

KONKURS MATEMATYCZNY

dla uczniów gimnazjów oraz oddziałów gimnazjalnych województwa mazowieckiego

w roku szkolnym 2018/2019

Model odpowiedzi i schematy punktowania

Za każde poprawne i pełne rozwiązanie, inne niż przewidziane w schemacie punktowania rozwiązań zadań, przyznajemy maksymalną liczbę punktów.

W zadaniach otwartych (od zad. 5 do zad.12) za zastosowanie w pełni poprawnej metody przyznajemy 1 punkt, zaś za pełne, poprawne rozwiązanie **całego zadania** przyznajemy 2 punkty.

ROZWIĄZANIA ZADAŃ ZAMKNIĘTYCH

Nr zadania	1.	2.	3.	4.
Maks. liczba punktów	1 pkt	1 pkt	1 pkt	1 pkt
Prawidłowa odpowiedź	A	С	В	В

ROZWIĄZANIA ZADAŃ OTWARTYCH

Zadanie 5. (2 pkt)

Trzy pompy mają opróżnić basen. Pierwsza pompa samodzielnie opróżniłaby basen w ciągu 15 godzin, druga w ciągu 10 godzin, a trzecia w ciągu 9 godzin. Oblicz, czy trzy pompy pracujące jednocześnie zdążą opróżnić ten basen w ciągu 3 godzin.

Uczeń:

I sposób

1. wprowadza oznaczenia i układa równanie (zależność) zgodne z warunkami zadania, np.:

1p.

x – liczba godzin potrzebna do opróżnienia basenu przez wszystkie trzy pompy, pojemność basenu przyjmujemy 1.

ilość wody wypompowana przez poszczególne pompy w ciągu jednej godziny:

I pompa:
$$\frac{1}{15}x$$
, II pompa: $\frac{1}{10}x$, III pompa: $\frac{1}{9}x$

1p.

2. rozwiązuje równanie i podaje odpowiedź

$$\frac{1}{15}x + \frac{1}{10}x + \frac{1}{9}x = 1$$

$$25x = 90$$
 stad $x = 3.6$

Odp. Trzy pompy nie zdążą opróżnić basenu w ciągu 3 godzin.

II sposób

1. oblicza ilość wody usuniętej przez wszystkie 3 pompy w ciągu 1 godziny

$$\frac{1}{15} + \frac{1}{10} + \frac{1}{9} = \frac{25}{90}$$

2. oblicza ilość wody usuniętej przez wszystkie 3 pompy w ciągu 3 godzin $\left(\frac{75}{90}\right)$

i wnioskuje, że jest to za mało.

Odp. Trzy pompy nie zdążą opróżnić basenu w ciągu 3 godzin.

Zadanie 6. (2 pkt)

Dany jest trójkąt QAB, gdzie A = (-5,1), B = (1,-5) i Q = (1,1). Punkt A_1 jest obrazem punktu A w symetrii osiowej względem prostej QB, punkt B_1 jest obrazem punktu B w symetrii osiowej względem prostej QA oraz punkt Q_1 jest obrazem punktu Q w symetrii osiowej względem prostej AB. Oblicz pole trójkąta $Q_1A_1B_1$.

Uczeń:

1. analizuje warunki zadania (np. wykonując poprawny rysunek) oraz podaje współrzędne punktów: A_I =(7,1), B_I =(1,7), Q_I =(-5, -5);

2. zauważa, że w trójkącie $A_1B_1Q_1$ wysokość Q_1E stanowi 1,5 długości przekątnej kwadratu $AQBQ_1$ ($|QE|=\frac{1}{2}$ $|Q_1Q|$), zaś podstawa A_1B_1 trójkąta A_1B_1Q równa jest przekątnej tego kwadratu ($|A_1B_1|=|AB|$). Oblicza pole trójkąta $A_1B_1Q_1$. Odp. Pole trójkąta $A_1B_1Q_1$ jest równe 54.

Zadanie 7. (2 pkt)

Stosunek mas trzech różnych stopów srebra wynosi 7 : 10 : 18, natomiast stosunek mas czystego srebra zawartego w tych stopach równa się odpowiednio 7 : 9 : 12. Po stopieniu wszystkich kawałków otrzymano 350 gramów stopu, w którym czyste srebro stanowi 72% jego masy. Oblicz, w którym stopie jest największa procentowa zawartość srebra.

Uczeń:

I sposób

1. oblicza masy trzech różnych stopów:

1p.

1p.

1p.

$$7x + 10x + 18x = 350$$
, $35x = 350$, $x = 10$

I stop 7.10 = 70 g, II stop 10.10 = 100 g, III stop 18.10 = 180 g (masy stopów);

2. oblicza masy srebra w poszczególnych stopach:

1p.

$$7y + 9y + 12y = 0,72 \cdot 350$$
 czyli $7y + 9y + 12y = 252$ stąd $28y = 252$ zatem $y = 9$

I stop 7.9 = 63 g, II stop 9.9 = 81 g, III stop 12.9 = 108 g (masa srebra w stopach)

i oblicza procent srebra w poszczególnych stopach.

W I stopie jest 90% srebra, w II stopie jest 81% srebra, w III stopie jest 60% srebra.

Odp. Największa procentowa zawartość srebra jest w I stopie.

II sposób

1. oblicza, że w I stopie jest $\frac{7}{35} = \frac{28}{140}$ ogólnej masy i $\frac{7}{28} = \frac{35}{140}$ ogólnego srebra,

a stosunek tych ułamków (masy srebra do ogólnej masy) to $\frac{35}{28}$. Analogicznie oblicza,

że w II stopie jest $\frac{10}{35} = \frac{40}{140}$ ogólnej masy oraz $\frac{9}{28} = \frac{45}{140}$ masy srebra, a stosunek tych

ułamków to $\frac{45}{40}$, zaś w III stopie jest $\frac{18}{35} = \frac{72}{140}$ ogólnej masy i $\frac{12}{28} = \frac{60}{140}$ masy srebra,

a stosunek tych ułamków to $\frac{60}{72}$;

2. stwierdza, że w trzecim stopie stosunek ułamków jest mniejszy niż 1, a w pozostałych stopach większy (bo I stop: $\frac{35}{28} > 1$, II stop: $\frac{45}{40} > 1$, III stop: $\frac{60}{72} < 1$) oraz wnioskuje stąd,

że <u>w I stopie jest najwięcej srebra</u> (bo $\frac{350}{280} > \frac{315}{280}$).

Odp. Największa procentowa zawartość srebra jest w I stopie.

III sposób

1. analizuje graficznie treść zadania np. rysuje diagram słupkowy danych {7,7}, {9, 10}, {12,18}

tj. I stop: słupek srebra wysokości 7 i obok słupek wysokości 7,

II stop: słupek srebra wysokości 9 i obok słupek wysokości 10,

III stop: słupek srebra wysokości 12 i obok słupek wysokości 18.

2. wnioskuje na podstawie diagramu, gdzie jest najwięcej srebra oraz zapisuje odpowiedź.

Odp. Największa procentowa zawartość srebra jest w I stopie.

Zadanie 8. (2 pkt)

Pewna liczba całkowita dodatnia przy dzieleniu przez 5 daje resztę 3, a przy dzieleniu przez 6 daje resztę 2. Znajdź resztę z dzielenia tej liczby przez 30.

1p.

1p.

1p.

1p.

Uczeń:

1. oznacza liczbę całkowitą dodatnią np. przez x i przedstawia ją w postaci:

x = 5a + 3 stąd 6x = 30a + 18 oraz x = 6b + 2 stąd 5x = 30b + 10 (a, b -są to liczby całkowite dodatnie);

2. oblicza różnicę 6x - 5x = 30a + 18 - (30b + 10), stąd x = 30(a - b) + 8, wnioskuje, że reszta z dzielenia tej liczby przez 30 jest równa 8.

Odp. Reszta z dzielenia tej liczby przez 30 jest równa 8.

Zadanie 9. (2 pkt)

Z walca o średnicy podstawy równej 8 cm i wysokości 21 cm wycięto stożek o promieniu podstawy równym 3 cm i wysokości 14 cm. Oblicz, czy z pozostałej części walca można utworzyć kulę o średnicy równej 12 cm. Przyjmij, że liczba π jest w przybliżeniu równa $3\frac{1}{7}$.

Uczeń:

- 1. oblicza objętość walca $V_w = 1056 \text{ cm}^3$ oraz objętość stożka $V_s = 132 \text{ cm}^3$;
- 2. oblicza różnicę objętości walca i stożka $V_w V_s = V_k = 924$ cm³. Oblicza objętość kuli o promieniu 6 cm i porównuje wynik z objętością $V_k = 924$ cm³ (924 > 905) oraz podaje odpowiedź.

Odp. Z pozostałej części walca można utworzyć kulę o średnicy równej 12 cm.

Zadanie 10. (2 pkt)

Pole trójkąta równobocznego *ABC* jest równe 4 cm². Punkty *K*, *L*, *M* leżą odpowiednio na prostych *AB*, *BC*, *AC* w taki sposób, że punkt *A* jest środkiem odcinka *KB*, punkt *B* jest środkiem odcinka *CL*, punkt *C* jest środkiem odcinka *AM*. Oblicz pole trójkąta *KLM*.

1. uzasadnia, że $\triangle ABL$ jest równoramienny (|AB| = |BC| = |BL|, bo $\triangle ABC$ jest równoboczny) zatem $\triangle CLA$ i $\triangle MLA$ są prostokątne ($|\langle LAC| = |\langle LAM| = 60^{\circ} + 30^{\circ} = 90^{\circ}$). Wnioskuje, że 1p. $P_{\triangle ABC} = P_{\triangle ABL} = 4$ cm², więc $P_{\triangle ALC} = P_{\triangle MCL} = 8$ cm²;

2. analogicznie stwierdza, że $P_{\Delta MCL} = P_{\Delta KBL} = P_{\Delta AMK} = 8 \text{ cm}^2$. Oblicza pole trójkąta *KLM* jako sumę pól trójkątów: $P_{\Delta MCL} + P_{\Delta KBL} + P_{\Delta AMK} + P_{\Delta ABC} = 8 + 8 + 8 + 4$ Odp. Pole trójkąta *KLM* jest równe 28 cm².

Zadanie 11. (2 pkt)

W graniastosłupie prawidłowym czworokątnym kąt między przekątną graniastosłupa a przekątną jego podstawy, wychodzącymi z jednego wierzchołka, jest równy 30°. Oblicz objętość tego graniastosłupa, jeśli krawędź jego podstawy jest równa 10.

Uczeń:

1. zauważa, że krawędź boczna graniastosłupa jest połową boku trójkąta równobocznego 1p. AGM, a przekątna podstawy graniastosłupa EG jest wysokością tego trójkąta i oblicza krawędź boczną graniastosłupa $x = |AE| = 10\sqrt{\frac{2}{3}}$;

2. oblicza objętość graniastosłupa. Odp. $V = 1000\sqrt{\frac{2}{3}}$.

1p.

Zadanie 12. (2 pkt)

Wykaż, że nie istnieje para liczb całkowitych dodatnich spełniających równość: $3x^2 + 5y^2 = 360$.

Uczeń:

I sposób

1. zauważa, że jeżeli x i y są dwiema liczbami całkowitymi dodatnimi takimi, że 1p. $3x^2 + 5y^2 = 360$, to $x \le 10$ (gdy $x \le 10$ to $3x^2 < 360$, zaś dla x = 11, 3.121 > 360) i $y \le 8$ $(\text{gdy } y \le 8 \text{ to } 5y^2 \le 360, \text{ zaś dla } y = 9, 5.81 \ge 360)$ a ponadto x dzieli się przez 5 (gdyz) $3x^2 = 5(72 - y^2)$, zaś y dzieli się przez 3 (gdyż $5y^2 = 3(120 - x^2)$);

1p.

- 2. wyznacza pary (5,3), (5,6), (10,3), (10,6) mogace spełniać równość, następnie sprawdza i stwierdza, że **nie istnieje** całkowite dodatnie rozwiązanie tej równości. II sposób
- 1. typuje $x \le 10$ (gdy $x \le 10$ to $3x^2 < 360$, zaś dla x = 11, 3.121 > 360) i $y \le 8$ (gdy $y \le 8$ to $5y^2 < 360$, zaś dla y = 9, 5.81 > 360) jako możliwy zakres rozwiązań;
- 2. sprawdza przypadki np. dla y = 8, 7, 6, 5, 4, 3, 2, 1 oraz ustala i podaje odpowiedź, że **nie istnieje** całkowite dodatnie rozwiązanie tej równości.