Zadanie: LOG Logistyka

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 13. Dostępna pamięć: 128 MB.

Rozwiązanie wzorcowe $O(n \cdot log(n))$

Zdefiniujmy
$$S[i] = c[1] + c[2] + ... + c[i]$$
 oraz $f(i, j) = (i - j)^2 + (\sum_{k=i}^{j} c_k)^2$.

Obserwacja.1.
$$f(i,j) = (i-j)^2 + (S[i] - S[j])^2$$

Próba znalezienia minimum tej funkcji nadal nie wydaje się łatwą sprawą, więc zmodyfikujmy ją jeszcze troszkę.

Intuicja. Wzór bardzo przypomina odległość między dwoma punktami (i, S[i]) oraz (j, S[j]) tylko bez pierwiastka

Twierdzenie.1. Jeżeli
$$f'(i,j) = \sqrt{(i-j)^2 + (S[i] - S[j])^2}$$
 to minimum f' , to również $f(i,j)$ to minimum f .

Zatem z pozoru trudny problem sprowadziliśmy do łatwiejszego problemu znalezienia dwóch najbliższych punktów na płaszczyźnie, który można rozwiązać algorytmem o złożoności $O(n \cdot log(n))$.