

TED Talks' Topic Variation Utilizing a Dynamic Topic Modeling Approach

Seung-Ho Ryua• Young Eun Jeona• Jung-In Seoa

^a Department of Data Science, Andong National University, Andong, Korea

1. Abstract

Motivation

- TED is a platform that shares innovative ideas across various fields such as technology, medicine, an d design to inspire and provoke change in people's thoughts and behaviors.
- By capturing the changes of topics in TED Talks, we can not only understand global trends and public interests but also identify a current social issue or situation.

Purpose

• The goal of this study is to identify the topic changes over time by applying the dynamic topic modeling (DTM) to a TED Talks dataset (Source: https://www.kaggle.com/datasets/miguelcorraljr/ted-ultimate-dataset).

Conclusion

• Content planners and marketing strategists can leverage our analysis results to predict future trends and select topics that are likely to captivate the audience.

2. Application

Our framework for analysis on a TED Talks dataset is shown in Figure 1.

Figure 1. Framework for analysis on the TED Talks dataset

2-2 TED Talks

• Among talks available on TED.com from January 1, 2017 to December 31, 2019, the transcripts for talks translated into English are employed for analysis.

2–3 Preprocessing

- **Tokenization**
 - Tokenization is the process of splitting the text into small units called tokens.
 - Tokens can be individual words, phrases, or other meaningful elements.
- Stopwords removal
- Stopwords removal is the process of eliminating high-frequency but unimportant tokens such as morphemes, prepositions, etc.
- Bag of Words (BOW)
 - BOW is an embedding method that represents text data as numerical vectors based on the frequency of each word.

2-4 DTM

- For each topic $k \in \{1, ..., K\}$:
 - a. Draw $\eta_{t,k} = (\eta_{t,k,1}, ..., \eta_{t,k,V_t}) | \eta_{t-1,k} \sim N_k(\eta_{t-1,k}, \sigma^2 I)$
- II. Draw $\alpha_t | \alpha_{t-1} \sim N_k(\alpha_{t-1}, \delta^2 I)$
- III. For each document $d \in \{1, ..., D\}$:
 - a. Draw $\boldsymbol{\tau}_d = (\tau_{d,1}, \dots, \tau_{d,K}) \sim N_k(\boldsymbol{\alpha}_t, \alpha^2 I)$
 - b. For each word $n \in \{1, ..., N_d\}$:
 - Compute $\boldsymbol{\theta}_{t,d} = \frac{exp(\tau_d)}{\sum_{i=1}^{K} exp(\tau_{d,i})} \Longrightarrow \text{Draw a topic assignment } Z_{t,d,n} \sim Multinomial(\boldsymbol{\theta}_{t,d})$
 - Compute $\boldsymbol{\beta}_{t,z_{t,d,n}} = \frac{exp(\boldsymbol{\eta}_{t,z_{t,d,n}})}{\sum_{i=1}^{V_t} exp(\boldsymbol{\eta}_{t,z_{t,d,n},i})} \Longrightarrow \text{Draw a word } W_{t,d,n} \sim Multinomial(\boldsymbol{\beta}_{t,z_{t,d,n}})$
- $\checkmark t$: Time slice
- ✓ *K* : Number of topics

corpus at time t

- ✓ *D* : Number of documents
- ✓ N_d : Number of words in document d
- $\checkmark V_t$: Number of unique words in the entire
- ✓ $\theta_{t,d}$: Topic proportion vector in document d at time t
- $\checkmark \beta_{t,k}$: Probability vector of the word appearance of the topic k at time t
- $\checkmark \tau_d$: Latent variable used to calculate $\theta_{t,d}$
- $\checkmark \eta_{t,k}$: Latent variable used to calculate $\beta_{t,k}$
 - α_t : Parameters of document-topic distribution at time t

3. Results

3–1 Composition of topics over time

- Figure 2 visualizes a topic prevalence with the word composition of a topic for each year.
 - ✓ A circle size represents the topic's relative prevalence in the entire corpus.
 - ✓ A distance between the circles indicates a similarity of topics.
- Figure 3 shows the top 10 words with the highest probability of occurrence.
 - ✓ A length of bar represents a word occurrence probability in a topic.

Figure 2. Overall compositions of topics for each year

Figure 3. Top 10 words for each year

- For all years, the circle size of Topic 2 is the largest, which implies that the importance of this topic is the highest.
- For all years, considering the relationship between topics based on the distance, the similarity between Topic 2 and Topic 3 is the lowest.
- The word "government" in Topic 1 shows a decreasing probability of occurrence over time.

3–2 Topic Similarity

• Figure 4 shows similarities between different topics in all years.

- Similarity is represented as a value between 0 and 1.
 - ✓ A value close to 0 indicates low similarity between two topics.
 - ✓ A value close to 1 indicates high similarity between two topics.
- Figure 4 shows that most topics exhibit low similarity, which reveals that the DTM effectively separates each topic and the topics reflect various aspects of a TED Talks dataset.

Figure 4. Heatmap of topic similarity using Jaccard distance

3-3 Topic Labeling

Based on Figures 2-4, the topics can be labeled as follows:

4. Conclusions

- Content Strategy Planning: Identifying popular topics and those that receive less interest is beneficial for determining future lecture topics.
- Future Prediction and Planning: Based on the trends derived from dynamic topic modeling, it is possible to predict future changes in topics. This is beneficial for planning the direction of TED Talks.
- Such analysis can enrich TED Talks content and greatly contribute to meeting the diverse needs of the audience.