Lecture 9: Hohr circle & failure

Logistics! - Itwit posted today

Last time: - Normal & shearstres ti= = u

$$\mathbf{g}^{n} = | \vec{\mathbf{f}}^{n} | \qquad \mathbf{f}^{-1} = | \vec{\mathbf{f}}^{+1} |$$

$$\vec{\mathbf{f}}^{n} = \vec{\mathbf{b}}^{-1} \vec{\mathbf{n}} \qquad \vec{\mathbf{f}}^{-1} = \vec{\mathbf{b}}^{-1} \vec{\mathbf{n}}$$

- Extremal volus of normal shows

$$\Rightarrow \left(\underbrace{\partial}_{1} - \delta_{1} \underbrace{1}_{1} \right) \underline{n}_{1} = 0 \qquad \delta_{1} > \delta_{2} > \delta_{3}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \underline{n}_{j} = 0 \qquad \delta_{1} > \delta_{2} > \delta_{3}$$

$$= \sum_{i=1}^{n} \underline{n}_{i} = 0 \qquad \delta_{1} > \delta_{2} > \delta_{3}$$

$$= \sum_{i=1}^{n} \underline{n}_{i} = 0 \qquad \delta_{1} > \delta_{2} > \delta_{3}$$

$$= \sum_{i=1}^{n} \underline{n}_{i} = 0 \qquad \delta_{1} > \delta_{2} > \delta_{3}$$

$$= \sum_{i=1}^{n} \underline{n}_{i} = 0 \qquad \delta_{1} > \delta_{2} > \delta_{3}$$

$$= \sum_{i=1}^{n} \underline{n}_{i} = 0 \qquad \delta_{1} > \delta_{2} > \delta_{3}$$

Today: - Hohr circle

- Failure criteria
- simple states of strem
- stress ellipsoid

Mohr circle

grapical way of displaying the normal and sheer sherre on all planes through a point.

Fer simplicity -> 2D care

plane, containin u, 6 m,

$$\vec{n} \cdot \vec{n} = \cos \theta$$

$$n = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
 $m = \begin{pmatrix} \cos \theta \\ \cos \theta \end{pmatrix}$

Stress in principal fram:

5. = 5, 11,84, + 5 120 42 + 63 13843

trachion: tn= & n = 6, cos6 n, + 63 slub n3

normal stress: on = n.t. = o, cos20 + o3 slu20

use
$$\cos^2\theta = \frac{1+\cos 2\theta}{2}$$
 $\sin^2\theta = \frac{1-\cos 2\theta}{2}$

$$6 = \frac{6\cdot +6}{2} + \frac{6\cdot -8}{2} \cos 2\theta$$

meau Shev max shear shew T13

showshow: $T = m \cdot t_n = (6, -8)$ slub cosb

use $Z \le iu\theta \cos\theta = \sin 2\theta$ $T = 6.-6. \le iu 2\theta$

Equ for circle in \overline{co} space with radius $R = \frac{\delta_1 - \delta_3}{2}$ with origin $(\frac{\delta_1 + \delta_2}{2}, 0)$

For Hohr circle compnessive stresses are assumed positive.

⇒ Experiments show failure does not occur on surfaces corresponding to max shear stress

Failure criteria for shear fracture shear fracture is the most common type of & brittle failure. => Empirical criterion for prediction of stear faiture.

I, Tresca criteriou

Fracture occur when max shear shers reaches the shear strength of Twax = 5,-63 = 67

this predicts failure

Il Coulomb failure criterion

Shear fracture also depends on normal sherr

$$\phi$$
 = aughe of internal friction ~ 30°

angle of failure

$$\pi = \varphi + \frac{\pi}{s} + \varphi$$

$$\phi + \frac{\pi}{2} + (\pi - 2\theta_c) = \pi$$

$$G_{c} = \frac{\pi}{4} + \frac{\phi}{2} \implies 60^{\circ}$$

Byerlee's law (Amouton's low)

All brille rocks already contain pre existing

fractures and fail by reactive ting Hum

=> fail by friction.

Criterion for frictional sliching

ITI = So + Mo &

So = colusion of fault ~ 1-10HPm I = >

Mo = eoeficient of friction ~ 0.5 - 0.8

The surfaintenal sliching

So of failure

So of

=> shreught of brittle rocks is determined by frictional slidling Depth

Depth

Depth

pleasive ductile st normal shers.

shreugh rocks get stranger to increase in mean st normal shers.

Simple states of stess

I) Hydrostatic sters

$$\frac{d}{dt} = -p \frac{1}{2} \qquad \lim_{n \to \infty} \frac{1}{2} = -p \frac{1}{2}$$

I Uniaxial shers

IV uniform/Sluph shear
$$\frac{6}{12} = \frac{7}{2} = \frac{7}{2}$$

$$\frac{7}{12} = \frac{7}{2}$$

$$\frac{$$

V Plane shress

If there exists a x and y (x.y=0)

such that the making respresentation of

in frame {x,y,xxy} is of

then a state of plane stress exists.

sphericul shers teuson: $g_s = -p I p = -\frac{1}{3} tr(g)$ = tr(g)

Presone is the mean normal stress

Marc will check 1/3

Spherical pert of = is part that changes

volume of booly deviaterie part changes shape of body

Hany constitutive lans are parsed on inverious of deviatoric stress.

$$T_i(\underline{\phi}_D) = tr(\underline{\phi}_D) = 0$$

$$\int_{\mathcal{S}} (\mathbf{\tilde{g}}_{\mathsf{D}}) = -T_{\mathsf{S}}(\mathbf{\tilde{g}}_{\mathsf{D}}) = \frac{1}{2} \mathbf{\tilde{g}}_{\mathsf{D}} : \mathbf{\tilde{g}}_{\mathsf{D}}$$

$$J_3(\S_0) = \Gamma_3(\S_0) = olet(\S_0)$$