

Testing

23, Headington Drive,
Cambridge.
CB1 9HE
Tel: 01954 251974 (test site)
or: 01223 241140 (accounts)
Fax: 01954 251907
web: www.dbtechnology.co.uk
email: mail@dbtechnology.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: TWENTY PENCE TEST SITE

> Twenty Pence Road, Cottenham, Cambridge U.K. **CB24 8PS**

> > on

Sepura PLC

SRG3500

dated

22nd June 2012

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	06/07/12		Initial release		
			_		

Based on report template: v090319

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	2 of 100

Equipment Under Test (EUT):	SRG3500
Test Commissioned by:	Sepura PLC Radio House St Andrews Road Cambridge Cambridgeshire CB4 1GR
Representative:	Bob Allen
Test Started:	10th May 2012
Test Completed:	20th June 2012
Test Engineer:	Dave Smith
Date of Report:	22nd June 2012
Written by: Dave Smith	Checked by: Derek Barlow
Signature: J. A. Switt	Signature:
Date: 22nd June 2012	Date: 6th July 2012

dB Technology can only report on the specific unit(s) tested at its site. The responsibility for extrapolating this data to a product line lies solely with the manufacturer.

Test Standards Applied

Part 90 of CFR47	Private Land Mobile Radio Services

CFR 47 Part 15 Code of Federal Regulations: Pt 15 Subpart B- Radio Frequency Devices - Unintentional Radiators

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
1 /	Test No:	T4354	Test Report	Page:	3 of 100

Emissions Test Results Summary

Part 90					PASS
Test	Port	Method	Limit	PASS/FAIL	Notes
Output		90.205	90.205(h)	No	#1
Power				Limit	
Radiated					
Output	antenna	90.205	90.205(h)	No	#1
Power		2.1046		Limit	
Conducted					
Types of	antenna	90.207	Specified by		
Emissions		2.1047	manufacturer		
Bandwidth	antenna	90.209	90.209(b)(5)	PASS	#2
		2.1049			
Emissions		90.210	90.221(d)	PASS	#3
Masks		2.1051			
Radiated					
Emissions	antenna	90.210	90.221(d)	PASS	#3
Masks		2.1051			
Conducted					
Frequency	antenna	90.213	90.213	PASS	
Stability		2.1055			
Frequency	antenna	90.214	90.214	PASS	
Transient					
Behaviour					
Adjacent		90.221	90.221(b)	PASS	
Channel					
Power					

specs_canadav111211

CFR 47 Part 15 PASS

Test	Port	Method	Limit	PASS/FAIL	Notes
Conducted Emissions	ac power	ANSI C63.4:2003	FCC_B	PASS	
Radiated Emissions		ANSI C63.4:2003	FCC_B	PASS	

specs_fccv100412

This Report shows that the EUT met all of the requirements for the tests performed - as shown above.

^{#1} There is no specific limit on output power.

^{#2} The additional note 6 of FCC Waiver 11-63 was applied which allows a bandwidth of up to 22kHz providing the additional Adjacent Channel Power requirements are met.

^{#3} The additional note 5 of FCC Waiver 11-63 was applied which only stipulates limits 75kHz from the carrier providing the additional Adjacent Channel Power requirements are met.

Report No: R3112 Issue No: 1 Test No: T4354

FCC ID: XX6-SRG3500XB

Test Report

Page:

4 of 100

Contents

1 E	EUT Details	. 6
	General	
1.2	Modifications to EUT and Peripherals	. 7
	EUT Operating Modes	
	Figure 1 Configuration 1: EUT and Peripherals	
	Figure 2 Configuration 2 - DMU: EUT and Peripherals	
	Photograph 1 SRG3500: Connected to Agilent Analyser	10
	Photograph 2 Configuration 1: Radiated Emissions - Front	11
	Photograph 3 Configuration 1: Radiated Emissions - Back	11
	Photograph 4 DMU: Radiated Emissions - Front	12
	Photograph 5 DMU: Radiated Emissions - Back	12
2 T	est Equipment	13
	Test Methods	
3.1	Antenna Conducted Carrier Power	14
	Antenna Conducted Transmitter Unwanted Emissions	
3.3	Antenna Conducted Occupied Bandwidth	
3.4	Antenna Conducted Adjacent Channel Power	14
3.5	Frequency Stability	14
3.6	Transient Frequency Behaviour	15
3.7	Radiated Transmitter Emissions (Substitution Method)	16
3.8	Receiver Radiated Emissions	16
3.9	Conducted Emissions - ac power	17
4 1	Test Results	17
	Conducted Antenna Output Power	
	Conducted Antenna Occupied Bandwidth	
4.3	Frequency Stability - DMO Mode - Absolute Frequency Measurements	
4.4	Frequency Stability - DMO Mode - Deviations from Nominal Volt/Temp - ppm	
4.5	Frequency Stability - TMO Mode - Frequency Error Hz	
4.6	Frequency Stability - TMO Mode - Deviation from nominal volt/temp - ppm	
4.7	Conducted Emission Antenna Adjacent Channel Power	
4.8	Transmitter Transient Frequency Behaviour - Results	
4.9	Conducted Emission Antenna Spurious Emissions	
4.10	·	
4.11		
4.12		
4.13		
4.14	, g	
4.15	·	
4.16	·	
4.17		
4.18	· · · · · · · · · · · · · · · · · · ·	
4.19		
4.20		
4.21		
	PLOT 1 Conducted Antenna Output Power (817MHz)	
	PLOT 2 Conducted Antenna Output Power (824MHz)	
	PLOT 3 Conducted Antenna Output Power (862MHz)	
	PLOT 4 Conducted Antenna Output Power (869MHz)	
	PLOT 5 Occupied Bandwidth (817MHz)	
	PLOT 6 Occupied Bandwidth (824MHz)	
	PLOT 7 Occupied Bandwidth (862MHz)	
	PLOT 8 Occupied Bandwidth (869MHz)	
	PLOT 9 Adjacent Channel Power (817MHz)	
	PLOT 10 Adjacent Channel Power (824MHz)	
	PLOT 10 Adjacent Channel Power (824MHz)	
	PLOT 11 Adjacent Channel Power (802MHz) PLOT 12 Adjacent Channel Power (869MHz)	
	1 LO1 12 Aujuvem Channet I Ower (007191114)	50

A	Report No: Issue No:	R3112 1
(dB)	Test No:	T4354

FCC ID: XX6-SRG3500XB

Test Report Page: 5 of 100

PLOT 13	Transient Frequency - 817MHz - On	
PLOT 14	Transient Frequency - 824MHz - On	. 51
PLOT 15	Transient Frequency - 862MHz - On	
PLOT 16	Transient Frequency - 869MHz - On	
PLOT 17	Transient Frequency - 817MHz - Off	. 53
PLOT 18	Transient Frequency - 824MHz - Off	
PLOT 19	Transient Frequency - 862MHz - Off	
PLOT 20	Transient Frequency - 869MHz - Off	
PLOT 21	Antenna Conducted Spur Emissions - 817 to 824 Band - 9kHz to 500MHz	. 55
PLOT 22	Antenna Conducted Spur Emissions - 862 to 869 Band - 9kHz to 500MHz	. 56
PLOT 23	Antenna Conducted Spur Emissions - 817 to 824 Band - 500MHz to 1GHz	. 57
PLOT 24	Antenna Conducted Spur Emissions - 862 to 869 Band - 500MHz to 1GHz	. 58
PLOT 25	Antenna Conducted Spur Emissions - 817 to 824 Band - 1GHz to 2GHz	. 59
PLOT 26	Antenna Conducted Spur Emissions - 862 to 869 Band - 1GHz to 2GHz	60
PLOT 27	Antenna Conducted Spur Emissions - 817 to 824 Band - 2GHz to 10GHz	61
PLOT 28	Antenna Conducted Spur Emissions - 862 to 869 Band - 2GHz to 10GHz	62
PLOT 29	Radiated Emissions - Config 1 - 817 - 824 band Tx - 25MHz to 500MHz	63
PLOT 30	Radiated Emissions - Config 1 - 862 - 869 band Tx - 25MHz to 500MHz	64
PLOT 31	Radiated Emissions - Config 1 - 817 - 824 band Tx - 250MHz to 1GHz	65
PLOT 32	Radiated Emissions - Config 1 - 862 - 869 band Tx - 250MHz to 1GHz	
PLOT 33	Radiated Emissions - Config 1 - 817 - 824 band Tx - 500MHz to 1GHz - with notch filter	
PLOT 34	Radiated Emissions - Config 1 - 862 - 869 band Tx - 500MHz to 1GHz - with notch filter	
PLOT 35	Radiated Emissions - Config 1 - 817 - 824 band Tx - 1GHz to 2GHz	
PLOT 36	Radiated Emissions - Config 1 - 862 - 869 band Tx - 1GHz to 2GHz	
PLOT 37	Radiated Emissions - Config 1 - 817 - 824 band Tx- 2GHz to 6GHz	
PLOT 38	Radiated Emissions - Config 1 - 862 - 869 band Tx- 2GHz to 6GHz	
PLOT 39	Radiated Emissions - Config 1 - 817 - 824 band Tx- 5GHz to 10GHz	
PLOT 40	Radiated Emissions - Config 1 - 862 - 869 band Tx- 5GHz to 10GHz	
PLOT 41	Radiated Emissions - DMU - 817 - 824 band Tx - 25MHz to 500MHz	
PLOT 42	Radiated Emissions - DMU - 862 - 869 band Tx - 25MHz to 500MHz	
PLOT 43	Radiated Emissions - DMU - 817 - 824 band Tx - 250MHz to 1GHz	
PLOT 44	Radiated Emissions - DMU - 862 - 869 band Tx - 250MHz to 1GHz	
PLOT 45	Radiated Emissions - DMU - 817 - 824 band Tx - 500MHz to 1GHz - with notch filter	
PLOT 46	Radiated Emissions - DMU - 862 - 869 band Tx - 500MHz to 1GHz - with notch filter	
PLOT 47	Radiated Emissions - DMU - 817 - 824 band Tx - 1GHz to 2GHz	
PLOT 48	Radiated Emissions - DMU - 862 - 869 band Tx - 1GHz to 2GHz	
PLOT 49	Radiated Emissions - DMU - 817 - 824 band Tx- 2GHz to 6GHz	
PLOT 50	Radiated Emissions - DMU - 862 - 869 band Tx- 2GHz to 6GHz	
PLOT 51	Radiated Emissions - DMU - 817 - 824 band Tx- 5GHz to 10GHz	
PLOT 52	Radiated Emissions - DMU - 862 - 869 band Tx- 5GHz to 10GHz	
PLOT 53	Radiated Emissions - Config 1 - Rx - 25MHz to 275MHz	
PLOT 54	Radiated Emissions - Config 1 - Rx - 250MHz to 1GHz	
PLOT 55	Radiated Emissions - Config 1 - Rx - 1GHz to 2GHz	
PLOT 56	Radiated Emissions - Config 1 - Rx - 2GHz to 10GHz	
PLOT 57	Radiated Emissions - DMU - Rx - 25MHz to 275MHz	
PLOT 58	Radiated Emissions - DMU - Rx - 250MHz to 1GHz	
PLOT 59	Radiated Emissions - DMU - Rx - 1GHz to 2GHz	
PLOT 60	Radiated Emissions - DMU - Rx - 1GHz to 2GHz Radiated Emissions - DMU - Rx - 2GHz to 10GHz	
PLOT 61	Conducted Emissions - Transmit Mode (817MHz) - Neutral Line	
PLOT 62	Conducted Emissions - Transmit Mode (817MHz) - Iveural Line Conducted Emissions - Transmit Mode (817MHz) - Live Line	
PLOT 63	Conducted Emissions - Transmit Mode (817MHz) - Live Line	
PLOT 64	Conducted Emissions - Transmit Mode (862MHz) - Live Line Conducted Emissions - Transmit Mode (862MHz) - Neutral Line	
PLOT 65	Conducted Emissions - Transmit Mode (802MHz) - Neutral Line Conducted Emissions - Receive Mode Neutral Line	
PLOT 66	Conducted Emissions - Receive Mode - Live Line Conducted Emissions - Receive Mode - Live Line	
1 LO1 00	Commercia Emissions - Receive Mode - Live Line	100

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	6 of 100

1 EUT Details

1.1 General

The EUT was a TETRA Voice + Data Mobile Station.

The transmitter can operate over the following frequency bands:

817MHz to 824MHz in Trunked Mode Operation (TMO mode) 862MHz to 869MHz in Direct Mode Operation (DMO mode)

The receiver can operate over the following frequency bands:

817MHz to 824MHz

862MHz to 869MHz

Measurements were made at the top and bottom of the appropriate frequency range:

Bottom: 817 MHz Top: 824 MHz

Bottom: 862 MHz Top: 869 MHz

The nominal output power is 40dBm (10W).

The unit is normally powered from a lead acid vehicle battery with nominal voltage of 13.2V.

The product is intended to comply with the FCC part 90 requirements using the "Tetra Waiver" as described in FCC 11-63.

Radiated field strength tests were performed at the dB Technology Test Site Registered with the FCC: Registration number: 90528.

Unless otherwise stated, tests were performed with nominal power supply voltage.

The device can be used with a variety of peripherals and therefore radiated tests were performed in two separate configurations. Details of the configurations are given in the tables below.

	Description	P/N	Gain
Configuration 1	Tetra		
Configuration 2/DMU	Tetra for DMU		

dB)	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	7 of 100

1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
0	Original sample as supplied.	

1.3 EUT Operating Modes

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	Transmitting on selected channel.
2	Receiving on selected channel.

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	8 of 100

List of Equipment for Configuration 1:

Item	Manufacturer	Model	Description	Serial No:	Notes
1 2 3 4 5 6 7 8 9	Sepura Kingshill	SRG3500 300-00390 300 00668 300 00295 300 00294 300 00217 300 00061 300 00062 300 00719 18V10CA	TETRA Mobile Station Antenna TETRA Handset Based Console Hands Free Kit Switch Hands Free Kit Mic Apps Interface Unit Handset Fist Mic Speaker Bench Power Supply	566	

Figure 1 Configuration 1: EUT and Peripherals

Iss	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	9 of 100

List of Equipment for Configuration 2 - Desk Mount Unit (DMU) :

Item	Manufacturer	Model	Description	Serial No:	Notes
1 2 3 4 5 6 7 8	Sepura Sepura Sepura Sepura Sepura Sepura Sepura PowerSolve Sepura	SRG3500 300-00993 300 00073 300 00074 300 00771 300 00076 300 00061 PSE65-12/SEY 300 00588	TETRA Mobile Station Antenna Desk Mount Unit Gooseneck Mic IP 54 Colour Console Foot Switch Handset AC-DC supply Virtual Console cable	C2224642	

Figure 2 Configuration 2 - DMU: EUT and Peripherals

10 of 100

Photograph 1 SRG3500: Connected to Agilent Analyser

	Report No: Issue No:	R3112 1
dB	Test No:	T4354

FCC ID: XX6-SRG3500XB

Test Report Page: 11 of 100

Photograph 2 Configuration 1: Radiated Emissions - Front

Photograph 3 Configuration 1: Radiated Emissions - Back

FCC ID: XX6-SRG3500XB

Test Report Page:

12 of 100

	- y.	

Photograph 4 DMU: Radiated Emissions - Front

Photograph 5 DMU: Radiated Emissions - Back

₩ dB	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	13 of 100

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

	Details	Serial Number	Cal Date	Cal Interva
A19 A23 A24 A30 A5 L1 PM6 PRE3 PS10 R1 R4 R8 R9 RFF15 RFF16	EMCO 3115 DR Guide (1-18GHz) EMCO 3115 DR Guide (1-18GHz) Chase X-wing Bilog CBL6144 26MHz-3GHz Schwarzbeck MiniBicon (30MHz to 1GHz) Chase Bilog CBL6111A EMCO 3825/2 LISN Marconi 6960B RF Power Meter dB Tech 100M-20G 36dB pre-amp Marconi 6910 RF Power Sensor (-30dBm / + 20dBm) 10MHz to 20GHz CHASE LHR 7000 R&S ESVS10 Agilent E7405A Spectrum Analyser Agilent E7405A Spectrum Analyser Band Pass Filter 1GHz to 2GHz 500MHz to 1GHz Notch Filter	2431 9507-4525 27590 9115-180 1760 1358 236923/003 03 5009 1056 843744/002 MY44212494 MY45110758 15 FF204-3	Date 23/01/2012 31/01/2012 18/11/2010 31/01/2012 16/02/2012 20/12/2011 08/01/2012 20/12/2011 31/01/2012 16/12/2011 19/09/2011 21/11/2011 08/02/2012 08/02/2012	1 year
RFF17 RFF22 SG16 SG9 SEP1 TTS	Low Pass RF Filter 550MHz High Pass Filter - 1.35GHz (10GHz) MicroTronics HPM13017 Marconi 6203 Microwave Test Set (10MHz - 26.5GHz) HP 8648C 9kHz-3.2GHz Signal Generator R&S FSU Spectrum Analyser IFR 2968 Tetra radio Test Set	17 033 236252/025 3847A05254 200088 296501/107	08/02/2012 20/12/2011 08/02/2012 08/02/2012 02/04/2009 11/11/2011	1 year 1 year 1 year 3 year 1 year

The Tetra Test Set is owned by Sepura.

The calibration of the signal generator was not critical because its output frequency, level and modulation were measured with calibrated equipment during each test.

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	14 of 100

3 Test Methods

3.1 Antenna Conducted Carrier Power

The antenna output is connected to a spectrum analyser via a suitable PAD. The bandwidth on the spectrum analyser is set to greater than the EUT occupied bandwidth. A peak measurement is recorded. Additional measurements are made with antenna output connected to a power meter providing average measurements.

3.2 Antenna Conducted Transmitter Unwanted Emissions

Measurements are made with the antenna output connected to a spectrum analyser via a suitable PAD. Sweeps are made over the specified frequency ranges . The limit is set relative to the measured carrier power. A peak detector is used.

3.3 Antenna Conducted Occupied Bandwidth

Measurements are made with the antenna output connected to a spectrum analyser via a suitable PAD. Sweeps are made with a 300Hz Resolution Bandwidth and a 1kHz Video Bandwidth. A peak detector is used. Markers are used to determine the 99% power bandwidth.

3.4 Antenna Conducted Adjacent Channel Power

Measurements are made with the antenna output connected to an R&S FSU Spectrum Analyser via a suitable PAD. The Analyser is set to make adjacent channel power measurements using the pre-configured settings for Tetra with 25kHz channel spacing.

3.5 Frequency Stability

The EUT is placed in an environmental chamber. The temperature inside the chamber is set to the required level and allowed to stabilise.

For DMO mode the antenna output is connected to a spectrum analyser via a suitable PAD. The EUT is set to transmit with constant carrier (at a frequency 2.25kHz above channel centre frequency). The frequency is measured using the frequency counter function of the spectrum analyser.

For TMO mode the antenna output is connected to a Tetra Test Set. The EUT is set to transmit using normal burst operation. the frequency error, as indicated by the Tetra Test Set, is recorded.

Measurements are made at the specified temperature and over the required voltage supply range of the EUT.

7	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	15 of 100

3.6 Transient Frequency Behaviour

The test equipment was set up as shown above.

The spectrum analyser was set to 0Hz span with its inbuilt FM demodulation function activated.

Initially only the EUT was set to transmit an unmodulated signal and the centre frequency of the analyser adjusted to give 0Hz FM deviation.

The EUT transmitter was then switched off and the signal generator set to provide a carrier only output. The frequency of the signal generator was adjusted to again give 0Hz FM deviation on the spectrum analyser.

The signal generator FM modulation was then switched on and adjusted to give 25kHz FM deviation on the spectrum analyser.

The spectrum analyser was then set to trigger only on video output from the receiver. The directional coupler was used to feed an attenuated portion of the EUT transmitter into the receiver. The receiver was tuned to the transmit frequency and so produced a change on its video output when the transmitter was switched on and off. This signal was used to trigger the spectrum analyser.

FM deviation data was recorded from the spectrum analyser for both carrier switch on and switch off and at all three test frequencies.

dB)	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	16 of 100

3.7 Radiated Transmitter Emissions (Substitution Method)

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables were manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured using a substitution method. Maximised emission readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

The EUT is then replaced with a calibrated reference antenna fed from a signal generator. The level fed into the reference antenna is measured with a power meter. Measurements are made to determine the power output of the signal generator required to give the same emission levels as were observed from the EUT.

The radiated power from the EUT is calculated as:

Signal Level + Gain of + Radiated Level - Radiated Level fed into Reference Antenna + Radiated Level - Radia

For example, assuming following measurements:

Signal Level fed into Reference Antenna = -14.3dBm
Gain of Reference Antenna = 7.1 dBi
Radiated Level from EUT (i.e. Level at Measuring Receiver) = 37 dBuV
Radiated Level from Reference Antenna (i.e. Level at Measuring Receiver) = 61.5 dBuV

Then the Radiated Power from the EUT = -14.3 + 7.1 + 37 - 61.5 dBm (isotropic) = -31.7 dBm (isotropic)

3.8 Receiver Radiated Emissions

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables were manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using a CISPR16 quasi-peak receiver. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

Tabulated results show levels based on the following calculation:

Field Strength (dBuV) = receiver reading (dBuV) + CF (dB/m)

CF is the correction factor for the antenna and cable.

For example:

at 114MHz receiver reading was 17.9 dBuV, combined correction factor = 13.1 (dB/m).

Total field strength = 17.9 + 13.1 = 31.0 dBuV/m.

dB)	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	17 of 100

3.9 Conducted Emissions - ac power

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUTs and peripheral equipment are normally placed on a 0.8m high non-conducting bench, positioned 0.4m from one of the metallic walls of a screened room. Floor standing EUTs are normally placed 0.1m above the metallic floor of the screened room. Mains leads are bundled so as not to exceed 1m

The EUT is powered using a 50ohm/50uH Line Impedance Stabilisation Network (LISN). Peripherals are powered using a second a 50ohm/50uH LISN. These LISNs are bonded to the screened room floor.

With the correct supply voltage applied to the EUT scans are performed on both the live and neutral line outputs of the LISN using quasi-peak detection over the specified frequency range. The results of these scans are shown in the plots section at the end of the report.

Significant emissions identified by the scans are measured and the results tabulated. The table of results is shown in the conducted emissions results section.

Final Level = Receiver Reading + Combined Cable & Attenuator Correction Factor (dBuV) (dBuV) (dB)

Example:

@ 191kHz Final Level = 45.8 + 10.0 = 55.8 dBuV

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

7	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	18 of 100

4.1 Conducted Antenna Output Power

Factor Set 1: Factor Set 2: Factor Set 3:

Test Equipment: R9 PS10 PM6									
Conducted	Emissions (Signal)								
Company	Sepura PLC		Product: SRG3500						
Date:	06/06/2012		Test Eng: Dave Smith						
Ports: Test:	antenna		00 200/h\/5\						
Ports:	90.209	using limits of	90.209(b)(5)						
Test:		using limits of							
Notes		C	omments and Observations						
	Spectrum anla	nyser results usir	ng a peak detector are shown in plots 1 to 4.						
	Measurements were also made using a power meter with an average detector.								
	Measurement	Measurements were made with continuous modulation.							
	Taking into account the loss of the cable and attenuators the following measurements were made:								
	Channel	Peak dBm	Average dBm						
	817 MHz	40.9	38.02						
	824 MHz	41.0	38.08						
	862 MHz	40.6	37.82						
	869 MHz	41.0	38.13						

dB)	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	19 of 100

4.2 Conducted Antenna Occupied Bandwidth

Factor Set 1:
Factor Set 2: -- -Factor Set 3: -- -Test Equipment: R9

Conducted Emissions (Signal)

Conaucte	a Emissions (Signai)		
Compan	^{ny:} Sepura PLC		Product: SRG3500
Date:	07/06/2012		Test Eng: Dave Smith
Ports:	antenna		
Test:	90.210	using limits of	90.221(d)
Ports:			
Toct.		using limits of	

Test:	using limits of							
Notes	Comments and Observations							
	Measurements were made with continuous modulation applied. Spectrum analyser results are shown in plots 5 to 8. Using the "Bandwidth Power" function of the spectrum analyser, the following measurements were recorded:							
	817MHz 21.03 kHz							
	824MHz 21.05 kHz							
	862MHz 20.89 kHz							
	869MHz 20.73 kHz							
	Limit: Using note 6 in the "Tetra Waiver" (FCC11-63) the limit is 22kHz (providing Adjacent Channel Power requirements are met). PASS							

7	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	20 of 100

4.3 Frequency Stability - DMO Mode - Absolute Frequency Measurements

Factor Set 1:
Factor Set 2: -- -Factor Set 3: -- -Test Equipment: R9

FrequencyStability

Compan	^{y:} Sepura PLC		Product: SRG3500	
Date:	12/06/2012		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.205	using limits of	90.205(h)	
Ports:		-		

Test: using limits of

Notes		Comments and Observations						
	DMO Frequency (as recorded from Spectrum Analyser Frequenct Counter)							
		-	04.2MHz	04004117	٦			
			862MHz	869MHz				
	-30.0° C	10.8V	Channel 862.002442	Channel 869.002687	-			
	-30.0 C	10.8V 13.2V		869.002687	1			
			862.002553					
	-20.0° C	15.6V	862.002586	869.002651	-			
	-20.0 6	10.8V	862.002589	869.002562				
		13.2V	862.002647	869.002527				
	10.000	15.6V	862.002658	869.002467	4			
	-10.0° C	10.8V	862.002342	869.002477				
		13.2V	862.002354	869.002388				
	2.00	15.6V	862.002359	869.002348	4			
	0.0° C	10.8V	862.002345	869.002372				
		13.2V	862.002342	869.002318				
	1000	15.6V	862.002336	869.002320	4			
	10.0° C	10.8V	862.002254	869.002297				
		13.2V	862.002257	869.002309				
		15.6V	862.002259	869.002314	4			
	20.0° C	10.8V	862.002268	869.002240				
		13.2V	862.002248	869.002261	1			
		15.6V	862.002245	869.002275	4			
	30.0° C	10.8V	862.002288	869.002346				
		13.2V	862.002273	869.002325				
		15.6V	862.002265	869.002311	╛			
	40.0° C	10.8V	862.002387	869.002259				
		13.2V	862.002366	869.002288				
		15.6 V	862.002345	869.002312				
	50.0° C	10.8V	862.002517	869.002456	1			
		13.2V	862.002516	869.002470				
		15.6V	862.002500	869.002492				
	55.0° C	10.8V	862.002500	869.002489	7			
		13.2V	862.002519	869.002473				
		15.6V	862.002536	869.002460	1			

See next page for deviation from nominal voltage/temperature.

7	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	21 of 100

Frequency Stability - DMO Mode - Deviations from Nominal Volt/Temp - ppm 4.4

Factor Set 1: Factor Set 2: Factor Set 3: Test Equipment: R9

FrequencyStability

Notes

Compan	^{y:} Sepura PLC		Product: SRG3500	
Date:	12/06/2012		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.205	using limits of	90.205(h)	
Ports:		_		
Test:		using limits of		

Comments and Observations

DMO Frequency deviation from nominal voltage/temperature - ppm

using limits of

		862MHz	869MHz
		Channel	Channel
-30.0° C	10.8V	0.225	0.490
	13.2V	0.354	0.471
	15.6V	0.392	0.449
-20.0° C	10.8V	0.396	0.346
	13.2V	0.463	0.306
	15.6V	0.476	0.237
-10.0° C	10.8V	0.109	0.249
	13.2V	0.123	0.146
	15.6V	0.129	0.100
0.0° C	10.8V	0.113	0.128
	13.2V	0.109	0.066
	15.6V	0.102	0.068
10.0° C	10.8V	0.007	0.041
	13.2V	0.010	0.055
	15.6V	0.013	0.061
20.0° C	10.8V	0.023	-0.024
	13.2V	0.000	0.000
	15.6V	-0.003	0.016
30.0° C	10.8V	0.046	0.098
	13.2V	0.029	0.074
	15.6V	0.020	0.058
40.0° C	10.8V	0.161	-0.002
	13.2V	0.137	0.031
	15.6V	0.113	0.059
50.0° C	10.8V	0.312	0.224
	13.2V	0.311	0.241
	15.6V	0.292	0.266
55.0° C	10.8V	0.292	0.262
	13.2V	0.314	0.244
	15.6 V	0.334	0.229

The part 90 Limit for the 854MHz to 869MHz band is 2.5ppm

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	22 of 100

4.5 Frequency Stability - TMO Mode - Frequency Error Hz

Factor Set 1:
Factor Set 2:
Factor Set 3:
Test Equipment: TTS

FrequencyStability

Notes

Compan	^{y:} Sepura PLC		Product: SRG3500	
Date:	12/06/2012		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.205	using limits of	90.205(h)	
Ports:				
Test:		using limits of		

Comments and Observations

TMO Frequency Error (as recorded from Tetra Test Set) (Hz)
, , ,

		817MHz	824MHz
		Channel	Channel
30.0°C	10.8V	-7.4	0.5
	13.2V	-8.4	0.9
	15.6V	-10.4	0.7
20.0°C	10.8V	-1.2	1.2
	13.2V	-2.2	1.4
	15.6V	-4.7	0.0
10.0°C	10.8V	-8.6	-1.6
	13.2V	-10.0	1.1
	15.6V	-11.3	0.3
0.0° C	10.8V	-7.8	-0.5
	13.2V	-9.3	-0.8
	15.6V	-11.0	-0.6
0.0°C	10.8V	4.5	7.8
	13.2V	4.3	7.0
	15.6V	4.0	6.8
20.0°C	10.8V	2.8	7.3
	13.2V	3.8	6.5
	15.6V	5.1	5.9
30.0°C	10.8V	8.0	18.4
	13.2V	9.1	16.1
	15.6V	8.3	14.6
10.0°C	10.8V	17.0	13.2
	13.2V	17.7	12.7
	15.6V	15.2	14.3
50.0°C	10.8V	12.6	12.7
	13.2V	14.4	13.1
	15.6V	13.3	12.7
55.0°C	10.8V	8.0	12.4
	13.2V	8.3	12.5
	15.6V	10.4	12.2

See next page for deviation in ppm.

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	23 of 100

4.6 Frequency Stability - TMO Mode - Deviation from nominal volt/temp - ppm

Factor Set 1:
Factor Set 2:
Factor Set 3:
Test Equipment: TTS

FrequencyStability

Compan	^{y:} Sepura PLC		Product: SRG3500
Date:	12/06/2012		Test Eng: Dave Smith
Ports:	antenna		
Test:	90.205	using limits of	90.205(h)
Ports:		_	
Test:		usina limits of	

Notes	Comments and Observations							
	TMO Frequ	uency deviation - ppm						
			817MHz	824MHz				
			Channel	Channel				
	-30.0° C	10.8V	-0.014	-0.007				
		13.2V	-0.015	-0.007				
		15.6V	-0.017	-0.007				
	-20.0° C	10.8V	-0.006	-0.006				
		13.2V	-0.007	-0.006				
		15.6V	-0.010	-0.008				
	-10.0° C	10.8V	-0.015	-0.010				
		13.2V	-0.017	-0.007				
		15.6V	-0.018	-0.008				
	0.0° C	10.8V	-0.014	-0.008				
		13.2V	-0.016	-0.009				
		15.6V	-0.018	-0.009				
	10.0° C	10.8V	0.001	0.002				
		13.2V	0.001	0.001				
		15.6V	0.000	0.000				
	20.0° C	10.8V	-0.001	0.001				
		13.2V	0.000	0.000				
		15.6V	0.002	-0.001				
	30.0° C	10.8V	0.005	0.014				
		13.2V	0.006	0.012				
		15.6V	0.006	0.010				
	40.0° C	10.8V	0.016	0.008				
		13.2V	0.017	0.008				
		15.6V	0.014	0.009				
	50.0° C	10.8V	0.011	0.008				
		13.2V	0.013	0.008				
		15.6V	0.012	0.008				
	55.0°C	10.8V	0.005	0.007				
		13.2V	0.006	0.007				
		15.6V	0.008	0.007				

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	24 of 100

4.7 Conducted Emission Antenna Adjacent Channel Power

Factor Set 1:
Factor Set 2: -- -Factor Set 3: -- -Test Equipment: SEP1

ompany:	Sepura PLC			Product:	SRG350	0	
	07/06/2012			Test Eng:	Dave Smi	th	
	antenna						
	90.213	using lin	nits of	90.213			
Ports: Test:		using lin	nits of				
Notes		using iin		ants and Oh	oservations		
Notes			Commi	Zitts and Ok	Jaci vations		
	Using the R& adjacent cha						ts 9 to 12.
	Readings in d	Вс					
				Channel			
		-75kHz	-50kHz	-25kHz	+ 25kHz	+ 50kHz	+ 75kHz
	817MHz	-79.26	-76.60	-65.30	-65.48	-76.42	-79.26
	824MHz	-79.60	-76.28	-63.98	-65.90	-75.97	-79.61
	862MHz	-79.38	-75.52	-63.63	-64.23	-75.46	-79.36
	869MHz	-78.51	-75.59	-62.57	-63.56	-75.61	-78.31
	Limit (dBc)	-65	-65	-55	-55	-65	-65
	Limit shown is the maximum allowed level (dBc) for a product with output power less than 15 W and operating at a frequency above 700MHz (Part 90.221(c)						
	PASS						

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	25 of 100

Transmitter Transient Frequency Behaviour - Results 4.8

Factor Set 1: Factor Set 2: Factor Set 3: Test Equipment: R9 R4 SG9

Test Equi	pment: R9 R4 SG9	,			
	Emissions (Signal)				
Company	["] Sepura PLC			Product:	SRG3500
Date:	06/06/2012			Test Eng:	Dave Smith
Ports: Test:	antenna 90.214	using limits	of	90.214	
Ports:	70.214	using innits	5 UI	70.214	
Test:	_	using limits	of		
Notes			Commen	its and Ob	oservations
		nt of the antenna poined with the out			s fed through a Directional Coupler and erator.
	The spect	rum analyser has	an FM de	modulatio	on function.
	I	•	•		nt carrier output and the ve OHz FM deviation.
	signal gen	arrier only signal output from the e frequency as the EUT. This frequency on the spectrum analyser.			
	The signal	generator was th	nen set to	give 25kl	Hz FM deviation (with 1kHz signal).
	tuned to t		ncy. The	video outp	oupler was fed into a receiver put of this receiver was used to trigger ned on or off.
	The result	s of sweeps capt	ured from	the spect	trum analyser are shown in plots 13 to 20
	I	plots show the EU a 25kHz channel s		-	ets the Transient Frequency Behaviour as shown below:
	t1 t2 t3	Frequency ± 25 kHz ± 12.5 kHz ± 25 kHz	Duration 10 msec 25 msec 10 msec	: :	

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	26 of 100

Conducted Emission Antenna Spurious Emissions 4.9

Factor Set 1: Factor Set 2: ----Factor Set 3: ----

Factor Set		F DEE00		
Test Equip	ment: R9 RFF17 RFF1	15 RFF22		
Conducted	Emissions (Signal)			
Company:	Sepura PLC		Product:	CDC2E00
				SRG3500
Date: Ports:	07/06/2012		Test Eng:	Dave Smith
Test:	antenna 90.213	using limits of	90.213	
Ports:	70.213	using innits of	70.213	
Test:		using limits of		
Notes			ents and Ok	oservations
	Results of sca	ns shown in plots 21	to 28.	
	The limit line	shown on the plots is	at -13dBm.	
	All spurious e	missions were below	this limit	
	7 til spanoas si			
	PASS			

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	27 of 100

4.10 Radiated Emissions - Transmit Carrier ERP - Configuration 1

Factor Set 1: A30_dBi_10A - - -

Factor Set 2: - - - - Factor Set 3: - - - -

Test Equipment: R9 A24 A30 SG16 PM6 PS10

Substitution_Emissions

Compar	^{iy:} Sepura PLC		Product: SRG3500	
Date:	01/06/2012		Test Eng: Dave Smith	
Ports:				
Test:	90.205	using limits of	90.205(h)	
Ports:		_	•	

Test: using limits of

rest	•			u	sing iimi	ts 01								
Op Mode	Mod State		Freq. MHz	Cable Sig Gen Level Cable		Ant Pol	Rec'vr Level EUT dBuV	Sig Gen Level Sub'n Ant dBm	Rec'vr Level Sub'n Ant dBuV	Sub'n Ant Gain dBi	ERP	Limit	Margin dB	Note
1 1 1 1 1 1	0 0 0 0 0 0	1 1 1 1 1	817.000 817.000 824.000 824.000 862.000 862.000 869.000	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	> H > H > H > H	113.1 109.9 113.5 109.8 113.5 106.4 112.9 106.9	-16.5 -16.5 -16.5 -16.6 -16.6 -16.6 -16.6	48.9 48.7 48.6 48.8 47.5 48.0 47.4 48.2	-6.1 -6.1 -6.1 -6.1 -6.2 -6.2	41.6 38.6 42.3 38.4 43.3 35.6 42.6 35.8			
Results Minimum Margin N/A dB PASS/FAIL									dB					

Notes

Configuration 1

The results above are radiated measurements using the substitution method.

There are no specific limits in the standard for this test.

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	28 of 100

4.11 Radiated Emissions - Transmit Carrier ERP - DMU

Factor Set 1: A30_dBi_10A - - -

Factor Set 2: - - - - Factor Set 3: - - - -

Test Equipment: R9 A24 A30 SG16 PM6 PS10

Substitution_Emissions

 Company:
 Sepura PLC
 Product:
 SRG3500

 Date:
 01/06/2012
 Test Eng:
 Dave Smith

 Ports:
 Test:
 90.205
 using limits of
 90.205(h)

 Ports:
 90.205
 90.205(h)
 90.205(h)

Test: using limits of

				Cable	Loss									
Op Mode	Mod State	CF Set	Freq. MHz	Sig Gen Level	Rec'vr Level	Ant Pol	Rec'vr Level	Sig Gen Level	Rec'vr Level	Sub'n Ant	ERP	Limit	Margin	Note
				Cable	Cable		EUT	Sub'n Ant	Sub'n Ant	Gain				
				dBm	dBm		dBuV	dBm	dBuV	dBi	dBm	dBm	dB	
1	0	1	817.000	0.0	0.0	v	116.2	-16.5	48.9	-6.1	44.7			
1	0	1	817.000	0.0	0.0	Н	105.6	-16.5	48.7	-6.1	34.3			
1	0	1	824.000	0.0	0.0	V	115.4	-16.5	48.6	-6.1	44.2			
1	0	1	824.000	0.0	0.0	Н	104.5	-16.5	48.8	-6.1	33.1			
1	0	1	862.000	0.0	0.0	v	115.3	-16.6	47.5	-6.1	45.1			
	0	1	862.000	0.0	0.0	H	103.1	-16.6	47.5	-6.1	32.3			
1	0	1	869.000	0.0	0.0	V	114.5	-16.6	47.4	-6.2	44.2			
1	0	1	869.000	0.0	0.0	Н	103.5	-16.6	48.2	-6.2	32.4			
	Resul	ts		Minimur PASS/F		n			N/A	dB				

Notes

DMU

The results above are radiated measurements using the substitution method.

There are no specific limits in the standard for this test.

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	29 of 100

4.12 Radiated Emissions - Transmit Spur - Config 1 - 806MHz to 824MHz band

Factor Set 1: A19_dbi_11A - - - Factor Set 2: A30_dBi_10A - - -

Factor Set 3: - - - -

Test Equipment: R9 A24 A23 A19 SG16 PM6 PS10 PRE3 RFF15 RFF16 RFF17 RFF22

Substitution_Emissions

Compan	^{ly:} Sepura PLC		Product: SRG3500	
Date:	28/05/2012		Test Eng: Dave Smith	
Ports:				
Test:	90.210	using limits of	90.221(d)	
Ports:				
Test:		using limits of		

			1										
		-				Rec'vr			Sub'n	ERP	Limit	Margin	Note
State	Set	MHz			Pol	Level			Ant				
			Cable	Cable		EUT			Gain				
			dBm	dBm		dBuV	dBm	dBuV	dBi	dBm	dBm	dB	
0	2	272.333	0.0	0.0	V	34.2	-13.6		-4.9	-46.2	-15.4	30.8	#1
0	2	272.333		0.0	Н		-13.6		-4.9	-46.5	-15.4	31.1	#1
0	1	5446.750	0.0	0.0	V	65.3	-17.7	86.0	11.0	-27.4	-15.4	12.0	#1
0	1				H						1		#1
- 1	1				I							' '	#1
0	1	7353.065	0.0	0.0	H	49.4	-18.5	85.8	11.1	-43.9	-15.4	28.5	#1
0	2	274.666	0.0	0.0	v	33.2	-13.6	62.4	-4.7	-47.5	-14.7	32.8	#2
0	2				н								#2
0	1				l v l								#2
0	1	5493.350	0.0		н						I	23.9	#2
Resul	ts		Minimur	n Margii	n			12.0	dB			-	
itosui	.3				•			PASS	40				
	0 0 0 0 0 0 0	O 2 0 1 0 1 0 1 0 2 0 2 0 1	State Set MHz 0 2 272.333 0 2 272.333 0 1 5446.750 0 1 7353.065 0 1 7353.065 0 2 274.666 0 2 274.666 0 1 5493.350 0 1 5493.350 Results	Mod State CF State Freq. MHz Sig Gen Level Cable 0 2 272.333 0.0 0 2 272.333 0.0 0 1 5446.750 0.0 0 1 5446.750 0.0 0 1 7353.065 0.0 0 2 274.666 0.0 0 2 274.666 0.0 0 1 5493.350 0.0 0 1 5493.350 0.0 0 1 5493.350 0.0 Results Minimum	State Set MHz Level Cable Cable Cable Level Cable Cable 0 2 272.333 0.0 0.0 0 2 272.333 0.0 0.0 0 1 5446.750 0.0 0.0 0 1 7353.065 0.0 0.0 0 2 274.666 0.0 0.0 0 2 274.666 0.0 0.0 0 1 5493.350 0.0 0.0 0 1 5493.350 0.0 0.0 0 1 5493.350 0.0 0.0	Mod State CF Set Set Freq. MHz Sig Gen Level Cable Rec'vr Level Cable Ant Pol Cable 0 2 272.333 0.0 0.0 V 0 2 272.333 0.0 0.0 H 0 1 5446.750 0.0 0.0 V 0 1 7353.065 0.0 0.0 V 0 2 274.666 0.0 0.0 V 0 2 274.666 0.0 0.0 V 0 1 5493.350 0.0 0.0 H 0 1 5493.350 0.0 0.0 H 0 1 5493.350 0.0 0.0 H 0 1 5493.350 0.0 0.0 H	Mod State CF State Freq. MHz Sig Gen Level Cable Rec'vr Level Cable Ant Level Cable Rec'vr Level EUT 0 2 272.333 0.0 0.0 V 34.2 0 2 272.333 0.0 0.0 H 35.7 0 1 5446.750 0.0 0.0 V 65.3 0 1 5446.750 0.0 0.0 H 55.4 0 1 7353.065 0.0 0.0 V 52.9 0 1 7353.065 0.0 0.0 V 33.2 0 2 274.666 0.0 0.0 V 33.2 0 1 5493.350 0.0 0.0 V 65.4 0 1 5493.350 0.0 0.0 H 56.8 Results Minimum Margin	Mod State CF Set Freq. MHz Sig Gen Level Cable Cable Rec'vr Level Level Cable Ant Level Level EUT Sig Gen Level Level EUT Sub'n Ant dBm 0 2 272.333 0.0 0.0 V 34.2 -13.6 0 2 272.333 0.0 0.0 H 35.7 -13.6 0 1 5446.750 0.0 0.0 V 65.3 -17.7 0 1 5446.750 0.0 0.0 H 55.4 -17.7 0 1 7353.065 0.0 0.0 V 52.9 -18.5 0 2 274.666 0.0 0.0 V 33.2 -13.6 0 1 5493.350 0.0 0.0 V 65.4 -17.8 0 1 5493.350 0.0 0.0 H 56.8 -17.8 0 1 5493.350 0.0 0.0 H 56.8 -17.8	Mod State CF Set Freq. MHz Sig Gen Level Cable Rec'vr Level Cable Ant dBm Rec'vr Level EUT Sig Gen Level Level Sub'n Ant dBm Rec'vr Level EUT Sub'n Ant dBm Ant dBm Ant dBm Sub'n Ant dBm Ant dBm	Mod State Set Set MHz Level Level Cable Cabl	Mod State Set Set Sig Gen Level Cable Cabl	Mod State CF State Freq. MHz Sig Gen Level Cable Rec'vr Level Cable Ant Level Cable Rec'vr Level Sub'n Ant dBuV Rec'vr Level Sub'n Ant dBuV Sub'n Ant dBuV Sub'n Ant dBuV Sub'n Ant dBuV Level Sub'n Ant dBuV Sub'n Ant dBu	Mod State Set MHz

Notes

Results of prescans shown in plots 29 to 40.

Configuration 1. 3m test distance. #1: Tx @ 817MHz, #2: Tx @ 824MHz Lmits set at -13dBm.

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	30 of 100

4.13 Radiated Emissions - Transmit Spur - Config 1 - 851MHz to 869MHz band

Factor Set 1: A19_dbi_11A - - -

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R9 A24 A23 A19 SG16 PM6 PS10 PRE3 RFF15 RFF16 RFF17 RFF22

Substitution Emissions

Substitution	I_LITTI33IUTI3		
Company	Sepura PLC		Product: SRG3500
Date:	28/05/2012		Test Eng: Dave Smith
Ports:			
Test:	90.210	using limits of	90.221(d)
Ports:			
Test:		usina limits of	

				Cable	loss									
Op Mode	Mod State	CF Set	Freq. MHz	Sig Gen Level	Rec'vr Level	Ant Pol	Rec'vr Level	Sig Gen Level	Rec'vr Level	Sub'n Ant	ERP	Limit	Margin	Note
				Cable dBm	Cable dBm		EUT dBuV	Sub'n Ant dBm	Sub'n Ant dBuV	Gain dBi	dBm	dBm	dB	
1	0	1	2586.029	0.0	0.0	v	63.2	-16.9	89.1	9.9	-32.9	-13.7	19.2	#1
1	0	1	2586.029	0.0	0.0	Н	66.1	-16.9	90.1	9.9	-31.0	-13.7	17.3	#1
1	0	1	2606.988	0.0	0.0	v	59.5	-16.9	89.5	9.9	-37.0	-14.4	22.6	#2
1 1	0	1	2606.988	0.0	0.0 0.0	H V	67.5 64.1	-16.9	90.4 89.0	9.9 11.2	-29.9 -31.1	-14.4 -14.4	15.5 16.7	#2
	0	1	4634.600 4634.600	0.0	0.0	l v l H	51.6	-17.4 -17.4	90.8	11.2	-31.1 -45.4	-14.4	31.0	#2 #2
'	0	1	5793.369	0.0	0.0	''	55.9	-17.7	86.3	11.7	-36.5	-14.4	22.1	#2
1	0	1	5793.369	0.0	0.0	H	50.9	-17.7	88.3	11.7	-43.4	-14.4	29.0	#2
1	0	1	8110.838	0.0	0.0	v	49.3	-18.7	83.9	11.7	-41.6	-14.4	27.2	#2
1	0	1	8110.838	0.0	0.0	н	47.9	-18.7	85.4	11.7	-44.5	-14.4	30.1	#2
1	0	1	8690.013	0.0	0.0	v	53.8	-18.9	82.8	11.5	-36.3	-14.4	21.9	#2
1	0	1	8690.013	0.0	0.0	Н	49.1	-18.9	84.7	11.5	-42.9	-14.4	28.5	#2
	Resul	ts		Minimur PASS/F		n			15.5 PASS	dB				

Notes

Results of prescans shown in plots 29 to 40.

Configuration 1. 3m test distance. #1: Tx @ 862MHz, #2: Tx @ 869MHz Lmits set at -13dBm.

<u> </u>	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
/	Test No:	T4354	Test Report	Page:	31 of 100

4.14 Radiated Emissions - Transmit Spurious - DMU - 806MHz to 824MHz band

Factor Set 1: A19_dbi_11A - - -

Factor Set 2: -- -- Factor Set 3: -- --

Test Equipment: R9 A24 A23 A19 SG16 PM6 PS10 PRE3 RFF15 RFF16 RFF17 RFF22

Substitution_Emissions

	nunon <u>.</u> nanv:					Product:	CDOO									
			oura PLC						SRG3							
Date		28/	05/2012					Test Eng.	Dave S	Smith						
Port. Test		00	.205		sing limi	ite of	F	00 205	(h)							
Port		90	.203	u	Siriy iii ii	113 0	<u> </u>	90.205	<u> </u>							
Test		90	.210	u	sing limi	its of	of 90.221(d)									
			-		<u> </u>			-	χ-,							
				Cable	Loss											
Ор	Mod	CF	Freq.	Sig Gen	Rec'vr	Ant	Rec'vr	Sig Gen	Rec'vr	Sub'n	ERP	Limit	Margin	Note		
Mode	State	Set	MHz	Level	Level	Pol	Level	Level	Level	Ant						
	Cable Cable EUT							Sub'n	Sub'n	Gain						
				dBm	dBm		dBuV	Ant dBm	Ant dBuV	dBi	dBm	dBm	dB			
				UDIII	UDIII		ивиу	UDIII	ивиу	иы	UDIII	ubili	иь			
1	0	1	4357.350	0.0	0.0	٧	62.2	-17.5	89.2	11.0	-33.4	-15.0	18.4	#1		
1	0	1	4357.350	0.0	0.0	Н	57.8	-17.5	91.7	11.0	-40.3	-15.0	25.3	#1		
1 1	0	1	8170.125 8170.125	0.0	0.0 0.0	V H	59.2 58.4	-18.8 -18.8	83.1 85.0	11.7 11.7	-30.9 -33.7	-15.0 -15.0	15.9 18.7	#1		
'	0	'	0170.123	0.0	0.0	П	36.4	-10.0	65.0	11.7	-33.7	-13.0	10.7	#1		
1	0	1	7416.150	0.0	0.0	v	59.3	-18.6	84.2	11.0	-32.4	-15.0	17.4	#2		
1	0	1	7416.150	0.0	0.0	Н	53.8	-18.6	85.5	11.0	-39.4	-15.0	24.4	#2		
1	0	1	8240.047	0.0	0.0	٧	59.2	-18.8	82.9	11.7	-30.9	-15.0	15.9	#2		
1	0	1	8240.047	0.0	0.0	Н	57.0	-18.8	85.8	11.7	-36.0	-15.0	21.0	#2		
	Resul	ts		Minimur				dB								
				PASS/F	AIL				PASS							
							Not									

Notes

Results of prescans shown in plots 41 to 52.

DMU. 3m test distance. #1: Tx @ 817MHz, #2: Tx @824MHz Lmits set at -13dBm.

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	32 of 100

4.15 Radiated Emissions - Transmit Spurious - DMU - 851MHz to 869MHz band

Factor Set 1: A19_dbi_11A - - -

Factor Set 2: -- -- Factor Set 3: -- --

Test Equipment: R9 A24 A23 A19 SG16 PM6 PS10 PRE3 RFF15 RFF16 RFF17 RFF22

Substitution_Emissions

 Company:
 Sepura PLC
 Product:
 SRG3500

 Date:
 28/05/2012
 Test Eng:
 Dave Smith

 Ports:
 7est:
 90.210
 using limits of
 90.221(d)

 Ports:
 90.210
 90.221(d)
 90.221(d)

Test: using limits o

Test	:			u	sing limi	ts of	•							
Op Mode	Mod State	od CF Freq. ate Set MHz		Cable Sig Gen Level Cable	el Level e Cable		Rec'vr Level EUT dBuV	Sig Gen Level Sub'n Ant dBm	Rec'vr Level Sub'n Ant dBuV	Sub'n Ant Gain dBi	ERP	Limit	Margin dB	Note
1 1 1 1 1 1 1	0 1 5746.675 0.0 0.0 0 1 8045.333 0.0 0.0 0 1 8045.333 0.0 0.0 0 1 5214.050 0.0 0.0 0 1 5214.050 0.0 0.0 0 1 6952.088 0.0 0.0						57.3 54.6 49.9 49.0 62.3 57.0 57.6 52.8	-17.9 -17.9 -18.7 -18.7 -17.6 -17.6 -18.4 -18.4	89.7 88.4 82.8 85.8 89.5 88.9 87.5 86.8	11.6 11.7 11.7 10.8 10.8 11.6 11.6	-38.8 -40.1 -39.8 -43.8 -33.9 -38.6 -36.6 -40.7	-15.0 -15.0 -15.0 -15.0 -15.0 -15.0 -15.0	23.8 25.1 24.8 28.8 18.9 23.6 21.6 25.7	#1 #1 #1 #2 #2 #2
	Resul	ts		Minimur PASS/F		n			18.9 PASS	dB				

Notes

Results of prescans shown in plots 41 to 52.

DMU. 3m test distance. #1: Tx @ 862MHz, #2: Tx @869MHz

Lmits set at -13dBm

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	33 of 100

4.16 Radiated Emissions - Receive Mode - Configuration 1 - below 1GHz

Factor Set 1: A5_FS_10C CBL015_11A --

Factor Set 2: - - - Factor Set 3: - - - - Test Equipment: R4 A5

		nissions													
Con	npany:	Sepu	ıra P	LC				Prod	3	RG3500					
Date Port		20/06	5/201	2				Test	Eng:	ave Smith	n				
Test		ANSI	C63	.4:20	03 using	limits	of	FCC	C_B						
Port. Test					using	using limits of									
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes		
	862	2MHz F	Rx cha	ınnel											
53	1	0	3	1	114.620	V	1.2	13.1		14.3	43.5	29.2			
53	1	0	3	1	114.620	Н	-3.1	13.1		10.0	43.5	33.5			
54	1	0	3	1	931.250	V	0.3	31.0		31.3	46.0	14.7	#1		
54	1 860	0 9MHz F	3 Ovicha	1	931.250	Н	5.6	31.0		36.6	46.0	9.4			
54	1	0	3	1 1	938.250	v	1.6	31.5		33.1	46.0	12.9	#1		
54	1	0	3	1	938.250	Н	-0.1	31.5		31.4	46.0	14.6	#1		
	Resul	ts					Minimu	m Marc	nin		9.4	dB			
	i i coui						PASS/F		j'''		PASS				
No	tes					Comr	ments a	nd Obse	ervation	าร					
#	:1		Results of scans shown in plots 53 and 54. Configuration 1. Measured with 10kHz average detector because of high ambient. Measurements in screened room show less than 2dB difference between 120kHz Quasi Peak reading and 10kHz Average reading for this emission All other measurements made with 120kHz bandwidth Quasi Peak detector.												

<u> </u>	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
(dB)	Test No:	T4354	Test Report	Page:	34 of 100

4.17 Radiated Emissions - Receive Mode - Configuration 1 - above 1GHz

Factor Set 1: A23_3m_10A CBL049_11A PRE3_11A RFF22_11A

1 m cable

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R9 A23 PRE3 RFF22

	Company: Sepura PLC Product: SRG3500												
Con	ipany:	Sepu	ıra P	LC				Proa	<i>luct:</i> S	RG3500)		
Date		28/05	5/201	12				Test	Eng: D	ave Smith	1		
Port. Test		V VICI	C42	4.20	02 usina	limita	o o f	ECC	` D				
Port		ANSI	C03	.4.20	03 using	minus	S UI	FCC	,_b				
Test	:				using	limits	s of						
	۱ ۵		5	l . .	l -	۱	۱ ـ	۱	ا م ا			l	
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level	Factor	Corr'n Factor	Total Level	Limit FCC_B	Margin FCC_B	Notes
	lilious	Stato	•••			. 0.	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
	963	2MHz F	Dv. cha	nnol									
56	2	0	3	1 1	3724.998	v	51.2	-2.4		48.8	74.0	25.2	PK
56	2	0	3	1	3724.998	V	47.2	-2.4		44.8	54.0	9.2	AV
56	2	0	3	1	3724.998	Н	49.0	-2.4		46.6	54.0	7.4	PK
56 56	2 2	0 0	3 3	1 1	5581.503 5587.496	V H	45.2 44.1	1.6 1.6		46.8 45.7	54.0 54.0	7.2 8.3	PK PK
36	1			1	3367.490	"	44.1	1.0		45.7	54.0	0.3	
56	2	0	3	1	3753.026	V	48.3	-2.2		46.1	54.0	7.9	PK
56	2	0	3	1	3753.026	Н	47.4	-2.2		45.2	54.0	8.8	PK
	Resul	ts					Minimu	_	jin		7.2	dB	
NI	4						PASS/F				PASS		
INO	tes					Comi	ments ar	id Obse	ei vatior	12			
		Results of scans shown in plots 55 and 56.											
	Configuration 1. Where peak measurements were comfortably below the average limit only the peak reading is recorded - in this case the average limit is show. Otherwise separate peak and average measurements were made and show against the corresponding limits.												

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	35 of 100

4.18 Radiated Emissions - Receive Mode - DMU- below 1GHz

Factor Set 1: A5_FS_10C CBL015_11A --

Factor Set 2: Factor Set 3: Test Equipment: R4 A5

		nissions											
Com	pany:	Sepu	ıra P	LC				Proa	<i>luct:</i> S	RG3500)		
Date		20/06						Test	Eng: D	ave Smith	า		
Port:													
Test		ANSI	C63	.4:200	03 using	limits	of	FCC	<u>_B</u>				
Ports							_						
Test	<u>:</u>				using	limits	s of						
Plot	Ор	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
' ' ' '		State	m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC_B	FCC_B	110103
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
	862	 2MHz F	Rx cha	 innel		io.	,						
57	1	0	3	1	78.160	V	4.3	8.1		12.4	40.0	27.6	
57	1	0	3	1	78.160	н	0.5	8.1		8.6	40.0	31.4	
58	1	0	3	1	481.102	V	11.4	21.6		33.0	46.0	13.0	
58	1	0	3	1	481.102	Н	8.9	21.6		30.5	46.0	15.5	
58	1	0	3	1	509.272	V	7.6	22.4		30.0	46.0	16.0	
58	1	0	3	1	509.272	H	10.6	22.4		33.0	46.0	13.0	
58	1	0	3	1	537.350	V	3.5	23.5		27.0	46.0	19.0	
58 58	1	0 0	3	1 1	537.350 547.484	H V	7.5 5.9	23.5		31.0 30.4	46.0 46.0	15.0 15.6	
58	' 1	0	3	1	547.484	H	11.5	24.5		36.0	46.0	10.0	
58	1	0	3	1	556.878	v	2.9	24.9		27.8	46.0	18.2	
58	1	0	3	1	556.878	Н	7.6	24.9		32.5	46.0	13.5	
	869	MHz F	Rx cha	nnel									
58	1	0	3	1	931.250	V	-0.8	31.0		30.2	46.0	15.8	#1
58	1	0	3	1	931.250	Н	5.1	31.0		36.1	46.0	9.9	
58	1	0	3	1	938.250	V	-0.1	31.5		31.4	46.0	14.6	#1
58	1	0	3	1	938.250	H	0.5	31.5		32.0	46.0	14.0	#1
				l		l							
	Resul	ts					Minimu	m Marc	ıin		9.9	dB	
							PASS/F	_	,		PASS		
No	tes					Comr	nents aı	nd Obse	ervation	าร			
	Results of scans shown in plots 57 and 58. DMU.												
#	1	1			with 10kH	7 21/2"	ano dot	octor h	0001100	of bigh o	mhiont		
#	1				with 10kH: ents in scr								
		1									reading for t	his emission	1
											asi Peak det		
		1											

dB)	Report No: R3112 Issue No: 1		FCC ID: XX6-SRG3500XB		
	Test No:	T4354	Test Report	Page:	36 of 100

4.19 Radiated Emissions - Receive Mode - DMU - above 1GHz - Vertical

Factor Set 1: A23_3m_10A CBL049_11A PRE3_11A RFF22_11A

1 m cable

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R9 A23 PRE3 RFF22

	ted_En npany:			1.0				Proa	luct: c	DCSEOC	<u> </u>		
Date		28/05				Froduct: SRG3500 Test Eng: Dave Smith							
Port:	s: :	ANSI			03 using	s of	FCC_B						
Port: Test					using	limits	s of						
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
	862	MHz F	Rx cha	nnel									
59	2	0	3	1	1862.525	V	50.9	-6.7		44.2	54.0	9.8	PK
60	2	0	3	1	2793.846	V	47.4	-5.2		42.2	54.0	11.8	PK
60	2	0	3	1	3724.987	V	51.9	-2.4		49.5	74.0	24.5	PK
60	2	0	3	1	3724.987	V	48.9	-2.4		46.5	54.0	7.5	AV
60	2	0	3	1	4656.255	V	45.8	-1.8		44.0	54.0	10.0	PK
59	2	MHz F	xx cna	ı	1876.500	v	49.7	-6.7		43.1	54.0	10.9	PK
60	2	0	3	1 1	2814.708	V	49.7	-5.1		43.1	54.0 54.0	9.6	PK
60	2	0	3	1	4691.247	v	46.0	-1.7		44.3	54.0	9.7	PK
60	2	0	3	1	5629.815	V	44.6	1.7		46.3	54.0	7.7	PK
Results					•	Minimum Margin PASS/FAIL					7.5 dB PASS		
No	tes					Comr	ments a	nd Obse	ervation	าร			
			DMU Wher readi	e pea	recorded - i	ments in this	s were c	comfort ne avera	ably be	it is show.	verage limit Otherwise ainst the cor	separate	

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	37 of 100

4.20 Radiated Emissions - Receive Mode - DMU - above 1GHz - Horizontal

Factor Set 1: A23_3m_10A CBL049_11A PRE3_11A RFF22_11A

1 m cable

Factor Set 2: ---Factor Set 3: ----

Test Equipment: R9 A23 PRE3 RFF22

		nission						Dura	l t				
Con	ipany:	Sepu	ıra P	LC				Prod	3	RG3500			
Date		28/0	5/201	2				Test	Eng:	ave Smith	1		
Port. Test		ANSI	C62	4.20	03 using	limita	of	FCC	` D				
Port		ANSI	C03	.4.20	using	mints	S UI	FCC	,_b				
Test	:				using	limits	of						
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Note
	862	 2MHz F	 Rx cha	 innel				40					
59	2	0	3	1	1862.525	Н	50.4	-6.7		43.7	54.0	10.3	PK
60	2	0	3	1	2793.846	н	47.0	-5.2		41.8	54.0	12.2	PK
60	2	0	3	1	3724.987	н	49.7	-2.4		47.2	54.0	6.8	PK
60	2	0	3	1	4656.255	Н	43.1	-1.8		41.3	54.0	12.7	PK
	1	MHz F		1									DI.
59	2	0	3	1	1877.500	H	44.7	-6.7		38.1	54.0	15.9	PK PK
60 60	2 2	0	3	1 1	2814.708 4691.247	H H	47.3 43.7	-5.1 -1.7		42.2	54.0 54.0	11.8 12.0	PK
60 60	2	0	3	1	5629.815	П Н	44.0	1.7		42.0 45.7	54.0 54.0	8.3	PK
	Resul	lts	Minimum Margin 6.8 dB										
No	PASS/FAIL PASS Notes Comments and Observations												
Results of scans shown in plots 59 and 60.													
			readi	re pea	recorded - i	n this	case th	ne avera	age limi	it is show.	Otherwise	only the pe e separate rresponding	

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	38 of 100

4.21 Conducted Emissions (Power) - Results

Factor Set 1: L1_11A AB002_CBL005_CBL039_11A --

Factor Set 2: Factor Set 3: Test Equipment: R1 L1

Con	ictea E ipany:	Sepu	ns (Powe ra PLC	e <i>r)</i>				Produc	ct: SR	G3500		
Date			08/06/12 ac power ANSI C63.4:2003 usin									
Port. Test	t:	-					of	FCC_	В			
Port. Test					using l	imits	of					
Plot	Op Mode	Mod State	Line (L/N)	Fact Set	Freq. MHz	Det qp/ av	Rec. Level dBuV	Corr'n Factor dB	Total Level dBuV	Limit FCC_B dBuV	Margin FCC_B dB	Notes
61 61 61 661 662 662 662 662 662	1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1	0.189 0.189 0.252 0.252 0.377 0.377 0.189 0.189 0.252 0.252 0.377 0.377	qp av qp av qp av qp av	40.3 29.0 35.2 21.0 23.6 12.8 40.2 29.0 35.0 21.0 23.8 10.8	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	50.3 39.0 45.2 31.0 33.6 22.8 50.2 39.0 45.0 31.0 33.8 20.8	64.1 54.1 61.7 51.7 58.3 48.3 64.1 54.1 61.7 51.7 58.3 48.3	13.8 15.1 16.5 20.7 24.8 25.6 13.9 15.1 16.7 20.7 24.6 27.6	
	Resul	ts					Minimu PASS/F		in	13.8 PASS	dB	
No	tes	Comments and Observations										
	Results of scans shown in plots 61 to 66. Tabulated results above were for worst case mode - Transmit @ 817MHz.					Hz.						

PLOT 1 Conducted Antenna Output Power (817MHz)

Company:	Sepura		Product:	SRG3500	
Date:	06/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
	red with power r	meter): 38.02 dBn	า		
Facility:	Anech_2			Mode:	1
				Modification State:	0
		File:	H250675F		

CF1:30dB PAD + cable

PLOT 2 Conducted Antenna Output Power (824MHz)

Company:	Sepura		Product:	SRG3500	
Date:	06/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
	ured with power	meter): 38.08 dВі	m		
Facility:	Anech_2			Mode:	1
		File:	H2506762	Modification State:	0

CF1:30dB PAD + cable

PLOT 3 Conducted Antenna Output Power (862MHz)

Company:	Sepura		Product:	SRG3500	
Date:	06/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
	red with power	meter): 37.82 dBr	n		
Facility:	Anech_2			Mode:	1
		File	110506760	Modification State:	0
		File:	H2506768		

CF1:30dB PAD + cable

PLOT 4 Conducted Antenna Output Power (869MHz)

Company:	Sepura		Product:	SRG3500	
Date:	06/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
	red with power r	meter): 38.13 dBm	1		
Facility:	Anech_2			Mode:	1
				Modification State:	0
		File:	H250676B		

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	43 of 100

PLOT 5 Occupied Bandwidth (817MHz)

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
817MHz 99% Occupied b	andwidth measu	urement: 21.03kH:	z		
Facility:	Environ			Mode:	1
				Modification State:	0
		File:	H2525574		

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	44 of 100

PLOT 6 Occupied Bandwidth (824MHz)

Company:	Sepura	Product:	SRG3500
Date:	07/06/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:		Limit2:	
Limit3:		Limit4:	
824MHz 99% Occupied b	andwidth measurement: 21.05kHz		

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
(dB)	Test No:	T4354	Test Report	Page:	45 of 100

PLOT 7 Occupied Bandwidth (862MHz)

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
·	andwidth measur	ement: 20.89kH	z	Modes	4
Facility:	Environ			Mode:	1
	F	File:	H252558C	Modification State:	0

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	46 of 100

PLOT 8 Occupied Bandwidth (869MHz)

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
		urement: 20.73kH	łz		
Facility:	Environ			Mode:	1
		File:	H2525595	Modification State:	0

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
l /\	Test No:	T4354	Test Report	Page:	47 of 100

Date: 12.JUN.2012 13:21:24

PLOT 9 Adjacent Channel Power (817MHz)

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
l /\	Test No:	T4354	Test Report	Page:	48 of 100

Date: 12.JUN.2012 13:22:10

PLOT 10 Adjacent Channel Power (824MHz)

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	49 of 100

Date: 12.JUN.2012 13:24:12

PLOT 11 Adjacent Channel Power (862MHz)

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB		
dB	Test No:	T4354	Test Report	Page:	50 of 100

Date: 12.JUN.2012 13:24:50

PLOT 12 Adjacent Channel Power (869MHz)

PLOT 13 Transient Frequency - 817MHz - On

PLOT 14 Transient Frequency - 824MHz - On

PLOT 15 Transient Frequency - 862MHz - On

PLOT 16 Transient Frequency - 869MHz - On

PLOT 17 Transient Frequency - 817MHz - Off

PLOT 18 Transient Frequency - 824MHz - Off

PLOT 19 Transient Frequency - 862MHz - Off

PLOT 20 Transient Frequency - 869MHz - Off

PLOT 21 Antenna Conducted Spur Emissions - 817 to 824 Band - 9kHz to 500MHz

CF1:30dB pad + cable CF2:RFF17_110221

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	-13dBm		Limit2:		
Limit3:			Limit4:		
Blue: 817MHz Red 824MHz Limit -13dBm					
Facility:	Environ			Mode:	1
				Modification State:	0
		File:	H25076E6		

*VBW 1 MHz

 $\mathtt{Stop}\ \mathtt{500MHz}$

Sweep 50.16mS (401 pts)

Start 9kHz

*RBW 100 kHz

PLOT 22 Antenna Conducted Spur Emissions - 862 to 869 Band - 9kHz to 500MHz

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	-13dBm		Limit2:		
Limit3:			Limit4:		
Blue: 862MHz Red 869MHz Limit -13dBm					
Facility:	Environ			Mode:	1
				Modification State:	0
		File:	H25076F1		

PLOT 23 Antenna Conducted Spur Emissions - 817 to 824 Band - 500MHz to 1GHz

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	-13dBm		Limit2:		
Limit3:			Limit4:		
Blue: 817MHz Red 824MHz Limit -13dBm					
Facility:	Environ			Mode:	1
				Modification State:	0
		File:	H250771E		

 Start 500MHz
 Stop 1000MHz

 *RBW 100 kHz
 *VBW 1 MHz
 Sweep 50.16mS (401 pts)

 CF1:30dB pad + cable

PLOT 24 Antenna Conducted Spur Emissions - 862 to 869 Band - 500MHz to 1GHz

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	-13dBm		Limit2:		
Limit3:			Limit4:		
Blue: 862MHz Red 869MHz Limit -13dBm					
Facility:	Environ			Mode:	1
				Modification State:	0
		File:	H2507724		

PLOT 25 Antenna Conducted Spur Emissions - 817 to 824 Band - 1GHz to 2GHz

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	-13dBm		Limit2:		
Limit3:			Limit4:		
Blue: 817MHz Red 824MHz Limit -13dBm					
Facility:	Environ			Mode:	1
				Modification State:	0
		File:	H250777A		

PLOT 26 Antenna Conducted Spur Emissions - 862 to 869 Band - 1GHz to 2GHz

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	-13dBm		Limit2:		
Limit3:			Limit4:		
Blue: 862MHz Red 869MHz Limit -13dBm					
Facility:	Environ			Mode:	1
				Modification State:	0
		File:	H2507781		

PLOT 27 Antenna Conducted Spur Emissions - 817 to 824 Band - 2GHz to 10GHz

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	-13dBm		Limit2:		
Limit3:			Limit4:		
Blue: 817MHz Red 824MHz Limit -13dBm					
Facility:	Environ			Mode:	1
				Modification State:	0
		File:	H25077B8		

PLOT 28 Antenna Conducted Spur Emissions - 862 to 869 Band - 2GHz to 10GHz

Company:	Sepura		Product:	SRG3500	
Date:	07/06/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	-13dBm		Limit2:		
Limit3:			Limit4:		
Blue: 862MHz Red 869MHz Limit -13dBm					
Facility:	Environ			Mode:	1
				Modification State:	0
		File:	H25077C1		

PLOT 29 Radiated Emissions - Config 1 - 817 - 824 band Tx - 25MHz to 500MHz

Company:	Sepura		Product:	SRG3500	
Date:	18/05/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90)	Method:		
Limit1:(VIO)	43+10 log(P)@3m	Limit2:		
Limit3:			Limit4:		
Blue: 817MHz Red 824MHz		both horizontal a			
Facility:	Anech_2	Height	1.5	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2418559		

PLOT 30 Radiated Emissions - Config 1 - 862 - 869 band Tx - 25MHz to 500MHz

Date: 18/05/2012 Test Eng: Dave Smith Method: FCC Part 90 Method: Limit1:(VIO) 43+10 log(P)@3m Limit2: Limit3: Limit4: Config 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz Limit is approximate field strength correlation to -13dBm Facility: Anech_2 Height 1.5 Mode: 1 Distance 3m Polarisation V+H Modification State: 0 Angle 0-360 File: H2418577	Company:	Sepura		Product:	SRG3500	
Limit1:(VIO) 43+10 log(P)@3m Limit2: Limit3: Limit4: Config 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz Limit is approximate field strength correlation to -13dBm Facility: Anech_2 Height 1.5 Mode: 1 Distance 3m Polarisation V+H Modification State: 0	Date:	18/05/2012		Test Eng:	Dave Smith	
Limit3: Limit4: Config 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz Limit is approximate field strength correlation to -13dBm Facility: Anech_2 Height 1.5 Mode: 1 Distance 3m Polarisation V+H Modification State: 0	Method:	FCC Part 90		Method:		
Config 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz Limit is approximate field strength correlation to -13dBm Facility: Anech_2 Height 1.5 Mode: 1 Distance 3m Polarisation V+H Modification State: 0	Limit1:(VIO)	43+10 log(P)@	2)3m	Limit2:		
Transmit mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz Limit is approximate field strength correlation to -13dBm Facility: Anech_2 Height 1.5 Mode: 1 Distance 3m Polarisation V+H Modification State: 0	Limit3:			Limit4:		
Distance 3m Polarisation V+H Modification State: 0	Transmit mode. Blue: 862MHz Red 869MHz					
	Facility:	Anech_2	Height 1	.5	Mode:	1
Angle 0-360 File: H2418577	Distance	3m	Polarisation V	+H	Modification State:	0
	Angle	0-360	File: H	2418577		

PLOT 31 Radiated Emissions - Config 1 - 817 - 824 band Tx - 250MHz to 1GHz

Company:	Sepura		Product:	SRG3500	
Date:	14/05/2012		Test Eng:	Dave Smith	
Method:	FCC part 90		Method:		
Limit1:(VIO)	43+10 log(P)@	@3m	Limit2:		
Limit3:			Limit4:		
Blue: 817MHz Red 824MHz		oth horizontal and th correlation to -1			
Facility:	Anech_2	Height	1.5	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24157A3		

PLOT 32 Radiated Emissions - Config 1 - 862 - 869 band Tx - 250MHz to 1GHz

Company:	Sepura		Product:	SRG3500		
Date:	14/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log((P)@3m	Limit2:			
Limit3:			Limit4:			
Blue: 862MHz Red 869MHz	e. Maximum o	of both horizontal a				
Facility:	Anech_2	Height	1.5	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H24157EE			

VBW 300 kHz

Sweep 79.94mS (401 pts)

*RBW 120 kHz

PLOT 33 Radiated Emissions - Config 1 - 817 - 824 band Tx - 500MHz to 1GHz - with notch filter

VV	itii iiottii iiii	l C i				
Company:	Sepura		Product:	SRG3500		
Date:	18/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:			Limit4:			
Blue: 817MHz Red 824MHz		f both horizontal a				
Facility:	Anech_2	Height	1.5	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H24185C8			

PLOT 34 Radiated Emissions - Config 1 - 862 - 869 band Tx - 500MHz to 1GHz - with notch filter

VVI	ın notch fiit	CI			
Company:	Sepura		Product:	SRG3500	
Date:	18/05/2012		Test Eng:	Dave Smith	
Method:	FCC Part 9	0	Method:		
Limit1:(VIO)	43+10 log(F	P)@3m	Limit2:		
Limit3:			Limit4:		
Blue: 862MHz Red 869MHz	e. Maximum of	both horizontal a	o -13dBm		
Facility:	Anech_2	Height	1.5	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24185EA		

CF1:A23_3m_100806 CF2:CBL059_CBL018_CBL065_CBL060_100806 CF3:PRE3_110113 CF4:RFF15_110112

PLOT 35 Radiated Emissions - Config 1 - 817 - 824 band Tx - 1GHz to 2GHz

Company:	Sepura		Product:	SRG3500		
Date:	21/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:			Limit4:			
Blue: 817MHz Red 824MHz	e. Maximum o	f both horizontal a				
Facility:	Anech_2	Height	1m	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H2421804			

CF1:A23_3m_100806 CF2:CBL059_CBL018_CBL065_CBL060_100806 CF3:PRE3_110113 CF4:RFF15_110112

PLOT 36 Radiated Emissions - Config 1 - 862 - 869 band Tx - 1GHz to 2GHz

Company:	Sepura		Product:	SRG3500		
Date:	22/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:			Limit4:			
Blue: 862MHz Red 869MHz	e. Maximum o	f both horizontal a				
Facility:	Anech_2	Height	1m	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H24223CB			

PLOT 37 Radiated Emissions - Config 1 - 817 - 824 band Tx- 2GHz to 6GHz

Company:	Sepura		Product:	SRG3500						
Date:	22/05/2012		Test Eng: Dave Smith							
Method:	FCC Part 9	0	Method:							
Limit1:(VIO)	43+10 log(F	P)@1.5m	Limit2:							
Limit3:			Limit4:							
Configuration 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 817MHz Red 824MHz Limit is approximate field strength correlation to -13dBm										
Facility:	Anech_2	Height	1m	Mode:	1					
Distance	1.5m	Polarisation	V+H	Modification State:	0					
Angle	0-360	File:	H24254BD							

PLOT 38 Radiated Emissions - Config 1 - 862 - 869 band Tx- 2GHz to 6GHz

Company:	Sepura		Product:	SRG3500						
Date:	25/05/2012		Test Eng: Dave Smith							
Method:	FCC Part 9	0	Method:							
Limit1:(VIO)	43+10 log(l	P)@1.5m	Limit2:							
Limit3:			Limit4:							
Configuration 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz Limit is approximate field strength correlation to -13dBc										
Facility:	Anech_2	Height	1m	Mode:	1					
Distance	1.5m	Polarisation	V+H	Modification State:	0					
Angle	0-360	File:	H2425598							

PLOT 39 Radiated Emissions - Config 1 - 817 - 824 band Tx- 5GHz to 10GHz

Company:	Sepura		Product:	SRG3500	
Date:	25/05/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	43+10 log(P)@	201.5m	Limit2:		
Limit3:			Limit4:		
Blue: 817MHz Red 824MHz		oth horizontal and th correlation to -			
Facility:	Anech_2	Height	1m	Mode:	1
Distance	1.5m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24255B0		

PLOT 40 Radiated Emissions - Config 1 - 862 - 869 band Tx- 5GHz to 10GHz

Method: FCC Limit1:(VIO) 43+1 Limit3: Configuration 1	5/2012 Part 90 I0 log(P)@1.5m mum of both horizontal and	Test Eng: Method: Limit2: Limit4: vertical.	Dave Smith	
Limit1:(VIO) 43+1 Limit3: Configuration 1 Transmit mode. Maxir Blue: 862MHz	10 log(P)@1.5m	Limit2: Limit4:		
Limit3: Configuration 1 Transmit mode. Maxir Blue: 862MHz		Limit4:		
Configuration 1 Transmit mode. Maxir Blue: 862MHz	num of both horizontal and			
Transmit mode. Maxir Blue: 862MHz	num of both horizontal and	vertical.		
Limit is approximate fie	eld strength correlation to -1	3dBm		
Facility: Anech_	2 Height	1m	Mode:	1
Distance 1.5m	Polarisation	V+H	Modification State:	0
Angle 0-360	File:	H24255CE		

PLOT 41 Radiated Emissions - DMU - 817 - 824 band Tx - 25MHz to 500MHz

Company:	Sepura		Product:	SRG3500		
Date:	14/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	Mask Y @:	3m	Limit2:			
Limit3:			Limit4:			
Blue: 817MHz Red 824MHzz		f both horizontal a				
Facility:	Anech_2	Height	1.5	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H24156F4			

PLOT 42 Radiated Emissions - DMU - 862 - 869 band Tx - 25MHz to 500MHz

Company:	Sepura		Product:	SRG3500		
Date:	14/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:			Limit4:			
Blue: 862MHz Red 869MHz		of both horizontal a				
Facility:	Anech_2	Height	1.5	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H241574D			

PLOT 43 Radiated Emissions - DMU - 817 - 824 band Tx - 250MHz to 1GHz

Company:	Sepura		Product:	SRG3500		
Date:	14/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:			Limit4:			
Blue: 817MHz Red 824MHz		of both horizontal a				
Facility:	Anech_2	Height	1.5	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H2415516			

PLOT 44 Radiated Emissions - DMU - 862 - 869 band Tx - 250MHz to 1GHz

Company:	Sepura		Product:	SRG3500		
Date:	14/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:			Limit4:			
Blue: 862MHz Red 869MHz		of both horizontal a				
Facility:	Anech_2	Height	1.5	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H24154E6			

PLOT 45 Radiated Emissions - DMU - 817 - 824 band Tx - 500MHz to 1GHz - with notch filter

110	ich milei				
Company:	Sepura		Product:	SRG3500	
Date:	14/05/2012	2	Test Eng:	Dave Smith	
Method:	FCC Part 9	00	Method:		
Limit1:(VIO)	43+10 log(P)@3m	Limit2:		
Limit3:			Limit4:		
Blue: 817MHz Red 824MHz	e. Maximum o	f both horizontal a	o -13dBm		
Facility:	Anech_2	Height	1.5	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H241553F		

PLOT 46 Radiated Emissions - DMU - 862 - 869 band Tx - 500MHz to 1GHz - with notch filter

TIC	ACH HILEI				
Company:	Sepura		Product:	SRG3500	
Date:	14/05/2012	2	Test Eng:	Dave Smith	
Method:	FCC Part 9	90	Method:		
Limit1:(VIO)	43+10 log(P)@3m	Limit2:		
Limit3:			Limit4:		
	kimate field stre	ength correlation to			
Facility:	Anech_2	Height	1.5	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
	0-360	File:			

CF1:A23_3m_100806 CF2:CBL059_CBL018_CBL065_CBL060_100806 CF3:PRE3_110113 CF4:RFF15_110112

PLOT 47 Radiated Emissions - DMU - 817 - 824 band Tx - 1GHz to 2GHz

Company:	Sepura		Product:	SRG3500	
Date:	22/05/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90)	Method:		
Limit1:(VIO)	43+10 log(F	?)@3m	Limit2:		
Limit3:			Limit4:		
Blue: 817MHz Red 824MHz		both horizontal a			
Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2422422		

PLOT 48 Radiated Emissions - DMU - 862 - 869 band Tx - 1GHz to 2GHz

Company:	Sepura		Product:	SRG3500	
Date:	22/05/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90)	Method:		
Limit1:(VIO)	43+10 log(P)@3m	Limit2:		
Limit3:			Limit4:		
Blue: 862MHz Red 869MHz		both horizontal a			
Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H242245C		

PLOT 49 Radiated Emissions - DMU - 817 - 824 band Tx- 2GHz to 6GHz

Company:	Sepura		Product:	SRG3500		
Date:	25/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC Part 9	00	Method:			
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:			
Limit3:			Limit4:			
Blue: 817MHz Red 824MHz		f both horizontal a				
Facility:	Anech_2	Height	1m	Mode:	1	
Distance	1.5m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H24254BA			

PLOT 50 Radiated Emissions - DMU - 862 - 869 band Tx- 2GHz to 6GHz

Company:	Sepura		Product:	SRG3500		
Date:	25/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC part 9	0	Method:			
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:			
Limit3:			Limit4:			
Blue: 862MHz Red 869MHz		f both horizontal a				
Facility:	Anech_2	Height	1m	Mode:	1	
Distance	1.5m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H24254D8			

PLOT 51 Radiated Emissions - DMU - 817 - 824 band Tx- 5GHz to 10GHz

Company:	Sepura		Product:	SRG3500		
Date:	25/05/2012		Test Eng:	Dave Smith		
Method:	FCC Part 90		Method:			
Limit1:(VIO)	43+10 log(P))@1.5m	Limit2:			
Limit3:			Limit4:			
DMU Transmit mode. Maximum of both horizontal and vertical. Blue: 817MHz Red 824MHz Limit is approximate field strength correlation to -13dBm						
Facility:	Anech_2	Height	1m	Mode:	1	
Distance	1.5m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H242550C			

PLOT 52 Radiated Emissions - DMU - 862 - 869 band Tx- 5GHz to 10GHz

Company:	Sepura		Product:	SRG3500		
Date:	25/05/2012	2	Test Eng:	Dave Smith		
Method:	FCC part 9	0	Method:			
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:			
Limit3:			Limit4:			
Blue: 862MHz Red 869MHz		f both horizontal a				
Facility:	Anech_2	Height	1m	Mode:	1	
Distance	1.5m	Polarisation	V+H	Modification State:	0	
		File:				

PLOT 53 Radiated Emissions - Config 1 - Rx - 25MHz to 275MHz

Company:	Sepura		Product:	SRG3500	
Date:	18/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC_B@3m		Limit2:		
Limit3:			Limit4:		
Config 1 Receive mode. Blue: 862MHz Red 869MHz	Maximum of bot	th horizontal and v	vertical.		
Facility:	Anech_2	Height	1.5	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24185AE		

PLOT 54 Radiated Emissions - Config 1 - Rx - 250MHz to 1GHz

Company:	Sepura		Product:	SRG3500	
Date:	14/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC_B@3m		Limit2:		
Limit3:			Limit4:		
Config 1 Receive mode. Blue: 862MHz Red 869MHz	Maximum of bo	th horizontal and	vertical.		
Facility:	Anech_2	Height	1.5	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24157CC		

CF1:A23_3m_100806 CF2:CBL059_CBL018_CBL065_CBL060_100806 CF3:PRE3_110113 CF4:RFF15_110112

PLOT 55 Radiated Emissions - Config 1 - Rx - 1GHz to 2GHz

Company:	Sepura		Product:	SRG3500	
Date:	21/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC_B@3m		Limit2:		
Limit3:			Limit4:		
Configuration 1 Receive mode. Blue: 862MHz Red 869MHz	Maximum of bo	th horizontal and	vertical.		
Facility:	Anech_2	Height	1m	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24217D8		

PLOT 56 Radiated Emissions - Config 1 - Rx - 2GHz to 10GHz

Company:	Sepura		Product:	SRG3500	
Date:	22/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC_B@1.5n	n	Limit2:		
Limit3:			Limit4:		
Configuration 1 Receive mode. Blue: 862MHz Red 869MHz	Maximum of bo	th horizontal and	vertical.		
Facility:	Anech_2	Height	1m	Mode:	2
Distance	1.5m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2422779		

PLOT 57 Radiated Emissions - DMU - Rx - 25MHz to 275MHz

Company:	Sepura		Product:	SRG3500	
Date:	14/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC_B@3m		Limit2:		
Limit3:			Limit4:		
DMU Receive mode. Blue: 862MHz Red 869MHz	Maximum of bo	th horizontal and v	vertical.		
Facility:	Anech_2	Height	1.5	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24155C0		

PLOT 58 Radiated Emissions - DMU - Rx - 250MHz to 1GHz

Company:	Sepura		Product:	SRG3500	
Date:	18/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC_Bx@3m		Limit2:		
Limit3:			Limit4:		
DMU Receive mode. Blue: 862MHz Red 869MHz	Maximum of bo	th horizontal and	vertical.		
Facility:	Anech_2	Height	1.5	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24184DF		

CF1:A23_3m_100806 CF2:CBL059_CBL018_CBL065_CBL060_100806 CF3:PRE3_110113 CF4:RFF15_110112

PLOT 59 Radiated Emissions - DMU - Rx - 1GHz to 2GHz

Company:	Sepura		Product:	SRG3500	
Date:	22/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC_B@3m		Limit2:		
Limit3:			Limit4:		
DMU Receive mode. Blue: 862MHz Red 869MHz	Maximum of bo	th horizontal and v	ertical.		
Facility:	Anech_2	Height	1m	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2422484		

PLOT 60 Radiated Emissions - DMU - Rx - 2GHz to 10GHz

Company:	Sepura		Product:	SRG3500	
Date:	25/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC_B@1.5n	n	Limit2:		
Limit3:			Limit4:		
DMU Receive mode. Blue: 862MHz Red 869MHz	Maximum of bo	th horizontal and	vertical.		
Facility:	Anech_2	Height	1m	Mode:	2
Distance	1.5m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2425553		

	Report No: Issue No:	R3112 1	FCC ID: XX6-SRG3500XB	
dB	Test No:	T4354	Test Report	Page: 95 of 100
Chase EMS	6.21	Notes		
Analyse 120	608 C1N Tx 817	MHz		
Test: 150kH	z-30MHz (L1+C	SET001) dBuV		
RF level	100			
dBuV	90			
120608 C1N				
Quasi-peak	80	-		4
	70			
	70			٦
	60		_	
	50			
	40			
			\n \n	
	30	L *	V\\	
	20		ومناور والمراكل المناول المناور والمراكل المناور والمراكل المناور والمراكل المناور والمراكل المناور والمراكل والمناور والمراكل المناور والمراكل والمناور والمراكل والمناور والمراكل والمناور والمراكل والمناور والمراكل والمناور والمناور والمراكل والمناور والمناور والمراكل والمناور والمراكل والمناور وال	أرأ أرارا والالمالية
	20		VV	
	10		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
				.
	0		+ + + + + + + + + + + + + + + + + + + +	
		0.3	0.6 1 3 6 10	30
	Log	Freq. (0.15 -	30)MHz Limit CISPR22B (AV) AC POWE	

PLOT 61 Conducted Emissions - Transmit Mode (817MHz) - Neutral Line

Company:	Sepura		Product:	SRG3500	
Date:	08 Jun 12		Test Engineer:	Dave Smith	
Test:	ANSI C63.4		Limit:	Class B	
Notes:					
Transmit 817MHz	Z				
115V, Dummy lo	ad on antenna por	rt.			
L1 R1					
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode:	1
Detector:	QuasiPeak			Mod. State:	0
LISN:	EMCO	Filename:	C26086A9.plt		

/ ♣\	Report No: Issue No:	R3112 1	1 FCC ID: AX0-SRG3300AB		
dB	Test No:	T4354	Test Report	Page:	96 of 100
Chase EMS	3.21	Notes			
Analyse 1206	308 C2L Tx 817M	ſHz			
Test: 150kHz	-30MHz (L1+CS	ET001) dBuV			
RF level	100			1	
dBuV	90				
120608 C2L	Г				
Quasi-peak	80				_
	70	_			_
	60				
	50				
	40	$ - \rangle$	<u> </u>		_
	30				
	20	-			
	10	-	A A A A A A A A A A A A A A A A A A A	1.114	_
	0		+ + + + + + + + + + + + + + + + + + + +	 	
		0.3	0.6 1 3 6 10		30
	Log I	Freq. (0.15 -	30)MHz Limit CISPR22B (AV) AC POWER	₹	

PLOT 62 Conducted Emissions - Transmit Mode (817MHz) - Live Line

Company:	Sepura		Product:	SRG3500	
Date:	08 Jun 12		Test Engineer:	Dave Smith	
Test:	ANSI C63.4		Limit:	Class B	
Notes:					
Transmit 817MHz	Z				
115V, Dummy lo	ad on antenna por	rt.			
L1 R1					
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	1
Detector:	QuasiPeak			Mod. State:	0
LISN:	EMCO	Filename:	C26086B6.plt		

→	Report No: Issue No:	R3112 1			
dB	Test No:	T4354	Test Report	Page:	97 of 100
Chase EMS	6.21	Notes			
Analyse 120	308 C3L Tx 862N	МНz			
Test: 150kHz	z-30MHz (L1+CS	ET001) dBuV			
RF level	100			Ι	
dBuV	90				
120608 C3L	T				
Quasi-peak	80	-			-
	70				
	60	-			
	50				
	40				
	30	-			. 1 10.
	20	_			
	10	-	ANA MAMMANIA MANAGARANA	ling and	rdellet _{repert} ue _{rte}
	0				
		0.3	0.6 1 3 6 10		30
	Log 1	Freq. (0.15 –	30)MHz Limit CISPR22B (AV) AC POWER		

PLOT 63 Conducted Emissions - Transmit Mode (862MHz) - Live Line

Company:	Sepura		Product:	SRG3500	
Date:	08 Jun 12		Test Engineer:	Dave Smith	
Test:	ANSI C63.4		Limit:	Class B	
Notes:					
Transmit 862MHz	Z				
115V, Dummy lo	ad on antenna por	rt.			
L1 R1					
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	1
Detector:	QuasiPeak			Mod. State:	0
LISN:	EMCO	Filename:	C26086C2.plt		

PLOT 64 Conducted Emissions - Transmit Mode (862MHz) - Neutral Line

Company:	Sepura		Product:	SRG3500	
Date:	08 Jun 12		Test Engineer:	Dave Smith	
Test:	ANSI C63.4		Limit:	Class B	
Notes:					
Transmit 862MHz	Z				
115V, Dummy lo	ad on antenna por	rt.			
L1 R1					
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode:	1
Detector:	QuasiPeak			Mod. State:	0
LISN:	EMCO	Filename:	C26086CA.plt		

PLOT 65 Conducted Emissions - Receive Mode Neutral Line

Company:	Sepura		Product:	SRG3500		
Date:	08 Jun 12		Test Enginee	er: Dave Smith		
Test:	ANSI C63.4		Limit:	Class B		
Notes: Receive 862MH 115V, Dummy		port.				
L1 R1						
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode:	2	
Detector:	QuasiPeak			Mod. State:	0	
LISN:	EMCO	Filename:	C26086D5.plt			

PLOT 66 Conducted Emissions - Receive Mode - Live Line

Company:	Sepura		Product:	SRG3500		
Date:	08 Jun 12		Test Engine	er: Dave Smith		
Test:	ANSI C63.	4	Limit:	Class B		
Notes:						
Receive 862MH	[z					
115V, Dummy	load on antenna	ı port.				
L1 R1						
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	2	
Detector:	QuasiPeak			Mod. State:	0	
LISN:	EMCO	Filename:	C26086E1.plt			