Dawid Pawliczek Lista 2, Zadanie 2

Treść zadania

Danych jest n odcinków $I_j = \langle p_j, k_j \rangle$ leżących na osi OX, j = 1, ..., n. Ułożyć algorytm znajdujący zbiór $S \subseteq \{I_1, ..., I_n\}$ nieprzecinających się odcinków o największej mocy |S|.

Intuicja

Dynamiczne DP (pomysł odrzucony). Można próbować rozwiązać problem przez DP: dp[i][j] – maksymalna liczba odcinków mieszczących się w przedziale [i,j]. Wzór rekurencyjny:

$$dp[i][j] = \max_{\substack{I = \langle k, k' \rangle \\ i \le k < k' \le j}} (dp[i][k] + 1 + dp[k'][j]),$$

jednak prowadzi to do kosztu kwadratowego.

Kluczowa obserwacja (wymiana). W dowolnym optymalnym rozwiązaniu można wybrać odcinek, który kończy się najwcześniej spośród wszystkich. Jeśli optymalne rozwiązanie tego nie robi, zamieniamy jego pierwszy odcinek na odcinek o najmniejszym k: liczność zbioru nie spada, więc otrzymujemy równorzędne optimum.

Stąd wynika zachłanna konstrukcja: wybieramy najwcześniej kończący się odcinek, wyrzucamy wszystkie z nim kolidujące i powtarzamy na pozostałych.

Algorytm zachłanny

```
Algorithm 1 BestIntervals
```

```
Require: zbiór odcinków I = \{I_j = \langle p_j, k_j \rangle\}

Ensure: maksymalny zbiór rozłącznych odcinków

1: posortuj odcinki niemalejąco po k_j

2: S \leftarrow []; lastEnd \leftarrow -\infty

3: for all I_j = \langle p_j, k_j \rangle w tej kolejności do

4: if p_j \geq lastEnd then

5: dołącz I_j do S

6: lastEnd \leftarrow k_j

7: end if

8: end for

9: return S
```

Dowód poprawności

Dowód przez wymianę. Niech S_g – zbiór zwrócony przez algorytm, S^* – dowolne optymalne rozwiązanie, a odcinki obu zbiorów posortowane rosnąco po końcach: $S_g = (g_1, g_2, \dots), S^* = (s_1, s_2, \dots)$.

1. Pierwszy odcinek algorytmu, g_1 , ma najmniejszy koniec spośród wszystkich, więc $k(g_1) \le k(s_1)$. Jeżeli $g_1 \ne s_1$, konstruujemy zbiór $S' = (g_1, s_2, s_3, ...)$. Ponieważ $p(s_2) \ge k(s_1) \ge k(g_1)$, g_1 nie przecina s_2 , zaś liczność $|S'| = |S^*|$, więc S' także jest optymalny.

2. Stosując tę samą operację wymiany indukcyjnie dla kolejnych pozycji, otrzymujemy optymalne rozwiązanie, które zaczyna się prefiksem g_1,g_2,\ldots Po skończeniu indukcji całe S_g musi być optymalne, czyli $|S_g|=|S^\star|$.

Złożoność

Sortowanie – $O(n \log n)$, pętla – O(n). Łącznie $O(n \log n)$. Pamięć pomocnicza O(1) (poza tablicą wejściową).