

FIG. 2A

FIG. 2B

Figure 4. Illustration of redox polymer mediated biosensing process.

Figure 5. Structure of water-soluble and cross-linkable ferrocenyl redox polymer.

R = $\text{C}_n\text{H}_{2n}\text{-NH}_2$, $\text{C}_n\text{H}_{2n}\text{-COOH}$, $\text{NH-C}_n\text{H}_{2n}\text{-SO}_3\text{H}$ ($n = 0 - 8$)

Figure 6. Polymerization mechanism of the redox polymer

FIGURE 7. FT-IR Spectrum of PAA-VFc and PAAS-VFc redox polymer

FIGURE 8. UV-visible spectra of Fc, PAA, PAAS and their VFc co-polymers.

SUBSTITUTE SHEET (RULE 26)

Figure 9. Cyclic voltammograms of redox polymers in various systems.

Phosphate-buffered saline, potential scan rate = 100 mV/s

Figure 10. Cyclic voltammogram of cross-linked PAA-VFc-GOx-BSA film on gold electrode.
PBS, potential scan rate 50 mV/s.

Figure 11

BEST AVAILABLE COPY

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16