Continuous distributions

Five important continuous distributions:

- 1. uniform distribution (continuous)
- 2. Normal distribution
- 3. χ^2 –distribution ["ki-square"]
- 4. t-distribution
- 5. F-distribution

• • A reminder

Definition:

Let $X: S \to R$ be a continuous random variable.

A density function for X, f(x), is defined by:

1.
$$f(x) \ge 0$$
 for all x

$$2. \int f(x) \, dx = 1$$

1.
$$f(x) \ge 0$$
 for all x
2. $\int_{-\infty}^{\infty} f(x) dx = 1$
3. $P(a < X < b) = \int_{a}^{b} f(x) dx$

Uniform distribution Definition

Definition:

Let X be a random variable. If the density function is given by

$$f(x) = \frac{1}{B - A} \quad A \le x \le B$$

then the distribution of X is the (continuous) uniform distribution on the interval [A,B].

Uniform distribution Mean & variance

Theorem:

Let X be uniformly distributed on the interval [A,B]. Then we have:

• mean of X:

$$E(X) = \frac{A+B}{2}$$

• variance of X:

$$Var(X) = \frac{(B-A)^2}{12}$$

Normal distribution Definition

Definition:

Let X be a continuous random variable.

If the density function is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} - \infty < x < \infty$$

then the distribution of X is called the normal distribution with parameters μ and σ^2 (known).

My notation: $X \sim N(\mu, \sigma^2)$

The book's: $n(x; \mu, \sigma)$ for density function

Normal distribution Examples

The normal distribution is without doubt the most important continuous distribution, since many phenomena are well described by it.

Plotting in Matlab:

>> x=90:1:150; y=normpdf(x,120,10); plot(x,y)

$$\mu$$
 σ

Normal distribution Mean & variance

Theorem:

If $X \sim N(\mu, \sigma^2)$ then

• mean of X: $E(X) = \mu$

• variance of X: $Var(X) = \sigma^2$

Density function: 0.4 -

Χ

Standard normal distribution: $Z \sim N(0,1)$

Density function:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

$$P(-1 \le Z \le 2) = \int_{-1}^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}} dz$$

Distribution function:

$$F(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}} dx$$

(see Table A.3)

Notice!! Due to symmetry

$$P(Z \le -z) = 1 - P(Z \le z)$$

Standard normal distribution, N(0,1), is the only normal distribution for which the distribution function is tabulated.

We typically have $X \sim N(\mu, \sigma^2)$ where $\mu \neq 0$ and $\sigma^2 \neq 1$.

Theorem: Standardise

If
$$X \sim N(\mu, \sigma^2)$$
 then $\frac{X - \mu}{\sigma} \sim N(0,1)$

$$P(Z \le 1) = 0.8413 \implies P(X > 3) = 1 - P(Z \le 1) = 1 - 0.8413 = 0.1587$$

Example cont.: $X \sim N(1,4)$. What is P(X>3)?

$$P(X > 3) = 1 - P(X \le 3) = 0.1587$$

Solution in Matlab:

```
>> 1 - normcdf(3,1,2)
ans =
0.1587
```

Cumulative distribution function normcdf(x, μ, σ)

Solution in R:

```
> 1 - pnorm(3,1,2)
[1] 0.1586553
```

Cumulative distribution function pnorm(x, μ, σ)

Normal distribution Example

Problem:

The lifetime of a light bulb is normal distributed with mean 800 hours and standard deviation 40 hours:

- 1. Find the probability that the lifetime of a bulb is between 750-850 hours.
- 2. Find the number of hours b, such that the probability of a bulb having a lifetime longer than b is 90%.
- 3. Find a time period *symmetric* around the mean so that the probability of a lifetime in this interval has probability 95%

Normal distribution Example

Solution in Matlab:

Solution in R:

```
    P(750 < X < 850) = ?</li>
    pnorm(850,800,40)-pnorm(750,800,40)
    P(X > b) = 0.90 ⇔ P(X ≤ b) = 0.10
    qnorm(0.1,800,40)
    ...
```

Normal distribution Relation to the binomial distribution

If X is binomial distributed with parameters n and p, then

$$Z = \frac{X - np}{\sqrt{np(1-p)}}$$

is approximately normal distributed. 3

Rule of thumb:

If np>5 and n(1-p)>5, then the approximation is good

Normal distribution Linear combinations

Theorem: linear combinations

If $X_1, X_2, ..., X_n$ are independent random variables, where

$$X_i \sim N(\mu_i, \sigma_i^2)$$
, for $i = 1, 2, ..., n$,

and $a_1, a_2, ..., a_n$ are constant, then the linear combination

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n \sim N(\mu_Y, \sigma_Y^2),$$

where

$$\mu_{Y} = a_{1}\mu_{1} + a_{2}\mu_{2} + \dots + a_{n}\mu_{n}$$

$$\sigma_{Y}^{2} = a_{1}^{2}\sigma_{1}^{2} + a_{2}^{2}\sigma_{2}^{2} + \dots + a_{n}^{2}\sigma_{n}^{2}$$

The χ^2 distribution Definition

Definition: (alternative to Walpole, Myers, Myers & Ye) If $Z_1, Z_2,..., Z_n$ are independent random variables, where

$$Z_i \sim N(0,1)$$
, for $i = 1,2,...,n$,

then the distribution of

$$Y = Z_1^2 + Z_2^2 + \dots + Z_n^2 = \sum_{i=1}^n Z_i^2$$

is the χ^2 -distribution with n degrees of freedom.

Notation: $Y \sim \chi^2(n)$

Critical values: Table A.5

The χ^2 distribution Definition

Definition: A continuous random variable X follows a χ^2 -distribution with n degrees of freedom if it has density

function

$$f(x) = \frac{1}{2^{n/2} \Gamma(n/2)} x^{n/2-1} e^{-x/2}$$
 for $x > 0$

Assume $Y \sim \chi^2(n)$

$$E(Y) = n$$

 $Var(Y) = 2n$

$$E(Y/n) = 1$$
$$Var(Y/n) = 2/n$$

t-distribution Definition

Definition:

Let $Z \sim N(0,1)$ and $V \sim \chi^2(n)$ be two independent random variables. Then the distribution of

$$T = \frac{Z}{\sqrt{V/n}}$$

is called the *t*-distribution with *n* degrees of freedom.

Notation: T ~ t(n) Critical values: Table A.4

t-distribution Compared to standard normal

- •The *t*-distribution is symmetric around 0
- •The t-distribution is more flat than the standard normal
- •The more degrees of freedom the more the *t*-distribution looks like a standard normal

F-distributionDefinition

Definition:

Let $U \sim \chi^2(n_1)$ and $V \sim \chi^2(n_2)$ be two independent random variables. Then the distribution of

$$F = \frac{U/n_1}{V/n_2}$$

is called the F-distribution with n_1 and n_2 degrees of freedom.

Notation: $F \sim F(n_1, n_2)$ Critical values: Table A.6

F-distribution Example

