CS 109 Quiz 5 (40 points):

- 1. [12 points] True or False (2 points correct, 1 point blank, 0 points guess). Note that true means always true.
 - a. If $Y = X^2$, then $\rho(X, Y) = 1$.
 - b. If Cov(X,Y) = 0, then $X \perp Y$.
 - c. If Y = -0.5X, then $\rho(X, Y) = -0.5$.
 - d. If X, Y are random variables, then E[E[X|Y]] = E[Y].
 - e. Var(X + X) = 2Var(X).
 - f. For a continuous random variable X, $0 \le f_X(x) \le 1$ for all x.
- 2. [18 points] Definitions (3 points each).
 - a. Suppose Z = X + Y, where $X \perp Y$. A summation formula for P(Z = z) in terms of p_X and p_Y : $p_Z(z) =$
 - b. In general, a formula for Var(X Y):
 - c. If X, Y are discrete, E[X|Y = y] =
 - d. The PMF and variance of Bin(n, p).
 - e. If X, Y are discrete, a formula for P(X = Y) involving possibly $p_{X,Y}$ and at most one summation.
 - f. If X, Y are continuous, a formula for P(X = Y) involving possibly $f_{X,Y}$ and at most one integral.
- 3. [10 points] Short answer.
 - a. Suppose there are K kit kats in a bag of N total candies. You are allowed to reach in grab n candies to eat $(n \le N)$. Let X be the number of kit kats you get. What is $p_X(k)$? We say $X \sim HypGeo(N, K, n)$.
 - b. Suppose there are N cards in a deck, K of which are Aces. Let Y be the number of cards you draw up to and including your k^{th} ace $(k \le K)$. What is $p_Y(n)$? We say $Y \sim NegHypGeo(N, K, k)$.

Here is a nice chart:

	Fixed Number of Trials	Fixed Number of Successes
With replacement	Binomial	Negative Binomial
Without replacement	Hypergeometric	Negative Hypergeometric

- 1. There are *n* people at a party, and they leave their hat with a hat-check person. Unfortunately, the hat-check person's shift ended before the party ended, and someone else came to replace her. Now when each person leaves, they get a random hat back. Let *X* be the number of people who get their own hat back.
 - a. Compute E[X].
 - b. Compute Var(X).
- 2. Let $X \sim Unif(-1,1)$ be discrete; that is, takes on values in $\{-1,0,+1\}$ with probability 1/3 each. Let $Y = X^2$. Show that Cov(X,Y) = 0, but that X and Y are not independent.
- 3. Let $X \sim Geo(p)$. Use the Law of Total Expectation, conditioning on the first flip being Heads or Tails, to derive
 - a. E[X].
 - b. $E[X^2]$ and hence Var(X).
- 4. Suppose the number of radioactive particles emitted in an hour are $X \sim Poi(\lambda)$. You have a device which fails to record each particle emission with probability p, independent of other particles. Let Y be the number of particles actually observed by the device. What is E[Y]?
- 5. Let $(X_1, ..., X_r) \sim Multinomial(n, p_1, ..., p_r)$.
 - a. What distribution does X_i follow marginally? What is $E[X_i]$ and $Var(X_i)$?
 - b. What is $Cov(X_i, X_j)$ for $i \neq j$?