1 DEFINITIONS 1

1 Definitions

1.1 Vector Space

Assume that v, x, y, z are vectors in V, and a, b, c are scalars in \mathbb{R} . A **vector space** is a set V with the following properties:

Commutativity:

• x + y = y + x

Associativity:

- (x + y) + z = x + (y + z)
- (ab)v = a(bv)

Additive Identity:

• there exists $0 \in V$ such that v + 0 = v for all $v \in V$

Additive Inverse:

• for all $v \in V$, there exists $x \in V$ such that v + x = 0

Multiplicative Identity:

• $1\nu = \nu$

Distributive Properties:

- a(x + y) = ax + ay
- (a+b)v = av + bv

1.2 Linear Combination

A linear combination of a list of vectors v_1, \ldots, v_n is itself a vector, taking the form:

$$a_1v_1 + \ldots + a_mv_m$$

where each $a_1, \ldots a_n \in \mathbb{R}$

1.3 Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_n is called the **span** of v_1, \ldots, v_n , and is defined:

$$\mathrm{span}(v_1, \dots, v_n) = \{a_1v_1 + \dots + a_nv_n : a_1, \dots, a_m \in \mathbb{R}\}$$

If the span is equal to some space $\operatorname{span}(\nu_1, \dots, \nu_n) = V$, then you could say that ν_1, \dots, ν_n spans V.

1.4 Linearly Independent

For $v_1, \ldots, v_n \in V$ and $a_1, \ldots, a_n \in \mathbb{R}$ such that:

$$a_1v_1 + \cdots + a_nv_n = 0$$

The list of vectors ν_1, \dots, ν_n is called **linearly independent** when

$$\alpha_1=\cdots=\alpha_n=0$$

for all possible values of v_1, \ldots, v_n .

1.5 Basis

A basis of V is a list of vectors in V that is both linearly independent and spans V.

The **Standard Basis** of the vector space \mathbb{R}^{\ltimes} is

$$(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)$$

which could also be written, using matrix bracket notation, as:

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

1.6 Dimension

The dimension of a vector space is the length of any basis of the vector space. For example,

$$\dim\,\mathbb{R}^n=n$$

1.7 Inner Product

For a pair of vectors $\mathbf{u}, \mathbf{v} \in V$ in the same vector space (they are both in \mathbb{R}^n for example), the Inner Product is defined as:

$$u \cdot v = u_1 v_1 + ... + u_n v_n$$

which is also sometimes written using angular brackets:

$$\langle u, v \rangle$$

Keep in mind that the dimension of u and v must be the same. Using matrix dimension notation:

$$u_{\{n\times 1\}}\cdot \nu_{\{n\times 1\}}$$

The Inner Product is also a function $f:(\mathbb{R}^n,\mathbb{R}^n)\to\mathbb{R}$. The input is an ordered pair of vectors, and the output is a number. Inner products have the following properties:

Positivity:

• $\langle v, v \rangle \ge 0$ for all $v \in V$

Definiteness:

• $\langle v, v \rangle = 0$ if and only if v = 0

Additivity in First Slot:

• $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}$

Homogeneity in First Slot:

• $\langle au, v \rangle = a \langle u, v \rangle$ for all $a \in \mathbb{R}$ and all $u, v \in V$

In another definition of the Inner Product, the concepts of "additivity" and "homogeneity" are combined into a concept called "linearity". **Bilinearity** is when there is linearity in both the First and Second slots. Additionally, there is a concept called **Symmetry** for all real numbers.

For $x, y, z \in V$ and $a, b \in \mathbb{R}$:

Bilinearity:

- Additivity and Homogeneity in First and Second Slot:
- $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$

Symmetry:

• $\langle x, y \rangle = \langle y, x \rangle$

1.8 Norm

The Norm of a vector \mathbf{x} is defined as the square root inner product of \mathbf{x} with itself:

$$\|x\| = \sqrt{\langle x, x \rangle}$$

The Euclidean Norm, also called 2-norm, is defined:

$$\|\mathbf{x}\|_2 = \sqrt{{\mathbf{x_1}}^2 + \ldots + {\mathbf{x_n}}^2}$$

which has the following properties:

Positivity:

- ||x|| > 0
- ||x|| = 0 if and only if x = 0

Homogeneity:

• $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$

Triangle Inequality:

• $||x + y|| \le ||x|| + ||y||$

1.9 Orthogonal

Two vectors $u, v \in V$ are called **orthogonal** if the inner product between them is 0,

$$\langle u, v \rangle = 0$$

you could also say " $\mathfrak u$ is orthogonal to $\mathfrak v$ ". Orthogonal is another way of saying "at right angles to each other", or "perpendicular".

1.10 Linear Map

A linear map from vector space V to vector space W is a function $T: V \to W$ with the following properties:

Additivity:

• T(u + v) = Tu + Tv for all vectors $u, w \in V$

Homogeneity:

• $T(\alpha \nu) = \alpha(T\nu)$ for all $\alpha \in \mathbb{R}$ and all $\nu \in V$

1.11 Linear Maps and Matrices

Suppose M is a linear map $f: \mathbb{R}^a \to \mathbb{R}^b$, then M can be written as b-by-a matrix:

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,\alpha} \\ \vdots & \vdots & \vdots \\ x_{b,1} & \cdots & x_{b,\alpha} \end{bmatrix}$$

2 Proofs

2.1 Cosine Formula for Inner Product

For two non-zero vectors $x, y \in V$,

$$\langle x,y\rangle = \|x\|\|y\|\cos\theta$$

where the angle $\angle xy = \theta$.

Proof:

There are two cases we need to write a proof for.

- Case 1: when x and y are not scalar multiples of each other.
- Case 2: when x and y are scalar multiples.

Case 1

For any triangle with sides a, b, c, The Law of Cosines states,

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

where the angle $\angle ab = \theta$. For vectors $x, y \in V$, we can treat them as sides of the triangle. Let:

$$a = ||x||$$
$$b = ||y||$$
$$c = ||x - y||$$

Which allows us to rewrite the Law of Cosines:

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \theta$$

Start with the definition of Inner Product, and apply its algebraic properties (notably the Bilinearity property), to show that Law of Cosines for Inner Products is correct.

$$||x - y||^{2}$$

$$= \langle x - y, x - y \rangle$$

$$= \langle x, x - y \rangle - \langle y, x - y \rangle$$

$$= (\langle x, x \rangle - \langle x, y \rangle) - (\langle y, x \rangle - \langle y, y \rangle)$$

$$= \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^{2} - 2\langle x, y \rangle + ||y||^{2}$$

2 PROOFS 3

Returning to the Law of Cosines,

And this is what we were trying to show.

2.4 Other

For vectors $u, v \in V$ such that:

$$\langle u, v \rangle = \|u\| \|v\| \cos \theta$$

Show that $\mathfrak{u}, \mathfrak{v}$ are orthogonal when $\theta = 0$.

Case 2:

Since x and y are scalar multiples of each other, we can write.

$$y = cx$$

for some scalar $c \in \mathbb{R}$ where $c \neq 0$ (since the theorem statement says that x and y are "nonzero vectors"). Now, to find the value of θ , we look at the value of c:

- If c > 0, then $\theta = 0$, and $\cos \theta = 1$
- If c < 0, then $\theta = \pi$, and $\cos \theta = -1$

Define the sign of c, so that we can use it in our proof:

$$\mathrm{sign}(c) = \left\{ s \in \{-1,1\} \ : \ s = \cos\theta \right\}$$

And here's the proof:

$$\begin{split} \langle x,y \rangle &= \langle cx,x \rangle \\ &= c \langle x,x \rangle \\ &= c \|x\|^2 \\ &= c \|x\| \|x\| \\ &= c \sqrt{(x_1^2 + \ldots + x_n^2)} \|x\| \\ &= \mathrm{sign}(c) \sqrt{c^2 (x_1^2 + \ldots + x_n^2)} \|x\| \\ &= \mathrm{sign}(c) \sqrt{(c^2 x_1^2 + \ldots + c^2 x_n^2)} \|x\| \\ &= \mathrm{sign}(c) \sqrt{(y_1^2 + \ldots + y_n^2)} \|x\| \\ &= \mathrm{sign}(c) \|y\| \|x\| \\ &= \|x\| \|y\| \cos \theta \end{split}$$

2.2 Triangle Inequality

TODO

2.3 Cauchy-Schwartz Inequality

TODO