JOUSI-MASSA-VAIMENNIN MALLI

Perusmalli:

Analogisia tilanteita:

JOUSI

Lineaarinen veto/puristusjousi:

$$F = kx$$

$$F = kx$$

$$V = \frac{1}{2}kx^2$$

Rakenneosat jousina:

(a)
$$k = \frac{EA}{L}$$

$$k_\phi = \frac{GI_V}{L}$$

$$k_t = \frac{3EI_zL}{a^2(L-a)^2}$$

JOUSIEN YHDISTELMÄT

Rinnan kytkentä: 'Sama siirtymä'

Sarjaan kytkentä: 'Sama voima'

INERTIA

Translaatioinertia: Massa

Rotaatioinertia: Hitausmomentit ja hitaustulot

Tasotapauksessa tarvitaan vain hitausmomentti I_G ja Steinerin sääntö $I_O = I_G + mr_O^2$

Jousen lisämassa:

$$m_{ekv} = m + \frac{1}{3}m_j$$

$$m_{ekv} = m + \frac{17}{35} m_p$$

VAIMENNUS

Viskoosi vaimennus eli nestevaimennus:

- Jokin systeemin komponentti on kosketuksessa nesteen kanssa.
- Aiheuttaa liikeyhtälöön lineaarisen termin, ratkaisu on yksinkertainen.
- Käytetään myös ekvivalenttia viskoosia vaimenninta, jolloin lisätään malliin sopivalla vaimennusvakiolla varustettu iskunvaimenninelementti.

$$F = c\dot{x}$$

Kitkavaimennus eli Coulombin vaimennus:

- Jokin systeemin komponentti on kosketuksessa kitkallisen pinnan kanssa.
- Vaimennusvoiman suuruus on riippumaton siirtymästä ja sen aikaderivaatasta riippuen vain kosketuspintojen välisestä normaalivoimasta (vakiovaimennus).
- Kitkavaimennus aiheuttaa liikeyhtälöön epälineaarisen termin, ratkaisu on hankala.

$$F = -\mu mg \frac{\dot{x}}{|\dot{x}|}$$

EKVIVALENTTI SYSTEEMI

Usean jousen, vaimentimen ja jäykän kappaleen muodostamaa mekaanista systeemiä voidaan tarkastella yhden vapausasteen ekvivalentilla mallilla, mikäli kaikkien kappaleiden asema voidaan lausua yhden koordinaatin (translaatio tai rotaatio) avulla.

Ekvivalentin systeemin parametrien identifiointi:

Potentiaalienergia valitun koordinaatin avulla:

$$V = \frac{1}{2} k_{ekv} x^2$$

Liike-energia valitun koordinaatin avulla:

$$T = \frac{1}{2} m_{ekv} \dot{x}^2$$

Vaimennusvoimien virtuaalinen työ valitun koordinaatin avulla:

$$W_{1\rightarrow 2} = -\int_{x_1}^{x_2} c_{ekv} \dot{x} dx$$