

Continuous Assessment Test - I January 2023

Programme Course Code	B. Tech (CSE) and its Specialization BCSE304L	Semester Class Shr(s)	Winter Semester 2022/23 CH2022235001244 CH2022235001292
Course Title	Theory of Computation		CH2022235001415 CH2022235001456 CH2022235001243
Faculty(s)	Dr. Amutha S Dr. Jani Anbarasi L Dr. Benil T Dr. Kiruthika S Dr. Karmel A	Slot	B1+TB1
WELL I		Max. Marks	150
Time	90 Minutes		

Answer all the Questions

	71	At	swer all	the Ques	tions		
							Mark
2.760	filab- division	Strings are defined over an in	mut alph	Question Tex	{a, b, c} as fo	llows:	
1		A _(n,m,k) =a where moć is a function such y. For example, 5 mod 3 is 2 Let L be the language general	that x t	me e- nod y giv	es the remain	nder when x is divided by	
1		to recognize the language L. Construct an equivalent deter	ministic	finite at	utomaton M ₂	for the non-deterministic	1
		LA CD	1 10 11	8. (Al.	(D)) given n	I I dille	а.
1	b.	automaton $M_1 = (\{A, B, C, B\})$ Check whether the word "00"	11" is re	ecognized	I by the dete	rministic finite automator	1
1		M_2 .					1
			States	In	put		1
1	1			0	1		1
1			→A	[A,B]	[A,C]		1
			В	[A,D]	[B]		1
	-			1601	LEA DI		

20,000,000						
	0	1				
→A	[A,B]	[A,C]				
В	[A,D]	[B]				
C	[C]	[A,D]				
*D	[D]	[D]				

Table. I

ruct a minimized deterministic finite automaton for the automaton

150	2	14	51	fu his	2 1	11	(1.51)	given	in T	abla 5	
160	400	0.71	241	(4)(6)	0, 1	1.15	110011	Siven	111 4	MDFC/2	

States	Input			
	а	b		
-+* I	3	1 2		
2	4	1		
3	5	4		
4	4	4		
*5	3	2		

Table, 2

Construct the finite automaton for the language L defined over $\Sigma = \{0,1\}$ 4. where.

$$L = L_1 U L_2$$

5.

 $L_1 = \{ w \mid w \in \{0,1\}^* \text{ contains strings that are multiples of } 4 \}$

 $L_2 = \{ w \mid w \in \{0,1\}^* \text{ contains the strings that starts with 1 and end with 10} \}$

List out the strings generated by the regular expressions,

Design an epsilon NFA for the above regular expressions using McNaughton Yamada Thompson Algorithm.

5