Proof: Ideal Gas Law - consider 1 particle in a box with a piston _ cross-section A assume elastic collisions smooth walls $\frac{\sqrt{x}}{\sqrt{x}}$ $\frac{x}{\sqrt{x}}$ $\frac{x}{\sqrt{x}}$ $\frac{x}}{\sqrt{x}}$ $\frac{x}{\sqrt{x}}$ $\frac{x}{\sqrt{x}}$ $\frac{x}{\sqrt{x}}$ $\frac{x}{\sqrt{x}}$ pressure on pitton $P = \frac{\langle F_x \rangle}{\Delta}$ average $F_x =$ $F_x = 0$ most of the time $F_x = m a_x = m \frac{\Delta V_x}{\Delta t}$ also force on particle (N3L) $\langle F_{\chi} \rangle = m \left\langle \frac{\Delta V_{\chi}}{\omega t} \right\rangle$ Average over time it takes to go form $\Delta V_x = V_{xf} - V_{xi} = -N_x I - |V_x| = - \frac{\lambda}{V_x}$ $\langle F_{\chi} \rangle = m \frac{2|v_{\chi}|}{2L/|v_{\chi}|} = \frac{m|v_{\chi}|^2}{l} \frac{minus sign}{doesn't matter}$ $P = \frac{\langle F_x \rangle}{A} = \frac{m |v_x|^2}{AL_x} \Rightarrow PV = m v_x^2$ volume V For N independent particles, $P_{V} = m_{1} V_{1x}^{2} + m_{2} V_{2x}^{2} + m_{3} V_{3x}^{2} + \dots + m_{N} V_{Nx}^{2}$ $V_{1x} = m_{1} = m_{2} = m_{1}$ $V_{2x} = m_{1} = m_{2} = m_{1}$ = 2N(\frac{1}{2} m Vx^2)

Leguipodition theorem PV - 2N (& KBT) PV = NKBT

Chapter 2

· Counting outcomes or states

- possible outcomes of an event if I ip a coin' $\Omega = 2$ roll a six-sided de' $\Omega = 6$

. Counting possible states of a system

What is a "state"?

- light bulb ! on or off 12=2

- one coin un a table: Hort 12=2

volume dial

- set of coins

eg. 3 coins

HHH THH

THT 2 = 8 = 2

HTH TTH +TT TTT

system of Independent objects

each with Ω_1 possible states then $\Omega = \Omega_1$

other examples of states

-position of note book on a table

- molecules in this room

- position of each molecule each molecule

Regranging Nitems ARCDE

e.g. N=5 ABCDE

choose 1st in line: 5x

choose 2nd in line: 4x

2x

1

0-5x4x3x2x1 = 5! = 120

 $0 = 5 \times 4 \times 3 \times 2 \times 1 = 5! = 120$ N! = N(N-1)(N-2) = 3(2)(1)

Can recreange ABC 3!=6 ways

ABC ABB

What if some and objects

ACB ABB

BAC BAB

BCA BBA

CAB BAB

CBA BBA

CBA BBA

3! overcounts by a

foctor of 2! $\Omega = \frac{3!}{2!}$

Q.q. AAAB 4! = 24 ways to rearrange 4 objectsAABA each pattern of AAAB will show ABAA Vp 3! = 6 times in this RAAA list of 24 (rearrange A's) $2 = \frac{4!}{2!} = 4$

In general, if N objects and there are n_1 duplicates of 1 n_2 duplicates of another etc $\Omega = \frac{N!}{n_1!n_2! - \dots}$