

Generalized infinite factorization models

Antonio Canale

Joint work with Lorenzo Schiavon and David Dunson

University of Padova, Italy

tonycanale₋

Outline of presentation

Introduction

Infinite Factorization models

Generalized infinite FM and structured shrinkage priors

Simulations

Application: Finnish bird co-occurrence data

Introduction - sparsity and interpretability

Factor Models (FM)

$$\mathbf{z}_{i} = \mathbf{\Lambda} \eta_{i} + \epsilon_{i}$$
 $\epsilon_{i} \sim f_{\epsilon}, \quad \eta_{i} \sim f_{n},$

- z_i: i-th p-variate random variable;
- Λ : $p \times k$ factor loadings matrix;
- η_i : *i*-th vector of *k* latent factors.

- Factor models express a statistical object of interest, in terms of a collection of simpler objects.
- FM as dimensionality reduction tool
- FM rooted back in psychometrics where the latent factors represent some interpretable latent trait (Spearman, 1904).
- Widely adopted and generalized: Gaussian copula FM (Murray et al., 2013), probabilistic matrix factorizations (Mnih & Salakhutdinov, 2008); functional data (Montagna et al., 2012); (Kowal and Canale, 2022)

- Factor models express a statistical object of interest, in terms of a collection of simpler objects.
- FM as dimensionality reduction tool
- FM rooted back in psychometrics where the latent factors represent some interpretable latent trait (Spearman, 1904).
- Widely adopted and generalized: Gaussian copula FM (Murray et al., 2013), probabilistic matrix factorizations (Mnih & Salakhutdinov, 2008); functional data (Montagna et al., 2012); (Kowal and Canale, 2022)

- Factor models express a statistical object of interest, in terms of a collection of simpler objects.
- FM as dimensionality reduction tool
- FM rooted back in psychometrics where the latent factors represent some interpretable latent trait (Spearman, 1904).
- Widely adopted and generalized: Gaussian copula FM (Murray et al., 2013), probabilistic matrix factorizations (Mnih & Salakhutdinov, 2008); functional data (Montagna et al., 2012); (Kowal and Canale, 2022)

- Factor models express a statistical object of interest, in terms of a collection of simpler objects.
- FM as dimensionality reduction tool
- FM rooted back in psychometrics where the latent factors represent some interpretable latent trait (Spearman, 1904).
- Widely adopted and generalized: Gaussian copula FM (Murray et al., 2013), probabilistic matrix factorizations (Mnih & Salakhutdinov, 2008); functional data (Montagna et al., 2012); (Kowal and Canale, 2022)

Interpretability

Interpretation of factor models is assigning a meaning to the latent factors and then to their impact on the observed data.

Interpretability

Interpretation of loadings matrix and factors is strongly favoured by

 a limited number k of factors;

Interpretability

Interpretation of loadings matrix and factors is strongly favoured when

 each factor has an impact only on a small group of components of z_i.

Definition

A **sparse** array is an array in which most of the elements are equal to zero.

- **Zeros in the last columns** of $\Lambda \Rightarrow$ reducing the number of factors **k**
- Pattern of zeros in $\Lambda \Rightarrow$ factors influence only small groups of components

Definition

A **sparse** array is an array in which most of the elements are equal to **zero**.

- **Zeros in the last columns** of $\Lambda \Rightarrow$ **reducing** the number of factors k
- Pattern of zeros in $\Lambda \Rightarrow$ factors influence only small groups of components

Infinite Factorization models

Infinite factor models (IFM)

Bayesian approach introduced by Bhattacharya and Dunson (2011).

Infinitely many factors, with the **impact** of these factors **decreasing** with the factor index.

Accomplished with **increasing shrinkage priors**, that allow to approximate the IFM through a finite number of factors.

No structure **constraints** are imposed on the number of factors or on the sparsity pattern!

Infinite factor models (IFM)

Bayesian approach introduced by Bhattacharya and Dunson (2011).

Infinitely many factors, with the **impact** of these factors **decreasing** with the factor index.

Accomplished with **increasing shrinkage priors**, that allow to approximate the IFM through a finite number of factors.

No structure **constraints** are imposed on the number of factors or on the sparsity pattern!

Inference and sparsity in IFM

Posterior inference is conducted via Monte Carlo Markov Chains.

Truncating out the negligible columns of Λ , those really close to zero \Rightarrow small number of latent factors.

Priors on loadings elements with sufficiently mass concentration **around zero** \Rightarrow **Sparse pattern** on \wedge .

Inference and sparsity in IFM

Posterior inference is conducted via Monte Carlo Markov Chains.

Truncating out the negligible columns of Λ , those really close to zero \Rightarrow small number of latent factors.

Priors on loadings elements with sufficiently mass concentration **around zero** \Rightarrow **Sparse pattern** on Λ .

Current Infinite Factor Models

- Multiplicative gamma process (MGP) Bhattacharya & Dunson, 2011.
- Cumulative shrinkage process (**CUSP**) Legramanti et al., 2020.

Problems

- lack of careful consideration of the within component sparsity structure
- no accommodation for grouped variables and other non-exchangeable structure.

Current Infinite Factor Models

- Multiplicative gamma process (MGP) Bhattacharya & Dunson, 2011.
- Cumulative shrinkage process (CUSP) Legramanti et al., 2020.

Problems:

- 1. lack of careful consideration of the within component sparsity structure
- 2. no accommodation for grouped variables and other non-exchangeable structure.

structured shrinkage priors

Generalized infinite FM and

3- 1----

$$\lambda_{jh} \mid \theta_{jh} \sim \mathsf{N}(\mathsf{O}, \theta_{jh})$$

$$\theta_{jh} = \tau_0$$

• $au_{
m o} \sim f_{ au_{
m o}}$: global scale

$$\lambda_{jh} \mid heta_{jh} \sim extsf{N}(extsf{O}, heta_{jh})$$

$$\theta_{\mathrm{jh}} = au_{\mathrm{O}}$$

• $au_{
m O} \sim f_{ au_{
m O}}$: global scale;

$$\lambda_{jh} \mid heta_{jh} \sim extsf{N}(extsf{O}, heta_{jh})$$

$$\theta_{jh} = \tau_{o} \gamma_{h}$$

- $au_{
 m O} \sim f_{ au_{
 m O}}$: global scale;
- $\gamma_h \sim f_{\gamma_h}$: column scale;

$$\lambda_{jh} \mid \theta_{jh} \sim N(O, \theta_{jh})$$

$$heta_{
m jh} = au_{
m O} \, \gamma_{
m h} \, \phi_{
m jh}$$

- $\tau_{\rm o} \sim f_{\tau_{\rm o}}$: global scale;
- $\gamma_h \sim f_{\gamma_h}$: column scale;
- $\phi_{jh} \sim f_{\phi_j}$: local scale. That depends on meta covariates: $E(\phi_{jh}) = g(\mathsf{x}_j^ op eta_h)$

Exogenous information about the sparsity structure

$$E(\phi_{jh} \mid \beta_h) = g(x_j^{\top} \beta_h), \qquad \beta_h = (\beta_{1h}, \dots, \beta_{qh})^{\top}, \qquad \beta_{mh} \sim f_{\beta}$$

Bird species occurrence example (1)

- y: occurrence of p species in n different environments;
- η : **k** latent **factors**;
- Λ: impact of the latent factors on the species occurrence;
- x: q species characteristics (taxonomy, size, migratory strategy...), providing similarities between different species.

Considering x indicating the phylogenetic order of each species. If the h-th factor does not impact the occurrence of the species j ($\lambda_{jh}=0$), it could not even impact the other species s belonging to the same order of j ($\lambda_{sh}=0$).

Bird species occurrence example (1)

- y: occurrence of p species in n different environments;
- η : **k** latent **factors**;
- Λ : **impact of the latent factors** on the species occurrence;
- x: q species characteristics (taxonomy, size, migratory strategy...), providing similarities between different species.

Considering x indicating the phylogenetic order of each species. If the h-th factor does not impact the occurrence of the species j ($\lambda_{jh} = 0$), it could not even impact the other species s belonging to the same order of j ($\lambda_{sh} = 0$).

Bird species occurrence example (2)

Theoretical prior properties

We define desirable properties for the GIF class including

- Increasing shrinkage ($var(\lambda_{jh}) < var(\lambda_{j(h-1)})$ for any h)
- Robustness to large signals (not overshrinking)
- Asymptotic increasing sparsity (for $p o \infty$ the sparsity rate increases)

We provide conditions for the properties to hold.

Coming back to the origin: sparsity and interpretation

Truncated Factor

Structured Increasing Shrinkage prior

$$\lambda_{jh} \mid \theta_{jh} \sim N(O, \theta_{jh}) \qquad \theta_{jh} = \tau_O \gamma_h \frac{\phi_{jh}}{\phi_{jh}}$$

$$heta_{\mathsf{jh}} = au_{\mathsf{O}} \, \gamma_{\mathsf{h}} \, \phi_{\mathsf{jh}}$$

Central GIF equations

$$au_{o} = 1, \qquad \gamma_{h} = \vartheta_{h} \rho_{h}, \qquad \vartheta_{h}^{-1} \sim \mathsf{Ga}(a_{\theta}, b_{\theta}),$$

$$\rho_h = \text{Ber}(1 - \pi_h), \qquad \pi_h = \sum_{l=1}^h w_l, \qquad w_l = v_l \prod_{m=1}^{l-1} (1 - v_m), \qquad v_m \sim \text{Be}(1, \alpha),$$
Increasing shrinkage via cumulative stick-breaking process (Legramanti et al. 2020)

$$\phi_{jh} \mid \beta_h \sim \text{Ber}\{\log \text{it}(X_j \mid \beta_h)\} \log(p)/p \qquad \beta_h \sim N_q(0, \sigma_\beta^2 I_q),$$

Meta covariates inclusion that impacts the sparsity pattern

Structured Increasing Shrinkage prior

$$\lambda_{jh} \mid \theta_{jh} \sim N(O, \theta_{jh}) \qquad \theta_{jh} = \tau_O \gamma_h \frac{\phi_{jh}}{\phi_{jh}}$$

$$heta_{\mathsf{jh}} = au_{\mathsf{O}} \, \gamma_{\mathsf{h}} \, \phi_{\mathsf{jh}}$$

Central GIF equations

$$au_{\mathsf{O}} = 1$$

$$\gamma_{\rm h}=\vartheta_{\rm h}\rho_{\rm h},$$

$$au_{\mathsf{O}} = \mathsf{1}, \qquad \gamma_{\mathsf{h}} = \vartheta_{\mathsf{h}} \rho_{\mathsf{h}}, \qquad \vartheta_{\mathsf{h}}^{-\mathsf{1}} \sim \mathsf{Ga}(a_{\theta}, b_{\theta}),$$

Power law tail column scale

$$\rho_h = \text{Ber}(1 - \pi_h), \qquad \pi_h = \sum_{l=1}^h w_l, \qquad w_l = v_l \prod_{m=1}^{l-1} (1 - v_m), \qquad v_m \sim \text{Be}(1, \alpha),$$
Increasing shrinkage via cumulative stick-breaking process (Legramanti et al. 2020)

$$\phi_{jh} \mid \beta_h \sim \text{Ber}\{\log \text{it}(X_j \mid \beta_h)\} \log(p)/p \qquad \beta_h \sim N_q(0, \sigma_\beta^2 I_q),$$

Meta covariates inclusion that impacts the sparsity pattern

Structured Increasing Shrinkage prior

$$\lambda_{jh} \mid \theta_{jh} \sim N(O, \theta_{jh})$$
 $\theta_{jh} = \tau_O \gamma_h \phi_{jh}$

Central GIF equations

$$au_{\mathsf{O}} = \mathsf{1}, \qquad \gamma_{\mathsf{h}} = \vartheta_{\mathsf{h}}
ho_{\mathsf{h}}, \qquad \vartheta_{\mathsf{h}}^{-\mathsf{1}} \sim \mathsf{Ga}(a_{\theta}, b_{\theta}),$$

Power law tail column scale

$$ho_h = \operatorname{Ber}(1 - \pi_h), \qquad \pi_h = \sum_{l=1}^h w_l, \qquad w_l = v_l \prod_{m=1}^{l-1} (1 - v_m), \qquad v_m \sim \operatorname{Be}(1, \alpha),$$
Increasing shrinkage via cumulative stick-breaking process (Legramanti et al. 2020)

$$\phi_{jh} \mid \beta_h \sim \text{Ber}\{\log \text{it}(X_j^{\top}\beta_h)\} \log(p)/p \qquad \beta_h \sim N_q(0, \sigma_{\beta}^2 I_q),$$

Meta covariates inclusion that impacts the sparsity pattern

Structured Increasing Shrinkage prior

$$\lambda_{jh} \mid \theta_{jh} \sim N(O, \theta_{jh})$$
 $\theta_{jh} = \tau_O \gamma_h \phi_{jh}$

Central GIF equations

$$\tau_{\text{O}} = \text{1}, \qquad \gamma_{\text{h}} = \vartheta_{\text{h}} \rho_{\text{h}}, \qquad \vartheta_{\text{h}}^{-\text{1}} \sim \text{Ga}(a_{\theta}, b_{\theta}),$$

Power law tail column scale

$$ho_h = \operatorname{Ber}(1 - \pi_h), \qquad \pi_h = \sum_{l=1}^h w_l, \qquad w_l = v_l \prod_{m=1}^{l-1} (1 - v_m), \qquad v_m \sim \operatorname{Be}(1, \alpha),$$
Increasing shrinkage via cumulative stick-breaking process (Legramanti et al. 2020)

 $\phi_{jh} \mid \beta_h \sim \text{Ber}\{\text{logit}(X_j^{\top}\beta_h)\} \log(p)/p \qquad \beta_h \sim N_q(O, \sigma_{\beta}^2 I_q),$ Meta covariates inclusion that impacts the sparsity pattern

Simulations

Simulation scenarios

- We compare the performance of our proposal with current approaches (Bhattacharya & Dunson, 2011; Rockova & George, 2016; Legramanti et al., 2020)
- Scenario (a) increasing shrinkage FM (no local sparsity; Scenario (b) locally sparse FM (no increasing shrinkage); Scenario (c) is a) + b); Scenario (d) is b)
 + c) + metacovariate-dependence in sparsity
- Performance measures: LPML, posterior mean of k (estimated number of columns of Λ), MSE of Ω

Results (1)

	(p,k)	MGP		CUSP		SIS	
		$Q_{0.5}$	IQR	$\mathbf{Q}_{0.5}$	IQR	$\mathbf{Q}_{0.5}$	IQR
LPML	(16,4)	-28.68	0.42	-28.68	0.43	-28.65	0.41
	(32,8)	-60.08	0.45	-60.09	0.45	-60.07	0.49
	(64,12)	-117.68	0.56	-117.75	0.53	-117.88	0.56
	(128,16)	-225.04	1.04	-225.13	1.04	-228.76	1.47
$E(H_a \mid y)$	(16,4)	8.17	1.44	4.00	0.00	4.00	0.00
	(32,8)	10.68	0.33	8.00	0.00	8.00	0.00
	(64,12)	14.16	1.09	12.00	0.00	12.00	0.00
	(128,16)	17.03	0.47	16.00	0.00	18.00	0.02

Figure 1: LPM;L and estimated latent dimension (*k*) in Scenario (a) —worst case for the proposed method)

Results (2)

Figure 2: MSE for Ω for different combination of (p, k, s)

Finnish bird co-occurrence data

The co-occurrence model

- y: $n \times p$ binary matrix of occurrence of p species in n different environments.
- **w**: $n \times c$ **covariate matrix** including habitat type and the 'spring temperature'.
- x: p × q meta covariate matrix including species traits: the species log body mass, the species migratory strategy and species superfamily.

$$y_{ij} = \mathbb{1}(z_{ij} > 0), \quad z_{ij} = W_i^T \mu_j + \epsilon_{ij}, \quad \epsilon_i = (\epsilon_{i1}, \dots, \epsilon_{ip})^T \sim N_p(0, \Lambda \Lambda^T + I_p)$$

- z: $n \times p$ underlying continuous matrix.
- A: loadings matrix with structured increasing shrinkage prior such that the species traits x can impact the covariance structure across species.

The co-occurrence model

- y: $n \times p$ binary matrix of occurrence of p species in n different environments.
- w: $n \times c$ covariate matrix including habitat type and the 'spring temperature'.
- x: p × q meta covariate matrix including species traits: the species log body mass, the species migratory strategy and species superfamily.

$$y_{ij} = \mathbb{1}(z_{ij} > 0), \quad z_{ij} = w_i^T \mu_j + \epsilon_{ij}, \quad \epsilon_i = (\epsilon_{i1}, \dots, \epsilon_{ip})^T \sim N_p(0, \Lambda \Lambda^T + I_p),$$

- z: $n \times p$ underlying continuous matrix.
- A: loadings matrix with structured increasing shrinkage prior such that the species traits x can impact the covariance structure across species.

Loadings

Finnish environments latent covariates

Posterior mean of correlation matrices

Graph representation of covariance structure

Structured Increasing Shrinkage prior

Multiplicative Gamma Process

- We introduced a class of generalized infinite factorization models
- We equipped the model with a structured increasing shrinkage prior enjoying appealing theoretical properties
- Practical gains are
- · Computation is straightforward with (adaptive) Gibbs sampling
- Possible extensions in terms of probabilistic matrix factorization models

References

- A. Bhattacharya and D. B. Dunson (2011). Sparse Bayesian infinite factor models. *Biometrika IEEE Transactions on neural networks and learning systems*.
- S. Legramanti, D. Durante, and D. B. Dunson (2020). Bayesian cumulative shrinkage for infinite factorizations. *Biometrika*.
- A. Mnih and R. R. Salakhutdinov (2008). Probabilistic matrix factorization. In Advances in neural information processing systems.
- S. Montagna, S. T. Tokdar, B. Neelon, and D. B. Dunson (2012). Bayesian latent factor regression for functional and longitudinal data. *Biometrics*.
- J. S. Murray, D. B. Dunson, L. Carin, and J. E. Lucas (2013). Bayesian Gaussian copula factor models for mixed data. *Journal of the American Statistical Association*.
- B. J. Reich and D. Bandyopadhyay (2010). A latent factor model for spatial data with informative missingness. *The annals of applied statistics*.
- L. Schiavon, A. Canale, and D. B. Dunson (in press). Generalized infinite factorization models. *Biometrika*.

Thank you for your attention!

University of Padova ...

...since 1222