Quiz 3 Solutions

MATH 103A August 7, 2018

- (1) (Q) Express the following values in rectangular coordinates where log references the complex logarithm:
 - a) $\log(-1)$

b) $\log(i)$

c) $\sin(i)$

 $d) \sinh(i)$

(A)

(a) Recall that $-1 = e^{(2n+1)\pi}$ for $n \in \mathbb{Z}$. It follows that:

$$\log(-1) = \ln(1) + i((2n+1)\pi) = (2n+1)\pi i$$

(b) Recall that $i=e^{(4n+1)\frac{\pi}{2}}$ for $n\in\mathbb{Z}.$ It follows that:

$$\log(i) = \ln(1) + i\left((4n+1)\frac{\pi}{2}\right) = \frac{(4n+1)\pi}{2}i$$

(c) Expressing the sine in terms of exponentials provides:

$$\sin(i) = \frac{e^{i(i)} - e^{-i(i)}}{2i} = \frac{e - e^{-1}}{2}i$$

(d) Expressing the hyperbolic sine in terms of exponentials provides:

$$\sinh(i) = \frac{e^{(i)} - e^{-(i)}}{2} = \frac{1}{2} \left(\left(\cos(1) + i \sin(1) \right) - \left(\cos(1) - i \sin(1) \right) \right) = \sin(1)i$$

(2) (Q) Using the fact that:

$$z = \tan(w) = \frac{\sin(w)}{\cos(w)} = \frac{\frac{e^{iw} - e^{-iw}}{2i}}{\frac{e^{iw} + e^{iw}}{2}} = \frac{e^{-iw} - e^{iw}}{e^{iw} + e^{-iw}}i$$

Isolate w so as to attain a formula for $w = \arctan(z)$ in terms of the complex logarithm.

(A) Let $\xi = e^{iw}$ and use algebraic manipulation to attain:

$$z = \frac{e^{-iw} - e^{iw}}{e^{iw} + e^{-iw}}i$$

$$z = \frac{\xi^{-1} - \xi}{\xi + \xi^{-1}}i$$

$$z = \frac{1 - \xi^2}{1 + \xi^2}i$$

$$z + z\xi^2 = i - i\xi^2$$

$$(i + z)\xi^2 = i - z$$

$$\xi^2 = \frac{i - z}{i + z}$$

$$e^{2iw} = \frac{i - z}{i + z}$$

$$2iw = \log\left(\frac{i - z}{i + z}\right)$$

$$w = \frac{1}{2i}\log\left(\frac{i - z}{i + z}\right)$$

$$\operatorname{arctan}(z) = \frac{1}{2}\log\left(\frac{i + z}{i - z}\right)$$