

목차

데이터셋

모델설명

예측값과 실제 값 비교 03

결론

트러블슈팅

O1 DataSet

Kaggle

	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	Price	Brand
0	Mumbai	2010	72000	CNG	Manual	First	26.60	998.0	58.16	5.0	1.75	Maruti
1	Pune	2015	41000	Diesel	Manual	First	19.67	1582.0	126.20	5.0	12.50	Hyundai
2	Chennai	2011	46000	Petrol	Manual	First	18.20	1199.0	88.70	5.0	4.50	Honda
3	Chennai	2012	87000	Diesel	Manual	First	20.77	1248.0	88.76	7.0	6.00	Maruti
4	Coimbatore	2013	40670	Diesel	Automatic	Second	15.20	1968.0	140.80	5.0	17.74	Audi
6014	Delhi	2014	27365	Diesel	Manual	First	28.40	1248.0	74.00	5.0	4.75	Maruti
6015	Jaipur	2015	100000	Diesel	Manual	First	24.40	1120.0	71.00	5.0	4.00	Hyundai
6016	Jaipur	2012	55000	Diesel	Manual	Second	14.00	2498.0	112.00	8.0	2.90	Mahindra
6017	Kolkata	2013	46000	Petrol	Manual	First	18.90	998.0	67.10	5.0	2.65	Maruti
6018	Hyderabad	2011	47000	Diesel	Manual	First	25.44	936.0	57.60	5.0	2.50	Chevrolet
5872 ro	5872 rows × 12 columns											

O1 DataSet

Column.	Meaning.				
Brand	차량 브랜드				
Location	위치				
Year	연도				
Kilometers_Driven	주행거리				
Fuel_Type	연료 종류				
Transmission	변속기 종류				
Owner_Type	차량 소유자 유형				
Mileage	연비				
Engine	엔진 배기량				
Power	최대 출력				
Seats	탑승 인원 수				
Price	판매 가격				

02모델설명 류

릿지, 라쏘

릿지(Ridge), 라쏘(Lasso) = 회귀분석에서 사용되는 통계적인 기법 과적합을 줄이고 모델의 일반화 성능을 향상시키기 위해 사용되는 방법

L1 규제: 라쏘

- L1패널티를 사용
- 가중치의 절댓값의 합을 최소화하는 방향으로 모델을 조정
- 변수 선택 기능을 갖추고 있어서 일부 변수 의 가중치를 정확히 O으로 만들 수 있다
- L1 패널티를 사용해 변수 선택과 가중치 축소를 동시에 수행할 수 있음

L2규제: 릿지

- L2패널티를 사용
- 가중치의 제곱합을 최소화 하는 방향으로 모 델 조정
- 모든 변수를 유지하면서 가중치를 축소시킨 다
- L2패널티를 사용해 모든 변수의 가중치를 작게 만듦

엘라스틱넷

요약

릿지의 장점 + 라쏘의 장점

사용방법

규제항을 단순히 더해 사용한다. 두 규제항의 혼합 정도를 혼합비율 r을 사용하여 조절한다.

r=O: 릿지 회귀와 같음 r=1: 라쏘 회귀와 같음

- 장점: 변수의 수가 훈련 샘플의 수보다 극단적으로 많거나 변수 몇개가 강하게 연관되어 있을 경우 사용하면 효과적인 결과를 얻을 수 있다! => 다중 공선성이 있는 데이터셋에서 효과적
- 단점: 실행시 시간이 위의 두 규제보다 시간이 오래 걸린다

스태킹, 블랜딩

스태킹(Stacking)과 블랜딩(Blending)은 앙상블 학습에서 사용되는 방법으로 다양한 모델의 예측력을 결합해 더 강력하고 안정적인 예측 모델을 구축하는데 사용

스태킹(Stacking)

- 다양한 기본 모델의 예측결과를 활용해 최종
 예측 모델을 생성하는 방법
- 기본 모델의 예측결과를 사용해 새로운 특성
 으로 변환한 후, 이를 다른 모델에 입력해 최
 종 예측을 수행한다
- cross-fold-validation 사용

블랜딩(Blending)

- 다양한 모델을 학습하여 가중 평균 등을 통해 최종 예측을 결합하는 방법
- 보통 학습데이터를 분할해서 일부를 사용해 모델을 학습하고, 나머지를 사용해 각 모델 의 예측을 평가하여 가중치를 결정한다
- holdout validation 사용
- 모델에 대한 가중치를 조절해 최종 아웃풋을 산출하며, 가중치의 합은 1.0이 되도록 한다

03 예측값과 실제값 비교

선형회귀

랜덤 포레스트

라쏘

릿지

엘라스틱넷

스탠다드 엘라스틱넷

- StandardScaler로 scaling
- 엘라스틱넷을 적용

폴리 엘라스틱넷

- 다항식 특성을 추가
- StandardScaler로 scaling
- 엘라스틱넷 적용

스태킹

블렌딩

모델별 예측값 비교

- Random Forest의 MSE 값이 선형 회귀보다 더 낮은 이유는 Power를 제외한 나머지 데이터들이 선형이 아니 기 때문이라 예측됨
- Weighted Blending은 가중치를 조정하여 각 모델의 중요도를 조절하여 전체 예측 성능을 향상시킴
- Weighted Blending은 다른 ensemble 모델과 달리 가중치를 조정하여 앙상블의 효과를 극대화시킴

05 트러블슈팅

트러블슈팅

심장마비 예측모델에서 중고차가격 예측모델로 옮긴 이유

실종 심장마비 데이터가 양이 적었다.

종속변수 이진분류여서 회귀모델을 적용하기 부적합했다.

