

• 汇报人: 刘长 张胜楠

配对交易 (Pairs Trading) 是指八十年代中期华尔街著名投行 Morgan Stanley的数量交易员Nunzio Tartaglia成立的一个数量分析 团队提出的一种市场中性投资策略,其成员主要是物理学家、数学家、以及计算机学家。

配对交易分为两种类型:一类是基于统计套利的配对交易,一类是基于风险套利的配对交易。

基于统计套利的配对交易策略是一种市场中性策略,配对交易利用配对间的短期错误定价,通过持有相对低估,卖空相对高估,因此其本质上是一个反转投资策略,其核心是学术文献中的股票价格均值回复。

配对交易中存在的主要问题

1. 如何选择可获利的配对资产? (配对选择)

2. 如何避免配对资产价值长时间的发散而导致收益的长期下降? (交易策略)

配对选择—传统方法

方法一: 在选中的证券集合中, 对所有可能的组合进行穷举。

方法二: 先分成几个类别, 然后在每个类别中选出合适的配对组合。

法一可能会找到更想不到的组合,但是这些关联可能是站不住脚的。

法二没有办法发现有趣的潜在关系。

如何确定选出配对是否胜任交易?

传统方法使用协整方法进行筛选。

这个方法要求 Y_t 和 X_t 是协整的。这样的话,我们可以定义价差序列(spread series)如下:

 $S_t = Y_t - \beta X_t$ (β 是一个协整因子) 这样得到的价差序列是平稳的。在这样的情况下, S_t 可被

认为是均值回归的,意味着每一个价差偏离均值之后都会趋于收敛。

配对选择—创新方法

分为三个要点,**降维,聚类,确定选择配对的标准**

降维

利用PCA方法进行主成分分析。不是直接对股价序列使用PCA,而是使用下面的进行了归一化之后的序列。

$$R_{i,t} = \frac{P_{i,t} - P_{i,t-1}}{P_{i,t-1}}$$

聚类

- 采用无监督学习方法,对证券集进行聚类,然后从每一类中选择配对组合。
- DBSCAN算法固定聚类半径的缺陷,如右图所示。
- OPTICS 算法解决了这个问题。 OPTICS 基于 DBSCAN,引入了一些实现变化的 ε 的方法。 在这个增强的设置中,投资者只需要指定参数 minPts,因为该算法能够为每个集群检测最合适的 ε 。

Fig. 1. Clusters with varying density. Adapted from: Ankerst et al. (1999).

配对的选择标准:

- 1. 两种资产的历史价格序列必须是协整的。检验方法使用EG两步法(Engle-Granger test)
- 2. 为了确保价差序列的均值特性,需要进行额外的验证,采用赫斯特指数。如果H的范围在0~0.5之间,则可以说明这个序列是均值回归的。
- 3. 需要丢弃不合适时间段的平稳配对。因为均值回归本身并不一定产生利润,只有当交易周期和价差 序列的半衰期匹配时,配对才具有可以利用的价值。
- 4. 我们强制要求每一个价差跨过它的均值12次,平均每个月至少执行一次交易。

配对选择—创新方法

交易模型一传统方法

- 11计算配对组合的价差的平均值和标准误。
- $oxedsymbol{2}$ 定义模型的阈值,触发多头头寸的阈值 $lpha_S$,退出的阈值 $lpha_{exit}$
- 4如果 α_L 被跨过,通过买入Y并且卖出X来做多价差。反之亦然。

这个方法的弊端是,交易决策中不包含有关后续价差方向的信息,因此定义的切入点不一定是最佳的。

Table 1 Threshold-based model parameters.

Parameters	Values
Long Treshold Short Threshold Exit Threshold	$egin{aligned} \mu_{ ext{s}} - 2\sigma_{ ext{s}} \ \mu_{ ext{s}} + 2\sigma_{ ext{s}} \ \mu_{ ext{s}} \end{aligned}$

交易模型一创新方法

$$\Delta_{t+1} = \frac{S_{t+1}^* - S_t}{S_t} \times 100,$$

 $x_t = \frac{S_{t+1} - S_t}{S_t} \times 100.$

$$P_{t+1}: \left\{ egin{array}{ll} ext{if } \Delta_{t+1} \geqslant lpha_L, & ext{Go long} \ ext{if } \Delta_{t+1} \leqslant lpha_S, & ext{Go short.} \ ext{otherwise,} & ext{Wait} \end{array}
ight.$$

如何得到预测的价差?ARMA, LSTM, LSTM Encoder-Decoder.

正的变化率序列和负的变化率序列 x_t 分别有分布函数 $f^+(x)$ 和 $f^-(x)$

$$\begin{aligned} &\{\alpha_S, \alpha_L\} = \mathop{argmax}_q R^{\text{val}}(q), \\ &q \in \left[\left\{ Q_{f^-(x)}(0.20), Q_{f^+(x)}(0.80) \right\} \left\{ Q_{f^-(x)}(0.10), Q_{f^+(x)}(0.90) \right\} \right] \end{aligned}$$

交易模型一创新方法

交易模型框架图

Fig. 3. Proposed model construction diagram.

交易模型—创新方法

理想状况下的交易过程:

Fig. 4. Example of the proposed forecasting-based strategy.

实验—配对选择

Table 2 Selected pairs using different search methods.

Formation Davied	2012 2015	2012 2016	2014 2017
Formation Period	2012–2015	2013–2016	2014–2017
No Clustering			
Number of clusters	1	1	1
Possible combinations	4465	5460	6670
Pairs selected	101	247	150
By Category			
Number of clusters	5	5	5
Possible combinations	2612	3318	4190
Pairs selected	59	51	51
OPTICS			
Number of clusters	9	13	12
Possible combinations	185	140	129
Pairs selected	39	40	18

Fig. 8. Application of t-SNE to the clusters generated by OPTICS.

实验一配对选择

(b) Normalized prices in Cluster 2.

我们选择两个集群并表示出 ETF 的价格系列。

图 9 (a) 说明了一个识别出的 ETF 不仅属于同一类别,而且属于同一部类,即美国股票:MLPs。

图 9(b)展示了 OPTICS 聚类能力超出了在同一细分市场中选择 ETF 的范围,因为我们可以观察到来自不同类别的 ETF,例如农业(CGW、FIW、PHO 和 PIO)、工业金属(LIT 和 REMX)和能源(YMLI)。表示出的价格序列之间存在可见的关系,即使它们不都属于同一类别。

实验一配对选择

Table 3 Trading performance for each pairs search technique.

Test Period	86	2015		577	2016		2.3	2017		AVG.
Test Portfolio	1	2	3	1	2	3	1	2	3	-
No Clustering		st daen	130-130-2	Selfle See	2200 - 20mm 14	1.40000	and the second	N/A/702	8.00 m/2/8220	
SR	3.53	4.12	3.32	3.96	4.51	3.56	4.08	4.05	1.11	3.58
ROI (%)	10.4%	12.4%	17.4%	24.8%	26.3%	26.0%	11.9%	12.4%	11.5%	17.0%
MDD (%)	1.42%	0.97%	2.59%	2.05%	1.98%	2.65%	1.33%	1.38%	9.28%	2.63%
Total pairs	101	77	10	247	223	10	150	141	10	108
Profitable pairs (%)	70%	80%	70%	86%	86%	90%	69%	70%	90%	79%
Total trades	229	173	17	411	361	15	212	195	14	181
Profitable trades	180	147	15	369	329	15	172	162	12	156
Unprofitable trades	49	26	2	42	32	0	40	33	2	25
By Category										
SR	1.56	2.39	3.75	3.48	3.82	3.09	2.17	2.14	0.89	2.59
ROI (%)	5.52%	9.38%	17.8%	13.6%	13.9%	20.4%	7.86%	8.42%	8.31%	11.7%
MDD (%)	1.77%	1.82%	2.09%	2.06%	2.26%	4.56%	2.47%	2.67%	8.91%	3.18%
Total pairs	59	40	10	51	44	10	51	47	10	36
Profitable pairs (%)	64%	85%	90%	86%	86%	90%	65%	64%	90%	80%
Total trades	154	108	39	107	83	20	64	54	13	71
Profitable trades	112	89	36	92	73	19	49	43	12	58
Unprofitable trades	42	19	3	15	10	1	15	11	1	13
OPTICS										
SR	4.05	3.84	5.08	4.72	4.79	3.80	2.75	2.83	2.27	3.79
ROI (%)	12.5%	13.5%	23.5%	10.5%	11.9%	15.2%	7.36%	8.38%	9.98%	12.5%
MDD (%)	1.37%	1.66%	1.30%	0.80%	0.83%	1.46%	1.21%	1.35%	2.35%	1.37%
Iotal pairs	39	34	10	40	35	10	18	16	10	24
Profitable pairs (%)	82%	82%	100%	80%	83%	90%	78%	81%	100%	86%
Total trades	161	147	68	87	78	30	24	22	17	70
Profitable trades	140	128	67	72	66	27	21	20	17	62
Unprofitable trades	21	19	1	15	12	3	3	2	0	8

实验—交易模型

5个配对的差值序列(9年的形成期)

Fig. 10. Pairs identified in Jan 2009-Dec 2017.

实验—交易模型

调参过程,各个模型预测效果对比,选出均方误差最小的模型用于交易策略的实验

Table 4 Forecasting results comparison.

Model P	Parameters	Time-step	Validation			Test		
			MSE (E-03)	RMSE (E-02)	MAE (E-02)	MSE (E-03)	RMSE (E-02)	MAE (E-02)
Naive	$Y_{t+1} = Y_t$ $Y_{t+2} = Y_t$	(t + 1)	1.87	3.69	1.50	2.60	3.89	1.68
Naive		(t + 2)	3.34	4.94	2.24	4.47	5.14	2.61
ARMA	p:5,q:2	(t + 1)	1.511	3.006	1.781	2.271	3.343	1.967
ARMA	p:8,q:3	(t + 1)	1.508	3.004	1.780	2.264	3.339	1.964
RMA	p:12,q:4	(t + 1)	1.509	3.004	1.780	2.264	3.338	1.964
LSTM	$i_n: 12, h_l: 1, h_n: 10$	(t + 1)	2.73	3.73	2.65	4.99	4.74	3.63
LSTM	$i_n: 24, h_l: 1, h_n: 50$	(t + 1)	1.69	3.28	2.04	3.35	4.30	3.08
LSTM	$i_n: 24, h_l: 1, h_n: 60$	(t + 1)	1.91	3.43	2.03	3.54	4.61	3.36
LSTM EncDec. LSTM EncDec.	$i_n: 12, e_n: 30, d_n: 30$ $i_n: 24, e_n: 15, d_n: 15$	(t + 1) (t + 2) (t + 1) (t + 2)	2.03 2.43 1.71 2.05	3.60 3.94 3.32 3.60	2.18 2.51 2.13 2.45	5.72 8.45 4.31 9.03	5.75 6.91 5.21 7.50	4.31 5.52 3.94 5.91
LSTM	$i_n: 24, e_n: 30, d_n: 30$	(t + 1)	1.96	3.56	2.21	6.06	5.95	4.50
EncDec.		(t + 2)	2.42	3.92	2.51	8.73	7.04	5.57

实验—交易模型

Fig. 6. Trading periods.

Table 5Trading results comparison using a 9-year-long formation period.

Trading Model	Standard	ARMA based Model	LSTM based Model	LSTM Encoder Decoder based Model
Parameters	*see Table 1	$egin{aligned} lpha_S &= Q_{f^-(0.20)} \ lpha_L &= Q_{f^+(0.80)} \end{aligned}$	$egin{aligned} lpha_S &= Q_{f^-(0.10)} \ lpha_L &= Q_{f^+(0.90)} \end{aligned}$	$lpha_S = Q_{f^-(0.10)} \ lpha_L = Q_{f^+(0.90)}$
SR	1.85	1.22	0.50	0.98
ROI	6.27%	5.57%	2.93%	4.17%
MDD	1.43%	0.73%	0.47%	1.19%
Days of portfolio decline	87	11	2	21
Trades (Positive–Negative)	149 (89-60)	34 (22-12)	8 (6-2)	17 (14–3)
Profitable pairs	3	3	2	2

总结

我们探讨了如何通过集成机器学习来增强配对交易。

首先,我们提出了一种基于 PCA 和 OPTICS 算法的应用来搜索对的新方法。 建议的方法比标准方法获得了更好的风险调整回报:在部门内搜索,或考虑所有可能的配对组合。

其次,我们引入了一个基于预测的配对交易模型,旨在减少与不合时宜的市场头寸和长期分歧配对相关的下降期。我们证明了所提出的模型能够将平均下降期缩短75%以上,尽管这是在所研究的条件下以盈利能力下降为代价的。