Homework Assignment 5

Due Friday, February 25

In this assignment we answer the following question:

Question 1. Let G be a group, and $H \leq G$ a subgroup. When is G/H a group?

More specifically we are asking when the set of a cosets a group under the multiplication rule given by $(g_1H)(g_2H) = g_1g_2H$. We want a way to answer the question *intrinsically* to G and H. For this we recall the following definition from the 2/22 lecture.

Definition 2. Let G be a group and $H \leq G$ a subgroup. For $g \in G$ the **conjugate of** H **by** g is the set:

$$gHg^{-1} = \{ghg^{-1} : h \in H\}.$$

We say that H is a **normal subgroup** if for every $g \in G$ we have $gHg^{-1} = H$. If $H \leq G$ is a normal subgroup, we write $H \leq G$.

An intrinsic answer to Question 1 is given by the following theorem.

Theorem 3. Let G be a group and $H \leq G$ a subgroup. The following are equivalent.

- (i) $H \subseteq G$
- (ii) G/H is a group under the rule $(g_1H)(g_2H) = g_1g_2H$.
- (iii) H is the kernel of a group homomorphism with domain G.
 - 1. There is only one goal in this assignment: to prove Theorem 3. To achieve this goal, we will prove $(i) \implies (ii) \implies (iii) \implies (i)$.
 - (a) Suppose $H \leq G$. Show that G/H is a group under the rule $(g_1H)(g_2H) = g_1g_2H$. This shows that $(i) \implies (ii)$.
 - (b) Suppose that G/H is a group under the rule $(g_1H)(g_2H) = g_1g_2H$. Produce a group homomorphism from G to some group whose kernel is H. This shows that $(ii) \implies (iii)$. (Note: we essentially gave this argument in the 2/22 lecture, but do include a full proof here as well).
 - (c) Let $\varphi: G \to G'$ be a group homomorphism with kernel H. Show that $H \subseteq G$. This proves $(iii) \implies (i)$, thereby completing the proof of Theorem 3.