	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2018/2019	Data 19-06-2019
P.PORTO		Curso Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:00 horas

Observações:

- Pode trocar a ordem das questões, desde que as identifique convenientemente.
- Qualquer tentativa de fraude implica a anulação do exame.
- A Parte 1 deste exame é constituída por questões de escolha múltipla. As mesmas devem ser respondidas na folha de resposta.
- O enunciado deve ser entregue juntamente com a folha de resposta.

Número:	Nome:
	PARTE I
1. (1V)	No treino de um modelo de aprendizagem supervisionada, o algoritmo deve:
	 A. Favorecer overfitting e generalização B. Evitar overfitting e generalização C. Evitar overfitting e favorecer generalização D. Favorecer overfitting e evitar generalização
2. (1V)	Uma Rede Neuronal:
` ,	 A. Tem no mínimo duas camadas B. Tem no mínimo três camadas C. Tem sempre mais inputs que outputs D. Tem sempre mais outputs que inputs
3. (1V)	Durante o treino de uma Rede Neuronal a aprendizagem ocorre:
	 A. Acrescentando novas camadas à Rede Neuronal B. Acrescentando novos neurónios a camadas existentes na Rede Neuronal C. Acrescentando ligações entre neurónios D. Fazendo alterações nos pesos das ligações entre neurónios
4. (1V)	Considere a existência da variável numérica <i>idade</i> , num determinado dataset com informação demográfic Pretende transformar-se esta variável numa enumeração com os valores {criança, jovem, adulto, idoso Identifique a técnica adequada:
	A. Normalização B. Nunhuma das restantes C. Classificação D. Discretização
5. (1V)	Uma Árvore de Decisão de classificação:
ک. (۱۷)	 A. Tem uma folha por cada valor diferente da variável dependente B. Tem um valor específico de uma variável independente (ou uma gama de valores) em cada ramo C. Tem um nível por cada variável dependente D. Tem um ramo por cada variável dependente
6. (1V)	No treino de um modelo com N-Fold Cross Validation:
J. (1 V)	 A. São treinados N modelos B. O erro é dado pelo erro médio de N modelos C. O erro é dado pelo erro médio de N+1 modelos D. Nenhuma das restantes

ESTG-PR05-Mod013V2 Página 1 de 3

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2018/2019	Data 19-06-2019
P.PORTO		Curso Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:00 horas

7. (1V) Assinale a opção verdadeira:

- A. A Confusion Matrix pode ser criada tanto para um modelo de regressão como de classificação
- B. A ROC curve pode ser criada em qualquer problema de classificação
- C. A ROC curve pode ser criada em gualquer problema de regressão
- D. Nenhuma das restantes

8. (1V) O Case Based Reasoning é um algoritmo incluído na categoria de:

- A. Instance-based Learning
- B. Supervised Learning
- C. Unsupervised Learning
- D. Reinforcement Learning

PARTE II

- 9. (2V) Nas aulas de IA foram abordadas duas grandes formas de aprendizagem: supervisionada e não supervisionada. Indique em que consiste cada uma delas, indicando ainda as suas diferenças fundamentais e um exemplo de aplicação para cada uma delas.
- 10. (2V) Considere o excerto do dataset que se apresenta de seguida, que descreve algumas características dos alunos da Unidade Curricular de Inteligência Artificial. O dataset contém as seguintes variáveis:
 - _id O identificador numérico único de cada aluno
 - QI O nível de QI do aluno
 - N Irmaos O número de irmãos do aluno
 - Sal_AgregadoF O salário, em euros, do agregado familiar
 - Nota Uma enumeração com três valores possíveis {fraco, médio, bom} descrevendo a nota qualitativa do aluno na UC

_id	QI	N_Irmaos	Sal_AgregadoF	Nota
1	80	2	1500	Fraco
2	120	1	2340	Bom
3	94	3	1400	Médio

Desenhe uma possível arquitetura de uma Rede Neuronal para prever a nota de alunos. Note que é suficiente desenhar cada uma das camadas que considerar necessárias e os seus neurónios, não sendo necessário desenhar as ligações entre os neurónios. Faça ainda as considerações que achar necessárias sobre as variáveis a utilizar.

11. (2V) No decorrer das aulas de lA foram estudadas diferentes formas diferentes de avaliar a performance de um modelo durante o seu treino. Uma delas consiste na divisão prévia do dataset em três datasets disjuntos (train, validation e test). Indique qual o objetivo desta divisão e, particularmente, qual a utilidade do dataset de test.

ESTG-PR05-Mod013V2 Página 2 de

3

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2018/2019	Data 19-06-2019
P.PORTO		^{Curso} Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:00 horas

12. Considere a sequinte tabela que mostra os limites de velocidade nas estradas Portuguesas, em km/h, em função do tipo de estrada e da categoria do veículo:

Estrada Categoria	Urbana	Nacional	Autoestrada
Α	50	60	120
В	50	90	120
С	50	90	100

Considere ainda que se um condutor tiver a carta há menos de 2 anos, os limites de velocidade aplicáveis são diminuídos em 10 km/h.

12.1 Modele, em Prolog, a informação que consta na tabela acima. (1.5V)

> Implemente, em Prolog, o predicado excesso/4 que determina se um condutor circula ou não em excesso de velocidade, dada a idade da sua carta de condução (em anos), a categoria do veículo, o tipo de estrada em que circula e a sua velocidade. Indique ainda um exemplo de utilização do predicado.

> Considere a funcionalidade do GoogleMaps que ilustra, através de três cores diferentes (verde, amarelo e vermelho) a intensidade do trânsito nas estradas. Esta funcionalidade apenas permite visualizar o estado do trânsito em tempo real. Admita agora que se pretende desenvolver um modelo com a capacidade de prever a intensidade do trânsito em datas futuras, para que os utilizadores do GoogleMaps possam melhor planear as suas viagens de forma a evitar trânsito. Para este desafio, indique:

- a) Que fontes de informação poderia utilizar
- b) Que variáveis seriam extraídas dessas fontes de informação
- c) Qual a estrutura do dataset
- d) (se aplicável) que tarefas de preparação de dados aplicaria
- e) Que algoritmo poderia utilizar para treinar um modelo adequado

ESTG-PR05-Mod013V2 Página 3 de

12.2

(1.5V)

13

(3V)