Incentivizing Exploration by Heterogeneous Users COLT 2018

Bangrui Chen, Peter Frazier

Cornell University
Operations Research and Information Engineering
bc496@cornell.com, pf98@cornell.edu

David Kempe

University of Southern California Department of Computer Science david.m.kempe@gmail.com

July 8, 2018

Motivation

Amazon wants users to *explore*Each customer only wants to buy one good item

Previous Work

Without Money Transfer:

- Implementing the "Wisdom of the Crowd", Kremer et al. 2014;
- Bayesian incentive-compatible bandit exploration, Mansour et al. 2015;
- ...

With Money Transfer

- Incentivizing exploration, Frazier et al. 2014;
- Incentivizing exploration with heterogeneous value of money, Han et al. 2015;
- . . .

Heterogeneity presents a new challenge

Customers prefer different kinds of items Amazon doesn't know which item each user prefers

Heterogeneity Provides Free Exploration

- In the classical MAB: cumulative regret is $O(\log(T))$
- In incentizing exploration with heterogeneous users: we show, with assumptions, cumulative regret is O(1)
- Key insight: Heterogeneity provides free exploration
- Our contribution: First algorithm and analysis for incentivizing exploration when users have heterogeneous preferences over arms

Problem Setting

N arms

- Each arm has an unknown feature vector $\boldsymbol{u}_i \in R^d$
- Pulling arm i gives observation of u_i , perturbed by independent sub-Gaussian noise
- The agents and principal observe averages $\hat{u}_{i,t}$ of each arm's past pulls

Myopic Agents

- Agents arrive sequentially
- Agent t has linear preferences with weight vector $\boldsymbol{\theta}_t \in R^d$ drawn from known distribution F
- Without incentives, agent t would choose the arm maximizing $\theta_t \cdot \hat{u}_{i,t}$.

Problem Setting

Agents' behavior

- Principal chooses payment $c_{t,i}$ for arm i at time t
- Agent θ_t pulls arm $i_t = \arg \max_i \{ \theta_t \cdot \hat{\boldsymbol{u}}_{i,t} + c_{t,i} \}$

Principal's goal

- Regret $r_t = (\max_i \boldsymbol{\theta}_t \cdot \boldsymbol{u}_i) \boldsymbol{\theta}_t \cdot \boldsymbol{u}_{i_t}$ and payment $c_t = c_{t,i_t}$
- Incentivize to minimize the cumulative regret while making a small cumulative payment

Key Assumptions

- (Every arm is someone's best) Each arm is preferred by at least *p* fraction of users.
- (Not too many near-ties) Let q(z) be the cumulative distribution function of those agents whose utility difference between their best and second best arm is less than or equal to z. Then, there exists a $\hat{z} > 0$, L such that $q(z) \leq L \cdot z$ for all $z \leq \hat{z}$.
- (Compact Support) θ has compact support contained in $[0, D]^d$.

Main Result

Theorem 1

Our policy achieves:

expected cumulative regret $O(Ne^{2/p} + LN \log^3(T))$, using expected cumulative payments of $O(N^2e^{2/p})$.

Special case: When agent preferences are discrete, i.e. L=0, regret and payment are bounded by constants in T.

Algorithm

Set the current phase number s=1. {Each arm is pulled once initially "for free."}

for time steps $t = 1, 2, 3, \dots$ do

Update the current phase number if needed;

if there is a payment-eligible arm i then

Offer "whatever it takes" payment for pulling arm i (and payment 0 for all other arms).

else

Let agent t play myopically, i.e., offer payments 0 for all arms.

Question?

Thanks for your time!