MATH 307

CHAPTER 2

SECTION 2.1: VECTOR SPACES

Contents

Examples							
Solutions to System of Linear Equations	 •	•	•	•	•	•	•
What is a Vector Space?							
Precise Definition							
Column Vectors as a Vector space							
Matrices as a Vector Space							
Functions as a Vector Space							
A nonexample	 •						
imple Properties of Vector Spaces							
Uniqueness							
Multiplying by Zero							
Subtraction in Vector space							

Created by: Pierre-Olivier Parisé Summer 2022

EXAMPLES

Solutions to System of Linear Equations

EXAMPLE 1. Describe the set of solutions of the following system of linear equations.

$$2x + 3y - z = 3$$

$$-x - y + 3z = 0$$

$$x + 2y + 2z = 3$$

$$y + 5z = 3.$$

WHAT IS A VECTOR SPACE?

Precise Definition

A nonempty set V is a **vector space** if there are operations of addition (denoted by +) and scalar multiplication (denoted by \cdot) on V such that the following eight properties are satisfied:

- 1. u + v = v + u for any u and v in V;
- 2. u + (v + w) = (u + v) + w for any u, v, w in V;
- 3. There is an element denoted 0 in V so that v + 0 = v for any v in V.
- 4. For each v in V there is an element denoted -v so that v + (-v) = 0.
- 5. $c \cdot (u+v) = c \cdot u + c \cdot v$ for all real number c and for all u and v in V;
- 6. $(c+d) \cdot v = c \cdot v + d \cdot v$ for all real numbers c and d and for all v in V;
- 7. $c \cdot (d \cdot v) = (cd) \cdot v$ for all real numbers c and d and for all v in V;
- 8. $1 \cdot v = v$ for all v in V.

Remarks:

- The eight above properties are called *axioms*, *postulates*, or *laws* of a vector spaces.
- Don't confuse the abstract vectors from the more concrete column-vectors or row-vectors.
- The elements of the set V are called *vectors*.
- The real numbers are called *scalars*.

Column Vectors as a Vector space

EXAMPLE 2. The set of all 3×1 column vectors, denoted by \mathbb{R}^3 , is a vector space if we define

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} := \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix} \quad \text{and} \quad c \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} := \begin{bmatrix} cx_1 \\ cx_2 \\ cx_3 \end{bmatrix}.$$

EXAMPLE 3. More generally, the set of all $n \times 1$ column vectors, denoted by \mathbb{R}^n is a vector space if we define

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} := \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} \quad \text{and} \quad c \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} := \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}.$$

Remark:

• The set of $1 \times n$ row vectors is also a vector space with the addition and scalar multiplication defined component-wise in a similar way.

Matrices as a Vector Space

EXAMPLE 4. The set of $m \times n$ matrices $M_{m \times n}(\mathbb{R})$ is a vector space if we define the addition of two matrices and the scalar multiplication of a real number with a matrix by the matrix addition and matrix scalar multiplication defined in the previous chapter (see section 1.2).

Functions as a Vector Space

EXAMPLE 5. Let F(a,b) denote the set of all real-valued functions defined on (a,b). Some examples are $f(x) = x^2$, $f(x) = \sin x$, f(x) = |x|, etc.

We define the addition of two functions f and g to be the new function (f+g) defined on (a,b) by

$$(f+g)(x) := f(x) + g(x).$$

We define the scalar multiplication of a function f with a real number c to be the new function (cf) defined on (a,b) by

$$(cf)(x) := cf(x).$$

Show that F(a, b) is a vector space.

A nonexample

EXAMPLE 6. Let V be the set of 1×2 row vectors. We define an addition and a scalar multiplication by

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} + \begin{bmatrix} y_1 & y_2 \end{bmatrix} := \begin{bmatrix} x_1 + y_1 + 1 & x_2 + y_2 \end{bmatrix} \quad \text{and} \quad c \begin{bmatrix} x_1 & x_2 \end{bmatrix} := \begin{bmatrix} cx_1 & cx_2 \end{bmatrix}.$$

Is V equipped with these operations a vector space?

SIMPLE PROPERTIES OF VECTOR SPACES

Uniqueness

Suppose that V is a vector space.

- There is only one zero vector in V.
- If v is a vector in V, there is only one negative (denoted by -v) of v.

Multiplying by Zero

Let V be a vector space.

- For any vector v in V, we have $0 \cdot v = 0$.
- For any real number c, we have $c \cdot 0 = 0$.

Subtraction in Vector space

Let V be a vector space. Then for any vector v in V, we have

$$(-1) \cdot v = -v.$$

Remarks:

- We usually write cv instead of $c \cdot v$ for the scalar multiplication. It simplifies the notation.
- Subtracting two vectors is done in the following way:

$$u - v := u + (-v).$$