Lezione N Algebra 1

Federico De Sisti2025-05-12

0.1 Campi Finiti

PARTE CHE MANCA

Teorema 1

Siano $p, n \in \mathbb{Z}_{\geq 1}$ con p primo. Allora esiste un campo \mathbb{F} tale che $|\mathbb{F}| = p^n$ inoltre \mathbb{F} è unico a meno di isomorfismo

Dimostrazione

 $L'unicit\`{a}\ segue\ dalla\ proposizione\ e\ dall'unicit\`{a}\ (non\ canonica)\ dei\ campi\ di\ spezzamento$

Esistenza: Sia $\mathbb{F}_p \subseteq \mathbb{L}$ un campo di spezzamento del polinomio $f(x) = x^p - x \in \mathbb{F}_p[x]$

Definiamo:

$$\mathbb{F} = \{l \in \mathbb{L} \mid l^p = l\} \subseteq \mathbb{L} \text{ sottoinsieme.}$$

- $f'(x) = -1 \in \mathbb{F}_p[x]$ $f \ e \ f' \ sono \ coprimi$ $\Rightarrow f \ \hat{e} \ primo \ di \ radici \ multiple$
- Allora $|\mathbb{F}| = deg(f) = p^n$.
- \mathbb{F} è un campo. Infatti $\forall l_1, l_2 \in \mathbb{L}$ $(l_1 + l_2)^{p^n} = l_1^{p^n} + l_2^{p^n} = l_1 + l_2$ $(l_1 \cdot l_2)^{p^n} = l_1^{p^n} \cdot l_2^{p^n} = l_1 \cdot l_2$ $(l_1^{-1})^{p^n} = (l_1^{p^n})^{-1} = l_1^{-1}$

 $Quindi \mathbb{F} = \mathbb{L}$

Teorema 2

 $|\mathbb{F}| = p^n$

Allora $U_{\mathbb{F}}$ è un gruppo ciclico

Dimostrazione

 $U_{\mathbb{F}} = \mathbb{F} \setminus \{0\}$ con il prodotto con operazione

È un gruppo abeliano finito

 \Rightarrow per teorema di struttura $\exists d_1, \dots, d_r \in \mathbb{Z}_{\geq 1}$ non nulli e non necessariamente distinti tali che.

$$U_{\mathbb{F}} = C_{d_1} \times \ldots \times C_{d_r}.$$

dove ogni C_{d_i} sono gruppi ciclici generato da p_i di ordine d_i

Inoltre $d_j \mid d_{j+1} \quad \forall j \in \{1, \dots, r-1\}$

Quindi $(p_k^k)^{d_r} = id$

ovvero tutti gli elementi di $U_{\mathbb{F}}$ soddisfano il polinomio $x^{d_r} - 1 \in \mathbb{F}[x]$

Quindi $|U_{\mathbb{F}}| \leq deg(x^{d_r} - 1) = d_r$

 $Deduciamo \ r = 1$

 $\Rightarrow U_{\mathbb{F}} = C_{d_1}$ che è ciclico

0.2 Estensioni normali

Definizione 1

 $\mathbb{F} \subseteq \mathbb{K}$ estensione di campi.

- 1. Due elementi $\alpha, \beta \in \mathbb{K}$ algebrici su \mathbb{F} , si dicono coniugati se hanno lo stesso polinomio minimo.
- 2. $\mathbb{F} \subseteq \mathbb{K}$ si dice estensione normale se è chiusa rispetto ai coniugati.

Osservazione:

Un'estensione $\mathbb{F} \subseteq \mathbb{K}$ è normale se e solo se ogni polinomio irriducibile in $\mathbb{F}[x]$ che ammette una radice in \mathbb{K} . Si decompone come prodotto di fattori lineari in $\mathbb{K}[x]$

Teorema 3

 $\mathbb{F} \subseteq \mathbb{K}$ estensione. Allora sono equivalenti:

- 1. $\mathbb{F} \subseteq \mathbb{K}$ normale $[\mathbb{K} : \mathbb{F}] < +\infty$
- 2. $\exists f \in \mathbb{F}[x] \text{ tale che } \mathbb{F} \subseteq \mathbb{K} \text{ sia un campo di spezzamento di } f$

Dimostrazione

 $1) \Rightarrow 2)$

 $[\mathbb{K} : \mathbb{F}] = n < +\infty \Rightarrow \exists \{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{K} \text{ base di } \mathbb{K} \text{ come } \mathbb{F}\text{-spazio vettoriale} \Rightarrow \mathbb{F} \subseteq \mathbb{F}(\alpha_1, \dots, \alpha_k) = \mathbb{K}$

Essendo finita, l'estensione è algebrica.

Poniamo $p_j \in \mathbb{F}[x]$ polinomio minimo di α_j , $\forall j \in \{1, ..., n\}$ Per l'ipotesi di normalità p_j si decompone in fattori lineari in $\mathbb{K}[x]$, $\forall j \in \{1, ..., n\}$ Definiamo:

$$f(x) = p_1(x) \cdot \dots p_k(x) \subseteq \mathbb{F}[x].$$

f si decompone in fattori lineari in $\mathbb{K}[x]$

Inoltre ogni estensione intermedia $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ tale che f si decomponga come prodotto di fattori lineari in $\mathbb{L}[x]$ soddisfa $a_j \in \mathbb{L} \ \forall j \in \{1, \dots, n\} \Rightarrow \mathbb{L} = \mathbb{K}$ $(2) \Rightarrow 1)$

 $dalle\ ipotesi \Rightarrow [\mathbb{K}:\mathbb{F}] < +\infty$

Consideriamo $g \in \mathbb{F}[x]$ irriducibile con $\alpha \in \mathbb{K}$ radice di g

Consideriamo un campo di spezzamento $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{L}$ del polinomio $f \cdot g$ Sia $\beta \in \mathbb{L}$ radice di g dobbiamo dimostrare che $\beta \in \mathbb{K}$

Abbiamo $\mathbb{F}(\alpha) \cong \mathbb{F}(\beta)$

quindi $[\mathbb{F}(\alpha) : \mathbb{F}] = [\mathbb{F}(\beta) : \mathbb{F}]$

Inoltre $\mathbb{F}(\alpha) \subseteq \mathbb{K}(\alpha)$ e $\mathbb{F}(\beta) \subseteq \mathbb{K}(\beta)$

Sono entrambi campi di spezzamento di f.

pensando $f \in \mathbb{F}_{\ell}(\alpha)[x]$ e $f \in \mathbb{F}(\beta)[x]$ rispettivamente.

Dall'unicità dei campi di spezzamento:

IMMAGINE 14 30

In particolare $[\mathbb{K}(\alpha) : \mathbb{F}(\alpha)] = [\mathbb{K}(\beta) : \mathbb{F}(\beta)]$

$$\begin{split} & [\mathbb{K}(\alpha):\mathbb{K}][\mathbb{K}:\mathbb{F}] = [\mathbb{K}(\alpha):\mathbb{F}] \\ & = [\mathbb{K}(\beta):\mathbb{F}(\beta)][\mathbb{F}(\beta):\mathbb{F}] = [\mathbb{K}(\beta):\mathbb{F}] = [\mathbb{K}(\beta):\mathbb{K}][\mathbb{K}:\mathbb{F}] \\ & \textit{da cui:} \end{split}$$

$$[\mathbb{K}(\beta) : \mathbb{K}] = [\mathbb{K}(\alpha) : \mathbb{K}] = 1.$$

 $\Rightarrow \beta \in \mathbb{K}$

0.3 Estensioni semplici e separabili

Definizione 2

 $\mathbb{F} \subseteq \mathbb{K} \ estensione$

- 1. $k \in \mathbb{K}$ si dice separabile su \mathbb{F} se è algebrico e il suo polinomio minimo è separabile.
- 2. $\mathbb{F} \subseteq \mathbb{K}$ si dice estensione separabile se ogni elemento di \mathbb{K} è separabile in \mathbb{F}
- 3. $\mathbb{F} \subseteq \mathbb{K}$ si dice estensione semplice se $\exists \alpha \in \mathbb{K}$ tale che $\mathbb{F} \subseteq \mathbb{F}(\alpha) = \mathbb{K}$

Osservazione

- se $char(\mathbb{F}) = 0$ allora ogni estensione algebrica è separabile
- $\mathbb{Q} \subseteq \mathbb{Q}(i, \sqrt{2})$ è semplice (scegliere $\alpha = \sqrt{i} \in \mathbb{Q}(i, \sqrt{2})$

Proposizione 1

 \mathbb{F} campo infinito. $\mathbb{F} \subseteq \mathbb{K}$ estensione.

 $a,b \in \mathbb{K}$ separabili su \mathbb{F}

Allora esiste $\alpha \in \mathbb{K}$ tale che

$$\mathbb{F}(\alpha) = \mathbb{F}(a, b).$$

Dimostrazione

Sia f, g i polinomi minimi in $\mathbb{F}[x]$ di $a \in b$.

Per ipotesi sono entrambi privi di radici multiple.

Siano:

$$a_1,\ldots,a_n$$
 e b_1,\ldots,b_m .

le radici di f e g in \mathbb{L}

 $dove \ \mathbb{F} \subseteq \mathbb{K} \subset \mathbb{L}$

un'ulteriore estensione dove f e g si spezzano in fattori lineari.

Supponiamo $a_1 = a, b_1 = b$

Studiamo l'equazione $a + \lambda b = a_i + \lambda b_i$

nella variabile λ al variare di $i \in \{1, ..., n\}, j \in \{2, ..., m\}$

Ogniuna di tali equazioni ammette l'unica soluzione

$$\lambda = \frac{a_i - a}{b - b_j} \in \mathbb{L}.$$

Essendo $|\mathbb{F}| = +\infty$ esiste $\gamma \in \mathbb{F}$ che non sia soluzione di alcune delle precedenti $n \cdot (m-1)$ equazioni.

Definiamo

$$\alpha = a + \gamma b \in \mathbb{F}(a, b).$$

Quindi $\mathbb{F}(\alpha) \subseteq \mathbb{F}(a,b)$

Resta da verificare che $\mathbb{F}(a,b) \subseteq \mathbb{F}(\alpha)$ è sufficiente mostrare che $b \in \mathbb{F}(\alpha)$ $(a = \alpha - \gamma b)$

Consideriamo

$$h(x) = f(\alpha - \gamma x) \in \mathbb{F}(\alpha)[x].$$

 $h(\alpha - \gamma b) = f(a) = 0$

 $h(b_j)=f(\alpha-\gamma b_j)=f(a+\gamma n-\gamma b_j)\neq 0$ dato che l'argomento della funzione non è un a_i

Deduciamo

$$MCD(h(x), g(x)) = (x - b)$$
 in $\mathbb{L}[x]$.

Se per assurdo MCD(h(x), g(x)) = 1 in $\mathbb{F}(\alpha)[x]$ avremmo un'identità di Bezout a coefficienti in $\mathbb{F}(\alpha) \subseteq L$

 \Rightarrow sarebbero coprimi anche in $\mathbb{L}[x]$

Quindi

$$(x,b) \in \mathbb{F}(\alpha)[x] \Rightarrow b \in \mathbb{F}(\alpha).$$

Corollario 1

 $\mathbb F$ campo infinito. Allora ogni estensione di $\mathbb F$ separabile e finita è semplice

Dimostrazione

segue iterando la proposizione