Claims

[c1] 1. A method of motion detection for a 3D comb filter video decoder, comprising:

sampling a composite video signal for obtaining a plurality of temprarily stored sampled data F P, wherein F P represents a sampled data of a y the m x,y on an x line of an m frame in the composite video signal, and m, x, y are positive integers greater than or equal to 0; and using F P, F P, F P, and F P to determine a motion/still

using F P , F P , F P , and F P to determine a motion/still status of the composite video signal.

[c2] 2. The method of motion detection for a 3D comb filter video decoder of claim 1, wherein the step of determining the motion/still status of the composite video signal further comprises:

using F_{m+1} , $F_{x,y}$, F_{m} , $F_{x,y}$, F_{m-1} , $F_{x,y}$, and F_{m-2} , $F_{x,y}$ to calculate and obtain a plurality of max differences MD, wherein MD, represents a max difference of the $f_{x,y}$ pixel on the $f_{x,y}$ the contiguous pixels selected to obtain a

motion factor MF , wherein MF represents a motion factor of the y pixel on the x line; and

detecting MF to determine the motion/still status of the y pixel on the x line in the composite video signal.

- [c3] 3. The method of motion detection for a 3D comb filter video decoder of claim 2, wherein when it is determined that the composite video signal is a signal for an NTSC system, the step of sampling the composite video signal uses a frequency which is 4 times the subcarrier frequency in the composite video signal to sample the signal, and the signal is sampled when the subcarrier phase is equal to 0, 0.5π , π , and 1.5π .
- [c4] 4. The method of motion detection for a 3D comb filter video decoder of claim 3, wherein MD is calculated based on an equation: $MD_{x,y} = Max\{|F_{m}P_{x,y} F_{m-2}P_{x,y}|, |F_{m+1}P_{x,y} F_{m-1}P_{x,y}|\}.$
- [c5] 5. The method of motion detection for a 3D comb filter video decoder of claim

- 2, wherein when it is determined that the composite video signal is a signal for a PAL system, the step of sampling the composite video signal uses a frequency which is 4 times the subcarrier frequency in the composite video signal to sample the signal, and the signal is sampled when the subcarrier phase is equal to 0.25π , 0.75π , 1.25π , and 1.75π .
- [c6] 6. The method of motion detection for a 3D comb filter video decoder of claim 5, wherein the step of calculating and obtaining MD further comprises: calculating and obtaining a plurality of luma differences LD $_{x,y}$, wherein LD represents a luma difference of the y^{th} pixel on the x^{th} line, and is calculated based on an equation: LD $_{x,y} = |F_{m}P_{x,y} + F_{m-2}P_{x,y} F_{m+1}P_{x,y} F_{m-1}P_{x,y}|$; calculating and obtaining a plurality of intermediate differences IMD $_{x,y}$, wherein IMD represents an intermediate difference of the y^{th} pixel on the y^{th} line, and is calculated based on an equation: $\frac{1}{1} \frac{1}{1} \frac{1}{1}$
- wherein, a is a real number greater than 0 and less than 1, and i, j are positive integers.

 [c7]

 7. The method of motion detection for a 3D comb filter video decoder of claim
 - 2, wherein the step of obtaining MF further comprises:

 averaging 4 max differences of the contiguous pixels selected to obtain a

 plurality of max differences AMD wherein AMD represents an average of the theorem.

max difference of a h pixel on the x line, h is a positive integer, and AMD $_{x,h}$ is calculated based on an equation:

$$AMD_{x,h} = (MD_{x,h} + MD_{x,h+1} + MD_{x,h+2} + MD_{x,h+3}) / 4$$
; and

selecting a minimum from the averages of max difference to obtain a motion

factor MF, wherein MF represents a motion factor of the y pixel on the x, y x, y x, line.

[c8] 8. The method of motion detection for a 3D comb filter video decoder of claim 7, wherein the step of selecting a minimum from the averages of max difference

to obtain MF is based on an equation:
$$MF = Min(AMD , AMD , AMD , Y, Y-1 , AMD , Y, Y-3).$$

- [c9] 9. The method of motion detection for a 3D comb filter video decoder of claim 7, wherein the step of selecting a minimum from the averages of max difference to obtain MF is based on an equation: MF = Min(AMD x, y, AMD x, y-3).
- [c10] 10. The method of motion detection for a 3D comb filter video decoder of claim 2, wherein the step of detecting MF to determine the motion/still status of the yth pixel on the xth line in the composite video signal further comprises: providing a threshold; and comparing MF with the threshold, and when MF is greater than the x,y threshold, it is determined that the yth pixel on the xth line in the composite video signal is in the motion status, otherwise, the yth pixel on the xth line in the composite video signal is in the still status.
- [c11] 11. The method of motion detection for a 3D comb filter video decoder of claim

 10, wherein the motion factors MF... are the motion factors of the m frame.