UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Homework 05

Spring 2023

1. Midterm

Solve again the midterm problems which you got incorrect. Please demonstrate understanding of the questions without simply copying the solutions.

2. Bernoulli Convergence

Consider an independent sequence of random variables $X_n \sim \text{Bernoulli}(\frac{1}{n})$.

- a. Show that X_n converges to 0 in probability.
- b. Argue that

$$\mathbb{P}\Big(\Big\{\lim_{n\to\infty}X_n=0\Big\}\Big)=\mathbb{P}\bigg(\bigcup_{N=1}^{\infty}\{X_n=0\text{ for all }n\geq N\}\bigg).$$

c. Using part b, show that X_n does **not** converge almost surely to 0. *Hint*: Consider applying the union bound and the independence of the X_n .

3. The CLT Implies the WLLN

- a. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables. Show that if X_n converges in distribution to a constant c, then X_n converges in probability to c.
- b. Now let $(X_n)_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables with mean μ and finite variance σ^2 . Show that the CLT implies the WLLN: that is,

$$\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^n(X_i-\mu)\stackrel{\mathsf{d}}{\to} Z\sim\mathcal{N}(0,1)\implies \frac{1}{n}\sum_{i=1}^nX_i\stackrel{\mathbb{P}}{\to}\mu,$$

where $\stackrel{d}{\to}$ is short for "converges in distribution" and $\stackrel{\mathbb{P}}{\to}$ for "converges in probability."

4. CLT Cannot Be Upgraded

- a. Show that if X_n converges to X in probability and Y_n to Y in probability, then $aX_n + Y_n$ converges to aX + Y in probability.
- b. Show that the CLT cannot be upgraded to convergence in probability or almost surely. That is, if $X_1, X_2 \dots$ are i.i.d. with mean 0 and variance 1, prove that it cannot be the case that

$$Z_n := \frac{X_1 + \dots + X_n}{\sqrt{n}} \to Z$$
, where $Z \sim \mathcal{N}(0, 1)$, almost surely or in probability.

Hint: From part a, the sequence of random variables $\sqrt{2}Z_{2n} - Z_n$ converges in probability to $(\sqrt{2}-1)Z$. Does this contradict the fact that Z_n converges to Z in probability?

5. Finite Exit Time

Consider the random walk $S_n = \sum_{i=1}^n X_i$, where the X_i are i.i.d. with mean zero and variance 1. (Note that the X_i do not have to be discrete.) Show that almost surely the random walk will leave the interval [-a, a] in finite time.

Hint: Let T be the first time that the random walk leaves the interval [-a, a], and show that $\lim_{n\to\infty} \mathbb{P}(T>n)=0$.

6. Coupon Collector Convergence

In the coupon collector's problem, there are n different types of coupons, and you are trying to collect them all. Each time you purchase an item, you receive one of the n coupons uniformly at random. Let T_n denote the number of purchases it takes to collect all n coupons. Prove that $T_n/(n \ln n) \to 1$ in probability as $n \to \infty$.

Hint: Consider using Chebyshev's inequality to show that for every $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{T_n - nH_n}{n\ln n}\right| \ge \varepsilon\right) \to 0.$$

 H_n denotes the *n*th harmonic sum $\sum_{i=1}^n \frac{1}{i}$. You may use the fact that $H_n \sim \ln n$.