Computer Vision I

Homework 5

Given November 28, 2017; Due December 5, 2017

Motion and Object Recognition

- 1. Consider an optical system with its camera coordinate system coinciding with the world coordinate system. The camera has unit focal length. At time t = 0, a point is located at (X, Y, Z) = (30, 60, 10) and it is moving with a constant speed (u, v, w) = (-5, -10, -1) towards the observer.
 - (a) Determine the location of the object at the image at time t = 0.
 - (b) Determine the image coordinates of the focus of expansion (FOE)
 - (c) Determine the time of the object collision with the observer.
- 2. (Old exam problem) Consider an imaging system with a unit focal length with its image plane located at z=1 and with view direction towards the positive Z axis (The center of projection is located at (0,0,0)) An object point is located at (10,20,0) at time t=0, and it is moving with constant acceleration. The initial velocity of the point is (0,0,0). The point is observed at (50,100,20) at time t=2. Will the optical flow vectors corresponding to this point meet at a point (focus of expansion)? If yes, what are the coordinates of this point? If not, what is the locus of the FOE (curve on which the FOE moves over time)?
- 3. Consider a database of faces of 40 people, with 10 images per person. Assuming that the images are 92x112 pixels, how much memory would require to store the database:
 - (a) Storing the images with no compression.
 - (b) Using PCA for the "Universal" set (i.e. one eigenspace for all the images) and keeping all the eigenvectors.
 - (c) Using PCA for the "Universal" set (i.e. one eigenspace for all the images) and keeping 40 eigenvectors.
 - (d) Using PCAs for each of the "Individual" sets (i.e. one eigenspace for each person) and keeping all the eigenvectors.
 - (e) Using PCAs for each of the "Individual" sets (i.e. one eigenspace for each person) and keeping 10 eigenvectors.
 - (f) Using PCAs for each of the "Individual" sets (i.e. one eigenspace for each person) and keeping 3 eigenvectors.
- 4. (Old exam problem) The following three 2×1 images were used to train a recognition system using an eigenspace approach:

1	2	3
1	2	3

The eigenvectors and eigenvalues found using the above training images are: $e_1 = (\sqrt{2}/2, \sqrt{2}/2)'$, $e_2 = (-\sqrt{2}/2, \sqrt{2}/2)'$ with $\lambda_1 = 4$ and $\lambda_2 = 0$, respectively. The recognition system will be tested with the image

- (a) Find the average image of the training set.
- (b) Show that e_1 and e_2 are orthonormal vectors.
- (c) If only one eigenvector is going to be used to represent and recognize the data, which one would you use? Why?
- (d) Find the eigenspace representation for the training images using only one eigenvector (the one chosen above).
- (e) Find the eigenspace representation for the testing image using only one eigenvector (the one chosen above).
- (f) Find the closest match to the test image in the compressed training database.