DATA130004: Homework 8

Due via eLearning at 23:59 on December 4, 2023

- 1. Prove the following results about conjugate priors in Bayesian analysis.
 - (a) Beta distribution is the conjugate prior for the success probability parameter p of a geometric distribution. That is, let the prior of p be $Beta(\alpha, \beta)$. Given n independent and identically distributed random samples X_1, \ldots, X_n from the geometric distribution with parameter p, then the posterior distribution of p is still Beta. Recall that the probability density function of $Beta(\alpha, \beta)$ is

$$f(y) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}, \qquad 0 \le y \le 1 \text{ and } \alpha, \beta > 0.$$

(b) Inverse Gamma (IG) distribution is the conjugate prior for variance parameter σ^2 of a normal distribution with known mean parameter μ_0 . That is, let the prior of σ^2 be $\mathrm{IG}(\alpha, \beta)$. Given n independent and identically distributed random samples X_1, \ldots, X_n from $N(\mu_0, \sigma^2)$, then the posterior distribution of σ^2 is still IG. Recall that the probability density function of Inverse $\mathrm{Gamma}(\alpha, \beta)$ is

$$f(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} (1/y)^{\alpha+1} e^{-\beta/y}, \quad y > 0 \text{ and } \alpha, \beta > 0.$$

- 2. Consider the Bayesian estimation of the success probability parameter for a rare event. Suppose n i.i.d. Bernoulli experiments with success probability $\theta \in [0, 1]$ are conducted. Then the number of successes y follows a binomial distribution $Bin(n, \theta)$. Our interest is in estimating θ . Take Beta(a, b) as a prior for θ .
 - (a) Derive the posterior distribution $\theta \mid y$.
 - (b) Express the posterior mean of $\theta \mid y$ as a linear combination of the sample average $\bar{y} = y/n$ and the prior expectation of θ .
 - (c) Comment on the effect of \bar{y} on the shift of the posterior from the prior.