- 1. Suppose $n_1 \sim BIN(n,\pi)$. Then $\widehat{\pi} = n_1/n$ has an asymptotic normal distribution $\widehat{\pi} \sim N(\pi, \pi(1-\pi)/n)$. Use the delta method to determine $\sigma^2(\log(\widehat{\pi}/(1-\widehat{\pi})))$, the asymptotic variance of the sample log odds.
- 2. Consider data from a retrospective study on the relationship between daily alcohol consumption and the onset of esophagus cancer.

	cancer	no cancer
daily alcohol consumption $> 80g$	71	82
daily alcohol consumption $< 80g$	60	441
Total	131	523

- (a) Provide an equation for $\widehat{\sigma}\left(\log \widehat{\theta}\right)$.
- (b) Does your answer in (a) depend on the sampling scheme? Explain.
- (c) Compute a 95% confidence interval for $\log \theta$.
- (d) Compute $\hat{\gamma}$ for the 2 × 2 table. Provide an interpretation of the effect size, stated in the context of the problem.
- 3. The following table summarizes the responses of n = 91 couples to the questionnaire item "Sex is fun for me and my partner."

		Wife's Rating		
Husband's Rating	never or occasionally	fairly often	very often	almost always
never or occasionally	7	7	2	3
fairly often	2	8	3	7
very often	1	5	4	9
almost always	2	8	9	14

Compute a Bayesian / likelihood interval estimate for the correlation γ .