

Mathematical Foundations of Computer Science

Hall's theorem and Planar Graphs

Hall's Marriage Theorem

Neighbors of S: N(S) = set of nodes that has an edge with at least one vertex in S

Theorem. Bipartite graph G(V = (L, R), E) has a perfect matching iff |L| = |R| = n and for any subset $S \subseteq L, |N(S)| \ge |S|$.

• The condition of the theorem still holds if we swap roles of *L*, *R*

Theorem. Bipartite graph G(V = (L, R), E) has a matching saturating L iff for any subset $S \subseteq L$, $|N(S)| \ge |S|$. (similar statement for matching saturating R)

Proof of Hall's Theorem

Theorem. Bipartite graph G(V = (L, R), E) has a perfect matching saturating L iff for every subset $S \subseteq L$, $|N(S)| \ge |S|$

Proof: Strong induction on the size of L i.e., n. (Base case n=1 is easy)

I.H: Theorem is true for every bipartite graph G satisfying the conditions on < n vertices.

As with most inductive proofs, we'll try to reduce it to an instance of smaller size.

We'll try to remove some vertices in L, R so that the graph on remaining vertices satisfies Hall's condition.

Strictly: HSC N(S) > 151

Case 1: Strictly larger neighborhoods

Suppose for every S s.t. $|S| \le n - 1$, we have $|N_G(S)| \ge |S| + 1$

Let $u \in L$ be any vertex on the left. Match it to one of its neighbors $v \in R$, remove both and continue.

Claim: Induced graph H on (L - u, R - v) satisfies Hall's condition.

If: Consider
$$T \subseteq L(su)$$
 $|N_{G}(T)| \ge |T|+1$
 $|N_{G}(T)| = |N_{G}(T)| \le |N_{G}(T)|$
 $|N_{H}(T)| = |N_{G}(T)| \le |T|+1$
 $|N_{H}(T)| = |N_{G}(T)| = |N_{G}(T)|$

Case 2: Exists S where |N(S)| = |S|

Hall's Marriage Theorem

Neighbors of S: N(S) = set of nodes that has an edge with at least one vertex in S

Theorem. Bipartite graph G(V = (L, R), E) has a perfect matching iff |L| = |R| = n and for any subset $S \subseteq L$, $|N(S)| \ge |S|$.

• The condition of the theorem still holds if we swap roles of L, R

Theorem. Bipartite graph G(V = (L, R), E) has a matching saturating L iff for any subset $S \subseteq L$, $|N(S)| \ge |S|$. (similar statement for matching saturating R)

Planar Graphs

A graph is planar if it can be drawn (represented) on the plane without any crossing edges (no edges intersect).

Examples of Planar Graphs

Inspired creation of graph theory by Euler

Konigsberg 7-bridge problem

Transportation networks

Faces

An embedding of planar graph splits the plane into disjoint faces

Face: A region bounded by a set of edges, vertices in embedding

How many faces in this graph? f_4 f_1 f_2 f_3 f_4 Tree has only 1 face

- When $n \ge 4$, each face borders at least 3 edges.
- One "outside" face (do not forget the outside face).

Notation: in a planar graph, F denotes the set of faces.

Euler's Formula

Thm. If G is a <u>connected</u> planar graph G with vertex set V (size n), edges E (m of them) and faces F (f of them), then |V| - |E| + |F| = n - m + f = 2 f = M-n+2

Proof of Euler's formula

Proof approach 1: Induction

Proof approach 2: Non-inductive proof using "Dual graphs".

(see

https://www.ics.uci.edu/~eppstein/junkyard/euler/interdig.html for the proof.)

[FYI:] Proof of Euler's formula

Proof by Induction on the number of edges m. n-(n-1)+1=2 regd. Connected +

Base case: m = n - 1. Tree has only 1 face (f = 1)! n - m + f = 2

IH: True for any connected graph with < m edges.

As $m \ge n$, there is a cycle. Let e = (u, v) be an edge on the cycle

#faces goes drown by exactly 1.

(the two faces incident on
e become one
sine fireform me face. Suppose we delete e = (u, v)N-m'+f'=2 by I.H $m'=m-1 \quad m=m+1$ $n'=n \quad n=h'+f=f'+1$ f = f - 1 Hence, n - m + f = n' - (m' + 1) + (f' + 1)= n' - m' + f' = 2 by inductive hypothesis

$$m \leq n(\hat{n}-1)$$

Average degree of a planar graph ≤ 6

Thm. In a connected planar graph G(V, E) on $n \ge 4$ vertices, the number of edges $m \le 3n - 6$. Acros dyne = $\frac{2|E|}{N} \le \frac{2(3n-6)}{N} \le 6$

Proof. By Euler's formula, n-2=m-f. If f=1, then $m \le n-1 \le 3n-6$ since $n \ge 2.5$

Want to bound f in terms of m. Count #(edge, face) incidences Every face has how many edges? $\geqslant 3$ # (edge, faces) incidences $\geqslant 3$ f How many faces can an edge belong to? ≤ 2

 $3f \le \# \text{edge-face incidences} \le 2m \Longrightarrow$

[Aside] Non planar graphs

How do you say when a graph is non-planar?

It clearly should not contain K_5 and $K_{3,3}$

Thm [Wagner]. Any graph that does not "contain" K_5 and $K_{3,3}$ is a planar graph.

"Contain": graph minor.

Thank you!