Cálculo Numérico (521230)

Test 2 – Tema 3

Fecha: 15-May-02; 17:00-18:00. Duración: 45 minutos

Nombre y apellidos	
Matrícula	
Especialidad o carrera	

1. Sean

$$\mathbf{A} = \begin{bmatrix} 4 & 1 & 0 & \cdots & \cdots & 0 & 1 \\ 1 & 4 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 4 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 & 4 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 & 4 & 1 \\ 1 & 0 & \cdots & \cdots & 0 & 1 & 4 \end{bmatrix} \in \mathbb{R}^{n \times n} \quad \mathbf{y} \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ \vdots \\ 1 \\ 0 \end{bmatrix} \in \mathbb{R}^{n}.$$

Haga un programa MATLAB que genere la matriz anterior para n=20 como matriz sparse y que resuelva mediante el **método del gradiente conjugado** el sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$. Indique el nombre del archivo donde ha guardado el programa en el diskette y los valores obtenidos de las componentes x_1 y x_2 de la solución:

Archivo	
x_1	
x_2	

[10 PTS.]

2. La temperatura de una solución en la que se produce una reacción química crece inicialmente para luego decaer. Bajo ciertas condiciones esto puede modelarse mediante una expresión de la forma:

$$U(t) = U_0 + at - bt^2,$$

donde U(t) es la temperatura en el instante t, U_0 la temperatura antes de iniciarse la reacción, y a y b son parámetros desconocidos.

Se dispone de la siguiente tabla de valores medidos de la temperatura U:

t (min)	0.5	1.0	1.5	2.0	2.5	3.0
<i>U</i> (°C)	22.9	40.2	49.4	53.5	51.5	45.3

Determine los valores de los parámetros del modelo, el instante $t_{\rm max}$ en el que la solución alcanza su temperatura máxima y el valor máximo alcanzado de la temperatura $U_{\rm max}$.

Indique el nombre del archivo donde ha guardado el programa en el diskette y los resultados obtenidos:

Archivo	
U_0	
a	
b	
$t_{ m max}$	
$U_{\rm max}$	

[15 PTS.]

3. (a) Haga un programa MATLAB que dibuje una curva suave que pase por los siguientes puntos:

	-0.5								
y	0.4	0.0	0.2	0.8	1.0	0.8	0.2	0.0	0.4

Indique el nombre del archivo donde ha guardado el programa en el diskette:

Archivo

(b) Indique si cada una de las siguientes afirmaciones es verdadera o falsa:

Afirmación	Verdadera	Falsa
No es posible usar splines para interpolar esta tabla, porque el primer y el último punto no coinciden.		
Una curva suave no puede dibujarse con splines porque las funciones splines tienen derivadas terceras discontinuas.		
Para graficar una curva es mejor usar interpolación por splines que interpolación polinomial, pues así se evita el riesgo de oscilaciones de esta última.		

[10 PTS.]

RAD/RRA/MSC