General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

PROBLEM OF GAS ACCRETION ON A GRAVITATIONAL CENTER V. A. Ladygin

Translation of "K zadache ob akkretsii gaza na gravitiruyushchiy tsentr", Academy of Sciences USSR, Institute of Space Research, Moscow, Report Pr-442, 1978, pp. 1-14

(NASA-TM-76202) PROBLEM OF GAS ACCRETION ON A GRAVITATIONAL CENTER (National Aeronautics and Space Administration) 14 p HC A02/MF A01 CSCL 20D

N81-22314

Unclas G3/34 42181

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 JUNE 1980

1. Represent Accession No.	3 Recipient's Catalog No.		
NASA TM-76202	E. Daniel Daha		
The state of the s	5 Report Date June 1980		
PROBLEM OF GA.; ACCRETION ON A GRAVITATIONAL CENTER	6. Performing Organization Code		
7. Author(s)	S. Performing Organization Report No.		
V. A. Ladygin	10. Work Unit No.		
9. Performing Organization Name and Address	11. Contract or Grant No. NASW-3199		
Leo Kanner Associates Redwood City, California 94063	13. Type of Report and Pariod Covered		
12. Sponsoring Agency Hame and Address	Translation		
National Aeronautics and Space Administration, Washington, D. C. 20546	14. Spansoring Agency Code		
15 Supplementary Notes			
uyushchiy tsentr", Academy of Sciences Space Research, Moscow, Report Pr-442,	1978, pp. 1-14.		
16. Abstract			
The study deals with a method of the arof the problem of accretion on a rapid tational center. This solution is obtation the axis of symmetry in the region of	ly moving gravi- ained in the vicinity		
The study deals with a method of the ag of the problem of accretion on a rapid tational center. This solution is obta	ly moving gravi- ained in the vicinity		
The study deals with a method of the ag of the problem of accretion on a rapid tational center. This solution is obta	ly moving gravi- ained in the vicinity		
The study deals with a method of the ag of the problem of accretion on a rapid tational center. This solution is obta	ly moving gravi- ained in the vicinity		
The study deals with a method of the ag of the problem of accretion on a rapid tational center. This solution is obta	ly moving gravi- ained in the vicinity		
The study deals with a method of the ag of the problem of accretion on a rapid tational center. This solution is obta	ly moving gravi- ained in the vicinity		
The study deals with a method of the ag of the problem of accretion on a rapid tational center. This solution is obta	ly moving gravi- ained in the vicinity		
The study deals with a method of the ay of the problem of accretion on a rapid tational center. This solution is obtation the axis of symmetry in the region of the axis of symmetry in the axis of symmet	ly moving gravi- ained in the vicinity of the potential flow.		
The study deals with a method of the argof the problem of accretion on a rapid tational center. This solution is obtation to the axis of symmetry in the region of the axis of symmetry in the axis of symmetry in the region of the axis of symmetry in the region of the axis of symmetry in the axi	ly moving gravi- ained in the vicinity of the potential flow.		
The study deals with a method of the argof the problem of accretion on a rapid tational center. This solution is obtation to the axis of symmetry in the region of the axis of symmetry	ly moving gravi- ained in the vicinity of the potential flow.		
The study deals with a method of the argof the problem of accretion on a rapid tational center. This solution is obtation to the axis of symmetry in the region of the axis of symmetry	ly moving gravi- ained in the vicinity of the potential flow. Sistement classified-Unlimited		

PROBLEM OF GAS ACCRETION ON A GRAVITATIONAL CENTER

V. A. Ladygin

Examined in the study is a method of approximated solution of the problem of gas accretion on a rapidly moving gravitational center. The solution is obtained in some vicinity of the axis of symmetry in the region of potential flow. Calculations on a computer showed the effectiveness of the given method.

Introduction

The solution of the problem of stationary gas accretion on a moving gravitational center simulates the movement of a substance in interstellar space in the vicinity of a black hole. A detailed picture of gas accretion on a black hole is of interest in connection with the problem of observation of black holes.

The qualitative study of such accretion, as well as two-dimensional numerical calculations of this problem, are available in studies [1] - [4]. The study of self-modeling solutions, which may represent asymptotics of the flow of gas near a gravitational center, was carried out in study [5].

In the present study, the system of equations of two-dimensional gas dynamics, which describes gas accretion, in contrast to studies [2] - [4], is solved in an approximate manner, by means of expansion into a linear series, according to one of the independent variables (angle θ), and by means of "abridging" of the obtained infinite system of common differential equations.

/2*

/3

^{*}Numbers in the margin indicate pagination in the foreign text.

Although only the region of potential flow of the gas is studied in the present study, this method may be used also for a nonpotential flow behind a shock wave.

1. Formulation of the Problem and Basic Equations

Studied herein is the steady-state axisymmetrical flow of an ideal polytropic gas, devoid of viscosity and thermal conductivity in a gravitational field of a material point of mass M.

At infinity, the approach stream is assumed to be homogeneous and supersonic.

$$p \rightarrow p_m = const$$
, $P \rightarrow P_m = const$,
 $V_m = -V_m \cos \theta$, $V_\theta \rightarrow -V_m \sin \theta$, /2.1/
 $V_m = const > 0$,

With these boundary conditions, the flow prior to the shock wave is potential and isentropic, and, in a spherical system of coordinates, it is described by the system of equations:

$$\frac{V_1^1 + V_1^1 - GM}{2} + \gamma K \rho^{7-1} - \Psi$$
 /2.2/

-energy integral,
$$\frac{\partial}{\partial \tau}(\tau \vee_{\theta}) - \frac{\partial \vee_{1}}{\partial \theta} = 0$$
 /2.3/

-condition of potentiality,

-equation of continuity,

-equation of state,

where V_{κ} , V_{\bullet} , ρ , and P are the radial and angular components of velocity, the density, and the pressure of the gas,

G is the gravitational constant, γ is the indicator of the polytropic curve.

The constants K and Ψ are determined with the boundary

14

conditions (2.1).

Through transformation of the analog

where $(-1)^{\frac{1}{2}}$ is the speed of sound at infinity, the five-parameter problem (2.1)-(2.6) (parameters: γ , G·M, P_o, P_o, V_o,) is reduced to a two-parameter problem (parameters: γ and M_o= $\frac{V_{\infty}}{C_{\infty}}$ is the Mach speed at infinity).

Therefore, without bounding the generality, one can assume

On the strength of (2.4), the expression $-\tau \rho \sin\theta V_{s} d\tau + \tau^{s} \rho \sin\theta V_{s} d\theta$

is a complete differential of some function $S(7,\theta)$ of the current lines, and, consequently,

$$\frac{d^{\frac{2}{3}}}{d^{\frac{2}{3}}} = -\tau \sin \theta V_{0}$$

$$\frac{d^{\frac{2}{3}}}{d^{\frac{2}{3}}} = \tau^{2} \sin \theta V_{0}$$

$$\frac{12.97}{12.97}$$

$$\frac{12.97}{12.97} = \frac{12.97}{12.97}$$

$$\frac{12.97}{12.97} = \frac{12.97}{12.97}$$

$$\frac{12.97}{12.97} = \frac{12.97}{12.97}$$

$$\frac{12.97}{12.97} = \frac{12.97}{12.97}$$

where $d=\frac{1}{\rho}$ is the specific volume.

2. Description of the Method of Solution of the Problem

We will derive the formulas for the approximated solution

/6

of the system (2.8)-(2.11). Since the flow is axisymmetrical, then

$$d(\tau,\theta) = d(\tau,-\theta), \quad \frac{1}{2}(\tau,\theta) = \frac{1}{2}(\tau,-\theta),$$

$$\frac{1}{2}(\tau,\theta) = \frac{1}{2}(\tau,-\theta), \quad \frac{1}{2}(\tau,-\theta), \quad \frac{1}{2}(\tau,-\theta).$$

We will assume that the functions d, V_{τ} , V_{θ} , S are analytic according to θ in some vicinity of $\theta=0$. Then, d, V_{τ} , S are expanding to an exponential series according to even powers of θ , and V_{θ} , according to uneven powers of θ , i.e.,

$$d(\tau,\theta) = \sum_{i=1}^{n} d_{ix}(\tau) \theta^{ix}, \quad \bigvee_{i} (\tau, \theta) = \sum_{i=1}^{n} Q_{ix}(\tau) \theta^{ix},$$

$$S(\tau,\theta) = \sum_{i=1}^{n} S_{ix}(\tau) \theta^{ix}, \quad \bigvee_{i} (\tau, \theta) = \sum_{i=1}^{n} Q_{ix}(\tau) \theta^{ix}.$$
(3.27)

One can think that $S_{\bullet}(7)=0$, since the function $S(7,\theta)$ is determined with an accuracy up to the additive constant, and is constant along the trajectory, while the axis of symmetry $\theta=0$ is the trajectory of the particles.

We will substitute the expansion (3.2) into the system (2.8)-(2.11), and group the terms with identical powers of θ . We will obtain the system of relationships:

where a_i , V_i , h_i are the coefficients of the expansion into an exponential series, respectively, of the functions $\sin \theta$,

 $V_{t}^{x}+V_{s}^{x}$, d'^{-x}

$$\sin \theta = \sum_{k=1}^{\infty} \alpha_{1k-1} \theta^{1k-1} \qquad \alpha_{2k-1} = \frac{(-1)^{k+1}}{(2k-1)!} , \qquad /3.8/$$

$$V_{x}^{2} \cdot V_{x}^{2} = \sum_{k=1}^{\infty} V_{2k} \theta^{2k} \qquad V_{x} = \sum_{j=1}^{\infty} q_{j} q_{j} + \sum_{k=1}^{\infty} p_{k} p_{j} \qquad /8.9/$$

$$V_{x}^{2} \cdot V_{x}^{3} = \sum_{k=1}^{\infty} h_{k} \theta^{2k}$$

We will expand the equality

into an exponential series according to θ .

We will obtain a system of relationships between the coefficients {h;} and {d;}.

We will transform the system (3.3)-(3.10). In place of the coefficients S_{2K} , we will examine the functions

which have finite limits with $\gamma \rightarrow +\infty$. Using (3.5) and (3.6), we preclude the coefficients h; in (3.10). We will introduce the new independent variable

and also the functions

We will obtain an infinite system of common differential equations relative to the functions ρ_{2k-1} , F_{2k}

$$\begin{cases} \frac{dp_{ix-1}}{du} = 2 \kappa \cdot q_{ix} - p_{ix-1} \\ \frac{dF_{ix}}{du} = T_{ix} - F_{ix} \left(2 - \frac{2q_{i}(p_{i} + q_{i}) - e^{-u}}{q_{i}^{2} - E_{i}^{2}}\right) \end{cases}$$
 (3.13)

17

The functions $\{T_{xk}\}_{k=1}^{\infty}$, $\{q_{xk}\}_{k=1}^{\infty}$, G^{2} (square of the speed of sound on the axis of symmetry $\theta=0$), which are part of the right-hand portion of system (3.13), as well as the functions $\{V_{2k}\}_{k=1}^{\infty}$, $\{\mu_{xk}\}_{k=1}^{\infty}$, are sequentially determined through the relationships:

$$C_{*}^{x} = (\gamma - 1) (\Psi - e^{-V_{*}} - 2F_{3}^{x})$$
. /3.14/
 $Q_{*} = 2F_{3}$. $V_{*} = 4F_{3}^{x}$, $T_{3} = -P_{1}$ /3.15/

Then, if the coefficients $\mu_{\mathbf{z}}$, $V_{\mathbf{z}i}$, $q_{\mathbf{z}i}$ (i < K) and $T_{\mathbf{z}j}$ (j < K+1) have already been calculated, then $\mu_{\mathbf{z}k}$, $V_{\mathbf{z}k}$, $q_{\mathbf{z}k}$ are determined from the system of three linear equations:

$$\begin{cases} V_{\text{FR}} - 2q_{,q_{,\text{FR}}} = \sum_{i \neq j \neq 2k+1, j \neq i} P_{i} P_{j}, & \text{/3.16/} \\ 2\kappa (V_{\text{IR}} - 2c_{,\mu_{,\text{IR}}}^{*}) = (i-1) \sum_{i \neq j \neq 2k+1, j \neq 2k} U_{i} V_{i} - \sum_{i \neq j \neq 2k+1, j \neq 2k} U_{i} V_{i} - \sum_{i \neq j \neq 2k+1, j \neq 2k} U_{i} V_{i} U_{j}, & \text{/3.17/} \\ 2F_{i} \mu_{,\text{IR}} - Q_{,\text{IR}} = Q_{i} \alpha_{i} - \sum_{i \neq j \neq 2k+1, j \neq 2k} U_{i} - 2(\kappa+i) F_{\text{CK}+i}, & \text{/3.18/} \\ K*I_{,2}, \dots /, & \text{/3.18/} \end{cases}$$

and the function $T_{2(K+1)}$ is calculated according to the formula

$$T_{2(n+1)} = -\sum_{i \neq j \neq 1, i+1} T_{i} \mu_{i} + \sum_{i \neq j \neq i+1} p_{i} \alpha_{j}$$
/3 [9]

From (2.1), (2.9), and (3.2), we will obtain the boundary conditions for system (3.13)

with u →+∞

If the system (3.13)-(3.20) is solved, then the coefficients d_{2K} and S_{2K} are determined by the formulas

$$d_o = C_o^{\frac{1}{1-\epsilon}} d_{2x} = d_o^{\frac{1}{1-\epsilon}} d_{2x}$$
 /3.21/
 $S_{2x} = e^{\frac{1}{2}\epsilon} F_{1x}/d_o$

/8

The calculations according to formulas (3.13)-(3.19), with small values of 7, requires large outlays of computer time, since the right-hand portions of the system (3.13) are unbounded with $7\rightarrow0$. Therefore, in the region of u<0, it is advisable to make a substitution of the variables:

$$p_{ii}^{*} = e^{ix_{i}}p_{ix}$$
, $F_{ii}^{*} = e^{ix_{i}}F_{ix}$, $q_{ii}^{*} = e^{ix_{i}}q_{ix}$, $T_{ii}^{*} = e^{ix_{i}}T_{ix}$, /3.22/
 $C_{ii}^{*} = e^{ix_{i}}C_{i}$, $V_{ii}^{*} = e^{ix_{i}}V_{ix}$

In this case, only equations (3.13) and (3.14) change, taking on the form:

$$\begin{cases} \frac{dp_{1x,1}}{dk} = 2KQ_{1x}^{2} + \frac{p_{1x,1}^{2}}{p_{1x}^{2}} \\ \frac{df_{1x}}{dk} = T_{1x}^{2} - f_{1x}^{2} \left(1.5 - \frac{2Q_{1}^{2}(p_{1}^{2} + q_{1}^{2}) - 1}{q_{1x}^{2} - q_{1x}^{2}}\right), \qquad (3.23) \end{cases}$$

For approximated calculation of the first N coefficients of expansion (3.2), we will examine system (3.13) for k=1,2,...N. Formulas (3.14)-(3.19) make it possible, in the right-hand portion of (3.13), to express q_{ai} , μ_{ai} , V_{ai} (i<N) and T_{aj} (/<N+1) in the form of functions from u, P_1 , ..., P_{M-1} , P_2 , ..., P_M . For a similar recording of the coefficients q_{aj} and V_{2N} , we will make use of formulas (3.16) and (3.17) for k=N, with μ_{M} =0 being assumed in (3.17). This additional assumption does not contradict the boundary conditions

3. Discussion of Results

The obtained closed system 2N of common differential equations relative to the functions $\rho_1, \ldots, \rho_{2N-1}, F_2, \ldots, F_{2N}$

was integrated numerically on a computer by the Runge-Kutt method in the interval $-4\ln i0 < u < i0 \ln i0$ (i.e., $10^{-4} < 7 < 10^{16}$) for the indicator of the polytropic curve $\gamma = 5/3$ and the Mach speed M=2.4. In this case, the boundary conditions with $\gamma = 10^{16}$ were transposed to the point $\gamma = 10^{16}$ Bondi radii.

The calculation was carried out for N=1,2,...,10,15,20.

For N>2, within the limits of accuracy of integration $\mathcal{E}=10^{-5}$ of the system (3.13), the values of the density $\mathcal{P}(\mathcal{X})$, Mach speed M(\mathcal{X}), and modulus of speed V(\mathcal{X}) on the axis of symmetry $\theta=0$ practically do not depend on the selection of N, and are represented in the table. The density, speed, and Mach speed approach infinity monotonously with $\mathcal{X}\to 0$.

The solution of system (3.13) may be continued into the randomly small vicinity of the point $\Upsilon=0$, which indicates the absence of a departed shock wave in front of the gravitational center for a gas with $\gamma=5/3$. The density $\mathcal{P}(\Upsilon,\theta)$, modulus of speed $V(\Upsilon,\theta)$, and function of the current lines $S(\Upsilon,\theta)$ were calculated approximately according to the formulas

$$\rho = (d_0 + d_2 \theta^2 + ... + d_{2N-2} \theta^{2N-2})^{-1}$$

$$V = (V_0 + V_1 \theta^2 + ... + V_{2N} \theta^{2N})^{\frac{1}{2}},$$

$$S = S_1 \theta^2 + ... + S_{2N} \theta^{2N}$$
(4.3)

For N=10, the level lines ρ , V, and S are given in figures 1, 2, and 3, respectively. Here, the x-axis is the axis of symmetry. The gravitational center is located at the origin of the coordinates. Plotted along the axes of the coordinates are the distances in Bondi radii ($R_g = G \cdot M/C_o^2$). The gas flows into the center from the right.

The calculation of the level lines of \mathcal{P} , V, S for N=5, 10, 15, and 20 shows that, in the range $0<\theta<\pi/2$, the values of \mathcal{P} , V, and S practically do not depend on N, <u>i.e.</u>, there occurs

convergence of the approximated solution to the potential flow.

For $\pi/2 < 0 < \pi$, and especially close to the axis of symmetry $0 \times \pi$, the approximated values of β . V, and α depend strongly on N. In this region, there is no convergence to the point solution, since the flow is nonpotential.

	ριυ	M(2)	V(7)
14	1. (01	2.3412	2.4413
b.	1.0002	2,4562	2.4684
4.	1.0005	2,5014	2.5018
2.	1.0018	2.5978	2.5993
1.	1.12061	2.7779	2.7835
C.5	1.0186	3.0987	3.1181
0.1	1.1:28	4.8124	5.0460
v.ot	.0644	11.214	14.279
0.001	5.3078	25,635	44.717
1, noor	15.733	56,424	141.39

- 1. Saltpeter, E. E., Astrophys. J., 140, 798 (1964).
- 2. Hunt, R., Month. Not. R. A. S., 154, 141 (1971).
- Eadie, G., Peacock, A., Pounds, K. A., Watson, M., Jackson, J. C., Hunt, R., Month. Not. R. A. S., 172, 35 (1975).
- 4. Hoffman, N. M., Notes for Talk at Hawaii AAS Meeting, January 1977.
- 5. Bisnovatyy-Kogan, G. S., Kazhdan, Ya. M., Klypin, A. A., Lutskiy, A. Ye., Shakura, N. I., "Akkretsiya na bystro dvizhushchiysya gravitiruyushchiy tsentr" [Accretion on a Rapidly Moving Gravitational Center], Preprint IPM AN SSSR, 20, Moscow, 1978.

Figure 3