HW 04: LINE BROADENING

BRYAN YAMASHIRO¹
University of Hawaii at Manoa
2500 Campus Road
Honolulu, HI 96822

1. NATURAL BROADENING

The equation used to generate the Lorentz profile is provided in equation 1. The profile is shown in figure 1 (left), with a green line to indicate the half maximum intensity. Based on the figure, the full width at half maximum is approximately $2.5 \times 10^{-4} \,\text{Å}$, which agrees with $\Gamma/2\pi$.

$$\phi_{\nu} = \frac{\Gamma/4\pi^2}{(\nu - \nu_0)^2 + (\Gamma/4\pi)^2} \tag{1}$$

Figure 1. Profiles for Lorentz (left), Doppler (middle), and a combination of the two (right).

2. DOPPLER BROADENING

The equation used to generate the Doppler broadening is provided in equation 2. The profile is shown in figure 1 (middle). The V_{th} and the $\Delta\lambda_D^2$ found for the Mg II line at 4481 Åwere 2.6322 km/s and 0.0787 Å, respectively. The normalized intensity when inputting $\lambda = \lambda_0 + \Delta\lambda_D^2$ in equation 2, was 0.3679. When both the Lorentz and Doppler profiles are compared, figure 1 (right), the wavelength at which the Lorentz profile is greater than the Doppler is at approximately 4481.27 Å.

$$exp(-\frac{(\lambda - \lambda_0)^2}{\Delta \lambda_D^2}) \tag{2}$$

3. ROTATION

The stellar parameters in table 1, used for this section were found at the Caltech "Encyclopedia of Astronomy and Astrophysics" (http://www.astro.caltech.edu/~george/ay20/eaa-stellarmasses.pdf). The highest escape velocities were from spectral class O, and in general, the higher spectral classes. Rotational velocities of the main sequence objects were found in the "Allen-Astrophysical Quantities" reference, and consisted of the vsin(i) parameters. The maximum rotational broadening were found using the vsin(i) parameters against the speed of light. For a B-type star, the maximum rotational broadening is approximately 6004 Å

It cannot be an H-line because of pressure broadening (Stark). The Stark broadening in particular is not sensitive to rotational broadening, therefore it must be a metal line or else Stark broadening dominates the profile.

 ${\bf Table~1}.~{\bf Stellar~Parameters}.$

Spectral Class	${\rm Mass}\\ {\rm [M_{\odot}]}$	Radius $[R_{\odot}]$	Escape Velocity [km/s]	$v_e \sin(i)$ $[km/s]$	Max Rotational Broadening [Å]
O4 V	60	10	1513.187402	140	4669.897333
$\mathrm{B5V}$	5	2.7	840.6596678	180	6004.153714
$A2\mathrm{III}$	2.5	3.8	501.0664191	160	5337.025523
$\mathrm{F5V}$	1.25	1.2	630.4947509	60	2001.384571
G8V	1	1.2	563.931649	20	667.1281904

Note—Stellar parameters found from derivations and catalogs.