

AD/A-005 992

EFFECT OF STRUCTURAL FACTORS ON THE
CATALYTIC ACTIVITY OF BETA-DIKETONATES
OF 3d-ELEMENTS IN THE THERMAL
DECOMPOSITION REACTION OF AMMONIUM
PERCHLORATE

G. N. Marchenko, et al

Foreign Technology Division
Wright-Patterson Air Force Base, Ohio

5 December 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) Foreign Technology Division Air Force Systems Command U. S. Air Force		2a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
2. REPORT TITLE EFFECT OF STRUCTURAL FACTORS ON THE CATALYTIC ACTIVITY OF B-DIKETONATES OF 3d-ELEMENTS IN THE THERMAL DECOMPOSITION REACTION OF AMMONIUM PERCHLORATE		
3. DESCRIPTIVE NOTES (Type of report and inclusive dates) Translation		
4. AUTHOR(S) (First name, middle initial, last name) G. N. Marchenko, V. V. Moshev, et al		
5. REPORT DATE 1972	6. TOTAL NO. OF PAGES 22	7b. NO. OF REFS 15
8. CONTRACT OR GRANT NO.	9b. ORIGINATOR'S REPORT NUMBER(S) FTD-MT-24-2027-74	
a. PROJECT NO. c. d.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY Foreign Technology Division Wright-Patterson AFB, Ohio	
13. ABSTRACT		

20

PRICES SUBJECT TO CHANGE

WORKING COPY

MACHINE TRANSLATION

FTD-MT-24-2027-74

5 December 1974

CSP 73193384

EFFECT OF STRUCTURAL FACTORS ON THE CATALYTIC ACTIVITY OF β -DIKETONATES OF 3d-ELEMENTS IN THE THERMAL DECOMPOSITION REACTION OF AMMONIUM PERCHLORATE

By: G. N. Marchenko, V. V. Moshev, et al

English pages: 16

Source: Gorenije i Vzryv, Izd vo Nauka,
Moscow, 1972, pp. 759-764

Country of Origin: USSR

Requester: FTD/PDTN

This document is a SYSTRAN machine aided translation, post-edited for technical accuracy

by: Catherine M. Barber

Approved for public release;
distribution unlimited.

In the interest of economy and timeliness, the original graphics have been merged with the computer output and editing has been limited to that necessary for comprehension. No further processing is anticipated.

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
А а	А а	A, a	Р р	Р р	R, r
Б б	Б б	B, b	С с	С с	S, s
В в	В в	V, v	Т т	Т т	T, t
Г г	Г г	G, g	Ү ү	Ү ү	U, u
Д д	Д д	D, d	Ф ф	Ф ф	F, f
Е е	Е ё	Ye, ye; E, e*	Х х	Х х	Kh, kh
Ж ж	Ж ж	Zh, zh	Ц ц	Ц ц	Ts, ts
З з	З з	Z, z	Ч ч	Ч ч	Ch, ch
И и	И и	I, i	Ш ш	Ш ш	Sh, sh
Й й	Й ў	Y, y	Щ щ	Щ щ	Shch, shch
К к	К к	K, k	Ь ъ	Ь ъ	"
Л л	Л л	L, l	Ы ы	Ы ы	Y, y
М м	М м	M, m	Ь ъ	Ь ъ	'
Н н	Н н	N, n	Э э	Э э	E, e
О о	О о	O, o	Ю ю	Ю ю	Yu, yu
П п	П п	P, p	Я я	Я я	Ya, ya

*ye initially, after vowels, and after ъ, ъ; e elsewhere.
When written as ё in Russian, transliterate as yё or ё.
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.

* * * * *

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc.
merged into this translation were extracted
from the best quality copy available.

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English
sin	sin
cos	cos
tg	tan
ctg	cot
sec	sec
cosec	csc
sh	sinh
ch	cosh
th	tanh
cth	coth
sch	sech
csch	csch
arc sin	\sin^{-1}
arc cos	\cos^{-1}
arc tg	\tan^{-1}
arc ctg	\cot^{-1}
arc sec	\sec^{-1}
arc cosec	\csc^{-1}
arc sh	\sinh^{-1}
arc ch	\cosh^{-1}
arc th	\tanh^{-1}
arc cth	\coth^{-1}
arc sch	\sech^{-1}
arc csch	\csch^{-1}
<hr/>	
rot	curl
lg	log

GREEK ALPHABET

Alpha	A	α	*	Nu	N	ν
Beta	B	β		Xi	Ξ	ξ
Gamma	Γ	γ		Omicron	O	ο
Delta	Δ	δ		Pi	Π	π
Epsilon	E	ε	ε	Rho	Ρ	ρ
Zeta	Z	ζ		Sigma	Σ	σ
Eta	H	η		Tau	Τ	τ
Theta	Θ	θ	ϑ	Upsilon	Τ	υ
Iota	I	ι		Phi	Φ	φ
Kappa	K	κ	κ	Chi	Χ	χ
Lambda	Λ	λ		Psi	Ψ	ψ
Mu	M	μ		Omega	Ω	ω

authors cont.

G. N. Marchenko.

V. V. Moshev.

D. G. Batyr.

S. P. Borisov.

G. P. Pogonin.

structural
Effect of ~~some~~ factors on the catalytic activity of ~~the~~ β -
~~diketonates~~ of 3d-elements
~~diketonates of electro dialysis elements in the reaction of the~~
reaction
thermal decomposition of ammonium perchlorate.

In the present work is investigated the effect of the structure
factors of the β -dicarbonyl of the compounds of ~~electro dialysis~~
^{3d}

elements on the rate of the nonisothermal decomposition of ammonium perchlorate (PXA). The study of their thermal resistance under enriched with conditions of nonisothermal heating in the atmosphere, concentrated by oxygen, it showed that in the final stage of the decomposition of manifested substance is exhibited the sharp and intense exoeffekt, which is a exoeffekt, in the inert atmosphere or in air [1]. The observed in this case value of heat release distorts the shape of the curve of temperature rise at 50-60° C (Fig. 1). The presence of this effect and the temperature interval of its manifestation in conjunction with data [2-5] about the effectiveness of tris (acetylacetonate) iron (III) in an increase in the rate of combustion of some systems on the basis of PXA and base nitromethane give grounds to assume that the investigated compounds will turn out to be catalytically active in the processes of the thermal decomposition of PXA and similar oxidizers.

*****EDITOR: PLEASE CHECK FOR ALL CYRILLIC OR UNCLEAR ITEMS ON
THE TABLE (FIGURE) WHICH MAY HAVE BEEN LEFT OUT*****

Fig. 1. Nature of the distortion of the shape of the curve of temperature rise at the formation of acetylacetone in the atmosphere, enriched by oxygen (according to [1]): 1 - $[\text{Cu}(\text{C}_5\text{H}_7\text{O}_2)_2]$; 2 - $[\text{CO}(\text{C}_5\text{H}_7\text{O}_2)_2]$; 3 - $[\text{CO}(\text{C}_5\text{H}_7\text{O}_2)_3]$; 4 - $[\text{Mn}(\text{C}_5\text{H}_7\text{O}_2)_3]$; 5 - $[\text{Fe}(\text{C}_5\text{H}_7\text{O}_2)_3]$; 6 - $[\text{CR}(\text{C}_5\text{H}_7\text{O}_2)_3]$. *[data in]*

we used
In our investigations utilized a specimen/sample ^(of) the PVA of
manufacture
industrial izgotavleniya with average particle size ~30 μ .

Page 760.

The conditions of the obtaining and properties ^{the} ^{ies} of the investigated by us
dicarbonyl
 β -diketonates compounds Mg^{2+} , Mn^{2+} , Cu^{2+} , Co^{2+} , Co^{3+} , Fe^{3+} , Cr^{3+} on the
basis of acetylacetone, benzoyl acetone, dibenzoylmethane,
benzoyl trifluoroacetone,
benzoyl trifluoracetone, benzoyl trifluoroacetone and 3-nitroacetylacetone
are described earlier [6, 7].

To ensure uniform
~~for the safeguard for even~~ distribution of catalyst in the bulk
of the specimen/sample of PVA is used the procedure, described in work
[1]. The effect of the indicated compounds on rate and nature of the
decomposition of PVA was investigated by thermogravimetric method on
derivatograph [8], equipped with the system of the ~~suction~~ of decay
extraction
products from the heated space, which largely eliminated the possible

effect of gaseous decay products on the kinetics of decomposition.

(Weighted quantity)

charge - 50 mg, the average rate of climb of temperature is 19° C per min, on straight portion - 22° C per min, the content of catalyst is 10% of the weight of PIA).

Table 1.

*****EDITOR: PLEASE CHECK FOR ALL CYRILLIC OR UNCLEAR ITEMS ON

THE TABLE (FIGURE) WHICH MAY HAVE BEEN LEFT OUT*****

diketonates

Table 1. Effect of the β -diketonates of d-elements of the type $[M^{n+} (RCOCHCOR)_n]$

($RCOCHCOR$)_n ~ ^{On} rate and nature of the thermal decomposition of PXA.

Key: (1) catalyst; (2) temperature ($^{\circ}$ C) and the

reduction in
loss/depreciation of the mass (0/0) of the first and second
exoeffects;

loss/depreciation of mass; (3) the temperatures of beginning and end of the

reduction in t_{decomp} 80% of the weighed quantity of PXA,
loss/depreciation of mass; (4) ~~catalyst~~; (5) ligand.

Table 1. Effect of the β -diketonates of d-elements of
the type $[M^{n+} (RCOCHCOR)_n]$ on rate and nature of the
thermal decomposition of PXA.

M ⁿ⁺	(5) ligand	2) температура (C) и убыль массы (%) перво- го и второго экзо- эффектов				3) температуры на- чала и конца убыли массы			4) t_{decomp} 80% из запаски ПХА, ч
		T ₁	Δm ₁	T ₂	Δm ₂	t ₁	t ₂	Δt	
-	-	325	15	460	85	300	413	153	7,0
Co^{2+}	$Cl_3COCHCOCl_3$	315	100	—	—	297	313	21	1,0
		320	83	360	17	299	320	30	1,4
		295	24	335	76	300	333	35	1,6
		320	85	375	15	290	322	42	1,9
		335	16	400	84	300	390	90	4,1
		325	15	460	85	300	460	160	7,3
Mn^{3+}	$Cl_3COCHCOCl_3$	310	—	378	100	320	372	52	2,4
		335	100	—	—	315	355	40	1,8
		315	85	370	15	302	328	26	1,2
		340	15	425	85	326	430	101	4,7
		325	15	400	85	298	420	122	5,5
		335	81	410	19	325	340	25	1,1
Fe^{2+}	$Cl_3COCHCOCl_3$	311	53	355	47	320	340	60	2,7
		320	85	372	15	313	329	16	0,7
		335	15	408	85	322	410	88	4,0
		310	15	440	85	318	450	132	6,0
		315	80	355	20	291	325	34	1,4
		315	15	360	85	300	372	72	3,3
Cr^{3+}	$CF_3COCHCOCl_3$	320	91	360	9	310	330	20	1,0
		322	15	365	85	310	370	60	2,7
		310	15	400	85				0,7
Ca^{2+}	$Cl_3COCH(NO_2)COCl_3$	300	100	—	—				
		320	75	370	25				
		310	15	400	85				

The data

These on effect β -diketonates ^{on} on the rate of nonisothermal decomposition ^{of} PXA are represented in Table 1.

Page 761.

All the investigated compounds, with the exception of the tris (acetylacetone) (acetylacetone) of chromium (III), are catalytically ~~are~~ active in

the process of the thermal decomposition of PXA under nonisothermal

conditions and accelerate this process to 10 times. Most effective

from the viewpoint of shortening ~~in~~ the duration of process as a whole

turn out to be the compounds, which affect predominantly the initial

stages of the decomposition of PXA (Fig. 2). ^{The} Most effective of the

number of examined compounds increase the degree of the conversion of

PXA from 15 to 75 - 100%. It is characteristic that the temperature

of the manifestation of the first exothermic response to expansion

curved PXA does not undergo substantial changes; however, the

decomposition

temperature interval of the full expansion of PXA in the presence of catalysts sharply is reduced in accordance with the degree of softening in the duration of the process of decomposition of the weighed quantity)

charge of PXA. The most effective catalysts prove to be the derivatives Cu^{2+} and Co^{2+} , least active - Fe^{3+} and Cr^{3+}

Intermediate position they occupy β -diketonates

In proportion to the complication of organic ligand is increased

catalytic activity in accordance with a change in the electron-donor properties of ligands. This fact finds natural explanation under the

assumption about the initiation of the considered reaction by means of

the transfer (redistribution) of charge with the coordination of

reagents with catalyst, since in this case, according to [9],

catalytic activity depends on the donor-acceptor properties of

partners, which are determined by the Fermi level and by the

oxidation-reduction (catalytic) capacities of reagents and catalyst.

The latter completely ~~determined~~ definitely depend on the parameters of the

electronic structure of molecules. Actually (Table 2), there is a

determined interrelation between the stability of the β -diketonates

about which we ~~is~~ judge~~s~~ from the value force constant connection Δ -

0 [10], and the value of the catalytic activity, which ~~grows~~ ^{increases} rises in

proportion to an increase in the stability of catalyst. The indirect

confirmation of this conclusion ~~derivation~~ are the data ⁱⁿ Tables 1 on

greater, ~~larger~~ ^{Acetylacetonates}, ~~acetilacetonates~~ of the catalytic

Chelates

activity of ~~the~~ chelates on the basis of the more complex ligands, which

are characterized, as this is shown in [1, 7], by larger ~~its own~~ ^{natural}

thermal resistance.

*****EDITOR: PLEASE CHECK FOR ALL CYRILLIC OR UNCLEAR ITEMS ON

THE TABLE (FIGURE) WHICH MAY HAVE BEEN LEFT OUT*****

Table 2. Dependence of the catalytic activity of the β -diketonates^{es} of d-elements of the type $[M^{n+}(RCOCHCOR')]_n$ in the process of the thermal decomposition of PXA ~~on~~ the parameters of the structure of catalyst.

β -diketonate;

Key: (1) β -дикетонат; (2) ~~степеней~~. σ^* in β -diketones;

(3) t_{decomp} 80% of the weighed quantity of PX

(4) $M-O, K \cdot 10^{-5}$, dyne/cm [10]

Table 2. Dependence of the catalytic activity of the β -diketonates of d-elements of the type $[M^{n+}(RCOCHCOR')]_n$ in the process of the thermal decomposition of PXA on the parameters of the structure of catalyst.

(1) β -дикетонат	(4) $M-O, K \cdot 10^{-5}$, дин/см [10]	(2) σ^* в β -дикето- нах [1-12]	(3) $t_{\text{разл}} 80\%$ разве- ки ПХА, мин
$[\text{Fe}(\text{C}_6\text{H}_5\text{O}_2)_3]$	1.65	0	4.1
$[\text{Cu}(\text{C}_6\text{H}_5\text{O}_2)_3]$	2.20	0	1.9
$[\text{Co}(\text{C}_6\text{H}_5\text{O}_2)_3]$	2.40	0	1.4
$[\text{Cu}(\text{C}_6\text{H}_5\text{O}_2)_2]$	—	0.6	1.2
$[\text{Cu}(\text{C}_6\text{H}_5\text{O}_2)_2]$	—	1.2	0.7
$[\text{Cu}(\text{C}_6\text{H}_5\text{O}_2\text{SF}_5)_2]$	—	3.0	1.0
$[\text{Cu}(\text{C}_6\text{H}_5\text{O}_2\text{F})_2]$	—	3.2	1.4
$[\text{Cu}((\text{CH}_3\text{CO})_2\text{CNO}_2)_2]$	—	3.5	0.7

*****EDITOR: PLEASE CHECK FOR ALL CYRILLIC OR UNCLEAR ITEMS ON
THE TABLE (FIGURE) WHICH MAY HAVE BEEN LEFT OUT*****

Fig. 2. Derivatogram of DSC thermometry of PXA with addition of 10% of β -diketonates

(average rate of rise of the temperature 19°C per min).

benzoylacetonates:

a) the Benzoylacetonates: 1 - PXA; 2 - PXA + [CO ($\text{C}_{10}\text{H}_9\text{O}_2$)₃]; 3 -

PXA + [Mn ($\text{C}_{10}\text{H}_9\text{O}_2$)₃]; 4 - PXA + [Cu ($\text{C}_{10}\text{H}_9\text{O}_2$)₂]; 5 - PXA + [Fe

($\text{C}_{10}\text{H}_9\text{O}_2$)₃]; 6 - PXA + [CR ($\text{C}_{10}\text{H}_9\text{O}_2$)₃]. b) the Bibenzoylmethan

1 - PXA; 2 - PXA + [CO ($\text{C}_{15}\text{H}_{11}\text{O}_2$)₃]; 3 - PXA + [Mn ($\text{C}_{15}\text{H}_{11}\text{O}_2$)₃]; 4 -

PXA + [Cu ($\text{C}_{15}\text{H}_{11}\text{O}_2$)₂]; 5 - PXA + [Fe ($\text{C}_{15}\text{H}_{11}\text{O}_2$)₃]; 6 - PXA + [CR

benzoyltrifluoroacetonates:

($\text{C}_{15}\text{H}_{11}\text{O}_2$)₃). c) the Benzoyltrifluoracetonate: 1 - PXA; 2 - PXA +

[Cu ($\text{C}_{10}\text{H}_6\text{O}_2\text{F}_3$)₂]; 3 - PXA + [Mn ($\text{C}_{10}\text{H}_6\text{O}_2\text{F}_3$)₂].

a)

b)

c)

Page 763.

The experimental data make it possible to arrange the investigated β -diketonates according to the degree of the effect of substituent's nature on catalytic activity in the following series:

The obtained sequence testifies to the presence of the

correlation between the catalytic activity of β -diketonates in the

reaction of the thermal decomposition of PXA and the total induction

of taffeta

constant σ * the taffeta of the substituents [11, 12] in β -diketone

which is the

(Table 2), by the being indirect characteristic of the degree of

localization of electron density (value of effective charge) on the

central ion of metal. The observed in this case certain

disturbance/breakdown of law^{of the change} in the lower part of the Table,

apparently, is connected with ^{differences} distinctions in the effect of the

investigated compounds on the final stages of the decomposition of PXA
(Fig. 2).

Difficulties in the study of process are here connected also with
the large curvature of the corresponding sections of the curves of
DSC [DTR- derivatogram].

The obtained results give grounds to assume ~~to be~~ participation
in the ~~event~~ report of catalysis of the d-electron of metal and to
determine the direction of the transfer of charge in system catalysts-
reagents. From them also it follows that in spite of the widespread
opinion, in accordance with which the catalysts of the thermal
decomposition of PXA take part predominantly in the high-temperature
reactions of heterogeneous decomposition of ~~nitro~~ perchloric acid and oxidation
of ammonia [13], at least, under some conditions, catalyst contributes
also to acceleration and the low-temperature stage of the
decomposition of PXA, which leads to formation HClO_4 and NH_3 .

The findings make it possible to assume the following diagram of

Chelates

the mechanism of this process (in an example of the chelate of copper)

(II) :

The proposed mechanism agrees with known charge distribution on

(acetylacetone)

the atoms bis-(acetylacetone) of copper (II) [14]. The velocity

of the coordination of ammonium ion and the splitting of proton

(especially the splitting of proton) depends on the value of

positive charge on the atom of transition metal. It must be noted

also that this complex can coordinate the determined atomic groupings

the 5th

on the or 6th place.

Page 764.

This mechanism agrees also with the established above dependence of

catalytic activity on the value of effective charge on central atom.

This diagram of the mechanism of catalytic decomposition of PVA agrees

well with the conventional concepts about the mechanism of the

~~noncatalytic~~

~~homogeneous~~ decomposition of PVA. The examined diagram can be,

apparently, transferred, also, to octahedral complexes, if one

considers that during the first stage of reaction under the considered

splitting

conditions can occur the temperature cleavage of ligands and they

become coordination^(non) saturated, in the same way as this was

observed in work [15] during the study of the thermal resistance of

the coordination⁽ⁿ⁾-saturated complexes on the basis of the β -

diketonates of cobalt (II). It goes without saying that the

possibility of the realization of concrete intermediate stages

requires supplementary substantiation and experimental confirmation.

Nevertheless it seems that the findings can be the basis of the

directed search for the catalysts of the ~~considered~~ examined process.

Preferable turn out to be complexes with the low value of effective

charge on the atom of metal and, therefore, with ligands with the

large positive values of the inductive constants of the substituents.

BIBLIOGRAPHY

1. Д. Г. Батыр, Г. Н. Марченко, Х. Ш. Харитон, Н. С. Мицул, Г. П. Погорин, С. Ф. Борисов. В сб.: «Исследования по аминным координационным соединениям в физико-химических методах анализа». Кишинев, 1969, стр. 24.
2. Пат. США 2690061, 1954; 2712080, 1955; С. А., 1955, 49, 618, р. 13326.
3. Дж. Харгууд. Промышленное применение металлоорганических соединений. Л., «Химия», 1970.
4. Франц. пат. 1201647, 1962; С. А., 1963, 58, р. 13702.
5. Иногр. Chem., 1967, 3, № 12, 2A (рекламное объявление).
6. Д. Г. Батыр, Г. Н. Марченко, Н. С. Мицул, Н. Л. Шавцевая, Г. Н. Модиан, М. Е. Сошкевич. В сб.: «Исследования по аминным координационным соединениям в физико-химических методах анализа». Кишинев, 1969, стр. 19.
7. Д. Г. Батыр, Г. Н. Марченко, Н. С. Мицул, Х. Ш. Харитон. Изв. АН МолдССР, сер. биол. и хим. наук, 1970, № 5, стр. 65.
8. F. Paulik, J. Paulik L Erdey. Z. anal. Chem., 1958, 160, S. 241.
9. И. Б. Берсувер, С. С. Будников. Теор. и эксперим. хим., 1967, 3, стр. 799.
10. К. Наканото. Инфракрасные спектры неорганических координационных соединений. М., «Мир», 1966.
11. В. А. Пальм. Усп. химии, 1961, 30, стр. 1069.
12. В. П. Пильцетова, Г. А. Домрачев. Ж. общ. химии, 1969, 39, стр. 826.
13. Г. Б. Манеяев, Ю. И. Рубцов, А. В. Ревинский. Физ. гор. в азоте, 1970, № 1, стр. 3.
14. В. И. Авдеев, И. Б. Берсувер, С. С. Будников. Теор. и эксперим. хим., 1969, 5, стр. 683.
15. Д. Г. Батыр, Г. Н. Марченко, В. Т. Балан, А. А. Десюток. Изв. АН МолдССР, сер. биол. и хим. наук, 1970, № 6, стр. 69.

Reproduced from
best available copy.