

2023 MLCAD FPGA Macro Placement Contest

Ismail Bustany

Salt Lake City, Utah

09/13/2023 *Updated and shared on 10/06/2023

Agenda

- Overview
- 2. Benchmark Suite
 - Design Specifications
 - Extended Bookshelf Format
- 3. Evaluation Metrics
- 4. Participating Teams
 - 1.5 min video presentations
- **5.** Updated Results
 - Public Benchmark Team Scores
 - Hidden Benchmark Team Scores
 - Final Team Rankings
- 6. Learnings
- 7. Awards Ceremony!

Contest Organizing Team

- Ismail Bustany*
- Meghraj Kalase*
- Wuxi Li*
- Grigor Gasparyan *
- Bodhisatta Pramanik[†]
- > Andrew Kahng^{+,τ}
- Amit Gupta*

Acknowledgments

The TILOS AI Institute, Zhiang Wang, Yuji Kukimoto, Sreevidya Maguluri, Ravishankar Menon, Nima Karimpour-Darav, Mehrdad Eslami, Chaithanya Dudha, Lin Chai, Kai Zhu, Kristin Perry, Cathal McCabe, Mark O Brian, and Vishal Suthar for their helpful remarks, advice, and assistance.

Contest Website

https://github.com/TILOS-AI-Institute/MLCAD-2023-FPGA-Macro-Placement-Contest

1. Overview

Overview

- Background: Macro placement is NP-hard
 - For FPGA's, there are additional challenges:
 - **Discrete** and site type **columnated** nature of the FPGA device layout
 - Multiple clock domains (typically 1 100)
 - **1000's** of macros
 - Multiple dies
- Problem: SOTA algorithms often result in floorplans with routing and timing closure issues
- Goal: Spur research for developing ML approaches that supplant the SOTA

Overview

- FPGA Device: 16nm single-die UltraScale⁺ xcvu3p
- Benchmark suite: 338 synthetically generated designs
- **Evaluation Metrics:** Macro placement runtime, place-and-route flow runtime, and routability
- Contest Website: https://github.com/TILOS-AI-Institute/MLCAD-2023-FPGA-Macro-Placement-Contest

2. Benchmark Suite

Benchmark Suite

- Netlists generated synthetically
- Varying levels of difficulty
 - Rent's exponent (0.65, 0.67, 0.7, 0.72)
 - #clocks (1, 16, 24, 30, 34, 38)
 - %utilization
 - LUTs (70, 73, 76, 79, 82, 84)
 - FFs (38, 40, 42, 43, 45, 47)
 - DSP, BRAM (80, 82, 84, 86, 88, 90)
 - URAM's (65, 67, 70, 72)
 - cascaded macro shapes (5, 30, and 60 tall)
- Non-timing-driven
- 140 Publicly released designs (1, 24, 30, and 38 clocks),
 - Download from https://github.com/TILOS-AI-Institute/MLCAD-2023-FPGA-Macro-Placement-Contest/blob/main/Benchmark_Suite/Download_Benchmark_Suite.md
 - Various bug fixes published on https://github.com/TILOS-AI-Institute/MLCAD-2023-FPGA-Macro-Placement-Contest/blob/main/Documentation/FAQ.md
- 198 hidden designs (1, 16, 24, 30, 34, and 38 clocks)
 - To be released after this Workshop

Sample Netlist Specifications – 1 Clock

Design	LUT%	FF%	RAMB%	DSP%	Rent	# Clocks	Runtime (s)	Notes
Design_409	70	38	80	80	0.67	1	2035	No tall BRM/ DSP/ URAM/ Carries
Design_410	70	38	80	80	0.67	1	2170	With 2 instances each of semi tall DSP and BRAM
Design_411	70	38	80	80	0.67	1	2783	With 4 instances each of tall DSP and BRAM
Design_412	70	38	80	80	0.72	1	3269	No tall BRM/ DSP/ URAM/ Carries
Design_413	70	38	80	80	0.72	1	2715	With 2 instances each of semi tall DSP and BRAM
Design_414	70	38	80	80	0.72	1	3846	With 4 instances each of tall DSP and BRAM
Design_415	73	40	82	82	0.67	1	3516	No tall BRM/ DSP/ URAM/ Carries
Design_416	73	40	82	82	0.67	1	3067	With 2 instances each of semi tall DSP and BRAM
Design_417	73	40	82	82	0.67	1	3621	With 4 instances each of tall DSP and BRAM
Design_418	73	40	82	82	0.72	1	3353	No tall BRM/ DSP/ URAM/ Carries
Design_419	73	40	82	82	0.72	1	3312	With 2 instances each of semi tall DSP and BRAM
Design_420	73	40	82	82	0.72	1	4310	With 4 instances each of tall DSP and BRAM
Design_421	76	42	84	84	0.67	1	3028	No tall BRM/ DSP/ URAM/ Carries
Design_422	76	42	84	84	0.67	1	3021	With 2 instances each of semi tall DSP and BRAM
Design_423	76	42	84	84	0.67	1	3850	With 4 instances each of tall DSP and BRAM
Design_424	76	42	84	84	0.72	1	3398	No tall BRM/ DSP/ URAM/ Carries
Design_425	76	42	84	84	0.72	1	4972	With 2 instances each of semi tall DSP and BRAM
Design_426	76	42	84	84	0.72	1	4564	With 4 instances each of tall DSP and BRAM
Design_427	79	43	86	86	0.67	1	3144	No tall BRM/ DSP/ URAM/ Carries
Design_428	79	43	86	86	0.67	1	3469	With 2 instances each of semi tall DSP and BRAM
Design_429	79	43	86	86	0.67	1	2573	With 4 instances each of tall DSP and BRAM
Design_430	79	43	86	86	0.72	1	13027	No tall BRM/ DSP/ URAM/ Carries
Design_431	79	43	86	86	0.72	1	4624	With 2 instances each of semi tall DSP and BRAM
Design_432	79	43	86	86	0.72	1	2937	With 4 instances each of tall DSP and BRAM
Design_433	82	45	88	88	0.67	1	3541	No tall BRM/ DSP/ URAM/ Carries
Design_434	82	45	88	88	0.67	1	3316	With 2 instances each of semi tall DSP and BRAM
Design_435	82	45	88	88	0.67	1	4095	With 4 instances each of tall DSP and BRAM
Design_436	82	45	88	88	0.72	1	4342	No tall BRM/ DSP/ URAM/ Carries
Design_437	82	45	88	88	0.72	1	4573	With 2 instances each of semi tall DSP and BRAM
Design_438	82	45	88	88	0.72	1	6323	With 4 instances each of tall DSP and BRAM
Design_439	84	47	90	90	0.67	1	3327	No tall BRM/ DSP/ URAM/ Carries
Design_440	84	47	90	90	0.67	1	3376	With 2 instances each of semi tall DSP and BRAM
Design_441	84	47	90	90	0.67	1	3728	With 4 instances each of tall DSP and BRAM
Design_442	84	47	90	90	0.72	1	2105	No tall BRM/ DSP/ URAM/ Carries
Design_443	84	47	90	90	0.72	1	3604	With 2 instances each of semi tall DSP and BRAM
Design_444	84	47	90	90	0.72	1	3504	With 4 instances each of tall DSP and BRAM

Sample Netlist Specifications – 38 Clocks

Design	LUT%	FF%	RAMB%	DSP%	Rent	# Clocks	Runtime (s)	Notes
Design_373	70	38	80	80	0.67	38	4681	No tall BRM/ DSP/ URAM/ Carries
Design_374	70	38	80	80	0.67	38	4580	With 2 instances each of semi tall DSP and BRAM
Design_375	70	38	80	80	0.67	38	5082	With 4 instances each of tall DSP and BRAM
Design_376	70	38	80	80	0.72	38	7635	No tall BRM/ DSP/ URAM/ Carries
Design_377	70	38	80	80	0.72	38	4393	With 2 instances each of semi tall DSP and BRAM
Design_378	70	38	80	80	0.72	38	9484	With 4 instances each of tall DSP and BRAM
Design_379	73	40	82	82	0.67	38	3619	No tall BRM/ DSP/ URAM/ Carries
Design_380	73	40	82	82	0.67	38	3123	With 2 instances each of semi tall DSP and BRAM
Design_381	73	40	82	82	0.67	38	4886	With 4 instances each of tall DSP and BRAM
Design_382	73	40	82	82	0.72	38	6874	No tall BRM/ DSP/ URAM/ Carries
Design_383	73	40	82	82	0.72	38	4502	With 2 instances each of semi tall DSP and BRAM
Design_384	73	40	82	82	0.72	38	6578	With 4 instances each of tall DSP and BRAM
Design_385	76	42	84	84	0.67	38	5126	No tall BRM/ DSP/ URAM/ Carries
Design_386	76	42	84	84	0.67	38	4474	With 2 instances each of semi tall DSP and BRAM
Design_387	76	42	84	84	0.67	38	5464	With 4 instances each of tall DSP and BRAM
Design_388	76	42	84	84	0.72	38	5591	No tall BRM/ DSP/ URAM/ Carries
Design_389	76	42	84	84	0.72	38	16205	With 2 instances each of semi tall DSP and BRAM
Design_390	76	42	84	84	0.72	38	6680	With 4 instances each of tall DSP and BRAM
Design_391	79	43	86	86	0.67	38	4833	No tall BRM/ DSP/ URAM/ Carries
Design_392	79	43	86	86	0.67	38	5460	With 2 instances each of semi tall DSP and BRAM
Design_393	79	43	86	86	0.67	38	5089	With 4 instances each of tall DSP and BRAM
Design_394	79	43	86	86	0.72	38	7501	No tall BRM/ DSP/ URAM/ Carries
Design_395	79	43	86	86	0.72	38	7339	With 2 instances each of semi tall DSP and BRAM
Design_396	79	43	86	86	0.72	38	6416	With 4 instances each of tall DSP and BRAM
Design_397	82	45	88	88	0.67	38	3496	No tall BRM/ DSP/ URAM/ Carries
Design_398	82	45	88	88	0.67	38	4707	With 2 instances each of semi tall DSP and BRAM
Design_399	82	45	88	88	0.67	38	4710	With 4 instances each of tall DSP and BRAM
Design_400	82	45	88	88	0.72	38	5705	No tall BRM/ DSP/ URAM/ Carries
Design_401	82	45	88	88	0.72	38	6729	With 2 instances each of semi tall DSP and BRAM
Design_402	82	45	88	88	0.72	38	5856	With 4 instances each of tall DSP and BRAM
Design_403	84	47	90	90	0.67	38	5910	No tall BRM/ DSP/ URAM/ Carries
Design_404	84	47	90	90	0.67	38	5397	With 2 instances each of semi tall DSP and BRAM
Design_405	84	47	90	90	0.67	38	4051	With 4 instances each of tall DSP and BRAM
Design_406	84	47	90	90	0.72	38	4941	No tall BRM/ DSP/ URAM/ Carries
Design_407	84	47	90	90	0.72	38	6277	With 2 instances each of semi tall DSP and BRAM
Design_408	84	47	90	90	0.72	38	6020	With 4 instances each of tall DSP and BRAM

Sample Baseline Place-and-Route Flow Runtimes

Benchmark Suite Extended Bookshelf Format

	File name	Description
1.	design.nodes	Specifies placeable instances in the netlist (in Bookshelf format)
2.	design.nets	Specifies the set of nets in the netlist (in Bookshelf format)
3.	design.lib	Specifies the cell library for placeable objects
4.	design.pl	Specifies the site locations of the macros including cascade macro shape instances, I/O, and fixed objects. This file only contains locations of fixed instances (IBUF/OBUF/BUFGCE etc.). Your task is to supply the locations of the placeable macro instances. Valid locations for macro (and cascade shape) instances are prescribed in the design.scl file.
5.	sample.pl	Specifies a macro placement sample reference solution.
6.	design.scl	Extended from the original Bookshelf format to represent xcvu3p device layout and permissible site locations for all placeable object types (please refer to Figure 1).
7.	design.cascade_shape	Specifies the types of placeable cascade macro shapes.
8.	design.cascade_shape_instances	Specifies the netlist instances of cascade macro shapes (not provided if no cascade shapes are present in the netlist).
9.	design.regions	Specifies the box region constraints imposed on placeable objects.
10	design.dcp	This file contains the synthesized netlist checkpoint that is required as an input by the Vivado© executable.
11	vivado_pnr.tcl	A TCL script to place and route a netlist using the Vivado© flow leveraging the input macro placement solution.
12	design.macros	The names of placeable macro blocks in this design.

For details please visit: https://github.com/TILOS-AI-Institute/MLCAD-2023-FPGA-Macro-Placement-Contest

3. Evaluation Metrics

Evaluation Metrics

- Per Design:
 - Score = runtime(macro placement) x runtime(place-and-route flow) x routability
 - runtime(macro placement) = 1 + $\max(0, macroplacement_{runtime_i} 10)$ (in mins)
 - Penalty only incurred if macro placement runtime > 10 mins
 - runtime (place-and-route flow) = runtime of place-and-route flow in hours
- Per Team:
 - Final Team Score = Weighted geometric mean of all design scores
- Lower is better

Evaluation Metrics - Interconnect Tile Grid

Tile grid where device interconnect resources are defined

Interconnect tile grid routing resources:

Short: wires spanning 1-4 tiles

Long: wires spanning 8 or more tiles

Evaluation Metrics - What is routing congestion?

- Congestion = Oversubscription of interconnect routing resources
- As the demand region grows, the router struggles to find a feasible solution

Interconnect tile grid

Evaluation Metrics - Interconnect Tile Congestion Types

Congestion is typed by interconnect length and wire direction (N, S, E, W)

- Short congestion
 - Typically caused by "closely clustered cell placements"
 - Potentially leads to routability issues
- Long congestion
 - Typically caused by "long spread-out cell placements"
 - Potentially leads to timing and routability issues
- Global congestion
 - Aggregation of short and long congestion

Evaluation Metrics – Routability Score Per Design

- Routability = initial_routing_score x final_routing_score
- initial_routing_score:

Wire Direction	Global C	ongestion	Long Cor	ngestion	Short Congestion		
	Size	' % Tiles	Size	% Tiles	Size	% Tiles	
NORTH	32x32	l 4.79	128x128	20.18	4 x 4	1.33	
SOUTH	16x16	l 3.87	128x128	20.03	 4x4	 0.96	
EAST	 32x32	l 5.22	64x64	18.83	 8x8	 3.28	
	 32x32	l 8.291		23.46	 4x4	 4.50	

- Congestion level 4 means there is 16 x16 interconnect tile grid that is congested
- We only penalize congestion levels > 3

initial routing score = 1 +
$$\sum_{i=1}^{4} [\max(0, short level_i - 3)^2 + \max(0, global level_i - 3)^2]$$

- final_routing_score = No. final router outer iterations
- Unplaceable and unroutable designs are penalized with a score of 500

4. Participating Teams

Participating Teams

- ▶ 19 participants 3@Canada, 6@China, 2@Hong Kong, 1@India, 1@Korea, 1@Taiwan, and 5@USA
- > 8 finalists (6 of which are competitive)

Team	University	Professor	Members
TAMU	Texas A & M	Jiang Hu	Hailiang Hu, Donghao Fang, Yishuang Lin
MPKU	Peking University	Yibo Lin	Jing Mai, Jiarui Wang, Xun Jiang, Zizheng Guo, Yifan Chen
CUMPLE	CUHK	Evangeline F.Y. Young	Qin Luo, Xinshi Zang, Qijing Wang, Fangzhou Wang
	Nanjing University of Posts and		
Pomelo	Telecommunications	Jieming Yin	Hao Wu, Linhua Tao
DAG-MP	Shanghai Jiao Tong University	Xinfei Guo	Xiaotian Zhao, Tianju Wang, Yuia Sun, Xinfei Guo
MacroM	Nirma University	Manish I. Patel	Jaydeep Solanki, Jugal Gandhi, Pranav Kotadia, Riththika Sukanandan
MacroD	Pohang University	Seokhyeong Kang	Junseok Hur, Seongbin Kwon, Jaeseung Lee, JoonSeok Kim, Kyumin cho
IMR	Not provided	Liang Yi	Fu Mingjian, Ma Jimiao
SEU	Southeast University	Ziran Zhu, Jun Yang, Jianli Chen	Hao Gu, Jian Gu, Yuxian Yue
GoFish	Georgia Tech	Callie Hao	Stefan Abi-Karam
EFM	University of Calgary	Laleh Behjat	Erfan Aghaeekiasaraee
ВО	University of Illinois-Urbana Champaign	Elyse Rosenbaum	Michael Molter
Duke	Duke University	Yiran Chen	Guangle i Zhou, Jingyu Pan, Chen-Chia Chang, Yiran Chen
UBCP	UBC	Steven Wilton	Andrew Gunter, Martin Chua, Nikhil Ghanathe, Elmira Nezamfar, Roozmehr Jalilian
GD	Dalian University of Technology	Yan Xing, Weijun Li	Yihao Huang, Juming Xian, Zhihao Chen, Wenhao Liu, Zhongnuo Wang
MacroW	Simon Fraser University	Behnam Ghavami and Lesley Shanon	Mani Sadati, Mohammad Sahidzade, and Saba Jahan-Tighi.
CUMP	CUHK	Bei Yu, Tinghuan Chen	Yuan Pu, Hongduo Liu, Mingjun Li, Lanchen Zou
UTDA	UT Austin	David Pan	Zhili Xiong, Rachel S. Rajarathnam, Zhixing Jiang, Hanqing Zhu
			Woei-Haur Hong, Hsu Chi, Tung-Yeh Wu, Yung-Hsuan Fu, Chia-en Lu, Hao-Wei
NTHU	National Tsing Hua University	Ting-Chi Wang,	Chen

8 Finalists

Team	University	Professor	Members
TAMU	Texas A & M	Jiang Hu	Hailiang Hu, Donghao Fang, Yishuang Lin
МРКИ	Peking University	Yibo Lin	Jing Mai, Jiarui Wang, Xun Jiang, Zizheng Guo, Yifan Chen
CUMPLE	СИНК	Evangeline F.Y. Young	Qin Luo, Xinshi Zang, Qijing Wang, Fangzhou Wang
SEU	Southeast University	Ziran Zhu, Jun Yang, Jianli Chen	Hao Gu, Jian Gu, Yuxian Yue
UBCP	UBC	Steven Wilton	Andrew Gunter, Martin Chua, Nikhil Ghanathe, Elmira Nezamfar, Roozmehr Jalilian
UTDA	UT Austin	David Pan	Zhili Xiong, Rachel S. Rajarathnam, Zhixing Jiang, Hanqing Zhu
NTHU	National Tsing Hua University	Ting-Chi Wang,	Woei-Haur Hong, Hsu Chi, Tung-Yeh Wu, Yung-Hsuan Fu, Chia-en Lu, Hao-Wei Chen
CUMP	CUHK	Bei Yu, Tinghuan Chen	Yuan Pu, Hongduo Liu, Mingjun Li, Lanchen Zou

1.5 min Team Video Presentations

5. Updated Results

Results – Public Benchmark Macro Placement Runtimes

Runtime Summary (min)

Metric	mpku	seu	utda	tamu	cumple	cump
Average	4.80	2.20	5.62	7.92	8.02	0.44
GeoMean	4.80	2.16	5.55	7.54	7.96	0.43
Stddev	0.15	0.43	1.07	2.09	1.02	0.06
Max	5.08	3.30	12.29	9.66	10.87	0.58

Except for 4 runs, all macro placers ran under 10-min threshold, triggering no runtime penalty

Results – Public Benchmark Place-and-Route Runtimes

Results - Public Benchmark Team Scores

Score Summary

Design	mpku	seu	utda	tamu	cumple	cump
Average	5.716	3.675	4.204	10.775	6.188	30.603
GeoMean	3.023	2.233	2.120	3.593	3.029	6.650
Stddev	9.181	6.495	16.236	26.859	10.648	63.609

Results - Public Benchmark Team Scores

Design	mpku	seu	utda		cumple	cump
Design_10	9.394	1.564	1.658	1.585	1.604	17.689
Design_100	5.608	1.650	1.749	3.617	10.007	26.253
Design_101	1.539	1.615	1.722	1.541	1.593	3.930
Design_102	1.566	1.598	1.728	1.553	1.600	1.768
Design_105	3.495	1.602	1.723	1.578	1.620	1.821
Design_106	11.570	9.825	1.769	1.640	18.128	34.839
Design_107	5.446	1.648	1.770	7.734	1.738	14.284
Design_11	1.501	1.550	1.663	1.487	1.528	1.696
Design_110	11.795	9.706	1.704	39.550	18.957	1.538
Design_111	1.515	1.551	1.627	1.564	1.556	1.558
Design_112	1.534	1.553	1.633	1.580	1.601	1.548
Design_115	1.538	1.538	1.648	1.629	1.580	1.553
Design_116	31.048	24.725	28.692	69.927	30.847	1.548
Design_117	27.036	3.640	5.877	37.491	87.442	1.548
Design_12	1.453	1.451	1.541	1.467	1.475	1.553
Design_120	14.949	1.732	10.389	66.195	23.392	1.548
Design_121	1.447	1.590	1.469	1.465	1.439	1.658
Design_122	1.443	1.583	1.481	1.469	1.424	1.649
Design_125	1.456	1.604	1.490	1.486	3.314	1.678
Design_126	3.280	1.646	1.532	3.390	3.258	30.048
Design_127	3.347	1.635	3.370	1.573	1.493	3.960
Design_130	1.540	1.669	1.542		1.489	1.751
Design_131	1.451	1.615	1.475	1.478	1.438	1.682
Design_132	1.443	1.606	1.508	1.497	1.458	1.700
Design_135	1.503	1.508	1.585	1.490	1.579	10.121
Design_136	13.441	1.623	9.773	3.517	9.629	113.445
Design_137	17.637	9.268	1.629	40.590	28.005	209.770
Design_140	24.945	1.601	1.662	10.467	36.532	137.447
Design_141	1.500	1.516	1.598	1.499	1.556	9.415
Design_142	1.520	1.524	1.596	1.464	1.545	1.583
Design_145	1.515	1.545	1.584	3.345	1.578	1.639
Design_147	13.240	5.487	1.623	14.402	5.543	48.356
Design_15	1.431	1.487	1.475	1.438	1.595	1.522
Design_150	7.796	1.607	3.516	10.111	18.998	36.329
Design_151	3.241	1.516	1.506	1.467	1.637	9.914
Design_152	1.488	1.501	1.486	1.491	1.643	1.614
Design_155	1.500	1.542	1.538	1.514	1.669	3.630
Design_156	39.373	18.954	13.666	6.133	20.357	47.375
Design_16	5.151	1.526	1.502	21.065	3.685	30.389
Design_160	23.751	1.702	3.658	35.544	35.890	218.866
Design_161	1.513	1.526	1.588	1.494	1.528	1.549
Design_162	1.487	1.518	1.605	1.508	1.536	1.575
Design_165	1.528	1.561	1.568	1.535	1.540	1.572
Design_166	1.653	1.597	9.866	13.407	11.496	50.339
Design_167	30.550	3.662	3.711	53.425	24.083	186.057
Design_17	17.038	1.532	1.550	1.566	1.514	30.589
Design_170	64.344	10.218	6.082	178.838	49.504	365.959
Design_171	3.397	1.551	1.589	1.522	1.571	3.581
Design_172	1.532	1.597	1.563	1.534	1.574	3.539
Design_175	3.393	1.601	1.544	5.484	5.485	1.583
Design_176	20.363	32.281		219.919	19.620	316.935
Design_180	48.282		189.305		15.721	134.550
Design_181	1.382	1.450	1.409		1.408	1.413
Design_181	1.389	1.452	1.416		1.437	1.431

esign	mpku	seu	utda		cumple	cump
esign_185	1.389	1.460	1.445	1.399	1.424	1.459
esign_186	1.442	3.268	1.440	3.113	1.462	16.139
esign_187	4.919	4.901	5.296	26.379	16.640	92.307
esign_190	19.346	21.649	27.245	27.807	18.785	58.871
esign_191	1.531	1.414	1.496	1.415	1.429	1.423
esign_192	1.401	1.407	1.529	1.427	1.469	1.438
esign_195	1.424	1.445	1.539	1.423	1.467	1.469
esign_196	1.540	3.142	1.540	1.450	1.479	9.382
esign_197	3.195	3.246	9.290	5.086	10.811	171.911
esign_2	1.531	1.414	1.526	1.414	1.427	1.478
esign_20	8.942	1.486	1.511	9.026	1.531	11.499
esign_200	1.455	1.488	3.392	5.021	6.816	28.298
esign_201	1.419	1.446	1.478	1.412	1.419	1.479
esign_202	1.404	1.428	1.478	1.409	1.449	1.496
esign_205	1.418	1.447	1.478	1.418	1.425	3.301
esign_206	19.798	5.108	5.235	16.034	5.024	44.299
esign_207	5.687	13.018	8.971	48.760	18.461	190.535
esign_21	1.444	1.470	1.511	1.445	1.493	1.542
esign_210	4.911	12.485	6.948	18.082	12.619	23.673
esign_211	1.475	1.433	1.469	1.402	1.458	1.517
esign_212	1.644	1.430	1.542	1.416	1.441	1.516
esign_215	1.623	1.451	1.485	1.421	1.491	1.569
esign_216	3.378	9.815	3.375	3.242	5.041	30.289
esign_217	1.496	1.487	1.523	5.066	8.875	22.787
esign_22	1.515	1.462	1.496	1.436	1.501	1.560
esign_220	3.078	3.263	1.518	3.205	1.502	41.852
esign_221	1.445	1.466	1.480	1.425	1.473	3.352
esign_222	1.624	1.466	1.509	1.420	1.483	1.535
esign_225	1.634	1.485	1.495	1.420	1.507	3.396
esign_226	5.264	13.174	1.566	5.234	9.404	45.940
esign_227	7.903	9.088	9.298	16.802	5.495	64.747
esign_230	7.877	12.727	5.290	17.079	15.354	215.774
esign_231	1.453	1.467	1.496	1.431	1.482	1.546
esign_232	1.460	1.482	1.494	1.472	1.492	3.449
esign_235	1.448	3.286	1.550	1.472	1.557	3.409
esign_236	9.536	9.574	5.551	31.543	11.099	286.189
esign_237	5.146	10.966	11.415	7.151	1.564	54.023
esign_240	5.856	9.061	5.458	11.210	5.610	21.923
esign_25	1.463	1.491	1.540	1.448	1.526	1.513
esign_26	1.448	1.503	1.550	1.505	1.504	5.403
esign_27	1.502	1.505	1.571	3.326	1.532	1.631
esign_30	3.265	1.489	1.550	1.511	1.589	3.540
esign_31	1.467	1.444	1.493	1.433	1.602	1.486
esign_32	1.471	1.493	1.515	1.451	1.586	1.483
esign_35	1.488	1.502	1.527	1.456	1.610	1.500
esign_36	1.506	1.498	1.513	8.649	3.656	5.410
esign_37	10.629	3.424	3.421	3.298	11.368	88.915
esign_40	11.124	1.537	1.554	10.097	9.778	42.005
esign_41	1.484	1.538	1.534	1.469	1.618	3.397
esign_42	1.502	1.514	1.522	1.486	1.638	1.510
esign_45	1.510	1.561	1.551	1.516	1.577	1.537
esign_46	3.463	1.568	1.608	7.269	3.561	52.329
esign_47	3.402	3.502	1.584	3.336	11.190	45.233

Design	mpku	seu	utda	tamu	cumple	cump
Design_50	3.431	1.560	1.604	7.603	1.568	12.371
Design_51	1.487	1.528	1.553	1.476	1.514	1.528
Design_52	1.493	1.533	1.542	1.486	1.542	1.539
Design_55	1.505	1.544	1.563	1.485	1.586	1.563
Design_56	5.269	1.585	1.593	3.535	1.678	28.156
Design_57	16.295	3.722	3.573	5.615	3.742	153.625
Design_6	1.426	1.484	1.479	1.453	1.504	9.260
Design_60	3.511	1.627	1.629	78.819	1.621	4.000
Design_61	1.414	1.465	1.454	1.428	1.458	1.491
Design_62	1.413	1.469	1.449	1.439	1.475	1.513
Design_65	1.422	1.482	1.459	1.433	1.512	1.486
Design_66	3.195	1.498	1.470	8.946	9.309	11.919
Design_67	1.470	3.284	1.472	1.472	1.468	1.537
Design_7	3.221	1.472	1.434	3.286	1.454	14.108
Design_70	8.981	3.276	1.501	3.324	8.808	9.246
Design_71	1.459	1.436	1.450	1.445	1.481	1.471
Design_72	1.496	1.456	1.452	1.466	1.453	1.495
Design_75	1.490	1.461	1.464	1.479	1.477	1.476
Design_76	3.316	1.509	1.504	17.641	5.082	9.674
Design_77	3.297	1.514	1.488	13.185	1.539	3.598
Design_80	3.283	1.518	1.492	9.492	5.731	68.922
Design_81	1.474	1.456	1.459	1.460	1.601	1.490
Design_82	1.437	1.455	1.461	1.467	1.650	1.528
Design_85	1.452	1.483	1.486	1.493	1.655	1.483
Design_86	3.355	1.503	1.508	13.942	9.981	19.908
Design_87	9.489	1.524	1.499	17.587	12.621	21.771
Design_90	3.395	1.522	1.514	15.148	1.714	10.100
Design_91	1.461	1.466	1.476	1.486	1.605	1.495
Design_92	1.445	1.465	1.490	1.464	1.644	1.509
Design_95	1.473	1.449	1.492	1.483	1.673	3.400
Design_96	1.548	1.461	1.504	1.515	1.712	10.426
Design_97	3.305	3.295	1.539	1.578	1.751	3.638

Score Summary

Metric	mpku	seu	utda	tamu	cumple	cump
Average	5.716	3.675	4.204	10.775	6.188	30.603
GeoMean	3.023	2.233	2.120	3.593	3.029	6.650
Stddev	9.181	6.495	16.236	26.859	10.648	С

Results – Hidden* Benchmark Team Scores

Ran on a representative set of 38 designs from the 198 hidden benchmark suite because of runtime constraints

Results – Hidden* Benchmark Team Scores

Design	mpku	seu	utda	tamu	cumple	cump
Design_433	5.085	3.361	1.542	5.345	1.615	5.567
Design_434	3.301	1.529	5.294	3.403	3.500	30.824
Design_436	12.209	27.974	19.707	63.946	48.640	253.753
Design_439	1.502	1.538	1.557	1.541	1.594	3.518
Design_440	1.516	3.389	1.564	5.291	1.638	7.479
Design_443	5.085	248.059	239.319	353.023	51.947	538.871
Design_454	3.176	1.453	1.475	3.366	3.304	3.733
Design_457	1.435	1.453	1.452	1.478	1.468	1.672
Design_460	1.485	1.510	1.468	1.531	1.514	3.735
Design_461	1.467	1.480	1.472	3.456	3.406	57.339
Design_463	1.426	1.464	1.446	1.500	1.491	1.652
Design_464	1.448	1.478	1.562	1.627	1.522	1.625
Design_475	1.435	1.499	1.613	1.686	1.627	1.653
Design_476	1.461	1.491	1.623	1.643	1.581	3.670
Design_478	1.534	3.476	3.678	5.857	1.635	51.462
Design_479	25.288	30.976	20.894	43.490	41.510	240.531
Design_481	1.447	1.406	1.638	1.565	1.464	1.472
Design_487	1.449	1.461	1.675	1.558	1.451	3.270
Design_488	1.453	1.473	1.682	1.588	1.495	1.502
Design_496	52.887	5.387	3.895	51.999	23.693	361.085
Design_497	11.271	11.983	25.720	273.807	53.318	221.208
Design_499	1.534	1.518	1.720	1.600	1.510	1.511
Design_500	1.500	1.492	1.652	1.523	1.570	1.550
Design_502	1.605	1.567	3.771	11.316	3.480	12.852
Design_508	30.575	3.651	25.726	33.004	185.635	285.071
Design_509	31.965	24.487	18.266	101.007	109.031	237.315
Design_511	1.558	1.546	1.740	1.559	1.47	1.603
Design_512	1.528	1.501	1.759	1.546	1.703	3.461
Design_374	1.472	1.453	1.469	1.485	1.452	3.495
Design_380	1.452	1.480	1.484	1.472	1.473	3.347
Design_382	1.605	13.585	5.425	269.895	9.737	237.461
Design_385	1.508	1.525	1.501	1.528	1.493	1.567
Design_386	1.512	1.528	1.517	3.348	1.496	12.305
Design_458	1.435	1.434	1.429	1.424	1.433	3.252
Design_470	1.470	1.108	1.469	1.467	1.445	1.474
Design_473	1.532	5.207	1.528	9.002	1.509	30.603
Design_488	1.481	1.448	1.445	1.411	1.412	1.434
Design 491	1.537	3.424	3.257	37.727	9.193	84.162

Score Summary

Metric	mpku	seu	utda	tamu	cumple	cump
Average	5.859	11.100	10.933	34.448	15.380	71.529
GeoMean	2.566	2.846	2.933	5.373	3.585	10.633
Stddev	11.028	40.166	38.691	82.058	35.956	128.078

Final Rankings

- For each team,
 - Combined 140 public + 38 hidden scores to have equal contributions to final score
 - $\mathbf{W}_{\text{public}} = 1$
 - $W_{\text{hidden}} = 140/38$
 - Final Score = weighted geometric mean (w_{public}, w_{hidden})

$$\bar{x} = \left(\prod_{i=1}^n x_i^{w_i}\right)^{1/\sum_{i=1}^n w_i} = \exp\left(\frac{\sum_{i=1}^n w_i \ln x_i}{\sum_{i=1}^n w_i}\right)$$

Final Team Scores:

Team	Weighted GeoMean	Rank
utda	2.513	1*
seu	2.516	1*
mpku	2.751	2
cumple	3.605	3
Tamu	4.399	4
cump	8.433	5

5. Results with Updated Team MPKU Exec

Results* - Public Benchmark Place-and-Route Runtimes with Updated MPKU exec

Runtime Summary

Metric	mpku	seu	utda	tamu	cumple	cump
Average	0.55	0.55	0.58	0.62	0.59	0.76
GeoMean	0.53	0.54	0.56	0.56	0.58	0.68
Stddev	0.16	0.13	0.25	0.39	0.16	0.46

Runtime Summary

Metric	mpku	seu	utda	tamu	cumple	cump
Average	0.46	0.55	0.58	0.62	0.59	0.76
GeoMean	0.45	0.54	0.56	0.56	0.58	0.68
Stddev	0.08	0.13	0.25	0.39	0.16	0.46
Max	0.94	1.54	3.28	3.09	1.62	2.68

^{*}Contest organizers requested Team MPKU to submit an executable post the contest deadline related to fixing some errors observed in a subset of hidden benchmark designs during the evaluation process.

Results* - Public Benchmark Team Scores with Updated MPKU exec

Score Summary

Design	mpku	seu	utda	tamu	cumple	cump
Average	5.716	3.675	4.204	10.775	6.188	30.603
GeoMean	3.023	2.233	2.120	3.593	3.029	6.650
Stddev	9.181	6.495	16.236	26.859	10.648	63.609

Score Summary

Metric	mpku	seu	utda	tamu	cumple	cump
Average	2.738	3.675	4.204	10.775	6.188	30.603
GeoMean	1.950	2.233	2.120	3.593	3.029	6.650
Stddev	3.952	6.495	16.236	26.859	10.648	63.609

*Contest organizers requested Team MPKU to submit an executable post the contest deadline related to fixing some errors observed in a subset of hidden benchmark designs during the evaluation process.

Public Benchmark – Team MPKU Original vs. Updated Scores

Metric	mpku-post-deadline	mpku
Average	2.738	5.716
GeoMean	1.950	3.023
Stddev	3.952	9.181

Final Rankings with Updated MPKU exec

- For each team,
 - Combined 140 public + 38 hidden scores to have equal contributions to final score
 - $\mathbf{w}_{\text{public}} = 1$
 - $W_{hidden} = 140/38$
 - Final Score = weighted geometric mean (w_{public,} w_{hidden})

$$\bar{x} = \left(\prod_{i=1}^{n} x_i^{w_i}\right)^{1/\sum_{i=1}^{n} w_i} = \exp\left(\frac{\sum_{i=1}^{n} w_i \ln x_i}{\sum_{i=1}^{n} w_i}\right)$$

Final Team Scores:

Team	Weighted GeoMean	Rank	
utda	2.513	1*	
seu	2.516	1*	Updated Exec Score
mpku	2.751	2	2.216
cumple	3.605	3	
Tamu	4.399	4	
cump	8.433	5	

6. Learnings

Contest Lowlights

- 1. Various bugs in the benchmark suite
- 2. A bug in the provided place-and-route flow script
- 3. Place-and-route tool Licensing enablement was not efficient

Contest Highlights

- 1. 7 team finalists despite all obstacles!
- 2. 5 submitted competitive solutions!
- 3. Many contestants gained practical experience in packaging their SW solutions with containers
- 4. Engaging, excellent feedback and bug reporting from contestants
 - A special thank you shout-out to teams MPKU, CUMPLE, and CUMP for identifying various bugs and providing candidate solutions.
- 5. A battle-vetted public benchmark suite with 338 FPGA designs

Parting Thoughts

- We wish to thank all contestants for their active participation, patience, and diligence.
- No team has fully deployed ML-based methods, with new classical optimization still showing promising results
- Hoping to see progress in scalable ML methods in future solutions (MLCAD 2024?)
- Refine and iterate over your solutions till the next contest opportunity!

7. Awards Ceremony!

FPGA Macro Placement Contest

Fifth Place

Chinese University of Hong Kong CUMP-Placer

Yuan Pu, Lancheng Zhou, Mingjun Li, Yuhao Ji, Tinghuan Chen, & Bei Yu

St. B. Hy Am

Andrew Kahng & Husam Amrouch General Chairs

DODY

Jiang Hu Program Chair

1 Sment Rhey Fells

Ismail Bustany Contest Chair

FPGA Macro Placement Contest

Fourth Place

Texas A&M University TAMU-Placer

Hailiang Hu, Donghao Fang, Yishuang Lin, Jianfeng Song, & Jiang Hu

St. B. Hy Am

Andrew Kahng & Husam Amrouch General Chairs

DODY

Jiang Hu Program Chair

I ment Rhelf Estes

Ismail Bustany Contest Chair

FPGA Macro Placement Contest

Third Place

Chinese University of Hong Kong CUMPLE-Placer

Qin Luo, Xinshi Zang, Qijing Wang, Fangzhou Wang, & Evangeline Young

M.B. Hy Am

Andrew Kahng & Husam Amrouch General Chairs

DODY

Jiang Hu Program Chair

1 ment Rher Ferlis

Ismail Bustany Contest Chair

FPGA Macro Placement Contest

Second* Place Peking University MPKU-Placer

Jing Mai, Jiarui Wang, Xun Jiang, Yifan Chen, Zizheng Guo, & Yibo Lin

St. B. Hy Am

Andrew Kahng & Husam Amrouch General Chairs

DODY

Jiang Hu Program Chair

1-ment Rher Festig

Ismail Bustany Contest Chair

FPGA Macro Placement Contest

First* Place

University of Texas at Austin UTDA-Placer

Zhili Xiong, Rachel S. Rajarathnam, Zhixing Jiang, Hanqing Zhu, & David Pan

M.B. Hy Am

Andrew Kahng & Husam Amrouch General Chairs

DODY

Jiang Hu Program Chair

Frient Rhelf Esses

Ismail Bustany Contest Chair

FPGA Macro Placement Contest

First* Place Southeast University SEU-Placer

Hao Gu, Jian Gu, Yuxian Yue, Ziran Zhu, Jun Yang, & Jianli Chen

M.B. My Am

Andrew Kahng & Husam Amrouch General Chairs

DODY

Jiang Hu Program Chair

Imen to hely sully

Ismail Bustany Contest Chair

##