Mathematical Induction

Use induction to prove that $3^n > n$ for all positive integers n.

Let P(n) denote the proposition that $3^n > n$, where n is a positive integer.

BASIS STEP: P(1) is true since 3 > 1.

INDUCTIVE STEP: Let us assume P(n) is true, that is $3^n > n$ is true for an arbitrary positive integer n. This is our inductive hypothesis.

We have to show that P(n + 1), $3^{n+1} > n + 1$ is also true assuming the inductive hypothesis P(n).

Proof:

 $3^{n+1} = 3 \cdot 3^n > 3 \cdot n$ using the inductive hypothesis.

$$3 \cdot n = n + 2n \ge n + 1$$
, when $n \ge 1$.

By the **Principle of Mathematical Induction** (Basis Step and Inductive Step together) $3^n > n$ for all positive integers n.