Index

	_ ·	Facilitation		C 1		<u> </u>
Sr.	Expt.	Experiment Name	Perform	Submission	Page	Sign
No	No.		date	Date	No.	
1	A1	Consider telephone book database of N				
		clients. Make use of a hash table				
		implementation to quickly look up				
		client's telephone number. Make use of				
		two collision handling techniques and				
		compare them using number of				
		comparisons required to find a set of				
		telephone numbers.				
2	A2	Implement all the functions of a				
		dictionary (ADT) using hashing and				
		handle collisions using chaining with/				
		without replacement. Data: Set of (key,				
		value) pairs, Keys are mapped to values,				
		Keys must be comparable, Keys must be				
		unique. Standard Operations: Insert(key,				
		value), Find(key), Delete(key).				
3	B5	A book consists of chapters, chapters				
		consist of sections and sections consist of				
		subsections. Construct a tree and print				
		the nodes. Find the time and space				
		requirements of your method.				
4	В6	Beginning with an empty binary search				
		tree, construct binary search tree by				
		inserting the values in the order given.				
		After constructing a binary tree - i. Insert				
		new node, ii. Find number of nodes in				
		longest path from root, iii. Minimum data				
		value found in the tree, iv. Change a tree				
		so that the roles of the left and right				
		pointers are swapped at every node, v.				
		Search a value				
5	B11	A Dictionary stores keywords an d its				
		meanings. Provide facility for adding new				
		keywords, deleting keywords, updating				
		values of any entry. Provide facility to				
		display whole data sorted in ascending/				
		Descending order. Also find how many				
		maximum comparisons may require for				
		finding any keyword. Use Binary Search				
		Tree for implementation.				
6	C13	Represent a given graph using adjacency				
		matrix/list to perform DFS and using				
		adjacency list to perform BFS. Use the				
		map of the area around the college as the				
		graph. Identify the prominent land marks				
		as nodes and perform DFS and BFS on				
		that.				
7	C14	There are flight paths between cities. If				
		there is a flight between city A and city B				
		then there is an edge between the cities.				
		The cost of the edge can be the time that				

	1
flight take to reach city B from A, or the	
amount of fuel used for the journey.	
Represent this as a graph. The node can	
be represented by airport name or name	
of the city. Use adjacency list	
representation of the graph or use	
adjacency matrix representation of the	
graph. Check whether the graph is	
connected or not. Justify the storage	
representation used.	
8 D18 Given sequence k = k1 < < kn, of n sorted	
keys, with a search probability pi for each	
key ki. Build the Binary search tree that	
has the least search cost given the access	
probability for each key?	
9 D19 A Dictionary stores keywords and its	
meanings. Provide facility for adding new	
keywords, deleting keywords, updating	
values of any entry. Provide facility to	
display whole data sorted in	
ascending/Descending order. Also find	
how many maximum comparisons may	
require for finding any keyword. Use	
Height balance tree and find the	
complexity for finding a keyword.	
10 E22 Read the marks obtained by students of	
second year in an online examination of	
particular subject. Find out maximum	
and minimum marks obtained in that	
subject. Use heap data structure. Analyze	
the algorithm.	
number, name, division and address.	
Allow user to add, delete information of	
student. Display information of particular	
employee. If record of student does not	
exist an appropriate message is	
displayed. If it is, then the system	
displays the student details. Use	
sequential file to main the data.	
12 F24 Company maintains employee	
information as employee ID, name,	
designation and salary. Allow user to add,	
delete information of employee. Display	
information of particular employee. If	
employee does not exist an appropriate	
message is displayed. If it is, then the	
system displays the employee details.	
Use index sequential file to maintain the	
	l l