PAINEL NUTRIGENÉTICO ADVANCED PLUS

ÍNDICE

Introdução	04
Resumo do Perfil	05
 Metabolismo	0506060707
Resultado Genético Detalhado	09
 Metabolismo	09
Cardio Risco Cardiovascular	17

	Risco para Hipertensão Arterial
	Aumento de Colesterol Total
	LDL Colesterol
	HDL Colesterol
	Hipertrigliceridemia
	Metabolismo de ômega 3 e resposta à suplementação
	Efeitos adversos do uso de Estatinas
	Varfarina
•	Envelhecimento26
	Longevidade
	Degeneração Macular
	Estresse Oxidativo e Detox
•	Inflamação, Intolerâncias e Trato Intestinal29
	Inflamação e Doenças Inflamatórias Intestinais
	Intolerância à Lactose
	Intolerância ao Glúten e Doença celíaca
	Intolerância à Histamina
	Metabolismo de Omeprazol
•	Vitaminas e Minerais34
	Vitamina A
	Vitamina D
	Vitamina B6
	Colina
	Metabolismo do Folato
	Vitamina B12
	Minerais
•	Saúde Mental42
	Ciclo Circadiano e Sono
	Transtornos de Humor e Resposta ao Estresse

	Comportamentos de dependência
	Enxaqueca
	Metabolismo de canabinoides
	Sensibilidade à dor
•	Hormônios e Saúde da Mulher48
	Receptores de Estrogênio
	Função Tireoidiana
	Risco para endometriose
	Risco para Menopausa precoce
	Risco de Pré-eclâmpsia
•	Desempenho Esportivo53
	Aptidão Física
	Produção de energia no exercício físico
	Fadiga e Lesões musculares
	Lesões tendíneas, ligamentares e articulares
	Metabolismo da Cafeína
•	Saúde Cutânea59
	Envelhecimento Cutâneo
	Dermatites e Sensibilidade Dérmica
	Desordens Estéticas

Paciente: GISELE XARÃO FERREIRA

Prescritor: Ciera

Nascimento: 13/11/1997

Idade: 26

Código do Paciente: 800000046363 Coleta realizada em: 17/10/2024 Amostra recebida em: 17/10/2024

Resultado liberado em: 12/11/2024

LAUDO NUTRIGENÉTICO

Introdução

Este teste genético apresenta variantes associadas a condições de saúde e bem-estar, que irão fornecer informações sobre seus riscos e potencialidades. É uma ferramenta preditiva e preventiva, altamente personalizada para auxiliá-lo na busca por mais saúde e qualidade de vida.

Metodologia: Sequenciamento de Nova Geração (NGS) na plataforma Illumina. Alinhamento em relação ao genoma de referência (hg38) e chamada de variantes realizados em pipelines desenvolvidos in house. Os SNPs são representados segundo a orientação "forward/positiva" do genoma.

Aviso Legal

Esse laudo não é um exame diagnóstico e a utilização da informação sobre a predisposição genética na definição de um planejamento nutricional e/ou de suplementação, deve ser acompanhada de profissional capacitado.

As alegações feitas neste exame são pautadas em estudos indexados e validados pela comunidade científica, com base robusta e correlacionada à nossa população.

As características avaliadas neste teste genético são, em sua maioria, poligênicas e o impacto do conjunto de variantes genéticas para determinada característica será representado por meio de gráficos de barra, apresentando o percentual de risco para o indivíduo de maneira proporcional ao impacto das variantes genéticas presentes no genoma.

RESPONSÁVEL CIENTÍFICO

Thiago Salla CRN 3: 28936

RESUMO DO PERFIL GENÉTICO

Metabolismo

Cardio

Envelhecimento

Inflamação, Intolerâncias e Trato Intestinal

Vitaminas e Minerais

Saúde Mental

Hormônios e Saúde da Mulher

Desempenho Esportivo

Saúde Cutânea

RESULTADO GENÉTICO DETALHADO

Metabolismo

Gasto Energético

O risco de obesidade é influenciado por marcadores genéticos associados a tendência de redução do gasto energético. O quadro abaixo indica quais dos genes avaliados para essa condição encontram-se com variantes alteradas no seu genoma.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Receptores de catecolaminas	ADRB2	rs1042713	Α	G/A
Receptores de catecolaminas	ADRB2	rs1042714	G	G/C
Ativação de hormônios esteroidogênicos	ETV5	rs7647305	CC	T/C
Ativação de hormônios	PCSK1	rs6234	G	G/G
Termogênese	UCP1	rs1800592	T	T/C
Termogênese	UCP2	rs659366	T	C/T
Regulação do apetite e gasto energético	MC4R	rs17782313	С	T/T
Regulação do apetite e gasto energético	MC4R	rs12970134	А	G/A
Controle central da saciedade e do gasto energético	BDNF	rs925946	T	T/G
Adipogênese e homeostase de glicose	PPARG	rs1801282	G	C/C

COMENTÁRIOS

Seu resultado indica predisposição moderada à redução do gasto energético, sobretudo por influência das alterações associadas com a atividade hormonal, regulação central do dispêndio calórico e termogênese. A prática de atividade física é fator essencial para a modulação deste risco. Em caso de variantes de risco em MC4R recomenda-se redução da ingesta de carboidratos.

Comportamento Alimentar

O comportamento alimentar resulta da interação de fatores genéticos, fisiológicos e sociais que influenciam a busca por alimento, as nossas preferências e volume alimentar ingerido. São muitas as variantes genéticas que afetam o comportamento alimentar e os sinais de fome e saciedade, influenciando o consumo alimentar e o controle do peso corporal.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Controle central da saciedade e do gasto energético	BDNF	rs6265	T	C/T
Supressão de Grelina	FTO	rs9939609	А	T/T
Supressão de Grelina	FTO	rs8050136	А	C/A
Leptina / Controle da saciedade	LEP	rs7799039	AA	G/A
Receptor de leptina / Controle da saciedade	LEPR	rs1805094	GG	G/C
Transportador de glicose/Predileção por doces	SLC2A2	rs5400	Α	G/A
Receptor de sabor/Percepção do sabor doce	TAS1R3	rs35744813	CC	C/C
Regula a sensibilidade a leptina	SH2B1	rs7498665	G	A/G
Receptor de sabor/Percepção do sabor amargo	TAS2R38	rs1726866	AA	G/A
Receptor de sabor/Percepção do sabor amargo	TAS2R38	rs10246939	TT	T/C

COMENTÁRIOS

O resultado deste perfil sugere baixa predisposição genética para um comportamento alimentar disfuncional, ainda assim os fatores ambientais podem estimular a um consumo alimentar exagerado e/ou inadequado, impactando no peso corporal, portanto, é recomendado vigilância constante na manutenção da alimentação saudável e atividade física.

Metabolismo, Obesidade e Resistência à perda de peso

O metabolismo de nutrientes exerce influência sobre a obesidade e a tendência a perda de peso. Entender as variantes genéticas relacionadas com a forma como seu organismo metaboliza gorduras e açucares é importante para a definição das estratégias alimentares que irão reduzir a resistência em perder peso e auxiliar na manutenção de um peso saudável e adequado.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Regulador do ciclo circadiano	CLOCK	rs1801260	G	A/A
Regulador do ciclo circadiano	CRY1	rs2287161	CC	C/C
Regulação do metabolismo lipídico e absorção de gorduras	FABP2	rs1799883	T	C/C
Transdução de sinal intracelular	GNB3	rs5443	T	C/T
Metabolismo de açúcares/Acúmulo gordura abdominal	GNPDA2	rs10938397	G	A/G
Adipogênese e homeostase de glicose	PPARG	rs1801282	G	C/C

COMENTÁRIOS

Risco baixo para alterações genéticas associadas a dificuldades no metabolismo de gorduras e açúcares, também associado a menor resistência à perda de peso. No entanto, é importante considerar fatores ambientais como a prática regular de atividade física e alimentação adequada para a manutenção do peso saudável.

Resistência à Insulina e Diabetes tipo 2

A insulina tem a função de realizar o transporte de glicose para o interior das células, controlando o seu nível plasmático. A resistência à insulina é descrita como a incapacidade de resposta adequada dos receptores de insulina nos tecidos, impactando no aumento da glicemia, configurando fator de risco para o desenvolvimento de Diabetes tipo 2.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Produção de adiponectina/Homeostase de glicose	ADIPOQ	rs17300539	А	G/G
Regulador do ciclo circadiano	CLOCK	rs1801260	G	A/A
Regulador do ciclo circadiano	CRY1	rs2287161	CC	C/C
Regulação do metabolismo lipídico e absorção de gorduras	FABP2	rs1799883	Т	C/C
Supressão de Grelina	FT0	гs9939609	А	T/T
Fator de crescimento semelhante a insulina	IGF2BP2	гѕ4402960	TT	G/T
Receptor de Melatonina/Regulador do ciclo circadiano	MTNR1B	rs10830963	G	C/C
Substrato do Receptor de Insulina	IRS1	rs2943641	C	C/C
Regulação da secreção de insulina	KCNJ11	rs5219	T	C/C
Regula a sensibilidade a leptina	SH2B1	гs7498665	G	A/G
Transportador de zinco, regula secreção de insulina	SLC30A8	rs13266634	С	C/C
Homeostase de glicose	TCF7L2	rs7903146	T	T/T
Homeostase de glicose	TCF7L2	rs12255372	TT	T/T
Regula a sensibilidade à insulina	ENPP1	rs1044498	CC	A/A
Adipogênese e homeostase de glicose	PPARG	rs1801282	СС	C/C

Comentários

Seu perfil genético indica risco moderado ao desenvolvimento de resistência à insulina e diabetes do tipo 2. Atenção às variantes genéticas relacionadas ao aumento do peso corporal e acúmulo de gordura abdominal, pois tais condições configuram risco de incremento à resistência dos receptores de insulina. Regular os horários das refeições, evitando grandes volumes de alimento no período noturno tardio, pode auxiliar na modulação das variantes relacionadas ao ciclo circadiano ligadas ao risco de diabetes tipo 2. O prejuízo na secreção de insulina também influencia o risco de diabetes tipo 2, neste caso o maior fracionamento de refeições pode ser interessante. A dieta mediterrânea pode ser recomendada em caso de variantes de risco no gene TCF7L2.

Diabetes tipo 1

A diabetes tipo 1 é uma doença autoimune, influenciada por predisposição genética e caracterizada pela incapacidade do organismo de produzir insulina, acarretando níveis constantemente altos de glicose no sangue. Geralmente acomete os indivíduos antos dos 20 anos de idade.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Atividade Imuno regulatória	IL2	rs2069763	AA	C/A
Regula autofagia celular e a saúde mitocondrial	CLEC16A	rs12708716	А	A/A
Produção de Insulina	INS	rs3741208	AA	A/A

COMENTÁRIOS

Seu genótipo sugere alto risco para o desenvolvimento de diabetes do tipo 1. Atenção ao monitoramento metabólico, sobretudo entre crianças e jovens, em caso de sintomas como excesso de sede, aumento do volume e frequência urinária, fadiga e perda de peso acentuada, procure um especialista.

Esteatose Hepática não alcoólica

A esteatose hepática é caracterizada pela deposição de gorduras no interior dos hepatócitos, resultado do acúmulo de triglicerídeos. Estima-se que essa condição acometa cerca de 20% dos indivíduos adultos no mundo. a. A etiologia da esteatose hepática é multifatorial, envolvendo fatores ambientais, como alimentação desequilibrada, e predisposição genética para estresse oxidativo, dislipidemias e inflamação. A inflamação presente na esteatose pode resultar em lesão peroxidativa lipídica às membranas celulares e consequentemente estimular células estreladas hepáticas, levando à fibrose e ao risco de esteatohepatite.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Conversão de ácido fólico em metilfolato	MTHFR	rs1801131	GG	T/G
Conversão de ácido fólico em metilfolato	MTHFR	rs1801133	AA	G/A
Regula a homeostase de glicose e triglicerídeos	GCKR	rs780094	T	C/C
Regula a homeostase de glicose e triglicerídeos	GCKR	rs1260326	T	C/C
Biossíntese de fosfatidilcolina	PEMT	rs7946	T	C/C
Remodelação de triglicerídeos e fosfolipídios	PNPLA3	rs738409	G	C/C
Regulação da resposta inflamatória	TNF-alfa	rs361525	А	G/G

COMENTÁRIOS

Seu genótipo indica risco baixo para o desenvolvimento de esteatose hepática não alcoólica, de qualquer forma se recomenda cuidado em relação aos fatores ambientais, sobretudo ao controle do peso corporal, à prática de atividades físicas e ao consumo adequado de alimentos fontes de colina.

Metabolismo de Álcool

A enzima aldeído-desidrogenase 2 possui importante papel no metabolismo do álcool no organismo. A função da enzima ALDH2 é catalisar a oxidação de acetaldeído, resultante da metabolização do etanol, para acetato, diminuindo a toxicidade. Indivíduos com a presença de polimorfismo em ALDH2 apresentam diminuição da atividade enzimática, causando rubor facial após o consumo de bebidas alcoólicas.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Oxidação de acetaldeído em acetato	ALDH2	rs671	А	G/G

COMENTÁRIOS

Seu genótipo indica metabolismo normal de álcool, associado a ausência de rubor facial decorrente do consumo. É importante avaliar o perfil de "Comportamentos de Dependência", descrito neste mesmo laudo, para a decisão consciente do risco de exposição e consumo de tal substância.

Cardio

Risco Cardiovascular

Os principais eventos cardiovasculares causadores de morbidades e mortalidade são os chamados eventos tromboembólicos, caracterizados pela obstrução parcial ou total de vasos sanguíneos ocasionada por coágulo. O estilo de vida pouco saudável em combinação com certas características genéticas pode contribuir para o aumento do risco.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Fator de coagulação	B-Fibrinogenio	rs1800790	AA	G/A
Regulação do ciclo celular	CDKN2A	rs10757278	G	A/G
Regulação de sistemas de coagulação	Fator V de Leiden	rs6025	Т	C/C
Estabilização da fibrina	FXIII V34L	rs5985	CC	C/C
Regula ativação plaquetária	ITGB3/HPA1	rs5918	T	T/T
Regula o transporte reverso de colesterol	LIPC	rs2070895	А	G/A
Adesão celular e regeneração de tecidos	NINJ2	rs12425791	AA	G/G
Conversão de fibrinogênio em fibrina	Protrombina	rs1799963	А	G/G
Estimula fator de transcrição NRF2	SIRT1	rs7069102	С	G/G
Estimula fator de transcrição NRF2	SIRT1	rs7896005	GG	G/G
Sinalização e regulação da ativação da JAK2	SH2B3	rs3184504	T	C/C
Biogênese ribossomal e controle da proliferação celular	WDR12	rs6725887	С	T/C

COMENTÁRIOS

Sua genética sugere um risco moderado para eventos cardiovasculares tromboembólicos como, infarto agudo do miocárdio, acidente vascular encefálico e trombose venosa. Recomenda-se o monitoramento da saúde cardiovascular e fatores ambientais relacionados.

Hipertensão Arterial

A hipertensão arterial é uma doença crônica caracterizada pelos níveis elevados da pressão sanguínea de maneira sustentada, acima dos 140/90 mmHg. Constitui um fator de risco importante para o desenvolvimento de doenças cardiovasculares. As alterações da pressão arterial são influenciadas pelo estilo de vida (sedentarismo, dieta) e por fatores genéticos.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Receptor tipo I da angiotensina II	AGTR1	rs5186	С	A/C
Enzima conversora de angiotensina	ECA	rs4343	G	G/A
Endotelina-1/Vasoconstrição	EDN	rs5370	T	G/G
Síntese de óxido nítrico/Vasodilatação	ENOS	rs1799983	T	T/G

COMENTÁRIOS

Seu genótipo indica risco moderado para hipertensão arterial. Atenção em relação aos fatores ambientais que impactam no controle da pressão arterial. A prática de atividades físicas supervisionadas, bem como o consumo adequado de nutrientes e compostos bioativos com propriedades vasodilatadoras, são recomendadas. Em caso de risco associado ao gene ECA, pode ocorrer maior sensibilidade ao sódio, sendo recomendada a redução do consumo.

Aumento de Colesterol Total

Alterações do perfil lipídico, como nas concentrações de colesterol total, estão associadas a aumento do risco de doenças cardiovasculares. A população brasileira apresenta alta incidência de alterações de colesterol total e frações, dada a influência do fator genético associada aos hábitos alimentares inadequados. O colesterol é precursor de hormônios e ácidos biliares, além de participar da regulação metabólica. Pode ser obtido na alimentação ou produzido de maneira endógena.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Transportadores ABC/Absorção intestinal de colesterol	ABCG5	rs6756629	GG	G/A
Transportadores ABC/Absorção intestinal de colesterol	ABCG8	rs4299376	G	G/T
Regula a homeostase de TG e colesterol	APOA5	rs662799	G	A/A
Apolipoproteína dos quilomícrons e das LDL	APOB	rs693	А	G/G
Apolipoproteína dos quilomícrons e das LDL	APOB	rs5742904	T	C/C
Apolipoproteína dos quilomícrons e das LDL	APOB	rs515135	T	T/C
Inibe LPL e lipase hepática. Inibe a captação hepática de TG	АРОСЗ	rs5128	G	C/C
Limitante da síntese de colesterol	HMGCR	rs3846662	GG	A/A
Receptor hepático de LDL, envolvido com a endocitose	LDLR	rs6511720	GG	G/G
Receptor hepático de LDL, envolvido com a endocitose	LDLR	rs688	T	C/C
Interage com os genes das apolipoproteínas	ZPR1	гs964184	G	C/C

COMENTÁRIOS

Seu resultado sugere um baixo risco para aumento das concentrações plasmáticas de colesterol total. Ainda assim, recomenda-se monitoramento, visto que a alimentação ocidental é, em geral, rica em gorduras saturadas, que apresentam associação com a hipercolesterolemia, consequentemente com o risco cardiovascular.

Aumento de LDL

As lipoproteínas de baixa densidade (LDL) são carreadoras de colesterol pela corrente sanguínea. Hábitos alimentares inadequados, associados a fator genético de risco, podem predispor à oxidação dessas partículas, levando a obstrução de artérias e veias e aumentando o risco cardiovascular.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Transportadores ABC/Absorção intestinal de colesterol	ABCG5	rs6756629	GG	G/A
Transportadores ABC/Absorção intestinal de colesterol	ABCG8	rs4299376	G	G/T
Regula o transporte lipídico transcelular de enterócitos	APOA4	rs675	AA	T/T
Apolipoproteína dos quilomícrons e das LDL	APOB	rs693	Α	G/G
Apolipoproteína dos quilomícrons e das LDL	APOB	rs5742904	T	C/C
Apolipoproteína dos quilomícrons e das LDL	APOB	rs515135	T	T/C
Codifica para proteína da família das Caderinas	CELSR2	rs12740374	TT	G/G
Receptor hepático de LDL, envolvido com a endocitose	LDLR	rs6511720	GG	G/G
Receptor hepático de LDL, envolvido com a endocitose	LDLR	rs688	Т	C/C
Degradação de receptores hepáticos de LDL	PCSK9	rs11206510	T	T/T
Degradação de receptores hepáticos de LDL	PCSK9	rs11591147	GG	G/G
Degradação de receptores hepáticos de LDL	PCSK9	rs505151	G	A/A
Desempenha papel na mitose	PSRC1	rs599839	AA	G/A
Interage com os genes das apolipoproteínas	ZPR1	rs964184	G	C/C

COMENTÁRIOS

Seu resultado indica um baixo risco para aumento de concentrações plasmáticas de LDL. Ainda assim, recomenda-se monitoramento dos exames bioquímicos e moderação no consumo de gorduras saturadas.

Níveis Reduzidos de HDL

As lipoproteínas de alta densidade (HDL) são responsáveis pelo transporte reverso de colesterol, impedindo que ocorra acúmulo na parede vascular. Sendo assim, concentrações mais altas de HDL são desejáveis e conferem proteção cardiovascular.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Codifica para apolipoproteína A1	APOA1	rs1799837	СС	C/C
Regula o transporte lipídico transcelular de enterócitos	APOA4	rs675	AA	T/T
Transferência de éster de colesterol do HDL	CETP	rs708272	GG	G/A
Codifica lipase hepática de triacilgliceróis	LIPC	rs1800588	CC	C/T
Hidrolisa triglicerídeos e HDL	LIPG	rs4939883	TT	C/C
Codifica lipase lipoproteica/Catalisa hidrólise de TG	LPL	rs13702	π	T/T
Regula a capacidade antioxidante de HDL	PON1	rs854560	AA	A/T
Degradação de receptores hepáticos de LDL	PCSK9	rs505151	G	A/A
Interage com os genes das apolipoproteínas	ZPR1	rs964184	G	C/C

COMENTÁRIOS

Seu genótipo indica risco reduzido para baixas concentrações de HDL. Concentrações adequadas de HDL auxiliam no controle do risco cardiovascular pois atenua a progressão das placas ateroscleróticas. A prática de atividades físicas e o consumo adequado de gorduras monoinsaturadas e polinsaturadas podem ajudar na manutenção de bons níveis plasmáticos de HDL.

Hipertrigliceridemia

Os triglicerídeos são a forma principal de armazenamento de gordura no corpo humano e garante o fornecimento de energia em situações de privação. Porém, as altas concentrações de triglicerídeos plasmáticos (hipertrigliceridemia), configuram risco metabólico e predispõe a distúrbios cardiovasculares.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Regula a homeostase de TG e colesterol	APOA5	rs662799	G	A/A
Inibe LPL e lipase hepática. Inibe a captação hepática de TG	АРОСЗ	rs5128	G	C/C
Codifica lipase lipoproteica/Catalisa hidrólise de TG	LPL	rs13702	тт	T/T
Degradação de receptores hepáticos de LDL	PCSK9	rs505151	G	A/A
Interage com os genes das apolipoproteínas	ZPR1	rs964184	G	C/C

COMENTÁRIOS

Seu genótipo indica risco reduzido para hipertrigliceridemia. Contudo, é importante manter uma alimentação adequada e a prática frequente de atividades físicas.

Metabolismo de ômega 3 e resposta à suplementação

O ômega-3 é um ácido graxos polinsaturado essencial, ou seja, precisa ser ingerido pela alimentação. Seu metabolismo é dependente de enzimas cuja atividade é influenciada por fatores genéticos. A depender do genótipo individual, o tipo e a quantidade de ômega-3 irão variar, bem como a resposta à suplementação. Antes de realizar qualquer intervenção com o uso de suplementos, procure um médico ou nutricionista.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Clearance de remanescentes de VLDL	APOE	rs429358		T/T
Clearance de remanescentes de VLDL	APOE	rs7412		C/C
	APOE		E4	E3/E3
Codifica para glicoproteína plaquetária/Resposta à suplementação de ômega-3	CD36	rs1527483	А	G/A
Atividade de dessaturases de ácidos graxos	FADS1	rs174546	T	C/T
Atividade de dessaturases de ácidos graxos	FADS2	rs174616	А	G/A
Codifica fator de transcrição	MYRF	rs174537	G	G/T
Atividade de Elongase	ELOVL2	rs953413	А	G/A
Resposta à suplementação de ômega-3	ENOS	rs1799983	T	T/G
Regula adipogênese/Influencia a resposta ao ômega-3	PPARG	rs1801282	G	C/C

COMENTÁRIOS

Seu genótipo indica risco moderado para prejuízos na metabolização do ômega 3. Pode ser necessário adequar ingestão alimentar e/ou a suplementação visando melhor aproveitamento deste nutriente e melhor biodisponibilidade de EPA e DHA. A suplementação de ômega-3 pode ser benéfica para regular a atividade inflamatória.

Efeitos adversos do uso de Estatinas

As estatinas são medicamentos utilizados para o tratamento de hipercolesterolemia e na prevenção da aterosclerose, sobretudo para redução dos níveis de LDL e consequente redução do risco cardiovascular. As estatinas inibem a enzima responsável pela formação de colesterol no fígado. Embora na maioria das vezes não causem maiores problemas, alguns indivíduos apresentam certa hipersensibilidade ao consumo, ocasionando efeitos colaterais desagradáveis.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Codifica enzima transportadora na cadeia respiratória mitocondrial	COQ2	rs4693075	GG	G/C

COMENTÁRIOS

Seu genótipo sugere risco reduzido de desenvolver efeitos adversos com o uso de Estatinas. Apesar do baixo risco, as reações adversas ocorrem não apenas pelos fatores genéticos, mas por questões como idade e presença de outras comorbidades, o que não descarta a possibilidade de ocorrência de efeitos secundários do uso de Estatinas. Não é recomendada a interrupção do uso de Estatinas sem a devida orientação médica.

Varfarina

A varfarina é um medicamento da classe dos anticoagulantes orais, utilizada na profilaxia de doenças tromboembólicas. O conhecimento do seu genótipo na resposta ao uso de Varfarina pode auxiliar na indicação da dose adequada a cada indivíduo.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Regula o ciclo da vitamina K	VKORC1L1	rs4072874	С	T/T
Metabolismo da Vit K e varfarina	CYP4F2	rs2108622	TT	C/C
Metabolismo de xenobióticos e fármacos	CYP2A6	rs1801272	Α	A/A

COMENTÁRIOS

Seu resultado sugere resposta favorável a Varfarina, o que pode indicar a necessidade de menores doses deste medicamento para se obter o efeito farmacológico esperado.

Envelhecimento

Longevidade

A longevidade é o termo que se utiliza para definir o tempo prolongado de vida de uma pessoa, mas não se limita apenas a isso, mas também à qualidade de vida. A capacidade de um indivíduo de ser mais longevo depende de fatores ambientais, como a prática de exercícios físico e uma dieta balanceada, aliadas a fatores genéticos. Alguns genes são candidatos a promover um prolongamento dos anos de vida, estes "genes candidatos" estão envolvidos com reparo de DNA, proteção às doenças neurodegenerativas e defesa contra as espécies reativas de oxigênio. Neste contexto, o uso de suplementos específicos, bem como a modulação de fatores ambientais, pode ser guiado pela genética.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Clearance de remanescentes de VLDL	APOE	rs429358		T/T
Clearance de remanescentes de VLDL	APOE	rs7412		C/C
	APOE		E4	E3/E3
Codifica Apolipoproteína 1/Regula função glomerular	APOL1	rs73885319	G	A/A
Transferência de éster de colesterol do HDL	CETP	rs5882	AA	A/A
Regulação de apoptose celular	FOXO3A	rs2802292	TT	G/T
Regulação de apoptose celular	FOXO3A	rs2764264	TT	T/T
Codifica proteína relacionada às B-glicosidases	KL	rs9536314	GG	T/T
Regula atividade neuronal e mielinização axonal	LING01	rs9652490	Α	A/A
Monoamina oxidase, catalisa reações de aminas biogênicas	МАОВ	rs1799836	π	T/C
Regula expressão de genes ligados a ação antioxidante	NRF2	rs6721961	π	G/G
Proteção e estabilidade de telômeros	RTEL1	rs755017	AA	A/G
Regulação mitocondrial da atividade antioxidante	SIRT3	rs11555236	С	C/C
Reparo de DNA e envelhecimento celular	SIRT6	rs107251	TT	T/T
Translocase de membrana mitocondrial externa	TOMM40	rs2075650	G	A/A
Liberação de neurotransmissores, atua na vesícula sináptica	UNC13A	rs12608932	С	A/C
Reparo de DNA	XRCC1	rs25487	С	C/C

COMENTÁRIOS

Seu resultado sugere risco genético moderado de alterações que podem influenciar negativamente a longevidade, por alterações associadas ao reparo de DNA e neurodegeneração. Mantenha uma alimentação saudável, um sono adequado, pratique atividades físicas, controle o estresse e evite o tabagismo e consumo excessivo de álcool.

Degeneração Macular

A degeneração macular é uma condição que afeta os olhos, mais precisamente uma parte da retina denominada mácula, levando à perda progressiva da visão. É mais frequente em pessoas acima dos 75 anos, e está associado a fatores ambientais e genéticas.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Codifica proteína componente da matriz extra celular coroidal	ARMS2	rs10490924	T	G/G
Manutenção da resposta imunológica e de defesa a infecções	CFH	rs1061170	T	C/T
Regulação de crescimento celular	HTRA1	rs11200638	AA	G/G
Regulação da resposta inflamatória	TNF-alfa	rs1800629	А	G/G
Regulação da resposta inflamatória	TNF-alfa	rs361525	А	G/G

COMENTÁRIOS

Seu genótipo sugere um baixo risco para o desenvolvimento de degeneração macular relacionada à idade. A dieta inadequada, doenças cardiovasculares e o abuso de substâncias como álcool e tabaco influenciam no risco de degeneração macular, por isso é importante manter os cuidados e o monitoramento, sobretudo na idade avançada.

Estresse Oxidativo e Detox

O estresse oxidativo é caracterizado pela produção desequilibrada de espécies reativas de oxigênio (ROS). Em condições fisiológicas, há um equilíbrio entre a promoção e a remoção de radicais livres, e o desequilíbrio está associado a redução da expectativa de vida saudável. Já o processo de destoxificação (detox) envolve a remoção de xenobióticos e metabólitos aos quais o organismo é exposto e que podem reagir com o DNA, gerando alterações no material genéticos das células. Variações genéticas associadas a alterações na atividade antioxidante e de destoxificação podem induzir desequilíbrio metabólico e aumentar o risco de doenças.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Destoxificação de epóxidos	EPHX1	rs1051740	С	T/C
Destoxificação de epóxidos	EPHX1	rs2234922	GG	A/G
Destoxificação de xenobióticos	GSTM1	rs2071487	С	T/T
Destoxificação de xenobióticos	GSTM1	rs74837985	С	G/G
Destoxificação de xenobióticos	GSTP1	rs1695	GG	A/G
Destoxificação de xenobióticos	GSTP1	rs1138272	T	C/T
Destoxificação de xenobióticos	GSTT1	rs2266633	T	C/C
Destoxificação de xenobióticos	GSTT1	rs2266637	T	T/T
Ativação e desativação de fármacos	NAT2	rs1495741	Α	A/A
Catalase, regula atividade antioxidante	CAT	rs1001179	TT	C/C
Glutationa Peroxidase 1, regula atividade antioxidante	GPX1	rs1050450	А	G/G
Conversão da coenzima Q10 em Ubiquinol	NQ01	rs1131341	Α	G/G
Conversão da coenzima Q10 em Ubiquinol	NQ01	rs1800566	А	G/G
Conversão de ânions superóxido	SOD2	rs4880	AA	A/G
Conversão de ânions superóxido	SOD3	rs1799895	G	C/C
Conversão de ânions superóxido	SOD3	rs8192288	TΤ	G/G

COMENTÁRIOS

Seu resultado sugere baixo risco de prejuízos na capacidade antioxidante e nos processos de destoxificação. Tenha uma alimentação saudável, rica em hortaliças, legumes e frutas. O consumo de brássicas e compostos bioativos com propriedades antioxidantes pode auxiliar na manutenção de uma atividade antioxidante e destoxificante adequada.

Inflamação, Intolerâncias e Trato Intestinal

Inflamação e Doenças Inflamatórias Intestinais

Variações genéticas em genes que codificam citocinas inflamatórias interferem na expressão dessas citocinas e consequentemente no risco metabólico, pois a ativação de cascatas inflamatórias medi das por citocinas é evento chave na gênese de doenças metabólicas e do intestino. A identificação da presença de alelos de risco, possibilita direcionar intervenções no estilo de vida e alimentação, que possam auxiliar na modulação do risco genético.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Absorção de vitamina B12	FUT2	rs602662	А	G/A
Mediação de diferenciação celular e apoptose	IL1-beta	rs1143634	А	G/G
Mediação de diferenciação celular e apoptose	IL1-beta	rs1143643	T	C/C
Conduz resposta imunológica	IL12B	rs2082412	GG	G/G
Resposta aguda à infecções e imunidade inata e adaptativa	IL23R	rs2201841	G	A/G
Regulação de resposta pró-infiamatória	IL6	rs1800795	G	G/G
Regulação da resposta imune a LPS	NOD2	rs2066845	С	G/G
Regulação da resposta infiamatória e diferenciação de células T CD4+	STAT3	rs744166	AA	A/G
Regulação da resposta inflamatória	TNF-alfa	rs1800629	А	G/G
Regulação da resposta inflamatória	TNF-alfa	rs361525	А	G/G

COMENTÁRIOS

Sua genética sugere baixo risco para alterações pró-inflamatórias e DII. A alimentação saudável, a modulação da microbiota intestinal, a prática de exercícios físicos regulares e o controle emocional ajudam a promover o equilíbrio da resposta inflamatória e auxiliam na manutenção da saúde intestinal.

Intolerância à Lactose

A intolerância primária à lactose está associada a presença de marcador genético que resulta na diminuição da atividade da enzima lactase, acarretando aparecimento de sintomas gastrintestinais associados ao consumo de leite e derivados que contenham lactose.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Regula o gene LCT, atuante na codificação da lactase	MCM6	rs4988235	GG	A/A

COMENTÁRIOS

Ausência de intolerância primária à lactose. Os alimentos contendo lactose são geralmente tolerados. Não está descartada a possibilidade do desenvolvimento de intolerância secundária, decorrente de fatores como, lesões teciduais do intestino por infecções ou desequilíbrio da microbiota. A intolerância secundária tende a ser reversível, diferentemente da intolerância primária.

Intolerância ao Glúten e Doença celíaca

A doença celíaca é um distúrbio mediado pelo sistema imune, cujo gatilho é a ingestão de glúten em indivíduos geneticamente susceptíveis. A análise do haplótipo DQ2/DQ8 é utilizada para predizer o risco de desenvolvimento da doença celíaca, seu valor preditivo negativo é muito relevante, visto que aproximadamente 97% dos portadores de doença celíaca apresentam o haplótipo.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Regulação do sistema imunológico	HLA	rs2187668	T	C/C
Regulação do sistema imunológico	HLA	rs2395182	T	T/T
Regulação do sistema imunológico	HLA	rs7775228	С	T/T
Regulação do sistema imunológico	HLA	rs4639334	А	G/G
Regulação do sistema imunológico	HLA	rs7454108	С	T/C

COMENTÁRIOS

HLA DQ8: Seu genótipo indica risco intermediário para doença celíaca e intolerância ao glúten. Segundo estudos com população brasileira, portadores de DQ8 possuem risco menor do que os indivíduos com DQ2.2, ainda assim recomenda-se monitoramento e observação de eventuais sintomas. Em caso de desconforto intestinal decorrente do consumo de glúten pode ser recomendada a exclusão da dieta, de acordo com indicação do nutricionista ou médico.

Intolerância à Histamina

A histamina é uma substância envolvida em diversos processos biológicos, como a estimulação da secreção gástrica, inflamação e neurotransmissão. Está presente em muitos alimentos, seja naturalmente ou produzidas por fermentação bacteriana. A metabolização da histamina pelo organismo humano é dependente das enzimas histamina-N-metiltransferase (HNMT) e diaminaoxidase (DAO). Na intolerância à histamina a atividades dessas enzimas é reduzida, causando manifestações clínicas intestinais e extra intestinais. Genes envolvidos com a atividade de HNMT e DAO estão associados ao risco de desenvolvimento de intolerância a histamina e sua avaliação pode auxiliar a modulação da alimentação para redução de eventuais sintomas.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Codifica a enzima diaminaoxidase	DAO	rs10156191	T	C/C
Codifica a enzima diaminaoxidase	DAO	rs1049742	T	C/C
Codifica a enzima diaminaoxidase	DAO	rs2268999	TT	A/A
Codifica a enzima diaminaoxidase	DAO	rs2052129	TT	G/G
Codifica a enzima histamina-N-metiltransferase	HNMT	rs11558538	TT	C/C
Codifica a enzima histamina-N-metiltransferase	HNMT	rs12995000	π	C/C

COMENTÁRIOS

Seu resultado sugere baixo risco genético de intolerância à histamina. Pessoas com seu genótipo tendem a degradá-la adequadamente, reduzindo o risco do aparecimento de sintomas desagradáveis decorrentes do consumo de alimentos que contém este componente.

Metabolismo de Omeprazol

O Omeprazol compõe uma classe de fármacos utilizados no tratamento de refluxo gastresofágico, gastrite e úlceras gástricas e duodenais. Seu metabolismo ocorre no fígado quase que inteiramente pela CYP2C19, e a eliminação ocorre majoritariamente via urina. Fatores genéticos associados a CYP2C19 podem influenciar no metabolismo deste fármaco, afetando sua atividade.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Metabolização de fármacos	CYP2C19	rs4986893	А	G/G

COMENTÁRIOS

Seu resultado sugere metabolismo adequado de Omeprazol, o que pode favorecer sua resposta no tratamento de doenças gástricas. A manutenção de uma alimentação saudável e adequada é essencial para minimizar sintomas gástricos desagradáveis e auxiliar no tratamento.

Vitaminas e Minerais

Vitamina A

A Vitamina A é um micronutriente lipossolúvel, disponível na forma de retinol em alimentos de origem animal e na forma de carotenoides nos alimentos vegetais. O gene BCMO1 está associado a atividade de enzima que realiza a conversão de betacaroteno, o carotenoide mais abundante nos vegetais, em vitamina A na forma ativa, variantes neste gene podem afetar a biodisponibilidade deste nutriente.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Conversão de Betacaroteno em Vitamina A	BCM01	rs7501331	T	C/C
Conversão de Betacaroteno em Vitamina A	BCM01	rs12934922	T	A/T
Conversão de Betacaroteno em Vitamina A	BCM01	rs11645428	G	G/A
Conversão de Betacaroteno em Vitamina A	BCM01	rs6420424	А	G/A

COMENTÁRIOS

Seu genótipo sugere risco moderado de alterações no metabolismo da vitamina A, o que indica prejuízos na capacidade de conversão do betacaroteno na forma ativa da vitamina. Você pode se beneficiar de um maior consumo de vitamina A pré-formada.

Vitamina D

A vitamina D e um micronutriente cuja função principal é a atuação no sistema osteomuscular, atuando diretamente nas concentrações de cálcio e fósforo no organismo. Porém, este nutriente é ainda muito importante em diversas outras funções, como atividade imuno reguladora, antiproliferativa e diferenciação celular. A vitamina D circula no sangue ligada à sua proteína de ligação, codificada pelo gene GC, sua conversão biológica à sua forma ativa depende da atividade da CYP27B1 e a efetiva ação nos órgãos-alvo são mediadas por sua ligação com o receptor VDR. Conhecer as variantes genéticas associadas ao metabolismo da Vitamina D pode auxiliar na indicação de intervenções alimentares e de suplementação, com o intuito de evitar a deficiência vitamínica, a qual pode ser prejudicial a diversos sistemas do organismo.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Conversão biológica em Vitamina D ativa	CYP27B1	rs10877012	G	G/G
Transporte de Vitamina D para tecidos-alvo	GC	rs2282679	G	T/T
Codifica para receptor de Vitamina D	VDR Fokl	rs2228570	А	G/G
Codifica para receptor de Vitamina D	VDR TaqI	rs731236	GG	A/G
Codifica para receptor de Vitamina D	VDR Bsml	rs1544410	T	C/T
Codifica para receptor de Vitamina D	VDR Apal	rs7975232	Α	A/A

COMENTÁRIOS

Seu resultado sugere risco moderado para alterações no metabolismo de Vitamina D, podendo causar impacto negativo nos níveis plasmáticos. A presença de variantes genéticas associadas a vitamina D pode prejudicar o metabolismo ósseo, o risco cardiovascular, e a resposta imunológica e inflamatória, sendo assim, é importante o monitoramento bioquímico e, se necessária, a intervenção com suplementação, de acordo com as orientações de seu médico ou nutricionista.

Vitamina B6

A Vitamina B6 ou Piridoxina é um micronutriente importante para o metabolismo, atuando como coenzima em diversas reações, como por exemplo, na síntese de substâncias essenciais no funcionamento do sistema nervoso e no ciclo da homocisteína.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Regula concentrações de vitamina B6	NBPF3	rs4654748	С	C/C
Absorção de vitamina B6	ALPL	rs1697421	TT	C/C

COMENTÁRIOS

Seu resultado sugere risco moderado para deficiência de Vitamina B6. É importante o monitoramento bioquímico e garantir o consumo adequado de fontes alimentares deste nutriente.

Colina

A colina é um micronutriente essencial com diversas funções no organismo, estando ligada por exemplo com a saúde hepática e desenvolvimento cerebral. Variantes genéticas associadas a colina em conjunto com a deficiência na ingestão alimentar podem afetar a saúde humana e o bom funcionamento de músculos e fígado.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Biossíntese de fosfatidilcolina	СНКА	rs10791957	А	C/A
Biossíntese de fosfolipídios	СНКВ	rs1557502	T	C/T
Colina Desidrogenase, converte colina em betaína	CHDH	rs9001	T	T/T
Colina Desidrogenase, converte colina em betaína	CHDH	rs12676	А	C/C
Conversão de fosfatidiletanolamina em fosfatidilcolina	PEMT	rs7946	T	C/C
Transporte transmembrana de colina	SLC44A1	rs3199966	T	T/T

COMENTÁRIOS

Seu resultado sugere risco moderado para alterações no metabolismo de colina. É importante garantir o consumo adequado de fontes alimentares deste nutriente para reduzir o risco de disfunções musculares e hepáticas, visto que a presença do risco genético é significativa apenas entre indivíduos com restrição dietética, ou seja, que possuem consumo insuficiente de colina.

Folato

O folato, também chamado de vitamina B9, é um micronutriente essencial envolvido com reparação de DNA, divisão e crescimento celular, formação de hemácias e desenvolvimento cerebral. O folato participa diretamente do metabolismo de homocisteína. A hiperhomocisteinemia é uma condição associada a distúrbios metabólicos que aumentam, sobretudo, o risco cardiovascular. As concentrações de homocisteína são reguladas por enzimas dependentes de vitaminas do complexo B, principalmente folato e B12. Variantes nos genes associados ao transporte e metabolismo de folato representam risco para concentrações aumentadas de homocisteína e consequentes alterações metabólicas que elevam o risco cardiovascular.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Conversão de homocisteína em cistationina	CBS	rs234706	GG	G/G
Absorção intestinal de folato dietético	FOLH1	rs61886492	AA	G/G
Conversão de ácido fólico em metilfolato	MTHFR	rs1801131	GG	T/G
Conversão de ácido fólico em metilfolato	MTHFR	rs1801133	Α	G/A
Codifica a enzima C1-Tetrahidrofolato Sintase	MTHFD1L	rs6922269	А	G/A
Remetilação de homocisteína em metionina	MTR	rs1805087	AA	A/G
Biossíntese de metionina	MTRR	rs1801394	GG	A/G
Transporte de folato	SLC19A1	rs1051266	T	T/T

Comentários

Seu genótipo indica risco moderado de alterações no metabolismo de folato. Tal associação pode aumentar a predisposição para o desenvolvimento de hiperhomocisteinemia. Sugere-se avaliação do consumo de alimentos fonte de vitaminas do complexo B e o monitoramento bioquímico de folato, B12 e homocisteína. A intervenção com suplementação personalizada pode ser indicada, à critério do seu médico ou nutricionista. Variantes em MTHFR podem afetar de 30 a 70% a capacidade de conversão do ácido fólico para sua forma ativa metilfolato e merecem atenção caso estejam presentes.

Vitamina B12

A vitamina B12 ou cobalamina é um micronutriente essencial que apresenta atuação na síntese de DNA, manutenção e desenvolvimento do sistema nervoso e formação de hemácias. Além disso, este nutriente participa do ciclo da metionina/homocisteína e é importante para a manutenção da saúde intestinal. A Cobalamina está presente naturalmente em alimentos de origem animal, sendo assim, os vegetarianos e veganos devem ficar atentos ao risco de deficiência, sobretudo se forem portadores de variantes genéticas associadas a prejuízos no metabolismo de B12.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Absorção de vitamina B12	FUT2	rs602662	GG	G/A
Absorção de vitamina B12	FUT2	rs601338	G	G/A
Transporte de vitamina B12	TCN2	rs9606756	G	A/G
Transporte de vitamina B12	TCN2	rs1801198	GG	C/C

COMENTÁRIOS

Seu resultado indica baixo risco de alterações no metabolismo de vitamina B12. É importante garantir o consumo de alimentos fonte. A dosagem periódica de B12 é recomendada para garantir a manutenção de concentrações plasmáticas adequadas, sobretudo se vegetariano ou vegano, visto que as fontes alimentares são essencialmente de origem animal.

Minerais

O conhecimento do perfil genético de cálcio e ferro é importante para elucidar as necessidades individuaisdesses nutrientes e avaliar o risco para deficiência ou excesso. A manutenção de níveis adequados destes micronutrientes é fundamental para a saúde. O cálcio participa da manutenção óssea, regulação da atividade muscular e nervosa, enquanto o ferro é indispensável para o transporte de oxigênio e síntese de DNA, em contrapartida, o excesso pode ser prejudicial e está relacionado com risco de alterações pró-oxidativas e acúmulo de ferro nos tecidos.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Homeostase de cálcio	CaSR	rs17251221	G	A/A
Homeostase de cálcio/Reabsorção de cálcio nos rins	CaSR	rs6776158	G	A/A
Homeostase de cálcio/Reabsorção de cálcio nos rins	CaSR	rs7652589	А	G/G
Homeostase de cálcio/Reabsorção de cálcio nos rins	CaSR	rs1501899	А	G/G
Absorção de ferro	HFE	rs1799945	G	C/G
Absorção de ferro	HFE	rs1800562	А	G/G
Transferrina, responsável pelo transporte de ferro	TF	rs1049296	TT	C/C
Transferrina, responsável pelo transporte de ferro	TF	rs3811647	AA	G/G
Captação celular de ferro	TRF	rs3817672	TT	C/C
Regulador da síntese de hepcidina	TMPRSS6	rs4820268	GG	G/A

COMENTÁRIOS

Seu resultado indica baixo risco para alterações no metabolismo minerais. Ainda que, em linhas gerais, a genética seja favorável, deve-se ter atenção em relação a eventuais alterações na atividade de receptores de cálcio e no metabolismo do ferro.

Saúde Mental

Ciclo Circadiano e Sono

Ciclo circadiano é a denominação dada ao ritmo do organismo e suas funções ao longo de um dia, conhecido popularmente como "relógio biológico". Influencia muitos aspectos da fisiologia e do comportamento, incluindo a atividade cardiovascular, o sistema endócrino e o sono. Os distúrbios do sono atrelados ao ciclo circadiano ocorrem quando este não se alinha com os ciclos de claro-escuro. O ritmo circadiano de um indivíduo é influenciado por fatores genéticos, e alterações nos genes envolvidos podem prejudicar a qualidade do sono e aumentar o risco de doenças metabólicas.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Regulação dos ritmos circadianos	CLOCK	rs1801260	G	A/A
Regulação do padrão de sono	CRY1	rs2287161	CC	C/C
Regulação do padrão de sono	CRY2	rs11605924	С	A/C
Regulação do padrão de sono	CRY2	rs7123390	А	G/G
Receptor de Melatonina/Regulador do ciclo circadiano	MTNR1A	rs12506228	А	A/A
Receptor de Melatonina/Regulador do ciclo circadiano	MTNR1B	rs10830963	G	C/C
Marca-passo circadiano	PER2	rs4663302	TT	T/T
Marca-passo circadiano	PER2	rs934945	С	C/T
Marca-passo circadiano	PER3	rs228697	G	C/C

COMENTÁRIOS

Seu resultado indica risco moderado para disfunções no ciclo circadiano e distúrbios do sono. Pessoas com sua genética tendem a apresentar hábitos mais noturnos, o que predispõe a alterações metabólicas. Adequar os horários de alimentação e dos exercícios pode auxiliar na regulação do ritmo circadiano e melhorar a qualidade do sono.

Transtornos de Humor e Resposta ao Estresse

Os transtornos de humor e a resposta do organismo frente às situações de estresse ocorrem por associação de fatores ambientais e genéticos. Diferentes estados comportamentais, respostas emocionais e desempenho cognitivo estão envolvidas com alterações na regulação dos neurotransmissores. O conhecimento das variantes genéticas associadas ao comportamento permite uma melhor modulação da saúde mental, melhorando a qualidade de vida.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Manutenção da neuroplasticidade e regulação das sinapses	BDNF	rs6265	T	C/T
Medeia efeitos induzidos por canabinoides	CNR1	rs1049353	TT	C/C
Regulação de Dopamina e Epinefrina	COMT	rs4680	AA	G/A
Regulação de Dopamina e Epinefrina	COMT	rs4633	TT	C/T
Catalisa a ativação e inativação de T3	DIO1	rs11206244	T	C/C
Produção local de T3 na tireoide e cérebro	DI02	rs225014	CC	T/T
Produção local de T3 na tireoide e cérebro	DI02	rs12885300	CC	C/C
Codifica receptor de serotonina	HTR2A	rs6311	С	T/T
Codifica receptor de serotonina	HTR2A	rs6314	А	G/G
Mediação de diferenciação celular	IL1B	rs16944	G	A/A
Monoamina oxidase, catalisa reações de aminas biogênicas	MAOA	rs1137070	T	T/C
Monoamina oxidase, catalisa reações de aminas biogênicas	МАОВ	rs1799836	π	T/C
Proliferação, diferenciação e reparo neuronal	NGF	rs6330	AA	A/A
Receptor de ocitocina, modula comportamento social	OXR	rs2254298	А	G/G
Coordenação de funções celulares, metabolismo e reparo de DNA	SIRT1	rs3758391	π	C/C

COMENTÁRIOS

Seu genótipo sugere baixo risco para transtornos de humor.

Comportamentos de dependência

A dependência é caracterizada por uma perturbação crônica que conduz o indivíduo a repetição compulsiva e involuntária de um comportamento que gera efeito nervoso recompensador, mas que produzem efeitos danosos no longo prazo. Entre os comportamentos disfuncionais podemos citar o consumo alcoólico, tabagismo e uso de drogas ilícitas. Conhecer a genética de risco para dependência vai auxiliar na escolha consciente em relação à exposição a essas substâncias e até mesmo a outros comportamentos aditivos.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Medeia efeitos induzidos por canabinoides	CNR1	rs806380	AA	A/G
Medeia efeitos induzidos por canabinoides	CNR1	rs806368	CC	T/C
Mediação de respostas comportamentais	DRD1	rs686	AA	G/A
Mediação de respostas comportamentais	DRD2	rs1076560	AA	C/A
Mediação de respostas comportamentais	DRD2	rs1800497	AA	G/A
Receptor de opioides	OPRM1	rs1799971	G	A/A

COMENTÁRIOS

Seu genótipo sugere baixo risco de desenvolver comportamentos de dependência. Mesmo com a genética favorável, não é descartado o risco, visto que fatores ambientais também podem influenciar no desenvolvimento de tais comportamentos.

Enxaqueca

A Enxaqueca é um distúrbio neurológico caracterizado por episódios pontuais e intensos de dores de cabeça pulsantes, de intensidade moderada ou intensa, geralmente associadas a náuseas e fotofobia. Apresenta componente genético importante, engatilhado por fatores ambientais como privação de sono, alimentação desregrada, estresse, entre outros.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Receptor de Glutamato para neurotransmissores excitatórios	GRIA1	rs2195450	AA	G/G
Receptor de Glutamato para neurotransmissores excitatórios	GRIA3	rs3761555	T	T/C
Receptor para detecção de estímulos dolorosos e nocivos	TRPV1	rs8065080	СС	T/T

COMENTÁRIOS

Seu genótipo sugere baixo risco para enxaquecas. Mantenha um sono de qualidade, module a exposição ao estresse e siga uma alimentação saudável, isso ajuda a reduzir ainda mais o risco e minimiza a ocorrência e intensidade dos episódios.

Metabolismo de canabinoides

Canabinoides são uma classe de compostos químicos que ativam receptores do sistema endocanabinoide, que atua na regulação e equilíbrio de uma série de processos fisiológicos do organismo, modulando por exemplo dor, inflamação, sono, humor, entre outros. Indivíduos apresentam respostas diferentes ao metabolismo e risco para efeitos colaterais e toxicidade, por isso o conhecimento da genética é essencial para a eventual indicação terapêutica.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Medeia efeitos induzidos por canabinoides	CNR1	rs806380	AA	A/G
Medeia efeitos induzidos por canabinoides	CNR1	rs806368	CC	T/C
Medeia efeitos induzidos por canabinoides	CNR1	rs1049353	TT	C/C
Regulação da sobrevivência neuronal	AKT1	rs2494732	С	T/C
Regulação da sobrevivência neuronal	AKT1	rs1130233	CC	C/T

COMENTÁRIOS

Seu genótipo sugere metabolismo normal de canabinoides.

Sensibilidade a dor

A sensibilidade a dor é um mecanismo de proteção frente às situações potencialmente danosas para o organismo. O fator genético exerce influência sobre a capacidade de resistir a dor, ou apresentar maior vulnerabilidade a ela. Acredita-se que a maior sensibilidade à dor pode ser herança genética Neandertal, que compõe de 1 a 4% do genoma do ser humano moderno, indicando a existência de cruzamento genético Neandertal com o Homo Sapiens antigo.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Receptor de opioides	OPRM1	rs1799971	G	A/A
Receptor para detecção de estímulos dolorosos e nocivos	TRPV1	rs8065080	СС	T/T
Regulação de Dopamina e Epinefrina	COMT	rs4680	AA	G/A

COMENTÁRIOS

Seu genótipo sugere maior resistência a dor. Fatores ambientais também podem influenciar na percepção de dor de um indivíduo, portanto, não está descartada a possibilidade queixas em relação a essa questão.

Hormônios e Saúde da Mulher

Receptores de Estrógeno

Estrógeno ou estrogênio é o nome dado a um grupo de hormônios esteroides cuja função no metabolismo e funções reprodutivas é importantíssima para a manutenção de um organismo saudável. Além de estar envolvido com as características sexuais e comportamento feminino, este hormônio também é produzido por homens e apresenta papel na fertilidade. A atividade do estrógeno é dependente da ação de seus receptores nos tecidos- alvo e sua atividade está relacionada comcomponentes genéticos.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Codifica para receptores alfa de estrógeno	ESR1	rs2234693	С	C/C
Codifica para receptores alfa de estrógeno	ESR1	rs9340799	G	G/G
Codifica para receptores alfa de estrógeno	ESR1	rs2228480	А	G/G
Codifica para receptores beta de estrógeno	ERB	rs2987983	G	A/A
Codifica para receptores beta de estrógeno	ERB	rs1271572	А	A/A
Codifica para receptores beta de estrógeno	ERB	rs4986938	T	C/C

COMENTÁRIOS

Seu resultado indica risco moderado para alterações na atividade de receptores de estrógeno, o que pode afetar a regulação dos processos de proliferação e divisão celular.

Função Tireoidiana

O perfil genético referente a função tireoidiana está associado com a atividade de deiodinases, envolvidas na conversão dos hormônios tireoidianos para a forma ativa.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Catalisa a ativação e inativação de hormônios tireoidianos	DIO1	rs2235544	С	C/C
Catalisa a ativação e inativação de hormônios tireoidianos	DIO1	rs11206244	T	C/C
Catalisa a conversão intratireoidiana de T4 em T3	DI02	rs225014	CC	T/T
Catalisa a conversão intratireoidiana de T4 em T3	D102	rs12885300	CC	C/C

COMENTÁRIOS

Seu resultado indica risco moderado de alterações na atividade de deiodinases. Tal associação pode influenciar negativamente o metabolismo de hormônios da tireoide e consequentemente na regulação da diversos sistemas do organismo. As deiodinases são dependentes de selênio e podem ser moduladas também por iodo e zinco, sendo assim, é importante manter uma alimentação saudável e variada, garantindo as necessidades diárias desses nutrientes.

Endometriose

A endometriose é uma condição inflamatória provocada por células do endométrio. Pode ser assintomática, mas geralmente é caracterizada por cólicas menstruais muitos intensas e alterações no fluxo menstrual. A causa da endometriose não está bem estabelecida, mas sugere-se que tenha envolvimento com a predisposição genética relacionada com alterações imunológicas.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Catalisa biossíntese de esteroides	CYP1A1	rs1048943	С	T/C
Codifica para receptores alfa de estrógeno	ESR1	rs9340799	G	G/G
Codifica para receptores beta de estrógeno	ERB	rs2987983	G	A/A
Codifica fibronectina, envolvida na adesão e migração celular	FN1	rs1250248	А	G/G
Regulação de crescimento responsivo ao estrogênio	GREB1	rs11674184	G	T/T
Regulação do desenvolvimento, destino celular e embriogênese	WNT4	rs7521902	А	C/C

COMENTÁRIOS

Sua genética sugere um baixo risco para Endometriose. Fatores ambientais também podem estar associados ao desenvolvimento desta doença, portanto, não se descarta a possibilidade de ocorrência. Em caso de sintomas, busque orientação especializada.

Risco de menopausa precoce

A menopausa precoce ou falência ovariana prematura é uma condição caracterizada pela interrupção da ovulação em intervalos regulares que ocorre antes dos 40 anos de idade e acomete até 1% das mulheres. As causas da menopausa precoce envolvem o fator genético associado com doenças autoimunes.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Replicação de DNA/Associado à duração da vida reprodutiva	мсм8	rs16991615	G	G/G

COMENTÁRIOS

Seu genótipo sugere a presença de risco para o desenvolvimento de menopausa precoce, com correlação ao surgimento prematuro dos sintomas típicos até dois anos antes da média. Outros genes e fatores não genéticos podem estar associados ao risco, portanto, não é motivo de grande preocupação, a menos que você tenha menos de 40 anos e apresente menstruação irregular, com falhas por mais de três meses, neste caso recomenda-se o acompanhamento periódico com ginecologista.

Risco de Pré-eclâmpsia

A pré-ecâmpsia consiste no aparecimento de hipertensão arterial durante a gravidez. Começa geralmente após 20 semanas de gestação em mulheres com pressão arterial normal. Estudos familiares demonstram que a genética apresenta grande influência no desenvolvimento de pré-eclampsia, podendo aumentar em até 5 vezes o risco.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Mediação de diferenciação celular e apoptose	IL1B	rs1143634	А	G/G
Enzima conersora de angiotensina	ECA	rs4343	G	G/A
Síntese de óxido nítrico/Vasodilatação	ENOS	rs1799983	T	T/G

COMENTÁRIOS

Sua genética sugere um baixo risco de pré-eclâmpsia. Fatores ambientais associados a alimentação desregrada e doença crônica pregressa podem influenciar no desenvolvimento desta condição, por isso, é de suma importância o adequado acompanhamento médico gestacional.

Desempenho Esportivo

Aptidão Física

A aptidão física de um indivíduo respeito à capacidade de desempenhar uma atividade esportiva no melhor rendimento, evitando desgaste físico excessivo. O desempenho de resistência é definido pela capacidade de resistir a uma atividade esportiva em determinada potência durante um tempo prolongado, enquanto o desempenho de força e potência muscular se dá pela capacidade de exercer movimento específico a partir da geração de contração muscular combinada com velocidade de movimento e coordenação. A avaliação de genes envolvidos com a aptidão física e visa otimizar o direcionamento do treinamento esportivo e promover melhor adaptação e adesão ao esporte. Neste perfil, os genes indicados abaixo em azul representam os seus genótipos cuja associação é compatível com atividades de força, em contrapartida, os indicados em branco (neutro) representam os genótipos compatíveis com resistência. Assim sendo, quanto maior o percentual indicado na barra de risco, maior será a sua aptidão física para atividades de força e potência muscular, e quanto menor o percentual, melhor o desempenho em atividades mais prolongadas e de resistência física.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Codifica para alfa-actinina 3, expressa em fibras de contração rápida	ACTN3	rs1815739	С	C/C
Regulação da pressão arterial	AGT	rs699	G	G/G
Transporte de fiuídos no meio celular	AQP1	rs1049305	G	G/C
Regulação da vasodilatação	BDKRB2	rs1799722	С	C/T
Síntese de neurotransmissores e manutenção de neurônios motores	CNTF	rs1800169	А	G/A
Síntese de óxido nítrico	ENOS	rs2070744	T	C/C
Controle da função mitocondrial	GABPB1	rs7181866	AA	A/A
Regulação da atividade de N- acetilgalactosaminiltransferase	GALNTL6	rs558129	А	G/G
Codifica para Miostatina, reguladora de hipertrofia muscular	MSTN	rs1805086	С	T/T
Eritropoiese	NFIA-AS2	rs1572312	T	G/G
Fator de transcrição de proteínas antioxidantes	NRF2	rs12594956	С	C/A
Fator de transcrição de proteínas antioxidantes	NRF2	rs8031031	С	C/C
Estabilidade mitocondrial	TFAM	rs1937	G	G/G

COMENTÁRIOS

Seu resultado está associado a predisposição genética favorável a um melhor desempenho de força. Atividades de curta duração e alta intensidade, como musculação, HIIT, corridas de curta distância e salto, podem apresentar melhores resultados e facilitar a adesão a prática esportiva. Caso você prefira atividades mais longas a alternativa pode ser buscar os exercícios intermitentes, que associam força e resistência, como o crossfit e as artes marciais.

Produção de energia no exercício físico

A produção de energia adequada durante a prática de atividade física é essencial para a manutenção do exercício com qualidade. O termo energia é definido como a habilidade de gerar trabalho, neste caso muscular. A fonte de energia do corpo humano provém dos nutrientes obtidos em nossa alimentação. A variabilidade genética relacionada à produção energética influencia diretamente a capacidade de desempenhar a atividade física e manter o desempenho de maneira prolongada. Este perfil indica as variantes de risco para eventuais prejuízos na produção de energia na atividade física, o que pode predispor a fadiga precoce e menor desempenho.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Receptor de catecolaminas	ADRB3	rs4994	G	A/A
Regulação da homeostase energética	СКММ	rs8111989	С	T/T
Regulação do metabolismo de lipídios	PPAR-Alfa	rs4253778	С	G/G
Regulação da biogênese mitocondrial	PPARD	rs2016520	TT	T/T
Regulação da biogênese mitocondrial	PPARD	rs2267668	G	A/A
Regulação da expressão de genes ligados ao metabolismo	PGC1-alfa	rs8192678	T	C/C
Adipogênese e homeostase de glicose	PPARG	rs1801282	G	C/C

COMENTÁRIOS

Seu resultado sugere produção energética adequada durante os exercícios físicos. Tal associação indica baixa predisposição a apresentar queda brusca no desempenho esportivo.

Fadiga precoce e lesões musculares

A fadiga precoce é determinada pela incapacidade de dar continuidade à atividade física, por limitação cardiovascular e/ou muscular. Fatores genéticos e ambientais influenciam no desenvolvimento desta condição, e a insistência na prática da atividade em situações de fadiga extrema pode levar a lesões musculares incapacitantes que conduzem a uma perda da aptidão física e da adesão ao exercício.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Catalisa a desaminação de AMP no músculo esquelético	AMPD1	rs17602729	AA	G/A
Transporte de lactato	SLC16A1	rs1049434	А	A/T
Codificação da cadeia leve de miosina	MYLK	rs28497577	TT	G/G

COMENTÁRIOS

Seu genótipo sugere baixa predisposição ao desenvolvimento de fadiga precoce, o que por sua vez, também reduz o risco de lesões musculares, aumentando a capacidade de desempenhar adequadamente as atividades físicas, melhorando a adesão a prática esportiva.

Lesões tendíneas, ligamentares e articulares

As lesões de tendões, ligamentos e articulações envolvem os genes que formam colágeno e, as metaloproteinases, secretadas para decompor elastina e colágeno, com o intuito de manter o equilíbrio na renovação de tecidos.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Produção de colágeno	COL1A1	rs1800012	С	C/C
Produção de colágeno	COL5A1	rs12722	T	T/T
Remodelação tecidual	MMP1	rs1799750	TC	тст
Remodelação tecidual	MMP3	rs679620	С	T/T
Remodelação tecidual	MMP10	rs486055	CC	C/C
Remodelação tecidual	MMP12	rs2276109	TT	T/T

Comentários

Seu resultado sugere alto risco de lesões tendíneas, ligamentares e articulares, por estar associado a um desequilíbrio entre a produção e degradação de fibras de colágeno e elastina nesses tecidos. Um adequado período de descanso entre as sessões de treinamento, bem como garantir o aporte de nutrientes e a regulação da atividade inflamatória, são capazes de atenuar o risco de lesões. O fortalecimento muscular de regiões que estabilizam o movimento articular também pode ser benéfico na redução da predisposição genética desfavorável. Procure orientação de profissionais capacitados para auxiliá-lo no manejo nutricional e esportivo.

Cafeína

A cafeína é uma substância química naturalmente presente em alimentos, como café e cacau, e que apresenta efeito estimulante para o sistema nervoso central, impactando no aumento do estado de alerta, e estado de concentração. Alterações no metabolismo deste composto podem predispor a maior incidência de efeitos adversos desagradáveis, como ansiedade e insônia. O metabolismo da cafeína é modulado pela presença de variantes genéticas envolvidas neste processo.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Metabolização de xenobióticos, principalmente cafeína	CYP1A2	rs762551	С	A/A
Receptor de Adenosina	ADORA2A	rs5751876	TΤ	T/C

COMENTÁRIOS

Seu genótipo indica metabolismo rápido para cafeína. Geralmente, indivíduos com essa característica são tolerantes ao consumo de café, outras bebidas com cafeína e suplementação, visto que o efeito estimulante não é duradouro. A utilização de cafeína pode contribuir na melhora aguda do desempenho esportivo.

Saúde Cutânea

Envelhecimento Cutâneo

O processo de envelhecimento cutâneo se dá pela interação de fatores ambientais como a exposição excessiva ao sol, falta de nutrientes, entre outros, e os fatores genéticos, que podem explicar os motivos pelos quais alguns indivíduos parecem envelhecer mais rápido, mesmo tendo cuidados frequentes na modulação do ambiente. Essas alterações são avaliadas neste eixo, permitindo a personalização do tratamento da pele, alimentação e suplementação.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Regulação da resposta imune	IRF4	rs12203592	T	C/C
Regulação do envelhecimento celular	MACROH2A2	rs16927253	CC	C/C
Regulação do envelhecimento celular	MACROH2A2	rs4746957	GG	G/G
Regulação da produção de melanina	MC1R	rs4268748	CC	T/T
Regulação da produção de melanina	MC1R	rs2228479	С	G/G
Remodelação tecidual	MMP1	rs1799750	TC	тст
Transportador de vitamina C ativa	SLC23A1	rs33972313	T	C/C

COMENTÁRIOS

Sua genética indica um risco moderado de envelhecimento cutâneo precoce. É importante estabelecer uma rotina de cuidados com a pele, evitar exposição excessiva ao sol, com o uso frequente de cremes com fator de proteção e otimizar o consumo de alimentos fonte de micronutrientes e compostos bioativos que estimulem a atividade antioxidante e atuam na pele, visando a redução do risco associado para manutenção de uma pele saudável e viçosa.

Dermatites e Sensibilidade Dérmica

A sensibilidade dérmica a substâncias que podem provocar irritação e/ou dermatites varia segundo fatores genéticos relacionados a predisposição à inflamação e a atividade da filagrina, proteína necessária para a formação da camada córnea, barreira inicial de proteção da pele.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Formação e manutenção da camada córnea	FLG	rs61816761	А	G/G
Regulação da resposta inflamatória cutânea	TNF-alfa	rs1800629	А	G/G
Regulação da resposta inflamatória cutânea	TNF-alfa	rs361525	А	G/G

COMENTÁRIOS

Seu resultado sugere baixo risco de dermatites.

Desordens estéticas

As desordens ou disfunções estéticas são definidas por alterações orgânicas diversas e de caráter genético, engatilhado por fatores ambientais, que afetam a pele e/ou a composição corporal, deposição de gordura, entre outros, e que impacta de formas contundente na autoestima do indivíduo. Neste eixo são avaliados os marcadores genéticos associados às condições de predisposição ao desenvolvimento de hidrolipodistrofia ginóide (celulite), estrias e acne.

Tabela de Genótipos relevantes

FUNÇÃO	GENE	dbSNP	RISCO	RESULTADO
Regula homeostase celular e sistêmica à hipoxia	HIF1A	rs11549465	CC	C/C
Codifica Fibronectina-1, associada a remodelação cutânea	FN1	rs3910516	GG	A/G
Codifica para fator de crescimento, associado a formação excessiva de queratinócitos	TGFB2	rs1159268	А	G/A

COMENTÁRIOS

Seu resultado sugere risco moderado para desordens estéticas. O estímulo a oxigenação tecidual por meio de atividades físicas regulares, dieta adequada com compostos bioativos de ação anti-inflamatória, além de evitar alterações bruscas de peso e manter a hidratação adequada da pele, podem ser alternativas efetivas na redução do risco associado.