JEE ASSIGNMENT 3

1

(2021 - 4 Marks)

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Yellanki Siddhanth (EE24BTECH11059)

1) Let the system of linear equations $4x + \lambda y + 2z = 0, 2x - y + z = 0, \mu x + 2y + 3z = 0, \lambda, \mu \in \mathbb{R}$ Has a non-trivial solution. Then which of the following is true?

2) A pole stands vertically inside a triangular park *ABC*. Let the angle of elevation of the top of the pole from each corner of the park be $\frac{\pi}{3}$. If the radius of the circumcircle

of $\triangle ABC$ is 2, then the height of the pole is equal to

c) $\lambda = 3, \mu \in \mathbb{R}$

d) $\mu = -6, \lambda \in \mathbb{R}$

2021 March 18 Shift 2 1 to 15

a) $\mu = 6, \lambda \in \mathbb{R}$ b) $\lambda = 2, \mu \in \mathbb{R}$

a) $\frac{1}{\sqrt{3}}$	b) $\sqrt{3}$	c) $2\sqrt{3}$	d) $\frac{2\sqrt{3}}{3}$		
half are equal mean and stan	s of $2n$ observations, I to $-a$. Also by adding dard deviation of the n b^2 is equal to:	a constant b in each	of these observation	s, the	
a) 250	b) 925	c) 650	d) 425		
4) Let $g(x) = \int_0^x f(t) dt$ where f is a continuous function in $[0,3]$ such that $\frac{1}{3} \le f(t) \le 1$ for all $t \in [0,1]$ and $0 \le f(t)$ for all $t \in (1,3]$. The largest possible interval in which $g(3)$ lies is:					
a) [1,3]	b) $\left[-1, -\frac{1}{2}\right]$	c) $\left[-\frac{3}{2}, -1 \right]$	d) $\left[\frac{1}{3}, 2\right]$		
5) If $15 \sin^4 \theta + 1$ equal to:	$10\cos^4\theta = 6$, for some	$\theta \in \mathbb{R}$, then the value	e of $27 \sec^6 \theta + 8 \csc^6 (2021 - 4 \text{ M})$		
a) 250	b) 400	c) 500	d) 350		
6) Let $f: \mathbb{R} - \{3\} \to \mathbb{R} - \{1\}$ be defined by $f(x) = \frac{x-2}{x-3}$. Let $g: \mathbb{R} \to \mathbb{R}$ be given as $g(x) = 2x - 3$. Then, the sum of all the values of x for which $f^{-1}(x) + g^{-1}(x) = \frac{13}{2}$ is equal to					
1			(2021 - 4 M	(arks	

(2021 - 4 Marks)

d) 3

d) 1000

			(2021 - 4 Marks)		
a) $\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)$	b) $(2, \pm \frac{3}{2})$	c) (1, ±2)	d) $\left(0, \pm \sqrt{3}\right)$		
9) Let the centroid of an equilateral triangle ABC be at the origin. Let one of the sides of the equilateral triangle be along the straight line $x+y=3$. If R and r be the radius of circumcircle and incircle respectively of ΔABC , then $(R+r)$ is equal to (2021 - 4 Marks)					
a) $2\sqrt{2}$	b) $3\sqrt{2}$	c) $7\sqrt{2}$	d) $\frac{9}{\sqrt{2}}$		
10) In a triangle ABC , if vector $\overrightarrow{BC} = 8$, $\overrightarrow{CA} = 7$, $\overrightarrow{AB} = 10$, then the projection of the vector AB on AC is equal to: (2021 - 4 Marks)					
a) $\frac{25}{4}$	b) $\frac{85}{14}$	c) $\frac{127}{20}$	d) $\frac{115}{16}$		
11) Let in a Binomial distribution, consisting of 5 independent trials, probabilities of exactly 1 and 2 successes be 0.4096 and 0.2048 respectively. Then the probability of getting exactly 3 successes is equal to: (2021 - 4 Marks)					
a) $\frac{80}{243}$	b) $\frac{32}{625}$	c) $\frac{128}{625}$	d) $\frac{40}{243}$		
12) Let a and b be two non-zero vectors perpendicular to each other and $ a = b $. If $ a \times b = a $, then the angle between the vectors $(a + b + (a \times b))$ and a is equal to: (2021 - 4 Marks)					
a) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$	b) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$	c) $\sin^{-1}\left(\frac{1}{\sqrt{6}}\right)$	d) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$		
13) Let a complex number be $w = 1 - \sqrt{3}i$. Let another complex number z be such that $ zw = 1$ and $\arg(z) - \arg(w) = \frac{\pi}{2}$. Then the area of the triangle with vertices origin, z and w is equal to:					
z ana // is eque			(2021 - 4 Marks)		

b) 5

b) 7000

c) 2

c) 5000

7) Let S_1 be the sum of the first 2n terms of an arithmetic progression. Let S_2 be the sum of the first 4n terms of the same arithmetic progression. If $(S_2 - S_1)$ is 1000,

8) Let $S_1 = x^2 + y^2 = 9$ and $S_2 = (x - 2)^2 + y^2 = 1$. Then the locus of the centre of a variable circle S which touches S_1 internally and S_2 externally always passes

then the sum of the first 6n terms of the arithmetic progression is equal to:

a) 7

a) 3000

through the points:

d) $\frac{1}{4}$

14) The area bour	nded by the curve 4y	$x^2 = x^2 (4 - x)(x - 2)$ is	equal to: (2021 - 4 Marks)
a) $\frac{3\pi}{2}$	b) $\frac{\pi}{16}$	c) $\frac{\pi}{8}$	d) $\frac{3\pi}{8}$

c) 2

- 15) Define a relation R over a class of $n \times n$ real matrices A and B as ARB if there exists a non-singular matrix P such that $PAP^{-1} = B$. Then which of the following is true? (2021 4 Marks)
 - a) R is reflexive, symmetric but not transitive

b) 4

- b) R is symmetric, transitive but not reflexive
- c) R is an equivalence relation

a) $\frac{1}{2}$

d) R is reflexive, transitive but not symmetric