Assignment 2: Constrained Optimization and the KKT Conditions

Jacob Puthipiroj

March 22, 2019

KKT Conditions for Linear Programming

A linear program can be expressed in canonical form as:

$$\min_{x} c^T x$$
 subject to $Ax \leq b$

for matrices $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m \times 1}$ and $c \in \mathbb{R}^{n \times 1}$.

The Lagrangian would be

$$\mathcal{L}(x,\lambda) = c^T x - \lambda (Ax - b)$$

In this case, λ is a vector of n values. Primal feasibility, dual feasibility, complementary slackness, and lagrange stationarity

Expressing l_1 and l_{∞} Regression Problems as Linear Programs

Specifically, by defining slack variables and inequality constraints as needed.

Solving l_1 and l_{∞} regression problems using CVXPY

Figure 1: The contour plots, as well as the 3D projection plot indicates that there is a unique maximum over the domain. This is critical point is approximately $x^* \approx [1m, 1 \text{ rad}]$.