Теория Меры 5: Внешняя мера

5.1. Мера и объем

На протяжении этого листа, M есть хаусдорфово топологическое пространство, а ${\bf C}$ - множество компактных подмножеств M.

Определение 5.1. Алгеброй борелевских множеств на M называется σ -алгебра $\mathbf S$, порожденная $\mathbf C$. Мера Бореля - это мера на $(M,\mathbf S)$.

Задача 5.1. Предположим, что M - локально компактно и имеет счетную базу открытых множеств. Докажите, что \mathbf{S} - σ -алгебра, порожденная открытыми множествами.

Задача 5.2. Предположим, что любое замкнутое подмножество в M может быть получено как счетное объединение компактов (в такой ситуации, говорится, что M σ -компактно). Докажите, что S - σ -алгебра, порожденная открытыми множествами.

Задача 5.3 (*). а. [*] Приведите пример связного хаусдорфова топологического пространства, которое локально компактно, но не σ -компактно.

б. [*] Вытекает ли из σ -компактности локальная компактность?

Определение 5.2. Пусть задана функция $\lambda: \mathbf{C} \longrightarrow \mathbb{R}^{\geqslant 0}$, где \mathbf{C} есть множество компактных подмножеств M. Мы говорим, что λ

- а. Монотонна, если $\lambda(A) \leqslant \lambda(B)$ для $A \subset B$
- б. аддитивна, если $\lambda(A \mid \mid B) = \lambda(A) + \lambda(B)$
- в. полуаддитивна, если $\lambda(A \cup B) \leqslant \lambda(A) + \lambda(B)$

В таком случае, λ называется **объемом**.

Определение 5.3. Пусть на M задан объем $\lambda: \mathbf{C} \longrightarrow \mathbb{R}^{\geqslant 0}$. Внутренним объемом подмножества $S \subset M$ называется число $\lambda_*(S) := \sup_C \lambda(C)$, где супремум берется по всем компактным $C \subset S$. Внешней мерой подмножества $S \subset M$ называется число $\lambda^*(S) := \inf_U \lambda_*(U)$, где инфимум берется по всем открытым множествам U, содержащим S.

Задача 5.4. Докажите, что для любого открытого множества $U \subset M$, $\lambda_*(U) = \lambda^*(U)$.

Определение 5.4. Напомним, что **внутренностью** подмножества $A \subset M$ называется множество всех $x \in A$ таких, что некоторая окрестность x содержится в A.

Задача 5.5. Докажите, что внутренность любого множества открыта. Докажите, что внутренность $A \subset M$ совпадает с $M \setminus \overline{(M \setminus A)}$, где $\overline{(M \setminus A)}$ обозначает замыкание $M \setminus A$ в M.

Задача 5.6. Докажите, что для любого компактного подмножества $C \subset M$,

$$\lambda^*(C) \geqslant \lambda(C) \geqslant \lambda_*(C_0),$$

где C_0 обозначает внутренность C.

Задача 5.7 (*). Пусть M локально компактно и имеет счетную базу. Докажите, что $C = \bigcap U_i$, для некоторой последовательности открытых множеств, содержащих C.

Задача 5.8 (*). В этих условиях, предположим, что $\lambda(\bigcap C_i) = \lim \lambda(C_i)$ для любой последовательности компактных множеств $C_0 \supset C_1 \supset ...$ такой, что $\bigcap C_i$ компактно. Докажите, что для любого компактного подмножества $C \subset M$, $\lambda^*(C) = \lambda(C)$,

Задача 5.9 (!). Пусть $M \subset \mathbb{R}^n$. Докажите, что мера Лебега на M задает объем

$$\lambda: \mathbf{C} \longrightarrow \mathbb{R}^{\geqslant 0}.$$

Докажите, что в такой ситуации $\lambda^*(C) = \lambda(C)$ для любого компактного подмножества $C \subset M$.

Задача 5.10. Пусть M - хаусдорфово топологическое пространство, на котором задан объем $\lambda: \mathbf{C} \longrightarrow \mathbb{R}^{\geqslant 0}$. Предположим, что $C \subset U \cup V$ компактное подмножество объединения открытых множеств U и V. Докажите, что найдутся компактные подмножества $C_U \subset U, C_V \subset V$ такие, что $C_U \cup C_V = C$.

Указание. Докажите, что два непересекающихся компактных подмножества хаусдорфова пространства имеют непересекающиеся окрестности. Воспользуйтесь этим, чтобы найти непересекающиеся открытые окрестности U_1 у $C \setminus V$ и V_1 у $C \setminus U$. Докажите, что $C_V := C \setminus U_1$, $C_U := C \setminus V_1 \subset U$ удовлетворяют условиям задачи.

Задача 5.11 (!). Пусть M - хаусдорфово топологическое пространство, на котором задан объем $\lambda: \mathbf{C} \longrightarrow \mathbb{R}^{\geqslant 0}$. Пусть U, V открытые множества. Докажите, что $\lambda_*(U \cup V) \leqslant \lambda_*(U) + \lambda_*(V)$.

Указание. Воспользуйтесь предыдущей задачей.

Задача 5.12. Выведите из этого, что λ^* полуаддитивна, то есть $\lambda^*(\bigcup A_i) \leqslant \sum \lambda^*(A_i)$ для любого конечного набора $A_i \subset M$.

Задача 5.13 (!). Докажите, что λ^* счетно полуаддитивно, то есть удовлетворяет $\lambda^*(\bigcup A_i) \leq \sum \lambda^*(A_i)$ для любого счетного набора $A_i \subset M$.

Указание. Сведите утверждение к $\lambda_*(\bigcup U_i) \leqslant \sum \lambda^*(U_i)$, где U_i все открыты. Если $C \subset \bigcup U_i$ компакт, то C покрывается конечным набором U_i . Следовательно,

$$\lambda_* \left(\bigcup U_i \right) \leqslant \lambda_* (U_1 \cup U_2 \cup ...U_n)$$

для конечного поднабора. Воспользуйтесь предыдущей задачей, чтобы получить $\lambda_*(U_1 \cup U_2 \cup ...U_n) \leqslant \sum_{i=1}^n \lambda_*(U_i)$.

Задача 5.14 (!). Пусть U открыто, C компактно. Докажите, что

$$\lambda^*(U) = \lambda^*(U \backslash C) + \lambda^*(U \cap C).$$

Указание. В силу уже доказанного, достаточно установить

$$\lambda^*(U) \geqslant \lambda^*(U \backslash C) + \lambda^*(U \cap C).$$

 $\lambda_*(U\backslash C)$ есть $\sup \lambda(D)$, где супремум берется по всем компактным D, лежащим в $U\backslash C$. Для каждого такого D, $U\backslash D$ это окрестность $C\cap U$, и $\lambda^*(C\cap U)\leqslant \lambda_*(U\backslash D)=\sup \lambda(E)$, где супремум берется по всем компактам E, лежащим в $U\backslash D$. По построению D и E не пересекаются. Докажите, что

$$\lambda^*(U \setminus C) + \lambda^*(U \cap C) = \sup_D \lambda(D) + \lambda^*(U \cap C) \leqslant \sup_{D, E} \lambda(E) + \lambda(D) = \sup_{D, E} \lambda(D \cup E) \leqslant \lambda^*(U)$$

Определение 5.5. Пусть M - хаусдорфово топологическое пространство, на котором задан объем $\lambda: \mathbf{C} \longrightarrow \mathbb{R}^{\geqslant 0}$. Подмножество $A \subset M$ называется λ^* -измеримым, или же измеримым по Каратеодори, если

$$\lambda^*(B) = \lambda^*(B \backslash A) + \lambda^*(B \cap A)$$

для любого подмножества $B \subset M$.

Задача 5.15 (!). Пусть

$$\lambda^*(U) = \lambda^*(U \backslash A) + \lambda^*(U \cap A) \tag{5.1}$$

для любого открытого $U \subset M$. Докажите, что $A \lambda^*$ -измеримо.

Указание. $\lambda^*(B) = \inf \lambda^*(V)$, где инфимум берется по всем открытым окрестностям $V \supset B$. Поэтому из (5.1) следует

$$\lambda^*(B) = \inf_V \lambda^*(V) = \inf_V \left(\lambda^*(V \setminus A) + \lambda^*(V \cap A) \right) \leqslant \lambda^*(V \setminus A) + \lambda^*(V \cap A) \leqslant \lambda^*(B \setminus A) + \lambda^*(B \cap A)$$

Обратное неравенство вытекает из полуаддитивности.

Задача 5.16 (!). Докажите, что λ^* -измеримые множества образуют алгебру.

Указание. Если $\lambda^*(X \coprod Y) = \lambda^*(X) + \lambda^*(Y)$, то $\lambda^*(X \coprod Y) = \lambda^*(X \backslash A) + \lambda^*(X \cap A) + \lambda^*(Y \backslash A) + \lambda^*(Y \cap A)$, для любого λ^* -измеримого множества A.

Задача 5.17. Пусть $A = \coprod_{i=1}^{\infty} A_i$ – счетное объединение непересекающихся λ^* -измеримых множеств. Предположим, что для любого множества X с $\lambda^*(X) < \infty$, имеем $\lim_N \lambda^*(X \cap \coprod_{i=N}^{\infty} A_i) = 0$. Докажите, что A тоже λ^* -измеримо.

Указание. Докажите, что

$$\lambda^*(A \cap X) = \lambda^* \left(X \cap \coprod_{i=1}^N A_i \right) + \lambda^* \left(X \cap \coprod_{i=N}^\infty A_i \right),$$
$$\lambda^*(X \setminus A) \leqslant \lambda^* \left(X \setminus \left(\coprod_{i=1}^N A_i \right) \right),$$

и выведите

$$\lambda^*(A \cap X) + \lambda^*(\backslash A) \leqslant \lambda^*(X) + \lambda^* \left(X \cap \coprod_{i=N}^{\infty} A_i\right).$$

Задача 5.18. Пусть $\lambda^*(X \cap A) < \infty$, где $A = \coprod_{i=1}^{\infty} A_i$ – счетное объединение непересекающихся λ^* -измеримых множеств. Докажите, что $\lim_N \lambda^*(X \cap \coprod_{i=N}^{\infty} A_i) = 0$.

Указание. Заменив X на открытое множество, содержащее $X \cap A$ и с $\lambda^*(X) < \infty$, а A_i на $A_i \cap X$, можно считать, что X = A и $\lambda^*(X) < \infty$. Пусть U_i – окрестности A_i , такие, что $\lambda^*(U_i) \leqslant \lambda^*(A_i) + \frac{1}{2^i} \varepsilon$. Докажите, что $\lambda^*(U_i \setminus A_i) \leqslant \frac{1}{2^i} \varepsilon$. Найдите в $\bigcup_i U_i$ компакт K, такой, что $\lambda^*(A) = \lambda(K) - \varepsilon$, и пусть $U_1, ..., U_N$ – конечное покрытие K. Выведите, что

$$\lambda^*(A) - \varepsilon \leqslant \lambda^* \left(\bigcup_{i=1}^N U_i \right) \leqslant \sum_{i=1}^N \lambda^*(A_i) + \lambda^*(U_i \backslash A_i) \leqslant \sum_{i=1}^N \lambda^*(A_i) + \varepsilon.$$

Воспользовавшись $\lambda^*(A) = \sum_{i=1}^N \lambda^*(A_i) + \lambda^* \left(\coprod_{i=N}^\infty A_i \right)$, убедитесь, что $\lambda^* \left(\coprod_{i=N}^\infty A_i \right) \leqslant 2\varepsilon$.

Задача 5.19. Докажите, что счетное объединение λ^* -измеримых множеств можно представить как счетное объединение непересекающихся λ^* -измеримых множеств.

Задача 5.20 (!). Докажите, что счетное объединение λ^* -измеримых множеств λ^* -измеримо. Выведите из этого, что любое борелевское множество λ^* -измеримо. Докажите, что λ^* задает меру на алгебре борелевских множеств.

Указание. Замените $\bigcup A_i$ на счетное объединение непересекающихся λ^* -измеримых множеств, и примените задачи 5.17 и 5.18.

Определение 5.6. Эта мера называется борелевской мерой, связанной с объемом $\lambda: \mathbf{C} \longrightarrow \mathbb{R}^{\geqslant 0}$.

Определение 5.7. Объем λ называется **регулярным**, если для каждого компактного множества $K\inf_U \lambda^*(U) = \lambda(K)$.

Задача 5.21 (!). Пусть $M = \mathbb{R}^n$, а $\lambda : \mathbb{C} \longrightarrow \mathbb{R}^{\geqslant 0}$ это мера Лебега. Докажите, что λ – регулярный объем. Докажите, что соответствующая ему внешняя мера λ^* на борелевских множествах равна мере Лебега.

Задача 5.22 (!). Докажите, что измеримое по Лебегу подмножество \mathbb{R}^n измеримо по Каратеодори.

Задача 5.23 ().** Докажите, что измеримое по Каратеодори подмножество \mathbb{R}^n измеримо по Лебегу.

5.2. Размерность Хаусдорфа

Определение 5.8. Пусть M – метрическое пространство. Диаметр $\operatorname{diam}(M) \in [0, \infty]$ есть число $\sup_{x,y \in M} d(x,y)$

Определение 5.9. Шаром с центром в x радиуса ε в метрическом пространстве называется множество $B_{\varepsilon}(x)$ всех точек y с $d(x,y) < \varepsilon$.

Задача 5.24. Чему может быть равен диаметр шара радиуса ε в метрическом пространстве?

Задача 5.25. Пусть M – метрическое пространство, $\varepsilon > 0$. Докажите, что у M есть покрытие, состоящее из шаров диаметра $\leqslant \varepsilon$.

Определение 5.10. Пусть $\{S_i\}$ – покрытие пространства M, состоящее из шаров радиуса r с $r < \varepsilon$. Определим $\mu_{d,\varepsilon} \in [0,\infty]$ как

$$\mu_{d,arepsilon} := \inf_{\{S_i\}} \sum_i (\operatorname{\mathsf{diam}} S_i)^d$$

где инфимум берется по всем таким покрытиям. Предел $\mu_d(M) := \sup \lim_{\varepsilon \to 0} \mu_{d,\varepsilon}(M)$ называется d-мерной мерой Хаусдорфа пространства M.

Задача 5.26 (!). Докажите, что для любого метрического пространства, $\mu_d(M)$ – монотонно невозрастающая функция от d, причем она равна нулю или бесконечности всюду, кроме, быть может, одного значения d.

Указание. Докажите, что для любого покрытия шарами с диаметром $\leqslant \varepsilon$, имеем $\sum_i (\operatorname{diam} S_i)^d \leqslant \varepsilon^{d-d'} \sum_i (\operatorname{diam} S_i)^{d'}$ для d > d'. Выведите из этого, что $\mu_d(M) \leqslant \varepsilon^{d-d'} \sum_i (\operatorname{diam} S_i)^{d'}$, а из этого – что $\mu_d(M) \leqslant \varepsilon^{d-d'} \mu_{d'}(M)$

Определение 5.11. Размерность Хаусдорфа $\dim_h(M)$ метрического пространства есть супремум $\sup \{d \in \mathbb{R} \mid \mu_d(M) = \infty\}$. Мера Хаусдорфа $\operatorname{Vol}_h(M)$ есть его мера Хаусдорфа размерности $\dim_h(M)$.

5.3. Мера Хаусдорфа

Задача 5.27. Докажите, что $\dim_h([0,1]) = 1$.

Задача 5.28 (*). Пусть M_1, M_2 - компактные метрические пространства. Докажите, что

$$\dim_h(M_1 \times M_2) = \dim_h(M_1) + \dim_h(M_2).$$

Задача 5.29 (*). Найдите размерность Хаусдорфа единичного куба в \mathbb{R}^n .

Задача 5.30 (*). Определим канторово множество как подмножество $K \subset [0,1]$, состоящее из всех точек, в троичном разложении которых нет 1. Найдите $\dim_h(K)$.

Задача 5.31 (**). Постройте метрическое пространство бесконечной размерности Хаусдорфа.

Задача 5.32. Предположим, M - локально компактное метрическое пространство хаусдорфовой размерности d, причем соответствующая d-мерная мера $\mu_d(K)$ конечна для любого компакта. Докажите, что $\mu_d(K)$ является объемом, в смысле определения, данного в начале листка.

Задача 5.33 (*). Пусть $M = \mathbb{R}^n$, с обычной метрикой. Докажите, что объем $\operatorname{Vol}_h(K)$ на компактных подмножествах M пропорционален мере Лебега.