E3 — Operative Kinematik auf dem ST-Ur-Graph: Emergente Lorentz-Invarianz mit v_* als Invariant

18. August 2025

Zusammenfassung

Wir etablieren die kinematische Ebene des PoC: Aus dem in E2 nachgewiesenen effektiven Lichtkegel (Lieb–Robinson) mit invarianter Ausbreitungsgeschwindigkeit v_* konstruieren wir operativ eine Lorentz-Kinematik. Zentral ist die dimensionslose Geschwindigkeit $u:=v/v_*$ und der Lorentz-Faktor $\gamma(u)=1/\sqrt{1-u^2}$. Der theoretische Teil folgt Ignatowsky/Pal (Relativität aus Prinzipien ohne Maxwell-Input), implementiert über Bondis Radar-/k-Kalkül; der experimentelle Teil spezifiziert präzise Messprotokolle auf ST-Approximanten (Radarzeiten, Dopplerfaktoren, Komposition von Geschwindigkeiten, Zeitdilatation). Akzeptanzkriterien und numerische Auswertung werden angegeben.

1 Axiome und Ableitung der Lorentz-Kinematik ohne Lichtpostulat

Axiome. (i) Relativitätsprinzip (alle Inertialsysteme äquivalent), (ii) Homogenität von Raum und Zeit, (iii) Isotropie im IR (gerichtete Mittelung auf dem ST, Sec. 2). Aus diesen Annahmen folgt, dass die zulässigen Inertial-Transformationen eine eindimensionale Geschwindigkeitsgruppe bilden; je nach einem Parameter $\kappa \in \{0, 1/c^2\}$ erhält man Galilei ($\kappa = 0$) bzw. Lorentz ($\kappa > 0$) [1, 2, 3, 4].

Ergebnis. Es existiert eine *invariante Geschwindigkeitsskala c*_{inv} (hier operational gleich v_* aus E2), so dass mit $u := v/c_{inv}$ die Transformationen

$$t' = \gamma (t - ux/c_{\text{inv}}), \qquad x' = \gamma (x - ut), \qquad \gamma(u) = \frac{1}{\sqrt{1 - u^2}},$$

und die Komposition $u \oplus v = \frac{u+v}{1+uv}$ gelten. Dies lässt sich rein aus Gruppenaxiomen, Symmetrien und der Existenz der Skala c_{inv} zeigen (Ignatowsky/Pal).

Radar/k-Kalkül. Ohne Vorgriff auf Feldgleichungen lässt sich die Metrikstruktur aus Radarzeiten (Ping/Echo) gewinnen; der Bondi-k-Faktor ist der (radiale) Dopplerfaktor. Aus $k(u) = \sqrt{\frac{1+u}{1-u}}$ folgt $\gamma(u) = \frac{1}{2} \left(k + 1/k \right)$ und die Additivität der Rapidität $\theta = \ln k$ (also $\theta(u \oplus v) = \theta(u) + \theta(v)$).

2 Operative Umsetzung auf ST-Approximanten

Wir arbeiten auf zentralen ST-Bällen (E2), definieren v_* als gemessene Frontgeschwindigkeit und verwenden Radarprotokolle mit Signalen, die sich (im Mittel) mit v_* ausbreiten.

P1. IR-Isotropie: Wähle viele Richtungen (Shell-Sampling) und prüfe, dass die Frontzeit $t_{\varepsilon}(d)$ -Geraden gleiche Steigung (innerhalb Toleranz) haben. Mittelwert definiert v_* , Streuung misst Restanisotropie.

- **P2.** Radar-Synchronisation: Beobachter A (ruhig) sendet zwei Pings im Eigenabstand $\Delta \tau_A$; Beobachter B (gleichförmig relativ zu A) misst Empfangsabstand Δt_B . Der empirische k-Faktor ist $k := \Delta t_B/\Delta \tau_A$. Rollenwechsel liefert 1/k.
- **P3**. Gamma aus k: $\hat{\gamma} = \frac{1}{2}(k+1/k)$; die zugehörige u-Schätzung ist $\hat{u} = \sqrt{1-1/\hat{\gamma}^2}$.
- **P4**. **Komposition:** Drei Beobachter A, B, C; messe k_{AB}, k_{BC} ; prüfe $k_{AC} \stackrel{?}{=} k_{AB} k_{BC}$ (Rapiditäts-Additivität). Daraus folgt die Einstein'sche Additionsformel.
- **P5**. **Zeitdilatation:** Eine *Uhr* (lokaler Oszillator) bewegt sich mit Beobachter B; vergleiche N Eigenperioden $\Delta \tau_B$ mit der Radarzeit-Spanne bei A. Erwartet: $\Delta t_A = \gamma \Delta \tau_B$.

Signale/Beobachter. Signale sind Fronten der Dynamik (CTQW/Tight-Binding), d. h. Levelsets von $|U_{ij}(t)|$; Beobachter sind Weltenlinien $x_A(t)$, $x_B(t)$ auf Pfadnähe einer Geodäte im ST-Ball. In der 1D-Ketten-Validierung sind dies Gittersites mit $x_B(t) = x_B(0) + u v_* t$ (diskrete Approximation).

3 Akzeptanzkriterien

- K1 (Gamma-Law): Für $u \in \{0.2, 0.4, 0.6\}$ liegt $\hat{\gamma}(u)$ innerhalb 2σ der Kurve $\gamma(u) = 1/\sqrt{1-u^2}$.
- **K2** (Rapidität): $\theta = \ln k$ addiert (innerhalb Fehlerbalken) für Ketten- und ST-Setups.
- K3 (Addition): \hat{u}_{AC} stimmt (innerhalb 2σ) mit $\frac{u_{AB}+u_{BC}}{1+u_{AB}u_{BC}}$ überein.
- K4 (IR-Isotropie): Richtungs-Spread der \hat{v}_* -Schätzungen ≤ 20% (Level 6+).

4 Numerik-Plan (Kette ightarrow ST)

- N1. Kette (Goldstandard): Bestimme $v_* = 2J$ analytisch; simulierte Radarzeiten liefern k(u) und $\gamma(u)$ (Kontrollplot).
- N2. ST (Level 5/6): Verwende die in E2 aufgebauten Bälle; generiere Weltenlinien entlang nahezu-geodätischer Pfade, führe Radarprotokolle P2–P5 aus, fit $\hat{\gamma}(u)$.
- N3. Bootstrap/Resampling: Über Richtungen/Shells und Schwellen ε mitteln; erzeuge CI für γ -Residuen.

5 Skizzierte Beweise und Begründungen

- (S1) Lorentz ohne Licht. Aus Relativität + Homogenität + Isotropie folgt (Ignatowsky/Pal) eine Transformationsgruppe mit Parameter κ ; $\kappa > 0$ induziert eine Invariantgeschwindigkeit c_{inv} und die Lorentz-Form mit $\gamma(u)$. Proofs: [1, 2, 3, 4].
- (S2) Radar/Kalkül. Der Bondi-k-Faktor ist direkt aus Ping/Echo-Intervallen definiert; daraus folgen $\gamma = \frac{1}{2}(k+1/k)$ und Rapiditätsadditivität $\theta = \ln k$ [5].
- (S3) LR-Kegel \Rightarrow operative v_* . Der LR-Satz liefert $||[A(t), B]|| \leq C \exp[-\mu(d vt)]$; daraus folgen lineare Frontzeiten $t_{\varepsilon}(d)$ und eine wohldefinierte Skala v_* als $\varepsilon \downarrow 0$ (E2). Für kurze Reichweite/uniforme Schranken siehe [6, 7].

Implementierungsanhang (Pseudo-Code)

- C1. Radar auf Kette: Wähle u; setze Weltenlinie $x_B(t)$; bestimme Eintreffzeiten zweier nacheinander gesendeter Fronten (Schwelle ε) am $x_B(t)$. Bestimme $k = \Delta t_B/\Delta \tau_A$ und $\hat{\gamma}$.
- C2. ST: Erzeuge Pfad P (kürzester Pfad) durch den Ball; definiere diskrete Weltenlinie entlang P; wiederhole wie oben und aggregate über Pfade/Schwellen.

Ausblick. Mit $\gamma(u)$, Rapiditäten und Komposition ist die Kinematik vollständig. Dynamische Tests (E4) prüfen Lorentz-Invarianz von Spektren/Korrelationen (z. B. isotrope lineare Dispersionsrelationen, z=1).

Literatur

- [1] P. B. Pal, Nothing but Relativity, arXiv:physics/0302045 (2003). https://arxiv.org/pdf/physics/0302045.
- [2] J. W. Gannett, Nothing but Relativity, Redux, arXiv:1005.2062 (2010). https://arxiv.org/pdf/1005.2062.
- [3] S. Datta, A Revisit to Lorentz Transformation without Light, arXiv:2212.03706 (2022). https://arxiv.org/pdf/2212.03706.
- [4] O. Certík, Simple derivation of SR without the speed-of-light axiom, arXiv:0710.3398 (2007). https://arxiv.org/pdf/0710.3398.
- [5] PhysicsForums Insight: Relativity using Bondi k-calculus (2017). https://www.physicsforums.com/insights/relativity-using-bondi-k-calculus/.
- [6] M. C. Tran et al., Lieb-Robinson Light Cone for Power-Law Interactions, Phys. Rev. Lett. 127, 160401 (2021).
- [7] T. Kuwahara et al., Effective light cone and digital quantum simulation of many-body dynamics, Nat. Commun. 15, 2147 (2024).

6 Numerik: Radar per Echo (Bondi) auf Kette & ST-Pfad

Wir implementieren das *Echo-Protokoll* (Bondi-k-Kalkül): A sendet zwei Pulse mit Emissionsabstand ΔT ; B bewegt sich geradlinig mit $u = v/v_*$ fort. Beim Eintreffen reflektiert B sofort; A misst die Echozeiten T_1, T_2 . Aus dem Verhältnis

$$\frac{T_2 - T_1}{\Delta T} = k^2 = \frac{1 + u}{1 - u}$$

folgen direkt $k=\sqrt{\frac{1+u}{1-u}},\,\gamma=\frac{1}{2}(k+1/k)$ und die Einstein-Addition (über Rapiditäten).

Analytischer Check mit invariantem v_* . Unter der Annahme eines invarianten Ausbreitungstempos $c \equiv v_*$ ergeben sich die Echozeiten geschlossen $t_{\rm out} = (s_0 + c\,s)/(c(1-u))$, $T = t_{\rm out} + \frac{s_0 + uc\,t_{\rm out}}{c}$. Die gemessenen Ratios (CSV: E3_radar_analytic.csv) reproduzieren $k^2 = (1+u)/(1-u)$ exakt.

CTQW-Echo (Proof-of-Concept). Wir implementieren dasselbe Protokoll auf der 1D-Kette (Goldstandard) und im ST-Level-6-Ball (CSV: E3_radar_chain_fast.json, E3_radar_STL6_fast.json). Die Echo-Erkennung via Schwellwerten $|U_{ij}(t)| \geq \varepsilon$ ist robust, benötigt aber längere Zeithorizonte; die beigefügten "fast"-Runs dienen als funktionsfähiger Minimalnachweis und werden in E4 mit erweitertem Raster verfeinert.

Quellen. Bondis k-Kalkül (Radar), Relativität ohne Lichtpostulat (Ignatowsky/Pal) und bewegte Spiegel/Doppler: [1, 2, 3, 4].

Literatur

- [1] P. B. Pal, Nothing but Relativity, arXiv:physics/0302045 (2003).
- [2] Relativistic Doppler effect, Wikipedia (Zugriff 2025-08-17).
- [3] Bondi k-calculus, Wikipedia (Zugriff 2025-08-17).
- [4] B. Rothenstein, I. Damian, Doppler Effect with reflection on a moving mirror, arXiv:physics/0508134.