Factors Influencing Renthop.com Apartment Listing Interest

Bill Grieser
The George Washington University
Machine Learning I, DATS 6202
Final Assignment, Spring 2017

This Project

- Renthop is an apartment listing website, matching renters with available apartments and their rental agents
- They sponsored a Kaggle competition: given the information for a set of listings on the web site for NYC, predict if there would be High, Medium, or Low interest in the apartment
- That is what this project undertakes

The Renthop Website

Search

Bathrooms	Keywords	Keywords						
1 2 3 4	5+ WiFi, Parking (Com	WiFi, Parking (Comma Separated)						
Must Haves	Unit Features	Building Features						
Has Photos	Furnished	Doorman						
Has Floorplan	Laundry In Unit	Elevator						
Open House	Private Outdoor Space	Fitness Center						
Listing Type	Parking Space	Laundry In Building						
Listing Type	Pet Policy	Common Outdoor Space						
By Owner	—	Storage Facility						
Exclusive	Cats Allowed							
Sublet / Lease-Break	Dogs Allowed							
✓ No Fee								
Reduced Fee								
Short Term Allowed								

A listing has:

(Data available in Bold)

- Photos
- Size
- Display Address
- Listing Agent Information (Id only)
- Price
- "Hop Score"

Report Listing

A listing has:

- How long on site (Creation Date)
- Description
- Bulleted Feature List
- Check Availability (probably our target)

Report Listing

A listing has:

- Optional Floorplan (as picture)
- Map (Longitude / Latitude)

Comparing this listing against median prices for Studio / 1BA apartments in Financial District.

The price of this apartment is \$180 cheaper than the median price.

HopScore Breakdown

This listing has a HopScore of 98.0 and was posted 12 mins ago. The listing quality and manager score is fair. Some of the contributing factors to the HopScore are listed below.

Report Listing

A listing has:

- Price Comparison
- Hop Score (really a manager score)

Similar Apartments Nearby

Studio at Financial District Financial District, Downtown Manhat...

\$2,550 Per Month HopScore

100

Posted 49 mins ago

Studio at FiDi Water

Financial District, Downtown Manhat...

\$2,389 Per Month HopScore

Posted 18 mins ago

Studio at Pine Street

Financial District, Downtown Manhat...

\$2,820

99.0 Per Month HopScore

Posted 53 mins ago

Studio at Exchange Place

Financial District, Downtown Manhat... 98.2

\$2,420

Per Month HopScore

Posted 33 mins ago

Studio at Wall Street

Financial District, Downtown Manhat...

\$2,745

Per Month HopScore

Posted 13 mins ago

Studio at Water

Financial District, Downtown Manhat... 99.9

\$2,390

Per Month HopScore

Posted 22 mins ago

Studio at Water

Financial District, Downtown Manhat... 99.1

\$2,398

Per Month HopScore

Posted 25 mins ago

A listing has:

Comparables

The Question

Can we identify factors that influence the interest level specific New York City listings receive on the Renthop.com apartment listing web site . . .

. . . by fitting a Machine Learning model to predict listing interest level, using only data provided by Renthop through the Kaggle "Two Sigma Connect: Rental Listing Inquiries" competition?

S.M.A.R.T.

- Specific
 - Defined by the Kaggle Competition
- Measurable
 - Use goodness-of-fit measures of the classification model
 - Kaggle score submissions
 - Use other statistical measures (chi squared test)
- Actionable
 - Where possible, choose techniques that are interpretable, even at the expense of model accuracy
- Relevant
 - Real-life problem
- Time Bound
 - Strictly Bounded see next chart

Bounds of the Problem

- The main bound is the due date
 - Kaggle and class coincide
- Kaggle ground rule: No outside data

It became essential to time-bound the phases in order to not get lost

What does Success look like?

- A fitted model using most of the data provided that has a reasonable goodness of fit, as measured by Log Loss and F1 measures against held out test data
- Some insights into successful listings supported by the data and model
- A Kaggle entry in the competition

Original Data Fields

- Listing_id (int): Unique ID for the listing
- **Bedrooms** (int): number of bathrooms
- **Bathrooms** (decimal): number of bathrooms. Half-baths are 0.5
- **Building Id** (GUID): Unique ID of building, or 0 if no building id
- Created (date): Creation data of the listing
- **Description** (string): Free-form text description entered by the listing agent
- Display Address (string): Address of property as seen in the listing
- **Features** (list of strings): a list of features entered by the listing agent about this apartment
- Longitude, Latitude (decimal, degrees): Location of the apartment
- Manager Id (GUID): Unique ID of the listing agent
- Photos (list of URLS): The photos associated with the listing. Also provided in a file grouped by Listing ID.
- **Price** (int): Monthly rent in USD
- Street Address (string): Address of the apartment; not displayed in the listing
- Interest Level (string, categorical): This is the target variable. It has three categories: 'high', 'medium', 'low'

Approach and Strategy

- Explore Data
- Create features usable for analysis
 - 1. Variable length list of listing features
 - 2. Comparable listings
 - 3. Location
 - 4. Images
 - 5. Text description
- Use mRMR, Random Forest, and home-grown feature selector to identify important features
- Fit competing models using different classifiers attempting to predict Interest Level
- Determine insights
- Report Results

Data Summary

Percentage of Interest Categories: All Training Data

49352 Samples x 15 columns

Date range: April 1 – June 30 2016

Price Summary

Price and Bedrooms by Interest Level

Task 1: Listing Features

- Found all features occurring > 100 times
- Used Tfidf Vectorizer to identify similar feature strings; collapsed them together
- Manually collapsed others
- Created dummy variables for remaining features (57)

Task 2: Comparables

- In the training data, ran a regression to predict rent for an apartment that considered only:
 - Bedrooms
 - Bathroom
 - Lon/Lat
- Scored each listing's rent against their predicted rent and calculated a renter's surplus (+ is bargain, is pricey)

Task 3: Location

- Overlayed a lon/lat grid on NYC and determined a grid cell for each listing
- Calculated an average neighborhood desirability and used it to boost/penalize the listings in the cell

Task 4: Images

- Goal: Determine if a listing has a floorplan
- Converted every image (millions) to same size (160 x 140) and 256 colors
- Tried training images, running them trough PCA and then training on floorplans: No success
- Found a method that worked: Train a neural network on the image color histograms
- Manually bootstrapped the training data 50 listings at a time until model could process 150 listings with no errors
- Used an MLP Classifier (1 hidden layer with 50 nodes)
- Created a dummy variable for each listing: "Has Floorplan"

Positive Training Data

Negative Training Data

jwmail.gwu.edu > DATS 6202 Machine Learning I > code > renthop > floorplans > train > negative

Search negative

C

6812234_4100635 bf753bbd099f642 a0b849db83.bmp

6812258_90ef0dd 81ada1243fdab2f 051b471d86.bmp

6812275_525ca8b 21348483202b447 e1956d3921.bmp

6812275_969d285 4a1625c85adc0a3 72cabda8f6.bmp

6812524_4fe179e5 6812524_e5db5ed 8f782e16b40bf33 70e73697ba547a6 9c39583da.bmp 71402cc197.bmp

6812711_0b6ed50 cf8b59d4f77b39f5 6b68bb7ca.bmp

6812836_75836

6812836_75836d0 4cdd25562590fe7 29ff87b061.bmp

6812836_282812d 1a69a00658136eb ce919db42a.bmp

6812836_3663278 76bd8ce5f961e35 b80f1b523f.bmp

6814958_cf06c5a8 c727d780dd10c68 e3d1127cc.bmp

6816264_032895d cb455a8462adb55 3fc20a1c12.bmp

6823346_a752e0b 5896ad376d26729 504ec87b7a.bmp

6825871_be8946f 70b0b2f755dcbb7 95ecbdb1a4.bmp

6826770_0ff63ae5 db963c10b702745 7e181fcec.bmp

6826770_897dc40 08c1519d473da93 56ea02abce.bmp

6827241_bfd60da a7eb86931af5d66 d41e090f2d.bmp

6830946_8dcf6e3 6434107e71ee87c 2f14f1172b.bmp

6830946_3963b09 c8c79e1a3d84df9 a16e224bb7.bmp

6844926_76927d3 1032203a8a428ed 6bea628392.bmp

6851303_7f54ae91 68513 6f7dd3447fd6466 5bfee 70022ecb7.bmp 9d64a

6851303_210d535 5bfee2af2e9728b 9d64aaa86e.bmp

6852129_41c7e4a 3b492dc1899e7e6 f0488a67da.bmp

6856484_bf43a79 4b856b499bbb63 b5afbe4bb6a.bm

6859799_73d7a58 bcce8af3f388117e 561f57484.bmp

6859799_b4c3a93 3b2b900a6ba2386 8ed4e5f151.bmp

6866032_5508f924 30f7c57a1adfe5d db361d23f.bmp

6866345_8a22218 48638e7660f6927 cc5fa61cbf.bmp

6875098_eb165ef c032b541c48b8ec 6eee22f8b4.bmp

6886592_4288953 ac43f7fd7f74e96e 5b3da7996.bmp

6899629_08934e8 a87d80320557657 a5d35d6ea5.bmp

6899629_a44234a 401d978d0237c5a e7a6d0c2e5.bmp

6899629_d920303 ab983eb3bc421c4 76697816b9.bmp

6899629_e45d955 37f821806536d53 8aa2e012f5.bmp

6899629_f050acef 8f9ff17dced4bea6 fe104780.bmp

6901378_04b4fd8 d0b4e01edb7f744 c68cab8a48.bmp

6901378_cd39ca7 22b7b1c635d897 d27b73a36eb.bm

6941336_cced59c 3f4d0b3755fca73 c861d91a7a.bmp

6942047_e2e60e5 a8c2eade82845d3 4bf19793e0.bmp

6962003_9a4d37d f17379fecc9840b3 e8be99e60.bmp

6972829_1d804d4 fb9b09b4bb5f036 52b39c5a56.bmp

6976219_0d9928ff 56ff44912a52da87 c5f5d929.bmp

7046575_727a05c cf678dfaed27808 667ab52ca7.bmp

7057712_247beeb 9e760ce659d281f 3f82b4d7ea.bmp

Floor Plan Results

Busy vs. Plain Pictures

- What works better? Dull pictures of the apartment rooms or vibrant pictures of the view, the gym, the building itself, the neighborhood, etc?
- For each image, used sci-kit image to determine:
 - Number of contours
 - Number of points in edges
- Fed that to a KMeans unsupervised learner
 - Fit it with a subset of the training data
 - Selecting for 2 clusters gave sets of images with a perceived difference when run against larger sets of images
 - Better results not running through PCA first
 - Clustering distinguished "Plain" vs. "Busy" images
- Totals in training data after clustering:

```
30,032 Floorplans (excluded from the clusters) 1,252,704 "Plain" images 930,136 "Busy" images
```

Original Contours

Busy Example

Plain Example

Some Busy Pictures

6933963_98b2e22 7b2eeaed0b4a090 401a84a0a2.bmp

6936114_42846b9 1ee215aa3303f3a dc90a78969.bmp

6971257 f43b284

c19a7c770ba582f

6999912_933238fa

a51b78f62fa34be

6954470_ac5247e 6954470_d7f9afce 0c46e48ed31aac8 55d12cc99b1ede0 6da73ba42a.bmp 7f938b799.bmp

6957326_5a85f163 3216d288d1386b6 09170278a.bmp

6957326_8f5f2b6a 400166c48294035 0199225af.bmp

6989039 80daed4

4a383b589d7e820

3134798c98.bmp

7022453 4fed1d7

b112fe7d0790cff7

6957326_8f750f92 dbc29c5859dfbc0 cd140066f.bmp

6989039 141e1ca

471cbbac2c10015

478d13b236.bmp

7022453 4ff9adad

f24a3169cff532b5

f273567c.bmp

6957326_407ea1a 02d8ce1cf6d5c1d 8011e3131b.bmp

6989039 542c8f2e

7ae2133efcb0892

7022453_8f695465

91ddef286962547

fdaadfb75.bmp

e96153ff8.bmp

6957326_466fa6a9 6971257 44f4f1c0 b15c17d99b62b1 64fdf3edcd42812 d4eb54ced.bmp 71baac5671.bmp

6971257 13782c1 6718a42b221a668 d14276476c.bmp

6971257 da9d41c 1d0e07c4b4ebe97 b1b2bcdc7f.bmp

6999912 3e5b1a4 292f856731c81b7 ad772f381c.bmp

7022453_9829d7d 7022453_4272049 07cf70762533be3 644b9c06bf7c6cf 84aca1b9c3.bmp 723e40afe8.bmp

6971257 f468d77 4f1ead4fc8b71db 09742d4614.bmp

6999912_a6a2b0b

9d70df8848d5f14

1723760881.bmp

7003486 3f516d7f 78d65bd958464b 3b2b644785.bmp

7003486 bbde8fc

6623d9f4d1d81cc

6989039 59bfbea

1adfd29ad063436

f596a80906.bmp

7026019_92e35a9 2f8ef52aef.bmp

7026019_adad21c

8ef850023acfff21 e4a891a8a.bmp

3b97386766deed8

40664b6a5310d4e

e823d88981.bmp

7026019_d72a02f

5a5c64e93cc22f4

6989039 b31d852

ffd7aa17794a0d4 c89939c502.bmp

7022453 365fb06 0e90e933d2e0252 d90879caf6.bmp

6994323 e0f9a1b

d3383df7722e489

5f3deedeb3.bmp

7026532_a1e53d9 de5760530155d63 f569e88249.bmp

7022453_e78ba00

2c4034faf4d26984

7026532_3ebc991

1252840696b2d40

Some Plain Pictures

6814059_0f779a6c 166ed349f8787ca 85e0e85df.bmp

6814059 8b08f4c 595fb2f601a684ce 6ca317725.bmp

6814059_3826168 caad5416ed49258 958720012d.bmp

6814059 a0b51a8 2aa83f359514d85 5de82a3784.bmp

6816406 221de75

66c1f9833bca6c8

589330b43f.bmp

6814059_cd36dc8 6933cf6aea4f2c3c 7453c6464.bmp

cefcb2b567a6cd9

8b5da4201.bmp

6832285 2c8070b

5b03f790a5b0efdf

4028e7f4a.bmp

6814337_1c2f7912 3dfeb3e64069762 495b02bf4.bmp

6814337_5e5348cf d3387022cdc6838 b8249c92f.bmp

6814337_cbc2b2c d68263675dded2 54672cee5fe.bmp

6814337_efda68d 4245a6b1299729d 0644cf6e43.bmp

-

6821240 80b8697

65d8273de42985b

6815669 c19e00e 294f62eb93204f0 b9bdbb1b6d.bm

6821240_83b1128

12d4766f9d5d83b

6790a0a94e.bmp

6815669 d3408c1 400e3bf8d2f8b54

6815669 ec75792 9bf238011660521 3fe486ade3.bmp

6829112 4a8bbb2 c082651fb4a5926 b6a3ef6378.bmp

6832285_4211314f dbb9f37a7d1d563 c7e073625.bmp

6838445_02b61f5 e5be59a4801b273 85008f4540.bmp

6815906 35edcfff cc1319bcbf8e48b 1406bb26e.bmp

6829112 82dfd05

c7933a129d5bfb1

6832285_ac46da0

2727cb831a8c599

db7058d18c.bmp

6816406 92e10be

6829112 2328d48 8643cbcb8de57fa

6829112 a963636 2d6d4b907cd83b 2eabc2776f0.bmp

786018fc303cbbd 6d36e56940.bmp

f8d5453ce.bmp

6816406 d6a0fc6 daf72bb8c80eae4 d5ab48ab38.bmp

6829112 c9faedd 8a0520c870df100 c9e1dd456b.bmp

6832285_ee3ea8d db55c038fe8bf42

6821240 7a1381b 9e0989611248d07 c8ad00e62e.bmp

6833599_6a62706 7b35122444edcf8 4db375d806.bmp

6847952 e646dbe 76512d755c245da

6821240 09a6222 1f92c8d5b29f57fd f28fd5003.bmp

6832285 3d25c0d

6fafa3895727fbbf

6832285 3ece5e8 9b1eb5f2af8b191 22e2503e68.bmp

6833599_52140a6 26cc0b1e2dea7c9 3f03b6e0f9.bmp

6833599_c4cdb61 40b39447d08b832 e7bec456fe.bmp

7c45e8a16aa1b3b

6821240 ac5333fe 7371ffda07e7fb76 47e14088.bmp

6832285 7330a40 003bb516d37f4ee 262a3a1c81.bmp

6835078_dc7bc37 42c5f87b25cfddb efd7b43abc.bmp

6849058 42ddb79 bc2da9a30419920 4646aab5b0.bmp

95fc45ad90b.bm

6832285_b13c8a6

eee3a183584e987

45451b69a3.bmp

6845240 719c1e1 86ff39a5c7ac1113

6845240_7830ed0 4daff920a76c7af5 0803e570e.bmp

6832285_fe7870c

dda63137e2c01e7

6845240 cf16fd0f 5cfb8c0ff4f41e8e 9c0a8c02.bmp

a882ff72c3.bmp

6833599_0376c6fc

650c4f2a1bfa9651

1739fc6d.bmp

6848173 5190f53 b975949f6413248 2302900c22.bmp

796eed2f9f7d5b1 9ac3c09e2.bmp

df3a7257a.bmp

How Pictures Were Used

Total Listings by Picture Type counts

10	127	125	127	102	55	75	35	26	18	9	43		
6	101	57	38	29	18	8	4	1	3	1	6		1250
8	174	104	75	54	28	10	13	8	7	2	13		
ses 7	232	243	80	63	31	51	11	5	11	4	15		1000
pictures 6 7	345	370	251	100	84	37	53	15	10	6	23		
Busy p 4 5	534	537	395	257	108	83	40	48	14	8	30		750
n Bu 4	525	773	631	428	295	114	79	50	39	13	53		
Num	472	848	880	632	456	291	125	94	54	44	61		500
2	298	659	1115	1049	786	469	369	135	98	70	142		
	540	292	942	1424	1476	961	598	385	171	109	190		250
0	2581	263	402	1237	1640	1496	851	485	340	164	262		
	0	1	2	3	4	5	6	7	8	9	10	1	
				IN	lum P	iain p	icture	35					

Success Metric for Picture Combos

Plain-for-Busy Chi Squared Test

Task 5: Text Description

- Used a tf-idf Vectorizer to identify 1-, 2-, 3-grams in the text description
- Min frequency: 1%, max Frequency 98%
- Approximately 800 words in the vocabulary
- Using only the description vector to predict the label log loss score of 0.74
 - Null Log loss model: scored 0.787
- Created a feature for predicted non-low based on text alone and included it in the main model

Miscellaneous

Created dummies for day-of-week the listing was created

- Created a boost for successful property managers related to the HOP score and user ratings of the agents
- Created metadata about the listing such as:
 - Percentage Upper Case in the description
 - Log of description length
 - HTML formatting in description; website URL in description
- After feature engineering, new training data shape: 49352 rows x 123 columns + 2 label columns (original categorial converted to integer)

Top Binary Features Selected by MRMR

Feature	Feature
Has Building ID	Has More Plain Pictures
No Rental Fee	Display Address Starts with a Digit
Reduced Rental Fee	Has 5 bedrooms
Furnished	Has 1 bedroom
Dogs Allowed	Laundry Room
Renovated	Public Outdoor Space
Hardwood Floors	Created on Friday
Washer in Unit	Fireplace
Has 6 Bedrooms	Newly Renovated
Has 8 Bedrooms	Children's Playroom

Playroom is a penalty

Plain pictures are a boost

Results of Modeling

- Three best performing models:
 - Random Forest (1000 classifiers, auto n_features)
 - MLP Neural Network (1 hidden layer 10 nodes)
 - Logistic Regression (C=1, l2 normalization, multinomial)

Random Forest

Results for Hold Out Test Data (Random Forest)

Random Forest

```
eature importance:
manager boost 0.207346114229
price 0.094255241664
desc prob 0 0.0934663652871
neighborhood boost 0.0674976774421
surplus DT 0.0663217209287
m description length modlog 0.0658757370221
m description UC pct 0.0649307769437
grid y 0.0468302964799
listing feature count modlog 0.0453032392492
m photos count modlog 0.0440506134713
grid x 0.0434702193913
m has building id 0.0208387698602
created on wed 0.0110780265638
bedroom 2 0.0102545084573
created on tue 0.0102157632852
created on thu 0.00992834795607
created on fri 0.00974111421575
bathrooms 0.0094823578633
im has bucket 1 0.00941038349117
bedroom 1 0.00940995126481
created on sat 0.00894835240923
im has top bucket 0 0.00780621686129
m display addr digit start 0.00768078551956
im has top bucket 1 0.00728999076254
bedroom 3 0.00717192996728
created on sun 0.00652371449416
im has bucket 0 0.00636962516371
im has floorplan 0.00483609621372
bedroom 4 0.00314354338473
bedroom 5 0.000476242460198
bedroom 6 4.61494481599e-05
bedroom 8 1.28249479584e-07
bedroom 7 0.0
```

- Cross-validating Grid Search selected the non-zero probability from the description over the Listing Features list – but it was very close
- Best run against hold-out test data was with the list of features

Random Forest ROC (Low vs. Non-Low)

Logistic Regression

Results for Hold Out Test Data (Logistic Regression)

Logistic Regression

```
Coefficients:
bedroom 4
                 -1.38585392671
manager boost
                 -1.24141179436
f subway
                 1.13222479516
f furnished
                 -0.978486168256
price
                 0.837056826108
bedroom 3
                 -0.783683585396
im has top bucket 1 -0.769325882987
im has top bucket 0 -0.722079317938
m has building id -0.704392244677
f simplex
                 0.530237447817
bedroom 5
                 0.451675279184
 onsite garage 0.409496586251
 newly renovated 0.407701458373
f reduced fee
                 -0.383760570101
bedroom 2
                 -0.368601305702
 multilevel
                 -0.339567376893
 no fee
                 -0.31637979972
  common outdoor space -0.305412302998
  renovated
                 -0.295512834513
 stainless steel appliances -0.288331906157
  exclusive
                 -0.287969207776
neighborhood boost -0.26352562922
 concierge
                 0.240088720421
 laundry room
                 0.226048576103
 laundry in building -0.211937225452
 private outdoor space -0.208576042196
 bike room
                 0.20063921899
 live in super 0.190363592592
f washer in unit 0.188912537562
f washerdryer
                 -0.188478297162
```

 Predicting the negative case, so negative coefficients are related improved success

```
Logistic Regression

Log loss: 0.620872752432

F1 score: 0.696409884514

[[9308 886 83]

[2047 1210 139]

[ 414 536 183]]
```


MLP Neural Network

Results for Hold Out Test Data (MLP Neural Network)

MLP Neural Network

- Log Loss almost as good as Random Forest
- Did the best on F1 score
- Grid Search selected the simplest network (1 hidden layer, 10 modes)

```
Neural Network

Log loss: 0.605959498991

F1 score: 0.724673686007

[[9256 945 76]

[1774 1432 190]

[ 237 617 279]]
```


Null Model

(Predicting every listing has the same probabilities as the population average)

```
Null Model

Log loss: 0.787858212727

F1 score: 0.5687815305

[[10277 0 0]
  [ 3396 0 0]
  [ 1133 0 0]]
```


Insights

- For listings, pictures are important. At least one should be a picture of the apartment
- Try and have the listing hit on a Friday
- Networking / Social Profile is important for agents
- Keep the price down, especially the rental fee
- The description may not be that important if the pictures and feature list tell the story.
 There were very close results substituting description score for the list of binary features

Further Study

- Images
 - Identify kitchens and bathrooms
- Description
 - More sophisticated analysis needed
- More data on the relationship to the property manager would be desirable
- Model of Models

Backup Charts

Results for Hold Out Test Data (Logistic Regression)

Results for Hold Out Test Data (MLP Neural Network)

Results for Hold Out Test Data (Random Forest)

