Project Title:

Smart IoT Motion-Activated Alert System

Project Overview:

The Smart IoT Motion-Activated Alert System is a compact security and monitoring solution designed using Arduino and basic electronic components. It uses a PIR motion sensor to detect movement, and upon detection, triggers visual and audio alerts via LEDs and a buzzer. This system is ideal for use in security applications such as intrusion detection, motiontriggered alerts, and automation setups.

Developed and tested in Tinkercad, this project demonstrates a simple yet effective IoTbased motion detection alert system suitable for real-world applications.

Components Used:

Component	Description
-----------	-------------

Arduino Uno Microcontroller board for program control

PIR Sensor (HC-SR501) Detects motion based on infrared radiation

Red LED Indicates system is idle (no motion)

Green LED Indicates motion detected

Provides sound alert when motion is detected Buzzer

Jumper Wires For circuit connections

For prototyping circuit Breadboard

† Circuit Connections:

Pin Component

PIR Sensor OUT D2

D12 Red LED

Green LED D11

Pin Component

D7 Buzzer

5V / GND Power lines

⚠ Note: Pin -11 in your code is incorrect. It should be 11 for the green LED.

Working Principle:

- 1. When powered on, the system allows the PIR sensor to stabilize (~5 seconds).
- 2. The PIR sensor continuously monitors the environment for motion.
- 3. If motion is detected:
 - o The green LED turns ON.
 - o A 3 kHz buzzer tone sounds for 200 ms.

- The red LED turns OFF.
- 4. If no motion is detected:
 - The red LED turns ON (system is idle).
 - The green LED turns OFF.
 - The buzzer remains silent.

Code Summary:

```
// Pin assignments
const int pirPin = 2; // PIR OUT → digital pin 2
const int redLED = 12; // Red LED
const int greenLED = 11; // Green LED (Corrected from -11)
const int buzzerPin = 7; // Piezo buzzer
void setup() {
 pinMode(pirPin, INPUT); // Set PIR pin as input
 pinMode(redLED, OUTPUT); // Set red LED pin as output
 pinMode(greenLED, OUTPUT); // Set green LED pin as output
 pinMode(buzzerPin, OUTPUT); // Set buzzer pin as output
 Serial.begin(9600); // Start serial communication
 delay(5000); // Delay to allow PIR sensor to stabilize
}
void loop() {
 int motion = digitalRead(pirPin); // Read PIR sensor (0 = no motion, 1 = motion)
 Serial.println(motion); // Print sensor status to Serial Monitor
 if (motion == HIGH) {
```

```
// When motion is detected
  digitalWrite(redLED, LOW);
                                 // Turn off red LED
  digitalWrite(greenLED, HIGH);
                               // Turn on green LED
  tone(buzzerPin, 3000, 200);
                                 // Beep at 3 kHz for 200 ms
 }
 else {
  // When no motion is detected
  digitalWrite(redLED, HIGH);
                                // Turn on red LED (system idle)
  digitalWrite(greenLED, LOW);
                                 // Turn off green LED
  noTone(buzzerPin);
                      // Stop the buzzer
 }
 delay(10); // Small delay for stability/simulation performance
}
```

Use Cases:

- Home Security: Alerts homeowners of potential intruders.
- Office Monitoring: Detects unauthorized movement during off-hours.
- Smart Lighting: Can be extended to trigger lights on motion.
- **Elderly Care**: Detects movement patterns and can trigger alerts for irregular activity.
- Retail Security: Detects customer presence near restricted or valuable items.

Benefits:

Benefit Description

Affordable Built using low-cost, easily available components

iption
į

Portable and Scalable Easily adapted to larger IoT systems

Educational Great for learning IoT, sensors, and embedded systems

Immediate audio and visual feedback on motion **Real-Time Alerts**

Low Power Consumption Suitable for battery-powered or solar-powered setups

Future Enhancements:

- Add Wi-Fi (ESP8266/ESP32) to send alerts to a smartphone or cloud server.
- Integrate **camera module** for capturing images upon detection.
- Log motion events with **timestamps** using an RTC + SD card.
- Control appliances (fan/lights) based on presence using relays.
- Display status on an LCD/OLED display.

How to Explain Your Project to Your Teacher:

Introduction

"Good [morning/afternoon], I've built a project called the Smart IoT Motion-Activated Alert System using Arduino. This system detects motion and gives both visual and sound alerts to notify when someone is moving in front of the sensor."

What It Does

"The system uses a **PIR sensor** to detect motion. When the sensor detects movement:

- A green LED lights up.
- A **buzzer** sounds a clear beep.

• The **red LED**, which is normally ON when idle, turns OFF. If there's no movement, the red LED stays ON and the green LED and buzzer remain OFF."

How It Works

"Here's the working principle:

- 1. The **PIR sensor** senses changes in infrared radiation, which happens when someone moves.
- 2. The Arduino reads this sensor's output.
- 3. If it detects motion:
 - o It activates a green LED and a buzzer for alert.
 - o If there's no motion, it turns on a **red LED** to show the system is idle.
- 4. The **Serial Monitor** displays 1 for motion and 0 for no motion, which helps in debugging."

Testing and Simulation

"I simulated the project in **Tinkercad**, where I placed a virtual human near the sensor to test it. The system reacted instantly, giving alerts as expected."

% Components Used

"The main components are:

- Arduino Uno
- PIR Motion Sensor
- Red and Green LEDs
- Buzzer
- Jumper wires and breadboard"

Real-Life Applications

"This kind of system is useful in:

• **Home security**: Alerting if someone enters a restricted area.

- Offices or shops: To monitor movement after hours.
- Elderly care: To know when someone is moving or not.
- Smart lighting: It can be extended to turn on lights automatically."

Benefits

"It's low-cost, simple, and effective. It teaches basic **IoT**, **sensors**, and **Arduino programming**. And it's scalable—you can add Wi-Fi modules, camera, or connect it to a mobile app later."

Conclusion

"Overall, this project is a great example of how electronics and programming come together to solve a real-world problem. I learned a lot about hardware interaction and how sensors work with microcontrollers."

Optional Ending:

"If you'd like, I can demonstrate the simulation, show the code, or explain how I could expand it with IoT features like sending alerts to a phone."