נניח שאנחנו רוצים להוכיח טענה שהצורה הלוגית שלה היא "לכל  $n\in\mathbb{N}$  כך ש $n\geq a$  מתקיים (n'=n', כאשר n'=n', כאשר n'=n' מספר טבעי וn'=n' הוא פרדיקט. אנחנו יכולים להוכיח טענה כזו ב**שיטת האינדוקציה**. זה אומר שאנחנו מוכיחים את שתי הטענות הבאות:

- .P(a) :טענת הבסיס
- P(n) אז P(n-1) אם n>a כך ש $n\in\mathbb{N}$  אז רכל •

 $n \geq a$  כך ש $n \in \mathbb{N}$  כך "לכל ("לכל "לכל המקורית האינדוקציה אומרת שאם הוכחנו את שתי הטענות האלה, זה מוכיח את האינדוקציה אומרת שאם הוכחנו את שתי הטענות האלה, זה מוכיח את המקורית ("לכל  $n \in \mathbb{N}$ ").

אנדוק את שתי מספר טבעי  $b \geq a$  ש כך להוכיח באינדוקציה חזקה, אנחנו בוחרים מספר טבעי להוכיחים את שתי הטענות כדי להוכיח באינדוקציה חזקה, אנחנו בוחרים מספר טבעי להוכיחים את שתי הטענות הבאות:

 $P(a), P(a+1), \dots, P(b)$  :טענות הבסיס



### עקרון שובך היונים

היא היא היא היא היא היא הטענה הבאה: יהיו X,Y הוכיחו באינדוקציה את הטענה הבאה: יהיו היח קבוצות סופיות כך ש|Y| > |Y|. אז כל פונקציה את הטענה הבאה: יהיו להגודל של Y.

# פתרון השאלה על עקרון שובך היונים

נוכיח באינדוקציה שלכל T, אם T אם T אם T היא פונקציה כך שT ו וT ו וT היא לא חדרחדערכית. T לאיבר היחיד בT אם ענת הבסיס עבור T אם T אם T וויש לפחות את האיברים של T לאיבר היחיד בT וויש לפחות שני איברים כאלה של T. לכן T היא לא חדרחדערכית.

נעבור להוכיח את טענת האינדוקציה. יהי  $n\in\mathbb{N}$  כך שn>1 נניח שהטענה מתקיימת עבור n-1 ונוכיח שהיא מתקיימת עבור f:X o Y וותהי f:X o Y וותהי f:X o Y פונקציה. נוכיח שn היא לא חד-חד-ערכית.

יהי  $x\in X$ , ונסמן y=f(x), אם קיים לy מקור y מקור  $x\in X$  ששונה מx, אז הפונקציה y היא לא חד־חד־ערכית, כנדרש. y=f(x) ונסמן y=f(x), ונסמן בy'=x את הפונקציה שמקיימת y'=x ונסמן בy'=x את הפונקציה שמקיימת וניח שx הוא המקור היחיד שלx'=x ניח שלx'=x וx'=x וגם x'=x שx'=x ווגם וונסמן x'=x שוx'=x שו x'=x שו וונסמן בx'=x וונסמן בx'=x שו וונסמן בx'=x

$$|X'| = |X| - 1 > n - 1$$

וגם  $x_1 \neq x_2$  ש  $x_1, x_2 \in X'$  וגם  $x_1, x_2 \in X'$  פי הנחת האינדוקציה, הפונקציה  $x_1 \neq x_2$  היא לא חד־חד־ערכית. מכאן נובע שקיימים  $x_1, x_2 \in X$  כך ש  $x_1, x_2$  היא  $x_1 \neq x_2$  וגם  $x_1, x_2 \in X$  ולכן  $x_1 \neq x_2$  היא הולכן  $x_1, x_2 \in X$  ולכן  $x_1, x_2 \in X$  ולכ

# הבעיה עם בסיס לא נכון של אינדוקציה

בעית הסוסים שכולם באותו צבע (הספר של לינאל פרנס, פרק 3, עמוד 87).

#### תאים טובים במטריצה

תהי אות אומרים אחרים). אנחנו אומרים בה יש 0־ים או 1־ים או ר־ים אחרים). אנחנו אומרים שבכל התאים בה יש  $m \times n$  מטריצה או מטריצה שבכל התאים בה יש  $(M_{i,j} = 1)$  ומתקיים לפחות אחד משלושת התנאים הבאים:

- .(i=1 התא נמצא בשורה הראשונה (כלומר i=1
- .(j=1 התא נמצא בעמודה הראשונה (כלומר •
- $M_{i,j-1}=0$  וגם  $M_{i-1,j}=0$  וגם  $M_{i-1,j}=0$  וגם מעל ומשמאל לתא מכילים  $M_{i,j-1}=0$  וגם  $M_{i,j-1}=0$

. הוכיחו שאם התא ה(m,n) מכיל (m,n) מכיל מכיחו שאם התא ה(m,n) מכיל מכיל מכיחו שאם התא ה

m+n על הפתרון הוא באינדוקציה על

## פתרון השאלה על תאים טובים במטריצה

נוכיח באינדוקציה שלכל m+n=s כך ש $s \geq 2$ , אם m היא מטריצה m imes m כמו בשאלה כך ש $s \in \mathbb{N}$  אז קיים תא טוב במטריצה". נתחיל מלהוכיח את טענת הבסיס עבור s = 2: תהי m מטריצה m imes m כמו בשאלה כך שm+n=2 והוא תא טוב כי m = m, כנדרש.

s נעבור להוכיח את טענת האינדוקציה: יהי  $s\in\mathbb{N}$  כך ש  $s\in\mathbb{N}$  נניח שהטענה נכונה עבור s-1 ונוכיח אותה עבור s>2 כך ש  $s\in\mathbb{N}$  כא כמו בשאלה כך ש  $m\times n$  מטריצה  $m\times n$  מטריצה  $m\times n$  כמו בשאלה כך ש m+n=s אם התא  $m\times n$  הוא תא טוב, אז סיימנו. אחרת, אנחנו יודעים ש  $m\times n$  וגם מתקיים  $m\times n$  או m=1 ש m

M את השורה ה M את המטריצה שנקבל אם נמחק מ M את השורה ה  $M_{m,n-1}=1$  נניח ש  $M_{m-1,n}=1$  (אם  $M_{m,n-1}=1$  ההוכחה דומה). תהי M את השורה ה M את השורה ה M את השורה ה M או M היא מטריצה M את השורה ה M את השורה ה M את השורה ה M או M היא מטריצה M את השורה ה

$$M'_{m-1,n} = M_{m-1,n} = 1$$

ולכן לפי הנחת האינדוקציה קיים בM' תא טוב (i,j). אז התא (i,j) הוא בהכרח תא טוב של M' (כי כל הדרישות שמתקיימות בM' בהכרח מתקיימות גם בM).