9. Граница на функция. Дефиниции на Коши и Хайне, еквивалентност

Граница на функция — дефиниция на Коши

Дефиниция

Казваме, че $\pmb{a} \in \mathbb{R}$ е <u>точка на сгъстяване</u> на $\pmb{D} \subseteq \mathbb{R}$, ако всяка околност на \pmb{a} съдържа точка от \pmb{D} , различна от \pmb{a} .

Околност на $\mathbf{a} \in \mathbb{R}$ наричаме всеки интервал от вида $(\mathbf{a} - \varepsilon, \mathbf{a} + \varepsilon)$, $\varepsilon > \mathbf{0}$.

Дефиниция (Коши)

Нека $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ и $a \in \mathbb{R}$ е точка на сгъстяване на D. Казваме, че $\ell \in \mathbb{R}$ е граница на f(x) при x, клонящо към a, и пишем $\ell = \lim_{x \to a} f(x)$ или $\lim_{x \to a} \overline{f(x)} = \ell$, ако

$$orall arepsilon > 0 \quad \exists \delta > 0 : |f(x) - \ell| < arepsilon \quad orall x \in D$$
 такова, че $|x - a| < \delta$ и $\underline{x
eq a}$.

Пишем още $f(x) \xrightarrow[x \to a]{} \ell$. Казва се още:

- f(x) клони към ℓ при x, клонящо към a;
- f(x) има граница ℓ в a.

Геометрична интерпретация

Пример на функция без граница в точка

Граница на функция — дефиниция на Хайне

Дефиниция (Хайне)

Нека $f:D\to\mathbb{R},\,D\subseteq\mathbb{R}$ и $a\in\mathbb{R}$ е точка на сгъстяване на D. Казваме, че $\ell\in\mathbb{R}$ е граница на f(x) при x, клонящо към a, ако

$$\forall \{x_n\} : \lim x_n = a, \ x_n \in D, \ x_n \neq a \ \forall n \quad \text{immame} \quad \lim f(x_n) = \ell.$$

Бележка

 $\pmb{a} \in \mathbb{R}$ е точка на сгъстяване на \pmb{D}

$$\iff \exists \{x_n\} : \lim x_n = a, \ x_n \in D, \ x_n \neq a \ \forall n.$$
 (2)

Теорема

Дефинициите на Коши и Хайне за граница на функция в точка са еквивалентни.

Доказателство на теоремата: Коши \Longrightarrow Хайне

Нека $\ell = \lim_{x \to a} f(x)$ според деф. на Коши.

Ще докажем, че

$$\forall \{x_n\} : \lim x_n = a, \ x_n \in D, \ x_n \neq a \ \forall n \quad \text{umame} \quad \lim f(x_n) = \ell. \tag{3}$$

Нека $\varepsilon > 0$ е произволно фиксирано.

Деф. Коши

$$\Longrightarrow$$
 $\exists \delta > 0 : |f(x) - \ell| < \varepsilon \quad \forall x \in D$ такова, че $|x - a| < \delta$ и $x \neq a$. (4)

Нека $\{x_n\}$ е произволна редица такава, че

 $\lim x_n = a, \ x_n \in D, \ x_n \neq a \quad \forall n.$

Имаме, че

$$\lim x_n = \mathbf{a} \implies \exists \nu \in \mathbb{R} : |x_n - \mathbf{a}| < \delta \quad \forall n > \nu.$$
 (5)

Оттук и (4)

$$\implies |f(x_n) - \ell| < \varepsilon \quad \forall n > \nu \quad \Longrightarrow \quad \lim f(x_n) = \ell. \tag{6}$$

Доказателство на теоремата: Хайне \Longrightarrow Коши

Нека $\ell = \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x})$ според деф. на Хайне.

Това означава, че

$$\forall \{x_n\} : \lim x_n = a, \ x_n \in D, \ x_n \neq a \quad \forall n \quad \text{mame} \quad \lim f(x_n) = \ell. \tag{7}$$

Ще докажем, че

$$\forall \varepsilon > 0 \quad \exists \delta > 0 : |f(x) - \ell| < \varepsilon \quad \forall x \in D \text{ такова, че } |x - a| < \delta \text{ и } x \neq a.$$

Допускаме противното:

$$\exists \varepsilon_0 > 0 : \forall \delta > 0 \quad \exists \xi \in D : \xi \neq a, \ |\xi - a| < \delta \text{ if } |f(\xi) - \ell| \ge \varepsilon_0$$

$$\stackrel{\delta=\frac{1}{n}}{\Longrightarrow} \quad \forall n \in \mathbb{N} \quad \exists x_n \in D : x_n \neq a, \ |x_n-a| < \frac{1}{n} \bowtie |f(x_n)-\ell| \geq \varepsilon_0. \quad (8)$$

Така излезе, че съществува $\{x_n\}$ такава, че

$$\lim x_n = a, \ x_n \in D, \ x_n \neq a \quad \forall n \quad \text{ho} \quad \lim f(x_n) \neq \ell.$$
 (9)

Противоречие.