

Inhalt

- Was ist (maschinelles) Lernen und wozu braucht man es?
- Was bisher geschah
- Was Sie (ggfs.) erwartet
- Sklearn Cheat Sheet
- Vergleich überwachtes, unüberwachtes, tiefes Lernen
- Überwachtes vs. unüberwachtes Lernen
- Semi-überwachtes Lernen
- Reinforcement Learning
- Ensemble Learning
- Ziele des Kurses
- Wichtige Anmerkung

Was ist Lernen?

- Wikipedia: "Erwerb von Fähigkeiten"
- Verhaltensänderung durch Erfahrung
 - Dynamische Adaption (= veränderliche Anpassung)

Experiential Learning Model

(Quelle: Uni Wisconsin-Madison)

Was ist Maschinelles Lernen?

Quelle: Wikipedia

Quelle: medium.com

Knowledge Discovery in DBs

Quelle: Frochte, S. 17

How to start an ML-Project

Source: https://www.datacamp.com/blog/machine-learning-projects-for-all-levels

Was bisher geschah

BASIC REGRESSION

Target variable is categorical

human builds model based on input / output

human input, machine output human utilizes if satisfactory

human input, machine output human reward/punish, cycle continues

CLUSTER ANALYSIS

Similar datum into groups based on centroids

covariance. Elliptical Envelope() Finding outliers through grouping

CLASSIFICATION

Complex relationships. Prone to overfitting Basically magic.

neighbors.KNeighborsClassifier()

Group membership based on proximity

tree.DecisionTreeClassifier()

If/then/else. Non-contiguous data. Can also be regression.

ensemble.RandomForestClassifier() Find best split randomly Can also be regression

svm.SVC() svm.LinearSVC()

Maximum margin classifier. Fundamental Data Science algorithm

GaussianNB() MultinominalNB() Berno

Updating knowledge step by step with new info

FEATURE REDUCTION

T-DISTRIB STOCHASTIC NEIB EMBEDDING

manifold.TSNE()

Visual high dimensional data. Convert similarity to joint probabilities

PRINCIPLE COMPONENT ANALYSIS

decomposition.PCA()

Distill feature space into components that describe greatest variance

CANONICAL **CORRELATION ANALYSIS**

decomposition.CCA()

Making sense of cross-correlation matrices

LINEAR **DISCRIMINANT ANALYSIS**

Linear combination of features that separates classes

OTHER IMPORTANT CONCEPTS

BIAS VARIANCE TRADEOFF

UNDERFITTING / OVERFITTING

INERTIA

ACCURACY FUNCTION

PRECISION FUNCTION

SPECIFICITY FUNCTION

SENSITIVITY FUNCTION

Was Sie erwartet

BASIC REGRESSION

linear model.LinearRegression()

Lots of numerical data

Target variable is categorical

human builds model based on input / output

human input, machine output human utilizes if satisfactory

human input, machine output human reward/punish, cycle continues

CLUSTER ANALYSIS

Similar datum into groups based on centroids

covariance.EllipticalEnvelope()

Finding outliers through grouping

CLASSIFICATION

neural_network,MLPClassifier()

Complex relationships. Prone to overfitting Basically magic.

neighbors.KNeighborsClassifier()

Group membership based on proximity

tree.DecisionTreeClassifier()

If/then/else. Non-contiguous data. Can also be regression.

Find best split randomly Can also be regression

Maximum margin classifier. Fundamental Data Science algorithm

GaussianNB() MultinominalNB()

Updating knowledge step by step with new info

FEATURE REDUCTION

T-DISTRIB STOCHASTIC NEIB EMBEDDING

manifold.TSNE()

Visual high dimensional data. Convert similarity to joint probabilities

PRINCIPLE COMPONENT ANALYSIS

decomposition.PCA()

Distill feature space into components that describe greatest variance

CANONICAL **CORRELATION ANALYSIS**

decomposition.CCA()

Making sense of cross-correlation matrices

LINEAR **DISCRIMINANT ANALYSIS**

Linear combination of features that separates classes

OTHER IMPORTANT CONCEPTS

BIAS VARIANCE TRADEOFF

UNDERFITTING / OVERFITTING

INERTIA

ACCURACY FUNCTION

PRECISION FUNCTION

SPECIFICITY FUNCTION

SENSITIVITY FUNCTION

Originally Created by Emily Barry. See original here.

Was Sie ggfs. erwartet

BASIC REGRESSION

linear model.LinearRegression()

Lots of numerical data

Target variable is categorical

human builds model based on input / output

human input, machine output human utilizes if satisfactory

human input, machine output human reward/punish, cycle continues

CLUSTER ANALYSIS

cluster.KMeans()

Similar datum into groups based on centroids

covariance. Elliptical Envelope()

Finding outliers through grouping

CLASSIFICATION

neural network.MLPClassifier()

Complex relationships. Prone to overfitting Basically magic.

neighbors.KNeighborsClassifier()

Group membership based on proximity

tree.DecisionTreeClassifier()

If/then/else. Non-contiguous data. Can also be regression.

ensemble.RandomForestClassifier() Find best split randomly Can also be regression

svm.SVC() svm.LinearSVC()

Maximum margin classifier. Fundamental Data Science algorithm

GaussianNB() MultinominalNB() Berno

Updating knowledge step by step with new info

FEATURE REDUCTION

T-DISTRIB STOCHASTIC NEIB EMBEDDING

manifold.TSNE()

Visual high dimensional data. Convert similarity to joint probabilities

PRINCIPLE COMPONENT ANALYSIS

decomposition.PCA()

Distill feature space into components that describe greatest variance

CANONICAL **CORRELATION ANALYSIS**

decomposition.CCA()

Making sense of cross-correlation matrices

LINEAR **DISCRIMINANT ANALYSIS**

Linear combination of features that separates classes

OTHER IMPORTANT CONCEPTS

BIAS VARIANCE TRADEOFF

UNDERFITTING / OVERFITTING

INERTIA

ACCURACY FUNCTION

PRECISION FUNCTION

SPECIFICITY FUNCTION

SENSITIVITY FUNCTION

Originally Created by Emily Barry. See original here.

Sklearn Cheat Sheet

Vergleich SL/UL/DL

Quelle: medium.com

Überwachtes Lernen

- Supervised Learning
- Input Data und Labels sind gegeben

Unüberwachtes Lernen

- Unsupervised Learning
- Keine Labels sind gegeben

 Der Algorithmus muss selbst eine Klassifizierung/Kategorisierung erstellen

Quelle: medium.com

Semi-überwachtes Lernen

- Mischform aus überwachtem und unüberwachtem Lernen
- Teils fehlende, verrauschte oder ungenaue Zielvariablen

Quelle: Wikipedia

Reinforcement Learning

- Dynamische Interaktion des Algorithmus mit seiner Umgebung
- Pos. / neg. Feedback → Optimierung

Autonomes Fahren

Open AI Five

Ensemble Learning

Ziele des Kurses

- Durchführung von geeignetem Preprocessing
 - Missing Value Handling
 - Outlier Detection
 - Standardization / Normalization
 - Data Balance
- Entwurf und Implementierung eines Ensembles aus mind. zwei geeigneten schwachen Lernern
 - Voting / Bagging / Boosting / Stacking
- Ggfs. automatisierte Hyperparametersuche

Wichtige Anmerkung

Anforderungshexagon ML, Quelle: Frochte, S. 29

Danke für die Aufmerksamkeit.

