VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta informačních technologií

Elektronika pro informační technologie 2022/2023

Obsah

Příklad 1	2
Příklad 2	9
Příklad 3	13
Příklad 4	16
Příklad 5	20
Výsledky (tabulka)	24

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U ₁ [V]	U ₂ [V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8[\Omega]$
F	125	65	510	500	550	250	300	800	330	250

Řešení:

Krok 1 – spojíme rezistory R₂ a R₃, které jsou zapojeny paralelně

$$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3} = 261,9048\Omega$$

Krok 2 – transfigurace trojúhelník -> hvězda mezi rezistory R₂₃, R₄ a R₅

$$R_{\rm A} = \frac{R_{23} \cdot R_4}{R_{23} + R_4 + R_5} = 80,6452\Omega$$

$$R_{\rm B} = \frac{R_{23} \cdot R_5}{R_{23} + R_4 + R_5} = 96,7742\Omega$$

$$R_{\rm C} = \frac{R_4 \cdot R_5}{R_{23} + R_4 + R_5} = 92,3754\Omega$$

Krok 3 – dvojice rezistorů R_{B_r} R_6 a R_{C_r} R_7 jsou v obou případech zapojeny v sérii (spojíme dohromady)

$$R_{B6} = R_B + R_6 = 896,7742\Omega$$

$$R_{C7} = R_C + R_7 = 422,3754\Omega$$

Krok 4 – taktéž můžeme spojit sériově rezistory R_{A} s R_{1} a R_{B6} s R_{8}

$$R_{A1} = R_A + R_1 = 590,6452\Omega$$

$$R_{B68} = R_{B6} + R_8 = 1146,7742\Omega$$

Krok 5 – rezistory R_{B68} a R_{C7} spojíme paralelně a získáme 2 rezistory zapojené v sérii

$$R_{BC678} = \frac{R_{B68} \cdot R_{C7}}{R_{B68} + R_{C7}} = 308,6826\Omega$$

Krok 6 – nakonec spojíme rezistory R_{A1} s R_{BC678} a dostaneme výsledný odpor R_{EKV}

$$R_{EKV} = R_{BC678} + R_{A1} = 899,3278\Omega$$

$$I = \frac{U_1 + U_2}{R_{EKV}} = \frac{U}{R_{EKV}} = 0.2113A$$

Nyní půjdeme opačným směrem. Z obvodu níže zjistíme napětí na rezistorech $R_{\text{BC678}}\,a\;R_{\text{A1}}.$

$$U_{RA1} = R_{A1} \cdot I = 124,8033V$$

$${
m U_{RBC678}} = R_{BC678} \cdot I = 65{,}2246{
m V} \; {
m (nebo} \; {
m U} - {
m U_{RA1}})$$

Rezistory R_{B68} a R_{C7} jsou zapojeny paralelně, tudíž je na nich stejné napětí. Díky této informaci jsme schopni spočítat proudy I_{RB68} a I_{RC7} .

$$U_{RB68} = U_{RC7} = U_{RBC678} = 65,2246V$$

$$I_{RB68} = \frac{U_{RB68}}{R_{B68}} = 0.0569A$$

$$I_{RC7} = \frac{U_{RC7}}{R_{C7}} = 0,1544A$$

Proudy již známe, nyní zjistíme napětí na rezistorech R_1 , R_6 a R_8 .

$$U_{R1} = R_1 \cdot I = 107,7630V$$

$$U_{R6} = R_6 \cdot I_{RB68} = 45,5200V$$

$$U_{R8} = R_8 \cdot I_{RB68} = 14,2250V$$

Nakonec se vrátíme k původnímu obvodu a využijeme II. Kirchhoffova zákona.

$$(U=U_1+U_2)$$

$$U_{R1} + U_{R2} + U_{R6} + U_{R8} - U = 0$$
 (nevíme pouze U_{R2})

$$U_{R2} = U - U_{R1} - U_{R6} - U_{R8}$$

$$R_2 \cdot I_{R2} = U - U_{R1} - U_{R6} - U_{R8}$$

$$I_{R2} = \frac{U - U_{R1} - U_{R6} - U_{R8}}{R_2} =$$
0,0450A

$$U_{R2} = R_2 \cdot I_{R2} = 22,5V$$

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$
В	100	50	310	610	220	570

$$I_{R5} = ?, U_{R5} = ?$$

Krok 1 – vypočítáme vnitřní odpor R_i (zkratujeme zdroj a odstraníme zátěž R_5)

$$R_{i} = \frac{R_{123} \cdot R_{4}}{R_{123} + R_{4}} = \frac{(R_{1} + R_{2} + R_{3}) \cdot R_{4}}{R_{1} + R_{2} + R_{3} + R_{4}} = 179,3277\Omega$$

Krok 2 – vypočítáme U_i

$$U_{R4} = U_{R5} = U_{i}$$

$$U - U_{R1} - U_{R3} - U_{R4} - U_{R2} = 0$$

$$R_{1} \cdot I_{X} + R_{3} \cdot I_{X} + R_{4} \cdot I_{X} + R_{2} \cdot I_{X} = U$$

$$I_{X} = \frac{U}{R_{1} + R_{2} + R_{3} + R_{4}} = 0,0840A$$

$$U_{i} = U_{R4} = R_{4} \cdot I_{X} = 18,4800V$$

Krok 3 – pomocí ekvivalentního obvodu dopočítáme I_{R5} a U_{R5}

$$I_{R5} = \frac{U_i}{R_i + R_5} = 0.0247A$$

$$U_{R5} = R_5 \cdot I_{R5} = 14,0790V$$

Příklad 3

Stanovte napětí U_{R4} a proud I_{R4}. Použijte metodu uzlových napětí (U_{A,} U_{B,} U_C).

sk.	U [V]	I ₁ [A]	I ₂ [A]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	R ₄ [Ω]	$R_5[\Omega]$
В	150	0,7	0,8	49	45	61	34	34

$$U_{R4}$$
, $I_{R4} = ?$

Krok 1 – změníme napěťový zdroj U na proudový I_3 , vyznačíme proudy, které tečou do/z jednotlivých uzlů a spočítáme vodivosti

$$G_1 = \frac{1}{49} S$$
 $G_2 = \frac{1}{45} S$ $G_3 = \frac{1}{61} S$ $G_4 = \frac{1}{34} S$ $G_5 = \frac{1}{34} S$

$$I_3 = \frac{U}{R_1} = 3,0612A$$

Krok 2 – sestrojíme rovnice pro jednotlivé uzly

A:
$$U_A(G_1 + G_3 + G_2) + U_B(-G_2) + U_C(0) = -I_3$$

B:
$$U_A(-G_2) + U_B(G_2 + G_4) + U_C(-G_4) = I_2$$

C:
$$U_A(0) + U_B(-G_4) + U_C(G_4 + G_5) = I_1 - I_2$$

Krok 3 – převedeme na matici a využijeme Cramerova a Sarrusova pravidla

$$\begin{pmatrix} G_1 + G_3 + G_2 & -G_2 & 0 \\ -G_2 & G_2 + G_4 & -G_4 \\ 0 & -G_4 & G_4 + G_5 \end{pmatrix} X \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} -I_3 \\ I_2 \\ I_1 - I_2 \end{pmatrix}$$

Po spočítání:

$$U_B = -14,0934$$
V

$$U_C = -8,7467$$
V

$$I_{R4} = \frac{U_B - U_C}{R_A} = (-) 0,1573 = 0,1573A$$

$$U_{R4} = R_4 \cdot I_{R4} = 5,3482V$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot sin(2\pi ft)$, $u_2 = U_2 \cdot sin(2\pi ft)$.

Ve vztahu pro napětí $u_{C2}=U_{C2}\cdot sin(2\pi ft+\varphi c_2)$ určete $|U_{C2}|$ a φc_2 . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik (t = $\frac{\pi}{2\omega}$).

sk.	U ₁ [V]	U ₂ [V]	$R_1[\Omega]$	$R_2[\Omega]$	L ₁ [mH]	L ₂ [mH]	C ₁ [μF]	C ₂ [μF]	f [Hz]
F	2	3	12	10	170	80	150	90	65

Krok 1 – převedeme na správné jednotky, spočítáme úhlovou rychlost ω a impedance jednotlivých cívek a kondenzátorů

<u>Převody</u>

$$L_1 = 170 \text{mH} = 0,170 \text{H}$$

$$L_2 = 80 \text{mH} = 0.080 \text{H}$$

$$C_1 = 150 \mu F = 150 \cdot 10^{-6} F$$

$$C_2 = 90 \mu F = 90.10^{-6} F$$

Úhlová rychlost

$$\omega = 2\pi f = 130\pi = 408,4070 \text{rad} \cdot \text{s}^{-1}$$

<u>Impedance</u>

$$Z_{L1} = j\omega L_1 = 69,4292j\Omega$$

$$Z_{L2} = j\omega L_2 = 32,6726j\Omega$$

$$Z_{C1} = -\frac{j}{\omega c_1} = -16,3236j\Omega$$

$$Z_{C2} = -\frac{j}{\omega c^2} = -27,2060j\Omega$$

Převedení vztahů

$$u = U \cdot sin(2\pi ft) = U \cdot sin\left(\frac{\omega\pi}{2\omega}\right) = U \cdot sin\left(\frac{\pi}{2}\right) = U \cdot 1 = U \text{ (obecně)}$$

$$u_1 = U_1 = 2V$$

$$u_2 = U_2 = 3V$$

Krok 2 – sestavíme rovnice pro smyčkové proudy, převedeme na matici a vyřešíme

$$\begin{split} &I_A: I_A(R_1+R_2+Z_{L1}+Z_{L2}) - I_B(Z_{L2}) - I_C(R_2+Z_{L1}) = -u_1 \\ &I_B: -I_A(Z_{L2}) + I_B(Z_{C1}+Z_{L2}) - I_C(Z_{C1}) = -u_2 \\ &I_C: -I_A(R_2+Z_{L1}) - I_B(Z_{C1}) + I_C(R_2+Z_{C1}+Z_{C2}+Z_{L1}) = 0 \end{split}$$

$$\begin{pmatrix} R_1 + R_2 + Z_{L1} + Z_{L2} & -Z_{L2} & -R_2 - Z_{L1} \\ -Z_{L2} & Z_{C1} + Z_{L2} & -Z_{C1} \\ -R_2 - Z_{L1} & -Z_{C1} & R_2 + Z_{C1} + Z_{C2} + Z_{L1} \end{pmatrix} X \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \\ 0 \end{pmatrix}$$

$$I_{C2} = I_C = 0.0102 - 0.1627jA$$

Krok 3 – dopočítáme $|U_{C2}|$ a φc_2

$$u_{C2} = Z_{C2} \cdot I_{C2} = 4,4264 + 0,2775 \text{jV (Ohmův zákon)}$$

$$|U_{C2}| = \sqrt{Re(uc_2)^2 + Im(uc_2)^2} = 4,4351V$$

$$\varphi c_2 = \arctan \frac{Im(u_{C2})}{Re(u_{C2})} = \arctan \frac{0,2775}{4,4264} = 3,5873^\circ = 3^\circ 35'$$

V obvodu na obrázku níže v čase t = 0[s] sepne spínač S.

Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení i_L = f(t).

Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice

sk.	U [V]	L [H]	R [Ω]	$i_L(0)$ [A]
В	40	10	20	16

Krok 1 – napíšeme rovnice, které z obvodu vycházejí a vyjádříme z nich diferenciální rovnici

1)
$$i = \frac{U_R}{R}$$
 ($i = i_L = i_R$)

2)
$$U_R + U_L - U = 0 --> U_R + U_L = U$$

3)
$$i'_L = \frac{1}{L} \cdot U_L$$

 \circ z 1. rovnice vyjádříme U_R a dosadíme do 2.

$$i_L \cdot R + U_L = U$$

 $\circ~$ z 2. rovnice vyjádříme U_L a dosadíme do 3.

$$i'_L = \frac{U - i_L \cdot R}{L} \quad ---> \quad i'_L = \frac{U}{L} - \frac{R}{L} \cdot i_L \quad /\cdot L$$

- diferenciální rovnice: $\mathbf{L} \cdot \mathbf{i'}_L + \mathbf{R} \cdot \mathbf{i}_L = \mathbf{U}$

Krok 2 – sestavíme charakteristickou rovnici

$$(i'_{L} = \lambda, i_{L} = 1)$$

$$L \cdot \lambda + R = U \longrightarrow \lambda = -\frac{R}{L}$$

Krok 3 – dosadíme λ do očekávaného řešení

$$(i_L = K \cdot e^{\lambda t} = K \cdot e^{-\frac{R}{L}t})$$

$$i_L = K \cdot e^{-\frac{R}{L}t}$$

Krok 4 – rovnici i_L zderivujeme

$$i'_L = K' \cdot e^{-\frac{R}{L}t} + K \cdot (-\frac{R}{L}) \cdot e^{-\frac{R}{L}t}$$

Krok 5 – i_L a i_L^\prime dosadíme do diferenciální rovnice a vyjádříme K

$$L \cdot i'_L + R \cdot i_L = U$$

$$L \cdot (K' \cdot e^{-\frac{R}{L}t} + K \cdot (-\frac{R}{L}) \cdot e^{-\frac{R}{L}t}) + R \cdot (K \cdot e^{-\frac{R}{L}t}) = U \text{ (obecně)}$$

$$10 \cdot (K' \cdot e^{-2t} + K \cdot (-2) \cdot e^{-2t}) + 20 \cdot (K \cdot e^{-2t}) = 40 \text{ (konkrétně)}$$

$$10 \cdot K' \cdot e^{-2t} - 20 \cdot K \cdot e^{-2t} + 20 \cdot K \cdot e^{-2t} = 40$$

$$K' \cdot e^{-2t} = 4 ---> K' = 4 \cdot e^{2t}$$

$$K = \frac{4}{2} \cdot e^{2t} + k$$

Krok 6 – dosadíme K do očekávaného řešení

$$i_L = K \cdot e^{-\frac{R}{L}t} = (\frac{4}{2} \cdot e^{2t} + k) \cdot e^{-2t} = \frac{4}{2} + k \cdot e^{-2t}$$

Krok 7 – za proud a čas dosadíme konkrétní hodnoty a vyjde nám integrační konstanta "k"

$$16 = \frac{4}{2} + k \cdot e^{-2 \cdot 0} \quad ---> k = 14$$

Krok 8 – vypočítanou konstantu použijeme a dostaneme rovnici i_L

$$i_L = \frac{4}{2} + 14 \cdot e^{-2t}$$

Krok 9 – provedeme finální kontrolu (dosazením hodnot do původní diferenciální rovnice)

$$L \cdot i'_L + R \cdot i_L = U$$

$$10 \cdot (((4 \cdot e^{2t}) \cdot e^{-2t}) + ((\frac{4}{2} \cdot e^{2t} + 14) \cdot (-2) \cdot (e^{-2t}))) + 20 \cdot (\frac{4}{2} + 14 \cdot e^{-2t}) = 40$$

$$10 \cdot (4 - 32) + 20 \cdot (16) = 40$$

$$-280 + 320 = 40$$

$$40 = 40$$

$$0 = 0$$

Výsledky (tabulka)

Příklad	Skupina	Výsledky
1	F	$I_{R2} = 0.0450A, U_{R2} = 22.5V$
2	В	$I_{R5} = 0.0247A$, , $U_{R5} = 14.0790V$
3	В	$I_{R4} = 0,1573A, U_{R4} = 5,3482V$
4	F	$U_{\rm C2} = 4,4351 \text{V}, \varphi c_2 = 3^{\circ}35'$
5	В	$i_L = \frac{4}{2} + 14 \cdot e^{-2t}$