CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Computability

- Computation Models: Turing Machine Model
- Church-Turing Hypothesis
- Equivalence of Models: RAM Model

COMPUTABILITY - MACHINE MODELS

- Church-Turing Hypothesis:
 - Anything computable can be computed by a Turing machine.
- Turing machine:
 - A *Turing machine* is an abstract machine characterized by:
 - ostates in which the machine can be
 - o(state) transitions specifying on which input, will the machine go from one state to another and write some output
 - oa (semi-infinite) tape used for input / output

COMPUTABILITY - MACHINE MODELS

[2]

- Church-Turing Hypothesis
 - Can't be proven because "what is computable" is not a grounded notion.
 - In practice, if we mean "computable" to be
 - ocomputable in finite number of steps,
 - oeach of which can be executed
 - oin a finite amount of time and
 - using a finite amount of resources
 - then the hypothesis is reasonable.
 - It can be disproved if someone comes up with a "superior" machine model.

COMPUTABILITY - MACHINE MODELS

[4]

Random Access Machine (RAM) Model

Equivalent to Turing machine model.

Capability abstraction of common computers / processors

Exercise: Prove that the RAM model is equivalent is to the TM model.