STAT 200B 2019 Weeko3

Soyeon Ahn

1 The Bootstrap

The bootstrap is a computer-intensive method for estimating measures of uncertainty in problems for which no analytical solution is available.

There are technically two classes of bootstrap methods: parametric and nonparametric.

The nonparametric bootstrap uses two main ideas:

- The empirical CDF
- Monte Carlo integration

Monte Carlo integration is based on the following approximation:

$$E[h(Y)] = \int h(y)dF_Y(y)$$

$$\approx \frac{1}{B} \sum_{i=1}^{B} h(Y_i)$$

where $Y_1, \dots, Y_B \overset{iid}{\sim} F_Y$. Note that if $E[|h(Y)|] < \infty$,

$$\frac{1}{B} \sum_{j=1}^{B} h(Y_j) \stackrel{as}{\to} E[h(Y)]$$

as $B \to \infty$. Typically we have control over B, so we can make the approximation arbitrarily good.

A simple example: Use Monte Carlo integration to approximate

$$\int_{-\infty}^{\infty} \sin^2(x) e^{-x^2} dx$$

Solution: We can write this as $\sqrt{2\pi} \int_{-\infty}^{\infty} \sin^2(x) f(x) dx$, where f(x) is the PDF of a N(0,1) r.v. Therefore, we can

- 1. Draw $Y_1, \ldots, Y_B \stackrel{iid}{\sim} N(0, 1)$.
 - > B <- 10000; y <- rnorm(B)
- 2. Approximate $\sqrt{2\pi} \int_{-\infty}^{\infty} \sin^2(x) f(x) dx \approx \frac{\sqrt{2\pi}}{B} \sum_{j=1}^{B} \sin^2(Y_j)$.

A more complicated example: Use Monte Carlo integration to approximate $V_{\lambda}[median(X_1,\ldots,X_n)]$ when $X_1,\ldots,X_n \overset{iid}{\sim} Exp(\lambda)$.

This is more complicated in two ways:

- 1. Unlike an analytical calculation, on the computer we need particular values of n and λ . To see how $V_{\lambda}[median(X_1,\ldots,X_n)]$ changes with n and λ , we need to use Monte Carlo integration many times for different combinations.
- 2. For each combination, we need to sample B times from the sampling distribution of $median(X_1,\ldots,X_n)$. That is, for each $j=1,\ldots,B$, we need to sample $X_1,\ldots,X_n \overset{iid}{\sim} Exp(\lambda)$ and calculate the median. Don't confuse n and B: n is the sample size, while B is the number of MC samples.

One combination: Let n=10 and $\lambda=5$. Then

• Draw $Y_1, \ldots, Y_B \stackrel{iid}{\sim} F_Y$, where F_Y is the CDF of $median(X_1, \ldots, X_n)$.

• Approximate $V_{\lambda}[median(X_1,\ldots,X_n)] pprox rac{1}{B}\sum_{j=1}^B (Y_j-ar{Y})^2$.

Back to the bootstrap...

Suppose we have data X_1, \ldots, X_n and we compute statistic $T_n = g(X_1, \ldots, X_n)$. It's not always possible to calculate $V_F[T_n]$ analytically, which is where the bootstrap comes in.

If we knew F, we could use MC integration to approximate $V_F[T_n]$. However, we don't in practice, so we make an initial approximation of F with the empirical CDF \hat{F}_n .

ECDF; MC integration; depends on
$$n$$
 depends on B
$$V_F[T_n] \approx V_{\hat{F}_n}(T_n) \approx \hat{V}_{\hat{F}_n}(T_n)$$

Sampling from \hat{F}_n is easy: just draw one observation at random from X_1, \ldots, X_n . Repeated sampling is "with replacement."

The algorithm:

- 1. Repeat the following B times to obtain $T_{n,1}^*, \ldots, T_{n,B}^*$, an iid sample from the sampling distribution for T_n implied by \hat{F}_n .
 - (a) Draw $X_1^*, ..., X_n^* \sim \hat{F}_n$.
 - (b) Compute $T_n^* = g(X_1^*, \dots, X_n^*)$.
- 2. Use this sample to approximate $V_{\hat{F}_n}(T_n)$ by MC integration. That is, let

$$v_{boot} = \widehat{V}_{\hat{F}_n}(T_n) = \frac{1}{B} \sum_{j=1}^{B} \left(T_{n,j}^* - \frac{1}{B} \sum_{k=1}^{B} T_{n,k}^* \right)^2$$

Confidence intervals can also be constructed from the bootstrap samples. Method 1: Normal-based interval

$$C_n = T_n \pm z_{\alpha/2} \hat{se}_{boot}$$

where $\widehat{se}_{boot} = \sqrt{v_{boot}}$; this only works well if the distribution of T_n is close to Normal. Note that asymptotic normality of T_n is a property involving n, not B.

Method 2: Quantile intervals

$$C_n = \left(T_{\alpha/2}^*, T_{1-\alpha/2}^*\right)$$

where T_{β}^* is the β quantile of the bootstrap sample $T_{n,1}^*, \dots, T_{n,B}^*$.

Method 3: Pivotal intervals

In parametric statistics, a pivot is a function $R(X_1, \ldots, X_n, \theta)$ whose distribution doesn't depend on θ . This is useful because we can construct a confidence interval for $R_n = R(X_1, \ldots, X_n, \theta)$ without knowing θ and then manipulate it to construct a confidence interval for θ .

In nonparametric statistics, we typically can't find a quantity that is exactly pivotal, i.e., whose distribution doesn't depend on the unknown F.

If $\theta = T(F)$ is a location parameter, then $R_n = \hat{\theta}_n - \theta$ is approximately pivotal. If we knew the CDF H of R_n , we could construct an exact $1 - \alpha$ confidence interval for θ of (a, b), where

$$a = \hat{\theta}_n - H^{-1} (1 - \alpha/2)$$

 $b = \hat{\theta}_n - H^{-1} (\alpha/2)$

Since we don't know H, we estimate it using the bootstrap samples.

$$\hat{H}(r) = \frac{1}{B} \sum_{j=1}^{B} I(R_{n,j}^* \le r)$$

where $R_{n,j}^* = \hat{\theta}_{n,j}^* - \hat{\theta}_n$. In other words, we form the empirical CDF of H using the bootstrap samples of the pivot. Therefore, the plug-in estimates of $H^{-1}(1-\alpha/2)$ and $H^{-1}(\alpha/2)$ are just the $1-\alpha/2$ and $\alpha/2$ sample quantiles of these samples.

This gives a $1 - \alpha$ bootstrap pivotal interval of

$$C_n = \left(2\hat{\theta}_n - \hat{\theta}_{1-\alpha/2}^*, 2\hat{\theta}_n - \hat{\theta}_{\alpha/2}^*\right)$$

2 Parametric Inference

A parametric model has the form

$$\mathcal{F} = \{ F(x; \theta) : \theta \in \Theta \}$$

where $\Theta \subseteq \mathbb{R}^k$ is the parameter space.

We typically choose a class \mathcal{F} based on knowledge about the particular problem. We might say we're making certain assumptions about the data generating mechanism. It's good practice when using a parametric model to look for violations of these assumptions.

We'll begin with two methods for constructing estimators of θ : the method of moments and the maximum likelihood estimation.

2.1 The method of moments

Suppose $\theta = (\theta_1, \dots, \theta_k)$. For $j = 1, \dots, k$, define the j^{th} moment

$$\alpha_j \equiv \alpha_j(\theta) = E_{\theta}[X^j] = \int x^j dF_{\theta}(x)$$

and the j^{th} sample moment

$$\hat{\alpha}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$$

The **method of moments estimator** $\hat{\theta}_n = (\hat{\theta}_1, \dots, \hat{\theta}_k)$ is defined to be the value of θ s.t.

$$\alpha_1(\hat{\theta}_n) = \hat{\alpha}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$

$$\alpha_2(\hat{\theta}_n) = \hat{\alpha}_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$\vdots \quad \vdots \quad \vdots$$

$$\alpha_k(\hat{\theta}_n) = \hat{\alpha}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

2.2 The maximum likelihood estimation

Let $X^n = (X_1, \dots, X_n)$ be iid with pdf $f(x; \theta)$, where $\theta \in \Theta$.

The likelihood function is

$$\mathcal{L}_n(\theta) = \mathcal{L}(\theta; x^n)$$

$$= f(X_1, \dots, X_n; \theta) \text{ the joint pdf}$$

$$= \prod_{i=1}^n f(X_i = x_i; \theta) \text{ if the data are independent}$$

That is, the likelihood is just the joint density of the data, but viewed as a function of θ .

The log-likelihood function is defined by

$$\ell_n(\theta) = \log \mathcal{L}_n(\theta) = \sum_{i=1}^n \log f(X_i = x_i; \theta).$$

The likelihood function is analytically the same as the joint density (probability distribution) of the data, it is a function of the parameter θ for a given set of data points. Thus, it is not a probability density function. The likelihood function can evaluate the plausibility of parameter values.

The **maximum likelihood estimator** (MLE) θ_n is obtained by maximizing the likelihood function Since the maximum of $\ell_n(\theta)$ occurs at the same place as the maximum of $\mathcal{L}_n(\theta)$, since log is a strictly increasing function.

It's often easier to work with the log-likelihood function. If the log-likelihood is differentiable with respect to θ , possible candidates for the MLE are those in the interior of Θ that solve

$$\frac{\partial}{\partial \theta_i} \ell_n(\theta) = 0, \quad j = 1, \dots, k$$

We still need to check that we've found the global maximum. Also note that if the maximum occurs on the boundary of Θ , the first derivative may not be zero.

It's not always possible to maximize the likelihood analytically, and in these cases we turn to numerical maximization methods.

Example Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Bernoulli}(p)$. The probability function is $f(x;p) = p^x (1-p)^{1-x}$.

$$\mathcal{L}_n(p) = \prod_{i=1}^n f(x_i; p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_i x_i} (1-p)^{n-\sum_i x_i}$$

Therefore,

$$\ell_n(p) = n\bar{x}\log(p) + n(1-\bar{x})\log(1-p)$$

Take the derivative of $\ell_n(p)$ set it equal to 0 to find that the MLE is

$$\hat{p}_n = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

The total number of successes observed in the n trials over the total number of trials, i.e., the relative frequency of the observation 'success', is our estimator.

global maximum Note that the log likelihood function is strictly concave (i.e. $\ell_n(\theta)'' < 0$), \hat{p} is a global maximum. In general, we take the second derivatives of $\ell_n(\theta)$ with respect to the (vector-valued) parameter. The matrix is called the Hessian. If the Hessian of the log likelihood at $\hat{\theta}$ is negative semi-definite, then $\ell_n(\theta)$ is concave, and it will be a global maximum.

In the above example with n Bernoulli samples,

$$\ell_n(p)' = \frac{n\bar{x}}{p} - \frac{n(1-\bar{x})}{(1-p)}$$

$$\ell_n(p)'' = -\frac{n\bar{x}}{p^2} - \frac{n(1-\bar{x})}{(1-p)^2}$$

with $p \in (0, 1)$, the second derivative is always < 0.

Example Let Y follow Binomial(n,p), where n is known and p is the parameter, to be estimated. The likelihood function is

$$\mathcal{L}(p) = \frac{n!}{y!(n-y)!} \cdot p^y (1-p)^{n-y}$$

(I don't use the notation n since there is only single binomial observation.) Note that $p^y(1-p)^{n-y}$ is identical to the above n Bernoulli trials. Since the MLE is a function of the parameter p,

$$\hat{p}_n = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

, the sample proportion of successes

We can represent $Y=\sum X_i$, where $X_i\overset{iid}{\sim}$ Bernoulli(p). The MLE based on n independent Bernoulli random variables and the MLE based on a single binomial random variable is the same.

In general, whenever we have repeated, independent Bernoulli trials with the same probability of success p for each trial, the MLE will always be the sample proportion of successes.

sufficient statistic The sample proportion of successes (a statistic $T(X_1, \ldots, X_n)$) contains all information about θ (the parameter).

Example Let $X_1,\ldots,X_n\stackrel{iid}{\sim}N(\mu,1).$ Find the MLE for $\theta=\mu.$

$$\mathcal{L}_n(\mu, 1) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - \mu)^2}{2}\right)$$
$$= \frac{1}{(\sqrt{2\pi})^n} \exp\left(-\frac{\sum_i^n (x_i - \mu)^2}{2}\right)$$

$$\log \mathcal{L}_n(\mu, 1) = -\frac{n}{2} \log(2\pi) - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$$

$$\frac{\partial}{\partial \mu} \log \mathcal{L}_n(\mu, 1) = \sum_{i=1}^{n} (x_i - \mu) = n(\bar{x} - \mu)$$
$$\hat{\mu} = \bar{x}$$

Example What if $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$? $\theta = (\mu, \sigma^2)$ is a vector valued parameter.

$$\log \mathcal{L}_n(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}$$

$$\frac{\partial}{\partial \mu} \log \mathcal{L}_n(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = \frac{1}{\sigma^2} n(\bar{x} - \mu)$$

$$\frac{\partial}{\partial \sigma^2} \log \mathcal{L}_n(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i}^{n} (x_i - \mu)^2$$
$$= \frac{n}{2(\sigma^2)^2} \left(\sigma^2 - \frac{1}{n} \sum_{i}^{n} (x_i - \mu)^2\right)$$

Hence,

$$\hat{\mu} = \bar{x}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i}^{n} (x_i - \hat{\mu})^2 = \frac{1}{n} \sum_{i}^{n} (x_i - \bar{x})^2$$

Note that we differentiate with respect to σ .

$$\frac{\partial}{\partial \sigma} \log \mathcal{L}_n(\mu, \sigma^2) = -\frac{n}{\sigma} + \frac{1}{(\sigma^3)} \sum_{i=1}^{n} (x_i - \mu)^2$$

Note that the MLE for σ^2 is a biased estimator.

Example In a simple linear regression,

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

, where the ϵ_i are independent $N(0, \sigma^2)$. The outcome variables are continuous and the mean vector can be specified by a given predictor x_i .

In a simple linear regression, it is sufficient to specify that y_i is $N(\mu_i, \sigma^2)$ and $\mu_i = \beta_0 + \beta_1 x_i$

Traditionally the model is written in matrix form as

$$y = X\beta + \epsilon$$

, where X is an $n \times$ (number of coefficients) design matrix.

In Week 04

- 1. Equivariance: If $\hat{\theta}_n$ is the MLE of θ , then $g(\hat{\theta}_n)$ is the MLE of $g(\theta)$.
- 2. Consistency: $\hat{\theta}_n \stackrel{P}{\to} \theta_*$, where θ_* is the true value of the parameter.
- 3. Asymptotic normality: $(\hat{\theta}_n \theta_*)/se(\hat{\theta}_n) \stackrel{D}{\to} N(0,1)$.
- 4. Asymptotic efficiency: The MLE has the smallest asymptotic variance among asymptotically normal estimators.

2.3 Bayesian inference

Thomas Bayes (1701 - 1761) an English minister and mathematician. None of his work was published during his lifetime.

The conditional probability of an event is a probability obtained with the additional information that some other event has already occurred. The conditional probability of event B occurring, given that event A has already occurred.

If A is a binary event,

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

Frequentist statistics

- Interprets probability in terms of long-run frequencies of events.
- Treats parameters as unknown, fixed constants.
- Focuses on point estimation, confidence intervals, and hypothesis tests.

Bayesian statistics

- Interprets probability as representing degree of belief.
- Makes probability statements about parameters, reflecting beliefs.
- Bases all inference on the posterior distribution, which we can summarize in various ways.

The conditional density of $p(\theta|y)$ is

$$p(\theta|y) = \frac{p(\theta,y)}{p(y)} = \frac{p(\theta)p(y|\theta)}{p(y)}$$

Note that the denominator, p(y) is a function of the data.

$$p(\theta|y) \propto p(\theta)p(y|\theta)$$

, where $p(\theta)$ is the prior density of θ , and $p(y|\theta)$ is the likelihood, and $p(\theta|y)$ is the posterior density of θ . The posterior is proportional to the prior times the likelihood.

BAYES	<u>FISHER</u>		FREQUENTIST
Individual (personal decisions)		***	Universal (world of science)
2. Coherent (correct)	*****		Optimal (accurate)
3. Synthetic (combination)	****		Analytic (separation)
4. Optimistic (aggressive)	****		Pessimistic (defensive)

