Boosting the performances of clinical trials from models/algorithms/twins trained on external cohorts: conditions to respect

Yohann Foucher, CIC Inserm 1406

Club Cohortes, Paris June 6, 2025

Plan

Context

Conditions to respect

Sample size for C3 validation

Conclusion and perspectives

Club Cohortes 2 / 20

Why augmenting randomized clinical trials (RCTs)?

- ▶ RCTs represent the reference protocol for treatment evaluations.
- ► For large sample size, the comparability of the arms is guaranteed and the power is acceptable.
- ▶ But number of trials are based on small sample sizes:
 - Median at 144 patients for RCTs in surgery.¹
 - ▶ Median at 75 patients for RCTs in intensive care units.²

Club Cohortes 3 / 20

¹Robinson et al. Characteristics of Randomized Clinical Trials in Surgery From 2008 to 2020: A Systematic Review. JAMA Network Open. 2021.

²Anthon et al. Overall bias and sample sizes were unchanged in ICU trials over time: a meta epidemiological study. Journal of Clinical Epidemiology. 2019.

Considering data from external controls for increasing the power of RCT

- Context:
 - ▶ An RCT with internal patients randomized in an experimental and control arms.
 - ▶ We aim to increase the power with external controls from a cohort.
- Methods:
 - Bayesian analysis for borrowing external controls.
 - Matching external controls with internal patients in the experimental arm.
 - Estimating algorithms/models from the external controls for predicting counterfactual outcomes of the internal patients in the experimental arm.
 - ► Generating digital controls from the external cohort.
 - Etc.
- ▶ It introduces bias: selection bias, confounders, etc.
 - ► What are the conditions for ensuring unbiased results?

Club Cohortes 4 / 20

Plan

Contex

Conditions to respect

Sample size for C3 validation

Conclusion and perspectives

Club Cohortes 5 / 20

Conditions for acceptability of an external control group ³

- A1. The group must have received a precisely defined treatment which must be the same in the RCT.
- A2. The group must have been part of a recent study which contained the same requirements for patient eligibility.
- A3. The methods of treatment evaluation must be the same.
- A4. The distributions of important patient characteristics in the group should be comparable with those in the new trial.
- A5. The external must have been collected in the same organization with largely the same clinical investigators.
- A6. There must be no other indications leading one to expect differing results between the randomized and external controls.

Club Cohortes 6 / 20

³Pocock. The combination of randomized and historical controls in clinical trials. Journal of Chronic Diseases. 1976.

Conditions for acceptability of an external control group ⁴

- C1. The respect for positivity between the external and RCT controls.
 - ► It includes A2, A4 and A5.
- C2. The absence of unmeasured confounders, i.e. determinants of both the outcome and the probability of inclusion in the RCT compared to the external group.
 - ► It includes A4 and A6.
- C3. The absence of a direct effect on the outcome of being included in the RCT.
 - ▶ It includes A1 and A3.

Club Cohortes 7 / 20

⁴Dang et al. A Cross-Validated Targeted Maximum Likelihood Estimator for Data-Adaptive Experiment Selection Applied to the Augmentation of RCT Control Arms with External Data. arXiv:2210.05802v1

How to respect the condition C1 (positivity)?

- 1. Use external data but from a recent period.
- 2. Use external data from the same centers, at least for a large part.
- 3. Check the inclusion criteria in both the RCT and external study: the targeted population of the RCT must be embedded.
- 4. Compare the characteristics of two samples of controls to validate the positivity, ⁵ and restrict the inclusion criteria until no issue is identified.

Club Cohortes 8 / 20

⁵Danelian G, Foucher Y, Leger M, Le Borgne F. and Chatton A. Identification of in-sample positivity violations using regression trees: The PoRT algorithm. Journal of Causal Inference (2023).

How to respect the condition C2 (absence of unmeasured confounders)?

- ► Draw a causal diagram:
 - Y: the outcome
 - ► A: the treatment arm
 - S: the data source
 - X: the causes of both Y and S
 - ▶ W: the mediators of being included in the RCT

▶ Make sure that *X* is available in both the RCT and the external cohort (with the same methods of collection).

Club Cohortes 9 / 20

How to respect the condition C3 (no direct effect of being in the RCT)?

- ► Check the studied treatments are identical in the two studies (doses, administration, etc.).
- Use the same definition of the collected outcomes.
- ► Ensure comparable monitoring in the two studies.

► How to validate C3 by using the RCT data?

Club Cohortes 10 / 20

Plan

Contex

Conditions to respect

Sample size for C3 validation

Conclusion and perspectives

Club Cohortes 11 / 20

Consider the following usual RCT for superiority with k controls for 1 patient in the experimental arm

- A binary outcome Y with π_0 and π_1 the two expected proportions in the control and experimental arms.
- ▶ N_{1s} and N_{0s} the required sample sizes for a bilateral test with targeted type-I and type-II errors, α and β respectively.
- $ightharpoonup N_{0s} = kN_{1s} \; ext{and} \; N_{1s} = (\pi_1 \pi_0)^2 (\pi_0 (1 \pi_0)/k + \pi_1 (1 \pi_1))/(z_{lpha/2} + z_{eta})^2$

Example

- For k = 1, $\alpha = 0.05$, $\beta = 0.20$, $\pi_0 = 0.50$ and $\pi_1 = 0.40$,
- \blacktriangleright the sample sizes are $N_{0s} = N_{1s} = 385$.

Club Cohortes 12 / 20

Consider the following method to augment the RCT with external data (one method among others)

- Consider an algorithm/model estimated from the external data to predict the outcome $\hat{\pi}_{0i}$ given the characteristics X_i of a patient i with the control treatment.
- ► There is no direct effect of being in the RCT (condition C3) if it is well-calibrated for the outcome prediction of internal controls.
- ▶ A calibration measure can be O/E:
 - \triangleright O is the number of observed events : $\sum_i Y_i$ among the control patients.
 - \triangleright E is the number of expected events: $\sum_{i} \hat{\pi}_{0i}$ among the control patients.
- ▶ The value O/E = 1 indicates a perfect calibration.

Club Cohortes 13 / 20

Minimal sample size N_{0c} to evaluate the calibration of the model M

- ▶ By using the delta method: $SE(\log(O/E) \approx \sqrt{(1-\pi_0)/(\pi_0 N_{0c})}$.
- ▶ Depending on w, the targeted width of confidence interval of the O/E, one can define $SE_w(\log(O/E))$.
- One can deduce that $N_{0c} = (1 \pi_0)/(\pi_0 SE_w(\log(O/E)^2)$

Example (continued, with k=1, $\alpha=0.05$, $\beta=0.20$, $\pi_0=0.50$ and $\pi_1=0.40$)

- ▶ For $\alpha = 0.05$ and w = 0.10 (i.e., $SE_w(\log(O/E) \approx 0.25)$ then $N_{0c} = 1541$.
 - ho $N_{0c} > 385$: we cannot check the respect of C3.
- ▶ For $\alpha = 0.05$ and w = 0.20 (i.e., $SE_w(\log(O/E) \approx 0.51$,) then $N_{0c} = 386$.
 - ► $N_{0c} \approx 385$: we can check the respect of C3.

Club Cohortes 14 / 20

⁶Debray et al. A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes. Stat Methods Med Res. 2019;28:2768-2786.

Width of the 95%CI(O/E)

Club Cohortes 15 / 20

Club Cohortes 16 / 20

Club Cohortes 17 / 20

Club Cohortes 18 / 20

Contex

Conditions to respect

Sample size for C3 validation

Conclusion and perspectives

Conclusion and perspectives

Club Cohortes 19 / 20

Summary of the key points

- ► The augmentation of RCT with models/algorithms or even digital twins is possible under conditions C1 to C3.
- The use of low-quality external data, such as retrospective registries or medico-administrative databases, should be used with caution.
- ▶ The use of high-quality cohorts or alternative RCT as external sources with:
 - ► The collection of confounders *X* for adjusting.
 - ▶ The collection of mediators *W* for reducing the direct impact of the data sources.
 - ightharpoonup The same definition/collection of (A, Y, X, W).
- ► The same multi-centric consortium should be involved in the collection of external and internal data.
- ► The RCTs with important sample sizes appear more adapted for C3 validation.

Club Cohortes 20 / 20