Protein/Liganden-Bindungsgleichgewichte

Eine wässrige Lösung enthält ein Protein P und seinen Liganden L. Die Gesamtkonzentration von L in der Lösung ist 0.1 μ M und wesentlich grösser als die Gesamtkonzentration von P ([Ltot] >> ([Ptot]). Nach Einstellung des Bindungsgleichgewichts ist das Protein zu 20% mit dem Liganden besetzt.

- Berechnen Sie die Dissoziationskonstante (K_{Diss}) des Protein-Ligandenkomplexes.
- Wie hoch müsste die Ligandenkonzentration sein, um einen Besetzungsgrad von 90% zu erreichen?

2) Enzymkinetik

a) Vervollständigen Sie die folgenden Diagramme

- b) Ein Enzym E katalysiert die Umwandlung eines Substrats S zum Produkt P. Es gelten folgende Bedingungen:
 - Die unkatalysierte Reaktion wird nicht beobachtet, und die Rückwärtsreaktion P→S ist vernachlässigbar.
 - Die katalysierte Reaktion wird durch Zugabe von Enzym zum Substrat gestartet.
 - Gesamtkonzentration des Enzyms: $[E_{total}] = 1 \cdot 10^{-8} \text{ M}.$
 - Anfangskonzentration des Substrats: $[S] = K_M$.
 - Gemessene Anfangsgeschwindigkeit der Bildung von P: v_i = 2 · 10⁻⁴ M s⁻¹.

Berechnen Sie den k_{cat}-Wert des Enzyms (Einheit: s⁻¹).

3. Welche der folgenden Aussagen sind richtig bzw. falsch (bitte ankreuzen)?

richtig	falsch	
		Energetisch ungünstige Reaktionen können in der Zelle ablaufen, wenn nur das
		Weiterreagieren des weniger stabilen Produkts enzymatisch katalysiert wird, so dass
		dieses aus dem Gleichgewicht gezogen wird.
		Die Anfangsgeschwindigkeit von Reaktionen zweiter Ordnung verdoppelt sich, wenn
		die Anfangskonzentrationen verdoppelt werden.
		Die Zeit, die ein Molekül braucht, um in der Zelle über eine bestimmte Distanz zu
		diffundieren, steigt linear mit der Distanz.
		Der Hill Koeffizient von 2.8 für Hämoglobin bedeutet, das es keine Zustände von
		Hämoglobin gibt, in denen die vier Sauerstoffbindestellen nur teilweise besetzt sind.
		Enzymkatalysierte Reaktionen: In Anwesenheit eines kompetitiven Inhibitors kann
		v _{max} bei sehr hohen Substratkonzentrationen immer noch erreicht werden.

	Unkompetitive Inhibitoren können nur an den Enzym/Substratkomplex binden.
	Dadurch wird die Wechselwirkung zwischen Enzym und Substrat stabilisiert und der
	apparente K _M -Wert ist in Gegenwart des Inhibitors kleiner als der K _M -Wert in
	Abwesenheit des Inhibitors.
	Wenn eines Molekül in zwei Zuständen vorkommt und im Gleichgewicht deren
	Verhältnis 1000:1 ist, ist die Energiedifferenz zwischen den Zuständen 17.1 kJ/mol
	bei 25°C.

Protein/Liganden Bindungsgleichgewichte:

Zu einer Proteinlösung (Proteinkonzentration = konstant) wird schrittweise immer mehr Ligand zugegeben. Die Dissoziationskonstante des Protein/Ligandenkomplexes ist 10⁻⁸ M. Zeichnen Sie in das folgende Diagramm qualitativ den Anstieg des Besetzungsgrades Y nach Gleichgewichtseinstellung als Funktion der Ligandenkonzentration ein, und zwar für die Fälle [P] = 10⁻⁷, 10⁻⁸ und 10⁻⁹ M.

Molar equivalents of ligand added

Kompetitive Enzyminhibition:

Zeichnen Sie (qualitativ) die Michaelis-Menten Diagramm für die folgenden Fälle: i) kein kompetitiver Inhibitor; ii) in Gegenwart niedriger und iii) in Gegenwart hoher Konzentrationen eines kompetitiven Inhibitors.

Nicht-kompetitive Enzyminhibition:

Zeichnen Sie (qualitativ) die Michaelis-Menten Diagramm für die folgenden Fälle: i) kein kompetitiver Inhibitor; ii) in Gegenwart niedriger und iii) in Gegenwart hoher Konzentrationen eines nicht-kompetitiven (allosterischen) Inhibitors.

Sie möchten den publizierten K_{M^-} und k_{cat} -Wert eines Enzyms für ein bestimmtes Substrat überprüfen ($K_{M} = 1 \, \mu M$, $k_{cat} = 200 \, s^{-1}$). Die Produktbildung lässt sich über die Zunahme der Absorption bei 360 nm bestimmen, der molare Extinktionskoeffizient des Produkts ist 6000 M^{-1} cm⁻¹. Wie muss für den Fall, dass die publizierten Daten stimmen, bei einer Küvette mit 1 cm Schichtdicke die Enzymkonzentration gewählt werden, dass bei [S] = K_{M} die Absorptionszunahme nach Mischen von Enzym und Substrat 0.05 min⁻¹ beträgt?