Logistic regression and Neural Networks

First part:

In this part of the practice, the objective is to apply multi-class(multinomial) logistic regression for a dataset with handwritten numbers.

The code for this part:

```
import numpy as np
from scipy import optimize as opt
data = loadmat('ex3data1.mat')
X = data ['X']
m = np.shape(X)[0]
n = np.shape(X)[1]
#Selecciona aleatoriamente 10 ejemplos y los pinta
sample = np.random.choice(X.shape[0], 10)
plt.imshow(X[sample, :].reshape(-1, 20).T)
plt.axis('off')
def sigmoid(z):
def cost(theta, X, Y, lambd):
def gradient(theta, X, Y, lambd):
```

```
theta)
lambd))
       theta.append(model(X, Y, reg))
def calculate probability(X, Y, theta):
  index max = index max.reshape((len(index max), 1))
X = np.hstack([np.ones([m, 1]), X])
thetas = oneVsAll(X, y, 10, 0.1)
```

Second part:

The objective of this part is to use already pretrained Neural Network's wights to evaluate its precision. The dataset is the same as in the first part of this practice.

The code for this part:

```
import numpy as np
import matplotlib.pyplot as plt
data = loadmat('ex3data1.mat')
#se pueden consultar las claves con data.keys()
X = data ['X']
m = np.shape(X)[0]
n = np.shape(X)[1]
X = np.hstack([np.ones([m, 1]), X])
weights = loadmat('ex3weights.mat')
theta1, theta2 = weights['Theta1'], weights['Theta2']
def sigmoid(z):
def calculate probability(H, Y):
   index max = index max.reshape((len(index max), 1))
def neuro network(X, Y, theta1, theta2):
```

```
Z2 = np.dot(A1, theta2.T)
A2 = sigmoid(Z2)
calculate_probability(A2, Y)
neuro_network(X, y, theta1, theta2)
```

Examples classified correctly: 97.52%

Conclusion:

In this practice, we used one dataset with handwritten digits and two different models to predict. The first is a multi-class logistic regression where the obtained accuracy is 96.46%, and a Neural Network with pre-trained weights where it is 97.52%. From the percentages of correctly classified examples, we can see that the NN, as it is deeper, increases the performance by ~1.1%.

Gasan Nazer and Veronika Yankova