)	0.4762 (2) 0.4637 (2)	0.41227 (8)	0.0698
SI	0.69247 (13)	0.90370 (12)	0.31893 (9)	0.0755
S2	0.56709 (12)	` '	0.35082 (6)	0.0351
P1	` '	0.57615 (11)	0.23405 (6)	0.0334
O1	0.66453 (11)	0.88414 (10)	0.15196 (5)	0.0259
	1.1042 (4)	1.0438 (4)	0.2959 (2)	0.0584
N12	0.8748 (4)	0.7625 (4)	0.4118 (2)	0.0361
N15	0.7922 (5)	0.8697 (5)	0.4907 (2)	0.0417
N22	0.7973 (4)	0.5331 (4)	0.3249 (2)	0.0347
N25	0.5939 (5)	0.3297 (4)	0.2889 (2)	0.0438
C1	0.9813 (5)	0.9550 (5)	0.2778 (2)	0.0385
C11	0.7883 (5)	0.8435 (5)	0.4199 (3)	0.0366
C13	0.9346 (6)	0.7371 (6)	0.4795 (3)	0.0463
C14	0.8844 (6)	0.8034 (6)	0.5280 (3)	0.0494
C16	0.7131 (7)	0.9551 (7)	0.5214 (3)	0.0543
C21	0.6546 (5)	0.4764 (5)	0.2831 (2)	0.0347
C23	0.8291 (6)	0.4198 (5)	0.3569 (3)	0.0457
C24	0.7035 (7)	0.2955 (5)	0.3357 (3)	0.0508
C26	0.4359 (7)	0.2318 (5)	0.2558(4)	0.0574
C111	0.7176 (5)	1.0830 (4)	0.1477 (2)	0.0288
C112	0.8755 (5)	1.1753 (5)	0.1679 (3)	0.0400
C113	0.9196 (6)	1.3268 (5)	0.1644 (3)	0.0455
C114	0.8082 (6)	1.3860 (5)	0.1439 (3)	0.0442
C115	0.6532 (6)	1.2951 (5)	0.1223 (3)	0.0421
C116	0.6090 (5)	1.1437 (5)	0.1245 (2)	0.0352
C121	0.4508 (4)	0.8183 (4)	0.1352 (2)	0.0291
C122	0.3769 (5)	0.8124 (5)	0.1935 (3)	0.0377
C123	0.2163 (6)	0.7752(6)	0.1823 (3)	0.0480
C124	0.1277 (5)	0.7406 (5)	0.1135 (3)	0.0453
C125	0.1981 (5)	0.7403 (5)	0.0554(3)	0.0433
C126	0.3601 (5)	0.7803 (5)	0.0663 (3)	0.0359
C131	0.7054 (4)	0.8208 (4)	0.0682 (2)	0.0294
C132	0.6754 (5)	0.6711 (5)	0.0542 (2)	0.0353
C133	0.7068 (6)	0.6172 (6)	-0.0081(3)	0.0449
C134	0.7696 (6)	0.7120 (6)	-0.0558(3)	0.0496
C135	0.8000 (6)	0.8620 (6)	0.0422 (3)	0.0492
C136	0.7664 (5)	0.9155 (5)	0.0192(2)	0.0388
C501	0.3651 (6)	0.5772 (7)	0.3783 (3)	0.0550
B1	0.8965 (5)	0.7042 (5)	0.3386 (3)	0.0321
H1	0.865 (3)	0.731 (3)	0.1993 (15)	0.0320
H11	1.0095 (5)	0.7267 (5)	0.3384 (3)	0.0396
H131	1.0033 (6)	0.6793 (6)	0.4903 (3)	0.0553
H141	0.9091 (6)	0.8046 (6)	0.5811 (3)	0.0567
H161	0.7343 (7)	0.9580 (7)	0.5747 (3)	0.0650
H162	0.7526 (7)	1.0578 (7)	0.5082 (3)	0.0650
H163	0.5980 (7)	0.9080 (7)	0.5025 (3)	0.0650
H231	0.9281 (6)	0.4293 (5)	0.3899 (3)	0.0596
H241	0.6910 (7)	0.1962 (5)	0.3508 (3)	0.0680
H261	0.4190 (7)	0.1296 (5)	0.2679 (4)	0.0667
	. ,	• •	` '	

H262	0.3591 (7)	0.2665 (5)	0.2741 (4)	0.0667
H263	0.4211 (7)	0.2319 (5)	0.2028 (4)	0.0667
H1121	0.9562(5)	1.1330 (5)	0.1848 (3)	0.0456
H1131	1.0325 (6)	1.3923 (5)	0.1768 (3)	0.0495
H1141	0.8395 (6)	1.4951 (5)	0.1447 (3)	0.0533
H1151	0.5729 (6)	1.3377 (5)	0.1051(3)	0.0533
H1161	0.4965 (5)	1.0783 (5)	0.1088 (2)	0.0422
H1221	0.4399 (5)	0.8350 (5)	0.2433 (3)	0.0471
H1231	0.1644 (6)	0.7734 (6)	0.2241 (3)	0.0597
H1241	0.0123 (5)	0.7156 (5)	0.1059(3)	0.0527
H1251	0.1336 (5)	0.7117 (5)	0.0058(3)	0.0492
H1261	0.4114 (5)	0.7817 (5)	0.0243(3)	0.0419
H1321	0.6313 (5)	0.6021(5)	0.0889(2)	0.0413
H1331	0.6838 (6)	0.5095 (6)	-0.0182(3)	0.0531
H1341	0.7931 (6)	0.6731 (6)	-0.1001(3)	0.0584
H1351	0.8459 (6)	0.9310 (6)	-0.0765(3)	0.0572
H1361	0.7861 (5)	1.0228 (5)	0.0283(2)	0.0457
H5011	0.4285 (6)	0.6548 (7)	0.3518 (3)	0.0669

Table S2. Anisotropic displacement parameters (\mathring{A}^2)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ir1	0.02616 (8)	0.02098(8)	0.03369 (8)	0.00652(5)	0.00687 (5)	0.00427(5)
Cl1	0.0658 (10)	0.0923 (13)	0.0958 (13)	0.0387 (9)	0.0093 (9)	-0.0260(11)
Cl2	0.0760 (10)	0.1035 (13)	0.0522 (8)	0.0550 (10)	0.0219(7)	0.0158 (8)
Cl3	0.0485 (8)	0.0971 (13)	0.0661 (10)	0.0137 (8)	0.0065 (7)	-0.0063(9)
S1	0.0400 (5)	0.0312 (5)	0.0365 (5)	0.0165 (4)	0.0072 (4)	0.0015 (4)
S2	0.0332 (5)	0.0226 (4)	0.0405 (5)	0.0051 (4)	0.0089(4)	0.0034 (4)
P1	0.0245 (4)	0.0199 (4)	0.0324(5)	0.0065 (3)	0.0070(4)	0.0034(4)
O1	0.0337 (17)	0.050(2)	0.067(3)	-0.0097(15)	-0.0004(16)	0.0107 (19)
N12	0.0342 (17)	0.0305 (18)	0.041(2)	0.0098 (14)	0.0045 (14)	0.0067 (15)
N15	0.047(2)	0.041(2)	0.0339 (19)	0.0117 (17)	0.0103 (16)	0.0039 (16)
N22	0.0400 (19)	0.0249 (17)	0.044 (2)	0.0163 (14)	0.0110 (15)	0.0066 (15)
N25	0.054 (2)	0.0210 (17)	0.057 (3)	0.0092 (16)	0.0239 (19)	0.0065 (16)
C1	0.043 (2)	0.035(2)	0.038 (2)	0.0156 (19)	0.0060 (18)	0.0077 (18)
C11	0.034(2)	0.028(2)	0.042 (2)	0.0051 (16)	0.0073 (17)	0.0022 (17)
C13	0.051(3)	0.047 (3)	0.041(3)	0.019(2)	0.003(2)	0.010(2)
C14	0.053 (3)	0.052 (3)	0.037 (2)	0.014(2)	0.004(2)	0.007(2)
C16	0.059 (3)	0.058 (3)	0.045(3)	0.019(3)	0.018(2)	-0.006(2)
C21	0.039 (2)	0.0245 (19)	0.043 (2)	0.0094 (16)	0.0172 (18)	0.0079 (17)
C23	0.053 (3)	0.037(2)	0.059 (3)	0.026(2)	0.019(2)	0.017(2)
C24	0.076(4)	0.031(2)	0.063 (3)	0.030 (2)	0.033 (3)	0.021(2)
C26	0.060 (3)	0.026(2)	0.081 (4)	0.001(2)	0.035(3)	0.002(2)
C111	0.0336 (19)	0.0219 (18)	0.0297 (19)	0.0085 (15)	0.0077 (15)	0.0011 (14)
C112	0.036(2)	0.027(2)	0.051(3)	0.0051 (17)	0.0065(19)	0.0088 (18)
C113	0.043(2)	0.026(2)	0.055(3)	-0.0008 (18)	0.006(2)	0.004(2)
C114	0.056 (3)	0.024(2)	0.053 (3)	0.0119 (19)	0.019(2)	0.0048 (19)
C115	0.050(3)	0.028(2)	0.055(3)	0.0184 (19)	0.019(2)	0.0090 (19)
C116	0.037(2)	0.0236 (19)	0.045(2)	0.0093 (16)	0.0118 (18)	0.0044 (17)
C121	0.0283 (18)	0.0209 (17)	0.037(2)	0.0078 (14)	0.0060 (15)	0.0037 (15)
C122	0.036(2)	0.041(2)	0.041(2)	0.0168 (18)	0.0133 (17)	0.0085 (18)
C123	0.035(2)	0.055(3)	0.059(3)	0.017(2)	0.022(2)	0.015(2)
C124	0.028(2)	0.039(2)	0.065 (3)	0.0070 (18)	0.008(2)	0.011(2)
C125	0.033 (2)	0.036 (2)	0.054 (3)	0.0078 (18)	0.0013 (19)	0.006(2)
C126	0.0298 (19)	0.031(2)	0.044(2)	0.0087 (16)	0.0056 (17)	0.0027 (17)
C131	0.0251(17)	0.0274 (19)	0.035(2)	0.0100 (14)	0.0045 (14)	0.0015 (15)
C132	0.035(2)	0.028 (2)	0.040 (2)	0.0103 (16)	0.0051 (17)	-0.0003(17)
C133	0.043 (2)	0.038 (2)	0.051 (3)	0.017(2)	0.006(2)	-0.009(2)
C134	0.042(2)	0.056(3)	0.047 (3)	0.016(2)	0.013(2)	-0.013(2)
C135	0.049 (3)	0.050 (3)	0.044 (3)	0.008(2)	0.020 (2)	0.004(2)
C136	0.044 (2)	0.031(2)	0.040(2)	0.0079 (18)	0.0159 (18)	0.0035 (18)
C501	0.043 (3)	0.058(3)	0.066(4)	0.019(2)	0.016(2)	0.008(3)
B1	0.029(2)	0.029(2)	0.041 (3)	0.0115 (17)	0.0102(18)	0.0111 (19)

	_		. 0		
Table C2	Coomatmia	parameters	/ /	0	1
Table 55.	Geometric	parameters	171.		/

	Table 33. Geometric	c parameters (A,)	
Ir1—S1	2.4847 (11)	C26—H262	1.000
fr1—S2	2.4173 (10)	C26—H263	1.000
IriPi	2.4113 (10)	C111—C112	1.403 (6)
lr1—C1	1.826 (5)	C111—C116	1.374 (6)
fr1B1	2.210 (5)	C112—C113	1.398 (6)
Ir1—H1	1.63 (3)	C112—H1121	1.000
Cl1—C501	1.781 (6)	C113C114	1.374 (7)
Cl2C501	1.743 (6)	C113—H1131	1.000
Cl3—C501	1.746 (6)	C114—C115	1.380 (7)
S1—C11	1.717 (5)	C114H1141	1.000
S2C21	1.703 (5)	C115—C116	1.393 (6)
P1—C111	1.838 (4)	C115—H1151	1.000
P1—C121	1.832 (4)	C116—H1161	1.000
P1—C131	1.836 (4)	C121—C122	1.398 (6)
O1—C1	1.149 (6)	C121—C126	1.394 (6)
N12—C11	1.340 (6)	C122C123	1.388 (6)
N12C13	1.392 (6)	C122H1221	1.000
N12—B1	1.557 (6)	C123—C124	1.385 (8)
N15C11	1.357 (6)	C123—H1231	1.000
N15—C14	1.382 (7)	C124—C125	1.384 (7)
N15—C16	1.459 (7)	C124—H1241	1.000
N22C21	1.341 (6)	C125—C126	1.397 (6)
N22—C23	1.390 (6)	C125—H1251	1.000
N22B1	1.581 (6)	C126—H1261	1.000
N25—C21	1.360 (5)	C131—C132	1.393 (6)
N25—C24	1.388 (7)	C131—C136	1.394 (6)
N25—C26	1.455 (7)	C132—C133	1.396 (7)
C13—C14	1.344 (8)	C132—H1321	1.000
C13—H131 C14—H141	1.000	C133—C134	1.381 (8)
C14—H141 C16—H161	1.000	C133—H1331	1.000
C16—H161 C16—H162	1.000 1.000	C134—C135	1.394 (8)
C16—H163	1.000	C134—H1341 C135—C136	1.000
C23—C24	1.339 (8)	C135	1.388 (7)
C23—H231	1.000	C136H1361	1.000 1.000
C24—H241	1.000	C501—H5011	1.000
C26—H261	1.000	B1H11	1.000
S1—Ir1—S2	91.69 (4)	C11—N12—B1	124.9 (4)
S1—Ir1—P1	100.14 (3)	C13—N12—B1	127.4 (4)
S2—Ir1—P1	88.46 (4)	C11-N15-C14	108.3 (4)
S1—Ir1—C1	92.19 (15)	C11-N15-C16	125.2 (4)
S2—Ir1—C1	167.76 (14)	C14-N15-C16	126.5 (4)
P1Ir1C1	102.27 (14)	C21—N22—C23	108.4 (4)
S1—Ir1—B1	85.90 (13)	C21—N22—B1	122.6 (3)
S2—Ir1—B1	86.01 (12)	C23—N22—B1	128.7 (4)
P1—Ir1—B1	171.94 (13)	C21—N25—C24	108.1 (4)
C1—Ir1—B1	82.69 (18)	C21—N25—C26	124.5(5)
S1—Ir1—H1	172.3 (11)	C24—N25—C26	127.3 (4)
S2—Ir1—H1	87.7 (11)	Ir1—C1—O1	175.6 (4)
P1Ir1H1	87.6 (11)	S1—C11—N15	127.0 (4)
C1—Ir1—H1	86.9 (11)	S1C11N12	124.4 (4)
B1—Ir1—H1	86.4 (11)	N15—C11—N12	108.6 (4)
lr1—S1—C11	96.27 (16)	N12—C13—C14	108.4 (5)
Ir1—S2—C21	97.18 (15)	N12—C13—H131	125.818
Ir1—P1—C111	118.04 (13)	C14—C13—H131	125.820
Ir1P1C121	116.75 (13)	N15—C14—C13	107.1 (4)
C111—P1—C121	101.81 (18)	N15—C14—H141	126.442
Ir1—P1—C131 C111—P1—C131	111.90 (13)	C13—C14—H141	126.438
C121—P1—C131 C121—P1—C131	102.96 (18) 103.46 (18)	N15—C16—H161	109.471
C11—N12—C13	107.6 (4)	N15—C16—H162 H161—C16—H162	109.465
J. 1112 O10	101.0 (4)	11101—C10—H102	109.476

N15C16H163	109.464	C122C123C124	120.4 (5)
H161-C16-H163	109.476	C122C123H1231	119.803
H162C16H163	109.476	C124C123H1231	119.801
S2-C21-N25	127.4 (4)	C123—C124—C125	120.2 (4)
S2C21N22	124.5 (3)	C123-C124-H1241	119.889
N25-C21-N22	108.0 (4)	C125—C124—H1241	119.891
N22-C23-C24	107.8 (5)	C124C125C126	119.6 (5)
N22C23H231	126.078	C124C125H1251	120.223
C24—C23—H231	126.075	C126—C125—H1251	120.225
N25C24C23	107.6 (4)	C125—C126—C121	120.7 (4)
N25C24H241	126.192	C125C126H1261	119.670
C23-C24-H241	126.193	C121C126H1261	119.671
N25-C26-H261	109.462	P1C131C132	117.6 (3)
N25-C26H262	109.469	P1—C131—C136	123.1 (3)
H261-C26-H262	109.476	C132C131C136	119.3 (4)
N25C26H263	109.468	C131—C132—C133	120.1 (4)
H261C26H263	109.476	C131—C132—H1321	119.964
H262-C26-H263	109.476	C133—C132—H1321	119.968
P1-C111-C112	118.5 (3)	C132C133C134	120.3 (5)
P1C111C116	122.5 (3)	C132—C133—H1331	119.832
C112C111C116	119.0 (4)	C134C133H1331	119.834
C111-C112-C113	119.8 (4)	C133—C134—C135	119.9 (4)
C111—C112—H1121	120.115	C133C134H1341	120.050
C113-C112-H1121	120.113	C135C134H1341	120.050
C112—C113—C114	120.2 (4)	C134—C135—C136	119.9 (5)
C112-C113-H1131	119.908	C134—C135—H1351	120.068
C114-C113-H1131	119.909	C136-C135-H1351	120.068
C113C114C115	120.1 (4)	C131—C136—C135	120.6 (4)
C113-C114-H1141	119.929	C131C136H1361	119.721
C115—C114—H1141	119.932	C135-C136-H1361	119.720
C114—C115—C116	119.8 (4)	Cl1—C501—Cl3	109.6 (3)
C114—C115—H1151	120.100	Cl1—C501—Cl2	109.2 (3)
C116-C115-H1151	120.098	Cl3—C501—Cl2	110.8 (4)
C115—C116—C111	121.0 (4)	Cl1—C501—H5011	109.977
C115—C116—H1161	119.524	Cl3—C501—H5011	108.387
C111—C116—H1161	119.523	Cl2—C501—H5011	108.788
P1—C121—C122	118.7 (3)	N22-B1-Ir1	106.5 (3)
P1C121C126	122.2 (3)	N22-B1-N12	107.4 (3)
C122—C121—C126	119.0 (4)	Ir1—B1—N12	107.8 (3)
C121—C122—C123	120.1 (4)	N22-B1-H11	112.125
C121—C122—H1221	119.937	Ir1-B1-H11	111.767
C123—C122—H1221	119.937	N12—B1—H11	110.968

```
Ir1-S1-C11-N12
                                                        N22-C21-N25-C26
                                  -3.5(3)
                                                                                          175.0(5)
Ir1-S1-C11-N15
                                 175.6 (4)
                                                        N22-C23-C24-N25
                                                                                            1.5(7)
                                   8.0 (4)
Ir1--S2--C21--N22
                                                        N22-B1--Ir1--C1
                                                                                        -159.5(4)
Ir1-S2-C21-N25
                                -173.9(4)
                                                        N22-B1-N12-C11
                                                                                        -106.3(4)
Ir1-P1-C111-C112
                                                        N22-B1-N12-C13
                                  42.1(4)
                                                                                           71.2 (5)
Ir1-P1-C111-C116
                                -139.0(3)
                                                        N25---C21---N22---C23
                                                                                            1.1 (6)
Ir1-P1-C121-C122
                                  39.8 (4)
                                                        N25-C21-N22-B1
                                                                                        -173.1(4)
Ir1-P1-C121-C126
                                                        C1-Ir1-S1-C11
                                -143.1(3)
                                                                                         -76.8(2)
Ir1-P1-C131-C132
                                  52.9 (3)
                                                        C1-Ir1-P1-C111
                                                                                         -31.1(2)
Ir1-P1-C131-C136
                                -126.2(3)
                                                        C1-Ir1-P1-C121
                                                                                        -153.0(2)
Ir1-B1-N12-C11
                                   8.2(4)
                                                        C1-lr1-P1-C131
                                                                                           88.1 (2)
Ir1-B1-N12-C13
                                -174.3(3)
                                                        C11-S1-Ir1-B1
                                                                                           5.7(2)
Ir1-B1-N22-C21
                                 -16.8(5)
                                                        C11-N12-C13-C14
                                                                                          -0.3(5)
Ir1-B1-N22-C23
                                 170.4 (4)
                                                        C11-N15-C14-C13
                                                                                          -0.4(5)
S1-Ir1-S2-C21
                                 -98.3(2)
                                                        C13-C14-N15-C16
                                                                                        -179.7(4)
S1-Ir1-P1-C111
                                  63.5(2)
                                                        C14-C13-N12-B1
                                                                                         -178.1(4)
S1--Ir1--P1--C121
                                 -58.4(2)
                                                        C21---S2---Ir1----B1
                                                                                         -12.6(2)
$1-Ir1-P1-C131
                                -177.3(1)
                                                        C21-N22-C23-C24
                                                                                          -1.6(6)
S1-Ir1-B1-N12
                                  -7.3(2)
                                                        C21-N25-C24-C23
                                                                                          -0.8(7)
S1-Ir1-B1-N22
                                 107.7 (3)
                                                        C23-C24-N25-C26
                                                                                         -175.9(6)
S1-C11-N12-C13
                                  179.3 (3)
                                                        C24-C23-N22-B1
                                                                                          172.1 (5)
S1--C11--N12--B1
                                  -2.8(5)
                                                        C111-P1-C121-C122
                                                                                         -90.2(4)
S1-C11-N15-C14
                                -179.0(3)
                                                        C111--P1--C121--C126
                                                                                           86.8 (4)
S1-C11-N15-C16
                                                        C111-P1-C131-C132
                                                                                         -179.3(3)
                                   0.3(6)
S2-Ir1-S1-C11
                                  91.6(1)
                                                        C111-P1-C131-C136
                                                                                            1.6(4)
S2-Ir1-P1-C111
                                  154.9 (2)
                                                        C111-C112-C113-C114
                                                                                            2.5(9)
S2-Ir1-P1-C121
                                  33.0(2)
                                                        C111-C116-C115-C114
                                                                                          -0.2(8)
S2-Ir1-P1-C131
                                 -85.9(1)
                                                        C112--C111--P1--C121
                                                                                          171.3 (4)
S2-Ir1-B1-N12
                                 -99.3(2)
                                                        C112-C111-P1-C131
                                                                                          -81.7(4)
                                  15.7 (3)
                                                        C112--C111--C116--C115
S2-Ir1-B1-N22
                                                                                          -1.4(7)
S2-C21-N22-C23
                                  179.5 (4)
                                                        C112-C113-C114-C115
                                                                                           -4.1(9)
S2-C21-N22-B1
                                   5.3(7)
                                                        C113-C112-C111-C116
                                                                                            0.2(7)
S2-C21-N25-C24
                                -178.5(4)
                                                        C113-C114-C115-C116
                                                                                            3.0(9)
S2---C21---N25---C26
                                                        C116-C111-P1-C121
                                  -3.3(8)
                                                                                           -9.7(4)
P1--Ir1--S1--C11
                                -179.7(1)
                                                        C116—C111—P1—C131
                                                                                           97.2 (4)
P1-Ir1-S2-C21
                                 161.6 (2)
                                                        C121-P1-C131-C132
                                                                                          -73.6(3)
P1-C111-C112-C113
                                  179.2(4)
                                                        C121--P1--C131--C136
                                                                                          107.3(3)
P1-C111-C116-C115
                                  179.7 (4)
                                                        C121--C122--C123--C124
                                                                                            1.4 (8)
P1-C121-C122-C123
                                 174.5 (4)
                                                        C121--C126--C125--C124
                                                                                            1.0(7)
P1---C121---C126---C125
                                -175.5(4)
                                                        C122-C121-P1-C131
                                                                                          163.2 (4)
P1-C131-C132-C133
                                -178.9(4)
                                                        C122-C121-C126-C125
                                                                                            1.5(7)
P1---C131---C136---C135
                                 177.8(4)
                                                        C122—C123—C124—C125
                                                                                            1.1 (8)
N12-C11-N15-C14
                                   0.2(5)
                                                        C123-C122-C121-C126
                                                                                           -2.7(7)
N12-C11-N15-C16
                                  179.6 (4)
                                                        C123---C124---C125---C126
                                                                                          -2.3(8)
N12-C13-C14-N15
                                   0.4(5)
                                                        C126--C121--P1--C131
                                                                                          -19.8(4)
                                                                                            0.8 (7)
N12-B1-Ir1-C1
                                  85.4 (3)
                                                        C131--C132--C133--C134
N12-B1-N22-C21
                                  98.6(5)
                                                        C131--C136--C135--C134
                                                                                            1.3(7)
N12-B1-N22-C23
                                 -74.3(6)
                                                        C132--C131--C136--C135
                                                                                           -1.3(6)
N15--C11--N12--C13
                                   0.0(4)
                                                        C132---C133---C134---C135
                                                                                           -0.8(8)
N15-C11-N12-B1
                                  177.9 (3)
                                                        C133--C132--C131--C136
                                                                                            0.2(6)
N22-C21-N25-C24
                                  -0.2(6)
                                                        C133--C134--C135---C136
                                                                                           -0.3(8)
                                 Table S4. Contact distances (Å)
Cl2\cdots C21
                                  3.204(5)
                                                        O1 \cdot \cdot \cdot C14^v
                                                                                           3.584 (7)
C12 \cdot \cdot \cdot N25
                                  3.241(5)
                                                        N25---C115<sup>vi</sup>
                                                                                           3.343(7)
Cl2···Cl2i
                                  3.294 (3)
                                                        C13 \cdot \cdot \cdot C16^v
                                                                                           3.586 (7)
                                  3.565(4)
                                                        C21---C114<sup>vi</sup>
                                                                                          3.447 (8)
C12...N22
Cl3···C113<sup>ii</sup>
                                                        C21· · · C115<sup>vi</sup>
                                  3.429(5)
                                                                                           3.468(7)
Cl3···C23<sup>iii</sup>
                                                        C26\cdot\cdot\cdot C116^{vi}
                                  3.502(6)
                                                                                          3.436 (9)
                                                        \text{C26--}\text{C115}^{\text{vi}}
S2---C501
                                  3.594 (6)
                                                                                          3.47(1)
O1---C261V
                                  3.232(7)
Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x-1, y-1, z; (iii) x-1, y, z; (iv) 1+x, 1+y, z; (v) 2-x, 2-y, 1-z;
```

(vi) x, y - 1, z.