Qualidade de Software - TSW-006/2021-3 Prof.: Kechi Hirama

On the Effectiveness of Unit Tests in Test-driven Development

Augusto Calado Bueno

Autores

Ayse Tosun

Universidade Técnica de Istambul

Burak Turhan

Universidade de Brunel, Londres

Natalia Juristo

Universidade Politécnica de Madri

Muzamil Ahmed

Universidade de Oulu

Introdução do Artigo e Objetivos

Definições e Conceitos

Pesquisas Bases e Relacionadas

Experimento e Resultados

Motivação e Objetivos

- Poucas evidências apoiando ou refutando o efeito do TDD na qualidade dos testes de unidade em termos de detecção de defeitos de código.
- Investigar o impacto do TDD
 na eficácia dos casos de
 teste de unidade em
 comparação com um
 desenvolvimento de teste
 incremental

Code Coverage

- Cobertura de código indica qual parte do código de produção (por exemplo, linha, instruções e ramificações) é exercida / executada durante o teste.
- Diferente formas de medir a cobertura de código
 - Branch coverage
 - Method coverage
 - Cyclomatic complexity
 - etc
- Cobertura de código não indica necessariamente a eficácia de um conjunto de testes; em vez disso, mede a penetração/profundidade (thoroughness) de um conjunto de testes

Mutation Score

- Mutation testing é uma forma de medir a capacidade de um caso de teste de detectar defeitos no código
- Para verificar o quão bom é um conjunto de testes, várias versões do código do programa, nas quais diferentes tipos de defeitos são injetados, podem ser criadas.
- 0 mutation score é calculado como a porcentagem de falhas (mutantes) detectadas pelo conjunto de testes.
- Mutation score pode ser usada para medir a eficácia de um conjunto de teste em termos de sua capacidade de detectar falhas

Pesquisas Relacionadas sobre Eficácia do TDD

- O artigo Eficácia dos Testes de Unidade no TDD de Tosun et al é uma extensão dos seguintes estudos:
 - A. Causevic, D. Sundmark, and S. Punnekkat. 2012. Quality of testing in test driven development. In Eighth International Conference on the Quality of Information and Communications Technology.
 - A. Causevic, D. Sundmark, and S. Punnekkat. 2012. Test case quality in test driven development: A study design and a pilot experiment. In 16th International Conference on Evaluation & Assessment in Software Engineering (EASE).
 - Madeyski. 2010. The impact of Test-First programming on branch coverage and mutation score indicator of unit tests: An experiment. Information and Software Technology 52, 2 (2010).

Estudos Base

Titulo	Madeyski	Causevic et al.	Causevic et al.		
Objetivo	Comparação entre Test-First (TF) e Test-Last (TL) no que diz respeito à abrangência e eficácia na detecção de falhas dos testes de unidade.	Comparar qualidade dos casos de teste produzidos pelas abordagens Test-first e Test-last	Comparar a eficácia e eficiência do esforço empregado nos testes utilizando Test-first e Test-last		
Variável Independente	Abordagem de desenvolvimento: TF ou TL				
Métricas	Branch Coverage e Mutation Score	Statement Coverage e Mutation Failing assertion, State Coverage e Mutation Sc			
Design	Um fator e dois tratamentos				

Estudos Base

Titulo	Madeyski	Causevic et al. Causevic et al.		
Participantes	22 alunos de mestrado em engenharia de software de terceiro e quarto ano	14 alunos (mestre em engenharia de software)		
Objeto de Estudo	Sistema web para submissão e revisão de artigos	Bowling Score Keeper		
Resultado	Sem diferença significativa	Sem diferença Sem diferença		

Variável Independente	Abordagem de desenvolvimento: TDD e ITLD
Métricas	Mutation Score, branch coverage e method coverage
Metodologia	Experimento Controlado
Design	Um fator e dois tratamentos
Participantes	24 Professionals sem conhecimento de TDD prévio
Objeto de Estudo	Bowling Score Keeper e Mars Rover API

Execução da Pesquisa

- Todos os participantes foram expostos a ambas as abordagens
 - Participantes receberam treinamento sobre TDD
- Participantes implementaram dois programas utilizando abordagens diferentes
 - MarsRover API utilizando ITLD
 - Bowling Score Keeper utilizando TDD
- Tecnologías utilizadas
 - Java
 - Judy
 - EclEmma

Estatística descritiva - Mutation Scores

	Número Participantes	Min.	Mediana	Média	Max.	Desvio Padrão
ITLD	13	2	62	54.7	83.0	27.9
TDD	18	6	84	70.6	93.0	28.4

Estatística descritiva - Mutation Scores (Comparação por pares)

	Número Participantes	Min.	Mediana	Média	Max.	Desvio Padrão
ITLD	10	17	67	57.5	83.0	26.17
TDD	10	56	87.5	83.5	93.0	10.69

Estatística descritiva - Cobertura de Código *Branch Coverage*

	Min.	Mediana	Média	Max.	Desvio Padrão
ITLD	0	32.5	37.5	96.4	33.8
TDD	0	89.2	59,8	100	45.6

Estatística descritiva - Cobertura de Código Method Coverage

	Min.	Mediana	Média	Max.	Desvio Padrão
ITLD	11.1	87.9	79.1	100	23.8
TDD	0	70.7	61.4	100	30.8

Teste da Hipótese - Mutation Score

- $HO\mu(MS)_{TDD} = \mu(MS)_{ITLD}$: Não há diferença no mutation score (MS) dos testes de unidade implementados pelos sujeitos durante TDD e ITLD
- H1μ(MS)_{TDD} != μ(MS)_{ITLD}: Há uma diferença significativa no mutation score dos testes de unidade implementados pelos sujeitos durante TDD e ITLD

Teste da Hipótese - Cobertura de Código

- HOμ(BRCov)_{TDD} = μ(BRCov)_{ITLD}: Não há diferença entre TDD e ITLD para o branch coverage (BRCov).
- $HO\mu(MTCov)_{TDD} = \mu(MTCov)_{ITLD}$: Não há diferença entre TDD e ITLD para a cobertura de métodos (MTCov).

Teste da Hipótese

- HOµ(MS)_{TDD} = µ(MS)_{ITLD}: Não há diferença no mutation score (MS) dos testes de unidade implementados pelos sujeitos durante TDD e ITLD
- $H1\mu(MS)_{TDD}$!= $\mu(MS)_{ITLD}$: Há uma diferença significativa no mutation score dos testes de unidade implementados pelos sujeitos durante TDD e ITLD
- Nível de significancia = 0.05

Teste da Hipótese - Cobertura de Código

- H0μ(BRCov)_{TDD} = μ (BRCov)_{ITLD}: Não há diferença entre TDD e ITLD para o branch coverage (BRCov).
- $HO\mu(MTCov)_{TDD} = \mu(MTCov)_{ITLD}$: Não há diferença entre TDD e ITLD para a cobertura de métodos (MTCov).
- Nível de significancia =0.05

Métricas	p-value	Hipótese
Median _{BRCov}	0.033	Reject
Median _{MTCov}	0.045	Reject

Conclusão

- Os resultados encontrados através da pesquisa contradizem os resultados de experimentos anteriores sobre a efetividade do TDD em termos de mutation score.
 - TDD melhora o mutation score de testes de unidade em comparação com ITLD
- TDD ajuda na criação de casos de teste mais refinados que cobrem mais branchs
- ITLD ajuda na criação de casos de teste que cobrem mais métodos do código fonte

Resultado Obtido vs. Resultado de Pesquisas Anteriores

Ambas as pesquisas de Madeysky e
 Causevic et al. não encontraram
 nenhuma distinção na qualidade dos
 testes cases ao seguir a abordagem
 <u>TDD ou TLD</u> para branch coverage.

Definições e Conceitos

Teste de Unidade

- Hunt e Thomas [22] descrevem os testes de unidade como um pedaço de código escrito por desenvolvedores com a intenção de exercitar / testar uma funcionalidade específica em uma pequena área do código.
- Principal objetivo é detectar áreas problemáticas do código e reduzir bugs.

Test-Driven Development (TDD)

- O TDD foi introduzido como uma prática de desenvolvimento de software no início dos anos 1960 durante o projeto Mercury da NASA.
- TDD é um processo de desenvolvimento que requer a escrita e a automatização de testes de unidade antes do início do desenvolvimento de uma unidade do sistema.
- Considerado ser uma metodologia adequada ao desenvolvimento ágil.

Test Smells

- ~ Code Smell
- São más práticas de programação no código de teste de unidade (como a forma como os casos de teste são organizados, implementados e interagem uns com os outros)
- Indicam problemas de design em potencial no código-fonte do teste
- São considerados como indicadores de qualidade do código de teste do que uma maneira de entender a eficácia do conjunto de testes