Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
20/03/2017	Accélérations – Lois entrée/sortie	TD5-2 - Sujet

Mécanismes Vitesses et accélération - Lois entrée/sortie

TD5-2

Fermeture géométrique Système 4 barres – Manège Tapis volant

	Programme - Compétences		
B210	MODELISER	Modélisation plane	
C25	RESOUDRE	Loi entrée-sortie géométrique	

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
20/03/2017	Accélérations – Lois entrée/sortie	TD5-2 - Sujet

Fermeture géométrique

Exercice 1: Manège « Tapis Volant »

Reprenons le manège étudié dans un précédent TD :

Dans un premier temps, reprenons le modèle du système général à 3 bielles :

On cherche la relation entre les différents paramètres géométriques et l'entrée supposée associée à la rotation 1/0.

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
20/03/2017	Accélérations – Lois entrée/sortie	TD5-2 - Sujet

Cas général

Question 1: Ecrire la fermeture de chaîne géométrique du système et en déduire les 3 équations scalaires associées en projection dans la base 0

Question 2: Ecrire ces 3 équations en projection dans la base 2

Question 3: Justifier le fait que le choix de la base 0 est propice à la détermination de la relation liant θ_{10} et θ_{30}

Question 4: Mettre en place la relation entre θ_{10} et θ_{30} et les longueurs du système sous la forme $-a\cos\theta_{10}+b\cos\theta_{30}-c\cos(\theta_{30}-\theta_{10})+d=0$ où a,b,c et d seront explicités

Question 5: Dériver cette relation et obtenir la relation cinématique entre $\dot{ heta}_{30}$ et $\dot{ heta}_{10}$

Cas du manège

Plaçons-nous maintenant dans le cas du manège, c'est-à-dire :

Même si les solutions sont évidentes, démontrons les relations entre les différents angles.

Question 6: Simplifier la relation géométrique dans le cas du manège

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
20/03/2017	Accélérations – Lois entrée/sortie	TD5-2 - Sujet

On précise les formules mathématiques suivantes :

Formules de De Moivre:

$$x = \frac{x+y}{2} + \frac{x-y}{2} \quad ; \quad y = \frac{x+y}{2} - \frac{x-y}{2}$$
$$e^{x} \pm e^{y} = e^{\frac{x+y}{2}} \left(e^{\frac{x-y}{2}} \pm e^{-\frac{x-y}{2}} \right)$$

Avec i, on obtient les formules de Simpson, ou « de Werner », ou « de Prostaferesi » :

$$e^{ix} \pm e^{iy} = e^{i\frac{x+y}{2}} \left(e^{i\frac{x-y}{2}} \pm e^{-i\frac{x-y}{2}} \right)$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

Question 7: Résoudre l'équation obtenue et déterminer θ_{30} en fonction de θ_{10} Question 8: Simplifier la relation cinématique liant $\dot{\theta}_{30}$ et $\dot{\theta}_{10}$ dans le cas de la solution liée au manège

Question 9: Faire le bilan du nombre d'équations et d'inconnues du système initial et en déduire s'il est possible d'exprimer tous les paramètres géométriques θ_{21} , θ_{32} et θ_{30} en fonction de l'entrée θ_{10}

Maintenant que nous avons la relation $\theta_{30} = f(\theta_{10})$, utilisons les équations initiales pour résoudre tout le système dans le cas simple du manège.

Question 10: En utilisant l'équation de fermeture angulaire, en déduire la relation liant θ_{21} et θ_{23} dans le cas du manège

Question 11: En reprenant les équations issues de la relation de Chasles, donner finalement la relation liant les 4 angles du manège