## Régions de confrança

Referência 1: Ribeiro, A. A; Karas, E. W. Otimização contínua. Cengage, 2014 Estratégea de busca linear  $\chi^{k} = \chi^{k+1} = \chi^{k} + \left( \chi(-\nabla f(\chi^{k})) \right),$   $f(\chi^{k+1}) < f(\chi^{k}) \qquad t \in (0,1]$ · dinimi f ao largo de uma direção Le descida (local) d a partir do porto Estratégia de regiões de confiança min flæ) um modile de s.a.  $1/\chi - \chi' || \leq \Delta_1$ modèle de f (aproxima

localmente () é facil de







 $f(x) = x^{3}$   $\chi' = -1$ 2005 prosimação quadratica mão Commena. Una solução: trocar & f(xx) por una matriz Bx simétrica e definida positiva, e que aproxime & f(xx) em algum sentido.  $m(d) = f(x^{\kappa}) + \nabla f(x^{\kappa})^{\dagger} d + \int_{\mathcal{A}} d^{\dagger} B_{\kappa} d$ Atternativas para Bx:
1) grass-Newton (BFG5, DFP, "uspectral") leons resultados grande porte 2)  $B_{\kappa} = \nabla^2 f(x^{\kappa}) + \sigma_{\kappa} I$ , onde  $\sigma_{\kappa} \gg 1$ é tal que B<sub>k</sub> seja definida positiva. 40 c<sub>k</sub>: estimativa do menor autovalor de



| Medida de aceitação                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                       |
| $D_{ij} = ared$                                                                                                                                                                       |
| Px = ared<br>pred                                                                                                                                                                     |
| The Mark No.                                                                                                                                                                          |
| Situação boa: ared e grande em relação                                                                                                                                                |
| a med -> 0 Promote.                                                                                                                                                                   |
| a pred -> px grande.                                                                                                                                                                  |
|                                                                                                                                                                                       |
| Situação ruim: ared é pequeno em relação                                                                                                                                              |
|                                                                                                                                                                                       |
| a pred -> Pr pequeno.                                                                                                                                                                 |
|                                                                                                                                                                                       |
|                                                                                                                                                                                       |
|                                                                                                                                                                                       |
| Se ema de maior de continues                                                                                                                                                          |
| Esquema de regiões de confiança                                                                                                                                                       |
| Esquema de regiões de confiança<br>Dados 2°CR", $\Delta_0 > 0$ , $17 \in [0, 14]$ , $K=0$                                                                                             |
| Esquema de regiões de confrança  Dados x° CR", $\Delta_0 > 0$ , $1 \in [0, 14]$ , $k=0$                                                                                               |
|                                                                                                                                                                                       |
| · Repita inquanto Df(xx) +0 (117f(xx)) (E)                                                                                                                                            |
| Repita inquanto $\nabla f(x^*) \neq 0$ (1 $\nabla f(x^*) \mid \langle \mathcal{E} \rangle$ ) > revolva o modelo gradratico centrado em $x^*$ :                                        |
| Repita inquanto $\nabla f(x^*) \neq 0$ (1 $\nabla f(x^*) \mid \langle \mathcal{E} \rangle$ ) > revolva o modelo gradratico centrado em $x^*$ :                                        |
| Repita inquanto $\nabla f(x^*) \neq 0$ (1 $\nabla f(x^*) \mid \langle E \rangle$ )  revolva o modelo gradratico centrado en $x^*$ :                                                   |
| Repita inquanto $\nabla f(x^*) \neq 0$ (IV $f(x^*) \mid \langle \varepsilon \rangle$ )  revolva o modelo gnodratico centrado em $x^*$ :  min $m(d)$ 8.a. $\ d\  \leq \Delta_{\kappa}$ |
| Repita inquanto $\nabla f(x^*) \neq 0$ (IV $f(x^*) \mid \langle \varepsilon \rangle$ )  revolva o modelo gnodratico centrado em $x^*$ :  min $m(d)$ 8.a. $\ d\  \leq \Delta_{\kappa}$ |
| Repita inquanto Df(x*) ≠0 (12f(x*)) < E)  > revolera o modelo giodratico centrado em x*:  min m(d)  S.a. HdH ≤ ∆x  obtendo d*                                                         |
| Repita inquanto $\nabla f(x^*) \neq 0$ (IV $f(x^*) \mid \langle \varepsilon \rangle$ )  revolva o modelo gnodratico centrado em $x^*$ :  min $m(d)$ 8.a. $\ d\  \leq \Delta_{\kappa}$ |

/redução boa, -> Se Px > M (acidamos o ponto)  $L \rightarrow \chi^{K+1} = \chi^{K} + d^{K}$ (Le mão damos o paro) Se Px 14 (redução rum)
Lo Dx+1 = 1 Dx (reduzimos o
rais Lose  $\rho_{\kappa} > \frac{3}{4}$  e  $||d^{\kappa}|| = \Delta_{\kappa}$ L» △ K+1 = 2 △ K (redução los e o modelo) alconçou a borda da região de confiança - aumentamos /redução (oi boa, mas a borda não foi atingida → o raio atral é adequado \*K <- K+1

Détalles de earnergencia e implementações sur veja livro Karas e Ribeiro.