Engineering 103: Solar Powered Cell Phone Case

Group 13: Jonathan Palko, Sameer Parihar, Eno Shira, Wenhan Tan

Advisor: Richard Knight Fellow: Gabriel Burks

Table of Contents

•	Key Aspects	2
•	Design Objectives	3
•	Timeline	4
•	Theory	5-8
•	Data	9-12
•	Observations	13
•	Sources of Error	14
•	Budget	15
•	Challenges Faced	16
•	Team Member Duties	17

Key Aspects of the Project

- Novel Solution
 - Using solar power to charge phones
 - Completely renewable
- Convenience
 - No need to find an outlet
 - Able to charge during the daytime

Design Objectives

- Create a solar cell system that rates approx. 5 V and 0.5 A
 - Aim is to match charging time of desktop/laptop computer
 - 2.5 Watt power
- The solar cell system powers a 2500 mAh battery that charges phone through USB

Timeline

Task	1	2	3	4	5	6	7	8	9	10
Background Research	X	X	X	X						
Ordering Parts			X	X	X					
Construction of Phone Case				X	X	X	X			
Testing/Data Collection						X	X			
Additional Testing / Prototype Remodeling	*						X	X		
Final Report Preparation								X	X	Х

How Does a Solar Panel Work?

Photovoltaic

- Electrons become excited when they absorb light
- Conversion of light energy into electric energy
- Closely related to the photoelectric effect

Output

- Generates direct current (DC)
- No need for filtration

SolarEnergyFactsBlog, photovoltaic effect [GIF Image]. Retrieved from: http://solarenergyfactsblog.com/photovoltaic-effect/

Gil Knier. "How do Photovoltaics Work?". Science.nasa.gov. [Online].

Available: https://science.nasa.gov/science-news/science-at-nasa/2002/solarcells

Circuitry Schematic

Pertinent Equations

DC Series Circuit Analysis

- Total potential difference across a series circuit is additive
- Current across a series circuit is constant

$$V_{\text{total}} = V_1 + V_2 + V_3 + \dots$$

$$|_{\text{total}} = |_{1} = |_{2} = |_{3} \dots$$

H. Young, R. Freedman and A. Ford, *University Physics with Modern Physics*, 14th ed. Pearson Education, Inc., 2016, p. 849-850.

Technical Specifications

Solar Panels (5)	Output: 1.1V/0.5A
Battery (1)	Capacity: 3.7V/2500mAh Input: DC 5V/1A Output: DC 5V/1A
Phone Case (1)	Dimensions:

Experimental Data

Mean: 5.70

Standard Deviation: 0.0534

95% CI: 5.66 - 5.73

Mean: 0.417

Standard Deviation: 0.0163

95% CI: 0.407 - 0.427

Experimental Data (Cont.)

Mean: 4.94

Standard Deviation: 0.173

95% CI: 4.83 - 5.05

Mean: 0.0320

Standard Deviation: 0.009

95% CI: 0.0263 - 0.0377

Experimental Data (Cont.)

Mean: 602

Standard Deviation: 28.2

95% CI: 584 - 619

Mean: 9260

Standard Deviation: 579

95% CI: 8900 - 9620

Experimental Data - Cloudy Weather (10 Trials)

45 Degrees Away from Sun

Voltage:

Mean: 3.24 V

Standard Deviation: 0.023

95% CI: 3.22 - 3.25

Current:

Mean: 53.35 mA

Standard Deviation: 4.68

95% CI: 50.5 - 56.2

<u>Light Intensity</u>:

Mean: 768 foot-candles Standard Deviation: 30.5

95% CI: 749 - 787

45 Degrees Toward Sun

Voltage:

Mean: 3.27 V

Standard Deviation: 0.0150

95% CI: 3.26 - 3.28

Current:

Mean: 60.9 mA

Standard Deviation: 3.47

95% CI: 58.7 - 63.0

<u>Light Intensity</u>:

Mean: 863 foot-candles Standard Deviation: 40.0

95% CI: 838 - 888

Observations

- The voltage recorded stays relatively constant with a change of angle unless facing away from sun
 - The current varies drastically
- The voltage and current during a cloudy day does not change much with a change in angle
 - Light Intensity does not vary as much during a cloudy day
- Light intensity and current are in direct relationship

Sources of Error for Experimental Data

- Varied cloud cover during the testing period
 - Deviation from Gaussian curve
- Angle measurement is just an estimation
 - Changes in angle position per repetition
 - Sun position changes
- Connectivity issues with the multimeter
 - Wires connected to different parts of the test leads
- Connectivity issues are possibly systematic error: impossible to know for sure

Budget

Category	Actual Cost
Solar Panels:	\$11.95 (x5 Panels)
Electrical Components: - USB Cable - Heat Sink	\$9.64 - \$4.99 - \$4.65
Battery:	\$11.99
Total	\$81.38

Problems During Building Process

- 1. Failure of 3D printing the phone case
- 2. Problems with wire connection to USB
- 3. Soldering issues
- 4. CAD design troubles

Team Member Responsibilities

Jonathan Palko

Circuitry, Soldering and Prototyping

Sameer Parihar

Circuitry, Soldering and Prototyping

Eno Shira

Data Collection/Analysis and Graphing

Wenhan Tan

Assisted in Theory and 3D printing

Questions?