

Département Génie Electrique

Traitement du signal

Pr. Olivier Bernard

Lab. CREATIS – Univ. of Lyon, France olivier.bernard@insa-lyon.fr

Déroulement du semestre

Moodle

Structuration

- Modélisation des signaux / Echantillonnage
- Filtrage analogique / numérique
- Filtrage adaptatif

Calendrier

Module 4GE TS - CM / TD						
N° séance	Types	Intervenants	Contenus	Dates	Jours	horaires
1	СМ	O. Bernard	Rappels - Modélisation signaux & systèmes - convolution - Fourier	28 septembre 2022	Mercredi	08-10h
2	СМ	O. Bernard	Echantillonnage - différents types de CAN (flash / Dual slope / Sigma-delta)	5 octobre 2022	Mercredi	08-10h
3	TD	O. Bernard	Echantillonnage - quantification - 1	12 octobre 2022	Mercredi	08-10h
4	СМ	O. Bernard	Transformée de Fourier Discret et son implémentation	19 octobre 2022	Mercredi	08-10h
5	TD	O. Bernard	Echantillonnage - quantification - 2	26 octobre 2022	Mercredi	08-10h
6	СМ	T. Grenier	Introduction au filtrage (gabarit, décomposition cellules d'ordre 2, Laplace, Z)	09 novembre 2022	Mercredi	08-10h
7	СМ	T. Grenier	FitIrage analogique	22 novembre 2022	Mardi	14-16h
Séance supplémentaire	Interro	O. Bernard	Echantillonnage / Quantification + TP Analyse spectrale	23 novembre 2022	Mercredi	10-11h
8	TD	T. Grenier	FitIrage analogique	29 novembre 2022	Mardi	14-16h
9	СМ	T. Grenier	Fitlrage numérique	6 décembre 2022	Mardi	14-16h
10	TD	T. Grenier	Filtrage numérique	13 décembre 2022	Mardi	14-16h
11	СМ	P. Delachartre	Filtrage adaptatif (signaux aléatoire)	3 janvier 2023	Mardi	14-16h
12	TD	P. Delachartre	Filtrage adaptatif (signaux aléatoire)	10 janvier 2023	Mardi	14-16h
Séance supplémentaire	DS	O. Bernard & T. Grenier & P. Delachartre	Filtrage + TP numérique	??/01/2023	???	???

Contexte

Domaines d'application

- Electronique, automatisme, télécommunication, aéronautique, acoustique, contrôle de processus, traitement de la parole, astronomie, ...
- Information représentée sous forme d'un signal

Signal

- Fonction d'une ou plusieurs variables indépendantes -- f(x, y, z)
- Représente / contient une information sur un phénomène (physique)

► Type de signaux

Signaux continus: f(t), $t \in \mathbb{R}$

Signaux discrets: $f[n], n \in \mathbb{Z}$

Contexte

Mesures: métrologie

 Développement de capteurs dédiés: microphone, céramique piézoélectrique, antennes, capteurs CCD, capteurs de pression, ...

Notion de système de traitement

- ► Acquérir un signal, mais pour quoi faire ?
 - Prédiction: modélisation d'un phénomène évolutif
 - Analyse: extraction d'information utile
 - Traitement: transformation d'un signal (ex: minimisation du bruit)

Exemples d'applications

- ► Electronique acquisition des signaux numériques
 - Echantillonnage des signaux analogiques

- Télécommunication bande de fréquences radio (VHF)
 - Bande de fréquence radio: 30.525 à 400 MHz

Fréquence	Utilisation
30,525 à 32,125 MHz	Réseaux privés
30,750 à 32,075 MHz	Appareils faible portée non spécifiques
31,300 MHz	Radiomessagerie sur site
32,125 à 32,500 MHz	Usage militaire
32,500 à 33,700 MHz	Réseaux privés
32,800 MHz	Microphones sans fils

Exemples d'applications

- Musique format mp3
 - Compression audio par bandes de fréquences

- ► Métrologie Acquisition d'images ultrasonores
 - Compression de signaux ultrasonores

L'enseignement du traitement du signal en 4GE

Chaine de traitement classique en électronique

Compétences à acquérir au sein de cette partie du module

Etre capable de *modéliser* de façon efficace des signaux

Etre capable de *dimensionner* cette chaîne de traitement

Vous serez évalué *uniquement* sur ces aspects lors de l'interrogation

Modélisation des signaux

- Signaux de base / opérations élémentaires
- Systèmes linéaires invariants
- Transformée de Fourier

Signaux de base Opérations élémentaires

Opération de base sur les signaux

- Trois opérations fondamentales
- Retournement, décalage, changement d'échelle

Retournement

Changement d'échelle

Décalage temporel

Retard

Signaux pairs: invariance par retournement

Signaux impairs: symétrie par retournement

Signal sinusoïdal: $f(t) = A \cos(2\pi f_0 t + \phi)$

A: amplitude

 ϕ : phase $[-\pi, +\pi]$

 f_0 : fréquence

 T_0 : période

▶ Variation de la fréquence f₀

 $f_1 < f_2 < f_3$

Exponentielle complexe: $e^{j2\pi f_0 t} = cos(2\pi f_0 t) + j \cdot sin(2\pi f_0 t)$

$$\begin{cases} Re(e^{j2\pi f_0 t}) = cos(2\pi f_0 t) \\ Im(e^{j2\pi f_0 t}) = sin(2\pi f_0 t) \end{cases}$$

$$\begin{cases} \cos(2\pi f_0 t) = \frac{1}{2} \left(e^{j2\pi f_0 t} + e^{-j2\pi f_0 t} \right) \\ \sin(2\pi f_0 t) = \frac{1}{2j} \left(e^{j2\pi f_0 t} - e^{-j2\pi f_0 t} \right) \end{cases}$$

Interprétation

Partie réelle $\cos(2\pi f_0 t)$

Partie imaginaire $\frac{1}{\sqrt{2\pi f_0 t}}$ $\sin(2\pi f_0 t)$

Exponentielles harmoniques

$$f_k(t) = e^{j2\pi k f_0 t}$$
, $k \in \mathbb{Z}$
 f_0 : fréquence fondamentale

lacktriangle Echelon unité -- u(t)

$$u(t) = \begin{cases} 0 \text{ si } t < 0 \\ 1 \text{ si } t \ge 0 \end{cases}$$

- ightharpoonup Impulsion unité (ou Dirac) -- $\delta(t)$
 - On veut $\delta(t) = \frac{d u(t)}{dt}$ avec $\int_{-\infty}^{+\infty} \delta(t) dt = 1$

$$u(t) = \lim_{\Delta \to 0} u_{\Delta}(t)$$

Représentation

Dirac -- Propriété

$$\int_{-\infty}^{+\infty} \delta(t)dt = 1$$

Dirac -- Propriété

$$x(t) \cdot \delta(t) = x(0) \cdot \delta(t)$$
 \rightarrow Dirac de poids $x(0)$

Dirac -- Propriété

$$x(t) \cdot \delta(t - t_0) = x(t_0) \cdot \delta(t - t_0)$$

$$\int_{-\infty}^{+\infty} x(t) \cdot \delta(t) dt = x(0)$$

→ A démontrer

$$\int_{-\infty}^{+\infty} x(t) \cdot \delta(t - t_0) dt = x(t_0)$$

→ A démontrer

- **Energie et puissance moyennes d'un signal continu** x(t)
 - Energie moyenne calculée sur l'intervalle $[t_1, t_2]$

$$E_{x}(t_{1}, t_{2}) = \int_{t_{1}}^{t_{2}} |x(t)|^{2} dt$$

• Puissance moyenne calculée sur l'intervalle $[t_1, t_2]$

$$P_{x}(t_{1}, t_{2}) = \frac{1}{t_{2} - t_{1}} \int_{t_{1}}^{t_{2}} |x(t)|^{2} dt$$

→ Interprétation: énergie dissipée par unité de temps

Signaux de base discrets

Echelon unité -- u[n]

$$u[n] = \begin{cases} 0 & \text{si } n < 0 \\ 1 & \text{si } n \ge 0 \end{cases}$$

Impulsion unité -- $\delta[n]$

$$\delta[n] = \begin{cases} 1 \sin n = 0 \\ 0 \sin n \neq 0 \end{cases}$$

$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$

$$\rightarrow$$
 Conséquence $u[n] = \sum_{m=-\infty}^{n} \delta[m]$ et $\delta[n] = u[n] - u[n-1]$

Propriétés

$$\sum_{n=-\infty}^{+\infty} \delta[n] = 1$$

$$x[n] \cdot \delta[n] = x[0] \cdot \delta[n]$$

$$x[n] \cdot \delta[n - n_0] = x[n_0] \cdot \delta[n - n_0]$$

$$\sum_{n=0}^{+\infty} x[n] \cdot \delta[n] = x[0]$$

$$\sum_{n=-\infty}^{+\infty} x[n] \cdot \delta[n-n_0] = x[n_0]$$

Signaux de base discrets

Signal sinusoïdal discret -- $f[n] = A \cos(2\pi f_0 n + \phi)$

$$\begin{cases} f_0 = \frac{1}{16} \\ \phi = 0 \end{cases}$$

Exponentielle complexe discrète

$$e^{j2\pi f_0 n} = \cos(2\pi f_0 n) + j\sin(2\pi f_0 n)$$

Signaux de base discrets

- **Energie et puissance moyennes d'un signal discret** x[n]
 - Energie moyenne calculée sur l'intervalle $[n_1, n_2]$

$$E_x(n_1, n_2) = \sum_{n=n_1}^{n_2} |x[n]|^2$$

• Puissance moyenne calculée sur l'intervalle $[n_1, n_2]$

$$P_{x}(n_{1}, n_{2}) = \frac{1}{n_{2} - n_{1}} \sum_{n=n_{1}}^{n_{2}} |x[n]|^{2}$$

Les systèmes linéaires invariants

Notion de système

Définition

- Un système est un modèle mathématique d'un processus qui relie un signal d'entrée à un signal de sortie
- Un système est un dispositif de traitement du signal
- En entrée: *e*(*t*) signal d'entrée
- En sortie: s(t) signal de sortie

Exemples

- Amplificateur, système audio, téléphone, système vidéo, ...
- Un système complexe peut être vu comme l'interconnexion de plusieurs systèmes dont les fonctions sont plus simples

Questions

- Quelles sont les propriétés intéressantes des systèmes ?
- Comment caractériser un système ?

ou

Comment modéliser la relation entre l'entrée et la sortie ?

Représentation des systèmes

Représentation sous forme de schéma bloc

Interconnections des systèmes

Propriétés des systèmes

- Etude de 2 propriétés fondamentales (systèmes continus et discrets)
 - LINERITE & INVARIANCE EN TEMPS -- LIT
- Linéarité
 - Soit $y_1[n] = S\{x_1[n]\} \text{ et } y_2[n] = S\{x_2[n]\}$ ALORS $S\{a \cdot x_1[n] + b \cdot x_2[n]\}$ $= a \cdot y_1[n] + b \cdot y_2[n]$ $\Rightarrow \mathbf{S} \text{ linéaire}$ $\Rightarrow \mathbf{S} \text{ linéaire}$
 - → une entrée nulle produit une sortie nulle
- Invariance en temps
 - Soit $y[n] = S\{x[n]\}$ $ALORS \qquad S\{x[n-n_0]\} = y[n-n_0]$

- → La sortie du système ne dépend pas de l'origine des temps
- → La sortie du système ne dépend pas de l'instant où est appliqué l'entrée

Propriétés des systèmes

Exercices

• Soit un système LIT. On applique en entrée de ce système un signal x(t) et on mesure sa sortie y(t) correspondante

• Quelle est la réponse du système lorsque l'entrée est le signal $x_1(t)$ suivant ?

- Peut-on représenter efficacement un signal discret en vue d'être traité par une système LIT ?
 - Peut-on trouver une décomposition linéaire de n'importe quel signal discret à partir d'une base de fonctions simples ?

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k] \cdot \varphi_k[n]$$

• Dans ce cas, il suffirait de connaître $S\{\varphi_k[n]\}$ pour connaître la sortie d'un système LIT pour n'importe quel entrée x[n]

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k] \cdot S\{\varphi_k[n]\}$$

- Représentation d'un signal discret en termes d'impulsions retardées
 - 1) Soit x[n] un signal discret quelconque

Utilisation de l'impulsion unité $\delta |n|$ pour extraire chaque composante de x[n]

- Représentation d'un signal discret en termes d'impulsions retardées
 - 3) On peut déduire graphiquement la relation suivante

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k] \cdot \delta[n-k]$$

- Représentation d'un signal discret en termes d'impulsions retardées
 - Tout signal discret peut être décrit comme une somme d'impulsions de Dirac retardées et pondérées par l'amplitude de ce signal

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k] \cdot \delta[n-k]$$

Décomposition équivalente pour les signaux continus

$$x(t) = \int_{-\infty}^{+\infty} x(\tau) \cdot \delta(t - \tau) d\tau$$

Notion de réponse impulsionnelle

La réponse impulsionnelle h[n] d'un système est la réponse du système lorsque le signal d'entrée est l'impulsion de Dirac $\delta[n]$

Dans le cas des systèmes LIT, la réponse impulsionnelle $h \mid n$] permet de caractériser entièrement le système !

Equation de convolution

lacktriangle Pour les système LIT de réponse impulsionnelle h[n]

Equation de convolution

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k] \cdot h[n-k]$$

ou

$$y[n] = x[n] * h[n]$$

Illustration de la convolution de signaux continus

$$y(t) = x(t) * h(t)$$

$$= \int_{-\infty}^{+\infty} x(\tau) \cdot h(t - \tau) d\tau$$

Propriétés de la convolution

Commutativité

$$x[n] * h[n] = h[n] * x[n]$$

Mise en cascade

$$x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$

Distributivité

$$x[n] * (h_1[n] + h_2[n]) = (x[n] * h_1[n]) + (x[n] * h_2[n])$$

Elément neutre, définition de la réponse impulsionnelle d'un système LIT

$$\delta[n] * h[n] = h[n]$$

Attention, ces propriétés ne sont valables que pour les systèmes LIT!

Propriétés des systèmes

- Linéarité
- Invariance en temps
- Causalité

La sortie d'un système causal ne dépend que des valeurs présentes ou passées de l'entrée

Stabilité

Un système est stable si à toute entrée d'amplitude bornée correspond une sortie bornée

Principe

Représenter un signal continu comme la combinaison linéaire de signaux de base

- Motivations: faciliter l'analyse des signaux et des systèmes
- Choix des signaux de base ?
 - Ils doivent pouvoir représenter une large classe de signaux
 - La réponse d'un système LIT à un signal de base doit être simple
- Signaux de base
 - Ensemble des exponentielles complexes de la forme $x(t) = e^{j2\pi ft}$

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} h(\tau) \cdot x(t - \tau) d\tau = \int_{-\infty}^{+\infty} h(\tau) \cdot e^{j2\pi f(t - \tau)} d\tau$$
$$= e^{j2\pi f t} \int_{-\infty}^{+\infty} h(\tau) \cdot e^{-j2\pi f \tau} d\tau = e^{j2\pi f t} \cdot H \qquad \Rightarrow \qquad y(t) = H \cdot x(t)$$

Conséquence - interprétation

Un système LIT ne change pas la fréquence d'une sinusoïde

Définitions

$$X(f) = \int_{-\infty}^{+\infty} x(t) \cdot e^{-j2\pi ft} dt$$

$$x(t) = \int_{-\infty}^{+\infty} X(f) \cdot e^{j2\pi ft} df$$

Transformée de Fourier

Transformée de Fourier inverse

- Représentation fréquentielle d'un signal x(t) par X(f), ou spectre du signal
- Notations conventions

$$x(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} X(f)$$
 $X(f) = TF\{x(t)\}$ et $x(t) = TF^{-1}\{X(f)\}$

- ▶ Conditions de convergence → Conditions de Dirichlet
 - 1. x(t) est absolument intégrable $\rightarrow \int_{-\infty}^{+\infty} |x(t)| dt < \infty$
 - 2. x(t) a un nombre fini de maxima et de minima dans tout intervalle fini
 - 3. x(t) a un nombre fini de discontinuités dans tout intervalle fini. De plus, chacune de ses discontinuités doit être fini

► Rappel
$$e^{j2\pi f_0 t} = cos(2\pi f_0 t) + sin(2\pi f_0 t)$$

- Propriétés de la transformée de Fourier
 - $X(f) = \int_{-\infty}^{+\infty} x(t) \cdot e^{-j2\pi ft} dt$
 - Décomposition d'un signal temporel sur une base de fonctions fréquentielles
 - Permet d'analyser le contenu fréquentiel d'un signal

Propriété fondamentale

La TF permet d'effectuer l'analyse du contenu fréquentiel d'un signal

Exemple $x(t) = e^{-at} \cdot u(t)$

Transformée de Fourier

$$X(f) = \frac{1}{a + j2\pi f}$$

• La TF est un signal complexe

Transformée de Fourier: propriétés

Linéarités

Si
$$x(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} X(f)$$
 et $y(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} Y(f)$ on a : $ax(t) + by(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} aX(f) + bY(f)$

Symétrie

• Si x(t) est un signal réel, on a $X(-f) = X^*(f)$, d'où les propriétés suivantes

$$\begin{cases} \text{Re}[X(-f)] = \text{Re}[X(f)] \rightarrow \text{Paire} \\ \text{Im}[X(-f)] = -\text{Im}[X(f)] \rightarrow \text{Impaire} \end{cases} \begin{cases} ||X(-f)|| = ||X(f)|| \rightarrow \text{Paire} \\ \Theta[X(-f)] = -\Theta[X(f)] \rightarrow \text{Impaire} \end{cases}$$

Décalage temporel

$$x(t-t_0) \stackrel{\mathsf{TF}}{\longleftrightarrow} X(f) e^{-j2\pi ft_0}$$

Conséquence: un décalage temporel n'affecte pas le module de la TF

Transformée de Fourier et convolution

Propriété fondamentale

Si
$$x(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} X(f)$$
 et $h(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} H(f)$ on a : $x(t) * h(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} X(f) H(f)$

$$x(t) * h(t) \xrightarrow{\mathsf{TF}} X(f) H(f)$$

Conséquence pour un système LIT

Description temporelle:

$$y(t) = x(t) * h(t)$$

Description fréquentielle :

$$Y(f) = X(f) \cdot H(f)$$

Le dual est vrai

Si
$$x(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} X(f)$$
 et $h(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} H(f)$ on a : $x(t) h(t) \stackrel{\mathsf{TF}}{\longleftrightarrow} X(f) * H(f)$

$$x(t) h(t) \xrightarrow{TF} X(f) * H(f)$$

Principales propriétés de la transformée de Fourier

	$x(t) = \int_{-\infty}^{+\infty} X(f)e^{j2\pi ft}df$	$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$
Linéarité	ax(t) + by(t)	aX(f) + bY(f)
Décalage en temps	$x(t-t_0)$	$X(f)e^{-j2\pi f t_0}$
Décalage en fréquence	$x(t)e^{j2\pi f_0t}$	$X(f-f_0)$
Changement d'échelle	x(at)	$\frac{1}{ a }X\bigg(\frac{f}{a}\bigg)$
Dérivation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$
Intégration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$
Dualité	x(t) $X(t)$	X(f) x(-f)
Convolution	x(t) * y(t)	X(f)Y(f)
Modulation	x(t)y(t)	X(f) * Y(f)
Signaux périodiques	$x(t)$ de période $T_0 = 1/f_0$ $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{j 2\pi k f_0 t}$ (Série de Fourier)	$X(f) = \sum_{k=-\infty}^{+\infty} a_k \delta(f - kf_0)$
Conservation de l'énergie (signaux à énergie finie)	$E[x(t)] = \int_{-\infty}^{+\infty} x(t) ^2 dt = E[X(f)]$	$= \int_{-\infty}^{+\infty} X(f) ^2 df$

Principales transformées de Fourier

Direc	S(t)	1
Dirac	$\delta(t)$	•
Constante	1	$\delta(f)$
Echelon unité	u(t)	$\frac{1}{j2\pi f} + \frac{1}{2}\delta(f)$
Exponentielle	$e^{-at}u(t)$	$\frac{1}{a+j2\pi f}$
Exponentielle	$e^{-a t }$	$\frac{2a}{a^2 + (2\pi f)^2}$
Gaussienne	e^{-t^2/σ^2}	$\sigma e^{-\pi\sigma^2 f^2}$
Exponentielle complexe	$e^{j2\pi f_0 t}$	$\delta(f-f_0)$
Cosinus	$\cos(2\pi f_0 t)$	$\frac{1}{2} \left[\delta(f - f_0) + \delta(f + f_0) \right]$
Sinus	$\sin(2\pi f_0 t)$	$\frac{1}{2j} \left[\delta(f - f_0) - \delta(f + f_0) \right]$
Rectangle	$\operatorname{Rect}(t/T) = \begin{cases} 1 & t < T/2 \\ 0 & \text{sinon} \end{cases}$	$T \operatorname{sinc}(Tf)$ (Sinus cardinal)
Sinus cardinal	$\operatorname{sinc}(t/T)$	TRect(fT)
Triangle	$Tri(t/T) = \begin{cases} 1 - t & t < T \\ 0 & \text{sinon} \end{cases}$	$T \operatorname{sinc}^2(Tf)$
Peigne de Dirac	$\delta_T(t) = \sum_{n = -\infty}^{+\infty} \delta(t - nT)$	$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \delta(f - \frac{n}{T}) = \frac{1}{T} \delta_{1/T}(f)$

That's all folks

L'opération de convolution

ightharpoonup Calcul pour un n_0 donné

Décalage avec $n_0 < 0$

$$y[n_{0}] = \sum_{k=-\infty}^{+\infty} x[k]h[n_{0} - k]$$

$$x[k]$$

$$x[k]$$

$$h[n_{0} - k]$$

$$x[k].h[n_{0} - k]$$

$$x[k].h[n_{0} - k]$$

$$y[n_{0}]$$

$$0$$

$$n_{0}$$

$$2$$

$$y[n_{0}]$$

$$n$$

$$y[n_{0}] = \sum_{k=-\infty}^{+\infty} x[k]h[n_{0} - k]$$

$$x[k]$$

$$h[n_{0} - k]$$

$$x[k].h[n_{0} - k]$$

$$k$$

$$y[n_{0}]$$

$$0$$

$$n_{0}$$

$$k$$

$$y[n_{0}]$$

$$0$$

$$n_{0}$$

$$n$$

