# Автоматика

Лекция 5: Устойчивость динамических систем

### В предыдущей лекции

- Какие бывают параметры периодических воздействий
- Какими параметрами характеризуются отклики (выходные функции) систем на входные воздействия
- Расчеты основных частотных откликов систем: АЧХ, ФЧХ, АФЧХ
- Преобразования параллельных и последовательных фрагментов схем автоматики

#### О чем эта лекция?

- Понятие устойчивости
- Причины неустойчивости
- Оценка реакции и устойчивости систем
- Методы оценки устойчивости
- Методы повышения устойчивости

### Понятие устойчивости

- Устойчивость способность системы сохранять текущее состояние (или возвращаться к нему) при влиянии внешних воздействий
  - В технике устойчивость определяется как свойство технических систем сохранять значения конструктивных и режимных параметров в заданных пределах:
- теплогидравлическая устойчивость свойство канальных систем с обогревом потоков сохранять параметры движения и параметры теплопередачи
- нейтронно-теплогидравлическая устойчивость ядерных реакторов свойство ядерных реакторов сохранять стабильность процессов тепловыделения и теплосьема в активной зоне
- устойчивость энергосистем способность сохранить синхронизм между электростанциями (способность возвращаться к установившемуся режиму после возмущений)
- В экологии устойчивость способность окружающей среды выдерживать воздействие человека, как способность биологических систем к сохранению и развитию биоразнообразия.

#### Устойчивость систем автоматики

- Устойчивой называется система автоматики, которая после прекращения действия возмущающих факторов стремиться к исходному или новому устойчивому состоянию, т.е. переходные процессы в ней являются затухающими.
- При отклонении регулируемого параметра от заданной величины (например, под действием возмущения или изменения задания) регулятор воздействует на систему таким образом, чтобы ликвидировать это отклонение. Если система в результате этого воздействия возвращается в исходное состояние или переходит в другое равновесное состояние, то такая система называется устойчивой. Если же возникают колебания со все возрастающей амплитудой или происходит монотонное увеличение ошибки е, то система называется неустойчивой.

# Почему системы автоматики бывают неустойчивыми

- Характеристикой устойчивости обладают только динамические системы
- Система слишком быстро (или слишком сильно) реагирует на возмущение
- Система слишком медленно (или слабо) реагирует на возмущение
- Реакция системы удаляет ее от равновесного состояния (неверное направление)

#### Реакция систем

Предельные коэффициенты усиления

• Зависят от предельных характеристик воздействий

$$k_{min} < k_{onm} < k_{max}$$





#### Реакции системы

Реакции системы зависят от коэффициента усиления k передаточной функции всей системы

$$W(p) = \frac{k}{T_n p^n + \ldots + T_1 p + 1}$$

#### Виды систем

- В статических САУ все корни располагаются в левой полуплоскости, такие системы являются устойчивыми
- В астатических (не статических) САУ установившаяся ошибка отсутствует, в характеристическом уравнении отсутстует свободный член и имеется один или несколько нулевых действительных корней, расположенных в начале координат комплексной плоскости (т. е. на мнимой оси). Из-за наличия нулевых корней астатические САУ неустойчивы по управляемой величине, но устойчивы по ее первой производной, и поэтому называются нейтрально устойчивыми по управляемой величине, которая может принимать любые установившиеся значения при нулевой скорости ее изменения
- В структурно неустойчивых САУ при любых параметрах нельзя достичь устойчивости без изменения структуры. Например, контур с положительной обратной связью структурно неустойчив, поскольку в характеристическом уравнении имеется отрицательный свободный член, который дает положительный корень и бесконечно возрастающий переходный процесс в САУ

#### Оценка устойчивости

- Все критерии оценки устойчивости дают одинаковый результат для одной и той же системы
- Динамической устойчивостью или устойчивостью по начальным условиям (по Ляпунову) называется собственное свойство САУ возвращаться в состояние начального нулевого равновесия после затухания всех составляющих свободных движений, вызванных ненулевыми начальными условиями

## Метод Ляпунова [1/2]

• Оценка делается по виду корней характеристического уравнения передаточной функции всей системы



#### Метод Ляпунова [2/2]

- затухающим апериодическим, если все корни действительные и отрицательные
- затухающим колебательным, если все действительные корни и вещественные части всех комплексно-сопряженных корней отрицательные
- расходящимся апериодическим, если из действительных корней хотя бы один положительный;
- расходящимся колебательным, если хотя бы один из комплексносопряженных корней имеет положительную вещественную часть;
- незатухающим колебательным, если хотя бы один комплексносопряженный корень имеет нулевую вещественную часть

#### Критерий Вышнеградского

• Критерий позволяет исследовать устойчивость систем произвольного порядка, но наиболее прост для систем третьей степени

$$a_3 p^3 + a_2 p^2 + a_1 p + a_0 = 0$$

- Все коэффициенты характеристического уравнения должны быть положительны
- Должно выполняться неравенство

$$a_1 a_2 > a_0 a_3$$

 В предельном случае равенства система находится на границе устойчивости

### Критерий Гурвица [1/2]

• Для характеристического уравнения составляется определитель Гурвица

$$U(x) = a_0 p^n + a_1 P^{n-1} + ... + a_n$$



### Критерий Гурвица [2/2]

 Главные миноры должны быть положительны

$$\forall \Delta, \Delta > 0$$

 Первый коэффициент должен быть положителен

$$a_0 > 0$$





### Методы повышения устойчивости

- Изменение коэффициента усиления
- Демпфирование
- Фазовый сдвиг

#### Заключение

- Устойчивость (и запас устойчивости) является одной из основных характеристик динамических систем
- Неустойчивые системы практически не находят применения
- Методы оценки делятся на алгебраические и частотные
- Оценка устойчивости системы позволяет определить ее пригодность для дальнейших исследований