13. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 29.01.2023, 24.00 Uhr

Aufgabe 1: (2+2=4 Punkte)

Für $\alpha \in \mathbb{R}$ sei $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ definiert durch:

$$f(x) := \begin{cases} x^{\alpha} & \text{für } x > 0 \\ 0 & \text{für } x = 0 \\ -|x|^{\alpha} & \text{für } x < 0 \end{cases}$$

Untersuchen Sie, für welche α die Funktion f_{α} im Nullpunkt

a) stetig, b) differenzierbar ist.

Aufgabe 2: (2 + 2 + 1 = 5 Punkte)

Zeigen Sie mit Hilfe des Mittelwertsatzes folgende Aussagen.

- a) Es gilt $\sin x \le x$ für alle $x \ge 0$.
- b) Sei $f:[a,b] \to \mathbb{R}$ stetig mit $f([a,b]) \subset [a,b]$ und differenzierbar auf (a,b) mit $f'(x) \neq 1$ für alle $x \in (a,b)$. Dann besitzt f genau einen Fixpunkt (vgl. Aufgabe 2 a) von Blatt 9).
- c) Zeigen Sie, dass arctan : $\mathbb{R} \to \mathbb{R}$ gleichmäßig stetig ist.

Aufgabe 3: (4 Punkte)

Aus drei Brettern, die alle die Breite b haben, soll eine Rinne mit maximalem Fassungsvermögen gebaut werden. Bestimmen Sie dazu den Winkel $\alpha \in \left[0, \frac{\pi}{2}\right]$ so, dass die in der Skizze dargestellte Fläche maximal wird.

Hinweis: Sie dürfen die geometrische Deutung von Sinus und Cosinus im rechtwinkligen Dreieck verwenden und ebenso die folgende Wertetabelle:

Bitte Wenden!

Aufgabe 4: (2 + 5 = 7 Punkte)

- a) Sei $\alpha \in \mathbb{R}$ mit $\alpha > 1$ und $f : \mathbb{R} \to \mathbb{R}$ erfüllt $|f(x) f(y)| \le |x y|^{\alpha}$ für alle $x, y \in \mathbb{R}$. Dann ist f konstant.
- b) Berechnen Sie folgende Grenzwerte

i)
$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{e^x + e^{-x} - 2}{x - \log(1 + x)}$$
, ii) $\lim_{x \to \infty} \frac{x + \sin(x)}{x}$ (iii) $\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{\tan(x) - \sin(x)}{x^3}$