1. Comparisons of two proportions

☐ Bookmark this page

Recitation problem statement

You are interested in comparing the proportions of people in their 20's that smoke in France and in the US. After you sample randomly and independently n people in their 20's in both countries, you observe that N_{US} sampled US Americans and N_F sampled French are smokers. Based on such an experiment, how would you test whether there is a significant difference between the proportions of smokers in both countries?

Note: In the following videos, we introduce a new term called "pivot". The formal definition of a pivotal quantity (or a pivot) is as follows. Let X_1, \ldots, X_n be random samples and let T_n be a function of X and a parameter vector θ . That is, T_n is a function of X_1, \ldots, X_n , θ . Let $g(T_n)$ be a random variable whose distribution is the same for all θ . Then, g is called a pivotal quantity or a pivot.

For example, let X be a random variable with mean μ and variance σ^2 . Let X_1, \ldots, X_n be iid samples of X. Then,

$$g_n riangleq rac{\overline{X_n} - \mu}{\sigma}$$

is a pivot with $\theta = \begin{bmatrix} \mu & \sigma^2 \end{bmatrix}^T$ being the parameter vector. The notion of a parameter vector here is not to be confused with the set of parameters that we use to define a statistical model.

Have a hypothesis test to check if the number of smokers is the same or different in the US and France

Comparison of two propertions

(i)
$$\hat{f} \times = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(i) $\hat{f} \times = \frac{1}{n} \sum_{i=1}^{n} X_i$

(ii) $\hat{f} \times = \frac{1}{n} \sum_{i=1}^{n} X_i$

(ii) $\hat{f} \times = \frac{1}{n} \sum_{i=1}^{n} X_i$

(ii) $\hat{f} \times = \frac{1}{n} \sum_{i=1}^{n} X_i$

(iii) $\hat{f} \times = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} X_i$

(iii) $\hat{f} \times = \frac{1}{n} \sum_{i=1}^{n} X_i$

Want an expression that does not depend on any of the underlying parameters\\

Comparison of two propertions
$$\hat{p}_{X} = \frac{1}{h} \sum_{i=1}^{n} X_{i}$$
, $\hat{p}_{y} = \frac{1}{h} \sum_{i=1}^{n} Y_{i}$
 $\widehat{p}_{X} - \widehat{p}_{Y} - (p_{X} - p_{Y})) \xrightarrow{D} \mathcal{W}(0, p_{X}(1-p_{X}) + p_{Y}(1-p_{Y}))$
 $\widehat{p}_{X} = \widehat{p}_{X} - \widehat{p}_{Y} - p_{X} + p_{Y}) \xrightarrow{D} \mathcal{W}(0, 1)$
 $\widehat{p}_{X}(1-p_{X}) + p_{Y}(1-p_{Y}) \xrightarrow{N \to \infty} \mathcal{W}(0, 1)$

Simplify by setting $p_x = p_y$ for H_0 and using a plugin estimator since we do not currently know what p_x hat and p_y hat are.

For Ho, cet
$$px = py - p \in (0,1)$$
: $px(1-px) + py(1-py)$

$$\hat{p} = \frac{1}{2}\hat{p}x + \hat{p}y \frac{p}{k-2} p$$

$$Shitsky's method: In \frac{\hat{p}x - \hat{p}y}{|z|\hat{p}(1-\hat{p})|} \xrightarrow{n-\infty} dV(0,1)$$

This is the test statistic, Tn, that we want. The absolute value of it as it's a 2 sided test.

Cutting off at Tn > S to guarantee an asymptotic level of alpha

$$P(T_{N} > S) = P(|T_{N} \stackrel{\hat{p}}{\uparrow} \times - \stackrel{\hat{p}}{\uparrow} \times | > S) \xrightarrow{N > \infty} P(|Z| > S)$$

$$= 2 \cdot (1 - \Phi(S)) \qquad \stackrel{!}{=} \times$$

$$\Rightarrow S = 9 \times_{21} |- \times_{2} \text{ quantile of } N(0,1)$$

If the null hypothesis does not hold then the statistic test exceeds the limits with overwhelming probability (approaches infinity)

Remarks:

Different sample sizes

$$\frac{Z_{n}-\mu}{G^{2}} \xrightarrow{N} \mathcal{N}(0,1) \cdot \frac{Z_{n}}{Z_{n}} \xrightarrow{N} \frac{Z_{n}}{Z_{n}} = \frac{1}{N} \frac{Z_{n}}{Z_{$$