

planetmath.org

Math for the people, by the people.

tactical decomposition

Canonical name TacticalDecomposition
Date of creation 2013-03-22 15:11:02
Last modified on 2013-03-22 15:11:02
Owner marijke (8873)

Last modified by marijke (8873)

Numerical id 5

Author marijke (8873) Entry type Definition Classification msc 05B25

Related topic IncidenceStructures

Defines point-tactical block-tactical

Let \mathcal{I} be an incidence structure with point set \mathcal{P} and block set \mathcal{B} . Let $X_{\mathcal{P}}$ be a partition of \mathcal{P} into classes \mathcal{P}_i , and $X_{\mathcal{B}}$ a partition of \mathcal{B} into classes \mathcal{B}_j . Let $\#(P, \mathcal{B}_j)$ denote for a moment the number of blocks in class \mathcal{B}_j incident with point P, and $\#(B, \mathcal{P}_i)$ the number of points in class \mathcal{P}_i incident with block B. Now the pair $(X_{\mathcal{P}}, X_{\mathcal{B}})$ is said to be

- **point-tactical** iff $\#(P, \mathcal{B}_j)$ is for any P the same for all \mathcal{B}_j , and is the same for all P within a class \mathcal{P}_i ,
- block-tactical iff $\#(B, \mathcal{P}_i)$ is for any B the same for all \mathcal{P}_i , and is the same for all B within a class \mathcal{B}_j ,
- a **tactical decomposition** if both hold.

An incidence structure admitting a tactical decomposition with a single point class $\mathcal{P}_0 = \mathcal{P}$ is called **resolvable** and $X_{\mathcal{B}}$ its **resolution**. Note $\#(P, \mathcal{B}_j)$ is now a constant throughout. If the constant is 1 the resolution is called a **parallelism**.

Example of point- and block-tactical: let \mathcal{I} be simple (it's a hypergraph) and let $(X_{\mathcal{P}}, X_{\mathcal{B}})$ partition \mathcal{P} and \mathcal{B} into a single class each. This is point-tactical for a regular hypergraph, and block-tactical for a uniform hypergraph.

Example of parallelism: an affine plane (lines are the blocks, with parallel ones in the same class).

A natural example of a tactical decomposition is provided by the automorphism group G of \mathcal{I} . It induces a tactical decomposition with as point classes the orbits of G acting on \mathcal{P} and as block classes the orbits of G acting on \mathcal{B} .

Trivial example of a tactical decomposition: a partition into singleton point and block classes.

The term tactical decomposition (taktische Zerlegung in German) was introduced by Peter Dembowski.