Reproducibility in Computational Research

"A Predictive DASH QoE Approach Based on Machine Learning at Multi-access Edge Computing"

Md Tariqul Islam
MSc Student
FEEC, UNICAMP
mtarislam@gmail.com

Agenda

- What is Reproducible Research
- Importance of Reproducibility
- How to Achieve Reproducibility
- Project Overview
- Project Reproducibility
- Challenges and Lessons

What is Reproducible Research?

Gold Standard

Always Not Feasible (e.g., cost, complexity)

Replicability

Minimum Standard

Always Feasible

Reproducibility 5

[&]quot;Again, and Again, and Again ..." BR Jasny et. al. Science, 2011. 334(6060) pp. 1225 DOI: 10.1126/science.334.6060.1225

[&]quot;Reproducible Research in Computational Science". RD Peng Science, 2011. 334 (6060) pp. 1226-1227 DOI: 10.1126/science.1213847

Reproducibility in Computational Research is an exercise to make available of all data, code, and required tools for others to reproduce the same results discussed in original research work.

Importance of Reproducibility

How to Achieve Reproducibility?

Workflow

- One knows exactly what path work should take.
- Well, defined inputs and outputs joined in a pipeline.
- Automate the pipeline as much as possible

Code

- Good coding structure.
- Keep track record on changes
- Keep record of random seeds

Data

- Auto data manipulation for easy to re-use
- Treat metadata as data besides raw and preprocessed data
- Keep track history of data provenance to defend conclusion
- What data should store and share

Documentation

- Documentation on data generate, process and analyze
- Documentation on code-purpose of each section of code
- Documentation on experiment-how to execute the work

Distribution

- Give public access of code, data
- Archive and share all dependencies, libraries and tools with exact version
- Share the computing environment in container,, virtual machine or cloud host

Project: A Predictive DASH QoE Approach Based on Machine Learning at Multi-access Edge Computing

Project Reproducibility

Workflow

Literate Programming = human readable (text) + machine readable (code)

commit b6ba7e55bae0c47965950c5476b453aa58d97ca5 (HEAD -> master, origin/master, origin/HEAD)
Author: sajibtariq <sajib.tariq12@gmail.com>
Date: Sun Jun 28 04:27:23 2020 -0300

minor changes

commit b2e174ae28b6c797ca50281f1659dd4ce5c5f8e2
Author: sajibtariq <sajib.tariq12@gmail.com>
Date: Sun Jun 28 04:25:18 2020 -0300

minor changes

Track over changes =
Version control (git) + store
repository (github)

Control randomness = Seeds (fixed)

Data

Auto Data Manipulation Script data preprocess, plotting graph

Keep a copy of raw data network traffic and video log for transparent on data provenance


```
mode=['3g','4g','5g'] #network type '5g',
host=[1] # number of host
algo=['conv'] # adaptation algorithm 'conventional'
net3=['metro','bus', 'train', 'ferry','car'] # mobility for 3g
net4=['bus', 'train', 'static', 'car', 'pedestrian'] # mobility for 4g
net5=['A_A Static','D_Driving', 'D_Static'] #'A_A Static','A_A Driving
doc3=['Am'] # number of operator (1)
doc4=['Am','Bm'] # number of operator (2)
doc5=['Bm'] # number of operator (2)
mum = [1,2,3] # number of traces

Type Mobility Operator Trace Total host Client Algorithm Port Segment \
0 3g metro An 1.8 1 1 conv 58428 1
1 3g metro An 1.8 1 1 conv 58432 2
2 3g metro An 1.8 1 1 conv 58436 3
```


Documentation

Readable & Executable Paper
Jupyter notebook using Markdown
feature

Scientific Paper
PDF format

Github Readme

workflow, requirements, folder structure scheme, and how to use codes and data

Distribution

Public access to code and data

Provide multiple options to reproduce the work in the shared project

Computational environment wrapped with everything

- ✓ Code
- ✓ Data
- ✓ Workflow
- ✓ Documentation
- ✓ Distribution

Embrace Reproducibility All Keys

Project Shared on Github

Challenges

- Make an understandable document for others
- Wrapping the computational environment in virtual machine
- Store large data set

Lessons

Current:

- ✓ Maintain documentation (code and data)
- ✓ Version control (control)
- ✓ Archiving all dependencies with the exact version

Future:

- Docker to wrapping all packages as a lightweight container
- Data version control and sharing (e.g., zenodo, kaggle)

Thanks!

Questions?