計量経済学練習問題

担当教員 劉慶豊

- 1. 標準化された確率変数の期待値 (平均値) が () となり、分散 が () となる。
- 2. $R^2 = ($) /TSSで () に近いほどモデルの当てはまりが良い。TSS = () + ()。RSS, ESS と TSS が表している変動の意味合いを説明しなさい。
- 3. 標準正規分布の期待値 $\mu = ($)、分散 $\sigma^2 = ($)。
- 4. 回帰式 $y_i = \alpha + \beta x_i + u_i$ に関して、説明変数、被説明変数と誤差項はどの変数かを示して、 y_i の推定値の式を書いて残差の計算式を書いてください。誤差と残差の違いを述べなさい。(例えば、誤差は観測できない、 y_i に影響を与える x_i 以外の撹乱要因で、残差は観測値 y_i と推定値 \hat{y}_i の差で、データと推定結果より計算できる。)
- 5. 最小二乗法の発想を簡単に述べなさい。
- 6. 単回帰で係数 β の推定値 $\hat{\beta}=0.8$, 標準誤差 $S_{\beta}=2$, 自由度n-2=30 の時の β の99% 信頼区間を求めなさい。このとき、有意水準a=1% で $H_0:\beta=0$ の両側検定の結果はどうなるのか説明しなさい。
- 7. 単回帰 $y_i = \alpha + \beta x_i + u_i$ の最小二乗法の正規方程式を書きなさい。 以下の3つの式を証明しなさい。

$$\sum_{i=1}^{n} \hat{u}_{i} \hat{y}_{i} = 0$$

$$\sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} \hat{y}_{i}$$

$$\sum_{i=1}^{n} y_{i} \hat{y}_{i} = \sum_{i=1}^{n} \hat{y}_{i}^{2}$$

- 8. ある町の住民の寿命の無作為標本の調査データを用いて、その町の平均寿命は80歳を超えたかどうかを調べるために、片側検定を行ってください。ただし、条件として、調査人数は400人、データの平均値は81歳、標本標準偏差s=10が与えられたとする。有意水準は5%とする。解答: $t=20\times 1/10=2.t$ 値>1.645なので、 H_0 を棄却する。80才を超えたと考える。
- 9. 以下の表を完成して、有意水準と検出力の意味合いを述べなさい。

	H0 を採択	H0 を棄却 H1 を採択
H0 が真	判断が正しい	
	$($ 確率 $1-\alpha$ で真を真に $)$	
H0 が偽		

10. 以下の表を完成しなさい。さらに、その結果を利用して回帰モデル $y_i = \alpha + \beta x_i + u_i$ の係数の最小二乗推定量 $\hat{\alpha}$ と $\hat{\beta}$ を求めなさい。決定係数 R^2 を計算しなさい。 s_{β} や t 値などを計算して $H_0: \beta = 0$, $H_1: \beta \neq 0$ について検定しなさい。(検定に利用する公式: $s_{\beta} = \sqrt{s^2/\{(n-1)\,s_{xx}\}}$,ただし $s_{xx} = s_x^2 = \frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2$ で x の不偏分散であり、 $s^2 = \frac{1}{n-2}\sum_{i=1}^n \hat{u}_i^2$ で残差分散である。)

	y_i	x_i	x_i^2	x_iy_i	y_i^2	回帰値	残差 \hat{u}_i	残差 2 乗 \hat{u}_i^2
	2	2	4	4	4			
	3	4	16	12	9			
	4	9	81	36	16			
総和	9	15	101	52	29			

11. 確率変数 X,Y と Z の相関係数行列を完成しなさい、 r_{zy} は何を表しているのか答えなさい。

$$R = \begin{pmatrix} 1 & (&) & r_{xz} \\ r_{yx} & (&) & (&) \\ (&) & (&) & (&) \end{pmatrix}$$

12. 偏相関係数の役割を見せかけの相関の例を作って説明しなさい。残差を利用した偏相関係数の計算方法を説明しなさい。

- 13. サンプルサイズ n=9(データの数は 9)で気温 Z の影響を考慮して、ビールの消費量 X と夏の電気消費量 Y との標本偏相関係数を計算して $r_{xy|z}=0.12$ となったとする。ビールの消費量 X と夏の電気消費量 Y の間の母偏相関 $\rho_{xy|z}=0$ かどうかについて検定しなさい。
- 14. 以下の Excel の出力を理解して、推定結果を書けるようにして、係数に関する検定を行えるようにしてください。

