

Reversible Gates

Tags Part I SubUnit I

Circuits and Entropy

- Classic gates destroy randomness → Consume energy!
- By Landauer's principle:

 $kT \ln 2$ energy needed per bit!

• Need reversible gates to preform low energy computing.

Reversible Gates

1. **CNOT**: Controlled NOT

Reversible Gates 1

Controlled Not, if X is true, output is NOT Y. Otherwise, all stay the same.

2. Toffoli gate or CCNOT: Controlled Controlled NOT.

This gate is universal by itself, because it can simulate both AND and NOT gates.

If both X and Y are true, output is NOT Z. Otherwise, all stay the same.

3. Fredkin gate or CSWAP: Controlled Swap.

This gate is universal by itself, because it can simulate both AND and NOT gates.

If we set Y = 1 and Z = 0, it simulates the NOT gate!

Fredkin gate cannot change the Hamming weight (number of one's) of its inputs.

Reversible Gates 2

If X is true, Y and Z get swapped,. Otherwise, all stay the same.

Theorem: The number of garbage outputs in these gates to simulate a circuit is O(width of circuits).

Theorem: Any Boolean circuit of size n can be simulated by a reversible circuit of order of polynomial in n reversible gates. (approx. O(n^2))

Def.: "in-place reversible": No garbage bits are allowed, and no extra ancilla bits are provided (constant zero or one).

Reversible Gates 3