

ELSEVIER

Respiratory Physiology & Neurobiology 131 (2002) 291–292

RESPIRATORY PHYSIOLOGY

www.elsevier.com/locate/resphysiol

Author index of volume 131

Abadie, V., see Chatonnet, F. 131 (2002) 5.

Aizenfisz, S., S. Dauger, E. Durand, G. Vardon, B. Levacher, M. Simonneau, V. Pachnis, C. Gaultier and J. Gallego, Ventilatory responses to hypercapnia and hypoxia in heterozygous *c-ret* newborn mice 131 (2002) 213.

Alheid, G.F., see Ramirez, J.-M. 131 (2002) 43.

Baker, A.B., see Whiteley, J.P. 131 (2002) 269.

Behan, M., A.G. Zabka and G.S. Mitchell, Age and gender effects on serotonin-dependent plasticity in respiratory motor control 131 (2002) 65.

Bellingham, M.C. and M.F. Ireland, Contribution of cholinergic systems to state-dependent modulation of respiratory control 131 (2002) 135.

Bissonnette, J.M., The role of calcium-activated potassium channels in respiratory control 131 (2002) 145.

Burleson, M.L., A.L. Carlton and P.E. Silva, Cardioventilatory effects for acclimation to aquatic hypoxia in channel catfish 131 (2002) 223.

Butler, J.P., see Lai, J. 131 (2002) 233.

Carlton, A.L., see Burleson, M.L. 131 (2002) 223.

Champagnat, J., see Chatonnet, F. 131 (2002) 5.

Chatonnet, F., M. Thoby-Brisson, V. Abadie, E. Dominguez del Toro, J. Champagnat and G. Fortin, Early development of respiratory rhythm generation in mouse and chick 131 (2002) 5.

Colman, A.S. and J.H. Miller, Lack of involvement of μ_1 opioid receptors in morphine-induced inhibition of hypoxic and hypercapnic ventilation in rat pups 131 (2002) 199.

Dauger, S., see Aizenfisz, S. 131 (2002) 213.

Dean, J.B., see Solomon, I.C. 131 (2002) 155.

Dominguez del Toro, E., see Chatonnet, F. 131 (2002) 5.

Durand, E., see Aizenfisz, S. 131 (2002) 213.

Dutschmann, M. and J.F.R. Paton, Inhibitory synaptic mechanisms regulating upper airway patency 131 (2002) 57.

Fedderspiel, W.J., see Lai, J. 131 (2002) 233.

Fortin, G., see Chatonnet, F. 131 (2002) 5.

Funk, G.D. and M.A. Parkis, High frequency oscillations in respiratory networks: functionally significant or phenomenological? 131 (2002) 101.

Gallego, J., see Aizenfisz, S. 131 (2002) 213.

Gaultier, C., see Aizenfisz, S. 131 (2002) 213.

Gavaghan, D.J., see Whiteley, J.P. 131 (2002) 269.

Gouldstone, A., see Lai, J. 131 (2002) 233.

Guénard, H., see Zhao, W. 131 (2002) 245.

Hahn, C.E.W., see Whiteley, J.P. 131 (2002) 269.

Hunte, G.S., see Zavorsky, G.S. 131 (2002) 255.

Ireland, M.F., see Bellingham, M.C. 131 (2002) 135.

Iturriaga, R., see Mosqueira, M. 131 (2002) 175.

Johnson, S.M. and G.S. Mitchell, Activity-dependent plasticity in descending synaptic inputs to respiratory spinal motoneurons 131 (2002) 79.

Kaczyńska, K. and M. Szereda-Przestaszewska, Apnoeic response to stimulation of peripheral GABA receptors in rats 131 (2002) 189.

Laferrière, A., see Moss, I.R. 131 (2002) 15.

Lahiri, S., see Li, J. 131 (2002) 285.

Lai, J., A. Gouldstone, J.P. Butler, W.J. Fedderspiel and S.H. Loring, Relative motion of lung and chest wall promotes uniform pleural space thickness 131 (2002) 233.

Levacher, B., see Aizenfisz, S. 131 (2002) 213.

Lieske, S.P., see Ramirez, J.-M. 131 (2002) 43.

Li, J., A. Roy, A. Mokashi and S. Lahiri, CO-induced K^+ currents in rat glomus cells are insensitive to light unlike carotid body neural discharge and V_{O_2} 131 (2002) 285.

Loring, S.H., see Lai, J. 131 (2002) 233.

McCrimmon, D.R., see Ramirez, J.-M. 131 (2002) 43.

McCrimmon, D.R., see Zuperku, E.J. 131 (2002) 121.

McKenzie, D.C., see Zavorsky, G.S. 131 (2002) 255.

Miller, J.H., see Colman, A.S. 131 (2002) 199.

Milsom, W.K., Phylogeny of CO_2/H^+ chemoreception in vertebrates 131 (2002) 29.

Mitchell, G.S., see Behan, M. 131 (2002) 65.

Mitchell, G.S., see Johnson, S.M. 131 (2002) 79.

Mokashi, A., see Li, J. 131 (2002) 285.

Mortola, J.P. and E.L. Seifert, Circadian patterns of breathing 131 (2002) 91.

Mosqueira, M. and R. Iturriaga. Carotid body chemosensory excitation induced by nitric oxide: involvement of oxidative metabolism 131 (2002) 175.

Moss, I.R. and A. Laferrière. Central neuropeptide systems and respiratory control during development 131 (2002) 15.

Pachnis, V., see Aizenfisz, S. 131 (2002) 213.

Parkis, M.A., see Funk, G.D. 131 (2002) 101.

Paton, J.F.R., see Dutschmann, M. 131 (2002) 57.

Ptak, K., see Ramirez, J.-M. 131 (2002) 43.

Ramirez, J.-M., E.J. Zuperku, G.F. Alheid, S.P. Lieske, K. Ptak and D.R. McCrimmon. Respiratory rhythm generation: converging concepts from *in vitro* and *in vivo* approaches? 131 (2002) 43.

Rouatbi, S., see Zhao, W. 131 (2002) 245.

Roy, A., see Li, J. 131 (2002) 285.

Russell, J.A., see Zavorsky, G.S. 131 (2002) 255.

Seifert, E.L., see Mortola, J.P. 131 (2002) 91.

Sexsmith, G.P., see Zavorsky, G.S. 131 (2002) 255.

Silva, P.E., see Burleson, M.L. 131 (2002) 223.

Simonneau, M., see Aizenfisz, S. 131 (2002) 213.

Solomon, I.C. and J.B. Dean. Gap junctions in CO₂ chemoreception and respiratory control 131 (2002) 155.

Szereda-Przestaszewska, M., see Kaczyńska, K. 131 (2002) 189.

Tabka, Z., see Zhao, W. 131 (2002) 245.

Thoby-Brisson, M., see Chatonnet, F. 131 (2002) 5.

Turner, M.J., see Whiteley, J.P. 131 (2002) 269.

Vardon, G., see Aizenfisz, S. 131 (2002) 213.

Walley, K.R., see Zavorsky, G.S. 131 (2002) 255.

Whiteley, J.P., M.J. Turner, A.B. Baker, D.J. Gavaghan and C.E.W. Hahn. The effects of ventilation pattern on carbon dioxide transfer in three computer models of the airways 131 (2002) 269.

Zabka, A.G., see Behan, M. 131 (2002) 65.

Zavorsky, G.S., K.R. Walley, G.S. Hunte, D.C. McKenzie, G.P. Sexsmith and J.A. Russell. Acute hypervolemia lengthens red cell pulmonary transit time during exercise in endurance athletes 131 (2002) 255.

Zhao, W., S. Rouatbi, Z. Tabka and H. Guénard. Inhaled sodium fluoride decreases airway responsiveness to acetylcholine analogs *in vivo* 131 (2002) 245.

Zuperku, E.J. and D.R. McCrimmon. Gain modulation of respiratory neurons 131 (2002) 121.

Zuperku, E.J., see Ramirez, J.-M. 131 (2002) 43.

ELSEVIER

Respiratory Physiology & Neurobiology 131 (2002) 293–294

RESPIRATORY PHYSIOLOGY

www.elsevier.com locate resphysiol

Subject index of volume 131

Acclimatization
hypoxia, 223

Airways
responsiveness, resistance, 245

Apnea
obstructive sleep, 135

Birds
chick, 5

Brainstem
segmentation, 5

Carbon dioxide
arterial-end tidal P_{CO_2} , difference, 269
respiratory chemoreceptors, fish, 29

Carotid body
CO-induced chemosensing, O_2 consumption, 285
NO, 175

Channels
 Ca^{2+} -activated K^+ , 121

Chemical agents
NaF, 245

Chemoreceptors
peripheral, carotid body, 175

Chemosensitivity
central, gap junctions, 155

Cholinergic system
sleep-wake cycle, 135

CO
chemosensing, carotid body, 285

CO₂
central chemosensitivity, 155

Connexin
gap junctions, respiratory control, 155

Control of breathing
apnea, GABA, 189
cardioventilatory response to hypoxia, 223
carotid body, chemoreception, 175
central mechanisms, 15
central chemosensitivity, respiratory rhythm generation, 155
chemoreceptors, vertebrates, 29
circadian respiratory pattern, 91
gain modulation, 121
high and medium frequency oscillations, 101

K^+ channels, 145

pattern formation, inhibition, 57

plasticity, 65

respiratory rhythm generation, 5

rhythm generation, 43

sleep-wake cycle, 135

spinal respiratory motoneurons, plasticity, 79

Development
age, 65
chemosensitivity, 199
pattern of breathing, 213
receptor systems, 15
respiratory rhythm generation, hindbrain segmentation, 5

Disease
asthma, 245

Exercise
acute plasma volume expansion, 255

Fish
channel catfish (*Ictalurus punctatus*), 223

Gap junctions
central, 155

Genes
hindbrain segmentation, 5
proto-oncogene, c-ret, 213

Gill
fish, CO₂ chemoreceptors, peripheral and central, 29

Glomus
cell, pre-synaptic, 285

Hyperreactivity
bronchial, 245

Hypoxemia
exercise, 255

Hypoxia
 μ opioid receptors, 199
cardioventilatory response, 223
long-term-facilitation, 65
neuropeptide release, 15

Ion channels
 Ca^{2+} -activated K^+ , 145

- K⁺**
 - channels, subtypes, 145
- Mammals**
 - cat, 175
 - humans, 245, 255, 269
 - mouse, 5, 213
 - piglet, 15
 - rat, 15, 57, 65, 79, 91, 189, 199, 245, 285
- Mechanics of breathing**
 - pleural space thickness, 233
- Mediators**
 - NO, 175
- Models**
 - CO₂ expirogram, 269
 - pleural space, fluid dynamics, 233
- Motoneurons**
 - spinal, plasticity, 79
- Nerve**
 - carotid sinus, 285
 - carotid sinus, vagus, 189
- Neurons**
 - central respiratory, 121
 - post-inspiratory, 57
- Neuropeptides**
 - NK-1, substance P, 15
- Oscillation**
 - respiratory network, 101
- Pattern generation**
 - oscillatory networks, 101
- Pattern of breathing**
 - c-ret + / -, 213
 - central networks, 43
 - circadian, 91
 - CO₂ expirogram, 269
- Pharmacological agents**
 - bicuculline, 121
 - bicuculline, picrotoxin, 189
 - dermorphin, 199
 - naloxonazine, 199
 - picrotoxin, 121
- Plasticity**
 - serotonin-dependent, gender, age, 65
 - spinal pathways, 79
- Pleura**
 - fluid, redistribution, 233
- Pressure**
 - blood, 223
 - shear flow-induced, 233
- Receptors**
 - μ opioid, 199
 - acetylcholine, muscarinic, 135
 - GABA_A, 121
 - mu-opioid, NK-1, 15
- Red cell**
 - transit time, exercise, 255
- Reptiles**
 - turtle, 79
- Rhythm**
 - circadian, 91
 - respiratory, generation, 5
- Rhythm generation**
 - oscillatory networks, 101
- Sleep**
 - sleep-wake cycle, cholinergic system, 135
- Smooth muscle**
 - airway, 245
- Transcription factors**
 - hindbrain segmentation, 5
- Transmitters**
 - glycine, 57
- Ventilation**
 - intracarotid GABA, 189
 - pulmonary, circadian pattern, 91

