Second Semester 2021-2022

(FOR THE BATCH STARTING FROM MARCH 2022)

Course Handout Part II

Date: March 11th, 2022

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course:

Course Number : CS F111

Course Title : Computer Programming

Instructor-In-Charge : Dr. Nikumani Choudhury (nikumani@hyderabad.bits-pilani.ac.in)
Instructors : Dr. Aritra Mukherjee, Dr. Abhijit Das, T Prathyusha, S Shashank,

Kalakanda Rahul Roy Munna, Praneeta Krishnaprasad Maganti,

Afrin Alam.

Scope and Objectives of the Course:

This is an introductory course to computers and programming. The language used to explain the concepts is preferably C. This course uses a bottom-up approach to teach the beginners what is the structure of a computer and how it can be programmed. It also covers adequate knowledge of Number systems. The course starts with the process of creating or developing algorithms/ flowcharts for solving different types of problems using a Computer. At a later stage, it covers programming constructs used in most languages like C, C++, etc. including data types, variables, operators, input/output, decision making, loops, arrays, functions, structures, dynamic memory allocations, file handling. Students also get hands on experience C programs in the laboratory.

The primary objectives of the course are to introduce:

- Basic representation of data and how to process this data using different types of storage representations inside a computer.
- Algorithm development for different tasks to be executed on a Computer and programming these using the high-level languages.

Text Book:

T1: J.R. Hanly and E.B. Koffman, *Problem Solving and Program Design in C*. 7th Edition. Pearson Education 2013.

Reference Books:

R1: Programming in ANSI C, E Balaguruswamy, Mc Graw Hill, 8th Edition 2019.

R2: The C Programming Language, Kernighan and Ritchie, 2nd Edition, Pearson, 2015.

R3: Let us C, Yaswanth Kanetkar, BPB Publications, 16th Edition, 2017.

R4: An Introduction to Programming through C++, Abhiram Ranade, McGraw-Hill Education, 2016

Lecture Plan:

re#	Learning Objectives	Topics to be covered	Chapter in the Text Book
1-2	Introduction to Computers.	Historical perspective to computing,	T1 (1)
	-	Basic structure of a computer, H/w and	
		S/w, Basic operations, Programming	
		languages, Anatomy of a computer,	
		Classification of Computers.	
3-4	To understand how simple	Number systems, Data representation,	Lecture
	numeric data is represented	Binary arithmetic, Conversion from one	notes
	inside a computer.	base to another, Complement representations of negative numbers.	
5-6	To create algorithms for	Concept of an algorithm and its design,	R1 (1)
3-0	solving problems.	Flowcharts.	KI (I)
7-8	oorving progression	Transition of an algorithm to a program,	R1 (2)
		Concept of a program.	、 /
9-	To understand the concept	Representation and Manipulation of data	T1(2)/
10	of problem solving using	(data types)	R1(3)
11	digital computer as a concrete engineering	Evaluation of expressions (Operations on	T1(2)/
12.12	concrete engineering activity.	simple data)	R1(4)
12-13	detivity.	Input and Output Operations including formatting.	T1(2)/ R1(5)
14-15		Sequential Evaluation and Conditional	T1(4)/
		Evaluation Evaluation and Conditional	R1(6)
	The use of programming language 'C' for problem	(Sequential and conditional statements)	()
16-18	solving.	Iterative/Repetitive constructs	T1(5)/
			R1(7)
19-20		Programming using iterative/ repetitive	T1(5)/
	To understand specific	constructs.	R1(7)
21-23	constructs in C as tools	Arrays	T1(7)/
24.20	available for handling		R1(8)
24-26	specific class of problems.	Strings	T1(8)/
		Strings	R1(9)
27-30		Modular programming: User defined	T1(3)/
		functions.	T1(10)
31-33		Pointers	T1(6)/
01 00		Tomers	R1(12)
34-36		Structures & Unions	T1(10)/
			R1 (11)
37-38		Dynamic memory allocation in C: malloc,	T1(13)/
		calloc, realloc, free, linked lists etc.	R1 (14)
39-40		File management in C.	T1(11)/
			R1 (13)

Evaluation Scheme:

Component	Duration	Weight	Date & Time	Nature of
		age(%)		Component
Mid-sem	90 mins	30%	4/05/22 (9:00-	Open Book
			10:30)	
Continuous lab evaluations	Lab Duration	15%	Will be	Open Book
			announced on	
			CMS/ Google	
			Classroom	
Lab Test (Two Tests each of		20%	Will be	Open Book
10%)	30 mins		announced on	
-At Least one will be			CMS/ Google	
conducted before midterm			Classroom	
Comprehensive	120 mins	35%	27/06/22	Closed Book
			(Forenoon)	

Make-up-Policy:

Make-up will be strictly granted on prior permissions and on justifiable grounds only.

Course Notices:

All notices pertaining to this course will be displayed on the CMS course page.

Chamber Consultation Hour:

Will be announced in the Classroom.

Academic Honesty and Integrity Policy:

Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-In-Charge CS F111