5 Исследование работы приоритетного шифратора в Multisim

Рисунок 5.1 Обозначение приоритетного шифратора в Мультисим- 10

Используем готовую модель x_SchifratorPr.ms10 (рис. 5.2).

Рисунок 5.2 Схема для моделирования работы приоритетного шифратора

Изучаем промышленные микросхемы К555ИВ1 и 74LS148. Выбираем одну таблицу для дальнейшей работы.

Таблица 5.1. Выбранная ТИ (74LS148)

Состояние микросхемы 74148														
Входы									Выходы					
E1	0 1 2 3 4				5	6	7	A2	A1	A0	GS	EO		
1	X	X	X	X	X	X	X	X	1	1	1	1	1	
0	1	1	1	1	1	1	1	1	1	1	1	1	0	
0	X	X	X	X	X	X	X	0	0	0	0	0	1	
0	X	X	X	X	X	X	0	1	0	0	1	0	1	
0	X	X	X	X	X	0	1	1	0	1	0	0	1	
0	X	X	X	X	0	1	1	1	0	1	1	0	1	
0	X	X	X	0	1	1	1	1	1	0	0	0	1	
0	X	X	0	1	1	1	1	1	1	0	1	0	1	
0	X	0	1	1	1	1	1	1	1	1	0	0	1	
0	0	1	1	1	1	1	1	1	1	1	1	0	1	

посещения: 28.11.2020)

Таблица 5.2. ТИ шифратора КМ555ИВ1

Таблица истинности

			E	Выходы									
E1	0	1	2	3	4	5	6	7	A2	A1	A0	CS	E0
1	Χ	X	Χ	Χ	Χ	X	Χ	Χ	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	Χ	X	X	X	Χ	X	Χ	0	0	0	0	0	1
0	X	X	X	X	X	X	0	1	0	0	1	0	1
0	Χ	X	X	X	Χ	0	1	1	0	1	0	0	1
0	X	X	X	Χ	0	1	1	1	0	1	1	0	1
0	Χ	X	X	0	1	1	1	1	1	0	0	0	1
0	Χ	X	0	1	1	1	1	1	1	0	1	0	1
0	Χ	0	1	1	1	1	1	1	1	1	0	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1

посещения: 28.11.2020)

Для каждой строки выбранной таблицы истинности одной из промышленных микросхем программируем генератор слов XWG1

Рисунок 5.3 Генератор слов в программе multisim

Заполняем таблицу истинности шифратора ENC_8TO3.

Таблица 5.3 Таблица истинности шифратора ENC_8TO3

ТУТ ЗАПИСАНЫ 0 и 1 В СООТВЕТСТВИИ с РИС 5.4 и РИСУНКАМИ ДРУГИХ ЭКСПЕРИМЕНТОВ

№	Служеб	ужеб Информационные входы										Информаци			
	ный										Служеб ные		онные		
	вход						выходы		выходы						
	EI	X7	X6	X5	X4	X3	X2	X1	X0	E0	GS	y2	y1	y0	
0	1														
1	0														
2	0	1	1	1	1	1	1	1	0	1	0	1	1	1	
3	0														
4	0														
5	0														
6	0														
7	0														
8	0														
9	0														

В качестве примера представим фрагмент заполнения ТИ. Пусть это будет строка под номером 2.

Рисунок 5.4 Заполнение 2-й строки ТИ

П.4 Покажем, что для строки 7, содержащей в технической документации микросхем буквы X, её можно заменять на 0 или 1 без изменения состояния шифратора. Для удобства проведения этого и дальнейших экспериментов добавим в схему цифровой семисегментный индикатор.

Рисунок 5.5 Исследование 7-й строки ТИ (первое изменение входа)

Рисунок 5.6 Исследование 7-й строки ТИ (второе изменение входа)

П.8 Сравниваем полученные результаты с теорией и паспортными данными шифраторов. ТЕОРИЯ:

Информация получена с данного <u>сайта</u> и из лекционных материалов

(pecypc).

Выводы: -----