We show that the scalar $1'U\alpha = 0$. Assumptions:

$$\begin{split} 1'W &=& 0,\\ G &=& WW' = UDU',\\ U'U &=& UU' = I. \end{split}$$

Then

$$1'WW' = 0,$$

$$1'UDU' = 0,$$

$$1'UD = 0.$$

Write

$$1'UD = 1' [U_1U_2...U_n] D$$

$$= [m_1, m_2, ..., m_n] D$$

$$= [m_1\lambda_1, m_2\lambda_2, ..., m_n\lambda_n]$$

$$= 0,$$
(1)

where $m_i \lambda_i$ are scalars. The implication of (1) is that $m_1 = m_2 = \ldots = m_{n-1} = 0$, because D is a diagonal matrix of positive eigenvalues, except the last one which is equal to zero; that is $\lambda_n = 0$.

The vector α has elements $\alpha_i \sim N\left(0, \lambda_i \sigma_b^2\right)$, $i = 1, 2, \dots, n-1$, with $\alpha_n \sim N\left(0, \lambda_n \sigma_b^2\right)$, $\lambda_n = 0$. Therefore $\alpha_n = 0$ a posteriori (with probability 1), and

$$1'U\alpha = [m_1, m_2, \dots, m_n] [\alpha_1, \alpha_2, \dots, \alpha_n]'$$

= $[0, 0, \dots, m_n] [\alpha_1, \alpha_2, \dots, 0]' = 0.$