CS1231S

AY20/21 sem 1

github.com/jovyntls

01. PROOFS

sets of numbers

 \mathbb{N} : natural numbers ($\mathbb{Z}_{\geq 0}$)

 \mathbb{Z} : integers

① : rational numbers

R: real numbers

C: complex numbers

basic properties of integers

closure (under addition and multiplication) $x + y \in \mathbb{Z} \land xy \in \mathbb{Z}$ commutativity $a + b = b + a \wedge ab = ba$ associativity a + b + c = a + (b + c) = (a + b) + cabc = a(bc) = (ab)cdistributivity a(b+c) = ab + ac

> trichotomy $(a < b) \lor (a > b) \lor (a = b)$

transitive law $(a < b) \land (b < c) \implies (a < c)$

definitions

even/odd

n is even $\leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k$ $n \text{ is odd} \leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k+1$ prime/composite

n is prime $\leftrightarrow n > 1$ and $\forall r, s \in \mathbb{Z}^+, n = rs \to (r = rs)$ $n) \vee (r = s)$ n is composite $\leftrightarrow n > 1$ and $\exists r, s \in \mathbb{Z}^+ s.t.n =$ rs and 1 < r < n and 1 < s < n

divisibility (d divides n) $d \mid n \leftrightarrow \exists k \in \mathbb{Z} \mid n = kd$

r is rational $\leftrightarrow \exists a, b \in \mathbb{Z} \mid r = \frac{a}{b}$ and $b \neq 0$ floor/ceiling

|x|: largest integer y such that y < x $\lceil x \rceil$: smallest integer y such that y > x

rules of inference

generalisation $p, \therefore p \vee q$ specialisation

 $p \wedge q$, :. p

elimination $p \vee q$; $\sim q$, $\therefore p$ transitivity $p \to q; \ q \to r; \ \therefore p \to r$

04. METHODS OF PROOF

Proof by Exhaustion/Cases

1. list out possible cases

1.1. Case 1: n is odd OR If n = 9, ...1.2. Case 2: n is even OR If n = 16....

2. therefore ...

Proof by Contradiction

Suppose that ...

1.1. <proof>

1.2. ... but this contradicts ...

2. Therefore the assumption that ... is false. Hence

Proof by Contraposition

1. Contrapositive statement: $\sim q \rightarrow \sim p$

2. let $\sim a$

2.1. <proof>

2.2. hence $\sim p$

3. $p \rightarrow q$

Proof by Construction

1. Let x = 3, y = 4, z = 5.

2. Then $x, y, z \in \mathbb{Z}_{\geq 1}$ and

Proof by Induction

 $x^2 + y^2 = 3^2 + 4^2 = 9 + 16 = 25 = 5^2$. 3. Thus $\exists x, y, z \in \mathbb{Z}_{>1}$ such that $x^2 + y^2 = z^2$.

1. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition "..."

2. (base step) P(1) is true because <manual method>

3. (induction step)

3.1. let $k \in \mathbb{Z}_{\geq 1}$ s.t. P(k) is true

3.2. Then ...

3.3. proof that P(k+1) is true - e.g. $P(k+1) = P(k) + term_{k+1}$

3.4. So P(k + 1) is true.

4. Hence $\forall n \in \mathbb{Z}_{>1} P(n)$ is true by MI.

Proofs for Sets

Equality of Sets (A=B)

1. (⇒)

1.1. Take any $z \in A$.

1.2. ...

1.3. $\therefore z \in B$.

2. (\(\pi\))

2.1. Take any $z \in B$.

2.2. ...

2.3. $\therefore z \in A$.

Element Method

1. $A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\}$ (by def. of \cap)

2. = $\{x : x \in A \land (x \in B \land x \notin C)\}$ (by def. of \) 3. ...

4. = $(A \cap B) \setminus C$ (by def. of \)

Other Proofs

iff $(A \leftrightarrow B)$

1. (\Rightarrow) Suppose A.

1.1. ... <proof> ...

1.2. Hence $A \rightarrow B$

2. (\Leftarrow) Suppose B.

2.1. ... <proof> ...

2.2. Hence $B \rightarrow A$

02. COMPOUND STATEMENTS

operations

 $1 \sim$: negation (not) 2 ∧ : conjunction (and)

2 ∨ : disjunction (or) - coequal to ∧

logical equivalence

· identical truth values in truth table

definitions

 $3 \rightarrow$: if-then

· to show non-equivalence:

truth table method (only needs 1 row)

· counter-example method

conditional statements

hypothesis → conclusion

 $antecedent \rightarrow consequent$

· vacuously true : hypothesis is false

• implication law : $p \to q \equiv \sim p \lor q$

· common if/then statements:

• if p then q: $p \rightarrow q$

• p if q: $q \rightarrow p$

• p only if q: $p \rightarrow q$

• p iff q: $p \leftrightarrow q$

• contrapositive : $\sim q \rightarrow \sim p$ converse = inverse • inverse : $\sim p \rightarrow \sim q$ statement = contrapositive

• converse : $q \rightarrow p$

• r is a **necessary** condition for s: $\sim r \rightarrow \sim s$ and $s \rightarrow r$

• r is a **sufficient** condition for s: $r \rightarrow s$

necessary & sufficient : ↔

valid arguments

· determining validity: construct truth table

ullet valid \leftrightarrow conclusion is true when premises are true

syllogism: (argument form) 2 premises, 1 conclusion

• modus ponens : $p \rightarrow q; \; p; \; \therefore q$

• modus tollens : $p \to q$; $\sim q$; $\therefore \sim p$

· sound argument : is valid & all premises are true

fallacies

converse error inverse error $p \rightarrow q$ $p \rightarrow q$ q $\sim p$.. p $\therefore \sim q$

03. QUANTIFIED STATEMENTS

• truth set of $P(x) = \{x \in D \mid P(x)\}$

• $P(x) \Rightarrow Q(x) : \forall x (P(x) \rightarrow Q(x))$

• $P(x) \Leftrightarrow Q(x) : \forall x (P(x) \leftrightarrow Q(x))$

relation between $\forall . \exists . \land . \lor$

• $\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land \cdots \land Q(x_n)$

• $\exists x \in D \mid Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \cdots \lor Q(x_n)$

05. SETS

notation

• set roster notation [1]: $\{x_1, x_2, \ldots, x_n\}$

• set roster notation [2]: $\{x_1, x_2, x_3, \dots\}$ • set-builder notation: $\{x \in \mathbb{U} : P(x)\}$

definitions

• equal sets : $A = B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$ • $A = B \leftrightarrow (A \subseteq B) \land (A \supset B)$

• empty set, \emptyset : \emptyset \subseteq all sets

• subset : $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$

• proper subset : $A \subseteq B \leftrightarrow (A \subseteq B) \land (A \neq B)$ • power set of A : $\mathcal{P}(A) = \{X \mid X \subseteq A\}$ • $|\mathcal{P}(A)| = 2^{|A|}$, given that A is a finite set

• cardinality of a set, |A|: number of distinct elements

• singleton : sets of size 1

• disjoint : $A \cap B = \emptyset$

methods of proof for sets

· direct proof

· element method

· truth table boolean operations

• union: $A \cup B = \{x : x \in A \lor x \in B\}$

• intersection: $A \cap B = \{x : x \in A \land x \in B\}$

• complement (of B in A): $A \setminus B = \{x : x \in A \land x \notin B\}$

• complement (of B): \bar{B} or $B^c = U \backslash B$ • set difference law: $A \setminus B = A \cap \bar{B}$

ordered pairs and cartesian products

• ordered pair : (x, y)· Cartesian product :

• $(x,y) = (x',y') \leftrightarrow x = x'$ and y = y'

 $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$

 $\bullet |A \times B| = |A| \times |B|$ ullet ordered tuples : expression of the form (x_1,x_2,\ldots,x_n)

06. FUNCTIONS

definitions

• function/map from A to B: assignment of each element of A to exactly one element of B.

• $f: A \to B$: "f is a function from A to B"

• $f: x \rightarrow y$: "f maps x to y"

• domain of f = A

• codomain of f = B

• range/image of f = $\{f(x) : x \in A\}$

 $= \{ y \in B \mid y = f(x) \text{ for some } x \in A \}$ • identity function on A, $id_A : A \rightarrow A$

• $\mathsf{id}_\mathtt{A}:x\to x$ • range = domain = codomain = A

• (E6.1.24) $f \circ id_A = f$ and $id_A \circ f = f$

· well-defined function : every element in the domain is

assigned to exactly one element in the codomain equality of functions

· same codomain and domain

• for all $x \in \text{codomain}$, same output

function composition

• $(q \circ f)(x) = q(f(x))$

• for $(q \circ f)$ to be well defined, codomain of f must be equal to the domain of q

× commutative

• \checkmark associative - (T6.1.26) $f \circ (g \circ h) = (f \circ g) \circ h$

image & pre-image

for $f: A \to B$

• if $X \subseteq A$, image of X,

 $f(X) = \{y \in B : y = f(x) \text{ for some } x \in X\}$ • if $Y \subseteq B$, pre-image of Y,

 $f^{-1}(Y) = \{x \in A : y = f(x) \text{ for some } y \in Y\}$

injection & surjection

- surjective (onto) : codomain = range
 - $\forall y \in B, \exists x \in A (y = f(x))$
- surjective test: $\forall Y \subseteq B, Y \subseteq f(f^{-1}(Y))$
- injective : one-to-one
- $\forall x, x' \in A(f(x) = f(x') \Rightarrow x = x')$
- injective test: $\forall X \subseteq A, X \subseteq f^{-1}(f(X))$
- · bijective : both surjective & injective

inverse

- $\forall x \in A, \forall y \in B(f(x) = y \Leftrightarrow g(y) = x)$
- uniqueness of inverses (P2.6.16)
 - if g, g' are inverses of $f: A \to B$, then g = g'

07. INDUCTION

mathematical induction

to prove that $\forall n \in \mathbb{Z}_{\geq m}(P(n))$ is true,

- base step: show that P(m) is true
- induction step: show that $\forall k \in \mathbb{Z}_{\geq m}(P(k) \Rightarrow P(k+1))$
 - induction hypothesis: assumption that P(k) is true

strong MI

to prove that $\forall n \in \mathbb{Z}_{\geq 0}(P(n))$ is true,

- base step: show that P(0), P(1) are true
- · induction step: show that

 $\forall k \in \mathbb{Z}_{\geq 0}(P(0) \cdots \wedge P(k+1) \Rightarrow P(k+2))$ is true. justification:

- $P(0) \wedge P(1)$ by base case
- $P(0) \wedge P(1) \rightarrow P(2)$ by induction with k=0
- $P(0) \wedge P(1) \wedge P(2) \rightarrow P(3)$ by induction with k=1
- we deduce that $P(0), P(1), \ldots$ are all true by a series of modus ponens

well-ordering principle

- every nonempty subset of $\mathbb{Z}_{>0}$ has a smallest element.
- · application: recursion has a base case

RECURSION

a sequence is **recursively defined** if the definition of a_n involves $a_0, a_1, \ldots, a_{n-1}$ for all but finitely many $n \in \mathbb{Z}_{\geq 0}$.

recursive definitions

e.g. recursive definition for Z

- 1. (base clause) $0 \in \mathbb{Z}_{\geq 0}$
- 2. (recursion clause) If $x \in \mathbb{Z}_{\geq 0}$, then $x + 1 \in \mathbb{Z}_{\geq 0}$
- 3. (minimality clause) Membership for $\mathbb{Z}_{>0}$ can be demonstrated by (finitely many) successive applications of the clauses above

recursion vs induction

- recursion to define the set
- · induction to show things about the set

well-formed formulas (WFF)

in propositional logic

define the set of WFF(Σ) as follows

- 1. (base clause) every element ρ of Σ is in WFF(Σ)
- 2. (recursion clause) if x, y are in WFF(Σ), then $\sim x$ and $(x \wedge y)$ and $(x \vee y)$ are in WFF(Σ)
- 3. (minimality clause) Membership for WFF(Σ) can be demonstrated by (finitely many) successive applications of the clauses above

08. NUMBER THEORY

divisibility

transitivity of divisibility If $a \mid b$ and $b \mid c$, then $a \mid c$.

closure lemma (non-standard name)

Let $a, b, d, m, n \in \mathbb{Z}$. If $d \mid m$ and $d \mid n$, then $d \mid am + bn$. division theorem

 $\forall n \in \mathbb{Z} \text{ and } d \in \mathbb{Z}^+, \exists !q,r \in \mathbb{Z} \text{ s.t.}$ n = dq + r and $0 \le r < d$ $q = n \operatorname{div} d = \lfloor n/d \rfloor$ $r = n \mod d = n - dq$

base-b representation

of positive integer n is $(a_{\ell}a_{\ell-1}\dots a_0)_b$ where $\ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \dots, a_{\ell} \in \{0, 1, \dots, b-1\}$ s.t. $n = a_{\ell} \bar{b^{\ell}} + a_{\ell-1} b^{\ell-1} + \cdots + a_0 b^0$ and $a_{\ell} \neq 0$

greatest common divisor

- if $m \neq 0$ and $n \neq 0$, then gcd(m, n) exists and is positive.
 - · acd: Euclidean Algorithm
 - integer linear combination: Extended Euclidean Algorithm

Bezout's Lemma:

For all $m, n \in \mathbb{Z}$ with $n \neq 0$, there exist $s, t \in \mathbb{Z}$ such that gcd(m, n) = ms + nt.Euclid's Lemma:

Let $m, n \in \mathbb{Z}^+$. If p is prime and $p \mid mn$, then $p \mid m$ or $p \mid n$.

- (E8.4.3) $m \mod n = 0 \Leftrightarrow \gcd(m, n) = n$
- (L8.4.11) $\forall x, y, r \in \mathbb{Z}$,
- $x \bmod y = r \Rightarrow \gcd(x, y) = \gcd(y, r)$

prime factorization thoerem

· (aka Fundamental Theorem of Arithmetic): Every integer $n \ge 2$ has a unique prime factorization in which the prime factors are arranged in nondecreasing order.

modular arithmetic

 $n \mod d$ is always non-negative.

Let
$$a,b,c\in\mathbb{Z}$$
 and $n\in\mathbb{Z}^+$.
congruence
$$a\equiv b\ (\bmod n)\Leftrightarrow a\bmod n=b\bmod n$$
Then $\exists k\in\mathbb{Z}\big(a=nk+b$ and $n\mid (a-b)\big)$
reflexivity
$$a\equiv a\ (\bmod n)$$
symmetry
$$a\equiv b\ (\bmod n)\to b\equiv a\ (\bmod n)$$

transitivity

 $a \equiv b \pmod{n} \land b \equiv c \pmod{n} \rightarrow a \equiv c \pmod{n}$

components: elements of a partition

partitions

such that

· every partition comes from an equivalence relation

- If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$,
- (P8.6.6) $a + c \equiv (b + d) \pmod{n}$

addition & multiplication

multiplicative inverse

• exists $\Leftrightarrow \gcd(a, n) = 1$.

• a, n are coprime

• subset of A^2

and transitive

equivalence classes

relations

• (P8.6.13) $ac \equiv bd \pmod{n}$

b is an *additive inverse* of $a \mod n \Leftrightarrow a + b \equiv 0 \pmod{n}$.

b is a multiplicative inverse of $a \mod n \Leftrightarrow ab \equiv 1 \pmod n$.

• If b, b' are multiplicative inverses of a, then $b \equiv b' \pmod{n}$.

Let R be a relation from A to B and $(x, y) \in A \times B$. Then:

xRy for $(x,y) \in R$ and xRy for $(x,y) \notin R$

reflexive

 $\forall x \in A (xRx)$

symmetric

 $\forall x, y \in A (xRy \Rightarrow yRx)$

transitive

 $\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz)$

· equivalence relation: a relation that is reflexive, symmetric

 $\forall x \in A, [x]_R = \{y \in A : xRy\}$

 $A/R = \{ [x]_R : x \in A \}$

• a partition of a set A is a set \mathscr{C} of non-empty subsets of A

 $(<1) \ \forall x \in A, \ \forall S, S' \in \mathscr{C}(x \in S \land x \in S' \Rightarrow S = S')$

equivalence class: the set of all things equivalent to x

Let A be a set and R be an equivalence relation on A.

• $[x]_R$: equivalence class of x with respect to R

• A/R: The set of all equivalent classes

 $xRy \Rightarrow [x] = [y] \Rightarrow [x] \cap [y] \neq \emptyset$

 $(\geq 1) \ \forall x \in A, \ \exists S \in \mathscr{C}(x \in S)$

• to find multiplicative inverse: Euclidean Algorithm

09. EQUIVALENCE RELATIONS

a relation from A to B is a subset of A × B.

• inverse relation: $xR^{-1}y \Leftrightarrow yRx$

reflexivity, symmetry, transitivity

Let A be a set and R be a relation on A.

· a (binary) relation on set A is a relation from A to A.

b is an additive inverse of $a \mod n \Leftrightarrow b \equiv -a \pmod n$.

additive inverse antisymmetric and transitive.

 ← partial order

partial orders

• $x \prec y \Leftrightarrow x \preccurlyeq y \land x \neq y$ (NOT a partial order)

• x and y are comparable if $\forall x, y \in A (xRy \vee yRx)$

• R is a (non-strict) partial order if R is reflexive.

- R is a (non-strict) total order if R is a partial order and xand y are comparable

• R is antisymmetric if $\forall x, y \in A \ (xRy \land yRx \rightarrow x = y)$

• includes vacuously true cases (e.g. $xRy \Leftrightarrow x < y$)

min and max

Let \leq be a partial order on a set A, and $c \in A$.

Let A be a set and R be a relation on A.

- c is a minimal element if $\forall x \in A \ (x \leq c \Rightarrow c = x)$
 - · nothing is strictly below it
- c is a maximal element if $\forall x \in A \ (c \leq x \Rightarrow c = x)$
 - · nothing is strictly above it
- c is the smallest element or minimum element if $\forall x \in a \ (c \leq x).$
- c is the largest element or maximum element if $\forall x \in a \ (x \leq c).$

linearization

Let A be a set and \leq be a partial order on A. Then there exists a total order \leq^* on A such that $\forall x, y \in A \ (x \leq y \Rightarrow x \leq^* y)$

10A. COUNTING

permutations

$$P(n,r) = \frac{n!}{(n-r)!}$$
 (also ${}_nP_r, P_r^n$)

- multiplication/product rule: An operation of k steps can be performed in $n_1 \times n_2 \times \cdots \times n_k$ ways.
- addition/sum rule: Suppose a finite set A equals the union of k distinct mutually disjoint subsets A_1, A_2, \ldots, A_k . Then $|A| = |A_1| + |A_2| + \cdots + |A_k|$
- difference rule: if A is a finite set and $B \subseteq A$, then $|A \backslash B| = |A| = |B|$
- complement: $P(\bar{A}) = 1 P(A)$
- inclusion/exclusion rule: $|A \cup B \cup C| =$ $|A|+|B|+|C|-|A\cap B|-|B\cap C|-|C\cap A|+|A\cap B\cap C|$

permutations with indistinguishable objects

For n objects with n_k of type k indistinguishable from each other, the total number of distinguishable permutations $= \frac{n!}{n_1!n_2!...n_k!}$

pigeonhole principle

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if $k<\frac{n}{m}$, then there is some $y\in Y$ such that y is the image of at least k+1 distinct elements of X.

- · A function from a finite set to a smaller finite set cannot be injective.
- · presentation:
 - There are m <object M> (pigeons) and n <object N>
- · Thus, by Pigeonhole Principle, ...

combinations

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} \text{ (also } C(n,r),\, {}_{n}C_{r},\, C_{n,r},\, {}^{n}C_{r})$$

$$r\text{-combinations from } n \text{ elements with } \mathbf{repetition} \\ = \binom{r+n-1}{r}$$

pascal's formula

Suppose
$$n,r\in\mathbb{Z}^+$$
 with $r\le n.$ Then $\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$

binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

binomial coefficient: $\binom{n}{k}$

10B. PROBABILITY

probability

Let S be a sample space. For all events A and B in S, a probability function P satisfies the following axioms:

- 1. 0 < P(A) < 1
- 2. $P(\emptyset) = 0$ and P(S) = 1
- 3. $(A \cap B = \emptyset) \Rightarrow [P(A \cup B) = P(A) + P(B)]$
- 4. $P(\bar{A}) = 1 P(A)$
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

expected value

For possible outcomes a_1, a_2, \ldots, a_n which occur with probabilities p_1, p_2, \dots, p_n , the **expected value** is $\sum_{k=1}^{n} = a_k p_k$

- linearity of expectation
 - E[X+Y] = e[X] + E[Y]
 - $E\left[\sum_{i=1}^{n} c_i \cdot X_i\right] = \sum_{i=1}^{n} (c_i \cdot E[X_i])$

conditional probability

The conditional probability of A given B, $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

probability tree:

$$P(B_1) = \frac{1}{3} B_1$$

$$P(B_2 \setminus B_1^c) \longrightarrow B_2 \to P(B_1^c \cap B_2) = \dots$$

$$P(B_1^c \cap B_2) = \dots$$

$$P(B_2^c \cap B_2^c) \longrightarrow B_2^c \to P(B_1^c \cap B_2^c) = \dots$$

Bayes' theorem

Suppose a sample space S is a union of mutually disjoint events B_1, B_2, \ldots, B_n and A is an event in S. For $k \in \mathbb{Z}$ and $1 \le k \le n$,

$$P(B_k \mid A) = \frac{P(A|B_k) \cdot P(B_k)}{\sum\limits_{i=1}^{n} \left(P(A|B_i) \cdot P(B_i) \right)}$$

application of Bayes' theorem

$$P(B_1 \mid A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)}$$

Let A be the event that the person test positive for a disease. B_1 : the person actually has the disease.

 B_2 : the person does not have the disease.

true positives: $P(B_1 \mid A)$ false negatives: $P(\bar{A} \mid B_1)$ false positives: $P(A \mid B_2)$ | true negatives: $P(\bar{A} \mid B_2)$

independent events

A and B are independent iff $P(A \cap B) = P(A) \cdot P(B)$

A, B and C are pairwise independent iff

- 1. $P(A \cap B) = P(A) \cdot P(B)$
- 2. $P(B \cap C) = P(B) \cdot P(C)$
- 3. $P(A \cap C) = P(A) \cdot P(C)$

A, B and C are mutually independent iff

- 1. A, B and C are pairwise independent
- **2.** $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$

11. GRAPHS

 mathematical structures used to model pairwise relations between objects

types of graphs

undirected graph

- denoted by G = (V, E), comprising
 - nonempty set of *vertices/nodes*, $V = \{v_1, v_2, \dots, v_n\}$
 - a set of *edges*, $E = \{e_1, e_2, \cdots, e_k\}$
- $e = \{v, w\}$ for an undirected edge E incident on vertices v

directed graph

- denoted by G = (V, E), comprising
 - ullet nonempty set V of $\mathit{vertices}$
 - a set E of *directed edges* (ordered pair of vertices)
- e = (v, w) for an directed edge E from vertex v to vertex w

simple graph

• undirected graph with no loops or parallel edges

complete graph

• a complete graph on n vertices, n > 0, denoted K_n , is a simple graph with n vertices and exactly one edge connecting each pair of distinct vertices

bipartite graph

- · a simple graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V
- complete bipartite graph: $K_{m,n}$
 - bipartite graph on two disjoint sets U and V such that every vertex in U connects to every vertex in V
 - denoted $K_{m,n}$ where |U|=m, |V|=n

subgraph of a graph

H is a subgraph of $G \Leftrightarrow$

- every vertex in H is also a vertex in G
- every edge in H is also an edge in G
- ullet every edge in H has the same endpoints as it has in G

degree

- degree of v, deg(v) = number of edges incident on v
- total degree of G = sum of the degrees of all vertices of G total degree of $G = 2 \times$ (number of edges of G)
- · (C10.1.2) the total degree of a graph is even
- · (P10.1.3) in any graph there are an even number of vertices of odd degree

trails, paths and circuits

Let G be a graph; let v and w be vertices of G.

- walk (from v to w): a finite alternating sequence of adjacent vertices and edges of G.
 - e.g. $v_0e_1v_1e_2\dots v_{n-1}e_nv_n$
- length of walk: the number of edges, n
- a **trivial walk** from v to v consists of the single vertex v
- trail (from v to w): a walk from v to w that does not contain a repeated edge
- path (from v to w): a trail that does not contain a repeated
- · closed walk: walk that starts and ends at the same vertex
- circuit/cycle: an undirected graph G(V, E) where
- $V = \{x_1, x_2, \dots, x_n\}$
- $E = \{\{x_1, x_2\}, \{x_2, x_3\}, \dots, \{x_{n-1}, x_n\}, \{x_n, x_1\}\}$
- $n \in \mathbb{Z}_{\geq 3}$
- · aka a closed walk that does not contain a repeated edge
- simple circuit/cycle: does not have any other repeated vertex except the first and last
- (an undirected graph is) cyclic if it contains a loop/cycle

connectedness

- vertices v and w are connected $\Leftrightarrow \exists$ a walk from v to w
- graph G is connected $\Leftrightarrow \forall$ vertices $v, w \in V$. \exists a walk from v to w

connected component

- · a connected subgraph of the largest possible size
- graph H is a connected component of graph $G \Leftrightarrow$
 - 1. H is a subgraph of G
- 2. H is connected
- 3. no connected subgraph of G has H as a subgraph and contains vertices or edges that are not in H

Euler circuit

- · Euler circuit: a circuit that contains every vertex and traverses every edge of G exactly once
- · Eulerian graph: graph that contains an Euler circuit

T10.2.3

Euler circuit ⇔ connected and every vertex has positive even degree

T10.2.4

Eulerian graph ⇔ every vertex has positive even degree

• Euler trail (from v to w): a sequence of adjacent edges and vertices that starts at v, ends at w, and passes through every vertex of G at least once, and traverses every edge of G exactly once.

C10.2.5

 \exists Euler trail \Leftrightarrow G is connected; v, w have odd degree; all other vertices of G have positive even degree

Hamiltonian circuit

- **Hamiltonian circuit** (for G): a simple circuit that includes every vertex of *G*.
 - does not need to include all the edges of G (unlike Euler
- Hamilton(ian) graph: contains a Hamiltonian circuit
- If G is a Hamiltonian circuit, then G has subgraph H where:
 - 1. *H* contains every vertex of G
 - 2. *H* is connected
 - 3. H has the same number of edges as vertices
 - 4. every vertex of *H* has degree 2

matrix representations of graphs

- equal matrices ⇔ A and B are the same size and $a_{ij} = b_{ij}$ for all $i = 1, 2, \dots, m$ and $i = 1, 2, \dots, n$
- square matrix: equal number of rows and columns
- main diagonal: all entries $a_{11}, a_{22}, \ldots, a_{nn}$
- symmetric matrix $\Leftrightarrow \forall i, j \in \mathbb{Z}_{\leq n}^+(a_{ij} = a_{ji})$

adiacency matrix

The adjacency matrix of a directed graph G is the $n \times n$ matrix $A = (a_{ij})$ over the set of non-negative integers such that

 a_{ij} = number of **arrows** from v_i to v_j $\forall i, j=1,2,\ldots,n$ $A = \begin{bmatrix} v_1 & 1 & 0 & 0 \\ v_2 & 1 & 1 & 2 \\ v_2 & 1 & 0 & 0 \end{bmatrix}$

The adjacency matrix of an **undirected graph** *G* is the $n \times n$ matrix $A = (a_{ij})$ over the set of non-negative integers such that

 $a_{i,j}$ = number of **edges** from v_i to $v_i \forall i, j = 1, 2, \dots, n$

 $A = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ v_2 & 1 & 0 & 2 & 1 \\ v_3 & 0 & 2 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 \end{bmatrix}$

identity matrix

The $n \times n$ identity matrix,

$$I_n = (\delta_{ij}) = egin{cases} 1, & ext{if } i = j \ 0, & ext{if } i
eq j \end{cases} ext{ for all } i, j = 1, 2, \ldots, n$$

matrix multiplication

scalar product

$$\begin{bmatrix} a_{i1} \ a_{i2} \ \dots \ a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

matrix product

Let $A = (a_{ij})$ be an $m \times k$ matrix and $B = (b_{ij})$ be a $k \times n$ matrix with real entries. $AB = (c_{ij}) = \sum_{r=1}^{k} a_{ir} b_{rj}$

× commutative ✓ associative

nth power of a matrix

For any $n\times n$ matrix ${\bf A}$, the powers of ${\bf A}$ are defined as follows: $A^0=I \text{ where } I \text{ is the } n\times n \text{ identity matrix}$ $A^n=AA^{n-1} \quad \forall n\in \mathbb{Z}_{>1}$

counting walks of length N

number of walks of length n from v_i to v_j = the ij-th entry of A^n

isomorphism

• graph isomorphism (≅) is an equivalence relation.

Let $G=(V_G,E_G)$ and $G'=(V_{G'},E_{G'})$ be two graphs. $G\cong G'\Leftrightarrow$ there exist bijections $g:V_G\to V'_G$ and $h:E_G\to E'_G$ that preserve the edge-edgepoint functions of G and G' in the sense that $\forall v\in V_G$ and $e\in E_G$, v is an endpoint of $e\Leftrightarrow g(v)$ is an endpoint of h(e).

planar graph

- a graph that can be drawn on a two-dimensional plane without edges crossing.
 - divides a plane into regions/faces (includes 'outside' the graph)

Euler's formula:

For a connected planar simple graph G=(V,E) with e=|E| and v=|V| and f faces, f=e-v+2

Kuratowski's Theorem

A finite graph is planar \Leftrightarrow does not contain a subgraph that is a subdivision of the complete graph K_5 or the complete bipartite graph K_3

trees

- tree
 ⇔ graph that is circuit-free and connected
- (L10.5.4) If G is a connected graph with n vertices and n-1 edges, then G is a tree.
- trivial tree: graph that comprises a single vertex
- forest \Leftrightarrow graph is circuit-free and not connected
- a group of trees
- terminal vertex: a vertex of degree 1
- internal vertex: a vertex of degree greater than 1

rooted trees

- rooted tree: a tree in which there is one vertex that is distinguished from the others and is called the root.
- level (of a vertex): the number of edges along the unique path between it and the root
- height (of a rooted tree): the maximum level of any vertex of the tree
- · children, parent, siblings, ancestor, decendant

binary tree

- binary tree: a rooted tree in which every parent has at most 2 children
 - · at most one left child and at most one right child
- full binary tree: a binary tree in which every parent has exactly 2 children
- (left/right) subtree: Given any parent v in a binary tree T, the binary tree whose root is the (left/right) child of v, whose

vertices consist of the left child of v and all its descendants, and whose edges consist of all those edges of T that connect the vertices of the left subtree.

T10.6.1: Full Binary Tree Theorem

If T is a full binary tree with k internal vertices, then T has a total of 2k+1 vertices and has k+1 terminal vertices.

binary tree traversal

Breadth-First Search (BFS)

- starts at the root
- · visits its adiacent vertices
- · visits its adjacent vertic
- · visits the next level

Depth-First Search (DFS)

- pre-order
- current vertex → left subtree → right subtree
- in-order
 - left subtree \rightarrow current vertex \rightarrow right subtree
- post-order
 - left subtree \rightarrow right subtree \rightarrow current vertex

spanning trees

- spanning tree (for a graph G): a subgraph of G that contains every vertex of G and is a tree.
 - w(e) weight of edge e
 - w(G) total weight of G
- weighted graph: each edge has an associated positive real number weight
- total weight: sum of the weights of all edges
- minimum spanning tree: least possible total weight compared to all other spanning trees

Kruskal's algorithm

For a connected weighted graph G with n vertices:

- 1. initialise T to have all the vertices of G and no edges.
- 2. let *E* be the set of all edges in *G*; let m=0
- 3. while (m < n 1)
- 3.1. find and remove the edge e in E of least weight
- 3.2. if adding e to the edge set of T does not produce a circuit:
 - i. add e to the edge set of T
 - ii. set m=m+1

Prim's algorithm

For a connected weighted graph ${\cal G}$ with n vertices:

- 1. pick any vertex v of G and let T be the graph with this vertex only
- 2. let V be the set of all vertices of G except v
- 3. for (i = 0 to n 1)
- 3.1. find the edge e in G with the least weight of all the edges connected to T. let w be the endpoint of e.
- 3.2. add e and w to the edge and vertex sets of T
- 3.3. delete w from v

OGICAL EQUIVALENCES

	LOGICAL EQUIVALEI
commutative laws	$p \wedge q \equiv q \wedge p$
associative laws	$(p \land q) \land r \equiv p \land (q \land r)$
distributive laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land q)$
identity laws	$p \wedge true \equiv p$
idempotent laws	$p \wedge p \equiv p$
universal bound laws	$p \lor true \equiv true$
negation laws	$p \lor \sim p \equiv true$
double negation law	$\sim (\sim p) \equiv p$
absorption laws	$p \lor (p \land q) \equiv p$
De Morgan's Laws	$\sim (p \lor q) \equiv \sim p \land \sim q$

-0		
	$p\vee q\equiv q\vee p$	
	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor$	
	$p \vee false \equiv p$	
	$p\vee p\equiv p$	
	$p \wedge false \equiv false$	
	$p \wedge {\sim} p \equiv false$	
	_	
	$p \land (p \lor q) \equiv p$	
	$\sim (p \land q) \equiv \sim p \lor \sim q$	

commutative laws	
associative laws	
distributive laws	
identity laws	
idempotent laws	
universal bound laws	
complement laws	
double complement law	
absorption laws	
De Morgan's Laws	

SETIDENTITIES	
	$A \cap B = B \cap A$
	$(A \cap B) \cap C = A \cap (B \cap C)$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$A \cap U = A$
	$A \cap A = A$
	$A \cap \emptyset = \emptyset$
	$A\cap \overline{A}=\emptyset$
	$\overline{(\overline{A})} = A$
	$A \cup (A \cap B) = A$
	$\overline{A \cup B} = \overline{A} \cap \overline{B}$

•	
	$A \cup B = B \cup A$
)	$(A \cup B) \cup C = A \cup (B \cup C)$
C	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cup \emptyset = A$
	$A \cup A = A$
	$A \cup U = U$
	$A \cup \overline{A} = U$
	_
	$A \cap (A \cup B) = A$
	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

proven:

number theory

- E1.1 the product of 2 consecutive odd numbers is always odd.
- E1.5 the difference between 2 consecutive squares is always odd
- E1.4 the sum of any 2 even integers is even
- T4.6.1 there is no greatest integer
- T8.2.8 there are infinitely many prime numbers
- T4.3.1 for all positive integers a and b, if a|b, then $a \leq b$.
- P4.6.4 for all integers n, if n^2 is even then n is even
- T4.2.1 all integers are rational numbers
- T4.2.2 the sum of any 2 rational numbers is rational
- E1.7 there exist irrational numbers p and q such that p^q is rational
- T4.7.1 $\sqrt{2}$ is irrational.
- T4.3.2 the only divisors of 1 are 1 and -1.

divisibility

- L8.1.5 Let $d, n \in \mathbb{Z}$ with $d \neq 0$. Then $d \mid n \Leftrightarrow n/d \in \mathbb{Z}$
- L8.1.9 Let $d, n \in \mathbb{Z}$. If $d \mid n$, then $-d \mid n$ and $d \mid -n$ and $-d \mid -n$
- L8.1.10 Let $d, n \in \mathbb{Z}$. If $d \mid n$ and $d \neq 0$, then $|d| \leq |n|$
- L8.2.5 Prime Divisor Lemma (non-standard name):
 - Let $n \in \mathbb{Z}_{\geq 2}$. Then n has a prime divisor.
- P8.2.6 sizes of prime divisors:
 - Let n be a composite positive integer. Then n has a prime divisor $p < \sqrt{n}$.

base-b representation

• T8.3.13 - $\forall n \in \mathbb{Z}^+, \exists ! \ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \dots, a_\ell \in \{0, 1, \dots, b-1\}$ such that <the definition of base-b representation> holds.

logic

• T3.2.1 - negation of a universal statement:

• $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \mid \sim P(x)$

- T3.2.2 negation of an existential statement:
 - $\sim (\exists x \in D \mid P(x)) \equiv \forall x \in D, \sim P(x)$

sets

- T5.1.14 there exists a unique set with no element. It is denoted by ∅.
- E5.3.7 for all $A, B: (A \cap B) \cup (A \setminus B) = A$
- T5.3.11(1) let A, B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$
- T5.3.11(2) let A_1,A_2,\ldots,A_n be pairwise disjoint finite sets. Then $|A_1\cup A_2\cup\cdots\cup A_n|=|A_1|+|A_2|+\cdots+|A_n|$
- T5.3.12 Inclusion-Exclusion Principle:
 - for all finite sets A and B, $|A \cup B| = |A| + |B| |A \cap B|$

induction

- L7.3.19 If $x\in {\sf WFF}^+(\Sigma)$, then assigning false to all elements of Σ makes x evaluate to false.
- T7.3.20 \sim ($\forall x \in \mathsf{WFF}(\Sigma), \exists y \in \mathsf{WFF}^+(\Sigma) \ y \equiv x$) $\equiv \exists x \in \mathsf{WFF}(\Sigma) \ \forall y \in \mathsf{WFF}^+(\Sigma) \ y \not\equiv x$ aka \sim (not) must be included in the definition of WFF.

relations

- E9.2.11 The equality relation R on a set A has equivalence classes of the form $[x]=\{y\in A: x=y\}=\{x\}$ where $x\in A$
- T9.3.4 Let R be an equivalence relation on a set A. Then A/R is a partition of A.
- T9.3.5 If $\mathscr C$ is a partition of A, then there is an equivalence relation of R on A such that $A/R=\mathscr C$.
- L9.5.5 Consider a partial order \leq on set A.
 - · A smallest element is minimal.
 - There is at most one smallest element.

graphs

- L10.2.1 Let *G* be a graph.
 - L10.2.1a If G is connected, then any two distinct vertices of G can be connected by a path
 - L10.2.1b If vertices v and w are part of a circuit in G and one edge is removed from the circuit, then there still exists a trail from v to w in G.
 - L10.2.1c If G is connected and G contains a circuit, then an edge of the circuit
 can be removed without disconnecting G.
- L10.5.1 Any non-trivial tree has at least one vertex of degree 1.
- T10.5.2 Any tree with n vertices (n > 0) has n 1 edges.
- L10.5.3 If G is any connected graph, C is any circuit in G, and one of the edges
 of C is removed from G, then the graph that remains is still connected.
- L10.5.4 If G is a connected graph with n vertices and n-1 edges, then G is a tree.
- T10.6.1 If T is a full binary tree with k internal vertices, then T has a total of 2k+1 vertices and has k+1 terminal vertices.
- T10.6.2 For non-negative integers h, if T is any binary tree with height h and t terminal vertices, then $t \leq 2^h$.
- P10.7.1 -
 - 1. Every connected graph has a spanning tree.
 - 2. Any two spanning trees for a graph have the same number of edges

abbreviations

- L lemma
- E example
- P proposition
- T theorem