1-48. (Canceled)

49. (Currently Amended) A method for treating or preventing a disease characterized by beta-amyloid deposits in the brain comprising administering to a patient an effective therapeutic amount of a hydroxyethylene compound of the formula

$$R_N$$
 N
 H
 OH
 R_2
 R_c
 (XII)

where R₁ is:

- (I) C_1 - C_6 alkyl, unsubstituted or substituted with one, two or three C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -NH₂, -C=N, -CF₃, or -N₃,
- (II) $-(CH_2)_{1-2}-S-CH_3$,
- (III) $-CH_2-CH_2-S-CH_3$,
- (IV) $-CH_2-(C_2-C_6 \ alkenyl)$ unsubstituted or substituted by one -F,
 - (V) $-(CH_2)_{0-3}-(R_{1-ary1})$ where R_{1-ary1} is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:
 - (A) C_1-C_3 alkyl,
 - (B) -CF₃,
 - (C) -F, Cl, -Br and -I,

- (D) C_1-C_3 alkoxy,
- $(E) -O-CF_3,$
- $(F) NH_2$
- (G) -OH, or
- (H) $-C \equiv N$,
- (VI) $-(CH_2)_{n1}-(R_{1-heteroary1})$ where n_1 is 0, 1, 2, or 3 and

R_{1-heteroaryl} is:

- (A) pyridinyl,
- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,

- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (00) β -carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{1-heteroary1}$ group is bonded to $-(CH_2)_{0-3}$ — by any ring atom of the parent $R_{N-heteroary1}$ group substituted by hydrogen such that the new bond to the $R_{1-heteroary1}$ group replaces the hydrogen atom

and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1-C_3 alkyl,
- $(2) CF_3,$
- (3) -F, Cl, -Br, or -I,
- (4) C_1-C_3 alkoxy,
- $(5) O CF_3$
- (6) -NH₂,
- (7) -OH, or
- (8) $-C \equiv N$,

with the proviso that when n_1 is zero $R_{1-heteroaryl}$ is not bonded to the carbon chain by nitrogen, or

(VII) -(CH2) $_{n1}$ -(R1-heterocycle) where n1 is as defined above and

R₁-heterocycle is:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S, S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroary1}}$ group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or

two:

- (1) = 0,
- (2) C_1-C_3 alkyl,
- $(3) CF_3,$
- (4) -F, Cl, -Br and -I,
- (5) C_1-C_3 alkoxy,
- (6) $-0-CF_3$,
- (7) -NH₂,
- (8) -OH, or
- (9) -C≡N,

with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen;

where R2 is:

- (I) -H,
- (II) C_1-C_6 alkyl, or
- (III) $-(CH_2)_{0-4}-R_{2-1}$ where R_{2-1} is (C_3-C_6) cycloalkyl, R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above,

where R_N is:

- (I) $R_{N-1}-X_N$ where X_N is:
 - (A) -CO-,
 - $(B) -SO_2-,$
 - (C) $-(CR'R'')_{1-6}$ where R' and R" are the same or different and are -H or C_1-C_4 alkyl,
 - (D) -CO-(CR'R") $_{1-6}$ -X $_{N-1}$ where X $_{N-1}$ is -O-, -S- and -NR'R"- and where R' and R" are as defined above,
 - (E) a single bond;

where R_{N-1} is:

(A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with

McDonnell Boehnen Hulbert & Berghoff LLP 300 S. Wacker Drive Chicago, IL 60606 (312) 913-0001 one, two, three or four of the following substituents which can be the same or different and are:

- (1) C_1-C_6 alkyl,
- (2) $-F_{1}$ $-Cl_{1}$ $-Br_{1}$ or $-I_{1}$
- (3) -OH
- $(4) NO_2,$
- (5) -CO-OH,
- (6) -C≡N,
- (7) $-\text{CO-NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) $-C_1-C_6$ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,
 - (c) $-C_1-C_6$ alkyl unsubstituted or substituted with one to three -F, $-C_1$, $-B_7$, or -I,
 - (d) -C3-C7 cycloalkyl,
 - (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
 - (f) $-(C_1-C_6 \text{ alkyl}) 0 (C_1-C_3 \text{ alkyl})$,
 - (g) $-C_1-C_6$ alkenyl with one or two

double bonds,

(h) $-C_1-C_6$ alkynyl with one or two

triple bonds,

- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined

above, or

(k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as

defined above,

- (8) $-CO-(C_3-C_{12} \text{ alkyl})$,
- (9) $-CO-(C_3-C_6 \text{ cycloalkyl})$,
- (10) $-CO-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as

defined above,

(11) $-\text{CO-R}_{1-\text{heterocycle}}$ where $R_{1-\text{heterocycle}}$ is as

defined above,

- (12) -CO- R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1 - C_3 alkyl,
- (13) $-CO-O-R_{N-5}$ where R_{N-5} is:
 - (a) C_1 - C_6 alkyl, or
 - (b) $-(CH_2)_{0-2}-(R_{1-ary1})$ where R_{1-ary1} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) $-SO-(C_1-C_8 \text{ alkyl})$,
- $(16) -SO_{2-}(C_3-C_{12} \text{ alkyl}),$
- (17) -NH-CO-O-R $_{N-5}$ where R_{N-5} is as defined

above,

- (18) $-NH-CO-N(C_1-C_3 \text{ alkyl})_2$,
- (19) $-N-CS-N(C_1-C_3 \text{ alkyl})_2$,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above.

- (23) $-O-CO-(C_1-C_6 \text{ alkyl})$,
- $(24) -O-CO-N(C_1-C_3 \text{ alkyl})_2$,
- (25) $-0-CS-N(C_1-C_3 \text{ alkyl})_2$,
- (26) $-0-(C_1-C_6 \text{ alkyl})$,
- (27) $-O-(C_2-C_5 \text{ alkyl})-COOH$,
- (28) $-S-(C_1-C_6 \text{ alkyl})$,
- (29) C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F,
- (30) $-O-(C_1-C_6 \text{ alkyl unsubstituted or}$ substituted with 1, 2, 3, 4, or 5 -F, or
- $(31) -0-\phi$,
- (B) -R_{N-heteroaryl} where R_{N-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) imidazolyl,
 - (Q) isoxazolyl,
 - (R) pyrazolyl,
 - (S) oxazolyl,

- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (00) β -carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or

(YY) pyridopyridinyl,

where the $R_{N-heteroaryl}$ group is bonded by any atom of the parent $R_{N-heteroaryl}$ group substituted by hydrogen such that the new bond to the $R_{N-heteroaryl}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1-C_6 alkyl,
- (2) -F, -Cl, -Br, or -I,
- (3) OH,
- (4) -NO₂,
- (5) -CO-OH,
- (6) -C≡N,
- (7) $-\text{CO-NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) $-C_1-C_6$ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,
 - (c) -C₁-C₆ alkyl unsubstituted or substituted with 1, 2, or 3 -F, -Cl, -Br, or -I,
 - (d) -C₃-C₁ cycloalkyl,
 - $(e (C_1-C_2 \text{ alkyl}) (C_3-C_7)$

cycloalkyl),

- (f) $-(C_1-C_6 \text{ alkyl}) O (C_1-C_3 \text{ alkyl})$,
- (g) $-C_1-C_6$ alkenyl with one or two double bonds,
- (h) $-C_1-C_6$ alkynyl with one or two triple bonds,

- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) $-CO-(C_3-C_{12} \text{ alkyl})$,
- (9) $-CO-(C_3-C_6 \text{ cycloalkyl})$,
- (10) $-CO-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (11) $-CO-R_{1-heterocycle}$ where $R_{1-heterocycle}$ is as defined above,
- (12) $-CO-R_{N-4}$ where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1-C_3 alkyl,
- (13) $-CO-O-R_{N-5}$ where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or .
 - (b) $-(CH_2)_{0-2}-(R_{1-ary1})$ where R_{1-ary1} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) $-SO-(C_1-C_8 \text{ alkyl})$,
- (16) $-SO_{2-}(C_3-C_{12} \text{ alkyl})$,
- (17) $-NH-CO-O-R_{N-5}$ where R_{N-5} is as defined above,
- (18) $-NH-CO-N(C_1-C_3 \text{ alkyl})_2$,
- (19) $-N-CS-N(C_1-C_3 \text{ alkyl})_2$,

- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5} \text{ where } R_{N-5} \text{ is}$ as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined

above,

- (23) $-0-C0-(C_1-C_6 \text{ alkyl})$,
- $(24) -O-CO-N(C_1-C_3 \text{ alkyl})_2$,
- (25) $-O-CS-N(C_1-C_3 \text{ alkyl})_2$,
- $(26) -O-(C_1-C_6 \text{ alkyl}),$
- (27) -O- $(C_2-C_5 \text{ alkyl})$ -COOH, or
- (28) $-S-(C_1-C_6 \text{ alkyl})$,
- (C) $-R_{N-aryl}-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- $\label{eq:reconstruction} (F) \ -R_{N-heteroaryl} R_{N-heteroaryl} R_{N-heteroaryl} \ \text{is as}$ defined above,
- (G) $-R_{N-aryl}-O-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (H) $-R_{N-aryl}-S-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (I) $-R_{N-heteroaryl} O R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- $\mbox{(J) $-R_{N-heteroaryl}$-S-$R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,}$
- (K) $-R_{N-aryl}-CO-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,

- (L) $-R_{N-aryl}-CO-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above,
- (M) $-R_{N-aryl}-SO_2-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined

above,

- (N) $-R_{N-heteroaryl}-CO-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (O) $-R_{N-heteroaryl}-SO_2-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (P) $-R_{N-aryl}$ -O-(C₁-C₈ alkyl)- φ where R_{N-aryl} is as

defined above,

(Q) $-R_{N-aryl}-S-(C_1-C_{\theta} \ alkyl)-\varphi$ where R_{N-aryl} is as

defined above,

- (R) $-R_{N-heteroaryl}-O-(C_1-C_8 \text{ alkyl})-\phi$ where $R_{N-heteroaryl}$ is as defined above, or
- (S) $-R_{N-heteroaryl}-S-(C_1-C_8 \text{ alkyl})-\phi$ where $R_{N-heteroaryl}$ is as defined above,
- (II) A- X_N where X_N is -CO-,

wherein A is

(A)
$$-T-E-(Q)_{m'}$$
,
(1) where $-T$ is

where

- (a) x = 1 when y = 1 and x = 2 when y = 0,
 - (b) m is 0, 1, 2 or 3,

- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each
 carbon and is H, (C₁-C₂) alkyl,
 phenyl, or phenyl(C₁-C₃)alkyl;

(2) -E is

(a) C_1 - C_5 alkyl, but only if m' does not

equal 0,

- (b) methylthioxy(C2-C4)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,
- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) phenyl (C_1-C_8) alkyloxyphenyl, or
- (j) C_1-C_6 alkoxy;

(3) -Q is

- (a) C_1-C_3 alkyl,
- (b) C_1-C_3 alkoxy,
- (c) C_1-C_3 alkylthioxy,
- (d) C₁-C₆ alkylacylamino,
- (e) C₁-C₆ alkylacyloxy,

- (f) amido (including primary, C_1 - C_6 alkyl and phenyl secondary and tertiary amino moieties),
- (g) C₁-C₆ alkylamino
- (h) phenylamino,
- (i) carbamyl (including C_1 - C_6 alkyl and phenyl amides and esters),
- (j) carboxyl (including C_1-C_6 alkyl and phenyl esters),
- (k) carboxy(C_2-C_5) alkoxy,
- (1) carboxy(C₂-C5)alkylthioxy,
- (m) heterocyclylacyl,
- (n) heteroarylacyl, or
- (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;
- (B) $-E(Q)_{m'}$ wherein E and -Q are as defined as above and m" is 0, 1, 2, or 3;
- (C) -T-E wherein -E and -Q are as defined as above; or
 - (D) -E wherein -E is as defined as above;
- (III) $-CO-(C_1-C_6 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two:
 - (A) OH
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) $-CO-R_{N-4}$ where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,

- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) $-NH-CO-(C_1-C_6 \text{ alkyl})$,
- (J) $-NH-CO-O-R_{N-8}$ where R_{N-8} is as defined above,
- (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) $-O-CO-(C_1-C_6 \text{ alkyl})$,
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} is the same or different and are as defined above, or
- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (IV) $-CO-(C_1-C_3 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two
 - (A) OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) $-CO-R_{N-4}$ where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) $-NH-CO-(C_1-C_6 \text{ alkyl})$,
 - (J) $-NH-CO-O-R_{N-8}$ where R_{N-8} is as defined above,
 - (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1-C_6 \text{ alkyl})$,
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or

- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH_1$
- (V) $-CO-(C_1-C_3 \text{ alkyl})-S-(C_1-C_3 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two
 - (A) OH
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) $-CO-R_{N-4}$ where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) $-NH-CO-(C_1-C_6 \text{ alkyl})$,
 - (J) $-NH-CO-O-R_{N-8}$ where R_{N-8} is as defined above,
 - (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - $(M) -O-CO-(C_1-C_6 \text{ alkyl}),$
 - (N) $-O-CO-NR_{N-8}R_{N-8}$ where the R_{N-8} are the same or different and are as defined above, or
 - (0) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (VI) -CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is:
 - (A) -H
 - (B) C_1-C_6 alkyl,
 - (C) C_3-C_7 cycloalkyl,
 - (D) C_2-C_6 alkenyl with one double bond,
 - (E) C2-C6 alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, or

(G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above; where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-; where Rc is: (I) $-(C_1-C_{10})$ alkyl- K_{1-3} in which: (A) the alkyl chain is unsubstituted or substituted with one -OH, (B) the alkyl chain is unsubstituted or substituted with one C1-C6-alkoxy unsubstituted or substituted with 1-5 -F, (C) the alkyl chain is unsubstituted or substituted with one -0-+, (D) the alkyl chain is unsubstituted or substituted with 1-5 -F, (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon, (F) each K is: $(1) H_{2}$ (2) C₁-C₃ alkyl, (3) C₁-C₃ alkoxy, (4) C₁-C₃-alkylthioxy, (5)-G₁-G₆-alkylacylamino, -(6)-C₁-C₆-alkylacyloxy, (7) amido (8) C₁-C₆ alkylamino (9) phenylamino, (10) carbamyl (11) carboxyl

```
(12) carboxy(C2-C5)alkoxy,
                                (13) -carboxy(C2-C5) alkylthioxy,
                                (14)-heterocyclylacyl,
                                (15) heteroarylacyl,
                                (16) amino unsubstituted or substituted
                                with C1-C6 alkyl,
                                (17) hydroxyl, or
                                (18) carboxyl methyl ester;
             (II) - (CH<sub>2</sub>)<sub>0-3</sub> - J - [ (-(CH<sub>2</sub>)<sub>0-3</sub> - K)<sub>1-3</sub> - where K is as defined
             above and J is:
                  _(A) a 5 to 7 atom monocyclic aryl group,
                   (B) a 8 to 12 atom multicyclic aryl group,
                   (C) a 5 to 7 atom heterocyclic group,
                   (D) a 8 to 12 atom multicyclic heterocyclic
group, or
                   (E) a 5 to 10 atom monocyclic or multicyclic
                   cycloalkyl group;
             \frac{(\text{III})}{(\text{CH}_2)_{0-3}} (C<sub>3</sub>-C<sub>7</sub>) cycloalkyl where cycloalkyl can
                 be unsubstituted or substituted with one, two or
                 three
                   (A) C<sub>1</sub>-C<sub>3</sub> alkyl unsubstituted or substituted with
1, 2, 3, or 4 -F,
                          -Cl, -Br, or -I,
                   (B) -CO-OH,
                   (C) -CO-O-(C_1-C_4 \text{ alkyl}),
                   (D) -OH, or
                   (E) C_1-C_6 alkoxy,
             (IV) - (CH2)2 6-OH,
             (V) -- (CR<sub>C-x</sub>R<sub>C-y</sub>)<sub>0-4</sub>-R<sub>C-axyl</sub> where R<sub>C-x</sub> and R<sub>C-y</sub> are -H, C<sub>1</sub>-C<sub>4</sub>
                 alkyl and & and Roaryl is the same as Rwaryly
```

(A) pyridinyl,
(B) pyrimidinyl,
——————————————————————————————————————
——————————————————————————————————————
(E) indanyl,
(F) benzothiophenyl,
(G) indolylr
——————————————————————————————————————
(I) pyridazinyl,
(J) pyrazinyl,
(K) isoindolyl,
(L) isoquinolyl,
(M) quinazolinyl,
(N) quinoxalinyl,
——————————————————————————————————————
(P) isoxazolyl,
——————————————————————————————————————
(R) indolizinyl,
(S) indazolyl,
(T) benzothiazolyl,
(U) benzimidazolyl,
(V) benzofuranyl,
——————————————————————————————————————
(X) thienyl,
(Y)—pyrrolyl,
(3) exadiazolyl,
(AA) thiadiazolyl,
(BB) triazolyl,
(CC) tetrazolyl,
——————————————————————————————————————

23

- 50. (Original) The method of claim 49, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 0.1nM to about 200 μ M.
- 51. (Original) The method of claim 50, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 10nM to about 100 μ M.

- 52. (Original) The method of claim 51, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 100nM to about $50\mu M$.
- 53. (Original) The method of claim 52, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about $1\mu\text{M}$ to about $10\mu\text{M}$.
- 54. (Currently Amended) The method of claim 49, wherein said thereapeutic therapeutic amount is in the range of from about 0.1 to about 1000 mg/day.
- 55. (Currently Amended) The method of claim 49, wherein said thereapeutic therapeutic amount is in the range of from about 15 to about 1500 mg/day.
- 56. (Currently Amended) The method of claim 55, wherein said thereapeutic therapeutic amount is in the range of from about 1 to about 100 mg/day.
- 57. (Currently Amended) The method of claim 56, wherein said thereapeutic therapeutic amount is in the range of from about 5 to about 50 mg/day.
- 58. (Original) The method of claim 49, wherein said disease is Alzheimer's disease.
- 59. (Currently Amended) The method of claim 49, wherein said disease is Mild Cognitive Impairment, Down's Syndrome, or Hereditary Cerebral Hemmorrhage Hemorrhage with Amyloidosis of the Dutch Type.

```
93
60-98. (Canceled)
```

99. (New) A method according to claim 49, wherein the compound is

N-[(1S, 2S, 4R)-1-(3,5-Difluorobenzyl)-4-(syn, syn)-(3,5)]dimethoxycyclohexylcarbamoyl)-2-hydroxyhexyl]-N,Ndipropylisophathalamide;

N-[4-(R)-(Cyclohexylmethyl-carbamoyl)-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-hexyl]-N,N-dipropyl-isophthalamide;

4-([6-(3,5-Difluoro-pheny1)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid methyl ester;

4-(anti)-([6-(3,5-Difluoro-phenyl)-5+(S)-(3-dipropylcarbamoyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxy-2-(R)-methyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

 $4-(anti)-(\{6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxy-2-(R)-propyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;$

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxyl-2-(R)-isobutyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(anti)-([2-(R)-Benzyl-6-(3,5-difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxy-hexanoylamino)-methyl)-cyclohexanecarboxylic acid;

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid methyl ester;

 $4-(anti)-\{[6-(3,5-Difluorophenyl)-5-(S)-(3-dipropylcarbamoylbenzoylamino)-2-(R)-ethyl-4-(S)-hydroxyhexanoylamino]-methyl\}cyclohexanecarboxylic acid;$

N- $\{(1s, 2s, 4R)-1-(3, 5-Diffluorobenzyl)-4-(syn, syn)-(3, 5-dimethoxycyclohexylcarbamoyl)-2-hydroxyhexyl]-N,N-dipropylisophathalamide; or$

N-[4-(R)-(Adamantan-2-ylcarbamoyl)-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-pentyl]-5-methyl-N,N-dipropyl-isophthalamide.

100. (New) A method for treating Mild Cognitive Impairment, Down's Syndrome, or Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch Type comprising administering an effective amount of the formula

$$R_N$$
 N
 H
 OH
 R_2
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c

where R_1 is:

(I) C_1 - C_6 alkyl, unsubstituted or substituted with one, two or three C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, - NH₂, -C \equiv N, -CF₃, or -N₃, (II) -(CH₂)₁₋₂-S-CH₃,

- (III) $-CH_2-CH_2-S-CH_3$,
- $\mbox{(IV)} \ -\mbox{CH}_2 \mbox{(C}_2 \mbox{C}_6 \ \mbox{alkenyl)} \ \mbox{unsubstituted or substituted}$ by one -F,
 - (V) $-(CH_2)_{0-3}-(R_{1-ary1})$ where R_{1-ary1} is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:
 - (A) C_1-C_3 alkyl,
 - (B) $-CF_3$,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1-C_3 alkoxy,
 - (E) $-O-CF_3$,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) $-C \equiv N$,
 - (VI) $-(CH_2)_{n1}-(R_{1-heteroary1})$ where n_1 is 0, 1, 2, or 3 and

R_{1-heteroaryl} is:

- (A) pyridinyl,
- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,

- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (00) β -carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,

- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{1-heteroary1}$ group is bonded to $-(CH_2)_{0-3}$ — by any ring atom of the parent $R_{N-heteroary1}$ group substituted by hydrogen such that the new bond to the $R_{1-heteroary1}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1-C_3 alkyl,
 - (2) $-CF_3$,
 - (3) -F, Cl, -Br, or -I,
 - (4) C_1-C_3 alkoxy,
 - (5) -O-CF₃,
 - $(6) NH_2,$
 - (7) -OH, or
 - (8) -C≡N,

with the proviso that when n_1 is zero $R_{1-heteroaryl}$ is not bonded to the carbon chain by nitrogen, or

(VII) -(CH2) $_{n1}$ -(R1-heterocycle) where n_1 is as defined above and

R₁-heterocycle is:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,

- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or two:

- (1) = 0,
- (2) C_1-C_3 alkyl,
- $(3) CF_3,$
- (4) -F, Cl, -Br and -I,
- (5) C_1-C_3 alkoxy,
- (6) $-O-CF_3$,
- $(7) NH_2,$
- (8) -OH, or
- (9) -C≡N,

with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen;

where R2 is:

- (I) -H
- (II) C_1-C_6 alkyl, or
- (III) $-(CH_2)_{0-4}-R_{2-1}$ where R_{2-1} is (C_3-C_6) cycloalkyl, R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above,

where R_N is:

(I) $R_{N-1}-X_N$ where X_N is:

32

McDonnell Boehnen Hulbert & Berghoff LLP 300 S. Wacker Drive Chicago, IL 60606 (312) 913-0001

- (A) -CO-,
- (B) $-SO_2-$,
- (C) $-(CR'R'')_{1-6}$ where R' and R" are the same or different and are -H or C_1-C_4 alkyl,
- (D) -CO-(CR'R") $_{1-6}$ -X $_{N-1}$ where X $_{N-1}$ is -O-, -S- and -NR'R"- and where R' and R" are as defined above,
- (E) a single bond;

where R_{N-1} is:

- (A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with one, two, three or four of the following substituents which can be the same or different and are:
 - (1) C_1-C_6 alkyl,
 - (2) -F, -Cl, -Br, or -I,
 - (3) OH,
 - (4) -NO₂,
 - (5) -CO-OH,
 - (6) -C≡N,
 - (7) $-\text{CO-NR}_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) $-C_1-C_6$ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,
 - (c) $-C_1-C_6$ alkyl unsubstituted or substituted with one to three -F, $-C_1$, $-B_7$, or -I,
 - (d) $-C_3-C_7$ cycloalkyl,

- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl}) 0 (C_1-C_3 \text{ alkyl})$,
- (g) $-C_1-C_6$ alkenyl with one or two

double bonds,

(h) $-C_1-C_6$ alkynyl with one or two

triple bonds,

- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined

above, or

(k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as

defined above,

- (8) $-\dot{C}O (C_3 C_{12} \text{ alkyl})$,
- (9) $-CO-(C_3-C_6 \text{ cycloalkyl})$,
- (10) $-CO-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as

defined above,

(11) $-CO-R_{1-heterocycle}$ where $R_{1-heterocycle}$ is as

defined above,

- (12) $-CO-R_{N-4}$ where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1-C_3 alkyl,
- (13) $-CO-O-R_{N-5}$ where R_{N-5} is:
 - (a) C_1 - C_6 alkyl, or
 - (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) $-SO-(C_1-C_8 \text{ alkyl})$,
- (16) $-SO_{2-}(C_3-C_{12} \text{ alkyl})$,

(17) $-NH-CO-O-R_{N-5}$ where R_{N-5} is as defined

above,

- (18) $-NH-CO-N(C_1-C_3 \text{ alkyl})_2$,
- (19) $-N-CS-N(C_1-C_3 \text{ alkyl})_2$,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5} \text{ where } R_{N-5} \text{ is as}$ defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) $-0-CO-(C_1-C_6 \text{ alkyl})$,
- (24) $-O-CO-N(C_1-C_3 \text{ alkyl})_2$,
- (25) $-O-CS-N(C_1-C_3 \text{ alkyl})_2$,
- (26) $-0-(C_1-C_6 \text{ alkyl})$,
- (27) $-0-(C_2-C_5 \text{ alkyl})-COOH$,
- (28) $-S-(C_1-C_6 \text{ alkyl})$,
- (29) C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F,
- (30) $-0-(C_1-C_6 \text{ alkyl unsubstituted or}$ substituted with 1, 2, 3, 4, or 5 -F, or
- $(31) -0-\phi$,
- (B) -R_{N-heteroaryl} where R_{N-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,

- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazoly1,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,

- (00) β -carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{N-heteroaryl}$ group is bonded by any atom of the parent $R_{N-heteroaryl}$ group substituted by hydrogen such that the new bond to the $R_{N-heteroaryl}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_6 alkyl,
- (2) -F, -Cl, -Br, or -I,
- (3) OH,
- $(4) NO_2,$
- (5) -CO-OH,
- (6) -C≡N,
- (7) $-\text{CO-NR}_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H
 - (b) $-C_1-C_6$ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,

- (c) -C₁-C₆ alkyl unsubstituted or substituted with 1, 2, or 3 -F, -Cl, -Br, or -I,
- (d) -C₃-C₇ cycloalkyl,
- $(e (C_1-C_2 \text{ alkyl}) (C_3-C_7)$

cycloalkyl),

- $(f) (C_1-C_6 \text{ alkyl}) O (C_1-C_3 \text{ alkyl}),$
- (g) $-C_1-C_6$ alkenyl with one or two double bonds,
- (h) $-C_1-C_6$ alkynyl with one or two triple bonds,
- (i) $-C_1-C_6$ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
- (k) $-R_{1-heteroary1}$ where $R_{1-heteroary1}$ is as defined above,
- (8) $-CO-(C_3-C_{12} \text{ alkyl})$,
- (9) $-CO-(C_3-C_6 \text{ cycloalkyl})$,
- (10) $-CO-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (11) $-CO-R_{1-heterocycle}$ where $R_{1-heterocycle}$ is as defined above,
- (12) $-CO-R_{N-4}$ where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1-C_3 alkyl,
- (13) $-CO-O-R_{N-5}$ where R_{N-5} is:
 - (a) C_1-C_6 alkyl, or

- (b) $-(CH_2)_{0-2}-(R_{1-ary1})$ where R_{1-ary1} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) $-SO-(C_1-C_8 \text{ alkyl})$,
- (16) $-SO_{2-}(C_3-C_{12} \text{ alkyl})$,
- (17) $-NH-CO-O-R_{N-5}$ where R_{N-5} is as defined above,
- (18) $-NH-CO-N(C_1-C_3 \text{ alkyl})_2$,
- (19) $-N-CS-N(C_1-C_3 \text{ alkyl})_2$,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5} \text{ where } R_{N-5} \text{ is}$ as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined

above,

- (23) -O-CO- $(C_1-C_6 \text{ alkyl})$,
- $(24) -O-CO-N(C_1-C_3 \text{ alkyl})_2$,
- $(25) -O-CS-N(C_1-C_3 \text{ alkyl})_2$
- $(26) -O-(C_1-C_6 \text{ alkyl}),$
- (27) $-0-(C_2-C_5 \text{ alkyl})-COOH$, or
- (28) $-S-(C_1-C_6 \text{ alkyl})$,
- (C) $-R_{N-aryl}-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- $(F) \ \ -R_{N-heteroaryl} R_{N-heteroaryl} \ where \ R_{N-heteroaryl} \ is \ as$ defined above,

(G) $-R_{N-aryl}-O-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined

above,

(H) $-R_{N-aryl}-S-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined

above,

(I) $-R_{N-heteroaryl}-O-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as

defined above,

(J) $-R_{N-heteroaryl}-S-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as

defined above,

(K) $-R_{N-aryl}$ -CO- R_{N-aryl} where $-R_{N-aryl}$ is as defined

above,

- (L) $-R_{N-aryl}-CO-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above,
- (M) $-R_{N-aryl}-SO_2-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined

above,

- (N) $-R_{N-heteroaryl}-CO-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (O) $-R_{N-heteroary1}-SO_2-R_{N-heteroary1}$ where $R_{N-heteroary1}$ is as defined above,
- (P) $-R_{N-aryl}-O-(C_1-C_8 \text{ alkyl})-\phi$ where R_{N-aryl} is as

defined above,

(Q) $-R_{N-aryl}-S-(C_1-C_8 \text{ alkyl})-\varphi$ where R_{N-aryl} is as

defined above,

- (R) $-R_{N-heteroaryl}-O-(C_1-C_8 \ alkyl)-\varphi$ where $R_{N-heteroaryl}$ is as defined above, or
- (S) $-R_{N-heteroaryl}-S-(C_1-C_8 \text{ alkyl})-\dot{\varphi}$ where $R_{N-heteroaryl}$ is as defined above,

(II) $A-X_N-$ where X_N is -CO-,

wherein A is

(A) $-T-E-(Q)_m$, (1) where -T is

where

(a) x = 1 when y = 1 and x = 2 when y = 0,

0

- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each
 carbon and is H, (C₁-C₂) alkyl,
 phenyl, or phenyl(C₁-C₃)alkyl;
- (2) -E is
 - (a) C_1-C_5 alkyl, but only if m' does not

equal 0,

- (b) methylthioxy (C_2-C_4) alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,
- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) phenyl(C_1-C_8) alkyloxyphenyl, or 41

McDonnell Boehnen Hulbert & Berghoff LLP 300 S. Wacker Drive Chicago, IL 60606 (312) 913-0001

- (j) C_1-C_6 alkoxy;
- (3) -Q is
 - (a) C_1-C_3 alkyl,
 - (b) C_1-C_3 alkoxy,
 - (c) C_1-C_3 alkylthioxy,
 - (d) C₁-C₆ alkylacylamino,
 - (e) C_1-C_6 alkylacyloxy,
 - (f) amido (including primary, C_1 - C_6 alkyl and phenyl secondary and tertiary amino moieties),
 - (g) C₁-C₆ alkylamino
 - (h) phenylamino,
 - (i) carbamyl (including C_1 - C_6 alkyl and phenyl amides and esters),
 - (j) carboxyl (including C_1-C_6 alkyl and phenyl esters),
 - (k) carboxy (C_2-C_5) alkoxy,
 - (1) carboxy(C₂-C5)alkylthioxy,
 - (m) heterocyclylacyl,
 - (n) heteroarylacyl, or
 - (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;
- (B) $-E(Q)_{m'}$, wherein E and -Q are as defined as above and m" is 0, 1, 2, or 3;
- (C) -T-E wherein ~E and -Q are as defined as above; or
 - (D) -E wherein -E is as defined as above;
- (III) $-CO-(C_1-C_6 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two:
 - (A) OH

- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\Phi$,
- (E) $-\text{CO-NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (F) $-CO-R_{N-4}$ where R_{N-4} is as defined above,
- (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) $-NH-CO-(C_1-C_6 \text{ alkyl})$,
- (J) $-NH-CO-O-R_{N-8}$ where R_{N-8} is as defined above,
- (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- $(M) -O-CO-(C_1-C_6 \text{ alkyl}),$
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} is the same or different and are as defined above, or
- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (IV) $-CO-(C_1-C_3 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) $-CO-R_{N-4}$ where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) $-NH-CO-(C_1-C_6 \text{ alkyl})$,

- (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
- (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) $-O-CO-(C_1-C_6 \text{ alkyl})$,
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (V) $-CO-(C_1-C_3 \text{ alkyl})-S-(C_1-C_3 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-CO-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) $-CO-R_{N-4}$ where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) $-NH-CO-(C_1-C_6 \text{ alkyl})$,
 - (J) $-NH-CO-O-R_{N-8}$ where R_{N-8} is as defined above,
 - (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) $-O-CO-(C_1-C_6 \text{ alkyl})$,
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
 - (0) $-0-(C_1-C_5 \text{ alkyl})-COOH$,

- (VI) $-CO-CH(-(CH_2)_{0-2}-O-R_{N-10})-(CH_2)_{0-2}-R_{N-aryl}/R_{N-heteroaryl})$ where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is:
 - $(A) -H_{\bullet}$
 - (B) C_1-C_6 alkyl,
 - (C) C₃-C₇ cycloalkyl,
 - (D) C_2 - C_6 alkenyl with one double bond,
 - (E) C_2 - C_6 alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, or
 - (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined

above;

where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-; where R_C is:

- (I) $-(C_1-C_{10})$ alkyl $-K_{1-3}$ in which:
- (A) the alkyl chain is unsubstituted or substituted with one -OH,
 - (B) the alkyl chain is unsubstituted or substituted with one C_1-C_6 alkoxy unsubstituted or substituted with 1-5 -F,
- (C) the alkyl chain is unsubstituted or substituted with one $-0-\varphi$,
 - (D) the alkyl chain is unsubstituted or substituted with 1-5 -F,
 - (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
 - (F) each K is:
 - (1) H,
 - (2) C_1-C_3 alkyl,
 - (3) C_1-C_3 alkoxy,

- (4) C_1-C_3 alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,
- (7) amido
- (8) C₁-C₆ alkylamino
- (9) phenylamino,
- (10) carbamyl
- (11) carboxyl
- (12) carboxy (C_2-C_5) alkoxy,
- (13) carboxy (C_2-C_5) alkylthioxy,
- (14) heterocyclylacyl,
- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;
- (II) $(CH_2)_{0-3}$ -J-[$(-(CH_2)_{0-3}$ -K]₁₋₃ where K is as defined above and J is:
 - (A) a 5 to 7 atom monocyclic aryl group,
 - (B) a 8 to 12 atom multicyclic aryl group,
 - (C) a 5 to 7 atom heterocyclic group,
 - (D) a 8 to 12 atom multicyclic heterocyclic

group, or

- (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;
- (III) $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three
- (A) C_1 - C_3 alkyl unsubstituted or substituted with 1, 2, 3, or 4 -F,

```
-C1, -Br, or -I,
```

- (B) -CO-OH,
- (C) $-CO-O-(C_1-C_4 \text{ alkyl})$,
- (D) -OH, or
- (E) C_1-C_6 alkoxy,
- (IV) (CH₂)₂₋₆-OH,
- (V) (CR_{C-x}R_{C-y}) $_{0-4}$ -R_{C-aryl} where R_{C-x} and R_{C-y} are -H, C₁-C₄ alkyl and φ and R_{C-aryl} is the same as R_{N-aryl},
- (VI) (CH₂)₀₋₄-R_{C-heteroaryl} where R_{C-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) isoxazolyl,
 - (Q) pyrazolyl,
 - (R) indolizinyl,
 - (S) indazolyl,
 - (T) benzothiazolyl,
 - (U) benzimidazolyl,
 - (V) benzofuranyl,

- (W) furanyl,
- (X) thienyl,
- (Y) pyrrolyl,
- (Z) oxadiazolyl,
- (AA) thiadiazolyl,
- (BB) triazolyl,
- (CC) tetrazolyl,
- (DD) 1, 4-benzodioxan
- (EE) purinyl,
- (FF) oxazolopyridinyl,
- (GG) imidazopyridinyl,
- (HH) isothiazolyl,
- (II) naphthyridinyl,
- (JJ) cinnolinyl,
- (KK) carbazolyl,
- (LL) β -carbolinyl,
- (MM) isochromanyl,
- (NN) chromanyl,
- (00) furazanyl,
- (PP) tetrahydroisoquinoline,
- (QQ) isoindolinyl,
- (RR) isobenzotetrahydrofuranyl,
- (SS) isobenzotetrahydrothienyl,
- (TT) isobenzothiophenyl,
- (UU) benzoxazolyl, or
- (VV) pyridopyridinyl,
- (VII) -(CH2)0-4-RC-heterocycle where RC-heterocycle is the same as R1-heterocycle,
 - (VIII) $-C(R_{C-1})(R_{C-2})-CO-NH-R_{C-3}$ where R_{C-1} and R_{C-2} are the same or different and are:
 - (A) -H,

- (B) $-C_1-C_6$ alkyl,
- (C) $-(C_1-C_4 \text{ alkyl})-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above for

R1-aryl,

- $\label{eq:cheteroaryl} \text{(D)} \ (C_1 C_4 \ \text{alkyl}) R_{C\text{-heteroaryl}} \ \text{where} \ R_{C\text{-heteroaryl}} \ \text{is as}$ defined above,
 - (E) $-(C_1-C_4 \text{ alkyl})-R_{C-heterocycle}$ where $R_{C-heterocycle}$ is as defined above,
 - (F) $-R_{C-heteroaryl}$ where $R_{C-heteroaryl}$ is as defined

above,

above,

- (G) $-R_{C-heterocycle}$ where $R_{C-heterocycle}$ is as defined
- (H) $-(CH_2)_{1-4}-OH$,
- (I) $-(CH_2)_{1-4}-R_{C-4}-(CH_2)_{1-4}-R_{C'-aryl}$ where R_{C-4} is -O-, -

S-, -NH- or

- -NHR_{C-5}- where R_{C-5} is C_1 - C_6 alkyl, and where $R_{C'-aryl}$ is as defined above,
- (J) $-(CH_2)_{1-4}-R_{C-4}-(CH_2)_{1-4}-R_{C-heteroary1}$ where R_{C-4} and $R_{C-heteroary1}$ are as defined above, or
- (K) $-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above,

and where R_{C-3} is:

- (A) -H,
- (B) $-C_1-C_6$ alkyl,
- (C) $-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above,
- (D) $-R_{C-heteroaryl}$ where $R_{C-heteroaryl}$ is as defined

above,

- (E) $-R_{C-heterocycle}$ where $R_{C-heterocycle}$ is as defined above,
- $(F) \ -(C_1-C_4 \ alkyl) R_{C'-aryl} \ where \ R_{C'-aryl} \ is \ as$ defined above,

- (G) $-(C_1-C_4 \text{ alkyl})-R_{C-heteroaryl}$ where $R_{C-heteroaryl}$ is as defined above, or
- (H) $-(C_1-C_4 \text{ alkyl})-R_{C-heterocycle}$ where $R_{C-heterocycle}$ is as defined above,
- $(IX) CH(\phi)_2$
- (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:
 - (A) C_1-C_3 alkyl,
 - (B) $-CF_3$,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1-C_3 alkoxy,
 - (E) -OCF₃,
 - (F) NH₂
 - (G) -OH, or
 - (H) -C≡N,
- (XI) $-CH_2-C\equiv CH$;
- (XII) $-(CH_2)_{0-1}-CHR_{C-5}-(CH_2)_{0-1}-\phi$ where R_{C-5} is:
 - (A) -OH, or
 - $(B) CH_2 OH;$
- (XIII) $-CH(-\phi)-CO-O(C_1-C_3 \text{ alkyl});$
- (XIV) $-CH(-CH_2-OH)-CH(-OH)-\phi-NO_2;$
- (XV) (CH₂)₂-O-(CH₂)₂-OH;
- (XVI) $-CH_2-NH-CH_2-CH(-O-CH_2-CH_3)_2$;
- (XVII) $-(C_2-C_8)$ alkynyl; or
- (XVIII) -H; or a pharmaceutically acceptable salt thereof.

- 101. (New) The method of claim 100, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 0.1nM to about 200 μ M.
- 97 102. (New) The method of claim 101, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 10nM to about $100\mu M$.
- 9% 9% 103. (New) The method of claim 101, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 100nM to about 50µM.
- 99 104. (New) The method of claim 103, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about $1\mu\text{M}$ to about $10\mu\text{M}$.
- 105. (New) The method of claim 100, wherein said therapeutic amount is in the range of from about 0.1 to about 1000 mg/day.
- 106. (New) The method of claim 100, wherein said therapeutic amount is in the range of from about 15 to about 1500 mg/day.
- 107. (New) The method of claim 106, wherein said therapeutic amount is in the range of from about 1 to about 100 mg/day.
- 108. (New) The method of claim 107, wherein said therapeutic amount is in the range of from about 5 to about 50 mg/day.

/04 95 109. (New) The method according to claim 100, wherein the compound is

N- $\{(1S, 2S, 4R)-1-(3, 5-Diffluorobenzyl)-4-(syn, syn)-(3, 5dimethoxycyclohexylcarbamoyl)-2-hydroxyhexyl]-N,N-dipropylisophathalamide,$

6-[6-(3,5-Difluoropheny1)-5-(S)-(3-dipropylcarbamoylbenzoylamino)-2-(R)-ethyl-4-(S)-hydroxyhexanoylamino]-hexanoic acid,

5-[6-(3,5-Difluorophenyl)-5-(S)-(3-dipropylcarbamoylbenzoylamino)-2-(R)-ethyl-4-(S)-hydroxyhexanoylamino]-pentanoic acid,

4-[6-(3,5-Difluorophenyl)-5-(S)-(3-dipropylcarbamoylbenzoylamino)-2-(R)-ethyl-4-(S)-hydroxyhexanoylamino]-butyric acid,

3-[6-(3,5-Difluoropheny1)-5-(S)-(3-dipropylcarbamoylbenzoylamino)-2-(R)-ethyl-4-(S)-hydroxyhexanoylamino]-propionic acid,

8-[6-(3,5-Difluorophenyl)-5-(S)-(3-dipropylcarbamoylbenzoylamino)-2-(R)-ethyl-4-(S)-hydroxyhexanoylamino]-octanoic acid,

8-[6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino)-octanoic acid methyl ester,

N-[4-(R)-Butylcarbamoyl-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-hexyl]-N, N-dipropyl-isophthalamide,

 $N-\{1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-isobutylcarbamoyl-hexyl\}-N,N-dipropyl-isophthalamide,$

N-[4-(R)-Benzylcarbamoyl-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-hexyl]-N, N-dipropyl-isophthalamide,

N-[4-(R)-(Cyclohexylmethyl-carbamoyl)-1-(S)-(3,5-difluorobenzyl)-2-(S)-hydroxy-hexyl]-N,N-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-(piperidine-1-carbonyl)-hexyl]-N, N-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-4-(R)-(2-dimethylamino-ethylcarbamoyl)-2-(S)-hydroxy-hexyl]-N,N-dipropyl-isophthalamide,

N-[4-(R)-(Butyl-methyl-carbamoyl)-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-hexyl]-N,N-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-(3-hydroxy-propylcarbamoyl)-hexyl]-N,N-dipropyl-isophthalamide,

 $4-(\{6-(3,5-\text{Difluoro-phenyl})-5-(S)-(3-\text{dipropylcarbamoyl}-benzoylamino})-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid methyl ester,$

N-[1-(S)-(3,5-Difluoro-benzyl)-4-(R)-(3-dimethylamino-propylcarbamoyl)-2-(S)-hydroxy-hexyl]-N,N-dipropyl-isophthalamide,

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxy-2-(R)-methyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

 $4-(anti)-(\{6-(3,5-Difluoro-pheny1)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxy-2-(R)-propyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,$

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxyl-2-(R)-isobutyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(anti)-([2-(R)-Benzyl-6-(3,5-difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino)-methyl)-cyclohexanecarboxylic acid,

 $4-(anti)-(\{6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino\}-methyl)-cyclohexanecarboxylic acid methyl ester,$

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-(2-morpholin-4-yl-ethylcarbamoyl)-pentyl]-5-methyl-N,N-dipropylisophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-isobutylcarbamoyl-pentyl]-5-methyl-<math>N,N-dipropyl-isophthalamide,

 $N-\{4-(R)-(2-\text{Diethylamino-ethylcarbamoyl})-1-(S)-(3,5-\text{difluoro-benzyl})-2-(S)-\text{hydroxy-pentyl}\}-5-\text{methyl-}N,N-\text{dipropyl-isophthalamide},$

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-[(tetrahydro-furan-2-ylmethyl)-carbamoyl]-pentyl)-5-methyl-<math>N,N-dipropyl-isophthalamide,

N-[4-(R)-(Adamantan-2-ylcarbamoyl)-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-pentyl]-5-methyl-<math>N, N-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-methyl-5-morpholin-4-yl-5-oxo-pentyl]-5-methyl-<math>N,N-dipropyl-isophthalamide,

N-[4-(R)-Benzylcarbamoyl-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-pentyl]-5-methyl-<math>N, N-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-4-(R)-(4-fluoro-benzylcarbamoyl)-2-(S)-hydroxy-pentyl]-5-methyl-N,N-dipropylisophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)phenethylcarbamoyl-pentyl]-5-methyl-N, N-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-4-(R)-[(furan-2-ylmethyl)-carbamoyl]-2-(S)-hydroxy-pentyl)-5-methyl-<math>N, N-dipropyl-isophthalamide, or

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-(prop-2-ynylcarbamoyl)-pentyl]-5-methy-<math>N,N-dipropyl-isophthalamide.