CSC 450 – COMPUTER NETWORKS

Lecture 1

Introduction to Computer Networks

Recap: What is a Network?

- Collection of nodes and links that connect them.
- This is vague. Why? Consider different networks:
 - Internet
 - Telephone / cell phone
 - Sensor Networks

Recap: How to Draw a Network

Recap - Basic Building Block: Link

- Electrical questions
 - Voltage, frequency,...
 - Wired or wireless

- Link-layer issues: How to send data?
 - When to talk can either side talk at once?
 - What to say low-level format?
- Okay...what about more nodes?

Basic Building Blocks: Links

... But what if we want more hosts?

Wires for everybody!

Scalability

Local Area Networks (LANs)

- Benefits of being "local":
 - Lower cost
 - Short distance = faster links, low latency
 - Efficiency less pressing
 - One management domain
 - More homogenous
- Examples:
 - Ethernet
 - Token ring, Fiber distributed data interface (FDDI)
 - 802.11 wireless

Multicasting

Need to share network resources

- How? --- Switched network
 - Party "A" gets resources sometimes
 - Party "B" gets them sometimes
- Interior nodes act as "switches"
- What mechanisms to share resources?

Back in the old days....

Circuit Switching

- Source first establishes a connection (circuit) to the destination
 - Each switch along the way stores information about the connection (and possibly allocates resources)
- Source sends the data over the circuit
 - No need to include the destination address with the data since the switches know the path
- The connection is explicitly torn down
- Example: telephone network (analog)

Circuit Switching Discussion

- Circuits have some very attractive properties.
 - Fast and simple data transfer, once the circuit has been established
 - Predictable performance since the circuit provides isolation from other users
 - Eg. Guaranteed bandwidth.
- But it also has some shortcomings
 - How about bursty traffic
 - Circuit will be idle for significant periods of time
 - How about users with different bandwidth needs
 - Do they have to use multiple circuits
- Alternative: packet switching

Packet Switching (our emphasis)

- Source sends information as self-contained packets that have an address
 - Source may have to break up single message in multiple
- Each packet travels independently to the destination host.
 - Switches use the address in the packet to determine how to forward the packets
 - Store and forward
- Analogy: a letter in surface mail

Packet Switching – Statistical Multiplexing

- Switches arbitrate between inputs
- Can send from any input that's ready
 - Links never idle when traffic to send.
 - (Efficiency!)

Packet Switching Discussion

- Efficient
 - Can send from any input that is ready
- General
 - Multiple types of applications
- Accommodates bursty traffic
 - Addition of queues
- Store and forward
 - Packets are self contained units
 - Can use alternate paths reordering
- Contention (i.e. no isolation)
 - Congestion
 - Delay

Networks Juggle Many Goals

- Efficiency resource use; cost
- The "ilities":
 - Reliability
 - Manageability
 - Security (securability, if you must)
 - Ease of:
 - Creation
 - Deployment
 - Creating useful applications
 - Scalability

Challenges for Networks

- Geographic scope
 - The Internet vs LAN
- Scale
 - The Internet vs. your home network
- Application types
 - Email vs. video conferencing
- Trust and Administration
 - Corporate network one network "provider"
 - Internet 17,000 network providers

Internet

- An inter-net: a network of networks
 - Networks are connected using routers that support communication in a hierarchical fashion
 - Often need other special devices at the boundaries for security, accounting,...
- The Internet: the interconnected set of networks of the Internet Service Providers (ISPs)
 - About 17,000 different networks make up the Internet

Challenges of the Internet

- Heterogeneity
 - Address formats
 - Performance bandwidth/latency
 - Packet size
 - Loss rate / pattern / handling
 - Routing
 - Diverse network technologies → satellite links, cellular links, carrier pigeons

Challenges of the Internet

- Scale
 - 100,000,000s of hosts
 - 17,000 + administrative domains,
 - Thousands of applications
- Adversarial environment
- On, and let's make it easy to use...
- How to translate between various network technologies?

Internet Design

- In order to inter-operate, all participating networks have to follow a common set of rules
- E.g., requirements for packets:
 - Header information: Addresses, etc.
 - Data: What is packet size limit?

How to Find Nodes?

Need naming and routing

Naming

Computer 1

Local DNS Server

Translates human readable names to logical endpoints

Routing

Network Service Model

- What is the service model?
 - Ethernet / Internet: best-effort packets can get lost, etc.
- What if you want more?
 - Performance guarantees (QoS)
 - Reliability
 - Corruption
 - Lost packets
 - Flow and congestion control
 - Fragmentation
 - In-order delivery
 - Etc...

What if the Data gets Corrupted?

Problem: Data Corruption

Solution: Add a checksum

What if Network is Overloaded?

Problem: Network Overload

- Solution: Buffering and Congestion Control
 - Short bursts: buffer
 - What if buffer overflows?
 - Packets dropped
 - Sender adjusts rate until load= resources → "congestion control"

What if the Data gets lost?

Problem: Lost Data

Solution: Timeout and Retransmit

What if the Data Doesn't Fit?

- Problem: Packet size
 - On Ethernet, max IP packet is 1.5 kbytes
 - Typical web page is 10 kbytes

Solution: Fragment data across packets

GET index.html

What if the Data is Out of Order?

Solution: Add Sequence Numbers

GET index.html

Networks [including end points] Implement Many Functions

- Link
- Multiplex
- Routing
- Addressing / naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc....

Meeting Application Demands

- Sometimes interior if the network can do it
 - Eg., Quality of Service
 - Benefits of circuit switching in packet-switched net
 - Hard in the Internet, easy in restricted contexts
- OR hosts can do it
 - Eg., end-to-end Transport protocols
 - TCP performs end-to-end retransmission of lost packets to give the illusion of a reliable underlying network.

Interesting Papers

- Read two papers on the motivations for the internet architecture:
 - "The design philosophy of the DARPA Internet Protocols", Dave Clark, SIGCOMM 88
 - "End-to-end arguments in system design", Saltzer Reed, and Clark,
 ACM Transactions on Computer Systems, November 1984