Metoda nejmenších čtverců.

Robert Mařík

22. ledna 2006

Obsah

1	Motivace a geometrický význam	2
2	Vzorec	12
3	Příklad použití	13
4	Odvození vzorce	21
5	Otázky pozorného čtenáře	23
$\triangleleft \triangleleft$		©Robert Mařík, 2006 🗙

Motivace a geometrický význam

Předpokládejme, že teorie ukazuje na skutečnost, že mezi veličinami x a y je lineární vztah ve tvaru y = ax + b. Měřením byly pro konkrétní hodnoty veličiny x naměřeny odpovídající hodnoty veličiny y a výsledek byl zanesen do grafu. Body které jsme obdrželi však neleží na jedné přímce, protože měření je vždy zatíženo nějakou chybou a naše teorie navíc vždy nemusí odpovídat praxi stoprocentně. Máme tedy body v rovině, které leží přibližně v jedné přímce a chceme najít co nejpřesnější matematický model, tj. stanovit koeficienty a, b tak, aby přímka y = ax + b ležela co nejblíže bodům z měření.

Snažíme se vystihnout chování bodů pomocí lineární závislosti. Přímka nebude pochopitelně procházet všemi body, chceme tedy alespoň, aby procházela co nejblíže okolo nich.

Vzorec

Přímku proloženou metodou nejmenších čtverců hledáme za použití následující věty. K jejímu odvození je možné využít parciální derivace, jak je ukázáno ve dvou posledních kapitolách tohoto souboru, na straně 21. Studenti kteří jsou si jistí, že parciální derivace nemají v náplni svého kurzu (například LDF, 1. ročník), by toto odvození číst neměli.

Věta [prokládání souboru bodů přímkou]. Přímka y = ax + b je přímka, proložená metodou nejmenších čtverců souborem bodů $[x_1, y_1]$, $[x_2, y_2]$, ..., $[x_n, y_n]$, jestliže pro koeficienty a, b platí

$$a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i,$$

$$a \sum_{i=1}^{n} x_i + b n = \sum_{i=1}^{n} y_i.$$
(1)

Příklad použití

Problém: Proložte přímku následujícím souborem bodů.

x_i	0	1	3	5	6
y_i	5	3	3	2	1

Řešení: Body v souboru jsou [0,5], [1,3], [3,3], [5,2] a [6,1]. Celkem tedy máme pět bodů, tj. n=5. Výpočty potřebné pro nalezení koeficientů v soustavě provedeme v následující tabulce.

i	x_i	y_i	•	
1	0	5		
2	1	3		
3	3	3		
4	3 5	2		
5	6	1		
\sum				

$$a \sum x_i^2 + b \sum x_i = \sum x_i y_i$$

$$a \sum x_i + b n = \sum y_i$$

i	x_i	y_i	x_i^2	
1	0	5	0	
2	1	3	1	
3	3	3	9	
4	5	2	25	
5	6	1	9 25 36	
\sum				

$$a \sum x_i^2 + b \sum x_i = \sum x_i y_i$$

$$a \sum x_i + b n = \sum y_i$$

i	x_i	y_i	x_i^2	$x_i y_i$
1	0	5	0	0
2	1	3	1	3
3	3	3	9	9
4	5	2	25 36	10
5	6	1	36	6
\sum				

$$a\sum_{i} x_{i}^{2} + b\sum_{i} x_{i} = \sum_{i} x_{i}y_{i}$$

$$a\sum_{i} x_{i} + bn = \sum_{i} y_{i}$$

i	x_i	y_i	x_i^2	$x_i y_i$
1	0	5	0	0
2	1	3	1	3
3	3	3	9	9
4	5	2	25	10
5	6	1	36	6
\sum	15	14	71	28

$$a\sum x_i^2 + b\sum x_i = \sum x_i y_i$$

$$a\sum x_i + b n = \sum y_i$$

i	x_i	y_i	x_i^2	$x_i y_i$
1	0	5	0	0
2	1	3	1	3
3	3	3	9	9
4	5	2	25	10
5	6	1	36	6
\sum	15	14	71	28

Sestavíme soustavu lineárních rovnic

$$71a + 15b = 28,$$

 $15a + 5b = 14.$

$$a\sum x_i^2 + b\sum x_i = \sum x_i y_i$$

$$a\sum x_i + b n = \sum y_i$$

i	x_i	y_i	x_i^2	$x_i y_i$
1	0	5	0	0
2	1	3	1	3
3	3	3	9	9
4	5	2	25	10
5	6	1	36	6
\sum	15	14	71	28

Sestavíme soustavu lineárních rovnic

$$71a + 15b = 28,$$
$$15a + 5b = 14.$$

Řešením této soustavy je $a=-\frac{5}{13}\doteq -0.538$ a $b=\frac{387}{65}\doteq 4.415$. Nejlepší lineární aproximace souboru bodů je tedy přímka

$$y = -0.538x + 4.415$$

Graf souboru bodů a výsledná přímka jsou zachyceny na obrázku.

Obrázek 1: Metoda nejmenších čtverců