2º curso / 2º cuatr. Grado en Ing. Informática

Arquitectura de Computadores Tema 3

Lección 9. Consistencia del sistema de memoria

Material elaborado por los profesores responsables de la asignatura: Mancia Anguita – Julio Ortega

Licencia Creative Commons © ① © ②

Lecciones

AC MATC

- Lección 7. Arquitecturas TLP
- Lección 8. Coherencia del sistema de memoria
- Lección 9. Consistencia del sistema de memoria
 - Concepto de consistencia de memoria
 - Consistencia secuencial
 - Modelos de consistencia relajados
- Lección 10. Sincronización

Objetivos Lección 9

AC SO PIC

- Explicar el concepto de consistencia.
- Distinguir entre coherencia y consistencia.
- Distinguir entre el modelo de consistencia secuencial y los modelos relajados.
- Distinguir entre los diferentes modelos de consistencia relajados.

Bibliografía Lección 9

AC N PTC

Fundamental

- ➤ Cap.3, Secc. 4. M. Anguita, J. Ortega. *Fundamentos y Problemas de Arquitectura de Computadores*. Librería Fleming/Ed. Avicam, 2016.
- > Secc. 10.2. J. Ortega, M. Anguita, A. Prieto. "Arquitectura de Computadores". ESII/C.1 ORT arq

Contenido Lección 9

AC MATC

- Concepto de consistencia de memoria
- Consistencia secuencial
- Modelos de consistencia relajados

Consistencia de memoria

AC N PTC

Modelo de consistencia de memoria Software

C con PThread C con OpenMP HPF

Herramientas de programación

Lenguaje ensamblador

Modelo de consistencia de memoria Hardware

Sistema de memoria

- Especifica (las restricciones en) el orden en el cual las operaciones de memoria (lectura, escritura) deben parecer haberse realizado (operaciones a las mismas o distintas direcciones y emitidas por el mismo o distinto proceso/procesador)
- La coherencia sólo abarca operaciones realizadas por múltiples componentes (proceso/procesador) en una misma dirección

Contenido Lección 9

AC MATC

- Concepto de consistencia de memoria
- Consistencia secuencial
- Modelos de consistencia relajados

Consistencia secuencial (SC)

AC A PIC

- SC es el modelo de consistencia que espera el programador de las herramientas de alto nivel
- > SC requiere que:
 - Todas las operaciones de un único procesador (thread) parezcan ejecutarse en el orden descrito por el programa de entrada al procesador (orden del programa)
 - > Todas las operaciones de memoria parezcan ser ejecutadas una cada vez (ejecución atómica) -> serialización global

Consistencia Secuencial

SC presenta el sistema de memoria a los programadores como una memoria global conectada a todos los procesadores a través un conmutador central

Consistencia Secuencial

AC M PTC

Inicialmente k1=k2=0 P1 k1=1; if (k2=0) { Sección crítica };		P2 k2=1; if (k1=0) { Sección crítica };	ر ¿Qué espera el programador?
P1 A=1;	Inicialmente P2 if (A=1) B=1;	A=B=0 P3 if (B=1) reg1=A;	¿Qué espera el programador que se almacene en reg1 si llega a ejecutarse reg1=A?
Inicialm P1 A=1; k=1;	ente A=0,k=0	P2 while (k=0) {}; copia=A;	¿Qué espera el programador que se almacene en copia?

sincronización

Ejemplo de Consistencia Secuencial

(2) Leer K2 (¿K2==0?)

P2 (a) Escribir K2=1

(b) Leer K1 (¿K1==0?)

Orden con Consistencia Secuencial:

(1)(2)(a)(b)

(a)(b)(1)(2)

(1)(a)(2)(b)

(a)(1)(b)(2)

(1)(a)(b)(2)

(a)(1)(2)(b)

Escribir

- **P1**
- (1) Escribir A=1
- (2) Escribir K=1
- (a) Leer K (while k==0 {})
- <u>P2</u>
- (b) Leer A

Orden con Consistencia Secuencial:

(1)(a)....(a)(2)(a)(b)

(1)(2)(a)(b)

(a)..(a)(1)(a)..(a)(2)(a)(b)

(a)..(a)(1)(2)(a)(b)

¿Qué puede ocurrir en el computador?

No se garantiza el orden W→W

Contenido Lección 9

AC MATC

- Concepto de consistencia de memoria
- Consistencia secuencial
- Modelos de consistencia relajados

Modelos de consistencia relajados

AC A PIC

- Difieren en cuanto a los requisitos para garantizar SC que relajan (los relajan para incrementar prestaciones):
 - Orden del programa:
 - Hay modelos que permiten que se relaje en el código ejecutado en un procesador el orden entre dos acceso a distintas direcciones (W→R, W→W, R→RW)
 - > Atomicidad (orden global):
 - Hay modelos que permiten que un procesador pueda ver el valor escrito por otro antes de que este valor sea visible al resto de los procesadores del sistema
- Los modelos relajados comprenden:
 - Los órdenes de acceso a memoria que no garantiza el sistema de memoria (tanto órdenes de un mismo procesador como atomicidad en las escrituras).
 - Mecanismos que ofrece el hardware para garantizar un orden cuando sea necesario.

Ejemplos de modelos de consistencia hardware relajados

AC A PIC								
Modelo	Orden del programa relajado W→R W→W R→RW		Lec. an	global ticipada de otro	Instrucciones para garantizar los órdenes relajados por el modelo			
Sparc-TSO, x86-TSO	Si			Si		I-m-e (instruc. lectura-modificación-escritura atómica)		
Sparc-PSO	Si	Si		Si		I-m-e, STBAR (instrucción STore BARrier)		
Sparc-RMO	Si	Si	Si	Si		MEMBAR (instrucción MEMory BARrier)		
PowerPC	Si	Si	Si	Si	Si	SYNC, ISYNC (instrucciones SYNChronization)		
Itanium	Si	Si	Si	Si		LD.ACQ, ST.REL, MF (ACQuisition LoaD, RELease STore, Memory Fence), y cmpxchg8.acq y otras I-m-e		
ARMv7	Si	Si	Si	Si	Si	DMB (Data Memory Barrier)		
ARMv8	Si	Si	Si	Si	Si	LDA LDAR, STL STLR (LoaD-Acquire, STore-reLease 32b 64b), LDAEX LDAXR, STLEX STLXR (LoaD-Acquire eXclusive, Store-reLease eXclusive 32b 64b), DMB		

Sigue la tabla de Adve y Gharachorloo en (biblioteca ugr) http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=546611&isnumber=11956

Consistencia secuencial

AC M PTC

Inicialmente k1=k2=0 P1 k1=1; if (k2=0) { Sección crítica };		P2 k2=1; if (k1=0) { Sección crítica };	NO se comporta como SC los que relajan el orden W→R
<u>P1</u> A=1;	Inicialmente P2 if (A=1) B=1;	A=B=0 P3 if (B=1) reg1=A;	NO se comporta como SC los que no garantizan atomicidad
Inicialm P1 A=1; k=1;	ente A= 0	P2 while (k=0) {}; copia=A;	NO se comporta 3 como SC los que relajan el orden $W \rightarrow W$ o $R \rightarrow R$

Modelo que relaja W->R

AC A PIC

- Permiten que una lectura pueda adelantar a una escritura previa en el orden del programa; pero evita dependencias RAW
 - Lo implementan los sistemas con buffer (FIFO) de escritura para le procesadores (el buffer evita que las escrituras retarden la ejecución del código bloqueando lecturas posteriores)
 - Generalmente permiten que el procesador pueda leer una dirección directamente del buffer (leer antes que otros procesadores una escritura propia)
- Para garantizar un orden correcto se pueden utilizar instrucciones de serialización
- Hay sistemas en los que se permite que un procesador pueda leer la escritura de otro antes que el resto de procesadores (acceso no atómico)
 - Para garantizar acceso atómico se puede utilizar instrucciones de lectura-modificación-escritura atómicas

Modelo que relaja W->R y W->W

AC MATC

- Tiene buffer de escritura que permite que lecturas adelanten a escrituras en el buffer
- Permiten que el hardware solape escrituras a memoria a distintas direcciones, de forma que pueden llegar a la memoria principal o a caches de todos procesadores fuera del orden del programa.
- En sistemas con este modelo se proporciona hardware para garantizar los dos órdenes. Los sistemas con Sun Sparc implementa un modelo de este tipo.
- > Este modelo no se comporta como SC en el siguiente ejemplo:

```
P1
A=1;
k=1;
P2
while (k=0) {};
copia=A;
```

solapamiento

solapamiento

Modelo de ordenación débil

tabla **Ei. PPC**

AC A PIC

- Relaja W->R, W->W y R->RW
- Si S es una operación de sincronización (liberación o adquisición), ofrece hardware para garantizar el orden:
 - > **S**->WR
 - > WR->**S**
- PowerPC implementa un modelo basado en ordenación débil

Consistencia de liberación

AC A PTC

- Relaja W->R, W->W y R->RW
- Si SA es una operación de adquisición y SL de liberación, ofrece hardware para garantizar el orden:
 - > SA->WR y WR->SL

> Sistemas con Itanium implementan un modelo de consisten-

Para ampliar ...

AC A PTC

- Artículos en revistas
 - Adve, S.V.; Gharachorloo, K.; , "Shared memory consistency models: a tutorial," *Computer* , vol.29, no.12, pp.66-76, Dec 1996. Disponible en:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber = 546611&isnumber = 11956