Obsah

10 Struktura a vlastnosti plynného skupenství	1
10.1 Mechanické vlastnosti	. 1
10.1.1 Ideální plyn	1
10.2 Stav plynu	
10.2.1 Stavové veličiny	1
10.2.2 Stavová rovnice	1
10.3 Děje v ideálním plynu	1
10.3.1 Izotermický	1
10.3.2 Izochorický	2
10.3.3 Izobarický	2
10.3.4 Adiabatický	2
10.3.5 Kruhový	3
10.4 Druhý termodynamický zákon	4
10.5 Plyn při nízkém a vysokém tlaku	4
10.5.1 Nízký tlak	4
10.5.2 Vysoký tlaku	5
10.6 Tepelné motory	5
10.6.1 Parní stroj	5
10.6.2 Turbíny	5
10.6.3 Zážehové motory	5

10 Struktura a vlastnosti plynného skupenství

10.1 Mechanické vlastnosti

- snadno stlačitelné
- zaobírají objem a tvar nádoby
- tekuté
- neuspořádaný pohyb částic

10.1.1 Ideální plyn

- ideální model plynu použitý pro modely, v reálu neexistuje, blíží se za velké teploty a nízkého tlaku
- rozměry molekul vzhledem ke vzdálenosti molekul zanedbatelně malé
- molekuly na sebe kromě srážek nepůsobí silami \to potenciální energie soustavy nulová \to vnitřní energie dána pouze kinetickou e.
- dokonale pružné srážky se stěnami nádoby

10.2 Stav plynu

10.2.1 Stavové veličiny

- vyjadřující stav plynu
- objem V, $[V] = m^3$ prostor zabrán plynem
- tlak p, $[p] = Pa = F \cdot m^{-3} síla plynu působící na jednotku plochy stěny$
- teplota T, [T] = K tepelný stav plynu
- látkové množství n,[n]=mol počet elementárních jedinců specifikovaných Avogradrovou konstantou

10.2.2 Stavová rovnice

• vztah mezi stavovými veličinami při rovnovážném stavu

$$pV = nRT$$

 $-R \doteq 8.31 \,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$ – molární plynová konstanta

• při neměnném množství plynu

$$\frac{pV}{T} = nR = \text{konst}$$

10.3 Děje v ideálním plynu

10.3.1 Izotermický

děj, kdy zůstává teplota konstantní – mění se pouze tlak a objem
 – součin tlaku a objemu konstantní

$$T_1 = T_2 \Rightarrow nRT = \text{konst}$$

 $p_1V_1 = p_2V_2$

- grafem izoterma
- teplota konstantní \rightarrow vnitřní energie zůstává stejná
- teplo přijaté plynem koná práci

10.3.2 Izochorický

• děj za konstantního objemu

$$\frac{p}{T} = \frac{nR}{V} = \text{konst}$$

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$

- grafem izochora
- tlak přímo úměrný teplotě
- stálý objem \rightarrow nekoná práci
- přijaté teplo přeměněno na vnitřní energii

10.3.3 Izobarický

• děj za konstantního tlaku

$$\frac{V}{T} = \frac{nR}{p} = \text{konst}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

- grafem izobara
- přijaté teplo rovno součtu změny vnitřní energie a vykonané práce

10.3.4 Adiabatický

- neprobíhá tepelná výměna s okolím $(Q=0) \Rightarrow$ změna vnitřní energie způsobena prací $(\Delta U=W)$
- většinou velmi rychlé děje nestihne dojít k výměně tepla
- působení síly na píst \rightarrow konání práce sílou \rightarrow zvýšení vnitřní energie \rightarrow zvýšení teploty
- rozpínání plynu / roztahování pístu \to plyn koná práci \to snížení vnitřní energie \to snížení teploty

Obr. 10.1: pV diagramy dějů

- grafem adiabata
- platí Poissonův zákon

$$pV^{\kappa} = \text{konst}$$
$$\kappa = \frac{c_p}{c_V}$$

- $-\kappa$ Poissonova konstanta
- $-c_p,c_V$ měrná tepelná kapacita plynu při stálém tlaku a objemu
- $-c_p > c_V \Rightarrow \kappa > 1$
- jednoatomární plyn $\kappa = 5/3$; dvouatomární plyn $\kappa = 7/5$
- izoterma pV^1 = konst; adiabata pV^{κ} = konst, $\kappa > 1$

10.3.5 Kruhový

- schopnost práce tepelného stroje pouze při vrácení plynu do původního stavu
- pV diagram uzavřená křivka (např. graf 10.3)
 - $A \rightarrow B$ izotermické expanze
 - $-B \rightarrow C$ adiabatická expanze
 - $-C \rightarrow D$ izotermické komprese
 - $-D \rightarrow A$ adiabatická komprese
- vykonaná práce plynu plocha uzavřené křivky
 - 1,2 plyn koná práci
 - 3,4 okolí koná práci
 - výsledná práce rovna rozdílů práce plynu a prostředí (plochy pod křivkou $A \to B \to C$ a $C \to D \to A$)
- počáteční a koncový stav stejný mezi vnitřní energie mezi cykly nulová ($\Delta U = 0$)
- přijímání tepla Q_1 od ohřívače, předávání tepla Q_2 chladiči
 - -celkové teplo $Q=Q_1-Q_2$
 - -1. termodynamický zákon -Q=W' dodaný rozdíl tepla roven vykonané práci
- účinnost η podíl vykonané práce a dodaného tepla

$$\eta = \frac{W'}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$$

Obr. 10.2: pV diagram adiabatického dějě

10.4 Druhý termodynamický zákon

- "Není možné sestrojit periodicky pracující tepelný stroj, který by jen přijímal teplo od určitého tělesa (ohřívače) a měnil by je v ekvivalentní práci (tj. vykonával stejně velkou práci)."
- tepelný stroj vždy musí ochlazovat jedno těleso a zároveň ohřívat druhé
- nelze všechno přijaté teplo přeměnit na práci
- účinnost stroje nikdy nedosáhne $\eta = 100\%$

10.5 Plyn při nízkém a vysokém tlaku

10.5.1 Nízký tlak

- zmenšení hustoty molekul \rightarrow zvětšení střední volné dráhy l
 - délka přímočarého úseku mezi dvěma srážkami
- střední volná dráha molekuly λ
 - aritmetický průměr středních volný drah všech molekul
 - statistická veličina
 - nepřímo úměrná tlaku
- $\bullet\,$ pokles střední srážkové frekvence z
 - počet srážek za jednotku času
- velmi nízké tlaky $(10^{-5} \, \text{Pa})$ střední volná dráha větší než rozměry nádoby téměř nedochází ke srážkám

10.5.2 Vysoký tlaku

- zvýšení hustoty molekul \rightarrow zmenšení střední volné dráhy λ
- nelze zanedbat přitažlivé síly a vlastní objem molekul
- dostatečně vysoký tlak a dostatečně nízká teplota vazby mezi molekulami; zkapalnění

10.6 Tepelné motory

- stroje přeměňující vnitřní energii na mechanickou energie
- typy

Obr. 10.3: Diagram kruhového děje (Carnotův cyklus)

Obr. 10.4: Schéma tepelného stroje

- parní motory pára, získání mimo vlastní motor
- spalovací motory plyn vzniklý při hoření paliva, vznik uvnitř motoru

Tepelný motor	$\eta_{ m max}$	η	Poznámka
parní stroj lokomotivy	0,35	0,09 - 0,15	účinnost parních motorů lze zvýšit uži- tím přehřáté páry
parní turbína	0,60	$0,\!25$ - $0,\!35$	
plynová turbína	$0,\!55$	0,22 - 0,37	
čtyřdobý zážehový motor	0,65	$0,\!20-0,\!33$	
vznětový motor	0,73	$0,\!30-0,\!42$	vzduch se zahřívá již kompresí a poté spalováním nafty
raketový motor	0,75	0,50	vysoká účinnost je dána tím, že $T_1 = 4000\mathrm{K}$

Tab. 10.1: Porovnání typů tepelných motorů

10.6.1 Parní stroj

- historický význam
- vznik 1769 James Watt \rightarrow prudký rozvoj techniky
- používán do 60. let 20. stol.
- pálení uhlí \rightarrow ohřívání vodní páry \rightarrow pohyb pístu

10.6.2 Turbíny

- roztáčení vícestupňové turbíny pomocí par nebo plynů pod vysokým tlakem
- roztočení turbíny \rightarrow ochlazení plynu

10.6.3 Zážehové motory

- spalování benzínových par a vzduchu uvnitř komor \rightarrow expanze plynu \rightarrow pohyb pístu
- převod posuvného pohybu na rotační

Čtyřdobý zážehový motor

- 4 fáze sání, komprese, výbuch, výfuk plynů
- auta, letadla, generátory...
- možnost regulace přívodu paliva

Dvoudobý motor

- pouze 2 fáze; sání a komprese dohromady a výbuch a výfuk dohromady
- jednodušší, ale méně efektivní
- menší vozidla, malé přenosné zařízení (sekačky, pily...)