Apellidos y Nombre	DNI	Grupo

NOTA IMPORTANTE: puesto que el uso de la calculadora está permitido durante este examen, todos los cálculos deberán llegar hasta su valor final y deberán incluir las unidades en que se expresan

1 (2 puntos) La figura 1 muestra la ruta de los datos monociclo básica del procesador MIPS R2000, vista en clase.

Figura 1. Ruta de los datos monociclo vista en el tema 1

a) *(1 punto)* Complete la tabla correspondiente a las señales de control para ejecutar sobre la misma las instrucciones que se detallan. Si hay alguna instrucción que no se puede ejecutar, indíquelo.

Instrucción	Form	EReg	OpALU	LMem	EMem	MxALU	MxDst	MxER	MxPC
sub rd,rs,rt	R								
lw rt, desp(rs)	1								
beq rs, rt, etiq	1								
sw rt, desp(rs)	I								
j dirección	J								

b) (0,5 puntos) Se quiere ejecutar la instrucción de salto condicional:

bltz rs, etiqueta # salto si rs es menor que 0

			D = ==1 /4 C)
000111	l RS	00000	Desni (Th)
000111	11.5	00000	Desp. (10)

Rellene la tabla con las señales de control necesarias.

Instrucción	Form	EReg	OpALU	LMem	EMem	MxALU	MxDst	MxER	MxPC
bltz rs, etiqueta									

(1 punto) Suponga que se SEGMENTA el procesador anterior, con el objet retardo de los registros de segmentación es de 2ns, se pide: a) (0,25 puntos) Frecuencia de reloj a la que puede trabajar el procesador que podrá alcanzar (en MIPS). b) (0,25 puntos) Tiempo que tardará el procesador segmentado en ejecutar c) (0,25 puntos) Aceleración máxima que podrá alcanzar el circuito segmentado en ejecutar de companyo	
a) (0,25 puntos) Frecuencia de reloj a la que puede trabajar el procesador que podrá alcanzar (en MIPS). b) (0,25 puntos) Tiempo que tardará el procesador segmentado en ejecutar c) (0,25 puntos) Aceleración máxima que podrá alcanzar el circuito segmentado en ejecutar de (0,25 puntos) Suponga que se recurre a la técnica de supersegmentado en ejecutar de (0,25 puntos) Puntos) Suponga que se recurre a la técnica de supersegmentado en ejecutar de (0,25 puntos) Puntos P	tivo de aumentar su rendimiento. Si o
d) (0,25 puntos) Suponga que se recurre a la técnica de supersegment rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	200 000 0000000000000000000000000000000
c) (0,25 puntos) Aceleración máxima que podrá alcanzar el circuito segmento d) (0,25 puntos) Suponga que se recurre a la técnica de supersegmento rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	segmentado y productividad máxim
 d) (0,25 puntos) Aceleración máxima que podrá alcanzar el circuito segment d) (0,25 puntos) Suponga que se recurre a la técnica de supersegment rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul 	
d) (0,25 puntos) Suponga que se recurre a la técnica de supersegment rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	
(0,25 puntos) Aceleración máxima que podrá alcanzar el circuito segmentos (0,25 puntos) Suponga que se recurre a la técnica de supersegmento rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	
(0,25 puntos) Aceleración máxima que podrá alcanzar el circuito segmentos (0,25 puntos) Suponga que se recurre a la técnica de supersegmento rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	
d) (0,25 puntos) Suponga que se recurre a la técnica de supersegment rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	10 instrucciones (en ns).
d) (0,25 puntos) Suponga que se recurre a la técnica de supersegment rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	
d) (0,25 puntos) Suponga que se recurre a la técnica de supersegment rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	
d) (0,25 puntos) Suponga que se recurre a la técnica de supersegment rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	
rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	ntado respecto al NO-segmentado.
rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	
rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	
rendimiento del procesador. Para ello se subdivide la etapa EX en 2 sul	

3 (1.25 punto) En el procesador segmentado en cinco etapas, semejante al estudiado en la asignatura, se va a ejecutar el siguiente fragmento de código en ensamblador del MIPS R2000.

(1)	lw \$2,0(\$4)
(2)	beq \$2,\$3, etiqueta
(3)	add \$1,\$2,\$3
(4)	sub \$4,\$1,\$3
(5)	lw \$5,100(\$4)
(6)	sw \$5,50(\$4)
(7)	
(8)	etiqueta:

	Registro	instrucción en que se escribe	instrucción en que se lee
Conflicto			

Tabla 1. Conflictos de datos

- a) (0,25 puntos) Indique los conflictos por dependencias de datos que existen en este código utilizando la Tabla1 (el número de conflictos no tiene por qué ser igual al número de filas)
- b) (0,5 puntos) Rellene el diagrama de instrucciones/tiempo suponiendo que el salto NO tiene lugar. Considere que los conflictos de datos se resuelven mediante paradas y los de control se resuelven mediante inserción de instrucciones NOP. La latencia de salto es 2.

c) (0,5 puntos) Rellene el diagrama de instrucciones/tiempo suponiendo que el salto NO tiene lugar y considerando que los conflictos de control se resuelven mediante **predicción de salto NO efectivo**. Los conflictos de datos se siguen resolviendo mediante paradas.

4 (1.25 puntos) Se pretende diseñar un sumador rápido de 16 bits. Considere el circuito de la figura 2, correspondiente a un sumador CSA (Carry-Select Adder) con tamaño de bloque variable: 2-2-3-4-5. Asuma que los FA (Full Adder) se diseñan con puertas lógicas y los retardos son: 3ns (suma) y 2ns (acarreo). Suponga que los multiplexores tienen un retardo de 2 ns.

Figura 2. CSA de 16 bits con tamaño de bloque variable 2-2-3-4-5

a) (0,5 puntos) Indique el retardo (en ns) de las siguientes señales: S1, S3, S6, S10, S15, Cout.

b) (0,25 puntos) Calcule la productividad máxima del sumador en MOPS.

c) (0,5 puntos) Compare el retardo con el de un CPA (Carry-Propagate Adder) de 16 bits. Justifique brevemente la respuesta.

Retardo CPA 16 bits:

5 (1 punto) Considere el operador de multiplicación secuencial para números enteros con signo que se muestra en la figura 3. Supóngase que el retardo de las diferentes operaciones involucradas en la multiplicación es el que se indica en la tabla adjunta. Asuma que la inicialización de los registros se hace en un ciclo independiente.

Inicializar registros y circuito de control	3 ns
Inspeccionar qi y qi-1	1 ns
Sumar	9 ns
Restar	10 ns
Desplazar S-HI-LO-X 1 bit	3 ns
Escribir registro HI-S	2 ns
Evaluar el número de ciclo actual	1 ns

Figura 3 Multiplicador secuencial para números enteros

a)	(0,25 puntos) Suponiendo que el multiplicador es el número de 8 bits 0111 0011, obtenga el código de Booth
	correspondiente.

	alización se
hace en un ciclo independiente.	

c)	(0,25 puntos) ¿Cuál sería la productividad que podría alcanzar dicho multiplicador expresado en MOPS?

d) (*0,25 puntos*) Rellene la tabla siguiente con las acciones requeridas en los primeros 4 ciclos (sin considerar el ciclo de inicialización) para realizar la multiplicación de M y Q siendo estos valores M= -115 (10001101 ₂) y Q = 115 (0111 0011 ₂). Nótese que no se pide el valor de los registros.

Ciclo	Acción
1	
2	
3	
4	

de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.		Suponga el siguiente caso, en el que el número real se encuentra en memoria:
.cnd (2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x80000000 - 0x9FFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.		
x:.double 1.0 start:		Escriba el código correspondiente:
text 0x00400000 _start: (2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.	.d	ata 0x10000000
.end (2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x80000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.	X	:.double 1.0
(2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l concetan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.	.te	ext 0x00400000
(2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.		start:
(2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.		-
(2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.		
(2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.		
(2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.		
(2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.		
(2.5 puntos) Un computador dispone de un procesador de 64 bits que es capaz de direccionar hasta 64 GB. Se l conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.		
conectan los módulos de memoria siguientes: M1 de 2GB a partir de la dirección 0x200000000, M2 ubicado de l dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria. (0.25 puntos) ¿Cuál será la dirección final del módulo M1 expresada en hexadecimal? (0.25 puntos) ¿Cuál será el tamaño de M2? ¿Cuál será la función para seleccionar M2 suponiendo que se activa por nivel alto? El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.	.e	nd
El módulo M3 de 512MB está compuesto por una única fila de chips de memoria del tipo SDRAM-DDR3-2000 con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.)	dirección 0x800000000 - 0x9FFFFFFFF y finalmente M3 de 512MB ubicado en las direcciones superiores del map de memoria.
con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.)	
)	con ancho de palabra 4 bits y conectados a un reloj de 1000MHz.
	•	

d)	$(0.25 \mu$	ount	os) I	ndic	jue e	el an	cho	de b	anda	de	M3	y el	de c	ada	uno	de si	us cl	nips										
e)	(0.25 p										ión c	de oc	eteto) tei	ndrá	M3?	P;A	cuái	ntos	chip	s se	cone	ectar	á ca	da u	na d	e	
f)	Cada ı Adema (0.25 µ	ás, e	stá o	rgar	izac	do in	tern	ame	nte e	n 4	banc	cos c	le 8	K fi	las, s	siend	lo el	tam	año	de b	loqu	ie de	4 p	alab	ras.	-2-5-	·8.	
g)	(0.50 p														del	chip	. Ut	ilice	, dor	nde s	sea a	prop	oiado	o, los	s pre	fijos	,	-
	Núme	ero c	le pa	ılabı	as q	ue c	ontie	ene e	el ch	ip																		
	Núme	ero d	le bi	ts pa	ıra s	elec	cion	ar ba	anco																			
	Núme	Número de bits para seleccionar una fila																										
	Núme	Número de bits para seleccionar un bloque																										
	Capa	Capacidad en bytes de cada banco																										
	Capa	Capacidad en bytes de cada fila de un banco																										
	Núm	Número de columnas que contiene una fila																										
h)	el mor	Número de columnas que contiene una fila (0.5 puntos) ¿Cuántos ciclos se necesitan para leer dos bloques de distintas filas?. Suponga precarga autom el momento óptimo (indique cuando se produciría). Justifiquelo en el cronograma asociado indicando las ódirecciones y datos.																										
		T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	T21	T22	T23	T24	T25	T26	T2:
(Orden																											
Di	rección																											
[Datos																											