楽しい自作電子回路雑誌

CONTENTS

- 2. 原点
- 2. QTC! 有限会社FCZ研究所解散
- 3. 佐倉市武家屋敷通りへ移転する
- 5. 流星とハンモックヘンテナ
- 8. 7MHz ヘンテナは大きい ヘキサヘンテナの実験
- 11. 雑記帖
- © copyright JH1FCZ 2007

024

OCT. 2007

QTC!

有限会社エフシーゼッド研究所を解散します。

1976年開設以来皆様に親しまれてきました「有限会社エフシーゼッド研究所」は本年10月1日をもって解散手続きをいたしました。 したがいまして、10月2日以降は「有限会社」としての一般的な営業をすることが出来なくなります。

残務整理のため「有限会社」は12月3日までは存在 (予定)しますが、これはあくまでも残務整理であります。

現在使用しています電話、FAX、振替口座は12月3日までは使用出来ますが、12月4日以降は使用出来なくなりますので御承知おき下さい。(名義変更の可能性についてはこれから検討します)

「有限会社」は解散しますが従来行なってきた業務は、10月2日からはとりあえずFCZが引き続き個人事業者として、有限会社の名称を除き、「FCZ研究所」として続けてまいります。

また、別稿として発表致しましたが、11月半ばより 住所を干葉県佐倉市に移しますので、所在地も変りま す。 所在地の変更はホームページ(アドレスは暫く同 じ)でお知らせします。

解散理由は、「経営者が老齢となり後継者がいない こと」が主な理由です。 それに加えて世の中の趨勢 の変化により、現在の事業規模では法人格をもつ理由 も薄くなってきました。

そのため、法人格をはずしても現在の事業内容であれば従来と同じような仕事を続けて行くことが出来そうだと考えたのです。

突然の発表で皆さんをビックリさせたかもしれませんが、FCZコイルの製造販売については皆様にご迷惑をあかけしないですむように考えてありますので、どうか今までと同じようにあ付き合い下さいますようあ願い致します。

もののはずみ

もののはずみで佐倉に土地を見に行きました。 その土地が気に入って家を建てることにしました。 仕事はどうしましょう。 会社の移転はどうしましょう。

有限会社をやめることにしました。 FCZ コイルはどうしましょう。 お客様の迷惑にならないように考 えました。

店の中はジャンクがいっぱいです。 このジャンクをどう処分すれば良 いのでしょう?

金属の棚とか、大きなコピー機もあります。 本や雑誌もバカになりませんね。 そうそう、FCZ 誌の版下もあります。 長いときを重ねて集まってきた物たちを処分す るのは大変です。

ものの処分は色々の友達に声をかけ、少しずつ解 決に向かっています。

でもどうにも処分出来ない物もありました。

毎年毎年積み重ねてきた年令だけはどうにも処分出来ません。 しかしこの年令を重ねることにも、もののはずみがかかわっているのですね。

会社の解散手続きも無事終りました。 社会保険庁は相変わらずサービスが悪かったです。

みんなみんな原因は、もののはずみから始まった 話でした。

私たちの生活は「もののはずみ」で成り立っているのかもしれません。

佐倉市 武家屋敷通り へ移転する

突然ですが、FCZは11月上旬に千葉県佐倉市にOSY 致します。

武家屋敷のある町

2006年の7月31日、富士山頂でQRPの実験をした次の日は暑い日でした。 家で休んでいるとMHNが突然、「千葉の佐倉って面白い所みたいよ」と言い出しました。 何でも数日前にテレビで、「城址公園があって近くには武家屋敷もあり、散歩するに良い所」だといっていたというのです。 ただしそのときは忙しくて画面は見ず、声だけを聞いていたのだそうです。

今まで千葉県とは特につながりもなくしたがつて土地勘は全然ありませんでしたが、好奇心の強い、別の言葉で言えばやじ馬根性の強い私は早速インターネットで佐倉の町を調べてみました。 なるほど城址公園は素晴らしい散歩道の感じがしました。 国立の歴史民族博物館もあるのですね。 それから川村美術館という所で私の好きな「クレー展」をやっていたのです。これで興味がわいてきて、もし佐倉に住むとしたらどんな所があるのだろうと、今度は不動産について調べてみました。

武家屋敷の向かいに

今住んでいる神奈川県の家は駅からも国道からも近 く、銀行や郵便局、スーパーやドラッグストアーも近 くにあり、学校や市の出張所やコミュニティセンター もすぐそばにあるという便利な所ですから特に引っ越 したいという気持はなかったのですが、これも好奇心からということで、佐倉のいろいろな土地をインターネットで調べたのですが特に気に入るという所もなくぼつぼつお終いにしようとしたとき、武家屋敷のすぐ近くに100坪ほどの土地があるのを発見してしまったのです。 100坪はちょっと大きいなあと思いましたが、妻と「明日は佐倉へ遊びに行こう」という事になりました。

現地を見る

8月1日、JRを使い佐倉の駅に着きました。 駅から見る町はせいせいとして落着いた感じです。

駅前の観光協会でパンフレットをもらい、正面に見える小高い山が目指す場所と見当を付けてからインターネットに出ていた駅前の不動産屋さんをたずねました。

来店の主旨を伝えると担当のKさんは、「いきなり 連絡もなしで土地を見に来る人も居ない」とびっくり しながらも車で現地に案内してくださいました。

現地は駐車場になっていて大体 10m X 30m の細長い土地でした。 佐倉市の計画で約 1mのセットバックをする必要があるとの事でした。 その土地の雰囲気は落着いていてたしかに良いところでした。 しかし形が細長いし、少し広すぎるような気がしたのでその事を K さんに伝えると、「この近くにもう少し狭い土地もあるよ」と別の土地を案内してくれたのですが、値段は手ごろでしたがすぐに飛びつくという気持にはなりませんでした。

はじめに見た土地の雰囲気が幾ら良くても、きのうの今日で、「はい買いましょう」ともいえません。「少し考えさせて下さい」といって帰る事にしました。

駅まで戻ると、川村美術館へ行く無料バスが出るというので「クレー展」を見て家に帰りましたが、この 日一日は、ちょっとした楽しい日帰り旅行でした。

8月31日 調印

私たち夫婦にとって8月は忙しい月です。 下旬には、私はハムフェアが有明のビッグサイトで あります。 そしてMHNは浅草のサンバカーニバルでスルド(大きな太鼓)を叩きます。 そんな関係で8月一杯は佐倉の事は考えないことにしていました。

しかし、相手となる土地のオーナーが、「どうしても8月一杯に決めて欲しい」とKさんを通していって来たのです。 私たち二人はその土地を気に入っていました。 しかし、いま、新しい土地に引っ越すのもどんなものかと考えてしまうのです。 と、いうのも私たち夫婦は既に70才を越した年令ですし、特に今住んでいる家が気に入らない訳でもないし、いや、むしろ愛着のある家です。 となりは公園で春になると桜の花が満開になります。

しかし、雰囲気が気にいったということだけでなく、佐倉に引っ越してもよいという理由がもう一つだけありました。 それは成田空港に近いということです。 私たちの娘はオーストラリアに住んでいます。娘の所へ行くにも、娘達が日本に来るにも成田と神奈川の家の間を往復しなければなりません。 年をとって来るとこれが大変になって来たのです。 佐倉だったら20分で行ける。 これは殺し文句になりました

ね。

経済的にはどうかということも考えました。 この年ではローンは組めないことが分かりましたが、いま住んで居る家を手放せば何とかなるのではないでしょうか。 物事を楽観的に見て過ごして来た二人ですからこの「何とかなる」が錦の御旗になりました。

8月20,21日にハムフェアが終り、27日に浅草サンバカーニバルが終って、それから4日後の8月31日、その土地を買う調印をしました。

と、こんな具合で佐倉の武家屋敷通りに土地を買い、その半年後には地鎮祭を終えて家をたて始め、そしてこの11月には引っ越すことになってしまいました。

あまりにドタバタとした話でしたから、読者さんには「もうついていけない」と感じた方もいらっしゃると思いますが、仕事の方はこれからも何とか続けて行くことになりましたから皆さんに御迷惑はお掛けしないでも済むと思います。

CirQ 024-4

流星反射通信

最近、流星反射通信(MS)が注目されています。

流星が大気圏に突入する際に起きるイオンチューブ (流星が通った航跡にチューブ状に発生する、太さ数ミリのイオンが遊離した帯)に電波が反射する現象を利用 するものです。 周波数的には50MHz帯が多く使われ ているようですが、電波天文学的には28MHzあたりか ち 144MHz で観察されています。(アマチュア無線を 使ったこれらの研究はJAが世界的にリードしています)

流星にも種類がある

流星と一口にいっても大きく分けて2種類のグループがあります。 その一つは「流星群」に属する流星で、ペルセウス流星群、獅子座流星群が有名です。(10月18日-23日にはオリオン座流星群があります)

もう一つは「散在流星」といって、どの流星群にも 属さない、いわば一匹狼的な流星です。

流星群は過去に彗星が通った所に、彗星から離れた 0.1ミリから1ミリ程度の小さな埃状の物体が彗星の後を追って同じ軌道を回っています。 その軌道に地球 が遭遇すると地球の引力に補足されたものが流星となります。

一方、散在流星の方は宇宙に散らばっている粒子が 地球に囚われて光ったものです。

どちらの場合でも流星が光っている時間は一般的に、 0.1 秒程度ですが、まれに「痕(こん)」といって数秒か ら数分の間痕跡が残ることがあります。

流星反射通信にはこの「狼」が発生したときがチャ

ンスになります。

次にあげる流星群は特に狼の多い事が期待されます。

- (1) みずがめ座 5/3-10
- (2) ペルセウス座 8/7-15
- (3) オリオン座 10/18-23
- (4) しし座 11/14-19

午前6時がフロント方向

地球は毎日、自転しながら公転しています。 あな たはこの自転と公転の回転する方向を知っています か?

毎日太陽は東の空から上がり、お昼に南、そして夕 方西の空に沈みますね(北半球の場合)。 このことか ら地球はある地点において東の方向に回転していることが判ります。

それでは公転の方はどうでしょう。 例えばオリオン座(三ツ星)を見て見ましょう。 夏の頃には夜半過ぎに東の空に上がってきますが、冬になると暗くなると同時に見えるようになります。 もちろん毎日東から西への自転による移動はありますが、毎日同じ時刻に観察するとこれも東から西へ移動していきます。

第1図 太陽と地球の関係を北から見た図数字はある地点のローカルタイムを示す

第1図をご覧ください。 任意の地点のローカルタイムの午前6時には、その地点が公転の向かっている方向の最先端にいることが判ります。 つまりその地点は地球が公転している方向に対して「フロント方向」にあることを意味しています。

自動車を運転していて、フロントガラスがないとき のことを考えて見てください。 もしこのときごみが 舞って来たとすると、そのごみは正面から飛び込んできますね。 ごみが後ろから飛び込むことはまずありません。

散在流星が朝方太陽の上がる前に多く見られるのは こんな理由からです。 本当は朝、日が上がってから も流星が流れるのですが太陽の光で見えないのです。

流星群の場合は

散在流星は朝方多く見られることが判りましたが流 星群の方はどうでしょう。

例えば獅子座流星群の場合、群に属する流星は獅子座のある一点から放射状に流れます。 このことは獅子座が昇ってくる夜半過ぎにならないと多くの流星を見ることが出来ないということです。 しかし、獅子座がまだ地平線の下にあるときにも流れる獅子座流星群に属する流星はあります。 その場合は水中花火のように下から上に放射状に流れることになります。

もし太陽の光がなければ、夜半に昇ってきた獅子座 は昼過ぎまで見えている事になります。 したがって 流星反射通信はなにも空が暗いときにかかわらず昼ま でも出来ることになります。

2/3 λ ヘンテナ

ヘンテナの仲間に $2/3\lambda$ ヘンテナというものがあります。第2図に示すように横幅、 $1/6\lambda$ 、長さ $2/3\lambda$ の枠型エレメントの中央に 50Ω で給電するといものです(水平偏波)。

このアンテナの特徴は何といっても「調整がほとん

稿で述べる「MHNスペッシャル」のように横幅を広げて給電インピーダンスを上げる方法であり、もう一つはこの、「2/3 \ ヘンテナ」のように長さを伸ばす方法です。

どちらの方法も帯域幅が広がるために「調整」という作業がほとんどいらなくなるという簡便さがあります。 アンテナから発射される電波の指向性はどちらの場合も基本型のヘンテナと同じように8の字型をしています。

横に寝かすと・・

指向性が8字型のアンテナを上向きに張ったとする と、その指向性は当然天頂方向と地面に向けられる事 になります。 これでは大部分の電波エネルギーは空 のかなたの方向にとんでいってしまい、一般的な交信 には使えませんね。

しかし、1979年8月に発行された The FANCY CRAZY ZIPPY NO.52に「サテライト用へンテナ(2/3 λ)」という記事があります。 この記事によると 29MHz の 2/3 λ ヘンテナを上向きに張ったもので、「オスカー」の信号がオービットの時間中大体聞こえていたとあります。

その後このアンテナは「ハンモックヘンテナ」と呼ばれるようになりました。

流星反射通信の場合は流星に電波をぶっつけて反射 したもので通信をしようというのですからサテライト 通信と同じように、アンテナは上向きの指向性をもつ ものが良さそうです。 アマチュア無線の領域が宇 宙へ伸びてきた現在、このハンモックヘンテナが簡易 的な宇宙通信用アンテナとして改めて注目を浴びる日 が来そうな予感がしてきました。

50MHz ハンモックヘンテナ

流星反射通信に興味をお持ちの方に 50MHz ハン

モックへンテナ(MS)のサイズをお知らせしておきます。 第4図、を参照して下さい。

また、直接流星反射で交信をするのではなく、電波で流星を観測しようと考える方のためには京都大学超高層電波研究センターが発射するMUレーダーの電波46.5MHz が送信電力が 1MW と非常に強力ですし、SSB、AMモードで聞くことが出来て、入門者用として有用です。

また、本格的に電波観測を継続的にやってみたい人 たちには、JA9YDBが発射するHRO 53.75MHz の信号 をお勧めします。(SSBで受信する)

用途	f MHz	λm	Α	В	С
MS	50.25	5.97	1.00	2.00	4.00
HRO	53.75	5.58	0.98	1.86	3.72
MU	46.5	6.45	1.48	2.96	5.92

第4図ハンモックヘンテナの寸法表

第5図 FCZ誌52号の表紙のことば AUG 1979(29MHz)

表紙のことば サテライト用ヘンテナ (2/3人)

JARL利奈川東京郡の技行精習会で JAIANG 米田のMが行星連信のお話をして下さいました。

それをきいて早塵私もオ×カーの声を働いてみたい と考えました。

そいにはまずアンテナ と 2/3 スペンテナを上向きにちょうどハンモックをつるようなかっこうに上げました。オーピットの計算をしてようやく Aモードになったところを傾信してみました。 サア というノイス の中から何やく信号らしいものが 南にこはじめると同時にあるこちからの C Qが 南に言はじめる。 C Wで kG6

なんてのも間にもた。そして時間がくると用びノイズだけのバンドとなる。使用風信機 TS-120V. プリアンプ 未検用 (そのうち再子量シリース"のを入れてみよう) アンテナはまわさなくても オービットの時 面中 大体 聞こえるようごす。 SWRは作りっ放して、1.3 (10も翻せつせず))

7MHzヘンテナは大きい

今年のフィールドデーコンテストではJH1YSTのメンバーとして厚木市日向薬師林道に移動して運用しました。

その場所はあまり高く無い山の中腹で周りは林に囲まれており電波の飛びは決して良くありませんが、アンテナは見晴し台の上、運用はその下で雨が降ってもぬれないで済むと言う理由で毎年移動して居ります。

今年のフィールドデーコンテストで7MHzで使用したアンテナはラディックスのVDPでしたが、交信局数もう少し増やしたいと思い、7MHzのヘンテナについて考えてみました。

皆さん御存知の通り、7MHzのヘンテナの標準的な大きさは第1図のように水平偏波の場合、幅7.14m、長さ21.4m位になります。 このアンテナをそのままたてれば良いのですが、そのためには長さ25m位のポー

21.40 第1図 7MHz 標準ヘンテナの寸法 ルが必要になります。これは無理です。

垂直偏波のアンテナにすると、高さは 10m 程度のポール2本で事足りますが、横の長さが21.4m必要になります。

どちらの偏波にしてもかなり大きなものになってしまいます。

何とか全体の大きさを小さくする方法はないものでしょうか。

フォークヘンテナ

一番簡単にヘンテナの大きさを小さくしたいときは「フォークヘンテナ」があります。 これなら第2図のように幅7.09m、長さ10.7mと大分小さくなります。

第2図 7MHzフォークヘンテナの寸法

第3図 フォークヘンテナの指向性

このアンテナの特長は縦長に設置した場合、第3図に示すように開口方向に水平偏波、それと直交方向に垂直偏波が出ることです。 開口方向へのゲインは標準へンテナに比べて-3dB程度と言われますから開口方向へはフルサイズのダイポールとほぼ同じ、直交方向にはダイポールとくらべるとかなりメリットがあると

思われます。

しかし、せっかく作るのですからヘンテナのループ 部分を半分にはしたくないと思いました。

MHN Special

MHN Special というアンテナがあります。水平偏波の場合、寸法的には第4図のようになります。

第4図 7MHz MHN Specialの寸法

この寸法では標準へンテナに比べて更に大きくなってしまいます。 サイズを小さくしようと考えているときに大きなアンテナを持ち出したのには思考上それなりの意味がありました。

このアンテナと 2/3 λ ヘンテナを並べてみましょう。(第5図) 長さが28m以上にもなりますからとても 移動運用用アンテナとしては使い物になりませんね。

MHN Special を縮める

しかし、ここで思考を逆転してみましょう。 2/3 λ ヘンテナの下のループの部分をを第6図のように縮めて行くと標準ヘンテナになりますね。

更に縮めて見ます。 最大ゼロ、つまりループアンテナになってしまいますね。 しかしここまで来るとリアクタンス分が発生してしまいこのままではSWR 調整が出来なくなってしまいます。

問題はどこまで縮められるか? ということです。 こうして考えて行って、同じようなことをMHN Special でやるとどうなるでしょうか。 つまり第6図 のようなものです。

ヘキサ(6角)ヘンテナ

だんだんコンパクトになってきた感じです。

本誌#017号で紹介した「超軽量へンテナ」(第7図)では上側の腕木が細いことを補強するためポールの先端からエレメントの線で釣り下げるような構造をつくりました。

CirQ 024-9

この構造では、釣り下げに使っていた線もエレメントの一部として立派に作用していました。

この方法を使えば 7MHz 用の腕木の場合でも片側 5.7m程度のものですから釣り竿等を使えば何とかなるのではないでしょうか。

下側の腕木は上から降りて来るエレメントの線で釣られていますからこれも釣り竿程度で機能するとおもいます。

エレメントの下側も上側と同じようにポールの下の 方に引張れば、6角形のアンテナができると思いました。 上手く話がはこべは「ヘキサヘンテナ」の誕生です。

1200MHz で確かめる

いきなり7MHz で実験するには大きすぎますからとりあえず、1200MHz 帯で実験してみることにしました。第8図に 1250MHz(λ =240mm)のMHN Special の寸法を示します。

第8図 1250MHzのMHN Special の寸法

この寸法で上辺をつり上げ下半分を適当に削って第9図のような6角形を作ります。 かっこの中の数字は 1250MHz の数字を、7.05MHzに計算し直したものです。 この寸法はあてずっぽな計算で出したものですが、ヘンテナの特性から何とかなるだろうと考ました。

結果は全然ダメッ

ネットワークアナライザにこのアンテナを取り付けて見ましたが、1250MHzを中心にして±50MHz 程度スイープさせてもSWR は3付近から下がってくれませんでした。 第6感からすると共振点は1300MHz が測定器の上限だったので判断することは出来ませんでした。

しかし、1300MHz以下に共振点がないことは確か められているので共振点を下げるため、寸法を伸ばし てみることにしました。

いろいろな寸法でカットアンドトライして見ましたがなかなか共振点が見つかりません。

延長率 124%

随分沢山の寸法でアンテナを作った結果、第 10 図でようやく1289MHz に共振点を持ち込むことができました。第 11 図は 1250 から 1313MHz の SWR を表しています。 周囲の円は SWR=1.5 を示しています。 ダイポールアンテナ等の場合ラジエタの長さは λ /2 より若干短く作ります。 この短くなる寸法の係数を「短縮率」といいますが、この場合は反対に長くなってしまいましたから「延長率 124%」ということになります。

この数値を 7.05MHz に換算したのが同図の中のかっこ内の数字です。

今回実験したアンテナは結果として良いものであったのか、また悪いものであったのかという判定は非常に難しいものがあります。 単純にいえば「非常に良い特性を持っているといえますが、実験の目的は7MHz の移動用アンテナを作ることでしたから、この

寸法では簡単に作ることは出来そうにありません。 やっぱり「フォークヘンテナ」の方がよいのでしょうか。 まだ時間がありますから良く考えてみたいと 思います。

第10図 一応完成したヘキサヘンテナ

写真1 完成したヘキサヘンテナ

第11図 第10図のSWR特性 円はSWR=1.5を示す

CirQ購読料

9月27日付けで有限会社の解散手続きをしましたので、本号(024)は有限会社ではなく個人としての最初の発行になります。解散をしますと有限会社として購読料を頂くことが出来なくなりますので本号はCirQ購読料を一旦無料とすることにしました。

これからも個人的に発行は続けますので宜しくお願いします。

なお、025号の発行は、引っ越し等いろいろと事情の変化がありますので若干遅くなると思いますがご了承ください。

皆既月蝕(表紙の言葉)

8/28に皆既月食があり、しかも月食の間に、みずがめ座の(シグマ)4.8等の星食があるというのです。 これは絶好の写真をとるチャンスだと、前の日に望遠鏡を引っぱり出して月令14日の月を相手に試写を行ないました。 表紙の写真はそのときのものです。

しかし残念なことに当日は厚い雲に覆われてお月さまは顔を見せてくれませんでした。 月の写真はピンと合わせが難しく、この試写を参考に本番ではもう少しまともなものをと勇んでいましたが残念でした。

朝顔

夏の間咲いていた朝顔も秋になりお役目を終えることになりました。 最後の朝、その日咲いた花を摘んですいれん鉢に浮かべてみました。 カットの写真はそのときのものです。

この花を見て、「タイでは花を水に浮かべて飾る風 習がある」と知人が教えてくれました。

彼岸花

今年の夏は物凄い暑さでしたね。 さぞ皆様も苦労 をなされたことでしょう。 秋分の日を迎えて少し過 ごし易くなりましたが、それにしても感心してしまったのは、彼岸花がお彼岸の入である 20 日に咲き始め たことです。

むかし昔からの長い年月の中には暑かった年も寒か つた年もあったことだと思います。 そんな条件を乗 り越えて「彼岸花」という名を持ち続けていると言う この花の強さに改めて感動しました。

山 蛭

今年のフィールドデーコンテストは例年と同じく、 JH1YSTのメンバーとして厚木市日向薬師林道に移動 して運用しました。

丹沢山系の盟主が「蛭ケ岳」と言うように昔からこの辺は山蛭の多いところですが、今年は例年に無く多くの山蛭が発生し、運用テントのため地面に敷いたブルーシートの上にまで出没するありさまでした。

とうとう私も1箇所吸い付かれてしまいました。 こいつに吸い付かれても特に痒くも痛くも無いのですが、血を吸い終って落ちた後、いつまでも血が止らないと言うのが気持の悪いところです。

気持が悪いと言えば、小さく縮こまったり、とんで もなく長く伸びたり、飛び上がったりする動作に加え て、山蛭を見つけて、踏みつぶそうと足で地面にこすりつけてもまだ生きているのです。 しかも3回もこすりつけてもまだ何ごとも無かったように動いているのです。 更に食塩に弱いと言う話を聞いて食塩をふりかけてみても平気に動き回っていると言う始末。

それに加えて明け方には運用地点に鹿があらわれたり、1ヶ月後にはその近くで熊に襲われる人が出てきたりして、来年はどうしたものかと考え込んでしまいます。

なだれ

有限会社FCZ研究所をやめようかどうしようか言っていたころです。 安倍内閣が崩壊して、後釜に本命視されていた麻生から福田に雪崩が起きました。

ところで雪崩と言うものは何かのきっかけで続くも のなのでしょうか?

今までキットのケースを作って下さっていた会社が 8月末日で解散したと言う通知を頂きました。

私が解散の手続きのためのひな形を作って法務省に 問い合わせていた頃、知人の会社も解散するという話 になり、私の作ったひな形のコピーを持って帰りまし た。 話はどんどん広がります。

まだはっきりした話ではありませんが知人の会社に 身売りの話が突如持ち上がりました。

こんな話が続くのは中小企業の間に「解散なだれ」 が起きているのでしょうか。

表紙の言葉

月令 14日の月 ボーグ 76ED 1.4Xテレコンバータ キヤノン D20a ISO=800 絞り解放 1/2000 詳細は雑記帖参照。

CirQ (サーク) **024号** 本号無料 2007年10月5日発行

 発行
 FCZ 研究所
 JH1FCZ
 編集責任者
 大久保
 忠

 228-0004
 神奈川県座間市東原 4-23-15
 TEL.046-252-1288