ANNEXE: PREMIER PRINCIPE GAZ PARFAIT

I. Relations générales

I.1. Résultats valables pour tout système

• Premier principe de la thermodynamique

Relation générale : $\Delta U + \Delta E = W + Q$

Si le système est macroscopiquement au repos : ΔU = W + Q

En règle général W représente l'ensemble des énergies autre que le transfert thermique dans la plus part des cas il n'y a que le travail des forces de pression.

Ainsi W = W_P + W_{autre}

• Premier principe dans le cas d'une transformation monobare évoluant entre deux états d'équilibre

 $\Delta H + \Delta E = W_{autre} + Q$

Si le système est macroscopiquement au repos : $\Delta H = W_{autre} + Q$

• Le travail des forces de pression

Relation générale $\delta W = -P_{EXT}dV$

Si la transformation est mécaniquement réversible : $\delta W = -PdV$

• Relation sur les capacités thermiques

Coefficient de Laplace $\gamma = \frac{c_{PM}}{c_{VM}}$

I.2. Cas du gaz parfait

• Energie interne

Elle ne dépend que e la température.

Ainsi pour toute transformation $\Delta U = nc_{VM}\Delta T$

Attention la présence de c_{VM} n'impose pas que la transformation soit isochore

Enthalpie

Elle ne dépend que e la température.

Ainsi pour toute transformation $\Delta H = nc_{pM}\Delta T$

Attention la présence de c_{pM} n'impose pas que la transformation soit isobare

Relation sur les capacités thermiques

Relation de Meyer $c_{pM} - c_{VM} = R$

Avec le coefficient de Laplace on obtient $c_{VM} = \frac{nR}{\gamma - 1}$ et $c_{PM} = \frac{nR\gamma}{\gamma - 1}$

II. Transformations particulières

Système: gaz parfait

Equation d'état : PV = nRT

II.1. Transformation isochore réversible ou non: $V_1 = V_2$

- Travail W = 0J
- Premier principe : $\Delta U = W + Q = Q$

Gaz parfait (ou première loi de Joule) $\Delta U = nc_{VM}\Delta T = nc_{VM} (T_2 - T_1) = Q$

- Variation d'enthalpie

Gaz parfait (ou deuxième loi de Joule) $\Delta H = nc_{pM}\Delta T = nc_{pM}(T_2 - T_1)$

II.2. Transformation isobare réversible : P₁ = P₂

- Travail : $\delta W = -P_{EXT}dV$

Mécaniquement réversible : $\delta W = -PdV$

Isobare : $W = -P_1(V_2 - V_1)$

- Transfert thermique

Isobare $Q = \Delta H$

Gaz parfait (ou deuxième loi de Joule) $\Delta H = nc_{pM}\Delta T = nc_{pM}(T_2 - T_1) = Q$

- Variation d'énergie interne

Gaz parfait (ou première loi de Joule) $\Delta U = nc_{VM}\Delta T = nc_{VM} (T_2 - T_1)$

Remarque

Premier principe : $\Delta U = Q + W$

Travail reçu : W = ΔU - Q = n (c_{VM} - c_{PM}) (T₂ - T₁)

Relation de Mayer $W = -nR (T_2 - T_1)$

Equation d'état avec $P_1 = P_2$ on retrouve $W = -P_1(V_2 - V_1)$

II.3. Transformation monobare entre deux états d'équilibre mécanique

Comme $P_{EXT} = P_1 = P_2$ on retrouve les mêmes résultats seule la rédaction pour le travail change :

- Travail : $\delta W = -P_{EXT}dV$

Monobare : $W = -P_{EXT}(V_2 - V_1)$

Or $P_{EXT} = P_1^{:}: W = -P_1(V_2 - V_1)$

II.4. Transformation isotherme réversible : T₁ = T₂

- Variation d'énergie interne

Gaz parfait (ou première loi de Joule) $\Delta U = nc_{VM}\Delta T = 0J$

- Variation d'enthalpie

Gaz parfait (ou deuxième loi de Joule) $\Delta H = nc_{pM}\Delta T = 0J$

- Travail : $\delta W = - P_{ext} dV$

Mécaniquement réversible : $\delta W = -PdV$

Equation d'état : $\delta W = -nRT_1 \frac{dV}{dV}$

Isotherme : $W = -nRT_1 \ln \frac{V_2}{V_1}$

Equation d'état : W = -nRT₁ ln $\frac{P_1}{P_2}$

- Transfert thermique

Premier principe : $\Delta U = Q + W = 0J \Rightarrow W = -Q = nRT_1 \ln \frac{V_2}{V_1}$

II.5. Transformation adiabatique réversible

- Adiabatique : Q = 0J
- Variation d'énergie interne

Gaz parfait (ou première loi de Joule) $\Delta U = nc_{VM}\Delta T = nc_{VM}(T_2 - T_1)$

- Variation d'enthalpie

Gaz parfait (ou deuxième loi de Joule) $\Delta H = nc_{PM}\Delta T = nc_{PM}(T_2 - T_1)$

Travail

Premier principe : $\Delta U = Q + W = W = nc_{VM}(T_2 - T_1)$

Remarque pour cette transformation adiabatique réversible pour un gaz parfait on a aussi la loi de Laplace PV^{γ} = Constante

II.6. Autres transformations

Pour tout autre transformation réversible ou pas il faudra bien lire l'énoncé et adapter les résultats du I

ANNEXE: PREMIER PRINCIPE GAZ PARFAIT

I. Relations générales	<u>1</u>
I.1. Résultats valables pour tout système	_
I.2. Cas du gaz parfait	_
II. Transformations particulières	
II.1. Transformation isochore réversible ou non: $V_1 = V_2$	<u>1</u>
II.2. Transformation isobare réversible: P ₁ = P ₂	
II.3. Transformation monobare entre deux états d'équilibre mécanique	
II.4. Transformation isotherme réversible: $T_1 = T_2$	_
II.5. Transformation adiabatique réversible	
II.6. Autres transformations	