Exercises 3.1.3 — Problem 1

Problem. Compute the sup, inf, limsup, liminf, and all the limit points of the sequence $x_1, x_2, ...$ where $x_n = 1/n + (-1)^n$.

Proof. First we compute the sup. To this end, we show that 3/2 is an upper bound for $1/n + (-1)^n$ for all $n \in \mathbb{N}$.

$$3/2 > 1/n + (-1)^n \iff 3n/2 > 1 + n(-1)^n > 1 - n \iff 5n/2 > 1 \iff n > 2/5$$

which is true for all natural numbers. Now we must show that 3/2 is the least upper bound for $x_n = 1/n + (-1)^n$. We know this because 3/2 is an element of the sequence: $x_2 = 1/2 + (-1)^2 = 1/2 + 1 = 3/2$.

Now we compute the inf. First we will show that $-1 \le x_n$ for all $n \in \mathbb{N}$.

$$-1 \le 1/n + (-1)^n \iff -n \le 1 + n(-1)^n \le 1 + n \iff -n \le 1 + n \iff n \ge -1/2$$

which is true for all natural numbers. No we must show that -1 is the greatest lower bound for x_n . Suppose there was a lower bound -1 + 1/k for some $k \in \mathbb{N}$. But -1 + 1/k cannot be a lower bound for x_n since x_{2k+1} is certainly less than -1 + 1/k:

$$x_{2k+1} = \frac{1}{2k+1} + (-1)^{2k+1} = \frac{1}{2k+1} + -1 < -1 + 1/k \iff \frac{1}{2k+1} < 1/k \iff k < 2k+1 \iff k > -1$$

which is true for all natural numbers. So -1 + 1/k cannot be a lower bound for x_n , which implies that -1 is the greatest lower bound for the sequence.

Before computing \limsup and \liminf , we will find all the \liminf points of $\{x_n\}$. Note that $x_1, x_2, x_3, \ldots = y_1, z_1, y_2, z_2, y_3, z_3, \ldots$ where $y_n = 1/(2n-1) + (-1)^{2n-1}$ and $z_n = 1/2n + (-1)^{2n}$. Further $y_n = 1/(2n-1) + (-1)^{2n-1} = 1/(2n-1) + -1$ and $z_n = 1/2n + (-1)^{2n} = 1/2n + 1$. Then we can say that $\lim_{n\to\infty} y_n = -1$ and $\lim_{n\to\infty} z_n = 1$. Since each subsequence converges, $\{y_n\}$ and $\{z_n\}$ each have only one limit point. Additionally, we know that x_1, x_2, \ldots is just a shuffled sequence of y_1, y_2, \ldots and z_1, z_2, \ldots so the limit points of x_1, x_2, \ldots are the limit points of $\{y_n\}$ and $\{z_n\}$: -1 and 1.

For \limsup and \liminf , we know that \limsup is the \sup of the set of \liminf and that \liminf is the \inf of the set of the \liminf points. So the \limsup is 1 and the \liminf is -1.