⑫ 公 開 特 許 公 報 (A)

昭63-307857

C 07 D 207/22 7242-4C A 01 N 43/78 F-7215-4H 43/86 1 0 2 7215-4H	<pre>⑤Int.Cl.⁴</pre>	識別記号	厅内整理番号	❸公開	昭和63年(198	8)12月15日
43/86 1 0 2 7215-4H						
		1 0 2	7215-4H	未讀少	発明の数 2	(全12百)

53発明の名称

シアノアルキルーヘテロ環式化合物及び殺虫剤

②特 願 昭62-142150

塑出 願 昭62(1987)6月9日

⑫発 明 者 塩 川 紘 三 神奈川県川崎市多摩区宿河原210-6 ⑫発 明 者 坪 井 真 — 東京都日野市平山3-26-1 ②発 明 佐々木 者 昭孝 東京都日野市東平山1-7-3 ②発 明 渚 盛 家 晃 — 東京都台東区上野5-7-11 ⑫発 明 者 服 部 ゆみ 東京都八王子市小比企町598 砂発 明 者 渋 谷 克彦 東京都八王子市並木町39-15 ⑪出 願 人 日本特殊農薬製造株式 東京都中央区日本橋本町2丁目7番1号

会社

②代 理 人 弁理士 川原田 一穂 最終頁に続く

明 細 書

/ 発明の名称 シアノアルキル - ヘテロ環式化合 物及び 殺虫剤

2.特許請求の範囲

(1) 式:

式中、Rはシアノアルキル基を示し、

Aは、任意に置換されていてもよい炭素数2~ 3の飽和炭化水素鎖の2価の蓄、若しくは、任意 に登換されていてもよい炭素数2~3の不飽和炭 化水条鎖の2価又は3価の基を示し、

A と X との結合手 「 → 」は、 / 価又は 2 価を示し、

X は NH 、 N 、 O 、 S 、 CH 又は CH₂ を示し、そ して

Yはシアノ茜又はニトロ酱を示す、

とこで、XがNHを示すとき、Aは任意に遺換さ

れていてもよい炭素数2~3の不飽和炭化水素 鎖の 2 価の基を示し、又

X が N を示すとき、 A は任意に置換されていてもよい炭素数 2 ~ 3 の不飽和炭化水素鎖の 3 価の基を示し、且つ A と X との結合手「→ 」は 2 価を示す、

で表わされるシアノアルキル・ヘテロ 環式化合物。
(2) Rが炭素数 / ~5のアルキルを有するシアノアルキルを示し、Aがアルキル登換されていてもよい炭素数 2~3の飽和炭化水素鎖の 2 価の 基、若しくは、アルキル登換されていてもよい炭素数 2~3の不飽和炭化水素鎖の 2 価又は 3 価の基を示し、

A と X と の結合手 $\Gamma \rightarrow J$ が I 価 又 は I 価 を 示 し、 X が NH 、 N 、 O 、 S 、 CH 又 は CH $_2$ を 示 し 、 そ し て Y が シ ア ノ 又 は ュト ロ を 示 し 、 こ こ で X が NHを 示 す と き 、 A が ア ル キ ル 世 換 ざ れ て い て も よ い 炭 素 数 I ~ I の 不 飽 和 皮 化 水 素 質 の I 価 の 基 を 示 し、 又

X が N を示すとき、 A がアルキル遺換されてい

てもよい炭素数2~3の不飽和炭化水素鎖の3価の基を示す特許請求の範囲第(1)項配載の化合物。

(3) Rが炭素数/~3のアルキルを有するシアノアルキルを示し、Aがメチル置換されていてもよい炭素数2~3の飽和炭化水素鎖の2価の基、若しくはメチル置換されていてもよい炭素数2~3の不飽和炭化水素鎖の2価又は3価の菇を示し、

A と X と の 結合手 $\Gamma \rightarrow J$ が I 価 又 は I 価 を 示 し、 X が NH 、 N 、 O 、 S 、 CH 又 は CH $_2$ を 示 し 、 そ し て Y が シ ア ノ 又 は ニ ト ロ を 示 し 、 こ こ で X が NH を 示 す と き 、 A が メ テ ル 世 換 さ れ て い て も よ い 炭 果 飲 I ~ I の 不 飽 和 炭 化 水 果 鎖 の I 価 の 基 を 示 し 、 又

XがNを示すとき、Aがメチル関換されていてもよい炭素数2~3の不飽和炭化水素鎖の3価の落を示す特許請求の範囲第(1)項記載の化合物。

(4) 式:

$$R - N X$$

3. 発明の詳細な説明

本発明は、シアノアルキル - ヘテロ環式化合物、 その製法及びその殺虫剤としての利用に関する。

本顧出題日前公知の特開昭48-9/064号公報には、下配一般式で表わされる化合物が記載されてかり、該化合物が、殺菌性、抗糖尿病性、ピールス鎮静性かよび利尿性の活性物質製造にかける中間物質として有用である旨、記載されている。

(式中、蓋 R₁ および R₂ は水栗原子または/たい し4個の炭栗原子を有する直鎖状または分枝鎖状 の低級アルキル基、…………、

R₃ および R₄ は水素原子、/ない し 4 個の炭素原子を有する直鎖状または分枝状の低級アルキル基。

R5 は、水栗原子、 / ない し 6 個の炭栗原子を有する直鎖状または分枝鎖状低級アルギル基、 2 ない

式中、Rはシアノアルキル蕗を示し、

Aは、任意に世換されていてもよい炭系数2~3の飽和炭化水素銀の2価の基、若しくは、任意に置換されていてもよい炭素数2~3の不飽和炭化水素銀の2価又は3価の基を示し、

A と X と の 結合 手 「 → 」は 、 / 価 又 は 2 価 を 示

x は NH 、 N 、 O 、 S 、 CH 又は CH $_2$ を示し、そして

Yはシアノ善又はニトロ葢を示す、

ことで、XがNHを示すとき、Aは任意に置換されていてもよい炭素数2~3の不飽和炭化水素鎖の2価の基を示し、又

X が N を示すとき、 A は任意に世換されていてもよい炭累数 2 ~ 3 の 不飽和炭化水梁鎖の 3 価の基を示し、且つ A と X との結合手「→」は 2 価を示す

で扱わされるシアノアルキル - ヘテロ環式化合物 を有効成分として含有する殺虫剤。

し3個の炭素原子を有するヒドロキシアルキル芸、ハロゲン原子、/または 2 個の炭素原子を有する低級アルキルまたはアルコキシ芸によつて任意にモノ・またはジ・置換されたフェニル基、ハロゲン原子によつて任意にモノ置換されたペンジルまたはフェネチル基を表わす…………、

X は酸素をたはイオウ原子をたはその窒素原子が / ないし半個の炭素原子を有する、直鎖状をたは 分枝鎖状の低級アルキル基をたはペンジルをたは 任意に置換されるイミノ基であり、かつ

ュは0または/に等しい)

同じく、英国特許出顧公告第2055,796-A号には、下記式で表わされる化合物が殺虫活性を有する旨、記載されている。

(式中、Xは、NH- 、-N(アルキル) - 、-S-又は -CH₂- 、 R は水果、アルキル又はアルキルカルポニルそ して

n は 2 又は 3 を示し、 R が 水楽 又は X が -NH-の 場合、その 互変 異性を 有する)

この度、本発明者等は下記式(I)のシアノアルキル・ヘテロ環式化合物を見い出した。

式:

$$R - N X \qquad (I)$$

式中、Bはシアノアルキル基を示し、

Aは、任意に置換されていてもよい炭素数2~3の飽和炭化水素鎖の2価の高、若しくは、任意に置換されていてもよい炭素数2~3の不飽和炭化水素鎖の2価又は3価の基を示し、

A と X との 紺 合 手 「 → 」は、 / 価 又 は 2 価 を 示 し、

X は NH 、 N 、 O 、 S 、 CH 又は CH $_2$ を示し、そして

Yはシアノ基又はニトロ夢を示す。

Hal はハロゲン原子を示す、

で扱わされる化合物とを反応させることを特徴と する、前配式(I)のシアノアルキル・ヘテロ環式化 合物の製造方法。

製法 b): [式(l)中、 A が任意に置換されていても よい炭素数 2 ~ 3 の飽和炭化水素 鎮の 2 価の基を示し、 X が 0 又は 8 を示す 場合、 A を A¹ とし、 X を X¹ とする]

式:

$$R - NH - A^1 - X^1H \qquad \qquad (M)$$

式中、R、A¹及びX¹は前配と同じ、 で扱わされる化合物と、

式:

$$\begin{array}{c|c}
B & C = N - Y
\end{array} \tag{V}$$

式中、Yは前配と同じ、そして

Bはメチルチオ基又はアミノ基を示す、 で扱わされる化合物とを反応させることを特徴と する、 ここで、 X が NHを示すとき、 A は任意に置換されていてもよい 炭素数 2 ~ 3 の不飽和 炭化水素鎖の 2 価の基を示し、又

X が N を示すとき、 A は任意に登換されていて もよい炭素数 2 ~ 3 の 不飽和炭化水素鎖 の 3 価 の 基を示し、且つ A と X との結合手「→ 」は 2 価を 示す。

本発明式(I)の化合物は例えば下記の方法により 合成できる。

製法 ●):

式

式中、A、X及びYは前配と向じ、 で表わされる化合物と、

式

式中、Rは舶配と同じ、そして

式

$$R-N \xrightarrow{A^{1}} X^{1} \qquad (1')$$

式中 B 、 A^1 、 X^1 および Y は前配と同じ、 で表わされる シアノアルキル・ヘテロ 環式化合物 の製造方法。

本発明式(I)のシアノアルキル・ヘテロ環式化合物は、強力を殺虫作用を示す。

本発明によれば、式(j)のシアノアルキル・ヘテロ環式化合物は意外にも、驚くべきことには、例えば前掲の刊行物配載の化合物に比較し、実質的に進めて卓越した殺虫作用を現わす。

本発明式(1)の化合物に於いて、好ましくは、

Bは、炭素数!~5のアルキルを有するシアノ アルキルを示し、

Aはアルキル世換されていてもよい炭素放え〜 3の飽和炭化水無額の2価の基、若しくは、アルキル健換されていてもよい炭条故2〜3の不飽和 **炭化水素鎖の2価又は3価の基を示し、**

A と X と の 結合 手 \mathbb{I} → \mathbb{I} 」 は \mathbb{I} 価 又 は \mathbb{I} は \mathbb{I} を示し、 X は \mathbb{I} N 、 O 、 8 、 \mathbb{I} CH 又 は \mathbb{I} CH \mathbb{I} を示し、 そして

Y はシアノ又はニトロを示し、ここで X が NHを示すとき、 A はアルキル 置換されていてもよい炭素数 2 ~ 3 の不飽和炭化水素鎖の 2 価の基を示し、又

XがNを示すとき、Aはアルキル置換されていてもよい炭素数2~3の不飽和炭化水素鎖の3価の基を示す。

更には、式(1)に於いて、特に好ましくは、

Rは炭素数!~3のアルキルを有するシブノアルキルを示し、

A はメチル置換されていてもよい炭素数2~3の飽和炭化水素鎖の2 価の基、若しくはメチル置換されていてもよい炭素数2~3 の不飽和炭化水業鎖の2 価又は3 価の基を示し、

A と X と O 結合手「 \rightarrow 」は / 価又は 2 価を示し、 X は NH 、 N 、 O 、 S 、 CH 又は CH $_2$ を示し、 \mathcal{E}

/ - (2 - シアノエチル) - 2 - = トロイミノ - /.2 - リヒドロピリシン、

/ - (2 - シアノエチル) - 2 - シアノイミノ - / 2 - ジヒドロピリジン、

3 - (2 - シナソエチル) - 2 - シナノイミノ チナナリジン、

 $3 - (3 - \nu \tau / \tau - \nu \tau) - 2 - \nu \tau / 4 \approx 0$ $/ \tau + 5 + 5 + 5 + 5 + 7 = 0$

/ - (3 - シアノプロピル) - 2 - ニトロイミ ノピロリシン、

/ - (3 - シアノテロピル) - 2 - = トロイミ ノ - / .2 - ツヒドロピリミジン。

製法。) に於いて、原料として、例えば、*2 - シ*アノイミノテトラヒドロ-/.3 - チアツンと、3-クロロプロピオニトリルとを用いると、下記の反応式で表わされる。

(以下余白)

して

Y はシアノ又はニトロを示し、ここで X がNHを示すとき、 A はメチル置換されていてもよい炭素数 2 ~ 3 の不飽和炭化水素級の 2 価の基を示し、又

XがNを示すとき、Aはメナル置換されていてもよい炭素数~~3の不飽和炭化水素鎖の3価の基を示す。

そして本発明式(I)の化合物の具体例としては、 特には下記の化合物を例示できる。

3 - (2 - シアノエテル) - 2 - シアノイミノ テトラヒドロ - 1,3 - チアジン、

 $3 - (2 - \nu \tau / \tau + \kappa) - 2 - \nu \tau / 4 \in \mathcal{I}$ $+ \tau \gamma \psi = 0$

3 - (2 - シアノエチル) - 2 - ニトロイミノ テトラヒドロ - / 3 - チア*ジ*ン

3 - (4 - シアノエチル) - 4 - シアノイミノ オキサプリジン、

3 - (2 - シアノエチル) - 2 - シアノイミノテトラヒドロ - 1,3 - オキサジン、

HN B +
$$C1CH_2CH_2-CN$$

N-CN

-HC1

NC- CH_2CH_2-N

N-CN

製法 b) に於いて、原料として例えば3 - (2 - ヒドロキシエチル) アミノプロピオニトリルと、 ジメチルN - シアノジチオイミノカーポネートと を用いると、下配の反応式で扱わされる。

 $NC-CH_2CH_2-NHCH_2CH_2OH + (CH_3S)_2C = N-CN$

上配製法 a) に於いて、原料である式(II) の化合物は前配、A、X及びYの定義に基づいたものを承

味する。

式(II)に於いて、A、X及びYは好ましくは、前 配の好ましい定義と同義を示す。

式皿の化合物は、有機化学の分野ですでに文献 公知のものであり、その具体例としては、

*ユーシ*アノイミノテトラヒドロ−/*3 −チアク* ン、

2 - シアノイミノテトラヒドロー / 3 - オキサ ジン、

→ - - トロイミノテトラヒドロ・1.3 - チア*シ*ン、

2--トロイミノテアソリジン、

ユーシアノイミノチアソリジン、

2-シアノイミノピロリジン、

2-シアノイミノピペリジン、

2-=トロイミノピロリジン、

2-ニトロイミノピペリジン、

2-シアノアミノテアソリン、

2 - = トロアミノピリッン

等を例示できる。

ー)・72巻、1814~1815 頁又は、 J. Pham. Sei. (ジャーナル オプ ファーマシューティカル サイエンス)・59巻、1350~1352 頁等に記 載される公知化合物を包含する。

その具体例としては、例えば、

3 - (ユ - メルカプトエチル) アミノプロピオ ニトリル、

3 ~ (2 ~ ヒドロキシエチル) アミノプロピオニトリル

等を例示できる。

製法 b) に於いて、同 様に原料である式(M)の化合物は公知のものであり、その具体例としては、

ンメチルN-シアノイミノシチォカー#ネート、 ニトログアニシン、

N - ニトロS-メチルイソチオウレアを例示できる。

上記製法 a) の実施に際しては、適当な希釈剤としてすべての不活性な溶媒を挙げることができる。かかる希釈剤の例としては、水;脂肪族、環脂肪族かよび芳香族炭化水素類(場合によつては塩

同様に、製法 a)の原料である式伽の化合物は、 前配 B 及び H a 1 の定義に基づいたものを意味する。 式伽に於いて、 B は、好ましくは、前配の好ま しい定義と同義を示し、 H a 1 は好ましくは、クロ ル又はプロムを示す。

式伽の化合物は、有機化学の分野でよく知られたものであり、その具体例としては、

ユークロロアセトニトリル、

3-クロロプロピオギニトリル

等を例示できる。

上記製法 b) 化於いて、原料である式 M の化合物は、前記、R、 A^1 及び X^1 の定義に基づいたものを意味する。

式 M に 於いて、 R 、 A^1 及び X^1 は 好ましくは R については、前紀の好ましい定義と 同義を示し、 A^1 及び X^1 については、 夫々、前紀 A 及び X の好ましい定義中のそれぞれに対応する定義と 问義を示す。

式Mの化合物は、例えばJ. Am. Chem. Soc.(ジャーナル オア アメリカン ケミカル ソサエティ

業化されてもよい)例えば、ヘキサン、シクロヘ キサン、石油エーテル、リクロイン、ペンセン、 トルエン、キシレン、メチレンクロライド、クロ ロホルム、四塩化炭素、エチレンクロライドおよ びトリクロロエチレン、クロロペンセン;その他、 エーテル類例えば、ジエチルエーテル、メチルエ ナルエーテル、ジ・lso - プロピルエーテル、ツ プテルエーテル、プロピレンオキサイド、ジオキ サン、テトラヒドロフラン;ニトリル類例えば、 アセトニトリル、プロピオニトリル、アクリロニ トリル:アルコール類例えば、メタノール、エタ ノール、 140 - プロオノール、アメノール、エチ レングリコール:酸丁ミド類例えば、シメテルホ ルムアミド、リメチルアセトアミド;スルホン、 スルホキシド類例えば、シメテルスルホキシド、 スルホラン;および塩茜例えば、ナトリウムハイ ドライド、カリウムハイドライド等の水果化物、 アルカリ金銭の水酸化物、炭酸塩、及びトリエチ ルアミン等の三級アミンをあげることができる。

上記製法。)は、広い温度範囲内において実施す

ることができ、一般には、約0°0〜約100°0、好ましくは約10°0〜約8°0°0間で実施できる。また、反応は常圧の下で行なりのが好ましいが、加圧または波圧の条件の下で行なりこともできる。

上記製法。)を実施するに当つては、例えば、式 (II) の化合物 / モルに対し、塩基として、ナトリウムハイドライドを、約 / / 倍~ / / 2 倍モル量、 公 (は等モル量~約 / / 2 倍モル量、 好ましくは等モル量~約 / / 倍モル量を、 不活性溶媒、 例えばジメテルホルムアミド中で反応させることにより、目的の化合物を得ることができる。

上記製法 b) の実施に際しては、適当な希釈剤として、製法 a) で例示したと同様のすべての不活性な溶媒を挙げることができる。

上記製法 b) は、広い温度範囲内において実施することができ、たとえば、約00~約100 での間好ましくは約300~約8000間で実施できる。

また、反応は常圧の下で行なりのが好ましいが、 加圧または滅圧の条件の下で行なりこともできる。

アズキソウムシ (Callosobruchus chinensis)、コクソウムシ (Sitophilus seamais)、コクヌストモドキ (Tribolium castaneum)、オオニジュウヤホシテントウ (Epilachna vigintioctomacu-late)、トピイロムナポソコメツキ (Agriotes fuscicollis)、ヒメコガネ (Anomala rufocu-pres)、コロラドポテトピートル (Leptinotares decemiinests)、ジアアロテイカ (Diabrotica spp.)、マツノマグラカミキリ (Monechamus alternatus)、イネミズソウムシ (Lissorhoptrus oryzophilus)、ヒラタキクイムシ (Lyctus bruneus):鱗翅目虫、例えば、

マイマイガ (Lymantria dispar)、ウメケムシ (Malacosoma neustria)、アオムシ (Pieris rapae)、ハスモンヨトウ (Spodoptera litura)、ヨトウ (Mamestra brassicae)、ニカメイチユウ (Chilo suppressalia)、アワノメイガ (Pyrausta nubilalia)、コナマグラメイガ (Ephestia cautelia)、コカクモンハマキ (Adoxophyes orana)、コドリンガ (Carpocapsa

上記製法 b)を実施するに当つては、例えば式Mの化合物/モルに対し、式Mの化合物を等モル量へ約ハノ倍モル量、好ましくは等モル量へ約ハノ倍モル量、不活性溶媒、例えばアルコール(例えば、メタノール、エタノール)溶媒中で、メルカプタン及び/又はアンモニアの発生の止むまで、反応させることによつて、目的の新規化合物を得ることができる。

本発明の式(1)化合物は、強力な殺虫作用を現わす。従つて、それらは、殺虫剤として、使用することができる。そして本発明の式(1)活性化合物は、栽培植物に対し、薬害を与えることなく、有害昆虫に対し、的確な防除効果を発揮する。また本発明化合物は広範を種々の害虫、有害虫、肝蔵害虫、中心昆虫やよびその他の植物寄生害、それらの駆除換数のために適用できる。

そのような客虫類の例としては、以下の如き寄虫類を例示することができる。 昆虫類として、鞘翅目客虫、例えば

pomonella)、カプラヤガ (Agrotis fucesa)、ハテミツガ (Galleria mellonella)、コナガ (Plutella maculipennis)、ミカンハモクリガ (Phyllocnistis citrella); 半翅目虫、例えば

ツマグロヨコペイ (Nephotettix cincticeps)、トピイロウンカ (Nilaparvata lugens)、クワコナカイガラムシ (Pseudococcus comstocki)、ヤノネカイガラムシ (Unaspis yanonensis)、モモアカアプラムシ (Myzus persicae)、リンゴアプラムシ (Aphis gossypii)、ニセダイコンアプラムシ (Rhopalosiphum pseudobrassicas)、ナシグンペイ (Stephanitis nashi)、アオカメムシ (Nezara spp.)、トコジラミ (Cimex lectularius)、オンシツコナジラミ (Trialeurodes vaporariorum)、キジラミ (Psylla spp.);

直翅目虫、例えば

テヤパネプキアリ (Blatella germanica)、ワモンプキアリ (Periplaneta americana)、ケラ

(Gryliotalpa africana)、ペッタ (Locusta migratoria migratoriodea); 等翅目虫、例えば、

ヤマトシロアリ (deucotermes speratus)、 イエシロアリ (Coptotermes formosanus) ; 双翅目虫、例えば、

イエパエ (Musca domestica)、ネッタイシマカ (Aedes segypti)、タネパエ (Hylemia platurs)、アカイエカ (Culex pipiens)、シナハマグラカ (Anopheles elneneis)、コガタアカイエカ (Culex tritaeniorhynchus)、等を挙げるととができる。

更に、獣医学の医薬分野においては、本発明の新規化合物を積々の有害な動物寄生虫(内部および外部寄生虫)、例えば、昆虫類およびぜん虫に対して使用して有効である。 とのような動物寄生虫の例としては、以下の如き客虫を例示することができる。

昆虫類としては例えば、

ウマパエ (Gastrophilus app.)、サシパエ

釈剤、又は担体、場合によつては界面活性剤、即ち、乳化剤及び/又は分散剤及び/又は泡沫形成剤を用いて、混合することによつて行なうことができる。 展開剤として水を用いる場合には、例えば、有機溶液は、また補助溶媒として使用することができる。

液体希釈剤又は担体の例としては、たとえば、 芳香族炭化水果類(例えば、キシレン、トルエン、 アルキルナフタレン等)、クロル化芳香 ロマル化脂肪族炭化水果類(例えば、クロッチで、の の類、塩化エテレン類、塩化メテレン等等、ペリカ 族炭化水果類 「例えば、シクロール及の スロックのでは、アタノール、クリコール及の でののでは、アタノール、クリコール及の エステル等)、クリコールのの エステルチン、メテルエテルケトン、メテルエテルケトン、メテルエテルケトン、 ケトン、メテルエテルケトン、等)ド、ルケトンはシクメテルホルムできる。 のののでは、ジメテルホルムできる。

液化ガス希釈剤又は担体は、常温常圧でガスで

(Stomoxys spp.)、ハジラミ (Trichodectes spp.)、サジガメ (Rhodnius spp.)、イヌノミ (Ctenocephalides canis) 等を挙げることができる。

本発明ではこれらすべてを包含する虫類に対する数虫作用を有する物質として殺虫剤と呼ぶことがある。

本発明の式(I)活性化合物は通常の製剤形態にすることができる。そして斯る形態としては、液剤、エマルジョン、腫濁剤、粉剤、泡沫剤、ペースト、粒剤、エアゾール、活性化合物浸潤ー天然及び合成物、マイクロカプセル、種子用被覆剤、燃焼装置を備えた製剤(例えば燃焼装置としては、くん蒸及び煙器カートリンジ、かん並びにコイル)、そしてULV [コールドミスト(cold mist)、ウオームミスト(warm mist)]を挙げることができる。

これらの製剤は公知の方法で製造することができる。斯る方法は、例えば、活性化合物を、展開剤、即ち、液体希釈剤;液化ガス希釈剤;固体希

あり、その例としては、例えばアタン、プロイン、 選業ガス、二酸化炭素、そしてハロゲン化炭化水 素類のようなエアゾール噴射剤を挙げることがで まる。

固体希釈剤としては、土壌天然鉱物(例えば、 カオリン、クレー、タルク、チョーク、石英、ア タペルガイド、モンモリナイト、又は珪藻土等)、 土壌合成鉱物(例えば、高分散ケイ酸、アルミナ、 ケイ酸塩等)を挙げることができる。

粒剤のための固体担体としては、粉砕且つ分別された岩石(例えば、方解石、大理石、軽石、海池石、白雲石等)、無機及び有機物粉の合成粒、そして細粒体又は有機物質(例えば、おがくず、ココヤしの実のから、とうもろこしの徳軸そしてタバコの基等)を挙げることができる。

乳化剤及び/又は泡沫剤としては、非イオン及び陰イオン乳化剤〔例えば、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン脂肪酸アルコールエーテル(例えば、アルキルアリールポリグリコールエーテル、アルキルスルホン酸塩、ア

特開昭63-307857(8)

ルキル硫酸塩、アリールスルホン酸塩等)〕、ア ルプミン加水分解生成物を挙げることができる。

分散剤としては、例えばリグニンサルファイト 廃液そしてメチルセルロースを包含する。

固糖剤も、製剤(粉剤、粒剤、乳剤)に使用することができ、斯る固糖剤としては、カルボキシメテルセルロースそして天然及び合成ポリマー(例えば、アラピアゴム、ポリピニルアルコールそしてポリピニルアセテート等)を挙げることができる。

着色剤を使用することもでき、斯る着色剤としては、無接額料(例えば酸化鉄、酸化チタンそしてプルシアンアルー)、そしてアリザリン染料、アプ染料又は金属フタロシアニン染料のような有機染料、そして更に、鉄、マンガン、ポロン、銅、コペルト、モリプアン、亜鉛のそれらの塩のような微量要素を挙げることができる。

数製剤は、例えば、前配活性収分を0.1~95 重量が、好ましくは0.5~90重量が含有することができる。

えば 0.0000001~100 重量がであつて、好ま しくは 0.0001~1 重量がである。

本発明式(j) 化合物は、使用形態に適合した通常 の方法で使用することができる。

衛生客虫、貯蔵物に対する客虫に使用される際には活性化合物は、石灰物質上のアルカリに対する良好な安定性はもちろんのこと、木材及び土壌における優れた残効性によつて、きわだたされている。

次に実施例により本発明の内容を具体的に説明 するが、本発明はこれのみに限定されるべきもの ではない。

製造災施例:

寒施例/

2 - シアノイミノテトラヒドロ - 1,3 - チアジン(1,48)、3 - クロロプロピオニトリル(0,9

本発明の式(I)活性化合物は、それらの商業上、有用な製剤及び、それらの製剤によつて調製された使用形態で、他の活性化合物、例えば、殺虫剤、毒餌、殺菌剤、殺ぎニ剤、殺センチニウ剤、殺カビ剤、生長調整剤又は除草剤との混合剤として、利用することもできる。ここで、上配殺虫剤としては、例えば、有機リン剤、カーバメート剤、カーボキシレート系薬剤、クロル化炭化水素系剤、微生物より生産される殺虫性物質を挙げることができる。

更に、本発明の式(I)活性化合物は、共力剤との 混合剤としても、利用することができ、斯る製剤 及び、使用形態は、商業上有用なものを挙げるこ とができる。該共力剤は、それ自体、活性である 必要はなく、活性化合物の作用を増幅する化合物 である。

本発明の式(I)活性化合物の商業上有用な使用形態における含有量は、広い範囲内で、変えることができる。

本発明の式(1)活性化合物の使用上の濃度は、例

8)、炭酸カリウム(ハ48)、アセトニトリル(30 ml)の混合物を投拌しながら、4時間遊流する。反応後アセトニトリルを滅圧で留去し、没強にジクロロメタンを加え、水及び1 多水酸化ナトリウム水溶液で洗浄する。ジクロロメタン層を乾燥後、濃縮すれば、目的物は結晶となり、洗燥し、するので、炉過し、少量のエーテルで洗い、洗燥し、目的の3-(2-シアノエチル)-2-シアノイはられる。

mp. 85~88°C

実施例2

2 - ニトロアミノピリジン(288)、3 - クロロプロピオニトリル(188)、トリエチルアミン(228)、エタノール(50 W)の溶液を提择しながら、3 時間遺流させる。エタノールを

特開昭63-307857(9)

渡圧で留去後、残盗に水を加え、ジクロロメタン で抽出する。ジクロロメタン層を水及び / 多塩酸 で洗浄後、乾燥する。ジクロロメタンをみ縮後、 残盗をシリカゲルカラムクロマトグラフィーで精 製すると、目的の / - (2 - シアノエチル) - 2 - ニトロイミノ - /・2 - ジヒドロピリジン(0.8 8)が得られる。

mp. /36~/400

寒 施 例 3

3 - (2 - ヒドロキシエチル) アミノプロピオニトリル (1. 1 8) 及び ジメチル N - シアノジチオイミノカーポネート (1. 5 8) のエタノール (2 5 4) 密液を 3 日間 盛流する。 続いて、エタノールを波圧で、約 2/3 機箱し、放冷すると、目的物は結晶として、北殿するので、沪過し、少量のエタノールで洗い乾燥すると、目的の 3 - (2

- シアノエチル) - 2 - シアノイミノオキサゾリ リン (0.78) が得られる。

mp. / 00~/020

実施例/~3と同様の方法により製造される本発明式(I)の化合物を、実施例/~3の化合物とと もに下配第/表に示す。

(以下余白)

		HE			
		Z ż			
化合物系	ot.	- A -	×	7	
	NC-CH3-	-ch2ch2-	60	Ş	np./#6~/#8℃
	NC-CH ₂ CH ₂ -	-CH2CH2-	00	ج د	mp. 82~86c
	NC-(CH ₂) ₃ -	-CH2CH2-	60	Ş	ab. 65~ 68 c
	NC-CH2CH2-	-(CH ₂),-	6	ž	mp. 85~88 C
	NC-CH2-	-(CH ₂),-	99	NO-	mp./#0~/#\$C
	NC-CH2CH2-	CH ₁ -CH ₂ CHCH ₂ -	∞	Z V	
	NC-(CH ₂) ₅ -	-(CH ₂) ₃ -	60	N _J -	
	CH3 NC-CH2CCH2- CH3	-(CH ₂) ₁ -	60	-CN	
	NC-CH2-	-ch2_t-	۰	Ş	
	NC-CH2 CH2-	-CH2CH3-	۰	\$	mp./00~401C
	NC-(CH ₂) ₃	-CH2 CH2-	۰	Ş	
	NC-CH ₂ -	-(CH ₂) ₃ -	۰	Ş	
	NC-CH2 CH2-	-(CH ₂);-	•	ş	mp.//04/20
	NC-(CH ₂),	-(CH ₂),-	٥	Ş	
	NC-CH ₃ -	-CH2CH2-	CH,	Ž,	

化合物系	æ	- 4	×	>	
9/	NC-CH ₂ CH ₂ -	- cho eno-	CH 2	<u>ئ</u>	
"	NC-(CH2)3-	-CH2CH1-	CH 2	Ç	
۶/	NC-CH1CH1-	-(CH ₂) ₃ -	CH.	Ş	mp./59~/625°C
6/	NC-(CH ₂),-	-(CH ₂) ₃ -	CH2	-CN	
97	NC-CH2CH2-	-cn, ch,-	100	-N0.	mp./03~05C
77	NC-CH2-	-cH2 CH2-	∞	-N02	
ង	NC-(CH ₂),-	-CB2CH2-	00	-N0 ₂	
27	NC-CH1CH1-	- (CH ₂),-	20	-702-	
*	CH ₃ NC-C-CH ₂ - CH ₃	-ch2ch2-	92	-NO ₂	
্ন	NC-(CH ₂) ₃ -	си ₃ -си ₂ -си- (х ң)	ø	-N0 ₂	·
78	NC-CH2-	-cHocHo-	۰	-N0.	
22	NC-CH2CH2-	-cH2cH2-	•	-NO.	
28	NC-CH2CH2-	-(CH ₂),-	۰	-N02	
79	NC-(CH ₂) ₃ -	-(CH ₂),-	۰	-N02	
30	NC-CH ₂ CH ₂ -	-CH2CH2-	CH ₂	-N0.	
3/	NC-(CH ₂),-	-CH2CH2-	CH2	-302	
77	NC-CH ₂ CH ₂ -	-(CH ₂) ₃ -	CH2	-N02	

23 NC-CH- CH ₂ CH ₂ CH ₃ 24 NC-CH ₂ CH ₂ - CH ₂ CH ₂ S CN 25 NC-CH ₂ CH ₂ - CH-CH ₂ C X M S CN 36 NC-CH ₂ CH ₂ - CH-CH-CH- CH CN 37 NC-CH ₂ CH ₂ - CH-CH-CH- CH CN 38 NC-CH ₂ CH ₂ - CH-CH-CH- CH CN 40 NC-CH ₂ CH ₂ - CH-CH-CH- CH CN 41 NC-CH ₂ CH ₂ - CH-CH-CH- CH CN 42 NC-CH ₂ CH ₂ - CH-CH-CH- CH CN 43 NC-CH ₂ CH ₂ - CH-CH-CH- CH CH 44 NC-CH ₂ CH ₂ - CH-CH- S CN 45 NC-CH ₂ CH ₂ - CH-CH- S CN 46 NC-CH ₂ CH ₂ - CH-CH- S CN 47 NC-CH ₂ CH ₂ - CH-CH- S CN 48 NC-CH ₂ CH ₂ - CH-CH- S CN 49 NC-CH ₂ CH ₂ - CH-CH- S CN 44 NC-CH ₂ CH ₂ - CH-CH- S CN 45 NC-CH ₂ CH ₂ - CH-CH- CH- NS 46 NC-CH ₂ CH ₂ - CH-CH-CH- NS 47 NC-CH ₂ CH ₂ - CH-CH-CH- NS 48 NC-CH ₂ CH ₂ - CH-CH-CH- NS 49 NC-CH ₂ CH ₂ - CH-CH-CH- NS 40 NC-CH ₂ CH ₂ - CH-CH-CH- NS 41 NC-CH ₂ CH ₂ - CH-CH-CH- NS 42 NC-CH ₂ CH ₂ - CH-CH-CH- NS 43 NC-CH ₂ CH ₂ - CH-CH-CH- NS 44 NC-CH ₂ CH ₂ - CH-CH-CH- NS 45 NC-CH ₂ CH ₂ - CH-CH-CH- NS 46 NC-CH ₂ CH ₂ - CH-CH-CH- NS 47 NC-CH ₂ CH ₂ - CH-CH-CH- NS 48 NC-CH ₂ CH ₂ - CH-CH-CH- NS 49 NC-CH ₂ CH ₂ - CH-CH-CH- NS 40 NC-CH ₂ CH ₂ - CH-CH-CH- NS 40 NC-CH ₂ CH ₂ - CH-CH-CH- NS 40 NC-CH ₂ CH ₂ - CH-CH-CH- NS 41 NC-CH ₂ CH ₂ - CH-CH-CH- NS 42 NC-CH ₂ CH ₂ - CH-CH-CH- NS 43 NC-CH ₂ CH ₂ - CH-CH-CH- NS 44 NC-CH ₂ CH ₂ - CH-CH-CH- NS 45 NC-CH ₂ CH ₂ - CH-CH-CH-CH- NS 46 NC-CH ₂ CH ₂ - CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	化合物板	æ	+¥-	×	>-	
CH ₃ NC-CH ₂ CH ₃ CH-CH ₂ CH-CH ₂ CH ₂ CH ₃ - NC-CH ₂ CH ₃ CH ₂ CH ₃ - NC-CH ₂ CH ₃ CH ₂ CH ₃ - NC-CH ₂ CH ₃ CH-CH-CH- NC-CH ₂ CH ₂ CH-CH- NC-CH ₂ CH ₂ CH-CH- NC-CH ₃ CH ₂ CH-CH-CH- ND ₂ NC-CH ₃ CH ₂ CH-CH-CH- ND ₂ NC-CH ₃ CH ₂ CH-CH-CH- ND ₃	33	CH ₃ I NC-CH-	-CH2 CH2-	83	-כא	
CH ₂ NC-CHCH ₂ - CH ₂ CH ₂ - NC-CHCH ₂ - CH ₂ CH ₂ - NC-CH ₂ CH ₂ - NC-CH ₂ CH ₂ - CH ₂ CH ₃ - CH ₂ CH ₂ - CH ₂ CH ₃ - CH ₃ CH ₃ - CH ₂ CH ₃ - CH ₃ CH ₃ - CH ₂ CH ₃ - CH ₃	345	NC-CH2CH2-	CH ₃ -CH-CH ₂ -(XM)	60	Ž.	
NC-(CH ₂) ₄ CH ₂ CH ₂ - 8 -CN NC-CH ₂ CH=CH-CH= CH -NO ₂ NC-CH ₂ CH ₂ CH=CH-CH= CH -NO ₂ NC-CH ₂ CH ₂ CH=CH-CH= CH -CN NC-CH ₂ CH ₂ CH=CH-CH= CH NO ₂ NC-CH ₂ CH ₂ CH=CH-CH= CH NO ₂ NC-CH ₂ CH ₂ CH=CH-CH= 8 CN NC-CH ₂ CH ₂ CH=CH-CH= 8 CN NC-CH ₂ CH ₂ CH=CH-CH= NH NO ₂ NC-CH ₂ CH ₂ CH=CH-CH= NH NO ₂ NC-CH ₂ CH ₂ CH=CH-CH= NH NO ₂	3.5	CES NC-CECH ₂ -	-CH ₂ CH ₂ -	t 2	-CN	
NC-CH ₂ CH=CH-CH= CH -NO ₂ NC-CH ₂ CH ₂ CH=CH-CH= CH -NO ₂ NC-CH ₂ CH ₂ CH=CH-CH= CH -CN NC-CH ₂ CH ₂ CH=CH-CH= CH -CN NC-CH ₂ CH ₂ CH=CH-CH= CH NO ₂ NC-CH ₂ CH ₂ CH=CH- CH NO ₂ NC-CH ₂ CH ₂ CH=CH- R CN NC-CH ₂ CH ₂ CH=CH- NH NO ₂ NC-CH ₂ CH ₂ CH=CH-CH= NH NO ₂	3%	NC-(CH ₂)4-	-CH2 CH2-	ø	Ş	
NC-CH ₂ CH ₂ CH-CH- CH -NO ₂ NC-CH ₂ CH ₂ CH-CH- CH -CN NC-CH ₂ CH ₂ CH-CH- CH -CH NC-CH ₂ CH ₂ CH-CH- CH NO ₂ NC-CH ₂ CH ₂ CH-CH- CH NO ₂ NC-CH ₂ CH ₂ CH-CH- S NO ₂ NC-CH ₂ CH ₂ CH-CH- S CN NC-CH ₂ CH ₂ CH-CH- NH NO ₂ NC-CH ₂ CH ₂ CH-CH- NH NO ₂	37	NC-CH3-	-CH-CH-CH-	Е	-N0.	
NC-CH ₂ CH ₂ CH-CH- CH - CCN CH ₃ NC-CH ₂ CH ₂ CH-CH- CH NO ₃ NC-CH ₂ CH ₂ CH-CH- O NO ₂ NC-CH ₂ CH ₂ CH-CH- S NO ₂ NC-CH ₂ CH ₂ CH-CH- S CN NC-CH ₂ CH ₂ CH-CH- NH NO ₂ NC-CH ₂ CH ₂ CH-CH- NH NO ₂ NC-CH ₂ CH ₂ CH-CH- NH NO ₂	38	NC-CH ₂ CH ₂ -	-CH-CH-CH-	СЯ	-k0	mp./36~/40C
CH ₂ NC-CH ₂ CH ₂ CH-C-CH- NC-CH ₂ CH ₂ CH-CH- NG-CH ₂ CH ₂ CH-CH- NG-CH ₂ CH ₂ CH-CH- NG-CH ₂ CH ₂ CH-CH-CH- NG-CH ₂ CH ₂ CH-CH- NG-CH ₂ C	36	NC-CH2 CH2-	-сн-сн-сн-	CH	ş	
NC-CH ₂ CH ₂ CH-CH- 0 NO ₂ NC-CH ₂ CH ₂ CH-CH- 8 NO ₂ NC-CH ₂ CH ₂ CH-CH- 8 CN NC-CH ₂ CH ₂ CH-CH- NH NO ₂ NC-CH ₂ CH ₂ CH-CH- NH NO ₂	3	NC-CH2 CH2-	•HO-D-HO-	CH	NO ₂	
NC-CH ₂ CH ₂ CH-CH- 8 NO ₂ NC-CH ₂ CH ₂ CH-CH- 8 CN NC-(CH ₂) ₃ CH-CH- NH NO ₂ NC-CH ₂ CH ₂ CH-CH- N CN NC-CH ₂ CH ₂ CH-CH-CH- N CN	*	NC-CH2CH2-	-кэ - кэ-	0	£	
NC-CH ₂ CH ₂ CH-CH- 8 NC-(CH ₂) ₃ CH-CH- NH NC-CH ₂ CH ₂ CH-CH-CH- N	7	NC-CH2CH2-	-сн-сн-	20	2 0%	mp./96~497.5C
NC-(CH ₂) ₃ CH-CH- NH NC-CH ₂ CH ₂ CH-CH-CH- N NC-CH ₂ CH ₂ CH-CH-CH- N	3	NC-CH2CH2-	CH=-CH-	00	S	
NC-CH ₂ CH ₂ CH-CH-CH- N	\$	NC-(CH2)3-	-CH=CH-	H	NO.	
NC-CH ₂ CH ₂ CH-CH-CH-	\$	NC-CH2CH2-	-ch-ch-ch-	z	3	
	\$	NC-CH2CH2-	-CH-CH-CH-	z	NO	

生物試験例:

比較化合物

c - / :

(特開昭48-91064号記載)

c - 2 :

C - 3 :

希釈した。

試験方法:

直径/20mのポットに植えた草文/00m位の稲に、上配のように調製した活性化合物の所定機度の水希釈液を/ポット当り/0ml散布した。散布薬液を乾燥後、直径7cm、高さ/4cmの金網をかぶせ、その中に有機リン剤に抵抗性を示す系統のツマグロョコペイの雌成虫を30頭放ち、恒温室に置き2日後に死虫数を調べ殺虫率を算出した。

代表例をもつてその結果を無し表に示す。

Æ	2	袋

化合物系	有効成分後度 ppm	教虫革多
2	40	100
4	40	100
20	40	100
比 較	<u> </u>	<u> </u>
C - /	200	55
C - 2	200	90
C - 3	200	65
C - 4	200	40
c - 3	200	50

c - # :

(英国出願公告第2055796号記載)

C - 5 :

実施例4(生物試験)

有機リン剤抵抗性ツマグロョコペイに対する 試験・

供試薬液の調製

溶 剤:キシロール3重量部

乳化剤:ポリオキシエチレンアルキルフェニル

エーテルノ重量部

選当な活性化合物の調合物を作るために活性化合物/重量部を前記量の乳化剤を含有する前記量の熱化剤を含有する前記量の再剤と混合し、その混合物を水で所定濃度まで

実施例か

有機リン剤、及びカーペメート剤抵抗性モモア カアプラムシに対する試験

試験方法:

その結果を第3表に示す。

(以下余白)

特開昭63-307857 (12)

第 3 表

化合物化	有効成分濃度ppm	殺虫率%
2	200	100
4	200	100
比 較		<u> </u>
C -/	1000	18
c - 2	1000	20
C - 3	1000	16
C - 4	1000	58
C - 5	1000	64

出願人 日本特殊農業製造株式会社 代理人 川原田 -- 植

第1頁の続き

233/52 7624-40 233/88 7624-40 239/20 6529-40 263/28 7624-40 263/48 7624-40 265/06 7624-40 265/08 7624-40	<pre>⑤Int.Cl.⁴</pre>	識別記号	庁内整理番号
	233/52 233/88 239/20 263/28 263/48 265/06 265/08		7624-4C 7624-4C 7624-4C 6529-4C 7624-4C 7624-4C 7624-4C 7330-4C