Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

Práctica N° 8: MATRIZ ASOCIADA A UNA TRANSFORMACIÓN LINEAL

- 1) Para cada transformación lineal T encontrar:
 - i) Su representación matricial A_T con respecto a las bases canónicas de los espacios involucrados.
 - ii) Nu(T) e Im(T), base del núcleo y base de la imagen de T, nulidad y rango de T, usando A_T .
 - iii) La imagen del elemento indicado usando A_T , si se lo solicita.

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^3 / T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ 2x + y \\ y \end{pmatrix}$$

- b) $T: \mathbb{R}^3 \to P_2 / T(a, b, c) = a + bx + cx^2$. Hallar T(1, 0, 3).
- c) $T: P_2 \to P_3 / T(a + bx + cx^2) = b bx + ax^3$. Hallar $T(2 + x^2)$.
- d) $T: \mathbb{R}^2 \to \mathbb{R}^2 / T(v) = \operatorname{proy}_H v$, donde $H = \operatorname{gen}\left\{\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)\right\}$. Hallar T(2,1).
- e) $T: P_4 \to P_2 / T(p(x)) = p''(x)$

$$f)$$
 $T: M_{2x2} \to M_{2x2} / T(A) = A \cdot B$, donde $B = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. Hallar $T \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$.

2) Hallar la matriz asociada a cada transformación lineal de V en W, respecto de las bases dadas B_1 de V y B_2 de W.

a)
$$T: R^2 \to R^2 / T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - 2y \\ 2x + y \end{pmatrix}$$
 $B_1 = B_2 = \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\}$

b)
$$T: P_2 \to P_3 / T(p(x)) = x \cdot p(x)$$
 $B_1 = \{1, x, x^2\}$ $B_2 = \{1, 1 + x, x^2, 1 - x^3\}$

- 3) Para la transformación lineal indicada y para el vector v dado, encontrar T(v) y las coordenadas de T(v) respecto de la base B_2 , usando la matriz de transformación respecto de las bases B_1 y B_2 .
 - a) Para la transformación del 2a) y v = (20, 24).
 - b) Para la transformación del 2b) y $v = 7 + 2x 3x^2$

4) Sea
$$W = \left\{ \begin{bmatrix} a & b \\ b & d \end{bmatrix} / a, b, d \in R \right\}$$
 y $T : P_2 \to W$ definida por $T(ax^2 + bx + c) = \begin{bmatrix} a + c & 3b \\ 3b & 2a + 2c \end{bmatrix}$.

- a) Encontrar la matriz asociada a T respecto de las bases: $B_1 = \{1, x, x^2\}$ y $B_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$.
- b) Determinar las coordenadas de T(p(x)) en la base B_2 , siendo $p(x) = 3x^2 2x + 4$ usando la matriz de transición obtenida en a).

5) Sea
$$T: \mathbb{R}^2 \to \mathbb{R}^2 / T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_1 + x_2 \end{pmatrix}$$
:

- a) Hallar la representación matricial de T con respecto a la base canónica de R^2 .
- b) Hallar la representación matricial de T con respecto a las bases $B_1 = B_2 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\}$.
- c) Hallar la representación matricial de T con respecto a las bases B_1 y B_2 :

$$B_1 = \left\{ \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \right\} \qquad B_2 = \left\{ \left(\begin{array}{c} -2 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 3 \end{array} \right) \right\}$$

Observación: Este ejercicio muestra que una misma transformación lineal tiene asociadas distintas representaciones matriciales según sean las bases fijadas en los espacios inicial y final de la aplicación.

1

6) Sea T de R^2 en R^3 la transformación lineal cuya matriz asociada con respecto a las bases canónicas es A_T . Indicar si alguno(s) de los vectores v_1 , v_2 y v_3 pertenece a la imagen de T:

$$A_T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \qquad v_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

7) Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal cuya matriz asociada con respecto a la base canónica de cada espacio es A_T :

$$A_T = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

- a) Para cada $(x, y, z) \in \mathbb{R}^3$, calcular T(x, y, z).
- b) Hallar el núcleo de T, una base y su dimensión usando A_T .
- c) Hallar la imagen de T, una base y su dimensión usando A_T .
- 8) Demostrar que si $T: V \to W$ es una transformación lineal con $\dim V = \dim W$, entonces:
 - a) Si $Nu(T) = 0_V$, entonces Im(T) = W.
 - b) Si $\nu(T) = \dim V$, entonces $Im(T) = 0_W$.

Ejercitación adicional para seguir practicando:

- 9) Sea $L: P_1 \to P_2$ definida por $L(p(t)) = t \cdot p(t) + p(0)$ y sean $S = \{t,1\}$ y $S' = \{t+1,t-1\}$ bases de P_1 y $T = \{t^2,t,1\}$ y $T' = \{t^2+1,t-1,t+1\}$ bases de P_2 .
 - a) Determinar A_L con respecto a las bases S y T con respecto a las bases S' y T'
 - b) Determinar L(-3t+3) utilizando las matrices obtenidas en a) y la definición de L.