Chapter 2 Semantic Modeling

Internet Database Lab.

SNU

2009 Winter

Presented by Jae-Min Ahn

Introduction

- Introduction(1/2)

- Semantic Web
 - A world any number of people can speak
 - Unexpected contribution
 - Large group trying to understand a complex phenomenon
 - This sort of chaos has existed since people first tried to make sense of the world around them
- Model
 - Helping people understand their world
 - Abstract description
 - Hiding certain details
 - Illuminating others

Introduction

- Introduction(2/2)

- Models assist in three essential ways
 - Helping people communicate
 - Explaining and making predictions
 - Mediating among multiple viewpoints

Modeling for Human Communication

- Modeling for Human Communication(1/3)

- Models used for human communication
 - Having a great advantage over models that are intended for use by computers
 - The human capacity to interpret signs to give them meaning
 - Can be written in a wide variety forms
 - Double-edged sword
 - All manner of abuse
- Informal model
 - Relying on the context of its reader for interpretation
 - Helping people communicate about the organization of the information in the document web

Modeling for Human Communication

- Modeling for Human Communication(2/3)

- Document modeling
 - Collaborative style comes in the form of community tagging
- Tag
 - A single word or short phrase
 - Describing some aspect of contents
- Tagging systems
 - Providing informal organization
 - Ex> Flicker for photos
 - Ex> del.icio.us for Web bookmarks
- Community tagging
 - Each individual describes contents using tags of their own choosing
 - Evolution by artificial selection
 - A self-organizing character
 - Popular tags become more popular

- Girls-generation
- Tae-yeon
- Korean-Singer

The tastiest bookmarks on the web. Save your own or see what's fresh now!

Modeling for Human Communication

- Modeling for Human Communication(3/3)

- Informal organization
 - The interpretation of the tags requires human processing
 - Communication power degrades
 - Being used more and more context
 - Since there isn't an objective description of the meaning
- Formality of a model
 - Not a black-and-white judgment
 - But there can be degrees of formality
 - Legal system
 - Having several layers of legislation
 - Each one giving objective context for the next
 - Even though all these models are expressed in natural language

- Explanation and Prediction(1/2)
- Models are used to organize human thought
 - The form of explanation
 - The key to understanding
 - Making it easier to reuse a model in whole or in part in the context of the Semantic Web
 - When a model provides an adequate explanation
 - To be used to make predictions
- Explanation and prediction
 - Requiring more formality than is required for human communication
 - ※ Fomalism
 - Not depend on interpretation by the consumer
 - But instead are in some objective form that stands outside the communication

- Explanation and Prediction(2/2)

- Formal modeling has a very different social dynamic than informal modeling
 - because there is an objective reference to the model (the formalism), there is no need for the layers of interpretation that result in Talmudic modeling
- the Semantic Web standards include a small variety of modeling formalisms
- because they are formalisms, modeling in the Semantic Web need not become a process of layering interpretation on interpretation
- also, because they are formalisms, it is possible to couch explanations in the Semantic Web in the formalisms.

Semantic Well of the project of the

- Mediating Variability(1/2)
- Variability
 - The dynamics of the network effect
 - Requiring the ability to represent a variety of opinions
- Good model
 - Organizes those opinions
 - Common can be represented together
 - Distinct can be represented as well
 - Ex> Pluto example
 - IAU(International Astronomical Union) has decided it should be considered a member of a new category called a "dwarf planet!"
 - But astrologers continued to consider Pluto a planet

- Mediating Variability(2/2)

- How can we accommodate variations of opinion on the Web?
 - To make a decision as to which one is "preferred" and to control the Web only that is supported
 - Ex> Corporate data center
 - The database administrator decides what data are allowed to live
 - Not appropriate for the Web
 - Because of the AAA slogan (see Ch1) leads to the network effect
 - To allow each one to be represented separately, with no reference to one another at all
 - Responsibility of the consumer to understand how these things
 - Basis of an informal approach
 - Ex> Pluto Example
 - Some call it a planet while some call it a dwarf planet
 - Describing the state of the document web

- Variation and Classes(1/4)
- How can a model describe what is common
 - Astrological versus astronomical notion of a planet
- This problem is not a new one
 - Object-Oriented Programming
 - Means of organizing variability in software component
 - Organizing tools is the notion of a hierarchy of classes and subclasses
 - Classes high up in the hierarchy
 - Representing functionality that is common to a large number
 - Classes down in a hierarchy
 - Representing more specific functionality
- The Semantic Web standards
 - Also use this idea of class hierarchy

- Variation and Classes(3/4)
 - twentieth-century astronomy and astrology are not quite as organized as this
- we can define a class of the things that orbit the sun, which we may as well as call solar system body, or SSB for short

- Variation and Classes(4/4)
- we can go further in this modeling when we observe that there are only eight IAU:Planets, and each one is also a horo:Planet and an astro:Planet
- thus, we can say that IAU:Planet is a subclass of both horo:Planet and astro:Planet

More detailed relationships between various notions of planet

- Variation and Layers(1/1)
 - (a) some information about Pluto that is common among astrologers
 - (b) some information that is of concern to astronomers

- Variation and Layers(2/2)
 - (c) the simplest way is to simply merge the two models into a single one that includes all the information from each model

- Expressivity in Modeling (1/3)
 - Trade-off when we model
 - Not everyone will want to say certain things
 - Need different tool
 - Level of expressivity

- The Semantic Web
 - providing a number of modeling languages that differ in their level of expressivity

- Expressivity in Modeling (2/3)
 - RDF(Resource Description Framework) ch3, ch4, ch5
 - The basic framework
 - providing a mechanism for
 - Allowing anyone to make a basic statement about anything
 - Layering these statements into a single model
 - Having been a recommendation from the W3C since 2003
- RDFS(RDF Schema Language) ch6
 - A language with the expressivity
 - to describe the basic notions of commonality and variability
 - Familiar form object languages and other class systems-namely classes, subclasses, and properties
 - RDFS has been a W3C recommendation since 2003

- Expressivity in Modeling (3/3)
 - RDF-PLUS ch7, ch8
 - A subset of OWL
 - More expressive than RDFS
 - Without the complexity of OWL
- OWL(Web Ontology Language) ch9, ch10, ch 11, ch12, ch13
 - Brings the expressivity of logic to the Semantic Web
 - To allow modelers to express detailed constraints between classes, entities, and properties
 - Being adopted as a recommendation by the W3C in 2003

