Programmazione dinamica (III parte)

Progettazione di Algoritmi a.a. 2021-22

Matricole congrue a 1

Docente: Annalisa De Bonis

41

41

Minimum Coin Change Problem

- Dato un insieme infinito di monete con valori $v_1 < v_2 < v_3 < ... < v_n$ e una somma di denaro V, fornire una formula per calcolare il minimo numero di monete richieste per cambiare la somma di denaro V. Assumiamo v_1 =1 in modo che il problema ammetta sempre una soluzione.
- · Ad esempio: Banconota di 6 euro

Valori monete: 1,2,4

- Possiamo cambiare la banconota in 6 modi:
- {1,1,1,1,1,1}, {1,1,1,1,2}, {1,1,2,2},{1,1,4}, ,{2,2,2}, {2,4}
- La soluzione che include meno monete e` quindi {2,4}

Progettazione di Algoritmi A.A. 2021-2 A. De Bonis

Minimum Coin Change Problem

- · Greedy non sempre funziona
- Strategia Greedy: esamina i valori delle monete in ordine decrescente e per ciascun valore esamninato utilizza quante piu` monete di quel valore
- Sistema di monete canonico: sistema per il quale la strategia greedy fornisce la soluzione ottima
- Esempio di sistema canonico: sistema USA include monete con questi valori 1, 5, 10, 25 cent.
 - Voglio cambiare 8 cent. La strategia greedy produce la soluzione {5,1,1,1} che è la soluzione ottima.
- Esempio di sistema non canonico: 1, 4, 5 cent.
- Voglio cambiare 8 cent. La strategia greedy produce la soluzione (5,1,1,1) mentre la soluzione ottima e` (4,4)

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

4

43

Minimum Coin Change Problem

OPT(i,v)= minimo numero di monete per cambiare una banconota di valore v quando abbiamo a disposizione monete di valore $v_1,...,v_i$

- Se $v_i \le v$, bisogna considerare sia il caso in cui la soluzione include monete di valore v_i sia il caso in cui non le contiene:
 - Numero monete nella soluzione ottima tra quelle che contengono una moneta di valore v_i e` = 1+ numero monete nella soluzione ottima per l'importo v- v_i quando si possono utilizzare monete di valore $v_1,...,v_i$
 - Numero monete nella soluzione ottima tra quelle che non contengono una moneta di valore v_i e` = numero monete nella soluzione ottima per l'importo v quando si possono utilizzare monete di valore $v_1,...,v_{i-1}$ (v_i =1)
 - \rightarrow OPT(i,v)= min{OPT(i,v-v_i)+1, OPT(i-1,v)}
- Se $v_i > v$, l'unico caso possibile e` quello in cui la soluzione non include monete di valore $v_i \rightarrow OPT(i,v) = OPT(i-1,v)$
- Se v=0 allora OPT(i,v)=0 per ogni i

45

Minimum Coin Change problem

Esercizio: scrivere l'algoritmo che costruisce la soluzione ottima del minimum coin change problem.

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

Coin change problem

Ad esempio: Banconota di 6 euro

Valori monete: 1,2,4

- La soluzione che richiede meno monete è {2,4}
- {1,1,1,1,1,1} {1,1,1,1,2}, {1,1,2,2},{1,1,4}, {2,2,2}, {2,4}
- Vediamo la tabella che genererebbe l'algoritmo per questa istanza:
- Mostriamo il calcolo del valore di qualche cella:
- $M[2,6]=min\{M[1,6], 1+M[2,4]\}=min\{6,3\}=3$
- . M[3,3]=M[2,3] =2 in quanto v₃>3
- . M[3,4]=min{M[2,4], 1+M[3,0]}=min{2,1}=1

 0
 1
 2
 3
 4
 5
 6

 1
 0
 1
 2
 3
 4
 5
 6

 2
 0
 1
 1
 2
 2
 3
 3

 3
 0
 1
 1
 2
 1
 2
 2
 2

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

47

Coin change problem

- Dato un insieme infinito di monete C di n diversi valori $v_1 < v_2 < v_3 < ... < v_n$ ed una certa somma di denaro di valore V, fornire una strategia per trovare in quanti modi possiamo usare le monete in C per cambiare V.
- Ad esempio: Banconota di 6 euro

Valori monete: 1,2,4

- Possiamo cambiare la banconota in 6 modi:
- {1,1,1,1,1,1} {1,1,1,1,2}, {1,1,2,2},{1,1,4}, {2,2,2}, {2,4}

Progettazione di Algoritmi A.A. 2021-2 A. De Bonis

Coin change problem

N(i,v)=numero di modi in cui possiamo cambiare v con monete di valore $v_1,...,v_i$

- Se i>1 e v_i ≤ v allora la soluzione puo` includere o meno una moneta di valore v_i
 - Dobbiamo sommare il numero di soluzioni che includono monete di valore v_i al numero di soluzioni che non includono monete di valore v_i
 - $N(i,v)=N(i,v-v_i)+N(i-1,v)$
- Se i>1 il valore vi e` maggiore dell'importo da coprire allora
 - Le soluzioni possibili sono solo quelle che non includono monete di valore $\nu_{\rm i}$
 - N(i,v)=N(i-1, v)
- Caso base i=1 \rightarrow N(i,v)=1 per ogni v
- Caso base v=0 \rightarrow N(i,v)=1 (solo insieme vuoto) per ogni i>0 Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

49

Coin change problem

· Ad esempio: Banconota di 6 euro

Valori monete: 1,2,4

- Possiamo cambiare la banconota in 6 modi:
- {1,1,1,1,1,1} {1,1,1,1,2}, {1,1,2,2},{1,1,4}, {2,2,2}, {2,4}
- Vediamo la tabella che genererebbe l'algoritmo per questa istanza:

Progettazione di Algoritmi A.A. 2021-22

Sottosequenza comune piu`lunga

Def. Dati una sequenza di caratteri $x=x_1,x_2,...,x_m$ ed un insieme di indici $\{k_1,k_2,...,k_t\}$ tali che $1 \le k_1 < k_2 < ... < k_t \le m$, la sequenza formata dai caratteri di x in posizione $k_1,k_2,...,k_t$ viene detta sottosequenza di x. N.B. I caratteri della sottosequenza non devono essere necessariamente consecutivi in x.

Problema: Date due sequenze $x=x_1,x_2,...,x_m$ e $y=y_1,...,y_n$, vogliamo trovare la sottosequenza piu` lunga comune ad entrambe le sequenze.

Esempio: x=BACBDAB e y=BDCABA,

BCAB e` una sottosequenza comune a x e y di lunghezza massima. I caratteri della sequenza BCAB appaiono nelle posizioni 1, 3, 6, 7 in x e nelle posizioni 1, 3, 4, 5 in y.

BDAB e` un'altra una sottosequenza comune a x e y di lunghezza massima

anche BABA e` un'altra sottosequenza $\,$ comune a x e y di lunghezza massima.

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

51

Sottosequenza comune piu`lunga

Approccio brute force: Per ogni sottosequenza di x controlla se la sottosequenza compare in y. Il numero di sottosequenze è 2^m per cui l'algoritmo sarebbe esponenziale.

Perche ci sono 2^m sottosequenze di $x = x_1, x_2, ..., x_m$?

Risposta: ogni sottosequenza corrisponde ad una sequenza di m bit dove il k-esimo bit e` 1 se x_k fa parte della sottosequenza e 0 se x_k non fa parte della sottosequenza.

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

Sottosequenza comune piu`lunga

Input: $x=x_1,x_2,...,x_m$ e $y=y_1,...,y_n$

Sia OPT(i,j) la lunghezza della sottosequenza più lunga comune a $x_1,...,x_i e y_1,...,y_j$.

Per calcolare OPT(i,j) consideriamo i 3 seguenti casi:

- Se $x_i = y_i$ allora la sottosequenza comune piu` lunga termina con $x_i = y_j$
 - In questo caso la soluzione ottima e` formata dalla sottosequenza piu` lunga comune a $x_1,...,x_{i-1}$ e $y_1,...,y_{j-1}$ seguita dal carattere x_i = y_j
- Se $x_i \neq y_i$ e la sottosequenza comune piu` lunga termina con un simbolo diverso da x_i allora la soluzione ottima e data dalla soluzione ottima per $x_1,...,x_{i-1}$ e $y_1,...,y_j$
- Se $x_i \neq y_i$ e la sottosequenza comune piu` lunga termina con un simbolo diverso da y, allora la soluzione ottima e` data dalla soluzione ottima per $x_1,...,x_i$ e $y_1,...,y_{j-1}$

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

53

Sottosequenza comune piu`lunga

Se i=0 o j=0 allora banalmente la sottoseguenza comune piu` lunga ha lunghezza O perche' almeno una delle due sequenze e` vuota.

$$OPT(i,j) = \begin{cases} OPT(i,j)=0 & \text{se } i=0 \text{ o } j=0 \\ OPT(i-1,j-1)+1 & \text{se } i>0, j>0 \text{ e } x_i = y_j \\ max\{OPT(i-1,j),OPT(i,j-1)\} & \text{altrimenti} \end{cases}$$

Sottosequenza comune piu` lunga: algoritmo

```
ComputaLunghezzaLCS(X,Y)
1.m← lunghezza di X
2. n ← lunghezza di Y
3. For i=1 to m
         M[i,0]← 0
5. For j=0 to n
6. M[0,j]← 0
7. For i=1 to m
        For j=1 to n
            If x_i = y_j
               Then M[i,j]← 1+M[i-1,j-1]
b[i,j]="\napsymbol{"}
10.
11.
            Else if M[i-1,j]≥M[i,j-1]
Then M[i,j]← M[i-1,j]
b[i,j]="↑"
Else M[i,j]← M[i,j-1]
b[i,j]="← "
12.
13.
14.
15.
16.
```

L'algoritmo oltre a computare i valori M[i,j]=OPT(i,j), memorizza nelle entrate b[i,j] della matrice b delle frecce in modo che successivamente la sottosequenza comune piu` lunga possa essere ricostruita agevolmente (si veda algoritmo nella slide successiva).

55

Sottosequenza comune piu` lunga: algoritmo

x=BACBDAB e y=BDCABA

		Ø	В	D	C	A	В	A
		0	1	2	3	4	5	6
Ø	0	0	0	0	0	0	0	0
В	1	0	^ 1	_1_	_1	1	1	1
A	2	0	1	1	1	y	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	▼ _3	3
D	5	0	1	2	2	2	3 ↑	3
Α	6	0	1	2	2	3	3	~_4
В	7	0	1	2	2	3	4	1 4

Seguendo le frecce viene stampata BABA

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

L'algoritmo che stampa la sottosequenza comune piu` lunga

```
Stampa-LCS(b,X,i,j)

1. If i=0 or j=0

2. Then return

3. If b[i,j]="↑"

4. Then Stampa-LCS(b,X,i-1,j-1)

5. print(x<sub>i</sub>)

6. Else if b[i,j]="↑"

7. Then Stampa-LCS(b,X,i-1,j)

8. Else Stampa-LCS(b,X,i,j-1)
```

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis