Лабораторная работа №8

Свойства асимптотических обозначений

- 1) Выяснить, обладают ли функции $\Theta(g(n))$, O(g(n)) и $\Omega(g(n))$ следующими свойствами:
 - транзитивность:

если
$$f(n)$$
= $\Theta(g(n))$ и $g(n)$ = $\Theta(h(n))$, то $f(n)$ = $\Theta(h(n))$; если $f(n)$ = $O(g(n))$ и $g(n)$ = $O(h(n))$, то $f(n)$ = $O(h(n))$; если $f(n)$ = $\Omega(g(n))$ и $g(n)$ = $\Omega(h(n))$, то $f(n)$ = $\Omega(h(n))$;

– рефлексивность:

$$f(n)=\Theta(f(n));$$
 $f(n)=O(f(n));$ $f(n)=\Omega(f(n));$

– симметричность:

$$f(n)=\Theta(g(n))$$
 тогда и только тогда, когда $g(n)=\Theta(f(n));$

$$f(n)$$
=O($g(n)$) тогда и только тогда, когда $g(n)$ =O($f(n)$);

– обращение:

$$f(n)$$
=O($g(n)$) тогда и только тогда, когда $g(n)$ =O($f(n)$).

2) Даны следующие функции от n:

$$f_{1}(n)=n^{2};$$

$$f_{2}(n)=n^{2}+1000 \cdot n;$$

$$f_{3}(n)=\begin{cases} n, & ecnu \ n \ \text{нечетно}; \\ n^{3}, & ecnu \ n \ \text{четно}; \end{cases}$$

$$f_{4}(n)=\begin{cases} n, & ecnu \ n \leq 100, \\ n^{3}, & ecnu \ n > 100. \end{cases}$$

Указать для каждой пары функций, когда $f_i(n)$ имеет порядок роста $O(f_i(n))$ и когда $f_i(n)$ есть $\Omega(f_i(n))$.

- 3) Можно ли утверждать, что $2^{n+1} = O(2^{n+1})$; $2^{2 \cdot n} = O(2^{n})$?
- 4) Доказать по определению, что следующие утверждения истинны.
- -17 имеет порядок O(1);
- $-n \cdot (n-1)/2$ имеет порядок $O(n^2)$;
- $-\max(n^3, 10 \cdot n^2)$ имеет порядок $O(n^3)$.
- 5) Пусть $T_1(n)$ есть $\Omega\left(f(n)\right)$ и $T_2(n)$ есть $\Omega\left(g(n)\right)$. Какие из следующих утверждений истинны? Доказать:
 - $-T_1(n)+T_2(n)$ есть $\Omega \left(\max(f(n),g(n))\right)$;
 - $-T_1(n)\cdot T_2(n)$ есть $\Omega\left(f(n)\cdot g(n)\right)$.