0.1. MATRICE 1

MATRICE I DETERMINANTE

0.1 MATRICE

Navodimo nekoliko različitih načina zapisa matrice:

$$A_{mn} = A_{m,n} = [a_{ij}]_{mn} = A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n}.$$

Indeks m je broj vrsta, a indeks n broj kolona u matrici gde su $m, n \in \mathbb{N}$. Element a_{ij} matrice $[a_{ij}]_{mn}$ je element koji je se nalazi u i-toj vrsti i j-toj koloni matrice, a elemenat a_{ji} matrice $[a_{ij}]_{mn}$ je element koji je se nalazi u j-toj vrsti i i-toj koloni matrice.

Matrice su jednake ako i samo ako su istog formata i ako su im svi elementi na odgovarajućim pozicijama jednaki.

Matrice koje imaju isti broj vrsta i kolona, zvaćemo kvadratne matrice reda \boldsymbol{n}

$$A_{nn} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}_{nn}.$$

Elementi $a_{11}, a_{22}, \ldots, a_{nn}$ su **elementi na glavnoj dijagonali** kvadratne matrice reda n.

Matrica formata $m \times n$ zove se **nula matrica** $O_{mn} = [a_{ij}]_{mn}$ ako i samo ako su svi elementi matrice jednaki nuli.

Kvadratna matrica $I_{n\times n}=[a_{ij}]_{nn}$ je **jedinična matrica** ako i samo ako su svi elementi na glavnoj diagonali 1 a svi vandijagonalni elementi matrice 0.

0.1.1 Operacije sa matricama:

Sabiranje matrica koje su istog formata, $m \times n$, definiše se sa:

$$[a_{ij}]_{mn} + [b_{ij}]_{mn} = [a_{ij} + b_{ij}]_{mn}.$$

Napomena: Matrice se mogu sabirati ako i samo ako su istog formata.

Teorema 0.1 Za matrice $A = [a_{ij}]_{mn}$, $B = [b_{ij}]_{mn}$ i $C = [c_{ij}]_{mn}$ važe sledeće osobine sabiranja matrica:

$$A + 0 = 0 + A = A$$
, $A - A = 0$, $A + B = B + A$, $A + (-A) = (-A) + A = 0$
 $i(A + B) + C = A + (B + C)$.

Primer 0.2 a) $\begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 3 \end{bmatrix}$;

$$b) \begin{bmatrix} 3 \\ 6 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \end{bmatrix};$$

$$c) \ \begin{bmatrix} 3 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & -1 & 1 \\ 1 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 3 & 4 & 1 \end{bmatrix};$$

Množenje matrice $[a_{ij}]_{mn}$ skalarom (brojem) α definiše se sa:

$$\alpha[a_{ij}]_{mn} = [\alpha a_{ij}]_{mn}.$$

Teorema 0.3 Za matrice $A = [a_{ij}]_{mn}$, $B = [b_{ij}]_{mn}$ i $C = [c_{ij}]_{mn}$ i skalare α i β važe sledeće osobine množenja matrice sa skalarom: $\alpha(A+B) = \alpha A + \alpha B$, $(\alpha + \beta)A = \alpha A + \beta A$, $(\alpha \cdot \beta)A = \beta(\alpha A)$.

Primer 0.4 a) $3 \cdot \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \end{bmatrix}$.

b)
$$2 \cdot \begin{bmatrix} -1 & 2 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 6 & -3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} -8 & 7 \\ 2 & - \end{bmatrix}$$

$$c) -1 \cdot \begin{bmatrix} 1 & 5 & 2 \\ 4 & 2 & 3 \end{bmatrix} = \begin{bmatrix} -1 & -5 & -2 \\ -4 & -2 & -3 \end{bmatrix}.$$

Proizvod matrica $[a_{ij}]_{mk}$ i $[b_{ij}]_{kn}$ definiše se sa:

$$[a_{ij}]_{mk}[b_{ij}]_{kn}\!\!=\!\![c_{ij}]_{mn}$$

gde se svaki element unutar matrice dobija po formuli

$$c_{ij} = \sum_{p=1}^{k} a_{ip} b_{pj} = a_{i1} b_{1j} + a_{i2} b_{2j} + a_{i3} b_{3j} + \ldots + a_{ik} b_{kj}.$$

0.1. MATRICE

Primer 0.5

$$A_{32} \cdot B_{23} = \begin{bmatrix} a_{11} & a_{12} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ a_{31} & a_{32} \end{bmatrix}_{32} \begin{bmatrix} b_{11} & b_{12} & \mathbf{b_{13}} \\ b_{21} & b_{22} & \mathbf{b_{23}} \end{bmatrix}_{23} =$$

3

$$\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & \mathbf{a_{21}b_{13}} + \mathbf{a_{22}b_{23}} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \end{bmatrix} = C_{33}$$

Napomena: Matrice $[a_{ij}]_{mk}$ i $[b_{ij}]_{kn}$ mogu se pomnožiti samo ako je broj kolona matrica $[a_{ij}]_{mk}$ jednak broju vrsta matrice $[b_{ij}]_{kn}$, a u rezultujućoj matrici $[c_{ij}]_{mn}$ broj vrsta isti je kao u matrici $[a_{ij}]_{mk}$ a broj kolona kao u matrici $[b_{ij}]_{kn}$.

Komutativnost prilikom množenja dve matrice ne važi, $A \cdot B \neq B \cdot A$.

Teorema 0.6 Za skalar α i matrice $A = [a_{ij}]_{nn}$, $B = [b_{ij}]_{nn}$ i $C = [c_{ij}]_{nn}$, važe sledeće osobine:

$$A(BC) = (AB)C$$
, $A(B+C) = AB + AC$, $(A+B)C = AC + BC$, $\alpha(AB) = (\alpha A)B = A(\alpha B)$ i $IA = AI = A$.

Napomena: Za matricu $A = [a_{ij}]_{nn}$ i jediničnu matricu I_{nn} vazi:

$$A \cdot I = I \cdot A = A$$
.

Primer 0.7 Izračunati proizvod matrica $A = \begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix}$ i $B = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$.

$$A \cdot B = \begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 4 & 13 \end{bmatrix}; B \cdot A = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 6 & 15 \end{bmatrix}.$$

Primer 0.8 Izračunati proizvod matrica $A_{\mathbf{A}} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ i $B = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.

$$A \cdot B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix}; \quad B \cdot A = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Napomena: Matrice formata 1×1 identifikujemo sa skalarom, pa je:

$$\left[\begin{array}{cc} 3 \end{array}\right] \cdot \left[\begin{array}{c} -4 \\ 2 \end{array}\right] = 3 \cdot \left[\begin{array}{c} -4 \\ 2 \end{array}\right] = \left[\begin{array}{c} -4 \\ 2 \end{array}\right] \cdot 3 = \left[\begin{array}{c} -4 \\ 2 \end{array}\right] \cdot \left[\begin{array}{c} 3 \end{array}\right] = \left[\begin{array}{c} -12 \\ 6 \end{array}\right]$$

Primetimo da u prethodne dve napomene tj., u prethodna dva specijalna slučaja vazi komutativnost.

Transponovana matrica A^{\top} od neke matrice A se dobija kada odgovarajuće vrste i kolone zamene mesta.

Primer 0.9 Ako je
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}_{32}$$
, $tada\ je\ A^{\top} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{bmatrix}_{23}$.

Primer 0.10 Ako je
$$A = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}_{31}$$
, tada je $A^{\top} = \begin{bmatrix} 2 & 3 & 5 \end{bmatrix}_{13}$.

Primer 0.11 Ukoliko je moguće, izračunati proizvode datih matrica:

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & 1 \\ 1 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 1 & 2 \end{bmatrix} \quad i \quad C = \begin{bmatrix} -1 \\ 4 \end{bmatrix} :$$

a)
$$AB = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & 1 \\ 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 3 & 6 \\ 1 & -4 \end{bmatrix};$$

b)
$$AB_{\bullet}^{T} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & 1 \\ 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 \\ -1 & 3 & 2 \end{bmatrix}$$
 Nije moguće pomnožiti ove matrice;

c)
$$BC = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} -5 \\ 12 \\ 7 \end{bmatrix};$$

$$d) \ CC^T = \begin{bmatrix} -1 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} -1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -4 \\ -4 & 16 \end{bmatrix};$$

$$e) \ C^TC = \begin{bmatrix} -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 17 \end{bmatrix};$$

$$f) \ ABC = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & 1 \\ 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 3 & 6 \\ 1 & -4 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} -12 \\ 21 \\ -17 \end{bmatrix}.$$

0.2DETERMINANTE

Definicija 0.12 Neka je $A = [a_{ij}]_{nn}$ proizvoljna kvadratna matrica reda n $gde \ je \ n \in \mathbb{N}$. Tada $je \ det$, $preslikavanje \ (funkcija) \ A \mapsto det A \ definisano$ kao:

$$\det A = \sum_{f \in S_n} (-1)^{Inv(f)} a_{1f(1)} a_{2f(2)} \dots a_{nf(n)}$$

gde je Inv(f) broj svih inverzija permutacije $f \in S_n$, gde je S_n skup svih $permutacija \ skupa \ S = \{1, \dots, n\}.$

Koristićemo samo matrice čiji svi elementi su realni brojevi.

Determinantu matrice $A = [a_{ij}]_{nn}$ označava ćemo sa:

$$\det A = |A| = \det[a_{ij}]_{nn} = \det \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

Format (red) determinante det A jednak je formatu (redu) kvadratne matrice $A = [a_{ij}]_{nn}$. Determinanta matrice je realni broj i izračunava se na sledeći način:

Za matrice reda 1 i 2:

$$\det[a_{11}] = a_{11}; \qquad \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Za matricu
$$A = [a_{ij}]_{33}$$
 (razvijanje determinante po prvoj vrsti)
$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{22} & a_{23} \\ a_{32} & a_{33} & -a_{12} & a_{23} \\ a_{31} & a_{32} & a_{33} & -a_{12} \end{vmatrix} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} & -a_{12} \\ a_{31} & a_{32} & -a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} =$$

$$= \sum_{\alpha \in A_1} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix} \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \\ \alpha_{\alpha \alpha} & \alpha_{\alpha \alpha} \end{vmatrix} + \alpha_{13} \begin{vmatrix}$$

$$= a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}.$$

$$= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

gde je A_{ij} kofaktor elementa a_{ij} matrice A i iznosi $A_{ij} = (-1)^{i+j} M_{ij}$, a M_{ij} je **minor** elementa a_{ij} matrice $A = [a_{ij}]_{nn}$ koji predstavlja determinantu matrice koja se dobija od matrice A izostavljanjem i-te vrste i j-te kolone.

Zadatak 0.13 Izračunati vrednost determinanti:

1)
$$|-6|$$
; 2) $\begin{vmatrix} 4 & 6 \\ 2 & 3 \end{vmatrix}$; 3) $\begin{vmatrix} 4 & 7 \\ 2 & -3 \end{vmatrix}$; 4) $\begin{vmatrix} 1 & -3 \\ 2 & 4 \end{vmatrix}$; 5) $\begin{vmatrix} 3 & -2 \\ -4 & -5 \end{vmatrix}$.

Rešenje:

1)
$$|-6| = -6;$$
 2) $\begin{vmatrix} 4 & 6 \\ 2 & 3 \end{vmatrix} = 4 \cdot 3 - 2 \cdot 6 = 0;$
3) $\begin{vmatrix} 4 & 7 \\ 2 & -3 \end{vmatrix} = -12 - 14 = -26;$ 4) $\begin{vmatrix} 1 & -3 \\ 2 & 4 \end{vmatrix} = -16 - (-6) = -16$
5) $\begin{vmatrix} 3 & -2 \\ -4 & -5 \end{vmatrix} = -15 - 8 = -23.$

Zadatak 0.14 Izračunati vrednost determinante $\begin{vmatrix} -3 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 6 & 7 \end{vmatrix}$:

- a) razvijanjem po prvoj vrsti;
- b) razvijanjem po drugoj vrsti;
- c) razvijanjem po trećoj koloni.

Rešenje:

a)
$$\begin{vmatrix} -3 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 6 & 7 \end{vmatrix} = -3 \cdot \begin{vmatrix} 2 & 0 \\ 6 & 7 \end{vmatrix} - 0 \cdot \begin{vmatrix} 2 & 0 \\ 0 & 7 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 2 \\ 0 & 6 \end{vmatrix}$$

= $-3 \cdot (14 - 0) - 0(14 - 0) + 1 \cdot (12 - 0) =$

b)
$$\begin{vmatrix} -3 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 6 & 7 \end{vmatrix} = -2 \cdot \begin{vmatrix} 0 & 1 \\ 6 & 7 \end{vmatrix} + 2 \cdot \begin{vmatrix} -3 & 1 \\ 0 & 7 \end{vmatrix} - 0 \cdot \begin{vmatrix} -3 & 0 \\ 0 & 6 \end{vmatrix}$$

= $-2 \cdot (0 - 6) + 2(-21 - 0) - 0 \cdot (-18 - 0) = 12 - 42 = -30;$

c)
$$\begin{vmatrix} -3 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 6 & 7 \end{vmatrix} = 1 \cdot \begin{vmatrix} 2 & 2 \\ 0 & 6 \end{vmatrix} - 0 \cdot \begin{vmatrix} -3 & 0 \\ 0 & 6 \end{vmatrix} + 7 \cdot \begin{vmatrix} -3 & 0 \\ 2 & 2 \end{vmatrix}$$

= $1 \cdot (12 - 0) - 0 + 7 \cdot (-6 - 0) = 12 - 42 = -30$.

Razvijanje determinante pomoću Sarusovog pravila važi samo za determinate formata 3×3

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$

 $= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$

Zadatak 0.15 Izračunati vrednost determinante koristeći Sarusovo pravilo.

$$\begin{vmatrix} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 3 & 6 & 7 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 3 & 2 & 1 \\ 0 & 2 & 0 & 0 & 2 \\ 3 & 6 & 7 & 3 & 6 \end{vmatrix} = 28 + 0 + 0 - 18 - 0 - 0 = 10.$$