Actor-Critic Algorithm with Approximate Natural Policy Gradient

Evgenii Nikishin, Iurii Kemaev, Maksim Kuznetsov

22.12.2017

Reinforcement Learning (RL) setting

Most of RL methods consider Markov Decision Process (MDP):

- Agent actions $A_t \in \mathcal{A}$
- ullet Environment states $\mathcal{S}_t \in \mathcal{S}$
- Reward $R_t \in \mathbb{R}$

- Agent policy $A_t \sim \pi(a|s)$
- State transitions $S_{t+1}, R_{t+1} \sim p(s', r|s, a)$

Optimal policy

Total return is defined as the sum of discounted rewards:

$$G_0 = R_1 + \gamma R_2 + \gamma^2 R_3 + \dots = \sum_{k=0}^{\infty} \gamma^k R_{k+1}, \quad 0 \le \gamma \le 1$$

Optimal policy maximizes the expected discounted return:

$$\pi^* = \operatorname*{arg\,max}_{\pi} \mathbb{E}_{\pi} \left[G_0 \right] = \operatorname*{arg\,max}_{\pi} \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{k+1} \right]$$

Value functions:

•
$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right]$$

•
$$q_{\pi}(s, a) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a\right]$$

Policy Gradient theorem

Parametrization of policy with differentiable family of functions (e.g. linear functions, neural networks):

$$\pi(a|s) = \pi_{\theta}(a|s)$$

Objective:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} [G_0]$$

...and its gradient:

$$egin{aligned}
abla_{ heta} J(heta) &= \sum_{s} \mu(s) \sum_{a} q_{\pi_{ heta}}(s,a)
abla_{ heta} \log \pi_{ heta}(s,a) &= \\ &= \mathbb{E}_{\pi_{ heta}} \left[q_{\pi_{ heta}}(S_{t},A_{t})
abla_{ heta} \log \pi_{ heta}(A_{t}|S_{t})
ight] \end{aligned}$$

Advantage Actor-Critic (A2C) algorithm

Challenges:

- $q_{\pi_{\theta}}(s, a)$ is unknown
- both $q_{\pi_{\theta}}(S_t, A_t)$ and $\log \pi_{\theta}(A_t|S_t)$ are unbounded \Rightarrow high variance of gradient estimates

Note:

- $v_{\pi_{\theta}}(s) = \sum_{a} \pi_{\theta}(a|s) q_{\pi_{\theta}}(s,a) = \mathbb{E}_{a}\left[q_{\pi_{\theta}}(s,a)\right]$
- $q_{\pi_{\theta}}(S_t, A_t) = r_{t+1} + \gamma \mathbb{E}_{\pi_{\theta}} \left[v_{\pi_{\theta}}(S_{t+1}) \right]$

Advantage Actor-Critic (A2C) algorithm

Approaches:

 Subtract average q function and rewrite in terms of advantage function:

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(A_t | S_t) \left(q_{\pi_{ heta}}(S_t, A_t) - v_{\pi_{ heta}}(S_t)
ight)
ight] = \\ &= \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(A_t | S_t) \left(R_t + \gamma v_{\pi_{ heta}}(S_{t+1}) - v_{\pi_{ heta}}(S_t)
ight)
ight] \end{aligned}$$

v function is still unknown ⇒ parametrize it (critic):

$$v_{\pi_{\theta}}(s) \approx v_{\omega}(s)$$

and optimize w.r.t. objective

$$\|v_{\omega}(S_t)-G_t\|^2$$

Natural gradient

Update rule:

$$\theta_{t+1} = \theta_t + G^{-1}(\theta_t) \nabla F(\theta_t),$$

 $F(\theta_t)$ — objective, $G(\theta_t)$ — Fisher matrix:

$$G(\theta) = \mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(A_t|S_t) \cdot (\nabla_{\theta} \log \pi_{\theta}(A_t|S_t))^{\top}] = \mathbb{E}[\nabla_{\theta} L \cdot \nabla_{\theta} L^{\top}]$$

Consider vector of activations a. For a current layer denote s = Wa.

$$\nabla_W L = (\nabla_s L) a^{\top}$$

Kronecker Factored Approximate Curvature (K-FAC)

Consider vector of activations a. For a current layer denote s = Wa. $\nabla_W L = (\nabla_s L) a^{\top}$

$$G(W) = \mathbb{E}\left[vec\{\nabla_{W}L\}vec\{\nabla_{W}L\}^{\top}\right] =$$

$$= \mathbb{E}\left[aa^{\top} \otimes \nabla_{s}L(\nabla_{s}L)^{\top}\right] \approx \mathbb{E}\left[aa^{\top}\right] \otimes \mathbb{E}\left[\nabla_{s}L(\nabla_{s}L)^{\top}\right]$$

Experiments

Figure: Left: A2C. Right: A3C

Experiments

Figure: Left: A2C. Right: A3C

Experiments

Figure: Left: A2C. Right: A3C

What was done

- Evgenii Nikishin: idea, simple policy gradient algorithm, presentation
- Iurii Kermaev: Actor-Critic Algorithm, its parallel version, experiments
- Maksim Kuznetsov: K-FAC optimizer, experiments, debug

Original paper:

Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation