FATIGUE

□ Fluctuating Stresses

Fatigue Terminology

☐ Stress

- σ_{max}, σ_{min}
- lacksquare $oldsymbol{\sigma}_{\mathsf{m}_{\mathsf{i}}}$ $oldsymbol{\sigma}_{\mathsf{a}}$

NUMBER OF CYCLES

σ_m-σ_a Diagrams for Axial and Bending Loads

σ_m-σ_a Diagrams, A Closer Look Modified Goodman Diagram

2024 AI

7075 AI

Steel

Example

A part made of 1/8in thick 7075-T6 aluminum alloy. It is subjected to a tensile load that fluctuates between 1000 and 5000lb. Determine its estimated life.

Example

It is desired to determine the size of a UNS G10500 cold drawn steel bar to withstand a tensile preload of 8kips and a fluctuating tensile load varying from 0 to 16kips. Owing to the design of the ends, the bar will have a geometric stress concentration factor of 2.02 corresponding to a fillet whose radius is 3/16in. Determine a suitable diameter for an infinite life and a factor of safety of at least 2.0.

Fatigue Failure Due to Combined Stresses

- Distortional Energy Method
 - Mean von Mises Stresses

$$\sigma_{vM,m} = \sqrt{\frac{1}{2} \cdot \left[(\sigma_{1,m} - \sigma_{2,m})^2 + (\sigma_{2,m} - \sigma_{3,m})^2 + (\sigma_{3,m} - \sigma_{1,m})^2 \right]}$$

Alternating von Mises Stresses

$$\sigma_{vM,a} = \sqrt{\frac{1}{2} \cdot \left[(\sigma_{1,a} - \sigma_{2,a})^2 + (\sigma_{2,a} - \sigma_{3,a})^2 + (\sigma_{3,a} - \sigma_{1,a})^2 \right]}$$

Factor of Safety: Three Interpretations

Example

A bar of steel has S_u =700MPa, S_y =500MPa, and a fully corrected endurance limit of S_3 =200MPa. For each case below find the factor of safety which guards against static and fatigue failures.

1.
$$\tau_m = 140 MPa$$

2.
$$\tau_m = 140MPa$$
, $\tau_a = 70MPa$

3.
$$\tau_{xy,m} = 100MPa$$
, $\sigma_{x,a} = 80MPa$

4.
$$\sigma_{x,m} = 60MPa$$
, $\sigma_{x,a} = 80MPa$

$$\tau_{xy,m} = 70 Mpa, \quad \tau_{xy,a} = 35 MPa$$