

1.3.2 Applying the Theory

Alg.

 \mathbf{A}

B

T(n)

n

 n^2

b.o. execution time

1000t

t

$$n \times 1000 t \begin{cases} > \\ = \\ < \\ ? \end{cases} \quad n^2 \times t$$

1.4 Order

■ 1.4.1 An Intuitive Introduction to Order

a, b, c, d: constants

$$an + b \in \Theta(n)$$
 linear
 $an^2 + bn + c \in \Theta(n^2)$ quadratic
 $an^3 + bn^2 + cn + d \in \Theta(n^3)$ cubic

ignore low order terms – see table 1.3

$$\Theta(\log n) \ \Theta(n) \ \Theta(n \log n) \ \Theta(n^2) \ \Theta(n^3) \ \Theta(2^n)$$

- See figure 1.3
- See table 1.4

Figure 1.3 Growth rates of some common complexity functions.

Table 1.4 Execution times for algorithms with the given time complexities

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=2^n$
10	0.003 μs*	0.01 μs	0.033 μs	0.1 μs	1 μ s	1 μs
20	$0.004~\mu \mathrm{s}$	$0.02~\mu s$	0.086 μs	$0.4~\mu s$	8 μs	1 ms [†]
30	$0.005 \mu s$	$0.03~\mu s$	$0.147 \mu s$	$0.9~\mu s$	27 μs	1 s
40	$0.005 \mu s$	$0.04~\mu s$	$0.213~\mu s$	$1.6 \mu s$	64 μs	18.3 min
50	0.006 μs	$0.05~\mu s$	$0.282~\mu s$	$2.5 \mu s$	125 μs	13 days
10^2	$0.007~\mu s$	$0.10~\mu s$	$0.664~\mu s$	10 μs	1 ms	4×10^{13} years
10^3	$0.010~\mu s$	$1.00 \mu s$	9.966 μs	1 ms	1 s	
10 ⁴	$0.013~\mu s$	10 μs	130 μs	100 ms	16.7 min	
10^{5}	$0.017 \mu s$	0.10 ms	1.67 ms	10 s	11.6 days	
10^{6}	$0.020~\mu s$	1 ms	19.93 ms	16.7 min	31.7 years	
10^{7}	$0.023~\mu s$	0.01 s	0.23 s	1.16 days	31,709 years	
10^{8}	$0.027~\mu s$	0.10 s	2.66 s	115.7 days	3.17×10^7 years	
10 ⁹	0.030 µs	1 s	29.90 s	31.7 years		

^{*1} μ s = 10^{-6} second.

 $^{^{\}dagger}1 \text{ ms} = 10^{-3} \text{ second.}$

■ Def. Big O: for a given complexity function f(n), O(f(n)) is the set of complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer N s.t. for all $n \ge N$,

$$g(n) \le c \times f(n)$$
: asymptotic upper bound

$$g(n) \in O(f(n))$$
 $g(n)$ is big O of $f(n)$

■ Ex)
$$n^2 + 10n$$
 $\leq 2 \cdot n^2$ $n \geq 10$ $n^2 + 10n \in O(n^2)$
 $n \leq 1 \cdot n^2$ $n \geq 1$ $n \in O(n^2)$
 $n(n-1)/2 \leq \frac{1}{2}n^2$ $n \geq 0$ $n(n-1)/2 \in O(n^2)$

See Figure 1.5 and 1.4

Figure 1.5 The function $n^2 + 10n$ eventually stays beneath the function $2n^2$.

Figure 1.4 Illustrating "big 0," Ω , and Θ .

Omega

Def. Omega: for a given complexity function f(n), $\Omega(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer N s.t. for all $n \ge N$,

$$g(n) \ge c \times f(n)$$
: asymptotic lower bound

$$g(n) \in \Omega(f(n))$$
 $g(n)$ is omega of $f(n)$

■ Ex)
$$n^2 + 10n \ge n^2$$
 $n \ge 0$ $n^2 + 10n ∈ Ω(n^2)$
$$n(n-1)/2 \ge \frac{1}{4}n^2$$
 $n \ge 2$ $n(n-1)/2 ∈ Ω(n^2)$
$$n^3 \ge 1 \cdot n^2$$
 $n \ge 1$ $n^3 ∈ Ω(n^2)$

Order

Def. Order: for a given complexity function f(n)

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

 $\Theta(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constant c and d and some nonnegative integer N s.t. for all $n \ge N$,

$$\mathbf{c} \times f(n) \le g(n) \le \mathbf{d} \times f(n)$$

$$g(n) \in \Theta(f(n))$$
 $g(n)$ is order of $f(n)$

- $E_{\mathbf{X}}) \quad n(n-1)/2 \in \Theta(n^2)$
- See Figure 1.6

Figure 1.6 The sets $O(n^2)$, $\Omega(n^2)$, and $\Theta(n^2)$. Some exemplary members are shown.

Small o

Def. Small o: for a given complexity function f(n), o(f(n)) is the set of complexity functions g(n) satisfying the following: For every positive real constant c there exists a nonnegative integer N s.t. for all $n \ge N$,

$$g(n) \le c \times f(n)$$

 $g(n) \in o(f(n))$ $g(n)$ is small o of $f(n)$
 $g(n)$ is eventually much better function than $f(n)$

• Ex)
$$n \le c n^2$$
 for $n \ge \frac{1}{c}$

Theorem 1.2

If $g(n) \in o(f(n))$ then $g(n) \in O(f(n)) - \Omega(f(n))$

That is, g(n) is in O(f(n)) but not in $\Omega(f(n))$

• Note that $o(f(n)) \neq O(f(n)) - \Omega(f(n))$

 \rightarrow see ex. 1.20.

But equality holds for the time complexities of actual algorithms.

Properties of Order

1.
$$g(n) \in O(f(n))$$
 if and only if $f(n) \in \Omega(g(n))$

2.
$$g(n) \in \Theta(f(n))$$
 if and only if $f(n) \in \Theta(g(n))$

- 3. If b > 1 and a > 1, then $\log_a n \in \Theta(\log_b n)$
- 4. If b > a > 0, then $a^n \in o(b^n)$
- 5. For all a > 0, $a^n \in o(n!)$
- 6. Assume k > j > 2 and b > a > 1. $\Theta(\lg n) \ \Theta(n) \ \Theta(n \lg n) \ \Theta(n^2) \ \Theta(n^j) \ \Theta(n^k) \ \Theta(a^n) \ \Theta(b^n) \ \Theta(n!)$
- 7. If $c \ge 0$, d > 0, $g(n) \in O(f(n))$, $h(n) \in \Theta(f(n))$, then $c \times g(n) + d \times h(n) \in \Theta(f(n))$