TikZische Erlebnisse

Dante Frühjahrstagung 2025

Uwe Ziegenhagen

2. April 2025

Inhalt

- Kurze (nicht vollständige) Vorstellung von TikZ-Grundlagen
- ▶ Beispiele, Beispiele, Beispiele...
- Siehe auch https://github.com/ UweZiegenhagen/TikZ_Tutorial

Geschichte

- TikZ = "TikZ ist kein Zeichenprogramm"
- TikZ = "Frontend" für PGF ("portable graphics format")
- Entwickler Till Tantau, Christian Feuersänger
- Erscheinungsjahr 2005

Einfache Linien

```
1 \begin{tikzpicture}
2 \draw[very thick] (1,1) -- (4,4) -- (6,2);
3 \draw[step=1cm,blue,thin] (0,0) grid (10,5);
4 \end{tikzpicture}
```


Liniendicken

```
1 \begin{tikzpicture}
2 \draw[ultra thin] (2,1) -- (2,3);
3 \draw[very thin] (2.5,1) -- (2.5,3);
4 \draw[thin] (3,1) -- (3,3);
5 \draw[semithick] (3.5,1) -- (3.5,3);
6 \draw[thick] (4,1) -- (4,3);
7 \draw[very thick] (4.5,1) -- (4.5,3);
8 \draw[ultra thick] (5,1) -- (5,3);
9 \draw[line width=4pt] (5.5,1) -- (5.5,3);
10 \end{tikzpicture}
```


Linienstile

```
begin{tikzpicture}

draw[very thick, dashed] (2,1) -- (2,3);

draw[very thick, loosely dashed] (2.5,1) -- (2.5,3);

draw[very thick, densely dashed] (3,1) -- (3,3);

draw[very thick, dotted] (3.5,1) -- (3.5,3);

draw[very thick, loosely dotted] (4,1) -- (4,3);

draw[very thick, densely dotted] (4.5,1) -- (4.5,3);

end{tikzpicture}
```


Rel. Koordinaten I

mit Update der Koordinaten

```
1  \begin{tikzpicture}
2  \draw[step=1cm,blue,thin] (0,0) grid (10,4);
3
4  \draw[thick, red] (1,0.5) -- ++(4,1) -- ++(-1,1) -- ++(3,1);
5  \end{tikzpicture}
```


Rel. Koordinaten II

ohne Update der Koordinaten

```
1  \begin{tikzpicture}
2  \draw[step=1cm,blue,thin] (0,0) grid (10,4);
3
4  \draw[thick, red] (2.5,1.5) -- +(1,1) -- +(-1,1);
5  \end{tikzpicture}
```


Nodes und Coordinates

```
1  \begin{tikzpicture}
2  \draw[step=1cm,blue,thin] (0,0) grid (10,3);
3
4  \coordinate (a) at (1,1);
5  \coordinate (b) at (3,2);
6  \draw[red, thick] (a) -- (b);
7
8  \node (c) at (4,1){c};
9  \node (d) at (6,2){d};
10  \draw[red, thick] (c) -- (d);
11  \end{tikzpicture}
```


Node Shapes

```
begin{tikzpicture}

draw[step=1cm,blue,thin] (0,0) grid (10,3);

node[rectangle,draw = red] (r) at (1,1){r};

node[circle,draw = red] (c) at (3,1){c};
end{tikzpicture}
```


mehr mit \usetikzlibrary{shapes}

Die shapes Bibliothek

```
begin{tikzpicture}

draw[step=1cm,blue,thin] (0,0) grid (10,3);

node[ellipse,draw = red] (e) at (2,1){ellipse};

node[diamond,draw = red] (d) at (4,1){d};

node[regular polygon,regular polygon sides=5,draw=red](p) at (6,1){p};

node[star,star points=5,draw = red] (s) at (8,1){s};
end{tikzpicture}
```


Shapes formatieren

Anwendungen

- Zielscheibe 10m Luftpistole
- Weihnachtszahlen
- Kalender
- Synthesizer-Diagramm

Zielscheibe Luftpistole I

```
\begin{tikzpicture}
  \coordinate (o) at (8,8);
   \draw[black] (o) circle (77.5mm);
   \draw[black] (o) circle (69.75mm);
   \draw[black] (o) circle (61.75mm);
   \draw[black] (o) circle (53.75mm);
   \draw[black] (o) circle (45.75mm);
   \draw[black] (o) circle (37.75mm);
   \draw[black,thick,fill=lightqray] (o) circle (29.75mm);
   \draw[black,thick] (o) circle (21.75mm);
10
   \draw[black,thick] (o) circle (13.75mm);
11
   \draw[black,thick] (o) circle (5.75mm);
12
   \end{tikzpicture}
13
```

Zielscheibe Luftpistole II

Exkurs Positioning Library I

Relative Koordinaten mit der positioning Library

above left above right

left a right

below left below below right

3d5r

Exkurs Positioning Library II

```
node at (0,0) [box] (a) {a};
node [below = of a,box] (b) {below};
node [above = of a,box] (c) {above};
node [left = of a,box] (d) {left};
node [right = of a,box] (e) {right};
node [below left = of a,box] (f) {below left};
node [below right= of a,box] (g) {below right};
node [above left = of a,box] (h) {above left};
node [above right= of a,box] (i) {above right};
node [below right= 3cm and 5cm of a,box] {3d5r};
```

Zielscheibe Luftpistole III

Positioning-Bibliothek laden

```
1 \usetikzlibrary{positioning}
```

```
\begin{tikzpicture}
   \node[right=0.7cm of o] {9};
   \node[right=1.5cm of o] {8};
   \node[right=2.3cm of o] {7};
   \node[right=3.1cm of o] {6};
   \node[right=3.9cm of o] {5};
   \node[right=4.7cm of o] {4};
7
   \node[right=5.5cm of o] {3};
   \node[right=6.3cm of o] {2};
   \node[right=7.1cm of o] {1};
10
   \end{tikzpicture}
11
```

wiederholen für left, above, below

Zielscheibe Luftpistole IV

Zielscheibe Luftpistole V

Code vereinfachen mit listofitems Paket

```
\usepackage{listofitems}
  \setsepchar{;}
  \coordinate (o) at (8,8);
  \\draw[black,thick,fill=lightgray] (o) circle (29.75mm);
  \readlist\kreise
       {77.5;69.75;61.75;53.75;45.75;37.75;21.75;13.75;5.75}
  \foreachitem\kreis\in\kreise{
    \draw[black] (o) circle (\kreis mm);
7
   \readlist\labels{7.1;6.3;5.5;4.7;3.9;3.1;2.3;1.5;0.7}
   \readlist\directions{right;above;left;below}
10
   \foreachitem\direction\in\directions{
11
    \foreachitem\label\in\labels{
12
      \node[\direction=\label cm of o] {\labelcnt};
13
     }}
14
```

Zielscheibe Luftpistole VI

Weihnachtszahlen I

- Zahlen 1–24 für Weihnachten
- DIN A4 Blatt gut ausfüllen
- (Manuelle) Matrix von Nodes

```
1 \node at (0,0) {1};
2 \node at (1,0) {2};
3 \node at (2,0) {3};
4 \node at (3,0) {4};
5
6 \node at (0,-1) {5};
7 \node at (1,-1) {6};
8 \node at (2,-1) {7};
9 \node at (3,-1) {8};
```

Weihnachtszahlen II

```
1 2 3 4
5 6 7 8
  10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
```

Weihnachtszahlen III

```
\tikzstyle{every node}=[circle,draw=black]
2
   \node at (0,0) {1};
   \node at (1,0) {2};
   \node at (2,0) {3};
   \node at (3,0) {4};
7
   \node at (0,-1) {5};
   \node at (1,-1) {6};
   \node at (2,-1) {7};
10
   \node at (3,-1) {8};
11
```

Weihnachtszahlen IV

Weihnachtszahlen V

```
\tikzstyle{every node}=[circle,draw=black,font=\fontsize
       {80}{80}\selectfont,x=41mm,y=41mm,minimum width=40mm,
       thickl
2
   \node at (0,0) {1};
   \node at (1,0) {2};
   \node at (2,0) {3};
   \node at (3,0) {4};
7
   \node at (0,-1) {5};
   \node at (1,-1) {6};
   \node at (2,-1) {7};
10
   \node at (3,-1) {8};
11
```


Kalender I

- Excel = Lebensnotwendigkeit für BWLer
- Excel nutzen, um Kalender zu "bauen"
- Gleiches Konzept wie bei den Weihnachtszahlen: viele Nodes
- Excel-Formel

```
=WENNFEHLER("\node at (" & C$2-1 &"," & -1* $B3 & ") [" & WENN(LINKS(TEXT(DATWERT($B3&"."&C$2&"."&$B$2);"TTT ");1)="S";"weekend";"workday") & "] {\hspace*{-0.9em} {" & TEXT(DATWERT($B3&"."&C$2&"."&$B$2);"TTT") & "}};";"")
```

Kalender II

\node at (0,-1)[workday] {\hspace*{-0.9em}{Mi}};

Kalender III

Jani	ar Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember
	Sa	Sa	Î II	Do	So		Fr .	Î No	м	Sa	Mo
Do.	So So	So		Pr	Mo.	=	Sa	DI .	Do	So	Di
Fr .	Mo	Mo.	Do	Sa	Di .	Do	So	14	Pr .	Mo	M.
l Sa	Î DI	Di	Fr	So	M	Pr Pr	Mo.	Do.	Sa	n n	Do
5 50	M	M	Sa	Mo	Do	Sa	DI .	Fr	So	M	Er .
5 Mo	Do	Do	So	Di	Br .	So	16	Sa	Mo	Do.	Sa
7 0	Fir	Fr	Mo	M	Sa	Mo .	Do	So	DI	Fr	So
B) =	Sa	Sa	Di Di	Do	So	a	Rr .	No.	м	Sa	Mo
9 🕟	So	So	I ss	Pr .	Mo	-	Sa	DI .	Do	So	Di
0 6	Mo	Mo	Do .	Sa	Di	Do	So	14	Rr .	Mo	м
1) (50	Di Di	Di Di	Fr	So	Ms.	Rr .	Mo .	Do	Sa	Di Di	Do
2 50	M	Î M	Sa	Mo	Do	Sa	DI .	Fr	So	<u> </u>	Fr
3 0	Do	Do	So	Di	Pr Pr	So		Sa	Mo	Do	Sa
4) (×	Fir	Fr	Mo	M .	Sa	Mo .	Do	So	DI	Fr	So
5)[=	Sa	Sa	Di Di	Do	So	a a	Pr .	No.		Sa	Mo
6) [∞	So	Y So	Y	Pr Pr	Mo	16	Sa	Di	Do	So	Di
7)[=	Mo	Ĭ Mo	Do	Sa	Di	Do	So	[=	Rr	Mo	м
8) (sa) Di) Di	Fr	So	MI .	Rr .	Mo.	Do	Sa	DI .	Do
9) 🖘	Ţm.) MI	Sa	Mo	Do	Sa	DI	Fr .	So	M	Fr .
0) (мь	Do	Do	So	Di	Pr .	So	-	Sa	Mo	Do	Sa
1)(×	Fir	Fr	Mo	M .	Sa	Mo .	Do	So	DI	Fr	So
2)[=) Sa	Sa Sa	[n	Do	So	(a	Fr .	Mo	м	Sa	Mo
3 🙉	So	So	M .	Pr Pr	Mo		Sa	Di	Do	So	Di
4) [Fr	Mo	Mo	Do	Sa	Di	Do	So	ш	Pr .	Mo	
5) sa	Di Di	Î	Fr	So	M	Fr .	Mo .	Do	Sa	i a	Do
6 50	Mi	M	Sa	Mo	Do	Sa	Di	Rr .	So		Rr .
7 Mo	Do	Do .	So	Di	Fr	So		Sa	Mo	Do	Sa
B) (N	Fr	Fr	Mo .	M	Sa	Mo	Do .	So	Di	Fr .	So
9 🛰)	Sa	Î s	Do	So	a .	Rr .	lino	м	Sa	Mo
0 0	\neg	So	Ì m	Fr	Mo		Sa	DI DI	Do	So	Di
1 1	\neg	Mo)	Sa)	Do	So		Fr	\	M .

Synthesizer-Diagramm I

- Bisher mein komplexestes TikZ-Diagramm
- Beschreibt den Signalweg in Synthesizer
- Steile Lernkurve!

Synthesizer-Diagramm II

- Nodes mit absoluten Koordinaten
- Besser mit relativen Koordinaten arbeiten!

Synthesizer-Diagramm III

Jeder Node hat vordefinierte Ankerpunkte

Synthesizer-Diagramm IV

Pfeil von x.north west nach x.south

Synthesizer-Diagramm V

- So weit, so gut, aber...
- Wir brauchen mehr Anker!

Synthesizer-Diagramm VI

Zu berechnende Punkte

Synthesizer-Diagramm VII

Koordinatenberechnungen mit der calc Library

```
($<coordinate>!<number>!<coordinate>$)
```

- <coordinate> steht dabei für eine Koordinate, ein Node ohne Text ist.
- <number> ist Zahl zwischen 0 und 1 und gibt die Prozente an, um den wir uns von Koordinate 1 zu Koordinate 2 bewegen.
- 0.25 steht also für ein Viertel des Weges

Synthesizer-Diagramm VIII

```
\node at (0,0) [box] (noise) {Noise};
\node [box, below = of noise] (vco2) {VCO2};
\coordinate (coordoffset) at ($(vco2.west)!0.5!(vco2.north west)$);
\node at (coordoffset){\textcolor{red}{$\times$}};
\node [left = of coordoffset](offset) {offset};
\draw [thick,->] (offset) -- (coordoffset);
```


Synthesizer-Diagramm IX

Synthesizer-Diagramm X

Finales Diagramm

Fazit

- Wow...
- Riesige Bandbreite der Möglichkeiten
- Steile Lernkurve → ChatGPT & Co können diese abflachen
- Tolle Ergebnisse

