Assignment Test_1 due 03/29/2014 at 07:08pm MST

Problem 1. 1. (1 pt) Find an equation of the tangent line to the curve $y = 6 - 2x - 3x^2$ at (1, 1).

Answer(s) submitted:

• 9 - 8x

(correct)

Correct Answers:

−8*x+1+8

Problem 2. 12. (1 pt) Let

$$f(x) = \begin{cases} -x & \text{if } x \le -6\\ 36 - x^2 & \text{if } -6 < x < 6\\ x - 6 & \text{if } x > 6 \end{cases}$$

Sketch the graph of this function and find following limits if they exist (if not, enter DNE).

- $-1. \lim_{x \to 6^+} f(x)$
- $2. \lim_{x \to 0} f(x)$
- $x \rightarrow -6$

Answer(s) submitted:

- 0
- 0
- 36
- 6
- DNE
- 0

(correct)

Correct Answers:

- 0
- 0
- 36
- 6
- DNE
- 0

Problem 3. 8. (1 pt) Let F be the function below.

Evaluate each of the following expressions.

Note: Enter 'DNE' if the limit does not exist or is not defined.

- a) $\lim_{x \to a} F(x) =$ ____
- b) $\lim_{x \to -1^{-}} F(x) =$ ____
- $c) \lim_{x \to -1} F(x) = \underline{\qquad}$
- d) F(-1) =____
- e) $\lim F(x) = _{--}$
- f) $\lim F(x) =$ ____
- g) $\lim F(x) =$
- h) $\lim F(x) =$ ____
- i) F(3) =____

Answer(s) submitted:

- 3
- DNE
- 3
- DNE
- 0
- DNE

(score 0.777777910232544)

Correct Answers:

- 2
- 2
- 3 −2
- −1

- DNE
- 0
- DNE

Problem 4. 2. (1 pt) Use the **definition of the derivative** (don't be tempted to take shortcuts!) to find the derivative of the function

$$f(x) = 5x + 5\sqrt{x}.$$

Then state the domain of the function and the domain of the derivative.

Note: When entering interval notation in WeBWorK, use I for ∞ , -I for $-\infty$, and U for the union symbol. If the set is empty, enter "" without the quotation marks.

$$f'(x) =$$

Domain of $f(x) = \underline{\hspace{1cm}}$

Domain of f'(x) =

Answer(s) submitted:

- $5 + (5/(2 \operatorname{sqrt}(x)))$
- [0,I)
- (0,I)

(correct)

Correct Answers:

- 5 + (5/2) *x** (-1/2)
- [0, infinity)
- (0, infinity)

Problem 5. 10. (1 pt)

Evaluate the following limits. If needed, enter INF for ∞ and MINF for $-\infty$.

(a)

$$\lim_{x \to \infty} \frac{(2-x)(10+8x)}{(3-7x)(7+8x)} =$$

(b)

$$\lim_{x \to -\infty} \frac{(2-x)(10+8x)}{(3-7x)(7+8x)} =$$

Answer(s) submitted:

- 1/7
- 1/7

(correct)

Correct Answers:

- 0.142857142857143
- 0.142857142857143

Problem 6. 4. (1 pt) If
$$f(t) = 7\sqrt{t} + \frac{5}{\sqrt{t}}$$
, find $f'(t)$.

$$f'(t) =$$

Answer(s) submitted:

• (7t-5) / (2t^(3/2))

(correct)

Correct Answers:

• (7/2)*(t**(-1/2)) - (1/2)*(5)*(t**(-3/2))

Problem 7. 6. (1 pt) Let $h(x) = 7 - 2x^3$,

h'(1) =_____

Use this to find the equation of the tangent line to the curve $y = 7 - 2x^3$ at the point (1,5) and write your answer in the form: y = mx + b, where m is the slope and b is the y-intercept.

Answer(s) submitted:

- •
- y = 11 6x

(score 0.5)

Correct Answers:

- −6
- y = -6 * x + 11

Problem 8. 11. (1 pt) Use a table of values to estimate the value of the limit. Confirm your result graphically by graphing the function with a graphing device.

If the limit does not exist enter DNE.

$$\lim_{x \to 0} \frac{\sqrt{x+9} - 3}{x}$$

Answer(s) submitted:

• 1/6

(correct)

Correct Answers:

• 0.16666666666667

Problem 9. 5. (1 pt) Suppose that the equation of motion for a particle (where s is in meters and t in seconds) is

$$s = (1/3)t^3 - 2t^2 + 4t + 6$$

(a) Find the velocity and acceleration as functions of t.

Velocity at time t =

Acceleration at time t =

(b) Find the acceleration after 1 second.

Acceleration after 1 second:

(c) Find the acceleration at the instant when the velocity is 0. Acceleration:

Answer(s) submitted:

- (t-2)^2
- 2(t-2)
- −2
- 0

(correct)

Correct Answers:

- 6*0.33333333333333*t 2*2
- 0

Problem 10. 3. (1 pt)

Differentiate the following function:

$$V(r) = \frac{4}{3}\pi r^3$$

V'(r) =____

Answer(s) submitted: • 4 pi r^2

(correct)

Correct Answers:

• (4* pi* r^2)

Problem 11. 14. (1 pt) Let

$$f(x) = \begin{cases} -5x, & x < 1, \\ 1, & x = 1, \\ 5x, & x > 1. \end{cases}$$

Find the indicated one-sided limits of f, and determine the continuity of f at the indicated point.

NOTE: Type DNE if a limit does not exist.

You should also sketch a graph of y = f(x), including hollow and solid circles in the appropriate places.

$$\lim_{\substack{x \to 1^{-} \\ \lim_{x \to 1^{+}} f(x) = \underline{\qquad} \\ \lim_{x \to 1^{+}} f(x) = \underline{\qquad} \\ f(1) = \underline{\qquad} }$$

Is f continuous at x = 1? (YES/NO)

Answer(s) submitted:

- -5
- DNE
- 1 NO

(correct)

Correct Answers:

- 5
- DNE
- 1
- NO

Problem 12. 9. (1 pt)

Evaluate the following limits. If needed, enter INF for ∞ and MINF for -∞.

(a)

$$\lim_{x \to \infty} \frac{5 + 3x}{5 - 7x} =$$

(b)

$$\lim_{x \to -\infty} \frac{5+3x}{5-7x} =$$

Answer(s) submitted:

- −3/7
- −3/7

(correct)

Correct Answers:

- -0.428571428571429
- -0.428571428571429

Problem 13. 15. (1 pt) Find (in terms of the constant a)

$$\lim_{h \to 0} \frac{5(a+h)^2 - 5a^2}{h}.$$

 $Limit = _{-}$

Answer(s) submitted: • 10a

(correct)

Correct Answers:

• 2*5*a

Identify the graphs A (blue), B(red) and C (green) as the graphs of a function and its derivatives:

- ___ is the graph of the function
- ___ is the graph of the function's first derivative
- ___ is the graph of the function's second derivative

Answer(s) submitted:

- A
- C
- B

(correct)

Correct Answers:

- A
- C
- B

Problem 15. 13. (1 pt) Let

$$f(x) = \begin{cases} 8+x, & x < -3, \\ 9-x, & x \ge -3. \end{cases}$$

Find the indicated one-sided limits of f, and determine the continuity of f at the indicated point.

NOTE: Type DNE if a limit does not exist.

You should also sketch a graph of y = f(x), including hollow and solid circles in the appropriate places.

$$\lim_{x \to -3^{-}} f(x) = \underline{\qquad}$$

$$\lim_{x \to -3^{+}} f(x) = \underline{\qquad}$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

$$\lim_{x \to -3} f(x) = \underline{\qquad}$$

$$f(-3) = \underline{\qquad}$$

Is f continuous at x = -3? (YES/NO)

Answer(s) submitted:

- 5
- 12
- DNE
- 12
- NO

(correct)

Correct Answers:

- 5
- 12
- DNE
- 12
- NO