Projektowanie efektywnych algorytmów

Autor: Tymon Tobolski (181037) Jacek Wieczorek (181043)

Prowadzący: Prof. dr hab. inż Adam Janiak

> Wydział Elektroniki III rok Cz TN 13.15 - 15.00

1 Cel projektu

Celem projektu jest zaimplementowanie i przetestowanie metaheurystycznego algorytmu genetycznego dla problemu szeregowania zadań na jednym procesorze przy kryterium minimalizacji ważonej sumy opóźnień zadań.

2 Opis problemu

Jednoprocesorowy problem szeregowania zadań przy kryterium minimalizacji ważonej sumy opóźnień zadań.

Danych jest n zadań (o numerach od 1 do n), które mają być wykonane bez przerwań przez pojedynczy procesor, mogący wykonywać co najwyżej jedno zadanie jednocześnie. Każde zadanie j jest dostępne do wykonania w chwili zero, do wykonania wymaga $p_j > 0$ jednostek czasu oraz ma określoną wagę (priorytet) $w_j > 0$ i oczekiwany termin zakończenia wykonywania $d_j > 0$. Zadanie j jest spóźnione, jeżeli zakończy się wykonywać po swoim terminie d_j , a miarą tego opóźnienia jest wielkość $T_j = max(0, C_j - d_j)$, gdzie C_j jest terminem zakończenia wykonywania zadania j. Problem polega na znalezieniu takiej kolejności wykonywania zadań (permutacji) aby zminimalizować kryterium $TWT = \sum_{j=1}^n w_j T_j$.

3 Opis algorytmu

Przebieg algorytmu:

```
1 \text{ best} = S_{-}0
    poczatkowa
    while n > 0 // n - ilosc iteracji
        nextGen = \dots TODO
        foreach i in nextGen
                 if rand() < M
                      nextGen[i] = mutate(nextGen[i])
11
        end
        all = population + nextGen
        sort (all)
        \begin{array}{ll} \text{population} = [\,] \\ \textbf{for} \ i \ in \ (\,0 \dots 2\,k\,) \end{array}
            popuation[i] = all[i]
21
        best = population [0]
```

gdzie:

- F funkcja kosztu/celu
- M prawdopodobieństwo mutacji

4 Implementacja

Jezykiem implementacji algorytmu jest Scalaw wersji 2.9.1 działająca na JVM.

```
// generyczna klasa algorytmu genetycznego
abstract class Genetic[A, R : Ordering] extends Function1[A, A] {
        import scala. Ordering. Implicits.
        \  \, \text{def N: Int } \not / \mid \textit{number of iterations} \\
        def M: Double // mutation probability
        def crossover (a: A, b: A): (A, A) // crossover function
        def mutation(a: A): A
        def newRandom(a: A): A
        def\ bestOf(\,as\colon\ List\,[A]\,):\ A=\,as.minBy(F)
        def mutate(a: A) = if(math.random < M) mutation(a) else a
        def apply(s0: A) = {
18
            def inner(n: Int, population: List[A], best: A): A = {
                 val nextGen = population.grouped(2).flatMap {
                     case a :: b :: Nil =>
                         val(x,y) = crossover(a,b)
                         mutate(x) :: mutate(y) :: Nil
                     case _ => Nil
                 val\ newPopulation\ =\ (population\ ++\ nextGen) \, .\, sortBy\,(F) \, .\, take\,(2*K)
                 val newBest = bestOf(newPopulation)
28
                 if(n > 0) inner(n-1, newPopulation, newBest)
                 else newBest
            val initial = (1 \text{ to } (2*K)).map(i \Rightarrow newRandom(s0)).toList
            inner (N, initial, initial.head)
    // Klasa reprezentujaca zadanie
   case class Task(index: Int, p: Int, d: Int, w: Int) {
        override def toString = index.toString
```

```
}
    // Klasa reprezentujaca uporzadkowanie zadan
    case class TaskList(list: Array[Task]){
         lazy val cost = ((0,0) /: list){
             case ((time, cost), task) =>
48
                  val newTime = time + task.p
                  val newCost = cost + math.max(0, (newTime - task.d)) * task.w
                  (newTime, newCost)
         }._2
        }
    trait Common {
         def selections [A] (list: List [A]): List [(A, List [A])] = list match {
58
             \mathbf{case} \hspace{0.2cm} \mathrm{Nil} \hspace{0.1cm} \Longrightarrow \hspace{0.1cm} \mathrm{Nil}
             case x :: xs \Rightarrow (x, xs) :: (for((y, ys) \leftarrow selections(xs))) yield (y, ys) \leftarrow selections(xs))
                   x :: ys)
         implicit def taskListOrdering = new Ordering [TaskList] {
              def compare(x: TaskList, y: TaskList): Int = x.cost compare y.cost
         implicit def arraySwap[T](arr: Array[T]) = new {
             def swapped(i: Int, j: Int) = {
68
                  val cpy = arr.clone
                  val tmp = cpy(i)
                  cpy(i) = cpy(j)
                  cpy(j) = tmp
                  сру
             }
        }
    }
78 \hspace{0.1in} / / \hspace{0.1in} Implementacja \hspace{0.1in} algorytmu \hspace{0.1in} genetycznego
    val GA = (n: Int, k: Int) => new Genetic [TaskList, Int] with Common {
         def N = n
         def M = 0.01
         def K = k
         def F(tasks: TaskList) = tasks.cost
         def crossover(a: TaskList, b: TaskList) = pmx(b,a)
         def \ mutation(tasks: \ TaskList) = TaskList(randomPermutation(tasks.list))
         def newRandom(tasks: TaskList) = TaskList(randomPermutation(tasks.list))
88
        \begin{array}{lll} def \ pmx(ta: \ TaskList \, , \ tb: \ TaskList) : \ (TaskList \, , \ TaskList \, ) = \{ \\ def \ zeros (n: \ Int) = new \ Array [Task] (n) \end{array}
             val(a, b, n) = (ta.list, tb.list, ta.list.length)
             val rand = new Random
             var ti = rand.nextInt(n)
             var tj = rand.nextInt(n)
             while(ti == tj) \{ tj = rand.nextInt(n) \}
98
             val(i,j) = if(ti < tj) (ti, tj) else(tj, ti)
             val (af, ar) = a.splitAt(i)
             val (am, ab) = ar.splitAt(j-i)
```

5 Testy

Test algorytmu genetycznego przeprowadzony został dla trzech zestawów testów o różnej ilośći zadań, każdy składający się ze 125 instancji.

Jako wyniki testów przedstawiamy średni czas liczenia wszystkich instancji dla danego rozmiaru problemu - \bar{t} , a także średni błąd wzgledny rozwiązań dla każdej instancji - \bar{x} . Według wzoru :

$$\bar{t} = \frac{\sum_{j=1}^{m} \frac{\sum_{i=1}^{z} t_i}{z}}{m} \tag{1}$$

$$\bar{x} = \frac{\sum_{j=1}^{m} \frac{\sum_{i=1}^{z} x_i}{z}}{m} \tag{2}$$

gdzie:

- \bullet z ilość rozwiązań w instancji
- m ilość instancji danego problemu

5.1 Średnia różnica dla zmiennego k i stałego n=100

k m	40	50	100
50	108,04	928,76	2 535,24
100	57,86	212,16	1 682,69
150	38,76	92,89	1 133,71
200	26,19	69,96	859,94

Tabela 1: Diff, n = 100

Rysunek 1: Diff, n = 100

5.2 Średnia różnica dla zmiennego k i stałego n=1000

k	40	50	100
50	10,99	14,33	378,84
100	2,59	9,17	87,50
150	2,53	2,14	46,63
200	1,44	48,89	39,68

Tabela 2: Diff, n = 1000

Rysunek 2: Diff, n = 1000

5.3 Średnia czas rozwiązywania dla zmiennego k i stałego n=100

k	40	50	100
50	136,45	219,75	497,38
100	261,98	391,01	918,89
150	409,40	598,76	1 394,21
200	572,62	908,32	1 847,48

Tabela 3: Time, n = 100

Rysunek 3: Time, n = 100

5.4 Średnia czas rozwiązywania dla zmiennego k i stałego $n\,=\,1000$

k	40	50	100
50	1 285,72	1 904,94	4 428,43
100	2 492,99	3 706,92	9 026,62
150	3 713,95	5 595,20	13 981,76
200	4 954,24	7 452,48	18 717,00

Tabela 4: Time, n = 1000

n = 1000

Rysunek 4: Time, n = 1000

6 Wnioski

TODO

7 Porównanie

7.1 Porównanie średniego czasu algorytmów

Alg	40	50	100
G(k=50, n=100)	136,45	219,75	497,38
G(k=100, n=100)	261,98	391,01	918,89
G(k=150, n=100)	409,40	598,76	1 394,21
G(k=200, n=100)	572,62	908,32	1 847,48
G(k=50, n=1000)	1 285,72	1 904,94	4 428,43
G(k=100, n=1000)	2 492,99	3 706,92	9 026,62
G(k=150, n=1000)	3 713,95	5 595,2	13 981,76
G(k=200, n=1000)	4 954,24	7 452,48	18 717,00
TS(n=10, k=4, t=7)	23,11	46,81	333,83
TS(n=10, k=5, t=7)	25,96	50,96	368,84
TS(n=10, k=6, t=7)	26,23	39,14	327,85
TS(n=10, k=7, t=7)	19,42	38,48	314,94
TS(n=100, k=4, t=7)	188,06	378,68	3 028,87
TS(n=100, k=5, t=7)	208,98	375,12	3 009,74
TS(n=100, k=6, t=7)	206,57	382,79	3 004,64
TS(n=100, k=7, t=7)	185,13	387,76	3 003,10
SA(0,990000)	1,89	2,01	3,09
SA(0,999000)	15,88	18,74	30,36
SA(0,999900)	167,36	189,63	305,09

Tabela 5: Średni czas

Rysunek 5: Średni czas

7.2 Porównanie różnicy wyników algorytmów

Alg	40	50	100
GA(k=50, n=100)	108,04	928,76	2 535,24
GA(k=100, n=100)	57,86	212,16	1 682,69
GA(k=150, n=100)	38,76	92,89	1 133,71
GA(k=200, n=100)	26,19	69,96	859,94
GA(k=50, n=1000)	10,99	14,33	378,84
GA(k=100, n=1000)	2,59	9,17	87,50
GA(k=150, n=1000)	2,53	2,14	46,63
GA(k=200, n=1000)	1,44	48,89	39,68
TS(n=10, k=4, t=7)	89,35	356,44	1 170,06
TS(n=10, k=5, t=7)	89,35	356,44	1 170,06
TS(n=10, k=6, t=7)	89,35	356,44	1 170,06
TS(n=10, k=7, t=7)	89,35	356,44	1 170,06
TS(n=100, k=4, t=7)	1,50	2,21	28,78
TS(n=100, k=5, t=7)	1,31	1,69	30,62
TS(n=100, k=6, t=7)	1,33	6,41	33,63
TS(n=100, k=7, t=7)	1,78	2,43	33,78
SA(0,990000)	8,07	15,77	337,97
SA(0,999000)	0,16	0,55	9,93
SA(0,999900)	0,11	0,01	0,57

Tabela 6: Różnica

13

Rysunek 6: 40 zadań

Rysunek 7: 50 zadań

Rysunek 8: 100 zadań