King County House Prices

EDA Project

Matthias Schmidt

2021-06-07

Data Set

King_County_House_prices_dataset.csv (kaggle.com)

21597 sales in King County between May 2014 and May 2015

19 metrics per sale:

Status: condition, grade, view, waterfront or not

Location: zip code, longitude, latitude

Time: year built, year of last renovation, date of sale

Size: nrs of bedrooms, bathrooms and floors

living area, areas of basement and upper floors, lot area,

local mean living and lot areas

Task: Model the House Price

Can be used for

- building a price estimator for a local realtor
- building a price estimator for private sellers
- building a house configurator for home buyers ('what to expect'
- counseling investors what and where to buy

Data Exploration

Focus on ordinary properties \rightarrow price and size cutoffs

price cutoff at 2 million \$

living area cutoff at 6500 sqft

lot area cutoff at 600,000 sqft

→ dropping 227 data points

Status Variables

Violin plots of price vs view, waterfront, condition, and grade (-1 = n.s.):

Cleaning: remove data points with view = n.s., condition = 1, grade = 3, 13 (\rightarrow - 93) Dummy variables for all status variables (relation to price seemingly not linear)

Location Variables

Significant dependence → replace zipcode by

location score = median price for one square foot of living area

Time Variables: Year the House Was Built

Time Variables: Year the House Was Last Renovated

Time Variables: Date of Sale

None of the 3 time variables seems to have significant influence.

Anyway, keep as variables until tuning

Size Variables: Number of Bedrooms

Size Variables: Number of Bathrooms

Size Variables: Number of Floors

Cleaning data: remove data points with

bedrooms
$$\geq$$
 10, bathrooms \geq 5, floors \geq 3 (\rightarrow - 35)

Size Variables: Area

Living area A_I splits into area of basement A_B and area of upper floors A_{IJ} .

 \rightarrow keep either A_I alone or both A_B and A_{IJ} as independent variables

Basement and upper floors may contribute differently to price.

 \rightarrow drop A_L and keep A_B and A_U

No obvious correlations between the remaining size variables → keep all

Tuning

Linear regression of price after removing the variables with highest P value:

23 variables

$$R^2 = 0.836$$

$$R^2_{adj} = 0.836$$

P > |t| less than 0.005 except for intercept (0.079)

Removing variable with low individual price correlation does not improve result

Most significant variables

mean local living area

location score

area of upper floors

number of bathrooms

grade

Responsible for 90% of R^2_{adj}

Supervised Learning

Split data set into training set and test set at a ratio if 1:3

Determine linear regression coefficients from training set

Build prediction function

Compute residual for each data point in test set:

res = price - value returned by prediction function

 \rightarrow RMSE = 115832

Test Normality of Residuals

Distribution plot and QQ plot of residuals: test vs trained (left), total vs total (right)

J-B test: p = 0.00 K-S test: p = 0.00