Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia Sistemas Lógicos

Relatório do 3º Trabalho Prático

Autores:

20181249	José Paulo Gregório Agostinho	Engenharia Informática	Turma 3
20171613	Manuel Henrique M. Pinheiro Antunes	Engenharia Informática	Turma 3
20180380	Samuel Silva Aguiar	Engenharia Informática	Turma 3

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Resumo

O trabalho foi realizado no âmbito de avaliação da terceira frequência pratica da cadeira de *Sistemas Lógicos* onde o objetivo foi projetar e montar um circuito, onde utilizando *Flip-Flop*'s realizassem a sequência alternada $6 \leftrightarrow 14$ e $0 \leftrightarrow 15$.

Tendo quatro saídas e duas entradas de controlo para realizar a sequência sendo estas quando a 0 as saídas devem estar todas desligadas e quando a 1 as saídas todas ligadas como podemos ver na *tabela de funcionamento* na página 6.

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Índice	Páginas:
Introdução	5
1º Parte: estudo do Problema	6-7
2º Parte: resolver o problema	8-15
• 1° Opção	8-12
Mapas de karnaugh dos flip-flops D	9
Mapas de karnaugh das Saídas	10-11
• 2°Opção	12- 14
Mapas de karnaugh dos Flip-Flops Jk	13-14
Material para Montagem	16-17
Montagem Final	18
Conclusão	19

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Indice de Tabelas e Imagens	Páginas
Codificação de estados	6
Tabela de funcionamento	6
Diagrama de estados	7
Tabela de Transição de estados 1º Opção	8
Imagem de montagem no CircuitMaker	12
Tabela de Transição de estados 2º Opção	13
Montagem Final	18

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Introdução

Este trabalho foi realizado para o âmbito de avaliação da cadeira de Sistemas Lógicos, onde a sua importância se revela no facto de expormos em prática os nossos conhecimentos sobre a cadeira adquiridos ao longo do semestre.

O problema em si trata-se de um circuito logico com quatro saídas (S_3 , S_2 , S_1 e S_0) ligadas a leds e duas entradas de controlo (X_1 e X_0) onde as entradas de controlo definem o funcionamento do circuito.

Começamos por codificar os estados, sendo eles 6 (0, 6, 14, 15, Desligado e Ligado), atribuímos-lhes o código das saídas e partimos para o diagrama de estados onde utilizamos a máquina de moore.

Este relatório está repartido em duas partes, onde na primeira parte está representada a opção que escolhemos para a montagem do circuito utilizando FlipFlop's do tipo D, e na segunda parte a opção com FlipFlop's do tipo JK.

Está também representado neste relatório o material usado para a montagem do projeto e uma foto na montagem final tendo esta não atingindo os objetivos pretendidos.

Pensamos que devido ao pouco tempo tanto como a dificuldade de conseguir praticar na breadboard e, tendo em conta a dificuldade do problema proposto no âmbito da disciplina o trabalho podesse ter corrido melhor.

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

1ºParte – Estudo do Problema

Codificação dos estados:

	Estados	Codificação			Saídas
	Estados	\mathbf{Q}_2	\mathbf{Q}_1	\mathbf{Q}_{0}	Saluas
A	0	0	0	0	0001
В	6	0	0	1	0010
С	14	0	1	0	0100
D	15	0	1	1	1000
E	Desligado	1	0	0	0000
F	Ligado	1	0	1	1111
X	X	X	X	X	X
X	X	X	X	X	X

Tabela de funcionamento:

Entradas		
X 1	X 0	Acontecimento
0	0	Tudo Desligado
0	1	6 ↔14
1	0	0↔15
1	1	Tudo ligado

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Diagrama de estados:

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

2ºParte – Resolver o problema

1ºOpcão:

Tabela de transição de estados:

Esta	ado A	tual	Entr	adas	Ent	radas	FF	Est	ado Seg	uinte		Sai	ídas	
Q_{2n}	Q _{1n}	Q_{0n}	\mathbf{X}_1	X_0	D_2	\mathbf{D}_1	\mathbf{D}_0	Q_{2n+1}	Q_{1n+1}	Q_{0n+1}	S_3	S_2	S_1	S_0
0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
0	0	0	0	1	0	1	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	1	0	1	1	0	0	0	1
0	0	0	1	1	1	0	1	1	0	1	0	0	0	1
0	0	1	0	0	1	0	0	1	0	0	0	0	1	0
0	0	1	0	1	0	1	0	0	1	0	0	0	1	0
0	0	1	1	0	0	0	0	0	0	0	0	0	1	0
0	0	1	1	1	1	0	1	1	0	1	0	0	1	0
0	1	0	0	0	1	0	0	1	0	0	0	1	0	0
0	1	0	0	1	0	0	1	0	0	1	0	1	0	0
0	1	0	1	0	0	1	1	0	1	1	0	1	0	0
0	1	0	1	1	1	0	1	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0	1	0	0	1	0	0	0
0	1	1	0	1	0	0	1	0	0	1	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	1	1	0	1	1	0	1	1	0	0	0
1	0	0	0	0	1	0	0	1	0	0	0	0	0	0
1	0	0	0	1	0	0	1	0	0	1	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	0	1	1	0	1	0	0	0	0
1	0	1	0	0	1	0	0	1	0	0	1	1	1	1
1	0	1	0	1	0	0	1	0	0	1	1	1	1	1
1	0	1	1	0	0	0	0	0	0	0	1	1	1	1
1	0	1	1	1	1	0	1	1	0	1	1	1	1	1
X	X	X	0	0	X	X	X	X	X	X	X	X	X	X
X	X	X	0	1	X	X	X	X	X	X	X	X	X	X
X	X	X	1	0	X	X	X	X	X	X	X	X	X	X
X	X	X	1	1	X	X	X	X	X	X	X	X	X	X
X	X	X	0	0	X	X	X	X	X	X	X	X	X	X
X	X	X	0	1	X	X	X	X	X	X	X	X	X	X
X	X	X	1	0	X	X	X	X	X	X	X	X	X	X
X	X	X	1	1	X	X	X	X	X	X	X	X	X	X

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Mapas de karnaugh dos Flip-Flops D:

 D_0 :

	Q2		Q ₁			
	0	0	X	X		
	$\sqrt{1}$	1	X	X	×	
\mathbf{x}^{1}	U	1	X	X	ó`	
\times	0	0	X	X		
Q_0						

$$D_0 = \overline{Q_2} \ . \ \overline{Q_0} \ . \ \overline{X_0} \ . \ X_1 + X_0 \ . \ X_1 + X_0 \ . \ Q_1 + Q_2 \ . \ X_0;$$

 D_1 :

	Q2		Q ₁				
	0	0	X	X			
	0	0	X	X	×		
\mathbf{x}_1	0	0	X	X	×		
\times	0	0	X	X			
$\overline{Q_0}$							

$$D_1 = \overline{Q_2} \ . \ \overline{Q_1} \ . \ \overline{X_1} \ . \ X_0 + Q_2 \ . \ Q_0 \ . \ X_1 \ . \ \overline{X_0};$$

D2:

$$D_2 = \overline{X_1} . \overline{X_0} + X_1 . X_0;$$

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Mapas de karnaugh das Saídas:

 S_0 :

	Q2		Q ₁			
	0	$\overline{1}$	X	X		
	0	1	X	X	×	
X_1	0	1	X	X	6	
\times	0	J	X	X		
$\overline{Q_0}$						

$$S_0 = \overline{Q_2}$$
 . $\overline{Q_1}$. $\overline{Q_0} + Q_2$. Q_0 --- (Saída 15)

 S_1 :

	Q2		Q	1	
	0	$\overline{1}$	0	0	
	0	1	0	0	×o
X_1	0	1	0	0	0
	0	\supset	0	0	
		Q)		

	Q2		Q ₁				
	0	(1)	X	X			
	0	1	X	X	×		
X_1	0	1	X	X	o		
\times	0	1	X	X			

$$S_1 = \overline{Q_1}$$
. Q_0 --- (Saída 14)

 S_2 :

$$S_2 = Q_1$$
 . $\overline{Q_0} + Q_2$. Q_0 --- (Saída 6)

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

 S_3 :

	Q2		0	L 1		
	0	1	X	X		
	0	1	X	X	×	
×	0	1	X	X	6	
\times	0	1	W	X		
Qo						

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Montagem no CircuitMaker:

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

2ºOpção:

Tabela de transição de estados:

Estado Atual			Entr	adas	Entradas JK						Estado Seguinte			Saídas			
Q_{2n}	Q_{1n}	Q_{0n}	\mathbf{X}_1	X_0	J_2	\mathbf{K}_2	J_1	\mathbf{K}_1	\mathbf{J}_0	\mathbf{K}_{0}	Q_{2n+1}	Q_{1n+1}	Q_{0n+1}	S_3	S_2	S_1	S_0
0	0	0	0	0	1	X	0	X	0	X	1	0	0	0	0	0	1
0	0	0	0	1	0	X	1	X	0	X	0	1	0	0	0	0	1
0	0	0	1	0	0	X	1	X	1	X	0	1	1	0	0	0	1
0	0	0	1	1	1	X	0	X	1	X	1	0	1	0	0	0	1
0	0	1	0	0	1	X	0	X	X	1	1	0	0	0	0	1	0
0	0	1	0	1	0	X	1	X	X	1	0	1	0	0	0	1	0
0	0	1	1	0	0	X	0	X	X	1	0	0	0	0	0	1	0
0	0	1	1	1	1	X	0	X	X	0	1	0	1	0	0	1	0
0	1	0	0	0	1	X	X	1	0	X	1	0	0	0	1	0	0
0	1	0	0	1	0	X	X	1	1	X	0	0	1	0	1	0	0
0	1	0	1	0	0	X	X	0	1	X	0	1	1	0	1	0	0
0	1	0	1	1	1	X	X	1	1	X	1	0	1	0	1	0	0
0	1	1	0	0	1	X	X	1	X	1	1	0	0	1	0	0	0
0	1	1	0	1	0	X	X	1	X	0	0	0	1	1	0	0	0
0	1	1	1	0	0	X	X	1	X	1	0	0	0	1	0	0	0
0	1	1	1	1	1	X	X	1	X	0	1	0	1	1	0	0	0
1	0	0	0	0	X	0	0	X	0	X	1	0	0	0	0	0	0
1	0	0	0	1	X	1	0	X	1	X	0	0	1	0	0	0	0
1	0	0	1	0	X	1	0	X	0	X	0	0	0	0	0	0	0
1	0	0	1	1	X	0	0	X	1	X	1	0	1	0	0	0	0
1	0	1	0	0	X	0	0	X	X	1	1	0	0	1	1	1	1
1	0	1	0	1	X	1	0	X	X	0	0	0	1	1	1	1	1
1	0	1	1	0	X	1	0	X	X	1	0	0	0	1	1	1	1
1	0	1	1	1	X	0	0	X	X	0	1	0	1	1	1	1	1
X	X	X	0	0	X	X	X	X	X	X	X	X	X	X	X	X	X
X	X	X	0	1	X	X	X	X	X	X	X	X	X	X	X	X	X
X	X	X	1	0	X	X	X	X	X	X	X	X	X	X	X	X	X
X	X	X	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X
X	X	X	0	0	X	X	X	X	X	X	X	X	X	X	X	X	X
X	X	X	0	1	X	X	X	X	X	X	X	X	X	X	X	X	X
X	X	X	1	0	X	X	X	X	X	X	X	X	X	X	X	X	X
X	X	X	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Mapas de karnaugh dos Flip-Flops JK:

 J_0 :

$$J_0 = Q_1 + \overline{Q_2} . X_1 + Q_2 . X_0;$$

 K_0 :

$$K_0 = X_1 . \overline{X_0} + \overline{Q_2} . \overline{Q_1} . \overline{X_1}$$
;

 J_1 :

$$J_1=\overline{Q_2}\,.\,\overline{X_1}$$
 , $X_0+\overline{Q_2}\,.\,\overline{Q_0}$, X_1 , $\overline{X_0}$;

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

 K_1 :

	Q2		0	_			
	X	ſΧ	X	X			
	X	X	X	X	L		
1	X	X	X	X	6		
X_1	X	X	X	X			
$\overline{Q_0}$							

$$K_1 = \overline{X_1} + X_0 + Q_0$$
;

 J_2 :

	Q2		Q ₁				
	X	X	X	X			
	X	X	X	X	×		
1	X	X	X	X	× ₀		
\times	X	X	X	X			
$\overline{Q_0}$							

$$J_2 = \overline{X_1} \cdot \overline{X_0} + X_1 \cdot X_0$$
;

 K_2 :

$$K_2 = \overline{X_0} \cdot \overline{X_1} + X_1 \cdot X_0$$
;

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Material e o seu datasheet utilizado na Montagem

Utilizamos quatro "and's" de duas portas (74ls08):

Utilizámos dois "and's" de 3 portas (74ls11):

Utilizámos um "not" (74ls04):

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Utilizamos dois "or's" (74ls32):

Utilizamos um Flip-Flop do Tipo D (74ls175):

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Montagem Final

Cursos de 1º Ciclo em Eng. Informática / Tec. da Informação e Multimédia

Sistemas Lógicos

Conclusão

Em suma os objetivos foram todos concluídos á exceção da montagem do circuito na breadboard, onde encontramos alguns contratempos, que não foram possíveis de superar no tempo previsto.

Foi obtido o conhecimento de como codificar estados, fazer tabelas de funcionamento e de transição, desenhar diagramas de estados, simplificação de funções também como executar corretamente o problema apresentado no programa recomendado na disciplina de Sistemas Lógicos, CircuitMaker Student Version.

Decidimos inserir no nosso trabalho os flip-flops "D" pois tinhas-mos uma melhor experiência com os mesmos e os facilitismos na criação das tabelas de transição de estados ajudaram a nossa decisão. Mas posteriormente chegamos a conclusão que utilizando os flip-flop "J-K" seria mais simples na montagem devido a melhor simplificação das equações necessárias.