Planche nº 40. Produits scalaires. Corrigé

Exercice nº 1

Montrons que $\phi: (A,B) \mapsto \operatorname{Tr} \left(A^T \times B\right)$ est un produit scalaire sur $\mathscr{M}_n(\mathbb{R})$. Posons $A = (\mathfrak{a}_{i,j})_{1 \leqslant i,j \leqslant n}$ et $B = (b_{i,j})_{1 \leqslant i,j \leqslant n}$. Posons encore $A^T = \left(\mathfrak{a}'_{i,j}\right)_{1 \leqslant i,j \leqslant n}$ où, pour tout $(i,j) \in [\![1,n]\!]^2$, $\mathfrak{a}'_{i,j} = \mathfrak{a}_{j,i}$.

$$\begin{split} \phi(A,B) &= \operatorname{Tr}\left(A^\mathsf{T}B\right) = \sum_{j=1}^n \left(\sum_{i=1}^n \alpha'_{j,i} b_{i,j}\right) = \sum_{j=1}^n \left(\sum_{i=1}^n \alpha_{i,j} b_{i,j}\right) \\ &= \sum_{(i,j) \in [\![1,n]\!]^2} \alpha_{i,j} b_{i,j}. \end{split}$$

On reconnaît le produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$. Puisque pour tout $A \in \mathcal{M}_n(\mathbb{R})$, $N(A) = \sqrt{\phi(A,A)}$, N est la norme euclidienne associée au produit scalaire ϕ et en particulier, N est une norme sur $\mathcal{M}_n(\mathbb{R})$. On note que

$$\forall A \in \mathscr{M}_n(\mathbb{R}), \ N(A) = \sqrt{\sum_{1 \leqslant i,j \leqslant} \alpha_{i,j}^2}.$$

Soit $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$.

$$\begin{split} (\mathsf{N}(\mathsf{A}\mathsf{B}))^2 &= \sum_{1\leqslant i,j\leqslant n} \left(\sum_{k=1}^n \alpha_{i,k} b_{k,j}\right)^2 \\ &\leqslant \sum_{1\leqslant i,j\leqslant n} \left(\sum_{k=1}^n \alpha_{i,k}^2\right) \left(\sum_{l=1}^n b_{l,j}^2\right) \; (\mathsf{d'après\ l'inégalit\'e}\; \mathsf{de\ Cauchy-Schwarz}) \\ &= \sum_{i,j,k,l} \alpha_{i,k}^2 b_{l,j}^2 = \left(\sum_{i,k} \alpha_{i,k}^2\right) \left(\sum_{l,j} b_{l,j}^2\right) = \mathsf{N}(\mathsf{A})^2 \mathsf{N}(\mathsf{B})^2, \end{split}$$

et donc, $\forall (A, B) \in (\mathscr{M}_n(\mathbb{R}))^2$, $N(AB) \leqslant N(A)N(B)$.

Exercice nº 2

1) Soit $(x, y, z) \in E^3$.

$$\begin{split} f(x+z,y) + f(x-z,y) &= \frac{1}{4} \left(\|x+z+y\|^2 + \|x-z+y\|^2 - \|x+z-y\|^2 - \|x-z-y\|^2 \right) \\ &= \frac{1}{4} \left(2 \left(\|x+y\|^2 + \|z\|^2 \right) - 2 \left(\|x-y\|^2 + \|z\|^2 \right) \right) \text{ (puisque N v\'erifie l'identit\'e du parall\'e logramme)} \\ &= \frac{1}{2} \left(\|x+y\|^2 - \|x-y\|^2 \right) = 2 f(x,y). \end{split}$$

2) Soit $(x, y) \in E^2$.

$$2f(x,y) = f(x+x,y) + f(x-x,y) = f(2x,y) + f(0,y)$$

 $\mathrm{mais}\ f(0,y) = \frac{1}{4}(||y||^2 - ||-y||^2) = 0\ (\mathrm{d\acute{e}finition}\ \mathrm{d'une\ norme})\ \mathrm{et\ donc}\ f(2x,y) = 2f(x,y).$

- 3) Soit $(x,y) \in E^2$. Montrons par récurrence que $\forall n \in \mathbb{N}, \ f(nx,y) = nf(x,y)$.
 - L'égalité est vraie pour n = 0 et n = 1.
 - Soit $n \ge 0$. Si l'égalité est vraie pour n et n + 1 alors d'après 1),

$$f((n+2)x,y) + f(nx,y) = f((n+1)x + x,y) + f((n+1)x - x,y) = 2f((n+1)x,y),$$

et donc, par hypothèse de récurrence.

$$f((n+2)x,y) = 2f((n+1)x,y) - f(nx,y) = 2(n+1)f(x,y) - nf(x,y) = (n+2)f(x,y).$$

On a montré par récurrence que $\forall n \in \mathbb{N}, f(nx, y) = nf(x, y)$.

$$\begin{split} &\mathrm{Soit}\ n\in\mathbb{N}^*,\, f(x,y)=f\left(n.\frac{1}{n}x,y\right)=nf\left(\frac{1}{n}x,y\right)\,\mathrm{et}\,\,\mathrm{donc}\,\, f(\frac{1}{n}x,y)=\frac{1}{n}f(x,y).\\ &\mathrm{Puis},\, \mathrm{si}\,\, r=\frac{p}{q},\, p\in\mathbb{N},\, q\in\mathbb{N}^*, \end{split}$$

$$f(rx,y) = \frac{1}{q}f(px,y) = p\frac{1}{q}f(x,y) = rf(x,y)$$

et pour tout rationnel positif r, f(rx, y) = rf(x, y).

Enfin, si $r \le 0$, f(rx,y) + f(-rx,y) = 2f(0,y) = 0 (d'après 1)) et donc= f(-rx,y) = -f(-rx,y) = rf(x,y).

4) On pose $x = \frac{1}{2}(u + v)$ et $y = \frac{1}{2}(u - v)$.

$$f(u, w) + f(v, w) = f(x + y, w) + f(x - y, w) = 2f(x, w) = 2f\left(\frac{1}{2}(u + v), w\right) = f(u + v, w).$$

- 5) f est symétrique (définition d'une norme) et linéaire par rapport à sa première variable. Donc f est bilinéaire.
- 6) f est une forme bilinéaire symétrique. Pour $x \in E$, $f(x,x) = \frac{1}{4}(\|x+x\|^2 + \|x-x\|^2) = \frac{1}{4}||2x||^2 = ||x||^2$ (définition d'une norme) ce qui montre tout à la fois que f est définie positive et donc un produit scalaire, et que $\|\cdot\|$ est la norme associée. $\|\cdot\|$ est donc une norme euclidienne.

Exercice nº 3

On note (|) le produit scalaire usuel sur \mathbb{R}^4 et $\| \| \|$ la norme associée.

La famille (V_1, V_2) est libre et donc est une base de F. Son orthonormalisée (e_1, e_2) est une base orthonormée de F.

$$\|V_1\| = \sqrt{1+4+1+1} = \sqrt{7}$$
 et

$$e_1 = \frac{1}{\sqrt{7}} V_1 = \frac{1}{\sqrt{7}} (1,2,-1,1).$$

$$(V_2|e_1)) = \frac{1}{\sqrt{7}} (0+6-1-1) = \frac{4}{\sqrt{7}} \text{ puis } V_2 - (V_2|e_1)e_1 = (0,3,1,-1) - \frac{4}{7} (1,2,-1,1) = \frac{1}{7} (-4,13,11,-11) \text{ puis }$$

$$e_2 = \frac{1}{\sqrt{427}} (-4,13,11,-11).$$

Une base orthonormée de F est (e_1,e_2) où $e_1 = \frac{1}{\sqrt{7}}(1,2,-1,1)$ et $e_2 = \frac{1}{\sqrt{427}}(-4,13,11,-11)$.

Soit $u = (x, y, z, t) \in \mathbb{R}^4$.

$$u \in \mathsf{F}^\perp \Leftrightarrow u \in \left(\mathrm{Vect}\left(V_1, V_2\right)\right)^\perp \Leftrightarrow u \in \left(V_1, V_2\right)^\perp \Leftrightarrow \left\{ \begin{array}{l} (u|V_1) = 0 \\ (u|V_2) = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + 2y - z + t = 0 \\ 3y + z - t = 0 \end{array} \right.$$

Exercice nº 4

- 1) a) Soit $u \in E$. L'application $x \mapsto (u|x)$ est une forme linéaire sur E par linéarité du produit scalaire par rapport à sa deuxième variable.
- **b)** Soit φ une forme linéaire sur E.

 $\begin{aligned} &\textbf{Existence.} \text{ Soit } \mathscr{B} = (e_1, \dots, e_n) \text{ une base orthonorm\'ee de l'espace euclidien } (E, (\mid)). \text{ Pour } i \in \llbracket 1, n \rrbracket, \text{ posons } \alpha_i = \phi \left(e_i \right) \\ &\text{puis } u = \sum_{i=1}^n \alpha_i e_i. \end{aligned}$

Soit
$$x = \sum_{i=1}^{n} x_i e_i \in E$$
.

$$\begin{split} \phi(x) &= \sum_{i=1}^n x_i \phi\left(e_i\right) = \sum_{i=1}^n \alpha_i x_i \\ &= \left(u|x\right) \text{ (car la base \mathscr{B} est orthonormée.)} \end{split}$$

Ainsi, il existe un vecteur $u \in E$ (indépendant de $x \in E$) tel que $\forall x \in E$, $\varphi(x) = (u|x)$.

Unicité. Soit $v \in E$ tel que $\forall x \in E$, $\varphi(x) = (v|x)$. Par suite, $\forall x \in E$, (u|x) = (v|x) puis, $\forall x \in E$, ((u-v)|x) = 0. Mais alors $u-v \in E^{\perp} = \{0\}$ puis u=v. Ceci montre l'unicité du vecteur u.

2) a) L'application $(P,Q) \mapsto P|Q = \int_0^1 P(t)Q(t)$ dt est un produit scalaire sur l'espace $E = \mathbb{R}_n[X]$ qui est de dimension finie sur \mathbb{R} . L'application $\phi: P \mapsto P(0)$ est une forme linéaire sur E. D'après la question 1), il existe un élément A de $\mathbb{R}_n[X]$ et un seul tel que pour tout $P \in \mathbb{R}_n[X]$, $\phi(P) = A|P$ ou encore

$$\exists ! A \in \mathbb{R}_n[X] / \ \forall P \in \mathbb{R}_n[X], \ \int_0^1 A(t)P(t) \ dt = P(0).$$

 $\mathbf{b)} \text{ Soit } A \text{ un \'eventuel polyn\^ome solution c\'est \`a dire tel que } \forall P \in \mathbb{R}[X], \ \int_0^1 P(t)A(t) \ dt = P(0).$

Le choix de P = 1 montre que $A \neq 0$. Le choix P = XA fournit : $0 = P(0) = \int_0^1 tA^2(t) dt$.

Mais alors, $\forall t \in [0,1], \ tA^2(t) = 0$ (fonction continue positive d'intégrale nulle) puis $\forall t \in]0,1], \ A(t) = 0$ et donc A = 0 (polynôme ayant une infinité de racines deux à deux distinctes). Ceci est une contradiction et donc il n'existe pas de polynôme A tel que pour tout $P \in \mathbb{R}[X], \int_0^1 A(t)P(t) \ dt = P(0)$.

Exercice nº 5

- 1) a) Soit \mathcal{B} une base orthonormée de E et $M = \operatorname{Mat}_{\mathcal{B}}(x_1,...,x_n)$ (M est une matrice de format (p,n)). Puisque \mathcal{B} est orthonormée, le produit scalaire usuel des colonnes C_i et C_j est encore $x_i|x_j$. Donc, $\forall (i,j) \in [\![1,n]\!]^2$, $C_i^T C_j = x_i|x_j$ ou encore $G = M^T \times M$ (car le coefficient ligne i colonne j, de $M^T M$ est le produit scalaire usuel de la ligne i de M^T par la colonne j de M ou encore le produit scalaire usuel de la colonne i de M par la colonne i de M.
- b) Montrons que Ker $(M^TM) = \text{Ker}(M)$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$

$$X \in \mathrm{Ker} M \Rightarrow MX = 0 \Rightarrow M^{\mathsf{T}} \times MX = 0 \Rightarrow X \in \mathrm{Ker} \left(M^{\mathsf{T}} M \right)$$

et, en notant $\| \|$ la norme associée au produit scalaire canonique sur $\mathcal{M}_{n,1}(\mathbb{R})$ $((X,Y)\mapsto X^TY)$,

$$X \in \operatorname{Ker} \left(M^T M \right) \Rightarrow M^T M X = 0 \Rightarrow X^T M^T M X = 0 \Rightarrow (MX)^T M X = 0 \Rightarrow \|MX\|^2 = 0 \Rightarrow MX = 0 \\ \Rightarrow X \in \operatorname{Ker} M.$$

On a montré que $\operatorname{Ker}(M^TM) = \operatorname{Ker}(M)$. Mais alors, d'après le théorème du rang,

$$\operatorname{rg}\left(\boldsymbol{M}^{\mathsf{T}}\boldsymbol{M}\right)=\boldsymbol{n}-\dim\left(\operatorname{Ker}\left(\boldsymbol{M}^{\mathsf{T}}\boldsymbol{M}\right)\right)=\boldsymbol{n}-\dim\left(\operatorname{Ker}\left(\boldsymbol{M}\right)\right)=\operatorname{rg}(\boldsymbol{M})$$

 $\operatorname{rg}\left(G\left(x_{1},\ldots,x_{n}\right)\right)=\operatorname{rg}(M)=\operatorname{rg}(x_{1},...,x_{n}).$

2) Si la famille $(x_1, ..., x_n)$ est liée, $\operatorname{rg}(G(x_1, ..., x_n)) = \operatorname{rg}(x_1, ..., x_n) < n$, et donc, puisque $G(x_1, ..., x_n)$ est une matrice carrée de format $n, \gamma(x_1, ..., x_n) = \det(G(x_1, ..., x_n)) = 0$.

Si la famille $(x_1, ..., x_n)$ est libre, la famille $(x_1, ..., x_n)$ engendre un espace F de dimension $\mathfrak n$. Soient $\mathscr B$ une base orthonormée de F et M la matrice de la famille $(x_1, ..., x_n)$ dans $\mathscr B$. D'après 1), on a $G(x_1, ..., x_n) = M^T M$ et d'autre part, M est une matrice carrée, inversible car matrice d'une base de F dans une base de F. Par suite,

$$\gamma(x_1,...,x_n) = \det\left(M^TM\right) = \det\left(M^T\right)\det(M) = (\det M)^2 > 0.$$

3) On écrit $x = x - p_F(x) + p_F(x)$. La première colonne de $\gamma(x, x_1, ..., x_n)$ s'écrit :

$$\begin{pmatrix} \|x\|^{2} \\ x|x_{1} \\ x|x_{2} \\ \vdots \\ x|x_{n} \end{pmatrix} = \begin{pmatrix} \|x - p_{F}(x) + p_{F}(x)\|^{2} \\ (x - p_{F}(x) + p_{F}(x)) |x_{1} \\ (x - p_{F}(x) + p_{F}(x)) |x_{2} \\ \vdots \\ (x - p_{F}(x) + p_{F}(x)) |x_{n} \end{pmatrix} = \begin{pmatrix} \|x - p_{F}(x)\|^{2} \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} \|p_{F}(x)\|^{2} \\ p_{F}(x)|x_{1} \\ p_{F}(x)|x_{2} \\ \vdots \\ p_{F}(x)|x_{n} \end{pmatrix}.$$

(en 1ère ligne, c'est le théorème de Pythagore et dans les suivantes, $x - p_F(x) \in F^{\perp}$). Par linéarité par rapport à la première colonne, $\gamma(x, x_1, ..., x_n)$ est somme de deux déterminants. Le deuxième est $\gamma(p_F(x), x_1, ..., x_n)$ et est nul car la famille $(p_F(x), x_1, ..., x_n)$ est liée. On développe le premier suivant sa première colonne et on obtient :

$$\gamma(x,x_1,...,x_n) = ||x-p_F(x)||^2 \gamma(x_1,...,x_n),$$

ce qui fournit la formule désirée.

Exercice nº 6

Un vecteur engendrant D est $\overrightarrow{u}=(2,1,3)$. Pour $\overrightarrow{v}=(x,y,z)\in\mathbb{R}^3$

$$p_{D}(\overrightarrow{v}) = \frac{(x, y, z)|(2, 1, 3)}{||(2, 1, 3)||^{2}}(2, 1, 3) = \frac{2x + y + 3z}{14}(2, 1, 3)$$
$$= \left(\frac{4x + 2y + 6z}{14}, \frac{2x + y + 3z}{14}, \frac{6x + 3y + 9z}{14}\right).$$

On en déduit que $\operatorname{Mat}_{\mathscr{B}}(p) = P = \frac{1}{14} \begin{pmatrix} 4 & 2 & 6 \\ 2 & 1 & 3 \\ 6 & 3 & 9 \end{pmatrix}$ puis $\operatorname{Mat}_{\mathscr{B}}(s) = 2P - I = \frac{1}{7} \begin{pmatrix} -3 & 2 & 6 \\ 2 & -6 & 3 \\ 6 & 3 & 2 \end{pmatrix}$. Plus géralement, la matrice de la projection orthogonale sur le vecteur unitaire $(\mathfrak{a},\mathfrak{b},\mathfrak{c})$ dans la base canonique orthonormée

est
$$P = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}$$
 et la matrice de la projection orthogonale sur le plan $ax + by + cz = 0$ dans la base canonique

orthonormée est
$$I-P=\left(\begin{array}{ccc} 1-\alpha^2 & -\alpha b & -\alpha c \\ -\alpha b & 1-b^2 & -bc \\ -\alpha c & -bc & 1-c^2 \end{array} \right).$$

Exercice nº 7

1ère solution.

$$\int_{0}^{1} (x^{4} - ax - b)^{2} dx = \frac{1}{9} + \frac{1}{3}a^{2} + b^{2} - \frac{1}{3}a - \frac{2}{5}b + ab = \frac{1}{3}(a^{2} + a(3b - 1)) + b^{2} - \frac{2}{5}b + \frac{1}{9}$$

$$= \frac{1}{3}(a + \frac{1}{2}(3b - 1))^{2} - \frac{1}{12}(3b - 1)^{2} + b^{2} - \frac{2}{5}b + \frac{1}{9}$$

$$= \frac{1}{3}(a + \frac{1}{2}(3b - 1))^{2} + \frac{1}{4}b^{2} + \frac{1}{10}b + \frac{1}{36}$$

$$= \frac{1}{3}(a + \frac{1}{2}(3b - 1))^{2} + \frac{1}{4}(b + \frac{1}{5})^{2} + \frac{4}{225} \geqslant \frac{4}{225},$$

avec égalité si et seulement si $a + \frac{1}{2}(3b - 1) = b + \frac{1}{5} = 0$ ou encore $b = -\frac{1}{5}$ et $a = \frac{4}{5}$ $\int_0^1 (x^4 - ax - b)^2 dx \text{ est minimum pour } a = \frac{4}{5} \text{ et } b = -\frac{1}{5} \text{ et ce minimum vaut } \frac{4}{225}$

2ème solution.

 $(P,Q) \mapsto \int_0^1 P(t)Q(t) \ dt \ \mathrm{est} \ \mathrm{un} \ \mathrm{produit} \ \mathrm{scalaire} \ \mathrm{sur} \ \mathbb{R}_4[X] \ \mathrm{et} \int_0^1 (x^4 - ax - b)^2 dx \ \mathrm{est}, \ \mathrm{pour} \ \mathrm{ce} \ \mathrm{produit} \ \mathrm{scalaire}, \ \mathrm{le} \ \mathrm{carr\'e} \ \mathrm{de} \ \mathrm{la} \ \mathrm{distance} \ \mathrm{du} \ \mathrm{polyn\^ome} \ X^4 \ \mathrm{au} \ \mathrm{polyn\^ome} \ \mathrm{de} \ \mathrm{degr\'e} \ \mathrm{inf\'erieur} \ \mathrm{ou} \ \mathrm{\acute{e}gal} \ \mathrm{\grave{a}} \ 1, \ aX + b.$

On doit calculer $\inf \left\{ \int_0^1 (x^4 - \alpha x - b)^2 \ dx, \ (\alpha, b) \in \mathbb{R}^2 \right\}$ qui est le carré de la distance de X^4 à $F = \mathbb{R}_1[X]$. On sait que cette borne inférieure est un minimum, atteint une et une seule fois quand aX + b est la projection orthogonale de X^4

Trouvons une base orthonormale de F. L'orthonormalisée (P_0, P_1) de (1, X) convient.

$$||1||^2 = \int_0^1 1 \ dt = 1 \ \text{et} \ P_0 = 1. \ \text{Puis} \ X - (X|P_0)P_0 = X - \int_0^1 t \ dt = X - \frac{1}{2}, \ \text{et comme}$$

$$||X - (X|P_0)P_0||^2 = \int_0^1 \left(t - \frac{1}{2}\right)^2 \ dt = \frac{1}{3} - \frac{1}{2} + \frac{1}{4} = \frac{1}{12},$$

on a
$$P_1 = 2\sqrt{3}\left(X - \frac{1}{2}\right) = \sqrt{3}(2X - 1)$$
.

La projection orthogonale de X^4 sur F est alors $(X^4|P_0)P_0 + (X^4|P_1)P_1$ avec $(X^4|P_0) = \int_1^1 t^4 dt = \frac{1}{5}$ et $(X^4|P_1) = \sqrt{3} \int_1^1 t^4 (2t-1) \ dt = \sqrt{3} \left(\frac{1}{3} - \frac{1}{5}\right) = \frac{2\sqrt{3}}{15}. \ \text{Donc, la projection orthogonale de } X^4 \ \text{sur F est}$

$$\frac{1}{5} + \frac{2\sqrt{3}}{15}\sqrt{3}(2X - 1) = \frac{1}{5}(4X - 1).$$

 $\text{Le minimum cherch\'e est alors} \int_0^1 \left(t^4 - \frac{1}{5} (4t-1) \right)^2 \ dt = ... = \frac{4}{225} \ \text{et qu'il est atteint pour } \ \alpha = \frac{4}{5} \ \text{et } \ b = -\frac{1}{5}.$

Exercice nº 8

Soit φ : $E \to \mathbb{R}^n$. φ est clairement linéaire et $\operatorname{Ker} \varphi$ est $(e_1,...,e_n)^\perp = E^\perp = \{0\}$. $x \mapsto (x|e_1,...,x|e_n)$

Comme E et \mathbb{R}^n ont mêmes dimensions finies, φ est un isomorphisme d'espaces vectoriels. En particulier, pour tout \mathfrak{n} -uplet $(\mathfrak{a}_1,...,\mathfrak{a}_n)$ de réels, il existe un unique vecteur \mathfrak{x} tel que $\forall i \in [1,n], \ \mathfrak{x}|e_i=\mathfrak{a}_i$.

Exercice nº 9

 $\textbf{1\`ere solution.} \ \mathrm{Montrons} \ \mathrm{par} \ \mathrm{r\'ecurrence} \ \mathrm{sur} \ n = \dim(E) \ \mathrm{que}, \ \mathrm{si} \ (x_i)_{1 \leqslant i \leqslant p} \ \mathrm{est} \ \mathrm{obtusangle}, \ \mathrm{alors} \ p \leqslant n+1.$

- Pour n=1, une famille obtusangle ne peut contenir au moins trois vecteurs car si elle contient les vecteurs x_1 et x_2 verifiant $x_1|x_2<0$, un vecteur x_3 quelconque est soit nul (auquel cas $x_3|x_1=0$), soit de même sens que x_1 (auquel cas $x_1|x_3>0$) soit de même sens que x_2 (auquel cas $x_2|x_3>0$). Donc $p\leqslant 2$.
- Soit $n \ge 1$. Supposons que toute famille obtusangle d'un espace de dimension n a un cardinal inférieur ou égal à n+1. Soit $(x_i)_{1 \le i \le p}$ une famille obtusangle d'un espace E de dimension n+1. Si p=1, il n'y a plus rien à dire. Supposons $p \ge 2$. x_p n'est pas nul et $H = x_p^{\perp}$ est un hyperplan de E et donc est de dimension n.

 $\text{Pour } 1 \leqslant i \leqslant p-1, \text{ notons } y_i = x_i - \frac{(x_i|x_p)}{\|x_p\|^2} x_p \text{ le projeté orthogonal de } x_i \text{ sur } H.$

Vérifions que la famille $(y_i)_{1 \le i \le p-1}$ est une famille obtusangle de H. Soit $(i,j) \in [1,p-1]$ tel que $i \ne j$.

$$y_i|y_j=x_i|x_j-\frac{(x_i|x_p)(x_j|x_p)}{||x_p||^2}-\frac{(x_j|x_p)(x_i|x_p)}{||x_p||^2}+\frac{(x_i|x_p)(x_j|x_p)(x_p|x_p)}{||x_p||^4}=x_i|x_j-\frac{(x_i|x_p)(x_j|x_p)}{||x_p||^2}<0.$$

Mais alors, par hypothèse de récurrence, $p-1\leqslant 1+\dim H=n+1$ et donc $\mathfrak{p}\leqslant n+2$.

2ème solution. Montrons que si la famille $(x_i)_{1 \leqslant i \leqslant p}$ est obtusangle, la famille $(x_i)_{1 \leqslant i \leqslant p-1}$ est libre. Supposons par l'absurde, qu'il existe une famille de scalaires $(\lambda_i)_{1 \leqslant i \leqslant p-1}$ non tous nuls tels que $\sum_{i=1}^{p-1} \lambda_i x_i = 0$ (*).

Quite à multiplier les deux membres de (*) par -1, on peut supposer qu'il existe au moins un réel $\lambda_i > 0$. Soit I l'ensemble des indices i tels que $\lambda_i > 0$ et J l'ensemble des indices i tels que $\lambda_i < 0$ (éventuellement J est vide). I et J sont disjoints.

(*) s'écrit
$$\sum_{i\in I}\lambda_ix_i=-\sum_{i\in J}\lambda_ix_i$$
 (si J est vide, le second membre est nul). On a

$$0\leqslant \left\|\sum_{i\in I}\lambda_ix_i\right\|^2=\left(\sum_{i\in I}\lambda_ix_i\right)|\left(-\sum_{i\in J}\lambda_ix_i\right)=\sum_{(i,j)\in I\times J}\lambda_i(-\lambda_j)x_i|x_j\leqslant 0.$$

Donc,
$$\left\| \sum_{i \in I} \lambda_i x_i \right\|^2 = 0$$
 puis $\sum_{i \in I} \lambda_i x_i = 0$.

 $\text{Mais, en faisant le produit scalaire avec } x_p, \text{ on obtient } \left(\sum_{i \in I} \lambda_i x_i\right) | x_p = \sum_{i \in I} \lambda_i (x_i.x_p) < 0 \text{ ce qui est une contradiction.}$

Puisque la famille $(x_i)_{1 \le i \le p-1}$ est libre, son cardinal p-1 est inférieur ou égal à la dimension n et donc $p \le n+1$.

Exercice nº 10

L'application $(P,Q)\mapsto \int_0^1 P(t)Q(t)$ dt est un produit scalaire sur $E=\mathbb{R}_3[X]$. Déterminons une base orthonormée de E. Pour cela, déterminons (Q_0,Q_1,Q_2,Q_3) l'orthonormalisée de la base canonique $(P_0,P_1,P_2,P_3)=(1,X,X^2,X^3)$.

•
$$||P_0||^2 = \int_{-1}^1 1^2 dt = 2$$
 et on prend $Q_0 = \frac{1}{\sqrt{2}}$.

•
$$P_1|Q_0 = \frac{1}{\sqrt{2}} \int_{-1}^{1} t \ dt = 0 \text{ puis } P_1 - (P_1|Q_0)Q_0 = X \text{ puis } \|P_1 - (P_1|Q_0)Q_0\|^2 = \int_{-1}^{1} t^2 \ dt = \frac{2}{3} \text{ et } Q_1 = \sqrt{\frac{3}{2}}X.$$

$$\bullet \ P_2|Q_0 = \frac{1}{\sqrt{2}} \int_{-1}^1 t^2 \ dt = \frac{\sqrt{2}}{3} \ \text{et} \ P_2|Q_1 = 0. \ \text{Donc}, \ P_2 - (P_2|Q_0)Q_0 - (P_2|Q_1)Q_1 = X^2 - \frac{1}{3},$$

$$\begin{split} & \text{puis } \|P_2 - (P_2|Q_0)Q_0 - (P_2|Q_1)Q_1\|^2 = \int_{-1}^1 \left(t^2 - \frac{1}{3}\right)^2 \ dt = 2\left(\frac{1}{5} - \frac{2}{9} + \frac{1}{9}\right) = \frac{8}{45} \ \text{et} \ Q_2 = \frac{\sqrt{5}}{2\sqrt{2}} \left(3X^2 - 1\right). \\ & \bullet \ \text{Enfin, } P_3|Q_0 = P_3|Q_2 = 0 \ \text{et} \ P_3|Q_1 = \sqrt{\frac{3}{2}} \int_{-1}^1 t^4 \ dt = \frac{\sqrt{6}}{5} \ \text{et} \ P_3 - (P_3|Q_0)Q_0 - (P_3|Q_1)Q_1 - (P_3|Q_2)Q_2 = X^3 - \frac{3}{5}X, \\ & \text{puis } \left\|X^3 - \frac{3}{5}X\right\|^2 = \int_{-1}^1 \left(t^3 - \frac{3}{5}t\right)^2 \ dt = 2\left(\frac{1}{7} - \frac{6}{25} + \frac{3}{25}\right) = 2\frac{25 - 21}{175} = \frac{8}{175}, \ \text{et} \ P_3 = \frac{\sqrt{7}}{2\sqrt{2}} \left(5X^3 - 3X\right). \end{split}$$

Une base orthonormée de E est (Q_0,Q_1,Q_2,Q_3) où $Q_0=\frac{1}{\sqrt{2}},\ Q_1=\frac{\sqrt{3}}{\sqrt{2}}X,\ Q_2=\frac{\sqrt{5}}{2\sqrt{2}}(3X^2-1)$ et $Q_3=\frac{\sqrt{7}}{2\sqrt{2}}(5X^3-3X)$.

 $\mathrm{Soit\ alors}\ P\ \mathrm{un\ \'el\'ement\ quelconque}\ \mathrm{de}\ E=\mathbb{R}_3[X]\ \mathrm{tel\ que}\ \int_{-1}^1 P^2(t)\ dt=1.\ \mathrm{Posons}\ P=\alpha Q_0+bQ_1+cQ_2+dQ_3.$

Puisque (Q_0, Q_1, Q_2, Q_3) est une base orthonormée de E, $\int_{-1}^{1} P^2(t) dt = ||P||^2 = a^2 + b^2 + c^2 + d^2 = 1$. Maintenant, pour $x \in [-1, 1]$, en posant $M_i = \text{Max}\{|Q_i(x)|, \ x \in [-1, 1]\}$, on a :

$$\begin{split} |P(x)| \leqslant |a| \times |Q_0(x)| + |b| \times |Q_1(x)| + |c| \times |Q_2(x)| + |d| \times |Q_3(x)| \leqslant |a| M_0 + |b| M_1 + |c| M_2 + |d| M_3 \\ \leqslant \sqrt{a^2 + b^2 + c^2 + d^2} \sqrt{M_0^2 + M_1^2 + M_2^2 + M_3^2} \text{ (d'après l'inégalité de Cauchy-Schwarz)} \\ &= \sqrt{M_0^2 + M_1^2 + M_2^2 + M_3^2}. \end{split}$$

Une étude brève montre alors que chaque $|P_i|$ atteint son maximum sur [-1,1] en 1 (et -1) et donc

$$\sqrt{M_0^2 + M_1^2 + M_2^2 + M_3^2} = \sqrt{\frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \frac{7}{2}} = 2\sqrt{2}.$$

Ainsi, $\forall x \in [-1, 1], |P(x)| \le 2\sqrt{2}$ et donc $Max\{|P(x)|, x \in [-1, 1]\} \le 2\sqrt{2}$.

Etudions les cas d'égalité. Soit $P \in \mathbb{R}_3[X]$ un polynôme éventuel tel que $\operatorname{Max}\{|P(x)|, \ x \in [-1,1]\} = 2\sqrt{2}$. Soit $x_0 \in [-1,1]$ tel que $\operatorname{Max}\{|P(x)|, \ x \in [-1,1]\} = |P(x_0)|$. Alors :

$$\begin{split} 2\sqrt{2} &= |P\left(x_{0}\right)| \leqslant |a| \times |Q_{0}(x_{0})| + |b| \times |Q_{1}(x_{0})| + |c| \times |Q_{2}(x_{0})| + |d| \times |Q_{3}(x_{0})| \\ &\leqslant |a| \times M_{0} + |b| \times M_{1} + |c| \times M_{2} + |d| \times M_{3} \leqslant \sqrt{M_{0}^{2} + M_{1}^{2} + M_{2}^{2} + M_{3}^{2}} = 2\sqrt{2}. \end{split}$$

Chacune de ces inégalités est donc une égalité. La dernière (CAUCHY-SCHWARZ) est une égalité si et seulement si (|a|,|b|,|c|,|d|) est colinéaire à $(1,\sqrt{3},\sqrt{5},\sqrt{7})$ ou encore si et seulement si P est de la forme $\lambda\left(\pm Q_0\pm\sqrt{3}Q_1\pm\sqrt{5}Q_2\pm\sqrt{7}Q_3\right)$ où $\lambda^2(1+3+5+7)=1$ et donc $\lambda=\pm\frac{1}{4}$, ce qui ne laisse plus que 16 polynômes possibles. L'avant-dernière inégalité est une égalité si et seulement si $x_0\in\{-1,1\}$ (clair). La première inégalité est une égalité si et seulement si

$$|aQ_0(1) + bQ_1(1) + cQ_2(1) + dQ_3(1)| = |a|Q_0(1) + |b|Q_1(1) + |c|Q_2(1) + |d|Q_3(1),$$

ce qui équivaut au fait que a, b, c et d aient même signe et P est l'un des deux polynômes

$$\begin{split} \pm \frac{1}{4} \left(Q_0 + \sqrt{3} Q_1 + \sqrt{5} Q_2 + \sqrt{7} Q_3 \right) &= \pm \frac{1}{4\sqrt{2}} \left(1 + 3X + \frac{5}{2} (3X^2 - 1) + \frac{7}{2} (5X^3 - 3X) \right) \\ &= \pm \frac{1}{8\sqrt{2}} \left(35X^3 + 15X^2 - 15X - 3 \right) \end{split}$$

Exercice nº 11

 $\text{L'application } (f,g) \mapsto \int_0^1 f(t)g(t) \ dt \ \text{est un produit scalaire sur } C^0([0,1],\mathbb{R}). \ \text{D'après l'inégalité de Cauchy-Schwarz},$

$$\begin{split} I_n I_{n+2} &= \int_0^1 f^n(t) \ dt \int_0^1 f^{n+2}(t) \ dt = \int_0^1 \left(\left(\sqrt{f(t)} \right)^n \right)^2 dt \int_0^1 \left(\left(\sqrt{f(t)} \right)^{n+2} \right)^2 dt \\ &\geqslant \left(\int_0^1 \left(\sqrt{f(t)} \right)^n \left(\sqrt{f(t)} \right)^{n+2} \ dt \right)^2 = \left(\int_0^1 f^{n+1}(t) \ dt \right)^2 = I_{n+1}^2 \end{split}$$

Comme f est continue et strictement positive sur [0, 1], In est strictement positif pour tout entier naturel n. Donc, $\forall n \in \mathbb{N}, \ \frac{I_{n+1}}{I_n} \leqslant \frac{I_{n+2}}{I_{n+1}}$. La suite $\left(\frac{I_{n+1}}{I_n}\right)$ est définie et croissante.

Exercice nº 12

1) La symétrie, la bilinéarité et la positivité sont claires. Soit alors $P \in \mathbb{R}_n[X]$.

$$\begin{split} P|P=0 &\Rightarrow \int_{-1}^{1} P^2(t) \ dt = 0 \\ &\Rightarrow \forall t \in [-1,1], \ P^2(t) = 0 \ (\text{fonction continue, positive, d'intégrale nulle}) \\ &\Rightarrow P=0 \ (\text{polynôme ayant une infinité de racines}). \end{split}$$

Ainsi, l'application $(P,Q)\mapsto \int_{-1}^{1}P(t)Q(t)\ dt$ est un produit scalaire sur $\mathbb{R}_{n}[X]$.

- 2) Pour vérifier que la famille $\left(\frac{L_p}{\|L_p\|}\right)_{0 \le p \le p}$ est l'orthonormalisée de SCHMIDT de la base canonique de E, nous allons
 - $\mathbf{a}) \ \forall p \in \llbracket 0, n \rrbracket, \ \operatorname{Vect}(L_0, L_1, ..., L_p) = \operatorname{Vect}(1, X, ..., X^p),$
 - $\begin{array}{l} \mathbf{b}) \, \left(\frac{L_p}{\|L_p\|} \right)_{\substack{0 \leqslant p \leqslant n \\ \mathbf{c}) \ \forall p \in [\![0,n]\!], \ L_p|X^p > 0. } } \mathrm{est\ orthonormale},$

Pour a), on note que L_p est un polynôme de degré p (et de coefficient dominant $\frac{(2p)!}{p!}$). Par suite, $(L_0, L_1, ..., L_p)$ est une base de $\mathbb{R}_p[X]$, ou encore, $\forall p \in [0,n]$, $\mathrm{Vect}(L_0,L_1,...,L_p) = \mathrm{Vect}(1,X,...,X^p)$.

Soit $p \in [0, n]$. Soit P un polynôme de degré inférieur ou égal à p. Si $p \ge 1$, une intégration par parties fournit :

$$\begin{split} L_p|P &= \int_{-1}^1 \left((t^2-1)^p \right)^{(p)} P(t) \ dt = \left[((t^2-1)^p)^{(p-1)} P(t) \right]_{-1}^1 - \int_{-1}^1 ((t^2-1)^p)^{(p-1)} P'(t) \ dt \\ &= - \int_{-1}^1 ((t^2-1)^p)^{(p-1)} P'(t) \ dt. \end{split}$$

En effet, 1 et -1 sont racines d'ordre $\mathfrak p$ de $(t^2-1)^{\mathfrak p}$ et donc d'ordre $\mathfrak p-k$ de $\left((t^2-1)^{\mathfrak p}\right)^{(k)}$ pour $0\leqslant k\leqslant \mathfrak p$ et en particulier, racines de chaque $((t^2-1)^p)^{(k)}$ pour $0 \le k \le p-1$.

En réitérant, on obtient pour tout $k \in [0,p]$, $L_p|P = (-1)^k \int_{-1}^{1} ((t^2-1)^p)^{(p-k)} P^{(k)}(t) dt$ et pour k=p, on obtient enfin $L_p|P=(-1)^p\int_{-1}^1(t^2-1)^pP^{(p)}(t)\;dt, \, {\rm cette\ formule\ restant\ vraie\ pour\ } p=0.$

Soient p et q deux entiers tels que $0 \le q . D'après ce qui précède, <math>L_p|L_q = (-1)^p \int_{-1}^1 (t^2 - 1)^p L_q^{(p)}(t) dt = 0$ car $q = \deg(L_q) < p$. Ainsi, la famille $(L_p)_{0 \leqslant p \leqslant n}$ est une famille orthogonale de n+1 polynômes tous non nuls et est par suite est une base orthogonale de $\mathbb{R}_n[X]$. On en déduit que $\left(\frac{L_p}{||L_p||}\right)_{0\leqslant p\leqslant n}$ est une base orthonormale de $\mathbb{R}_n[X]$.

 $\mathrm{Enfin}, \ L_p|X^p = (-1)^p \int_{-1}^1 (t^2-1)^p (t^p)^{(p)} \ dt = p! \int_{-1}^1 (1-t^2)^p \ dt > 0. \ \mathrm{On} \ \mathrm{a} \ \mathrm{montr\'e} \ \mathrm{que} \ \mathrm{la} \ \mathrm{famille} \ \left(\frac{L_p}{\|L_p\|}\right)_{0 \le n \le n} \ \mathrm{est}$ l'orthonormalisée de la base canonique de $\mathbb{R}_n[X]$.

Calculons $\|L_p\|$. On note que $L_p \in (L_0,...,L_{p-1})^{\perp} = (\mathbb{R}_{p-1}[X])^{\perp}$. Par suite,

$$\begin{split} \|L_p\|^2 &= L_p |L_p = L_p |\mathrm{dom}(L_p) X^p \ (\mathrm{car} \ L_p \in (\mathbb{R}_{p-1}[X])^\perp) \\ &= \frac{(2p)!}{p!} L_p |X^p = \frac{(2p)!}{p!} p! \int_{-1}^1 (1-t^2)^p \ dt = 2(2p)! \int_0^1 (1-t^2)^p \ dt \\ &= 2(2p)! \int_{\pi/2}^0 (1-\cos^2 u)^p (-\sin u) \ du = 2(2p)! \int_0^{\pi/2} \sin^{2p+1} u \ du \\ &= 2(2p)! W_{2p+1} \ (\mathrm{Int\'egrales} \ de \ \mathrm{Wallis}) \\ &= 2(2p)! \frac{(2p)(2p-2) \dots 2}{(2p+1)(2p-1) \dots 3} \ (\grave{\mathrm{a}} \ \mathrm{revoir}). \\ &= 2(2p)! \frac{2^{2p}(p!)^2}{(2p+1)!} = \frac{2}{2p+1} 2^{2p}(p!)^2. \end{split}$$

Donc, $\forall p \in [0,n]$, $\|L_p\| = \sqrt{\frac{2}{2p+1}} 2^p p!$. On en déduit que la famille $\left(\sqrt{\frac{2p+1}{2}} \frac{1}{2^p p!} ((X^2-1)^p)^{(p)}\right)_{0 \leqslant p \leqslant n}$ est une base orthonormale de $\mathbb{R}_n[X]$ (pour le produit scalaire considéré).

Exercice nº 13

1) • Supposons que p soit une projection orthogonale. Posons $F = \operatorname{Im}(p)$ de sorte que $p = p_F$. On sait que $\operatorname{Ker}(p) = F^{\perp}$. Soit $x \in E$.

$$\begin{split} \|x\|^2 &= \|p_F(x) + (x - p_F(x))\|^2 \\ &= \|p_F(x)\|^2 + \|(x - p_F(x))\|^2 \ (\operatorname{car} x - p_F(x) \in \operatorname{Ker}(p) = F^\perp \text{ et d'après le théorème de Pythagore}) \\ &\geqslant \|p_F(x)\|^2 \end{split}$$

et donc $||x|| \geqslant ||p_F(x)||$.

• Supposons que $\forall x \in E$, $\|p(x)\| \leq \|x\|$. Montrons que p est une projection orthogonale. Posons $F = \operatorname{Im}(p)$ et $G = \operatorname{Ker}(p)$ (de sorte que p est la projection sur F parallèlement à G) et montrons que $G = F^{\perp}$. Soient $x \in F$ et $y \in G \setminus \{0\}$. Pour tout réel λ , on a

$$\|x\|^2 = \|p(x + \lambda y)\|^2 \leqslant \|x + \lambda y\|^2 = \|x\|^2 + 2\lambda(x|y) + \lambda^2\|y\|^2,$$

et donc $\forall \lambda \in \mathbb{R}$, $2\lambda(x|y) + \lambda^2 \|y\|^2 \geqslant 0$. Le polynôme $\lambda \mapsto 2\lambda(x|y) + \lambda^2 \|y\|^2$ est un trinôme du second degré (car $\|y\|^2 > 0$) et est de signe constant sur \mathbb{R} . Son discriminant est réduit est donc négatif ou nul.

On en déduit que $(x|y)^2 \le 0$ puis que x|y=0. On a montré que tout vecteur de G est orthogonal à tout vecteur de F et donc que $G \subset F^{\perp}$. D'autre part, G et F^{\perp} sont deux supplémentaires de F. F et G ont donc mêmes dimensions finies. On en déduit que $G = F^{\perp}$ et donc que p est une projection orthogonale.

2) • Supposons que p soit une projection orthogonale. Puisque p est une projection, on a $p^2 = p$ et donc $P^2 = P$. Vérifions alors que P est une matrice symétrique.

Puisque \mathscr{B} est orthonormée, le coefficient ligne i, colonne j, $1 \leq i, j \leq n$ de P qui est la i-ème coordonnée de $\mathfrak{p}\left(e_{j}\right)$ dans \mathscr{B} est encore $(\mathfrak{p}\left(e_{i}\right)|e_{j})$. Pour montrer que P est symétrique, on doit donc vérifier que $\forall (i,j) \in [\![1,n]\!]^{2}, (\mathfrak{p}\left(e_{i}\right)|e_{j}) = (e_{i}|\mathfrak{p}\left(e_{j}\right))$. Soit $(i,j) \in [\![1,n]\!]^{2}$.

$$\begin{split} \left(p\left(e_{i} \right) | e_{j} \right) &= \left(p\left(e_{i} \right) | p\left(e_{j} \right) + e_{j} - p\left(e_{j} \right) \right) = \left(p\left(e_{i} \right) | p\left(e_{j} \right) \right) + \left(p\left(e_{i} \right) | e_{j} - p\left(e_{j} \right) \right) \\ &= \left(p\left(e_{i} \right) | p\left(e_{j} \right) \right) \; (\operatorname{car} p\left(e_{i} \right) \in \operatorname{Im}(p) \; \operatorname{et} \; e_{j} - p\left(e_{j} \right) \in \operatorname{Ker}(p) = \left(\operatorname{Im}(p) \right)^{\perp} \right). \end{split}$$

Par symétrie des rôles, on a aussi $(e_i|p(e_j)) = (p(e_i)|p(e_j))$ et finalement $(p(e_i)|e_j) = (e_i|p(e_j))$. On a montré que la matrice P est symétrique.

• Supposons que $P^2 = P$ et ${}^tP = P$ et montrons que p est une projection orthogonale. Puisque $P^2 = P$, on a $p^2 = p$ et donc p est une projection.

$$\text{V\'erifions que } \forall (x,y) \in E^2, \ p(x)|y=x|p(y). \ \text{Soient } x=\sum_{i=1}^n x_i e_i \ \text{et } y=\sum_{i=1}^n y_i e_i \ \text{deux \'el\'ements de E. }$$

$$\begin{split} p(x)|y &= \left(\sum_{i=1}^n x_i p\left(e_i\right)\right) | \left(\sum_{j=1}^n y_j e_j\right) = \sum_{1 \leqslant i,j \leqslant n} x_i y_j \left(p\left(e_i\right)|e_j\right) \\ &= \sum_{1 \leqslant i,j \leqslant n} x_i y_j \left(e_i|p\left(e_j\right)\right) \text{ (d'après plus haut)} \\ &= \left(\sum_{i=1}^n x_i e_i\right) | \left(\sum_{j=1}^n y_j p\left(e_j\right)\right) \\ &= x|p(y). \end{split}$$

Montrons alors que tout élément de $\operatorname{Im}(\mathfrak{p}) = F$ est orthogonal à tout élément de $\operatorname{Ker}(\mathfrak{p}) = G$. Soient $\mathfrak{x} \in E$ et $\mathfrak{y} \in \operatorname{Ker}(\mathfrak{p})$.

$$p(x)|y = x|p(y) = x|0 = 0.$$

Ainsi, $\operatorname{Im}(\mathfrak{p}) \subset (\operatorname{Ker}(\mathfrak{p}))^{\perp}$ puis $\operatorname{Im}(\mathfrak{p}) = (\operatorname{Ker}(\mathfrak{p}))^{\perp}$ comme précédemment car $\operatorname{Im}(\mathfrak{p})$ et $(\operatorname{Ker}(\mathfrak{p}))^{\perp}$ ont mêmes dimensions finies. On a montré que \mathfrak{p} est une projection orthogonale.

3)

$$\begin{split} \forall x \in E, \ \|s(x)\| &= \|x\| \Leftrightarrow \forall (y,z) \in \operatorname{Ker}(s-\operatorname{Is}) \times \operatorname{Ker}(s+\operatorname{Id}), \ \|y-z\|^2 = \|y+z\|^2 \\ &\Leftrightarrow \forall (y,z) \in \operatorname{Ker}(s-\operatorname{Is}) \times \operatorname{Ker}(s+\operatorname{Id}), \ \|y\|^2 - 2(y|z) + \|z\|^2 = \|y\|^2 + 2(y|z) + \|z\|^2 \\ &\Leftrightarrow \forall (y,z) \in \operatorname{Ker}(s-\operatorname{Is}) \times \operatorname{Ker}(s+\operatorname{Id}), \ y|z=0 \\ &\Leftrightarrow \operatorname{Ker}(s+\operatorname{Id}) \subset \left(\operatorname{Ker}(s-\operatorname{Id})\right)^{\perp}. \end{split}$$

Enfin, puisque Ker(s + Id) et Ker(s - Id) sont supplémentaires, comme à la question 1),

$$\operatorname{Ker}(s+\operatorname{Id})\subset (\operatorname{Ker}(s-\operatorname{Id}))^{\perp}\Leftrightarrow \operatorname{Ker}(s+\operatorname{Id})=(\operatorname{Ker}(s-\operatorname{Id}))^{\perp}\Leftrightarrow s$$
 symétrie orthogonale.

4)

s symétrie orthogonale
$$\Leftrightarrow p = \frac{1}{2}(Id + s)$$
 projection orthogonale
$$\Leftrightarrow \left(\frac{1}{2}(I_n + S)\right)^2 = \frac{1}{2}(I_n + S) \text{ et }^t\left(\frac{1}{2}(I_n + S)\right) = \frac{1}{2}(I_n + S) \text{ (d'après 2)}$$

$$\Leftrightarrow I_n + 2S + S^2 = 2I_n + 2S \text{ et } I_n + {}^tS = I_n + S$$

$$\Leftrightarrow S^2 = I_n \text{ et }^tS = S.$$