Стратегическое и тактическое планирование модельного эксперимента при проведении оценки эффективности систем методом статистических испытаний в среде MATLAB

Цель работы: практическое изучение методов стратегического и тактического планирования модельного эксперимента, освоение навыков экспериментальных исследований при работе со статистическими имитационными моделями систем в ходе оценки их эффективности.

Работа выполняется в среде MATLAB и оформляется в виде тфайла сценария (script file), содержащего обращение к тфайлу функции, реализующей генерацию случайной величины, описывающую отклик системы в каждом эксперименте и имеющую определенный в конкретном задании вид плотности распределения вероятностей.

Работа состоит из двух частей: в первой части проводится ознакомление с возможностями стандартных функций, обеспечивающих разработку стратегического плана эксперимента и входящих в состав раздела Design of Experiments (планирование экспериментов) библиотеки **Statistics** Toolbox (набор инструментов статистического анализа) MATLAB. Во второй части осуществляется разработка и тестирование имитационной модели, фрагмента внешнего предназначенной проведения оценки эффективности исследуемой системы по выбранному показателю методом статистических испытаний с оптимизацией объема испытаний в соответствии с основными соотношениями стратегического и тактического планирования. Для имитации функционирования системы разрабатывается отдельная т-функция, реализующая генерацию случайного отклика при каждом обращении системы рамках проводимой совокупности испытаний.

Перед началом выполнения работы в соответствующем разделе создается рабочая папка. После запуска системы данная папка устанавливается в окне «Current Directory» путем выбора из списка рабочих папок файловой системы. Для этого используется кнопка «...», открывающая стандартное окно проводника файловой системы, в котором можно изменить текущий дисковый накопитель или раздел диска, а также войти в нужную директорию.

Для проведения моделирования в интересах отработки технологий оценки эффективности в рамках данной работы создается m-функция, реализующая имитацию статистического процесса функционирования исследуемой системы. В качестве подобного функционального

эквивалента системы можно использовать генератор случайной величины с произвольным законом распределения. Параметры этого распределения выступают в роли факторов, а получаемая при обращении к функции случайная величина — в роли отклика системы в рамках единичного испытания прогона имитационной модели. В качестве примера можно рассмотреть тефункцию, реализующую генерацию логнормальной случайной величины с параметрами масштаба и формы а, b, которая имеет плотность распределения

$$f(u) = \frac{1}{ub(2\pi)^{1/2}} \exp\left[\frac{-\log(u/a)^2}{2b^2}\right],$$

причем математическое ожидание и дисперсия этой случайной величины равны

$$m = a \exp(0.5b^2), D = a^2 \exp(b^2)[\exp(b^2) - 1].$$
 (6.1)

Определим т-функцию для генерации случайной величины в виде

function u=systemeqv(a,b);

%логнормальное распределение с параметрами масштаба и формы a, b u=a*exp(b*randn);

Сохранив в рабочей папке соответствующий файл systemeqv.m, можно приступить к формированию m-файла сценария, реализующего выполнение сессии с целью отработки технологий стратегического и тактического планирования в интересах оценки эффективности моделируемой системы. Откроем этот файл под именем lab1.m.

Первоначально исследуем возможности стандартных m-функций раздела Dezign Experiment. Первой из них является функция fullfact, реализующая формирование полного многоуровневого факторного плана, исходя из количества факторов и количества уровней каждого фактора. Соответствующий фрагмент m-файла lab1.m, открывающий сессию, выглядит следующим образом:

%Стратегическое и тактическое планирование модельного эксперимента clear all;

%задание количества факторов и диапазонов значений факторов nf=3;

minf=[-5 -10 0]; maxf=[5 10 20];

%задание количества уровней каждого фактора level=[3 3 2];

%формирование полного плана эксперимента fullfact(level);

fulplan=ans

В результате в командном окне MATLAB появятся значения массива полного факторного плана

fulplan =

1 1
1
_
1
1
1
1
1
1
2
2
2
2
2
2
2
1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2

Здесь каждая строка отвечает одному эксперименту, в котором факторы принимают уровни, обозначенные номерами, определяемыми соответствующими элементами массива.

Далее следует сформировать массив исходных данных — значений уровней факторов в диапазонах выбранных значений, которые реально будут использоваться в ходе эксперимента

```
N=3*3*2; for i=1:nf, for j=1:N, fulleks(j,i)=minf(i)+(fulplan(j,i)-1)*(maxf(i)-minf(i))/(level(i)-1); end; end; fulleks
```

В командном окне соответственно появится результат

fuleks =

-5	-10	0
0	-10	0
5	-10	0
-5	0	0
0	0	0
5	0	0
-5	10	0
0	10	0
5	10	0
-5	-10	20
0	-10	20
5	-10	20
-5	0	20
0	0	20
5	0	20
-5	10	20
0	10	20
5	10	20

Значения уровней факторов для проведения эксперимента в результате устанавливаются симметрично относительно срединной точки диапазона значений.

Еще одна из имеющихся стандартных функций ff2n реализует формирование полного двухуровневого факторного плана, в котором уровни факторов (минимальные и максимальные значения в заданных диапазонах) обозначаются как 0 и 1. Продолжая далее сессию, выполним обращение к данной функции при заданном количестве факторов nf, получив при этом план ff2nplan, а затем определим соответствующий массив исходных данных для проведения эксперимента в виде значений факторов в выбранных диапазонах значений

```
%формирование полного двухуровневого плана эксперимента ff2n(nf); N=2^nf; ff2nplan=ans for i=1:nf, for j=1:N, fuleks2n(j,i)=minf(i)+ff2nplan(j,i)*(maxf(i)-minf(i)); end; end; fuleks2n(j,i)=minf(i)+ff2nplan(j,i)
```

В командном окне появится

ff2nplan =

0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

fuleks2n =

-5	-10	0
-5	-10	20
-5	10	0
-5	10	20
5	-10	0
5	-10	20
5	10	0
5	10	20

Следующий вариант реализации этапа стратегического планирования эксперимента предоставляет функция fracfact, обеспечивающая формирование дробного факторного плана или плана для оценки взаимодействий факторов. Обращение к ней выглядит следующим образом:

```
%формирование дробного двухуровневого плана эксперимента N=2^nf; fracfact('a b c ab bc ac abc' ); fracplan=ans
```

Здесь количество уровней и учитываемых взаимодействий факторов указывается непосредственно при обращении к функции. Результат выдается в виде массива fracplan со значениями элементов –1 и 1

fracplan =

-1	-1	-1	1	1	1	-1
-1	-1	1	1	-1	-1	1
-1	1	-1	-1	-1	1	1
-1	1	1	-1	1	-1	-1
1	-1	-1	-1	1	-1	1
1	-1	1	-1	-1	1	-1
1	1	-1	1	-1	-1	-1
1	1	1	1	1	1	1

Для последующего вычисления коэффициентов линейной регрессии в соответствии с соотношениями (2.3), (2.4) раздела 2.4 сформируем матрицу X с добавлением столбца значений фиктивного фактора $x_0 \equiv 1$.

```
\%формирование транспонированной матрицы плана с добавлением \%фиктивного фактора fictfact=ones(N,1); X=[fictfact ans]';
```

Наконец, сформируем исходные данные для проведения эксперимента

```
\begin{split} & \text{fraceks=zeros}(N, nf); \\ & \text{for } i{=}1{:}nf, \\ & \text{for } j{=}1{:}N, \\ & \text{fraceks}(j, i){=}minf(i){+}(fracplan(j, i){+}1){*}(maxf(i){-}minf(i))/2; \\ & \text{end}; \\ & \text{end}; \\ & \text{fraceks} \end{split}
```

и получим при этом следующий результат: fraceks =

```
-10
-5
                       0
-5
         -10
                      20
-5
         10
                      0
-5
         10
                      20
5
         -10
                       0
5
         -10
                      20
5
          10
                      0
5
                      20
          10
```

Здесь в каждой ј-ой строке представлены значения уровней факторов, которые фиксируют исходные данные в ј-ом эксперименте.

Выполним стратегическое рамках данной сессии теперь планирование для определения регрессии уравнения при оценке эффективности эквивалентной systemeqv системы c учетом

взаимодействия двух факторов а и b. В качестве показателя эффективности будем рассматривать дисперсию отклонения выдаваемого в каждой реализации отклика системы по отношению к истинному значению.

```
clear all;
nf=2;
minf=[1 \ 0.5];
\max f = [5 1];
%формирование дробного двухуровневого плана эксперимента
%для учета взаимодействий
fracfact('a b ab' );
N=2^nf;
fracplan=ans
fictfact=ones(N,1);
X=[fictfact ans]'
fraceks=zeros(N,nf);
for i=1:nf,
for j=1:N,
fraceks(j,i)=minf(i)+(fracplan(j,i)+1)*(maxf(i)-minf(i))/2;
end;
end;
fraceks
```

Получим при этом план для проведения исследования эффективности системы по выбранному показателю.

fracplan =

```
-1 -1 1
-1 1 -1
1 -1 1
```

X =

1	1	1	1
-1	-1	1	1
-1	1	-1	1
1	-1	-1	1

fraceks =

1.0000	0.5000
1.0000	1.0000
5.0000	0.5000
5.0000	1.0000

После этого можно выполнить тактическое планирование эксперимента с использованием соотношений раздела 2.5 при заданном уровне относительной ошибки оценки показателя эффективности $d_{\sigma}=0.1$ и уровне значимости $\alpha=0.05$. Для определения $t_{\kappa p}(\alpha)$ воспользуемся стандартной функцией norminv, реализующей вычисление величины

$$t_{KP}(\alpha) = \Phi^{-1}(1 - \alpha/2), \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

Соответствующий фрагмент т-файла имеет вид

```
%тактическое планирование эксперимента %задание доверительного интервала и уровня значимости d_sigma=0.1; alpha=0.05; %определение t-критического tkr_alpha=norminv(1-alpha/2); %определение требуемого числа испытаний NE=round(1+2*tkr_alpha^2/d_sigma^2)
```

В результате получаем значение

$$NE = 769$$

Далее проводим полный набор экспериментов в соответствии с планом, используя функциональный эквивалент системы – функцию systemeqv

%цикл по совокупности экспериментов стратегического плана for j=1:N, a=fraceks(j,1);

```
b=fraceks(j,2);
%щикл статистических испытаний
for k=1:NE,
%имитация функционирования системы
u(k)=systemeqv(a,b);
end;
%оценка параметров (реакции) по выборке наблюдений
mx=mean(u);
DX=std(u)^2;
Y(j)=DX;
%формирование и отображение гистограммы с 12-ю интервалами
figure;
hist(u,12);
end;
```

Для визуального анализа характера распределения случайной величины дополнительно построим гистограммы в различных точках факторного пространства, графики которых могут быть просмотрены после завершения моделирования.

Далее в соответствии с основными соотношениями раздела 2.4 определяется вектор коэффициентов регрессии

```
%определение коэффициентов регрессии C=X*X'; b_=inv(C)*X*Y' с результатом b_ = 26.6395 24.8441 21.6868 20.2838
```

После этого целесообразно осуществить отображение полученной в ходе эксперимента зависимости показателя эффективности от выбранных факторов с использованием средств трехмерной графики MATLAB. Для

формируется массив значений поверхности реакции использованием преобразования масштаба исходных значений факторов в значения, лежащие в диапазоне от -1 до 1. Одновременно представляет построение реальной (истинной) поверхности реакции использованием соотношения (6.1) для величины D в виде массива значений Уо. Соответствующая последовательность операторов имеет ВИД %формирование зависимости реакции системы на множестве %реальных значений факторов A=minf(1):0.1:maxf(1);B=minf(2):0.1:maxf(2);[k N1]=size(A);[k N2]=size(B);for i=1:N1, for i=1:N2, an(i)=2*(A(i)-minf(1))/(maxf(1)-minf(1))-1;bn(j)=2*(B(j)-minf(2))/(maxf(2)-minf(2))-1;%экспериментальная поверхность реакции Yc(j,i)=b (1)+an(i)*b (2)+bn(j)*b (3)+an(i)*bn(j)*b (4);%теоретическая поверхность реакции $Y_0(j,i)=B(j)^2;\%(A(i)^2)*exp(B(j)^2)*(exp(B(j)^2)-1);$ end; end; % отображение зависимостей в трехмерной графике [x,y]=meshgrid(A,B); figure; subplot(1,2,1),plot3(x,y,Yc),xlabel('fact a'), ylabel('fact b'), zlabel('Yc'), title('System output'), grid on, subplot(1,2,2),plot3(x,y,Yo),xlabel('fact a'), ylabel('fact b'), zlabel('Yo'),

title('System output'),

grid on;

В результате получим отображение результатов моделирования, представленное на рис. 6.2, где слева размещается экспериментальная, а справа — реальная (теоретически рассчитанная) зависимость дисперсии отклика от исследуемых факторов.

Из приведенного рисунка видно, что полученная на основе линейной регрессии с учетом взаимодействия факторов зависимость приближенно отображает ход реальной зависимости. Подобное приближение будет тем хуже, чем больше диапазоны значений факторов. Этот вопрос может быть исследован самостоятельно.

Рис. 6.2. Экспериментальная и реальная (теоретическая) зависимости реакции

Для рис. 6.3 сравнения пример соответствующих на дан зависимостей при использовании качестве функции systemegy В генератора гауссовской случайной величины с параметрами m=a, $D = b^2$. Их анализ показывает, что в данном примере первый фактор не влияет на оцениваемый показатель эффективности и взаимодействие факторов отсутствует.

Рис. 6.3. Экспериментальная и реальная (теоретическая) зависимости реакции

Выполнение исследований рамках данной работы В осуществляться с использованием распределений различных случайных В таблице 6.1 качестве датчиков отклика системы. представлены наиболее распространенные распределения непрерывных случайных величин и алгоритмы их генерации с использованием стандартных датчиков равномерной и гауссовской случайных величин. Для имитации процесса функционирования системы большим факторов можно использовать различные количеством композиции представленных случайных величин (суммы, произведения, отношения и т.п.).

Таблица 6.1. Алгоритмы генерации случайных величин

% п/п	№ Наименова- п/п ние	Обозначе- ние, пара- метры мас- штаба и формы	Плотность распределения вероятностей и моменты m и D	Алгоритм генерации
-	Равномерное R : a, b распределе- ние	R:a,b	$f(x) = \begin{cases} 1/b, & a \le x \le a + b, \\ 0, & x < a, & x > a + b, \end{cases}$ m = a + b/2, $D = b^2/12$	$R \sim a + b[R^{(0)}:0,1]$ $R^{(0)} = [R:0,1] - $ датчик равновероятной случайной величины в диапазоне $[0,1]$
2	Нормальное N:µ, о распределе- ние		$f(x) = \frac{1}{\sigma(2\pi)^{1/2}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right],$ $m = \mu,$ $D = \sigma^2$	$N:\mu,\sigma\sim(\sum_{i}^{12}R_{i}^{(0)}-6)\sigma+\mu.$
3	Экспонен- циальное распределе- ние	E:b	$f(x) = \frac{1}{b} \exp(-\frac{x}{b}),$ $m = b,$ $D = b^{2}$	$E:b\sim -b\log R^{(0)}$

Таблица 6.1. Продолжение

Алгоритм генерации	L:μ,.σ~μexp(σ[N:0,1])	$\gamma:b,c\sim -b\log(\prod_{i=1}^cR_i^{(0)})$	$\beta: v, w \sim \frac{S_1}{S_1 + S_2},$ $S_1 = \left(R_1^{(0)}\right)^{1/v},$ $S_2 = \left(R_2^{(0)}\right)^{1/w},$ $S_1 + S_2 \le 1$
Плотность распределения вероятностей и моменты m и D	$f(x) = \frac{1}{x\sigma(2\pi)^{1/2}} \exp\left\{\frac{-[\log(x/\mu)]^2}{2\sigma^2}\right\},$ $m = \mu \exp(\frac{1}{2}\sigma^2),$ $D = \mu^2 \exp^2(\sigma^2)(\exp^2(\sigma^2) - 1)$	$\begin{split} f(x) &= (x/b)^{c-1} [\exp(-x/b)]/b\Gamma(c), \\ \Gamma(c) &= \int\limits_0^\infty \exp(-u)u^{c-1}du - \text{гамма-функция}, \\ m &= bc, \\ D &= b^2c \end{split}$	$\begin{split} f(x) &= x^{ v-1} (1-x)^{ w-1} / B(v,w) , \\ B(v,w) &= \int\limits_0^1 \!\! u^{ v-1} (1-u)^{ w-1} du - \text{бета-функция}, \\ m &= v / (v+w) , \\ D &= vw / (v+w)^2 (v+w+1) \end{split}$
Обозначе- ние, пара- метры мас- штаба и формы	L:μ,σ	γ:b,c	β:v,w
№ Наименова- п/п ние	Логнор- мальное распределе- ние	Гамма- распределе- ние	Бета- распределе- ние
% п/п	4	S	9

Таблица 6.1. Продолжение

		Обозначе-		
% II/II	№ Наименова- п/п ние	ние, пара- метры мас- штаба и формы	Плотность распределения вероятностей и моменты m и D	Алгоритм генерации
7	Распреде- ление экс- тремально- го значения	Xe:a,b	$\begin{split} f(x) &= (1/b) \exp[(x-a)/b] \exp\{-\exp[(x-a)/b]\}, & \text{ Xe: a, b} \sim a + b \log \log R^{(0)} \\ m &= a + b \; (-0.57721), \\ D &= b^2 \pi^2 \; / 6 \end{split}$	$Xe:a,b\sim a+b\log\left \log R^{(0)}\right $
∞	Логистиче- ское рас- пределение	XI:a,k	$f(x) = \frac{\exp[(x-a)/k]}{k\{1 + \exp[(x-a)/k]\}^2},$ $m = a,$ $D = k^2 \pi^2 / 3$	$X : a, k \sim a + k \log[R^{(0)}/(1-R^{(0)})]$
6	9 Распреде- ление Паре- то	X:c	$f(x) = cx^{-c-1}, c > 2,$ m = c/(c-1), $D = c/(c-2) - [c/(c-1)]^2$	$\mathbf{X}: \mathbf{c} \sim (1/\mathbf{R}^{(0)})^{1/c}$

Таблица 6.1. Окончание

№ п/п	№ Наименова- п/п ние	Обозначе- ние, пара- метры мас- штаба и формы	Плотность распределения вероятностей и моменты m и D	Алгоритм генерации
10	10 Распреде- ление Вей- булла		$f(x) = (cx^{c-1}/b^c) \exp[-(x/b)^c],$ $m = b\Gamma[(c+1)/c],$ $D = b^2 \{\Gamma[(c+2)/c] - \Gamma^2[(c+1)/c]\}$	$W: b, c \sim b(-\log R^{(0)})^{1/c}$
11	11 Распреде- ление Эр- лангта	Er:b, с (е – целое)	$f(x) = \frac{(x/b)^{c-1} \exp(-x/b)}{b(c-1)!}$ m = bc, D = b ² c.	$Er:b,\;c\sim -b\;\log \left\lceil \prod_{i=1}^c R_i^{(0)} \right\rceil$
12	12 Распреде- ление Коши	C:b, c	$f(x) = 1/\pi b \{[(x-a)/b]^2 + 1\}$	$C: 0,1 \sim tg(2\pi R^{(0)})$, $C: 0,1 \sim [N_1:0,1]/[N_2:0,1]$