به نام خدا

تمرين پنجم

ترم بهار ۲۰-۱۴۰۱

دانشکدهی مهندسی برق

دانشگاه صنعتی شریف

استاد: دکتر محمدحسین یاسائی میبدی

مهلت تحویل: جمعه ۱۲ خرداد ۱۴۰۲، ساعت ۲۳:۵۹

(*) مسائلی که با ستاره مشخّص شدهاند امتیازی هستند و حل کردن آنها نمره ی امتیازی خواهد داشت!

۱ خواص زیرگرادیان

. برای هر تابع اکیدا محدب f و هر دو بردار دلخواه $\mathbf x$ و $\mathbf x$ ثابت کنید $\mathbf x$ شرط زیر با هم معادلند

- $\mathbf{y} \in \partial f(\mathbf{x})$.
- $\mathbf{x} \in \partial f^*(\mathbf{y})$.
- . مقدار بیشینهی تابع $\mathbf{z}=\mathbf{x}$ در $\mathbf{z}=\mathbf{z}$ است.
 - $f(\mathbf{x}) + f^*(\mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$.

۲ مشتق و زیرگرادیان

تابع محدّب و کران دار f را در نظر بگیرید. در کلاس ثابت کردیم اگر تابع f در نقطه x مشتق پذیر باشد، بردار ∇f تنها عضو مجموعه ی زیرگرادیان تابع f در نقطه x است. حال عکس این گزاره را ثابت کنید. یعنی ثابت کنید اگر مجموعه ی زیرگرادیان تابع f در نقطه x عضوی باشد، تابع f در نقطه x مشتق پذیر و مشتق آن همان تک عضو مجموعه ی زیرگرادیان است.

٣ توابع قوياً محدّب

. تابع $g(\mathbf{x}) = f(\mathbf{x}) - \frac{\alpha}{r} \|\mathbf{x}\|^r$ است، اگر و تنها اگر تابع $g(\mathbf{x}) = g(\mathbf{x}) - \frac{\alpha}{r} \|\mathbf{x}\|^r$ محدّب باشد.

در این سوال میخواهیم یک شرط لازم و کافی برای قویاً محدّب بودن تابع f روی یک مجموعه ی محدّب \mathcal{C} بر حسب بردارهای زیرگرادیان بیان کنیم. ثابت کنید شرط لازم و کافی برای اینکه تابع محدب $f:\mathbb{R}^n o \mathbb{R}$ قویاً محدب با ضریب α روی محدّب $f:\mathbb{R}^n o \mathbb{R}$ قویاً محدب با ضریب α روی مجموعه ی محدّب α باشد، این است که به ازای هر دو بردار α و به ازای هر α و به ازای هر α باشد، این است که به ازای هر دو بردار α و به ازای هر α و به ازای هر α باشد، این است که به ازای هر دو بردار α و به ازای هر α و به ازای هر α باشد، این است که به ازای هر دو بردار α و به ازای هر α و به ازای هر α

$$f(\mathbf{x}_{r}) \geq f(\mathbf{x}_{1}) + \langle \mathbf{s}, \mathbf{x}_{r} - \mathbf{x}_{1} \rangle + \frac{\alpha}{r} \|\mathbf{x}_{r} - \mathbf{x}_{1}\|^{r}.$$

 $\mathbf{s}_{\mathsf{r}} \in \partial f(\mathbf{x}_{\mathsf{r}})$ یا معادلاً به ازای هر $\mathbf{s}_{\mathsf{r}} \in \partial f(\mathbf{x}_{\mathsf{r}})$

$$\langle \mathbf{s}_{\mathsf{t}} - \mathbf{s}_{\mathsf{t}}, \mathbf{x}_{\mathsf{t}} - \mathbf{x}_{\mathsf{t}} \rangle \ge \alpha \|\mathbf{x}_{\mathsf{t}} - \mathbf{x}_{\mathsf{t}}\|^{\mathsf{t}}.$$

۴ توابع ليپشيتز

می گوییم تابع $\mathbf{u},\mathbf{v}\in \mathbb{R}^n$ داشته باشیم: است اگر به ازای هر L ، $f:\mathbb{R}^n o \mathbb{R}$ داشته باشیم:

$$|f(\mathbf{u}) - f(\mathbf{v})| \le L \|\mathbf{u} - \mathbf{v}\|.$$

 $f:\mathcal{A}\to\mathbb{R}$ حال فرض کنید \mathcal{A} مجموعه ای باز و محدّب باشد و تابع محدّب $f:\mathcal{A}\to\mathbb{R}$ را در نظر بگیرید. ثابت کنید که تابع $\mathbf{v}\in\partial f(\mathbf{w})$ و $\mathbf{v}\in\partial f(\mathbf{w})$ داشته باشیم:

$$\|\mathbf{v}\| \leq L$$
.

۵ فشردهسازی

در محبث فشرده سازی سیگنالها، تعداد بیتهای لازم برای فشرده سازی m متغیر گوسی با واریانسهای تعداد بیتهای لازم برای فشرده سازی m میزان خطای m به طوری که مجموع خطا حداکثر m باشد، توسط مسئله ی بهینه سازی زیر توصیف می شود:

Minimize
$$\sum_{i=1}^{m} \max \left\{ \frac{1}{r} \ln(\frac{\sigma_i^r}{D_i}), \circ \right\}$$
 subject to:
$$\sum_{i=1}^{m} D_i = D$$

- ١٠ نشان دهيد مسالهي فوق مسالهي بهينهسازي محدب است.
- ۲. با استفاده از روش KKT مقادیر بهینه ی $D_1, ..., D_m$ برای این مسئله را به دست آورید. (جواب فرم بسته ندارد اما شکل water-filling

۶ آنتروپی

آنتروپی نسبی بین دو بردار $\mathbf{x},\mathbf{y}\in\mathbb{R}^n_{++}$ به صورت زیر تعریف می شود:

$$D(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{n} x_k \log(\frac{x_k}{y_k}).$$

آنتروپی نسبی، به صورت مشترک نسبت به \mathbf{x} و \mathbf{y} محدّب است. در مساله ی زیر در تلاشیم بردار \mathbf{x} را طوری بیابیم که آنتروپی نسبی آن با بردار داده شده ی \mathbf{y} کمینه شود به طوری که شرطهای تساوی زیر روی \mathbf{x} برقرار باشند:

Minimize
$$D(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{n} x_k \log(\frac{x_k}{y_k})$$

subject to: $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\sum_{k=1}^{n} x_k = 1$

و فرض می کنیم که پارامترهای $\mathbf{y}\in\mathbb{R}^n$ ، $\mathbf{y}\in\mathbb{R}^m$ و $\mathbf{A}\in\mathbb{R}^m$ داده شده هستند. دوگان لاگرانژین این مسئله را یافته و آن را ساده کنید تا به فرم زیر برسید:

Maximize
$$\mathbf{b}^{\top}\mathbf{z} - \log\left(\sum_{k=1}^{n} y_k e^{\mathbf{a}_k^{\top}\mathbf{z}}\right)$$

که در آن منظور از \mathbf{a}_k ، ستون kام ماتریس \mathbf{A} است.

۷ محاسبهی زیرگرادیان

- ه و x=1 تابع $f(x)=\max\{x+\Lambda, \P x, x^{\mathsf{T}}\}$ با دامنه ی $f(x)=\max\{x+\Lambda, \P x, x^{\mathsf{T}}\}$ را در نقاط x=1 و x=1 را محاسبه کنید. x=1
 - . زیرگرادیان تابع $\int f(\mathbf{x}) = \|x\| = \sqrt{\sum_{k=1}^n x_k^{\mathsf{T}}}$ را در مبدأ مختصات بیابید.