

Détecteur de billets contrefaits Conception & tests initiaux

Sommaire

- 1 Téléchargement & vérification des données
 1.1 Inspection
 1.2 Régression linéaire multiple
 1.2.1 Régression & analyse des résidus
 1.2.2 Valeurs atypiques & influentes
 1.2.3 Régressions Ridge & Lasso
 1.3 Statistiques descriptives
- 2 K-Means & optimisation
 - 2.1 Optimisation des paramètres
 - 2.2 Clustering & analyse des centroïdes
 - 2.3 Analyse en Composantes Principales
 - 2.4 Algorithme final: test & analyse de la performance
- 3 Régression logistique & optimisation
 - 3.1 Choix des variables significatives
 - 3.2 Optimisation des hyperparamètres
 - 3.3 Algorithme final : test & analyse de la performance

1 - Téléchargement & vérification des données 1.1 - Inspection

- ❖ Typage correct des données (1 booléenne et 6 quantitatives continues)
- Aucune valeur négative
- Pas de doublons
- Quelques outliers a priori atypiques et non aberrants
 - à analyser plus en detail
- ❖ 37 valeurs manquantes à compléter dans la colonne margin_low (29 vrais & 8 faux billets)
 - > Régression linéaire multiple
- Pas de clé primaire
 - > Index comme clé artificielle

1 - Téléchargement & vérification des données

1.2 - Régression linéaire multiple

1.2.1 - Régression...

		OLS Regres	sion Result	ts				>	qualité de prévision
Dep. Variable: Model: Method: Date:		margin_low OLS east Squares 20 Jun 2023	R-squared Adj. R-sd F-statist Prob (F-s	quared:		0.477 0.476 266.1 2.60e-202			médiocre
Time: No. Observation Df Residuals: Df Model: Covariance Type	15:	10:10:43 1463 1457 5 nonrobust	Log-Like AIC: BIC:			-1001.3 2015. 2046.		>	très proche de zéro
const diagonal height_left height_right margin_up length	coef 22.9948 -0.1111 0.1841 0.2571 0.2562 -0.4091	9.656 0.041 0.045 0.043 0.064 0.018	2.382 -2.680 4.113 5.978 3.980 -22.627	P> t 0.017 0.007 0.000 0.000 0.000 0.000 0.000	4.055 -0.192 0.096 0.173 0.136 -0.445	5 41.9 2 -0.0 5 0.2 3 0.3 9 0.3	35 30 72 42 82		Toutes les variables sont significatives au seuil a=5%
Omnibus: Prob(Omnibus): Skew: Kurtosis:		73.627 0.000 0.482 3.801	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	era (JB): :		1.893 95.862 1.53e-21 1.94e+05			problème de colinéarité potentiel
S ON	CFM			varia diagona height_ height_ margin_ length	al left right	vi_factor 1.01 1.14 1.23 1.40 1.58		>	VIFs < 10 \Longrightarrow ok

- 1 Téléchargement & vérification des données
 - 1.2 Régression linéaire multiple
 - 1.2.1 ... & analyse des résidus
 - ❖ Moyenne très proche de zéro mais...
 - ❖ ... hétéroscédastiques (tests de White et Breusch-Pagan conduisent au rejet de H₀ : les variances des résidus ne sont pas constantes) et...
 - ❖...non-Gaussiens (tests de Shapiro-Wilk, Anderson-Darling, Kolmogorov-Smirnov conduisent tous au rejet de H₀: les résidus ne suivent pas une loi Normale)
 - résultats confirmés par le QQ plot et la droite de Henry
 - > résidus plus dispersés sur les faux billets

- 1 Téléchargement & vérification des données
 - 1.2 Régression linéaire multiple
 - 1.2.2 Valeurs atypiques & influentes
 - L'analyse des résidus studentisés fait apparaître 7 individus atypiques et influents
 - Les résultats de la régression linéaire sans ces individus varient peu on les conserve donc

1.2.3 – Régressions Ridge & Lasso

N'ont pas permis de corriger les problèmes sur les résidus ni d'améliorer significativement le R2

➤ Poursuite de l'analyse

- o moyenne suffisamment proche de zéro
- o échantillon suffisamment grand (1463)
- o courbe "relativement en cloche"
- o paramètres significatifs avec a=5%
- o modèle significatif avec a=5% (proba. F-statistic)

1 - Téléchargement & vérification des données 1.3 - Statistiques descriptives

2.1 – Optimisation des paramètres sur le training set

- ❖ Séparation training/testing set 80/20
- K-means testé sur 2, 3 et 4 clusters
- Algorithme Kmeans ++, modèle elkan, initialisation du random state

Indicateurs de performance:

	2 clusters	3 clusters	4 clusters
Rand score	0.9688	0.972	0.9591
Adjusted Rand Score	0.9366	0.9431	0.9168
MIB score	0.874	0.888	0.8509
Adjusted MIB score	0.8739	0.8879	0.8508
Score de Fowlkes-Mallows	0.9723	0.9752	0.964

Modèle à 3 clusters renvoie les meilleures performances

2.2 - Clustering & analyse des centroïdes sur le training set

2.3 - Analyse en Composantes Principales

- ❖ >60% de la variance capturée avec 2 axes
- ❖ 1^{er} axe dominé par longueur, marges & hauteur droite

2.3 - Analyse en Composantes Principales

- ❖ Subdivision du cluster 1 des vrais billets à gauche bien visible

 → confirme l'analyse des centroïdes
- * Résultat utilisé pour allouer automatiquement les étiquettes aux numéros de clusters

2.4 - Algorithme final: test & analyse de la performance

* Résultats sur le jeu de test :

3 clusters	Testing set	Training set
Rand score	0.9867	0.972
Adjusted Rand Score	0.9732	0.9431
MIB score	0.9394	0.888
Adjusted MIB score	0.9392	0.8879
Score de Fowlkes-Mallows	0.9875	0.9752

- > légèrement meilleurs que sur le training set
- * Résultats du test sur l'échantillon de production non étiqueté :

```
Le billet ref. A_1 est un faux billet.
Le billet ref. A_2 est un faux billet.
Le billet ref. A_3 est un faux billet.
Le billet ref. A_4 est un vrai billet.
Le billet ref. A 5 est un vrai billet.
```


3 - Régression logistique & optimisation 3.1 - Choix des variables significatives

Generalized Linear Model Regression Results

		_								
Dep. Variable:	у	No. Obs	ervations:	12	00					
Model:	GLM	Df Resi	duals:	11	93					
Model Family:	Binomial	Df Mode	1:		6	> R2 inc	انمینے بنا	n hon "	fit" du n	عافهم
Link Function:	Logit	Scale:		1.00	99 🛪	/ I\Z IIIC	nque u		iic du ii	ioucic
Method:	IRLS	Log-Lik	elihood:	-36.6	50					
Date: Tue,	20 Jun 2023	Deviance		73.2	99 /					
Time:	10:10:54	Pearson	chi2:	1.96e+	03 /					
No. Iterations:	10	Pseudo	R-squ. (CS):	0.69	/					
Covariance Type:	nonrobust					zed Linear Mo	del Pegnes	cion Pocult	+c	
					deller all		Kegres			
coef	std err	z	P> z	Dep. Variable:		ν	No. Obse	rvations:		1200
			. / -	Model:		GLM	Df Resid			1195
const -81.6224	257.021	-0.318	0.751 -	Model Family:		Binomial	Df Model			4
diagonal -0.4097	1.150	-0.356	0.722	Link Function:		Logit	Scale:			1.0000
height_left -1.8585	1.276	-1.457	0.145	Method:		IRLS	Log-Like	lihood:		-37.803
height right -2.2433	1.093	-2.052	0.040	Date:	Tue,	20 Jun 2023	Deviance			75.605
			0.000	Time:		10:10:54	Pearson	chi2:		2.45e+03
	0.970	-5,473		No. Iterations	:	10	Pseudo R	-squ. (CS):	:	0.6983
margin_up -8.8103	2.100	-4.196	0.000	Covariance Type	e:	nonrobust				
length 5.6117	0.892	6.292	0.000							
=======================================					coef	std err	Z	P> z	[0.025	0.975]
					-296.0525	152.148	-1.946	0.052	-594.258	2.153
mais certaine	es variable	s ne sc	nt 🗸	height_right	-2.7652	1.123	-2.462	0.014	-4.966	-0.564
			/	margin_low	-5.2333	0.861	-6.081	0.000	-6.920	-3.547
pas significative	es : on les	eiimin	e —	margin_up	-8.6477	2.027	-4.267	0.000	-12.620	-4.676
			\	length	5.6477	0.856	6.600	0.000	3.971	7.325
· ·			`							
ONCEM										

3 - Régression logistique & optimisation 3.2 - Optimisation des hyperparamètres

❖ Sans optimisation :

Utilisation de gridsearchCV :

Regression logistique	Non optimisee		Optimisee liblin	Optimisee saga	
R2 training set	0.9908	0.9867	0.9908	0.9875	
R2 testing set	0.99	1	0.9967	1	
Precision score testing set	0.9845	1	0.9948	1	
Recall score testing set	1	1	1	1	

Le solveur saga offre le meilleur compromis performances / efficacité computationnelle

- 3 Régression logistique & optimisation
 - 3.3 Algorithme final: test & analyse de la performance
- * Résultats sur le jeu de test :

> R2: 0.9867

Precision score:

97.94%

> Recall score: 100%

* Résultats du test sur l'échantillon de production non étiqueté :

> Seuil de probabilité = 50%

id	proba	labels_pred_reglog				
A_1	0.00013690	FALSE				
A_2	0.00001730	FALSE				
A_3	0.00005827	FALSE				
A_4	0.99503518	TRUE				
A_5	0.99997437	TRUE				

Le billet ref. A_1 est un faux billet. Le billet ref. A_2 est un faux billet. Le billet ref. A_3 est un faux billet. Le billet ref. A_4 est un vrai billet. Le billet ref. A_5 est un vrai billet.

Conclusion

