

A Level · Edexcel · Maths

4 hours 43 questions

4.2 General Binomial **Expansion (A Level** only)

Total Marks	/212
Very Hard (11 questions)	/55
Hard (11 questions)	/58
Medium (11 questions)	/55
Easy (10 questions)	/44

Scan here to return to the course

or visit savemyexams.com

Easy Questions

1 Find, in ascending powers of *x*, the binomial expansion of

$$(1-x)^{-1}$$

up to and including the term in x^2 .

2 (a)	Find the first three terms, in ascending powers of X , in the binomial expansion of	of
	$(1+x)^{-2}$	
	(2	2 marks)
(b)	State the values of X for which your expansion in part (a) is valid.	
		(1 mark)

3 (a) Show that

$$\sqrt{4-4x} = 2(1-x)^{\frac{1}{2}}$$

(2 marks)

(b) Hence find, in ascending powers of X, the first three terms in the binomial expansion of

$$\sqrt{4-4x}$$

(2 marks)

(c) Using x = 0.02, use your expansion from part (b) to find an approximation to $2\sqrt{0.98}$.

(2 marks)

4 Find, in ascending powers of X, the binomial expansion of

$$(1+2x)^{-\frac{1}{2}}$$

up to and including the term in x^3 .

(4 marks)

5 (a) Find the first three terms, in ascending powers of X, in the binomial expansion of

$$(1-\frac{1}{2}x)^{\frac{1}{3}}$$

(4 marks)

(b) State the values of *x* for which your expansion in part (a) is valid.

(1 mark)

6 Find the coefficient of the term in x^2 in the binomial expansion of

$$(1-3x)^{-3}$$

(2 marks)

7 The function f(x) is given by

$$f(x) = (1 - px)^{-4}$$

where p is an integer.

Find the coefficient of the term in x^3 in the binomial expansion of f(x), in terms of p.

8 (a) Given that x is small such that x^3 and higher powers of x can be ignored show that

$$(1 - \frac{1}{3}x)^{-2} \approx 1 + \frac{2}{3}x + \frac{1}{3}x^2$$

(3 marks)

(b) Using a suitable value of x in the result from part (a), find an approximation for the value of $(0.94)^{-2}$.

(2 marks)

9 It is given that

$$f(x) = \sqrt{1 + ax}$$
 and $g(x) = \sqrt[3]{1 - ax}$

where a is a non-zero constant.

In their binomial expansions, the coefficient of the x^2 term for f(x) is equal to the coefficient of the x term for g(x).

Find the value of *a*.

(5 marks)

10 (a) Show, as partial fractions, that

$$\frac{5-x}{(1+x)(1-x)} \equiv \frac{3}{1+x} + \frac{2}{1-x}$$

(3 marks)

(b) Find the first three terms, in ascending powers of X, of the binomial expansion of

(i)
$$3(1+x)^{-1}$$
,
(ii) $2(1-x)^{-1}$

(ii)
$$2(1-x)^{-1}$$

(4 marks)

(c) Hence show that the first three terms, in ascending powers of X, in the binomial expansion of

$$\frac{5-x}{(1+x)(1-x)}$$

are

$$5 - x + 5x^2$$

(d) Write dov	vn the values of $oldsymbol{\mathit{x}}$ for which	ch this expansion	converges.	
				(1 ma
SaveMyExams	© 2024 Save My Exams,	Itd Cot mars and	d ace your exams at <u>sav</u>	omvovams som

Medium Questions

1 Find, in ascending powers of *x*, the binomial expansion of

$$\frac{1}{(1-x)^2}$$

up to and including the term in x^3 .

2 (a)	Find the first three terms,	in ascending powers of	of X , in the binomial	expansion of
_ (,				

$$\sqrt{1+2x}$$

(2 marks)

(b) State the values of *x* for which your expansion in part (a) is valid.

(1 mark)

(c) Using a suitable value of x, use your expansion from part (a) to estimate $\sqrt{1.06}$, giving your answer to 3 significant figures.

(1 mark)

3 Find, in ascending powers of X, the binomial expansion of

$$\frac{1}{(4+8x)^2}$$

up to and including the term in x^3 .

(3 marks)

(b) Hence, or otherwise, find the expansion of $(1+x)(1+2x)^{-3}$ up to and including the term in x^2 .

5 (a) The function f(x) is given by

$$f(x) = \sqrt{4 - sx}$$

where s is an integer.

- Find the coefficient of the term in x in the binomial expansion of f(x), in terms of
- Find the coefficient of the term in x^2 in the binomial expansion of f(x), in terms (ii) of S.

(2 marks)

(b) In the binomial expansion of f(x), the coefficient of the term in x is equal to the coefficient of the term in x^2 . Find the value of *s*.

6 (a) The functions f(x) and g(x) are given as follows

$$f(x) = \left(1 - \frac{1}{2}x\right)^{\frac{1}{2}}$$
 $g(x) = (2 + x)^{-2}$

- Expand f(x), in ascending powers of x up to and including the term in x^2 . (i)
- Find the values for *x* for which the expansion is valid. (ii)

(3 marks)

- Expand g(x), in ascending powers of x up to and including the term in x^2 . **(b)** (i)
 - Find the values for *x* for which the expansion is valid.

(3 marks)

(i) Find the expansion of
$$\frac{\sqrt{1-\frac{1}{2}x}}{(2+x)^2}$$
 in ascending powers of x , up to and including the term in x^2 .

Find the values for *x* for which the expansion is valid. (ii)

(2 marks)

7 In the expansion of $\left(1-\frac{1}{4}x\right)^n$, where n is a negative integer, the coefficient of the term in x^2 is $\frac{3}{8}$.

Find the value of n.

8 (a) Express $\frac{2}{(1-x)(1+x)}$ in partial fractions.

(3 marks)

(b) Use the binomial expansion to find the first three terms, in ascending powers of X, in each of $(1 - x)^{-1}$ and $(1 + x)^{-1}$

(2 marks)

(c) Hence show that $\frac{2}{(1-x)(1+x)} \approx 2 + 2x^2$

(2 marks)

(d) Write down the values of *x* for which your expansion in part (c) converges.

(1 mark)

9 (a) Given that X is small such that X^3 and higher powers of X can be ignored show that

$$\left(1 - \frac{1}{3}x\right)^{-1} (2 - x)^{-2} \approx \frac{1}{4} + \frac{1}{3}x + \frac{43}{144}x^2$$

(3 marks)

(b) For which values of *x* is the approximation in part (a) valid?

(2 marks)

- Use your calculator to find the exact fraction of $\left(1-\frac{1}{3}x\right)^{-1}\left(2-x\right)^{-2}$ when (c) (i) x = 0.5
 - Use your calculator to find the fraction from the approximation $\frac{1}{4} + \frac{1}{3}x + \frac{43}{144}x^2$ (ii) when x = 0.5
 - Find the percentage error in the approximation, giving your answer to two decimal (iii) places.

(3 marks)

10 It is given that

$$f(x) = \sqrt{9 + px}$$
 and $g(x) = \sqrt[4]{16 + px}$

In their binomial expansions, the coefficient of the x^2 term for f(x) is equal to the coefficient of the x term for g(x).

Find the value of p.

(3 marks)

11 (a) Express $\frac{12-x}{(x+2)(3-x)}$ in partial fractions.

(2 marks)

(b) Using binomial expansions, up to and including terms in \mathcal{X}^2 show that

$$\frac{12-x}{(x+2)(3-x)} \approx 2 - \frac{1}{2}x + \frac{5}{12}x^2$$

(3 marks)

(c) Explain why the approximation in part (b) is only valid for |x| < 2.

Hard Questions

1 Find, in ascending powers of *x*, the binomial expansion of

$$\frac{1}{(1-2x)^3}$$

up to and including the term in x^3 .

2 (a) Use the first three terms, in ascending powers of x in the binomial expansion of

$$\left(1+4x\right)^{\frac{1}{3}}$$

to estimate the value of $\sqrt[3]{1.2}$, giving your answer to three significant figures.

(3 marks)

(b) Explain why your approximation in part (a) is valid.

(1 mark)

3 Find, in ascending powers of X, the binomial expansion of

$$\frac{1}{(4+x)^3}$$

up to and including the term in x^3 .

(4 marks)

4 (a) Use the binomial expansion to expand $\left(1 - \frac{1}{2}x\right)^{\frac{1}{3}}$ up to and including the term in x^2 .

(2 marks)

(b) Hence, or otherwise, expand $(1-x)(1-\frac{1}{2}x)^{\frac{1}{3}}$ up to and including the term in x^2 .

(2 marks)

5 In the expansion of $\frac{1}{(3+px)^3}$ the coefficient of the term in x^2 is double the coefficient of the term in x^3 . Find the value of p.

(3 marks)

6 (a) The functions f(x) and g(x) are given as follows

$$f(x) = (4+3x)^{\frac{1}{2}}$$
 $g(x) = (9-2x)^{-\frac{1}{2}}$

Expand f(x), in ascending powers of x up to and including the term in x^2 .

(2 marks)

(b) Expand g(x), in ascending powers of x up to and including the term in x^2 .

(2 marks)

(c) Find the expansion of $\sqrt{\frac{4+3x}{9-2x}}$ in ascending powers of x, up to and including the term

(2 marks)

(d) Find the values of *x* for which your expansion in part (c) is valid.

(2 marks)

7 In the expansion of $\left(1-\frac{4}{3}X\right)^n$, where n is a real number, the coefficient of the term in x^2 is $-\frac{16}{81}$.

Find the possible values of n.

8 (a) Express
$$\frac{4+5x-x^2}{(1-x)(1+x)^2}$$
 in partial fractions.

(b) Use the binomial expansion to find the first three terms, in ascending powers of X, in each of $(1-x)^{-1}$, $(1+x)^{-1}$, and $(1+x)^{-2}$.

(3 marks)

(c) Hence express $\frac{4+5x-x^2}{(1-x)(1+x)^2}$ as the first three terms of a binomial expansion in ascending powers of X.

(2 marks)

(d) Write down the values of *x* for which your expansion in part (c) converges.

(1 mark)

9 (a)	Given that x i	is small such	that x^3 and	l higher powers	of <i>x</i> can	be ignored	show that
5 (S)	GIVEIT CHACK	is siman sacin	criac 21 arre	i ingrici powers	OI 21 COII	20 181101 04	JIIOVV CITAC

$$(2+3x)^{-1}(3-2x)^{-2} \approx \frac{1}{18} - \frac{1}{108}x + \frac{19}{216}x^2$$

(b) Find the percentage error between your calculator answer and the approximation in part (a) when x = 0.1, giving your answer to one decimal place.

(3 marks)

(c) For which values of *x* is the approximation in part (a) valid?

10 (a)	In the binomial expansion of $\sqrt{4}$	$+\frac{p}{q}X$	where $p < 0 < q$, the	ne coefficient of the X^2	2 term
	is equal to the coefficient of the 2	r³ term.			

Show that p = -8q.

(3 marks)

(b) Given further that pq = -8 find the values of p and q.

44 (-)	F	1 - 7x	: tl 6	\boldsymbol{A}	B	under and Description of the
11 (a)	Express $\overline{(X)}$	(x+2)(3-x)	in the form	${x+2}$	$\frac{1}{3-x}$	where \boldsymbol{A} and \boldsymbol{B} are integers to b
	found.					

(b) Hence, or otherwise, find the binomial expansion of
$$\frac{1-7x}{(x+2)(3-x)}$$
, in ascending powers of x , up to and including the term in x^2 .

(3 marks)

- **(c)** The expansion in part (b) is to be used to approximate the value of a fraction.
 - If x = 0.1, which fraction is being approximated? (i)
 - Which fraction does the approximation give? (ii)

Very Hard Questions

1 Find, in ascending powers of *x*, the binomial expansion of

$$\frac{1}{\left(1 - \frac{1}{3}x\right)^4}$$

up to and including the term in x^3 .

2 (a) Use the first three terms, in ascending powers of x, in the binomial expansion of

$$\frac{1}{\sqrt{1-\frac{1}{2}x}}$$

to estimate the value of $\frac{1}{\sqrt{0.95}}$, giving your answer to two decimal places.

(3 marks)

(b) Explain why you would not be able to use your expansion to approximate $\frac{1}{\sqrt{3}}$.

(1 mark)

3 Find, in ascending powers of X, the binomial expansion of

$$\frac{1}{(3-2x)^4}$$

up to and including the term in x^3 .

(3 marks)

4 Expand $(1-\frac{1}{2}x)(9+3x)^{-\frac{1}{2}}$ up to and including the term in x^2 .

(4 marks)

5 In the expansion of $\frac{1}{(8+2qx)^{\frac{1}{3}}}$, the coefficient of the term in x^2 is one-seventh of the coefficient of the term in x^3 . Find the value of q.

(4 marks)

6 The functions f(x) and g(x) are given as follows

$$f(x) = 8 - x$$
 $g(x) = 8 + 2x$

Find the binomial expansion of $\sqrt[3]{\frac{f(x)}{g(x)}}$, in ascending powers of x, up to and including the term in x^2 . Also find the values of x for which your expansion is valid.

(5 marks)

7 In the expansion of $(16-2x)^n$, where n is a real number, the coefficient of the term in $x^2 \text{ is } 16^n \times \frac{5}{2048}$.

Given that |n| < 1 find the value of n.

(4 marks)

8 (a) Express
$$\frac{2(2-5x+x^2)}{(x+2)(2-x)^2}$$
 in partial fractions.

(b) Express
$$\frac{2(2-5x+x^2)}{(x+2)(2-x)^2}$$
 as the first three terms of a binomial expansion in ascending powers of x .

(5 marks)

(c) Write down the values of *x* for which your expansion in part (b) converges.

(1 mark)

9 (a) Given that x is small such that x^3 and higher powers of x can be ignored show that

$$(4-3x)^{-2}(2-x)^{-3} \approx \frac{1}{128} + \frac{3}{128}x + \frac{87}{2048}x^2$$

(4 marks)

(b) Find the percentage error between your calculator answer and the approximation in part (a) when x = 0.2, giving your answer to one decimal place.

(3 marks)

(c) For which values of *x* is the approximation in part (a) valid?

(2 marks)

10 It is given that

$$f(x) = \sqrt{4 + ax}$$
 and $g(x) = \sqrt[4]{16 + bx}$

The binomial expansions of f(x) and g(x) have the following properties:

- The coefficient of the x^3 term in the expansion of f(x) is 72 times larger than the (i) coefficient of the x^2 term in the expansion of g(x).
- The coefficient of the x term in the expansion of f(x) is 24 times larger than the (ii)

coefficient of the x term in the expansion of g(x).

Find the values of a and b.

(4 marks)

(5 marks)

(b) Explain why the expansion found in part (a) cannot be used when x = 0.6.