KING SAUD UNIVERSITY
COLLEGE OF COMPUTER AND INFORMATION SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Theory of Computation (CSC 339) – Fall 2023

Instructor: Prof. M.B. Menai

Tutorial 3: Nondeterministic Finite Automata

- 1. Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is $\Sigma = \{0, 1\}$.
 - (a) The language $\{w|w \text{ ends with } 001\}$ with four states.
 - (b) The language $1^*(001^*)^*$ with three states.
 - (c) The language ϵ with one state.
 - (d) The language 0* with one state.
 - (e) The language $\{w|w \text{ is any string except } 11 \text{ and } 111\}.$
- 2. Convert the NFAs obtained in the previous question to DFAs.
- 3. (3 points) Give the state diagrams of NFAs recognizing the concatenation and the star of the following languages. The alphabet is $\Sigma = \{0, 1\}$.
 - (a) The language $\{w|w \text{ ends with } 001\}$; The language $1^*(001^*)^*$.
 - (b) The language ϵ with one state; The language 0^* .
- 4. Convert the following regular expressions to NFAs. The alphabet is $\Sigma = \{0, 1\}$.
 - (a) (0+1)*000(0+1)*.
 - (b) $(((00)^*(11)) + 01)^*$.
 - (c) ∅*

- 1. Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is $\Sigma = \{0, 1\}$.
 - (a) The language $\{w|w \text{ ends with } 001\}$ with four states.

(b) The language $1^*(001^*)^*$ with three states.

(c) The language ϵ with one state.

(d) The language 0* with one state.

(e) The language $\{w|w \text{ is any string except } 11 \text{ and } 111\}.$