Notes on Foundations of Programming Languages Denotational Semantics

Sandra Alves

December 7, 2021

Abstract

In the following sections we will explore some basic notions on domain theory and denotational semantics. For full details on the notions here presented see [Winskel, 1993, Nielson and Nielson, 1992].

1 Fixed-point theory

In this section we will develop the theory of fixed-points, with the purpose of defining the least fixed-point of a function, which is the fixed point that shares its results with the remaining fixed-points of the function. We formally define the fact that FIX F shares its results with all the other fixed-points for F, by considering an ordering relation between partial functions of type State \rightarrow State.

Definition 1.1 Let g_1, g_2 : State \rightarrow State, be two partial functions, then $g_1 \sqsubseteq g_2$ if and only if, for all σ , sigma' \in State:

$$q_1 \sigma = \sigma' \Rightarrow q_1 \sigma = \sigma'$$
.

For example, for the following g_1, g_2, g_3, g_4 : State \rightarrow State:

$$g_1 \sigma = \sigma \text{ for all } \sigma$$

$$g_2 \sigma = \begin{cases} \sigma & \text{if } \sigma(x) \ge 0\\ \text{not def} & \text{otherwise} \end{cases}$$

$$g_3 \sigma = \begin{cases} \sigma & \text{if } \sigma(x) = 0\\ \text{not def} & \text{otherwise} \end{cases}$$

$$g_4 \sigma = \begin{cases} \sigma & \text{if } \sigma(x) \leq 0 \\ \text{not def} & \text{otherwise} \end{cases}$$

we have:

$$g_1 \sqsubseteq g_1,$$

 $g_2 \sqsubseteq g_1, g_2 \sqsubseteq g_2,$
 $g_3 \sqsubseteq g_1, g_3 \sqsubseteq g_2, g_3 \sqsubseteq g_3, g_3 \sqsubseteq g_4,$
 $g_4 \sqsubseteq g_1, g_4 \sqsubseteq g_4$

The set of functions State \rightarrow State, together with \sqsubseteq defines a partial order set (poset).

Definition 1.2 A poset is a pair (D, \sqsubseteq_D) , where D is a set and \sqsubseteq_D is a relation:

- reflexive: $\forall d \in D.d \sqsubseteq_D d$
- transitive: $\forall d_1, d_2, d_3 \in D.d_1 \sqsubseteq_D d_2 \land d_2 \sqsubseteq_D d_3 \Rightarrow d_1 \sqsubseteq_D d_3$
- anti-symmetric: $\forall d_1, d_2 \in D.d_1 \sqsubseteq_D d_2 \land d_2 \sqsubseteq_D d_1 \Rightarrow d_1 = d_2$

We call \sqsubseteq_D , a partial order in D. If $d \in D$ satisfies $\forall d' \in D$. $d \sqsubseteq_D d'$, then d is called a minimal element.

Lemma 1.3 Let (D, \sqsubseteq) be a poset. If (D, \sqsubseteq) has a minimal element, then it is unique.

Proof: Let d_1, d_2 be two minimal elements of (D, \sqsubseteq) . Since d_1 is a minimal, then $d_1 \sqsubseteq d_2$. Since d_2 is a minimal, then $d_2 \sqsubseteq d_1$. Following anti-symmetry of \sqsubseteq , then $d_1 = d_2$.

Definition 1.4 The minimal element of (D, \sqsubseteq) is called bottom, and denoted by \bot_D (or simply \bot).

Lemma 1.5 The pair (State \rightarrow State, \sqsubseteq) is a poset, and the partial function \bot : State \rightarrow State, defined as:

$$\perp \sigma = not \ def$$
, for all $\sigma \in \Sigma$

is the minimal element of (State \rightarrow State, \sqsubseteq).

Proof: We start by showing that \sqsubseteq is a partial order:

- reflexive: $g \sqsubseteq g$, since $g \sigma = \sigma'$ trivially implies $g \sigma = \sigma'$.
- transitive: Let $g_1 \sqsubseteq g_2$ and $g_2 \sqsubseteq g_3$ and let $g_1 \sigma = \sigma'$. From $g_1 \sqsubseteq g_2$ it follows that $g_2 \sigma = \sigma'$ and from $g_1 \sqsubseteq g_2$ it follows that $g_3 \sigma = \sigma'$. Therefore $g_1 \sqsubseteq g_3$.
- anti-symmetric: Let $g_1 \sqsubseteq g_2$ and $g_2 \sqsubseteq g_1$. Let $g_1 \sigma = \sigma'$, then $g_2 \sigma = \sigma'$, which means that g_1 and g_2 are equal for σ . If g_1 sigma = not def then it follows from $g_2 \sqsubseteq g_1$ that g_2 sigma = not def, otherwise having g_2 sigma = σ' would imply g_1 sigma = σ' , which contradicts g_1 sigma = not def. Therefore $g_1 = g_2$.

We now show that \bot is the minimal element of the poset. Clearly \bot is an element of State \to State. Furthermore, $\bot \sqsubseteq g$, for every g, since $\bot \sigma = \sigma'$ trivially implies $g \sigma = \sigma'$.

We now establish our conditions on FIX F:

- FIX F is a fix-point of F, that is, F(FIX F) = FIX F;
- FIX F is the least fix-point of F,

$$F g = g \Rightarrow FIX F \square g$$
.

Definition 1.6 Let (D, \sqsubseteq) be a poset and let $Y \subseteq D$. Consider an upper bound of Y, that is, $d \in D$ such that:

$$\forall d' \in Y. \ d' \sqsubseteq d.$$

The least upper bound d is such that, for all the upper bound d' of Y, then $d \sqsubseteq d'$. We denote the least upper bound of Y (if such exists), as $\bigsqcup Y$.

A subset $Y \subseteq D$ is called a chain if and only if:

$$\forall d_1, d_2 \in Y. \ d_1 \sqsubseteq d_2 \ or \ d_2 \sqsubseteq d_1.$$

Definition 1.7 A poset (D, \Box) is a complete partially ordered set (CPO) if

- 1. (D, \sqsubseteq) has a bottom element, \perp ,
- 2. | | Y is defined for every chain Y.

Some authors do not require a CPO to have a bottom element and so omit the first condition in the previous definition, using the term pointed CPO when both conditions hold.

2 Continuous functions

We will define the notion of continuous functions on CPOs, and show that these functions always have least fixed points.

Definition 2.1 Let (D, \sqsubseteq_D) and (E, \sqsubseteq_E) be two CPOs and let $f: D \to E$ be a total function. We say that f is monotone if and only if:

$$d_1 \sqsubseteq_D d_2 \Rightarrow f(d_1) \sqsubseteq_E f(d_2)$$
, for all $d_1, d_2 \in D$.

For example, considering $(\mathcal{P}(\{a,b,c\}),\subseteq)$, $(\mathcal{P}(\{d,e\}),\subseteq)$ and $f_1,f_2:\mathcal{P}(\{a,b,c\})\to\mathcal{P}(\{d,e\})$ defined as follows:

$$\begin{split} f_1(\emptyset) &= \emptyset \\ f_1(\{a\}) &= \{d\}, \ f_1(\{b\}) = \{d\}, \ f_1(\{c\}) = \{e\} \\ f_1(\{a,b\}) &= \{d\}, \ f_1(\{a,c\}) = \{d,e\}, \ f_1(\{b,c\}) = \{d,e\} \\ f_1(\{a,b,c\}) &= \{d,e\} \\ \end{split}$$

$$f_2(\emptyset) &= \{e\} \\ f_2(\{a\}) &= \{d\}, \ f_2(\{b\}) = \{e\}, \ f_2(\{c\}) = \{e\} \\ f_2(\{a,b\}) &= \{d\}, \ f_2(\{a,c\}) = \{d\}, \ f_2(\{b,c\}) = \{e\} \\ f_1(\{a,b,c\}) &= \{d\}, \ f_2(\{a,b\}) = \{d\}, \ f_2(\{a,b\}$$

 f_1 is monotone, but f_2 is not.

Lemma 2.2 Let (A, \sqsubseteq_A) , (B, \sqsubseteq_B) and (C, \sqsubseteq_C) be three CPOs and $f_1 : A \to B$, $f_2 : B \to C$ two monotone functions. Then $f_2 \circ f_1 : A \to C$ is monotone.

Proof: Let $a_1 \sqsubseteq_A a_2$. By monotonicity of f_1 we have $f_1(a_1) \sqsubseteq_B f_1(a_2)$, and by monotonicity of f_2 we have $f_2(f_1(a_1)) \sqsubseteq_C f_2(f_1(a_2))$. Thus

$$a_1 \sqsubseteq_A a_2 \Rightarrow f_2 \circ f_1(a_1) \sqsubseteq_C f_2 \circ f_1(a_2),$$

therefore $f_2 \circ f_1$ is monotone.

Lemma 2.3 Let (D, \sqsubseteq_D) , (E, \sqsubseteq_E) be two CPOs and $f: D \to E$, a monotone function. If $X = \langle x_1, \ldots, x_n \rangle$ is a chain in D, then $f X = \langle f x_1, \ldots, f x_n \rangle$ is a chain in E, and:

$$| \langle f x_i \rangle \sqsubseteq_{E} f(| \langle x_i \rangle)$$

Proof: If $X = \emptyset$, then the result follows trivially since $\bot_E \sqsubseteq_E f(\bot_D)$, therefore we will assume that $X \neq \emptyset$. We start by showing that $\langle f \ x_i \rangle$ is a chain in E. Let e_1, e_2 be two elements of $\langle f \ x_i \rangle$, then there exist $d_1, d_2 \in X$, such that $e_1 = f(d_1)$ and $e_2 = f(d_2)$. Since X is a chain, then either $d_1 \sqsubseteq_D d_2$ or $d_2 \sqsubseteq_D d_1$. By monotonicity of f, then either $f(d_1) \sqsubseteq_E f(d_2)$ or $f(d_2) \sqsubseteq_E f(d_1)$. That is, for every e_1, e_2 in $\langle f \ x_i \rangle$, either $e_1 \sqsubseteq_E e_2$ or $e_2 \sqsubseteq_E e_1$. Therefore $\langle f \ x_i \rangle$ is a chain.

We now need to show that:

$$\bigsqcup$$
 f X \sqsubseteq E f(\bigsqcup X).

Let d be an arbitrary element of X. Since $\bigsqcup X$ is the least upper bound of X, then $d \sqsubseteq_D \bigsqcup X$. By monotonicity of f, we have $f(d) \sqsubseteq_E f(\bigsqcup X)$, since $f(d) \sqsubseteq_E f(\bigsqcup X)$ for every $d \in X$, then $f(\bigsqcup X)$ is an upper bound of f X, therefore, for the least upper bound of f X, we have

$$| f X \sqsubseteq_{\mathsf{E}} f(| X).$$

Definition 2.4 A function $f: D \to E$ between CPOs (D, \sqsubseteq_D) , (E, \sqsubseteq_E) is continuous if it is monotone and, for all the non-empty chains X:

$$\Box$$
 f X = f(\Box X).

If the property holds for the empty chain, that is $\bot = f \bot$, then we say that f is strict.

In general the least upper bounds of chains are not maintained. For example, let $(\mathcal{P}(\mathbb{N} \cup \{a\}), \subseteq)$ be a CPO and consider $f: \mathcal{P}(\mathbb{N} \cup \{a\}) \to \mathcal{P}(\mathbb{N} \cup \{a\})$ defined in the following way:

$$f(x) = \begin{cases} x & \text{if } x \text{ is finite} \\ x \cup \{a\} & \text{if } x \text{ is infinite} \end{cases}$$

The function f is monotone: if $x_1 \subseteq x_2$ then $f(x_1) \subseteq f(x_2)$. However, consider the chain $X = \{\{0, 1, \dots, n\} \mid n \ge 0\} = \langle \{0\}, \{0, 1\}, \{0, 1, 2\}, \dots \rangle$. The least upper bound of this chain is \mathbb{N} . The chain f $X = \{f\{0, 1, \dots, n\} \mid n \ge 0\} = X$, therefore $\coprod f X = \coprod X = \mathbb{N}$. However $f(\coprod X) = f(\mathbb{N}) = \mathbb{N} \cup \{a\}$.

Consider the function $f_1: \mathcal{P}(\{a,b,c\}) \to \mathcal{P}(\{d,e\})$ defined before. Let X be a non-empty chain in $(\mathcal{P}(\{a,b,c\}),\subseteq)$. The least upper bound of X is the biggest set $x_0 \in X$. Then $f_1(\bigsqcup X) = f_1(x_0)$, and since $x_0 \in X$ then $f_1(x_0) \subseteq \bigsqcup f_1X$. But f_1 is monotone, therefore $\bigsqcup f_1X \subseteq f_1(\bigsqcup X)$. Therefore f is continuous. Furthermore, since $f_1(\emptyset) = \emptyset$, then f_1 is strict.

Lemma 2.5 Let (A, \sqsubseteq_A) , (B, \sqsubseteq_B) and (C, \sqsubseteq_C) be three CPOs and $f_1 : A \to B$, $f_2 : B \to C$ two continuous functions. Then $f_2 \circ f_1 : A \to C$ is continuous.

Proof: Since f_1 and f_2 are monotone, then $f_2 \circ f_1$ is also monotone by the previous lemma. Let X be a chain in A. By continuity of f_1 we have

$$\bigsqcup \langle f_1 \ x \mid x \in X \rangle = f_1(\bigsqcup X)$$

. Since $\langle f_1 | x | x \in X \rangle$ is a chain in B, by continuity of f_2 we have

$$\bigsqcup \langle f_2 \ y \mid y \in \langle f_1 \ x \mid x \in X \rangle \rangle = f_2(\bigsqcup \langle f_1 \ x \mid x \in X \rangle).$$

Therefore

$$\left| \begin{array}{c} \left| \langle f_2(f_1(x)) \mid x \in X \rangle = f_2(f_1(\left| \begin{array}{c} X \rangle). \end{array} \right. \right.$$

Theorem 2.6 Let $f: D \to D$ be a continuous function in the CPO (D, \sqsubseteq) and let \bot be its least upper bound. Then

$$\text{FIX } f = \bigsqcup \langle f^n(\bot) \mid n \geq 0 \rangle$$

defines the element of D that is the least fixed point of f.

Proof: Consider $f^0 = id$ and $f^{n+1} = f \circ f^n$, $\forall n \ge 0$. Since $f^0 \perp = \bot$ and $\bot \sqsubseteq d$, for all $d \in D$, then (by induction on n and given that f is monotone) we have that, for all $d \in D$:

$$f^n \perp \sqsubseteq f^n d$$
.

Therefore $\langle f^n \perp | n \geq 0 \rangle$ is a non-empty chain in D, since it follows that $f^n \perp \sqsubseteq f^m \perp$ for $n \leq m$. Since D is a CPO then there exists $| |\langle f^n \perp | n \geq 0 \rangle$, therefore FIX f is defined.

We now show that FIX f is indeed a fixed point of f, that is f(FIX f) = FIX f.

$$\begin{array}{ll} f(\text{FIX } f) & = & f(\bigsqcup \langle f^n \perp | \, n \geq 0 \rangle) \\ & = & \bigsqcup \langle f(f^n \perp) \mid n \geq 0 \rangle \\ & = & \bigsqcup \langle f^n \perp | \, n \geq 1 \rangle \\ & = & \bigsqcup (\langle f^n \perp | \, n \geq 1 \rangle \cup \{\bot\})^* \\ & = & \bigsqcup \langle f^n \perp | \, n \geq 0 \rangle \\ & = & \text{FIX } f \end{array}$$

* since $| |(X \cup \{\bot\})| = | |X|$ for all chains X.

The last thing we need to show is that FIX f is the least fixed-point. Consider d another fixed point of f. Since $\bot \sqsubseteq d$ and f is monotone, then $f^n \bot \sqsubseteq f^n d$, $n \ge 0$. Since d is a fixed point (that is f(d) = d, then $f^n \bot \sqsubseteq d$. Therefore d is an upper bound of the chain $\{f^n(\bot) \mid n \ge 0\}$. Given that FIX f is the least upper bound of that chain it follows that FIX f $\sqsubseteq d$.

For example let $F: State \rightarrow State$ be the following function:

$$(F g)\sigma = \begin{cases} g \sigma & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases}$$

The minimal element of State \rightarrow State is the function \bot , such that $\bot \sigma = \text{not def}$, for all $\sigma \in \Sigma$. We have:

$$F^0 \perp \sigma = not def$$

$$F^1 \perp \sigma \ = \ F^1 \perp \sigma \qquad = \ \begin{cases} \perp \sigma & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases} \qquad = \ \begin{cases} \text{not def} & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases}$$

$$F^2 \perp \sigma \ = \ F(F^1 \perp) \ \sigma \ = \ \begin{cases} (F^1 \perp) \ \sigma & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases} \ = \ \begin{cases} \text{not def} & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases}$$

Therefore

FIX
$$F = \begin{cases} \text{not def} & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases}$$

3 Denotational semantics for IMP

We now define a denotational semantics for the IMP language.

Definition 3.1 The function $\mathcal{A}[\![\cdot]\!]$: AExp \to (State $\to \mathbb{Z}$), recursively defines the denotational semantics of arithmetic expressions, in the following way:

(*) The function $\mathcal{N}[[]]: \text{Num} \to \mathbb{Z}$, allows for different representations of numbers. For simplicity, we will assume that $\text{Num} = \mathbb{Z}$, therefore $\mathcal{N}[[]]$ is the identity function.

Definition 3.2 The function $\mathcal{B}[\![\cdot]\!]$: BExp \to (State \to T), recursively defines the denotational semantics of boolean expressions, in the following way:

$$\begin{split} \mathcal{B}[\![1]\!]\sigma &= 1 \\ \mathcal{B}[\![0]\!]\sigma &= 0 \\ \\ \mathcal{B}[\![\alpha_1 = \alpha_2]\!]\sigma &= \begin{cases} 1 & \textit{if } \mathcal{A}[\![\alpha_1]\!]\sigma = \mathcal{A}[\![\alpha_2]\!]\sigma \\ 0 & \textit{otherwise} \end{cases} & \mathcal{B}[\![\alpha_1 \le \alpha_2]\!]\sigma &= \begin{cases} 1 & \textit{if } \mathcal{A}[\![\alpha_1]\!]\sigma \le \mathcal{A}[\![\alpha_2]\!]\sigma \\ 0 & \textit{otherwise} \end{cases} \\ \mathcal{B}[\![\neg b]\!]\sigma &= \begin{cases} 1 & \textit{if } \mathcal{B}[\![b]\!]\sigma = 0 \\ 0 & \textit{if } \mathcal{B}[\![b]\!]\sigma = 1 \end{cases} & \mathcal{B}[\![b_1 \land b_2]\!]\sigma &= \begin{cases} 1 & \textit{if } \mathcal{B}[\![b_1]\!]\sigma = \mathcal{B}[\![b_2]\!]\sigma = 1 \\ 0 & \textit{otherwise} \end{cases} \end{split}$$

$$cond(p, g_1, g_2)\sigma = \begin{cases} g_1\sigma & \text{if } p\sigma = 1\\ g_2\sigma & \text{if } p\sigma = 0 \end{cases}$$

Definition 3.4 The function $S_{ds}[\cdot]$: Com \to (State \to State), recursively defines the denotational semantics of commands, in the following way:

$$\begin{array}{rcl} \mathcal{S}_{ds} \llbracket \text{skip} \rrbracket &=& \text{id} \\ \mathcal{S}_{ds} \llbracket x := \alpha \rrbracket \sigma &=& \sigma [\mathcal{A} \llbracket \alpha \rrbracket \sigma / x] \\ \mathcal{S}_{ds} \llbracket c_1; c_2 \rrbracket &=& \mathcal{S}_{ds} \llbracket c_2 \rrbracket \circ \mathcal{S}_{ds} \llbracket c_1 \rrbracket \\ \mathcal{S}_{ds} \llbracket \text{if b then } c_1 \text{ else } c_2 \rrbracket &=& \text{cond} (\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{ds} \llbracket c_1 \rrbracket, \mathcal{S}_{ds} \llbracket c_2 \rrbracket) \\ \mathcal{S}_{ds} \llbracket \text{while b do c} \rrbracket &=& \text{FIX F} \\ && \textit{where } \texttt{F} \texttt{g} &=& \text{cond} (\mathcal{B} \llbracket b \rrbracket, \texttt{g} \circ \mathcal{S}_{ds} \llbracket c \rrbracket, \text{id}) \end{array}$$

In particular for sequences of commands we have:

$$\begin{split} \mathcal{S}_{ds} \llbracket c_1; c_2 \rrbracket \sigma &= & (\mathcal{S}_{ds} \llbracket c_2 \rrbracket \circ \mathcal{S}_{ds} \llbracket c_1 \rrbracket) \sigma \\ &= & \begin{cases} \sigma'' & \text{if } \exists \sigma'. \mathcal{S}_{ds} \llbracket c_1 \rrbracket \sigma = \sigma' \text{ and } \mathcal{S}_{ds} \llbracket c_2 \rrbracket \sigma' = \sigma'' \\ \text{not def} & \text{if } \mathcal{S}_{ds} \llbracket c_1 \rrbracket \sigma \text{ not def, or } \mathcal{S}_{ds} \llbracket c_1 \rrbracket \sigma = \sigma' \text{ but } \mathcal{S}_{ds} \llbracket c_2 \rrbracket \sigma' \text{ not def.} \end{cases}$$

And for conditionals we have:

$$\begin{split} \mathcal{S}_{ds} \llbracket \text{if b then } c_1 \text{ else } c_2 \rrbracket \sigma &= \text{ cond}(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{ds} \llbracket c_1 \rrbracket, \mathcal{S}_{ds} \llbracket c_2 \rrbracket) \sigma \\ &= \begin{cases} \sigma' & \text{if } \mathcal{B} \llbracket b \rrbracket \sigma = 1 \text{ and } \mathcal{S}_{ds} \llbracket c_1 \rrbracket \sigma = \sigma' \\ & \text{or } \mathcal{B} \llbracket b \rrbracket \sigma = 0 \text{ and } \mathcal{S}_{ds} \llbracket c_2 \rrbracket \sigma = \sigma' \\ & \text{not def otherwise.} \end{split}$$

Regarding a command of the form while b do c, its effect should be the same as the effect of the command if b then (c; while b do c) else skip:

However, this is not a compositional definition, which is what we expect of a denotational semantics definition. Nevertheless, the recursive definition of S_{ds} [while b do c], points to the definition above, as the fixed-point of the function F defined as:

$$F q = cond(\mathcal{B}[b], q \circ \mathcal{S}_{ds}[c], id)$$

For example consider the command:

while
$$\neg(x=0)$$
 do skip

with the corresponding function:

$$(F g)\sigma = \begin{cases} g\sigma & \text{if } \sigma(x) \neq 0\\ \sigma & \text{if } \sigma(x) = 0 \end{cases}$$

The following function g_1 : State \rightarrow State, is a fixed-point of F:

$$g_1 \sigma = \begin{cases} \text{not def} & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases}$$

Note that

$$(F g_1)\sigma = \begin{cases} g_1\sigma & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases}$$

$$= \begin{cases} \text{not def} & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases}$$

$$= g_1\sigma$$

The function g_2 : State \rightarrow State, defined as $g_2\sigma = \text{not def}$, $\forall \sigma \in \text{State}$, is not a fixed-point of F.

The issue here is that there are functions that have several fixed-points, whereas other do not have fixed point at all. For example

$$(F_1 g) = \begin{cases} g_1 & \text{if } g = g_2 \\ g_2 & \text{otherwise} \end{cases}.$$

Considering the different effects of executing a while b do c statement, the following conditions must hold for the fixed-point of the functional F. The fixed point of F, denoted by FIX F is a partial function g_0 : State \rightarrow State, such that:

- g_0 is a fixed-point of F, that is, F; $g_0 = g_0$ and,
- if g is another fixed-point of F (F; g = g), then

$$q_0 \sigma = \sigma' \Rightarrow q \sigma = \sigma', \forall \sigma, \sigma' \in State$$

If g_0 σ is not defined, then there are no restrictions for g σ .

Recall from the previous section that for continuous functions of CPOs, the least upper bound of the chain $\{F^n(\bot) \mid n \ge 0\}$ is the least fixed point of F, satisfying the conditions above. Therefore, the following results guarantee the completeness of the \mathcal{S}_{ds} function for commands.

Lemma 3.5 The pair (State \rightarrow State, \Box) is a CPO.

Lemma 3.6 Given $p: State \rightarrow T$ and $g_0: State \rightarrow State$, let

$$Fg = cond(p, q, q_0)$$

. Then F is a continuous function.

Lemma 3.7 Given g_0 : State \rightarrow State, let

$$F g = g \circ g_0$$

. Then F is a continuous function.

Proposition 3.8 The function $S_{ds}[]$: Com \rightarrow (State \rightarrow State) is a total function.

Proof: By induction on $c \in Com$.

- [skip]: The function id is a total function.
- [atrb]: The function $\lambda \sigma . \sigma [\mathcal{A} \llbracket a \rrbracket \sigma / x]$ is a total function. Note that $\mathcal{A} \llbracket a \rrbracket$ is a total function.
- [seqn]: Consider the command $c_1; c_2$. By induction hypothesis, both $S_{ds}[c_1]$ and $S_{ds}[c_2]$ are well-defined, therefore its composition $S_{ds}[c_2] \circ S_{ds}[c_1]$ is well-defined.

- [if]: Consider the command if b then c_1 else c_2 . By induction hypothesis, both $\mathcal{S}_{ds}[\![c_1]\!]$ and $\mathcal{S}_{ds}[\![c_2]\!]$ are well-defined, therefore $cond(\mathcal{B}[\![b]\!], \mathcal{S}_{ds}[\![c_1]\!], \mathcal{S}_{ds}[\![c_2]\!])$ is well-defined.
- [while]: Consider the command while b do c. By induction hypothesis $S_{ds}[\![c]\!]$ is well-defined. Let F_1, F_2 be defined as follows:

$$F_1 g = cond(\mathcal{B}[b], g, id)$$

 $F_2 g = g \circ \mathcal{S}_{ds}[c].$

 F_1 and F_2 are both continuous functions by the previous lemmas. Therefore F g = $F_1(F_2 \ g)$ is continuous. Therefore, FIX F is defined, which implies that $\mathcal{S}_{ds}[\![\text{while b do } c]\!]$ is well-defined.

Example 3.9 Consider the command y := 1; while $\neg(x = 1)$ do (y := y * x; x := x - 1).

$$\mathcal{S}_{ds}[\![y:=1;\texttt{while}\ \neg(x=1)\ \texttt{do}\ (y:=y*x;x:=x-1))]\!]\sigma_0=(\texttt{FIX}\ \texttt{F})\sigma_0[1/y]$$

with

$$F g \sigma = \begin{cases} g(\mathcal{S}_{ds} \llbracket y := y * x; x := x - 1 \rrbracket \sigma & \textit{if } \mathcal{B} \llbracket \neg (x = 1) \rrbracket) \sigma = 1 \\ \sigma & \textit{if } \mathcal{B} \llbracket \neg (x = 1) \rrbracket \sigma = 0 \end{cases}$$

that is:

$$F g \sigma = \begin{cases} g(\sigma[\sigma(y) * \sigma(x)/y][\sigma(x) - 1/x]) & \text{if } \sigma(x) \neq 1 \\ \sigma & \text{if } \sigma(x) = 1 \end{cases}.$$

 $(F^0 \perp) \sigma = not def$

We then have:

$$(F^1 \perp) \sigma = \begin{cases} not \ def & if \ \sigma(x) \neq 1 \\ \sigma & if \ \sigma(x) = 1 \end{cases}$$

$$(F^2 \perp) \ \sigma \ = \ \begin{cases} \text{not def} & \text{if } \sigma(x) \neq 1 \text{ and } \sigma(x) \neq 2 \\ \sigma[\sigma(y)*2/y][1/x] & \text{if } \sigma(x) = 2 \\ \sigma & \text{if } \sigma(x) = 1 \end{cases}$$

$$(F^{\mathfrak{n}} \perp) \ \sigma \ = \ \begin{cases} \text{not def} & \text{if } \sigma(x) > \mathfrak{n} \text{ or } \sigma(x) \geq 1 \\ \sigma[\sigma(y) * \mathfrak{j} * 2/y][1/x] & \text{if } \sigma(x) = 2 \\ \sigma & \text{if } \sigma(x) = 1 \end{cases}$$

Therefore

$$(\text{FIX F}) \; \sigma \;\; = \;\; \begin{cases} \textit{not def} & \textit{if } \sigma(x) < 1 \\ \sigma[\sigma(y) * n * \cdots * 2 * 1/y][1/x] & \textit{if } \sigma(x) = 2 \\ \sigma & \textit{if } \sigma(x) = 1 \end{cases}$$

3.1 Properties of the denotational semantics

 $\textbf{Definition 3.10} \ \ \textit{Two commands} \ c_1, \ c_2 \ \textit{are semantically equivalent if and only if} \ \mathcal{S}_{ds}[\![c_1]\!] = \mathcal{S}_{ds}[\![c_2]\!].$

Definition 3.11 Let $S_{st}[\![\cdot]\!]: Com \to (State \to State)$ be the partial function defined in the following way:

$$\mathcal{S}_{st} \llbracket c
rbracket \sigma = egin{cases} \sigma' & \textit{if } \langle c, \sigma
angle \Rightarrow^* \sigma' \ \textit{not def} & \textit{otherwise} \end{cases}$$

Theorem 3.12 For every $c \in Com$, $S_{st}[\![c]\!] = S_{ds}[\![c]\!]$.

Both functions $S_{st}[\![c]\!]$, $S_{ds}[\![c]\!]$, are functions in (State \to State, \sqsubseteq), which is a poset. To show that two elements d_1, d_2 from a poset are equal, we need to show that $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1$. Therefore, we need to prove that: $S_{st}[\![c]\!] \sqsubseteq S_{ds}[\![c]\!]$ and $S_{ds}[\![c]\!] \sqsubseteq S_{st}[\![c]\!]$.

 $\mathbf{Lemma~3.13~} \textit{Let}~c \in \texttt{Com, then}~ \mathcal{S}_{\texttt{st}}[\![c]\!] \sqsubseteq \mathcal{S}_{\texttt{ds}}[\![c]\!].$

Proof: We will show that for every states σ , σ' we have:

$$\langle \mathbf{c}, \mathbf{\sigma} \rangle \Rightarrow^* \mathbf{\sigma}' \Rightarrow \mathcal{S}_{ds} \llbracket \mathbf{c} \rrbracket \mathbf{\sigma} = \mathbf{\sigma}' \quad (1)$$

To that end we will establish the following:

$$\begin{array}{cccc} \langle c,\sigma\rangle \Rightarrow \sigma' & \Rightarrow & \mathcal{S}_{ds}\llbracket c\rrbracket \sigma = \sigma' \\ \langle c,\sigma\rangle \Rightarrow \langle c',\sigma'\rangle & \Rightarrow & \mathcal{S}_{ds}\llbracket c\rrbracket \sigma = \mathcal{S}_{ds}\llbracket c'\rrbracket \sigma' \end{array} \eqno(2)$$

Assuming that (2) holds, then (1) holds by induction on k, where k is the length of the sequence

$$\langle c, \sigma \rangle \Rightarrow^k \sigma'.$$

We show (2) by induction on the derivation tree of $\langle c, \sigma \rangle \Rightarrow \sigma'$ or $\langle c, \sigma \rangle \Rightarrow \langle c', \sigma' \rangle$.

- [skip]: We have $\langle \text{skip}, \sigma \rangle \Rightarrow \sigma$ and $S_{ds}[\text{skip}] \sigma = \text{id } \sigma = \sigma$.
- [assn]: We have $\langle x := \alpha, \sigma \rangle \Rightarrow \sigma[n/x]$ and $\mathcal{S}_{ds}[x := \alpha] \sigma = \sigma[\mathcal{A}[\alpha] \sigma/x]$. (By induction, we need to prove that $\langle \alpha, \sigma \rangle \to n$ if and only if $\mathcal{A}[\alpha] \sigma = n$). Therefore $\mathcal{S}_{ds}[x := \alpha] \sigma = \sigma[n/x]$.
- [seqn₁]: We have $\langle c_1; c_2, \sigma \rangle \Rightarrow \langle c'_1; c_2, \sigma' \rangle$, which follows from $\langle c_1, \sigma \rangle \Rightarrow \langle c'_1, \sigma' \rangle$. By induction hypothesis we have $\mathcal{S}_{ds}[c_1]\sigma = \mathcal{S}_{ds}[c'_1]\sigma'$. Therefore

$$\begin{array}{rcl} \mathcal{S}_{ds}\llbracket c_1;c_2\rrbracket\sigma &=& \mathcal{S}_{ds}\llbracket c_2\rrbracket(\mathcal{S}_{ds}\llbracket c_1\rrbracket\sigma)\\ &=& \mathcal{S}_{ds}\llbracket c_2\rrbracket(\mathcal{S}_{ds}\llbracket c_1'\rrbracket\sigma')\\ &=& \mathcal{S}_{ds}\llbracket c_1';c_2\rrbracket\sigma' \end{array}$$

• [seqn₂]: We have $\langle c_1; c_2, \sigma \rangle \Rightarrow \langle c_2, \sigma' \rangle$, which follows from $\langle c_1, \sigma \rangle \Rightarrow \sigma'$. By induction hypothesis we have $\mathcal{S}_{ds} \llbracket c_1 \rrbracket \sigma = \sigma'$. Therefore

$$\begin{array}{rcl} \mathcal{S}_{ds} \llbracket c_1; c_2 \rrbracket \sigma & = & \mathcal{S}_{ds} \llbracket c_2 \rrbracket (\mathcal{S}_{ds} \llbracket c_1 \rrbracket \sigma) \\ & = & \mathcal{S}_{ds} \llbracket c_2 \rrbracket \sigma' \end{array}$$

• [if₁]: We have if b then c_1 else $c_2\sigma \Rightarrow \langle c_1,\sigma\rangle$, which follows from $\langle b,\sigma\rangle \to 1$. (By induction, we need to prove that $\langle b,\sigma\rangle \to t$ if and only if $\mathcal{B}[\![b]\!]\sigma=t$). Therefore

$$\mathcal{S}_{ds} \llbracket \text{if b then } c_1 \text{ else } c_2 \rrbracket \sigma = \text{cond}(\mathcal{B}\llbracket b \rrbracket, \mathcal{S}_{ds} \llbracket c_1 \rrbracket, \mathcal{S}_{ds} \llbracket c_2 \rrbracket) \sigma \\ = \text{cond}(1, \mathcal{S}_{ds} \llbracket c_1 \rrbracket, \mathcal{S}_{ds} \llbracket c_2 \rrbracket) \sigma \\ = \mathcal{S}_{ds} \llbracket c_1 \rrbracket \sigma$$

- [if₀]: Analogous to the previous case.
- [while]: We have $S_{ds}[\![while\ b\ do\ c]\!]\sigma \to S_{ds}[\![if\ b\ then\ c;while\ b\ do\ c\ else\ skip]\!]\sigma$. By the definition of $S_{ds}[\![]\!]$, we have $S_{ds}[\![while\ b\ do\ c]\!] = FIX\ F$, where $F\ g = cond(\mathcal{B}[\![b]\!], g \circ S_{ds}[\![c]\!], id)$, therefore:

```
 \begin{split} \mathcal{S}_{ds} \llbracket \text{while b do c} \rrbracket &= & \text{FIX F} \\ &= & \text{F(FIX F)} \\ &= & \text{cond}(\mathcal{B} \llbracket \textbf{b} \rrbracket, (\text{FIX F}) \circ \mathcal{S}_{ds} \llbracket \textbf{c} \rrbracket, \text{id}) \\ &= & \text{cond}(\mathcal{B} \llbracket \textbf{b} \rrbracket, \mathcal{S}_{ds} \llbracket \text{while b do c} \rrbracket \circ \mathcal{S}_{ds} \llbracket \textbf{c} \rrbracket, \text{id}) \\ &= & \text{cond}(\mathcal{B} \llbracket \textbf{b} \rrbracket, \mathcal{S}_{ds} \llbracket \textbf{c}; \text{while b do c} \rrbracket, \mathcal{S}_{ds} \llbracket \textbf{skip} \rrbracket) \\ &= & \mathcal{S}_{ds} \llbracket \text{if b then c; while b do c else skip} \rrbracket     \end{split}
```

Lemma 3.14 Let $c \in Com$, then $S_{ds}[\![c]\!] \sqsubseteq S_{st}[\![c]\!]$.

Proof: By induction on c.

- [skip]: S_{ds} [skip] $\sigma = \sigma = S_{st}$ [skip] σ .
- [assn]: We have $S_{st}[x := a]\sigma = \sigma[n/x]$ (with $A[a]\sigma = n$). From $A[a]\sigma = n$ it follows that $\langle a, \sigma \rangle \to n$, therefore $\langle x := a, \sigma \rangle \to \sigma[n/x]$, which implies $S_{st}[skip]\sigma = \sigma[n/x]$.
- [seqn]: By induction hypothesis we have $S_{ds}[c_1] \sqsubseteq S_{st}[c_1]$ and $S_{ds}[c_2] \sqsubseteq S_{st}[c_2]$, therefore:

$$\begin{array}{lcl} \mathcal{S}_{ds}\llbracket c_1;c_2\rrbracket & = & \mathcal{S}_{ds}\llbracket c_2\rrbracket \circ \mathcal{S}_{ds}\llbracket c_1\rrbracket \\ & \sqsubseteq & \mathcal{S}_{st}\llbracket c_2\rrbracket \circ \mathcal{S}_{st}\llbracket c_1\rrbracket \end{array}$$

Recall that, if $\langle c_1, \sigma \rangle \Rightarrow^* \sigma'$, then $\langle c_1; c_2, \sigma \rangle \Rightarrow^* \langle c_2, \sigma' \rangle$. Therefore

$$S_{st} \llbracket c_2 \rrbracket \circ S_{st} \llbracket c_1 \rrbracket \sqsubseteq S_{st} \llbracket c_1; c_2 \rrbracket$$

• [if]: By induction hypothesis we have $S_{ds}[c_1] \subseteq S_{st}[c_1]$ and $S_{ds}[c_2] \subseteq S_{st}[c_2]$, therefore:

$$\mathcal{S}_{ds} \llbracket \text{if b then } c_1 \text{ else } c_2 \rrbracket = \text{cond}(\mathcal{B}\llbracket b \rrbracket, \mathcal{S}_{ds} \llbracket c_1 \rrbracket, \mathcal{S}_{ds} \llbracket c_2 \rrbracket) \\ \sqsubseteq \text{cond}(\mathcal{B}\llbracket b \rrbracket, \mathcal{S}_{st} \llbracket c_1 \rrbracket, \mathcal{S}_{st} \llbracket c_2 \rrbracket)$$

Note that

$$\mathcal{S}_{\mathtt{st}} \llbracket \mathtt{if} \ b \ \mathtt{then} \ c_1 \ \mathtt{else} \ c_2 \rrbracket \sigma = \begin{cases} \mathcal{S}_{\mathtt{st}} \llbracket c_1 \rrbracket \sigma & \mathrm{if} \ \langle b, \sigma \rangle \to 1 \\ \mathcal{S}_{\mathtt{st}} \llbracket c_2 \rrbracket \sigma & \mathrm{if} \ \langle b, \sigma \rangle \to 0 \end{cases}$$

Note that $\langle b, \sigma \rangle \to t$ iff $\mathcal{B}[\![b]\!]\sigma = t$, therefore:

$$\operatorname{cond}(\mathcal{B}[\![b]\!],\mathcal{S}_{ds}[\![c_1]\!],\mathcal{S}_{ds}[\![c_2]\!])=\mathcal{S}_{st}[\![\![if\ b\ then\ c_1\ else\ c_2]\!].$$

• [while]: By induction hypothesis we have $S_{ds}[\![c]\!] \subseteq S_{st}[\![c]\!]$, and $S_{ds}[\![while\ b\ do\ c]\!] = FIX F, where <math>F g = cond(\mathcal{B}[\![b]\!], g \circ S_{ds}[\![c]\!], id)$. F is continuous, therefore:

$$\begin{array}{lll} \texttt{F}(\mathcal{S}_{st}[\![\texttt{while b do c}]\!]) &=& \texttt{cond}(\mathcal{B}[\![\texttt{b}]\!], \mathcal{S}_{st}[\![\texttt{while b do c}]\!] \circ \mathcal{S}_{ds}[\![\texttt{c}]\!], \texttt{id}) \\ & \sqsubseteq & \texttt{cond}(\mathcal{B}[\![\texttt{b}]\!], \mathcal{S}_{st}[\![\texttt{while b do c}]\!] \circ \mathcal{S}_{st}[\![\texttt{c}]\!], \texttt{id}) \\ & \sqsubseteq & \texttt{cond}(\mathcal{B}[\![\texttt{b}]\!], \mathcal{S}_{st}[\![\texttt{c};\texttt{while b do c}]\!], \texttt{id}) \\ & = & \mathcal{S}_{st}[\![\texttt{while b do c}]\!] \end{array}$$

Note that, if $f \in d$, then FIX $f \subseteq d$, therefore FIX $F \subseteq S_{st}$ while $b \in d$.

Exercises

- 1 Given two posets(A, \sqsubseteq_A) and (B, \sqsubseteq_B):
 - (a) Show that $(A \times B, \sqsubseteq)$ is also a poset, considering:

$$(a,b) \sqsubseteq (a',b')$$
 iff $a \sqsubseteq_A a' \land b \sqsubseteq_B b'$

- (b) Show that, if s is the least upper bound of the chain $\langle a_i \rangle$ and if s' is the least upper bound of the chain $\langle b_i \rangle$ then (s,s') is the leas upper bound of the chain $\langle (a_i,b_i) \rangle$ in $(A \times B,\sqsubseteq)$. As a consequence, if (A,\sqsubseteq_A) and (B,\sqsubseteq_B) are CPOs then $(A \times B,\sqsubseteq)$ is also a CPO.
- 2 Draw the Hasse diagram for the following partial orders:
 - (a) $(2^A, \subseteq)$, where $A = \{1, 2, 3\}$.
 - (b) $(\{\text{true}, \text{false}\}_{\perp} \times A_{\perp}, \sqsubseteq)$ where $A = \{x, y, z\}$.
 - (c) $\{\{\text{true}, \text{false}\}_{\perp} \times A_{\perp}, \sqsubseteq\}$
- 3 Considering the denotational semantics for IMP, determine:
 - (a) S_{ds} while 1 do skip
 - (b) S_{ds} while 1 do x := x + 1
 - (c) S_{ds} while x = 3 do skip
 - (d) $S_{ds}[x := 3; while 1 \le x \text{ do } x := x 1]$
 - (e) $S_{ds}[y := 0; while 1 \le x do (y := x + y; x := x 1]]$
- 4 Following the denotational semantics given in the course determine the functional F associated to the command

while
$$\neg(x=0)$$
 do $x:=x-1$

Determine which of the following partial functions on State → State, are fixed points of F:

$$\begin{array}{llll} g_1 \; \sigma & = & \text{not def, for all } \sigma & & & g_2 \; \sigma & = & \begin{cases} \sigma[0/x] & \text{if } \sigma(x) \geq 0 \\ \text{not def } & \text{if } \sigma(x) < 0 \end{cases} \\ g_3 \; \sigma & = & \begin{cases} \sigma[0/x] & \text{if } \sigma(x) \geq 0 \\ \sigma & \text{if } \sigma(x) < 0 \end{cases} & g_4 \; \sigma & = & \sigma[0/x], \; \text{for all } \sigma \end{cases}$$

- 5 Considering the operational and denotational semantics for IMP, prove that:
 - (a) For all arithmetic expressions $a \in AExp$ and states $\sigma \in State$, $\langle a, \sigma \rangle \to n$ if and only if $A[a]\sigma = n$.
 - (b) For all boolean expressions $b \in BExp$ and states $\sigma \in State \langle b, \sigma \rangle \to t$ if and only if $\mathcal{B}[\![b]\!]\sigma = t$.
- 6 Consider the denotational semantics of IMP. Show the equivalence between the following commands:
 - (a) skip; c and c;
 - (b) $c_1; (c_2; c_3)$ and $(c_1; c_2); c_3;$
 - (c) if b then $(c_1; c \text{ else } (c_2; c) \text{ and } (\text{if b then } c_1 \text{ else } c_2); c;$
 - (d) while b do c_1 ; if b then c_1 else c_2 and while b do c_1 ; c_2 .

- $\textbf{7} \ \ \text{Consider the function} \ f: \mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \ \ \text{defined as} \ f(3) = 1 \ \text{and} \ f(x) = f(x+2) + 5, \ \text{for} \ \ x \neq 3.$
 - (a) Determine $F:[N_\perp\to\mathbb{N}_\perp]\to[\mathbb{N}_\perp\to\mathbb{N}_\perp]$ such that FIX F=f
 - (b) Show that F is continuous.
 - (c) Calculate FIX F.
- 8 Let f be a continuous function. Show that, if f $d\sqsubseteq d,$ then FIX f $\sqsubseteq d.$

References

[Nielson and Nielson, 1992] Nielson, H. R. and Nielson, F. (1992). Semantics with Applications: A Formal Introduction. John Wiley & Sons, Inc., New York, NY, USA.

[Winskel, 1993] Winskel, G. (1993). The Formal Semantics of Programming Languages: An Introduction. MIT Press, Cambridge, MA, USA.