Кластеризация К представителями

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- Введение
- Кластеризация, основанная на представителях
- 3 К-средних
- Расширения К представителей
- б Определение качества кластеризации и #кластеров

Идея кластеризации

- Кластеризация разбиение объектов на группы, такие что
 - внутри групп объекты очень метрически похожи
 - объекты из разных групп метрически непохожи
- Обучение без учителя, нет "золотого стандарта"

Нет единого понятия "похожести"

• разные метрики приводят к разным результатам

Применения кластеризации

- классификация без обучающей выборки
- сегментация клиентов
 - например, для более тагретированных спец. предложений
- рекомендательная система
 - рекомендуем клиентам то, что нравится др. клиентам их кластера
- детекция выбросов
 - выбросы не принадлежат ни одному кластеру
- ускорение поиска похожих объектов по кластеру
 - используется в KNN, частичном обучении, активном обучении, рекомендательных системах
- извлечение новых признаков
 - номер кластера, расстояние до своего и ближайшего чужого кластера

Сжатие данных1

- Для экономии памяти и ↓переобучения заменим похожие объекты номером их кластера
- Англ. vector quantization, feature space quantization.

¹Источник иллюстраций.

Сжатие данных²

- В каждом фрагменте 3x3: $2^9 = 512$ вариантов.
- Уникальных фрагментов 32, заменим их 5 прототипами.
- Заменяя изображение частотой встречи каждого прототипа получим bag-of-visual-words кодирование.
 - Машина-колесо, окно, фара... Человек: глаз, нос, руки...
 - нейросети извлекают признаки лучше, но им нужно много обучающих данных

²Источник иллюстраций.

Характеристики алгоритмов кластеризации

Можем сравнивать различные алгоритмы кластеризации:

- по вычислительной сложности
- #кластеров находится автоматически?
- строится плоская или иерархическая кластеризация?
- гибкость формы кластеров
 - могут ли быть разной плотности, невыпуклые?
- устойчивость алгоритма к наличию выбросов
- используемая метрика похожести

Содержание

- Введение
- 2 Кластеризация, основанная на представителях
- 3 К-средних
- Расширения К представителей
- 5 Определение качества кластеризации и #кластеров

Кластеризация, основанная на представителях

Кластеризация, основанная на представителях (representative-based clustering)

- Кластеризация плоская (не иерархическая).
- #кластеров K задается пользователем.
- Каждый объект x_n соотносится кластеру $z_n \in \{1, 2, ... K\}$.
- Индексы кластеров:

$$C_k = \{n : z_n = k\}$$

- Каждый кластер k определяется центром μ_k , k=1,2,...K.
- Решается задача:

$$\mathcal{L}(z_1,...z_N;\mu_1,...\mu_K) = \sum_{n=1}^{N} \rho(x_n,\mu_{z_n}) \to \min_{z_1,...z_N;\mu_1,...\mu_K}$$

Метод оптимизации

$$\mathcal{L}(z_1,...z_N;\mu_1,...\mu_K) = \sum_{n=1}^N \rho(x_n,\mu_{z_n}) \to \min_{z_1,...z_N;\mu_1,...\mu_K}$$

Находится <u>локальный</u> оптимум методом <u>покоординатного</u> спуска $(\mu, z, \mu, z...)$

Coordinate Descent Convergence

Общий алгоритм

```
инициализировать \mu_1, ... \mu_K
(случайными объектами выборки)
ПОВТОРЯТЬ по сходиомсти:
    для n = 1, 2, ...N:
        z_n = \arg\min_k \rho(x_n, \mu_k)
    для k = 1, 2, ...K:
         \mu_k = \arg\min_{\mu} \sum_{n \in C_k} \rho(x_n, \mu)
ВЕРНУТЬ z_1, ... z_N
```

Число кластеров

- К гиперпараметр.
 - если малый, то различные кластеры сольются в один
 - лучше взять завышенным, а потом объединить похожие

Комментарии

- разные ф-ции расстояния приводят к разным алгоритмам:
 - $\rho(x, x') = ||x x'||_2^2 =$ K-средних
 - μ_k среднее
 - неустойчиво к выбросам
 - $\rho(x, x') = ||x x'||_1 => \mathsf{K}$ -медиан
 - μ_k медиана
 - устойчива к выбросам
- μ_k может выбираться только среди существующих объектов
 - например, временные ряды разной длины не можем усреднять
- ullet Форма кластеров определяется $ho(\cdot,\cdot)$

Комментарии

Условия сходимости:

- достигнуто максимальное # итераций
- назначения кластеров $z_1,...z_N$ перестали меняться (полная сходимость)
- изменения $\{\mu_i\}_{i=1}^K$ меньше порога (приближенная сходимость)

Оптимальность:

- критерий содержит много локальных оптимумов
- можно запусть оптимизацию из разных инициализаций и выбрать лучшее решение

Инициализация центров

Инициализация центров:

- $\{\mu_i\}_{i=1}^K$ инициализируются случайными объектами
 - распределение центров=распределению объектов
 - центры могут получиться слишком похожими
 - k-means++: *µ*₁-случайно, а далее

$$p(\mu_k = x_n) \propto \min_{i=1,2,\dots,k-1} ||x_n - \mu_i||^2, \quad k = 2, 3, \dots K.$$

- но если выброс, то кластер будет содержать только его
 - инициализировать медианами из нескольких случайных объектов

Содержание

- Введение
- Кластеризация, основанная на представителях
- 3 К-средних
- 4 Расширения К представителей
- 5 Определение качества кластеризации и #кластеров

К-средних - алгоритм

Инициализировать $\mu_{k},\ k=1,2,...K$.

ПОВТОРЯТЬ до сходимости:

для
$$n=1,2,...N$$
: определить кластер для x_i : $z_n=\arg\min_{k\in\{1,2,...K\}}||x_n-\mu_k||_2^2$

для
$$k=1,2,...K$$
: пересчитать центры: $\mu_k=\frac{1}{|C_k|}\sum_{n\in C_k} x_n$

Сложность: O(NDKI), K-#кластеров, I-#итераций.

• Частичное обучение: если часть классов известна - фиксируем их и центры инициализируем по ним.

К-средних - динамический алгоритм

```
Инициализировать:
\mu_k, k = 1, 2, ...K, z_n = -1, n = 1, 2, ...N.
ПОВТОРЯТЬ до сходимости:
    для n = 1, 2, ...N:
        определить кластер для x_n:
        z'_n = \arg\min_{k \in \{1,2,...K\}} ||x_n - \mu_k||_2^2
        если z'_{n}! = z_{n}:
            пересчитать центроиды кластеров
                z_n и z'_n # (как средние за O(1))
            z_n = z'_n
```

• Сходится за ↓#итераций, невозможны пустые кластеры.

Пример кластеризации рукописных цифр

К-средних для невыпуклых кластеров

К-средних для равномерно распределенных данных

Mini-batch K-means

- Mini-batch K-means для больших данных (как SGD).
- Обозначим N(k)=текущее #элементов кластера k.

```
Инициализировать \mu_k, k = 1, 2, ... K.
```

ПОВТОРЯТЬ до сходимости:

сэмлируем минибатч случайных объектов x_b' , b=1,2,...B для b=1,2,...B: определить кластер z_b для x_b'

для
$$b=1,2,...B$$
: обновить размер кластера: $N(z_b):=N(z_b)+1$ обновить центр кластера: $\mu_{\mathsf{Z}(b)}:=(1-\frac{1}{N(z_b)})\mu_{\mathsf{Z}(b)}+\frac{1}{N(z_b)}\mathsf{X}_b'$

K-means vs. mini-batch K-means

Mini-batch K-means ускоряет сходимость для больших данных

• ценой небольшого ↓ качества

K-means, K-means++, mini-batch K-means есть в sklearn.

Содержание

- 1 Введение
- Кластеризация, основанная на представителях
- 3 К-средних
- Ф Расширения К представителей
- 5 Определение качества кластеризации и #кластеров

Расстояние Махаланобиса

• Расстояние Махаланобиса учитывает μ_k, Σ_k кластера:

$$\rho(x, \mu_k)^2 = (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)$$

• Это позволяет выделять кластеры эллиптической формы разного размера и плотности.

Mahalanobis distance contours

сширения к представителеи

К-медоид - идея

- К медоид К представителей, с ограничением, что центроидом м. быть только реальный объект
 - более интерпретируемо
 - если не можем усреднять объекты
 - например, временные ряды разной длины

К-медоид - алгоритм

инициализировать $\mu_1,...\mu_K$ из случайных объектов

ПОВТОРЯТЬ до сходимости:

для
$$n=1,2,...N$$
: $z_n=\mathop{\rm arg~min}_k
ho(x_n,\mu_k)$

для
$$k=1,2,...K$$
 : $\mu_k=\arg\min_{\mu\in\{x_n:z_n=k\}}\sum_{n:z_n=k}\rho(x_n,\mu)$

ВЕРНУТЬ $z_1, ... z_N$

сложность одной итерации $O(N^2)$

• из-за поиска центрального объекта каждого кластера

Ядерное обобщение К средних

- Мотивация: строить кластера более общей невыпуклой формы.
- Пусть $C_k := \{n: z_n = k\}$ индексы объекта в кластере k. $\rho(x,\mu_k)^2 = \|x \mu_k\|^2 = \langle \varphi(x) \frac{1}{|C_k|} \sum_{i \in C_k} \varphi(x_i), \, \varphi(x) \frac{1}{|C_k|} \sum_{i \in C_k} \varphi(x_i) \rangle$ $= \langle \varphi(x), \varphi(x) \rangle 2 \langle \varphi(x), \, \frac{1}{|C_k|} \sum_{i \in C_k} \varphi(x_i) \rangle + \frac{1}{|C_k|^2} \sum_{i,j \in C_k} \langle \varphi(x_i), \, \varphi(x_j) \rangle$ $= K(x,x) 2 \frac{1}{|C_k|} \sum_{i \in C_k} K(x,x_i) + \underbrace{\frac{1}{|C_k|^2} \sum_{i,j \in C_k} K(x_i,x_j)}_{\text{average similarity to cluster}}$ cluster compactness

инициализировать
$$C_1, ... C_K$$

ПОВТОРЯТЬ до сходимости:

для
$$n = 1, 2, ...N$$
:
 $z_n = \arg \min_{k} \rho(x_n, \mu_k)^2$

ВЕРНУТЬ $z_1, ... z_N$

Ядерное обобщение К-средних

- Гауссово ядро (как пример): $K(x, \mu) = e^{-\gamma \|x \mu\|^2}$
- Сложность: сложность каждой итерации $O(N^2)$, общая $O(N^2I)$.
- Центроиды не вычисляются напрямую (не можем, используя $\langle \cdot, \cdot \rangle$)

Содержание

- Введение
- Кластеризация, основанная на представителях
- 3 К-средних
- 4 Расширения К представителей
- 5 Определение качества кластеризации и #кластеров

Алгоритм Monti consensus clustering³

- Генерируем H псевдовыборок $D_1, D_2, ... D_H$ из X, кластеризуем каждую.
- На $D_h\left(x_i,x_j\right)$ кластеризуются как $\left(z_i^h,z_j^h\right),\ h\in M\left(i,j\right).$ • $M\left(i,j\right)=\{h:\ x_i\in D_h\ \&\ x_i\in D_h\}$
- Определим матрицу консенсуса (consensus matrix)

$$M(i,j) = \frac{\sum_{h \in M(i,j)} \mathbb{I}\left[z_i^h = z_j^h\right]}{|M(i,j)|}, \quad M \in \mathbb{R}^{N \times N}$$

- $M(i,j) \in \{0,1\} =>$ у точек (i,j) устойчивая класт-ция.
- ullet $M(i,j) \in (0,1) =>$ у точек (i,j) неустойчивая класт-ция.
 - тем неустойчивее, чем ближе M(i,j) к 0.5.

 $^{^{3}}$ https://en.wikipedia.org/wiki/Consensus_clustering

Алгоритм Monti consensus clustering

• Для каждого #кластеров K посчитаем пропорцию пар точек с неопределённой кластеризацией (proportion of ambiguous clustering, PAC)

$$PAC(K) = \frac{|\{(i,j) : i < j \& 0.1 \le M(i,j) \le 0.9\}|}{C_2^N}$$

• $PAC(K) \in [0,1]$ - мера неустойчивости кластеризации на K кластеров; $K^* = \arg\min_K PAC(K)$.

Заключение

- Кластеризация метод обучения без учителя со многими приложениями.
- К представителей самый популярный метод кластеризации.
- Число кластеров К гиперпараметр (задаётся пользователем)
- Важный параметр $\rho(x, \mu)$, например

$$\|x - \mu_k\|_1$$
, $(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)$

- Обобщения: К-медиан, К-медоид, ядерное обобщение.
- Monti consensus clustering определение качества кластеризации и оптимального К.