Multiple Features

LR with Multiple Variables

- Linear regression with multiple variables is also known as "multivariate linear regression".
- We now introduce notation for equations where we can have any number of input variables.

Size (feet ²)	Price (\$1000)	
x	y	
2104	460	
1416	232	
1534	315	
852	178	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Size (feet ²)	Number of bedrooms	Number of floors (years)		Price (\$1000)	
2104	5	1	45	460	
1416	3	2	40	232	
1534	3	2	30	315	
852	2	1	36	178	

Size (feet²)		Number of Number of bedrooms floors		Age of home (years)	Price (\$1000)	
	×I	Xz	×3	*4	3,	
	2104	5	1	45	460	
	1416	3	2	40	232	
	1534	3	2	30	315	
	852	2	1	36	178	
				•••	•••	

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
	×i	Xz	×3	*4	9
	2104	5	1	45	460
	1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178
NI.	1	*	1	1	

Notation:

$$\rightarrow$$
 n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

$$x_j^{(i)}$$
 = value of feature j in i^{th} training example.

 Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
×1	×2	×3	** **	7	_
2104	5	1	45	460 7	_
1416	3	2	40	232	M= 47
1534	3	2	30	315	
852	2	1	36	178	
 A	*	1	1	,	

Notation:

$$\rightarrow$$
 n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
×1	Xz	×3	*4	9
2104	5	1	45	460 7
-> 1416	3	2	40	232 - M= 47
1534	3	2	30	315
852	2	1	36	178
				l
Notation:	*	7	1	$\sqrt{(z)} = \begin{bmatrix} 1416 \\ 2 \end{bmatrix}$
			n-4	

$$\rightarrow n$$
 = number of features

 $\longrightarrow x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Siz	e (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
	×ı	XZ	×3	** **	9	
	2104	5	1	45	460 7	_
->	1416	3	2	40	232	M= 47
,	1534	3	2	30	315	
	852	2	1	36	178	
						,
Nota	tion:	人	1	1	~	(2) = 14
				n-4	~	

$$\rightarrow n$$
 = number of features

 $\longrightarrow x^{(i)}$ = input (features) of i^{th} training example.

 $\rightarrow x_i^{(i)}$ = value of feature j in i^{th} training example.

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

$$h_{\theta}(x) = \underline{\theta_0} + \underline{\theta_1}x_1 + \underline{\theta_2}x_2 + \dots + \underline{\theta_n}x_n$$
For convenience of notation, define $x_0 = 1$. $(x_0^{(i)} = 1)$

$$X = \begin{bmatrix} X_0 \\ X_1 \\ X_N \end{bmatrix} \in \mathbb{T}^{M+1}$$

$$Q = \begin{bmatrix} Q_0 \\ Q_1 \\ Q_1 \\ \vdots \\ Q_n \end{bmatrix}$$

$$\rightarrow h_{\theta}(x) = \underline{\theta_0} + \underline{\theta_1}x_1 + \underline{\theta_2}x_2 + \dots + \underline{\theta_n}x_n$$

For convenience of notation, define $x_0 = 1$. $(x_0^{(i)} = 1)$

$$(\times'') = i$$

$$X = \begin{bmatrix} X_0 \\ X_1 \\ X_N \end{bmatrix} \in \mathbb{ID}_{M+1}$$

$$Q = \begin{bmatrix} Q_0 \\ Q_1 \\ \vdots \\ Q_N \end{bmatrix} \in \mathbb{D}_{M+1}$$

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$. (\times)

$$\begin{aligned}
\chi &= \begin{bmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \\ \chi_N \end{bmatrix} \in \mathbb{R}^{n+1} & O &= \begin{bmatrix} O_0 \\ O_2 \\ \vdots \\ O_N \end{bmatrix} \in \mathbb{R}^{n+1} \\
&= O \cdot \chi_1 + \cdots + O \cdot \chi_N \\
&= O \cdot \chi_1 + \cdots + O \cdot \chi_N
\end{aligned}$$

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$. $(x_0) = 0$

Multivariate linear regression.

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

4

 This is a vectorization of our hypothesis function for one training example

$$h_{ heta}(x) = \left[egin{array}{cccc} heta_0 & & heta_1 & & \dots & & heta_n
ight] egin{bmatrix} x_0 \ x_1 \ dots \ x_n \end{bmatrix} = heta^T x$$