

Student Name: CCY
Student Number:
Instructor:
Meeting's Time:

1. Let \mathcal{R} be the region that enclosed by the curves:

$$y = \ln(x+1)$$
, $y = \ln\left(\frac{4}{x+1}\right)$, and the y-axis.

(a) (2 points) **Setup** an integral that represents the area of $\mathcal{R}_{\boldsymbol{\rho}}$

$$A = \int \left[\ln \left(\frac{u}{x_{+1}} \right) - \ln \left(x_{+1} \right) \right] dx$$

$$A = \int \left[\ln u - 2 \ln (x_{+1}) \right] dx.$$

(b) $(2\frac{1}{2} \text{ points})$ **Setup** (do not evaluate) an integral that represents the volume of the solid obtained by revolving (rotating) the region \mathcal{R} about y = -1

$$T = \pi \int_{0}^{1} \left[\left(\ln \left(\frac{y}{x_{41}} \right) + 1 \right)^{2} - \left(\ln \left(x_{11} \right) + 1 \right)^{2} \right] dx$$

(c) $(2\frac{1}{2} \text{ points})$ Setup (do not evaluate) an integral that represents the volume of the solid obtained by revolving (rotating) the region \mathcal{R} about the y-axis

$$\nabla = 2\pi \int_{0}^{1} x \left(\ln \left(\frac{y}{x+1} \right) - \ln (x+1) \right) dx$$

$$= 2\pi \int_{0}^{1} x \left[\ln 2 - 2 \ln (x+1) \right] dx$$

2. Evaluate the following integrals

Evaluate the following integrals
(a) (3 points)
$$\int \frac{e^x}{\sqrt{e^x + 1}} dx$$

$$|e| \quad \forall = \sqrt{e^x + 1} \implies e^x + 1 = y^2$$

$$|e| \quad \forall = \sqrt{e^x + 1} \implies e^x + 1 = y^2$$

:
$$f = \int \frac{2y \, dy}{y} = \int 2dy = 2y + C$$
.

$$: I = 2\sqrt{e^{x}+1}+C$$

(b) (3 points)
$$\int r^3 \ln r \, dr$$
 $u = \ln r$ $dv = r^3$ $du = \frac{1}{r} dr$ $v = \frac{r^4}{4}$

(c) (3 points)
$$\int \frac{1}{1 - \cos x} dx = \int \frac{1 + 6sx}{1 - 6s^2x} dx = \int \frac{1 + 6sx}{5 \ln 2x} dx.$$

$$= \int \left[C_{S} C^{2} x + G + x C_{S} C x \right] dx$$

$$I = -Gtx - Cscx + C$$

- 3. (6 points) Determine whether each of the following statements is **TRUE** or **FALSE**.
 - $\int_0^2 (x-x^3) dx$ represents the area under the curve $y=x-x^3$ from 0 to 2.
 - $\int_{-1}^{1} \frac{e^{x^2}}{1 + e^{-x}} dx = \int_{-1}^{1} \frac{e^{x^2}}{1 + e^x} dx$
 - If f is continuous on [a,b] and $g(x) = \int_a^x f(t) dt$, then g is differentiable on (a,b).
 - (F) $\int_{0}^{1} f(2x) dx = 2 \int_{0}^{1} f(x) dx =$
 - $F \qquad \int_0^1 \sin^6 x \ dx \ge 0$
 - $\int 3e^2 \ dx = e^3 + C.$
- 4. (15 points) Choose the correct answer
 - (1) An appropriate trigonometric substitution for the integral $\left| \int \frac{x^3}{(9-4x^2)^{3/2}} dx \right|$ is

- b. $x = \frac{2}{3} \cos \theta$

- (2) $\int \frac{1}{1+x^2} dx$ is
 - a. $\sec^{-1} x + c$ c. $-\cot^{-1} x + c$

b. $-\csc^{-1} x + c$ d. $\sin^{-1} x + c$

- (3) $\int_0^{\pi/4} \sec x \tan x \ dx =$
 - a. $1 \sqrt{2}$ c. $\sqrt{2} + 1$

 $\begin{array}{c}
\text{(b.)} \sqrt{2} - 1 \\
\text{d. else}
\end{array}$

- $(4) \lim_{n\to\infty} \sum_{i=1}^{n} \frac{6}{n} \left(5 + \frac{i}{n}\right)^{5} =$
 - a. 1. c. $\frac{6^6 5^6}{6}$.

- b.) $6^6 5^6$.
- d. else.

(5) If
$$f(x) = \begin{cases} 2 & \text{if } 0 \le x \le 1 \\ 2x & \text{if } 1 < x \le 3 \end{cases}$$
. Then f_{avg} on $[0, 3]$ is

(a.) 10/3 c. 3

b. 6d. Else

(6) If
$$f(x) = \begin{cases} \ln(x^2 - x + 1) & \text{if } 0 \le x \le 1 \\ (1 - x)\sin x & \text{if } 1 < x \le 3 \end{cases}$$
 and
$$\boxed{ g(x) = \int_0^x f(t) \ dt }. \text{ Then } \boxed{ g'\left(\frac{\pi}{2}\right) = }$$
 a. $\pi/2$ b. 0 d. else

(7)
$$\int_{0}^{2} |1 - x| dx =$$
a. -1
c. 1

b. 0 d. else

(8)
$$\lim_{x \to 3} \frac{x}{x-3} \int_3^x \frac{\cos(t-3)}{t} dt =$$
a. -1
c. 1

b. 4

d. else

(9)
$$\int \ln x \, dx =$$
a. $x \ln x$
c. $(x-1) \ln x + C$

b. $\ln x + C$

(10) If
$$\int_0^1 e^{x^2} dx = K$$
. Then
$$\int_{-1}^1 \frac{e^{x^2}}{1 + e^x} dx =$$
 a.
$$K$$
 c. $1 - K$

b. 2K d. e^K

Hint: $\frac{1}{1+t} + \frac{1}{1+t^{-1}} = 1$

If
$$\int_{0}^{1} e^{x^{2}} dx = R + \lim_{x \to 1} \int_{1+e^{x}}^{1} dx = \frac{1}{1+e^{x}} + \frac{1}{1+e^{-x}} = 1$$
 let $t = e^{x} \Rightarrow \frac{1}{1+e^{x}} + \frac{1}{1+e^{-x}} = 1 / *e^{x^{2}}$

$$\Rightarrow \frac{e^{x^{2}}}{1+e^{x}} + \frac{e^{x^{2}}}{1+e^{-x}} = e^{x^{2}} / \int_{-1}^{1} e^{x^{2}} dx = \frac{1}{1+e^{x}} + \frac{1}{1+e^{x}} = \frac{1}{1+e^{x}} + \frac{1}{1+e^{x}}$$

$$\Rightarrow \frac{e^{x^2}}{1+e^x} + \frac{e^{x^2}}{1+e^{-x}} = e^{x^2} / \int_{-1}^{1}$$

$$\int_{1+e^{x}}^{1} \frac{e^{x^{2}}}{1+e^{x}} dx + \int_{1+e^{-x}}^{1} \frac{e^{x^{2}}}{1+e^{-x}} dx = \int_{1+e^{-x}}^{1} \frac{e^{x^{2}}}{1+e^{x}} dx = 2\int_{1+e^{-x}}^{1} \frac{e^$$

but
$$\int \frac{e^{x^2}}{1+e^x} dx = \int \frac{e^{x^2}}{1+e^{-x}} dx$$
 from $(T \text{ or } T)$

$$\Rightarrow 2 \int_{1}^{1} \frac{e^{x^2}}{e^{x^2}} dx = 2 \int_{0}^{1} e^{x^2} dx = 2 K$$

$$\int_{1}^{1} \frac{e^{x^2}}{1+e^x} dx = K$$