Project - COSC 6324

School of Engineering & Computer Sciences A & M University at Corpus Christi Fall 2023

> Points: 20 Out: Oct 19, Due: Nov 28.

Objective: Build a system to classify an object of a RGB image

It is a group(of five) project.

Given data set \mathcal{D} : data.csv, where $\mathcal{D} = \{\mathbf{x^i} | \mathbf{i} = 1...10000\}$, s.t. each of x is a RGB image with a dimension of $\mathbf{32} \times \mathbf{32} \times \mathbf{3} = \mathbf{3072}$. Given class label set \mathbf{y} : classLabel.csv, where $\mathbf{y} = \{\mathbf{y^i} | \mathbf{i} = 1...10000\}$, s.t each of $\mathbf{y} \in \{0, 1, ..., 9\} = \{airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck\}$. Your task is to create a system to classify the object of an image.

Design and Implementation (8 points)

- Preprocessing Procedure
 - Convert a RGB image into the grayscale image
 - Divide the data set into two sets: training set $\mathbf{D_{train}}$ (70%) and testing set $\mathbf{D_{test}}$ (30%)
- Build a convolutional neural network satisfying
 - 1. Feature extraction
 - The number of neurons in the input layer should be $32 \times 32 = 1024$
 - The number of convolution and pooling layers should be at least 5
 - The number features (the output from the last convolution layer or pooling layer) should be at least **512**
 - 2. Classification
 - The number of neurons in the classification input layer should be the size of the feature vector.
 - The number of layers for the classification should be at least 2
 - ullet The number of neurons in the output should be ${f 10}$
- Training Procedure
 - Define the system loss function
 - Define the stop criteria of the training procedure
 - Train your neural network based on the back propagation algorithm
- Testing Procedure
 - \bullet Evaluate your classifier by the accuracy measurement on \mathbf{D}_{test}

$$\mathbf{ACC}_{\mathcal{D}_{\mathbf{test}}} = \frac{1}{|\mathcal{D}_{\mathbf{test}}|} \sum_{i=1}^{\mathbf{T}} \mathbf{L}(\hat{\mathbf{y}}^i, \mathbf{y}^i)$$

where $\hat{\mathbf{y}}^i$ is the assigned class label by the classifier and \mathbf{y}^i is the true class label of a data instance $\mathbf{x}^{[i]}$ in $\mathcal{D}_{\mathbf{test}}$ and \mathbf{T} is the number of data instances in $\mathcal{D}_{\mathbf{test}}$.

$$\mathbf{L}(\hat{\mathbf{y}}^{\mathbf{i}}, \mathbf{y}^{\mathbf{i}}) = \begin{cases} 1 & \text{if } \hat{\mathbf{y}}^{\mathbf{i}} = \mathbf{y}^{\mathbf{i}} \\ 0 & \text{if } \hat{\mathbf{y}}^{\mathbf{i}} \neq \mathbf{y}^{\mathbf{i}} \end{cases}$$

Report (8 points)

- Write a 10 page of report for each of the groups. The report should have
 - Names of the group members as well the corresponding task of each of the group members
 - Introduction
 - Project description
 - * The filters and examples
 - * The size of the feature vector obtained from CNN
 - * The number convolution and pooling layers for feature extraction
 - * The number full connected layers for classification
 - * The system loss function and the reason of why you choose it
 - * The activation functions and reasons of why you choose them
 - * The pooling functions and reasons of why your choose them
 - * The stop criteria on the training procedure
 - Experiments and results discussions
 - * The reason of determining the learning rate η
 - * How long the training procedure is?
 - * The accuracy of the system
 - Pros and cons of the system
 - Further improvements

Oral Presentation (4 points)

- 20 slides of power point for a 20 minutes of oral presentation for each of the groups
- Demonstrate the project in front of the class
- Presentation Date:
 - Nov 28. 3 4 groups
 - Nov 30. 3 4 groups
 - Dec 5. 3 4 groups
 - Dec 7 (Reading day: optional). 3 4 groups

Project Submission

Each of groups only needs to have one submission. The submission should be in the project-submissionentry of the leader on Bb. The submission should include the following items:

- ReadMe.txt how to run your system
- Project source codes
- The screen shots of the data structure and the outputs of your system
- Presentation slides
- Report