Linear somegebra? Linear allgebra.

Learning Objectives

This review session has one objective, and that is to Work in groups to identify course objectives that you are not comfortable with.

- 1. The following sentences have errors or are missing something. Correct them or add the missing details.
 - (a) A transformation $f: \mathbb{R}^n \to \mathbb{R}^m$ is linear if it sends sums to sums, $f(\vec{0}) = \vec{0}$, and $f(\alpha \vec{x}) = \alpha f(\vec{x})$.
 - (b) An $n \times m$ matrix corresponds to a linear transformation from \mathbb{R}^n to \mathbb{R}^m .
 - (c) A basis for the subspace V is a set S such that $\dim S = \dim V$ and $\operatorname{span}(S) = V$.
 - (d) \vec{w} is a convex combination of u and v if:

$$\vec{w} = \{ \vec{w} : \vec{w} = a\vec{u} + b\vec{v} \text{ for all } a, b \in [0, 1] \}$$

- (e) If \vec{a} , \vec{b} , and \vec{c} are pairwise orthogonal vectors in \mathbb{R}^3 , then $\det[\vec{a}|\vec{b}|\vec{c}] = 1$.
- 2. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called *almost linear* if for all $x, y \in \mathbb{R}^n$, we have $||T(x+y)|| \le ||T(x)+T(y)||$, and for all $\alpha \ge 0$ and $x \in \mathbb{R}^n$, we have $||T(\alpha x)|| \le \alpha ||T(x)||$.
 - Write down a clear and concise explanation of what one must do in order to show that a transformation is almost linear.
 - Show that the transformation $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not almost linear.
 - Show that any linear transformation in almost linear.
- 3. Mohammed has partially row-reduced the matrix *A* using the following steps. Use his work to write *A* as a product of elementary matrices. Use this to compute det *A*.

$$A = \begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 1 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{r_4 \rightarrow r_4 - r_1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{r_4 \leftrightarrow r_3} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

4. For which values of *a* is the matrix *A* invertible? Compute the inverse of *A* when it exists (your answer may depend on *a*).

$$A = \begin{bmatrix} 0 & 3 & 2 \\ a & 0 & 0 \\ 8 & 2 & 0 \end{bmatrix}$$

- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation which projects vectors onto the subspace $V = \text{span}\{\vec{v}\}$, where $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
 - (a) Show that *T* is linear.
 - (b) What are the eigenvectors of T? Is T diagonalizable?
 - (c) How do the eigenvectors of T relate to V and V^{\perp} ?