Cloud Computing

MUCPD - DSIC - UPV

Cloud Security Fundamentals

Overview

- What is Cloud Security?
 - Protection of data, services and infrastructure
- Why Cloud security is critical
 - Growing reliance on cloud services
 - Wide exposure
- Goals of this session
 - Gain a good understanding of cloud security principles
 - Explore advanced strategies and best practices
 - Learn about tools and frameworks

Evolution of cloud security

- Traditional security models
 - Perimeter-based defenses
- Shift to cloud-centric security approaches
 - Emphasis on data and identity security
 - Cloud-native security tools
- Zero-trust Security model
 - Never trust always verify
 - Continuous authentication and authorization
- Integration of devops for security
 - Automation
- Impact of regulations
 - GDPR, HIPAA, PCI DSS,...

The shared responsibility model

- Clarifies security responsibilities
- Cloud provider responsibilities
 - Cloud infrastructure
 - Users can provision resources without human interaction
- Customer's responsibilities
 - Data, applications, OS, configurations,...
- Variations by service model
- Implications
 - Importance of understanding boundaries
 - Collaboration with providers for comprehensive approach

Identity and Access Management (IAM)

- Framework for managing digital identities and access to resources
- Core components:
 - Authentication
 - Authorization
- Importance of IAM
 - Prevents unauthorized access
 - Protects sensitive data and resources
- Challenges in cloud environments
 - Scalability and complexity
 - Managing diverse user groups and access needs

Authentication

- Authentication methods
 - Passwords and passphrases
 - Complexity requirements
 - Biometric authentication
 - Fingerprints, facial recognition, iris, ...
 - Token-based authentication
 - One-time passwords, smart cards, ...

Authorization

- Authorization models
 - Role based access control (RBAC)
 - Assigning permissions to roles
 - Attribute-based access control (ABAC)
 - Policies based on user attributes
 - Policy-based access control (PBAC)
 - Centralized policy management

Federation

- Single Sign-On (SSO)
 - Streamlined access across multiple systems
- Trust relationships
 - Between identity providers (IdP) and service providers
- Capabilities
 - Tokens encoding authorization for holder

Challenges

- Complexity vs security
 - Balance user convenience vs security risks
- Integration with legacy systems
 - Adapting modern IAM to existing infrastructures

Multi Factor authentication (MFA)

- Importance
 - Adds layers of security
 - Reduces the risks of credentials compromise
- Types of authentication factors
 - Something you know: pins,...
 - Something you have: tokens, smart cards, ...
 - Something you are: biometrics

Implementing MFA

- Strategies
 - Risk-based authentication
 - Adjusts requirements based on risk levels
 - Adaptive authentication
 - Context-aware authentication decissions
- Integration considerations
 - Compatibility with existing systems
 - User experience and adoption
- Best practices
 - Enforce MFA for privileged accounts
 - Regularly review authentication methods

Data Encryption techniques

- Why encrypt?
 - Protects confidentiality and integrity
 - Helps comply with regulations
- Types of encryption
 - Symmetric encryption
 - Single key for encryption/decryption (e.g., AES, DES)
 - Asymmetric encryption
 - Public and private key pairs (e.g., RSA, ECC)

Encryption in the cloud

- Data at rest
 - Disk encryption, database encryption
 - Helps protect from unadvertant leaks
- Data in transit
 - TLS/SSL protocols
 - Helps protect integrity and privacy
 - Protects against MITM attacks

Key Management Systems (KMS)

- What is KMS?
 - System for managing cryptographic keys
- Key lifecycle management
 - Generation
 - Distribution
 - Storage
 - Rotation
 - Revocation

Key Management Systems (KMS)

- Key hierarchies and Wrapping
 - Master keys encrypt data keys
 - Adds layers of security
 - Similar in many ways to how TSL works
- Integration with cloud services
 - Automates encryption tasks
 - Centralizes key management

KMS Benefits

- Enhances security through proper key handling
- Simplifies key management processes
- Supports compliance requirements

KMS Best practices and challenges

- Best practices
 - Access controls: restrict key usage permissions
 - Separation of duties: divide key management tasks
 - Audit logging: Monitor key usage and administrative actions
 - Key rotation policies: regularly update keys
- Challenges
 - Managing keys across multiple environments
 - Ensuring availability and performance

Data Loss Prevention (DLP)

- Purpose
 - Prevent unauthorized data disclosure
 - Ensure compliance with data protection laws
- Key components
 - Data discovery: identify sensitive data.
 - Data classification: categorize data by sensitivity
 - Policy enforcement: control data access and movement
 - Monitoring and reporting: track data usage
- Types of DLP
 - Endpoint DLP: controls on user devices
 - Network DLP: Monitors data in motion
 - Cloud DLP: protects data in cloud services

DLP in the Cloud

- Integration with cloud services
 - Use APIs and cloud native tools
- Encryption and tokenization
 - Masking sensitive data elements
- User behavior analytics
 - Detecting insider threats and anomalies
- Challenges
 - Balancing security with user productivity
 - Managing false positives/negatives
- Best practices
 - Employee training and regular audits

Securing Cloud Infrastructure: Compute

- Instance hardening
 - Disable unnecessary services/daemons
 - Apply diligently security patches
- Secure configuration management
 - Ensure security baselines. Automate.
- Access control mechanisms
 - Implement ssh key management
 - Use bastion hosts for admin access
- Virtualization Security
 - Ensure isolation between VMs

Securing Cloud Infrastructure: Storage

- Access controls
 - Fine grained permissions
 - Identity-based policies
- Encryption at rest
 - Both client-side or server-side
- Data Replication and Backup
 - Implement versioning
- Data lifecycle management
 - Automate data retention and deletion policies

Securing Cloud Infrastructure: Networking

- Virtual Private Clouds (VPC)
 - Isolate resources in private networks
- Security groups Network ACLs
 - Control inbound and outbound traffic
- Network traffic encryption
 - Through VPN and TLS protocols. Zero trust networks.
- Monitoring and intrusion detection
 - Through traffic analysis tooling

Application security: Development

- Secure software development lifecycle (SSDLC)
 - Integrate security at each development phase
- Secure coding practices
 - Input validation, error handling, avoid hard-coded creds
- Security testing tools
 - **SAST:** Static code analysis
 - **DAST:** Dynamic testing in runtime
 - IAST: Interactive testing, combining SAST and DAST
 - SCA: Analyze third party components

Application security: Deployment

- Secure configurations
 - Follow hardening recomendations
- Secrets management
 - Avoid exposing secrets in the clear when deploying
- Continuous monitoring
 - Detect anomalous client behaviors

Compliance and legal considerations

- Understand regulations
 - Hire expertise...
- Compliance frameworks
 - NIST, ISO 27001, ISA CCM, Esquema Nacional de Seguridad...
- Data residence and sovereignty
 - Where data is determines what laws it is subject to
- Cloud provider compliance
 - Piggyback on top of it
- Auditing/reporting
 - Prepare for compliance audits/maintain needed records

Incident Response

- Minimize impact of security breaches
- Incidence response plan
 - Preparation: Roles and responsibilities
 - Detection and analysis: Monitoring and threat intel
 - Containment, Eradication, Recovery
 - Limit damage, remove threats, restore systems
 - Post-Incident activities: Lessons learned
- Tools & Tech
 - SIEM, SOAR, forensic tools

Incident Response: Challenges

- Limited visibility in the cloud
 - Remoteness does not help
 - Provider also gets relevant data
 - Provider must be involved
- Best practices
 - Periodic revisions
 - Establish cooperation plan with provider

Automation

- Benefits: less errors, higher reliability
 - Speed and efficiency
 - Consistency in security practices
- Infrastructure as Code (IaC)
 - Automate deployment of secure configurations
- Security Orchestration, Automation, and Response (SOAR)
 - Integrate diverse tools within complex automated workflows
- Automate compliance monitoring
 - Continuous compliance checks, help ensure compliance...

Emerging threats in cloud security Concept: Attack Surface

- Supply chain attacks
 - Compromised third party components
- Advanced persistent threats (APTs)
 - Sophisticated long term attacks
- Cloud misconfigurations
 - Common cause of breaches
- Container and Kubernetes vulnerabilities
 - Exploits in container environments
- IoT and Edge Computing Risks
 - Exploits in container environments

Cloud security frameworks

- Cloud Security Alliance (CSA)
 - Cloud controls matrix (CCM)
- NIST Guidelines
 - Best practices in risk management
- ISO/IEC Standards
 - 27017 and 27018 for cloud services
- CIS benchmarks
 - Configuration guidelines
- Benefits
 - Compliance alignment
 - Standardization

Some case studies

- Case study 1: Capital One breach
- Case study 2: Dropbox password leak
- Case study 3: Tesla Kubernetes exploit
- Key takeaways

Capital One Data Breach Overview

- Incident summary
 - Breach exposed personal data of over 100 M customers
 - Names, addresses, credit scores, SSNs, etc,...
- Timeline
 - March 2019: Data accessed by attacker
 - July 2019: Breach discovered and publicly disclosed
 - July 2019: Arrest by FBI

Causes of the breach

- Misconfigured Web Application Firewall (WAF)
 - Exploited SSRF vulnerability
 - Accessed AWS EC2 metadata service
- Overly permissive IAM Role Permissions
 - Excessive privilege granted
 - Violated least privilege principle
- Ineffective network segmentation
 - Inadequate isolation of sensitive data
- Insufficient monitoring and logging
 - Delayed detection of unauthorized access
 - Lack of anomaly detection mechanisms

Remedies applied by Capital One

- Immediate fixes
 - Corrected WAF configuration
 - Revoked compromised credentials
- Enhanced access controls
 - Tightened IAM policies
 - Implemented least privileged access
- Improved network security
 - Strengthened network segmentation
 - Updated firewall rules
- Advanced monitoring
 - Deployed AWS GuardDuty
 - Enabled detailed logging and anomaly detection

Lessons from Capital One breach

- Enforce Least Privilege principle -- ALWAYS
 - Limit permissions to essential functions
- Secure configuration management
 - Regularly and validate settings
 - Implemented least privileged access
- Pay attention to monitoring and detection
 - Use tooling for real time alerts
- Training
 - Staff must be security savvy

Impact on Capital One

- Financial penalties
 - \$80 Million fine
- Legal actions
 - Class action lawsuits
- Reputational damage
 - Loss of customer trust
- Operational costs
 - Expenses for remediation and notifications

Dropbox Password leak Overview

- Incident summary
 - Exposed credentials of over 68 million users
 - Names, addresses, credit scores, SSNs, etc,...
- Timeline
 - 2012: Breach occurred via compromised employee account
 - **2016:** Full public disclosure

Causes of the breach

- Compromised employee credentials
 - Password reuse lead to unauthorized access
- Weak password hashing
 - SHA-1 without salting
- Insufficient access controls
 - Overprivileged employee account
 - Lack of multi factor authentication

Remedies applied by Dropbox

- Password resets and notifications
 - Mandatory password changes for affected users
- Enhanced authentication
 - Implemented MFA for users and employees
- Improved password storage
 - Switched to bcrypt with salting
- Access control review
 - Enforced role based
- Security infrastructure enhancements
 - Deployed anomaly detection systems

Lessons from Dropbox breach

- Enforce strong authentication
 - Implement MFA to secure accounts
- Secure password handling
 - Use strong hashing algorithms with salting
- Avoid credentials reuse
 - Education...
- Apply Least Privilege
- Timely disclosure
 - Inform users promptly, so they can take proper action

Impact on Dropbox

- User trust erosion
 - Customers questioned data security
- Competitive disadvantage
 - Potential loss of customers to competition
- Regulatory scrutiny
 - Increased attention on data protection practices

Tesla Kubernetes Exploit

- Incident summary
 - Attackers used unsecured Kubernetes console
 - Performed cryptojacking using Tesla's resources
- Timeline
 - February 2018: Breach discovered by RedLock

Causes of the Tesla breach

- Unsecured Kubernetes Console
 - No authentication was required
- Exposure of AWS credentials
 - Hardcoded credentials in Kubernetes PODs
- Inadequate network controls
 - Publicly accessible critical systems
- Insufficient monitoring
 - Lack of resource usage and anomaly detection

Remedies applied by Tesla

- Secured Kubernetes console
 - Enabled authentication and RBAC
- Improved secrets management
 - Removed hardcoded credentials
 - Used Kubernetes secrets for sensistive data
- Enhanced network security
 - Applied network policies and firewalls
- Implemented monitoring systems
 - Deployed IDS and resource monitoring
- Introduced security assessments
 - Regular vulnerability scans

Lessons from Tesla breach

- Secure default configurations
 - Always configure authentication for admin interfaces
- Effective secrets management
 - Store credentials securely
- Network segmentation
 - Restrict access to critical systems
- Continuous monitoring
- Regular security assessments
 - Inform users promptly, so they can take proper action

Impact on Tesla

- Operational cost
 - Unauthorized resource consumption
- Potential data exposure
 - Risk of sensitive data being accessed
- Reputational risk
 - Public perception affected

Key takeaways

- Misconfiguration poses risks
 - Secure configurations are critical
- Access control is critical
 - Enforce least privileges and proper permissions
- Secrets management matters
 - Protect sensitive information diligently
- Monitoring is essential
 - Implement robust detection systems
- Timely response
 - Quick detection and remediation reduce impact
- Human factors
 - Train on security best practices

Strengthening Cloud Security

- Proactive measures
 - Prevent incidents through strong security attitude
- Continuous improvement
 - Regularly update and test security strategies
- Collaboration
 - Foster a culture of security across the org
- Leverage tools and expertise
 - Use available resource to enhance protection