

Exercise 19A

Question 8:

Diameter of cylindrical gulabjamun = 2.8 cm

Its radius = 1.4 cm

Total height of gulabjamun = AC + CD + DB = 5 cm

1.4 + CD + 1.4 = 5

2.8 + CD = 5

CD = 2.2 cm

Height of cylindrical part h = 2.2 cm

Volume of 1 gulabjamun = Volume of cylindrical part + Volume of two hemispherical parts

$$= \pi r^{2}h + \frac{2}{3}\pi r^{2} + \frac{2}{3}\pi r^{3}$$

$$= \pi r^{2}h + \frac{4}{3}\pi r^{3} = \pi r^{2}\left(h + \frac{4}{3}r\right)$$

$$= \frac{22}{7} \times 1.4 \times 1.4 \times \left(2.2 + \frac{4}{3} \times 1.4\right)$$

$$= 22 \times 0.2 \times 1.4 \times \left(2.2 + 1.87\right)$$

$$= 4.4 \times 1.4 \times 4.07 = 25.07 \text{ cm}^{3}$$

Volume of 45 gulabjamuns = 45×25.07 cm³ Quantity of syrup = 30% of volume of gulabjamuns = $0.3 \times 45 \times 25.07$ = 338.46 cm³

Question 9:

Diameter = 7cm, radius =
$$\frac{7}{2}$$
 cm = 3.5 cm
Height of cone = 14.5 cm - 3.5 cm = 11 cm

$$I = \sqrt{\left(\frac{7}{2}\right)^2 + \left(11\right)^2} \text{ cm} = \sqrt{\frac{49}{4} + 121} \text{ cm} = \sqrt{\frac{533}{4}} \text{ cm}$$

$$I = \frac{23.08}{2} \text{ cm} = 11.54 \text{ cm}$$

Volume of toy =
$$\frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$$

= $\left[\frac{1}{3}\pi^2(2r+h)\right]$
where $r = \frac{7}{2}$ and $h = 11$
= $\left[\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \left(2 \times \frac{7}{2} + 11\right)\right] \text{cm}^3$
= $(12.83 \times 18) \text{ cm}^3 = 230.94 \text{ cm}^3$

Total surface area of toy =
$$(2\pi^2 + \pi rl)$$
 cm² = $\pi r (2r + l)$ cm²
= $\frac{22}{7} \times \frac{7}{2} \times (2 \times \frac{7}{2} + 11.54)$ cm²
= (11×18.54) cm² = 203.94 cm²

Question 10:

Diameter of cylinder = 24 m

Radius of cylinder =
$$\frac{24}{2}$$
 cm = 12 cm

Height of the cylinder = 11 m

Height of cone = (16×11) cm = 5 cm

Slant height of the cone I =
$$\sqrt{r^2 + h^2} = \sqrt{144 + 25} \, \text{m} = 13 \, \text{m}$$

Area of canvas required = (curved surface area of the cylindrical part)

+ (curved surface area of the conical part)

=
$$(2\pi rh + \pi rl)m^2 = \pi r (2h + l)m^2$$

= $\left[\frac{22}{7} \times 12 \times (2 \times 11 + 13)\right]m^2$
= $\left(\frac{22}{7} \times 12 \times 35\right)m^2 = 1320 m^2$

******** FND *******