Apprentissage Machine / Statistique

Arbres binaires de décision

PHILIPPE BESSE

INSA de Toulouse Institut de Mathématiques

Introduction

- Classification and regression trees (CART)
- Breiman et col. (1984)
- X^j explicatives quantitatives ou qualitatives
- Y quantitative : regression tree
- Y qualitative à m modalités $\{\mathcal{T}_\ell; \ell=1\ldots, m\}$: classification tree
- Objectif : construction d'un arbre de décision binaire simple à interpréter
- Méthodes calculatoires : pas d'hypothèses mais des données

Exemple fictif: arbre binaire de classification

Principe
Critère de division
Règle d'arrêt et affectation
Critères d'homogénéité

Définitions

- Déterminer une séquence itérative de nœuds
- Racine : nœud initial ou ensemble de l'échantillon
- Feuille: nœud terminal
- Nœud : choix d'une variable et d'une division sous-ensemble auquel est appliquée une dichotomie
- Division : valeur seuil ou groupes des modalités

Principe Critère de division Règle d'arrêt et affectation Critères d'homogénéité

Exemple fictif : pavage dyadique de l'espace

Principe
Critère de division
Règle d'arrêt et affectation
Critères d'homogénéité

Règles

- Choix nécessaires :
 - Oritère de la "meilleure" division parmi celles *admissibles*
 - Règle de nœud terminal : feuille
 - 3 Règle d'affectation à une classe \mathcal{T}_{ℓ} ou une valeur de Y
- Division admissible : descendants ≠ ∅
- X^j réelle ou ordinale : $(c_j 1)$ divisions possibles Attention effets incontrôlables si c grand
- X^j nominale : $2^{(c_j-1)}-1$ divisions
- Fonction d'hétérogénéité Dκd'un nœud
 - Nulle : une seule modalité de Y ou Y constante
 - Maximale : modalités de Y équiréparties ou grande variance

Division optimale

- Notation
 - κ : numéro d'un nœud
 - κ_G et κ_D les nœuds fils
- L'algorithme retient la division rendant minimales

$$D_{\kappa_G} + D_{\kappa_D}$$

• Chaque étape κ de construction de l'arbre :

$$\max_{\{\textit{Divisions de }X^{j};j=1,p\}}D_{\kappa}-(D_{(\kappa_{G}}+D_{\kappa_{D}})$$

Feuille et affectation

- Un Nœud est terminal ou feuille, si :
 - Homogène
 - Plus de partition admissible
 - Nombre d'observations inférieur à un seuil
- Affectation
 - Y quantitative, la valeur est la moyenne des observations
 - Y qualitative, chaque feuille est affectée à une classe \mathcal{T}_{ℓ} de Y en considérant le mode conditionnel :
 - la classe la mieux représentée dans le nœud
 - la classe a posteriori la plus probable si des a priori sont connus
 - la classe la moins coûteuse si des coûts de mauvais classement sont donnés

Y quantitative : hétérogénéité en régression

Hétérogénéité du nœud κ :

$$D_{\kappa} = \frac{1}{|\kappa|} \sum_{i \in \kappa} (y_i - \bar{y}_{\kappa})^2$$

où $|\kappa|$ est l'effectif du nœud κ

Minimiser la variance intra-classe

Les nœud fils κ_G et κ_D minimisent :

$$\frac{|\kappa_G|}{n} \sum_{i \in \kappa_G} (y_i - \overline{y}_{\kappa_G})^2 + \frac{|\kappa_D|}{n} \sum_{i \in \kappa_D} (y_i - \overline{y}_{\kappa_D})^2.$$

Hétérogénéité et déviance dans le cas gaussien (Breiman et al. 1984)

Y qualitative : hétérogénéité en discrimination

Hétérogénéité du nœud κ :

• Entropie avec la notation $0 \log(0) = 0$

$$D_{\kappa} = -2\sum_{\ell=1}^{m} |\kappa| p_{\kappa}^{\ell} \log(p_{\kappa}^{\ell})$$

 p_{κ}^{ℓ} : proportion de la classe \mathcal{T}_{ℓ} de Y dans κ .

- Concentration de Gini : $D_{\kappa} = \sum_{\ell=1}^m p_{\kappa}^{\ell} (1-p_{\kappa}^{\ell})$
- Statistique du test du χ^2 (CHAID)

Entropie et déviance d'un modèle multinomial (Breiman et al. 1984)

Discrimination: extensions

- Les probabilités conditionnelles sont définies par la règle de Bayes lorsque les probabilités *a priori* π_{ℓ} sont connues
- Sinon, les probabilités de chaque classe sont estimées sur l'échantillon et donc les probabilités conditionnelles s'estiment par des rapports d'effectifs :

$$p_{\ell k}$$
 est estimée par $n_{\ell k}/n_{+k}$

 Des coûts de mauvais classement connus conduisent à la minimisation d'un risque bayésien

Élagage: notations

- Recherche d'un modèle parcimonieux
- Complexité d'un arbre : K_A = nombre de feuilles de A
- Qualité d(ajustement de A :

$$D(A) = \sum_{\kappa=1}^{K_A} D_{\kappa}$$

 D_{κ} : hétérogénéité feuille κ

Séquence d'arbres emboîtés

Critère de qualité pénalisé par la complexité :

$$C(A) = D(A) + \gamma \times K_A$$

Exemples

- Pour $\gamma = 0$: $A_{\text{max}} = A_{K_A}$ minimise C(A)
- Lorsque γ croît, la division de A_H , dont l'amélioration de D est inférieure à γ , est annulée ; ainsi
 - deux feuilles sont regroupées (élaguées)
 - le nœud père devient terminal
 - A_{K_A} devient A_{K_A-1}
- Après itération du procédé :

$$A_{\max} = A_{K_A} \supset A_{K_A-1} \supset \cdots A_1$$

Algorithme de sélection de l'arbre optimal

Arbre maximal A_{max}

Séquence $A_K \dots A_1$ emboîtée associée à

Séquence des valeurs γ_{κ}

for $dov = 1, \dots, V$

Estimation de la séquence d'arbres associée à γ_{κ} Estimation de l'erreur

end for

Séquence des moyennes de ces erreurs

 γ_{Opt} optimal

Arbre associé à γ_{Opt} dans $A_K \dots A_1$

Attention : Séquences d'arbres différentes, même séquence γ_{κ}

Remarques pratiques

- Sélection de variables et interactions
- Invariance par transformation monotone
- Hiérarchie et instabilité
- Découpes compétitives, surrogate et données manquantes
- Variantes : ternaire, linéaire...
- Approximation étagée de la régression : algorithme MARS

Ozone : arbre de discrimination élagué par validation croisée

Ozone : observations et résidus en fonction des prévisions

Banque : élagage par échantillon de validation

Construction de la séquence d'arbres Recherche de l'arbre optimal

nal Exemples
Endpoint = CARVP

Banque : Elagage par validation croisée

