Workshop Problems 2

Problem 1. Let A be an $m \times n$ matrix and let \mathbf{b} and \mathbf{c} be vectors in \mathbb{R}^m . Show that if $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{c}$ are both consistent then so is $A\mathbf{x} = \mathbf{b} + \mathbf{c}$.

Problem 2. Let A be an $m \times n$ matrix and let \mathbf{u} be any vector in \mathbb{R}^m that satisfies the equation $A\mathbf{x} = \mathbf{0}$. Show that if c is a scalar then $c\mathbf{u}$ also satisfies $A\mathbf{x} = \mathbf{0}$.

Problem 3. Let A be an $m \times n$ matrix and suppose that the vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_p}$ each satisfy the equation $A\mathbf{x} = \mathbf{0}$. Show that any linear combination of $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_p}$ also satisfies $A\mathbf{x} = \mathbf{0}$.

Problem 4. Theorem 6 of our textbook states the following: Suppose the system $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{q} = \mathbf{p} + \mathbf{v}$, where \mathbf{v} is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In this problem you will prove this theorem.

- a. Let **p** be a solution to A**x** = **b** and let **v** be any solution to A**x** = **0**. Show that **p** + **v** is also a solution to A**x** = **b**.
- b. Let **p** and **q** be solutions to A**x** = **b**. Show that **q p** is a solution to A**x** = **0**.
- c. Use parts (a) and (b) together to give a proof of Theorem 6.