Fast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting

Canyi Lu¹, Huan Li², Zhouchen Lin², Shuicheng Yan¹

¹National University of Singapore, ²Peking University

Problem and Contributions

▶ **Problem:** to solve the following linearly constrained separable convex problem with *n* blocks of variables

$$\min_{\mathbf{x}_1,\dots,\mathbf{x}_n} f(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{x}_i) = \sum_{i=1}^n (g_i(\mathbf{x}_i) + h_i(\mathbf{x}_i)),$$
s.t.
$$\mathcal{A}(\mathbf{x}) = \sum_{i=1}^n \mathcal{A}_i(\mathbf{x}_i) = \mathbf{b},$$
(1)

 \mathbf{y}_i is a convex smooth function with Lipschitz continuous gradient, i.e.,

$$||\nabla g_i(\mathbf{x}) - \nabla g_i(\mathbf{y})||_F \leq L_i ||\mathbf{x} - \mathbf{y}||_F, \ \forall \ \mathbf{x}, \mathbf{y}.$$

- ▶ h_i is simple, i.e., $\min_{\mathbf{x}} h_i(\mathbf{x}) + \frac{\alpha}{2}||\mathbf{x} \mathbf{a}||^2$ ($\alpha > 0$) can be cheaply solved.
- ► Contributions: faster solvers for (1) with bettter convergence rates:

PALMFast PALMPL-ADMM-PSFast PL-ADMM-PS
$$O\left(\frac{D_{\mathbf{x}^*}^2 + D_{\lambda^*}^2}{K}\right)$$
 $O\left(\frac{D_{\mathbf{x}^*}^2 + D_{\lambda^*}^2}{K^2}\right)$ $O\left(\frac{D_{\mathbf{x}^*}^2 + D_{\lambda^*}^2}{K} + \frac{D_{\lambda^*}^2}{K}\right)$ $O\left(\frac{D_{\mathbf{x}^*}^2}{K} + \frac{D_{\lambda^*}^2}{K}\right)$

Fast PALM for (1) with n=1

Solve problem (1) with n = 1 by Proximal Augmented Lagrangian Method (PALM):

$$\begin{cases} \mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} g(\mathbf{x}^{k}) + \langle \nabla g(\mathbf{x}^{k}), \mathbf{x} - \mathbf{x}^{k} \rangle + h(\mathbf{x}) \\ + \langle \boldsymbol{\lambda}^{k}, \mathcal{A}(\mathbf{x}) - \mathbf{b} \rangle + \frac{\beta^{(k)}}{2} ||\mathcal{A}(\mathbf{x}) - \mathbf{b}||^{2} + \frac{L}{2} ||\mathbf{x} - \mathbf{x}^{k}||^{2}, \\ \boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^{k} + \beta^{(k)} (\mathcal{A}(\mathbf{x}^{k+1}) - \mathbf{b}), \end{cases}$$
(2)

Solve problem (1) with n = 1 by our proposed Fast PALM

Initialize:
$$\mathbf{x}^{0}$$
, \mathbf{z}^{0} , λ^{0} , $\beta^{(0)} = \theta^{(0)} = 1$.
for $k = 0, 1, 2, \cdots$ do
$$\mathbf{y}^{k+1} = (1 - \theta^{(k)})\mathbf{x}^{k} + \theta^{(k)}\mathbf{z}^{k}; \qquad (6)$$

$$\mathbf{z}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \langle \nabla g(\mathbf{y}^{k+1}), \mathbf{x} \rangle + h(\mathbf{x})$$

$$+ \langle \boldsymbol{\lambda}^{k}, \mathcal{A}(\mathbf{x}) \rangle + \frac{\beta^{(k)}}{2} \| \mathcal{A}(\mathbf{x}) - \mathbf{b} \|^{2}$$

$$+ \frac{L\theta^{(k)}}{2} \| \mathbf{x} - \mathbf{z}^{k} \|^{2}; \qquad (7)$$

$$\mathbf{x}^{k+1} = (1 - \theta^{(k)})\mathbf{x}^{k} + \theta^{(k)}\mathbf{z}^{k+1}; \qquad (8)$$

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^{k} + \beta^{(k)}(\mathcal{A}(\mathbf{z}^{k+1}) - \mathbf{b}); \qquad (9)$$

$$\theta^{(k+1)} = \frac{-(\theta^{(k)})^{2} + \sqrt{(\theta^{(k)})^{4} + 4(\theta^{(k)})^{2}}}{2}; \qquad (10)$$

$$\boldsymbol{\beta}^{(k+1)} = \frac{1}{\theta^{(k+1)}}. \qquad (11)$$

Algorithm 1: Fast PALM Algorithm

▶ Theorem 1 In Algorithm 1, for any K > 0, we have

$$f(\mathbf{x}^{K+1}) - f(\mathbf{x}^*) + \left\langle \boldsymbol{\lambda}^*, \mathcal{A}(\mathbf{x}^{K+1}) - \mathbf{b} \right\rangle + \frac{1}{2} \|\mathcal{A}(\mathbf{x}^{K+1}) - \mathbf{b}\|^2$$

$$\leq \frac{2}{(K+2)^2} \left(LD_{\mathbf{x}^*}^2 + D_{\boldsymbol{\lambda}^*}^2 \right). \tag{3}$$

► Remark: Fast PALM improves the rate of PALM from $O\left(\frac{D_{\mathbf{x}^*}^2 + D_{\lambda^*}^2}{K}\right)$ to $O\left(\frac{D_{\mathbf{x}^*}^2 + D_{\lambda^*}^2}{K^2}\right)$.

Fast PL-ADMM-PS for (1) with n > 1

Solve problem (1) with n > 1 by Proximal Linearized Alternating Direction Method of Multiplier (PL-ADMM-PS): updates each \mathbf{x}_i in parallel by

$$\begin{cases} \mathbf{x}_{i}^{k+1} = \underset{\mathbf{x}_{i}}{\operatorname{argmin}} g_{i}(\mathbf{x}_{i}^{k}) + \left\langle \nabla g_{i}(\mathbf{x}_{i}^{k}), \mathbf{x}_{i} - \mathbf{x}_{i}^{k} \right\rangle + h_{i}(\mathbf{x}_{i}) + \left\langle \boldsymbol{\lambda}^{k}, \mathcal{A}_{i}(\mathbf{x}_{i}) \right\rangle \\ + \left\langle \boldsymbol{\beta}^{(k)} \mathcal{A}_{i}^{T} \left(\mathcal{A}(\mathbf{x}^{k}) - \mathbf{b} \right), \mathbf{x}_{i} - \mathbf{x}_{i}^{k} \right\rangle + \frac{L_{i} + \boldsymbol{\beta}^{(k)} \eta_{i}}{2} ||\mathbf{x}_{i} - \mathbf{x}_{i}^{k}||^{2}, \\ \boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^{k} + \boldsymbol{\beta}^{(k)} (\mathcal{A}(\mathbf{x}^{k+1}) - \mathbf{b}), \end{cases}$$

where $\eta_i > n||\mathcal{A}_i||^2$ and $\beta^{(k)} > 0$.

Solve problem (1) with n = 1 by our proposed Fast PL-ADMM-PS

► Theorem 2 In Algorithm 2, for any K > 0, we have

$$f(\mathbf{x}^{K+1}) - f(\mathbf{x}^*) + \left\langle \boldsymbol{\lambda}^*, \mathcal{A}(\mathbf{x}^{K+1}) - \mathbf{b} \right\rangle + \frac{\beta \alpha}{2} \left\| \mathcal{A}(\mathbf{x}^{K+1}) - \mathbf{b} \right\|^2$$

$$\leq \frac{2L_{\max} D_{\mathbf{x}^*}^2}{(K+2)^2} + \frac{2\beta \eta_{\max} D_X^2}{K+2} + \frac{2D_{\Lambda}^2}{\beta (K+2)},$$
(5)

where $\alpha = \min \left\{ \frac{1}{n+1}, \left\{ \frac{\eta_i - n \|\mathcal{A}_i\|^2}{2(n+1)\|\mathcal{A}_i\|^2}, i = 1, \dots, n \right\} \right\}$, $L_{\max} = \max\{L_i, i = 1, \dots, n\}$ and $\eta_{\max} = \max\{\eta_i, i = 1, \dots, n\}$.

Remark: Fast PL-ADMM-PS improves the rate of PL-ADMM-PS from $O\left(\frac{D_{\mathbf{x}^*}^2}{K} + \frac{D_{\mathbf{x}^*}^2}{K} + \frac{D_{\lambda^*}^2}{K}\right)$ to $O\left(\frac{D_{\mathbf{x}^*}^2}{K^2} + \frac{D_{\lambda}^2}{K} + \frac{D_{\lambda}^2}{K}\right)$.

Experiments

Comparison of PALM and Fast PALM

Consider the following problem

$$\min_{\mathbf{x}} ||\mathbf{x}||_1 + \frac{\alpha}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2, \text{ s.t. } \mathbf{1}^T \mathbf{x} = \mathbf{1},$$
 (

where $\alpha > 0$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, and $\mathbf{1} \in \mathbb{R}^n$ is the all one vector.

- ▶ Generate different sizes of $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ by the Matlab command randn.
- ► Use the left hand side of (3) as the convergence function to evaluate the convergence subspace clustering. behaviors of PALM and Fast PALM.

Comparison of PALM and Fast PALM (Cont')

Figure: Plots of the convergence function values of (3) in each iterations by using PALM and Fast PALM for (6) with different sizes of $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Comparison of PL-ADMM-PS and Fast PL-ADMM-PS

Conduct a problem with three blocks of variables as follows

$$\min_{\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3}} \sum_{i=1}^{3} \left(||\mathbf{X}_{i}||_{\ell_{i}} + \frac{\alpha_{i}}{2} ||\mathbf{C}_{i}\mathbf{X}_{i} - \mathbf{D}_{i}||_{F}^{2} \right), \text{ s.t. } \sum_{i=1}^{3} \mathbf{A}_{i}\mathbf{X}_{i} = \mathbf{B},$$

where $||\cdot||_{\ell_1}$ uses the ℓ_1 -norm, $||\cdot||_{\ell_2}$ uses the nuclear norm, and $||\cdot||_{\ell_3}$ uses the $\ell_{2,1}$ -norm defined as the sum of the ℓ_2 -norm of each column of a matrix.

▶ Generate the matrices A_i , C_i , D_i , B, $\in \mathbb{R}^{m \times m}$ by the Matlab command randn.

Figure: Plots of the convergence function values of (5) in each iterations by using PL-ADMM-PS and Fast PL-ADMM-PS for (7) with different sizes of $\mathbf{X} \in \mathbb{R}^{m \times m}$.

Application to subspace clustering

$$\min_{\mathbf{Z}} \ \alpha_{1} ||\mathbf{Z}||_{*} + \alpha_{2} ||\mathbf{Z}||_{1} + \frac{1}{2} ||\mathbf{X}\mathbf{Z} - \mathbf{X}||^{2}, \text{s.t. } \mathbf{1}^{T} \mathbf{Z} = \mathbf{1}^{T},$$
 (8)

Figure: Plots of the convergence function values of (5) in each iterations by using PL-ADMM-PS and Fast PL-ADMM-PS for (8) with different sizes of data **X** for

Table: Comparision of subspace clustering accuracies (%) on the Extended Yale B database.

