Prénom	Nom	

INFO4: Probabilités et Simulation - Test Maths

Aucune démonstration n'est demandée. Vous indiquerez pour chaque formule une expression plus simple, un équivalent, voire une limite quand cela s'y prête faisant uniquement intervenir au plus n, ρ , ou x. Vous préciserez si besoin et si vous le connaissez le domaine de définition. Je vous encourage à faire un petit dessin illustrant le calcul quand ça s'y prête (il n'y a que pour les formules avec un ρ que ça ne s'y prête pas trop).

$\sum_{k=1}^{n} 2$	$=2n\xrightarrow[n\to+\infty]{}+\infty$	
$\sum_{k=1}^{n} n$		
$\sum_{k=1}^{n} k$		
$\sum_{k=1}^{n} k^2$		
$\sum_{k=1}^{n} \frac{1}{k}$		
$\sum_{k=1}^{n} \frac{1}{k^2}$		
$(a+b)^n$		

$\sum_{k=0}^{\infty} \rho^k$	
$\sum_{k=0}^{\infty} k.\rho^{k-1}$	
$\sum_{k=0}^{\infty} \frac{\rho^k}{k!}$	
$\int_{-1}^{1} 1 - t dt$	
$\int_0^1 x^2.dx$	
$\int_0^\infty e^{-t}.dt$	
$\int_{1}^{x} \frac{1}{t} dt$	
$\int_{1}^{x} \frac{1}{t^{2}} dt$	
$\int_{-1}^{1} \sqrt{1 - t^2} dt$	