SARDAR PATEL MAHAVIDYALAYA, CHANDRAPUR(MH)

DEPARTMENT OF MATHEMATICS
CLASS SEMINAR

BYNAME- KHUSHI RAJU THULKAR
CLASS- BSC III yr. (SEM. V)

THEORY OF EQUATIONS

WHAT IS AN EQUATION?

An equation is like a balance scale.

Everything must be equal on both the sides i.e. L.H.S = R.H.S.

FACTOR THEOREM-

If a polynomial $f_n(x)$ is divisible by $(x-\infty)$, then α is a root of the equation $f_n(x)=0$

Conversely, if α is a root of the equation $f_n(x) = 0$, then the polynomial $f_n(x)$ is divisible by $(x-\infty)$.

Now, let \propto_{1} , \propto_{2} , \propto_{3} , be the given roots, then the required equation is:

$$a_0(x-\infty_1)(x-\infty_2)(x-\infty_3)....=0$$

Where, a_0 is constant.

EXAMPLE 1 FORM AN EQUATION WHOSE ROOTS ARE 1,2 AND 3.

SOLUTION:

As 1,2 and 3 are the roots of the required equation,

 \therefore Factors of the required equation will be (x-1), (x-2) and (x-3).

Hence, the required equation will be:

$$(x-1)(x-2)(x-3)=0.$$

$$x^3-6x^2+11x-6=0$$
.

 \therefore $x^3-6x^2+11x-6=0$ is the required equation.

EXAMPLE 2 TWO ROOTS OF THE EQUATION x^4 - $6x^3$ + $18x^2$ -30x+25=0 ARE OF THE FORM ∞ + β i AND β + ∞ i, WHERE ∞ AND β ARE REAL. SOLVE IT COMPLETELY.

SOLUTION:

 x^4 -6 x^3 +18 x^2 -30x+25=0 is fourth degree polynomial equation with real coefficients, so it has four roots. Two complex roots of it are given as ∞ + β i and β + ∞ i.

Hence, ∞ - β i and β - ∞ i are the remaining roots.

The equation corresponding to the roots $\infty \pm \beta i$ and $\beta \pm \infty i$ will be:

$$[x-(\infty+\beta i)][x-(\infty-\beta i)][x-(\beta+\infty i)][x-(\beta-\infty i)]=0$$

On solving, we get:

$$x^4-2(\infty+\beta)x^3+2(\infty^2+\beta^2+2\infty\beta)x^2-2(\infty+\beta)(\infty^2+\beta^2)x+(\infty^2+\beta^2)^2=0$$

On comparing with the given equation, we get:

$$\infty^2 + \beta^2 + 2 \propto \beta = 9...$$

$$(\infty+\beta)(\infty^2+\beta^2)=15...$$

$$(\infty^2 + \beta^2)^2 = 25 \Rightarrow (\infty^2 + \beta^2) = 5....IV$$

From
$$II \Rightarrow 5+2 \propto \beta=9 \Rightarrow \infty \beta=2 \Rightarrow \infty (3-\infty)=2 \Rightarrow \infty^2-3 \propto +2=0 \Rightarrow \infty=1,2.$$

If
$$\infty$$
=1 then β =2 and if ∞ =2 then β =1.

Hence, the roots are 1±2i, 2±1i.

THANK YOU!