પ્રશ્ન 1(અ) [3 ગુણ]

હીટ સિંક શું છે. તેના પ્રકારોની યાદી આપો.

જવાબ:

હીટ સિંક એ એક પેસિવ ડિવાઈસ છે જે ઇલેક્ટ્રોનિક કોમ્પોનન્ટ્સમાંથી ગરમી શોષે અને ફેલાવે છે જેથી ઓવરહીટિંગ અટકાવી શકાય.

કોષ્ટક: હીટ સિંકના પ્રકારો

уѕіг	นต์า
પેસિવ	બાહ્ય પાવર વિના નૈસર્ગિક કન્વેક્શનનો ઉપયોગ કરે છે
એક્ટિવ	ફ્રેન અથવા લિક્વિડ ફૂલિંગનો સમાવેશ કરે છે
રેડિયલ	સેન્ટરથી રેડિયલ પેટર્નમાં ગોઠવાયેલા ફિન્સ
પિન-ફિન	વધુ સપાટી ક્ષેત્રફળ માટે પિન અથવા રોડનો ઉપયોગ કરે છે
એક્સટ્રુડેડ	આકારવાળા ડાય દ્વારા એલ્યુમિનિયમને ફોર્સ કરીને બનાવવામાં આવે છે

મેમરી ટ્રીક: "PAPER" (Passive, Active, Pin-fin, Extruded, Radial)

પ્રશ્ન 1(બ) [4 ગુણ]

નીચેનાને વ્યાખ્યાયિત કરો: 1. થર્મલ રનઅવે 2. થર્મલ સ્ટેબીલિટી.

જવાબ:

થર્મલ રનઅવે:

સ્વ-ત્વરિત વિનાશક પ્રક્રિયા જ્યાં વધતા તાપમાન કરંટ પ્રવાહમાં વધારો કરે છે, જે વધુ તાપમાન વધારે છે, જે ટ્રાન્ઝિસ્ટરને નુકસાન પહોંચાડી શકે છે.

થર્મલ સ્ટેબીલિટી:

તાપમાન ફેરફારો છતાં સ્થિર ઓપરેશન જાળવવા માટે ટ્રાન્ઝિસ્ટર સર્કિટની ક્ષમતા, જે થર્મલ રનઅવેને અટકાવે છે.

આકૃતિ: થર્મલ રનઅવે પ્રક્રિયા

મેમરી ટ્રીક: "RISE" (Runaway Is Self-Escalating)

પ્રશ્ન 1(ક) [7 ગુણ]

વોલ્ટેજ ડિવાઈડર બાયસને વિગતવાર સમજાવો.

જવાબ:

વોલ્ટેજ ડિવાઈડર બાયસ એ એક સામાન્ય ટ્રાન્ઝિસ્ટર બાયસિંગ ટેકનિક છે જે સ્થિર ઓપરેશન પ્રદાન કરે છે.

સર્કિટ ડાયાગ્રામ:

- **વોલ્ટેજ ડિવાઈડર નેટવર્ક**: R1 અને R2 એક નિશ્ચિત બેઝ વોલ્ટેજ સ્થાપિત કરે છે
- સ્થિર Q-પોઈન્ટ: તાપમાન વેરિએશન છતાં ઓપરેટિંગ પોઈન્ટને જાળવે છે
- વધુ સારી સ્થિરતા: ફિક્સ્ડ બાયસની તુલનામાં ઉચ્ચ સ્થિરતા ફેક્ટર
- **સ્વ-એડજસ્ટિંગ**: બેઝ કરંટ આપોઆપ તાપમાન ફેરફારોનો સામનો કરવા માટે એડજસ્ટ થાય છે

મેમરી ટ્રીક: "VSST" (Voltage divider, Stable, Self-adjusting, Temperature resistant)

પ્રશ્ન 1(ક) OR [7 ગુણ]

ડી.સી. લોડ લાઈનને વિગતવાર સમજાવો.

જવાબ:

DC લોડ લાઈન એ ટ્રાન્ઝિસ્ટર બાયસ કંડીશન્સના વિશ્લેષણ માટેની ગ્રાફિકલ પદ્ધતિ છે.

આકૃતિ: ટ્રાન્ઝિસ્ટર કેરેક્ટરિસ્ટિક કર્વ પર DC લોડ લાઈન

- વ્યાખ્યા: આપેલી સર્કિટ માટે તમામ સંભવિત ઓપરેટિંગ પોઇન્ટ્સ દર્શાવતી ગ્રાફિકલ લાઈન
- **એન્ડપોઈન્ટ**: (0, VCC/RC) અને (VCC, 0) IC-VCE પ્લેન પર
- Q-પોર્ઇન્ટ: લોડ લાઈન અને ટ્રાન્ઝિસ્ટર કેરેક્ટરિસ્ટિક કર્વના છેદબિંદુ
- સમીકરણ: IC = (VCC VCE)/RC

મેમરી ટ્રીક: "QECC" (Q-point Exists where Collector Current meets characteristics)

પ્રશ્ન 2(અ) [3 ગુણ]

ટ્રાન્ઝિસ્ટર સ્વીય તરીકે કેવી રીતે કામ કરે છે તે સમજાવો.

જવાબ:

ટ્રાન્ઝિસ્ટર સ્વિય સેયુરેશન (ON) અથવા કટ-ઓફ (OFF) રીજનમાં કામ કરે છે.

કોષ્ટક: ટ્રાન્ઝિસ્ટર સ્વિય ઓપરેશન

સ્થિતિ	રીજન	બેઝ કરંટ	કલેક્ટર કરંટ	VCE
OFF	કટ-ઓફ	IB ≈ 0	IC ≈ 0	VCE ≈ VCC
ON	સેચુરેશન	IB > IB(sat)	IC ≈ IC(sat)	VCE ≈ 0.2V

ਮੇਮਣੀ ਟ੍ਰੀਡ: "COS" (Cutoff Off, Saturation on)

પ્રશ્ન 2(બ) [4 ગુણ]

કોલપીટ ઓસીલેટર દોરો અને સમજાવો.

જવાબ

કોલપીટ ઓસીલેટર એ LC ઓસીલેટર છે જે ફીડબેક માટે કેપેસિટિવ વોલ્ટેજ ડિવાઈડરનો ઉપયોગ કરે છે.

સર્કિટ ડાયાગ્રામ:

• **ફીડબેક**: કેપેસિટિવ વોલ્ટેજ ડિવાઈડર (C1, C2) દ્વારા પ્રદાન કરવામાં આવે છે

• **રેઝોનન્ટ ફિક્યન્સી**: f = 1/(2π√(L×C)), જ્યાં C = (C1×C2)/(C1+C2)

• ઓસિલેશન: રિજનરેટિવ કીડબેક દ્વારા જાળવી રાખે છે

• ફ્રેઝ શિફ્ટ: લૂપની આસપાસ 360°

મેમરી ટ્રીક: "CFPO" (Capacitive Feedback Produces Oscillations)

પ્રશ્ન 2(ક) [7 ગુણ]

ટુ સ્ટેજ RC કપલ્ડ એમ્પ્લીફાયરનો ફ્રિક્વન્સી રિસ્પોન્સ સર્કિટ ડાયાગ્રામ સાથે સમજાવો.

જવાબ:

બે-સ્ટેજ RC કપલ્ડ એમ્પ્લિફાયર બે એમ્પ્લિફાયર સ્ટેજને RC કપલિંગ સાથે જોડે છે.

સર્કિટ ડાયાગ્રામ:

ક્રિક્વન્સી રિસ્પોન્સ:

- લો ફ્રિક્વન્સી: કપલિંગ કેપેસિટર ઇમ્પિડન્સને કારણે ગેઇન ઘટે છે
- મિડ ફિક્વન્સી: મહત્તમ ફ્લેટ ગેઇન રીજિયન (બેન્ડવિડ્થ)
- હાઇ ફ્રિક્વન્સી: ટ્રાન્ઝિસ્ટર કેપેસિટન્સ ઇફેક્ટ્સને કારણે ગેઇન ઘટે છે
- ઓવરઓલ ગેઇન: વ્યક્તિગત સ્ટેજ ગેઇનનો ગુણાકાર

ਮੇਮਰੀ ਟ੍ਰੀਡ: "LMH" (Low drops, Mid flat, High drops)

પ્રશ્ન 2(અ) OR [3 ગુણ]

હાર્ટલી ઓસિલેટરનું સર્કિટ ડાયાગ્રામ દોરો.

જવાબ:

હાર્ટલી ઓસિલેટરનું સર્કિટ ડાયાગ્રામ:

ਮੇਮરੀ ਟ੍ਰੀs: "ITLC" (Inductor Tapped for LC Circuit)

પ્રશ્ન 2(બ) OR [4 ગુણ]

વિવિદ્ય પ્રકારના નેગેટીવ ફીડબેકનું લિસ્ટ બનાવો.

જવાબ:

કોષ્ટક: નેગેટિવ ફીડબેકના પ્રકારો

уѕіг	કન્ફિગરેશન	પેરામીટર્સ પર અસર
વોલ્ટેજ સીરીઝ	આઉટપુટ વોલ્ટેજ ઇનપુટમાં સીરીઝમાં ફીડ થાય છે	ઇનપુટ ઇમ્પેડન્સમાં વધારો, ડિસ્ટોર્શનમાં ઘટાડો
વોલ્ટેજ શન્ટ	આઉટપુટ વોલ્ટેજ ઇનપુટમાં પેરેલલમાં ફ્રીડ થાય છે	ઇનપુટ ઇમ્પેડન્સમાં ઘટાડો, બેન્ડવિડ્થમાં વધારો
કરંટ સીરીઝ	આઉટપુટ કરંટ ઇનપુટમાં સીરીઝમાં ફીડ થાય છે	આઉટપુટ ઇમ્પેડન્સમાં વધારો, કરંટ ગેઇનને સ્થિર કરે છે
કરંટ શન્ટ	આઉટપુટ કરંટ ઇનપુટમાં પેરેલલમાં ફીડ થાય છે	આઉટપુટ ઇમ્પેડન્સમાં ઘટાડો, વોલ્ટેજ ગેઇનને સ્થિર કરે છે

મેમરી ટ્રીક: "VSCS" (Voltage Series, Current Shunt)

પ્રશ્ન 2(ક) OR [7 ગુણ]

નેગેટિવ ફીડબેક એમ્પ્લીફાયરના ફાયદાઓની યાદી બનાવો અને વોલ્ટેજ સીરીઝ નેગેટિવ ફીડબેકને વિગતવાર સમજાવો.

જવાબ:

નેગેટિવ ફીડબેકના ફાયદાઓ:

- કોમ્પોનન્ટ વેરિએશન સામે ગેઇન સ્થિર કરે છે
- ડિસ્ટોર્શન અને નોઇઝમાં ઘટાડો
- બેન્ડવિડ્થમાં વધારો

- ઇનપુટ/આઉટપુટ ઇમ્પેડન્સમાં ફેરફાર કરે છે
- લિનિયારિટીમાં સુધારો

વોલ્ટેજ સીરીઝ નેગેટિવ ફીડબેક:

- **કન્ફિગરેશન**: આઉટપુટ વોલ્ટેજ સેમ્પલ કરવામાં આવે છે, ઇનપુટમાં સીરીઝમાં ફીડ બેક કરવામાં આવે છે
- **ક્લોઝ્ડ-લૂપ ગેઇન**: ACL = A/(1+Aβ), જ્યાં A ઓપન-લૂપ ગેઇન છે અને β ફીડબેક ફ્રેક્શન છે
- **ઇનપુટ ઇમ્પેડન્સ**: ફેક્ટર (1+Aβ) દ્વારા વધે છે
- **આઉટપુટ ઇમ્પેડન્સ**: ફેક્ટર (1+Aβ) દ્વારા ઘટે છે

મેમરી ટ્રીક: "SIGO" (Stable gain, Increased input impedance, Gain reduction, Output impedance reduction)

પ્રશ્ન 3(અ) [3 ગુણ]

બે ટ્રાન્ઝિસ્ટર એનેલોજીનો ઉપયોગ કરીને SCRની સર્કિટ દોરો.

જવાબ:

SCRનું બે ટ્રાન્ઝિસ્ટર એનેલોજી:

મેમરી ટ્રીક: "PNPNPN" (PNP and NPN structure)

પ્રશ્ન 3(બ) [4 ગુણ]

SCR ના નેચરલ કમ્યુટેશન સર્કિટ દોરી ને સમજાવો.

જવાબ:

નેચરલ કમ્યુટેશન ત્યારે થાય છે જ્યારે SCR કરંટ કુદરતી રીતે હોલ્ડિંગ કરંટથી નીચે પડે છે.

સર્કિટ ડાયાગ્રામ:

કરંટ વેવફોર્મ:

- વ્યાખ્યા: કરંટ હોલ્ડિંગ કરંટથી નીચે પડે ત્યારે SCR આપોઆપ બંધ થાય છે
- AC સર્કિટ: દરેક પોઝિટિવ હાફ-સાયકલના અંતે કુદરતી રીતે થાય છે
- **ઝીરો ક્રોસિંગ**: AC વોલ્ટેજ શૂન્ય ક્રોસ કરે ત્યારે SCR બંધ થાય છે
- કોઈ બાહ્ય સર્કિટ નથી: ટર્ન-ઓફ માટે કોઈ વધારાના કોમ્પોનન્ટની જરૂર નથી

મેમરી ટ્રીક: "NAZC" (Natural At Zero Crossing)

પ્રશ્ન 3(ક) [7 ગુણ]

ટ્રાયાકનો ઉપયોગ પંખાના રેગ્યુલેટર તરીકે અને એસી પાવર માટે ઓન-ઓફ કંટ્રોલ તરીકે કેવી રીતે થઈ શકે છે તે સમજાવો.

જવાબ:

TRIAC એ બાયડાયરેક્શનલ ડિવાઇસ છે જે AC પાવર કંટ્રોલ એપ્લિકેશન માટે આદર્શ છે.

TRIAC ફેન રેગ્યુલેટર સર્કિટ:

TRIAC ઓન-ઓફ કંટ્રોલ:

- ફ્રેન રેગ્યુલેશન: ફેઝ કંટ્રોલ ટેકનિક ફ્રેનમાં પાવર વેરી કરે છે
- **પોટેન્શિયોમીટર**: TRIACનો ફાયરિંગ એંગલ એડજસ્ટ કરે છે
- **ઓન-ઓફ કંટ્રોલ**: સરળ સ્વિય TRIAC ગેટને ટ્રિગર કરે છે
- બાયડાયરેક્શનલ: બંને હાફ-સાયકલમાં કરંટ કંટ્રોલ કરે છે

મેમરી ટ્રીક: "FPOB" (Fan Power is controlled by Phase angle in both directions)

પ્રશ્ન 3(અ) OR [3 ગુણ]

એસ.સી.આર, ડાયાક અને ટ્રાયાક ના સિમ્બોલ દોરો.

જવાબ:

થાઇરિસ્ટરના સિમ્બોલ:

મેમરી ટ્રીક: "SDT" (SCR has gate on one side, DIAC has none, TRIAC has gate in middle)

પ્રશ્ન 3(બ) OR [4 ગુણ]

એસ.સી.આર નુ ગેટ ટ્રીગરીંગ સર્કિટ દોરી ને સમજાવો.

જવાબ:

ગેટ ટ્રિગરિંગ એ SCRને ચાલુ કરવાની સૌથી સામાન્ય પદ્ધતિ છે.

સર્કિટ ડાયાગ્રામ:

- સિદ્ધાંત: ગેટ અને કેથોડ વચ્ચે પોઝિટિવ વોલ્ટેજ એપ્લાય કરવું
- કરંટ જરૂરિયાત: નાનો ગેટ કરંટ મોટા એનોડ કરંટને ટ્વિગર કરે છે
- **લેચિંગ**: એકવાર ટ્રિગર થયા પછી, ગેટ સિગ્નલ દૂર કરવામાં આવે તો પણ SCR ચાલુ રહે છે
- ટર્ન-ઓફ: એનોડ કરંટને હોલ્ડિંગ કરંટથી નીચે ઘટાડવાની જરૂર પડે છે

ਮੇਮਰੀ ਟ੍ਰੀs: "GPLT" (Gate Pulse Latches Thyristor)

પ્રશ્ન 3(ક) OR [7 ગુણ]

SCRનું કંસ્ટ્રકશન અને V-I લાક્ષણિકતા દોરો અને V-I લાક્ષણિકતા સમજાવો.

જવાબ:

SCR (સિલિકોન કંટ્રોલ્ડ રેક્ટિફાયર) એ ચાર-લેયર PNPN સેમિકન્ડક્ટર ડિવાઇસ છે.

SCR કંસ્ટ્રકશન:

V-I લાક્ષણિકતા:

- ફોરવર્ડ બ્લોકિંગ રીજન: બ્રેકઓવર વોલ્ટેજ સુધી SCR મિનિમલ કરંટ કન્ડક્ટ કરે છે
- ફોરવર્ડ કન્ડક્શન રીજન: ટ્રિગરિંગ પછી લો-રેઝિસ્ટન્સ સ્ટેટ
- રિવર્સ બ્લોકિંગ રીજન: રિવર્સ દિશામાં કરંટને બ્લોક કરે છે
- ગેટ ટ્રિગરિંગ: બ્રેકઓવર વોલ્ટેજને ઘટાડે છે, ટર્ન-ઓનને સરળ બનાવે છે

મેમરી ટ્રીક: "FBRH" (Forward Blocking, Reverse blocking, Holding current)

પ્રશ્ન 4(અ) [3 ગુણ]

OP-AMP ને સમિંગ એમ્પ્લીકાયર તરીકે સમજાવો.

જવાબ:

સમિંગ એમ્પ્લિફાયર વેઇટેડ ગેઇન સાથે મલ્ટિપલ ઇનપુટ સિગ્નલ્સ એડ કરે છે.

સર્કિટ ડાયાગ્રામ:

- **ફંક્શન**: ઇનપુટ વોલ્ટેજનો વેઇટેડ સમ આઉટપુટ કરે છે
- આઉટપુટ સમીકરણ: Vout = -(V1×Rf/R1 + V2×Rf/R2 + V3×Rf/R3)
- **સમાન ભાર**: જ્યારે R1 = R2 = R3, આઉટપુટ સરળ સમ ગુણાકાર -Rf/R છે
- **વર્સ્યુઅલ ગ્રાઉન્ડ**: ઈન્વર્ટિંગ ઇનપુટ 0V પોટેન્શિયલ જાળવે છે

મેમરી ટ્રીક: "SWAP" (Sum Weighted And Proportional)

પ્રશ્ન 4(બ) [4 ગુણ]

નીચેના OP-AMP પેરામીટરને વ્યાખ્યાયિત કરો: 1. ઇનપુટ બાયસ કરંટ 2. CMRR

જવાબ:

ઇનપુટ બાયસ કરંટ:

જ્યારે આઉટપુટ શૂન્ય હોય ત્યારે બે ઇનપુટ ટર્મિનલમાં પ્રવાહિત થતા કરંટની સરેરાશ.

CMRR (કોમન મોડ રિજેક્શન રેશિયો):

ડિફરેન્શિયલ ગેઇનનો કોમન-મોડ ગેઇન સાથેનો ગુણોત્તર, જે દર્શાવે છે કે ઓપ-એમ્પ બંને ઇનપુટ માટે સામાન્ય સિગ્નલને કેટલી સારી રીતે રિજેક્ટ કરે છે.

કોષ્ટક: ઓપ-એમ્પ પેરામીટર્સ

પેરામીટર	સામાન્ય મૂલ્ય	મહત્વ
ઇનપુટ બાયસ કરંટ	20-200 nA	હાઈ ઇમ્પિડન્સ સર્કિટ માટે ઓછું વધુ સાટું
CMRR	80-120 dB	નોઇઝ રિજેક્શન માટે વધુ સારું

ਮੇਮਣੀ ਟ੍ਰੀਡ: "BIC-CMR" (Bias Is Current, Common Mode Rejection)

પ્રશ્ન 4(ક) [7 ગુણ]

555 ટાઈમરનો ઉપયોગ કરીને મોનોસ્ટેબલ મલ્ટિવાઇબ્રેટર દોરો અને સમજાવો.

જવાબ

મોનોસ્ટેબલ મલ્ટીવાઇબ્રેટર ટ્રિગર થતાં પૂર્વનિર્ધારિત અવધિનો એક પત્સ જનરેટ કરે છે.

સર્કિટ ડાયાગ્રામ:

આઉટપુટ વેવફોર્મ:

- **ઓપરેશન**: સિંગલ સ્ટેબલ સ્ટેટ (આઉટપુટ LOW), ટ્રિગર થતાં અસ્થાયી રૂપે HIGH
- **પલ્સ વિડ્**થ: T = 1.1 × R × C (સેકન્ડ)
- **ટ્રિગરિંગ**: TRIG પિન (પિન 2) પર ફોલિંગ એજ
- **ટાઇમિંગ કોમ્પોનન્ટ્સ**: R અને C પલ્સ અવધિ નક્કી કરે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "POST" (Pulse Output, Single Trigger)

પ્રશ્ન 4(અ) OR [3 ગુણ]

OP-AMP ના ઇન્વર્ટિંગ એમ્પ્લીફાયરનો સર્કિટ ડાયાગ્રામને દોરો.

જવાબ:

ઇન્વર્ટિંગ એમ્પ્લિફાયર સર્કિટ:

મેમરી ટ્રીક: "IRON" (Inverting Requires One Negative input)

પ્રશ્ન 4(બ) OR [4 ગુણ]

નીચેના OP-AMP પેરામીટરને વ્યાખ્યાયિત કરો: 1. ઇનપુટ ઓફસેટ કરંટ 2. સ્લ્યુ રેટ

જવાબ:

ઇનપુટ ઓફસેટ કરંટ:

બે ઇનપુટ ટર્મિનલમાં પ્રવાહિત થતા કરંટ વચ્ચેનો તફાવત.

સ્લ્યુ રેટ:

આઉટપુટ વોલ્ટેજનો સમય પ્રતિ એકમ મહત્તમ ફેરફાર દર, સામાન્ય રીતે V/µs માં માપવામાં આવે છે.

કોષ્ટક: ઓપ-એમ્પ પેરામીટર્સ

પેરામીટર	સામાન્ય મૂલ્ય	મહત્વ
ઇનપુટ ઓફસેટ કરંટ	2-50 nA	પ્રિસિઝન એપ્લિકેશન માટે ઓછું વધુ સારું
સ્લ્યુ રેટ	0.5-20 V/μs	હાઈ-ફ્રિક્વન્સી ઓપરેશન માટે વધુ સારું

મેમરી ટ્રીક: "IOSR" (Input Offset and Slew Rate)

પ્રશ્ન 4(ક) OR [7 ગુણ]

ઑપ-એમ્પને ઇન્વર્ટિંગ એમ્પ્લીફાયર તરીકે સમજાવો અને તેના વોલ્ટેજ ગેઇનનું સમીકરણ મેળવો.

જવાબ:

ઇન્વર્ટિંગ એમ્પ્લિફાયર એક ઇન્વર્ટેડ અને એમ્પ્લિફાઇડ આઉટપુટ સિગ્નલ ઉત્પન્ન કરે છે.

સર્કિટ ડાયાગ્રામ:

વોલ્ટેજ ગેઇન ડેરિવેશન:

```
નોડ N (ઇન્વર્ટિંગ ઇનપુટ) પર:

I1 + If = 0 (કિરકોફનો કરંટ લો દ્વારા)
(Vin - VN)/R1 + (Vout - VN)/Rf = 0
જ્યારે VN ≈ 0 (વર્ચ્યુઅલ ગ્રાઉન્ડ):
Vin/R1 + Vout/Rf = 0
Vout/Vin = -Rf/R1
```

- ગેઇન સમીકરણ: Vout/Vin = -Rf/R1
- **વર્ચ્યુઅલ ગ્રાઉન્ડ**: ઇન્વર્ટિંગ ટર્મિનલ 0V પર જાળવવામાં આવે છે
- ઇનપુટ ઇમ્પિડન્સ: R1 ને સમાન
- નેગેટિવ ફીડબેક: સ્થિરતા અને લિનિયારિટી પ્રદાન કરે છે

મેમરી ટ્રીક: "GIVN" (Gain Is Negative, Virtual ground)

પ્રશ્ન 5(અ) [3 ગુણ]

IC 555 નો બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

IC 555નો બ્લોક ડાયાગ્રામ:

મેમરી ટ્રીક: "CVOT" (Comparators, Voltage divider, Output stage, Timer)

પ્રશ્ન 5(બ) [4 ગુણ]

વેઈન બ્રિજ ઓસીલેટર તરીકે OP-AMPનો સર્કિટ ડાયાગ્રામ દોરો.

જવાબ:

વેઈન બ્રિજ ઓસીલેટર સર્કિટ:

ਮੇਮਰੀ ਟ੍ਰੀs: "WPRC" (Wein Produces Resonant Circuit)

પ્રશ્ન 5(ક) [7 ગુણ]

વિવિદ્ય પ્રકારના ફિક્સ્ડ અને વેરિયેબલ વોલ્ટેજ રેગ્યુલેટર IC ની કામગીરી સમજાવો.

જવાબ:

વોલ્ટેજ રેગ્યુલેટર IC ઇનપુટ અથવા લોડ વેરિએશન છતાં સ્થિર આઉટપુટ વોલ્ટેજ જાળવે છે.

ફિક્સ્ક વોલ્ટેજ રેગ્યુલેટર:

વેરિએબલ વોલ્ટેજ રેગ્યુલેટર:

- ફિક્સ્ડ રેગ્યુલેટર: 78XX (પોઝિટિવ) અને 79XX (નેગેટિવ) સીરીઝ ચોક્કસ વોલ્ટેજ પ્રદાન કરે છે
- વેરિએબલ રેગ્યુલેટર: LM317 (પોઝિટિવ) અને LM337 (નેગેટિવ) એડજસ્ટેબલ આઉટપુટની મંજૂરી આપે છે
- **થ્રી-ટર્મિનલ ડિઝાઇન**: ઇનપુટ, આઉટપુટ અને ગ્રાઉન્ડ/એડજસ્ટ ટર્મિનલ
- LM317 માટે આઉટપુટ સમીકરણ: Vout = 1.25V × (1 + R2/R1)
- **પ્રોટેક્શન ફીચર્સ**: શોર્ટ સર્કિટ, થર્મલ ઓવરલોડ અને સેફ એરિયા પ્રોટેક્શન

મેમરી ટ્રીક: "FAVOR" (Fixed And Variable Output Regulators)

પ્રશ્ન 5(અ) OR [3 ગુણ]

555 ટાઈમરનો ઉપયોગ કરીને એસ્ટેબલ મલ્ટિવાઈબ્રેટરનો બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

એસ્ટેબલ મલ્ટિવાઇબ્રેટર બ્લોક ડાયાગ્રામ:

મેમરી ટ્રીક: "FOFT" (Free-running Oscillator From Timer)

પ્રશ્ન 5(બ) OR [4 ગુણ]

સૌર આદ્યારિત બેટરી ચાર્જર સર્કિટ દોરો અને સમજાવો.

જવાબ:

સોલર બેટરી ચાર્જર સૂર્ય ઊર્જાને બેટરી ચાર્જ કરવા માટે રૂપાંતરિત કરે છે.

સર્કિટ ડાયાગ્રામ:

- **સોલર પેનલ**: સૂર્યપ્રકાશને DC વીજળીમાં રૂપાંતરિત કરે છે
- **બ્લોકિંગ ડાયોડ**: રાત્રે પેનલ દ્વારા બેટરી ડિસ્ચાર્જને અટકાવે છે
- **રેગ્યુલેટર IC**: યાર્જિંગ વોલ્ટેજ અને કરંટને નિયંત્રિત કરે છે
- **યાર્જ ઇન્ડિકેટર**: ચાર્જિંગની સ્થિતિ દર્શાવે છે
- પ્રોટેક્શન: ઓવરચાર્જ અને રિવર્સ પોલારિટી પ્રોટેક્શન

મેમરી ટ્રીક: "SBRCP" (Solar, Blocking diode, Regulator, Charging, Protection)

પ્રશ્ન 5(ક) OR [7 ગુણ]

SMPS ના બ્લોક ડાયાગ્રામ દોરો અને સમજાવો

જવાબા

SMPS (સ્વિચ મોડ પાવર સપ્લાય) સ્વિચિંગ રેગ્યુલેટર્સનો ઉપયોગ કરીને વીજળી શક્તિને કુશળતાથી રૂપાંતરિત કરે છે.

બ્લોક ડાયાગ્રામ:

- **EMI ફિલ્ટર**: AC ઇનપુટમાંથી નોઇઝ દૂર કરે છે
- **રેક્ટિફાયર**: AC ને અનરેગ્યુલેટેડ DC માં રૂપાંતરિત કરે છે
- સ્વિ**ચિંગ સર્કિટ**: DC ને ઉચ્ચ ફ્રિક્વન્સી (20-100 kHz) પર યોપ કરે છે
- ટ્રાન્સફોર્મર: આઇસોલેશન અને વોલ્ટેજ રૂપાંતરણ પ્રદાન કરે છે
- **આઉટપુટ રેક્ટિફાયર**: હાઈ-ફ્રિક્વન્સી AC ને ફરીથી DC માં કન્વર્ટ કરે છે
- **આઉટપુટ ફિલ્ટર**: DC આઉટપુટને સ્મૂથ કરે છે
- ફીડબેક સર્કિટ: રેગ્યુલેશન માટે આઉટપુટનું મોનિટરિંગ કરે છે
- કંટ્રોલ સર્કિટ: ફીડબેકના આધારે સ્વિચિંગ એડજસ્ટ કરે છે

મેમરી ટ્રીક: "ERST-FOFC" (EMI filter, Rectifier, Switching, Transformer, Feedback, Output rectifier, Filter, Control)