Mathematik für Informatiker 1

Blatt 1

Prof. Dr. Theo de Jong Klaus Mattis

Übung 1.1

Beweisen Sie mithilfe einer Wahrheitstabelle folgende aussagenlogische Äquivalenzen:

- 1. $\neg \neg a \equiv a$,
- 2. $a \vee b \equiv b \vee a$ ("Kommutativität der Disjunktion"),
- 3. $a \wedge b \equiv b \wedge a$ ("Kommutativität der Konjunktion").

Übung 1.2

Beweisen Sie mithilfe einer Wahrheitstabelle folgende aussagenlogische Äquivalenzen:

- 1. $a \equiv a \land (a \lor b)$,
- 2. $a \equiv a \lor (a \land b)$.

Übung 1.3

Beweisen Sie mithilfe einer Wahrheitstabelle folgende aussagenlogische Äquivalenzen:

- 1. $\neg(a \land b) \equiv \neg a \lor \neg b$,
- 2. $\neg (a \lor b) \equiv \neg a \land \neg b$.

Was fällt Ihnen hier auf?

Übung 1.4

Beweisen Sie mithilfe einer Wahrheitstabelle folgende aussagenlogische Äquivalenzen:

- 1. $a \to b \equiv \neg a \lor b$,
- 2. $a \to b \equiv \neg b \to \neg a$ (dies nennt man auch "Beweis durch Kontraposition"),
- 3. $a \leftrightarrow b \equiv (\neg a \lor b) \land (a \lor \neg b)$.