Homework-4 Solutions

Question 1

You are given the following color image, where the pixel values are in sRGB. The value of each pixel is given as the triplet (r, g, b).

(0,0,0)	(0,0,0)	(0, 0, 0)	(0, 0, 0)
(255, 0, 0)	(255, 0, 0)	(255, 0, 0)	(255, 0, 0)
(100, 100, 100)	(100, 100, 100)	(100, 100, 100)	(100, 100, 100)
(0, 100, 100)	(0, 100, 100)	(0, 100, 100)	(0, 100, 100)

\mathbf{A}

Convert the above image to nonlinear RGB.

(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0,0,0)
(1, 0, 0)	(1, 0, 0)	(1, 0, 0)	(1, 0, 0)
(0.392, 0.392, 0.392)	(0.392, 0.392, 0.392)	(0.392, 0.392, 0.392)	(0.392, 0.392, 0.392)
(0, 0.392, 0.392)	(0, 0.392, 0.392)	(0, 0.392, 0.392)	(0, 0.392, 0.392)

\mathbf{B}

Convert the above image to linear RGB.

(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0,0,0)
(1, 0, 0)	(1, 0, 0)	(1, 0, 0)	(1, 0, 0)
(0.127, 0.127, 0.127)	(0.127, 0.127, 0.127)	(0.127, 0.127, 0.127)	(0.127, 0.127, 0.127)
(0,0.127,0.127)	(0,0.127,0.127)	(0,0.127,0.127)	(0,0.127,0.127)

\mathbf{C}

Convert the above image to XYZ.

(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0,0,0)
(0.412, 0.212, 0.019)	(0.412, 0.212, 0.019)	(0.412, 0.212, 0.019)	(0.412, 0.212, 0.019)
(0.121, 0.127, 0.138)	(0.121, 0.127, 0.138)	(0.121, 0.127, 0.138)	(0.121, 0.127, 0.138)
(0.07, 0.1, 0.136)	(0.07, 0.1, 0.136)	(0.07, 0.1, 0.136)	(0.07, 0.1, 0.136)

\mathbf{D}

Convert the above image to xyY.

	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0,0,0)
(0.64, 0.33, 0.212)	(0.64, 0.33, 0.212)	(0.64, 0.33, 0.212)	(0.64, 0.33, 0.212)
(0.	.3127,0.3129,0.127)	(0.3127, 0.3129, 0.127)	(0.3127, 0.3129, 0.127)	(0.3127, 0.3129, 0.127)
((0.2247,0.3288,0.1)	(0.2247, 0.3288, 0.1)	(0.2247, 0.3288, 0.1)	(0.2247, 0.3288, 0.1)

\mathbf{E}

Convert the above image to Luv.

	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0,0,0)
	(53.2, 175.0, 37.7)	(53.2, 175.0, 37.7)	(53.2, 175.0, 37.7)	(53.2, 175.0, 37.7)
	(42.37, 0.0, 0.0)	(42.37, 0.0, 0.0)	(42.37, 0.0, 0.0)	(42.37, 0.0, 0.0)
Ì	(37.9, -29.29, -6.339)	(37.9, -29.29, -6.339)	(37.9, -29.29, -6.339)	(37.9, -29.29, -6.339)

Compute linear illumination stretching in the Luv domain, and convert the result back to sRGB.

The minimum value of L is 0, and the maximum value is 53.2 Multiply each L value by 100/53.2. This gives the following image in Luv (only first column is shown):

(0,0,0)
(100, 175.0, 37.7)
(79.64, 0, 0)
(71.2, -29.29, -6.339)

Converting to XYZ:

(0,0,0)
(1.5, 1, 0.53)
(0.533, 0.56, 0.61)
(0.344, 0.425, 0.523)

Converting to linear RGB:

(0,0,0)
(1, 0.69, 0.69)
(0.56, 0.56, 0.56)
(0.2, 0.485, 0.485)

Converting to nonlinear RGB in bytes:

Question 2

$$g_{2} = f_{2} \otimes g_{1}$$

$$= f_{2} \otimes (f_{1} \otimes g)$$

$$= \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \otimes \left(\begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \otimes g \right)$$

$$= \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} * \left(\begin{bmatrix} 2 & 0 & 1 \end{bmatrix} * g \right)$$

$$= \left(\begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} * \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \right) * g$$

$$= \left(\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \otimes \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \right) * g$$

$$= \begin{bmatrix} -2 & 0 & -1 & 0 \\ 2 & 2 & 1 & 1 \end{bmatrix} * g$$

$$= \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & -1 & 0 & -2 \end{bmatrix} \otimes g$$