MINISTERUL EDUCAȚIEI ȘI CERCETĂRII AL REPUBLICII MOLDOVA

AGENȚIA NAȚIONALĂ PENTRU CURRICULUM ȘI EVALUARE

Raionul
Localitatea
Instituția de învățământ
Numele, prenumele elevului

TESTUL Nr. 1

CHIMIA

TEST PENTRU EXERSARE CICLUL LICEAL

Profil real februarie, 2023 Timp alocat: 180 de minute

Rechizite și materiale permise: pix cu cerneală albastră.

Instrucțiuni pentru candidat:

- Citește cu atenție fiecare item și efectuează operațiile solicitate.
- Lucrează independent.

Îți dorim mult succes!

Punctaj acumulat _____

			Itemii	Pui	nctaj									
1	Încercuies	ște litera A	A, dacă afirmația este adevărată și litera F, dacă afirmația este falsă.											
	1) A F		elementului chimic situat în sistemul periodic în perioada a VI-a, grupa bgrupa secundară conține în nucleu 80 de protoni.	0 1	1 L 0									
		oxid sup	ul chimic cu configurația electronică $1s^22s^22p^63s^23p^63d^{10}4s^2$ 4 p^3 formează perior cu compoziția R_2O_5 .	3	3									
	3) A F	Cel mai a clorul.	activ nemetal din perioada a IV-a este un oxidant mai puternic decât	4 5 6	5 6									
	4) A F Ionul de potasiu conține același număr de electroni ca și ionul de calciu.													
	5) A F		genului cu volumul de 11,2 l (c.n.) este mai mare decât masa a molecule de oxid de carbon (IV).	ı										
	6) A F		ul chimic cu sarcina nucleului $+16$ formează un compus volatil soluția e un pH > 7 .											
2	ușoare, r	ezistente	nanomateriale de ultimă generație care conțin 99,8% de aer, sunt foarte și prezentă un interes sporit datorită proprietăților absorbante și oționale.		L 0									
	termoizolante excepționale. Pentru fiecare component al aerogelurilor prezentat în coloana A indică în spațiul rezervat literele caracteristicilor lui corespunzătoare propuse în coloana B .													
	A B													
			a) între particulele substanței se formează legături covalente nepolare	5	5									
		b) conține particule cu configurația de gaz inert												
			c) între particulele substanței se formează două legături π	ı										
	I	N_2	d) are rețea cristalină atomică	ı										
			e) un mol de substanță ocupă în condiții normale un volum de 22,4 <i>l</i>	ı										
			f) posedă proprietăți amfotere	i										
	1	Al_2O_3	g) se utilizează la producerea sticlei	ı										
3	cosmetice	e pentru co	este utilizată în calitate de component activ la producerea preparatelor ombaterea mătreții datorită proprietăților antifungice pronunțate. Analiza compus poate fi realizată conform următoarei scheme:	L 0 1	L 0 1									
		SeS_2	+ $HNO_3 \rightarrow H_2SO_4 + H_2SeO_3 + NO_2 + H_2O$	3 4	3 4									
	Stabilește pentru acest proces: gradele de oxidare ale tuturor elementelor, oxidantul și reducătorul, procesele de oxidare și de reducere; determină coeficienții prin metoda bilanțului electronic și egalează ecuația reacției.													

4	Percloretilena la moment a înlocuit majoritatea deoarece înlătură eficient majoritatea petelor, neinflamabil și poate fi utilizat în siguranță, fără	este stabil di	in punct de	,	L 0	L 0
	Pentru fiecare sistem reactant indică în spațiile deplasa echilibrul chimic la acțiunea factorilo <i>la stânga</i> sau <i>nu se va deplasa</i>).				1 2 3 4	1 2 3 4
			Factorii		5	5
	Sistemul reactant	mărirea temperaturii	mărirea presiunii	eliminarea clorurii de hidrogen	6	6
	$ C_2H_{4(g)} + 4HCl_{(g)} + 2O_{2(g)} \rightleftarrows C_2Cl_{4(g)} + 4H_2O_{(g)} + Q $					
	$C_2H_4Cl_{2(g)} + 3Cl_{2(g)} \stackrel{cat.}{\rightleftharpoons} C_2Cl_{4(g)} + 4HCl_{(g)} - Q$					
5	Fosfatul de calciu, spre deosebire de alți agenți d doar compatibil cu majoritatea antibioticelor dar unei pastile se utilizează câte 80 mg de fosfat de Rezolvă problema. a) Calculează masa fosfatului de calciu obținut li masa de 492 g și partea de masă a Ca(NO ₃) ₂ de concentrația molară de 1,5 mol/l. b) Argumentează prin calcule dacă această cantit producerea unui lot de comprimate format din 40 Se dă:	și le intensifica calciu. a interacțiunea 10% cu 200 ml ate de fosfat de 0 de pastile. Rezolvare:	ă acțiunea. Po soluției de n l soluție de fo	itrat de calciu cu osfat de sodiu cu	L 0 1 2 3 4 5 6 7 8 9 10 11 12	L 0 1 2 3 4 5 6 7 8 9 10 11 12

Scrie câte o ecuație chimicalitate de reactanți doar staticalitate de reactanți doar staticalitate de combinare: 2) reacție de descompunere: 3) reacție de substituție: 4) reacție	că pentru fiecare tip d ubstanțele din șirul pro	e reacție in		L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
semidesfășurată a unei sub	stanțelor organice core	spunzătoare	2.	L 0 1	L 0 1 2
și posedă proprietăți am: 3) Corespunde formulei ge	fotere nerale C _n H _{2n} O și			3 4 5 6	3 4 5 6
5) Este un produs al reacție	ei de fotosinteză				
Imprimarea 3D permite con printr-o modelarea aditivă din polimerii utilizați se ob Completează spațiile libere dar care aparțin claselor din Formula de structură semidesfășurată Denumirea compusului conform nomenclaturii sistematice Formula de structură semidesfășurată a unui izomer Denumirea izomerului conform nomenclaturii	rearea rapidă, exactă și strat cu strat, a diferiține din monomerul cu din tabel pentru doi ce ferite de compuși organ	și fără deșe itor forme i formula m ompuși org nici.	euri a obiectelor tridimensionale din polimeri termoplastici. Unul oleculară $\underline{C_5H_8}$.	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Scrie câte o ecuație chimic calitate de reactanți doar s 1) reacție de combinare: 2) reacție de descompunere: 3) reacție de substituție: 4) reacție de schimb: Pentru fiecare caracterist semidesfășurată a unei substituție are cu catenă ramificată 2) Corespunde formulei m și posedă proprietăți ami 3) Corespunde formulei ge nu dă reacția oglinzii de 4) Se obține la hidroliza grafică of Poate fi identificată cu ce Imprimarea 3D permite cu printr-o modelarea aditivă, din polimerii utilizați se ob Completează spațiile libere dar care aparțin claselor dir Formula de structură semidesfășurată Denumirea compusului conform nomenclaturii sistematice Formula de structură semidesfășurată a unui izomer Denumirea izomerului	Scrie câte o ecuație chimică pentru fiecare tip de calitate de reactanți doar substanțele din șirul pro 1) reacție de combinare: 2) reacție de descompunere: 3) reacție de substituție: 4) reacție de substituție: 4) reacție de substituție: 4) reacție de schimb: Pentru fiecare caracteristică propusă notează semidesfășurată a unei substanțelor organice core 1) Este un omolog al metanului cu catenă ramificată 2) Corespunde formulei moleculare C ₃ H ₇ NO ₂ și posedă proprietăți amfotere 3) Corespunde formulei generale C _n H _{2n} O și nu dă reacția oglinzii de argint 4) Se obține la hidroliza grăsimilor 5) Este un produs al reacției de fotosinteză 6) Poate fi identificată cu clorura de fier (III) Imprimarea 3D permite crearea rapidă, exactă sprintr-o modelarea aditivă, strat cu strat, a difer din polimerii utilizați se obține din monomerul cu Completează spațiile libere din tabel pentru doi c dar care aparțin claselor diferite de compuși organ Compusul II Formula de structură semidesfășurată Denumirea compusului conform nomenclaturii sistematice Formula de structură semidesfășurată a unui izomer Denumirea izomerului conform nomenclaturiii	calitate de reactanți doar substanțele din șirul propus: 1) reacție de combinare: 2) reacție de descompunere: 3) reacție de substituție: 4) reacție de substituție: 4) reacție de substituție: 4) reacție de schimb: Pentru fiecare caracteristică propusă notează în spațiul semidesfășurată a unei substanțelor organice corespunzătoare 1) Este un omolog al metanului cu catenă ramificată 2) Corespunde formulei moleculare C ₃ H ₇ NO ₂ și posedă proprietăți amfotere 3) Corespunde formulei generale C _n H _{2n} O și nu dă reacția oglinzii de argint 4) Se obține la hidroliza grăsimilor 5) Este un produs al reacției de fotosinteză 6) Poate fi identificată cu clorura de fier (III) Imprimarea 3D permite crearea rapidă, exactă și fără deșe printr-o modelarea aditivă, strat cu strat, a diferitor forme din polimerii utilizați se obține din monomerul cu formula m Completează spațiile libere din tabel pentru doi compuși organici. Compusul 1 Formula de structură semidesfășurată Denumirea compusului conform nomenclaturii sistematice Formula de structură semidesfășurată a unui izomer Denumirea izomerului conform nomenclaturii	Scrie câte o ecuație chimică pentru fiecare tip de reacție indicat, utilizând în fiecare caz în calitate de reactanți doar substanțele din șirul propus: 1) reacție de combinare: 2) reacție de descompunere: 3) reacție de substituție: 4) reacție de substituție: 4) reacție de substituție: 4) reacție de substituție: 1) Este un omolog al metanului cu catenă ramificată 2) Corespunde formulei moleculare CsH7NO2 și poscdă proprictăți amfotere 3) Corespunde formulei generale CuH2nO și nu dă reacția oglinzii de argint 4) Se obține la hidroliza grăsimilor 5) Este un produs al reacțici de fotosinteză 6) Poate fi identificată cu clorura de fier (III) Imprimarea 3D permite crearea rapidă, exactă și fără deșeuri a obiectelor tridimensionale printr-o modelarea aditivă, strat cu strat, a diferitor forme din polimeri termoplastici. Unul din polimerii utilizați se obține din monomerul cu formula moleculară CsH2n. Completează spațiile libere din tabel pentru doi compuși organici care au această compoziție, dar care aparțin claselor diferite de compuși organici. Compusul 1 Compusul 2	Serie câte o ceuație chimică pentru ficeare tip de reacție indicat, utilizând în ficeare caz în calitate de reactanți doar substanțele din șirul propus: 1) reacție de combinare: 2) reacție de descompunere: 3) reacție de substituție: 4) reacție de substituție: 4) reacție de schimb: Pentru ficeare caracteristică propusă notează în spațiul rezervat formula de structură semidesfășurată a unei substanțelor organice corespunzătoare. 1) Este un omolog al metanului cu catenă ramificată 2) Corespunde formulei moleculare CaHrNO2 și posedă proprietăți amfotere 3) Corespunde formulei generale CaHaO și nu dă reacția oglinzii de argint 4) Se obține la hidroliza grăsimilor 5) Este un produs al reacției de fotosinteză 6) Poate fi identificată cu clorura de fier (III) Imprimarea 3D permite crearea rapidă, exactă și fără deșeuri a obiectelor tridimensionale printr-o modelarea aditivă, strat cu strat, a diferitor forme din polimeri termoplastici. Unul din polimeri utilizați se obține din monomerul cu formula moleculară CaHa. Completează spațiile libere din tabel pentru doi compuși organici care au această compoziție, dar care aparțin claselor diferite de compuși organici. Completează spațiile libere din tabel pentru doi compuși organici care au această compoziție, dar care aparțin claselor diferite de compuși organici. Completează spațiile libere din tabel pentru doi compuși organici care au această compoziție, dar care aparțin claselor diferite de compuși organici. Completează spațiile libere din tabel pentru doi compuși organici care au această compoziție, dar care aparțin claselor diferite de compuși organici. Compusul 1 Compusul 2 5 Servulua de structură semidesfășurată a unui izomer Denumirea izomenului conform nomenelaturii isistematice Formula de structură de catenă de catenă de pozitie

S	unt date substanțele: 2-bromobutan, propenă, benzen, etanol, acid propanoic.		
G.	crie ecuațiile reacțiilor respectând condiția ca în fiecare caz reagentul să aparțină clasei	L	L
	idicate de compuşi organici, iar <u>produsul de reacție</u> să fie una din substanțele din şirul	0	0
		1	1
pı	ropus. Pentru substanțele organice utilizează formulele de structură semidesfășurate.	2	2
		3	3
a) din alchenă:	4	4
$ u\rangle$) an aichena.	5	5
		6	6
b) din alchină:	7	7
		<u> </u>	8
c) din ester:	8	
d) din hidrat de carbon:		
	Ientolul este un component activ al creioanele nazale destinate pentru decongestionarea		
	espirației și combaterea tusei în timpul răcelii sau gripei. Conținutul mentolului în aceste	L	L
-	roduse este de 40%.	0	0
	ezolvă problema.	1	1
	Ientolul conține 76,92% de carbon, 12,82% de hidrogen și 10,26% de oxigen și are	2	2
de	ensitatea vaporilor săi după oxigen egală cu 4,875.	3	3
a)	Determină formula moleculară a mentolului.	4	4
b) Calculează câte creioane nazale, cu masa fiecărui creion de 1,3 g, pot fi produse din	5	5
	0,1 moli de mentol.	6	6
Å	Se dă: Rezolvare:	7	7
		8	8
		9	9
			1
		10	10
		11	11
		12	12
• • •			
• • •			
• • •			
1			ĺ
	<i>ăspuns:</i> a) ; b)		

11	Înainte de a vopsi părul, se recomandă de utilizat șampoane pentru curățare profundă care au		
	un pH de 6 - 6,5 și sunt mai "acide" decât șampoanele pentru utilizare frecventă.	L	L
	Rezolvă problema.	0	0
	Pentru prepararea unei soluții de acid azotic cu volumul de 100 l s-au utilizat 2 ml de soluție	1	1
	de HNO ₃ cu densitatea de 1,01 g/ml și partea de masă a acidului de 3,12 %.	2	2
	a) Calculează pH-ul soluției preparate.b) Argumentează dacă vei recomanda şamponul cu același pH pentru o utilizare frecventă.	3	3
	Se dă: Rezolvare:	4	4
	Se au. Rezorvare.	5	5
		7	7
		8	8
		9	9
		10	10
	Răspuns: a) ; b)		
12	În trei eprubete etichetate se propun pentru analiză soluțiile următoarelor substanțe:		
	1 – nitrat de plumb (II); 2 – sulfat de potasiu; 3 – carbonat de amoniu.	L	L
	Notează în spațiile libere ale enunțurilor propuse litera A dacă le consideri adevărate și	0	0
	litera F , dacă le consideri false.	2	$\frac{1}{2}$
	a) Reactivul de identificare a cationului în soluția "1" este iodura de potasiu ().	3	3
	b) Reactivul de identificare a anionului în soluția "2" este clorura de calciu ().	5	5
	c) La tratarea soluției "3" cu acid clorhidric se elimină un gaz cu miros înțepător ().	7	6 7
	d) Cu acid sulfuric poate fi identificată doar o soluție din cele trei propuse ().	8	8
	II. Pentru una din soluțiile propuse pentru analiză scrie ecuația unei reacții de identificare în formă moleculară, ionică completă și redusă și indică semnalul analitic corespunzător.	10	9
	(EM)		
	(EIC)		
	(EIR)		
	(Dit)		
	Semnalul analitic		
		Ī	

SISTEMUL PERIODIC AL ELEMENTELOR CHIMICE

		I		П		III		IV		V		VI		VII			v	TII		
1	1 H	Hidrogen 1,0079													2 He 4	Heliu ,0026				
	3	Litiu	4	Beriliu	5	Bor	6	Carbon	7	Azot	8	Oxigen	9	Fluor	10 1	Neon				
2	Li	6,941	Be	9,01218	В	10,81	C	12,011	N	14,0067	O	15,9994	F	18,9984	Ne	20,179				
	11	Sodiu		lagneziu	13	Aluminiu	14	Siliciu	15	Fosfor	16	Sulf	17	Clor	18	Argon				
3	Na	22,98977	Mg	24,305	Al	26,98154	Si	28,0855	P	30,97376	\mathbf{S}	32,06	Cl	35,453	Ar 3	39,948				
	19	Potasiu	20	Calciu	21	Scandiu	22	Titan	23	Vanadiu	24	Crom	25	Mangar	n 26	Fier	27	Cobalt	28	Nichel
١.,	K	39,0983	Ca	40,08	44,95	559 Sc	47,88	8 Ti	50,	9415 V	51,9	96 Cr	54,93	38 Mn	55,84	7 Fe	58,933	32 Co	58,69	Ni
4	29	Cupru	30	Zinc	31	Galiu	32	Germaniu	33	Arsen	34	Seleniu	35	Bron	1 36 K	ripton				
	6	3,546 Cu	65,38	Zn	Ga	69,72	Ge	72,59	As	S 74,9216	Se	78,96	Br	79,904	Kr	83,80				
	37	Rubidiu	38	Stronţiu	39	Ytriu	40	Zirconiu	41	Niobiu	42	Molibden	43	Tehneţiu			45	Rodiu	46	Paladiu
_	Rb	85,4678	Sr	87,62		88,9059 Y	91,2	2 Zr	92,	9064 Nb	95,9	4 Mo	[98]	Tc	101,07	7 Ru	102,905	55 Rh	106,4	2 Pd
5	47	Argint	48	Cadmiu	49	Indiu	50	Staniu	51	Stibiu	52	Telur	53	Iod	54 X	enon				
	107,8	68 Ag	112,41	Cd	In	114,82	Sn	118,69	St	121,75	Te	127,60	I	126,9045	Xe 1:	31,29				
	55	Ceziu	56	Bariu	57*	Lantan	72	Hafniu	73	Tantal	74	Volfram	75	Reniu		Osmiu	77	Iridiu	78	Platina
	Cs	132,9054	Ba	137,33	138,9	9055 La	178,4	49 Hf	180),948 Ta	183	3,85 W	186,	207 Re	190,2	Os	192,22	Ir	195,0	8 Pt
6	79	Aur	80	Mercur	81	Taliu	82	Plumb	83	Bismut	84	Poloniu	85	Astatiniu	86 R	adon				
	196,9	665 Au	200,59	Hg Hg	Tl	204,383	Pb	207,2	Bi	208,9804	Po	[209]	At	[210]	Rn	[222]				
	87		88		89**		104		105		106		107		108		109		110	
7	_	Franciu	_	Radiu	Acti		Ruth	erfordium		bnium	Sea	oorgium	Boh	rium 	Hassi		Meitne			tadtium
	Fr	[223]	Ra	226,0254	227	,0278 Ac	[261]	Rf	[[262] Db	[263	S_{0}	[262]] Bh	[267,1	3] Hs	[268,1	4] Mt	[281] Ds
									*La	ntanide										
58 C		9 Pr	60 No		Pm	62 Sm	63		4 G			66 Dy	67	Но	68 Er	69	Tm			1 Lu
Ceriu		raseodim	Neodin			Samariu	Euro		dolin			Disprosiu		lmiu	Erbiu		ıliu	Yterbi		Lutețiu
140,12	: 1	40,9077	144,24	[145]	150,36	151	,90 I	57,25)4	162,50	164,	9304	167,26	168,	9342	173,04		174.967
									~~F	Actinide										

Cm

Curiu

[247]

Am 96

Americiu

[243]

97 **Bk**

Berkeliu

[247]

Cf

californiu

[251]

99

Es

Einsteiniu

[252]

98

100 **Fm**

Fermiu

[257]

101

[258]

102

Nobeliu

[255]

Md

Mendeleviu

103

Lawrenciu

[260]

Lr

 \mathbf{U}

93

Np

Neptuniu 237,0482 **Pu** 95

Plutoniu

[244]

92

Uraniu

238,0389

Th

Protactiniu

231,0359

Toriu

232,0381

	H ⁺	NH ₄ ⁺	Li ⁺	Na ⁺	K ⁺	Ba ²⁺	Ca ²⁺	Mg ²⁺	A1 ³⁺	Cr ³⁺	Zn ²⁺	Mn ²⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Cu ²⁺	Ag ⁺
OH -		S↑	S	S	S	S	P	I	I	I	I	I	I	I	I	I	-
F -	S	S	P	S	S	P	I	I	P	I	S	S	I	I	I	S	S
C1 -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	P	S	I
Br -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	P	S	I
Ι-	S	S	S	S	S	S	S	S	S	S	S	S	S	-	I	-	I
S^{2-}	S↑	S	S	S	S	S	S	S	-	-	I	I	I	-	I	I	I
SO ₃ ² -	S↑	S	S	S	S	I	I	I	-	-	I	-	I	-	I	I	I
SO ₄ ²⁻	S	S	S	S	S	I	P	S	S	S	S	S	S	S	I	S	P
CO ₃ ²⁻	S↑	S	S	S	S	I	I	I	-	-	I	I	I	-	I	-	I
SiO ₃ ²⁻	I	-	S	S	S	I	I	I	-	-	I	I	I	-	I	-	-
NO ₃ -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
PO ₄ ³⁻	S	S	I	S	S	I	I	I	I	I	I	I	I	I	I	I	I
CH ₃ COO-	S	S	S	S	S	S	S	S	S	-	S	S	S	-	S	S	S

Notă: S – substanță solubilă, I – insolubilă, P – puțin solubilă; «-» substanța nu există sau se descompune în apă; \uparrow - substanța se degajă sub formă de gaz sau se descompune cu degajare de gaz

SERIA ELECTRONEGATIVITĂŢII

													-						
F	0	N	Cl	Br	I	S	C	Se	P	H	As	В	Si	Al	Mg	Ca	Li	Na	K
4,0	3,5	3,07	3,0	2,8	2,5	2,5	2,5	2,4	2,1	2,1	2,0	2,0	1,8	1,5	1,2	1,04	1,0	0,9	0,8

SERIA TENSIUNII METALELOR

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au