

Learning Classifier Systeme in kollaborativen, dynamischen Multiagentenszenarien

Clemens Lode 29.10.08

Überblick

- Testszenario
 - Multiagentensystem (Agenten, Grid, Kommunikation)
 - Observation eines sich bewegenden Ziels
- Ablauf des Learning Classifier Systems
- Beispiele für Classifier, Generierung von Classifier
- Reward (single-/multistep)
- Bewegungen des Ziels
- Kommunikation und Organisation der Agenten
- Verteilung des Rewards zwischen Agenten
- Offene Fragen und weitere Testszenarien

1. Szenario

Observiere Ziel möglichst lange mit beliebigem Agenten

Szenario Besonderheiten

- Begrenzte Sichtweite
- Einteilung in ein Grid
- Hindernisse
- Ziel bewegt sich
 - Schneller als einzelner Agent
 - Unvorhersehbar
- Keinerlei globale Kommunikation

Implementation Agenten

- 4 Sichtrichtungen
- Binäre Sensoren (Agent/Ziel in Sicht oder nicht in Sicht)
- 6 Aktionen (4 Richtungen, zufällig, stehenbleiben)

Darstellung Input

- Binärstring NOSW (Sicht andere Agenten) + Bit (Sicht Ziel)
- Ein Bit für Ziel ausreichend da absolute Richtungen nicht entscheidend
 - Sei Aktion X optimal f
 ür Situation A
 - Sei Situation B um 90 Grad gedrehte Situation B
 - Um 90 Grad gedrehte Aktion X optimal f
 ür Situation B
- Optimierung: Nur ein Bit für Ziel, Rest nach dieser Richtung ausrichten

Identische Szenarien

Grundlegender Ablauf des Classifier Systems

- Jeder Agent besitzt Regelmenge
- Regel besteht aus Bedingung und Aktion
- Input wird mit Bedingung verglichen, Aktion wird ausgeführt
- Besonderheit: Bedingungen können aus Wildcards bestehen
 - Mehrere passende Bedingungen möglich
 - Wähle daraus eine zufällige Regel, gewichtet mit deren Fitness
- Fitness einer Regel wird später angepasst
- Lernen: Generiere neue Classifier (z.B. mittels genetischer Operatoren, Mutation)

Darstellung LCS

 0.1011►1: Bewege in die Richtung in der kein Agent in Sicht ist (Classifier ist identisch zu 0.1101►2, 0.1110►3 und 0.0111►0)

- 1.1000►5: Keine Aktion (5) wenn Agent und Ziel in der selben Richtung in Sicht
 - Ist Ziel in Sicht entspricht die erste Richtung der Richtung in der das Ziel zu sehen ist

 1.1101►2: Bewege in eine Richtung, in der kein Agent in Sicht ist

Generalisierung: Wildcards

- Menge der Classifier kleiner (Effizienz)
- Vermeidung redundanter Informationen
- Beispiel: 1.0111►2 und 0.0111►2
 - Benutze # als "wildcard": #.0111►2
- Problem: Sicherstellen, dass Information nicht verloren geht
 - Ignoriert wurde bei obigem Beispiel die Rolle der Fitness der beiden Classifier
- Offene Frage: Je nach Szenario unterschiedliche Arten von Generalisierung denkbar (z.B. Angabe eines begrenzten Zahlenbereichs bei mehr als 2 Belegungsmöglichkeiten)

 1.##1#►0: Bewege auf Ziel zu, bewege von Agenten weg, ignoriere restliche Umgebung

Generierung neuer Classifier

- Drei Quellen für neue Classifier:
 - Covering
 - Falls kein Matching für ein Classifier gefunden wurde
 - Erstelle neuen, zufälligen Classifier mit passendem Matching
 - Genetischer Algorithmus, Mutation
 - Crossover zwischen bestehenden Classifiern
 - Mutation von bestehenden Classifiern
 - Austausch zwischen Agenten
 - Crossover oder direkte Kopie

Reward

- Zentrale Frage: Wie werden Classifier bewertet?
- Verschiedene Ansätze
 - Single-Step
 - Nach jeder Aktion muss Reward bekannt sein.
 - Problem: Globale Information notwendig
 - Multi-Step
 - Reward wird an vergangene Aktionen bei Erreichen des Ziels verteilt
 - Problem: Kein konkretes Ziel, dauerhafte Überwachung, sich verändernde Umwelt

Zielagent

- Unbewegt: Problem ist identisch mit dem Maze Problem.
- Vorhersehbare Bewegung: Ähnlich dem Maze Problem, Bewegung der Agenten verschiebt sich.
- Interessanter: Unvorhersehbare Bewegung
 - Weder über Single-Step noch Multi-Step vernünftig lösbar.
- Zusätzlich: Zielagent bewegt sich schneller als die einzelnen Agenten.
 - Konstantes Verfolgen also unmöglich
 - Ziel ist eher, kollaborativ die Spielfläche abzudecken.

Ereignisse aus Sicht eines Agenten

- Mögliche Ereignisse:
 - Ziel bleibt außer Sichtweite.
 - Ziel bleibt in Sichtweite.
 - Ziel wurde gerade aus Sichtweite verloren.
 - Absteigende Bestrafung der vorangegangenen Aktionen
 - Ziel kommt gerade in Sichtweite.
 - Absteigende Belohnung der vorangegangenen Aktionen

Rewardfunktion

- Zu erwarten: Verteilung des Rewards in längeren
 Zeitabschnitten von 0 (Ziel nicht in Sicht) und 1 (in Sicht)
- In jedem Zeitabschnitt werden eine Anzahl von Classifier aktiviert und protokolliert
- Irrelevant: Ziel momentan in Sicht / nicht in Sicht
- Relevant: Ziel kommt in Sicht / Sicht zum Ziel verloren

Rewardfunktion

- Ziel kommt in Sicht (oder verlieren wir es aus der Sicht)
 - Annahme: Protokollierten Aktionen seit dem letzten Ereignis waren absteigend daran beteiligt
 - Belohnung der zugehörigen Classifier

🕳 🕳 🕳 🕳 🕳 Tatsächlich vergebener Reward an einzelne Classifier

Verteilung des Rewards zwischen Agenten

- Problem:
 - Kollaboration wird nicht honoriert
 - Keine globale Organisationseinheit
- In einem Netz aus Agenten müsste jeder Agent abhängig von der Aufenthaltswahrscheinlichkeit des Ziels im überwachten Gebiet belohnt werden.
 - Problem: Bewegung des Ziels ist grundsätzlich unvorhersehbar
 - Aufenthaltswahrscheinlichkeit unbekannt
 - Idee:
 - Bildung lokaler Populationen
 - Verteilung des Rewards innerhalb der jeweiligen Population

Verteilung des Rewards zwischen Agenten

 Nur grüner Agent wird belohnt, schwarze Agenten gehen trotz zusätzlich abgedecktem Gebiet leer aus

Möglicher Lösungsansatz

- Verteilung des Rewards an verwandte Agenten
 - Lokalpopulationen bilden eine Gruppe, sieht ein Mitglied das Ziel, erhalten alle den Reward.

Möglicher Lösungsansatz

 Weitergabe des Rewards nur an die beiden schwarzen Agenten, rot geht leer aus

Alternative Rewardfunktion

Mögliche Probleme der Idee

- Homogenisierung der Regeln wird begünstigt.
- Aufwand zur Bestimmung des Verwandtschaftsgrads
- Begrenztheit der Kommunikationsmittel
- Gewisse Verzögerung bis sich Information ausgebreitet hat
- Aber:
 - Keine Übertragung der Sensorinformation nötig
 - Kommunikation ist selten notwendig
 - Nicht zeitkritisch, sofern bisher aktivierte Classifier protokolliert werden
 - Weitertransport des Rewards von Agent zu Agent
 - Markierung mit Timestamp

Offene Fragen und Testszenarien

- Vergleich mit üblichen Vorgehensweisen (Heuristiken, single-step LCS)
- Test der Kooperationsfähigkeit (Austausch von Regeln)
- Test der Reaktionsfähigkeit des Systems auf Veränderungen der Umwelt (Hindernisse, Änderung des Bewegungsmusters des Ziels, Hinzufügen/Entfernen von Agenten)
- Nicht erwähnt: Hindernisse (Hinzunahme 4 weiterer Sensorbits)
- Komplexere Sensoren (Abstände)

Vielen Dank für die Aufmerksamkeit :)