Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

ПРОЕКТ СИСТЕМЫ

по дисциплине

" Основы разработки САПР"

Выполнил:
студент группы 588-2
Рыжков Д.А.
«» 2021 г.
Принял:
руководитель к.т.н., доцент КСУП:
Калентьев А. А.
«»2021 г.

1 Описание САПР

1.1 Описание программы

AutoCAD — двух- и трёхмерная система автоматизированного проектирования и черчения, разработанная компанией Autodesk. AutoCAD и специализированные приложения на его основе нашли широкое применение в машиностроении, строительстве, архитектуре и других отраслях промышленности.

В области двумерного проектирования AutoCAD по-прежнему позволяет использовать элементарные графические примитивы для получения более сложных объектов. Кроме того, программа предоставляет весьма обширные возможности работы со слоями и аннотативными объектами (размерами, текстом, обозначениями). Использование механизма внешних ссылок (XRef) позволяет разбивать чертёж на составные файлы, за которые ответственны различные разработчики, а динамические блоки расширяют возможности автоматизации 2D-проектирования обычным пользователем без использования программирования.

АutoCAD включает в себя полный набор инструментов для комплексного трёхмерного моделирования (поддерживается твердотельное, поверхностное и полигональное моделирование). AutoCAD позволяет получить высококачественную визуализацию моделей с помощью системы рендеринга mental ray. Также в программе реализовано управление трёхмерной печатью (результат моделирования можно отправить на 3D-принтер) и поддержка облаков точек (позволяет работать с результатами 3D-сканирования) [1].

1.2 Описание АРІ

API (англ. Application Programming Interface) — описание способов, которыми одна компьютерная программа может взаимодействовать с другой программой. [2]

Для AutoCAD существует несколько средств программирования:

• ObjectARX:

Среда программирования ObjectARX используется для адаптации и расширения функциональных возможностей AutoCAD и продуктов на его основе. Она обеспечивает непосредственный доступ к структурам базы данных AutoCAD, графической системе и определениям встроенных команд. С помощью объектно-ориентированных интерфейсов программирования на языке C++ разработчики могут создавать приложения для AutoCAD и других продуктов, входящих в это семейство;

• AutoCAD .NET API:

В состав ObjectARX SDK входит также управляемый API, который часто называют AutoCAD .NET API. Для адаптации и расширения функциональных возможностей AutoCAD и продуктов на его основе может применяться любой программирования, поддерживающий .NET. Обеспечивается язык непосредственный доступ структурам базы данных AutoCAD, К определениям встроенных команд и другим внутренним программным элементам:

• ActiveX:

Интерфейс ActiveX позволяет обращаться к AutoCAD и в автоматическом режиме выполнять в нем необходимые действия посредством механизма СОМ-автоматизации. Такие обращения возможны, например, из автономных приложений, написанных на Microsoft Visual C++ или Microsoft .NET Framework, а также из поддерживающих VBA приложений – таких как Microsoft Office. Кроме того, интерфейс ActiveX могут использовать надстройки для AutoCAD, созданные с помощью Visual LISP, ObjectARX и AutoCAD .NET API. [3]

Принцип создания и работы плагина для AutoCAD:

- 1. Создание проекта библиотеки;
- 2. Создать проект «Библиотека классов» («Class Library»);
- 3. Добавить ссылки на необходимые библиотеки AutoCAD .NET API (из ObjectARX);

- 4. Написать код плагина;
- 5. Загрузить созданный плагин: нужно запустить AutoCAD и выполнить команду «NETLOAD»;
- 6. Отладить плагин (при необходимости). [4] Основные пространства имен, используемые при создании плагина:
- Autodesk.AutoCAD.ApplicationServices позволяет получить доступ к приложению AutoCAD;
- Autodesk.AutoCAD.EditorInput позволяет получить доступ к редактору AutoCAD;
- Autodesk.AutoCAD.DatabaseServices дает доступ к базе данных и сущностям AutoCAD;
- Autodesk.AutoCAD.Geometry группирует всё, что относится к геометрии в AutoCAD;
 - Autodesk.AutoCAD.Runtime отвечает за регистрацию команд. [5, 6]

На таблице 1.2.1 представлены необходимые свойства и методы интерфейсов, которые будут использоваться при разработке плагина.

Таблица 1.2.1 — Свойства и методы интерфейсов и классов

Название	Возвращаемый тип	Описание	
Application			
DocumentManager	DocumentCollection	Получает доступ к объекту DocumentManager.	
MainWindow	Window	Получает доступ к главному окну	
ShowModalWindow (System.Windows.Window)	bool?	Используется для отображения формы WinForms	
Transaction			
Commit()	void	Фиксирует изменения, внесенные во все объекты DBObject, открытые во время Транзакции.	
Abort()	void	Прерывает транзакцию.	

Продолжение таблицы 1.2.1

Название	Возвращаемый тип	Описание	
Document			
Database	Database	Обертывает функцию AcApDocument.database() ОбјесtARX, которая возвращает объект базы данных (базу данных), используемый этим документом	
Editor	Editor	Доступ к редактору, связанному с этим документом	
TransactionManager	TransactionManager	Получает доступ к объекту TransactionManager для этого документа	
Window	Window	Доступ к окну документа	
AcDb3dSolid			
createFrustum(double, double, double, double)	ErrorStatus	Этот метод используется для создания цилиндра или конуса с центром мирового происхождения вокруг его диаметра и расположен на половине высоты	
createWedge(double, double, double)	ErrorStatus	Этот метод используется для создания твердого тела клина с центром в начале координат WCS	
extrude(double, double)	ErrorStatus	Создает твердое тело путем выдавливания области, расстояния по высоте с углом конусности конуса	

1.3 Обзор аналогов

AutoCAD Mechanical Toolset

Самый лаконичный способ создания звёздочки является официальным: создать цепное колесо с помощью встроенного инструмента «вставка звездочки». Однако, данный способ доступен только на специальной версии AutoCAD (AutoCAD Mechanical Toolset), что создаёт заметные ограничения для использования этого варианта. [7]

Gear Generator

Помимо официального инструмента AutoCAD существует онлайн редактор для автоматизированного построения аналогичного объекта — шестерёнок. На сайте «geargenerator.com» можно построить несколько видов шестерней (внутренняя, наружная) и задать параметры: количество зубьев, шаг зуба, угол давления, диаметр. И скачать созданную схему в нужном формате (DXF, SVG). [8]

Рисунок 1.3.1 — Интерфейс сайта «geargenerator.com»

SelfCAD

SelfCAD — это онлайн-программа для автоматизированного проектирования 3D-моделей и их 3D-печати, выпущенная в 2016 году. Она основана на браузере и облаке. Её отличительная черта — это отсутствие потребности в скачивании программы и возможность работы напрямую в облаке с сохранением возможности работы в автономном режиме (для чего уже потребуется установка программного обеспечения SelfCAD). [9]

Рисунок 1.3.2 — Интерфейс программы SelfCAD

Autodesk App Store

Также, существует магазин плагинов для всей продукции компании Autodesk. Однако, в нём плагины по созданию звёздочки в основном создаются для программы Fusion 360. В то время как для нужной среды AutoCAD нужных плагинов намного меньше (всего два плагина) и они распространяются на платной основе. [10]

Рисунок 1.3.3 — Пара платных плагинов AutoCAD для создания звёздочки

2 Описание предмета проектирования

Звёздочка (цепное колесо) — это профилированное колесо с зубьями, которые входят в зацепление с цепью, гусеницей или с другими материалами с выемками или зазубринами. Звёздочки отличаются от зубчатых колёс тем, что никогда не входят в зацепление друг с другом непосредственно, и отличаются от шкивов тем, что у звёздочек есть зубья, в то время как шкивы имеют гладкие ободы.

Звёздочки применяются в велосипедах, мотоциклах, автомобилях, гусеничных транспортных средствах, и в других машинах, в которых применение зубчатых передач является неподходящим. Они выполняют функцию передачи вращательного движения между двумя валами посредством цепной передачи или функцию сообщения линейного движения звеньям гусениц. [11]

К изменяемым параметрам модели относятся:

а) диаметр наружной окружности (d, 50 — 500 мм);

Рисунок 2.1 – Диаметр наружной окружности звёздочки b) диаметр внутренней окружности (d2, 25 — 250 мм);

Рисунок 2.2 – Диаметр внутренней окружности звёздочки

- c) число зубьев (n, 5 80);
- d) высота зуба $(h_r \le 20\% * d);$

Рисунок 2.3 – Высота зуба

e) толщина пластины (h, 5 — 50 мм).

Рисунок 2.4 – Толщина пластины

3 Проект программы

3.1 Диаграмма классов

Диаграмма классов (class diagram) служит для представления статической структуры модели системы в терминологии классов объектно-ориентированного программирования. Диаграмма классов может отражать, в частности, различные взаимосвязи между отдельными сущностями предметной области, такими как объекты и подсистемы, а также описывает их внутреннюю структуру и типы отношений. [12]

Спроектированная диаграмма классов для проекта по созданию звёздочки показана на рисунке 3.1.1:

Рисунок 3.1.1 — UML диаграмма классов

Для создания плагина AutoCAD будут реализованы следующие классы:

- AutoCADConnector класс, откуда будет запускаться плагин при помощи вызова команды «BuildSprocket» в терминале AutoCAD;
- MainForm класс, отвечающий за пользовательский интерфейс плагина;
- SprocketParameters класс, хранящий в себе все параметры модели звёздочки;
- Validator класс, хранящий в себе методы проверки данных (проверка диапазона значений);
- SprocketBuilder класс, хранящий в себе методы для построения модели звёздочки.

3.2 Макеты пользовательского интерфейса

Для создания звёздочки хватило бы и передачи аргументов (параметров) в терминале AutoCAD. Однако, такой способ взаимодействия с пользователем не очень дружелюбен.

Намного понятнее для пользователя воспользоваться специальным интерфейсом. С целью улучшения пользовательского опыта использования создаваемого плагина был разработан макет интерфейса.

Макеты пользовательского интерфейса представлен на следующем рисунке:

Рисунок 3.2.1 — Макет пользовательского интерфейса

Также плагин будет уведомлять пользователя о некорректном вводе данных. Планируется выводить сообщения содержащие следующую информацию:

- где была совершена ошибка (конкретное поле);
- совершённая ошибка (выход за пределы значений или ввод некорректных символов);
- что программа ожидала получить.

К примеру, плагин может сообщить пользователю: «Поле толщины пластины содержит ошибку: выход за пределы значений. Пожалуйста, введите значение в диапазоне от 5 мм до 50 мм».

Список литературы

- 1. AutoCAD Википедия. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/AutoCAD (дата обращения 31.10.2021).
- 2. API Википедия. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/API (дата обращения 31.10.2021).
- 3. Разработка приложений для AutoCAD. [Электронный ресурс]. Режим доступа: https://www.autodesk.ru/autodesk-developer-network/software-platform-russian/develop-autocad (дата обращения 31.10.2021).
- 4. Создание плагинов для AutoCAD с помощью (часть 1 первые шаги) Хабр. [Электронный ресурс]. Режим доступа: https://habr.com/ru/post/235723/ (дата обращения 31.10.2021).
- 5. AutoCAD 2022 Developer and ObjectARX documentation | Managed .NET Developer's Guide (.NET) | Autodesk. [Электронный ресурс]. Режим доступа: https://help.autodesk.com/view/OARX/2022/RUS/?guid=GUID-C3F3C736-40CF-44A0-9210-55F6A939B6F2 (дата обращения 31.10.2021).
- 6. Введение в .NET AutoCAD .NET API презентация онлайн. [Электронный ресурс]. Режим доступа: https://ppt-online.org/476500 (дата обращения 31.10.2021).
- 7. Вставка звездочки (AutoCAD Mechanical Toolset). [Электронный ресурс]. Режим доступа: https://knowledge.autodesk.com/ru/support/autocad-mechanical/learn-explore/caas/CloudHelp/cloudhelp/2019/RUS/AutoCAD-Mechanical/files/GUID-D8739549-39DC-48A2-97AF-976AE73CB132-htm.html (дата обращения 31.10.2021).
- 8. Gear generator— онлайн редактор чертежей для создания шестерней. [Электронный ресурс]. Режим доступа: https://geargenerator.com (дата обращения 31.10.2021).
- 9. 3D SHAPES: GEAR GENERATOR. [Электронный ресурс]. Режим доступа: https://www.selfcad.com/3d-modeling-features/3d-shapes-gear-generator (дата обращения 31.10.2021).

- 10. Gears | Подключаемые модули, надстройки, расширения для AutoCAD Autodesk App Store. [Электронный ресурс]. Режим доступа: https://apps.autodesk.com/ACD/ru/List/Search?isAppSearch=True&searchboxstore= ACD&facet=&collection=&sort=&query=Gears (дата обращения 31.10.2021).
- 11. Звёздочка (техника) Википедия. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Звёздочка_(техника) (дата обращения 31.10.2021).
- 12. Леоненков. Самоучитель UML. [Электронный ресурс]. Режим доступа: http://khpi-iip.mipk.kharkiv.edu/library/case/leon/gl5/gl5.html (дата обращения 3.11.2021).