数据库考点

序号	教学内容□
16	概述→ 数据库系统的基本概念(数据、数据库、数据库管理系统、数据库系统的定义);数据库系统的功能与特点;数据模型(数据模型的要素,数据库模式,数据库实例);数据库完整性约束(实体完整性约束,参照完整性约束,用户定义完整性约束);数据库语言(数据定义语言,数据操纵语言);数据库用户;数据库管理系统的组成(数据库管理系统的模式结构,数据库管理系统的功能结构,数据库管理系统的体系结构*)。→
	关系数据模型↔ 基本概念(关系、属性、元组、候选键、主键、外键、关系模式、关系实例的定义);关系 完整性约束(实体完整性约束,参照完整性约束,用户定义完整性约束);关系代数(基本 关系代数操作,派生关系代数操作,扩展关系代数操作);关系演算(元组关系演算、域关 系演算)。↔

- 5个不写重命名, 六个全写
- 分组操作和赋值操作不做考点
- 除操作, 赋值操作, 拓展关系代数操作, 关系演算不做考点

- 为每个用户提供...
- 实体联系图

54	逻辑数据库设计 I 实体型的转换,联系型的转换);设计不良的关系数据库实体-联系模型向关系模式的转换(实体型的转换,联系型的转换);设计不良的关系数据库存在的问题(插入异常,删除异常,修改异常,数据冗余);函数依赖及其推理(函数依赖,存在的问题(插入异常,删除异常,修改异常,数据冗余);函数依赖及其推理(函数依赖,部分函数依赖,传递函数依赖,候选键,逻辑蕴含,Armstrong 公理,属性集的闭包,函数依赖集的覆盖,等价函数依赖集,最小覆盖);范式(INF,2NF,3NF,BCNF);关系数据库规范化(关系模式分解,无损连接分解,保持函数依赖的分解)。← 补充说明:模式分解算法←
6€	物理数据库设计 ⁴ 影响物理数据库设计的因素;索引设计;查询改写*;关系模式的优化。←

• 范式!!!

1020	
70	存储管理
	索引 ↔ 索引 的分类; B+树索引; 静态哈希索引 ; 动态哈希索引 (可扩展哈希索引, 线性哈希索引); · 索引的分类; B+树索引; 静态哈希索引 ; 动态哈希索引 (可扩展哈希索引, 线性哈希索引); · 位图索引*; 日志结构合并树*。↩

	查询处理》 查询处理的过程;查询解析;物理操作实现算法(排序算法,选择算法,投影算法,去重算 查询处理的过程;查询解析;物理操作实现算法(排序算法,选择算法,投影算法,去重算 法,聚集算法,集合操作算法,连接算法);查询执行(物化执行,流水线执行,火山模型)。《
10-	查询优化中 查询优化的作用;基于规则的查询优化方法(关系代数表达式等价变换规则,选择下推,投 查询优化的作用;基于规则的查询优化方法(基数估计,代价模型,连接顺序优化);物理查询计划 形下推);基于代价的查询优化方法(基数估计,代价模型,连接顺序优化);物理查询计划 生成(物理操作符选择,查询执行模型选择);基于人工智能的新型查询优化技术*。←

重点:基于时间戳的并发控制

故障恢复← 故障的类型(事务故障、系统故障、介质故障、用户错误);缓冲区策略(STEAL 策略、 NO-STEAL 策略、FORCE 策略),NO-FORCE 策略);基于预写式日志 WAL 的故障恢复方法 (WAL 日志、WAL 协议、UNDO 日志、REDO 日志、UNDO/REDO 日志);检查点(检查 点的作用、检查点的实施、基于检查点的故障恢复)。↩

缓冲区策略的名字可能没有标明,但是可能流程做法会体现

重点: WAL故障恢复

故障恢复不出大题

只有选择和大题