CSCI442 Homework 3

Ally Smith (Section A)

February 23, 2022

Question 1.

Consider the following code:

```
char buf[100];
int fd0 = open("foo.txt", O_RDONLY);
int fd1 = open("bar.txt", O_WRONLY | O_CREAT | O_APPEND,
                0666)
printf("Hola!\n");
dup2(fd1, STDOUT_FILENO);
printf("Como estas?\n")
dup2(fd0, STDIN_FILENO);
for (;;) {
    ssize_t bytes_read = read(STDIN_FILENO,
                            buf, sizeof(buf));
    if (bytes_read == 0)
        return 0;
    ssize_t bytes_to_write = bytes_read;
    while (bytes_to_write > 0)
        bytes_to_write -= write(STDOUT_FILENO,
            buf + bytes_read - bytes_to_write,
            bytes_to_write);
}
```

The program is invoked like so:

```
$ cat foo.txt
Muy bien!
$ cat bar.txt
Buenos dias!
$ ./a.out
```

(a) What was printed on standard output?

Hola!
Buenos dias!
Como estas?
Muy bien!

(b) What does foo.txt contain?

Muy bien!

(c) What does bar.txt contain?

Buenos dias!

Question 2.

Consider the following code:

```
int pipefd[2];
pipe(pipefd);
```

Assume that the operating system assigns the file descriptor 3 for the read end of the pipe, and the file descriptor 4 for the write end of the pipe.

- (a) What is pipefd[0] after this operation is performed?3
- (b) What is pipefd[1] after this operation is performed?
 4

Question 3.

The following state transition table is a simplified model of process management, with the labels representing transitions between states of READY, RUN, BLOCKED, and NONRESIDENT.

$\frac{to}{from}$	READY	RUN	BLOCKED	NONRESIDENT
READY	_	1	_	5
RUN	2	_	3	_
BLOCKED	4	_	_	6

3.1) READY \Rightarrow RUN

A process could go through this transition if it is the next process in line to be executed by the operating system.

3.2) RUN \Rightarrow READY

This transition could occur if a process times out.

3.3) RUN \Rightarrow BLOCKED

This transition could occur if a process has to wait for an I/O operation.

3.4) BLOCKED \Rightarrow READY

A process could go through this transition if an I/O event occurs that a process was waiting on.

3.5) READY \Rightarrow NONRESIDENT

A process could go through this transition if it is suspended into secondary memory.

3.6) BLOCKED \Rightarrow NONRESIDENT

A process could go through this transition if it is suspended into secondary memory.

Question 4.

Assume that at time 5 no system resources are being used except for the processor and memory. Now consider the following events:

- T5: P1 executes a command to read from disk unit 3.
- T15: P3's time slice expires.
- T18: P4 executes a command to write to disk unit 3.
- T20: P2 executes a command to read from disk unit 2.
- T24: P3 executes a command to write to disk unit 3.
- T28: P3 is swapped out.
- T33: An interrupt occurs from disk unit 2: P2's read is complete.
- T36: An interrupt occurs from disk unit 3: P1's read is complete.
- T38: P5 terminates.
- T40: An interrupt occurs from disk unit 3: P3's write is complete.
- T44: P3 is swapped back in.
- T48: An interrupt occurs from disk unit 3: P4's write is complete.

For each time 25, 35, and 45, identify which state (or possible states) each process is in. If a process is blocked, further identify the event on which it is blocked.

	Time 25	Time 35	Time 45
P1	BLOCKED, DU3	BLOCKED, DU3	READY
P2	BLOCKED, DU2	READY	READY
Р3	BLOCKED, DU3	NONRESIDENT	NONRESIDENT
P4	BLOCKED, DU3	BLOCKED, DU3	BLOCKED, DU3
P5	RUN	RUN	EXIT