

A Minor Project Report on

"Braille Printing Machine"

Bachelor of Engineering inMechanical Engineering

Submitted by

Siddu Hebballi	01FE20BME034
Naveen F Walmiki	01FE20BME037
Vivekanand Hebsur	01FE20BME010
Nagaraj Belur	01FE20BME096
Prakash Bidarakundi	01FE20BME106
Shanmukh Chinmalli	01FE20BME050

Under the Guidance of

Prof. Shivaprasad M

Prof. Nagaraj Ekbote

Prof. Shridhar M

2022-2023

School of Mechanical Engineering
K.L.E Technological University,
Vidyanagar, Hubballi 580031

CERTIFICATE

This is to certify that Capstone Project entitled "Braille Printing machine" submitted by Naveen F Walmiki (01FE20BME037), Siddu Hebballi (01FE20BME034),Nagaraj Belur (01FE20BME096),Prakash Bidarakundi (01FE20BME106),Shanmuk Chinmalli (01FE20BME050),Vivek Hebsur(01FE20BME010) to the KLE Technological University, Hubli-580031, towards partial fulfillment for the award of the degree of Bachelor of Engineering is a bona-fide record of work carried out by him/her under our supervision. The contents of project report, in full or in parts, have not been submitted to any other institute or university for award of any degree or diploma.

Prof. Shivaprasad M

Dr. B. B. Kotturshettar

Guide

Head of department

ACKNOWLEDGEMENT

The successful completion of any task would be incomplete without mentioning the people who made it possible and whose guidance and encouragement has made our efforts successful.

At the outset, we would like to express our deep sense of gratitude for our guide **Prof. Shivaprasad M** for making this project report successful through their invaluable guidance at every stage of the project report.

We also thank **Dr. B. B. Kotturshettar** for his encouragement in undertaking the task of this project.

We express our sincere regard and gratitude to our project coordinators **Prof Gururaj Fattepur** and course mentors **Prof Nagaraj Ekbote, and Prof. Arun Patil** School of Mechanical Engineering, KLE Tech, Hubli

We also thankful to all faculty members, Maker Space staff of the Mechanical Engineering Department of KLE Technological University, for helping us directly or indirectly in different stages of our project work.

Student signatures

Naveen F Walmiki

Siddu Heballi

Prakash Bidarakundi

Nagaraj Belur

Vivek Hebsur

Shanmukh Chinmalli

Phase wise Contents:

1. Refined problem statement		(Tick mark the cell once each activity is completed)
1.1	Identifying end users (Customers)	
1.2	Identify customer needs	
1.3	Analyzing the needs	
1.4	Requirements List	
2. Prod	uct benchmarking	
2.1	Studying and exploring competitive products	
2.2	Patent search	
2.3	Literature survey	
3. Desi	gn Specifications	
3.1	Objectives	
3.2	Constraints	
3.3	Objective tree (affinity diagram)	
3.4	Design Specifications	
4. Cond	cept generation	
4.1	Defining Functions	
4.2	Morphological chart	
4.3	Generating design alternatives	
4.4	Selecting best alternatives (Pugh chart)	
5. Desi	gn	
5.1	3D Model	
5.2	Assembly models	
5.3	2D drawing	
5.4	Design Calculations	
6 Proto	type Planning	
6.1	Raw materials	
6.2	Bill of Materials	
6.3	Joining techniques/ methods	
6.4	Flow Chart	
6.5	Sub-Assembly Planning	

Phase 1 Refined problem statement

Customer: Annappa Interviewer(s): Naveen, Siddu, Shanmuk

Date:27/03/2023

Profession: Head master

Of govt school for blind children Hubli Ph. No:9945731984

Of gove school for one	ia cinaren 11abn	FII. 100.3343731304
Question/Prompt	Customer Statement	Interpreted Need/ Expectations
Typical uses	To make a several copy of a notes.	
	To print a question papers or some reading materials.	
Likes-current methods followed (traditional techniques)	Presently using manual method that means by the help of braille slate and braille stylus.	
Dislikes-current methods followed (traditional	It tooks more time for printing.	
techniques)	Not accuracy.	
	More time consuming.	
Suggested Improvements	It must be automatic.	
	Which must involve average speed	

Customer: Pradeep Ajjanagouda Karigoudra

Student Interviewer(s): Prakash, Nagraj, Vivek

Date:27/3/2023

Question/Prompt	Customer Statement	Interpreted Need/ Expectations
Typical uses	To study regular study practices.	To make Several Copy of notes
	To print question Booklet on exams.	
	To read the content.	
Likes-current methods followed (traditional	It should be Accurate.	
techniques)	It should proper speed.	
Dislikes-current methods followed (traditional	Not a proper stylus dot spot for showing the sensible touch	Time consuming.
techniques)	Manual By using the braille slate and Braille stylus	More usage of the papers per print.
Suggested Improvements	There is a proper distance/space between the alphabet.	
	It should be proper Braille stylus spot touch.	
	Less time required to complete the print.	

Customer: Praveen Ravi Chakalabbi

Student Interviewer(s): Shanmuk, Prakash, Siddu

Question/Prompt	Customer Statement	Interpreted Need/ Expectations
Typical uses	To study regular study practices.	To make Several Copy of notes
	To print question Booklet on exams.	
	To read the content.	
Likes-current methods followed (traditional	It should be Accurate.	
techniques)	Less speed for productivity.	
Dislikes-current methods followed (traditional	Not a proper stylus dot spot for showing the sensible touch	Time consuming.
techniques)	Paper is not suitable for touch it was having the smoother	
Suggested Improvements	There is a proper distance/space between the alphabets.	It converts the Braille readings to voice assistant.
	It should be proper Braille stylus spot touch.	

Customer: Gururaj Kempannanavar

Student Interviewer(s): Naveen, Vivek, Nagaraj

Question/Prompt	Customer Statement	Interpreted Need/ Expectations
Typical uses		
	To print question Booklet on exams.	
	To read the content.	
Likes-current methods followed(traditional	It should be Accurate.	Less cost and investment.
techniques)	Less speed for productivity.	
Dislikes-current methods followed (traditional Not a proper stylus dot spot for showing the sensible touch.		
techniques)	Time consuming.	
Suggested Improvements	Multi language printer machine.	It converts the Braille readings to voice assistant.
	It should be proper Braille stylus spot touch.	

Customer: Yallappa Ningappa Pyati

Student

Interviewer(s):Prakash, Vivek, Nagaraj

Question/Prompt	Customer Statement	Interpreted Need/ Expectations
Typical uses	To study regular study practices.	To make Several Copy of notes
	To print question Booklet on exams.	
	To read the content.	
Likes-current methods followed (traditional	It should be Accurate.	Less maintains and repair
techniques)	More speed for productivity.	
Dislikes-current methods followed (traditional	Not a proper stylus dot spot for showing the sensible touch	Time consuming.
techniques)	Paper is not suitable for touch it was have the more smooth	It will create the damages to the fingers.
Suggested Improvements	There is a proper distance/space between the alphabets.	It converts the Braille readings to voice assistant.
	It should be proper Braille stylus spot touch.	Wi-Fi Assistant and Bluetooth module to printer.

Customer: Mohamad rafi nabisab

Student

Interviewer(s): Siddu, Shanmukh, Vivek

Question/Prompt	Customer Statement	Interpreted Need/ Expectations
Typical uses	To study regular study practices.	To make Several Copy of notes
	To print question Booklet on exams.	
	To read the content.	
Likes-current methods followed (traditional	It should be Accurate.	Less maintains and repair
techniques)	More speed for productivity.	
Dislikes-current methods followed (traditional	Not a proper stylus dot spot for showing the sensible touch	Time consuming.
techniques)	Paper is not suitable for touch it was have the more smooth	It will create the damages to the fingers.
Suggested Improvements	There is a proper distance/space between the alphabets.	It converts the Braille readings to voice assistant.
	It should be proper Braille stylus spot touch.	Wi-Fi Assistant and Bluetooth module to printer.

Phase 2

2. Product Benchmarking

Products (Images or	Specifica	ations	Cost	Advantage	Limitation	Availabilit
name)	Voltage Weight Brand Character s Per Second Pages Per Hour Dimension s Paper	240 V AC 65.2 kg Human ware Up to 300 Up to 1000 72 x 90 x 71 (180 gram/m2	2.5 Lakh	High speed Low maintenance High maneuverabili ty excellent dots	S High cost	y yes
Human ware D V5 Tractor Fed	Weight Braille Fonts Max. Power	2.5 mm 400 W				
Index Braille Basic-D V5	High-Speed Double-Sided Braille Embosser 140 characters per second Dot forming height 0,58 mm Braille and text labeled control panel Tractor-fed paper		2.5la kh	Easily can used User friendly Less time	High cost	yes

Braillo300	double-sided (interpoint) Braille Printer. Prints both 6 and 8 dot	2.8	Easy	High cost	Yes
BRAILLO 300 S2 Braille Printer	Braille Single / Interpoint Less Noise levels Less power consumption Works with PC and Apple operating systems Wi-Fi, USB, Ethernet	lakh	User friendly Time saving	riigii cost	Must import from America.
IRIE Braille Buddy	25 characters/second – the fastest embosser at the price Quality single-sided Braille High-resolution tactile graphics – multiple dot heights for greater detail Multiple paper options – use tractor or single cut-sheet paper Portable personal embosser – small and compact to take with you	1.5 lakh	Portable Very fast	Average cost	Yes Must import from other country.

2.2 Patent search

Patent Name/ Number/ Date	Information
Braille Printer	Braille is a text character created to allow the blind to read and write. It is sometimes referred to as Braille or Braille. It is a gadget that helps the blind read and learn. By touching the Braille, the blind may read information and get pertinent data. A lower body and an upper body are both components of a Braille printer. The lower body has a groove in the middle of the upper surface for holding printing paper, while the higher body is positioned on top of the lower body. The upper body has six through holes that are evenly spaced in two rows and pierce up and down for a pressing plate suited to the groove. The through holes have pressing and self-locking Braille points.
Portable Braille Printer System for the Visually Impaired People WO2022132100A1 21-01-2021	The current invention relates to a portable Braille printing system that consists of hardware and software components and allows for the automation of the manual creation process of the embossed marks that are formed by pressing the Braille pen on the paper placed on the Braille plate and that are understood by those who are blind. Those who are blind or visually challenged can read letters made as embossed marks on paper using any technique by touching them. Braille plate (tablet) and Braille pen are tools used in one technique for embossing marks on paper. The Braille plate has small pits spaced out at regular intervals. To create the Braille alphabet characters, these pits are created as separate rectangles
Braille Type Writer Robert C. Lokey, Box 75356, Tamal, Calif. 94.964 July-16-2014	The main goal of this invention, which relates to a Braille typewriter, is to provide a simple, affordable, lightweight, portable, and reliable method by which a person who is blind or sighted can easily and quickly print all of the Braille

alphabet's letters and symbols on a piece of paper in raised characters. The provision of such a device with means for automatically advancing the carriage by a single space corresponding to a Braille cell as well as a conveniently located spacebar to advance the carriage as desired is an additional goal of the invention. The provision of means for clamping the paper in relation to the die plate to ensure proper alignment of the paper is another goal of the invention.

Automatic Braille reading material printing quality inspection system and device YANG YANG; WO SHUPING; LIU HONG; WANG YANPING IPC-G06F16/33; G06T7/00; 2019-09-27

the Braille word is incorrect, it will significantly damage the blind reader's reading and understanding because of the braille's arrangement and undulating the spelling characteristic of the overall Braille scheme. The computer-compiled electronic books of Braille readings must go through numerous proofreading stages before publication to guarantee that the mistake rate is under one thousandth before delivery. The Braille electronic manuscript is presented on different substrates like paper, plastic, or metal using a variety of mechanical and electronic devices, such as foaming ink embossing printing, thermoforming, screen printing method, inkjet dispensing, printing method, or by using a printing machine or a marking machine, using mechanical devices.

2.3 Literature survey

Literature details	Gathered Information
Literature details Braille Keyboard and Printer Interfaced (Presented solution is low cost, it is portable to carry everywhere)	Gathered Information There is variety of brands devices available in the market for visually impaired people to help them in educational activities and to bridge the communication gap between visually impaired people and people with sight. According to World Health Organization (WHO), about 89% of world's visually impaired live in developing countries and majority of the people are living with the lowest pay as the national salary i.e. the average salary if the person is so low that. Most of the devices in the market are too costly and not so comfortable to use, or Braille scanners, yet a
	low-cost Braille system is not available in the market for visually impaired persons in the developed countries where braille reading and writing can be teacher without a Braille teacher. Braille Keyboard: A Self-Learning Braille System for Visually impaired at cheap price, easy to use, low-power, portable, self-learning, and user-friendly Braille writing and reading tutor with the capability of reading documents and works on text-to-speech technology which is the helpful technology for visually impaired individuals. The presented solution is low cost. It is portable to carry everywhere. It is user friendly and easy to use. It is based on text to speech concept -User would be able to hear what they type
Design and Implementation of a Low-Cost Printer Head for Embossing Braille Dots on Paper	Visually impaired people face countless difficulties in their daily lives. This is especially true for activities such as environment understanding, urban mobility, reading, computer access, object finding, among others. In particular, to address the reading and computer access challenges, three solutions have been explored so far with the aim of improving digital text accessibility: screen magnifiers, voice synthesizers, and Braille terminals. Screen magnifiers perform screen magnification for those who still have some

degree of remnant vision. Voice synthesizers literally read the text displayed on the computer screen and Braille terminals display the text on the screen in Braille code Audio books are perhaps the simplest and fastest way to convey text to visual impaired people. Entire print books are recorded while being read out loud. They can be reproduced by standard music players such as desktop component systems or wearable headsets. Audio books are considered a simple, inexpensive, and non-Braille reading alternative for visually impaired people.

Phase 3

3. Design Specifications

4. 3.1 Brainstorming

Keywords			
Braille	Braille keyboard		
Braille paper	Tactile graphics		
Braille translation software	Braille printer		
Braille display	Assistive technology		

3.2 OFMC Chart

Keywords	Objectives	Functions	Constraints	Means
Detection of key.	-	✓	-	-
Should translate normal letters to braille letters.	-	✓	-	-
Creation of braille cells.	✓	_	-	_
Accuracy in braille cells.	✓	-	-	-
Size of braille cell.	-	-	✓	-
Space between two letters.	-	-	✓	-
Force required for braille dot.	-	-	✓	-
Speed of typewriter.	-	-	✓	-
Braille typewriter should be more accessible.	✓	-	-	-
Provides equal spacing between words.	-	✓	-	-
Time duration to print one word.	-	-	✓	-
Movement of typewriter pin	-	✓	-	-
Communicates between man and braille typewriter.	✓	-	-	-
It should support modern education.	✓	-	-	-
Easy to use, lightweight.	-	-	✓	-
Maintenance and repair.	-	-	✓	-
Tactile technology to produce	-	-	-	✓
Provide output on LCD screen.	-	-	√	-
Letters should print on papers.	-	-	✓	-
Affordable.	✓	-	-	-
Computer or mobile for input.				✓

3.3 Objectives

Objectives			
Creation of braille cells.	It should support modern education.		
Accuracy in braille cells.	Helps to communicates between man and braille typewriter.		
Braille typewriter be more accessible.	It is affordable.		

3.4 Constraints

Constraints			
Size of braille cell	Space between two letters.		
Force required for braille dot.	Speed of typewriter.		
Easy to use and lightweight.	Time duration to print one word.		
Maintenance and repair.			

OFMC Table

OBJECTIVE	FUNCTION	MEANS	CONSTRAINTS
Creation of braille cells.	Detection of key.	Tactile technology to	Size of braille cell
		produce braille on paper	
		or other surface	
Accuracy in braille cells.	Should translate normal	Computer or mobile	Space between two
	letters to braille letters.	device to convert digital	letters.
		text into braille.	
Braille typewriter be	Provides equal spacing		Force required for braille
more accessible.	between letters.		dot.
It should support modern	Movement of typewriter		Speed of typewriter.
education.	pin.		
Helps to communicates	Provide output on LCD		Time duration to print
between man and braille	screen.		one word.
typewriter			
It is affordable.	Letters should print on		Easy to use and
	paper.		lightweight.
			Maintenance and repair

3.5 Objective tree (affinity diagram)

O#	Objectives	First level objectives	Second level objectives
1	Creation of braille cells	Six dot cells.Eight dot cells.	
2	Accuracy of braille cells.	Grade 1 brailleGrade 2 braille	 Uncontracted (only common alphabets) Contracted (Numbers, punctuation etc)
3	Should support modern education.	Reading and WritingEasy to communicate	
4	It should be accessible.	Should be easily availableUser friendly	
5	Communication between man and braille typewriter.	 QWERTY keyboard Braille keyboard Voice recognition Image recognition 	
6	Affordable.	Lesser costFulfil customer needs	

4.6Design Specifications:

Si.	Engineering Specifications	Units
1	Dimension of typewriter	55cm*55cm
2	Weight of typewriter	Around 5Kg
3	Braille dot size	0.3mm
4	Gap between words	10mm
5	Tactile graphic resolution	1mm/Dot
6	Maximum words (words/type)	1 word/minute
7	Voltage	12V
8	Power	24W
9	Paper type	210mm*297mm
		297mm*420mm
10	Cost	<10,000Rs

5. 3.7 Competitive Benchmarking:

			Competitive Products	S	
Metric	Metric	Units	Product 1	Product 2	Product 3
#			Human ware fanfold Dv5	Braillo 300 s2	Irie Braille buddy
1	Dimension of typewriter	Cm	72 x 90 x 71	93.98 x 68.58 x	28.5 x 35.9 x
				63.5	15.9
2	Weight of typewriter	Kg	65.2	105	5
3	Braille dot size	mm	0.3	0.3	0.3
4	Gap between words	Cm	1	1	1
5	Tactile graphic resolution	dpi	50		
6	Maximum words	Cps			
	(words/type)	(character per second)	300	300	
7	Voltage	V	100-240	230 V	220-240 V
8	Power	Watt	5	76	4-85
9	Paper type	mm	210 x 297	210 x 297	77-216
			297 x 420	297 x 420	
10	Cost	Rupees	2.5 lakh	2.8 lakh	1.3 lakh

Phase 4

4.1 Concept Generation

Defining Functions

Si.	Functions
1.	Start type writer.
2.	Providing input.
3.	Detection of key.
4.	Normal to braille latter conversion.
5.	Moment of stylus. (braille pen)
6.	Pressing desired input.
7.	Braille letters on paper.

4.2 Morphological Chart

Function	Means	Means 1	Means 2	Means 3	Means 4
Inserting	g paper	By manual	By load roll paper		
Providin	ng input	By laptop/computer	Via WIFI		

Converting Software	By Arduino	Raspberry pi		
Transfer data	USB 3.0	USB 2.0	Pen drive	
Printing method	Pointer moving Towards first braille cell.	Manually paper moving		
Type of stylus	Wood stylus	Plastic stylus	Metal stylus	
Power device		AC Rectifier	Battery	USB
Motors Used	Servo motor	Stepper motor	DC Motor	

Types of paper	GSM 11*9	Aluminum foil	Bond sheets	
		sheet		
Types of display	OLED display	LCD display		
		A 1832 KRISTERSTONES		
	11.66			
		hello, world!		
		5171		
		0		

4.3 Generating design alternatives Identified Design Alternatives:

Si.	Design Alternatives
1	Design 1
2	Design 2
3	Design 3
4	Design 4

Conceptual Design

4.4 Selecting Design Alternative (Using Pugh Chart)

Requirement s	Weight	Design 1	Design2	Design3	Design 4	Desig n5	Design6	Reference (blista braille typewriter)
Portable	7	+	+	+	+	+	-	0
Economical	8	-	-	+	+	-	-	0
Efficiency	8	+	+	+	-	+	+	0
Accuracy	8	+	+	0	0	+	-	0
Light weight	8	-	-	+	+	-	-	0
Safety	9	+	+	+	+	0	+	0
Aesthetic	8	+	+	-	-	+	+	0
User friendly	8	-	0	+	+	+	+	0
Durability	7	0	+	+	+	+	+	0
Pluses		6	6	7	6	6	5	
Sames		1	1	1	1	2	0	
Minuses		3	2	1	2	4	4	
Overall Total		40	47	55	47	46	40	
Weighted Total		16	31	47	31	30	09	0
Yes / No								

Selected Design Alternative : Design 03

Phase 5

5.1 3D Model

Part Model 4 Part Model 5 Part Model 6

5.2 Assembly models

5.3 2D Drawings

2D Drawing 4

5.4 Design Calculations

Design Calculations

You may scan and paste your design calculations here (clear image) or you may opt to type the calculations here as well.

1)STEPPER MOTOR:

• How many pulses to move 3"?

Screw pitch=0.2inch

i.e., 1 rotation=0.2inch

=3inch*(1Rev/0.2inch) *(2000pulse/Rev)

=30,000 Pulses. (To travel 3" 30,000 Pulses required)

CROSS CHECK: Can our controller handle that?

- =30,000pulses/1.5 sec
- =20,000 pulses/sec. (For the motor driver productivity 2000 it can withstand 1,00,000 pulses/sec)

So, our motor driver is MICRO STEPDRIVER TB6600.

- Positioning accuracy.
 - =(0.2inch/Rev)*(1Rev/2000Pulses)
 - =0.0001inch/pulses. (Controller sending 2000Pulses per revolution)
- Max Motor speed.
 - =3inch*(1Rev/0.2inch)
 - =15Rev. (We need 15 revolutions to move 3 inches)

We assume this can be achieved in 1.5sec.

- =15Rev/1.5sec
- =10RPS.

TORQUE CALCULATION:

To calculate the torque, we need to know the weight of the components which is hanging on stainless steel bar.

- Weight of braille pen or stylus=5gms.
- Weight of braille pen holder=100gms
- Weight of linear servo motor=1500gms

TOTAL=1605gms.

M=1.6Kg g=9.81 m/s².

F=M*g=1.6*9.81=15.68N.

Diameter of SS bar=8mm.

Torque= $F*R=15.68*4*10^{(-3)}=0.067Nm$.

NEMA17 STEPPER MOTOR has Max of 0.4Nm torque. So, we conclude that our stepper motor is NEMA 17 STEPPER MOTOR.

6 Analysis of critical parts and Prototype Planning.

6.1 FEM Analysis of Critical Parts:

We have observed in this project Belt and pulley as the critical parts, All other parts are undergoing the simple static deflection, because Belt and pulley systems play a crucial role in transmitting power and motion between rotating shafts. When analyzing such systems, two important concepts are often considered: free-free and forced-free analysis.

Conclusions/ Results and redesign criteria:

Result obtained Frequency of the Free-Free and Forced-Free Finite Element Analysis.

Modal analysis of belt and pulley sub-assembly:

Modal analysis is a commonly used technique in structural engineering to evaluate the natural frequencies and mode shapes of a system subjected to external forces or impulses. The present study aimed to perform a constrained modal analysis on a belt and pulley sub-assembly of a Braille printer machine frame. A detailed 3D model of the machine frame was created using Solid Works software with precise dimensions and specifications. The model was then converted to a STEP file and imported into ANSYS software to assign appropriate material properties and mesh the model for accurate and reliable results. Modal analysis was carried out on the machine frame by constraining the stepper motor, and natural frequencies were calculated using ANSYS software. The results obtained provided essential information about the natural frequencies and mode shapes of the structure under consideration, which can be used

to optimize the design and improve the safety and reliability of the machine frame in actual operating conditions.

Free-Free analysis:

Mode No	Frequency	Mode shapes
7	175.5944014868	Misalignment of the belt at Y-axis.
8	191.3983720598	Misalignment of the belt at Y-axis.
9	315.3868831529	Complete wobbling of the belt.
10	361.4896121954	Half of the belt wobbling.
11	447.8177437347	Misalignment of the belt at Y-axis.
12	471.8621053250	Misalignment of the belt at Y-axis.

Forced-Free analysis:

Modes	Frequency	Mode shape
7	56.496	Misalignment of the belt at Y-axis.
8	98.221	Complete wobbling of the belt.
9	115.72	Complete wobbling of the belt.
10	115.84	Half of the belt wobbling.
11	187.87	Misalignment of the belt at Y-axis.
12	207.25	Misalignment of the belt at Y-axis.

6.2 Raw materials required for Prototyping:

List the possible materials and their properties that can be chosen for suitable parts of your prototype:

SI NO	Material	Properties /Reason for selecting the material	Part Name and Number
1.	Mild Steel	 ✓ Ductility ✓ Strength ✓ Weld ability ✓ Toughness ✓ Machinability ✓ Cost effective ✓ Versatility 	Total Structure/Frame
2.	Stainless steel	 ✓ Corrosion Resistance ✓ High strength ✓ High Resistance ✓ Aesthetic Appeal ✓ Ductility and Formability ✓ Low Maintenance ✓ Environmental Sustainability ✓ Wide Range of Applications 	Movement for bearing
3.	Neoprene	 ✓ High Tensile Strength ✓ Flexibility ✓ Oil and Chemical Resistance ✓ Heat Resistance ✓ Low Noise and Vibration 	Power transmitting

4.	Aluminum	✓	Lightweight	Movement of stylus,
		✓	High Strength-to-Weight	Bearings, pulley
			Ratio	
		✓	Corrosion Resistance	
		✓	Non-Magnetic	
		✓	Electrical Conductivity	
		✓	Electrical Conductivity	

6.3 Bill of Materials

Si No	Part Number	Part Name	Quantity	Material Specification	
1	1	Stepper holder	2	ABS Plastic	
2	2	Slider support	1	Acrylic sheet	
3	3	Electronics box	1	Acrylic sheet	
4	4	Rod clamp	2	Sheet metal(MS)	
5	5	Nut & Bolts	30	M6 MS	
6	6	Stand	4	MS Hollow square rod	

6.4Joining techniques/ methods:

SI NO	Joining Method	Material to be joined	Resources required and specification
1	Welding	✓ Frame of mild steel ✓ SS bar to Frame	 ✓ Welding Equipment ✓ Welding Consumables ✓ Welding Safety Gear ✓ Welding Tools ✓ Welding Procedures ✓ Material Specifications ✓ Welder Qualifications
2	Nut and Bolts	✓ Stepper motor holder ✓ ABS (Acrylonitrile Butadiene Styrene) to Frame ✓ Linear bearing to Bar. ✓ Pully holder to Frame	

3	Adhesive	✓	Arduino Set up	
	(Fevikwik)	✓	box Acrylic Sheet joining	
		✓	Belt joining	

6.5 Flow Chart:

6.6 Sub-Assembly Planning:

Sub Assembly	Brought out Parts	Manufactured Parts	
X-Axis Movement	Pulley	Connecting Rod	
	Timing Belt	Stepper motor Holder	
	Stepper motor	Bush	
	SS bar	Turning of SS bar	
	Linear bearing	Pulley Holder	
	Nut and Bolt		
Y Axis Movement	Pulley	Pulley Holder	
	Timing Belt	Timing belt gripper	
	Stepper motor	Stepper motor holder	
	SS bar	Linear servo holder	
	Linear Bearing		
Z-Axis Holder	Linear servo motor	Linear servo motor Holder	
	Braille stylus	Stylus holder	
	Nut and Bolt		
Base	Braille slate	Stands	
	Braille base	Arduino box	

7. Final Impressions

7.1 Final Cost Estimation

	Product Expenses					
SI	Part Name	Qty.	Total Cost			
1	Stepper Motor	2	1090 Rs			
2	Stainless steel bar	1	350 Rs			
3	Linear Bearings	6	1050 Rs			
4	Stepper Motor Driver	2	1100 Rs			
5	Timing Pulley	6	480 Rs			
6	Timing belt	3	225 Rs			
7	Arduino mega 2560	1	1080 Rs			
8	Linear servo motor	1	3550 Rs			
9	Nut and bolt					
10	Braille slate and Stylus	1	400 Rs			
11	Paint					
12						
13		_				
14						
_	Total Parts Expenses Rs.					

7.2 Final Prototype Pictures

7.3 Conclusions:

A Braille printing machine utilizing an XY plotter is an efficient and accurate solution for producing Braille text. The plotter's precise control over movement allows for the faithful translation of text into Braille patterns. This method offers advantages such as consistent output, automation for time savings, flexibility in printing different sizes and styles of Braille, and seamless integration with digital content. Overall, it enhances accessibility and improves the production process for Braille materials.

7.4 Product Catalogue

Team Members:

Name6: Prakash D Bidarakundi Name3: Vivekanand M Hebsur Name4: Shanmukh Chinmalli Name2: Naveen F Walmiki Name1: Siddu S Hebballi Name5: Nagaraj V Belur

Prof: Shivaprasad mukhandmath Prof: Nagaraj Ekabote Prof: Shridhar Mandal Contact: Team leader name: Siddu S Hebballi

Ph no. 7411088331

Write the input

Install necessary software/drivers Operating Instructions: Connect to a computer Prepare your document Power on the printer

2.Printing speed: 12v, 2ampere dc supply 3.paper size and handling: A4 size paper

4.Connectivity: USB, computer. 5. Supported languages: English 6.Power requirements: 24W

1.Embossing Method: dots on paper

Features:

device designed to convert digital

or electronic text into tactile

Braille characters, allowing

individuals with visual

A Braille printer is a specialized

introduction:

impairments to read and access

printed materials. It plays a

crucial role in promoting

Print Quality:

PRODUCT SPECIFICATIONS:

Paper Handling:

Compact and Portable Design:

Braille Printing:

Maintenance and Connectivity:

8. Software compatibility: Arduino ide

7. physical dimensions and weight

:(550*550*25) mm

3D Model:

dots are accurately placed, making

also support multiple languages, fonts, and formatting options to

accommodate different needs.

Background/Introduction

Some advanced Braille printers

them easily readable by touch.

precision, ensuring that the tactile

vision. These printers can produce

Braille materials with high

people who are blind or have low

accessibility and inclusivity for

even musical notations. It enables individuals with visual impairments to

read through touch. However, producing Braille materials manually can be a time-

Braille itself is a writing system composed of raised dots that represent letters, numbers, punctuation marks, and

VE66-3550

MEDUNO

PRINTS OF MA

100

Compatibility