Opportunity Unraveled: Private Information and Missing Markets for Human Capital

Daniel Herbst

University of Arizona

Nathaniel Hendren

Harvard University and NBER

Going to College in the US is Risky

- Investing in college in the US carries high returns but also high risks
 - Almost half 2012 college enrollees failed to complete their degrees within six years
 - Among those who graduated, only 85% find jobs by 2017
 - By age 40, over 15% of college graduates have household incomes below \$40,000 per year
- Primary method of financing is student debt, which does little to mitigate this risk
 - Among 2012 student borrowers, 67% experienced delinquency or default on their student loans by 2017

Most severe non-repayment event within six years of enrollment

Economists' Solution: Risk-Mitigating Financing for Human Capital

Economists often promote financial contracts that mitigate college-investment risk:

"[Human capital] investment necessarily involves much risk. The device adopted to meet the corresponding problem for other risky investments is equity investment...The counterpart for education would be to `buy' a share in an individual's earnings prospects; to advance him the funds needed to finance his training on condition that he agree to pay the lender a specified fraction of his future earnings."

- Milton Friedman (1955)

- 1. Earnings-equity contracts: Borrower pays X% of earnings
- 2. State-contingent debt contracts: Borrower pays \$X only if event occurs
 - Completion-contingent loan: Debt forgiveness for college dropouts
 - Employment-contingent loan: Debt that's forgiven in unemployment
 - Dischargeable loan: Debt that's dischargeable in delinquency/default

Equity and state-contingent debt are common in markets for *physical* capital investment

Research Question: Why don't we see similar financial markets for human capital investments?

- Develop model of financial markets for human capital to characterize when riskmitigating financial markets can exist
 - Clarify role of adverse selection vs. other forces such as moral hazard in market existence
 - Two curves determine market (non)existence in the spirit of Akerlof (1970)
 - "Willingness to Accept" (WTA) in exchange for a future share of an outcome
 - "Average value" (AV) of worse risks of future outcomes

- Develop model of financial markets for human capital to characterize when riskmitigating financial markets can exist
- 2. Use subjective expectations as noisy/potential biased measures of beliefs about future outcomes to provide evidence of private information
 - Find predictive power of elicitations conditional on rich set of publicly observable characteristics
 - Suggests a potential for adverse selection for markets that insure against these risks

- Develop model of financial markets for human capital to characterize when riskmitigating financial markets can exist
- 2. Use subjective expectations as noisy/potential biased measures of beliefs about future outcomes to provide evidence of private information
- 3. Empirically test unraveling condition (WTA>AV) using subjective elicitations
 - Non-parametric lower bounds and semi-parametric point estimates of unraveling conditions
 - In all four market settings, find WTA>AV so that the market unravels
 - Example: Earnings-equity market
 - Median student would have to repay \$1.64 in expectation for every \$1 of financing to make the contract profitable, but is only willing to repay \$1.28

- Develop model of financial markets for human capital to characterize when riskmitigating financial markets can exist
- 2. Use subjective expectations as noisy/potential biased measures of beliefs about future outcomes to provide evidence of private information
- 3. Empirically test unraveling condition (WTA>AV) using subjective elicitations
- 4. Measure welfare impact of government subsidies to open up these markets
 - Estimate the $MVPF = \frac{Benefits}{Net\ Govt\ Cost}$ of subsidies for these contracts
 - Should government offer college financing in exchange for higher future tax rate?
 - Find high MVPFs for equity contracts because insurance value > earnings disincentive

Related Work

- Information asymmetries in household finance:
 - Akerlof (1970); Stroebel (2016); Gupta and Hansman (2019); Adams, Einav and Levin (2009); Einav, Jenkins and Levin (2012); Dobbie and Skiba (2013); DeFusco, Tang and Yannelis (2020); Karlan and Zinman (2009); Einav et al. (2010)
- Belief measurement and estimation
 - Hendren (2013, 2017); Conlon et al. (2018); Gong et al. (2019); Guvenen (2007); Wiswall and Zafar (2021); Arcidiacono et al. (2020); Stantcheva (2020); Bursztyn et al. (2020)
- Earnings risk and college financing:
 - Friedman (1955); Nerlove (1975); Palacios (2004); Chapman (2006); Field (2009); Barr et al. (2017);
 Abraham et al. (2018); Bachas (2019); Mumford (2020); Britton and Gruber (2020); Mueller and Yannelis (2020); Herbst (2021); Cox et al. (2018)
- Optimal taxes/subsidies for human capital
 - Mirrlees (1978); Bovenberg and Jacobs (2006); Jacobs and van Wijnbergen (2007); Stantcheva (2017)

Outline

- 1 Model of Market Unraveling
- 2 Data and Reduced Form Evidence of Private Information
- 3 Lower-Bound on Magnitude of Private Information
- 4 Estimation of Average Value and Willingness to Accept Curves
- (5) Welfare Impacts of Government Subsidies

Outline

- 1 Model of Market Unraveling
- 2 Data and Reduced Form Evidence of Private Information
- 3 Lower-Bound on Magnitude of Private Information
- 4 Estimation of Average Value and Willingness to Accept Curves
- (5) Welfare Impacts of Government Subsidies

Model of Market Unraveling

Privately Expected Earnings: $E[y|\theta]$

Willingness to Accept: $WTA(\theta)$

Can Financiers Make Profits?

Average Value Curve, $AV(\theta)$

Can Financiers Make Profits?

Can Financiers Make Profits? Scenario #2

Can Financiers Make Profits? Scenario #2

Can Financiers Make Profits? Scenario #2

Which Markets Unravel?

Empirical goal: Estimate $WTA(\theta)$ and $AV(\theta)$ in markets for human capital financing

We consider four hypothetical markets:

```
1. Earnings-Equity Contract: y = \text{earnings} (continuous y)
2. Completion-Contingent Loan: y = \text{complete degree}
3. Employment-Contingent Loan: y = \text{employed} (binary y)
4. Dischargeable Loan: y = \text{on delinquency}
```

Outline

- 1 Model of Market Unraveling
- 2 Data and Reduced Form Evidence of Private Information
- 3 Lower-Bound on Magnitude of Private Information
- 4 Estimation of Average Value and Willingness to Accept Curves
- (5) Welfare Impacts of Government Subsidies

Data: Beginning Postsecondary Students Survey (BPS)

- 2012/2017 Beginning Postsecondary Students (BPS)
 - First-year college students in Spring 2012
 - Follow up in 2017
- Links data across several sources
 - 1. FAFSA records (parental income, sex, age, etc.)
 - 2. Administrative loan data (National Student Loan Database System)
 - 3. Administrative academic information (major, GPA, SAT scores)
 - 4. Survey data (beliefs, employment outcomes, salary)

- *Y*: Outcomes corresponding to each of the four hypothetical markets we consider
- Z: Subjective elicitations of future outcomes
- *X*: Observable information about borrowers that financiers could use to price contracts

- *Y*: Outcomes corresponding to each of the four hypothetical markets we consider
 - Earnings-Equity Contract (continuous y):
 - y = Annual salary from last job held in January and June 2017
 - Three state-contingent debt contracts (binary y):
 - Completion-Contingent Loan: y = completed degree by June 2017 (6 years post-enrollment)
 - Employment-Contingent Loan: y = held at least one job between January and June 2017
 - Dischargeable Loan: y = no delinquencies or defaults on student loans as of June 2017

Summary Statistics

- *Y*: Outcomes corresponding to each of the four hypothetical markets we consider
- Z: Subjective elicitations of future outcomes
 - On-time Degree Completion: "On a scale from 0-10, how likely is it you will finish your degree by [expected date]"
 - Occupation: "What do you think the job title and duties of the occupation you intend to hold will be after having completed your education?"
 - Employment in Occupation: "On a scale from 0-10, how likely do you think it is that you will hold a(n) [EXPECTED OCC] job?"
 - Salary: "Once you begin working [in EXPECTED OCC], what is your expected yearly salary?"
 - Expected Salary without College: How much do you think you would have earned from working if you had not attended college at all in the 2011- 2012 school year?
 - Parental Support: "On a scale of 1-5, how much do agree with the following statement: "My parents encourage me to stay in college"
 - Parental Financial Support: "Through the end of the 2011-2012 school year (July 1, 2011-June 30, 2012), will your parents (or guardians) have helped you pay for any of your education and living expenses while you are enrolled in school?...How much?"

- Y: Outcomes corresponding to each of the four hypothetical markets we consider
- Z: Subjective elicitations of future outcomes
- X: Observable information about borrowers that financiers could use to price contracts
 - Institutional Characteristics: enrollment size, admit rate, tuition charged, degree offerings, region, urban/rural, avg. demographics and test scores
 - Academic Program Characteristics: degree type (BA, AA), field of study, years since HS
 - High School Performance Measures: HS GPA, SAT/ACT (verbal, math, combined)
 - Demographics: age, citizenship status, marital status, no. of children, prior state of residence
 - Parental Characteristics: marital status, no. of children, annual income, EFC
 - Protected Classes: race, gender (illegal to use in pricing, but we can evaluate its impact)

How about conditional on observables, X, that financiers might use to price the contracts?

Predictive Information in Z **Conditional on** X**: Salary**

	(1)	(2)	(3)	(4)	(5)	(6)
	Log Salary	Log Salary	Log Salary	Log Salary	Log Salary	Log Salary
Log Expected Salary	0.113*** (0.0159)	0.0602*** (0.0159)	0.0446*** (0.0161)	0.0432*** (0.0160)	0.0327** (0.0158)	0.0314** (0.0158)
Institution		Х	Х	Х	Х	X
Academic			Χ	X	X	X
Performance				Χ	X	Χ
Demographics					X	Χ
Parental						X
Partial R-Squared	0.009	0.003	0.002	0.001	0.001	0.001
R-squared	0.009	0.067	0.101	0.104	0.119	0.123
N	12580	12580	12580	12580	12580	12580

Predictive Information in \mathbb{Z} Conditional on \mathbb{X} : Degree Completion

	(1) Degree Completion	(2) Degree Completion	(3) Degree Completion	(4) Degree Completion	(5) Degree Completion	(6) Degree Completion
On-Time Completion Likelihood	0.0492*** (0.00223)	0.0365*** (0.00223)	0.0364*** (0.00224)	0.0345*** (0.00225)	0.0343*** (0.00221)	0.0332*** (0.00220)
Institution		Х	Х	X	X	X
Academic			X	X	X	X
Performance				X	X	X
Demographics					X	X
Parental						X
Partial R-Squared	0.045	0.029	0.028	0.028	0.028	0.026
R-squared	0.045	0.215	0.222	0.239	0.249	0.264
N	22340	22340	22340	22340	22340	22340

Predictive Information in \mathbb{Z} Conditional on \mathbb{X} : Employment

	(1)	(2)	(3)	(4)	(5)	(6)
	Employed	Employed	Employed	Employed	Employed	Employed
Log Expected Salary if No College	0.0313*** (0.0107)	0.0243** (0.0109)	0.0212** (0.0108)	0.0199* (0.0107)	0.0175 (0.0106)	0.0169 (0.0106)
Institution		X	Х	X	X	X
Academic			X	X	X	X
Performance				X	X	X
Demographics					X	X
Parental						X
Partial R-Squared	0.012	0.008	0.007	0.007	0.006	0.006
R-squared	0.012	0.026	0.035	0.038	0.042	0.046
N	17480	17480	17480	17480	17480	17480

Predictive Information in \mathbb{Z} Conditional on \mathbb{X} : On-Time Repayment

	(1) On-Time	(2) On-Time	(3) On-Time	(4) On-Time	(5) On-Time	(6) On-Time
	Repayment	Repayment	Repayment	Repayment	Repayment	Repayment
Supportive Parents	0.0635*** (0.00505)	0.0349*** (0.00502)	0.0336*** (0.00497)	0.0305*** (0.00491)	0.0301*** (0.00488)	0.0285*** (0.00483)
Institution		Х	Х	X	Х	X
Academic			X	X	X	X
Performance				X	X	X
Demographics					X	X
Parental						X
Partial R-Squared	0.030	0.014	0.014	0.015	0.015	0.014
R-squared	0.030	0.114	0.123	0.136	0.144	0.155
N	15520	15520	15520	15520	15520	15520

Open Questions: Quantifying Private Information

- Individuals have private knowledge about future outcomes
- But is this "enough" private information to cause the market to unravel?
- Need to estimate willingness to accept (WTA) and Average Value (AV) curves

Outline

- 1 Model of Market Unraveling
- 2 Data and Reduced Form Evidence of Private Information
- 3 Lower-Bound on Magnitude of Private Information
- 4 Estimation of Average Value and Willingness to Accept Curves
- 5 Welfare Impacts of Government Subsidies

Lower Bound on Magnitude of Private Information

Lower Bound on Magnitude of Private Information

Lower-Bound on Magnitude of Private Information

	Category								
	(1) No Public Info	$\begin{array}{c} (2) \\ Institution \ + \ A cademic \end{array}$	$(3)\\Institution + A cademic\\+ Performance +\\Demographics$	$(4) \\ Institution + A cademic \\ + Performance + \\ Demographics + \\ Parental$	$(5) \\ Institution + A cademic \\ + Performance + \\ Demographics + \\ Parental + Protected$				
Earnings Equity Completion-Contingent Loan Employment-Contingent Loan Dischargeable Loan	5765 0.20 0.09 0.13	5314 0.16 0.11 0.13	3797 0.13 0.07 0.07	2907 0.11 0.05 0.05	2381 0.11 0.04 0.04				

- $E[m(\theta)] > \$5,314$, or 20% discount relative to average incomes of \$24K
 - ≈ \$0.27 loss for \$1 earnings-equity
- Large discounts for other markets as well:
 - \approx \$0.47 loss for \$1 completion-contingent loan
 - \approx \$0.18 loss for \$1 employment-contingent loan
 - \approx \$0.72 loss for \$1 dischargeable loan

Outline

- 1 Model of Market Unraveling
- 2 Data and Reduced Form Evidence of Private Information
- 3 Lower-Bound on Magnitude of Private Information
- 4 Estimation of Average Value and Willingness to Accept Curves
- 5 Welfare Impacts of Government Subsidies

- 1. Identify relationship between beliefs, $\mu_{\theta} \equiv E[y|\theta]$, and elicitations, Z
- 2. Estimate distribution of μ_{θ} , conditional on observables, X
- 3. Calculate $AV(\theta) \equiv E[y|\mu_{\theta'} \leq \mu_{\theta}]$
 - General strategy: infer beliefs from joint distribution of elicitations (Z) and outcomes (Y), conditional on observables (X)
 - Builds on approach in Hendren (2013, 2017), with two key advances:
 - Allow for outcome y to be continuous (e.g., earnings-equity contract)
 - Allow elicitations to not correspond directly to beliefs

1. Identify relationship between beliefs, $\mu_{\theta} \equiv E[y|\theta]$, and elicitations, Z

Realized outcome, *y*:

Elicitation, z:

estimated using IV and second elicitation

- 1. Identify relationship between beliefs, $\mu_{\theta} \equiv E[y|\theta]$, and elicitations, Z
- 2. Estimate distribution of μ_{θ} , conditional on observables, X
 - Continuous y: Non-parametric $\hat{G}(\mu_{\theta})$ using a linear deconvolution (Bonhomme & Robin 2010)
 - Binary y: Semi-parametric $\hat{G}(\mu_{\theta})$ using MLE, where $G(\mu_{\theta}) = \sum_{j} \xi_{j} \mathbf{1} \{ \mu_{\theta} \leq a_{j} \}$

(Note: In both cases, we allow for conditioning on observables)

- 1. Identify relationship between beliefs, $\mu_{\theta} \equiv E[y|\theta]$, and elicitations, Z
- 2. Estimate distribution of μ_{θ} , conditional on observables, X

- 1. Identify relationship between beliefs, $\mu_{\theta} \equiv E[y|\theta]$, and elicitations, Z
- 2. Estimate distribution of μ_{θ} , conditional on observables, X
- 3. Calculate $AV(\theta) \equiv E[y|\mu_{\theta'} \leq \mu_{\theta}]$

Unraveling of the Earnings-Equity Market

Unraveling of the Earnings-Equity Market

Unraveling of the Earnings-Equity Market

Unraveling of Completion-Contingent Loan Market

Unraveling of Employment-Contingent Loan Market

Unraveling of Dischargeable Debt Market

Outline

- 1 Model of Market Unraveling
- 2 Data and Reduced Form Evidence of Private Information
- 3 Lower-Bound on Magnitude of Private Information
- 4 Estimation of Average Value and Willingness to Accept Curves
- **5** Welfare Impacts of Government Subsidies

Measuring the Welfare Impact Using the MVPF

Marginal Value of Public Funds (MVPF) on government subsidies for each contract:

$$MVPF = \frac{Benefits}{Net\ Cost\ to\ Govt}$$

- Benefits: The aggregate amount borrowers would be willing to pay for the option to contract λ .
 - Net transfer from subsidy
 - Smoothing benefit from mitigating risk
- Net Cost to Govt: The aggregate amount spent, less program revenue or increased tax receipts
 - Net transfer from subsidy
 - Fiscal externalities from behavioral responses

Benefits of Subsidizing \$1 Equity Contract

Net Costs of Subsidizing \$1 Equity Contract

Measuring the Welfare Impact Using the MVPF

Conclusion

- Evidence of unraveling in several markets for financial contracts that mitigate college-going risks
 - 1. Earnings-Equity Contract
 - 2. Completion-Contingent Loan
 - 3. Employment-Contingent Loan
 - 4. Dischargeable Loan
- Suggests a high value to government policies promoting student loan alternatives
- Unraveling results and empirical approach may extend to other settings:
 - Income insurance / compensation schemes
 - Small-business investments
 - Union formation / collective action settings
- More generally, results suggest market frictions inhibit economic opportunity