Check Your Proof:

Proof: Repository - hw11.1

Construct a proof for the argument: $\forall x (Gx \rightarrow Hx), Ga \land Gb \therefore Ha \land Hb$

Congratulations! This proof is correct.

check proof start over

11.2

Check Your Proof:

Proof: Repository - hw11.2

Construct a proof for the argument: $\forall x(Hx \leftrightarrow Fx), \neg Fc : \neg Hc$

1
$$\forall x(Hx \leftrightarrow Fx)$$

2 $\neg Fc$
3 $Hc \leftrightarrow Fc$ Universal instantiation 1
4 $\neg Hc$ Equivalence 2, 3

© Congratulations! This proof is correct.

check proof start over

Check Your Proof:

Proof: Repository - hw11.3

Construct a proof for the argument: $\forall x(Fx \leftrightarrow Gx), Gd :: \exists x(Gx)$

1
$$\forall x (Fx \leftrightarrow Gx)$$

2 Gd

3 Fd ↔ Gd Universal instantiation 1

4 Fd Equivalence 2, 3

5 Gd ∧ Fd Adjunction 2, 4

6 $\exists x(Gx \land Fx)$ Existential generalization 5

|∓ new line | | |∓ new subproof

Ongratulations! This proof is correct.

11.4

Check Your Proof:

Proof: Repository - hw11.4

Construct a proof for the argument: $\forall x \forall y Fxy :: \exists x Fxx$

1 ∀*x*∀*yFxy*

2 ∀*yFay* Universal instantiation 1

3 Faa Universal instantiation 2

4 3xFxx Existential generalization 3

© Congratulations! This proof is correct.

check proof start over

Check Your Proof:

Proof: Repository - hw11.5

Construct a proof for the argument: $\forall xFxx : \exists x\exists yFxy$

```
1 ∀xFxx
2 Faa Universal instantiation 1
3 ∃yFay Existential generalization 2
4 ∃x∃yFxy Existential generalization 3
```

© Congratulations! This proof is correct.

check proof start over

11.6

Check Your Proof:

Proof: Repository - hw11.6

Construct a proof for the argument: $\forall x(Fx \rightarrow Gx) \rightarrow (\exists xFx \rightarrow \exists xGx)$

1
$$\forall x(Fx \rightarrow Gx)$$

Fa $\rightarrow Ga$ Universal instantiation 1

3 $\begin{vmatrix} \exists xFx \\ Fa \end{vmatrix}$

Ga Modus Ponens 2, 4

6 $\exists xGx$ Existential generalization 5

7 $\exists xGx$ Existential instantiation 3, 4-6

8 $\exists xFx \rightarrow \exists xGx$ Conditional derivation 3-7

9 $\forall x(Fx \rightarrow Gx) \rightarrow (\exists xFx \rightarrow \exists xGx)$ Conditional derivation 1-8

© Congratulations! This proof is correct.

check proof start over

Check Your Proof:

Proof: Repository - hw11.7

Construct a proof for the argument: $\exists x \neg (Fx \land Gx) :: \exists x (\neg Fx \lor \neg Gx)$

