## Gate EE-2015 SET-1

## AI24BTECH11032 Shreyansh Sonkar

1) A random variable X has probability density function f(x) as given below:

$$f(x) = \begin{cases} a + bx & \text{if } 0 < x < 1, \\ 0 & \text{otherwise} \end{cases}$$

If the expected value  $E[X] = \frac{2}{3}$ , then Pr[X < 0.5] is

- 2) If a continuous function f(x) does not have a root in the interval [a,b] then which one of the following statements is TRUE?
  - a)  $f(a) \cdot f(b) = 0$
  - b)  $f(a) \cdot f(b) < 0$
  - c)  $f(a) \cdot f(b) > 0$
  - d)  $\frac{f(a)}{f(b)} \le 0$
- 3) If the sum of the diagonal elements of a  $2 \times 2$  matrix is -6, then the maximum possible value of determinant of the matrix is \_\_\_\_\_.
- 4) Consider a function  $\overrightarrow{f} = \frac{1}{r^2} \hat{r}$  where r is the distance from the origin and  $\hat{r}$  is the unit vector in the radial direction. The divergence of this function over a sphere of radius R, which includes the origin, is
  - a) 0

b)  $2\pi$ 

c)  $4\pi$ 

- d)  $R\pi$
- 5) When the Wheatstone bridge shown in the figure is used to find the value of resistor  $R_X$ , the galvanometer G indicates zero current when  $R_1 = 50\Omega$ ,  $R_2 = 65\Omega$  and  $R_3 = 100\Omega$ . If  $R_3$  is known with  $\pm 5\%$  tolerance on its nominal value of  $100\Omega$ , what is the range of  $R_X$  in Ohms?



1

- a) [123.50, 136.50]
- b) [125.89, 134.12]
- c) [117.00, 143.00]
- d) [120.25, 139.75]
- 6) A (0-50A) moving coil ammeter has a voltage drop of 0.1V V across its terminals at full scale deflection. The external shunt resistance (in milliohms) needed to extend its range to (0-50A) is
- 7) Of the four characteristics given below, which are the major requirements for an instrumentation amplifier?
  - P. High common mode rejection ratio
  - Q. High input impedance
  - R. High linearity
  - S. High output impedance
  - a) P, Q and R only

c) P, Q and S only

b) P and R only

- d) Q, R and S only
- 8) In the following chopper, the duty ratio of switch S is 0.4. If the inductor and capacitor are sufficiently large to ensure continuous inductor current and ripple free capacitor voltage, the charging current (in Ampere) of the 5V battery, under steady-state,is

\_\_\_\_·

- 9) A moving average function is given by  $y(t) = \frac{1}{T} \int_{t-T}^{t} u(\tau) d\tau$ . If the input  $\mu$  is a sinusoidal signal of frequency  $\frac{1}{2T}$ Hz,then in steady state, the output y will lag  $\mu$  (n degree) by \_\_\_\_\_\_.
- 10) The impulse response g(t) of a system, G, is as shown in Figure (a). What is the maximum value attained by the impulse response of two cascaded blocks of G as shown in Figure (b)?





a)  $\frac{2}{3}$ 

b)  $\frac{3}{4}$ 

c)  $\frac{4}{5}$ 

- d) 1
- 11) Consider a one-turn rectangular loop of wire placed in a uniform magnetic field as shown in the figure. The plane of the loop is perpendicular to the field lines. The resistance of the loop is  $0.4\Omega$ , and its inductance is negligible. The magnetic flux density (in Tesla) is a function of time, and is given by  $B(t) = 0.25 \sin \omega t$ , where  $\omega = 2\pi \times 50 \frac{radian}{second}$ . The power absorbed (n Watt) by the loop from the magnetic field is



12) A steady current I is flowing in the -x direction through each of two infinitely long wires at  $y=\pm\frac{L}{2}$  as shown in the figure. The permeability of the medium is  $\mu_0$ . The  $\overrightarrow{B}$ -field at (0,L,0) is



- a)  $-\frac{4\mu_0 I}{3\pi L} \hat{Z}$
- b)  $+\frac{4\mu_0 I}{3\pi L}\hat{Z}$
- c) 0

d)  $-\frac{3\mu_0 I}{4\pi L} \hat{Z}$ 

13) Consider the circuit shown in the figure. In this circuit  $R=1k\Omega$ , and  $C=1\mu F$ . The input voltage is sinusoidal with a frequency of 50Hz,represented as a phasor with magnitude  $V_i$  and phase angle 0 radian as shown in the figure. The output voltage is represented as a phasor with magnitude  $V_o$  and phase angle  $\delta$  radian . What is the value of the output phase angle  $\delta$  (in radian) relative to the phase angle of the input voltage?



Fig. 13: Circuit diagram with capacitors, resistors, and an op-amp

a) 0

b)  $\pi$ 

- c)  $\frac{\pi}{2}$
- d)  $-\frac{\pi}{2}$