Exploring How Neighborhood Characteristics Influence Customer Visits at a DIY Store

Rachel Roggenkemper: rroggenk@calpoly.edu
Dr. John Walker
STAT 550: Generalized Linear Models, Winter 2025

I. Dataset Description

A large do-it-yourself (DIY) store located in a densely populated suburb collected data over a two-week period to understand the factors influencing customer visits. The store gathered information from 110 nearby neighborhoods to assess how neighborhood characteristics relate to the number of customers visiting the store. Each observation, or row in the dataset, represents a neighborhood near the store. The response variable is the number of customers from the neighborhood who visited the store. The possible predictor variables are below in *Table 1*.

Table 1: Predictor variables which were recorded for each neighborhood

Predictor Variable	Description
units	The number of housing units in the neighborhood
income	The median household income of the neighborhood in thousands of dollars
age	The median age of housing in the neighborhood in years
compdist	The distance from the neighborhood to the nearest competitor DIY store in miles
storedist	The distance from the neighborhood to the store in miles

The overall project goal is to:

- 1. Develop a model that "best" explains the relationship between the response variable (the number of customers) and the predictor variables. This involves selecting an appropriate generalized linear model, assessing its fit, and interpreting how each predictor affects the customer count.
- 2. Use the final model to make predictions (in this case, counts) for various combinations of the predictor variables. These predictions can help understand how changes in neighborhood characteristics might influence store traffic.

II. Methodology

Due to the response variable being a count, the random component of the model will either be Poisson or Negative Binomial. I began my analysis by fitting a Poisson GLM with a log link. However, diagnostic tests revealed severe overdispersion and poor model fit. To address the

overdispersion, I refitted the model using a Negative Binomial random component with a log link, which fixed the initial issue of overdispersion. As is shown in *Figure 1* below, which compares the observed (empirical) distribution of store customer counts with the fitted Poisson (left) and Negative Binomial (right) distributions, it illustrates that the Negative Binomial model more accurately captures the heavier right tail and overall variability in the data.

Figure 1: Empirical vs. Theoretical Distributions: Poisson vs. Negative Binomial Fits

After I decided on the Negative Binomial random component with a log link, I then had to address which predictors to include, and whether to include any interactions, if I should, which interaction to include. Note that all predictors (which are all quantitative) were centered to reduce multicollinearity—especially important when testing for interactions. A stepwise regression (both directions) based on BIC starting with the model with all main effects and all two-way interactions led me to a candidate model that included only the main effects of units, income, compdist, and storedist. After performing final checks of this proposed candidate model (steps outlined in depth in my *Project Log*), I confirmed that the proposed candidate model is indeed my final model.

III. Final Model

The final model uses a negative binomial distribution as the random component with a log link function.

The linear predictor of the final model includes the following (note that all the predictors, since quantitative, have been centered to provide a meaningful interpretation of the intercept): $\log(\mu) = \beta_0 + \beta_1(units) + \beta_2(income) + \beta_3(compdist) + \beta_4(storedist)$

Below are the interpretations in the context of the data:

- Intercept $(\hat{\beta}_0 = 2.3361873, e^{\hat{\beta}_0} = 10.34173)$
 - For a neighborhood with an average number of housing units, an average median household salary, located an average distance from the store, and located an average distance from the nearest competitor DIY store, the estimated mean number of customers from the neighborhood who visited the store is 10.34173.
- units $(\hat{\beta}_1 = 0.0008511, e^{\hat{\beta}_1} = 1.000851)$

- After adjusting for the median household income of the neighborhood, the distance from the neighborhood to the nearest competitor DIY store, and the distance from the neighborhood to the store, each increase of one housing unit in the neighborhood is associated with an increase of 0.0851% in the mean number of customers from the neighborhood who visited the store.
- income $(\hat{\beta}_2 = -0.0139509, e^{\hat{\beta}_2} = 0.986146)$
 - After adjusting for the number of housing units in the neighborhood, the distance from the neighborhood to the nearest competitor DIY store, and the distance from the neighborhood to the store, each increase of \$1,000 in the median household income of the neighborhood is associated with a decrease of 1.3854% in the mean number of customers from the neighborhood who visited the store.
- compdist $(\hat{\beta}_3 = 0.1563735, e^{\hat{\beta}_3} = 1.169263)$
 - After adjusting for the number of housing units in the neighborhood, the median household income of the neighborhood, and the distance from the neighborhood to the store, each increase of one mile in the distance from the neighborhood to the nearest competitor DIY store is associated with an increase of 16.9263% in the mean number of customers from the neighborhood who visited the store.
- storedist $(\hat{\beta}_4 = -0.1293811, e^{\hat{\beta}_4} = 0.8786391)$
 - After adjusting for the number of housing units in the neighborhood, the median household income of the neighborhood, and the distance from the neighborhood to the nearest competitor DIY store, each increase of one mile in the distance from the neighborhood to the store is associated with a decrease of 12.13609% in the mean number of customers from the neighborhood who visited the store.

The only potential issue in the final model that still exists is there are three high leverage points present in the data (Observations: 15, 30, and 94). Since these observations do not have a high influence, I elected not to remove them. Additionally, since each row represents a unique neighborhood, dropping them would mean losing valuable data about store visits from those areas. To be thorough, I did compare the final model fitted on the entire dataset to the final model fitted on the dataset with the three high leverage points removed. The coefficients themselves do not change much, and the p-values and significance of the predictors do not change. Thus the interpretations above are still accurate regardless. However, the AIC does decrease slightly when the three high leverage points are removed. Ultimately, since the overall results do not change significantly, there isn't much to do except acknowledge that these high leverage observations exist.

Disclaimer: Since this project is an exploratory observational study rather than a controlled experiment, we cannot infer cause-and-effect relationships between the predictors and the response variable. Instead, the final model best explains the observed association between the number of store customers and neighborhood characteristics.

Note: The predicted counts for key combinations of the predictor variables (minimum, mean. maximum) appear below in the Appendix.

Appendix

Rachel Roggenkemper

Table of Minimum, Mean, and Maximum Values for Predictors

Note: I am using the uncentered values to get more meaningful insights as it does not change the predictions

	units	income	compdist	storedist
${\tt Minimum}$	19.0000	44.67300	0.340	0.870000
Mean	647.7636	73.83678	3.068	6.831727
Maximum	1289.0000	145.06500	6.610	9.900000

Table of Predictions (counts) from my Final Model for All Combinations of the Predictor Variables

Note: I am using the uncentered values to get more meaningful insights as it does not change the predictions

	units_label	income_label	compdist_label	storedist_label	<pre>predicted_customers</pre>
1	Minimum	Minimum	Minimum	Minimum	12.8414944
2	Mean	Minimum	Minimum	Minimum	21.9287305
3	Maximum	Minimum	Minimum	Minimum	37.8461293
4	Minimum	Mean	Minimum	Minimum	8.5490425
5	Mean	Mean	Minimum	Minimum	14.5987408
6	Maximum	Mean	Minimum	Minimum	25.1955228
7	Minimum	Maximum	Minimum	Minimum	3.1648895
8	Mean	Maximum	Minimum	Minimum	5.4045118
9	Maximum	Maximum	Minimum	Minimum	9.3274826
10	Minimum	Minimum	Mean	Minimum	19.6734208
11	Mean	Minimum	Mean	Minimum	33.5952442
12	Maximum	Minimum	Mean	Minimum	57.9810106

13	Minimum	Mean	Mean	Minimum	13.0973003
14	Mean	Mean	Mean	Minimum	22.3655565
15	Maximum	Mean	Mean	Minimum	38.6000340
16	Minimum	Maximum	Mean	Minimum	4.8486726
17	Mean	Maximum	Mean	Minimum	8.2798179
18	Maximum	Maximum	Mean	Minimum	14.2898859
19	Minimum	Minimum	Maximum	Minimum	34.2314009
20	Mean	Minimum	Maximum	Minimum	58.4551252
21	Maximum	Minimum	Maximum	Minimum	100.8859235
22	Minimum	Mean	Maximum	Minimum	22.7890688
23	Mean	Mean	Maximum	Minimum	38.9156691
24	Maximum	Mean	Maximum	Minimum	67.1633702
25	Minimum	Maximum	Maximum	Minimum	8.4366038
26	Mean	Maximum	Maximum	Minimum	14.4067353
27	Maximum	Maximum	Maximum	Minimum	24.8641464
28	Minimum	Minimum	Minimum	Mean	5.9378487
29	Mean	Minimum	Minimum	Mean	10.1397454
30	Maximum	Minimum	Minimum	Mean	17.4998782
31	Minimum	Mean	Minimum	Mean	3.9530384
32	Mean	Mean	Minimum	Mean	6.7503914
33	Maximum	Mean	Minimum	Mean	11.6502953
34	Minimum	Maximum	Minimum	Mean	1.4634305
35	Mean	Maximum	Minimum	Mean	2.4990217
36	Maximum	Maximum	Minimum	Mean	4.3129856
37	Minimum	Minimum	Mean	Mean	9.0969004
38	Mean	Minimum	Mean	Mean	15.5342883
39	Maximum	Minimum	Mean	Mean	26.8101559
40	Minimum	Mean	Mean	Mean	6.0561322
41	Mean	Mean	Mean	Mean	10.3417317
42	Maximum	Mean	Mean	Mean	17.8484804
43	Minimum	Maximum	Mean	Mean	2.2420042
44	Mean	Maximum	Mean	Mean	3.8285502
45	Maximum	Maximum	Mean	Mean	6.6075783
46	Minimum	Minimum	Maximum	Mean	15.8284443
47	Mean	Minimum	Maximum	Mean	27.0293844
48	Maximum	Minimum	Maximum	Mean	46.6491927
49	Minimum	Mean	Maximum	Mean	10.5375619
50	Mean	Mean	Maximum	Mean	17.9944286
51	Maximum	Mean	Maximum	Mean	31.0560373
52	${\tt Minimum}$	Maximum	Maximum	Mean	3.9010473
53	Mean	Maximum	Maximum	Mean	6.6616089
54	Maximum	Maximum	Maximum	Mean	11.4970683
55	${\tt Minimum}$	Minimum	Minimum	Maximum	3.9923116

56	Mean	Minimum	Minimum	Maximum	6.8174562
57	Maximum	Minimum	Minimum	Maximum	11.7660404
58	Minimum	Mean	Minimum	Maximum	2.6578247
59	Mean	Mean	Minimum	Maximum	4.5386246
60	Maximum	Mean	Minimum	Maximum	7.8330742
61	Minimum	Maximum	Minimum	Maximum	0.9839373
62	Mean	Maximum	Minimum	Maximum	1.6802168
63	Maximum	Maximum	Minimum	Maximum	2.8998352
64	Minimum	Minimum	Mean	Maximum	6.1162995
65	Mean	Minimum	Mean	Maximum	10.4444763
66	Maximum	Minimum	Mean	Maximum	18.0258041
67	Minimum	Mean	Mean	Maximum	4.0718395
68	Mean	Mean	Mean	Maximum	6.9532617
69	Maximum	Mean	Mean	Maximum	12.0004229
70	Minimum	Maximum	Mean	Maximum	1.5074112
71	Mean	Maximum	Mean	Maximum	2.5741251
72	Maximum	Maximum	Mean	Maximum	4.4426042
73	Minimum	Minimum	Maximum	Maximum	10.6422520
74	Mean	Minimum	Maximum	Maximum	18.1732023
75	Maximum	Minimum	Maximum	Maximum	31.3645773
76	Minimum	Mean	Maximum	Maximum	7.0849281
77	Mean	Mean	Maximum	Maximum	12.0985512
78	Maximum	Mean	Maximum	Maximum	20.8805217
79	Minimum	Maximum	Maximum	Maximum	2.6228685
80	Mean	Maximum	Maximum	Maximum	4.4789317
81	Maximum	Maximum	Maximum	Maximum	7.7300521

Final Model Output

Note: The final model is still in terms of the centered predictors (only changes the intercept coefficient)

income_c -0.0139509 0.0039865 -3.500 0.000466 ***
compdist_c 0.1563735 0.0456166 3.428 0.000608 ***
storedist_c -0.1293811 0.0301078 -4.297 1.73e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(4.6379) family taken to be 1)

Null deviance: 194.85 on 109 degrees of freedom Residual deviance: 112.41 on 105 degrees of freedom

AIC: 691.89

Number of Fisher Scoring iterations: 1

Theta: 4.638 Std. Err.: 0.891

2 x log-likelihood: -679.893