23. Given: $\angle B \cong \angle C$

Prove: $NM \cdot CM = LM \cdot BM$

24. Given: $\overline{BN} \parallel \overline{LC}$

Prove: $BN \cdot LM = CL \cdot NM$

25. Given: $\triangle ABC \sim \triangle XYZ$:

 \overline{AD} and \overline{XW} are altitudes.

Prove: $\frac{AD}{XW} = \frac{AB}{XY}$

26. Given: $\triangle PQR \sim \triangle GHI$;

 \overrightarrow{PS} and \overrightarrow{GJ} are angle bisectors.

Prove: $\frac{PS}{GI} = \frac{PQ}{GH}$

27. Given: $\overline{AH} \perp \overline{EH}$; $\overline{AD} \perp \overline{DG}$

Prove: $AE \cdot DG = AG \cdot HE$

28. Given: $\overline{QT} \parallel \overline{RS}$

Prove: $\frac{QU}{PV} = \frac{UT}{VS}$

29. Given: $\angle 1 \cong \angle 2$

Prove: $(AB)^2 = AD \cdot AC$

In the diagram for Exercises 30 and 31, the plane of $\triangle A'B'C'$ is parallel to the plane of $\triangle ABC$.

- **30.** VA' = 15 and A'A = 20
 - **a.** If VC' = 18, then $VC = \frac{?}{}$.
 - **b.** If VB = 49, then $BB' = \frac{?}{}$
 - **c.** If A'B' = 24, then $AB = \frac{?}{}$.
- **31.** If VA' = 10, VA = 25, AB = 20, BC = 14, and AC = 16, find the perimeter of $\triangle A'B'C'$.
- 32. Two vertical poles have heights 6 ft and 12 ft. A rope is stretched from the top of each pole to the bottom of the other. How far above the ground do the ropes cross? (Hint: The lengths y and z do not affect the answer.)

