

Deep Learning Methods for Reynolds-Averaged Navier-Stokes Simulations of Airfoil Flows

Julian Hohenadel Technical University of Munich Chair of Computer Graphics and Visualization Munich, 11. May 2020

Introduction

Background – RANS

Background – RANS

Background – Convolutions

Taken from I2DL WS19/20 (TUM)

Background – Convolutions

Low-Level Features, Mid-Level Features, High-Level Features: each filter captures different characteristics

Taken from https://arxiv.org/pdf/1311.2901.pdf

Data Generation

Data Generation

TODO

Punkt 1

Punkt 2

Punkt 3

Punkt 4

Pre-processing

Pre-processing

Pre-processing – Evaluation

Pre-processing – Evaluation

Vector norms used in pre-processing comparision wrt. error, L2 default (in %)

L1 normalization achieves the best error rates (p, vel, combined: **14.19**%, **2.251**%, **2.646**% – L2: 14.76%, 2.291%, 2.780%)

Architecture

U-Net derivative proposed in the paper:

Taken from https://arxiv.org/pdf/1810.08217.pdf

Architecture – Convolutional blocks

Encoder	Decoder
1. Activation – Leaky ReLu (0.2)	1. Activation – ReLu
2. Convolution – Width down, Depth up	2. Upsampling – linear (2.0)
3. Batch normalization	3. Convolution – Width up, Depth down
4. Dropout (1%)	4. Batch normalization
	5. Dropout (1%)

Architecture – Evaluation

Error percentage of different activation functions after 160k iterations (266 epochs).

PReLu achieves the best error rates (p, vel, combined: **14.69**%, **2.216**%, **2.676**% – Default: 14.76%, 2.296%, 2.787%)

Architecture – Evaluation

Training loss

Validation loss

Julian Hohenadel (TUM) | Chair of Computer Graphics and Visualization

RMSE with variance, validation loss and batch loss on Bigger Tub environment:

All plots in Transfer were made with https://github.com/stathius/wave_propagation

Generalization

Generalization

Error percentage of different angle of attack intervals wrt. ground truth [-22.5, 22.5]

Discussion

Discussion

Positiv	Negativ
Punkt 1	Punkt 1
Punkt 2	Punkt 2
Punkt 3	Punkt 3
Punkt 4	Punkt 4

Summary

Backup slides