Lecture 8

Joint PMF

STAT 330 - Iowa State University

1/18

Joint PMF

Joint Probability Mass Function

Motivation:

- Often, real problems deal with more than 1 variable
- Not sufficient to model the variables separately
- Need to consider their *joint* behavior

Definition

For two discrete variables X and Y, the *joint probability mass* function (pmf) is defined as:

$$p_{X,Y}(x,y) \equiv P(X = x, Y = y) = P(\{X = x\} \cap \{Y = y\})$$

2/18

Joint PMF Example

Example 1:

A box contains 5 unmarked processors of different speeds:

X =speed of the first selected processor

Y = speed of the second selected processor

The *(joint)* probability table below gives the probabilities for each processor combination:

		2nd processor (Y) 400 450 500		
	mHz	400	450	500
	400	0.1	0.1	0.2
1st proc. (X)	450	0.1	0.1 0.0 0.1	0.1
	500	0.2	0.1	0.1

3 / 18

Joint PMF Example Cont.

1. What is the probability that X = Y?

$$P(X = Y)$$

= $p_{X,Y}(400, 400) + p_{X,Y}(450, 450) + p_{X,Y}(500, 500)$
=

4 / 18

Joint PMF Example Cont.

2. What is the probability that X > Y?

		2nd processor (Y) 400 450 500		
	mHz	400	450	500
	400	0.1	0.1	0.2
1st proc. (X)	450	0.1	0.0	0.1
	500	0.2	0.1	0.1

In other words, what is the probability that 1^{st} processor has higher speed than 2^{nd} processor?

$$P(X > Y)$$

= $p_{X,Y}(450, 400) + p_{X,Y}(500, 400) + p_{X,Y}(500, 450)$
-

Marginal PMF

Marginal Probability Mass Function

Obtain the *marginal pmf* from the *margins* of the probability table.

• sum up the cells row-wise or column-wise.

Definition

The marginal probability mass functions $p_X(x)$ and $p_Y(y)$ can be obtained from the joint pmf $p_{X,Y}(x,y)$ by

$$p_X(x) = \sum_{V} p_{X,Y}(x,y)$$

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$
$$p_Y(y) = \sum_{x} p_{X,Y}(x,y)$$

Marginal PMF Cont.

		2nd processor (Y)			
	mHz	400	450	500	$p_X(x)$
	400	0.1	0.1	0.2	0.4
1st proc. (X)	450	0.1	0.0	0.1	0.2
	500	0.2	0.1	0.1	0.4
	$p_Y(y)$	0.4	0.2	0.4	1

Thus, the marginal pmf are ...

$$\begin{array}{c|cccc} x & 400 & 450 & 500 \\ \hline p_X(x) & 0.4 & 0.2 & 0.4 \\ \end{array}$$

$$\begin{array}{c|cccc} y & 400 & 450 & 500 \\ \hline p_Y(y) & 0.4 & 0.2 & 0.4 \\ \end{array}$$

7 / 18

Expectation

Expected Value

Definition

The expected value of a function of several variables is

$$E[h(X,Y)] \equiv \sum_{x,y} h(x,y) p_{X,Y}(x,y)$$

- The **MOST IMPORTANT** application of this will be for calculating covariance (next slide).
- To calculate the covariance, we will need E(XY).

Take $h(X, Y) = X \cdot Y$, and plug in into expected value formula

$$E(XY) = \sum_{x,y} xyp_{X,Y}(x,y)$$

8 / 18

Covariance

Covariance

For two variables, we can measure how "similar" their values are using *covariance* and *correlation*.

Definition

The *covariance* of 2 random variables X, Y is given by

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))]$$

- This definition is similar to Var(X).
- In fact, Cov(X, X) = Var(X)
- In practice, use **SHORT CUT** formula to obtain covariance:

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

9/18

Correlation

Correlation

Definition

The *correlation* between 2 random variables X, Y is given by

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}$$

Properties of Correlation (ρ)

- ρ is a measure of linear association between X and Y.
- $-1 \le \rho \le 1$
- ρ near ± 1 indicates a strong linear relationship ρ near 0 indicates a lack of linear association.

10 / 18

Correlation Example

Back to Example 1:

Recall
$$E(X) = E(Y) = 450$$
; $Var(X) = Var(Y) = 2000$

3. What is the correlation between X and Y?

Independence

Independence

Recall that random variables X, Y are *independent* if all events of the form $\{X = x\}$ and $\{Y = y\}$ are independent.

For independence, we need

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
 for all x, y

- ullet Check if the above holds for all possible combos of x and y
- If we can find at least one contradiction, then we do not have independence
- If two random variables are independent, then X and Y will always have Cov(X, Y) = 0.
- Converse is not always true.
 If Cov(X, Y) = 0, then X and Y could be independent or dependent.

Checking Independence

Checking Independence

- 1. Calculate Cov(X, Y)
 - If $Cov(X, Y) \neq 0$, then X and Y are not independent!
 - If Cov(X, Y) = 0, then X and Y may or may not be independent. (Need more info)
- 2. Check if $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ for all x,y pairs.
 - If $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ for all x,y pairs, then X and Y are independent.
 - If $p_{X,Y}(x,y) \neq p_X(x)p_Y(y)$ for at least one x,y pair, then X and Y are not independent.

13 / 18

Independence Example

Back to Example 1: Are X and Y independent?

Previously, we found that Cov(X, Y) = -500

• Since $Cov(X, Y) = 500 \neq 0$, X and Y are NOT independent.

Alternatively, we can check whether $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ for x, y pairs.

- $p_{X,Y}(450,450) = 0 \neq (0.2)(0.2) = p_X(450)p_X(450)$
- X and Y are **NOT** independent.

Independence Example

Example 2: Consider random variable X and Y where $Y = X^2$

X	-1	0	1
0	0.0	0.6	0.0
1	0.2	0.0	0.2

Are X and Y independent?

15 / 18

Independence Example

More on Expectation and Variance

More on Variance

Definition

Let X and Y be random variables, and a,b,c be real numbers.

$$Var(aX + bY + c) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$$

- Recall that for independent random variables, Cov(X, Y) = 0
- ullet Thus if X and Y are independent, this simplifies to

$$Var(aX + bY + c) = a^2 Var(X) + b^2 Var(Y)$$

More on Expected Value

Definition

Let X and Y be random variables.

$$E(XY) = \sum_{x,y} xyp_{X,Y}(x,y)$$

 \bullet If X and Y are independent, this simplifies to

$$E(XY) = \sum_{x,y} xyp_X(x)p_Y(y)$$
$$= \sum_x xp_X(x) \sum_y yp_Y(y)$$
$$= E(X)E(Y)$$

• If X and Y are independent, E(XY) = E(X)E(Y)

18 / 18