Impacto de Nociones de Disponibilidad en la Evaluación Económica de Proyectos de Generación Óptimos

Victor Martín, Ezequiel Godoy y Sonia Benz

Centro de Aplicaciones Informáticas y Modelado en Ingeniería (CAIMI), Universidad Tecnológica Nacional, Zeballos 1346, S2000BQB, Rosario, Argentina caimi@frro.utn.edu.ar

Abstract. El presente trabajo tiene por objetivo estudiar el impacto de considerar distintas nociones de disponibilidad durante la formulación del proyecto de inversión de una planta de generación por ciclo combinado. En primer lugar, se propone una estrategia para determinar el horizonte operativo equivalente del sistema, que incluye el cómputo de las erogaciones en que se incurren debido a la operación en todo el conjunto de estados degradados que la planta atraviesa a lo largo de su vida útil. En segundo lugar, se propone incluir una funcionalidad entre disponibilidad y recursos asignados para mantenimiento, con objeto de asegurar que se podrá alcanzar la meta de generación fijada frente a las cambiantes condiciones que la planta debe afrontar.

Luego, se analizan las mejoras obtenidas en los indicadores económicos óptimos del proyecto, observándose un incremento del atractivo de las opciones de inversión generadas desde las etapas tempranas de diseño de la planta.

1 Estrategia de Modelado del Ciclo de Vida Útil de la Planta de Generación

Una planta de generación por ciclo combinado a gas natural, tal como se presenta en la Fig. 1, es aquí utilizada como caso de estudio. La misma consta de una turbina de gas, una caldera de recuperación y una turbina de vapor. El modelo matemático detallado de dicho sistema ha sido previamente discutido en [1, 2].

El ciclo de vida útil de la planta de generación, tal como se representa en la Fig. 2, se define como un set de periodos ti que comprende las tres principales fases que el sistema atraviesa a lo largo del horizonte de tiempo, según:

- Construcción, donde se producen las erogaciones de capital necesarias, representada por el set pi, y abarcando los 2 primeros años
- Fase operativa, cuando la planta es operada con objeto de satisfacer la demanda esperada, representada por el set oi, y abarcando un horizonte de 27 años
- Desarme, donde se recupera el valor residual del capital, representada por el set li, y abarcando el último año

Fig. 1. Diagrama Esquemático del Ciclo Combinado

 ${\bf Fig.\,2.}$ Ciclo de Vida Útil de la Planta de Generación

2 Evaluación de Indicadores Económicos

La performance económica del proyecto a lo largo de su vida útil es evaluada por medio de su valor presente neto NPV, según se expresa en (1), el cual representa la sumatoria de los flujos de fondos descontados a valor presente según la tasa de retorno deseada por los inversores. El flujo de fondos para el periodo ti es la diferencia entre las entradas y salidas económicas que ocurren en dicho periodo, incluyendo ventas de electricidad $Sales_{oi}$, costos operativos $OPEX_{oi}$, inversión de capital ACE_{pi} , valor residual $SVFC_{li}$, depreciaciones Dep_{oi} , e impuestos NIT_{oi} .

$$NPV = \sum \frac{(Sales_{oi} + SVFC_{li} + Dep_{oi}) - (OPEX_{oi} + ACE_{pi} + NIT_{oi})}{(1 + ADR)^{ti}}.$$
(1)

2.1 Gastos de Capital

El costo total de adquisición de los equipos C_{Inv} se expresa según (2), en función del tamaño y características constructivas de las turbinas de gas $\dot{W}_{Net,GT,D}$ y de vapor $\dot{W}_{Net,ST,D}$, y del área de intercambio necesaria $A_{Net,HRSG,D}$.

$$C_{Inv} = C_T^u \dot{W}_{Net,GT,D} + C_T^u \dot{W}_{Net,ST,D} + C_A^u (A_{Net,HRSG,D})^a$$
 (2)

Los gastos totales de capital CAPEX están asociados con todas las erogaciones necesarias para el diseño y construcción de la planta según expresa (3), incluyendo servicios de ingeniería, instalaciones generales, instrumentación y control, cañerías, servicios auxiliares, mejoras de terreno, contratos, contingencias, capital de trabajo, arranque, etc.

$$CAPEX = F_{Inst} C_{Inv} . (3)$$

La distribución de la inversión de capital ACE_{pi} a realizar en cada período pre-operativo pi se determina según (4).

$$ACE_{pi} = F_{Inv,pi} \ CAPEX \ .$$
 (4)

2.2 Gastos Operativos

La gastos operativos $OPEX_{oi}$ se computan de acuerdo a (5). Estos incluyen materias primas y servicios $C_{RM,oi}$, mantenimiento $C_{Mant,oi}$, personal $C_{MP,oi}$, y otros relacionados a estos anteriores, incluyendo impuestos, seguros, supervisión y apoyo, actividades de laboratorio, suministros operativos, gastos generales, administración, investigación y desarrollo, etc.

$$OPEX_{oi} = C_{RM,oi} + C_{Mant,oi} + F_{PO} C_{MP,oi} + F_{IO} C_{Inv}.$$
 (5)

Los gastos en materias primas $C_{RM,oi}$ se calculan como la sumatoria de los consumos de combustible $\dot{Q}_{F,oi}$, agua de caldera $\dot{m}_{W,oi}$ y agua de enfriamiento $\dot{m}_{CW,oi}$, según se expresa en (6).

$$C_{RM,oi} = POT_{oi} \left(C_{F,oi}^{u} \left(1 + AF \right)^{oi} \dot{Q}_{F,oi} + C_{W,oi}^{u} \dot{m}_{W,oi} + C_{CW,oi}^{u} \dot{m}_{CW,oi} \right).$$
(6)

Los costos de personal $C_{MP,oi}$ se calculan según (7).

$$C_{MP,oi} = F_{MP} N_{MP} . (7)$$

En los métodos tradicionales de evaluación económica de proyectos de inversión, los costos de mantenimiento $C_{Mant,oi}$ se estiman como un porcentaje fijo de la inversión de capital, según (8).

$$C_{Mant,oi} = F_{Mant,oi} C_{Inv} . (8)$$

2.3 Depreciaciones

La depreciación Dep_{oi} de los activos se realiza por medio del método de la línea recta, según (9).

$$Dep_{oi} = \frac{1}{N_{oi}} (1 - FSV) CAPEX . (9)$$

El valor residual $SVFC_{li}$ se estima como un porcentaje dado de la inversión total de capital IFC, según (10).

$$SVFC_{li} = FSV \ CAPEX \ .$$
 (10)

2.4 Ventas de Energía e Impuestos

Las ventas de energía eléctrica $Sales_{oi}$ se calculan según (11), en función de la energía neta generada $\dot{W}_{Net,oi}$.

$$Sales_{oi} = POT_{oi} \ P_{Elec} \ (1 + AE)^{oi} \ \dot{W}_{Net,oi} \ . \tag{11}$$

Los impuestos a las ganancias NIT_{oi} son deducidos de los ingresos, y calculados según (12).

$$NIT_{oi} = P_{NIT} \left(Sales_{oi} - (OPEX_{oi} + Dep_{oi}) \right)$$
 (12)

2.5 Parámetros Económicos

Los parámetros económicos se listan en la Tabla 1, los cuales se toman de referencias generales y técnicas [3-8]; mientras que los precios de combustible y de la electricidad se obtienen de [9,10]; y los costos de adquisición de equipos son calculados considerando las funcionalidades y costos unitarios reportados por [5,7,10-12].

 ${\bf Tabla}\ {\bf 1.}$ Parámetros Económicos

	Símbolo	Unidad	Valor
Costo Unitario Agua de Caldera	C_W^u	\$/ton	3.531
Costo Unitario Agua de Enfriamiento	$C^u_{\scriptscriptstyle CW}$	\$/ton	0.05829
Costo Unitario Área de Intercambio	C^u_A	m^2	268.2
Costo Unitario Combustible	C_F^u	\$/GJ	3.31754
Costo Unitario de Potencia	C_T^u	\$/kW	258.3
Crecimiento Anual Costo Combustible	AF		0.04
Crecimiento Anual Precio Electricidad	AE		0.03
Factor de Costo del Área	а		0.6
Factor de Impuesto a las Ganancias	$P_{\scriptscriptstyle NIT}$		0.35
Factor de Instalación	$F_{\scriptscriptstyle inst}$		5
Factor de Inversión de Capital	$F_{inv,1}$		0.6
Factor de Inversión de Capital	$F_{inv,2}$		0.4
Factor de Inversión Operativa	F_{IO}		0.33
Factor de Mantenimiento	$F_{\mathit{Mant},oi}$		0.02
Factor de Producción	F_{PO}		2.2
Factor de Recupero de Capital	FSV		0.1
Factor Equivalente de Personal	$F_{\!\scriptscriptstyle M\!P}$		30000
Número de Años Operativos	N_{oi}		27
Número Equivalente de Personal	$N_{\!\scriptscriptstyle M\!P}$		42
Precio de la Electricidad	$P_{{\scriptscriptstyle Elec}}$	\$/MWh	40
Tasa de Interés	ADR		0.050

3 Nociones de Disponibilidad

Se propone aquí incorporar distintas nociones de disponibilidad durante la etapa de diseño conceptual de la planta de generación, las cuales no son consideradas por los métodos tradicionales para la evaluación económica de proyectos de inversión.

3.1 Funcionalidad entre Horas Operativas y Fondos para Mantenimiento

Los fondos asignados para tareas de mantenimiento se estiman usualmente como un porcentaje fijo de la inversión de capital necesaria, al fijarse $F_{Mant,oi}$ en (8) en un valor entre 0.2% y 4%; ignorándose así la mejora potencial en las características de mantenibilidad de los distintos equipos de proceso debidas a un aumento del presupuesto destinado a mantenimiento.

Se ha propuesto en la literatura (véase por ejemplo [13]) que el incrementar la disponibilidad del sistema requiere mayores erogaciones destinadas a actividades de mantenimiento, siguiendo una ley de rendimientos decrecientes (donde la ganancia de la variable dependiente es marginalmente menor por cada incremento unitario sucesivo de la variable independiente), según se expone en la Fig. 3.

Fig. 3. Horas Operativas versus Recursos para Mantenimiento

Luego, se propone aquí la utilización de una relación exponencial entre las horas operativas anuales POT_{oi} y los fondos asignados para mantenimiento $C_{Mant,oi}$, según expresa (13-14). Los valores de los parámetros necesarios pueden ser obtenidos de datos históricos de la industria respecto de fondos asignados para mantenimiento versus disponibilidad del sistema, tales como los reportados en [14–16].

$$POT_{oi} = POT_0 \ e^{\gamma_{oi} \ C_{Mant,oi}} \ . \tag{13}$$

$$\gamma_{oi} = \frac{ln(POT_{min}) - ln(POT_{max})}{(F_{Mant,min} - F_{Mant,max}) C_{Inv}} . \tag{14}$$

3.2 Operación en Estados Degradados

Los métodos tradicionales de evaluación económica consideran solamente operación a capacidad nominal, y asumen que el sistema se encuentra totalmente fuera de servicio en caso contrario. Sin embargo, las plantas de generación pueden operar en un conjunto factible de estados degradados, dependiendo de la condición de cada uno de los componentes que la integran. De manera general, se pueden identificar diversos escenarios operativos en función de la capacidad remanente de generación en las turbinas de gas y de vapor frente a la salida de servicio de distintos equipos de proceso.

Luego, se obtendrá una evaluación más realista del óptimo económico de la planta de generación si se incluyen en el cálculo los recursos necesarios para operar en los distintos estados degradados, así como la generación extra obtenida durante dichos periodos, según se muestra en la Fig. 4.

Fig. 4. Horizonte Operativo Equivalente

Una solución simple, con objeto de considerar dichos efectos durante la evaluación económica del proyecto, es utilizar un horizonte de operación $POT_{eq,oi}$ a capacidad nominal que implique una producción total de energía equivalente a la que se obtendría si se computara la energía extra generada en los estados degradados, según expresa (15). Luego, el diseñador debe proveer el valor del factor de equivalencia en base a la experiencia previa sobre los escenarios operativos factibles que afronta una planta de generación tipo a lo largo del horizonte de tiempo (pudiendo utilizarse como guía los datos históricos reportados en [14–16]).

$$POT_{eq,oi} = POT_{oi} \ (1 + F_{eq}) \ . \tag{15}$$

Este horizonte operativo equivalente $POT_{eq,oi}$ es utilizado para la evaluación de los indicadores económicos del proyecto de generación, incluyendo (6) y (11).

3.3 Parámetros de Disponibilidad

Los parámetros asociados a la nociones de disponibilidad incluidas en el modelo del sistema se listan en la Tabla 2.

	Símbolo	Unidad	Valor
Factor de Equivalencia	F_{eq}		0.05
Factor de Mantenimiento Máximo	$F_{\mathit{mant},\mathit{max}}$		0.040
Factor de Mantenimiento Mínimo	$F_{{\it mant}, {\it min}}$		0.002
Horizonte Operativo Base	POT_0	hs/año	7717.86
Horizonte Operativo Máximo	POT_{max}	hs/año	8400
Horizonte Operativo Mínimo	POT_{min}	hs/año	7800

Tabla 2. Parámetros de Disponibilidad

4 Problema de Optimización Económico

La optimización económica del proyecto está vinculada a la evaluación de la rentabilidad de las diferentes opciones de inversión, y habilita la selección de aquel proyecto que ostenta valores óptimos de los indicadores financieros, de acuerdo a los lineamentos presentados en la Fig. 5. Este problema matemático es implementado en el software de optimización GAMS, y es resuelto por medio del algoritmo de gradiente reducido CONOPT.

La formulación propuesta implica maximizar el valor presente neto del proyecto NPV (que se selecciona como función objetivo f), obteniéndose de esta manera valores óptimos de todos los indicadores económicos asociados a la planta de generación, incluyendo inversión de capital, gastos operativos, consumo de combustible, tasa de retorno, entre otros.

El modelo matemático está conformado por restricciones de igualdad \underline{h} que configuran el modelo multi-periodo del ciclo de vida útil de la planta de generación (balances de materia y energía, ecuaciones de diseño, correlaciones para predicción de propiedades, escenarios operativos, evaluación de indicadores económicos, etc.), así como restricciones de desigualdad \underline{g} que configuran la región factible de operación del proceso (temperaturas máximas y mínimas, presiones de operación admisibles, recomendaciones de fabricantes, etc.).

Mediante la resolución del problema propuesto, se obtienen simultáneamente los valores óptimos de las variables de diseño \underline{x}_{Des} y de las variables operativas $\underline{x}_{Op,oi}$ del ciclo combinado. Entre las primeras se incluyen las áreas de

Fig. 5. Estrategia de Optimización

intercambio de las secciones de la caldera de recuperación, y las capacidades de generación de las turbinas de gas y de vapor. Por su parte, las segundas comprenden las características de las corrientes de proceso (composición, caudal, temperatura, presión, entalpía), diferencias medias logarítmicas de temperaturas en los intercambiadores, niveles operativos de presión, relación de compresión en la turbina de gas, título de vapor, etc.

Asimismo, la estrategia aquí propuesta implica la inclusión de las nociones de disponibilidad discutidas en la Sección 3 durante la optimización económica del proyecto de generación, con objeto de considerar la funcionalidad entre el horizonte operativo y los recursos asignados para acciones de mantenimiento, así como el cómputo de los ingresos y egresos que se originan a causa de la operación de la planta en distintos estados degradados factibles.

5 Resultados y Discusión

5.1 Comparación entre la Estrategia Propuesta y un Enfoque Tradicional

La Fig. 6 presenta una comparación de pesos relativos entre los indicadores económicos óptimos de una planta de generación diseñada por medio de la estrategia propuesta considerando nociones de disponibilidad, contra un ciclo combinado obtenido por medio de un enfoque tradicional (denominándose así al que no incluye las nociones de disponibilidad aquí discutidas).

Fig. 6. Comparación de Indicadores Económicos Óptimos

Se observa así que la economía de la planta mejora al considerar distintas nociones de disponibilidad durante las etapas de síntesis y diseño del proyecto. Luego, la estrategia aquí propuesta reporta un valor presente neto para el proyecto 11% mayor que el correspondiente a una planta obtenida por métodos tradicionales. Asimismo, se obtiene una mejora de 0.7% en la tasa interna de retorno del ciclo combinado.

Estas mejoras son impulsadas por la evaluación del impacto que los recursos asignados para acciones de mantenimiento ejercen sobre la disponibilidad del sistema, que implica un horizonte operativo de 8052 horas, según (13); así como por el computo de la energía extra generada por la planta en los estados operativos degradados factibles, que implica un horizonte equivalente de 8454 horas, según (15).

La estrategia propuesta permite también evaluar los costos en que incurre el sistema tanto a capacidad nominal como en los distintos estados degradados factibles que atraviesa el sistema a lo largo del horizonte de tiempo. Ello resulta en previsiones de gastos totales mayores que las de una planta obtenida por métodos tradicionales (que resultan sub-estimados por los métodos tradicionales en algo menos de un 3.6% anual), debido principalmente al incremento del costo del combustible consumido.

Por otro lado, no se considera una relación directa entre disponibilidad e inversión de capital, por lo que los equipos de proceso son diseñados solo en vista de satisfacer la demanda esperada a capacidad nominal, y por consiguiente, no se aprecian diferencias significativas en los gastos de capital estimados según ambas metodologías.

Con el objeto de considerar los efectos de los factores asociados a las políticas de mantenimiento implementadas, otros autores [17] propusieron se utilice una relación exponencial que refleje la variación de los costos de capital de los diferentes equipos en función de su confiabilidad intrínseca. No obstante, puede resultar difícil la obtención de datos realistas sobre cómo la disponibilidad inherente está vinculada al costo de capital de un equipo de procesos dado. Asimismo, en general, los equipos de proceso se diseñan en vista de satisfacer la demanda al operar a capacidad nominal, por lo que sus características resultan similares independientemente de la estrategia utilizada.

El incremento en la estimación de la cantidad de energía generada es de 5.7%, tal como se ve reflejado en los ingresos del proyecto. Ello redunda asimismo en una disminución del costo de la electricidad generada de 2.5%.

Para aquellos indicadores que varían con el tiempo (gastos operativos, ventas de energía y costo de la electricidad), se hace notar que se reportan aquí los valores correspondientes al primer periodo operativo; no obstante, se observan tendencias similares para los valores óptimos de dichas variables a lo largo de todo el ciclo de vida útil de la planta.

La vida de una planta de procesos consta de varias etapas (usualmente síntesis y diseño, construcción, operación y desarme, según [18]), y usualmente, las decisiones tomadas durante las etapas tempranas de síntesis y diseño determinarán en gran medida la performance económica de la planta durante el

resto de su vida útil [11, 19–22]. De esta manera, el enfoque orientado al ciclo de vida aquí utilizado, incluyendo distintos criterios vinculados a la disponibilidad del sistema referidos a toda la vida útil de la planta de generación, es crítico bajo las condiciones de negocio actuales, debido a la alta competitividad del sector energético y a las incertidumbres del mercado donde deben insertarse los nuevos proyectos.

5.2 Impacto del Monto de Recursos Asignados para Mantenimiento

En la sección anterior, se analizaron los indicadores económicos óptimos de la planta de generación, al diseñarse la misma incluyendo nociones de disponibilidad durante la formulación del proyecto, y asignándose recursos para mantenimiento según se realiza en la práctica industrial (de acuerdo al valor fijado para $F_{Mant,oi}$ en la Tabla 1.

Luego, se analiza aquí el impacto de asignar distintos montos en recursos para mantenimiento sobre los indicadores óptimos del ciclo combinado. Para ello, el valor de $F_{Mant,oi}$ se varía paramétricamente entre los valores mínimo y máximo factibles (según se lista en la Tabla 2).

La Fig. 7 presenta los valores óptimos del valor presente neto y la tasa interna de retorno para todo el rango de valores del factor de mantenimiento.

Fig. 7. Variación del Valor Presente Neto y la Tasa Interna de Retorno

Se observa que ambos indicadores presenta una tendencia positiva a medida que se incrementa el monto asignado para acciones de mantenimiento. Al aumentar $F_{Mant,oi}$ en 0.5%, el valor presente neto del proyecto varía en promedio 1.2%, mientras que la tasa interna de retorno lo hace en 0.6%.

Se ha reportado en la bibliografía sobre la existencia de una vinculación entre la tasa de reparación de un equipo y el presupuesto anual asignado a mantenimiento [23]. En este trabajo, se extiende dicho concepto para abarcar al sistema en su conjunto, facilitando la evaluación de la influencia de los recursos asignados para mantenimiento sobre los indicadores de performance económicos del proyecto.

Las mejoras obtenidas en los indicadores económicos de la planta de generación son consecuencia de la inclusión de las distintas nociones de disponibilidad antes discutidas durante la formulación del proyecto de inversión que dará origen a la misma. De esta forma y en todos los casos, se obtienen estimaciones más realistas sobre la performance económica de la planta a lo largo de todo su ciclo de vida útil (respecto de las provistas por un enfoque tradicional). Asimismo, las mejorías obtenidas en la economía del proyecto sirven de punto de partida con objeto de proponer nuevas estrategias para el diseño óptimo de plantas de generación que profundicen en los conceptos aquí discutidos.

Por ejemplo, otros autores [24] incorporaron confiabilidad y disponibilidad en el diseño (configuración y disposición de redundancias) y la operación (programación de mantenimiento) de plantas integradas de servicios; y observaron que dos diferentes tradeoffs pueden surgir: inversión de capital versus penalidades contractuales por no cubrir la demanda, e inversión de capital versus costos originados por diferentes escenarios de fallas. Para el caso de estudio aquí abordado, ambas disyuntivas presentan la ventaja que podrían ser implementadas por medio de datos fácilmente asequibles en la literatura técnica y en los históricos industriales, constituyendo así una mejora adicional del proceso de evaluación de los indicadores económicos del proyecto.

Agradecimientos Los autores agradecen el apoyo financiero suministrado por la Universidad Tecnológica Nacional (UTN) y por el Consejo Interuniversitario Nacional (CIN).

References

- Godoy, E., Scenna, N.J., Benz, S.J.: Families of optimal thermodynamic solutions for combined cycle gas turbine (CCGT) power plants. Appl. Therm. Eng. 30 (6-7) (2010) 569-576
- 2. Godoy, E. and Benz, S.J. and Scenna, N.J.: A strategy for the economic optimization of combined cycle gas turbine power plants by taking advantage of useful thermodynamic relationships. Appl. Therm. Eng. **31** (5) (2011) 852–871
- 3. The Royal Academy of Engineering: The costs of generating electricity (2004)
- 4. CAMMESA: http://www.cammesa.com.ar (2013)
- 5. Bernier, E., Maréchal, F., Samson, R.: Multi-objective design optimization of a natural gas-combined cycle with carbon dioxide capture in a life cycle perspective. Energy **35** (2) (2010) 1121–1128

- Bernier, E., Maréchal, F., Samson, R.: Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment. Energy 37 (1) (2010) 639–648
- 7. Pak, P.S., Lee, Y.D., Ahn, K.Y.: Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO_2 emission. Energy **35** (8) (2010) 3230–3238
- 8. El-Nashar, A.M.: Optimal design of a cogeneration plant for power and desalination taking equipment reliability into consideration. Desalination **229** (1-3) (2008) 21–32
- 9. U.S. Energy Information Administration: http://www.eia.gov (2013)
- 10. U.S. Energy Information Administration: Updated capital cost estimates for electricity generation plants (2010)
- 11. Kotowicz, J., Bartela, L.: The influence of economic parameters on the optimal values of the design variables of a combined cycle plant. Energy **35** (2) (2010) 911–919
- 12. Nye Thermodynamics Corporation: http://www.gas-turbines.com (2013)
- 13. Erguina, V.: Safety assured financial evaluation of maintenance (2004)
- 14. Alber, T.G., Hunt, R.C., Fogarty, S.P., Wilson, J.R.: Idaho chemical processing plant failure rate database (1995)
- 15. OREDA Participants: Offshore reliability data handbook 4th edition (2002)
- 16. NERC: 2007-2011 Generating availability report (2012)
- 17. Goel, H., Grievink, J., Herder, P.M., Weijnen, M.P.C.: Integrating reliability optimization into chemical process synthesis. Reliab. Eng. Syst. Safe. **78** (3) (2002) 247–258
- Ishii, N., Fuchino, T., Muraki, M.: Life cycle oriented process synthesis at conceptual planning phase. Comp. Chem. Eng. 21 (1997) S953–S958
- 19. Poma, C., Verda, V., Consonni, S.: Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle. Energy **35** (2) (2010) 786–793
- Oliveira Francisco, A.P., Matos, H.A.: Multiperiod synthesis and operational planning of utility systems with environmental concerns. Comp. Chem. Eng. 28 (5) (2004) 745–753
- Moreno, M.S., Montagna, J.M., Iribarren, O.A.: Multiperiod optimization for the design and planning of multiproduct batch plants. Comp. Chem. Eng. 31 (9) (2007) 1159–1173
- 22. Rooney, W.C., Biegler, L.T.: Multiperiod reactor network synthesis. Comp. Chem. Eng. 24 (9-10) (2000) 2055–2068
- 23. Haghifam, M.R., Manbachi, M.: Reliability and availability modelling of combined heat and power (CHP) systems. Int. J. Elec. Power **33 (3)** (2011) 385-393
- Aguilar, O., Kim, J.K., Perry, S., Smith, R.: Availability and reliability considerations in the design and optimisation of flexible utility systems. Chem. Eng. Sci. 63 (14) (2008) 3569–3584