

Mathématiques

Classe: 4ème Mathématiques

Série 22: Primitives

Nom du prof : M. ZOGHBI Naoufel

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

Primitives

DEFINITION

On dit qu'une fonction numérique F est une primitive de f sur un intervalle I, si et seulement si : F est dérivable et pour tout x appartenant à I on a : F'(x) = f(x)

Exercice 1:

(S) 10 min

2 pts

On a représenté la courbe ${\rm Cf}\,d'une$ fonction f continue sur $\mathbb R$.

On a représenté trois courbes et la tangente en pointillé à chacune de ces courbes au point d'abscisse 0.

Une de ces courbes représente une primitive de f . Laquelle ? Justifier.

THEOREME

(D'existence)

Toute fonction f continue sur un intervalle \Im , admet sur \Im une infinité de primitives. Deux primitives F et G de f sur \Im diffèrent d'une constante réelle c.

Pour tout nombre x dans l'intervalle \Im : F(x) = G(x) + c

THEOREME

(D'unicité)

<u>Si</u> f est continue sur un intervalle \Im , <u>alors</u> pour tout nombre x_0 appartenant à \Im et pour tout nombre réel y_0 , il existe une seule primitive F telle que : $F(x_0) = y_0$

Exercice 2:

(5) 10 min

2 pts

La parabole (P) ci-dessus est la courbe représentative d'une fonction f.

- 1°) Soit F une primitive de f sur ℝ et (C) la courbe représentative de F. Etudier les variations de F.
- **2°)** On donne F(1) = 0.

Donner une équation de la tangente à la courbe (C) au point d'abscisse 1.

3°) Exprimer f(x) puis F(x) en fonction de x. Tracer (c).

Exercice 3:

(S) 15 min

3 pts

On considère les fonctions f et g définies sur \mathbb{R} par $f(x) = \frac{3x^3 + 2x}{\sqrt{x^2 + 1}}$ et $g(x) = \sqrt{x^2 + 1}$

- 1°) Montrer que f possède, sur ${\mathbb R}$, une unique primitive F qui s'annule en 0.
- 2°) Montrer que F est paire.
- 3°)a) Calculer g'(x) pour tout réel x. Montrer que pour tout $x \in \mathbb{R}$, on a : $f(x) = 2xg(x) + x^2 g'(x)$
 - b) En déduire F.

PROPRIETES

- 1) <u>Si</u> f et g admettent respectivement comme primitives F et G sur un même intervalle \Im <u>alors</u> F + G est une primitive sur \Im de la fonction f + g
- 2) <u>Si</u> F est une primitive de f sur un intervalle \Im <u>alors</u> pour toute constante réelle α , la fonction α F est une primitive sur \Im de la fonction α f

CONSEQUENCE

Si deux fonctions f et g admettent respectivement comme primitives F et G sur le même intervalle \Im , <u>alors</u> pour toutes constantes réelles α et β , la fonction $\alpha F + \beta G$ est une primitive sur \Im de la fonction $\alpha f + \beta g$

PRIMITIVES USUELLES

Dans le tableau suivant, on donne la fonction f dont on cherche les primitives F sur un intervalle ${\mathfrak I}$ de son domaine de définition ${\mathcal D}$

Fonction f(x)	Primitives F	\mathcal{D}
0	λ (constante)	\mathbb{R}
a (constante)	$ax + \lambda$	\mathbb{R}
$x^n (n \in \mathbb{N})$	$\frac{1}{n+1}x^{n+1} + \lambda$	\mathbb{R}
$\frac{1}{x^2}$	$-\frac{1}{x} + \lambda$	\mathbb{R}^*
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + \lambda$	\mathbb{R}_+^*
√x	$\frac{2}{3}x\sqrt{x} + \lambda$	$\mathbb{R}_{_{+}}$
$x^r (r \in \mathbb{Q} \setminus \{-1\})$	$\frac{1}{r+1}X^{r+1}+\lambda$	$\left(\mathbb{R}_{+} \operatorname{si} r \geq 0\right) \left(\mathbb{R}_{+}^{*} \operatorname{si} r < 0\right)$
cos (x)	$\sin(x) + \lambda$	\mathbb{R}
sin(x)	$-\cos(x) + \lambda$	\mathbb{R}
$cox(ax+b) (a \in \mathbb{R}^*)$	$\frac{1}{a}\sin(ax+b)+\lambda$	\mathbb{R}
$\sin(ax+b) (a \in \mathbb{R}^*)$	$-\frac{1}{a}\cos(ax+b)+\lambda$	\mathbb{R}
$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	tan (x) + λ	$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\;,\;k\in\mathbb{Z}\;\right\}$
$\frac{1}{\sin^2(x)} = 1 + \cot^2(x)$	$-\cot g(x) + \lambda$	$\mathbb{R}\setminus\{\;k\pi\;,\;k\in\mathbb{Z}\;\}$

OPERATIONS

Dans le tableau suivant la fonction f est définie par une opération usuelle sur deux fonctions U et V. F désigne une primitive quelconque de f sur un intervalle \Im

f(x)	F(x)	Conditions sur U ou V
$U'(x) \times U^n(x) (n \in \mathbb{N})$	$\frac{1}{n+1}U^{n+1}(x)+\lambda$	U est dérivable
$U'(x) \times U^{r}(x) (r \in \mathbb{Q} \setminus \{-1\})$	$\frac{1}{r+1}U^{r+1}(x)+\lambda$	U est dérivable $(U \ge 0 \text{ si } r \ge 0) \ (U > 0 \text{ si } r < 0)$
$\frac{V'(x)}{V^2(x)}$	$-\frac{1}{V(x)} + \lambda$	V est dérivable et non nulle
$\frac{U'(x)V(x)-V'(x)U(x)}{V^2(x)}$	$\frac{U(x)}{V(x)} + \lambda$	U et V sont dérivables et V non nulle
$\frac{U'(x)}{\sqrt{U(x)}}$	$2\sqrt{U(x)} + \lambda$	U est dérivable et strictement positive
U' (x)√ <u>U(x)</u>	$\frac{2}{3}U(x)\sqrt{U(x)} + \lambda$	U est dérivable et positive ou nulle
$U'(x)\times(V'\circ U)(x)$	(VoU)(x)	U est dérivable sur ℑ et V est dérivable sur U(ℑ)

Exercice 4:

4 pts

Soient les fonctions f et g définies sur l'intervalle]-1 ;1[par : $f(x) = \sqrt{\frac{1-x}{1+x}}$ et $g(x) = \frac{1}{\sqrt{1-x^2}}$

- 1) Montrer que f et g possèdent des primitives sur l'intervalle]-1;1[.
- 2) On note F et G les primitives respectives de f et g telles que F(0) = G(0) = 0. Montrer que pour tout $x \in]-1$; 1[, on a : $F(x) = G(x) + \sqrt{1 - x^2} - 1$.
- 3) On note H et K les fonctions définies sur]0; $\pi[$ par $H(x) = F(\cos(x))$ et $K(x) = G(\cos(x))$. Montrer que $H(x) = K(x) + \sin(x) 1$
- **4) a)** Montrer que K est dérivable sur $]0;\pi[$ puis calculer K '(x) en fonction de x.
 - **b)** En déduire K(x) et H(x) en fonction de x.

Exercice 5:

(\$ 30 min

4 pts

Sur l'intervalle précisé, calculer une primitive des fonctions suivantes :

$$f_1(x) = \frac{(\sqrt{x} + 1)^2}{\sqrt{x}}$$
; $I_1 =]0; +\infty[$

$$f_2(x) = (x+2)^2(x-1); \quad I_2 = \mathbb{R}$$

$$f_3(x) = x^2(x-1)^{2022}; I_3 = \mathbb{R}$$

$$f_4(x) = x^3(x^2 + 1)^{2022}; I_4 = \mathbb{R}$$

$$f_5(x)=tg^2(3x)+tg^4(3x); I_5=0; \frac{\pi}{6}$$

$$f_6(x)=\tan^4(x); I_6= -\frac{\pi}{2}; \frac{\pi}{2}$$

$$f_7(x) = \frac{\text{tg}^2(\sqrt{x+1})}{\sqrt{x+1}}; \quad I_7 =]-1;1[$$

$$f_8(x) = \frac{x-1}{\sqrt{x+1}}; I_8 =]-1; +\infty[$$

$$f_9(x) = \frac{x^3}{\sqrt{x^2 + 1}}; I_9 = \mathbb{R}$$

$$f_{10}(x) = \frac{1}{1 + \cos(x)}; I_{10} = 0; \frac{\pi}{2}$$

$$f_{11}(x) = \cos^2(x)\sin^3(x); \quad I_{11} = \mathbb{R}$$

$$f_{12}(x) = \frac{1}{\cos^4(x)}; \quad I_{12} = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$

Exercice 6:

(5) 20 min

4 pts

Soit f la fonction définie sur \mathbb{R} par $f(x) = x + \sqrt{x^2 + 1}$.

- 1°)a) Dresser le tableau de f puis tracer sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.
- **b)** Montrer que f admet une fonction réciproque f⁻¹ définie sur un intervalle I que l'on déterminera.
 - c) Justifier que f⁻¹ est dérivable sur l puis dresser son tableau de variation.
 - d) Tracer la courbe représentative de f^{-1} dans un repère orthonormé $(O; \vec{i}; \vec{j})$.
- 2°) On considère la fonction g définie pour tout $x \in I$ par $g(x)=x f^{-1}(x)$.
 - a) Montrer que pour tout $x \in \mathbb{R}$, on a f '(x)= $\frac{f(x)}{f(x)-x}$.
 - **b)** En déduire que, pour tout $x \in I$, g'(x) = x.
 - c) Déterminer alors $f^{-1}(x)$ pour tout $x \in I$.

Exercice 7:

(5) 15 min

3 pts

Soit f une fonction dérivable sur $\mathbb R$ telle que :

$$f(0){=}0\text{ ; }f(\,\mathbb{R}\,){=}\,\mathbb{R}\text{ et }\forall x\in\mathbb{R}\text{; }f'(x){=}\frac{1}{f^2(x){+}f(x){+}3}\text{ pout tout réel }x\text{ .}$$

- **1°)a)** Prouver que f est une bijection de \mathbb{R} vers \mathbb{R} .
 - **b)** En déduire les variations de f⁻¹.
- **2°)a)** Montrer que f^{-1} est dérivable sur $\mathbb R$ et calculer pour tout $x \in \mathbb R$, $(f^{-1})'(x)$.
 - **b)** En déduire $f^{-1}(x)$, pour tout $x \in \mathbb{R}$.

Exercice 8:

(5) 30 min

4 pts

Soit f la fonction définie sur \mathbb{R} par $f(x) = \sqrt{x^2 - x + 1}$. On désigne par (C_f) la courbe représentative (C_f) de f dans un repère orthonormé (O,\vec{i},\vec{j}) ..

- **1°)a)** Montrer que la droite d'équation $x = \frac{1}{2}$ est axe de symétrie de (C_f) .
 - **b)** Dresser le tableau de variations de f puis tracer (C_f).
- **2°)** On désigne par F la primitive de f telle que F(0)=0 et par (C_F) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) . On donne F(1)= $\sqrt{3}$
 - a) Montrer que, pour tout $x \in]-\infty;0[$, on a F(x) < x.
 - **b)** En déduire $\lim_{x \to -\infty} F(x)$.
 - c) Montrer que pour tout $x \in]-\infty;0[$ on a : $F(x) < -\frac{1}{2}x^2$.
 - **d)** En déduire $\lim_{x\to\infty} \frac{F(x)}{x}$.
- **3°)a)** Montrer que le point $I\left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$ est un centre de symétrie de (C_F) .
 - **b)** Donner une équation de la tangente à (C_F) au point I.
 - c) Dresser le tableau de variations de F puis tracer (C_F) dans (O,\vec{i},\vec{j}) .

Exercice 9:

5 pts

Soit f la fonction définie sur $[1; +\infty[$ par $f(x) = \sqrt[3]{x^2 - 1}$.

- 1°)a) Justifier que f admet une unique primitive F qui s'annule en 1.
 - **b)** Montrer que pour tout $x \in]1; +\infty[$, on a 0 < F(x) < (x-1)f(x).
 - c) En déduire que F est dérivable à droite en 1.
- **2°)a)** Soit G la fonction définie sur $[1; +\infty[$ par $G(x) = F(x) \frac{3}{5}\sqrt[3]{(x-1)^5}$.

Montrer que G est strictement croissante sur $[1;+\infty[$.

- **b)** En déduire que pour tout $x \in [1; +\infty[$, on a $F(x) \ge \frac{3}{5}(x-1)\sqrt[3]{(x-1)^2}$.
- c) Déterminer alors $\lim_{x\to +\infty} F(x)$ et $\lim_{x\to +\infty} \frac{F(x)}{x}$.
- **d)** Dresser le tableau de variations de F puis tracer la courbe représentative (C_F) de F dans un repère orthonormé (O,\vec{i},\vec{j}) .

Exercice 10:

(S) 30 min

5 pts

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{1+x^2}$

- 1) Montrer que f possède, sur \mathbb{R} , une unique primitive F qui s'annule en 0.
- **2)** on pose g(x) = F(-x) + F(x).
 - a) Montrer que g est dérivable sur $\mathbb R$ puis calculer g'(x) en fonction de x
 - **b)** Calculer g(0) puis montrer que F est impaire

- 3) Soit la fonction h définie sur l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par $h(x) = \tan(x)$
 - a) Montrer que h est bijective puis tracer la courbe \mathscr{C}_h dans un repère orthonormé (O,\vec{i},\vec{j})
 - **b)** Montrer que F est la réciproque de h puis tracer la courbe \mathscr{C}_F dans le même repère $(0,\vec{i},\vec{j})$
- **4) a)** Montrer que pour tout $x \in \left]0, \frac{\pi}{2}\right[$ on a : $\left(\frac{\pi}{2} x\right) \in \left]0, \frac{\pi}{2}\right[$ et $h\left(\frac{\pi}{2} x\right) = \frac{1}{h(x)}$.
 - **b)** Montrer alors que, pour tout $x \in \left]0, +\infty\right[, \ F(x) + F\left(\frac{1}{x}\right) = \frac{\pi}{2}$.
 - c) En déduire que : $\lim_{x\to +\infty} F(x) = \frac{\pi}{2}$
- **5)** Montrer que pour tout $x \in \left] -\frac{\pi}{2}, 0\right[$ on $a: \left(-\frac{\pi}{2} x\right) \in \left] -\frac{\pi}{2}, 0\right[$ et $h\left(-\frac{\pi}{2} x\right) = \frac{1}{h(x)}$. En déduire que pour tout $x \in \left] -\infty, 0\right[$, $F(x) + F\left(\frac{1}{x}\right) = -\frac{\pi}{2}$

En déduire que : $\lim_{x \to -\infty} F(x) = -\frac{\pi}{2}$.