

	Page : Date :
and	$\frac{1}{1} \frac{1}{(n)} = 64 \frac{1}{8} \frac{n}{8} - n^2 \log n$
Sal	a = 64, $b = 8$, $k = 2$, $p = 1b^{k} = 8^{2} = 64$
	$\Rightarrow 0 = b^{\kappa} \text{ and } p > -1$
	$\Rightarrow T(n) = O(n \log b^2 \cdot \log(p+1)n)$
	$= O(n^{\log_864} \cdot \log^{(1+1)}n)$
	$=$ $O(n^2 \cdot log(2n))$ Ans
O.C) Tin) = 7-T(N3) +n2
	a = 7, b = 3, K = 2, p = 0
	$b^{k} = 9,$ $0 < b^{k}, p = 0$
	$= \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \left(\frac{n^2}{n^2} \right) \left(\frac{n^2}{n^2} \right)$
	$=$ $O(n^2)$ Aon
0.	(a) T(n) = 4T(n/2) + logn.
Jan Jan	a (m) - 4 (m) - Hogn.
	a=4, b=2, k=0, p=1
	$0 \times 5 \times 1$
	$\frac{1}{2} \sqrt{\ln 2 \left(\ln \log 6^{\alpha} \right)}$
	$= \sum_{n=1}^{\infty} \left(n = \sum_{n=1}^{\infty} \left(n \right) \right) $
	$= 0(n^2) $