Data Science

Term Project Specification
Ok-Ran Jeong

4

Term Project Requirements (1/4)

- The term project will be a team project.
- Prepare a short proposal and post it to CyberCampus.
 - Your proposal must include a statistical description of the dataset, objective and types of algorithm to use.
- Final presentation will be in the last class before the Final Exam.
- Must apply every step of the end-to-end Big Data process (except data curation and deployment)

Term Project Requirements (2/4)

- Study the list of possible datasets and the sample Case Study (using the WorldCup dataset) to get a feel for how to proceed.
- You may select a dataset from the list provided or find a suitable dataset on your own.
- However, for education purpose, the dataset must include
 - a reasonable number of records and features (attributes)
 - a reasonable amount of dirty data
 - a combination of numerical data and categorical data.

-

Term Project Requirements (3/4)

- Algorithms
 - You must use data scaling and encoding
 - You must use 2 of the following 3 types of algorithm
 - regression, classification, clustering
 - You must NOT use algorithms not taught in this course.
- Evaluation
 - You must use k-fold cross validation for testing classification models.
- (* VERY Important *)
 - Open Source software contribution to the community (explained shortly)

Term Project Requirements (4/4)

- Term project submission package
 - PPT presentation
 - Separate writeup that gives details behind the PPT presentation
 - Source code with detailed comments
 - Explanations for all modules/classes/libraries/functions/methods (along with the parameters) used that were not taught or used in Lab classes (* This is to prevent students from just copying code found on the Internet without actually learning anything. *)
 - Outputs (including plots, code execution results)
 - Dataset used
 - Teamwork data: task assignment for each member, contribution percentage for each member
 - A short writeup on what you have learned (for each member of the team)
- You may make use of code found on the Internet (blogs, Kaggle, GitHub, etc.).
 - However, in that case, you MUST cite the sources. Failure to cite them constitutes plagiarism.

-

Open Source SW Contribution (1/2)

- For a given cleaned dataset, do the following under a single top-level function (rather than repeating the same code many times).
- 1. Preprocessing
 - combination of various data scaling and categorical features encoding methods.
- 2. Learning Model training and testing
 - Different models(algorithms), combination of model parameters for each model
 - Different evaluation methods for each of the above.
- 3. Find the top five and best combination of the above.

Open Source SW Contribution (2/2)

- Write the function and user manual/specification in the style of Pandas and Scikit-learn.
- Post it to GitHub or Kaggle

Dataset Finder

- Google dataset search <u>https://toolbox.google.com/datasetsearch</u>
- Kaggle

 https://www.kaggle.com/datasets
 examples)
 https://www.kaggle.com/residentmario/ramen-ratings
 https://www.kaggle.com/ncaa/ncaa-basketball
 https://www.kaggle.com/aaronschlegel/seattle-pet-licenses
- UCI Machine Learning Repository <u>http://mlr.cs.umass.edu/ml/</u>
- VisualData https://www.visualdata.io
- Find Datasets | CMU Libraries
 https://guides.library.cmu.edu/machine-learning/datasets

General Datasets: Public Government Datasets

- data.gov (https://www.data.gov)
- Food Environment Atlas <u>https://catalog.data.gov/dataset/food-environment-atlas-</u> f4a22
- School System Finances
 https://catalog.data.gov/dataset/annual-survey-of-school-system-finances
- The US National Center for Education Statistics https://nces.ed.gov
- The UK Data Service <u>https://www.ukdataservice.ac.uk</u>
- Data USA https://datausa.io

General Datasets: Housing Datasets

General Datasets: Finance & Economics Datasets

- Quandl https://www.quandl.com
- World Bank Open Data https://data.worldbank.org
- IMF Data https://www.imf.org/en/Data
- Financial Times Market Data <u>https://markets.ft.com/data/</u>
- Google Trends
 https://trends.google.com/trends/?q=google&ctab=0&geo=all&date=all&sort=0
- American Economic Association (AEA)
 https://www.aeaweb.org/resources/data/us-macro-regional

Machine Learning Datasets: Sentiment Analysis Datasets

- Multidomain sentiment analysis dataset
 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
- IMDB reviews <u>http://ai.stanford.edu/~amaas/data/sentiment/</u>
- Stanford sentiment Treebank <u>https://nlp.stanford.edu/sentiment/code.html</u>
- Sentiment140http://help.sentiment140.com/for-students/
- Twitter US Airline Sentiment <u>https://www.kaggle.com/crowdflower/twitter-airline-sentiment</u>

Case Study for Term Project

The FIFA World Cup

Index

Steps in Data Preprocessing

Step 1 : Import the libraries

Step 2 : Import the data-set

Worldcupmatches.csv

Step 3 : Check out the missing values

Step 4 : See the Categorical Values

Step 5 : Splitting the data-set into Training and Test Set

Data.csv

Step 6 : Feature Scaling

Step 1. Import the Libraries

```
# Import the Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

Step 2. Dataset

Year	Datetime	Stage	Stadium	City	Home Team Name	Home Team Goals	Away Team Goals	Away Team Name	Win conditions	Attendance	Half-time Home Goals Ha
1930	13 Jul 1930 - 15:00	Group 1	Pocitos	Montevideo	France	4	1	Mexico		4444	3
1930	13 Jul 1930 - 15:00	Group 4	Parque Central	Montevideo	USA	3	0	Belgium		18346	2
1930	14 Jul 1930 - 12:45	Group 2	Parque Central	Montevideo	Yugoslavia	2	1	Brazil		24059	2
1930	14 Jul 1930 - 14:50	Group 3	Pocitos	Montevideo	Romania	3	1	Peru		2549	1
1930	15 Jul 1930 - 16:00	Group 1	Parque Central	Montevideo	Argentina	1	0	France		23409	0
1930	16 Jul 1930 - 14:45	Group 1	Parque Central	Montevideo	Chile	3	0	Mexico		9249	1
1930	17 Jul 1930 - 12:45	Group 2	Parque Central	Montevideo	Yugoslavia	4	0	Bolivia		18306	0
1930	17 Jul 1930 - 14:45	Group 4	Parque Central	Montevideo	USA	3	0	Paraguay		18306	2
1930	18 Jul 1930 - 14:30	Group 3	Estadio Centenario	Montevideo	Uruguay	1	0	Peru		57735	0
1930	19 Jul 1930 - 12:50	Group 1	Estadio Centenario	Montevideo	Chile	1	0	France		2000	0
1930	19 Jul 1930 - 15:00	Group 1	Estadio Centenario	Montevideo	Argentina	6	3	Mexico		42100	3
1930	20 Jul 1930 - 13:00	Group 2	Estadio Centenario	Montevideo	Brazil	4	0	Bolivia		25466	1
1930	20 Jul 1930 - 15:00	Group 4	Estadio Centenario	Montevideo	Paraguay	1	0	Belgium		12000	1
1930	21 Jul 1930 - 14:50	Group 3	Estadio Centenario	Montevideo	Uruguay	4	0	Romania		70022	4
1930	22 Jul 1930 - 14:45	Group 1	Estadio Centenario	Montevideo	Argentina	3	1	Chile		41459	2
1930	26 Jul 1930 - 14:45	Semi-finals	Estadio Centenario	Montevideo	Argentina	6	1	USA		72886	1
1930	27 Jul 1930 - 14:45	Semi-finals	Estadio Centenario	Montevideo	Uruguay	6	1	Yugoslavia		79867	3
1930	30 Jul 1930 - 14:15	Final	Estadio Centenario	Montevideo	Uruguay	4	2	Argentina		68346	1
1934	27 May 1934 - 16:30	Preliminary round	Stadio Benito Mussolini	Turin	Austria	3	2	France	Austria win after extra time	16000	0
1934	27 May 1934 - 16:30	Preliminary round	Giorgio Ascarelli	Naples	Hungary	4	2	Egypt		9000	2
1934	27 May 1934 - 16:30	Preliminary round	San Siro	Milan	Switzerland	3	2	Netherlands		33000	2
1934	27 May 1934 - 16:30	Preliminary round	Littorale	Bologna	Sweden	3	2	Argentina		14000	1
1934	27 May 1934 - 16:30	Preliminary round	Giovanni Berta	Florence	Germany	5	2	Belgium		8000	1
1934	27 May 1934 - 16:30	Preliminary round	Luigi Ferraris	Genoa	Spain	3	1	Brazil		21000	3
1934	27 May 1934 - 16:30	Preliminary round	Nazionale PNF	Rome	Italy	7	1	USA		25000	3
1934	27 May 1934 - 16:30	Preliminary round	Littorio	Trieste	Czechoslovakia	2	1	Romania		9000	0
1934	31 May 1934 - 16:30	Quarter-finals	Stadio Benito Mussolini	Turin	Czechoslovakia	3	2	Switzerland		12000	1
1934	31 May 1934 - 16:30	Quarter-finals	San Siro	Milan	Germany	2	1	Sweden		3000	0
1934	31 May 1934 - 16:30	Quarter-finals	Giovanni Berta	Florence	Italy	1	1	Spain		35000	0
1934	31 May 1934 - 16:30	Quarter-finals	Littorale	Bologna	Austria	2	1	Hungary		23000	1
1934	01 Jun 1934 - 16:30	Quarter-finals	Giovanni Berta	Florence	Italy	1	0	Spain		43000	1
1934	03 Jun 1934 - 16:30	Semi-finals	San Siro	Milan	Italy	1	0	Austria		35000	1
1934	03 Jun 1934 - 16:30	Semi-finals	Nazionale PNF	Rome	Czechoslovakia	3	1	Germany		15000	1

Step 2. Dataset (cont'd)

dataset = pd.read_csv('WorldCupMatches.csv')

dataset.head(5)

	Year	Datetime	Stage	Stadium	City	Home Team Name	Home Team Goals	Away Team Goals	Away Team Name	Win conditions	Attendance	Half- time Home Goals	Half- time Away Goals	Referee	Assistant 1	Assista
0	1930.0	13 Jul 1930 - 15:00	Group 1	Pocitos	Montevideo	France	4.0	1.0	Mexico		4444.0	3.0	0.0	LOMBARDI Domingo (URU)	CRISTOPHE Henry (BEL)	RE Gilb (B
1	1930.0	13 Jul 1930 - 15:00	Group 4	Parque Central	Montevideo	USA	3.0	0.0	Belgium		18346.0	2.0	0.0	MACIAS Jose (ARG)	MATEUCCI Francisco (URU)	WARNI Alberto ((
2	1930.0	14 Jul 1930 - 12:45	Group 2	Parque Central	Montevideo	Yugoslavia	2.0	1.0	Brazil		24059.0	2.0	0.0	TEJADA Anibal (URU)	VALLARINO Ricardo (URU)	BALV Thoi (F
3	1930.0	14 Jul 1930 - 14:50	Group 3	Pocitos	Montevideo	Romania	3.0	1.0	Peru		2549.0	1.0	0.0	WARNKEN Alberto (CHI)	LANGENUS Jean (BEL)	MATEU Franc (U
4	1930.0	15 Jul 1930 - 16:00	Group 1	Parque Central	Montevideo	Argentina	1.0	0.0	France		23409.0	0.0	0.0	REGO Gilberto (BRA)	SAUCEDO Ulises (BOL)	RADULES Consta (R

Step 2. Dataset (cont'd)

4

Step 3. Missing Values

- Two ways to handle missing values
- Delete a particular row/column if there are enough samples in data set (removing the data will lead to loss of information)
- 2. calculate mean, median, or mode of the feature and replace it with the missing values if the value is numeric (= leaking the data)
 - approximation which can add variance to the data set
 - If the data is linear, deviation is better

Delete the missing values

# Check for the Missing	Values
<pre>dataset.isnull().sum()</pre>	
Year	3720
Datetime	3720
Stage	3720
Stadium	3720
City	3720
Home Team Name	3720
Home Team Goals	3720
Away Team Goals	3720
Away Team Name	3720
Win conditions	3720
Attendance	3722
Half-time Home Goals	3720
Half-time Away Goals	3720
Referee	3720
Assistant 1	3720
Assistant 2	3720
RoundID	3720
MatchID	3720
Home Team Initials	3720
Away Team Initials	3720
dtype: int64	

dataset.shape (850, 20)

Step 3. Missing Values (cont'd)

Calculate mean and use it to replace the missing values

```
# Replace the NaN value with mean, median or mode
dataset['Year'].mean()
1985.0892018779343
dataset['Year'].tail()
4567
       NaN
4568
       NaN
4569
       NaN
4570
       NaN
4571
       NaN
Name: Year, dtype: float64
dataset['Year'].replace(np.NaN,dataset['Year'].mean()).tail()
4567
        1985.089202
4568
        1985.089202
4569
       1985.089202
4570
        1985.089202
        1985,089202
4571
Name: Year, dtype: float64
```

Step 4. Categorical Value

Data

Country	Age	Salary	Purchased
France	44	72000	No
Spain	27	48000	Yes
Germany	30	54000	No
Spain	38	61000	No
Germany	40		Yes
France	35	58000	Yes
Spain		52000	No
France	48	79000	Yes
Germany	50	83000	No
France	37	67000	Yes

Step 4. Categorical Value (cont'd)

Read csv file

```
import pandas as pd

dataset = pd.read_csv('Data.csv')

dataset
```

```
X
array([['France', 44.0, 72000.0],
        ['Spain', 27.0, 48000.0],
        ['Germany', 30.0, 54000.0],
        ['Germany', 40.0, nan],
        ['France', 35.0, 58000.0],
        ['Spain', nan, 52000.0],
        ['France', 48.0, 79000.0],
        ['France', 37.0, 67000.0]], dtype=object)
```

```
imputer = Imputer(missing_values = "NaN", strategy = "mean", axis =
0)

imputer = imputer.fit(X[:,1:3])

X[:, 1:3] = imputer.transform(X[:, 1:3])
```


Step 4. Categorical Value (cont'd)

Label encoding

OneHotencoder

```
from sklearn.preprocessing import OneHotEncoder
onehotencoder = OneHotEncoder(categorical_features=[0])

X = onehotencoder.fit_transform(X)
```

Step 4. Categorical Value (cont'd)

Dummy variables
 : 0 or 1 to indicate the absence or presence of some categorical effect

 Number of Columns = Number of Categories

	France	Germany	Spain
0	1	0	0
1	0	0	1
2	0	1	0

```
dataset = pd.concat([dataset,dummy], axis =1)
dataset
```

	Country	Age	Salary	Purchased	France	Germany	Spain
0	France	44.0	72000.0	No	1	0	0
1	Spain	27.0	48000.0	Yes	0	0	1
2	Germany	30.0	54000.0	No	0	1	0
3	Spain	38.0	61000.0	No	0	0	1
4	Germany	40.0	NaN	Yes	0	1	0

dataset.drop([country], axis - 1)	dataset.drop(['	'Country'],	axis =	1)
-------------------------------------	-----------------	-------------	--------	----

	Age	Salary	Purchased	France	Germany	Spain
0	44.0	72000.0	No	1	0	0
1	27.0	48000.0	Yes	0	0	1
2	30.0	54000.0	No	0	1	0
3	38.0	61000.0	No	0	0	1
4	40.0	NaN	Yes	0	1	0

Step 5. Training & Test Set

split the dataset into training and test set

```
from sklearn.cross_validation import train_test_split
X train, X test, y train, y test = train test split(X,y,test size =0.2)
# You can see in X_train we got 8 values
X train
array([[0, 35.0, 58000.0],
      [1, 40.0, nan],
      [1, 30.0, 54000.0],
      [0, 48.0, 79000.0],
      [2, nan, 52000.0],
                                                                # X test we only get two 2 values
      [2, 27.0, 48000.0],
                                                                X test
      [0, 37.0, 67000.0],
      [0, 44.0, 72000.0]], dtype=object)
                                                                array([[1, 50.0, 83000.0],
                                                                       [2, 38.0, 61000.0]], dtype=object)
                                                                # Similarly for y train and y test
                                                                y train
                                                                array([1, 0, 0, 1, 0, 0, 1, 1], dtype=uint8)
                                                                y_test
                                                                array([0, 0], dtype=uint8)
```

Step 6. Feature Scaling

- feature scaling
 the method to limit the range of variables so that they can be compared on common grounds
- age & salary : not same scale→ Euclidean distance

$$d(A,B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- Other methods
 - 1. Rescaling (min-max normalization) $x' = \frac{x}{\max(x) \min(x)}$
 - 2. Mean normalization
 - 3. Standardization

$$x' = \frac{x - \operatorname{average}(x)}{\max(x) - \min(x)}$$

$$x' = \frac{x - \bar{x}}{\sigma}$$

Step 6. Feature Scaling (cont'd)

feature scaling (standard scaler)

	∑ 7 Filt		-			Q	
	OCCUPATION	GENDER	AGE ÷	EDUCATION_YEARS	WEEKLY_WORKING_HOURS	COMPANY_SIZE	SALARY
1	1.256289	0.621059	0.0000000	0.4580879	2.814231e-01	2.8419998	-1.1618950
2	-1.027872	0.621059	0.8841519	0.4580879	-1.924571e+00	-0.3665959	0.7745967
3	1.256289	0.621059	1.1123201	0.7634799	6.899404e-01	-0.2782626	-1.1618950
4	0.114208	0.621059	-0.4848575	-0.7634799	2.814231e-01	-0.3197875	0.774596
5	0.114208	0.621059	1.2264042	-1.3742638	3.483229e-15	-0.3689812	0.7745967
6	1.256289	-1.449138	-1.2834462	0.7634799	1.098458e+00	-0.3693916	0.7745967
7	-1.027872	0.621059	-1.6256986	0.4580879	6.899404e-01	-0.2017020	-1.1618950
8	-1.027872	-1.449138	-0.5989416	0.7634799	2.814231e-01	-0.3557466	0.774596
9	0.114208	-1.449138	0.7700677	-1.9850477	-1.679460e+00	-0.2942160	0.774596
10	-1.027872	0.621059	0.0000000	0.4580879	2.814231e-01	-0.2873165	-1.161895

"worldcupmatches.csv"

<u>https://medium.com/datadriveninvestor/data-preproces</u> <u>sing-for-machine-learning-188e9eef1d2c</u>

"data.csv"

<u>https://hackernoon.com/what-steps-should-one-take-w</u>
<u>hile-doing-data-preprocessing-502c993e1caa</u>

Columns description of WorldCupMatches.csv

Integer

Year: The year in which the match was played

Date

Datetime: The Date on which the match was played along with a

24 hour format time

Numeric

Stage: The stage at which the match was played

String

Stadium: Stadium name where the match was held

String

City: The city name, where the match was played

Country

Home Team Name: Home team country name

Numeric

Home Team Goals: Total goals scored by the home team by the

end of the match

Numeric

Away Team Goals: Total goals scored by the away team by the

end of the match

String

Away Team Name: Away team country name

String

Win conditions: Special win condition (if any)

Numeric

Attendance: Total crowd present at the stadium

Numeric

Half-time Home Goals: Goals scored by the home team until half

time

Numeric

Half-time Away Goals: Goals scored by the away team until half

time

String

Referee: Name of the first referee

String

Assistant 1: Name of the first assistant referee (linesman)

String

Assistant 2: Name of the second assistant referee (linesman)

Numeric

RoundID: Unique ID of the Round

Numeric

MatchID: Unique ID of the match

String

Home Team Initials: Home team country's three letter initials

String

Away Team Initials: Away team country's three letter initials

Columns description of WorldCupPlayer.csv (1)

RoundID: Unique ID of the round

Numeric

MatchID: Unique ID of the match

String

Team Initials: Player's team initials

String

Coach Name: Name and country of the team coach

String

Line-up: S=Line-up, N=Substitute

Numeric

Shirt Number: Shirt number if available

String

Player Name: Name of the player

String

Position: C=Captain, GK=Goalkeeper

String

Event: G=Goal, OG=Own Goal, Y=Yellow Card, R=Red Card, SY = Red Card by second yellow, P=Penalty, MP=Missed

Penalty, I = Substitution In, O=Substitute Out

RoundID	MatchID	Team Initials	Coach Name	Line-up	Shirt Number	Player Name	Position	Event
201	1096	FRA	CAUDRON Raoul (FRA)	S	0	Alex THEPOT	GK	
201	1096	MEX	LUQUE Juan (MEX)	S	0	Oscar BONFIGLIO	GK	
201	1096	FRA	CAUDRON Raoul (FRA)	S	0	Marcel LANGILLER		G40'
201	1096	MEX	LUQUE Juan (MEX)	S	0	Juan CARRENO		G70'
201	1096	FRA	CAUDRON Raoul (FRA)	S	0	Ernest LIBERATI		
201	1096	MEX	LUQUE Juan (MEX)	S	0	Rafael GARZA	С	
201	1096	FRA	CAUDRON Raoul (FRA)	S	0	Andre MASCHINOT		G43' G87'
201	1096	MEX	LUQUE Juan (MEX)	S	0	Hilario LOPEZ		

Columns description of WorldCup.csv (2)

Numeric

Fourth: Team who was the fourth place Year: Year of the worldcup

String

Country: Country of the worldcup

String

Winner: Team who won the worldcup

String

Runners-Up: Team who was the second place

String

Third: Team who was the third place

String

Numeric

GoalsScored: Total goals scored in the worldcup

Numeric

QualifiedTeams: Total participating teams

Numeric

MatchesPlayed: Total matches played in the cup

Numeric

Attendance: Total attendance of the worldcup

Year	Country	Winner	Runners-Up	Third	Fourth	GoalsScored	QualifiedTeams	MatchesPlayed	Attendance
1930	Uruguay	Uruguay	Argentina	USA	Yugoslavia	70	13	18	590.549
1934	Italy	Italy	Czechoslovakia	Germany	Austria	70	16	17	363
1938	France	Italy	Hungary	Brazil	Sweden	84	15	18	375.7
1950	Brazil	Uruguay	Brazil	Sweden	Spain	88	13	22	1.045.246
1954	Switzerland	Germany FR	Hungary	Austria	Uruguay	140	16	26	768.607
1958	Sweden	Brazil	Sweden	France	Germany FR	126	16	35	819.81

"column description of worldcup data"

https://www.kaggle.com/abecklas/fifa-world-cup#WorldCups.csv

"world cup 1930 - 2014 data analysis"

<u>https://www.kaggle.com/pavanraj159/fifa-world-cup-1930-to-2014-data-a</u>
<u>nalysis</u>

"world cup 2018 prediction"

https://www.kaggle.com/angps95/fifa-world-cup-2018-prediction

- The Best Public Datasets for Data Science
 - https://towardsdatascience.com/the-50-best-publicdatasets-for-machine-learning-d80e9f030279

End of Term Project Guidelines