

 $M \times 1$

K < M << N

CS-VQA: Visual Question Answering with Compressively Sensed Images

Li-Chi Huang[†], Kuldeep Kulkarni^{*,} Anik Jha[†], Suhas Lohit[†], Suren Jayasuriya^{†‡}, Pavan Turaga^{†‡} [†] School of Electrical, Computer and Energy Engineering, ASU [#] School of Arts, Media and Engineering, ASU * College of Electrical and Computer Engineering, CMU

(This work has been accepted in International Conference on Image Processing (ICIP) 2018)

Geometric Media Lab

ReconNet [2] Reconstructions

Compressive Sensing (CS)

- The Visual Question Answering (VQA) problem deals with the task of answering an open ended question posed with respect to a given image
- We explore whether the underlying representation performance
- In particular, ability to use sub-Nyquist rate sensed measurements of natural images in a VQA

Question: Are these shoes appropriate for playing tennis?

Question: Are these zebras on a road?

In Compressive Imaging (CI),

random projections of the

signal are directly acquired

without first collecting the

CS imaging decreases energy

consumption and bandwidth

(SPC)^[1] is a popular example

attempted to reconstruct the

signals/images with different

The Single-Pixel Camera

of a compressive imager

Much of CS theory has

assumptions on image

statistics [1,2]

pixels/voxels

utilization

Experimental Results

Open-ended VQA v1.0^[4] results with various CS reconstructions, and their corresponding accuracy(%)

CS Reconstruction	All	Yes/No	Number	Other		
$\phi_B^T \phi_B x_B (MR = 0.25)$	52.98	79.50	33.03	38.15		
ReconNet (MR = 0.25)	54.22	79.85	33.28	40.21		
ReconNet (MR = 0.10)	51.40	79.13	33.20	35.21		
ReconNet (MR = 0.01)	51.05	78.77	32.92	34.87		
Oracle VQA v1.0						
LSTM + VGG	57.75	80.50	36.77	43.08		
Question Only	50.39	78.41	34.68	30.03		

Open-ended VQA v2.0^[5] results with various CS reconstructions, and their corresponding accuracy(%)

CS Reconstruction	All	Yes/No	Number	Other		
$\phi_B{}^T\phi_BX_B(MR=0.25)$	48.92	70.61	33.13	36.58		
ReconNet (MR = 0.25)	49.85	70.50	33.32	38.52		
Oracle VQA v2.0						
LSTM + VGG	54.22	73.46	35.18	41.83		
Question Only	44.26	67.01	31.55	27.37		

Introduction

- of visual data in 2D images is even critical for VQA
- architecture can help adapting VQA techniques to resource-constrained platforms like HoloLens

 $M \times N$

Generator (RNG)

This picture has been taken from [1]

CS-VQA Architecture

CS Reconstructions

At MR: 0.25

Question: "Are the red buses identical?"

yes

Ground Truth: 3

Ground Truth: yes

Original Image

 $\underline{\boldsymbol{\phi}}_{\underline{B}}{}^{\mathsf{T}}\underline{\boldsymbol{\phi}}_{\underline{B}}\underline{\mathbf{x}}_{\underline{B}}$

Question: "How many different color flowers are there?"

Question: "What type of utensil is leaning on the edge of the plate?" Ground Truth: fork spoon

Conclusion

- VQA can achieve near-equivalent performance to natural images when using advanced compressive sensing reconstruction techniques such as ReconNet
- Using direct inference approaches, we report reduced processing time and network parameters over approaches that need full reconstruction. Of course, using a full-reconstruction approach results in the best performance
- [1] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, R. Baraniuk, "An architecture for compressive imaging", in *Proceedings of International Conference on Image Processing (ICIP),* 2006.
- [2] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, "ReconNet: Non-iterative reconstruction of images from compressively sensed random measurements," in Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- [3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions" in Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2015. [4] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick, and D. Parikh, "VQA: Visual question answering" in *Proceedings of International Conference on Computer Vision (ICCV)*, 2015.
- [5] Y. Goyal, T. Khot, D. Summers-Stay, D.Batra, and Devi Parikh, "Making the V in VQA matter: Elevating to Conference on Computer Vision and Pattern Recognition (CVPR), 2017

