Computing Cusp Forms Over Function Fields

Jonathan Love

Department of Mathematics and Statistics, McGill University https://jonathanlove.info/

Explicit Methods for Modularity, April 2022

Initial comments

- Work done during my PhD studies¹ at Stanford University, supervised by Akshay Venkatesh, Ravil Vakil, and Dan Boneh.
- Write-up available in Chapter 4 of my thesis.
- Code available on Github.

¹Funding from the Lebovitz Family Fellowship and NSF Award #1701567 (PI: Dan Boneh)

Outline

Background: What are cusp forms over function fields?

2 The Algorithm

Results

Definitions

Given a global field F, we have:

- The completion F_v for each place v of F
- ullet the valuation ring \mathcal{O}_v for each finite (non-archimedean) place v of F
- The ring of adeles $\mathbb{A} = \prod_{\nu}' F_{\nu} \ (x_{\nu} \in \mathcal{O}_{\nu} \text{ for all but finitely many } \nu)$
- ullet The ring of integral adeles $\widehat{\mathcal{O}} = \prod_{v \; \mathsf{finite}} \mathcal{O}_v$

F embeds as a discrete subgroup in \mathbb{A} by

$$a \mapsto (a, a, a, \ldots).$$

Induces a discrete embedding $GL_2(F) \to GL_2(\mathbb{A})$.

Definitions

"Definition"

A cusp form on $GL_2(\mathbb{A})$ is a function

$$\varphi: \mathsf{GL}_2(F) \backslash \mathsf{GL}_2(\mathbb{A}) / K \to \mathbb{C}$$

for some finite-index $K \subseteq GL_2(\widehat{\mathcal{O}})$, such that for all $\tau \in GL_2(\mathbb{A})$,

$$\int_{\mathbb{A}/F} \varphi\left(\left(\begin{smallmatrix} 1 & t \\ 0 & 1 \end{smallmatrix}\right)\tau\right) dt = 0.$$

 φ is ramified at v if $K_v \neq \operatorname{GL}_2(\mathcal{O}_v)$ (and unramified if $K = \operatorname{GL}_2(\widehat{\mathcal{O}})$).

This is missing a few conditions from the standard definition.

Comparison to $\mathbb Q$

Consider a classical cusp form $f : \mathbb{H} \to \mathbb{C}$, level 1, weight k:

- $f(\gamma \cdot z) = (cz + d)^k f(z)$ for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{SL}_2(\mathbb{Z})$ (modularity)
- For all $z \in \mathbb{H}$, $\int_0^1 f(z+t) dt = 0$ (cuspidality)

Proposition

Given $\tau \in GL_2(\mathbb{A}_{\mathbb{Q}})$, write $\tau = \gamma \tau_{\infty} r$, with $\gamma \in GL_2(\mathbb{Q})$, $\tau_{\infty} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbb{R})$, and $r \in GL_2(\widehat{\mathbb{Z}})$. Then

$$\varphi_f(\tau) := (\det \tau_{\infty})^{k/2} (ci+d)^{-k} f(\tau_{\infty} \cdot i)$$

is a well-defined unramified cusp form on $GL_2(\mathbb{A}_{\mathbb{Q}})$.

Proof sketch: If $\tau_\infty'=\gamma\tau_\infty r$, then $\gamma=r^{-1}$ and $\gamma=\tau_\infty'\tau_\infty^{-1}$, so

$$\gamma \in \mathsf{GL}_2(\mathbb{Q}) \cap \mathsf{GL}_2(\widehat{\mathbb{Z}}) \cap \mathsf{GL}_2^+(\mathbb{R}) = \mathsf{SL}_2(\mathbb{Z}).$$

Modularity of f implies double-coset invariance of φ_f .

Comparison to $\mathbb Q$

Key feature of cusp forms φ over $\mathbb{A}_{\mathbb{Q}}$: archimedean place.

- Use analytic techniques over $\mathbb R$ to study φ .
- Properties of φ come from *topology* at \mathbb{R} .

Example: weight k of f appears as a winding number of φ_f :

$$\begin{split} \varphi_f(\tau) &= (\det \tau_\infty)^{k/2} (ci+d)^{-k} f(\tau_\infty \cdot i) \\ r(\theta) &= \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \in \mathsf{SO}_2(\mathbb{R}) \quad \Rightarrow \quad \varphi_f(\tau r(\theta)) = e^{ik\theta} \varphi_f(\tau). \end{split}$$

Observation

 φ_f is invariant under $GL_2(\mathbb{Z}_p) \subseteq GL_2(\mathbb{Q}_p)$ for every p, but *not* invariant under $SO_2(\mathbb{R}) \subseteq GL_2(\mathbb{R})$. (No weight 0 cusp forms)

Cusp Forms over Function Fields

Let X be a smooth projective curve over $k = \mathbb{F}_q$, with function field F = k(X). Let \mathbb{A} be the adeles of F. No archimedean places.

Ramified places (nontrivial action of $GL_2(\mathcal{O}_v)$) can be used as "substitutes" for archimedean places.

• Snowden and Tsimerman² show that certain ramified cusp forms on $GL_2(\mathbb{A})$ correspond to **elliptic curves over an open subset of** X.

²Andrew Snowden and Jacob Tsimerman. "Constructing elliptic curves from Galois representations". In: *Compos. Math.* 154.10 (2018).

Cusp Forms over Function Fields

What about *unramified* cusp forms?

- Drinfeld³ (geometric Langlands): irreducible 2-dim ℓ -adic **representations of** $\pi_1(X)$ correspond to unramified cusp forms on $GL_2(\mathbb{A})$.
- Krishnamoorthy and Pál⁴ conjecture that unramified cusp forms on $GL_2(\mathbb{A})$ with certain properties should correspond to **abelian** varieties over X.

Not many known examples of unramified cusp forms to test!

 $^{^3}$ Drinfeld, V. G. Two-dimensional ℓ-adic representations of the fundamental group of a curve over a finite field and automorphic forms on GL(2). Am. J. Math. 105:85–114 (1983).

⁴Raju Krishnamoorthy and Ambrus Pál. "Rank 2 local systems and abelian varieties". In: *Sel. Math. New Ser.* 27, 51 (2021).

Cusp Forms over Function Fields

Let \mathbb{A} be the adeles of the function field of a genus 2 curve X.

Goal

Compute the space of unramified cusp forms on $PGL_2(\mathbb{A})$ (that is, the space of unramified cusp forms φ on $GL_2(\mathbb{A})$ such that $\varphi(z\tau)=\varphi(\tau)$ for $z\in\mathbb{A}^\times$), together with the action of Hecke operators on this space.

Note: in this setting, the "Definition" of cusp forms above is correct (no additional conditions necessary).

Prior work:

Lorscheid: Elliptic curves X.5

⁵Oliver Lorscheid. "Toroidal automorphic forms for function fields". PhD thesis. Utrecht University, 2008.

Outline

Background: What are cusp forms over function fields?

2 The Algorithm

Results

Inspired by an algorithm of Greenberg and Voight⁶ for algebraic modular forms (G_{∞} compact \Rightarrow double-coset space is *finite*; no analytic conditions necessary).

If F is a function field, $GL_2(F)\setminus GL_2(\mathbb{A})/(\mathbb{A}^\times \cdot GL_2(\widehat{\mathcal{O}}))$ is not finite, but it is discrete.

Cusp forms supported on a finite subset.

⁶Matthew Greenberg and John Voight. "Lattice methods for algebraic modular forms on classical groups". In: *Computations with modular forms. Contrib. Math. Comput. Sci.* 6 (2014).

Step 1: Build Hecke graph

Let L be a list of elements of $GL_2(\mathbb{A})$ (starting with L=(1)). Fix a place ν of F, with uniformizer π_{ν} . For each $\tau \in L$:

• Compute its Hecke neighbors

$$\left\{\tau\left(\begin{smallmatrix}1&0\\0&\pi_v\end{smallmatrix}\right)\right\}\cup\left\{\tau\left(\begin{smallmatrix}\pi_v&i\\0&1\end{smallmatrix}\right):i\in k(v)\right\}.$$

- For each Hecke neighbor τ' :
 - Determine whether τ' is in the same double coset as an existing $\mu \in L$. If so, add an edge $\tau \to \mu$.
 - If no equivalent μ is found, append τ' to L and add an edge $\tau \to \tau'$.

Step 2: Find simultaneous eigenvectors

- Using step 1, obtain adjacency matrices M_v for multiple places v of F.
- Compute simultaneous eigenspaces of all M_{ν} .
- If a simultanous eigenspace is 1-dimensional, entries of the eigenvector are coefficients of a cusp form! (If not, compute more M_{ν}).
- Continue until all eigenspaces are processed.

Only problem remaining: How to test if $\tau, \mu \in GL_2(\mathbb{A})$ are in the same double-coset?

Testing for double-coset equivalence: classical

To determine whether $\tau, \mu \in \mathsf{GL}_n(\mathbb{R})$ are equivalent in $\mathsf{SL}_n(\mathbb{Z}) \backslash \mathsf{GL}_n(\mathbb{R}) / (\mathbb{R}_{>0} \cdot \mathsf{SO}_n(\mathbb{R}))$, use an algorithm by Plesken and Souvignier:⁷

- Associate τ, μ to lattices L_{τ} , L_{μ} .
- Lattice basis reduction (e.g. LLL).
- Find all vectors of length $\leq \lambda$ in L_{τ} and L_{μ} . Increase λ if necessary to ensure the found vectors span \mathbb{R}^n .
- Find all ways to match vectors from L_{τ} to vectors from L_{μ} with corresponding lengths. Check if these extend to a lattice isomorphism.

⁷W. Plesken and B. Souvignier. "Computing Isometries of Lattices". In: *Journal of Symbolic Computation*. 24.3 (1997).

Lattices vs Vector Bundles

$ au\in GL_2(\mathbb{R})$ defines a lattice $L_{ au}$ with basis in \mathbb{R}^2 .	$ au \in GL_2(\mathbb{A})$ defines a rank 2 vector bundle $V_{ au}$ on X .
$((x,y)\in\mathbb{R}^2 ext{ is in } L_ au ext{ if and only if } (x,y) au\in\mathbb{Z}^2)$	$((f,h) \in F^2 \text{ is a section of } V_{\tau}(U)$ if and only if $(f \ h)\tau_v \in \mathcal{O}_v^2$ for all places $v \in U$
$t \in \mathbb{R}_{>0}$ determines a <i>scaling</i> $L_{t au} := rac{1}{t}L_{ au}.$	$t \in \mathbb{A}^{ imes}$ determines a twist $V_{t au} := V_{ au} \otimes \mathcal{O}(div(t)).$
Large $t\Rightarrow$ more vectors $(x,y)\in L_{t\tau}$ in the unit square $(x , y \leq 1)$	Large $\deg(t)\Rightarrow$ more global sections $(f,h)\in V_{\tau}(X)$ $(f _{\nu}, h _{\nu}\leq 1$ for all $\nu)$
$\operatorname{SL}_2(\mathbb{Z})\backslash\operatorname{GL}_2(\mathbb{R})^+/(\mathbb{R}_{>0}\cdot\operatorname{SO}_2(\mathbb{R}))$ classifies lattices in \mathbb{R}^2 up to isometry and scaling.	$\operatorname{GL}_2(F)\backslash \operatorname{GL}_2(\mathbb{A})/(\mathbb{A}^{\times} \cdot \operatorname{GL}_2(\widehat{\mathcal{O}}))$ classifies vector bundles on X up to isomorphism and twisting by divisors.

Testing for double-coset equivalence: function field

To determine whether $\tau, \mu \in \mathsf{GL}_2(\mathbb{A})$ are equivalent in $\mathsf{GL}_2(F) \setminus \mathsf{GL}_2(\mathbb{A}) / (\mathbb{A}^{\times} \cdot \mathsf{GL}_2(\widehat{\mathcal{O}}))$:

- Associate τ, μ to vector bundles V_{τ}, V_{μ} .
- Reduce each to land in a Siegel set.

A Siegel Set for $GL_2(F) \setminus GL_2(\mathbb{A})/(\mathbb{A}^{\times} \cdot GL_2(\widehat{\mathcal{O}}))$

Every double coset has at least one representative

$$\left(\left(\begin{smallmatrix}1&x_{\nu}\\0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pi^{D(\nu)}&0\\0&1\end{smallmatrix}\right)\right)_{\nu}\in\mathsf{GL}_{2}(\mathbb{A})$$

parametrized by

$$d \leq 2g, \quad D \in \operatorname{Pic}^d(X),$$
 $x_{\infty} \in \pi_{\infty}^{-(d+2g-1)} \mathcal{O}_{\infty} / \mathcal{O}_{\infty},$ $x_{\nu} = 0 \quad \text{for all } \nu \neq \infty$

Green: the cusp (infinite; easy to characterize, cusp forms vanish)
Blue: non-cusp (finite but large; need to check for isomorphisms)

Testing for double-coset equivalence: function field

To determine whether $\tau, \mu \in GL_2(\mathbb{A})$ are equivalent in $GL_2(F) \setminus GL_2(\mathbb{A})/(\mathbb{A}^{\times} \cdot GL_2(\widehat{\mathcal{O}}))$:

- Associate τ, μ to vector bundles V_{τ} , V_{μ} .
- Reduce each to land in a Siegel set.
- Compute global sections of V_{τ} and V_{μ} . Twist each by divisors if necessary until the F-span of the global sections is dim 2 over F.
- Find all ways to match global sections of V_{τ} with global sections of V_{μ} . Check if these extend to a vector bundle isomorphism.

Outline

Background: What are cusp forms over function fields?

2 The Algorithm

Results

Example: $y^2 = x^5 + 1$ over \mathbb{F}_3 .

Vertices: double-cosets.

Edges: Neighbors according to Hecke operator at ∞ .

Example: $y^2 = x^5 + 1$ over \mathbb{F}_3 .

Computed Hecke action at ∞ , (0,1), (0,2), (2,0) ($|k_{\nu}|=3$), as well as (1+i,1+i) ($|k_{\nu}|=9$). Obtain a **76-dimensional basis of cusp forms**, in four Galois orbits. The corresponding Hecke eigenvalues are:

	Orbit 1	Orbit 2	Orbit 3	Orbit 4
$[{\mathsf K}:{\mathbb Q}]\to$	2	2	12	60
∞	0	0	0	$\pm_1\sqrt{eta}$
(0, 1)	0	0	$\pm_1 \alpha$	$\pm_1\sqrt{eta}p(eta)$
(0,2)	0	0	$\mp_1 \alpha$	$\pm_1\sqrt{eta}p(eta)$
(2,0)	0	0	0	$(\pm_1\sqrt{eta})(\pm_2\sqrt{r(eta)})q(eta)$
(1+i,1+i)	$\frac{3\pm3\sqrt{5}}{2}$	$\frac{-3\pm 3\sqrt{5}}{2}$	$\pm_2\sqrt{-\alpha^2+9\alpha-9}$	$\pm_2\sqrt{r(eta)}$

- α satisfies $\alpha^3 13\alpha^2 + 48\alpha 45 = 0$
- ullet eta satisfies s(eta)=0, for a degree 15 polynomial $s(x)\in\mathbb{Q}[x]$
- $p(x), q(x), r(x) \in \mathbb{Q}[x]$ have degree 14

What's next?

- Code is quite slow (~3 hours on a personal computer to process one curve); are there speed-ups?
- Complete database of unramified cusp forms over all genus 2 curves over \mathbb{F}_3 (there are 69 isomorphism classes; Hecke graphs have been computed for nine).
- Can we find an unramified cusp form with Hecke eigenvalues in \mathbb{Q} ? Ideal testing ground for Krishnamoorthy-Pál's conjecture (such a cusp form should correspond to a **fake elliptic curve**: abelian surface over X with endomorphism ring a quaternion order).

Thank you for your attention!

 $^{^8}$ Rose Steinberg. "Enumerating Curves of Genus 2 Over Finite Fields". PhD thesis. University of Vermont, 2018.