Lecture Summary: Conditioning with Multiple Discrete Random Variables

Source: Lec1.7.pdf

Key Points

- Relationship Between Marginals, Conditionals, and Joint PMFs:
 - Marginalization reduces complexity by focusing on smaller subsets of variables.
 - Conditional PMFs bridge marginals and the joint PMF, enabling detailed analysis.
 - Key formula:

$$f_{X_1,X_2,\ldots,X_n}(t_1,t_2,\ldots,t_n) = f_{X_1}(t_1) \prod_{i=2}^n f_{X_i|X_1,\ldots,X_{i-1}}(t_i \mid t_1,\ldots,t_{i-1}).$$

- Basic Conditioning:
 - For two variables X_1 and X_2 :

$$f_{X_1|X_2}(t_1 \mid t_2) = \frac{f_{X_1,X_2}(t_1,t_2)}{f_{X_2}(t_2)}.$$

- This formula generalizes to multiple variables:

$$f_{X_1, X_2 \mid X_3}(t_1, t_2 \mid t_3) = \frac{f_{X_1, X_2, X_3}(t_1, t_2, t_3)}{f_{X_3}(t_3)}.$$

- Examples of Conditioning:
 - Example 1: Pairwise Conditioning:
 - * $X_1 \mid X_2 = t_2$: Conditional PMF is derived as:

$$f_{X_1|X_2}(t_1 \mid t_2) = \frac{f_{X_1,X_2}(t_1,t_2)}{f_{X_2}(t_2)}.$$

- Example 2: Conditional on Multiple Variables:
 - * For $X_1 \mid (X_2 = t_2, X_3 = t_3)$:

$$f_{X_1|X_2,X_3}(t_1 \mid t_2,t_3) = \frac{f_{X_1,X_2,X_3}(t_1,t_2,t_3)}{f_{X_2,X_2}(t_2,t_3)}.$$

- Example 3: Joint Conditional PMF:

$$f_{X_1,X_3\mid X_2,X_4}(t_1,t_3\mid t_2,t_4) = \frac{f_{X_1,X_2,X_3,X_4}(t_1,t_2,t_3,t_4)}{f_{X_2\mid X_4}(t_2,t_4)}.$$

• Factoring the Joint PMF:

- Any joint PMF can be factored iteratively:

$$f_{X_1,X_2,...,X_n}(t_1,t_2,...,t_n) = f_{X_n}(t_n) \prod_{i=1}^{n-1} f_{X_i|X_{i+1},...,X_n}(t_i \mid t_{i+1},...,t_n).$$

– This flexibility allows reordering variables, e.g., $f_{X_3|X_1,X_2}$ or $f_{X_1|X_2,X_3}$.

• Applications:

- Conditioning simplifies computations in high-dimensional problems.
- Factorization helps analyze dependencies and decompose complex distributions.
- Practical examples include evaluating conditional probabilities in tabular data.

Simplified Explanation

Conditioning and Marginalization: Conditioning relates individual and joint distributions, while marginalization reduces variables.

Factoring: Break down a joint PMF into products of marginals and conditionals, simplifying analysis.

Example: For $f_{X_1,X_2,X_3}(t_1,t_2,t_3)$:

$$f_{X_1,X_2,X_3}(t_1,t_2,t_3) = f_{X_1}(t_1) \cdot f_{X_2\mid X_1}(t_2\mid t_1) \cdot f_{X_3\mid X_1,X_2}(t_3\mid t_1,t_2).$$

Conclusion

In this lecture, we:

- Defined conditional PMFs for multiple random variables.
- Demonstrated the utility of factoring joint PMFs into simpler components.
- Highlighted the flexibility of variable ordering in factorization.

These principles are foundational for probabilistic analysis in high-dimensional spaces.