① Veröffentlichungsnummer:

0 308 794

A2

(E)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: **88115002.3**

⑤ Int. Cl.4 C07D 239/26 , C07D 239/34 , C09K 19/34

(22) Anmeldetag: 14.09.88

© Priorität: 19.09.87 DE 3731639

② Veröffentlichungstag der Anmeldung: 29.03.89 Patentblatt 89/13

Benannte Vertragsstaaten:

AT BE CH DE FR GB IT LI NL SE

Anmelder: HOECHST AKTIENGESELLSCHAFT
Postfach 80 03 20
D-6230 Frankfurt am Main 80(DE)

Erfinder: Wingen, Rainer, Dr. Rotkäppchenweg 10
R. COM Hettersheim am Mair

D-6234 Hattersheim am Main(DE) Erfinder: Dübal, Hans-Rolf, Dr.

Heuhohiwea 6

D-6240 Königstein/Taunus(DE) Erfinder: Escher, Claus, Dr.

Amselweg 3 D-6109 Mühltal(DE)

Erfinder: Hemmerling, Wolfgang, Dr.

Billtalstrasse 32

D-6231 Sulzbach (Taunus)(DE) Erfinder: Müller, Ingrid, Dr.

Am Pfingstbrunnen 1

D-6238 Hofheim am Taunus(DE) Erfinder: Ohlendorf, Dieter, Dr.

Am Kühlen Grund 4 D-6237 Liederbach(DE)

- Flüssigkristalline Cyclohexancarbonsäurephenylpyrimidinester mit smektischer Phase, Verfahren zu ihrer Herstellung und ihre Verwendung in Flüssigkristall-Mischungen.
- Die trans-Cyclohexancarbonsäure-phenylpyrimidinester der allgemeinen Formel

EP 0 308 794 A2

bilden neben einer relativ breiten nematischen Phase eine smektische C-Phase, wenn R¹ einen Alkylrest mit 10 bis 16 C-Atomen, insbesondere 11 bis 16 C-Atomen, oder einen Alkyloxyrest mit 8 bis 14 C-Atomen und R² ein Alkylrest mit 2 bis 9 C-Atomen bedeuten. Sie eignen sich daher besonders als Komponenten von flüssigkristallinen Mischungen mit smektisch-C-phase, da sie eine relativ breite nematische Phase induzieren oder eine vorhandene enge nematische Phase verbreitern und den Temperaturbereich der smektisch-C-phase zu tiefen, insbesonders aber zu hohen Temperaturen vergrößern.

Flüssigkristalline Cyclohexancarbonsäurephenylpyrimidinester mit smektischer Phase, Verfahren zu ihrer Herstellung und ihre Verwendung in Flüssigkristall-Mischungen

Ferroelektrische Flüssigkristalle haben in jüngerer Zeit wegen ihrer günstigen Eigenschaften - wie kurze Schaltzeiten, Möglichkeit des bistabilen Schaltens und nahezu blickwinkelunabhängiger Kontrast - Interesse als Anzeigemedium für elektro-optische Bauteile gewonnen.

Ferroelektrische Flüssigkristalle können selbst chirale Verbindungen sein, die chirale smektische, insbesondere S $_{\rm C}^{\rm *}$ -phasen ausbilden. Man erhält aber auch ferroelektrische Flüssigkristall-Mischungen, indem man Verbindungen oder Mischungen, die selbst nicht chiral aufgebaut sind, aber geneigt-smektische Phasen ausbilden, mit chiralen Verbindungen dotiert [M. Brunet, Cl. Williams, Ann. Phys. 3, 237 (1978)].

Für den praktischen Einsatz solcher Flüssigkristall-Mischungen ist es zunächst erforderlich, daß die smektische Phase, insbesondere die S * -Phase über einen breiten Temperaturbereich stabil ist. Um ein hohes Kontrastverhältnis in elektro-optischen Bauelementen zu erzielen, ist ferner eine einheitliche planare Orientierung der Flüssigkristalle nötig. Es ist bekannt, daß sich eine einheitliche planare Orientierung in der S * -Phase erreichen läßt, wenn die Phasenfolge des Flüssigkristallsystems mit abnehmender Temperatur lautet

Isotrop→N*→S A →S c.

(z.B. T. Matsumoto et al., Proc. of the 6th Int. Display Research Conf., Japan Display, 30. Sept. - 2. Okt. 1986, Tokyo, pages 468 - 470; M. Murakami et al., loc. cit. pages 344 - 347). Häufig bilden nun flüssigkristalline Verbindungen oder Systeme mit breiter Sc-Phase keine oder nur eine sehr enge nematische Phase. Der Zusatz einer Verbindung mit breiter nematischer Phase zu solchen Sc-Verbindungen oder -Systemen beeinträchtigt die Sc-Phase oder bringt sie zum Verschwinden.

Es wurde nun gefunden, daß trans-Cyclohexancarbonsäurephenylpyrimidinester der allgemeinen Formel (I)

$$R^1 - CO - CO - H - R^2$$
 (I),

in der R¹ einen Alkylrest mit 10 bis 16 C-Atomen, insbesondere 11 bis 16 C-Atomen, oder ein Alkyloxyrest mit 8 bis 14 C-Atomen und R² einen Alkylrest mit 2 bis 9 C-Atomen bedeuten, neben für praktische Zwecke ausreichend breiten nematischen Phasen auch smektische, insbesondere Sc-, Phasen in teilweise bemerkenswert breiten Temperaturbereichen ausbilden.

Aus der EP-A 00 25 119 sind 4-Alkyl-cyclohexancarbonsäure-[4-(5-alkylpyrimidin-2-yl)]-phenylester bekannt, bei denen in den konkreten Beispielen die Alkylsubstituenten fünf bzw. sechs C-Atome enthalten. Ein Hinweis auf derartige Verbindungen findet sich ferner in EP-A 01 51 446 und in WO-A 86/07055. Soweit in diesen Veröffentlichungen überhaupt konkrete Verbindungen angegeben werden, weisen diese jedoch keine smektische Phase auf. Das Auftreten einer smektischen C-Phase neben einer relativ breiten nematischen Phase bei den erfindungsgemäßen Verbindungen war daher nicht zu erwarten. Es war vielmehr anzunehmen, daß in dieser Verbindungsklasse nur eine nematische Phase auftritt.

Die erfindungsgemäßen neuen Verbindungen sind thermisch, chemisch und photochemisch stabil. Man erhält sie aus den zugrundeliegenden 4-(5-Alkyl- bzw. 5-Alkoxy-pyrimidin-2-yl)phenolen oder ihren Alkalioder Erdalkalisalzen durch Umsetzung mit entsprechenden 4-Alkyl-(trans)cyclohexancarbonsäuren oder deren Halogeniden, insbesondere Chloriden.

Vorzugsweise werden zur Herstellung der Verbindungen (I) die Phenole und die Säurechloride eingesetzt, wobei die Umsetzung in Gegenwart von Säurefängern wie Aminen, beispielweise Pyridin oder Triethylamin, oder von Erdalkali-oder Alkali(hydrogen)-carbonaten im allgemeinen bei Temperaturen zwischen -40 und +70 °C erfolgt. Es ist aber auch möglich, die Phenole mit den Säuren umzusetzen, und zwar in Gegenwart von Brönstedt- oder Lewissäuren, ggf. in Gegenwart wasserbindender Mittel oder unter physikalischer Entfernung des Reaktionswassers, z.B. durch azeotrope Destillation oder Absorption, oder unter Zuhilfenahme von Kondensationsreagenzien wie N-N -Carbonyldiimidazol, Dicyclohexylcarbodiimid oder Azodicarbonsäureester/Triphenylphosphin. Es ist auch möglich, die Alkali- oder Erdalkalisalze der Phenole mit den Carbonsäurehalogeniden, insbesondere den Chloriden, umzusetzen. Das jeweils erhaltene Rohprodukt kann in an sich bekannter Weise gereinigt werden, beispielweise durch Umkristallisieren oder durch Säulenchromatographie.

Die erfindungsgemäßen Verbindungen eignen sich besonders gut als Komponenten smektischer flüssigkristalliner Mischungen, da sie sowohl nematische als auch smektische C-Phasen aufweisen. Gibt man die erfindungsgemäßen Verbindungen zu Mischungen aus Fiüssigkristallen oder auch zu einzelnen flüssigkristallinen Verbindungen, die eine S_c- und S_A-Phase, aber keine oder nur eine sehr schmale nematische Phase besitzen, so induzieren oder vergrößern die neuen Verbindungen schon bei Zugabe geringer Mengen, ab etwa 4 Mol-% in der Mischung, die gewünschte nematische Phase und vergrößern gleichzeitig den Temperaturbereich der S_c-Phase. Besonders bemerkenswert ist, daß die Verbreiterung der S_c-Phase häufig nicht nur zu tiefen Temperaturen erfolgt, sondern auch einer Verschiebung der S_c-S_A-Phasengrenze zu höheren Temperaturen auftritt (Beispiele 10 bis 13). Natürlich ist es auch möglich, die erfindungsgemäßen Verbindungen miteinander zu mischen, um so eine Verbreiterung der S_c-Phase, insbesondere eine Absenkung der unteren Temperaturgrenze im Vergleich zu den Ausgangsverbindungen, zu erzielen. Man kann daher auch optimierte Mischungen aus den erfindungsgemäßen Verbindungen als Komponenten ferroelektrischer/smektisch C-Mischungen verwenden.

Gegenstand der Erfindung ist daher auch die Verwendung der erfindungsgemäßen Verbindungen, einzeln oder als Mischungen untereinander, als Komponenten flüssigkristalliner smektisch C bzw. flüssigkristalliner ferroelektrischer Mischungen zwecks Induzierung oder Verbreiterung einer flüssigkristallinen nematischen Phase, wobei der Temperaturbereich der smektischen C-Phase meistens nicht verkleinert, sondern häufig zu tiefen und insbesondere zu hohen Temperaturen vergrößert wird.

Weiterhin vorteilhaft für die Verwendung der erfindungsgemäßen Verbindungen in ferroelektrischen flüssigkristallinen Mischungen ist, daß sie eine negative dielektrische Anisotropie (vgl. Beispiel 14) und eine sehr kleine optische Anisotropie (vgl. Beispiel 15) aufweisen. Hierdurch werden die dielektrischen und optischen Eigenschaften von Mischungen günstig beeinflußt (vgl. Lagerwall et al., "Ferroelectric Liquid Crystals for Displays". SID Symposium, Oct. Meeting 1985, San Diego, Ca. USA).

trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-decyl-pyrimidin-2-yl)]phenyl-ester

Eine Lösung von 35,4 g 4-(5-decyl-pyrimidin-2-yl)phenol 22.5 g trans-4-Pentyl-cyclohexancarbonsäure und 23,4 g N,N -Dicyclohexylcarbodiimid in 600 ml Dichlormethan wird 12 h bei 20 $^{\circ}$ C gerührt. Der gebildete N,N -Dicyclohexylharnstoff wird abfiltriert und das Filtrat über 5 kg Kieselgel mit Dichlormethan chromatographiert. Die produkthaltige Fraktion ergibt nach Umkristallisation aus n-Hexan 21.5 g farblose Kristalle. Phasenfolge K(10 S_x 51.5) 62.8 S_3 85,7 S_c 104,5 N 162.4 I

Analog werden erhalten:

trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-undecyl-pyrimidin-2-yl)]phenyl-ester Phasenfolge K 70 $\rm S_x$ 80 $\rm S_2$ 82.7 $\rm S_c$ 114,5 N 160.5 I

trans-4-Pentyi-cyclohexancarbonsäure-[4-(5-dodecyl-pyrimidin-2-yl)]phenyl-ester Phasenfolge K 67 S $_3$ 83 S $_2$ 87.2 S $_6$ 121 N 156 I

40

trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-octyloxypyrimidin-2-yl)]phenyl-ester Phasenfolge K (35 S_x 68) 72.1 S_3 74 S_c 100 N 193 I

trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-nonyloxypyrimidin-2-yl)]phenyl-ester Phasenfolge K (K_2 64 S_G 69) 74.3 S_c 117.7 N 189 l

trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-decyloxy-pyrimidin-2-yl)]phenyl-ester Phasenfolge K (K_2 65 S_G 72.5) 74.7 S_c 129.8 N 186 5 l

trans-4-Butyl-cyclohexancarbonsäure-[4-(5-dodecyl-pyrimidin-2-yl)]phenyl-ester Phasenfolge K 80 S $_3$ 82 S $_2$ 83,8 S $_c$ 115,3 N 152,7 I

Beispiel 8

5

10

15

20

25

30

35

40

Eine binäre Mischung aus jeweils 50 Mol-% der beiden Verbindungen trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-octyloxypyrimidin-2-yl)]phenyl-ester (Beispiel 4) trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-undecyl pyrimidin-2-yl)phenyl-ester (Beispiel 5) zeigt eine Phasenfolge von K 45 S $_2$ 70.7 S $_c$ 107.5 N 177.5 I.

Anwendungsbeispiele 9 - 12

Es werden binäre Mischungen hergestellt, von denen jeweils eine Komponente eine erfindungsgemäße Verbindung ist und die andere Komponente eine Verbindung mit Sc-Phase, die keine bzw. nur eine sehr schmale nematische Phase aufweist. Die verwendeten Komponenten mit Sc-Phase sind

I: 5-Decyl-2-(4-octyloxy-phenyl)-pyrimidin

II: 5-Octyloxy-2-(4-octyloxy-phenyl)-pyrimidin

III: 5-Nonyloxy-2-(4-heptyloxy-phenyl)-pyrimidin

IV: 4-(4-Decyloxy-phenyl-1-carbonyloxy)-1-(4-methyl-hexyloxy)-benzol

Tabelle I faßt die Ergebnisse zusammen. Angegeben sind jeweils die Phasenfolgen für die reinen Verbindungen I bis IV, sowie für die binären Mischungen.

Die Ergebnisse in Tablle I demonstrieren eindeutig die guten Mischungseigenschaften der neuen Verbindungen. In allen Beispielen wird, ausgehend von den Verbindungen I bis IV (Verbindung A), durch Zugabe von nur 15 Mol-% der erfindungsgemäßen Verbindungen (Verbindung B) in der Mischung A + B der Temperaturbereich der S_c-Phase vergrößert und eine nematische Phase induziert bzw. vergrößert.

15	
20	
25	
30	
35	
40	
45	
50	

10

Tabelle I

Beispiel	Beispiel Verbindung A: Phasenfolge*)	Verbindung B molares	molares	Phasenfolge *)
•		(Verb. des	Mischungs-	
		Beispiels) verhältnis	verhältnis	
			A/B	
6	I: K 40,1 S _C 69,1 S _A 74,7 I	Beispiel 6	85/15	K 35 S _C 78,6 S _A 80,8 N 92 I
10	II: K 50,7 S _C 92,3 S _A 99,5 N 100,3 I Beispiel 6	Beispiel 6	85/15	K 44 $\rm s_{c}$ 96,5 $\rm s_{A}$ 100 N 109,2 I
11	III: K 56 S _C 94,4 S _A 97,5 I	Beispiel 4	85/15	K 47 $\rm S_{c}$ 98,6 $\rm S_{A}$ 99,8 N 107 I
12	C+4	Beispiel 1	85/15	K 27,3 S _c 72,4 S _A 74,6 N 81 I
	[1/ 2G 33 2C]			

*) Es bedeuten: K - kristallin, $S_{\rm C}$ - smektisch C, $S_{\rm A}$ - smektisch A,

N - nematisch, I - isotrop

die Zahlenwerte zwischen den Phasenbezeichnungen geben jeweils die

Umwandlungstemperaturen in °C an.

Beispiel 13

5

Eine Mischung aus den Komponenten

- 1) 5-Octyloxy-2-(4-octyloxy-phenyl)-pyrimidin
- 2) 5-Octyloxy-2-(4-hexyloxy-phenyl)-pyrimidin 59,5 Mol-%
- 3) 5-Octyloxy-2-(4-butyloxy-phenyl)-pyrimidin
- 4) 4-(4-Decyloxy-phenyl-1-carbonyloxy)-1-(4-methyl-hexyl-oxy)-benzol 30 Mol-%
- 5) trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-decyl-pyrimidin-2-yl)]phenyl-ester 10.5 Mol-% zeigt folgendes Phasenverhalten:
- K-1 Sc 74,5 SA 83,8 N 92,5 I

Auch in diesem Beispiel wird durch Zugabe einer erfindungsgemäßen Verbindung (-Komponente 5) die Breite der nematischen Phase von 0,8 °C auf 8,7 °C vergrößert.

Beispiel 14

Von der Verbindung aus Beispiel 1 werden die Dielektrizitätskonstanten bestimmt. Diese betragen bei 95 °C und einer Meßfrequenz von 20 kHz: $\epsilon \perp = -0.37$ und $\epsilon \parallel = -1.23$, so daß sich für die dielektrische Anisotropie $\Delta\epsilon$ ein Wert von -0.86 ergibt.

5 Beispiel 15

35

45

Von den beiden Verbindungen aus Beispiel 1 und Beispiel 4 werden jeweils Mischungen mit 50 Mol-% der Verbindung V 4-(5-Octyl-pyrimidin-2-yl)-1-(6-methyl-octyloxy)benzol hergestellt und sowohl von den beiden Mischungen als auch von der Einzelverbindung V die optische Anisotropie, Δn . bei 50 $^{\circ}$ C bestimmt: Verbindung V: $\Delta n = 0.134$

Mischung mit Beispiel 1: Δn = 0,108

Mischung mit Beispiel 4: Δn = 0.0974

Linear extrapoliert auf die reinen Verbindungen ergibt sich für die Verbindung aus Beispiel 1, $\Delta n = 0.082$, und aus Beispiel 4, $\Delta n = 0.0608$.

trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-undecyloxypyrimidin-2-yl)]phenyl-ester Phasenfolge K 80 S₂ 81 S_c 136 N 181 I

trans-4-Pentyl-cyclohexancarbonsäure-[4-<5-{(S)-7-methyl-nonyloxy}pyrimidin-2-yl>]phenyl-ester Phasenfolge K 60 S₂ 84 S_c 114 N 171 I $[\alpha]_c^{25}$ -3,75(c = 2,CHCl₃)

trans-4-Pentyl-cyclohexancarbonsäure-[4-(5-dodecyloxy-pyrimidin-2-yl)]phenyl-ester Phasenfolge K 81 S $_2$ 90 S $_c$ 143 N 181 I

- trans-4-Heptyl-cyclohexancarbonsäure-[4-(5-dodecylpyrimidin-2-yl)]phenyl-ester Phasenfolge K 79,1 S₂ 87.2 S_c 115 N 155.7 I
- ⁰ Ansprüche

15

25

35

1. trans-Cyclohexancarbonsäure-phenylpyrimidinester der allgemeinen Formel (I)

$$R^{1} \stackrel{N}{\longleftarrow} O-CO- H R^{2}$$
 (I),

in der R¹ einen Alkylrest mit 10 bis 16 C-Atomen, insbesondere 11 bis 16 C-Atomen, oder ein Alkyloxyrest mit 8 bis 14 C-Atomen und R² einen Alkylrest mit 2 bis 9 C-Atomen bedeuten.

2. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel (I), dadurch gekennzeichnet, daß man ein substituiertes Phenol der allgemeinen Formel (II)

$$R^{1}$$
 OH (II)

oder dessen Alkali- oder Erdalkalisalz mit einer substituierten trans-Cyclohexancarbonsäure der allgemeinen Formel (III)

$$HO-CO-H-R^2$$
 (III),

- oder ihrem Säurehalogenid umsetzt.
- 3. Flüssigkristalline Mischung mit mindestens einer smektischen Phase, insbesondere einer S_c -Phase, dadurch gekennzeichnet, daß sie mindestens eine Verbindung der allgemeinen Formel (I) nach Anspruch 1 enthält
- 4. Verwendung von Verbindungen der allgemeinen Formel (I) nach Anspruch 1 als Komponenten von flüssigkristallinen Mischungen mit mindestens einer smektischen Phase, insbesondere mit einer S_c -Phase.
 - 5. Elektrooptisches Bauteil enthaltend eine flüssigkristalline Mischung nach Anspruch 10.

50

45

U Veröffentlichungsnummer:

0 308 794

A3

(2)

EUROPÄISCHE PATENTANMELDUNG

② Anmeldenummer: 88115002.3

(3) Int. Ci.4 C07D 239/26 , C07D 239/34 , C09K 19/34

Anmeldetag: 14.09.88

Priorität: 19.09.87 DE 3731639

(43) Veröffentlichungstag der Anmeldung: 29.03.89 Patentblatt 89/13

Benannte Vertragsstaaten:

AT BE CH DE FR GB IT LI NL SE

Veröffentlichungstag des später ver öffentlichten Recherchenberichts: 11.10.89 Patentblatt 89/41 Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20

D-6230 Frankfurt am Main 80(DE)

Erfinder: Wingen, Rainer, Dr.
 Rotkäppchenweg 10
 D-6234 Hattersheim am Main(DE)

Erfinder: Dübal, Hans-Rolf, Dr.

Heuhohlweg 6

D-6240 Königstein/Taunus(DE) Erfinder: Escher, Claus, Dr.

Amselweg 3 D-6109 Mühltal(DE)

Erfinder: Hemmerling, Wolfgang, Dr.

Billtalstrasse 32

D-6231 Sulzbach (Taunus)(DE)

Erfinder: Müller, Ingrid, Dr. Am Pfingstbrunnen 1

D-6238 Hofheim am Taunus(DE) Erfinder: Ohlendorf, Dieter, Dr.

Am Kühlen Grund 4 D-6237 Liederbach(DE)

Flüssigkristalline Cyclohexancarbonsäurephenylpyrimidinester mit smektischer Phase, Verfahren zu ihrer Herstellung und ihre Verwendung in Flüssigkristall-Mischungen.

© Die trans-Cyclohexancarbonsäure-phenylpyrimidinester der allgemeinen Formel

bilden neben einer relativ breiten nematischen Phase eine smektische C-Phase, wenn R¹ einen Alkylrest mit 10 bis 16 C-Atomen, insbesondere 11 bis 16 C-Atomen, oder einen Alkyloxyrest mit 8 bis 14 C-Atomen und R² ein Alkyloxyrest mit 2 bis 9 C-Atomen bedeuten. Sie eignen sich daher besonders als Komponenten von flüssigkristallinen Mischungen mit

smektisch-C-phase, da sie eine relativ breite nematische Phase induzieren oder eine vorhandene enge nematische Phase verbreitern und den Temperaturbereich der smektisch-C-phase zu tiefen, insbesonders aber zu hohen Temperaturen vergrößern.

Xerox Copy Centre

88 11 5002

	EINSCHLÄGIG			
Kategorie	Kennzeichnung des Dokum der maßgebli	ents mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
Х	WO-A-8 607 085 (ME * Ansprüche *	ERCK)	1,3-5	C 07 D 239/26 C 07 D 239/34
Х	WO-A-8 701 701 (ME * Ansprüche *	ERCK)	1,3-5	C 09 K 19/34
X	EP-A-0 025 119 (VE * Ansprüche 1,22,23	EB WERK) 3 *	1,2	
X	EP-A-0 056 501 (BE * Anspruch 1 *	BC AG)	1	
Х	EP-A-0 181 601 (BA * Anspruch 1 *	YER)	1	
Х	GB-A-2 092 169 (BE * Ansprüche *	BC LTD)	1,3-5	
Х	EP-A-0 151 446 (ME * Seite 22, Zeilen		1,3-5	
Y	JP-A-60 149 564 (CH * Seite 538, Absatz	HISSO CORP.)	1	RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
P,Y	EP-A-0 268 198 (HC * Seite 13, Zeilen)FFMANN-LA ROCHE) 33-36,38,41,44 *	1	C 07 D 239/00 C 09 K 19/00
E	EP-A-0 293 910 (CA * Ansprüche 1,4,14; 1 *	NON K.K.) Seite 18, Beispiel	1-5	
Der vo		de für alle Patentansprüche erstellt		
DE	Recherchenord EN HAAG	Abschlußdatum der Recherche 06–07–1989	OUS	Prüfer SET J-B.

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze
 E: älteres Patentdokument, das jedoch erst am oder
 nach dem Anmeldedatum veröffentlicht worden ist
 D: in der Anmeldung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument

- &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument