

Module 5

Docker & Kubernetes

Docker

- ✓ Docker allows developers to package software in portable containers.
- ✓ Containers ensure consistent running of software on any system.
- ✓ Docker provides tools to **build**, **package** and **distribute containers**.
- ✓ It makes it easy to move applications between different environments.
- ✓ Docker also provides tools to manage and orchestrate containers.
- ✓ It improves developer productivity and reduce the difficulty of deploying software.

How it works?

HOST MACHINE

Steps

Docker file

Image

Container

Kubernetes

- Kubernetes is an open-source platform for automating deployment, scaling, and management of containerized applications.
- It was originally developed by Google, and is now maintained by the Cloud Native Computing Foundation (CNCF).

How it works?

- Manages containers, which are lightweight and portable software units.
- Provides a unified way to define, deploy, and manage containers.
- Uses **pods** as logical units for **containers** and **deployments** for **groups of pods**.
- Automates scaling, rollouts, and rollbacks of applications.
- Manages network and storage resources needed by containers.
- Helps build, deploy, and run applications at scale.

Kubernetes features

- Managing availability, security, and performance of applications.
- Includes automatic load balancing and self-healing.
- Supports rolling upgrades.
- Disaster recovery
- Helps build, deploy, and run applications at scale.
- Popular platform for deploying cloud-native applications.

Pod 3

Worker node 1

Pod 2

Pod 1

Architecture of Kubernetes

Master Node/control plane

Central control plane that manages and orchestrates the operations of the cluster.

API Server

- Exposing the API used by other components.
- Storing the shared state of the cluster.

Controller Manager

- Controllers regulate the state of the cluster and its components.
- They are a set of control loops.
- Examples of controllers include:
 - Replicating pods.
 - Tracking the status of nodes.
 - Managing the lifecycle of individual objects.
- Controllers help maintain the desired state of the cluster.

Kubernetes architecture

Architecture of Kubernetes

Scheduler

Determines which nodes in the cluster should run each pod.

etcd

An consistent and highly available keyvalue store that holds all of the cluster's configuration data.

Virtual Network

- Virtual network in Kubernetes is a networking setup within the cluster.
- It allows communication between pods and with external resources.
- The virtual network provides a logical network space separate from the physical network.
- It enables pods to communicate with each other and access external services.

Architecture of Kubernetes

Worker nodes

- ✓ Worker nodes run applications and workloads in a Kubernetes cluster.
- ✓ They are managed by master nodes.
- Master nodes coordinate and schedule the activities of worker nodes.

Kubelet

✓ An agent that runs on each node and is responsible for maintaining the state of the pods running on that node.

Architecture of Kubernetes

Kube-proxy

- ✓ Kube-proxy is a part of Kubernetes that helps with network connectivity for the pods by directing traffic and acting as a load balancer.
- ✓ TCP and UDP stream forwarding

kubectl

✓ The command-line tool used to interact with the Kubernetes API.

Container Runtime

✓ The component responsible for starting and stopping containers on nodes.

Commonly used runtimes include Docker and Containerd.

Kubernetes resources

✓ Pod

✓ Ingress

✓ ConfigMap

✓ Deployment

✓ Service

√ StatefulSet

✓ Secret

✓ DaemonSet

Pod pod

- ✓ A pod is the smallest unit in the Kubernetes object model
- ✓ A pod represents a single instance of a running process in a cluster
- ✓ Pods host **one or more containers**, which are the actual running instances of the application
- ✓ Pods provide an **isolated environment** for the containers
- ✓ Pods can be created or destroyed as needed for scaling.

Worker node 1

- ✓ A Service in Kubernetes provides network communication between pods and external resources.
- ✓ It hides the network details and pod identities and provides a stable IP address and DNS name for easier communication.
- ✓ The Service is designed to handle changes in the IP addresses of the pods.
- ✓ There are various types of Services available, each suited for different network communication needs.

Worker node 1

Service

Ingress

- ✓ Ingress controls incoming traffic to services in a cluster
- ✓ Sets rules for routing traffic based on hostname and URL path
- ✓ Ingress controller enforces the rules and directs traffic
- ✓ Ingress resource makes it easier to manage external access to services in the cluster

ConfigMap

- ✓ ConfigMap is a resource in Kubernetes for storing configuration data
- ✓ The data is stored as key-value pairs
- ✓ The data can be used by containers and system components in the cluster
- ✓ ConfigMaps help separate configuration data from containers, making it easier to update without affecting them
- ✓ The data is stored in etcd and can be accessed by pods through environment variables or volume mounts.

Secret (2)

- ✓ Secrets in Kubernetes are used to store sensitive information such as passwords, tokens, and certificates.
- ✓ Secrets are encrypted and stored in etcd.
- ✓ Pods access Secrets through environment variables or volume mounts.
- ✓ Secrets store data as **binary data** for added security, unlike ConfigMaps which store configuration data as key-value pairs.

Volume

- ✓ Volumes in Kubernetes are persistent data stores for containers
- ✓ They allow containers to access and store data even after deletion or recreation
- ✓ Different types of volumes are available, such as local, network attached, and cloud storage
- ✓ Volumes can be mounted as file systems into a pod to ensure data persistence.

Replication

Replication

Deployment

- ✓ Deployment in Kubernetes manages multiple copies of an application
- ✓ Ensures desired number of copies are running and available
- ✓ Provides features for easier management: rolling updates, rollbacks, scaling, and pause/resume.

Rolling updates:

• A deployment allows you to update an application by rolling out the new version gradually to some of the copies, reducing the risk of interruption.

Rollbacks

• With a deployment, if a new version of the application creates issues, you can quickly revert back to a previous version.

Scaling

• You can change the number of copies of an application by adjusting the deployment's specifications, making it easy to scale up or down.

Deployment

Pause and resume

• A deployment lets you temporarily stop and restart updates, providing greater control over the update process.

StatefulSet


```
# API version to use for this resource
apiVersion: apps/v1
# Type of resource to create
kind: Deployment
# Metadata for the deployment, including its name
 name: web-deployment
# Specification of the desired state for the deployment
 # Number of replicas of the application to run
 # Selector used to determine which pods belong to this deployment
  selector:
  # Template for the pods that will be created by the deployment
   # Labels to add to the pods created by the deployment
    # Specification for the pods created by the deployment
     # Container definition for the pod
     - name: web
       # Docker image to run in the container
       # Port mapping for the container
       ports:
       - containerPort: 80
```


Kubernetes Config File

Minikube

- Minikube allows you to run a single-node
 Kubernetes cluster locally on your computer inside a virtual machine.
- Supports various operating systems and virtualization technologies.
- Can be managed using the minikube CLI after installation.
- Used by developers, testers, and administrators to try out Kubernetes and test applications before deployment to a production environment.

Hands-on

Kubernetes