مواد، در زندگی ما، نقشی شگرف و موثر دارند. صنایع غذا، پوشاک، حمل و نقل، ساختمان، ارتباطات و غیره، کم
و پیش تحت تاثیر هستند. رشد و گسترش تمدن بشری در گرو کشف و شناخت مواد است. برای
رفع نیازها، باید مواد تولید شوند، یا با مواد، خواص آنها تغییر کند. شیمیدانها با پی بردن به رابطه
مواد با سازنده، دریافتند که « دادن» به مواد و « مواد به یکدیگر»، سبب «»
، و گاهی «» خواص آنها میشود. اکنون، میتوان موادی نو ، با ویژگیهای م نحصر به فرد و دلخواه طراحی کرد.
خود را بیازمایید صفحه ۳: الف) مواد () \rightarrow فلز \rightarrow مواد () مواد فلز \rightarrow فلز \rightarrow فلز \rightarrow
نتیجه: منشاء اجزای این فرآورده، از است. این فرآیند، شامل به دست آوردن مواد دلخواه از منابع مختلف،
برای تولید مشخص است؛ یعنی: اولیه تهیه دوچرخه، به طور قابل استفاده
نیستند و باید شوند. ب) ، کنارههای ورق برش خورده و کنارههای بریده شده، دور
ریخته قسمتهای ، ممکن است در تماس با هوا و رطوبت، زنگ بزنند
قسمتهای و ، فرسوده و کهنه میشوند. خود را بیازمایید صفحه ۴و۴: الف) همه مواد و
از کره زمین به دست میآیند. مواد به دو دسته تقسیم میشوند:۱. مستقیماً از کره زمین به دست میآیند؛ مانند
فلزها، نفت، الماس و طلا ۲. غیرمستقیم از کره زمین به دست میآیند؛ (از مواد تهیه میشوند) مانند لاستیک
و پلاستیک ب) به سه شکل، به زمین باز میگردند: و لاستیک ب) به سه شکل، به زمین باز میگردند:
هواکره) پ) به تقریب، کل مواد در کره زمین، ثابت میماند. هر چیزی که از زمین استخراج شده، در
نهایت به صورت پسماند و زباله، به زمین باز میگردد. ت) هر چه میزان بهرهبرداری از منابع، بیشتر باشد، آن کشور توسعه
یافتهتر است. (درست/ نادرست) دلیل: ، ثروت ملی هستند. بهرهبرداری باید با مدیریت برداشت اصولی از
همراه باشد: ۱- میزان بهرهبرداری مدیریت شده از منابع ۲- داشتن برداشت منابع در نظر گرفتن این
۳ مورد ، به پیشرفت پایدار می انجامد ۳_ آموزش درست خود را بیازمایید صفحه ۴: الف) حدود میلیارد تن
ب) بیش از ۷۰ میلیارد تن برای هر سه (حدود ۱۲ میلیارد تن برای فلزها) میزان مصرف سه منبع:
> > شيب مصرف سه منبع:
پ زمین، منبع عظیمی از هدایای ارزشمند
و ضروری برای زندگی است. سالانه، مقادیر بسیار زیادی از منابع ، و ، برای مصارف گوناگون، استخراج
و مورد استفاده قرار میگیرند. با پیشرفت و ساخت دستگاهها و ابزار بهتر (بهتر و مدرن)،
وابستگی به منابع، بیشتر . دانشمندان بزرگ، میتوانند با برسی دقیق اطلاعات و یافتههای موجود درباره مواد و
پدیدههای گوناگون، ها، ها و بین آنها را درک کنند. (مانند ، که جدول دوره ای را طراحی
نمود.) شیمی دانها با مواد و انجام (استفاده از هر ۵) آنها را دقیق برسی می کنند. (آزمایش =
کنترل شده) هدف این برسیها، یافتن اطلاعات بیشتر و دقیقتر درباره های مواد است. برقراری
بین این دادهها (و اطلاعات) و نیز، یافتن ها و ها، گامی مهمتر و موثرتر در پیشرفت علم است.
علم شیمی مطالعه ، و رفتار عنصرها و مواد برای یافتن ها و
های رفتار و آنها است. جدول دورهای، مانند یک نقشه راه، به سازماندهی، و تجزیه و تحلیل
دادهها در مورد ، کمک میکند تا های پنهان در رفتار عنصرها، آشکار شود. در جدول دورهای، عنصرها بر
اساس بنیادی ترین ویژگی آنها، یعنی چیده شده است. تذکر: جدول دورهای جدید بر مبنای اتمی و جدول
دورهای مندلیف بر اساس اتمی مرتب شدهاند. جدول دورهای، شامل دوره، و گروه است. عنصرهای جدول،

```
بر اساس شان در سه دسته ، و قرار میگیرند. تعیین موقیت عنصر در جدول، (تعیین و
در جدول)، به پیش بینی خواص و رفتار عنصر، کمک زیادی میکند. با برسی رفتارهای عناصر، میتوان: ۱ - آنها را
                              دستهبندی کرد. ____ ۲ - به ها و های موجود در خواص، پی برد.
داوری کنید: هرگاه تعداد الکترونهای لایه ظرفیت برای اتمهای دو عنصر، یکسان باشد، در یک گروه قرار میگیرند.
               اتمها مشابه است. در عناصر هم دوره،
                                                                          در عناصر هم گروه،
      ____ یکسان است. (عدد کوانتومی ) الگوهای رفتاری فلزها ۱ - رسانایی و ۲ - داشتن
فلزی (سطح صیقلی و درخشان) ۳- قابلیت تبدیل به (برگه) و (رشته) ۴- خرد در اثر ضربه
          ( خواری) 🗈 ____ فلزها در اثر ضربه، میپذیرند. ۵- استحکام و مقاومت کششی بالا ۶-
     الكترون در واكنشهاي شيميايي شكل ٣ صفحه ٧: زنجير: پل فلزي: وسايل آشپرخانه (و سيم): يادداشت:
با هم بیندیشیم صفحه ۷ تا ۹: (برسی شکل الف صفحه ۷): ۱ - ____ ۲ با و با شبیهتر
         نام و نماد عنصر سطح رسانای الکتریکی رسانای گرمایی واکنش با دیگر اتم ها در اثر ضربه چکشخواری C:
                                                                                      :Ge
                                                                                      :Sn
                                                                                      :Pb
                                                  ٣- (برسي شكل ب صفحه ٨): _____ فلزها:
                   و و _____ نافلزها:
                                                   _____ شبهفلزها: رسانای گرمایی و الکتریکی
                                                                      در واکنش با دیگر اتم ها
                                                                            در اثر ضربه .....
                                                                               سطح .....
۴- جدول بالای صفحه ۹: خواص فیزیکی یا شیمیایی Ge Pb P Mg Cl Sn Al Na S Si C فلز / نافلز / شبه فلز
                                                                           رسانايي الكتريكي
                                                                             رسانایی گرمایی
                                                                             سطح صيقلي
                                                                               چکشخواری
                                                          تمایل به دادن، گرفتن یا اشتراک الکترون
     نکته: در گروه های جدول، خواص مهمتر است اما داریم. در دوره های جدول
خواص مهمتر است اما خواص نیز داریم. ۵- در گروه ۱۴، از بالا به پایین، خصلت فلزی یافته است. ۶-
در دوره سوم، از چپ به راست، خصلت فلزی و خصلت نافلزی می یابد. قانون دوره ای عنصرها؛ خصلت
فلزی عنصرها در یک دوره از چپ به راست و در هر گروه از بالا به پایین مییابد. ۷- بیشترین خصلت
فلزی در هر گروه، در (بالای/ پایین) گروه است. (در گروه اول، عنصر ) ۸- در هر دوره از جدول دورهای ، از چپ
     به راست از خاصیت کاسته و به خاصیت افزوده می شود. در گروههای ۱۵، ۱۶ و ۱۷، عنصرهای
                                 خاصیت نافلزی بیشتری دارند زیرا از بالا به پایین، خاصیت زیاد می شود.
بیشتر عنصرهای جدول را (فلزها/ نافلزها) تشکیل می دهند که به طور عمده در سمت و مرکز جدول جای دارند.
```

ها در سمت و بالای جدول چیده شدهاند. شبه فلزها، همانند مرزی بین فلزها و نافلزها قرار دارند. برخی
رفتارهای شبه فلزها (به قول کتاب: خواص فیزیکی) به شبیهتر برخی رفتارهای شبه فلزها (به قول کتاب: خواص
شیمیایی) به شبیهتر است. رفتارها و خواص شبه فلزها: به فلزها شبیهتر:
، و به نافلزها شبیهتر: و .
«نکاتی درباره فلزها» ۱ - همه فلزها در دمای اتاق، حالت فیزیکی دارند. (به جز و) ۲ - فلزها در
هر ۴ دسته ، ، و وجود دارند. تمام عناصر دستههای و فلز هستند. عناصر دسته
همگی فلز هستند به جز و فلزهایSn ، Al و Pb در دسته قرار دارند. ۳- اکسیدهای فلزی
اغلب، در واکنش با آب، (اسید/ باز) تولید میکنند. (اکسیدهای)
تذکر: فلزهای گروه ۱ و۲ (به جز) نیز در آب، (اسید/ باز) و گاز تولید میکنند:
۴- فلزها در واکنشهای شیمیایی، به صورت نوشته میشوند. «نکاتی در باره نافلزها» ۱- در دمای
اتاق، حالت فیزیکی مایع دارد. (۵ عنصر) ، ، و ، جامد هستند. سایر نافلزها شامل
، ، ، و نیز همه عناصر گروه ، در دمای اتاق، حالت فیزیکی گازی دارند. ۲- نافلزها
عمدتا در دسته جای دارند. H) و He جز دسته) ۳- اکسیدهای نافلزی، اغلب، در واکنش با آب، تولید
میکنند.)اکسیدهای)
۴ ۷ عنصر نافلزی، در حالت عنصری، مولکول اتمی دارند: ، ، ، ، ، ، ۵ _
معروفترین الوتروپ گوگرد فرمول، دارد که جامدی رنگ است. (شکل بالای صفحه ۸ کتاب درسی) ۶-
فسفر، سه الوتروپ مهم دارد: فسفر ، و (دوتای آنها در شکل بالای صفحه ۸ کتاب درسی) «نکاتی
درباره شبه فلزها» از بین شبه فلزهای جدول، در کتاب درسی فقط و معرفی شدهاند. شبه فلزها: ۱ - همانند
الکترون به اشتراک میگذارند. (در واکنشهای شیمیایی) (الکترون نمیگیرند و از دست نمیدهند) ۲- همانند
شکنندهاند. (در اثر ضربه میشوند.) ۳_همانند رسانایی گرمایی و الکتریکی دارند. (تاحدی) ۱
رسانایی الکتریکی: Ge Si (دلیل: افزایش خصلت عناصر از بالا به پایین در هر گروه) ۴- همانند
سطح صیقلی و درخشان دارند. همه عنصر جدول دورهای، شناسایی و توسط آیوپاک۱ تایید شدهاند.
هیچ خانهای در جدول خالی نیست، و جستوجو برای کشف عناصر جدید، عملاً به پایان رسیده است. اکنون دانشمندان
به دنبال تهیه و تولید عناصر جدید به صورت هستند. در صورت کشف (تولید) این عنصرها،
باید آنها را بر مبنای عدد ، ، و غیره، در خانههای جدید قرار داد. برای عنصرهای
جدید (عدد اتمی بیش از)، در جدول دورهای، جایی وجود ندارد. یکی از پیشنهادها، جایگزینی جدول فعلی
با جدول ژانت است. جدول ژانت Charles) (Charles جدول پیشنهادی ژانت، با مدل کوانتمی، همخوانی دارد.
در هر دوره جدول ژانت، عناصری با (+) یکسان قرار دارند. (در جدول فعلی، عناصر در هر
دوره، یکسان دارد.) عناصر دسته ۶۰ در جدول ژانت در سمت و در جدول
فعلی، در سمت قرار دارند. نتیجه: چینش زیرلایهها در جدول ژانت از به
و در جدول فعلی، از به به و در جدول
فعلى: ، ، در
جدول ژانت: ، ، ، ،
تمرین_ مقدار n+۱ را در مورد هر زیرلایه محاسبه کنید و تعیین کنید که تا پر شدن کدام لایه، ۱۱۸ عنصر کامل
می شود؟ تعداد عنصر در دوره n+۱ در جدول ژانت برای عنصر، و جدول فعلی

برای عنظر، جایگاه تعریف شده
ادامه بررسی جدول دورهای فعلی دارای عنصر، دوره (تناوب، و گروه، دارای ۴ دسته
، ، و تعداد عناصر: دسته ، عنصر، دسته ،
عنصر، دسته ، عنصر و دسته ، عنصر روندهای تناوبی روندهایی هستند که در
کمیتهای وابسته به اتم در جدول دیده میشود. یعنی: تغییرات مشخصی که این کمیتها در یک (
) دارند، که در تناوبهای دیگر، (عیناً / کمابیش) تکرار میشوند. روندهای تناوبی مطرح شده در کتاب درسی:
۱- شعاع اتمی ۲- واکنشپذیری: آ) خاصیت فلزی ب) خاصیت نافلزی برای یافتن نحوه تغییرات
روندهای تناوبی، کافی است اثر هسته را بر لایه الکترونی بیرونی بررسی کنیم. الف) در هر تناوب از چپ به راست، اثر
هسته بر لایه الکترونی بیرونی، میشود. دلیل: تعداد لایه الکترونی در عنصرهای یک تناوب
است و قدرت هسته از چپ به راست، مییابد. ب) در هر گروه از بالا به پایین، اثر
هسته بر لایه الکترونی بیرونی، میشود. دلیل: تعداد لایههای الکترونی در عنصرهای یک گروه، از بالا
به پایین، میشود اما فاصله هسته تا لایه بیرونی مییابد.(اثر از اثر
مهمتر است. (طبق قانون كولن (
تمرین: روند تغییرات را در مورد سه روند تناوبی ذکر شده در کتاب در طرحهای روبهرو مشخص نمایید: ۱)
(*(*
شعاع اتمی مطابق مدل «کوانتومی»، اتم را مانند ردر نظر میگیرند که در الکترونها پیرامون هسته و در الکترونی،
در حال حرکتاند. برای هر اتم، میتوان «شعاعی» در نظر گرفت. هر چه شعاع اتم بزرگتر باشد، اندازه آن بزرگتر است.
روند تغییرات شعاع اتمی در گروه: از بالا به پایین میشود. دلیل: افزایش تعداد (جدولهای صفحه ۱۲
و ۱۳) در هر گروه از بالا به پایین، تعداد بیشتر میشود آ که خود به تنهایی باید شعاع را
دهد. در هر گروه از بالا به پایین، قدرت بیشتر میشود ؟ که خود به تنهایی باید شعاع را
دهد. در نهایت، در هر گروه از بالا به پایین، شعاع مییابد؛ نتیجه: اثر «تعداد لایه» از اثر
«قدرت هسته» نیروی جاذبه هسته بر
الکترونها، با فاصله بستگی دارد اما با بار رابطه درجه دارد.) در تناوب: از چپ به راست
می شود. دلیل: در هر دوره، تعداد ثابت است اما قدرت از چپ به
راست بیشتر میشود. پرسش – در هر دوره، با افزایش تعداد پروتونها، تعداد الکترونها نیز به همان اندازه افزایش مییابد،
پس چرا اثر هسته بر لایه بیرونی، ثابت نمیماند؟ پاسخ - «نیرو»، دارای است و هر الکترونی که در
این (جاذبه هسته) قرار گیرد، جاذبهای مشخص و ثابت دریافت که
افزایش الکترونها بر آن مؤثر («نیرو»، مانند «انرژی» نیست و تقسیم نمیشود.) نتیجه: هر هر دوره
از چپ به راست، با افزایش تعداد پروتونها، هر الکترون، جاذبه دریافت میکند. بررسی نمودار ۱
صفحه ۱۳: نکته ۱: در تناوب از چپ به راست، شعاع اتمی عنصرها کاهش مییابد. نکته ۲: بیشترین تفاوت
شعاع، بین عنصرهای گروههای و است. (عنصرهای و) نکته ۳: تفاوت شعاع
عناصر (در تناوب ۳): بین نافلزها بین فلزها (یعنی روند تغییرات شعاع، در (اوایل/ اواخر) تناوب

١ و ١٧ سعاع المي تعداد						
ت آرایش الکترونی نماد	به ها نماد لايه ظرفيا	ع اتمي تعداد لاي	ترونی نماد شعا	رفيت آرايش الك	، ها نماد لايه ظ	لايه
_ كلسيم :(پيكومتر)pm تمرين لوس	پتاسیم	منيزيم	سديم	اع اتمى:	تمرین ۱ – شع	
ایشیم صفحه ۱۲:۱۲)	(): با هم بيند	استرانسیم nm(پتاسیم	ى:	ظی - شعاع اتم	حف
٢) (بله / خير)، چون شدت واكنش	دارد.	ىعاع	مىدھد، چون ش	كترون از دست	آسانتر ال	
لکترون میدهد.) در واکنش لیتیم و	تر به کلر اا)	ر، بیشتر است.	با گاز کا		
(انرژی						
شود (رنگ نور ایجاد شده، با رنگ						
عاع اتمی فلز بزرگتر باشد،						
هسته بر آن(ها) است. (در						
واكنش پذيرى: >						
واكنشپذيرى:>						
تعداد لایه اما						
اتمی ۱۲،۱۱ و ۱۳ را مقایسه کنید:						
دی از نظام گفته شده، پیروی نمیکند.						
رد واكنش پذيرى: فلزهاى						
وند واکنش پذیری نافلزهای گروه ۱۷						
مىشود در						
مىشود.						
] فاصله هسته تا لايه بيروني						
					؟ گرفت	
ىود.	استفاده می ش		خودرو از			
				ول صفحه ۱۴	پ) بالای جد	
ژن، در دمای ۴۰۰ درجه سانتیگراد با	ش مهم: كدام هالوز	_ میشود. پرسن	، نافلزی	شعاع، خاصيت	ت) با افزایش	
ل / غیرسمی) و (رنگی / بیرنگ)،						
. این نافلزها میتوانند با اغلب						و د
یزیکی هالوژنها (در دمای اتاق): (مثال: ٣) حالت فب	تولید کنند.	اكنش دهند و	ره) و	ها (به ویژه گر	فلز
۴) نقطه جوش هالوژنها: ح	(:	.)(:)(:)	(:	
ولکول، نیروی بین مولکولی	ایش جرم و حجم م	ناقطبی)، با افزا	لهای (قطبی/	دليل: در مولكوا	> >	
تبدیلی میشوند. ۶، Br Cl، F،	الکترون به یون	با یک ا	وني، هالوژنها	نشكيل تركيب ي	شود. ۵) برای ن	می
یده میشوند. مثال: ۸) هالوژنها در	ِنها، يون نام	نىدە توسط ھالوژ	ِنهای تشکیل ش	هستند. ۷) آنيو	(فلز / نافلز)	و I
اند. ۹) رنگ هالوژنها:)(
(s)() <u></u> [(1)()	<u> </u>	(g)(_)	g)	
مایل به دارد.) رابطهی	حلول رنگ	حالت بخار و م	: در	رسمی: (تذکر	(غير	. ?
، محسوب نمى شوند	د اما برخی	هستنا	جزء	ی یونی همه	کها و ترکیبها	نمک

مانند . (مانند که است و نمک نیست) (برسی تمرین دورهای صفحه ۴۸)
مجموعه
مجموعه
رفتارهای ویژه فلزها رفتارهای «کلی» فلزها مشابه است اما تفاوتهای قابل توجهی نیز دارند به طوری که: هر فلز،
رفتارهای « » خود را دارد. نمونه: (شکلهای حاشیه صفحه ۱۴) سدیم: (نرم / سخت) است. با چاقو بریده
و جلای نقرهای آن در مجاورت اکسیژن به (کندی / سرعت) از بین میرود و میشود. آهن: محکم
(برای ساخت در و پنجره) و در هوای (خشک / مرطوب) با هوا به واکنش میدهد و به
آهن تبدیل میشود. طلا: در گذر زمان، جلای فلزی خود را و خوش رنگ و میماند. برخی گنبدها و
گلدستهها با نازکی از طلا میشود. دنیایی رنگی با عنصرهای دسته d رفتاری شبیه فلزهای دسته
و دارند: (مانند همه فلزها رسانای و هستند، خوارند و قابلیت تبدیل
به و را دارند) اما هر یک، رفتارهای ویژهای نیز دارند. فلزهای دسته d به فلزهای (واسطه / اصلی)
معروفاند در حالی که فلزهای دسته s و p به فلزهای شهرت دارند. اغلب فلزهای واسطه در طبیعت به شکل
ترکیبهای (یونی / مولکولی) (مانند ، و غیره) یافت میشوند. برای نمونه، آهن، دو اکسید طبیعی
() و () دارد. اغلب عناصر واسطه، دو ویژگی دارند: ترکیبات
و ظرفیتهای رنگ سنگهای قیمتی فیروزه ()، یاقوت () و زمرد () به علت
وجود ترکیبات عناصر واسطه در آنها است. « آرایش الکترونی فلزهای واسطه » زیر لایه در آنها در حال پر شدن
است:
نکته مهم: زیرلایه ۶۴ نسبت به ۵:۳ (زودتر/ دیرتر) پر میشود: چون سطح انرژی دارد، و خالی
می شود: چون تست – آرایش الکترونی [Ar] متعلق به چند مورد از موارد زیر می تواند باشد؟
(اتم، كاتيون و آنيون) ١) فقط اتم ٢) فقط آنيون ٣) اتم و آنيون ۴) فقط كاتيون ٥)
فقط يون
خود را بیازمایید صفحه ۱۶ (به همراه تمرین آرایش الکترونی چند عنصر واسطه دیگر) آرایش الکترونی نماد آرایش
الكتروني نماد آرايش الكتروني نماد
_
«نکاتی درباره عناصر واسطه تناوب ۴» ۱) همه، ترکیبات دارند، به جز و ۲) همه،
ظرفیتهای دارند، به جز (ظرفیت =) و (ظرفیت =) ۳) مجموع
ارقام عدد اتمی = شماره (به جز) مثال: (شماره = + + +) ۴)
رقم «دهگان» و «یکان» در عدد اتمی، به ترتیب برابر با شمار الکترونهای و است (به جز ،
و). مثال: ۵) ظرفیت اصلی (کمترین ظرفیت) و بیشترین ظرفیت عناصر واسطه تناوب ۴:
(ممکن است برخی از این عناصر، ظرفیتهای دیگری بین این دو ظرفیت داشته باشند) Cr Mn Fe Co Ni Cu Zn
Sc Ti V نماد عنصر
ظرفیت اصلی
بیشترین ظرفیت
۶) فقط میتواند با کمترین ظرفیت (ظرفیت اصلی) و « ظرفیت » خود، به آرایش الکترونی
گاز نجیب برسد. ۷) در این عناصر، ظرفیت اصلی (کمترین ظرفیت) برابر با است. (به جز و

جدول دورهای است. در	ِ)، نحستين فلز	صفحه ۱۷: الف) اسكانديم () حود را بيازماييد ،
) طلا افزون بر ویژگیهای	وجود دارد. طلا (و برخى	وسايل خانه، مانند
است.) طلا به اندازهای			
حت چند متر مربع تبدیل کرد.(
الكتريكي آن، است و			
موجود در هواکره و،			
روی ورقه طلا، زیادی			
دن، بسیار است. برای			
ر بر محيط			
ه ضمن بهرهبرداری از			
عنصرها به چه شکلی در طبیعت			
(II) ،			
آزاد / تركيب) يافت مىشوند،			
، و به شکل			
_ نیز در طبیعت یافت میشوند.			
یافت میشود. (حاشیه صفحه			
بوند نداده باشد. ۲) دیگر پیوند			
H-H روش شناسایی			
Fe^{r+} صفحه ۱۹ (شناسایی ۱۹			
)aq(ث) رسوب			
شناسایی ${ m Fe}^{+}$) به کمک یون	پ) آزمایش ۲ صفحه ۱۹ (،	اساگر يون است. ر	رنگ چ) يون ، شن
سوب () ت)	_)aq(+)s(_		_)aq(+:
«ویژه» و مشخص، ایجاد	ش شناسایی یک ذره، باید	نیز هست. تذکر: رو	يون ، شناساگر يون
گر)، آن را ایجاد کند.	ا (یون مورد نظر/ یون شناساً	د نظر/ يون شناساگر)، فقط با	کند، به شکلی که؛ (یون موره
هند که یا یا)، فقط به شرطی واکنش م <i>ی</i> ده	ىحلول ()	نکته ۱: دو ترکیب یونی، در ه
كنش يكسان آزمايش	ظرفیت هر ذره، در دو طرف وا	در واکنش جابهجایی دوگانه، ه	تولید شود. نکته ۲:
ئىيم:	ده را در محلول Hcl وارد می	ازنه شوند.) ابتدا، میخ زنگز	۳ صفحه ۱۹: (واکنشها مو
)aq(NaC): پ) Aq()	، محلول آبی «سود» میافزایی	(ب سپس، به این سامانه
در زنگ آهن ()	کنش نشانگر وجود یون	سوب ث) این دو وا)aq(ت) رس
[یک مولار، واکنش دهند به جز	صر فلزی میتوانند با (Hcl(aq	، درسی شیمی ۳): اغلب عناه	است یادداشت (در حد کتاب
: ٢) كاوش كنيد ٢ صفحه ٠	···	فلزهای APAC (
مىتواند بە الكترون	نجاماست. (چپ () واکنش را ا	در واکنش ،(I) فلز سمت
نمىتواند به	ش را انجام است. (سمت چپ () واکنن	دهد.) در واکنش ،(II) فلز _'
بهجایی یگانه، حتماً در واکنش،	ِ است. نکته ۳: در واکنش جا	از واكنشپذيرتر	الكترون دهد.) نتيجه:
ئر، خود به خود انجامپذير باشد،	با محلول آبی کاتیون «فلز» دیگ	. نکته ۴: اگر واکنش «فلزی» ب	بار ذره تغییر میکند.

راکنش عکس (برکشت)، حتما خود به خودی است. خود را بیازمایید:
واکنش پذیری واکنشپذیری هر فلز (و به طور کلی هر عنصر) تمایل آن را برای انجام نشان
میدهد. اصطلاح «مس فلزی» به عنصر مس در حالت (اتم / کاتیون_ترکیب) اشاره دارد. عنصر می در حالت یا
خاصیت فلزی. هرچه عنصری واکنشپذیرتر باشد، تمایل آن را برای انجام واکنش (تبدیل به
، بیشتر است. برای مقایسه، تعدادی فلز، از لحاظ واکنش پذیری در سه دسته قرار گرفتهاند: با هم بیندیشیم صفحه ۲۰: (با
نوجه به جدول پایین صفحه ۲۰ به پرسشها پاسخ دهید) واکنشپذیری: (زیاد: ،) (کم: ،
) (ناچیز: ، و) الف) در «شرایط یکسان»، فلزها با واکنشپذیری ، تمایل
به تشکیل نشان میدهند. ب) در «شرایط یکسان»، سرعت واکنشدادن در هوای مرطوب:
< > . دشوارتر است. (چون با کمترین چرین یا داری فلزها با واکنش پذیری ، دشوارتر است. (چون با کمترین
<i>ب</i> قدار مواد، از جمله هوا، واکنش میدهند و فعالیت شیمیایی آنها است.) ت) به طور کلی، در
<i>هر واکنش شیمیایی که به طور طبیعی (خود به خود) انجام میشود؛ واکنشپذیری: واکنشدهندهها فرآوردهها پایداری:</i>
راکنشدهندهها ؟ فرآوردهها * این مقایسه، در مورد واکنش پذیری عناصر در دو طرف واکنش است. با هم بیندیشیم صفحه
۲۱: ت) واکنش پذیری:
ث) واكنشپذيري:
به طور کلی: واکنش پذیری فلز واکنش پذیری نافلز واکنش پذیری
افلز واكنشپذيري:
واكنش پذيرى:
واكنش پذيرى:
واكنش پذيرى:
آیا این واکنش انجامپذیر است؟ چون از واکنشپذیرتر است. روش استخراج
للزی از () در معدن مس سرچشمه: (تمرین دورهای ۷) واکنشپذیری:
روش استخراج فلزی از () () در فولاد مبارکه: (صفحه ۲۱) واکنش
پذیری : (با هم بیندیشیم صفحه۲۱) روش دیگری برای استخراج آهن: آهن، ترین عنصر کره زمین
ست و مصرف سالانه را بین فلزها در جهان دارد. برای جوش دادن خطوط آهن، از واکنشی موسوم به «
استفاده میشود:) خود را بیازمایید صفحه ۲۴ (فلزها در طبیعت، اغلب به شکل یافت میشوند؛
مرچه فلزی واکنشپذیرتر باشد، استخراج آن است. هر چه تمایل فلز برای الکترون دهی بیشتر باشد تمایل کاتیون
ُن برای الکترون گیری کمتر است. تمرین دورهای صفحه ۴۸: نتیجه ۱: Ne نماینده گروه کمترین
را بین عنصرهای دوره دارد. نتیجه ۲: بین عنصر گروه ۱ تا ۱۷، عنصر (نماینده گروه ۱۴)
کمترین را دارد. مسئله (خود را بیازمایید صفحه ۲۲) از واکنش ۴۰ گرم آهن (III) اکسید با کربن،
نتظار میرود چند گرم آهن به دست آید ؟ =۲۷Al= ،۵۶Fe= ،۱H= ،۱۶O= ،۱۲C
دنیای واقعی واکنشها ۱ - درصد خلوص ۲ - بازده گاهی واکنشهای شیمیایی، مطابق آنچه انتظار میرود پیش نمیروند.
ىمكن است واكنشدههندهها ناخالص باشند (درصد خلوص)، واكنش به طور كامل انجام نشود (به دليل شرايط مختلف)
با همزمان، واکنشهای ناخواسته دیگری انجام شود.(بازده) بازده درصدی وقتی واکنش به طور کامل در مسیر اصلی انجام
وشد مقدار فرآورده تشکیل شده در آزمایش (مقدار) از آنچه در تئوری و روی کاغذ به دست آمده (مقدار
) تر خواهد بود. (مقدار < مقدار) پیوند با ریاضی: ۲- الف (صفحه ۲۳) (

۱۰۰ بازده) ۲ – ب :
مسئله ۱: از تخمیر ۵.۱ تن گلوکز موجود در پسماندهای گیاهی، چند تن سوخت سبز () تولید میشود؟(۸۰٪
Ra) =
مسئله ۲ (تمرین دورهای ۶): آهن (III) اکسید به عنوان در نقاشی به کار میرود. ۱۰ کیلوگرم از این ماده،
طبق واکنش زیر در واکنش با کار کربن مونواکسید،۵۲۰۰ گرم آهن تولید کرده است. بازده درصدی واکنش را به دست
آورید: (خود را بیازمایید ۲ صفحه ۲۵)
درصد خلوص پیوند با ریاضی(۱ - الف صفحه ۲۳): یعنی در هر گرم از این ماده معدنی (کانه)،
گرم و گرم مواد دیگر هست. ١- ب درصد خلوص یا درصد خلوص مسئله ٣ –
۱۰ گرم آهن با خلوص ۹۵٪ را در مقدار کافی محلول هیدروکلریک اسید میاندازیم. حجم(g) در شرایط ،STP
چند لیتر است؟
مهم خود را بیازمایید ۱ صفحه ۲۴: الف) فعال تر است، چون در واکنش خود بخودی سمت قرار
دارد (و را از ترکیبش خارج میکند.) بررسی تمرین دورهای ۲،۲،۳ و ۷:
«گیاه پالایی» یکی از روشهای بیرون کشیدن فلز از لابهلای خاک، استفاده از گیاهان است. ابتدا گیاه را میکارند،
گیاه، را جذب میکند. سپس گیاه را برداشت میکندد، و از آن، را جداسازی میکنند.
خود را بیازمایید ۳ صفحه ۲۵ الف:
ب: درصد نیکل در خاکستر پ: مقرون به صرفه (گیاهپالایی) درصد فلز در سنگ معدن درصد فلز در گیاه فلز
Au
Cu
Ni
Zn با مقایسه درصد «نیکل» و «روی» در سنگ معدن آنها، و با توجه به حجم گیاه و آب مصرفی، و نیز سطح زیادی
از زمین به که زیر کشت میرود، روش گیاه پالایی برای این دو فلز مقرون به صرفه پیوند با صنعت: گنجینههای
اعماق دریا اعماق دریا، در برخی مناطق محتوی چندین فلز واسطه (سولفیدی) (شکل ۱۱ پ صفحه
۲۶) و در برخی مناطق دیگر، به صورت ها و هایی غنی از فلزهایی مانند ، ،
، و است. (شکل ۱۱ ب صفحه ۲۶) غلظت گونه های فلزی «کف اقیانوس»، نسبت به
«ذخاير زيرزميني»، است.
جریان فلز بین «محیط زیست» و «جامعه» استخراج فلز از سنگ معدن، در نهایت به تولید و گوناگون
می انجامد. بر اساس توسعه پایدار، در تولید یک « » یا عرضه « »، باید همه هزینه ها و ملاحظه های
، و را در نظر گرفت. اگر مجموع هزینههای بهرهبرداری از یک معدن، با در نظر
گرفتن این ملاحظهها، مقدار ممکن باشد، در مسیر پیشرفت پایدار حرکت میکنیم، رفتارهای ما آسیب کمتری به
جامعه وارد میکند و زیست محیطی ما را کاهش میدهد. «فرآیند استخراج فلز از طبیعت و بازگشت آن
به طبیعت»

با هم بیندیشیم صفحه ۲۷: الف) یکسان ____ (آهنگ مصرف آهنگ بازگست به طبیعت) ب) فلزها، منابعی

تجدید _____ . با تمام شدن معادن، دسترسی به آنها _____ ، و محدود به ____ است. پ) بازیافت فلزها از

جمله آهن؛ ردپای ____ را کاهش می دهد. (د / ن) سبب کاهش سرعت گرمای جهانی می شود. (د / ن) گونه های

زیستی بیشتری را از بین میبرد. (د / ن) به توسعه پایدار کشور کمک میکند. (د / ن) پسماند سرانه فولاد ____

كيلوكرم است. با الرزي دخيره سده از باركرداني ٧ فوظي فولا دي، مي نوال يك لا مپ ٢٠ واني را حدود ١٥ ساعت روسن
نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی
دیگر مصرف می شود. در استخراج فلز، درصد)کمی / زیادی(از سنگ معدن به فلز تبدیل می شود.
ارزیابی چرخه عمر چرخه عمر: میزان تأثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه
عمر: تاثیرهای هر فرآورده را در ۴ مرحله، بررسی میکند: ۱: و مواد خام برای تولید فراورده ۲:
۳: ۴: ارزیابی چرخه عمر، شامل برسی و ارزیابی میزان (آب مصرفی)، (انرژی)(پایدار بودن
فرآیند تامین مواد خام)، (میزان زباله و پسماند ایجاد شده) و سهم حمل و نقل در همه مراحل) است. ارزیابی چرخه عمر،
حاصل تلاش برای یافتن شاخصهایی است که کمک میکنند صنایع در مسیر بهره گیری از دانش فنی و تخصصی سازگارتر
با محیط زیست حرکت کنند، و رفتار و عمل کرد خود را در مسیر رسیدن به توسعه پایدار «اصلاح» کنند. برسی چرخه عمر
برای کیسه پلاستیکی و پاکت کاغذی (صفحه ۲۹)
مرحله ١: استخراج و توليد مواد اوليه و خام ٢: مرحله توليد ٣: مرحله مصرف ٢: مرحله دفع
نفت نفت خام، یکی از سوختهای است که به شکل مایعی ، رنگ یا (متمایل
به) از زمین بیرون کشیده می شود. نفت خام در دنیای کنونی، دو نقش اساسی دارد: «منبع تأمین » و «
اولیه برای تهیه مواد و کالاها» مصرف روزانه نفت خام (۰۰۰،۰۰۰ بشکه) است که: نیمی از آن در سوخت
(حدود ٪) و نیمی دیگر در تأمین و انرژی (حدود ٪) و تولید
و ، مواد و ، ، مواد و (حدود
٪) نفت خام، مخلوطی از هزاران ترکیب شیمیایی است که بخش عمده آن را های (شامل
و) گوناگون تشکیل میدهند. عنصر اصلی سازنده نفت خام، است. کربن، اساس استخوانبندی
ها است. کربن در خانه شماره جدون دورهای جای دارد. (سرگروه گروه) و اتم
آن، در لایه ظرفیت خود الکترون دارد. خود را بیازمایید صفحه ۳۰: الف) آرایش الکترونی فشرده: ب) آرایش
الکترون نقطهای اتم کربن: پ) انواع پیوند اشتراکی (برای رسیدن به آرایش هشتایی): ، و
مثال) تشكيل متان ():
eC=
تمرین: آرایش الکترون نقطهای اتمهای زیر را رسم کنید: الف) بیشترین تعداد الکترون لایه ظرفیت، مربوط به کدام
گروه است؟ گروه (الكترون ظرفيتي) ب) بيشترين تعداد الكترون منفرد (تكي) مربوط به كدام گروه
است؟ گروه (تک الکترون) پ) ظرفیت عناصر کدام گروه، بیشتر است؟ چرا؟ گروه (ظُرفیت
) ؟ ظرفیت اصلی گروه مشاهده: الف) اتم و میتوانند بیش از سایر فلزها پیوند اشتراکی ایجاد
كنند. (با ظرفيت اصلى خود) ب) اتم (و البته ، و) مىتوانند پيوندهاى دوگانه
و اتمهای ، و میتوانند پیوند سه گانه ایجاد کنند. نتیجه: بیشترین و متنوعترین ترکیبات، باید
مربوط به گروه باشد: شازنده اصلی مولکولهای زیستی و سازنده اصلی جهان غیرزنده است.
ترکیبات کربن از سیلیسیم بسیار است چون: ۱- پیوندهای تشکیل میدهد (دلیل: طول پیوند
) ۲ - توانایی تشکیل پیوند و و را نیز دارد. (شکل ۱۵ و ۱۶ صفحه ۳۱) گفتیم که نفت خام،
مخلوطی از است. هیدروکربنها، دارای و گوناگونی هستند. البته کربن میتواند

عاروه بر ١٦ به و بير به سيوه هاى قول قول منظل سود: و ، ، ، ،
، ، قیره را بسازد. همچین، کربنها میتوانند به روشهای گوناگون به هم متصل شوند و
دگرشکل (آلوتروپ) های مختلفی مانند ، و غیره را ایجاد کنند. یادآوری:تعریف و مقایسه «آلوتروپ،
ایزوتوپ، ایزومر» آلکانها () دستهای از هیدروکربنها هستند که در آنها، هر اتم کربن با پیوند یگانه به
اتمهای دیگر متصل شده است (یعنی حتماً با اتم دیگر پیوند دارد.) (C) سادهترین و نخستین عضو
خانواده آلکان است. سایر اعضای خانواده، تعداد های بیشتری دارند، که البته اتمهای آنها نیز بیشتر
می شود. آلکانها به دو دسته تقسیم می شوند: ۱ - آلکنهای : اتمهای به
دنبال هم قرار دارند. (هر اتم کربن به یا اتم کربن در زنجیر کربنی متصل است.) (شکل ۱۸ الف) ۲-
: برخی اتمهای کربن به شکل شاخه () به زنجیر اصلی متصل است. (برخی اتمهای کربن
به یا اتم کربن در زنجیر متصل هستند.) (شکل ۱۸ ب) پرسش – کوچکترین آلکانی که همه انواع
کربن را دارد، چند اتم هیدروژن دارد؟ (حلقوی نباشد) مدل پیوند – خط در این روش، اتمهای کربن با نقطه و پیوند بین
آنها با خطتیره (پاره خط) نشان داده میشوند. اتمهای هیدروژن، و نیز پیوندهای C-H نشان داده (H متصل
به اتمهای دیگر، نشان داده) همچنین C-C-C با زاویه واقعی ۱۰۹/۵ نشان داده می شود. پیوندهای دوگانه یا
سهگانه نیز با دو یا سه خط نشان داده میشوند. سایر اتمها مانند O یا N نیز نمایش داده خود را بیازمایید
صفحه ۳۳: فرمول «ساختاری» یا «پیوند – خط» به همراه فرمول مولکولی را برای هر ترکیب نمایش دهید: الف)
ب)
پ)
ت)
تمرين: با مدل پيوند – خط نمايش دهيد:
شمار اتمهای کربن نقش مهمی در تعیین هیدروکربنها دارد. با تغییر تعداد ،C مولکول نیز
مولکولی تغییر مییابد ؟ تغییر نیروی مولکولی، نقطه و غیره
با هم بیندیشیم ۱ صفحه ۳۴: (جمع بندی مهم) بزرگ شدن اندازه مولکول: ۱ نقطه جوش ۲
فرار بودن (تمایل برای تبدیل به گاز) ۳ گران روی (مقاوت در برابر جاری شدن) الف) با افزایش
شمار کربن ؟ نقطه جوش آلکان در فشار ۱ اتمسفر ؟ تعداد مولکولهایی که تبخیر میگردند (
فشار بخار) ب) نقطه جوش: پ) گرانروی: فرار بودن: ت) گشتاور دو قطبی آلکانها صفر یا حدود است. (
یعنی هستند.) ث) نیروی بین مولکولی در آلکانها از نوع است. افزایش شمار
اتمهای کربن، باعث قدرت نیروی بین مولکولی، (و جرم و حجم مولکول) و باعث نقطه
جوش میشود. ج) با بزرگتر شدن زنجیر کربنی، گرانروی مییابد چون مقاومت مولکولهای بزرگتر ددر برابر
جاری شدن است. چسبن <i>دگی: (نیروی بین مولکولی (واندروالسی) در قویتر است.)</i> (
) تا تا کربنه در دمای ۲۲
درجه سانتیگراد به حالت گاز هستند. ب) با افزایش جرم مولی آلکان، نقطه جوش مییابد !!! (این، ۴۰ بار!)
آلکانها به دلیل بودن، در آب و میتوان از آنها برای حفاظت استفاده کرد. قرار دادن فلز در
آلکانهای یا کردن سطح فلزها و وسایل فلزی با آنها، مانع از رسیدن به سطح فلز می شود
و از فلز جلوگیری میکند. آلکانها، ترکیباتی سیر هستند، (هر اتم کربن به اتم دیگر متصل
است). پیوندهای آنها فقط اشتراکی است. (دوگانه و سه گانه). آلکانها تمایل زیادی برای واکنش

شیمیایی اگر آلکانها را استنشاق کنیم، میزان سمی بودن آنها است و استنشاق آنها بر ششها و بدن،
تأثیر چندانی ندارد (فقط سبب کاهش در هوای دم میشوند) البته، ورود بخار به ششها از
گازهای تنفسی جلوگیری میکند و حتی ممکن است سبب مرگ شود.
خود را بیازمایید صفحه ۳۷: گشتاور دو قطبی مولکولهای سازنده چربیها، حدود است. (چربیها،
هستند.) الف) افرادی که با گریس کار میکنند، دستشان را با بنزین یا نفت (یا مخلوطی از هیدروکربنها)
میشویند چون شبیه، را حل میکند (هر دو دسته مواد، هستند) پس بنزین یا نفت سفید به عنوان
، گریس را حل میکند. ب) پس از شستن دست با بنزین، پوست نیز در بنزین و
شسته می شود و در نتیجه پوست می گردد. پ) شستن پوست یا تماس با آلکان های مایع در دراز مدت به ساختار
پوست آسیب میرساند زیرا قشر برداشته شده و پوست (خشک / مرطوب) و و مستعد ابتلا به عفونت،
ترکخوردن، اگزما یا آلرژی میشود. «نامگذاری آلکانها» (پیوند با ریاضی صفحه ۳۵) واژه «آلکان» از دو جزء ساخته
شده است. به جای لفظ «آلک» همواره کلمهای قرار میگیرد که اتم کربن را مشخص میکند. اعداد یونانی ا تا ۴ به
ترتیب ، و هستند که برای نامگذاری انتخاب نشده و به جای آنها واژههای دیگری
به کار میرود. اما پیشوندهای برای کربن به بالا، استفاده میشوند. «نامگذاری آلکانهای شاخهدار»
ightarrow =
آلکان () (نجیری که
بیشترین تعداد را دارد. (به شرطی که از هر کربن فقط ۱ بار عبور کنیم.) در هر مورد، دور زنجیر اصلی، کادر
بکشید:
نکته ۱: اگر بتوان برای هیدروکربنی، دو زنجیر اصلی با کربنهای برابر اما شاخههای فرعی متفاوت انتخاب کرد،
انتخابی درست است که تعداد شاخه فرعی دارد: نکته ۲: گروه آلکیل (مانند متیل یا اتیل) در کربن ابتدایی یا
پایانی زنجیر اصلی، درواقع، ادامه است و شاخه فرعی محسوب تمرین ۱: نامگذاری کنید: ۳) سپس،
زنجیر اصلی انتخاب شده ار از طرفی که به نزدیک تر است، شماره گذاری میکنیم. (شماره اتصال شاخه
فرقی باید باشد.) (سه ترکیب قسمت ۲ را شماره گذاری نمایید.) ۴) نامگذاری: »> اگر تعداد شاخه یکی باشد:
شماره اتصال و نام شاخه و سپس نام ذکر می شود:
با هم بیندیشیم ۱ صفحه ۳۸: الف) اعداد، نشانگر شماره در اصلی است که فرعی به آن
متصل شده است و واژه بعد از آن، شاخه فرعی را نشان میدهد. واژه بعدی، نام ساحه فرعی را نشان میدهد.
شباهت این دو ترکیب، در تعداد کل در ترکیب، و نیز تعداد کربن و نیز، تعداد کربن و نوع
است. تفاوت این دو ترکیب، در اتصال شاخه فرعی است. ۳- متیل هگزان ۴-
متیل هپتان با هم بیندیشیم ۳:
زنجير اصلي كربنه
زنجير اصلي كربنه
زنجير اصلي كربنه با هم بينديشيم ٢:
انتخاب زنجير نام نادرست:
جهت شماره گذاری انتخاب زنجیر نام نادرست:
جهت شمارهگذاری انتخاب زنجیر نام درست: نکته مهم: متیل در کربن اول، اتیل در کربن اول و دوم، پروپیل در
کی دهای اول دو و میدونند میشاخه فی هم داده نام در داران داده نام در

الف صفحه ٣٩:

تمرین دورهای ۵ قسمت (پ):

خود را بیازمایید ۲ صفحه ۴۰: نکته: هالوژنها نیز میتوانند به عنوان شاخه فرعی در ترکیبهای آلی محسوب شوند. در نامگذاری، پسوند «و» به نام هالوژن افزوده می شود. تذکر مهم: هالوژنها (برخلاف گروههای آلکیل) در کربن اول زنجیر نیز شاخه فرعی می توانند باشند.

نکته: هنگامی که شاخه فرعی، فقط یک کربن اتصال در زنجیر اصلی دارد، شماره اتصال شاخه فرعی نباید ذکر شود. (برخی کتابها میگویند که بهتر است گفته نشود.) تذکر مهم: اگر تا رسیدن به وسط زنجیر بیش از یک موققیت برای شاخه فرعی وجود داست حتما شماره اتصال شاخه فرعه ذکر شود. تمرین: ترکیبی با فرمول مولکولی _____ چند ایزومر ساختاری دارد؟

نکته: هالوژن (میتواند / نمیتواند) در کربن اول زنجیر نیز شاخه فرعی باشد. نتیجه: عدد ۱ برای هالوژنها (به عنوان شاخه) ذکر ______. (در صورت لزوم) معرفی دو شاخه فرعی دیگر: و ادامه نامگذاری (قوانین):

»> تعداد شاخه فرعی بیش از یک دو حالت دارد: ۱ - دو یا چند شاخه فرعی اما از یک نوع ۲ - دو یا چند شاخه فرعی از گونههای متفاوت حالت ۱: دو یا چند شاخه فرعی اما از یک نوع اگر تعداد شاخه فرعی، بیش از یکی باشد (اما همه از یک نوع باشند)؛ ابتدا، «همه» شمارههای اتصال، از _____ به ____ نوشته میشود (حتی اگر _____ باشد.) سپس تعداد آن شاخه (با لفظ یونانی) و نام آن شاخه فرعی ذکر میشود.

(بهتر است که کربنهای بیشتر، در یک خط نوشته شوند که زنجیر اصلی، مستقیم باشد.)

خود را بیازمایید ۱ (ج) صفحه ۴:

تذكر: وقتى بيش از يك شاخه فرعى داريم، شماره گذارى زنجير اصلى، «بايد» از طرفى انجام شود كه بتوان با ارقام آنها عدد _____ ساخت.

خود را بیازمایید ۱ ت صفحه ۳۹

حالت دوم: دو یا چند شاخه فرعی از گونههای متفاوت اگر تعداد شاخه فرعی، بیش از یکی باشد اما از گونههای متفاوت باشند، شماره گذاری (بدون توجه به انواع شاخهها) از طرفی که ارقام کوچکتر انتخاب شوند انجام می شود. اما در نامگذاری: تقدم ذکر نام شاخه فرعی، بر اساس حرف اول نام آن (در انگلیسی) است. آ در این حالت، شماره اتصال و نام هر شاخه فرعی، جداگانه ذکر می شود.

یعنی: در نامگذاری، شاخه فرعی _____ بر ____ مقدم است، (به دلیل تقدم حرف اول نام) چه شماره اتصالش بیشتر باشد، چه کمتر و چه مساوی! خود را بیازمایید ۱ ب صفحه ۳۹:

نکته: اگر شماره گذاری دو نوع شاخه فرعی، از دو طرف ارقام یکسانی بدهد، شماره گذاری باید از طرف آن شاخه فرعی انجام شود که شاخه مقدم در نامگذاری شماره _____ داشته باشد: در نامگذاری ترکیبهای آلی، بین عدد و عدد: _____ ، بین عدد و کلمه: _____ ! نامگذاری کنید:

تمرین ۱: ایزومرهای ____ را رسم کنید (فرمول ساختاری و خط پیوند) و سپس نامگذاری نمایید:

تمرین ۲: در بین ایزومرهای ____ چند ایزومر داریم که ۴ کربن در زنجیر اصلی داشته باشند و نامگذاری کنید.

تمرین ۳: مثالهای زیر را با مدل نقطه - خط نمایش دهید (ابتدا زنجیر اصلی را بکشید، راحت راست) الف) ۲ -

کلرو – ۳ – فلوئورو – ۳،۴ – دی متیل هپتان ب) ۳ – ایتل – ۲،۳ – دی متیل پنتان

تمرین ۴: ترکیب زیر را نامگذاری کنید: (وقتی ترکیب شلوغه، نام هر شاخه را که نوشتی، در زنجیر خط بزن که تکراری ننویسی)

نکته: تعداد پیوندهای کربن – کربن در الکانها (برحسب n): تعداد پیوندهای کربن – هیدروژن در الکانها (
برحسب n): تعداد پیوند اشتراکی در آلکانها (برحسب n): تعداد پیوند اشتراکی در هیدروکربنها (CxHy) (برحسب
xو y): تعداد پیوند اشتراکی در آلکن (برحسب x): تعداد پیوند اشتراکی در آلکین (برحسب x): تعداد پیوند اشتراکی
در سیکلوآلکان (برحسب n): تعداد پیوند C - C در آلکان (با n کربن)، در آلکن، در آلکین، در سیکلوآلکان (!)
«آلکنها ()» این هیدروکربنها در ساختار خود، یک پیوند دوگانه () دارند. برای نامگذاری،
پسوند «بِن» را به لفظ آلک می افزاییم. ساده ترین آلکن کربن دارد ؟ (فرمول) یا (
فرمول ساختاری کوتاه شده) یا (فرمول) (نام:) نام قدیمی اتن، « » بوده و در
بیشتر گیاهان وجود دارد. اتن آزاد شده در گیاهانی نظیر یا موجب رسیدن سریعتر میوههای
نارس می شود و از آن به عنوان استفاده می شود. تمرین ۱: نام، فرمول مولکولی و فرمول ساختاری و
مدل خط پیوند را برای آلکنی با ۳ کربن، نشان دهید.
نکته بسیار مهم: پیوند دوگانه، باید جزء زنجیر اصلی قرار گیرد، حتی اگر مجبور باشیم، بلندترین زنجیر ممکن را انتخاب
نكنيم!
oتمرین ۲ : ، سه ایزومر آلکنی دارد. آنها را رسم و نامگذاری کنید. (نام: $ o$) (نام: $ o$
) (نام: $ \longrightarrow $) نکته: در آلکنهای چهارکربنه به بالا، باید پیش از ذکر لفظ «آلک»، شمارهای را ذکر کرد که جایگاه
پیوند دوگانه را نشان دهد از بین دو کربنی که پیوند دوگانه دارند، باید شماره را ذکر کرد. تمرین ۳: ایزومرهای
آلکنی را رسم و نامگذاری کنید.
تمرین ۴ – نسبت تعداد H در «سومین آلکان» به «سومین آلکن» چند است؟
تمرین ۵ — بین آلکان و آلکن هم کربن، ایزومرهای کدام، بیشتر است؟
واكنشهاي آلكنها (سير شدن ؟ فصل دوم – پليمر شدن ؟ فصل سوم) سير شدن: آلكنها از آلكانها، واكنش پذيري
دارند، و به خاطر وجود پیوند دوگانه، سیر هستند. در (C = C) یکی از دو پیوند، از دیگر ضعیفتر
است آسانتر شکسته می شود و دو ذره ظرفیتی را به دو کربن، متصل میکند: بررسی تمرین دورهای ۸:
در واکنش سیرشدن، هر اتم کربن، از تمام امکان خود برای تشکیل پیوندهای استفاده میکند، (به جای اینکه
پیوند دوگانه و پیوند یگانه داشته باشد، پیوند یگانه خواهد داشت.) معمولا هر اتم کربن، ۴
پیوند اشتراکی دارد به جز:
* تذکر: واکنش آلکنها با Cl-Cl نیاز به کاتالیزگر دارد. تمرین دورهای ۵ فصل ۳ آ!! تمرین – تفاوت
تعداد اتمهای H بین واکنشدهنده و فرآورده در واکنش «۲ و۳ - دیمتیل - ۲ - بوتن» با برم مایع چندتا است؟ نام فرآورده
چیست؟
وارد کردن آلکن در بخار برم مایع (قرمز) یا آب برم (قرمز)، ترکیبی رنگ ایجاد میکند که نشانگر انجام
واکنش، و مهمترین روش شناسایی ترکیبهای سیر نشده از سیر شده است. سایر هالوژنها نیز میتواندد چنین واکنشی
را انجام دهند و در مقابل ترکیب سیرنشده، رنگ شوند. تذکر: هالوژنها در حالت عنصری (آزاد)، (رنگی /
بیرنگ) و در حالت ترکیب هستند.
اسیدهای هیدرولیک نیز میتوانند در واکنش با آلکنها شرکت کنند. گاز اتن، سنگبنای صنایع پتروشیمی است. با
استفاده از اتن، حجم انبوهی از مواد گوناگونی تهیه میشود. از واکنش اتن با آب در حضور به عنوان کاتالیزگر،
تولید میشود. که الکلی کربنه، رنگ، و فرّار (نقطه جوش تر از آب) است. به هر
نسبتی در حل میشود. از مهمترین های صنعتی است و در تهیه مواد دارویی، آرایشی و بهداشتی و به

عنوان «ضد عفونی کننده» به کار میرود. * خود را بیازمایید ۱ صفحه ۴۲: کوشت رنگ بخار برم را از بین برده پس چربی ان
تركيبات سير (نيز) دارد. (كه با برم واكنش مىدهد.) در صنعت پتروشيمى، تركيبها، مواد و وسايل گوناگون
از یا طبیعی به دست میآید. (فرآوردههای پتروشیمیایی) در صنایع پتروشیمی کشورها، موادی نظیر
، و تولید می شوند. آلکینها () (سیر نشده تر از آلکنها!) آلکینها
در ساختتار خود، یک پیوند سه گانه کربن_کربن (-CºC) دارند. برای نامگذاری، پسوند «یین» را به لفظ آلک اضافه
میکنیم. سادهترین الکین کربن دارد: (گاز:) CH یا -CEC نام قدیمی گاز اتین، است
که (از شعله آن) در کاری و کاری فلزها استفاده میشود و به آن، جوش نیز گفته میشود:
$+ \leftarrow +$ در این روش، کلسیم () در یک مخزن نگهداری و با افزودن آب، به تبدیل می شود.
تمرین ۱ — فرمول ساختاری و مولکولی، مدل پیوند — خط، و نام آلکین سه کربنه چیست؟ (فرمول پیوند — خط)
تمرین ۲ — ایزومرهای آلکنی را رسم و ناگذاری کنید: (چرا کلمه آلکنی گفته شده؟ *)
تمرین ۳ — واکنش ۱ مول پروپین با ۱ مول برم مایع را بنویسید:
تمرین ۴ – واکنش ۱ مول اتین را با ۲ مول گاز کلر بنویسید:
تمرین ۵ — هر مول اتین برای سیرشدن کامل، به چند مول گاز هیدروژن نیاز دارد؟
تمرین ۶ – یک آلکین در اثر سیر شدن کامل با گاز هیدروژن، ۱۰٪ افزایش جرم دارد. تعداد هیدروژن آلکان همکربن
این آلکین چند تا است؟
تمرین ۷ — ترکیب برای سیر شدن کامل: اولاً) به چند مول نیاز دارد؟ دوم) چند مول فرآورده تشکیل می شود؟
*سوم) این ترکیبا با ۱ _ بوتین ایزومر است یا با ۱ _ بوتن؟ واکنش سوختن کامل (پارامتری بر حسب n) آلکان، الکن و آلکین
(با n اتم کربن) پرسش — آیا این گفته درست است؟ «کربن دارای پیوند سهگانه در آلکین، نمیتواند شاخه فرعی داشته
باشد.»
هیدروکربنهای حلقوی خود را بیازمایید الف و ب صفحه ۴۲ : الف) هیدروکربنهای حلقوی سیرشده (
آلكان) ؟ معروفترين آنها إست: حلقه در سيكو هگزان سطح (است / نيست) .
قلمرو پیوندی اطراف هر اتم کربن زاویه پیوندی: همه قلمرو ها در یک صفحه : (مدل خط –
پیوندی)
فرمول مولكولي
ب) آروماتیک 🗈 ممکن است دارای یک ، دو (یا بیشتر) باشند 🗈 معروفترین ترکیب
آروماتیک، با حلقه و پیوند دوگانه است. نفتالن نیز از ترکیبات آروماتیک
(دو حلقهای) است. (و در پیوند دوگانه دارد) (H)
يا يا
نفتالن به عنوان برای نگهداری و به کار میرود. تمرین — هر مول بنزین، چند
مول اتم هیدروژن از هر مول هگزان کم دارد؟
تست – یک آلکن، در صورت هم کربن بودن، با کدامیک همپار است؟ ۱) آلکین ۲) سیکلوآلکان ۳) آلکان ۴)
آروماتیک تمرین – جرم مولی آلکان، آلکن، آلکین و سیکلوآلکان را بر حسب n بنویسید. نفت، مادهای که اقتصاد جهان
را دگرگون ساخت نفت خام به طور عمده مخلوطی از و به مقدار کم برخی ، ، و
غیره است. مقدار نمک و اسید در نفت خام و در مناطق گوناگون، است. دلیل: شرایط و
نحوه نفت خام ؟ بخش عمده هيدروكربنهاي نفت خام را تشكيل ميدهند كه به دليل واكنشپذيري

ِ مقدار	مىشو د و	و تامین	فت حام صرف	ا بیش از ۹۰٪ ا	ﻪ ﮐﺎﺭ ﻣ <u>ﻰ</u> ﺭﻭﻧﺪ. <u>؟</u>	نوان ب	به ع
	<	راک پتروشیمی: _	فحه ۴۳: بنزین و خ <u>و</u>	هم بیندیشیم ص	ِ کاربرد دارد. با ،	صنايع	کمی از آن در
	<	<	=	ت سفید:	نف	<	=
			<				
	بنزين (: نفت كوره	_ الف) اندازه مولكول		>	>	
			کمتر است) ب				
ملاک			» و				
			كيل دهنده آن است. (
			فتف				
			و				
			، هنگامی صورت				
ىشوند.	ه هم، جدا می	نزدیک با	_ هایی با	بىورت	ئربنهای آن، به ص	باشند.) هیدروک	به هم نزدیک
دما از	ر برج تقطير،	ر هدایت م <i>یکنند.</i> د	را به تقطیر	_ میدهند و آن	ی بزرگ	م را در محفظها	ابتدا، نفت خا
ولهاي	ىشود. مولكو	ت وارد م	نفت خام داغ به قسم	سردتر است) ا	شود (کم می،	به
حركت	برج	آمده و به سوی _	_ از بیرون		از جمله مواد	تر،	تر و
، که در	هايى	_ص میشوند، و در	ه و به تبدیا	، شد	ها بالاتر م <i>ى</i> روند	ريج كه مولكول	میکنند. به تد
سب در	و مناس	ت خام، سوخت	مىشوند. پالايش نف	. برج	ند، وارد شده و از	ناگون برج هست	فاصلههای گو
ىرويە،	ت و کاربرد بو	د. با افزایش اهمین	ارزان میگرد	تولید انرژی _	ز سویی منجر به	قرار میدهد و ا	اختيار صنايع
۵۰۰ م	مر زخایر آن ب	است که ع	یگر از سوختهای_) یکی د	زغالسنگ (ه پایان میرود.	نفت خام رو ب
به	ستري از	عث ورود مقدار بیث	ين نفت شود، البته با	، جايگز	تواند به عنوان	زغالسنگ، می	سال مىرسد.
			ين: ،				
لسنگ	زغاا	ی ۱ گرم): بنزین _	ای آزاد شده (به ازاه	گرم	، و	·	'
حذف	ىالسنگ براى	و زغ	غالسنگ: ۱)	بهبود كارآيي ز	نمالسنگ راههای	. شده: بنزین ز	مقدار C توليد
شرايط	_ ها به کمک	ز دودکش	خارج شده ا	ِ انداختن گاز _	َر ٢) به	خالصیهای دیگ	و نا-
			ٔدل زغالسنگ، باره				
			م استخراج زغالسنگ				
د دارد.	وجو	بىد برسد، احتمال_	بیش از در	گر مقدار آن به	است و آ	و بى_	سنگین)، بی_
حالت	ترين	حمل و نقل هوایی_	د. «پیوند با صنعت» -	خواهد بوه	ل انفجار نيز	ىتر باشد، احتمال	هرچه متان بیش
			- عدم نياز به <u>-</u>				
_			سوخت هواپيه		_		
			_ تشكيل شده است				
			_ آن به مراکز توزیع				
تمرين	نجام میشود.	های نفتی ان	جادەپيما و	`	ِ طريق	و تعبيه از	طريق خط
ی ۲۰۸	ل، بتواند دما	اگر گرمای حاص	طول كامل مىسوزند	سیژن کافی، به	تن، در حضور اک	لخلوط متان و ا	· 1.44 — 1
	است؟	به تقریب، چند گرم	جرم اتیلن در مخلوط	درجه برساند، -	انت <i>یگ</i> راد به ۱۰۰	ا از ۲۰ درجه س	کیلوگرم آب را