University of Auckland Department of Accounting & Finance

FINANCE 788: Research Essay

Author: Connor McDowall Supervisor: Dr Paul Geertsema

Abstract

Acknowledgements

Paul Geertsema

Declaration of Contribution

Contents

1	Introduction	6
2	2.1.1 Optimisation Methodologies	7 7 7 7
3	Research Intent	7
4	4.1 Return predictability	7 7 7 8 8 9 9
5	Data 1 5.1 Summary Statistics	
6	Methodology 1 6.1 Project organisation 1 6.1.1 Version Control 1 6.1.2 Folder Structure 1 6.1.3 Python 1 6.1.4 Package Management 1 6.1.5 Excel 1 6.1.6 IBM ILOG CPLEX Optimization 1 6.1.7 IBM Watson Machine Learning Service 1 6.1.8 PyPI 1 6.1.9 Code Style 1 6.1.10 Infrastructure 1 6.2 Documentation 1 6.2.1 Project updates 1 6.2.2 Meeting minutes 1	$ \begin{array}{c} 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \end{array} $
7	Results 1	.5
8	Discussion 1	.5
9	Conclusion 1	.5
10	Appendix 1 10.1 Tables and Charts	6

$oldsymbol{ ext{List}}_1$	of Figures Monotonic ranking functions	10
List	of Tables	
1	Objective (MSE: Mean Square Error, HP: Hedge Portfolio)	9
2	Summary Statistics	30

1 Introduction

2 Literature Review

Insert Literature Review

2.1 History of Asset Pricing Theory

2.1.1 Optimisation Methodologies

Convexity is an important concept in optimisation

2.1.2 Machine Learning in Financial Contexts

A couple of recent publications highlight the increased application of machine learning algorithms in financial contexts. Li, Mai, Shen, and Yan, 2020 Gu et al (2020) explore the comparative use of machine learning in empirical asset pricing.

3 Research Intent

Insert Research Intent

4 Theory

4.1 Return predictability

Return predictability underlies asset pricing theory. Insert

4.2 Modelling, loss, and optimisation

We summarize the theory surrounding predictive modelling, loss functions, and optimisation algorithms. These functions train models by comparing predictions to realized observations using optimisation algorithms to minimize the loss function. We examine a linear model as our predictive model (1). Mean square error (2) and Gradient Descent (GD) are basic examples of a loss function and optimisation algorithm, respectively.

$$\hat{y} = mx_i + b \tag{1}$$

$$f(y, (mx_i + b)) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$
 (2)

Firstly, gradient descent takes the partial derivatives of the loss function, with the respect to the parameters in our predictive model. In our example, equations 3 and 4 are the partial derivatives for the mean square error loss function.

$$\frac{\partial f(y, (mx_i + b))}{\partial m} = \frac{1}{n} \sum_{i=1}^{n} -2x_i (y_i - (mx_i + b))^2$$
 (3)

$$\frac{\partial f(y, (mx_i + b))}{\partial b} = \frac{1}{n} \sum_{i=1}^{n} -2(y_i - (mx_i + b))^2$$
(4)

Secondly, the algorithm explores epochs, using a learning rate to update parameters to move in the opposite directions of the partial derivatives until settling in a local minima. This extrema is the optimisation of the loss function, quantifying the accuracy of the predicative model. Ordinary Least Squares (OLS) regressions is an extension of the linear model prevalent in asset pricing.

4.3 Ordinary Least Squares (OLS)

The OLS regression is the most prominent statistical model in asset pricing theory. Rosenfeld n.d. contributes an OLS summary. The composition of the true OLS model includes four components. Firstly, \mathbf{X} , an n x k matrix of k independent variables for n observations. Secondly, \mathbf{y} , an n x 1 vector

of observation on the dependent variable. Thirdly, ϵ , an n x 1 vector of unexplained error. Lastly, θ , a k x 1 vector of parameters to be estimated.

$$y = X\theta + \epsilon \tag{5}$$

4.3.1 Criteria for estimation

The criteria to obtain the parameter estimate $(\hat{\theta})$ relies on the minimisation of the sum of squared residuals (6). We highlight the observed residuals (e) are distinct from unexplained disturbances (ϵ). Equation 7 derives residuals by taking the difference between observations based on parameter estimates.

$$\sum e_i^2 \tag{6}$$

$$e = y - X\hat{\theta} \tag{7}$$

Expanding the quadratic $e^T e$ after substituting in equation 7 leads to the alternative expression of the sum of squared residuals in equation 8. Minimizing the sum of square residuals requires taking the partial derivative of equation 8 with respect to the estimated parameters (equation) using matrix differentiation (9). It is imperative X has full rank where all vectors in the matrix are linearly independent, validating both the presence of a positive definite matrix and minimum.

$$e^T e = y^T y - 2\hat{\theta}^T X^T y + \hat{\theta}^T X^T \hat{\theta} X \tag{8}$$

$$\frac{\partial e^T e}{\partial \hat{\theta}} = -2X^T y + 2X^T X \hat{\theta} = 0 \tag{9}$$

We find the expression for the Ordinary Least Squares (OLS) estimator (13) after rearranging equation 9 to normal form, utilizing inverse matrices to form identity matrices, and simplifying.

$$2X^T X \hat{\theta} = 2X^T y \tag{10}$$

$$(X^T X)^{-1} (X^T X)\hat{\theta} = (X^T X)^{-1} X^T y \tag{11}$$

$$I\hat{\theta} = (X^T X)^{-1} X^T y \tag{12}$$

$$\hat{\theta} = (X^T X)^{-1} (X^T y) \tag{13}$$

(14)

Therefore, we can use the OLS estimator to make predictions with OLS (15).

$$\hat{y} = X^T \hat{\theta}$$

4.3.2 Properties of OLS Estimators

There are six key properties in addition to the satisfaction in minimizing the summation of squared residuals.

- 1. The residuals are uncorrelated with the observed values of X i.e., $X^T e = 0$.
- 2. The sum of the residuals is zero i.e., $\sum e_i = 0$.
- 3. The sample mean of the residuals is zero i.e., $\bar{e} = \frac{\sum e_i}{n} = 0$.
- 4. The regression hyperplane passes through the means of observed values i.e., $\frac{e}{\equiv} \frac{y X\theta}{n} = 0$. Since $\bar{e} = 0$ assumed, it is implied $\bar{y} = \bar{x}\bar{\theta}$.
- 5. The residuals are uncorrelated with the predicted y i.e., $\hat{y} = X\hat{\theta}$, $\hat{y}^T e = (X\hat{\beta})^T e = b^T X^T e = 0$
- 6. The mean of \hat{y} for the sample will equal the mean of the y.

4.3.3 The Gauss-Markov Theorem

However, OLS makes Gauss-Markov assumptions about the true model to make inferences regarding β from $\hat{\beta}$. The intention of the Gauss-Markov Theorem, conditional on the below assumptions, states the

OLS estimator is the best linear, unbiased, and efficient estimator:

$$y = x\beta + \epsilon \tag{15}$$

$$E[\epsilon|X] = 0 \tag{16}$$

$$E(\epsilon \epsilon^T | X) = \Omega = \sigma^2 I \tag{17}$$

$$\epsilon |X| N[0, \sigma^T I]$$
 (hypothesis testing) (18)

- X is an n x k matrix of full rank
- X must be generated randomly, or fixed, by a mechanism uncorrelated to disturbances.

Equation 16 implies $E(y) = X\beta$ as no observations of the independent variables convey any information about the expected values of the disturbances. Equation 17 captures homoskedasticity and no autocorrelation assumptions. Additionally, The theory underlying Ordinary Least Squares informs the common practice in minimising of the sum of least squares when evaluating prediction performance. The mathematical tractability, in accordance with the aforementioned assumption, frame our thinking surrounding the derivation of custom loss functions.

4.3.4 Weaknesses in OLS: Return Predictability

Include examples on the minimisation of sum of the square errors does not contribute to maximising returns

4.4 Derivation of Loss Functions and Performance Metrics

Table 1 provides an overview of

Variable	Description	$MSE(y, \hat{y})$	$HP(y, \hat{y})$
θ	Estimation Training	$\hat{ heta}_{MSE}$	$\hat{ heta}_{HP}$
λ	Validation	$\hat{\lambda}_{MSE}$	$\hat{\lambda}_{HP}$

Table 1: Objective (MSE: Mean Square Error, HP: Hedge Portfolio)

4.5 Portfolio Formation: Hedge Portfolios

Our formation of hedge portfolios rely on monotonic functions. These functions both preserve or reverse a given ordered set. We rank the cross-sections of portfolio returns using variations in monotonic functions to assign weights and form hedge portfolios.

$$R(y_{i,t}) (19)$$

The ranking function $(R(y_{i,t}))$ and thresholds (u,v) form subsets of long and short portfolios.

$$L = \{y_{i,t} | R(y_{i,t}) \ge u\} \tag{20}$$

$$S = \{ y_{i,t} | R(y_{i,t}) \le v \} \tag{21}$$

$$0 < u < 1 \tag{22}$$

$$0 < v < 1 \tag{23}$$

$$u > v \tag{24}$$

These truth sets inform the construction of time-series hedge portfolios. The first set of time-series hedge portfolio equations assumes equal weighting in long and short portfolios through dividing each subset (L,S) by their cardinality.

$$H_t = \frac{1}{|L|} \sum_{i \in L} y_{i,t} - \frac{1}{|S|} \sum_{i \in S} y_{i,t}$$
 (25)

(26)

Our aim is to re-configure the loss function to maximise returns. Permutations for ranking functions exist (figure 1).

Figure 1: Monotonic ranking functions

First, we explore a ranking function with weights directly proportional to returns (27) to derive the below loss function (30).

$$R(\hat{y}) = W \tag{27}$$

$$W := \frac{\hat{y}}{\mathbf{1}\hat{y}}$$

$$\hat{y} = X^T \hat{\theta}$$
(28)

$$\hat{y} = X^T \hat{\theta} \tag{29}$$

$$f_{\hat{\theta}}(X) = (\frac{X^T \hat{\theta}}{\vec{\mathbf{1}} X^T \hat{\theta}})^\top X^T \hat{\theta}$$
 (30)

(31)

Section 4.2 explains the theory on predicative modelling, loss functions and optimisation algorithms. The ability to find partial derivatives (32) and argmax (4.5) inform the practicality of this ranking function.

$$\frac{\partial f_{\hat{\theta}}(X)}{\partial \hat{\theta}} = \frac{\partial ((\frac{X^T \hat{\theta}}{\vec{\mathbf{I}} X^T \hat{\theta}})^\top X^T \hat{\theta})}{\partial \hat{\theta}}
\operatorname{argmax} : (\frac{X^T \hat{\theta}}{\vec{\mathbf{I}} X^T \hat{\theta}})^\top X^T \hat{\theta}
(33)$$

$$\underset{\hat{\theta}}{\operatorname{argmax}} : \left(\frac{X^T \hat{\theta}}{\vec{\mathbf{1}} X^T \hat{\theta}}\right)^\top X^T \hat{\theta} \tag{33}$$

The argmax () requires to use partial derivative with respect to $\hat{\theta}$

$$\frac{\partial (f_{\hat{\theta}}(X))}{\partial \hat{\theta}} = \frac{1}{(\hat{\theta}^{\top} X \vec{1})} X X^{\top} \hat{\theta}$$
(34)

$$+\frac{1}{\vec{1}X^{\top}\hat{\theta}}XX^{\top}\hat{\theta} \tag{35}$$

$$+\frac{1}{\vec{1}X^{\top}\hat{\theta}}XX^{\top}\hat{\theta}$$

$$-\frac{1}{(\hat{\theta}^{\top}X\vec{1})^{2}}\hat{\theta}^{\top}XX^{\top}\hat{\theta}X\vec{1}$$
(35)

5 Data

Expand: Dataset implies, use this dataset (Jensen, Kelly, and Pedersen, 2021) Hou et al., (2020) use an extensive data library to assess 452 anomalies across anomalies literature. Their analysis informs which abnormalities drive the cross section of expected returns. Most abnormalities fail under current standards of empirical finance when using a single hurdle test of absolute t-stat greater or equal to 1.96. Firstly, the paper finds economic fundamentals take precedence over trading frictions in explanatory power, statistical and economic significance. Secondly, micro-caps account for anomalies disproportionately, leading to NYSE breakpoints, value-weighted returns in both portfolio sorts and cross-sectional regressions with weighted least squares. Lastly, arguments in improving anomalies literature credibility follow a closer alignment to economic theory as the field persists to be statistical in nature. Overall, capital market efficiency is higher than expected. Jensen et al., 2021 use the above dataset to explore hierarchial bayesian models of alphas emphasising the joint behaviours of factors, and provide an alternative multiple testing adjustment, more powerful than common methods. Jensen et al., adapt the global dataset to focus only on one-month holding periods for all factors, only include most recent accounting data (quarterly or annually) and add 15 new factors. The exhaustive nature and accessibility of the global dataset makes it well-suited for exploring optimisation functions in neuralnetwork construction.

5.1 Summary Statistics

6 Methodology

Adapt for the context of this research essay

6.1 Project organisation

GOCPI adopted Data Science best practice, as described by Wilson et al. Wilson et al., 2016. Although these practices are mostly reserved for data science projects, their principles are suitable for product development and version control. All data and results were saved regularly and reproducible. The retention of data in all forms received high levels of attention. Project files were synched continuously to Google Drive Google LLC, 2020. Git Linus Torvalds, 2020 was used to manage version control for GOCPI's source code, data, documentation and results. Git stores a complete history of versions using Git hashes. These hashes are strings unique to each state of the publicly available GOCPI repository¹. Git hashes enabled the discretisation of GOCPI's development over time, enabling the accessibility and recollection of all previous states given a unique git hash. This functionality enabled reproducibility, error correction and the ability to revert to previous models.

6.1.1 Version Control

Git, hosted by GitHub, provided a comprehensive set of version control technologies. These technologies provided a range of benefits. Firstly, Git is excellent at providing and supporting collaborative functionalities. The master version of a project is accessible for all who have access to the repository. Each contributor could create custom copies of branches through pull requests on the master branch. Contributors could commit changes to custom branches and push these changes to the master branch through push requests. The product manager could review these push requests, approving suitable requests to integrate changes to the master branch. Collaborative efforts were possible with commit messages describing the contributions from each contributor. This project had one contributor. Git ensured the histories of code, work and authors are stored. The descriptive nature of the commit log ensured an accurate journal is kept.

6.1.2 Folder Structure

GOCPI maintained the file folder structure recommended in Wilson et al. Wilson et al., 2016. Project organisation was paramount as the modelling of energy systems involves integrating a range of optimisation models, data files and documents. Wilson et al's recommendations were appropriate as data science projects require similar organisational rigor. Subsequently, file management and structure was

¹https://github.com/CMCD1996/GOCPI

most efficient and comprehensive. **GOCPI** is the root directory of this project and contains several sub directories: bin, data, doc, src and results. The **bin** sub directory contained external scripts and compiled programmes related to the GOCPI project. The **data** sub directory contained all raw data associated with the project. This data included energy statistics, energy balance datasets, partitioned geographies, standardised optimisation models and TIMES modelling frameworks. The **doc** sub directory stored GOCPI's user guides, academic resources, research reports and project deliverables. The **results** sub directory contained the output from optimisation simulations and processed data to display on dashboards and websites to inform investment and policy decisions. The **src** sub directory stores the source code for preparing raw data, partitioning sets of geographies with varying granularities and the GOCPI python package available to download using PyPI² and install using pip³. All files were continuously backed up using Google Drive.

6.1.3 Python

Python 3.7 was the primary coding language for the GOCPI project. GOCPI's objective is to enable any user to design and model their own energy system to inform investment and policy decisions. The intention is to empower users to discuss energy investment and policy decisions made by public and private parties. Additionally, GOCPI intends to reduce misinformation regarding energy policies and help assess the feasibility of meeting the International Energy Agency's Sustainable Development Scenario Agency, 2019. Python is omnipresent, widespread in software development. Python's language design makes the language highly productive and simple to use. Python can hand off computationally straining tasks to C/C++ and has first-class integration capabilities with these two languages. The language also has a very active and supportive community Medium, n.d. In addition, Python is the most popular coding language on the planet defined by the PYPL PopularitY of Programming Language Index. As at August 2020, Python had 31.59% of all language tutorial search instances on Google PYPL, n.d. Python has many useful packages for creating the GOCPI package such as NumPy, Scikit-learn, os, csv and Pandas. Programming is quick due to Python's dynamic nature. The language is also open-source with no cost. Subsequently, Python was the best language to ensure the GOCPI model is accessible for many users to use and extend.

6.1.4 Package Management

The Anaconda package management platform for Python Anaconda, Inc., 2020 was the chosen coding environment. Anaconda is a well defined, free platform with known versions of python packages such as matplotlib, numpy and pip. The use of this environment ensured both reproducibility and consistency across infrastructure. Although this project required no collaboration, the use of Anaconda will inform future developers on how to manage collaborative processes, especially for packages which are less well-maintained. Anaconda allows you to create custom environments which was necessary for creating scalable linear optimization problems to express energy systems. Pip is Python's default package manager and is included in the Anaconda package. Pip was used to install and update packages for python not available on Anaconda such as twine and the custom GOCPI package developed for this project.

6.1.5 Excel

It is important users are comfortable with using the GOCPI model. Energy modelling can be quite complex. The modelling process must be transparent to inform users how to build their own models. Excel is ubiquitous across academic and professional communities. Excel's omnipotence makes the software well-suited for describing the components of the GNU Mathprog energy system model. The GOCPI OseMOSYS Structure.xlsx file describes the sets, parameters, constraints and objective function of a scalable energy system model. The User may toggle statement sets, parameters and constraints to adjust the complexity of the model. The model file was imported to a text file. However, data related to these energy systems was stored using Python dictionaries, lists and NumPy arrays. This Python formulation was later transcribed to a text file. Excel is best for two dimensional variables or data stored in Codd-Boyce relational databases Arenas, 2009. The majority of parameters in energy systems were three or more dimensions. Therefore, Excel was not suitable to store these parameters. Python dictionaries, lists and NumPy arrays were preferred alternatives.

²https://pypi.org/

³https://pypi.org/project/pip/

IBM ILOG CPLEX Optimization 6.1.6

The OseMOSYS methodology (see ??) translates energy systems into linear programming problems. A solver was required to optimise these user-defined energy systems. The IBM ILOG Optimization Studio International Business Machines Corporation, 2020, more commonly known as CPLEX, was chosen to be this solver. CPLEX solves very large linear programming problems using the Barrier Interior-point method Potra and Wright, 2000 or primal/dual variants of the Simplex Method Bronson and Costa, 2009. GOCPI's user-defined energy systems could be scaled up to model very large systems, creating large linear programming problems.

The IBM ILOG CPLEX Optimization Studio has an interface with the Python language based on a C programming interface. Subsequently, Python APIs were available to run the CPLEX solver when installed either locally or on a cloud service. The python packages are **cplex** and **docplex**. The cplex package contains classes for accessing CPLEX for the Python programming language. The Cplex class is the most important class in this package as provides methods for creating, modifying, querying, or solving optimisation problems. Docplex also enables the formulation of new linear programmes where one creates the model, defines the decision variables, sets the constraints and expresses the objective function. The user uses docplex to solve the linear programme on a local solver. Alternatively, the model can be solved on a private cloud using Decision Optimisation on Cloud service through the provision of a service url and personal API key. The CPLEX Python APIs were most attractive as provided the user with a powerful commercial solver in an accessible format.

There is a caveat to the use of the CPLEX solver. The IBM ILOG CPLEX Optimization Studio is commercial by nature and requires a license to use. Fortunately IBM have the IBM Academic Initiative IBM, n.d.-a, granting students access to commercial software for free. This commercial nature creates accessibility issues for users who are not enrolled at an academic institution or can afford to pay for the software. Accessibility issues caused by the need for commercial solvers must be addressed to enable the distribution of the GOCPI product.

IBM Watson Machine Learning Service

The IBM CPLEX Optimisation Cplex python API is suitable for smaller models that can be solved locally. As the model increases in complexity, the docplex Python API did enable the ability to solve larger linear programmes. Unfortunately, IBM phased out the docplex Python API by incorporating the Decision Optimisation on Cloud services into the IBM Watson Machine Learning cloud services IBM, n.d.-b. This change occurred during September 2020. This service uses IBM Cloud to access assets through credentials, create model deployments in IBM's servers and execute jobs to solve models. The model deployments must be Python-based models with jobs specifying a payloads containing input data and output formats.

6.1.8 PyPI

PyPI¹ is the Python Package Index, a repository of software for the python programming language. This repository helps you find and install software developed by the Python community who have decided to share their work. The GOCPI package is distributed from this platform to enable as many as possible the ability to model their own energy systems to inform and question energy policy and investment. Enter command: pip install GOCPI in the terminal to install the package using pip package management software.

6.1.9 Code Style

The GOCPI project was developed as the GOCPI package. All development code is organised within this package. The PEP8 style for Python Code was the formatting style for development code Guido Van Rossum and Coghlan, 2001. All code was formatted with yapf, a formatter maintained by Google to format Python files. Standardised formatting is important as makes the code easy to read, helps optimise the code and promotes consistency. Docstrings and commenting were most important in documentation. A docstring is a Python inline comment. Each class and function has an unique docstring, a one sentence description of the function, inputs with data types and types of outputs. The Google style docstring was most appropriate because of it's readability, ease to write and consistency with the Google Style Guide.

14

¹https://pypi.org/

Additionally, automated documentation generators (**pdoc3**, **Sphinx** etc.) can parse this format to create documentation. This self-consistent code style facilitated best practice maintenance and enabled reproducibility.

6.1.10 Infrastructure

GOCPI creates scalable energy system optimisation models with complexity size dependent. Computations either took place locally on a 128 GB, four core Apple MacBook Pro or remotely using a cloud service.

6.2 Documentation

The GOCPI project is well documented to keep an accurate record of key design decisions. The commit history described in 6.1.1 was the most important form of document. Other explicit documentation methods were applied to supplement this commit history. These methods, in addition to in-code documentation, include project updates and meeting minutes nested within a project logbook.

6.2.1 Project updates

Project updates were recorded as itemized lists. Each item is a brief description of the work completed during that day, week or month. Items include, but are not limited to, completing GOCPI submodules, researching energy system statistics, building websites or writing sections of this research report. These updates were pivotal to exploring new options, monitoring progress and making decisions to drive forward development. For example, the decision to adopt the OseMOSYS methodology in favour of the TIMES modelling methodology. Project updates were transcribed to the project logbook held in this project's research compendium.

6.2.2 Meeting minutes

Project meetings took place for half an hour once a week. These meetings included discussions on energy markets, modelling methodologies, project progress and key design decisions. The minutes from these meetings accompanies project updates in the project logbook nested within the research compendium.

- 7 Results
- 8 Discussion
- 9 Conclusion

10 Appendix

10.1 Tables and Charts

	count	mean	std	min	25%	20%	15%	max
permno	2739928.0	5.405281e+04	2.782267e+04	10000.0000	2.651800e+04	5.715400e+04	8.018600e+04	$9.343600e{+04}$
permco	2739928.0	1.843974e + 04	1.402881e+04	3.0000	7.702000e+03	1.640850e + 04	2.321000e+04	5.766700e + 04
crsp_shrcd	2739928.0	1.089520e+01	4.571000e-01	10.0000	1.1000000e+01	1.100000e+01	1.1000000+01	1.200000e+01
crsp_exchcd	2739928.0	2.127400e+00	9.343000e-01	1.0000	1.000000e+00	3.0000000e+00	3.00000000+00	3.00000000+00
sic	2692217.0	4.605936e+03	1.921398e+03	100.0000	3.271000e+03	4.011000e+03	6.036000e + 03	9.999000e+03
ff49	2674304.0	3.037380e+01	1.341740e+01	1.0000	1.800000e+01	3.400000e+01	4.300000e+01	4.900000e+01
adjfct	2739928.0	2.838700e+00	1.267170e + 01	0.0000	1.000000e+00	1.0000000e+00	2.0000000e+00	1.215000e+03
shares	2739928.0	6.078630e + 01	2.852566e + 02	0.0830	4.399000e+00	1.251900e+01	3.808200e + 01	2.920640e+04
me	2739928.0	2.241254e+03	1.473073e+04	1.1708	4.367020e+01	1.565628e + 02	7.167608e+02	2.255969e + 06
me_company	2739928.0	2.283180e+03	1.527340e+04	1.1708	4.387450e+01	1.574086e + 02	7.211363e+02	2.255969e + 06
prc	2739928.0	2.876220e + 01	6.488772e + 02	0.0078	7.875000e+00	1.612500e+01	2.912500e+01	1.416000e + 05
prc_local	2739928.0	2.876220e+01	6.488772e + 02	0.0078	7.875000e+00	1.612500e+01	2.912500e+01	1.416000e + 05
dolvol	2580622.0	3.282292e+08	2.520900e+09	0.0000	1.070786e + 06	7.165154e+06	7.076108e + 07	8.441730e+11
ret	2719460.0	1.640000e-02	1.672000e-01	-1.0000	-5.880000e-02	4.100000e-03	7.410000e-02	2.400000e+01
ret_local	2719460.0	1.640000e-02	1.672000e-01	-1.0000	-5.880000e-02	4.100000e-03	7.410000e-02	2.400000e+01
ret_exc	2719460.0	1.270000e-02	1.673000e-01	-1.0068	-6.250000e-02	7.000000e-04	7.060000e-02	2.399690e+01
ret_lag_dif	2739928.0	1.0000000e+00	0.00000000+00	1.0000	1.0000000e+00	1.0000000e+00	1.000000e+00	1.000000e+00
ret_exc_lead1m	2732542.0	6.400000e-03	1.559000e-01	-1.0113	-6.560000e-02	-1.800000e-03	6.710000e-02	1.988170e + 01
market_equity_rank_x	2739928.0	5.982920e+01	2.380660e+01	1.0000	4.000000e+01	6.0000000 + 01	8.0000000e+01	9.950000e+01
enterprise_value_rank_x	2480615.0	5.845440e+01	2.501660e+01	1.0000	3.800000e+01	5.9000000 + 01	8.0000000e+01	9.950000e+01
book_equity_rank_x	2452453.0	5.800700e+01	2.593820e+01	1.0000	3.800000e+01	5.900000e+01	8.0000000e+01	9.950000e+01
assets_rank_x	2522907.0	5.751850e + 01	2.635510e+01	1.0000	3.700000e+01	5.900000e+01	8.000000e+01	9.950000e+01
sales_rank_x	2509790.0	5.691950e + 01	2.717080e+01	1.0000	3.6000000e+01	5.900000e+01	8.000000e+01	9.950000e+01
net_income_rank_x	2517298.0	5.581200e+01	2.878360e+01	1.0000	3.300000e+01	6.0000000 + 01	8.000000e+01	9.950000e+01
bidask_x	2739928.0	1.289000e-01	3.351000e-01	0.0000	0.00000000+00	0.0000000e+00	0.0000000e+00	1.000000e+00
prc_high_x	2355383.0	2.540480e+01	2.608370e + 01	0.1790	9.250000e+00	1.850000e+01	3.300000e+01	4.617600e+02
prc_low_x	2365005.0	2.211970e+01	2.325750e+01	0.0818	7.640000e+00	1.6000000e+01	2.880000e+01	4.175300e+02
tvol_x	2580622.0	8.316484e+06	2.941295e+07	0.0000	9.875000e+04	5.5100000 + 05	3.923700e + 06	6.485186e + 08
div1m_me_x	2718102.0	1.300000e-03	3.700000e-03	0.0000	0.00000000+00	0.00000000+00	0.0000000e+00	9.010000e-02
div3m_me_x	2718121.0	4.000000e-03	6.000000e-03	0.0000	0.00000000+00	0.0000000e+00	6.700000e-03	1.164000e-01
div6m_me_x	2660395.0	8.100000e-03	1.170000e-02	0.0000	0.00000000+00	0.00000000+00	1.360000e-02	1.472000e-01
div12m_me_x	2548844.0	1.670000e-02	2.350000e-02	0.0000	0.0000000e+00	3.800000e-03	2.780000e-02	4.015000e-01

chcsho_1m_x chcsho_3m_x	2720001.0	3.200000e-03 1.240000e-02	2.550000e-02 6.180000e-02	-0.1168	0.0000000e+00 0.0000000e+00	0.000000e+00 0.000000e+00	0.0000000e+00 3.300000e-03	1.096800e+00 1.686700e+00
chcsho_12m_x	2624125.0 2514147.0	2.8100000e-02 6.190000e-02	$1.189000e-01 \\ 2.297000e-01$	-0.1880 -0.2696	0.0000000e+00 0.0000000e+00	9.000000e-04 4.700000e-03	1.070000e-02 $3.390000e-02$	3.832600e+00 8.477000e+00
eqnpo_1m_x	2718435.0	-1.500000e-03	2.310000e-02	-0.6801	-0.0000000e+00	0.00000000+00	0.00000000+00	1.263000e-01
eqnpo_3m_x	2677912.0	-6.200000e-03	5.200000e-02	-0.9973	-1.800000e-03	0.0000000e+00	8.0000000e-03	1.696000e-01
eqnpo_6m_x	2618619.0	-1.350000e-02	8.900000e-02	-1.5754	-7.400000e-03	0.0000000e+00	1.640000e-02	2.788000e-01
eqnpo_12m_x	2504936.0	-2.670000e-02	1.474000e-01	-2.2489	-2.450000e-02	0.0000000e+00	3.340000e-02	4.743000e-01
$\operatorname{ret}_{-1.0.x}$	2541516.0	1.490000e-02	1.481000e-01	-0.7242	-6.120000e-02	7.900000e-03	7.690000e-02	2.176500e+00
$\operatorname{ret}_{-2.0.x}$	2521767.0	2.960000e-02	2.125000e-01	-0.8327	-8.110000e-02	1.480000e-02	1.176000e-01	3.342500e+00
$\operatorname{ret}_{-3-0.x}$	2503682.0	4.400000e-02	2.649000e-01	-0.8864	-9.610000e-02	2.270000e-02	1.506000e-01	5.0000000e+00
ret_3_1_x	2502019.0	2.870000e-02	2.108000e-01	-0.8310	-8.140000e-02	1.440000e-02	1.167000e-01	3.342500e+00
$\operatorname{ret_{-6-0.x}}$	2447794.0	8.830000e-02	3.970000e-01	-0.9396	-1.267000e-01	4.500000e-02	2.336000e-01	8.555600e+00
ret_6_1x	2446030.0	7.230000e-02	3.553000e-01	-0.9171	-1.184000e-01	3.700000e-02	2.059000e-01	8.411800e+00
$ret_{-9-0.x}$	2393988.0	1.336000e-01	5.093000e-01	-0.9721	-1.466000e-01	6.750000e-02	3.069000e-01	9.857100e+00
ret_9_1_x	2392087.0	1.168000e-01	4.700000e-01	-0.9555	-1.414000e-01	5.930000e-02	2.812000e-01	9.273700e+00
ret_12_0_x	2341375.0	1.813000e-01	6.179000e-01	-0.9783	-1.593000e-01	9.080000e-02	3.773000e-01	1.301590e + 01
ret_12_1_x	2339380.0	1.635000e-01	5.789000e-01	-0.9728	-1.558000e-01	8.200000e-02	3.514000e-01	1.223080e+01
$ m ret12_7_x$	2337747.0	7.050000e-02	3.478000e-01	-0.9055	-1.163000e-01	3.610000e-02	2.015000e-01	8.509400e+00
ret_18_1_x	2239551.0	2.625000e-01	7.812000e-01	-0.9850	-1.710000e-01	1.321000e-01	4.926000e-01	2.048480e+01
ret_24_1x	2145964.0	3.596000e-01	9.260000e-01	-0.9890	-1.717000e-01	1.837000e-01	6.267000e-01	1.484620e+01
ret_24_12_x	2142652.0	1.821000e-01	6.037000e-01	-0.9678	-1.493000e-01	9.260000e-02	3.714000e-01	1.345160e + 01
ret_36_1_x	1976435.0	5.673000e-01	1.234400e+00	-0.9935	-1.548000e-01	2.964000e-01	8.916000e-01	1.914000e+01
ret_36_12_x	1972590.0	3.838000e-01	9.482000e-01	-0.9864	-1.546000e-01	2.006000e-01	6.490000e-01	1.702520e+01
ret_48_12_x	1821582.0	5.938000e-01	1.256400e+00	-0.9918	-1.358000e-01	3.161000e-01	9.172000e-01	1.811810e + 01
ret_48_1_x	1826053.0	7.976000e-01	1.577300e+00	-0.9965	-1.285000e-01	4.175000e-01	1.176300e+00	1.772000e+01
$\operatorname{ret601x}$	1691563.0	1.064400e+00	2.014800e+00	-0.9985	-9.170000e-02	5.486000e-01	1.492300e+00	2.754720e+01
$ \text{ret}_{-60_12_x} $	1686573.0	8.258000e-01	1.611700e+00	-0.9960	-1.096000e-01	4.364000e-01	1.200000e+00	2.063640e+01
$ $ ret_60_36_x	1680619.0	3.857000e-01	9.340000e-01	-0.9860	-1.429000e-01	2.072000e-01	6.479000e-01	1.808570e + 01
seas_1_1an_x	2426517.0	1.420000e-02	1.421000e-01	-0.6705	-6.040000e-02	7.600000e-03	7.560000e-02	1.823500e+00
seas_1_1na_x	1870192.0	1.490000e-02	4.360000e-02	-0.2355	-7.800000e-03	1.280000e-02	3.460000e-02	3.871000e-01
seas_2_5an_x	1599992.0	1.520000e-02	6.790000e-02	-0.2970	-2.260000e-02	1.180000e-02	4.810000e-02	6.337000e-01
at_gr1_x	2426455.0	2.641000e-01	9.239000e-01	-0.7398	4.800000e-03	9.050000e-02	2.391000e-01	3.163840e+01
ca_gr1_x	2184566.0	3.206000e-01	1.336600e+00	-0.8313	-3.830000e-02	9.400000e-02	2.815000e-01	4.636900e+01
nca_gr1_x	2183067.0	3.950000e-01	1.682300e+00	-0.8737	-1.530000e-02	8.250000e-02	2.844000e-01	5.781320e+01
lt_gr1_x	2408077.0	3.042000e-01	9.791000e-01	-0.8021	-2.990000e-02	8.560000e-02	2.894000e-01	1.783760e+01
$ $ cl_gr1_x	2190296.0	2.996000e-01	8.898000e-01	-0.8494	-6.490000e-02	1.114000e-01	3.701000e-01	$1.634630e{+01}$

ncl_gr1_x	2075342.0	9.926000e-01	5.509500e+00	-1.0000	-1.023000e-01	3.970000e-02	3.376000e-01	1.990000e+02
$\begin{array}{c} \text{be-gr1.x} \\ \text{debt-gr1.x} \end{array}$	2311345.0 2158693.0	3.178000e-01 7.838000e-01	4.707200e+00	-0.9160	5.900000e-03 -1.456000e-01	9.6600000e-02 1.900000e-02	3.292000e-01	1.090000e+01
sale_gr1_x	2362404.0	2.228000e-01	6.711000e-01	-0.9960	5.000000e-03	1.032000e-01	2.478000e-01	1.370570e+01
cogs_gr1_x	2358805.0	2.142000e-01	6.122000e-01	-0.9619	-4.700000e-03	1.032000e-01	2.613000e-01	1.190030e+01
sga_gr1_x	1997437.0	1.844000e-01	3.963000e-01	-1.0000	1.340000e-02	1.044000e-01	2.389000e-01	6.765800e+00
opex_gr1_x	2387208.0	1.949000e-01	4.470000e-01	-0.7668	7.900000e-03	1.058000e-01	2.505000e-01	7.187400e+00
capx_gr1_x	2147147.0	6.016000e-01	2.183000e+00	-1.3370	-2.236000e-01	1.144000e-01	6.251000e-01	3.425000e+01
inv_gr1_x	1910333.0	2.595000e-01	9.931000e-01	-1.0000	-6.850000e-02	8.260000e-02	2.909000e-01	1.698080e + 01
at_gr3_x	2114339.0	9.104000e-01	2.670800e+00	-0.8797	8.870000e-02	3.426000e-01	8.167000e-01	6.899070e + 01
ca_gr3_x	1898998.0	9.832000e-01	3.187300e+00	-0.9099	2.890000e-02	3.230000e-01	8.289000e-01	7.748590e+01
nca_gr3_x	1897746.0	1.592100e+00	6.786800e+00	-0.9628	4.280000e-02	3.455000e-01	1.005000e+00	1.792615e + 02
lt_gr3_x	2091277.0	1.135900e+00	3.3760000e+00	-0.8936	3.580000e-02	3.474000e-01	9.457000e-01	5.633890e + 01
$ $ cl_gr3_x	1906078.0	9.845000e-01	2.656400e+00	-0.9194	9.0000000e-03	3.652000e-01	9.754000e-01	4.535460e+01
ncl_gr3_x	1803330.0	4.168200e+00	2.242620e+01	-1.0000	-1.231000e-01	2.914000e-01	1.285200e+00	8.323333e+02
be-gr3_x	1998122.0	1.009400e+00	3.275200e+00	-0.9384	7.210000e-02	3.326000e-01	7.902000e-01	6.699660e + 01
debt_gr3_x	1882647.0	3.622500e+00	2.086590e + 01	-1.0000	-2.165000e-01	2.251000e-01	1.145100e+00	4.310000e+02
sale_gr3_x	2063618.0	8.605000e-01	2.814400e+00	-1.0000	7.210000e-02	3.286000e-01	7.527000e-01	8.620390e + 01
cogs_gr3_x	2052669.0	7.935000e-01	2.179500e+00	-1.0000	4.870000e-02	3.267000e-01	7.894000e-01	4.537560e+01
sga_gr3_x	1713690.0	6.540000e-01	1.324200e+00	-1.0000	9.470000e-02	3.366000e-01	7.294000e-01	2.400000e+01
opex_gr3_x	2073541.0	7.171000e-01	1.625000e+00	-0.8979	7.650000e-02	3.367000e-01	7.689000e-01	2.833740e + 01
capx_gr3_x	1846897.0	1.692700e+00	5.902400e+00	-1.2088	-2.368000e-01	3.214000e-01	1.355700e+00	1.128462e + 02
cash_gr1a_x	2396920.0	1.480000e-02	1.380000e-01	-1.1898	-1.600000e-02	2.800000e-03	3.520000e-02	8.303000e-01
inv_gr1a_x	2351255.0	1.250000e-02	5.090000e-02	-0.3723	-7.000000e-04	7.000000e-04	2.250000e-02	2.978000e-01
rec_gr1a_x	2363716.0	2.190000e-02	6.430000e-02	-0.4405	-2.700000e-03	1.190000e-02	4.270000e-02	3.340000e-01
ppeg_gr1a_x	2178200.0	5.240000e-02	1.039000e-01	-0.8431	8.900000e-03	3.670000e-02	8.330000e-02	5.756000e-01
lti_gr1a_x	2205853.0	5.400000e-03	4.060000e-02	-0.4964	0.0000000e+00	0.0000000e+00	1.100000e-03	3.478000e-01
intan_gr1a_x	2110874.0	1.080000e-02	6.690000e-02	-0.9608	-7.000000e-04	0.0000000e+00	1.700000e-03	5.336000e-01
$ m debtst_gr1a_x$	2395084.0	3.900000e-03	6.220000e-02	-0.5236	-5.000000e-03	0.0000000e+00	1.320000e-02	4.847000e-01
ap-gr1a_x	2267822.0	1.460000e-02	4.890000e-02	-0.2766	-3.900000e-03	6.100000e-03	2.540000e-02	2.945000e-01
txp_gr1a_x	2057276.0	9.000000e-04	1.130000e-02	-0.0902	-9.000000e-04	0.0000000e+00	2.200000e-03	9.250000e-02
debtlt_gr1a_x	2411829.0	1.770000e-02	9.970000e-02	-0.6085	-1.080000e-02	0.0000000e+00	3.540000e-02	5.760000e-01
txditc_gr1a_x	2135161.0	2.300000e-03	1.280000e-02	-0.1302	0.0000000e+00	0.0000000e+00	4.800000e-03	8.330000e-02
coa_gr1a_x	2167569.0	3.450000e-02	1.005000e-01	-0.7908	-4.200000e-03	2.200000e-02	7.140000e-02	4.923000e-01
col_gr1a_x	2191221.0	1.980000e-02	6.480000e-02	-0.4855	-5.500000e-03	1.350000e-02	4.240000e-02	3.834000e-01
cowc_gr1a_x	2146736.0	1.440000e-02	8.680000e-02	-0.6052	-1.810000e-02	9.000000e-03	4.750000e-02	4.185000e-01
\mid ncoa_gr1a_x	2185140.0	4.890000e-02	1.438000e-01	-1.8841	-5.500000e-03	2.970000e-02	9.040000e-02	7.494000e-01

nncoa grla x	2174709.0	6.300000e-03 4.270000e-02	3.310000e-02 1.424000e-01	-0.3605	-1.100000e-03	1.900000e-03 2.500000e-02	1.180000e-02 8.290000e-02	3.338000e-01 7.692000e-01
oa_gr1a_x	2167557.0	8.310000e-02	2.025000e-01	-2.5884	-3.400000e-03	6.800000e-02	1.668000e-01	8.176000e-01
ol_gr1a_x	2174709.0	2.620000e-02	8.090000e-02	-0.6433	-4.900000e-03	2.070000e-02	5.460000e-02	5.422000e-01
fna-gr1a_x	2497393.0	5.700000e-03	6.030000e-02	-0.7055	0.0000000e+00	0.0000000e+00	0.000000000+000	6.896000e-01
fnl_gr1a_x	2418391.0	2.150000e-02	1.353000e-01	-1.2296	-1.620000e-02	1.000000e-04	5.400000e-02	1.130300e+00
$nfna-gr1a_x$	2418391.0	-1.580000e-02	1.552000e-01	-1.1078	-5.900000e-02	-9.000000e-04	2.760000e-02	1.384100e+00
gp-gr1a_x	2387365.0	3.580000e-02	1.161000e-01	-0.8663	-2.200000e-03	2.080000e-02	7.290000e-02	1.372100e+00
ebitda_gr1a_x	2390711.0	9.700000e-03	9.740000e-02	-0.8685	-1.050000e-02	9.300000e-03	3.840000e-02	1.237100e+00
ebit_gr1a_x	2392217.0	5.200000e-03	9.760000e-02	-0.8536	-1.310000e-02	6.700000e-03	3.280000e-02	1.345400e+00
ope_gr1a_x	2056758.0	9.400000e-03	1.005000e-01	-0.9869	-1.390000e-02	1.090000e-02	3.950000e-02	1.233300e+00
ni-gr1a_x	2402691.0	8.000000e-04	1.303000e-01	-1.6889	-1.340000e-02	3.900000e-03	2.430000e-02	2.739400e+00
nix_gr1a_x	2402691.0	6.000000e-04	1.422000e-01	-1.8549	-1.540000e-02	3.800000e-03	2.570000e-02	2.791300e+00
dp-gr1a-x	2309627.0	3.900000e-03	1.560000e-02	-0.3935	-0.0000000e+00	2.500000e-03	7.500000e-03	1.932000e-01
fincf_gr1a_x	2053075.0	1.220000e-02	2.465000e-01	-2.0255	-5.480000e-02	2.700000e-03	7.330000e-02	1.485100e+00
ocf _gr1a_x	2334713.0	1.000000e-04	1.397000e-01	-0.9941	-4.190000e-02	2.900000e-03	4.640000e-02	1.151200e+00
fcf_gr1a_x	2181931.0	-7.300000e-03	1.637000e-01	-1.1368	-6.050000e-02	-4.000000e-04	5.020000e-02	1.202900e+00
nwc_gr1a_x	2164316.0	2.640000e-02	1.763000e-01	-1.4272	-2.650000e-02	1.650000e-02	7.240000e-02	9.090000e-01
eqnetis_gr1a_x	2052797.0	1.170000e-02	2.127000e-01	-1.9975	-1.000000e-02	0.0000000e+00	1.380000e-02	1.207600e+00
dltnetis_gr1a_x	2373431.0	-3.100000e-03	1.313000e-01	-0.7874	-2.580000e-02	0.0000000e+00	2.250000e-02	7.003000e-01
$dstnetis_gr1a_x$	2290818.0	7.000000e-04	8.970000e-02	-0.8063	-1.090000e-02	0.00000000+00	1.870000e-02	7.197000e-01
$dbnetis_gr1a_x$	2374474.0	-2.600000e-03	1.670000e-01	-1.0269	-4.130000e-02	0.00000000+00	4.330000e-02	1.017900e+00
netis_gr1a_x	2052412.0	8.700000e-03	2.717000e-01	-2.0764	-6.040000e-02	1.700000e-03	7.550000e-02	1.539900e+00
eqnpo-gr1a_x	2047069.0	-1.040000e-02	2.148000e-01	-1.1821	-1.480000e-02	0.0000000e+00	1.310000e-02	1.940900e+00
tax_gr1a_x	2398103.0	3.100000e-03	2.840000e-02	-0.2157	-3.800000e-03	1.000000e-03	1.140000e-02	2.047000e-01
eqbb_gr1a_x	1893504.0	1.700000e-03	3.370000e-02	-0.3806	0.0000000e+00	0.0000000e+00	3.000000e-04	2.809000e-01
$eqis_gr1a_x$	2000469.0	1.360000e-02	2.117000e-01	-2.0255	-2.500000e-03	0.0000000e+00	5.700000e-03	1.226200e+00
div-gr1a_x	2382722.0	1.100000e-03	1.270000e-02	-0.2183	0.0000000e+00	0.0000000e+00	1.200000e-03	2.439000e-01
eqpo-gr1a_x	1891334.0	2.900000e-03	4.380000e-02	-0.4620	-1.000000e-04	0.0000000e+00	4.100000e-03	3.915000e-01
$capx_gr1a_x$	2184434.0	7.400000e-03	5.440000e-02	-0.4868	-7.300000e-03	2.300000e-03	1.940000e-02	4.471000e-01
be_gr1a_x	2311289.0	4.620000e-02	1.699000e-01	-2.0718	1.600000e-03	3.510000e-02	8.970000e-02	8.561000e-01
cash_gr3a_x	2081646.0	2.960000e-02	1.755000e-01	-2.5781	-1.260000e-02	9.500000e-03	6.320000e-02	9.052000e-01
inv-gr3a_x	2033267.0	2.900000e-02	8.700000e-02	-0.6971	0.0000000e+00	6.800000e-03	5.550000e-02	4.115000e-01
rec_gr3a_x	2047864.0	4.970000e-02	1.082000e-01	-0.7795	1.400000e-03	3.280000e-02	8.960000e-02	4.887000e-01
ppeg_gr3a_x	1890568.0	1.277000e-01	2.118000e-01	-2.1282	3.190000e-02	1.080000e-01	2.163000e-01	9.231000e-01
lti_gr3a_x	1864897.0	1.290000e-02	7.040000e-02	-0.6566	0.0000000e+00	0.000000e+00	8.800000e-03	4.683000e-01
intan_gr3a_x	1784074.0	2.520000e-02	1.171000e-01	-1.7938	-0.0000000e+00	0.0000000e+00	2.360000e-02	6.632000e-01

ebitda_sale_x ebit_sale_x	2470375.0	-3.073000e-01	4.409900e+00 4.578500e+00	-171.6176	5.970000e-02 3.170000e-02	1.272000e-01 8.990000e-02	2.277000e-01 1.721000e-01	7.373000e-01 6.154000e-01	
pi_sale_x	2473639.0	-4.469000e-01	4.876400e+00	-184.2990	1.190000e-02	7.260000e-02	1.445000e-01	7.101000e-01	
ni_sale_x	2474362.0	-4.693000e-01	4.796100e+00	-184.2990	7.200000e-03	4.550000e-02	9.440000e-02	5.566000e-01	
nix_sale_x	2472905.0	-4.745000e-01	4.848700e+00	-184.2990	6.200000e-03	4.620000e-02	9.640000e-02	6.508000e-01	
ocf_sale_x	2414346.0	-3.439000e-01	3.755000e+00	-140.2577	-1.520000e-02	5.8000000e-02	1.448000e-01	1.412300e+00	
fcf_sale_x	2267091.0	-5.418000e-01	4.134400e+00	-125.9694	-1.053000e-01	-1.100000e-03	6.670000e-02	1.210500e+00	
gp_at_x	2503159.0	3.011000e-01	2.895000e-01	-1.2660	1.023000e-01	2.659000e-01	4.563000e-01	1.412300e+00	
ebitda_at_x	2505194.0	7.710000e-02	1.992000e-01	-2.1076	2.950000e-02	1.080000e-01	1.699000e-01	5.122000e-01	
ebit_at_x	2506116.0	4.100000e-02	1.986000e-01	-2.1142	1.820000e-02	7.130000e-02	1.269000e-01	4.730000e-01	
fi_at_x	2185678.0	1.660000e-02	2.114000e-01	-2.6041	2.010000e-02	6.410000e-02	9.800000e-02	3.716000e-01	
cop_at_x	2259456.0	1.333000e-01	1.925000e-01	-1.1882	3.940000e-02	1.365000e-01	2.302000e-01	1.940400e+00	
ni_at_x	2514966.0	-5.000000e-03	2.045000e-01	-2.8828	3.400000e-03	3.5100000e-02	7.410000e-02	3.332000e-01	
ope-be-x	2108352.0	1.569000e-01	5.427000e-01	-8.8149	9.490000e-02	2.136000e-01	3.261000e-01	3.725100e+00	
ni_be_x	2444347.0	-1.990000e-02	5.962000e-01	-10.7541	1.720000e-02	9.500000e-02	1.504000e-01	1.450500e+00	
nix_be_x	2444347.0	-2.270000e-02	6.187000e-01	-11.9515	1.490000e-02	9.590000e-02	1.526000e-01	1.558300e+00	
ocf_be_x	2375509.0	4.150000e-02	5.350000e-01	-7.2459	-3.990000e-02	1.089000e-01	2.199000e-01	4.068700e+00	
fcf_be_x	2219533.0	-1.352000e-01	6.520000e-01	-9.8959	-2.117000e-01	-4.000000e-03	1.206000e-01	2.895100e+00	
gp_bev_x	2404319.0	6.940000e-01	1.236500e+00	-11.0645	2.172000e-01	4.625000e-01	8.366000e-01	1.753110e + 01	
ebitda_bev_x	2406313.0	5.730000e-02	1.310800e+00	-38.6063	9.750000e-02	1.837000e-01	2.972000e-01	3.290900e+00	
ebit_bev_x	2406990.0	-2.510000e-02	1.386000e+00	-41.0563	5.220000e-02	1.282000e-01	2.282000e-01	2.800000e+00	
fi_bev_x	2116451.0	-8.600000e-02	1.345800e+00	-38.5103	4.190000e-02	9.9100000e-02	1.608000e-01	2.274200e+00	
cop_bev_x	2188818.0	3.139000e-01	8.344000e-01	-8.9448	8.920000e-02	2.259000e-01	4.111000e-01	1.607970e + 01	
gp-ppen_x	2466653.0	2.766900e+00	6.510900e+00	-130.5385	4.559000e-01	1.518900e+00	3.353000e+00	1.035052e + 02	
ebitda_ppen_x	2468488.0	-1.134000e-01	1.280070e + 01	-558.0000	1.689000e-01	4.726000e-01	1.116300e+00	3.389320e+01	
fcf_ppen_x	2270795.0	-8.658000e-01	1.104610e + 01	-423.4211	-3.778000e-01	-1.180000e-02	3.338000e-01	3.272670e + 01	
fincf_at_x	2181057.0	6.050000e-02	2.270000e-01	-0.9085	-4.100000e-02	1.800000e-03	8.120000e-02	1.643700e+00	
netis_at_x	2180970.0	2.900000e-02	2.576000e-01	-1.3681	-4.860000e-02	0.0000000e+00	5.940000e-02	1.592800e+00	
eqnetis_at_x	2181226.0	5.680000e-02	1.918000e-01	-0.3507	-8.000000e-04	6.000000e-04	1.520000e-02	1.488800e+00	
eqis_at_x	2142004.0	7.050000e-02	1.912000e-01	-0.1034	0.00000000+00	3.200000e-03	2.280000e-02	1.535600e+00	
dbnetis_at_x	2487875.0	-2.120000e-02	1.573000e-01	-1.3624	-3.980000e-02	-8.000000e-04	2.270000e-02	6.456000e-01	
dltnetis_at_x	2487184.0	-2.430000e-02	1.364000e-01	-1.2268	-3.180000e-02	-2.200000e-03	1.200000e-03	5.184000e-01	
dstnetis_at_x	2428021.0	3.500000e-03	6.050000e-02	-0.4789	-5.100000e-03	0.0000000e+00	1.130000e-02	4.836000e-01	
eqnpo_at_x	2177364.0	-4.470000e-02	1.949000e-01	-1.4673	-1.110000e-02	8.000000e-04	2.020000e-02	4.462000e-01	
eqbb_at_x	2059717.0	1.250000e-02	3.500000e-02	-0.0026	0.00000000+00	0.0000000e+00	5.300000e-03	4.018000e-01	
div_at_x	2500964.0	1.160000e-02	2.170000e-02	0.0000	0.0000000e+00	1.900000e-03	1.660000e-02	3.183000e-01	
oaccruals_at_x	2261617.0	-1.580000e-02	1.522000e-01	-2.2637	-7.200000e-02	-1.830000e-02	4.760000e-02	6.719000e-01	

2142866.0 2368048.0 2416506.0 2418755.0 2412477.0 2412477.0 2403343.0 1959042.0 1874541.0 2242375.0 2242375.0 2242375.0 2124755.0 2124755.0 2130411.0 2235158.0 2251637.0 2439883.0 2503218.0 2514980.0 2444508.0	-1.448100e+00 6.816000e-01 1.343100e+00 4.732000e-01 3.446000e-01 1.258000e-01 1.258000e-01 1.258000e-01 1.253200e+00 1.253200e+00 1.253200e+00 1.253200e-01 2.718000e-01 2.718000e-01 1.413180e+01 1.413180e+01 1.413180e+01 1.413180e+01 1.413180e+01 1.413180e+01 1.413180e-01 2.724000e-01 2.724000e-01 1.413180e+01 1.413180e+01 1.413180e+01 1.413180e+01 1.413180e+01 1.413180e-01 2.724000e-01 2.724000e-01 2.724000e-01 2.724000e-01 2.724000e-01 3.433000e-01 2.724000e-01 2.724000e-01 3.433000e-01 2.724000e-01 3.433000e-01 2.724000e-01 3.825000e-01 1.9825000e-01 1.9825000e-01 1.9825000e-01	8.683400e+00 4.649000e-01 2.666700e+00 6.162000e-01 3.110100e+00 1.704000e-01 4.482000e-01 3.153000e-01 1.552500e+00 2.312980e+01 1.566600e+00 1.456200e+00 2.312980e+01 2.932000e-01 3.15200e+00 2.312980e+01 3.15200e+00 3.156000e-01 3.15400e-01 3.158000e-01	-131.5096 -1.1515 0.0326 0.0000 0.0000 0.0000 0.0000 0.0000 -362.2105 -11.9038 -14.9568 -264.1167 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.896000e-01 5.543000e-01 1.399000e-01 3.800000e-02 3.200000e-02 3.200000e-02 3.200000e-02 6.360000e-02 1.666000e-01 2.114000e-01 -7.590000e-02 4.150000e-02 4.150000e-02 3.90000e-01 1.990000e-01 3.90000e-01 3.95000e-01 8.520000e-02 3.295000e-01 8.520000e-02 9.520000e-02	-1.190000e-01 6.884000e-01 8.086000e-01 3.804000e-01 1.245000e-01 3.390000e-02 7.610000e-02 7.610000e-02 3.390000e-01 3.390000e-01 5.648000e-01 1.564000e-01 1.564000e-01 2.183000e-01 1.578000e-01 3.479000e-01 3.479000e-01 2.538000e-01 3.25000e-01 2.538000e-01 3.025000e-01 2.536000e-01 3.025000e-01 3.025000e-01 3.025000e-01 3.025000e-01 3.025000e-01 3.025000e-01 3.025000e-01 3.025000e-01 3.025000e-01	4.930000e-02 7.622000e-01 8.418000e-01 1.190400e+00 6.012000e-01 4.276000e-01 1.172000e-01 1.063000e-01 1.063000e-01 1.016300e+00 5.993000e-01 5.084000e-01 5.084000e-01 4.754000e-01 4.754000e-01 4.754000e-01 7.861000e-01 7.861000e-01 3.724000e-01 3.391000e-01 3.391000e-01 1.334500e+00 4.349000e-01 3.591000e-01	1.294200e+00 6.728570e+01 1.038840e+01 6.053070e+01 1.276120e+01 7.089400e+00 9.026500e+00 5.633000e+00 7.750000e+00 7.750000e+00 7.750000e+00 4.145000e+00 5.976400e+00 5.976400e+01 9.455000e+01 1.000000e+00 3.440000e+00
2038745.0 2394275.0 2403668.0 2314657.0 1836443.0 2262167.0 2241081.0 2252774.0	1.266250e+01 8.869850e+01 3.602296e+02 1.459695e+03 1.256743e+02 1.419800e+00 2.487700e+00 3.162200e+00	1.78445e+02 1.683021e+02 9.967740e+02 7.489965e+03 2.122532e+02 3.231200e+00 3.827100e+00 3.912700e+01	-3702.0000 0.0000 0.7812 0.0000 0.0000 0.0581 0.0824 0.0438	1.253300e+00 9.009300e+00 3.863530e+01 2.587680e+01 4.172550e+01 1.124000e-01 9.004000e-01 1.372500e+00	4.003000e+00 5.392190e+01 5.827670e+01 4.209780e+01 8.193360e+01 3.726000e-01 1.378900e+00 2.102000e+00	1.124330e+01 1.091676e+02 8.822010e+01 7.865320e+01 1.398610e+02 1.177400e+00 2.376600e+00 3.307100e+00	3.302250e+03 3.574195e+03 7.354934e+03 1.412089e+05 3.521431e+03 3.650000e+01 4.066670e+01 4.119530e+01 7.307939e+02

00 02 01	01	05	00	03	03	 8	00	01	 00	01	01	01	01	01	00	01	00	 00	01	 00	01	01	01	00	00	00	00	01	01	01
9.298300e+00 2.787135e+02 1.336129e+02 3.887110e+01	5.438940e + 01 $1.293670e + 01$	3.110241e + 02	5.548900e+00 9.799000e-01	1.438498e+03	7.782523e+03	$1.483100e \pm 00$	8.000000e+00	1.075230e + 01	3.078700e + 00	7.544000e-01	7.697220e+01	1.574840e + 01	6.993000e-01	1.818000e-01	1.227600e + 00	8.413000e-01	5.598300e + 00	7.637700e + 00	1.201120e + 01	6.963700e + 00	3.358810e + 01	2.019490e + 01	1.196350e + 01	1.125400e + 00	2.788000e+00	4.617600e + 00	1.923400e+00	1.989360e + 01	5.979000e-01	5.662000e-01
1.525100e+00 9.236800e+00 1.434510e+01 2.598800e+00	3.096000e+00 4.135000e-01	7.750900e+00	4.329000e-01 2.026000e-01	1.703640e+01	2.763478e + 02	1.513000e-01 $1.538000e-01$	7.000000e+00	1.574000e-01	1.436000e-01	4.740000e-02	1.043000e+00	2.606000e-01	4.290000e-02	2.060000e-02	1.090000e-02	5.600000e-03	1.949000e-01	1.418000e-01	8.380000e-02	9.360000e-02	1.125000e+00	7.529000e-01	2.932000e-01	2.227000e-01	5.356000e-01	3.880000e-01	2.563000e-01	1.777900e+00	1.033000e-01	1.892000e-01
9.269000e-01 6.187900e+00 8.918500e+00 1.580300e+00	1.758000e+00 1.650000e-01	3.971600e+00	3.654000e-01 7.260000e-02	4.200600e+00	1.411000e+02	4.520000e-02	2.0000000e+00	4.940000e-02	5.870000e-02	1.370000e-02	2.272000e-01	9.890000e-02	2.420000e-02	8.200000e-03	-6.000000e-04	-0.0000000e+00	2.150000e-02	1.500000e-03	2.300000e-03	-1.000000e-04	1.532000e-01	5.100000e-03	-6.920000e-02	1.355000e-01	3.032000e-01	2.425000e-01	1.505000e-01	1.572900e+00	4.090000e-02	1.205000e-01
3.768000e-01 4.039600e+00 4.826800e+00 7.623000e-01	9.001000e-01 0.000000e+00	2.066900e+00	2.705000e-01 2.580000e-02	4.055000e-01	6.301400e+01	-3.060000e-02	0.0000000e+00	-1.750000e-02	9.400000e-03	-3.800000e-03	-2.477000e-01	-1.270000e-02	1.600000e-03	0.00000000+00	-1.650000e-02	-7.100000e-03	-1.460000e-01	-1.418000e-01	-7.530000e-02	-8.920000e-02	-8.666000e-01	-7.565000e-01	-3.685000e-01	4.860000e-02	1.162000e-01	1.063000e-01	4.500000e-02	1.340700e+00	-2.140000e-02	4.200000e-02
0.0000 0.0000 -0.1258 0.0000	0.0000	0.0000	0.0000	-3810.3810	0.0000	-0.9505	0.0000	-0.7366	-0.5663	-0.5778	-1.4277	-1.0000	-2.0216	-0.6672	-2.0038	-0.4547	-19.4778	-7.3996	-5.9700	-2.2251	-16.0960	-50.8463	-1.1469	-6.9463	-1.9036	-13.6285	-3.8344	0.1059	-1.8184	-1.2330
9.318000e-01 2.636800e+01 1.238900e+01 2.923100e+00	3.718300e+00 5.775000e-01	2.267620e+01	3.117000e-01 2.035000e-01	1.898294e + 02	5.003031e+02	4.553000e-01 2.504000e-01	3.262400e+00	4.002000e-01	2.282000e-01	9.170000e-02	4.305300e+00	8.315000e-01	1.393000e-01	6.080000e-02	1.339000e-01	5.400000e-02	8.780000e-01	6.202000e-01	5.405000e-01	3.643000e-01	1.699500e+00	1.940400e+00	9.626000e-01	2.472000e-01	3.763000e-01	6.575000e-01	2.863000e-01	6.861000e-01	1.872000e-01	1.575000e-01
1.084900e+00 1.234110e+01 1.163840e+01 2.269200e+00	2.732600e+00 3.126000e-01	9.746900e+00	3.279000e-01 1.581000e-01	-1.044570e+01	2.691786e+02	7.670000e-01	3.116800e+00	1.277000e-01	1.104000e-01	3.180000e-02	1.219100e+00	2.428000e-01	5.000000e-04	-2.200000e-03	-7.700000e-03	3.000000e-04	-4.380000e-02	-3.080000e-02	2.720000e-02	2.310000e-02	1.618000e-01	-1.123000e-01	1.173000e-01	1.320000e-01	3.639000e-01	2.202000e-01	1.409000e-01	1.615000e+00	1.150000e-02	1.113000e-01
2482416.0 2400338.0 2229997.0 2408388.0	2437063.0 1963756.0	2017664.0	1999061.0 2496082.0	2332173.0	2328826.0	2048454.0	1837805.0	2130139.0	2130674.0	2042945.0	1996106.0	2256822.0	2153966.0	2218680.0	1961181.0	2044996.0	1796036.0	2136436.0	2120443.0	1827645.0	1944544.0	1972831.0	1806456.0	2415570.0	2413733.0	2010286.0	2237311.0	1959639.0	2449158.0	2505194.0
at_turnover_x rec_turnover_x ap_turnover_x sale_bev_x	sale_be_x div_ni_x	sale_nwc_x	tax_pı_x cash_at_x	ni_emp_x	sale_emp_x	sate_emp_g11_x emp_gr1_x	ni_inc8q_x	noa-gr1a_x	ppeinv-gr1a.x	lnoa_gr1a_x	capx_gr2_x	saleq_gr1_x	niq-be.x	niq_at_x	$\mathrm{niq}_{-}\mathrm{be_chg1_x}$	niq-at_chg1_x	dsale_dinv_x	dsale_drec_x	dgp_dsale_x	dsale_dsga_x	saleq_su_x	miq_su_x	capex_abn_x	op_atll_x	gp_atll_x	ope_bell_x	cop_atll_x	pi_nix_x	ocf_at_x	op_at_x

ocf_at_chgl_x at_be_x niq_saleq_std_x	2333855.0 2452393.0 1902197.0	2.300000e-03 3.714900e+00 1.360600e+00	1.627000e-01 4.779700e+00 1.149800e+01	-1.0782 1.0000 0.0008	-4.770000e-02 1.469000e+00 1.930000e-02	-1.000000e-04 2.029600e+00 4.260000e-02	4.630000e-02 3.240900e+00 1.236000e-01	1.390100e+00 5.963100e+01 3.177766e+02
roe_be_std_x	1799259.0	1.611000e-01 6.502000e-01	4.732000e-01	0.0021	2.230000e-02 5.540000e-01	4.760000e-02 6.638000e-01	1.133000e-01 7 614000e-01	9.225400e+00
earnings-variability_x	1752776.0	8.639000e-01	1.037400e+00	0.0243	2.577000e-01	5.765000e-01	1.052900e+00	1.145280e+01
aliq-at_x	2174808.0	8.263000e-01	8.005000e-01	0.1044	5.792000e-01	6.946000e-01	8.423000e-01	2.803980e + 01
f_score_x	1978727.0	4.911500e+00	1.728500e+00	0.0000	4.000000e+00	5.0000000e+00	6.0000000e+00	9.0000000e+00
o_score_x	2127585.0	-1.902100e+00	3.035200e+00	-9.3872	-3.598500e+00	-2.309000e+00	-8.857000e-01	2.287030e+01
z_score_x	2126989.0	5.526800e+00	9.357000e+00	-37.3359	1.992200e+00	3.446700e+00	5.637300e+00	1.744239e + 02
intrinsic_value_x	1899809.0	1.317903e+03	5.258077e + 03	0.0982	3.489040e+01	1.295681e + 02	5.706605e+02	1.130984e + 05
kz_index_x	2167838.0	-1.126290e+01	5.190800e+01	-1723.5716	-6.936600e+00	-1.467200e+00	5.962000e-01	8.903350e + 01
gpoa_ch5_x	1799428.0	-5.000000e-03	1.939000e-01	-1.1201	-7.080000e-02	-2.900000e-03	5.560000e-02	1.669700e+00
roe_ch5_x	1718355.0	-1.400000e-02	5.543000e-01	-7.5143	-7.570000e-02	-6.100000e-03	5.400000e-02	7.791500e+00
roa_{ch5_x}	1824336.0	4.900000e-03	1.917000e-01	-1.6595	-3.640000e-02	-1.800000e-03	2.650000e-02	3.283900e+00
cfoa_ch5_x	1759171.0	1.520000e-02	1.825000e-01	-0.9610	-5.570000e-02	2.500000e-03	7.100000e-02	2.175100e+00
gmar_ch5_x	1777826.0	4.200000e-02	9.593000e-01	-24.3597	-4.330000e-02	2.700000e-03	5.140000e-02	3.059480e + 01
ni_ar1_x	1798398.0	2.127000e-01	6.1100000e-01	-3.9640	-1.463000e-01	1.674000e-01	5.078000e-01	9.144200e+00
ni_ivol_x	1798398.0	5.090000e-02	1.054000e-01	0.0003	7.900000e-03	1.910000e-02	4.640000e-02	1.756800e+00
at_me_x	2522907.0	2.710400e+00	4.953100e+00	0.0086	5.788000e-01	1.230200e+00	2.687400e+00	1.923122e + 02
be_me_x	2452453.0	7.411000e-01	7.141000e-01	0.0050	3.072000e-01	5.729000e-01	9.557000e-01	2.516310e + 01
debt_me_x	2515141.0	7.136000e-01	1.647800e+00	0.0000	3.610000e-02	2.333000e-01	7.145000e-01	6.550580e + 01
netdebt_me_x	2515141.0	4.707000e-01	1.480500e+00	-3.4965	-6.240000e-02	1.146000e-01	5.472000e-01	5.866260e + 01
cash_me_x	2496218.0	2.459000e-01	5.843000e-01	0.0000	3.340000e-02	9.500000e-02	2.301000e-01	1.478940e+01
sale_me_x	2509790.0	1.848400e+00	3.088100e+00	0.0000	3.854000e-01	9.080000e-01	2.049100e+00	7.507530e+01
gp_me_x	2504145.0	4.729000e-01	6.845000e-01	-5.3506	1.503000e-01	2.955000e-01	5.587000e-01	1.896990e + 01
ebitda_me_x	2506237.0	1.594000e-01	2.707000e-01	-5.8474	5.650000e-02	1.331000e-01	2.363000e-01	5.597900e+00
ebit_me_x	2507305.0	9.600000e-02	2.455000e-01	-7.4186	3.000000e-02	9.500000e-02	1.716000e-01	3.506600e + 00
ope_me_x	2183835.0	1.085000e-01	2.516000e-01	-8.0248	3.920000e-02	1.084000e-01	1.911000e-01	3.793500e+00
ni_me_x	2517298.0	1.200000e-03	3.459000e-01	-18.9294	5.500000e-03	4.900000e-02	8.530000e-02	9.917000e-01
nix_me_x	2517298.0	-1.200000e-03	3.693000e-01	-20.3694	4.100000e-03	4.920000e-02	8.650000e-02	1.036200e+00
cop_me_x	2259562.0	2.183000e-01	5.014000e-01	-3.5452	4.550000e-02	1.406000e-01	2.768000e-01	2.124680e + 01
ocf_me_x	2450553.0	4.280000e-02	2.747000e-01	-5.6691	-1.830000e-02	5.360000e-02	1.205000e-01	5.711200e+00
fcf_me_x	2303306.0	-7.030000e-02	3.536000e-01	-8.5448	-1.065000e-01	-2.600000e-03	5.530000e-02	4.202300e+00
div_me_x	2501593.0	1.780000e-02	2.950000e-02	0.0000	0.00000000+00	3.900000e-03	2.660000e-02	1.049700e+00
eqbb_me_x	2059868.0	1.380000e-02	3.780000e-02	-0.0037	0.000000e+00	0.000000e+00	7.800000e-03	8.704000e-01
eqis-me-x	2142182.0	4.550000e-02	1.388000e-01	-0.1339	1.000000e-04	3.500000e-03	1.830000e-02	5.839400e+00

eqno-me-x	2058263.0 2177501.0	3.150000e-02 -1.430000e-02	$\begin{bmatrix} 5.660000e-02 \\ 1.450000e-01 \end{bmatrix}$	-0.0013	0.000000e+00 -8.100000e-03	1.120000e-02 1.200000e-03	4.150000e-02 3.130000e-02	$\begin{array}{c c} 1.725500e+00 \\ 1.442900e+00 \end{array}$
eqnetis_me_x	2181408.0	3.130000e-02	1.401000e-01	-0.6866	-1.400000e-03	7.000000e-04	1.260000e-02	5.679700e+00
at_mev_x	2480516.0	1.759600e+00	3.280300e+00	0.0085	5.638000e-01	1.008000e+00	1.587100e+00	6.916660e + 01
bev_mev_x	2404633.0	6.919000e-01	5.487000e-01	0.0009	3.194000e-01	6.308000e-01	9.482000e-01	1.692550e+01
ppen_mev_x	2459710.0	3.322000e-01	3.872000e-01	0.0000	5.950000e-02	1.893000e-01	4.753000e-01	6.654400e+00
be_mev_x	2410201.0	6.153000e-01	8.336000e-01	0.0050	2.513000e-01	4.357000e-01	7.057000e-01	2.914710e+01
cash_mev_x	2460357.0	2.333000e-01	6.611000e-01	0.0000	2.350000e-02	6.940000e-02	1.825000e-01	1.486960e + 01
sale_mev_x	2472091.0	1.265200e+00	1.765600e+00	0.0000	3.146000e-01	7.343000e-01	1.550900e+00	3.775600e+01
gp_mev_x	2467238.0	3.453000e-01	4.647000e-01	-2.4081	1.209000e-01	2.305000e-01	4.284000e-01	1.314000e+01
ebitda_mev_x	2469299.0	1.012000e-01	2.101000e-01	-5.5869	5.090000e-02	1.060000e-01	1.669000e-01	2.711700e+00
ebit_mev_x	2470075.0	6.010000e-02	2.226000e-01	-6.8743	2.670000e-02	7.470000e-02	1.222000e-01	2.601300e+00
cop_mev_x	2243652.0	1.516000e-01	2.798000e-01	-2.3844	4.200000e-02	1.203000e-01	2.126000e-01	8.747500e+00
ocf_mev_x	2431339.0	3.150000e-02	1.968000e-01	-4.7377	-1.650000e-02	4.340000e-02	9.350000e-02	2.334400e+00
fcf_mev_x	2286863.0	-3.800000e-02	2.261000e-01	-6.0410	-8.630000e-02	-2.300000e-03	4.670000e-02	1.728000e+00
debt_mev_x	2480615.0	3.008000e-01	3.502000e-01	0.0000	4.020000e-02	2.106000e-01	4.607000e-01	7.224300e+00
pstk_mev_x	2479267.0	1.480000e-02	5.860000e-02	0.0000	0.0000000e+00	0.0000000e+00	0.0000000e+00	1.220500e+00
debtlt_mev_x	2476104.0	2.224000e-01	2.443000e-01	0.0000	1.400000e-02	1.446000e-01	3.542000e-01	2.411300e+00
debtst_mev_x	2461067.0	8.090000e-02	2.125000e-01	0.0000	9.000000e-04	1.690000e-02	7.010000e-02	5.292900e+00
dltnetis_mev_x	2453443.0	-3.150000e-02	1.853000e-01	-3.5613	-3.440000e-02	-1.900000e-03	1.200000e-03	6.324000e-01
dstnetis_mev_x	2393968.0	4.100000e-03	9.390000e-02	-1.0163	-4.800000e-03	0.00000000+00	1.110000e-02	1.122900e+00
dbnetis_mev_x	2454176.0	-2.880000e-02	2.223000e-01	-4.4848	-4.210000e-02	-6.000000e-04	2.280000e-02	1.188800e+00
netis_mev_x	2164671.0	-8.300000e-03	2.729000e-01	-4.6395	-5.040000e-02	0.0000000e+00	5.030000e-02	5.358400e+00
fincf_mev_x	2164802.0	3.700000e-02	2.405000e-01	-2.3006	-4.040000e-02	1.300000e-03	7.090000e-02	6.822000e+00
aliq_mat_x	2036506.0	5.016000e-01	2.661000e-01	0.0270	3.052000e-01	4.793000e-01	6.504000e-01	3.973200e+00
eq_dur_x	2193667.0	1.598720e+01	5.630900e+00	0.2861	1.413720e+01	1.612420e+01	1.764670e + 01	3.430355e+02
beta_60m_x	2090801.0	1.153800e+00	6.856000e-01	-1.7467	6.897000e-01	1.081600e+00	1.528500e+00	4.912400e+00
ivol_capm_60m_x	2090801.0	1.172000e-01	6.560000e-02	0.0288	7.050000e-02	1.002000e-01	1.454000e-01	5.392000e-01
$resff3_12_1x$	2274040.0	-2.210000e-02	2.736000e-01	-1.1550	-1.908000e-01	-8.900000e-03	1.610000e-01	7.899000e-01
$resff3_6_1x$	2273172.0	-5.420000e-02	5.396000e-01	-2.9537	-3.435000e-01	-2.040000e-02	2.734000e-01	1.925800e+00
mispricing_mgmt_x	2414716.0	4.896000e-01	1.856000e-01	0.0147	3.610000e-01	5.047000e-01	6.284000e-01	9.427000e-01
mispricing_perf_x	2649116.0	5.208000e-01	2.065000e-01	0.0099	3.773000e-01	5.270000e-01	6.749000e-01	9.881000e-01
$zero_trades_21d_x$	2568596.0	9.102000e-01	2.670500e+00	0.0000	1.800000e-03	3.700000e-03	7.200000e-03	2.100980e+01
$dolvol_126d_x$	2527407.0	1.272436e+07	5.041472e+07	36.1000	6.023594e + 04	3.756701e + 05	3.493927e+06	1.038495e+09
dolvol_var_126d_x	2527340.0	1.275800e+00	7.751000e-01	0.2622	7.587000e-01	1.088500e+00	1.545100e+00	8.289100e+00
$turnover_126d_x$	2527415.0	4.300000e-03	6.800000e-03	0.0000	9.000000e-04	2.200000e-03	5.300000e-03	2.857000e-01
turnover_var_126d_x	2527348.0	1.251900e+00	7.609000e-01	0.2796	7.459000e-01	1.058700e+00	1.509700e+00	7.678300e+00
	=							

1.949730e+01 1.910030e+01 5.318000e-01 1.854000e-01	1.276490e+01 2.415000e-01	3.715300e+00	$2.341690e \pm 01$	2.340000e-01	$3.455800e \pm 00$ 2.397000e - 01	3.275600e+00	3.544000e-01	8.996000e-01	3.808400e+00	7.242321e+02	4.013900e+00	1.684000e-01	5.699200e+00	1.0000000e+00	1.690000e-01	8.219000e-01	4.274900e+00	4.328700e+00	1.115000e+03	1.701100e+00	1.698800e+00	1.702100e+00	1.708800e+00	1.988170e + 01	1.527087e + 05	1.975796e + 05	1.340182e + 05	1.023323e+05	1.259151e + 05
1.771000e-01 2.625000e-01 1.710000e-02 2.680000e-02	1.458000e+00	7.097000e-01	1.598400e+01	3.300000e-02	6.344000e-01 3.350000e-02	6.005000e-01	4.810000e-02	8.280000e-02	7.136000e-01	7.621000e-01	1.259200e+00	3.650000e-02	1.414000e+00	9.318000e-01	3.870000e-02	4.786000e-01	1.410600e+00	1.512600e+00	3.0000000e+02	9.350000e-01	9.456000e-01	8.716000e-01	9.239000e-01	6.680000e-02	3.413100e+00	5.622922e+02	5.623110e + 02	5.626841e+02	5.621040e + 02
4.000000e-03 4.300000e-03 9.400000e-03 1.720000e-02	8.042000e-01 2.160000e-02	2.053000e-01	-2.070000e-02 8.515000e-01	2.100000e-02	1.696000e-01 2.130000e-02	1.513000e-01	3.050000e-02	5.0000000e-02	2.077000e-01	8.310000e-02	8.481000e-01	2.480000e-02	9.352000e-01	8.272000e-01	2.680000e-02	3.573000e-01	1.000500e+00	1.159900e+00	1.590000e+02	1.204000e-01	1.300000e-01	4.900000e-02	1.215000e-01	-1.400000e-03	1.290100e+00	-6.488730e+01	-6.400750e+01	-6.279780e+01	-6.287600e+01
1.900000e-03 2.000000e-03 5.600000e-03 1.100000e-02	2.238000e-01 1.400000e-02	-2.542000e-01	-2.232000e-01 4.290000e-02	1.360000e-02	-2.632000e-01 1.370000e-02	-2.681000e-01	1.960000e-02	3.110000e-02 1 500000e-02	-2.529000e-01	6.300000e-03	4.682000e-01	1.700000e-02	5.127000e-01	6.610000e-01	1.870000e-02	2.362000e-01	6.475000e-01	8.720000e-01	7.900000e+01	-7.318000e-01	-7.339000e-01	-7.911000e-01	-7.189000e-01	-6.530000e-02	6.348000e-01	-6.730875e+02	-6.719280e+02	-6.704744e+02	-6.701777e+02
0.0000 0.0001 0.0011 0.0000	-11.1429	-3.5665	-1.4070	0.0018	-3.1203	-3.0805	0.0022	0.0035	-3.5810	0.0000	-1.8325	0.0050	-3.9821	0.0167	0.0052	-0.0374	-0.3259	0.1125	1.0000	-1.7027	-1.7036	-1.7018	-1.7012	-1.0113	-0.2196	-11994.7451	-12093.2324	-12181.5869	-12221.2090
2.511100e+00 2.470600e+00 1.810000e-02 1.570000e-02	1.205700e+00 $1.960000e-02$	8.745000e-01	1.950600e+00	1.930000e-02	7.943000e-01 1.960000e-02	7.585000e-01	2.910000e-02	5.830000e-02	8.740000e-01	1.277990e+01	6.011000e-01	1.710000e-02	7.817000e-01	1.997000e-01	1.740000e-02	1.650000e-01	5.871000e-01	5.049000e-01	1.888040e + 02	9.763000e-01	9.846000e-01	9.739000e-01	9.713000e-01	1.555000e-01	6.890425e + 02	1.452874e + 03	1.453405e+03	1.452500e+03	1.467237e+03
9.170000e-01 9.236000e-01 1.470000e-02 2.130000e-02	8.736000e-01 2.710000e-02	2.407000e-01	-1.550000e-02 9.503000e-01	2.640000e-02	1.990000e-01 2.680000e-02	1.777000e-01	3.860000e-02	6.730000e-02	2.439000e-01	2.294900e+00	8.972000e-01	2.910000e-02	1.001300e+00	7.724000e-01	3.110000e-02	3.603000e-01	1.075600e+00	1.232900e+00	2.184690e+02	8.990000e-02	9.110000e-02	3.610000e-02	8.730000e-02	6.400000e-03	1.770830e+01	-3.000000e-04	-4.000000e-04	-5.000000e-04	3.000000e-04
2527415.0 2472485.0 2474735.0 2474735.0	2469080.0 2469080.0	2469046.0	2409074.0	2469080.0	2409068.0	2332643.0	2469033.0	2469033.0	2469038.0	2427976.0	2434576.0	2434576.0	2406390.0	2434268.0	2434576.0	1904407.0	1893789.0	2343331.0	2739928.0	1825615.0	2502382.0	1825622.0	2579701.0	2739928.0	2739928.0	2717410.0	2694932.0	2672377.0	2649956.0
zero-trades_126d_x zero-trades_252d_x bidaskhl_21d_x rvolhl_21d_x	beta_21d_x ivol capm 21d x	iskew_capm_21d_x	beta_dimson_21d_x	ivol_ff3_21d_x	ivol_hxz4_21d_x	iskew_hxz4_21d_x	rmax5_21d_x	rmax1.21d.x	rskew_21d_x	ami_126d_x	$ m beta_252d_x$	ivol_capm_252d_x	$ m betadown_252d_x$	prc_highprc_252d_x	rol_252d_x	$corr_1260d_x$	$ ho = betabab_1260d_x$	rmax5_rvol_21d_x	age_x	qmj_x	qmj-prof_x	qmj_growth_x	qmj_safety_x	ľ	ri	r_f001m	$ $ r_f002m	r_f003m	$ $ r_f004m

1.259212e+05 1.259316e+05 1.895877e+05 1.975297e+05 1.975297e+05 1.975094e+05 1.975094e+05 1.975094e+05 1.974958e+05 1.974964e+05 1.974964e+05 1.974964e+05 1.974706e+05 1.974742e+05 1.97476e+05 1.974742e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.97476e+05 1.105891e+05 1.105892e+05 1.105892e+05
1.255 1.255 1.255 1.255 1.257 1.275
5.614439e+02 5.606414e+02 5.595248e+02 5.595248e+02 5.5573524e+02 5.550534e+02 5.550534e+02 5.550534e+02 5.550534e+02 5.550534e+02 5.550534e+02 5.454422e+02 5.45442e+02 5.45442e+02 5.45442e+02 5.45442e+02 5.45442e+02 5.45446+02 5.454589e+02 5.43594e+02 5.37737e+02 5.373744e+02 5.357737e+02 5.37294e+02 5.37343e+02 5.37343e+02 5.357374e+02 5.37343e+02 5.37434e+02 5.357374e+02 5.357374e+02 5.357374e+02 5.357374e+02 5.357374e+02 5.357374e+02 5.364538e+02 5.364538e+02 5.364538e+02 5.364539e+02 5.308284e+02 5.308284e+02 5.308346e+02 5.308346e+02
5.614439e+02 5.60614e+02 5.602472e+02 5.595248e+02 5.553124e+02 5.557687e+02 5.550534e+02 5.550534e+02 5.530358e+02 5.46704e+02 5.46704e+02 5.496704e+02 5.496704e+02 5.496704e+02 5.496704e+02 5.43594e+02 5.43594e+02 5.372294e+02 5.372294e+02 5.372294e+02 5.372294e+02 5.372396e+02 5.37336e+02 5.373346e+02 5.374344e+02 5.37439e+02 5.374346e+02 5.374346e+02 5.374346e+02 5.373436e+02 5.373436e+02 5.37346e+02 5.373434e+02 5.373436e+02 5.373436e+02 5.373436e+02
6. 289280e+01 6. 3344070e+01 6. 289280e+01 6. 289780e+01 6. 386780e+01 6. 324470e+01 6. 324470e+01 6. 324470e+01 6. 581010e+01 6. 773940e+01 6. 773940e+01 6. 773140e+01 6. 773140e+01 6. 77310e+01 6. 77310e+01 6. 728920e+01 6. 652340e+01 6. 652340e+01 6. 652340e+01 6. 652840e+01 6. 6537680e+01 6. 637680e+01 6. 637680e+01
-6.696848e+02 -6.699737e+02 -6.683008e+02 -6.684138e+02 -6.67420e+02 -6.67420e+02 -6.657420e+02 -6.657420e+02 -6.657420e+02 -6.651825e+02 -6.646672e+02 -6.646672e+02 -6.63084e+02 -6.630884e+02 -6.630884e+02 -6.630884e+02 -6.6308971e+02 -6.6308971e+02 -6.530912e+02 -6.530912e+02 -6.531980e+02 -6.557527e+02 -6.58350e+02 -6.58350e+02 -6.58350e+02 -6.58350e+02 -6.58350e+02 -6.58350e+02 -6.593975e+02 -6.593976e+02 -6.593976e+02 -6.593976e+02 -6.59396e+02 -6.59396e+02 -6.59396e+02 -6.59396e+02 -6.59396e+02 -6.59396e+02 -6.59396e+02 -6.467461e+02 -6.446006e+02 -6.446006e+02
66.699 66.6999 66.69999 66.6999 66.6999 66.6999 66.6999 66.6999 66.6999 66.69999 66.6999 66.6999 66.6999 66.6999 66.6999 66.6999 66.69999 66.6999 66.6999 66.6999 66.6999 66.6999 66.6999 66.69999 66.6999 66.6999 66.6999 66.6999 66.6999 66.6999 66.69999 66.6999 66.6999 66.6999 66.6999 66.6999 66.6999 66.69999 66.6999 66.6999 66.6999 66.6999 66.6999 66.6999 66.69999 66.6999 66.6999 66.6999 66.6999 66.6999 66.6999 66.69999 66.6999 66.6999 66.6999 66.6999 66.6999 66.6999 66.69999 66.6999
0312 7471 9131 5273 8760 7148 8350 1465 9351 6279 6279 6279 9346 9323 9346 9346 1934 7500 0547 7500 0547 7500 0547 7500 0547 7500 0547 7500 0547 7500 0547 7500
-12192.0312 -12242.7471 -12249.9131 -12270.5273 -12302.8760 -12306.7148 -12250.8350 -12176.1465 -11449.5361 -11449.5361 -11449.5361 -11449.5361 -11477.0908 -11837.1934 -11837.1934 -11837.1934 -11839.1934 -11839.1934 -11839.1934 -11839.1934 -11839.1934 -11839.1934 -11846.0547 -11853.5107 -11889.0117 -11889.4648 -11889.4648 -11899.4648 -11899.4750
1.471883e+03 1.47975e+03 1.481432e+03 1.494461e+03 1.497932e+03 1.505680e+03 1.505680e+03 1.511348e+03 1.51108e+03 1.512811e+03 1.5128247e+03 1.522247e+03 1.522247e+03 1.5221428e+03 1.52168e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521428e+03 1.521338e+03 1.484454e+03 1.484454e+03 1.484454e+03 1.464523e+03 1.464523e+03
1.000000e-04 6.000000e-04 -4.000000e-04 -7.000000e-04 -7.000000e-04 -1.000000e-00 -1.000000e-00 -1.000000e-00 -1.000000e-00 -1.000000e-00
3.00 6.00
2627466.0 258271.0 2559645.0 2536940.0 2514233.0 2469229.0 2446715.0 2469229.0 246715.0 246715.0 246715.0 246715.0 2336696.0 2336696.0 2336696.0 2336696.0 22336474.0 2233640.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2272416.0 2168242.0 2168232.0 2168232.0 2168232.0 2168232.0 2168232.0 21682204.0
2627 2627 2636 2536 2536 2536 2446 2424 2336 2315 2315 2316
1,005m 1,006m 1,006m 1,006m 1,008m 1,009m 1,011m 1,012m 1,012m 1,012m 1,022m 1,023m 1,023m 1,023m 1,025m 1,025m 1,025m 1,025m 1,025m 1,025m 1,025m 1,035m 1

r_f042m r_f043m	1864406.0 1846808.0	0.0000000e+00 0.0000000e+00	$\begin{array}{c c} 1.461010e + 03 \\ 1.458799e + 03 \end{array}$	-11649.9248 -11647.5039	-6.426281e+02 -6.419841e+02	-6.453170e+01 -6.478650e+01	5.271555e+02 5.264048e+02	$\frac{1.105945e+05}{1.105988e+05}$
r_f044m	1829434.0	1.000000e-04	1.456109e+03	-11657.0537	-6.405219e + 02	-6.464430e+01	5.260392e + 02	1.105983e + 05
r_f045m	1812186.0	0.00000000+00	1.455769e + 03	-11657.0459	-6.401905e+02	-6.447610e+01	5.255322e+02	1.105999e + 05
$r_{-}f046m$	1795157.0	-0.000000e+00	1.457390e+03	-11652.4551	-6.403130e+02	-6.455670e+01	5.250655e + 02	1.105960e + 05
$\mid r_{-}f047m \mid$	1778282.0	-0.0000000e+00	1.460243e+03	-11658.8438	-6.401207e+02	-6.554230e+01	5.242169e + 02	1.105929e+05
r_f048m	1761604.0	-0.0000000e+00	1.455848e+03	-11682.4463	-6.391160e + 02	-6.477180e+01	5.234120e+02	1.105901e + 05
r_{-} f049m	1745155.0	1.000000e-04	1.455978e + 03	-11670.7920	-6.382848e+02	-6.515990e+01	5.229612e + 02	1.105818e + 05
m r-f050 $ m m$	1728738.0	0.00000000+000	1.454388e+03	-11632.7188	-6.375092e+02	-6.496860e + 01	5.226442e + 02	1.105831e + 05
m r-f051 $ m m$	1712469.0	1.000000e-04	1.452841e+03	-11632.8320	-6.363624e+02	-6.464440e+01	5.219601e+02	1.105796e + 05
m r-f052 $ m m$	1696257.0	-0.0000000e+00	1.447684e+03	-11634.2344	-6.354518e + 02	-6.441250e+01	5.216530e + 02	1.105797e + 05
r_1053m	1680291.0	0.00000000+000	1.446640e+03	-11599.9922	-6.352231e+02	-6.461350e+01	5.207815e + 02	1.105815e + 05
$r_{-}f054m$	1664527.0	-0.0000000e+00	1.447881e+03	-11610.1670	-6.343800e+02	-6.448220e+01	5.200620e+02	1.105856e + 05
m r-f055 $ m m$	1648942.0	-0.0000000e+00	1.441350e+03	-11593.4238	-6.328156e + 02	-6.362880e + 01	5.197030e+02	1.105916e + 05
m r-f056 $ m m$	1633612.0	0.00000000+000	1.439244e+03	-11559.6719	-6.322285e+02	-6.335630e+01	5.195420e + 02	1.105924e + 05
m r-f057 $ m m$	1618435.0	-0.0000000e+00	1.437575e+03	-11520.1182	-6.320952e+02	-6.346460e+01	5.184686e + 02	1.105943e + 05
m r-f058 $ m m$	1603369.0	0.00000000+000	1.432364e+03	-11498.3047	-6.313463e+02	-6.371530e+01	5.178313e + 02	1.105877e + 05
m r-f059 $ m m$	1588459.0	0.00000000+000	1.432379e+03	-11524.8418	-6.294853e + 02	-6.328710e+01	5.172325e+02	1.105811e + 05
m r-f060 $ m m$	1573646.0	-1.000000e-04	1.425208e+03	-11522.6631	-6.281742e+02	-6.214360e+01	5.171097e+02	1.105770e + 05
$r_{-}f061m$	1558831.0	0.00000000+000	1.423086e + 03	-11512.3076	-6.275454e + 02	-6.188950e + 01	5.169286e + 02	1.105791e + 05
$r_{-}f062m$	1544091.0	0.00000000+000	1.421962e+03	-11506.7881	-6.266454e + 02	-6.163530e + 01	5.167087e + 02	1.105750e + 05
r_{-} f063 m	1529580.0	-0.0000000e+00	1.421226e + 03	-11490.2002	-6.257752e + 02	-6.118430e + 01	5.159457e + 02	1.105775e + 05
$r_{-}f064m$	1515298.0	0.00000000+000	1.420464e+03	-11447.7783	-6.246249e+02	-6.092020e+01	5.155374e + 02	1.105721e + 05
m r-f065 $ m m$	1501145.0	0.00000000+000	1.414488e+03	-11448.2666	-6.226816e + 02	-6.009660e+01	5.149099e+02	1.105906e + 05
m r-f066 $ m m$	1487126.0	0.00000000+000	1.409900e+03	-11429.1436	-6.217508e+02	-6.041790e+01	5.136979e + 02	1.105791e + 05
$ m r$ _f067 $ m m$	1473347.0	-0.0000000e+00	1.410359e+03	-11395.8105	-6.213913e + 02	-5.986390e+01	5.135056e + 02	1.105783e + 05
m r-f068 $ m m$	1459783.0	-0.0000000e+00	1.408494e+03	-11416.6279	-6.212914e + 02	-5.952610e+01	5.132261e+02	1.105899e + 05
m r-f069 $ m m$	1446378.0	-0.0000000e+00	1.407508e+03	-11403.6064	-6.206971e+02	-6.046170e+01	5.122022e+02	1.105804e + 05
$ m r ext{-}f070m$	1433053.0	-0.0000000e+00	1.407457e+03	-11369.1240	-6.195969e + 02	-6.033520e+01	5.112055e+02	1.105780e + 05
m r-f071 $ m m$	1419806.0	-0.0000000e+00	1.405462e+03	-11368.4258	-6.189065e + 02	-6.046740e+01	5.107696e + 02	1.105753e + 05
m r-f072 $ m m$	1406604.0	-0.0000000e+00	1.400772e+03	-11371.8594	-6.173835e+02	-5.969520e+01	5.105945e + 02	1.105796e + 05
m r-f073 $ m m$	1393602.0	-0.0000000e+00	1.400693e+03	-11396.2529	-6.175958e + 02	-6.000100e+01	5.098098e + 02	1.105802e + 05
$\mid r_{-}f074m \mid$	1380833.0	0.00000000+000	1.402398e+03	-11372.6416	-6.169977e + 02	-6.035980e + 01	5.092791e + 02	1.105740e + 05
r_f075m	1368264.0	0.0000000+00	1.403089e+03	-11405.9805	-6.166624e+02	-6.033900e+01	5.087950e + 02	1.105671e + 05
$ ho_{ m r-f076m}$	1355788.0	0.0000000+00	1.397425e+03	-11382.0527	-6.149069e+02	-5.957630e+01	5.083461e+02	1.105749e + 05
r_{-f077m}	1343377.0	0.0000000+00	1.395999e + 03	-11382.4336	-6.135413e+02	-5.895680e + 01	5.081946e + 02	1.105644e + 05
r_f078m	1331081.0	0.0000000e+00	1.391616e + 03	-11378.7529	-6.125250e+02	-5.866520e+01	5.075152e + 02	1.105711e+05

r_f079m r_f080m	1318964.0 1307052.0	-0.000000e+00 -0.000000e+00	1.388824e+03 1.386874e+03	-11362.2051 -11357.9014	$\begin{array}{c c} -6.116483e + 02 \\ -6.107534e + 02 \end{array}$	-5.816850e+01 -5.763730e+01	5.073903e+02 5.068637e+02	$\begin{array}{c c} 1.105640e+05 \\ 1.105745e+05 \end{array}$
r_f081m r_f082m	$1295317.0\\1283667.0$	0.0000000e+00 0.0000000e+00	1.381056e+03 1.383347e+03	-11383.5312 -11365.5000	-6.103754e+02 -6.103617e+02	-5.766870e+01 -5.777960e+01	5.064513e + 02 5.060737e + 02	$\frac{1.105647e+05}{1.105658e+05}$
r_f083m	1272047.0	-0.0000000e+00	1.374520e+03	-11384.9004	-6.086416e + 02	-5.797640e+01	5.042909e+02	1.105673e + 05
$r_{-}f084m$	1260498.0	0.00000000000000000000000000000000000	1.373337e+03	-11363.2959	-6.076294e + 02	-5.762950e+01	5.040967e + 02	1.105768e + 05
r_{-} f085 m	1249073.0	-0.0000000e+00	1.374082e+03	-11402.5264	-6.065834e + 02	-5.695480e+01	5.032051e+02	1.105750e + 05
r_{-} f086 m	1237781.0	0.0000000+00	1.370850e+03	-11400.8906	-6.059218e + 02	-5.657530e+01	5.023136e + 02	1.105727e+05
$ m r$ _f087 $ m m$	1226562.0	-1.000000e-04	1.370446e+03	-11414.5410	-6.048359e + 02	-5.619380e + 01	5.021124e + 02	1.105748e + 05
$r_{-}f088m$	1215483.0	0.00000000+000	1.369352e+03	-11404.8936	-6.043073e + 02	-5.630440e+01	5.014727e + 02	1.105904e + 05
r_{-} f089 m	1204483.0	0.00000000000000000000000000000000000	1.370709e+03	-11400.6182	-6.037288e + 02	-5.706160e + 01	5.004432e+02	1.105700e + 05
m r-f090 $ m m$	1193700.0	0.00000000+000	1.367878e+03	-11385.3594	-6.028849e + 02	-5.712190e+01	4.993200e+02	1.105744e + 05
$r_{-}f091m$	1183030.0	-0.0000000e+00	1.363581e+03	-11358.1553	-6.016176e + 02	-5.622980e + 01	4.984420e+02	1.105727e + 05
m r-f092 $ m m$	1172486.0	0.0000000e+00	1.360579e + 03	-11309.1123	-6.002883e + 02	-5.573990e+01	4.975717e+02	1.105593e + 05
$r_{-}f093m$	1162055.0	0.0000000e+00	1.358095e+03	-11357.9609	-5.987974e+02	-5.531470e+01	4.968514e + 02	1.105644e + 05
$r_{-}f094m$	1151736.0	0.00000000+000	1.352453e+03	-11317.3789	-5.971700e+02	-5.476540e+01	4.963483e+02	1.105683e + 05
$r_{-}f095m$	1141522.0	0.00000000+000	1.348188e+03	-11309.7559	-5.962652e + 02	-5.471390e+01	4.951203e+02	1.105691e + 05
$r_{-}f096m$	1131442.0	-0.0000000e+000	1.342258e+03	-11309.1016	-5.944086e + 02	-5.403380e+01	4.948370e+02	1.105662e + 05
$ m r$ _f097 $ m m$	1121493.0	-0.0000000e+00	1.338318e+03	-11247.9277	-5.932616e + 02	-5.396110e + 01	4.937179e+02	1.105643e + 05
$r_{-}f098m$	1111606.0	-0.0000000e+00	1.338118e+03	-11261.6719	-5.919281e + 02	-5.361060e + 01	4.932585e+02	1.105735e + 05
r_{-} f099 m	1101788.0	-0.0000000e+00	1.334361e+03	-11223.1240	-5.905834e + 02	-5.352240e+01	4.921118e + 02	1.105733e + 05
m r-f100 $ m m$	1092121.0	-0.0000000e+00	1.331728e + 03	-11206.9795	-5.900486e+02	-5.297250e+01	4.916311e+02	1.105714e + 05
$r_{-}f101m$	1082539.0	0.0000000e+00	1.332157e+03	-11283.8125	-5.892725e+02	-5.268540e+01	4.909461e+02	1.105668e + 05
$r_{-}f102m$	1072947.0	-0.0000000e+00	1.332334e+03	-11282.4170	-5.881101e+02	-5.258020e+01	4.907911e+02	1.105829e + 05
r_f103m	1063428.0	0.00000000+000	1.329495e+03	-11285.6172	-5.869788e + 02	-5.248610e+01	4.906705e + 02	1.105661e + 05
r_f104m	1053983.0	0.00000000000000000000000000000000000	1.325444e+03	-11298.3848	-5.862903e + 02	-5.239650e + 01	4.899225e+02	1.105618e + 05
r_f105m	1044601.0	0.0000000+00	1.323975e+03	-11301.4951	-5.851770e+02	-5.231380e+01	4.887940e+02	1.105658e + 05
$r_{-}f106m$	1035321.0	0.0000000e+00	1.318717e+03	-11297.5840	-5.832391e+02	-5.184850e+01	4.882903e+02	1.105617e + 05
$ m r_{-f107m}$	1026131.0	-0.0000000e+00	1.311274e+03	-11285.4033	-5.818715e+02	-5.133990e+01	4.878159e + 02	1.105708e + 05
r_f108m	1017036.0	0.0000000e+00	1.305877e+03	-11274.5352	-5.799500e+02	-5.048810e+01	4.874828e+02	1.105686e + 05
r_f109m	1007990.0	1.000000e-04	1.294919e + 03	-11275.3604	-5.771514e+02	-4.921990e+01	4.869372e + 02	1.105662e + 05
$r_{ m -f110m}$	999001.0	-0.0000000e+00	1.289170e + 03	-11268.4707	-5.755809e+02	-4.920890e+01	4.857903e+02	1.105673e + 05
r_f111m	990052.0	-0.0000000e+00	1.290836e + 03	-11281.2275	-5.746790e+02	-4.955900e+01	4.840651e+02	1.105661e + 05
r_f112m	981156.0	0.0000000e+00	1.287458e+03	-11282.5312	-5.735778e+02	-4.994070e+01	4.832928e+02	1.105664e + 05
r_f113m	972370.0	-1.000000e-04	1.284069e+03	-11264.9014	-5.725287e+02	-4.965830e+01	4.823773e+02	1.105705e + 05
r_f114m	963718.0	0.000000e+00	1.278476e+03	-11253.8916	-5.716486e+02	-4.986240e+01	4.817620e+02	1.105646e + 05
r_f115m	955145.0	0.0000000e+00	1.275283e+03	-11264.3701	-5.702315e+02	-4.919280e+01	4.812133e+02	1.105725e+05

$1.272883e + 03 \mid -11263.4824 \mid -5.686965e + 02 \mid -4.945870e + 01 \mid 4.802682e + 02 \mid 1.105707e + 05 \mid$	4.790787e+02 1.105761e+05	$4.773846e+02 \mid 1.105775e+05 \mid$	$4.756199e+02 \mid 1.105739e+05 \mid$	$4.754564e+02 \mid 1.105857e+05 \mid$	0.000000e+00 $1.000000e+00$ $1.000000e+00$	$1.000000e+00 \mid 1.000000e+00 \mid 1.000000e+00 \mid$	$0.0000 \; \big \; \; 0.000000e + 00 \; \big \; \; 0.000000e + 00 \; \big \; 1.000000e + 00 \; \big \; 1.000000e + 00 \; \big $
1 4.802682					$0 \mid 1.000000$	$0 \mid 1.000000$	$0 \mid 1.000000$
-4.945870e+0	-5.015010e + 01	-5.087480e+01	-5.112130e+01	-4.977740e+0			$\mid 0.000000e+0$
-5.686965e + 02	-11257.9434 $ -5.681894e+02$	-5.671390e+02	-5.655049e+02	-5.629036e + 02 -4.977740e + 01	0.0000 0.000000e+00	0.0000 0.000000e+00	0.000000e+00
-11263.4824	-11257.9434	1.270645e+03 -11259.9062	$1.270319e+03 \mid -11240.6992$	-11251.2500	0.0000	0.0000	0.0000
1.272883e+03	1.274644e+03	1.270645e + 03	1.270319e + 03	1.257670e+03	4.994000e-01	4.994000e-01	4.994000e-01
346626.0 -0.000000e+00	0.000000e+00	0.000000e+00	-0.000000e+00	-0.000000e+00	3.998000e-01	6.002000e-01	3.998000e-01
946626.0	938160.0	929764.0	921481.0	913287.0	2739928.0	2739928.0	2739928.0
r_f116m	$r_{-}f117m$	r_f118m	r_f119m	r_1120m	train	test	dev

Table 2: Summary Statistics

10.2 Meeting Minutes

27/08/2021

Notes:

- Langrangion
- KKT Theoretical
- Hobbyists Edition Mathematica
- Raspberry PI:
- Can you predict returns, interogate returns, take inspiration from GKX, look at hedge portfolio's.
- Use two loss functions (MSE, Huber Loss Function), Begs question if maximise profitability
- Give a toy example
- Two period, two stocks, predict accurately but not make more money, no dials to turn, OLS susceptible to outliers, one outlier creates a massive error.
- OLS susceptible to outliers, windsorize (not true)

To do list:

- Mathematical Function for Maximising the portfolio weight functions
- Tensorflows OLS with Dataset
- Literature

Next Date

References

- Agency, I. E. (2019). World energy model documentation. International Energy Agency.
- Anaconda, Inc. (2020, August 8). Anaconda (Version 2020.02). Retrieved from https://www.anaconda. $_{\rm com/}$
- Arenas, M. (2009). Boyce-codd normal form. In L. LIU & M. T. ÖZSU (Eds.), *Encyclopedia of database systems* (pp. 264–265). doi:10.1007/978-0-387-39940-9_1245
- Bronson, R., & Costa, G. B. (2009). 4 an introduction to optimization. In R. Bronson & G. B. Costa (Eds.), *Matrix methods (third edition)* (Third Edition, pp. 127–148). doi:https://doi.org/10.1016/B978-0-08-092225-6.50010-3
- Google LLC. (2020, August 5). Google drive. Retrieved from https://www.google.com/drive/
- Gu, S., Kelly, B., & Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. *The Review of Financial Studies*, 33(5), 2223–2273. doi:10.1093/rfs/hhaa009. eprint: https://academic.oup.com/rfs/article-pdf/33/5/2223/33209812/hhaa009.pdf
- Guido Van Rossum, B. W., & Coghlan, N. (2001). Pep 8: Style guide for python code. Python. org, 1565. Hou, K., Xue, C., & Zhang, L. (2020). Replicating anomalies. The Review of Financial Studies, 33(5), 2019–2133.
- IBM. (n.d.-a). Ibm academic initiative). Available at https://www.ibm.com/academic/home (2020/08/09). IBM. (n.d.-b). Ibm watson machine learning. Available at https://www.ibm.com/cloud/machine-learning (2020/09/23).
- International Business Machines Corporation. (2020, August 9). Ibm ilog cplex optimization studio (Version 12.10). Retrieved from https://www.ibm.com/nz-en/products/ilog-cplex-optimization-studio
- Jensen, T. I., Kelly, B. T., & Pedersen, L. H. (2021). Is there a replication crisis in finance? National Bureau of Economic Research.
- Li, K., Mai, F., Shen, R., & Yan, X. (2020). Measuring Corporate Culture Using Machine Learning. *The Review of Financial Studies*, 34(7), 3265–3315. doi:10.1093/rfs/hhaa079. eprint: https://academic.oup.com/rfs/article-pdf/34/7/3265/38692689/hhaa079_supplementary_data.pdf
- Linus Torvalds. (2020, August 5). Git (Version 2.28.0). Retrieved from https://git-scm.com/
- Medium. (n.d.). Top 10 in-demand programming languages to learn in 2020. Available at https://towardsdatascience.com/top-10-in-demand-programming-languages-to-learn-in-2020-4462eb7d8d3e (2020/08/06).

- Potra, F. A., & Wright, S. J. (2000). Interior-point methods. *Journal of Computational and Applied Mathematics*, 124(1), 281–302. Numerical Analysis 2000. Vol. IV: Optimization and Nonlinear Equations. doi:https://doi.org/10.1016/S0377-0427(00)00433-7
- PYPL. (n.d.). Pypl popularity of programming language. Available at http://pypl.github.io/PYPL.html (2020/08/06).
- Rosenfeld, M. J. (n.d.). Ols in matrix form. Available at https://web.stanford.edu/~mrosenfe/soc_meth_proj3/matrix_OLS_NYU_notes.pdf (2021/08/18).
- Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, A., & Teal, T. (2016). Good enough practices in scientific computing. *PLOS Computational Biology*, 13. doi:10.1371/journal.pcbi.1005510