The inheritance of local bifurcations in mass action networks

Murad Banaji¹, Balázs Boros², Josef Hofbauer²

- ¹ Mathematical Institute, University of Oxford, United Kingdom
- ² Department of Mathematics, University of Vienna, Austria

We compute the first and the second focal values of the homogeneous, rank-three mass action network that appears in Section 4.3 in the paper titled "The inheritance of local bifurcations in mass action networks."

The smallest bimolecular mass-action system with a vertical Andronov-Hopf bifurcation

The network

We have shown in

M. Banaji, B. Boros, J. Hofbauer

The smallest bimolecular mass-action system with a vertical Andronov-Hopf bifurcation

Applied Mathematics Letters, 143:108671, 2023

that the mass-action system

$$Z + X \xrightarrow{\kappa_1} 2X$$

$$X + Y \xrightarrow{\kappa_2} 2Y$$

$$Y + Z \xrightarrow{\kappa_3} 0 \xrightarrow{\kappa_4} 2Z$$

admits a vertical Andronov-Hopf bifurcation (and that this is the smallest such bimolecular system). The bifurcation occurs at $\kappa_1 = \kappa_2 + \kappa_3$.

Verify the transversality of the (vertical) Andronov-Hopf bifurcation

Below we verify the transversality of the bifurcation. For the theoretical details on transversality, see Section 2 in "The inheritance of local bifurcations in mass action networks."

```
 \begin{aligned} &\text{f} = \kappa_1 \times z \; \{1,\, 0,\, -1\} + \kappa_2 \times y \; \{-1,\, 1,\, 0\} + \kappa_3 \, y \; z \; \{0,\, -1,\, -1\} + \kappa_4 \; \{0,\, 0,\, 2\}; \\ & \kappa \text{positive} = \kappa_1 > 0 \&\& \, \kappa_2 > 0 \&\& \, \kappa_3 > 0 \&\& \, \kappa_4 > 0; \\ &\text{equilibrium} = \\ & \text{Normal} [\text{Simplify}[\text{Solve}[f == 0 \&\& \, x > 0 \&\& \, y > 0 \&\& \, z > 0 \&\& \, \kappa \text{positive}, \; \{x,\, y,\, z\}]][1]]; \\ &\text{J} = D[f, \; \{\{x,\, y,\, z\}\}]; \\ &\{b_0,\, b_1,\, b_2,\, b_3\} = \\ &\text{Simplify}[\text{CoefficientList}[\text{Collect}[-\text{CharacteristicPolynomial}[J,\, \lambda],\, \lambda],\, \lambda]]; \\ &\text{B2B1minusB0} = \text{Simplify}[b_1\, b_2 - b_0]; \\ &\text{Hopf} = \{\kappa_1 \to \kappa_2 + \kappa_3\}; \\ &\text{HopfCondition} = \kappa_2 > 0 \&\& \, \kappa_3 > 0 \&\& \, \kappa_4 > 0; \\ &\text{h} = \text{Join}[f, \; \{\text{B2B1minusB0}\}]; \\ &\text{Dh} = \\ &\text{Simplify}[D[h, \; \{\{x,\, y,\, z,\, \kappa_1,\, \kappa_2,\, \kappa_3,\, \kappa_4\}\}] \; /. \; \text{equilibrium} \; /. \; \text{Hopf, HopfCondition}]; \\ &\text{Reduce}[\text{Simplify}[\text{Det}[Dh[\{1,\, 2,\, 3,\, 4\},\, \{1,\, 2,\, 3,\, 4\}]]] \; \neq 0 \&\& \; \text{HopfCondition}] \end{aligned}
```

Out[11]=

```
\kappa_2 > 0 && \kappa_3 > 0 && \kappa_4 > 0
```

Andronov-Hopf bifurcation in the homogenised network

The network

Homogenisation of the above network results in the mass-action system

 $Z + X \xrightarrow{\kappa_1} 2 X$ $X + Y \xrightarrow{\kappa_2} 2 Y$ $Y + Z \xrightarrow{\kappa_3} 2 W \xrightarrow{\kappa_4} 2 Z$

Below we analyse the Andronov-Hopf bifurcation that is inherited from the 3d system.

The ray of positive equilibria

Since the molecularity of every complex is the same (namely, two), the stoichiometric classes are given by x + y + z + w = c for c > 0. Furthermore, since the r.h.s. is homogeneous (of degree two), the phase portrait is the same (up to scaling) in every stoichiometric class. Hence, the set of positive equilibria is a ray.

```
 \begin{aligned} &\text{f} = \kappa_1 \, \text{x} \, \text{z} \, \{1,\, 0,\, -1,\, 0\} + \kappa_2 \, \text{x} \, \text{y} \, \{-1,\, 1,\, 0,\, 0\} + \kappa_3 \, \text{y} \, \text{z} \, \{0,\, -1,\, -1,\, 2\} + \kappa_4 \, \text{w}^2 \, \{0,\, 0,\, 2,\, -2\}; \\ &\text{equilibrium} = \text{Normal} [\text{Simplify}[\text{Solve}[\\ &\text{f} == 0 \&\& \, \text{w} == t > 0 \&\& \, \text{x} > 0 \&\& \, \text{y} > 0 \&\& \, \text{z} > 0 \&\& \, \text{w} > 0 \&\& \, \kappa \text{positive}, \, \{\text{x},\, \text{y},\, \text{z},\, \text{w}\}]][[1]]; \\ &\text{Print}["\text{r.h.s.:} ", \, \text{MatrixForm}[f]]; \\ &\text{Print}["\text{equilibrium ray:} ", \, \text{equilibrium}]; \end{aligned}
```

r.h.s.:
$$\begin{pmatrix} x \ z \ \kappa_1 - x \ y \ \kappa_2 \\ x \ y \ \kappa_2 - y \ z \ \kappa_3 \\ -x \ z \ \kappa_1 - y \ z \ \kappa_3 + 2 \ w^2 \ \kappa_4 \\ 2 \ y \ z \ \kappa_3 - 2 \ w^2 \ \kappa_4 \end{pmatrix}$$

$$\text{equilibrium ray: } \left\{ \textbf{x} \rightarrow \textbf{t} \ \sqrt{\frac{\kappa_3 \ \kappa_4}{\kappa_1 \ \kappa_2}} \ \textbf{, } \ \textbf{y} \rightarrow \textbf{t} \ \sqrt{\frac{\kappa_1 \ \kappa_4}{\kappa_2 \ \kappa_3}} \ \textbf{, } \ \textbf{z} \rightarrow \textbf{t} \ \sqrt{\frac{\kappa_2 \ \kappa_4}{\kappa_1 \ \kappa_3}} \ \textbf{, } \ \textbf{w} \rightarrow \textbf{t} \right\}$$

Fix a stoichiometric class and eliminate w

W.l.o.g. we restrict our attention to the stoichiometric class that has the above equilibrium with $t = \sqrt{\frac{\kappa_1 \kappa_2 \kappa_3}{\kappa_4}}$. Further, we eliminate the variable w using the conservation law.

```
tsubst = \left\{t \rightarrow \sqrt{\frac{\kappa_1 \kappa_2 \kappa_3}{\kappa_4}}\right\};
 csubst = \{c \rightarrow (x + y + z + w /. equilibrium)\};
 ff = Simplify[f[{1, 2, 3}]] /. {w \rightarrow c - x - y - z} /. csubst /. tsubst, \kappapositive];
 equil = Normal[Solve[ff == 0 && xpositive && x > 0 && y > 0 && z > 0 &&
          x + y + z < Simplify[(c /. csubst /. tsubst), \kappa positive], {x, y, z}][1]];
 Print["r.h.s. of the reduced system: ", MatrixForm[ff]];
 Print["the unique positive equilibrium: ", equil];
```

```
\text{r.h.s. of the reduced system:} \left( \begin{array}{c} x \; (z \; \kappa_1 - y \; \kappa_2) \\ y \; (x \; \kappa_2 - z \; \kappa_3) \\ -x \; z \; \kappa_1 - y \; z \; \kappa_3 + 2 \; \left( -x - y - z + \kappa_1 + \kappa_2 + \kappa_3 + \sqrt{\frac{\kappa_1 \kappa_2 \; \kappa_3}{\kappa_4}} \; \right)^2 \; \kappa_4 \end{array} \right)
```

the unique positive equilibrium: $\{x \rightarrow \kappa_3, y \rightarrow \kappa_1, z \rightarrow \kappa_2\}$

The Jacobian matrix and higher order derivatives at the positive equilibrium

```
A = Simplify[D[ff, {{x, y, z}}] /. equil, κpositive];
In[22]:=
        Idx[set_, n_] := Module[{seq}, seq = (Table[Count[set, i], {i, n}] /. List → Sequence);
            seq];
        derivatives = {};
        order = 2;
        n = 3;
        For [i = 0, i \le order, i++,
           For [j = 0, j \le order - i, j++, For [k = 0, k \le order - i - j, k++,
             deriv = Simplify[D[ff, {x, i}, {y, j}, {z, k}] /. equil];
             derivatives = Join[derivatives,
                Simplify [\{F_{i,j,k} \rightarrow deriv[1], G_{i,j,k} \rightarrow deriv[2], H_{i,j,k} \rightarrow deriv[3]\}]];
            ]]];
        B[x_{, y_{]} :=
           Sum[\{F_{Idx}[\{k,1\},n],G_{Idx}[\{k,1\},n],H_{Idx}[\{k,1\},n]\} \times [\![k]\!] \times y[\![1]\!] \ /. \ derivatives, \{k,n\},\{1,n\}];
        CC[x_, y_, z_] := \{0, 0, 0\};
        (* due to the bimolecularity all derivatives of order 3 and higher vanish *)
```

The Routh-Hurwitz criterion

```
 \{a_{0}, a_{1}, a_{2}, a_{3}\} = \\ Simplify[CoefficientList[Collect[-CharacteristicPolynomial[A, \lambda], \lambda], \lambda]]; \\ A2A1minusA0 = Simplify[a_{1} a_{2} - a_{0}]; \\ RouthHurwitz = \\ Simplify[Solve[A2A1minusA0 == 0 && a_{0} > 0 && \alpha_{2} > 0 && \kappa positive, \kappa_{4}][1]]; \\ Hopf = Normal[RouthHurwitz]; \\ HopfCondition = FullSimplify[RouthHurwitz[1]][2][2]]; \\ Print["pair of purely imaginary eigenvalues at ", \\ Hopf, " assuming ", HopfCondition]; \\ \\ pair of purely imaginary eigenvalues at \\ \left\{\kappa_{4} \rightarrow \frac{\kappa_{1} \; (-\kappa_{1} + \kappa_{2} + \kappa_{3})^{2}}{16 \; \kappa_{2} \; \kappa_{3}}\right\} \; assuming \; \kappa_{2} > 0 && \kappa_{3} > 0 && \kappa_{1} > \kappa_{2} + \kappa_{3} \\ \end{cases}
```

Left and right eigenvectors of the Jacobian matrix

We eliminate κ_4 in the Jacobian matrix using the Routh-Hurwitz criterion. Then we find the left and right eigenvectors that are needed when computing the first focal value (see e.g. http://www.scholarpedia.org/article/Andronov-Hopf_bifurcation).

```
AA = Simplify[A /. Hopf, HopfCondition];
In[36]:=
       mtx = AA - \omega i IdentityMatrix[n];
       q = Simplify[NullSpace[mtx[Range[1, n - 1]]][1]];
       mtx = AA^T - \omega i IdentityMatrix[n];
       pconj = Simplify[NullSpace[mtx[Range[1, n - 1]]][[1]]];
       normalize = FullSimplify[pconj.q];
       pconj = pconj / normalize;
       qconj = FullSimplify[q*, \omega > 0 \&\& \kappapositive];
```

The first focal value (L_1)

We now compute L_1 . It takes about 10-20 seconds.

```
v_1 = CC[q, q, qconj];
v<sub>2</sub> = Simplify[B[q, Inverse[-AA].B[q, qconj]]];
v_3 = Simplify[B[qconj, Inverse[2 I \omega IdentityMatrix[n] - AA].B[q, q]]];
c_1 = Simplify \left[ pconj. \left( \frac{1}{2} v_1 + v_2 + \frac{1}{2} v_3 \right) \right];
L1\kappa\omega = Simplify[ComplexExpand[Re[c_1]], \omega > 0 \&\& \kappa positive];
\omegasubst = \left\{\omega \rightarrow \text{Simplify}\left[\sqrt{\frac{\text{Det}[AA]}{\text{Tr}[AA]}}\right]\right\};
L1\kappa = FullSimplify[L1\kappa\omega /. Hopf /. \omega subst];
Print \lceil L_1 \text{ equals } L_1 \rceil;
```

```
L_1 equals -((\kappa_1 (\kappa_1 - \kappa_2 - \kappa_3) (\kappa_1 + \kappa_2 - \kappa_3)^2 \kappa_3^2)
                                \left(5\,\kappa_{1}^{3}+2\,\kappa_{1}^{2}\,\left(-3\,\kappa_{2}+\kappa_{3}\right)\right.\\ \left.+4\,\kappa_{2}\,\kappa_{3}\,\left(-\kappa_{2}+\kappa_{3}\right)\right.\\ \left.+\kappa_{1}\,\left(-7\,\kappa_{2}^{2}+6\,\kappa_{2}\,\kappa_{3}-3\,\kappa_{3}^{2}\right)\right)\right)\Big/
                      \left(8 \, \kappa_{2} \, \left(\kappa_{1} - \kappa_{3}\right)^{\, 2} \, \left(\kappa_{1} \, \left(\kappa_{1} - \kappa_{2}\right)^{\, 2} + \, \left(2 \, \kappa_{1}^{2} - \kappa_{1} \, \kappa_{2} + \kappa_{2}^{\, 2}\right) \, \kappa_{3} + \, \left(\kappa_{1} - \kappa_{2}\right) \, \kappa_{3}^{\, 2}\right)\right) \, \left(\kappa_{1} + \kappa_{2} + \kappa_{2}^{\, 2}\right) \, \kappa_{3} + \, \left(\kappa_{1} - \kappa_{2}\right) \, \kappa_{3}^{\, 2}
                                \left(\kappa_{1}^{3} + 4 \kappa_{2} \left(\kappa_{2} - \kappa_{3}\right) \kappa_{3} + 2 \kappa_{1}^{2} \left(-\kappa_{2} + \kappa_{3}\right) + \kappa_{1} \left(\kappa_{2} + \kappa_{3}\right)^{2}\right)\right)
```

Analyse the sign of L_1

We start with omitting the denominator (which is positive for $\kappa_2 > 0$, $\kappa_3 > 0$, $\kappa_2 + \kappa_3 < \kappa_1$) and a positive factor in the enumerator.

```
L1 = Numerator \left[\frac{\text{L1}\kappa}{\kappa_1 \left(\kappa_1 - \kappa_2 - \kappa_3\right) \left(\kappa_1 + \kappa_2 - \kappa_3\right)^2 \kappa_3^2}\right];
In[52]:=
              Print["the part of L_1 that determines its sign: ", L1];
```

```
the part of L_1 that determines its sign:
  -5\,\,\kappa_{1}^{3}-2\,\,\kappa_{1}^{2}\,\,\left(-3\,\,\kappa_{2}+\kappa_{3}\right)\,-4\,\,\kappa_{2}\,\,\kappa_{3}\,\,\left(-\kappa_{2}+\kappa_{3}\right)\,-\kappa_{1}\,\,\left(-7\,\,\kappa_{2}^{2}+6\,\,\kappa_{2}\,\,\kappa_{3}-3\,\,\kappa_{3}^{2}\right)
```

W.l.o.g. we may set one of κ_1 , κ_2 , κ_3 equal to 1. Since L_1 is cubic in κ_1 and only quadratic in κ_2 and κ_3 , we set $\kappa_1 = 1$. Then we analyse the expression in the open triangle $\kappa_2 > 0$, $\kappa_3 > 0$, $\kappa_2 + \kappa_3 < 1$.

```
L1neg = Reduce[(L1 /. \{\kappa_1 \to 1\}) < 0 && \kappa_2 > 0 && \kappa_3 > 0 && \kappa_2 + \kappa_3 < 1];

L1zer = Reduce[(L1 /. \{\kappa_1 \to 1\}) == 0 && \kappa_2 > 0 && \kappa_3 > 0 && \kappa_2 + \kappa_3 < 1, \kappa_3];

L1pos = Reduce[(L1 /. \{\kappa_1 \to 1\}) > 0 && \kappa_2 > 0 && \kappa_3 > 0 && \kappa_2 + \kappa_3 < 1];

Print["L_1 negative: ", L1neg];

Print["L_1 vanishes: ", L1zer];

Print["L_1 positive: ", L1pos];
```

$$L_{1} \text{ negative: } \left(0 < \kappa_{2} \leq \frac{1}{7} \left(-3 + 2 \sqrt{11} \right) \text{ && } 0 < \kappa_{3} < 1 - \kappa_{2} \right) \mid \mid \\ \left(\frac{1}{7} \left(-3 + 2 \sqrt{11} \right) < \kappa_{2} < \bigcirc 0.626... \right) \text{ && } \frac{-1 - 3 \kappa_{2} + 2 \kappa_{2}^{2}}{-3 + 4 \kappa_{2}} - 2 \sqrt{\frac{4 - 8 \kappa_{2} + 2 \kappa_{2}^{2} + 4 \kappa_{2}^{3} + \kappa_{2}^{4}}{\left(-3 + 4 \kappa_{2} \right)^{2}}} < \kappa_{3} < 1 - \kappa_{2} \right)$$

$$L_{1} \text{ vanishes: } \frac{1}{7} \left(-3 + 2 \sqrt{11} \right) < \kappa_{2} < \bigcirc 0.626... \right) \&\& \kappa_{3} = \frac{-1 - 3 \kappa_{2} + 2 \kappa_{2}^{2}}{-3 + 4 \kappa_{2}} - 2 \sqrt{\frac{4 - 8 \kappa_{2} + 2 \kappa_{2}^{2} + 4 \kappa_{2}^{3} + \kappa_{2}^{4}}{\left(-3 + 4 \kappa_{2} \right)^{2}}}$$

$$L_1 \text{ positive:} \\ \left(\frac{1}{7} \left(-3 + 2 \sqrt{11} \right) < \kappa_2 \le \bigcirc 0.626... \right) \&\& \ 0 < \kappa_3 < \frac{-1 - 3 \,\kappa_2 + 2 \,\kappa_2^2}{-3 + 4 \,\kappa_2} - 2 \,\sqrt{\frac{4 - 8 \,\kappa_2 + 2 \,\kappa_2^2 + 4 \,\kappa_2^3 + \kappa_2^4}{\left(-3 + 4 \,\kappa_2 \right)^2}} \,\right) \mid | \\ \left(\bigcirc 0.626... \right) < \kappa_2 < 1 \&\& \ 0 < \kappa_3 < 1 - \kappa_2 \right)$$

Hence, L_1 can have any sign. Below we visualise this.

```
rneg = RegionPlot [L1neg, \{\kappa_2, 0, 1\}, \{\kappa_3, 0, 1\},
In[60]:=
            PlotStyle → {Darker[Green], Opacity[0.1]}, GridLines → Automatic,
            MaxRecursion → 6, BoundaryStyle → None, Frame → None,
            AxesLabel \rightarrow {Style [\kappa_2, Bold, 16], Style [\kappa_3, Bold, 16]}, Axes \rightarrow True];
        rpos = RegionPlot[L1pos, \{\kappa_2, 0, 1\}, \{\kappa_3, 0, 1\},
            PlotStyle → {Darker[Red], Opacity[0.1]}, MaxRecursion → 6, BoundaryStyle → None];
        L1zersolve = Solve [ (L1 /. \{\kappa_1 \rightarrow 1\}) == 0 && \kappa_2 > 0 && \kappa_3 > 0 && \kappa_2 + \kappa_3 < 1, \kappa_3] [[1]];
        curve = Normal[L1zersolve[1][2]];
        min = L1zersolve[[1]][[2]][[2]][1]];
        max = L1zersolve[1] [2] [2] [5];
        rzer = Plot[curve, \{\kappa_2, \min, \max\}, PlotStyle \rightarrow Blue];
        txt = Graphics[{Text[Style["L<sub>1</sub><0", Darker[Green], Bold, 16], {0.3, 0.3}],
              Text[Style["L<sub>1</sub>=0", Blue, Bold, 16], {0.65, 0.42}],
              Text[Style["L_1>0", Darker[Red], Bold, 16], {0.7, 0.1}]}];
        Show[rneg, rpos, rzer, txt]
```

Out[68]=

The second focal value (L_2)

Below we compute the second focal value along the curve in parameter space, where the first focal value vanishes (note: the process takes about 1-2 minutes). We find that L_2 changes sign. Where $L_2 \neq 0$, a nondegenerate Bautin bifurcation occurs. To understand the behaviour at and near the single point in parameter space with $L_1 = L_2 = 0$, one would need to compute the third focal value, which we leave as an open question.

```
Id = IdentityMatrix[n];
In[69]:=
          \kappa1subst = {\kappa_1 \rightarrow 1};
```

```
omega = (\omega /. \omega subst /. \kappa 1subst);
\omegaSQsubst = \{\omega^2 \rightarrow \text{omega}^2, \omega^3 \rightarrow \text{omega}^2 \omega, \omega^4 \rightarrow \text{omega}^4, \omega^5 \rightarrow \text{omega}^4 \omega, \omega^4 \rightarrow \text{omega}^4, \omega^5 \rightarrow \text{om
          \omega^6 \to \text{omega}^6, \omega^7 \to \text{omega}^6 \omega, \omega^8 \to \text{omega}^8, \omega^9 \to \text{omega}^8 \omega, \omega^{10} \to \text{omega}^{10}};
invA = Simplify[Inverse[AA /. x1subst]];
inv2 = Simplify[Expand[Inverse[2 \omega I Id - AA]] /. \omegaSQsubst /. \kappa1subst];
inv3 = Simplify[Expand[Inverse[3 ω I Id - AA]] /. ωSQsubst /. κ1subst];
q = Simplify[q /. \omegaSQsubst /. \kappa1subst];
qconj = Simplify[qconj /. ωSQsubst /. κ1subst];
pconj = Simplify[pconj /. ωSQsubst /. κ1subst];
h_{2,0} = Simplify[Expand[Simplify[inv2.B[q, q] /. Hopf /. \kappa1subst]] /. \omega SQsubst];
h_{1,1} = Simplify[Expand[-invA.B[q, qconj]] /. Hopf /. \kappa1subst /. \omegaSQsubst];
      Simplify[ComplexExpand[2B[q, h_{1,1}] + B[qconj, h_{2,0}]] /. Hopf /. \kappa1subst /. \omegaSQsubst];
c_1 = I Simplify[ExpandAll[ComplexExpand[Im[1/2(pconj.prec)]]] /. \omega SQsubst];
invbig = Simplify[Expand[Simplify[
                     Simplify[Inverse[Join[Join[\omega I Id - AA, {q}<sup>T</sup>, 2], {Join[pconj, {0}]}]]] /.
                           ωSQsubst /. κ1subst]] /. ωSQsubst];
precminus2c1q = Simplify [Expand[Simplify [ExpandAll[prec - 2 c<sub>1</sub> q] /. ωSQsubst]]];
h21 = Simplify[Expand[
                 Simplify[Simplify[invbig.Join[precminus2c1q, \{0\}]] /. \omegaSQsubst]] /. \omegaSQsubst];
h_{2,1} = Join[h21[1;; 3], \{0\}]; (* turns out the last entry vanishes when <math>L_1=0 *)
h_{3,0} = Simplify[
           Expand[Simplify[inv3.(CC[q, q, q] + 3B[q, h_{2,\theta}]) /. Hopf /. \kappa1subst]] /. \omegaSQsubst];
v_1 = Simplify[3B[h_{2,0}, h_{1,1}] /. Hopf /. \kappa 1subst];
v_2 = Simplify[Expand[Simplify[B[qconj, h_{3,0}] /. Hopf /. \kappa1subst]] /. \omegaSQsubst];
v_3 = Simplify[Expand[Simplify[3B[q, h_{2,1}] /. Hopf /. \kappa1subst]] /. \omegaSQsubst];
v_4 = Simplify[Expand[-6 c_1 h_{2,0}] /. \omega SQsubst];
h_{3,1} =
      Simplify[Expand[Simplify[Expand[inv2.(v_1 + v_2 + v_3 + v_4)] /. \omega SQsubst]] /. \omega SQsubst]];
v_1 = Simplify[2B[h_{1,1}, h_{1,1}] /. Hopf /. \kappa 1subst];
v_2 = Simplify[
           Expand[Simplify[2B[q, ComplexExpand[h_{2,1}^*]] /. Hopf /. \kappa1subst]] /. \omegaSQsubst];
v_3 = Simplify[Expand[Simplify[2B[qconj, h_{2.1}] /. Hopf /. \kappa1subst]] /. \omega Qsubst];
v_4 = Simplify[
          Expand[Simplify[B[ComplexExpand[h_{2,\theta}^*], h_{2,\theta}] /. Hopf /. \kappa1subst /. \omegaSQsubst]] /.
              \omegaSQsubst];
R = \{0, 0, Simplify[Simplify[v_1[3]] + v_2[3]] + v_3[3]] + v_4[3]] / . \omega SQsubst]\};
 (* turns out the first and second entries vanish when L_1=0 *)
h<sub>2,2</sub> = Simplify[-invA.R];
v_1 = Simplify[
           ComplexExpand[Re[Simplify[Simplify[pconj.(2B[qconj, h<sub>3,1</sub>]) /. Hopf /. x1subst] /.
                            \omegaSQsubst]]] /. \omegaSQsubst];
v<sub>2</sub> = Simplify[ComplexExpand[Re[Simplify[
```

```
Simplify[pconj.(3B[q, h_{2,2}]) /. Hopf /. \kappa1subst] /. \omegaSQsubst]]] /. \omegaSQsubst];
v<sub>3</sub> = Simplify[ComplexExpand[Re[Simplify[
           Simplify[pconj.B[h_{2,\theta}^*, h_{3,\theta}] /. Hopf /. \kappa1subst] /. \omegaSQsubst]]] /. \omegaSQsubst];
v<sub>4</sub> = Simplify[
    Complex Expand [Re[Simplify[Simplify[pconj.(3B[h_{2,1}{}^*,\,h_{2,\theta}]) \ /. \ Hopf \ /. \ \kappa 1 subst] \ /.
            \omegaSQsubst]]] /. \omegaSQsubst];
v_5 = Simplify[
    Complex Expand [Re[Simplify[Simplify[pconj.(6\,B[h_{1,1},\,h_{2,1}])~/.~Hopf~/.~\kappa 1 subst]~/.~
            \omegaSQsubst]]] /. \omegaSQsubst];
L2 = Simplify [v_1 + v_2 + v_3 + v_4 + v_5 / . \omega SQsubst];
Print["L_2 equals ", L2];
Plot [L2 /. \{\kappa_3 \rightarrow \text{curve}\}, \{\kappa_2, \text{min, max}\}, GridLines \rightarrow Automatic,
 PlotLabel \rightarrow "L_2 (along the curve L_1 = 0)", AxesLabel \rightarrow {Style[\kappa_2, Bold, 16], None}]
```

```
L_2 equals
             -\left(\,\left(\,\left(\,1+\,\kappa_{2}\,-\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}\,\,\left(\,-\,\left(\,-\,1+\,\kappa_{3}\,\right)^{\,3}\,\kappa_{3}\,\,\left(\,1+\,\kappa_{3}\,\right)^{\,10}\,\,\left(\,131\,+\,1475\,\kappa_{3}\,-\,2035\,\kappa_{3}^{\,2}\,+\,717\,\kappa_{3}^{\,3}\,\right)\right.\right.\\ \left.+\,\kappa_{2}\,\,\left(\,-\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}\,\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}\,\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}\,\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\left(\,1+\,\kappa_{3}\,\right)^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^{\,2}\,\kappa_{3}^
                                                                                                                         (1 + \kappa_3)^8 \left(-280 - 2292 \,\kappa_3 - 10791 \,\kappa_3^2 + 34047 \,\kappa_3^3 - 20298 \,\kappa_3^4 + 6046 \,\kappa_3^5 - 11063 \,\kappa_3^6 + 7319 \,\kappa_3^7\right) + 1000 \,\kappa_3^2 + 10000 \,\kappa_3^2 + 1000 \,\kappa_3^2 + 
                                                                                                        \kappa_{2}^{16} (392 + 6347 \kappa_{3} + 49 881 \kappa_{3}^{2} + 218 545 \kappa_{3}^{3} + 527 947 \kappa_{3}^{4} + 701 760 \kappa_{3}^{5} + 519 824 \kappa_{3}^{6} +
                                                                                                                                               203\,648\,\kappa_3^7 + 32\,256\,\kappa_3^8 \Big) \, - \, \kappa_2^{15} \, \left( 3976 + 54\,068\,\kappa_3 + 354\,533\,\kappa_3^2 + 1\,318\,213\,\kappa_3^3 + 1\,318\,213\,\kappa_
                                                                                                                                                 2954387 \times_3^4 + 4200039 \times_3^5 + 3949968 \times_3^6 + 2628528 \times_3^7 + 1163776 \times_3^8 + 225792 \times_3^9 + 1263786 \times_3^8 + 126376 \times_3^8 + 12
                                                                                                      \kappa_{2}^{14} (17 192 + 201 016 \kappa_{3} + 1 150 789 \kappa_{3}^{2} + 3 858 577 \kappa_{3}^{3} + 8 357 361 \kappa_{3}^{4} + 12 882 975 \kappa_{3}^{5} +
                                                                                                                                                 14 456 810 \kappa_3^6 + 10 575 152 \kappa_3^7 + 5 668 208 \kappa_3^8 + 2 754 432 \kappa_3^9 + 645 120 \kappa_3^{10} -
                                                                                                      153 558 \kappa_3^6 - 450 418 \kappa_3^7 + 557 300 \kappa_3^8 - 294 952 \kappa_3^9 + 17 973 \kappa_3^{10} + 26 423 \kappa_3^{11} ) -
                                                                                                        \kappa_{2}^{13} \, \left(39\,144 + 424\,268\,\kappa_{3} + 2\,293\,753\,\kappa_{3}^{2} + 7\,252\,657\,\kappa_{3}^{3} + 15\,681\,533\,\kappa_{3}^{4} + 26\,478\,445\,\kappa_{3}^{5} + 12\,681\,833\,\kappa_{3}^{4} + 12\,6478\,445\,\kappa_{3}^{5} + 12\,6478\,445\,\kappa_{3}^{
                                                                                                                                                 31 104 078 \kappa_3^6 + 26 650 218 \kappa_3^7 + 16 109 424 \kappa_3^8 + 7 019 984 \kappa_3^9 + 3 572 736 \kappa_3^{10} + 903 168 \kappa_3^{11}) + \kappa_2^{12}
                                                                                                                         \left(40\,936\,+\,538\,892\,\kappa_{3}\,+\,3\,031\,245\,\kappa_{3}^{2}\,+\,9\,436\,909\,\kappa_{3}^{3}\,+\,22\,821\,095\,\kappa_{3}^{4}\,+\,39\,101\,234\,\kappa_{3}^{5}\,+\,49\,310\,603\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,800\,\kappa_{3}^{6}\,+\,100\,
                                                                                                                                               47\,604\,437\,\kappa_3^7 + 28\,421\,257\,\kappa_3^8 + 12\,083\,664\,\kappa_3^9 + 5\,770\,912\,\kappa_3^{10} + 2\,959\,104\,\kappa_3^{11} + 451\,584\,\kappa_3^{12}\,) +
                                                                                                        \kappa_{2}^{3} \left(1 + \kappa_{3}\right)^{4} \left(-18424 - 5692 \,\kappa_{3} + 115813 \,\kappa_{3}^{2} + 307593 \,\kappa_{3}^{3} + 62521 \,\kappa_{3}^{4} - 515315 \,\kappa_{3}^{5} + 62521 \,\kappa_{3}^{4} + 62521 \,\kappa_{3}
                                                                                                                                               947 318 \kappa_3^6 - 2711 362 \kappa_3^7 + 3 200 622 \kappa_3^8 - 1871 342 \kappa_3^9 + 997 045 \kappa_3^{10} - 691 927 \kappa_3^{11} +
                                                                                                                                               184769 \, \kappa_{3}^{12} + 57773 \, \kappa_{3}^{13} \, ) \, + \, \kappa_{2}^{11} \, \left( 19\,096 - 328\,436 \, \kappa_{3} - 2\,264\,289 \, \kappa_{3}^{2} - 8\,776\,945 \, \kappa_{3}^{3} - 12\,84\,89 \, \kappa_{3}^{2} + 12\,84\,89 \, \kappa_{3}
                                                                                                                                                 25 936 551 \kappa_3^4 - 44 173 299 \kappa_3^5 - 65 994 811 \kappa_3^6 - 60 341 187 \kappa_3^7 - 44 378 901 \kappa_3^8 -
                                                                                                                                               16\,820\,261\,\,\kappa_{3}^{9}\,+\,56\,672\,\,\kappa_{3}^{10}\,-\,3\,894\,752\,\,\kappa_{3}^{11}\,-\,1\,658\,880\,\,\kappa_{3}^{12}\,+\,451\,584\,\,\kappa_{3}^{13}\,\big)\,\,+\,
                                                                                                        \kappa_2^{10} (-125 048 - 264 648 \kappa_3 - 370 511 \kappa_3^2 + 5 339 221 \kappa_3^3 + 18 705 413 \kappa_3^4 + 45 886 649 \kappa_3^5 +
                                                                                                                                               63 311 343 \kappa_3^6 + 72 323 471 \kappa_3^7 + 51 062 455 \kappa_3^8 + 20 089 963 \kappa_3^9 +
                                                                                                                                               698\,716\,\,\kappa_{3}^{10}\,-\,6\,510\,368\,\,\kappa_{3}^{11}\,+\,3\,666\,400\,\,\kappa_{3}^{12}\,+\,13\,056\,\kappa_{3}^{13}\,-\,903\,168\,\kappa_{3}^{14}\,\big)\,\,-\,
                                                                                                          \kappa_2^4 (1 + \kappa_3)^2 (-56952 + 56788 \kappa_3 + 605073 \kappa_3^2 + 1049723 \kappa_3^3 + 2427020 \kappa_3^4 -
                                                                                                                                                 738 749 \kappa_3^5 + 401 655 \kappa_3^6 - 5 184 794 \kappa_3^7 + 1972 112 \kappa_3^8 + 625 458 \kappa_3^9 - 830 393 \kappa_3^{10} +
                                                                                                                                                 2269551 \times_{3}^{11} - 3151348 \times_{3}^{12} + 1329655 \times_{3}^{13} - 64127 \times_{3}^{14} + 125936 \times_{3}^{15} +
                                                                                                        \kappa_2^9 (179 256 + 1072 468 \kappa_3 + 3 420 683 \kappa_3^2 + 1 204 995 \kappa_3^3 - 5 509 473 \kappa_3^4 - 36 461 521 \kappa_3^5 -
                                                                                                                                               53 708 387 \kappa_3^6 - 69 971 699 \kappa_3^7 - 47 424 571 \kappa_3^8 - 27 055 863 \kappa_3^9 - 205 476 \kappa_3^{10} +
                                                                                                                                                 10039620 \times_{3}^{11} + 2417184 \times_{3}^{12} - 4239008 \times_{3}^{13} + 1471488 \times_{3}^{14} + 645120 \times_{3}^{15} +
                                                                                                        \kappa_2^8 (-109 032 - 1679 094 \kappa_3 - 4949 373 \kappa_3^2 - 9275 525 \kappa_3^3 - 3218 407 \kappa_3^4 + 10 074 848 \kappa_3^5 +
                                                                                                                                               48\,869\,222\,\kappa_3^6+44\,953\,034\,\kappa_3^7+54\,276\,082\,\kappa_3^8+13\,492\,878\,\kappa_3^9+4\,460\,151\,\kappa_3^{10}-
                                                                                                                                               1\,545\,629\,\kappa_{3}^{11}\,-\,10\,507\,475\,\kappa_{3}^{12}\,+\,3\,268\,064\,\kappa_{3}^{13}\,+\,2\,847\,184\,\kappa_{3}^{14}\,-\,1\,655\,424\,\kappa_{3}^{15}\,-\,225\,792\,\kappa_{3}^{16}\big)\,+\,
                                                                                                        \kappa_2^7 (-28 952 + 1637 956 \kappa_3 + 4734 561 \kappa_3^2 + 12 894 625 \kappa_3^3 + 9 678 375 \kappa_3^4 + 5742 811 \kappa_3^5 -
                                                                                                                                                 23 163 214 \kappa_3^6 - 41 875 854 \kappa_3^7 - 24 999 986 \kappa_3^8 - 23 369 390 \kappa_3^9 + 3 058 637 \kappa_3^{10} + 1 221 549 \kappa_3^{11} -
                                                                                                                                               1\,161\,453\,\,\kappa_{3}^{12}\,+\,5\,495\,103\,\,\kappa_{3}^{13}\,-\,4\,174\,544\,\,\kappa_{3}^{14}\,-\,341\,872\,\,\kappa_{3}^{15}\,+\,795\,136\,\,\kappa_{3}^{16}\,+\,32\,256\,\,\kappa_{3}^{17}\,\big)\,\,-\,341\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3}^{16}\,+\,361\,872\,\,\kappa_{3
                                                                                                        \kappa_{2}^{6} (-115 192 + 984 664 \kappa_{3} + 3 607 009 \kappa_{3}^{2} + 9 966 925 \kappa_{3}^{3} + 14 048 957 \kappa_{3}^{4} + 6 541 919 \kappa_{3}^{5} -
                                                                                                                                                 1\,684\,968\,\kappa_3^6 - 26\,621\,470\,\kappa_3^7 - 22\,379\,214\,\kappa_3^8 - 6\,308\,314\,\kappa_3^9 + 731\,985\,\kappa_3^{10} + 2\,279\,185\,\kappa_3^{11} -
                                                                                                                                               3\,716\,983\,\kappa_3^{12}\,+\,174\,931\,\kappa_3^{13}\,+\,1\,935\,846\,\kappa_3^{14}\,-\,1\,855\,728\,\kappa_3^{15}\,+\,548\,432\,\kappa_3^{16}\,+\,146\,048\,\kappa_3^{17}\big)\,+\,
                                                                                                        \kappa_{2}^{5} \left(-107\,576+276\,860\,\kappa_{3}+2\,062\,277\,\kappa_{3}^{2}+5\,334\,909\,\kappa_{3}^{3}+10\,951\,737\,\kappa_{3}^{4}+7\,225\,513\,\kappa_{3}^{5}+10\,951\,737\,\kappa_{3}^{4}+7\,225\,513\,\kappa_{3}^{5}+10\,951\,737\,\kappa_{3}^{4}+7\,225\,913\,\kappa_{3}^{5}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^{6}+10\,951\,737\,\kappa_{3}^
                                                                                                                                               379244 \times_{3}^{6} - 9746912 \times_{3}^{7} - 14043846 \times_{3}^{8} - 4968402 \times_{3}^{9} + 1699725 \times_{3}^{10} + 5075181 \times_{3}^{11} -
                                                                                                                                               2\ 284\ 891\ \kappa_3^{12}\ -\ 3\ 766\ 035\ \kappa_3^{13}\ +\ 1\ 666\ 834\ \kappa_3^{14}\ +\ 604\ 358\ \kappa_3^{15}\ -\ 87\ 984\ \kappa_3^{16}\ +\ 200\ 048\ \kappa_3^{17}\ )\ )\ /\ 
                                                       \left(48\;\kappa_{2}^{3}\;\left(-1+\kappa_{2}-\kappa_{3}\right)\;\left(-1+\kappa_{3}\right)^{4}\;\left(\;\left(1+\kappa_{3}\right)^{\;2}+\kappa_{2}^{2}\;\left(1+9\;\kappa_{3}\right)\;+\kappa_{2}\;\left(-2+7\;\kappa_{3}-9\;\kappa_{3}^{2}\right)\;\right)
                                                                                ((1 + \kappa_3)^2 + \kappa_2^2 (1 + 4 \kappa_3) + \kappa_2 (-2 + 2 \kappa_3 - 4 \kappa_3^2))^3
                                                                                  \left(\kappa_{2}^{2}\left(1+\kappa_{3}\right)+\left(1+\kappa_{3}\right)^{2}-\kappa_{2}\left(2+\kappa_{3}+\kappa_{3}^{2}\right)\right)^{3}\right)
```

Out[106]=

Next, we visualize in parameter space the signs of L_1 and L_2 . In fact, the drawing is in the (κ_2, κ_3) plane (recall that κ_4 was eliminated using the Routh-Hurwitz criterion, and we assumed w.l.o.g. that κ_1 = 1). Since we do compute symbolically the single point in parameter space, where both L_1 and L_2 vanish, the process takes about 40-50 seconds.

In[107]:=

```
\kappa2TH = Solve[Simplify[L2 /. {\kappa_3 \rightarrow \text{curve}}, min < \kappa_2 < \text{max}] == 0 && min < \kappa_2 < \text{max}, \kappa_2] [1];
\kappa3TH = {\kappa_3 \rightarrow \text{FullSimplify[curve /. } \kappa2TH]};
TH = \{\kappa_2, \kappa_3\} /. \kappa2TH /. \kappa3TH;
plTH = ListPlot[{TH}, PlotStyle → Blue];
L2neg = Plot[curve, \{\kappa_2, \min, TH[1]\}, PlotStyle \rightarrow RGBColor["Green"]];
L2pos = Plot[curve, \{\kappa_2, TH[1], max\}, PlotStyle \rightarrow Red];
txtL2 = Graphics[{Text[Style["L<sub>1</sub><0", Darker[Green], Bold, 16], {0.2, 0.4}],
      Text[Style["L_1=0,L_2=0", Blue, Bold, 16], {0.46, TH[[2]]}],
      Text[Style["L_1=0, L_2>0", Red, Bold, 16], {0.48, 0.35}],
      Text[Style["L_1=0,L_2<0", RGBColor["Green"], Bold, 16], {0.42, 0.15}],
      Text[Style["L<sub>1</sub>>0", Darker[Red], Bold, 16], {0.7, 0.1}]}];
Show[rneg, rpos, L2neg, L2pos, plTH, txtL2]
```

Out[114]=

Verify the transversality of the Andronov-Hopf bifurcation

We append the vector field with the Routh-Hurwitz condition and thus get h, see Section 2 in "The inheritance of local bifurcations in mass action networks." Then we compute the derivative at the equilibrium and the critical parameter value. Thus, we obtain an $(n+c) \times (n+m)$ matrix (here, n=3is the number of species, m = 4 is the number of rate constants, and c = 1 is the codimension).

In[115]:=

```
J = D[ff, \{\{x, y, z\}\}];
\{b_0, b_1, b_2, b_3\} =
  Simplify [CoefficientList[Collect[-CharacteristicPolynomial[J, \lambda], \lambda]]; \\
B2B1minusB0 = Simplify [b_1 b_2 - b_0];
h = Join[ff, {B2B1minusB0}];
Dh = Simplify[D[h, \{\{x, y, z, \kappa_1, \kappa_2, \kappa_3, \kappa_4\}\}] /. equil /. Hopf, HopfCondition];
```

We check the nonsingularity of the 4 by 4 matrix formed by the 1st, 2nd, 3rd, and 7th column of Dhat every κ_1 , κ_2 , κ_3 with $\kappa_2 + \kappa_3 < \kappa_1$.

In[120]:=

```
Reduce[Simplify[Det[Dh[{1, 2, 3, 4}, {1, 2, 3, 7}]]] \neq 0 && HopfCondition, \kappa_1]
```

Out[120]=

```
\kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_1 > \kappa_2 + \kappa_3
```

Verify the transversality of the Bautin bifurcation

For the transversality of the Bautin bifurcation, it suffices to check that L_1 (as a function of, say, κ_2) changes sign transversally. I.e., its derivative w.r.t. κ_2 is nonzero when $L_1 = 0$.

In[121]:=

```
der = Simplify[D[L1, \{\kappa_2\}] /. \{\kappa_1 \rightarrow 1\} /. \{\kappa_3 \rightarrow \text{curve}\}, min < \kappa_2 < \text{max}];
Reduce[der \neq 0 && min < \kappa_2 < max]
```

Out[122]=

```
\frac{1}{7} \left( -3 + 2 \sqrt{11} \right) < \kappa_2 < \bigcirc 0.626...
```