ZigBee OEM 모듈

ProBee-ZE10

사용자 가이드

(주) 세나테크놀로지

Rev 1.1

ProBee-ZE10 User Guide

Firmware version PTv1.X

저작권

Copyright 2010 (주) 세나테크놀로지 All rights reserved.

세나테크놀로지는 자사 제품을 예고 없이 변경 및 개선할 수 있는 권리를 가지고 있습니다.

등록상표

ProBee™는 세나테크놀로지의 등록 상표입니다. Windows® 는 Microsoft Corporation의 등록 상표입니다. Ethernet® 은XEROX Corporation의 등록 상표입니다.

사용자 고지

시스템 고장이 심각한 결과를 유발하는 응용 분야인 경우, 백업 시스템이나 안전 장치를 사용하여 심각한 결과로부터 인명 및 재산을 보호하는 것이 필요합니다. 시스템 고장으로 인한 결과에 대한 보호는 사용자 책임입니다.

기술 지원

㈜세나테크놀로지 서울시 서초구 양재동 210번지

전화: (02) 573-7772 팩스: (02) 573-7710

이메일: support@sena.com 홈페이지: http://www.sena.com

목 차

1	소개		9
	1.1 본	문서에 관하여	9
	1.2 개요	?	9
2	시작하	אן	11
2	2.1 하드	트웨어 설치	11
	2.1.1	개발 보드 구성	
	2.1.2	안테나 설치	12
	2.1.3	개발 보드에 모듈 장착	
	2.1.4	시리얼/ USB 케이블 설치	
	2.1.5	개발 보드에 전원 공급	14
	2.1.6	USB 드라이버 설치	
2	2.2 터미	널 프로그램을 이용한 AT 명령어 입력	15
2	2.3 Prol	Bee Manager를 이용한 설정	17
3	지그비	네트워크 설정	18
3	3.1 ZE1	I 0 을 코디네이터로 설정하기	18
	3.1.1	코디네이터 노드 형태 선택	
	3.1.2	코디네이터 채널 마스크 설정	19
	3.1.3	코디네이터의 PANID 설정	20
	3.1.4	참여 허용 (Permit Joining)	20
3	3.2 ZE1	0을 라우터로 설정하기	21
	3.2.1	라우터 노드 형태 지정	22
	3.2.2	라우터 채널 마스크 설정	22
	3.2.3	라우터 PAN ID 설정	22
	3.2.4	참여 허용 (Permit joining)	23
3		0을 엔드디바이스로 설정하기	
		0을 슬리피 엔드 디바이스(Sleepy End Device)로 설정하기	
3		1비 보안 (ZigBee Security)	
		보안 수준	
	3.5.2	링크 키 (Link Key)	
	3.5.3	네트워크 키 (Network Key)	
	3.5.4	키 업데이트	26
4	데이터	송수신	27
4	4.1 커만	밴드 모드 (Command Mode)	27
	4.1.1	유니캐스트 (Unicast)	27

4.1.2	멀티캐스트 (Multicast)	27
4.1.3	브로드캐스트 (Broadcast)	28
4.1.4	바이너리 데이터 전송 (Sending Binary Data)	28
4.1.5	받은 메시지 표시	28
4.2 데0	日 모드 (Data Mode)	29
4.2.1	유니캐스트 데이터 모드 (Unicast Data Mode)	29
4.2.2	멀티캐스트 데이터 모드 (Multicast Data Mode)	31
4.2.3	브로드캐스트 데이터 모드 (Broadcast Data Mode)	33
5 디지털	및 아날로그 입출력	35
5.1 GPI	O (General Purpose Inputs and Outputs) 설정	35
5.2 입출	· 	36
5.2.1	쿼리드 샘플링 (Queried Sampling)	36
5.2.2	주기적 샘플링 (Periodic Sampling)	38
5.2.3	변화 감지 샘플링 (Change Detection Sampling)	38
5.2.4	GPIO 원격 제어 (GPIO Remote Control)	39
6 개발 키	ll트 사용하기	40
6.1 개빌	: 키트 구성품	40
	날 보드 기능	
	: 보드 카드웨어	
6.3.1	전원	
6.3.2	RS232 <i>포</i> 트	
6.3.3	USB	
6.3.4	ZE10 GPIO 인터페이스	
6.3.5	LED (CR12-19)	
6.3.6	버튼 스위치 (SW10-17)	
6.3.7	가변 저항 (VR1, VR2)	
6.3.8	온도 센서	
6.3.9	조명 센서	
6.3.10	터미널 블록	44
6.4 설정	 성 예제 #1: 코디네이터 1개, 라우터 1개 및 엔드 디바이스 1개	
6.4.1	코디네이터 설정	
6.4.2	라우터 설정	
6.4.3	엔드 디바이스 설정	
6.4.4	센서 모니터링	46
6.5 설정	g 예제 #2 : 코디네이터 1 개 및 엔드 디바이스 2 개	46
6.5.1	코디네이터 설정	47
6.5.2	엔드 디바이스 설정	47
6.5.3	IFD 출력 제어	48

7	AT 명	령어 레퍼런스	49
7	7.1 명령	경어 형식	49
7	7.2 丑音	E AT 명령어	49
	7.2.1	AT	49
	7.2.2	ATB	49
	7.2.3	ATD	49
	7.2.4	ATE	50
	7.2.5	ATM	50
	7.2.6	ATO	50
	7.2.7	ATR	50
	7.2.8	ATS	50
	7.2.9	ATZ	50
	7.2.10	AT&F	50
	7.2.11	+++	51
7	7.3 노드	- 관련 정보	51
	7.3.1	AT+LONGADDR or AT+LA	51
	7.3.2	AT+SHORTADDR or AT+SA	51
	7.3.3	AT+ADDRDISCOVERY or AT+AD	51
	7.3.4	AT+OPCH or AT+OC	51
	7.3.5	AT+OPPANID or AT+OI	51
	7.3.6	AT+OPEPID or AT+OE	52
	7.3.7	AT+VERSION or AT+VR	52
	7.3.8	AT+PRODUCTNAME or AT+PN	52
7	7.4 네트	트워크 관련 설정	
	7.4.1	AT+CHMASK or AT+CM	52
	7.4.2	AT+PANID or AT+PI	52
	7.4.3	AT+EPID or AT+EI	53
	7.4.4	AT+GROUPID or AT+GI	53
	7.4.5	AT+POWER or AT+PW	53
	7.4.6	AT+STACK or AT+ZS	
	7.4.7	AT+NODENAME or AT+NN	
7		트워크 구성 및 참여	
	7.5.1	AT+ASCAN or AT+AS	_
	7.5.2	AT+ESCAN or AT+ES	
	7.5.3	AT+DSCAN or AT+DS	
	7.5.4	AT+NODETYPE or AT+NT	
	7.5.5	AT+PERMIT or AT+PJ	
	7.5.6	AT+LEAVE or AT+LV	
7	7.6 엔드	E 디바이스	55

7.6.1	AT+SLEEP or AT+SM	55
7.6.2	AT+PARENTLA or AT+PL	55
7.6.3	AT+PARENTSA or AT+PS	56
7.6.4	AT+CHILDTABLE or AT+CT	56
7.7 데(이터 송수신	56
7.7.1	AT+DESTLA or AT+DL	56
7.7.2	AT+DESTGROUPID or AT+DG	56
7.7.3	AT+SINKINFO or AT+SI	56
7.7.4	AT+MAXPAYLOAD or AT+MP	57
7.7.5	AT+TRASNSMITMODE or AT+TM	57
7.7.6	AT+UNICAST or AT+UC	57
7.7.7	AT+MULTICAST or AT+MC	57
7.7.8	AT+BROADCAST or AT+BC	57
7.7.9	AT+REMOTE or AT+RC	57
7.8 UA	\RT	58
7.8.1	AT+BAUDRATE or AT+UB	58
7.8.2	AT+DATABIT or AT+UD	58
7.8.3	AT+PARITY or AT+UP	58
7.8.4	AT+STOPBIT or AT+US	58
7.8.5	AT+FLOWCTRL or AT+UF	58
7.9 보양	안	59
7.9.1	AT+SECURITY or AT+SE	59
7.9.2	AT+LINKKEY or AT+LK	59
7.9.3	AT+NWKKEY or AT+NK	59
7.9.4	AT+UPDATEKEY or AT+UK	59
7.10 GF	PIO	60
7.10.1	AT+GPIO or AT+IO	60
7.10.2	AT+DIO	60
7.10.3	AT+AI	60
7.10.4	AT+SOURCELA or AT+SL	60
7.11 펌	웨어 업로드 및 도움말	61
7.11.1	AT+BOOTLOAD or AT+BL	61
7.11.2	AT+HELP or AT+HP	61
8 AT 명	명 예제	62
8.1 네9	트워크 설정	62
8.1.1	코디네이터	62
8.1.2	라우터	62
8.1.3	엔드 디바이스	62
8.1. <i>4</i>	슬리피 엔드 디바이스	62

8.	1.5	네트워크 지정	62
8.2	데이	터 전송	63
8.2	2.1	커맨드 모드	63
8.2	2.2	데이터 모드	63
8.3	UAR	T 설정	64
8.4	보안		65
8.5	GPI(O	65
8.6	펌웨	어 업로드	65
8.	6.1	로컬 노드	65
8.	6.2	원격 노드	. 66
8.	6.3	클론(펌웨어 복사)	66
9 S-	- 레 지	스터	67
		플레이 옵션	
_		S11	
_	1.2	S12	
9.		S13	
٠.		S14	
9.2		워크 설정	
		\$21	
		\$22	
_		\$23	
9.3	데이	터 전송	
9.	3.1	S31	
9.	3.2	S32	
9.	3.3	S33	
9.	3.4	S34	
9.	3.5	S35	
9.	3.6	S36	
-	_	S37	
9.	3.8	S38	71
		S39	
9.4	GPI(O	. 71
9.4	4.1	S41	. 71
9.4	4.2	S42	. 72
_		S43	
_		S44	
		S45	
9.5	엔드	디바이스	. 73
9.	5.1	S51	. 73

9.5	.2	S52	. 73
9.5	.3	S53	. 73
9.5	.4	S54	. 73
9.5	.5	S55	. 74
9.5	.6	\$56	. 74
9.6	싱크	! (Sink)	. 74
9.6	. 1	S61	. 74
9.6	.2	S62	. 74
10 [핀 배	열	76
11 2	치수.		78
		보증	
12.1		· 품질 보증 정책	
12.2	. –	의 한계	
12.3		웨어 제품 보증	
12.4	소프	트웨어 제품 보증	. 80
12.5	3자	소프트웨어 제품 보증	. 80
13	인증	정보	81
13.1	FCC	>	. 81
13.2	CE.		. 81
13.3	TEL	EC	82
13.4	KCC	>	. 82
13.5	ZigE	Bee Alliance	. 82
44 6)	4 ⊟	02

소개 1

1.1 본 문서에 관하여

본 문서는 ProBee-ZE10 지그비 OEM 모듈의 소개, 설정 및 사용법에 대한 내용을 다룹니다. 본 문 서는 사용자가 ZE10 스타터 키트를 사용하는 것을 가정합니다. 따라서 본 문서의 그림 및 설정 예제 들은 모두 ZE10 스타터키트를 사용하는 것을 가정하여 제공됩니다.

본 문서는 ZE10 하드웨어의 상세 사양을 다루지 않습니다. 하드웨어 상세 사양은 별도 ProBee-ZE10 하드웨어 데이터쉬트 문서를 참고하시기 바랍니다.

개요 1.2

ProBee-ZE10은 지그비 코어, 라디오/안테나 회로부 및 고급 레벨 소프트웨어 라이브러리가 결합된 일체형 지그비 OEM 모듈입니다. OEM 제조업체들은 ZE10을 이용하여 손쉽고 경제적으로 지그비 기 능을 해당 장비에 짧은 개발 기간내에 내장시킬 수 있습니다.

ZE10 OEM 모듈은 지그비 기술을 이용하여, 특별히 저가 및 저전력을 요구하는 홈 오토메이션이나 스마트 에너지 관련 적용분야에 사용되어질수 있도록 특별히 설계되었습니다. ZE10은 Ember사의 EM250 지그비 코어를 사용하였으며 지그비 프로 표준을 만족하여 호환성을 극대화하였습니다.

저가 및 저전력의 특성에도 불구하고, ZE10은 고성능으로 데이터를 신뢰성있게 전송할수 있습니다. ZE10의 최대 전송 속도는 250 kbps이며 장애물이 없을시 실외 최대 직선 도달 거리는 1.6 km에 달합 니다.

핵심 기능

- 일체형 2.4GHz, IEEE 802.15.4-호환 송수신 장치
- 지그비 프로 인증
- 지그비 코어: Ember EM250
- 송신 전력: +20dBm E.I.R.P (최대)
- 수신 감도: -102dBm @1% BER
- 송신 전류: 190mA@3.3V(최대)
- 수신 전류: 45mA @3.3V (최대)
- 수면 전류:≤2uA
- 전송 거리:1.6 km
- 안테나 옵션: 다이폴 1/3/5dBi, U.FL, Chip
- UART 신호 지원: UART_TXD/RXD, RTS/CTS, DTR/DSR
- 4 아날로그 입력
- 13 디지털 입출력
- RoHS 호환

응용 분야

- 지능형 계량 기반 시설
- 홈 에이리어 네트워크 (Home Area Networks, HAN)
- 네이버후드 에이리어 네트워크 (Neighborhood Area Networks, NAN)
- 주택 자동화 (Home Automation)
- 고급 조명, 엔터테인먼트 및 온도 조절 시스템
- 서비스 기반 모니터링, 보안 및 인식 시스템
- 상업용 건물 자동화
- 온도 및 조명 시스템
- 기타 산업용 및 가정용 응용 분야

시작하기 2

ZE10 모듈을 이용하여 지그비 네트워크를 구축하는 단계는 아래와 같이 요약됩니다:

- ZE10 모듈을 개발 보드에 장착합니다
- ZE10 모듈을 코디네이터(Coordinator)로 설정합니다
- ZE10 모듈(들)을 라우터(router)로 설정합니다. 코디네이터는 라우터 동작을 포함하므로 이 단 계는 생략 가능합니다.
- ZE10 모듈(들)을 엔드디바이스 (end device)로 설정합니다.
- ZE10 장비들간에 데이터를 전송합니다.

본 장에서는 ZE10 모듈을 개발 보드에 장착하고 터미널 프로그램을 이용하여 ZE10 모듈과 통신하여 ZE10 설정 및 데이터 송수신을 위한 AT명령을 보내는 방법에 대하여 설명합니다. 지그비 네트워크 를 구축하고 지그비 코디네이터/라우터/엔드디바이스 설정 및 데이터 전송 방법에 대하여는 다음 장 에서 보다 자세히 다룹니다. 또한 스타터 키트에 대한 설명 및 설정 예제들 또한 그 이후에 설명되어 집니다.

2.1 하드웨어 설치

2.1.1 개발 보드 구성

그림 2-1은 개발보드의 구성을 보여줍니다. 개발 보드는 ZE10과 외부 시리얼 포트 또는 USB포트를 연결할수 있는 인터페이스 및 디지털 입출력/아날로그 입력에 대한 입출력 단자를 제공하여 ZE10의 각종 기능을 손쉽게 테스트 할수 있도록 해줍니다.

그림 2-1 개발 보드 구성

2.1.2 안테나 설치

ZE10 스타터 키트는 테스트 목적을 위하여 몇가지 서로 다른 안테나가 포함되어 있습니다. 서로 다 른 안테나를 사용하여 테스트 후 사용하고자 하는 적용 분야에 적합한 안테나를 선택하시기 바랍니 다. 그림 2-2 는 ZE10에 RP-SMA 안테나를 설치하는 그림을 보여줍니다.

그림 2-2 RP-SMA 다이폴 안테나 설치

2.1.3 개발 보드에 모듈 장착

안테나를 ZE10에 설치한 후, ZE10 모듈을 개발보드에 장착합니다.

그림 2-3 개발 보드에 ZE10 장착

2.1.4 시리얼/USB 케이블 설치

ZE10이 개발보드에 단단히 장착되었으면 포함된 시리얼 케이블을 이용하여 개발 보드와 PC를 연결 합니다. 개발 보드의 시리얼 포트는 DB9 메일 커넥터이며 포함된 시리얼 케이블은 DTE-DTE용 크로 스-오버 케이블입니다. 시리얼 포트 사용시 개발보드의 HOST (SW2) 스위치는 UART로 설정되어야 합니다.

그림 2-4 시리얼 케이블 설치

PC에 시리얼 포트가 없을 경우 개발 보드의 USB포트를 이용할 수 있습니다. 이 경우 개발 보드의 내부 USB-RS232 변환 칩이 PC로부터 전송되는 USB 데이터를 내부 시리얼 포트 데이터로 변환하 여 줍니다. USB포트를 사용하기 위해서는 개발 보드의 HOST (SW2) 스위치를 USB로 설정하고 CD 에 포함된 USB 드라이버를 PC에 설치하여야 합니다. USB 드라이버 설치는 2.1.6절을 참조하시기 바 랍니다.

그림 2-5 USB 케이블 설치

2.1.5 개발 보드에 전원 공급

모든 설치가 완료되었으면 포함된 DC 전원 어댑터를 이용하여 개발보드에 전원을 공급합니다. DC 어댑터를 사용하기 위해서는 RS PWR, USB PWR, BATT EN 점퍼가 모두 OPEN 되어 있어야 합니 다. DC 전원 어댑터를 사용하지 않고 USB 나 RS232포트의 9번 핀 또는 배터리를 이용하여 전원을 공급하는것도 가능합니다. 이 경우에는RS_PWR, USB_PWR, BATT_EN 점퍼가 사용하고자 하는 전원 형태에 맞게 설정 되어야 합니다. 이 경우에 해당하는 보다 자세한 점퍼 설정은 6.3.1 전원 부분을 참고하시기 바랍니다.

그림 2-6 DC 전원 어댑터 연결

2.1.6 USB 드라이버 설치

개발보드와 PC간 통신을 위하여 USB를 사용하는 경우 OS별로 적절한 USB 드라이버가 설치되어야 합니다. Windows XP 또는 그 이후 버전의 Windows OS는 해당 USB 드라이버를 이미 기본으로 가지 고 있습니다. Windows가 설치할 USB 드라이버를 물어보면 그림 2-7과 같이 "자동으로 소프트웨어 설치"를 선택하면 Windows는 올바른 드라이버를 자동으로 설치합니다. 만약 드라이버가 검색이 안되 거나 제대로 설치가 안될 경우에는 같이 포함된 CD에 있는 드라이버를 선택하여 설치하여도 됩니다.

그림 2-7USB 드라이버 설치

2.2 터미널 프로그램을 이용한 AT 명령어 입력

하드웨어 설치가 완료되었으면 PC상에서 터미널 프로그램을 동작하여 ZE10에 AT 명령어를 입력할 수 있습니다. 이 경우 임의의 터미널 프로그램을 사용하여도 무방합니다. 본 문서에서는 HyperTerminal을 사용하는 것을 가정하였습니다. 윈도우 Vista나 윈도우 7의 경우 HyperTerminal 프 로그램은 더이상 포함되어 있지 않으나 인터넷에서 다운로드가 가능합니다. 이 부분에 대한 자세한 내용은 Microsoft 웹페이지를 참고하시기 바랍니다.

HyperTerminal의 설치가 완료되었으면 HyperTerminal 프로그램을 실행하고 ZE10 개발보드와 연결되 어있는 시리얼 포트를 선택한 후 시리얼 포트 설정값을 지정합니다. ZE10의 기본 설정값은9600 bps, 8 data bit, none parity, 1 stop bit, 하드웨어 흐름제어 사용 입니다.

그림 2-8 HyperTerminal 시리얼 포트 설정

입력되는 AT 명령을 화면에 표시하기 위해서는 Local Echo 옵션을 설정하여야 합니다. 이를 위하여 File->Properties->Settings->ASCII setup 에서"Echo typed characters locally" 옵션을 선택합니다. 설정 및 연결이 제대로 이루어졌는지 확인하기 위하여 AT 라고 입력하고 엔터키를 입력합니다. ZE10에 AT 명령이 제대로 입력되었으면 OK 라고 화면에 표시되어 집니다.

그림 2-9 AT 명력어 입력 테스트

2.3 ProBee Manager를 이용한 설정

그림 2-10 ProBee Manager

AT 명령을 이용하지 않고 ProBee Manager 소프트웨어를 이용하여 ZE10의 설정 또한 가능합니다. 이 PC 유틸리티 소프트웨어를 이용하면 터미널 프로그램 없이도 로컬 또는 리모트 노드의 설정 및 펌웨어 업로드가 가능합니다.

지그비 네트워크 설정 3

지그비 네트워크는 코디네이터, 라우터 및 엔드디바이스로 구성됩니다. 가장 간단한 지그비 네트워크 는 하나의 코디네이터와 이에 직접 연결된 엔드디바이스들로 구성됩니다. 복잡한 지그비 네트워크의 경우에는 여러대의 라우터들이 중복 경로를 제공하여 메쉬네트워크를 구성하게 됩니다.

- 지그비 코디네이터 (ZigBee Coordinator): 코디네이터는 지그비 네트워크의 근간으로 다른 지 그비 네트워크와 연결되기 위한 통로로서 사용되어지기도 합니다. 코디네이터는 시동시 해당 지그비 네트워크를 구성하므로 각각의 지그비 네트워크에는 오직 하나의 코디네이터만이 존 재합니다. 코디네이터는 또한 트러스트 센터(Trust Center)로 동작하거나 보안키의 저장소 역 할을 수행하는 등 해당 네트워크 고유의 정보들을 저장하는 역할을 수행합니다.
- 지그비 라우터 (ZigBee Router): 라우터는 지그비 노드들간의 데이터를 중계하는 역할을 수행 합니다. 코디네이터는 라우터 역할도 같이 수행하므로지그비 네트워크 구성시 별도의 라우터 가 생략될 수 있습니다.
- 지그비 엔드 디바이스 (ZigBee End Device): 엔드 디바이스는 지그비 네트워크의 말단에 위 치하여 해당 패런트 노드인 코디네이터 또는 라우터와만 통신합니다. 따라서 데이터 중계 역 할은 수행하지 않습니다.
- 지그비 슬리피 엔드 디바이스 (ZigBee Sleepy End Device): 슬리피 엔드 디바이스는 일반 엔 드 디바이스와 동일하지만 보다 현저히 오랜 시간 동안 슬립모드를 유지하여 전력 소모가 매 우 적습니다. 따라서 전력 소모량이 중요한 경우 효과적으로 사용될 수 있습니다.

ZE10은 코디네이터, 라우터, 엔드디바이스 또는 슬리피 엔드 디바이스로 동작하도록 설정이 가능합 니다. 또한 각 모드를 선택할 경우 이에 해당하는 추가 설정값들이 적절하게 설정되어야 합니다. 본 장에서는 ZE10의 노드타입 설정 및 이와 연관된 추가 설정에 대한 설명을 다룹니다.

노드 형태	사용 목적에 따른 노드 형태 권장
코디네이터	네트워크를 처음 시작하기 위하여 선택
라우터	지그비 네트워크가 존재하고 이를 확장하기 위하여 사용되어짐. 라우터를 사용
	할 경우 신속하고 신뢰성있는 데이터 전송이 가능함.
엔드 디바이스	지그비 네트워크가 충분한 패런트 노드(라우터 및 코디네이터)를 가지고 있는
	경우 엔드 디바이스 선택. 엔드 디바이스는 전력 소모가 적은 장점이 있음.
슬리피 엔드 디바	적은 데이터 전송이 매우 간헐적으로 이루어지는 경우 선택. 최소 2uA에 해당
이스	하는 전력소모만 사용되어지나 슬립 기간 중 데이터 손실이 있을수 있음.

표 3-1 지그비 노드 형태

3.1 ZE10을 코디네이터로 설정하기

코디네이터는 데이터를 중계하고 패런트 노드로서 동작합니다. 모든 지그비 네트워크는 코디네이터로

서 동작하는 노드가 시작하면서 최초로 구성이 시작됩니다. 코디네이터는 일반적으로 슬립모드에 들 어가서는 안되며 항상 전원이 들어와 있어야 합니다. ZE10을 코디네이터로 설정하기 위해서는 아래 단계를 따릅니다.

- ZE10 노드 형태를 코디네이터로 설정합니다.
- 선택적으로, 채널 마스크를 지정합니다. 채널마스크가 지정되지 않으면 ZE10은 기본 채널 마 스크 값을 이용합니다.
- 선택적으로, PAN ID 및/또는 확장 PAN ID를 지정합니다. 지정이 안되면 ZE은 고유한 PAN ID 및/또는 확장 PANID를 자동으로 생성합니다.
- 다른 라우터나 엔드 디바이스가 지그비 네트워크에 합류할 수 있는 여부를 설정합니다 (Permit joining).

3.1.1 코디네이터 노드 형태 선택

ZE10 모듈을 코디네이터로 설정하기 위하여 아래 AT 명령을 수행합니다:

AT+NODETYPE=n or AT+NT=n

이때 n의 값은 0 = none, 1 = coordinator, 2 = router, 3 = end-device, 4 = sleepy end-device

노드 형태가 선택되면 ATZ 명령을 수행하여 리셋을 수행하도록 하여 변경 내용이 적용되도록 합니 다.

예제)

AT+NODETYPE=1<CR> # Set node type as the coordinator

OK<CR> # Response

ATZ<CR> # Apply the change

OK<CR> # Response

3.1.2 코디네이터 채널 마스크 설정

지그비 코디네이터가 시동되면 코디네이터는 지정된 주파수 채널을 검색하여 다른 무선 장비들과 가 장 간섭이 적은 채널을 선택하여 해당 지그비 네트워크용 채널로 사용합니다. 사용자는 코디네이터가 검색할 주파수 채널들을 아래 AT 명령어를 이용하여 지정할 수 있습니다.

AT+CHMASK=n

이때 n= 사용할 채널 마스크, 기본값 = 0x03FFF000

채널 마스크는 32 비트 16진수값을 가지며 각 비트는 해당 채널의 사용 여부를 나타냅니다. 예를 들 어서 채널 12~15를 사용하기 위해서는 채널마스크의 12~15 비트값은 1으로 설정되어야 하면 나머지 비트들은 0으로 설정되어야 합니다. 기본값은 0x3FFF000이며 이는 채널 12~25를 사용한다는 의미입 니다. ZE10은 채널 12~25만을 지원하므로 0~11비트 및 26~31비트는 항상 0으로 설정되어야 합니다. 표 3-2는 각 채널에 해당하는 비트마스크를 보여줍니다.

Channel 12 14 17 13 15 16 18 Bit mask 00001000 00002000 00004000 0008000 00010000 00020000 00040000 Channel 19 20 21 22 23 24 25 Bit mask 00080000 00100000 00200000 00400000 0080000 01000000 02000000

표 3-2 채널 비트 마스크

3.1.3 코디네이터의 PAN ID 설정

모든 지그비 네트워크는 네트워크를 식별하기 위하여 고유한 PAN ID가 설정되어야 합니다. PAN ID가 0000으로 설정되는 경우 ZE10 은 임의의 16·비트 난수를 발생하여 PAN ID로 사용합니다. 사용자가 PAN ID를 직접 설정하고자 할 경우에는 아래의 AT명령어를 사용하면 됩니다.

AT+PANID=xxxx

이때 Xxxx = 사용할 PANID. 예를 들어서 12AB. 기본값 = 0000

사용자가 PAN ID를 지정시에는 같은 PAN ID를 가지는 지그비 네트워크가 존재하지 않는것을 확인해 야 합니다. 같은 PAN ID를 가지는 네트워크가 존재할때에는 PAN ID가 유효하지 않게되며 사용자는 새 PAN ID를 지정해야 합니다. 따라서 PAN ID 중복여부가 확실하지 않을때에는 PAN ID를 자동으로 생성하여 사용하는 것을 권장합니다.

사용자는 또한 아래 AT 명령어를 이용하여 64-비트 확장 PAN ID를 지정할 수 있습니다. 지정한 확장 PAN ID가 00000000000000000 일 때에는 ZE10은 자신의 IEEE 주소를 확장 PAN ID로서 사용합니다. 확장 PANID 역시 다른 지그비 네트워크와 중복되지 않는 유일한 값을 가져야 합니다.

AT+EPID=xxx···xxx

이때 xxx···xxx = 사용할 EPID. 예를 들어서 0123456789ABCDEF. 기본값 = 000···000.

3.1.4 참여 허용 (Permit Joining)

라우터 또는 엔드디바이스가 지그비 네트워크에 참여하고자 할 경우에는 이를 허용하는 코디네이터 또는 이미 네트워크에 참여한 라우터가 하나 이상 존재해야 합니다. ZE10은 네트워크 참여를 아래와 같은 세가지 방법으로 허용합니다.

- 설정에 의한 항상 참여 허용
- AT 명령에 의한 일시적인 참여 허용
- 디지털 입력 신호에 의한 일시적인 참여 허용

항삼 참여가 허용되도록 설정된 경우에는 어떤 장비라도 언제든지 네트워크에 참여할수 있습니다. 따 라서 보안상의 문제가 발생할 수 있으므로 이 모드를 사용하는 경우에는 특별한 주의가 필요합니다. 항상 참여가 허용되도록 설정하려면 아래와 같은 AT명령을 이용합니다.

AT+PERMIT=255 or AT+PJ=255

네트워크 참여를 일시적으로 허용하기 위해서는 아래의 AT명령어를 이용합니다.

AT+PERMIT=n or AT+PJ=n

이때 n= 참여를 허용하는 시간 (초). 허용범위 = 1~254

또한 디지털 입력값 GPIOO 값에 따라서네트워크 참여를 허용하기 위해서는 아래 AT 명령어를 이용 합니다.

AT+GPIOO=5 or AT+IOO=5

이 경우 GPIO0의 값이 On에서 Off로 변경되는 시점부터 S-레지스터 22 (S22)에 설정된 시간 간격 동안 네트워크 참여가 허용됩니다. S22 값을 변경하려면 아래 AT 명령어를 이용합니다.

ATS22=n

이때 n= 참여를 허용하는 시간 (초). 허용범위 = 1~254. 기본값 = 60

S22값은 네트워크 허용 지속 시간을 초단위로 지정합니다. S22가 255로 설정되면 다른 노드의 네트 워크 참여를 항상 허용합니다. 또한 코디네이터 또는 라우터가 재시동할때에도 이 S22 시간 간격만 큼 다른 노드의 네트워크 참여를 허용합니다.

주의: 네트워크에 이미 참여한 노드가 재시동을 할때에는 허용 여부에 상관없이 해당 네트워크에 참 여가 가능합니다. 하지만 이 노드가 다른 네트워크에 참여를 하였다가 다시 해당 네트워크에 참여하 려고 할 때에는 코디네이터 또는 다른 라우터로부터의 참여 허용이 필요합니다.

ZE10을 라우터로 설정하기 3.2

라우터는 메시지를 중계하는 노드로서 다른 노드의 패런트 노드로서 동작할수 있습니다. 라우터 노드 들은 항상 전원이 들어와있어야 하며 슬립상태에 들어갈 수 없습니다.

ZE10을 라우터로 설정하기 위해서는 아래의 단계를 수행합니다.

- ZE10의 노드 형태를 라우터로 지정합니다.
- 선택적으로, 채널 마스크를 지정합니다. 채널 마스크를 지정하지 않으면 ZE10은 기본 채널 마스크 값을 이용합니다.
- 선택적으로, 참여하고자 하는 지그비 네트워크의 PAN ID 및/또는 확장 PAN ID를 지정합니다. 이를 지정하지 않으면 ZE10은 이미 존재하는 지그비 네트워크를 검색하여 발견된 PANID 및 /또는 확장 PAN ID를 이용하여 네트워크에 참여합니다.
- 다른 노드들의 네트워크 참여 허용방법을 설정합니다.

3.2.1 라우터 노드 형태 지정

ZE10을 라우터로 지정하기 위해서는 아래 AT 명령어를 사용합니다.

AT+NODETYPE=n or AT+NT=n

이때 n 의 값은 0 = none, 1 = coordinator, 2 = router, 3 = end-device, 4 = sleepy end-device

노드 형태가 지정된 후 ATZ 명령을 수행하여 변경 내용이 적용되도록 합니다.

예제)

AT+NODETYPE=2<CR> # Select router mode

OK<CR> # Response

ATZ<CR> # Apply the change

OK<CR> # Response

3.2.2 라우터 채널 마스크 설정

ZE10 라우터나 엔드디바이스가 네트워크에 참여하고자 할경우 설정된 채널마스크에 해당하는 모든 채널들을 검색한 후 발견된 지그비 네트워크에 참여합니다. 따라서 채널 마스크 설정시 참여하고자 하는 네트워크의 코디네이터가 사용하고 있는 채널이 포함되어야 합니다. 예를 들어서 참여하고자 하 는 네트워크가 채널 12에서 운용중이면 네트워크에 참여하고자 하는 라우터 또는 엔드디바이스의 채 널마스크 12번째 비트는 1로 설정되어야 합니다.

3.2.3 라우터 PAN ID 설정

지그비 라우터 또는 엔드디바이스의 PAN ID 및/또는 확장 PAN ID는 참여하고자 하는 네트워크의 코 디네이터의 PAN ID/확장 PAN ID와 동일하여야 합니다. 코디네이터가 자동으로 생성된 PAN ID를 이 용할 경우 아래 AT명령어를 코디네이터에서 실행하여 운용중인 PANID를 알수 있습니다.

AT+OPPANID

라우터 또는 엔드디바이스의 PANID가 0000일 경우에는 PANID는 무시됩니다. PANID가 일치하거나 무시되었으면 ZE10은 확장 PAN ID를 비교합니다. 확장 PAN ID가 코디네이터의 확장 PAN ID와 일치 할 경우 네트워크에 참여를 시도하고 일치하지 않을 경우에는 다른 지그비 네트워크를 검색합니다. 현재 운용중인 코디네이터의 확장 PAN ID는 아래 AT 명령어를 코디네이터에서 실행하여 구할수 있 습니다.

AT+OPEPID

라우터나 엔드디바이스의 확장 PAN ID가00000000000000일 경우에는 확장 PAN ID는 무시됩니다.

3.2.4 참여 허용 (Permit joining)

지그비 라우터는 코디네이터와 마찬가지로 다른 노드들의 네트워크 참여를 제어할수 있으며, 설정 방 법은 코디네이터와 동일합니다. 자세한 참여 허용에 대한 설정은 **3.1.4 참여 허용** 를 참조하시기 바 랍니다.

ZE10을 엔드디바이스로 설정하기 3.3

엔드 디바이스는 네트워크의 가장 말단에 위치하여 패런트 노드와만 통신하는 장비입니다. 따라서 엔 드 디바이스는 메시지 중계를 하지 않습니다. ZE10을 엔드 디바이스로 설정하려면 아래 단계를 따르 면 됩니다.

- ZE10을 엔드디바이스 노드 형태로 지정합니다.
- 선택적으로, 채널 마스크를 지정합니다. 채널마스크를 지정하지 않으면 기본 채널 마스크를 사용합니다.
- 선택적으로, PAN ID 및/또는 확장 PAN ID를 지정합니다. 명시되지 않을 경우 ZE10은 주변의 지그비 네트워크를 검색하여 자동적으로 참여를 시도합니다.

위에서 언급된 노드 형태, 채널 마스크 및 PAN ID/확장 PAN ID 설정방법들은 라우터의 경우와 동일 합니다. 보다 자세한 설정 방법은 **3.2 ZE10을 라우터로 설정하기** 를 참조하시기 바랍니다.

엔드 디바이스가 네트워크에 참여하면, GPIO1이 특정 용도로 설정되어 있을 땐 주기적으로 power LED가 깜빡입니다. 엔드 디바이스는 패런트 노드(코디네이터나 라우터)에 속하게 되며 패런트 노드 는 해당 엔드 디바이스의 정보를 차일드 테이블이라고 불리우는 테이블에 저장하여 메시지를 중계하 기 위한 목적으로 사용합니다. 이 테이블은 엔드 디바이스가 일정 시간마다 패런트 노드를 폴 (poll) 하는 동안은 계속 유지가 되지만 그렇지 않은 경우 패런트 노드는 해당 엔드 디바이스를 테이블로부 터 삭제하고 더이상 메시지를 중계하지 않습니다. 이 일정시간은 폴 시간제한 (poll timeout)이라고 불 리우며 패런트 노드에서 설정되어야 합니다. 또한 엔드디바이스에서 패런트 노드를 폴 하는 시간 간 격은 폴 주기 (poll period)라고 불리우며 엔드 디바이스에서 설정됩니다. 폴 주기는 폴 시간제한보다 같거나 짧게 설정되어야 의도하지 않게 엔드 디바이스가 차일드 테이블에서 삭제되는 경우를 방지할 수 있습니다.

ZE10의 폴 간격은 아래와 같이 S-레지스터의 값을 설정함으로 지정할수 있습니다.

ATS51=n, 이때 n = 폴 시간제한 (poll timeout) 값 (초). 기본값 = 60.

ATS56=n, 이때 n= 폴 주기 (poll period) 값 (s). 기본값 = 5.

엔드 디바이스는 S56으로 지정된 폴 주기를 이용하여 패런트 노드를 폴 합니다. 이는 패런트 노드와 의 연결과 네트워크 상의 다른 노드와의 데이터 통신을 위한 것입니다.

엔드 디바이스는 패런트 노드를 일정 주기마다 폴 하여야 하지만 슬리피 엔드 디바이스와는 달리 슬 립 모드로 들어가지는 않습니다. 따라서 슬리피 엔드 디바이스와는 달리 메시지를 보내고 받는것은 언제라도 가능합니다.

ZE10을 슬리피 엔드 디바이스(Sleepy End Device)로 설정하기

슬리피 엔드 디바이스는 일반 엔드디바이스와 동일하나 슬립 모드(sleep mode)에서 무선 송수신부의 동작을 꺼서 전력 소모를 줄일수 있는 노드 형태입니다. ZE10을 슬리피 엔드 디바이스로 설정하기 위해서는 아래의 단계를 따르시기 바랍니다.

- ZE10을 슬리피 엔드 디바이스 노드 형태로 지정합니다.
- 선택적으로, 채널 마스크를 지정합니다. 채널마스크를 지정하지 않으면 기본 채널 마스크를 사용합니다.
- 선택적으로, PAN ID 및/또는 확장 PAN ID를 지정합니다. 명시되지 않을 경우 ZE10은 주변의 지그비 네트워크를 검색하여 자동적으로 참여를 시도합니다.
- 슬립 (sleep) 간격을 설정합니다.

슬립 간격 설정을 제외한 위에서 언급된 노드 형태, 채널 마스크 및 PAN ID/확장 PAN ID 설정방법들 은 라우터의 경우와 동일합니다. 보다 자세한 설정 방법은 3.2 ZE10을 라우터로 설정하기 를 참조하 시기 바랍니다.

지그비 장비의 특징중 하나인 매우 낮은 전력 소모는 효과적인 슬립(sleep) 및 웨이크업(wake-up)에 의하여 이루어집니다. 지그비 코디네이터 및 라우터는 메시지를 중계하여야 하므로 슬립이 허용되지 않는 반면 지그비 엔드 디바이스는 대부분의 시간을 슬립 모드로 유지하다가 설정된 시간 간격마다 깨어나서 데이터를 송수신 한후 다시 슬립모드로 들어갈수 있습니다. ZE10의 슬립 모드는 아래와 같 이 S-레지스터의 값을 설정함으로 지정할수 있습니다.

ATS51=n, 이때 n = 폴 시간제한 (poll timeout) 값 (초). 기본값 = 60.

이 값은 패런트 노드에서 설정되는 값입니다. \$51로서 지정된 시간(초)내에 엔드디바이스가 패런트 노드에게 폴 요청 (poll request) 메시지를 보내지 않으면 패런트 노드는 엔드 디바이스가 네트워크에 를 떠났다고 간주하고 차일드 테이블(child table)에서 삭제합니다. 논-슬리피 엔드 디바이스와 달리 슬 리피 엔드 디바이스는 S51값을 폴 주기로서 참조하지 않습니다. 대신 S53값을 슬립 지속 시간으로 사용하는데, 동작 방식은 폴 주기와 유사하지만 슬립 모드로 들어간다는 차이가 있습니다.

ATS53=n, 이때 n= 슬립 시간 (1/4 초). 기본값 =8.

ZE10은 S53으로 설정된 시간동안 무선송수신부(radio)를 끄고 슬립모드를 유지합니다.

ATS52=n, 이때 n = 폴 주기 (poll period) 값 (ms). 기본값 = 100.

슬리피 엔드 디바이스는 S53으로 지정된 슬립 시간이 경과되거나, GPIOO의 인터럽트가 발생하거나, 시리얼 데이터가 발생하면 슬립 모드에서 깨어나서 \$52로 지정되는 짧은 폴 주기를 이용하여 패런트 노드를 폴 합니다. 슬리피 엔드 디바이스는 패런트 노드와의 데이터 교환이 폴링을 할때에만 이루어 지므로 S52는 기본값이 100ms로서 비교적 짧은 폴 주기를 가지게 됩니다.

ATS54=n, 이때 n= 대기시간 시간제한 (초), 기본값 = 5

슬립 모드에서 깨어난 슬리피 엔드 디바이스는 S54로 지정된 시간동안 지그비 네트워크 또는 시리얼 포트로부터 데이터가 수신되지 않으면 다시 슬립모드로 들어갑니다. 만약 데이터가 이 시간동안에 수 신되면 타이머가 리셋되고 다시 S54값으로 지정된 시간동안 데이터를 기다립니다.

ATS55=n, 이때 n = 재참여 시간제한 (초), 기본값 = 10.

패런트 노드와의 연결이 S55로 지정된 시간보다 오랜 시간동안 끊어지면 차일드 노드는 현재 네트워 크에 다시 참여를 시도합니다.

그림 3-1 슬립 및 웨이크-업 시점

또한 슬리피 엔드 디바이스는 슬립 지속 시간이 경과하지 않아도 GPIOO 인터럽트 또는 시리얼 데이 터가 들어오면 슬립 지속 시간이 경과했을때와 마찬가지로 슬립 모드에서 깨어나서 패런트 노드와 폴을 S52 간격으로 수행하고 데이터가 S54 시간동안 없으면 다시 슬립 모드로 들어갑니다.

주: 슬리피 엔드 디바이스가 시리얼 데이터로 인하여 슬립 모드에서 깨어날 경우 첫번째 시리얼 데이 터가 손상될수 있습니다. 따라서 시리얼 데이터를 보내고자 할 경우에는 GPIOO을 사용하여 슬리피 엔드 디바이스를 먼저 깨우거나 데이터 완전성을 확인하기 위해 더 높은 단계의 시리얼 데이터 프로 토콜을 사용하시는 것을 추천합니다.

3.5 지그비 보안 (ZigBee Security)

지그비 프로토콜은 보안을 고려하여 설계되었습니다. 지그비는 기본적으로 IEEE 802.15.4 (AES 암호 화 및 CCM 보안 모드)를 사용하지만 ZE10은 아래 방법을 이용하여 더욱 높은 보안 수준을 유지합 니다.

- 128비트 AES 암호화 알고리즘
- 강력한 NIST 승인 보안
- 링크 및 네트워크용 키 형태 정의
- 키 설정 및 관리 방법 명시
- CCM 이용 (유니파이드 또는 단순화된 동작 모드)
- 트러스트 센터 (Trust Centers)

3.5.1 보안 수준

보안을 유지하려면 사용자는 보안 수준 사용 여부를 아래 AT 명령어를 이용하여 지정하여야 합니다. 보안 수준 사용 여부가 선택되면 인증 및 암호화가 네트워크 전체에 걸쳐서 사용되어집니다. 또한 사 용자는 보안 수준을 사용 안 하도록 선택할 수도 있지만, 이 경우 지그비 표준으로 간주되어지지 않 습니다. 동일한 네트워크에 속한 모든 노드들은 같은 보안수준을 가지도록 설정되어야 합니다. 보안 수준은 아래 AT 명령을 이용하여 설정합니다.

AT+SECURITY=n. 이때 n= 암호화 수준 (0=암호화 사용안함, 1=암호화 사용함)

3.5.2 링크 키 (Link Key)

트러스트 센터 (통상적으로 코디네이터)는 장비가 네트워크에 참여할 때 링크 키를 요청합니다. 참여 하고자 하는 장비가 올바른 링크 키를 응답하지 않으면 해당 장비의 네트워크 참여는 거부됩니다. 따 라서 네트워크에 속하는 모든 노드들은 네트워크에 참여하기 전에 미리 같은 링크키를 가지도록 설 정되어야 합니다. 링크 키는 아래 AT 명령을 이용하여 설정할 수 있습니다.

AT+LINKKEY=xxx···xxx, 이때 xxx···xxx = 128-비트 16진수 트러스트 센터 링크 키. 기본값 = FFF···FF.

3.5.3 네트워크 키 (Network Key)

네트워크 키는 네트워크 전반에 걸쳐서 사용되어 지는 암호화 키입니다. 네트워크에서 전달되어지는 모든 데이터는 네트워크 키를 이용하여 암호화됩니다. 네트워크 키는 코디네이터에서만 설정되면 됩 니다. 네트워크 키는 아래 AT 명령을 이용하여 설정할 수 있습니다.

AT+NWKKEY=xxx···xxx, 이때 xxx···xxx = 128-비트 16진수 네트워크 키. 기본값 = FFF···FF.

3.5.4 키 업데이트

트러스트 센터는 네트워크 키가 누출되는것을 최소화 하기 위하여 네트워크 키를 업데이트 할수 있 습니다. 트러스트 센터는 현재 네트워크 키를 이용하여 새로운 네트워크 키를 암호화 한후 네트워크 에 브로드캐스트 합니다. 새로운 네트워크 키를 전달받은 각 노드들은 이를 바로 사용하지 않고 값만 저장합니다. 트러스트 센터는 새로운 네트워크 키가 전파될때까지 충분한 시간을 기다린 후, 이를 사 용하라는 메시지를 다시 네트워크에 브로드캐스트 합니다. 키 업데이트 명령은 아래와 같습니다.

AT+UPDATEKEY<CR>

데이터 송수신 4

ZE10은 유니캐스트(unicast), 멀티캐스트(multicast), 브로드캐스트(broadcast)의 세가지 서로 다른 종 류의 데이터 송신을 지원합니다. 유니캐스트는 한 개의 특정 지그비 장비에게 데이터를 전송하는것을 의미합니다. 멀티캐스트는 특정 지그비 장비 그룹에게 데이터를 보내는 것을 의미합니다. 브로드캐스 트는 네트워크 상에 존재하는 모든 지그비 장비에게 데이트를 전송하는 것을 의미합니다.

또한 데이터를 전송하는 모드는 아래와 같이 두가지 모드가 있습니다.

- 커맨드 모드 (Command mode): 한 명령어로서, 허용되는 데이터 양을 한번만 보냅니다.
- 데이터 모드 (Data mode): 많은 양의 데이터를 보낼때 데이터 모드로 변환하여 데이터를 연 속적으로 보냅니다. 데이터 모드를 빠져나오려면 "+++"를 입력합니다.

4.1 커맨드 모드 (Command Mode)

4.1.1 유니캐스트 (Unicast)

유니캐스트는 하나의 특정 전송 장비(source device)로부터 다른 하나의 특정 목표 장비 (destination device)로만 데이터가 전송되는 것을 의미합니다. 목표 장비는 지그비 네트워크에 존재하는 어떤 지 그비 장비도 될수 있습니다. 목표 장비를 지정하기 위해서는 해당 목표 장비의 지그비 주소 (ZigBee address)가 필요합니다.

각 지그비 장비는 64-비트 및 16-비트의 두가지 지그비 주소를 가지고 있습니다. 64-비트 주소는 생 산과정에서 부여되는 장비 고유의 주소입니다. 16-비트 주소는 지그비 네트워크에 참여할때 부여되는 주소입니다. ZE10은 목표 장비를 16-비트 또는 64-비트 주소중 한가지를 이용하여 지정할수 있습니 다. 유니캐스트 명령을 위한 AT명령은 아래와 같습니다.

AT+UNICAST=<node_id>,<MSG><CR>

이때 <node_id> = 16-비트 또는 64-비트 주소, <MSG> = 전송할 데이터

위 명령을 이용하여 보낼수 있는 데이터의 최대 길이는 90 바이트 (암호화시 72 바이트)입니다. 데이 터가 이를 초과하면 데이터 전송에 실패하고 오류 메시지가 표시됩니다.

4.1.2 멀티캐스트 (Multicast)

멀티캐스트는 하나의 특정 장비로부터 특정 그룹 아이디(group ID)를 가지는 다수의 장비들로 데이터 가 전송되는것을 의미합니다. 각 장비의 그룹 아이디는 AT+GROUPID 명령을 이용하여 지정할 수 있 습니다. 멀티캐스트 명령은 아래와 같습니다.

AT+MULTICAST=<group_id>,<MSG><CR>

이때 <group_id> = 그룹 아이디, <MSG> = 전송할 데이터

또한 데이터 전송 범위는 아래 AT명령을 이용하여 지정됩니다. 해당 S레지스터에 대한 자세한 내용 은 9. S-레지스터 부분을 참조하시기 바랍니다.

ATS36=n, 이때 n = 전송 반경.

ATS37=n, 이때 n = 비멤버를 통한 최대 홉(hop) 회수

4.1.3 브로드캐스트 (Broadcast)

브로드캐스트는 특정 전송 장비로부터 해당 네트워크에 존재하는 모든 지그비 장비에게 데이터를 전 송하는 것을 의미합니다. 브로드캐스트 명령은 아래와 같습니다.

AT+BROADCAST=<MSG>< CR>, 이때 <MSG> = 전송할 데이터

사용자는 또한 S35 레지스터를 이용하여 전송 범위를 지정할 수 있습니다. 해당 S레지스터에 대한 자세한 내용은 9.3 절을 참조하시기 바랍니다.

ATS35=n, 이때 n = 브로드캐스트 범위

ATS36=n, 이때 n= 전송 반경

4.1.4 바이너리 데이터 전송 (Sending Binary Data)

캐리티 리턴이나 백스페이스등의 특수 문자들은 커맨드 모드의 특정 명령들과 충돌이 있으므로 그대 로 데이터 전송을 할수 없습니다. 이와 같은 특수 문자들을 커맨드 모드에서 전송하기 위해서는 표 4-1과 같이 인코딩을 해서 데이터로서 전달하여야 합니다.

Abbreviation **HEX** Glyph Encoded Description NULL 00 \00 널 캐릭터 (Null character) _ 캐리지 리턴 (Carriage return) 0D CR \0D LF 0A \0A 라인 피드 (Line feed) 80 BS _ \08 백 스페이스 (Backspace) HT \09 호라이존털 탭 (Horizontal Tab) 09 _ 7F DEL \7F 삭제 (Delete) _ 바이너리 인코딩용 제어문자 (Control 5C \5C ١ character for binary encoding)

Table 4-1 Special Characters Encoding Table

예를 들어서 abc<CR> 이라는 데이터를 브로드캐스트 하고자 할 경우에는 아래와 같이 데이터를 인 코딩하여 AT명령을 이용합니다.

AT+BROADCAST=abc\0D<CR>

4.1.5 받은 메시지 표시

S11 레지스터는 커맨드 모드에서 수신한 데이터를 표시할지 여부를 결정합니다. 데이터 모드에서는

수신된 데이터가 항상 표시됩니다. S11 값을 변경하기 위해서는 아래와 같은 AT 명령을 이용합니다.

ATS11=<value><CR>.

이때 <value>의 값은 0 = 받은 메시지 표시 안함, 1 = 받은 메시지 표시함.

\$11이 1로 설정되면 수신된 메시지가 표시되어집니다. 수신된 메시지의 표시 형태는 +<IEEE address><MSG><CR> 를 가지게 됩니다.

커맨드 모드에서 수신된 메시지를 표시할 경우 표 4-1에 해당하는 특수 문자의 인코딩 원칙이 똑같 이 적용됩니다. 예를 들어서0001950000000001 주소를 가지는 노드로부터 abc<CR> 이라는 데이터를 수신한 경우 메시지는 아래와 같이 표시되어집니다.

+0001950000000001| abc\0D<CR>

데이터 모드 (Data Mode) 4.2

전송하고자 하는 데이터가 커맨드 모드를 사용하여 전송하기에 너무 클 경우에는 데이터 모드를 사 용할 수 있습니다. AT명령을 이용하여 데이터를 전송하고자 하는 목표 장비 또는 장비들을 지정하고 데이터 모드에 들어가면, ZE10은 "+++"를 이용하여 데이터 모드를 빠져나오기 전까지 입력되는 모든 데이터를 데이터간 시간 간격이 일정 시간(inter-character timeout) 을 초과할때마다해당 목표 장비 또 는 장비들에게 전송합니다. 또한 "+++"로 빠져나온 데이터모드 세션에 다시 복귀하고자 하면 아래 AT 명령을 사용할수 있습니다.

ATO<CR>

4.2.1 유니캐스트 데이터 모드 (Unicast Data Mode)

유니캐스트 데이터 모드는 특정 노드에게 지속적으로 데이터를 보내고자 할경우 사용됩니다. 유니캐 스트 데이터모드는 ATD 명령을 이용하거나 AT+TRANSMITMODE=1 (혹은 4) 명령을 이용하여 들어 갈수 있습니다. ATD 명령이 실행되면 장비는 유니캐스트 데이터모드로 즉시 들어가서 "+++" 문자열 로 모드를 빠져나오거나 장비가 리셋될때까지 유니캐스트 데이터모드를 유지합니다.

반면에 AT+TRANSMITMODE=1 (혹은 4)를 실행하는 경우에는 장비가 리셋이 되면 항상 유니캐스트 데이터 모드에 들어갑니다. 유니캐스트 데이터 모드를 취소하려면 "+++"문자열로 유니캐스트 데이터 모드를 임시로 빠져나온 후, AT+TRANSMITMODE=0 을 실행하여 전송모드를 바꾼 후 장비를 리셋합 니다.

유니캐스트 데이터 모드와 관련한 AT 명령들은 아래와 같습니다.

AT+DESTLA=<value>

목표 장비의 64-비트 IEEE 주소를 지정합니다.

ATD<CR>

미리 지정된 IEEE 64-비트 주소를 가지는 장비와의 유니캐스트 데이터 모드에 들어갑니다. 이경우 리 셋을 필요하지 않습니다.

ATD<value><CR>

<value>로 지정되는 16-비트 노드아이디 또는 64-비트 IEEE 주소를 가지는 장비와의 유니캐스트 데 이터모드에 들어갑니다.

AT+TRANSMITMODE=1<CR>

미리 지정된 IEEE 64-비트 주소를 가지는 장비와의 유니캐스트 데이터 모드에 들어갑니다. 모드 변경 을 적용하기 위하여 리셋이 필요합니다.

AT+TRANSMITMODE=4<CR>

싱크 (Sink) 노드와의 유니캐스트 데이터 모드에 들어갑니다. 싱크 노드는 해당 노드의 S61 레지스터 를 설정함으로서 지정되는 특정 노드입니다. 모드 변경을 적용하기 위하여 리셋이 필요합니다.

예제)

AT+DESTLA=00019500002FDC40<CR> # Set the destination IEEE address

OK<CR> # Response

ATD<CR> # Enter the unicast mode using destination IEEE address

OK<CR> # Response

Send unicast msg # Put the unicast message

Leave data mode +++

OK<CR> # Response

ATD0000<CR> # Enter the unicast mode using 16-bit node ID

OK<CR> # Response

Send unicast msg # Put the unicast message

Leave data mode +++

OK<CR> # Response

ATD00019500002FDC40<CR> # Enter the unicast mode using 64-bit IEEE address

OK<CR> # Response

Send unicast msg # Put the unicast message

+++ # Leave data mode

OK<CR> # Response AT+DESTLA=00019500002FDC40<CR> # Set the destination IEEE address

OK<CR> # Response

AT+TRANSMITMODE=1<CR> # Set transmit mode to destination IEEE address

OK<CR> # Response

ATZ<CR> # Apply to change

OK<CR> # Response

Send unicast msg # Put the unicast message

+++ # Leave data mode

OK<CR> # Response

AT+TRANSMITMODE=4<CR> # Set transmit mode to sink node in the network

OK<CR> # Response

Apply to change ATZ<CR>

OK<CR> # Response

Send unicast msg # Put the unicast message

+++ # Leave data mode

OK<CR> # Response

4.2.2 멀티캐스트 데이터 모드 (Multicast Data Mode)

멀티캐스트 데이터 모드는 특정 그룹에 속하는 다수의 노드에게 지속적으로 데이터를 보내고자 할경 우 사용됩니다. 모든 ZE10은 네크워크에 참여시 특정 그룹 아이디를 할당받아서 특정 그룹에 속할수 있습니다.

멀티캐스트 데이터모드는 ATM 명령을 이용하거나 AT+TRANSMITMODE=2 명령을 이용하여 들어갈 수 있습니다. ATM 명령이 실행되면 장비는 멀티캐스트 데이터모드로 즉시 들어가서 "+++" 문자열로 모드를 빠져나오거나 장비가 리셋될때까지 멀티캐스트 데이터모드를 유지합니다.

반면에 AT+TRANSMITMODE=2 를 실행하는 경우에는 장비가 리셋이 되면 항상 멀티캐스트 데이터 모드에 들어갑니다. 멀티캐스트 데이터 모드를 취소하려면 "+++"문자열로 멀티캐스트 데이터 모드를 임시로 빠져나온 후, AT+TRANSMITMODE=0 을 실행하여 전송모드를 바꾼 후 장비를 리셋합니다.

멀티캐스트 데이터 모드와 관련한 AT 명령들은 아래와 같습니다.

AT+GROUPID=<value>.

해당 노드가 속하는 16-비트 그룹 아이디를 지정합니다.

AT+DESTGROUPID=<value>

멀티캐스트 될 대상 16-비트 그룹 아이디를 설정합니다.

ATM<CR>

미리 지정된 그룹으로의 멀티캐스트 데이터 모드에 들어갑니다. 이 경우 리셋이 필요없습니다.

ATM<value><CR>

<value>로서 지정되는 16·비트 그룹 아이디를 가지는 노드들의 그룹으로의 멀티캐스트 모드에 들어 갑니다. 리셋이 필요없습니다.

AT+TRANSMITMODE=2<CR>

멀티캐스트 모드에 들어갑니다. 변경 내용을 적용하기 위하여 리셋이 필요합니다.

ATS36=n, 이때 n = 전송 반경

ATS37=n, 이때 n= 비멤버를 통한 최대 홉(hop) 회수.

멀티캐스트 데이터 전송 범위를 지정합니다. 해당 S레지스터에 대한 자세한 내용은 9. S-레지스터 부 분을 참조하시기 바랍니다.

예제)

AT+DESTGROUPID=0001<CR> # Set the destination group ID OK<CR> # Response ATM<CR> # Enter the multicast mode using destination group ID OK<CR> # Response Send multicast msg # Put the multicast message +++ # Leave data mode OK<CR> # Response

Enter the multicast mode using 16-bit group ID ATM0001<CR> OK<CR> # Response OK<CR> # Response # Put the multicast message Send multicast msg +++ # Leave data mode OK<CR> # Response

AT+DESTGROUPID=0001<CR> # Set the destination group ID OK<CR> # Response

AT+TRANSMITMODE=2<CR> # Set transmit mode to destination group ID

OK<CR> # Response

ATZ<CR> # Apply to change

OK<CR> # Response

Send multicast msg # Put the multicast message

+++ # Leave data mode

OK<CR> # Response

4.2.3 브로드캐스트 데이터 모드 (Broadcast Data Mode)

네트워크에 있는 모든 노드들에게 데이터를 지속적으로 전달하기 위해서 브로드캐스트 데이터 모드 를 사용할 수 있습니다. 데이터 전송 범위는 S-레지스터 35를 이용하여 설정할 수 있습니다.

브로드캐스트 데이터모드는 ATB 명령을 이용하거나 AT+TRANSMITMODE=3 명령을 이용하여 들어 갈수 있습니다. ATB 명령이 실행되면 장비는브로드캐스트 데이터모드로 즉시 들어가서 "+++" 문자열 로 모드를 빠져나오거나 장비가 리셋될때까지 브로드캐스트 데이터모드를 유지합니다.

반면에 AT+TRANSMITMODE=3 을 실행하는 경우에는 장비가 리셋이 되면 항상브로드캐스트 데이터 모드에 들어갑니다. 브로드캐스트 데이터 모드를 취소하려면 "+++"문자열로브로드캐스트 데이터 모 드를 임시로 빠져나온 후, AT+TRANSMITMODE=0 을 실행하여 전송모드를 바꾼 후 장비를 리셋합니 다.

브로드캐스트 데이터 모드와 관련한 AT 명령들은 아래와 같습니다.

ATB<CR>

브로드캐스트 데이터 모드에 들어갑니다.

AT+TRANSMITMODE=3<CR>

전송 모드를 브로드캐스트 데이터 모드로 설정합니다. 이 경우 리셋을 하여 변경 내용을 적용하여야 합니다.

ATS35=n, 이때 n = 브로드캐스트 범위

ATS36=n. 이때 n= 전송 반경

브로드캐스트 데이터 전송 범위를 지정합니다. 해당 S레지스터에 대한 자세한 내용은 9. S-레지스터 부분을 참조하시기 바랍니다.

예제)

ATS35=2<CR> # Set broadcast range to all nodes in the network

OK<CR> # Response ATB<CR> # Enter the broadcast mode

OK<CR> # Response

Send broadcast msg # Put the broadcast message

Leave data mode

OK<CR> # Response

AT+TRANSMITMODE=3<CR> # Set transmit mode to current network

OK<CR> # Response

ATZ<CR> # Apply to change

OK<CR> # Response

Send broadcast msg # Put the broadcast message

+++ # Leave data mode

OK<CR> # Response

디지털 및 아날로그 입출력 5

GPIO (General Purpose Inputs and Outputs) 설정

ZE10 모듈은 총 14개의 입출력 핀을 가지고 있습니다. 이중 6번핀은 팩토리 리셋 전용으로 할당되 어지며, 나머지 13개의 입출력 핀은 사용자가 일반적인 입출력을 위하여 사용할 수 있습니다. 입출력 핀 할당내역은 표 5-1을 참조하시기 바랍니다. 표 5-1에서 알수 있듯이 몇개의 핀들은 설정내역에 따 라서 펌웨어에서 특정 목적으로 사용되어 집니다. 표 5-2는 각 핀이 특정 용도로 사용되도록 설정된 경우에 해당하는 특정 용도를 설명합니다.

# 0 Be C E M				
Pin Number	GPIO Number	Special Functions	Al Enable	
6	-	Factory reset / Bootloader (SW_0)	X	
5	0	Permit joining / Wake-up (SW_1)	Х	
3	1	Power LED (LED_0)	X	
4	2	Status LED (LED_1)	Х	
7	3		O (AI_0)	
8	4		O (AI_1)	
10	5		O (AI_2)	
11	6		O (AI_3)	
24	7		Х	
22	8	UART_CTS	Х	
23	9	UART_RTS	X	
19	10	UART_DTR	X	
18	11	UART_DSR	Х	
17	12		X	

표 5-1 입출력 핀 할당 내역

GPIO 설정은 아래 AT 명령을 이용하여 변경될 수 있습니다.

AT+GPIO=<values><CR> or AT+GPIO<number>=<value><CR>

이때 <values>의 값은 0~5의 값을 가지며 값에 따라서 아래와 같이 동작함:

- 0 사용 안함
- 1 디지털 입력
- 2 디지털 출력, 기본값 = low
- 3 디지털 출력, 기본값 = high
- 4 아날로그 입력, 싱글 엔디드 (GPIO3~6만 적용 가능)
- 5 핀에 할당된 특정 기능용으로 사용 (표 52 참조)

표 5-2 특정 용도의 GPIO 핀

Function	GPIO#	Type	Description
Factory_reset / Bootloader	-	DI	이 입력핀은 팩토리 리셋 버튼 전용 목적으로 할당되어집니다. ZE10의 팩토리 리셋을 수행하기 위해서는 이 입력핀이 2초이상 ON(High)으로 유지되어진 후 OFF(Low)로 전환되어져야 합니다. 또한 ZE10이 시동시 이 입력핀이 ON(High)으로 유지되면 부트로더모드로 전환되어 펌웨어 업데이트가 가능합니다.
Permit_joining / Wake-up	0	DI	GPIO0가 5로 설정되면, 해당 노드가 코디네이터나 라우터일 경우에는 네트워크 참여를 허용하는 목적으로 사용되어지거나, 슬리피엔드 디바이스일 경우에는 슬립모드에서 깨어나기 위한 인터럽트신호로서 사용되어집니다. 코디네이터나 라우터에서 네트워크 참여를 허용하는 경우 이 입력핀이 ON(High)에서 OFF(Low)로 전환된후 S22 레지스터에서 설정된 시간 간격동안 네트워크 참여를 허용합니다. 슬리피 엔드 디바이스 경우에는 이 입력핀이 ON(High)에서 OFF(Low)로 전환되면 슬립모드에서 깨어나서 데이터 수신을 기다립니다.
Power LED	1	DO	GPIO1이 5로 설정되면,전원이 공급되는 경우 ON(High)으로 유지됩니다. 만약 노드가 엔드 디바이스로 설정되어 있다면 지속적으로 깜빡이게 됩니다. 추가로 9.1.4절의 S14레지스터를 참조바랍니다.
Status LED	2	DO	GPIO2가 5로 설정되면, 디바이스가 네트워크에 조인하면 ON(High), 참여가 허용될 경우에는 ON/OFF가 반복되며, 네트워크를 떠나면 OFF(Low) 됩니다. 추가로 9.1.4절의 S14레지스터를 참조바랍니다.
UART_CTS	8	DI	GPIO8이 5로 설정되면 UART CTS로 사용되어집니다. CTS 플로우 컨트롤 사용시에는 이 기능이 반드시 사용되어야 합니다.
UART_RTS	9	DO	GPIO9가 5로 설정되면 UART RTS로 사용되어집니다. RTS 플로우 컨트롤 사용시에는 이 기능이 반드시 사용되어야 합니다.
UART_DTR	10	DO	GPIO10이 5로 설정되면 UART DTR로 사용되어집니다.
UATR_DSR	11	DI	GPIO11이 5로 설정되면 UART DSR로 사용되어집니다.

5.2 입출력 샘플링

ZE10의 입출력 상태는 AT 명령을 이용하여 감시하고 제어할 수 있습니다. 또한 원격 노드의 입출력 상태도 원격 AT 명령을 이용하여 동일하게 감시/제어가 가능합니다. 또한 일정 시간 간격마다 특정 원격 노드에게 현재 입출력 상태를 주기적으로 전달하도록 설정할 수 있습니다.

5.2.1 쿼리드 샘플링 (Queried Sampling)

ZE10의 입출력 상태는AT 명령을 이용하여 감시하고 제어할 수 있습니다. 현재의 디지털 입출력 상 태를 읽기 위해서는 AT+DIO 명령을 이용하면 됩니다. 디지털 입력 또는 출력으로 설정된 핀들의 응

답값은 0 (Low) 과 1 (High)의 조합으로 표시되어 지며 아날로그 입력으로 설정되어 있는 핀에 해당 하는 응답값은 *로서 표시되어집니다.

AT+DIO?<CR> or AT+DIO<number>?<CR>

이때 <number> = 0~12사이의 GPIO 번호

AT+DIO 명령은 또한 디지털 출력값을 변경하기위해서 사용되어질수 있습니다.

AT+DIO=<value><CR> or AT+DIO<number>=<value><CR>

이때 <number> = 0~12 사이의 GPIO 번호, <values> = 0 또는 1, 또는 0과 1로 이루어진 문자열. 0 = Low, 1 = High

아날로그 입력값은 AT+AI 명령을 이용하여 읽을수 있습니다. 응답값은 16비트 16진수로 표시되고 0~2EE0(0~1200mV) 또는 D120-FFFF(-1200~-1mV) 사이의 값을 가지며 단위값은 0.1mV에 해당합니 다. 16진수 출력값을 실제 측정된 전압값으로 변경하려면 아래 공식을 이용하면 됩니다. 해당 핀이 디지털 입출력용으로 설정된 경우에는 ****로서 표시되어집니다.

AT+AI?<CR> or AT+AI<number>?<CR>

이때 <number> = 0~2사이의 GPIO 번호 입력값이 0~2EE0 인 경우, Voltage (mV) = Value * 0.1 입력값이 D120~FFFF 인 경우 Voltage (mV) = (Value - 65536) * 0.1

예제)

```
AT+DIO?<CR>
10001**011100
                ← DIO 0, 4, 8, 9, 10 are ON. Pins 5, 6 are configured as
analog inputs
AT+DIO0=0<CR>
OK
AT+DIO?<CR>
00001**011100
               ← DIO 0, 4, 8, 9, 10 are ON. Pins 5, 6 are configured as
analog inputs
AT+AIO?<CR>
****,****,192A,13E8
                      ← AI 2, 3 are used. (GPIO5, 6) The others are
configured as DIO.
OK
```

원격 노드의 입출력 값을 읽거나 제어하기 위해서는 아래와 같이 원격 AT명령을 통한 AT+DIO 또는

AT+AI 명령을 수행하면 됩니다.

AT+REMOTE=<address>, <AT command><CR>

이때 <address> = 원격 노드의 16-비트 또는 64-비트 주소

예제)

AT+REMOTE=00019500000F3BA1, AT+DIO? <CR>

10001**011100

OK

5.2.2 주기적 샘플링 (Periodic Sampling)

아래 AT 명령을 이용하여 ZE10이 일정 시간 간격으로 입출력 상태를 원격 노드에게 전달하도록 설 정할 수 있습니다.

AT+DESTLA=<IEEE address><CR>

이때 <IEEE address>= 데이터를 전달할 원격 노드의 64-비트 주소

ATS42=<value><CR>

이때 <value> = GPIO 샘플링 주기 (초), 0 일 경우 GPIO 샘플링 사용 안함

ATS43=<value><CR>

이때 <value> = GPIO 값을 전송할 노드를 설정. 0이면 AT+DESTLA 로 설정된 노드로 GPIO 값을 전 송하고, 1이면 싱크 노드로 GPIO 값을 전송

ATZ<CR>

리셋하여 변경된 설정 내용 적용

또한 S11 레지스터를 설정하면 다른 노드로부터 받은 데이터를 표시하도록 설정할 수 있습니다.

ATS11=<value><CR>,

이때 <value>의 값은 0= 받은 메시지 표시 안함,1= 받은 메시지 표시함.

이 경우 다른 노드로부터 받은 데이터는 아래와 같은 형태로 표시되어 집니다.

++<IEEE address>|<GPIO value><CR>.

5.2.3 변화 감지 샘플링 (Change Detection Sampling)

ZE10 모듈은 디지털 I/O 핀의 상태가 변할 때 즉시 수집한 I/O 샘플을 원격 노드로 전송할 수 있습 니다. 이는 주기적 샘플링과 동시에 사용가능하도록 설정할 수 있습니다. 아래 AT 명령을 이용하여 설정하시기 바랍니다.

AT+DESTLA=<IEEE address><CR>

이때 <IEEE address>= 데이터를 전달할 원격 노드의 64-비트 주소

ATS44=<value><CR>

GPIO 변화 감지 샘플링 모드 설정. <value>가 0일 경우 GPIO 샘플링 사용안함.

ATZ<CR>

리셋하여 변경된 설정 내용 적용

5.2.4 GPIO 원격 제어 (GPIO Remote Control)

ZE10 모듈은 한 노드에서 디지털 입력 핀을 전환하여 원격 노드의 디지털 출력 상태를 변경하는 것 을 지원합니다. 이 때 해당 노드는 GPIO 감시가 가능한 상태여야 합니다. 아래 AT 명령을 이용하여 설정하시기 바랍니다.

AT+SOURCELA=<IEEE address><CR>

이때 <IEEE address> = 디지털 출력 상태 변경을 적용할 특정 소스 노드의 64-비트 주소. 이 주소가 "FFFFFFFFFFFF"으로 설정되어 있다면 로컬 노드는 어떤 노드든지 GPIO 상태를 제어할 수 있 도록 허용함.

ATS45=<value><CR>

GPIO 원격 제어 모드 설정. <value>가 0일 경우 GPIO 제어 사용안함.

개발 키트 사용하기 6

ZE10 개발 키트는 사용자가 ZE10을 이용한 PCB 보드를 직접 개발하기에 앞서서 ZE10을 효과적으 로 테스트할 수 있도록 지원하는 목적으로 제공되어 집니다. ZE10을 이용한 PCB개발에 앞서 ZE10 개발 키트를 이용하여 테스트하는 것을 권장합니다.

6.1 개발 키트 구성품

개발 키트는 ZE10 모듈들과 이를 장착하여 사용할 수 있는 개발 보드로 이루어집니다. 개발 보드는 RS232 및 USB 인터페이스를 이용하여 컴퓨터 또는 기타 장비와 통신이 가능합니다. 또한 개발보드 는 디지털 입출력 및 아날로그 입력을 위한 터미널 블록을 제공하며, 간단한 입출력 시뮬레이션을 위 하여 스위치 및 LED가 장착되어 있습니다. 추가로 조명 센서와 온도 센서가 장착되어 보다 실용적인 애플리케이션 테스트 또한 가능합니다. 개발 키트의 내용물 구성은 아래와 같습니다.

- ProBee ZE10 지그비 OEM 모듈 (칩안테나) 1개
- ProBee ZE10 지그비 OEM 모듈 (U.FL 커넥터) 1개
- ProBee ZE10 지그비 OEM 모듈 (RPSMA 커넥터) 1개
- 3 dBi 다이폴 안테나, RP-SMA 플러그, 오른나사 2개
- 12cm U.FL RPSMA 케이블, 오른나사 1개
- 개발 보드 3개
- DC 전원 어댑터 3개
- RS232 시리얼 케이블 3개
- USB 케이블 (3)

6.2 개발 보드 기능

개발 보드는 ZE10의 입출력 기능들을 쉽고 효과적으로 액세스할수 있도록 설계되었습니다. 개발 보 드가 제공하는 외부 입출력은 아래와 같으며 배치는 그림 6-1과 같습니다.

- RS232 인터페이스
- USB 인터페이스
- 3 디지털 입력: Permit Joining, Factory Default Reset, Hardware Reset
- 8 사용자 설정가능 디지털 입력
- 8 사용자 설정 가능 디지털 출력 및 LED (Active High)
- 4 아날로그 입력
- 온도 센서
- 조명 센서

그림 6-1 개발 보드 배치

6.3 개발 보드 하드웨어

6.3.1 전원

개발 보드에 전원을 공급하는 방법은 4가지가 있습니다.

- 5V 외부 전원
- USB 포트
- AA 배터리
- RS232 포트 9번핀에 5V 공급

전원을 공급하는 방법에 따라서 반드시 RS_PWR, USB_PWR, BATT_EN 점퍼가 올바르게 설정되어야 합니다. 전원 공급 방법에 따른 점퍼 설정은 표 6-1 과 같습니다.

	RS_PWR	USB_PWR	BATT_EN
5V Power Port	Open	Open	Open
USB Port	Open	Close	Open
AA Batteries	Open	Open	Close
RS232 Port	Close	Open	Open

표 6-1 전원 점퍼 설정

6.3.2 RS232 포트

개발 보드는 UART 통신을 위하여 RS232 포트를 제공합니다. 개발 보드의 RS232포트는 내부적으로 ZE10의UART_TXD, UART_RXD, UART_DSR (GPIO_11), UART_DTR (GPIO_10), UART_CTS (GPIO_8), UART_RTS (GPIO_9)들과 연결되어 있습니다. RS232포트를 사용하기 위해서는HOST (SW2) 스위치가 UART로 설정되어야 합니다.

데이터 통신과 별도로 RS232포트의 9번핀은 전원공급을 위하여 사용될 수 있습니다. 이를 사용하려 면 전원 점퍼를 표 6-1과 같이 설정한 후 9번 핀에 5V 전원을 공급하면 됩니다.

6.3.3 USB 포트

개발 보드는 또한 USB 인터페이스를 제공합니다. USB 포트를 사용하려면HOST (SW2) 스위치가 USB로 설정되어야 하며 소프트 드라이버가 호스트 컴퓨터에 설치되어야 합니다.

6.3.4 ZE10 GPIO 인터페이스

개발 보드의 GPIO 인터페이스 및 팩토리 리셋등의 스위치들은 내부적으로 ZE10의 GPIO와 연결되 어 있습니다. 표 6-2에 개발 보드의 인터페이스와 이에 해당하는 ZE10의 GPIO핀들을 나타내었습니 다.

ZE10 핀번호	이름	설명
3	GPIO_1	LED 장착된 디지털 출력 (CR12, Active High)
		스위치 장착된 디지털 입력 (SW10, Active Low or Active High)
4	GPIO_2	LED 장착된 디지털 출력 (CR13, Active High)
		스위치 장착된 디지털 입력 (SW11, Active Low or Active High)
5	GPIO_0	Permit Joining 스위치 (SW9)
6	Factory Reset	Factory Default Reset 스위치 (SW8)
7	GPIO_3	LED 장착된 디지털 출력 (CR14, Active High)
		스위치 장착된 디지털 입력 (SW12, Active Low or Active High)
		가변 저항 장착된 아날로그 입력 (VR1)
8	GPIO_4	LED 장착된 디지털 출력 (CR15, Active High)
		스위치 장착된 디지털 입력 (SW13, Active Low or Active High)
		가변 저항 장착된 아날로그 입력 (VR2)
9	H/W Reset	Hardware Reset 스위치
10	GPIO_5	LED 장착된 디지털 출력 (CR16, Active High)
		스위치 장착된 디지털 입력 (SW14, Active Low or Active High)
		온도 센서 장착된 아날로그 입력 (U6)
11	GPIO_6	LED 장착된 디지털 출력 (CR17, Active High)
		스위치 장착된 디지털 입력 (SW15, Active Low or Active High)

표 6-2 개발 보드 GPIO인터페이스 할당

		조명 센서 장착된 아날로그 입력 (U7)
17	GPIO_12	LED 장착된 디지털 출력 (CR19, Active High)
		스위치 장착된 디지털 입력 (SW17, Active Low or Active High)
18	GPIO_11	UART DSR 입력
19	GPIO_10	UART DTR 출력
20	UART_RXD	UART Data 입력
21	UART_TXD	UART Data 출력
22	GPIO_8	UART CTS 입력
23	GPIO_9	UART RTS 출력
24	GPIO_7	LED 장착된 디지털 출력 (CR18, Active High)
		스위치 장착된 디지털 입력 (SW16, Active Low or Active High)

6.3.5 LED (CR12-19)

개발 보드는 8개의 디지털 출력에 해당하는 LED를 가지고 있습니다. LED를 사용하기 위해서는 GPIO_OUT (SW20)이 LED_ON으로 설정되어야 합니다. 이 경우 ZE10의 GPIO핀이 High값을 가지면 LED가 켜지게 됩니다.

6.3.6 버튼 스위치 (SW10-17)

개발 보드는 8개의 디지털 입력에 해당하는 버튼 스위치를 가지고 있습니다. 이 스위치들은GPIO_IN (SW19) 스위치 설정에 따라서 Active High 또는 Active Low로 동작하도록 설정할 수 있습니다.

6.3.7 가변 저항 (VR1, VR2)

개발 보드는 아날로그 입력값을 변화시킬수 있도록 GPIO_3 및 GPIO_4 입력핀에 두개의 가변 저항 을 가지고 있습니다. 이 두개의 가변 저항을 사용하려면 ADC 0 및 ADC 1 스위치를 VR 0 및 VR 1 으로 설정하여야 합니다.

6.3.8 온도 센서

개발 보드의 온도 센서 값은 ZE10의 GPIO_5를 통하여 읽을수 있습니다. 온도와 아날로그 입력값의 관계는 아래와 같습니다.

Temperature($^{\circ}$) ={ Volt($^{\circ}$ NV) -600($^{\circ}$ NV)} * 0.1($^{\circ}$ C/ $^{\circ}$ NV)

6.3.9 조명 센서

개발 보드의 조면 센서 값은 ZE10의 GPIO_6를 통하여 읽을수 있습니다. 조도와 아날로그 입력값의 관계는 아래와 같습니다.

Illumination(Lux) = Volt(mV) * 0.25(Lux/mV)

6.3.10 터미널 블록

가변 저항, 온도 센서 및 조도 센서 대신에 외부 아날로그 입력값을 이용하고자 할 경우에는 그림 6-2에 표시한 개발 보드의 터미널 블록을 이용하면 됩니다. 이 경우 ADC_0 (SW4), ADC_1 (SW5), ADC_2 (SW6), ADC_3 (SW7) 스위치를 각각 EXT_0, EXT_1, EXT_2, EXT_3으로 설정하여야 합니다.

그림 6-2 외부 아날로그 입력용 터미널 블록

설정 예제 #1: 코디네이터 1개, 라우터 1개 및 엔드 디바이스 1개 6.4

ZE10 및 개발 보드 설정에 대한 이해를 돕기 위하여 코디네이터 1개와 라우터 1개, 그리고 엔드 디 바이스 1개로 구성되는 네트워크 구성 및 설정에 대한 예제를 아래에 제공합니다. 이 예제의 목적은 아래 시나리오에 해당하는 하드웨어 구성 및 AT 명령어를 통한 설정 방법을 제공하는데 있습니다.

- ZE10 모듈 (개발 보드) 하나는 컴퓨터에 USB 케이블로 연결되고, 코디네이터로 동작합니다.
- 다른 하나의 ZE10모듈(개발 보드)은 라우터로서 동작하며, 1 초마다 온도 센서값, 조명 센서 값 및 디지털 입력 값을 코디네이터에게 전송합니다.
- 또 하나의 ZE10모듈(개발 보드)은 슬리피 엔드 디바이스로서 동작하며 역시 1 초마다 온도 센서 값, 조명 센서 값 및 디지털 입력값을 코디네이터에게 전달합니다.

그림 6-3 예제 #1: 코디네이터 1개, 라우터 1개 및 엔드 디바이스 1개

6.4.1 코디네이터 설정

하드웨어 설정은 아래와 같이 구성합니다.

- HOST 스위치를 USB로 설정합니다.
- USB_PWR 점퍼를 Close하고 RS_PWR 및 BATT_PWR 점퍼는 Open 합니다.
- USB 케이블로 호스트 컴퓨터와 연결합니다.

코디네이터 설정을 위한 AT명령어들은 아래와 같습니다.

```
AT+NODETYPE=1
OK
AT+PANID=7772
OK
ATS11=1
OK
AT+LONGADDR
0001950000000001
ATZ
OK
```

6.4.2 라우터 설정

라우터를 위한 하드웨어 설정은 아래와 같습니다.

• ADC_2와 ADC_3를 각각 TEMP_SENS 및 LIGHT_SENS로 설정합니다.

라우터 설정을 위한 AT 명령어는 아래와 같습니다.

```
AT+NODETYPE=2
OK
AT+PANID=7772
OK
ATS42=1
AT+DESTLA=000195000000001
OK
AT+GPIO=1111144111111
OK
ATZ
OK
```

6.4.3 엔드 디바이스 설정

엔드 디바이스를 위한 하드웨어 설정은 아래와 같습니다.

• ADC_2와 ADC_3를 각각 TEMP_SENS 및 LIGHT_SENS로 설정합니다.

엔드 디바이스 설정을 위한 AT 명령은 아래와 같습니다.

```
AT+NODETYPE=4
OK
AT+PANID=7772
OK
ATS42=1
AT+DESTLA=000195000000001
OK
AT+GPIO=1111144111111
OK
ATZ
OK
```

6.4.4 센서 모니터링

설정이 완료되고 시스템이 동작을 시작하면 코디네이터에 연결된 컴퓨터에서 터미널 프로그램을 동 작하면 라우터 및 엔드디바이스로부터 매 초마다 전달되는 메시지가 계속 표시됩니다.

```
++0001950000000002 | 10000 **000000 | ****, ****, 233E, 006A
++0001950000000003 | 10000 **000000 | ****, ****, 2254, 0B23
++0001950000000002 | 10000 **000000 | ****, ****, 2235, 004E
++0001950000000003 | 10000 **000000 | ****, ****, 226C, 0B8B
```

6.5 설정 예제 #2: 코디네이터 1개 및 엔드 디바이스 2개

다른 시스템 구성을 가정하여 또 하나의 설정 예제를 아래에 제공합니다. 이 설정 예제는 아래와 같 은 구성을 가정하였습니다.

- ZE10 모듈 (개발 보드) 하나가 코디네이터로 동작하며 호스트 컴퓨터에 RS232 케이블로 연 결됩니다
- 두개의 ZE10 모듈(개발 보드)는 엔드 디바이스로서 동작합니다
- 코디네이터는 엔드 디바이스의 출력(LED)의 ON/OFF를 원격으로 조정합니다.

그림 6-4 예제 #2: 코디네이터 1개 및 엔드 디바이스 2개 구성 예

6.5.1 코디네이터 설정

코디네이터의 하드웨어 설정은 아래와 같습니다.

- HOST 스위치를 UART로 설정합니다.
- 호스트 컴퓨터와 개발 보드를 RS232케이블을 이용하여 연결합니다.

코디네이터에서 아래 AT 명령어들을 실행합니다.

AT+NODETYPE=1 OK AT+PANID=7772 OK ATZ OK

6.5.2 엔드 디바이스 설정

엔드 디바이스의 하드웨어 설정은 아래와 같습니다.

• GPIO_OUT 스위치를 LED_ON으로 설정

엔드디바이스에서 아래 AT 명령을 수행합니다.

AT+NODETYPE=4 OK

AT+PANID=7772

OK

AT+GPIO=33333333333333

OK

AT+LONGADDR

0001950000000003

ATZ

OK

6.5.3 LED 출력 제어

코디네이터에서 아래 AT 명령을 수행하여 LED 출력을 제어합니다.

AT+REMOTE=0001950000000003,AT+DIO=00000000000000

AT+REMOTE=0001950000000003,AT+DIO=1111111111111

OK

7 AT 명령어 레퍼런스

7.1 명령어 형식

각 명령어 라인은 AT+명령어+터미네이터로 구성됩니다. 명령어는 다양한 문자열로 구성되어지면 터 미네이터는 <CR> 또는 <NL>으로 구성됩니다. 명령어는 아래중 한가지 형식을 가지게 됩니다.

• 설정값 읽기

AT<Command>?<CR>

• 명령어 수행

AT<Command><CR>

• 설정값 쓰기

AT<Command>=<Parameter 1>,<Parameter 2>,<Parameter 3>,...<CR>

"+"문자열로 표시되는 명령어들은 확장 AT 명령어를 의미합니다.

또한 S-레지스트가 지원됩니다. 한줄내에서 복수 명령어 수행은 지원되지 않습니다.

7.2 표준 AT 명령어

7.2.1 AT

Description	호스트와 ProBee 장비간의 연결 확인
Execute	AT <cr></cr>
Response	OK <cr></cr>

7.2.2 ATB

Description	브로드캐스트 데이터 모드에 들어감. 데이터 모드에 들어간 후 입력되는 데이터는 캐릭터간 타임아웃 (inter-character timeout, S12)에 의하여 각각의 패킷으로 분리되 어 전송됨. 전송 범위는 S35로 결정.
Execute	ATB <cr></cr>
Response	OK <cr></cr>

7.2.3 ATD

	유니캐스트 데이터 모드에	들어감. 주소를 지정하지 않	고 ATD명령만 수행할 경우
D	미리 지정된 IEEE 주소를 :	가지는 원격노드와 연결. 데(기터 모드에 들어간 후 입력
Description	되는 데이터는 캐릭터간 E	나임아웃 (inter-character time	out, S12)에 의하여 각각의
	패킷으로 분리되어 전송됨.		
Execute	ATD <cr></cr>	ATD <nodeld><cr></cr></nodeld>	ATD <ieee><cr></cr></ieee>
Response	OK <cr> or ERROR<cr></cr></cr>		

7.2.4 ATE

Description	Echo(1) 또는 No Echo(0).
Execute	ATE <number><cr></cr></number>
Response	OK <cr></cr>

7.2.5 ATM

	멀티캐스트 데이터 모드에 들어감. 주소를	지정하지 않고 ATM명령만 수행할 경우	
5	미리 지정된 그룹 아이디에 속하는 원격노드들과 연결. 데이터 모드에 들어간 후		
Description	입력되는 데이터는 캐릭터간 타임아웃 (inter-character timeout, S12)에 의하여 각각		
	의 패킷으로 분리되어 전송됨.		
Execute	ATM <cr></cr>	ATM <groupid><cr></cr></groupid>	
Response	OK <cr></cr>		

7.2.6 ATO

Description	마지막 데이터 모드로 다시 들어감
Execute	ATO <cr></cr>
Response	

7.2.7 ATR

Description	응답 여부 결정. Response(1) 또는 No Response(0).
Execute	ATR <number><cr></cr></number>
Response	OK <cr></cr>

7.2.8 ATS

Description	S-레지스터의 값을 읽거나 변경		
Execute	ATS <cr></cr>	ATS <number>?<cr></cr></number>	ATS <number>=<value><cr></cr></value></number>
Desarra	S-레지스터 리스트 및 설	<value><cr></cr></value>	OK*CD>((- EDDOD*CD>
Response	명 표시	OK <cr></cr>	OK <cr>또는 ERROR<cr></cr></cr>

7.2.9 ATZ

Description	노드를 리셋함
Execute	ATZ <cr></cr>
Response	OK <cr></cr>

7.2.10 AT&F

Description	설정값을 팩토리 기본값으로 리셋
Execute	AT&F <cr></cr>
Response	OK <cr></cr>

7.2.11 +++

Description	데이터모드에서 빠져나옴."+++"는 500ms 이내에 모두 입력되어야 함.
Execute	+++
Response	OK <cr></cr>

7.3 노드 관련 정보

7.3.1 AT+LONGADDR or AT+LA

Decemination	64-비트 IEEE 주소 (EUI address, long address) 를 읽음. IEEE 주소는 생산 과정에	
Description	서 각 노드마다 유일하게 할당됨	
Execute	AT+LONGADDR? <cr></cr>	
Response	<ieee address=""><cr></cr></ieee>	
	OK <cr></cr>	

7.3.2 AT+SHORTADDR or AT+SA

	16-비트 노드 아이디 (네트워크 주소, short address)를 읽음. 노드 아이디 "0000"은	
	항상 코디네이터에게 할당. 다른 노드들은 네트워크에 참여시 코디네이터 또는 라	
Description	우터로부터 임의로 할당 받은 노드 아이디를 사용. 노드아이디가 중복되거나 네트	
	워크에 재참여시에는 노드아이디가 변경될수 있음.	
Execute	AT+SHORTADDR? <cr></cr>	
Response	<node id=""><cr></cr></node>	
	OK <cr></cr>	

7.3.3 AT+ADDRDISCOVERY or AT+AD

Barriera	16-비트 노드 아이디를 가지는 노드의 64-비트 주소를 읽거나 64-비트 주소를 가지		
Description	는 노드의 16-비트 노드아이디를 읽어옴.		
Execute	AT+ADDRDISCOVERY= <ieee><cr></cr></ieee>	AT+ADDRDISCOVERY= <nodeid><cr></cr></nodeid>	
Response	<node id=""><cr></cr></node>	<ieee address=""><cr></cr></ieee>	
	OK <cr></cr>	OK <cr></cr>	

7.3.4 AT+OPCH or AT+OC

Description	현재 선택하여 사용하고 있는 802.15.4 채널 번호를 표시. 네트워크에 참여하지 않	
	았거나 채널을 운용하지 않는 경우 0을 리턴	
Execute	AT+OPCH? <cr></cr>	
D	<value><cr></cr></value>	
Response	OK <cr></cr>	

7.3.5 AT+OPPANID or AT+OI

	우 FFFF 리턴
Execute	AT+OPPANID? <cr></cr>
Response	<value><cr></cr></value>
	OK <cr></cr>

7.3.6 AT+OPEPID or AT+OE

Description	현재 선택하여 사용하고 있는 64-비트 확장 PAN ID를 표시. 참여한 네트워크가 없	
	는 경우 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
Execute	AT+OPEPID? <cr></cr>	
Response	<value><cr></cr></value>	
	OK <cr></cr>	

7.3.7 AT+VERSION or AT+VR

Description	펌웨어 버전 표시. 펌웨어 버전은 "PTvx.x" 형식으로 표시됨		
Execute	AT+VERSION? <cr></cr>		
Response	<value><cr></cr></value>		
	OK <cr></cr>		

7.3.8 AT+PRODUCTNAME or AT+PN

Description	제품명 표시
Execute	AT+PRODUCTNAME? <cr></cr>
Response	<value><cr></cr></value>
	OK <cr></cr>

7.4 네트워크 관련 설정

7.4.1 AT+CHMASK or AT+CM

Description	채널 마스크를 표시하거나 설정. 각 채널.	의 해당 비트가 1인 경우 해당 채널 사용
	가능함을 의미. 예를 들어 채널 마스크가	0x00000001 인 경우 채널 0만 사용함을
	의미. 실제로 허용되는 채널들은 12~25의	14 개만 사용 가능. 12~25 채널을 모두 사
	용하려면 채널 마스크 기본값인 0x03FFF000 사용하면 됨.	
Execute	AT+CHMASK? <cr></cr>	AT+CHMASK= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
	OK <cr></cr>	ONCRY DI ERRONCRY
Default	03FFF000	
Range	00001000 - 03FFF000	

7.4.2 AT+PANID or AT+PI

Description	16-비트 PAN ID를 표시하거나 설정함. 코디네이터에서 PAN ID를 0으로 지정하면
Description	코디네이터는 임의의 16-비트 16진수를 생성하여 PAN ID로 사용. 라우터 및 엔드

	디바이스에서 PAN ID를 0 으로 지정하면	네트워크의 PAN ID값에 상관없이 참여를
	시도함.	
Execute	AT+PANID? <cr></cr>	AT+PANID= <value><cr></cr></value>
Decrees	<value><cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
Response	OK <cr></cr>	OK-CR2 01 ERROR-CR2
Default	0000	
Range	0000 -FFFF	

7.4.3 AT+EPID or AT+EI

December	64-비트 확장 PAN ID를 표시하거나 설정:	함. 코디네이터에서 확장 PAN ID 를 0 으로
	지정하면 코디네이터는 자신의 IEEE주소를	를 이용하여 임의의 확장 PAN ID 를 생성.
Description	라우터 및 엔드디바이스에서 확장 PAN ID를 0으로 지정하면 네트워크의 확장 PAN	
	ID값에 상관없이 참여를 시도함.	
Execute	AT+EPID? <cr></cr>	AT+EPID= <value><cr></cr></value>
	<value><cr></cr></value>	OK 40D; EDDOD 40D;
Response	OK <cr></cr>	OK <cr> or ERROR<cr></cr></cr>
Default	000000000000000	
Range	0000000000000 - FFFFFFFFFFFFF	

7.4.4 AT+GROUPID or AT+GI

Description	노드의 16-비트 그룹 아이디를 표시하거니	나 설정함. 그룹 아이디는 멀티캐스트에 사
	용됨.	
Execute	AT+GROUPID? <cr></cr>	AT+GROUPID= <value><cr></cr></value>
	<value><cr></cr></value>	
Response	OK <cr></cr>	OK <cr> or ERROR<cr></cr></cr>
Default	0000	
Range	0000 - FFFF	

7.4.5 AT+POWER or AT+PW

Description	무선 출력 세기 설정 내용을 표시하거나 설정함.	
Execute	AT+POWER? <cr></cr>	AT+POWER= <value><cr></cr></value>
Response	<value><cr> OK<cr></cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
Default	3	
Range	-43 - 3	

7.4.6 AT+STACK or AT+ZS

Description	사용중인 지그비 스택 프로파일을 표시하거나 설정함. 네트워크의 모든 노드들은
Description	동일한 값을 가지고 있어야 함. (0: Network specific, 1: ZigBee, 2: ZigBee Pro)

Execute	AT+STACK? <cr></cr>	AT+STACK= <value><cr></cr></value>
Response	<value><cr> OK<cr></cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
Default	0	
Range	0 - 2	

7.4.7 AT+NODENAME or AT+NN

Description	노드의 이름을 표시하거나 설정함. 노드의 용도로 사용될 수 있음.	이름은 사용자가 장비를 식별하기 위한
Execute	AT+NODENAME? <cr></cr>	AT+NODENAME= <value><cr></cr></value>
D	<value><cr></cr></value>	OK <cr> or FRROR<cr></cr></cr>
Response	OK <cr></cr>	OK-CR2 01 ERROR-CR2
Default	ProBee-ZE	
Range	Up to 16 characters	

7.5 네트워크 구성 및 참여

7.5.1 AT+ASCAN or AT+AS

	주변에서 운용중인 네트워크를 검색하여 표시. 최대 5초까지 소요될 수 있음.		
Description	(주의: 명령을 수행하는 노드가 엔드디바이스의 패런트 노드일 경우 링크 오류		
	발생할 수 있음)		
Execute	AT+ASCAN <cr></cr>	AT+ASCAN= <channel mask=""><cr></cr></channel>	
	<pre><channel> <pan id=""> <epid> <joinable> <s< pre=""></s<></joinable></epid></pan></channel></pre>	stack profile>	
Response	List of the existing networks		
	OK <cr></cr>		

7.5.2 AT+ESCAN or AT+ES

	00,000,000,000	
	간섭을 최소화 하기 위하여 각 채널들의	에너지 스캔을 수행. 최대 5초까지 소요될
Description	수 있음. (주의: 명령을 수행하는 노드가	엔드디바이스의 패런트 노드일 경우 링크
	오류를 발생할 수 있음)	
Execute	AT+ESCAN <cr></cr>	AT+ESCAN= <channel mask=""><cr></cr></channel>
	<channel> <rssi></rssi></channel>	
Response	List of the RSSI for each channel	
	OK <cr></cr>	

7.5.3 AT+DSCAN or AT+DS

Description	현재 네트워크에 속해있는 노드들을 검색하여 표시. 차일드 노드를 가지고 있는 경우 "CLDn"으로 표시됨. 스캔 지속 시간이나 노드 형태, 노드 이름등을 제한하여 검
Description	색하는것도 가능함. 로컬 노드의 정보는 "*"로 표시됨.
Execute	AT+DSCAN <cr> or</cr>

	AT+DSCAN= <scan duration=""><cr> or</cr></scan>	
	AT+DSCAN= <scan duration="">,<node type=""><cr> or</cr></node></scan>	
	AT+DSCAN= <scan duration="">,<node type="">,<node name=""><cr></cr></node></node></scan>	
	<node type=""> <ieee address=""> <node id=""> <version> <pre> <pre>product name> <node name=""></node></pre></pre></version></node></ieee></node>	
Response	List of the existing nodes and information	
	OK <cr></cr>	
Dongo	Scan duration: 1 – 10	
Range	Node type: 0 – 4 (Zero indicates all node types.)	

7.5.4 AT+NODETYPE or AT+NT

110.1 111.1102 = 111 = 0.111.111			
Description	,	코디네이터, 2: 라우터, 3: 엔드 디바이스,	
	4: 슬리피 엔드 디바이스)		
Execute	AT+NODETYPE? <cr></cr>	AT+NODETYPE= <value><cr></cr></value>	
Response	<value><cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>	
	OK <cr></cr>		
Default	0		
Range	0 - 4		

7.5.5 AT+PERMIT or AT+PJ

Description	타 노드의 네트워크 참여를 허용함 (0~25	4초, 255=항상 허용). 엔드디바이스에서는
	명령이 수행 안됨.	
Execute	AT+PERMIT <cr></cr>	AT+PERMIT= <value><cr></cr></value>
Response	OK <cr></cr>	
Range	0 - 255	

7.5.6 AT+LEAVE or AT+LV

Description	현재의 네트워크를 떠남.
Execute	AT+LEAVE <cr></cr>
Response	OK <cr></cr>

7.6 엔드 디바이스

7.6.1 AT+SLEEP or AT+SM

Description	엔드디바이스인 경우 즉시 슬립 모드로 들어감
Execute	AT+SLEEP <cr></cr>
Response	OK <cr></cr>

7.6.2 AT+PARENTLA or AT+PL

Description	부모 노드의 64- 비트 IEEE 주소를 읽음.
Execute	AT+PARENTLA? <cr></cr>

Response	<ieee address=""><cr></cr></ieee>
	OK <cr></cr>

7.6.3 AT+PARENTSA or AT+PS

Description	부모 노드의 16-비트 노드 아이디를 읽음.
Execute	AT+PARENTSA? <cr></cr>
Response	<node id=""><cr></cr></node>
	OK <cr></cr>

7.6.4 AT+CHILDTABLE or AT+CT

Description	엔드 디바이스들로 구성된 자식 테이블을 읽음.
Execute	AT+CHILDTABLE? <cr></cr>
	<node type=""> <ieee address=""> <node id=""></node></ieee></node>
Response	List of the child nodes
	OK <cr></cr>

7.7 데이터 송수신

7.7.1 AT+DESTLA or AT+DL

Description	유니캐스트 통신의 대상이 되는 원격 노.	드의 64-비트 IEEE 주소를 표시하거나 설
	정함	
Execute	AT+DESTLA? <cr></cr>	AT+DESTLA= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
	OK <cr></cr>	
Default	000000000000000	
Range	0000000000000 - FFFFFFFFFFFFF	

7.7.2 AT+DESTGROUPID or AT+DG

Description	멀티캐스트 통신의 대상이 되는 그룹의 16-비트 그룹 아이디를 표시하거나 설정함	
Execute	AT+DESTGROUPID? <cr></cr>	AT+ DESTGROUPID= <value><cr></cr></value>
Response	<value><cr> OK<cr></cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
Default	0000	
Range	0000 -FFFF	

7.7.3 AT+SINKINFO or AT+SI

Description	싱크 노드의 16-비트 주소 및 64-비트 주소를 표시함. 네트워크에 싱크 노드가 존 재하지 않을 경우 "FFFFFFFFFFFFFFF" 와 "FFFF" 를 리턴함
Execute	AT+SINKINFO? <cr></cr>
Response	<ieee address="">,<nodeid><cr></cr></nodeid></ieee>

	OK <cr></cr>	
--	--------------	--

7.7.4 AT+MAXPAYLOAD or AT+MP

Description	한 패킷에 보낼수 있는 데이터의 최대 크기를 표시. 암호화 사용 여부에 따라서 값
	이 달라짐.
Execute	AT+MAXPAYLOAD? <cr></cr>
D	<value><cr></cr></value>
Response	OK <cr></cr>

7.7.5 AT+TRASNSMITMODE or AT+TM

	데이터 전송 모드를 표시하거나 설정함.	설정된 데이터 전송 모드는 리부팅되어도
Description	유지됨. (0: none, 1: 유니캐스트, 2: 멀티캐스트, 3: 브로드캐스트, 4: 싱크 노드로 유	
	니캐스트)	
Execute	AT+TRANSMITMODE? <cr></cr>	AT+TRANSMITMODE= <value><cr></cr></value>
_	<value><cr></cr></value>	014.00
Response	OK <cr></cr>	OK <cr> or ERROR<cr></cr></cr>
Default	0	
Range	0 - 4	

7.7.6 AT+UNICAST or AT+UC

Description	유니캐스트로 특정 노드에 데이터 전송. 명령당 최대 90 바이트 (암호화 사용. 바이트)까지 데이터 전송 가능.	시 72
Execute	AT+UNICAST= <ieee>,<data><cr> AT+UNICAST=<nodeid>,<data><cr< th=""><th>,</th></cr<></data></nodeid></cr></data></ieee>	,
Response	OK <cr></cr>	

7.7.7 AT+MULTICAST or AT+MC

Description	특정 그룹에 멀티캐스트로 데이터 전송.
Execute	AT+MULTICAST= <groupid>,<data><cr></cr></data></groupid>
Response	OK <cr></cr>

7.7.8 AT+BROADCAST or AT+BC

Description	네트워크에 참여한 모든 노드들에게 브로드캐스트로 데이터 전송. 전송 범위는			
Description	S35 레지스트리에 의해 설정된다.			
Execute	AT+BROADCAST= <data><cr></cr></data>			
-xioodio	711 Bite 12 Great adda Great			

7.7.9 AT+REMOTE or AT+RC

Description	원격 노드의 설정값을 표시하거나 변경. 실행 가능한 명령어 리스트를 보기위해서는
	AT+REMOTE <cr> 명령 수행.</cr>

Execute	AT+REMOTE= <addr>,<cmd>?<cr></cr></cmd></addr>	AT+REMOTE= <addr>,<cmd>=<value><cr></cr></value></cmd></addr>
Response	<value><cr></cr></value>	OK <cr></cr>
	OK <cr></cr>	

7.8 UART

7.8.1 AT+BAUDRATE or AT+UB

Description	시리얼 포트의 속도(Baudrate)를 표시하거나 설정	
Execute	AT+BAUDRATE? <cr></cr>	AT+BAUDRATE= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
	OK <cr></cr>	
Default	9600	
Range	300 - 230400	

7.8.2 AT+DATABIT or AT+UD

Description	시리얼 포트의 데이터비트 설정을 표시하거나 변경	
Execute	AT+DATABIT? <cr></cr>	AT+DATABIT= <value><cr></cr></value>
Response	<value><cr> OK<cr></cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
Default	8	
Range	7 - 8	

7.8.3 AT+PARITY or AT+UP

Description	시리얼 포트의 패리티 (parity) 설정을 표시하거나 변경	
Execute	AT+PARITY? <cr></cr>	AT+PARITY= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
	OK <cr></cr>	OKCR2 01 ERRORCR2
Default	0	
Range	0 - 2	

7.8.4 AT+STOPBIT or AT+US

Description	시리얼 포트의 스탑 비트 (stop bit) 설정을 표시하거나 변경	
Execute	AT+STOPBIT? <cr></cr>	AT+STOPBIT= <value><cr></cr></value>
Response	<value><cr> OK<cr></cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
Default	1	
Range	1 - 2	

7.8.5 AT+FLOWCTRL or AT+UF

	제어, 2: 하드웨어 흐름제어)	
Execute	AT+FLOWCTRL? <cr></cr>	AT+FLOWCTRL= <value><cr></cr></value>
Response	<value><cr> OK<cr></cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
Default	2	
Range	0 - 2	

7.9 보안

7.9.1 AT+SECURITY or AT+SE

Description	보안 수준 표시하거나 변경 (0: 보안 없음, 1: 보안 사용). 네트워크 상의 모든 노드들은 같은 보안 수준으로 설정되어야 함.	
Execute	AT+SECURITY? <cr></cr>	AT+SECURITY= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
	OK <cr></cr>	OK-CR2 01 ERROR-CR2
Default	0	
Range	0 - 1	

7.9.2 AT+LINKKEY or AT+LK

Description	128-비트 링크 키를 표시하거나 설정. 입력	역값이 0이면 임의의 128비트 키를 생성
Execute	AT+LINKKEY? <cr></cr>	AT+LINKKEY= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK (OD) EDDOD (OD)
	OK <cr></cr>	OK <cr> or ERROR<cr></cr></cr>
Default	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	

7.9.3 AT+NWKKEY or AT+NK

Description	128-비트 네트워크 키를 표시하거나 설정	형. 입력값이 0 이면 임의의 128 -비트 키를
	생성	
Execute	AT+NWKKEY? <cr></cr>	AT+NWKKEY= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK (CD) or EDDOD (CD)
	OK <cr></cr>	OK <cr> or ERROR<cr></cr></cr>
Default	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	

7.9.4 AT+UPDATEKEY or AT+UK

Description	네트워크 키를 업데이트 (코디네이터에서만 실행 가능). 슬리피 엔드 디바이스의
	경우 네트워크 업데이트 명령을 받는데 지연이 있을수 있으므로, 네트워크 키 업데
Description	이트 명령 후 실제로 새로 업데이트 된 네트워크기를 사용하라는 메시지는 30초이
	후에 네트워크에 전달 됨.
Execute	AT+UPDATEKEY <cr></cr>

Response	OK <cr> or ERROR<cr></cr></cr>
----------	--------------------------------

7.10 GPIO

7.10.1 AT+GPIO or AT+IO

Decemention	GPIO 각각 또는 전체의 동작 모드 설정 상태를 표시하거나 변경. GPIO3-6은 4의	
Description	값만을 가질수 있으며 나머지 GPIO는 0-3 및 5의 값을 가질수 있음.	
Execute	AT+GPIO? <cr> or</cr>	AT+GPIO= <values><cr> or</cr></values>
Execute	AT+GPIO <number>?<cr></cr></number>	AT+GPIO <number>=<value><cr></cr></value></number>
Decrees	<value><cr></cr></value>	OV.cCDs or EDDOD.cCDs
Response	OK <cr></cr>	OK <cr> or ERROR<cr></cr></cr>
Default	5550000055550	
	GPIO3-6: 0-5, the others: 0-3 and 5 0: 사용 안함	
	1: 디지털 입력	
Range	2: 디지털 출력, 기본값 = low 3: 디지털 출력, 기본값 = high 4: 아날로그 입력, 싱글 엔디드 (GPIO3~6만 적용가능) 5: 핀에 할당된 특정 기능용으로 사용 (표 5-2 참조)	

7.10.2 AT+DIO

	디지털 입출력 값을 표시하거나 변경함. 모든 GPIO핀은 디지털 입출력용으로 사용	
Description	가능하며 값은 0 또는 1을 가짐. 아날로그 입력으로 설정된 GPIO핀의 값은 "*"로	
	표시됨.	
Cycourte	AT+DIO? <cr> or</cr>	AT+DIO= <values><cr> or</cr></values>
Execute	AT+DIO <number>?<cr></cr></number>	AT+DIO <number>=<value><cr></cr></value></number>
Response	<value><cr></cr></value>	OV.cop. or EDDOD.cop.
	OK <cr></cr>	OK <cr> or ERROR<cr></cr></cr>
Default	00000000000	
Range	00000000000 - 111111111111	

7.10.3 AT+AI

Description	아날로그 입력값을 표시. GPIO3-6만 적용 경우에는 "*"로 표시.	가능. GPIO 가 디지털 입출력으로 설정된
Execute	AT+AI? <cr></cr>	AT+AI <number>?<cr></cr></number>
Decrees	<value>,<value>,<value><cr></cr></value></value></value>	<value><cr></cr></value>
Response	OK <cr></cr>	OK <cr></cr>

7.10.4 AT+SOURCELA or AT+SL

Description	GPIO 원격 제어를 위한 소스	노드의 64- 비트 IEEE 주소를 표시하거나 설정함. 특
-------------	-------------------	---

	정 주소를 설정함으로써 제한을 둘 수 있 로 설정되어 있다면 어떤 노드든지 로컬	으며 기본값인 "FFFFFFFFFFFFFFF" 으 노드의 GPIO 상태를 제어할 수 있도록
	허용함.	
Execute	AT+SOURCELA? <cr></cr>	AT+SOURCELA= <value><cr></cr></value>
Doggoogo	<value><cr></cr></value>	OK <cr> or ERROR<cr></cr></cr>
Response	OK <cr></cr>	OK-CR2 01 ERROR-CR2
Default	FFFFFFFFFFFF	
Range	0000000000000 - FFFFFFFFFFFFF	

7.11 펌웨어 업로드 및 도움말

7.11.1 AT+BOOTLOAD or AT+BL

Description	펌웨어 업로드를 위하여 부트로더를 실행함 (blank: 로컬노드, 1: 원격노드, 2: 로컬노드의 펌웨어를 원격 노드에 복사). 로칼 슬리피 엔드 디바이스를 이용하여 원격노드의 펌웨어를 업로드하는것은 허용되지 않음. 로컬 노드의 UART는115200bps, 8		
	data bits, no parity, 1 stop bit and none flow control 로 설정되어야 함.		
Execute	AT+BOOTLOAD <cr></cr>	AT+BOOTLOAD= <number>,<ieee><cr></cr></ieee></number>	
		Please start .ebl upload image <cr> or</cr>	
	Bootloader menu	Start cloning <cr></cr>	
Response		Bootloader menu	
	Serial upload complete		
		Bootload Complete!	

7.11.2 AT+HELP or AT+HP

Description	모든 명령어들을 표시			
Execute	AT+HELP <cr></cr>			
	Available AT Commands			
Response				
	OK <cr></cr>			

8 AT 명령 예제

8.1 네트워크 설정

8.1.1 코디네이터

AT+NODETYPE=1<CR> # set node type (coordinator) OK # Response ATZ<CR> # Apply the change OK # Response

8.1.2 라우터

AT+NODETYPE=2 <cr></cr>	# set node type (router)
OK	# Response
ATZ <cr></cr>	# Apply the change
OK.	# Response

8.1.3 엔드 디바이스

AT+NODETYPE=3 <cr></cr>	<pre># set node type (end-device)</pre>
OK	# Response
ATZ <cr></cr>	# Apply the change
OK	# Response

8.1.4 슬리피 엔드 디바이스

AT+NODETYPE=4 <cr></cr>	<pre># set node type (sleepy end-device)</pre>
OK	# Response
ATZ <cr></cr>	# Apply the change
OK	# Response

8.1.5 네트워크 지정

AT+CHMASK=1000 <cr></cr>	# set 32-bit channel mask (ch: 12)
ок	# Response
AT+PANID=0001 <cr></cr>	# set 16-bit PAN ID (0001)
ок	# Response
AT+EPID=000000000000001 <cr></cr>	# set 64-bit extended PAN ID (0000000000000001)
ок	# Response

```
AT+ADDRDISCOVERY=1FEF<CR> # get 64-bit address using 16-bit short address
00019500002FDC15
                            # Response
AT+REMOTE=1FEF, AT+LONGADDR<CR>
                                 # get 64-bit address of remote node (1FEF)
00019500002FDC15
OK
                            # Response
AT+DSCAN<CR>
                            # get the information of other nodes in the network
ZC* | 00019500002FDC40 | 0000 | PTv1.0 | ZE10 | ZE10_COM3
ZR | 00019500002FDC15|1FEF|PTv1.0|ZE10|ZE10_COM4
CLD0 | 00019500002FDC17
CLD1 | 00019500002FDC14
ZED | 00019500002FDC17 | 7E34 | PTv1.0 | ZS10 | ZS10_COM5
SED | 00019500002FDC14|F5AC|PTv1.0|ZU10|ZU10_COM6
OK
                            # Response
```

8.2 데이터 전송

커맨드 모드 8.2.1

```
# send unicast message(MSG01) to specific node using 64-bit long
address(0x00019500002FDC15)
AT+UNICAST=00019500002FDC15, MSG01<CR>
OK
                               # Response
# send unicast message(MSG02) to specific node using 16-bit short
address(0x1FEF)
AT+UNICAST=1FEF, MSG02<CR>
OK
                               # Response
# send multicast message(MSG03) to specific group(0001)
AT+MULTICAST=0001, MSG03<CR>
OK
                               # Response
# send broadcast message(MSG04) to current network and the range is
determined by S35.
AT+BROADCAST=MSG04<CR>
OK
                               # Response
```

8.2.2 데이터 모드

```
ATD<CR>
                    # enter the unicast mode using destination long address
OK
                    # Response
                    # send data(MSG05) and leave data mode
MSG05+++
```

ATD0000<CR> # enter the unicast mode using 16-bit short address

OK # Response

MSG06+++ # send data(MSG06) and leave data mode

ATD00019500002FDC40<CR> # enter the unicast mode using 64-bit long address

Response

MSG07+++ # send data(MSG07) and leave data mode

ATM<CR> # enter the multicast mode using destination group ID

OK # Response

send data(MSG08) and leave data mode MSG08+++

ATM0001<CR> # enter the multicast mode using 16-bit group ID

OK # Response

MSG09+++ # send data(MSG09) and leave data mode

ATB<CR> # enter the broadcast mode

OK # Response

MSG10+++ # send data(MSG10) and leave data mode

AT+TRANSMITMODE=1<CR> # set transmit mode

Response

ATZ<CR> # Apply the change

OK # Response

send data(MSG11) and leave data mode MSG11+++

ATO<CR> # return to the current data mode

8.3 UART 설정

AT+BAUDRATE=115200<CR> # set baud rate (115,200bps)

OK # Response

AT+DATABIT=8<CR> # set data bit (8bit)

OK # Response

AT+PARITY=0<CR> # set parity (none)

OK # Response

AT+STOPBIT=1<CR> # set stop bit (1bit)

OK # Response

AT+FLOWCTRL=2<CR> # set flow control (hardware)

OK # Response

ATZ<CR> # Apply the change

OK # Response

8.4 보안

AT+SECURITY=1<CR> # set security level (ON) OK # Response AT+LINKKEY=5A46...21<CR> # set the 128-bit trust center link key (5A46…21) ATZ<CR> # Apply the change OK # Response AT+NWKKEY=0<CR> # set the 128-bit network key (random key) OK # Response AT+UPDATEKEY<CR> # update the changed network key OK # Response

GPIO 8.5

AT+GPIO=5500044112233<CR> # set GPIO configuration OK # Response ATZ<CR> # Apply the change OK # Response AT+GPIOO<CR> # check the current GPIO status (GPIO0) 5 OK # Response AT+DIO<CR> # check the current DIO value 10000**000011 OK # Response AT+AI<CR> # check the current AI value ****, ****, 2EE0, 2EE0 OK # Response

펌웨어 업로드 8.6

8.6.1 로컬 노드

enter the bootloader menu for uploading firmware. Note that UART of local node should be set to 115200-8-N-1-N.

AT+BOOTLOAD<CR>

Press ENTER...

EM250 Bootloader v20 b09

- 1. upload ebl
- 2. run

3. ebl info

BL > # press "1" and upload ebl file by X-modem

begin upload CCCCCCCCCCC

press "2" or reset after upload is done Serial upload complete

8.6.2 원격 노드

upload firmware to a remote node using 64-bit long address. Note that UART of local node should be set to 115200-8-N-1-N.

AT+BOOTLOAD=1,00019500002FDC40<CR>

Please start .ebl upload image ...

CCCCCCCCCCC # upload ebl file by X-modem

Bootload Complete! # succeed to upload

8.6.3 클론(펌웨어 복사)

clone the firmware of the local node to a remote node using 64-bit long address. Note that UART of local node should be set to 115200-8-N-1-N.

AT+BOOTLOAD=2,00019500002FDC40<CR>

Start cloning ...

Bootload Complete! # succeed to upload

9 **S-**레지스터

Register number	Descriptions				
11	커맨드 모드에서 수신한 메시지 표시				
12	명령 에코 표시				
13	명령 응답 표시				
14	LED 상태 관리				
21	글자간 시간 제한 (Inter character timeout)				
22	네트워크 참여 허용 시간 제한 (Permit joining timeout)				
23	전송 출력 모드 (TX power mode)				
31	Application-ACK 사용				
32	전송 재시도 회수				
33	전송 시간 제한				
34	간접 전송 시간 제한				
35	브로드캐스트 범위				
36	멀티캐스트/브로드캐스트 홉 (Hop) 횟수				
37	멀티캐스트 비멤버 홉 횟수				
38	멀티캐스트/브로드캐스트 로칼 메시지 수신				
39	자체 데이터 모드 메시지 수신				
41	GPIO 풀업 (pull-up)				
42	GPIO 감시 주기				
43	GPIO 감시 노드				
44	GPIO 변화 감지 샘플링				
45	GPIO 원격 제어				
51	패런트 노드용 폴(poll) 시간 제한				
52	슬리피 노드용 폴(poll) 주기				
53	슬립 지속 시간				
54	스탠바이 시간 제한				
55	재함여 시간 제한				
56	엔드 디바이스 폴(poll) 주기				
61	싱크 (Sink) 광고 주기				
62	다중 경로 요청 주기				

9.1 디스플레이 옵션

9.1.1 S11

Description	커맨드 모드에서 수신한 메시지의 표시 여부를 표시 및 설정한다.			
Execute	ATS11? <cr></cr>	ATS11= <value><cr></cr></value>		
Response	<value><cr></cr></value>	OK <cr></cr>		

	OK <cr></cr>	
Default	0	
Range	0 - 1	

9.1.2 S12

Description	명령의 에코 여부를 표시 및 설정한다.		
Execute	ATS12? <cr></cr>	ATS12= <value><cr></cr></value>	
Response	<value><cr></cr></value>	OK <cr></cr>	
	OK <cr></cr>		
Default	1		
Range	0 – 1		

9.1.3 S13

Description	명령의 응답 여부를 표시 및 설정한다.			
Execute	ATS13? <cr></cr>	ATS13= <value><cr></cr></value>		
Response	<value><cr></cr></value>	OK <cr></cr>		
	OK <cr></cr>			
Default	1			
Range	0 - 1			

9.1.4 S14

	LED 모드를 표시 및 설정한다.					
Description	0: LED 항상 꺼짐					
Description	1: 노드가 슬립 중이면 LED꺼짐					
	2: 특정 조건에서 LED항상 동작					
Execute	ATS14? <cr> ATS14=<value><cr></cr></value></cr>					
Response	<value><cr></cr></value>					
	OK <cr></cr>					
Default	1					
Range	0 - 2					

9.2 네트워크 설정

9.2.1 S21

Description	데이터	전송용	글자간	시간제한	(inter	character	timeout)	0 0	천분의	일초
Description	(millised	onds)단위	위로 표시	및 설정						
Execute	ATS21?	<cr></cr>				ATS21= <val< th=""><th>lue><cr></cr></th><th></th><th></th><th></th></val<>	lue> <cr></cr>			
Response	<value></value>	<cr></cr>				OK (CD)				
	OK <cr:< td=""><td>></td><td></td><td></td><td></td><th>OK<cr></cr></th><td></td><td></td><td></td><td></td></cr:<>	>				OK <cr></cr>				
Default	100									

Range	0 - 10000
-------	-----------

9.2.2 S22

Description	네트워크 참여 허용 시간제한을 초단위로	표시 및 설정. 255로 설정되면 항상 참여
	허용.	
Execute	ATS22? <cr></cr>	ATS22= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK JOD
	OK <cr></cr>	OK <cr></cr>
Default	60	
Range	0 - 255	

9.2.3 S23

Description	출력 부스트 모드를 표시 및 설정. 이 모	드가 설정되면 수신 감도는 1 dB, 출력은
	2dB 향상됨.	
Execute	ATS23? <cr></cr>	ATS23= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK (OD)
	OK <cr></cr>	OK <cr></cr>
Default	0	
Range	0 – 1	

9.3 데이터 전송

9.3.1 S31

	1	r
Description	Application-ACK 모드 사용 여부 표시 및 수신노드로부터 데이터 수신여부 ACK을 한 노드들은 동일하게 설정되어 있어야 힘	받지 않으면 재 전송함. 데이터 통신을 위
Execute	ATS31? <cr></cr>	ATS31= <value><cr></cr></value>
D	<value><cr></cr></value>	OK <cr></cr>
Response	OK <cr></cr>	UK-CR>
Default	1	
Range	0 – 1	

9.3.2 S32

Description	Applicatin-ACK모드에서 전송 재시도 횟수 표시 및 설정.	
Execute	ATS32? <cr></cr>	ATS32= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr></cr>
	OK <cr></cr>	
Default	5	
Range	0 – 99	

9.3.3 S33

Description	Applicatin-ACK모드에서 전송 노드가 수신	확인을 기다리는 시간 제한을 천분의 일
	초단위로 표시 및 설정.	
Execute	ATS33? <cr></cr>	ATS33= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr></cr>
	OK <cr></cr>	
Default	500	
Range	0 – 10000	

9.3.4 S34

Description	간접 전송 시간제한을 천분의 일초단위로	표시 및 설정. 차일드 노드에게 데이터를
Description	간접 전달시 이 시간만큼만 데이터를 보관함.	
Execute	ATS34? <cr></cr>	ATS34= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK (CD)
	OK <cr></cr>	OK <cr></cr>
Default	7680	
Range	0 – 30000	

9.3.5 S35

Description	브로드캐스트 범위 표시 및 설정. 브로드캐스트 전달 범위에 슬리피 엔드 디바이스 를 포함하면 자원 소모가 많아짐.	
Execute	ATS35? <cr> ATS35=<value><cr></cr></value></cr>	
Response	<value><cr> OK<cr></cr></cr></value>	OK <cr></cr>
Default	2	
Range	0-2 0: 모든 라우터에게 전달 1: 슬리피 엔드 디바이스를 제외하고 브로 2: 모든 노드에게 전달	·드캐스트

9.3.6 S36

3.0.0		
Description	멀티캐스트 및 브로드캐스트 메시지에서	메시지가 중계되는 최대 홉 회수를 표시
	및 설정. 0으로 설정되면 최대 홉 회수(30)를 사용함.	
Execute	ATS36? <cr></cr>	ATS36= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK 40D:
	OK <cr></cr>	OK <cr></cr>
Default	0	
Range	0 – 10	

9.3.7 S37

Description	그룹에 속하지 않는 노드들이 메시지를 설정함. 0으로 설정되너가 7 이상의 값으로	
Execute	ATS37? <cr></cr>	ATS37= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK 40D-
	OK <cr></cr>	OK <cr></cr>
Default	0	
Range	0 – 7	

9.3.8 S38

Description	S38이 1로 설정되면 해당 노드는 자신이 지도 수신합니다.	보낸 멀티캐스트 또는 브로드캐스트 메시
Execute	ATS38? <cr></cr>	ATS38= <value><cr></cr></value>
Response	<value><cr> OK<cr></cr></cr></value>	OK <cr></cr>
Default	0	
Range	0 – 1	

9.3.9 S39

Description	현재 노드의 데이터 모드와 동일한 데이터 형식만 수신할 것인지를 결정. 예를 들어 로컬 노드의 S39가 1이고 ATB <cr>나 AT+TM=3<cr> 등에 의해 broadcast mode로 설정되어 있다면, 다른 노드로부터 오는 데이터 중 unicast, multicast 타입</cr></cr>	
	은 수신하지 않음.	
Execute	ATS39? <cr></cr>	ATS39 = <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr></cr>
	OK <cr></cr>	
Default	0	
Range	0 - 1	

9.4 GPIO

9.4.1 S41

Description	GPIO의 풀업/풀다운 설정. 풀다운 = 0, 풀업 = 1	
Execute	ATS41? <cr> ATS41=<value><cr></cr></value></cr>	
Response	<value><cr></cr></value>	OK <cr></cr>
	OK <cr></cr>	
Default	0	
Range	0 - 1	

9.4.2 S42

Description	GPIO 감시 주기를 초단위로 표시 및 설정. 0 이 아닌 값을 가지면 이에 해당하는	
Description	주기마다 지정된 IEEE 주소를 가지는 노드에 현재 GPIO 값을 전달.	
Execute	ATS42? <cr> ATS42=<value><cr></cr></value></cr>	
Response	<value><cr></cr></value>	OK <cr></cr>
	OK <cr></cr>	
Default	0	
Range	0 – 10000	

9.4.3 S43

Description	GPIO 값을 전송할 노드를 설정. 0 이면	AT+DESTLA or AT+DL로 설정된 노드로
	GPIO 값을 전송하고, 1이면 싱크 노드로	GPIO 값을 전송
Execute	ATS43? <cr></cr>	ATS43= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr></cr>
	OK <cr></cr>	OKKCR>
Default	0	
Range	0 – 10000	

9.4.4 S44

	GPIO 변화 감지 샘플링 모드를 표시 및	설정. 이 모드가 설정되어 있으면 노드는
Description	GPIO 상태가 변경되었을 때 즉시 지정된 IEEE 주소를 가지는 원격 노드로 GPIO	
	값을 전달. 0 이면 사용안함.	
Execute	ATS44? <cr> ATS44=<value><cr></cr></value></cr>	
5	<value><cr></cr></value>	OK (CD)
Response	OK <cr></cr>	OK <cr></cr>
Default	0	
Range	0 – 1	

9.4.5 S45

Description	GPIO 원격 제어 모드 표시 및 설정. GPI 디지털 출력으로 설정된 원격 노드의 I/O	
Description	있어야 사용가능.	we to 76. 3.10 1717 2040
Execute	ATS45? <cr></cr>	ATS45= <value><cr></cr></value>
5	<value><cr></cr></value>	OK (CD)
Response	OK <cr></cr>	OK <cr></cr>
Default	0	
Range	0 – 1	

9.5 엔드 디바이스

9.5.1 S51

	패런트 노드일 경우 폴 시간제한을 초단위로 표시 및 설정. 이 시간 동안 엔드	
Description	바이스나 슬리피 엔드 디바이스가 폴 요	청을 하지 않으면 차일드 노드를 차일드
	테이블에서 삭제.	
Execute	ATS51? <cr></cr>	ATS51= <value><cr></cr></value>
_	<value><cr></cr></value>	OK OF
Response	OK <cr></cr>	OK <cr></cr>
Default	60	
Range	0 – 4177920	

9.5.2 S52

Description	슬리피 엔드 디바이스가 슬립모드에서 깨어나서 다시 슬립하기 전까지의 시간동안	
Description	정기적으로 패런트 노드를 폴링 하는 주기를 천분의 일초단위로 표시 또는 설정	
Execute	ATS52? <cr></cr>	ATS52= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK OD:
	OK <cr></cr>	OK <cr></cr>
Default	100	
Range	0 - 10000	

9.5.3 S53

	슬립 지속 시간을 ¼초단위로 표시 또는 설정. 슬리피 엔드 디바이스는 슬립 지속	
Description	시간이 경과하면 슬립 모드에서 깨어나 패런트노드를 폴하고 일정시간동안 데이터	
Description	가 없으면 다시 슬립모드로 들어감. 슬립 지속 시간이 패런트 노드에서 지정한 폴	
	시간제한보다 길어지면 패런트 노드는 차일드 노드를 차일드 테이블에서 삭제함.	
Execute	ATS53? <cr></cr>	ATS53= <value><cr></cr></value>
Posnonso	<value><cr></cr></value>	OK <cr></cr>
Response	OK <cr></cr>	UN-UR>
Default	8	
Range	0 – 16711680	

9.5.4 S54

	슬리피엔드 디바이스가 슬립모드에서 깨어나 마지막 지그비 또는 시리얼 데이터를		
Description	받은 후 다시 슬립모드에 들어가기전까지 대기하는 시간을 초단위로 표시 또는 설		
	정.		
Execute	ATS54? <cr></cr>	ATS54= <value><cr></cr></value>	
Response	<value><cr></cr></value>	OK (OD)	
	OK <cr></cr>	OK <cr></cr>	
Default	5		

Range	0 – 10000
-------	-----------

9.5.5 S55

Description	재참여 시간제한을 초단위로 표시 또는 · 동안 패런트 노드와 연결이 끊어지면 엔. 여 네트워크에 재 참여하는 것을 시도함.	
Execute	ATS55? <cr></cr>	ATS55= <value><cr></cr></value>
Dognanaa	<value><cr></cr></value>	OK (CD)
Response	OK <cr></cr>	OK <cr></cr>
Default	10	
Range	0 – 10000	

9.5.6 S56

Description	엔드 디바이스가 정기적으로 패런트 노드	를 폴링 하는 주기를 초단위로 표시 또는
	설정	
Execute	ATS56? <cr></cr>	ATS56= <value><cr></cr></value>
Response	<value><cr></cr></value>	OK <cr></cr>
	OK <cr></cr>	
Default	5	
Range	0 - 10000	

9.6 싱크 (Sink)

9.6.1 S61

Description	싱크 노드의 광고 주기를 초단위로 표시 면 해당 노드는 싱크로 설정되고, 이 값		
	트함.0 이면 싱크 노드로 사용 안함을 의미.		
Execute	ATS61? <cr></cr>	ATS61= <value><cr></cr></value>	
Response	<value><cr></cr></value>	OK <cr></cr>	
	OK <cr></cr>		
Default	0		
Range	0 – 10000		

9.6.2 S62

Description	MTOR (Many-to-one Route, 다대일 경로) 요청 주기를 표시 및 설정. MTOR 요청이
	접수되면 모든 노드는 MTOR 요청을 한 노드로의 경로를 계산하여 기억함. 해당
	노드가 싱크 노드일 경우 유용하게 사용되어지나 싱크 노드가 아니라고 MTOR 요
	청을 보낼수 있음.

Execute	ATS62? <cr></cr>	ATS62= <value><cr></cr></value>
Response	<value><cr> OK<cr></cr></cr></value>	OK <cr></cr>
Default	0	
Range	0 – 10000	

10 핀 배열

Pin Assignment	NO
GND	28
NC	27
NC	26
NC	25
GPIO_7	24
GPIO_9 / RTS	23
GPIO_8 / CTS	22
UART_TXD	21
UART_RXD	20
GPIO_10 / DTR	19
GPIO_11 / DSR	18
GPIO_12	17
GND	16
GND	15

그림 10-1 핀 배열

표 10-1 핀 할당 내역

Pin	NAME	Default Function	Direction	Description
1	GND	-	-	Ground
2	NC	-	-	Not Connect
3	GPIO_1	DIO_1	IN/OUT	Digital I/O, Power LED
4	GPIO_2	DIO_2	IN/OUT	Digital I/O, Status LED
5	GPIO_0	DIO_0	INOUT	Digital I/O, Permit joining input
6	Factory Reset	Factory Reset	IN	Digital I/O, Factory reset input
7	GPIO_3	DIO_3	IN/OUT	Digital I/O / ADC_0
8	GPIO_4	DIO_4	INOUT	Digital I/O / ADC_1
9	H/W_/Reset	-	IN	Reset, Active low, > 5ms to cause a reset
10	GPIO_5	DIO_5	INOUT	Digital I/O / ADC_2
11	GPIO_6	DIO_6	INOUT	Digital I/O / ADC_3
12	+3V3	-	IN	Power supply for system, 3.3V
13	NC	-	-	Not Connect
14	GND	-	-	Ground
15	GND	-	-	Ground
16	GND	-	-	Ground
17	GPIO_12	DIO_12	IN/OUT	Digital I/O
18	GPIO_11	DIO_11	INOUT	Digital I/O, UART_DSR
19	GPIO_10	DIO_10	INOUT	Digital I/O, UART_DTR
20	UART_RXD	UART_RXD	IN	UART Data Input
21	UART_TXD	UART_TXD	OUT	UART Data Output
22	GPIO_8	DIO_8	INOUT	Digital I/O, UART_CTS
23	GPIO_9	DIO_9	INOUT	Digital I/O, UART_RTS
24	GPIO_7	DIO_7	IN/OUT	Digital I/O
25	NC	-	-	Not Connect
26	NC	-	-	Not Connect
27	NC	-	-	Not Connect
28	GND	-	-	Ground

11 치수

그림 11-1 치수

12 품질 보증

12.1 일반 품질 보증 정책

주식회사 세나테크놀로지 (이하 "SENA") 는 제품이 기술명세 및 부속 자료에 명시된 사양에 부합하 고 그에 따라 작동하며, 보증 기간 동안 재료 및 공법상 하자가 없음을 보증한다. 보증기간은 제품을 수령하는 시점부터 시작된다.

SENA의 보증 범위는, SENA의 자체적 판단에 따라, 하자 또는 부적합 제품의 수리 또는 교체로 국한 되며, (a) 제품을 잘못 적용 또는 사용하는 경우 (b) 사용자가 SENA의 사용 지침을 준수하지 않은 경 우; (c) 제품의 관리 소홀, 남용 및 우발적인 사고의 경우; 또는 (d) SENA가 제공하지 않은 장비나 소 프트웨어와 관련된 경우에 생기는 기능상 문제에 대해서는 책임지지 않는다.

사용자는 구매 또는 수령일자를 증빙하는 자료와 함께 제품을 SENA 또는 제품을 구매한 해외 딜러 에게 보냄으로써 제한적 보증 서비스를 받을 수 있다. 이 때, 사용자는 운송 중 생길 수 있는 제품 분실 또는 파손의 가능성을 인지하고, 운송비를 선지급하며, 원래의 운송 포장 등을 사용하기로 합의 한다.

12.2 책임의 한계

SENA는, 본 문서에 명시된 경우를 제외하고는, 본 계약에 따라 제공되는 장비, 부품 또는 서비스에 대해 어느 특정 용도에 대한 상업성이나 적합성 여부를 포함한 어떠한 보증도 명시적이든 묵시적이 든 하지 않는다. SENA 또는 그 딜러는, 손해 가능성에 대한 사전 인지 여부와 관계없이 본 계약에 따라 제공되는 장비, 부품 또는 서비스가 기대한대로 동작하지 않는 경우 발생될 수 있는 직접, 간접, 부수, 특별 또는 결과적 손해나 기대 이익의 손실 등 어떠한 다른 손해에 대하여 책임을 지지 않는다. 어떠한 경우에도 SENA 또는 그 딜러의 책임 한도는 제품의 지불된 판매 가격을 초과하지 않는다.

12.3 하드웨어 제품 보증

SENA는 내장 하드웨어 제품을 일(1)년간 보증하고, 외장 하드웨어 제품을 제품에 따라서 삼(3)년간 또는 오(5)년간 보증한다.

보증절차: 하드웨어 제품이 반환된 경우, SENA는 자체 판단에 따라 추가 비용 없이 제품을 수리 또 는 교체한다. 단, 아래에 해당되는 경우는 제외한다. 수리 부품과 교체 제품은 일대일 교환 형태로 제공되며, 재생 또는 신제품으로 할 수 있다. 교체된 제품 및 부품은 SENA로 귀속된다. 제품에 대해 보증이 적용되지 않는 것으로 SENA가 판단한 경우, SENA는 고객의 선택에 따라 부품 및 노무에 관 한 SENA의 표준 요율에 따라 제품을 수리하거나 또는 제품을 그냥 반환할 수 있다.

보증 제외 경우:

- 사고, 떨어뜨린 경우, SENA 제품에 충격을 가한 경우,
- SENA의 온도 및 습도 명세를 초과한 환경에서 제품을 작동한 경우,
- 전원 불안정, 고압 방전으로 인한 경우,

- 부적절한 접지 및 부정확한 배선으로 인한 경우,
- 고객 등의 오용, 부주의로 인한 경우,
- SENA 사용자 매뉴얼에 따라 제품을 설치 또는 작동하지 않은 경우,
- 고객 또는 제3자의 부적절한 유지보수로 인한 경우,
- 홍수, 번개, 지진으로 인한 경우,
- 물을 쏟은 경우,
- 통상의 마모로 인한 부품 교체,
- 하드웨어가 변경된 경우,
- SENA의 서면 합의 없이 제3자가 수리를 시도한 제품.
- 하드웨어에 SENA 소프트웨어의 변형, 또는 SENA 소프트웨어 이외의 소프트웨어를 사용한 경우, SENA가 변형을 승인한 경우 제외.
- 소모품인 충전용 배터리의 사용 시간이 제품의 사용 방법과 기간에 따라서 최초 구입시보다 현저히 줄어든 경우.

12.4 소프트웨어 제품 보증

보증기간: 소프트웨어 제품의 보증기간은 일(1)년으로 한다.

보증범위: SENA의 보증은 사용자가 SENA에게 소프트웨어 부적합을 통보한 때로부터 합리적 시간 내에 소프트웨어 버그 픽스 또는 패치를 제공하는 것으로 제한된다.

12.5 3자 소프트웨어 제품 보증

제3자 소프트웨어의 보증정책은 해당 벤더의 품질 보증 정책을 따른다

13 인증 정보

13.1 FCC

FCC Rule: Part 15 Subpart C Section 15.247

FCCID: S7AZBLINXZE10

FCC Compliance Statement

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received,

Including interference that may cause undesired operation

Information to User

This equipment has been tested and found to comply with limits for a Class B digital device, Pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generate, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by on or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver-Connect the equipment into an outlet a circuit different form that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

RF Exposure Statement

The equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This device and its antenna must not be co-located or operation in conjunction with any other antenna or transmitter.

Do not

Any changes or modifications to the equipment not expressly approved by the party responsible for compliance could void user's authority to operate the equipment.

13.2 CE

CE1177(!)

We, Sena Technologies, Inc., declare that the product(s):

• ProBee-ZE10 ZigBee OEM Module

to which this declaration relates is in conformity with the following standard(s) or other normative document(s)

- EN 60950-1
- ETSI EN 301 489-1
- ETSI EN 301 489-17
- ETSI EN 300 328

Following the provisions of

• EMC DIRECTIVE 1999/5/EC

13.3 TELEC

Technical Regulations for Specified Radio Equipment Article 2, Section 1 (19) Certification No: 010WWBT32

13.4 KCC

형식 승인

Certification No: SNA-ZBlinx-ZE10 Basic Model Number: ZBlinx-ZE10S

Series Model Number: ProBee-ZE10U, ProBee-ZE10W, ProBee-ZE10C

13.5 ZigBee Alliance

Manufacturer Specific ZIG10006PRV38490-24

14 RF 정보

주파수 내역

2.410~2.475GHz

주파수 채널수

14 channels

전송 방식

DSSS (Direct Sequence Spread Spectrum)

변조 방식

O-QPSK (Offset Quadrate Phase Shift Keying)

무선 출력

+18dBm

수신 감도

-102dBm

공급 전원

DC3.3V