rRNA Gene Cluster

FIG. 1

	~3'	SAAL	3,1	
1		1		50
AAAGTCGCAC	CTTTCCCCAT	AAACCCCCTC	ACCCCCT	TGGACATTGT
51		7) 1 .		100
TCCACTTTTC	ACTTGTATTG	TGAAGCACCC	AATGCTAGCC	CATAGAACAG
101				150
TCCAGTAGTT	CAATAGAGAG	ACTAGTGAAC	ATAGTTTATA	ACATTGTCCA
151				200
AGGGGTGGAG	GGGGATGCGC	GAAATCGATG	TGCACGTTTG	GTCAAAGATG
201				250
CTCGCGAAAG	CTGCACATCA	ATTTCGCACA	TGGGCGAAAT	TGACTTGCAG
251			•	300
GTGGGTATAA	AAGTTGATGT	AGGCCATGTG	GCTCGATTTC	AACCATATGG
301				350
GTATGCTTCT	GAGGATGGGG	TGTTACAGTG	GACCATATGA	
351				400
TTGGAGATGT	CACCAAAATG	GTCTAAATCT	GCGCATTCCA	TTTAAGTGAA
401		4		450
TTTAAGTGAA	ATTTAAGTGA	ATTTTACTTA	AAATTGACCT	TTTTCGTTGC
451				500
GCAGATTTGG	GGTGGTGATG	GGTGACGCGG	CGAATTTTTT	AAAAAAGAGG
500				550
TATATCGCGT	GCTATTTGTA	TTTTTGGTAT	CACCGCGTCA	CCAATCACCA
551				600
TTGACGGTTT	CTTTTTCGAA	GTTTTTCCGG	ATTATTGCAT	TTTTTATATA
600				650
ATTGTGGGTG	GCTGATTCTT	GCGAAAGGAC	TGTTGTGATG	TCCGAGTTCC
651				700
CAAATTGGGA	GTTTTTGGAC	ATCACTCCTG	ATCTGCCGGC	GGCGATCAGG
700				750
ATGACTGACA	TTTCGATATA	TTTTGGGTAT	TCGATAGCTG	CCAAATCGGT
751	•			800
CAGCGTCGAG	TATTCCGGTT	TATTCGAAGG	ATTCATGATA	TTGCAAAATA
800				850
TCATTGATTT	TCATGGGGTT	TTGTATTÄGT	ACCCGCTCAT	TGTGGGAAAG
851				900
TCGGGTGGAT	TTATCTTACC	CGCAAATCTA	ATACAAGATT	TGCATGATGC
900				. 950
AGCAATAGAC	CAAGGTTAGT	ATAGCAGTTG	TATTTATACG	ACTAGTTATG
951		*		1000
CAAACCCTTT	GTGTTTTTTG	TTGCGACTCT	TGGCGTGAAC	CGGAAGACCG
1000				1050
GACCTCGCTT	TCGACTATTC	ATCTTTGATG	GATATGAGAT	CGCAAGGGTA
1051				1100
TCGCTTCGTG	CGATATTTAG	TGACCATCAG	AGCACGCTAC	GACTTTTGAT
1100				1150
TATATCCTTG	GATTTAATCG	GAAGCTCGCA	AGCATTGCAT	TGATGCAATC

FIG. 2

CATTTT TGCTTTCACA ACCCCGCACC CCATGTACAA TGTTGCCAAC #1 CACTAGAGTT TCAACAACAT TCGGATTTGA CAACATGTCA ACAATTCACA #51 ACAGAAATTG ACAACATTGT CACAAATTCT CAAATTGGAC AACATTGGAC AAAAATTCAC AACATACATT GGACAACAGT GGACAACGAA CCCAAACCCG #151 ACAACATTGT CCAGGGGGAT AGGGGGTGAA AAAGCAGTGC CGGCAAAGTC GAAAGATGTC AAGTTGGAAT GCGGCTCAAA TTCGTCATTT GTGTAAATCC #251 GCAATTTTGC CAATGTGCAA TTTTGCAAAT GTGCAATTTT GCAAATGTGC #301 AATTTTGCCA ATGTGCAATT TTGCAAATGC GCAATTTTGC AAATCCGCAA #351 TTTTGCAAAT GTGCAATTTT GGAAAATCAC CAAATGAAAA TCGTCCAAGT #401 CGAATTGGAG GCGTGGTGAC ATGGTCCCGG GATCCCCTGG TTACAGTGGA #451 CAATATCCCA GCAATATTCG CTGTAATTTG GAGTTTCGCT GTTTTGGCAA #501 ATTTTGAGTC TGAAAAAAAA AATTGCAAAT GCGCAAAGGG GGTGAAGGAA #551 AAAAAAGCAC CCCCGAAGGT AAAATTCCCT TTAAGTCCCT TGCGCATTTG #601 CAAAATTTTC AAAAATTGTT GCAAATGCGC TTTTGTTATT TGGCCGGTTC ATTGGTGTCA AAAGTTGCCT GGGGTGGTTA CACAATGCAC GGAATTGGTT; GGAAGTTGTG TGATTGAAAA TTGGTCGTGT CACACAATTT TGCGCATTTG #751 CAAAAATTCG CAAATTGGAC AAAAAAGGGT CGCGCACAGT CAAATTGCGC AAATTTCACT TTGAAGTGAG TGCGCATTTG TGGGGCAGAA ATGTGGTGAC #851 AGCATCGTTT TTTATAATAA ATATTCTATA TTTAGTATCT TTATTATAAT #901 TTGCTGTCAC CAATCACCAT TTTAGAATTT TTATTTTTTT ATGTTTTAGT #951 GACCGCGGGA TTTTTTGCAA AGTACTATYG TGATGTTTGA GTTGTTTGAA #1001 ATGGGCAATT TAGAACATCA TCAGAAATCG CTGAATAGTG ATTTTTGAGT #1051 TTGACTGTTT GAAGTGTTTT GGGTATTCGG CAGCTGCCAA ATCGGTCAGC #1101 GTCGAATATA ATAGCATTTT TGTGTGTATA TGATATTTAG CGATATCATT #1151 GGAATCATGG GGTTTTGTAT TAGTACCCGC TCATTGTGGG AATGTCGGGT #1201 GGTTCAATAT CACCTGCAAA TTTAATACAG GATTTGCATG ATGCAGCGAC #1251 TGACCGGGGT TGGTATAATA GCTGATTATT CGGCTTATTA TGCAGACCTA #1301 TCGTGTTAGT AGTTGCGACT CTTGGCGTGA ACCGGAAGAC CGGAACTTGA ATTCGACTAT TTACGTCCGT AAACAGGAGA TTTCAAGAAT ATTGCACATT : #1401 TTGCGTGATA TAAACGTGAT CATCTGAGCA CGCTTCGACT CTTGGATATC #1451 TGCTAATCAG CCGTCATCTG AGAGCTCGCA AGCATTGCAA TTGATGCAAT #1501

1				50
CGTGCCCTTT	TCACGAATTC	ACAGCCCCGC	CCCATGTA	CAATGTTGCC
51		,		100
CACCCGAAAT	GCCTGCCTGC	CCACCCGAAA	TGCCCGAAAT	GCCCGTTAGA
101				150
AAAAGTATGC	GAAAAGTTCT	TGTCAATTTT	GACAGTGTGT	GAAAAAACTG
151				200
AAAAAGTCCA	CTCAACATTG	CATTATGCAA	TTTGCCACTC	AACATTGTCC
201			•	250
AGGGGGATAG	GGGGTGAAAA	AGTATCGCAG	TCCAACTGAA	AAGATGCTAA
251				300
GTTGAAATGC	GGCGCAAATT	CATCACTTGA	GTTGCGAAAA	TCCCTAAAGT
301				350
CGAATTTGGC	ACTCGGTGAC	ATGATCGGGA	ATTTCCCTGG	TTACAGTGGT
351				400
	CAATTTTGGC	AAAGTTTTTG	AGTTTCGCAC	TTTTCGCAAA
401				450
TTTCGTGTCT	GAAAAAAAA	TTTCAACTTT	GCGCAAAGGG	GTCAAAGGGA
451	O		33331111133	500
AAAAAAGCAC	CCTCAAAAGG	AAATTTCCCT	ТТААТССССТ	TTGAAAAAA
500	CCICIERRIO		11111100001	550
TGCGCAAAGT	ጥል እ አጥጥጥር ርር	AAAATTTCGA	ጥጥጥርጥር ልጥ ል	TGACCGATTA
551	IMMITIGEG	THE WILL I COM	111101011111	600
	GATGGTAGTC	CCCAMCCMMA	CACCCTCCAC	GGAACTCGTT
600	GAIGGIAGIC	GGGAIGGIIA	CACGGIGCAC	650
	GAGTTACGAA	mmccmccccm	CACCACAAMM	TGCGCATTTT
	GAGTTACGAA	TIGGICCCGI	CACCACAATT	700
651	C 2 2 2 MMMCCCC	AAAAAAGCAG	CCCCCAAACM	TAAATTGTGC
TGAAATTGCG 700	CAAATTTGCG	AAAAAAGCAG	CGCGCAAAGI	750
	TTTCAGGTCG	CTCCCCA A A T	TTGGGGTGAA	
GAAAATTGAC 751	TTTCAGGICG	GIGCGCAAAI	TIGGGGIGAA	800
	АТТАТААТАА	አጥአ አጥሮጥአጥአ	አጥርጥአርጥጥርጥ	TTTATTATA
800	ATTATAATAA	MIMMICIMIA	ATCIAGITCE	850
	CCAATCACCA	ጥጥጥር እ ር እጥጥጥ	TTTATTTTT	TATGTTTTAG
851	CCAATCACCA	IIIGAGAIII	1117777111	900
	ATTTTTTCCA	GAGTACTATC	GTGATGTCTG	AGTTGTCTAA
900	Alliliteen	Onome mile	01001010	950
AACGGCAATT	TCAGAACATT	ACCAGAAAAC	АСТСААТАСТ	GGTTTCTGAG
951	ICHOPMONII	neenommine.	ne reminer	1000
TCTGACTGTT	ጥር ል ልርጥርጥጥጥ	TGGGTATTCG	GCAGCTGCCA	
1000	10/11/01/01/1	10001111100	001100100011	1050
	ACTAACATTT	СТСТСТСТАТ	ATGGTATTTA	
1051	nementi	01010101111		1100
	GGGTTTTGTA	ттастасссс	CTCATTGTGG	
1100	00011110111	1111011110000	01010100	1150
	TCACCTGCAA	ΑͲΨΤΑΑΤΑCA	GGATTTGCAT	
1151	101100100111		00	1200
	TTAGTATAAT	ልርርጥርልጥጥልጥ	ጥሮርርርጥጥልጥጥ	
1200	111.011111111		1000011111	1250
	TAGTTGCGAC	ጥርጥጥርርርርጥር	AACCGGAAGA	
1251	11101100010	1011000010		1300
	TTTACGTCCG	ТААСАССТСС	GTAAACAGGA	
1300	TITACGICCG	111101100100	CILLLICITOGA	1350
	TTTTGTGTGA	ጥልጥልልጥ ርጥር	АТСАТСТСА С	
1351	TITIGIGIGA	INIMICUIG	CAICIGAG	1400
	TTTGTTAAAC	ልልሮሮርልጥልጥጥ	CGGGAGCTCG	
1400	TITOTIMANC	INCCONTAIL		1450
AATTGATGCA	Aጥር			1430
TOTALIGER				

FIG. 4

Primer	Sequence	Target
300 F	5'-CACTTGTATTGTGAAGCACCC-3'	
300 R	5'-TTG GTG ACA TCT CCA AAT GAC-3'	Perkinsus marinus
500 F	5'-ATGCTAGCCCATAGAACAGT-3'	r ermisus mamus
500 R	5'-ATGCTAGCCCACATCACAGC-3'	
NTS7	5'-AAGTCGAATTGGAGGCGTGGTGAC-3'	
NTS6	5'-ATTGTGTAACCACCCCAGGC-3'	Perkinsus andrewsi
PM5	5'-ATGCTAGCCC ATAGAACAGT-3'	P. marinus type I
PM7	5'-CAT CTC CAA ATG ACC TAC CT-3'	P. marinus type I
PM6	5'-ATGCTAGCCC ACATCACAGC-3'	P. marinus type II
PM8	5"-CAT CTC CAA ATG ACC TAC CA-3"	P. marinus type II

FIG. 5

FIG. 7

FIG. 8

Samples

	1			· · · · · · · · · · · · · · · · · · ·	50
Туре-	I CACTTGTATI	GTGAAGCACC	CAATGCTAGC	CCA T A GA ACA	GTCCAGTAGT
Туре-	-II CACTTGTATT	GTGAAGCACC	CAATGCTAGC	CCA C A TC ACA	GCCAGTAGT
	51				100
Type-	·I TCAATAGAGA	GACTAGTGAA	CATAGTTTAT	AACATTGTCC	AAGGGGTGGA
Type-	II TCAATAGAGA	GAC G AGTGAA	CATAGTTTAT	AACATTGTCC	AAGGGGTGGA
	101				150
Type-	I GGGGGATGCG	CGAAATCGAT	GTGCACGTTT	GGTCAAAGAT	GCTCGCGAAA
Туре-	II GGGGGATGCG	CGAAATCGAT	GTGCACGTTT	GGTCAAAGAT	GCTCGCGAAA
	151				200
Type-	I GCTGCACATC	AATTTCGCAC	ATGGGCGAAA	TTGACTTGCA	GGTGGGTATA
Type-	II GCTGCACATC	AATTTCGCAC	ATGGGCGAAA	TTGACTTGCA	GGTGGGTATA
	201				250
Type	-I AAAGTTGATG	TAGGCCATGT	GGCTCGATTT	CAACCATATG	
Type-		TAGGCCATGT	GGCTCGATTT	CAACCATATG	GGTATGCTTC
· .	251				300
Type-	I TGAGGATGGG	GTGTTACAGT	GGACCATATG	AGGTAGGTCA	TTTGGAGATG
Type-	II TGAGGATGGG	GTGTTACAGT	GGACCATATG	T GGTAGGTCA	TTTGGAGATG
	301			ten.	
Туре-	I TCACCAA				
Туре-	II TCACCAA		•		

FIG. 12

FIG. 14

Samples

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 1 - + -

FIG. 16

	.TCTTTTTAAA TCGCACTCAT GGCTTGTGCA 1 TGCAAG CCCCCGGA
#1	•••••••••••••••••••••••••••••••••••••••
>P. atlantic #51	s.CCCCTGGACA ATGTTATCCC AGCTCAACAA CGAGCAACAG TGCTATGGC
<pre>>P. atlantic #101</pre>	s.AGTAGTCCAC TAGAGAGCCA AGTCGACAAT CTCTACAACA TTGTCCAAG
>P. atlanticu #151	s.GGGAAAGGGG GGCGCGCGAA GTTGACCTGC AGCAGAGGGA AAAGATGCT
>P. atlanticu #201	s.AGTTTTGCTG CACCCCAACT TTGCGCACTT GGCGAAGTTG ACTTGCAGG
<pre>>P. atlanticu >PA690F-Text #251</pre>	3.GAGGGTAAAA GATGCTATGG TTGGTTGCGG ACCAAGTTCG CCGTGTGGG ATGCTATGG TTGGTTGCGG ACC
>P. atlanticu #301	CATCATTATC GAGGTCTGTG GTGACGATGG ACTAGTTTTT AGGGATTTT
>P. atlanticu #351	.CGGAGGTGTC ACCACGGACC CCCCAACTTT GCGCACGGGG GGTACTCAA
>P. atlanticu #401	TTTAAGTGAA ATTTAAGTAA AATTTACTTA AAATTCACGT TTTTGGGTG
>P. atlanticu #451	.GCAAAGTTGA GGTGGTGACT GGTGACACGA AAATTTTAAA AAAGAGAGA
<pre>>P. atlanticu #501</pre>	.ATTAAAAAAA TATTTATATT TTCTGTGTCA CCGTGTCACC AGTCACCACA
>P. atlanticus #551	.GGGCGTAATT TTCCGGGAAA TTTTCAGATT TTCCGGAAAA ATTGCATTT
>P. atlanticus #601	GGGGTAAATA GTGTCCGTCA GAATTTTGCC AAAGGACTGT CGTGATGTCC
>P. atlanticus #651	GAGTTCCCAA ATTGAGGGTT TTTGGACATC GCTCTGAAAT CGCTAACGGC
>P. atlanticus #701	GTTTCAGATT TCCGACTTTT CGACATATTC TGGGTATTTG ATAGCTGCCA
>P. atlanticus #751	AATCGGTCAG CGTCGAATAT TCCAATATTT CGAAGGATAT ATGATATCGC
>P. atlanticus >PER1-Text #801	GAGATATCAT TGGATTTCAT GGGGTTTTGT ATTAGTACCC GCTCATTGTG TAGTACCC GCTCATTGTG
>P. atlanticus >PER1-Text #851	GGAAAGTCGG GTGAATTTAT TCAACCCGCA AATCTAATAC AAGATTTGCA
>P. atlanticus <pa690r-text< th=""><th>TGATGCAGCG ACTGACCGGG GTGAGTGTAG CAGCTGTTCT ACGGCTTGCT GCTGTTCT ACGGCTTGCT</th></pa690r-text<>	TGATGCAGCG ACTGACCGGG GTGAGTGTAG CAGCTGTTCT ACGGCTTGCT GCTGTTCT ACGGCTTGCT
#901	••••••
	ACGCAGACCT ATCGTGTTAG TAGTTGCGAC TCTTGGCGTG AACCGGAAGA
	CCGGACCTCG CTTTCGACTA TTCATTCCGA TGAATATGAG ATTGCAAGGG
#1001	••••••
>P. atlanticus #1051	TATCGCTTCG TGCGATATTT AGTGATCATC AGAGCACGCT ACGACTTCAG
<per2-text< th=""><th>TATATCCTCG GATACACAGA AGCTCGCAAG CATTGCATGA TGCAATC AGCTCGCAAG CATTGCA</th></per2-text<>	TATATCCTCG GATACACAGA AGCTCGCAAG CATTGCATGA TGCAATC AGCTCGCAAG CATTGCA
#1101	

>P. #1	andrewsi-S	. ACCTGGTTGA	TCCTGCCAGT			GATTAAGCC
>P. #5		. TGCATGTCTA	AGTATAAGCT			
>P. #1		. AAACAGTTAT	AGTTTATTTG			
>P. #1		. AATTCTAGAG	CTAATACATG			
>P. #2		.TTATTAGATA	CAGAACCAAC			
>P. #2!		. ATAATAACCC	GGCGAATCGC			CCATTCAAG
>P. #30		.TTCTGACCTA	TCAGCTATGG			
>P. #3!		. ACGGGTAACG	GGGAATTAGG			
>P. #40		.GACTACCACA	TCTAAGGAAG			
>P. #45		TACAGGGAGG	TAGTGACAAG			
>P. #5(AATTGGAATG	AGTAGATTTT			
>P. #55		. AAGTCTGGTG	CCAGCAGCCG			
	J3F-Text	. AAGTTGTTGC	GGTTAAAAAG	AGTTG	GATTTCTGCC	TTGGGCG
>P. #65		.GGTCCACCTT	TCCTACGGGT			
>P. #70		TTCTTGGGAT	TCGTGCTCAC			
>P.	andrewsi-S.	. GACTTTTACT	TTGAGGAAAT	TAGAGTGTTT	CAAGCAGGCT	TATGCCGTGA
#75 >P. #80	andrewsi-S.	ATACATTAGC	ATGGAATAAT	AGGATATGAC	TTTGGTCATA	TTTTGTTGGT
>P. #85		TTCTAGGACT	GAAGTAATGA			
>P. #90		TAACTGTCAG	AGGTGAAATT	CTTGGATTTG	TTAAAGACGA	ACTACTGCGA

FIG.18A

	>P. andrewsi-S #951				AAGAACGAAA	
	>P. andrewsi-S #1001				ACCATAAACT	
	>P. andrewsi-S #1051				TCAGCACCTC	
	>P. andrewsi-S #1101				CGCAAGGCTG	
	>P. andrewsi-S #1151				AGCCTGCGGC	
	>P. andrewsi-S >SSU4F-Text #1201				ATAGGAAGGA ATAGGAAGG	
. ;	>P. andrewsi-S #1251	GATAGCTCTT	TCTTGATTCT	ATGGGTGGTG		GTTCTTAGTT
:	>P. andrewsi-S. #1301				AACGAACGAG	
	>P. andrewsi-S. #1351				ACCGCTACTT	
:	>P. andrewsi-S. #1401				GCAATAACAG	
:	P. andrewsi-S. #1451				ACACTGACAC	
3	>P. andrewsi-S. #1501	TATTTCCTTG				
:	>P. andrewsi-S. #1551				CAACGAGGAA	
	>P. andrewsi-S. #1601				CCCTGCCCTT	
	P. andrewsi-S. #1651	GCCCGTCGCT				
	P. andrewsi-S. #1701				GTTCTGCAAA	
	>P. andrewsi-S. #1751	TAGAGGAAGG	AGAAGTCGTA	ACAAGGTTTC	CGTAGGTGAA	CCTGCAGAAG

>P. andrewsi-S.GATCATTC

FIG. 18B

ACACCGATTC ATTCTCTGAG AAACCAGCGG TCTCTGTAAA AGGAGATGGG #1

ATCTCCGCTT TGTTTAGATC CCCACACCTG ACCGCTTTAA CGGGCCGGGT #51

AGGTGCATAA CTTCTATGAA CCAATTGTAC TAGTCTAAAG TATCCAATAT #101

CCTTTTGGAT TTTGGTATTT CAAAACGAAA TTCCAAACTC TCAACGATGG #151

ATGCCTCGGC TCGAGAATCG ATGAAGGACG CAGCGAAGTG CGATAAGCAC #201

TGCGATTTGC AGAATTCCGT GAACCAGTAG AAATCTCAAC GCATACTGCA #251

CAAAGGGGAT TTATCCTCTT TGTACATACA TATCAGTGTC GCTCTTCTTC #301

CCGATACAAA CATTTTGTTG ATTTACAATC AACATTATGC TTTGTATCCC #351

GCTTGGATTC CTTTATTGGG ATCCGCTGTG TGCGCTTGCT GACACAGGCG #401

CATTAATTTG CAAGGCTATA ATACTACTGT ACTGTAGCCC CTTCGCAAGA #451

AGGACTGCGC TAGTGAGTAT CTTTGGATGC TCGCGAACTC GACTGTGTTG
#501

TGGTTGATTC CGTGTTCCTC GATCACGCGA TTCATCGCTT CAACGCATTA #551

TGTCAAATTT GATGAATGCA GAGAGTTGTT TATGAATTAC GCGATCGCTT #601

TGGTCTCAGA ATCGTTACTA TAGCACGCTT GTCGGTTTGC AACCTGGCAA #651

TATGTCATCA TT #701

FIG. 19

						Primers to claim			
Perkinsus species	PCR	Name	Forward Primer (5'-3')	Position ¹	Name	Reverse Primer (5'-3')	Position	Amplicon Size (bp)	Publication
Perkinsus marinus	Species	300F	CAC TTG TAT TGT	08-09	300R	TTG GTG ACA TCT	346-366	307	Marsh et al.
	specific		GAA GCA CCC			CCA AAT GAC			J. Parasitol. 1995 81(4):577-83.
									Robledo et al.
									J. Parasitol. 1999 85(4):650-6.
Perkinsus atlanticus	Species	PA690F	ATG CTA TGG TTG	262-283	PA690R	GTA GCA AGC CGT	933-952	169	Robledo et al.
	specific		GTT GCG GAC C			AGA ACA GC			J. Parasitol. 2000 86(5):972-8
Perkinsus andrewsi²	Species	NTS7	AAG TCG AAT TGG	447-470	9SLN	ATT GTG TAA CCA	717-736	290	Coss et al.
	specific		AGG CGT GGT GAC			CCC CAG CG			J. Euk. Microbiol. 2001 [(In Press)] 48:52- 61
Perkinsus marinus	Generic	PERI	TAG TAC CCG CTC	827-845	PER2	TGC AAT GCT TGC	1123-1139	313	[Coss et al.
			AT(TC) GTG G			GAGCT			J. Parasitol. (Submitted)]
Perkinsus atlanticus	Generic	PERI	TAG TAC CCG CTC	833-851	PER2	TGC AAT GCT TGC	1121-1137	305	[Coss et al.
			ATT GTG G			GAGCT			(Submitted)]
Perkinsus andrewsi	Generic	PERI	TAG TAC CCG CTC	1121-1239	PER2	TGC AAT GCT TGC	1523-1539	319	[Coss et al.
			ATT GTG G			GAG CT			J. Parasitol. (Submitted)]

¹Relative to the NTS sequence

²Perkinsus sp. (Macoma balthica)

					Primers	Primers to claim		
Perkinsus species	PCR	Name	Name Forward Primer (5'-3')	Position	Name	Reverse Primer (5'-3')	Position ¹	Publication
Perkinsus andrewsi	Sequencing	SSU3F	AGT TGG ATT TCT GCC TTG CGC G	626-647	SSU4F	ACC AGG TCC AGA CAT AGG AAG G	1218-1239	Coss et al. J. Euk. Microbiol. 2001 [(In Press)] 48:52- 61

FIG. 21