El mensaje del paracaídas

A quienes trabajan en el JPL les gusta ocultar mensajes secretos en su Misiones. La última vez que enviaron un rover a Marte, las huellas del rover Curiosity dejaban escrito "JPL" en código Morse.

Fuente de la imagen: NASA/JPL-Caltech https://www.nasa.gov/mission_pages/msl/news/msl20120829f.html

¡Esta vez escondieron código morse en el rover Perseverance, y también un mensaje secreto en el paracaídas!

¿Qué significan el naranja y el blanco?

Algunas partes del paracaídas son de color naranja y otras blancas. Podemos suponer que el naranja es color y que el blanco no lo es.

Podemos escribir cada pedacito (bit en inglés) naranja como 1 y cada pedacito blanco como 0.

Al sistema de ceros y unos se lo denomina sistema binario.

¿Cómo saber cuándo empezar y cuándo parar?

Por lo general, los códigos como éste tienen un comienzo, y simplemente cuentas cada 8 dígitos, decodificándolos a medida que avanzas.

00100

0001000

¡El paracaídas es un círculo, así que no sabemos dónde está el principio y el final! Es por eso que debemos buscar separadores, que son bloques del mismo color. Te muestran los espacios.

¡Entre los espacios está el código real! Tienes que mirar con mucho cuidado.

¿Puedes completar los códigos?

Aquí hay una versión ordenada del paracaídas.

Hemos comenzado a completar los ceros y unos, ¿puedes terminarlo?

Un poco más de información...

Usar Binario es inteligente porque puedes lograr cualquier número con tan solo ceros y unos (apagado y prendido).

El bit que está bien a la derecha vale uno, el anteúltimo bit vale dos, el siguiente vale 4, y así sucesivamente. Necesitas sumar todos los bits "prendidos" para obtener el número final.

0	0	1	0	1	1	1
64	32	16	8	4	2	1

Cada encendido o apagado se denomina "bit" (pedacito). En el paracaídas usaron 7 bits (cada uno puede estar encendido o apagado)

Tratá de ver si puedes resolver este mensaje. (pista: lo llevas puesto)

0 0 0 1 0 0

0	0	0	0	0	0	1
---	---	---	---	---	---	---

0	0	1	0	1	0	0
---	---	---	---	---	---	---

Α	1
В	2
С	3
D	4
E	5
F	6
G	7
Н	8
I	9
J	10
K	11
L	12
M	13
N	14
0	15
Р	16
Q	17
R	18
S	19
T	20
U	21
V	22
W	23
Х	24
Y	25
Z	26

¿Qué significa el código?

Binario es una manera de contar.

o por la
derecha y
yendo hacia
la izquierda,
suma los
números que
se duplican
cada vez que
hay un 1.

Para obtener más información sobre el sistema binario, consulta: https://www.mathsisfun.com/binary-number-system.html

¡Decodifica tu paracaídas!

Es tiempo de mirar hacia atrás en los ceros y unos que anotaste.

Ve si puedes convertir cada segmento en un número.

Escribe con cuidado el número y la letra que podría ser en cada segmento, como se muestra aquí.

Si un segmento es TODO naranja, es un espacio y no se necesita decodificar.

Antes de mirar la página siguiente, ¿puedes ver el mensaje?

¡La solución!

El mensaje es el lema que se encuentra en las paredes del JPL.

¡Busca las coordenadas en un mapa para ver a dónde te llevan!

Esta imagen fue compartida por Adam Steltzner en Twitter. https://twitter.com/steltzner/status/1364076615932645379

