Effective Medical Archives Processing Using Knowledge Graphs

Xiaoli Wang, Rongzhen Wang, Zhifeng Bao, Jiayin Liang, Wei Lu

Xiaofan Yan

Outline

- Abstract
- Introduction
- Methods
- Evaluation
- Conclusion

Abstract

- Medical archives processing (classification task)
 - Medical archives recognition
 - Feature extraction
 - Text classification

Method

- Build a semantic-rich medical knowledge graph
- Recognize text using OCR and extract keywords using a KG based feature extraction algorithm from medical archives
- Evaluate the similarity using a KG based semantic measure

Introduction

- Paper archives -- difficult to apply
- Meaningful to assign them with class labels
 - Typical classification techniques
 - Deep learning models
- Propose a novel KG-MDMF
 - Knowledge Graph based Medical Document Mining Framework
 - Medical KG construction
 - Medical archives processing
 - Text classification

Methods

- KG construction
 - Build a basic KG using entities and relationships from medical web resources and dictionaries
 - Extract entities and relationships from clinical data
 - Integrate expert Q&A results using majority vote algorithm into KG
 - 6 types of entities and 4 types of relationships

Methods

- Semantic Measures
 - Similarity score
 - In the corresponding conceptual hierarchy
 - In the KG (compute distance by path searching algorithm)
 - Of two medical documents
- Medical Archives Processing
 - OCR recognition
 - Preprocessing -- segment and remove stop words
 - Keyword extraction -- map each word to get entity set, and use semantic similarity to get edges' weight for ranking to extract keyword

Methods

- Improved Classification Algorithms
 - KNN
 - Typical: cosine similarity as the distance metric in tf-idf
 - Define: (two component)
 - Both tf-idf and word embedding
 - · Text similarity and the weight
 - SVM
 - Using entity similarity to calculate the SVM based on a semantic-based Gaussian kernel

Evaluation

- Settings
 - Dataset: EMR & MRD
 - OCR: ABBYY & Baidu AI
 - Metrics: expert Q&A system
- Result on text classification

Table 3: The results on classification

Algorithms	Precision	Recall	F-measure
KNN	0.57	0.48	0.51
KG-KNN	0.58	0.55	0.56
CNN	0.72	0.71	0.71
SVM	0.71	0.6	0.65
KG- SVM	0.78	0.75	0.76

Conclusion

 Present a medical archives processing framework KG-MDMF, using dictionary matching, extraction and expert Q&A system to construct KG, and define semantic measures to calculate similarity score, then do medical archives processing and classification improving.