선형대수학 비대면 강의

8주 2차시 수업

조 성희

Written by Cho Sung-hee

정 의 5.2.4 V 를 n 차원 내적공간이라고 하자. $\mathcal{B}=\{v_1,v_2,...,v_n\}$ 이 V 의 기저이면서 모든 $i\neq j$ 에 대해서 $v_i\perp v_j$ 를 만족할 때. \mathcal{B} 를 V 의 수작기저(orthogonal basis)라고 한다. 또한, V 의 수작기저 $\mathcal{B}=\{v_1,v_2,...,v_n\}$ 에서 모든 i 에 대하여 $\|v_i\|=1$ 일 때, \mathcal{B} 를 V의 청규수작기저(orthonormal basis)라고 한다.

보기 5.2.8 $\mathcal{B}=\{(4,2),(-1,2)\}$ 는 \mathbb{R}^2 의 수직기저이고, $\mathcal{S}=\left\{\left(\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}}\right),\left(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)\right\}$ 는 \mathbb{R}^2 의 전규수직기저이다.

정 리 5.2.2 V 를 n 차원 내적공간이고 $\mathcal{B}=\{\nu_1,\nu_2,...,\nu_n\}$ 이 ν 의 수직기저이면, 각 벡터 $\nu\in \mathcal{V}$ 에 대하여,

$$v = \sum_{i=1}^{n} \frac{\langle v, v_i \rangle}{\|v_i\|^2} v_i$$

이다.

[중영] $v = c_1v_1 + c_2v_2 + \dots + c_iv_i + \dots + c_nv_n$ 이라고 하면, 각 $i = 1, 2, \dots, n$ 에 대하여 $\langle v, v_i \rangle = \langle c_1v_1 + c_2v_2 + \dots + c_iv_i + \dots + c_nv_n, v_i \rangle$ $= c_1\langle v_1, v_i \rangle + c_2\langle v_2, v_i \rangle + \dots + c_i\langle v_i, v_i \rangle + \dots + c_n\langle v_n, v_i \rangle$ 이다. $\mathcal{B} = \{v_1, v_2, \dots, v_n\} \text{ 7} + 수직기저이므로, <math>j \neq i$ 이면 $\langle v_j, v_i \rangle = 0$ 이고 $\langle v_i, v_i \rangle = \|v_i\|^2$ 이다. 따라서 \mathcal{A} $i = 1, 2, \dots, n$ 에 대하여

다. 따라서 각 i=1,2,...,n 에 대하여 $\langle \nu,\nu_i \rangle = c_i \|\nu_i\|^2$

이므로, 등식

$$v = \sum_{i=1}^{n} \frac{\langle v, v_i \rangle}{\|v_i\|^2} v_i$$

이 성립한다.

보기 5.2.9 $\mathcal{B} = \{(1,1,-1),(2,-1,1),(0,1,1)\}$ 은 \mathbb{R}^3 의 기저이다. 또한

$$(1,1,-1) \cdot (2,-1,1) = 0,$$

 $(2,-1,1) \cdot (0,1,1) = 0,$
 $(1,1,-1) \cdot (0,1,1) = 0$

이므로 \mathcal{B} 는 \mathbb{R}^3 의 수직기저이다. 벡터 $(1,2,3) \in \mathbb{R}^3$ 에 대하여

$$(1,2,3) = \frac{0}{3}(1,1,-1) + \frac{3}{6}(2,-1,1) + \frac{5}{2}(0,1,1)$$
$$= \frac{1}{2}(2,-1,1) + \frac{5}{2}(0,1,1)$$

이다

Written by Cho Sung-hee

5.3 정사영벡터(Projection vector)와 Gram-Schmidt의 직교화 과정

내적공간 \mathbf{n}^3 의 1차원 부분공간 w와 w의 기저 $\mathbf{a}=\{\vec{b}\}$ 를 생각하자. 벡터 $\vec{a}\in\mathbf{n}^3$ 에 대하여, \vec{a} 의 수직 정사영(orthogonal projection)으로 나타나는 w의 벡터를 w위로의 \vec{a} 의 정**시영벡터**(projection vector of \vec{a} onto w)라고 하고

 $\operatorname{proj}_W \vec{a}$

로 나타낸다. 또는 이와 같은 정사영벡터를 $ec{b}$ 위로의 $ec{a}$ 의 정사영벡터라고도 하며

 $\mathrm{proj}_{\vec{b}}\vec{a}$

와 같이 나타내기도 한다.

먼저, $\operatorname{proj}_W \vec{a} \in W$ 이고 $\mathcal{B} = \{ \vec{b} \} \subseteq W$ 의 기저이므로, 적당한 스칼라 $k \in \mathbb{R}$ 에 대하여 $\operatorname{proj}_W \vec{a} = k \vec{b}$

이다

또한, W 의 모든 벡터에 수직이면서

$$\vec{a} = \text{proj}_{\vec{W}} \vec{a} + \vec{u} = k \vec{b} + \vec{u}$$

를 만족하는 벡터 $\vec{u} \in \mathbb{R}^3$ 가 유일하게 존재한다. \vec{a} 와 \vec{b} 의 내적을 계산해보면,

$$\vec{a} \cdot \vec{b} = (k\vec{b} + \vec{u}) \cdot \vec{b}$$

$$= k(\vec{b} \cdot \vec{b}) + (\vec{u} \cdot \vec{b})$$

$$= k|\vec{b}|^{2}$$

$$= |\vec{b}|^{2}$$

$$\text{proj}_{W}\vec{a}(= \text{proj}_{\vec{b}}\vec{a}) = (\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}})(\vec{b})$$

이다. 따라서 $k = \frac{(\vec{a} \cdot \vec{b})}{|\vec{b}|^2}$ 이므로

이다.

Written by Cho Sung-hee

정 의 5.3.1 내적공간 V 의 두 벡터 v,w $(w \neq 0)$ 에 대하여, 다음과 같이 정의된 벡터 $\mathrm{proj}_w v = \frac{\langle v,w \rangle}{\|w\|^2} w$

를 w 위로의 (또는 $\{w\}$ 를 기저로 가지는 1차원 공간위로의) v 의 **정시영벡터**라고 한다.

내적공간 \mathbb{R}^2 에서 $\mathcal{B}=\{\vec{b_1},\vec{b_2}\}$ 를 기저로 가지는 2차원 부분공간을 W 라고 하고, 백터 $\vec{a}\in\mathbb{R}^3$ 의 W 위로의 정사영백터 $\mathrm{proj}_W\vec{a}$ 를 구해보자.

 $\mathrm{proj}_W \vec{a} \in W$ 이고 $\mathcal{B} = \left\{ \vec{b}_1, \vec{b}_2 \right\}$ 가 W 의 기저이므로 적당한 스칼라 $k_1, k_2 \in \mathbb{R}$ 에 대하여 $\mathrm{proj}_W \vec{a} = k_1 \vec{b}_1 + k_2 \vec{b}_2$

이다. 또한 W 의 모든 벡터에 수직이면서

$$\vec{a} = \text{proj}_{\vec{W}} \vec{a} + \vec{u} = k_1 \vec{b}_1 + k_2 \vec{b}_2 + \vec{u}$$

를 만족하는 벡터 $\vec{u} \in \mathbb{R}^3$ 가 존재한다.

 \vec{a} 와 \vec{b}_1, \vec{b}_2 의 내적을 각각 구해보면

$$\begin{split} \vec{a} \cdot \vec{b}_1 &= \left(k_1 \vec{b}_1 + k_2 \vec{b}_2 + \vec{u} \right) \cdot \vec{b}_1 = k_1 |\vec{b}_1|^2 + k_2 (\vec{b}_1 \cdot \vec{b}_2), \\ \vec{a} \cdot \vec{b}_2 &= \left(k_1 \vec{b}_1 + k_2 \vec{b}_2 + \vec{u} \right) \cdot \vec{b}_2 = k_1 (\vec{b}_1 \cdot \vec{b}_2) + k_2 |\vec{b}_2|^2 \end{split}$$

이므로 k_1, k_2 는 다음 연립 선형방정식의 해이다.

$$\begin{cases} \left| \vec{b}_1 \right|^2 k_1 + (\vec{b}_1 \cdot \vec{b}_2) k_2 = \vec{a} \cdot \vec{b}_1, \\ (\vec{b}_1 \cdot \vec{b}_2) k_1 + \left| \vec{b}_2 \right|^2 k_2 = \vec{a} \cdot \vec{b}_2. \end{cases}$$

여기서

$$D = \begin{vmatrix} \left| \vec{b}_{1} \right|^{2} & \vec{b}_{1} \cdot \vec{b}_{2} \\ \left| \vec{b}_{1} \cdot \vec{b}_{2} & \left| \vec{b}_{2} \right|^{2} \end{vmatrix}, D_{1} = \begin{vmatrix} \vec{a} \cdot \vec{b}_{1} & \vec{b}_{1} \cdot \vec{b}_{2} \\ \vec{a} \cdot \vec{b}_{2} & \left| \vec{b}_{2} \right|^{2} \end{vmatrix}, D_{2} = \begin{vmatrix} \left| \vec{b}_{1} \right|^{2} & \vec{a} \cdot \vec{b}_{1} \\ \vec{b}_{1} \cdot \vec{b}_{2} & \vec{a} \cdot \vec{b}_{2} \end{vmatrix}$$

으로 나타내면, Cramer's Rule에 의하여

$$k_1 = \frac{D_1}{D}, k_2 = \frac{D_2}{D}$$

이고, 이로 부터 $\operatorname{proj}_{W}\vec{a}$ 를 구할 수 있다.

여기서, $\mathcal{B}=\{\vec{b}_1,\vec{b}_2\}$ 가 수직기저라고 가정하면 $\vec{b}_1\cdot\vec{b}_2=0$ 이므로 다음의 중요한 결과를 얻는다.

$$\begin{aligned} \operatorname{proj}_{W}\vec{a} &= \left(\frac{\vec{a} \cdot \vec{b}_{1}}{\left|\vec{b}_{1}\right|^{2}}\right) \vec{b}_{1} + \left(\frac{\vec{a} \cdot \vec{b}_{2}}{\left|\vec{b}_{2}\right|^{2}}\right) \vec{b}_{2} \\ &= \operatorname{proj}_{\vec{b}_{1}}\vec{a} + \operatorname{proj}_{\vec{b}_{2}}\vec{a} \end{aligned}$$

Written by Cho Sung-hee