Exceptions and Exceptional Control Flow

Professor Hugh C. Lauer Professor Therese M. Smith

CS-4515, System Programming Concepts

(Slides include copyright materials from Computer Architecture: A Quantitative Approach, 6th ed., by Hennessy and Patterson and from Computer Organization and Design, 4th and 5th ed. by Patterson and Hennessy)

Exceptional Control Flow: Exceptions and Processes

15-213: Introduction to Computer Systems

14th Lecture, Oct. 15, 2015

Instructors:

Randal E. Bryant and David R. O'Hallaron

These slides are derived from

Computer Systems: A Programmer's Perspective, 3rd edition by Bryant and O'Hallaron

Not covered in CS-2011 due to WPI's 7-week terms

Today

- Exceptional Control Flow
- Exceptions
- Processes
- Process Control

Control Flow

Processors do only one thing:

- From startup to shutdown, processor simply reads and executes (interprets) a sequence of instructions, one at a time
- This sequence is the CPU's control flow (or flow of control)

Physical control flow

Altering the Control Flow

- Up to now: two mechanisms for changing control flow:—
 - Jumps and branches
 - Call and return

Instigated by changes in *program state*

- Insufficient for a useful system:—
 Difficult to react to changes in system state
 - Data from external source e.g., disk or network adapter
 - Instruction divides by zero
 - User hits Ctrl-C at the keyboard
 - System timer expires

System needs mechanisms for "exceptional control flow"

Exceptional Control Flow

- Exists at all levels of a computer system
- Low level mechanisms
 - 1. Exceptions
 - Change in control flow in response to a system event (i.e., change in system state)
 - Implemented using combination of hardware and OS software
- Higher level mechanisms
 - 2. Process context switch
 - Implemented by OS software and hardware timer
 - 3. Signals
 - Implemented by OS software
 - 4. Nonlocal jumps: setjmp() and longjmp()
 - Implemented by C runtime library

Today

- **Exceptional Control Flow**
- Exceptions
- Processes
- Process Control

Exceptions

- An exception is a transfer of control to the OS kernel in response to some event (i.e., change in processor state)
 - Kernel is the memory-resident part of the OS
 - Examples of events: Divide by 0, arithmetic overflow, page fault, I/O request completes, typing Ctrl-C

Exception Tables

Asynchronous Exceptions (Interrupts)

Caused by events external to the processor

- Indicated by setting the processor's interrupt pin
- Handler returns to "next" instruction

Examples:

- Timer interrupt
 - Every few ms, an external timer chip triggers an interrupt
 - Used by the kernel to take back control from user programs
- I/O interrupt from external device
 - Hitting Ctrl-C at the keyboard
 - Arrival of a packet from a network
 - Arrival of data from a disk

Synchronous Exceptions

Caused by events that occur as a result of executing an instruction:

Traps

- Intentional
- Examples: **system calls**, breakpoint traps, special instructions
- Returns control to "next" instruction

Faults

- Unintentional but possibly recoverable
- Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
- Either re-executes faulting ("current") instruction or aborts

Aborts

- Unintentional and unrecoverable
- Examples: illegal instruction, parity error, machine check
- Aborts current program

System Calls

- Each x86-64 system call has a unique ID number
- Examples:

Number	Name	Description
0	read	Read file
1	write	Write file
2	open	Open file
3	close	Close file
4	stat	Get info about file
57	fork	Create process
59	execve	Execute a program
60	_exit	Terminate process
62	kill	Send signal to process

System Call Example: Opening File

- User calls: open (filename, options)
- Calls __open function, which invokes system call instruction syscall

```
0000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffff001,%rax
...
e5dfa: c3 retq
```


- %rax contains syscall number
- Other arguments in %rdi, %rsi, %rdx, %r10, %r8, %r9
- Return value in %rax
- Negative value is an error corresponding to negative errno

Fault Example: Page Fault

- User writes to memory location
- That portion (page) of user's memory is currently on disk

```
int a[1000];
main ()
{
    a[500] = 13;
}
```

```
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
```


Fault Example: Invalid Memory Reference

```
int a[1000];
main ()
{
    a[5000] = 13;
}
```

```
80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360
```


- Sends SIGSEGV signal to user process
- User process exits with "segmentation fault"

Today

- **Exceptional Control Flow**
- Exceptions
- Processes
- Process Control

Processes

aka "Thread"

- Definition: A process is an instance of a running program.
 - One of the most profound ideas in computer science
 - Not the same as "program" or "processor"
- Process provides each program with two key abstractions:
 - Logical control flow
 - Each program appears to have exclusive use of the CPU
 - Provided by kernel mechanism called context switching
 - Private address space
 - Each program <u>appears</u> to have exclusive use of main memory.
 - Provided by kernel mechanism called *virtual memory*

Stack
Heap
Data
Code

CPU
Registers

Multiprocessing: The Illusion

- Processor runs many processes simultaneously
 - Applications for one or more users
 - Web browsers, email clients, editors, ...
 - Background tasks
 - Monitoring network & I/O devices

Multiprocessing Example

```
X xterm
Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads
                                                                                      11:47:07
Load Avg: 1.03, 1.13, 1.14 CPU usage: 3.27% user, 5.15% sys, 91.56% idle
SharedLibs: 576K resident, OB data, OB linkedit.
MemRegions: 27958 total, 1127M resident, 35M private, 494M shared.
PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free.
VM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts.
Networks: packets: 41046228/11G in, 66083096/77G out.
Disks: 17874391/349G read, 12847373/594G written.
PID
       COMMAND
                                  #TH
                                                   #MREG RPRVT
                                                                 RSHRD
                                                                        RSIZE
                    %CPU TIME
                                        #WQ
                                             #PORT
                                                                               VPRVT
                                                                                      VSIZE
99217- Microsoft Of 0.0
                         02:28.34 4
                                              202
                                                    418
                                                          21M
                                                                 24M
                                                                        21M
                                                                                      763M
                                                                               66M
                                             47
                                                    66
                                                          436K
99051
       usbmuxd
                    0.0 00:04.10 3
                                                                 216K
                                                                        480K
                                                                                      2422M
                                                                               60M
      iTunesHelper 0.0 00:01.23 2
99006
                                             55
                                                    78
                                                          728K
                                                                 3124K
                                                                        1124K
                                                                               43M
                                                                                      2429M
                                             20
                                                    24
84286
       bash
                    0.0 00:00.11 1
                                                          224K
                                                                 732K
                                                                        484K
                                                                               17M
                                                                                      2378M
84285
                    0.0 00:00.83 1
                                             32
                                                    73
                                                          656K
                                                                 872K
                                                                        692K
                                                                               9728K
                                                                                      2382M
       xterm
                                             360
                                                    954
55939- Microsoft Ex 0.3 21:58.97 10
                                                          16M
                                                                 65M
                                                                        46M
                                                                               114M
                                                                                      1057M
                         00:00.00 1
                                             17
                                                    20
                                                          92K
                                                                 212K
                                                                        360K
                                                                               9632K
                                                                                      2370M
54751
       sleep
                    0.0
                                             33
54739
       launchdadd
                    0.0 00:00.00 2
                                                    50
                                                          488K
                                                                 220K
                                                                        1736K
                                                                               48M
                                                                                      2409M
                                             30
                                                   29
54737
                    6.5 00:02.53 1/1
                                                          1416K
                                                                 216K
                                                                        2124K
       top
                                                                               17M
                                                                                      2378M
                                             53
                    0.0 00:00.02 7
54719
       automountd
                                                   64
                                                          860K
                                                                 216K
                                                                        2184K
                                                                               53M
                                                                                      2413M
54701
       ocspd
                    0.0 00:00.05 4
                                             61
                                                    54
                                                          1268K
                                                                 2644K
                                                                        3132K
                                                                               50M
                                                                                      2426M
54661
                    0.6 00:02.75 6
                                             222+
                                                    389+
                                                         15M+
                                                                 26M+
                                                                        40M+
                                                                               75M+
       Grab
                                                                                      2556M+
                    0.0 00:00.15 2
                                                          3316K
                                                                 224K
54659
       cookied
                                             40
                                                   61
                                                                        4088K
                                                                               42M
                                                                                      2411M
53818
                    0.0 00:01.67 4
                                             52
                                                    91
                                                          7628K
                                                                 7412K
                                                                               48M
                                                                                      2438M
       mdworker
                                                                        16M
                    0.0 00:11.17 3
                                             53
50878
       mdworker
                                                   91
                                                         2464K
                                                                 6148K
                                                                        9976K
                                                                               44M
                                                                                      2434M
                                             32
                                        0
                                                   73
50410
       xterm
                    0.0 00:00.13 1
                                                          280K
                                                                 872K
                                                                        532K
                                                                               9700K
                                                                                      2382M
50078
                    0.0 00:06.70 1
                                             20
                                                          52K
                                                                 216K
                                                                        88K
                                                                               18M
                                                                                      2392M
       emacs
```

Running program "top" on Mac

- System has 123 processes, 5 of which are active
- Identified by Process ID (PID)

- Single processor executes multiple processes concurrently
 - Process executions interleaved (multitasking)
 - Address spaces managed by virtual memory system (OS course)
 - Register values for non-executing processes saved in system memory

Save current registers in memory

Schedule next process for execution

Load saved registers and switch address space (context switch)

Multiprocessing: The (Modern) Reality

CPU Registers

CPURegisters

Multicore processors

- Multiple CPUs on single chip
- Share main memory (and some of the caches)
- Each can execute a separate process
 - Scheduling of processors onto cores done by kernel

Concurrent Processes

- Each process is a logical control flow.
- Two processes or threads run concurrently (are concurrent) if their flows overlap in time
- Otherwise, they are sequential
- Examples (running on single core):
 - Concurrent: A & B, A & C

User View of Concurrent Processes

Control flows for concurrent processes are physically disjoint in time

 However, we can think of concurrent processes as running in parallel with each other

Context Switching

- Processes are managed by a shared chunk of memory-resident OS code called the kernel
 - Important: the kernel is not a separate process, but rather runs as part of some existing process.
- Control flow passes from one process to another via

Today

- **Exceptional Control Flow**
- Exceptions
- Processes
- Process Control

System Call Error Handling

- On error, Linux system-level functions typically return
 -1 and set global variable errno to indicate cause.
- Hard and fast rule:
 - Must check the return status of every system-level function
 - Only exception is the handful of functions that return void

Example:

```
if ((pid = fork()) < 0) {
    fprintf(stderr, "fork error: %s\n", strerror(errno));
    exit(0);
}</pre>
```

Error-reporting functions

Can simplify somewhat using an error-reporting function:

```
void unix_error(char *msg) /* Unix-style error */
{
   fprintf(stderr, "%s: %s\n", msg, strerror(errno));
   exit(0);
}
```

```
if ((pid = fork()) < 0)
  unix_error("fork error");</pre>
```

Error-handling Wrappers

 We simplify the code we present to you even further by using Stevens-style error-handling

```
pid_t Fork(void)
{
    pid_t pid;

if ((pid = fork()) < 0)
    unix_error("Fork error");
    return pid;
}</pre>
```

```
pid = Fork();
```

Obtaining Process IDs

- pid_t getpid(void)
 - Returns PID of current process
- pid_t getppid(void)
 - Returns PID of parent process

Creating and Terminating Processes

From a programmer's perspective, we can think of a process as being in one of three states

Running

 Process is either executing, or waiting to be executed and will eventually be scheduled (i.e., chosen to execute) by the kernel

Stopped

 Process execution is suspended and will not be scheduled until further notice (next lecture when we study signals)

Terminating Processes

- Process becomes terminated for one of three reasons:
 - Receiving a signal whose default action is to terminate (next lecture)
 - Returning from the main routine
 - Calling the exit function
- void exit(int status)
 - Terminates with an exit status of status
 - Convention: normal return status is 0, nonzero on error
 - Another way to explicitly set the exit status is to return an integer value from the main routine

Creating Processes

- Parent process creates a new running child process by calling fork
- int fork(void)
 - Returns 0 to the child process, child's PID to parent process
 - Child is almost identical to parent:
 - Child get an identical (but separate) copy of the parent's virtual address space.
 - Child gets identical copies of the parent's open file descriptors
 - Child has a different PID than the parent
- fork is interesting (and often confusing) because it is called *once* but returns *twice*

fork Example

```
int main()
  pid t pid;
  int x = 1;
  pid = Fork();
  if (pid == 0) { /* Child */
    printf("child : x=%d\n", ++x);
           exit(0);
  /* Parent */
  printf("parent: x=%d\n", --x);
  exit(0);
                                                 fork.c
```

```
linux> ./fork
parent: x=0
child : x=2
```

- Call once, return twice
- Concurrent execution
 - Can't predict execution order of parent and child
- Duplicate but separate address space
 - x has a value of 1 when fork returns in parent and child
 - Subsequent changes to x are independent
- Shared open files
 - stdout is the same in both parent and child

Modeling fork with Process Graphs

- A process graph is a useful tool for capturing the partial ordering of statements in a concurrent program:
 - Each vertex is the execution of a statement
 - a -> b means a happens before b
 - Edges can be labeled with current value of variables
 - printf vertices can be labeled with output
 - Each graph begins with a vertex with no inedges
- Any topological sort of the graph corresponds to a feasible total ordering.
 - Total ordering of vertices where all edges point from left to right

Process Graph Example

```
int main()
  pid t pid;
  int x = 1;
  pid = Fork();
  if (pid == 0) { /* Child */
    printf("child : x=%d\n", ++x);
           exit(0);
  /* Parent */
  printf("parent: x=%d\n", --x);
  exit(0);
                                                fork.c
```


Interpreting Process Graphs

Original graph:

Feasible total ordering:

Infeasible total ordering:

fork Example: Two consecutive forks

```
void fork2()
{
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("Bye\n");
}
```


Feasible output:	Infeasible output:
LO	LO
L1	Bye
Bye	L1
Bye	Bye
L1	L1
Bye	Bye
Bye	Bve

fork Example: Nested forks in parent

```
void fork4()
{
    printf("L0\n");
    if (fork() != 0) {
        printf("L1\n");
        if (fork() != 0) {
            printf("L2\n");
            }
        }
        printf("Bye\n");
}
```


L2

Feasible output:

LO

L1

Bye

Bye

L1

Bye

L2

Bye

Bye

fork Example: Nested forks in children

```
void fork5()
{
    printf("L0\n");
    if (fork() == 0) {
        printf("L1\n");
        if (fork() == 0) {
            printf("L2\n");
        }
    }
    printf("Bye\n");
}
```



```
Feasible output:

L0

Bye

L1

L2

Bye

Bye

Bye

Bye

L2
```

Reaping Child Processes

Idea

- When process terminates, it still consumes system resources
 - Examples: Exit status, various OS tables
- Called a "zombie"
 - Living corpse, half alive and half dead

Reaping

- Performed by parent on terminated child (using wait or waitpid)
- Parent is given exit status information
- Kernel then deletes zombie child process

What if parent doesn't reap?

- If any parent terminates without reaping a child, then the orphaned child will be reaped by init process (pid == 1)
- So, only need explicit reaping in long-running processes
 - e.g., shells and servers

Zombie Example

```
void fork7() {
                          if (fork() == 0) {
                           /* Child */
                           printf("Terminating Child, PID = %d\n", getpid());
                           exit(0);
                          } else {
                           printf("Running Parent, PID = %d\n", getpid());
                           while (1)
                             ; /* Infinite loop */
linux> ./forks 7 &
                                                                              forks.c
Running Parent, PID = 6639
Terminating Child, PID = 6640
                       TIME CMD
 6585 ttyp9 00:00:00 tcsh
                                                      ps shows child process as
              00:00:03 forks
                                                       "defunct" (i.e., a zombie)
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
                                                       Killing parent allows child to be
```

linux> ps PID TTY TIME CMD

00:00:00 tcsh

6642 ttyp9 00:00:00 ps reaped by init

[1] 6639

linux> ps

PID TTY

6639 ttyp9

linux> kill 6639

6585 ttyp9

[1] Terminated

Nonterminating Child Example

```
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
  PID TTY
                   TIME CMD
 6585 ttyp9
               00:00:00 tcsh
 6676 ttyp9
               00:00:06 forks
 6677 ttyp9
               00:00:00 pe
linux> kill 6676 ←
linux> ps
  PID TTY
                   TIME CMD
 6585 ttyp9
               00:00:00 tcsh
 6678 ttyp9
               00:00:00 ps
```

Child process still active even though parent has terminated

Must kill child explicitly, or else will keep running indefinitely

wait: Synchronizing with Children

■ Parent reaps a child by calling the wait function

- int wait(int *child_status)
 - Suspends current process until one of its children terminates
 - Return value is the pid of the child process that terminated
 - If child_status != NULL, then the integer it points to will be set to a value that indicates reason the child terminated and the exit status:
 - Checked using macros defined in wait.h
 - WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG, WTFCONTINUE Control Flow

wait: Synchronizing with Children

```
void fork9() {
  int child_status;

if (fork() == 0) {
    printf("HC: hello from child\n");
        exit(0);
} else {
    printf("HP: hello from parent\n");
    wait(&child_status);
    printf("CT: child has terminated\n");
}
printf("Bye\n");
}
forks.c
```


Feasible output: Infeasible output:

HC HP

HP CT

CT Bye

Bye HC

Another wait Example

- If multiple children completed, will take in arbitrary order
- Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

```
void fork10() {
  pid_t pid[N];
  int i, child status;
  for (i = 0; i < N; i++)
    if ((pid[i] = fork()) == 0) {
      exit(100+i); /* Child */
  for (i = 0; i < N; i++) { /* Parent */
    pid t wpid = wait(&child status);
    if (WIFEXITED(child_status))
      printf("Child %d terminated with exit status %d\n",
          wpid, WEXITSTATUS(child status));
    else
      printf("Child %d terminate abnormally\n", wpid);
                                                                                    forks.c
```

waitpid: Waiting for a Specific Process

- pid t waitpid(pid t pid, int &status, int options)
 - Suspends current process until specific process terminates
 - Various options (see textbook)

```
void fork11() {
  pid t pid[N];
  int i;
  int child status;
  for (i = 0; i < N; i++)
    if ((pid[i] = fork()) == 0)
       exit(100+i); /* Child */
  for (i = N-1; i >= 0; i--)
    pid t wpid = waitpid(pid[i], &child status, 0);
    if (WIFEXITED(child status))
       printf("Child %d terminated with exit status %d\n",
           wpid, WEXITSTATUS(child status));
    else
       printf("Child %d terminate abnormally\n", wpid);
                                                                                       forks.c
                                      Exceptions and Exceptional Control Flow
```

50

execve: Loading and Running Programs

- int execve(char *filename, char *argv[], char *envp[])
- Loads and runs in the current process:
 - Executable file filename
 - Can be object file or script file beginning with #!interpreter (e.g., #!/bin/bash)
 - ...with argument list argv
 - By convention argv[0] == filename
 - ...and environment variable list envp
 - "name=value" strings (e.g., USER=droh)
 - getenv, putenv, printenv
- Overwrites code, data, and stack
 - Retains PID, open files and signal context
- Called once and never returns
 - ...except if there is an error

execve Example

■ Executes "/bin/ls -lt /usr/include" in child process using current environment:


```
if ((pid = Fork()) == 0) { /* Child runs program */
   if (execve(myargv[0], myargv, environ) < 0) {
     printf("%s: Command not found.\n", myargv[0]);
     exit(1);
   }
}</pre>
```

Summary

Exceptions

- Events that require nonstandard control flow
- Generated externally (interrupts) or internally (traps and faults)

Processes

- At any given time, system has multiple active processes
- Only one can execute at a time on a single core, though
- Each process appears to have total control of processor + private memory space

Summary (cont.)

- Spawning processes
 - Call fork
 - One call, two returns
- Process completion
 - Call exit
 - One call, no return
- Reaping and waiting for processes
 - Call wait or waitpid
- Loading and running programs
 - Call execve (or variant)
 - One call, (normally) no return