Andrea Gadotti 01/12/2014

Exercise 44.

(a) \Rightarrow (b): Let \mathfrak{p} be the unique prime ideal of R. Since every ring has a maximal ideal, and every maximal ideal is prime, \mathfrak{p} must be that maximal ideal. Thus R/\mathfrak{p} is a field. So, for any $x \in R \setminus \mathfrak{p}$, we must have [x][y] = [1] for some $[y] \in R/\mathfrak{p}$, which means that $xy \in 1 + \mathfrak{p}$. Furthermore, $\mathfrak{p} = \sqrt{0}$, since $\sqrt{0}$ is the intersection of all the prime ideals, and \mathfrak{p} is the only one. This means that xy = 1 + z where z is nilpotent. By the fourth remark after the definition of $\mathcal{J}(R)$ we know that

$$\mathcal{J}(R) = \{ x \in R \mid 1 + Rx \subseteq R^{\times} \}.$$

But we know (immediate by definitions) that $\sqrt{0} \subseteq \mathcal{J}(R)$, so it must be true that $1 + Rz \subseteq R^{\times}$, thus $1 + z \in R^{\times}$. Therefore xy is invertible, which implies that x is invertible $(y(y^{-1}x^{-1}))$ is the inverse of x).

(b) \Rightarrow (a): Suppose that every element is either a unit or nilpotent. Consider $\sqrt{0}$. $\sqrt{0}$ is maximal, since every element in $R \setminus \sqrt{0}$ is a unit (and thus generates the whole ring R). Hence $\sqrt{0}$ is prime as well. But $\sqrt{0}$ is the intersection of all the prime ideals of R, and since it is maximal it must be the unique prime ideal of R.

Exercise 45.

- 1. We know by the second remark after the definition of artinian rings that in artinian rings every prime ideal is maximal. Thus $\mathcal{J}(R) = \sqrt{0}$ trivially by definition.
- 2. Let $\Omega := \{\mathfrak{m}_1 \cap ... \cap \mathfrak{m}_n \mid n \in \mathbb{N}, \mathfrak{m}_i \in \max(R)\}$. $\Omega \neq \emptyset$, since every ring has a maximal ideal. But we know by theory that a ring is artinian iff every non-empty family of ideals contains a minimal element¹. Hence there exists $\mathfrak{m}_1 \cap ... \cap \mathfrak{m}_n \in \Omega$ which is minimal. Now take any maximal ideal \mathfrak{m} . By minimality we must have $\mathfrak{m} \cap \mathfrak{m}_1 \cap ... \cap \mathfrak{m}_n = \mathfrak{m}_1 \cap ... \cap \mathfrak{m}_n$, and therefore $\mathfrak{m}_1 \cap ... \cap \mathfrak{m}_n \subseteq \mathfrak{m}$. Since \mathfrak{m} is prime as well, by Theorem 3.4 we obtain $\mathfrak{m}_i \subseteq \mathfrak{m}$ for some i = 1..n. Since \mathfrak{m}_i is maximal, this means $\mathfrak{m}_i = \mathfrak{m}$. Hence the \mathfrak{m}_i 's are the only maximal ideals of R.

¹Proof: immediate by Zorn's lemma, ordering the family by reverse inclusion.