Exercise 2. Global Optimization

Dongho Kang

16-948-598

March 19, 2017

MATLAB R2016b version was used for coding and testing:

MathWorks, MATLAB R2016b (9.1.0.441655) 64-bit (maci64)

The *code* directory contains followings:

- *main.m* Script .m file for exercise.
- *functions dir* Function .m files
 - SolveWithLP Function .m file for solving a problem with the LP and simple testing.
 - SplitProblem Function .m file for split a parent problem into two children problems.
 - FindBestCandidate Function .m file for finding the best candidate between two children node.
 - **PushToStack** Function .m file for stack push operation.
 - **PopFromStack** Function .m file for stack pop operation.
 - **NewProblem** Function .m file for creating new problem (instance of struct).
 - **FindInliers** Function .m file for finding inliers with a input model.
 - and other sub-functions: VisualizeMatch, SaveOptHistory, ComputeInlierLb
- data dir data and image files provided.

For running exercise, adjust threshold parameter (default of 3 pixel) and run the *main.m* on the MATLAB environment. More details are stated in the *Running* section.

1 EXERCISE: Branch and bound for consensus set maximization

1.1 DESCRIPTION

In this exercise, branch and bound algorithm based on depth-first search(DFS) was implemented. The implementation steps are as follows:

- derivation of the problem formulation in the canonical form of the linear programming
- branch and bound algorithm implementation
- logging and plotting the result of branch and bound algorithm

1.1.1 LINEAR PROGRAMMING FORMULATION

Let the set *S* of the input data be partitioned into an inlier-set $S_I \subseteq S$ and an outlier-set $S_O = S \setminus S_I$. Note that

- the model $\Theta = (T_x, T_y)$ where T_x and T_y represent the translation along the x and y axis.
- the i-th input correspondence is (p_i, p'_i) where p_i and p'_i represent the points in the left and right images: $p_i = (x_i, y_i)$ and $p_i = (x'_i, y'_i)$. There are n input correspondences.

then the consensus set maximization problem can be formulated as follows:

$$\max_{\Theta, S_{I}} card(S_{I})$$

$$s.t. \quad \left| x_{i} + T_{x} - x'_{i} \right| \leq \delta, \forall i \in S_{I} \subseteq S$$

$$\left| y_{i} + T_{y} - y'_{i} \right| \leq \delta, \forall i \in S_{I} \subseteq S$$

$$(1.1)$$

To solve the problem by linear programming, alternative formulation using z_i and the relaxation can be applied to (1.1):

$$\max_{\Theta, \mathbf{z}} \quad \sum_{i=1}^{N} z_i \tag{1.2}$$

$$s.t. \quad z_i \left| x_i + T_x - x_i' \right| \le z_i \delta, \forall i \in S_I \subseteq S$$
 (1.3)

and
$$z_i | y_i + T_y - y_i' | \le z_i \delta, \forall i \in S_I \subseteq S$$
 (1.4)

and
$$z_i \in [0,1], \quad \forall i = 1 \dots N$$
 (1.5)

and
$$T_x \le T_x \le \overline{T_x}$$
, $T_y \le T_y \le \overline{T_y}$, $\forall i = 1...N$ (1.6)

(1.3) and (1.4) can be expressed into:

$$-z_i \delta \le z_i (x_i + T_x - x_i') \le z_i \delta$$

$$-z_i \delta \le z_i (y_i + T_y - y_i') \le z_i \delta$$
(1.7)

Now, introducing the auxiliary variables $w_{ix} = z_i T_x$ and $w_{iy} = z_i T_y$ to avoid the bilinear terms, (1.6) can be relaxed by concave and convex envelopes:

$$w_{ix} = z_i T_x \ge \max(\underline{z_i} T_x + \underline{T_x} z_i - \underline{z_i} \underline{T_x}, \overline{z_i} T_x + \overline{T_x} z_i - \overline{z_i} \overline{T_x})$$

$$w_{ix} = z_i T_x \le \min(\overline{z_i} T_x + T_x z_i - \overline{z_i} T_x, z_i T_x + \overline{T_x} z_i - z_i \overline{T_x})$$

$$(1.8)$$

max and min is not a linear function, thus changed (1.8) into the following forms:

$$w_{ix} \ge \underline{z_i} T_x + \underline{T_x} z_i - \underline{z_i} \underline{T_x}$$

$$w_{ix} \ge \overline{z_i} T_x + \overline{T_x} z_i - \overline{z_i} \overline{T_x}$$

$$w_{ix} \le \overline{z_i} T_x + \underline{T_x} z_i - \overline{z_i} \underline{T_x}$$

$$w_{ix} \le \underline{z_i} T_x + \overline{T_x} z_i - \underline{z_i} \overline{T_x}$$

$$(1.9)$$

changed (1.8) into linear programming constraint form:

$$\underline{z_i} T_x + \underline{T_x} z_i - w_{ix} \le \underline{z_i} \underline{T_x}
\overline{z_i} T_x + \overline{T_x} z_i - w_{ix} \le \overline{z_i} \overline{T_x}
-\overline{z_i} T_x - \underline{T_x} z_i + w_{ix} \le -\overline{z_i} \underline{T_x}
-z_i T_x - \overline{T_x} z_i + w_{ix} \le -z_i \overline{T_x}$$
(1.10)

likewise, $w_i y$:

$$\underline{z_{i}}T_{y} + \underline{T_{y}}z_{i} - w_{iy} \leq \underline{z_{i}}\underline{T_{y}}$$

$$\overline{z_{i}}T_{y} + \overline{T_{y}}z_{i} - w_{iy} \leq \overline{z_{i}}\overline{T_{y}}$$

$$-\overline{z_{i}}T_{y} - \underline{T_{y}}z_{i} + w_{iy} \leq -\overline{z_{i}}\underline{T_{y}}$$

$$-\underline{z_{i}}T_{y} - \overline{T_{y}}z_{i} + w_{iy} \leq -\underline{z_{i}}\overline{T_{y}}$$

$$(1.11)$$

and finally, as $w_{ix} = z_i T_x$ and $w_{iy} = z_i T_y$, (1.7) can be expressed into:

$$z_{i}x_{i} + w_{ix} - z_{i}x'_{i} - z_{i}\delta \leq 0$$

$$-z_{i}x_{i} - w_{ix} + z_{i}x'_{i} - z_{i}\delta \leq 0$$

$$z_{i}y_{i} + w_{iy} - z_{i}y'_{i} - z_{i}\delta \leq 0$$

$$-z_{i}y_{i} - w_{iy} + z_{i}y'_{i} - z_{i}\delta \leq 0$$
(1.12)

Now, as MATLAB function linprog solve following problem,

$$\min_{x} c^{T} \mathbf{x}$$

$$s.t. A \mathbf{x} \le b$$

$$l_{b} \le \mathbf{x} \le u_{b}$$

$$(1.13)$$

set the unknown vector, coefficient vector, and l_b , u_b vectors for linear programming to

$$\mathbf{x} = (T_x, T_y, z_1, \dots, z_n, w_{1x}, \dots, w_{nx}, w_{1y}, \dots, w_{ny})^T$$

$$l_b = (\underline{T}_x, \underline{T}_y, \underline{z}_1, \dots, \underline{z}_n, -\infty, \dots, -\infty)^T$$

$$u_b = (\overline{T}_x, \overline{T}_y, \overline{z}_1, \dots, \overline{z}_n, \infty, \dots, \infty)^T$$

$$c = (0, 0, -1, \dots, -1, 0, \dots, 0)^T$$

$$(1.14)$$

Note that coefficient vector c is $c^T \mathbf{x} = -z_1 - z_2 - \cdots - z_n$. This is for making the maximizing problem into the minimizing problem. Besides, $-\infty \le w_{ix} \le \infty$ and $-\infty \le w_{iy} \le \infty$, because there is no either lower nor upper bound for w_{ix} and w_{iy} .

Lastly, (1.9), (1.10) and (1.11) was changed into the form of (1.12). Thus, matrix A and vector b are as follows:

$$A_i = \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & (x_i - x_i' - \delta) & \dots & 0 & 0 & \dots & 1 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & (-x_i + x_i' - \delta) & \dots & 0 & 0 & \dots & -1 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & (y_i - y_i' - \delta) & \dots & 0 & 0 & \dots & 0 & \dots & 0 & 0 & \dots & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & (-y_i + y_i' - \delta) & \dots & 0 & 0 & \dots & 0 & \dots & 0 & 0 & \dots & -1 & \dots & 0 \\ \frac{z_i}{\overline{z_i}} & 0 & 0 & \dots & \frac{T_x}{T_x} & \dots & 0 & 0 & \dots & -1 & \dots & 0 & 0 & \dots & 0 \\ -\overline{z_i} & 0 & 0 & \dots & -\frac{T_x}{T_x} & \dots & 0 & 0 & \dots & -1 & \dots & 0 & 0 & \dots & 0 \\ 0 & \frac{z_i}{\overline{z_i}} & 0 & 0 & \dots & -\frac{T_x}{T_x} & \dots & 0 & 0 & \dots & 1 & \dots & 0 & 0 & \dots & 0 \\ 0 & \frac{z_i}{\overline{z_i}} & 0 & \dots & \frac{T_y}{T_y} & \dots & 0 & 0 & \dots & 1 & \dots & 0 & 0 & \dots & -1 & \dots & 0 \\ 0 & -\overline{z_i} & 0 & \dots & \frac{T_y}{T_y} & \dots & 0 & 0 & \dots & 0 & \dots & 0 & 0 & \dots & -1 & \dots & 0 \\ 0 & -\overline{z_i} & 0 & \dots & -\frac{T_y}{T_y} & \dots & 0 & 0 & \dots & 0 & \dots & 0 & 0 & \dots & 1 & \dots & 0 \\ 0 & -\overline{z_i} & 0 & \dots & -\frac{T_y}{T_y} & \dots & 0 & 0 & \dots & 0 & \dots & 0 & 0 & \dots & 1 & \dots & 0 \end{bmatrix}$$

$$b_{i} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \frac{z_{i}T_{x}}{\overline{z_{i}T_{x}}} \\ -\overline{z_{i}}\frac{T_{x}}{T_{x}} \\ -\underline{z_{i}}\frac{T_{x}}{T_{y}} \\ \frac{z_{i}T_{y}}{\overline{z_{i}}\overline{T_{y}}} \\ -\overline{z_{i}}\frac{T_{y}}{T_{y}} \\ -\overline{z_{i}}\frac{T_{y}}{T_{y}} \end{bmatrix}$$

$$A = \begin{bmatrix} \frac{A_{1}}{A_{2}} \\ \vdots \\ A_{n} \end{bmatrix}$$

$$b = \begin{bmatrix} \frac{b_{1}}{b_{2}} \\ \vdots \\ b_{n} \end{bmatrix}$$

Note that $\underline{z_i} = 0$ and $\overline{z_i} = 1$. For avoiding a loop, A and b was reformed in the MATLAB implementation.

1.1.2 Branch and bound

Implemented branch and bound algorithm for finding optimal solution of the consensus set maximization problem. The depth-first search based on stack data structure was used. The stack has two operation **PopFromStack** and **PushToStack**.

The pseudo-code of the implementation is as follows:

Algorithm 1 Branch and bound

```
1: P0 ← whole problem space
2: init. opt ← variable for optimal solution (bound of inliers)
3: init. stack
4: push(stack, P0)
6: while stack is not empty do
      Parent = pop(stack)
7:
      if Parent.ObjUpperBound < opt.LowerBound then
8:
9:
         continue; ← bad bound. does not contain optimum for sure
      end if
10:
11:
      if Parent.ObjLowerBound ≥ opt.LowerBound then
12:
13:
          opt = (Parent.ObjUpperBound, Parent.ObjLowerBound)
      end if
14:
15:
      if Parent.ObjUpperBound – Parent.ObjLowerBound < 1 then
16:
17:
         continue; ← Parent is a leaf node thus do not split
      end if
18:
19:
      (LeftChild, RightChild) = split(Parent)
20:
      solveLP(LeftChild, RightChild) ← solve both problems by LP and test
21:
22:
      (BetterChild, WorseChild) = findbetter(LeftChild, RightChild)
23:
      push(stack, WorseChild)
24:
      push(stack, BetterChild) ← BetterChild should be on the top of stack
26: end while
27:
28: opt \leftarrow now optimal solution
```

The several criteria/strategies of implementation were defined as follows

- 1. push the original problem *P*0 to the problem stack.
- 2. start iteration. The iteration of branch and bound terminates when the problem stack is empty
- 3. bad bound check criteria:
 - m^* is the highest lower bound of the number of inliers obtained so far.
 - if the upper cardinality bound of a problem $< m^*$ then there's no optimum for sure.
 - pop the problem from the stack without splitting.
- 4. optimal solution update criteria:
 - if the lower cardinality bound of a problem lb is $lb \ge$ the lower cardinality bound of the optimal solution found so far, then update the optimal solution as lb.
- 5. convergence criteria: if the lower and upper cardinality bound are nearer than 1, stop split.
 - iteration can be terminated because the cardinality bound converged to optimum.
 - but here, to check whether obtained optimum is indeed global optimum, do not terminate iteration but check remaining problems by continuing depth-first search.
- 6. split the problem space and branching: splitting in half along the longest dimension.
- 7. solve children problems and obtain the cardinality bound by the LP and simple test
 - compute the upper bound of the number of inliers: the LP with the formulation of (1.1.1) was exploited.
 - compute the lower bound of the number of inliers: simple test with the model Θ obtained by LP. Details are stated below.
- 8. after solving children problems, push *worse* child problem to the stack first, and then push *better* child:
 - *better* child is a problem with a larger lower cardinality bound. If two children have the same lower cardinality bound, then choose one with a larger upper cardinality bound.
 - as pushing two children, top of the stack is the *better* child now. Thus the *better* child will be popped in the next iteration step.
 - this strategy is for exploring $\it better$ problem first for reducing running time.
- 9. iteration terminates with the global optimal cardinality bound.

SOLVING A PROBLEM The problem solving step is getting upper bound and lower bound of the number of inliers. Given a certain problem, solves the problem with the LP defined in (1.1.1). Then, the optimal solution of the relaxed problem (T_x^*, T_y^*) and the objective cost $c^T \mathbf{x}^*$ are obtained from:

$$\mathbf{x}^* = (T_x^*, T_y^*, z_1^*, \dots, z_n^*, w_{1x}^*, \dots, w_{nx}^*, w_{1y}^*, \dots, w_{ny}^*)^T$$
(1.15)

$$c^{T}\mathbf{x}^{*} = -z_{1}^{*} - z_{2}^{*} - \dots - z_{n}^{*}$$
(1.16)

The (-)objective cost, $-c^T \mathbf{x}^*$ can be set as the upper bound of inliers since the number of inliers of that problem space never exceeds $-c^T \mathbf{x}^*$.

Besides, the lower bound of inliers can be obtained by simple test with (T_x^*, T_y^*) and is set as the $card(S_I)$ as follows:

$$card(S_I)$$

$$s.t. \quad \left| x_i + T_x^* - x_i' \right| \le \delta, \forall i \in S_I \subseteq S$$

$$\left| y_i + T_y^* - y_i' \right| \le \delta, \forall i \in S_I \subseteq S$$

$$(1.17)$$

This was implemented as the function SolveWithLP.

1.2 RUNNING

Run the script *main.m* after setting the parameters.

- threshold: threshold for inliers. Default is 3 (px).
- *padding*: the width of black padding between left and right image for figure(1). Default is 10 (px).

1.3 RESULT

The optimal solution (T_x^*, T_y^*) found by branch and bound for the given problem is as follows:

Table 1.1: The global optimal solution obtained by branch and bound

T_x^*	T_y^*	cardinality bound		
-232.00	-156.81	(15, 15.449)		

Inlier indices are (3,8,9,15,16,20,26,31,32,34,35,40,42,45,51). The identified inliers and plot of cardinality bounds are as follows. The red lines indicate outliers and the green lines indicate inliers:

Figure 1.1: The identified inlier and outlier correspondences

Figure 1.2: The convergence of the cardinality bounds

The branch and bound iteration can be described as the following binary tree illustration:

Figure 1.3: An illustration of DFS tree: one step before exploring P11

Figure 1.4: An illustration of DFS stack: one step before popping P11

P2	Р3	P5	P7	P9	P12	P11
----	----	----	----	----	-----	-----

Figure 1.5: Problems					
	Θ_{Lb}	Θ_{Ub}	Θ_{Opt}	ObjLb	ObjUb
P0	(-1104, -549)	(1104, 549)	(-140.94, -106.08)	0	40.17
P1	(-1104, -549)	(0, 549)	(-336.28, -74.21)	0	28.15

	- 1			- F ·		
P	0 (-	-1104, -549)	-549) (1104, 549) (-140.94, -106.08)		0	40.17
P	1 (-	-1104, -549)	(0, 549)	(-336.28, -74.21)	0	28.15
P2	2	(0, -549)	(1104, 549)	(432.47, 25.20)	0	11.52
P3	3 (-	-1104, -549)	(-552, 549)	(-665.11, -66.06)	0	5.05
P	4 ((-552, -549)	(0, 549)	(-238.00, -154.00)	0	24.88
P	5	(-552, 0)	(0,549)	(-239.45, 198.5954)	0	5.56
P	6 ((-552, -549)	(-552, -549)	(0, 0)	15	20.04
P7	7 ((-552, -549)	(-276, 0)	(-436.00, -259.00)	0	2.88
P8	8 ((-276, -549)	(0, 0)	(-232.00, -158.18)	0	16.46
PS	9 ((-276, -549)	(0, -275)	(-154.00, -401.97)	0	1.53
P1	.0	(-276, -274)	(0, 0)	(-232.00, -156.94)	0	15.89
P1	.1 ((-276, -274)	(-138, 0)	(-232.00, -156.81)	15	15.44
P1	.2 ((-138, -274)	(0, 0)	(-38.00, -99.03)	0	1.37

As popping P11 from the stack, optimal solution is obtained but, since P2, P3, P5, P7, P8, P12 are still in the stack, algorithm does not terminate. However, These problems have $bad\ bound$ i.e. have smaller ObjUb (upper bound of the card.) than P11's ObjLb (lower bound of the

cardinality), and cannot be a optimal for sure, thus are popped without splitting and the algorithm terminates.

1.4 DISCUSSION

Some comments for the bound of cardinality:

- The lower bound of cardinality for optimal solution monotonically increases.
- The upper bound of cardinality for optimal solution not necessarily monotonically decreases.
 - if the first convergence (local optimal solution) is not the global optimal solution, then the upper bound of cardinality can be increased as continuing depth-first search.
- The global optimal solution is obtained by branch and bound algorithm.