Università di Pisa

Corso di Scienza e Ingegneria dei Materiali - 9 crediti

Corso di laurea in Ingegneria Chimica – Secondo Appello d'esame – 31-01-2023

Informazioni: questo è un esame senza consultazione di libri, appunti o altro materiale relativo al programma del corso. I calcolatori **sono** permessi ad esclusione di quelli preprogrammati a risolvere esercizi. Non è assolutamente consentito l'uso di smartphone, tablet, computer ecc., né scambiare suggerimenti o opinioni con i propri colleghi. Per i calcoli e la brutta copia sono distribuiti dal docente appositi fogli da riconsegnare alla fine della prova: non utilizzare fogli di altra provenienza. Ai trasgressori sarà immediatamente <u>ritirato e annullato</u> il compito in qualunque momento della prova. Il tempo a disposizione per la prova è di 3 ore. È consentito uscire per andare in bagno solo a partire dalla seconda ora della prova.

Verrà valutato un punteggio parziale per risposte numericamente errate ma supportate da un ragionamento corretto. Il punteggio assegnato alle domande ed esercizi è riportato in cima al testo. Per l'ammissione occorre ottenere un punteggio pari o superiore a 18, così distribuito: almeno 12 punti nella parte numerica (esercizi) ed almeno 6 in quella teorica (quesiti a risposta aperta).

Allieva/o:

e-mail:

PUNTEGGIO	UNO	DUE	TRE	QUATTRO	TOTALE
Esercizi	/6	/6	/4	/5	/21
Domande a Risposta	/3	/3	/3	/3	/12
Aperta					
	/33				

Esercizi:

Esercizio N°1

- 1) Calcolare, commentando il risultato ottenuto, la resistenza alla trazione longitudinale di un composito di matrice epossidica e fibra di vetro il cui diametro e la lunghezza medi della fibra sono rispettivamente 0.010mm e 1mm e la frazione volumetrica delle fibre è di 0.35. La resistenza all'interfaccia fibra-matrice è di 60 MPa, la resistenza alla frattura delle fibre è 4700 MPa e lo stress della matrice al momento della rottura della fibra è di 16 MPa.
- 2) Ipotizzando dei valori plausibili dei moduli elastici di fibra di vetro e matrice epossidica, valutare il modulo elastico di tale composito se K=0.33.
- 3) Come varierebbe il modulo elastico di tale composito al variare del valore di K? Commentare i risultati

Esercizio N°2

Utilizzando il diagramma di trasformazione isotermica per una lega di acciaio allo 0,45% in peso di C, determinare la microstruttura finale (in termini di soli di un campione sottoposto ai seguenti trattamenti tempo-temperatura. In ogni caso, si supponga che il provino inizi a raffreddarsi da 845°C e che sia stato mantenuto a questa temperatura per un tempo sufficiente a raggiungere una struttura austenitica completa e omogenea.

- a) Raffreddamento rapido a 250°C, mantenimento per 100 s, quindi tempra a temperatura ambiente.
- b) Raffreddare rapidamente a 700°C, mantenere per 30 s, quindi raffreddamento a temperatura ambiente.
- c) Raffreddare rapidamente a 400°C, mantenere per 500 s e poi raffreddare a temperatura ambiente
- d) Raffreddare rapidamente a 700°C, mantenere a tale temperatura per 10^5 s e poi raffreddare a temperatura ambiente.
- e) Raffreddare rapidamente a 650°C, mantenere a temperatura ambiente per 3 secondi, raffreddare rapidamente a 400°C, mantenere per 10 secondi e poi raffreddare rapidamente a temperatura ambiente
- f) Raffreddare rapidamente a 450°C, mantenere per 10 secondi e poi raffreddare a temperatura ambiente.

g) Raffreddare rapidamente a 625°C, mantenere per 1 secondo e poi raffreddare a temperatura ambiente istantaneamente.

Esercizio N°3

Calcolare i valori dei coefficienti di diffusione per la diffusione del carbonio sia nel ferro α (BCC) che nel ferro γ (FCC) a 900°C. Quale dei due è più grande? Spiegate perché è così.

Specie che diffonde	Metallo ospite	$D_{\eta}\left(m^{2}/s\right)$	Energia di attivazione $Q_{\scriptscriptstyle d}$		Valori Calcolati	
			kJ/mole	eV/atomo	T (°C)	D (m2/s)
Fe	Fe-α	2.8×10^{-4}	251	2.60	500 900	3.0×10^{-21} 1.8×10^{-15}
Fe	Fe-γ cfc	5.0×10^{-5}	284	2.94	900 1100	1.1×10^{-17} 7.8×10^{-16}
С	Fe-a	6.2×10^{-7}	80	0.83	500 900	2.4×10^{-12} 1.7×10^{-10}
С	Fe-γ	2.3×10^{-5}	148	1.53	900 1100	5.9×10^{-12} 5.3×10^{-11}
Cu	Cu	7.8×10^{-5}	211	2.19	500	4.2×10^{-19}
Zn	Cu	2.4×10^{-5}	189	1.96	500	4.0×10^{-18}
Al	Al	2.3×10^{-4}	144	1.49	500	4.2×10^{-14}
Cu	Al	6.5×10^{-5}	136	1.41	500	4.1×10^{-14}
Mg	Al	1.2×10^{-4}	131	1.35	500	1.9×10^{-13}
Cu	Ni	2.7×10^{-5}	256	2.65	500	1.3×10^{-22}

Esercizio Nº4

Un provino cilindrico di un ipotetico materiale ceramico viene sollecitato a compressione. Se i diametri originali e finali sono rispettivamente 20.000 e 20.025 mm e la lunghezza finale è di 74,96 mm

a) calcolare la lunghezza originale se la deformazione è totalmente elastica. I moduli elastico e di taglio di questo ipotetico ceramico sono rispettivamente 105 GPa e 39.7 GPa.

- b) Se invece tale provino fosse testato a flessione a tre punti a sezione circolare con distanza tra i supporti pari a 64 mm, calcolare il carico massimo che riesce a sopportare sapendo che lo sforzo a rottura è di 247MPa.
- c) Che differenza c'è tra una prova a flessione a tre punti ed una a quattro punti?

Domande a risposta aperta:

Domanda N°1

Per ciascuna delle seguenti categorie si disegni e si commenti l'andamento dei grafici sforzo deformazione:

- a) Un polimero testato sopra la sua transizione vetrosa ed uno testato a T<Tg
- b) Un elastomero e un polimero duttile
- c) Lo stesso polimero testato a 1 mm/min, 10 mm/min, 100mm/min

Domanda N°2

Spiegare come avviene la deformazione plastica nei materiali metallici

Domanda N°3

Perché è importante il parametro di Larson-Miller? In che contesto viene utilizzato? Cosa rappresenta?

Domanda N°4

Descrivi cosa è il processo di calcinazione