Teoría Básica para Ecuaciones Diferenciales Lineales Homogéneas.

Sandra Elizabeth Delgadillo Alemán.

Universidad Autónoma de Aguascalientes.

May 20, 2022

Teoría Básica para Ecuaciones Diferenciales Lineales Homogéneas.

Definition

Una E.D. Lineal de Orden n de la forma

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = g(x).$$

se conoce como **homogénea** si $g(x) \equiv 0$, mientras que si g(x) no es idénticamente cero, se conoce como **no homogénea**.

Example

$$3x^{2}y''' + \frac{1}{x}y - \sin x = 0$$
$$3x^{2}y''' + \frac{1}{x}y = \underbrace{\sin x}_{\sigma(x) \neq 0}.$$

Por tanto, es una E.D. no homogénea.

Example

$$y^{(iv)} + y'' = \underbrace{0}_{g(x)=0}.$$

Por tanto, es una E.D. homogénea.

Principio de Superposición.

Sean y_1, y_2, \dots, y_k soluciones de la E.D. lineal homogénea de orden n en el intervalo I. Entonces, la combinación lineal

$$y(x) = c_1y_1(x) + c_2y_2(x) + \cdots c_ky_k(x).$$

Es solución de la E.D. homogénea, donde c_1, \ldots, c_k son constantes arbitrarias.

Corollary

- 1 Un múltiplo constante de $y = cy_1(x)$ de una solución $y_1(x)$ de una E.D. lineal homogénea también es solución.
- 2 Una E.D. lineal homogénea siempre tiene la solución trivial $y \equiv 0$.

Example

Las funciones $y_1(x) = x^2$, $y_2(x) = x^2 \ln x$ son soluciones de la ecuación diferencial lineal homogénea $x^3y''' - 2xy' + 4y = 0$, en $(0, \infty)$. Determina un número infinito de soluciones usando el principio de superposición.

Solución. Usando el principio de superposición $y(x) = c_1 x^2 + c_2 x^2 \ln x$, c_1 , c_2 constantes arbitrarias. Con ésta expresión se tiene un número infinito de soluciones de la ecuación diferencial.

Example

Si $y(x) = e^{7x}$ es solución de la ecuación diferencial y'' - 9y' + 14y = 0, encuentra 3 soluciones de la ecuación diferencial.

Solución.

- 1 $y_1(x) = 3e^{7x}$.
- $y_2(x) = 0.$
- 3 $y_3(x) = -\sqrt{2}e^{7x}$.

Independencia Lineal en términos del Wronskiano.

Se dice que un conjunto de funciones $f_1(x)$, \cdots $f_n(x)$ es **linealmente dependiente** (LD) en un intervalo I si existen constantes c_1, \ldots, c_n no todos ceros tales que

$$c_1f_1(x) + c_2f_2(x) + \cdots + c_nf_n(x) = 0$$
, para todo $x \in I$.

Si el conjunto no es LD en el intervalo I, se considera que es **linealmente independiente** (LI), (es decir, cuando las únicas constantes para que se cumpla que la combinación lineal sea cero, son $c_1 = c_2 = \cdots c_n = 0$).

En particular, nos interesa determinar cuando son LI y eso puede determinarse mecánicamente recurriendo a un determinante llamado **Wronskaino**.

Definición. (Wronskiano)

Suponga que cada una de las funciones $f_1(x)$, \cdots $f_n(x)$ posee al menos n-1 derivadas. Luego a

$$W(f_1, \dots f_n) = \begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f'_1 & f'_2 & \dots & f'_n \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$

se le conoce como **Wronskiano** de las *n*-funciones.

Criterio para Determinar Soluciones LI.

Sean y_1, \ldots, y_n , n soluciones de la ecuación diferencial lineal homogénea de orden n en un intervalo I. Entonces el conjunto de soluciones es LI, en I, si y sólo si $W(y_1, \ldots, y_n) \neq 0$ para todo $x \in I$.

Conjunto Fundamental de Soluciones.

Definición. Es un conjunto de n soluciones LI de la ecuación diferencial homogénea de orden n en un intervalo I.

Solución General de una E.D. Homogénea.

Definición. Sean y_1, \ldots, y_n un conjunto de fundamental de soluciones de la E.D. homogénea de orden n, en un intervalo I. Entonces la solución general de la ecuación en el intervalo es:

$$y(x) = c_1 y_i(x) + \cdots + c_n y_n(x).$$

donde c_1, \ldots, c_n son constantes positivas.

Procedimiento para Resolver E.D. Lineales Homogéneas.

Para determinar todas las soluciones dela E.D.

$$a_n(x)y^{(n)} + \cdots + a_1(x)y' + a_0(x)y = 0,$$

- 1 Determina n soluciones y_1, \ldots, y_n que constituyan un conjunto fundamenta de soluciones.
- 2 Dar la solución general de la ecuación diferencial como:

$$y(x) = c_1 y_1(x) + \cdots + c_n y_n(x).$$

Example

Sean $y_1(x)=e^{x/2}$, $y_2(x)=xe^{x/2}$ soluciones de la E.D.L.H. y''-y'+1/4y=0, en el intervalo de $(-\infty,\infty)$. ¿Es posible dar la solución general de la E.D.? Si es así, escríbala explícitamente.

Solución. Veamos si y_1 y y_2 son L.I. usando el Wronskiano.

$$W[y_1, y_2](x) = \begin{vmatrix} e^{x/2} & xe^{x/2} \\ 1/2e^{x/2} & 1/2xe^{x/2} + e^{x/2} \end{vmatrix}$$
$$= e^{x/2} (1/2xe^{x/2} + e^{x/2}) - 1/2e^{x/2} (xe^{x/2})$$
$$= 1/2xe^x + e^x - 1/2xe^x = e^x \neq 0, \forall x \in (-\infty, \infty).$$

 y_1 y y_2 son linealmente independientes (L.I.) Luego $\{y_1, y_2\}$ conforman un conjunto fundamental de soluciones y por consiguiente la solución general de la E.D. está dada por

$$y(x) = c_1 e^{x/2} + c_2 x e^{x/2}$$
, c_1, c_2 constantes arbitrarias.

Ejercicio.

Sea $y_2(x) = e^x \cos 2x$, $y_2(x) = e^x \sin 2x$ soluciones de la E.D.L.H. y'' + 2y' + 5y = 0 en el intervalo $(-\infty, \infty)$. Compruebe que el conjunto que contiene a y_1, y_2 es un conjunto fundamental de soluciones y escriba explícitamente la solución general de la E.D. **Solución.** Veamos si y_1 y y_2 son L.I.

$$W[y_1, y_2](x) = \begin{vmatrix} e^x \cos 2x & e^x \sin 2x \\ -2e^x \sin 2x + e^x \cos 2x & 2e^x \cos 2x + e^x \sin 2x \end{vmatrix}$$

$$= e^x \cos 2x (2e^x \cos 2x + e^x \sin 2x) -$$

$$-(-2e^x \sin 2x + e^x \cos 2x)e^x \sin 2x$$

$$= 2x^{2x} \cos^2 2x + e^{2x} \cos 2x \sin 2x + 2e^{2x} \sin^2 2x$$

$$-e^{2x} \cos^2 2x + 2e^{2x} \sin^2 2x$$

$$= 2e^{2x} \cos^2 2x + 2e^{2x} \sin^2 2x$$

$$= 2e^{2x} (\cos^2 2x + \sin^2 2x) = 2e^{2x} \neq 0.$$

$$e^{2x} \neq 0, \forall x \in (-\infty, \infty).$$

$$\therefore$$
 y_1 , y_2 son L.I.

Dado que la E.D. es de 2^{do} orden, entonces $\{y_1,y_2\}$ conforman una C.F.S y por coniguiente la solución general de la E.D. está dada por

$$y(x) = c_1 e^x \cos 2x + c_2 e^x \sin 2x$$
, c_1, c_2 constantes abritrarias.