Math 131A Homework 2

Jiaping Zeng

8/12/2020

- 8.1 Prove the following:
 - (a) $\lim \frac{(-1)^n}{n} = 0$

Answer: Proof: Take $N = \frac{1}{\epsilon}$, then $n > N = \frac{1}{\epsilon} \implies \epsilon > \frac{1}{n} = |s_n - 0|$. Therefore $\lim_{n \to \infty} \frac{1}{n} = |s_n - 0|$. $\frac{(-1)^n}{n} = 0$ by definition of limit.

(c) $\lim \frac{2n-1}{3n+2} = \frac{2}{3}$

Answer: Scratch: $\left| \frac{2n-1}{3n+2} - \frac{2}{3} \right| < \epsilon \implies \left| \frac{6n-3-2\cdot(3n+2)}{3\cdot(3n+2)} \right| < \epsilon \implies \left| \frac{-7}{3\cdot(3n+2)} \right| < \epsilon$

 $\epsilon \implies \frac{7}{3\epsilon} < 3n + 2 \implies \frac{7}{9\epsilon} - \frac{2}{3} \le n.$ Proof: Let $\epsilon > 0$, define $N = \frac{7}{9\epsilon} - \frac{2}{3}$. Then, $n > N = \frac{7}{9\epsilon} - \frac{2}{3} \implies 3n + 2 > \frac{7}{3\epsilon} \implies 3\epsilon > \frac{7}{3n + 2} \implies \epsilon > \frac{7}{3 \cdot (3n + 2)} = \left| s_n - \frac{2}{3} \right|$. Therefore $\lim \frac{2n - 1}{3n + 2} = \frac{2}{3}$ by definition.

8.4 Let (t_n) be a bounded sequence, i.e., there exists M such that $|t_n| \leq M$ for all n, and let (s_n) be a sequence such that $\lim s_n = 0$. Prove $\lim (s_n t_n) = 0$.

Answer: Want to show: $n > N \implies |s_n t_n| < \epsilon$

8.5 (a) Consider three sequences (a_n) , (b_n) and (s_n) such that $a_n \leq s_n \leq b_n$ for all n and $\lim a_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty}$ $b_n = s$. Prove $\lim s_n = s$. This is called the "squeeze lemma."

Answer: Since $\lim a_n = s$, there exists an N_a such that $n > N_a \implies |a_n - s| < \epsilon \implies -\epsilon < \epsilon$ $a_n - s < \epsilon \implies s - \epsilon < a_n < s + \epsilon$. Similarly, since $\lim b_n = s$, there exists an N_b such that $n > N_b \implies |b_n - s| < \epsilon \implies s - \epsilon < b_n < s + \epsilon$. Then, since $a_n \le s_n \le b_n$ for all n, we also have $s - \epsilon < a_n \le s_n \le b_n < s + \epsilon$. Therefore $s - \epsilon < s_n < s + \epsilon$, which implies that $|s_n - s| < \epsilon$. Then $\lim s_n = s$ by definition of limit.

(b) Suppose (s_n) and (t_n) are sequences such that $|s_n| \leq t_n$ for all n and $\lim_{n \to \infty} t_n = 0$. Prove $\lim_{n \to \infty} t_n = 0$. $s_n = 0.$

Since $\lim t_n = 0$, there exists an N such that $n > N \implies |t_n| < \epsilon$. Then we also Answer: know that $\lim_{n \to \infty} -t_n = 0$ because $|-t_n| = |t_n| < \epsilon$. Then, since $|s_n| \le t_n$, we have $-t_n \le s_n \le t_n$. Therefore $\lim s_n = 0$ by squeeze lemma.

1

8.6 Let (s_n) be a sequence in \mathbb{R} .

(a) Prove $\lim s_n = 0$ if and only if $\lim |s_n| = 0$.

Answer:

- \Rightarrow : Since $\lim s_n = 0$, there exists an N such that $n > N \implies |s_n| < \epsilon$. Then $\lim |s_n| = 0$ by definition because $|(|s_n|)| = |s_n| < \epsilon$.
- \Leftarrow : Since $\lim |s_n| = 0$, there exists an N such that $n > N \implies |(|s_n|)| < \epsilon$. Since $|(|s_n|)| = |s_n|$, we also have $|s_n| < \epsilon$. Then $\lim s_n = 0$ by definition.
- (b) Observe that if $s_n = (-1)^n$, then $\lim |s_n|$ exists, but $\lim s_n$ does not exist.

Answer: Observed.

- 8.9 Let (s_n) be a sequence that converges.
 - (a) Show that if $s_n \geq a$ for all but finitely many n, then $\lim s_n \geq a$.
 - (b) Show that if $s_n \leq b$ for all but finitely many n, then $\lim s_n \leq b$.
 - (c) Conclude that if all but finitely many s_n belong to [a, b], then $\lim s_n$ belongs to [a, b].
- 8.10 Let (s_n) be a convergent sequence, and suppose $\lim s_n > a$. Prove there exists a number N such that n > N implies $s_n > a$.

Answer: Let $\lim s_n = s$. Then there exists an N such that $n > N \implies |s_n - s| < \epsilon$. By expanding the absolute value we have $-\epsilon < s_n - s < \epsilon$, which is equivalent to $s - \epsilon < s_n < s + \epsilon$.

- 9.1 (a)
 - (b)
- 9.3
- 9.9
- 9.10 (a)
 - (b)
- 9.11
- 9.12
- 10.5
- 10.6
- 10.7
- P1