Time Complexity 2

KEENDA:

- Asymptotic Analysis
- Big O
- Issues with Big O
- Space complexity
- TLE

Comparing Algorithms

Criven an array, sort it.

Same

Execution Time - Not a reliable measure of

performance for algo's

The depends on external factors

TW / HW | Grainon munt

for (i=0; i=N; i+1) {

=

No of iterations is independent of external factors

Angeline

100 log_2 N

N/10

Refore 3500

Shubhankur preferred

Angeline preferred

O verel

O verel

Is more efficient

Motitair - 2 x 10 people

Croogle - 10 search results in 0.012 s

Despacito - 78+

Increasing

Algo I Algo I Algo Is not possible to Compare.

Asymptotic Analysis of Algorithms

Observing performance of algorithms for very large inputs.

Compositions using Rig O notation

Angeline

100 log_N

O(log_N)

Retter

- i) Calculate the no of iterations
- 2) Neglect all lower order terms
- 2) Neglet constant coefficients

Why neglect lower order terms?

Algo:

Lower order

N=160 -> 104 + 103

% contribution of lower order term $\frac{10^{3}}{10^{4}} \times 100 = 9.09\%$

N=10" -> 108 + 105

 $\frac{10^8 + 10^5}{10^8 + 10^5} \times 1000 = 0.1 \%$

Contribution of lower order terms is significantly small for larger inputs

Negligible

Why neglect constant coefficient?

Issues with Big-O

Issue 1

	<u>Ajith</u> 100N	Abin Das N ²	More efficient
N= 50	02 × 0 01	02% o7	20 DaidA
N=80	100×80	80 ×80	Abin Das
N=100	100×100	100000	Some
N= 120	100 ×120	120 x720	A j \th
N =150	100 ×150	120 X120	Ajith
	O(N)	0 (N2)	

Issue 2

Vignerh

N2 + 10N

J 0 (N²)

Manikanta

2N2 + SN

0(N2)

12sue: Compartion soys -> Both are same

N2 + 10 N

 $2N^2 + SN$

Note: Big 0 will solve 99 % of your problems

Linear Search

for (i=o;i<N; i+)

if (am 8:3= =x)

return true

Bert - 0 (1)

word - 0 (N)

Default - Worst

return false

Space Complexity

Break till 10:14 AM

Amount of extra space taken by your algorithm.

Q1

func (int N)
$$\xi$$

int $x = N$
int $y = x + x$
int $z = x + y$

int - 4 bytes
$$3x4 = 12 \text{ bytes}$$
Constant
$$0(1)$$

Q3 Quiz 2

func (int N) \S int N = N — 4 bytes

int 2 = x + y — 4 bytes

arr EI = int [N] — 10 Array of the N $Q[II] = int [N][N] \leftarrow 20$ Array of $N \times N$ $Array = 10 \times 10^{2}$ bytes $Array = 10 \times 10^{2}$ bytes

Quiz 3

What is the space complexity of the abc() function of the following code snippet, assuming the input matrix is of size N*M?

Extra space O(NXH)

TLE - Time Limit Exceeded

Croogle Contest 3 Question optimize - Read question - Logic - Code - Shout // Check whether TLE without even writing a single line of code Online Judges - Their server -> 1 C1H2 Time Limit - 1 sec 10° operations / second At max, our code can have 10 9 operations

Assumption

Process to solve

1) Read & understand the question

If TLE

- 2) logic
- 3) Checking correctness
 Try it for multiple testcases
 - y) Check if TLE occurs
- 5) Write code l'execute

Importance of constraints

Algo -
$$O(N^2)$$
 time

 $N=10^6$ $\rightarrow 10^{12}$ iterations

 $I \le N \le 10^6$
 $I \le N$

1 <= N <= 5x102 Eg Rave Algo: O(N3) time N= 5×102 N3 = 125 × 106 = 1.25 × 10 molteneti ≈ 10° iterations Can't be said It night It wight not work Work Corner

Doubts

Thank you

1 2= N < = 10 8

for
$$i \Rightarrow [1,n]$$

for $j \rightarrow [1,3]$

ì			Itenoti	200
1 2 3	133	3 3	3 ² 3 ³ 3	; + +

CA formula

10000 log~

00001 - XOI

for (i=1; i <=n; i+=2)

<=N

i > 1,3,5,7,9,11

$$\frac{N}{2} = \frac{1}{2} \times N$$

Constant

Coefficient

ì	5	Herations
0		1
1	0-1	2
2	002	3
3	0 - 3	Ч

$$O(N^2)$$

$$O(N^2)$$

$$O(N^2)$$

$$O(N^2)$$

$$N = 100$$
 \rightarrow 100 iterations
 $N = 10$ \rightarrow 100 iterations

Main() E come binput sum (a, b) E sum (N, M)

return ar [ato]

Crood Night

Thank You

Friday