

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 284 108 B1

(2)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 11.08.93 (51) Int. Cl. 5: H04N 9/74

(21) Application number: 88104994.4

(22) Date of filing: 28.03.88

(54) Video matte generator.

(30) Priority: 27.03.87 US 32140

(43) Date of publication of application:
28.09.88 Bulletin 88/39

(45) Publication of the grant of the patent:
11.08.93 Bulletin 93/32

(84) Designated Contracting States:
DE FR GB NL

(56) References cited:
EP-A- 0 162 500
GB-A- 2 061 056
US-A- 4 680 621

(73) Proprietor: The Grass Valley Group, Inc.
P.O.Box 1114 13024 Bitney Springs Road
Grass Valley California 95945(US)

(72) Inventor: McFetridge, Grant T.
P.O. Box 1711
Nevada City California 95959(US)

(74) Representative: Ballile, Iain Cameron et al
c/o Ladas & Parry, Altheimer Eck 2
W-8000 München 2 (DE)

EP 0 284 108 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

This invention relates to a video matte generator.

Background of the Invention

In a conventional matte generator, component signals representative of a luminance component and two color difference components are generated at an operator interface and are applied to a video encoder which also receives horizontal and vertical sync signals and a continuous wave subcarrier reference signal. The encoder might be, for example, a type MC 1377 integrated circuit. The encoder combines the component signals, the sync signals and the subcarrier reference signal to generate a full field baseband video signal representing a solid color. The matte generator may be integrated within a production switcher, or it may be a stand-alone unit. In the production switcher, the matte signal is combined with an external video signal to produce an output video signal. In order for the signals to be combined satisfactorily, it is necessary that the horizontal and vertical timing of the two signals be aligned, and that if the matte signal includes a color burst, the burst of the matte signal be in phase with the burst of the external video signal. In order to adjust the phase of the burst of the matte signal relative to the burst of the second video signal, an adjustable delay network is interposed in the path of the reference subcarrier signal applied to the encoder, and the delay introduced by the delay network is adjusted so that the burst of the matte signal is in phase with the burst of the external video signal.

If multiple matte generators are included in a production switcher and each matte generator generates a matte signal which includes a color burst, it is necessary for the bursts of all the matte signals to be in phase with each other and with the burst of the external video signal. It is very time-consuming and inconvenient to adjust manually the phase of each matte generator.

Summary of the Invention

A preferred embodiment of the present invention is a matte generator for generating a video signal representative of a matte having a uniform color, comprising input means for generating signals representing three independent variables which are sufficient to characterize a color. A processor receives the input signals and derives three numerical values from the input signals and from calibration values provided to the processor, and a quadrature modulator receives a subcarrier signal and signals representing the three numerical values

and generates an encoded video signal in response thereto. The encoded video signal and a calibration signal are applied to a calibration circuit for comparing the encoded video signal and the calibration signal and providing an output signal representative of the relationship therebetween. The output signal of the calibration circuit is applied to the processor and is used to generate calibration values such that the encoded video signal is brought into predetermined relationship with the calibration signal.

By adjusting the calibration values, it becomes possible to bring the burst of the matte signal into phase with the burst of another video signal. It is also possible to eliminate the need for manual calibration of offset, gain and quadrature errors.

Brief Description of the Drawings

For a better understanding of the invention, and to show how the same may be carried into effect, reference will now be made, by way of example, to the accompanying drawings in which:

FIG. 1 is a block diagram of a production switcher incorporating a matte generator embodying the present invention,

FIGS. 2, 3, 4, 5 and 6 are vector diagrams which are employed in explaining the operation of the matte generator.

Detailed Description

The production switcher illustrated in FIG. 1 is operable in either a PAL mode or an NTSC mode. Operation in the NTSC mode will be described first.

The production switcher incorporates a matte generator 2 and a switching network 6. The switcher has terminals 10 at which it receives external video signals and a terminal 14 at which it receives a reference composite video signal. The sync and burst of the reference video signal conform to the NTSC standard. The reference video signal is applied to a subcarrier regenerator 18 and a sync separator 22. The subcarrier regenerator generates a continuous wave reference subcarrier signal which is locked in phase to the burst of the reference video signal and is at a frequency of 3.58 MHz, and the sync separator provides horizontal and vertical sync signals. The matte generator 2 provides a full-field composite matte signal which conforms to the NTSC standard and is representative of a solid color selected by the operator of the production switcher using an operator interface 26. The matte signal and a selected external video signal are combined by the switching network 6 to produce an output video signal.

The operator interface includes three control knobs 30 which are independently adjustable. Each

control knob generates a digital signal representing the angular position of the knob. The digital signals are representative of luminance (Y), hue (θ) and saturation (M) respectively. The three digital signals are applied to the matte generator.

The composite NTSC video signal is generated from a luminance component Y and two color difference or chrominance components (R-Y) and (B-Y) by employing the two chrominance components to modulate respective continuous wave (c.w.) reference subcarrier signals which are in phase quadrature, combining the two modulated subcarrier signals, and adding the luminance component to the combined modulated subcarrier signals. If the phase of the c.w. signal that is modulated by the (B-Y) component is taken as 0° then the phase of the c.w. signal that is modulated by the (R-Y) component is 90° and the color burst of the composite signal is at a phase of 180° . The burst and chrominance vectors are illustrated in FIG. 2.

The digital signals provided by the control knobs are applied to a processor 34 and the values of Y, θ and M are written into a random access memory 38. The processor operates on the luminance, hue and saturation values in accordance with a program stored in a program memory 42 and utilizing calibration constants stored in the random access memory 38, and generates values C1 and C2. The operations that are performed on the values of Y, θ and M to generate the values C1 and C2 will be described in further detail below. The processor 34 also generates values A1 and A2. The processor provides two multiplexed digital output signals within each vertical blanking interval of the black burst signal. The successive words of the first signal represent values of A1, A2, X, X and zero, where X is an arbitrary (don't care) value, and are applied to a first digital-to-analog converter (DAC) 112 which provides at its output terminal an analog signal of which the voltage during successive clock intervals of the first signal represents the values of A1, A2, X, X and zero. The analog output signal of the DAC 112 is applied to five samples and holds 114₁ . . . 145₅, each of which comprises a switch 116, a capacitor 118 and an amplifier 120. The output voltages of the amplifiers 120₁ . . . 120₅ represent A1, A2, X, X and zero respectively. The output terminals of the amplifiers 120₁ and 120₅ are connected by way of respective switches 122₁ and 122₅ to a terminal 124₁ and similarly the output terminals of the amplifiers 120₂ and 120₄ are connected by switches 122₂ and 122₄ to a terminal 124₂. The terminals 124 are connected to a quadrature modulator 126. The switches 122₁ and 122₂ remain closed and the switches 122₃ and 122₄ remain open.

The quadrature modulator 126 comprises two modulators 131 and 132 which have modulating

inputs at which they receive the signals at the terminals 124₁ and 124₂ respectively and have carrier inputs at which they receive the reference subcarrier signal. A delay line 134 is connected in the path to the carrier inputs of the modulator 132. The delay line interposes a delay of $(90-Q)/360$ times the period of the reference subcarrier signal, with Q ideally being zero.

The output signal provided by the quadrature modulator 126 is combined with the output signal of the amplifier 120₅ in a filter and blunker 138 and the resulting signal is applied through a switch 138 to a summing amplifier 140.

The successive words of the second signal provided by the processor represent the values of C1, C2, X, X and Y and are applied to DAC 212, sample and hold 214, quadrature modulator 226 and filter and blunker 236 which operate in essentially identical fashion to the DAC 112, the sample and hold 114, the quadrature modulator 126 and the filter and blunker 138 respectively. The output signal of the filter and blunker 236 is applied through a switch 238 to the summing amplifier, which also receives the horizontal and vertical sync signals. The controller operates the switches 138 and 238 to select the modulator 126 during only the burst interval of each active line in the field of the reference video signal and to select the modulator 226 during only the active picture interval. Thus, during the blanking interval of each horizontal line, the output signal of the amplifier 140 comprises a front porch interval, followed by a horizontal sync pulse and a back porch interval.

Commercially-available quadrature modulators, such as those that are incorporated in the type MC 1377 integrated circuit, are subject to disadvantage in that they can introduce offset, gain and quadrature errors. Consequently, the output signal of the amplifier 140 is not given by the vectors $(-Mb, 0)$ and $(B-Y, R-Y)$, where Mb represents nominal burst amplitude, but by vectors having components $(-M1A1 + 01, -M2A2 + 02)$ and $(M1'C1 + 01', M2'C2 + 02')$ along axes which are not mutually perpendicular but are disposed at angles of $90^\circ - Q$ and $90^\circ - Q'$, as shown in FIG. 3. The offset, gain and quadrature errors result in the color represented by the matte signal not conforming to the desired color set by the operator interface controls. In order to correct the errors, it is possible to choose the values of A1, A2, C1 and C2 to compensate for the offset, gain and quadrature errors. The values of M1, M2, M1', M2', 01, 02, 01', 02', Q and Q' are derived by the processor 34 and are used as calibration constants in calculating suitable values of A1, A2, C1 and C2.

In order to enable the calibration constants to be derived, the matte generator 2 includes a calibration circuit 40. The calibration circuit 40 com-

prises an input section 44 which receives both the output signal of the matte generator and two D.C. calibration voltages provided by a calibration voltage source 48. The input section 44 includes switches 52, 54 and 56 for selecting the matte signal or one of the calibration voltages. A noise reduction filter 58 is connected to the switch 52. A switch 60 is used to connect the output terminal of the filter 58 to the output terminal 62 of the input section 44 either directly or by way of an A.C. blocking filter 64. The output signal provided by the input section 44 is applied to both an amplitude detector and a burst/picture sample generator 68. The amplitude detector comprises a switch 70 and a peak detector 72. Assuming that the switch 70 is closed when a first signal is applied to the amplitude detector, the peak detector provides a signal representative of the peak value of the first signal. The peak value signal is converted to digital form by an analog-to-digital converter 80 and is applied to the processor 34, which stores the digitized peak value. When a second signal is applied to the amplitude detector, the digitized peak value of the second signal is applied to the processor 34, and the difference between the two digital values is determined.

The burst/picture sample generator 68 has an output terminal which is connected to the amplitude detector to control the state of the switch 70. When the switch 52 of the input section 44 selects the output signal of the matte generator, the burst/picture sample generator causes the switch 70 to close during the burst interval or the picture interval of the matte signal, depending on which of the quadrature modulators is being calibrated.

The calibration of the modulator 126 involves calculating the values of the offset, gain and quadrature calibration constants O1, O2, M1, M2 and Q. The offset and gain calibration constants can be calculated using conventional techniques. The quadrature calibration constant can be derived by comparing the peak values that are obtained for vectors that are ideally at +45° and -45° with reference to the (B-Y) axis and adjusting the value of Q until the peak values are equal.

It is preferred, but not essential, that the offset and gain calibration constants be calculated before the quadrature calibration constant is calculated, in order to avoid unnecessary iterations.

The values of O1, O2, M1, M2 and Q are used to determine the values of A1 and A2 such that the resultant of the vector having the components (-M1A1+O1, -M2A2+O2) at an angle of 90°-Q is identical to the vectors having the components (-Mb, 0) at 90°, as shown in FIG. 4.

The values of O1', O2', M1', M2' and Q' for calibrating the modulator 226 are derived in similar fashion.

When proper offset, gain and quadrature calibration constants have been calculated, the matte signal provided by the matte generator represents the solid color selected by the operator.

In order to combine a matte signal having a color burst with an external video signal, it is necessary that the burst of the matte signal be in phase with the burst of the external video signal. However, the phase of the burst of the matte signal is determined by the phase of the reference subcarrier signal and is not necessarily the same as that of the burst of the external video signal. In FIG. 5(a), the burst and the chromaticity component of the matte signal are illustrated by the vectors 82 and 84, while the vector 86 represents the burst of the external video signal. It is necessary to effectively rotate the vectors 82 and 84 through a phase offset angle P so that they remain in the same angular relationship but the vector 82 coincides with the vector 86, as shown in FIG. 5(b). The matte signal may be adjusted to bring its burst into phase with the burst of the external video signal manually, with the aid of a vector monitor, but it is preferred that the adjustment be accomplished automatically, by use of a phase detector 88. One method by which phase calibration may be carried out automatically is described in document US-A-4 769 692, the disclosure of which is hereby incorporated by reference herein.

In the PAL system, the phase relationship between the R-Y chrominance component and burst changes on alternate lines, and accordingly the chromaticity information in the video signal can be represented by a vector having the components (R-Y, B-Y) or a vector having the components (-[R-Y], B-Y) depending on whether the line is odd-numbered or even-numbered. The chromaticity information is then represented on a vector monitor as two vectors which are symmetrically disposed about the B-Y axis, as shown in FIG. 6. If the phase offset P is not an integral multiple of 90°, the components that are necessary to provide the appropriate chromaticity vector on odd-numbered lines are different from those required to produce the vector required on even-numbered lines. Accordingly, in the PAL mode of operation the successive words in the second output signal of the processor represent the values of C1, C2, C3, C4 and Y and the analog output voltages of the amplifiers represent C1, C2, C3, C4 and Y. The switches 220₁ and 220₂ are closed on odd-numbered lines and the switches 220₃ and 220₄ are closed on even-numbered lines. It will be understood that if the modulators were ideal, the output signal of the amplifier 134 would be a full-field baseband composite signal which conforms to the PAL standard and represents a matte of uniform color. In the PAL system, the subcarrier frequency

is 4.43 MHz.

In order to calibrate the modulators for operation in the PAL mode, it is necessary to compute four offset calibration constants O1, O2, O3 and O4. In computing the values of O2 and O4, the reference subcarrier is inverted in phase with respect to its phase when the constants O1 and O3 are computed. Also, it is necessary to derive two values of the phase offset angle P, for odd-numbered and even-numbered lines respectively.

It will be appreciated that the present invention is not restricted to the particular embodiment that has been described, and that variations may be made therein without departing from the scope of the invention as defined in the appended claims and equivalents thereof. For example, although use of two quadrature modulators 126 and 136, and associated input and output circuits, has been described, a single quadrature modulator could be used instead if it were switched to receive the outputs of the sample and holds 114 during the horizontal blanking interval and the outputs of the sample and holds 214 during the active picture interval. Also, in some cases it may not be necessary for the matte signal to include a color burst, and in such a case the DAC 112, sample and hold 114, modulator 126 and filter and blunker 136 would not be required, and it would only be necessary to calibrate the modulator 226 by reference to the chromaticity information in the picture interval. In this case, the burst/picture sample generator 68 would close the switch 70 during the picture interval instead of the burst interval, because the burst would be absent. Even if the matte signal did not include a color burst, it would be necessary that the modulation axes of the matte signal be aligned with those of the external video signal in order to ensure that the phase relationship between the matte signal and the burst of the external video signal defines a color which lies inside the boundary of valid NTSC color space.

Claims

1. A matte generator for generating a video signal representative of a matte having a uniform color, comprising:
input means for generating component signals representing three independent variables that are sufficient to characterize a color,
modulator means for receiving the component signals and a reference subcarrier signal and generating an encoded video signal in response thereto,
calibrator means for receiving the encoded video signal and providing an output signal representative of the relationship between the value of a parameter of the encoded video
- 5 signal and a previously-determined value, and
feedback means for applying the output signal to the input means as a control signal for adjusting the component signals in a manner such that the value of said parameter of the encoded video signal is brought into a predetermined relationship with said previously-determined value.
- 10 2. A matte generator according to claim 1, wherein the input means comprise input terminals for receiving signals representative of the luminance, hue and saturation of the selected color, and the component signals comprise a luminance component signal and two chrominance component signals, the two chrominance component signals each having a value representative of the difference between the luminance of a primary color component of the selected color and the luminance of the selected color.
- 15 3. A matte generator according to claim 1, wherein the component signals are a luminance component signal and two chrominance component signals and the modulator means comprise at least one quadrature modulator for receiving the chrominance component signals and the reference subcarrier signal and generating an encoded chrominance signal in response thereto, and means for combining the luminance component signal with the encoded chrominance signal to generate the encoded video signal.
- 20 4. A matte generator according to claim 3, wherein the input means comprise a processor for receiving input signals representative of the luminance, hue and saturation of the selected color and carrying out mathematical operations upon the values of the luminance, hue and saturation to generate the luminance component signal and the chrominance component signals.
- 25 5. A matte generator according to claim 4, wherein the processor means are operative to compensate for offset, gain and quadrature errors introduced by the modulator means.
- 30 6. A matte generator according to claim 5, wherein the encoded video signal includes a burst at subcarrier frequency, and the processor means are operative to adjust the phase of the burst.
- 35 7. A method of generating a video signal representative of a matte having a uniform color,

comprising:

generating chrominance component signals representing the chrominance of a selected color and a luminance component signal representing the luminance of the selected color;

combining the component signals and a reference subcarrier signal to provide an encoded video signal in response thereto;

measuring the relationship between the value of a parameter of the encoded video signal and a previously-determined value of that parameter, and

employing the measured value of the relationship to adjust at least one of the chrominance component signals in a manner such that the value of said parameter of the encoded video signal is brought into a predetermined relationship with said previously-determined value.

8. A method according to claim 7, wherein each chrominance component signal has a magnitude which is of the form $MA + O$, where A represents the difference between the luminance of a primary color component of the selected color and the luminance of the selected color and O and M are constants, and the calibration step comprises determining the values of O and M.
9. A method according to claim 7, wherein the first-mentioned video signal includes a color burst, said parameter of the first-mentioned video signal is the phase of the color burst, and the previously-determined value of said parameter is the phase of the color burst of a second video signal.

Patentansprüche

1. Ein Maskengenerator zum Erzeugen eines Videosignals repräsentativ für eine Maske mit einer einfarbigen Farbe, die folgendes umfaßt:
eine Eingangseinrichtung zum Erzeugen von Teilsignalen, die drei einzelne Variablen darstellen, die zum Kennzeichnen einer Farbe ausreichend sind,
eine Modulatoreinrichtung zum Empfangen der Teilsignale und eines Bezugszwischenträgersignals und zum Erzeugen eines codierten Videosignals als Reaktion dazu,
eine Kalibrierinrichtung zum Empfangen des codierten Videosignals und zum Bereitstellen eines Ausgangssignals, das repräsentativ ist für die Beziehung zwischen dem Wert eines Parameters des codierten Videosignals und einem vorher festgelegten Wertes, und

eine Rückkopplungseinrichtung zum Anlegen des Ausgangssignals an die Eingangseinrichtung als ein Steuersignal zum Einstellen des Teilsignals in einer solchen Art und Weise, daß der Wert des genannten Parameters des codierten Videosignals in eine vorherbestimmte Beziehung mit den genannten vorher festgelegten Wert gebracht wird.

- 5 10 2. Ein Maskengenerator nach Anspruch 1, bei welchem die Eingangseinrichtung Eingangsanschlüsse umfaßt zum Empfangen von Signalen, die für die Leuchtdichte, den Farbton und die Sättigung der ausgewählten Farbe repräsentativ sind, und die Teilsignale umfassen ein Leuchtdichteteilsignal und zwei Chromianzteilsignale, wobei jedes der zwei Chromianzteilsignale einen Wert besitzt, der repräsentativ ist für den Unterschied zwischen der Leuchtdichte eines Primärfarbanteiles der ausgewählten Farbe und der Leuchtdichte der ausgewählten Farbe.
- 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

7. Ein Erzeugungsverfahren eines Videosignals, das repräsentativ ist für eine Maske mit einer einfarbigen Farbe, das folgendes umfaßt:
- das Erzeugen von Chrominanzteilsignalen, welche die Chrominanz einer ausgewählten Farbe darstellen und eines Leuchtdichteteilsignal, welches die Leuchtdichte der ausgewählten Farbe darstellt,
 - das Kombinieren der Teilsignale und eines Bezugszwischenträgersignals zum Bereitstellen eines codierten Videosignals als Reaktion dazu,
 - das Messen der Beziehung zwischen dem Wert eines Parameters des codierten Videosignals und einem vorher festgelegten Wert dieses Parameters, und
 - das Verwenden des gemessenen Wertes der Beziehung zum Einstellen wenigstens eines der Chrominanzteilsignale in einer solchen Art und Weise, daß der Wert des genannten Parameters des codierten Videosignals in eine vorherbestimmte Beziehung mit den genannten, vorher festgelegten Wert gebracht wird.
8. Ein Verfahren nach Anspruch 7, bei welchem jedes Chrominanzteilsignal eine Größe besitzt, welche in der Form $MA + O$ vorliegt, wobei A den Unterschied zwischen der Leuchtdichte eines Primärfarbenteiles der ausgewählten Farbe und der Leuchtdichte der ausgewählten Farbe darstellt und O und M Konstanten sind und der Kalibrierschritt das Festlegen der Werte O und M umfaßt.
9. Ein Verfahren nach Anspruch 7, bei welchem das erste angeführte Videosignal einen Burst enthält, wobei der genannte Parameter des ersten angeführten Videosignals die Phase des Burst ist und der vorher festgelegten Wert des genannten Parameters die Phase des Burst eines zweiten Videosignales ist.
- Revendications**
1. Générateur de trame pour engendrer un signal vidéo représentant une trame ayant une couleur uniforme, comprenant :
- un moyen d'entrée pour engendrer des signaux composants représentant trois variables indépendantes qui suffisent pour caractériser une couleur,
 - un moyen modulateur pour recevoir les signaux composants et un signal de sous-porteuse de référence et pour engendrer un signal vidéo codé en réponse à ceux-ci,
 - un moyen d'étalement pour recevoir le signal vidéo codé et pour fournir un signal de sortie représentant la relation qui existe entre
- la valeur d'un paramètre du signal vidéo codé et une valeur déterminée précédemment, et
- un moyen de réaction pour appliquer le signal de sortie au moyen d'entrée comme signal de commande afin de régler les signaux composants de telle manière que la valeur dudit paramètre du signal vidéo codé est mise en relation pré-déterminée avec ladite valeur déterminée précédemment.
2. Générateur de trame selon la revendication 1, dans lequel le moyen d'entrée comprend des bornes d'entrée pour recevoir des signaux représentant la luminance, la teinte et la saturation de la couleur sélectionnée, et les signaux composants comprennent un signal composant de luminance et deux signaux composants de chrominance, les deux signaux composants de chrominance ayant chacun une valeur représentant la différence entre la luminance d'une composante de couleur primaire de la couleur sélectionnée et la luminance de la couleur sélectionnée.
3. Générateur de trame selon la revendication 1, dans lequel les signaux composants sont un signal composant de luminance et deux signaux composants de chrominance et le moyen modulateur comprend au moins un modulateur en quadrature pour recevoir les signaux composants de chrominance et le signal de sous-porteuse de référence et pour engendrer un signal de chrominance codé en réponse à ceux-ci, et un moyen pour combiner le signal composant de luminance avec le signal de chrominance codé afin d'engendrer le signal vidéo codé.
4. Générateur de trame selon la revendication 3, dans lequel le moyen d'entrée comprend un processeur pour recevoir les signaux d'entrée représentant la luminance, la teinte et la saturation de la couleur sélectionnée et pour exécuter des opérations mathématiques sur les valeurs de la luminance, de la teinte et de la saturation afin d'engendrer le signal composant de luminance et les signaux composants de chrominance.
5. Générateur de trame selon la revendication 4, dans lequel le moyen à processeur est actif pour compenser les erreurs de décalage, de gain et de quadrature introduites par le moyen modulateur.
6. Générateur de trame selon la revendication 5, dans lequel le signal vidéo codé comprend une salve à la fréquence de la sous-porteuse,

et le moyen à processeur est actif pour régler la phase de la salve.

7. Procédé pour engendrer un signal vidéo représentant une trame ayant une couleur uniforme, consistant à :

engendrer des signaux composants de chrominance représentant la chrominance d'une couleur sélectionnée et un signal composant de luminance représentant la luminance de la couleur sélectionnée,

combiner les signaux composants et un signal de sous-porteuse de référence pour fournir un signal vidéo codé en réponse à ceux-ci,

mesurer la relation qui existe entre la valeur d'un paramètre du signal vidéo codé et une valeur de ce paramètre déterminée précédemment, et à

utiliser la valeur mesurée de la relation pour régler au moins un des signaux composants de chrominance de telle manière que la valeur dudit paramètre du signal vidéo codé est mise en relation prédéterminée avec ladite valeur déterminée précédemment.

5

10

15

20

25

8. Procédé selon la revendication 7, dans lequel chaque signal composant de chrominance a une amplitude qui est de la forme $MA + O$, où A représente la différence entre la luminance d'une composante de couleur primaire de la couleur sélectionnée et la luminance de la couleur sélectionnée et O et M sont des constantes, et l'étape d'étalonnage consiste à déterminer les valeurs de O et M.

30

35

9. Procédé selon la revendication 7, dans lequel le signal vidéo mentionné en premier comprend une salve de chrominance, ledit paramètre du signal vidéo mentionné en premier est la phase de la salve de chrominance, et la valeur dudit paramètre déterminée précédemment est la phase de la salve de chrominance d'un second signal vidéo.

40

45

50

55

FIG. 1

