

Introdução à Ciência de Dados

Prof. Dr. Francisco Carlos Souza

Prof. Dr. Anderson Carniel

Sumário

- Fases genéricas da Ciência de Dados
- Tecnologias
 - Captura de dados
 - Armazenamento
 - Processamento
 - Aprendizado de máquina
 - Visualização de dados
- Entendendo os dados
 - Exemplos de csv, json e xml
- Estatística
- Dica para ser um cientista de dados de sucesso

Fases Ciência de dados

- Como todos projetos de software, projetos de ciência de dados possuem um início, meio e fim.
- Um projeto de ciência de dados possui algumas fases genéricas que foram baseadas no processo de data mining chamado CRISP-DM (Cross Industry Standard Process for Data Mining).
- Esse processo é composto por *Business Understanding*, *Data Understanding*, *Data Preparation*, *Modeling*, *Evaluation* e *Deployment*.

Fases Ciência de dados

 O processo de ciência de dados é composto basicamente por 6 fases

Fase 1 - Descoberta

- Consiste na aquisição de dados de todas as fontes internas e externas identificadas, como:
 - · Logs de servidores da web
 - · Dados coletados das mídias sociais
 - · Conjuntos de dados do censo
 - Dados transmitidos de fontes usando APIs

Fase 2 - Preparação dos dados

- Os dados podem ter muitas inconsistências, como:
 - valor ausente,
 - · colunas em branco
 - formato de dados incorreto que precisa ser limpo.
- Processar, explorar e condicionar dados antes da modelagem.
- Quanto mais limpos os dados, melhores são as previsões.

Fase 3 - Planejamento do modelo

- Necessário determinar o método e a técnica para desenhar a relação entre as variáveis de entrada.
- É realizado usando diferentes fórmulas estatísticas e ferramentas de visualização.
- Ferramentas: serviços de análise SQL, R e SAS/access.

Fase 4: Construção do Modelo

Aprendizado de máquina

- Cientista de dados distribui conjuntos de dados para treinamento e teste.
- Técnicas como associação, classificação e clustering são aplicadas ao conjunto de dados de treinamento.
- O modelo construído é testado com o conjunto de dados "teste".

Fase 5 - Operação

- Ocorre a entrega, o modelo final de linha de base com relatórios, códigos e documentos técnicos.
- O modelo é implantado em um ambiente de produção em tempo real após testes completos.

Fase 6 - Comunicação dos Resultados

- As principais conclusões são comunicadas a todas as partes interessadas.
- Essa comunicação ajuda a decidir se os resultados do projeto são bemsucedidos ou fracassados, com base nas entradas do modelo.

Tecnologias em Ciência de Dados

- O Cientista de dados deve ter a capacidade de construir soluções e otimizar modelos para responder questionamentos de organizações.
- Para isso, somado ao conhecimento teórico é necessário o desenvolvimento de algoritmos e artefatos para gerar Insight.
- Conhecer tecnologias para auxiliar neste processo, é uma tarefa crucial para um Cientista de dados

Tecnologias: Captura de dados

- São métodos para obtenção de dados externos e ocorre na fase 1, os mais comuns são como:
 - Web crawler
 - IOT (Internet das Coisas)
 - Logs de sistema
 - Wearables
 - Equipamentos de rede

Web crawlers

- Tratam-se de scripts e algoritmos para coleta de dados e conteúdos na internet.
- Deve-se tomar cuidado com disponibilização de dados obtidos por meio desses mecanismos.
- Apesar de está na internet, nem todos os dados são públicos.
- Diversas linguagens possuem ferramentas para web crawler, tais como:
 - Scrapy em Python
 - *Crawler4j* para Java
 - Mechanize em Ruby

Tecnologias: Armazenamento

- As tecnologias de armazenamento como SQL e NoSQL são essenciais para guardar grandes volumes de dados.
- Além disso mecanismos de busca e de serialização de dados, como elasticsearch e json facilitam o dia-a-dia do Cientista de dados.

PostgreSQL

- Atualmente o Postgre é um dos SGBDs mais utilizados por se tratar de uma tecnologia open-source e estável.
- Suporte excelente a Full-text search.
- Geração nativa de UUID (universally unique identifier)
- Permite a manipulação de dados JSON e JSONB (versão binária)
- Versão 12.2

Tecnologias: Processamento

- Para processar dados a partir de tecnologias de armazenamento, é possível realizar com a grande maioria das linguagens de programação.
- Contudo, para garantir maior produtividade o Python e o R são aquelas mais utilizadas.
- Além disso para processamento de dados nãoestruturados é necessária o uso de tecnologias específicas, como:
 - OpenCV para imagens
 - Tesseract para reconhecimento de caracteres
 - Google Speech Recognition para fala
 - NLTK em processamento de linguagem natural

Tecnologias: Processamento

R e Python

- Ambas linguagens são:
 - Gratuitas
 - Simples de instalar
 - Escrita mais próxima da linguagem natural
 - Possuem uma extensa quantidade de pacotes e bibliotecas para análise de dados
 - Cada linguagem possuí seus prós e contras em diferentes cenários

Linguagem R

- Criada em 1995
- Originada a partir da implementação da linguagem S da Bell Labs
- Versão atual 4.0 em 2020
- Modelos estatísticos podem ser escritos com poucas linhas de código
- A mesma funcionalidade pode ser escrita de diversas formas diferentes

- Fácil para escrever fórmulas complexas
- Grande números de pacotes para análise de dados e ML
- CRAN é o repositório do R
- R possui IDE bastante consolidada, chamada Rstudio

Linguagem R

- R tem credibilidade devido sua história ao longo dos anos e possui uma comunidade confiável e forte no setor de dados
- R é considerada também uma ferramenta de visualização e gráficos.
- Permite que os Cientistas de Dados criem gráficos interativos a partir dos resultados das análises de dados.
- O R possui diversos pacotes que facilitam o processo de manipulação dos dados

Linguagem Python

- Criada em 1991
- Inspirada na linguagem C, Modula-3 e ABC
- Versão atual 3.8.2 em 2020
- Codificação e debugging eleva nível de produtividade
- Possui um padrão definido, permitindo que diferentes tipos de funcionalidades sejam escritas da mesma forma

- É flexível e permite manipular dados de diferentes maneirais
- Não foi criada inicialmente para análise de dados e ML
- Pip é um repositório da linguagem com diversas bibliotecas e ferramentas
- O python possui diversas IDEs amplamente utilizadas, como Pycharm e Spyder

Linguagem Python

- Criada para produzir código limpo é fácil de manter de maneira rápida
- Linguagem open-source e multiplataforma
- Com a linguagem é possível
 - Construção de sistemas web
 - Construção de aplicativos para celular
 - Construção de sistemas desktop
 - Análise de dados e Inteligência Artificial

Tool-kit

- A programação faz parte do trabalho de um cientista de dados.
- Assim, para melhorar a qualidade dos resultados e a produtividade é necessário ferramentas
- Escolha seu ambiente de desenvolvimento favorito
 - Linux e Windows
 - Ambientes de dev. no windows costumam ser mais trabalhosos de configurar, então o prepare com antecedência
 - IDE e editores de texto
 - Instalação das linguagens e pacotes
 - Dockers e VirtualEnv

Bibliotecas

Linguagem R		
Biblioteca	Função	
Database drivers	Conexão com BD	
reshape2	Ajustar formato de datasets	
dplyr	Tratamento de datasets	
stringr	Manipulação de texto	
ggplot2	Visualização de dados	
caret	Modelagem Estatística	

Bibliotecas

Linguagem Python		
Biblioteca	Função	
Pandas	Tratamento de datasets	
Numpy	Manipulação de arrays multidimensionais	
Scikit-learn	Aprendizado de máquina	
Seaborn	Visualização de gráficos estatísticos	
Matplotlib	Criação de gráficos	

Tecnologias: Aprendizado de máquina

- Aprendizado de máquina não é um método de ciência de dados, porém é um conceito que é aplicado com frequência em problemas de análise de dados.
- Aprendizado de máquina é uma subárea da inteligencia artificial que possui capacidade de ensinar máquinas a partir de dados.
- Com AM é possível reconhecer padrões, realizar predições e tomar decisões.

Tecnologias: Aprendizado de máquina

- Dependendo do propósito, diferentes algoritmos podem ser utilizados. Os mais comuns são:
 - Redes Neurais (neural networks)
 - Máquina de Vetores Suporte (support vector machine)
 - Regressão Logistica (*logistic regression*)
 - Clusterização K-means
 - Árvore de decisão (decision trees)

Tecnologias: Aprendizado de máquina

 Ferramentas e bibliotecas também são utilizadas para aumentar a produtividade e a qualidade dos resultados.

Visualização de Dados

- A conversão dos dados em artefatos visuais é uma atividade crucial na ciência de dados. Essa atividade pode ocorrer em todo processo para otimizar análise.
- Por meio de artefatos visuais é possível também identificar padrões, tendências e conclusões que não foi identificado pela máquina.
- A visualização de dados pode ser por meio de gráficos, tabelas, infográficos, mapas, etc.

Visualização de Dados

Ferramentas e bibliotecas

Visualização de Dados

- A conversão dos dados em artefatos visuais é uma fase crucial na ciência de dados.
- Por meio de artefatos visuais é possível também identificar padrões, tendências e conclusões que não foi identificado pela máquina.
- A visualização de dados pode ser por meio de gráficos, tabelas, infográficos, mapas, etc.

Entendendo os dados

- Dados estruturados
 - Lista e Matrizes
 - Tabelas
 - Redes (rotas de viagem)
- Não estruturados
 - Textos
 - Imagens
 - Vídeos
 - Sons

Outras extensões comuns

CSV - Comma-separated values

- Valores que devem ser separados por vírgulas
- Exemplo:

```
comprimento_sepala, largura_sepala, comprimento_petala, largura_petala, especie 5.1 , 3.5 , 1.4 , 0.2 , sedosa 4.9 , 3 , 1.4 , 0.2 , sedosa 4.7 , 3.2 , 1.3 , 0.2 , sedosa 4.6 , 3.1 , 1.5 , 0.2 , sedosa
```

JavaScript Object Notation

 JSON é um formato baseado em texto estruturado para representação de dados.

```
"primeiroNome": "Alan",
"ultimoNome": "Smith",
"estaVivo": verdadeiro,
"idade": 25,
"endereco": {
    "rua": "Presidente de moraes 222",
    "cidade": "Dois Vizinhos",
    "estado": "PR",
    "cep": "85660-000"
"numerosTelefone": [
        "tipo": "casa",
        "numero": "3436-1212"
        "tipo": "trabalho",
        "numero": "3436-2522"
    },
       "tipo": "celular",
       "numero": "99999-9997"
"filhos": [],
"conjuge": null
```

Extensible Markup Language

 XML é uma linguagem de marcação que define um conjunto de regras para codificação e estruturação de documentos

```
<pessoa>
    <primeiroNome> Alan </primeiroNome>
    <ultimoNome> Smith </ultimoNome>
    <idade> 25 </idade>
    <endereco>
        <rua> Presidente de moraes 22 </rua>
        <cidade> Dois Vizinhos </cidade>
        <estado> PR </estado>
        <cep> 85660-000 </cep>
    </endereco>
    <numeroTelefone>
        <tipo> casa </tipo>
        <numero> 3436-1212 </numero>
    </numeroTelefone>
    <numeroTelefone>
        <tipo> trabalho </tipo>
        <numero> 3436-2522 </numero>
    </numeroTelefone>
    <numeroTelefone>
        <tipo> celular </tipo>
        <numero> 99999-9997 </numero>
    </numerosTelefone>
    <genero>
        <tipo> masculino </tipo>
    </genero>
 /pessoa>
```

Estatística

- A estatística na ciência de dados tem um papel de dar confiabilidade nos resultados e gerar insights de mais valor.
- Técnicas e algoritmos de aprendizado de máquina utilizam conceitos de estatística, portanto é também utilizado na construção de um modelo de AM
- Para a ciência de dados, se precisa conhecer conceitos básicos de:
 - coleta de dados em estatística
 - representatividade da população
 - distribuição
 - normalidade dos dados, e
 - hipóteses para confirmação dos resultados

Estatística

Conceitos que devemos conhecer

Média, mediana e moda	
Distribuição de dados (Normal, exponencial, binominal)	
Desvio Padrão e Variância	
Teste de Hipóteses	
Teste de significância	
Análise de Variância	
Níveis de confiança	

Como ser um cientista de dados de sucesso?

- Unir teoria e prática
 - Conhecer os aspectos teóricos e aplicá-los por meio das tecnologias dezenas de vezes
 - Com isso se adquire, experiência para decidir e como usar uma técnica no momento certo
 - Saber questionar se um resultado bom está correto ou foi um erro de modelagem
 - Tudo depende do nosso esforço para buscar conhecimentos extras