	ork Flow < Min-Cost Max-Flow			
Algorithms	Runtime/Key Results	NOTE		
DP shortest path				
Dijkstra's	O(mlogn)-using heap O(m + nlogn) - using Fibonacci heap	Only works for non-neg weights		
Bellman-Ford	O(m n)	Works for general case $D(v,k) = \text{the min path from s to v using k or fewer edges} \\ D(v,k) = \begin{cases} 0 & k = 0 \text{ and } v = s \\ \infty & k = 0 \text{ and } v \neq s \end{cases} \\ \frac{1}{m} \ln D(v,k-1), \min D(x,k-1) + l \in n(x+y) \text{ else} \end{cases}$		
APSP				
Matrix Products	$O(n^3 \log n)$			
Floyd-Warshall	$O(n^3)$			
Adapting Dijkstra	$O\left(n\left(n+m\right)\log n\right)$	Run Dijkstra n times for each starting vertex		
TSP	1			
	$O(n^2 2^n)$	Use subset DP $C(S, t) = \text{the min cost path from } x \text{ to t and visits all vertices}$ $C(s, t) = \begin{cases} le \ n(x, t) & \text{if } S = x, t \\ m \ i \ n_{t'} \in S, t' \neq t, t \neq x \end{cases}$		
Network Flow	!			
Ford-Fulkerson	O (m F)			
Edmond-Karp (Fattest Path)	$O(m^2 \log F)$			
Edmond-Karp (Shortest Path)	$O(m^2n)$			
LP				
Naive	O (m ³)	Find $\binom{n}{2}$ intersections and check if each intersection satisfies the other constraints. Choose one that give max objective function		
Less naive	$O(m^2)$	Order the constraints, then recursively find the optimum point		
Seidel's	$O\left(m\right)$ $O\left(d\left m\right.\right)$ - higher dimension	Order the constraint randomly, then recursively find the optimum. Works be there's a good chance that we already have seen the two constraints that define the true optimum. Other algos: Simplex, Karmarkar, Ellipsoid		
Approximation Algori	ithms			
Makespan (Greedy)	2 OPT	Pick any unassigned job and assign it to the machine with the least current load Remember $p_{\rm average} \le {\rm OPT}$ and $p_{max} \le {\rm OPT}$		
Makespan (Sorted Greedy)	1.5 OPT	Pick largest job and assign to machine with the least current load		
Vertex Cover (ILP)	2 OPT	Pick an arbitrary edge, choose both endpoints and discard all edges covered. The Integer LP is $x_{V} \in \{0,1\}, \min \sum_{v} x_{V} \text{ s.t. } \forall \text{edge}(u \ , v) x_{U} + x_{V} \geq 1$		
Vertex Cover (LP)	2 OPT	Allow for fractional solution and then round up by picking the vertex i such that $y_i \geq 1/2$. The LP is $x_{\mathcal{V}} \in [0,1]$, $\min \sum_{\mathcal{V}} x_{\mathcal{V}} \text{ s.t } x_{\mathcal{U}} + x_{\mathcal{V}} \geq 1$		
Set Cover (Greedy)	If OPT uses k sets, then algorithm uses at most $O\left(k \ln n\right)$	Pick the set that covers the most points. Throw out all the points covered. Repeat (Think about exponential decay and recall $(1-\frac{1}{x})^{Xn}=(\frac{1}{e})^n$		
Online Algorithms				
Rent/Buy	Comp. Ratio = $2 - \frac{\text{rent price}}{\text{buy price}}$	Better-late-than-never gives the best possible competitive ratio when buy price is a multiple of rent price		
List Update (MTF)	AC _{MTF} ≤ 4C _{adversary}	Use potential function for analysis $\phi_t = 2 \cdot (\# pairs of elements ordered differently in MTF's and adversary's list) Starf out with the same list. Analyze Access(x) for MTF first and then allow adversary to make swaps, then analyze$		

Theorems:

1. Weak Duality: If x is a feasible solution of the primal, and y is a feasible solution of the dual, then

2. Strong Duality: If primal is feasible and bounded, then dual is feasible and bounded. If x^* is optimal solution to the primal, and y^* is optimal solution to dual, then $c^T x^* = b^T y^*$

Suppose primal is feasible and bounded, all the possible scenarios are

Primal/Dual	Impossible	F&B	Unbounded
Impossible	Y	N	Y
Feasible & Bounded	N	Y	N
Unbounded	Υ	N	N

More Theorems.....