

- ① 中点的Bresenham算法回顾
 - 2 更直观的想法
 - 3 改进的Bresenham算法

中点Bresenham算法回顾

基本原理:

假定0≤k≤1, x是最大位移方向

中点Bresenham算法回顾

基本原理:

通过中点与直线的位置关系引入误差项d,判断误差项的符号来选择候选点

更直观的想法

基本原理:

假定0≤k≤1, x是最大位移方向

$$\begin{cases} d>0.5 & y_{i+1}=y_i+1 \\ d=0.5 & y_{i+1}=y_i \\ d<0.5 & y_{i+1}=y_i \end{cases}$$

2 更直观的想法

寻找d的变换规律

如果向上走了一步 d不减去1 后果会如何?

改进的Bresenham算法

完备的算法

d的初值:

$$d_0 = 0$$

d的变换及如何取点:

d=d+k

浮点运算

$$x_{i+1}=x_i+1$$

$$d>0.5$$
 $y_{i+1}=y_i+1$ 此时 $d=d-1$

$$d \le 0.5 \ y_{i+1} = y_i$$

让人烦恼 的比较

改进的Bresenham算法

改进一

d的初值:

$$d_0 = 0$$

\$e=d-0.5

e的初值:

$$e_0 = -0.5$$

仍然有 浮点数!

d的变换及如何取点:

$$x_{i+1} = x_i + 1$$

$$d>0.5$$
 $y_{i+1}=y_i+1$ 此时 $d=d-1$

$$d \le 0.5 \ y_{i+1} = y_i$$

e的变换及如何取点:

$$x_{i+1}=x_i+1$$

$$e>0$$
 $y_{i+1}=y_i+1$ 此时 $e=e-1$

$$e \le 0$$
 $y_{i+1} = y_i$

改进的Bresenham算法

改进二

e的初值:

$$e_0 = -0.5$$

e的初值:

$$e_0 = -\triangle x$$

消除了 浮点数!

e的变换及如何取点:

$$x_{i+1}=x_i+1$$

$$e>0$$
 $y_{i+1}=y_i+1$ 此时 $e=e-1$

$$e \le 0$$
 $y_{i+1} = y_i$

e的变换及如何取点:

$$e=e+2\Delta y$$

$$x_{i+1}=x_i+1$$

$$e \le 0$$
 $y_{i+1} = y_i$

改进的Bresenham算法

在0≤k≤1情况下改进的Bresenham算法:

- (1)输入直线的两端点 $P_0(x_0,y_0)$ 和 $P_1(x_1,y_1)$ 。
- (2)计算初始值△x、△y、e=-△x、x=x₀、y=y₀。
- (3)绘制点(x,y)。
- (4) e更新为e+2△y 判断e的符号

若e>0,则(x,y)更新为(x+1,y+1),同时将e更新为e-2△x; 否则(x,y)更新为(x+1,y)。

(5) 当直线没有画完时,重复步骤3和4。否则结束。

改进的Bresenham算法

输入:直线两个端点的坐标P₀(0,0)和P₁(8,5)

输出:最佳逼近这条直线的像素点集

起点:P₀(x₀,y₀)为 (0,0) 终点:P₁(x₁,y₁)为 (8,5)

$$e_0 = -\triangle x = -8$$

e增量为2△y=2×5=10

如果e>0是y向上走一步

$$e=e-2\triangle x$$

改进的Bresenham算法

X	у	е	e+2△y
0	0	-8	2
1	1	-14	-4
2	1	-4	6
3	2	-10	0
4	2	0	10
5	3	-6	4
6	4	-12	-2
7	4	-2	8
8	5	-8	2
9	6	-14	

