scRNA Compression

Spencer Jenkins and Niko Zhang

Gene Expression Data

Can we compress the information stored in MTX files at a high level?

- No bit vectors, Huffman encoding, etc.

```
%%MatrixMarket matrix coordinate integer general
%metadata_json: {"software_version": "cellranger-4.0.0", "format_version": 2}
33538 33602 45855898
207 1 1
377 1 1
412 1 1
471 1 1
494 1 1
560 1 1
562 1 1
587 1 1
631 1 1
665 1 1
745 1 1
803 1 1
```

Our Idea - delta encoding via clusters

Cluster cells based on their gene profile

Each cluster will have a set of common genes

Our Idea - delta encoding via clusters

Store the common genes for each cluster in cluster_genes.txt

Store the genes not present in the corresponding cluster for each cell in deltas.txt

Our Idea - delta encoding via clusters

For now, ignore count information
Amount of compression is determined by the number of clusters and the clustering algorithm used.

Compression Approaches

High-Level

- Bioinformatics-tailored
- Context-aware
- Examples: Clustering/delta encoding
- (Our principal approach)

Low-Level

- More generalized
- Treats data in binary
- Examples: gzip, bitvectors
- (To be explored)

Our (Lossless) File Format

Format for cluster_genes.txt

Columns separated by commas. Each row is not necessarily the same length

	Gene ID 1	Gene ID 2	Gene ID 3	Gene ID 4	Gene ID 5
Cluster 1	9740	36609	36610	2059	
Cluster 2	2059	22634	16186	26143	5765
Cluster 3	24095	11755	23988		

Format for deltas.txt

Columns separated by commas. Each row is not necessarily the same length.

	Cluster ID	Gene ID 2	Gene ID 3	Gene ID 4	Gene ID 5
Cell 1	4	8197	6150		
Cell 2	7	4099	4100	8197	34822
Cell 3	1				

Cell 3 is empty because it belongs to a single-cell cluster (outlier)

Dataset used

Database: Gene Expression Omnibus (GEO)

- public functional genomics data repository

Dataset: scRNA transcripts collected from white blood cells of patients suffering from breast cancer

We focused on compressing

GSE294399 WBC 020823 matrix.mtx

- 36630 genes
- 4137 cells
- 43.2 MB (excluding counts)

- 97.2% sparse

Results for Different Clustering Methods

RaceID clustering library

- 1. Pre-process data
 - a. Filter out cells with low transcript count
 - b. Normalize
 - c. Compute pairwise distance matrix
- 2. Find clusters using *k*-medoids
- 3. Post-process results
 - a. Reduce outliers
 - b. Refine using random forest

RaceID clustering library

- Number of clusters: 10
- Distance metric: Pearson
- Filtering count: 1 (no filtering)
- Execution time: 15 min.

RaceID clustering library - results

```
cluster_genes.txt-0.003 MB
deltas.txt - 23.3 MB
Total - 23.3 MB
```

46.1%

Compared to

MTX file (counts excluded) - 43.2 MB

Clustering using a neural network

We implemented a neural network that generates clusters based on the cells' gene profiles

- Gene counts used as input (4137 x 36630 matrix)

Pipeline of neural network

- 1. Preprocessing
 - a. Log transform and scale
- 2. Represent 36630 genes in 32-dimension latent space
 - a. Pretrain autoencoder on given data to encode each gene profile as a vector of length 32
 - b. 100 epochs
- 3. Initialize 30 cluster centers using K-means
- 4. Iteratively improve cluster centers using the KL divergence between the probabilistic cluster assignment distribution and a more confident target distribution
 - a. 20 epochs

Neural network - results

30 clusters found

- 9 outliers
- 21 actual clusters

Clustering took ~ 4.5 minutes

Neural network - results

cluster_genes.txt-0.28 MB
deltas.txt-22.71 MB
Total-22.99 MB

46.8%

Compared to

MTX file (counts excluded) - 43.2 MB

Results - summary

MTX file (no counts) - 43.2 MB

	RaceID	Neural Network
Running time	~15 minutes	~4.5 minutes
Clusters	10	30
Storage	23.3 MB	22.99 MB

Future work

- 1. Collect more compression data from more datasets
- Compare to other high-level compression methods (CSR, CSC)
- 3. Measure the effect of the number/quality of clusters on compression
- 4. More clustering techniques (low priority due to time)
- 5. Add information about counts as a third file
- 6. Low-level compression (bit vector, etc.) (low priority due to time)

Preview: Tar GZ

MTX file (no counts) - 43.2 MB

Tar GZ applied to uncompressed MTX - 11.4 MB

	RaceID	Neural Network
Storage	23.3 MB	22.99 MB
Tar GZ Storage	8.33 MB	8.24 MB
Compression (wrt original MTX file)	80.8%	80.9%