Linear Regression

Quách Đình Hoàng

Outline

- Empirical Risk Minimization
- Regression
- Linear Regression
- Regularized Regression
- Hyperparameter Tuning

Empirical Risk Minimization – ERM

- ERM is a common framework for supervised learning
- Given:
 - some labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l: Y \times Y \to R$
 - a hypothesis class or set of functions F
- The goal is to find

$$\hat{f} = \underset{f \in F}{\operatorname{argmin}} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

with the hope that

$$E_{p(x,y)}[l(f(x),y)] \approx \frac{1}{n} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

Empirical Risk Minimization – ERM

- ERM is a common framework for supervised learning
- Given:
 - a labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n, x^{(i)} \in \mathbb{R}^{d+1}$
 - a loss function $l: Y \times Y \to R$
 - a hypothesis class or set of functions F
- The goal is to find

$$\hat{f} = \underset{f \in F}{\operatorname{argmin}} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

• Depending on the choice of F and l, this objective function may be convex (easy to optimize) or non-convex (hard)

Regression

- Regression is a type of supervised learning
- Given:
 - a labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l: Y \times Y \to R$, where $Y = \mathbb{R}$
 - a hypothesis class or set of functions F
- The goal is to find

$$\hat{f} = \underset{f \in F}{\operatorname{argmin}} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

• Depending on the choice of F and l, this objective function may be convex (easy to optimize) or non-convex (hard)

- Linear regression is a simplest type of regression
- Given:
 - a labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l(y, y') = (y y')^2$
 - a hypothesis class or set of functions F of the form $f(x) = w_0 + \sum_{i=1}^{n} w_i x_i$
- The goal is to find

$$\hat{f} = \underset{f \in F}{\operatorname{argmin}} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

- Classification is a type of supervised learning
- Given:
 - a labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l(y, y') = (y y')^2$
 - a loss function $\iota(y,y')=(y-y')$ a hypothesis class or set of functions F of the form $f(x)=w_0+\sum_i w_ix_i=w^Tx$

$$w^{T} = (w_{0}, w_{1}, \dots, w_{d})$$

 $x^{T} = (1, x_{1}, \dots, x_{d})$

The goal is to find

$$\widehat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \left(w^{T} x^{(i)} - y^{(i)} \right)^{2}$$

- Linear regression is a simplest type of regression
- Given:

• a labelled training dataset
$$D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$$

• a loss function
$$l(y, y') = (y - y')^2$$

• a loss function
$$l(y,y')=(y-y')^2$$

• F = all functions of the form $f(x)=w_0+\sum_{i=1}^d w_ix_i=w^Tx$ $w^T=(w_0,w_1,\cdots,w_d)$
• The goal is to find $x^T=(x_1,x_1,\cdots,x_d)$

$$\widehat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} (w^{T} x^{(i)} - y^{(i)})^{2}$$

 $\widehat{w} = argmin||Xw - y||^2$

where:

or

$$X = \begin{bmatrix} x^{(1)}^T \\ \vdots \\ x^{(n)}^T \end{bmatrix}, y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(1)} \end{bmatrix}, x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \\ \vdots \\ x_d^{(i)} \end{bmatrix}, w = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$L_D(w) = ||Xw - y||^2 = (Xw - y)^T (Xw - y)$$

$$\widehat{w} = (X^T X)^{-1} X^T y$$

Regularizied Linear Regression

- Regularized empirical risk minimization that penalizes model complexity to deal with overfitting
- Given:
 - some labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l: Y \times Y \to R$, where Y = R
 - a hypothesis class or set of functions F
 - a regularizer function $r: w \to R$
 - a regularization parameter
- The goal is to find

$$\widehat{w} = \underset{w}{\operatorname{argmim}} \sum_{i=1}^{n} l(f_{w}(x^{(i)}), y^{(i)}) + \lambda r(w)$$

Regularized Linear Regression

• Linear regression

$$L_D(w) = \sum_{i=1}^{n} (w^T x^{(i)} - y^{(i)})^2$$

Ridge regression (L₂ regularization)

$$\min_{w} \left(L_D(w) + \frac{\lambda}{2} ||w||_2^2 \right)$$

Lasso regression (L₁ regularization)

$$\min_{w} \operatorname{minimize} \left(L_D(w) + \frac{\lambda}{2} \|w\|_1 \right)$$

• ElasticNet regression ($L_1 + L_2$ regularization)

$$\min_{w} \left(L_D(w) + \lambda \left(\alpha \|w\|_1 + \frac{1-\alpha}{2} \|w\|_2^2 \right) \right)$$

 λ and α are hyperparameters

Ridge Regression

$$L_D(w) = \|Xw - y\|^2 + \lambda \|w\|^2 = (Xw - y)^T (Xw - y) + \lambda w^T w$$
:

$$\hat{\theta} = (X^T X + \lambda I_{d+1})^{-1} X^T y$$

 I_{d+1} : is the $(d+1) \times (d+1)$ identity matrix

Gradient Descent

- We're trying to minimize some function L
- Suppose at iteration t: we're get $w^{(t)}$
- With learning rate η , we update $w^{(t)}$ (at iteration t+1) as follow

$$w^{(t+1)} = w^{(t)} - \eta \nabla_{w} L(w^{(t)})$$

Gradient Descent for Linear Regression

- Dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- 1. Initialize $w^{(0)} = 0$ (zero vector) and set t = 0
- 2. While not converged
 - Compute the gradient

$$\nabla_{W} L_{D}(\theta^{(t)}) = 2X^{T} X w^{(t)} - 2X^{T} y$$

Update the weights

$$w^{(t+1)} = w^{(t)} - \eta \nabla_{w} L_{D}(w^{(t)})$$

• Increment *t*:

$$t = t + 1$$

• Output w^(t)

Gradient Descent for Linear Regression – Change Step Size

- Dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- 1. Initialize $w^{(0)} = 0$ (zero vector) and set t = 0
- 2. While not converged
 - Compute the gradient

$$\nabla_{w}L_{D}(w^{(t)}) = 2X^{T}Xw^{(t)} - 2X^{T}y$$

Update the weights

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_w L_D(w^{(t)})$$
 $\eta_t = \frac{\eta_0}{n\sqrt{t+1}}$

• Increment *t*:

$$t = t + 1$$

• Output w^(t)

Gradient Descent for Linear Regression – Change Step Size

- Dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- 1. Initialize $w^{(0)} = 0$ (zero vector) and set t = 0
- 2. While not converged
 - Compute the gradient

$$\nabla_{w} L_{D}(w^{(t)}) = 2 \sum_{i=1}^{n} (w^{(t)^{T}} x^{(i)} - y^{(i)}) x^{(i)}$$

• Update the weights

$$w^{(t+1)} = w^{(t)} - \eta_t \sum_{i=1}^{n} \left(w^{(t)^T} x^{(i)} - y^{(i)} \right) x^{(i)} \quad \eta_t = \frac{\eta_0}{n\sqrt{t+1}}$$

• Increment *t*:

$$t = t + 1$$

• Output w^(t)

Hyperparameter Tuning

- Suppose we want to compare multiple hyperparameter settings $\lambda_1, \lambda_2, \dots, \lambda_k$
- For i = 1, 2, ..., k
 - Train a model on D_{train} using λ_i
- Evaluate each model on D_{val} and find the best hyperparameter setting, λ_{i^*}
- Compute the error of a model trained with λ_{i^*} on D_{test}

D_{train}

 D_{val}

 D_{test}

Summay

- Empirical Risk Minimization
- Regression
- Linear Regression
- Regularized Regression
- Hyperparameter Tuning