EE 332 Midterm Exam

Circuits and Devices II

Autumn 2021

Exam Date: Nov. 15 (5-7pm)

Full Name: Grade:/100

SID :.....

Assume for all the problems: VDD=1.2V, $|Vth_{n,p}|=0.3V$, $\mu_n C_{ox}=\frac{0.5mA}{V^2}$, $\mu_n=2\mu_p$, $\lambda_p=\lambda_n=0.1V^{-1}$, $\gamma=0$ for both NMOS and PMOS devices.

1. (35 pts) If $I_1 = 1mA$ (ideal current source), and C_1 is an AC-coupling capacitor (will be shorted in small-signal models and open for DC/bias analysis) answer following questions assuming $\lambda = 0$ for this problem.

- a) Find $(W/L)_1$ such that the input impedance will be 50Ω .
- b) Write down the small-signal gain equation in terms of small-signal parameters and R_D.
- c) Find R_D such that V_{out} bias point will be $V_{DD}/2$.
- d) Find small-signal gain using R_D from part c.
- e) If we realize I₁ current-source with a single NMOS device at a fixed gate bias of V_{DD}/2, what would be the W/L for that device?

- **2.** (30 pts) Design a Cascode amplifier as shown in figure below to achieve a gain of 10k (10,000). Assume an ideal current source of $I_1 = 1mA$ and $g_m r_o \gg 1$.
 - a) If $V_{GS1}=V_{GS2}$, what should be the value of V_{GS1} ?
 - b) Find R_{out} and R_{in} values for this amplifier.
 - c) Calculate optimal V_b to maximize the output swing.
 - d) To realize the current source load, we will use a PMOS active load with W/L=800. Assume the bias current will remain at 1mA, what would be the $V_{\rm OD}$ (= $V_{\rm GS}$ - $V_{\rm th}$) for this device?
 - e) What's the output swing range?

3. (35 pts) For the differential amplifier shown below:

- a) Assuming the target over-drive voltage (V_{od}) for <u>all the transistors</u> is 0.2V, find the V_{b1} , V_{b2} values.
- b) Find $(W/L)_{1,2}$, $(W/L)_{3,4}$, & $(W/L)_5$ such that current tail will be 10mA.
- c) Draw the differential-mode half circuit and calculate the differential gain $(\frac{v_{out}}{v_{in1}-v_{in2}})$ in terms of small-signal parameters (g_ms, r_os, and R₁)?
- d) Draw the common-mode half circuit and calculate single ended common-mode gain $(\frac{v_{out1/2}}{v_{in,cm}})$ in terms of small-signal parameters (g_ms, r_os, and R₁)?
- e) For a differential gain of -10, what should be the value of R_1 ?
- f) Find differential output peak-to-peak swing.
- g) Find minimum input common-mode (V_{in,cm}) for this amplifier.