Guidelines

- Write your name and matriculation number on each sheet of paper.
- Only clearly readable exercise-elaborations are evaluated.
- Results have to be provided together with an evident way of calculation.
- Keep textual answers short and concise. Lengthy or vague statements won't gain points.
- Unless otherwise mentioned, all Python problems have to be solved using only Python standard libraries, numpy and matplotlib.

Problem 3.1 (0.5 points)

Let X be the set of all sequences with l_2 -norm equal to $\sqrt{2}$, i.e.,

$$\left\{ x \in X : \sqrt{\sum_{n=1}^{\infty} x_n^2} = \sqrt{2} \right\},\,$$

where $x_n \in \mathbb{R}$ denotes the n^{th} element of sequence x. Consider

$$d = \sum_{n=1}^{\infty} x_n y_n,$$

with $\{x, y \in X\}$.

- $\overline{3.1.1}$ Do X and d constitute a metric space?
- 3.1.2 Do X and d constitute a pre-Hilbert space?
- $\boxed{3.1.3}$ Calculate tight upper and lower bounds of d.
- 3.1.4 Consider $\{x,y \in X\}$ and the sequence y is given. Find the sequences x, for which the lower and upper bounds are achieved.
- 3.1.5 Calculate bounds for

$$\sum_{n=1}^{\infty} (x_n - y_n)^2 \pm \sum_{n=1}^{\infty} (x_n + y_n)^2, \quad \{x, y \in X\}.$$

Next, assume further the sequences $\{x,y \in X\}$ to be given as

$$x_n = \sin\left(\frac{\pi}{2}n\right)(u_n - u_{n-4}),$$
 $n = 1, 2, \dots, \infty$
 $y_n = a_1\delta_{n-1} + a_2\delta_{n-2} + a_3\delta_{n-3}$ $n = 1, 2, \dots, \infty$

with $\{a_1, a_2, a_3\} \in \mathbb{R}$.

The function u_n denotes the unit step function, i.e.,

$$u_n = \begin{cases} 0 & \text{for} \quad n < 0 \\ 1, & \text{for} \quad n \ge 0 \end{cases} ,$$

and δ_n is the discrete unit sample function

$$\delta_n = \begin{cases} 1 & \text{for} \quad n = 0 \\ 0, & \text{for} \quad n \neq 0 \end{cases} .$$

 $\boxed{3.1.6}$ Calculate a_1 , a_2 , and a_3 such that d becomes zero. Determine the number of possible solutions.

Problem 3.2 (0.5 points)

The convergence or divergence of a series can, among other techniques, be checked by one of the following theorems:

(I) Comparison Test

Let $\sum a_k$ and $\sum b_k$ be series with $a_k, b_k \in \mathbb{R}^+$. Given that $a_k \leq b_k \ \forall k$, then

- $\sum a_k$ converges if $\sum b_k$ converges,
- $\sum b_k$ diverges if $\sum a_k$ diverges.

(II) Ratio Test (or d'Alembert's Ratio Test or Cauchy Ratio Test)

Let $\sum_{k=1}^{\infty} a_k$ be a series where a_k is non-zero, when k is large. Then for $\rho = \lim_{k \to \infty} \frac{a_{k+1}}{a_k}$, it holds that

- the series converges if $\rho < 1$,
- the series diverges if $\rho > 1$,
- the test is inconclusive for $\rho = 1$.

(III) Root Test (or Cauchy Root Test or Cauchy's Radical Test)

Let $\sum_{k=1}^{\infty} a_k$ be a series with $a_k \in \mathbb{R}^+$. Then for $\rho = \lim_{k \to \infty} (a_k)^{\frac{1}{k}}$, it holds that

- the series absolutely converges if $\rho < 1$,
- the series diverges if $\rho > 1$,
- the series converges if $\rho = 1$ and the limit approaches strictly from above,
- otherwise no statement about convergence or divergence can be made.

(IV) Integral Test

Let f(x) be a monotonically decreasing, non-negative function with support $[N,\infty)$. Then,

• the series $\sum_{k=N}^{\infty} f(k)$ converges to a real number iff $\int_{N}^{\infty} f(x)dx$ is finite.

(V) p-series Test

Let a series be given by $\sum_{n=1}^{\infty} \frac{1}{k^p}$. Then,

- the series diverges if 0 ,
- the series converges if p > 1.

Apply the suitable theorem(s) from the list above to analyze the convergence or divergence of the following series.

3.2.1

$$S_1 = \sum_{k=1}^{\infty} \frac{(2k)^{k+2}}{(k+1)!}$$

3.2.2

$$S_2 = \sum_{k=1}^{\infty} \frac{1}{k^{1/3} - 1}$$

3.2.3

$$S_3 = \sum_{k=1}^{\infty} \left[k^4 \sin^2 \left(\frac{3k}{2k^3 - 2k^2 + 5} \right) \right]^k$$

3.2.4

$$S_4 = \sum_{k=2}^{\infty} \frac{1}{k \log(k)}$$

3.2.5

$$S_5 = \sum_{k=1}^{\infty} \frac{(k-1)! + 4^{k+1}}{k!}$$

Problem 3.3 (0.5 points)

A common method for optimal resource allocation in mobile cellular networks is convex optimization. A convex function satisfies the following property:

$$f(\theta s + (1 - \theta)t) \le \theta f(s) + (1 - \theta)f(t) \tag{3.3.1}$$

where $0 \le \theta \le 1$.

- 3.3.1 Assume $f: \mathbb{R}^n \to \mathbb{R}$ is an arbitrary norm. Show that every norm on \mathbb{R}^n is convex.
- 3.3.2 Show that the following expressions define norms on \mathbb{R}^n , with $\underline{x} = (x_1, x_2, \dots, x_n)^T$:

$$\bullet \quad \|\underline{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}, \quad \bullet \quad \|\underline{x}\|_1 = \sum_{i=1}^n |x_i|, \quad \bullet \quad \|\underline{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Problem 3.4 (Python, 1.0 point)

Consider a linear time-variant filter with linear phase

$$H(e^{j\Omega}) = a_0 + \sum_{k=1}^{N} 2a_k \cos(k\Omega).$$

3.4.1 Analytical part: Determine the coefficients of this filter such that it optimally follows

$$H^{(d)}(e^{j\Omega}) = \begin{cases} 0.2 & , |\Omega| < \Omega_1 \\ 1 & , \Omega_1 \le |\Omega| \le \Omega_2 \\ 0.2 & , \Omega_2 < |\Omega| < \pi \end{cases}, \quad \Omega_1 < \Omega_2 < \pi$$

in the Least Squares (LS) sense. This is equivalent to minimizing the metric

$$d_2(H^{(d)}(e^{j\Omega}), H(e^{j\Omega})) = \int_{-\pi}^{\pi} |H^{(d)}(e^{j\Omega}) - H(e^{j\Omega})|^2 d\Omega$$

Hint:

- Apply the Parseval theorem to get an equivalent statement in the time domain.
- Write the desired transfer function as a linear combination of ideal low-pass filters.
- To minimize a convex function, you can differentiate it with respect to the variables and set the derivative equal to zero.

|3.4.2| Python part:

- 1. Implement a Python code to plot the frequency response of the filter $H(e^{j\Omega})$, as obtained from your analytic calculations for arbitrary filter order. The limit frequencies are $\Omega_1 = \frac{\pi}{4}$ and $\Omega_2 = \frac{3\pi}{4}$.
- 2. Compare the filters for the orders $N = \{4,10,100\}$. What do you observe?