CS472 Module 10 Part D - Dealing with Computational Complexity

Athens State University April 4, 2016

Outline

Contents

1 Algorithmic implications of the $P \neq NP$ conjecture 1
2 Approximation Strategies 2
3 Approximation Algorithms for the TSP 3
4 Approximation Algorithms for the Knapsack Problem 8
5 Key Points 9

1 Algorithmic implications of the $P \neq NP$ conjecture

P vs. NP: Context

Most interesting problems are in the NP-hard complexity class

Remember what we said about O(n)?

n	lg n	n	$n \lg n$	n^2	$2^{\rm n}$	n!
10	0.003 us	0.01 us	0.033 us	0.1 us	1 us	$3.363~\mathrm{ms}$
20	$0.004 \mathrm{\ us}$	0.02 us	0.086 us	$0.4 \mathrm{\ us}$	$1 \mathrm{ms}$	77.1y
30	0.005 us	0.03 us	0.147 us	$0.9 \mathrm{\ us}$	1s	$8.4 \times 10^{15} \text{y}$
40	0.005 us	$0.04 \mathrm{\ us}$	0.213 us	$1.6 \mathrm{\ us}$	$18.3 \mathrm{m}$	
50	0.006 us	0.05 us	$0.282 \mathrm{\ us}$	2.5 us	13d	
100	0.007 us	0.10 us	0.644 us	10 us	4x10^13y	
$1x10^{3}$	0.010 us	$1.00 \mathrm{\ us}$	9.966 us	1 ms		
$1x10^{4}$	$0.013 \mathrm{\ us}$	10 us	130 us	$100~\mathrm{ms}$		
$1x10^{5}$	0.017 us	$0.10~\mathrm{ms}$	$1.67~\mathrm{ms}$	10s		
$1x10^{6}$	$0.020 \mathrm{\ us}$	1 ms	$19.93~\mathrm{ms}$	$16.7 \mathrm{m}$		
$1x10^{7}$	0.023 us	$0.01 \mathrm{\ s}$	$0.23 \mathrm{\ s}$	1.16d		
$1x10^8$	0.027 us	$0.10 \mathrm{\ s}$	$2.66 \mathrm{\ s}$	115.7d		
1x10^9	$0.030 \mathrm{\ us}$	1 s	$29.9~\mathrm{s}$	31.7y		

Remember what we said about O(n)?

Note what the table tells us about working with O(n)

- All such algorithms take roughly the same time for n = 10
- Any algorithm that is O(n!) becomes useless for $n \ge 20$
- Algorithms that are $O(2^n)$ become impractical for n > 40
- Algorithms that are $O(n^2)$ remain usable up to about n = 10000 but quickly deteriorate with larger inputs
- Linear (O(n)) and log-linear (O(n*lg(n))) algorithms remain practical for large input sizes
- Linear is best, but constant is even better.

What can we do?

- \bullet OK... but what can we do if most everything interesting is is NP?
 - Use a problem-solving strategy that can find an exact solution to the problem but will not be able to do so in polynomial time
 - Use an approximation algorithm that can find an approximate (sub-optimal) solution in polynomial time

2 Approximation Strategies

Approximation Strategies

- Apply a fast approximation algorithm to get a solution that is not necessarily optimal but hopefully close to it
- Accuracy measures
 - accuracy ratio of an approximate solution s_a
 - * $r(s_a) = f(s_a)/f(s^*)$ for minimization problems
 - * $r(s_a) = f(s^*)/f(s_a)$ for maximization problems

- where $f(s_a)$ and $f(s^*)$ are values of the objective function for the approximate solution and actual optimal solution
- Performance ratio of the Algorithm A
 - lowest upper bound of $r(s_A)$ on all instances

3 Approximation Algorithms for the TSP

The Traveling Salesman Problem (TSP)

- \bullet Suppose we have a weighted connected graph G that we wish traverse s.t. we visit each vertex once and only once
- This is known as a Hamiltonian circuit (or cycle) of the graph
- \bullet The Traveling Salesman Problem asks what is the minimum cost Hamiltonian circuit in the graph G

Example: The Traveling Salesman Problem

FIGURE 3.7 Solution to a small instance of the traveling salesman problem by exhaustive search.

Nearest Neighbor: the greedy approach to the TSP

ullet Pick a starting vertex v

- Each vertex keeps some state of whether or not that vertex has been visited in the tour
- Look at the neighbors of v and select the neighbor with the lowest cost that has not been visited

Nearest Neighbor: Just how bad is the greedy approach

- Nearest-neighbor tours may depend on the starting city
- Note that $r_A = \infty$, i.e. unbounded above
 - Make the largest weight arbitrarily large

Multifragment-Heuristic - Shortest edge: another greedy approach to the TSP

- Inspired by Kruskal's algorithm
- Sort the edges in increasing order of weight
- Start with the least cost edge, look at edges 1-by-1 and select an edge only if the edge, together with already selected edges,
 - does not cause a vertex have degree of three or more (# edges)
 - does not form a cycle, unless the number of selected edges equals the number of vertices in the graph

Other approaches: Twice around the tree

- Algorithm
 - Construct a MST of the graph
 - Start at any vertex, create a path that goes around twice around the tree and returns to the same vertex
 - Create a tour from the circuit by making shortcuts to avoid visiting intermediate vertices more than once
- Still has $r_A = \infty$ for general instances, but get better tours than with nearest-neighbor

Other appraoches: Twice around the tree

FIGURE 12.11 Illustration of the twice-around-the-tree algorithm. (a) Graph. (b) Walk around the minimum spanning tree with the shortcuts.

Other approaches: Chistofiedes Algorithm

- Algorithm
 - Construct MST of the graph
 - Add edges of a min-weight matching of all the odd vertices in the MST
 - Find an Eulerian circuit of the multigraph from step $2\,$
 - Create a tour from the path from the previous state by making shortcuts to avoid visiting nodes more than once
- $\bullet\,$ Still ha $r_A=\infty$ but gets better results than twice-around-the-tree

Other approaches: Chistofiedes Algorithm

FIGURE 12.12 Application of the Christofides algorithm. (a) Graph. (b) Minimum spanning tree with added edges (in dash) of a minimum-weight matching of all odd-degree vertices. (c) Hamiltonian circuit obtained.

Other approaches: Euclidean instances

- It has been proven that if $P \neq NP$, then there exists no approximation algorithm for the TSP with a finite performance ratio.
- Euclidean circuit: an instance of the TSP such that the distances (weights) on the graph satisfy the conditions:
 - symmetry: d[i,j] = d[j,i] for any pair of nodes i and j,
 - triangle inequality: $d[i, j] \le d[i, k] + d[k, j]$ for any nodes i, j, and k.

Other approaches: Euclidean instances

• In different cases, the approx. tour length / optimal tour length is less than:

- Euclidean instances: $0.5 * (\lceil (log_2 n) \rceil + 1)$

- Nearest neighbor and shortest edge: 2

- Twice-around-the-tree: 1.5

Other approaches: Local search Heuristics

• Start with some initial tour (e.g., nearest neighbor)

• On each iteration, explore the current tour's neighborhood by exchanging a few edges in the tour

• If a new tour is shorter, make it the current tour; otherwise, try exchanging other edges

• If no change yields a shorter tour, current tour is returned as the output

Other approaches: Local Search Heuristics

FIGURE 12.13 2-change: (a) Original tour. (b) New tour.

Other approaches: Local Search Heuristics

FIGURE 12.14 2-changes from the nearest-neighbor tour of the graph in Figure 12.11.

Other approaches: Local Search Heuristics

FIGURE 12.15 3-change: (a) Original tour. (b), (c) New tours.

4 Approximation Algorithms for the Knapsack Problem

Recall the greedy algorithm for the knapsack problem

- Problem
 - We have values with weights, want best value for a container with a specific capacity
- Algorithm
 - Order the items in decreasing order of relative values $v_1/w_1 \geq \ldots \geq v_n/w_n$
 - Select items in this order, skipping those that don't fit into the knapsack
- Approximation performance ration r_A is unbounded but algorithm yields exact solutions for the continuous version of the problem

Approximation Algorithm

- Algorithm
 - Order items in decreasing order of relative values
 - From some integer parameter $0 \le k \le n$, generate all subsets of k items or less and for each of those that fit in the container, add the remaining items in decreasing order of their value to weight ratios
 - Find the most valuable subset among those generated and output this as our result
- Accuracy: $f(s^*)/f(s_a) \le 1 + 1/k$ for an instance of size n
- Time efficiency: $O(kn^{k+1})$
 - There are fully polynomial schemes: algorithms with polynomial running time as functions of both n and k

5 Key Points

Key Points

- \bullet Many NP-hard problems can be dealt with using approximation algorithms
- $\bullet\,$ Need to have some means to measure the quality of the approximation
- Examples
 - Approximation algorithms for the TSP
 - Approximation algorithms for the Knapsack problem