Low-Rank Approximation For Synthesizing Explainable Controllers

École Polytechnique CSE303 Instructor: Gleb Pogudin

> Alan Picucci Giacomo Bruno

Due Date: December 12, 2022

1 Introduction

Cyber-physical systems are physical systems controlled by digital devices (like self-driving cars). Machine learning methods are a natural tool for designing controllers for such systems. However, the produced controllers are often not understandable or analyzable by a human, and this often raises safety concerns. A recent paper just published titled Algebraically Explainable Controllers: Decision Trees and Support Vector Machines Join Forces [2] tries to combine Decision Trees and SVM to create a new type of controller.

In this project, we will attempt to build upon this paper in order to improve the explainability of their controllers.

1.1 The paper we will build upon

As suggested by the title, the authors of the paper explore two approaches to represent controllers as decision trees. The objective of these approaches is to obtain small decision trees with explainable predicates. The first approach, which aimed to generate algebraic predicates (closed-form expressions) using domain knowledge, was found to be infeasible in practice, and we will not be touching upon this method. On the other hand, the second approach was found to be more successful: using Support Vector Machines to generate the polynomials at each split. To moderate the complexity of the predicates, the degree of the polynomials is restricted to order two. Thus, linear SVM is applied in quadratic space to obtain the best splits.

The results of the latter approach were very promising, as the authors were able to produce very small trees. However, the explainability of the predicates left a lot to be desired, despite the authors' attempts of using various simplifying techniques, such as filtering out irrelevant variables or rounding coefficients.

This paper will thus attempt a new approach to improving the explainability of these predicates: by performing k-rank approximation of the 2nddegree polynomials.

1.2 k-rank approximation of a quadratic polynomial

In our project we want to simplify the complicated predicates generated by the SVM using low-rank approximation and exploiting the Principal Axis Theorem. The former is a famous approach based on SVD decomposition and it gives us a more concise way of writing a 2nd-degree polynomial. A quadratic form P can be written with its matrix representation:

$$P(\vec{x}) = \sum_{i=0}^{n} \sum_{j=0}^{i} c_{ij} x_i x_j = x^T A x, \text{ where } \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ 1 \end{pmatrix}$$
 (1)

where A is an $(n+1) \times (n+1)$ symmetric matrix of coefficients and obtained by setting $a_{ij} = \frac{1}{2}c_{ij}$ and $a_{ji} = \frac{1}{2}c_{ij}$ if $i \neq j$ and $a_{ii} = c_{ii}$ otherwise. Since Ais a real and symmetric matrix, by the spectral theorem $A = FDF^T$, where $F = (f_0, \dots, f_n)$ is an orthonormal matrix of normalized eigenvectors and Dis a diagonal matrix of eigenvalues [1]. This turns out to be very useful since, by the Principal Axis theorem [3], it allows us to represent our Quadratic form P as a sum of squares:

$$P = (F^{T}x)^{T}D(F^{T}x) = \sum_{i=0} \lambda_{i}(f_{i} \cdot x)^{2}$$
(2)

where λ_i is the i-th eigenvalue of the matrix D, f_i is the i-th column vector from the matrix F and x is our vector of variables. This significantly simplifies our Polynomial and allows us to easily remove elements from the sum by using k-rank approximation:

$$P = (\underbrace{\mathbf{F}^{\mathbf{T}}}_{k \times n+1} \underbrace{\mathbf{x}}_{n+1 \times 1})^{T} \times \underbrace{\mathbf{D}}_{k \times k} \times (\underbrace{\mathbf{F}^{\mathbf{T}}}_{k \times n+1} \underbrace{\mathbf{x}}_{n+1 \times 1})$$
(3)

We are now free to optimize the value of k for every predicate. We will create a list of feasible k's according to some criteria and then choose the k which minimizes the impurity of the split. The function that implements this will be analyzed in the next part of the paper.

1.3 Why we use low-rank approximation

 $\$Definition: \$ForamodelMwithstatesSandactionsA, acontrollerC: S \implies 2^A selects for every states \in Saset of safe actions C(s) \subseteq A. Moreover, we assume the set of states is <math>\Pi_{i=1}^M Dom(v_i)$, where, for $1 \le i \le M \in N$, v_i is a state variable with domain $Dom(v_i)$ and Π denotes the The goal of this project is to obtain more explainable controllers by lowering the rank of our polynomials, but why should this work? The algorithm chooses among different second-degree polynomials and selects the one with the lowest value of impurity. Therefore, our low-rank approximation might be expected to increase the impurity by "removing information". We hope that despite this valid reasoning our k-rank approach will actually regularize these polynomials, avoiding potential overfitting issues that might have derived from the SVM's during training. Furthermore, thanks to the theorem mentioned above we can represent these polynomials in sums of squares which should be easier to read and interpret for a human reader.

2 Into the code

2.1 The original code

The original code builds decision trees by giving them a list of two splitting strategies, one of which is always the axis-aligned, and at each node choosing the split with the best impurity. The axis-aligned is always included since it is the easiest to interpret (it's an inequality in only one variable). Moreover, the author also introduces a "priority" variable for polynomial splitting strategies that takes values between 0 and 1: this is used to compare impurities in a weighted manner so that the impurity of the polynomial split will be evaluated as "real impurity"*" priority". For small values of priority, this ensures that the polynomial split has to be significantly better than the axis-aligned split so that it may be chosen, since it is harder to interpret. In order to implement our low-rank approach, we created a new splitting strategy which we could then feed to the original algorithm, comparing it to the axis-aligned split at each node.

2.2 Implementing our functions

As previously mentioned, we need a function that will allow us to optimize over the parameter k for every generated predicate. We thus break this process down into the following main operations: firstly, having a function which gives us a list of all the feasible k according to the following criteria: the k-th eigenvalue (in decreasing absolute order) must be small enough (smaller

than a threshold value m, which is 0.1 by default.) and the ratio between the successive eigenvalues must also be smaller than some threshold z (by default 0.1). The idea is that such values of k will cut irrelevant eigenvalues out, meaning that we won't lose much from this removal. This function is implemented as follows:

```
def relative_largest_gaps(self,
m=0.1,z = 0.1):
    # This function now returns a list with all the viable
        values of k.
    L=self.eigenvalues #sorted eigenvalues largest to smallest
    if 0 in L:
        indices = [i for i in range(1, L.index(0)+1) if
            abs(L[i]) < m and abs(L[i] / L[i - 1]) < z]
    else:
        indices = [i for i in range(1, len(L)) if abs(L[i]) < m
            and abs(L[i] / L[i - 1]) < z] + [len(L)]
    return indices</pre>
```

Note that we identify the cases in which there is a 0 eigenvalue and treat them differently to avoid dividing by 0. Also, it's clear that if we have null eigenvalues, cutting them off should have no effect. Moreover, we remark that in the above implementation, the maximum k (i.e. no approximation) is always included among the indices. We will eventually modify this function so that we never include the maximum k, except for when no other value of k satisfies the above conditions. By doing so, we can essentially force the algorithm to make approximations, since it will not have the original splits to choose from.

Next, we need to try out each of these potential splits and let the algorithm select the best one based on their impurity. We therefore loop over the possible k's, calculating the impurity of the split to subsequently choose the best one.

```
for k in indices:
    split=deepcopy(original_split)
    impurity = impurity_measure.calculate_impurity(dataset, split)
    splitData = (impurity, split, label_mask, standardizer, svc)
    splits.append(splitData) #append the possible split
```

Our last contribution to the code is the k rank approx function which for every possible polynomial split computes its low rank approximation for a given k.

```
def k_rank_approx(self, k, round_eigvals=False, eps=0.0001):
    if round_eigvals: #Possibility to round down small entries
        of the matrix F seiplifying the terms inside the squares
        self.F=self.F[:,:k]
        self.F[np.abs(self.F) < eps] = 0
    else:
        self.F=self.F[:,:k]
        self.eigenvalues=self.eigenvalues[:k]
    D=np.diag(self.eigenvalues)
    A=(self.F)@D@((self.F).T) #Here we compute the low rank
        approximation.</pre>
```

We made several small adjustments to these three functions to reach our desired outputs. For instance, we changed the upper bound for the value of the ratios by experimenting with m and z. Additionally, in the k rank function we included the possibility off adding an epsilon according to which every value of the matrix F below this is assigned zero: this trick simplifies our sums of squares polynomial. Finally, we also added a method that counts how many times each k-approximation was used. All of these small adjustments were crucial for debugging and to analyse how the algorithm computed and chose splits.

2.3 Problems faced

In this section we would like to comment on some of the technical issues we faced along the way. In fact, we had to deal with many problems, mainly due to the complexity and volume of the code that we had to modify. This made implementing new functions quite tricky, since we risked compromising the basic functionality of the program with even slight changes. For example, this occurred when we implemented the function which allowed us to count how many times each k was used for an approximation in the chosen splits. Moreover, we also encountered many bugs while trying to implement the loop over the possible values of k. These were caused by pre-existing functions written by the original author which were not compatible with our new modifications and resulted in some splits not being stored correctly and therefore not being selected as the best split. It's also worth mentioning that the calculated impurities sometimes returned 2^{63} -1, the largest number supported in 64-bit python. This implies that there is probably some part of C code used to calculate the author's new impurity implementation which may cause errors when trying to modify the original code.

3 Results

Now we will present and comment on the results that emerged from our investigation. Note that these results primarily refer to the cruise_250 and cruise_300 databases, which we have used as reference points to compare to the original author's results. The last part of this section will comment on the results found for other data sets. Note that these results can be reproduced through the repository [4] linked in the bibliography.

3.1 Not enforcing low-rank approximation

Before trying to force the algorithm to perform low-rank approximation on the polynomial splits, we gave it the choice of choosing between the approximated polynomials and the original one (as we mentioned earlier in the paper). The goal was to see whether the approximations would ever be preferred to the original polynomials. However, we found that our algorithm generated trees of exactly the same size as the original paper, with virtually every polynomial split having max k. However, there were 4 polynomial splits which were chosen to have k=3, which probably means that both the original splits and the approximated splits with k=3 had a perfect impurity of 0, making the algorithm indifferent. We expected a different result, hoping to verify our initial hypothesis regarding regularization however the algorithm always chose the highest possible rank implying that our hypothesis was probably incorrect. The results are presented in Appendix A.

3.2 Enforcing low-rank approximation

Since our first approach virtually never yielded low-rank splits, we tried to force the algorithm to choose among low-rank polynomials. We implemented this by modifying the relative_largest_gaps function as mentioned earlier: we forced the algorithm to select k's which were strictly smaller than the maximum k whenever such k's were feasible under the criteria imposed. The results can be found in Appendix B and are again inconclusive since most of the trees we obtained have hundreds of additional nodes with respect to the default one. Strangely though in the case of cruise_250 we obtain the same number of nodes, 13, as its former counterpart. We tested several different versions of the splitting strategies, slightly altering the parameters each time. The version available in the Appendix was obtained after several attempts. Unfortunately changing these values didn't really improve the results since the trees often increased in size without improving in explainability. In these

cases, the axis-aligned splits were often preferred to the polynomial splits, so the low rank approximation must have significantly increased their impurity.

3.3 Enforcing low-rank approximation on other datasets

In order to further verify our conclusions we tried running our algorithm on different datasets, specifically "dcdc" and "cartpole". The others, such as "airplane" and "helicopter", were too large for us to compute. The two new datasets use a polynomial with max rank of k=3 and the results again were similar to the previous one since we obtained trees which were quite bigger than the original ones. Of course, the original results are available in the original author's paper, while ours can be found in Appendix C.

4 Conclusion

In the end our approach didn't quite work as desired: we expected that these low-rank polynomials would have been more effective at increasing the explainability of the nodes. Instead, we got larger trees and didn't significantly improve their explainability through the sum of squares representation, as exemplified by the sample tree in Appendix B. We note that we used this approach only in cases where $\max(k) < 5$ and it may be that in such cases it's not profitable to approximate. In larger k, however, this approach may be more useful and more research should be made into datasets of this type. Still one should attempt to further optimise the current algorithm since it's computationally expensive: running it was quite an extensive process. Another possible reason for the inconclusiveness of the project is that we exploit the greedy approach when choosing the splits and, as known, this process doesn't always finish with the optimal result.

Appendix

A Results on cruise without forcing low-rank approximation

	poly-lowrank	poly-lowrank-minEntropy	poly-lowrankPrio1	poly-lowrankPrio1-minEntrop
cruise_250 #(s,a): 961569 #doc: 320523	nodes: 347 inner nodes: 173 paths: 174 bandwidth: 8 k=1: 0 k=2: 0 k=3: 4 k=4: 68 time: 00:0101164 DOT / C	nodes: 11 inner nodes: 5 paths: 6 bandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 time: 0:00:34:015 DOT / C	nodes: 37 inner nodes: 18 paths: 19 bandwidth: 5 k=1: 0 k=2: 0 k=3: 0 k=4: 12 time: 0000552.787 DOT/C	nodes: 21 inner nodes: 10 paths: 11 bandwidth: 4 k=1: 0 k=2: 0 k=3: 0 k=4: 6 time: 00:00:41.522 DOTT/C
cruise_300 #(a,a):1502760 #doc:500920	nodes: 509 inner nodes: 254 paths: 255 bandwidth: 8 k=1: 0 k=2: 0 k=3: 7 k=4: 104 time: 00:0127056 DDT LC	nodes: 13 inner nodes: 6 paths: 7 bandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 tone: 0000:53.075 port (C	nodes: 35 inner nodes: 17 paths: 18 bandwidth: 5 k=1: 0 k=2: 0 k=3: 0 k=4: 12 time: 00:01:16.375 DOT [C	nodes: 19 inner nodes: 9 paths: 10 bandwidth: 4 k=1: 0 k=2: 0 k=3: 0 k=4: 5 time: 00:0104.883 DOT 10

Figure 1: The tree statistics for different implementations of our splitting strategy on both cruise datasets: the first two use, respectively, entropy and minEntropy (an impurity measure created by the original author) with the "priority" variable set to 0.1. The latter two are equivalent except they have "priority" set to 1.

B Results on cruise enforcing low-rank approximation

```
poly_lowrank_default= LowGankPolynomialClassifierSplittingStrategy(prettify=False, m=0.1, z=0.1, round_eigvals=False) #(Alan-Giacono): Here w poly_lowrank_default_priority=0.1 #(Alan-Giacono): Here w can choose the "priority" variable for our splitting strategy. This variable is us poly_lowrank_default_priority=0.1 #(Alan-Giacono): Here w can choose the "priority" variable for our splitting strategy(pretti) poly_lowTank_default_priority=0.1 poly_lowTank_default_prounding.priority=0.1 poly_lowTank_default_prounding.priority=0.1 poly_lowTank_default_priority=0.1 poly_lowTank_default_priority=0.1 poly_lowTank_default_priority=0.1 poly_lowTank_default_priority=0.1 poly_lowTank_default_priority=0.1 poly_lowTank_default_priority=0.1 poly_ford_lowTank_default_priority=0.1 poly#fologous_default_priority=0.1 poly#folog
```

Figure 2: Defining the various splitting strategies that we have tested.

	poly- lowrank_de	fault	poly- lowrank_default- minEntropy	poly- lowrank_default_rou ding	poly- in lowrank_default ding-minEntr	_roun low	poly- rank_permissiv	poly- lowrank_permissiv e minEntropy
	nodes: 63 inner nodes:	319	nodes: 13 inner nodes: 6	nodes: 823 inner nodes: 411	nodes: 13 inner nodes:	6 ir	nodes: 825	nodes: 575 inner nodes: 287
miles 2E0	paths: 32 bandwidth		paths: 7 bandwidth: 3	paths: 412	paths: 7		paths: 413	paths: 288
ruise_250	bandwidth k=1: 0	. 9	bandwidth: 3 k=1: 0	bandwidth: 9	bandwidth:	3	bandwidth: 9	bandwidth: 9
961569	k=2: 0		k=1: 0 k=2: 0	k=1: 0 k=2: 0	k=1: 0 k=2: 0		k=1: 0 k=2: 0	k=1: 0 k=2: 2
#doc:	k=3: 7		k=3: 0	k=2: 0 k=3: 6	k=2: 0 k=3: 0		k=2: 0 k=3: 9	k=2: 2 k=3: 11
320523	k=4: 40		k=4: 3	k=3: 6 k=4: 5	k=3: 0 k=4: 3		k=3: 9 k=4: 3	k=3: 11 k=4: 6
	time: 00:01:08.5	20	time: 00:00:34.756	time: 00:01:01.381	time: 00:00:31	848 tin	ne: 00:01:03.613	time: 00:01:03.30
	DOT / C		DOT / C	DOT / C	DOT/C		DOT/C	DOT/C
	nodes: 88		nodes: 305 inner nodes: 152	nodes: 1055	nodes: 351		nodes: 1063	nodes: 1025
	paths: 44	443	paths: 153	inner nodes: 527	inner nodes: 1	75 ir	nner nodes: 531	inner nodes: 512
ruise_300	bandwidth		bandwidth: 8	paths: 528 bandwidth: 10	paths: 176 bandwidth:		paths: 532 bandwidth: 10	paths: 513 bandwidth: 10
#(s,a);	k=1: 0		k=1: 0	k=1: 0	k=1: 0	ь	k=1: 0	k=1: 0
1502760	k=2: 1 k=3: 15		k=2: 0 k=3: 5	k=2: 2	k=2: 0		k=2: 2	k=2: 1
500920	k=4: 43		k=4: 19	k=3: 9	k=3: 3		k=3:18	k=3: 31
	time:		time:	k=4: 10 time: 00:01:22,363	k=4: 9 time: 00:01:37		k=4: 3 ne: 00:01:29.741	k=4: 4 time: 00:01:51.48i
	00:01:26.3 DOT / C		00:01:39.643 DOT / C	DOT / C	DOT / C		DOT/C	DOT / C
pol	ly-		poly- ink_permissive_r	polyPrio1-	polyPrio1- lowrank_default-	poly	Prio1- lefault_roun	polyPrio1- lowrank_default_rou
lowrank_pe ou	nd	ou	nd-minEntropy	lowrank_default	minEntropy	d d	ing	ding-minEntropy
nodes	s: 835		nodes: 635	nodes: 13 inner nodes: 6	nodes: 13 inner nodes: 6		es: 77	nodes: 13
inner no	des: 417	in	ner nodes: 317	paths: 7	paths: 7	inner n	odes: 38	inner nodes: 6
paths	: 418		paths: 318 bandwidth: 9	bandwidth: 3	bandwidth: 3	pati	ns: 39 width: 6	paths: 7
bandw k=1			bandwidth: 9 k=1: 0	k=1: 0	k=1: 0	band	vidth: 6 :1: 0	bandwidth: 3 k=1: 0
k=1			k=1: 0 k=2: 1	k=2: 0	k=2: 0		:2:1	k=1: 0 k=2: 0
k=3	3: 6		k=3: 10	k=3: 0 k=4: 3	k=3: 0 k=4: 3	k=	3: 2	k=3: 0
k=4			k=4: 4	k=4: 3 time:	k=4: 3 time:		4: 4	k=4: 3
time: 00:0		tim	e: 00:01:04.884	ume: 00:00:30.657	oo:oo:32.305		:00:36.291	time: 00:00:32.099
DOT	r/c		DOT/C	DOT / C	DOT/C	DO	т/с	DOT/C
nodes			nodes: 1041	nodes: 507 inner nodes: 253	nodes: 567 inner nodes: 283		s: 653	nodes: 599
inner noc		in	ner nodes: 520	paths: 254	paths: 284		odes: 326	inner nodes: 299
paths			paths: 521	bandwidth: 8	bandwidth: 9		s: 327	paths: 300
bandwi k=1		t	oandwidth: 10 k=1: 0	k=1: 0	k=1: 0		width: 9 :1: 0	bandwidth: 9 k=1: 0
k=2			k=1: 0 k=2: 1	k=2: 6	k=2: 9		2: 3	k=2: 6
k=3			k=3: 23	k=3: 35	k=3: 34		3: 30	k=3: 16
k=4	1: 0		k=4: 4	k=4: 30 time:	k=4: 31 time:	k=	4: 15	k=4: 24
time: 00:0		tim	e: 00:01:48.095	time: 00:01:24.152	time: 00:01:38.438		:01:23.997	time: 00:01:39.409
DOT	r/c		DOT/C	DOT / C	DOT / C	DO	T/C	DOT/C
			polyl	Prio1-	polyPri	o1-		polyPrio1-
	lyPrio1-				lowrank_perr			nk_permissive
lowrank	_permis	sive		ntropy	ound			d-minEntropy
			node	s: 697	nodes:	//		nodes: 13
	des: 591							
	des: 591 nodes: 29	95	inner no	des: 348	inner node	s: 38	in	ner nodes: 6
inner		95		des: 348 s: 349	inner node paths:		in	ner nodes: 6 paths: 7
inner pa	nodes: 29 ths: 296		paths		paths:	39		paths: 7
inner pa ban	nodes: 29 ths: 296 dwidth: 9		paths bandy	s: 349 vidth: 9	paths: : bandwidt	39 :h: 6		paths: 7 pandwidth: 3
inner pa ban	nodes: 29 ths: 296 dwidth: 9 k=1: 0		paths bandw k=	s: 349 vidth: 9 1: 0	paths: 3 bandwidt k=1: 0	39 :h: 6)		paths: 7 pandwidth: 3 k=1: 0
inner pa ban	nodes: 29 ths: 296 dwidth: 9 k=1: 0 c=2: 11		paths bandw k= k=2	s: 349 vidth: 9 1: 0 2: 12	paths: 3 bandwidt k=1: 0 k=2: 1	39 :h: 6)		paths: 7 pandwidth: 3 k=1: 0 k=2: 0
inner pa ban	nodes: 29 ths: 296 dwidth: 9 k=1: 0		paths bandw k= k=2	s: 349 vidth: 9 1: 0	paths: 3 bandwidt k=1: 0	39 :h: 6)		paths: 7 pandwidth: 3 k=1: 0
inner pa ban	nodes: 29 ths: 296 dwidth: 9 k=1: 0 k=2: 11 (=3: 42		paths bandw k= k=2 k=3	s: 349 vidth: 9 1: 0 2: 12 s: 39	paths: 3 bandwidt k=1: (k=2: 1 k=3: 1	39 :h: 6) I		paths: 7 pandwidth: 3 k=1: 0 k=2: 0 k=3: 0
inner pa ban I k	nodes: 29 ths: 296 dwidth: 9 k=1: 0 <=2: 11 :=3: 42 k=4: 6		paths bandw k=2 k=3 k=6	s: 349 vidth: 9 1: 0 2: 12 3: 39 4: 6	paths: 3 bandwidt k=1: (k=2: 1 k=3: 2 k=4: 4	39 h: 6) I 2	b	paths: 7 pandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3
inner pa ban k k time: 0	nodes: 29 ths: 296 dwidth: 9 k=1: 0 k=2: 11 t=3: 42 k=4: 6		paths bandw k=2 k=3 k=4 time: 00:	s: 349 vidth: 9 1: 0 2: 12 5: 39 4: 6 01:19.894	paths: : bandwidt k=1: (k=2: k=3: ; k=4: 4 time: 00:00:	39 h: 6) I 2 1 40.397	b	paths: 7 pandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 e: 00:00:30.737
inner pa ban k k time: 0	nodes: 29 ths: 296 dwidth: 9 k=1: 0 <=2: 11 :=3: 42 k=4: 6		paths bandw k=2 k=3 k=4 time: 00:	s: 349 vidth: 9 1: 0 2: 12 3: 39 4: 6	paths: 3 bandwidt k=1: (k=2: 1 k=3: 2 k=4: 4	39 h: 6) I 2 1 40.397	b	paths: 7 pandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3
inner pa ban k k time: 0	nodes: 29 ths: 296 dwidth: 9 k=1: 0 <=2: 11 :=3: 42 k=4: 6 0:00:57.9		paths bandw k= k=2 k=3 k= time: 00:	s: 349 vidth: 9 1: 0 2: 12 3: 39 4: 6 01:19.894	paths: bandwidt k=1: (k=2: k=3: ½ k=4: 4 time: 00:00:	39 th: 6 0 1 2 1 40.397	time	paths: 7 pandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 p: 00:00:30.737 DOT / C
inner pa ban k k I time: 0	nodes: 25 ths: 296 dwidth: 9 k=1: 0 c=2: 11 c=3: 42 k=4: 6 0:00:57.9 OOT / C	140	paths bandw k= k=2 k=3 k=: time: 00:	s: 349 vidth: 9 1: 0 2: 12 5: 39 4: 6 01:19.894 T/C	paths: : bandwidt	39 hh: 6 0 1 2 1 40.397 C	time	paths: 7 pandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 pot: 00:00:30.737 pot / C
inner pa ban k k I time: 0	nodes: 29 ths: 296 dwidth: 9 k=1: 0 <=2: 11 :=3: 42 k=4: 6 0:00:57.9	140	paths bandw k= k=2 k=3 k=: time: 00:	s: 349 vidth: 9 1: 0 2: 12 3: 39 4: 6 01:19.894	paths: bandwidt k=1: (k=2: k=3: ½ k=4: 4 time: 00:00:	39 hh: 6 0 1 2 1 40.397 C	time	paths: 7 pandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 p: 00:00:30.737 DOT / C
inner pa ban k k time: 0 c	nodes: 25 ths: 296 dwidth: 9 k=1: 0 c=2: 11 c=3: 42 k=4: 6 0:00:57.9 OOT / C	140	paths bandw k= k=2 k=0 time: 00: D0'	s: 349 vidth: 9 1: 0 2: 12 5: 39 4: 6 01:19.894 T/C	paths: : bandwidt	39 hh: 6 0 1 2 1 440.397 C	time	paths: 7 pandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 pot: 00:00:30.737 pot / C
inner pa ban ban k k l time: 0 C	nodes: 25 ths: 296 dwidth: 9 k=1: 0 k=2: 11 i=3: 42 k=4: 6 i0:00:57.9 OOT / C des: 1063 nodes: 53 ths: 532	1 40 31	paths bandw k= k=2 k=3 k=: time: 00: nodes inner no	s: 349 vidth: 9 1: 0 2: 12 2: 39 4: 6 01:19.894 T/C s: 1159 des: 579 s: 580	paths: sbandwidt k=1: (k=2: k=3: k=3: k=4: k=0:00) DOT / nodes: 6 inner node paths: 3	39 h: 6 0 1 2 1 440.397 C	time	paths: 7 andwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 coverage of the second of the s
inner pa ban k l time: 0 c	nodes: 25 ths: 296 dwidth: 9 k=1: 0 (=2: 11 (=3: 42 k=4: 6 0):00:57.9 OOT / C des: 1063 nodes: 53 ths: 532 dwidth: 10	1 40 31	paths bandw k= k=2 k=3 k=: time: 00: DO' nodes inner no paths bandw	s: 349 yidth: 9 1: 0 2: 12 2: 39 4: 6 01:19.894 T/C s: 1159 des: 579 s: 580 idth: 10	paths: bandwidt k=1: (k=2: k=3: ; k=4: 4 time: 00:00: DOT / nodes: 6 inner node paths: 3 bandwidt	39 hh: 6 0 1 2 1 4 40.397 C	time	paths: 7 andwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 e: 00:00:30.737 DOT / C modes: 599 paths: 300 pandwidth: 9
inner pa ban k k time: 0 noc inner pa banc	nodes: 25 ths: 296 dwidth: 9 k=1: 0 (=2: 11 (=3: 42 k=4: 6 0: 00:57.9) des: 1063 nodes: 5: ths: 532 dwidth: 10 k=1: 0	1 40 31	paths bandw k= k=2 k=000 DO' nodes inner no paths bandw k=	s: 349 vidth: 9 1: 0 2: 12 3: 39 4: 6 07:19.894 T/C s: 1159 des: 579 s: 580 idth: 10 1: 0	paths: bandwidt k=1: (k=2: k=3: k=4: 4 time: 00:00: DOT / nodes: 6 inner node paths: 3 bandwidt k=1: (39 hh: 6 0 1 2 1 4 40.397 C	time	paths: 7 andwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 cool: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:
inner pa ban k k time: 0 noc inner pa banc	nodes: 25 ths: 296 dwidth: 9 k=1: 0 (=2: 11 (=3: 42 k=4: 6 0):00:57.9 OOT / C des: 1063 nodes: 53 ths: 532 dwidth: 10	1 40 31	paths bandw k= k=2 k=000 DO' nodes inner no paths bandw k=	s: 349 yidth: 9 1: 0 2: 12 2: 39 4: 6 01:19.894 T/C s: 1159 des: 579 s: 580 idth: 10	paths: bandwidt k=1: (k=2: k=3: ; k=4: 4 time: 00:00: DOT / nodes: 6 inner node paths: 3 bandwidt	39 hh: 6 0 1 2 1 4 40.397 C	time	paths: 7 andwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 e: 00:00:30.737 DOT / C modes: 599 paths: 300 pandwidth: 9
inner pa ban k k time: 0 noc inner pa banc k	nodes: 25 ths: 296 dwidth: 9 k=1: 0 (=2: 11 (=3: 42 k=4: 6 0: 00:57.9) des: 1063 nodes: 5: ths: 532 dwidth: 10 k=1: 0	1 40 31	paths bandw k= k=2 k=2 k=1 time: 00: DO' nodes inner no paths bandw k= k=2	s: 349 vidth: 9 1: 0 2: 12 3: 39 4: 6 07:19.894 T/C s: 1159 des: 579 s: 580 idth: 10 1: 0	paths: bandwidt k=1: (k=2: k=3: k=4: 4 time: 00:00: DOT / nodes: 6 inner node paths: 3 bandwidt k=1: (39 hh: 6) 1 2 4 40.397 C 353 s:: 326 227 hh: 9	time	paths: 7 andwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 cool: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:
inner pa ban k k time: 0 c noc inner pa banc k k k	nodes: 25 ths: 296 dwidth: 9 k=1: 0 (=2: 11 (=3: 42 OOT / C des: 1063 nodes: 5: ths: 532 dwidth: 10 k=1: 0 (=2: 25 (=3: 69	1 40 31	paths bandw k= k=2 k=3 k= time: 00: nodes inner no paths bandw k= k=2 k=2 k=2	s: 349 idith: 9 1: 0 2: 12 3: 39 4: 6 01:19.894 T / C 5: 1159 des: 579 5: 580 idith: 10 1: 0 2: 23 3: 76	paths: bandwidt k=1: c k=2: k=3: j k=4: 4 time: 00:00: DOT / nodes: 6 inner node paths: 3 bandwidt k=1: c k=2: 3 k=3: 3	39 hh: 6) 1 2 4 40.397 C	time	paths: 7 andwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 coo:00:30.737 DOT / C nodes: 599 er nodes: 299 paths: 300 andwidth: 9 k=1: 0 k=2: 6 k=3: 16
inner pa ban k k time: 0 c noc inner pa banc k k k	nodes: 25 ths: 296 dwidth: 9 k=1: 0 (=2: 11 (=3: 42 k=4: 6 (0:00:57.9)) OT / C des: 1063 nodes: 53 ths: 532 dwidth: 10 k=1: 0 (=2: 25 (=3: 69 k=4: 6))	331	paths bandv k= k=' k=' time: 00: nodes inner no paths bandw k= k=2 k=6	s: 349 iddth: 9 1: 0 2: 12 3: 39 4: 6 00:119.894 TT/C s: 1159 des: 579 s: 580 iddth: 10 1: 0 2: 23 3: 76 4: 6	paths: bandwidt k=1: (k=2: k=3: k=4: time: 00:00: DOT / nodes: 6 inner node paths: 3 bandwidt k=1: (k=2: k=3: 3 k=4: 1	39 th: 6 0 1 2 1 40.397 C 353 3: 326 127 th: 9 0 3 0 5	time inn b	paths: 7 nandwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 e: 00:00:30.737 DOT / C nodes: 599 er nodes: 299 paths: 300 nandwidth: 9 k=1: 0 k=2: 6 k=3: 16 k=4: 24
inner pa ban time: 0 noc inner pa ban k k l time: 0 time: 0	nodes: 25 ths: 296 dwidth: 9 k=1: 0 (=2: 11 (=3: 42 OOT / C des: 1063 nodes: 5: ths: 532 dwidth: 10 k=1: 0 (=2: 25 (=3: 69	331	paths bandw k= k=2 k=3 k= time: 00: DOI nodes inner no paths bandw k= k=2 k=5 k=5 time: 00:	s: 349 idith: 9 1: 0 2: 12 3: 39 4: 6 01:19.894 T / C 5: 1159 des: 579 5: 580 idith: 10 1: 0 2: 23 3: 76	paths: bandwidt k=1: c k=2: k=3: j k=4: 4 time: 00:00: DOT / nodes: 6 inner node paths: 3 bandwidt k=1: c k=2: 3 k=3: 3	39 th: 6 0 1 2 1 40.397 C 353 s: 326 127 th: 9 0 3 0 5 2 2 2 2 2 3 3 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	time inn b	paths: 7 andwidth: 3 k=1: 0 k=2: 0 k=3: 0 k=4: 3 coo:00:30.737 DOT / C nodes: 599 er nodes: 299 paths: 300 andwidth: 9 k=1: 0 k=2: 6 k=3: 16

Figure 3: Results from running the various splitting strategies on both cruise datasets

Figure 4: Sample generated tree to showcase the polynomials represented as a sum of squares

C Results on other datasets enforcing low-rank approximation

	poly- lowrank_defau	poly- lowrank_default minEntropy	poly- lowrank_default_ ding	_roun	poly- lowrank_default_ro ding-minEntropy		poly- lowrank_permissive	poly- lowrank_permissive minEntropy
	nodes: 151	nodes: 145	nodes: 229		nodes: 207		nodes: 151	nodes: 145
	inner nodes: 78		inner nodes: 1	1.4	inner nodes: 103		inner nodes: 75	inner nodes: 72
dede	paths: 76	paths: 73	paths: 115		paths: 104		paths: 76	paths: 73
#	bandwidth: 7 k=1: 0	bandwidth: 7 k=1: 0	bandwidth: 7		bandwidth: 7		bandwidth: 7	bandwidth: 7
s,a):	k=1: 0 k=2: 1	k=1: 0 k=2: 1	k=1: 0		k=1: 0		k=1: 0	k=1: 0
186178	k=3: 26	k=3: 22	k=2:1		k=2:1		k=2:1	k=2:1
#doc:	k=4: 0	k=4: 0	k=3: 10		k=3:12		k=3: 26	k=3: 22
93089	time:	time:	k=4: 0 time: 00:02:12.3		k=4: 0 time: 00:03:05.45i		k=4: 0 time: 00:02:07.153	k=4: 0 time: 00:03:05.091
	00:03:08.175 DOT / C	00:03:14.737 BOT / C	DOT / C	104	DOT / C		DOT/C	DOT/C
	poly-	polyPrio1-	polyPrio1-		polyPrio1-		polyPrio1-	polyPrio1-
	_permissive_r minEntropy	lowrank_default	lowrank_default- minEntropy	lowr	rank_default_roun ding		vrank_default_roun ding-minEntropy	lowrank_permissiv
no	des: 207	nodes: 173	nodes: 185		nodes: 265		nodes: 229	nodes: 173
	nodes: 103	inner nodes: 86	inner nodes: 92	i,	nner nodes: 132		inner nodes: 114	inner nodes: 86
	ths: 104	paths: 87	paths: 93	"	paths: 133		paths: 115	paths: 87
	idwidth: 7	bandwidth: 7	bandwidth: 7		bandwidth: 8		bandwidth: 7	bandwidth: 7
- 1	k=1: 0	k=1: 0	k=1: 0		k=1: 0		k=1: 0	k=1: 0
- 1	k=2:1	k=2: 5 k=3: 33	k=2: 5 k=3: 26		k=2: 5		k=2: 5	k=2: 5
k	c=3: 12	k=4: 0	k=3: 26 k=4: 0		k=3: 18		k=3: 19	k=3: 33
	k=4·0							
			time		k=4: 0		k=4: 0	k=4: 0
time: 0	00:03:01.988 OOT / C	time: 00:02:26.912 DOT / C	time: 00:04:10.903 DOT / C	tir	k=4: 0 me: 00:02:16.511 DOT / C	t	k=4: 0 time: 00:03:16.615 DOT / C	time: 00:02:31,985 DOT / C
time: 0	DOT/C	00:02:26.912 DOT / C	00:04:10.903 DOT/C		me: 00:02:16.511 DOT / C	t	time: 00:03:16.615 DOT / C	time: 00:02:31.985 DOT / C
time: 0	polyPr	00:02:26.912 DOT / C	00:04:10,903 DOT/C	yPr	me: 00:02:16.511		time: 00:03:16.615	time: 00:02:31.985 DOT/C
time: 0	polyPr	00:02:26.912 DOT/C	pol	yPr	rio1- rmissive_r		polyF	prio1-
time: 0	polyPri rank_pei minEnti	io1- rmissive- ropy	pol lowrank_	yPr per oun	rio1- rmissive_r		polyF lowrank_pe ound-min	Prio1- ermissive_r nEntropy
low	polyPrirank_periminEnti	io1- rmissive- ropy	pollowrank_	yPr per oun	rio1- rmissive_r		polyF lowrank_pe ound-min	time: 00:02:31.985 DOT/C Prio1- ermissive_r nEntropy s: 229
low	polyPri rank_per minEnti nodes:	ooo228912 boT/c io1- rmissive- ropy 153 es: 76	pol lowrank_ noc inner	yPr per oun des:	rio1- rmissive_r d		polyF lowrank_pe ound-min	time: 00:02:31.985 DOT/C Prio1- ermissive_r nEntropy s: 229 des: 114
low	polyPrirank_periminEnti	0002:28912 DOT/C io1- rmissive- ropy 153 es: 76 77	pol lowrank_ noc inner i	yPr per oun des: nod	rio1- rmissive_r		polyF lowrank_pe ound-min	time: 00:02:31.985 DOT/C Prio1- ermissive_r nEntropy des: 114 s: 115
lowi	polyPrirank_perminEnti	000228912 DOT/C io1- rmissive- ropy 153 es: 76 77 lth: 7	pollowrank_ noccinner i pat	yPr per oun des: nod	crio1- rmissive_r d 265 es: 132 133 dth: 8		polyF lowrank_pe ound-min	time: 00:02:31.985 Prio1- permissive_r nEntropy s: 229 des: 114 s: 115 vidth: 7
lowi	polyPrrank_perminEntr	000228.912 DOT/C io1- rmissive- ropy 153 es: 76 77 lth: 7 0	pollowrank_ noccinner i pat	yPr per poun des: nod ths:	crio1- rmissive_r d 265 es: 132 133 dth: 8 0		polyF lowrank_pe ound-min nodes inner no paths bandw	time: 00:02:31.985 Prio1- permissive_r nEntropy s: 229 des: 114 s: 115 vidth: 7 l: 0
lowi	polyPri rank_per minEnti nodes: inner nod paths: bandwic k=1:	000228912 bot/c io1- rmissive- ropy 153 es: 76 77 lth: 7	pollowrank_ nocinner pat	dyPr per poun des: nod ths: dwice (=1:	cio1- rmissive_r d 265 es: 132 133 dth: 8 0 5		polyF lowrank_pe ound-min nodes inner no paths bandw k='	time: 00:02:31.985 Prio1- permissive_r nEntropy s: 229 des: 114 s: 115 ridth: 7 1: 0 2: 5
lowi	polyPri rank_per minEnti nodes: inner nod paths: bandwick k=1: k=2: k=3: 2 k=4:	000228.912 bot / c io1- rmissive- ropy 153 es: 76 77 lth: 7 0 7 26	pollowrank_ nocinner park k k	des: nod ths: =3: =3:	rio1- rmissive_r d 265 ess: 132 133 dth: 8 0 5 18		polyF lowrank_pe ound-min nodes inner no paths bandw k=2 k=3 k=4	priol- permissive_r nEntropy s: 229 des: 114 s: 115 vidth: 7 1: 0 2: 5 s: 19 4: 0
low	polyPrrank_perminEntral nodes: inner nod paths: bandwic k=1: k=2: k=3: 2	000228.912 bot / c io1- rmissive- ropy 153 es: 76 77 lth: 7 0 7 26 0	pollowrank_ noc inner i par bann k k time: 0	des: nod ths: =3: =3:	rio1- rimissive_r d 265 ess: 132 133 dth: 8 0 5 18 0 2:13.633		polyF lowrank_pe ound-min nodes inner no paths bandw k=' k=2	prio1- permissive_r nEntropy s: 229 des: 114 s: 115 ridth: 7 l: 0 2: 5 l: 19 4: 0 03:08.184

Figure 5: Results from running the various splitting strategies on dcdc dataset

Figure 6: Results from running the various splitting strategies on cartpole

References

- [1] Sheldon Axler. Linear algebra done right. 3rd ed. Springer, 2015.
- [2] Jan Křetínský Florian Jüngermann and Maximilian Weininger. Algebraically Explainable Controllers: Decision Trees and Support Vector Machines Join Forces. URL: https://arxiv.org/pdf/2208.12804.pdf.
- [3] Gilbert Strang. Introduction to Linear Algebra. 5th ed. 2016.
- [4] The Repository containing the code used for our project. https://github.com/alan-picucci/CSProject/tree/main/florianjuengermann-dtcontrol-thesis-files-1d747f7.