```
Attribute Information
1) id: unique identifier
2) gender: "Male", "Female" or "Other"
3) age: age of the patient
4) hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
5) heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
6) ever_married: "No" or "Yes"
7) work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"
8) Residence_type: "Rural" or "Urban"
9) avg_glucose_level: average glucose level in blood
10) bmi: body mass index
11) smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*
12) stroke: 1 if the patient had a stroke or 0 if not
```

Import all require module

In [1]:

```
#import all require module
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
#import csv file in dataframe
df=pd.read_csv('healthcare-dataset-stroke-data.csv')
```

In [3]:

df

Out[3]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_ty
0	9046	Male	67.0	0	1	Yes	Private	Urk
1	51676	Female	61.0	0	0	Yes	Self- employed	Rι
2	31112	Male	0.08	0	1	Yes	Private	Rι
3	60182	Female	49.0	0	0	Yes	Private	Urt
4	1665	Female	79.0	1	0	Yes	Self- employed	Rı
						•••		
5105	18234	Female	0.08	1	0	Yes	Private	Urt
5106	44873	Female	81.0	0	0	Yes	Self- employed	Urt
5107	19723	Female	35.0	0	0	Yes	Self- employed	Rι
5108	37544	Male	51.0	0	0	Yes	Private	Rι
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urk
5110 r	ows × 1	2 colum	ns					
4								•

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):

#	Column	Non-Null Count Dtype	
0	id	5110 non-null	int64
1	gender	5110 non-null	object
2	age	5110 non-null	float64
3	hypertension	5110 non-null	int64
4	heart_disease	5110 non-null	int64
5	ever_married	5110 non-null	object
6	work_type	5110 non-null	object
7	Residence_type	5110 non-null	object
8	<pre>avg_glucose_level</pre>	5110 non-null	float64
9	bmi	4909 non-null	float64
10	smoking_status	5110 non-null	object
11	stroke	5110 non-null	int64
_			

dtypes: float64(3), int64(4), object(5)

memory usage: 479.2+ KB

```
In [5]:
```

```
df.drop(["id"],axis=1,inplace=True)
```

In [6]:

```
#set id in df
df.insert(0, 'ID', range(1, 1 + len(df)))
df.set_index("ID",inplace=True)
```

In [7]:

```
#measure the nan(null) values in df
df.isnull().sum()
```

Out[7]:

0
0
0
0
0
0
0
0
201
0
0

In [8]:

```
#percentage of nan(null) values in df
nullper=(df.isnull().sum()/len(df))*100
print(nullper)
```

```
gender
                      0.000000
                      0.000000
age
hypertension
                      0.000000
heart_disease
                      0.000000
ever_married
                      0.000000
work_type
                      0.000000
Residence_type
                     0.000000
avg_glucose_level
                      0.000000
bmi
                      3.933464
                      0.000000
smoking_status
stroke
                      0.000000
dtype: float64
```

In [9]:

```
# missing value treatment in bmi
df['bmi']=df['bmi'].fillna(df['bmi'].mean())
```

```
In [10]:
```

df

Out[10]:

	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avç
ID								
1	Male	67.0	0	1	Yes	Private	Urban	
2	Female	61.0	0	0	Yes	Self- employed	Rural	
3	Male	80.0	0	1	Yes	Private	Rural	
4	Female	49.0	0	0	Yes	Private	Urban	
5	Female	79.0	1	0	Yes	Self- employed	Rural	
				***	***			
5106	Female	0.08	1	0	Yes	Private	Urban	
5107	Female	81.0	0	0	Yes	Self- employed	Urban	
5108	Female	35.0	0	0	Yes	Self- employed	Rural	
5109	Male	51.0	0	0	Yes	Private	Rural	
5110	Female	44.0	0	0	Yes	Govt_job	Urban	
5110 r	ows × 11	colur	mns					
4								•
In [1	1]:							
# We	need di	ff ar	nalysis to m	ake analysis	nrocess fas	ter durin	a FDA process	we

```
# we need diff analysis to make analysis process faster during EDA process we will seperate
# our entier dataframe into two part 1) df_num 2) df_cat
# df_num = int,float
# df_cat = object
```

In [12]:

```
df_num=df.select_dtypes(['int64','float64'])
```

In [13]:

```
df_num.columns
```

Out[13]:

In [14]:

```
df_cat=df.select_dtypes(['object'])
```

```
In [15]:
```

Outlier Analysis on numeric values

```
In [16]:
```

```
for i in df_num:
    plt.figure(figsize=(7,7))
    sns.boxplot(data=df_num,x=i,whis=3)
    # upper whisker = q3+1.5*IQR
    # lower whisker = q1 - 1.5*IQR
    # boxplot will calculate upper whisker and lower whisker by it's own and the nit will p
    plt.show()
```


Outlier Treatments

```
In [17]:
```

```
df_num.shape
```

```
Out[17]:
```

(5110, 6)

In [18]:

```
# avg glucose level Column Outlier Treatment
q1=np.quantile(df_num["avg_glucose_level"],0.25)
q3=np.quantile(df_num["avg_glucose_level"],0.75)
iqr=q3-q1
print("Quantile1 for avg_glucose_level is => ",q1)
print("Quantile3 for avg_glucose_level is => ",q3)
print("IQR for avg_glucose_level column is => ",iqr)
#as we know we have higher extream values so no need to calculate lower whisker will only oldsymbol{\mathsf{g}}
up_whs=q3+3*iqr
print("upper whisker with 3 penalty is => ",up whs)
# accept all those records which come below given whisker values
df num=df num[df num["avg glucose level"]<up whs]</pre>
df num.shape
Quantile3 for avg glucose level is => 114.09
IQR for avg glucose level column is => 36.84500000000001
upper whisker with 3 penalty is => 224.62500000000000
Out[18]:
(4944, 6)
In [19]:
# bmi Column Outlier Treatment
q1=np.quantile(df_num["bmi"],0.25)
q3=np.quantile(df_num["bmi"],0.75)
iqr=q3-q1
print("Quantile1 for bmi is => ",q1)
print("Quantile3 for bmi is => "
print("IQR for bmi column is => ",iqr)
#as we know we have higher extream values so no need to calculate lower whisker will only {f g}
up_whs=q3+3*iqr
print("upper whisker with 3 penalty is => ",up whs)
# accept all those records which come below given whisker values
df num=df_num[df_num["bmi"]<up_whs]</pre>
df_num.shape
Quantile1 for bmi is => 23.6
Quantile3 for bmi is => 32.6
IQR for bmi column is => 9.0
upper whisker with 3 penalty is => 59.6
Out[19]:
(4930, 6)
```

In [20]:

```
for i in df_num:
    plt.figure(figsize=(7,7))
    sns.boxplot(data=df_num,x=i,whis=3)
    # upper whisker = q3+1.5*IQR
    # lower whisker = q1 - 1.5*IQR
    # boxplot will calculate upper whisker and lower whisker by it's own and the nit will p
    plt.show()
```


In [21]:

```
# graphical analysis on categorical column Method data share percentage
# using pie plot
plt.figure(figsize=(10,10))
df_num['hypertension'].value_counts().plot.pie(autopct="%1.1f%%")
plt.title("df percentage by hypertension ")
plt.show()
#hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
```

df percentage by hypertension

In [22]:

```
# graphical analysis on categorical column Method data share percentage
# using pie plot
plt.figure(figsize=(10,10))
df_num['heart_disease'].value_counts().plot.pie(autopct="%1.1f%%")
plt.title("df percentage by heart_disease ")
plt.show()
#0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
```

df percentage by heart disease

categorical data analysis

In [23]:

df_cat

Out[23]:

	gender	ever_married	work_type	Residence_type	smoking_status
ID					
1	Male	Yes	Private	Urban	formerly smoked
2	Female	Yes	Self-employed	Rural	never smoked
3	Male	Yes	Private	Rural	never smoked
4	Female	Yes	Private	Urban	smokes
5	Female	Yes	Self-employed	Rural	never smoked
5106	Female	Yes	Private	Urban	never smoked
5107	Female	Yes	Self-employed	Urban	never smoked
5108	Female	Yes	Self-employed	Rural	never smoked
5109	Male	Yes	Private	Rural	formerly smoked
5110	Female	Yes	Govt_job	Urban	Unknown

5110 rows × 5 columns

In [24]:

```
# graphical analysis on categorical column Method data share percentage
# using pie plot
plt.figure(figsize=(10,10))
df_cat['smoking_status'].value_counts().plot.pie(autopct="%1.1f%%")
plt.title("df percentage by smoking_status ")
plt.show()
```

df percentage by smoking_status

Label Encoding categorical data

```
In [25]:
from sklearn.preprocessing import LabelEncoder
In [26]:
le=LabelEncoder()
for col in df cat:
   df_cat[col]=le.fit_transform(df_cat[col])
In [27]:
df_cat.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5110 entries, 1 to 5110
Data columns (total 5 columns):
 #
     Column
                     Non-Null Count Dtype
 0
     gender
                     5110 non-null
                                     int32
 1
     ever_married
                     5110 non-null
                                     int32
 2
     work_type
                     5110 non-null
                                     int32
 3
     Residence_type 5110 non-null
                                     int32
     smoking_status 5110 non-null
                                     int32
dtypes: int32(5)
memory usage: 139.7 KB
In [28]:
#merge the df cat and df num to all together
df_new=pd.merge(df_num,df_cat,on="ID")
```

In [29]:

df_new

Out[29]:

	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke	gender	ever_ma
ID								
2	61.0	0	0	202.21	28.893237	1	0	
3	80.0	0	1	105.92	32.500000	1	1	
4	49.0	0	0	171.23	34.400000	1	0	
5	79.0	1	0	174.12	24.000000	1	0	
6	81.0	0	0	186.21	29.000000	1	1	
5106	80.0	1	0	83.75	28.893237	0	0	
5107	81.0	0	0	125.20	40.000000	0	0	
5108	35.0	0	0	82.99	30.600000	0	0	
5109	51.0	0	0	166.29	25.600000	0	1	
5110	44.0	0	0	85.28	26.200000	0	0	

4930 rows × 11 columns

In [30]:

```
df_new.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4930 entries, 2 to 5110
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	age	4930 non-null	float64
1	hypertension	4930 non-null	int64
2	heart_disease	4930 non-null	int64
3	<pre>avg_glucose_level</pre>	4930 non-null	float64
4	bmi	4930 non-null	float64
5	stroke	4930 non-null	int64
6	gender	4930 non-null	int32
7	ever_married	4930 non-null	int32
8	work_type	4930 non-null	int32
9	Residence_type	4930 non-null	int32
10	smoking_status	4930 non-null	int32
dtyp	es: float64(3), int	32(5), int64(3)	

memory usage: 365.9 KB

In [31]:

```
x=df_new.drop("stroke",axis=1)
y=df_new["stroke"]
```

In [32]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=1,test_size=0.3)
```

Random forest

In [33]:

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
```

In [34]:

	precision	recall	f1-score	support
0 1	0.95 0.33	1.00 0.03	0.97 0.05	1407 72
accuracy macro avg weighted avg	0.64 0.92	0.51 0.95	0.95 0.51 0.93	1479 1479 1479

boosting techniques

adaboost

In [35]:

```
# algorithm based ensemple ML
from sklearn.ensemble import AdaBoostClassifier
```

In [36]:

```
from sklearn.metrics import classification_report
```

```
In [37]:
```

```
ada=AdaBoostClassifier()
ada.fit(x_train,y_train)
y_pred=ada.predict(x_test)
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.95	1.00	0.97	1407
1	0.25	0.03	0.05	72
accuracy			0.95	1479
macro avg	0.60	0.51	0.51	1479
weighted avg	0.92	0.95	0.93	1 479

DL

```
In [38]:
```

```
import tensorflow as tf
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import StandardScaler
```

```
In [39]:
```

```
x=df_new.drop("stroke",axis=1)
y=df_new["stroke"]
```

```
In [40]:
```

```
ss=StandardScaler()
x = ss.fit_transform(x)
```

In [41]:

```
x.shape[1]
```

Out[41]:

10

In [42]:

```
x_train,x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
```

In [43]:

In [44]:

model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 2)	22
dense_1 (Dense)	(None, 3)	9
dense_2 (Dense)	(None, 1)	4

Total params: 35
Trainable params: 35
Non-trainable params: 0

In [45]:

```
model.compile(optimizer="sgd", loss="binary_crossentropy")
```

In [46]:

trained_model = model.fit(x_train, y_train, epochs=50, batch_size=50)

```
Epoch 1/50
70/70 [============== ] - 1s 1ms/step - loss: 0.4958
Epoch 2/50
70/70 [============= ] - 0s 1ms/step - loss: 0.3634
Epoch 3/50
70/70 [=========== ] - 0s 1ms/step - loss: 0.2829
Epoch 4/50
70/70 [============== ] - 0s 984us/step - loss: 0.2332
Epoch 5/50
70/70 [============== ] - 0s 926us/step - loss: 0.2380
Epoch 6/50
70/70 [============= ] - 0s 984us/step - loss: 0.2119
Epoch 7/50
70/70 [============== ] - 0s 811us/step - loss: 0.2000
Epoch 8/50
70/70 [============== ] - 0s 868us/step - loss: 0.1913
Epoch 9/50
70/70 [============== ] - 0s 984us/step - loss: 0.2002
Epoch 10/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1956
Epoch 11/50
70/70 [=========== ] - 0s 1ms/step - loss: 0.1865
Epoch 12/50
70/70 [============== ] - 0s 1ms/step - loss: 0.1947
Epoch 13/50
70/70 [================ ] - 0s 984us/step - loss: 0.1837
Epoch 14/50
70/70 [=============== ] - 0s 926us/step - loss: 0.2082
Epoch 15/50
70/70 [================ ] - 0s 984us/step - loss: 0.1863
Epoch 16/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1839
Epoch 17/50
70/70 [=============== ] - 0s 1ms/step - loss: 0.1659
Epoch 18/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1680
Epoch 19/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1657
Epoch 20/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1777
Epoch 21/50
70/70 [============= ] - 0s 984us/step - loss: 0.1724
Epoch 22/50
70/70 [=============== ] - 0s 868us/step - loss: 0.1586
Epoch 23/50
70/70 [============ ] - 0s 926us/step - loss: 0.1751
Epoch 24/50
Epoch 25/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1685
Epoch 26/50
70/70 [=============== ] - 0s 926us/step - loss: 0.1672
Epoch 27/50
70/70 [=============== ] - 0s 868us/step - loss: 0.1696
Epoch 28/50
70/70 [============= ] - 0s 984us/step - loss: 0.1734
```

```
Epoch 29/50
70/70 [============== ] - 0s 926us/step - loss: 0.1686
Epoch 30/50
70/70 [============== ] - 0s 1ms/step - loss: 0.1682
Epoch 31/50
70/70 [============== ] - 0s 1ms/step - loss: 0.1688
Epoch 32/50
70/70 [============== ] - 0s 926us/step - loss: 0.1687
Epoch 33/50
70/70 [============= ] - 0s 984us/step - loss: 0.1677
Epoch 34/50
70/70 [============= ] - 0s 868us/step - loss: 0.1607
Epoch 35/50
70/70 [============== ] - 0s 810us/step - loss: 0.1701
Epoch 36/50
70/70 [============== ] - 0s 926us/step - loss: 0.1606
Epoch 37/50
70/70 [=============== ] - 0s 926us/step - loss: 0.1711
Epoch 38/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1618
Epoch 39/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1566
Epoch 40/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1537
Epoch 41/50
70/70 [=========== ] - 0s 1ms/step - loss: 0.1767
Epoch 42/50
70/70 [============= ] - 0s 1ms/step - loss: 0.1623
Epoch 43/50
70/70 [================= ] - 0s 1ms/step - loss: 0.1577
Epoch 44/50
70/70 [================ ] - 0s 984us/step - loss: 0.1607
Epoch 45/50
70/70 [============= ] - 0s 926us/step - loss: 0.1683
Epoch 46/50
70/70 [============== ] - 0s 926us/step - loss: 0.1595
Epoch 47/50
70/70 [============== ] - 0s 926us/step - loss: 0.1624
Epoch 48/50
70/70 [============== ] - 0s 868us/step - loss: 0.1584
Epoch 49/50
70/70 [============== ] - 0s 926us/step - loss: 0.1501
Epoch 50/50
```

```
In [47]:
```

```
plt.plot(trained_model.history['loss'])
plt.show()
```


In [48]:

```
y_hat = model.predict(x_test)
```

In [49]:

```
y_hat
```

Out[49]:

In [50]:

```
y_hat1 = np.where(y_hat >= 0.5, 1, 0) #where value is 0.5 than greater then shows 1 else 0
```

In [51]:

```
y_hat1.flatten()
```

Out[51]:

```
array([0, 0, 0, ..., 0, 0, 0])
```

In [52]:

```
from sklearn.metrics import classification_report
```

In [53]:

<pre>print(classification_report(y_test, y_hat1))</pre>

support	f1-score	recall	precision	
1409	0.98	1.00	0.95	Ø
70	0.00	0.00	0.00	1
1479	0.95			accuracy
1479	0.49	0.50	0.48	macro avg
1479	0.93	0.95	0.91	weighted avg

In [54]:

roc_auc_score(y_test, y_hat1)

Out[54]:

0.5

In []: