Лабораторая работа 4.02

Определение расстояния между двумя щелями интерфереционным методом

Выполнил: Коняхин Всеволод Владимирович, М32051

Краткие теоретические сведения

При наложении когерентных волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других — минимумы интенсивности. Это явление называется интерференцией волн.

Существуют два основных типа интерференционных схем: схема, построенная на основе деления волнового фронта, и схема, построенная на методе деления амплитуды.

В данной работе рассматривается опыт Юнга, основанный на делении волнового фронта. Снизу приведена схема опыта Юнга.

 1 – экран с точечным отверстием, 2 – экран с двумя отверстиями, 3 – плоскость наблюдения интерференционной картины, 4 – вид интерференционной картины

Рисунок 1 - Схема опыта Юнга

Цель работы

Определить расстояния между двумя щелями по полученной от них интерференционной картине.

Рабочие формулы и исходные данные

Формулы

$$\Delta x = \frac{\lambda}{d}L$$
$$L = x_{\Im} - x_{O}$$

Исходные данные

$$\lambda = (632.82 \pm 0.01) \text{ HM}$$

Схема установки

Рисунок 2 – Схема распространения волн

Результаты измерений и расчеты

In [3]:

```
import sympy
import scipy
import numpy as np
import pandas as pd
from scipy.signal import argrelextrema
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (10,5)
%matplotlib inline
```

Координаты последовательных минимумов интенсивности при разных положениях объекта 33

In [123]:

```
df33 = pd.DataFrame({'X объекта, мм': [166, 266, 366, 466, 566],
                      '$x_1$, mm' : [-25, -25.5, -25.5, -26, -26.5],
                      '$x 2$, MM' : [-22.5, -23, -22.5, -24, -24.5],
                      '$x_3$, MM' : [-18.5, -19.5, -19.5, -21.5, -22],
                      '$x_4$, MM' : [-15, -16, -17, -19, -20],
                      '$x 5$, MM' : [-11.5, -13, -14, -17, -18],
                      '$x 6$, MM' : [-8.5, -10.5, -11.5, -14, -16],
                      ^{1}$x_7$, MM^{1}: [-4.5, -6.5, -9, -11.5, -14],
                      '$x_8$, MM' : [-0.5, -3, -5.5, -8.5, -12],
                      'x 9x, MM' : [3.5, 0, -3.5, -4, -10],
                      'x \{10\}, MM': [7, 3.5, 0.5, -2, -8],
                      ^{'}$x \{11\}$, MM^{'}: [11, 6.5, 3, 1, -6],
                      $^{x_{12}}, mm' : [14.5, 10, 6, 3.5, -3.5],
                      ^{\prime}$x {13}$, MM^{\prime} : [18, 13.5, 9, 6, -1.5],
                      '$x_{14}$, mm' : [21.5, 16.5, 12, 8.5, 1],
                      '$x_{15}$, MM' : [25.5, 19.5, 15, 11, 3]})
x screen = 1090
alpha = 632.82 * 10 ** (-9)
delta \ alpha = 0.01 * 10 ** (-9)
df33
```

Out[123]:

	Х объекта, мм	x_1 ,	x_2 ,	х ₃ , мм	х ₄ , мм	х ₅ , мм	х ₆ , мм	х ₇ , мм	х ₈ , мм	<i>х</i> 9, мм	x_{10} ,	х ₁₁ , мм	x_{12} , MM	х ₁₃ , мм	<i>x</i> ₁
0	166	-25.0	-22.5	-18.5	-15	-11.5	-8.5	-4.5	-0.5	3.5	7.0	11.0	14.5	18.0	21
1	266	-25.5	-23.0	-19.5	-16	-13.0	-10.5	-6.5	-3.0	0.0	3.5	6.5	10.0	13.5	16
2	366	-25.5	-22.5	-19.5	-17	-14.0	-11.5	-9.0	-5.5	-3.5	0.5	3.0	6.0	9.0	12
3	466	-26.0	-24.0	-21.5	-19	-17.0	-14.0	-11.5	-8.5	-4.0	-2.0	1.0	3.5	6.0	8
4	566	-26.5	-24.5	-22.0	-20	-18.0	-16.0	-14.0	-12.0	-10.0	-8.0	-6.0	-3.5	-1.5	1
4															•

In [36]:

```
print('<mark>Координата экрана, {} мм'</mark>.format(x_screen))
```

Координата экрана, 1090 мм

Посчитаем L, Δx :

$$L = x_{\Im} - x_{\mathrm{O}}$$

$$\Delta x = \frac{x_{\min \max} - x_{\min \min}}{\text{number of minimums}}$$

In [37]:

```
df33_calc = pd.DataFrame({'X объекта, мм': [166, 266, 366, 466, 566]})
df33_calc['L, мм'] = x_screen - df33_calc['X объекта, мм']
df33_calc['$\Delta x$, мм'] = (df33['$x_{15}$, мм'] - df33['$x_1$, мм']) / 15
df33_calc
```

Out[37]:

	Х объекта, мм	L, мм	Δx , mm
0	166	924	3.366667
1	266	824	3.000000
2	366	724	2.700000
3	466	624	2.466667
4	566	524	1.966667

Координаты последовательных минимумов интенсивности при разных положениях объекта 32

In [38]:

Out[38]:

	X объекта, мм	x_1 ,	х ₂ , мм	х ₃ , мм	х ₄ , мм	х ₅ , мм	х ₆ , мм	x_7 ,	х ₈ , мм	<i>х</i> 9, мм	x_{10} , MM	x_{11} , MM	х ₁₂ , мм
0	166	-25.0	-22	-17.0	-13.0	-9.0	-5.0	-1	3.0	7.0	11.0	15.0	19.0
1	266	-27.0	-23	-19.0	-15.0	-11.5	-7.5	-4	-0.5	3.5	7.0	11.0	14.5
2	366	-25.5	-22	-19.0	-16.0	-12.5	-9.5	-6	-3.0	0.5	4.0	7.0	11.5
3	466	-25.0	-23	-19.5	-16.5	-14.0	-11.0	-8	-5.0	-2.0	0.5	4.0	6.5
4	566	-25.5	-23	-20.5	-18.5	-16.0	-13.5	-11	-9.0	-6.5	-4.0	-1.5	0.5

In [39]:

```
df32_calc = pd.DataFrame({'X объекта, мм': [166, 266, 366, 466, 566]})
df32_calc['L, мм'] = x_screen - df32_calc['X объекта, мм']
df32_calc['$\Delta x$, мм'] = (df32['$x_{12}$, мм'] - df32['$x_1$, мм']) / 12
df32_calc
```

Out[39]:

	Х объекта, мм	L, мм	Δx , mm
0	166	924	3.666667
1	266	824	3.458333
2	366	724	3.083333
3	466	624	2.625000
4	566	524	2.166667

Построения аппроксимирующей прямой

Для этого обучим линейную регрессию на Δx от L:

Для объекта 32, K = 0.004, b = 0.225

In [53]:

```
from sklearn import linear_model

regr_33 = linear_model.LinearRegression()
X_33 = np.array(df33_calc['L, мм']).reshape(-1, 1)
y_33 = np.array(df33_calc['$\Delta x$, мм'])
regr_33.fit(X_33, y_33)

regr_32 = linear_model.LinearRegression()
X_32 = np.array(df32_calc['L, мм']).reshape(-1, 1)
y_32 = np.array(df32_calc['$\Delta x$, мм'])
regr_32.fit(X_32, y_32)

print('Для объекта 33, K = {:.3f}, b = {:.3f}'.format(regr_33.coef_[0], regr_33.int
print('Для объекта 32, K = {:.3f}, b = {:.3f}'.format(regr_32.coef_[0], regr_32.int)

Для объекта 33, K = 0.003, b = 0.287
```

In [76]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Зависимость расстояния между минимумами от расстояния между экраном и
X_33 = X_33.reshape(5)
ax.scatter(X_33, y_33, c='r')
k, b = regr_33.coef_[0], regr_33.intercept_
x = np.linspace(500, 1000, 50)
ax.plot(x, np.polyval([k, b], x), 'r--')

X_32 = X_32.reshape(5)
ax.scatter(X_32, y_32, c='b')
k, b = regr_32.coef_[0], regr_32.intercept_
x = np.linspace(500, 1000, 50)
ax.plot(x, np.polyval([k, b], x), 'b--')

plt.show()
```


Найдем d_{33} и d_{32} , используя $d=\frac{\lambda}{K}$

In [85]:

```
d_32 = alpha / regr_32.coef_[0]
print('Paccтояние между щелями для 32-го объекта: {:.3f} мкм'.format(d_32 * 10 ** 6

d_33 = alpha / regr_33.coef_[0]
print('Paccтояние между щелями для 33-го объекта: {:.3f} мкм'.format(d_33 * 10 ** 6
```

Расстояние между щелями для 32-го объекта: 165.083 мкм Расстояние между щелями для 33-го объекта: 189.846 мкм

Найдем d для расстояния щели по двум точкам

In [88]:

```
print('Среднее расстояние между щелями: \{:.3f\} мкм'.format((d_33 + d_32) / 2 * 10 *
```

Среднее расстояние между щелями: 177.465 мкм

Найдем погрешность для среднего расстояния между щелями:

$$\Delta K = \sqrt{\frac{\sum (y_i - Kx_i - b)^2}{(n-2)\sum (x_i - \overline{x})^2}}$$

$$\Delta d = \sqrt{(\frac{\delta d}{\delta \lambda} \cdot \Delta \lambda)^2 + (\frac{\delta d}{\delta K} \cdot \Delta K)^2} = \sqrt{(\frac{1}{K} \Delta \lambda)^2 + (\frac{\lambda}{K^2} \Delta K)^2}$$

In [128]:

```
from sklearn.metrics import mean_squared_error

final_k = np.array([(regr_33.coef_[0] + regr_32.coef_[0]) / 2]).reshape(1, 1)
final_b = np.array([(regr_33.intercept_ + regr_32.intercept_) / 2])

Xs = np.concatenate((X_32, X_33))
ys = np.concatenate((y_32, y_33))

mse = mean_squared_error(ys, (final_k * Xs + final_b).reshape(10))

delta_k = np.sqrt(mse / np.sum((Xs - np.mean(Xs)) ** 2))
delta_d = np.sqrt((delta_alpha / final_k[0][0]) ** 2 + (alpha * delta_k / final_k[0])
print('Погрешность для среднего расстояния между щелями: {} мкм'.format(delta_d * 1)
```

Погрешность для среднего расстояния между щелями: 18.444950130275327 м км

Тогда
$$d = \overline{d} + \Delta d = (177 \pm 18)$$
 мкм

Выводы

В ходе данной лабораторной работы был рассмотрен опыт Юнга для вычисления расстояния между щелями с помощью длины волны λ , расстояния между объектом и экраном L, а также расстояния между минимумами интерференционной картинки Δx . Был найден коэффицент $K=\frac{\lambda}{d}$ с помощью линейной регрессии $\Delta x(L)=\frac{\lambda}{d}\cdot L$, откуда было взято расстояние $d=\frac{\lambda}{K}$. Это расстояние между щелями получилось равным (177 ± 18) мкм