CS4487 - Machine Learning

Lecture 4b - Non-linear Classifiers

Dr. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- 1. Nonlinear classifiers
- 2. Kernel trick and kernel SVM
- 3. Ensemble Methods Boosting, Random Forests
- 4. Classification Summary

Ensemble Classifiers

- Why trust only one expert?
 - In real life, we may consult several experts, or go with the "wisdom of the crowd"
 - In machine learning, why trust only one classifier?
- Ensemble methods aim to combine multiple classifiers together to form a better classifier.
- Examples:
 - boosting training multiple classifiers, each focusing on errors made by previous classifiers.
 - bagging training multiple classifiers from random selection of training data

AdaBoost - Adaptive Boosting

- Base classifier is a "weak learner"
 - A simple classifier that can be slightly better than random chance (>50%)
 - Example: decision stump classifier
 - check if feature value is above (or below) a threshold.

$$\circ y = f(x) = \begin{cases} +1, & x_j \ge T \\ -1, & x_j < T \end{cases}$$

In [4]: wlfig Out[4]: $f(\mathbf{x}) = (x_1 > 0)$ $f(\mathbf{x}) = (x_2 < 0.5)$ 1.5 1.5 1.0 1.0 0.5 0.5 \mathbf{x}^2 0.0 0.0 -0.5-0.5-1.0-1.0-1-12 0 0 x_1 x_1

- Idea: train weak classifiers sequentially
- In each iteration,
 - Pick a weak learner $f_t(\mathbf{x})$ that best carves out the input space.
 - The weak learner should focus on data that is misclassified.
 - o Apply weights to each sample in the training data.
 - Higher weights give more priority to difficult samples.

Iteration 1

- Initially, weights for all training samples are equal: $w_i = 1/N$
 - Pick best weak learner.

Iteration 2

- points are re-weighted based on the current classification result:
 - increase weights of samples that are misclassified: $w_i = w_i e^{\alpha}$
 - decrease weights of correctly classified samples: $w_i = w_i e^{-\alpha}$
 - $\alpha = 0.5 \log \frac{1 err}{err}$ is based on the current classifier error.
 - (larger circles indicates higher weight)
- using the weighted data, train another weak learner $f_2(\mathbf{x})$.
- the classifier function is the weighted sum of weak learners
 - $f(\mathbf{x}) = \sum_{t=1}^{D} \alpha_t f_t(\mathbf{x})$

In [8]: plts[2]

Out[8]:

Keep iterating...

In [9]: plts[3]

Out[9]:

• After many iterations...

Adaboost loss function

- exponential loss
 - $L(z_i) = e^{-z_i}$

$$\circ \ z_i = y_i f(\mathbf{x}_i)$$

very sensitive to misclassified outliers.

Example on Iris data

• Too many weak-learners and AdaBoost carves out space for the outliers.

• use cross-validation to select number of weak learners.

```
In [20]: # setup the list of parameters to try
         paramgrid = {'n_estimators': array([1, 2, 3, 5, 10, 15, 20, 25, 50, 100, 200, 50
         0, 1000]) }
         print(paramgrid)
         # setup the cross-validation object
         # (NOTE: using parallelization in GridSearchCV, not in AdaBoost)
         adacv = model selection.GridSearchCV(ensemble.AdaBoostClassifier(random state=44
         87),
                                          paramgrid, cv=5, n_jobs=-1)
         # run cross-validation (train for each split)
         adacv.fit(trainX, trainY);
         print("best params:", adacv.best_params_)
         {'n_estimators': array([ 1, 2, 3, 5, 10,
                                                                15,
                                                                      20,
                                                                            25,
                                                                                  50
         , 100, 200,
                 500, 1000])}
         best params: {'n_estimators': 2}
```

```
In [22]: (avgscores, pnames, bestind) = extract_grid_scores(adacv, paramgrid)
    paramfig = plt.figure()
    plt.semilogx(paramgrid['n_estimators'], avgscores, 'o-')
    plt.grid(True)
    plt.ylabel('accuracy'); plt.xlabel('number of weak learners')
    plt.title('accuracy for different number of weak learners')
    plt.show()
```



```
In [23]: # predict from the model
    predY = adacv.predict(testX)

# calculate accuracy
    acc = metrics.accuracy_score(testY, predY)
    print("test accuracy =", acc)
```

test accuracy = 0.82

In [25]: ifig2

Out[25]:

- Boosting can do feature selection
 each decision stump classifier looks at one feature
- One of the original face detection methods (Viola-Jones) used Boosting.
 extract a lot of image features from the face

 - during training, Boosting learns which ones are the most useful.

AdaBoost Summary

- Ensemble Classifier:
 - Combine the outputs of many "weak" classifiers to make a "strong" classifier
- Training:
 - In each iteration,
 - training data is re-weighted based on whether it is correctly classified or not.
 - weak classifier focuses on misclassified data from previous iterations.
 - Use cross-validation to pick number of weak learners.
- Advantages:
 - Good generalization performance
 - Built-in features selection decision stump selects one feature at a time.
- Disadvantages:
 - Sensitive to outliers.

Outline

- 1. Nonlinear classifiers
- 2. Kernel trick and kernel SVM
- 3. Ensemble Methods Boosting, Random Forests
- 4. Classification Summary

Decision Tree

- Simple "Rule-based" classifier
 - At each node, move down the tree based on that node's criteria.
 - leaf node contains the prediction
- Advantage: can create complex conjunction of rules
- Disadvantage: easy to overfit by itself

can fix with bagging!

Random Forest Classifier

- Use **bagging** to make an ensemble of Decision Tree Classifiers
 - for each Decision Tree Classifier
 - o create a new training set by randomly sampling from the training set
 - for each split in a tree, select a random subset of features to use
- for a test sample, the prediction is aggregated over all trees.

- Here are the 4 decision trees
 - each uses a different random sampling of original training set

• and the aggregated classifier

• Using more trees

```
In [31]: # learn RF classifiers for different n_estimators
    plt.figure(figsize=(9,6))
    clfs = {}
    for i,n in enumerate([5, 10, 50, 100, 10000, 10000]):
        clfs[n] = ensemble.RandomForestClassifier(n_estimators=n, random_state=4487,
        n_jobs=-1)
        clfs[n].fit(X3, Y3)

    plt.subplot(2,3,i+1)
    plot_rf(clfs[n], axbox, X3)
    plt.scatter(X3[:,0], X3[:,1], c=Y3, cmap=mycmap, edgecolors='k')
    plt.gca().xaxis.set_ticklabels([])
    plt.gca().yaxis.set_ticklabels([])
    plt.title("n=" + str(n))
```


• Try on the iris data

```
In [32]: # learn RF classifiers for different n_estimators
    plt.figure(figsize=(9,6))
    clfs = {}
    axbox = [2.5, 7, 1.5, 4]

for i,n in enumerate([5, 10, 50, 100, 500, 1000]):
    clfs[n] = ensemble.RandomForestClassifier(n_estimators=n, random_state=4487,
    n_jobs=-1)
    clfs[n].fit(trainX, trainY)

    plt.subplot(2,3,i+1)
    plot_rf(clfs[n], axbox, trainX)
    plt.scatter(trainX[:,0], trainX[:,1], c=trainY, cmap=mycmap, edgecolors='k')
    plt.gca().xaxis.set_ticklabels([])
    plt.gca().yaxis.set_ticklabels([])
    plt.title("n=" + str(n))
```



```
In [33]: # predict from the model
    predY = clfs[1000].predict(testX)

# calculate accuracy
    acc = metrics.accuracy_score(testY, predY)
    print("test accuracy =", acc)
```

test accuracy = 0.8

In [35]:

classifier boundary w/ training and test data
ifig3

Out[35]:

- Important parameters for cross-validation
 - max_features maximum number of features used for each split
 - max_depth maximum depth of a decision tree

Outline

- 1. Nonlinear classifiers
- 2. Kernel trick and kernel SVM
- 3. Ensemble Methods Boosting, Random Forests
- 4. Classification Summary

Feature Pre-processing

- Some classifiers, such as SVM and LR, are sensitive to the scale of the feature values.
 - feature dimensions with larger values may dominate the objective function.
- Common practice is to *standardize* or *normalize* each feature dimension before learning the classifier.
 - Two Methods...
- Method 1: scale each feature dimension so the mean is 0 and variance is 1.
 - $\tilde{x_d} = \frac{1}{s}(x_d m)$
 - *s* is the standard deviation of feature values.
 - *m* is the mean of the feature values.
- NOTE: the parameters for scaling the features should be estimated from the training set!
 - same scaling is applied to the test set.

```
In [36]: # using the iris data
    scaler = preprocessing.StandardScaler() # make scaling object
    trainXn = scaler.fit_transform(trainX) # use training data to fit scaling para
    meters
    testXn = scaler.transform(testX) # apply scaling to test data
```

```
In [38]: nfig1
```


- **Method 2:** scale features to a fixed range, -1 to 1.
 - $x_d^2 = 2 * (x_d min)/(max min) 1$
 - *max* and *min* are the maximum and minimum features values.

```
In [39]: # using the iris data
    scaler = preprocessing.MinMaxScaler(feature_range=(-1,1)) # make scaling obje
    ct
    trainXn = scaler.fit_transform(trainX) # use training data to fit scaling para
    meters
    testXn = scaler.transform(testX) # apply scaling to test data
```

In [41]: nfig2

Out[41]:

Data Representation and Feature Engineering

- How to represent data as a vector of numbers?
 - the encoding of the data into a feature vector should make sense
 - inner-products or distances calculated between feature vectors should be meaningful in terms of the data.
- Categorical variables
 - Example: *x* has 3 possible category labels: cat, dog, horse
 - We could encode this as: x = 0, x = 1, and x = 2.
 - Suppose we have two data points: x = cat, x' = horse.
 - What is the meaning of x * x' = 2?

One-hot encoding

- encode a categorical variable as a vector of ones and zeros
 - if there are *K* categories, then the vector is *K* dimensions.
- Example:
 - $x=cat \to x=[1 \ 0 \ 0]$
 - $x=dog \rightarrow x=[0\ 1\ 0]$
 - $x=horse \rightarrow x=[0\ 0\ 1]$

Binning

- encode a real value as a vector of ones and zeros
 - assign each feature value to a bin, and then use one-hot-encoding

Data transformations - polynomials

- Represent interactions between features using polynomials
- Example:
 - 2nd-degree polynomial models pair-wise interactions

$$\circ$$
 $[x_1, x_2] \rightarrow [x_1^2, x_1x_2, x_2^2]$

• Combine with other degrees:

$$\circ$$
 $[x_1, x_2] \rightarrow [1, x_1, x_2, x_1^2, x_1x_2, x_2^2]$

Data transformations - univariate

- Apply a non-linear transformation to the feature
 - e.g., $x \rightarrow log(x)$
 - useful if the dynamic range of x is very large

Unbalanced Data

- For some classification tasks that data will be unbalanced
 - many more examples in one class than the other.
- Example: detecting credit card fraud
 - credit card fraud is rare
 - 50 examples of fraud, 5000 examples of legitimate transactions.

```
In [46]: udatafig
```

Out[46]:

class 0: 200 points; class 1: 20 points

- Unbalanced data can cause problems when training the classifier
 - classifier will focus more on the class with more points.
 - decision boundary is pushed away from class with more points

```
In [48]:
          udatafig1
Out[48]:
                                                          SVM decision boundary
             6
             4
             2
             0
           -2
           -4
           -6
                                  -2
                                             0
                                                       2
              -6
                        -4
                                                                 4
                                                                           6
```

- Solution: apply weights on the classes during training.
 weights are inversely proportional to the class size.

```
In [49]: | clfw = svm.SVC(kernel='linear', C=10, class_weight='balanced')
         clfw.fit(X, Y)
         print("class weights =", clfw.class_weight_)
```

class weights = [0.55 5.5]

In [51]: udatafig2 Out[51]: unweighted 6 weighted 4 2 0 **-**2 -4-6 **-**2 0 2 -6-44 6

Classifier Imbalance

- In some tasks, errors on certain classes cannot be tolerated.
- Example: detecting spam vs non-spam non-spam should *definitely not* be marked as spam

-8

-6

-4

-2

0

2

4

6

- - o kay to mark some spam as non-spam

In [53]: udatafig3 Out[53]: 0 4 2 0 -2-4

- Class weighting can be used to make the classifier focus on certain classes

 - e.g., weight non-spam class higher than spam class
 classifier will try to correctly classify all non-spam samples, at the expense of making errors on spam samples.

```
In [54]:
         # dictionary (key,value) = (class name, class weight)
         cw = \{0: 0.2,
               1: 5} # class 1 is 25 times more important!
         clfw = svm.SVC(kernel='linear', C=10, class_weight=cw)
         clfw.fit(X, Y);
```

```
In [56]:
          udatafig4
```

Out[56]:

Classification Summary

• Classification task

- Observation \mathbf{x} : typically a real vector of feature values, $\mathbf{x} \in \mathbb{R}^d$.
- Class y: from a set of possible classes, e.g., $\mathcal{Y} = \{0, 1\}$
- **Goal:** given an observation **x**, predict its class *y*.

Name	Туре	Classes	Decision function	Training	Advantages	Disadvantages
Bayes' classifier	generative	multi- class	non-linear	estimate class-conditional densities $p(x y)$ by maximizing likelihood of data.	- works well with small amounts of data multi-class minimum probability of error if probability models are correct.	- depends on the data correctly fitting the class- conditional.
logistic regression	discriminative	binary	linear	maximize likelihood of data in $p(y x)$.	- well-calibrated probabilities efficient to learn.	linear decisionboundary.sensitive to Cparameter.
support vector machine (SVM)	discriminative	binary	linear	maximize the margin (distance between decision surface and closest point).	works well in high-dimension.good generalization.	linear decisionboundary.sensitive to <i>C</i>parameter.
kernel SVM	discriminative	binary	non-linear (kernel function)	maximize the margin.	- non-linear decision boundary can be applied to non-vector data using appropriate kernel.	- sensitive to kernel function and hyperparameters. - high memory usage for large datasets
AdaBoost	discriminative	binary	non-linear (ensemble of weak learners)	train successive weak learners to focus on misclassified points.	- non-linear decision boundary. can do feature selection good generalization.	- sensitive to outliers.
Random Forest	discriminative	multi- class	non-linear (ensemble of decision trees)	aggregate predictions over several decision trees, trained using different subsets of data.	 non-linear decision boundary. can do feature selection. good generalization. fast 	- sensitive to outliers.

Loss functions

- The classifiers differ in their loss functions, which influence how they work.
 - $z_i = y_i f(\mathbf{x}_i)$

In [58]: lossfig

Out[58]:

Regularization and Overfitting

- Some models have terms to prevent overfitting the training data.
 - this can improve generalization to new data.
- There is a parameter to control the regularization effect.
 - select this parameter using cross-validation on the training set.

In [60]:

ofig

Out[60]:

Other things

- Multiclass classification
 - can use binary classifiers to do multi-class using 1-vs-rest formulation.
- Feature normalization
 - normalize each feature dimension so that some feature dimensions with larger ranges do not dominate the optimization process.
- Unbalanced data
 - if more data in one class, then apply weights to each class to balance objectives.
- Class imbalance
 - mistakes on some classes are more critical.
 - reweight class to focus classifier on correctly predicting one class at the expense of others.

Applications

- Web document classification, spam classification
- Face gender recognition, face detection, digit classification

Features

- Choice of features is important!
 - using uninformative features may confuse the classifier.
 - use domain knowledge to pick the best features to extract from the data.

Which classifier is best?

• "No Free Lunch" Theorem (Wolpert and Macready)

"If an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems."

• In other words, there is no *best* classifier for all tasks. The best classifier depends on the particular problem.