A step towards a general density Corrádi–Hajnal Theorem

Heng Li

(Joint with Jianfeng Hou, Xizhi Liu, Long-Tu Yuan, and Yixiao Zhang)

2023.03.30

Hypergraph

r-graph: A collection of r-subsets of some finite set V.

We identify an r-graph \mathcal{H} with its **edge set** and use $V(\mathcal{H})$ to denote its **vertex set**. The **size** of $V(\mathcal{H})$ is denoted by $v(\mathcal{H})$.

Given two *r*-graphs F and \mathcal{H} we use $v(F,\mathcal{H})$ to denote the maximum of $k \in \mathbb{N}$ such that there exist k vertex-disjoint copies of F in \mathcal{H} . We call $v(F,\mathcal{H})$ the F-matching number of \mathcal{H} .

Turán problem

Fix an r-graph F, we say another r-graph \mathcal{H} is F-free if $v(F,\mathcal{H}) = 0$.

- Turán number ex(n,F): the maximum number of edges in an F-free r-graph on n vertices
- EX(n,F): the collection of all *n*-vertex *F*-free *r*-graphs with exactly ex(n,F) edges
- Turán density $\pi(F)$:

$$\pi(F) := \lim_{n \to \infty} \frac{\operatorname{ex}(n, F)}{\binom{n}{r}}$$

An *r*-graph *F* is called **nondegenerate** if $\pi(F) > 0$.

Problem 1

Given an *r*-graph *F* and integers $n, t \in \mathbb{N}$:

What kinds of constraints on an n-vertex r-graph \mathcal{H} force it to satisfy $v(F,\mathcal{H}) \ge t+1$?

Theorem 2 (Erdős–Gallai Theorem, 1959)

For all integers $n, \ell \in \mathbb{N}$ with $t+1 \le n/2$ and for every n-vertex graph G,

$$|G| > \max\left\{ \binom{2t+1}{2}, \binom{n}{2} - \binom{n-t}{2} \right\} \quad \Rightarrow \quad \nu(G) \ge t+1.$$

Conjecture 3 (Erdős, 1965)

Suppose that $n, t, r \in \mathbb{N}$ satisfy $r \geq 3$ and $t + 1 \leq n/r$. Then for every n-vertex r-graph \mathcal{H} ,

$$|\mathcal{H}| > \max\left\{ \binom{r(t+1)-1}{r}, \binom{n}{r} - \binom{n-t}{r} \right\} \quad \Rightarrow \quad \nu(\mathcal{H}) \ge t+1.$$

Theorem 4 (Corrádi–Hajnal 1963)

Suppose that $n, t \in \mathbb{N}$ are integers with $t \leq n/3$. Then for every n-vertex graph G,

$$\delta(G) \ge t + \left\lfloor \frac{n-t}{2} \right\rfloor \quad \Rightarrow \quad \nu(K_3, G) \ge t.$$

In particular, if $3 \mid n$, then every n-vertex graph G with $\delta(G) \ge 2n/3$ contains a K_3 -factor.

Theorem 5 (Hajnal-Szemerédi Theorem, 1970)

For all integers $n \ge \ell \ge 2$, $t \le \lfloor n/(\ell+1) \rfloor$, and for every n-vertex graph G,

$$\delta(G) \ge t + \left| \frac{\ell - 1}{\ell} (n - t) \right| \quad \Rightarrow \quad v(K_{\ell+1}, G) \ge t.$$

Given two r-graphs $\mathscr G$ and $\mathscr H$ whose vertex sets are disjoint.

we define the **join** $\mathscr{G} \boxtimes \mathscr{H}$ of \mathscr{G} and \mathscr{H} to be the r-graph obtained from $\mathscr{G} \sqcup \mathscr{H}$ (the vertex-disjoint union of \mathscr{G} and \mathscr{H}) by adding all r-sets that have nonempty intersection with both $V(\mathscr{G})$ and $V(\mathscr{H})$.

For a family \mathscr{F} of r-graphs, $\mathscr{H} \boxtimes \mathscr{F} := \{ \mathscr{H} \boxtimes \mathscr{G} \colon \mathscr{G} \in \mathscr{F} \}.$

Theorem 6 (Erdős, 1962)

Suppose that $n, t \in \mathbb{N}$ and $t \leq \sqrt{n/400}$. Then

$$EX(n, (t+1)K_3) = \{K_t \boxtimes T(n-t, 2)\}.$$

Theorem 7 (Moon, 1968)

Suppose that integers $n, t, \ell \in \mathbb{N}$ satisfy $\ell \geq 2$, $t \leq \frac{2n-3\ell^2+2\ell}{\ell^3+2\ell^2+\ell+1}$, and $\ell \mid (n-t)$.

$$\mathrm{EX}(n,(t+1)K_{\ell+1}) = \left\{ K_t \boxtimes T(n-t,\ell) \right\}.$$

Definition 8 (**Boundedness**)

Let $f_1, f_2 \colon \mathbb{N} \to \mathbb{R}$ be two nonnegative functions. An r-graph F is (f_1, f_2) -bounded if every F-free r-graph \mathscr{H} on n vertices with

$$d(\mathscr{H}) \geq \frac{r \cdot \operatorname{ex}(n,F)}{n} - f_1(n) \quad \Rightarrow \quad \Delta(\mathscr{H}) \leq \frac{r \cdot \operatorname{ex}(n,F)}{n} + f_2(n).$$

Definition 9 (Smoothness)

Let $g: \mathbb{N} \to \mathbb{R}$ be a nonnegative function. The Turán function $\mathrm{ex}(n,F)$ of an r-graph F is g-smooth if

$$\left| \operatorname{ex}(n,F) - \operatorname{ex}(n-1,F) - \frac{r \cdot \operatorname{ex}(n-1,F)}{n-1} \right| \le g(n) \quad \text{holds for all } n \in \mathbb{N}.$$

Theorem 10

Fix integers $m \ge r \ge 2$ and a nondegenerate r-graph F on m vertices. Suppose that there exists a constant c > 0 such that for all sufficiently large $n \in \mathbb{N}$:

- (1) F is $\left(c\binom{n}{r-1}, \frac{1-\pi(F)}{4m}\binom{n}{r-1}\right)$ -bounded, and
- (2) $\operatorname{ex}(n,F)$ is $\frac{1-\pi(F)}{8m}\binom{n}{r-1}$ -smooth.

Then there exists N_0 such that for all integers $n \ge N_0$ and $t \le \min\left\{\frac{c}{4erm}n, \frac{1-\pi(F)}{64rm^2}n\right\}$, we have

$$\mathrm{EX}(n,(t+1)F) = K_t^r \boxtimes \mathrm{EX}(n-t,F),$$

and, in particular,

$$\operatorname{ex}(n,(t+1)F) = \binom{n}{r} - \binom{n-t}{r} + \operatorname{ex}(n-t,F).$$

Theorem 11

Suppose that F is an edge-critical graph with $\chi(F) \geq 3$. Then there exist constants N_0 and $c_F > 0$ such that for all integers $n \geq N_0$ and $t \in [0, c_F n]$ we have

$$\mathrm{EX}(n,(t+1)F) = \left\{ K_t \boxtimes T(n-t,\chi(F)-1) \right\}.$$

Theorem 12

There exist constants N_0 and $c_{\mathbb{F}} > 0$ such that for all integers $n \geq N_0$ and $t \in [0, c_{\mathbb{F}}n]$ we have

$$\mathrm{EX}(n,(t+1)\mathbb{F}) = \left\{ K_t^3 \boxtimes B_3(n-t) \right\}.$$

Figure: The Fano plane and the complete bipartite 3-graph $B_3(n)$.

Theorem 13

There exist constants N_0 and c_{T_3} such that for all integers $n \ge N_0$ and $t \in [0, c_{T_3}n]$ we have

$$EX(n, (t+1)T_3) = \{K_t^3 \boxtimes T_3(n-t,3)\}.$$

Figure: The generealized triangle T_3 and the Turán 3-graph $T_3(n,3)$.

Theorem 14

Fix integers $\ell \ge r \ge 2$. There exist constants N_0 and $c = c(\ell, r) > 0$ such that for all integers $n \ge N_0$ and $t \in [0, cn]$ we have

$$\mathrm{EX}(n,(t+1)H^r_{\ell+1}) = \left\{ K^r_t \boxtimes T_r(n-t,\ell) \right\}.$$

Figure: The expansion H_4^3 of K_4 and the Turán 3-graph $T_3(n,3)$.

Theorem 15

For every integer $r \ge 2$ there exist constants N_0 and c > 0 such that for all integers $n \ge N_0$ and $t \in [0, cn]$, we have

$$\mathrm{EX}\left(n,(t+1)\mathscr{C}_3^{2r}\right)\subset K_t^{2r}\boxtimes\left\{B_{2r}^{\mathrm{odd}}(n-t,m)\colon m\in\left[0,\sqrt{2r(n-t)}\right]\right\}.$$

Figure: The 4-graph \mathcal{C}_3^4 (expanded triangle) and the 4-graph $B_4^{\text{odd}}(n)$.

Theorem 16

There exist constants N_0 and c > 0 such that for all integers $n \ge N_0$ and $t \in [0, cn]$, we have

$$\mathrm{EX}(n,(t+1)F_7) = \left\{ K_t^4 \boxtimes B_4^{\mathrm{even}}(n-t) \right\}.$$

Figure: The 4-graph F_7 (4-book with 3 pages) and the 4-graph $B_4^{\text{even}}(n)$.

Theorem 17

There exist constants N_0 and c > 0 such that for all integers $n \ge N_0$ and $t \in [0, cn]$, we have

$$\mathrm{EX}(n,(t+1)\mathbb{F}_{4,3}) \subset K_t^4 \boxtimes \left\{ B_4^{\mathrm{odd}}(n-t,m) \colon m \in [0,\sqrt{4(n-t)}] \right\}.$$

Figure: The 4-graph $\mathbb{F}_{4,3}$ and the 4-graph $B_4^{\text{odd}}(n)$.

Theorem 18

There exist constants N_0 and c > 0 such that for all integers $n \ge N_0$ and $t \in [0, cn]$, we have

$$\mathrm{EX}(n,(t+1)\mathbb{F}_{3,2})=\left\{K_t^r\boxtimes S_3(n-t)\right\}.$$

Figure: The 3-graph $\mathbb{F}_{3,2}$ and the semibipartite 3-graph $S_3(n)$.

Problems

Problem 19

Let $r \ge 2$ be an integer and F be a nondegenerate r-graph with m vertices. For large n determine ex(n,(t+1)F) for all $t \le n/m$.

Problem 20

Let $r \ge 2$ be an integer and F be an r-graph with m vertices. For large n determine the maximum value of s(n,F) such that

$$ex(n,(t+1)F) = \binom{n}{r} - \binom{n-t}{r} + ex(n-t,F)$$

holds for all $t \in [0, s(n, F)]$.

