

Given the crystal structure of any material, MaPPT can...

- Identify insulator vs. metal with 89% accuracy*
- Calculate the band gap with MAE = 0.565 eV*
- Identify non-trivial topology with 90% accuracy*

*When compared to first principles calculations

What is a crystal structure?

• A collection of atoms confined to a cell

 Physics terminology: "periodic boundary conditions"

• Ex: YbB₁₂

What is a band gap?

Quantum mechanically, crystal structures = periodic potentials

• Eigenvalue equation: $H(k) | \Psi_{n,k} \rangle = \varepsilon_{n,k} | \Psi_{n,k} \rangle$

Energy spectrum is called band structure

Statistical mechanics: electrons occupy up to Fermi energy

⇒ bands either full, empty, or partially filled

Diagrams courtesy of Gresch and Soluyanov, see http://z2pack.ethz.ch/

Because it can be shown¹ that **only partial filled** bands contribute to conduction.

$$gap > 0 \implies insulator$$

$$gap = 0 \implies metal$$

¹Ashcroft and Mermin, Solid State Physics

What is topology?

$$H(k) |\Psi_{n,k}\rangle = \varepsilon_{n,k} |\Psi_{n,k}\rangle$$

It turns out that materials have additional physical properties not captured by $\varepsilon_{n,k}$

Considering the "shape" of each $|\Psi_{n,k}\rangle$ gives rise to a **classification scheme**¹

What are first principles calculations?

- Density functional theory (DFT) to get band gap
- Wannier charge center evolution to get topology

What about ML?

The current disadvantages of DFT have been well-documented

- magnetic materials
- *f*-electron materials
- the N⁴ problem

But *featurizing* a crystal structure for ML is not so straightforward.

Voronoi tessellations

Phys. Rev. B 96, 024104 (2017)

$$CN = \frac{\left(\sum_{n} A_{n}\right)^{2}}{\sum_{n} A_{n}^{2}}$$

The dataset

- Input: *pymatgen* structure object
- Outputs:
 - PBE band gap (accessible through API)
 - Topology (requires HTML scraping)
- Features: *matminer* preset
- 76,891 materials
 - 45,540 insulators
 - 31,351 metals

ML strategy

Need three models

- Two classifiers (insulator/metal, trivial/non-trivial)
- One regressor (band gap)

85/15 train-test split

• Training data: Pearson cutoff of 0.75

Consider linear and non-linear models
Standard hyperparameter tuning

• Check accuracy converges w.r.t number of iterations

Random forest: 1500 trees, 4 min. samples, 50 max. depth

Random forest: 200 trees, 6 min. samples, no max. depth

Kernel ridge: Laplacian, α = 0.0001, γ = 0.0017

Band gap (eV)

Demonstration

Outlook

- Match the accuracy of DFT
 - Explore deep learning techniques

- DFT development: predict experimental values instead
 - Promising databases already exist¹
- Predict full topological phases

Thank you!