Class 05 - DataVis with ggplot2

Gabriella Tanoto (A18024184)

Table of contents

Background	1
baseR vs. ggplot2	1
Gene Expression Plot: Using different aes and geoms	5
mtcars dataset	7
Saving plots in a certain Sizing	12
Gap Minder - Sect 7 Labsheet	12

Background

Graphics system examples: "base R" – included in the package. But, we usually use the **ggplot2** Let's compare "base" and **ggplot2**. Let's check our example data, cars:

head(cars, 6)

baseR vs. ggplot2

In baseR, i can just call plot()

plot(cars)

Let's call out **ggplot2**!

First, INSTALL PACKAGE, if not in your R yet. use this function, but in R code! install.packages("package_name")

KEY POINT: Only install packages in R console, don't write it in quarto, cuz u r gonna have to install it every time they render T^T, not good. [this thing shows like a notes]

Before we use the package, you have to load it up using library()

library(ggplot2)

Every ggplot has at least 3 things:

- Data (in our case, cars)
- **Aes**thetics (how the data maps into the plot; i.e., x-axis and y-axis)
- **Geom**etries (determines how the plot will be drawn; i.e., boxplot, dotplots/points, lines, columns, etc.)

For simple plots, ggplot is a little more verbose than base R. But defaults of ggplot is nicer! It's easier to customize ggplots than it is to customize baseR. We can add the layers to *aes* and *themes*. For complicated plots, it's much more efficient and structured

Adding a line to show relationship between speed to stopping distance (ie, adding another 'layer')!

```
carplot <- ggplot(cars) +
        aes(x= speed, y= dist) +
        geom_point() + geom_smooth(se=TRUE, method="lm")

#se = TRUE/FALSE is when u want the standard error area or not.
#"lm" ('linear models') is to linearize the fit.</pre>
carplot
```

[`]geom_smooth()` using formula = 'y ~ x'

Adding Title and Subtitles!

[`]geom_smooth()` using formula = 'y ~ x'

Cars
Speed vs Distance to stop for old ahh cars

Gene Expression Plot: Using different aes and geoms

Open the gene expression example dataset

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

Q: How many genes are in this dataset? - counting the rows: nrow() - counting the columns: ncol()

```
nrow(genes)
```

[1] 5196

```
ncol(genes)
```

[1] 4

Q: What are the column names?

```
colnames(genes)
```

```
[1] "Gene" "Condition1" "Condition2" "State"
```

Q: How many "UP" and "DOWN" regulated genes are there?

```
sum(genes$State=="up")
```

[1] 127

```
#CAN Only see the number of up's
```

OR:

```
table(genes$State)
```

```
down unchanging up
72 4997 127
```

Q: Making the 1st plot~

Drugs influence on genes expressions

Up-regulated and Down-regulated genes

mtcars dataset

head(mtcars)

```
wt qsec vs am gear carb
                  mpg cyl disp hp drat
Mazda RX4
                 21.0
                           160 110 3.90 2.620 16.46
                                                       1
Mazda RX4 Wag
                 21.0
                                                                 4
                           160 110 3.90 2.875 17.02
                                                       1
Datsun 710
                 22.8
                      4 108 93 3.85 2.320 18.61
                                                                 1
Hornet 4 Drive
                 21.4
                        6
                           258 110 3.08 3.215 19.44 1
                                                            3
                                                                 1
                                                            3
                                                                 2
Hornet Sportabout 18.7
                        8
                           360 175 3.15 3.440 17.02
Valiant
                 18.1
                           225 105 2.76 3.460 20.22
                                                            3
                                                                 1
```

Q: Scatter plot of mpg and disp

```
pScat <- ggplot(mtcars)+
  aes(mpg, disp)+
  geom_point()
pScat</pre>
```


$\mathbf{Q} \text{: } \mathbf{Boxplot} \ \mathbf{of} \ \mathbf{gear} \ \mathbf{and} \ \mathbf{disp}$

```
pBox <- ggplot(mtcars)+
  aes(x = gear, y = disp, group = gear)+
  geom_boxplot(fill= c("pink","red", "purple")) +
  theme_classic()
pBox</pre>
```


Q: Barplot of carb

```
pBarplot <- ggplot(mtcars)+
  aes(carb)+
  geom_bar()
pBarplot</pre>
```


Q: Smooth of disp and qsec

```
pSmooth <- ggplot(mtcars)+
  aes(disp, qsec)+
  geom_smooth()
pSmooth</pre>
```

 $[\]ensuremath{\mbox{`geom_smooth()`}}\ \mbox{using method} = \ensuremath{\mbox{'loess'}}\ \mbox{and formula} = \ensuremath{\mbox{'y}}\ \sim \ensuremath{\mbox{x'}}\ \mbox{'}$

What if we wanna compile alllll these plots into one figure w multiple panels? > Use **Patchwork** package!

```
library(patchwork)
plotCompile <- (pScat / pBarplot | pBox / pSmooth)
plotCompile</pre>
```

 $[\]ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$

Saving plots in a certain Sizing

```
ggsave(plotCompile, filename = "myplot.png", width = 5, height= 3)
```

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Gap Minder - Sect 7 Labsheet

url for labsheet: https://bioboot.github.io/bimm143_S25/class-material/lab05.html#going-further

```
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.ts
gapminder <- read.delim(url)</pre>
```

#look at just 10 lines of it!
head(gapminder, 10)

	country	continent	year	lifeExp	pop	gdpPercap
1	${\tt Afghanistan}$	Asia	1952	28.801	8425333	779.4453
2	Afghanistan	Asia	1957	30.332	9240934	820.8530
3	Afghanistan	Asia	1962	31.997	10267083	853.1007
4	Afghanistan	Asia	1967	34.020	11537966	836.1971
5	Afghanistan	Asia	1972	36.088	13079460	739.9811
6	Afghanistan	Asia	1977	38.438	14880372	786.1134
7	Afghanistan	Asia	1982	39.854	12881816	978.0114
8	Afghanistan	Asia	1987	40.822	13867957	852.3959
9	Afghanistan	Asia	1992	41.674	16317921	649.3414
10	Afghanistan	Asia	1997	41.763	22227415	635.3414

Q: how many countries is in it?

table(gapminder\$country)

Afghanistan	Albania	Algeria
12	12	12
Angola	Argentina	Australia
12	12	12
Austria	Bahrain	Bangladesh
12	12	12
Belgium	Benin	Bolivia
12	12	12
Bosnia and Herzegovina	Botswana	Brazil
12	12	12
Bulgaria	Burkina Faso	Burundi
12	12	12
Cambodia	Cameroon	Canada
12	12	12
Central African Republic	Chad	Chile
12	12	12
China	Colombia	Comoros
12	12	12
Congo, Dem. Rep.	Congo, Rep.	Costa Rica
12	12	12
Cote d'Ivoire	Croatia	Cuba
12	12	12
Czech Republic	Denmark	Djibouti
12	12	12
Dominican Republic	Ecuador	Egypt
-		0

12	12	12
El Salvador	Equatorial Guinea	Eritrea
12	12	12
Ethiopia	Finland	France
12	12	12
Gabon	Gambia	Germany
12	12	12
Ghana	Greece	Guatemala
12	12	12
Guinea	Guinea-Bissau	Haiti
12	12	12
Honduras	Hong Kong, China	Hungary
12	12	12
Iceland	India	Indonesia
12	12	12
Iran	Iraq	Ireland
12	12	12
Israel	Italy	Jamaica
12	12	12
Japan	Jordan	Kenya
12	12	12
Korea, Dem. Rep.	Korea, Rep.	Kuwait
12	12	12
Lebanon	Lesotho	Liberia
12	12	12
Libya	Madagascar	Malawi
12	12	12
Malaysia	Mali	Mauritania
12	12	12
Mauritius	Mexico	Mongolia
12	12	12
Montenegro	Morocco	Mozambique
12	12	12
Myanmar	Namibia	Nepal
12	12	12
Netherlands	New Zealand	Nicaragua
12	12	12
Niger	Nigeria	Norway
12	12	12
Oman	Pakistan	Panama
12	12	12
Paraguay	Peru	Philippines
12	12	12

Poland	Portugal	Puerto Rico
12	12	12
Reunion	Romania	Rwanda
12	12	12
Sao Tome and Principe	Saudi Arabia	Senegal
12	12	12
Serbia	Sierra Leone	Singapore
12	12	12
Slovak Republic	Slovenia	Somalia
12	12	12
South Africa	Spain	Sri Lanka
12	12	12
Sudan	Swaziland	Sweden
12	12	12
Switzerland	Syria	Taiwan
12	12	12
Tanzania	Thailand	Togo
12	12	12
Trinidad and Tobago	Tunisia	Turkey
12	12	12
Uganda	United Kingdom	United States
12	12	12
Uruguay	Venezuela	Vietnam
12	12	12
West Bank and Gaza	Yemen, Rep.	Zambia
12	12	12
Zimbabwe		
12		

length(table(gapminder\$country))

[1] 142

Q: Plot of GDP v Life expectancy - When coloring something according to a data, we don't wanna make it as a "string". NO QUOTATION MARKKKKK - Facet_wrap will separate all the data according to some kind of group!

```
ggplot(gapminder) +
  aes(gdpPercap, lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.3) +
  facet_wrap(~continent) +
  theme_bw()
```

