- Enveloppe convexe
  - Notion de convexité discrète
  - Convexité fournit une méthode de représentation approchée par enveloppe convexe
  - Définition
    - L'enveloppe convexe construite à partir des points d'une forme E est incluse dans la figure formée par l'union des boules de rayon h/2 (h = pas de discrétisation) et centrés aux points de E







convexes

Non convexes

#### Enveloppe convexe

- Algorithme itératif
  - Supprimer itérativement les concavités locales
    - 2 types

| • | • | • |
|---|---|---|
| 1 | 0 | 1 |
| • | 0 | • |

| • | • | 1 |  |
|---|---|---|--|
| • | 0 | • |  |
| 1 |   | 0 |  |

| • |   | 1 |  |
|---|---|---|--|
|   | 0 | • |  |
| 1 | _ | 0 |  |

0

Type 1 + rotations k  $\Pi/2$ 

Type 2 rotations k  $\Pi$  /2

ou

0 point de fond

1 point de la forme E

. point objet ou fond



#### Enveloppe convexe

- Algorithme itératif
  - Supprimer itérativement les concavités locales



Correspond au type 2

1011

Avec rotation de Π /2

| - | 1 | 1 |
|---|---|---|
| • | 0 |   |
| • | • | 1 |



- Enveloppe convexe
  - Algorithme itératif
    - Supprimer itérativement les concavités locales (suite)





#### Enveloppe convexe

- Algorithme itératif
  - Supprimer itérativement les concavités locales
    - Remarque : enveloppe convexe obtenue ne coïncide pas toujours avec l'ens des points discrets inclus dans l'enveloppe convexe analogique construite à partir des points de E => surestimation





#### Enveloppe convexe

- Autres travaux de caractérisation de la convexité discrète
  - Minsky (88)
    - Une composante E est convexe s'il n'existe pas de triplets de points colinéaires (P<sub>1</sub>,P<sub>2</sub>,P<sub>3</sub>) tel que P<sub>2</sub> situé entre P<sub>1</sub> et P<sub>3</sub> et tel que P<sub>1</sub> et P<sub>3</sub> sont élément de E et P<sub>2</sub> élément du complémentaire de E
    - Caractérisation proche de l'homologue analogique (=> définition de la colinéarité dans le monde discret)



- Une composante connexe E est convexe au sens discret ssi il existe au moins une figure analogique convexe dont E est la discrétisée
- Caractérisation qui se réfère à l'espace analogique
   F. Cloppet / M1 Informatique – Vision et Machine Intelligente





#### Enveloppe convexe

- Construction de l'enveloppe convexe analogique
  - Travaux de Freeman et Shapira (75 à la suite des travaux de Sklansky)
    - Étant donné une liste de points de contours obtenue par algorithme de suivi de contour = sommets ordonnés d'un polygone (F<sub>1</sub>, F<sub>2</sub>, ... F<sub>n</sub>)
    - On extrait de cette liste la sous-liste des points P<sub>i</sub> tels que
      - $P_1 = F_1$
      - P<sub>i</sub> est un point du rectangle d'encadrement (boîte englobante), et P<sub>i-1</sub> ou P<sub>i+1</sub> n'est pas un point du rectangle d'encadrement
      - Étape d'initialisation de l'algorithme : construction du polygone obtenu en connectant les points communs au contour de la composante connexe et à son rectangle d'encadrement



- Enveloppe convexe
  - Construction de l'enveloppe convexe analogique (suite)



Extraction de la sous-liste des points P<sub>i</sub>



- Enveloppe convexe
  - Construction de l'enveloppe convexe analogique (suite)



Calculer la distance des points  $F_i$  (situés entre  $P_k$  et  $P_{k+1}$ ) à ce segment

- ⇒Le point F<sub>i</sub> pour lequel la distance signée est maximale sera un pt de l'enveloppe convexe
- $\Rightarrow$ Le segment [P<sub>k</sub>, P<sub>k+1</sub>] est alors divisé en [P<sub>k</sub>, F<sub>i</sub>] et [F<sub>i</sub>, P<sub>k+1</sub>]



- Enveloppe convexe
  - Construction de l'enveloppe convexe analogique (suite)
    - La convergence est assurée quand il n'y a plus de points candidats à la décomposition





#### SOMMAIRE

- Informations pratiques
- Introduction
- Notions Algorithmiques
- Méthodes Algorithmiques pour la géométrie
- Modéliser le monde
- Méthodes géométriques
  - Notions de base en géométrie
  - Méthodes applicables aux modèles discrets
  - Méthodes applicables aux modèles continus



- Enveloppe convexe d'un ensemble de points
  - Soit E un ensemble de n points du plan  $p_1, ..., p_n$ , Soit l'enveloppe convexe S(E) de E (plus petit polygone convexe contenant E).
    - L'enveloppe convexe d'un nombre fini de points est un polygone convexe
    - Tout polygone convexe est l'enveloppe convexe d'un nombre fini de points





- Enveloppe convexe d'un ensemble de points
  - Démonstration de la borne inférieure
     Utilisation des transformations (Ramener 1 problème à un autre problème dont la complexité est connue)

Soit Pb1 et Pb2 deux problèmes de "taille" n

• Pb1 se transforme en Pb2 en O(f(n)) si:



Pb1 est alors transformable (réductible) à Pb2



- Enveloppe convexe d'un ensemble de points
  - Théorème:

Le tri de n nombres réels est transformable en temps linéaire en un calcul d'enveloppe convexe de n points dans un espace de dimension 2.

• Démonstration du théorème ...



- Enveloppe convexe d'un ensemble de points
  - Démonstration du théorème
    - Soit n nombres réels à trier x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>
    - À chaque  $x_i$  on associe le pt  $A_i$  de cordonnées  $(x_i, x_i^2)$  sur la parabole  $y = x^2$ .

 L'enveloppe convexe des points A<sub>i</sub> (i = 1 à n) est un polygone et la liste circulaire des sommets de ce polygone est la liste des point A<sub>i</sub> (i = 1 à n) ordonnés par abscisses

croissantes





- · Enveloppe convexe d'un ensemble de points
  - Démonstration du théorème
    - Dans le cas de l'enveloppe convexe

Pb<sub>1</sub> = tri de n nombres

Pb<sub>2</sub> = enveloppe convexe de n points

peut se transformer en O(n) en



Le pb du tri est alors transformable au pb de l'enveloppe convexe :

La borne min de l'enveloppe convexe est donc en  $\Omega(n \log n - n) => \Omega(n \log n)$ 



- Enveloppe convexe d'un ensemble de points
  - Algorithme de Graham (1972)
    - 1. Déterminer un point p<sub>0</sub> situé sur la frontière ou à l'intérieur de E
    - 2. Calculer les coordonnées polaires (p<sub>i</sub>, θ<sub>i</sub>) de chaque point p<sub>i</sub> par rapport à p<sub>0</sub>
    - 3. Ordonner les points en fonction de leur  $\theta_i$ .
    - 4. À partir de  $p_0$ ,  $p_1$  on supprime tous les points qui forment un angle rentrant.



- Enveloppe convexe d'un ensemble de points
  - Algorithme de Graham (1972)
  - 1. Déterminer un point p<sub>0</sub> situé sur la frontière ou à l'intérieur de E

En fait on prend le point minimum dans l'ordre lexicographique : y min, et x min si plusieurs points ont le même y min.

- 2. Calculer les coordonnées polaires (p<sub>i</sub>, θ<sub>i</sub>) de chaque point p<sub>i</sub> par rapport à p<sub>0</sub>
- 3. Ordonner les points en fonction de leur  $\theta_i$ .

On construit cette liste ordonnée en fonction de la position des points (en utilisant le tri polaire) sans calculer réellement les angles

4. À partir de p₀, p₁ on supprime tous les points qui forment un angle rentrant.

On utilise le déterminant (ou puissance) pour savoir si 3 points forment un angle concave ou convexe.



• Enveloppe convexe d'un ensemble de points



• Enveloppe convexe d'un ensemble de points

• Algorithme de Graham (1972) Étapes 2 et 3 : Construction de la liste ordonnée des points



• Enveloppe convexe d'un ensemble de points

• Algorithme de Graham (1972)



- Enveloppe convexe d'un ensemble de points
  - Algorithme de Graham (1972)

Étape 4 : Suppression des angles rentrants

```
P_k = P_0 + 1 // suivant de P_0 (car les droites supports (P_{0-1} P_0) et (P_0, P_{0+1}) sont forcément sur l'enveloppe convexe)
```

#### Répéter

```
Si angle (p_{k+1}\ p_{k+2},\ p_{k+1}\ p_k) < \pi alors k=k+1 Sinon supprimer le point p_{k+1} k=k-1 Tant que p_{k+1} \neq p_0
```





- Enveloppe convexe d'un ensemble de points
  - Algorithme de Graham (1972)



#### Étapes de l'algorithme : (k)

- 0, 1, 2 : 1 est à droite de [0, 2] ?oui 1 est conservé
- 1, 2, 3 : 2 est à droite de [1, 3] ?non 2 est supprimé

On recule de 1

- 0, 1, 3 : 1 est à droite de [0, 3] ?oui 1 est conservé
- 1, 3, 4 : 3 est à droite de [1, 4] ?oui 3 est conservé
- 3, 4, 5 : 4 est à droite de [3, 5] ?non 4 est supprimé

On recule de 1

- 1, 3, 5 : 3 est à droite de [1, 5] ?oui 3 est conservé
- 3, 5, 6 : 5 est à droite de [3, 6] ?non 5 est supprimé

On recule de 1

- 1, 3, 6 : 3 est à droite de [1, 6] ?oui 3 est conservé
- •3, 6, 7 : 6 est à droite de [3, 7] ?oui 6 est conservé

Etc ...



- Enveloppe convexe d'un ensemble de points
  - Algorithme de Graham (1972)
    - Complexité de l'étape 4

#### Soit les couples (a<sub>i</sub>, b<sub>i</sub>) où:

a<sub>i</sub> = nombre de points déjà considérés à la ième étape

b<sub>i</sub> = nombre de points répétés à la ième étape (lors des retours en arrière)

- On a:
  - $(a_1, b_1) = (3, 0)$  au début
  - $(a_f, b_f) = (n, n-e)$  à la fin, où **e** est le nombre de points sur l'enveloppe convexe
- à la ième étape on a:
  - Soit  $(a_i, b_i) = (a_{i-1}+1, b_{i-1}) => \alpha$  fois
  - Soit  $(a_i, b_i) = (a_{i-1}, b_{i-1} + 1) => \beta$  fois
- à la fin on a  $(a_f, b_f) = (\alpha + 3, \beta), d'où$ :
  - $n = \alpha + 3$
  - $\beta = n e$
  - Donc  $\alpha + \beta = 2n e 3$
- L'étape 4 est donc bien linéaire



- Enveloppe convexe d'un ensemble de points
  - Algorithme par division-fusion
  - 1. Trier les n points par abscisses croissantes
  - 2. Diviser l'ensemble initial E en deux sous-ensembles  $E_1$  et  $E_2$  séparés par une ligne verticale
  - 3. Calculer l'enveloppe convexe de chaque sous-ensemble E<sub>1</sub> et E<sub>2</sub>
  - Fusionner les deux enveloppes convexes de E<sub>1</sub> et E<sub>2</sub>



- Enveloppe convexe d'un ensemble de points
  - Algorithme par division-fusion
    - On cherche la tangente haute et la tangente basse pour réaliser la fusion des deux enveloppes convexes.





- Enveloppe convexe d'un ensemble de points
  - Algorithme par division-fusion
    - Les arêtes rouges de S(E<sub>1</sub>) sont visibles par E<sub>2</sub>
    - Les arêtes bleues de S(E<sub>1</sub>) sont invisibles de E<sub>2</sub>
    - A<sub>k</sub> est le sommet de x max de S(E<sub>1</sub>) et A<sub>k+1</sub> le sommet de x min de S(E<sub>2</sub>)
    - Le segment  $[A_k, A_{k+1}]$  est intérieur à S(E) car il relie deux sommets des arêtes rouges





- Enveloppe convexe d'un ensemble de points
  - Algorithme par division-fusion
  - On déplace un segment  $[U_1, U_2]$  à partir de  $[A_k, A_{k+1}]$ . Au départ  $U_1 = A_k$  et  $U_2 = A_{k+1}$  Tant que U1 ou U2 ne puisse plus être déplacé

On déplace U1 dans le sens normal tant que U1 est à gauche de [U2, suiv(U1)]

On déplace U2 dans le sens inverse tant que U2 est à droite de  $[U_1, pred(U_2)]$ 

FinTant que

- Le dernier segment [U<sub>1</sub>, U<sub>2</sub>] nous donne la tangente haute
- On fait la même chose pour la tangente basse





- Enveloppe convexe d'un ensemble de points
  - Algorithme par division-fusion
    - Analyse de la complexité
      - Le nombre de tests lors de la fusion est égal au nombre d'arêtes internes.
      - Le nombre total d'arêtes créées par l'algorithme est n
      - La fusion est donc linéaire
      - La complexité est donc dominée par le tri initial, soit O(n log n)

