Different models

Yuan-Ning Chu 1/3/2020

```
ess_2002 = haven::read_stata("ESS1e06_6.dta")
ess_2004 = haven::read_stata("ESS2e03_6.dta")
ess_2006 = haven::read_stata("ESS3e03_7.dta")
ess_2008 = haven::read_stata("ESS4e04_5.dta")
ess_2010 = haven::read_stata("ESS5e03_4.dta")
ess_2002 = ess_2002 %>%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecntr, cntbrth, gndr, edulvla, facntr, mo
  plyr::rename(c("cntbrth"="birthplace","blgetmg"="ethnic", "edulvla"="edu","brncntr"="fborn", "wrkctr"
  ess_2002 = ess_2002 %% mutate(hinctnt = hinctnt/12*10) # rescale to fit data from 2008 and 2010
ess 2004 = ess 2004 \%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecntr, cntbrtha, gndr, edulvla, facntr, m
  plyr::rename(c("cntbrtha"="birthplace","blgetmg"="ethnic", "edulvla"="edu","brncntr"="fborn"))
  ess_2004 = ess_2004 %>% mutate(hinctnt = hinctnt/12*10)
ess_2006 = ess_2006 %>%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecntr, cntbrtha, gndr, edulvla, facntr, m
  plyr::rename(c("cntbrtha"="birthplace", "blgetmg"="ethnic", "edulvla"="edu", "brncntr"="fborn"))
  ess_2006 = ess_2006 %>% mutate(hinctnt = hinctnt/12*10)
ess_2008 = ess_2008 %>%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecntr, cntbrthb, gndr, edulvla, facntr, m
  plyr::rename(c("cntbrthb"="birthplace","blgetmg"="ethnic", "edulvla"="edu","brncntr"="fborn", "hinctn
ess_2010 = ess_2010 \%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecnta, cntbrthb, gndr, edulvlb, facntr, m
  plyr::rename(c("cntbrthb"="birthplace", "blgetmg"="ethnic", "edulvlb"="edu", "livecnta" = "livecntr", "b.
ess_2010$livecntr = ess_2010$livecntr - 2010
ess_2010$livecntr = ifelse(ess_2010$livecntr >= 1, 1,
                           ifelse(ess_2010$livecntr %in% c(-1:-5), 2,
                                  ifelse(ess 2010$livecntr %in% c(-6:-10), 3,
                                         ifelse(ess_2010$livecntr %in% c(-11:-20), 4,
                                                ifelse(ess_2010$livecntr < -20, 5, NA)))))</pre>
ess_2010polcmpl = NA
ess_2010poldcs = NA
ess_raw = rbind(ess_2002, ess_2004, ess_2006, ess_2008, ess_2010)
ess_raw$sec.immi = ifelse(ess_raw$facntr == 2 | ess_raw$mocntr == 2, 1, 0)
ess_raw$ethnic = ifelse(ess_raw$ethnic == 1, 1,
                        ifelse(ess_raw$ethnic == 2, 0, NA))
ess_raw$citizen = ifelse(ess_raw$ctzcntr == 1, 1,
                         ifelse(ess_raw$ctzcntr == 2, 0, NA))
ess_raw$residence = ifelse(ess_raw$livecntr <= 3, 1, 0) # 1 = lived less than 10 yrs, 0 = lived more th
ess_raw$birthplace = ifelse(ess_raw$birthplace %in% c(66,77,88,99,"02","03","04","06"), NA, ess_raw$bir
  # ess_raw = ess_raw[complete.cases(ess_raw$birthplace),]
  eu_member = c("BE", "FR", "DE", "IT", "LU", "NL", "DK", "IE", "GB", "GR", "PT", "ES", "AT", "SE")
  ess_raw$eubirth = ifelse(ess_raw$birthplace %in% eu_member, 1, 0)
ess_raw$female = ifelse(ess_raw$gndr == 2, 1,
                        ifelse(ess_raw$gndr == 1, 0, NA))
ess_raw$edu = ifelse(ess_raw$edu > 5, NA, ess_raw$edu)
```

Playing with the models

Political Incorporation

```
ess_raw$tvpol = ifelse(ess_raw$tvpol > 8, NA, ess_raw$tvpol)
ess_raw$rdpol = ifelse(ess_raw$rdpol > 8, NA, ess_raw$rdpol)
ess_raw$nwsppol = ifelse(ess_raw$nwsppol > 8, NA, ess_raw$nwsppol)
ess_raw$contplt = ifelse(ess_raw$contplt == 2, 0, ess_raw$contplt)
ess_raw\u00adswrkprty = ifelse(ess_raw\u00adswrkprty == 2, 0, ess_raw\u00adswrkprty)
ess_raw$wrkorg = ifelse(ess_raw$wrkorg == 2, 0, ess_raw$wrkorg)
ess_raw$badge = ifelse(ess_raw$badge == 2, 0, ess_raw$badge)
ess_raw$sgnptit = ifelse(ess_raw$sgnptit == 2, 0, ess_raw$sgnptit)
ess_raw$pbldmn = ifelse(ess_raw$pbldmn == 2, 0, ess_raw$pbldmn)
ess_raw$bctprd = ifelse(ess_raw$bctprd == 2, 0, ess_raw$bctprd)
pol_mean = ess_raw %>% filter(citizen == 1, fborn == 0) %>% group_by(cntry) %>%
  select(cntry, contplt, wrkprty, wrkorg, badge, sgnptit, pbldmn, bctprd, stfgov, tvpol, rdpol, nwsppol
  summarise(mean.contplt = mean(contplt, na.rm = TRUE),
            mean.wrkprty = mean(wrkprty, na.rm = TRUE),
            mean.wrkorg = mean(wrkorg, na.rm = TRUE),
            mean.badge = mean(badge, na.rm = TRUE),
            mean.sgnptit = mean(sgnptit, na.rm = TRUE),
            mean.pbldmn = mean(pbldmn, na.rm = TRUE),
            mean.bctprd = mean(bctprd, na.rm = TRUE),
            # mean.dntmny = mean(dntmny, na.rm = TRUE),
            # mean.ilqlpst = mean(ilqlpst, na.rm = TRUE),
            mean.stfgov = mean(stfgov, na.rm = TRUE),
            mean.tvpol = mean(tvpol, na.rm = TRUE),
            mean.rdpol = mean(rdpol, na.rm = TRUE),
            mean.nwsppol = mean(nwsppol, na.rm = TRUE))
ess pol = ess raw %>% filter(residence == 1)
ess_pol = ess_pol %>% left_join(pol_mean, by='cntry')
civix.cntry = c("AT", "BE", "DK", "FI", "FR", "DE", "GR", "IE", "NL", "PT", "ES", "SE", "GB")
civix.sc = as.numeric(c(5.5, 1.25, 8.25, 2.5,
                                                            7, 5.25, 1, 6.25, 1.25, 2.5, 0, 5.5))
civix.1 = as.data.frame(t(rbind(civix.cntry, civix.sc)))
colnames(civix.1) = c("cntry", "civix")
civix.1$civix = as.numeric(civix.1$civix)
ess pol = ess pol %>% left join(civix.1, by = 'cntry')
ess_pol = ess_pol %>% mutate(
  contplt.gap = contplt - mean.contplt,
  wrkprty.gap = wrkprty - mean.wrkprty,
  wrkorg.gap = wrkorg - mean.wrkorg,
  badge.gap = badge - mean.badge,
  sgnptit.gap = sgnptit - mean.sgnptit,
  pbldmn.gap = pbldmn - mean.pbldmn,
```

Table 1:

	worked in political party or group		
	contplt	${\rm contplt.gap}$	
	logistic Abs. Level	OLS Gap w/ Natives	
	(1)	(2)	
Age	0.022***	0.002***	
1180	(0.006)	(0.0005)	
Ethnicity	0.297*	0.016	
·	(0.158)	(0.013)	
Female	-0.225	-0.019^*	
	(0.139)	(0.011)	
Education	0.302***	0.017***	
	(0.051)	(0.004)	
Born in Europe	0.603***	0.043***	
	(0.161)	(0.015)	
CIVIX	-0.063**	-0.005**	
	(0.028)	(0.002)	
Constant	-3.974***	-0.154^{***}	
	(0.333)	(0.025)	
Observations	2,579	2,579	
\mathbb{R}^2	·	0.023	
Adjusted R ²		0.021	
Log Likelihood	-749.184		
Akaike Inf. Crit.	1,512.367		
Residual Std. Error		0.286 (df = 2572)	
F Statistic		$10.138^{***} (df = 6; 257)$	

Figure 1: Predicted Probability to have contacted politician

```
pred.pol.dat = with(ess_pol, data.frame(agea = mean(agea, na.rm = T),
                                        ethnic = mean(ethnic, na.rm = T),
                                        female = mean(female, na.rm = T),
                                        eubirth = mean(eubirth, na.rm = T),
                                        edu = mean(edu, na.rm = T),
                                        civix = 0:9))
pred.pol = pol.1 %>%
  broom::augment(newdata = pred.pol.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.pol$.fitted, type = "1",
     ylab = "Predicted Probability to have worked in political party",
     xlab = "CIVIX",
     ylim = c(-5,0)
  lines(0:9, pred.pol$lower, lty = 2)
  lines(0:9, pred.pol$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
wrkprty.1 = glm(wrkprty ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "bin
wrkprty.2 = lm(wrkprty.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
stargazer(wrkprty.1, wrkprty.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "worked in political party",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.pol = wrkprty.1 %>%
    broom::augment(newdata = pred.pol.dat, predict = "response") %>%
    mutate(upper = .fitted + 1.96 * .se.fit,
```

Table 2:

	worked in political party	
	wrkprty	wrkprty.gap
	logistic	OLS
	Abs. Level	Gap w/ Natives
	(1)	(2)
Age	0.010	0.0001
	(0.012)	(0.0002)
Ethnicity	0.200	0.005
	(0.317)	(0.006)
Female	-0.124	-0.002
	(0.282)	(0.006)
Education	0.082	0.003
	(0.098)	(0.002)
Born in Europe	0.452	0.007
•	(0.336)	(0.007)
CIVIX	-0.026	-0.001
	(0.057)	(0.001)
Constant	-4.479***	-0.035***
	(0.632)	(0.012)
Observations	2,582	2,582
\mathbb{R}^2		0.002
Adjusted R ²		-0.001
Log Likelihood	-252.180	
Akaike Inf. Crit.	518.359	
Residual Std. Error		0.141 (df = 2575)
F Statistic		0.780 (df = 6; 2575)
Note:	*n<0.1	· **n<0.05· ***n<0.01

```
lower = .fitted - 1.96 * .se.fit)
#
# plot(0:9, pred.pol$.fitted, type = "l",
       ylab = "Predicted Probability to have worked in political party",
#
       xlab = "CIVIX",
#
       ylim = c(-5, -1)
#
   lines(0:9, pred.pol\$lower, lty = 2)
    lines(0:9, pred.pol$upper, lty = 2)
wrkorg.1 = glm(wrkorg ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "binom
wrkorg.2 = lm(wrkorg.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
stargazer(wrkorg.1, wrkorg.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "have worked in another organisation",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.pol = wrkorg.1 %>%
  broom::augment(newdata = pred.pol.dat, predict = "response") %>%
   mutate(upper = .fitted + 1.96 * .se.fit,
           lower = .fitted - 1.96 * .se.fit)
# plot(0:9, pred.pol$.fitted, type = "l",
       ylab = "Predicted Probability to have worked in another organisation",
       xlab = "CIVIX",
#
#
       ylim = c(-5, -1)
#
   lines(0:9, pred.pol$lower, lty = 2)
    lines(0:9, pred.pol$upper, lty = 2)
wrkorg.2.plot = wrkorg.2 %>% broom::augment(.) %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
# plot(ess_pol$civix, ess_pol$wrkorg.gap)
# abline(wrkorg.2)
# plot(wrkorg.2)
# ggplot(wrkorg.2.plot, aes(civix, wrkorg.gap)) +
   geom_point() +
   qeom_smooth(data = wrkorq.2.plot, aes(civix, .fitted), method = "lm") +
    xlab("worked in another organisation") +
# theme_bw()
badge.1 = glm(badge ~ agea + ethnic + female + edu + eubirth + civix, data = ess pol, family = "binomia
badge.2 = lm(badge.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
stargazer(badge.1, badge.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Worn or displayed campaign badge/sticker",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
```

Table 3:

	Table 9.		
	have worked in another organisation		
	wrkorg	wrkorg.gap	
	logistic	OLS	
	Abs. Level	Gap w/ Natives	
	(1)	(2)	
Age	0.011^*	0.0004	
	(0.006)	(0.0005)	
Ethnicity	0.326*	0.023*	
v	(0.168)	(0.012)	
Female	-0.149	-0.017	
	(0.149)	(0.011)	
Education	0.305***	0.020***	
	(0.055)	(0.004)	
Born in Europe	0.589***	0.039***	
•	(0.174)	(0.014)	
CIVIX	-0.016	-0.006***	
	(0.030)	(0.002)	
Constant	-4.034***	-0.130***	
	(0.357)	(0.023)	
Observations	2,583	2,583	
\mathbb{R}^2	,	0.022	
Adjusted \mathbb{R}^2		0.020	
Log Likelihood	-678.268		
Akaike Inf. Crit.	$1,\!370.537$		
Residual Std. Error		0.269 (df = 2576)	
F Statistic		$9.785^{***} (df = 6; 2576)$	

Table 4:

Table 4.				
	Worn or displayed campaign badge/sticker			
	badge	badge.gap		
	logistic	OLS		
	Abs. Level	Gap w/ Natives		
	(1)	(2)		
Age	-0.018**	-0.001**		
	(0.009)	(0.0004)		
Ethnicity	0.317	0.017*		
•	(0.202)	(0.010)		
Female	0.063	0.003		
	(0.180)	(0.009)		
Education	0.351***	0.014***		
	(0.069)	(0.003)		
Born in Europe	0.627***	0.039***		
•	(0.206)	(0.011)		
CIVIX	-0.049	0.002		
	(0.036)	(0.002)		
Constant	-3.605***	-0.066^{***}		
	(0.432)	(0.019)		
Observations	2,581	2,581		
\mathbb{R}^2	,	0.016		
Adjusted \mathbb{R}^2		0.014		
Log Likelihood	-508.242			
Akaike Inf. Crit.	1,030.483			
Residual Std. Error		0.220 (df = 2574)		
F Statistic		$7.053^{***} (df = 6; 2574)$		
AT /		* .0.1 ** .0.05 *** .0.01		

```
# pred.pol = badge.1 %>%
# broom::augment(newdata = pred.pol.dat, predict = "response") %>%
   mutate(upper = .fitted + 1.96 * .se.fit,
           lower = .fitted - 1.96 * .se.fit)
# plot(0:9, pred.pol$.fitted, type = "l",
       ylab = "Predicted Probability to have worn or displayed campaign badge/sticker",
       xlab = "CIVIX",
#
       ylim = c(-5, -1)
#
#
   lines(0:9, pred.pol$lower, lty = 2)
  lines(0:9, pred.pol$upper, lty = 2)
sgnptit.1 = glm(sgnptit ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "bin
sgnptit.2 = lm(sgnptit.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
stargazer(sgnptit.1, sgnptit.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Signed petition",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
pred.pol = badge.1 %>%
  broom::augment(newdata = pred.pol.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.pol$.fitted, type = "1",
     ylab = "Predicted Probability to have signed petition",
     xlab = "CIVIX",
     ylim = c(-5,0)
  lines(0:9, pred.pol$lower, lty = 2)
  lines(0:9, pred.pol$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
pbldmn.1 = glm(pbldmn ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "binom
pbldmn.2 = lm(pbldmn.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
stargazer(pbldmn.1, pbldmn.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Taken part in lawful public demonstration",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.pol = badge.1 %>%
   broom::augment(newdata = pred.pol.dat, predict = "response") %>%
   mutate(upper = .fitted + 1.96 * .se.fit,
           lower = .fitted - 1.96 * .se.fit)
# plot(0:9, pred.pol$.fitted, type = "l",
       ylab = "Predicted Probability to have taken part in lawful public demonstration",
       xlab = "CIVIX",
#
       ylim = c(-5, -1)
#
#
  lines(0:9, pred.pol$lower, lty = 2)
```

Table 5:

Signed petition		
sgnptit	$\operatorname{sgnptit.gap}$	
logistic	OLS	
Abs. Level	Gap w/ Natives	
(1)	(2)	
-0.006	-0.001	
(0.005)	(0.001)	
0.065	0.004	
(0.136)	(0.015)	
0.015	0.005	
(0.117)	(0.014)	
0.319***	0.023***	
(0.043)	(0.005)	
1.009***	0.143***	
(0.133)	(0.018)	
0.044*	-0.002	
(0.023)	(0.003)	
-3.227***	-0.181***	
(0.277)	(0.029)	
2,575	2,575	
•	0.042	
	0.039	
-983.724		
1,981.447		
	0.341 (df = 2568)	
	$18.637^{***} (df = 6; 2568)$	
	sgnptit logistic Abs. Level (1) -0.006 (0.005) 0.065 (0.136) 0.015 (0.117) 0.319*** (0.043) 1.009*** (0.133) 0.044* (0.023) -3.227*** (0.277) 2,575	

Table 6:

Table 6:				
	Taken part in lawful public demonstration			
	pbldmn	pbldmn.gap		
	logistic Abs. Level	OLS Gap w/ Natives		
	(1)	(2)		
Age	-0.020**	-0.001***		
	(0.008)	(0.0004)		
Ethnicity	0.158	0.022**		
	(0.179)	(0.011)		
Female	-0.262*	-0.014		
	(0.157)	(0.010)		
Education	0.168***	0.014***		
	(0.057)	(0.003)		
Born in Europe	0.559***	0.058***		
	(0.185)	(0.013)		
CIVIX	-0.046	-0.001		
	(0.032)	(0.002)		
Constant	-2.359***	-0.029		
	(0.355)	(0.022)		
Observations	2,581	2,581		
\mathbb{R}^2		0.019		
Adjusted R ²		0.017		
Log Likelihood	-629.579			
Akaike Inf. Crit.	$1,\!273.158$			
Residual Std. Error		0.253 (df = 2574)		
F Statistic		$8.425^{***} (df = 6; 2574)$		
Notes		*n<0.1. **n<0.05. ***n<0.01		

Figure 2: Signed petition

```
lines(0:9, pred.pol$upper, lty = 2)
bctprd.1 = glm(bctprd ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "binom
bctprd.2 = lm(bctprd.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
stargazer(bctprd.1, bctprd.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "boycotted certain products",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
pred.pol = bctprd.1 %>%
  broom::augment(newdata = pred.pol.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.pol$.fitted, type = "1",
     ylab = "Predicted Probability to have taken part in lawful public demonstration",
     xlab = "CIVIX",
     vlim = c(-5, -1)
  lines(0:9, pred.pol$lower, lty = 2)
  lines(0:9, pred.pol$upper, lty = 2)
stfgov.1 = lm(stfgov ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # absolute level
stfgov.2 = lm(stfgov.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
stargazer(stfgov.1, stfgov.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "satisfaction with government",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
tvpol.1 = lm(tvpol ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # absolute level
tvpol.2 = lm(tvpol.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
```

Table 7:

	10010		
	boycotted certain products		
	bctprd	bctprd.gap	
	logistic	OLS	
	Abs. Level	Gap w/ Natives	
	(1)	(2)	
Age	0.002	0.0001	
	(0.006)	(0.001)	
Ethnicity	0.116	0.012	
	(0.155)	(0.013)	
Female	-0.059	-0.009	
	(0.132)	(0.012)	
Education	0.384***	0.025***	
	(0.050)	(0.004)	
Born in Europe	1.144***	0.147***	
-	(0.146)	(0.016)	
CIVIX	0.043*	-0.007***	
	(0.026)	(0.002)	
Constant	-4.100***	-0.130***	
	(0.325)	(0.026)	
Observations	2,578	2,578	
\mathbb{R}^2		0.062	
Adjusted R ²		0.060	
Log Likelihood	-807.523		
Akaike Inf. Crit.	1,629.047		
Residual Std. Error F Statistic		0.302 (df = 2571) $28.468^{***} \text{ (df} = 6; 2571)$	
		20.100 (ar = 0, 2011)	

Table 8:

	satisfaction with government		
	stfgov Abs. Level	stfgov.gap Gap w/ Natives	
	(1)	(2)	
Age	-0.001	-0.002	
	(0.004)	(0.004)	
Ethnicity	-0.005	-0.075	
	(0.109)	(0.107)	
Female	0.032	0.020	
	(0.098)	(0.095)	
Education	-0.054	-0.099***	
	(0.034)	(0.033)	
Born in Europe	-0.642^{***}	-0.810***	
-	(0.130)	(0.127)	
CIVIX	-0.035^*	-0.012	
	(0.020)	(0.019)	
Constant	5.679***	1.691***	
	(0.213)	(0.208)	
Observations	2,322	2,322	
\mathbb{R}^2	0.015	0.025	
Adjusted R^2	0.012	0.023	
Residual Std. Error ($df = 2315$)	2.341	2.287	
F Statistic (df = 6 ; 2315)	5.706***	9.939***	

Figure 3: boycotted certain products

```
stargazer(tvpol.1, tvpol.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Watching TV for News about Politics",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
rdpol.1 = lm(rdpol ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # absolute level
rdpol.2 = lm(rdpol.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # qap
stargazer(rdpol.1, rdpol.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Listening to Radio for News about Politics",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
nwsppol.1 = lm(nwsppol ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # absolute lev
nwsppol.2 = lm(nwsppol.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # qap
stargazer(nwsppol.1, nwsppol.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Reading Newspaper for News about Politics",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
```

Social Incorporation

```
### social incorporation

# ess_raw$stflife # How satisfied with life as a whole

# table(ess_raw$pplhlp) # Most of the time people helpful or mostly looking out for themselves (0: look

# ess_raw$happy # How happy are you
```

Table 9:

Table 9.			
	Watching TV	for News about Politics	
	tvpol Abs. Level	tvpol.gap Gap w/ Natives	
	(1)	(2)	
Age	0.019*** (0.002)	0.020*** (0.002)	
Ethnicity	-0.020 (0.061)	-0.055 (0.060)	
Female	-0.129^{**} (0.054)	-0.133^{**} (0.054)	
Education	0.081*** (0.019)	0.062*** (0.019)	
Born in Europe	-0.133^* (0.072)	-0.163^{**} (0.072)	
CIVIX	-0.017 (0.011)	-0.016 (0.011)	
Constant	1.039*** (0.117)	-0.883^{***} (0.116)	
Observations R^2 Adjusted R^2 Residual Std. Error (df = 2419) F Statistic (df = 6; 2419)	2,426 0.040 0.037 1.329 16.686***	2,426 0.039 0.037 1.319 16.546***	

Table 10:

	Listening to Radio for News about Politics	
	rdpol Abs. Level	rdpol.gap Gap w/ Natives
	(1)	(2)
Age	0.016***	0.015***
	(0.003)	(0.003)
Ethnicity	-0.033	-0.071
v	(0.074)	(0.074)
Female	-0.110^*	-0.095
	(0.065)	(0.065)
Education	0.127***	0.083***
	(0.023)	(0.023)
Born in Europe	0.126	-0.001
•	(0.081)	(0.080)
CIVIX	-0.023*	0.020
	(0.013)	(0.013)
Constant	0.426***	-1.144***
	(0.144)	(0.142)
Observations	1,677	1,677
\mathbb{R}^2	0.051	0.029
Adjusted R^2	0.048	0.025
Residual Std. Error ($df = 1670$)	1.327	1.314
F Statistic (df = 6 ; 1670)	15.003***	8.215***

Table 11:

	Table 11.	
	Reading Newspaper for News about Politics	
	nwsppol Abs. Level	$\begin{array}{c} {\rm nwsppol.gap} \\ {\rm Gap\ w/\ Natives} \end{array}$
	(1)	(2)
Age	0.009***	0.009***
	(0.002)	(0.002)
Ethnicity	0.053	0.046
	(0.052)	(0.052)
Female	-0.139***	-0.145***
	(0.046)	(0.046)
Education	0.109***	0.109***
	(0.016)	(0.016)
Born in Europe	0.154***	0.125**
	(0.058)	(0.058)
CIVIX	-0.011	-0.006
	(0.009)	(0.009)
Constant	0.522***	-0.719***
	(0.101)	(0.102)
Observations	1,630	1,630
\mathbb{R}^2	0.060	0.053
Adjusted R^2	0.056	0.050
Residual Std. Error ($df = 1623$)	0.918	0.928
F Statistic (df = 6 ; 1623)	17.167***	15.219***
F Statistic (df = 6 ; 1623)	17.167***	15.219***

```
## ess_raw$inmdisc # Anyone to discuss intimate and personal matters with
# ess raw$aesfdrk # Feeling of safety of walking alone in local area after dark
# ess_raw$health # Subjective general health
# ess_raw$dscrgrp # Member of a group discriminated against in this country
# ess_raw$dscrrce # Discrimination of respondent's group: colour or race
# ess_raw$dscrntn # Discrimination of respondent's group: nationality
# # ess_raw$dscretn # Discrimination of respondent's group: ethnic group
#
# ess_raw$lnqhoma # Lanquage most often spoken at home: first mentioned *** COME BACK FOR THIS
#
# ### citizen involvement
# ess_raw$sptcptp # Sports/outdoor activity club, last 12 months: participated
# ess raw$cltoptp # Cultural/hobby activity organisation, last 12 months: participated
#
# ess_raw$truptp # Trade union, last 12 months: participated
#
# ess_raw$prfoptp # Business/profession/farmers organisation, last 12 months: participated
# ess_raw$cnsoptp # Consumer/automobile organisation, last 12 months: participated
#
# ess_raw$hmnoptp # Humanitarian organisation etc., last 12 months: participated
#
# ess_raw$epaoptp # Environmental/peace/animal organisation, last 12 months: participated
#
# ess_raw$rlqoptp # Religious/church organisation, last 12 months: participated
# ess_raw$prtyptp # Political party, last 12 months: participated
#
# ess raw$setoptp # Science/education/teacher organisation, last 12 months: participated
#
# ess_raw$sclcptp # Social club etc., last 12 months: participated
# ess_raw$othuptp # Other voluntary organisation, last 12 months: participated
ess_raw$dscrgrp = ifelse(ess_raw$dscrgrp == 2, 0, ess_raw$dscrgrp) # 1 as yes, 0 as no
ess_raw = ess_raw %>%
  filter(cntry %in% c("DK", "NL", "DE", "AT", "FR", "GB", "GR", "IE", "SE", "BE", "PT", "ES", "FI", "LU"
main.lan.1 = ess_raw %>% group_by(cntry) %>%
  filter(lnghoma != 999, lnghoma != 888, lnghoma != 777) %>%
  summarise(main.lan.1 = tail(names(sort(table(lnghoma))),1))
main.lan.2 = ess_raw %>% group_by(cntry) %>%
  filter(lnghoma != 999, lnghoma != 888, lnghoma != 777) %>%
```

```
summarise(main.lan.2 = tail(names(sort(table(lnghoma))),2)[1])
ess_raw = ess_raw %>%
  left_join(main.lan.1, by = "cntry") %>%
  left_join(main.lan.2, by = "cntry")
ess_raw = ess_raw %>% group_by(cntry) %>%
  mutate(main.lan = ifelse(lnghoma == main.lan.1 |lnghoma == main.lan.2 , 1, 0))
  # 1: speak majority language at home, 0: minority language
soc_mean = ess_raw %>% filter(citizen == 1, fborn == 0) %>% group_by(cntry) %>%
  select(cntry, stflife, pplhlp, happy, aesfdrk, health, dscrgrp, dscrrce, dscrntn, main.lan) %>%
  summarise(mean.stflife = mean(stflife, na.rm = TRUE),
            mean.pplhlp = mean(pplhlp, na.rm = TRUE),
            mean.happy = mean(happy, na.rm = TRUE),
            # mean.inmdisc = mean(inmdisc, na.rm = TRUE),
            mean.aesfdrk = mean(aesfdrk, na.rm = TRUE),
            mean.health = mean(health, na.rm = TRUE),
            mean.dscrgrp = mean(dscrgrp, na.rm = TRUE),
            mean.dscrrce = mean(dscrrce, na.rm = TRUE),
            mean.dscrntn = mean(dscrntn, na.rm = TRUE),
            mean.lan = mean(main.lan, na.rm = TRUE))
ess_soc = ess_raw %>% filter(residence == 1)
ess soc = ess soc %>% left join(soc mean, by='cntry')
ess_soc = ess_soc %>% left_join(civix.1, by = 'cntry')
ess_soc = ess_soc %>% mutate(
  stflife.gap = stflife - mean.stflife,
  pplhlp.gap = pplhlp - mean.pplhlp,
  happy.gap = happy - mean.happy,
  aesfdrk.gap = aesfdrk - mean.aesfdrk,
  health.gap = health - mean.health,
  dscrgrp.gap = dscrgrp - mean.dscrgrp,
  dscrrce.gap = dscrrce - mean.dscrrce,
  dscrntn.gap = dscrntn - mean.dscrntn,
  lan.gap = main.lan - mean.lan
stflife.1 = lm(stflife ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # absolute lev
stflife.2 = lm(stflife.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # gap
# stargazer(stflife.1, stflife.2, type = "latex", header = FALSE,
            covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
            dep.var.caption = "Satisfaction with Life",
#
            column.labels = c("Abs. Level", "Gap w/ Natives"))
pplhlp.1 = lm(pplhlp ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # absolute level
pplhlp.2 = lm(pplhlp.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # gap
# stargazer(pplhlp.1, pplhlp.2, type = "latex", header = FALSE,
#
            covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
            dep.var.caption = "People are helpful",
```

```
# column.labels = c("Abs. Level", "Gap w/ Natives"))

happy.1 = lm(happy ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # absolute level
happy.2 = lm(happy.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # gap

# stargazer(happy.1, happy.2, type = "latex", header = FALSE,

# covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),

# dep.var.caption = "People are helpful",

# column.labels = c("Abs. Level", "Gap w/ Natives"))

aesfdrk.1 = lm(aesfdrk ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # absolute lev
aesfdrk.2 = lm(aesfdrk.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # gap

stargazer(aesfdrk.1, aesfdrk.2, type = "latex", header = FALSE,

covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),

dep.var.caption = "Feel safe after dark",

column.labels = c("Abs. Level", "Gap w/ Natives"))
```

Table 12:

	Feel safe after dark		
	aesfdrk Abs. Level	aesfdrk.gap Gap w/ Natives	
	(1)	(2)	
Age	-0.004***	-0.004***	
	(0.001)	(0.001)	
Ethnicity	0.040	0.032	
v	(0.033)	(0.034)	
Female	0.337***	0.345***	
	(0.030)	(0.030)	
Education	-0.035***	-0.034***	
	(0.010)	(0.010)	
Born in Europe	-0.055	-0.036	
•	(0.039)	(0.040)	
CIVIX	0.015**	0.014**	
	(0.006)	(0.006)	
Constant	2.033***	-0.051	
	(0.065)	(0.066)	
Observations	2,582	2,582	
\mathbb{R}^2	0.063	0.061	
Adjusted R^2	0.061	0.059	
Residual Std. Error ($df = 2575$)	0.753	0.760	
F Statistic (df = 6 ; 2575)	28.848***	27.907***	

Table 13:

	subjective general health	
	health	health.gap
	Abs. Level	Gap w/ Natives
	(1)	(2)
Age	0.014***	0.014***
	(0.001)	(0.001)
Ethnicity	-0.032	0.023
	(0.034)	(0.034)
Female	0.095***	0.090***
	(0.031)	(0.030)
Education	-0.050***	-0.027***
	(0.011)	(0.010)
Born in Europe	-0.114***	-0.003
-	(0.041)	(0.040)
CIVIX	0.011*	-0.004
	(0.006)	(0.006)
Constant	1.473***	-0.718***
	(0.067)	(0.066)
Observations	2,597	2,597
\mathbb{R}^2	0.051	0.047
Adjusted R^2	0.048	0.045
Residual Std. Error $(df = 2590)$	0.780	0.769
F Statistic (df = 6 ; 2590)	23.001***	21.277***
Note:	*p<0.1: **1	p<0.05: ***p<0.01

Note: *p<0.1; **p<0.05; ***p<0.01

```
dscrgrp.1 = glm(dscrgrp ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc, family = "bin
dscrgrp.2 = lm(dscrgrp.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # gap

# stargazer(dscrgrp.1, dscrgrp.2, type = "latex", header = FALSE,

# covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),

# dep.var.caption = "subjective general health",

# column.labels = c("Abs. Level", "Gap w/ Natives"))
```

Table 14:

	language spoken at home	
	main.lan	lan.gap
	logistic	OLS
	Abs. Level	Gap w/ Natives
	(1)	(2)
Age	0.010**	0.002**
	(0.004)	(0.001)
Ethnicity	-0.464^{***}	-0.108***
v	(0.092)	(0.021)
Female	0.086	0.018
	(0.084)	(0.019)
Education	-0.052*	-0.012^*
	(0.029)	(0.006)
Born in Europe	0.530***	0.107***
-	(0.118)	(0.025)
CIVIX	0.087***	0.019***
	(0.017)	(0.004)
Constant	0.038	-0.457^{***}
	(0.183)	(0.041)
Observations	2,597	2,597
\mathbb{R}^2	•	0.031
Adjusted R^2		0.029
Log Likelihood	-1,643.609	
Akaike Inf. Crit.	3,301.218	
Residual Std. Error		0.473 (df = 2590)
F Statistic		$13.907^{***} (df = 6; 2)$

Note: *p<0.1; **p<0.05; ***p<0.01

Socioeconomic incorporation

```
# pdjobev - Ever had a paid job
# pdjobyr - Year last in paid job
# emplrel - Employment relation
# emplno - Number of employees respondent has/had
# wrkctra - Employment contract unlimited or limited duration
# jbspv - Responsible for supervising other employees
# wkdcorga - Allowed to decide how daily work is organised
# wkhtot - Total hours normally worked per week in main job overtime included
# iscoco - Occupation, ISCO88 (com)
# uemp3m - Ever unemployed and seeking work for a period more than three months
# uemp12m - Any period of unemployment and work seeking lasted 12 months or more
```

##

```
# uemp5yr - Any period of unemployment and work seeking within last 5 years
# hinctnta - Household's total net income, all sources
ess_raw$pdjobev = ifelse(ess_raw$pdjobev > 5, NA,
                         ifelse(ess_raw$pdjobev == 2, 0, ess_raw$pdjobev)) # 1 as yes, 0 as no
ess_raw$pdjobyr = ifelse(ess_raw$pdjobyr > 2010, NA, ess_raw$pdjobyr)
essr = c(2002, 2004, 2006, 2008, 2010)
essround = c(1:5)
essround = as.data.frame(t(rbind(essr, essround)))
ess_raw = ess_raw %>% left_join(essround, by='essround')
## Warning: Column `essround` has different attributes on LHS and RHS of join
ess_raw = ess_raw %>% mutate(pdjobyr = essr - pdjobyr)
ess_raw$self.emply = ifelse(ess_raw$emplrel == 1, 0,
                            ifelse(ess_raw$emplrel == 2, 1,
                                   ifelse(ess_raw$emplrel == 3, 1, NA))) # remember that there's no "ga
ess_raw$wrkctr = ifelse(ess_raw$wrkctra == 1, 0,
                         ifelse(ess_raw$wrkctra == 2, 1,
                                ifelse(ess_raw$wrkctra == 3, 1, NA))) # 1 as w/ limited contract or no
ess_raw$contract = ifelse(ess_raw$wrkctra == 1, 1,
                             ifelse(ess raw$wrkctra == 2, 1,
                                    ifelse(ess_raw$wrkctra == 3, 0, NA))) # 1 as with contract, 0 as w/
ess_raw$jbspv = ifelse(ess_raw$jbspv == 2, 0,
                       ifelse(ess_raw$jbspv == 1, 1, NA))
ess_raw$wkdcorga = ifelse(ess_raw$wkdcorga > 10, NA, ess_raw$wkdcorga)
ess_raw$wkhtot = ifelse(ess_raw$wkhtot > 168, NA, ess_raw$wkhtot)
iscoco.h.w = c(100:3500) # high skilled white collar
iscoco.1.w = c(4000:5500) # low skilled white collar
iscoco.h.b = c(6000:7500) # high skilled blue collar
iscoco.l.b = c(8000:9330) # low skilled blue collar
ess_raw$skill = ifelse(ess_raw$iscoco %in% iscoco.h.w, 1,
                       ifelse(ess_raw$iscoco %in% iscoco.h.b, 1,
                              ifelse(ess_raw$iscoco %in% iscoco.l.w, 0,
                                     ifelse(ess_raw$iscoco %in% iscoco.l.b, 0, NA)))) # 1 as high skill
ess_raw$blue = ifelse(ess_raw$iscoco %in% iscoco.h.w, 0,
                       ifelse(ess_raw$iscoco %in% iscoco.l.w, 0,
                              ifelse(ess_raw$iscoco %in% iscoco.h.b, 1,
                                     ifelse(ess_raw$iscoco %in% iscoco.l.b, 1, NA)))) # 1 as blue colla
ess_raw$uemp3m = ifelse(ess_raw$uemp3m == 2, 0,
                        ifelse(ess_raw$uemp3m == 1, 1, NA))
ess_raw$uemp12m = ifelse(ess_raw$uemp12m == 2, 0,
                        ifelse(ess_raw$uemp12m == 1, 1, NA))
ess_raw$uemp5yr = ifelse(ess_raw$uemp5yr == 2, 0,
                        ifelse(ess_raw$uemp5yr == 1, 1, NA))
```

```
ess_raw$soc.welfare = ifelse(ess_raw$hincsrca == 5 | ess_raw$hincsrca == 6, 1, 0)
ses_mean = ess_raw %>% filter(citizen == 1, fborn == 0) %>% group_by(cntry) %>%
  select(pdjobev, pdjobyr, emplno, wrkctr, jbspv, wkdcorga, wkhtot, skill, blue, contract, hinctnt, uem
  summarise(mean.pdjobev = mean(pdjobev, na.rm = TRUE),
            mean.pdjobyr = mean(pdjobyr, na.rm = TRUE),
            mean.emplno = mean(emplno, na.rm = TRUE),
            mean.wrkctr = mean(wrkctr, na.rm = TRUE),
            mean.jbspv = mean(jbspv, na.rm = TRUE),
            mean.wkdcorga = mean(wkdcorga, na.rm = TRUE),
            mean.wkhtot = mean(wkhtot, na.rm = TRUE),
           mean.skill = mean(skill, na.rm = TRUE),
            mean.blue = mean(blue, na.rm = TRUE),
            mean.contract = mean(contract, na.rm = TRUE),
            mean.hinctnt = mean(hinctnt, na.rm = TRUE),
            mean.uemp3m = mean(uemp3m, na.rm = TRUE),
            mean.uemp12m = mean(uemp12m, na.rm = TRUE),
            mean.uemp5yr = mean(uemp5yr, na.rm = TRUE),
            mean.soc.welfare = mean(soc.welfare, na.rm = TRUE),
            mean.brwmny = mean(brwmny, na.rm = TRUE))
## Adding missing grouping variables: `cntry`
ess ses = ess raw %>% filter(residence == 1)
ess_ses = ess_ses %>% left_join(ses_mean, by='cntry')
ess_ses = ess_ses %>% left_join(civix.1, by = 'cntry')
## Warning: Column `cntry` joining character vector and factor, coercing into
## character vector
## Warning: Column `cntry` has different attributes on LHS and RHS of join
ess ses = ess ses %>% mutate(
 pdjobev.gap = pdjobev - mean.pdjobev,
  pdjobyr.gap = pdjobyr - mean.pdjobyr,
  emplno.gap = emplno - mean.emplno,
  wrkctr.gap = wrkctr - mean.wrkctr,
  jbspv.gap = jbspv - mean.jbspv,
  wkdcorga.gap = wkdcorga - mean.wkdcorga,
  wkhtot.gap = wkhtot - mean.wkhtot,
  skill.gap = skill - mean.skill,
  blue.gap = blue - mean.blue,
  contract.gap = contract - mean.contract,
  hinctnt.gap = hinctnt - mean.hinctnt,
  uemp3m.gap = uemp3m - mean.uemp3m,
  uemp12m.gap = uemp12m - mean.uemp12m,
  uemp5yr.gap = uemp5yr - mean.uemp5yr,
  soc.welfare.gap = soc.welfare - mean.soc.welfare,
  brwmny.gap = brwmny - mean.brwmny
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
```

```
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
```

```
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
```

```
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
## Warning in mutate_impl(.data, dots, caller_env()): Vectorizing
## 'haven_labelled' elements may not preserve their attributes
ses.dat = with(ess_ses, data.frame(agea = mean(agea, na.rm = T),
                                        ethnic = mean(ethnic, na.rm = T),
                                        female = mean(female, na.rm = T),
                                        eubirth = mean(eubirth, na.rm = T),
                                        edu = mean(edu, na.rm = T),
                                   civix = 0:9))
pdjobev.1 = glm(pdjobev ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "bin
pdjobev.2 = lm(pdjobev.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
# stargazer(pdjobev.1, pdjobev.2, type = "latex", header = FALSE,
            covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
            dep.var.caption = "language spoken at home",
#
#
            column.labels = c("Abs. Level", "Gap w/ Natives"))
# absolute = pdjobev.1 %>%
# broom::augment(newdata = ses.dat, predict = "response") %>%
   mutate(upper = .fitted + 1.96 * .se.fit,
#
           lower = .fitted - 1.96 * .se.fit) %>%
   select(.fitted, upper, lower)
pdjobyr.1 = lm(pdjobyr ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute lev
pdjobyr.2 = lm(pdjobyr.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
# stargazer(pdjobyr.1, pdjobyr.2, type = "latex", header = FALSE,
            covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
            dep.var.caption = "language spoken at home",
#
#
            column.labels = c("Abs. Level", "Gap w/ Natives"))
self.emply.1 = glm(self.emply ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family
# stargazer(self.emply.1, type = "latex", header = FALSE,
```

```
covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
            dep.var.caption = "language spoken at home",
#
            column.labels = c("Abs. Level", "Gap w/ Natives"))
emplno.1 = lm(emplno ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute level
emplno.2 = lm(emplno.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # qap
# stargazer(emplno.1, emplno.2, type = "latex", header = FALSE,
            covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
            dep.var.caption = "language spoken at home",
            column.labels = c("Abs. Level", "Gap w/ Natives"))
#
contract.1 = glm(contract ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "b
contract.2 = lm(contract.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
stargazer(contract.1, contract.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
         dep.var.caption = "working under contract",
         column.labels = c("Abs. Level", "Gap w/ Natives"))
pred.ses = contract.1 %>%
  broom::augment(newdata = ses.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
        lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.ses$.fitted, type = "1",
     ylab = "Predicted Probability to work under contracts",
     xlab = "CIVIX", ylim = c(0,2.5)
     )
  lines(0:9, pred.ses$lower, lty = 2)
  lines(0:9, pred.ses$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
```

Table 15:

	working under contract		
	contract	contract.gap	
	logistic Abs. Level	OLS Gap w/ Natives	
	(1)	(2)	
Age	$0.006 \\ (0.006)$	$0.001 \\ (0.001)$	
Ethnicity	-0.264^* (0.136)	-0.014 (0.019)	
Female	-0.138 (0.124)	-0.024 (0.016)	
Education	0.234*** (0.043)	0.042*** (0.006)	
Born in Europe	0.397** (0.180)	0.073*** (0.021)	
CIVIX	0.098*** (0.026)	-0.002 (0.003)	
Constant	0.242 (0.278)	-0.188*** (0.038)	
Observations R ²	1,911	1,911 0.042	
Adjusted R ² Log Likelihood Akaike Inf. Crit.	-844.070 $1,702.139$	0.039	
Residual Std. Error F Statistic		0.358 (df = 1904) 13.941*** (df = 6; 1904)	


```
jbspv.1 = glm(jbspv ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "binomia
jbspv.2 = lm(jbspv.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
stargazer(jbspv.1, jbspv.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "working under contract",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.ses = jbspv.1 %>%
    broom::augment(newdata = ses.dat, predict = "response") %>%
#
    mutate(upper = .fitted + 1.96 * .se.fit,
#
           lower = .fitted - 1.96 * .se.fit)
#
# plot(0:9, pred.ses$.fitted, type = "l",
       ylab = "Predicted Probability to work under contracts",
#
       xlab = "CIVIX", ylim = c(0,2.5)
#
#
    lines(0:9, pred.ses$lower, lty = 2)
    lines(0:9, pred.ses$upper, lty = 2)
wkdcorga.1 = lm(wkdcorga ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute l
wkdcorga.2 = lm(wkdcorga.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # qap
stargazer(wkdcorga.1, wkdcorga.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "control over organization of daily work",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
wkhtot.1 = lm(wkhtot ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute level
wkhtot.2 = lm(wkhtot.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
```

Table 16:

	working under contract	
	jbspv	jbspv.gap
	logistic	OLS
	Abs. Level	Gap w/ Natives
	(1)	(2)
Age	0.018***	0.003***
	(0.005)	(0.001)
Ethnicity	-0.046	-0.018
	(0.124)	(0.019)
Female	-0.575***	-0.090***
	(0.108)	(0.017)
Education	0.475***	0.064***
	(0.041)	(0.006)
Born in Europe	0.367***	0.041*
	(0.127)	(0.022)
CIVIX	-0.023	-0.014***
	(0.021)	(0.003)
Constant	-3.259***	-0.276***
	(0.267)	(0.039)
Observations	2,199	2,199
\mathbb{R}^2	•	0.084
Adjusted \mathbb{R}^2		0.082
Log Likelihood	-1,079.669	
Akaike Inf. Crit.	$2,\!173.338$,
Residual Std. Error		0.397 (df = 2192)
F Statistic		$33.690^{***} (df = 6; 2192)$

Table 17:

	table 17:	
	control over organization of daily work	
	wkdcorga Abs. Level	wkdcorga.gap Gap w/ Natives
	(1)	(2)
Age	0.036***	0.036***
	(0.007)	(0.007)
Ethnicity	-0.669***	-0.674^{***}
	(0.171)	(0.168)
Female	-0.088	-0.115
	(0.152)	(0.150)
Education	0.642***	0.607***
	(0.053)	(0.052)
Born in Europe	0.966***	0.954***
	(0.196)	(0.193)
CIVIX	-0.062**	-0.145^{***}
	(0.031)	(0.031)
Constant	1.936***	-3.699***
	(0.352)	(0.348)
Observations	1,991	1,991
\mathbb{R}^2	0.127	0.134
Adjusted R^2	0.125	0.132
Residual Std. Error (df = 1984)	3.369	3.322
F Statistic (df = 6 ; 1984)	48.273***	51.363***

```
# stargazer(wkhtot.1, wkhtot.2, type = "latex", header = FALSE,

# covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),

# dep.var.caption = "hours worked per week",

# column.labels = c("Abs. Level", "Gap w/ Natives"))

skill.1 = glm(skill ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "binomia skill.2 = lm(skill.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap

stargazer(skill.1, skill.2, type = "latex", header = FALSE,

covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),

dep.var.caption = "Skilled worker or not",

column.labels = c("Abs. Level", "Gap w/ Natives"))
```

Table 18:

	Skilled worker or not	
	skill	skill.gap
	logistic	OLS
	Abs. Level	Gap w/ Natives
	(1)	(2)
Age	0.020***	0.004***
	(0.004)	(0.001)
Ethnicity	-0.020	-0.003
	(0.108)	(0.022)
Female	-1.197***	-0.259^{***}
	(0.098)	(0.020)
Education	0.497***	0.106***
	(0.035)	(0.007)
Born in Europe	0.522***	0.106***
•	(0.122)	(0.025)
CIVIX	0.040**	-0.002
	(0.019)	(0.004)
Constant	-2.203***	-0.424***
	(0.224)	(0.045)
Observations	2,186	2,186
\mathbb{R}^2	,	0.176
Adjusted R ²		0.174
Log Likelihood	$-1,\!305.462$	
Akaike Inf. Crit.	2,624.924	
Residual Std. Error		0.456 (df = 2179)
F Statistic		$77.688^{***} (df = 6; 2179)$

```
pred.ses = skill.1 %>%
  broom::augment(newdata = ses.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.ses$.fitted, type = "l",
     ylab = "Predicted Probability to work under contracts",
     xlab = "CIVIX", ylim = c(-1, 0.5)
     )
  lines(0:9, pred.ses$lower, lty = 2)
  lines(0:9, pred.ses$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
Predicted Probability to work under contra
      0.0
      -1.0
              0
                             2
                                             4
                                                             6
                                                                            8
                                              CIVIX
blue.1 = glm(blue ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "binomial"
blue.2 = lm(blue.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
stargazer(blue.1, blue.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Skilled worker or not",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.ses = blue.1 %>%
    broom::augment(newdata = ses.dat, predict = "response") %>%
    mutate(upper = .fitted + 1.96 * .se.fit,
#
           lower = .fitted - 1.96 * .se.fit)
#
# plot(0:9, pred.ses$.fitted, type = "l",
       ylab = "Predicted Probability to work under contracts",
#
       xlab = "CIVIX", ylim = c(-1, 0.5)
#
#
    lines(0:9, pred.ses\$lower, lty = 2)
   lines(0:9, pred.ses$upper, lty = 2)
hinctnt.1 = lm(hinctnt ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute lev
hinctnt.2 = lm(hinctnt.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
```

Table 19:

	Table 19.	
	Skilled worker or not	
	blue	blue.gap
	logistic	OLS
	Abs. Level	Gap w/ Natives
	(1)	(2)
Age	0.009*	0.002^*
	(0.005)	(0.001)
Ethnicity	-0.097	-0.001
	(0.113)	(0.021)
Female	-1.127***	-0.216***
	(0.102)	(0.018)
Education	-0.650***	-0.119^{***}
	(0.038)	(0.006)
Born in Europe	-1.340***	-0.184^{***}
	(0.144)	(0.023)
CIVIX	-0.004	0.011***
	(0.021)	(0.004)
Constant	2.464***	0.519***
	(0.236)	(0.042)
Observations	2,186	2,186
\mathbb{R}^2		0.236
Adjusted R ²		0.234
Log Likelihood	$-1,\!183.450$	
Akaike Inf. Crit.	$2,\!380.899$	
Residual Std. Error		0.424 (df = 2179)
F Statistic		$112.483^{***} (df = 6; 2179)$

Table 20:

	Table 20.	
	Skilled worker or not	
	hinctnt Abs. Level	blue.gap Gap w/ Natives
	(1)	(2)
Age	0.009**	0.002*
	(0.004)	(0.001)
Ethnicity	-0.254^{**}	-0.001
·	(0.107)	(0.021)
Female	-0.169*	-0.216***
	(0.097)	(0.018)
Education	0.395***	-0.119***
	(0.033)	(0.006)
Born in Europe	0.763***	-0.184***
-	(0.127)	(0.023)
CIVIX	-0.001	0.011***
	(0.019)	(0.004)
Constant	3.301***	0.519***
	(0.219)	(0.042)
Observations	1,892	2,186
\mathbb{R}^2	0.114	0.236
Adjusted R^2	0.111	0.234
Residual Std. Error	2.097 (df = 1885)	0.424 (df = 2179)
F Statistic	$40.339^{***} (df = 6; 1885)$	$112.483^{***} (df = 6; 2179)$
Note:	*]	p<0.1; **p<0.05; ***p<0.01

```
uemp3m.1 = glm(uemp3m ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "binom
uemp3m.2 = lm(uemp3m.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap

# stargazer(uemp3m.1, uemp3m.2, type = "latex", header = FALSE,

# covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),

# dep.var.caption = "unemployed for three months",

# column.labels = c("Abs. Level", "Gap w/ Natives"))

uemp12m.1 = glm(uemp12m ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "bin
uemp12m.2 = lm(uemp12m.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
```

stargazer(uemp12m.1, uemp12m.2, type = "latex", header = FALSE,

```
covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
dep.var.caption = "unemployed for three months",
column.labels = c("Abs. Level", "Gap w/ Natives"))
```

Table 21:

	Table 21.	
	unemployed for three months	
	uemp12m	uemp12m.gap
	logistic	OLS
	Abs. Level	Gap w/ Natives
	(1)	(2)
Age	0.030***	0.007***
	(0.007)	(0.002)
Ethnicity	0.269*	0.067**
	(0.137)	(0.033)
Female	0.361***	0.074**
	(0.130)	(0.031)
Education	-0.103**	-0.025**
	(0.045)	(0.011)
Born in Europe	-0.035	0.017
	(0.187)	(0.044)
CIVIX	0.079***	0.016***
	(0.026)	(0.006)
Constant	-1.662***	-0.345^{***}
	(0.301)	(0.070)
Observations	1,049	1,049
\mathbb{R}^2		0.043
Adjusted R ²		0.037
Log Likelihood	-692.271	
Akaike Inf. Crit.	1,398.542	
Residual Std. Error		0.493 (df = 1042)
F Statistic		$7.745^{***} (df = 6; 1042)$
Note:	*p<0.1; **p<0.05; ***p<0.01	

Figure 4: unemployed for three months

```
lines(0:9, pred.ses$upper, lty = 2)
abline(h = 0, lty=3, col="red")
```