Ano Escolar

Resolução de Problemas de Otimização utilizando Programação em Lógica com Restrições

João Barbosa and José Martins

Faculdade de Engenharia da Universidade do Porto Rua Roberto Frias, sn. 4200-465 Porto, Portugal

Resumo Deve contextualizar e resumir o trabalho, salientando o objetivo, o método utilizado e fazendo referência aos principais resultados e à principal conclusão que esses resultados permitem obter. . . .

Keywords: computational geometry, graph theory, Hamilton cycles

1 Introdução

Descrição dos objetivos e motivação do trabalho, referência sucinta ao problema em análise (idealmente, referência a outros trabalhos sobre o mesmo problema e sua abordagem), e descrição sucinta da estrutura do resto do artigo.

2 Descrição do Problema

Descrever com detalhe o problema de otimização ou decisão em análise.

3 Abordagem

Descrever com detalhe o problema de otimização ou decisão em análise.

3.1 Variáveis de Decisão

Descrever as variáveis de decisão e os seus domínios.

3.2 Restrições

Descrever as restrições rígidas e flexíveis do problema e a sua implementação utilizando o SICStus Prolog.

3.3 Função de Avaliação

Descrever, quando for o caso, a forma de avaliar a solução obtida e a sua implementação utilizando o SICStus Prolog.

3.4 Estratégia de Pesquisa

Descrever a estratégia de etiquetagem (labeling) utilizada ou implementada, nomeadamente no que diz respeito à ordenação de variáveis e valores.

4 Visualização da Solução

Explicar os predicados que permitem visualizar a solução em modo de texto

5 Resultados

Demonstrar exemplos de aplicação em instâncias do problema com diferentes complexidades e analisar os resultados obtidos. Devem ser utilizadas formas convenientes para apresentação dos resultados (tabelas e/ou gráficos).

6 Conclusões e Trabalho Futuro

Que conclusões retira deste projeto? O que mostram os resultados obtidos? Quais as vantagens e limitações da solução proposta? Como poderia melhorar o trabalho desenvolvido?

Figura 1. This is the caption of the figure displaying a white eagle and a white horse on a snow field

Tabela 1. This is the example table taken out of The TeXbook, p. 246

Year	World population
8000 B.C.	5,000,000
50 A.D.	200,000,000
1650 A.D.	500,000,000
1945 A.D.	2,300,000,000
1980 A.D.	4,400,000,000

$$\dot{x} = JH'(x)
x(0) = x(T)$$
(1)

Proposition 1. Assume H'(0) = 0 and H(0) = 0. Set:

$$\delta := \liminf_{x \to 0} 2N(x) \|x\|^{-2} . \tag{2}$$

If $\gamma < -\lambda < \delta$, the solution \overline{u} is non-zero:

$$\overline{x}(t) \neq 0 \quad \forall t \ .$$
 (3)

Notes and Comments. The results in this section are a refined version of [?]; the minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (??), one may think of a one-parameter family x_T , $T \in (2\pi\omega^{-1}, 2\pi b_{\infty}^{-1})$ of periodic solutions, $x_T(0) = x_T(T)$, with x_T going away to infinity when $T \to 2\pi\omega^{-1}$, which is the period of the linearized system at 0.

Referências

- 1. SWI-Prolog, http://www.swi-prolog.org
- 2. SICStus-Prolog, https://sicstus.sics.se

Anexo

Código fonte

Bla Bla