Commissioning and first data analysis of the Mainz Radius Experiment

Adriano Del Vincio

June 20, 2023

Abstract

The Mainz Radius Experiment (MREX) is an experimental campaign with the aim of determining fundamental properties of the equation of state (EOS) of nuclear matter. An important parameter, poorly-known, is the slope of the symmetry energy L, which quantifies the dependencies of the energy per nucleon associated with the changes in neutron-proton asymmetry. L is strongly correlated to the neutron-skin thickness δr_{nn} , that is the difference between the mean square radius of the neutron and proton distributions. The MREX will measure δr_{np} for ^{208}Pb from parity-violating experiments (PV). The parity-violating experiments, where longitudinal polarized electrons scatter from a fixed target, consist in the determination of the cross section asymmetry $A_{pv} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$ related to the different longitudinal beam polarization state. In this context, it is necessary to determine one of the possible background sources, the so-called transverse asymmetry A_n , that concerns transversely polarized electrons. A_n comes from the interference between two Feynman diagrams where one or two virtual photons are exchanged. The work of this thesis focuses on the measurement of A_n carried out at the MAMI accelerator on a ^{12}C target, particularly suited for testing the electronics systems that will be used to measure A_{PV} . A_n has been measured using two Cherenkov detectors (A and B) made of fused-silica materials coupled to 3 and 8 photo-multiplier tubes. The two detectors have been tested in the laboratory, together with the electronics that consist in the NINO-asic board with which the detector signals were acquired. The work consisted in a calibration phase, needed to measure the beam parameters, and in the analysis of the data. A_n has been measured for electron-carbon scattering at a two fixed angles $(\theta_B = -22.5^{\circ}, \, \theta_A = 22.5^{\circ})$ corresponding to a transfer momentum of $Q^2 = 0.04 \,\text{GeV}^2$. The measured values are: $A_B = -21 \pm 5 \, (stat) \, ppm$ for detector B and $23.1 \pm 1.7 \, (stat) \, ppm$ for detector A.