

INSTITUTO DE ENGENHARIAS E CIÊNCIAS DO MAR LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

ELETRÓNICA DOS SISTEMAS EMBEBIDOS EXERCÍCIOS

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

1.1 CONVERSÃO A/D e D/A

Teoria:

Saída Analógica = $K \times$ entrada digital

K – fator de escala (scaling factor)

$$I_{FS} = K \times I_{REF}$$

I_{FS} – Corrente de fim de escala (Full-Scale current)

A corrente I_1 , ou corrente MSB, é escolhida para ser exatamente metade da Corrente de fim de escala. Assim, I_1 é obtida de seguinte forma:

$$I_1 = \frac{K \times I_{REF}}{2} = \frac{I_{FS}}{2}$$

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

Em geral:
$$I_0 = I_{FS} \left[\frac{B_1}{2^1} + \frac{B_2}{2^2} + \dots + \frac{B_N}{2^N} \right] = \sum_{i=1}^N \frac{I_{FS}B_i}{2^i}$$

Os DAC normalmente são escolhidos para uma determinada aplicação com base nas suas características **estáticas** e **dinâmicas** que constituem medidas do desempenho dos conversores DAC, sendo algumas delas usualmente fornecidos pelos fabricantes.

Algumas características Estáticas:

• Resolução (*resolution*): menor alteração que pode ocorrer na saída analógica em consequência de uma alteração na entrada digital.

resolução [%] =
$$\frac{1}{2^N - 1} \times 100$$

onde, N é o número de bits da entrada do DAC. O denominador da fração representa o número de degraus que separa os 2^N níveis de codificação. A **resolução** pode também ser expressa através da quantificação do degrau da tensão de saída, isto é

$$\operatorname{resolução} = \frac{V_{FS}}{2^N - 1}$$

em que, V_{FS} é a tensão de fim de escala (*full-scale tension*) do DAC, ou seja a tensão máxima de saída do conversor. Deste modo, um DAC de 8 bits com a tensão de fim de escala, $V_{FS} = 5$ V, tem a resolução de

resolução =
$$\frac{5}{256-1}$$
 = 19,6 mV

A resolução é sempre igual ao peso do LSB, também chamado de tamanho do passo em inglês *Step size*.

Exemplo: um conversor DAC apresenta um *Step size* de 0,2 V. Determine a saída quando a entrada é 10001.

Solução:

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

$$10001_{B} = 17_{D}$$

$$V_{out} = (0, 2 \ V) \times 17 = 3, 4 \ V$$

• Precisão (accuracy): é uma medida da diferença entre a tensão analógica obtida na saída para uma dada palavra binária de entrada e o valor teórico correspondente. A precisão depende de diversos parâmetros que caracterizam o desempenho do DAC nomeadamente (1) o erro de quantificação, (2) o erro de offset, (3) o erro de ganho e (4) erro de linearidade. A precisão pode ser especificada como: (1) uma percentagem da tensão de fim de escala do conversor (full-scale output tension - V_{FS}) ou (2) uma fracção do LSB.

Por exemplo, se as especificações de um DAC de 8 bits indicam uma tensão de fim de escala de 10 V e uma precisão de ±0,2%, então o erro máximo para qualquer valor da tensão de saída será de 0,002×10,000=±20 mV. Então para uma saída prevista para 5 V, a tensão de saída estará entre 4,980 V e 5,020 V.

Para comparar a especificação da precisão dada pela percentagem da tensão de fim de escala, com a especificação dada pela fracção do LSB (por exemplo $\pm 1/2$ LSB), pode determinar-se o valor, em Volts, de 0,5LSB e comparar este valor com a percentagem da tensão de fim de escala. Como exemplo de comparação entre estas duas formas de avaliar a precisão considere-se um conversor de 8 bits com $V_{FS} = 10 \text{ V}$.

O LSB tem o valor de,

$$\frac{10}{256-1} = 0,039 V$$

e $\frac{1}{2}$ LSB terá o valor de 0.039/2 = 0.0195 V 0.02 V.

Pode assim, concluir-se que são equivalentes as especificações da precisão por ±1/2 LSB ou por 0,2%, para um DAC de 8 bits com 10 V de fim de escala.

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

• Erro de quantificação: Considere-se um DAC de 8 bits com $V_{FS} = 5$ V. Para este conversor cada um dos degraus da tensão analógica da saída tem o valor de

$$5/(2^8-1) = 19.6 \text{ mV}.$$

Assim, para converter uma palavra digital que, teoricamente, desse origem a 4 V, seriam necessários 204,8 degraus de tensão. Dado que os DACs não produzem frações de degrau, a palavra digital será representada por 205 degraus, o que corresponde a 4,018 mV, ou seja, 18 mV de erro.

Em geral o erro de quantificação (quantization error) que resulta do número de degraus ser finito, é especificado como "menor do que $\pm \frac{1}{2}$ LSB"

• Erro de desvio do zero: O erro de desvio do zero (offset error) avalia o desvio entre o valor da tensão analógica de saída e o valor zero, quando o código digital de entrada é "0".

Característica de saída com erro de desvio do zero.

• Erro no ganho (gain error): verifica-se quando o declive da característica de transferência estar acima (excesso de ganho) ou abaixo (falta de ganho) do seu valor teórico.

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

Característica de saída com erro de ganho.

- 1. Considere um DAC com 5 bits. Para uma entrada digital 101000 a corrente na saída é de 10 mA. Determine a corrente de saída para uma entrada digital 11101.
- **2.** Qual a maior tensão de saída de um DAC de 8 bits que coloca 1V na saída quando a entrada digital é 00110010.
- **3.** Um DAC de 5 bits produz uma tensão de saída de 0,2 V para uma entrada digital 00001. Determine o valor da tensão de saída para a entrada 11111.
- **4.** Um DAC de 10 bits possui um *step size* de 10 mV. Determine a tensão *full-scale* e a resolução em percentagem.
- **5.** Considere o circuito representado na figura 1.1 (DAC de 4 bits com entradas ponderadas).

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

Figura 1.1

- 5.1. Deduza uma expressão para a tensão V_{out} em função das tensões nos terminais de entrada A, B, C e D.
- 5.2. Determine o valor da tensão de saída para a entrada digital 1010
- 5.3. Determine a resolução deste conversor.
- 6. Considere o DAC de entradas ponderadas representado na figura 1.2, e esboce a sua saída, v_O, se forem aplicados na entrada os sinais representados na figura 3. A entrada D₀ é o bit menos significativo (LSB) e D₃ o mais significativo (MSB).

Figura 1.2.

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

7. Identifique o tipo do DAC representado na figura 1.3, e mostre que a tensão analógica de saída pode ser descrita pela expressão:

$$V_o = -(D_3 + D_2 \times 2^{-1} + D_1 \times 2^{-2} + D_0 \times 2^{-3}) \times V_R$$

A tensão de referência, V_R , é aplicada às entradas D_3 a D_0 , por intermédio de interruptores eletrónicos.

Figura 1.3

1.2 COMPARADOR SCHMITT TRIGGER

1. Considere o comparador Schmitt Trigger representado na figura 1.4. Desenhe a característica V_o versus V_I para a) $V_R = 0$ V e b) $V_R = 5$ V.

Figura 1.4

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

- **2.** Para o comparador Schmitt Trigger representado na figura 1.4, determine os valores de V_{TH} e V_{TL} nas seguintes situações:
 - $2.1. V_R = 2 V$
 - 2.2. $V_R = -2 V$
 - 2.3. $V_R = 5 V e R_1 = 4 k$
- 3. Para o comparador Schmitt Trigger representado na figura 1.4, com Vsat = 12 V e R_2 = 9 k , determine os valores de R_1 e V_R para obter V_{TL} =1 V e V_{TH} = 3 V.
- 4. Considere o comparador Schmitt Trigger representado na figura 1.5. Determine a relação entre R_F e R_P de forma que o circuito deteta a passagem por zero, com uma tensão de histerese $V_H = 100 \ mV$.

Figura 1.5

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

2. FILTRAGEM

1. Considere o circuito representado na figura 2.1

Figura 2.1

- 1.1. Determine a função de transferência $T(s) = \frac{V_o(s)}{V_I(s)}$.
- 1.2. Para $C_1=0.05~\mu F$, $C_2=0.5~\mu F$ e $R_1=10~k\Omega$, determine a localização dos pólos e dos zeros e desenhe os diagramas de Bode para as respostas de amplitude e fase.
- 2. Considere a função de transferência.

$$T(s) = \frac{10^{14} s(s+10)}{(s+1)(s+100)(s+10^5)(s+10^6)}$$

Determine:

- 2.1. A expressão equivalente de T(s) na qual os fatores são da forma $\left(1+\frac{s}{a}\right)$.
- 2.2. O ganho e a fase em frequências muito baixas e em frequências muito altas.
- 2.3. Os pólos e os zeros.
- 2.4. O maior ganho disponível e a correspondente fase.
- 2.5. O ganho em 10^3 rad / s e em 10^5 rad / s.
- 2.6. Os diagramas de Bode para as respostas de amplitude e fase
- 2.7. Através da análise exata, a amplitude e a fase T(s) em $100 \, rad \, / s$ e $2 \times 10^5 \, rad \, / s$.

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

3. Considere um amplificador cuja resposta geral é caracterizada pela função de transferência:

$$A(s) = \frac{10^{14} s(s+10)}{(s+1)(s+100)(s+10^5)(s+10^6)}$$

Determine as expressões para A_{M} , $F_{L}(s)$, $F_{H}(s)$, $A_{L}(s)$ e $A_{H}(s)$.

NOTAS

O ganho de um amplificador em função da frequência (variável s) pode ser expressa na forma geral:

$$A(s) = A_{\scriptscriptstyle M} F_{\scriptscriptstyle L}(s) F_{\scriptscriptstyle H}(s)$$

onde $F_L(s)$ e $F_H(s)$ são funções que mostram a dependência do ganho com a frequência, na banda de frequências baixas e na banda de frequências altas, respetivamente.

Banda de passagem (largura de banda, BW):

$$BW = \omega_H - \omega_L$$

$$\omega_L \ll \omega_H \to BW = \omega_H$$

o **Produto ganho-largura de banda** (fator de Mérito): $GB = A_M \omega_H$ onde A_M é o valor do ganho na banda de frequências médias.

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

Frequências Baixas	Frequências Médias	Frequências Altas
$\omega\!\ll\!\omega_L$	$\omega_{_H} \ll \omega \ll \omega_H$	$\omega \gg \omega_{H}$
Condensadores de acoplamento e de passagem afetam o desempenho	Nenhum condensador afeta o desempenho	Condensadores internos dos transístores afetam o desempenho
$F_{H}(s) \approx 1$ $A(s) = A_{L}(s) \approx A_{M} F_{L}(s)$	$F_{H}(s) \approx 1$ $F_{L}(s) \approx 1$ $A(s) \approx A_{M}$	$F_L(s) \approx 1$ $A(s) = A_H(s) \approx A_M F_H(s)$

4. Considere o circuito constituído por uma resistência ${\bf R}$ e uma bobina ${\bf L}$, representado na figura 2.2 (filtro RL passa-baixo). Mostra que a resposta em frequência do circuito é dado pela expressão $A(s) = \frac{1}{1+j\left(\frac{\omega}{\omega_c}\right)}$, com $\omega_c = \frac{R}{L}$ (frequência de corte do filtro).

Figura 2.2

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

5. Considere o circuito constituído por uma resistência \mathbf{R} e um condensador \mathbf{C} , representado na figura 2.3 (filtro RC passa-baixo). Mostra que a resposta em frequência do circuito é dado pela expressão $A(s) = \frac{1}{1+j\left(\frac{\omega}{\omega_c}\right)}$, com $\omega_c = \frac{1}{RC}$

Figura 2.3.

6. Considere o circuito constituído por uma resistência \mathbf{R} e um condensador \mathbf{C} , representado na figura 2.4 (filtro RC passa-alto). Mostra que a resposta em frequência do circuito é dado pela expressão $A(s) = \frac{1}{1-j\left(\frac{\omega_c}{\omega}\right)}$, com $\omega_c = \frac{1}{RC}$.

Figura 2.4.

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

7. Considere o circuito constituído por uma resistência **R** e uma bobina **L**, representado na figura 2.5 (filtro RL passa-alto). Mostra que a resposta em frequência do circuito

é dado pela expressão
$$A(s) = \frac{1}{1 - j\left(\frac{\omega_c}{\omega}\right)}$$
, com $\omega_c = \frac{R}{L}$.

Figura 2.5.

8. Considere o circuito RLC representado na figura 2.6. Determine os parâmetros do filtro, K, ω_0 , ω_L e ω_H .

Figura 2.6.

- **9.** Projete um filtro passa-banda RLC com frequência de corte inferior de 1 kHz e largura de banda de 3 kHz. Qual é a frequência central e Q deste filtro?
- 10. O sintonizador de um rádio FM requer um filtro passa-banda com uma frequência central de 100 MHz (frequência de uma estação FM) e uma largura de banda de 2 MHz.
 - 10.1. Projete esse filtro.

LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE TELECOMUNICAÇÕES

10.2. Quais são as suas frequências de corte?

3. GERAÇÃO DE SINAIS