

MATEMÁTICAS II

Boletín 1 - Aplicaciones de la integral

1. Calcular las siguientes integrales definidas

a)
$$\int_{1}^{1} x(x^2+1)^3 dx$$

a)
$$\int_{-1}^{1} x(x^2+1)^3 dx$$
 b) $\int_{0}^{4} \frac{1}{\sqrt{(2x+1)}} dx$

c)
$$\int_0^{2\pi} x \sin x dx$$

d)
$$\int_{1}^{2} (x-1)\sqrt{2-x} \, dx$$
 e) $\int_{0}^{\pi} \cos^{2} x \, dx$

e)
$$\int_0^{\pi} \cos^2 x \, dx$$

f)
$$\int_{1}^{4} \frac{\ln x}{x} dx$$

g)
$$\int_0^{\frac{\pi}{2}} \frac{3 \, \text{sen} x \cos x}{1 + \text{sen}^2 x} \, dx$$

g)
$$\int_0^{\frac{\pi}{2}} \frac{3 \operatorname{sen} x \cos x}{1 + \operatorname{sen}^2 x} dx$$
 h)
$$\int_0^{\pi} \operatorname{sen} \left(2x + \frac{\pi}{3}\right) \cos(2x) dx$$

2. En cada uno de los siguientes apartados, hacer un esbozo de la región acotada por las gráficas y calcular su

a)
$$f(x) = -x^2 + 4x + 2$$
, $g(x) = x + 2$

b)
$$y = \frac{1}{x^2}$$
, $y = 0$, $x = 1$, $x = 5$

c)
$$f(y) = y(2-y)$$
, $g(y) = -y$

d)
$$g(x) = \frac{4}{2-x}$$
, $y = 4$, $x = 0$

e)
$$y = 2 \operatorname{sen} x$$
, $y = \operatorname{tg} x$, $x = \frac{-\pi}{3}$, $x = \frac{\pi}{3}$

f)
$$y = xe^{-x^2}$$
, $y = 0$, $x = 0$, $x = 1$

g)
$$y = x^3 - 6x^2 + 8x$$
 y el eje OX

h)
$$x = -y^2 - y + 2$$
, ambos ejes de coordenadas y la recta $y = -1$

i)
$$x = y^2 + 4y$$
 y el eje OY

j)
$$y^2 = 4x$$
, $x^2 = 4y$

k)
$$y = -x^2 + 6x$$
, $y = x^2 - 2x$

l)
$$x = y^2$$
, $x = 2 - y^2$

- 3. Calcular el área de la región plana comprendida
 - a) Entre la curva $y = \frac{1}{x^3 x}$, el eje OX en el intervalo [2, 3]
 - b) Entre las curvas $y = 2 \operatorname{sen} x$, $y = 4 \operatorname{cos} x$ en el intervalo $[0, 2\pi]$.
- 4. Usar el método de los discos o el de las capas para calcular el volumen del sólido generado, al girar en torno de la recta dada, la región acotada por las gráficas de las ecuaciones

a)
$$y=x^3, y=0, x=2$$
 a1) Alrededor del eje OX a2) Alrededor del eje OY a3) Alrededor de la recta $x=4$.

b)
$$y=2x^2, y=0, x=2$$
 b1) Alrededor del eje OX b2) Alrededor del eje OY b3) Alrededor de la recta $y=8$.

c)
$$y = \frac{1}{\sqrt{x+1}}, y = 0, x = 0, x = 3$$
 c1) Alrededor del eje OX c2) Alrededor del eje OY

5. Sea la región del plano del primer cuadrante limitada por la circunferencia de ecuación $x^2 + y^2 = 1$, el eje OX y la recta $y = \sqrt{3}x$. Calcular el volumen del sólido generado al girar dicha región alrededor del eje OX.

1

- 6. Sea \mathcal{R} la región limitada por las gráficas de las funciones $y=e^{-x}, y=0, x=0, x=2$. Calcular:
 - a) El área de la región \mathcal{R}
 - b) El volumen del sólido que se genera al girar \mathcal{R} alrededor del eje OY
 - c) El volumen del sólido que se genera al girar \mathcal{R} alrededor de la recta y=2.
- 7. Calcular el volumen que se obtiene cuando la región limitada por la gráfica de la función $y = \frac{x}{\sqrt{x^3 + 1}}$, el eje OX y la recta x = 1, gira en torno del eje OY.
- 8. Sea \mathcal{R} la región limitada por las gráficas de $y = \ln x$, y = 0, x = 1 y x = e. Determinar el volumen que se engendra al girar dicha región:
 - a) Alrededor del eje OX
 - b) Alrededor del eje OY
 - c) Alrededor de la recta x = e
 - d) Alrededor de la recta y = 1.
- 9. Sea \mathcal{R} la región del primer cuadrante limitada por las curvas $x = 0, y = 0, y = x^3 + 1$ y la recta tangente a esta última en el punto de abscisa x = 1. Calcular:
 - a) El área de \mathcal{R} .
 - b) El volumen generado al girar \mathcal{R} , alrededor del eje OX.
- 10. Sea \mathcal{R} la región del plano limitada por las gráficas de las funciones $y = x^2 x$ e y = x. Calcular el volumen que genera dicha región cuando \mathcal{R} gira
 - a) Alrededor de la recta x=2
 - b) Alrededor de la recta y = 3.
- 11. Sea la región del primer cuadrante acotada por las curvas de ecuaciones $x^2 + y^2 = 9$, $y = \sqrt{3}x$ e y = 0. Calcular el volumen del sólido que se genera al hacer girar esta región alrededor del eje OY.
- 12. Sea $f(x) = \cos^2 x$, calcular el volumen del sólido de revolución que se obtiene al girar en torno al eje OX, la región limitada por la gráfica de f(x) y el eje OX en el intervalo $\left[0, \frac{\pi}{2}\right]$.
- 13. El semicirculo superior acotado por $y = \sqrt{4 x^2}$ y el eje OX se hace girar alrededor de la recta y = -1. Expresar, mediante una integral, el volumen del sólido de revolución que se obtiene.
- 14. Sea \mathcal{R} la región acotada por la gráfica de la función $f(x) = \arctan x$, la recta $y = \frac{\pi}{4}$ y el eje de ordenadas. Expresar mediante integrales:
 - a) El volumen del sólido de revolución que se obtiene al girar la región \mathcal{R} alrededor de la recta y=5.
 - b) El volumen del sólido de revolución que se obtiene al girar la región $\mathcal R$ alrededor del eje de ordenadas.
- 15. Sea \mathcal{R} la región del plano acotada por las parábolas $y=x^2, y=6x-x^2$. Expresar mediante integrales:
 - a) El volumen del sólido de revolución que se obtiene al girar \mathcal{R} alrededor de la recta y = 9.
 - b) El volumen del sólido de revolución que se obtiene al girar \mathcal{R} alrededor del eje de ordenadas.
- 16. Sea \mathcal{R} la región del plano acotada por la parábola $y = x^2 + 1$ y la recta y = 5. Expresar mediante integrales:
 - a) El volumen del sólido de revolución que se obtiene al girar \mathcal{R} alrededor de la recta y=-1.
 - b) El área de la región \mathcal{R} .
- 17. Sea R la región del plano acotada por la gráfica de $y = \ln x$, y las rectas y = 0, x = e y considérese el volumen del sólido de revolución que se obtiene al girar la región R alrededor de la recta y = 1.
 - a) Expresar el volumen del sólido mediante una integral, usando el método de discos
 - b) Expresar el volumen del sólido mediante una integral, usando el método de capas
 - c) Calcular el volumen realizando alguna de las integrales anteriores

- 18. Expresar, mediante integrales, el volumen del sólido de revolución que se genera al girar la región en el primer cuadrante acotada por las gráficas de las funciones $y = x^3$, y = 4x
 - a) Alrededor del eje OX
 - b) Alrededor de la recta y = 8.
- 19. Sea R la región del plano acotada por la gráfica de $y=4-x^2$, y las rectas x=0, y=1. Dibujar la región R y expresar mediante una integral, utilizando el método de las capas, el volumen del sólido de revolución que se obtiene al girar la región R alrededor de la recta x=5.
- 20. El semicirculo superior acotado por $y = \sqrt{4 x^2}$ y el eje OX se hace girar alrededor de la recta y = -1. Expresar, mediante una integral, el volumen del sólido de revolución que se obtiene.
- 21. Hallar el volumen del cuerpo que se genera al girar, alrededor de la recta x = -1, la región limitada por la parábola $y^2 = 4x$ y por la recta x = 1.
- 22. Considérese el sólido que se forma cuando la región acotada por las curvas $y = \frac{1}{x^2}$, y = x, y = 0, x = 2 gira alrededor de la recta x = 2. Expresar el volumen del sólido utilizando el método de discos o utilizando el método de capas.
- 23. Sea S el sólido de revolución que se obtiene al girar, alrededor de la recta x = 2, la región del plano limitada por la parábola $y = 4 x^2$, y las rectas y = 3x e x = 2. Se pide:
 - a) Expresar el volumen de S utilizando el método de los discos.
 - b) Expresar el volumen de S utilizando el método de las capas.
- 24. Sea \mathcal{R} la región del plano acotada por la gráfica de $x = y^2 + 1$ y las rectas y = 0, $y = \frac{x}{2}$. Sea S el sólido de revolución que se obtiene cuando \mathcal{R} gira alrededor de la recta x = 2. Se pide:
 - a) Expresar el volumen de S utilizando el método de los discos.
 - b) Expresar el volumen de S utilizando el método de las capas.

SOLUCIONES

1. a) 0, b) 2, c)
$$-2\pi$$
, d) $\frac{-4}{15}$, e) $\frac{\pi}{2}$, f) $\frac{\ln^2 4}{2}$, g) $\frac{3 \ln 2}{2}$, h) $\frac{\sqrt{3}\pi}{4}$

$$2. \ a) \ \frac{9}{2}, \quad b) \ \frac{4}{5}, \quad c) \ \frac{9}{2}, \quad d) \ 4 - 4 \ln 2, \quad e) \ 2 - 2 \ln 2, \quad f) \ \frac{1}{2} - \frac{1}{2} e^{-1},$$

g) 8, h)
$$\frac{13}{6}$$
, i) $\frac{32}{3}$, j) $\frac{16}{3}$, k) $\frac{64}{3}$, l) $\frac{8}{3}$

3. a)
$$\frac{5}{2} \ln 2 - \frac{3}{2} \ln 3$$
, b) $8\sqrt{5}$

4. a1)
$$\frac{128\pi}{7}$$
, a2) $\frac{64\pi}{5}$, a3) $\frac{96\pi}{5}$

b1)
$$\frac{128}{5}\pi$$
, b2) 16π , b3) $\frac{896\pi}{15}$

c1)
$$2\pi \ln 2$$
, c2) $\frac{16\pi}{3}$

5.
$$\frac{\pi}{3}$$
.

6. a)
$$1 - e^{-2}$$
, b) $2\pi - 6\pi e^{-2}$, c) $\frac{7\pi}{2} + \frac{\pi}{2}e^{-4} - 4\pi e^{-2}$

7.
$$\frac{4\pi}{3}(\sqrt{2}-1)$$

8. a)
$$\pi(e-2)$$
, b) $\frac{\pi}{2}(1+e^2)$, c) $2\pi e - \frac{\pi(1+e^2)}{2}$ d) $(4-e)\pi$

9. a)
$$\frac{7}{12}$$
, b) $\frac{95}{126}\pi$

10. a)
$$\frac{8}{3}\pi$$
, b) $\frac{32}{5}$

11.
$$9\pi\sqrt{3}$$

12.
$$\frac{3}{16}\pi^2$$

13.
$$11,6165\pi$$

14. a)
$$4{,}14296\pi$$
, b) $\frac{1}{2}\pi(\pi-2)$