

Olimpiada Naţională de Matematică Etapa Finală, Deva, 23 aprilie 2019

CLASA a XII-a — Soluții și barem orientativ

Problema 1. Fie a un număr real strict pozitiv. Determinați valoarea minimă a expresiei

$$\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 - (a+1) \int_0^1 x^{2a} f(x) \, \mathrm{d}x,$$

când f parcurge mulțimea funcțiilor concave $f \colon [0,1] \to \mathbb{R}$, cu f(0) = 1.

Soluție. Fie $f:[0,1]\to\mathbb{R}$ o funcție concavă, astfel încât f(0)=1. Cum

$$x^{a}f(x) + 1 - x^{a} = x^{a}f(x) + (1 - x^{a})f(0) \le f(x^{a} \cdot x + (1 - x^{a}) \cdot 0) = f(x^{a+1}),$$

prin înmulțire cu $(a+1)x^a$, rezultă

$$(a+1)x^{2a}f(x) + (a+1)(x^a - x^{2a}) \le (a+1)x^a f(x^{a+1}),$$

Integrând pe intervalul [0,1], obţinem

$$(a+1)\int_0^1 x^{2a}f(x)\,\mathrm{d}x + (a+1)\int_0^1 (x^a - x^{2a})\,\mathrm{d}x \le (a+1)\int_0^1 x^a f(x^{a+1})\,\mathrm{d}x,$$

deci

$$(a+1)\int_0^1 x^{2a} f(x) dx + \frac{a}{2a+1} \le \int_0^1 f(x) dx.$$

......2p

Cum
$$\int_0^1 f(x) dx \le \left(\int_0^1 f(x) dx\right)^2 + \frac{1}{4}$$
, obţinem

$$\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 - (a+1) \int_0^1 x^{2a} f(x) \, \mathrm{d}x \ge = \frac{a}{2a+1} - \frac{1}{4} = \frac{2a-1}{8a+4}.$$

......1p

Cum funcția $f \colon [0,1] \to \mathbb{R}, \, f(x) = 1-x,$ este concavă, f(0) = 1 și

$$\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 - (a+1) \int_0^1 x^{2a} f(x) \, \mathrm{d}x = \frac{2a-1}{8a+4},$$

rezultă că minimumul cerut este (2a-1)/(8a+4). 2p

Problema 2. Fie n un număr întreg par, $n \geq 4$, şi fie G un subgrup de ordin n al grupului multiplicativ al matricelor inversabile din $\mathcal{M}_2(\mathbb{C})$. Arătați că G are un subgrup H, astfel încât $\{I_2\} \subsetneq H \subsetneq G$ şi $XYX^{-1} \in H$, oricare ar fi $X \in G$ şi oricare ar fi $Y \in H$.

În fine, dacă H = G, considerând din nou o matrice X de ordin 2 în G, rezultă $(\operatorname{tr} X) \cdot X = 2I_2$, deci $(\operatorname{tr} X)^2 = 4$. Cum $X \neq I_2$, rezultă $\operatorname{tr} X = -2$, deci $X = -I_2$. În mod evident, subgrupul lui G format din $\pm I_2$ are proprietatea cerută. 3p

Simpla afirmație că, dacă $-I_2$ este în G, atunci subgrupul format din $\pm I_2$ are proprietatea cerută în enunțul problemei, este notată 1 punct.

Problema 3. Fie $f:[0,\infty)\to(0,\infty)$ o funcție crescătoare și fie $g:[0,\infty)\to\mathbb{R}$ o funcție de două ori derivabilă, astfel încât g'' este continuă și g''(x)+f(x)g(x)=0, oricare ar fi numărul real x>0.

- (a) Dați un exemplu de funcții f și g, care îndeplinesc condițiile din enunț și g este neidentic nulă.
 - (b) Arătați că funcția g este mărginită.

(b) Rescriem condiția din enunț sub forma g'(x)g''(x)/f(x) + g(x)g'(x) = 0, oricare ar fi $x \ge 0$. Fie t > 0. Integrând pe intervalul închis [0, t], obținem

$$2\int_0^t \frac{g'(x)g''(x)}{f(x)} dx + (g(t))^2 - (g(0))^2 = 0.$$

 $2_{
m p}$

Funcția $x \mapsto 1/f(x)$, $x \ge 0$, este descrescăroare și ia valori strict pozitive. Conform teoremei de medie, există un punct θ între 0 și t, astfel încât

$$\int_0^t \frac{g'(x)g''(x)}{f(x)} dx = \frac{1}{f(0)} \int_0^\theta g'(x)g''(x) dx = \frac{(g'(\theta))^2 - (g'(0))^2}{2f(0)}.$$

......3p

Prin urmare,

$$(g(t))^{2} = (g(0))^{2} + \frac{(g'(0))^{2}}{f(0)} - \frac{(g'(\theta))^{2}}{f(0)} \le (g(0))^{2} + \frac{(g'(0))^{2}}{f(0)},$$

deci g este mărginită
Problema 4. Fie n un număr întreg, $n \geq 3$, și fie $a_1, a_2, \ldots, a_{n-1}, a_n$ numere complexe nenule, astfel încât $ a_i < 1, i = 1, 2, \ldots, n-1$, și toți coeficienții polinomului $\prod_{i=1}^n (X-a_i)$ să fie întregi. Arătați că:
(a) Numerele $a_1, a_2, \ldots, a_{n-1}, a_n$ sunt distincte două câte două; (b) Dacă a_i, a_j, a_k sunt în progresie geometrică, atunci $i = j = k$.
Soluție. (a) Fie $f = \prod_{i=1}^{n} (X - a_i)$. Cum $a_1 a_2 \dots a_n = (-1)^n f(0)$, rezultă că $f(0) \neq 0$ și $ a_1 a_2 \dots a_n \geq 1$, deci $ a_n > 1$
Presupunem că $f = gh$, unde g și h sunt polinoame monice neconstante cu coeficienți întregi. Cum a_n este rădăcină simplă lui f , putem presupune că $g(a_n) = 0$ și $h(a_n) \neq 0$. Fie $m = \deg h$ și fie a_{i_1}, \ldots, a_{i_m} rădăcinile lui h . Cum h este monic, rezultă că $ h(0) = a_{i_1} \ldots a_{i_m} < 1$, deci $h(0) = 0$, în contradicție cu $f(0) \neq 0$. Așadar, f este ireductibil în $\mathbb{Z}[X]$, deci și în $\mathbb{Q}[X]$, de unde rezultă că f nu are rădăcini multiple
(b) Presupunem că există a_p, a_q, a_r în progresie geometrică, nu toate egale. Cum $ a_n >1$ şi $ a_ia_n >1, i=1,2,\ldots,n,$ rezultă că $p,q,r< n.$ Fie $g=\prod_{1\leq i\leq j\leq n}(X-a_ia_j).$ Coeficienții lui g sunt expresii simetrice în $a_1,a_2,\ldots,a_n,$ deci sunt întregi. Dacă $a_q^2=a_pa_r,$ atunci $q\neq p$ şi $q\neq r,$ deci a_q^2 este rădăcină dublă a lui $g.$
Cum g este monic și are toți coeficienții întregi, există un polinom monic h de grad minim cu coeficienții întregi, astfel încât $h(a_q^2)=0$. Rezultă că g este divizibil cu h^2 . Cum $ a_q^2 <1$ și $ h(0) \geq 1$, rezultă că h are o rădăcină complexă a de modul strict mai mare decât 1
Din $h^2 \mid g$, rezultă că a este rădăcină dublă lui g , în contradicție cu faptul că singurele rădăcini ale lui g de modul supraunitar sunt $a_i a_n, i = 1, 2, \dots, n$, care sunt rădăcini simple