I Fonction carré

1) Définition

La fonction carré est la fonction définie sur \mathbb{R} par $f(x) = x^2$.

2) Représentation graphique

X	- 3	- 2	- 1	- 0,5	0	0,5	1	2	3
f(x)	9	4	1	0.25	0	0.25	1	4	9

Cette courbe représentative est une parabole

Pour tout x réel on a $f(-x) = (-x)^2 = x^2 = f(x)$ f est une fonction paire sur \mathbb{R}

Cela ce traduit graphiquement par le fait que dans un repère orthogonal la courbe représentative de f est symétrique par rapport à l'axe des ordonnées.

3) Sens de variation

Démonstration :

Soient a et b deux nombres réels tels que a < b (on a donc a - b < 0)

$$f(a) - f(b) = a^2 - b^2 = (a - b)(a + b)$$

 1^{ier} cas : Si a et b sont positifs ou nuls

Dans ce cas a + b > 0 et comme a - b < 0 on en déduit que (a - b)(a + b) < 0Ainsi f(a) - f(b) < 0 d'où f(a) < f(b) et f est strictement croissante sur $[0; +\infty]$

 $2^{i \text{ème}}$ cas : Si a et b sont négatifs ou nuls

Dans ce cas a + b < 0 et comme a - b < 0 on en déduit que (a - b)(a + b) > 0

Ainsi f(a) - f(b) > 0 d'où f(a) > f(b) et f est strictement décroissante sur $] - \infty$; 0

4) Comparaison de deux carrés

Le sens de variation de la fonction carré permet d'établir la propriété :

Pour tous nombres a et b positifs, 0 < a < b si et seulement si $a^2 < b^2$ Pour tous nombres a et b négatifs, a < b < 0 si et seulement si $a^2 > b^2$

Exemples:
$$3^2 < 5^2 \text{ car } 0 < 3 < 5$$
 et $(-2)^2 < (-3)^2$ car $-3 < -2 < 0$

II Fonction inverse

1) Définition

La fonction inverse est la fonction définie sur \mathbb{R}^* par $g(x) = \frac{1}{x}$.

2) Représentation graphique

X	- 4	- 2	- 1	- 0,5	- 0,25	0	0,25	0,5	1	2	4
g(x)	- 0,25	- 0,5	- 1	- 2	- 4	xxxxx		2	1	0,5	0,25
						-6 ¹					
						~ \					
						5					
						- 11					
						4					
						3 \					
						-1					
						2					
						, \					
						1-					
	_	6 -5		-	2 -1	0	1 2	: 3	4 !	\$ 6	7
						-1-					
					\	ادا					
						2					
						- 3-					
						77					
						_╅┤					
						11					

Cette courbe représentative est une hyperbole

Pour tout x réel non nul on a $g(-x) = \frac{1}{-x} = -\frac{1}{x} = -g(x)$ g est une fonction impaire sur \mathbb{R}^*

Cela ce traduit graphiquement par le fait que dans un repère la courbe représentative de g est symétrique par rapport à l'origine du repère.

3) Sens de variation

<u>Démonstration</u>:

Soient a et b deux nombres réels non nuls tels que a < b

$$g(a) - g(b) = \frac{1}{a} - \frac{1}{b} = \frac{b - a}{ab}$$

Lorsque a et b sont de même signe a b est strictement positif.

D'autre part b - a > 0 (car a < b) et on déduit donc que g(a) - g(b) > 0 c'est-à-dire que g(a) > g(b)Ainsi g est strictement décroissante sur] - ∞ ; 0 [et sur] 0 ; + ∞ [

4) Comparaison de deux inverses

Le sens de variation de la fonction inverse permet d'établir la propriété :

Pour tous nombres a et b de même signe, a < b si et seulement si $\frac{1}{a} > \frac{1}{b}$

Exemples:
$$\frac{1}{3} > \frac{1}{5}$$
 car $0 < 3 < 5$ et $\frac{1}{-2} < \frac{1}{-3}$ car $-3 < -2 < 0$

et
$$\frac{1}{-2} < \frac{1}{-3}$$
 car $-3 < -2 < 0$

5) Fonctions homographiques

<u>Définition</u>: Soient a, b, c et d des nombres réels avec $c \neq 0$.

On appelle fonction homographique toute fonction f définie sur $\mathbb{R} \setminus \{-\frac{d}{c}\}$ par $f(x) = \frac{ax + b}{cx + d}$ Sa courbe représentative est une hyperbole.

III Fonction racine carrée

1) Définition

La fonction racine carrée est la fonction qui à tout réel $x \ge 0$ associe sa racine carrée \sqrt{x} .

Autrement dit la fonction racine carrée est définie sur [0 ; + ∞ [par $h(x) = \sqrt{x}$

2) Représentation graphique

3) Sens de variation

<u>Démonstration</u>:

Soient a et b deux nombres réels tels que $0 \le a < b$

$$h(a) - h(b) = \sqrt{a} - \sqrt{b} = \frac{\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right)}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

$$0 \le a < b \text{ donc } a - b < 0 \text{ et } \sqrt{a} + \sqrt{b} > 0$$

On en déduit donc que h(a) - h(b) < 0 c'est-à-dire que h(a) < h(b)

Ainsi \hat{h} est strictement croissante sur [0 ; + ∞ [

IV Fonction cube

1) Définition

La fonction cube est la fonction définie sur $\mathbb R$ par $k(x) = x^3$.

2) Représentation graphique

x	- 3	- 2	- 1	- 0,5	0	0,5	1	2	3
k (x)	- 27	- 8	- 1	- 0,125	0	0,125	1	8	27

Pour tout x réel on a $k(-x) = (-x)^3 = -x^3 = -k(x)$ k est une fonction impaire sur \mathbb{R}

Cela ce traduit graphiquement par le fait que dans un repère la courbe représentative de k est symétrique par rapport à l'origine du repère.

3) Sens de variation

La fonction cube est strictement croissante sur ${\mathbb R}$

Démonstration:

Soient a et b deux nombres réels tels que a < b (on a donc a - b < 0)

$$k(a) - k(b) = a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

 1^{ier} cas : Si a et b sont positifs ou nuls

Dans ce cas $a^2 + ab + b^2 > 0$ et comme a - b < 0 on en déduit que $(a - b)(a^2 + ab + b^2) < 0$ Ainsi k(a) - k(b) < 0 d'où k(a) < k(b) et k est strictement croissante sur $[0; +\infty]$

 $2^{i em}$ cas : Si a et b sont négatifs ou nuls

Dans ce cas on a aussi $a^2 + ab + b^2 > 0$ et comme a - b < 0 on en déduit que $(a - b)(a^2 + ab + b^2) < 0$ Ainsi k(a) - k(b) < 0 d'où k(a) < k(b) et k est strictement croissante sur $] - \infty$; 0]

<u>Propriété</u>: Pour tout réel a, l'équation x^3 = a admet exactement une solution que l'on appelle racine cubique de a et que l'on note $\sqrt[3]{a}$

Exemple: $\sqrt[3]{125} = 5$ car $5^3 = 125$

V Position relatives des courbes sur \mathbb{R}^+

<u>Théorème</u>: Soit x un réel positif ou nul.

- Si 0 < x < 1, alors $x > x^2 > x^3$
- Si x > 1 alors $x < x^2 < x^3$
- Si x = 0 ou x = 1 alors $x = x^2 = x^3$

<u>Théorème</u>: Soit x un réel positif ou nul.

- Si 0 < x < 1, alors $\sqrt{x} > x$
- Si x > 1 alors $\sqrt{x} < x$
- Si x = 0 ou x = 1 alors $\sqrt{x} = x$

