# PROJEKCIJE

# Projekcije

- Predmet preslikamo
  - lokalne koordinate



koordinate sveta



- koordinate pogleda/kamere
- Še vedno je 3D
- Planarna projekcija
  - preslikava iz 3D predstavitve predmeta na projekcijsko ravnino
  - torej iz 3D v 2D







- Planarne projekcije ohranijo črte
  - ne pa nujno tudi kotov

 Neplanarne projekcije se uporabljajo npr. pri zemljevidih (cilindrična itn.)

# Planarna projekcija







- V RG vse planarne projekcije matematično gledano obravnavamo enako
- Delimo jih na:
  - vzporedne: projekcijski žarki so vzporedni
  - perspektivne: projekcijski žarki konvergirajo v točko



Age of Empires II © Microsoft Corporation



Maden NFL 2009



#### Vzporedna projekcija



"oko" je v neskončnosti

# Primerjava projekcij

#### Perspektivna projekcija



Vzporedna projekcija



- Vzporedna projekcija iz
   Mezopotamije (2150 pr. n. št.)
  - najstarejša poznana tehnična risba
- Egipčani (grob Nefertari v Tebah, 1300 pr.n.št.)
  - vzporedna projekcija
  - več gledišč (telo vs. noge in glava)

# Malo zgodovine







- Projekcijski žarki so pravokotni na ravnino projekcije
- Predmeti daleč izgledajo enako veliki kot tisti blizu
  - ni efektov perspektive podoben efekt dosežejo telefoto leče





- projekcijska ravnina je vzporedna z osnovnimi pogledi na predmet
  - navadno tloris, naris, stranski ris
  - ohranja dolžine stranic in kote
- projekcijska ravnina je poševna glede na predmet
  - glede na število kotov, ki so na projicirani kocki enaki ločimo:
    - izometrična (3), dimetrična (2), trimetrična (0)
  - razmerja dolžin črt se ohranijo, koti se ne

# Pravokotne projekcije





# Matematika pravokotnih projekcij

- V koordinatah pogleda sta x in y poravnana z ravnino projekcije, z pa pravokotno kaže v 3D sceno (levosučni) ali stran (desnosučni k.s.)
- Pri pravokotnih projekcijah torej lahko ohranimo x in y
  - z obdržimo, saj ga v cevovodu potrebujemo pri določanju kaj je spredaj in kaj je zadaj
- Določimo še vidno polje (kaj bo kamera videla)
  - širino in višino slike
  - prednjo in zadnjo ravnino, ki določata kaj vidimo po z koordinati
- Pri transformaciji poskrbimo za
  - x in y v vidnem polju poskaliramo na interval [-1,1]
  - z ohranimo in poskaliramo na interval [0,1]
  - koordinatni sistem obrnemo iz desnosučnega v levosučnega (z množimo z -1), da z raste z globino
  - tem koordinatam rečemo normalizirane koordinate naprave

$$P' = \begin{bmatrix} \frac{2}{w} & 0 & 0 & 0 \\ 0 & \frac{2}{h} & 0 & 0 \\ 0 & 0 & \frac{-1}{f-n} & \frac{-n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$





- tloris, naris, stranski ris, izometrična projekcija
- natančen prikaz predmeta (lahko izračunamo dolžine stranic, kote)

#### Igre

 koristno, ker so oddaljeni predmeti enako veliki kot bližnji - vidimo tudi podrobnosti oddaljenih predmetov

# Pravokotne projekcije





Maxis: SimCity 4 - trimetrična projekcija

Perspektivna projekcija

- Projekcijski žarki niso vzporedni stikajo se v točki (oko - gledišče)
- Črte, ki so na predmetu vzporedne, in niso na ravnini, ki je vzporedna projekcijski ravnini, se sekajo v ponornih točkah
- Ravnina projekcije je nekje med glediščem in sceno

# Perspektivna projekcija



Maden NFL



- Grška vaza iz 6. stoletja pr.n.št.
  - znaki perspektive (npr. noge minotavra)

#### Renesansa

- Zgodnji poskusi perspektive še ne sistematično oz. matematično
- Npr. Giotto: "Odobritev Frančiškanskega reda", cca. 1300
  - črte konvergirajo, vendar ne v eno točko

# Malo zgodovine







#### Brunelleschi je izumil sistematično metodo za risanje linearne perspektive (cca. 1400)

- čeprav neposredni zapisi niso ohranjeni
- Znan poskus s sliko krstilnice v Firencah
  - gledalec skozi luknjo v sliki opazuje pravo krstilnico, hkrati lahko z ogledalom vidi sliko in primerja videno

#### Renesansa





#### Renesansa

- **Alberti** (1435 *Della Pittura*) je postavil prvo matematično pravilno metodo za risanje perspektive
  - primer risanja kvadra (sobe), tla so kockasta
    - prednja stena je GRCB, zadnja stena je STED
    - V je položaj oči gledalca



#### Princip podobnih trikotnikov je opisal Dürer okoli 1500

- AB = višina predmeta
- CB = razdalja od gledalca do predmeta
- CD = razdalja od gledalca do projekcijske ravnine

#### Renesansa





Dürer : Umetnik riše lutnjo (1525)



#### Če predpostavimo

- predmeti so preslikani v k.s. kamere
- d je razdalja od kamere do projekcijske ravnine
- Veljajo enakosti:

$$\frac{x}{z} = \frac{x'}{d}, \ \frac{y}{z} = \frac{y'}{d}, \text{ kar da } x' = \frac{xd}{z}, y' = \frac{yd}{z}$$

Kar da perspektivno matriko (levo s.):

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \frac{z}{d} \end{bmatrix} = \begin{bmatrix} xd/z \\ yd/z \\ d \\ 1 \end{bmatrix}$$

# Matematika perspektive









- iz zornega kota dobimo višino izseka h
- širino izseka dobimo iz razmerja med višino in širino (aspect ratio)



 S spreminjanjem zornega kota dosežemo različne učinke, npr. poudarimo efekt perspektive

#### Zorni kot



širok zorni kot



ozek zorni kot

# Normalizirane koordinate naprave (NDC)

- Za pretvorbo v normalizirane koordinate naprave ustrezno skaliramo vse tri koordinate
  - x in y koordinate oglišč bodo znotraj
     vidnega polja so na intervalu [-1,1]
  - z ohranimo in skaliramo na interval[0,1] (WebGPU)
  - spremenimo sučnost iz desno v levo sučni k.s. (-z)
- Matrika perspektivne projekcije morata torej ustrezno skalirati vse tri koordinate
  - glej npr. implementacijo matrik v glMatrix

Primer matrike perspektivne projekcije, ki preslika točko v NDC. Ta projekcija obrne sučnost koordinat sveta iz desno v levo sučen k.s., zato je d=-1.

$$M_p = \begin{bmatrix} \frac{2}{w} & 0 & 0 & 0\\ 0 & \frac{2}{h} & 0 & 0\\ 0 & 0 & \frac{f}{n-f} & \frac{fn}{n-f}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

w, h: širina in višina vidnega polja n, f: bližnja in daljna ravnina

$$x' = -\frac{1}{z} \frac{2}{w} x$$

$$y' = -\frac{1}{z} \frac{2}{h} y$$

$$z' = \frac{f}{f - n} + \frac{fn}{f - n} \frac{1}{z}$$

# Parametri perspektivne projekcije

Navadno določimo:

```
// perspective: fov, aspect, near, far
mat4.perspectiveZO(P, Math.PI/3, 4/3, 0.1, 100);
```

- zorni kot (FOV)
  - če vzamemo npr. d=1, lahko izračunamo višino slike
- razmerje med višino in širino slike (aspect ratio), npr. 4/3 ali 16/9
  - izračunamo širino slike
- bližnjo in daljno ravnino rezanja
  - določata vidno prisekano piramido: prostor gledanja
  - le predmeti znotraj te piramide so vidni
    - nočemo gledati predmetov preblizu in izza kamere
    - nočemo prikazovati preveč oddaljenih predmetov



16:9



Near Clipping Plane

Near Clipping Plane

Discarded Rendered Clipped Discarded

ravnine rezanja



- vzporedna projekcija z orthoZO
- perspektiva s perspectiveZO

```
var ar = width/height;
var fld=10;
// Left right bottom top near far
mat4.orthoZO(P, -fld, fld, -fld/ar, fld/ar, 0.1, 100);

// FOV aspect near far
mat4.perspectiveZO(P, Math.Pl / 3, ar, 0.1, 100);
```

#### Primer v kodi



#### REFERENCE

- R. Hammack: <u>Alberti's method for Perspective Drawing</u>
- N. Guid: Računalniška grafika, FERI Maribor
- J.D. Foley, A. Van Dam et al.: Computer Graphics: Principles and Practice in C, Addison Wesley
- P. Shirley, S. Marschner: Fundamentals of Computer Graphics, A.K. Peters