Worksheet: Set-theoretic notations and terminology Solutions

- 1. Write the following sets using "set builder" notation:
 - (a) The set of real solutions to $x^2 2x < 3$. $\{x \in \mathbb{R} : x^2 2x < 3\}$
 - (b) The set of integer solutions to $x^2 2x < 3$. $\{x \in \mathbb{Z} : x^2 2x < 3\}$
 - (c) The set of odd integers. $\{2k+1: k \in \mathbb{Z}\}$
 - (d) The set of odd natural numbers. $\{2k-1: k \in \mathbb{N}\}.$

Note that we need 2k-1, not 2k+1, so that the number 1 is counted. An alternative would be $[\{2k+1: k \in \mathbb{N} \cup \{0\}\}]$.

- (e) The set $\{1, 4, 7, 10, \dots\}$. $\{3k 2 : k \in \mathbb{N}\}$
- (f) The set of integers that can be written as sums of two integer squares. (The first few such integers are $0=0^2+0^2,\ 1=0^2+1^2=1,\ 2=1^2+1^2,\ 4=0^2+2^2.$) $\{n^2+m^2:n,m\in\mathbb{Z}\}$
- 2. Given $A = \{1, 2, 3, 4\}$, $B = \{0, 1\}$, find the following sets. Be sure to use correct set-theoretic notation.
 - (a) $A B = \{2, 3, 4\}$
 - (b) $B A \{0\}$
 - (c) $A \times B \left\{ (1,0), (2,0), (3,0), (4,0), (1,1), (2,1), (3,1), (4,1) \right\}$
 - (d) $P(B) \ \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}\$
 - (e) $B \times \mathbb{N} \left\{ (0,1), (0,2), (0,3), \dots, (1,1), (1,2), (1,3), \dots \right\}$
- 3. In the following, E, O denote, respectively, the sets of even integers and odd integers. In each case, write the given set in simpler form.
 - (a) $\{p/q : p, q \in E, q \in \mathbb{Z}, q \neq 0\}$
 - (b) $\{1/q : q \in \mathbb{Q}, q \neq 0\}$ $\mathbb{Q} \{0\}$
 - (c) $(\mathbb{N} \times \mathbb{Z}) \cap (\mathbb{Z} \times \mathbb{N})$ $\mathbb{N} \times \mathbb{N}$
 - (d) $(\mathbb{Z} E) \cup (\mathbb{Z} O)$ \mathbb{Z}
- 4. Let $A = \{1, 2\}$ and $B = \{\{1\}, 2\}$. Determine which of the following relations are true:
 - (a) $\{1\} \in A \mid FALSE (\{1\} \text{ is a subset of } A, \text{ not an element})$
 - (b) $\{1\} \subseteq A \mid \overline{TRUE}$
 - (c) $\{1\} \in P(A)$ TRUE (since the elements of a power set are the subsets of A)
 - (d) $\{1\} \subseteq P(A)$ FALSE
 - (e) $\{1\} \in B \mid TRUE \mid$
 - (f) $\{1\} \subseteq B \mid \overline{FALSE}$
 - (g) $\{1\} \in P(B)$ FALSE (but $\{\{1\}\} \in P(B)$ is TRUE)
 - (h) $\{1\} \subseteq P(B)$ FALSE