Recall Estimation for Rare Topic Retrieval from Large Corpuses

Praveen Bommannavar (Twitter), Alek Kolcz (Twitter), Anand Rajaraman (Stanford)

Mining Large Corpuses

- Core offering of social media analytics companies
 - Analyze sentiment around products/brands
 - Estimate popularity of politicians
 - Uncover financial trends

Mining Large Corpuses

Keyword filters, random walks, trained classifiers...

- With any approach: want precision and recall
 - Others: AUC, FPR, DCG, etc.

Metrics for Rare Topics

- Precision: sample positively classified docs
 - 384 samples for 95% confidence interval of size 0.1
 - Pay approximately \$0.05 per evaluation => \$19
- Recall: sample all docs to find enough true positives
 - Can be very expensive if topics are rare

Metrics for Rare Topics

Skewed topic distribution => expensive recall est.

Contribution: estimating recall on the cheap for rare topics

Related Work

- Calibration approaches for precision [Bennett & Carvalho]
- Confidence intervals for recall (frequent classes)
 [Webber]
- Counting positives despite inaccurate classification (frequent classes) [Forman]
- We emphasize cost and rare classes

Intuition

• Use pairs of sufficiently independent classifiers

Conditional Independence

- T = set of on topic documents
- Classifiers C1, C2 return document sets A1, A2

ASSUMPTION 1. (Conditional Independence 1) For the set of on-topic documents T, C_1 and C_2 are independent classifiers. That is,

$$\delta_1 := \frac{P[A_1 \cap A_2 | T]}{P[A_1 | T]P[A_2 | T]} \approx 1.$$

Conditional Independence

Naive Bayes

Co-training

Measuring Recall

- We can estimate recall using only precision!
- precision = P[T|A]

$$recall = P[A|T]$$

$$r_{1} = P[A_{1}|T] = \frac{P[A_{1}|T]P[A_{2}|T]}{P[A_{2}|T]} \approx \frac{P[A_{1} \cap A_{2}|T]}{P[A_{2}|T]}$$

$$r_{1} \approx \frac{P[A_{1} \cap A_{2}|T]P[T]}{P[A_{2}|T]P[T]} = \frac{P[A_{1} \cap A_{2} \cap T]}{P[A_{2} \cap T]}$$

$$= \frac{P[T|A_{1} \cap A_{2}]P[A_{1} \cap A_{2}]}{P[T|A_{2}]P[A_{2}]}$$

$$= \frac{p_{12}|A_{12}|}{p_{2}|A_{2}|}$$

Measuring Recall cont.

- What if we don't have joint classifier precision p12?
- With a couple more assumptions, we're still in luck:

ASSUMPTION 2. (Conditional Independence 2) For the set of off-topic documents T^c , C_1 and C_2 are independent classifiers. That is,

$$\delta_2 := \frac{P[A_1 \cap A_2 | T^c]}{P[A_1 | T^c] P[A_2 | T^c]} \approx 1.$$

Assumption 3. (Sparsity) The number of on-topic documents T is small, as compared with the total universe of documents U. That is, P[T] << 1

$$r_1 \approx \frac{|A_{12}|}{p_2|A_2|} \left[1 - \frac{(1-p_1)(1-p_2)|A_1||A_2|}{|U||A_{12}|} \right]$$

Constructing classifier pairs

- Great! Where do we get these classifier pairs from?
- Documents tend to be redundant; same info is expressed in different ways
 - Anchor text, headers, linked URLs, etc.
- Social media contains special structure

Dataset 1: sampled Tweets

- ~1M English language Tweets from Aug 6, 2012
 - topics: {apple, mars, obama, olympics, none}
 - Approx \$20k budget to fully label

Table 2: Examples of seed terms and high Jaccard similarity neighbors (Twitter statuses).

[apple, #apple]	[#ios6,#ipad3,#iphone,hack,macintosh, iphones, #siri, ios, macbook, icloud, ipad, samsung,
	#ipodtouch, 4s, itunes, cydia, cider, #gadget, #tech, #tablet, app, connector, #mac,]
[mars, #mars]	[rover, nasa, #curiosity, #curiousity, image, mission, surface, #curiosityrover, bruno, milky,
	budget, @marscuriosity, gale, crater, orbiting, successfully, lands, landing, breathtaking]
[obama, #obama]	[@barackobama, barack, bush, #mitt2012, #obama2012, obamas, #dems, #gop, #military,
	romney, #idontsupportobama, potus, #president, administration, pres, #politics, voting]
[olympics, #olympics]	[medalist, gold, london, gb, kirani, gymnast, kate, sprinter, winning, won, #boxing, soccer,
	watch, watching, #usa, #teamgb, #canada, #london, javelin, nbc, match, 2012, 400m]

Dataset 1 recall estimates

- All recall estimates are within 0.10 absolute error and within 15% relative error
- O(\$1000) to O(\$10)

Table 3: Experimental results: tweet keyword filters. Both recall estimation schemes are within 0.10 absolute error and 15% relative error of the true recall for all topics.

Topic	A	$ A_{seed} $	$ A_{kw} $	$ A_{joint} $	\hat{p}_{seed}	\hat{p}_{kw}	\hat{p}_{joint}	$\hat{r}_{seed}^{(1)}$	$\hat{r}_{seed}^{(2)}$	r_{seed}	$\hat{r}_{kw}^{(1)}$	$\hat{r}_{kw}^{(2)}$	r_{kw}
Apple	3038	676	10217	420	0.655	0.247	0.774	0.129	0.166	0.146	0.734	0.943	0.830
Mars	2372	1783	7703	1433	0.904	0.264	0.938	0.661	0.704	0.680	0.834	0.889	0.857
Obama	1253	851	7400	513	0.984	0.116	0.994	0.596	0.599	0.668	0.609	0.613	0.683
Olympics	23126	4595	45705	2688	0.986	0.330	0.989	0.176	0.178	0.196	0.587	0.593	0.653

Dataset 2: Twitter Stories

10.5M Discover stories from March 10, 2013:
 Tweets with hyperlinked URLs

- C1: tweet LR classifier, C2: web page LR classifier
- {ads and marketing, education, real estate and food, none}

Dataset 2: recall estimates

- Evaluation via random sampling (prevalent enough topics)
- All recall estimates within 0.10 absolute error and most are within 15% relative error

Table 4: Experimental results: story text and webpage logistic regression classifiers. Both recall estimation schemes are within 0.10 absolute error of the true recall for all topics and most topics are within 15% relative error.

Topic	$ A_{tw} $	$ A_{web} $	$ A_{joint} $	\hat{p}_{tw}	\hat{p}_{web}	\hat{p}_{joint}	$\hat{r}_{tw}^{(1)}$	$\hat{r}_{tw}^{(2)}$	r_{tw}	$\hat{r}_{web}^{(1)}$	$\hat{r}_{web}^{(2)}$	r_{web}
Ads/Marketing	42073	76771	4369	0.825	0.698	0.900	0.073	0.077	0.075	0.113	0.120	0.145
Education	93292	76535	21426	0.827	0.868	0.873	0.282	0.319	0.206	0.242	0.275	0.214
Real Estate	42841	31978	12411	0.836	0.918	0.989	0.418	0.420	0.413	0.343	0.346	0.380
Food	42376	218507	20493	0.875	0.842	0.898	0.100	0.110	0.122	0.496	0.546	0.522

Dataset 3: ODP Entries

110K ODP entries - similar structure to Discover

www.criticalsoftware.com - Develops and markets software products for business and mission critical information systems, and provide consulting and engineering services for enterprises.

- C1: description LR classifier, C2: web page LR classifier
- 12 topics

Dataset 3: recall estimates

 Using joint precision directly is OK but Assumptions 2 and 3 break down

Table 5: Experimental results: prevalence and recall estimation in ODP records. Using joint precision directly gives high fidelity recall estimates for most topics, but attempting to approximate it results in poor recall

estimates.

CD CHILLICITY CO.								7.1	/2\		/*\	/a\	$\overline{}$
Topic	A	$ A_{desc} $	$ A_{web} $	$ A_{joint} $	\hat{p}_{desc}	\hat{p}_{web}	\hat{p}_{joint}	$\hat{r}_{desc}^{(1)}$	$\hat{r}_{desc}^{(2)}$	r_{desc}	$\hat{r}_{web}^{(1)}$	$\hat{r}_{web}^{(2)}$	r_{web}
Adult	1470	10080	2815	757	0.089	0.430	0.710	0.624	0.878	0.593	0.839	1.180	0.814
Arts	13811	13719	12469	5523	0.524	0.766	0.865	0.581	0.671	0.510	0.771	0.891	0.692
Business	32304	18766	23888	10849	0.748	0.870	0.938	0.520	0.554	0.443	0.770	0.820	0.646
Computers	11235	11802	11756	4111	0.431	0.706	0.804	0.498	0.620	0.453	0.814	1.012	0.746
Games	2146	4245	3723	764	0.223	0.441	0.754	0.465	0.616	0.439	0.807	1.070	0.766
Health	5986	6180	6881	2991	0.576	0.667	0.872	0.649	0.744	0.602	0.837	0.960	0.766
Home	1546	7565	3616	643	0.118	0.299	0.574	0.594	1.035	0.543	0.717	1.249	0.705
Recreation	10846	9022	10712	4488	0.626	0.713	0.899	0.586	0.652	0.505	0.792	0.881	0.703
Science	5540	6005	7710	1706	0.380	0.462	0.658	0.474	0.720	0.417	0.739	1.123	0.640
Shopping	12386	13534	14610	3865	0.335	0.642	0.773	0.419	0.542	0.375	0.868	1.122	0.757
Society	12925	8397	11289	4071	0.627	0.720	0.922	0.501	0.543	0.408	0.774	0.839	0.622
Sports	6049	6929	6775	3197	0.550	0.708	0.910	0.664	0.729	0.638	0.835	0.918	0.778

Dataset 3: robustness

Estimates obtained using Assumption 1 are robust

Random 70-30 splits

Summary

- Have expressed recall estimates in terms of precision
- Precision is cheap to measure
- Conditionally independent classifiers can be constructed via redundancies in document structure
- Possible future work: Use multiple pairs of classifiers to stabilize recall estimates

- Not exactly a turn-key system
- What could go wrong?
 - Worker impatience, fatigue & boredom, domain/ lingual proficiency, laziness/scammers, definitional issues, regional differences, etc..
- What does "on-topic" even mean anyway?

- Some remedies (not comprehensive)
 - Gold questions & agreement with other workers
 - Example answers to difficult/borderline questions (not just the easy ones)
 - Break down complex tasks into simpler ones (can't expect workers to memorize a taxonomy)
 - Communication

- Sometimes workers don't answer questions well, but many possible reasons. Don't simply block!
- They rate you too…

AMT Requester	Rating [info]	Description
Praveen Bommannavar A1WBH67VFAHTUE HIT Group »	FAIR: 1/5 FAST: 1/5 PAY: 1/5 COMM: 1/5	Rejected my first 3 test hits within 5 minutes. He hasn't responded back yet. Sep 03 2012 <andrewd@h> flag comment</andrewd@h>

Here's your man..an immature, unemployed university student exploiting mturk for his degree projects. If I were you, I would complain about his unethical ways to his teachers.

https://netfiles.uiuc.edu/bommanna/www/home.htm

- Ran a survey about biggest pain points:
 - Communication is at the top of the list
- After some soul searching:

- Email overload
 - "My dog jumped on my lap and hit my keyboard while I was working on this HIT. I'm sorry. If the answer my dog gave is wrong, I will understand the rejection. (The dog will get no treats for a week ...)"

- Other stray comments..
 - "Reading all these tweets has shattered the last little bit of hope I had for humanity. Holy hell people are stupid"