0. Review

Dong-Gyu, Lee

Dept. of Statistics, KU

2020, Apr 3

Contents

- Analysis Goal
- 2 ILSVRC
- FER2013
- AlexNet
- VGG
- 6 GoogLeNet
- ResNet
- 8 Reference

Today's Goal

 Before studying the Jupiter code for AlexNet, VGG, GoogleNet, and ResNet, let's review the core of each model.

ILSVRC

- ImageNet Large Scale Visual Recognition Challenge(ILSVRC) was an annual computer vision contest held between 2010 and 2017.
- It's also called ImageNet Challenge.

Figure 1: ILSVRC(Classification)

ILSVRC

- For this challenge, the training data is a subset of ImageNet: 1000 synsets, 1.2 million images.
- There are 50K images for validation and 150K images for testing.

Figure 2: ImageNet Dataset Used in the ILSVRC

FER2013

- FER2013 dataset consists of 35,887 grayscale, 48x48 sized face images with various emotions - 7 emotions.
- Emotion labels in the dataset(imbalanced): Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral

Figure 3: ImageNet Dataset Used in the ILSVRC

- However, in FER2013 dataset, quite a few images are incorrectly labeled.
- So the FER Plus dataset was newly created in 2016.

1. AlexNet

• The number of parameters of AlexNet[4] is almost 62 million.

Figure 4: AlexNet

1. AlexNet

- Tanh vs ReLU.
- Dropout.
- Overlapping pooling.
- LRN.
- Data augmentation.

Figure 5: AlexNet Characteristic

2. VGG

• The number of parameters of VGG16[6] is almost 138 million.

Figure 6: VGG16 Structure

2. VGG

- Interested in deeper layers.
- Only 3x3 convolution.
- VGG11, VGG13, VGG16, VGG19.

		ConvNet C	onfiguration						
A	A-LRN	В	С	D	E				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
		nput (224×2							
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
			pool						
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
			pool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
		max							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
		max							
			4096						
			4096						
			1000						
		soft	-max						

Figure 7: VGG

• The number of parameters of GoogLeNet[7] is almost 5 million.

Figure 8: GoogLeNet Structure

- 22 layers.
- Inspired by network in network(NIN)[5].
- Inception module(sparse & dense connectivity, 1x1 convolution).
- Auxiliary classifier(0.3:0.3:1).
- Global Average Pooling(GAP).

Figure 9: Inception Module

• Ref) Network in Network :

(a) Linear Convolution Layer

(b) Mlpconv Layer

GoogLeNet Summary :

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool	params	ops
	stride	size			reduce		reduce		proj		
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Figure 11: GoogLeNet

- 18,34,50,101,152 layers.
- The number of parameters of ResNet34[1],[2] is almost 21 million.

Figure 12: ResNet34 Structure

- Degradation.
- Residual learning.
- Skip(Shortcut) connection.
- Bottleneck architecture.
- Batch Normalization[3].

Figure 13: Degradation Problem

Residual Learning :

(a) Simple Neural Network

(b) Skip Connection in ResNet

Figure 14: Residual Learning

Bottleneck Architecture :

Figure 15: Right: Bottlneck Architecture

• ResNet Summary :

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer				
conv1	112×112	7×7, 64, stride 2								
conv2_x	56×56	3×3 max pool, stride 2								
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$				
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$				
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$				
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$				
	1×1		ave	softmax						
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10 ⁹ 7.6×10 ⁹		11.3×10 ⁹				

Figure 16: ResNet

ResNet Result :

Figure 17: ResNet Effect

Reference I

- [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In *European conference on computer vision*, pages 630–645. Springer, 2016.
- [3] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.
- [4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, pages 1097–1105, 2012.
- [5] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. *arXiv* preprint arXiv:1312.4400, 2013.

Reference II

- [6] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
- [7] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1–9, 2015.