[0082] Of the acid labile groups having formula (AL-2), suitable cyclic groups include tetrahydrofuran-2-yl, 2-methyltetrahydrofuran-2-yl, tetrahydropyran-2-yl, and 2-methyltetrahydropyran-2-yl.

[0083] Also included are acid labile groups having the following formulae (AL-2a) and (AL-2b). The base polymer may be crosslinked within the molecule or between molecules with these acid labile groups.

[0084] In formulae (AL-2a) and (AL-2b), R^{L11} and R^{L12} are each independently hydrogen or a C_1 - C_8 saturated hydrocarbyl group which may be straight, branched or cyclic. Also, R^{L11} and R^{L12} may bond together to form a ring with the carbon atom to which they are attached, and in this

case, R^{L11} and R^{L12} are each independently a C_1 - C_8 alkanediyl group. R^{L13} is each independently a C_1 - C_{10} saturated hydrocarbylene group which may be straight, branched or cyclic. B1 and D1 are each independently an integer of 0 to 10, preferably 0 to 5, and C1 is an integer of 1 to 7, preferably 1 to 3.

[0085] In formulae (AL-2a) and (AL-2b), L^A is a (C1+1)-valent C_1 - C_{50} aliphatic or alicyclic saturated hydrocarbon group, aromatic hydrocarbon group or heterocyclic group. In these groups, some carbon may be replaced by a heteroatom-containing moiety, or some carbon-bonded hydrogen may be substituted by a hydroxyl, carboxyl, acyl moiety or fluorine. L^A is preferably a C_1 - C_{20} saturated hydrocarbylene group, saturated hydrocarbon group (e.g., trivalent or tetravalent saturated hydrocarbon group), or C_6 - C_{30} arylene group. The saturated hydrocarbon group may be straight, branched or cyclic. L^B is —CO—O—, —NHCO—O— or —NHCONH—.

[0086] Examples of the crosslinking acetal groups having formulae (AL-2a) and (AL-2b) include groups having the formulae (AL-2)-70 to (AL-2)-77.

OCH₂CH₂-