

DIGITAL DESIGN & COMPUTER ORGANISATION

Floating Point

Sudarshan T S B., Ph.D.

Department of Computer Science & Engineering

DIGITAL DESIGN & COMPUTER ORGANISATION

Floating Point

Sudarshan T S B., Ph.D.

Department of Computer Science & Engineering

FLOATING POINT Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - ★ Floating Point
- Computer Organisation
 - Architecture (microprocessor instruction set)
 - Microarchitecture (microprocessor operation)

Concepts covered

Floating Point Representation

FLOATING POINT Not Just Integers

- Fixed point
- Floating point

- Real numbers can be represented using:
 - Fixed point
 - Floating point
- Fixed point notation is where the decimal point is fixed and numbers to the right of decimal point are the fraction portion and to the left is the integer portion.
 - Limited by the digits used
 - Not suitable to represent very small are very large numbers

- Real numbers can be represented using:
 - Fixed point
 - Floating point
- Fixed point notation is where the decimal point is fixed and numbers to the right of decimal point are the fraction portion and to the left is the integer portion.
 - Limited by the digits used
 - Not suitable to represent very small are very large numbers
- Programming languages support fraction called <u>floating point</u> numbers
 - Example: 3.14159265... (π) ; 2.71828... (e)
 - Data type used float , double

FLOATING POINT Fixed Point Example

- ► 6 => 0110 (2²+2¹⁾
- $0.75 => 0.1100 (2^{-1} + 2^{-2})$
- ► 6.75 => 0110.1100

- \bullet 6 => 0110 (2²+2¹⁾
- $0.75 => 0.1100 (2^{-1} + 2^{-2})$
- ► 6.75 => 0110.1100
- ► Here binary point is implied and the number of bits used is decided before hand
- Fixed point
- Floating point

- \bullet 6 => 0110 (2²+2¹⁾
- $0.75 => 0.1100 (2^{-1} + 2^{-2})$
- ► 6.75 => 0110.1100
- ► Here binary point is implied and the number of bits used is decided before hand
- Fixed point
- Floating point
- Represent -7.5 using 4 integer and 4 fraction bits
 - **+**7.5 => 0111.1000
 - 2's complement -7.5 => 1000.1000

FLOATING POINT Fixed Point Example

- **7.5 => 0111.1000**
- -0.625 => 111.0110 (2'scomplement)
- ► 0111.1000 + 1111.0110 = 0110.1110 (6.875)

- Perform the following operation: 7.5 0.625 => 7.5 + (-0.625)
 - **7.5 => 0111.1000**
 - -0.625 => 111.0110 (2'scomplement)
 - ► 0111.1000 + 1111.0110 = 0110.1110 (6.875)
- The range and accuracy is very limited.
 - Ex: 8.9375 + 8.3125 = 17.2495
 - ► 8.9375 => 1000.1111
 - **8.3125 => 1000.0101**
 - ▶ Add: 0001.0100 (1.25) which is the result of limited range and limited accuracy

- Perform the following operation: 7.5 0.625 => 7.5 + (-0.625)
 - **7.5 => 0111.1000**
 - -0.625 => 111.0110 (2'scomplement)
 - ► 0111.1000 + 1111.0110 = 0110.1110 (6.875)
- The range and accuracy is very limited.
 - Ex: 8.9375 + 8.3125 = 17.2495
 - **8.9375 => 1000.1111**
 - **8.3125 => 1000.0101**
 - Add: 0001.0100 (1.25) which is the result of limited range and limited accuracy
- How to increase the range and improve the accuracy?
 - Go for Floating Point Representation

FLOATING POINT Not Just Integers

Not Just Integers

 Floating point notation is used to represent real numbers which are from small to large numbers

- Floating point notation is used to represent real numbers which are from small to large numbers
- We use scientific notation to represent these numbers
 - $\pm d.f_1f_2f_3... \times 10^{\pm e_1^e_1^2}$
 - ▶ ± M x B ± E

- Floating point notation is used to represent real numbers which are from small to large numbers
- We use scientific notation to represent these numbers
 - \bullet ± $d.f_1f_2f_3... \times 10^{\pm e_1^e_1^e_2}$
 - ▶ ± M x B ± E
- This representation is to include very small numbers like 1.0 x 10^{-23} and very larger numbers like 9.546 x 10^{12}

- Floating point notation is used to represent real numbers which are from small to large numbers
- We use scientific notation to represent these numbers
 - \bullet ± $d.f_1f_2f_3... \times 10^{\pm e_1^e}$
 - ▶ ± M x B ± E
- This representation is to include very small numbers like 1.0 x 10⁻²³ and very larger numbers like 9.546 x 10¹²
- Floating point numbers should be normalized
 - Use one non-zero digit as integer
 - In decimal it will be from 1 to 9
 - In binary this should be 1

- Floating point notation is used to represent real numbers which are from small to large numbers
- We use scientific notation to represent these numbers
 - \bullet ± $d.f_1f_2f_3... \times 10^{\pm e_1^e}$
 - ▶ ± M x B ± E
- This representation is to include very small numbers like 1.0×10^{-23} and very larger numbers like 9.546×10^{12}
- Floating point numbers should be normalized
 - Use one non-zero digit as integer
 - In decimal it will be from 1 to 9
 - In binary this should be 1
 - Ex:

Not Just Integers

- Floating point notation is used to represent real numbers which are from small to large numbers
- We use scientific notation to represent these numbers
 - \bullet $\pm d.f_1f_2f_3... \times 10^{\pm e_1^e_2}$
 - ▶ ± M x B ± E
- This representation is to include very small numbers like 1.0×10^{-23} and very larger numbers like 9.546×10^{12}
- Floating point numbers should be normalized
 - Use one non-zero digit as integer
 - In decimal it will be from 1 to 9
 - In binary this should be 1
 - Ex:

Normalised floating point: 2.234×10^3 or 1.101×2^{-4}

Not Just Integers

- Floating point notation is used to represent real numbers which are from small to large numbers
- We use scientific notation to represent these numbers
 - \bullet $\pm d.f_1f_2f_3... \times 10^{\pm e_1^e_2}$
 - ▶ ± M x B ± E
- This representation is to include very small numbers like 1.0×10^{-23} and very larger numbers like 9.546×10^{12}
- Floating point numbers should be normalized
 - Use one non-zero digit as integer
 - In decimal it will be from 1 to 9
 - In binary this should be 1
 - ► Ex:

Normalised floating point: 2.234×10^3 or 1.101×2^{-4} Non-normalized floating point: 0.0234×10^5 or 110.1×2^{-6}

FLOATING POINT IEEE 754-2008 Standard

FLOATING POINT IEEE 754-2008 Standard

IEEE Standard defines structure of floating point number representation	

IEEE 754-2008 Standard

- IEEE Standard defines structure of floating point number representation
- Developed in response to divergence of representations and arithmetic operations
 - Portability issues for scientific code
 - Universally adopted

IEEE 754-2008 Standard

PES UNIVERSITY ONLINE

- IEEE Standard defines structure of floating point number representation
- Developed in response to divergence of representations and arithmetic operations
 - Portability issues for scientific code
 - Universally adopted
- Defines four representations:
 - Single Precision (32-bits)
 - Double Precision (64-bits)
 - Extended Double Precision 10 bytes (80-bits)
 - Quadruple Precision 16 bytes(128-bits)

IEEE 754-2008 Standard

- IEEE Standard defines structure of floating point number representation
- Developed in response to divergence of representations and arithmetic operations
 - Portability issues for scientific code
 - Universally adopted
- Defines four representations:
 - Single Precision (32-bits)
 - Double Precision (64-bits)
 - Extended Double Precision 10 bytes (80-bits)
 - Quadruple Precision 16 bytes(128-bits)
- Real Number is represented in IEEE 754-2008 standard as three parts:
 - Sign bit
 - Exponent bits
 - Mantissa bits or Significand bits

FLOATING POINT IEEE 754-2008 Standard (Single Precision)

IEEE 754-2008 Standard (Single Precision)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s			ε	expoi	nent													fra	actio	n											

1 bit 8 bits 23 bits

IEEE 754-2008 Standard (Single Precision)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s			(expo	nent																										
1 hit				8 h	nite													23	R hit	c											

Sign bit 0 indicates positive and 1 indicates negative number

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s			(expo	nent													fra	ctio	n											
1 bit				8 h	oits													23	3 hit	s											

- Sign bit 0 indicates positive and 1 indicates negative number
- Mantissa represents fraction and signifies accuracy of the number

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s			•	expo	nent													fra	actio	n											
1 bit				8 b	oits													23	3 bit	s											

- Sign bit 0 indicates positive and 1 indicates negative number
- Mantissa represents fraction and signifies accuracy of the number
- Exponent represents range of the numbers that shall be represented

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s			(expo	nent													fra	ctio	n											
1 bit				8 b	oits													23	3 bit	s											

- Sign bit 0 indicates positive and 1 indicates negative number
- Mantissa represents fraction and signifies accuracy of the number
- Exponent represents range of the numbers that shall be represented
- General form: **± 1.Mantissa x 2 Exponent**

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s			(expo	nent													fra	ctio	n											
1 bit				8 k	oits													23	3 bit	S											

- Sign bit 0 indicates positive and 1 indicates negative number
- Mantissa represents fraction and signifies accuracy of the number
- Exponent represents range of the numbers that shall be represented
- General form: **± 1.Mantissa x 2 Exponent**
- For Single precision (32-bits) representation:
 - ▶ Biased Exponent is 8-bits
 - Mantissa is 23 bits

IEEE 754-2008 Standard (Double Precision)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s		exponent																				frac	tion								
1 bi																						20	bits								
													fr	actio	on (d	conti	nue	d)													

32 bits

- Sign bit 0 indicates positive and 1 indicates negative number
- Mantissa represents fraction and signifies accuracy of the number
- Exponent represents range of the numbers that shall be represented
- General form: **± 1.Mantissa x 2 Exponent**

IEEE 754-2008 Standard (Double Precision)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	s exponent												fraction																		
1 bi	it 11 bits											20 bits																			
													fr	actio	on (d	conti	nue	d)													

32 bits

- Sign bit 0 indicates positive and 1 indicates negative number
- Mantissa represents fraction and signifies accuracy of the number
- Exponent represents range of the numbers that shall be represented
- General form: **± 1.Mantissa x 2 Exponent**
- For Double precision (64-bits) representation:
 - Biased Exponent is 11-bits
 - Mantissa is 52 bits

FLOATING POINT Biased Exponent

Biased Exponent

Biased Exponent, BE = Bias + Exponent

- Biased Exponent, BE = Bias + Exponent
- Actual Exponent, E = Biased Exponent Bias
- Recall for Single precision Biased Exponent is 8-bits (Range: 0 to 255)

- Biased Exponent, BE = Bias + Exponent
- Actual Exponent, E = Biased Exponent Bias
- Recall for Single precision Biased Exponent is 8-bits (Range: 0 to 255)
- BE = 0 and BE = 255 are reserved for special use

- Biased Exponent, BE = Bias + Exponent
- Actual Exponent, E = Biased Exponent Bias
- Recall for Single precision Biased Exponent is 8-bits (Range: 0 to 255)
- BE = 0 and BE = 255 are reserved for special use
- So, BE = 1 to 254 are used for normalized floating point numbers.

- Biased Exponent, BE = Bias + Exponent
- Actual Exponent, E = Biased Exponent Bias
- Recall for Single precision Biased Exponent is 8-bits (Range: 0 to 255)
- BE = 0 and BE = 255 are reserved for special use
- So, BE = 1 to 254 are used for normalized floating point numbers.
- Bias = $127 = (2^{n-1} 1)$

- Biased Exponent, BE = Bias + Exponent
- Actual Exponent, E = Biased Exponent Bias
- Recall for Single precision Biased Exponent is 8-bits (Range: 0 to 255)
- BE = 0 and BE = 255 are reserved for special use
- So, BE = 1 to 254 are used for normalized floating point numbers.
- Bias = $127 = (2^{n-1} 1)$
- Therefore Range of Actual exponent that could be represented is:
 - \rightarrow Min = 1 127 = -126
 - ► Max = 254 127 = 127
 - ➤ So range is from -126 to +127

- Biased Exponent, BE = Bias + Exponent
- Actual Exponent, E = Biased Exponent Bias
- Recall for Single precision Biased Exponent is 8-bits (Range: 0 to 255)
- BE = 0 and BE = 255 are reserved for special use
- So, BE = 1 to 254 are used for normalized floating point numbers.
- Bias = $127 = (2^{n-1} 1)$
- Therefore Range of Actual exponent that could be represented is:
 - \rightarrow Min = 1 127 = -126
 - ► Max = 254 127 = 127
 - ➤ So range is from -126 to +127
- FP Representation:

- Biased Exponent, BE = Bias + Exponent
- Actual Exponent, E = Biased Exponent Bias
- Recall for Single precision Biased Exponent is 8-bits (Range: 0 to 255)
- BE = 0 and BE = 255 are reserved for special use
- So, BE = 1 to 254 are used for normalized floating point numbers.
- Bias = $127 = (2^{n-1} 1)$
- Therefore Range of Actual exponent that could be represented is:
 - \rightarrow Min = 1 127 = -126
 - ightharpoonup Max = 254 127 = 127
 - ► So range is from -126 to +127
- FP Representation:

$$N = (-1)^{s} * (1+.M)*2^{(BE-Bias)}$$

- Biased Exponent, BE = Bias + Exponent
- Actual Exponent, E = Biased Exponent Bias
- Recall for Single precision Biased Exponent is 8-bits (Range: 0 to 255)
- BE = 0 and BE = 255 are reserved for special use
- So, BE = 1 to 254 are used for normalized floating point numbers.
- Bias = $127 = (2^{n-1} 1)$
- Therefore Range of Actual exponent that could be represented is:
 - \rightarrow Min = 1 127 = -126
 - ightharpoonup Max = 254 127 = 127
 - ► So range is from -126 to +127
- FP Representation:

$$N = (-1)^s * (1+.M)*2^{(BE-Bias)}$$
 Bias = 127 for SP
Bias = 1023 for DP

FP Example

FP Example

FP Example

What is the value of the following number:

0 100 0011 0 110 0100 0000 0000 0000 0000

FP Example

What is the value of the following number:

0 100 0011 0 110 0100 0000 0000 0000 0000

In Hexadecimal this is represented as **0x43640000**

FP Example

What is the value of the following number:

0 100 0011 0 110 0100 0000 0000 0000 0000

In Hexadecimal this is represented as **0x43640000**

FP Example

What is the value of the following number:

0 100 0011 0 110 0100 0000 0000 0000 0000

In Hexadecimal this is represented as **0x43640000**

Solution:

Sign = 0; Positive number

FP Example

What is the value of the following number:

0 100 0011 0 110 0100 0000 0000 0000 0000

In Hexadecimal this is represented as **0x43640000**

Solution:

Sign = 0; Positive number

Biased Exponent = $(1000\ 0110)_2 = 134$;

FP Example

What is the value of the following number:

In Hexadecimal this is represented as **0x43640000**

Solution:

Sign = 0; Positive number

Biased Exponent = $(1000\ 0110)_2 = 134$;

Actual Exponent = 134 - 127 = 7

FP Example

What is the value of the following number:

0 100 0011 0 110 0100 0000 0000 0000 0000

In Hexadecimal this is represented as **0x43640000**

Solution:

Sign = 0; Positive number

Biased Exponent = $(1000\ 0110)_2 = 134$;

Actual Exponent = 134 - 127 = 7

Mantissa = $(1. 1100 10...000)_2$ = 1.78125 (1. is implicit)

FP Example

What is the value of the following number:

0 100 0011 0 110 0100 0000 0000 0000 0000

In Hexadecimal this is represented as **0x43640000**

Solution:

Sign = 0; Positive number

Biased Exponent = $(1000\ 0110)_2 = 134$;

Actual Exponent = 134 - 127 = 7

Mantissa = $(1. 1100 10...000)_2$ = 1.78125 (1. is implicit)

So, the value of the decimal = $1.1100100 \times 2^7 = 11100100 = 228$

FP Example

FP Example

FP Example

What is the value of the following number:

1 011 1110 0 010 0000 0000 0000 0000 0000

FP Example

What is the value of the following number:

1 011 1110 0 010 0000 0000 0000 0000 0000

In Hexadecimal this is represented as **0xBE200000**

FP Example

What is the value of the following number:

1 011 1110 0 010 0000 0000 0000 0000 0000

In Hexadecimal this is represented as **0xBE200000**

FP Example

What is the value of the following number:

In Hexadecimal this is represented as **0xBE200000**

FP Example

What is the value of the following number:

In Hexadecimal this is represented as **0xBE200000**

```
Sign = 1;
Biased Exponent = (0111 \ 1100)_2 = 124;
```


FP Example

What is the value of the following number:

In Hexadecimal this is represented as **0xBE200000**

```
Sign = 1;
Biased Exponent = (0111\ 1100)_2 = 124;
Actual Exponent = 124 - 127 = -3
```


FP Example

What is the value of the following number:

In Hexadecimal this is represented as **0xBE200000**

```
Sign = 1;

Biased Exponent = (0111\ 1100)_2 = 124;

Actual Exponent = 124 - 127 = -3

Mantissa = (1.\ 0100\ 00...000)_2 = 1.25\ (1.\ is\ implicit)
```


FP Example

What is the value of the following number:

In Hexadecimal this is represented as **0xBE200000**

Solution:

```
Sign = 1;

Biased Exponent = (0111\ 1100)_2 = 124;

Actual Exponent = 124 - 127 = -3

Mantissa = (1.\ 0100\ 00...000)_2 = 1.25\ (1.\ is\ implicit)
```

So, the value of the decimal = $-1.25 \times 2^{-3} = -0.15625$

FP Example

FP Example

Write -58.25₁₀ in Single Precision Floating Point (IEEE 754)

FP Example

Write -58.25₁₀ in Single Precision Floating Point (IEEE 754)

$$58.25_{10} = 111010.01_2$$

FP Example

Write -58.25₁₀ in Single Precision Floating Point (IEEE 754)

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

FP Example

Write -58.25₁₀ in Single Precision Floating Point (IEEE 754)

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

```
1.1101001 \times 2^5 (1. is implicit)
```


FP Example

Write -58.25₁₀ in Single Precision Floating Point (IEEE 754)

1. Convert decimal to binary:

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

```
1.1101001 \times 2^5 (1. is implicit)
```

3. Fill in fields:

Sign bit: 1 (negative)

8 exponent bits: $(127 + 5) = 132 = 10000100_2$ 23 fraction bits: 110 1001 0000 0000 0000 0000

FP Example

Write -58.25₁₀ in Single Precision Floating Point (IEEE 754)

1. Convert decimal to binary:

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

```
1.1101001 \times 2^5 (1. is implicit)
```

3. Fill in fields:

Sign bit: 1 (negative)

8 exponent bits: $(127 + 5) = 132 = 10000100_2$ 23 fraction bits: 110 1001 0000 0000 0000 0000

FP Example

Write -58.25₁₀ in Single Precision Floating Point (IEEE 754)

1. Convert decimal to binary:

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

```
1.1101001 \times 2^5 (1. is implicit)
```

3. Fill in fields:

Sign bit: 1 (negative)

8 exponent bits: $(127 + 5) = 132 = 10000100_2$ 23 fraction bits: 110 1001 0000 0000 0000 0000

In Hexadecimal this is represented as 0xC2690000

FLOATING POINT FP Example

L		

FP Example

Write -58.25₁₀ in Double Precision Floating Point (IEEE 754)

FP Example

Write -58.25₁₀ in Double Precision Floating Point (IEEE 754)

1. Convert decimal to binary:

$$58.25_{10} = 111010.01_2$$

FP Example

Write -58.25₁₀ in Double Precision Floating Point (IEEE 754)

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

FP Example

Write -58.25₁₀ in Double Precision Floating Point (IEEE 754)

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

```
1.1101001 \times 2^5 (1. is implicit)
```


FP Example

Write -58.25₁₀ in Double Precision Floating Point (IEEE 754)

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

```
1.1101001 \times 2^5 (1. is implicit)
```

3. Fill in fields:

Sign bit: 1 (negative)

11 exponent bits: $(1023 + 5) = 1028 = 100\ 0000\ 0100_2$

FP Example

Write -58.25₁₀ in Double Precision Floating Point (IEEE 754)

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

```
1.1101001 \times 2^5 (1. is implicit)
```

3. Fill in fields:

Sign bit: 1 (negative)

11 exponent bits: $(1023 + 5) = 1028 = 100\ 0000\ 0100_2$

FP Example

Write -58.25₁₀ in Double Precision Floating Point (IEEE 754)

$$58.25_{10} = 111010.01_2$$

2. Write in normalized scientific notation:

```
1.1101001 \times 2^5 (1. is implicit)
```

3. Fill in fields:

Sign bit: 1 (negative)

11 exponent bits: $(1023 + 5) = 1028 = 100\ 0000\ 0100_2$

In Hexadecimal this is represented as **0xC04D20000000000**

Single Precision FP:				

Single Precision FP:

Exponents 00000000 and 11111111 are reserved

Smallest and Largest Normalised FP value

Single Precision FP:

Exponents 00000000 and 11111111 are reserved

Smallest value

Exponent: 00000001

 \Rightarrow Actual Exponent = 1 – 127 = –126 Fraction: 000...00 \Rightarrow significand = 1.0

 $\pm 1.0 \times 2^{-126} \approx \pm 1.17549... \times 10^{-38}$

Smallest and Largest Normalised FP value

Single Precision FP:

Exponents 00000000 and 11111111 are reserved

Smallest value

Exponent: 00000001

 \Rightarrow Actual Exponent = 1 – 127 = –126 Fraction: 000...00 \Rightarrow significand = 1.0

 $\pm 1.0 \times 2^{-126} \approx \pm 1.17549... \times 10^{-38}$

Largest value

Biased Exponent: 11111110

 \Rightarrow Actual Exponent = 254 − 127 = +127 Fraction: 111...11 \Rightarrow significand \approx 2.0

 $\pm 2.0 \times 2^{+127} = 2^{-128} \approx \pm 3.4028... \times 10^{+38}$

Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

^{*}NaN is Not a Number

Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

*NaN is Not a Number

Ex: \div by zero, $\sqrt{-}$ ve no.

Single	Single precision		precision	Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Source: Computer Organisation & Design by

Patterson & Hennessy, Morgan Kaufmann

FLOATING POINT Rounding Modes

FLOATING POINT Rounding Modes

Overflow:	number too large to be represented		

Rounding Modes

• Underflow: number too small to be represented

Rounding Modes

- Overflow: number too large to be represented
- Underflow: number too small to be represented
- Rounding modes:
 - Down
 - ► Up
 - ► Toward zero
 - To nearest

Rounding Modes

- Overflow: number too large to be represented
- Underflow: number too small to be represented
- Rounding modes:
 - Down
 - ▶ Up
 - Toward zero
 - ► To nearest
- **Example:** round 1.100101 (1.578125) to only 3 fraction bits
 - ▶ Down: 1.100
 - ▶ Up: 1.101
 - Toward zero: 1.100
 - ► To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

FLOATING POINT Think about it

- What are the largest normalized double precision FP numbers?
 - Hint: double precision exponent is 11 bits and mantissa is 52 bits
- What is the relative precision in terms of decimal fractional digits that single precision and double precision offer?
 - Hint: mantissa bits
- An example to represent denormalized valid floating point number?
 - ► Hint: Biased Exponent = 0 & Mantissa = Nonzero

THANK YOU

Sudarshan T S B. Ph.D.,

Department of Computer Science & Engineering

sudarshan@pes.edu

+91 80 6666 3333 Extn 215