Compito di MDAL

2 novembre 2017

Cognome e nome:
Numero di matricola:
IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis.
Esercizio 1. Sia A la matrice

$$\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$$

Trovare una matrice M tale che $M^{-1}AM$ sia in forma diagonale.

Esercizio 2. Si consideri l'applicazione lineare $T: \mathbb{R}[x]^{\leq 3} \to \mathbb{R}[x]^{\leq 3}$ (dove $\mathbb{R}[x]^{\leq 3}$ è lo spazio vettoriale dei polinomi di grado minore o uguale a 3) data da

$$T(p(x)) = p''(x) + p'(x) + p(1)$$

- a) (Punti 1) Scrivere qui la matrice associata a Trispetto alla base $x^3, x^2, x^1, 1. \\$
- b) (Punti 1) Qual è la dimensione di $Imm\ T$? Scrivere qui....

Esercizio 3. Si consideri \mathbb{R}^4 con il prodotto scalare standard. Siano $v_1 = (1, 0, -1, -1), v_2 = (1, 1, 1, 0)$ vettori di \mathbb{R}^4 (scritti in riga per motivi di spazio).

- 1. (Punti 1) Trovare una base di $(Span\ (v_1,v_2))^{\perp}.$
- 2. (Punti 1) È vero che, comunque si prenda un vettore v_3 in $(Span\ (v_1,v_2))^{\perp}$, possiamo concludere che v_1,v_3 sono linearmente indipendenti ?

Esercizio 4. Consideriamo la matrice a coefficienti in \mathbb{R}

$$B = \left(\begin{array}{cc} 7 & 14\\ 2 & 4 \end{array}\right)$$

Sia V lo spazio vettoriale delle matrici 2×2 a coefficienti in $\mathbb R$. Dire se l'applicazione $L:V\to V$ tale che per ogni matrice X vale

$$L(X) = XB - BX$$

è lineare. Se è lineare, calcolare una base del nucleo e dell'immagine.

Esercizio 5. Sia V lo spazio vettoriale delle matrici 5×5 sul campo \mathbb{R} . Si considerino i seguenti due sottospazi di V: $\mathcal{S} = \{M \in V \mid M = M^t\}$ (il sottospazio delle matrici simmetriche) e $\mathcal{A} = \{M \in V \mid M = -M^t\}$ (il sottospazio delle matrici antisimmetriche).

- a) Calcolare la dimensione di S e di A.
- b) Dimostrare che \mathcal{S} e \mathcal{A} sono in somma diretta.
- c) Sia $\varphi:V\to V$ l'applicazione lineare definita da

$$\varphi(M) = M + M^t.$$

Dire se φ è diagonalizzabile e se lo è determinare una base di autovettori.

Esercizio 6. 1. Siano V e W due spazi vettoriali. Si dimostri che una applicazione lineare $R:V\to W$ è iniettiva se e solo se $Ker\ R=\{O\}$.

2. Si consideri l'applicazione lineare $L:\mathbb{R}^5\to\mathbb{R}^3$ la cui matrice rispetto alle basi standard è:

$$\left(\begin{array}{ccccccc}
2 & 2 & 1 & 1 & 1 \\
0 & 1 & 3 & 2 & 2 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)$$

- 3. Trovare una base per $Ker\ L$.
- 4. Trovare una base per $U = (Ker \ L)^{\perp}$.
- 5. Sia $e_1, e_2, ..., e_5$ la base standard di \mathbb{R}^5 e sia b_1, b_2, b_3 la base standard di \mathbb{R}^3 . Scrivere la matrice di L rispetto alla base di \mathbb{R}^5 $v_1 = e_1 + e_2, v_2 = e_1 + e_3, v_3 = e_1 + e_4, v_4 = e_1 + e_2 + e_3 + e_4, v_5 = e_1 + e_2 e_5,$ e alla base di di \mathbb{R}^3 $w_1 = b_1 + 2b_2 + b_3, w_2 = b_2 + 5b_3, w_3 = b_3.$