## 1 Expectation and Inequalities

## 1.1 Expectation (Undergrad version)

- (1)  $\mathbb{E}X$  is the limit of  $\frac{X_1+X_2+\cdots+X_n}{n}$  for iid (will prove as SLLN)
- (2)  $\mathbb{E}X$  is fair stake for random payoff X (conceptual basis of martingale theory)
- (3)  $\mathbb{E}X = \sum_{i} iP(X=i)$  or  $\int x f(x) dx$  (change of variable in MT, last lecture)
- (4)  $\mathbb{E}h(X) = \sum_i h(i)P(X=i)$  or  $\int h(x)f(x)dx$  (change of variable in MT, last lecture)
- (5) abstract rules:  $\mathbb{E}(X + Y) = \mathbb{E}X + \mathbb{E}Y$  even if dependent

## 1.2 Measure-theoretic version

Let  $X : (\Omega, \mathcal{F}, P \to \mathbb{R}$  be a random variable on a probability space.

**Definition 1.1.** The expectation  $\mathbb{E}X := \int_{\Omega} X(\omega) P(d\omega)$ 

Expectation is well-defined if:

- (a)  $\mathbb{E}X < \infty$  or  $0 \le X \le \infty$ , where  $0 \le \mathbb{E}X \le \infty$ 
  - (a)  $\Longrightarrow -\infty < \mathbb{E}X < \infty$

From definition 1.1, can use proporties of abstract  $\int$ 

- $\mathbb{E}1_A = P(A)$
- $\mathbb{E}(c_1X_1 + c_2X_2) = c_1\mathbb{E}X_1 + c_2\mathbb{E}X_2$  (Linearity)
- (Monotone Convergence): If  $0 \le X_1 \le X_2 \le \cdots \le \infty$ ,  $X_n \uparrow X$ a.s., then  $\mathbb{E} X_n \uparrow \mathbb{E} X \le \infty$ 
  - (a) a.s. means for all  $\omega$  outside some A where P(A)=0
  - (b) To prove this for a.s., consider  $0 \le X_1 1_{A^c} \le X_2 1_{A^c} \le \cdots$ , then  $X_n 1_{A^c} \uparrow X 1_{A^c} \forall \omega$  and  $\mathbb{E} X_n 1_{A^c} \uparrow \mathbb{E} X 1_{A^c}$

**Example 1.2.**  $X \ge 0$ .  $\mathbb{E}X < \infty \implies P(X < \infty) = 1$ . However,  $P(X \le \infty) = 1 \not\Longrightarrow \mathbb{E}X < \infty$ .

Consider  $P(X = i) \sim ci^{-3/2}$ .

## 1.3 Inequalities

**Lemma 1.3** (Markov's Inequality). *If*  $X \ge 0$ ,  $\mathbb{E}X < \infty$ , then  $P(X \ge x) \le \frac{\mathbb{E}X}{x}$ ,  $0 < x < \infty$ .

**Definition 1.4.** If  $\mathbb{E}X^2 < \infty$ , the *variance*  $\text{Var}(X) := \mathbb{E}X^2 - (\mathbb{E}X)^2 = \mathbb{E}(X - \mathbb{E}X)^2$  and  $0 \le \text{Var}(X) < \infty$ .

**Lemma 1.5** (General form of Markov's inequality). Let  $\phi : \mathbb{R} \to [0, \infty)$  be increasing. Then  $P(X \ge x) \le \frac{\mathbb{E}\phi(X)}{\phi(X)}$  provided not indeterminate (e.g.  $\frac{0}{0}$ ).



Figure 1: Illustration of  $h(x) \le \phi(x) \forall x$ 

Proof. Define 
$$h(y) = \begin{cases} 0, & \text{if } y < x \\ \phi(x), & \text{if } y \ge x \end{cases} = \phi(x) 1_{y \ge x}.$$
Clear  $h(y) \le \phi(y) \forall y.$ 

$$\mathbb{E}\phi(X) \ge \mathbb{E}h(X) = \phi(X)\mathbb{E}1_{X > x} = \phi(x)P(X \ge x)$$

Lemma 1.3 is lemma 1.5 with  $\phi(x) = x^{+} = \max(0, x)$ .

**Lemma 1.6** (Chebychev's Inequality). *If*  $Var(X) < \infty$ , then  $P(|X - \mathbb{E}X| \ge x) \le \frac{Var(X)}{x^2}$  for  $0 < x < \infty$ .

*Proof.* Take  $Y = |X - \mathbb{E}X|$  and  $\phi(x) = (x^+)^2$  in lemma 1.5. For x > 0

$$P(Y \ge x) \le \frac{\mathbb{E}Y^2}{x^2} = \frac{\text{Var}(X)}{x^2} \tag{1.1}$$

Another case is to take  $\phi(x) = e^{\theta x}$  for parameter  $\theta > 0$  and  $0 < x < \infty$ 

$$P(X \ge x) \le \frac{\mathbb{E}e^{\theta X}}{e^{\theta x}} \tag{1.2}$$

In particular

**Lemma 1.7** (Basic Large Deviation Inequality). For  $0 < x < \infty$ 

$$P(X \ge x) \le \inf_{\theta > 0} \frac{\mathbb{E}e^{\theta X}}{e^{\theta x}} \tag{1.3}$$

(Only useful if  $P(X \ge x) \to 0$  exponentially fast)

**Example 1.8.**  $X \sim \text{Poisson}(\lambda)$ ,  $\mathbb{E}X = \lambda$ ,  $\text{Var}X = \lambda$ .

By lemma 1.5:  $P(X \ge x) \le \lambda/x$ .

By lemma 1.6:  $P(X \ge x) \le \frac{\lambda}{(x-\lambda)^2}$ 

$$\mathbb{E}e^{\theta X} = \sum_{i} e^{\theta i} e^{-\lambda} \lambda^{i} = e^{-\lambda} e^{\lambda e^{\theta}}$$
(1.4)

$$P(X \ge x) \le \inf_{\theta} \exp(\underbrace{-\theta x - \lambda + \lambda e^{\theta}}_{(*)})$$
 (1.5)

$$= \exp(-x \log \frac{x}{\lambda} - \lambda + x) \tag{1.6}$$

$$\frac{d}{d\theta}(*) = -x + \lambda e^{\theta} \tag{1.7}$$

Take  $\theta$  such that  $\lambda e^{\theta} = x$ .



Figure 2: TODO: Draw LD, MC, and Cheb bounds

Lemma 1.9 (Cauchy-Schwarz Inequality).

$$|\mathbb{E}(XY)| \le \sqrt{(\mathbb{E}X^2)(\mathbb{E}Y^2)}$$
 (1.8)

*Proof (Trick!)* Recall quadratic equation: for a > 0

$$ax^2 + 2bx + c \ge 0 \forall x \iff b^2 \le ac \tag{1.9}$$

Applying

$$\mathbb{E}\underbrace{(X+xY)^2}_{\geq 0 \ \forall x} = \underbrace{\mathbb{E}(Y^2)}_{a>0} \cdot x^2 + 2\underbrace{\mathbb{E}(XY)}_{b} \cdot x + \underbrace{\mathbb{E}X^2}_{c}$$
(1.10)

$$\Longrightarrow b^2 \le ac \tag{1.11}$$

**Example 1.10.** Given  $(x_i)_{i\in\mathbb{N}}$ ,  $(y_i)_{i\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ , take  $P(X=x_i,Y=y_i)=\frac{1}{n}$  for  $1\leq i\leq n$ . Then C-S yields

$$\left| \frac{1}{n} \sum_{i} x_{i} y_{i} \right| \leq \sqrt{\left( \frac{1}{n} \sum_{i} x_{i}^{2} \right) \left( \frac{1}{n} \sum_{i} y_{i}^{2} \right)}$$
 (1.12)

**Definition 1.11.**  $\phi$  is *convex* if  $\forall x < y, \lambda \in [0,1], \phi(x + \lambda(y - x)) + \lambda(\phi(y) - \phi(x))$ . In practice,  $\phi''(x) \ge 0 \implies \phi$  is convex.

**Lemma 1.12** (Jensen's inequality). *Interval*  $I \subset \mathbb{R}$ , *let*  $\phi : I \to \mathbb{R}$  *be convex. Then*  $\phi \mathbb{E} Xx \leq \mathbb{E} \phi X$  *provided both expectations are well-defined.* 

*Proof.* Intuition:



Figure 3: Illustration of Jensen's inequality and tangent line

Given x and convex  $\phi$ ,  $\exists$  tangent line l(y) such that  $l(y) \le \phi(y) \ \forall y$  and  $l(x) = \phi(x)$ .

Set  $x = \mathbb{E}X$ , take tangent  $l(\cdot)$  at x.

$$\phi(X) \ge l(x) \tag{1.13}$$

$$\mathbb{E}\phi(X) \ge \mathbb{E}l(x) \tag{1.14}$$

$$= l(\mathbb{E}X) l linear (1.15)$$

$$= l(x) = \phi(x) = \phi(\mathbb{E}X) \tag{1.16}$$

**Example 1.13.**  $\phi(x) = |x|^p$ ,  $1 \le p$ . Then Jensen's inequality says

$$|\mathbb{E}Y|^p \le \mathbb{E}|Y|^p \tag{1.17}$$

Applying this with  $0 < a < b < \infty$ ,  $y = |X|^a$ ,  $p = \frac{b}{a}$ , shows

$$\left(\mathbb{E}|X|^{a}\right)^{b/a} \le \mathbb{E}|X|^{b} \tag{1.18}$$

$$\left(\mathbb{E}|X|^{a}\right)^{1/a} \le \left(\mathbb{E}|X|^{b}\right)^{1/b} \tag{1.19}$$

The  $L^p$  norm is  $||X||_p := (\mathbb{E}|X|^p)^{1/p}$ ,  $p \in [1, \infty)$  so this result says  $p \mapsto ||X||_p$  is increasing on  $p \in [1, \infty)$ .

**Example 1.14.** For  $x \in (0, \infty)$ , consider

- (1)  $\phi(x) = 1/x$
- $(2) \ \phi(x) = -\log x,$

If x > 0, then  $\mathbb{E}\phi(X) \ge \phi(\mathbb{E}X)$ . Applying Jensen's

- (1)  $\mathbb{E}^{\frac{1}{x}} \ge \frac{1}{\mathbb{E}X} \iff \mathbb{E}X \ge \frac{1}{\mathbb{E}^{\frac{1}{y}}}$
- (2)  $-\mathbb{E} \log X \ge -\log \mathbb{E} X \iff \mathbb{E} X \ge e^{\mathbb{E} \log X}$

Consider  $(x_i)_{i=1}^n > 0$ ,  $P(X = x_i) = \frac{1}{n} \ 1 \le i \le n$ .

$$\underbrace{\frac{1}{n}\sum_{i}}_{i} \geq \underbrace{\frac{1}{\frac{1}{n}\sum_{i}\frac{1}{x_{i}}}}_{\text{Harmonic mean}} \tag{1.20}$$

$$\frac{1}{n}\sum_{i} \ge e^{\frac{1}{n}\sum_{i}\log x_{i}} = \left(\prod_{i} x_{i}\right)^{1/n} \tag{1.21}$$

Geometric mean