информационных технологий. механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа		P3110	К работе допущен
Студент_	Цыпан,	дин Николай Пе ⁻	трович Работа выполнена
Преподава	атель	Коробков М.П.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.13 "Магнитное поле Земли"

1) Цель работы

- Провести измерения направления суммарного магнитного поля, создаваемого Землей и системой катушек Гельмгольца.
- Определить горизонтальную составляющую магнитного поля Земли.

2) Задачи, решаемые при выполнении работы

- Выполнение измерений
- Расчет среднего значения тока в катушках
- Нахождение величины магнитного поля в катушках
- Построение графика зависимости
- Нахождение углового коэффициента графика и оценка погрешности
- Сравнение полученного в ходе данного эксперимента результата с табличным значением

3) Объект исследования

Магнитное поле Земли, величина магнитного поля Земли, с помощью кольца
Гельмгольца и компаса

4) Метод экспериментального исследования

• Прямые и косвенные многократные измерения

5) Рабочие формулы и исходные данные

•
$$B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{I*n}{R}$$
; $n = 100$ витков, $R = 0.15$ м

6) Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Компас	Аналоговый	0-360°	5°

2	Амперметр	Цифровой	0-300мА	0,1мА
---	-----------	----------	---------	-------

7) Схема установки.

Рис. 7. Параметры установки: $R=0.15~\mathrm{M}$ — радиус катушек; n=100 — число витков в каждой из катушек

8) Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

					$sin(\alpha_i)$	
$\alpha_{\mathbf{i}}$	I ₁ , A	I ₂ , A	I ₃ , A	<i>, A</i>	$\sin(\varphi - \alpha_i)$	B_c , мк T л
10^{0}	8,3	7,8	8,0	8,06	0,35	4,831
20^{0}	13,5	14,2	13,7	13,78	0,53	8,261
30^{0}	16,6	16,7	15,8	16,36	0,65	9,808
40^{0}	19,5	19,1	19,1	19,25	0,74	11,540
50^{0}	21,4	21,8	19,7	20,96	0,82	12,566
60^{0}	22,7	23,2	22,0	22,65	0,88	13,580
70^{0}	25,4	23,0	23,8	24,06	0,94	14,423
80^{0}	27,2	25,4	25,9	26,17	1,00	15,687
90^{0}	29,3	28,8	28,5	28,88	1,06	17,312
100^{0}	30,7	30,8	30,8	30,74	1,14	18,429
110^{0}	32,8	33,1	33,2	33,03	1,23	19,798
120^{0}	37,0	36,2	36,6	36,61	1,35	21,943
130^{0}	42,0	43,2	42,6	42,62	1,53	25,548
140^{0}	51,8	50,9	51,8	51,51	1,88	30,877

9) Расчет результатов косвенных измерений (таблицы, примеры расчетов).

•
$$\gamma = \frac{sin(10)}{sin(140-10)} = 0,35$$
 рад ; аргумент sin в градусах

•
$$B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{8.06 * 100}{1000 * 0.15} * 10^6 = 4.831$$

Воспользуемся методом наименьших квадратов:

•
$$b = \frac{\sum_{i=1}^{14} ((\gamma i - \gamma)(Bci - Bc))}{\sum_{i=1}^{14} (\gamma i - \gamma)^2} = 17.2$$
; $a = Bc - b\gamma = -1.28$

•
$$y = 17.2x - 1.28$$

10) Расчет погрешностей измерений (для прямых и косвенных измерений).

Для МНК:

•
$$S_b = \frac{1}{D} * \frac{\sum di^2}{n-2} = 0.036$$
; $D = \sum (\gamma i - \gamma)^2$; $di = Bi - (a + b\gamma_i)$

•
$$S_a = \left(\frac{1}{n} + \frac{\gamma^2}{D}\right) * \frac{\sum di^2}{n-2} = 0.042$$

•
$$\Delta b = 2S_b = 0.38$$

11)Графики (перечень графиков, которые составляют Приложение 2).

12)Окончательные результаты.

•
$$B_{\text{земли}}=(17.2\pm0.38)~\text{мкТл}$$
; $\varepsilon=2.21~\%$

13) Выводы и анализ результатов работы.

• В результате выполнения лабораторной работы я получил экспериментальным путём значение магнитного поля Земли Bc = 17.2 мкТл в Санкт-Петербурге ул. Биржевая Линия 14. Также был построен график зависимости $Bc(\gamma)$, как оказалось, зависимость линейная, стоит заметить, что квадратное отклонение вышло достаточно мало.

14)Дополнительные задания

15)Выполнение дополнительных заданий