Differential Manifolds

Seb Wu

Seb Wu DM

1 2018.9.10 Monday

Definition 1.1. For many differentiable atlas on one topological manifold M, the C^{∞} -compatibility is an equivalent relationship. Every equivalent class S is called a differential structure and (M, S) a differential manifold. In other words, we can also treat S as a maximum differential atlas, i.e., for any differentiable atlas S' compatible with S, we have $S' \subset S$.

Example 1.1 (Torus). For independent $w_1, w_2 \in \mathbb{R}^2$, let $\Gamma = \{nw_1 + mw_2 : n, m \in \mathbb{Z}\}$. Define a relation \sim on \mathbb{R}^2 by $p \sim q$ if and only if $p - q \in \Gamma$, then the torus $\mathbb{R}^2/\Gamma := \mathbb{R}^2/\sim$ is a 2-dimensional differential manifold.

Proof. Easy to check a torus is Hausdorff and secondly countable, so we only have to equip an atlas on it. The natural map $\pi: \mathbb{R}^2 \to \mathbb{R}^2/\Gamma$ is open since

$$\pi^{-1}(\pi(A)) = \bigcup_{x \in \Gamma} A + x.$$

Notice that $\{B_r(p): p \in \mathbb{R}^2\}$ covers \mathbb{R}^2 for any r > 0, we prove $\pi|B_r(p): B_r(p) \to U_p$ is a homeomorphism for small enough r where $U_p = \pi(B_r(p))$. Suppose $\pi(x) = \pi(y)$, then $x - y \in \Gamma$, since $x - y \in B_{2r}(0)$ and $B_{2r}(0) \cap \Gamma = \{0\}$ for small enough r, we know $\pi|B_r(p)$ is injective and thus a homeomorphism. Now let $f_p = (\pi|B_r(p))^{-1}$, we prove $f_p \circ f_q^{-1}$ is a translation and thus we did equip an atlas. Since

$$f_p \circ f_q^{-1}(x) = x + z(x) \in B_r(p), \quad \forall x \in B_r(q)$$

for some $z(x) \in \Gamma$. Suppose $x + z_1$, $y + z_2$ be two such points, we know

$$|z_1 - z_2| \le |z_1 + x - (z_2 + y)| + |x - y|$$

$$\le |z_1 + x - p| + |z_2 + y - p| + |x - q| + |y - q|$$

$$< 4r.$$

Thus $z_1 - z_2 \in B_{4r}(0) \cap \Gamma = \{0\}$ for small enough r, which completes our proof.