Revised: 2/8/2021

Probability I

Michael C. Hackett
Assistant Professor, Computer Science

Community College of Philadelphia

• **Probability** is the proportion of times an outcome occurs in a random process if we observed the process an infinite number of times.

 Probability is used to describe and better understand apparent randomness.

- A random process is used to generate outcomes.
 - Such as flipping a coin.

- When you flip a (fair and unbiased) coin, it has and equal chance of landing on heads or tails (or "face up"/"face down").
 - We'll use **H** for heads and **T** for tails
- Probability is a proportion; The probability of an event happening is between 0 and 1
 - Or, between 0% and 100% chance of happening.

- There are only two possible outcomes when flipping a coin
 - It lands on heads or it lands on tails
- Only one of the two possible outcomes result in the coin landing on heads
 - Probability of landing on heads = $\frac{1}{2}$ = 0.50 = 50%
 - P(H) = 0.5
- Likewise, only one of the two possible outcomes result in the coin landing on tails
 - Probability of landing on tails = $\frac{1}{2}$ = 0.50 = 50%
 - P(T) = 0.5
- The probabilities of all possible outcomes must add up to 1 (100%)
 - P(H) + P(T) = 0.5 + 0.5 = 1.0

- Rolling a (fair and unbiased) die demonstrates a comparable example.
 - Only six possible outcomes when rolling a die; numbers 1 through 6 all have an equal chance of being rolled

- Each number has the same probability ($\frac{1}{6} \sim 0.167 \sim 16.7\%$) of being rolled
 - $P(1) = ^{0.167}$
 - $P(2) = ^{0.167}$
 - $P(3) = ^{0.167}$
 - $P(4) = ^{0.167}$
 - $P(5) = ^{\circ}0.167$
 - $P(6) = ^{0.167}$

- A Roulette wheel is another example used to demonstrate probability.
- Equally sized slots on the wheel are numbered
 0 through 36
 - Excluding 0, half of the numbers are even, and the other half are odd.
 - 0 is colored green, half of the other numbers are colored red, and the other half are colored black.

- Each number has the same probability ($\frac{1}{37} \sim 0.027 \sim 2.7\%$) of being chosen
 - $P(0) = \frac{1}{37} = ^0.027$
 - $P(7) = ^{\circ}0.027$
 - $P(36) = ^{0.027}$
- There are 18 red numbers. The probability of a red number being chosen is:
 - $P(Red) = \frac{18}{37} = ^0.468 = ^48.6\%$

- We've established that if we flip a fair and unbiased coin once, there is a 50%-50% chance of either outcome (heads or tails) being observed.
 - If we flip it again, there is still a 50%-50% chance of either outcome being observed.
 - If we flip it seven more times, there is still a 50%-50% chance of either outcome being observed on each flip.
- If we flipped the coin ten times, and each outcome has a 50%-50% chance of being observed, then we would expect half of the flips result in heads and the other half of the flips result in tails.

- Despite this, it's reasonable to believe that if you flipped a coin ten times, you might not get an equal number of heads and tails outcomes.
 - You might get 6 heads and 4 tails, or maybe 8 heads and 2 tails
- Similarly, it's reasonable to believe that if you rolled a die six times, you might not roll one of each number.
 - You might get three 4's, two 1's, and a 5.

- Recall the definition of probability:
 - The proportion of times an outcome occurs in a random process if we observed the process an infinite number of times.
 - Flipping a coin ten times or rolling a die six times is nowhere near an infinite number of times

Law of Large Numbers

- As more observations are collected, the proportion \hat{p}_n of occurrences with a particular outcome converges to the probability of that outcome.
- Where \hat{p}_n is the proportion of a particular outcome after n observations

- Going back to the example of rolling a die:
 - If we let \hat{p}_n be the probability of rolling a 1 after the first n rolls, then as n (the number of rolls) increases, \hat{p}_n will converge on the probability of rolling a 1 (\sim .167 \sim 16.7%)

• As an infinite number of rolls is approached, \hat{p}_n will stabilize closer and closer to the probability of that outcome

- Outcomes are disjoint (or mutually exclusive) if they cannot happen simultaneously.
- Flipping a coin results in heads or tails; They are <u>disjoint</u> outcomes because they cannot both occur at the same time.
- If you roll a die, the outcomes of "rolling a 2" and "rolling an even number" are <u>not disjoint</u> outcomes; Both outcomes can occur simultaneously when a 2 is rolled.

Addition Rule

- The probability that one of multiple disjoint outcomes occurs is the sum of their separate probabilities.
- Where A_1 and A_2 are two disjoint outcomes

$$P(A_1 \text{ or } A_2) = P(A_1) + P(A_2)$$

Probability of rolling a 1 or a 5 on a single roll

•
$$P(1) = \frac{1}{6} = \sim .167$$

• $P(5) = \frac{1}{6} = \sim .167$

•
$$P(5) = \frac{1}{6} = \sim .167$$

•
$$P(1 \text{ or } 5) = P(1) + P(5) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3} = \sim .33 = \sim 33\%$$

Probability of rolling an odd number on a single roll

•
$$P(1) = \frac{1}{6} = \sim .167$$

•
$$P(3) = \frac{1}{6} = \sim .167$$

•
$$P(1) = \frac{1}{6} = \sim .167$$

• $P(3) = \frac{1}{6} = \sim .167$
• $P(5) = \frac{1}{6} = \sim .167$

•
$$P(1 \text{ or } 3 \text{ or } 5) = P(1) + P(3) + P(5) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2} = 50\%$$

- Probability of a 6 or an odd number on a single roll
 - $P(\text{odd}) = P(1 \text{ or } 3 \text{ or } 5) = \frac{1}{2} = .50$
 - $P(6) = \frac{1}{6} = \sim .167$
 - $P((1 \text{ or } 3 \text{ or } 5) \text{ or } 6) = P(1 \text{ or } 3 \text{ or } 5) + P(6) = \frac{1}{2} + \frac{1}{6} = \frac{2}{3} = \sim.667 = \sim66\%$

- Probability of landing on a red number or zero on a single spin
 - $P(\text{Red}) = \frac{18}{37} = \sim .486 = \sim 48.6\%$
 - $P(0) = \frac{1}{37} = \sim .027 = \sim 2.7\%$
 - $P(\text{Red or } 0) = \frac{18}{37} + \frac{1}{37} = \sim .514 = \sim 51.4\%$

- An event is simply a set of possible outcomes.
 - The set of all possible outcomes is called the sample space.
 - Sample space of rolling a die is {1, 2, 3, 4, 5, 6}
- The previous example of rolling an odd number can be described as an event.
 - This event would be written as {1, 3, 5}
- Like outcomes, events can be disjoint
 - Rolling a 6 or an odd number are disjoint events: {6} and {1, 3, 5}
 - Rolling a 4 or an even number are not disjoint events: {4} and {2, 4, 6}

- Venn Diagrams are useful for visualizing if events are disjoint.
- Rolling a 6 or an odd number:

• The rings do not overlap, meaning the events are disjoint.

• Rolling a 4 or an even number:

• The rings do overlap, meaning the events are not disjoint.

• Rolling a 3, a 4, or an even number:

• The rings do overlap, meaning the events are not disjoint.

- We previously saw the Addition Rule for calculating probabilities for disjoint outcomes and events.
- The **General Addition Rule** calculates probabilities for both disjoint and not disjoint events:
 - Where A and B are any two events

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

• and where P(A and B) is the probability that **both** events occur

- Rolling a 4 (A) or an even number (B):
 - (Not disjoint events)
 - P(A or B) = P(A) + P(B) P(A and B)

 - $P(A) = \frac{1}{6} = \sim .167$ $P(B) = \frac{3}{6} = \frac{1}{2} = .50$
 - $P(A \text{ and } B) = \frac{1}{6} = \sim .167$

•
$$P(A \text{ or } B) = \frac{1}{6} + \frac{3}{6} - \frac{1}{6} = \frac{3}{6} = \frac{1}{2} = .50 = 50\%$$

- Rolling a 4 (A) or an odd number (B):
 - (Disjoint events)
 - P(A or B) = P(A) + P(B) P(A and B)

 - $P(A) = \frac{1}{6} = \sim .167$ $P(B) = \frac{3}{6} = \frac{1}{2} = .50$
 - $P(A \text{ and } B) = \frac{0}{6} = 0$ (always 0 for disjoint events)

- Probability of landing on a red number(A) or even number(B)
 - (Not disjoint events)
 - P(A or B) = P(A) + P(B) P(A and B)

•
$$P(A) = \frac{18}{37} = \sim .486 = \sim 48.6\%$$

•
$$P(B) = \frac{18}{37} = \sim .486 = \sim 48.6\%$$

•
$$P(A \text{ and } B) = \frac{8}{18} = \sim .444 = \sim 44\%$$

•
$$P(A \text{ or } B) = \frac{18}{37} + \frac{18}{37} - \frac{8}{18} = \sim .529 = \sim 52.9\%$$

- The complement of an event is the set of outcomes that are not in the event.
 - Sample space: {1, 2, 3, 4, 5, 6}
 - Event: Rolling a 6 or an odd number = {6, 1, 3, 5}
 - Event complement: {2, 4}

• Where A is the event and A^C is the complement:

$$P(A) + P(A^C) = 1$$

- Rolling a 4 or an odd number:
 - $A = \{1, 3, 4, 5\}$
 - $A^{C} = \{2, 6\}$

•
$$P(A) = \frac{4}{6} = \frac{2}{3} = \sim .667 = \sim 66.7\%$$

•
$$P(A) = \frac{4}{6} = \frac{2}{3} = \sim .667 = \sim 66.7\%$$

• $P(A^C) = \frac{2}{6} = \frac{1}{3} = \sim .334 = \sim 33.4\%$

• (The probability of **not** rolling a 4 or an odd number)

 A probability distribution is a table of all possible outcomes and their corresponding probabilities.

Coin Side	Heads	Tails
Probability	$\frac{1}{2}$	$\frac{1}{2}$

Die Face	1	2	3	4	5	6
Probability	1	1	1	1	1	1
	- 6					

- A probability distribution has the following characteristics:
 - Only lists outcomes that are disjoint
 - Each outcome's probability is between 0 and 1
 - The sum of all probabilities must be 1

• Probability of landing on the different colors.

Color	Green	Red	Black
Probability	1	$\frac{18}{37}$	$\frac{18}{37}$
	37	37	37

Evenness	Neither (0)	Even	Odd
Probability	$\frac{1}{37}$	$\frac{18}{37}$	$\frac{18}{37}$

- If we roll two dice and sum the numbers, the smallest sum we can have is 2 (1+1) and the largest sum we can have is 12 (6+6)
 - In fact, the only way we can have a sum of two is by rolling two 1's and a sum of twelve by rolling two 6's.

```
2:1+1
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:6+6
```

• The ways in which the sum is three

```
2:1+1
3 : 2+1, 1+2
4:
5:
6:
7:
8:
9:
10:
11:
12:6+6
```


The ways in which the sum is four

```
2:1+1
3:2+1,1+2
4:2+2,1+3,3+1
5:
6:
7:
8:
9:
10:
11:
12:6+6
```


• The ways in which the sum is five

```
2:1+1
3:2+1,1+2
4:2+2,1+3,3+1
5: 1+4, 4+1, 3+2, 2+3
6:
7:
8:
9:
10:
11:
12:6+6
```


The ways in which the sum is six

```
2:1+1
3:2+1,1+2
4:2+2,1+3,3+1
5: 1+4, 4+1, 3+2, 2+3
6: 5+1, 1+5, 4+2, 2+4, 3+3
7:
8:
9:
10:
11:
12:6+6
```


• The ways in which the sum is seven

```
2:1+1
3:2+1,1+2
4:2+2,1+3,3+1
5: 1+4, 4+1, 3+2, 2+3
6:5+1, 1+5, 4+2, 2+4, 3+3
7:6+1, 1+6, 5+2, 2+5, 4+3, 3+4
8:
9:
10:
11:
12:6+6
```


• The ways in which the sum is eight

```
2:1+1
3:2+1,1+2
4:2+2,1+3,3+1
5: 1+4, 4+1, 3+2, 2+3
6:5+1, 1+5, 4+2, 2+4, 3+3
7:6+1, 1+6, 5+2, 2+5, 4+3, 3+4
8: 6+2, 2+6, 5+3, 3+5, 4+4
9:
10:
11:
12:6+6
```


• The ways in which the sum is nine

```
2:1+1
3:2+1,1+2
4:2+2,1+3,3+1
5: 1+4, 4+1, 3+2, 2+3
6:5+1, 1+5, 4+2, 2+4, 3+3
7:6+1, 1+6, 5+2, 2+5, 4+3, 3+4
8:6+2, 2+6, 5+3, 3+5, 4+4
9: 6+3, 3+6, 5+4, 4+5
10:
11:
12:6+6
```


The ways in which the sum is ten

```
2:1+1
3:2+1,1+2
4:2+2,1+3,3+1
5:1+4,4+1,3+2,2+3
6:5+1,1+5,4+2,2+4,3+3
7:6+1,1+6,5+2,2+5,4+3,3+4
8:6+2,2+6,5+3,3+5,4+4
9:6+3,3+6,5+4,4+5
10:6+4,4+6,5+5
11:
```

12:6+6

The ways in which the sum is eleven

```
2:1+1
```

$$3:2+1,1+2$$

Combinations

2:1+1

3:2+1,1+2

4:2+2,1+3,3+1

5: 1+4, 4+1, 3+2, 2+3

6:5+1, 1+5, 4+2, 2+4, 3+3

7:6+1, 1+6, 5+2, 2+5, 4+3, 3+4

8:6+2, 2+6, 5+3, 3+5, 4+4

9:6+3,3+6,5+4,4+5

10:6+4,4+6,5+5

11:6+5,5+6

12:6+6

1 possible combination

2 possible combinations

3 possible combinations

4 possible combinations

5 possible combinations

6 possible combinations

5 possible combinations

4 possible combinations

3 possible combinations

2 possible combinations

1 possible combination

36 possible combinations

• The probability distribution for the sum of two dice.

Sum	2	3	4	5	6	7	8	9	10	11	12
Probability									3		
,	36	36	36	36	36	36	36	36	36	36	36

- The probability that the sum is a prime number:
 - P(Prime) = P(2) + P(3) + P(5) + P(7) + P(11)

•
$$P(\text{Prime}) = \frac{1}{36} + \frac{2}{36} + \frac{4}{36} + \frac{6}{36} + \frac{2}{36} = \frac{15}{36} = \sim .417 = \sim 41.7\%$$

• The probability distribution for the sum of two dice (bar plot).

Sum	2	3	4	5	6	7	8	9	10	11	12
Probability	1	2	3	4	5	6	5	4	3	2	1
Trobability	36	36	36	36	36	36	36	36	36	36	36

 Two processes are independent if knowing the outcome of one has no effect on the outcome of the other.

- Coin flips are independent
 - The previous flip has no effect on the next flip
 - There is still a 50% chance of heads and a 50% chance of tails on the next flip
- Dice rolls are also independent
 - Rolling a 6 has no effect on which number is rolled next

- The **Multiplication Rule** calculates probabilities for multiple independent events occurring:
 - Where A and B are two different and independent events

$$P(A \text{ and } B) = P(A) \times P(B)$$

 Probability of tails happening twice in a row in two consecutive coin flips:

•
$$P(T) = \frac{1}{2} = 0.50$$

•
$$P(T \text{ and } T) = P(T) \times P(T) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = 0.25 = 25\%$$

• Probability of tails-heads-tails happening in three consecutive coin flips:

•
$$P(T) = \frac{1}{2} = 0.50$$

•
$$P(H) = \frac{1}{2} = 0.50$$

•
$$P(T \text{ and } H \text{ and } T) = P(T) \times P(H) \times P(T) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8} = 0.125 = 12.5\%$$

- Probability of black-black happening in three consecutive spins of a Roulette wheel:
 - $P(Black) = \frac{18}{37} = \sim 0.486$

• P(Black and Black and Black) =

•
$$P(Black) \times P(Black) \times P(Black) = \frac{18}{37} \times \frac{18}{37} \times \frac{18}{37} = \sim 0.115 = \sim 11.5\%$$

- Probability of red-green-red happening in three consecutive spins of a Roulette wheel:
 - $P(Red) = \frac{18}{37} = \sim 0.486$
 - $P(Green) = \frac{1}{37} = \sim 0.027$

- P(Red and Green and Red) =
- $P(Red) \times P(Green) \times P(Red) = \frac{18}{37} \times \frac{1}{37} \times \frac{18}{37} = \sim 0.006 = \sim 0.6\%$

- If we sample with replacement it means a case may be sampled more than once.
 - With large populations, its unlikely we would sample the same cases more than once. (Picking five numbers between 1 and 1 million)
 - With small populations, it becomes more likely that we would sample the same cases more than once. (Picking five numbers between 1 and 10)

• Imagine a bag of M&M's with an equal number (5) of red, brown, blue, green, orange, and yellow candies (30 candies total)

- The probability of drawing a red M&M is $\frac{5}{30}$
 - If we put the red M&M back in the bag, the chance of drawing a red M&M (or any other color) remains $\frac{5}{30}\sim .17$
 - We are sampling with replacement
 - The events of drawing M&Ms are independent.

- If we sample without replacement it means a case will only be sampled once.
- Imagine the same bag of M&M's
- The probability of drawing a red M&M is $\frac{5}{30}$
 - We remove/eat the M&M
 - The probability of drawing a red M&M is now $\frac{4}{29} \sim .14$
 - The probability of drawing any other color is now $\frac{5}{29} \sim .17$
 - The events of drawing M&Ms are no longer independent

- The probability of drawing red then blue then green then orange
 - With replacement

$$\frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \sim .0007$$

Without replacement

$$\frac{5}{30} \times \frac{5}{29} \times \frac{5}{28} \times \frac{5}{27} \sim .0009$$

 Drawing without replacement has a greater probability of drawing red then blue then green then orange

- The probability of drawing five red M&M's in a row
 - With replacement

$$\frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \sim .0001286$$

Without replacement

$$\frac{5}{30} \times \frac{4}{29} \times \frac{3}{28} \times \frac{2}{27} \times \frac{1}{26} \sim .0000070$$

 Drawing with replacement has a greater probability of drawing five red M&M's in a row