Numerical Methods for Optimization and Control Theory

Lecture 7: Calculating Derivatives

Gergó Lajos (Bognár Gergő)

ELTE Faculty of Informatics

Table of Contents

1 Finite Differencing

2 Automatic Differentiation

Motivation

Problem

Automatic calculation or approximation of the derivatives, required by the optimization method.

Approaches

- Finite differencing
- Automatic differentiation
- Symbolic differentiation

Table of Contents

1 Finite Differencing

2 Automatic Differentiation

Idea

Estimate the real function f in the neighborhood of x with its tangent line:

$$f(x + \varepsilon) \approx f(x) + f'(x) \cdot \varepsilon \quad (\varepsilon \in \mathbb{R} \setminus \{0\}).$$

Then we can approximate the derivative with a *finite difference*:

$$f'(x) \approx \frac{f(x+\varepsilon)-f(x)}{\varepsilon}$$
.

We can then give error estimations based on Taylor's theorem, and extend the formula to multiple variables.

Definition (finite differences)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function, $\varepsilon > 0$, and denote the unit vectors as $e_i \in \mathbb{R}^n$, (i = 1, ..., n).

The *forward difference*, or *one-sided difference* approximation of the gradient:

$$\frac{\partial f}{\partial x_i}(x) \approx \frac{f(x + \varepsilon e_i) - f(x)}{\varepsilon}$$
 $(i = 1, ..., n).$

The *central difference* approximation of the gradient:

$$\frac{\partial f}{\partial x_i}(x) \approx \frac{f(x + \varepsilon e_i) - f(x - \varepsilon e_i)}{2\varepsilon}$$
 $(i = 1, ..., n).$

Theorem (errors of the finite differences)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function, $\varepsilon > 0$, then the error of the *forward difference* is

$$\frac{\partial f}{\partial x_i}(x) = \frac{f(x + \varepsilon e_i) - f(x)}{\varepsilon} + O(\varepsilon) \quad (i = 1, ..., n),$$

Theorem (errors of the finite differences)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a three times continuously differentiable function, $\varepsilon > 0$, then the error of the *central difference* is

$$\frac{\partial f}{\partial x_i}(x) = \frac{f(x + \varepsilon e_i) - f(x - \varepsilon e_i)}{2\varepsilon} + O(\varepsilon^2) \quad (i = 1, \dots, n).$$

Proof:

The idea of the *finite differences* comes from the Taylor's theorem:

$$f(x+p) = f(x) + \nabla f(x)^T p + O(\|p\|^2)$$
 (if $f \in C^2$),

$$f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x) + O(||p||^3)$$
 (if $f \in C^3$).

Let $p = \pm \varepsilon e_i$ (i = 1, ..., n). Then if $f \in C^2$:

$$f(x + \varepsilon e_i) = f(x) + \varepsilon \frac{\partial f}{\partial x_i}(x) + O(\varepsilon^2)$$

$$\implies \frac{\partial f}{\partial x_i}(x) = \frac{f(x + \varepsilon e_i) - f(x)}{\varepsilon} + O(\varepsilon).$$

Similarly, if $f \in C^3$:

$$f(x \pm \varepsilon e_i) = f(x) \pm \varepsilon \frac{\partial f}{\partial x_i}(x) + \frac{1}{2} \varepsilon^2 \frac{\partial^2 f}{\partial x_i^2}(x) + O(\varepsilon^3)$$

$$\implies \frac{\partial f}{\partial x_i}(x) = \frac{f(x + \varepsilon e_i) - f(x - \varepsilon e_i)}{2\varepsilon} + O(\varepsilon^2). \quad [$$

Recommendation (choice of ε)

The good practical choice for ε is \sqrt{u} (forward difference) and $\sqrt[3]{u}$ (central difference), where u is the unit roundoff (the numeric precision of the floating point arithmetic).

Discussion: (forward difference)

Let L > 0 be a bound on $\|\nabla^2 f\|$, then

$$\left|\frac{\partial f}{\partial x_i}(x) - \frac{f(x + \varepsilon e_i) - f(x)}{\varepsilon}\right| \leq \frac{L\varepsilon}{2}.$$

Let $L_f > 0$ be a bound on |f|, and denote the computed values by fl, then the floating point error is bounded by uL_f :

$$|f(f(x)) - f(x)| \le uL_f$$
, $|f(f(x + \varepsilon e_i)) - f(x + \varepsilon e_i)| \le uL_f$.

Finite Differences

Then the error bound of the computed finite difference is:

$$\left|\frac{\partial f}{\partial x_i}(x) - fl\left(\frac{f(x+\varepsilon e_i) - f(x)}{\varepsilon}\right)\right| \leq \frac{L\varepsilon}{2} + \frac{2uLf}{\varepsilon}.$$

The optimal choice is to minimize this error: $\varepsilon^2 = 4uL_f/L$. In practice, assuming that the ratio L_f/L is moderate, the choice

$$\varepsilon = \sqrt{u}$$

is close to optimal. The total error is then close to \sqrt{u} .

Discussion: (central difference)

A similar discussion leads to the choice

$$\varepsilon = \sqrt[3]{u}.$$

Here, the total error is close to $u^{2/3}$.

Remarks:

- The forward difference requires the evaluation of f at (n+1) points: at x and at $x + \varepsilon e_i$ (i = 1, ..., n).
- The *central difference* requires evaluation at (2n + 1) points.
- Similarly to the *forward difference*, a *backward difference* can be defined, with similar properties:

$$\frac{\partial f}{\partial x_i}(x) \approx \frac{f(x) - f(x - \varepsilon e_i)}{\varepsilon}$$
 $(i = 1, \dots, n).$

The *central difference* is then the average of the *forward* and *backward* differences.

• The central difference is more accurate than the forward difference. In theory, error terms are $O(\varepsilon^2)$ and $O(\varepsilon)$. Although in practice, a total error close to $u^{1/2}$ and $u^{2/3}$ can only be achieved.

Second Order Finite Differences

Motivation

Approximation of the Hessian matrix $\nabla^2 f(x)$, or the Hessian-vector product $\nabla^2 f(x)p$, required by some iteration methods.

Approaches

- Finite differencing of the gradient ∇f (if available). (Usually a non-symmetric approximation is produced. The symmetry can be recovered by replacing the approximation $\nabla^2 f(x) \approx H$ by $(H + H^T)/2$.)
- Approximation of $\nabla^2 f(x)p$ only (if the gradient is available). Based on Taylor's theorem $(\varepsilon > 0, p \in \mathbb{R}^n)$:

$$\nabla f(x + \varepsilon p) = \nabla f(x) + \varepsilon \nabla^2 f(x) p + O(\varepsilon^2),$$

that leads to the direct approximation:

$$\nabla^2 f(x) p = \frac{\nabla f(x + \varepsilon p) - \nabla f(x)}{\varepsilon}.$$

Second order finite differencing (if no gradient is available).

Second Order Finite Differences

Approaches (contd.)

 Second order finite differencing (if no gradient is available).
 Approximate the Hessian only with function values: approximate the gradient first, then the Hessian.

In case of *forward difference* approximation:

$$\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \approx \frac{\frac{\partial f}{\partial x_{j}} (x + \varepsilon e_{i}) - \frac{\partial f}{\partial x_{j}} (x)}{\varepsilon} \approx$$

$$\approx \frac{\frac{f(x + \varepsilon e_{i} + \varepsilon e_{j}) - f(x + \varepsilon e_{i})}{\varepsilon} - \frac{f(x + \varepsilon e_{j}) - f(x)}{\varepsilon}}{\varepsilon} =$$

$$= \frac{f(x + \varepsilon e_{i} + \varepsilon e_{j}) - f(x + \varepsilon e_{i}) - f(x + \varepsilon e_{j}) + f(x)}{\varepsilon^{2}}.$$

Table of Contents

1 Finite Differencing

2 Automatic Differentiation

Automatic Differentiation

Idea

If the computational representation of a function is known (e.g. during the compilation), then we can produce code for the gradient by manipulating the function code.

Restrictions

The function must be a 'mathematical function', i.e. can be evaluated by performing only:

- addition, multiplication, division, exponentiation,
- trigonometric, exponential, logarithmic function evaluation.

Tool

Most important tool is the *chain rule*: if $f: \mathbb{R}^m \to \mathbb{R}$ and $y \in \mathbb{R}^n \to \mathbb{R}^m$ are differentiable functions, then

$$\nabla (f \circ y)(x) = \sum_{i=1}^m \frac{\partial f}{\partial y_i} \nabla y_i(x) \quad (x \in \mathbb{R}^n).$$

.

Automatic Differentiation

Example

$$f(x) = (x_1x_2\sin x_3 + e^{x_1x_2})/x_3$$
 $(x = (x_1, x_2, x_3) \in \mathbb{R}^3).$

Computational graph:

Intermediate variables:

$$x_4 = x_1 \cdot x_2, \ x_5 = \sin x_3, \ x_6 = e^{x_4}, \ x_7 = x_4 \cdot x_5, \ x_8 = x_6 + x_7, \ x_9 = x_8/x_3.$$

Automatic Differentiation

Approaches

- Forward mode: evaluates and carries forward the derivative of the intermediate variables, concurrently by the evaluation of f (numeric or symbolic evaluation, code generation possibility).
- Reverse mode: after the evaluation of f, performs a reverse sweep, assembles the gradient from the partial derivatives of the child nodes in the computational graph (numeric evaluation only).

Example (forward mode)

Calculate the gradient of the intermediate variables x_4, \ldots, x_9 sequentially. At node $x_7 = x_4 \cdot x_5$, we already have ∇x_4 and ∇x_5 :

$$x_7 = x_4 \cdot x_5 \implies \nabla x_7 = \frac{\partial x_7}{\partial x_4} \nabla x_4 + \frac{\partial x_7}{\partial x_5} \nabla x_5 = x_5 \nabla x_4 + x_4 \nabla x_5.$$