Pitkä matematiikka 27.9.2000, ratkaisut:

- **1. a)** $(x^{n-1})^{n-1} \cdot (x^n)^{2-n} = x^{(n-1)(n-1)+n(2-n)} = x^1 = x$. **b)** $\sqrt[3]{a}(\sqrt[3]{a^2} \sqrt[3]{a^5}) = \sqrt[3]{a^3} \sqrt[3]{a^6} = a a^2$.
- **2.** $\sqrt{x-2} = 1 + 2/\sqrt{x-2}$ (kun x > 2) $\Leftrightarrow x-2 = \sqrt{x-2} + 2 \Leftrightarrow x-4 = \sqrt{x-2}$ (kun x > 4) $\Leftrightarrow (x-4)^2 = x-2 \Leftrightarrow x^2-9x+18=0$. Tämän ratkaisuista x=6 ja x=3 vain edellinen toteuttaa alkuperäisen yhtälön. Vastaus: x=6.
- 3. Matka s kuljetaan nopeudella v ajassa $t_1 = s/v$. Jos matkan alkuosa 0.6s kuljetaan nopeudella v ja loppuosa 0.4s nopeudella 1.2v, kuluu matkaan aika $t_2 = 0.6s/v + 0.4s/(1.2v) = 1.12s/(1.2v)$. Aikojen suhde on $t_2/t_1 = 1.12/1.2 \approx 0.9333 = 1 0.0667$. Vastaus: Aika lyhenee 6.7%.
- 4. Jos tornin korkeus on h m ja katseluetäisyydet x m ja x+500 m, saadaan suorakulmaisista kolmioista sekä $h=x\tan 3.5^{\circ}$ että $h=(x+500)\tan 2.5^{\circ}$. Siis $x\tan 3.5^{\circ}=(x+500)\tan 2.5^{\circ}$, josta $x=\frac{500\tan 2.5^{\circ}}{\tan 3.5^{\circ}-\tan 2.5^{\circ}}\approx 1247.3$ ja $h=x\tan 3.5^{\circ}\approx 76.29$. Vastaus: Tornin korkeus on 76,3 m ja katseluetäisyydet 1250 m ja 1750 m.
- 5. Jos x+y+z=0 ja $x^2+y^2+z^2=1$, on $0=(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx=1+2(xy+yz+zx)$. Tästä saadaan, että xy+yz+zx=-1/2.
- **6.** Jos x=2 on kolmannen asteen polynomin kaksinkertainen nollakohta, on polynomi muotoa $p(x)=(x-2)^2(ax+b)$. Sen derivaatta on $p'(x)=2(x-2)(ax+b)+a(x-2)^2$. Koska p(3)=3a+b ja p'(1)=-2(a+b)+a=-a-2b, saadaan kertoimille a ja b yhtälöpari 3a+b=15, a+2b=0. Tämän ratkaisu on a=6, b=-3, joten kysytty polynomi on $p(x)=(x-2)^2(6x-3)=6x^3-27x^2+36x-12$.
- 7. Sipuli itää todennäköisyydellä 0,7 ja on itämättä todennäköisyydellä 0,3. Istutetaan n sipulia. Vähintään kaksi itää todennäköisyydellä $p=1-(P(0\text{ itää})+P(1\text{ itää}))=1-(0,3^n+n\cdot0,7\cdot0,3^{n-1})$. Jos määritellään funktio $f(x)=0,3^x+n\cdot0,7\cdot0,3^{x-1}$, tulee ehdoksi 0,01 > f(n). Funktion f(x) derivaatta $f'(x)=0,3^x(7/3+(1+7x/3)\ln 0,3)<0$ ainakin kun $x\geq 1$. Näin ollen f(x) on monotonisesti pienenevä, kun $x\geq 1$. Tarvittava sipulimäärä selviää nyt siitä, että $f(6)\geq 0,0109>0,01$ ja $f(7)\leq 0,004<0,01$. Vastaus: On istutettava vähintään 7 sipulia.
- 8. Olkoot $\overline{a}, \overline{b}$ ja \overline{c} kolmion kärkipisteiden A, B ja C paikkavektorit. Ensimmäinen ehto $(1): (\overline{p}-\overline{a})\cdot (\overline{b}-\overline{c})=0 \Leftrightarrow \overline{AP}\bot \overline{CB}$ eli piste P on A:sta lähtevällä kolmion korkeusjanalla. Vastaavasti yhtälöstä $(2): (\overline{p}-\overline{b})\cdot (\overline{c}-\overline{a})=0$ nähdään, että piste P on B:sta lähtevällä korkeusjanalla. Piste P on siten kärjistä A ja B lähtevien korkeusjanojen leikkauspiste. Yhtälöstä (1) saadaan, että $\overline{p}\cdot (\overline{b}-\overline{c})=\overline{a}\cdot (\overline{b}-\overline{c})$. Vastaavasti yhtälöstä (2) saadaan $\overline{p}\cdot (\overline{c}-\overline{a})=\overline{b}\cdot (\overline{c}-\overline{a})$. Laskemalla yhtälöt puolittain yhteen saadaan $\overline{p}\cdot (\overline{b}-\overline{a})=\overline{c}\cdot (\overline{b}-\overline{a})$ eli $(\overline{p}-\overline{c})\cdot (\overline{a}-\overline{b})=0$, mikä piti todistaa. Tästä seuraa analogisesti alun kanssa, että piste P on myös kärjestä C lähtevällä korkeusjanalla. Vektorialgebrallisesti on osoitettu, että kolmion korkeusjanat leikkaavat toisensa samassa pisteessä.

- 9. Suunnistaja kiertäköön A:sta lähtien suon reunaa matkan s_1 km ja oikaiskoon sitten suoraan suon poikki pisteeseen B matkan s_2 km. Valitaan muuttujaksi matkaa s_1 vastaava keskuskulma $\alpha \in [0, \pi]$. Tällöin matka $s_1 = \frac{1}{2}\alpha$. Piirtämällä keskipisteestä kohtisuora suon kulkumatkalle saadaan, että $s_2 = \sin\frac{1}{2}(\pi \alpha) = \cos\frac{1}{2}\alpha$. Matkaan käytetty aika on tällöin $f(\alpha) = s_1/10 + s_2/5 = \frac{1}{10}(\frac{1}{2}\alpha + 2\cos\frac{1}{2}\alpha)$. Se ei riipu matkojen s_1 ja s_2 kulkujärjestyksestä. Kun $0 \le \alpha \le \pi$, on derivaatta $f'(\alpha) = \frac{1}{10}(\frac{1}{2} \sin\frac{1}{2}\alpha) = 0$, kun $\alpha = \frac{1}{3}\pi$. Koska f(0) = 0.2, $f(\frac{1}{3}\pi) = \frac{1}{10}(\frac{1}{6}\pi + \sqrt{3}) \approx 0.2256$ ja $f(\pi) = \frac{1}{20}\pi \approx 0.1571$, saa f pienimmän arvonsa, kun $\alpha = \pi$. Vastaus: Suunnistajan on syytä kiertää suo sen reunaa pitkin.
- 10. Lauseke $f(n) = \frac{1}{6}(n^3 + 5n)$ on arvolla n = 1 kokonaisluku, sillä $f(1) = \frac{1}{6}(1+5) = 1$. Oletetaan sitten, että f(n) on kokonaisluku ja tarkastellaan lauseketta f(n+1). $f(n+1) = \frac{1}{6}((n+1)^3 + 5(n+1)) = \frac{1}{6}(n^3 + 5n + 3n^2 + 3n + 6) = f(n) + \frac{1}{2}n(n+1) + 1$. Koska f(n) on induktio-oletuksen mukaan kokonaisluku ja n(n+1) on parillinen, on myös f(n+1) kokonaisluku. Koska n on mielivaltainen, on osoitettu, että f(n) on kokonaisluku kaikilla kokonaislukuarvoilla $n \ge 1$.
- 11. Kohdatkoon pisteestä P_i lähtevä askel suoran s_2 pisteessä Q_i , i=0,1,2,...,n-1. Askelista syntyy suorien s_1 ja s_2 väliin yhdenmuotoiset kolmiot $P_0Q_0P_1$, $P_1Q_1P_2$,..., $P_{n-1}Q_{n-1}P_n$, joiden kateeteista muodostuu tarkasteltava porrasviiva. Koska $P_0=(0,-1)$, on $Q_0=(0,1)$. Jos $P_1=(x_1,y_1)$, on $y_1=1$ ja $x_1=\frac{4}{3}(y_1+1)=\frac{8}{3}$ eli $P_1=(\frac{8}{3},1)$. Jos $Q_1=(x_2,y_2)$, on $x_2=x_1=\frac{8}{3}$ ja $y_2=\frac{1}{2}x_2+1=\frac{7}{3}$ eli $Q_1=(\frac{8}{3},\frac{7}{3})$. Näin ensimäisten askelosien pituudet ovat $P_0Q_0=2$, $Q_0P_1=\frac{8}{3}$ ja $P_1Q_1=\frac{4}{3}$. Koska $P_1Q_1/P_0Q_0=2/3$, on kahden peräkkäisen kolmion $P_{i-1}Q_{i-1}P_i$ ja $P_iQ_iP_{i+1}$ vastinosien suhde 2/3. Ensimmäisen askelen $P_0\to P_1$ pituus on $2+\frac{8}{3}=\frac{14}{3}$. Toisen askelen $P_1\to P_2$ pituus on tällöin $\frac{2}{3}\cdot\frac{14}{3}$, kolmannen askelen $P_2\to P_3$ pituus $(\frac{2}{3})^2\cdot\frac{14}{3}$ ja yleisen askelen $P_i\to P_{i+1}$ pituus $(\frac{2}{3})^i\cdot\frac{14}{3}$. Porrasviivan $P_0\to P_n$ pituus on siten geometrinen summa $s_n=\sum_{i=0}^{n-1}(\frac{2}{3})^i\cdot\frac{14}{3}=14(1-(\frac{2}{3})^n)$. Koska $0<\frac{2}{3}<1$, on $\lim_{n\to\infty}s_n=14(1-\lim_{n\to\infty}(\frac{2}{3})^n)=14$.
- 12. Jotta yhtälö olisi määritelty, on oltava $x > 0, y > 0, x \neq 1, y \neq 1$. Edelleen, $\log_y x = \log_x x/\log_x y = 1/\log_x y$. Näin ollen haetuille pisteille (x,y) pätee $1 = \log_y x \cdot \log_x y = (\log_y x)^2$, joten $\log_y x = \pm 1$ eli y = x tai y = 1/x. Yhtälön toteuttavien tason pisteiden joukko on $\{(x,y)|\ x > 0,\ x \neq 1,\ y = x$ tai $y = 1/x\}$.
- **13.** Jos G(t) on funktion $\sqrt{t^2+1}$ integraalifunktio, on f(x)=G(3x)-G(x). Koska $G'(t)=\sqrt{t^2+1}$, on $f'(x)=3G'(3x)-G'(x)=3\sqrt{(3x)^2+1}-\sqrt{x^2+1}$. Selvästi jokaisella arvolla $x\in\mathbb{R}$ on $f'(x)\geq 2\sqrt{x^2+1}>0$, joten f on aidosti kasvava koko \mathbb{R} :ssä, eikä sillä voi olla ääriarvoja.
- 14. Jos käyrä on y=y(x), on pisteessä (x,y) tangentin kulmakerroin y'(x). Pisteen $(x,y)\neq (0,0)$ ja origon kautta kulkevan suoran kulmakerroin on y/x. Tehtävän mukaan on $y'(x)=\frac{1}{2}\frac{y(x)}{x}$. Muodosta $\frac{dy}{y}=\frac{1}{2}\frac{dx}{x}$ saadaan differentiaaliyhtälön ratkaisuksi $\ln |y|=\frac{1}{2}\ln |x|+C$ eli $y=c\sqrt{|x|}$. Ehdosta y(4)=1 saadaan 1=2c eli $c=\frac{1}{2}$. Koska käyrän on kuljettava pisteen (4,1) kautta, voidaan olettaa, että x>0. Käyrän yhtälö on siten $y=\frac{1}{2}\sqrt{x}$.

15. Diofantoksen yhtälön 10x + 4y = 36 eli 5x + 2y = 18 kaikki ratkaisut ovat muotoa $x = x_0 + n\frac{2}{\operatorname{syt}(5,2)}, \ y = y_0 - n\frac{5}{\operatorname{syt}(5,2)},$ missä n on kokonaisluku ja (x_0,y_0) on jokin yhtälön yksittäisratkaisu. Selvästi $\operatorname{syt}(5,2) = 1$. Koska $18 = 5 \cdot 2 + 2 \cdot 4$, voidaan valita $x_0 = 2, \ y_0 = 4$. Vastaus: $x = 2 + 2n, \ y = 4 - 5n, \ n \in \mathbf{Z}$.