Name: 1

\mathbf{RSA}

Solutions.

Problem 1 [DPV] 1.11

We can use Euler's Theorem. Notice that $35 = 5 \times 7$ hence $\phi(35) = 24$. Since g.c.d.(4,35) = g.c.d.(9,35) = 1 we have that $4^{24k} \equiv 9^{24t} \equiv 1 \pmod{35}$ for all natural numbers k,t. From this observation we have:

$$4^{1536} = 4^{24 \times 64} \equiv 1 \equiv 9^{24 \times 201} \pmod{35}$$

so we conclude the given difference is divisible by 35.

Problem 2 [DPV] 1.12

By Fermat's theorem $2^{2k} \equiv 1 \pmod{3}$ for any natural number k, hence the given power is also congruent to 1, since the exponent is even.

Problem 3 [DPV] 1.13

Apply Fermat's theorem dividing first each exponent by 30 = 31 - 1. For the second, you need to compute $6^6 \pmod{31}$ which is equal to 1. Answer: YES.

Problem 4 [DPV] 1.14

There are many ways to do this problem, since it asks for an efficient solution only. If you want to use problem 0.4: it shows how to get the n^{th} Fibonacci term in time $O(\log(n))M(n)$ where M(n) is the running time of your favorite multiplication algorithm. Since we are computing (modp) on each step we can reduce numbers $(mod\ p)$ leading to a running time of $O(\log(n)M(\log(p)))$.

Name: 2

Problem 5 [DPV] 1.18

Just a simple practice problem. Any calculator will tell you that $210 = 2 \times 3 \times 5 \times 7$ and $588 = 2^2 \times 3 \times 7^2$. Euclid's Algorithm will gives you

$$g.c.d.(588,210) = g.c.d.(210,168) = g.c.d.(168,42) = g.c.d.(42,0) = 42$$

.

Problem 6 [DPV] 1.20

Solutions:

 $20^{-1} \pmod{79} = 4$

 $3^{-1} \pmod{62} = 21.$

 $21^{-1} \pmod{91} = DNE$ because the two share a divisor bigger than one.

 $5^{-1} \pmod{23} = 14$

Problem 7 [DPV] 1.22

a has an inverse $(mod\ b)$ if and only if g.c.d.(a,b) = 1 = g.c.d.(b,a) if and only if b has an inverse $(mod\ a)$.

Problem 8 [DPV] 1.24

This problem asks to compute $\phi(p^n)$ for p prime and n a natural number. Note that only those numbers divisible by p share a factor with p^n . There are $p^n/p = p^{n-1}$ multiples of p in the set $\{1, 2, \ldots, p^n\}$ so e conclude that

$$\phi(p^n) = p^n - p^{n-1} = p^{n-1}(p-1).$$

Problem 9 [DPV] 1.25

Since 127 is prime we know that $2^{125} \times 2 = 2^{126} \equiv 1 \pmod{127}$, hence we are looking for the inverse of 2 $\pmod{127}$! This is an easy task since $127 + 1 = 2 \times 64$.

Name: 3

Problem 10 [DPV] 1.26

Because the last digit is the reminder in the division by 10, we need to compute $17^{17^{17}}$ (mod 10). To apply the hint, we need to find 17^{17} (mod 4) (here 4 = (5-1)(2-1) from $10 = 5 \times 2$). Since $17 \equiv 1 \pmod{4}$ then also $17^{17} \equiv 1 \pmod{4}$. This means we can write $17^{17} = 4q + 1$ for a natural number q and then

$$17^{17^{17}} = 17^{4q+1} = 17 \times 17^{4q} \equiv 7 \times 1 = 7 \pmod{10}.$$

The last relation uses that $17^{4q} \equiv (17^4)^q \equiv 1^q \equiv 1 \pmod{10}$. Answer: 7.

Problem 11 [DPV] 1.27

Recall that d is the inverse of $e \pmod{(p-1)(q-1)}$ for N=pq. In this case $N=391=17\times 23$ and e=3. The inverse of 3 $\pmod{352}$ is d=235. For message 41, the encryption is $41^3 \pmod{391}$ which is 105.

Problem 12 [DPV] 1.28

In other words: find integers d and e such that $de \equiv 1 \pmod{60}$. We cannot use e = 3 or e = 5 but e = 7, 11, 13 will do it. The values of d are 43, 11, 37 respectively.

Problem 13 [DPV] 1.42

To decrypt, we need a number d such that $m^{ed} \equiv m \pmod{p}$. By Fermat's theorem we know it is enough to find an inverse of $e \pmod{p-1}$, which we can find efficiently using Euclid's Algorithms, for example.