Examples 1.2. (a) The left-translation semigroup on $C_O(\mathbb{R}_+)$ or the semigroup generated by the Laplacian on $C_O(\mathbb{R}^n)$, see B-III,Ex.1.7, are uniformly stable but not exponentially stable.

(b) The left translations T(t)f(x)=f(x+t) on $C_O(\mathbb{R})$ form a group of isometries. Hence $(T(t))_{t\geq 0}$ is not stable. However, $(T(t))_{t\geq 0}$ is weakly stable. Indeed, identifying $C_O(\mathbb{R})$ ' with the space of all bounded Borel measures on \mathbb{R} , for $f\in C_O(\mathbb{R})$, $\mu\in C_O(\mathbb{R})$ ' we have $< T(t)f, \mu>=\int (T(t)f)(x)\ d\mu(x)$

Obviously, $T(t)\,f$ tends pointwise to 0 as $t\to\infty$ and is dominated by the $\,\mu\text{-integrable}$ function $\,\|f\|_\infty\cdot 1\,$. Thus Lebesgue's Dominated Convergence Theorem implies $\,1\text{im}\,\,^<\!T(t)\,f_{\,,\,\mu}\!>\,=\,0$.

(c) Finally we give an example of a positive semigroup on $C_O(X)$ which is not weakly stable but satisfies $Re(P_\sigma(A) \cup R_\sigma(A)) < 0$. (Compare with A-IV,Cor.1.14).

Consider in the space $\mathbb{C}\setminus\{0\}$ a flow ϕ having the following properties:

- The orbits starting at z with $\left| \, z \, \right| \, \neq \, 1$ spiral towards the unit circle Γ ;
- 1 is a fixed point and $\Gamma \setminus \{1\}$ is a homoclinic orbit (i.e. $\lim_{t \to +\infty} \phi(t,z) = \lim_{t \to -\infty} \phi(t,z) = 1$ for every $z \in \Gamma$). A concrete example of this type is the flow governed by the following differential equations for the polar coordinates (i.e. $z = r \cdot e^{i\omega}$)

$$\dot{\mathbf{r}} = 1 - \mathbf{r}$$

$$\dot{\omega} = 1 + (\mathbf{r}^2 - 2\mathbf{r} \cdot \cos \omega)$$

The locally compact set $X:=\{z\in\mathbb{C}:0<|z|<2$, $z\neq1\}$ is invariant under the flow ϕ and we consider on the space $C_0(X)$ the semigroup $(T(t))_{t\geq0}$ associated with ϕ (i.e. $T(t)f=f\circ\phi_t$, $f\in C_0(X)$). We claim that

- (i) $(T(t))_{t\geq 0}$ is not weakly uniformly stable;
- (ii) $P\sigma(A) \cap i\mathbb{R} = \emptyset$;
- (iii) $R\sigma(A) \cap i\mathbb{R} = \emptyset$.

Proof of (i): Given $z \in X$, $|z| \neq 1$, there exist sequences (t_n) , (s_n) both tending to ∞ such that $\phi(t_n,z) \rightarrow 1$ and $\phi(s_n,z) \rightarrow -1$. Hence for $f \in C_O(X)$ we have

$$\langle T(t_n) f, \delta_z \rangle = f(\phi(t_n, z)) \rightarrow 0 ,$$

$$\langle T(s_n) f, \delta_z \rangle = f(\phi(s_n, z)) \rightarrow f(-1) .$$

Thus $\lim_{t\to\infty} \langle T(t)f,\delta_z\rangle$ does not exist for every $f\in C_O(X)$. Proof of (ii): Assume that $T(t)f=e^{i\alpha t}f$ for every $t\geq 0$ and some $\alpha\in\mathbb{R}$ (cf. A-III,Cor.6.4). Given $z\in X$, there exists a sequence (t_n) such that $\phi(t_n,z)\to 1$, hence