PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-158620

(43)Date of publication of application: 13.06.2000

(51)Int.CI.

B41F 3/36 **B41F B41F B41F** H01J H05K

// B41F

.....

(21)Application number: 11-267539

(71)Applicant:

13/08

CANON INC

(22)Date of filing:

21.09.1999

(72)Inventor:

YAMADA NOBUTSUGU

MIDORIKAWA MASAKO

MUKAI YASUO

(30)Priority

Priority number: 10266661

Priority date: 21.09.1998

Priority country: JP

(54) PRINTING APPARATUS AND MANUFACTURE OF PRINTED WIRING BOARD, ELECTRON SOURCE AND IMAGE DISPLAYING DEVICE USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To print patterns of electrodes, wiring, color filters and others of an image display device by offset printing on a printing material of non- absorbing properties such as glass.

SOLUTION: The humidity of a blanket 113 is regulated on the basis of an output of a sensor 12. A humidity regulating part has a structure wherein a humidity absorbing sheet 13 stretched in the shape of a belt is pressed on the blanket 113. The humidity absorbing sheet 13 is rotated by rollers 14a, 14b and 14c. In order to regulate the amount of impregnation of the blanket 11 with a solvent 3, a controller 17, fed back with the state of wetting of the blanket 113 with the ink solvent, controls a humidifying mechanism 16 for humidifying solvent ink and a drying mechanism 15 for drying the solvent ink. As the humidity absorbing

sheet 13. nonwoven fabric, paper or the like having no dust producing property may also be used. As for a sensor head, it is also allowable that an ATR (total reflection) attachment fitted to an infrared absorption analyzing device is brought into close contact with the surface of the blanket.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-158620 (P2000-158620A)

(43)公開日 平成12年6月13日(2000.6.13)

(51) Int.Cl. ⁷	識別記号	FΙ			テーマコード(参考)
B41F 3/36		B41F 3/	/36		
17/14		17/	/14	E	
31/02		H01J 9/	/02	E	
33/14		H05K 3/	/12	630Z	
H01J 9/02		B41F 13/	/08		
	審査請求	未請求 請求項の	の数11 OL	(全 11 頁)	最終頁に続く
(21)出願番号	特願平11-267539	(71)出願人 (000001007		
		:	キヤノン株式会	会社	
(22)出願日	平成11年9月21日(1999.9.21)	,	東京都大田区	下丸子3丁目3	10番2号
		(72)発明者 1	山田 修嗣		
(31)優先権主張番号	特願平10-266661]	東京都大田区	下丸子3丁目3	10番2号 キヤ
(32)優先日	平成10年9月21日(1998.9.21)		ノン株式会社に	勺	
(33)優先権主張国	日本 (JP)	(72)発明者	禄川 理子		
]	東京都大田区	下丸子3丁目3	0番2号 キヤ
			ノン株式会社P	勺	
		(72)発明者	向井 康雄		
]	東京都大田区	下丸子3丁目3	0番2号 キヤ
			ノン株式会社内	勺	
		(74)代理人	100065385		
			弁理士 山下	穣平	

(54) 【発明の名称】 印刷装置及びそれを用いるプリント基板、電子源、及び画像表示装置の製造方法

(57)【要約】

【課題】 ガラスなどの非吸収性の被印刷体上に、画像表示装置の電極や配線、カラーフィルター等のパターンをオフセット印刷により、安定に印刷する。

【解決手段】 センサ12の出力に基づいて、ブランケット113の湿度が調整される。調湿部は、ベルト状に吸湿シート13を張り、それをブランケット113に押し付ける構造を有している。ローラ14a、14b、14cで吸湿シート13が回転される。そして、ブランケット113の溶媒含浸量を調整するために、ブランケット113のインキ溶媒による湿潤状態のフィードバックを受けてコントローラ17が、溶媒インキを加湿する加湿機構16と溶媒インキを乾燥する乾燥機構15を制御する。吸湿シート13としては、発塵性のない不織布や紙類等を用いてもよい。又、センサヘッドとしては、赤外線吸光分析装置にATR(全反射)アタッチメントを装着してブランケット面に密着させてもよい。

40

1

【特許請求の範囲】

【請求項1】 インキバターンをブランケットを介して 被印刷体に転写するオフセット印刷装置であって、

前記ブランケットに含浸したインキ溶媒量を検知する検 知手段を備えることを特徴とする印刷装置。

【請求項2】 前記検知手段は、前記ブランケットからの反射光を検出する手段を備えることを特徴とする請求項1記載の印刷装置。

【請求項3】 前記検出手段は、前記ブランケットの厚さを測定する手段を備えることを特徴とする請求項1記 10載の印刷装置。

【請求項4】 前記検知手段の出力に基づいて、前記ブランケットに含浸したインキ溶媒量を制御する制御手段を備えることを特徴とする請求項1~3のいずれか一つに記載された印刷装置。

【請求項5】 前記制御手段は、前記ブランケットに含 浸したインキ溶媒量を所望の範囲内に維持する手段を備 えることを特徴とする請求項4記載の印刷装置。

【請求項6】 基板上に、所望バターンの部材を印刷にて形成するプリント基板の製造方法であって、

前記印刷を請求項1~5のいずれか一つに記載された印刷装置を用いて行うことを特徴とするプリント基板の製造方法。

【請求項7】 基板上に、所望バターンの導電性部材を 印刷にて形成するプリント基板の製造方法であって、

前記印刷を請求項1~5のいずれか一つに記載された印刷装置を用いて行うことを特徴とするプリント基板の製造方法。

【請求項8】 基板上に、複数の電子放出素子と、前記 複数の電子放出素子を結線する配線とを備える電子源の 製造方法であって、

前記複数の電子放出素子を請求項1~5のいずれか一つ に記載された印刷装置を用いて製造することを特徴とす る電子源の製造方法。

【請求項9】 一対の電極と、前記一対の電極間に、電子放出部を有する導電性膜とを備える電子放出素子の複数と、前記複数の電子放出素子を結線する配線とを基板上に備える電子源の製造方法であって、

前記複数の電子放出素子の一対の電極を、請求項1~5 のいずれか一つに記載された印刷装置を用いて形成する ことを特徴とする電子源の製造方法。

【請求項10】 前記電子源の配線をスクリーン印刷法を用いて形成することを特徴とする請求項8、9のいずれか一つに記載された電子源の製造方法。

【請求項11】 基板上に、複数の電子放出素子と、前記複数の電子放出素子を結線する配線とを有する電子源と、前記電子源から放出された電子を受けて発光する蛍光体とを備えた画像表示装置の製造方法であって、

前記電子源を請求項8~10のいずれか一つに記載され の通電フォーミングと呼ばれる通電処理により電子放 た方法にて製造することを特徴とする画像表示装置の製 50 部1005が形成される。尚、図中の素子電極100

造方法。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、印刷装置及びそれを用いたプリント基板、電子源、及び画像表示装置の製造方法に関し、特に、画像表示装置の、電子源やカラーフィルター等のプリント基板を印刷により製造する際、印刷不良を防止する印刷装置、及びこれを用いたプリント基板、電子源、及び画像表示装置の製造方法に関する。

[0002]

【従来の技術】近年、大きく重いブラウン管に代わる画像表示装置として、薄型の平板状画像表示装置が注目されている。平板状画像表示装置としては液晶表示装置が盛んに研究開発されているが、液晶表示装置には画像が暗い、視野角が狭いといった課題が依然として残っている。又液晶表示装置に代わるものとして自発光型のディスプレイ、即ちブラズマディスプレイ、蛍光表示管、表面伝導型電子放出素子などの電子放出素子を用いたディスプレイなどがある。自発光のディスプレイは液晶表示装置に比べ明るい画像が得られるとともに視野角も広い。一方、最近では30インチ以上の画面表示部を有するブラウン管も登場しつつあり、更なる大型化が望まれている。しかしながらブラウン管は大型化の際にはスペースを大きくとる。

【0003】このような大型で明るいディスプレイには 自発光型の平板状のディスプレイが適している。本出願 人は自発光型の平板状画像表示装置の中でも電子放出素 子を用いた画像表示装置、特に簡単な構造で電子の放出 30 が得られるM. 1. Elinsonらによって発表され た(Radio.Eng.Electron.Phys., 10, 1290,

(1965))表面伝導型電子放出素子を用いた画像 表示装置に着目している。

【0004】表面伝導型電子放出素子は、基板上に形成された小面積の薄膜に膜面に平行に電流を流すことにより、電子放出が生ずる。この表面伝導型電子放出素子としては、前記エリンソン等による SnO_2 薄膜を用いたもの、Au薄膜によるもの [G.Dittmer:Thin Solid Films, 9, 317(1972)]、 In_2O_3/SnO_2 薄膜によるもの [M.Hartwell and C.G.Fonstad:IEEE Trans.ED Conf. , 519(1975)]、カーボン薄膜によるもの [荒木久 他:真空、第26巻、第1号、22頁(1983)] 等が報告されている。

【0005】図10に、これらの表面伝導型電子放出素子の典型的な例として前述のM. ハートウェルの素子構成を模式的に示す。図10において、1001は基板である。1004は導電性薄膜で、H型形状のパターンにスパッタで形成された金属酸化物薄膜等からなり、後述の通電フォーミングと呼ばれる通電処理により電子放出部1005が形成される。尚、図中の素子電極100

2

3

2, 1003の間隔しは、たとえば、0.5~1 [mm]、W′は0.1 [mm]前後とされる。

【0006】米国特許5,066,883において一対の素子電極間に電子を放出せしめる微粒子を分散配置させた表面伝導型電子放出素子が提案されている。この電子放出素子は上記従来の表面伝導型電子放出素子に対し、電子放出位置を制御できる。

【0007】図11に、この表面伝導型電子放出素子の典型的な素子構成を示す。図11(a)は素子構成の平面図、図11(b)は素子構成の断面図である。1101は絶縁性基板、1102、1103は電気的接続を得るための素子電極、1104は導電薄膜である。この表面伝導型電子放出素子において前記一対の素子電極の間隔しは0.01μm~100μm、導電薄膜1104には間隙部1105が形成されている。又素子電極は導電薄膜と電気的に接続を保つためにその膜厚dを200mm以下に薄く形成するのが望ましい。

【0008】本発明者らはこの表面伝導型電子放出素子を多数、基板上に配置させた画像表示装置の大面積化について検討を行っている。電子放出素子及び配線を基板 20上に配置させた電子源基板を作成する方法は様々な方法が考えられ、その一つとして素子電極及び配線をフォトリソグラフィ法で作成する方法がある。

【0009】一方、スクリーン印刷、オフセット印刷などの印刷技術により、この表面伝導型電子放出素子を含む電子源基板を作成する方法が考えられる。

【0010】印刷法は大面積のパターンを形成するのに適しており、表面伝導型電子放出素子の素子電極を印刷法により作成することによって多数の表面伝導型電子放出素子を基板上に形成することが可能となる。又コスト的にも有利である。印刷法による素子電極の形成においては薄膜の形成に適しているオフセット印刷技術が適している。このオフセット印刷技術を回路基板に応用した例としては特開平4-290295号公報に開示されたものがある。当該公報に開示された基板は印刷時のパターン伸縮を原因とする電極ビッチ寸法のバラツキによる接合不良をなくすために回路部品に接続される複数の接合電極の角度を変化させたものである。そして当該公報には電極パターンをオフセット印刷により形成することが記載されている。

【0011】一般にオフセット印刷では、所望のバターンを有する凹版にインキを充填した後、ブランケットと呼ばれる胴体を前記凹版に回転接触させて該ブランケット上にインキを受理させ、かかる後、ガラス基板面上に該ブランケットを回転接触させることで該所望パターンのインキを該ガラス基板面上に転移させる。

【0012】以上のようにインキの移動という面から見ると充填、受理、転移という主に3段階の工程により一回の印刷が終了する。

【0013】ここで上記の印刷インキは作製するパター 50 ま不良印刷物を捨てることが出来る。しかし画像表示装

4

ンの機能によって適宜選択することができる。即ち記録用サーマルヘッド等の電極パターンには主にAuレジネートペーストと呼ばれる有機Au金属を含むインキを用い、又、液晶表示装置等に用いられるカラーフィルターであればR、G、B各色の顔料を分散したインキや有機色素を含んだインキ等が用いられる。これらのインキの溶媒として選択されるのは、タービネオールやブチルカルビトールなどの有機溶媒である。

【0014】とのようにインキの溶媒として有機溶媒を用いた場合、ブランケットからインキパターンがガラス基板に転移する際、インキ溶媒がブランケット(主にはシリコーンゴム)に浸透することによって、インキの凝集力が高まり、更にはインキパターンとブランケット間の界面張力が低下することによってインキがガラス基板に転移しやすくなるという機構が考えられている。このことは特開平7-156523号公報に述べられている。。

【0015】この際、被印刷体が紙のような吸収性のある場合には、ブランケット中のインキ溶媒がある程度被 印刷体にも浸透してブランケットの過度の膨潤が防がれる。

[0016]

【発明が解決しようとする課題】しかし、被印刷体がガラスなど非吸収性である場合にはインキ溶媒がブランケットに徐々に蓄積されて濃度が増し、なんの対策も施さない場合にはインキ溶媒量がある一定値以上になると、転移不良が発生したり、更にはブランケットが溶媒で膨潤してしまい、印刷物に要求される寸法精度が得られなくなるなどの不良品の発生が起こる。

1 【0017】このようなブランケットがインキ溶媒を吸収しすぎることによって起こる問題を防ぐ為に、印刷の工程をいったんストップさせ、ブランケットに吸収された有機溶媒を揮発乾燥させるために熱風を吹き付けたのちに冷却させてから再び印刷を開始する、などの対策が取られる場合もある。しかし、連続印刷の工程をいったんストップさせて、バッシ処理的に作業を行うものであり、生産性を落とす事になる。

り、生産性を落とす事になる。
【0018】又、逆にブランケット内のインキ溶媒濃度が低すぎる場合は、受理されたインキパターン中の溶媒
がブランケットゴムに吸収され過ぎ、ブランケット表面で固化してしまいガラス基板に転移させようと密着させてもブランケット面に残ってしまい、やはり不良印刷物を出してしまう場合がある。このような場合には、特開平8-48070号公報に示されているように、印刷開始に前もって何らかの方法でブランケットのシリコーンゴムにインキ溶媒を浸透させておくことが必要になる。
【0019】以上に述べたようなブランケット内のインキ溶媒の量が不適切である為に生じる不良印刷物が、紙などのように価格が安く、廃棄が容易な場合にはそのまたではないます。

置の電極や配線、カラーフィルターなどの印刷体の場合には、すでにオフセット印刷の前の工程で多くの構造物が形成されていたり、特殊ガラスを使うなど被印刷物自体の価格が高価であるため容易に破棄できないことが多い。又、何らかの手段で再生、再利用を行うにしてもコストアップにつながる。

【0020】従来は、ブランケットの過膨潤や過乾燥の現象が実際に起きて不良品が発生した段階で対策を取るものであり、結果として不良印刷物は発生する。又、不良品を見つけ出す為に数十万にも及ぶ超高精細パターン 10の全カ所をチェックするという工程が必要となり、スループットも低くなりトータルコストが上昇する。

【0021】そこで、本発明は、印刷不良品の発生を極めて低減し得る印刷装置を提供することを課題としている。又、本発明は、基板上に所望パターンの部材を再現性良く形成し得るブリント基板の製造方法を提供することを課題としている。又、本発明は、基板上に複数の電子放出素子を再現性良く形成し得る電子源の製造方法を提供することを課題としている。又、本発明は、高品位画像の表示が可能な画像表示装置を再現性良く製造し得20る画像表示装置の製造方法を提供することを課題としている。又、本発明は、歩留まりの著しい向上を図ることが可能な、プリント基板、電子源、及び、画像表示装置の製造方法を提供することを課題としている。

[0022]

【課題を解決するための手段】上記の課題を解決するための本発明は、インキバターンをブランケットを介して被印刷体に転写するオフセット印刷装置であって、前記ブランケットに含浸したインキ溶媒量を検知する検知手段を備えている。

[0023]

【発明の実施の形態】以下、図面を参照して本発明の実施の形態について説明する。

【0024】まず、本発明におけるプリント基板とは、 上述の電気・電子デバイスの構成部材がパターニングされた基板のことであり、例えば、液晶ディスプレーのカラーフィルター基板あるいは液晶ディスプレー、プラズマディスプレー、電子線ディスプレー等各種ディスプレーの駆動用電極がパターニングされた基板、電子源の構成部品がパターニングされた基板などを包含する。

【0025】図1は、本実施形態の印刷装置の一部概略上面図である。101はインキローラー104でインキ107を展開するインキ練り台であり、102は凹版105を固定する版架台定盤である。又103は被印刷体であるワーク106を固定するワーク定盤であり本体フレーム108の上に固定配置されている。との一列に並んだ3つの定盤の両側に2本のラックギャー109、110を配置し、そのラックギャー109、110を配置し、そのラックギャー109、110の上にギャー111、112を噛み合わせたブランケット11

端のキャリッジ114,115で固定され、このキャリッジ114,115が本体下部からのクランクアーム(図示せず)のクランク動作によって前後進し、ブランケット113はインキ練り台101、凹版105、ワーク106の上を順次回転摺動する。ブランケット113の表面はゴム状のブランケットラバーが取付けてある。【0026】図2は、以上の印刷装置による、被印刷体であるワーク106へのインキバターンのブランケット113を介した転写の工程図である。101はインキ練り台、105は凹版、106は被印刷体であるワークとなるガラス基板であり同一平面に直列に配置されている。

【0027】図2(a)に示すように、104はインキロールでありインキ練り台101上で練ったインキ107を凹版105上にフィードする。

【0028】次に、図2(b)に示すように、117はドクターブレードであり凹版105上面を摺動してフィードされたインキ107のうち、凹部105にインキを充填しながら、凹部以外のインキをかきとる。

20 【0029】次に、図2(c)に示すように、113はブランケットであり凹版105、ガラス基板106上面を順に回転接触することにより、凹版105の凹部に充填されたインキを受理する。

【0030】次に、図2(d)に示すように、ガラス基板106上に凹版105の有するパターン状にインキ107を転移する。

【0031】以上示したようにインキの移動という面から見ると充填、受理、転移という主に3段階の工程により一回の印刷が終了する。

30 【0032】 ここで印刷インキ107は作製するパターンの機能によって適宜選択することができる。

【0033】即ち、電極などの導電性部材パターンには 主にAuレジネートペーストと呼ばれる有機Au金属を 含むインキを用い、又、液晶表示装置等に用いられるカ ラーフィルターであればR、G、B各色の顔料を分散し たインキや有機色素を含んだインキ等が用いられる。こ れらのインキの溶媒として選択されるのは、タービネオ ールやブチルカルビトールなどの有機溶媒である。

【0034】又、図1に示される本実施形態の印刷装置 40 は更に、図3に示される機構をも備えている。

【0035】図3は、本実施形態の印刷装置の一部の概念図である。この図に示す本実施形態の印刷装置は、ブランケット113のインキ溶媒量を検知し、インキ溶媒量を制御する。図3に示すように、この実施形態の印刷装置は、ブランケット113と、ブランケットの状態を検知するセンサ12と、ブランケット113の湿度を調節する調湿部とを含んでいる。すなわち、センサの出力に基づいて、ブランケット113の湿度が調整される。

ギャー111. 112を噛み合わせたブランケット11 【0036】上記の調湿部は、ベルト状に吸湿シート1 3が配置されている。ブランケット113はその軸を両 50 3を張り、それをブランケット113に押し付ける構造

を有している。ローラ14a、14b、14cで吸湿シ ート13が回転される。そして、ブランケット113の 溶媒含浸量を調整するために、ブランケット113のイ ンキ溶媒による湿潤状態のフィードバックを受けてコン トローラ17が、溶媒インキを加湿する加湿機構16と 溶媒インキを乾燥する乾燥機構15を制御する。

【0037】ここで、吸湿シート13としては、発塵性 のない不織布や紙類、たとえばザヴィーナ(カネボウ合 繊株式会社製)、テクニクロス2(TEXWIPE 社 製)などが適している。

【0038】図3の調湿部は例示であり、これに限ら ず、たとえば、吸湿性シートに前もってインキ溶媒をし み込ませる加湿方法であってもよい。又、ブランケット 膨潤インキ溶媒量に応じて適宜に吸湿性シート13を交 換してもよい。

【0039】すなわち、本実施形態の印刷装置は、凹 版、又は平版上にバターン形成されたインキを、ブラン ケットを介して被印刷体にバターンを転写するオフセッ ト印刷装置において、前記ブランケットに含浸したイン キ溶媒の量、あるいはブランケットの彫潤度合いなどに 20 代表されるブランケットから被印刷体への転写性に影響 を与えるパラメータを非破壊的に感知する機構を有して

【0040】そして、ブランケットから被印刷体への転 写性を表すパラメータをフィードバックさせ、前もって 設定した範囲に収まるように制御することができるブラ ンケット調湿機構を有している。

【0041】上述のブランケットから被印刷体への転写 性に影響を与えるパラメータを非破壊的にモニターする 機構は、ブランケットに含まれているインキ溶媒の絶対 量を測定するものである必要はなく、印刷枚数の増加に 伴ってブランケットに徐々に含浸していく溶媒の量を相 対的にでも感知する事が出来れば良い。

【0042】その方法としてたとえば、顕微ラマン法を 用いることもできる。又、溶媒をブランケット面に垂直 に滴下して、その接触角を測定する方法も挙げられる。 又、赤外線吸光分析装置にATR(全反射)アタッチメ ントを装着してブランケット面に密着させることによっ て可能である。

【0043】特に、赤外線吸収分析は非常に一般的な化 40 印刷装置を示す一部概念図である。 学分析手段であり、試料形態に対応して様々なアタッチ メントが用意されている。具体的には、全反射吸収測定 法ATR (Attenuated Total Ref 1ection)を利用してもよい。とのATR法の原 理、測定方法には、「FT-IRの基礎と実際」田隅三 生著 東京化学同人社p67-72に詳細が記載されて いる。又、ATR法を実際に本発明に応用するために は、たとえば、BIO-RAD社製のFT-IR測定装 置(FTS-135) にATR NEEDLE PRO

である。

【0044】図4は、ATR法によるセンサヘッドの断 面図である。図4に示すように、センサヘッドは、分光 結晶22を備えたATRプローブ21である。ATRプ ローブ21の先端は斜めにカットされており、外側はス テンレスで覆われている。レーザー発振器で出された赤 外領域を含むレーザー光29がガラスファイバー28か らATR結晶に入射し、ブランケット表面から深さ dだ け進入した後に全反射する。この反射光のエネルギーの 10 波長依存性を測定する事によって全反射 (ATR)スペ クトルが得られる。このデーターを取り込みフーリエ変 換してデータ処理を行う。そして、その処理済データが 図3に示したコントローラ17に入力される。

【0045】ATRスペクトル中、インキ溶媒の同定に は、たとえば、溶媒中のジブチルフタル酸のケトンの部 分の吸収で約1730cm-1の位置のピークを利用する ことができる。又、定量化のための内部基準ピークは、 たとえば、ブランケット11のジメチルシリコーンの吸 収で約1260 cm-1の位置のピークを用いることがで きる。

【0046】本実施形態の印刷装置におけるブランケッ ト調湿部は、図3に示すように、ベルト状に吸着シート を張り、それをブランケット11に押し付ける構造を有 している。更にブランケットの溶媒含浸量を調整するた めに、ブランケットのインキ溶媒による湿潤状態のフィ ードバックを受けてコントローラーが、溶媒インキを加 湿する機構と乾燥機構を制御する機構を有する。

【0047】又、ブランケットのインキ溶媒量を減ずる 方法としては、ガラス基板の代わりに吸湿性のあるシー ト上をブランケットで転移操作を行うことで簡単には可 能である。吸湿性のあるシートとしては、発塵性のない 不織布や紙類、たとえばザヴィーナ(カネボウ合繊株式 会社製)、テクニクロス2(TEXWIPE 社製)な どが適している。又、吸湿性シートに前もってインキ溶 媒をしみ込ませておけば加湿方法としては適しており、 ブランケット膨潤インキ溶媒量に応じて適宜に吸湿性シ ートを交換することによって、ブランケット調湿部とし て用いることが可能である。

【0048】又、図5は、本発明に係る別の実施形態の

【0049】図3に示した前述の印刷装置とは、ブラン ケット113の状態を検知するためのセンサ12が異な っている。図5に示される印刷装置のセンサ12は、ブ ランケット113に非接触な状態で逐次、ブランケット 113の状態を検知することができる。例えば、このセ ンサ12はレーザー変位計であり、このレーザー変位計 を用いてブランケット113の表面の高さが逐次モニタ

【0050】図5に示される印刷装置では、レーザー変 BEを装着するとよい。この場合、分光結晶は2eSe 50 位計からのデータと、予め準備された、ブランケットへ

の溶媒吸収量とブランケットの高さ変化、更に、そのと きの印刷性に関するデータとを比較し、かかる比較結果 の出力に基づいてブランケットの溶媒含浸量をコントロ ールする。ここでブランケットの溶媒含浸量のコントロ ールは、図3に示した前述の印刷装置と同様にコントロ ーラー12によってブランケットの加湿機構16と乾燥 機構15を制御することにより行われる。

【0051】ブランケットの高さ変化は、インキ溶媒の 吸収によるブランケットの体積変化によりもたらされる ものであり、ブランケットのインキ溶媒の吸収量とブラ ンケットの高さ変化との間には相関性があり再現性も良 い。このため、ブランケットの高さの変化をモニターす ることによりブランケットに含浸したインキ溶媒量を検 知することができ、検知結果に基づいて上述の加湿機構 と乾燥機構を有するブランケットの調湿部を制御するこ とでブランケットの含浸インキ溶媒量を調整し、インキ の転写不良による不良印刷物の発生を防ぐことができ る。又、ブランケットの表面高さの測定は、触針式の方 法を採用しても構わない。特に上記のレーザー変位計を めブランケットの表面の汚染や変形を気にする必要がな いので本実施形態においては好ましい。

【0052】又、インキ溶媒量検知方法、プランケット 調湿方法の手段としては上述した手法に限られるもので はない。

[0053]

【実施例】以下に述べる実施例においては、図1に示さ れた印刷装置を用いた。ととで、105は青板ガラスの 凹版であり、凹部のパターンは幅150μm、長さ30 Ομm、深さ8. Ομmの矩形パッドパターンで、横7 20個、縦240個並んでいる。インキは有機白金を含 むペースト(エヌ・イー・ケムキャット社製)を用い た。インキの希釈溶媒としては、タービネオールと、D BP(ジブチルフタル酸)を用いた。

【0054】又、ブランケットはジメチルシリコーンゴ ムを表面層とした市販のものを用いた。

【0055】(実施例1)図1に示した印刷装置に、図 3に示した、ブランケットの状態を検知するセンサ12 をセットして、前述のインキ、凹版、ブランケットを用 いて青板ガラスにタクト時間およそ70秒で50枚連続 40 印刷を行った。その際に、2枚印刷毎に図4で示したF T-IRのATRプローブの面をブランケットに垂直に 押し当て、ブランケットにインキ溶媒が含浸していく様 子をモニターした。

【0056】一通りの印刷が終わった後、印刷された印 刷体のパターンを詳細に観察したところ、約20枚目以 降でパターン全面の中央付近の矩形部分のインキの膜厚 が徐々に減り、直線部分の歪みが見られるようになって きた。との傾向は50枚目が最も著しく、インキ溶媒が ブランケットに膨潤していくにしたがって印刷状態が劣 50 402,403,404は本発明によってオフセット印

化していくようである。

【0057】図6にこの時に実際にモニターしたFT-1Rのプロファイルを示す。3枚目ではほとんど検知さ れなかった1730 cm-1付近のピークが20枚目では はっきりと見られ、50枚目ではかなり大きくなってい るのがわかる。この部分のビーク面積と内部基準とする 1260 cm-1付近のジメチルシリコーンのピーク面積 の比を計算すれば、インキ溶媒がどれくらいブランケッ トに含浸してくれば印刷不良が起き始めるかが判り、実 際に印刷不良品が発生する前に予期する事ができ、何ら かの対策を取ることが可能となる。

10

【0058】(実施例2)図1の印刷装置に、図3に示 したセンサ12, コントローラ17, 及びブランケット 調湿部をセットして、実施例1と同様にして100枚の 連続印刷を行った。ブランケット調湿部にはFT-IR のデータから計算されるインキ湿潤度合いを入力し、そ の値が適度な範囲になるように溶媒インキ加湿機構と、 乾燥機構をコントローラーが制御している。

【0059】印刷が終わった後に、すべての印刷物を検 用いると、ブランケットと非接触状態で測定ができるた 20 査したが、全面でインキの膜厚むらがほとんど無く、バ ターンの直線性も良好な印刷物が得られた。

> 【0060】なお、この時にはインキ溶媒加湿機構は稼 働しなかったが、インキ溶媒の種類、タクト時間、パタ ーンの開口率、ブランケットの材質によってはブランケ ットが過度に乾燥してしまうことがある為にインキ溶媒 加湿機構も必要である。

> 【0061】(実施例3)以下、オフセット印刷により 形成された電子放出素子の素子電極を形成した画像表示 装置の製造方法について説明する。

【0062】上記実施例で説明した印刷装置によってガ ラス基板上に電子放出素子を構成する一対の素子電極 (図11の1102, 1103参照)を印刷形成した。 本実施例においてインキは有機金属から成るPtレジネ ートペースト (エヌ・イーケムキャット(株)社製)を 用いている。ガラス基板上に転移されたインキは約80 ℃で10分間の乾燥の後、約550℃の焼成によって主 にPtから成る素子電極として利用できる。印刷乾燥後 のガラス基板上のインキ転写厚みは約3μm程度であ る。さらに、焼成後のPt電極厚みは約500オングス トローム程度と薄く形成することができた。ここで、素 子電極は図11に示すように素子電極間隔しを有し、そ の寸法を約20μmに設定した。

【0063】以上のようにして形成した素子電極に対し て配線とPd微粒子から成る導電性膜を形成することに よって電子源基板を作製することができる。

【0064】図8は、電子源基板401と、加速電極4 19と、蛍光体とメタルバックとを形成した基板415 とを含む画像表示装置の断面図である。

【0065】401は青板ガラスから成る電子源基板、

30

11 刷形成された素子電極である(紙面に対し垂直方向に平 行に形成されている)。407,408,409はAg ベーストインキのスクリーン印刷、焼成で得られた厚み 約7ミクロンの印刷配線である(紙面に対し垂直方向に 平行に形成されている)。素子電極402,403,4 04は印刷配線407,408,409と各々接続して いる。405,406は有機金属溶液の塗布焼成で得ら れた厚み約200オングストロームのPd微粒子から成 る導電性膜(図11の1104に相当)であり、素子電 極402、403、404及びその電極間隔部に配置す るようにCr薄膜のリバースエッチ法によってパターニ ングした。410、411、412はメッキ配線で、印 刷配線407,408,409上に厚み約50ミクロ ン、幅400ミクロンのCuメッキによって形成した。 【0066】又、415は青板ガラスから成るガラス基 板で、電子源基板401と5ミリメートル隔たれて対向 している。416,417は蛍光体で、基板415上に 配置されており、対向した電子源基板401上に配置さ れた素子電極402,403,404から成る電極間隔 部に対応した位置に形成されている。蛍光体416,4 17は感光性樹脂を蛍光体を混ぜてスラリー状とし、塗 布乾燥した後ホトリソグラフィ法によってパターニング 形成したものである。418は蛍光体416、417上 にフィルミング工程を施した後、真空蒸着によって厚み

5上に形成したものをフェースプレートと呼ぶ。 【0067】又、419は素子基板とフェースプレート 間に配置されたグリッド電極である。

約30nmのA1薄膜を成膜し、これを焼成してフィル

ム層を焼失することによって得られたメタルバックであ

る。以上の、蛍光体及びメタルバックをガラス基板41

【0068】以上を真空外囲器の中に配置した後、メッ キ配線410,411,412間に電圧を印加して導電 性膜405,406の通電処理を行い、導電性膜40. 5、406に間隙部413,414(図11の1105 に相当)を形成した。この後メタルバック418をアノ ード電極として電子の引き出し電圧5kVを印加し、メ ッキ配線410.411.412間を通して素子電極4 02,403から導電性膜405へ14Vの電圧を印加 したところ、電子が放出された。この放出電子をグリッ ド419の電圧を変化させるととによって変調し、蛍光 40 体418へ照射される放出電子量を調整することができ た。これにより蛍光体416を任意に発光させることが

【0069】同様に素子電極403,404から導電性 膜406~14 Vの電圧を印加したところ、電子が放出 された。この放出電子をグリッド419の電圧を変化さ せることによって変調し、蛍光体417へ照射される放 出電子量を調整することができた。これにより蛍光体4 17を任意に発光させることができた。

の表示画素のみを図示したが、配線とグリッドをマトリ ックス状に形成し、多数個の電子放出素子を配置、駆動 することによって多数個の表示画素によって任意の画像 表示を可能とすることができる。

【0071】多数個の電子放出素子と蛍光体の位置ズレ によって生ずる蛍光輝点のクロストークは無かった。 又、表示領域全域での輝度のバラツキも少なく、これ は、本発明によるオフセット印刷法で作成した素子電極 の形状及び特性のバラツキが少ないことを示すと考えら

【0072】(実施例4)以下、本発明の印刷装置及び 印刷方法、これを用いた別の形態の画像表示装置につい て以下の実施例を用いて説明する。

【0073】以下順に図9を用いて説明する。

【0074】図9は、本発明の製造装置を用いて形成し た画像表示装置の表面伝導型電子放出素子基板の製造工 程を示した上面図である。図9(e)において不図示の 青板ガラス基板上に対して、電子放出素子を3個×3 個、計9個のマトリックス状に配線と共に形成した例で 20 示す。本図において501は上記オフセット印刷によっ て形成された素子電極である。との素子電極パターンは 本実施例においては2μmのギャップを隔てた一方の電 極が500 μm×150 μm、他方が350 μm×20 Ο μ m の長方形状の一対の電極がマトリクス状に配置さ れている。502は印刷Agペーストの焼成によって形 成された下層印刷配線、503は印刷ガラスペーストの 焼成によって形成された下層印刷配線に対して直交した 短冊状の絶縁層である。絶縁層503は一対の素子電極 501の片側の電極位置に切りかき状の開口504を有 している。505は印刷Agペーストの焼成によって形 成された上層印刷配線であり、絶縁層503上で短冊状 に配置形成されており、絶縁層503の開口504部分 で素子電極501の片側の電極と電気的に接続してい る。下層配線502、絶縁層503、上層配線505は ともにスクリーン印刷法で形成されている。509はP d微粒子から成る薄膜であり素子電極501及び、電極 間隔部に配線形成される。

【0075】以下、図9を参照して、本素子基板の製造 方法を順に説明する。

【0076】図9(a)に示すように、上記実施例1,2 で説明したオフセット印刷法を用いて作成した一対の素 子電極が多数配置された40cm角の電子源基板を準備

【0077】次に、図9(b)に示すように、その基板 上にまず第一の配線(下層配線)を形成する。導電性ベ ーストに銀ペーストを用い、スクリーン印刷法により印 刷、焼成を行い、幅100μm、厚み12μmの下層配 線を形成する。

【0078】次に、図9(c)に示すように、下層配線 【0070】なお図8においては、簡単のために、2個 50 と直交する方向に層間絶縁膜をスクリーン印刷法により

は、ブランケットの膨潤により印刷不良が発生する閾値 は、測定されたブランケットの表面高さが約15ミクロ

ンであることがわかった。

形成する。ペースト材料は酸化鉛を主成分としてガラス バインダー及び樹脂を混合したガラスペーストである。 このガラスペーストをスクリーン印刷法により印刷、焼 成を2回繰り返し行いストライプ状に層間絶縁を形成す

【0079】次に、図9(d) に示すように、層間絶縁上 に第二の配線(上層配線)を形成する。下配線と同様な 方法により幅100μm、厚さ12μmの上層配線をス クリーン印刷法により形成し、層間絶縁膜を介しストラ イブ状の下層配線とストライブ状の上層配線が直交した 10 に収まるようにブランケットの加湿機構と、乾燥機構を マトリクス配線が形成される。

【0080】次に、図9(e)に示すように、導電性膜を 形成する。まず素子電極、配線が形成された基板上に有 機パラジウムをインクジェット法により塗布後、300 ℃、10分間の加熱処理を行い、PdOからなる導電性 膜を形成する。その膜厚は10mmである。ととでの微 粒子膜は複数の微粒子が集合した膜であり、微粒子が個 々に分散配置された状態のものばかりでなく、微粒子が 互いに隣接、あるいは重なりあった状態(島状も含む) の膜を指し、その粒径は前記状態で認識可能な微粒子に 20 ついての径をいう。以上の工程によりフォーミング前ま での電子源基板が完成する。

【0081】電子源基板を40センチメートル角基板上 に、480個×480個の電子放出素子をマトリックス 状に配置してR、G、Bに対応する各蛍光体を有するフ ェースプレートと共に真空外囲器内に配置した。この 後、電子放出素子の通電処理を行い、導電性膜に間隙部 を形成し、導電性膜に電子放出部を形成した。本素子基 板の上層印刷配線には14 Vの任意の電圧信号を、下層 印刷配線には0Vの電位を順次印加走査しそれ以外の下 層印刷配線は7 Vの電位とした。フェースプレートのメ タルバックに5kVのアノード電圧を印加したところ、 任意の画像を表示することができた。又、実施例3と同 様に、素子領域全域での輝度バラツキも少なかった。

【0082】(実施例5)図1に示した印刷装置に、図 5に示した、ブランケットの状態を検知するレーザー変 位計であるセンサ12をセットして、前述のインキ、凹 版、ブランケットを用いて青板ガラスにタクト時間およ そ180秒で50枚連続印刷を行った。その際に、5枚 印刷毎にレーザー変位計で、印刷パターンのほぼ中央部 40 分に対応するブランケットの表面高さを測定した。図7 は、ブランケットの表面の高さの基準を一枚目印刷の直 前をゼロとして、表面が高くなる方向を+にとり、ブラ ンケットの表面高さと印刷枚数との関係を示すグラフで ある。

【0083】一通りの印刷が終わった後、印刷された印 刷体のパターンを詳細に観察したところ、約22枚目か らインキの転写不良が現れ始め、徐々に転写不良の発生 量が増加していくことを確認した。

【0084】この結果、本実施例での印刷条件において 50 【符号の説明】

【0085】(実施例6)図1の印刷装置に、図5に示 したセンサ12, コントローラ17, 及びブランケット 調湿部をセットして、実施例5と同様にして100枚の 連続印刷を行った。ブランケット調湿部にはブランケッ トの表面高さのデータから計算されるインキ湿潤度合い を入力し、ブランケットの表面高さが10ミクロン以下 コントローラー17によって制御した。

【0086】印刷が終わった後に、すべての印刷物を検 査したが、全面でインキの膜厚むらがほとんど無く、パ ターンの直線性も良好な印刷物が得られた。

【0087】尚、実施例5及び6の印刷装置を用いて、 実施例3及び4の画像表示装置を作成したが、実施例3 及び4と同様の結果が得られた。

[0088]

【発明の効果】以上説明した本発明によれば、印刷不良 品の発生を極めて低減し得る印刷装置を提供することが できる。又、本発明によれば、基板上に所望パターンの 部材を再現性良く形成し得るプリント基板の製造方法を 提供することができる。又、本発明によれば、基板上に 複数の電子放出素子を再現性良く形成し得る電子源の製 造方法を提供することができる。又、本発明によれば、 高品位画像の表示が可能な画像表示装置を再現性良く製 造し得る画像表示装置の製造方法を提供することができ る。又、本発明によれば、歩留まりの著しい向上を図る ととが可能な、プリント基板、電子源、及び、画像表示 装置の製造方法を提供することができる。

【図面の簡単な説明】

【図1】本発明の印刷装置の一部上面図である。

【図2】図1の印刷装置による印刷工程を示す側面図で ある。

【図3】本発明の印刷装置の部分概念図である。

【図4】FT-IRのATRプローブの断面図である。

【図5】本発明の印刷装置の別の部分概念図である。

【図6】ATRスペクトルの一例を示すチャートであ

【図7】印刷枚数とブランケットの膨潤の度合いの一例 を示す図である。

【図8】本発明の実施例3の画像表示装置を示す断面図 である。

【図9】本発明の実施例4の画像形成装置を示す上面図 である。

【図10】表面伝導型電子放出素子を示す上面図であ

【図11】表面伝導型電子放出素子を示す上面図であ る。

13 吸湿シート

14a、14b、14c ローラ

15

15 乾燥機構

16 加湿機構

17 コントローラ

21 センサヘッド

22 ATR結晶

*28 光ファイバ29 レーザ光101 インキ練り台104 インキローラ105 凹版106 ワーク(被印刷体)

113 ブランケット

*

[図1]
[図4]
[図4]
[図4]

【図6】

[図7]

【図8】

[図10]

フロントページの続き

(51)Int.Cl.'	識別記号	FΙ	テーマコード(参考)
H O 5 K 3/12	6 3 0	B 4 1 F 31/02	S
// B 4 1 F 13/08		33/14	Z