AULA 6 OUTROS CÓDIGOS, DETECÇÃO DE ERROS

Profa Letícia Rittner

- Há códigos binários que não são ponderados
- Dentre eles, o mais conhecido é o Código Gray
- O código Gray é dito cíclico, pois palavras código representando dígitos decimais sucessivos diferem entre si por apenas um bit

- Como encontrar o código Gray de 4-bits?
- Há duas formas de codificar um binário em código Gray
 - Operações XOR
 - 2. Propriedade reflexiva

decimal	binário	Gray
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

Operações XOR: composta de 3 passos

- Copia bit mais significativo (MSB)
- Soma o bit a esquerda com o próximo bit e descarta o carry
- 3. Repete o passo 2

- O passo 2, soma e ignora o carry, é na verdade uma operação de OU exclusivo (XOR)
- A operação XOR nada mais é do que um detector de número ímpar de "1"s

×	у	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Operações XOR: composta de 3 passos

- Copia bit mais significativo (MSB)
- Soma o bit a esquerda com o próximo bit e descarta o carry
- 3. Repete o passo 2

Exemplo

Encontre o código Gray para o binário 1110

Decodificar código Gray

- Copia bit mais significativo (MSB)
- Soma o bit já decodificado com o próximo bit e descarta o carry
- 3. Repete o passo 2

 Generalizando a codificação/ decodificação

$$b_3b_2b_1b_0 \stackrel{1}{\rightleftharpoons} g_3g_2g_1g_0$$

$$g_{3} = b_{3}$$
 $g_{2} = b_{2} \oplus b_{3}$
 $g_{1} = b_{1} \oplus b_{2}$
 $g_{0} = b_{1} \oplus b_{0}$

$$b_3 = g_3$$

 $b_2 = b_3 \oplus g_2$
 $b_1 = b_2 \oplus g_1$
 $b_0 = b_1 \oplus g_0$

 Outra forma de codificação é usar a propriedade de reflexão:

Gray 2-bits	Gray 3-bits
0 0	000
0 1	001
11	011
10	010
	110
	111
	101
	100

Uso do código Gray

Veja demo em: http://demonstrations.wolfram.com/GrayCodesErrorReductionWithEncoders/

Conversão vs Codificação

 Não confunda conversão para a representação binária com a codificação usando um código binário

conversão: $13_{10} = 1101_2$

codificação: 13₁₀ → 00010011

Códigos alfa-numéricos

ASCII - 7 bits

- Letras: A, B, ..., Z
- Dígitos: 0, 1, ..., 9
- □ Caracteres especiais: ?, %, @, ...
- Caracteres não-imprimíveis: espaço, quebra de linha

- Códigos binários são bastante sensíveis a erros de transmissão
- A probabilidade de ocorrência de um erro simples (em 1 bit) é não nula
- A probabilidade de ocorrência de 2 erros simultâneos é praticamente 0
- Restringiremos nossa discussão a detecção de erros simples

Dado um decimal codificado em BCD:

erros simples

Apenas o último erro seria detectado

- Uma forma de detectar erros em códigos é adicionar um bit de paridade
- A cada palavra código um bit extra é adicionado, de forma a fazer com que a quantidade de "1"s seja par ou ímpar, dependendo se for paridade par ou paridade ímpar

- O bit de paridade par é adicionado no final do código BCD (em vermelho)
- Agora, cada palavra tem um número par de "1"s

decimal	BCD	BCD com paridade par
0	0000	00000
1	0001	00011
2	0010	00101
3	0011	00110
4	0100	01001
5	0101	01010
6	0110	01100
7	0111	01111
8	1000	10001
9	1001	10010

Dado um decimal codificado em BCD com bit de paridade par:

erros simples

$$(2)_{10}: 0\ 0\ 1\ 0\ 1 \\ = \begin{bmatrix} 0\ 0\ 1\ 0\ 0 \\ -\text{paridade inválida} \\ 0\ 0\ 1\ 1 \\ -\text{paridade inválida} \\ 0\ 1\ 1\ 0\ 1 \\ -\text{paridade inválida} \\ 1\ 0\ 1\ 0\ 1 \\ -\text{paridade inválida} \\ \end{bmatrix}$$

Todos os erros são detectados

Distância em códigos

- Distância (d) entre duas palavras código é o número de dígitos que precisam ser modificados em uma das palavras para se chegar na outra palavra
- Exemplo: qual a distância entre as palavras 100 e 001?

Resp: d = 2

Distância em códigos

- Distância mínima em um código é a menor distância entre todas as distâncias medidas entre todos os pares possíveis de palavras do código
- A distância mínima do código BCD é 1
- O código é dito detector de erros se, e somente se, sua distância mínima for maior ou igual a 2

Para casa

Utilizando a propriedade da reflexão e a tabela de Código Gray de 1 bit, monte a tabela do código Gray de 4 bits

Para casa

As sequências abaixo são as primeiras palavras de dois códigos cíclicos. Em cada caso, complete o código ou mostre que ele não pode ser completado. Cada código deve conter todas as palavras possíveis (não há palavra inválida) e a última palavra de código deve estar a uma distância d=1 da primeira palavra

- A) 000, 001, 011, 111
- B) 000, 010, 011, 111, 101