光栅衍射实验

班级: 自75 姓名: 蔡烨怡 组号: 周五晚 HH 座位号: 6 日期: 2019/5/5

一、实验目的

- (1) 进一步熟悉分光计的调整和使用。
- (2) 学习利用衍射光栅光波波长及光栅常数的原理和方法。
- (3) 加深理解光栅衍射公式及其成立条件。

二、实验原理

1、测定光栅常数和光波波长

写出主要原理公式和公式中符号的物理意义; 画出相应的光路图

图 1 光栅衍射光路图

光栅衍射光路图如图 1 所示。满足公式:

 $d(\sin\varphi \pm \sin i) = m\lambda$ $m = 0, \pm 1, \pm 2 \dots$

其中, $\mathbf{d} = \mathbf{A}\mathbf{B}$ 为光栅常数,也即刻痕之间的距离,i为入射角, φ 为出射角,当入射角和出射角为同侧时,上式左边取正,否则上式左边取负。 λ 为入射光的波长。

当i = 0, 即光线正入射时, 有:

 $dsin\varphi = m\lambda$

2、用最小偏向角法测定光波的波长

写出主要原理公式和公式中的符号的物理意义; 画出相应的光路图

图 2 最小偏向角光路图

测量最小偏向角的光路图如图 2 所示。满足公式:

$$d(sin\varphi + sini) = m\lambda$$

记
$$\Delta = \varphi + i$$
, $\Delta_{min} = \delta$ (此时 $i = \varphi = \frac{\delta}{2}$)

则有
$$2dsin\frac{\delta}{2} = m\lambda$$
 $(m = 0, \pm 1, \pm 2...)$

各物理量的含义和上题相同。将δ称为最小偏向角。

三、实验仪器

分光计、光栅、水银灯 水银灯波长如下

颜色	紫	绿	黄	红
波长/nm	404. 7	491. 6	<mark>577. 0</mark>	607. 3
	407. 8	546. 1	579. 1	612. 3
	410.8			623. 4
	433. 9			690. 7
	434. 8			
	435. 8			

四、推导正入射时 d 和λ的不确定度

约定 $\Delta \phi_m$ 取值为:

$$\Delta_{\varphi_m} = \frac{\sqrt{2}}{2} \Delta_{\ell\ell}$$

(1) d的不确定度

$$d = \frac{m\lambda}{\sin\varphi_m}$$

 $lnd = lnm + ln\lambda - lnsin\varphi_m$

$$\frac{\Delta d}{d} = \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta \lambda}{\lambda}\right)^2 - \left(\frac{\Delta sin\varphi_m}{sin\varphi}\right)^2} = \frac{\Delta sin\varphi_m}{sin\varphi} = \frac{cos\varphi_m\Delta\varphi_m}{sin\varphi_m} = \frac{\Delta\varphi_m}{tan\varphi_m}$$

故有:

$$\Delta d = d \cdot \frac{\Delta \varphi_m}{\tan \varphi_m} = \frac{\sqrt{2}}{2} \, \Delta_{fX} \frac{d}{\tan \varphi_m}$$

(2) **λ**的不确定度

$$\begin{split} \lambda &= \frac{dsin\phi_m}{m} \\ ln\lambda &= lnd + lnsin\phi_m - lnm \\ \frac{\Delta\lambda}{\lambda} &= \frac{\Delta sin\phi_m}{sin\phi_m} = \frac{\Delta\phi}{tan\phi_m} = \frac{\sqrt{2}}{2} \Delta_{j\chi} \cdot \frac{1}{tan\phi_m} \end{split}$$

故有:

$$\Delta \lambda = \frac{\lambda}{\tan \varphi_m} \cdot \frac{\sqrt{2}}{2} \cdot \Delta_{fX}$$

五、实验任务及数据处理

(1) 正入射

(要求测 2 级或 3 级谱线,实际实验中取 3 级),测汞灯波长较长的黄 1、波长较短的黄 2、546.1 纳米的绿色、较亮的蓝紫色光的 $2\phi_{\rm m}$,求 d 及 λ ,计算它们的不确定度,并写出完整的结果表达式。

实验操作

- (1) 调整分光计和光栅满足测量要求。
- (2) 使光栅平面与平行光管的光轴垂直。具体方法是调节小平台的俯仰角和角度,从 自准望远镜中观察叉丝的反射像与分划板的上侧交叉点重合。
 - (3) 测定各谱线的φ_m

数据处理

实验中得到的数据如下:

光栅编号: 6; $\Delta_{\ell\ell}=1'$; 入射光方向 $\varphi_{10}=303^{\circ}42'$; $\varphi_{20}=123^{\circ}44'$; m=3

波长	黄	ŧ 1	黄 2		绿(546.1nm)		紫	
游标	I	II	Ι	II	I	II	Ι	II
$oldsymbol{arphi}_{ar{\mathcal{E}}}$	335°6′	334°59′	333°10′	326°48′	272°20′	272°28′	274°18′	280°38′

$oldsymbol{arphi}_{\pi}$	155°8′	154°59′	153°9′	146°49′	92°20′	92°27′	94°17′	100°38′
$2\varphi_m$	62°46′	62°48′	62°31′	62°32′	58°52′	58°52′	46°10′	46°11′
$\overline{2\varphi_m}$	62°	47'	62°31′30″		58°52′		46°10′30′′	
$\overline{arphi_m}$	31°2	3′30′′	31°15′45″		29°26′		23°5′15″	

已知绿光波长为 $\lambda_{\mathcal{U}} = 546.1nm$,则通过公式

$$d = \frac{m\lambda}{\sin\varphi_m}$$

得到

$$d = \frac{3 \times 546.1 \times 10^{-9}}{\sin(29^{\circ}26')} = 3333.9nm$$

预习报告中已经给出

$$\Delta d = d \cdot \frac{\Delta \varphi_m}{\tan \varphi_m} = \frac{\sqrt{2}}{2} \Delta_{fX} \frac{d}{\tan \varphi_m}$$

代入数据得到

$$\Delta d = \frac{\sqrt{2}}{2} \times 1' \times \frac{3.33 \times 10^{-6}}{\tan(29^{\circ}26')} = 1.2nm$$

故

$$d = 3333.9 \pm 1.2nm$$

由于所测的级数和所用光栅的光栅常数不变,故可以得到

$$\frac{\sin \varphi_1}{\sin \varphi_2} = \frac{\lambda_1}{\lambda_2}$$

故

$$\lambda_{\#1} = \lambda_{\text{sg}} \cdot \frac{\sin \varphi_{\#1}}{\sin \varphi_{\text{sg}}} = 546.1 \text{nm} \times \frac{\sin (31^{\circ}23'30'')}{\sin (29^{\circ}26')} = 578.7 nm$$

$$\lambda_{\#2} = \lambda_{\text{F}} \cdot \frac{\sin\varphi_{\#2}}{\sin\varphi_{\text{F}}} = 546.1 \text{nm} \times \frac{\sin(31^{\circ}15'45'')}{\sin(29^{\circ}26')} = 576.6 nm$$

$$\lambda_{\cancel{x}} = \lambda_{\cancel{x}} \cdot \frac{\sin\varphi_{\cancel{x}}}{\sin\varphi_{\cancel{x}}} = 546.1 \text{nm} \times \frac{\sin(23^\circ 5' 15'')}{\sin(29^\circ 26')} = 435.7 nm$$

预习报告中给出

$$\Delta \lambda = \frac{\lambda}{tan\varphi_m} \cdot \frac{\sqrt{2}}{2} \cdot \Delta_{fX}$$

代入数据,得到

$$\Delta \lambda_{\#1} = \frac{578.5nm}{\tan(31^{\circ}23'30'')} \times \frac{1}{\sqrt{2}} \times 1' = 0.2nm$$

$$\Delta \lambda_{\frac{\#}{2}} = \frac{576.6nm}{\tan(31^{\circ}15'45'')} \times \frac{1}{\sqrt{2}} \times 1' = 0.2nm$$

$$\Delta \lambda_{\frac{\#}{2}} = \frac{435.7nm}{\tan(23^{\circ}5'15'')} \times \frac{1}{\sqrt{2}} \times 1' = 0.2nm$$

故完整的波长表达式为:

$$\lambda_{\#1} = 578.7nm \pm 0.2nm$$

$$\lambda_{\#_2} = 576.6nm \pm 0.2nm$$

$$\lambda_{\#} = 435.7nm \pm 0.2nm$$

(2)、斜入射

(要求测 2 级谱线),测量波长较短的黄 2 谱线的 φ_m ,求 λ 及其平均值

整理后的实验数据如下:

光栅平面法线方向 $\varphi_{1n} = 304^{\circ}30'$ $\varphi_{2n} = 124^{\circ}32'$

	游标	入射光方向 φ_0	入射角i	ī	
	Ι	319°32′	15°	15°	
	II	139°30′	15°		15
光谱级次 m	游标	左衍射光方位 $oldsymbol{arphi}_{ar{z}}$	方位 $oldsymbol{arphi}_{oldsymbol{x}}$ 衍射角 $oldsymbol{arphi}_{moldsymbol{x}}$ 可以		同(异)侧
2	Ι	341°41′	37°11′	37°11′30′′	异
2	II	161°44′	37°12′	37 11 30	
光谱级次 m	游标	右衍射光方位 $oldsymbol{arphi}_{ar{a}}$	衍射角 $\pmb{arphi}_{mar{c}}$	$\overline{\varphi}_{m\overline{h}}$ 同(异)	
2	I	299°27′	5°3′ 5°2′30″		同
	II	119°30′	5°2′	3 4 30	IΗJ

数据处理

根据公式

$$d(\sin\varphi \pm \sin i) = m\lambda$$

其中,入射角和衍射角在同侧时取+,异侧时取-。故根据大小关系可知,测得的较小的 $\overline{\varphi_m}$ 为同侧的衍射角,较大的 $\overline{\varphi_m}$ 为异侧的衍射角。实验中也可以通过肉眼观察平行光管和自准望眼镜的位置来确定。分别将数据代入同侧和异侧的公式,得到:

$$\lambda_{\text{F}} = \frac{d(\sin\varphi + \sin i)}{m} = \frac{3333.9(\sin 15^{\circ} + \sin(5^{\circ}2'30''))}{2} = 577.9nm$$

$$\lambda_{\text{F}} = \frac{d(\sin\varphi + \sin i)}{m} = \frac{3333.9(\sin 37^{\circ}11'30'' - \sin 15^{\circ})}{2} = 576.2nm$$

$$\overline{\lambda} = \frac{577.9nm + 576.2nm}{2} = 577.1nm$$

相对误差为

$$\frac{\lambda_{\cancel{M}} - \lambda_{\cancel{H}}}{\lambda_{\cancel{H}}} = 0.17\%$$

- ——要求 $i = 15^{\circ}0' \pm 1'$,如何调整?
- 1、调节入射光正入射。调节小平台的俯仰角和角度,从自准望远镜中观察叉丝的反射像与分划板的上侧交叉点重合。
 - 2、记录测试的方位角。
- 3、通过旋转紧固螺钉,使得内侧游标盘和小平台相对位置保持不动。旋转小平台和内部游标盘,并使游标尺保持不动,直到方位角偏转15°。并使零级光谱与叉丝重合。记录此时的方位角。
 - ——要求同侧、异侧各测一个φ_m。同、异测如何判断?
- 1、在测量黄光谱线是,可以直接肉眼观察平行光管、小平台和自准望远镜的相对位置。判断同侧或是异侧。
 - 2、也可以通过公式中正负号的区别判断。

$$d(\sin\varphi \pm \sin i) = m\lambda$$

等号左边同侧取正,异侧取夫。通过代数关系可以知道,测得的较小 ϕ 角是同侧,较大 ϕ 角是异侧。

(3) 用最小偏向角法测定黄 1 谱线的波长λ并计算结果。

实验操作

- 1、调节小平台的角度,使得入射角约为20°。
- 2、在自准望远镜中找到第二级黄1谱线。旋转小平台,改变入射角,此时能观察到黄1谱线向一个方向移动。继续旋转小平台,直到谱线发生"折返"现象。
- 3、反复调整小平台,直到定位到黄1谱线的"折返"点。此时入射角和衍射角之和达到最小偏向角。记录此时的方位角。
 - 4、在另一侧重复上述操作。

数据处理

整理后的实验数据如下

波长	579.1nm		
m 级	2		
游标	I	II	
$oldsymbol{arphi}_{ar{\mathcal{L}}}$	340°27′	160°29′	
$arphi_{arphi}$	299°27′	119°28′	
2δ	41°0′	41°1′	
$\overline{2\delta}$	40°0′30″		
$\overline{\delta}$	20°0′15″		

由

$$2d\sin\frac{\delta}{2} = m\lambda \quad (m = 0, \pm 1, \pm 2 \dots)$$

可以得到

$$\lambda = \frac{2d\sin\frac{\delta}{2}}{m} = \frac{2 \times 3333.9 \times \sin(\frac{20^{\circ}0'15''}{2})}{2} = 579.0nm$$

相对误差为:

$$\frac{\lambda_{\cancel{M}} - \lambda_{\cancel{H}}}{\lambda_{\cancel{H}}} = 0.17\%$$

六、实验小结:

- 1、由于上学期做过分光计实验,所以对分光计有了一些了解。加上实验之前的讲解非常周到全面,上节课在这个位置做实验的同学也做了很好的预调,所以在实验中总体比较顺利。
- 2、在实验中观察到一个现象: 当调节入射光垂直入射时,能观察到两个叉丝的像,上下对称分布。这是因为光栅的前后两个平面分别成像。在校准时,只需要使得任意一个像落在叉丝的上方交点处即可。
- 3、选作实验中,预调入射角比较重要。因为自准望远镜的视野有限,如果预调差的太远,很难找到最小偏向角。另外一种情况是,弄错了入射角的改变方向,使得偏向角一味增大,这样也是观察不到最小偏向角的。
 - 4、最后对助教老师课前详尽的讲解表示感谢。