1 Preliminary

The Kullback-Leibler (KL) divergence between densities q(y) and $\hat{p}(y)$ is defined as

$$D_{KL}(q||\hat{p}) = \int q(y) \log \frac{q(y)}{\hat{p}(y)} dy. \tag{1}$$

Suppose q(y) is a deterministic "target" distribution and $\hat{p}(y)$ is an estimate of q(y), e.g., a probability statement derived from the output of a neural network. We have a (possibly infinite) ensemble of such estimators. Expectation with respect to this ensemble is indicated by the operator \mathbb{E}_{Ω} where Ω refers to all estimators.

2 Average Model $\overline{p}(y)$

It is intuitive to assume that the average model $\overline{p}(y)$ is an arithmetic mean of $\hat{p}(y)$, however, we first prove that $\overline{p}(y)$ can be a (normalized) geometric mean of the densities $\hat{p}(y)$. Define \overline{p} to the following average distribution

$$\overline{p} = \arg\min_{a:\int a(y)dy=1} \mathbb{E}_{\Omega}[D_{KL}(a||\hat{p})] = \arg\min_{a:\int a(y)dy=1} ED_{KL}(a||\hat{p})$$
(2)

where \overline{p} has the smallest average distance to all estimators with the constraint $\int a(y)dy = 1$. By introducing a Lagrange multiplier μ for the constraint $\int a(y)dy = 1$ and taking the function derivative to a(y),

$$\int \frac{\delta E D_{KL}}{\delta \overline{p}} \phi(y) dy = \left[\frac{d}{d\epsilon} \left[E D_{KL} [\overline{p} + \epsilon \phi] + \mu (1 - \int (\overline{p} + \epsilon \phi) dy) \right] \right]_{\epsilon=0}$$
 (3)

$$= \left[\frac{d}{d\epsilon} \mathbb{E}_{\Omega} [D_{KL}(\overline{p} + \epsilon \phi || \hat{p})] \right]_{\epsilon=0} + \left[\frac{d}{d\epsilon} \mu (1 - \int (\overline{p} + \epsilon \phi) dy) \right]_{\epsilon=0}$$
 (4)

$$= \left[\frac{d}{d\epsilon} \mathbb{E}_{\Omega} \left[\int (\overline{p} + \epsilon \phi) \log \frac{\overline{p} + \epsilon \phi}{\widehat{p}} dy \right] \right]_{\epsilon = 0} - \mu \int \phi dy \tag{5}$$

$$= \left[\frac{d}{d\epsilon} \int (\overline{p} + \epsilon \phi) \mathbb{E}_{\Omega} \left[\log \frac{\overline{p} + \epsilon \phi}{\hat{p}} \right] dy \right]_{\epsilon = 0} - \mu \int \phi dy \tag{6}$$

$$= \left[\int (\phi \mathbb{E}_{\Omega} \left[\log \frac{\overline{p} + \epsilon \phi}{\hat{p}} \right] + (\overline{p} + \epsilon \phi) \frac{\phi}{\overline{p}} \right] dy \right]_{\epsilon = 0} - \mu \int \phi dy$$
 (7)

$$= \int (\phi \mathbb{E}_{\Omega}[\log \frac{\overline{p}}{\hat{p}}] + \phi) dy - \mu \int \phi dy$$
 (8)

$$= \int (\mathbb{E}_{\Omega}[\log \frac{\overline{p}}{\hat{p}}] + 1 - \mu)\phi(y)dy \tag{9}$$

$$\frac{\delta E D_{KL}}{\delta \overline{p}} = \mathbb{E}_{\Omega} \left[\log \frac{\overline{p}}{\hat{p}} \right] + 1 - \mu = \log \overline{p} - \mathbb{E}_{\Omega} \left[\log \hat{p} \right] + 1 - \mu \tag{10}$$

where $\phi(y)$ is an arbitrary function (ϕ for short). The quantity $\epsilon\phi$ is called the variation of \overline{p} . Note that we exchange the order of \int and \mathbb{E}_{Ω} since the expectation \mathbb{E}_{Ω} is defined on \hat{p} instead of \overline{p} . We also exchange the order of \int and $\frac{\delta}{\delta\epsilon}$ according to the Lebesgue's dominated convergence theorem ². By setting $\frac{\delta ED_{KL}}{\delta\overline{p}}$ to zero (i.e., Equation (10)), we easily obtain the average model

$$\overline{p}(y) = \frac{1}{Z} \exp\left[\mathbb{E}_{\Omega}[\log \hat{p}(y)]\right] \tag{11}$$

where Z a normalization constant independent of y.

¹https://en.wikipedia.org/wiki/Functional_derivative

²You may assume that the sufficient conditions hold in our case, though it has NOT yet been rigorously proved.

3 Bias

The bias is defined as the distance $D_{KL}(q, \bar{p})$ between the average model and the target distribution.

$$Bias = D_{KL}(q, \overline{p}) \tag{12}$$

Substituting Equation (11) into (12), we obtain

$$Bias = \int q \log \frac{q}{\bar{p}} dy = \int q \log q dy - \int q \log \frac{1}{Z} \exp\left(\mathbb{E}_{\Omega}[\log \hat{p}]\right)$$
 (13)

$$= \int q \log q dy + \int q \log Z dy - \int q \mathbb{E}_{\Omega}[\log \hat{p}] dy$$
 (14)

$$= \mathbb{E}_{\Omega}\left[\int q \log q dy\right] + \int q \log Z dy - \mathbb{E}_{\Omega}\left[\int q \log \hat{p} dy\right]$$
 (15)

$$= \mathbb{E}_{\Omega}\left[\int q \log \frac{q}{\hat{p}} dy\right] + \log Z \tag{16}$$

$$= \mathbb{E}_{\Omega}[D_{KL}(q||\hat{p})] + \log Z \tag{17}$$

Here we utilize $\mathbb{E}[c] = c$ if c is a constant. The expected value of an integral is an iterated integral, and the normal mathematical rules for interchange of integrals apply to (15).

If you are uncomfortable with $\mathbb{E}_{\Omega}[\int q \log \hat{p} dy] = \int q \mathbb{E}_{\Omega}[\log \hat{p}] dy$, the expectation formulation is easier to understand

$$\mathbb{E}_{\Omega}\left[\int q\log \hat{p}dy\right] = \mathbb{E}_{\Omega}\left[\mathbb{E}_{q}[\log \hat{p}]\right] = \mathbb{E}_{q}\left[\mathbb{E}_{\Omega}[\log \hat{p}]\right]. \tag{18}$$

4 Variance

The variance is defined as the expected distance $\mathbb{E}_{\Omega}[D_{KL}(\overline{p}||\hat{p})]$ between the average model and every single estimator

$$Variance = \mathbb{E}_{\Omega}[D_{KL}(\overline{p}||\hat{p})] = -\mathbb{E}_{\Omega}[\int \overline{p} \log \frac{\hat{p}}{\overline{p}} dy] = -\int \overline{p} \mathbb{E}_{\Omega}[\log \frac{\hat{p}}{\overline{p}}] dy. \tag{19}$$

Recalling Equation (11),

$$\log Z = \mathbb{E}_{\Omega}[\log \hat{p}] - \log \overline{p} = \mathbb{E}_{\Omega}[\log \hat{p}] - \mathbb{E}_{\Omega}[\log \overline{p}] = \mathbb{E}_{\Omega}[\log \frac{\hat{p}}{\overline{p}}]. \tag{20}$$

Since $\log Z$ is a constant, $\mathbb{E}_{\Omega}[\log \frac{\hat{p}}{p}]$ is also a constant independent of y. Considering that $\int \overline{p} dy = 1$, we have

$$\log Z = \log Z \int \overline{p} dy = \mathbb{E}_{\Omega} \left[\log \frac{\hat{p}}{\overline{p}}\right] \int \overline{p} dy = \int \overline{p} \mathbb{E}_{\Omega} \left[\log \frac{\hat{p}}{\overline{p}}\right] dy. \tag{21}$$

Combining Equation (19) and (21),

$$Variance = -\log Z. \tag{22}$$

5 Error

Here we present two ways to prove the decomposition of Bias/Variance for KL divergence.

5.1 Bottom-up

Using Equation (17) and (22),

$$Error = \mathbb{E}_{\Omega}[D_{KL}(q||\hat{p})] = Bias - \log Z = Bias + Variance$$
 (23)

5.2 Top-down

$$Error = \mathbb{E}_{\Omega}[D_{KL}(q||\hat{p})] \tag{24}$$

$$= \mathbb{E}_{\Omega} \left[\int q \log \frac{q}{\hat{p}} dy \right] \tag{25}$$

$$= \mathbb{E}_{\Omega}\left[\int (q\log q - q\log \hat{p})dy\right] \tag{26}$$

$$= \mathbb{E}_{\Omega}\left[\int (q\log q - q\log \hat{p})dy\right] - \int q\log \overline{p}dy + \int q\log \overline{p}dy \tag{27}$$

$$= \int q \log q dy - \mathbb{E}_{\Omega} \left[\int q \log \hat{p} dy \right] - \int q \log \overline{p} dy + \int q \log \overline{p} dy$$
 (28)

$$= \left(\int q \log q dy - \int q \log \overline{p} dy \right) + \left(\int q \log \overline{p} dy - \mathbb{E}_{\Omega} \left[\int q \log \hat{p} dy \right] \right)$$
 (29)

$$= D_{KL}(q||\overline{p}) + (\mathbb{E}_{\Omega}[\int q \log \overline{p} dy] - \mathbb{E}_{\Omega}[\int q \log \hat{p} dy])$$
(30)

$$= D_{KL}(q||\overline{p}) + \mathbb{E}_{\Omega}\left[\int q \log \frac{\overline{p}}{\hat{p}} dy\right]$$
(31)

$$= D_{KL}(q||\overline{p}) + \int q \mathbb{E}_{\Omega} \left[\log \frac{\overline{p}}{\hat{p}}\right] dy \tag{32}$$

$$= D_{KL}(q||\overline{p}) + \int \overline{p} \mathbb{E}_{\Omega} \left[\log \frac{\overline{p}}{\hat{p}}\right] dy$$
(33)

$$= D_{KL}(q||\overline{p}) + \mathbb{E}_{\Omega}\left[\int \overline{p} \log \frac{\overline{p}}{\hat{p}} dy\right]$$
(34)

$$= D_{KL}(q||\bar{p}) + \mathbb{E}_{\Omega}[D_{KL}(\bar{p}||\hat{p})] \tag{35}$$

$$= Bias + Variance \tag{36}$$

For Equation (30), we use the result of Equation (11) that

$$\mathbb{E}_{\Omega}[\log \overline{p}(y)] = \mathbb{E}_{\Omega}[\log \frac{1}{Z} + \mathbb{E}_{\Omega}[\log \hat{p}(y)]] = \log \frac{1}{Z} + \mathbb{E}_{\Omega}[\log \hat{p}(y)] = \log \overline{p}(y)$$
(37)

Then, we have

$$\mathbb{E}_{\Omega}\left[\int q \log \overline{p} dy\right] = \int q \mathbb{E}_{\Omega}\left[\log \overline{p}\right] dy = \int q \log \overline{p} dy. \tag{38}$$

For Equation (32) and (33), we use the result of Equation (21) that $\mathbb{E}_{\Omega}[\log \frac{\hat{p}}{p}]$ is a constant and $\int c \cdot q(y) dy = \int c \cdot \overline{p}(y) dy = c$.