independent power necessity

- *对于 SIM800L 以及所有 GPRS/4G/5G蜂窝通信模块 来说
- ZCU102上的Pmod接口主要是为**低功耗的逻辑信号**传输设计的,而不是大功率供电。其3.3V电源引脚通常只能提供约100-200mA的电流,并有保险丝进行过流保护
- SIM800L在搜网和发射的瞬间,会从电源拉取高达2A的脉冲电流。这个电流是Pmod供电能力的**10倍以上**

换模块?

模块类型	典型峰值电 流	Pmod/板载直接供电可行 性	优点	缺点
GPRS (SIM800L)	~2000mA (2A)	不可行	覆盖广,独立上网	功耗极高 ,电源设计 复杂
NB-IoT / LTE- M	~200- 400mA	有风险,仍建议独立供电	运营商网络,功耗 远低于GPRS	峰值电流仍可能超出 Pmod上限
Wi-Fi (ESP32 等)	~500- 700mA	Pmod不可行,但可从板 上其他专用电源口获取	速度快,通用	功耗依然较高,依赖 Wi-Fi网络
LoRa	~130mA	完全可行	功耗极低 ,传输距 离远(公里级)	速率低,需要LoRa网 关或成对使用
蓝牙 (BLE)	< 20mA	完全可行	功耗最低 ,通用性 好	传输距离近(米级), 需手机或网关配合

蓝牙 (BLE) 方案分析

工作原理:

- 1. ZCU102设备检测到跌倒。
- 2. ZCU102通过蓝牙模块,向**周围的一个"中心设备"**发送一个警报信号。
- 3. 这个"中心设备"(**也就是网关**)接收到信号后,由它来负责连接互联网,并将警报发送出去。

• 致命缺点:

- **可靠性低**:整个报警链条严重依赖于中间的"网关"设备。如果老人的手机没电了、App被关了、蓝牙网关断电或Wi-Fi断网,**整个系统就失效了**,警报完全发不出去。对于生命安全相关的应用,这是一个巨大的
- 隐患。

LoRaWAN

致命缺点:

• 依赖LoRaWAN网络覆盖。需要确保老人家里有LoRaWAN网关信号覆盖。如果没有,就需要自己购买和配置一个LoRaWAN网关(额外成本和设置),并且这个网关同样需要连接互联网。可靠性问题与蓝牙方案类似。