Part 1: Setting up the Data

MovieLens 1M Dataset

MovieLens 1M movie ratings. Stable benchmark dataset. 1 million ratings from 6000 users on 4000 movies. Released 2/2003.

README.txt

ml-1m.zip (size: 6 MB, checksum)

Permalink: https://grouplens.org/datasets/movielens/1m/ (https://grouplens.org/datasets/movielens/1m/)

```
import pandas as pd
In [1]:
        from collections import defaultdict
        from collections import defaultdict
        import scipy
        import scipy.optimize
        import numpy
        import random
```

```
In [2]: ratings = pd.read_csv("ratings.dat",sep="::", header=None)
        movies = pd.read_csv("movies.dat",sep="::", header=None)
        users = pd.read csv("users.dat", sep="::", header=None)
```

C:\Users\Ashok Potti\.conda\envs\env ashok\lib\site-packages\ipykernel launch er.py:1: ParserWarning: Falling back to the 'python' engine because the 'c' e ngine does not support regex separators (separators > 1 char and different fr om '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.

"""Entry point for launching an IPython kernel.

C:\Users\Ashok Potti\.conda\envs\env ashok\lib\site-packages\ipykernel launch er.py:2: ParserWarning: Falling back to the 'python' engine because the 'c' e ngine does not support regex separators (separators > 1 char and different fr om '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.

C:\Users\Ashok Potti\.conda\envs\env ashok\lib\site-packages\ipykernel launch er.py:3: ParserWarning: Falling back to the 'python' engine because the 'c' e ngine does not support regex separators (separators > 1 char and different fr om '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.

This is separate from the ipykernel package so we can avoid doing imports u ntil

```
In [3]: ratings.shape
Out[3]: (1000209, 4)
```

```
In [4]: movies.shape
Out[4]: (3883, 3)
In [5]: users.shape
Out[5]: (6040, 5)
In [6]: ratings.isna().sum()
Out[6]: 0
              0
              0
              0
         2
        dtype: int64
In [7]: movies.isna().sum()
Out[7]: 0
              0
              0
              0
        dtype: int64
In [8]: users.isna().sum()
Out[8]: 0
             0
        1
              0
         2
              0
              0
              0
        dtype: int64
In [9]: ratings.isna().sum()
Out[9]: 0
             0
              0
              0
              0
         3
         dtype: int64
```

```
In [10]:
           ratings.describe()
Out[10]:
                              0
                                                           2
                                                                         3
                                             1
                   1.000209e+06
                                 1.000209e+06
                                               1.000209e+06
                                                              1.000209e+06
            count
            mean
                   3.024512e+03
                                  1.865540e+03
                                               3.581564e+00
                                                              9.722437e+08
              std
                   1.728413e+03
                                 1.096041e+03
                                               1.117102e+00
                                                              1.215256e+07
              min
                   1.000000e+00
                                 1.000000e+00
                                               1.000000e+00
                                                              9.567039e+08
              25%
                    1.506000e+03
                                  1.030000e+03
                                               3.000000e+00
                                                              9.653026e+08
              50%
                   3.070000e+03
                                 1.835000e+03
                                               4.000000e+00
                                                              9.730180e+08
              75%
                   4.476000e+03
                                 2.770000e+03
                                               4.000000e+00
                                                              9.752209e+08
                   6.040000e+03
                                 3.952000e+03
                                               5.000000e+00
                                                              1.046455e+09
In [11]:
           movies.describe()
Out[11]:
                             0
                   3883.000000
            count
            mean
                   1986.049446
                    1146.778349
              std
              min
                       1.000000
              25%
                    982.500000
              50%
                   2010.000000
              75%
                   2980.500000
              max
                   3952.000000
In [12]:
           users.describe()
Out[12]:
                             0
                                          2
                                                       3
                                             6040.000000
                   6040.000000
                                6040.000000
            count
                   3020.500000
                                   30.639238
                                                 8.146854
            mean
                   1743.742145
                                   12.895962
                                                 6.329511
              std
              min
                       1.000000
                                   1.000000
                                                 0.000000
              25%
                    1510.750000
                                   25.000000
                                                 3.000000
              50%
                    3020.500000
                                   25.000000
                                                 7.000000
              75%
                   4530.250000
                                   35.000000
                                                14.000000
              max
                   6040.000000
                                   56.000000
                                                20.000000
```

RATINGS FILE DESCRIPTION

All ratings are contained in the file "ratings.dat" and are in the following format:

UserID::MovieID::Rating::Timestamp

- UserIDs range between 1 and 6040
- MovieIDs range between 1 and 3952
- Ratings are made on a 5-star scale (whole-star ratings only)

4 1 2355 5 978824291

- Timestamp is represented in seconds since the epoch as returned by time(2)
- Each user has at least 20 ratings

In [13]:	ratings.head(5)										
Out[13]:		0	1	2	3						
	0	1	1193	5	978300760						
	1	1	661	3	978302109						
	2	1	914	3	978301968						
	3	1	3408	4	978300275						

MOVIES FILE DESCRIPTION

Movie information is in the file "movies.dat" and is in the following format:

MovieID::Title::Genres

- Titles are identical to titles provided by the IMDB (including year of release)
- Genres are pipe-separated and are selected from the following genres:
 - Action
 - Adventure
 - Animation
 - Children's
 - Comedy
 - Crime
 - Documentary
 - Drama
 - Fantasy
 - Film-Noir
 - Horror
 - Musical
 - Mystery
 - Romance
 - Sci-Fi
 - Thriller
 - War
 - Western

In [14]:	movies.head(5)										
Out[14]:		0	1	2							
	0	1	Toy Story (1995)	Animation Children's Comedy							
	1	2	Jumanji (1995)	Adventure Children's Fantasy							
	2	3	Grumpier Old Men (1995)	Comedy Romance							
	3	4	Waiting to Exhale (1995)	Comedy Drama							
	4	5	Father of the Bride Part II (1995)	Comedy							

USERS FILE DESCRIPTION

User information is in the file "users.dat" and is in the following format:

UserID::Gender::Age::Occupation::Zip-code

All demographic information is provided voluntarily by the users and is not checked for accuracy. Only users who have provided some demographic information are included in this data set.

- Gender is denoted by a "M" for male and "F" for female
- · Age is chosen from the following ranges:
 - 1: "Under 18"
 - **18: "18-24"**
 - **25:** "25-34"
 - **35: "35-44"**
 - **45**: "45-49"
 - **50: "50-55"**
 - **56:** "56+"
- · Occupation is chosen from the following choices:
 - 0: "other" or not specified
 - 1: "academic/educator"
 - 2: "artist"
 - 3: "clerical/admin"
 - 4: "college/grad student"
 - 5: "customer service"
 - 6: "doctor/health care"
 - 7: "executive/managerial"
 - 8: "farmer"
 - 9: "homemaker"
 - 10: "K-12 student"
 - 11: "lawyer"
 - 12: "programmer"
 - 13: "retired"
 - 14: "sales/marketing"
 - 15: "scientist"
 - 16: "self-employed"
 - 17: "technician/engineer"
 - 18: "tradesman/craftsman"
 - 19: "unemployed"
 - 20: "writer"

```
In [15]: users.head(5)
Out[15]:
             1 F
                   1 10 48067
             2 M 56 16 70072
            3 M 25 15 55117
             4 M 45
                       7 02460
           4 5 M 25 20 55455
In [16]:
         dataset=ratings[[0,1,2]]
          dataset = dataset.rename(columns={0: "userId", 1: "movieId", 2 : "rating"})
In [17]:
         dataset
Out[17]:
                   userld movield rating
                0
                       1
                            1193
                                     5
                1
                       1
                             661
                                     3
                2
                       1
                             914
                                     3
                3
                       1
                            3408
                                     4
                4
                       1
                            2355
                                     5
          1000204
                    6040
                            1091
          1000205
                    6040
                            1094
                                     5
          1000206
                    6040
                             562
                                     5
          1000207
                    6040
                            1096
          1000208
                    6040
                            1097
                                     4
          1000209 rows × 3 columns
         print("Unique Users {}, Unique Moviews {}".format(dataset.userId.nunique(),dat
In [18]:
          aset.movieId.nunique()))
          Unique Users 6040, Unique Moviews 3706
In [19]:
          reviewsPerUser = defaultdict(list)
          reviewsPerItem = defaultdict(list)
          for idx, row in dataset.iterrows():
              userId, movieId = row['userId'], row['movieId']
              reviewsPerUser[userId].append(row)
              reviewsPerItem[movieId].append(row)
```

```
In [20]: | print(len(reviewsPerUser), len(reviewsPerItem))
         6040 3706
In [21]:
         N = len(dataset)
         nUsers = len(reviewsPerUser)
         nItems = len(reviewsPerItem)
         users = list(reviewsPerUser.keys())
         items = list(reviewsPerItem.keys())
         userBiases = defaultdict(float)
         itemBiases = defaultdict(float)
         def MSE(predictions, labels):
             differences = [(x-y)^{**2} for x,y in zip(predictions,labels)]
             return sum(differences) / len(differences)
In [22]: | alpha = dataset['rating'].mean()
         print("alpha (or mean): {}".format(alpha))
         alwaysPredictMean = [alpha] * len(dataset)
         labels = dataset['rating']
         print("MSE using alpha (or mean) prediction: {}".format(MSE(alwaysPredictMean,
         labels)))
         alpha (or mean): 3.581564453029317
         MSE using alpha (or mean) prediction: 1.2479152852902136
In [23]:
         userBiases = defaultdict(float)
         itemBiases = defaultdict(float)
         userGamma = {}
         itemGamma = {}
         K = 5
In [24]:
         for u in reviewsPerUser:
             userGamma[u] = [random.random() * 0.1 - 0.05 for k in range(K)]
         for i in reviewsPerItem:
             itemGamma[i] = [random.random() * 0.1 - 0.05 for k in range(K)]
```

```
In [25]: def unpack(theta):
             global alpha
             global userBiases
             global itemBiases
             global userGamma
             global itemGamma
             index = 0
             alpha = theta[index]
             index += 1
             userBiases = dict(zip(users, theta[index:index+nUsers]))
             index += nUsers
             itemBiases = dict(zip(items, theta[index:index+nItems]))
             index += nItems
             for u in users:
                 userGamma[u] = theta[index:index+K]
                  index += K
             for i in items:
                 itemGamma[i] = theta[index:index+K]
                 index += K
```

```
In [26]: def inner(x, y):
             return sum([a*b for a,b in zip(x,y)])
         def prediction(user, item):
             return alpha + userBiases[user] + itemBiases[item] + inner(userGamma[user
         ], itemGamma[item])
         def cost(theta, labels, lamb):
             unpack(theta)
             predictions = [prediction(d['userId'], d['movieId']) for idx, d in dataset
          .iterrows()]
             cost = MSE(predictions, labels)
             print("MSE = " + str(cost))
             for u in users:
                 cost += lamb*userBiases[u]**2
                 for k in range(K):
                      cost += lamb*userGamma[u][k]**2
             for i in items:
                 cost += lamb*itemBiases[i]**2
                 for k in range(K):
                      cost += lamb*itemGamma[i][k]**2
             return cost
         def derivative(theta, labels, lamb):
             unpack(theta)
             N = len(dataset)
             dalpha = 0
             dUserBiases = defaultdict(float)
             dItemBiases = defaultdict(float)
             dUserGamma = {}
             dItemGamma = {}
             for u in reviewsPerUser:
                 dUserGamma[u] = [0.0 for k in range(K)]
             for i in reviewsPerItem:
                 dItemGamma[i] = [0.0 for k in range(K)]
             for idx, d in dataset.iterrows():
                 u,i = d['userId'], d['movieId']
                  pred = prediction(u, i)
                 diff = pred - d['rating']
                 dalpha += 2/N*diff
                 dUserBiases[u] += 2/N*diff
                 dItemBiases[i] += 2/N*diff
                 for k in range(K):
                      dUserGamma[u][k] += 2/N*itemGamma[i][k]*diff
                      dItemGamma[i][k] += 2/N*userGamma[u][k]*diff
             for u in userBiases:
                 dUserBiases[u] += 2*lamb*userBiases[u]
                 for k in range(K):
                      dUserGamma[u][k] += 2*lamb*userGamma[u][k]
             for i in itemBiases:
                 dItemBiases[i] += 2*lamb*itemBiases[i]
                 for k in range(K):
                      dItemGamma[i][k] += 2*lamb*itemGamma[i][k]
```

```
dtheta = [dalpha] + [dUserBiases[u] for u in users] + [dItemBiases[i] for
         i in items]
             for u in users:
                 dtheta += dUserGamma[u]
             for i in items:
                 dtheta += dItemGamma[i]
             return numpy.array(dtheta)
In [27]: MSE(alwaysPredictMean, labels) #Same as our previous baseline
Out[27]: 1.2479152852902136
In [28]: | x,f,d = scipy.optimize.fmin_l_bfgs_b(cost, [alpha] + # Initialize alpha
                                             [0.0]*(nUsers+nItems) + # Initialize beta
                                             [random.random() * 0.1 - 0.05 for k in rang
         e(K*(nUsers+nItems))], # Gamma
                                       derivative, args = (labels, 0.001), maxfun = 10,
         maxiter = 10)
         MSE = 1.2479127681344244
         MSE = 1.2170646604649966
         MSE = 5.026653410052432
         MSE = 1.2033851469689592
         MSE = 1.0529878870454181
         MSE = 1.0521619128942303
         MSE = 1.0489821231375172
         MSE = 1.0186860648373264
         MSE = 1.018857594768604
         MSE = 1.0199396991226464
         MSE = 1.0202800124177205
```

Predicted rating by a user for a movie

```
In [135]: prediction(6040,1193)
Out[135]: 4.044457189238609
In [133]: | def get_ten_item(userId):
              user_rating = []
              user_item = []
              for movieId in range(1,nItems):
                  try:
                       user_rating.append(prediction(userId,movieId))
                  except:
                       user rating.append(0)
                   user item.append(movieId)
              zipped = dict(zip(user item, user rating))
              return sorted(zipped.items(), key=lambda x: x[1], reverse=True)
```

Top 10 movie recommendation for userID = 3333

```
In [134]: res = get_ten_item(3333)
    movies.loc[[i for i, _ in res[0:10]]]
```

Out[134]:

2	1	0	
Drama	Strawberry and Chocolate (Fresa y chocolate) (321	318
Drama	Ladybird Ladybird (1994)	263	260
Crime	Kansas City (1996)	869	858
Children's Drama	Secret Garden, The (1993)	531	527
Adventure Romance	Big Blue, The (Le Grand Bleu) (1988)	1216	1198
Action Drama Thriller	Guardian Angel (1994)	51	50
Drama	Dog of Flanders, A (1999)	2831	2762
Drama Romance	Brief Encounter (1946)	2927	2858
Comedy Romance	Pretty Woman (1990)	597	593
Children's Horror	Something Wicked This Way Comes (1983)	2097	2028

In []: