CS & IT ENGINERING

Lecture No-7

By- Ankit Doyla Sir

TOPICS TO BE COVERED

Push and URG Flag

Flags

- OSYN] Connection establishment Phase
- 3 FIN] Connection termination
- 4 VRG
- S PSH
- @ RST

Push Flag

PSH (Push Flag): Push Flag is used to indicate that data should not be Buffered it must be pushed immediately to the lower layer or upper layer.

9F PS4 = 0

 \bigcirc

9F PSH = 1

B

The protocol data unit (PDU) for the application layer in the Internet stack is

- A Segment
- B Datagram
- Message
- D Frame

Assume that source S and destination D are connected through two intermediate routers labelled R. Determine how many times each packet has to visit the network layer and the data link layer during a transmission from S to D

- NL→ N+2 times = २+२=4

 Network layer 4 times and Data link layer 4 times = २+२=4

 = 6
- B Network layer 4 times and Data link layer 3 times
- Network layer 4 times and Data link layer 6 times
- D Network layer 2 times and Data link layer 6 times

The payload in IP packet

Ma

Segment

В

Frame

O

PDU

D

Datagram

Which one of the following options encapsulates packet?

H·u

- A Segment
- B Frame
- C PDU
- D Datagram

Which layer is responsible for Segmentation & reassembly?

- A Application layer
- B Data Link layer
- C Transport layer
- D Presentation layer

Consider the following scenario where source and destination are connected via three intermediate Router

Let P be the number of times the packet visit Network Layer and Q be the number of times the packet visit data link layer during a transmission of packet from source to destination. The value of P + Q is:

- A (nh)
- B (m+nh)
- C (nh)/(m+nh)
- D (m+nh)/(nh)

URG Flag & Urgent pointer

URG: Urgent flag

Urgent Flag is used to indicate that some Bytes are urgent in the data

Note:-

 Sender create a segment and Insert the urgent data at the beginning of the segment

Urgent pointer:

Urgent pointer Indicate end of the urgent data i.e. last urgent Byte

- If URG Flag = 0, Then we have no need to read the urgent pointer
- If URG Flag = 1 then we have to read the urgent pointer.

Urgent Pointer (16 bit)

It is valid only if the urgent Flag is set. It is used where the segment contains urgent data. It defines a value that must be added to the sequence number to obtain the number of the last urgent Byte in the data section of the segment.

- A 1000 byte ,45 byte ,sequence no= 3500-3544
- B 1024 byte ,45 byte ,sequence no= 3500-3544
- 1000 byte ,46 byte ,sequence no= 1024-1070
- D 1000 byte ,46 byte ,sequence no= 3500-3545

