Covariance Matrix Estimation for Sparse Data

Jason Bono

November 16, 2022

1 Definitions and Framework

Say we have data sample of k columns and V rows, and with null entries non-trivially distributed throughout. Call the set of null values in the ith column \emptyset_i . Call $\mu = \mu_1, \mu_2, ..., \mu_k$ the k dimensional vector of arithmetic means of the latent distribution. The ith element of μ is estimated from the sample by

$$\mu_i = \frac{1}{N_i} \sum_{v \neq \emptyset_i}^{N_i} y_i^v \tag{1}$$

where y_i^v is the vth non-null value (row) of the ith field (column), and N_i is the number of non null values in the ith field. Call ΔA the standard error matrix for any matrix A. The elements of standard error on μ is approximated by

$$((\Delta \mu)_i)^2 = (\Delta \mu_i)^2 \approx (\frac{1}{N_i})^2 \sum_{v \neq \emptyset_i}^{N_i} (y_i^v - \mu_i)^2 \equiv (\frac{\sigma_i}{N_i})^2$$
 (2)

or

$$\Delta\mu_i \approx \frac{\sigma_i}{\sqrt{N_i}}$$
 (3)

Call the latent distribution's covariance matrix R. The *ij*th element of R can be estimated by

$$R_{ij} \approx \frac{1}{n_{ij}} \sum_{v \notin (\emptyset_i \cup \emptyset_j)}^{n_{ij}} (y_i^v - \mu_i)(y_j^v - \mu_j)$$

$$\tag{4}$$

where n_{ij} is the number of rows with non-null values in *both* columns i and j. In other words, n_{ij} is the cardinality of the intersection of the *i*th and *j*th sets of non null values. Note the sum to n_{ij} only includes rows in the aforementioned intersection.

Note that $n_{ii} = N_i$, so the diagonal terms can be written as

$$R_{ii} = \frac{1}{N_i} \sum_{v \notin \emptyset_i}^{N_i} (y_i^v - \mu_i)^2 = \sigma_i^2$$
 (5)

The standard error on R is approximated as

$$\Delta R_{ij} \approx \frac{\sigma_i \sigma_j}{\sqrt{n_{ij}}} \tag{6}$$

which, for the diagonal terms, can be written as

$$\Delta R_{ii} = \frac{\sigma_i^2}{\sqrt{n_i}} = \frac{R_{ii}}{\sqrt{n_i}} \tag{7}$$

2 Regularization

The fact that null values are distributed differently from column to column means that the off diagonals R_{ij} are calculated from a subset of data that the diagonals R_{ii} are calculated from. This further implies the possibility of non positive semi definite estimates of R. That is, the best approximations of the individual elements of R_{ij} may not yield a positive semi definite collective form.

In particular since R is symmetric it is guaranteed to be positive semi definite if

$$\psi(R_i) = R_{ii} - \sum_{i \neq j}^k |R_{ij}| \ge 0 \tag{8}$$

for all k values of i.

The regularization procedure proposed here is to find the minimal perturbation to R, yielding R', such that, for all negative $\psi(R_i)$, we get

$$\psi(R_i') = 0 \tag{9}$$

This is achieved for

$$R'_{ii} = R_{ii} + a_{ii}$$

$$R'_{ij} = R_{ij} - \operatorname{sign}(R_{ij})a_{ij}$$
(10)

with any a_i such that

$$\sum_{j} a_{ij} = -\psi(R_i) \tag{11}$$

An advantageous and unique solution is found by imposing the constraint that the perturbation a_i is distributed across the vector R_i in proportion to the natural variation on the elements R_{ij} . That is,

$$a_{ij} = -\frac{\psi(R_i)}{\sum_{j}^{k} (\Delta R_{ij})^2} (\Delta R_{ij})^2; \qquad \text{if } \psi(R_i) < 0$$

$$a_{ij} = 0; \qquad \text{otherwise}$$

$$(12)$$

where the non trivial case can be written as

$$a_{ij} = \frac{-\psi(R_i)}{\sum_{j}^{k} (\sigma_i^2 \sigma_j^2 / n_{ij})} (\sigma_i^2 \sigma_j^2 / n_{ij}) = \frac{-\psi(R_i)}{\sum_{j}^{k} (\sigma_j^2 / n_{ij})} (\sigma_j^2 / n_{ij})$$
(13)

The advantage to this approach is it guarantees that R' is positive semi definite, it only perturbs R when its estimate is non positive semi definite, in the case of a perturbation the degree of perturbation is minimized, and the parameters that have the smallest standard error get the smallest perturbations.

3 Comparison to R_4^0

In [1], four estimates of the covariance matrix are discussed for initialization in two iterative methods. Here we compare properties of our R with R_4^0 from [1]. The elements of R_4^0 are found by

$$(R_4^0)_{ij} = \frac{1}{\sqrt{N_i N_j}} \sum_{v \notin (\emptyset_i \cup \emptyset_j)}^{n_{ij}} (y_i^v - \mu_i)(y_j^v - \mu_j)$$
(14)

Comparison with the unregularized covariance matrix R is straightforward:

$$\frac{R_{ij}}{(R_4^0)_{ij}} = \frac{\sqrt{N_i N_j}}{n_{ij}} \tag{15}$$

For the diagonals

$$\frac{\sqrt{N_i N_i}}{n_{ii}} = 1 \tag{16}$$

For the off diagonals, assume the rows in columns i and j have a probability P of being non null. This is the fraction of rows filled out in i and j, which for simplicity we assume to be identical. In this case,

$$n_{ij} = kP^2 (17)$$

and

$$N_i = N_j = kP (18)$$

so that

$$\frac{\sqrt{N_i N_j}}{n_{ij}} = \frac{1}{P} \tag{19}$$

and therefore

$$R_{ii} = (R_4^0)_{ii}$$

$$R_{ij} = \frac{(R_4^0)_{ij}}{P}$$
(20)

so the off diagonal terms in R are larger than R_4^0 in by a factor of $\frac{1}{P}$. Remember that the regularized R' is either equivalent to R or minimally perturbed to ensure it is positive definite, and that the perturbations are distributed in any offending row (or column) in proportion to the squares of the standard errors.

Utilizing the Correlation Coefficient 4

fill out

References

[1] William J. J. Roberts, Application of a Gaussian, Missing-Data Model to Product Recommendation IEEE Signal Processing Letters, Vol. 17, No. 5, 2010.