	, Assi	gnment No:	2	1 7 7 7
Name : 5	Shubhang;	A. Kolekar		
Class :- 1	3EI T			
Roll No :-	31			
Subject :-	Ts Lab			
		Remark	Sign.	

	Assignment No:-2.
	Solve the following with forward Chaining or backword Chaining or resolution (any one) wase Predicate logic as language of knowledge represention "Gto Clearly Specify the Facts and interence Mule used. Example 1 Every Child Sees Some witch No who witch has
	both a black cat and a pointed hat 2) Every with is good or band 3) Every Child who sees any good witch gets Candy. 4) Every witch that is bad has a black Cat. 5) Every witch that is seen by any child has a pointed hat. 6) Prove: every child gets candy.
6	A) Facts into Fol. 1) if xAy (Child (x), with (y) > Sees (x,y)) N y y (witch (y) > has (y, black (at) ^ has (y, Pointed, hat)
	2) fy (witch (y) > good (y) v bod (y)) 3) Ex (csees(x,y) > (witch (y) > good (y)) > get (x, candy) 4) Ey ((witch (y) > bad (y)) > has (y > black hat)) 5) Ey (sees (x,y) > has (y, Pointed hat)
ındaram	FOR EDUCATIONAL USE

```
6) FOL into CNP
         1) F x Ay (child (x), witch (y) > sees (x,y))
         -> 20 7 y (witch (y) -> has 6 y , black hat)
         - ur fy (witch (y) - has (y, Pointed hat)
         2) by (witch (4) ) good (4))
         y bad (y) > bad (y))
         3) Ex ( (Sees (x, y) > witch (y) > good (y1) > gets
           (x, candy)
        > Ex [ Eses (x, goodcy) > gets (x, candy)]
         4) ET (band (y) -> has (y, black, hats)]
         5) Ey [ Seen (x,y) - has (y, Pointed hat)]
        - inty [seen (x,y) - has (y, black hat))
        C>
             sees (x;y)
                                      with (4) U sees (x,4)
                                          Egood Vbadly3
           r seen (x, (good) r sees (x, band) has (y,z)

{ 41900d v bad}
                                              Ez/black Cat V
Pointed hat }
            Seen(x, good) Vseen (x, bad)
                                                has (good, Pointed
                                              hats vget (x, (andy)
          Seen (x, good) Uhas (good pointed hat) V gets
                                           Seen (x1900d)
             (x, (andy)
                                             gets (x, candy)
daram
           gets (x, (oundy). FOR EDUCATIONAL USECTS (x, (andy)
```

2	2) Example 2:
	1) Every bay or girl is a child
	2) Every child gets a doll oratrain or a lump
	3) No boy gets and doll
	4) Every child who is bad gets any lump
	of Coal.
	5) No child gets a train.
	6) Ram gets lump of Coal
7	7) prove Ram is bad.
	1) Vx (boy (x) ox gixl (x) > child (x))
	2) Vy (child (y) > gets (y, doll) or gets (y, train)
	or gets (y, (oal)
	3) & w (boy (w) > ' gets (w, doll)
	4) Fox all 2 (Child (2) and bad (2)) > get 5 (2, (oal)
	y child (y) → ! gets (y, train)
0	5) Child (ram) > gets (ram, coal)
	To prove (child (ram) → had (ram))
	CNC at as
	ONE Clauses. 1) boy (x) or child (x)
	! qirl (x) or child (x)
	2) : child (4) or gets (4, doll) or
	gets (y, train) or gets (y, oral)
	3) boy (w) or ! gets (w, doll)
	4)! Child (2) or! bad (2) or gets (2, (0al)
	5): Child (ram + gets Eram, (oal)
	6), bad (ram), FOR EDUCATIONAL USE
Sundaram	TONIE COL
Control of the	

	Resolution
	(4) 1 child (2) ox 1 bad (2) or get (2, (0al)
	+) ! Child (ram) or gets (rame 1)
	Substting 2 by ram. 1) (a) I boy (x) or child (1)
	1 am
	8) child ram (substing x by ram) 7) ! child (ram) or gets (ram, coal) 8) child (ram)
	a) gets (ram, (oal)
	or gets (4, coal)
	(ram)
	gets (ram, doll) or gets (ram, train) or
	Gsubstituting y by ram) g) gets (ram, coal)
	10) gets (ram, doll) or gets (ram, train) or
	Csubstituting y by ram)
	gets (ram, coal)
	10) gets (ram, doll) or gets (ram, train) or gets (ram, coal)
	11) gets (ram, doll) or gets (ram, coal)
	5) boy (w) or ! gets (w, dol) 5) boy (ram)
	12) 'get (ram, doll) (substituting wby rum)
aram	FOR EDUCATIONAL USE

	1) gets (ram, doll) or 12) i gets (ram, doll) 13) gets (ram, Coal, 6) <a> get (ram,	Coal)	
Q.2	13) gets Xram, Coal) Hence, bad Xram is proved 3.2. Differente between STRIPS and ADL		
	STRIPS language 1) Only allow positive literal in the States for ey: 1) Valid Sentence is	ADL i) Can Support both possitive and negative literals. For eg: Same Sentence	
	2) STRIPS Stand for. Standard Research Institute Problem Solver	2) Stands for action. Description language	
	3) Makes use of Closed world assumption (i.e) un mentioned literals are false.	3) Make use of open world Assumption (i.e) unmentioned literals are unknown	
am	FOR EDUCA	ATIONAL USE	

	4) we only can find ground literals in goals Fox eg: Intelligent n Beautiful	4) we can find qualified Variables in goal For eq. (7xAt (PIX) At CP2, X) is the goal of having P14P2 in the some place in the example of blocks
	5) Groals are Conjuctions For eg: (In telligent N Beautiful	5) Goals may involve Conjunction and disjunctions For eq: CIntelligent ACBeautiful ARich
•	6) Effects are Conjunctions	6) Conditional effects are allowed: when P.G. Means Eisan effect only if p is Satified
	7) Does not support	7) Equality Predicate (x=y) is buildin
	8) Dose Does not have support for types	8) Support for types For eg: The Variable P: Person
(Sundaram)	FOR EDUCATIO	NAL USE

Scanned with CamScanne

	5) Each row must be sum to 1, because entries
	represent exhaustive set of cases for variable
	of All Varible are Boolean
	7) A In general, a table for a Boolean varible
	with a parents contains 2+ independently
	specific Probabilities
	8) A variable with no parents has only one.
0	row representing Prior Probabilities of
	each possible value of the variable
	9) Every entry in Full joint Probability
	distribution can be calcuted from information
	In Bayessian network.
	10) A generic entry in joint distribution is
	Probability of a Conjuction of pasticulas.
	assignments to each variable PCx; =x, n
	xn=xn) abbrevied asp(x, xn)
	11) The value of this entry is pcx, -xn).
0	Ti-1, np(1, Parents (xi)), where parents
	S(xi) denotes the specific values of the
	Variables parents (x;)
	- P (jn man v brue)
	= P(jla) P(mla) P(alubrue) P(ush)e(use)
	= 0.09 x 0.07 x 0.001 x 0.999 x 0.998
	= 0.000628
0	
Sundaram	FOR EDUCATIONAL USE

Scanned with CamScanne