

Course code: CSE3008

Course Title: Introduction to Machine Learning

Module 4: Expectation Maximization

4/28/2021

Expectation Maximization

- EM algorithm provides a general approach to learning in presence of unobserved variables.
- In many practical learning settings, only a subset of relevant features or variables might be observable. Eg: Hidden Markov, Bayesian Belief Networks
- Estimation: Estimate the expectation from some random data
- Maximization: Whatever is estimated should be maximized to find the best result.
- From given data EM learn a theory which tells that how each example to be classified and how to predict the feature value of each class.

Expectation Maximization

Suppose you have 2 coins, A and B, each with a certain bias of landing heads, θ_A , θ_B .

Given data sets
$$X_A = \{x_{1,A}, ..., x_{m_A,A}\}$$
 and $X_B = \{x_{1,B}, ..., x_{m_B,B}\}$
Where $x_{i,j} = \{ 1; if heads \\ 0; otherwise \}$

No hidden variables – easy solution. $\theta_j = \frac{1}{m_j} \sum_{i=1}^{m_j} x_{i,j}$; sample mean

Example

- Assume that we have two coins, C1 and C2
- Assume the bias of C1 is θ_1 (i.e., probability of getting heads with C1)
- Assume the bias of C2 is θ_2 (i.e., probability of getting heads with C2)
 - •We want to find θ_1 , θ_2 by performing a number of trials (i.e., coin tosses)

Example

First experiment

- We choose 5 times one of the coins.
- We toss the chosen coin 10 times

Example

Coin B
5 H, 5 T
4 H, 6 T

24 H, 6 T 9 H, 11 T

$$\theta_1 = \frac{24}{24+6} = 0.8$$

$$\theta_2 = \frac{9}{9+11} = 0.45$$

 What if you were given the same dataset of coin flip results, but no coin identities defining the datasets?

Here: $X = \{x_1, ... x_m\}$; the observed variable

$$Z = \begin{cases} z_{1,1} & \dots & z_{m,1} \\ \dots & z_{i,j} & \dots \\ z_{1,k} & \dots & z_{m,k} \end{cases} \quad \text{where } z_{i,j} = \begin{cases} 1 \text{ ; if } x_i \text{ is from } j^{th} \text{ coin} \\ 0 \text{; otherwise} \end{cases}$$

But Z is not known. (Ie: 'hidden' / 'latent' variable)

Assume a more challenging problem

•We do not know the identities of the coins used for each set of tosses (we treat them as hidden variables).

- 0) Initialize some arbitrary hypothesis of parameter values (θ): $\theta = \{\theta_1, ..., \theta_k\}$ coin flip example: $\theta = \{\theta_A, \theta_B\} = \{0.6, 0.5\}$
- 1) Expectation (E-step)

$$E[z_{i,j}] = \frac{p(x = x_i | \theta = \theta_j)}{\sum_{n=1}^k p(x = x_i | \theta = \theta_n)}$$

2) Maximization (M-step)

$$\theta_j = \frac{\sum_{i=1}^m E[z_{i,j}] x_i}{\sum_{i=1}^m E[z_{i,j}]}$$

If $z_{i,j}$ is known:

$$\theta_j = \frac{\sum_{i=1}^{m_j} x_i}{m_j}$$

 $\theta = P(up), I-\theta = P(down)$

Observe:

Likelihood of the observation sequence depends on θ :

$$l(\theta) = \theta(1-\theta)\theta(1-\theta)\theta\theta\theta\theta\theta\theta\theta\theta\theta$$
$$= \theta^{8}(1-\theta)^{2}$$

$$L(C)=\Theta^{k}(1-\Theta)^{n-k}$$

Likelihood For first coin Flips

 $L(A) = 0.6^5 (1 - 0.6)^{10-5} = 0.0007963$

$$L(B) = 0.5^5 (1 - 0.5)^{10-5} = 0.0009766$$

$$P(A)=L(A)/L(A)+L(B) = 0.0007963/(0.0007963+0.0009766)=0.45$$

$$P(B)=L(B)/L(A)+L(B) = 0.0009766/(0.0007963+0.0009766) = 0.55$$

Estimate Likely No of Heads and Tails for First Toss

For A: H = 0.45*5 = 2.2, T = 0.45*5 = 2.2

For B: H = 0.55*5 = 2.8, T = 0.55*5 = 2.8

In similar fashion find probability of all coins with all flips. It will be as follows:

L(H): Likely no of heads L(T): Likely no of tails

	Iteration 1->:										Coin A		Coin B			
					Т						P(A)	P(B)	L(H)	L(T)	L(H)	L(T)
В	Н	Т	Т	Т	Н	Н	Т	Н	Т	Н	0.45	0.55	2.2	2.2	2.8	2.8
Α	Н	Н	Н	н	Т	н	Н	Н	н	Н	0.80	0.20	7.2	0.8	1.8	0.2
А	Н	Т	Н	Н	Н	Н	Н	Т	Н	Н	0.73	0.27	5.9	1.5	2.1	0.5
В	Н	Т	Н	Т	Т	Т	Н	Н	Т	Т	0.35	0.65	1.4	2.1	2.6	3.9
NEELIS COURT	Jr(Har	εН	Н	Т	Н	Н	Н	Т	Н	0.65	0.35	4.5	1.9	2.5	1.1

Expectation Maximization

- 1. Choose starting parameters
- 2. Estimate probability using these parameters that each data set (x_i) came from j^{th} coin $(E[z_{i,j}])$
- 3. Use these probability values ($E[z_{i,j}]$) as weights on each data point when computing a new θ_j to describe each distribution
- 4. Summate these expected values, use maximum likelihood estimation to derive new parameter values to repeat process