Tutorial de Monitoreo

LACNIC 27 Foz do Iguaçu, 22 de Mayo de 2017

Santiago Aggio ¹, Pablo Cuello ²

ARIU Asociación Redes de Interconexión Universitaria

² ANTEL

Objetivo

Monitorear nuestro propio tráfico IPv4 / IPv6

Utilizando la tecnología Netflow/IPFIX

Consideraciones

Ambiente IPv6-only

El Exportador, el Colector y el Analizador deben conectarse por IPv6

Medir tráfico IPv6

Los componentes del sistema de monitorización deben soportar NetFlow versión 9.

Identificar tráfico IPv6

Diferenciar el tráfico IPv6 del IPv4 que atraviesa una interfaz

Arquitectura de monitoreo NetFlow

Fuente: http://www.wikipedia.com

NetFlow en Cisco

Fuente: http://www.cisco.com

Procesos en la Arquitectura NetFlow/IPFIX

Vagrant para crear MV

Repositorio GitHub con material para crear MV con Vagrant

https://github.com/LACNIC/tutorial-netmon/tree/master/labs/lab-netflow-nfsen

https://github.com/sancolo/lab-netflow-nfsen.git

Escenario Vagrant: MF + MV

Software en la MV

- Probe: softflowd
- Colector: nfcapd
- Analizador: nfdump (modo texto)
- Monitor: nfsen (modo gráfico, acceso por página web)
- Web server: apache
- Otros: mtr, tcpdump, tshark, wget

Probe

- Se basan en la librería pcap (http://www.tcpdump.org)
- Capturan tráfico sobre una interfaz en modo promiscuo (tcpdump, wireshark, tshark)
- Generan paquetes NetFlow/IPFIX que exportan a un colector

Probe: paquetes disponibles para Unix

- ipt-netflow: módulo de Kernel basado en iptables, no soporta IPv6
- fprobe: basado en libpcap, no soporta IPv6
- fprobe-ulog: basado en libipulog, usado con iptables ULOG target, no soporta IPv6
- pmacct: utilizado en IXPs, Data Centers, IP Carriers, CDNs
- nProbe: aplicación del proyecto Ntop
- softflowd: simple, soporta IPv6

Flujo

5 Atributos que identifican un Flujo

- Dirección Fuente
- Dirección Destino
- Puerto Fuente
- Puerto Destino
- Protocolo de transporte

Cisco Agrega

- Byte de TOS (DSCP)
- Interface de entrada

Flujo Unidireccional

- ullet Coincidencia de los 5/7 atributos ightarrow actualizar flujo
- ullet Diferencia de 1 atributo ightarrow nuevo flujo

¿Cuando un flujo es exportado?

- El flujo es terminado
 Conexión TCP termina debido a un FIN o RST
- El flujo permanece ocioso por un período de tiempo (timeout)
 Cisco establece 15 seg
- El flujo alcanza un máximo tiempo de vida permitido (active timeout)
 Lo valores varían. Cisco establece 1800 seg. ¿Y Softflowd?
- Se fuerza el descarte del flujo
 La cache esta llena y un nuevo flujo debe ser alojado

Paquete de exportación NetFlow 9

Packet Header
Template FlowSet
Data FlowSet
Data FlowSet
Template FlowSet
Data FlowSet

Header de NetFlow 9

bit 0-7	bit 8-15	bit 16-23 bit 24-33			
Version Number		Count			
sysUpTime					
UNIX Secs					
Sequence Number					
Source ID					

Captura de paquetes NetFlow 9

```
Version: 9
Count: 12
SysUptime: 263802007
Timestamp: Sep 17, 2014 15:46:01.000000000 EDT
    CurrentSecs: 1379447161
FlowSequence: 23995
SourceId: 0
FlowSet 1
    FlowSet Id: (Data) (1024)
    FlowSet Length: 472
    Data (468 bytes), no template found
```

Template FlowSet

bit 0-15	bit 16-31
FlowSet ID $= 0$	Length
Template ID	Field Count
Field 1 Type	Field 1 Length
Field 2 Type	Field 2 Length
Field N Type	Field N Length
Template ID	Field Count
Field 1 Type	Field 1 Length
Field 2 Type	Field 2 Length
Field N Type	Field N Length

Templates

- Expiran si no son refrescados periódicamente
- Se preveen dos formas de refresco del template:
 - El template puede ser reenviado cada N números de paquetes exportados
 - El template puede ser refrescado cada N minutos (timer)

Template FlowSet

Tipo de Campo	Valor	Long	Descripción
IPV6_SRC_ADDR	27	16	IPv6 Source Address
IPV6_DST_ADDR	28	16	IPv6 Destination Address
IPV6_SRC_MASK	29	1	Length of the IPv6 source
			mask in contiguous bits
IPV6_DST_MASK	30	1	Length of the IPv6 destina-
			tion mask in contiguous bits
IPV6_FLOW_LABEL	31	3	IPv6 flow label as per RFC
			2460 definition

http://www.iana.org/assignments/ipfix

Template Flowset

Tipo de Campo	V	L	Descripción
SAMPLING_INTERVAL	34	4	The rate at which packets are sampled. A value of 100 indicates that one of every 100 packets is sampled
SAMPLING_ALGORITHM	35	1	The type of algorithm used for sampled NetFlow: 0x01 Deterministic Sampling ,0x02 Random Sampling
FLOW_ACTIVE_TIMEOUT	36	2	Timeout value (in seconds) for active flow entries in the Net-Flow cache
FLOW_INACTIVE_TIMEOUT	37	2	Timeout value (in seconds) for inactive flow entries in the Net-Flow cache

Captura de paquetes Template FlowSet

```
FlowSet 1
     FlowSet Id: Data Template (V9) (0)
     FlowSet Length: 60
     Template (Id = 1024, Count = 13)
         Template Id: 1024
         Field Count: 13
         Field (1/13): IP_SRC_ADDR | Type: IP_SRC_ADDR (8) | Length: 4
         Field (2/13): IP_DST_ADDR | Type: IP_DST_ADDR (12) | Length: 4
         Field (3/13): LAST_SWITCHED | Type: LAST_SWITCHED (21) | Length: 4
         Field (4/13): FIRST_SWITCHED | Type: FIRST_SWITCHED (22) | Length: 4
         Field (5/13): BYTES | Type: BYTES (1) | Length: 4
         Field (6/13): PKTS | Type: PKTS (2) | Length: 4
         Field (7/13): INPUT_SNMP | Type: INPUT_SNMP (10) | Length: 4
         Field (8/13): OUTPUT_SNMP | Type: OUTPUT_SNMP (14) | Length: 4
         Field (9/13): L4_SRC_PORT | Type: L4_SRC_PORT (7) | Length: 2
         Field (10/13): L4_DST_PORT | Type: L4_DST_PORT (11) | Length: 2
         Field (11/13): PROTOCOL | Type: PROTOCOL (4) | Length: 1
         Field (12/13): TCP_FLAGS | Type: TCP_FLAGS (6) | Length: 1
         Field (13/13): IP_PROTOCOL_VERSION | Type: IP_PROTOCOL_VERSION (60) | Lengt
```

Captura de paquetes Template Flowset IPv6

```
FlowSet 2
     FlowSet Id: Data Template (V9) (0)
     FlowSet Length: 60
     Template (Id = 2048, Count = 13)
         Template Id: 2048
         Field Count: 13
         Field (1/13): IPV6_SRC_ADDR | Type: IPV6_SRC_ADDR (27) | Length: 16
         Field (2/13): IPV6_DST_ADDR | Type: IPV6_DST_ADDR (28) | Length: 16
         Field (3/13): LAST_SWITCHED | Type: LAST_SWITCHED (21) | Length: 4
         Field (4/13): FIRST_SWITCHED | Type: FIRST_SWITCHED (22) | Length: 4
         Field (5/13): BYTES | Type: BYTES (1) | Length: 4
         Field (6/13): PKTS | Type: PKTS (2) | Length: 4
         Field (7/13): INPUT_SNMP | Type: INPUT_SNMP (10) | Length: 4
         Field (8/13): OUTPUT_SNMP | Type: OUTPUT_SNMP (14) | Length: 4
         Field (9/13): L4_SRC_PORT | Type: L4_SRC_PORT (7) | Length: 2
         Field (10/13): L4_DST_PORT | Type: L4_DST_PORT (11) | Length: 2
         Field (11/13): PROTOCOL | Type: PROTOCOL (4) | Length: 1
         Field (12/13): TCP_FLAGS | Type: TCP_FLAGS (6) | Length: 1
         Field (13/13): IP_PROTOCOL_VERSION | Type: IP_PROTOCOL_VERSION (60) | Lengt
```

Data FlowSet

bit 0-15
$flowset_id = template_id (>255)$
length
record_1-field_1_value
record_1-field_2_value
record_1-field_M_value
record_2-field_1_value
record_2-field_2_value
record_2-field_M_value
$record_N-field_M_value$
padding

Captura de paquetes Data FlowSet

```
FlowSet 3
        FlowSet Id: (Data) (1024)
        FlowSet Length: 316
        Flow 1
(1)
            SrcAddr: 192.168.1.103 (192.168.1.103)
(2)
            DstAddr: 192.168.13.109 (192.168.13.109)
            [Duration: 29.664000000 seconds]
(3)
                StartTime: 263892.537000000 seconds
(4)
                EndTime: 263922.201000000 seconds
(5)
            Octets: 998
(6)
            Packets: 6
(7)
            InputInt: 0
(8)
            OutputInt: 0
(9)
            SrcPort: 55073
(10)
            DstPort: 80
(11)
            Protocol: 6
(12)
            TCP Flags: 0x1b
(13)
            TPVersion: 04
```

Captura de paquetes Data FlowSet

```
FlowSet 1
        FlowSet Id: (Data) (2048)
        FlowSet Length: 132
        Flow 2
(1)
            SrcAddr: 2001:db8:90:192::30 (2001:db8:90:192::30)
(2)
            DstAddr: 2001:db8:90:192::16 (2001:db8:90:192::16)
            [Duration: 1.299000000 seconds]
(3)
                StartTime: 1204388.336000000 seconds
(4)
                EndTime: 1204389.635000000 seconds
(5)
            Octets: 2484
(6)
            Packets: 21
(7)
            InputInt: 0
(8)
            OutputInt: 0
(9)
            SrcPort: 35849
(10)
            DstPort: 995
(11)
            Protocol: 6
            TCP Flags: 0x1b
(12)
(13)
            IPVersion: 06
```

Options Template Flowset y Options Data Record

Fuente: RFC7011 (09/13) / RFC5101

Protocolo de Transporte

UDP

- Implementado en la mayoría de exportadores y colectores
- No es confiable y es susceptible a congestiones
- Uso dentro de un segmento de red dedicado o dominio propio

TCP

- Orientado a conexión, más confiable si requiere retransmisión y TLS
- Destinado al transporte de paquetes IPFIX a través de Internet

SCTP (Stream Control Transmission Protocol)

- Protocolo recomendado para transportar IPFIX
- Proporciona múltiples flujos independientes dentro de una sola asociación y capa de transporte multihome (dispositivos móviles)
- Fiabilidad seleccionable: alta prioridad en Templates y paquetes críticos.

Nfdump

- Colecta los paquetes NetFlow y los almacena en archivos generados en intervalos de tiempo (5 minutos)
- Filtrado basado en la sintaxis de la librería PCAP
- Rápido en procesar, Eficiente en el uso de la CPU, Flexible en la agregación de flujos.

Arquitectura de Nfdump

Fuente: http://nfdump.sourceforge.net/

Análisis de información colectada

Fuente: http://nfdump.sourceforge.net/

Componentes de nfdump

- nfcapd netflow capture daemon
- nfdump netflow dump
- nfprofile netflow profiler (run by nfsen)
- nfreplay netflow replay
- nfclean.pl cleanup old data
- nfexpire data expiry program (maxtime, maxsize, watermark) (nfcapd -e)
- ft2nfdump Read and convert flow-tools data

Nfsen

- Interfaz web para graficar y procesar los datos colectados
- Utiliza nfdump a bajo nivel para obtener la información estadística requerida
- Presenta gráficos de Flujos, Paquetes y Tráfico, diferenciando los protocolos TCP, UDP, ICMP y otros.
- Permite el análisis sobre ventanas de tiempo
- Alertas definidas en base a condiciones que determinan comportamientos anómalos del tráfico y los flujos activos
- Definición de Profiles para seguimientos de subredes, máquinas, puertos, servicios, etc.
- Extensiones basadas en Plugins (Mod.Perl y PHP)

Implementación de Nfsen en la MV

- Directorio de instalación: /data/nfsen
- Archivo de configuración: /data/nfsen/etc/nfsen.conf
- Fuentes que generan paquetes NetFlow a colectar:

```
%sources = (
  'mv' => { 'port' => '9995', 'col' => '#0000ff', 'type' => 'netflow' },
  'mf' => { 'port' => '9996', 'col' => '#00ff00', 'type' => 'netflow' },
);
```

nfcapd

```
nfcapd -6 -w -D -p 9995 -u netflow -g www-data -B 200000 -S 1 -P /data/nfsen/var/run/p9995.pid -z -I mv -I /data/nfsen/profiles-data/live/mv
```

Opciones

- -6 listen on IPv6 only
- -w Align file rotation
- -D daemon mode
- -p port
- -u usuario
- -g group

- -B bufflen
- -I base_directory
- -S 1 %Y/ %m/ %d
- -P pidfile
- -z Compress flows

Nfsen Profile

Nfsen Plugins

- Extienden la funcionalidad de Nfsen
- Plugin tiene dos componentes: backend y frontend

Backend

- Nfsen procesa periodicamente el backend asociado
- Escritos en Perl

Frontend

- Grafica los resultados del proceso backend asociado
- Escritos en PHP

Nfsen Plugin: PortTracker

ADMINISTRADOR

- La red esta lenta, se cayo un enlace?
- Mucho download o algún P2P
- Generalizemos No anda Internet !!!!

Como verifico un comportamiento anómalo, si....

- Mi browser no responde !!!
- ¿Se cayo el enlace o . . . es el DNS que no resuelve?
- Ping, traceroute, mtr, dig, hosts

Empiezan a sonar los teléfonos y no es para invitarte a una

no es para invitarte a una fiesta!!!!


```
** nfdump -M /var/nfsen/profiles-data/live/rtmetro0:rtmetro3 -T -R
2011/08/08/nfcapd.201108081915:2011/08/08/nfcapd.201108081935 -n 10 -s
dstip/flows
nfdump filter:
proto UDP
Top 10 Dst IP Addr ordered by flows:
Date first seen Duration Proto
                                         Dst TP Addr
                                                      Flows
(%)
      Packets(%) Bytes(%)
                                     pps
                                             bps bpp
2011-08-08 18:57:22.775 1252.208 any
                                       192.168.229.104
                                                       48.5 M
(99.8) 51.8 M(99.8) 1.5 G(99.1) 41345 9.6 M 29
2011-08-08 18:49:42.791 1618.604 any
                                      192.168.198.68
                                                      19758
(0.0) 24745(0.0) 1.7 M(0.1)
                                      15 8294
                                                    67
2011-08-08 18:54:18.443 1533.128 any 192.168.130.242
                                                        8802
(0.0) 8804(0.0)
                      2.0 M( 0.1)
                                       5 10649 231
Summary: total flows: 48661443, total bytes: 1.5 G, total packets: 51.9 M,
avg bps: 6.6 M, avg pps: 28405, avg bpp: 29
Time window: 2011-08-08 18:49:34 - 2011-08-08 19:20:01
```

Total flows processed: 48943560, Blocks skipped: 0, Bytes read: 2545094500 Sys: 5.528s flows/second: 8853202.9 Wall: 8.396s flows/second: 5828870.2

** nfcump -M /var/rfsen/profiles-data/live/rtnetro0:rtnetro3 -T -R 2011/08/00/nfcapd.201100001915:2011/09/90/nfcapd.201100001935 -n 10 -s ip/flows nfflump fllrer:
proto LOP

Top 10 IP Addr ordered by flows:

Pole (incl.	N TOWS.	TD Adds	E1(0.)	Daniel (84)	P /2-\		hos	bpp
2011-08-08 18:57:22.775	1252.208 any	155.73.229.104	48.5 M(99.8)	51.8 M(99.B)	1.5 G(99.1)	41345	9.6 M	29
2011-08-08 18:57:22.775		160.90.204.37	48.5 M(99.8)	51.8 M(99.8)	1.5 6(99.1)	41345	9.0 M	29 68
2011-08-08 18:54:18.211	1533.360 any	100.00.130.242	24302 (0.0)	24307[0.9)	3.2 M(0.2)	15	16869	133
2011-68-08 18:54:16.827	1544.756 any	1.7.1.4.192.2	16789(0.0)	16909(0.0)	2.4 M(0.2)	10	12395	141
2011-08-08 18:54:16.939	1543.604 any	0.1196.165	8396(0.0)	8917(0.9)	1.3 M(0.1)	5	6849	148
2011-08-08 18:54:16.859	1544.400 any	110.124.208.2	5510(0.0)	5639(0.0)	897371(0.1)	3	4648	159
2011-08-08 18:54:17.943	1540.132 any	ind. 96.204.2	4982 (0.0)	5478(0.0)	849539(0.1)	3	4412	155
2011-08-08 13:54:16.835	1543.024 any	1.0.131.202.2	4949(0.0)	4949(0.0)	540335(0.0)	3	2801	109
2011-68-08 18:49:57.395	1803.212 any	8.9128.2	4535 (0.0)	5254(0.0)	810168(0.1)	2	3594	154

Summary: total flows: 48661443, total bytes: 1.5 G, total packets: 51.9 M, avg bps: 6.6 M, avg pps: 28405, avg bpp: 29

Time window: 2011-08-08 18:49:34 - 2011-08-08 19:20:01

Total flows processed: 48943560, Blocks skipped: 0, Bytes read: 2545094500

Svs: 6.392s flows/second: 7656524.6 Wall: 9.293s flows/second: 5266173.7

nfsen 1.3.5

apache 12237 95.1 0.2

192.168.229.104 0 0

```
# netstat -alunp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address
                                       Foreign Address
                                                             PID/Program name
udp
                  0 0.0.0.0:38447
                                          0.0.0.0:*
                                                            1897/avahi-daemon:
udp
                  0 0.0.0.0:5353
                                          0.0.0.0:*
                                                            1897/avahi-daemon:
udp
                  0 0.0.0.0:746
                                          0.0.0.0:*
                                                            1418/rpc.statd
udp
                  0 0.0.0.0:749
                                          0.0.0.0:*
                                                            1418/rpc.statd
udp
                  0 0.0.0.0:111
                                          0.0.0.0:*
                                                            1382/portmap
udp
                  0 0.0.0.0:51188
                                          0.0.0.0:*
                                                           12237/perl
udp
                  0 0.0.0.0:631
                                          0.0.0.0:*
                                                            1646/cupsd
                                                            1897/avahi-daemon:
udp
           0
                  0 :::5353
udp
                  0 :::47860
                                                            1897/avahi-daemon:
                                               :::*
# ps aux | grep perl
```

25356 2424 ? R 04:27 23:20 perl /tmp/U

Detección de anomalías

- La inspección de cada paquete no siempre es viable en redes de alta velocidad
- Detecciones basadas en flujos IP es un complemento y una primera aproximación para detectar ataques

Detección de Intrusos analizando Flujos IP

- Denial of Service
- Scans
- SPAM
- Botnets
- Worms

Ejemplo: DNS & Feederbot

El canal C&C de una Botnet puede utilizar el puerto 53

- Consultas de DNS a servidores propios, es habitual
- Consultas de DNS a servidores públicos, es probable
- Alto número de consultas a servidores públicos, es raro
- Alto número de consultas de dominios de dudosa denominación, estamos en problemas
- Incremento en las consultas DNS sobre TCP respecto de UDP, seguimos en problemas

Este tráfico representa un porcentaje ínfimo del total y podremos inspeccionar, sin un alto costo, el payload del paquete usando futuras extensiones de IPFIX

Ejemplo: DNS & Feederbot

- Podemos crear un profile para ver consultas a otros DNS
- Filtro del profile: dst port 53 and not (host ipv4_dns1 or host ipv4_dns2 or host ipv6_dns1 or host ipv6_dns2)
- Diferenciamos TCP de UDP proto tcp and dst port 53 and not (host pv4_dns1 or host ipv4_dns2 or host ipv6_dns1 or host ipv6_dns2)

Flexible Netflow

- Permite crear registros de flujos para mayor granularidad de análisis
- Soporta NBAR v2 (Network-Based Application Reconigtion) e IPv6 (Mec. Transición)
- Múltiples flow caches y DB de información
- Muestreo, exportador, monitor, y registros independientes
- soporta IPFIX como formato de exportación
- Extiende los IE para obtener más información
 - RFC 6759: Cisco Export Application Information
 - RFC 5610: Exporting Type Information for IPFIX Information Elements

Flexible Netflow

```
flow record v6 r1
match ipv6 traffic-class
match ipv6 protocol
match ipv6 source address
match ipv6 destination address
match transport source-port
match transport destination-port
collect counter bytes long
collect counter packets long
flow exporter FLOW-EXPORTER-1
 destination 2001:DB8:2:FFFF::72
sampler SAMPLER-1
 mode random 1 out-of 2
flow monitor FLOW-MONITOR-1
 record v6 r1
 exporter FLOW-EXPORTER-1
interface GigabitEthernet 0/0/0
 ipv6 address 2001:DB8:2:ABCD::2/48
 ipv6 flow monitor FLOW-MONITOR-1 sampler SAMPLER-1 input
```

Desempeño en redes de alta velocidad

Sampling

- Determinístico: 1-de-N
- Random: n-de-N

Consecuencia

- ↓ Perdemos información !!!!
- ↑ Menor uso de la CPU

Agregación de flujos

- Disminuye el tamaño de memoria cache
- Disminuye el tráfico de paquetes NetFlow

Colector

- Disminuye el número de paquetes a colectar
- Menor procesamiento para análisis de ventanas de tiempo

Requerimiento de Almacenamiento

Valores Promedio							
AB	5 minutos	Diario	Semanal	Mensual	Anual		
10 Mbps	500 KB	150 MB	1 GB	4 GB	50 GB		
100 Mbps	5 MB	1.5 GB	10 GB	40 GB	500 GB		
1 Gbps	50 MB	15 GB	100 GB	400 GB	5 TB		
2 Gbps	100 MB	30 GB	200 GB	800 GB	10 TB		
10 Gbps	500 MB	150 GB	1 TB	4TB	50 TB		

Tecnologías de mejor desempeño

Sonda

 $TAP \rightarrow Pasivo$, no compromete al router

Exportador

Hardware dedicado \rightarrow FPGA (10/40/100 Gbps)

Colector

High Performance Computing (HPC)

GPU → Indexado de flujos

Big Data

- Hadoop → Hadoop Distributed File System (HDFS)
- ullet MapReduce o Task and Jobs
- ullet Spark o Múltiples Threads de procesamiento paralelo

Soluciones Comerciales

Soluciones Comerciales

www.endace.com

404	4000 Series	4100 Series	8100 Series	9000 Series
1 RU	1 RU	1 RU	2 RU	4 RU
4x1GE	Up to 8x10GbE	Up to 8x10GbE or 2x40GbE	Up to 8x10GbE or 2x40GbE	Up to 8x10GbE or 2x40GbE
8TB	Up to 32TB	7.6TB SSD	24TB SSD	Up to 192TB
0.5Gbps	3Gbps	22Gbps	40Gbps	20Gbps

Tecnologías de Almacenamiento

- SATA → Alta capacidad, Bajo desempeño, Bajo costo
- SSD → Capacidad media, Mejor desempeño, Mayor costo
- NVMe (NVM Express) → Alto desempeño, Baja escalabilidad

Enterprise-specific Information Elements (EIEs)

AppFlow - NetScaler - Citrix

- transactionID, connectionID, tcpRTT, httpRequestMethod
- Desempeño: clientInteractionStartTime, clientInteractionEndTime
- DB: dbProtocolName (1 para MS SQL, 2 para MySQL)

Plugins - nProbe - NTOP

- Plugins disponibles en version Pro de nProbe
- HTTP, HTTPS, DNS, MySQL, Oracle.
- Generación de logs para análisis de actividad

Detect / Data Engine / Portal - Kentik

- Portal Remoto (SaaS) con alertas y análisis
- Dispositivos registrados que exportan flujos, SNMP, BGP peering
- ullet Tabla de muestreo de flujos. Ej: para 10Gbps ightarrow 1 en 1024

Grupos IETF

- IP Flow Information Export (ipfix)
 - → Finalizado en Marzo de 2015!!!!
- 7 Active Internet-Drafts
 - → draft-ietf-opsawg-ipfix-bgp-community-01 Export BGP community information in IPFIX IETF 98 Chicago, Marzo de 2017
- RFC 8038: Exporting MIB Variables Using the IP Flow Information Export (IPFIX) Protocol, Mayo 2017
- Network Configuration (netconf)
 - \rightarrow YANG data model
 - \rightarrow RESTCONF protocol (HTTP-based)

Workshop on Flow-Based Network Management, 37th IRTF NMRG, IETF 93, 2015

- TinyIPFIX for WSN (Wireless Sensor Networks)
- Seguridad de IPv6
- Software Defined Monitoring (SDM) CESNET
- Ingeniería de Tráfico: Elephant Flows → paths/queues
- Mediciones de Tráfico a nivel de flujo en redes OpenFlow
- Flujos Enriquecidos / Aumentados
 - Información L7: HTTP, HTTPS, DNS, DB

Producción Científica

Conclusión

Un sistema de monitoreo basado en NetFlow/IPFIX permite:

- Mejorar la visibilidad de la red en su conjunto
- Mayor granularidad en el análisis del tráfico IP
- Facilitar la gestión y la adopción de nuevas políticas y tecnologías
- Observar el desempeño y calidad de la red
- Diagnosticar en menor tiempo diferentes tipos de anomalías en el tráfico
- Verificar el buen uso y la seguridad de la red

FIN

¿ Preguntas ?

Muchas gracias!!!

slaggio@criba.edu.ar jpcuello@antel.com.uy

Agradecimientos

LACNIC / ARIU / ANTEL