

**DAHLGREN DIVISION
NAVAL SURFACE WARFARE CENTER**

Panama City, Florida 32407-7001

CSS/TR-96/20

**CHARACTERIZATION OF STIFFENING AND DAMPING
MATERIALS FOR PLANING BOAT SHOCK MITIGATION**

R. S. PETERSON

COASTAL RESEARCH AND TECHNOLOGY DEPARTMENT

JANUARY 1996

Approved for public release; distribution is unlimited.

19961021 112

DTEC QUALITY INSPECTED 1

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completion and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office and Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE January 1996	3. REPORT TYPE AND DATES COVERED
4. TITLE AND SUBTITLE Characterization of Stiffening and Damping Materials for Planing Boat Shock Mitigation			5. FUNDING NUMBERS RP56561	
6. AUTHOR(S) R. S. Peterson				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Attn: Code 120 Commanding Officer CSSDD NSWC 6703 W. Highway 98 Panama City, FL 32407-7001			8. PERFORMING ORGANIZATION REPORT NUMBER CSS/TR-96/20	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Attn: Code 321 (Dr. Thomas Swean) Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5660			10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.			12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) The occupants of high-speed planing boats operating in heavy seas are subject to repeated shock loads that can injure or impair performance. Identification and evaluation of shock mitigation concepts requires development of a nonlinear, time-domain, wave-to-wave elastic planing boat/human dynamic simulation. Shock mitigation concepts include the use of various stiffening and damping materials in the cockpit or within the hull structure. This report summarizes a general method for characterizing stiffening and damping materials and devices for use in a time-domain planing boat simulation, and derives the equations for the stiffening characteristics of several materials and devices.				
14. SUBJECT TERMS shock mitigation, planing boats, shock isolation, materials properties, simulation			15. NUMBER OF PAGES	
			16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT UL	

FOREWORD

The occupants of high-speed planing boats in heavy seas are subject to repeated shock loads that can injure or impair performance. Identification and evaluation of shock mitigation concepts requires development of a nonlinear, time-domain, wave-to-wave elastic planing boat/human dynamic simulation. Shock mitigation concepts include the use of various stiffening and damping materials in the cockpit or within the hull structure. This report summarizes a general method for characterizing stiffening and damping materials and devices for use in a time-domain planing boat simulation, and derives the equations for the stiffening characteristics of several materials and devices.

The study documented in this report was conducted under Coastal Systems Station (CSS) Project Number 20113. Funding was provided by the Office of Naval Research under Program RP56561.

The author wishes to thank Richard Gollwitzer, project leader of the CSS High-Speed Planing Boat Shock Mitigation Program and David Wyman, technical advisor to the program.

This report has been reviewed by D. C. Summey, Head, Hydrodynamics and Navigational Guidance and Control Division.

Approved by:

GARY J. KEKELIS, Head
Coastal Research and Technology Department

CONTENTS

	<u>Page</u>
INTRODUCTION	1
MODELING ISSUES	1
STIFFENING CHARACTERISTICS	2
DAMPING CHARACTERISTICS	3
EXAMPLE -- SORBOTHANE	3
CHARACTERISTICS OF SPECIFIC MATERIALS AND DEVICES.....	4
FOAMS.....	4
HELICAL SPRINGS	4
SINGLE-ACTING AIR SPRINGS.....	6
DOUBLE-ACTING AIR SPRINGS.....	7
SUMMARY AND CONCLUSIONS	9
REFERENCES	16
DISTRIBUTION.....	(1)

ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	ELASTIC HULL/HUMAN DYNAMIC SYSTEM	10
2	STRESS-STRAIN CHARACTERISTICS OF SORBOTHANE	10
3	SINGLE-ACTING PRE-LOADED AIR SPRING OR AIR BLADDER	11
4	STRESS-STRAIN CHARACTERISTICS OF 32 SQ FT AIR BLADDER.....	11
5	DOUBLE-ACTING AIR SPRING	12
6	STRESS-STRAIN CHARACTERISTICS OF A 3-IN. BIMBA AIR CYLINDER	12

TABLES

<u>Table</u>		<u>Page</u>
1	DEFLECTION CHARACTERISTICS OF TWO PARALLEL HELICAL SPRINGS	13
2	STRESS-STRAIN CHARACTERISTICS OF 32 SQ FT AIR BLADDER.....	14
3	STRESS-STRAIN CHARACTERISTICS OF 3-IN. BIMBA AIR CYLINDER ..	15

INTRODUCTION

Since FY93 the Coastal Systems Station (CSS) has been developing technology to reduce shock loads experienced by operators of high-speed planing boats in support of the Office of Naval Research. Methods under consideration include isolation materials and devices used in the cockpit environment, isolation materials and devices between the cockpit and the lower hull, and hull shape. This report, which addresses the first and second categories, summarizes a simple method for characterizing the isolation characteristics of stiffening and damping materials and devices and derives the stress-strain equations for several stiffening devices.

MODELING ISSUES

During the course of the shock mitigation investigation, CSS developed a time-domain hull impact code called Water-Entry Dynamics and Injury Model (WEDIM). WEDIM simulates the vertical water-impact, submergence, and emergence of a two-dimensional, prismatic, elastic hull segment with seated humans. As shown in Figure 1, the model is a 3 degree-of-freedom (DOF) simulation, in that the vertical dynamics of three masses is considered. (Note that all figures and tables can be found at the end of the text.) The upper mass is the seated human. The middle mass is the upper boat, or deck, on which the human is seated. The lower mass is the lower hull, which impacts the water. Each of the three masses is assumed rigid.

The stiffening and damping characteristics between the deck and the human torso center of mass are assumed to be linear. The values of the stiffening and damping constants are based on historical aircraft seat ejection investigations.^{1,2} In this simple model, the shock isolation components that may be readily varied are the stiffening and damping material between the deck and the lower hull.

Two approaches for modeling the stiffening characteristics of the isolation component within a time-domain simulation such as WEDIM are to use: (1) a spring constant, K (the coefficient in the linear displacement-versus-force term) or, (2) stress-strain characteristics of the component, if the material and loads are expected to produce nonlinear behavior.

WEDIM models the damping characteristics in a linear manner, requiring the damping constant (the coefficient in the linear velocity-versus-force term). The approximate method for obtaining this constant in the absence of experimental stress-strain-rate data will be described in a later section.

STIFFENING CHARACTERISTICS

The shock isolation materials and devices that have been seriously considered by CSS include foams, helical springs, air bladders, and one-way and two-way air springs. In general, all of these devices display nonlinear and asymmetric stress-strain characteristics. The possible exception is the spring, which, if properly designed, selected, and installed, is essentially linear and symmetric about zero strain.

The stress-strain (stiffening) characteristics of a material or stiffening device, including nonlinearities, are readily measured from a sample of the material and are often provided by the manufacturer. Alternatively in the case of conventional metal springs and air springs, the spring constant and stress-strain characteristics may be estimated from geometry, air pressure, and material properties.

The equations to predict the spring constant and stress during compression and extension of helical springs are presented in a later section. A properly selected helical spring behaves nearly linearly within its design range. A spring in extension will remain essentially linear until it reaches its elastic limit beyond which it has been overstressed and may retain a set. A properly designed spring in compression will reach its *solid height* before the material yield stress is reached.

For stiffening materials such as foams, the basic material property required to estimate the linear spring constant is Young's modulus, E . The spring constant is then computed from the cross-sectional area A and the thickness T as

$$K = E (A/T). \quad (1)$$

Young's modulus is the material property independent of geometry, and the spring constant represents the linear stiffening characteristics of the material with specified geometry.

The stress-strain characteristics of a commercially available foam product called *Sorbothane* are shown in Figure 2 as an example. The slope of the curve at zero strain is Young's modulus. Sorbothane, often used as floor mats in factories to absorb uncomfortable and fatiguing vibration transmitted from the floor to the feet, is known for its high damping characteristics.

The stress-strain characteristics of air springs and air bladders may be highly nonlinear and, in the case of an air bladder or single-acting air spring, highly asymmetric about zero strain. The equations describing the nonlinear stress-strain characteristics of air bladders and single- and double-acting air springs are presented in a later section.

DAMPING CHARACTERISTICS

The stress-strain-rate (damping) characteristics of a material are more difficult to measure than the stiffening characteristics. With an ideal viscous damper, the force is related to the velocity of the strain, often the result of fluid flow through an orifice. The force-versus-velocity relationship may in certain cases be modeled; however this is beyond the scope of the present effort.

Of the various materials and devices considered in this study, only certain of the foams possess significant damping characteristics. A simple approach sometimes adopted by the foam manufacturers is to characterize the damping characteristics by means of the damping ratio ζ . The damping ratio is treated as a basic material property independent of thickness and area, analogous to the Young's modulus for the stress-strain characteristics. In reality, the damping depends also on displacement frequency and amplitude; however, assuming a constant damping ratio for the material is often acceptable.

Manufacturers measure the rate of decay of free vibrations and relate the rate of decay to the damping ratio. The damping ratio ζ is the ratio of the actual damping coefficient C and the critical damping coefficient C_c , the value of the damping coefficient just sufficient to eliminate oscillatory behavior of the system. The critical damping coefficient may be easily estimated, assuming a single DOF spring/mass/damper system, where the mass M and linear spring constant K are known. The linear damping coefficient is then computed from the damping ratio and the critical damping coefficient.

EXAMPLE -- SORBOTHANE

Suppose the desire is to model the damping and nonlinear stiffening characteristics of a 2.0 sq ft by 0.5 ft thick piece of Sorbothane, which supports a 200-lb weight. The manufacturer of Sorbothane foam reports an experimentally determined damping ratio ζ of 0.3 and a Young's modulus E of 5190 lb/sq ft. This is the slope at zero strain in Figure 2. From Equation (1), the linear spring constant K is $E(A/T)$, or 20,700 lb/ft.

The manufacturer also reports the stress corresponding to several nonzero strain values, as shown in Figure 2. This nonlinear stress-strain data may be called by the integration routine within a time-domain simulation, in a look-up table fashion. For example, with the thickness T specified, an instantaneous extension δ of 0.25 ft yields a strain ϵ of δ/T , or -50 percent. From Figure 2, the corresponding material stress σ is 2016 lb/ft². Finally, the stiffening force F is the product of the stress and the area, or 4032 lb.

The damping characteristics, as described earlier, are modeled in a linear manner. From the linear equation describing the free vibration of a single DOF spring-mass-damper, the natural frequency ω_n of the 200 lb weight on the Sorbothane is $(K/m)^{1/2}$, or 58 rad/sec. Next, again based on the linear single DOF equation, the critical damping C_c is $2m\omega_n$, or 717 (lb/ft/sec). The damping coefficient C is then computed as $C = \zeta C_c$, or 207 lb/(ft/sec). The damping force is the product of

the damping coefficient and the instantaneous strain rate computed during the time-domain simulation. The damping characteristics remain linear, based on the linear model of the weight and foam.

CHARACTERISTICS OF SPECIFIC MATERIALS AND DEVICES

The following are primarily examples of stiffening materials. With the exception of certain of the foams, these materials and devices are lightly damped. Additional damping, if required, may necessitate the use of a rate-dependent force producer such as a "dashpot."

FOAMS

Most foams are lightly damped and are primarily used to provide stiffening. Examples of foams that have been used or considered for planing boat shock mitigation include Airex, Fabcel Pads, Ensolite, CONFOR, ISOLOSS LS, and Sorbothane. As mentioned earlier, the manufacturer of Sorbothane claims one of the highest damping ratios of all isolation foams.

The stiffening properties of a given foam are not readily predicted. Thus, the usual approach in modeling foam is to measure the static force required to deflect a sample of the material with a given area and thickness, over a range of several deflections, and convert the values to stress and strain. Some of the manufacturers provide stress data over a range of strain values. The damping ratio of the foams ranges from about 0.1 to 0.3.

HELICAL SPRINGS

The linear stiffening characteristics of a round-wire helical spring may be estimated analytically.³ The user specifies the material torsional modulus G and ultimate strength S_u , wire diameter d_w , coil outside diameter D_c , number of coils N_c , and spring free length L_f . The torsional yield strength S_y has been shown for helical springs to be approximately 44 percent of the ultimate strength. The spring constant is

$$K = \frac{d_w^4 G}{8 N_c D_{cm}^3} \quad (2)$$

where D_{cm} is the mean coil diameter, $D_c - d_w$. The force required to compress the spring to a solid is

$$F_s = K (L_f - L_s) \quad (3)$$

where L_s is the solid length estimated as

$$L_s = d_w (N_c + 1) . \quad (4)$$

The spring *stress-correction factor* is

$$K_{sc} = \frac{4C - 1}{4C - 4} + \frac{0.615}{C} , \quad (5)$$

where C is the *coil curvature index* D_{cm}/d_w . The shear stress associated with deflection of the spring under a load F is

$$\tau_s = K \frac{8 F D_{cm}}{\Pi d_w^2} . \quad (6)$$

Substitution of the force from Equation (3) into Equation (6) gives the stress associated with compression to the solid height.

The force F_y required to extend the spring to its yield limit, from Equation (6), is

$$F_y = \frac{\Pi d_w^2 S_{dy}}{8 D_{cm} K_{sc}} . \quad (7)$$

The spring constant may be determined with Equations (2) through (7). During the dynamic simulation, the spring stress and position are monitored, assuring that the yield stress is not exceeded in extension and the solid length is not reached in compression. Damping characteristics are usually neglected since the damping ratio of steel is approximately 0.005.

As an example, consider two parallel springs of a material with a torsional modulus of 1.1E+7 psi, an ultimate strength of 200,000 psi, with eight coils, a wire diameter of 1/4 in., an outside coil diameter of 3 in., and a free length of 10 in. Equations (2), (3), (4), and (6) yield the values in

Table 1 for the spring constant, solid length, force to compress to solid, and material stress in the solid position. Also shown in Table 1 is the stress-strain characteristics over a range of spring strain values. Note that the stress-strain characteristics are linear.

SINGLE-ACTING AIR SPRINGS

In FY89, CSS conceived the variable deadrise hull (VDH) to increase the speed of planing boats at sea by enabling the operators to optimize the shape of the hull according to the encountered sea state. The hull in contact with the water was separated from the inner hull by an air-filled bladder that could be pressurized by the operators to achieve the desired deadrise angle. During the course of testing, the rough-water ride qualities and impact accelerations of the VDH were observed to be dramatically improved over those of the fixed hull baseline boat. The VDH is essentially a single-acting air-spring, if the structural contribution of the bag may be neglected. One of the objectives of the present CSS research is to simulate the water-impact dynamics of the VDH hull.

Examples of commercially available, single-acting air springs are the Airstroke and Airmount Isolators, manufactured by the Firestone Industrial Products Company. Other examples are the Air Cylinders manufactured by Bimba, which become single-acting when operating with one end vented to the atmosphere.

The nonlinear stiffness of an air bladder (or single-acting air spring) may be modeled by simulating the adiabatic or isothermal compression/expansion of air.⁴ Adiabatic compression and expansion involves no heat transfer and is assumed for fast cycles. Isothermal compression and expansion involves constant temperature and is assumed for slow cycles. For two different pressure/volume conditions of an air spring, or two conditions of an air bladder (neglecting the structural forces from the air bladder material), the following laws apply.

$$PV = C \quad \text{for isothermal compression/expansion, and} \quad (8)$$

$$PV^k = C \quad \text{for adiabatic compression/expansion,} \quad (9)$$

where k is the ratio of specific heats, 1.4 for air.

The nonlinear stress-strain properties of a pre-loaded, single-acting air spring (or air bladder) may be estimated in the following manner. Figure 3 shows a cylinder and piston in three positions. The device is shown in the initial unloaded position 0, pre-loaded static equilibrium position 1, and compressed position 2. The cylinder (or bladder) has a cross-sectional area A , initial cylinder length (or air bladder thickness) T_0 , absolute (atmospheric) pressure P_a above the piston, and absolute pressure $P_a + P_g$ within the enclosure.

Given the applied equilibrium force F_1 , the gage pressure in the equilibrium position 1 is equal to the force F_1 divided by the area A . Applying Equation (8) to the slow isothermal application of the equilibrium force F_1 yields the following expression for the thickness in position 1.

$$T_1 = \frac{P_a T_o}{P_a + F_1 / A} \quad (10)$$

Next, Equation (9) is applied to the adiabatic compression of the gas from condition 1 to condition 2. Assuming the piston is displaced a distance δ ,

$$(P_a + P_{g1}) (A T_1)^k = (P_a + P_{g2}) (A T_1 - A \delta)^k \quad (11)$$

Solving for P_{g2} , and noting that the net stress S_2 on the piston is equal to P_{g2} , yields the following expression for the stress S_2 as a function of strain ϵ for the compression and expansion of the single-acting air spring about a pre-loaded equilibrium condition

$$S_2 = \frac{(P_a + P_{g1}) (A T_1)^k}{(A T_1 - A \epsilon T_o)^k} \quad (12)$$

where the strain is based on the original unloaded thickness; i.e., ϵ is δ/T_o .

Table 2 and Figure 4 show the predicted stress vs. strain characteristics of an air bladder with a cross-sectional area of 32 sq ft, an unloaded thickness of 1.0 ft (assumed to be at zero gage pressure), and an equilibrium load of 1000 lb. The equilibrium thickness under load from Equation (10) is 0.985 ft.

DOUBLE-ACTING AIR SPRINGS

Double-acting air springs are available from several companies. An example is the series manufactured by Bimba, which they call air cylinders. These devices include a rod and sealed piston within a hollow stainless steel tube. Each end of the piston has a fitting to pressurize the volume with a source of compressed gas. If each end of the cylinder is pre-loaded to the same pressure, for example, and the piston is externally unloaded, the piston will assume a position halfway along the length of the cylinder. Positioning the load in equilibrium and changing the stiffening characteristics may be achieved by pressurizing each end with specified and unequal pressures.

The nonlinear stress-strain properties of a pre-loaded, double-acting air spring may be estimated in the following manner. Figure 5 shows a cylinder and piston in three positions: the unloaded position 0, the pre-loaded static equilibrium position 1, and the compressed position 2. The cylinder has a cross-sectional area A , initial cylinder length L , and atmospheric pressure P_a above the piston. The upper and lower initial lengths are L_{U0} and L_{L0} . Given the unloaded gage pressure P_{go} (which must be equal for the upper and lower chambers), the initial piston position, and the pre-load force in position 1, the equilibrium position 1 may be estimated. Applying Equation (8) to the upper and lower chambers between the initial and equilibrium positions gives

$$(P_a + P_{go}) L_{U0} A = (P_a + P_{gU1}) L_{U1} A \quad (13)$$

and

$$(P_a + P_{go}) L_{L0} A = (P_a + P_{gL1}) L_{L1} A. \quad (14)$$

The equation relating the upper and lower pressures to the applied force is

$$F_1 = (P_{gL1} - P_{gU1}) A. \quad (15)$$

Next, Equation (9) is applied to the process of compression beyond equilibrium, between positions 1 and 2, a displacement δ . For the upper chamber,

$$(P_a + P_{gU1}) (L_{U1} A)^k = (P_a + P_{gU2}) (L_{U2} A + \delta A)^k \quad (16)$$

or

$$P_{gU2} = \frac{(P_a + P_{gU1}) (L_{U1} A)^k}{(L_{U2} A + \epsilon L A)^k} - P_a, \quad (17)$$

where the strain ϵ , based on total length, is δ/L . For the lower chamber,

$$(P_a + P_{gL1}) (L_{L1} A)^k = (P_a + P_{gL2}) (L_{L2} A - \delta A)^k \quad (18)$$

or

$$P_{gL2} = \frac{(P_a + P_{gL1}) (L_{L1} A)^k}{(L_{L2} A - \epsilon L A)^k} - P_a. \quad (19)$$

Finally, the total stress in position 2, S_2 , is $P_{gU2} - P_{gL2}$.

Table 3 and Figure 6 illustrate the stress-strain characteristics of a 3-in. Bimba air cylinder. The double-acting air spring is pressurized to 10 psig, and pre-loaded with 200 lb.

SUMMARY AND CONCLUSIONS

The identification and evaluation of shock mitigation concepts for high speed planing boats requires consideration of both linear and nonlinear isolation characteristics. Some of the materials and concepts under consideration include helical springs, foams, air springs, and air bladders. Simple methods may be used for predicting the damping and nonlinear stiffening characteristics of these materials and devices based on geometry and material properties, and for implementing the characteristics within a time-domain simulation for shock mitigation concept evaluation.

FIGURE 1. ELASTIC HULL/HUMAN DYNAMIC SYSTEM

FIGURE 2. STRESS-STRAIN CHARACTERISTICS OF SORBOTHANE

FIGURE 3. SINGLE-ACTING PRE-LOADED AIR SPRING OR AIR BLADDER

FIGURE 4. STRESS-STRAIN CHARACTERISTICS OF A 32 SQ FT AIR BLADDER

FIGURE 5. DOUBLE-ACTING AIR SPRING

FIGURE 6. STRESS-STRAIN CHARACTERISTICS OF A 3-IN. BIMBA AIR CYLINDER

TABLE 1. DEFLECTION CHARACTERISTICS OF TWO PARALLEL HELICAL SPRINGS

INPUTS

Torsional Modulus	1.1E+07 psi
Ultimate Tensile Strength	200000 psi
Wire Diameter	0.25 in.
Coil Outside Diameter	3 in.
No. of Coils	8
Free Length	10 in.
No. of Springs	2

RESULTS

Yield Strength	86550 psi
Coil Mean Diameter	2.75 in.
Footprint Area, Each All	4.908735E-02 sq ft 9.817469E-02 sq ft
Spring Index, Dcm/Dw	11
Shear-Stress Mult Factor	1.130909
Spring Constant per Spring	32.28306 lb/in. 387.3967 lb/ft
Spring Constant, All Springs	64.56612 lb/in. 774.7934 lb/ft
Solid Height	2.25 in.
Distance to Compress Solid	7.75 in.
Force to Compress Each to Solid All to Solid	250.1937 lb 500.3874 lb
Material Stress, Solid Position	126811.1 psi

Force/Deflection/Stress Characteristics (All Springs):

Total Force (lb)	Spring Deflect (in.)	Material Stress (psi)	Spring Strain (%)	Footprint Stress (psi)
0.0	0.0	0.0	0.0	0.0
50.0	0.8	12671.3	7.7	3.5
100.0	1.5	25342.6	15.5	7.1
150.0	2.3	38013.9	23.2	10.6
200.0	3.1	50685.2	31.0	14.1
250.0	3.9	63356.4	38.7	17.7
300.0	4.6	76027.7	46.5	21.2
350.0	5.4	88699.0	54.2	24.8
400.0	6.2	101370.3	62.0	28.3
450.0	7.0	114041.6	69.7	31.8
500.0	7.7	126712.9	77.4	35.4
550.0	8.5	139384.2	85.2	38.9
600.0	9.3	152055.5	92.9	42.4

TABLE 2. STRESS-STRAIN CHARACTERISTICS OF A 32 SQ FT AIR BLADDER

**AIR SPRING OR BLADDER STRESS-STRAIN CHARACTERISTICS
SINGLE-ACTING, WITH PRE-LOAD**

Unloaded Gage Pressure	0 psi
Spring/Bladder Area	32 sq ft
Thickness	1 ft
Volume	32 cu ft
Equilibrium Load	1000 lb
Gage Pressure	31.25 lb/sq ft
Thickness	.9854519 ft
Volume	31.53446 cu ft

**Stress-Strain Characteristics About Equilibrium
(Strain based on Free Thickness)**

Strain	Deflection ft	Isothermal Stress psig	Isothermal Force lb	Adiabatic Stress psig	Adiabatic Force lb
-0.40	-0.40	-4.09	-18845.54	-5.44	-25074.15
-0.35	-0.35	-3.69	-17015.00	-4.95	-22821.25
-0.30	-0.30	-3.26	-15042.05	-4.42	-20356.43
-0.25	-0.25	-2.80	-12909.40	-3.83	-17650.28
-0.20	-0.20	-2.30	-10596.86	-3.18	-14667.92
-0.15	-0.15	-1.75	-8080.65	-2.47	-11367.64
-0.10	-0.10	-1.16	-5332.62	-1.67	-7699.19
-0.05	-0.05	-0.50	-2319.21	-0.78	-3601.57
0.00	0.00	0.22	1000.00	0.22	1000.00
0.05	0.05	1.01	4674.03	1.35	6198.06
0.10	0.10	1.90	8763.00	2.63	12108.37
0.15	0.15	2.90	13341.39	4.10	18877.56
0.20	0.20	4.02	18502.69	5.79	26693.82
0.25	0.25	5.29	24365.77	7.77	35802.36
0.30	0.30	6.75	31084.21	10.10	46528.18
0.35	0.35	8.43	38859.93	12.87	59310.52

TABLE 3. STRESS-STRAIN CHARACTERISTICS OF 3-IN. BIMBA AIR CYLINDER
DOUBLE-ACTING AIR SPRING CHARACTERIZATION WITH PRE-LOADING EFFECT INCLUDED

INPUTS

Spring Geometry	
Diameter	in.3
Area	4.908735E-02 sq ft
O/A Length	1.666667 ft
Unloaded	
Free Upper Length	.4166667 ft
Free Lower Length	1.25 ft
Pressure	10 psig
Load	200 lb

RESULTS

Equilibrium Upper Length	.891629 ft
Lower Length	.7750376 ft
Upper Gage Pressure	-454.6739 psig
Lower Gage Pressure	3619.696 psig
Spring Constant	589.5203 lb/ft

Strain O/A ft/ft	Deflection ft	Pressure Upper psig	Pressure Lower psig	Stress psig	Force lb
-0.50	-0.83	510.92	-0.37	-511.28	-3614.03
-0.45	-0.75	136.99	0.74	-136.24	-963.04
-0.40	-0.67	64.66	2.01	-62.65	-442.87
-0.35	-0.58	36.35	3.46	-32.89	-232.49
-0.30	-0.50	21.82	5.14	-16.68	-117.89
-0.25	-0.42	13.18	7.11	-6.06	-42.86
-0.20	-0.33	7.53	9.44	1.91	13.51
-0.15	-0.25	3.60	12.23	8.64	61.06
-0.10	-0.17	0.72	15.63	14.91	105.38
-0.05	-0.08	-1.46	19.83	21.29	150.47
0.00	0.00	-3.16	25.14	28.29	200.00
0.05	0.08	-4.51	32.01	36.53	258.21
0.10	0.17	-5.62	41.21	46.83	331.03
0.15	0.25	-6.53	54.02	60.55	428.01
0.20	0.33	-7.30	72.83	80.13	566.40
0.25	0.42	-7.95	102.59	110.54	781.39
0.30	0.50	-8.51	155.20	163.71	1157.19
0.35	0.58	-8.99	266.91	275.91	1950.27
0.40	0.67	-9.42	611.13	620.55	4386.41
0.45	0.75	-9.79	4852.84	4862.63	34371.85

REFERENCES

1. Brinkley, J. W., "Acceleration Exposure Limits for Escape System and Advanced Development," *Safe Journal*, Vol. 15, No. 5, 1985.
2. Payne, P. R., "Spinal Injury in the Crash Environment," *Aircraft Crashworthiness*, pp. 273-298, 1975.
3. Shigley, J. E., *Mechanical Engineering Design*, 2d Ed., McGraw-Hill Book Co., 1972.
4. Harris, C. M. and Crede, C. E., *Shock and Vibration Handbook*, 2d Ed., McGraw-Hill Book Co., 1976.

DISTRIBUTION

DOD ACTIVITIES (CONUS)		COPIES	COPIES	
			INTERNAL	
ATTN	ONR 341 (CDR E MARCINIK)	1	CODE E29L	(TECHNICAL LIBRARY) 4
	ONR 321 (T SWEAN)	1	CODE 10C	(J WOOD) 1
CHIEF OF NAVAL RESEARCH			CODE 120A	(R PETERSON) 10
BALLSTON TOWER			CODE 2310	(R GOLLWITZER) 10
800 N QUINCY ST			CODE 2310	(D WYMAN) 5
ARLINGTON VA 22217-5660			CODE 2310	(F HAMILTON) 1
			CODE 0532	(MSC) 5
ATTN	CODE N44 (D SCHLEICHERT)	1		
	CODE N44 (B CURRY)	1		
NAVSPECWARDEVGRU				
1636 REGULUS AVE				
VIRGINIA BEACH VA 23461-2299				
ATTN	CODE 214 (G GOFORTH)	1		
	CODE 214 (K PRUSACZYK)	1		
NAVAL HEALTH RESEARCH CENTER				
PO BOX 85122				
SAN DIEGO CA 92186-5122				
ATTN	CODE 65 (CAPT F BUTLER)	1		
COMMANDING OFFICER				
NAVAL HOSPITAL PENSACOLA				
6000 W HIGHWAY 98				
PENSACOLA FL 32512-0003				
DEFENSE TECHNICAL INFORMATION				
CENTER				
8725 JOHN J KINGMAN RD				
SUITE 0944				
FT BELVOIR VA 22060-6218		2		
NON-DOD ACTIVITIES (CONUS)				
THE CNA CORPORATION				
PO BOX 16268				
ALEXANDRIA VA 22302-0268		1		
ATTN	GIFT AND EXCHANGE DIVISION			
	LIBRARY OF CONGRESS			
WASHINGTON DC 20540		4		