Séance 3 : Design d'un amplificateur

Objectifs : à la fin de cette séance, l'étudiant sera capable de :

- Déterminer l'influence des imperfections d'un amplificateur opérationnel sur la sortie du montage
- Polariser un montage amplificateur
- Extraire les informations pertinentes d'une datasheet
- Dimensionner un montage à base d'amplificateur opérationnel

Exercice 1.

Qu'entend-on par « taux de réjection du mode commun ¹ » ? Quelle serait sa valeur pour un ampli-op ordinaire ?

Exercice 2.

Expliquez le terme « courant de polarisation » dans le cas d'un amplificateur opérationnel.

Exercice 3.

Définissez le terme « tension de décalage » 2 d'un amplificateur opérationnel et donnez-en une valeur typique. Comment ses effets peuvent-ils être atténués ?

Exercice 4.

À partir de l'extrait de datasheet du LM741 suivant, donnez la valeur typique du produit gain-bande passante ³. Si on conçoit un étage amplificateur de gain 15 à partir du LM741, quelle sera sa bande passante?

Note: Dans la datasheet suivante, la bande passante est donnée pour un gain unitaire.

- 1. Common-mode rejection ratio en anglais, abrévié CMRR
- 2. Input offset voltage en anlais
- 3. Gain-bandwidth product en anglais.

LM741

SNOSC25D -MAY 1998-REVISED OCTOBER 2015

www.ti.com

Electrical Characteristics, LM741A⁽¹⁾ (continued)

PARAMETER		TEST	CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage swing		V .00 V	R _L ≥ 10 kΩ	±16			V
		$V_S = \pm 20 \text{ V}$	$R_L \ge 2 k\Omega$	±15			V
Output short circuit current		T _A = 25°C		10	25	35	mA
		$T_{AMIN} \le T_A \le T_{AMAX}$		10		40	
Common-mode rejection ratio		$R_S \le 50 \Omega$, $V_{CM} = \pm 12 V$, T_{AMIN}	\leq 50 Ω , V_{CM} = ±12 V, $T_{AMIN} \leq T_A \leq T_{AMAX}$		95		dB
Supply voltage rejection ratio		$V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S \le 50 \Omega, T_{AMIN} \le T_A \le T_{AMAX}$		86	96		dB
Transient	Rise time	T 0500 weith a sin			0.25	0.8	μs
response	Overshoot	T _A = 25°C, unity gain			6%	20%	
Bandwidth (2)		T _A = 25°C			1.5		MHz
Slew rate		T _A = 25°C, unity gain			0.7		V/µs
Power consumption		vition $V_S = \pm 20 \text{ V}$	T _A = 25°C		80	150	
			$T_A = T_{AMIN}$			165	mW
			$T_A = T_{AMAX}$			135	

⁽²⁾ Calculated value from: BW (MHz) = 0.35/Rise Time (μ s).

Exercice 5.

En considérant $R_s=10k\Omega,\,R_1=1k\Omega$ et $R_2=9k\Omega$:

- 1. Calculez la tension de décalage à la sortie de l'amplificateur, soit $V_o(E_s=0)$, dans le cas d'un LM741, puis d'un CA3140A. Note : commencez par ajouter la ou les causes de cette tension de décalage sur le montage.
- 2. Comparez les deux résultats obtenus. À quoi est due la différence?

LM741

LM741

SNOSC25D - MAY 1998 - REVISED OCTOBER 2015

6.5 Electrical Characteristics, LM741⁽¹⁾

PARAMETER		TEST C	ONDITIONS	MIN	TYP	MAX	UNIT	
Input offset voltage		D < 10 k0	T _A = 25°C		1	5	mV	
		$R_S \le 10 \text{ k}\Omega$	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV	
Input offset voltage adjustment range		T _A = 25°C, V _S = ±20 V			±15		mV	
Input offset current		T _A = 25°C			20	200	nA	
		$T_{AMIN} \le T_A \le T_{AMAX}$			85	500		
Input bias current		T _A = 25°C			80	500	nA	
		$T_{AMIN} \le T_A \le T_{AMAX}$			1.5	μΑ		
Input resistanc	е	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ	
Input voltage ra	ange	$T_{AMIN} \le T_A \le T_{AMAX}$		±12	±12 ±13		V	
Laws simpal	oltono noin		T _A = 25°C	50	200)//>/	
Large signal voltage gain		kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			V/mV	
Output valtage	owing	V _S = ±15 V	R _L ≥ 10 kΩ	±12	±14		V	
Output voltage swing		V _S = ±15 V	$R_L \ge 2 k\Omega$	±10	±13		V	
Output short circuit current		T _A = 25°C			25		mA	
Common-mode rejection ratio		$R_S \le 10 \Omega$, $V_{CM} = \pm 12 V$, $T_{AMIN} \le$	$_{S} \le 10 \Omega$, $V_{CM} = \pm 12 V$, $T_{AMIN} \le T_{A} \le T_{AMAX}$		95		dB	
Supply voltage rejection ratio		$V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S \le 10$	$R_S \le 10 \Omega$, $T_{AMIN} \le T_A \le T_{AMAX}$		96		dB	
Transient	Rise time	T 05°C with rain			0.3		μs	
response	Overshoot	T _A = 25°C, unity gain			5%			
Slew rate		T _A = 25°C, unity gain	= 25°C, unity gain		0.5		V/µs	
Supply current		T _A = 25°C			1.7	2.8	mA	
Power consumption		V _S = ±15 V	T _A = 25°C		50	85		
			$T_A = T_{AMIN}$		60	100	mW	
			$T_A = T_{AMAX}$		45	75		

⁽¹⁾ Unless otherwise specified, these specifications apply for $V_S = \pm 15 \text{ V}$, $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}\text{C} \leq T_A \leq +70^{\circ}\text{C}$.

CA3140A

Electrical Specifications For Equipment Design, at $V_{SUPPLY} = \pm 15V$, $T_A = 25^{\circ}C$, Unless Otherwise Specified

		CA3140		CA3140A				
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{IO}	-	5	15	-	2	5	mV
Input Offset Current	lliol	-	0.5	30	-	0.5	20	pА
Input Current	lį	-	10	50	-	10	40	pА

FN957.10 July 11, 2005 intersil

Exercice 6.

Il arrive fréquemment que nous n'ayons pas accès à des alimentations symétriques. Par exemple, les lecteurs multimédias portables sont généralement alimentés par des batteries fournissant une tension entre 3 V et 5 V, l'autre borne étant connectée à la masse du système.

1. Tracez la sortie du montage suivant, où V_{in} est une sinusoïde d'amplitude 10 mV et de fréquence 5 kHz. Quel problème peut-on observer?

Pour supprimer ce problème, nous allons polariser le montage, ce qui signifie que nous allons changer la moyenne du signal de sortie au moyen d'un condensateur et d'une tension continue.

- 2. À l'aide de la superposition, et pour une tension $V_{\rm in}$ à très haute fréquence, expliquez en quoi ce circuit résout le problème. Calculez la composante continue de la tension en tous les points du circuit.
- 3. Calculez la sortie $V_o = H_1(j\omega_{in}) \cdot V_{in} + H_2(j\omega_{5V}) \cdot 5V$
- 4. Sachant que $V_{\rm in}$ est un signal audio dont la bande passante s'étend de 20 Hz à 20 kHz, dimensionnez R1, R2 et C pour que le gain du montage soit le même que pour le montage non-polarisé dans toute cette bande de fréquence.
- 5. Réalisez un filtre RC permettant de supprimer cette composante continue sans déformer la composante alternative. Dimensionnez ses composants.

Exercice 7.

- 1. Dimensionnez un étage amplificateur inverseur à ampli-op ayant un gain à vide $A_v=14dB$ et une impédance d'entrée $R_{in}\geq 10k\Omega$
- 2. En supposant que l'ampli-op utilisé pour réaliser ce montage est un LM741, déterminez :
 - la bande passante du montage;
 - la tension de décalage à la sortie.

Exercice 8.

On vous demande de réaliser un amplificateur d'entrée pour l'entrée ligne d'une carte son d'ordinateur. On vous donne les informations suivantes :

- La source de signal connectée à l'entrée de la carte fournit un signal sans composante continue et dont l'amplitude crête ne dépasse pas 100 mV, et son impédance de sortie est égale à 100 Ω .
- La sortie de l'étage à réaliser est connectée à un convertisseur analogique/numérique (CAN) dont l'impédance d'entrée est égale à 100 kΩ. La plage de conversion du CAN va de -1V à +1V.
- Votre montage doit amplifier correctement les signaux entre 20 Hz et 20 kHz.
- Vous avez à votre disposition des amplis-op LM741 ou CA3140A. Le LM741 coûte 0.54 €/pièce et le CA3140A coûte 1.96 €/pièce.

Exercice 9.

On désire amplifier un signal dont la bande passante s'étend de 2 kHz à 2 MHz. Ce signal est représenté par une source composée d'une f.e.m. sinusoïdale V_{in} de 10 mV et d'une impédance de sortie de 50 Ω .

On désire obtenir à la sortie du bloc amplificateur, aux bornes de la charge R, un signal :

- d'amplitude réglable, comprise entre 5 mV et 4 V au choix de l'utilisateur;
- non déphasé par rapport au signal d'entrée.

- 1. En supposant que l'impédance de charge R vaut 10 k Ω , proposez et dimensionnez un montage pour le bloc amplificateur. Justifiez chaque étape de votre raisonnement et donnez un schéma final complet de votre montage amplificateur.
- 2. En supposant maintenant que la résistance de charge R_c vaut 4 Ω , comment faut-il modifier le montage et pourquoi?

Remarques:

- Vous disposez de trois types d'amplis-op dont les caractéristiques sont données dans le tableau ci-dessous. Si plusieurs solutions sont possibles, utilisez toujours la solution la moins coûteuse.
- Pour chacune des questions ci-dessus, justifiez brièvement chaque étape de votre raisonnement.

Type	$V_{ m DD}$	I _{out,max} [mA]	A.B _w [MHz]	Slew-rate $[V/\mu s]$	Prix [€]
AD8129	3 V à 12 V	40	200	1070	3.65
OPA549	8 V à 60 V	8000	0.9	100	21.31
OPA132	4.5 V à 36 V	40	8	20	3.97