Single Sample and Paired Samples t tests

Dr. J. Kyle Roberts

Southern Methodist University
Simmons School of Education and Human Development
Department of Teaching and Learning

Confidence Intervals for the Mean

- Suppose that we have a sample of IQ scores from 10 students.
- How might we know if the mean IQ of our 10 students is statistically significantly different from the population mean IQ of 100?

```
> iqdata <- c(100, 110, 95, 98, 120, 118, 143, 94,
+ 82, 114)
> mean(iqdata)
[1] 107.4
> sd(iqdata)
[1] 17.35383
```

IQ Data

We can then plot this data with a horizontal line representing the population IQ score at 100.

Sampling from IQ Data

Suppose that we were to draw 25 random samples from the population of all IQ scores and draw 95% confidence intervals around each mean. It would stand to reason that 95% of the means would have confidence intervals that captured the population mean. For example:

More Study 1/Study 2 for Confidence Intervals

Suppose that we have two different datasets with the following properties and a population mean of 20:

	Study 1	Study 2
mean	10	15
SD	10	10
n	30	30

Thought Question

Given the properties of the above two studies, which study would be MORE likely to have confidence intervals which did not capture the population mean?

More Study 1/Study 2 for Confidence Intervals

Suppose that we have two different datasets with the following properties and a population mean of 20:

	Study 1	Study 2
mean	10	10
SD	5	10
n	30	30

Thought Question

Given the properties of the above two studies, which study would be MORE likely to have confidence intervals which did not capture the population mean?

More Study 1/Study 2 for Confidence Intervals

Suppose that we have two different datasets with the following properties and a population mean of 20:

	Study 1	Study 2
mean	10	10
SD	10	10
n	300	30

Thought Question

Given the properties of the above two studies, which study would be MORE likely to have confidence intervals which did not capture the population mean?

On Your Own

Try a dataset on your own. Consider the following data:

• X = 7,8,7,6,4,2,3,8

Complete the following tasks:

- Calculate confidence intervals (by hand).
- Determine if our data is statistically significantly different from a population mean of 10.
- Compute the confidence intervals in R by ci(x).

From CIs to t-calcs

- Recall from the Confidence Interval slides that we are looking to see if our sample mean captures the population mean given certain parameters.
- Rather than looking to see if our sample mean captures the population mean, we can compute the probability that our sample mean is different from the population mean.

One-sample *t* tests

• Occasionally we have a single sample of measurements and wish to evaluate a claim about the population mean, μ , relative to some fixed, known value, μ_0 .

• If we assume that the sample, x_1, x_2, \ldots, x_n is a random

- sample (i.e. the values of independent and identically distributed random variables) from a distribution with mean μ and variance σ^2 then, by the Central Limit Theorem, the random variable $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ tends to a $\mathcal{N}(0,1)$ distribution for large n.
- The quantity σ/\sqrt{n} is called the emphstandard error of the mean (SEM). It describes the amount of variability we expect to see in \bar{X} .
- Unfortunately, we do not know σ .
- The empirical SEM is s/\sqrt{n} . That is, it uses the estimate s of the (unknown) standard deviation σ .

One-sample t tests (continued)

- If the data, x_1, x_2, \ldots, x_n are a random sample from a *normal* distribution, $\mathcal{N}(\mu, \sigma^2)$, then $\frac{\bar{X} \mu}{s/\sqrt{n}}$ has a T distribution with n-1 degrees of freedom.
- The T distribution is similar to the standard normal distribution but a bit more "spread out" or over-dispersed relative to the standard normal.
- In general we write the degrees of freedom as df. For a one-sample t-test df=n-1 but for other tests we will have different formulas for df.
- The over-dispersion of the T relative to the standard normal is greater for smaller values of df.
- For very large values of df, the T is essentially the same as the standard normal.

p-value of a statistical hypothesis test

- The p-value of a statistical hypothesis test is the probability of seeing the data that we did, or something even more unusual, if H_0 were true.
- However, p-values are somewhat akin to pregnancy tests. You either are or you are not.
- Some would argue that a very small p-value is strong evidence against H_0 .
- In some disciplines predetermined "significance levels", such as 5% and 1%, are used. Thus a p-value less than 0.05 is "statistically significant".
- For the single-sample t test, the $H_0: \mu = \overline{X}$.

One-sided versus two-sided alternatives

- Depending on the context of the data, we may be interested in an increase only $(H_a: \mu > \mu_0)$, or a decrease only $(H_a: \mu < \mu_0)$ or either type of a shift $(H_a: \mu \neq \mu_0)$.
- An increase only or a decrease only are called one-sided alternatives.
- Either type of shift $(H_a: \mu \neq \mu_0)$ is called a two-sided alternative.
- The intention to perform a one-sided test should be clear before the study is conducted and the data gathered. It should not be decided after examining the data.
- In many cases shifts in only one direction are desirable (we only wish to increase the yield, not decrease it; we only wish to decrease the proportion of defectives, not increase it) and the only sensible test is one-sided.

- For the results of t.test to be valid, we must assume that we have a random sample (i.e. independent observations with an identical distribution) and that the underlying distribution is a normal distribution.
- If the sample size, n, is large we can relax the requirement of a normal distribution to "sort-of like a normal".
- For small samples departures from normality become more important. However, when n is small we cannot check reliably for departures from normality.

Practical Example for IQ Data

```
Remember again our IQ Data
> igdata <- c(100, 110, 95, 98, 120, 118, 143, 94,</pre>
      82, 114)
> t.test(iqdata, mu = 100)
One Sample t-test
data: iqdata
t = 1.3485, df = 9, p-value = 0.2105
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
  94.98581 119.81419
sample estimates:
mean of x
    107.4
```

• This means that our sample mean of 107.4 is not statistically significantly different from the population mean of 100 at the $\alpha=0.05$ level on 9 df.

Another IQ Data Example

```
This time consider the following dataset
> iqdata2 <- c(100, 110, 145, 115, 120, 118, 143,
      94, 122, 114)
> t.test(iqdata2, mu = 100)
One Sample t-test
data: iqdata2
t = 3.5325, df = 9, p-value = 0.006389
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
 106.5089 129.6911
sample estimates:
mean of x
    118.1
```

• This means that our sample mean of 118.1 is statistically significantly different from the population mean of 100 at the $\alpha=0.05$ level on 9 df.

Graphical Examples of iqdata and iqdata2

- > plotmeans(c(iqdata, iqdata2) ~ rep(c("iqdata",
- + "iqdata2"), each = 10))
- > abline(h = 100)

rep(c("iqdata", "iqdata2"), each = 10)

Single Sample and Paired Samples t test

In the single sample t test we are testing the null:

$$H_0: \mu = \overline{X}$$

- It may be that we have a different data scenario where we have a set of scores gathered at two different time points.
- This is very common in education studies where some assessment instrument is given as a pre-test and post-test with an intervention between the two data gatherings.
- With a paired samples t test, we can compute the statistical probability that the mean score at one time point is statistically significantly different from the mean score at another time point. Or:

$$H_0: \overline{X}_{pre} = \overline{X}_{post}$$

Paired Samples t test Generalization

 Our original null hypothesis for the paired samples t test is just a generalization of the single sample t test null in that

$$H_0 : \overline{X}_{pre} = \overline{X}_{post}$$
$$\overline{X}_{pre} - \overline{X}_{post} = 0$$
$$\overline{X}_{diff} = 0$$

 This last form of the null hypothesis now takes on the same form as a single sample t test where we are assuming the population mean difference score is 0.

A Practical Example

```
> pre <- c(60, 70, 65, 68, 72, 49, 59, 82)
> post <- c(71, 79, 82, 78, 85, 60, 63, 97)
> c(mean(pre), sd(pre), mean(post), sd(post))
[1] 65.625000 9.898593 76.875000 12.040853
> plotmeans(c(pre, post) ~ rep(c("pre", "post"), + each = 8))
```


rep(c("pre", "post"), each = 8)

Assumptions of the Paired Samples t test

- Normality in the population.
- No interaction between pairs and treatment. This can happen when there is a ceiling effect in your data.
- Outliers

Assumptions of the Paired Samples t test cont.

```
> print(p1 <- xyplot(post ~ pre), split = c(1, 1,
```

- + 2, 1), more = TRUE)
- > print(tmd(p1), split = c(2, 1, 2, 1))

Assumptions with Interaction Data

```
> pre1 <- seq(10, 100, by = 10)
> post1 <- seq(82, 100, length = 10)
> print(p2 <- xyplot(post1 ~ pre1), split = c(1,
      1, 2, 1), more = TRUE)
> print(tmd(p2), split = c(2, 1, 2, 1))
   100
                                        0
                          0
                                    60
   95
                                  difference
                                    20
      0
                        80
         20
                            100
```

pre1

mean

10 -

pre2

Assumptions with Outlier Data

```
> pre2 <- 1:10
> post2 <- c(11:19, 50)
> print(p3 <- xyplot(post2 ~ pre2), split = c(1,</pre>
      1, 2, 1), more = TRUE)
> print(tmd(p3), split = c(2, 1, 2, 1))
  50
                                   40
                                   35
   40
                                   30
30St2
  30
                                   25
                                   20
  20
        15 -
```

25

15

20

mean

Practical Example continued

> cbind(pre, post, diff = pre - post)

```
pre post diff
     60
[1,]
[2,]
    70 79
[3,]
    65 82 -17
[4,]
     68 78 -10
[5,] 72 85 -13
[6,] 49 60 -11
[7,]
     59 63 -4
[8,]
    82
         97 -15
```

> plotmeans(pre - post ~ rep("difference", 8))

t.test in R

> t.test(pre, post, paired = T)

```
Paired t-test
data: pre and post
t = -8.0452, df = 7, p-value = 8.792e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-14.55655 -7.94345
sample estimates:
mean of the differences
                 -11.25
```

> t.test(pre - post, mu = 0)

```
One Sample t-test
data: pre - post
t = -8.0452, df = 7, p-value = 8.792e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-14.55655 -7.94345
sample estimates:
mean of x
   -11.25
```