Class 09 DATA1220-55, Fall 2024

Sarah E. Grabinski

2024-09-18

Homework 2

- ▶ Instructions (homework2_instructions.pdf), a Quarto markdown template (homework2_template.qmd), and an example HTML output (homework2_example.html) are available for download under Chapter 2 on the Modules page in Canvas.
- Upload TWO (2) documents to Homework 2 on the Assignments page in Canvas by Friday 9/20/2024 by 6:00pm: homework2_yourlastname.qmd and homework2_yourlastname.html
- ➤ Video walk-through of Homework 2 under Tutorials on the Modules page in Canvas. Make sure you're caught up on the video walk-through of homework 1.

Late Policy

"This homework is due by 6:00pm on Friday, 9/20/24. No credit will be lost for assignments received by 7:00pm to account for issues with uploading. 10% of the points will be deducted from assignments received by 9:00am on Saturday, 9/21/24. Assignments turned in after this point are only eligible for 50% credit, so it benefits you to turn in whatever you have completed by the due date."

How can I get help with homework?

- ▶ Read the textbook. Many of you are asking for additional examples. Luckily, there are tons we didn't go over in the textbook.
- ▶ Look at the homework early. Only 1 person has looked at the homework since I posted it. Make sure you leave enough time to get help if you need it.
- ▶ Ask a question on our Campuswire class feed. I'm only one person, and I may not be able to give you a prompt answer. However, the 20+ other people in the class might be able to.
- ➤ Come to office hours. I will be available after class today Wednesday 9/25/2024 from 2:30pm 4:00pm. If you cannot make it, reach out to me to try and schedule an appointment.

Chapter 3 Objectives

- Define probability, random processes, and the law of large numbers
- Describe the sample space for disjoint and non-disjoint outcomes
- Calculate probabilities using the General Addition and Multiplication Rules
- Create a probability distribution for disjoint outcomes

What does the word **probability** mean to you?

What does the word **probability** mean to you?

"Highly likely"

What does the word **probability** mean to you?

"Highly likely"

"Probably"

What does the word **probability** mean to you?

"Highly likely"

"Probably"

"About even"

What does the word **probability** mean to you?

"Highly likely"

"Probably"

"About even"

"Almost no chance"

People interpret probability differently

So what is probability?

i Frequentist Definition

The proportion of times that a particular outcome would occur if we observed a random process an infinite number of times.

- ➤ A random process is one where you know which outcomes are possible (i.e. the sample space) but you don't know which outcome comes next
- Examples of a random process: coin toss, die roll, stock market

How do you know a process is random?

Figure 2: Both Apple and Spotify took steps to make their "shuffle"

A brief history of "Shuffle"

- ▶ January 11, 2005 Apple releases the iPod Shuffle, a small device capable only of playing music randomly ("true" shuffle)
- ➤ September 7, 2005 Apple offers "Smart Shuffle" in response to complaints, which controlled how likely songs from the same album or artist would play close together
- ▶ July 2011 Spotify launches in the United States using the Fisher-Yates Algorithm, which is like picking tickets out of a hat until no more remain
- ► February 2014 Spotify modifies their sampling algorithm to ensure an even distribution across albums/artists

What went wrong?

- ➤ The human brain is good at finding patterns in noise, even when there are none
- If an artist is repeated "too soon", the listener doesn't feel the order is random
- ▶ We perceive a "random" distribution as also being "uniform" and "fair"

So why didn't we like a "true" random shuffle?

- Songs not evenly distributed across albums and artists on a playlist
- Some albums/artists may play more frequently than others simply because they have more songs in the library/on the playlist
- ▶ Each song is equally likely to play next, but not each artist
- Artists/albums with more songs also more likely to play in a row
- A true random shuffle might play the same artist multiple times in a row
- It's unusual but not impossible to roll a 1 on a die 3 times in a row
- It's also possible for the same song to play twice in a row

Example: Spotify Playlists

Number of Songs on the 'Taylor Swift Radio' playlist on Spotify by Artist(s)

What if shuffle was truly random?

Each time the song changes, every song on the playlist is eligible to be played next

- Does not matter if the song was just played
- Does not matter who the artist is

We call this **sampling with replacement**.

- Like drawing a playing card, looking at it, then putting it back in the deck before the next draw
- ▶ Repetition of outcomes is possible

Sampling With Replacement

How often were artists repeated during Spotify's original shuffle?

Number of Times Artist is Played in 10 Songs n = 50

What is the probability of hearing a song by Chappell Roan?

- ▶ There is our "observed" probability that the next song is by Chappell Roan
- ▶ Sample proportion (\hat{p}_n)
- ▶ There is some "true" real-world probability that the next song is by Chappell Roan
- ightharpoonup Population proportion (p)

Defining the sample space

The sample space s or S is the total collection of possible outcomes for a random process.

Die rolls: 1, 2, 3, 4, 5, 6

Coin flips: heads, tails

Stock market: up, down, no change

Here, the **sample space** could be all the songs on the playlist (n=50) or all the artists who perform them (n=26).

Defining the Sample Space

Flipping a Coin SAMPLE SPACE {Head, Tail}

vellow blue

Rolling a Weighted Dice

SAMPLE SPACE {1, 2, 3, 4, 5, 6} Uniform

SAMPLE SPACE {Red, Yellow, Green, Blue} Uniform

SAMPLE SPACE {4, 5, 6} Not Uniform

Picking a flavor of ice cream

Determining the gender of baby

SAMPLE SPACE (Chocolate, Vanilla, Strawberry) Uniform

SAMPLE SPACE {Boy, Girl} Uniform

SAMPLE SPACE (Blue, Red) Not Uniform