## Eignung aktueller Industriekameras für modulare Digitalkameratachymeter

Bachelorarbeit von Florian Thiery



Betreuer: Prof. Dr.-Ing. Schlüter

Zeitraum: 14.03.2011 - 01.06.2011

Partner: i3 mainz

#### Gliederung



- Problemstellung und Ziele
- MoDoTa-Okularadapter
- Auflösungsvermögen
- Automatisierungen
- Untersuchungen
- Ergebnis
- Fazit und Ausblick



#### Problemstellung



- MoDiTa ermöglicht Kombination einer Digitalkamera mit einem Tachymeter
- MoDiTa erlaubt das Wechseln unterschiedlicher handelsüblicher Industriekameras
- Unterschiede zwischen den einzelnen Sensorarten haben je nach Szenarium Stärken und Schwächen



Montage des MoDiTa-Okularadapters

#### Ziele der Bachelorarbeit



- Bestimmung des Auflösungsvermögens des MoDiTa-Gesamtsystems (Kamera, Optik, Tachymeter)
- Einfluss der Position im Blickfeld und der einzelnen Komponenten
- Bestimmung von Einstellungen und Techniken
  - bei Zielungen auf punktförmige Ziele geringer Helligkeit
  - bei Zielungen auf punktförmige Ziele großer Helligkeit







#### Der MoDiTa-Okularadapter



- Untersuchte Komponenten des Okularadapters
  - 2 Blenden
  - 4 Kameras (+bis zu 4 verschiedene Auflösungen)
  - 2 Tachymeter (+3 verschiedene Distanzen)
  - 2 Blickfeldvergrößerungen



#### Auflösungsvermögen



Bestimmung des geometrischen Auflösungsvermögens



Benutztes Testmuster der Bachelorarbeit

#### Auflösungsvermögen



- Bestimmung des Kontrasts im Objekt- und Bildraum für je eine bestimmte Ortsfrequenz
- Ermittlung einer Kontrastübertragung, da Auflösungsvermögen kontrastabhängig



#### Automatisierungen



VB.NET-Tool zum automatischen Verfahren















#### Automatisierungen



• VBA/Excel-Tool zur automatischen Auswertung



#### Automatisierungen



VBA-Tool zur automatischen Auswertung



#### AV-Untersuchungen



• 18,7m → Interferometrie









#### AV-Untersuchungen



• 197,4m/460,0 $m \rightarrow FH-Umgebung$ 







#### Helligkeitsuntersuchungen





Tunnellaster (TL-81)



Sternenhimmel mit Stern "Sirius"



Kein signifikanter Unterschied im Blickfeld



AV der S/W und Farbkamera annähernd gleich





- Kein signifikanter Unterschied des Auflösungsvermögens zwischen Blenden mit Blendenzahl 28 und 56 (ca. 0,2mgon)
- AV des Fernrohrs TM5100 zu TCRM1103
  - annähernd gleich im kleinen Blickfeld (ca. 0,2mgon)
  - deutlich besser (ca. 2,3mgon) im großen Blickfeld
- AV des kleinen zum großen Blickfeld
  - annähernd gleich bei TM5100 (ca. 0,5mgon)
  - deutlich besser (ca. 2,9mgon) bei 1103
- Unterschiede der Auflösungsvermögen nehmen mit der Distanz ab



AV leicht verschlechtert je größer die Distanz





Je kleiner die Auflösung, desto kleineres AV







- AV bei geringeren Auflösungen durch Binning bzw. Subsampling annähernd gleich (ca. 0,3mgon)
- Verschiedene Kameras erzeugen unterschiedliche Auflösungsvermögen, abhängig von der höchstmöglichen Auflösung der Kamera





#### • Aufnahmen Tunnellaser: TL-81



CMOS, TCRM1103 ohne Sonnenfilter



CMOS, TCRM1103 mit Sonnenfilter



HDR, TCRM1103 ohne Sonnenfilter



CMOS, TM5100 S/W-Kamera



CMOS, TM5100 FarbKamera



HDR, TM5100



Aufnahmen Stern: Sirius



Sirius mit TCRM1103



Sirius mit TM5100

- Belichtungszeit lässt sich mit Binning verringern
- HDR-Kamera zeigt keine großen Vorteile

#### Optimale Konfigurationen





Bestmögliche Hardware: 1,8mgon bei MÜF=0,4





#### Ausblick



- Markt der Digitalkameratachymeter wachsend
  - Vergleich: MoDiTa mit kommerziellen Systemen
- Auswertung der Messbilder mit modifizierter Profilauswertung mittels Ausgleichung
- Astrogeodätische Messungen
  - Nutzung mehrerer Sterne verschiedener Magnitude
  - Automatisierter Messablauf mit verschiedenen Belichtungszeiten und Sensoren (HDR/CMOS)
- Bestimmung eines Laserdots
  - Verhalten bei größeren Distanzen
  - Verhalten bei größerer Einfallenergie

# Vielen Dank für die Aufmerksamkeit!

Eignung aktueller Industriekameras für modulare Digitalkameratachymeter

Florian Thiery