Instituto Politécnico Nacional

ESCUELA SUPERIOR FÍSICA MATEMÁTICAS INGIENERÍA MATEMÁTICA

Métodos Númericos l

Grupo:3MM1

Fórmulario Unidad l

FECHA DE ENTREGA: 05 DE ABRIL DE 2023

Profesor:

Mendel Esquivel Ricardo

Alumno:

Valencia Gallegos Leonardo Pavel

${\bf \acute{I}ndice}$

1.	Límites	3
	1.1. Definición 1	3
	1.2. Definición 2	3
	1.3. Definición 3	3
	1.4. Definición 4	4
	1.5. Teorema 1	4
	1.6. Teorema 2	4
	1.7. Teorema de Rolle	4
	1.8. Teorema del valor medio	5
	1.9. Teorema de los valores extremos	5
	1.10. Teorema generalizado de Rolle	6
	1.11. Teorema del valor intermedio	6
	1.12. Teorema de Taylor	6
2.	Integrales	7
	2.1. Definición: Integral de Riemann	7
	2.2. Teorema del valor promedio para integrales	8
3.	Definiciones y Teoremas	8
	3.1. Método de bisección	8
	3.2. Tipo de errores	9
	3.3. Definición	9
	3.4. Definición Orden de convergencia	10
	3.5. Definición	10
	3.6. Definición Iteración de punto fijo	10
	3.7. Teorema	10

1. Límites

1.1. Definición 1

Una función f definida en un conjunto X de números reales tiene el límite L en x_0 , denotado por

$$\lim_{x \to x_0} f(x) = L$$

si, dado cualquier número real $\epsilon>0$, existe un número real $\delta>0$ tal que $\mid f(x)-L\mid<\epsilon$, siempre que $x\in X$ y $0<\mid x-x_0\mid<\delta$

1.2. Definición 2

Sea f una función definida en un conjunto X de números reales y $x_0 \in X$. Enonces f es **continua** en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

La función f es continua en el conjunto X si es continua en cada número de X.

1.3. Definición 3

Sea $(x_n)_{n=1}^{\infty}$ e una sucesión infinita de números reales. La sucesión converge a un número x (el limite si $\forall \epsilon > 0$ existe un $N(\epsilon)$ tal que $n > N(\epsilon)$ implica $|X_n - x| < \epsilon$)

 $\lim_{n\to\infty} x_n = x$ o $x_n \to x$ cuando $n \to \infty$. Significa que la sucesión $(x_n)_{n=1}^{\infty}$ converge a x.

1.4. Definición 4

Si f es una función definida en un conjunto X de números reales y $x_0 \in X$, entonces las siguientes afirmaciones son equivalentes

a. f es continua en x_0

b. Si $(x_n)_{n=1}^{\infty}$ es cualquier sucesión en x que converge a x_0 , entonces $\lim_{n\to\infty} f(x_n) = f(x_0)$.

1.5. Teorema 1

Sea f una dunción definida en un intervalo abiero que contiene a x_0 . La función f es **derivable** en x_0 si

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

1.6. Teorema 2

Si la función f es derivable en x_0 , entonces f es continua en x_0 .

1.7. Teorema de Rolle

Suponga que $f \in C[a, b]$ y que f es derivable en (a, b). Si f(a) = f(b), entonces existe un número c en (a, b) tal que f'(c) = 0

1.8. Teorema del valor medio

Si $f \in C[a,b]$ y f es derivable en (a,b), entonces existe un número c en (a,b) tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

1.9. Teorema de los valores extremos

Si $f \in C[a,b]$, entonces existen $c_1, c_2 \in [a,b]$ tales que $f(c_1) \leq f(x) \leq f(c_2)$ para toda $x \in [a,b]$. Además si f es derivable en (a,b), entonces los números c_1 y c_2 aparecen en los extremos de [a,b], o bien donde se anula f'.

1.10. Teorema generalizado de Rolle

Suponga que $f \in C[a,b]$ en n veces difenciable en (a,b). Si f(x)=0 en los n+1 números distintos a $a \le x_0 < x_1 \dots x_n \le b$, entonces un número c en (x_0,x) y, por lo tanto , en (a,b) existe con $f^{(n)}(c)=0$.

1.11. Teorema del valor intermedio

Si $f \in C[a,b]$ y K es cualquier número entre f(a) y f(b), entonces existe un número c en (a,b) para el cual f(c) = K.

1.12. Teorema de Taylor

Suponga que $f \in C^n[a, b], f^{(n+1)}$ existe en [a, b], y $x_0 \in [a, b]$. Para cada $x \in [a, b]$. existe un número $\xi(x)$ entre x_0 y x con

$$f(x) = P_n(x) + R_n(x)$$

donde

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$= \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

у

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$

2. Integrales

2.1. Definición: Integral de Riemann

La integral de Riemann de la función f en el intervalo [a,b] es el siguiente límite, si éxiste:

$$\int_{a}^{b} f(x) dx = \lim_{m \neq x \Delta x_i \to 0} \sum_{i=1}^{n} f(z_i) \Delta x_i$$

donde los números x_0, x_1, \ldots, x_n satisfacen $a = x_0 \le x_1 \le \ldots \le x_n = b$, donde $\Delta x_i = x_i - x_{i-1}$, para cada $i = 1, 2, \ldots, n$, y z_i se selecciona de manera arbitraria en el intervalo $[x_{i-1}, x_i]$.

2.2. Teorema del valor promedio para integrales

Suponga que $f \in C[a, b]$, la integral de Rienmann de g existe en [a, b], y g(x) no cambia de signo en [a, b]. Entonces existe un número c en (a, b) con

$$\int_{a}^{b} f(x)\dot{d}x = f(c)\int_{a}^{b} g(x)\dot{d}x$$

3. Definiciones y Teoremas

3.1. Método de bisección

Para comenzar, sea $a_1 = a$ y $b_1 = b$ y sea p_1 es el punto medio de [a, b], es decir.

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_2}{2}$$

.

Si $f(p_1) = 0$, entonces $p = p_1$ y terminamos. Si $f(p_i) \neq 0$, entonces $f(p_1)$ tiene el mismo signo que ya sea $f(a_1)$ o $f(b_1)$.

- Si $f(p_1)$ y $f(a_1)$ tienen el mismo signo, $p \in (p_1, b_1)$. Sea $a_2 = p_1$ y $b_2 = b_1$.
- Si $f(p_1)$ y $f(a_1)$ tienen el signos opuestos, $p \in (p_1, b_1)$. Sea $a_2 = a_1$ y $b_2 = p_1$.

Entonces, volvemos a aplicar el proceso al intervalo $[a_2, b_2]$.

3.2. Tipo de errores

Sea x_0 el valor aproximado de x_T , entonces se define:

Error absoluto: $e_a = |x_T - x_a|$

Error relativo: $e_t = \left| \frac{x_T - x_a}{x_T} \right|$

Error porcentual: $e_p = \mid \frac{x_T - x_a}{x_T} \mid \times 100 \, \%$

3.3. Definición

Sea $\{x_n\}$ una secuencia sucesiva de aproximaciones a la raiz α de la ecuación f(x) = 0El error ϵ_n de la n-ésima iteración está definido por:

$$\epsilon_n = \alpha - x_n$$

Definimos:

$$\ell_n = x_{n+1} - x_n = \epsilon_n - \epsilon_{n+1}$$

Como una aproximación de ϵ_n

El proceso de iteración converge si y sólo si $\epsilon_n \longrightarrow 0$ cuando $n \longrightarrow \infty$

3.4. Definición Orden de convergencia

Si un método iterativo converge y existem dos constantes $p \ge 1$ y $c \ge 0$ tales que:

$$\lim_{n \to \infty} \left| \frac{\epsilon_{n+1}}{\epsilon_n^p} \right| = c$$

entonces p se llama orden de convergencia del método y c es la constante de error asintótico

3.5. Definición

Por definición: $|\epsilon_n| = |\alpha - x_n|$ y notamos que: $|\alpha - x_n| \le |b_n - a_n|$ y $|b_n - a_n| = \frac{|b_{n-1} - a_{n-1}|}{2} = \frac{|b_{n-2} - a_{n-2}|}{2} = \dots = \frac{|b_0 - a_0|}{2}$ por lo tanto

$$\mid \epsilon_n \mid \leqslant \frac{\mid b_0 - a_0 \mid}{2^n}$$

luego

$$\mid \epsilon_{n+1} \mid \leqslant \frac{\mid b_0 - a_0 \mid}{2^{n+1}}$$

Así:

$$\lim_{n \longrightarrow \infty} \frac{\mid \epsilon_{n+1} \mid}{\mid \epsilon_{n} \mid} \cong \frac{1}{2}$$

∴ El orden de convergencia del método de bisección es 1

3.6. Definición Iteración de punto fijo

Si el número p es un **punto fijo** para una función dada g si g(p) = p.

3.7. Teorema

El siguiente teorema proporciona suficientes condiciones para la existencia y unicidad de un punto fijo.

- i) Si $g \in C[a, b]$ y $g(x) \in [a, b]$ para todas $x \in [a, b]$, entonces g tiene por lo menos un punto fijo en [a, b].
- ii) Si, además, g'(x) existe en (a,b) y hay una constante positiva k<1 con

 $\mid g'(x)\mid \geq k$, para todas las $x\in (a,b)$

entonces, existe exactamente un punto fijo en $\left[a,b\right]$

Referencias

[1] Richard L. Burden, J. D. F. y. A. M. B. (2005). Análisis numérico.