Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA4802 Ecuaciones en Derivadas Parciales 14 de Noviembre de 2024

Auxiliar 11

Profesores: Rayssa Cajú y Claudio Muñoz **Auxiliares** Benjamin Bórquez, Vicente Salinas y Jessica Trespalacios

P1. Sea $d \geq 3$. Considere el espacio de funciones radiales

$$H_r^1(\mathbb{R}^d) = \{ u \in H^1(\mathbb{R}^d) : u(x) = u(|x|) \text{ ctp} \}.$$

a) Sea $(u_n)_{\{n\in\mathbb{N}\}}$ una sucesión acotada en $H^1_r(\mathbb{R}^d)$. Suponga que

$$\lim_{|x| \to \infty} u_n(x) = 0 \quad \text{uniformemente en} \quad n$$

Demuestre que existe una subsucesión (u_{n_k}) y $u \in L^p(\mathbb{R}^d)$ tal que

$$u_{n_k} \longrightarrow u \in L^p(\mathbb{R}^d)$$

para cualquier $p \in (2, \frac{2d}{d-2})$.

b) Demuestre que existe C>0 tal que para todo $u\in H^1_r(\mathbb{R}^d)$ se tiene

$$|u(x)| \le \frac{|c|}{|x|^{\frac{d-1}{2}}} ||u||_{H^1(\mathbb{R}^d)} \quad \forall x \in \mathbb{R}^d.$$

c) Pruebe que la inyección.

$$H^1_r(\mathbb{R}^d) \subset\subset L^p(\mathbb{R}^d)$$

se cumple para cualquier $p \in \left(2, \frac{2d}{d-2}\right)$.

P2. Sea $d \geq 3$. Pruebe que existe C > 0 tal que para todo $u \in L^2(\mathbb{R}^d) \cap W^{1,2}(\mathbb{R}^d)$

$$||u||_{L^2(\mathbb{R}^d)}^{1+2/d} \le C||u||_{L^1(\mathbb{R}^d)}^{2/d}||Du||_{L^2(\mathbb{R}^d)}.$$

P3. Propuesto.

a) Considere Ω abierto acotado en \mathbb{R}^d con $\partial\Omega$ de clase C^1 . Sea $1 \leq p < \infty$, $k \geq 1$ y $\beta \in \mathbb{N}^d$ tal que $|\beta| \leq k - 1$. Demuestre que para todo $\varepsilon > 0$ existe una constante C_{ε} tal que

$$||D^{\beta}u||_{L^{p}(\Omega)} \le \varepsilon ||u||_{W^{k,p}(\Omega)} + C_{\varepsilon}||u||_{L^{p}(\Omega)}, \quad \forall u \in W^{k,p}(\Omega).$$

b) Sea Ω un abierto acotado y $1 \leq \leq p < d$. Muestre que $W^{1,p}(\Omega)$ NO se inyecta de manera compacta en $L^{p^*}(\Omega)$, donde $p^* = \frac{2d}{d-2}$.

Resumen: Teorema 1 (Teorema de Rellich-Kondrachov). Sea Ω un subconjunto abierto y acotado en \mathbb{R}^d con $\partial\Omega$ de clase C^1 . Sik>l y $\frac{1}{p}-\frac{k}{d}<\frac{1}{q}-\frac{l}{d}$ entonces

$$W^{k,p}(\Omega) \hookrightarrow W^{l,q}(\Omega)$$

donde la inyecciónn es compacta.