

Introduction aux compétitions Kaggle

Atelier 4

Noé Vernier Jacques Sun

Rezel IA

Sommaire

- 1 Introduction
- 2 Comprendre la data
- Feature engineering
- 4 Data cleaning
- 5 Data splitting

C'est quoi?

Site proposant des **bases de données, notebook** et **tutoriel** pour réaliser des projets ou compétitions

kaggle

LLM Prompt Recovery

Recover the prompt used to transform...

Featured · Code Competition

632 Teams

\$200,000

a month to go

The Learning Agency Lab - PII Data Detection

Develop automated techniques to det...
Featured · Code Competition
1333 Teams

\$60,000 2 months to go

HMS - Harmful Brain Activity Classification

Classify seizures and other patterns o... Research · Code Competition 2141 Teams

a month to go

3 months to go

\$50,000

Mania 2024
Forecast the 2024 College Basketball ...

Featured · Code Competition
246 Teams

March Machine Learning :

\$50,000 a month to go

Google - Al Assistants for Data Tasks with...

Build tools to assist Kaggle developers Analytics

\$50,000

a month to go

Steel Plate Defect Prediction

Playground Series - Season 4, Episod... Playground 608 Teams

25 days to go

Swag

O CLEGEOL

GeoLifeCLEF 2024 @ LifeCLEF & CVPR-FGVC

Location-based species presence pre...
Research

Knowledge

PlantTraits2024 - FGVC11

Uncovering the biosphere: Predicting ...
Research

145 Teams

Knowledge 3 months to go

Goal

It is your job to predict the sales price for each house. For each Id in the test set, you must predict the value of the SalePrice variable.

Dataset

Categorical Features

- Nominal: MSSubClass, MSZoning, Street, ...
- Ordinal: OverallQual, OverallCond, ExterQual, ...

Numerical Features

- Continuous: LotFrontage, LotArea, ...
- Descrete: YearBuilt, YearRemodAdd, ...

Step of resolution

Understanding data - Type of data

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape
0	1	60	RL	65.0	8450	Pave	NaN	Reg
1	2	20	RL	80.0	9600	Pave	NaN	Reg
2	3	60	RL	68.0	11250	Pave	NaN	IR1

- 1 Numeric ------- Stock Prices, Temperature Data, ...
- 3 Missing value → NaN, -, NA, ...

Understanding data - Categorical encoding

Label Encoding

Food Name	Categorical #	Calories	
Apple	1	95	
Chicken	2	231	
Broccoli	3	50	

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Understanding data - Distribution

Skewness

$$\operatorname{skew}(X) = \mathbb{E}\left[\left(\frac{X - \mu}{\sigma}\right)^3\right]$$

Kurtosis

$$kurt(X) = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right]$$

Understanding data - Distribution

Skewness = 1.882876

Kurtosis = 6.536282

Understanding data - Distribution

Skewness = 0.121347

Kurtosis = 0.809519

→ Normaliser pour éviter le pb d'échelle, améliore les performances

Understanding data - Univariate / Bi-Variate

Univariate

Bi-Variate

Understanding data - Univariate / Bi-Variate

OverallQual OverallCond -YearBuilt YearRemodAdd MasVnrArea · BsmtFinSF1 BsmtFinSF2 BsmtUnfSF TotalBsmtSF 1stFlrSF 2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath **BsmtHalfBath FullBath** HalfBath BedroomAbvGr KitchenAbvGr TotRmsAbvGrd Fireplaces GarageYrBlt · GarageCars GarageArea -WoodDeckSF OpenPorchSF EnclosedPorch 3SsnPorch ScreenPorch PoolArea MiscVal MoSold

Univariate

Bi-Variate

Feature Engineering

Feature Engineering

Feature Engineering

Feature Engineering is a process that involves **transforming** raw data into features that **more precisely** represent the underlying problem for a predictive model

Feature Engineering - Feature Simplification

```
all_data["SimplOverallQual"] = all_data.OverallQual.replace({1 : 1, 2 : 1, 3 : 1, # bad
4 : 2, 5 : 2, 6 : 2, # average
7 : 3, 8 : 3, 9 : 3, 10 : 3 # good
})
```

Feature Engineering - Feature Combination

```
all_data["AllSF"] = all_data["GrLivArea"] + all_data["TotalBsmtSF"]
all_data['TotalLot'] = all_data['LotFrontage'] + all_data['LotArea']
all_data['TotalBsmtFin'] = all_data['BsmtFinSF1'] + all_data['BsmtFinSF2']
all_data['TotalSF'] = all_data['TotalBsmtSF'] + all_data['2ndFlrSF']
```

Feature Engineering - Feature Polynomials

```
all_data["AllSF-2"] = all_data["AllSF"] ** 2
all_data["AllSF-3"] = all_data["AllSF"] ** 3
all_data["AllSF-Sq"] = np.sqrt(all_data["AllSF"])

all_data["OverallQual-s2"] = all_data["OverallQual"] ** 2
all_data["OverallQual-s3"] = all_data["OverallQual"] ** 3
all_data["OverallQual-Sq"] = np.sqrt(all_data["OverallQual"])
```


Data Cleaning

Data Cleaning

Data Cleaning

Data Cleaning is the process of **improving** data quality by identifying and **correcting** or **removing** inaccurate, **incomplete**, **irrelevant**, or **corrupted** records from a dataset

Data Cleaning

- Enlever colonne : Lorsque qu'il y a trop de NaN dans cette colonne
- Enlever ligne
- Remplace les NaN : valeur médiane, moyenne
- Enlever outlier
- Features corrélés
- Feature inintéréssante (une seule valeur quasi tout le temps)

Data Splitting

Data Splitting - K-Fold Cross Validation

