2021年9月20日 12:29

Projection: Given a Set $S \subseteq \mathbb{R}^n$, $S \neq \phi$, and a point $x \notin S$ we want to find a point in S that is closest to x. wit Euclidean distance

Z*ES and is closed to a

Formally, $z^{x} = Argmin ||z-x||_{z}$ is the projection of zeS x onto S and denoted by $z^{x} = T_{S}(x)$.

Q: Existence?

A: Not always. e.s. (1/3)

Q: Uniqueness?

A: Not always. e.g. S every point on S is a projection of x onto S.

Q: Conditions that guarantee existence and uniqueness?

Topological Preparations let S≤Rⁿ be a set

Definitions:

1) We say that x is an interior point of S if I =>0 S.t. B°(x, ε) = { y ε ι κη : 11 x - y 112 <) ε } ⊆ S .

K: înterior point

X: not an interior point

The collection of all interior points of S is called the interior of S, denoted by int(S).

: --) int(s)

- (2) We say that S is open if S=int(S)

 e.g. (111) not open
- (3) We say that S is closed if Rⁿ S is open

 S^c: complement of S

 everything in Rⁿ but not in S

We say that x is a limit point of S if every open ball centered at x contains yes s.t. yex.

In particular, 3 sequence yies s.t.

 $y^i \neq x \ \forall i \ and \ y^i \rightarrow x.$

Note: x need not be in S.

Take $y' = \frac{1}{i}$, $i \ge 1$. Note: $y' \in S$ $\forall i$, $y' \to 0$ $\Rightarrow x = 0 \text{ is a limit point of } S \text{ but } x \notin S.$

Exercise: Every $x \in (0,1]$ is a limit point of S.

Note: A finite set has no limit point.

Fact: S is closed iff Every limit point of S belongs to S

Fact: S is closed iff Every limit point of S belongs to S.

To prove S is closed, take any sequence $y^i \in S$ s.t. $y^i \to x$, $y^i \neq x$, then show $x \in S$.

Theorem: Let $S \subseteq \mathbb{R}^n$ be a non-empty, closed, and convex set. Then, for every $x \in \mathbb{R}^n$, \exists unique $z^x \in S$ s.t. $z^x = T_S(x)$.

Proof: (Existence)

We may assume that $x \notin S$.

Consider any $x \in S$ and define

 $T = S \cap B(x, ||x-x'||_2)$

Observe:

- (1) min || z x|| = min || z x|| 2

 Z ES || Z x|| 2
- © T is closed (it is the intersection of 2 closed sets)

 And bounded (3R>0 s.t. $T \le B(0,R)$)

In other words, T is compact (= closed and bounded)

Fact: (Weierstrass Theorem)

If f is continuous over a compact set T, then then it attains its maximum and minimum on T. (optimal solution always exists)

This proves the existence of the projection.

Note: The above argument does not need convexity.

(Uniqueness)

Suppose that $Z_1, Z_2 \in S$ s.t. both are projections of x onto S.

() ||x-Z111z=11x-Z211z

② ZES because S is convox and Z lies on the line segment [Z1,Z2]

3 (Exercise)

 \rightarrow 11 \times -211₂ < 11 \times -2,11₂ = contradiction