NCOM

Manual de Usuario

Materia: Matemática Superior

Grupo: Grupo Mixto_3

Año: 2019

Nombre y Apellido	Legajo	Curso
Bevilacqua, Diego	159.351-1	K3011
Salmerón, Lucila	159.488-6	K3011
Cirillo, Franco	163.618-2	K3011
Paz, Maximiliano	159.150-2	K3051
Rodríguez, Melisa	160.184-2	K3051

Índice

Manual de Usuario

Framework y lenguaje de programación

Desarrollo de las estructuras de datos y transformaciones

Menú inicial

Operaciones Básicas

<u>Formato</u>

Manual de Usuario

Framework y lenguaje de programación

El framework elegido para el desarrollo de la aplicación es .NET y el lenguaje de programación es C#.

Desarrollo de las estructuras de datos y transformaciones

Durante la primera etapa del trabajo práctico **NCOM** se modeló una estructura de datos que permite representar a números complejos en forma binómica y polar, y trabajar con operaciones entre ellos.

A grandes rasgos, los avances del trabajo práctico fueron los siguientes:

• Están desarrolladas las clases ComplejoBinomica y ComplejoPolar para poder modelar un número complejo en forma binómica y polar:

```
class ComplejoBinomica
{
    private double ParteReal { get; set; }
    private double ParteImaginaria { get; set; }
    private double Argumento { get; set; }
```

- Existen métodos que nos permiten hacer transformaciones del complejo de forma binómica a polar y viceversa:
 - ComplejoBinomico::modulo() → Calcula la raíz cuadrada de la suma entre los cuadrados de su parte real y su parte imaginaria (variables de la clase), por lo que siempre da positivo.
 - o ComplejoPolar::modulo() → Obtiene el valor de su variable de clase 'módulo'.
 - ComplejoBinomico::argumento() → Calcula el arcotangente del cociente entre su parte imaginaria y su parte real. Luego, con la función auxiliar Cuadrante() corrige los giros.
 - ComplejoPolar::argumento() → Obtiene el valor de su variable de clase 'argunento'.
 - ComplejoBinomico::pasarAPolar() → Devuelve una nueva instancia de número complejoPolar calculando sus variables con las funciones 'módulo()' y 'argumento()'.
 - ComplejoPolar::pasarABinomica() → Calcula primero la parte real y la imaginaria con funciones auxiliares en las que aplica la fórmula trigonométrica del módulo por el seno o coseno del argumento (dependiendo de qué parte estamos obteniendo) y luego devuelve una nueva instancia de complejoBinómico pasándole por parámetros al constructor los datos obtenidos.

Menú inicial

En el menú inicial se podrá cliquear en el botón deseado para la operación que se quiera realizar. Por el momento, sólo el de Operaciones Básicas está habilitado.

Operaciones Básicas

En dos campos debajo de "Número complejo" se deben introducir los operandos; uno en cada campo. Se pueden introducir en <u>cualquiera de sus formas</u>, como se ve en la imagen.

La operación se elige desde el dropdown "Operación", y puede ser **Suma, Resta, Multiplicación y División**.

Para obtener el resultado de la operación, se debe cliquear "Calcular".

El resultado aparece tanto en la forma binómica como en la forma polar. Para cada número aparecen los primeros 3 dígitos luego de la coma.

Se pueden modificar los operandos y la operación y volver a calcular.

Se puede volver al menú inicial en cualquier momento seleccionando "Atrás".

Formato

El formato de introducción y muestra de resultados de números complejos es el siguiente:

En forma binómica: (a,b), siendo a la parte real y b la parte imaginaria.

En forma polar: [a;b], siendo a el módulo y b el argumento.

El sistema permite la introducción de cualquier número Real, ya sea positivo, negativo o con decimales.

En el caso de que se introduzca con otro formato, aparece el siguiente mensaje de error y se debe corregir los números introducidos.

