26 de março de 2010

1. Esboce o gráfico da função dada e determine os pontos em que a função é contínua.

(a)
$$f(x) = x + 1$$
 (b) $f(x) = x^2 + 2$
(c) $f(x) = \begin{cases} \frac{1}{x^2}, & \text{se } |x| \ge 1 \\ 2, & \text{se } |x| < 1 \end{cases}$ (d) $f(x) = \begin{cases} x^2, & \text{se } x \le 1 \\ 2, & \text{se } x > 1 \end{cases}$
(e) $f(x) = [x]$ (função maior inteiro).

- 2. A função $f(x) = \begin{cases} 2x, & \text{se } x \leq 1 \\ 1, & \text{se } x > 1 \end{cases}$ é contínua em $x_0 = 1$? Justifique.
- 3. Prove, pela definição, que a função dada é contínua no ponto dado.
 - (a) f(x) = 4x 3 em $x_0 = 2$.
 - (b) $f(x) = x + 1 \text{ em } x_0 = 2.$
- 4. Mostre que uma função f é contínua em $x_0 \in D_f$ se, e somente se, $\lim_{h\to 0} f(x_0+h) = f(x_0)$.
- 5. Mostre a unicidade do limite, ou seja, mostre que se $\lim_{x\to p} f(x) = L_1$ e $\lim_{x\to p} f(x) = L_2$, então $L_1 = L_2.$
- 6. Determine o valor, caso exista, que a função dada deveria ter no ponto dado para ser contínua neste ponto. Justifique sua resposta.

(a)
$$f(x) = \frac{x^2 - 4}{x - 2}$$
 em $x_0 = 2$.

(b)
$$f(x) = \frac{x^2 - x}{x}$$
 em $x_0 = 0$.

(c)
$$f(x) = \frac{|x|}{x}$$
 em $x_0 = 0$.

(d)
$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & \text{se } x \neq 3 \\ L, & \text{se } x = 3 \end{cases}$$
 em $x_0 = 3$.

(e)
$$f(x) = \begin{cases} x, & \text{se } x < 1 \\ \frac{1}{x}, & \text{se } x > 1 \end{cases}$$
 em $x_0 = 1$.

- 7. A função $f(x) = \begin{cases} \frac{x^2 + x}{x+1}, & \text{se } x \neq -1 \\ 2, & \text{se } x = -1 \end{cases}$ é contínua em $x_0 = -1$? E em $x_0 = 0$? Justifique.
- 8. A afirmação " $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) \Rightarrow f$ contínua em x_0 " é falsa ou verdadeira? Justifique.
- 9. Dada a função $f(x) = \frac{x^2 3x + 2}{x 1}$, verifique que $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x)$. A função f é contínua em 1? Justifique.

10. Calcule:

(a)
$$\lim_{x \to 5} \sqrt[3]{3x^2 - 4x + 9}$$

(d)
$$\lim_{x \to +\infty} \frac{1}{x^2}$$

(g)
$$\lim_{x \to 4^{-}} \frac{1}{(x-4)^3}$$

(j)
$$\lim_{x \to +\infty} (x^4 - 3x + 2)$$

(m)
$$\lim_{x \to +\infty} \frac{5x^3 - 6x + 1}{6x^3 + 2}$$

(p)
$$\lim_{x \to \frac{1}{2}^+} \frac{4}{2x-1}$$

(s)
$$\lim_{x \to -1^+} \frac{2x+1}{x^2+x}$$

(b)
$$\lim_{x \to 2^+} 1 + \sqrt{x-2}$$

(e)
$$\lim_{x \to -\infty} \left(5 + \frac{1}{x} + \frac{3}{x^2} \right)$$

(h)
$$\lim_{x \to 4^+} \frac{1}{(x-4)^3}$$

(k)
$$\lim_{x \to +\infty} (5 - 4x + x^2 - x^5)$$

(n)
$$\lim_{x \to 3^+} \frac{5}{3-x}$$

(q)
$$\lim_{x \to 0^-} \frac{3}{x^2 - x}$$

(t)
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1}.$$

Calcule:

(a)
$$\lim_{x \to 5} \sqrt[3]{3x^2 - 4x + 9}$$

(b) $\lim_{x \to 2^+} 1 + \sqrt{x - 2}$

(c) $\lim_{x \to 0} \sqrt[3]{\frac{x^3 + 1}{x + 1}}$

(d) $\lim_{x \to +\infty} \frac{1}{x^2}$

(e) $\lim_{x \to -\infty} \left(5 + \frac{1}{x} + \frac{3}{x^2}\right)$

(f) $\lim_{x \to -\infty} \frac{x^2 - 2x + 3}{3x^2 + x + 1}$

(g) $\lim_{x \to 4^-} \frac{1}{(x - 4)^3}$

(h) $\lim_{x \to 4^+} \frac{1}{(x - 4)^3}$

(i) $\lim_{x \to 4} \frac{1}{(x - 4)^3}$

(j) $\lim_{x \to +\infty} (x^4 - 3x + 2)$

(k) $\lim_{x \to +\infty} (5 - 4x + x^2 - x^5)$

(l) $\lim_{x \to +\infty} \frac{5x^3 - 6x + 1}{6x^2 + x + 3}$

(m) $\lim_{x \to +\infty} \frac{5x^3 - 6x + 1}{6x^3 + 2}$

(n) $\lim_{x \to 3^+} \frac{5}{3 - x}$

(o) $\lim_{x \to 3^-} \frac{5}{3 - x}$

(p) $\lim_{x \to \frac{1}{2}} \frac{4}{2x - 1}$

(q) $\lim_{x \to 0^-} \frac{3}{x^2 - x}$

(r) $\lim_{x \to -\infty} \frac{x^4 - 2x + 3}{3x^4 + 7x - 1}$

(f)
$$\lim_{x \to -\infty} \frac{x^2 - 2x + 3}{3x^2 + x + 1}$$

(i)
$$\lim_{x \to 4} \frac{1}{(x-4)^3}$$

(1)
$$\lim_{x \to +\infty} \frac{5x^3 - 6x + 1}{6x^2 + x + 3}$$

(o)
$$\lim_{x \to 3^{-}} \frac{5}{3-x}$$

(r)
$$\lim_{x \to -\infty} \frac{x^4 - 2x + 3}{3x^4 + 7x - 1}$$

11. Calcule:

(a)
$$\lim_{x \to 0} \frac{\tan(3x)}{x}$$

Calcule:
(a)
$$\lim_{x \to 0} \frac{\tan(3x)}{x}$$
(c) $\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$

(e)
$$\lim_{x \to 2} \frac{\tan(\pi x)}{x - 2}$$

(g)
$$\lim_{x \to p} \frac{\tan(x-p)}{x^2 - p^2}, p \neq 0$$
(i)
$$\lim_{x \to p} \frac{\sin x - \sin p}{x - p}$$

(i)
$$\lim_{x \to p} \frac{\sin x - \sin p}{x - p}$$

(b)
$$\lim_{x\to 0} \frac{7x}{6\sin x}$$

(d)
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\tan x - 1}$$

(f)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

(b)
$$\lim_{x \to 0} \frac{7x}{6 \sin x}$$
(d)
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\tan x - 1}$$
(f)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
(h)
$$\lim_{x \to 0} \frac{\sin \left(x^2 + \frac{1}{x}\right) - \sin \left(\frac{1}{x}\right)}{x}$$
(j)
$$\lim_{x \to p} \frac{\tan x - \tan p}{x - p}$$

(j)
$$\lim_{x \to p} \frac{\tan x - \tan p}{x - p}$$

12. Seja
$$f$$
 uma função definida em \mathbb{R} e suponha que exista $M > 0$ tal que $|f(x) - f(p)| \leq M|x - p|$ para todo x . Prove, usando a definição de função contínua, que f é contínua em p . Exiba outra maneira de mostrar este resultado.

13. Seja
$$f$$
 definida em \mathbb{R} . Suponha que $\lim_{x\to 0} \frac{f(x)}{x} = 1$. Calcule:

(a) $\lim_{x\to 0} \frac{f(3x)}{x}$
(b) $\lim_{x\to 0} \frac{f(x^2)}{x}$
(c) $\lim_{x\to 1} \frac{f(x^2-1)}{x-1}$
(d) $\lim_{x\to 0} \frac{f(7x)}{3x}$

(a)
$$\lim_{x \to 0} \frac{f(3x)}{x}$$

(b)
$$\lim_{x \to 0} \frac{f(x^2)}{x}$$

(c)
$$\lim_{x \to 1} \frac{f(x^2 - 1)}{x - 1}$$

(d)
$$\lim_{x \to 0} \frac{f(7x)}{3x}$$

14. Seja
$$f$$
 uma função definida em \mathbb{R} tal que $-x^2 + 3x \leq f(x) < \frac{x^2 - 1}{x - 1}$, para todo $x \neq 1$. Calcule $\lim_{x \to 1} f(x)$ e justifique.

15. Em cada dos ítens abaixo, determine o maior conjunto onde a função f é contínua.

The cada dos items abanxo, determine a major conjunto office at (a)
$$f(x) = \frac{3x-5}{2x^2-x-3}$$
 (b) $f(x) = \frac{x^2-9}{x-3}$ (c) $f(x) = \sqrt{2x-3} + x^2$ (d) $f(x) = \frac{x-1}{\sqrt{x^2-1}}$ (e) $f(x) = \frac{x}{x^2+1}$ (f) $f(x) = \frac{\sqrt{9-x}}{\sqrt{x-6}}$.

(b)
$$f(x) = \frac{x^2 - 9}{x - 3}$$

(c)
$$f(x) = \sqrt{2x - 3} + x^2$$

(d)
$$f(x) = \frac{x-1}{\sqrt{x^2-1}}$$

(e)
$$f(x) = \frac{x}{x^2 + 1}$$

(f)
$$f(x) = \frac{\sqrt{9-x}}{\sqrt{x-6}}$$

16. Se
$$f(x) = \begin{cases} \frac{|x-3|}{x-3}, & \text{se } x \neq 3 \\ 1, & \text{se } x = 3 \end{cases}$$
, então f é contínua em $x = 3$? Justifique sua resposta.

17. Analise a continuidade das funções abaixo nos seus domínios.

(a)
$$f(x) = \begin{cases} \sqrt{\frac{x-1}{x^2-1}}, & \text{se } x \neq \pm 1 \\ \frac{\sqrt{2}}{2}, & \text{se } x = -1 \text{ ou } x = 1. \end{cases}$$
 (b) $f(x) = \frac{x-[x]}{2x}$ (c) $f(x) = \begin{cases} \frac{2-x}{2-|x|}, & \text{se } x \neq 2 \\ 1 & \text{se } x = 2. \end{cases}$ (d) $f(x) = \begin{cases} \frac{\sin(2x)}{2}, & \text{se } x \neq 0 \\ 2 & \text{se } x = 0. \end{cases}$

- 18. Determine as constantes A, B de modo que a função $f(x) = \begin{cases} 3x, & \text{se } x \leq 2 \\ Ax + B, & \text{se } 2 < x < 5 \text{ seja } \\ -6x, & \text{se } x \geq 5 \end{cases}$ contínua em \mathbb{R} .
- 19. Encontre exemplos de funções tais que:
 - (a) f + g é contínua em x_0 , mas f e g não são.
 - (b) $f \circ g$ é contínua em x_0 , mas g é descontínua em x_0 e f é descontínua em $g(x_0)$.
 - (c) f é contínua em $g(x_0)$, g não é contínua em x_0 , mas $f \circ g$ é contínua em x_0 .
- 20. Sejam f, $g: \mathbb{R} \to \mathbb{R}$ funções contínuas em \mathbb{R} tais que f(3) = g(3). Verifique se a função $h(x) = \begin{cases} f(x), & \text{se } x \leq 3 \\ g(x), & \text{se } x > 3 \end{cases}$ é contínua em \mathbb{R} . Justifique sua resposta.
- 21. Prove que $\lim_{x \to x_0} f(x) = L \Leftrightarrow \lim_{x \to x_0} [f(x) L] = 0 \Leftrightarrow \lim_{x \to x_0} |f(x) L| = 0$.
- 22. Calcule:

(a)
$$\lim_{x \to 0} \cos \left(\frac{x}{\sin x - 2x} \right)$$

(b)
$$\lim_{x \to 0} \sin \left(\frac{\cos \left(\frac{\pi}{2} - 3x \right)}{x} \right)$$
.

- 23. Suponha que $|f(x)-f(1)| \leq (x-1)^2$ para todo $x \in \mathbb{R}$. Mostre que f é contínua no ponto $x_0 = 1$.
- 24. (a) Dê um exemplo de uma função definida em $\mathbb R$ que seja contínua em todos os pontos de $\mathbb R$, exceto nos pontos -1,0,1.
 - (b) Dê um exemplo de uma função definida em \mathbb{R} que seja contínua em todos os pontos de \mathbb{R} , exceto nos números inteiros.
 - (c) Dê um exemplo de uma função definida em $\mathbb R$ que não seja contínua em x=2 mas que $\lim_{x\to 2^+}f(x)=\lim_{x\to 2^-}f(x).$

3