Compito del 4 settembre 2000

$$R = b^{\dagger}(a^{\dagger}|aac^{*})^{*}$$

1) Automa deterministico minimo

TABELLA DEGLI STATI RAGGIUNGIBILI

	Α	В	С	D	Е	F
а	\	CDE	CDE	CDE	CF	CDE
b	BC	BC	\	\	\	\
С	١	١	١	١	١	CF

Rinomino gli stati:

$$\textbf{A} \rightarrow \textbf{1}$$

$$B{\cal C} \to 2$$

$$CDE \rightarrow 3$$

$$CDEF \rightarrow 4$$

$$\text{CF} \to 5$$

1, a
$$\rightarrow$$
 \ 2, a \rightarrow 3 3, a \rightarrow 4 4, a \rightarrow 4 5, a \rightarrow 3

$$1,\,b\rightarrow 2 \quad \ 2,\,b\rightarrow 2 \quad \ 3,\,b\rightarrow \setminus \quad \ 4,\,b\rightarrow \setminus \quad \ 5,\,b\rightarrow \setminus \quad \$$

1, c
$$\rightarrow$$
 \ 2, c \rightarrow \ 3, c \rightarrow \ 4, c \rightarrow 5 5, c \rightarrow 5

Guardo la minimalità dell'automa:

2	X			
3	×	×		
4	×	×	×	
5	×	X	×	(3,4)⇒X
	1	2	3	4

L'automa è già minimo

Rinomino gli stati:

 $1 \rightarrow A$

 $2 \rightarrow B$

 $3 \rightarrow C$

 $4 \rightarrow D$

 $5 \rightarrow E$

Dunque l'automa deterministico minimo è il seguente:

$$\begin{split} \Sigma &= \{a,b,c\} \\ Q &= \{A,B,C,D,E\} \\ q_0 &= \{A\} \\ F &= \{B,C,D,E\} \\ \delta &= \{\delta(A,b) \rightarrow B; \ \delta(B,a) \rightarrow C; \ \delta(B,b) \rightarrow B; \ \delta(C,a) \rightarrow D; \ \delta(D,a) \rightarrow D; \ \delta(D,c) \rightarrow E; \\ \delta(E,a) \rightarrow C; \ \delta(E,c) \rightarrow E\} \end{split}$$

2) Grammatica strettamente lineare sinistra

$$\Sigma = \{a,b,c\}$$

$$V = \{X,B,C,D,E\}$$

$$S = \{X\}$$

$$P = \{B \rightarrow b | Bb$$

$$C \rightarrow Ba | Ea$$

$$D \rightarrow Ca | Da$$

$$E \rightarrow Dc | Ec$$

$$X \rightarrow B | C | D | E\}$$

3) Grammatica non contestuale non estesa

 $\Sigma = \{a,b,c\}$ $V = \{R,A,B,C,D,E\}$ $S = \{R\}$ $P = \{R \rightarrow A \mid AB\}$ $B = (a^{\dagger} | aac^{*})^{\dagger}$ $A = b^{\dagger}$ $A \rightarrow b \mid Ab$ $C = a^{\dagger} | aac^{\star}$ $B \rightarrow C \mid BC$ $D = a^{\dagger}$ E = c⁺ $C \rightarrow D |aa|aaE$ D→a|Da E→c|Ec D→a|Da $E\rightarrow c|Ec$

4) Verifica della correttezza di "bbaacc"

a) Con l'espressione regolare:

 $b^{+}(a^{+}|aac^{*})^{*} \rightarrow b^{2}(a^{+}|aac^{*})^{*} \rightarrow bb(a^{+}|aac^{*})^{*} \rightarrow bb(a^{+}|aac^{*}) \rightarrow bbaac^{*} \rightarrow bbaacc$

b) Con l'automa a stati finiti:

	Ь	Ь	a	α	С	С
A	В	В	С	D	E	Е

Lo stato E è finale, dunque la frase è corretta.

c) Con la grammatica strettamente lineare sinistra:

d) Con la grammatica non contestuale non estesa: $R \rightarrow AB \rightarrow AbB \rightarrow bbB \rightarrow bbC \rightarrow bbaaE \rightarrow bbaaEc \rightarrow bbaacc$

5) Ambiguità

La frase "baa" è ambigua, infatti posso ottenerla come: $b^{\dagger}(a^{\dagger}|aac^{*})^{*} \rightarrow b(a^{\dagger}|aac^{*})^{*} \rightarrow b(a^{\dagger}|aac^{*}) \rightarrow ba^{\dagger} \rightarrow baa$ Oppure:

 $b^{+}(a^{+}|aac^{*})^{*} \rightarrow b(a^{+}|aac^{*})^{*} \rightarrow b(a^{+}|aac^{*}) \rightarrow baac^{*} \rightarrow baa$