Physicians' Occupational Licensing and the Quantity-Quality trade-off

ASU

UPenn and NBER

Juan Pablo Atal Tomás Larroucau Pablo Muñoz Cristóbal Otero

U. de Chile

Columbia

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)
- Since Friedman (1962), licensing has been put into question as barrier to entry

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)
- Since Friedman (1962), licensing has been put into question as barrier to entry
- Worker's migration increases role of licensing in the healthcare sector. e.g. US:
 - Over past 20 years, # of foreign-trained physicians Δ^+ 30%, now 20% of workforce (AAMC, 2023)
 - About 2/3 in non-physician jobs, licensing plays a critical role (FED Minneapolis, 2022)

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)
- Since Friedman (1962), licensing has been put into question as barrier to entry
- Worker's migration increases role of licensing in the healthcare sector. e.g. US:
 - \circ Over past 20 years, # of foreign-trained physicians Δ^+ 30%, now 20% of workforce (AAMC, 2023)
 - About 2/3 in non-physician jobs, licensing plays a critical role (FED Minneapolis, 2022)
- Licensing entails a quantity-quality trade-off
 - Restricts supply but ensures minimum quality standards

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)
- Since Friedman (1962), licensing has been put into question as barrier to entry
- Worker's migration increases role of licensing in the healthcare sector. e.g. US:
 - Over past 20 years, # of foreign-trained physicians Δ^+ 30%, now 20% of workforce (AAMC, 2023)
 - About 2/3 in non-physician jobs, licensing plays a critical role (FED Minneapolis, 2022)
- Licensing entails a quantity-quality trade-off
 - Restricts supply but ensures minimum quality standards
- Research Q':
 - How do, empirically, outcomes depend on quantity and quality of physicians?
 - How to design licensing policies that balance this trade-off?
 - How is the design affected by migration?

This paper

- A simple novel framework for the quantity-quality trade-off
 - Planner's objective depends on the quality and quantity of labor

- Highlight empirical objects needed to quantify the consequences of locally changing stringency
- Estimate empirical counterpart in the context of physician licensing in Chile's public healthcare sector
 - Physician scarcity is a first-order policy concern
 - Licensing exam required has a simple policy design
 - Labor market rapidly changing in recent years due to migration

This paper

- The net effects on outcomes (access, mortality) from changing licensing stringency depends on the relationship between a few "sufficient statistics:"
 - Returns to quantity and quality in the production
 - Elasticity of quantity and quality w.r.t. licensing stringency
- We provide novel estimates for these objects using quasi-exogenous variation, accounting for potential equilibrium effects
- Main findings
 - Quantity and quality matter for health outcomes
 - Lowering the licensing threshold increases access, with no net effects on quality
 - Robust to large migration wave
 - Magnitudes muted in the long-run as exam can be retaken

Contributions

- Physician quantity matters: Carrillo & Feres 2019, Finkelstein et al. 2021, Clemens & Gottlieb 2014
 - → Exogenous variation to show physician quantity matters for outcomes

Contributions

- Physician quantity matters: Carrillo & Feres 2019, Finkelstein et al. 2021, Clemens & Gottlieb 2014
 - \rightarrow Exogenous variation to show physician quantity matters for outcomes
- Physician quality matters: Doyle et al. 2010, Guarín et al. 2021, Ginja et al. 2022
 - → Licensing scores predict health outcomes (no prev. evidence)

Contributions

- Physician quantity matters: Carrillo & Feres 2019, Finkelstein et al. 2021, Clemens & Gottlieb 2014
 - \rightarrow Exogenous variation to show physician quantity matters for outcomes
- Physician quality matters: Doyle et al. 2010, Guarín et al. 2021, Ginja et al. 2022
 - → Licensing scores predict health outcomes (no prev. evidence)
- Occupational licensing: (Friedman & Kuznets 1945; Friedman 1962; Kugler & Sauer 2005; Kleiner 2013; Kleiner 2016; Dillender 2024, Wiswall, 2007; Angrist & Guryan 2008, Larsen et al., 2023, Kleiner & Soltas 2023, Farronato et al., 2024, Sun and Li, 2024)
 - ightarrow Provide a framework to understand the quantity/quality trade-off and evaluate the stringency of licensing policies in relevant health outcomes

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Latent quality
 - Production function
 - Sorting
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

Healthcare in Chile

- Chile's healthcare system has mix of public and private providers
 - $\circ~$ Our focus: public hospitals $\approx 62\%$ of inpatient discharges

Healthcare in Chile

- Chile's healthcare system has mix of public and private providers
 - \circ Our focus: public hospitals \approx 62% of inpatient discharges
- Public healthcare provision organized geographically in 29 Hospital Referral Regions ("Servicio de Salud")
 - o Decentralized orgs. responsible for healthcare establishments in their territory
 - Referrals follow strict guidelines based on patient's address and diagnosis

Healthcare in Chile

- Chile's healthcare system has mix of public and private providers
 - \circ Our focus: public hospitals \approx 62% of inpatient discharges
- Public healthcare provision organized geographically in 29 Hospital Referral Regions ("Servicio de Salud")
 - o Decentralized orgs. responsible for healthcare establishments in their territory
 - Referrals follow strict guidelines based on patient's address and diagnosis
- Wages based on public sector wage schedule (independent of score)
- Scarcity is a long-standing problem
 - \approx 3 million people waiting for medical attention (15% of population)
 - \approx 1/4 deaths in the country occur while waiting for medical attention

Medical licensing in Chile

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
 - Theory, 180 MCQ's (+ Practical, non-binding)
 - Scored 0-100, based on absolute performance
 - Passing score = 51
 - Administered annually, can retake

Medical licensing in Chile

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
 - Theory, 180 MCQ's (+ Practical, non-binding)
 - Scored 0-100, based on absolute performance
 - Passing score = 51
 - Administered annually, can retake
- Physicians are only allowed working in public sector if they pass the exam

Medical licensing in Chile

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
 - Theory, 180 MCQ's (+ Practical, non-binding)
 - Scored 0-100, based on absolute performance
 - Passing score = 51
 - Administered annually, can retake
- Physicians are only allowed working in public sector if they pass the exam
- Applied to graduate physicians in Chile and from abroad
 - o Approval of exam implies automatic revalidation of foreign medical degree

Licensing scores: 2013

Number of test-takers over time

Number of test-takers over time, by migration status

Licensing scores: 2013

Licensing scores: 2018 → More data

Data: 2011-2019

- Novel admin employer-employee data for all 181 public hospitals in Chile
 - o Occupation, wages, hours, nationality, demographics, university
- Individual-level discharge data in all public hospitals
 - Date and cause of admission, date of discharge or in-hospital death date, diagnosis, patient demographics
 - + universe of death records (post discharge)
- Licensing exam scores for all exam takers
- Exits from hospitals' waiting list
 - Health providers enter patients into waiting list for specialist consultations, surgeries, or specific procedures

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Latent quality
 - Production function
 - Sorting
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

• Licensing technology based on a (noisy) signal s of quality θ

- Licensing technology based on a (noisy) signal s of quality θ
- Planner decides a cutoff s to maximize

$$Y(\underline{s}) = F(L(\underline{s}), \bar{\theta}(\underline{s}))$$

- Licensing technology based on a (noisy) signal s of quality θ
- Planner decides a cutoff s to maximize

$$Y(\underline{s}) = F(L(\underline{s}), \bar{\theta}(\underline{s}))$$

• $s \sim h(s)$ and total mass m

$$L(\underline{s})' < 0$$

$$\bar{\theta}(\underline{\textbf{s}})'>0$$

- Licensing technology based on a (noisy) signal s of quality θ
- Planner decides a cutoff s to maximize

$$Y(\underline{s}) = F(L(\underline{s}), \bar{\theta}(\underline{s}))$$

• $s \sim h(s)$ and total mass m

$$L(\underline{s})' < 0$$

$$\bar{\theta}(\underline{s})' > 0$$

A simple licensing problem: Parametrization

- Parametrization
 - Quality index: $\bar{\theta}(\underline{s}) \equiv \mathbb{E}(\bar{\theta}|s > \underline{s})$
 - Production function: $Y = F(L(\underline{s}), \bar{\theta}(\underline{s})) = L^{\alpha_L} \cdot exp(\bar{\theta})^{\alpha_{\bar{\theta}}}$
 - Noisy test: $s = \theta + \epsilon$, where $\epsilon \sim N(0, \sigma_{\epsilon}^2)$ and $\theta \sim N(\mu_{\theta}, \sigma_{\theta}^2)$. $SNR \equiv \frac{\sigma_{\theta}^2}{\sigma_{\theta}^2 + \sigma_{\epsilon}^2}$

A simple licensing problem: Parametrization

- Parametrization
 - Quality index: $\bar{\theta}(\underline{s}) \equiv \mathbb{E}(\bar{\theta}|s > \underline{s})$
 - Production function: $Y = F(L(\underline{s}), \bar{\theta}(\underline{s})) = L^{\alpha_L} \cdot exp(\bar{\theta})^{\alpha_{\bar{\theta}}}$
 - Noisy test: $s = \theta + \epsilon$, where $\epsilon \sim N(0, \sigma_{\epsilon}^2)$ and $\theta \sim N(\mu_{\theta}, \sigma_{\theta}^2)$. $SNR \equiv \frac{\sigma_{\theta}^2}{\sigma_{\theta}^2 + \sigma_{\epsilon}^2}$
- Elasticity of outcome w.r.t. licensing threshold

$$\frac{1}{Y}\frac{\partial F}{\partial \underline{s}} = \underbrace{\alpha_L \cdot \frac{1}{L}\frac{\partial L}{\partial \underline{s}}}_{\text{quantity effect}} + \underbrace{\alpha_{\bar{\theta}} \cdot \left(\frac{\partial \bar{\theta}}{\partial \underline{s}}\right)}_{\text{quality effect}} = \underbrace{\frac{-m \cdot h(\underline{s})}{L}}_{\eta_L} \cdot \left(\alpha_L - \alpha_{\bar{\theta}} \cdot \underbrace{SNR \cdot (\mathbb{E}[\bar{\mathbf{s}}|\mathbf{s} > \underline{s}] - \underline{s})}_{-\tilde{\eta}_{\bar{\theta}}/\eta_L}\right)$$

A simple licensing problem: Parametrization

- Parametrization
 - Quality index: $\bar{\theta}(s) \equiv \mathbb{E}(\bar{\theta}|s>s)$
 - Production function: $Y = F(L(\underline{s}), \bar{\theta}(\underline{s})) = L^{\alpha_L} \cdot exp(\bar{\theta})^{\alpha_{\bar{\theta}}}$
 - Noisy test: $s = \theta + \epsilon$, where $\epsilon \sim N(0, \sigma_{\epsilon}^2)$ and $\theta \sim N(\mu_{\theta}, \sigma_{\theta}^2)$. $SNR \equiv \frac{\sigma_{\theta}^2}{\sigma_{\theta}^2 + \sigma_{\epsilon}^2}$
- Elasticity of outcome w.r.t. licensing threshold

$$\frac{1}{Y}\frac{\partial F}{\partial \underline{s}} = \underbrace{\alpha_L \cdot \frac{1}{L}\frac{\partial L}{\partial \underline{s}}}_{\text{quantity effect}} + \underbrace{\alpha_{\bar{\theta}} \cdot \left(\frac{\partial \bar{\theta}}{\partial \underline{s}}\right)}_{\text{quality effect}} = \underbrace{\frac{-m \cdot h(\underline{s})}{L}}_{\eta_L} \cdot \left(\alpha_L - \alpha_{\bar{\theta}} \cdot \underbrace{SNR \cdot (\mathbb{E}[\bar{s}|s > \underline{s}] - \underline{s})}_{-\tilde{\eta}_{\bar{\theta}}/\eta_L}\right)$$

- Depends on
 - \circ quantity elasticity, η_l : determined by mass at the margin
 - o net effect per-marginal worker: > 0 as long as $\alpha_L/\alpha_{\bar{\theta}} > -\tilde{\eta}_{\bar{\theta}}/\eta_L$

Empirical Model, Overview

• m physicians. Scores are realized as a function of quality. $M(\underline{s})$ pass

Empirical Model, Overview

• Match with hospitals with probability *CMP_{ij}*; potentially endogenous

Empirical Model, Overview

Production is realized as a function of quality and quantity

Empirical Model, Overview

Threshold affects set and distribution of retakers dynamically

Empirical Strategy, Overview

• Step 1: $\theta(s)$ from a model mapping heta o s (includes retaking probability)

Empirical Strategy, Overview

• Step 2: y_j ; production function mapping inputs to outputs

Empirical Strategy, Overview

• Step 3: CMP_{ij}

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Latent quality
 - Production function
 - Sorting
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

Inferring unobserved quality from history of scores

- Physicians, indexed by *i*, belong to type $\tau \in \{N, F\}$.
- The score in attempt n is a noisy measure of quality and test-taking ability

$$s_{in} = \theta_{i0} + \Gamma_{in} + \varepsilon_{in}$$
 $\varepsilon_{in} \sim N\left(0, \sigma_{\varepsilon, \tau(i)}^2\right), \quad \theta_{i0} \sim N\left(\mu_{\theta, \tau(i)}, \sigma_{\theta, \tau(i)}^2\right)$

Inferring unobserved quality from history of scores

- Physicians, indexed by *i*, belong to type $\tau \in \{N, F\}$.
- The score in attempt *n* is a noisy measure of quality and test-taking ability

$$oldsymbol{s}_{\textit{in}} = heta_{\textit{io}} + \Gamma_{\textit{in}} + arepsilon_{\textit{in}} \sim oldsymbol{N}\left(0, \sigma^2_{arepsilon, au(\emph{i})}
ight), \quad heta_{\textit{io}} \sim oldsymbol{N}\left(\mu_{ heta, au(\emph{i})}, \sigma^2_{ heta, au(\emph{i})}
ight)$$

Test-taking ability improves with exponential decay → Score gains → No quality gains

$$\Gamma_{in} = \sum_{k=0}^{n_i-1} \gamma_{0,\tau(i)} \cdot \exp(-\rho_{\gamma,\tau(i)} \cdot k) \quad n_i \ge 1$$

Inferring unobserved quality from history of scores

- Physicians, indexed by *i*, belong to type $\tau \in \{N, F\}$.
- The score in attempt *n* is a noisy measure of quality and test-taking ability

$$\boldsymbol{s}_{\textit{in}} = \theta_{\textit{i0}} + \Gamma_{\textit{in}} + \varepsilon_{\textit{in}} \qquad \varepsilon_{\textit{in}} \sim \boldsymbol{N}\left(0, \sigma_{\varepsilon, \tau(\textit{i})}^2\right), \quad \theta_{\textit{i0}} \sim \boldsymbol{N}\left(\mu_{\theta, \tau(\textit{i})}, \sigma_{\theta, \tau(\textit{i})}^2\right)$$

Test-taking ability improves with exponential decay → Score gains → No quality gains

$$\Gamma_{in} = \sum_{k=0}^{n_i-1} \gamma_{0,\tau(i)} \cdot \exp(-\rho_{\gamma,\tau(i)} \cdot k) \quad n_i \ge 1$$

• Retaking depends on average past score \bar{s}_{in} and number of attempts • Detail

$$P(\text{retake}|\bar{s}_{\textit{in}}, n_{\textit{i}}, \tau(\textit{i})) = \frac{e^{\beta_{0,\tau(\textit{i})} + \beta_{n,\tau(\textit{i})} n + \beta_{s,\tau(\textit{i})}(\bar{s}_{\textit{in}} - \underline{s})}}{1 + e^{\beta_{0,\tau(\textit{i})} + \beta_{n,\tau(\textit{i})} n_{\textit{i}} + \beta_{s,\tau(\textit{i})}(\bar{s}_{\textit{in}} - \underline{s})}}$$

Estimation of latent quality

- Estimate retaking model with a logit → Results
- Estimate scores model via SMM
 - Moments (by "type"): mean over attempts, mean of gains over attempts, cov. between attempts, variance of first attempt
 - Main result: $\hat{SNR}_{\text{nationals}} = 0.65$; $\hat{SNR}_{\text{foreigners}} = 0.7$
- ✓ Can construct posterior given vector of scores $E(\theta_i|\mathbf{s}_i)$ → Posterior

Roadmap for today

- 1. Simple licensing problem
- 2. Setting and data
- 3. Empirical model
- 4. Estimation
 - Latent quality
 - Production function
 - Sorting
- 5. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

Estimation: Production Function

• Outcome y^k depends on physician's quantity and quality:

$$y_{jt}^k = L_{jt}^{\alpha_L^k} \cdot exp(\bar{\theta}_{jt})^{\alpha_{\theta}^k} \cdot A_{jt}^k \cdot e^{\omega_{jt}^k} \cdot e^{\varepsilon_{jt}^k}$$

with ω_{it}^{k} potentially known before input choices

Estimation: Production Function

• Outcome y^k depends on physician's quantity and quality:

$$y_{jt}^k = L_{jt}^{\alpha_L^k} \cdot exp(\bar{\theta}_{jt})^{\alpha_{\theta}^k} \cdot A_{jt}^k \cdot e^{\omega_{jt}^k} \cdot e^{\varepsilon_{jt}^k}$$

with ω_{it}^{k} potentially known before input choices

• We estimate the following regression leveraging panel data:

$$\ln(y_{jt}^k) = \alpha_L^k \ln(L_{jt}) + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} E(\theta_i | \mathbf{s}_i) + \underbrace{\gamma_t^k + \rho_j^k + \beta^k X_{jt} + \omega_{jt}^k}_{\ln(A_{jt}^k)} + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} \nu_{it} + \varepsilon_{jt}^k$$

where $E(\theta_i|\mathbf{s}_i) = \theta_i - \nu_i$ is posterior quality given history of scores

Estimation: Production Function

• Outcome y^k depends on physician's quantity and quality:

$$y_{jt}^k = L_{jt}^{\alpha_L^k} \cdot exp(\bar{\theta}_{jt})^{\alpha_{\theta}^k} \cdot A_{jt}^k \cdot e^{\omega_{jt}^k} \cdot e^{\varepsilon_{jt}^k}$$

with $\omega^{\it k}_{\it it}$ potentially known before input choices

• We estimate the following regression leveraging panel data:

$$\ln(y_{jt}^k) = \alpha_L^k \ln(L_{jt}) + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} E(\theta_i | \mathbf{s}_i) + \underbrace{\gamma_t^k + \rho_j^k + \beta^k X_{jt} + \omega_{jt}^k}_{\ln(A_{jt}^k)} + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} \nu_{it} + \varepsilon_{jt}^k$$

where $E(\theta_i|\mathbf{s}_i) = \theta_i - \nu_i$ is posterior quality given history of scores

• Error term includes ω_{jt}^{k} and measurement error ν_{it}

Empirical Strategy: 2SLS

• We leverage two shift-share (Bartik-like) instruments: Z_{jt}^L and Z_{jt}^{θ} (Altonji & Card 1981; Autor et al. 2013; Borusyak et al. 2022)

$$Z_{jt}^L = \sum_c \% \Delta \text{Test-takers}^c \times \text{share physicians}_{j,t-1}^c$$

 $Z_{jt}^{\theta} = \sum_c \Delta \text{Avg. Quality}^c \times \text{share physicians}_{j,t-1}^c$

Empirical Strategy: 2SLS

• We leverage two shift-share (Bartik-like) instruments: Z_{jt}^L and Z_{jt}^{θ} (Altonji & Card 1981; Autor et al. 2013; Borusyak et al. 2022)

$$Z_{jt}^L = \sum_c \% \Delta \text{Test-takers}^c \times \text{share physicians}_{j,t-1}^c$$

 $Z_{jt}^{\theta} = \sum_c \Delta \text{Avg. Quality}^c \times \text{share physicians}_{j,t-1}^c$

- The share component uses the (lagged) share of workers from region of training c that work at hospital j
- The *quantity-shift* component uses the % Δ in the number of elegible test-takers from region of training c
- \bullet The $\it quality\mbox{-}\it shift$ component uses the Δ in the average quality of test-takers from region of training $\it c$

Outcomes

- $\mathcal{I}(L)$ is the set of patients treated
- $\Delta m_i(\bar{\theta}, L)$ is the value added of treatment for individual *i*
- Population health:

$$Y(L,\theta) = \int_{i} m_{i0} di + \int_{i \in |\mathcal{I}(L)|} \Delta m_{i}(\bar{\theta}, L) di$$

$$= \underbrace{|\mathcal{I}(L)|}_{\text{service rate}} \times \underbrace{\frac{1}{|\mathcal{I}(L)|} \int_{i \in |\mathcal{I}(L)|} \Delta m_{i}(\bar{\theta}, L) di}_{\text{treatment value added}} \quad \text{(+ Constant)}$$

We measure treatment value added as decrease in mortality (+ complications)

2SLS Estimates: The impact of physician on treatment value-added

		Mortality	In-hospital Complications	
	In-Hospital			
	Ln death rate	Pred. death rate	Ln death rate	Ln complications rate
	(1)	(2)	(4)	(5)
Ln Physicians (\hat{lpha}_L)	-0.82 (0.31)	0.12 (0.08)	-0.74 (0.27)	-0.97 (0.26)
Avg. Physicians' Quality $(\hat{lpha}_{ heta})$	-0.04 (0.02)	-0.00 (0.01)	-0.04 (0.01)	-0.05 (0.01)
Ratio ($\hat{lpha}_L/\hat{lpha}_{ heta}$)	19.00 (5.69)	-	17.61 (5.01)	19.39 (4.23)
Case-mix Controls Hospital and Year FEs	Yes Yes	No Yes	Yes Yes	Yes Yes
Observations	1,402	1,402	1,402	1,373
Mean Dep. var.	3.28	3.51	5.08	11.65
F-stat (First-stage)	21.97	34.50	21.97	21.15
Anderson-Rubin (χ^2) p-value	0.00	0.03	0.00	0.00

Case-mix Controls include patients' demographics (share of female, share of foreign, share of inpatients in each of 8 age groups and in each of 5 types of insurance). We also control for beds per capita in each referral region.

The impact of physician quantity and quality on service rate

	Ln service	Ln inpatient	Ln exits from waiting lis	
	rate	surgeries	Surgical	Medical
	(1)	(2)	(3)	(4)
Ln Physicians ($\hat{\alpha}_L$)	1.01	4.98	3.69	3.00
	(0.28)	(1.66)	(1.70)	(1.34)
Avg. Physicians' Quality ($\hat{\alpha}_{\theta}$)	0.01	0.11	-0.00	0.02
	(0.02)	(0.09)	(0.09)	(0.07)
Observations	1,402	744	738	942
Mean Dep. Var.	0.015	3,803	1,534	8,403
F-stat (First-stage)	21.97	12.16	9.85	15.83
Anderson-Rubin (χ^2)	0.000	0.000	0.000	0.000

Case-mix Controls include patients' demographics (share of female, share of foreign, share of inpatients in each of 8 age groups and in each of 5 types of insurance). We also control for beds per capita in each referral region.

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Latent quality
 - Production function
 - Sorting
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

- Mass $M(\underline{s})$ of physicians pass test and seek jobs
 - Preferences over hospitals $u_{ij} = \tilde{\delta}_{ij} + \varepsilon_{ij}$, with $\varepsilon_{ij} \sim \mathsf{T1EV}$

- Mass $M(\underline{s})$ of physicians pass test and seek jobs
 - Preferences over hospitals $u_{ij} = \tilde{\delta}_{ij} + \varepsilon_{ij}$, with $\varepsilon_{ij} \sim \mathsf{T1EV}$
- Hospitals have vacancies κ_j
 - Preferences over physicians are vertical on quality $\hat{\theta}_i(s)$ Sorting Patterns
- Equilibrium (with fixed wages) satisfies pair-wise stability

- Mass $M(\underline{s})$ of physicians pass test and seek jobs
 - Preferences over hospitals $u_{ij} = \tilde{\delta}_{ij} + \varepsilon_{ij}$, with $\varepsilon_{ij} \sim \mathsf{T1EV}$
- Hospitals have vacancies κ_j
 - Preferences over physicians are vertical on quality $\hat{\theta}_i(s)$ Sorting Patterns
- Equilibrium (with fixed wages) satisfies pair-wise stability
 - \Rightarrow Choice-sets are determined by a set of cutoffs $\hat{\underline{\theta}}_i$ (Azevedo and Leshno, 2016)

$$extit{CMP}_{ij} = rac{e^{ ilde{\delta}_{ij}} \mathbf{1} \{\hat{ heta}_i \geq \underline{\hat{ heta}}_j\}}{1 + \sum_{j'} e^{ ilde{\delta}_{ij'}} \mathbf{1} \{\hat{ heta}_i \geq \underline{\hat{ heta}}_{j'}\}} pprox rac{e^{ ilde{\delta}_{ij}} \left\lfloor e^{-e^{\lambda(\hat{ heta}_i - \underline{\hat{ heta}}_{j'})}}
ight
vert}{1 + \sum_{j'} e^{ ilde{\delta}_{ij'}} \left\lfloor e^{-e^{\lambda(\hat{ heta}_i - \underline{\hat{ heta}}_{j'})}}
ight
vert}$$

- Mass $M(\underline{s})$ of physicians pass test and seek jobs
 - Preferences over hospitals $u_{ij} = \tilde{\delta}_{ij} + \varepsilon_{ij}$, with $\varepsilon_{ij} \sim \mathsf{T1EV}$
- Hospitals have vacancies κ_j
 - Preferences over physicians are vertical on quality $\hat{\theta}_i(s)$ Sorting Patterns
- Equilibrium (with fixed wages) satisfies pair-wise stability
 - \Rightarrow Choice-sets are determined by a set of cutoffs $\hat{\underline{\theta}}_{j}$ (Azevedo and Leshno, 2016)

$$extit{CMP}_{ij} = rac{e^{ ilde{\delta}_{ij}} \mathbf{1} \{\hat{ heta}_i \geq \hat{\underline{ heta}}_j\}}{1 + \sum_{j'} e^{ ilde{\delta}_{ij'}} \mathbf{1} \{\hat{ heta}_i \geq \hat{\underline{ heta}}_{j'}\}} pprox rac{e^{ ilde{\delta}_{ij}} \left[e^{-e^{\lambda(\hat{ heta}_i - \hat{\underline{ heta}}_{j'})}}
ight]}{1 + \sum_{j'} e^{ ilde{\delta}_{ij'}} \left[e^{-e^{\lambda(\hat{ heta}_i - \hat{\underline{ heta}}_{j'})}}
ight]}$$

where $1\{\hat{\theta}_i \geq \hat{\underline{\theta}}_i\}$ depends on ratio of job seekers to vacancies \rightarrow Details

- $\circ \frac{M_i^0(\underline{S})}{\kappa_i}$: Approved of similar quality to *i*: directly increases cutoffs
- $\circ \frac{M_i^+(\underline{S})}{\kappa_i}$: Approved of higher quality than *i*: "trickle down" indirectly increases cutoffs

Estimation: Sorting

We approximate CMP's with a multinomial logit form

$$\textit{CMP}_{\textit{ijt}} = \frac{e^{\tilde{\delta}_{\textit{ij}}} \mathbf{1}\{\hat{\theta}_{\textit{i}} \geq \underline{\hat{\theta}}_{\textit{j}}(\textit{M}_{\textit{it}}/\kappa_{\textit{jt}})\}}{1 + \sum_{\textit{j'}} e^{\tilde{\delta}_{\textit{ij'}}} \mathbf{1}\{\hat{\theta}_{\textit{i}} \geq \underline{\hat{\theta}}_{\textit{j'}}(\textit{M}_{\textit{it}}/\kappa_{\textit{j't}})\}} \approx \frac{e^{\alpha_{\textit{j}} \mathbf{z}_{\textit{it}} + \beta \textit{M}_{\textit{it}}/\kappa_{\textit{jt}}}}{1 + \sum_{\textit{j'}} e^{\alpha_{\textit{j'}} \mathbf{z}_{\textit{it}} + \beta \textit{M}_{\textit{it}}/\kappa_{\textit{j't}}}}$$

with

$$\mathbf{z}_{it} = [\mathsf{National}_i, \mathsf{quality} \ \mathsf{quartile}_i, \mathsf{time}_t]$$

and

- $M_{it} = [M_{it}^0, M_{it}^+] = [\text{Test Takers}_{\text{range(i)},t}, \text{Test Takers}_{\text{range(k>i)},t}]$
- $\circ \ \kappa_{jt} = \text{Beds}_{jt}/\text{Stock of Physicians}_{j,t-1}$
- Options j: 29 hospital referral regions + outside op. (priv. sector, primary care)

CMP estimates → More

	Alter	Placebo		
	(1)	(2)	(3)	(4)
Distance _{ij}	-2.646	-2.647	-2.638	-2.650
	(0.108)	(0.108)	(0.108)	(0.108)
$(M_{it}^0 + M_{it}^+)/\kappa_{jt}$	-0.124			
	(0.014)			
$(M_{it}^0)/\kappa_{jt}$		-0.265	-0.293	
		(0.050)	(0.197)	
M_{it}^+/κ_{jt}		-0.022	-0.070	
R · · · · ·		(0.037)	(0.043)	
M_{it}^-/κ_{jt}				-0.020
<i>R</i> · · · · ·				(0.013)
Time Trend	Υ	Υ	N	N
Altspecific Year FE	N	N	Υ	Υ

Estimated by MLE

N = 428,760; J=30 options (14,292 individuals)

 $M_{it}^- = \text{Test Takers}_{\text{range}(k < i),t}, M_{it} = \text{Test Takers}_{\text{range}(k = i),t} M_{it}^+ = \text{Test Takers}_{\text{range}(k > i),t}$

Test takers measured in 100's.

Distance measured in km.

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Latent quality
 - Production function
 - Sorting
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

Elasticity of quantity and semi-elasticity of quality by hospital in '18

 $\eta_{L_j,\underline{s}}$ and $\tilde{\eta}_{\bar{\theta}_j,\underline{s}}$

Elasticity of quantity and semi-elasticity of quality by hospital in '18

 $\eta_{L_j,\underline{s}}$ and $\tilde{\eta}_{\bar{\theta}_j,\underline{s}}$

• Outcome depends on service rate and 'value added' (-mortality)

$$Y(L, \theta) = \underbrace{|\mathcal{I}(L)|}_{\text{service rate}} \times \underbrace{\frac{1}{|\mathcal{I}(L)|} \int_{i \in |\mathcal{I}(L)|} \Delta m_i(\bar{\theta}, L) c}_{\text{treatment value added}}$$

• Outcome depends on service rate and 'value added' (-mortality)

$$Y(L,\theta) = \underbrace{|\mathcal{I}(L)|}_{\text{service rate}} \times \underbrace{\frac{1}{|\mathcal{I}(L)|} \int_{i \in |\mathcal{I}(L)|} \Delta m_i(\bar{\theta}, L) di}_{\text{treatment value added}}$$

On average, service rate increases when threshold is relaxed

$$\overline{\eta}_{\underline{S}}^{\text{service rate}} = \overline{\eta_{L_{j},\underline{s}}} \cdot \alpha_{L}^{\text{service rate}} + \tilde{\eta}_{\bar{\theta}_{j},\underline{s}} \cdot \underline{\alpha_{\bar{\theta}}^{\text{service rate}}}^{0} > 0$$

Outcome depends on service rate and 'value added' (-mortality)

$$Y(L, \theta) = \underbrace{|\mathcal{I}(L)|}_{\text{service rate}} \times \underbrace{\frac{1}{|\mathcal{I}(L)|} \int_{i \in |\mathcal{I}(L)|} \Delta m_i(\bar{\theta}, L) di}_{\text{treatment value added}}$$

On average, service rate increases when threshold is relaxed

$$\overline{\eta}^{\text{service rate}}_{\underline{\underline{S}}} = \overline{\eta_{\underline{L}_{j},\underline{\underline{S}}}} \cdot \alpha^{\text{service rate}}_{\underline{L}} + \widetilde{\eta}_{\overline{\theta}_{j},\underline{\underline{S}}} \cdot \alpha^{\text{service rate}}_{\underline{\theta}} > 0$$

On average, mortality is unaffected when the threshold is relaxed

$$\overline{\eta}^{\text{mortality}}_{\underline{\underline{S}}} = \overline{\eta_{L_{j},\underline{\underline{s}}}} \cdot \alpha^{\text{mortality}}_{L} + \overline{\tilde{\eta}_{\bar{\theta}_{j},\underline{\underline{s}}}} \cdot \alpha^{\text{mortality}}_{\bar{\theta}} = \mathbf{0}$$

Outcome depends on service rate and 'value added' (-mortality)

$$Y(L,\theta) = \underbrace{|\mathcal{I}(L)|}_{\text{service rate}} \times \underbrace{\frac{1}{|\mathcal{I}(L)|} \int_{i \in |\mathcal{I}(L)|} \Delta m_i(\bar{\theta}, L) di}_{\text{treatment value added}}$$

On average, service rate increases when threshold is relaxed

$$\overline{\eta}^{\text{service rate}}_{\underline{\underline{S}}} = \overline{\eta_{\underline{L}_j,\underline{\underline{s}}}} \cdot \alpha^{\text{service rate}}_{\underline{L}} + \widetilde{\eta}_{\overline{\theta}_j,\underline{\underline{s}}} \cdot \alpha^{\text{service rate}}_{\overline{\theta}} > 0$$

On average, mortality is unaffected when the threshold is relaxed

$$\overline{\eta}^{\text{mortality}}_{\underline{S}} = \overline{\eta_{L_{j},\underline{s}}} \cdot \alpha^{\text{mortality}}_{L} + \overline{\tilde{\eta}_{\bar{\theta}_{j},\underline{s}}} \cdot \alpha^{\text{mortality}}_{\bar{\theta}} = 0$$

Relaxing the threshold increases service rate and mortality is unaffected

$$\Rightarrow \eta_{\bar{\mathtt{s}}}^{Y} \simeq \eta_{\bar{\mathtt{s}}}^{\mathsf{service \, rate}} - \eta_{\bar{\mathtt{s}}}^{\mathsf{mortality}} > \mathsf{0}$$

Evolution of elasticities of quantity and quality

- Offsetting evolution of elasticities of quantity and quality
- U-shape: higher mass at margin but less vacancies over time

Evolution of elasticity of mortality at current cutoff, $\overline{\eta}_{\rm S}^{\rm mortality}$

• Elasticity of mortality w.r.t threshold has stayed constant over time

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Latent quality
 - Production function
 - Sorting
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

Dynamic policy effects

- What are the dynamic effects of permanently changing the licensing threshold?
- Key issue: retaking mitigates the relevance of the threshold over time
- In our sample, 83% of (first-takers) who fail in 2013 pass by 2018
- Strategy to quantify dynamic effects:
 - 1. Simulate individual histories for each cohort using the model of scores and retaking
 - 2. Compute yearly elasticities w.r.t. threshold (set permanently lower)

Simulated ratio between short and long term elasticities

- Retaking dampens long-run effects of the policy.
- However, policy has net positive effects even 5 years after

Concluding remarks

- We show that physician quantity and quality matter for health outcomes
- We provide a framework to include this tradeoff in the analysis of licensing policies
- We estimate sufficient statistics to quantify the effects of locally relaxing licensing thresholds on patient outcomes
- Policy implication: increasing benefits from lowering licensing threshold in Chile's public healthcare system.
- Next step: Can we improve policy impacts by optimally allocating marginal physicians to hospitals?

Licensing Scores → Back

Year	# Tests	Average score	% Approved (score > 51)	Average score if score ≥ 51	# Tests ∈ [40 – 51)
2009	1,389	71.8	92	74.3	87
2010	1,535	65.1	80	72.1	142
2011	1,748	66.6	81	73.3	160
2013	2,003	56.1	66	67.5	231
2014	2,557	55.8	65	67.5	335
2015	3,641	54.7	60	66.5	651
2016	4,999	53.0	54	66.9	1,012
2017	6,014	52.1	55	64.9	1,233
2018	7,121	53.9	58	65.0	1,552

Referrals follow strict guidelines

	1	COMPLE	10 ноѕеп	ALARIO SA	NIOSÉ					5	UAPO COMUI	VAI.		1
	2							_	6 COSAM COMUNAL			1		
ESTABLECIMIENTOS ATENCIÓN SECUNDARIA Y TERCIARIA			3 INSTITUTO PSIQUIÁTRICO DR. JOSÉ HORWITZ BARAK						-				,	
	4			IAL DEL CÁ				CORREA						
			0.1010101			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		conduct						
SERVICIO DE SALUD														
COMUNA				_	Colina								Concha	lí.
				T	T			0 =					1	T -
ESTABLECIMIENTO	109310 - Centro de Saud Familiar Colina	109316 - Centro de Salud Familiar Esmeralda	109416 - Posta Salud Rural Colorado	109417 - Posta Salud Rural Los Ingleses	109418 - Posta Salud Rural Las Canteras	109419 - Posta Salud Rural Santa Marta de Liray	109420 - Posta Salud Rural Chacabuco	109716 - Centro Comunitario de Salud Familiar Esmeralda	109810 - SAPU Colina	109302 - Centro de Salud Familiar Lucas Sierra	109308 - Centro de Salud Familiar Alberto Bachelet Martínez	109309 - Centro de Salud Familiar José Symon Ojeda	109314 - Centro de Salud Familiar Juanita Aguirre	109709 - Centro Comunitario de Salud Familiar Dr. José Svmon Ojeda
PEDIATRÍA			-				-							
CARDIOLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
ENDOCRINOLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
ENFERMEDADES RESPIRATORIAS PEDIÁTRICAS	2	2	2	2	2	2	2	2		2	2	2	2	2
GASTROENTEROLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
GINECOLOGÍA PEDIÁTRICA Y DE LA ADOLESCENCIA	2	2	2	2	2	2	2	2		2	2	2	2	2
HEMATOLOGÍA ONCOLÓGICA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
HEMOFILIA (SIN LÍMITE DE EDAD)	2	2	2	2	2	2	2	2		2	2	2	2	2
INFECTOLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
NEFROLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
NUTRICIÓN CLÍNICA DEL NIÑO Y EL ADOLESCENTE	2	2	2	2	2	2	2	2		2	2	2	2	2
NANEAS	2	2	2	2	2	2	2	2		2	2	2	2	2
MEDICINA INTERNA	1	1	1	1	1	1	1	1		1	1	1	1	1
CARDIOLOGÍA	1	1	1	1	1	1	1	1		1	1	1	1	1
NUTRICIÓN Y DIABETES	1	1	1	1	1	1	1	1		1	1	1	1	1
PROGRAMA MANEJO DE LA OBESIDAD	1	1	1	1	1	1	1	1		1	1	1	1	1
ENDOCRINOLOGÍA ADULTO	1	1	1	1	1	1	1	1		1	1	1	1	1
ENFERMEDADES RESPIRATORIAS ADULTO	1	1	1	1	1	1	1	1		1	1	1	1	1
GASTROENTEROLOGÍA ADULTO	1	1	1	1	1	1	1	1		1	1	1	1	1
HEMATOLOGÍA	1	1	1	1	1	1	1	1		1	1	1	1	1
VIH		•		•	•			•			•			
<15 AÑOS	2	2	2	2	2	2	2	2		2	2	2	2	2
>15 AÑOS	1	1	1	1	1	1	1	1		1	1	1	1	1
NEFROLOGÍA ADULTO	1	1	1	1	1	1	1	1		1	1	1	1	1
ONCOLOGÍA MÉDICA														
<15 AÑOS	2	2	2	2	2	2	2	2		2	2	2	2	2
> 15 AÑOS (Derivación desde APS sólo con confirmación diagnóstica realizada)	4	4	4	4	4	4	4	4		4	4	4	4	4
REUMATOLOGÍA														
<15 AÑOS	2	2	2	2	2	2	2	2		2	2	2	2	2
>15 AÑOS	1	1	1	1	1	1	1	1		1	1	1	1	1

Referrals follow strict guidelines - Back

Health Service Name	Metropol	itano Norte	Metropolitano Oriente		
Primary Care	CESFAM	CESFAM	CESFAM	CESFAM	
	Colina	Esmeralda	Aguilucho	La Faena	
	(1)	(2)	(3)	(4)	
Pediatrics					
Pediatric respiratory diseases	2	2	4	4	
Internal Medicine					
Cardiology	1	1	5	4	
Medical Oncology					
< 15 years	2	2	7	7	
> 15 years	3	3	5	5	
General Surgery					
Thoracic Surgery	3	3	6	6	

^{1.} Complejo Hospitalario San José; 2. Hospital Clínico De Niños Roberto Del Río; 3. Instituto Nacional Del Cáncer Dr. Caupolicán Pardo Correa; 4. Centro de Referencia de Salud Cordillera Oriente; 5. Hospital Del Salvador; 6. Instituto Nacional del Torax; 7. Hospital de Niños Dr. Luis Calvo Mackenna.

Strict referrals → Back

Licensing scores conditional on working in a public hospital - Back

Number of test-takers over time Back By migration status

Empirical Model: CMP micro-foundation

- Two hospitals + outside option (U, R, 0), and two physician quality tiers, (L, H) with mass M^H and M^U and tier-specific preferences
 - Cutoff in U is such that capacity equals mass of H-phys, who prefer U:

$$\kappa_U = M^H \underbrace{\left[\int_i Pr(u_{iU} > \max\{u_{iR}, u_{l0}\} | H) di \right]}_{\text{\% High-type top-pref is U}} Pr(\hat{\theta}_U < \hat{\theta}_i | H)$$

Cutoff in R is such that capacity equals L-phys. who prefer R + displaced L-phys.
 + displaced H-phys.

$$\kappa_{R} = M^{L} \left[\int_{i} \underbrace{Pr(u_{iR} > \max\{u_{iU}, u_{i0}\} | L)}_{\text{% Low-type top-pref is R}} + \underbrace{Pr(u_{iU} > u_{iR} > u_{i0} | L)}_{\text{% Low-type top-pref is U and second is R}} di \right] Pr(\hat{\theta}_{R} < \hat{\theta}_{i} | L)$$

$$M^{H} \left[\underbrace{\int_{i} Pr(u_{iU} > u_{iR} > u_{i0} | H)}_{\text{% High-type top-pref is U and second pref is R}} di \right] Pr(\hat{\theta}_{R} < \hat{\theta}_{i} < \hat{\theta}_{U} | H)$$

Box plot of quality by hospital → Back

Elasticity of quantity

$$\eta_{L_{j},\underline{\underline{s}}} = \underbrace{\frac{\underline{s}}{L_{j}}} \left(\underbrace{-\int_{X} CMP_{j}(\underline{s},X,M(\underline{s}))h(X,\underline{s})dX}_{\text{Direct Effect } \frac{\partial L_{j}^{\text{neq}}}{\partial \underline{s}} < 0} + \underbrace{\int_{\underline{s} \geq \underline{s}} \int_{X} \frac{\partial CMP_{j}(s,X,M(\underline{s}))}{\partial \underline{s}} h(X,s)dXds}_{\text{General Eq Effect } \frac{\partial L_{j}^{\text{eq}}}{\partial \underline{s}} (+/-)} \right)$$

- Depends on:
 - The distribution of the marginal physicians at \underline{s} : $h(X,\underline{s})$
 - Their matching probabilities: $CMP_i(\underline{s}, X, M(\underline{s})), \forall j \in \mathcal{J}$
 - \circ The general eq. effects of changing \underline{s} on the matching probabilities
- Similar expressions for quality elasticity
 - Elasticity depends on SNR

Licensing score imputation → Back

- Before EUNACOM there was a voluntary National Medical Examination (EMN)
 - Taken in Chilean medical schools btw 2003 to 2008
- Before the EMN:
 - Local medical graduates needed their Medical Surgeon Degree Examination
 - Foreign physicians had to pass a Foreign Medical Qualification Revalidation Examination
- ightarrow We don't observe licensing scores for all physicians working at a given hospital
 - Impute scores based on the score of other physicians from the same region who work in the same hospital

Descriptive Statistics: Hospital Characteristics

	Mean	Std. Dev.	Median (p50)	# of Obs.
	(1)	(2)	(3)	(4)
Hospital Characteristics:				
In-hospital Death Rate	3.28	1.82	2.92	1,402
Death Rate (1-month)	5.07	2.71	4.51	1,402
Service Rate (# Admissions/Beneficiaries)	0.02	0.02	0.01	1,402
Total Number of Surgeries	2,018	3,332	6.00	1,402
Length of Stay	4.03	5.66	3.00	1,402
Infection Rate	11.41	4.25	11.05	1,402
Physicians	77.64	119.64	20.00	1,402
Patients (# Admissions)	5,656	7,686	1,964	1,402

Elasticity of quantity and semi-elasticity of quality by hospital \rightarrow Back $\eta_{L_i,s}$ and $\tilde{\eta}_{\rho_i,s}$

• Main result assuming that the quality index is equal to the share of physicians below median quality in the data.

Descriptive Statistics: Patient and Hospital Characteristics

	Mean	Std. Dev.	Median (p50)	# of Obs.
	(1)	(2)	(3)	(4)
Patient Characteristics:				
% Female	0.57	0.08	0.58	1,402
% Foreign	0.01	0.03	0.00	1,402
% Age < 29	0.30	0.15	0.31	1,402
% Age ∈ (30,29)	0.10	0.04	0.10	1,402
% Age ∈ (40,49)	0.09	0.03	0.09	1,402
% Age ∈ (50,59)	0.11	0.03	0.11	1,402
% Age ∈ (60,69)	0.12	0.04	0.12	1,402
% Age ∈ (70,79)	0.14	0.06	0.13	1,402
% Age ∈ (80,89)	0.11	0.06	0.10	1,402
% Age > 89	0.03	0.02	0.02	1,402
% Public Insurance	0.97	0.04	0.98	1,402

Descriptive Statistics: Variance of Test Scores Over Time

Descriptive Statistics: $\bar{\theta}$ and % Below $\bar{\theta}$

Number of test-takers over time, by migration status → Back

Disentangling test-taking ability and quality

- Are score improvements due to increased test-taking ability (preparation) and/or due to improvements in quality?
- We leverage the discontinuity in retaking around the cutoff to show that retakers do not differ in outcomes that proxy for quality

More retaking and large score gains to the left of the cutoff

(b) Maximum achieved score v.s. first score

• Score gains in panel b) are a combination of gains in test-taking ability, gains in quality, and selection around cutoff (Gilraine and Penney, 2021)

No discernable differences in proxies for quality around cutoff - Back

 \Rightarrow No differential effects in quality proxies suggest no quality gains due to retaking

Posterior quality → Back

• Since we assumed that θ and ϵ are normally distributed, we can recover the posterior of quality for each physician given type-specific prior, SNRs, and their sequences of scores over attempts:

$$\mathbb{E}[\theta_i \mid \boldsymbol{s}_{i0}, \boldsymbol{s}_{i1}, \dots, \boldsymbol{s}_{in}] = \mu_{\theta, \tau(i)} + \frac{\sigma_{\theta, \tau(i)}^2}{\sigma_{\varepsilon, \tau(i)}^2 + (n+1)\sigma_{\theta, \tau(i)}^2} \left(\sum_{t=0}^n (\boldsymbol{s}_{it} \underbrace{-\Lambda_{t, \tau(i)} - \Gamma_{t, \tau(i)}}_{\text{de-trending}} - \mu_{\theta, \tau(i)}) \right)$$

with

$$\theta_i = \mathbb{E}(\theta_i|s_i) + \nu_i$$

The average quality of physicians in hospital j

$$ar{ heta}_j = rac{1}{L_j} \left(\sum_{i \in j} extstyle E(heta_i | extstyle s_i) +
u_i
ight)$$

CMP estimates

The x axis shows probabilities under current cutoff. The y axis shows probabilities under a cutoff of 41, where the mass of low-quality physicians increases and generates displacement to the outside option.

In 2013, Average Nr Test takers / vacancies = 24.

CMP estimates → Back

The x axis shows probabilities under current cutoff. The y axis shows probabilities under a cutoff of 41, where the mass of low-quality physicians increases and generates displacement to the outside option. In 2013, Average Nr Test takers / vacancies = 24.

In 2018, Average Nr Test takers / vacancies = 750.

The impact of physician quantity and quality - Back

	Service Rate		Death Rate			
	(Adm./Pop.)	In-F	30 days			
	Ln service rate	Ln death rate	Asinh resid. death rate	Ln death rate		
	(1)	(2)	(3)	(4)		
Ln Physicians (\hat{lpha}_L)	0.940	-0.753	-0.499	-0.695		
% Low Quality Physicians ($\hat{lpha}_{ heta}$)	(0.256) -0.047 (0.181)	(0.300) 0.585 (0.213)	(0.219) 0.521 (0.181)	(0.268) 0.568 (0.190)		
Case-mix Controls Hospital and Year FEs	Yes Yes	Yes Yes	No Yes	Yes Yes		
Observations	1,376	1,376	1,403	1,376		
Mean Dep. var.	0.016	3.301	0.009	5.086		
F-stat (First-stage)	14.76	14.76	21.85	14.76		
Anderson-Rubin (χ^2) p-value	0.00	0.00	0.00	0.00		

Case-mix Controls include patients' demographics (share of female, share of foreign, share of inpatients in each of 8 age groups and in each of 5 types of insurance). We also control for beds per capita in each referral region.

Retaking decision: micro-foundation - Back

• We specify the retaking probability for a physician of type τ who fails the exam in attempt n ($s_{in} < \underline{s}$) and has average past score \bar{s}_{in} as:

$$P(\text{retake}|\bar{s}_{\textit{in}}, n_{\textit{i}}, \tau(\textit{i})) = \frac{e^{\beta_{0,\tau(\textit{i})} + \beta_{n,\tau(\textit{i})}} n + \beta_{s,\tau(\textit{i})}(\bar{s}_{\textit{in}} - \underline{s})}{1 + e^{\beta_{0,\tau(\textit{i})} + \beta_{n,\tau(\textit{i})}} n_{\textit{i}} + \beta_{s,\tau(\textit{i})}(\bar{s}_{\textit{in}} - \underline{s})}$$

- Follows from a dynamic model of (costly) retaking with learning about quality from the sequence of scores Details
- The model predicts that:
 - $\beta_{s,\tau}$ < 0: Retaking prob. decreases with distance between average scores (signal) and passing threshold
 - $\beta_{n,\tau} < 0$: Conditional on scores, the passing probability is decreasing on the number of attempts due to (i) decay in score gains and (ii) decreasing variance of posterior quality

Retaking decision: micro-foundation > Back

- Consider a dynamic model of physicians re-taking decisions
- At attempt n_i , a physician of type $\tau(i)$ with initial quality θ_{i0} and given preferences $\tilde{\delta}_i$ retakes if

preferences
$$\tilde{\delta}_i$$
 retakes if
$$V_{rt}\left(n_i, \bar{s}_{in_i-1}, \tau(i); \tilde{\delta}_i, M/\kappa\right) \geq V_{0t}\left(n_i, \bar{s}_{in_i-1}, \tau(i); \tilde{\delta}_i\right) \tag{1}$$

with

$$V_{rt}\left(n_{i}, \bar{\mathbf{s}}_{in_{i}-1}, \tau(i); \tilde{\delta}_{i}, \mathbf{M}/\kappa\right) = \underbrace{-\mathbf{c}_{r}}_{\text{Retaking cost}} + \underbrace{\mathbb{P}\left(\mathbf{s}_{in} \geq \underline{\mathbf{s}} | n_{i}, \bar{\mathbf{s}}_{in_{i}-1}, \tau(i)\right)}_{\text{Passing probability}} \underbrace{\log\left(\sum_{j} e^{\tilde{\delta}_{ijt}} \mathbf{1}\{\hat{\theta}\left(\mathbf{s}_{in}, \tau(i)\right) \geq \hat{\underline{\theta}}_{j}\left(\mathbf{M}_{t}/\kappa_{jt}, \tilde{\delta}_{t}\right)\}\right)}_{\text{Expected Labor market value}}$$

$$\left(1 - \mathbb{P}\left(\mathbf{s}_{in} \geq \underline{\mathbf{s}} | n_{i}, \bar{\mathbf{s}}_{in_{i}-1}, \tau(i)\right)\right) \beta \max\{V_{rt+1}\left(n_{i}+1, \bar{\mathbf{s}}_{in_{i}-1}, \tau(i); \tilde{\delta}_{i}, \mathbf{M}/\kappa\right), V_{0t+1}\left(n_{i}+1, \bar{\mathbf{s}}_{in_{i}-1}, \tau(i); \tilde{\delta}_{i}\right)\}$$

Continuation value

where

$$\mathbb{P}\left(s_{\textit{in}} \geq \underline{s} | n_{i}, \bar{s}_{\textit{in}_{i}-1}, \tau(\textit{i})\right) = \mathbb{P}\left(\begin{array}{c} \hat{\theta}_{\textit{in}}\left(\bar{s}_{\textit{in}_{i}-1}, \tau(\textit{i})\right) \\ \\ \text{Obstacle supplies in the last of } \end{array} + \underbrace{\Gamma_{\textit{in}_{i}}\left(n_{i}, \tau(\textit{i})\right)}_{\text{Color Methods}} + \varepsilon_{\textit{in}_{i}}\left(\tau(\textit{i})\right) \geq \underline{s} \right)$$

The impact of physician quantity and quality on other outcomes - Back

	Ln predicted death rate	Ln complications rate	Ln exits waitlist	Ln surgery (inpatient)
	(1)	(2)	(3)	(4)
Ln Physicians ($\hat{\alpha}_L$)	-0.008	-0.798	3.426	4.238
_	(0.048)	(0.259)	(1.091)	(1.324)
Avg. Physicians' Quality ($\hat{\alpha}_{\theta}$)	-0.048	0.574	-0.710	-0.970
	(0.034)	(0.184)	(0.754)	(0.852)
Case-mix Controls	Yes	Yes	Yes	Yes
Hospital and Year FEs	Yes	Yes	Yes	Yes
Observations	1,376	1,349	1,018	740
Mean Dep. Var.	3.49	11.65	10,386	3,819
F-stat (First-stage)	14.76	14	10.17	8.893
Anderson-Rubin (χ^2)	0.09	0.00	0.00	0.00

Case-mix Controls include patients' demographics (share of female, share of foreign, share of inpatients in each of 8 age groups and in each of 5 types of insurance). We also control for beds per capita in each referral region. Complications include: infections, hemorrhage, and "other complications"

- If there is complementarity between the number of doctors and other inputs
 - $O = e^c L^\gamma$

• If there is complementarity between the number of doctors and other inputs

$$\begin{array}{ll}
- & O = e^c L^{\gamma} \\
\rightarrow & Y = A L^{\alpha_L} e^c (L^{\gamma})^{\alpha_O}
\end{array}$$

• If there is complementarity between the number of doctors and other inputs

$$\begin{array}{ll}
- & O = e^{c}L^{\gamma} \\
\rightarrow & Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow & InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\tilde{\alpha}_{L}}InL
\end{array}$$

• If there is complementarity between the number of doctors and other inputs

$$\begin{array}{l}
- O = e^{c}L^{\gamma} \\
\rightarrow Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\alpha_{L}}InL
\end{array}$$

• Impact of physicians on outcome of interest, $\tilde{\alpha}_L$, is a bundled effect:

If there is complementarity between the number of doctors and other inputs

$$\begin{array}{l}
- O = e^{c}L^{\gamma} \\
\rightarrow Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\tilde{\alpha}_{L}}InL
\end{array}$$

- Impact of physicians on outcome of interest, $\tilde{\alpha}_L$, is a bundled effect:
 - direct effect of an extra doctor α_L
 - indirect effect from the increase in other inputs $\gamma \alpha_{o}$

If there is complementarity between the number of doctors and other inputs

$$\begin{array}{ll}
- & O = e^{c}L^{\gamma} \\
\rightarrow & Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow & InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\tilde{\alpha}_{L}}InL
\end{array}$$

- Impact of physicians on outcome of interest, $\tilde{\alpha}_L$, is a bundled effect:
 - direct effect of an extra doctor α_I
 - indirect effect from the increase in other inputs $\gamma \alpha_o$
- Two underlying assumptions are:
 - 1. There is complementarity between physicians and other inputs at hospital level
 - 2. "Optimal mix" is independent of the average doctors' quality in a hospital

Other inputs → Back

If there is complementarity between the number of doctors and other inputs

$$\begin{array}{ll}
- & O = e^{c}L^{\gamma} \\
\rightarrow & Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow & InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\tilde{\alpha}_{L}}InL
\end{array}$$

- Impact of physicians on outcome of interest, $\tilde{\alpha}_L$, is a bundled effect:
 - direct effect of an extra doctor α_L
 - indirect effect from the increase in other inputs $\gamma \alpha_o$
- Two underlying assumptions are:
 - 1. There is complementarity between physicians and other inputs at hospital level
 - 2. "Optimal mix" is independent of the average doctors' quality in a hospital
- We can assess these assumptions empirically

Other inputs: complementarity between physicians and other inputs

Other inputs: "optimal mix" is independent of quality - Back

$$\tilde{\alpha}_{L}^{2SLS} = \alpha_{L} + \alpha_{O}\gamma + \alpha_{O}\frac{Cov(\nu_{i}, Z_{i})}{Cov(L_{i}, Z_{i})}$$

$$\tilde{\alpha}_{L}^{2SLS} = \alpha_{L} + \alpha_{O}\gamma + \alpha_{O}\frac{Cov(\nu_{i}, Z_{i})}{Cov(L_{i}, Z_{i})}$$

- Identification of the total effect of an extra doctor (i.e., $\tilde{\alpha}_L = \alpha_L + \alpha_O \gamma$) requires that $Cov(\nu_i, Z_i) = 0$
 - Or, simply put, that innovations in O_i do not correlate with the instrument

$$\tilde{\alpha}_{L}^{2SLS} = \alpha_{L} + \alpha_{O}\gamma + \alpha_{O}\frac{Cov(\nu_{i}, Z_{i})}{Cov(L_{i}, Z_{i})}$$

- Identification of the total effect of an extra doctor (i.e., $\tilde{\alpha}_L = \alpha_L + \alpha_O \gamma$) requires that $Cov(\nu_i, Z_i) = 0$
 - Or, simply put, that innovations in O_i do not correlate with the instrument
- Does the instrument Z_i affects other inputs through a channel other than the increase in physicians?

$$\tilde{\alpha}_{L}^{2SLS} = \alpha_{L} + \alpha_{O}\gamma + \alpha_{O}\frac{Cov(\nu_{i}, Z_{i})}{Cov(L_{i}, Z_{i})}$$

- Identification of the total effect of an extra doctor (i.e., $\tilde{\alpha}_L = \alpha_L + \alpha_O \gamma$) requires that $Cov(\nu_i, Z_i) = 0$
 - Or, simply put, that innovations in O_i do not correlate with the instrument
- Does the instrument Z_i affects other inputs through a channel other than the increase in physicians? Evidence suggests **no**

Other inputs: Z_i does not affect other inputs directly \rightarrow Back

- A back-of-the-envelope calculation leveraging a set of auxiliary regressions suggests that $Cov(\nu_i, Z_i) \approx 0$
- The migration wave was most significant among doctors

(a) Stock Providers in Public Hospitals

(b) Newly Registered Providers

Other inputs: Z_i does not affect other inputs directly

- Following Conley et al., (2012)
 - Results are consistent with a direct effect of the instrument on other inputs equal to zero
 - 2. For the impact of physicians on other inputs to be zero, the direct effect of the instrument on other inputs should be implausible large (almost twice its reduced form impact β)

Other inputs: Z_i does not affect other inputs directly \rightarrow Back

Score gains over attempts → Back

Objective Function:

$$\min_{\mu,\sigma_{\theta},\sigma_{\epsilon}} \left(\frac{1}{n_{s}} \sum_{k=1}^{n_{s}} (\hat{m}_{k} - \bar{m}_{k}) \right)^{2}$$

where:

 $\hat{m}_k = \text{Observed moment } k$

 $\bar{m}_k = \text{Simulated moment } k \text{ (average over simulations)}$

Estimation Process:

- Generate initial scores $s_{it} = \theta_i + \varepsilon_t$, with $\theta_i \sim N(\mu, \sigma_{\theta}^2)$ and $\varepsilon_t \sim N(0, \sigma_{\epsilon}^2)$
- \circ Identify retakers: $s_{it} < s_c$
- Simulate retake scores: $s_{it+1} = \theta_i + \varepsilon_{t+1}$
- Compute simulated moments for each simulation
- o Average simulated moments over multiple simulations
- Minimize the distance between observed and simulated moments

Inside Share → Back

More physicians enter the system: $M \rightarrow M + \Delta M$

More on "sufficient statistics"

• "per marginal physician" effect of lowering threshold is positive iff

$$\alpha_{L}/\alpha_{\theta} > -\tilde{\eta}_{\bar{\theta}}/\eta_{L}$$

$$= \mathbb{E}[\theta|\mathbf{s} > \underline{\mathbf{s}}] - \theta(\underline{\mathbf{s}})$$

• As most marginals are foreigners and most infra-marginals are nationals:

$$egin{align*} \mathbb{E}[heta|s>\underline{s}]_{j}\simeqar{s}_{\mathsf{nationals}}+\mathit{SNR}_{\mathsf{nationals}}\cdot(ar{s}_{\mathsf{nationals},j}-ar{s}_{\mathsf{nationals}}) \ & \theta(\underline{s})\simeqar{s}_{\mathsf{foreigners}}+\mathit{SNR}_{\mathsf{foreigners}}\cdot(\underline{s}-ar{s}_{\mathsf{foreigners}}) \end{aligned}$$

More on "sufficient statistics"

"per marginal physician" effect of lowering threshold is positive iff

$$lpha_{L}/lpha_{ heta} > -\tilde{\eta}_{ar{ heta}}/\eta_{L} \ = \mathbb{E}[heta|\mathbf{s} > \underline{\mathbf{s}}] - heta(\underline{\mathbf{s}})$$

As most marginals are foreigners and most infra-marginals are nationals:

$$\mathbb{E}[heta|s>\underline{s}]_{j}\simeq ar{s}_{ ext{nationals}}+SNR_{ ext{nationals}}\cdot (ar{s}_{ ext{nationals},j}-ar{s}_{ ext{nationals}})$$
 $heta(\underline{s})\simeq ar{s}_{ ext{foreigners}}+SNR_{ ext{foreigners}}\cdot (\underline{s}-ar{s}_{ ext{foreigners}})$

- → Estimates of SNRs and "raw moments" from score distribution are "sufficient statistics" for the "per-physician" effect of lowering threshold in hosp. *j*
- → Independent of labor-market assumptions (CMPs)
- ▶ Back

Table: Passing rate among those who fail in 2013, 2013 cohort $\,$

Year	Pass (%)	Cumulative (%)
2014	25	25
2015	28	53
2016	14	67
2017	11	78
2018	5	83

Dynamic policy analysis • Back

• We estimate a model of scores and retaking behavior

$$logit(P(retake_t)) = \alpha_{\tau} + \beta_{1,\tau} nr. \text{ of attempts}_t + \beta_{2,\tau} distance \text{ to cutoff}_t$$

Foreign	Nationals
-0.231	-0.163
(0.020)	(0.059)
-0.036	-0.060
(0.003)	(0.009)
2.592	1.595
(0.077)	(0.139)
8221	1340
	-0.231 (0.020) -0.036 (0.003) 2.592 (0.077)

- We simulate individual histories for each cohort $c \in [2013, 2018]$
- We compute yearly elasticities to the 2013 (and beyond) threshold

Evolution of elasticity at current cutoff, $\eta^{mortality}$, share model \cdot Back

Evolution of elasticity at current cutoff, $\eta^{\textit{mortality}}$, share model \cdot Back

Matching Probability by Rurality → Back

Matching Probability by Latitude → Back

Long-term passing rates

Simulated passing year for 2013 cohort

year	<u>s</u> = 51		:	<u>s</u> = 41	
	pass	cumulative	pass	cumulative	
2013	86.0	86.0	94.0	94.0	
2014	6.8	92.8	3.5	97.5	
2015	1.4	94.2	0.7	98.2	
2016	0.3	94.6	0.2	98.4	
2017	0.1	94.6	0.0	98.4	
2018	0.1	94.7	0.1	98.5	