Sequential Decisions With Uncertainty: MDP (1)

With slides from Peter Abbiel, Dan Klein, and Percy Liang

Midterms Graded Posted in Canvas

• Average: 68.85 / 80 (86%)

• Curve: n/a

Big Picture

Al as Planning:

- Model of the world known (utilities, action outcomes)
- Deterministic search: UCS, A*, MiniMax
- Non-deterministic search → ExpectiMax
- Inference under uncertainty: BNs, HMMs

Al as Learning:

- Model of world partially known (rewards? outcomes?)
 - Markov Decision Processes (Today)
- Rewards, action outcomes unknown
 - → Reinforcement Learning

Rough Plan (Next 3 weeks)

- Markov Decision Processes (MDPs)
 - MDP formalism
 - Solution: Value Iteration and Policy Iteration
- Reinforcement Learning (RL)
 - Relationship to MDPs
 - Several learning algorithms
 - RL applications to games, "real world"

Non-Deterministic Actions

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize the <u>sum of rewards</u>

Grid World Actions

Deterministic Grid World

New Idea: Markov Decision Process (MDP)

- An MDP is defined by:
 - **– S**et of states s ∈ S
 - **– A**ctions a ∈ A
 - <u>T</u>ransition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - <u>R</u>eward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - Start state (s₀)
 - Terminal state (<u>optional</u>)
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll develop a better tool

What is "Markov" about MDPs?

 Remember: "Markov" means that given the preser state, the future and the past are independent

 Markov decision processes, "Markov" means actio outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Andrey Markov (1856-1922)

 Like (H) MMs, where the successor function only depends on current state (not the full history)

Definition: Policy

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \to A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Minimax/Expectimax did NOT compute entire policies
 - They computed the action for a single state only (and then re-planned)

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Optimal Policies

$$R(s) = -0.01$$

$$R(s) = -0.4$$

$$R(s) = -0.03$$

$$R(s) = -2.0$$

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Racing Search Tree (infinite depth 😊)

... potentially infinite depth ...

Quit/Stay Game

For each round $r = 1, 2, \ldots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

MDP **DIAGRAM** for Quit/Stay Game

For each round $r = 1, 2, \ldots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Game Transition Probabilities

For each state s and action a:

$$\sum_{s' \in \mathsf{States}} T(s, a, s') = 1$$

Successors: s' such that T(s, a, s') > 0

MDP Search Trees

Each MDP state projects an expectimax-like search tree

Utilities of Sequences

 What preferences should an agent have over reward sequences?

More or less?

Now or later?

Infinite Utilities?!

Problem: What if the game lasts forever? Do we get infinite rewards?

- **Solutions:**
 - Finite horizon: (similar to depth-limited search
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0,\dots r_\infty]) = \sum_{t=0}^\infty \gamma^t r_t \le R_{\max}/(1-\gamma)$$

$$\blacksquare \text{ Smaller } \gamma \to \text{smaller "horizon"} - \text{shorter term focus}$$

- Absorbing state: guarantee that for every policy, a terminal 3. state will eventually be reached (like "overheated" for racing)

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to <u>prefer rewards now</u> to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply by the discount once

- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

Detour: Temporal/Delay Discounting

- What would you rather have?
 - A. \$100 today
 - B. \$150 a year from now
- What about:
 - A. \$100 in 12 months
 - B. \$110 in 13 months
- Humans temporally discount values of rewards
 - https://en.wikipedia.org/wiki/Temporal_discounting
- Delayed gratification:

https://www.youtube.com/watch?v=QX oy9614HQ

Quiz: Discounting

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic (no noise, for now)
- P 1: For $\gamma = 1$, what is the optimal policy?
- P 2: For γ = 0.1, what is the optimal policy?
- P 3: For which γ are West and East equally good when in state d?

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ) /

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs

Definitions: Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected total <u>utility</u> if:
 - -- from **s**, take action **a**
 - -- and act optimally after

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Important! Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

 These are the Bellman equations, and they characterize the optimal values recurrence

Richard Bellman
These are my equations!

Example: Racing Search Tree

Racing Search Tree

Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Idea: Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

Computing Time-Limited Values

Solution: Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of ExpectiMax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Value Iteration: Algorithm form

Algorithm: value iteration [Bellman, 1957]

Initialize $V_{\text{opt}}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \ldots, t_{VI}$:

For each state s:

$$V_{\mathrm{opt}}^{(t)}(s) \leftarrow \max_{a \in \mathsf{Actions}(s)} \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\mathrm{opt}}^{(t-1)}(s')]$$

 $Q_{\mathrm{opt}}^{(t-1)}(s,a)$

Example: Value Iteration for Race Car

Assume no discount!

$$V_0$$
 $\left[\mathbf{0} \quad \mathbf{0} \quad \mathbf{0}\right] V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_k(s')\right]$

https://www.cs.ubc.ca/~poole/demos/mdp/vi.html

Value Iteration for Stay/Quit Game

s end in $V_{
m opt}^{(t)}$ 0.00 10.00 (t=1 iterations) $au_{
m opt}(s)$ - quit

MDP for Grid World

Set of states $s \in S$: positions Actions $a \in A$: N, S, E, W Transition function T(s, a, s'): given "noise": probability of not following a Reward function R(s, a, s'): given START Start state (s_0) Terminal states: +1, -1 rewards

Value Iteration for GridWorld, k=0

Discount = 0.9

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes

- Problem 3: How to Read out Policy from Values?
- Problem 4: The policy often converges long before the values