Today - finish \$2.1 ("An unbounded Arablem") - of 2.2 ("A Degenerate Optimalization")

Remark: If, in any tableau, you get a column where objective row coefficient is $< 0 \ (\neq 0)$ and where other coefficient are all ≤ 0 , then the tableau represents an unbounded problem. Eq. (based on "An Unbounded Froblem") - the eg2. pdf

An Unbounded Problem

From tableau 3, one would enter X1, χ_1 θ -ratios $\chi_2 = \frac{5}{0}$ no valid ratio

We will construct a half-line in the feasible region, where z can take abitrarily large value

Tableau 3 represents the problem:

Moximize
$$z = \frac{11}{3} \times 1 + \frac{43}{15} \times 4 - \frac{82}{15} \times 5 - \frac{14}{15} \times 6 + \frac{118}{3}$$

S.t. $(0x_1 + x_2 - \frac{7}{5} \times 4 + \frac{1}{5} \times 6 + \frac{1}{5} \times 6 = 5$
 $-\frac{2}{3} \times 1 + x_3 - \frac{1}{15} \times 4 + \frac{1}{5} \times 5 + \frac{1}{5} \times 6 = \frac{14}{3}$
 $(x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{3} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

If we increase to $M \ge 0$, say, we can stay in the feasible region by making appropriate increases in the basic variables γ_3 and γ_4 , to get the non-basic solution (if M > 0)

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \\ \chi_5 \\ \chi_6 \end{bmatrix} = \begin{bmatrix} M \\ 5 \\ \frac{4}{3} + \frac{2}{3}M \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 (feasible for any M)
$$Where \ \Sigma = \frac{11}{3}M + \frac{118}{3}$$

Eq. (still based on "An Unbounded Froblem")
The X4-column of tableau @ also shows the good em is unbounded

Tableau 2 represents the basic feasible solution
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \\ 0 \\ 10 \end{bmatrix}, and for any $M \ge 0$,
$$\begin{bmatrix} 3 + M \\ M \\ M \\ 10 + 2M \end{bmatrix}$$
 is also feasible (and non-basic parts).$$

if M>0) where Z=M+30.

\$ 2.2 Definition A basic solution of a system of equations is degonerate provided at least one basic variable is 0.

Notes on "A Degenerate Optimal Solution"

A Degenerate Optimal Solution

Tableau (1) indicates the problem being solved is Maximize $X=3X_1+7X_2$ $X_1+5X_2 \leq 19$ $X_1-X_2 \leq 1$ $X_1 \geq 0$ $X_1 \geq 0$ $X_1 \geq 0$ $X_1 \geq 0$

From Tableau 3, 75 will enter.

$$75$$
 -column 6 -ratios

 71 | $-\frac{57}{5/7}$ | 74 | $6/9$ = 0 , smellest, so 74 exits

 71 | $\frac{3}{7/7}$