IN THE CLAIMS

This listing of claims replaces all prior versions, and listings, in this application.

- 1. (Canceled)
- 2. (Withdrawn) Process according to of claim 11, wherein the catalyst used contains a phosphinimine ligand which is covalently bonded to the metal, defined by the formula:

wherein each R^1 is independently selected from the group consisting of a hydrogen atom, a halogen atom, C_{1-20} hydrocarbyl radicals which are unsubstituted by or further substituted by a halogen atom, a C_{1-8} alkoxy radical, a C_{6-10} aryl or aryloxy radical, an amido radical, a silyl radical of the formula III and a germanyl radical of the formula IV.

- 3. (Withdrawn) Process according to claim 2, wherein the catalyst comprises as phosphinimine ligand tri-(tertiary butyl) phosphinimine.
- 4. (Previously Presented) Process according to claim 11, wherein the alumoxane used is of the formula: $(R^4)_2AIO(R^4AIO)_mAI(R^4)_2$ wherein each R^4 is independently selected from the group consisting of C_{1-20} hydrocarbyl radicals and m is from 0 to 50.

Claims 5.-10 (Canceled)

11. (Currently Amended) Process for the preparation of a polymer comprising monomeric units of ethylene,

an α-olefin anda vinyl norbornene ,applying as a catalyst system:

- a. a bridged or an unbridged group 4 metal containing an unbridged catalyst having a single cyclopentadienyl ligand and a mono substituted nitrogen ligand, wherein said catalyst is defined by the formula I:
 - b. an aluminoxane activating compound,
 - c. 0 0.20 mol per mol of the catalyst of a further activating compound,

Form. I.

wherein Y is selected from the group consisting of:

ai) a phosphorus substituent defined by the formula:

Form, II.

wherein each R^1 is independently selected from the group consisting of a hydrogen atom, a halogen atom C_{1-20} hydrocarbyl radicals which are unsubstituted by or further substituted by a halogen atom, a C_{1-8} alkoxy radical, a C_{6-10} aryl or aryloxy radical, an amido radical, a silyl radical of the formula:

wherein each R^2 is independently selected from the group consisting of hydrogen, a C_{1-8} alkyl or alkoxy radical, C_{6-10} aryl or aryloxy radicals, and a germanyl radical of the formula:

wherein R^{2} is independently selected from the group consisting of hydrogen, a C_{1-8} alkyl or alkoxy radical, C_{6-10} aryl or aryloxy radicals,

aii) a substituent defined by the formula:

$$\begin{array}{c|c} Zm \\ Un & Uk \\ | & | \\ R^3 \longrightarrow N \longrightarrow R^3 \end{array}$$

Form. V.

wherein each of U is C R³ R³, C=C R³ R³, C=N R³, SiRR, C=Q, N R³, P R³, O or S,

Z is - A=A, and each A is C R³, N or P,

each R³ is independently selected from the group of hydrogen, hydrocarbyl radical, silyl radical according to form. III or germanyl radical according to form. IV,

k, m and n have independently the value 0, 1, 2 or 3, provided that k + m + n > 0 and

aiii) a substituent defined by the formula:

Form. VI.

wherein each of Sub¹ and Sub² is independently selected from the group consisting of hydrocarbyls having from 1 to 20 carbon atoms, silyl groups, amido groups and phosphido groups;

Cp is a ligand selected from the group consisting of cyclopentadienyl, substituted cyclopentadienyl, indenyl, substituted indenyl, fluorenyl and substituted fluorenyl;

X is an activatable ligand and n is 1 or 2, depending upon the valence of M and the valance of X; and

M is a group 4 metal selected from the group consisting of titanium, hafnium and zirconium.