

Valeurs numériques avec unités:

	Expression	Application		
Source	En Vs1	En Vs2	numérique en Vs2	unité
R1	4KT RI	4KTR4 (R3)2	4,610-12	V2/H2
en²A1	en²	en2 (R3)2	4 10-16	V2/HL
in ² ₊ A1	0	0	0	V2/H2
in². A1	in 2 R12	in_ R1 (R3)2	4 10-10	NE/HL
R2		4KTR2 (R3)2	1,610-15	V2/m
R3		4KTR3	4,610-16	V2/HL
en²A2		en2 (1+ R3)2	4,84 10"	V2/HL
in ² +A2		0	0	V2/HL
in². A2		in_ R32	410-16	V2/HL
TOTAL			~ 410 ⁻¹⁰	VL/HZ

Question 2b : Expression littérale de la puissance de bruit en sortie de filtre en fonction de Vs2 (ne pas développer Vs2) et de la valeur efficace du bruit en sortie de filtre:

Valeurs numériques (précisez l'unité):

$$C) \qquad C\omega p^2 = \frac{1}{nk R^2 C^2} \Rightarrow \omega p = \frac{1}{Vnk RC}$$

RC=	2.533E-06		valeur de R en kOhm	
	x 1pF	x 10pF	x 100pF	x 1nF
10	253.30	25.33	2.53	0.25
15	168.87	16.89	1.69	0.17
22	115.14	11.51	1.15	0.12
33	76.76	7.68	0.77	0.08
47	53.89	5.39	0.54	0.05
68	37.25	3.73	0.37	0.04