

<220>

SEQUENCE LISTING

```
GOTO, Masaaki
      TSUDA, Eisuke
      MOCHIZUKI, Shin'ichi
      YANO, Kazuki
      KOBAYASHI, Fumie
      SHIMA, Nobuyuki
      YASUDA, Hisataka
      NAKAGAWA, Nobuaki
      MORINAGA, Tomonori
      UEDA, Masatsugu
      HIGASHIO, Kanji
<120> Novel Proteins and Methods for Producing the Proteins
<130> 16991.010
<140> US 08/915,004
<141> 1997-08-20
<150> PCT/JP96/00374
<151> 1996-02-20
<150> JP 207508/1995
<151> 1995-07-21
<150> JP 054977/1995
<151> 1995-02-20
<160> 108
<170> PatentIn version 3.1
<210> 1
<211>
      6
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<222> (1)..(1)
\langle 223 \rangle X = unknown
<400> 1
Xaa Tyr His Phe Pro Lys
<210>
       2
<211> 14
<212> PRT
<213> Homo sapiens
```

```
<221> MISC_FEATURE
<222> (1)..(1)
<223> X = unknown
<220>
<221> MISC_FEATURE
<222> (5)..(5)
\langle 223 \rangle X = unknown
<220>
<221> MISC FEATURE
\langle 222 \rangle (13)...(13)
\langle 223 \rangle X = unknown
<400> 2
Xaa Gln His Ser Xaa Gln Glu Gln Thr Phe Gln Leu Xaa Lys
<210> 3
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<222> (1)..(1)
\langle 223 \rangle X = unknown
<400> 3
Xaa Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys
                 5
<210> 4
<211> 380
<212> PRT
<213> Homo sapiens
<400> 4
Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His
Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His
             20
Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr
         35
                                40
                                                      45
```

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu

Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala 275 280 285

Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile 290 295 300

Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr 305 310 315 320

Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe 325 330 335

Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His 340 345 350

Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile 355 360 365

Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 375 380

<210> 5

<211> 401

<212> PRT

<213> Homo sapiens

<400> 5

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu

Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105	Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr
Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe
Gly	Val 130	Val	Gln	Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg
Cys 145	Pro	Asp	Gly	Phe	Phe 150	Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160
Arg	Lys	His	Thr	Asn 165	Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys
Gly	Asn	Ala	Thr 180	His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr
Gln	Lys	Cys 195	Gly	Ile	Asp	Val	Thr 200	Leu	Cys	Glu	Glu	Ala 205	Phe	Phe	Arg
Phe	Ala 210	Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val
Asp 225	Asn	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240
Lys	Arg	Gln	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255	Leu
Trp	Lys	His	Gln 260	Asn	Lys	Asp	Gln	Asp 265	Ile	Val	Lys	Lys	Ile 270	Ile	Gln
Asp	Ile	Asp 275	Leu	Cys	Glu	Asn	Ser 280	Val	Gln	Arg	His	Ile 285	Gly	His	Ala
Asn	Leu 290	Thr	Phe	Glu	Gln	Leu 295	Arg	Ser	Leu	Met	Glu 300	Ser	Leu	Pro	Gly
Lys 305	Lys	Val	Gly	Ala	Glu 310	Asp	Ile	Glu	Lys	Thr 315	Ile	Lys	Ala	Cys	Lys 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

<210> 6 <211> 1206

<212> DNA

<213> Homo sapiens

<400> 6

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacqagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geeeteetgg atttggagtg gtgeaagetg gaaceeeaga gegaaataea 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600 ctgtgtgagg aggcattctt caggtttgct gttcctacaa agtttacgcc taactggctt 660 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720 aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780

840 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa 900 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa 960 cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac 1020 1080 accttgaagg gcctaatgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140 tatcagaagt tatttttaga aatgataggt aaccaggtcc aatcagtaaa aataagctgc 1200 1206 ttataa

<210> 7

<211> 15

<212> PRT

<213> Homo sapiens

<400> 7

Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

<210> 8

<211> 1185

<212> DNA

<213> Homo sapiens

<400> 8

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 300 ctatactgca gccccgtgtg caaggagtgc aatcgcaccc acaaccgcgt gtgcgaatgc aaggaagggc gctaccttga gatagagttc tgcttgaaac ataggagctg ccctcctgga 360 420 tttggagtgg tgcaagctgg aaccccagag cgaaatacag tttgcaaaag atgtccagat 480 gggttcttct caaatgagac gtcatctaaa gcaccctgta gaaaacacac aaattgcagt gtctttggtc tcctgctaac tcagaaagga aatgcaacac acgacaacat atgttccgga 540 aacagtgaat caactcaaaa atgtggaata gatgttaccc tgtgtgagga ggcattcttc 600 aggtttgctg ttcctacaaa.gtttacgcct aactggctta gtgtcttggt agacaatttg 660

cctggcacca	aagtaaacgc	agagagtgta	gagaggataa	aacggcaaca	cagctcacaa	720
gaacagactt	tccagctgct	gaagttatgg	aaacatcaaa	acaaagacca	agatatagtc	780
aagaagatca	tccaagatat	tgacctctgt	gaaaacagcg	tgcagcggca	cattggacat	840
gctaacctca	ccttcgagca	gcttcgtagc	ttgatggaaa	gcttaccggg	aaagaaagtg	900
ggagcagaag	acattgaaaa	aacaataaag	gcatgcaaac	ccagtgacca	gatcctgaag	960
ctgctcagtt	tgtggcgaat	aaaaaatggc	gaccaagaca	ccttgaaggg	cctaatgcac	1020
gcactaaagc	actcaaagac	gtaccacttt	cccaaaactg	tcactcagag	tctaaagaag	1080
accatcaggt	tccttcacag	cttcacaatg	tacaaattgt	atcagaagtt	atttttagaa	1140
atgataggta	accaggtcca	atcagtaaaa	ataagctgct	tataa		1185

<210> 9

<211> 394

<212> PRT

<213> Homo sapiens

<400> 9

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 $$ 5 $$ 10 $$ 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Cys Asn Arg Thr His Asn Arg 85 90 95

Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu 100 105 110

Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr 115 120 125

Pro	Glu 130	Arg	Asn	Thr	Val	Cys 135	Lys	Arg	Cys	Pro	Asp 140	Gly	Phe	Phe	Ser
Asn 145	Glu	Thr	Ser	Ser	Lys 150	Ala	Pro	Cys	Arg	Lys 155	His	Thr	Asn	Cys	Ser 160
Val	Phe	Gly	Leu	Leu 165	Leu	Thr	Gln	Lys	Gly 170	Asn	Ala	Thr	His	Asp 175	Asn
Ile	Cys	Ser	Gly 180	Asn	Ser	Glu	Ser	Thr 185	Gln	Lys	Cys	Gly	Ile 190	Asp	Val
Thr	Leu	Cys 195	Glu	Glu	Ala	Phe	Phe 200	Arg	Phe	Ala	Val	Pro 205	Thr	Lys	Phe
Thr	Pro 210	Asn	Trp	Leu	Ser	Val 215	Leu	Val	Asp	Asn	Leu 220	Pro	Gly	Thr	Lys
Val 225	Asn	Ala	Glu	Ser	Val 230	Glu	Arg	Ile	Lys	Arg 235	Gln	His	Ser	Ser	Gln 240
Glu	Gln	Thr	Phe	Gln 245	Leu	Leu	Lys	Leu	Trp 250	Lys	His	Gln	Asn	Lys 255	Asp
Gln	Asp	Ile	Val 260	Lys	Lys	Ile	Ile	Gln 265	Asp	Ile	Asp	Leu	Cys 270	Glu	Asn
Ser	Val	Gln 275	Arg	His	Ile	Gly	His 280	Ala	Asn	Leu	Thr	Phe 285	Glu	Gln	Leu
Arg	Ser 290	Leu	Met	Glu	Ser	Leu 295	Pro	Gly	Lys	Lys	Val 300	Gly	Ala	Glu	Asp
Ile 305	Glu	Lys	Thr	Ile	Lys 310	Ala	Cys	Lys	Pro	Ser 315	Asp	Gln	Ile	Leu	Lys 320
Leu	Leu	Ser	Leu	Trp 325	Arg	Ile	Lys	Asn	Gly 330	Asp	Gln	Asp	Thr	Leu 335	Lys
Gly	Leu	Met	His 340	Ala	Leu	Lys	His	Ser 345	Lys	Thr	Tyr	His	Phe 350	Pro	Lys

Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe 360

Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn 375

Gln Val Gln Ser Val Lys Ile Ser Cys Leu 385 390

<210> 10

<211> 1089 <212> DNA <213> Homo sapiens

<400> 10

<400> 10						
atgaacaagt	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgtgtgagg	aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagata	ttgacctctg	tgaaaacagc	840
gtgcagcggc	acattggaca	tgctaacctc	agtttgtggc	gaataaaaaa	tggcgaccaa	900
gacaccttga	agggcctaat	gcacgcacta	aagcactcaa	agacgtacca	ctttcccaaa	960
actgtcactc	agagtctaaa	gaagaccatc	aggttccttc	acagcttcac	aatgtacaaa	1020
ttgtatcaga	agttatttt	agaaatgata	ggtaaccagg	tccaatcagt	aaaaataagc	1080
tgcttataa						1089

<210> 11

<211> 362

<212> PRT

<213> Homo sapiens

<400> 11

Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 $$ 5 $$ 10 $$ 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

210 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 250 Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 280 285 275 Asn Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys 290 295 300 Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys 305 315 320 310 Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn 340 345 Gln Val Gln Ser Val Lys Ile Ser Cys Leu <210> 12 <211> 465 <212> DNA <213> Homo sapiens <400> 12 atgaacaagt tgctgtgctg ctcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val

cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa cataggaget geoetectgg atttggagtg gtgcaagetg gtaegtgtea atgtgcagea aaattaatta ggatcatgca aagtcagata gttgtgacag tttag <210> 13 <211> 154 <212> PRT <213> Homo sapiens <400> 13 Met Asn Lys Leu Cys Cys Ser Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 55 Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 80 Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 120 Gly Val Val Gln Ala Gly Thr Cys Gln Cys Ala Ala Lys Leu Ile Arg 130 135 Ile Met Gln Ser Gln Ile Val Val Thr Val 145 150

360

420

465

<210> 14 <211> 438

<212> DNA <213> Homo sapiens
<400> 14 atgaacaagt tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc
caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt
ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc
cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa
cataggaget geeeteetgg atttggagtg gtgcaagetg gatgeaggag aagaeecaag
ccacagatat gtatctga
<210> 15 <211> 145 <212> PRT <213> Homo sapiens
<400> 15
Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15
Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30
Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45
Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60
Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80
Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95
Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 . 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe

115 120 125

GTÀ	va. 130	l val	GIN	Ala	GIY	135	Arg	Arg	Arg	Pro	Lys 140	Pro	Gin	iie	Cys	
Ile 145											•					
<210 <211 <212 <213	L> 2>	16 20 DNA Arti	ficia	al Se	quer	nce										
<220 <223		Syntl	hetic	Sec	Juenc	се										
<400 aatt		16 ccct	cacta	aagg	ıg											20
<210 <211 <212 <213	L> 2>	17 22 DNA Arti:	ficia	al Se	equer	nce										
<220 <223		Synt	hetic	: Seq	luenc	ce										
<400 gtaa		17 egac	tcact	atag	ıg go	2										22
<210 <211 <212 <213	L> 2>	18 20 DNA Arti	ficia	ıl Se	quer	nce										
<220 <223		Synt	hetic	: Seq	luenc	ce										
<400 acat		18 aaac a	aaaga	ıccaa	ıg											20
<210 <211 <212 <213	L> 2>	19 20 DNA Arti:	ficia	al Se	quer	nce										
<220 <223		Syntl	hetic	: Seq	luenc	ce										
<400 tctt		19 cctt	tgttt	tgat	g											20

<210> <211> <212> <213>		
<220> <223>	Synthetic Sequence	
<400> ttattc	20 gcca caaactgagc	20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> ttgtga	21 agct gtgaaggaac	20
<210><211><211><212><213>	20	
<220> <223>	Synthetic Sequence	
<400> gctcag	22 tttg tggcgaataa	20
<210><211><211><212><213>	23 20 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> gtggga	23 gcag aagacattga	20
<210><211><211><212><213>	20 DNA	
<220> <223>	Synthetic Sequence	

<400>		20
aatgaa	caac ttgctgtgct	20
<210>	25	
<211> <212>		
<213>		
<220>		
<223>	Synthetic Sequence	
<400>	25	
	atgt cctcctggta	20
_		
<210>	26	
<211>		
<212>		
<213>		
.000:		
<220> <223>	Synthetic Sequence	
\2237	Synthetic Sequence	
<400>	26	
aggtag	gtac caggaggaca	20
<210>	27	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
. 4 0 0 .		
<400>	27 ccct cctggatttg	20
gagetg	cool cotygatity	20
<210>	28	
<211> <212>	20 DNA	
<213>		
	*	
<220>		
<223>	Synthetic Sequence	
<400>	28	
	gtat ttcgctctgg	20
<210>	29	
<211>		
<212>	DNA	
<213>	Artificial Sequence	

<220> <223>	Synthetic Sequence	
	29 ggag gcattcttca	20
<210><211><211><212><213>	32	
<220> <223>	Synthetic Sequence	
<400> gaatca	30 actc aaaaaagtgg aatagatgtt ac	32
<210><211><211><212><213>		
<220> <223>	Synthetic Sequence	
<400> gtaaca	31 tota ttocactttt ttgagttgat to	32
<210><211><211><212><213>	30	
<220> <223>	Synthetic Sequence	
<400> atagate	32 gtta ccctgagtga ggaggcattc	30
<210><211><211><212><213>		
<220> <223>	Synthetic Sequence	
<400> gaatgc	33 ctcc tcactcaggg taacatctat	30
<210>	34	

```
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 34
caagatattg acctcagtga aaacagcgtg c
                                                                     31
<210> 35
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 35
gcacgctgtt ttcactgagg gcaatatctt g
                                                                     31
<210> 36
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 36
aaaacaataa aggcaagcaa acccagtgac c
                                                                     31
<210> 37
<211>
      31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 37
ggtcactggg tttgcttgcc tttattgttt t
                                                                     31
<210> 38
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 38
tcagtaaaaa taagcagctt ataactggcc a
                                                                     31
```

```
<210> 39
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 39
                                                                    31
tggccagtta taagctgctt atttttactg a
<210> 40
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 40
                                                                    22
ttggggttta ttggaggaga tg
<210> 41
<211>
      36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 41
accacccagg aaccttgccc tgaccactac tacaca
                                                                    36
<210> 42
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 42
gtcagggcaa ggttcctggg tggtccactt aatgga
                                                                    36
<210> 43
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
```

<400> accgtg	43 tgcg ccgaatgcaa ggaagggcgc tacctt	36
<210><211><211><212><213>	44 36 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> ttcctt	44 gcat teggegeaca eggtetteea etttge	36
<210><211><211><212><213>		
<220> <223>	Synthetic Sequence	
<400> aaccgc	45 gtgt gcagatgtcc agatgggttc ttctca	36
<210><211><211><212><213>	DNA	
<220> <223>	Synthetic Sequence	
<400> atctgg	46 acat ctgcacacgc ggttgtgggt gcgatt	36
<210> <211> <212> <213>	47 36 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400>		26
acagtt	tgca aatccggaaa cagtgaatca actcaa	36
<210><211><211><212><213>	DNA	

<220> <223>	Synthetic Sequence	
<400> actgttt	48 cccg gatttgcaaa ctgtatttcg ctctgg	36
<210><211><211><212><213>	36	
<220> <223>	Synthetic Sequence	
<400> aatgtg	49 gaat agatattgac ctctgtgaaa acagcg	36
<210> <211> <212> <213>		
<220> <223>	Synthetic Sequence	
<400> agaggto	50 caat atctattcca catttttgag ttgatt	36
<210> <211> <212> <213>	36	
<220> <223>	Synthetic Sequence	
<400> agatcat	51 ceca agaegeaeta aageaeteaa agaegt	36
<210> <211> <212> <213>	52 36 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> gctttag	52 gtgc gtcttggatg atcttcttga ctatat	36
<210>	53	

<211> <212> <213>	29 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
	53 ageg eccageegee geetecaag	29
<210><211><211><212><213>	20	
<220> <223>	Synthetic Sequence	
<400> tttgag	54 tgct ttagtgcgtg	20
<210><211><211><212><212><213>	30 DNA	
<220> <223>	Synthetic Sequence	
<400> tcagta	55 aaaa taagctaact ggaaatggcc	30
<210><211><211><212><213>	56 30 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> ggccat	56 ttcc agttagctta tttttactga	30
<210><211><211><212><213>	DNA	
<220> <223>	Synthetic Sequence	
<400> ccggate	57 cctc agtgctttag tgcgtgcat	29

<210> <211> <212> <213>		
<220> <223>	Synthetic Sequence	
<400> ccggate	58 cete attggatgat ettettgae	29
<210><211><211><212><213>	29	
<220> <223>	Synthetic Sequence	
<400> ccggato	59 cctc atattccaca tttttgagt	29
<210> <211> <212> <213>	29 DNA	
<220> <223>	Synthetic Sequence	
<400> ccggato	60 cete atttgcaaac tgtattteg	29
<210> <211> <212> <213>		
<220> <223>	Synthetic Sequence	
<400> ccggato	61 cete attegeacae geggttgtg	29
<210><211><211><212><213>	PRT	
<400>	62	

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 40 Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 55 Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys 165 170 175 Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 Gln Lys Ser Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

<210> 63

<211> 401

<212> PRT

<213> Homo sapiens

<400> 63

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys	Trp	Thr	Thr 20	Gln	Glu	Thr	Phe	Pro 25	Pro	Lys	Tyr	Leu	His 30	Tyr	Asp
Glu	Glu	Thr 35	Ser	His	Gln	Leu	Leu 40	Cys	Asp	Lys	Cys	Pro 45	Pro	Gly	Thr
Tyr	Leu 50	Lys	Gln	His	Cys	Thr 55	Ala	Lys	Trp	Lys	Thr 60	Val	Cys	Ala	Pro
Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	Asp	Ser	Trp	His 75	Thr	Ser	Asp	Glu	Cys 80
Leu	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90	Gln	Tyr	Val	Lys	Gln 95	Glu
Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105	Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr
Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe
Gly	Val 130	Val	Gln	Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg
Cys 145	Pro	Asp	Gly	Phe	Phe 150	Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160
Arg	Lys	His	Thr	Asn 165	Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys
Gly	Asn	Ala	Thr 180	His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr
Gln	Lys	Cys 195	Gly	Ile	Asp	Val	Thr 200	Leu	Ser	Glu	Glu	Ala 205	Phe	Phe	Arg
Phe	Ala 210	Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val
Asp	Asn	Leu	Pro	Gly	Thr	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 280 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 315 310 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 375 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 Leu <210> 64 <211> 401 <212> PRT <213> Homo sapiens <400> 64 Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 10

30

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp

25

20

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 Asp Ile Asp Leu Ser Glu Asn Ser Val Gln Arg His Ile Gly His Ala 280 285 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 380 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 390 385 395 400 Leu

<210> 65 <211> 401 <212> PRT <213> Homo sapiens

<400> 65

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 $$ 5 $$ 10 $$ 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr

35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Ser Lys 305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

<210> 66

<211> 401

<212> PRT

<213> Homo sapiens

<400> 66

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 . 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Ser 385 390 395 400

Leu

<210> 67

<211> 360

<212> PRT

<213> Homo sapiens

<400> 67

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser 20 25 30

Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu 35 40 45

Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 50 55 60

Glu 65	Cys	Lys	Glu	Gly	Arg 70	Tyr	Leu	Glu	Ile	Glu 75	Phe	Cys	Leu	Lys	His 80
Arg	Ser	Cys	Pro	Pro 85	Gly	Phe	Gly	Val	Val 90	Gln	Ala	Gly	Thr	Pro 95	Glu
Arg	Asn	Thr	Val 100	Cys	Lys	Arg	Cys	Pro 105	Asp	Gly	Phe	Phe	Ser 110	Asn	Glu
Thr	Ser	Ser 115	Lys	Ala	Pro	Cys	Arg 120	Lys	His	Thr	Asn	Cys 125	Ser	Val	Phe
Gly	Leu 130	Leu	Leu	Thr	Gln	Lys 135	Gly	Asn	Ala	Thr	His 140	Asp	Asn	Ile	Cys
Ser 145	Gly	Asn	Ser	Glu	Ser 150	Thr	Gln	Lys	Cys	Gly 155	Ile	Asp	Val	Thr	Leu 160
Cys	Glu	Glu	Ala	Phe 165	Phe	Arg	Phe	Ala	Val 170	Pro	Thr	Lys	Phe	Thr 175	Pro
Asn	Trp	Leu	Ser 180	Val	Leu	Val	Asp	Asn 185	Leu	Pro	Gly	Thr	Lys 190	Val	Asn
Ala	Glu	Ser 195	Val	Glu	Arg	Ile	Lys 200	Arg	Gln	His	Ser	Ser 205	Gln	Glu	Gln
Thr	Phe 210	Gln	Leu	Leu	Lys	Leu 215	Trp	Lys	His	Gln	Asn 220	Lys	Asp	Gln	Asp
Ile 225	Val	Lys	Lys	Ile	Ile 230	Gln	Asp	Ile	Asp	Leu 235	Cys	Glu	Asn	Ser	Val 240
Gln	Arg	His	Ile	Gly 245	His	Ala	Asn	Leu	Thr 250	Phe	Glu	Gln	Leu	Arg 255	Ser
Leu	Met	Glu	Ser 260	Leu	Pro	Gly	Lys	Lys 265	Val	Gly	Ala	Glu	Asp 270	Ile	Glu
Lys	Thr	Ile 275	Lys	Ala	Cys	Lys	Pro 280	Ser	Asp	Gln	Ile	Leu 285	Lys	Leu	Leu

Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu 290 295 300

Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val

315

Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met 325 330 335

Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val 340 345 350

Gln Ser Val Lys Ile Ser Cys Leu 355 360

310

<210> 68 <211> 359 <212> PRT <213> Homo sapiens

<400> 68

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Glu 50 55 60

Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg 70 75 80

Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr 100 105 110

Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly
115 120 125

Leu	Leu 130	Leu	Thr	Gln	Lys	Gly 135	Asn	Ala	Thr	His	Asp 140	Asn	Ile	Cys	Ser
Gly 145	Asn	Ser	Glu	Ser	Thr 150	Gln	Lys	Cys	Gly	Ile 155	Asp	Val	Thr	Leu	Cys 160
Glu	Glu	Ala	Phe	Phe 165	Arg	Phe	Ala	Val	Pro 170	Thr	Lys	Phe	Thr	Pro 175	Asn
Trp	Leu	Ser	Val 180	Leu	Val	Asp	Asn	Leu 185	Pro	Gly	Thr	Lys	Val 190	Asn	Ala
Glu	Ser	Val 195	Glu	Arg	Ile	Lys	Arg 200	Gln	His	Ser	Ser	Gln 205	Glu	Gln	Thr
Phe	Gln 210	Leu	Leu	Lys	Leu	Trp 215	Lys	His	Gln	Asn	Lys 220	Asp	Gln	Asp	Ile
Val 225	Lys	Lys	Ile	Ile	Gln 230	Asp	Ile	Asp	Leu	Cys 235	Glu	Asn	Ser	Val	Gln 240
Arg	His	Ile	Gly	His 245	Ala	Asn	Leu	Thr	Phe 250	Glu	Gln	Leu	Arg	Ser 255	Leu
Met	Glu	Ser	Leu 260	Pro	Gly	Lys	Lys	Val 265	Gly	Ala	Glu	Asp	Ile 270	Glu	Lys
Thr	Ile	Lys 275	Ala	Cys	Lys	Pro	Ser 280	Asp	Gln	Ile	Leu	Lys 285	Leu	Leu	Ser
Leu	Trp 290	Arg	Ile	Lys	Asn	Gly 295	Asp	Gln	Asp	Thr	Leu 300	Lys	Gly	Leu	Met
His 305	Ala	Leu	Lys	His	Ser 310	Lys	Thr	Tyr	His	Phe 315	Pro	Lys	Thr	Val	Thr 320
Gln	Ser	Leu	Lys	Lys 325	Thr	Ile	Arg	Phe	Leu 330	His	Ser	Phe	Thr	Met 335	Tyr
Lys	Leu	Tyr	Gln 340	Lys	Leu	Phe	Leu	Glu 345	Met	Ile	Gly	Asn	Gln 350	Val	Gln

Ser Val Lys Ile Ser Cys Leu 355

<210> 69

<211> 363

<212> PRT

<213> Homo sapiens

<400> 69

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Arg Cys Pro Asp Gly Phe Phe 100 105 110

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys 115 120 125

Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp 130 135 140

Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp 145 150 155 160

Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys 165 170 175

Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr

180 185 190

Lys	Val	Asn	Ala	Glu	Ser	Val	Glu	Arg	Ile	Lys	Arg	Gln	His	Ser	Ser
		195					200					205			

- Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys 210 215 220
- Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu 225 230 235 240
- Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln 245 250 255
- Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu 260 265 270
- Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu 275 280 285
- Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu 290 295 300
- Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro 305 310 315 320
- Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser 325 330 335
- Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly 340 345 350
- Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 355 360
- <210> 70
- <211> 359
- <212> PRT
- <213> Homo sapiens
- <400> 70
- Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn 170 175 Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln

Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys 265 Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser 280 Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met 290 295 300 His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr 305 310 315 Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr 325 330 Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln 345 Ser Val Lys Ile Ser Cys Leu 355 <210> 71 <211> 326 <212> PRT <213> Homo sapiens <400> 71 Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 5 10 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 40 Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 55

75

80

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys

70

65

Leu Tyr	Cys Se	r Pro 85	Val	Cys	Lys	Glu	Leu 90	Gln	Tyr	Val	Lys	Gln 95	Glu
Cys Asn	Arg Th:		Asn	Arg	Val	Cys 105	Glu	Суѕ	Lys	Glu	Gly 110	Arg	Tyr
Leu Glu	Ile Gl	ı Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe
Gly Val 130	Val Gli	n Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg
Cys Pro 145	Asp Gl	y Phe	Phe 150	Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160
Arg Lys	His Th	r Asn 165	Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys
Gly Asn	Ala Th		Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr
Gln Lys	Cys Gl	y Ile	Asp	Ile	Asp 200	Leu	Cys	Glu	Asn	Ser 205	Val	Gln	Arg
His Ile 210	Gly Hi	s Ala	Asn	Leu 215	Thr	Phe	Glu	Gln	Leu 220	Arg	Ser	Leu	Met
Glu Ser 225	Leu Pr	o Gly	Lys 230	Lys	Val	Gly	Ala	Glu 235	Asp	Ile	Glu	Lys	Thr 240
Ile Lys	Ala Cy	s Lys 245	Pro	Ser	Asp	Gln	Ile 250	Leu	Lys	Leu	Leu	Ser 255	Leu
Trp Arg	Ile Ly		Gly	Asp	Gln	Asp 265	Thr	Leu	Lys	Gly	Leu 270	Met	His
Ala Leu	Lys Hi	s Ser	Lys	Thr	Tyr 280	His	Phe	Pro	Lys	Thr 285	Val	Thr	Gln
Ser Leu 290	Lys Ly	s Thr	Ile	Arg 295	Phe	Leu	His	Ser	Phe 300	Thr	Met	Tyr	Lys

Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser 305 310 315 320

Val Lys Ile Ser Cys Leu 325

<210> 72

<211> 327

<212> PRT

<213> Homo sapiens

<400> 72

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys

165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270

Asp Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr 275 280 285

Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr 290 295 300

Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln 305 310 315 320

Ser Val Lys Ile Ser Cys Leu 325

<210> 73

<211> 399

<212> PRT

<213> Homo sapiens

<400> 73

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

GIU	GIU	35	ser	nis	GIN	Leu	40	Cys	ASP	гÀг	cys	45	Pro	GIÀ	Thr
Tyr	Leu 50	Lys	Gln	His	Cys	Thr 55	Ala	Lys	Trp	Lys	Thr 60	Val	Cys	Ala	Pro
Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	Asp	Ser	Trp	His 75	Thr	Ser	Asp	Glu	Cys 80
Leu	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90	Gln	Tyr	Val	Lys	Gln 95	Glu
Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105	Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr
Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe
Gly	Val 130	Val	Gln	Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg
Cys 145	Pro	Asp	Gly	Phe	Phe 150	Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160
Arg	Lys	His	Thr	Asn 165	Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys
Gly	Asn	Ala	Thr 180	His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr
Gln	Lys	Cys 195	Gly	Ile	Asp	Val	Thr 200	Leu	Cys	Glu	Glu	Ala 205	Phe	Phe	Arg
Phe	Ala 210	Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val
Asp 225	Asn	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240
Lys	Arg	Gln	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255	Leu

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 295 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser 390 <210> 74 <211> 351 <212> PRT <213> Homo sapiens <400> 74 Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 5 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40

60

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro

55

50

Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	Asp	Ser	Trp	His 75	Thr	Ser	Asp	Glu	Cys 80
Leu	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90	Gln	Tyr	Val	Lys	Gln 95	Glu
Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105	Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr
Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe
Gly	Val 130	Val	Gln	Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg
Cys 145	Pro	Asp	Gly	Phe	Phe 150	Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160
Arg	Lys	His	Thr	Asn 165	Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys
Gly	Asn	Ala	Thr 180	His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr
Gln	Lys	Cys 195	Gly	Ile	Asp	Val	Thr 200	Leu	Cys	Glu	Glu	Ala 205	Phe	Phe	Arg
Phe	Ala 210	Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val
Asp 225	Asn	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240
Lys	Arg	Gln	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255	Leu
Trp	Lys	His	Gln 260	Asn	Lys	Asp	Gln	Asp 265	Ile	Val	Lys	Lys	Ile 270	Ile	Gln
Asp	Ile	Asp 275	Leu	Cys	Glu	Asn	Ser 280	Val	Gln	Arg	His	Ile 285	Gly	His	Ala

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 330 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His <210> 75 <211> 272 <212> PRT <213> Homo sapiens <400> 75 Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 5 1.0 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 40 Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 55 Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 110 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly

300

295

290

130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270

<210> 76

<211> 197

<212> PRT

<213> Homo sapiens

<400> 76

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile 195

<210> 77

<211> 143

<212> PRT

<213> Homo sapiens

<400> 77

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro

50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys 130 135 140

<210> 78

<211> 106

<212> PRT

<213> Homo sapiens

<400> 78

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu 100 105 <210> 79

<211> 393

<212> PRT

<213> Homo sapiens

<400> 79

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 $$ 5 $$ 10 $$ 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg

195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300 .

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310315315

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 380

Phe Leu Glu Met Ile Gly Asn Leu Val 385 390

<210> 80

<211> 321

<212> PRT

<213> Homo sapiens

<400> 80

Met 1	Asn	Asn	Leu	Leu 5	Cys	Cys	Ala	Leu	10	Phe	Leu	Asp	lle	Ser 15	Ile
Lys	Trp	Thr	Thr 20	Gln	Glu	Thr	Phe	Pro 25	Pro	Lys	Tyr	Leu	His 30	Tyr	Asp
Glu	Glu	Thr 35	Ser	His	Gln	Leu	Leu 40	Cys	Asp	Lys	Cys	Pro 45	Pro	Gly	Thr
Tyr	Leu 50	Lys	Gln	His	Cys	Thr 55	Ala	Lys	Trp	Lys	Thr 60	Val	Cys	Ala	Pro
Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	Asp	Ser	Trp	His 75	Thr	Ser	Asp	Glu	Cys 80
Leu	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90	Gln	Tyr	Val	Lys	Gln 95	Glu
Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105	Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr
Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe
Gly	Val 130	Val	Gln	Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg
Cys 145	Pro	Asp	Gly	Phe	Phe 150	Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160
Arg	Lys	His	Thr	Asn 165	Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys
Gly	Asn	Ala	Thr 180	His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr
Gln	Lys	Cys 195	Gly	Ile	Asp	Val	Thr 200	Leu	Cys	Glu	Glu	Ala 205	Phe	Phe	Arg
Phe	Ala 210	Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 250 Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 265 Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 280 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 295 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Ser Leu 310 315 Asp <210> 81 <211> 187 <212> PRT <213> Homo sapiens <400> 81 Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 5 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 25 30 20 Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 90 85

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly 180 185

<210> 82

<211> 84

<212> PRT

<213> Homo sapiens

<400> 82

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr $35 \hspace{1cm} 40 \hspace{1cm} 45$

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Leu Val

<210> 83 <211> 1206 <212> DNA <213> Homo sapiens

<400> 83 60 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 360 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 420 cataggaget geceteetgg atttggagtg gtgcaagetg gaaccecaga gegaaataca 480 540 600 660

gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aaagtggaat agatgttacc ctgtgtgagg aggcattctt caggtttgct gttcctacaa agtttacgcc taactggctt 720 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780 840 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa 900 960 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac 1020 1080 accttgaagg gcctaatgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140 tatcagaagt tatttttaga aatgataggt aaccaggtcc aatcagtaaa aataagctgc 1200 1206 ttataa

<210> 84 <211> 1206 <212> DNA <213> Homo sapiens

<400> 84
atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60

caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgagtgagg	aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acageteaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagata	ttgacctctg	tgaaaacagc	840
gtgcagcggc	acattggaca	tgctaacctc	accttcgagc	agcttcgtag	cttgatggaa	900
agcttaccgg	gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggcatgcaaa	960
cccagtgacc	agatcctgaa	gctgctcagt	ttgtggcgaa	taaaaaatgg	cgaccaagac	1020
accttgaagg	gcctaatgca	cgcactaaag	cactcaaaga	cgtaccactt	tcccaaaact	1080
gtcactcaga	gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattg	1140
tatcagaagt	tatttttaga	aatgataggt	aaccaggtcc	aatcagtaaa	aataagctgc	1200
ttataa						1206

<210> 85

<211> 1206

<212> DNA

<213> Homo sapiens

<400> 85

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300

cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgtgtgagg	aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagata	ttgacctcag	tgaaaacagc	840
gtgcagcggc	acattggaca	tgctaacctc	accttcgagc	agcttcgtag	cttgatggaa	900
agcttaccgg	gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggcatgcaaa	960
cccagtgacc	agatcctgaa	gctgctcagt	ttgtggcgaa	taaaaaatgg	cgaccaagac	1020
accttgaagg	gcctaatgca	cgcactaaag	cactcaaaga	cgtaccactt	tcccaaaact	1080
gtcactcaga	gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattg	1140
tatcagaagt	tatttttaga	aatgataggt	aaccaggtcc	aatcagtaaa	aataagctgc	1200
ttataa						1206

<210> 86 <211> 1206

<212> DNA

<213> Homo sapiens

<400> 86

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geceteetgg atttggagtg gtgeaagetg gaaceecaga gegaaataca 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540

600 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc ctgtgtgagg aggcattctt caggtttgct gttcctacaa agtttacgcc taactggctt 660 720 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 780 aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 840 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa 900 960 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcaagcaaa 1020 cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac accttgaagg gcctaatgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact 1080 gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140 tatcagaagt tatttttaga aatgataggt aaccaggtcc aatcagtaaa aataagctgc 1200 1206 ttataa

<210> 87

<211> 1206

<212> DNA

<213> Homo sapiens

<400> 87 60 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 120 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 180 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 300 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 360 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 420 cataggaget geeeteetgg atttggagtg gtgcaagetg gaaceccaga gegaaataca 480 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 600 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 660 ctgtgtgagg aggcattctt caggtttgct gttcctacaa agtttacgcc taactggctt agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720

aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa

780

aacaaagacc	aagatatagt	caagaagatc	atccaagata	ttgacctctg	tgaaaacagc	840
gtgcagcggc	acattggaca	tgctaacctc	accttcgagc	agcttcgtag	cttgatggaa	900
agcttaccgg	gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggcatgcaaa	960
cccagtgacc	agatcctgaa	gctgctcagt	ttgtggcgaa	taaaaaatgg	cgaccaagac	1020
accttgaagg	gcctaatgca	cgcactaaag	cactcaaaga	cgtaccactt	tcccaaaact	1080
gtcactcaga	gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattg	1140
tatcagaagt	tatttttaga	aatgataggt	aaccaggtcc	aatcagtaaa	aataagcagc	1200
ttataa						1206

<210> 88

<211> 1083

<212> DNA

<213> Homo sapiens

<400> 88

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 120 caggaacctt gccctgacca ctactacaca gacagctggc acaccagtga cgagtgtcta tactgcagcc ccgtgtgcaa ggagctgcag tacgtcaagc aggagtgcaa tcgcacccac 180 aaccgcgtgt gcgaatgcaa ggaagggcgc taccttgaga tagagttctg cttgaaacat 240 300 aggagetgee etectggatt tggagtggtg caagetggaa eeceagageg aaataeagtt 360 tgcaaaagat gtccagatgg gttcttctca aatgagacgt catctaaagc accctgtaga aaacacacaa attgcagtgt ctttggtctc ctgctaactc agaaaggaaa tgcaacacac 420 gacaacatat gttccggaaa cagtgaatca actcaaaaat gtggaataga tgttaccctg 480 tgtgaggagg cattetteag gtttgetgtt cetacaaagt ttaegeetaa etggettagt 540 gtcttggtag acaatttgcc tggcaccaaa gtaaacgcag agagtgtaga gaggataaaa 600 cggcaacaca gctcacaaga acagactttc cagctgctga agttatggaa acatcaaaac 660 720 aaagaccaag atatagtcaa gaagatcatc caagatattg acctctgtga aaacagcgtg cagcggcaca ttggacatgc taacctcacc ttcgagcagc ttcgtagctt gatggaaagc 780 ttaccgggaa agaaagtggg agcagaagac attgaaaaaa caataaaggc atgcaaaccc 840 agtgaccaga tcctgaagct gctcagtttg tggcgaataa aaaatggcga ccaagacacc 900 ttgaagggcc taatgcacgc actaaagcac tcaaagacgt accactttcc caaaactgtc 960 actcagagtc taaagaagac catcaggttc cttcacagct tcacaatgta caaattgtat 1020

cagaagttat ttttagaaat gataggtaac caggtccaat cagtaaaaat aagctgctta	1080
taa	1083
<210> 89 <211> 1080 <212> DNA <213> Homo sapiens	
<400> 89	60
atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc	60
caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg	120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc	180
gtgtgcgccg aatgcaagga agggcgctac cttgagatag agttctgctt gaaacatagg	240
agctgccctc ctggatttgg agtggtgcaa gctggaaccc cagagcgaaa tacagtttgc	300
aaaagatgtc cagatgggtt cttctcaaat gagacgtcat ctaaagcacc ctgtagaaaa	360
cacacaaatt gcagtgtctt tggtctcctg ctaactcaga aaggaaatgc aacacacgac	420
aacatatgtt ccggaaacag tgaatcaact caaaaatgtg gaatagatgt taccctgtgt	480
gaggaggcat tetteaggtt tgetgtteet acaaagttta egeetaactg gettagtgte	540
ttggtagaca atttgcctgg caccaaagta aacgcagaga gtgtagagag gataaaacgg	600
caacacaget cacaagaaca gactttecag etgetgaagt tatggaaaca teaaaacaaa	660
gaccaagata tagtcaagaa gatcatccaa gatattgacc tctgtgaaaa cagcgtgcag	720
cggcacattg gacatgctaa cctcaccttc gagcagcttc gtagcttgat ggaaagctta	780
ccgggaaaga aagtgggagc agaagacatt gaaaaaacaa taaaggcatg caaacccagt	840
gaccagatcc tgaagctgct cagtttgtgg cgaataaaaa atggcgacca agacaccttg	900
aagggcctaa tgcacgcact aaagcactca aagacgtacc actttcccaa aactgtcact	960
cagagtctaa agaagaccat caggttcctt cacagcttca caatgtacaa attgtatcag	1020
aagttatttt tagaaatgat aggtaaccag gtccaatcag taaaaataag ctgcttataa	1080
<210> 90 <211> 1092 <212> DNA <213> Homo sapiens	
<400> 90 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc	60
caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg	120

tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcagatg	tccagatggg	ttcttctcaa	atgagacgtc	atctaaagca	360
ccctgtagaa	aacacacaaa	ttgcagtgtc	tttggtctcc	tgctaactca	gaaaggaaat	420
gcaacacacg	acaacatatg	ttccggaaac	agtgaatcaa	ctcaaaaatg	tggaatagat	480
gttaccctgt	gtgaggaggc	attcttcagg	tttgctgttc	ctacaaagtt	tacgcctaac	540
tggcttagtg	tcttggtaga	caatttgcct	ggcaccaaag	taaacgcaga	gagtgtagag	600
aggataaaac	ggcaacacag	ctcacaagaa	cagactttcc	agctgctgaa	gttatggaaa	660
catcaaaaca	aagaccaaga	tatagtcaag	aagatcatcc	aagatattga	cctctgtgaa	720
aacagcgtgc	agcggcacat	tggacatgct	aacctcacct	tcgagcagct	tcgtagcttg	780
atggaaagct	taccgggaaa	gaaagtggga	gcagaagaca	ttgaaaaaac	aataaaggca	840
tgcaaaccca	gtgaccagat	cctgaagctg	ctcagtttgt	ggcgaataaa	aaatggcgac	900
caagacacct	tgaagggcct	aatgcacgca	ctaaagcact	caaagacgta	ccactttccc	960
aaaactgtca	ctcagagtct	aaagaagacc	atcaggttcc	ttcacagctt	cacaatgtac	1020
aaattgtatc	agaagttatt	tttagaaatg	ataggtaacc	aggtccaatc	agtaaaaata	1080
agctgcttat	aa					1092

<210> 91

<211> 1080

<212> DNA

<213> Homo sapiens

<400> 91

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 240 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 420 cataggaget geeeteetgg atttggagtg gtgcaagetg gaaceecaga gegaaataca gtttgcaaat ccggaaacag tgaatcaact caaaaatgtg gaatagatgt taccctgtgt 480 gaggaggeat tetteaggtt tgetgtteet acaaagttta egeetaactg gettagtgte 540 600 ttggtagaca atttgcctgg caccaaagta aacgcagaga gtgtagagag gataaaacgg 660 caacacagct cacaagaaca gactttccag ctgctgaagt tatggaaaca tcaaaacaaa gaccaagata tagtcaagaa gatcatccaa gatattgacc tctgtgaaaa cagcgtgcag 720 780 cggcacattg gacatgctaa cctcaccttc gagcagcttc gtagcttgat ggaaagctta 840 ccgggaaaga aagtgggagc agaagacatt gaaaaaacaa taaaggcatg caaacccagt 900 gaccagatcc tgaagctgct cagtttgtgg cgaataaaaa atggcgacca agacaccttg 960 aagggcctaa tgcacgcact aaagcactca aagacgtacc actttcccaa aactgtcact 1020 cagagtetaa agaagaceat caggtteett cacagettea caatgtacaa attgtateag 1080 aagttatttt tagaaatgat aggtaaccag gtccaatcag taaaaataag ctgcttataa

<210> 92

<211> 981

<212> DNA

<213> Homo sapiens

<400> 92

60 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 240 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 300 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 360 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 420 cataggaget geeeteetgg atttggagtg gtgeaagetg gaaccecaga gegaaataca 480 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 600 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatattgac 660 ctctgtgaaa acagcgtgca gcggcacatt ggacatgcta acctcacctt cgagcagctt 720 cgtagcttga tggaaagctt accgggaaag aaagtgggag cagaagacat tgaaaaaaca 780 ataaaggcat gcaaacccag tgaccagatc ctgaagctgc tcagtttgtg gcgaataaaa aatggcgacc aagacacctt gaagggccta atgcacgcac taaagcactc aaagacgtac 840 cactttccca aaactgtcac tcagagtcta aagaagacca tcaggttcct tcacagcttc 900

acaatgtaca	aattgtatca	gaagttattt	ttagaaatga	taggtaacca	ggtccaatca	960
gtaaaaataa	gctgcttata	a				981
<210> 93 <211> 984 <212> DNA <213> Homo	o sapiens					
<400> 93	t a a t a t a a t a	agagat agt g	++++++	++++	a+ aa aa aa	60
	tgctgtgctg					60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgtgtgagg	aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagacg	cactaaagca	ctcaaagacg	840
taccactttc	ccaaaactgt	cactcagagt	ctaaagaaga	ccatcaggtt	ccttcacagc	900
ttcacaatgt	acaaattgta	tcagaagtta	tttttagaaa	tgataggtaa	ccaggtccaa	960
tcagtaaaaa	taagctgctt	ataa				984
<210> 94 <211> 1200 <212> DNA <213> Homo) o sapiens					
<400> 94 atgaacaact	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120

tgtgacaaat gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggaget geceteetgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgtgtgagg aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc aagatatagt	caagaagatc	atccaagata	ttgacctctg	tgaaaacagc	840
gtgcagcggc acattggaca	tgctaacctc	accttcgagc	agcttcgtag	cttgatggaa	900
agcttaccgg gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggcatgcaaa	960
cccagtgacc agatcctgaa	gctgctcagt	ttgtggcgaa	taaaaaatgg	cgaccaagac	1020
accttgaagg gcctaatgca	cgcactaaag	cactcaaaga	cgtaccactt	tcccaaaact	1080
gtcactcaga gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattg	1140
tatcagaagt tatttttaga	aatgataggt	aaccaggtcc	aatcagtaaa	aataagctaa	1200

<210> 95

<211> 1056

<212> DNA

<213> Homo sapiens

<400> 95

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420

480 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 540 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600 ctgtgtgagg aggcattett caggtttget gtteetacaa agtttaegee taactggett 660 720 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 780 aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 840 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 900 gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa 960 cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaaatgg cgaccaagac 1020 accttgaagg gcctaatgca cgcactaaag cactga 1056

<210> 96

<211> 819

<212> DNA

<213> Homo sapiens

<400> 96 60 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 240 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 360 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 420 cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 480 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 540 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 600 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 660 ctgtgtgagg aggcattctt caggtttgct gttcctacaa agtttacgcc taactggctt 720 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780 aacaaagacc aagatatagt caagaagatc atccaatga 819 <210> 97 <211> 594 <212> DNA <213> Homo sapiens <400> 97 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 180 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 240 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 300 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geeeteetgg atttggagtg gtgcaagetg gaaceecaga gegaaataca 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat atga 594 <210> 98 <211> 432 <212> DNA <213> Homo sapiens <400> 98 60 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 180 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 300 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 360 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 420 cataggaget geoeteetgg atttggagtg gtgcaagetg gaaceecaga gegaaataca 432 gtttgcaaat ga <210> 99 <211> 321 <212> DNA <213> Homo sapiens

99

<400>

atgaacaact	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	a				321

<210> 100 <211> 1182

<212> DNA

<213> Homo sapiens

<400> 100

60 atgaacact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 240 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geceteetgg atttggagtg gtgcaagetg gaaccecaga gegaaataca 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 600 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc ctgtgtgagg aggcattett caggtttget gtteetacaa agtttaegee taactggett 660 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720 780 aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 840 gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa 900 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa 960 cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac 1020 accttgaagg gcctaatgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact 1080 gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140

tatcagaagt tatttttaga	aatgataggt	aacctagtct	ag		1182
<210> 101 <211> 966 <212> DNA <213> Homo sapiens			·		
<400> 101			.		60
atgaacaact tgctgtgctg					60
caggaaacgt ttcctccaaa					120
tgtgacaaat gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggaget geeeteetgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgtgtgagg aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc aagatatagt	caagaagatc	atccaagata	ttgacctctg	tgaaaacagc	840
gtgcagcggc acattggaca	tgctaacctc	accttcgagc	agcttcgtag	cttgatggaa	900
agcttaccgg gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggctagtcta	960
gactag					966
<210> 102 <211> 564 <212> DNA <213> Homo sapiens					
<400> 102					
atgaacaact tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240

ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	ctag				564
	o sapiens					
<400> 103 atgaacaact	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatacctag	tctag					255
	7 o sapiens					
<400> 104 ctggagacat	ataacttgaa	cacttggccc	tgatggggaa	gcagctctgc	agggactttt	60
tcagccatct	gtaaacaatt	tcagtggcaa	cccgcgaact	gtaatccatg	aatgggacca	120
cactttacaa	gtcatcaagt	ctaacttcta	gaccagggaa	ttaatggggg	agacagcgaa	180
ccctagagca	aagtgccaaa	cttctgtcga	tagcttgagg	ctagtggaaa	gacctcgagg	240
aggctactcc	agaagttcag	cgcgtaggaa	gctccgatac	caatagccct	ttgatgatgg	300
tggggttggt	gaagggaaca	gtgctccgca	aggttatccc	tgccccaggc	agtccaattt	360
tcactctgca	gattctctct	ggctctaact	accccagata	acaaggagtg	aatgcagaat	420
agcacgggct	ttagggccaa	tcagacatta	gttagaaaaa	ttcctactac	atggtttatg	480
taaacttgaa	gatgaatgat	tgcgaactcc	ccgaaaaggg	ctcagacaat	gccatgcata	540
aagaggggcc	ctgtaatttg	aggtttcaga	acccgaagtg	aaggggtcag	gcagccgggt	600

acggcggaaa ctcacagctt tcgcccagcg agaggacaaa ggtctgggac acactccaac 660 720 tgcgtccgga tcttggctgg atcggactct cagggtggag gagacacaag cacagcagct 780 gcccagcgtg tgcccagccc tcccaccgct ggtcccggct gccaggaggc tggccgctgg cgggaagggg ccgggaaacc tcagagcccc gcggagacag cagccgcctt gttcctcagc 840 coggtggctt ttttttcccc tgctctccca ggggacagac accaccgccc cacccctcac 900 gccccacctc cctgggggat cctttccgcc ccagccctga aagcgttaat cctggagctt 960 tetgeacace eccegacege tecegeecaa getteetaaa aaagaaaggt geaaagtttg 1020 1080 gtccaggata gaaaaatgac tgatcaaagg caggcgatac ttcctgttgc cgggacgcta tatataacgt gatgagcgca cgggctgcgg agacgcaccg gagcgctcgc ccagccgccg 1140 cctccaagcc cctgaggttt ccggggacca caatgaacaa gttgctgtgc tgcgcgctcg 1200 tggtaagtcc ctgggccagc cgacgggtgc ccggcgcctg gggaggctgc tgccacctgg 1260 teteceaace teecagegga eeggeggga aaaaggetee actegeteee teecaag 1317

<210> 105

<211> 10190

<212> DNA

<213> Homo sapiens

<400> 105

60 gcttactttg tgccaaatct cattaggctt aaggtaatac aggactttga gtcaaatgat 120 actgttgcac ataagaacaa acctattttc atgctaagat gatgccactg tgttcctttc tecttetagt ttetggaeat etecattaag tggaecaece aggaaaegtt teeteeaaag 180 taccttcatt atgacgaaga aacctctcat cagctgttgt gtgacaaatg tcctcctggt 240 acctacctaa aacaacactg tacagcaaag tggaagaccg tgtgcgcccc ttgccctgac 300 cactactaca cagacagetg geacaceagt gacgagtgte tatactgeag eccegtgtge 360 aaggagetge agtacgteaa geaggagtge aategeacee acaacegegt gtgegaatge 420 aaggaagggc gctaccttga gatagagttc tgcttgaaac ataggagctg ccctcctgga 480 tttggagtgg tgcaagctgg tacgtgtcaa tgtgcagcaa aattaattag gatcatgcaa 540 600 agtcagatag ttgtgacagt ttaggagaac acttttgttc tgatgacatt ataggatagc 660 aaattgcaaa ggtaatgaaa cctgccaggt aggtactatg tgtctggagt gcttccaaaq 720 gaccattgct cagaggaata ctttgccact acagggcaat ttaatgacaa atctcaaatg cagcaaatta ttctctcatg agatgcatga tggttttttt ttttttttt aaagaaacaa 780

actcaagttg	cactattgat	agttgatcta	tacctctata	tttcacttca	gcatggacac	840
cttcaaactg	cagcactttt	tgacaaacat	cagaaatgtt	aatttatacc	aagagagtaa	900
ttatgctcat	attaatgaga	ctctggagtg	ctaacaataa	gcagttataa	ttaattatgt	960
aaaaaatgag	aatggtgagg	ggaattgcat	ttcattatta	aaaacaaggc	tagttcttcc	1020
tttagcatgg	gagctgagtg	tttgggaggg	taaggactat	agcagaatct	cttcaatgag	1080
cttattcttt	atcttagaca	aaacagattg	tcaagccaag	agcaagcact	tgcctataaa	1140
ccaagtgctt	tctcttttgc	attttgaaca	gcattggtca	gggctcatgt	gtattgaatc	1200
ttttaaacca	gtaacccacg	tttttttct	gccacatttg	cgaagcttca	gtgcagccta	1260
taacttttca	tagcttgaga	aaattaagag	tatccactta	cttagatgga	agaagtaatc	1320
agtatagatt	ctgatgactc	agtttgaagc	agtgtttctc	aactgaagcc	ctgctgatat	1380
tttaagaaat	atctggattc	ctaggctgga	ctcctttttg	tgggcagctg	tcctgcgcat	1440
tgtagaattt	tggcagcacc	cctggactct	agccactaga	taccaatagc	agtccttccc	1500
ccatgtgaca	gccaaaaatg	tcttcagaca	ctgtcaaatg	tcgccaggtg	gcaaaatcac	1560
tcctggttga	gaacagggtc	atcaatgcta	agtatctgta	actattttaa	ctctcaaaac	1620
ttgtgatata	caaagtctaa	attattagac	gaccaatact	ttaggtttaa	aggcatacaa	1680
atgaaacatt	caaaaatcaa	aatctattct	gtttctcaaa	tagtgaatct	tataaaatta	1740
atcacagaag	atgcaaattg	catcagagtc	ccttaaaatt	cctcttcgta	tgagtatttg	1800
agggaggaat	tggtgatagt	tcctactttc	tattggatgg	tactttgaga	ctcaaaagct	1860
aagctaagtt	gtgtgtgtgt	cagggtgcgg	ggtgtggaat	cccatcagat	aaaagcaaat	1920
ccatgtaatt	cattcagtaa	gttgtatatg	tagaaaaatg	aaaagtgggc	tatgcagctt	1980
ggaaactaga	gaattttgaa	aaataatgga	aatcacaagg	atctttctta	aataagtaag	2040
aaaatctgtt	tgtagaatga	agcaagcagg	cagccagaag	actcagaaca	aaagtacaca	2100
ttttactctg	tgtacactgg	cagcacagtg	ggatttattt	acctctccct	ccctaaaaac	2160
ccacacagcg	gttcctcttg	ggaaataaga	ggtttccagc	ccaaagagaa	ggaaagacta	2220
tgtggtgtta	ctctaaaaag	tatttaataa	ccgttttgtt	gttgctgttg	ctgttttgaa	2280
atcagattgt	ctcctctcca	tattttattt	acttcattct	gttaattcct	gtggaattac	2340
ttagagcaag	catggtgaat	tctcaactgt	aaagccaaat	ttctccatca	ttataatttc	2400
acattttgcc	tggcaggtta	taattttat	atttccactg	atagtaataa	ggtaaaatca	2460
ttacttagat	ggatagatct	ttttcataaa	aagtaccatc	agttatagag	ggaagtcatg	2520

2580 ttcatgttca ggaaggtcat tagataaagc ttctgaatat attatgaaac attagttctg tcattcttag attctttttg ttaaataact ttaaaagcta acttacctaa aagaaatatc 2640 tgacacatat gaacttotoa ttaggatgoa ggagaagaco caagocacag atatgtatot 2700 2760 gaagaatgaa caagattett aggeeeggea eggtggetea eatetgtaat eteaagagtt 2820 tgagaggtca aggcgggcag atcacctgag gtcaggagtt caagaccagc ctggccaaca 2880 tgatgaaacc ctgcctctac taaaaataca aaaattagca gggcatggtg gtgcatgcct gcaaccctag ctactcagga ggctgagaca ggagaatctc ttgaaccctc gaggcggagg 2940 3000 ttgtggtgag ctgagatccc tctactgcac tccagcctgg gtgacagaga tgagactccg 3060 teeetgeege egeeeeegee tteeeeecea aaaagattet tetteatgea gaacataegg cagtcaacaa agggagacct gggtccaggt gtccaagtca cttatttcga gtaaattagc 3120 aatgaaagaa tgccatggaa tccctgccca aatacctctg cttatgatat tgtagaattt 3180 3240 gatatagagt tgtatcccat ttaaggagta ggatgtagta ggaaagtact aaaaacaaac 3300 acacaaacag aaaaccctct ttgctttgta aggtggttcc taagataatg tcagtgcaat gctggaaata atatttaata tgtgaaggtt ttaggctgtg ttttcccctc ctgttctttt 3360 tttctgccag ccctttgtca tttttgcagg tcaatgaatc atgtagaaag agacaggaga 3420 tgaaactaga accagtccat tttgcccctt tttttatttt ctggttttgg taaaagatac 3480 3540 aatgaggtag gaggttgaga tttataaatg aagtttaata agtttctgta gctttgattt 3600 ttctctttca tatttgttat cttgcataag ccagaattgg cctgtaaaat ctacatatgg 3660 atattgaagt ctaaatctgt tcaactagct tacactagat ggagatattt tcatattcag atacactgga atgtatgatc tagccatgcg taatatagtc aagtgtttga aggtatttat 3720 ttttaatagc gtctttagtt gtggactggt tcaagttttt ctgccaatga tttcttcaaa 3780 3840 tttatcaaat atttttccat catgaagtaa aatgcccttg cagtcaccct tcctgaagtt 3900 tgaacgactc tgctgtttta aacagtttaa gcaaatggta tatcatcttc cgtttactat 3960 gtagettaae tgeaggetta egettttgag teageggeea aetttattge eacetteaaa 4020 agtttattat aatgttgtaa atttttactt ctcaaggtta gcatacttag gagttgcttc 4080 acaattagga ttcaggaaag aaagaacttc agtaggaact gattggaatt taatgatgca gcattcaatg ggtactaatt tcaaagaatg atattacagc agacacacag cagttatctt 4140 4200 gattttctag gaataattgt atgaagaata tggctgacaa cacggcctta ctgccactca

gcggaggctg gactaatgaa caccctaccc ttctttcctt tcctctcaca tttcatgagc 4260 gttttgtagg taacgagaaa attgacttgc atttgcatta caaggaggag aaactggcaa 4320 aggggatgat ggtggaagtt ttgttctgtc taatgaagtg aaaaatgaaa atgctagagt 4380 tttgtgcaac ataatagtag cagtaaaaac caagtgaaaa gtctttccaa aactgtgtta 4440 agagggcatc tgctgggaaa cgatttgagg agaaggtact aaattgcttg gtattttccg 4500 taggaacccc agagcgaaat acagtttgca aaagatgtcc agatgggttc ttctcaaatg 4560 4620 agacgtcatc taaagcaccc tgtagaaaac acacaaattg cagtgtcttt ggtctcctgc 4680 taactcagaa aggaaatgca acacacgaca acatatgttc cggaaacagt gaatcaactc 4740 aaaaatgtgg aataggtaat tacattccaa aatacgtctt tgtacgattt tgtagtatca 4800 tetetetete tgagttgaac acaaggeete cageeacatt ettggteaaa ettacatttt ccctttcttg aatcttaacc agctaaggct actctcgatg cattactgct aaagctacca 4860 ctcagaatct ctcaaaaact catcttctca cagataacac ctcaaagctt gattttctct 4920 cctttcacac tgaaatcaaa tcttgcccat aggcaaaggg cagtgtcaag tttgccactg 4980 5040 agatgaaatt aggagagtcc aaactgtaga attcacgttg tgtgttatta ctttcacgaa tgtctgtatt attaactaaa gtatatattg gcaactaaga agcaaagtga tataaacatg 5100 atgacaaatt aggeeaggea tggtggetta eteetataat eecaacattt tggggggeea 5160 aggtaggcag atcacttgag gtcaggattt caagaccagc ctgaccaaca tggtgaaacc 5220 ttgtctctac taaaaataca aaaattagct gggcatggta gcaggcactt ctagtaccag 5280 5340 ctactcaggg ctgaggcagg agaatcgctt gaacccagga gatggaggtt gcagtgagct gagattgtac cactgcactc cagtctgggc aacagagcaa gatttcatca cacacacaca 5400 cacacacaca cacacacaca ttagaaatgt gtacttggct ttgttaccta tggtattagt 5460 gcatctattg catggaactt ccaagctact ctggttgtgt taagctcttc attgggtaca 5520 ggtcactagt attaagttca ggttattcgg atgcattcca cggtagtgat gacaattcat 5580 caggetagtg tgtgtgttca cettgteact cecaceacta gaetaatete agaeetteae 5640 5700 tcaaagacac attacactaa agatgatttg cttttttgtg tttaatcaag caatggtata 5760 aaccagcttg actctcccca aacagttttt cgtactacaa agaagtttat gaagcagaga aatgtgaatt gatatatata tgagattcta acccagttcc agcattgttt cattgtgtaa 5820 5880 ttgaaatcat agacaagcca ttttagcctt tgctttctta tctaaaaaaa aaaaaaaaa aatgaaggaa ggggtattaa aaggagtgat caaattttaa cattctcttt aattaattca 5940

6000 tttttaattt tactttttt catttattgt gcacttacta tgtggtactg tgctatagag gctttaacat ttataaaaac actgtgaaag ttgcttcaga tgaatatagg tagtagaacg 6060 gcagaactag tattcaaagc caggtctgat gaatccaaaa acaaacaccc attactccca 6120 6180 ttttctggga catacttact ctacccagat gctctgggct ttgtaatgcc tatgtaaata 6240 acatagtttt atgtttggtt attttcctat gtaatgtcta cttatatatc tgtatctatc 6300 tcttqctttg tttccaaagg taaactatgt gtctaaatgt gggcaaaaaa taacacacta 6360 ttccaaatta ctgttcaaat tcctttaagt cagtgataat tatttgtttt gacattaatc 6420 atgaagttcc ctgtgggtac taggtaaacc tttaatagaa tgttaatgtt tgtattcatt 6480 ataagaattt ttggctgtta cttatttaca acaatatttc actctaatta gacatttact 6540 aaactttete ttgaaaacaa tgeecaaaaa agaacattag aagacaegta ageteagttg 6600 gtctctgcca ctaagaccag ccaacagaag cttgatttta ttcaaacttt gcattttagc 6660 atattttatc ttggaaaatt caattgtgtt ggttttttgt ttttgtttgt attgaataga 6720 ctctcagaaa tccaattgtt gagtaaatct tctgggtttt ctaacctttc tttagatgtt 6780 accetgtgtg aggaggeatt etteaggttt getgtteeta caaagtttae geetaactgg 6840 cttagtgtct tggtagacaa tttgcctggc accaaagtaa acgcagagag tgtagagagg 6900 ataaaacggc aacacagctc acaagaacag actttccagc tgctgaagtt atggaaacat 6960 caaaacaaag accaagatat agtcaagaag atcatccaag gtaattacat tccaaaatac gtctttgtac gattttgtag tatcatctct ctctctgagt tgaacacaag gcctccagcc 7020 7080 acattettqq teaaacttae atttteeett tettgaatet taaccageta aggetaetet cgatgcatta ctgctaaagc taccactcag aatctctcaa aaactcatct tctcacagat 7140 aacacctcaa agcttgattt tctctccttt cacactgaaa tcaaatcttg cccataggca 7200 aagggcagtg tcaagtttgc cactgagatg aaattaggag agtccaaact gtagaattca 7260 cgttgtgtgt tattactttc acgaatgtct gtattattaa ctaaagtata tattggcaac 7320 7380 taagaagcaa agtgatataa acatgatgac aaattaggcc aggcatggtg gcttactcct ataatcccaa cattttgggg ggccaaggta ggcagatcac ttgaggtcag gatttcaaga 7440 7500 ccagcctgac caacatggtg aaaccttgtc tctactaaaa atacaaaaat tagctgggca 7560 tggtagcagg cacttctagt accagctact cagggctgag gcaggagaat cgcttgaacc 7620 caggagatgg aggttgcagt gagctgagat tgtaccactg cactccagtc tgggcaacag

agcaagattt catcacaca acacacaca acacacacac acacattaga aatgtgtact 7680 tggctttgtt acctatggta ttagtgcatc tattgcatgg aacttccaag ctactctggt 7740 7800 tgtgttaagc tcttcattgg gtacaggtca ctagtattaa gttcaggtta ttcggatgca ttccacggta gtgatgacaa ttcatcaggc tagtgtgtt gttcaccttg tcactccac 7860 cactagacta atctcagacc ttcactcaaa gacacattac actaaagatg atttgctttt 7920 7980 ttgtgtttaa tcaagcaatg gtataaacca gcttgactct ccccaaacag tttttcgtac tacaaagaag tttatgaagc agagaaatgt gaattgatat atatatgaga ttctaaccca 8040 gttccagcat tgtttcattg tgtaattgaa atcatagaca agccatttta gcctttgctt 8100 tcttatctaa aaaaaaaaaa aaaaaaatga aggaaggggt attaaaagga gtgatcaaat 8160 tttaacattc tctttaatta attcattttt aattttactt tttttcattt attgtgcact 8220 8280 tactatgtgg tactgtgcta tagaggcttt aacatttata aaaacactgt gaaagttgct tcagatgaat ataggtagta gaacggcaga actagtattc aaagccaggt ctgatgaatc 8340 caaaaacaaa cacccattac tcccattttc tgggacatac ttactctacc cagatgctct 8400 gggctttgta atgcctatgt aaataacata gttttatgtt tggttatttt cctatgtaat 8460 8520 gtctacttat atatctgtat ctatctcttg ctttgtttcc aaaggtaaac tatgtgtcta 8580 aatgtgggca aaaaataaca cactattcca aattactgtt caaattcctt taagtcagtg ataattattt gttttgacat taatcatgaa gttccctgtg ggtactaggt aaacctttaa 8640 tagaatgtta atgtttgtat tcattataag aatttttggc tgttacttat ttacaacaat 8700 atttcactct aattagacat ttactaaact ttctcttgaa aacaatgccc aaaaaagaac 8760 attagaagac acgtaagctc agttggtctc tgccactaag accagccaac agaagcttga 8820 ttttattcaa actttgcatt ttagcatatt ttatcttgga aaattcaatt gtgttggttt 8880 tttgtttttg tttgtattga atagactctc agaaatccaa ttgttgagta aatcttctgg 8940 9000 gttttctaac ctttctttag atattgacct ctgtgaaaac agcgtgcagc ggcacattgg acatgctaac ctcaccttcg agcagcttcg tagcttgatg gaaagcttac cgggaaagaa 9060 agtgggagca gaagacattg aaaaaacaat aaaggcatgc aaacccagtg accagatcct 9120 gaagctgctc agtttgtggc gaataaaaaa tggcgaccaa gacaccttga agggcctaat 9180 gcacgcacta aagcactcaa agacgtacca ctttcccaaa actgtcactc agagtctaaa 9240 gaagaccatc aggttccttc acagcttcac aatgtacaaa ttgtatcaga agttatttt 9300 agaaatgata ggtaaccagg tccaatcagt aaaaataagc tgcttataac tggaaatggc 9360

cattgagctg tttcctcaca attggcgaga tcccatggat gagtaaactg tttctcaggc 9420 acttgaggct ttcagtgata tctttctcat taccagtgac taattttgcc acagggtact 9480 aaaagaaact atgatgtgga gaaaggacta acatctcctc caataaaccc caaatggtta 9540 atccaactgt cagatetgga tegttateta etgaetatat titteeettat taetgettge 9600 agtaattcaa ctggaaatta aaaaaaaaaa actagactcc actgggcctt actaaatatg 9660 ggaatgtcta acttaaatag ctttgggatt ccagctatgc tagaggcttt tattagaaag 9720 ccatattttt ttctgtaaaa gttactaata tatctgtaac actattacag tattgctatt 9780 tatattcatt cagatataag atttggacat attatcatcc tataaagaaa cggtatgact 9840 taattttaga aagaaaatta tattctgttt attatgacaa atgaaagaga aaatatatat 9900 ttttaatgga aagtttgtag catttttcta ataggtactg ccatattttt ctgtgtggag 9960 tatttttata attttatctg tataagctgt aatatcattt tatagaaaat gcattattta 10020 gtcaattgtt taatgttgga aaacatatga aatataaatt atctgaatat tagatgctct 10080 gagaaattga atgtacctta tttaaaagat tttatggttt tataactata taaatgacat 10140 tattaaagtt ttcaaattat tttttattgc tttctctgtt gcttttattt 10190

<210> 106

<211> 391

<212> PRT

<213> Homo sapiens

<400> 106

Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro 1 5 10 15

Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp 20 25 30

Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp 35 40 45

Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp 50 55 60

His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu 65 70 75 80

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys

Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser

305 310 315 320

Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met 325 330 335

His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr 340 345 350

Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr 355 360 365

Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln 370 375 380

Ser Val Lys Ile Ser Cys Leu 385 390

<210> 107

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<220>

<221> misc_feature

<222> (12)..(12)

 $\langle 223 \rangle$ n = unknown

<400> 107

cargarcara cnttycaryt

<210> 108

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<220>

<221> misc_feature

<222> (10)..(10)

 $\langle 223 \rangle$ n = unknown

<220>

<221> misc_feature

20

<222> (16)..(16) <223> n = unknown

<400> 108
yttrtacatn gtraanswrt g

21