Instructions for Running the Code

1. Environment

- The project was on Kaggle Notebooks.
- Kaggle provides the required environment by default, including:
 - Python 3.9+
 - PyTorch and Torchvision
 - o NumPy, Matplotlib, and Scikit-learn
- No additional installation is required if run on Kaggle.

2. Dataset

By default, the notebook loads images from the following directory:

/kaggle/input/human-bone-fractures-image-dataset/Human Bone Fractures Multi-modal Image Dataset (HBFMID)/Bone Fractures Detection/train/images

- If the dataset is not available, the notebook automatically falls back to the MNIST dataset.
- To use a custom dataset:
 - 1. Upload the dataset to **Kaggle Datasets** from the link attached below or from the given folder

Dataset Link →

https://www.kaggle.com/datasets/jockeroika/human-bone-fractures-image-dataset

3. Running the Notebook

- 1. Open the Kaggle notebook:
- In Notebook Settings, enable GPU T4 x 2 for faster training (Setting > Accelerator > GPU T4 x 2)

- 3. Run all cells sequentially (Cell > Run All).
 - o Imports
 - Access Dataset
 - DataLoader
 - VAE Setup
 - Stochastic PG-ECA Setup
 - o Evaluation Metrics for Clustering, Generation and Reconstruction
 - Main Method for Training, evaluation and visualization

4. Outputs

- Training logs: Reconstruction and KL losses per epoch.
- Clustering metrics: Silhouette Score
- Generative metrics: Frechet Inception Distance (FID), Inception Score (IS).
- Visual outputs:
 - Reconstructed and generated images by VAE and Stochastic PG-ECA
 - o t-SNE and embedding plots for clustering by VAE and Stochastic PG-ECA