Econometrics 710 Final Exam Spring 2001 May 17, 2001

1. (20 points) Take the model

$$y_i = \theta + e_i$$

$$E(x_i e_i) = 0$$

with (y_i, x_i) a random sample. y_i is real-valued and x_i is $k \times 1$, k > 1.

- (a) Find the efficient GMM estimator of θ .
- (b) Is this model over-identified or just-identified?
- (c) Find the GMM test statistic for over-identification.
- 2. (20 points) Recall the simple RESET specification test for nonlinearity in a random sample:

The null hypothesis is a linear regression

$$y_i = x_i \beta + e_i$$
$$E(e_i \mid x_i) = 0$$

The parameter β is estimated by OLS yielding predicted values \hat{y}_i . Then using a second-stage LS regression

$$y_i = x_i' \tilde{\beta} + (\hat{y}_i)^2 \tilde{\gamma} + \tilde{e}_i$$

The RESET test statistic R is the squared t-ratio on $\tilde{\gamma}$.

A colleague suggests obtaining the critical value for the test using the bootstrap. He proposes the following bootstrap implementation

- (a) Draw n observations (y_i^*, x_i^*) randomly from the observed sample pairs (y_i, x_i) to create a bootstrap sample.
- (b) Compute the statistic R^* on this bootstrap sample as described above.
- (c) Repeat this 999 times. Sort the bootstrap statistics R^* , take number 950 (the 95% percentile) and use this as the critical value.
- (d) Reject the null hypothesis if R exceeds this critical value, otherwise do not reject.

Is this procedure a correct implementation of the bootstrap in this context? If not, propose a modified bootstrap.

1

3. (20 points) Let y_t be a strictly stationary and ergodic time series which follows the following nonlinear autoregressive model

$$y_t = \alpha y_{t-1}^2 + e_t$$
$$E(e_t \mid I_{t-1}) = 0$$

Let α be estimated by the OLS regression of y_t on y_{t-1}^2 .

- (a) Show that the OLS estimator $\hat{\alpha}$ is consistent.
- (b) Find its asymptotic distribution as $T \to \infty$
- 4. (30 points) Let π_t be inflation between time t and time t+1. Let

$$z_t = E\left(\pi_t \mid I_{t-1}\right)$$

be the expected inflation rate. A structural model implies the following relationship between economic activity in period t, y_t , and inflationary expectations z_t

$$y_t = z_t \beta + e_t$$
$$E(e_t \mid I_{t-1}) = 0$$

Inflation expectations z_t is a function of observables

$$z_t = x_t' \theta$$

where x_t is elements of I_{t-1} .

We propose estimation of the structural parameter β as follows.

First, regress π_t on x_t to get OLS coefficient $\hat{\theta}$ and estimated inflation expectations $\hat{z}_t = x_t' \hat{\theta}$.

Second, regress y_t on \hat{z}_t to get OLS coefficient $\hat{\beta}$.

Questions: You may assume that (y_t, π_t, x_t) are strictly stationary and ergodic.

- (a) Is $\hat{\theta}$ consistent for θ ?
- (b) Find the asymptotic distribution for $\hat{\theta}$.
- (c) Is $\hat{\beta}$ consistent for β ?
- (d) Find the asymptotic distribution for $\hat{\beta}$. [Note: This is tricky be careful.]
- 5. (10 points) In the model of question 4, show that the estimator $(\hat{\theta}, \hat{\beta})$ can be written as an exactly-identified GMM estimator of the parameter (θ, β) . Hint: from the first-order conditions for $\hat{\theta}$ and $\hat{\beta}$, find the moment conditions which these estimators are solving.