CS 321A

PART I – Continued...
FORMAL LANGUAGES

Formal Grammar (Chomsky's Hierarchy of Grammars)

 G_0 = Unrestricted Grammar

L(G₀) = Language of the Unrestricted Grammar

G₁ = Context-Sensitive Grammar

L(G₁) = Language of the Context-Sensitive Grammar

 G_2 = Context-Free Grammar

 $L(G_2)$ = Language of the Context-Free Grammar

 G_3 = Regular Grammar

 $L(G_3)$ = Language of the Regular Grammar

$$L(G_0) \supseteq L(G_1) \supseteq L(G_2) \supseteq L(G_3)$$

Right Linear Grammar (G₃)

$$N = \{A,B\}$$
 $T = \{0,1\}$
 $P : \Sigma --> 1B$
 $\Sigma --> 1$
 $A --> 1B$
 $B --> 0A$
 $A --> 1$

Derivation Sequences using G₃

$$\Sigma \longrightarrow 1$$

 $\Sigma \longrightarrow 1B \longrightarrow 10A \longrightarrow 101$
 $\Sigma \longrightarrow 1B \longrightarrow 10A \longrightarrow 101B \longrightarrow 1010A \longrightarrow 1010A \longrightarrow 10101$
:
:
:
:

4

G_3

N = { A,B }, T = { 0,1 }
P:
$$\Sigma \longrightarrow 1B$$
, $\Sigma \longrightarrow 1$, A $\longrightarrow 1B$, B $\longrightarrow 0A$,

Derivation Sequences

$$\Sigma$$
 --> 1
 Σ --> 1B --> 10A --> 101
 Σ --> 1B --> 10A --> 101B --> 1010A --> 10101
 Language, L(G₃) = (10)*1

Left Linear Grammar (G₄)

- N = { A,B }
- T = { 0,1 }
- P : Σ --> B1

$$\Sigma \longrightarrow 1$$

$$B --> A0$$

$$A --> 1$$

Derivation Sequences Using G₄

- $\Sigma \longrightarrow 1$
- Σ --> B1 --> A01 --> 101
- Σ --> B1 --> A01 --> B101 --> A0101 -->

•

• $L(G_4) = 1 (01)^*$

G_4

N = { A,B }, T = { 0,1 }
P :
$$\Sigma$$
 --> B1, Σ --> 1, A --> B1, B --> A0, A --> 1
Derivation Sequences

- Σ --> 1
- Σ --> B1 --> A01 --> 101
- Σ --> B1 --> A01 --> B101 --> A0101 --> 10101

Language, $L(G_4) = 1 (01)^*$

Derivation Tree vs. Derivation Sequence

Given a language with the ff. productions:

$$\Sigma \longrightarrow A$$

$$A \longrightarrow A0A$$

$$A --> 1$$

- a. Show the derivation sequence for 10101
- b. Show the derivation tree for 10101

Derivation Trees

Ambiguity of a grammar

A grammar is ambiguous if it allows two or more distinct leftmost derivation trees for a string.

Formal Grammar

AMBIGUITY OF A GRAMMAR

Simplified Definition (Regular Grammar):

 A grammar is ambiguous if there exist two or more distinct leftmost derivations (derivation trees) for a certain string.

Two Forms of Ambiguity

- Structural Ambiguity
 The derivation trees have different structures
- 2. Labeling Ambiguity

 The derivation trees have the same structure but there are differences in some non-terminals labeling some nodes of the trees.

Formal Grammar

Determine if the following grammar is ambiguous or not.

$$N = \{A,B\}$$
$$T = \{0,1\}$$

P:

$$\Sigma \longrightarrow A$$

$$A --> B0$$

$$A --> A0$$

$$B --> 1$$

Formal Grammar

Determine if the following grammar is ambiguous or not.

$$N = \{A\}$$

$$T = \{0,1\}$$

P:

$$\Sigma \longrightarrow A$$

$$A \longrightarrow A0A$$

$$A --> 1$$

Is the following Grammar Ambiguous?

$$N=\{E\}$$

$$T=\{id, +, *\}$$

$$P:$$

$$\Sigma \rightarrow E$$

$$E \rightarrow E + E$$

$$E \rightarrow id$$

```
G = (V,T,E,P)
V = \{E,I\}
T = \{a,b,c,+,*,(,)\}
P:
E \rightarrow I
E \rightarrow E + E
E \rightarrow E^*E
E \rightarrow (E)
I \rightarrow a|b|c
```

```
G=(V,T,E,P)
V=\{E,T,F,I\}
T=\{a,b,c,+,*,(,)\}
P:
E \rightarrow T
T \rightarrow F
F \rightarrow I
E \rightarrow E + T
T \rightarrow T^*F
F \rightarrow (E)
I \rightarrow a|b|c
```