

CISC 102: Discrete Mathematics for Computing I

Fall 2020

Hazem Abbas

hazem.abbas@queensu.ca

Topic 0-2: Proofs

Motivation (1)

- "Mathematical proofs, like diamonds, are hard and clear, and will be touched with nothing but strict reasoning." *John Locke*
- Mathematical proofs are, in a sense, the only true knowledge we have
- They provide us with a <u>guarantee</u> as well as an <u>explanation</u> (and hopefully some insight)

Motivation (2)

- Mathematical proofs are necessary in CS
 - You must always (try to) prove that your algorithm
 - terminates
 - is sound, complete, optimal
 - finds optimal solution
 - You may also want to show that it is more efficient than another method
 - Proving certain properties of data structures may lead to new, more efficient or simpler algorithms
 - Arguments may entail assumptions. You may want to prove that the assumptions are valid

Proofs


```
Theorem: <something> is true
```

Proof:

```
<valid assumption #1>
```

<valid assumption #2>

. . . .

<valid assumption #n>

therefore *<something>* is true

```
Theorem: if <something> is true, then <something_else> is true
```

Proof:

```
assume < something > is true
```

<valid assumption #1>

<valid assumption #2>

. . . .

<valid assumption #n>

therefore <*something_else*> is true

Direct Proof

Theorem: Let x, y, z be integer numbers. If x > y and y > z then x > z.

Proof:

Assume x > y and y > z

 $x > y \rightarrow x = y + a$, for some positive integer a

 $y > z \rightarrow y = z + b$, for some positive integer b

 $\rightarrow x = z + b + a = z + c$, c = a + b must be a positive integer

x > z QED "quod erat demonstrandum",

meaning "what was to be shown

// or

Next Time

Sets

