EXPERIMENT 1 (B) NISARGI UPADHYAYA

RECIPROCITY THEOREM

Verification of reciprocity theorem.

Consider a passive linear bilateral two-port network and two different types of connections.

1 Voltage V, is applied across part 1 and arrent I_2 is measured at part 2

@ Vallage Ve is applied across port 2 and assent I, is measured at port 1

According to recipercity theorem
$$\frac{I_1}{V_2} = \frac{I_2}{V_1}$$

> OBSERVATION TABLE

V _s (v)	I3 (A)	Vs (VA)	Vs' (U)	I,' (A)	Vs' (VA)
220	0.506	434.78	110	0.252	436.51

$$T_1 = 1.108 A$$
 $T_1' = 0.252 A$ $V_1 = 53.82 V$ $T_2 = 0.570 A$ $T_2' = 0.631 A$ $V_2 = 25.32 V$ $T_3 = 0.506 A$ $T_3' = 0.805 A$ $T_4 = 0.538 A$ $T_4' = 0.379 A$ $V_5 = 69.43 V$ $V_6 = 37.87 V$

MISARGI UPADHYAYA

$$\frac{V_s}{I_s} = \frac{220}{0.506} = 434.78 \text{ V/A}$$
) $\frac{V_s'}{I_1'} = \frac{110}{0.252} = 436.50 \text{ V/A}$

It can be seen that $\frac{V_s}{I_s} \approx \frac{V_s'}{I_1'}$ which is in agreement with the reciperatity theorem.

=> DISCUSSION AND COMMENTS

Reciporately theorem was successfully verified.

A direct consequence of the reciperacity theorem $(\frac{\mathbb{I}_1}{\mathbb{I}_2} = \frac{\mathbb{I}_2}{\mathbb{I}_1})$ is that if we take $V_1 = V_2$ then $\mathbb{I}_1 = \mathbb{I}_2$. In simple words if we have a voltage source V in branch 1 and a current \mathbb{I} in branch 2 then we can say that placing the voltage source V in branch 2 will course a assent \mathbb{I} to flow in branch 1, i.e., voltage and assent also swapped.

One must always remember that reciperately theorem can only be applied to passive linear bilateral networks only.