

*** DRAFT *** PLEASE DO NOT DISTRIBUTE

Working Title

Murray Tannock

Thesis of 60 ECTS credits

Master of Science (M.Sc.) in Computer Science

December 2015

Working Title

Thesis of 60 ECTS credits submitted to the School of Science and Engineering at Reykjavík University in partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) in Computer Science

December 2015

Supervisor:

Henning Ulfarsson, Supervisor Professor, Reykjavík University, Iceland

Examiner:

Michael H. Albert, Examiner Professor, University of Otago, New Zealand

Anders Claesson, Examiner Docent, University of Iceland, Iceland Copyright
Murray Tannock
December 2015

Working Title

Murray Tannock

December 2015

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Titll verkefnis

Murray Tannock

desember 2015

Útdráttur

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Working Title

Murray Tannock

Thesis of 60 ECTS credits submitted to the School of Science and Engineering at Reykjavík University in partial fulfillment of the requirements for the degree of

Master of Science (M.Sc.) in Computer Science

	December 2015
Student:	
Supervisor:	Henning Ulfarsson
Examiner:	
	Anders Claesson

The undersigned hereby grants permission to the Reykjavík University Library to reproduce single copies of this Thesis entitled **Working Title** and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the Thesis, and except as herein before provided, neither the Thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

date	
Murray Tannock	
Master of Science	

Acknowledgements

So long, and thanks for all the fish.

Douglas Adams[1]

Acknowledgements are optional; comment this chapter out if they are absent Note that it is important to acknowledge any funding that helped in the work

Contents

A	Acknowledgements v Contents		
Co			
Li	ist of Figures		X
Li	ist of Tables		xi
1	Introduction		1
	1.1 What is a Permutation?		1
	1.2 Classical Permutation Patterns		2
	1.3 Mesh Patterns		2
2	Coincidences amongst families of mesh patterns and classical patterns		4
	2.1 Equivalence classes of Av($\{321, (21, R)\}$)		5
	2.2 Equivalence classes of Av($\{231, (21, R)\}$)		7
	2.3 Equivalence classes of Av($\{231, (12, R)\}$)		10
	2.4 Equivalence classes of Av($\{321, (12, R)\}$)		11
3	Wilf-equivalences under dominating classical patterns		14
Bi	ibliography		15

List of Figures

2.1	Visual Depiction of first dominating pattern rule	7
2.1	An illustration of how lines and points move by this proposition	9

List of Tables

List of Corrections	
Note: Is this dom3?	11

Chapter 1

Introduction

1.1 What is a Permutation?

In *The Art of Computer Programming* Donald Knuth defines A *permutation of n objects* is an arrangement of *n* distinct objects in a row. When considering permutations we can consider them as occurring on the set $[n] = \{1, ..., n\}$, therefore a permutation is a *bijection* $\pi : [n] \mapsto [n]$. We can write a permutation π in two line notation

$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$$

However, the most frequent notation used in computer science is *one-line notation*, in this form we drop the top line of the two line notation so are left with the following.

$$\pi = \pi(1)\pi(2)\dots\pi(n)$$

Example 1.1.1. There are 6 permutations on [3].

We can display a permutation on a *figure* in order to give a graphical representation of the permutation. In such a figure we let the x-axis denote the index in the permutation, and the y-axis denotes the values of $\pi(x)$. The figure of the permutation $\pi=231$ is shown below

The class of all permutations of length n is \mathfrak{S}_n and the class has size n!. The class of all permutations is $\mathfrak{S} = \bigcup_{i=0}^{\infty} \mathfrak{S}_i$.

1.2 Classical Permutation Patterns

Classical Permutation Patterns began to be studied as a result of Knuth's statements about stack-sorting in [The Art of Computer Programming].

Definition 1.2.1. Order isomorphism. Two sequences $\alpha_1, \alpha_2, \ldots, \alpha_n$ and $\beta_1, \beta_2, \ldots, \beta_n$ are said to be *order isomorphic* if they share the same relative order,i.e., $\alpha_r < \alpha_s$ if and only if $\beta_r < \beta_s$.

A permutation π us said to *contain* the permutation σ of length k as a pattern (denoted $\sigma \leq \pi$) if there is some an increasing subsequence i_1, i_2, \ldots, i_n such that the sequence $\pi(i_1), \pi(i_2), \ldots, \pi(i_k)$ is order isomorphic to $\sigma(1), \sigma(2), \ldots, \sigma(k)$. If π does not contain σ , we say that π avoids σ .

For example the permutation $\pi = 24153$ contains the pattern $\sigma = 231$, since the second, fourth and fifth entries (4, 5, and 3) share the same relative order as the entries of σ . This can be seen graphically below, the points order isomorphic to σ are highlighted.

We denote the set of permutations of length n avoiding a pattern σ as $\operatorname{Av}_n(\sigma)$ and $\operatorname{Av}(\sigma) = \bigcup_{i=0}^{\infty} \operatorname{Av}_i(\sigma)$.

1.3 Mesh Patterns

Mesh Patterns were introduced by Brändén and Claesson to capture explicit expansions for certain permutation statistics. They are a natural extension of Classical permutation patterns. A *mesh-pattern* is a pair

$$p = (\tau, R)$$
 with $\tau \in \mathfrak{S}_k$ and $R \subseteq [0, k] \times [0, k]$.

3

By this definition the empty permutation ε as a mesh pattern consisting solely of the box (0,0).

The figure for a mesh pattern looks similar to that for a classical pattern with the addition that we shade the unit square with bottom corner (i, j) for each $(i, j) \in R$:

We define containment, and avoidance, of the pattern p in the permutation π on mesh patterns analogously to classical containment, and avoidance, of τ in π with the additional restrictions on the relative position of the occurrence of τ in π . These restrictions say that the shaded regions of the figure above contain no points from π .

Example 1.3.1. The pattern $p = (213, \{(0, 1), (0, 2), (1, 0), (1, 1), (2, 1), (2, 2)\}) = \frac{1}{2}$ is contained in $\pi = 34215$ but is not contained in $\sigma = 42315$.

Proof. Let us consider the figure for the permutation π we only need to find one occurrence.

We have found an occurrence of the pattern p in π and therefore π contains p.

Now we consider the figure for the permutation σ . This permutation avoids p since for every occurrence of the classical pattern 213 there is at least one point in one of the shaded boxes. Consider the subsequence 315 in σ , this is an occurrence of 213 but not the mesh pattern since the points with values 4 and 2 are in the shaded areas. This is shown in the figure below.

This is true for all occurences of 213 in σ and therefore σ avoids p.

We denote the avoidance sets for mesh patterns in the same way as for classical patterns.

Note 1.3.2. Classical patterns are just a subclass of mesh patterns where the mesh set R is empty. The classical pattern π can be represented by a mesh pattern as (π, \emptyset) .

Chapter 2

Coincidences amongst families of mesh patterns and classical patterns

One interesting question to ask about permutation patterns considers when a pattern may be avoided by, or contained in, arbitrary permutations. Two patterns π and σ are said to be *coincident* if the set of permutations that avoid π is the same as the set of permutations that avoid σ . This extends to sets of patterns as well as single patterns.

We consider the avoidance sets, Av(p,q) where p is a classical pattern of length 3 and q is a mesh pattern of length 2 in order to establish some rules about when these two sets give the same avoidance set. We fix p in order to define the equivalences, we say that p is the *Dominating Pattern*. We fix p in order to calculate the coincidences. We never consider occurrences with different *Dominating Patterns*.

We first define some operations on mesh patterns.

Definition 2.0.1. Given a pattern p, let add_point (p, (a, b), D) be the operation that returns a mesh pattern equivalent to placing a point in the center of box (a, b) in p, with shading defined by $D \subseteq \{N, E, S, W\}$.

The set D defines the shading by indicating that the boxes in the cardinal directions in D next to the point are shaded in the resulting pattern. Since there is no ambiguity we let $add_point(\varepsilon, D)$ be equivalent to $add_point(\varepsilon, (0, 0), D)$. This operation fails if the box (a, b) is in the mesh set of p.

Example 2.0.2. The result of adding a single point to the empty permutation for each cardinal direction.

$$\begin{array}{lll} \operatorname{add_point} \left(\varepsilon, \{ N \} \right) = \ & \\ & \operatorname{add_point} \left(\varepsilon, \{ E \} \right) = \ & \\ & \operatorname{add_point} \left(\varepsilon, \{ S \} \right) = \ & \\ & \\ & \operatorname{add_point} \left(\varepsilon, \{ W \} \right) = \ & \\ & \end{array}$$

A more complex example for add_point

add_point
$$\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$
, $(2,3)$, $\{N,E\}$

Definition 2.0.3. Given a pattern p, define add_descent (p, (a, b)), and add_ascent (p, (a, b)), as the operations that return a mesh pattern equivalent to placing an decrease, or increase, in the center of box (a, b) in p.

Example 2.0.4.

$$\operatorname{add_ascent}(\varepsilon) = 2$$

$$\operatorname{add_descent}(\varepsilon) = 2$$

We now attempt to fully classify coincidences in families characterised by avoidance of a classical pattern of length 3 and a mesh pattern of length 2.

It can be easily seen that in order to classify set equivalences one need only consider coincidences within the family of mesh patterns with the same underlying classical pattern, this is due to the fact that $21 \in \text{Av}((12, R))$ and $12 \in \text{Av}((21, R))$ for all mesh-sets R. So $\text{Av}((12, R)) \setminus \text{Av}((21, S)) \neq \emptyset \ \forall R, S \in [0, 2] \times [0, 2]$, and hence the sets are disjoint.

We know that there are a total of 512 mesh-sets for each underlying classical pattern. By use of the shading lemma, simultaneous shading lemma, and one special case, we can reduce the number of equivalence classes to 220.

2.1 Equivalence classes of $Av({321, (21, R)})$.

Through experimentation we discover that there are a total of 29 equivalence classes of mesh patterns with underlying classical pattern 21.

Proposition 2.1.1 (First Dominating Pattern Rule). Given two mesh patterns $m_1 = (\sigma, R_1)$ and $m_2 = (\sigma, R_2)$, and a dominating classical pattern $\pi = (\pi, \emptyset)$ such that $|\pi| \le |\sigma| + 1$, the sets $Av(\{\pi, m_1\})$ and $Av(\{\pi, m_2\})$ are coincident if

1.
$$R_1 \triangle R_2 = \{(a, b)\}$$

2.
$$\pi \leq \text{add_point}(\sigma, (a, b), \emptyset)$$

In order to prove this proposition we must first make the following note.

Note 2.1.2. Let $R' \subseteq R$. Then any occurrence of (τ, R) in a permutation is an occurrence of (τ, R') .

Proof. Assume without meaningful loss of generality that R' is a proper subset of R.

Consider an occurrence of (τ, R) in a permutation σ , obviously this corresponds to an occurrence of τ in σ . Now consider the mesh sets R and R', since $R' \subseteq R$ then there are more restrictions on where points are in an occurrence of (τ, R) . Namely, for every shaded box in R the corresponding region in σ must contain no points, since R' has less shading than R there exists a region in the occurrence of (τ, R) in σ that is now devoid of restrictions. However, by removing restrictions we cannot make an occurrence become not an occurrence, and therefore the same occurrence of τ in σ is now an occurrence of (τ, R') .

Proof of Proposition 2.1.1. We need to prove that $Av(\{\pi, m_1\}) = Av(\{\pi, m_2\})$.

Assume without meaningful loss of generality that $R_2 = R_1 \cup \{(a, b)\}.$

Consider a permutation ω that contains an occurrence of m_2 by Note 2.1.2 any of these occurrences is also an occurrence of m_1 . This proves that every occurrence of m_2 is also an occurrence of m_1 and therefore $Av(\{\pi, m_1\}) \subseteq Av(\{\pi, m_2\})$.

Now we consider a permutation $\omega' \in \operatorname{Av}(\pi)$, suppose we have an occurrence of m_1 . Consider placing a point in the region corresponding to the box (a,b), regardless of where in this region we place the point by condition 2 of the Proposition we create an occurrence of π , therefore there can be no points in this region, which could have been represented in the mesh set R_1 by adding the box (a,b). Hence every occurrence of m_1 is in fact an occurrence of m_2 , and we have that $\operatorname{Av}(\{\pi, m_2\}) \subseteq \operatorname{Av}(\{\pi, m_1\})$.

7

Taking both directions of the containment we can therefore draw the conclusion that $Av(\{\pi, m_1\}) = Av(\{\pi, m_2\}).$

By using this rule we completely capture the equivalence classes of Av($\{321, (21, R)\}$).

This rule is understood very easily by seeing it in graphical form. In the pattern in Figure 2.1 we can gain shading in three boxes since if there is a point in any of these boxes we would gain an occurrence of the dominating pattern 321.

Figure 2.1: Visual Depiction of first dominating pattern rule.

2.2 Equivalence classes of $Av(\{231, (21, R)\})$.

By application of Proposition 2.1.1 we obtain 43 equivalence classes. Experimentation shows that there are in fact 39 equivalence classes, for example the following two patterns are coincident in Av(231) but this is not explained by Proposition 2.1.1.

Consider the box (1, 1), this is the box that we need to find reasoning to allow shading. If this box were to be empty then we could shade it freely, consider what happens if there are points in this box. If there is any increase in this box then we would have an occurrence of 231, however, since we are in Av(231) this is not possible. This box must contain a decreasing subsequence. This gives rise to the following lemma:

Lemma 2.2.1. Given a mesh pattern $m = (\sigma, R)$, where the box (a, b) is not in R, and a dominating classical pattern $\pi = (\pi, \emptyset)$ if $\pi \leq \operatorname{add_ascent}(\sigma, (a, b))$

 $(\pi \leq \operatorname{add_descent}(\sigma, (a, b)))$ then in any occurrence of m in a permutation ϱ the region corresponding to the box (a, b) can only contain an increasing (decreasing) subsequence of ϱ .

The proof is analogous to the proof of Proposition 2.1.1.

Going back to our example mesh patterns

We know that the box (1, 1) contains an decreasing subsequence. The top point of this decrease can be chosen to act as the second point in the mesh pattern, and therefore there are no points between the first point and the new second point. Hence, we can shade this box as it is guaranteed to be empty. This shows that our two example patterns are coincident.

This result generalises into the following rule for categorising equivalences of mesh patterns in cases where there is a dominating classical pattern.

Proposition 2.2.2 (Second Dominating Pattern Rule). Given two mesh patterns $m_1 = (\sigma, R_1)$ and $m_2 = (\sigma, R_2)$, and a dominating classical pattern $\pi = (\pi, \emptyset)$ such that $|\pi| \le |\sigma| + 2$, the sets $Av(\{\pi, m_1\})$ and $Av(\{\pi, m_2\})$ are coincident if

- 1. $R_1 \triangle R_2 = \{(a, b)\}$
- 2. a) $\pi \leq \text{add_ascent}(\sigma, (a, b))$ and
 - i. $(a+1,b) \in \sigma$ and $(a+1,b-1) \notin R$ and $(x,b-1) \in R \implies (x,b) \in R$ (where $x \neq a,a+1$) and $(a+1,y) \in R \implies (a,y) \in R$ (where $y \neq b-1,b$).
 - ii. $(a, b+1) \in \sigma$ and $(a-1, b+1) \notin R$ and $(x, b+1) \in R \implies (x, b) \in R$ (where $x \neq a-1, a$) and $(a-1, y) \in R \implies (a, y) \in R$ (where $y \neq b, b+1$).
 - b) $\pi \leq \text{add_descent}(\sigma, (a, b))$ and
 - i. $(a+1,b+1) \in \sigma$ and $(a+1,b+1) \notin R$ and $(x,b+1) \in R \implies (x,b) \in R$ (where $x \neq a,a+1$) and $(a+1,y) \in R \implies (a,y) \in R$ (where $y \neq b,b+1$).
 - ii. $(a,b) \in \sigma$ and $(a-1,b-1) \notin R$ and $(x,b+1) \in R \implies (x,b) \in R$ (where $x \neq a-1,a$) and $(a-1,y) \in R \implies (a,y) \in R$ (where $y \neq b-1,b$).

Proof. We need to prove that $Av(\{\pi, m_1\}) = Av(\{\pi, m_2\})$.

Assume without meaningful loss of generality that $R_2 = R_1 \cup \{(a, b)\}.$

Consider a permutation ω that contains an occurrence of m_2 by Note 2.1.2 any of these occurrences is also an occurrence of m_1 . This proves that every occurrence of m_2 is also an occurrence of m_1 and therefore $\text{Av}(\{\pi, m_1\}) \subseteq \text{Av}(\{\pi, m_2\})$.

We will consider taking the first branch of every choice. Now consider a permutation in $\omega' \in \text{Av}(\pi)$. Suppose ω' contains m_1 consider the region corresponding to (a, b) in R_1 .

If the region is empty, then we can freely shade the corresponding box (a, b) in m_1 and hence have an occurrence of m_2 .

Now consider if the region is non-empty, by Lemma 2.2.1 and condition 2a of the proposition this region must contain a decreasing subsequence. We can choose the topmost point in the region to replace the corresponding point in the mesh pattern and move the points from the subsequence into the box southeast of the point. The other conditions allow this to be done without moving points into regions that were shaded. Hence there are no points in the region corresponding to the box (a, b) in the mesh pattern, and therefore we can shade this region. This implies that every occurrence of m_1 in $Av(\pi)$ is in fact an occurrence of m_2 so $Av(\{\pi, m_1\}) \subseteq Av(\{\pi, m_2\})$.

Similar arguments satisfy the remainder of the branches.

Figure 2.1: An illustration of how lines and points move by this proposition.

CHAPTER 2. COINCIDENCES AMONGST FAMILIES OF MESH PATTERNS AND CLASSICAL PATTERNS

This proposition essentially states that we slide all of the points in the box we desire to shade diagonally, and chose the topmost/bottommost point to replace the original point in the mesh pattern.

By taking the First Dominating Pattern Rule and the Second Dominating Pattern rule together coincidences of classes of the form $Av(\{132, (21, R)\})$ are fully explained, obtaining 39 equivalence classes of mesh patterns.

2.3 Equivalence classes of $Av(\{231, (12, R)\})$.

When considering the equivalence classes of Av(231, (12, R)) we first apply the two Dominating Pattern rules previously established. Starting from 220 classes, application of the first Dominating Pattern rule gives 85 classes. Following this with the second Dominating Pattern rule reduces the number of classes to 59. However we know that there are patterns where the coincidences are not explained by the rules given above.

For example the patterns

are experimentally coincident. This coincidence is not explained by our rules, it is necessary to attempt to capture these coincidences by establishing more rules.

In order to rigorously establish this coincidence we need to consider what would happen if we were to choose a point in the box (1,0) that we would like to shade. In order to get a chance of getting the shading we want consider choosing the rightmost point in the box. This gives us the following mesh pattern.

By application of the Proposition 2.1.1 we then achieve the following mesh pattern

If we look at the highlighted points we see that the subpattern is an occurrence of the mesh pattern that we originally desired. This gives rise to the following rule:

11

Proposition 2.3.1 (Third Dominating Pattern Rule). Given two mesh patterns $m_1 = (\sigma, R_1)$ and $m_2 = (\sigma, R_2)$, and a dominating classical pattern $\pi = (\pi, \emptyset)^1$, the sets $Av(\{\pi, m_1\})$ and $Av(\{\pi, m_2\})$ are coincident if

- 1. $R_1 \triangle R_2 = \{(a, b)\}$
- 2. $add_point((\sigma, R_1), (a, b), D)$ is coincident with a mesh pattern containing an occurrence of (σ, R_2) .

Proof. We need to prove that $Av(\{\pi, m_1\}) = Av(\{\pi, m_2\})$.

Assume without meaningful loss of generality that $R_2 = R_1 \cup \{(a, b)\}.$

Consider a permutation ω that contains an occurrence of m_2 by Note 2.1.2 any of these occurrences is also an occurrence of m_1 . This proves that every occurrence of m_2 is also an occurrence of m_1 and therefore $\text{Av}(\{\pi, m_1\}) \subseteq \text{Av}(\{\pi, m_2\})$.

Now consider a permutation in $Av(\pi)$

2.4 Equivalence classes of $Av({321, (12, R)})$.

When considering equivalences of mesh patterns with underlying classical pattern 12 in Av(321) application of the previously established rules give no coincidences. Through experimentation we discover that there are 7 equivalence classes which can be explained through the use of two different lines of reasoning. Since the number of coincidences is so small we will reason for these equivalences without attempting to generalise into concrete rules.

Intuitively it is easy to see why our previous rules have no power here. There is nowhere that it is possible to add a single point to gain an occurrence of $\pi = 321$. It is also impossible to have a position where addition of an increase, or decrease, provides extra shading power.

The patterns **FiXme Note:** Is this dom₃?

 $^{^{\}scriptscriptstyle 1}$ The permutation π may be the empty permutation

12

are equivalent in Av(321). (There are 3 symmetries of these patterns that are also equivalent to each other by the same reasoning.)

Consider the contents of the box (0,1), by Lemma 2.2.1 it must contain an increasing subsequence. If there is only one point in the box we can choose this to replace the 1 in the mesh pattern to get the required shading. If there is more than one point then choosing the two leftmost points give us the following mesh pattern.

Where the two highlighted points are the original two points. Now if we take the other two points as the points in our mesh permutation then we get an occurrence of the pattern we originally desired, and hence the two patterns are coincident.

The other reasoning applies to the patterns

which are coincident by experientation.

In order to explain this we need to consider the middle box, and any points that it may contain. If the box is empty, then the coincidence is trivially true. Hence, consider if there is a point in the box. This gives us a mesh pattern

Where at most one of *A* or *B* contains an increasing subsequence. If both are empty we can *a posteriori* make our point in the center box be either the leftmost, or the rightmost. Now consider if the box *A* were to contain any points, we now know that the box labelled *B* contains no points and can be shaded. By previously established rules we can also obtain other shadings, leading to the following mesh pattern.

Now we can a posteriori say that our point in the center box was the rightmost, giving

This gives shading that when we choose the highlighted points we get an occurrence of the required mesh pattern, and as such the two patterns are coincident.

This argument applies to another pair of classes. Therefore in total in Av(321, (12, R)) there are 213 equivalence classes.

Chapter 3

Wilf-equivalences under dominating classical patterns

Another question often asked in the field of permutation patterns is that of Wilf-equivalence. Two patterns π and σ are said to be Wilf-equivalent if their avoidance sets have the same size at each length. More formally

Definition 3.0.1 (Wilf-equivalence). Two patterns π and σ are said to be *Wilf-equivalent* if for all $k \ge 0$, $|Av_k(\pi)| = |Av_k(\sigma)|$.

Two sets of permutation patterns R and S are are Wilf-equivalent if for all $k \ge 0$, $|\operatorname{Av}_k(R)| = |\operatorname{Av}_k(S)|$.

Wilf-equivalence is of interest as if two permutation classes are enumerated in the same way then there should exist a bijection between them, and therefore any other combinatorial object that they represent.

There are a number of symmetries we can use when examining Wilf-equivalences to reduce the amount of work, it can be easily seen that the reverse, complement and inverse operations preserve enumeration, and therefore these classes are trivially Wilf-equivalent. Since we are always considering Wilf-equivalences in the set $Av(\pi)$ we must only use these symmetries when they preserve the dominating pattern.

Bibliography

[1] D. Adams, So long, and thanks for all the fish. Harmony Books, 1984.

School of Science and Engineering Reykjavík University Menntavegur 1 101 Reykjavík, Iceland Tel. +354 599 6200 Fax +354 599 6201 www.ru.is