实验五 RLC 交流电路测量

一. 实验目的

- 1. 熟悉测量 RLC 元器件的交流电压、电流。
- 2. 熟悉测量 RLC 串联和并联交流电路的电压、电流。

二. 实验仪器和器材

1. 实验仪器 直流稳压电源型号: IT6302 台式多用表型号: UT805A 信号发生器型 号: DG1022U 数字示波器型号: DS0-X 2012A(DP0 2012B)

2. 实验(箱)器材

电路实验箱

元器件: 电阻 (10Ω、1k); 电容(0.1); 电感(10mH)

3. 实验预习的虚拟实验平台

NI Multisim

三. 实验内容

- 1. 分别观测电阻 R、电感 L、电容 C 正弦交流响应,测量电压与电流波形、幅值、频率、相位差 Φ 。分析:比较直流交流响应的特点;元器件的阻抗与交流频率的关系,不同元器件的阻抗及阻抗角。
- 2. 测量 R L C 并联和串联交流电路的电压与电流波形、幅值、相位差 Φ 。分析:交流线性电路的电压电流及阻抗关系与直流电路相同,只是这些参数应用向量表示,电压(电流)之和是矢量之和。
- 3. (选)测量计算功率因数 cos φ , 分析: 功率因数的意义及测量方法。

四. 实验原理

1. 电阻元件 R

线性电阻元件 R 中的电流 i 与其两端的电压 u 关系:

正弦稳态激励信号:

$$u=Umsinωt$$

$$i=\frac{U_m}{R} sinωt$$

$$\dot{I}=\frac{\dot{U}}{R}$$

2. 电感元件 L

电感线圈电路中通过的电流 i 与其两端的电压 u 关系:

 $u = Umsin\omega t$

$$i = \frac{U_m}{X_L} \sin(\omega t - 90^\circ)$$
 $X_L = \omega L$

$$X_L = \omega L$$

$$\phi L = -90^{\circ}$$

$$\dot{I} = \frac{\dot{U}}{\dot{X_L}} \qquad \dot{X_L} = j\omega L \label{eq:continuous}$$

3. 电容元件 C 电容器电路中的电流 i 与其两端的电压 u 关

u=Um sinωt

$$i = \frac{U_m}{X_C} \sin (\omega t + 90^{o})$$
 $XC = \frac{U_m}{\omega C}$

$$XC = \frac{U_v}{U_v}$$

$$i = \frac{\dot{u}}{\dot{x_c}}$$
 $\dot{x_c} = \frac{1}{j\omega C}$

4. RLC 并联交流电路 电路中通过的电流 i 与 其两端的电压 u 关系:

u=Um sinωt

$$i = \frac{U_m}{K_Z} \sin \left(\omega t + \phi\right) \qquad \qquad \chi_Z = \frac{1}{\sqrt{(\frac{1}{R})^2 + (\omega C - \frac{1}{\omega L})^2}} \qquad \qquad \varphi = tg^{-\frac{1}{\omega C - \frac{1}{\omega L}}}$$

$$X_Z = \frac{1}{\sqrt{(\frac{1}{R})^2 + (\omega C - \frac{1}{\omega L})}}$$

$$arphi=tg^{-}rac{\dfrac{1}{\omega C-\dfrac{1}{\omega L}}}{R}$$

$$\dot{I} = \frac{\dot{U}}{\dot{X}_{Z}}$$
 $\dot{X}_{Z} = \frac{1}{\frac{1}{R} + j\omega C - j\frac{1}{\omega}}$

5. RLC 串联交流电路电路中通过的电流 i 与其 两端的电压 u 关系:

五. 实验过程及实验数据

1. 测量电阻电感电容交流响应

将信号发生器输出的正弦信号接至电路,作为激励源 u,在正弦稳态信号、u(5V 或 3V 4kHz) 激励下,分别测量 R(470 Ω 或 1k)、L(10mH)、C(0.1uF)元件端电压与电流波形及参数:峰峰值 Up-p(Urp-p),频率 f(T)和相位差。同时改变信号频率,观测波形及参数的变化((r(10)是提供测量回路电流用的取样电阻,电流测量值 i=u/r)。

电路图如下:

电阻测量:

电压与电流相位与电压源相同,阻值越大,电流越小,电流与频率无关电容测量:

电流超前端电压 90°, 电容越大电流越大, 频率越大电流越大电感测量:

电流落后输入电压 90°, 电感值越大, 电流越小, 频率越大, 电流越小

2. RLC 并联电路测量将元件 R、L 并联相接,测量电压与电流的波形及参数:Urp-p,相位差。

将元件 R、C 并联相接,测量电压和电流的波形及参数,Urp-p 相位差。将元件 R、L、C 并联相接,测量电压和电流的波形参数:urp-p 相位差。RL 并联:

1 1000 2 1000 1 1000 2 1000

RC 并联

RLC 并联:

3. RLC 串联电路测量

将元件 RC 串联相接,测量电压和电流的波形及参数:i=Ur/r,相位差。记录 4kHz 的参数。

将元件 RL 串联相接,测量电压和电流的波形及参数:i=Ur/r,相位差。记录 4kHz 的参数。

将元件 RLC 串联相接,测量电压和电流的波形及参数:i=Ur/r,相位差。记录 4kHz 的参数。

RL 串联:

RC 串联:

RLC 串联:

实验数据记录:

并联	波形		U改变不改变f		u			Ф		阻抗
	u波形	i(ur波形)	I的变化	Φ的变化	测量值	计算值	测量值	计算值	测量值	测量值
R	正弦波	正弦波	不变	不变	4.3785V	9.20mA	9.217mA	0.15	0.2	465
L	正弦波	正弦波	负相关	负相关	4.5210V	16.98mA	17.102mA	60	54	266
С	正弦波	正弦波	正相关	正相关	4.798V	12.69	12.72	-80	-76	376
RL	正弦波	正弦波	负相关	负相关	4.146	17.74	17.72	40	42	164
RC	正弦波	正弦波	正相关	正相关	4.321	14.79	14.82	-45	-39	204
RLC	正弦波	正弦波	正相关	负相关	3.901	34.69	34.64	16	14.5	115

串联	波形		U改变不改变f		u	1		Ф		阻抗
	u波形	i(ur波形)	I的变化	Φ的变化	测量值	计算值	测量值	计算值	测量值	测量值
R	正弦波	正弦波	不变	不变	4.4005	9.426	9.41	0.17	0.18	465
L	正弦波	正弦波	负相关	负相关	4.5319	17.126	17.119	80	69	266
С	正弦波	正弦波	正相关	正相关	4.876	12.74	12.73	-80	-74	376
RL	正弦波	正弦波	负相关	负相关	4.5198	7.6	7.58	27	25.4	517
RC	正弦波	正弦波	正相关	正相关	4.429	9.32	9.33	-35	-34.2	834
RLC	正弦波	正弦波	负相关	正相关	4.517	7.78	7.64	-15	-14.4	1097

六. 分析与总结

实验总结

- 1.通过实验了解了 RLC 交流电路的特性,响应特点,波形,相位差等的分析,串并联电路下 RC,RL,RLC 电路电压与电流的关系
- 2.进一步熟悉了示波器的使用和测量方法