TASK -1 IRIS FLOWER CLASSIFICATION

By - Anupreksha Shukla

Here I use Three Machine Learning Model to compare there accuracy Score

- 1)Logistic Regression
- 2) Decision Tree Classifier
- 3)Random Forest Classifier

1- Import the Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

2 -Read The Dataset

```
In [2]: df_iris = pd.read_csv("C://Users//HP//Downloads//Iris1.csv")
In [3]: df_iris
```

\cap	+	г	\supset	٦.	
υu	L	L	0	Ш	0

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
•••						
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

Analyse the Dataset

Classification Models

Info Method Prints information about the dataframe

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype						
0	Id	150 non-null	int64						
1	SepalLengthCm	150 non-null	float64						
2	SepalWidthCm	150 non-null	float64						
3	PetalLengthCm	150 non-null	float64						
4	PetalWidthCm	150 non-null	float64						
5	Species	150 non-null	object						
dtyp	es: float64(4),	int64(1), objec	t(1)						
memory usage: 7.2+ KB									

In [5]: df_iris['Species'].value_counts()

Out[5]: Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50

Name: Species, dtype: int64

In [6]: df_iris.describe()

Out[6]:

		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161	
	min 25% 50% 75%	1.000000	4.300000	2.000000	1.000000	0.100000
		38.250000	5.100000	2.800000	1.600000	0.300000
		75.500000	5.800000	3.000000	4.350000	1.300000
		112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000	

In [7]: df_iris.nunique()

```
Out[7]: Id 150
SepalLengthCm 35
SepalWidthCm 23
PetalLengthCm 43
PetalWidthCm 22
Species 3
dtype: int64
```

In [8]: df_iris.head()

Out[8]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	14	0.2	Iris-setosa

In [9]: df_iris.tail()

Out[9]

:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

In [10]: df_iris.isnull().sum()

Out[10]: Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

In [11]: df_iris

Out[11]:

•	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
•••						
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [12]:

corr=df_iris.corr()
corr

\cap	4-	Γ1	γ	
U	uч	1 1	Z I	į

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
Id	1.000000	0.716676	-0.397729	0.882747	0.899759
SepalLengthCm	0.716676	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.397729	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.882747	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.899759	0.817954	-0.356544	0.962757	1.000000

In [13]: sns.heatmap(corr,annot=True)

Out[13]: <AxesSubplot:>

Defining dependent and independent variable

```
In [14]: from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    df_iris['Species']=le.fit_transform(df_iris['Species'])
    df_iris['Species'].value_counts()
```

```
Out[14]: 0 50 50 2 50
```

Name: Species, dtype: int64

```
In [15]: df_iris.head(2)
```

Out[15]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	0
	1	2	4.9	3.0	1.4	0.2	0

```
In [16]: x=df_iris.iloc[:,1:5]
y=df_iris['Species']
x.shape,y.shape
```

Out[16]: ((150, 4), (150,))

splitting x and y in to train and test dataset

```
In [17]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.25)
    x_train.shape,x_test.shape,y_train.shape,y_test.shape
((112 4) (38 4) (112) (38))
```

Out[17]: ((112, 4), (38, 4), (112,), (38,))

Train Test Split

In [18]: x_train.head(2)

Out[18]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	85	6.0	3.4	4.5	1.6
	81	5.5	2.4	3.7	1.0

2

Import the model/Algorithm

LogisticRegression

```
In [21]: from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()

In [22]: #Train model with x_train and y_train
lr.fit(x_train,y_train)

Out[22]: LogisticRegression()
```

Predict with x_train and y_train

```
In [23]: y_pred_lr=lr.predict(x_test)
    y_pred_lr[:5],y_test.values[:5]

Out[23]: (array([0, 2, 0, 0, 0]), array([0, 2, 0, 0, 0]))
```

Evaluate the Model

```
In [24]: print(lr.score(x_train,y_train))
print(lr.score(x_test,y_test))
```

```
0.9642857142857143
         1.0
In [25]: from sklearn.metrics import confusion_matrix, classification report, accuracy score
         print(confusion matrix(y pred lr,y test))
         print(classification report(y pred lr,y test))
         print(f'model score- {lr.score(x test,y test)}')
         print(f'accuracy score- { accuracy score(y pred lr,y test)}')
         [[ 9 0 0]
         [ 0 15 0]
          [ 0 0 14]]
                                    recall f1-score
                       precision
                                                     support
                    0
                            1.00
                                      1.00
                                                1.00
                                                            9
                    1
                            1.00
                                      1.00
                                               1.00
                                                           15
                                               1.00
                    2
                            1.00
                                      1.00
                                                           14
                                               1.00
                                                           38
             accuracy
            macro avg
                                               1.00
                                                           38
                            1.00
                                      1.00
         weighted avg
                                                           38
                            1.00
                                      1.00
                                               1.00
         model score- 1.0
         accuracy score- 1.0
         cm = confusion matrix(y pred lr,y test)
In [26]:
         sns.heatmap(cm,annot=True)
         plt.show()
```


DECISION TREE CLASSIFIER

```
In [27]:
#-------USING DECISION TREE CLASSIFIER
from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()
dtc.fit(x_train,y_train)
y_pred_dtc=dtc.predict(x_test)
print(f'predicted y is:{y_pred_dtc[:5]} Actual_y{y_test.values[:5]}')
print(confusion_matrix(y_pred_dtc,y_test))
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
cm=confusion_matrix(y_pred_dtc,y_test)
plt.figure(figsize=(2,1))
print(sns.heatmap(cm,annot=True))
plt.show()
print(classification_report(y_pred_dtc,y_test))
```

```
print(f'model score-{dtc.score(x test,y test)}')
print(f'accuracy_score - { accuracy_score(y_pred_dtc,y_test)}')
ax=plt.axes(projection = '3d')
ax.scatter3D(x test['PetalLengthCm'],x test['PetalWidthCm'],y test)
ax.scatter3D(x test['PetalLengthCm'],x test['PetalWidthCm'],y pred dtc,'black')
plt.show()
predicted y is:[0 2 0 0 0] Actual y[0 2 0 0 0]
[[ 9 0 0]
[ 0 15 0]
[ 0 0 14]]
AxesSubplot(0.125,0.11;0.62x0.77)
                        10
      0
                 2
             precision
                          recall f1-score
                                             support
                                      1.00
           0
                   1.00
                            1.00
                                                   9
           1
                   1.00
                             1.00
                                      1.00
                                                   15
           2
                  1.00
                                      1.00
                            1.00
                                                   14
                                      1.00
                                                   38
   accuracy
  macro avg
                   1.00
                             1.00
                                      1.00
                                                   38
                                                  38
weighted avg
                   1.00
                            1.00
                                      1.00
model_score-1.0
accuracy score - 1.0
```


RANDOM FOREST CLASSIFIER

```
from sklearn.ensemble import RandomForestClassifier
    rfc=RandomForestClassifier()
    rfc.fit(x_train,y_train)
    y_pred_rfc=rfc.predict(x_test)
    print(f'predicted y is:{y_pred_dtc[:5]} Actual_y{y_test.values[:5]}')
    print(confusion_matrix(y_pred_rfc,y_test))
    from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
    #cm=confusion_matrix(y_pred_dtc,y_test)
    plt.figure(figsize=(2,1))
    print(sns.heatmap(cm,annot=True))
    plt.show()
```

```
print(classification report(y pred dtc,y test))
print(f'model_score-{dtc.score(x_test,y_test)}')
print(f'accuracy_score - { accuracy_score(y_pred_rfc,y_test)}')
ax=plt.axes(projection = '3d')
ax.scatter3D(x_test['PetalLengthCm'],x_test['PetalWidthCm'],y_test)
ax.scatter3D(x test['PetalLengthCm'],x test['PetalWidthCm'],y pred dtc,'black')
plt.show()
predicted y is:[0 2 0 0 0] Actual y[0 2 0 0 0]
[[ 9 0 0]
[ 0 15 0]
[ 0 0 14]]
AxesSubplot(0.125,0.11;0.62x0.77)
                        10
      0
                  2
              precision
                           recall f1-score
                                            support
           0
                   1.00
                             1.00
                                       1.00
                                                    9
                   1.00
                                                   15
           1
                             1.00
                                       1.00
           2
                   1.00
                             1.00
                                       1.00
                                                   14
                                       1.00
                                                   38
    accuracy
                                                   38
   macro avg
                   1.00
                             1.00
                                       1.00
weighted avg
                   1.00
                             1.00
                                       1.00
                                                   38
model score-1.0
accuracy score - 1.0
```

