第一次大作业: 第二题 Logistic 模型

姓名:赵瑞博 学号: 1800011355

2020年3月29日

1

1.1

为计算序列 $\{x_n\}$,可将迭代通过循环实现,并将每一次迭代结果都压入预先初始化的列表中。且由于 Python 中可以通过指标 [-1] 很容易的索引倒数第一个元素,这为计算提供了方便。实现如下:

Algorithm 1 计算序列 $\{x_n\}$

Input: x_0 , 取点数量 n, 可调参数 r

Output: $\{x_n\}$

- 1: **function** f(x,r)
- 2: **return** r * x * (1 x)
- 3: end function
- 4: **function** $opreate(x_0, r, n)$
- 5: $x = list[x_0]$
- 6: **for** $i = 0 \to n 1$ **do**
- 7: x.append(f(x[-1],r))
- 8: end for
- 9: return x
- 10: end function

1.2 结果

分别对与 r=0.5,1.5 两种情况,从 0 开始每隔 0.1 取 x_0 的初值,通过上述方法得到序列前 10 项(当 n 取到 10 的时候就已经很好的收敛在某个数附近了)。得到的结果利用 Python 中 matplotlib 模块绘制出 x_n-n 图像如下

可以看到对于初值为 0,1 的序列,都会稳定在 0 上。可以看到,对于 r=1.5 时收敛至 1/3; 而对于 r=0.5 来说,最终收敛到了 0。可以大概获得的结论是,最终收敛极限与参数 r 相关而与 x_0 的取值无关 (0,1 除外)。

图 1

2

2.1 证明:收敛必要条件 $|f'(x^*)| \leq 1$

当 n 足够大时,应则有:

$$|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n| \tag{1}$$

利用 $x_{n+1} = fx_n$ 可以得到

$$|f(x_{n+1}) - f(x_n)| \le |x_{n+1} - x_n| \tag{2}$$

由此可证

$$|f'(x^*)| = \lim_{n \to \infty} \frac{|f(x_{n+1}) - f(x_n)|}{|x_{n+1} - x_n|} \le 1$$
(3)

2.2 r 范围与对应 x^*

$$f'(x^*) = r(1 - 2x^*), \ x^* = \begin{cases} 0, \\ 1 - \frac{1}{r}. \end{cases}$$
 (4)

可由 $|f'(x^*)| \le 1$ 得到收敛的 r 范围与对应收敛值:

$$x^* = \begin{cases} 0, & -1 \le r \le 1, \\ 1 - \frac{1}{r}, & 1 \le r \le 3 \end{cases}$$
 (5)

对应图像如下

2.3 收敛阶与收敛速度

考虑

$$q = \lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|} = \begin{cases} |r|, & -1 \le r \le 1, \\ |2 - r|, & 1 \le r \le 3 \end{cases}$$
 (6)

即有 q <= 1,为线性收敛,收敛阶 p = 1。

收敛速度则可表示为 $R = -\log_{10} q$

3

由 2 可知 $r_1 = 3$, 故取 r = 3.1 计算不同初值下的序列,结果如图

可以看到在 $n\to\infty$ 时, x_n 并未收敛至一个值,而是稳定的在确定两值之间震荡,指标 n 为奇数与偶数的两子列分别收敛到一值上。

4

4.1 证明

由于序列 $x_{n+2}=f(f(x_n))$ 可收敛至 x_1^* 与 x_2^* ,故类似 2 中所述,当 n 足够大时

$$|f(f(x_{n+2})) - f(f(x_n))| = |x_{n+4} - x_{n+2}| \le |x_{n+2} - x_n|$$
(7)

可得极限

$$|(f(f(x_1^*)))| = |f'(f(x_1^*))f'(x_1^*)| = \lim_{n \to \infty} \frac{|f(f(x_{n+2})) - f(f(x_n))|}{|x_{n+2} - x_n|} \le 1$$
 (8)

由于最终 x_n 在两值间震荡,固有 $f(x_1^*) = x_2^*, f(x_2^*) = x_1^*$ 。代入上式则有

$$|f'(x_1^*)f'(x_2^*)| \le 1 \tag{9}$$

即这类收敛的必要条件是 $|f'(x_1^*)f'(x_2^*)| \le 1$

4.2 x_1^*, x_2^* 与 r 变化关系

对于一个 r 取值,可通过迭代求出 x_1^*, x_2^* ,届时加入对条件 $|f'(x_1^*)f'(x_2^*)| \le 1$ 的判定即可一同确定可行的 r 范围。最终结果如下:

经计算,右侧 r 边界为 r=3.45

5

5.1 r 不断增大的现象

如下图所示,初值选择为 0.7,分别选取参数 r=3.50,3.55,对应周期为 T=4,8 的情况。 r=3.33, T=8:

5.2 收敛速度

收敛速度可由 $q = \lim_{n \to \infty} \frac{|x_{n+T} - x^*|}{|x_n - x^*|}$ 来描述。

6

如果再通过单条线分析来绘图过于复杂,所以这里选择直接将足够多次的迭代结果绘制密 集的散点图以达到效果。 $x^* - r$ 关系图如下

以 T=1,2 的转折点为原点

以 T=2,4 的转折点为原点

可以看出来,各图像曲线形状是相似的,故可以推断此后会有周期八、周期十六等更多的收敛方式。

图 9

7

由 6 中计算可以得到

表 1

T	1	2	4
Δr	2	0.45	0.096

由此可估算最终 $0.213 \le F \le 0.225$,故估算最终 $r_{\infty} \approx 3.56$,与图像基本吻合

8

按提示所述进行替换 $x_n = \sin^2 y_n$, 代入迭代式中, 会有

$$x_{n+1} = 4x_n(1 - x_n) \Rightarrow \sin^2 y_{n+1} = 4\sin^2 y_n(1 - \sin^2 y_n)$$
(10)

$$\Rightarrow \sin^2 y_{n+1} = 4\sin^2 y_n \cos^2 y_n = \sin^2(2y_n) = \sin^2(2^{n+1}y_0)$$
(11)

$$\Rightarrow x_n = \sin^2(2^n y_0) \tag{12}$$

由于 y_0 与初值 x_0 的选取有关,对于比较一般的 y_0 , $\sin^{(2^n y_0)}$ 并不呈现周期性,故除去几个较为特殊 y_0 外,最终不存在稳定的震荡周期。

9

取 $g(x) = x^2(1-x^2)$, 所得 $x^* - r$ 关系如下可以看到最终与图 7 中图形相似,故应有相同 F

图 10