

Obrázek 1: Konstrukce ze zadání s dopočítanými úhly

Protože víme, že osa strany BC je kolmá ke straně BC, potřebujeme dokázat, že  $ST \perp DS$ , neboli  $|\angle OST| = 90^{\circ}$ .

Jako první dokážeme, že trojúhelník ABT je rovnoramenný se základnou AB. Díky větě o úsekovém úhlu platí, že  $|\angle ACB| = \gamma = |\angle TAB| = |\angle ABT|$ , tudíž je trojúhelník ABT nutně rovnoramenný. Díky tomu zřejmě osa strany AB prochází bodem T, což využijeme dál při důkazu.

Následně můžeme dopočítat přes úhel  $\angle BAO$ , že úhel  $|\angle AOT| = \gamma$ , protože  $AT \perp AO$ . Dále si však všimneme, že čtyřúhelník EBDO je tětivový, protože  $|\angle BEO| + |\angle ODB| = 180^\circ$ , tím pádem je protější úhel u středu opsané kružnice  $|\angle DOE| = 180^\circ - \beta$ .

Potom dopočítáme  $|\angle AOS| = \beta - \gamma$ . Díky tomu je čtyřúhelník ATOS tětivový, protože  $|\angle SAT| + |\angle TOS| = \alpha + \gamma + (\beta - \gamma) + \gamma = 180^{\circ}$ . Díky tomu musí nutně platit  $|\angle OAT| = |\angle OST|$ . A poněvadž  $AT \perp AO$ , je tedy  $|\angle OST| = 90^{\circ}$ .

Tím pádem je přímka ST rovnoběžná se stranou BC. Q. E. D.