3. Транзисторы

Транзистор (TRANSISTOR) получил свое название от сочетания английских слов TRANSfer resISTOR – управляемое сопротивление. Это связано с тем, что транзистор изменяет своё внутреннее сопротивление под воздействием управляющего сигнала. Транзисторы служат для усиления, генерации и переключения сигналов, построения логических схем и триггеров различных типов, на основе которых строятся процессоры, элементы памяти и различные контроллеры информационно-вычислительных систем.

В зависимости от типа носителей зарядов и вида управляющего сигнала различают полевые (униполярные) транзисторы, ток в которых создаётся одним типом зарядов (только электронами или только дырками) и изменяется под действием электрического поля, и биполярные, ток в которых создаётся одновременным перемещением и электронов, и дырок, и зависит от управляющего тока.

Биполярным транзистором называется полупроводниковый прибор с двумя *p-n*-переходами и тремя слоями с чередующейся проводимостью, ток в области базы которого создаётся неосновными носителями зарядов. Переходы делят структуру транзистора на три области. Область, через которую ток втекает в транзистор, называется *эмиттер* (Э), от латинского слова emissio — выпуск. Эмиттер выпускает заряды в среднюю область, которая называется *база* (Б). Прошедшие через базу заряды попадают (собираются) в третью область, которая называется *коллектор* (К), от латинского слова collectio — собирание. Из области коллектора ток из транзистора выходит во внешние цепи.

3.1. Биполярные транзисторы

Полупроводниковые приборы, содержащие два взаимодействующих **р-п** перехода, образованных тремя слоями полупроводников, с чередующимся типом электропроводимости, обладающих усилительными свойствами и имеющих три вывода, называются биполярными транзисторами.

Рисунок 3.1 — Структуры транзисторов p-n-p (a) и n-p-n (δ) -типов и их конструктивное исполнение (e)

В зависимости от *мощности*, рассеиваемой на коллекторе, различают транзисторы малой мощности (м.м., $P_{\kappa,max} < 0.3$ Вт); средней мощности (с.м., 0.3 Вт $< P_{\kappa,max} < 1.5$ Вт); большой мощности (б.м., $P_{\kappa,max} > 1.5$ Вт).

В зависимости от *частоты* усиливаемого сигнала различают низкочастотные (НЧ, f_{rp} < 3 МГц); среднечастотные (СЧ, 3 МГц < f_{rp} < 30 МГц); высокочастотные (ВЧ, 30 МГц < f_{rp} < 300 МГц) и сверхвысокочастотные (СВЧ, f_{rp} > 300 МГц).

По виду используемого материала полупроводника различают транзисторы германиевые, кремниевые, на основе арсенида галлия.

В зависимости от того, какой электрод является общим для входной и выходной цепей, различают три схемы включения транзисторов (рис.3.2): с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК).

Рисунок 3.2 – Схемы включения транзистора

Принцип работы транзистора для всех схем включения одинаков. С приложением к эмиттерно-базовому переходу прямого напряжения U_3 происходит инжекция дырок из эмиттера в базу и электронов из базы в эмиттер. Ввиду того, что эмиттер легирован намного сильнее базы, поток инжектированных дырок будет намного превышать поток электронов. Инжектированные в базу дырки будут перемещаться к коллектору. Возникающий при этом кол-

лекторный ток $I_{\rm K}$ немного меньше тока эмиттера $I_{\rm 3}$. При подключении в цепь коллектора сопротивления нагрузки $R_{\rm H}$ относительно малое изменение напряжения база-эмиттер $U_{\rm 69}$ будет вызывать большое изменение напряжения на сопротивлении нагрузки. Таким образом, транзистор осуществляет усиление по мощности.

Транзистор, также как и любой электронный прибор, характеризуется предельными режимами, превышение которых приводит к нарушению работы прибора и выходу его из строя. Максимально допустимые напряжения ограничиваются пробивными напряжениями соответствующих переходов; максимально допустимые мощность и ток ограничиваются максимально допустимой температурой коллекторного перехода, не приводящей к тепловому пробою.

Основными параметрами транзистора являются коэффициенты передачи токов:

- $\alpha = I_K \ / \ I_{\rm 3}$ коэффициент передачи эмиттерного тока в коллектор, равный от 0.9 до 0.99
- β = I_K / I_B коэффициент передачи базового тока в коллектор (коэффициент усиления), принимающий значения от 10 до 1000.

Значение коэффициента α = 0,99 означает, что из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.

Вольт-амперные характеристики биполярного транзистора, включенного по схеме с общим эмиттером, показаны на рис.3.3 (а) – входные, (б) - выходные.

Рисунок 3.3 – Входная (а) и выходная (б) характеристики биполярного транзистора, включенного по схеме с общим эмиттером

Для биполярного транзистора ток эмиттера равен сумме токов базы и коллектора, т.е.:

$$I_{\mathfrak{I}} = I_{\mathfrak{G}} + I_{\mathfrak{K}}$$
.

3. 2. МОП-транзисторы

Основой МОП (металл — оксид - полупроводник) транзистора является кремниевая подложка с проводимостью p- или n-типа. На подложке на малом расстоянии друг от друга (рис. 3.4) созданы две области - истока и стока с проводимостью, противоположной проводимости материала подложки.

Между стоком и истоком над поверхностью расположена металлическая пленка — затвор, изолированная от подложки тонким слоем диэлектрика (диоксида кремния SiO_2). Отсюда и другие названия приборов этого класса: МДП-транзисторы или транзисторы с изолированным затвором.

Участок подложки под затвором между истоком и стоком образует проводящий канал. Работа МОП транзистора основана на изменении концентрации свободных носителей заряда в канале под влиянием электрического поля, создаваемого напряжением, приложенным между затвором и истоком. Для этих приборов характерна взаимозаменяемость стока и истока, т. е. ток в канале может протекать в обоих направлениях в зависимости от полярности напряжения, приложенного к каналу.

В зависимости от устройства канала проводимости различают МОП транзисторы со встроенным и индуцированным (наведенным) каналом. Это в равной мере относится к приборам p- и n- типов. У транзисторов со встроенным каналом канал является элементом конструкции, а у приборов с индуцированным каналом канал, как таковой, отсутствует: он наводится внешним напряжением.

Структура МДП-транзистора со встроенным каналом приведена на рис. 3.4 a, а их условные обозначения с каналами разной проводимости - на рис. 3.46. Основой транзистора со встроенным каналом является кристалл кремния p- или n-типа проводимости.

Рисунок 3.4 – Устройство МОП-транзистора со встроенным каналом (a) и условное обозначение (б)

Суть работы такого транзистора заключается в следующем. Под действием электрического поля между стоком и истоком через канал будут протекать основные носители зарядов, т. е. будет существовать ток стока. При подаче на затвор положительного напряжения электроны как неосновные носители подложки будут притягиваться в канал. Канал обогатится носителями заряда, и ток стока увеличится.

При подаче на затвор отрицательного напряжения электроны из канала будут уходить в подложку, канал обеднится носителями зарядов, и ток стока уменьшится. При достаточно больших напряжениях на затворе все носители заряда будут из канала уходить в подложку, и ток стока станет равным нулю.

Зависимость выходного тока Исток-Сток $I_{\rm c}$ МДП-транзистора со встроенным каналом от напряжения на затворе $U_{\rm 3H}$ изображена на рис.3.5a.

Рисунок 3.5 – Зависимости выходного тока МДП-транзисторов от входного напряжения (a) встроенный канал, (б) индуцированный канал

В транзисторе с индуцированным каналом при напряжениях на затворе, равных нулю, канал отсутствует, и ток стока будет равен нулю. При положительных напряжениях на затворе электроны, как неосновные носители заряда подложки р-типа, будут притягиваться к затвору, а дырки будут уходить вглубь подложки. В результате в тонком слое под затвором концентрация электронов превысит концентрацию дырок, т. е. в этом слое полупроводник поменяет тип своей проводимости. Образуется (индуцируется) канал, и в цепи стока потечёт ток. Следовательно, МОП-транзисторы с индуцированным каналом могут работать только в режиме обогащения.

Устройство МДП-транзистора с индуцированным затвором показано на рис. 3.6a, а его условное обозначение в схемах на 3.6b. На рис. 3.5b изображена зависимость тока Исток-Сток $I_{\rm c}$ МДП-транзистора с индуцированным каналом от напряжения на затворе $U_{\rm 3H}$.

Рисунок 3.6 – Устройство МОП-транзистора с индуцированным каналом (a) и условное обозначение (б)

МОП-транзисторы со встроенным каналом находят применение в аналоговой технике. В дискретной технике употребляется МОП - транзистор с индуцированным каналом.

Напряжение питания подают на сток и исток. У транзисторов с каналом n-типа сток должен иметь положительный потенциал относительно истока. Так как подложка образует с каналом диодное соединение, то напряжение на ней должно быть ниже напряжения проводимости. Она может быть соединена с истоком или с точкой схемы, в которой напряжение ниже, чем у истока n-канального и выше чем у p-канального МОП-транзистора. Вывод подложки в большинстве случаев соединяют с истоком.

Основными параметрами униполярных транзисторов являются следующие:

коэффициент усиления — отношение изменения напряжения истоксток к изменению напряжения затвор-исток при постоянном токе стока;

крутизна стоко-затворной характеристики, чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе;

входное сопротивление $R_{\rm Bx}$., определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»);

максимальный ток стока $I_{\rm c\ Makc}$ при фиксированном напряжении затвор-исток;

максимальное напряжение сток-исток $U_{\rm cu}$, после которого уже наступает пробой;

внутреннее (выходное) сопротивление $R_{\text{вых}}$. Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток — константа).

3.3. Усилительный каскад на основе биполярного транзистора

Схема однокаскадного усилителя переменного тока на основе биполярного транзистора, включенного по схеме с общим эмиттером показана на рис.3.7.

Рисунок 3.7 – Схема усилительного каскада на биполярном транзисторе

Для установки тока покоя I_{60} на линейном участке входной характеристики (рис.3.3*a*) используется делитель напряжения R_1 , R_2 . Нагрузочный резистор включается в цепь коллектора транзистора. Параллельное соединение резистора R_3 и C_3 обеспечивает температурную стабилизацию тока покоя коллектора за счет обратной связи по постоянному току. R_{oc} создает отрицательную обратную связь по переменному току, которая улучшает частотные характеристики усилительного каскада.

Источник входного сигнала подключается к управляющему электроду (базе) транзистора через разделительный конденсатор C_1 . Усиленный сигнал снимается с нагрузочного сопротивления $R_{\rm H}$, подключаемого к коллектору транзистора через разделительную емкость C_2 , которая пропускает на выход только переменную составляющую. Процесс изменения сигналов в различных точках схемы показан на рисунках 3.8a и δ .

Схема усилительного каскада переменного тока на базе полевого транзистора, включенного по схеме с общим истоком, показана на рис.3.9. Основными элементами каскада являются источник питания $+E_c$, транзистор Т и резистор R_c . Нагрузка подключена через разделительный конденсатор C_{p2} к стоку транзистора. Элементы R_3 , R_1 , $R_{\rm u}$ предназначены для задания $U_{\rm зип}$ в режиме покоя. Резистор $R_{\rm u}$ создает в каскаде отрицательную обратную связь по постоянному току, служащую для стабилизации режима покоя при изменении температуры и разбросе параметров транзистора.

Рисунок 3.8 – Графики изменения сигналов в различных точках усилителя

Конденсатор $C_{\rm u}$ предназначен для исключения отрицательной обратной связи по переменному току. Разделительный конденсатор C_{p1} отделяет по постоянному току источник сигнала от делителя напряжения и обеспечивает связь по переменному току усилительного каскада с источником входного сигнала.

Рисунок 3.9 – Схема усилительного каскада на базе МДП-транзистора, включенного по схеме с общим истоком

На рис. 3.10 показаны графики изменения всех токов и напряжений полевого МДП-транзистора в схеме с ОИ при гармоническом входном сигнале, построенные по статическим характеристикам транзистора.

Рисунок 3.10 – Графики изменения сигналов в различных точках усилителя на основе МДП-транзистора

3.4. Ключевой режим работы транзисторов

Ключевым (вентильным) называют такой режим работы транзистора, при котором он может быть либо полностью открыт (режим насыщения выходного тока), либо полностью закрыт (режим отсечки выходного тока), а промежуточное состояние, при котором транзистор частично открыт, в идеале отсутствует. Мощность, которая выделяется в транзисторе, в статическом режиме равна произведению тока, протекающего через его выводы (коллектор-эмиттер или сток-исток), и напряжения, приложенного между этими выводами.

В идеальном случае, при открытом транзисторе, т.е. находящимся в режиме насыщения, его сопротивление межу выводами (коллектор-эмиттер или сток-исток) стремится к нулю. Мощность потерь в открытом состоянии представляет произведение равного нулю напряжения на определённую величину тока. Таким образом, рассеиваемая мощность равна нулю.

В идеальном случае, когда транзистор закрыт, т.е. в режиме отсечки, его сопротивление между выводами (коллектор-эмиттер или сток-исток) стремится к бесконечности. Мощность потерь в закрытом состоянии есть произведение определённой величины напряжения на равное нулю значение тока. Следовательно, мощность потерь равна нулю.

Таким образом, в ключевом режиме в идеальном случае, мощность потерь транзистора равна нулю. На практике, естественно, когда транзистор открыт, присутствует некоторое небольшое сопротивление (коллектор-эмиттер или сток-исток). Когда транзистор закрыт, по выводам (коллектор-эмиттер или сток-исток) протекает ток небольшой величины. Таким образом, мощность потерь в транзисторе в статическом режиме мала. Однако в динамическом режиме, когда транзистор открывается или закрывается, его рабочая точка проходит линейную область, в которой ток через транзистор может условно составлять половину максимального тока, а напряжение (коллекторэмиттер или сток-исток) может достигать половины от максимальной величины. Таким образом, в динамическом режиме в транзисторе выделялась бы огромная мощность потерь, которая свела бы на нет все замечательные качества ключевого режима. Однако длительность нахождения транзистора в динамическом режиме много меньше длительности пребывания в статическом режиме и потери на нагревание транзистора очень малы. Но с повышением частоты переключения транзистора потери в нем растут и происходит разогрев транзистора, что может привести к выходу его из строя.

Практически все цифровые элементы информационной и вычислительной техники построены на транзисторах (биполярных или чаще на МДП), работающих в ключевом режиме.

Биполярные транзисторы, работающие в режиме ключа чаще всего включаются по схеме с общим эмиттером. На рис.3.11 приведены схема транзисторного ключа (a), его эквивалентная схема контактного ключа (b) и временная диаграмма входного и выходного сигналов (b).

Рисунок 3.11 — Схема ключа на биполярном транзисторе (*a*), эквивалентная схема (δ) и временная диаграмма (ϵ)

Резистор R_6 предназначен для ограничения тока базы транзистора I_6 , чтобы он не превышал максимально допустимого значения. В промежуток времени от 0 до t_1 входное напряжение и ток базы близки к нулю, и транзистор находится в режиме отсечки. Напряжение $U_{\rm K3}$, является выходным и будет близко к $E_{\rm K}$. В промежуток времени от t_1 до t_2 входное напряжение и ток базы

транзистора становятся максимальными, и транзистор перейдёт в режим насыщения. После момента времени t_2 транзистор переходит в режим отсечки. Следовательно, можно сделать вывод, что транзисторный ключ является инвертором, т. е. изменяет фазу сигнала на 180° .

В реальных ключевых схемах изменение состояния транзисторов под действием ступенчатого входного напряжения происходит в течение некоторого времени, зависящего от целого ряда факторов: типа транзистора ключа, режимов его работы, характера нагрузки и т.д. Процесс переключения биполярного транзистора определяется двумя факторами: процессами накопления и рассасывания неосновных носителей в базе, формирующих ток коллектора i_k , и наличием емкостей эмиттерного и коллекторного переходов C_3 и C_k , которые перезаряжаются при переключениях. По этой причине изменения выходных токов ключа при отпирании и запирании транзистора отличаются от линейного закона, а форма выходного напряжения отличается от формы входного.

На рис.3.12 показана схема реального ключа на основе МДП-транзистора (a) и его временная диаграмма (δ). При закрытом транзисторе выходная емкость C_{cu} заряжена до напряжения, практически равного E. Когда входное напряжение превышает пороговое напряжение U_{nop} транзистор открывается и его сопротивление становится очень мало (но не равняется 0). Емкость C_{cu} начинает разряжаться постоянным током I_p , определяемым небольшим сопротивлением проводящего канала транзистора, в течение времени $t_{вкл}$. За это время выходное напряжение ключа падает до величины близкой к нулю.

При запирании транзистора (уменьшение $U_{\text{вх}}$ до нуля) происходит зарядка емкости $C_{\text{си}}$ через резистор R от напряжения источника питания E в течение времени $t_{\text{выкл}}$.

Рисунок 3.12 — Схема реального ключа на МДП-транзисторе (a) и временная диаграмма работы ключа (δ)

Это время, как правило, больше времени включения, так как сопротивление нагрузочного резистора R значительно больше сопротивления канала транзистора в проводящем состоянии.

Недостатком ключевых схем как на биполярных, так и на полевых транзисторах потери энергии на резисторах при открытых транзисторах, что приводит к разогреву микросхем. Этот недостаток ликвидирован в ключевых элемента, выполненных на основе комплементарных (дополняющих) транзисторов. В таких ключах используется пара транзисторов с одинаковыми параметрами, но с различной проводимостью. Комплементарные ключи могут быть выполнены как на основе биполярных, так и на МОП-транзисторах. Последние приобрели более широкое распространение по причине более простой технологии изготовления, меньших габаритах и возможности работы в широком диапазоне напряжений источников питания. Для их обозначения применяются сокращения КМДП, К-МОП. Зарубежное обозначение КМОП - CMOS (Complementary Metal-Oxide Semiconductor). В КМОП ключах применяются пары транзисторов с абсолютно одинаковыми параметрами, но один транзистор имеет затвор *p*-типа.

На рисунке 3.13*а* изображена схема КМОП ключа (вентиля) на основе полевых транзисторов с индуцированным каналом, который осуществляет инверсию входного сигнала (элемент НЕ). То есть если на вход подается высокий уровень напряжения (логическая единица), то с выхода снимается логический ноль и наоборот. Эквивалентные схемы КМОП ключа на контактных ключах при двух значениях сигналов управления показаны на рис. 3.13*б* и рис.3.13*в*. Как видно из эквивалентных схем, выход инвертора соединен либо с шиной сигнального заземления (на выходе логический 0), либо с шиной источника питания (на выходе логическая 1). В схеме КМОП инвертора, в отличие от схем с резистором, сквозной ток отсутствует при любом состоянии вентиля. Это означает, что при идеальных ключах схема не потребляет энергии. В реальных условиях закрытый транзистор имеет очень большое, но конечное сопротивление и в устройстве протекает очень маленький (доли микроампер) ток. В момент переключения, когда оба транзистора находятся в полуоктрытом состоянии, сквозной ток существенно возрастает.

Рисунок 3.13 – Схема КМОП-ключа (a), эквивалентные схемы при различных сигналах управления на входе (б,в)

Это приводит к тому, что при увеличении частоты переключения средний ток, потребляемый схемой, увеличивается (рисунок 3.14), что приводит к разогреву ключевых элементов.

Рисунок 3.14 — Иллюстрация возрастания потребляемого тока ключевым МОП элементом при увеличении частоты переключения

При превышении температуры КМОП элемента выше допустимой он может выйти из строя за счет теплового пробоя.