Autour du Manège Enchanté intersections routières

Antonin Dudermel

Tournicoti, tournicotin

Zébulon

- Un Graphe pour le manège
 - Le Manège
 - Modéliser par un graphe
 - Diminution des distances
 - Résistance aux accidents
- Un Modèle par automate cellulaire
 - Automate cellulaire
 - Le problème des intersections
 - Étude locale : comparer les modèles sur une intersection
 - Limites du modèle pour le manège

Le Manège Modéliser par un graphe Diminution des distances Résistance aux accidents

Le Manège enchanté

Le Manège Modéliser par un graphe Diminution des distances Résistance aux accidents

Fonctionnement

- 1 grand rond-point central tournant dans le sens inverse
- 5 petits ronds-points latéraux
- Des lignes de "cédez le passage" avec de l'espace pour plusieurs voitures

Le Manège

Modéliser par un graphe Diminution des distances Résistance aux accidents

Comment circuler?

Figure – itinéraires possibles

Graphe du rond-point

Figure – un graphe adapté au manège

Le Manège Modéliser par un graphe Diminution des distances Résistance aux accidents

chemins plus courts

Objectif : appliquer l'algorithme de Floyd-Warshall pour montrer une diminution du trajet

Réalisation : création du graphe pour le manège enchanté et un rond-point classique, et comparaison des distances entrées-sorties pour les deux graphes

Résultats

Figure – Rapport entre la distance entrée-entrée pour le rond-point et le manège (en %)

entrée	0	4	8	12	16
0		100	100	60	36
4	36	100	100	100	60
8	60	36	100	100	100
12	100	60	36	100	100
16	100	100	60	36	100

Le Manège Modéliser par un graphe Diminution des distances Résistance aux accidents

résistant aux accidents?

Supposons qu'il y ait un accident sur une section, le rond-point est-il toujours fonctionnel? Plus formellement, si G = (V, E) est un graphe orienté fortement connexe, $(a,b) \in E$, $G' = (V,E \setminus \{(a,b)\})$ est-il fortement connexe?

Le Manège Modéliser par un graphe Diminution des distances Résistance aux accidents

Theorem

Soit G = (V, E) un graphe orienté fortement connexe, $(a, b) \in E$, alors : $G' = (V, E \setminus \{(a, b)\})$ est fortement connexe SSI il existe un chemin de a à b dans G'

Résultat : les seules sections dont un accident bloque le manège sont les sections d'introduction dans le manège (contre toutes pour le rond-point classique)

Automate cellulaire Le problème des intersections Étude locale : comparer les modèles sur une intersection Limites du modèle pour le manège

Un Modèle par automate cellulaire

Automate cellulaire Le problème des intersections Étude locale : comparer les modèles sur une intersection

Limites du modèle pour le manège

Modèle Nagel-Schreckenberg (NaSch)

- Accélération
- ② Décélération
- Facteur aléatoire
- Mouvement

Automate cellulaire Le problème des intersections Étude locale : comparer les modèles sur une intersection

Limites du modèle pour le manège

validité

Automate cellulaire

Le problème des intersections

Étude locale : comparer les modèles sur une intersection

Limites du modèle pour le manège

adapter le modèle

Deux types d'objets : les sections et les intersections. Il faut déterminer les comportements aux intersections

un premier modèle : priorité absolue

Figure – Un exemple d'intersection 2-1

Si une voiture de la voie prioritaire décide de passer, la voiture non-prioritaire la laisse passer : on indente la première mais pas la deuxième.

Modèle Rui-Xiong, Ke-Zhao, Liu Mu-Ren

Idée : anticiper le mouvement des deux voitures souhaitant passer, puis indenter les voitures l'une après l'autre

$$t_i = \frac{x_i - x_i}{\min(v_{max}, d_i - 1, v_i + 1)} \tag{1}$$

Étude locale

Expérience simpliste : deux entrées et une sortie Objectifs

- Étudier les modèles dans un cas simple
- 2 Chercher les limites du rond-point
- Oéterminer les différences entre les deux modèles

Figure – L'expérience en cours

Méthode d'étude : le diagramme fondamental

Grandeurs étudiées :

- flux J en veh/s
- \bullet vitesse v en m/s
- densité ρ en veh/m

$$J = \rho < v >$$

Diagramme fondamental

Figure – Un exemple de diagramme fondamental

Automate cellulaire Le problème des intersections Étude locale : comparer les modèles sur une intersection Limites du modèle pour le manège

Expérience :

Sur la voie non-prioritaire : un flot continu et peu dense de voitures. Sur la voie prioritaire : un flot croissant de voitures.

Premiers résultats

Figure – Comparaison absolu-dynamique

Automate cellulaire Le problème des intersections Étude locale : comparer les modèles sur une intersection Limites du modèle pour le manège

Interprétation

Informations:

- Met en évidence le problème de ces intersections
- On ne voit pas une grande différence entre les deux modèles

Améliorations possibles :

- Étudier un champ plus réduit
- Modifier le modèle

Champ réduit

"localabs.dat" using 4:1:6

Figure - Comparaison sur un champ réduit

Améliorer le modèle

Ajout d'un temps de réaction pour un redémarrage.

Figure – Étude locale avec temps de démarrage

Résultats

Observations:

- Blocage à des densités plus élevées
- Une différence entre les modèles

Explications:

- saturation de la voie principale
- augmentation de l'importance de l'arrêt

Figure - début de saturation

Automate cellulaire
Le problème des intersections
Étude locale : comparer les modèles sur une intersection
Limites du modèle pour le manège

Comparaison de divers temps de réaction

Difficultés à modéliser

- de nombreux objets
- routes de tailles variables : besoin de connaître les fréquences de chaque route
- le modèle ne tient pas compte des multiples entrées

THE ROTARY SUPERCOLLIDER:

