NEURAL NETWORKS SPEED-UP AND COMPRESSION

Lecture 1: Introduction

THE TEAM

Julia Gusak, PhD
Senior research scientist, Skoltech
(main collaborations: Prof. Oseledets, Prof. Cichocki, Prof. Phan)

Stanislav Abukhovich
PhD student, Skoltech
(supervisor: Prof.Cichocki)

PhD student, Skoltech
(supervisor: Prof.Cichocki)

Konstantin Sobolev
PhD student, Skoltech
(supervisor: Prof.Phan)

OUTLINE

- Motivation for neural networks speed-up and compression
- Estimation of neural networks effectiveness
- Overview of main compression techniques
- Course schedule, outcomes, and completion criteria

MOTIVATION

WHAT IS A NEURAL NETWORK?

- Function that is defined by its parameters.
- Inference phase: given an input sample neural network provides the output.
- Training phase: neural networks' parameters are tuned using a set of input samples, loss function, and iterative gradient-based parameter updates.

EXAMPLE: COMPUTER VISION

- Image recognition
 - image -> NN -> class label

- Object detection
 - o image -> NN -> image with frames around objects

- Action recognition
 - video frame -> NN -> action description

EXAMPLE: SPEECH RECOGNITION

- Speaker recognition
 - audio frame-> NN -> speaker ID

- Speech recognition
 - o audio frame -> NN -> text corresponding to the audio frame

- Speech generation
 - o audio frame -> NN -> next audio frame

EXAMPLE: NATURAL LANGUAGE PROCESSING

- Sentiment analysis
 - o sentence -> NN -> positive/negative
- Question & Answer
 - sentence-question -> NN -> sentence-answer
- Translation
 - sentence -> NN -> sentence translated into foreign language
- Text generation
 - o sentence -> NN -> next sentence

WHAT'S THE PROBLEM?

 Most state of the art deep neural networks are overparameterized and exhibit a high computational cost

- The size of neural networks affects
 - power and memory consumption
 - o running time
 - CO2 emission
 - o money

WHAT'S THE PROBLEM?

DL model limitations:

- High memory consumption
- Huge computational requirements
- Great power consumption

Difficult to deploy on portable devices (e.g. laptops and smartphones)

Efficient architecture design is required

WHAT'S THE PROBLEM?

Energy: 190 MW*hours

Air emissions: 85 tonnes of CO₂

GPT-3 training

Heating for 126 houses in Denmark

Car drive to the Moon

DIFFERENT MODALITIES, SIMILAR TECHNIQUES

- Image
- Video
- Audio
- Text
- Medical signals (EEG, ECG)
- Physical measurements
- -> NN -> prediction
- ! Similar Deep Learning techniques are used to solve a vast variety of tasks

WHAT WE WANT FROM NEURAL NETWORKS?

- High predictive quality
- Robustness to the shifts in input data
- Efficient training (fast convergence to optimal parameters)
- **Efficient inference** (fast execution, low memory usage)

ESTIMATION OF EFFECTIVENESS

REPRESENTATION OF NEURAL NETWORK PARAMETERS

- Bits & Bytes
 - o bit: 0 or 1
 - 0 1 B(=byte) = 8 bits
 - \circ 1 KB = 1024(=2^10) bytes
 - \circ 1 MB = 1024 KB = 1024*1024 bytes
 - o 1 GB = 1024 MB = 1024*1024*1024 bytes
- Types of representations
 - o int (sign|absolute value)
 - int8: 8 bits = 1 byte
 - int32: 32 bits = 4 bytes
 - float (sign|exponent|mantissa)
 - float32: 32 bits = 4 bytes
 - float64: 64 bits = 8 bytes

KEY FACTORS

- Speed
 - Theoretical: FLOP, MAC, FLOP/second, Bytes/second
 - Empirical: wall-clock inference time, throughput
- Memory
 - Theoretical: (# of model parameters) * (# of bytes in one parameter)
 - Empirical: allocated memory

FLOP & MAC

- FLOP floating point operations
- MAC multiply-accumulate operations

Example: c = c + (a * b), where a, b, c - scalars

- 2 FLOP
- 1 MAC

RECAP: NEURAL NETWORKS

- Main operations
 - Linear
 - Non-linear
- Main neural networks types
 - Feed-forward
 - Residual
 - Attention-based

LINEAR (FULLY-CONNECTED) LAYER

LINER (FULLY-CONNECTED) LAYER: FLOP

LINEAR (FULLY-CONNECTED) LAYER: MAC

CONVOLUTIONAL LAYER

CONVOLUTIONAL LAYER

CONVOLUTIONAL LAYER

```
Standard
   Params = kh kw Cin Court
   MAC = Hart Word - Ky Kes-Cin · Court
Depth-Wise (Court = Cin = C)
  Params = k, kus 1 C
   MAC = Hart Wart . Ky Ku-1 . C
Group (G - # of groups)
  Params = ky kus Gin Court
  MAC = Hourt Noert . Kikw Cin Court
Point - wise
   Standard with ky = kw = 1
```


PRACTICAL EXERCISES

- Compute Parameters/ FLOP/ MAC for different Linear layers
 - theoretically
 - empirically, using Python packages
 - FlopCo
 - time

PRACTICAL EXERCISES

- Non-linear layers
 - ReLU
 - GeLU
 - o etc.
- Normalization layers
 - Layer Norm
 - Batch Norm
 - o etc.

NORMALIZATION LAYERS

INTENSITY OF OPERATIONS

- Real speed is limited by processor characteristics
 - o time of math operation (T_math)
 - the time of memory access operation (T_mem)

- p = T_math/T_mem = BW_math/BW_mem intensity of operation,
 - BW_math speed of floating point operations (measured in FLOP/second)
 - BW_mem speed of memory access (measured in bytes/second)
 - o Modern GPUs: BW_math >> BW_mem

- p_algo = #FLOP/#Mem
 - o p_algo = p, memory and processor are fully utilized during computations
 - p_algo < p, algo is limited by memory access speed
 - o p_algo > p, algo is limited by math operation speed

INTENSITY OF OPERATIONS: EXAMPLE

16-bit arithmetics, GPU Nvidia A100

Operation	Arithmetics' intensity	Time is limited by
Linear (4096 x 1024, batch 512)	315 FLOP/B	arithmetics
Linear (4096 x 1024, batch 1)	1 FLOP/B	memory access
MaxPooling with kernel 3x3	$2.25 \; \mathrm{FLOP/B}$	memory access
ReLU	$0.25 \; \mathrm{FLOP/B}$	memory access
LayerNorm	< 10 FLOP/B	memory access

COMPRESSION TECHNIQUES: BRIEF OVERVIEW

COMPRESSION METHODS

- Pruning methods (structured / unstructured)
 - redundant weights / neurons are pruned, hence, the whole model is compressed.

Tensor-based methods

- use matrix or tensor decomposition to estimate the informative parameters of deep neural networks;
- o In most cases, a much lower total computational cost can be achieved by replacing a convolutional layer with a sequence of several smaller convolutional layers.

• Quantization methods

- use low-bit representations for weights / activations;
- can significantly accelerate networks, but they usually require special hardware to reach a theoretical speed-up in practice.

• Knowledge distillation methods

- deal with a pre-trained network (teacher network), and an accelerated network
 (student network);
- outputs (resulting and/or intermediate) of the teacher network are used to guide the student network training.

COURSE INFO

SCHEDULE

- 1. Introduction. Measures of neural networks effectiveness.
- 2. Pruning.
- Tensor methods.
- 4. Quantization.
- 5. Inference on mobile devices.
- 6. 6.1. Knowledge distillation.
 - 6.2. Large neural networks training acceleration

COMPLETION CRITERIA

- 5 Homework assignments (HAs) + 1 optional HA
- Acceptance rules
 - HA submitted before 11.59 am next day max 100%
 - HA submitted before 11.59 am next next day max 75%
 - HA submitted before 11.59 am last lecture day max 50%
- To pass the course:
 - O Get >= 50% for any 4 of required 5 HAs

RESOURCES

- FlopCo https://github.com/juliagusak/flopco-pytorch
 - Python library that aims to make FLOPs and MACs counting simple and accessible for PyTorch neural networks.
 - FlopCo allows to collect other useful model statistics, such as number of parameters, shapes of layer inputs/outputs, etc.

Papers & code links

https://github.com/juliagusak/model-compression-and-acceleration-progress

SEE YOU NEXT LECTURE!

Figure 2: The visualization of different types of pruning.