Université Paris-Sud - L3 MINT / DL MI-ME-MP / HEC M309 - Calcul Différentiel et optimisation Année 2019-2020

Feuille de TD n° 7 - Fonctions bijectives, théorème d'inversion locale.

Exercice 1.

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par

$$f(x,y) = (xy^2, 1 + xy).$$

- 1. Soit (x_0, y_0) tel que $x_0 \neq 0$ et $y_0 \neq 0$. Montrer qu'il existe R > 0 tel que la restriction de f à $B((x_0, y_0), R)$ est un difféomorphisme de classe C^1 entre $B((x_0, y_0), R)$ et $f(B((x_0, y_0), R))$.
- 2. Montrer que quelque soit $y_0 \in \mathbb{R}$, il n'existe pas R > 0 tel que la restriction de f à $B((0, y_0), R)$ soit inversible.
- 3. Soit $Q = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$. Montrer que f est une bijection entre Q et f(Q).

Exercice 2.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe C^1 telle qu'il existe une constante $c \in]0,1[$ tel que

$$|f'(x)| \le c, \ \forall \ x \in \mathbb{R}.$$

Soit $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par

$$g(x,y) = (x + f(y), y + f(x)).$$

1. Montrer que g est bijective. Pour ce faire, on pourra montrer que pour tout $(u, v) \in \mathbb{R}^2$, l'application $\Phi_{uv} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par

$$\Phi_{uv}(x,y) = (u - f(y), v - f(x))$$

admet un unique point fixe.

2. Justifier que g^{-1} est différentiable sur \mathbb{R}^2 et, pour $(x,y) \in \mathbb{R}^2$, calculer $d_{(x+f(y),y+f(x))}(g^{-1})$.

Exercice 3.

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par

$$f(x,y) = (e^x \cos(y), e^x \sin(y)).$$

- 1. Montrer que, pour tout $(x,y) \in \mathbb{R}^2$, la différentielle de f en (x,y) est un isomorphisme de \mathbb{R}^2 dans \mathbb{R}^2 .
- 2. Montrer que f n'est pas injective.
- 3. Montrer que f définit une application surjective de \mathbb{R}^2 dans $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 4. Conclure que f n'est pas une bijection de \mathbb{R}^2 dans $\mathbb{R}^2 \setminus \{(0,0)\}$, mais que pour tout $(x_0,y_0) \in \mathbb{R}^2$, il existe un ouvert U contenant (x_0,y_0) tel que la restriction de f à U soit un difféomorphisme de classe C^1 entre U et f(U).

Exercice 4.

Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'application définie par

$$f(x, y, z) = (e^y + e^z, e^x - e^z, x - y).$$

- 1. Montrer que pour tout point $(x, y, z) \in \mathbb{R}^3$ il existe un voisinage V de (x, y, z) tel que la restriction de f à V est une bijection entre V et f(V), sa réciproque étant de classe C^1 .
- 2. Montrer que l'application f est un difféomorphisme de classe C^1 entre \mathbb{R}^3 et $f(\mathbb{R}^3)$.

Pour s'exercer

Exercice 5. [Examen 2018]

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $(x,y) \mapsto f(x,y) = (f_1(x,y), f_2(x,y))$, une fonction de classe C^1 vérifiant les conditions de Cauchy-Riemann sur \mathbb{R}^2 :

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y}, \quad \frac{\partial f_1}{\partial y} = -\frac{\partial f_2}{\partial x}, \quad \forall (x, y) \in \mathbb{R}^2.$$

On note par $Df(x_0, y_0)$ la matrice jacobienne de f au point $(x_0, y_0) \in \mathbb{R}^2$ et par $d_{(x_0, y_0)}f$ la différentielle de f en (x_0, y_0) . Rappelons que $d_{(x_0, y_0)}f$ est une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 qui est représentée, dans la base canonique de \mathbb{R}^2 , par la matrice $Df(x_0, y_0)$.

- 1. Montrer que $\det(Df(x_0, y_0)) = 0$ si et seulement si $d_{(x_0, y_0)}f = 0$.
- 2. Soit $(x_0, y_0) \in \mathbb{R}^2$ tel que $d_{(x_0, y_0)} f \neq 0$. Conclure qu'il existe un ouvert U de \mathbb{R}^2 tel que $(x_0, y_0) \in U$ et tel que la restriction de f à U soit un difféomorphisme de classe C^1 entre U et f(U).
- 3. Soit $(x_0, y_0) \in \mathbb{R}^2$ tel que $d_{(x_0, y_0)} f \neq 0$ et soit $g = f_{|U}^{-1} : f(U) \longrightarrow U$ la réciproque de f sur U. Montrer que g vérifie les conditions de Cauchy-Riemann sur f(U).
- 4. Montrer que le résultat de la question 1 n'est pas vrai si f ne vérifie pas les conditions de Cauchy-Riemann, en donnant une fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tel que $\det(Df(x_0, y_0)) = 0$, pour un certain $(x_0, y_0) \in \mathbb{R}^2$, mais tel que $d_{(x_0, y_0)} f \neq 0$.