d-एवं f-ब्लॉक के तत्व [d & f-Block Elements]

Inside the Chapter.....

🥩 8.1 d-ब्लॉक तत्व

8.1.1. d- ब्लॉक तत्त्वों के इलेक्ट्रॉनिक विन्यास 8.1.2 संक्रमण तत्वों के अभिलक्षण गुण 8.1.3 प्रथम संक्रमण श्रेणी के तत्वों के गुणधर्म

रासायनिक अभिक्रिशीलता

8.3 f-ब्लॉक तत्व

8.3.1. लेन्थेनॉइड

8.3.2 लेन्थेनॉइड तत्वों का इलेक्ट्रॉनिक विन्यास

8.3.3. रासायनिक अभिक्रियाशीलता

8.3.4. लैन्थेनॉइड संकृचन

8.3.5. लैन्थेनाइडों के उपयोग

8.3.6 ऐक्टिनॉइ*ड*

8.4 पाठ्यपुस्तक के प्रश्न व उत्तर

8.5 प्रमुख प्रश्न उत्तर

8.1 d-ब्लॉक तत्व

- ं वे तत्व, जिनके परमाणुओं में आने वाला अन्तिम इलेक्ट्रॉन d-कक्षक में भरे जाते हों. **d-ब्लॉक तत्व** कहलाते है।
- इन तत्वों में (n 1) d उपकोश आंशिक भरे होते हैं या इनमें आने वाला इलेक्ट्रॉन (n – l) d उपकोश में प्रवेश करता है।
- इन तत्वों में बाहरी कोश (n) में इलेक्ट्रॉनों की संख्या (अर्थात् s में) समान रहती है इसलिये इन तत्वों के रासायनिक गुणों में लगभग समानता पाई जाती है।
- d- ब्लॉक तत्वों को संक्रमण तत्व भी कहते हैं।
- 'संक्रमण' तत्व नाम दीर्घ आवर्त सारणी में इनके s a p ब्लॉक तत्वों के बीच पाये जाने के कारण पड़ा है।
- संक्रमण तत्यों को इस प्रकार परिभाषित किया जा सकता है कि वे तत्व जिनमें अपनी निम्नतम ऊर्जा अवस्था या सामान्य ऑक्सीकरण अवस्था में त- उपकोश आंशिक रूप से भरे होते हैं अर्थात इनमें इलेक्ट्रॉन 1 से 9 के बीच में होते हैं, वे संक्रमण **तत्व** कहलाते है।
- तत्व Zn, Cd, Hg एवं Uub में अपने तत्व रूप में या संयुक्त अवस्था में पूर्ण रूप से भरे (n – 1) d उपकोश होते हैं इसलिये ये तत्व संक्रमण धातू के अन्तर्गत नहीं गिने जाते हैं। यद्यपि ये समान गुण दर्शाते हैं तो इन्हें इसी आधार पर d- ब्लॉक तत्व कहा जाता है।
- IB वर्ग (II वर्ग) के Cu, Ag , Au व Uuu में परमाण्वीय अवस्था में d- कक्षक पूर्ण भरे होते हैं परन्तु इनकी ऑक्सीकरण अवस्थाओं Cu^{+2} (3d⁹), Ag^{+2} (4d⁹) व Au^{+3} (5d⁸) में d - कक्षक अपूर्ण भरे होते हैं, अतः इन्हें संक्रमण तत्व माना जाता है।
- आवर्त सारणी में कुल d-ब्लॉक तत्वों की संख्या 40 है।
- वर्ग 3 [Sc Y, La, Ac] के तत्वों के गुण, दूसरे संक्रमण तत्वों के गुणों से अलग होते है। इनके योगिक त्रिसंयोजी, प्रति चुम्बकीय व रंगहीन होते हैं। जबिक अन्य संक्रमण तत्व विभिन्न ऑक्सीकरण अवस्थायें, रंगीन आयन व अनुचुम्बकीय होते हैं।

- वर्ग 3 [Sc Y, La. Ac] के तत्व व वर्ग 12 [Zn. Cd. Hg, Uub] के तत्व अविशेष संक्रमण तत्व (Non-typical Transition Elements) कहलाते हैं। ये 8 तत्व है।
- दूसरे संक्रमण तत्व विशेष संक्रमण तत्व (Typical transition elements) कहलाते है। ये 32 तत्व है।
- संक्रमण तत्वों को चार संक्रमण श्रेणियों में विभाजित किया गया
- आवर्त सारणी का बड़ा मध्य भाग d- ब्लॉक तत्वों से घिरा हुआ है।
- d-ब्लॉक तत्त्वों के दोनों ओर s व p-ब्लॉक तत्व स्थित है।
- s a p- ब्लॉक तत्त्वों के मध्य स्थित होने के कारण ही d- ब्लॉक तत्त्वों को संक्रमण तत्त्व नाम दिया गया है।
- इनमें उपान्तय ऊर्जा स्तरों के d कक्षकों में इलेक्ट्रॉन भरे जाते हैं।
- संक्रमण तत्त्वों की चार पंक्तियाँ अर्थात् 3d, 4d, 5d व 6d प्राप्त होती है।

(a) प्रथम संक्रमण ओमी (First Fransition Series)

- इस श्रेणी को 3d संक्रमण श्रेणी भी कहते हैं।
- इस श्रेणी में 10 तत्व होते हैं। (परमाणू संख्या 21 से 30)
- इस श्रेणी के निम्न तत्व है- $Sc_{21} Ti_{22} V_{23} Cr_{24} Mn_{25} Fe_{26} Co_{27} Ni_{28} Cu_{29} Zn_{30}$
- इनमें अपूर्ण 3d उपकोश होते हैं। जबिक 4s कक्षक में दो अथवा एक इलेक्ट्रॉन होते हैं।
- इस श्रेणी का सामान्य इलेक्ट्रॉनिक विन्यास $3d^{1-10}$ $4s^{1-2}$ है।

(b) feetin supur Sulf (Seeand Transition series)

- ये श्रेणी 4d संक्रमण श्रेणी भी कहलाती है।
- इस श्रेणी में 10 तत्व होते हैं। (परमाणु क्रमांक 39 से 48)
 - इस श्रेणी के निम्न तत्व है- $Y_{39} Zr_{40} Nb_{41} Mo_{42} Tc_{43} Ru_{44} Rh_{45} Pd_{46} Ag_{47} Cd_{48}$

- इसमें अपूर्ण 4d उपकोश होते हैं । जबिक 5s में दो अथवा एक इलेक्ट्रॉन होते हैं ।
- इस श्रेणी का इलेक्ट्रॉनिक विन्यास 4d^{1 10} 5s⁰⁻² हैं।

(c) वृतीत संक्रमण श्रेणी (Third Transition series)

- इसे 5d संक्रमण श्रेणी भी कहते हैं
- इसमें 10 तत्व होते हैं। [परमाणु संख्या 57. फिर 72 से 80]
- इस श्रेणी के निम्न तत्व है— La₅₇ Hf₇₂ Ta₇₃ W₇₄ Re₇₅ Os₇₆ Ir₇₇ Pt₇₈ Au₇₉ Hg₈₀
- इसमें अपूर्ण 5d उपकोश होते हैं जबिक 6s कक्षक में एक या दो इलेक्ट्रॉन होते हैं।
- इनका इलेक्ट्रॉनिक विन्यास $5d^{1-10}$ $6s^{1-2}$ होता है।

(d) Tiget Harve shift (Fourth Transition series)

- इसे 6d -संक्रमण श्रेणी भी कहते हैं
- इस श्रेणी में 10 तत्व होते हैं। इसलिये यह श्रेणी भी पूर्ण होती है। [परमाणु संख्या 89, 104 से 112]
- इस श्रेणी के निम्न तत्व है—

- 104 से 112 परमाणु क्रमांक के तत्वों को ट्रॉन्सएक्टिनाइड तत्व भी कहते हैं।
- इसमें अपूर्ण 6d उपकोश होते हैं जबिक 7s कक्षक में एक या दो इलेक्ट्रॉन होते हैं।
- इनका इलेक्ट्रॉनिक विन्यास 6d¹⁻¹⁰ 7s¹⁻² होता है।

संक्रमण तत्व (Transition series)

						ISTUDIT SCIP	-8)			
_ -	IIIB	$\frac{IIB}{I}$	178	17B	1 TIB		V7IIB		IB	IIB .
वर्ग/श्रेणी	3	4	5	6	7	8	9	10	11	12
3 d	Sc ₂₁	Ti ₂₂	V_{23}	Cr ₂₄	Mn ₂₅	Fe ₂₆	Co ₂₇	Ni ₂₈	Cu ₂₉	Zn ₃₀
4d	Y ₃₉	Ζτ . ₍₁₎	Nb ₄₁	Mo.42	Te ₄₃	Ru ₄₄	Rh ₄₅	Pd ₄₆	Ag ₄₇	Cd ₄₈
5d	La ₅ -	Hf-2	Ta-3	W-,4	Re ₂₅	Os ₇₆	Ir ₂ ;	Pt ₇₈	Au ₂₉	Hg ₈₀
6d	Ac ₈₉	Rf_{ln4}	Db ₁₀₅	Sg ₁₀₆	Bh ₁₀₇	Hs ₁₀₈	Mt ₁₀₉	Ds ₁₁₀	Rg_{111}	Uub ₁₁₂
11 1.	रूजेंच :	- 4 K	-				<u> </u>	<u> </u>		

8.1.1. d- ब्लॉक तत्त्वों के इलेक्ट्रॉनिक विन्यास (Electronic Configuration of d-Block Elements)

- इन तत्त्वों का सामान्य इलेक्ट्रॉनिक विन्यास (n-1)d¹⁻¹⁰. ns¹⁻² है।
- (n-1)d आन्तरिक d कक्षकों को प्रदर्शित करता है जिनमें इलेक्ट्रॉन्स की संख्या 1 से 10 हो सकती है तथा बाह्यतम ns कक्षक में एक अथवा दो इलेक्ट्रॉन हो सकते हैं।
- (n-1)d व ns कक्षकों की ऊर्जाओं में बहुत कम अन्तर होने के कारण इनके सामान्य नियम में कई अपवाद है।
- अर्थपूर्ण एवं पूर्ण भरे कक्षकों का स्थायित्व अपेक्षाकृत अधिक होता है जोिक Cr तथा Cu के इलेक्ट्रॉनिक विन्यासों में प्रतिबिम्बित होता हैं।
 Cr में 3d⁴4s² के स्थान पर 3d⁵4s¹ व Cu में 3d⁹4s² के स्थान पर 3d¹⁰4s¹ होता है।

संक्रमण तत्वों के इलेक्ट्रॉनिक विन्यास Electronic Configuration of Transition Elements

First Transition Series			Second T	ransition S	eries	Third Transition Series			
Atomic number	Element	Electronic configuration	Atomic number	Element	Electronic configuration	Atomic	Element	Electronic	
21	Sc	$[Ar] 3d^{1} 4s^{2}$	39	Y	$[Kr] 4d^{1} 5s^{2}$	number		configuration	
22	Ti	[Ar] $3d^2 4s^2$	40	Zr		57	La	[Xe] 5d ¹ 6s ²	
23	V	$[Ar] 3d^3 4s^2$			[Kr] 4d ² 5s ²	72	Hf	[Xe] $4t^{14} 5d^2 6s^2$	
24			41	Nb	[Kr] 4d ⁴ 5s ¹	73	Ta	[Xe] $4f^{14} 5d^3 6s^3$	
	Cr	[Ar] 3d^4s ¹	42	Мо	[Kr] 4d ⁵ 5s ¹	74	W	[Xe] $4t^{14} 5d^4 6s^2$	
25	Mn	[Ar] 3d ⁵ 4s ³	4,3	Те	[Kr] 4d ⁵ 5s ²	75	Re	 	
26	Гe	[Ar] 3d ⁶ 4s ²	44	Ru	[Kr] 4d ⁷ 5s ¹			[Xe] $4f^{14} 5d^5 6s^2$	
27	Со	$[Ar 3d^7 4s^2]$	45	Rh		76	Os	[Xe] $4t^{44} 5d^6 6s^2$	
28	Ni	$[Ar] 3d^8 4s^2$			[Kr] 4d ⁸ 5s ¹	77	<u>l</u> r	[Xe] $41^{44} 5d^{7} 6s^{2}$	
29			46	Pd	[Kr] 4d ¹⁰ 5s ⁰	78	Pt	[Xe] $4f^{14} 5d^9 6s^1$	
	Cu	[Ar] 3d ¹⁰ 4s ¹	47	_ Ag	[Kr] 4d ¹⁰ 5s ¹	79	Au	[Xe] 4t ²⁴ 5d ¹⁰ 6s ¹	
30	Zn	[Ar] 3d ¹⁰ 4s ²	48	Cd	[Kr] 4d ¹⁰ 5s ²	80		[Xe] $41^{-3}d^{-6}s^{-1}$	

- Zn, Cd तथा Hg के इलेक्ट्रॉनिक विन्यास, सामान्य सूत्र (n-1)d¹⁰ns² से प्रदर्शित किये जाते हैं। इन तत्वों की मूल अवस्थाओं एवं सामान्य +2 ऑक्सीकरण अवस्थाओं में इनके आन्तरिक d कक्षक पूर्ण रूप से भरे हुये हैं। अत: इन्हें संक्रमण तत्व नहीं कह सकते हैं।
- संक्रमण तत्त्वों के d कक्षक अन्य s व p कक्षकों की अपेक्षा परमाणु की सतह पर अधिक प्रेक्षित्त होते हैं अत: ये अपने परिवेश में अधिक प्रभावित होते हैं तथा अपने चारों ओर के परमाणुओं अथवा अणुओं को भी प्रभावित करते हैं। कुछ अवस्थाओं में एक सा विन्यास dⁿ(n=1-9) वाले आयनों में समान चुम्बकीय एवं इलेक्ट्रॉनिक गुण पाये जाते हैं।
- आंशिक रूप से भरित d कक्षकों के कारण ये तत्त्व कुछ अभिलाक्षणिक गुण दर्शाते हैं। जैसे-
 - अनेक ऑक्सीकरण अवस्थाएँ
 - रंगीन आयनों का बनना।
 - अनेक प्रकार के लिगेण्डों द्वारा संकुल का निर्माण
 - अनुचुम्बकीय प्रवृत्ति ।

अभ्यास-८.१

- **प्र.1.** संक्रमण तत्वों का इलेक्ट्रॉनिक विन्यास है।
- प्र.2. संक्रमण तत्वों में कौनसा वर्ग अविशेष संक्रमण तत्वों का हैं।
- प्र.3. कौनसे संक्रमण तत्व अविशेष संक्रमण तत्व कहलाते है।
- प्र.4. अविशेष संक्रमण तत्वों की कुल संख्या कितनी है।
- प्र.5, विशेष संक्रमण तत्वों की कुल संख्या कितनी है।
- प्र.6. d-ब्लॉक तत्त्वों की कुल संख्या कितनी है।
- प्र.7. प्रथम संक्रमण श्रेणी के तत्वों के परमाणु क्रमांक कौनसे है।
- प्र.8. प्रथम संक्रमण श्रेणी को कौनसी d-श्रेणी कहते हैं।
- प्र.9. अविशेष संक्रमण तत्व कौनसे हैं, ये संख्या में कितने हैं?
- प्र.10. विशेष संक्रमण तत्व कौनसे हैं,ये संख्या में कितने हैं?
- प्र.11. d- ब्लॉक तत्वों को संक्रमण नाम क्यों दिया गया है?
- प्र.12. Cr के इलेक्ट्रॉनिक अवस्था में अयुग्मित इलेक्ट्रॉन्स की संख्या होगी।
- प्र.13. Fe के इलेक्ट्रॉनिक विन्यास में अयुग्मित इलेक्ट्रॉन्स की संख्या होगी।
- प्र.14. Zn, Cd एवं Hg के इलेक्ट्रॉनिक विन्यास में अयुग्मित इलेक्ट्रॉन्स की संख्या होगी।
- प्र.15. Cu के इलेक्ट्रॉनिक विन्यास में अयुग्मित इलेक्ट्रॉन्स की संख्या होगी।

उत्तरमाला

- 1. $(n-1) d^{1-10} ns^{0-2}$
- **2.** 3 व 12
- 3. Sc. Y. La, Ac एवं Zn, Cd. Hg, Uub
- . 8

- **6.** 40
- **7.** 21 से 30(10 तत्व)
- 3d श्रेणी
- वे संक्रमण तत्व जिनकी निश्चित ऑक्सीकरण अवस्था हो, एवं उनके आयन रंगहीन एवं प्रतिचम्बकीय संख्या -8 है।
- 10. वे संक्रमण तत्व जिनकी विभिन्न ऑक्सीकरण अवस्थायें हो और इनके आयन रंगीन हो, ये संख्या में 8 है।
- s व p ब्लॉक तत्वों के मध्य स्थित होने के कारण इन्हें संक्रमण तत्व कहते हैं।
- 12. 3d 4s¹ → 6 अयुग्मित इलेक्ट्रॉन्स उपस्थित है।
- 13. 3d⁶ 4s² → 4 अयुग्मित इलेक्ट्रॉन्स उपस्थित है। | 1 | 1 | 7 | 7
- 14. খ্যুন্থ
- 15. एक इलेक्ट्रॉन।

उदा. 1 आप किस आधार पर कह सकते हैं कि स्केन्डियम (Z = 21) एक संक्रमण तत्व है परन्तु जिंक (Z = 30) नहीं।

हल-स्केन्डियम तत्व [Sc] की मूल अवस्था में 3d कक्षक अपूर्ण [3d¹] होने के कारण इस तत्व को **संक्रमण तत्व कहते** हैं जबिक जिंक परमाणु में मूल अवस्था [3d¹⁰4s²] तथा +2 ऑक्सीकरण अवस्था [3d¹⁰4s⁰] दोनों में 3d कक्षक पूर्ण भरा होने के कारण इसे **संक्रमण** तत्व नहीं कहते हैं।

उदा.2 सिल्वर परमाणु की मूल अवस्था में पूर्ण भरित d कक्षक [4d¹⁰] है आप कैसे कह सकते हैं कि यह एक संक्रमण तत्व है।

हल-सिल्वर का बाह्य इलेक्ट्रॉनिक विन्यास $4d^{10}5s^1$ है। सिल्वर अपने यौगिकों में $+1(AgCl\ \vec{H})$ व $+2\ [AgF_2$ व $AgO\ \vec{H}]$ ऑक्सीकरण अवस्थाएँ प्रदर्शित करता है। +2 में इसका विन्यास $4d^95s^0$ है अत: अपूर्ण d कक्षक उपस्थित होने के कारण Ag एक संक्रमण धातु हैं।

8.1.2 संक्रमण तत्वों के अभिलक्षण गुण

- ये सभी तत्व धातुऐं है, जो ऊष्मा व विद्युत के सुचालक है।
- ये विभिन्न ऑक्सीकरण अवस्थाएं प्रदर्शित करते हैं।
- ये उत्प्रेरक ग्रुप प्रदर्शित करते हैं।
- ये रंगीन यौगिक बनाते हैं।
- ये प्राय अनुचुम्बकीय होते हैं।
- ये अंतराकाशी योगिक बनाते हैं।
- ये मिश्र धातुऐं बनाते हैं।
- इनके गलनांक व क्वथनांक उच्च होते हैं।

8.1.3 प्रथम संक्रमण श्रेणी के तत्वों के गुणधर्म में सामाना प्रमृतिक

प्रत्येक श्रेणी के लगभग मध्य में उच्चतम मान इस तथ्य को दर्शाता है

एक अयुग्मित इलेक्ट्रॉन का होना विशेष रूप से अनुकूल है। सामान्यत: संयोजकता इलेक्ट्रॉनों की संख्या जितनी अधिक होगी, उतना ही प्रबल परिणामी आबन्धन होगा।

प्रथम संक्रमण श्रेणी के संगत तत्त्वों की तुलना में द्वितीय तथा तृतीय श्रेणी के तत्त्वों की कणन एन्थैल्पी के मान अधिक हैं। [यह भारी संक्रमण धातुओं के यौगिकों में धातु-धातु आबन्धों के बहुधा बनने में एक महत्त्वपूर्ण कारक है।]

1. प्रभागिक एवं अवनिक आकार (Atomic & Tonic Radii)

संक्रमण तत्त्वों की परमाणु त्रिज्या का मान s- ब्लॉक तत्त्वों से कम होता
है लेकिन p- ब्लॉक तत्त्वों से अधिक होती है जैसे Sc की परमाण्विक
त्रिज्या (144pm) Ca की परमाण्विक त्रिज्या (197pm) से कम होती
है। उसी प्रकार Zn की परमाण्विक त्रिज्या (125pm) Ga की परमाण्विक

त्रिज्या (122.5pm) से अधिक है। ये दोनों तत्त्व समान आवर्त के तत्त्व है।

- किसी संक्रमण श्रेणी में बायें से दायें चलने पर प्रत्येक अवस्था में एक नाभिकीय आवेश की वृद्धि होती है। जिसके कारण बाह्यतम s इलेक्ट्रॉन पर नाभिकीय आकर्षण बल बढ़ता है। अत: आकार में कमी होनी चाहिये, लेकिन अन्त: d कक्षकों मे भी एक-एक c की वृद्धि होने से ये बाह्यतम s- इलेक्ट्रॉन पर परिरक्षण प्रभाव डालते हैं। जो नाभिकीय आकर्षण बल को सन्तुलित करने की कोशिश करता है।
- प्रारम्भ में नाभिकीय आकर्षण बल, परीरक्षण प्रभाव से अधिक होता है। अतः Sc से Cr तक आकार में कमी होती है।
- इसके बाद नाभिकीय आकर्षण बल व परीरक्षण प्रभाव समतुल्य हो जाने के कारण आकार निश्चित रहता है।

Cr, Mn, Fe, Co, Ni के आकार लगभग समान होते हैं।

इसके पश्चात् आकार में वृद्धि होती है। यहां परीरक्षण प्रभाव नाभिकीय
 आवेश से अधिक प्रभावी होता है।

3d श्रेणी के तत्त्वों की परमाण्विक त्रिज्यायें

तत्व	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
परमाण्विक त्रिज्या (pm)	144	132	122	117	117	117	116	115	117	125
धात्विक त्रिज्या (pm)	164	147	135	129	137	126	125	125	128	137

- Sc से Cr तक परमाण्विक त्रिज्या का मान क्रमश: घटता है।
 [नाभिकीय आकर्षण बल > परीरक्षण प्रभाव]
- Cr. Mn Fe. Co के आकार प्राय: समान होते हैं । [नाभिकीय आकर्षण बल = परीरक्षण प्रभाव]
- Cu व Zn के आकार कुछ बड़े होते हैं। [परीरक्षण प्रभाव > नाभिकीय आकर्षण बल]
- हम जानते हैं कि वर्ग में ऊपर से नीचे चलने पर परमाण्विक त्रिज्या का मान बढ़ता है। (कोशों की संख्या बढ़ने के कारण)
- े लेकिन 5d श्रेणी के तत्त्वों का आकार अपने वर्ग में 4d श्रेणी के तत्त्वों के लगभग बराबर होता है। $(4d \simeq 5d)$

[यह लेन्थेनाइड संकुचन के कारण होता है।] 5d संक्रमण श्रेणी में 32 नाभिकीय आवेश अधिक होने के कारण इनका आकार 4d के तत्वों से लगभग समान हो जाता है।

- (a) Zr (4d) का आकार Hf (5d) के समान है।
- (b) Tc (4d) का आकार Re(5d) के समान है।
- (c) Ru (4d) का आकार Os(5d) के समान है।
- (d) Rh (4d) का आकार Ir (5d) के समान है।
- (e) Pd(4d) का आकार Pt(5d) के समान है।

आयनिक त्रिज्या

- संक्रमण तत्त्वों के आयनों की त्रिज्या का मान s- ब्लॉक तत्त्वों के आयनों से कम होती है।
- संक्रमण तत्त्वों के धनायनों की त्रिज्या अपने परमाणुओं से कम होती है।
- समान ऑक्सीकरण अवस्था में विद्यमान धातु आयन की आयिनक त्रिज्या परमाणु क्रमांक बढ़ने के साथ-साथ नियत रूप से घटती है।

आयन	Ti ²⁺	V ²⁺	Cr ²⁺	Mn ²	Fe ²⁻	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁻
आयनिक त्रिज्या	90	88	84	80	76	74	72	69	71

नोट-परमाणु क्रमांक के बढ़ने पर प्रभावी नाभिकीय आवेश में वृद्धि होती है, जिससे आयन की त्रिज्या घटती है। यहां यह भी समझ लेना आवश्यक है कि आयन में s इलेक्ट्रॉन्स पृथक् हो जाते हैं। अत:

परीरक्षण प्रभाव नगण्य हो जाता है।

 $Ti^{2+} \ge V^{2+} \ge Cr^{2+} \ge Mn^{2+} \ge Fe^{2+} \ge Co^{2+} \ge Ni^{2-} \ge Cu^{-2} \le Zn^{+2}$

अत: ऑक्सीकरण अवस्था के बढ़ने पर स्वत: ही आयनिक त्रिज्या का मान घटता है।

 $Fe^{2-} > Fe^{3+}$

 $Mn^{2+} > Mn^{4+} > Mn^{6+} > Mn^{7+}$

 4d व 5d संक्रमण श्रेणी के सदस्यों की निश्चित ऑक्सीकरण अवस्था में आकार समान होता है।

(लैन्थेनाइड संकुचन के कारण)

 $Zr^{2+} = Hf^{2+}; \quad Cd^{2+} = Hg^{2+}$

2. धात्विक प्रकृति (Metallic Nature)

- सभी संक्रमण तत्व धात्विक प्रकृति प्रदर्शित करते हैं तथा इनमें तीन प्रकार की क्रिस्टल संरचनाएँ पायी जाती है!
- काय केन्द्रित घनीय संरचना (BCC), फलक केन्द्रित घनीय संरचना (FCC) तथा षट्कोणीय निबिड़ संकुलित संरचना (HCP)।
- मैंगनीज के स्थायी d⁵ विन्यास के कारण इसकी विशेष संकुलित क्रिस्टल व्यवस्था होती है।
- प्रभावी नाभिकीय आवेश की अधिकता तथा अयुग्मित d-इलेक्ट्रॉनों की उपलब्धता के कारण संक्रमण तत्व प्रबल धात्विक बंध बनाते हैं।

- धात्विक चमक के साथ-साथ इनकी कठोरता, इनके उच्च गलनांक, उच्च क्वथनांक, परमाण्वीकरण की उच्च एन्थेल्पी, आघात वर्धनीयता, आदि गुण प्रबल धात्विक बंधों के कारण ही होते हैं।
- परमाणु में अयुग्मित इलेक्ट्रॉनों की संख्या के बढ़ने के साध-साथ धात्विक बंध की सामर्थ्य भी बढ़ती जाती है।
- स्कैण्डियम से क्रोमियम तक धात्विक कठोरता बढ़ती जाती है और अयुग्मित इलेक्ट्रॉनों की संख्या में कमी से क्रोमियम से जिंक तक वापस घटती जाती है।

द्ध अभयनन एन्बेल्पी (Tomisation Enthalpy)

- संक्रमण धातुओं की आयनन एन्थैल्पी s- ब्लॉक तत्त्वों से अधिक लेकिन p- ब्लॉक तत्त्वों से कम होती है।
- अत: संक्रमण धातुएँ s- ब्लॉक तत्त्वों की तुलना में कम विद्युत धनीय
 p- ब्लॉक तत्त्वों से अधिक विद्युत धनीय है।
- िकसी संक्रमण श्रेणी में बायें से दायें चलने पर आयतन ए-थैल्पी के मान क्रमश बढ़ता है लेकिन दो क्रमागत तत्त्वों के मध्य का अन्तर नियमित नहीं होता।
- प्रथम संक्रमण श्रेणी [3d श्रेणी] से सम्बन्धित तस्त्वों के लिये पहले $\Delta_i H_1$, दूसरे $\Delta_i H_2$ व तीसरे $\Delta_i H_3$ के मान निम्न हैं—

प्रथम संक्रमण श्रेणी के तत्त्वों की प्रथम, द्वितीय व तृतीय आयनन एन्थैल्पी

								···	<u> </u>	
तत्त्व	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
$\Delta_{i}H_{1}$ $\Delta_{i}H_{2}$ $\Delta_{i}H_{2}$	631 1235 2393	656 1309 2657	650 1414 2833	653 1592 2990	717 1509 3260	762 1561 2962	758 1644 3243	736 1752 3402	745 1958 3556	906 1734 3 82 9

एन्थैल्पी के मान kJ/mol में हैं।

- प्रथम संक्रमण श्रेणी के धातुओं मे बायें से दायें चलने पर आयनन एन्थेल्पी का मान क्रमशः बढ़ता है, यह नाभकीय आवेश के बढ़ने के कारण होती है। लेकिन जैसे-जैसे (n-1)d कक्षकों में इलेक्ट्रॉन जुड़ते हैं वैसे-वैसे परीरक्षण प्रभाव/आवरण प्रभाव भी बढ़ता हैं इस प्रकार नाभिकीय आवेश के बढ़ने का प्रभाव आवरण प्रभाव के बढ़ने के विपरीत है अर्थात् ये दोनों प्रभाव एक दूसरे के विरोध में है अतः संक्रमण धातुओं की आयनन एन्थेल्पी में वृद्धि बहुत सीमित है।
- 3d धातुओं की प्रथम आयनन एन्थेल्पी की अनियमित प्रवृत्ति का यद्यपि कोई विशेष रासायनिक महत्व नहीं है फिर भी हम यह स्पष्टीकरण दे सकते हैं कि एक इलेक्ट्रॉन के प्रथक् होने पर 4s तथा 3d कक्षकों की आपेक्षिक ऊर्जाओं में परिवर्तन होता है इस प्रकार किसी धातु के एक धनायन में [M+] आयन का विन्यास do तथा 4s0 होता है।
- इस प्रकार, इलेक्ट्रॉनों की संख्या में वृद्धि ओर s इलेक्ट्रॉनों के d कक्षकों में स्थानान्तरण के फलस्वरूप कुछ विनिमय ऊर्जा के साथ आयनन होने पर ऊर्जा का पुनर्गठन होता है।
- Cr के d विन्यास में किसी भी परिवर्तन की अनुपस्थिति में दूसरा

- आयनन एन्थैल्पी का मान कम होता है।
- Zn की आयनन एन्थैल्पी का मान उच्च होता है क्योंकि इनके d-कक्षक और s कक्षक पूर्णतया भरे होते हैं और स्थायी विन्यास होता है।
- Cr व Cu की द्वितीय आयनन एन्थैल्पी के मान अप्रत्याशित रूप से उच्च है जिनमें M^+ आयनों के d^5 व d^{10} विन्यास विकसित होने के कारण विनिमय ऊर्जा का महत्वपूर्ण ह्यास होता है।
- Zn का द्वितीय आयनन एन्थेल्पी का मान कम होता है। क्योंकि आयनन हेतु एक इलेक्ट्रॉन निकलता है तो इसके अन्तिम कोश में केवल एक इलेक्ट्रॉन 4s' बचता है जो कि तुलनात्मक दृष्टि से अस्थायी है।
- तृतीय आयनन एन्थैल्पी में प्रवृत्ति 4s कक्षक के कारक द्वारा जटिल महीं बनती और Mn²⁺ [d⁵] तथा Zn²⁺ [d¹⁰] से एक इलेक्ट्रॉन हटाने से अधिक कठिनाई प्रदर्शित होने के कारण उच्च मान होंगे।

्रे आवसीक्तम अवस्था (Chadation States)

- संक्रमण तत्त्वों के विशिष्ट लक्षणों में से एक लक्षण इन तत्त्वों द्वारा
 यौगिकों में कई ऑक्सीकरण अवस्थायें दर्शाना है।
- 3d व 4s कक्षकों की ऊर्जा लगभग समान होती है अतः दोनो

ही ऊर्जा स्तरों में उपस्थित इलेक्ट्रॉन बन्ध बनाने में प्रयुक्त होते है।

- संक्रमण तत्वों का लाक्षणिक गुण इनकी विभिन्न ऑक्सीकरण अवस्थायें प्रदर्शित करने की योग्यता है।
- कुछ तत्वों को छोडकर (Zn, Cd, Hg) अधिकांश तत्व भिन्न ऑक्सीकरण अवस्थाऐं दर्शाते है।
- Zn, Cd व Hg सिर्फ +2 ऑक्सीकरण अवस्था प्रदर्शित करते है।
- ns तथा (n 1)d उपकोशों की ऊर्जा लगभग समान होने कारण व ns तथा (n - 1)d इलैक्ट्रॉन के बन्धन में भाग लेने के कारण, संक्रमण तत्व भिन्न ऑक्सीकरण अवस्थायें प्रदर्शित करते है।
- किसी संक्रमण तत्व की प्रथम ऑक्सीकरण अवस्था, ns उपकोश में उपस्थिति इलेक्ट्रॉन की संख्या के तुल्य होती है। अर्थात् ns उपकोश में जितने भी e उपस्थिति होगे, एक साथ पृथक होकर, निम्न ऑक्सीकरण अवस्था प्रदर्शित करते है।

संक्रमण तत्व	Sc d ¹ s ²	$Ti d^2s^2$	$\frac{V}{d^3s^2}$	Cr d ⁵ s ¹	Mn d ⁵ s ²	Fe d ⁶ s ²	Co d's²	Ni d ⁸ s ²	Cu d ¹⁰ s ¹	$\frac{Zn}{d^{10}s^2}$
प्रथम अवस्था	+2	+2	+2	+1	+2	+2	+2	-2	+1	+2

- (n-1) d उपकोश में उपस्थित अयुग्मित इलेक्ट्रॉन बन्धन में एक एक करके भाग लेते हैं।
- किसी तत्व की उच्चतम ऑक्सीकरण अवस्था ns में उपस्थिति इलेक्ट्रॉन की कुल संख्या + (n - 1) d उपकोश में उपस्थित अयुग्मित इलेक्ट्रॉन की कुल संख्या के योग के तुल्य होती है। जैसे Mn में 3d⁵ 4s² इलेक्ट्रॉनिक विन्यास है।

2 + 5 = 7.

अतः Mn की अधिकतम ऑक्सीकरण अवस्था +7 होगी। Fe में $3d^6 4s^1$

2 + 4 = +6

अतः Fe की अधिकत्म ऑक्सीकरण अवस्था +6 होगी।

किसी संक्रमण श्रेणी में बायें से दाये चलने पर ऑक्सीकरण अवस्था क्रमशः बढ़ती जाती है। (अन्तः d उपकोश में अयुग्मित इलेक्ट्रॉन की संख्या में क्रमशः वृद्धि होते रहने के कारण) मध्य में अधिकतम व उसके बाद ऑक्सीकरण अवस्था क्रमशः घटती जाती है। (अन्तः d उपकोश के अयुग्मित इलेक्ट्रॉन की संख्या क्रमशः घटतें रहने के कारण।

प्रथम संक्रमण श्रेणी के तत्वों की विभिन्न ऑक्सीकरण अवस्था-

Sc_{21}	3d ¹ 4s ²	+2, +3
Ti ₂₂	$3d^2 4s^2$	+2, +3, +4
V_{23}	$3d^3 4s^2$	+2, +3, +4, +5
Cr ₂₄	3d ⁵ 4s ¹	+1, +2, +3, +4, +5, +6
Mn ₂₅	3d ⁵ 4s ²	+2, +3, +4, +5, +6, +7
Fe ₂₆	$3d^6 4s^2$	+2, +3, +4, +5, +6
Co ₂₇	$3d^7 4s^2$	+2, +3, +4, +5
Ni ₂₈	$3d^8 4s^2$	+2, +3, +4
Cu ₂₉	3d ¹⁶ 4s ¹	+1, +2,
Zn ₃₀	$3d^{10} 4s^2$	+2

- किसी संक्रमण तत्व की वह ऑक्सीकरण अवस्था अधिक स्थायी होती है, जिसमें या तो अर्धपूर्ण भरे कक्षक [d⁵] या पूर्ण भरे कक्षक [d¹⁰] उपस्थित हो
 - Fe की +3 ऑक्सीकरण अवस्था +2 से अधिक स्थायी है +3 में $[d^5]$ व +2 में $[d^6]$ इलेक्ट्रॉनिक विन्यास उपस्थिति होता है।
- Ru व Os संक्रमण तत्व +8 ऑक्सीकरण अवस्था (अधिकतम)
 प्रदर्शित करतें हैं।
- Zn , Cd व Hg सिर्फ एक प्रकार की ऑक्सीकरण अवस्था [+2] प्रदर्शित करते हैं।
- संक्रमण तत्व निम्न ऑक्सीकरण अवस्था में आयनिक बन्ध बनातें
 है। +2 व +3 ऑक्सीकरण अवस्था में आयनिक बन्ध बनाते हैं।
 उच्च ऑक्सीकरण अवस्था में ये सहसंयोगजक बन्ध बनाते हैं।
 (+4, +5, +6, +7)

आयनिक गुण ∝ <u>1</u> ऑक्सीकरण अवस्था सहसंयोजन गुण ∝ ऑक्सीकरण अवस्था

 उच्चतम ऑक्सीकरण अवस्थायें फ्लोराइडों व ऑक्साइड में पाई जाती है।

(i) संक्रमण तत्व निम्न ऑक्सीकरण अवस्था में बनने वाले **ऑक्साइड क्षारीय प्रकृति** प्रदर्शित करते हैं। जैसे— +1, +2 व +3 ऑक्सीकरण अवस्था में तत्वों के ऑक्साइड क्षारीय होते हैं।

CrO, MnO, TiO Cu2O CuO ZnO आदि क्षारीय है।

- (ii) मध्यवाली ऑक्सीकरण अवस्था में तत्वों के ऑक्साइड उभयधर्मी है। [+3 एवं +4 में] Cr_2O_3 , Mn_2O_3 . MnO_2
- (iii) उच्च ऑक्सीकरण अवस्था में तत्वों के ऑक्साइड अम्लीय होतें हैं MnO₃ CrO₃ एवं Mn₂O₇ आदि [+6 एवं +7 में]
- कुछ संक्रमण तत्व अपने कुछ यौगिकों में शून्य ऑक्सीकरण अवस्थायें भी दर्शाते है जैसे— [Ni(CO)₄]: [Fe(CO)₅] आदि।
- उच्च ऑक्सीकरण अवस्था में तत्व के यौगिक प्रबल ऑक्सीकारक होते है व निम्न ऑक्सीकरण अवस्था में तत्क के यौगिक अपचायक होते है।

5. उद्योरकीय गुण (Catalytic Properties)

- संक्रमण धातु तथा इनके यौगिक उत्प्रेरक सक्रियता प्रदर्शित करते हैं।
- उत्प्रेरक के रूप में अधिकतर संक्रमण धातुओं, इनकी मिश्र धातुओं और यौगिकों को ही प्रयोग में लिया जाता है।
- इसके निम्न कारण हैं—
 - (1) ये परिवर्तनशील ऑक्सीकरण अवस्था प्रदर्शित करते हैं।
 - (2) इनके पास रिक्त d कक्षक उपलब्ध होते हैं।
- अतः उपर्युक्त दोनों विशेषताओं के कारण, ये क्रियाकारकों के अणुओं के साथ रिक्त कक्षकों को उपयोग में लेकर आसानी से मध्यवर्ती अस्थायी यौगिक बना लेते हैं, जो फिर उत्पादों में टूट जाता है तथा ये पुनः मुक्त होकर अपनी पूर्व अवस्था में आ जाते हैं।
- इस प्रकार अभिक्रिया की सक्रियण ऊर्जा कम हो जाती है और अभिक्रिया का वेग बढ़ जाता है। उदाहरण--
- (1) सम्पर्क विधि द्वारा ${
 m H_2SO_4}$ के निर्माण में ${
 m SO_2}$ को ${
 m SO_3}$ में बदलने के लिए $\mathbf{V}_2\mathbf{O}_5$ को उत्प्रेरक के रूप में प्रयुक्त करते हैं। यह SO2 को अपनी सतह पर अधिशोषित कर लेता है और इसे ऑक्सीजन देकर SO_3 में बदल देता है तथा स्वयं $\mathrm{V}_2\mathrm{O}_4$ में बदल जाता हैं V_2O_4 अब पुनः O_2 से क्रिया करके V_2O_5 में बदल जाता है ।

$$V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$$

 $V_2O_4 + 1/2O_2 \rightarrow V_2O_5$

(II) वनस्पति तेलों से वनस्पति घी बनाते समय, Ni को उत्प्रेरक के रूप में प्रयोग में लेते हैं, जो कि अपनी सतह पर ${
m H}_2$ का अधिशोषण करता है, जिससे \mathbf{H}_2 की क्रियाशीलता बढ़ जाती है।

R — CH = CH—COOR +
$$H_2$$
 \xrightarrow{Ni} R—C H_2 —COOR COOR वनस्पति तेल (असंतृप्त) वनस्पति घी (संतृप्त)

(III) हैबर विधि द्वारा NH3 निर्माण में सूक्ष्म लोह चूर्ण (उत्प्रेरक) और Mo (वर्धक) को प्रयोग में लेते हैं।

$$N_2 + 3H_2 \xrightarrow{Fe+Mo} 2NH_3$$

(IV)एथीलीन से पॉलीथीन बहुलक बनाने में TiCl, को उत्प्रेरक के रूप में प्रयोग में लेते हैं।

$$nCH_2 = CH_2 \xrightarrow{TiCl_4} (-CH_2-CH_2-)_n$$

(V) ऑस्टवाल्ड विधि द्वारा $\mathrm{HNO_3}$ बनाते समय $\mathrm{NH_3}$ व $\mathrm{O_2}$ की क्रिया से NO बनाने में Pt को उत्प्रेरक के रूप में प्रयोग में लेते हैं।

$$4NH_3 + 5O_2 \xrightarrow{Pt} 4NO + 6H_2O$$

६. रंगीन आयनस (Coloured Ions)

- संक्रमण तत्वों के अधिकांश यौगिक ठोस अवस्था व विलयन दोनों में रंगीन होते है, यह गुण s व p ब्लॉक तत्वों के यौगिकों से भिन्न होता है।
- अधिकांशतः वे आयन जिनमें सभी e^- युग्मित हो $[d^0,\,s^0,\,d^{10},\,$ s²] प्रायः रंगहीन होते है।
- यदि उनमें एक भी c अयुगीत हों तो वे आयन रंगीन होते है। प्रथम संक्रमण श्रेणी के जलयोजित आयनों के रंग

जल योजित आयन्स की ऑक्सीकरण	बाह्य विन्यास	आयन का रंग
अवस्था Se ³⁺ , Ti ⁴⁺	3d ⁰ 4s ⁰	रंगहीन
Ti ³⁺	3d ¹ 4s ⁰	नीला लोहित
V^{3+} V^{2+} , Cr^{3+}	$\frac{3d^{2} 4s^{0}}{3d^{3} 4s^{0}}$	हरा
Mn ³⁺	$\frac{3d^{4}4s^{9}}{3d^{4}4s^{9}}$	बेगंनी बेगनी
Mn ²⁻	3d ⁵ 4s ⁰	गुलाबी गुलाबी
Fe ³⁺	3d ⁵ 4s ⁰	पीला
Co ²⁺	$3d^{6} 4s^{0}$ $3d^{7} 4s^{0}$	हरा
Ni ²⁺	$3d^{8}4s^{0}$	गुलाबी हरा
$\mathrm{Cu}^{2 au}$	3d ⁹ 4s ⁰	नीला नीला
Cu^{+1} , Zn^{2-}	3d ¹⁰ 4s ⁰	रंगहीन

रंग का स्पष्टीकरण-

- श्वेत प्रकाश सात रंगों का मिश्रण होता है।
- इसके प्रत्येक रंग के विकिरण की तरंगर्द्धर्य भिन्न-भिन्न होते है।
- सातों रंगों की तरंगर्द्धध्यं लगातार क्रम में होती है।
- VIBGYOR-Violet, Indigo Blue, green, yellow, orange and Red.
- यदि कोई वस्तु सभी रंगों को अवशोषित कर ले तो वह हमें काली दिखाई देगी।

- यदि कोई वस्तु प्रकाश को अवशोषित नहीं करती है तो वह श्वेत या रंगहीन दिखायी देगी।
- यदि कोई वस्तु श्वेत प्रकाश के किसी विशेष रंग की तरंगद्रध्यं को अवशोषित करता है तो इसका पूरक रंग दिखाई देगी, जैसे-यदि वस्तु आसमानी रंग अवशोषित करती है तो वह नांश्गी रंग की दिखायी देगी।

तरंग दैर्घ्य (A°)	एवं अवशोषित	उत्सर्जित पूरक रंग
4000 A°	बैगनी	हरित पीला
4500 A°	नीला	पीला
4900 A°	नीला हरा	लाल
5700 A°	पीला हरा	बैगनी
5800 A°	पीला	गहरा नीला
6000 A°	नारगी	नीला
6500 A°	लाल	नीला हरा

- संक्रमण धातु परमाणु या आयन में उपस्थित सभी पांचों d -कक्षकों की ऊर्जा समान होती है। अतः इन्हें समभ्रंश कक्षक कहते है।
- पांच d- कक्षकों में से तीन कक्षकों [d_{xy}, d_{xz} व d_{yz}] की आकृति [t_{2g} कक्षक] अन्य दो d- कक्षकों [d_x²,-y², d_z²].e_g से मिन्न होती है।
- जब संक्रमण धातु परमाणु या आयन के पास कोई उदासीन या ऋणायनिक लिगेण्ड आते है तो इन पांचों d - कक्षकों की ऊर्जा समान नहीं रहती और यें दो समूहों में विभक्त हो जातें है इसे क्रिस्टल क्षेत्र विघटन/विपाटन कहते है।

- इनमें से एक सेट, जिसमें तीन \mathbf{d} कक्षक $[\mathbf{d}_{xy}, \mathbf{d}_{zx}, \mathbf{d}_{yz}]$ होते हैं। निम्न ऊर्जा स्तर के $[\mathbf{t}_{2y}$ कक्षक] तथा दूसरा सेट जिनमें दो \mathbf{d} कक्षक $[\frac{d_{x^2-y^2}}{2}]$ या eg कक्षक होते हैं उच्च ऊर्जा स्तर के होते हैं। (अष्टफलकीय संरचना होने पर)
- अतः आंशिक भरे [n-1] d कक्षकों में एक या अधिक इलेक्ट्रॉन का संक्रमण निम्न ऊर्जा युक्त d - कक्षक से उच्च ऊर्जा युक्त d - कक्षकों में संभव हो जाता है, क्यों कि इनमें ऊर्जा अन्तर बहुत ही कम होता है।
- यह कम ऊर्जा अन्तर युक्त प्रकाश स्पेक्ट्रम के दृश्य क्षेत्र से सम्बन्धित होता है।
- अतः जब संक्रमण धातु परमाणु या आयन पर श्वेत प्रकाश गिरता है तो उस प्रकाश में से एक निश्चित रंग की प्रकाश ऊर्जा का अवशोषण होता है एवं एक या अधिक इलेक्ट्रान का उत्तेजन निम्न ऊर्जा के कक्षकों से उच्च उर्जा के कक्षकों में होता है।

- इस प्रकार जब श्वेत प्रकाश से विशिष्ट रंग ही विकिरणों का अवशोषण होता है तो एक पूरक रंग दिखायी देता है।
- इस प्रकार किसी संक्रमण धातु परमाणु या आयनों में रंग का प्रदर्शन, d-d इलेक्ट्रान के संक्रमण के कारण होता है। जिसे d-d संक्रमण कहते हैं।

र जुम्बकीय गुण (Magnetic Properties)

- परमाणु में ऋणावेशित इलैक्ट्रॉन की कक्षीय गति और अपने अक्ष पर चक्रण के कारण, चुम्बकीय क्षेत्र उत्पन्न हो जाता है, जिससे पदार्थ में चुम्बकीय गुण आ जाते हैं और वह एक नन्हें चुम्बक की तरह व्यवहार प्रदर्शित करने लगता है।
- अतः पदार्थ में चुम्बकीय गुणों के उत्पन्न होने का मूल कारण,
 इलेक्ट्रॉन की निम्न दो प्रकार की गति है—
 (i) कक्षीय गति (ii) चक्रण गति
- इस प्रकार इलेक्ट्रॉन का कुल चुम्बकीय आघूर्ण (μ), इन दोनों के योग के बराबर होता है— $\mu = \mu^L + \mu^S$ B.M. यहाँ $\mu^L = \sigma$ क्षीय चुम्बकीय आघूर्ण और $\mu^S = \tau$ क्रण चुम्बकीय आघूर्ण
- अतः इलेक्ट्रॉन एक अत्यन्त सूक्ष्म चुम्बक की तरह कार्य करता
 है। चुम्बकीय आधूर्ण को बोर मैग्नेटोन (B.M.) में व्यक्त किया
 जाता है।

$$B.M. = \frac{eh}{4\pi mc}$$

- संक्रमण तत्वों में (n 1) उपकोश के इलेक्ट्रॉन सतह पर ही होते हैं जो कि बाहरी वातावरण से बहुत अधिक प्रभावित होते हैं। इसलिए इनकी कक्षकीय गति बहुत सीमित होने के कारण, इनके लिए μ^L का मान नगण्य होता है।
- अतः इलैक्ट्रॉन के लिए $\mu = \mu^S$ माना जा सकता है।
- अतः संक्रमण तत्वों के उपसहसंयोजक यौगिकों के चुम्बकीय आघूर्ण का मान निम्न सूत्र द्वारा ज्ञात किया जाता है-

$$\mu = \sqrt{n(n+2)}$$

यहाँ n = अयुग्मित इलेक्ट्रॉन की संख्या है।

■ विभिन्न संक्रमण वन्तों के अपनों की उन्हरी

 विभिन्न संक्रमण तत्वों के आयनों की चुम्बकीय आधूर्ण के मान निम्न हैं—

अयुग्मित इलै. की संख्या	आयन चुम्बकीय	परिकलिल आघूर्ण (B.M.)	चुम्बकीय गुण
0	Se ⁻³ , Ti ⁺⁴ , V ⁵ , Zn ²⁺	0.0	प्रतिचुम्बकीय
<u>l</u>	Ti^{3+} , V^{4-} , Cu^{2+}	1.73	अनुचुम्बकीय
22	Ti^{2+}, V^{3+}, Ni^{2+}	2.83	अनुचुम्बकीय
3	$V^{2^{-}}$, $Cr^{3^{+}}$, $Co^{2^{-}}$	3.87	अनुचुम्बकीय
4	Cr ²⁺ , Mn ³⁺ , Fe ²⁻ , Co ³⁺	4.90	अनुचुम्बकीय
5	Mn^{2+} , Fe^{3+}	5.92	अनुचुम्बकीय

- जब किसी पदार्थ को बाह्म चुम्बकीय क्षेत्र में रखा जाता है, तो इनके व्यवहार को निम्न तीन भागों में बाँटा जा सकता है।
- 1. प्रतिचुम्बकीय गुण (Diamagnetism)-
- यदि किसी पदार्थ को चुम्बकीय क्षेत्र में रखने पर, ये उसकी तीव्रता कम कर देते हैं तथा पदार्थ चुम्बकीय क्षेत्र में प्रतिकर्षित होता है तो यह प्रतिचुम्बकीय पदार्थ कहलाता है तथा यह गुण प्रतिचुम्बकत्व कहलाता है। ऐसे पदार्थ से चुम्बकीय बल रेखाएं दूर होने लगती है।

प्रतिचुम्बकीय प्रभाव

- ऐसे पदार्थी में उपस्थित परमाणुओं या आयनों में उपस्थित सभी इलेक्ट्रॉन युग्मित होते हैं। अतः एक इलेक्ट्रॉन द्वारा उत्पन्न चुम्बकीय आघूर्ण, दूसरे इलेक्ट्रॉन द्वारा उत्पन्न चुम्बकीय आघूर्ण को उदासीन कर देता है।
- अतः कुल चक्रण आघूर्ण शून्य होता है।
- प्रतिचुम्बकत्व का गुण ताप पर निर्भर नहीं करता है और यह प्रत्येक पदार्थ में पाया जाता है। क्योंकि यह युग्मित इलेक्ट्रॉन का गुण होता है जोकि प्रत्येक पदार्थ में होते है।
- प्रतिचुम्बकत्व गुण बहुत दुर्बल होता है, अतः यह गुण केवल उन पदार्थों के द्वारा प्रदर्शित किया जाता है, जिनमें सभी इलेक्ट्रॉन युग्मित होते है।
- अयुग्मित इलेक्ट्रॉन उपस्थिती वाले पदार्थों के द्वारा अनुचुम्बकत्व गुण उपस्थित होने के कारण, प्रतिचुम्बकत्व का गुण अत्यन्त दुर्बल होता है जो प्रदर्शित नहीं होता है।

2. अनुचुम्बकीय गुण (Paramagnetism)-

- यदि किसी पदार्थ को चुम्बकीय क्षेत्र में रखने पर ये उसकी तीव्रता बढ़ा देते हैं अर्थात् चुम्बकीय बल रेखाओं को अपनी ओर आकर्षित करते हैं, जिससे चुम्बकीय बल रेखाएं उन पदार्थों में से होकर गुजरने लगती हैं तो यह अनुचुम्बकीय पदार्थ कहलाता है और यह गुण अनुचुम्बकत्व कहलाता है। अतः ऐसे पदार्थ चुम्बकीय क्षेत्र की ओर आकर्षित होते है।
- ऐसे पदार्थों में उपस्थित परमाणु या आयनों में एक या अधिक अयुग्मित इलेक्ट्रॉन उपस्थित होते हैं। अतः इनके द्वारा उत्पन्न चुम्बकीय आधूर्ण उदासीन नहीं हो पाता है।
- अतः स्थायी व निश्चित मात्रा में चुम्बकीय आघूर्ण पाया जाता
 है, जिससे ये चुम्बकीय क्षेत्र द्वारा आकर्षित होते हैं।

कुछ आयनिक जातियों के चुम्बकीय आधूर्ण

क्रमांक	आयन	बाह्मतम इलेक्ट्रॉनि विन्यास	अयुग्मित इलेक्ट्रॉनों की संख्या	चुम्बकीय आघूर्ण (B.M.) परिकलित
1.	Sc3+	$3d^{0}$	0	0
2.	Ti ³⁺	3d ¹	1	1.73
3.	V31	$3d^2$	2	2.83
4.	Cr3+	3d ³	3	3.87
5.	Mn ²⁺	3d ⁵	5	5.92
6.	Fe ²⁺	3d ⁶	4	4.89
7.	Co2+	3d ⁷	3	3.87
8	Ni ²⁺	3d ⁸	2	2.83
9.	Cu ²⁺	3d ² 3d ³ 3d ⁵ 3d ⁶ 3d ⁸ 3d ⁹ 3d ¹⁰	1	1.73
10.	Zn²-	3d ¹⁰	0	0.00

अनुचुम्बकीय प्रभाव

- पदार्थ में अनुचुम्बकीय गुणों का मान, परमाणु या आयन में अयुग्मित इलेक्ट्रॉन की संख्या पर निर्भर करता है। इनकी संख्या बढ़ने पर अनुचुम्बकीय गुणों का मान भी बढ़ता है परन्तु अनुचुम्बकीय गुणों का मान ताप के विलोमानुपाती होता है।
- 3. लौहचुम्बकीय गुण (Ferromagnetism)-
- कुछ पदार्थ ऐसे होते हैं, जिनमें अनुचुम्बकीय गुण अत्यधिक होते हैं, अतः ये चुम्बकीय क्षेत्र द्वारा प्रबल रुप से आकर्षित होते हैं और चुम्बकीय क्षेत्र हटा लेने के बाद भी, वे स्वयं स्थायी चुम्बक की तरह व्यवहार प्रदर्शित करते हैं।
- ऐसे पदार्थ लौह चुम्बकीय कहलाते है तथा वह गुण लौहचुम्बकत्व कहलाता है। उदाहरण Fe, Co, Ni, Fe₃O₄ और Mn के मिश्र धात् आदि।
- इन पदार्थों में अनेकों छोटे--छोटे आण्विक चुम्बक होते हैं, जो कि बाहा चुम्बकीय क्षेत्र में रखने पर, ये सभी आण्विक चुम्बक एक ही दिशा में इस प्रकार से व्यवस्थित हो जाते हैं कि इन सभी का चुम्बकीय प्रभाव एक ही दिशा में कार्य करने लगता है।
- बाह्य चुम्बकीय क्षेत्र हटा लेने पर भी यह व्यवस्था बनी रहती
 है। अतः यह स्थायी चुम्बक का कार्य करने लगता है।
- ताप बढ़ाने या चोट करने पर, यह व्यवस्था बिगड़ जाती हैं,
 जिसमें इनका चुम्बकीय गुण नष्ट हो जाता है।

चुम्बकीय गुणों के अनुप्रयोग (Applications of Magnetic properties)

- (1) चुम्बकीय गुणों के मानों से परमाणु व आयन में अयुग्मित इलेक्ट्रॉन की संख्या का पता चल जाता है, जिससे धातु परमाणु की ऑक्सीकरण संख्या ज्ञात हो जाती हैं।
- (2) संक्रमण धातुओं के यौगिकों और विलयनों के रंग की व्याख्या की जा सकती है।

8.10

- (3) आयनिक और सहसंयोजक बन्ध के अन्तर की व्याख्या की जा सकती है।
- (4) चुम्बकीय गुणों के मान से संकुल यौगिकों में संक्रमण धातु आयन की संकरण अवस्था और आकृति को निर्धारित किया जा सकता है।

8. अन्तराकारी यौगिक (Interstitial compounds)

- संक्रमण धातुओं के क्रिस्टल में परमाणुओं के निकटतम रूप से व्यवस्थित होने के बाद भी, इनके मध्य छोटे—छोटे रिक्त स्थान शेष रह जाते हैं जिन्हें अन्तराकाश कहते हैं।
- इस अन्तराकाशों में छोटे-छोटे अधातु परमाणु जैसे- H. B, C,
 N आदि स्थान ग्रहण कर लेते हैं और इनके साथ धातु परमाणु बंध बना लेते हैं।
- इस प्रकार बने यौगिकों को, अन्तराकाशीय यौगिक कहते है।
 इन यौगिकों का संगटन धातु और अधातु परमाणुओं के परमाण्वीय
 त्रिज्या के अनुपात पर निर्भर करता है।
- इन यौगिकों में संक्रमण धातु की आघातवर्धनीयता और तन्यता कम हो जाती हैं परन्तु मजबूती, कठोरता, गलनांक व क्वथनांक बढ जाते है।
- अतः ये यौगिक काफी सख्त व कठोर होते हैं। उदाहरण स्टील व ढलवां लोहे में अन्तराकाशीय कार्बन की उपस्थिति के कारण, ये काफी कठोर होते हैं।
- इनके उदाहरण TiC, Mn4N, Fc3H आदि है।
- ये रासायनिक रूप से अक्रियाशील होते है।
- ये विद्युत धारा के अच्छे सुचालक है।

9. मिश्र धातुओं का बनना (Formation of Alloys)

- संक्रमण धातुओं में मिश्र धातु बनाने का गुण होता है।
- मिश्र धातुये, कठोर, उच्च गलनांक रखने वाली होती है।
- इनमें संक्षारण के प्रति अधिक प्रतिरोधकता होती है।
- इनके निम्न उदाहरण है-
 - (i) पीतल (Cu + Zn)
 - (ii) स्टेनलेस स्टील (Fe + Cr + Ni)
 - (iii) क्रोम स्टील (Fe + Cr)
 - (iv) टंगस्टन स्टील (Fe + W)

व्याख्या—िकसी संक्रमण धातु का किसी अन्य संक्रमण धातु के साथ मिश्र धातु बनाने की प्रवृति को उनके परमाण्विय आकार के आधार पर समझाया जा सकता है। संक्रमण धातुओं के परमाण्विक आकार लगभगं समान होते हैं अतः क्रिस्टल जालक में एक धातु का परमाणु दूसरे धातु के परमाणु द्वारा आसानी से प्रतिस्थापित हो जाते है। और मिश्र धातु बनाते है।

10. संकुल यौगिक का बनना (Formation of complex compounds)

 संक्रमण धातुओं में संकुल आयन व संकुल यौगिक बनाने का गुण पाया जाता है। इसके निम्न कारण हैं—

- (1) इनके धनायनों का आकार छोटा होता हैं तथा धनावेश घनत्व अधिक होता है।
- (2) इनमें रिक्त (n 1) d और ns व np कक्षक होते हैं, जिनकी कर्जा लगभग समान होने के कारण, इनके मध्य संकरण हो जाता है।
- (3) ये परिवर्तनशील ऑक्सीकरण अवस्था प्रदर्शित करते है।
- उपर्युक्त विशेषताओं के कारण, ये लिगेण्ड से आसानी से इलेक्ट्रॉन युग्म आकर्षित करके, उन्हें रिक्त कक्षकों में ग्रहण करके, उपसहसंयोजक बन्ध बना लेते हैं, जिन्हें संकुल यौगिक कहते हैं।
- ये स्वतंत्र अस्तित्व रखने वाले स्थायी यौगिक होते है।
- उदाहरण- K₄Fe(CN)₆. [Co(NH₃)₆] Cl₃, [Co(NH₃)₆]₂(SO₄)₃.
 [Cu(NH₃)₄] SO₄ आदि ।

8.2 रासायनिक अभिक्रिशीलता एवं E[©] (Electrod Reduc tion Potential) मान

- संक्रमण धातुओं की रासायनिक अभिक्रियाशीलता व्यापक रूप से परिवर्तनशील है। बहुत-सी धातुएं पर्याप्त विद्युतधनीय है तथा खनिज अम्लों में विलेय है, जबिक कुछ धातुएँ 'उत्कृष्ट' हैं, जो कि साधारण अम्लों द्वारा प्रभावित नहीं होती।
- कॉपर धातु को छोड़कर प्रथम श्रेणी के तत्व अपेक्षाकृत अधिक अभिक्रियाशीलता होते हैं जो 1MH⁺ आयनों द्वारा ऑक्सीकृत हो जाते हैं, यद्यपि इन धातुओं की हाइड्रोजन आयन (H⁻) जैसे ऑक्सीकारकों से अभिक्रिया करने की वास्तविक दर में कभी-कभी कमी आ जाती है।
- उदाहरणार्थ-कक्ष ताप पर टाइटेनियम एवं वैनेडियम तनु ऑक्सीकारक अम्लों के प्रति निष्क्रिय हैं।
- M²¹/M के Eº के मान श्रेणी में द्विसंयोजी धनायनों के बनाने की घटती हुई प्रवृत्ति को दर्शाते हैं (सारणी 8.2)। Eº के कम ऋणात्मक मानों की ओर जाने की सामान्य प्रवृत्ति प्रथम एवं द्वितीय आयनन एन्थैल्पों के योग में सामान्य वृद्धि से सम्बन्धित है।
- यह जानना रोचक है कि Mn. Ni और Zn के E[©] मान सामान्य प्रवृत्ति से आपेक्षित मानों की तुलना में अधिक ऋणात्मक हैं। जबिक Mn² में अर्ध पूरित (d) उपकोश (d⁵) तथा Zn³ में पूर्ण भरित d- उपकोश का स्थायित्व इनके E[©] के मानों से संबंधित है, निकल के लिए E[©] का मान इसकी उच्चतम ऋणात्मक जलयोजन एन्थेल्पों से संबंधित है।
- M³/M² रेडॉक्स युग्म के E[®] मानों के अवलोकन (सारणी 8.2)
 से स्पष्ट है कि Mn³⁻तथा Co³⁺ आयन जलीय विलयन में प्रबलतम ऑक्सोकरण कर्मक का कार्य करते हैं।

• Ti^{2+} , V^{2+} तथा Cr^{2+} आयन प्रबल अपचायी कर्मक (अपचायक) हैं तथा तनु अम्ल से हाइड्रोजन गैस मुक्त करते हैं। उदाहरणार्थ– $2Cr^{2+}(aq) + 2H^+$ $(aq) \rightarrow 2Cr^{3+}$ $(aq) + H_2(g)$

उदा.1 संक्रमण धातुओं की प्रथम श्रेणी के E^{Θ} के मान है- E^{Θ} V Cr Mn Fe Co Ni Cu (M^{2+}/M) -1.18 -0.91 -1.18 -0.44 -0.28 -0.25 +0.34 इन मानीं में अनियमितता के कारण को समझाइए।

हल- $E^{\circ}(M^{2+}/M)$ के मान नियमित नहीं है, इसे हम आयनन एन्थैल्पी में अनियमित परिवर्तन ($\Delta_i H_1 + \Delta_i H_2$) तथा ऊर्ध्वपातन एन्थैल्पी द्वारा समझा सकते हैं जो कि मैंगनीज और वैनेडियम के लिए अपेक्षाकृत बहुत कम होती है।

उदा.2 Mn^{3+}/Mn^{2+} युग्म के लिए E^Θ का मान Cr^{3+}/Cr^{2+} अथवा Fe^{3+}/Fe^{2+} के मानों से बहुत अधिक धनात्मक क्यों होता है? समझाइए।

हल-इसके लिए Mn की तृतीय आयनन ऊर्जा का बहुत अधिक मान (d⁵ से d⁴ में परिवर्तन के लिए आवश्यक) उत्तरदायी है। इससे यह भी स्पष्ट होता है कि क्यों Mn की +3 अवस्था ज्यादा महत्व की नहीं है।

उदा.2 कोई धातु अपनी उच्चतम ऑक्सीकरण अवस्था केवल ऑक्साइड अथवा प्रतुओराइड में ही क्यों प्रदर्शित करती है? हल-क्योंकि F- आयन O²⁻ आयन के आकार अत्यधिक छोटा होने के कारण उच्च ऑक्सीकरण अवस्थायें फ्लोराइड एवं ऑक्साइडों में पाई जाती है।

उदा.3 Cr^{2+} और Fe^{2+} में से कौन प्रबल अपचायक है और क्यों? हल- Fe^{2+} की तुलना में Cr^{2+} एक प्रबल अपचायक है, क्योंकि Cr^{2+} से Cr^{3+} बनने में विन्यास d^+ से d^3 में परिवर्तित होता है। d^3 के तीनों इलेक्ट्रॉन कम ऊर्जा के t_{2g} तल में भरे होते हैं जो कि अर्द्धपूरित है। अतः d^3 विन्यास अधिक स्थायी होता है। Fe^{2+} से Fe^{3+} बनने में विन्यास d^6 से d^5 में परिवर्तित होता है। जिसमें 3 इलेक्ट्रॉन t_{2g} कम ऊर्जा तल और 2 इलेक्ट्रॉन eg अधिक ऊर्जा तल में होते हैं। अतः Fe^{3-} कम स्थायी है।

8.3 **ि**ब्लॉक तत्व

- वे तत्व जिनमें अन्तिम इलेक्ट्रॉन (n-2) f कक्षक में प्रवेश करते हों, उन्हें f-ब्लॉक तत्व कहते हैं।
- ये आधुनिक आवर्त सारणी के नीचे अलग से रखे मये हैं।
- ये संख्या में 28 तत्व हैं।
- इन तत्वों में तीन बाह्यतम कक्षायें (n-2), (n-1) एवं n (जिनमें कमश: f, d व s कक्षक उपस्थित हैं) अपूर्ण होती हैं।

- f उपकोश में सात कक्षक होते हैं जिन्हें $f_x(z^2-y^2)$, $f_y(x^2-y^2)$, $f_z(x^2-z^2)$, $f_x^3 = 3/5 \ xr^2$, $fy^3 3/5 \ yr^2$, $fz^3 3/5 \ zr^2$ व f_{xyz} कक्षक कहते हैं।
- प्रारम्भ में इन तत्वों को दुर्लभ खनिजों से मूलतः मृदाओं (ऑक्साइडों के रूप में) से प्राप्त किये गये थे अतः इन्हें दुर्लभ मृदा तत्व [Rarc Earth Elements] भी कहते हैं।
- इन्हें आन्तरिक संक्रमण तत्व कहने के निम्न कारण हैं—
 - (1) इनके परमाणुओं की कर्नेल में (n-2)f कक्षका काफी अन्दर स्थित हैं।
 - (2) $(n-2) \int \alpha x dx$, संक्रमण तत्वों के d-कक्षक से भी पहले (अन्दर) होता है।
 - (3) ये III B और IV B वर्ग के संक्रमण तत्वों को दो श्रेणियों को जोड़ते हैं।
- इन तत्वों का सामान्य इलेक्ट्रॉनिक विन्यास निम्न हैं- $(n-2) \int^{1-14}, \ (n-1) \ d^{0-1} \ ns^2$
- इन तत्वों को दो श्रेणियों में बांटा गया है-
 - (A) लेन्थेनॉइड (Lanthanides)
 - (B) एक्टिनॉइड (Actinides)

8.3.1. लेन्थेनॉइड (Lanthanides)

- ullet इन्हें 4f ब्लॉक तत्व भी कहते हैं।
- ये संख्या में 14 तत्व हैं।
- इनके परमाणु क्रमांक 58 से 71 हैं।
- ये तत्व, तत्व लैन्थेनम (La) के बाद आते हैं। इसलिये इन तत्वों को लेन्थेनाइड कहते हैं।
- इन्हें अन्तः संक्रमण तत्व भी कहते हैं।
- इन्हें दुर्लभ मृदा धातुयें भी कहते हैं।
- इन तत्वों में 4f व 5d उपकोशों की ऊर्जायें लगभग समान हैं।
- ये छठे आवर्त के सदस्य हैं।
- 4/ श्रेणी में तत्व सीरियम [Ce] परमाणु क्रमांक 58 से प्रारम्भ होकर ल्यूटेशियम (Lu) तक चलते हैं। [Ce₅₈ - Lu₇₁]
- इन तत्वों को प्रथम अन्तः संक्रमण श्रेणी भी कहते हैं।
- समस्त लेन्थेनॉइड तत्वों को सामूहिक रूप में Ln प्रतीक द्वारा प्रदर्शित करते हैं।
- चूंकि समस्त 15 लेन्थेनॉइड तत्व (लेन्थेनम सहित) कई गुणों में समानता दर्शाते हैं अतः सिद्धान्तः सभी को एक ही वर्ग (III) में रखा गया है।
- इनमें से केवल एक तत्व प्रोमिथियम (Pm = 61) रेडियोएक्टिव है। ये सभी तत्व इट्रियम (Y = 39) से आयनिक त्रिज्या में समानता रखते हैं और इसके साथ खनिजों में पाये जाते हैं।

8.3.2 लेन्थेनॉइड तत्वों का इलेक्ट्रॉनिक विन्यास

इनके इलेक्ट्रॉनीय विन्यास की मुख्य विशेषताएं निम्न हैं--

- इनमें अन्तिम इलेक्ट्रॉन 4f कक्षकों में भरे जाते हैं। इनके तत्वों का संयोजी कोश का इलेक्ट्रॉन विन्यास $4f^{1-14}$ $5d^{0-1}6s^2$ (लैन्थेनम सहित) लिखा जाता है।
- La का संयोजीकोश विन्यास 4f^o 5d¹ 6s² से लगता है कि आने वाले तत्वों में इलेक्ट्रॉन 5d कक्षकों में भरेंगे परन्तु इलेक्ट्रॉन जुड़ने के साथ 4f कक्षकों की ऊर्जा, 5d से कम हो जाती है आगे के तत्वों, में इलेक्ट्रॉन 4f कक्षकों में ही जुड़ते हैं।
- गैडोलिनियम Gd(64) और ल्युटेशियम Lu(71) में अन्तिम इलेक्ट्रॉन 4f कक्षक में न जुड़कर 5d कक्षक में जुड़ता है क्योंकि इनके 4f कक्षक क्रमशः 4f और 4f¹⁴ अर्द्ध और पूर्ण भरे होने के कारण स्थायी होते हैं।
- इन तत्वों के प्रथम तीन कोश पूर्ण होते हैं जबिक अन्तिम तीन कोश आंशिक भरे होते हैं!
- निम्न तीन तत्वों में (n-1) d कक्षकों में एक-एक इलेक्ट्रॉन उपस्थित होता है।
 सीरियम Ce; गेडोलीनियम (Gd) व ल्यूटोशियम (Lu)
 [Xe] 4f¹⁵d¹6s² [Xe] 4f⁷5d¹6s²

लेन्थेनॉइड तत्वों का इलेक्ट्रॉनिक विन्यास

तत्व	प्रतीक	परमाणु क्रमांक	विन्यास	ऑक्सीकरण अवस्था
लेन्धेनम (Lanthanum)	La	57	[Xe] $4f^0$, $5d^1 6s^2$	+3
सीरियम (Cerium)	Ce	58	[Xe] 4f ¹ , 5d ¹ 6s ²	+3 + 4
प्रेसियोडायमियम (Praseodymium)	Pr	59	[Xe] $4f^3$, $5d^96s^2$	+3 + 4
नियोडायमियम (Neodymium)	Nd	60	[Xe] $4f^4$, $5d^96s^2$	+2+3+4
प्रोमेथियम (Promethium)	Pm	61	[Xe] 4f ⁵ 5d ⁰ 6s ²	+3
समेरियम (Samarium)	Sm	62	[Xe] $4f^6$, $5d^0 6s^2$	+2+3
यूरोपियम (Europium)	Eu	63	[Xe] $4f^7$, $5d^96s^2$	+2+3
गैंडोलिनियम (Gadolinium)	Gd	64	[Xe] $4f^7$, $5d^4 6s^2$	+3
टर्बियम (Terbium)	Tb	65	[χe] 4 f^9 , 5 d^9 6 s^2	+3+4
डिस्प्रोसियम (Dysprosium)	Dy	66	[Xe] 4f 10, 5d 6s2	+3
होलमियम (Holmium)	Но	67	[Xe] 4f 11, 5d 6s2	+3
अरबियम (Erbium)	Er	68	[Xe] $4f^{12}$, $5d^{9} 6s^{2}$	+3
थूलियम (Thulium)	Tm	69	[Xe] $4f^{13}$, $5d^{0}$ $6s^{2}$	+2+3
इटर्बियम (Ytterbium)	Yb	70	$[\lambda e] 4f^{14}, 5d^9 6s^2$	+2+3
ल्यूटोशियम (Lutetium)	Lu	71	[Xe] 4f 14, 5d 6s2	+3

 $Xe_{54}\text{--}1s^2\ 2s^2\ 2p^6,\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 5s^2\ 5p^6$

	- 58	5 9	60	61	62	63	64	65	66	67	68	69	70	71 :
4f	1	3	4	5	6	7	7	9	10	11	12	13	14	14
5d	l	0	0	0	0	0	l	0	0	0	0	0	0	1
6s	2	2	2	2	2	2	2	2	2	2	2	2	2	2

ऑक्सीकरण अवस्था (Oxidation State)

- इन तत्वों की सर्वाधिक स्थायी ऑक्सीकरण अवस्था +3 होती है।
 अतः लेन्थेनॉइड सामान्यतः +3 ऑक्सीकरण अवस्था प्रदर्शित करते हैं।
- +3 ऑक्सीकरण अवस्था में 2 इलेक्ट्रॉन 6s कक्षक के व एक इलेक्ट्रॉन 4f या 5d कक्षक में से त्यागते हैं।
- +3 ऑक्सीकरण अवस्था में तत्व सीरियम [Ce], गैडोलिनियम (Gd) व ल्यूटेशियम (Lu) अपना तीसरा इलेक्ट्रॉन 5d कक्षक में से त्यागते हैं।
- लेन्थेनॉइड तत्व का रसायन Ln³+ आयन पर आधारित है।

- कुछ लेन्थेनॉइड तत्वों में +2 व +4 ऑक्सीकरण अवस्थायें भी प्रदर्शित करते हैं। जो कि f⁰, f⁷ व f¹⁺ विन्यास के स्थाईत्व के कारण होती है, इन्हें असंगत ऑक्सीकरण अवस्थायें भी कहते हैं।
- (i) Ce(58) की +4 ऑक्सीकरण अंक में $4f^{\circ}$ होने के कारण स्थायी है।
- (ii) $\mathsf{Tb}(65)$ की +4 ऑक्सीकरण अंक में $+\mathbf{f}^7$ होने के कारण स्थायी है।
- (iii) Eu(63) की +2 ऑक्सीकरण अंक में $4f^7$ होने के कारण स्थायी है।
- (iv) Yb(70) की +2 ऑक्सीकरण अंक में 4f¹⁴ होने के कारण स्थायी है। इनके Ce⁻⁴ और Eu⁺² को छोड़कर अन्य सभी तत्वों की +2 और +4 ऑक्सीकरण अवस्थाएं, जलीय विलयन में +3 में बदल जाती है।

नोट-कुछ तत्वों की +2 और +4 ऑक्सीकरण अवस्थायें होती हैं जबिक इनका विन्यास \mathbf{f}^0 , \mathbf{f}^T या \mathbf{f}^{14} नहीं है। जैसे- \mathbf{Sm}^{+2} , \mathbf{Tm}^{-2} , \mathbf{Pr}^{+4} आदि!

लेन्थेनॉइडस +4 ऑक्सीकरण अवस्था में प्रबल ऑक्सीकारक की

तरह कार्य करते हैं, जैसे Ce^{4+} एक अच्छा ऑक्सीकारक है। $Ce^{4+} \rightarrow Ce^{3-}$

 लेन्थेनॉइडस +2 ऑक्सीकरण अवस्था में प्रबल अपचायक की तरह कार्य करते हैं—

जैसे Sm²⁺, Eu²⁺, व Yb²⁺, Sm²⁺ → Sm³⁺

तत्व	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
ऑक्सीकरण	+3	+3+4	+3+4	+2+3+4	+3	+2+3	+2+3	+3	+3+4	+3+4	+3	+3	+2+3	+2+3
अवस्था		<u></u>		<u> </u>	<u>L</u>								i	!

विभिन्न ऑक्सीकरण अवस्थाओं में आयनों के इलेक्ट्रॉनिक विन्यास

परमाणु		 	इलेक्ट्रॉनिक विन्यास	लेक्ट्रॉनिक विन्यास*					
क्रमांक	नाम	संकेत	. Ln	Ln ²⁺	Ln ³⁺	Ln ⁴⁺			
57	लैन्थेनम	La	5d ¹ 6s ²	5d ¹	$4f^0$	· · · · · · · · · · · · · · · · · · ·			
58	सीरियम	Ce .	4f ¹ 5d ¹ 6s ²	$4f^2$	$4f^{1}$	4f0			
59	प्रैजियोडिमियम	Pr	4f ³ 6s ²	4f ³	41 ²	4 f]			
60	नियोडिमियम	Nd	4f ⁴ 6s ²	4f ⁴	$4f^3$	4f ²			
61	प्रोमिथियम	Pm	4f ⁵ 6s ²	4f ⁵	4f ⁴				
62	सैमेरियम	Sm	4f ⁶ 6s ²	4f ⁶	4f ⁵				
63	यूरोपियम	Eu	$4f^{7}6s^{2}$	4f ⁷	$4f^6$				
64	गैडोलिनियम	Gđ	4f ⁷ 5d ¹ 6s ²	4f ⁷ 5d ¹	4f ⁷				
65	टर्बियम	Tb	$4f^96s^2$	4f ⁹	4f ⁸	$4f^7$			
66	डिसप्रोसियम	Dy	$4f^{10}6s^2$	$4f^{10}$	4f ⁹	4f ⁸			
67	होल्मियम	Но	4f ¹¹ 6s ²	4f ¹¹	$4\mathbf{f}^{10}$	41			
68	अर्बियम	Er	$4f^{12}6s^2$	$4f^{12}$	4f ¹¹				
69	थूलियम	Tm	4f ¹³ 6s ²	4f ¹³	4f ¹²				
70	इटर्बियम	Yb	4f ¹⁴ 6s ²	4f ¹⁴	$4f^{13}$				
71	ल्यूटीशियम	Lu	$4f^{14}5d^{1}6s^{2}$	4f ¹⁴ 5d ¹	4f ¹⁴				

8.3.3. रासायनिक अभिक्रियाशीलता (Chemical Reactivity)

- लैन्थेनाइड तत्वों (Ln) में प्रथम तीन आयनन ऊर्जाओं के मान का योग काफी कम होता है, अत: ये तत्व आयनिक होते हैं तथा +3 अवस्था ही इनकी अत्यन्त स्थायी ऑक्सीकरण अवस्था होती है।
- ullet इनका रसायन भी ${
 m Ln}^{3+}$ आयुनों पर ही आधारित है।
- (i) अपचायक गुण (Reducing Property) : लैन्थेनाइङ तत्व तीव्र गति से अपने तीन इलेक्ट्रॉन त्यागकर ऑक्सीकृत हो जाते हैं तथा प्रबल अपचायक के समान व्यवहार करते हैं।

$$Ln \rightarrow Ln^{3+} + 3e^{-}$$

(ii) विद्युत धनी प्रकृति (Elctropositive character): इनकी तत्काल इलेक्ट्रॉन त्यागने की प्रवृत्ति इनके प्रबल विद्युत धनी होने अर्थात् धात्विक प्रकृति को दर्शाती है। (iii) जल से अभिक्रिया-ये तत्व जल से क्रिया कर हाइड्रोजन गैस मुक्त करते हैं। ठण्डे जल से क्रिया धीमी गति से होती है। जबिक गर्म जल से क्रिया तीव्र गति से होती है।

 $2Ln+H_2O \xrightarrow{} 2Ln(OH)_3+3H_2$ हाइड्रॉक्साइडों की क्षारकता Ce से Lu तक घटती है।

(iv) **ऑक्सीजन से**—ये तत्व वायुमण्डलीय ऑक्सीजन से क्रिया कर ऑक्साइड बनाते हैं।

$$2Ln + 3O_2 \rightarrow 2Ln_2O_3$$

- (v) **हाइड्रोजन से** 300-400°C तक गर्म करने पर ये हाइड्रोजन के साथ क्रिया करते हैं और अररससमीकरणमितीय प्रकार के LnH_2 तथा LnH_3 हाइड्राइड बनाते हैं।
- (vi) हैलोजन से-लैन्थेनाइड हैलोजन के साथ क्रिया कर ट्राईहैलाइड बनाते हैं।

$$2Ln + 3X_2 \rightarrow 2LnX_3$$

8.14

(vii) अधातुओं से—यें उच्च ताप पर कार्बन, नाइट्रोजन, सल्फर आदि के साथ द्विअंगी यौगिक बनाते हैं।

 $2Ln + N_2 \xrightarrow{1000^{\circ}C} 2LnN$

 $2Ln + 3S \longrightarrow Ln_2S_3$

 $Ln + 2C \xrightarrow{2500^{\circ}C} LnC_2$ (अररससमीकरणिमतीय)

8.3.4. लेन्धेनोइड संकुचन

- लेन्थेनाइड शृंखला में बांये से दांये जाने पर परमाण्वीय एवं आयिनक त्रिज्याएँ दोनों ही घटती है। त्रिज्या को प्रभावित करने वाले दो मुख्य कारक निम्न है--
- (i) नाभिकीय आवेश (Nuclear Charge): परमाणु क्रमांक बढ़ने से इलेक्ट्रॉनों पर नाभिकीय आकर्षण बढ़ता है, जिससे इलेक्ट्रॉन अंदर की ओर खींचते हैं, फलस्वरूप आकार (त्रिज्या) में कमी आती है।
- (ii) परिरक्षण प्रभाव (Shielding effect): परमाणु क्रमांक बढ़ने. से आने वाला इलेक्ट्रॉन यदि अंदर के कक्षकों में जाता है, तो बाह्मतम कोश के इलेक्ट्रॉनों को प्रतिकर्षित करता है तथा नाभिकीय आकर्षण से उनको परिरक्षित करता है। फलस्वरूप उनका आकार बढ़ जाता है।
- लेन्थेनाइड तत्वों में परमाणु क्रमांक बढ़ने से आने वाले अतिरिक्त इलेक्ट्रॉन (n-2) f कक्षकों में जाते हैं, जिससे परिधि के इलेक्ट्रॉनों पर परिरक्षण प्रभाव कम होता है। अत: लैन्थेनाइडों में परमाणु क्रमांक बढ़ने के साथ नाभिकीय आकर्षण तो बढ़ता जाता है, लेकिन उसे संतुलन करने वाला परिरक्षण प्रभाव उतना नहीं बढ़ता जिससे उनके आकार में क्रमिक कमी आती है और उनके पररमाणु संकुचित होते जाते हैं।
- लैन्थेनाइडों के आकार में इस प्रकार से हुई क्रमिक कमी को ही हम लैन्थेनाइड संकुचन कहते हैं।

लैन्थेनाइड संकुचन के परिणाम

(Consequences of Lanthanidol contraction)

(a) लैन्थेनाइडों का पृथक्करण

लैन्थेनाइड संकुचन के कारण ही लैन्थेनाइडों का पृथक्करण संभव है। सभी लैन्थेनाइड लगभग समान गुण रखते हैं इसी कारण इन्हें पृथक् करना मुश्किल है। जबिक लैन्थेनाइड संकुचन के कारण इन गुणों (आयनिक आकार, संकुल बनाने की सामर्थ्य आदि) में थोड़ा अन्तर आता है। जिसके कारण उन्हें आयन विनिमय रेजिन द्वारा पृथक् किया जा सकता है।

(b) हाइड्रॉक्साइडों की क्षारीय सामर्थ्य में अन्तर ऑक्साइडों एवं हाइड्रॉक्साइडों की क्षारीय सामर्थ्य La(OH)3 से Lu(OH)3 तक घटती है। लैन्थेनाइड संकुचन के कारण M³+ आयन का आकार घटता एवं इस प्रकार M-OH बन्ध से सम्बन्धित सहसंयोजक गुण बढ़ता है।

(c) समान वर्ग में द्वितीय एवं तृतीय संक्रमण श्रृंखला के तत्वों के परमाण्विक आकार में समानता-

वर्ग	3	4	5
प्रथम संक्रमण	21Sc	₂₂ Ti	23 V
श्रृंखला	(144pm)	(132pm)	(122pm)
द्वितीय संक्रमण	39 Y	₄₀ Zr	41Nb
श्रृंखला	(180pm)	(160pm)	(146pm)
तृतीय संक्रमण	57La	₇₂ Hf	₇₃ Ta
श्रृंखला	(187 pm)	(159 pm)	(146 pm)

दिये गये मानों से साफ है कि Y एवं La की परमाण्विक विज्याओं में अन्तर, Zr एवं HF की परमाण्विक त्रिज्याओं में अन्तर की तुलना में अधिक है, लेकिन लेन्थेनाइड संकुचन का लैन्थेनम के परमाण्विक आकार पर कोई प्रभाव नहीं पड़ता है।

8.3.5. लैन्थेनाइडों के खुपयोग

लैन्थेनाइड तत्वों में Ce तथा इसके यौगिकों के कई औद्योगिक उपयोग हैं। इन तत्वों के मुख्य उपयोग निम्न हैं-

- (1) लैन्थेनाइड तत्वों से बने मिश्र धातुओं को 'मिश धातु' (mish metal) कहा जाता है। इनका उपयोग अपचायक पदार्थ के रूप में किया जाता है। मिश धातु में 30-35% सीरियम तथा शेष हल्के लैन्थेनाइड तत्व होते हैं। यह Al को उच्च ताप सामर्थ्य, निकल को ऑक्सीकरण से प्रतिरोध, तांबे को कठोरता एवं जंगरोधी गुण प्रदान करता है। Mg-मिश धातु (30% मिश धातु + 1% Zr) से जेट इंजिन के पुर्जे बनाये जाते हैं।
- (2) विभिन्न कार्बनिक यौगिकों के हाइड्रोजनीकरण, विहाइड्रोजनीकरण, ऑक्सीकरण आदि रासायनिक क्रियाओं में लैन्धेनाइड यौगिक उत्प्रेरक के रूप में प्रयोग में लिए जाते हैं।
- (3) सीरियम ताप और पराबैंगनी प्रकाश दोनों का अवशोषण करता है। अतः इसका उपयोग चश्में बनाने में किया जाता है।
- (4) नियोडिमियम और प्रोजियोडिमियम के ऑक्साइड Nd_2O_3 व Pr_2O_3 का उपयोग रंगीन कांच बनाने में किया जाता है।
- (5) पेट्रोलियम पदार्थों के भंजन के लिए सीरियम फॉस्फेट को प्रयोग में लेते हैं।
- (6) गैस मेन्टल बनाने और ग्लॉस पॉलिश करने में सीरिया (CeO₂) का प्रयोग होता है।
- (7) लैन्थ्रेनॉइड लवणों का प्रयोग लेसर (Laser) में भी किया जाता है। Nd₂O₃ को सेलेनियम ऑक्सीक्लोराइड में विलेय करने पर, एक प्रबल लेसर द्रव बनता है।

8.3.6 ऐक्टिनॉइड (Actinoids)

- ये 51 ब्लॉक तत्व भी कहलाते हैं। ये संख्या में 14 तत्व हैं।
- इनके परमाण् क्रमांक 90 से 103 हैं।
- ये तत्व, तत्व (Ac) ऐक्टिनियम के बाद आते हैं। अतः इन तत्वों को ऐक्टिनाइड कहते हैं।
- इन्हें अन्तः संक्रमण तत्व भी कहते हैं।
- इन तत्वों में 5िव 6d उपकोशों की ऊर्जायें लगभग समान हैं।
- ये सभी तत्व सातवें आवर्त के तत्व हैं।
- इस श्रेणी में थोरियम [Th₉₀] से प्रारम्भ होकर लॉरेन्शियम [Lr₁₀₃] तक चलते हैं।
- इन सभी तत्वों को सामूहिक रूप से [An] द्वारा प्रदर्शित करते
 हैं।
- यूरेनियम [92] के बाद आने वाले सभी तत्व कृत्रिम तथा अस्थायी होते हैं ये प्रकृति में नहीं पाये जाते। इन्हें परायूरेनियम तत्व (Transuranic Elements) कहते हैं।

- ये सभी तत्व रेडियोऐक्टिव हैं। प्रारम्भिक सदस्यों की अर्द्ध आयु अपेक्षाकृत अधिक होती है, बाद वाले सदस्यों की अर्धायु का परास एक दिन में 3 मिनट तक है। अत: अर्धायु बहुत कम होने के कारण इनके अध्ययन में अधिक कठिनाइयाँ आती है।
- चूंिक समस्त 15 ऐक्टिनाइड तत्व [ऐक्टिनियम सिहत] कई गुणों
 में समानता दर्शाते हैं अतः इन्हें वर्ग (III) में रखा गया है।

1. इलेक्ट्रॉनिक विन्यास

- इनका एक्टिनियम सहित सामान्य इलेक्ट्रॉनिक विन्यास निम्न हैं—
 [Rn] 5f¹⁻¹⁴ 6d⁰⁻¹ 7s²
- इन तत्वों का संयोजी कोश विन्यास 5f⁶⁻¹⁴ 6d⁶⁻² 7s² है।
 Rn₈₆ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶ 5d¹⁰ 6s² 6p⁶
- इन तत्वों में 5f व 6d कक्षकों की ऊर्जा में अल्प अन्तर होता है। अतः 6d इलेक्ट्रॉन 5f कक्षकों में स्थायित्व के आधार पर संक्रमित होता रहता है।
- अतः Pa, Np व Bk तत्वों के दो इलेक्ट्रॉनिक विन्यास भी सभव हो सकते हैं।

तत्व	प्रतीक	परमाणु क्रमांक	विन्यास	ऑक्सीकरण अवस्था	
एक्टिनियम (Actinium)	Ac	89	$[Rn] 5f^{0}, 6d^{1} 7s^{2}$	+3	
थोरियम (Thorium)	Th	90	[Rn]] $5f^0$, $6d^2 7s^2$	+3 + 4	
प्रोटेक्टिनियम (Protactinium)	Pa	91	[Rn]] $5f^2$, $6d^1 7s^2$	+3 + 4+5	
यूरेनियम (Uranium)	U	92	[Rn]] $5t^3$, $6d^1 7s^2$.	+3+5+6	
नेप्ट्यूनियम (Neptunium)	Np	93	[Rn]] $5f^4$, $6d^1 7s^2$	+3+4+5+6	
प्लूटोनियम (Plutonium)	Pu	94	[Rn]] $5f^6$, $6d^0 7s^2$	+3+4+5+6	
अमेरिशियम (Americium)	Am	95	[Rn]] $5f^7$, $6d^0 7s^2$	+3+4+5+6	
क्यूरियम (Curium)	Cm	96	[Rn]] $5f_1^7 6d^{-1} 7s^2$	+3+4	
बर्केलियम (Berkelium)	Bk	97	[Rn]] 5f ⁸ , 6d ¹ 7s ²	+3+4	
,			Or [Rn] 5f ⁹ 6d ⁰ 7s ² [Rn]] 5f ¹⁰ , 6d ⁰ 7s ²		
कैलिफोर्नियम (Californium)	Cf	98	[Rn]] 5f ¹⁰ , 6d ⁰ 7s ²	+3	
आइन्सटीनियम (Einstenium)	Es	99	[Rn]] $5f^{11}$, $6d^{0}7s^{2}$	+3	
फर्मियम (Fermium)	Fm	100	[Rn] 5f ¹² , 6d ⁰ 7s ²	+3	
मेण्डिलीवियम (Mondelevium)	Md	101	[Rn] } 5f ¹³ , 6d ⁰ 7s ²	+3	
नोबेलियम (Nobelium)	No	102	[Rn]] 5f ¹⁴ , 6d ⁰ 7s ²	+2+3	
लॉरेन्सियम (Lawrencium)	Lr	103	[Rn]] $6f^{14}$, $6d^{1} 7s^{2}$	+3	

(1) ऑक्सीकरण अवस्थाएँ (Oxidation States)

- इन तत्त्वों की सबसे प्रमुख ऑक्सीकरण अवस्था +3 होती है।
- Th. Pa. U. Np. Pu, Am. Cm व Bk प्राय: +3 ऑक्सीकरण अवस्था प्रदर्शित करते हैं। इन तत्वों द्वारा +4 ऑक्सीकरण अवस्था भी प्रदर्शित करते हैं।
- कुछ ऐक्टिनाइड्स U. Np. Pu व Am +6 ऑक्सीकरण अवस्था भी प्रदर्शित करते हैं।
- इन तत्वों में सर्वप्रथम 7s इलेक्ट्रॉन पृथक् होते हैं फिर 6d इलेक्ट्रॉन व अन्त में 5f इलेक्ट्रॉन पृथक् होते हैं।

- Pa. U तथा Np में क्रमश: +5 व +6 ऑक्सीकरण अवस्थायें प्रदर्शित करती है।
- लेकिन बाद वाले तत्त्वों में ऑक्सीकरण अवस्थाएँ घटती है।

(2) आयनिक आकार (Ionic Radii)

- ullet एक्टिनाइड तत्त्रों के An^{3+} आयनों का आकार Ln^{3+} आयनों की तरह ही होता है।
- श्रेणी में बायें से दायें चलने पर आकार क्रमश: घटता जाता है। (इसे एक्टिनाइड आकुंचन (लेन्थेनाइड आकुंचन की तरह) के रूप में समझा जाता है। यह आकुंचन इस श्रेणी में एक तत्व से दूसरे तत्व में उत्तरोत्तर बढ़ता जाता है जो 5f उपकोश द्वारा बहुत ही दुर्बल परिरक्षण प्रभाव के कारण है।

(3) सामान्य लक्षण (General characteristics)

- ये सभी तत्व चाँदी जैसे सफेद होते हैं।
- इनके गलनांक व क्वथनांक अधिक होते हैं।
- थोरियम एवं अमेरिशियम के अलावा अन्य सभी तत्वों के घनत्व उच्च होते हैं।
- 5f कक्षकों में उपस्थित 2 या अधिक इलेक्ट्रॉन युक्त ऐक्टिनाइड्स के धनायन क्रिस्टलीय एवं जलीय विलयनों में रंगीन होते हैं। U⁻⁴ हरा U³⁻ लाल है।
- ऐसे ऐक्टिनाइड धनायन जिनमें सभी इलेक्ट्रॉन्स युग्मित हो प्रतिचुम्बकीय होते हैं तथा वे धनायन जिनमें अयुग्मित इलेक्ट्रॉन हो, अनुचुम्बकीय होते हैं।

रासायनिक सक्रियता (Chemical reactivity)

- एक्टिनाइड्स अत्यधिक सिक्रिय धातुएँ हैं, विशेष रूप से जब वे सूक्ष्म विभाजित अवस्था में हो।
- जब इन्हें जल के साथ गर्म किया जाता है तो इनके सम्बन्धित ऑक्साइड्स व हाइड्राक्साइड्स बनते हैं।
- ये सामान्य ताप पर अनेक अधातुओं से क्रिया करते हैं।
- हाइड्रॉक्लोरिक अम्ल से क्रिया कर उनके सम्बन्धित क्लोराइड्स बनाते हैं।
- संक्रमण धातुओं के समान ही ये नाइट्रिक अम्ल से धीरे-धीरे क्रिया करते हैं क्योंकि धातु ऑक्साइड का प्रारम्भिक निर्माण हो जाता है जो कि धातुओं की सतह पर एक रक्षात्मक आवरण बनाती है।

ऐक्टिनॉयड संकुचन (Actinoid Contraction)

 ऐक्टिनॉयर्ड्स भी लैन्थेनॉइड संकुचन के समान ही ऐक्टिनॉइड संकुचन प्रदर्शित करते हैं। ऐसा 5f इलेक्ट्रॉन्स के नाभिकीय आवेश के दुर्बल परिरक्षण प्रभाव के कारण होता है। अत: श्रेणी में परमाणु क्रमांक बढ़ने के साथ-साथ इनके त्रिसंयोजी धनायनों की क्रिज्या घटती है।

ऐक्टिनॉयड्स के उपयोग (Uses of Actinoids)

ऐक्टिनॉइड्स के उपयोगों को नीचे सूचीबद्ध किया गया है।

(i) परमाणवीय रिएक्टर्स में थोरियम एक नाभिकीय ईंधन की तरह काम आता है। थोरियम ऑक्साइड का उपयोग चमकने वाले गैस मैन्टल के निर्माण में होता है। इन मैन्टल्स का निर्माण थोरियम नाइट्रेट (99%) व सीरियम नाइट्रेट (1%) के मिश्रित विलयन में रेशम रेशे को डुबोकर किया जाता है। जब इस मैन्टल को लैम्प पर लगाकर जलाया जाता है तो रेशम रेशे (सिल्क फाइबर) जल जाता है व पीछे थोरियम ऑक्साइड (${\rm ThO_2}$) व सीरियम ऑक्साइड (${\rm CeO_2}$) का जाल बचता है। ${\rm CeO_2}$ की सूक्ष्म मात्रा आवश्यक होती है, अन्यथा केवल ${\rm ThO_2}$ स्वयं बहुत ही कम प्रकाश देता है। M.P. of ${\rm ThO_2}$ 3320°C

- (ii) यूरेनियम का उपयोग परमाणीय रिएक्टर में नाभिकीय ईंधन की तरह होता है। यूरेनियम के लवण काँच को हरा रंग प्रदान करते हैं। यूरेनियम लवणों का उपयोग सिरेमिक उद्योग, टेक्सटाइल उद्योग, रासायनिक विश्लेषण (जिंक यूरेनिल ऐसीटेट सोडियम की पहचान हेतु विशिष्ट अभिकर्मक हैं, यूरेनिल फॉस्फेट का उपयोग फॉस्फेट्स के आयतानात्मक विश्लेषण में होता है) एवं औषधि में होता है।
- (iii) प्लुटोनियम मानव द्वारा संश्लेषित एक विखण्डनशील पदार्थ है जो शुद्धता की उच्च कोटि के साथ आसानी से प्राप्त किया जा सकता है। अत: इसका उपयोग नाभिकीय रिएक्टर्स में नाभिकीय ईंधन के रूप में एवं परमाण्वीय हथियार में होता है।

लैन्थेनॉयड्स एवं एक्टिनॉयड्स की तुलना

(Comparison of Lanthanoids and Actinoids)

लैन्थेडॉड्स व ऐक्टिनॉयड्स दोनों में इलेक्ट्रॉन्स उनके परमाणुओं के प्रति उपान्त्य कोशों f- उपकोश में भरे जाते हैं। अत: ये काफी बातों में एक दूसरे से समानता प्रदर्शित करते हैं।

समानता के बिन्दु (Points of Resemblance)

- (i) दोनों प्रमुख रूप से +3 ऑक्सीकरण अवस्था प्रदर्शित करते हैं।
- (ii) दोनों ही विद्युत धनी होते हैं एवं प्रबल अपचायक की भांति कार्य करते हैं।
- (iii) दोनों के ही धनायन जिनमें अयुग्मित इलेक्ट्रॉन्स होते हैं, अनुचुम्बकीय की भांति कार्य करते हैं।
- (iv) दोनों के अधिकांश धनायन रंगीन होते हैं।
- (v) दोनों ही श्रेणी में आयिनक त्रिज्याओं में कमी प्रदर्शित करते हैं। अतः लैन्थेनायड्स व ऐक्टिनॉयड्स क्रमशः लैन्थेनॉयड संकुचन एवं एक्टिनॉयड सकुचलन प्रदर्शित करते हैं।

सारणी : अन्तर के बिन्दु (Points of Distinction)

लैन्थेनॉयड्स

- सर्वाधिक सामान्य ऑक्सीकरण अवस्था +3 के अलावा कुछ तत्वों द्वारा +2 व +4 ऑक्सीकरण अवस्थाएँ भी प्रदर्शित होती हैं।
- 2. संकर यौगिक बनाने की बहुत कम प्रवृत्ति पायी जाती है।
- 3. प्रोमिथियम के अलावा ये सभी अरेडियोसक्रिय हैं।
- 4. इनके चुम्बकीय गुणों को आसानी से समझाया जा सकता है।
- ये ऑक्सो धनायन नहीं बनाते।
- 6. इनके ऑक्साइड्स व हाइड्रॉक्साइड्स कम श्वारीय होते हैं।

एक्टिनॉयड्स

- सर्वाधिक सामान्य ऑक्सोकरण अवस्था +3 के अलावा कुछ तत्वों द्वारा +4, +5 व +6 ऑक्सीकरण अवस्था भी प्रदर्शित की जाती है।
- 2. संकर यौगिक बनाने की बहुत प्रबल प्रवृत्ति पायी जाती है।
- 3. ये सभी रेडियो सक्रिय है।
- 4. इनके चुम्बकीय गुणों की समझना आसान नहीं है।
- 5. ये ऑक्सो धनायन जैसे ${
 m UO_2}^{2-}$, ${
 m PuO_2}^{2-}$ आदि बनाते हैं।
- 6. इनके ऑक्साइड्स व हाइड्रॉक्साइड्स अधिक क्षारीय है।

8.4 याद्यपुरसका के प्राप्त-उत्तर

बहुचयनात्मक ग्रश्न-

- 1. उच्चतम ऑक्सीकरण अवस्था (+7) किसके द्वारा प्रदर्शित की जाती है—
 - (a) CO

(b) Cr

(c) Mn

(d) V

Ans.(c)

- 2. Fe⁺² में अयुग्मित e⁻ की संख्या है-
 - (a) 4

(b) 5

(c) 3

(d) 6

Ans.(a)

- निम्नलिखित में किस यौगिक में Fe की ऑक्सीकरण अवस्था शून्य है—
 - (a) FeSO₄
- (b) [Fe(CO)₅]
- (c) $K_4[Fe(CN)_6]$
- (d) FeCl₃

Ans.(b)

- निम्नलिखित में से किसका चुम्बकीय आघूर्ण अधिकतम होता है-
 - (a) V^{3}

(b) Cr31

(c) Fe^{-3}

(d) Co^{3+}

Ans.(c)

- 5. लैन्थोनाइड श्रेणी में सामान्य ऑक्सीकरण अवस्था है-
 - (a) + 1

(b) +4

(c) +2

(d) +3

Ans.(d)

- 6. लैन्थेनाइड संकुचन किसमें वृद्धि के कारण होता है?
 - (a) प्रभावी नाभिकीय आवेश
- (b) परमाणु संख्या
- (c) 4f कक्षक का आकार
- (d) उपर्युक्त में से कोई नहीं

Ans.(a)

- 7. लेन्थेनाइड श्रेणी का एक सदस्य जो +4 ऑक्सीकरण अवस्था दर्शाता है-
 - (a) Ce

(b) Lu

(c) Eu

(d) Pm

Ans.(a)

- 8. निम्न में से प्रतिचुम्बकीय है-
 - (a) Cr^{2+}

(b) Zn^{2+}

(c) Co²

(d) Ti⁻²

Ans.(b)

- 9. निम्नलिखित में से किसका प्रथम आयनन विभव अधिकतम है-
 - (a) Ti

(b) Mn

(c) Fe

(d) Ni

Ans.(b)

- 10. किस आयन में समस्त e- युग्मित अवस्था में है-
 - (a) Cr⁺²

(b) Cu^{-2}

(c) Cu⁺¹

(d) Ni⁺²

Ans.(c)

- प्र.11. Zn को संक्रमण तत्व नहीं माना जाता, कारण दीजिए।
- Ans. Zn के परमाणु $[3d^{10}S^2]$ एवं Zn की +2 ऑक्सीकरण अवस्था $[3d^{10}S^0]$ दोनों में $(d^{10}).d$ कक्षक पूर्ण रूप से भरे होने के कारण इन्हें **संक्रमण तत्व** नहीं कहते हैं।
- प्र.12. Ti4+ आयन रंगहीन होता है, कारण दीजिए।
- **Ans.** Ti^{4+} का विन्यास $3d^04s^0$ है, अतः इसके इलेक्ट्रॉनिक विन्यास में सभी e^+s युग्मित होने के कारण यह रंगहीन होता है।
- प्र.13. परयुरेनियम तत्व किसे कहते हैं?
- Ans. वे तत्व जिनके परमाणु क्रमांक 92 से आगे वाले सभी तत्व परायूरेनियम तत्व कहलाते हैं। ये सभी तत्व मानव निर्मित तत्व है।
- प्र.14. कोई थातु अपनी उच्चतम ऑक्सीकारक अवस्था केवल ऑक्साइड अथवा फ्लोराइड में ही क्यों प्रदर्शित करते हैं।
- Ans. धातु की उच्च ऑक्सीकारक अवस्था उच्चतम होने पर उसका आकार अत्यधिक छोटा होने के कारण यह बहुत छोटे ही ऋणायन से जुड़ सकता है, अत: उच्च ऑक्सीकारक अवस्था में ऑक्साइड व फ्लोराइड बनाते हैं।
- प्र.15. MnO, Mn_2O_3 एवं MnO_2 को अम्लीयता के घटते क्रम में व्यवस्थित कीजिए।
- Ans. $MnO_2 > Mn_2O_3 > MnO$
- प्र.16. आंतरिक संक्रमण तत्वों का सामान्य इलेक्ट्रॉनिक विन्यास लिखिये।
- **Ans.** $(n-2)f^{1-14}(n-1)d^{0-1}ns^2$
- प्र.17. संक्रमण तत्व परिवर्तनशील ऑक्सीकारक अवस्था प्रदान करते हैं, कारण दीजिए।
- Ans. पृथक होने वाले इलेक्ट्रॉन भिन्न-भिन्न ऊर्जा स्तरों से होने के कारण [d व s उपवेशों में से]
- प्र.18. Sc के समस्त यौगिक रंगहीन होते हैं, कारण दीजिए।
- Ans. Sc अपने यौगिकों में +3 ऑक्सीकरण अवस्था प्रदर्शित करता है, Sc^{3+} में सभी es युग्मित होने के कारण यह रंगहीन होता है, अत: इसके यौगिक भी रंगहीन होते हैं।
- प्र.19. Gd (Z = 64) में अयुग्मित es की संख्या लिखिए।
- Ans. Gd₆₄ [Xe] 4f⁷5d¹6s²

अत: गेडोलियम में कुल 8 इलेक्ट्रॉन अयुग्मित है।

- प्र.20. संक्रमण तत्व के एक यौगिक में चुम्बकीय आधूर्ण का मान 3.9 Bm है, तत्व में अयुग्मित es⁻¹ की संख्या क्या होगी?
- Ans. $\mu = \sqrt{n(n+2)}$

 $3.9 = \sqrt{n^2 + 2n}$ n = 3

अत: तत्व में अयुग्मित es की संख्या 3 है।

लघुत्तरात्मक प्रश्न-

प्र.21. लेन्थेनॉइड संकुचन क्या है? इसे समझाइए।

Ans. बिन्दु 8.2.4 देखें।

प्र.22. मिश्रधातु क्या है? इनका एक उपयोग लिखिये।

Ans. बिन्दु 8.10 देखें।

प्र.23. Cu²⁺ का इलेक्ट्रॉनिक विन्यास लिखिए। इसके चुम्बकीय आयूर्ण की गणना कीजिए।

Ans. $Cu^{29} 3d^9 4s^0 [1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^0]$

इसका चुम्बकीय आघुर्ण $\mu=\sqrt{n(n+2)}$ $=\sqrt{l(l+2)}$ $=\sqrt{3}\,=1.73\;BM$

प्र.24. सामान्यतः संक्रमण धातुएँ रंगीन यौगिक बनाती है, कारण दीजिए।

Ans. बिन्दु 9.1.3(6) भाग देखे।

प्र.25. प्रमुख कारण दीजिये।

- (i) संक्रमण तत्वों की 3d श्रेणी में Mn अधिकतम ऑक्सीकरण अवस्था दर्शाता है।
- (ii) Cr^{2+} तथा Mn^{3+} दोनों में d^{4} विन्यास है, परंतु Cr^{2+} एक अपचायक है और Mn^{3+} ऑक्सीकारक है।
- Ans. (i) Mn तत्व में अधिकतम अयुग्मित es उपस्थित d⁵4s² होने के कारण Mn अधिकतम ऑक्सीकरण अवस्था प्रदर्शित करता है।
- (ii) Cr^{2+} एक अपचायक है, क्योंकि इसका विन्यास d^4 से d^3 में बदलता है, क्योंकि d^3 अर्धपूर्ण भरे t_{2g} कक्षक $[t_{2q}]^3$ के कारण Mn^{3+} में d^4 विन्यास d^5 में परिवर्तित होता है, जो पुन: अर्धपूर्ण भरे कक्षकों के अधिक स्थायित्व के कारण।

प्र.26. निम्न को समझाइये।

- (a) 5d संक्रमण तत्वों के आकार 4d संक्रमण तत्वों के आकार के लगभग समान है।
- (b) संक्रमण तत्व उपसहसंयोजक यौगिक बनाते हैं।
- Ans. (a) लेन्थेनाइड संकुचन के कारण 5d संक्रमण तत्व 32 नामकीय आवेश अधिक होने के कारण संकुचित होकर इनका आकार अपने ऊपर वाले तत्वों के लगभग समान हो जाता है।
- (b) संक्रमण तत्वों के धनायों में रिक्त संकरित कक्षकों के निर्माण के कारण ये लिगेण्ड के साथ उपसंयोजक बंध बनाते हैं, अत: संक्रमण तत्व उपसहसंयोजक यौगिक बनाते हैं।
- प्र.27. लेन्थेनाइड एवं एक्टिनॉइड श्रेणी में चार अंतर दीजिये।

Ans. बिन्दु 8.2.3. देखें।

प्र.28. Zr(40) एवं Hf(72) की परमाणविक त्रिज्याऐं लगभग समान है, कारण दीजिए।

Ans. प्रश्न 26 का (a) उत्तर देखें ।

प्र.29. Au(79) व Ag(47) के आयन विभव लगभग समान है।

Ans. लेन्थेनॉइड संकुचन के कारण Ag व Au के आकार लगभग समान होने के कारण इन तत्वों के आयनन विभव समान है।

प्र.30. KMnO4 में Mn तत्व का चुम्बकीय आघूर्ण क्या है?

Ans. $KMnO_4$ में Mn का ऑक्सीकरण और +7 है। Mn^{3-} का विन्यास (Ar) $3d^04s^0$ है अत: एक भी e अयुग्मित नहीं है, अत: $\mu=0$ होगा।

8.5 प्रमुख ग्रश्न व उत्तर

प्र.1. आयरन एक संक्रमण धातु क्यों है जब कि सोडियम नहीं है?

उत्तर- Fe d- उपकोश में अयुग्मित इलेक्ट्रॉन रखता है जबिक सोडियम नहीं रखता है।

प्र.2. संक्रमण श्रेणियाँ कितनी होती हैं?

उत्तर- तत्वों की चार संक्रमण श्रेणियाँ होती है।

प्र.3. Cr³+ व Mn²+ का इलेक्ट्रॉनिक विन्यास लिखिए।

उत्तर- Cr^{3+} (Z = 24) [Ar]3d³; Mn^{+2} (Z = 25) [Ar]3d⁵

प्र.4. संक्रमण तत्वों का इलेक्ट्रॉनिक विन्यास प्रतिनिधि तत्वों से किस तरह से अलग होता है?

उत्तर- प्रतिनिधि तत्व या तो ns^{1-2} या ns^2 p^{1-6} इलेक्ट्रॉनिक विन्यास वाले होते हैं। संक्रमण तत्व (n-1) d^{1-10} ns^{0-2} इलेक्ट्रॉनिक विन्यास वाले होते हैं।

प्र.5. प्रत्येक संक्रमण श्रेणी में कितने तत्व उपस्थित होते हैं व क्यों?

उत्तर- प्रत्येक संक्रमण श्रेणी दस तत्वों वाली होती है क्योंकि d- उपकोश अधिकतम 10 इलेक्ट्रॉनों वाला हो सकता है।

प्र.6. संक्रमण श्रेणी का कौन-सा तत्त्व लक्षणों में शेष तत्वों से नहीं मिलता जुलता है?

उत्तर- ये (n – 1) d¹⁰ns² विन्यास के साथ प्रथम तीन संक्रमण श्रेणियों के अन्तिम तत्व होते हैं ये तत्व Zn, Cd व Hg हैं।

प्र.7. कौन-सा तत्व सिक्का धातुओं के रूप में जाने जाते हैं?

उत्तर- कॉपर, चाँदी व गोल्ड सिक्का धातु के रूप में जाने जाते हैं।

प्र.8. Fe²⁺ व Fe³⁺ आयन के रंग क्या है?

उत्तर- Fe²⁺ आयन (हरा), Fe³⁻ आयन (पीला)

प्र.9. संक्रमण धातुओं द्वारा प्रदर्शित सबसे प्रचलित ऑक्सीकरण अवस्था क्या है?

उत्तर- (+2) ऑक्सीकरण अवस्था संक्रमण धातुओं द्वारा प्रदर्शित सबसे

प्रचलित ऑक्सीकरण अवस्था है।

प्र.10. अनुचुम्बकीय लक्षण कैसे प्रदर्शित होता है?

उत्तर- अनुचुम्बकीय लक्षण चुम्बकीय आधूर्ण के रूप व तुलनात्मक होता है जो कि अयुग्मित इलेक्ट्रॉनों के प्रचक्रण $\mu = \sqrt{n(n+2)}$ के कारण होता है।

प्र.11. Fe²⁺ व Fe³⁺ आयनों में से कौन-सा ज्यादा अनुचुम्बकीय होता है व क्यों?

उत्तर- [Ar] 3d⁵ विन्यास के साथ Fe³⁻ आयन [Ar]3d⁶ विन्यास वाले Fe²⁺ आयन की तुलना में ज्यादा अनुचुम्बकीय होता है। आगे वाला Fe³⁺ पांच अयुग्मित इलेक्ट्रॉन वाला होता है जबिक Fe²⁻ चार अयुग्मित इलेक्ट्रॉनों वाला होता है।

प्र.12. लैन्थेनॉयड श्रेणी में त्रिसंयोजी धनायन का आकार परमाणु संख्या बढ़ने के साथ घटता है। यह आंकुचन किस नाम से जाना जाता है?

उत्तर- यह आंकुचन लैन्थेनॉयड आंकुचन से जाना जाता है।

प्र.13. कॉपर, सिल्वर व गोल्ड पूर्ण रूप से भरे d- कक्षक वाले होते हैं लेकिन फिर भी संक्रमण धातुओं की तरह जाने जाते हैं। क्यों?

उत्तर- इन धातुओं के धनायन में उपस्थित d- कक्षकों में अयुग्मित इलेक्ट्रॉन होते हैं।

प्र.14. जिंक नम वायु में धूमिल क्यों बन जाता है?

उत्तर- धातु की संतह पर जिंक कार्बोनेट की पर्त बनने के कारण

$$Zn + \underbrace{3H_2O + 2O_2 + CO_2}_{\text{\tiny TH qrig}} \rightarrow ZnCO_3.3Zn(OH)_2$$

प्र.15. Cd²⁺ लवण क्यों सफेद होता है?

उत्तर- क्योंकि Cd^{2-} आयन पूर्ण रूप से भरे d कक्षक ($4d^{10}$) वाले होते हैं।

प्र.16. संक्रमण धातुएं किस स्थिति के अन्तर्गत आयिनक व सहसंयोजी यौगिक बनाती है?

उत्तर- कम ऑक्सीकरण अवस्थाओं में धातुएँ आयनिक यौगिक बनाती है जबिक उच्च ऑक्सीकरण अवस्थाओं में धातुओं के यौगिक सहसंयोजी प्रकृति के होते हैं।

प्र.17. लैन्थेनॉयड के मुख्य अयस्क कौन-से हैं?

उत्तर- लैन्थेनॉयड के मुख्य अयस्क है-मोनाजाइट व गेडोलाइनाइट।

प्र.18. लैन्थेनॉयड श्रेणी में कौन-सा त्रिसंयोजी आयन अधिकतम आकार वाला होता है?

उत्तर- लैन्थेनम (La³⁺)

प्र.19. प्रथम संक्रमण श्रेणी से सम्बन्धित संक्रमण धातुओं में कौन-

सा संक्रमण धातु आयन अधिकतम अनुचुम्बकीय लक्षण वाला होता है?

उत्तर- Mn²⁺ आयन अधिकतम अनुचुम्बकीय लक्षण वाला होता है क्योंकि इसके पास पांच अयुग्मित इलेक्ट्रॉन होते हैं।

प्र.20. मैग्नीज की तृतीय आयनन एन्थेल्पी अपवादित रूप से उच्च क्यों होती है?

उत्तर- Mn²⁺ उच्च सममितीय विन्यास के साथ [Ar]3d⁵ विन्यास वाला होता है, तीसरे इलेक्ट्रॉन को निकालना बहुत कठिन होता है। इसलिए धातु की तीसरी आयनन एन्थेल्पी अपवादित रूप से उच्च होती है।

प्र.21. स्केन्डियम के सभी लवण सफेद क्यों होते हैं?

उत्तर- इन लवणों में, स्केन्डियम Sc³⁺ आयन के रूप में उत्पन्न होता है जोकि (Ar)¹⁸ के साथ समइलेक्ट्रॉनिक होता है। पूर्ण रूप से भरे कक्षकों के साथ Sc³⁻ के लवण सफेद होते हैं।

प्र.22. क्या होता है जब H_2O_2 अम्लीय $K_2Cr_2O_7$ विलयन के साथ हिलायी जाती है?

उत्तर- बिलयन का रंग नारंगी से नीले में बदल जाता है। ${\rm Cr_2O_7}^{2+} + 4{\rm H_2O_2} + 2{\rm H}^- \rightarrow 2{\rm CrO_5} + 5{\rm H_2O}$

प्र.23. जब $K_2Cr_2O_7$ के तनु विलयन H_2S से गुजारी जाती है, दूधियापन दिखायी देता है, क्यों?

उत्तर- ऐसा H_2S के सल्फर में ऑक्सीकृत होने के कारण होता है जो कि कोलाइडी प्रकृति का होता है। इसीलिए विलयन दूधिया सफेद या हल्के पीला दिखायी देता है।

प्र.24. रासायनिक भूकम्प कैसे बनता है?

उत्तर- रासायनिक भूकम्प तब बनता है जब ठोस अमोनिया डाइक्रोमेट गर्म किया जाता है।

प्र.25. आवर्त सारणी के किस ब्लॉक का तत्त्व ज्यादा जल्दी संकुल यौगिक बनाता है?

उत्तर- d- ब्लॉक से सम्बन्धित तत्व।

प्र.26. मैंग्नीज की +2 ऑक्सीकरण अवस्था क्यों स्थायी होती है जबिक आयरन के लिए यही बात सत्य नहीं है?

उत्तर- दोनों आयनों के इलेक्ट्रॉनिक विन्यास हैं:

 Mn^{2+} : [Ar]3d⁵: Fe²⁺: [Ar]3d⁶

 Mn^2 . Fe^{2-} आयन की अपेक्षा ज्यादा समिमतीय विन्यास वाला होता है तथा इसीलिए, ज्यादा स्थायी होता है। इस प्रकार मैंग्नीज की +2 ऑक्सीकरण अवस्था ज्यादा स्थायी है जबिक आयरन की

नहीं ।

- प्र.27. परमाणु क्रमांक 102 वाले तत्व का इलेक्ट्रॉनिक विन्यास लिखें।
- उत्तर- तत्व (Z = 102) का विन्यास है [Rn] $5f^{14}7s^2$
- प्र.28. Lu(OH), की अपेक्षा La(OH) ज्यादा क्षारीय क्यों है?
- उत्तर- Lu(OH), की अपेक्षा La(OH), ज्यादा क्षारीय होता है क्योंकि बाद वाला लैन्थेनॉयड आंकुचन के कारण पहले वाले की तुलना में ज्यादा सहसंयोजी लक्षण वाला होता है। इससे OH आयन की मुक्ति होती है। Lu(OH), ज्यादा कठिन है तथा La(OH), की अपेक्षा कम क्षारीय है।
- प्र.29. Zn, Cd व Hg अधिक कोमल व कम गलनांक वाले क्यों होते 背?
- उत्तर- इन धातुओं के परमाणु पूर्ण रूप भरे d- कक्षक (d¹⁰ कक्षक) वाले होते हैं। इस का अभिप्राय है कि d-इलेक्ट्रॉन धात्विक बन्ध निर्माण के लिए तुरन्त उपलब्ध नहीं होते हैं। स्पष्ट रूप से धात्विक बन्ध कमजोर होते हैं और इसके परिणामस्वरूप, ये धातुएँ अत्यधिक कोमल होती हैं व कम गलनांक वाली भी होती है।
- प्र ३९. निम्न संक्रमण तत्वों के परमाणुओं के इलेक्ट्रॉनिक विन्यास से संभावित ऑक्सीकरण अवस्था क्या हो सकती है?
 - (i) $3d^34s^2$ (ii) $3d^54s^2$ (iii) $3d^64s^2$
- उत्तर- (i) $3d^34s^2$ विन्यास (18 + 3 + 2 = 23) वाला तत्व वैनेडियम (V) है संभावित ऑक्सीकरण अवस्थाएँ +2, +3, +4, +5 है।
- (ii) $3d^54s^2$ विन्यास (18 + 5 + 2 = 25) वाला तत्व मैंगनीज (Mn) है। संभावित ऑक्सीकरण अवस्थाएँ +2, +3, +4, +5, +6, +7 हैं।
- 3d⁶4s² विन्यास (18 + 6 + 2= 26) वाला तत्व लोहा (Fe) है। संभावित ऑक्सीकरण अवस्थाएँ +2, +3, +4, +5, +6 हैं।
- प्र.31. निम्नलिखित के इलेक्ट्रॉनिक विन्यास लिखिए-
 - (a) Cr^{3+}
- (b) Cu⁺
- (c) Co^{2+}
- (d) Mn^{2+}

- (e) Pm^{3+}
- (f) Ce⁴⁺
- (g) Lu^{2+}
- (h) Th^{4+}

- $[Ar] 3d^3$

- उत्तर- (a) Cr³⁻
- (b) Cu⁺
- [Ar]3d¹⁰
- (c) Co^{2+}
- [Ar] $3d^{7}$ [Ar]3d⁵
- (d) Mn^{2+} (e) Pm^{3+}
- [Xe]4F⁴
- (f) Ce⁴⁺
- [Xe]
- (g) Lu²⁺
- [Xe] $4f^{14}5d^{1}$
- (h) Th⁴⁺
- [Rn]
- प्र.32. +3 ऑक्सीकरण अवस्था में ऑक्सीकृत होने के सन्दर्भ में Mn²⁺ के यौगिक Fe²⁺ के यौगिकों की तुलना में अधिक स्थायी क्यों हैं?
- उत्तर- Mn²⁻ का इलेक्ट्रॉनिक विन्यास 3d⁵ है जबकि Fe²⁺ का 3d⁶ होता

d-एवं f∹ब्लॉक के तत्व

- है। इस प्रकार Mn की +2 ऑक्सीकरण अवस्था हुण्ड के नियमानुसार अर्धपूर्ण भरे d⁵ कक्षकों के अधिक स्थायित्व के कारण Fe की +2 ऑक्सीकरण अवस्था से ज्यादा स्थायी होती है।
- प्र.33. संक्षेप में स्पष्ट कीजिए कि प्रथम संक्रमण श्रेणी के प्रथम अर्धभाग में बढ़ते हुए परमाणु क्रमांक पंक्ति के साथ +2 ऑक्सीकरण अवस्था कैसे अधिक स्थायी होती जाती है?
- उत्तर- क्रमबद्ध सभी तत्वों में, संयोजी 4s इलेक्ट्रॉनों (+2 ऑक्सीकरण अवस्था) के निकलने से 3d कक्षक क्रमश: भर जाते हैं। चूँकि रिक्त d- कक्षकों की संख्या घटती जाती है अत: धनायनों (M^{2-}) की स्थिरता Sc²⁺ से Mn²⁺ तक बढ जाती है।
- प्र.34. संक्रमण तत्वों की मूल अवस्था में नीचे दिए गए d इलेक्ट्रॉनिक विन्यासों में कौन-सी ऑक्सीकरण अवस्था स्थायी होगी? 3d3, 3d⁵, 3d⁸ तथा 3d⁴
- उत्तर- 3d श्रेणी की संक्रमण धातुओं में स्थायित्व की अधिकतम ऑक्सीकरण अवस्था Mn तक के s व d इलेक्ट्रॉनों के योग के अनुरूप होती है। किन्तु Mn के बाद ऑक्सीकरण अवस्थाओं में कमी आ जाती है। विस्तृत अध्ययन के लिए अध्याय पढें। इन शब्दों के प्रकाश में तत्वों की सबसे अधिक स्थायी ऑक्सीकरण अवस्था है।
 - $3d^3: 3d^34s^2$ (+5); $3d^5: 3d^54s^1$ (+6) $= 3d^54s^2$ (+7)
 - 3d8: 3d84s2(+2); 3d4: 3d44s2 या 3d54s1(+6)
- प्र.35. प्रथम संक्रमण श्रेणी के ऑक्सो-धातु ऋणायनों का नाम लिखिए, जिसमें धातु संक्रमण श्रेणी की वर्ग संख्या के बराबर की ऑक्सीकरण अवस्था प्रदर्शित करती है।
- उत्तर- Mn तत्व तक अधिकतम स्थायित्व युक्त ऑक्सीकरण अवस्था s-तथा d- इलेक्ट्रॉनों के योगफल के लिए, ये अनुरूप होती है। उदाहरण के लिए
 - $[Sc(III)O_2]^-$, $[Ti(IV)O_3]^{2-}$, $[V(V)O_3]^-$, $[Cr(VI)O_4]^{2-}$. $[Mn(VIII)O_{\Delta}]^{-}$
 - परन्तु शेष तत्वों के, ऑक्सीकरण अवस्थाएँ समूह संख्याओं से सम्बन्धित नहीं होती है।
- प्र.36. संक्रमण धातुओं के अभिलक्षण क्या हैं? ये संक्रमण धातु क्यों कहलाती हैं? d- ब्लॉक के तत्वों में कौन से तत्व संक्रमण श्रेणी के तत्व नहीं कहे जा सकते?
- उत्तर- आंशिक रूप से भरे d कक्षकों के कारण संक्रमण तत्व निम्न अभिलाक्षणिक गुण प्रदर्शित करते हैं जैसे-
 - 1. ये तत्व अनेक ऑक्सीकरण अवस्थायें प्रदर्शित करते हैं।
 - 2. इनके आयन रंगीन होते हैं।
 - 3. ये तत्व अनेक प्रकार के लिगेण्डों द्वारा संकुल का निर्माण।
 - 4. ये अनुचुम्कबीय प्रवृत्ति प्रदर्शित करते है।
 - ये तत्व s व p कक्षकों के मध्य स्थित होने के कारण इन्हें संक्रमण

तत्व कहते हैं।

Zn, Cd एवं Hg तत्वों को संक्रमण तत्व नहीं कहते हैं।

प्र.37. लैन्थेनाइडों द्वारा कौन-कौन सी ऑक्सीकरण अवस्थाएँ प्रदर्शित की जाती हैं?

उत्तर- लैन्थेनायङ की सामान्य स्थायी ऑक्सीकरण अवस्था +3 है। परन्तु कुछ +2 एवं +4 ऑक्सीकरण अवस्थाएं भी प्रकट करते हैं।

प्र.38. कारण देते हुए स्पष्ट कीजिए।

- (i) संक्रमण धातुएं और उनके अधिकांश यौगिक अनुचुम्बकीय है।
- (ii) संक्रमण धातुओं की कणन एन्थैल्पी के मान उच्च होते हैं।
- (iii) संक्रमण धातुएं सामान्यतः रंगीन यौगिक बनाती है।
- (iv) संक्रमण धातुएं तथा इनके अनेक यौगिक उत्तम उत्प्रेरक का कार्य करते हैं।

उत्तर-(i) पाठ्य भाग देखें।

- (ii) कणन एन्थैल्पी में ऊष्मीय ऊर्जा की मात्रा क्रिस्टलीय धातु के धातु जालक को मुक्त परमाणुओं में तोड़ने के लिए आवश्यक होती है। जालक ऊर्जा का परिमाण अधिक होने पर कणन एन्थैल्पी का मान अधिक हो जायेगा। संक्रमण धातुओं की कणन एन्थैल्पी उच्च होती है क्योंकि आधे भरे परमाणु कक्षकों की अधिक संख्या की उपस्थिति के कारण धात्विक बन्ध पूर्ण प्रबल होते हैं।
- (iii) अतः जब संक्रमण धातु परमाणु या आयन पर श्वेत प्रकाश गिरता है तो उस प्रकाश में से एक निश्चित रंग की प्रकाश ऊर्जा का अवशोषण होता है एवं एक या अधिक इलेक्ट्रान का उत्तेजन निम्न ऊर्जा के कक्षकों से उच्च उर्जा के कक्षकों में होता है।
- इस प्रकार जब श्वेत प्रकाश से विशिष्ट रंग ही विकिरणों का अवशोषण होता है तो एक पूरक रंग दिखायी देता है।
- इस प्रकार किसी संक्रमण धातु परमाणु या आयनों में रंग का प्रदर्शन, d-d इलेक्ट्रान के संक्रमण के कारण होता है। जिसे d-d संक्रमण कहते हैं।
- (iv) उत्प्रेरक के रूप में अधिकतर संक्रमण धातुओं, इनकी मिश्र धातुओं और यौगिकों को ही प्रयोग में लिया जाता है।
- इसके निम्न कारण हैं--
 - (1) ये परिवर्तनशील ऑक्सीकरण अवस्था प्रदर्शित करते हैं।
 - (2) इनके पास रिक्त d कक्षक उपलब्ध होते हैं।
- अतः उपर्युक्त दोनों विशेषताओं के कारण, ये क्रियाकारकों के अणुओं के साथ रिक्तं कक्षकों को उपयोग में लेकर आसानी से मध्यवर्ती अस्थायी यौगिक बना लेते हैं, जो फिर उत्पादों में टूट जाता है तथा ये पुनः मुक्त होकर अपनी पूर्व अवस्था में आ जाते हैं।
- इस प्रकार अभिक्रिया की सक्रियण ऊर्जा कम हो जाती है और

अभिक्रिया का वेग बढ़ जाता है।

- प्र.39. निम्नलिखित में कौन-से आयन जलीय विलयन में रंगीन होंगे? $Ti^{3+}, V^{3+}, Cu^+, Sc^{3+}, Mn^{2+}, Fe^{2+}, Fe^{3+} तथा Co^{2+} प्रत्येक के लिए कारण बताइये।$
- उत्तर- केवल वही आयन रंगीन होंगे जो अपूर्ण d- कक्षक वाले आयन रंगहीन होते हैं। इस बात को ध्यान में रखते हुए दी गई सूची में रंगीन आयन हैं: Ti^{3+} , V^{3-} , Mn^{2+} , Fe^{3-} , Co^{2+} , (रंगीन है) Sc^{3+} ($3d^0$) व $Cu^+(3d^{10})$ रंगहीन होते हैं।
- प्र.40. प्रथम संक्रमण श्रेणी की धातुओं की +2 ऑक्सीकरण अवस्थाओं के स्थायित्व की तुलना कीजिए।
- उत्तर- सभी संक्रमण तत्व प्राय: +2 ऑक्सीकरण अवस्थायें प्रदर्शित करते हैं।
 - किसी संक्रमण तत्व की +2 ऑक्सीकरण अवस्था, तब अधिक स्थायी होती है जब उसमें अर्धपूर्ण भरे (d⁵) कक्षक उपस्थित हो या पूर्ण भरे कक्षक उपस्थित हो।
 - जैसे Mn^{2+} , Zn^{2+} , Cd^{2-} , Hg^{+2} अवस्थायें अधिक स्थायी होती है क्योंकि इनमें d^5 व d^{10} अधिक स्थायी व्यवस्थायें है।
- प्र.41. निम्नलिखित के सन्दर्भ में, लैन्थेनॉयड व एक्टिनॉयड के रसायन की तुलना कीजिए:
 - (i) इलेक्ट्रॉनिक विन्यास (ii) परमाण्वीय एवं आयनिक आकार
- (iii) ऑक्सीकरण अवस्था (iv) रासायनिक अभिक्रियाशीलता। उत्तर- पाठ्य भाग देखें।

प्र.42. निम्नलिखित को किस प्रकार से स्पष्ट करेंगे?

- (a) d⁴ स्पीशीज में से, Cr²⁺ प्रबल अपचायक है जबिक मैग्नीज (III) प्रवल ऑक्सीकारक है।
- (b) जलीय विलयन में कोबाल्ट (II) स्थायी होता है लेकिन संकुलनकारी अभिकर्मकों की उपस्थिति में यह सरलतापूर्वक ऑक्सीकृत हो जाता है।
- (c) आयनों का d¹ विन्यास अत्यंत अस्थायी है।
- उत्तर- (a) Cr^{3-}/Cr^{2+} का E° मान ऋणात्मक (-0.41V) होता है जबिक Mn^{3+}/Mn^{2-} का धनात्मक (+1.5V) इसका अर्थ होता है Cr^{2+} आयन Cr^{3-} आयन के बनाने के लिए इलेक्ट्रॉन खो सकता है तथा अपचायक की तरह कार्य करता है। जबिक Mn^{3+} आयन इलेक्ट्रॉनों को ग्रहण करके ऑक्सीकारक के समान व्यवहार कर सकता है।
- (b) कोबाल्ट (II) जलीय विलयन में स्थायी होता है लेकिन संकुलनकारी अभिकर्मक की उपस्थिति में यह ऑक्सीकरण अवस्था +2 से +3 परिवर्तित करके आसानी से ऑक्सीकृत हो जाता है।
- (c) d¹ विन्यास वाला आयन अत्यधिक अस्थायी समझा जाता है तथा d⁰ विन्यास (अत्यधिक स्थायी) प्राप्त करने के लिए d उपकोश में

उपस्थित केवल एक इलेक्ट्रॉन निकालने की प्रबल क्षमता होती है।

प्र.43. असमानुपातन से आप क्या समझते हैं? जलीय विलयन में असमानुपातन अभिक्रियाओं के दो उदाहरण दीजिए।

- उत्तर- इस क्रिया में, कोई तत्व दो भिन्न यौगिक बनाकर अपनी ऑक्सीकरण अवस्था में वृद्धि के साथ-साथ कमी भी करता है। अन्य शब्दों में हम कह सकते हैं कि यह अपचायक और ऑक्सीकारक दोनों के समान कार्य कर सकता है।
 - (i) $3\text{MnO}_4^{2-} + 4\text{H}^+ \rightarrow 2\text{MnO}_4^- + \text{MnO}_2 + 2\text{H}_2\text{O}$ (VI) (VII) (IV)
 - (ii) (VI) (VII) (IV) $(STO_4^{3-} + 8H^+ \rightarrow 2CrO_4^{2-} + Cr^{3+} + 4H_2O)$ (VI) (III)

प्र.44. प्रथम संक्रमण श्रेणी में कौनसी धातु बहुधा तथा क्यों +1 ऑक्सीकरण अवस्था दर्शाती है?

- उत्तर- Cu जिसका विन्यास [Ar]3d¹⁰4s¹ है, +1 ऑक्सीकरण अवस्था प्रकट करता है और Cu⁻ आयन बनाता है क्योंकि एक इलेक्ट्रॉन खोने से धनायन d- कक्षकों (3d¹⁰) का स्थायी विन्यास प्राप्त कर लेता है।
- प्र.45. निम्नलिखित गैसीय आयनों में अयुग्मित इलेक्ट्रॉनों की गणना कीजिए:

 Mn^{3+} , Cr^{3+} , V^{3+} इनमें से कौन सा जलीय विलयन में अतिअस्थायी है?

उत्तर- $\mathrm{Mn^{3+}}$: $[\mathrm{Ar}]^{18}3\mathrm{d^4}$: चार अयुग्मित इलेक्ट्रॉन $\mathrm{Cr^{3+}}$: $[\mathrm{Ar}]^{18}3\mathrm{d^3}$: तीन अयुग्मित इलेक्ट्रॉन $\mathrm{V^{3+}}$: $[\mathrm{Ar}]^{18}3\mathrm{d^2}$: दो अयुग्मित इलेक्ट्रॉन

V³⁺ अति अधिक अस्थाई है।

प्र.46. उदाहरण देते हुए संक्रमण धातुओं के निम्नलिखित अभिलक्षणों का कारण बताइये।

- (a) संक्रमण धातु का निम्नतम ऑक्साइड क्षारकीय है, जबिक उच्चतम ऑक्साइड उभयधर्मी अम्लीय है।
- (b) संक्रमण धातु की उच्चतम ऑक्सीकरण अवस्था ऑक्साइडों और फ्लोराइडों में प्रदर्शित होती है।
- (c) धातु के ऑक्सोऋणायनों में उच्चतम ऑक्सीकरण अवस्था प्रदर्शित होती है।
- उत्तर- (a) यह ध्यान रहे कि समान तत्व के भिन्न ऑक्साइडों में अम्लीय प्रबलता तत्व की ऑक्सीकरण अवस्था में वृद्धि के साथ बढ़ती है। अतः $MnO(Mn^{2+})$ प्रकृति में क्षारीय होता है जबकि $Mn_2O_7(Mn^{7+})$ अम्लीय प्रकृति का होता है।

- (b) दोनों ऑक्सीजन और फ्लुओरीन उच्च वैद्युत ऋणात्मक हैं तथा किसी विशेष संक्रमण धातु की ऑक्सीकरण अवस्था में वृद्धि कर सकते हैं। कुछ ऑक्साइडों में तत्व ऑक्सीजन धातु के साथ बहुबन्धन में प्रयुक्त होता है और धातु के कोश की उच्च ऑक्सीकरण के लिए उत्तरदायी होता है।
- (c) यह क्रोमियम ऑक्सीजन की उच्च वैद्युत ऋणात्मकता के कारण भी होता है। उदाहरण के लिए, ऑक्सोऋणायन [$Cr(VI)O_4$]²⁻ में (VI) की ऑक्सीकरण अवस्था प्रकट करता है जबिक मैंगनीज ऑक्सोऋणायन [$Mn(VII)O_4$]⁻ में (VII) की ऑक्सीकरण अवस्था दिखाता है।

प्र.47. आंतरिक संक्रमण तत्व क्या हैं? बताइए कि निम्नलिखित में कौन-से परमाणु क्रमांक आंतरिक संक्रमण तत्वों के हैं?

29, 59, 74, 95, 102, 104

उत्तर- आन्तरिक संक्रमण तत्व श्रेणी के तत्वों को s ब्लॉक तत्व भी कहलाते हैं। ये लैन्थेनॉयड्स (Z = 58 से 71) तथा ऐक्टिनायड्स (Z = 90 से 103) होते है। इसका तात्पर्य है कि 59, 95 व 102 परमाणु संख्या वाले तत्व आन्तरिक संक्रमण तत्व से सम्बन्धित होते हैं।

प्र.48. 61, 91, 101, 109 परमाणु क्रमांक वाले तत्त्वों का इलेक्ट्रॉनिक विन्यास लिखिए।

उत्तर- प्रोमेथियम या Pm (Z=61) [Xe] $^{54}4f^55d^06s^2$ प्रोटैक्टोनियम या Pa (Z=91) [Rn] $5f^26d^17s^2$ मेन्डेलोवियम या Md (Z=101) [Rn] $5f^{13}6d^07s^2$ मेइटनेरियम या Mt (Z=109) [Rn] $5f^{14}6d^77s^2$

प्र.49. निम्नलिखित आयनों में प्रत्येक के लिए 3d इलेक्ट्रॉनों की संख्या लिखिए-

 Ti^{2+} , V^{2+} , Cr^{3+} , Mn^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} आप इन जलयोजित आयनों (अष्टफलकीय) में पाँच 3d कक्षकों को किस प्रकार अधिग्रहीत करेंगे? दर्शाइये।

उत्तर-आयनों में 3d इलेक्ट्रॉनों की संख्याएँ हैं...

	•
आयन	3d इलेक्ट्रॉन
Tî ²⁺	2
V^{2+}	3
Cr ³⁺	3
Mn ²⁺	5
Fe ²	6
Fe ³⁺	5
Co ²⁺	7
Ní ²⁻	. 8
Cu ²⁻	9