AAE 339: Aerospace Propulsion

HW 8: Introduction to Rocket Propulsion

Dr. Anderson

School of Aeronautical and Astronautical
Purdue University

Tomoki Koike Friday April 10th, 2020

Problem 1

A rocket operates with a throat stagnation pressure $p_{0,t} = 20$ MPa, and produces 200 kN of thrust during sea level tests. The combustion products have a molecular weight of 22 kg/kg-mole, a specific heat ratio $\gamma = 1.2$, and a temperature $T_0 = 3200$ K. During the sea level tests (problem parts a and b), the chamber ends at the throat ($A_t = A^*$), and there is no diverging nozzle to further expand the combustion products. Determine the following:

- a) The characteristic velocity (c^*), the thrust coefficient (c_f), and the specific impulse (l_{sp}).
- b) The throat area and the mass flowrate, and the static pressure and temperature at the throat.
- c) Now consider the case where a converging-diverging nozzle is used. The nozzle provides optimal expansion, i.e., the static pressure at the nozzle exit is equal to atmospheric pressure, or $p_e = p_o$. Determine the expansion ratio ($\varepsilon = A_e/A_t$), c^* , c_f , l_{sp} , and thrust produced with the added expansion section.
- d) Rockets used to launch spacecraft spend most of their time at high altitude where ambient pressure is small, hence rocket nozzles on first stages are usually designed so that $p_e < 1$ atm. Repeat the calculations of part (c), but use a nozzle that produces $p_e = 0.4$ atm.
- e) For the expansion ratios of parts c and d, calculate the momentum thrust term and the pressure thrust term for three values of $p_0 0.1$ MPa, 0.04 MPa, and 0 (vacuum condition).

Given Properties

$$Pot = 20 \text{ MPa}$$

$$F_{T} = 200 \text{ kN at } Sea-level condition}$$

$$plum = 22 \text{ kg. kmol} \Rightarrow R = \frac{Ru}{plum} = \frac{3914.5 \text{ Femol-k}}{22 \text{ kg. kmol}} = 397.93 \text{ Fg. k}$$

$$J = 1.2$$

$$To = 3200 \text{ k}$$

$$C^* = \frac{Pot At}{\dot{m}} = \left[\frac{1}{J}\left(\frac{\delta+1}{J}\right)^{\frac{\delta+1}{J}} \frac{Ru To}{\mu}\right]^{\frac{1}{2}}$$

$$C^* = \left[\frac{1}{J^2}\left(\frac{2.2}{2}\right)^{\frac{24}{0.4}} \left(\frac{8.314 \text{ kmol-k}}{\mu}\right)^{\frac{1}{2}} \right]^{\frac{1}{2}}$$

$$M_{w} \text{ kg. kmol}$$

$$C^* = \frac{1695.7 \text{ m/s}}{3}$$

Thrust coefficient
Since $A_t = A^* & A_e = A_t \implies M_t = 1$ (Mach at throat) then from isentropic relations
$T = T_0 / (1 + \frac{b-1}{2} M_+^2) = 2909.1 \text{ K}$ $P = \frac{P_0}{(1 + \frac{b-1}{2} M_+^2)^{\frac{b}{b}-1}} = 11.289 \text{ MPa}$
thus, $P = \frac{11.289 \mu Pa}{RT} = \frac{11.289 \mu Pa}{(379.93 \frac{T}{RF})(2909.1 k)} = 10.2684 kg m^{3}$
$u = M + \sqrt{3RT} = 1/48.6 \text{ m/s}$
Now $\mathcal{E} = \frac{Ae}{A_{+}} = 1$ & $e = P = 11.289$ MPa and at sea-level $e = 101.3$ kPa thus,
$C_{f} = \left\{ \frac{28^{2}}{\delta - 1} \left(\frac{2}{\beta + 1} \right)^{\delta - 1} \left[1 - \left(\frac{P_{e}}{P_{ot}} \right)^{\delta - 1} \right] \right\} + \frac{P_{e} - P_{o}}{P_{ot}} \varepsilon$
Specific Impulse
Isp = Cg·C* = (1.2368)(/695.7 m/s)
Ist = 2097.2 W/s

b)		
,	Throat Area	
	from the thrust coefficient	
	$A_{t} = \frac{F_{t}}{P_{0+} C_{f}} = 0.008086 \text{ m}^{2}$	
	Mass Jlow Rate	1
	$\dot{m} = \frac{f_{+}}{c * c_{f}} = 95.3647 \frac{kg}{s}$	
	Static Pressure	
	Calculated in a) \rightarrow $P=$	11.289 MPa
	Static Temperature	
	Calculated in a) \rightarrow $T=$	2909.1K

$$C^* = \frac{P_{0+}A_{+}}{\dot{m}} = \left[\frac{1}{b}\left(\frac{b+1}{2}\right)^{\frac{b+1}{b-1}} \frac{R_{u}T_{0}}{\mu_{w}}\right]^{\frac{1}{2}} \quad \text{does not change}$$

Thrust Coefficient

$$C_{f} = \left\{ \frac{2\delta^{2}}{\delta - 1} \left(\frac{2}{\delta + 1} \right)^{\frac{k+1}{\delta - 1}} \left[1 - \left(\frac{P_{e}}{P_{ot}} \right)^{\frac{p-1}{\delta}} \right] \right\}^{\frac{1}{2}} + \frac{P_{e} - P_{ot}}{P_{ot}} \varepsilon$$

Specific Impulse

Additional Thrust

the static temperature at the exit becomes

the static pressure at the exit is
Pe = Pot (1+ 5-1 Me) -1
Pe = 101.3 EPa
the density then becomes
$e = \frac{Pe}{RTe} = 0.202 Fg/m^3$
then the exit velocity becomes
ue = Me√oRTe
Ue = 29/5.2 m/s
50 hi
$Ae^{\frac{1}{2}}\frac{\dot{m}}{le} = 0.1616 m^{2}$ since $\dot{m} = 95.3647 kg/s$
since $m = 95.3647$ f_{s}
thus o
Fr = in Ue + (Pe-Pa) Ae
since in = 95.3647 159's
F _t = 278.0 EN
thus, the additional thrust introduced by the diffuser
A1F+ = F+ -F+
1 = 278.01 FN - 200 FN
AF+ = 78-01 KN

A)
if Pe= 0.4 atm = 40.53 kPa
Expansion Ractio
Since Pe= 40.53 KPa
from isentropic relations
$M_{e} = \left\{ \frac{2}{b-1} \left[\left(\frac{P_{ot}}{P_{e}} \right)^{\frac{r-1}{b}} - 1 \right] \right\}^{2}$
Me = 4,2557
now, using the following equation
$\frac{A_{e}}{A_{t}} = \left\{ \frac{1}{\mu_{e}^{2}} \left[\frac{2}{\beta+1} \left(1 + \frac{\beta-1}{2} \mu_{e}^{2} \right) \right]^{\frac{3+1}{\beta-1}} \right\}^{\frac{1}{2}}$
$\mathcal{E} = \frac{Ae}{At} = 40.9435$
Characteristic velocity
$C^* = \frac{P_{0+}A_{+}}{\dot{m}} = \left[\frac{1}{\delta} \left(\frac{\delta+1}{2}\right)^{\frac{\delta+1}{\delta-1}} \frac{R_{u}T_{0}}{M_{w}}\right]^{\frac{1}{2}} \text{does not change}$
$C^* = 1695.7 \text{ m/s}$

Thrust Coefficient Cf = {282 (2) stl | - (Pe) + Pe-Pa E Cf = 1.6788 Specific Impulse

Isp = Cf · C* Isp = 2846.8 m/s Additional Thrust the static temperature at the exit becomes Te = To (1+ 0-1 Me) Te = 1138,3 K the static pressure at the exit is Pe = Pot (1+ 5-1 Me) -1 Pe = 40.53 KPa the density then becomes Pe= Pe = 0.0942 kg/m3

then the exit velocity becomes
ue = Me√oRTe
Ue = 3057.8 m/s
$Ae = \frac{\dot{m}}{le} = 0.3310 \text{ m}^2$ since $\dot{m} = 95.3647 \frac{leg}{s}$
since in = 95.3647 kg/s
-thus
Fr = in Ue + (Pe-Pa) Ac
F' _t = 271.49 EN
thus, the additional thrust introduced by the diffuser
41F+ = F+ -F+
1 = 271.49 FN - 200 FN
1F7 = 71.49 KN
e) $for(c) \rightarrow E = 20.0(68)$
For (c) $\Rightarrow \varepsilon = 20.068$ $Pe \text{ remains } Pe = [0].3 + Pa$
moment thrust
= $mue = (95.3647) (29/5, 2 \% 5)$
= 278.01 EN

+hi	s 1'S	Constan	t thro	ugh o v7	any	- Patm	
Since	2				ľ		
		e is	only o	a fuh	ction o	T lle	
and	Me		ly on -	•		Pe	
	⇒ Pe	canh	nt be	change	d		
		2 = 10		Ĭ			
Path	= 0.1	MPa	Ì				
þ	ressur.	e thru	ist = (Pe-Patin)Ae =	210.4	0 N
	1.	Ae=	0-1618 n	,1			
Past	m = 0.	04 MPa					
(0)	(Po - to	ctin) Ao	- 9.92	13 KN			
h	tm = 0						
			Ae = 1	16,395	ŧΝ		
(C)_							
	Patm (ME)	Mome	ntwn	Pre	ssure	
	facimi ((A)	Thru	ist (kn)) 1	hrust (fl	1)
	0.	1		8.0(,21040	
	0.0	14	29	8.0[9.9212	
	0		27	8.0(6.395	
for (d	l), si	milar t	o (c)				
٧			-1	0	- b	= 40.53	$\mathcal{D}_{\mathbf{A}}$

. '-	momentum th	rust = in Ue =	= 291.60 FN
and			
Patm	= 0-1 MPa		
`	(Pe-Path)	Ae = (40.53 Ha-	0. IMPa)(0.8310 m²)
		= - 19.688	
Patm	= 0.04 M	Pa	
•	(Pe - Path) A= 0.17546	EN
Path	= 0		
., ,	(Pe - Fath	m) Ae = 13-417 k	= [(1
	(1- 11-1		
(d)			
C / _	n (un)	Momentum	Pressure
	Patm (MPa)	Thrust (KN)	Thrust (FN)
	0.1	291.60	- 19.688
	0.04	291.60	0.17546
	D	291.60	13.417

Problem 2

Use CEA to compare the performance of three common propellant combinations: liquid oxygen and Rocket Propellant 1 (LOX/RP-1), LOX and liquid hydrogen (LOX/LH2), and nitrogen tetroxide and monomethyl hydrazine (NTO/MMH). LOX/RP-1 is typically used in booster applications, like the Merlin engines used in the Falcon 9 and the RD-180 engine used in the Atlas V. LOX/LH2 is typically used in upper stage engines like the RL-10, and NTO/MMH is typically used in spacecraft or missile applications. Use a common equivalence ratio (ϕ = 1.2, rockets tend to operate at fuel-rich conditions), chamber pressure (p_c = 1470 psia, note CEA assumes p_{0t} = p_c), and chamber pressure to nozzle exit pressure ratio (p_c / p_e = 100). Note CEA produces two values of specific impulse: I_{sp} , where p_e = p_a ; and I_{vac} , where p_a = 0. For a thrust of 10 kN, calculate the propellant flowrate and oxidizer-to-fuel mass ratio, O/F for each combination. Tabulate and compare c^* , c_f , I_{sp} , \dot{m} , and O/F for the three cases.

liquid Oxygen \$ RP-1	
CEA gives the following 1	results
% = 2,83806	C*= 1781.6 m/s
$C_f = 1.7029$ Trac = 3285.8	Isp = 3033.8 m/s
it thrust, F+ = 1	o KN
	$\frac{10 \text{kN}}{3033.8 \text{m/s}} = 3.2962 \text{kg/s}$
-36	5035.0 7/s

liquid Oxygen	\$ liqu	id hydro	gen					
CEA give	s the T	following	results					
% =	6.61390	7	C*=	2265.	o wy	's		
	- 1.6862		Isp =	3819	4	m/5		
Ivac	= 4117.6	M/5						
it	thrust .	F ₄ =	10 KN					
			= 38				/162	kg /
	h =	Isp	38	19.4 W/s	=	2, 1	0 (0 ~	1/5
nitrogen tetro	xide \$ n	whomed	thyl hydn	azine				
CEA give	s the T	following	results					
% =	2,080	34	C*=	1755.9	m/s			
Cf :	- 1.6608	ŝ	Isp =	2916.	2 m/	5		
Ivac	= 3127.	5						
it	thrust .	F ₄ =	10 KN					
	m =	F+ T	= -	10 KN	= ;	3.42	9	kg/5

property	LOX/RP-1	LOX/LH2	NTO/MMH
C* [m/s]	1781.6	2265.0	1755.9
Cf	1.7029	1.6862	1.6608
Isp [m/s]	3033.8	3819.4	2916.2
Ivac [m/s]	3285.3	4117.6	3129.8
m [49/s]	3.2962	2.6182	3.4291
%F	2.83806	6.61390	2.08034

Discussion √ From the table above we can tell that the LOX/LH2 has the best performance within the 3 for its high C* & Isp value. However, the downside to this is that the 9/ is outstandingly high i although considering that its primary composition is H \$ 0 the Juel mass is relatively light and is not much of a concern. V LOX/PP-1 has the second best performance with a higher Cf value than LOX/CH2. This indicates that the thrust per unit champer pressure \$ throat area is higher. And this combination has the highest propellent flow rate. V NTO/MMH on the other hand has the worst performance with lowest Isp, C#, \$ Cf. Hydrazine is also not a safe substance to deal with; thus would place this combination the least preferred.

Appendix

AAE 339 HW 8

```
close all; clear all; clc;
P1
a)
% Define the given properties
P0t = 20e6; % throat stagnation pressure [Pa]
Ft = 200e3; % thrust [N] @ sea-level conditions

Mw = 22; % molecular weight of the product gas [kg/kmol]

gamma = 1.2; % specific hear ratio

T0 = 3200; % temperature at the chamber [K]
      = 8314.5; % universal gas constant [J/kmol-K]
Ru
      = Ru/Mw; % specific gas constant [J/kg-K]
Patm = 101.3e3; % atmospheric pressure [Pa]
% Characteristic velocity
a1 = 1/gamma*((gamma + 1)/2)^((gamma + 1)/(gamma - 1)); % intermediate var 1
                                                               % intermediate var 2
a2 = R*T0;
c_star = sqrt(a1*a2)
% Specific thrust
Mt = 1.0;
T = T from M and gamma(T0,Mt,gamma,"static")
P = p from M and gamma(P0t,Mt,gamma,"static")
rho = P/R/T
u = Mt*sqrt(gamma*R*T)
epsilon = 1.0;
a1 = 2*gamma^2/(gamma - 1);
                                                      % intermediate var 1
a2 = (2/(gamma + 1))^{(gamma + 1)/(gamma - 1)); % intermediate var 2
a3 = 1 - (P/P0t)^{(gamma - 1)/gamma);
                                                      % intermediate var 3
                                                      % intermediate var 4
a4 = (P - Patm)/P0t*epsilon;
cf = sqrt(a1*a2*a3) + a4
% Specific impulse
Isp = cf*c star
b)
% Throat area
At = Ft/P0t/cf
% Mass flow rate
m_dot = Ft/c_star/cf
% Calculate the exit Mach number
Pe = Patm;
a1 = 2/(gamma - 1); % intermediate var 1
```

```
a2 = (P0t/Pe)^{(gamma - 1)/gamma) - 1
Me = sqrt(a1*a2)
% Expansion ratio
a1 = 2/(gamma + 1);
                                  % intermediate var 1
a2 = (1 + (gamma - 1)/2*Me^2);
                                 % intermediate var 2
a3 = (gamma + 1)/(gamma - 1); % intermediate var 3
epsilon = sqrt(1/Me^2*(a1*a2)^(a3))
% Thrust coefficient
a1 = 2*gamma^2/(gamma - 1);
                                                 % intermediate var 1
a2 = (2/(gamma + 1))^{(gamma + 1)/(gamma - 1)); % intermediate var 2
a3 = 1 - (Pe/P0t)^{(gamma - 1)/gamma);
                                                 % intermediate var 3
                                                  % intermediate var 4
a4 = (Pe - Patm)/P0t*epsilon;
cf = sqrt(a1*a2*a3) + a4
% Specific impulse
Isp = cf*c_star
% Additional thrust
Te = T_from_M_and_gamma(T0,Me,gamma,"static")
Pe = p_from_M_and_gamma(P0t,Me,gamma,"static")
rho e = Pe/R/Te
ue = Me*sqrt(gamma*R*Te)
Ae = m dot/rho e/ue
Ft_new = m_dot*ue + (Pe - Patm)*Ae
delta_Ft = Ft_new - Ft
% PROBELM (e)
Patm = 0.1e6;
M thrust = m dot*ue
P_thrust = (Pe - Patm)*Ae
Patm = 0.04e6;
M_thrust = m_dot*ue
P_{thrust} = (Pe - Patm)*Ae
Patm = 0;
M_thrust = m_dot*ue
P_{thrust} = (Pe - Patm)*Ae
d)
% Calculate the exit Mach number
Pe = 40.53e3;
a1 = 2/(gamma - 1);
                                        % intermediate var 1
a2 = (P0t/Pe)^{(gamma - 1)/gamma) - 1; % intermediate var 2
Me = sqrt(a1*a2)
% Expansion ratio
a1 = 2/(gamma + 1);
                                  % intermediate var 1
a2 = (1 + (gamma - 1)/2*Me^2); % intermediate var 2
a3 = (gamma + 1)/(gamma - 1); % intermediate var 3
epsilon = sqrt(1/Me^2*(a1*a2)^(a3))
```

```
% Thrust coefficient
a1 = 2*gamma^2/(gamma - 1);
                                                  % intermediate var 1
a2 = (2/(gamma + 1))^{((gamma + 1)/(gamma - 1))}; % intermediate var 2
a3 = 1 - (Pe/P0t)^{(gamma - 1)/gamma);
                                                  % intermediate var 3
a4 = (Pe - Patm)/P0t*epsilon;
                                                   % intermediate var 4
cf = sqrt(a1*a2*a3) + a4
% Specific impulse
Isp = cf*c star
% Additional thrust
Te = T_from_M_and_gamma(T0,Me,gamma,"static")
Pe = p_from_M_and_gamma(P0t,Me,gamma,"static")
rho_e = Pe/R/Te
ue = Me*sqrt(gamma*R*Te)
Ae = m_dot/rho_e/ue
Ft_new = m_dot*ue + (Pe - Patm)*Ae
delta Ft = Ft new - Ft
% PROBELM (e)
Patm = 0.1e6;
M thrust = m dot*ue
P_{thrust} = (Pe - Patm)*Ae
Patm = 0.04e6;
M thrust = m dot*ue
P \text{ thrust} = (Pe - Patm)*Ae
Patm = 0;
M = m \cdot dot *ue
P_thrust = (Pe - Patm)*Ae
function T2 = T_from_M_and_gamma(T1, M, gamma, type)
    if type == "stagnation"
        T2 = T1 * (1 + (gamma - 1) / 2 * M^2);
    elseif type == "static"
        T2 = T1 / (1 + (gamma - 1) / 2 * M^2);
    else
        disp("Error. Incorrect type. Type can only be 'stagnation' or 'static'.")
    end
end
function p2 = p_from_M_and_gamma(p1, M, gamma, type)
    if type == "stagnation"
        p2 = p1 * (1 + (gamma - 1) / 2 * M^2)^(gamma/(gamma - 1));
    elseif type == "static"
        p2 = p1 / (1 + (gamma - 1) / 2 * M^2)^(gamma/(gamma - 1));
    else
        disp("Error. Incorrect type. Type can only be 'stagnation' or 'static'.")
    end
end
```