Hash Functions Based on Three Permutations: A Generic Security Analysis

Bart Mennink and Bart Preneel
KU Leuven

CRYPTO 2012 — August 21, 2012

- Hash functions based on block ciphers
 - Davies-Meyer '84, PGV '93, Tandem-DM '92, ...
 - MD5 '92, SHA-1 '95, SHA-2 '01, Blake '08, Skein '08, ...

- Hash functions based on block ciphers
 - Davies-Meyer '84, PGV '93, Tandem-DM '92, ...
 - MD5 '92, SHA-1 '95, SHA-2 '01, Blake '08, Skein '08, ...
- ullet Re-keying \longrightarrow related-key security, efficiency loss, ...

- Hash functions based on block ciphers
 - Davies-Meyer '84, PGV '93, Tandem-DM '92, ...
 - MD5 '92, SHA-1 '95, SHA-2 '01, Blake '08, Skein '08, ...
- ullet Re-keying \longrightarrow related-key security, efficiency loss, ...
- Instead use fixed-key block ciphers, or permutations

 Black-Cochran-Shrimpton '05: no secure 2n-to-n-bit function using 1 n-bit permutation call

 Black-Cochran-Shrimpton '05: no secure 2n-to-n-bit function using 1 n-bit permutation call

- Generalized by Rogaway-Steinberger '08, Stam '08, Steinberger '10
 - mn-to-rn-bit function using k n-bit permutations: collisions in $(2^n)^{1-(m-r+1)/(k+1)}$ queries (almost always)

F	2 π	3 π	4 π	5 π
$2n \rightarrow n$	$2^{n/3}$	$2^{n/2}$	/0	
$\begin{array}{c} \frac{5}{2}n \to n \\ 4n \to 2n \end{array}$	$2^{n/6}$	$2^{3n/8}$ $2^{n/4}$	$2^{n/2}$ $2^{2n/5}$	$2^{n/2}$
411 7 211	1			

 Black-Cochran-Shrimpton '05: no secure 2n-to-n-bit function using 1 n-bit permutation call

- Generalized by Rogaway-Steinberger '08, Stam '08, Steinberger '10
 - mn-to-rn-bit function using k n-bit permutations: collisions in $(2^n)^{1-(m-r+1)/(k+1)}$ queries (almost always)

F	2 π	3 π	4 π	5 π
$2n \rightarrow n$	$2^{n/3}$	$2^{n/2}$	/0	
$\frac{5}{2}n \rightarrow n$	$2^{n/6}$	$2^{3n/8}$ $2^{n/4}$	$2^{n/2}$ $2^{2n/5}$	$2^{n/2}$
$4n \rightarrow 2n$	1	2	2	2

Security Model

- ullet Ideal permutation model: π_i 's randomly generated
- ullet Adversary query access to π_i 's

Security Model

- ullet Ideal permutation model: π_i 's randomly generated
- ullet Adversary query access to π_i 's

$$\mathbf{Adv}^{\mathsf{col}}_{\mathsf{F}}(q) = \max_{\mathcal{A}} \text{ success probability } \mathcal{A}$$

Security Model

- ullet Ideal permutation model: π_i 's randomly generated
- ullet Adversary query access to π_i 's

$$\begin{split} \mathbf{Adv}_{\mathsf{F}}^{\mathsf{col}}(q) &= \max_{\mathcal{A}} \; \mathsf{success} \; \mathsf{probability} \; \mathcal{A} \\ \mathbf{Adv}_{\mathsf{F}}^{\mathsf{epre}}(q) &= \max_{\mathcal{A}} \; \max_{z \in \{0,1\}^n} \; \mathsf{success} \; \mathsf{probability} \; \mathcal{A} \end{split}$$

Prior Constructions — Shrimpton-Stam '08

- 2n-to-n-bit function using 3 one-way functions
- Optimal collision security
- Collision security if $f_i(x) = \pi_i(x) \oplus x$ (showed by automated analysis)

Prior Constructions — Rogaway-Steinberger '08

• 2n-to-n-bit function (over \mathbb{F}_{2^n}) using 3 permutations

Prior Constructions — Rogaway-Steinberger '08

- 2n-to-n-bit function (over \mathbb{F}_{2^n}) using 3 permutations
- ullet Collision/preimage security if a_{ij} satisfy "independence criterion"
 - \longrightarrow Excludes binary a_{ij}

Our Compression Function Design

• 2n-to-n compression function using permutations and \bigoplus -operators

Our Compression Function Design

• 2n-to-n compression function using permutations and \bigoplus -operators

- ullet Multi-permutation setting: π_i 's all different
- ullet Single-permutation setting: $\pi_1=\pi_2=\pi_3$

Equivalence Classes

Definition: Equivalence Class

Compression functions F and F' are equivalent if for both collision and preimage security there exists a tight bi-directional reduction

Intuition: F and F' equivalent → 'equally secure'

Equivalence Classes

Definition: Equivalence Class

Compression functions F and F' are equivalent if for both collision and preimage security there exists a tight bi-directional reduction

- Intuition: F and F' equivalent → 'equally secure'
- We identify 4 equivalence reductions
 - Example reduction of previous slide
 - 3 extra reductions
- We restrict to equivalence w.r.t. these reductions only

Multi-Permutation Setting — Main Result

Multi-Permutation Setting — Main Result

F equivalent to:	collision	preimage
F_1,F_4	√ [c]	X
F_2	√ [c]	√ [c]
F_3	\checkmark	X
none of these	X	?

Multi-Permutation Setting — Proof Idea (1)

Multi-Permutation Setting — Proof Idea (1)

- In total 2^{14} schemes, but many trivially insecure
- Function is "valid" if each green set contains a 1
- We consider valid compression functions only

Multi-Permutation Setting — Proof Idea (2)

Multi-Permutation Setting — Proof Idea (2)

• Any valid F equivalent to some F' with $(a_{11},a_{12})=(1,0) \text{ and } (a_{21},a_{22},a_{23})=(0,1,0)$

Multi-Permutation Setting — Proof Idea (2)

- Any valid F equivalent to some F' with $(a_{11},a_{12})=(1,0) \text{ and } (a_{21},a_{22},a_{23})=(0,1,0)$
- It suffices to consider these functions only

Multi-Permutation Setting — Proof Idea (3)

Multi-Permutation Setting — Proof Idea (3)

Multi-Permutation Setting — Proof Idea (3)

• F is collision secure only if equivalent to F_1, F_2, F_3, F_4

Multi-Permutation Setting — Proof Idea (4)

 \bullet F is collision secure only if it is equivalent to $\mathsf{F}_1,\mathsf{F}_2,\mathsf{F}_3,\mathsf{F}_4$

Multi-Permutation Setting — Proof Idea (4)

- F is collision secure only if it is equivalent to F_1, F_2, F_3, F_4
- Remains to prove: if-relation and preimage resistance

Multi-Permutation Setting — Proof Idea (4)

- F is collision secure only if it is equivalent to F_1, F_2, F_3, F_4
- Remains to prove: if-relation and preimage resistance
- Hardest and most technical part
 - F_1, \ldots, F_4 collision resistant up to $2^{n/2}$ queries tight (asympt.)
 - F_2 preimage resistant up to $2^{2n/3}$ queries tight (asympt.)
 - F_1, F_3, F_4 preimage resistant up to $2^{n/2}$ queries tight

Multi-Permutation Setting — Conjecture

Z : set of q random elements from $\{0,1\}^n$ (duplicates may occur) X,Y : any two sets of q elements from $\{0,1\}^n$ (no duplicates)

Conjecture

With high probability, there exist $O(q \log q)$ tuples $(x, y, z) \in X \times Y \times Z$ such that $x \oplus y = z$

- Conjecture relates to area of extremal graph theory
- Similar to (but more complex than) a longstanding problem of Zarankiewicz from 1951
- Detailed heuristical argument in paper

Single-Permutation Setting — Main Result

Theorem

For any compression function of this form, collisions can be found in $2^{2n/5}$ queries (proof is similar)

Single-Permutation Setting — Main Result

Theorem

For any compression function of this form, collisions can be found in $2^{2n/5}$ queries (proof is similar)

Conclusions

Complete classification of 2n-to-n-bit compression functions solely based on three permutations and \bigoplus -operators

- Multi-permutation setting: analysis of 2^{14} functions
 - 216 functions optimally collision secure
 - 48 of which optimally preimage secure
- Single-permutation setting: non-existence of collision secure F
 - Attack on 2^{14} (or in fact $2^{4n}2^{14}$) functions

Conclusions

Complete classification of 2n-to-n-bit compression functions solely based on three permutations and \bigoplus -operators

- Multi-permutation setting: analysis of 2^{14} functions
 - 216 functions optimally collision secure
 - 48 of which optimally preimage secure
- Single-permutation setting: non-existence of collision secure F
 - Attack on 2^{14} (or in fact $2^{4n}2^{14}$) functions
- Research directions:
 - Generalize to larger F's, and with different primitives
 - Generalize impossibility result in single-permutation setting
 - Conjecture

Thank you for your attention!

Supporting slides

Summary of Our Results

	collision		preimage	
F equivalent to:	security	attack	security	attack
F_1,F_4	$2^{n/2}$ [c]	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$
F_2	$2^{n/2}$ [c]	$2^{n/2}$	$2^{2n/3}$ [c]	$2^{2n/3}$
F_3	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$
none of these	?	$2^{2n/5}$?	?
any F in SP-setting	?	$2^{2n/5}$?	?