- Fonctions circulaires: cos, sin, tan.
 Fonctions hyperboliques ch, sh, th.
 Fonctions circulaires réciproques: arcsin, arccos, arctan.
 Exercices
- 1 Fonctions circulaires: cos, sin, tan.

Proposition 1.

La fonction cos est paire, et la fonction sin impaire. Elles sont toutes deux 2π -périodiques. Le graphe de sin se déduit de celui de cos par la translation de vecteur $\frac{\pi}{2}$ i.

Proposition 2.

Les fonctions cosinus et sinus sont dérivables sur \mathbb{R} , de dérivées

$$\cos' = -\sin$$
 et $\sin' = \cos$.

Preuve : en annexe, à la fin.

Proposition 3.

$$\forall x \in \mathbb{R} \quad |\sin(x)| \le |x|.$$

Définition 4.

On appelle fonction tangente et on note tan la fonction définie par

$$\tan : \left\{ \begin{array}{ccc} D_{\tan} & \to & \mathbb{R} \\ x & \mapsto & \tan(x) := \frac{\sin x}{\cos x} \end{array} \right. \quad \text{où} \quad D_{\tan} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

L'écriture de D_{tan} comme réunion d'intervalles disjoints de longueur π :

$$D_{\tan} = \bigcup_{k \in \mathbb{Z}} \left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[.$$

Proposition 5.

Sur D_{tan} , la fonction tangente est impaire et π -périodique.

La π -périodicité permet de réduire l'étude à un intervalle de longueur π , ce qui est le cas de] $-\frac{\pi}{2}, \frac{\pi}{2}$ [.

Proposition 6 (Valeurs et limites notables).

$$\tan(0) = 0, \qquad \tan\left(\frac{\pi}{4}\right) = 1, \qquad \tan\left(\frac{\pi}{3}\right) = \sqrt{3}, \qquad \lim_{\substack{x \to \frac{\pi}{2} \\ x < \frac{\pi}{2}}} \tan(x) = +\infty, \qquad \lim_{\substack{x \to -\frac{\pi}{2} \\ x > -\frac{\pi}{2}}} \tan(x) = -\infty$$

Proposition 7.

La fonction tangente est dérivable sur D_{tan} et

$$\forall x \in D_{\tan} \quad \tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x).$$

Proposition 8 (Formules d'addition).

Pour tous réels a et b tels que les nombres ci-dessous ont un sens,

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}, \qquad \tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}, \qquad \tan(2a) = \frac{2 \tan a}{1 - \tan^2 a}.$$

Corollaire 9 (Identités à savoir retrouver).

Soit $a \in \mathbb{R} \setminus \{\pi + 2k\pi, k \in \mathbb{Z}\}$, c'est-à-dire que a est un réel tel que $\frac{a}{2} \in D_{\tan}$. En notant $t = \tan\left(\frac{a}{2}\right)$,

$$\cos a = \frac{1 - t^2}{1 + t^2},$$
 et $\sin a = \frac{2t}{1 + t^2}.$

2 Fonctions hyperboliques ch, sh, th.

\mathbf{D} éfinition 10.)

Les fonctions cosinus, sinus et tangente hyperbolique sont définies sur \mathbb{R} par

$$\mathrm{ch}: x \mapsto \frac{e^x + e^{-x}}{2}, \qquad \mathrm{sh}: x \mapsto \frac{e^x - e^{-x}}{2}, \qquad \mathrm{th}: x \mapsto \frac{\mathrm{sh}(x)}{\mathrm{ch}(x)}.$$

Pourquoi cosinus et sinus? Cela vient de l'analogie avec les formules d'Euler pour les "vrais" cos et sin :

$$\forall t \in \mathbb{R}$$
 $\cos t = \frac{e^{it} + e^{-it}}{2}$ $\sin t = \frac{e^{it} - e^{-it}}{2i}$.

Pourquoi hyperbolique?

Pour les "vrais" cosinus et sinus, on a $\cos^2 + \sin^2 = 1$ et l'ensemble $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ est un cercle. Avec ch et sh, on va voir que $\cosh^2 - \sinh^2 = 1$ et l'ensemble

$$\{(x,y) \in \mathbb{R}^2 : x^2 - y^2 = 1\}$$

est appelé une hyperbole en géométrie.

Proposition 11.

- La fonction ch est paire et les fonctions sh et th sont impaires.
- $\forall x \in \mathbb{R}$ $\begin{cases} e^x = \operatorname{ch}(x) + \operatorname{sh}(x) \\ e^{-x} = \operatorname{ch}(x) \operatorname{sh}(x) \end{cases}$
- Une formule de trigonométrie hyperbolique :

$$\forall x \in \mathbb{R} \quad \operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1.$$

• Des limites :

$$\lim_{x \to +\infty} \operatorname{ch}(x) = \lim_{x \to +\infty} \operatorname{sh}(x) = +\infty \quad \text{ et } \quad \lim_{x \to +\infty} \operatorname{th}(x) = 1.$$

 \bullet Toutes les trois sont dérivables sur $\mathbb R$ et

$$\forall x \in \mathbb{R}$$
 $\operatorname{ch}'(x) = \operatorname{sh}(x), \quad \operatorname{sh}'(x) = \operatorname{ch}(x), \quad \operatorname{th}'(x) = \frac{1}{\operatorname{ch}^2(x)} = 1 - \operatorname{th}^2(x).$

• Les tangentes aux courbes de sh et th en 0 sont d'équation y = x. De plus,

$$\forall x \in \mathbb{R}_+ \quad \operatorname{sh}(x) \ge x \quad \text{ et } \quad \operatorname{th}(x) \le x.$$

3 Fonctions circulaires réciproques : arcsin, arccos, arctan.

La fonction $\sin: \mathbb{R} \to \mathbb{R}$ n'est (grossièrement) pas bijective. Par exemple, on pourra remarquer que 2 ne possède pas d'antécédent par \sin , ou encore que 1 en possède une infinité.

En revanche, la fonction

$$\widetilde{\sin}: \left\{ \begin{array}{ccc} [-\frac{\pi}{2}, \frac{\pi}{2}] & \rightarrow & [-1, 1] \\ x & \mapsto & \sin x \end{array} \right.$$

est continue et strictement croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, et $\widetilde{\sin}\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) = [-1, 1]$.

Le théorème de la bijection continue légitime alors la définition ci-dessous.

Définition 12.

On appelle fonction arcsinus et on note

$$\arcsin: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$$

la réciproque de la bijection $\widetilde{\sin}: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1].$

Pour tout y dans [-1,1], $\arcsin(y)$ est l'unique antécédent de y par sin dans $[-\frac{\pi}{2},\frac{\pi}{2}]$.

Proposition 13.

La fonction arcsin est strictement croissante sur [-1, 1] et elle est impaire.

Proposition 14.

$$\forall x \in [-1, 1] \quad \sin(\arcsin(x)) = x$$

$$\forall x \in [-1, 1] \quad \sin(\arcsin(x)) = x \qquad \qquad \forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \quad \arcsin(\sin x) = x$$

Exemple 15.

Que valent $\arcsin(0)$, $\arcsin(1)$, $\arcsin(\frac{1}{2})$? Et $\arcsin(\sin(\frac{2\pi}{3}))$?

La fonction

$$\widetilde{\cos}: \left\{ \begin{array}{ccc} [0,\pi] & \to & [-1,1] \\ x & \mapsto & \cos x \end{array} \right.$$

est continue et strictement décroissante sur $[0, \pi]$, et $\widetilde{\cos}([0,\pi]) = [-1,1].$

Le théorème de la bijection continue légitime alors la définition ci-dessous

Définition 16.

On appelle fonction arccosinus et on note

$$\arccos : [-1, 1] \to [0, \pi]$$

la réciproque de la bijection $\widetilde{\cos}: [0, \pi] \to [-1, 1].$

Pour tout y dans [-1,1], $\arccos(y)$ est l'unique antécédent de y par cos dans $[0, \pi]$.

Comme réciproque d'une fonction strictement décroissate, arccos est strictement décroissante sur [-1,1].

Proposition 17.

$$\forall x \in [-1, 1] \quad \cos(\arccos(x)) = x \qquad \qquad \forall x \in [0, \pi] \quad \arccos(\cos x) = x$$

$$\forall x \in [0, \pi] \quad \arccos(\cos x) = x$$

Exemple 18.

Que valent $\arccos(0)$, $\arccos(1)$, $\arccos(-1)$, $\arccos(\frac{\sqrt{3}}{2})$? Et $\arccos(\cos(\frac{5\pi}{3}))$?

La fonction

$$\widetilde{\tan}: \left\{ \begin{array}{ccc}]-\frac{\pi}{2},\frac{\pi}{2}[& \to & \mathbb{R} \\ x & \mapsto & \tan x \end{array} \right.$$

est continue et strictement croissante sur] $-\frac{\pi}{2}, \frac{\pi}{2}[$, et $\widetilde{\tan}(]-\frac{\pi}{2},\frac{\pi}{2}[)=\mathbb{R}.$

Le théorème de la bijection continue légitime alors la définition ci-dessous

Définition 19.

On appelle fonction arctangente et on note

$$\arctan: \mathbb{R} \to]-\frac{\pi}{2}, \frac{\pi}{2}[$$

la réciproque de la bijection $\widetilde{\tan}:]-\frac{\pi}{2},\frac{\pi}{2}[\to\mathbb{R}.$

Pour tout y dans \mathbb{R} , $\arctan(y)$ est l'unique antécédent de y par tan dans $]-\frac{\pi}{2},\frac{\pi}{2}[.$

Proposition 20.

La fonction arctan est strictement croissante sur $\mathbb R$ et elle est impaire.

$$\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2} \quad \text{ et } \quad \lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}.$$

Proposition 21.

$$\forall x \in \mathbb{R} \quad \tan(\arctan(x)) = x \qquad \forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[\quad \arctan(\tan x) = x]$$

Exemple 22.

Que valent $\arctan(0)$? $\arctan(1)$? $\arctan(\sqrt{3})$? Et $\arctan(\tan(\pi))$?

Lemme 23.

$$\forall x \in [-1, 1] \quad \cos(\arcsin(x)) = \sqrt{1 - x^2} = \sin(\arccos(x)).$$

$$\forall x \in \mathbb{R} \quad \cos(\arctan(x)) = \frac{1}{\sqrt{1 + x^2}}.$$

Proposition 24.

Les fonctions arcsin et arccos sont dérivables sur] -1,1[et

$$\forall x \in]-1,1[$$
 $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ et $\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$.

La fonction arctan est dérivable sur \mathbb{R} , et

$$\forall x \in \mathbb{R}$$
 $\arctan'(x) = \frac{1}{1+x^2}$.

Proposition 25 (Lien entre arccos et arcsin).

$$\forall x \in [-1, 1]$$
 $\operatorname{arccos}(x) = \frac{\pi}{2} - \arcsin(x).$

Proposition 26.

$$\forall x \in \mathbb{R}^*$$
 $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$

7

Annexe.

Preuve de la proposition 2 : on prouve que cos et sin sont des fonctions déri- | **Preuve** de la proposition 2. vables sur $\mathbb R$ et que leurs dérivées sont respectivement — sin et cos.

$$\forall x \in \left]0, \frac{\pi}{2}\right] \quad \cos x \le \frac{\sin(x)}{x} \le 1.$$

Preuve. Soit $x \in]0, \frac{\pi}{2}]$. On note M = M(x) le point du cercle trigonométrique associé à x par enroulement. Notons $\mathcal{C}(x)$ la portion de disque délimitée par O, I et M (pleine sur la figure suivante). On lit sur la figure l'inégalité

$$Aire(OIM) \le Aire(\mathcal{C}(x)) \le Aire(OIT). \quad (\star)$$

- Le disque de rayon 1 est d'aire π donc le quart de disque $\mathcal{C}(\frac{\pi}{2})$ est d'aire $\frac{\pi}{4}$. d'où Une règle de trois nous donne que $\mathcal{C}(x)$ est d'aire $\frac{x}{2}$.
- Le triangle OIM est de base OI = 1 et de hauteur $HM = \sin(x)$. On a donc $Aire(OIM) = \frac{1 \times \sin(x)}{2}$
- \bullet Le théorème de Thalès donne $\frac{IT}{HM}=\frac{OI}{OH}$ d'où $IT=\frac{HM\times OI}{OH}=\frac{\sin x}{\cos x}.$ On a donc $Aire(OIT)=\frac{\tan x}{2}.$

Les inégalités (\star) donnent donc

$$\frac{\sin x}{2} \le \frac{x}{2} \le \frac{\sin x}{2\cos x}.$$

ce qui fournit bien l'inégalité

$$\cos(x) \le \frac{\sin(x)}{x} \le 1.$$

• Soit $x \in \mathbb{R}$. On va dériver la fonction sin en x c'est à dire s'intéresser au taux d'accroissement

$$\frac{\sin(x+h) - \sin x}{h}.$$

Il nous faut montrer que ce dernier a pour limite $\cos x$ lorsque h tend vers 0.

L'utilisation des formules d'addition amène, pour tout $h \neq 0$,

$$\frac{\sin(x+h) - \sin x}{h} = \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} = \cos x \frac{\sin h}{h} + \sin x \frac{\cos h - 1}{h}.$$

Ainsi, la proposition est démontrée si on prouve

$$\frac{\sin h}{h} \xrightarrow{h \to 0} 1 \quad \text{et} \quad \frac{1 - \cos h}{h} \xrightarrow{h \to 0} 0.$$

La première limite découle du lemme précédent grâce au théorème des gen-

Pour la seconde, on calcule

$$\frac{(1+\cos h)(1-\cos h)}{h} = \frac{1-\cos^2 h}{h} = \frac{\sin^2(h)}{h} = \sin h \times \frac{\sin h}{h},$$

On a donc bien
$$\frac{1-\cos h}{h} = \frac{\sin h}{1+\cos h} \times \frac{\sin h}{h} \xrightarrow{h\to 0} \frac{0}{2} \times 1 = 0.$$

$$\frac{\sin(x+h)-\sin x}{h} \xrightarrow{h\to 0} \cos(x) \times 1 + 0 = \cos(x).$$

Ceci achève de démontrer que sin est dérivable en x, de dérivée $\cos x$.

• Rappelons que pour tout $x \in \mathbb{R}$,

$$\cos(x) = \sin\left(\frac{\pi}{2} - x\right).$$

Ainsi, cos est dérivable sur $\mathbb R$ comme composée de fonctions dérivables sur $\mathbb R$

$$\forall x \in \mathbb{R} \quad \cos'(x) = (-1)\sin'\left(\frac{\pi}{2} - x\right) = -\cos\left(\frac{\pi}{2} - x\right) = -\sin(x).$$

Exercices

Trigonométrie. Fonctions circulaires.

8.1 [$\Diamond \Diamond \Diamond$]

- 1. Soit $f: x \mapsto \sin^2(x) \sin(2x)$. Déterminer son maximum sur $[0, \pi]$ puis sur \mathbb{R} .
- 2. Démontrer pour tout réel x et tout entier $n \geq 1$, on a

$$\prod_{k=0}^{n} \sin(2^k x) \le \left(\frac{\sqrt{3}}{2}\right)^n.$$

8.2 [$\diamondsuit \diamondsuit$] Calculer $\tan(\frac{\pi}{8})$.

8.3 $[\diamondsuit\diamondsuit\diamondsuit]$ Résoudre

$$|\tan(x)| = 1.$$

Fonctions hyperboliques.

8.4 $[\blacklozenge \diamondsuit \diamondsuit]$ Trigonométrie hyperbolique.

- 1. Montrer que pour tous réels a et b, on a
 - (a) $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$.
 - (b) $\operatorname{sh}(a+b) = \operatorname{sh}(a)\operatorname{ch}(b) + \operatorname{ch}(a)\operatorname{sh}(b)$.
 - (c) Trouver une identité pour th(a + b).
- 2. Pour x réel, on pose $t = th(\frac{x}{2})$. Montrer que

(a)
$$ch(x) = \frac{1+t^2}{1-t^2}$$
 (b) $sh(x) = \frac{2t}{1-t^2}$ (c) $th(x) = \frac{2t}{1+t^2}$.

8.5 $[\spadesuit \diamondsuit \diamondsuit]$ Résoudre l'équation ch(x) = 2. Que dire des solutions?

8.6 $[\spadesuit \spadesuit \diamondsuit]$ Soient a et b deux réels tels que $b \neq 0$. Résoudre l'équation

$$a\operatorname{ch}(x) + b\operatorname{sh}(x) = 0.$$

8.7 [♦♦♦]

- 1. Justifier que sh réalise une bijection de $\mathbb R$ dans $\mathbb R$.
- 2. Expliciter sa réciproque, puis calculer la dérivée de cette réciproque.
- 3. Retrouver le dernier résultat en appliquant le théorème de dérivation d'une réciproque.

 $\boxed{8.8} \ [\spadesuit \spadesuit \spadesuit]$

- 1. Montrer que th est une bijection de \mathbb{R} dans] -1,1[et déterminer une expression explicite de sa réciproque, qu'on notera argth.
- 2. De deux façons différentes, montrer que argth est dérivable sur son intervalle de définition et calculer sa dérivée.
- 3. Montrer que pour tout $x \in \mathbb{R}$, $\operatorname{argth}\left(\frac{1+3\operatorname{th}x}{3+\operatorname{th}x}\right) = x + \ln\sqrt{2}$.

Fonctions circulaires réciproques.

8.9
$$[\phi \diamondsuit \diamondsuit]$$
 Montrer que $\forall x \in \mathbb{R}_+ \ x - \frac{x^3}{3} \le \arctan(x) \le x$.

8.10
$$[\spadesuit \spadesuit \diamondsuit]$$
 Montrer que $\arctan(1/2) + \arctan(1/3) = \frac{\pi}{4}$.

8.11
$$[\phi \phi \diamondsuit]$$
 Soit l'équation

$$\arcsin(x) + \arcsin\left(\frac{x}{2}\right) = \frac{\pi}{4}.$$

- 1. Justifier que l'équation admet une unique solution sur [-1,1].
- 2. Donner une expression de cette solution.

$$8.12$$
 [$\Diamond \Diamond \Diamond$] Dans cet exercice, on considère la fonction

$$f: x \mapsto \arcsin\left(\operatorname{th}(x)\right)$$

- 1. Justifier soigneusement que f est dérivable sur \mathbb{R} et prouver que $f' = \frac{1}{ch}$.
- 2. Démontrer que

$$\forall x \in \mathbb{R} \quad f(x) = 2\arctan(e^x) - \frac{\pi}{2}.$$

$$f: x \mapsto \arcsin\left(\frac{x}{\sqrt{1+x^2}}\right).$$

- 1. Démontrer que pour tout $x \in \mathbb{R}, \frac{x}{\sqrt{1+x^2}} \in]-1,1[$.
- 2. Montrer que f est dérivable sur $\mathbb R$ et calculer sa dérivée.
- 3. En déduire une expression plus simple de la fonction f.
- 4. Retrouver ce résultat par une preuve directe.

$$\boxed{\textbf{8.14}} \ [\spadesuit \spadesuit \spadesuit] \ \text{Pour} \ a < x < b, \ \text{montrer que arcsin} \ \sqrt{\frac{x-a}{b-a}} = \arctan \sqrt{\frac{x-a}{b-x}}.$$