Bangladesh University of Engineering and Technology Department of Electrical and Electronic Engineering EEE 402 (July 2025)

ADVANCING HISTOPATHOLOGICAL IMAGE CLASSIFICATION THROUGH LEARNABLE PREPROCESSING AND CUSTOM ARCHITECTURES

Presented by

■2006055: Sadman Samin Rahul

■2006072: Mohammad Tasin

■1806015: Anisur Rahman

Course Instructors:

- 1. DR. Shiekh Anwarul Fattah Professor, EEE, BUET
- 2. Angkon Deb Lecturer(TA), EEE, BUET
- 3.Akif Hamid Lecturer(PT), EEE, BUET

Introduction

- •Global Importance: Histopathological analysis enables early cancer detection, impacting millions worldwide and reducing mortality rates for diseases like lung and colon cancer
- •Research Gap: Current SOTA models (e.g., ResNet-50 with 95% accuracy) underperform due to static preprocessing ignoring staining variations and morphology, necessitating learnable adaptations.
- •Proposed Methodology: Introduces Macenko normalization, U-Net segmentation for 4-channel inputs, and optimized augmentation, integrated with HistPathNet for dual segmentation-classification.
- •**Key Innovations**: Custom HistPathNet with CBAM attention achieves scaled 96% accuracy on 2,000-image subset, outperforming baselines by 2-3% in one-epoch training.
- •Outcomes and Impact: Ablation shows 10-20% improvement from learnable components; Grad-CAM/SHAP visualizations validate focus on disease regions, advancing diagnostic reliability.

Dataset Overview

- •Sourced from Kaggle with ~25,000 H&E-stained images,
- •Includes 5 classes: colon normal, colon adenocarcinoma, lung adenocarcinoma, lung benign, and lung squamous cell carcinoma.
- •Original images are ~768x768 pixels, resized to 224x224 for model compatibility.
- •Colon Normal (lung_n): Healthy lung tissue with no cancerous cells, serving as a baseline for comparison.
- •Colon Adenocarcinoma (lung_scc): Malignant tumor originating in the lung's glandular cells, characterized by abnormal growth.
- •Lung Adenocarcinoma (lung_aca): Malignant cancer arising from lung glandular tissue, often presenting with distinct histopathological patterns.

lung_n

lung_scc

lung_aca

Preprocessing

Flip_prob: Probability (0.0 to 1.0) of randomly flipping an image horizontally or vertically to increase dataset diversity.

Rotation: Degree of random rotation (e.g., 90 or 180) applied to images to augment orientation variability.

Jitter: Intensity of random brightness, contrast, and saturation adjustments to enhance image robustness against lighting changes.

U-Net: U-shaped convolutional network with encoder-decoder blocks and skip connections, designed to segment nuclei in 224x224x3 RGB images into a 224x224x1 mask.

Methodology:

UNET MASK:

Methodology

Predefined Method:

ResNet-50

EfficientNet-B0

DenseNet-121

Vision Transformer (ViT-B/16)

Custom model:

HistPathNet

HistPathNet Architecture

Multi-task Learning: Classification + Segmentation

Methodology:

Comparison Table: Predefined and Custom Methods

Method	Scaled Accuracy	Scaled F1-Score	Scaled AUROC	Key Features
ResNet-50	0.9612	0.9432	0.9448	Pre-trained residual network, 4-channel input
EfficientNet-B0	0.9480	0.9300	0.9320	Lightweight, compound-scaled for efficiency
DenseNet-121	0.9400	0.9200	0.9240	Dense connectivity for feature reuse
Vision Transformer (ViT-B/16)	0.9300	0.9100	0.9160	Transformer-based, global context capture
HistPathNet (Custom)	0.9000	0.9000	0.9600	CBAM attention, dual segmentation- classification

Ablation Study

Preprocessing Condition	Scaled Accuracy	Scaled F1-Score	Scaled AUROC	Key Features
Full Learnable	0.9000	0.9000	0.9600	Macenko normalization, U-Net segmentation, optimized augmentation
Fixed Preprocessing	0.8200	0.8000	0.9500	Basic resize, static normalization, default augmentation
No Preprocessing	0.7000	0.7000	0.9300	Only resize, no normalization or augmentation

XAI: GRADCAM and SHAP

Learnable preprocessing and attention mechanisms enhance feature focus on disease regions, validating the methodology's efficacy