

El-MOR: A Hybrid Exponential Integrator and Model Order Reduction Approach for Transient Power/Ground Network Analysis

Cong WANG, Dongen YANG, Quan CHEN*

School of Microelectronics

Southern University of Science and Technology

23.October.2022

Outline

- Background
- Relations between EI and MOR
- Hybrid EI-MOR method
- Result
- Conclusion

Background

- ☐ Circuits are bigger
 - Millions of unknowns for post-layout sim
 - Even larger for power/ground (P/G) network simulation
- ☐ SPICE is slow
 - Huge sparse matrix LU, many time points
 - Weeks of verification time
- **□** Acceleration techniques exist

Mainstream circuit simulation acceleration methods

- moment-matching
- maintain the I/O relationship

Exponential Integrator(EI)

- time-domain
- accuracy, large step sizes, high parallelism
- General circuit simulation scenarios

Focus of this work

Parallel computing

- graph theory
- circuit/matrix division
- parallel hardware (multi-threaded/multi-core/GPU) acceleration

Krylov Subspace based Model Order Reduction

$$\mathbf{C}\dot{x}\left(t\right) + \mathbf{G}x\left(t\right) = \mathbf{B}u\left(t\right)$$

Build reduced order system

$$\mathbf{C}_r = \mathbf{V}^T C \mathbf{V}, \quad \mathbf{G}_r = \mathbf{V}^T \mathbf{G} \mathbf{V}$$

$$\mathbf{B}_r = \mathbf{V}^T \mathbf{B}, \quad x(t) = \mathbf{V}z(t)$$

Time-domain solution of the reduced order system

Frequency-domain

$$s\mathbf{C}x(s) + \mathbf{G}x(s) = \mathbf{B}u(s)$$

Build Kylov subspace orthonormal basis with block Arnoldi algorithm

$$span\{\mathbf{V}\} = \mathcal{K}_m(\mathbf{M}, \mathbf{R})$$

$$= span(\mathbf{R}, \mathbf{MR}, \mathbf{M}^2 \mathbf{R}, ..., \mathbf{M}^{m-1} \mathbf{R})$$

$$\mathbf{M} = -\mathbf{G}^{-1}\mathbf{C} \quad \mathbf{R} = \mathbf{G}^{-1}\mathbf{B}$$

PRIMA [Odabasioglu' 98]

Exponential Integrator based on Rational Krylov Subspace

Outline

- Introduction and Background
- Relations between EI and MOR
- Hybrid EI-MOR method
- Result
- Conclusion

Why EI and MOR

- **□** Same goal
 - Accelerate transient circuit simulation
- **□** Similar approximation method
 - Krylov subspace approximation
- **□** Separate research topics
 - MOR: work mostly in the frequency-domain, classical
 - EI: pure time-domain method, younger (since 2010)

Contribution 1: The relation between MOR and El

[C. WANG ICCAD' 22]

Equivalence between EI and MOR

Zero initial condition x_0 , a single-column input

Illustration of EI and MOR Equivalence

Equivalence: Corollary

- \blacksquare Main Theorem also holds for inhomogeneous initial condition $_0 \neq 0$
 - ☐ Decompose original system into two sub-systems to MOR process
- EI using (+1)-dimensional V matches the first moment of the exact solution
 - Another perspective explaining the superiority of EI

Comparisons of EI and MOR in circuit simulation

MOR:	"once-and-for-all"		El: "on-the-fly"
Reduction	once in frequency-domain, use	•	One MOR per time step, pure time-domain
ROM repe	atedly in time-domain		
No knowle	edge of actual inputs, so require	•	Full knowledge of actual inputs, require
accuracy f	or any input during whole span		accuracy for one input within one step
Cost is high	h especially for many-input and	•	Independent of the number of inputs
wide-spec	trum systems		
Difficult to	choose expansion points and	•	A single expansion point usually
moments			suffices. Easy to determine moments
Difficult to	handle nonlinear circuits	•	Easy to deal with nonlinear circuits
ROMs are	re-usable	•	ROMs not re-usable

Outline

- Introduction and Background
- Relations between EI and MOR
- Hybrid EI-MOR method
- Result
- Conclusion

Hybrid EI-MOR method for P/G Analysis

- In P/G networks nonlinear devices are modeled as a large number of independent current sources
- ☐ Typically pulse or PWL waveforms

Input Misalignment Problem for EI

- □ PWL assumption in El → every input linear within the same step
- Input misalignment will induce many breakpoints
- ☐ Usually not an issue for traditional SPICE, but serious for EI

Contribution 2: Inspired by EI-MOR equivalence, develop a hybrid EI-MOR method to address the misaligned input issue

Motivations

	Input #	Time step #
El cost	Independent	Sensitive
MOR cost	Sensitive	Not sensitive

Our idea: a hybrid EI-MOR method

- ☐ El handles well-aligned inputs (majority)
- MOR deals with misaligned inputs(minority)

Divide the original inputs

- ☐ Divide inputs into two groups
 - A majority group of well-aligned inputs for El
 - ☐ A minority group of misaligned inputs for MOR
- El inputs handled as usual with all breakpoints
- MOR inputs used in PRIMA to generate a reduced model for later time domain simulation
- The El solution and MOR solution superimposed to obtain the final solution

Outline

- Introduction and Background
- Relations between EI and MOR
- Hybrid EI-MOR method
- Results
- Conclusion

Result: Verification of EI-MOR Equivalence

□ Data: ibmpg1t	Expansion Point	Moments	$\frac{\ x^{EI} - x^{MOR}\ }{\ x^{EI}\ }$	
 ■ Nonzero initial condition x₀ 		4	2.5418×10^{-14}	
■ a single-column input	1e7	6	8.1615×10^{-14}	
3 different expansion points and 3		8	1.2139×10^{-13}	
different moments matched of each		4	2.3310×10^{-14}	
expansion point	1e8	6	5.9894×10^{-14}	
		8	1.0884×10^{-13}	
		4	4.6395×10^{-14}	
El solution and MOR solution	1e9	6	7.7582×10^{-13}	

are numerically equal

 6.3915×10^{-12}

Result: Validity of "divide-and-superposition"

- ☐ Test instance: ibmpg1t (5883 current source,3 for MOR, 5880 for EI)
- MOR based on PRIMA (s0=1e8, m=15)
- Both EI and MOR inputs have non-trivial contribution to the transient responses
- Produce the correct total solution when superimposed

Result: Performance of EI-MOR

 $i_{MOR} = \underset{i}{\operatorname{arg\,max}} (k_0 - k_i)$. MOR inputs picked based on ability to reduce breakpoints

Case	Node	VSource	ISource
ibmpg1t	39681	14308	5883
ibmpg2t	164238	330	18535
ibmpg3t	1041535	955	114191

-											
Case	Method	Isource	bp_{All}	bp_{EI}	$Arnoldi_{EI}$	$t_{EI}(s)$	m_{MOR}	ROM Size	$t_{MOR}^{Reduce}(s)$	$t_{MOR}^{Sim}(s)$	$t_{total}(s)$
ibmpg1t	EI	5883	517	517	16006	225.39	-	-	-	-	225.39
	EI-MOR	5880(EI)3(MOR)	517	342	12570	177.14	15	45	1.08	17.31	195.52
	EI-MOR	5877(EI)6(MOR)	517	277	8496	122.41	15	90	3.48	28.60	154.48
ibmpg2t	EI	18535	533	533	15840	1173.51	-	-	-	=	1173.51
	EI-MOR	18532(EI)3(MOR)	533	389	11509	865.06	15	45	5.32	86.77	957.16
	EI-MOR	18529(EI)6(MOR)	533	277	7700	634.85	15	90	17.12	84.71	736.68
ibmpg3t	EI	114191	509	509	13882	8420.87	-	-	-	_	8420.87
	EI-MOR	114188(EI)3(MOR)	509	375	10067	6306.15	20	60	93.33	471.59	6871.07
	EI-MOR	114185(EI)6(MOR)	509	277	7318	4733.61	20	120	194.13	672.05	5599.79

Note: El or El-MOR does not exclude other techniques like circuit partition, parallel LU and spectral graph sparsifier

Outline

- Introduction and Background
- Relations between EI and MOR
- Hybrid EI-MOR method
- Result
- Conclusion

Conclusion

- **□** Equivalence between EI and MOR
- EI equivalent to one MOR per time step
- ☐ A hybrid EI-MOR method for P/G networks
- Combine EI and MOR to address the misaligned inputs in EI
- Good performance gain
- New insights and opportunities for this classic EDA topic.

Thank you! Q & A

Equivalence: Lemma

Lemma1:

With zero initial condition $x_0 = 0$, a single-column **b** matrix and a real expansion point $s_0 = 1/\gamma$, let $\mathbf{V}_M \in \mathcal{R}^{N \times m}$ be an dimensional orthonormal basis with

MOR

$$colspan \{ \mathbf{V}_M \} = \mathcal{K}_m (\mathbf{M}, \mathbf{R})$$
$$= \mathcal{K}_m \left(-(s_0 \mathbf{C} + \mathbf{G})^{-1} \mathbf{C}, (s_0 \mathbf{C} + \mathbf{G})^{-1} \mathbf{b} \right)$$

and $V_E \in \mathcal{R}^{N \times (m+1)}$ be an +1 dimensional orthonormal basis with

$$colspan \{ \mathbf{V}_E \} = \mathcal{K}_m \left(\left(\mathbf{I} - \gamma \tilde{\mathbf{A}} \right)^{-1}, \ \tilde{x}_n \right)$$

So, we can get the relationship of the orthonormal basis

$$\mathbf{V}_E = egin{bmatrix} \mathbf{o} \mathbf{V}_M \ 1 \ \mathbf{o}^T \end{bmatrix} \qquad _{\mathbf{o} \in \mathcal{R}^{N imes 1}}$$

EI

Equivalence: Main Theorem

With the assumptions stated in Lemma 3.1, EI, when solved with a (+ 1)-dimensional rational Krylov subspace with , is equivalent to applying a Krylov subspace based MOR, with the expansion point and the subspace dimension , to the original system, and advancing the reduced system one step in the time domain using again the EI approach.

$$x_{1}^{MOR} = \mathbf{V_{M}}z_{1} = -h\mathbf{V_{M}}\varphi_{1}\left(\left(s_{0}\mathbf{I_{M}} + \mathbf{H_{M}}^{-1}\right)h\right)\mathbf{H_{M}}^{-1}e_{1}u_{0}$$

$$\mathbf{x}_{1}^{MOR} = \mathbf{x}_{1}^{EI}$$

$$x_{1}^{EI} \approx h\mathbf{V_{M}}\varphi_{1}\left(\left(s_{0}\mathbf{I_{M}} + \mathbf{H_{M}}^{-1}\right)h\right)\mathbf{V_{M}}^{T}\mathbf{C}^{-1}\mathbf{b}u_{0}$$

$$= h\mathbf{V_{M}}\varphi_{1}\left(\left(s_{0}\mathbf{I_{M}} + \mathbf{H_{M}}^{-1}\right)h\right)\mathbf{V_{M}}^{T}\mathbf{C}^{-1}\mathbf{K}\mathbf{K}^{-1}\mathbf{b}u_{0}$$

$$= h\mathbf{V_{M}}\varphi_{1}\left(\left(s_{0}\mathbf{I_{M}} + \mathbf{H_{M}}^{-1}\right)h\right)\mathbf{V_{M}}^{T}\left(\mathbf{K}\mathbf{C}^{-1}\right)^{-1}\mathbf{V_{M}}e_{1}u_{0}$$

$$= -h\mathbf{V_{M}}\varphi_{1}\left(\left(s_{0}\mathbf{I_{M}} + \mathbf{H_{M}}^{-1}\right)h\right)\mathbf{H_{M}}^{-1}e_{1}u_{0}$$