Megadados Prova 1 19/04/2021

Prezado(a) Aluno(a),

Você terá 120 minutos a partir do início oficial desta parte da prova para concluir esta avaliação, administre bem o seu tempo. Leia atentamente as instruções a seguir e as questões da prova antes de começar a resolvê-la.

- 1. Esta avaliação é composta de 3 questões e um total de 5 páginas.
- 2. Em caso de dúvida sobre alguma questão desta avaliação, redija um texto na folha de prova explicitando-a para que o professor avalie a pertinência durante a correção.
- 3. Responda as perguntas diretamente no Blackboard.

Boa Prova!

Questão 1:

Uma pizzaria quer informatizar seu cardápio para controlar melhor as pizzas que oferece. O diagrama do modelo relacional mostrado abaixo demonstra a estrutura da informação que se deseja armazenar e consultar:

Temos as seguintes tabelas neste design:

- Tabela "tipo": armazena os nomes dos tipos de ingrediente de pizza: vegano, sem gluten, sem lactose, vegetariano, etc.
 - o Campo "tipo": o nome do tipo
- Tabela "ingrediente": armazena informações à respeito dos ingredientes de pizza.
 - o Campo "ingrediente": o nome do ingrediente
 - Campo "preco_unitario": o custo do ingrediente por unidade
- Tabela "ingredientetipo": relaciona os ingredientes de pizza com seus tipos. Por exemplo: brócoli é vegano, vegetariano, sem lactose e sem glutem, logo aparece quatro vezes nesta tabela.
 - o Campo "ingrediente": chave estrangeira para a tabela "ingrediente"
 - Campo "tipo": chave estrangeira para a tabela "tipo"
- Tabela "pizza": O cardápio da pizzaria
 - o Campo "pizza": o nome da pizza
 - o Campo "preco": o valor de venda da pizza
- Tabela "ingredientepizza": mostra como cada pizza é feita
 - Campo "ingrediente": chave estrangeira para a tabela de ingredientes
 - Campo "pizza": chave estrangeira para a tabela de pizzas
 - Campo "quantidade": quantas unidades deste ingrediente fazem parte desta pizza

O script "script_001.sql" contem a DDL para criação do banco de dados e também a DML para inserção de alguns valores de exemplo, para ajudar vocês a responder as questões da prova. Se quiser, adicione exemplos à vontade. Nas perguntas a seguir construa código SQL para cumprir o que se pede.

- a) **(1.0 pt)** Liste as 3 pizzas que dão mais lucro. O lucro de uma pizza é o seu preço de venda menos o custo total dos ingredientes nela utilizados (não se esqueça de que cada ingrediente da pizza tem uma especificação de quantidade a ser utilizada).
- b) (1.0 pt) Construa uma tabela temporária que liste todas as pizzas e a quantidade de ingredientes nela
- c) **(1.0 pt)** Construa uma tabela temporária que liste todas as pizzas a quantidade de ingredientes **veganos** nela (ou seja, onde o tipo é "vegana")
- d) (1.0 pt) Usando as tabelas temporárias dos itens (b) e (c) mesmo que você não os tenha feito liste as pizzas veganas da pizzaria. Uma pizza é vegana se todos os seus ingredientes são veganos.
- e) **(1.0 pt)** Liste os ingredientes e seus tipos, um ingrediente por linha (Dica: use a função GROUP_CONCAT). O resultado deve ser da seguinte forma:

	ingrediente	lista_tipos
•	abobrinha	sem gluten,sem lactose,vegana,vegetariana
	calabresa	sem gluten,sem lactose
	massa	vegetariana
	massa sem gluten	sem gluten,sem lactose,vegana,vegetariana
	mussarela	sem gluten,vegetariana
	mussarela vegana	sem gluten,sem lactose,vegana,vegetariana
	picanha	sem gluten,sem lactose

f) (1.0 pt) Construa o diagrama do modelo entidade-relacionamento correspondente ao diagrama do modelo relacional acima. (Claro que normalmente a ordem de construção das coisas é o contrário disso, mas aqui eu estou apenas explorando o conhecimento de vocês). Gere um arquivo PNG, JPG ou PDF com a figura resultante e envie pelo Blackboard como resposta.

Questão 2:

Em uma relação R(A, B, C, D,) valem as seguintes dependencias funcionais:

$$A \rightarrow BC$$

$$B \rightarrow CD$$

$$C \rightarrow AD$$

- a) (0.5 pts) Liste todas as chaves candidatas
- b) (0.5 pts) Escolha uma chave primária e indique a forma normal da relação sob essa chave primária
- c) (1.0 pt) Passe para terceira forma normal

Questão 3:

Explique com suas palavras:

- a) (0.5 pts) Por que normalizar um design de banco de dados?
- b) (0.5 pts) Por que usar um sistema de gerenciamento de banco de dados e não um arquivo simples?
- c) **(0.5 pts)** No projeto você utilizou um ORM (Object-Relational Mapping). Quais as vantagens e desvantagens de usar um ORM?
- d) (0.5 pts) Qual a diferença entre WHERE e HAVING?