ELECTRICITY

Michael D'Argenio – midargenio nosuledu Electrical Engineering – SS 2019 – Duke TIP

FOUR FUNDAMENTAL FORCES OF NATURE

Four Fundamental Forces Of Nature

- Gravity
- Strong Nuclear Force
- Weak Nuclear Force
- Electromagnetism

Responsible for everything in the universe!!

What is gravity?

Gravity

- An attractive force between all things with mass or energy.
- $F = G \frac{m_1 m_2}{r^2}; G = 6.674 \times 10^{-11} \frac{m^3}{kq \times s^2}$
- Weakest of the four fundamental forces.
- Infinite range.

ATOMS

Atoms

- An atom is the smallest constituent unit of ordinary matter that has the properties of a chemical element.
- An atom is comprised of a three subatomic particles
 - Protons resides in the nucleus, has positive charge
 - Neutrons resides in the nucleus, has no charge
 - Electrons orbits the nucleus, has negative charge

Nucleus

- Contains over 99.9% of an atom's mass.
- Has an overall positive charge.
- Typically same number of protons as neutrons.
- Provides an attractive force towards the negativelycharged electrons that orbit the nucleus.

Electrons (e-)

- The smallest subatomic particle.
- Orbit the nucleus in shells.
- Each shell seeks a specific number of electrons.
- The outer shell of electrons is called the valence shell
 - Wants to fully fill or empty it's outer shell.
 - Responsible for bonding properties.
 - Electrons in valence shell are considered free electrons because they can move freely and form bonds with other atoms.

Periodic Table

- For our purposes, it is important to be able to determine the atomic number and the number of valence electrons for each element.
- This helps us characterize the elements to understand their electrical properties as:
 - Conductors
 - Insulators
 - Semiconductors

FOUR FUNDAMENTAL FORCES OF NATURE

Resumed

Strong Nuclear Force

- The force which holds the nucleus together.
- Stronger than all of the other fundamental forces.
- Protons and Neutrons are comprised of quarks.
- "Color" force is what holds quarks together.
- Force only acts within a small range (diameter of nucleus).
- Protons are positive
- Neutrons are neutral

Weak Nuclear Force

- The force that deals with radioactive decay.
- Causes quarks to change their "flavor".
- Responsible for things like carbon dating & fusion.
- Works over even smaller range (0.1% size of proton).

Strong and Weak Nuclear Forces

- To fully understand these, we would have to dive deep into quantum physics.
- It is important to just recognize that these forces are at work at the subatomic level and are responsible for many phenomenon.
- For our purposes, we will focus on the electrons and how it relates to a difference in charge that creates the electromagnetic force.

Electromagnetism

- The force that acts between electrically charged particles.
 - Opposite charges attract. Like charges repel.
 - Why? Everything wants to be neutral or balanced.
 - Keeps electrons orbiting nucleus.
- This phenomenon includes the electrostatic force acting between charged particles at rest, and the combined effect of electric and magnetic forces acting between charged particles moving relative to each other.
- Works over an infinite range like gravity.
- Stronger than gravity and weak nuclear force.

Electricity and Magnetism

- They were originally thought to be separate forces.
- Now we recognize them as two different manifestations of the same force: electromagnetism.
- The presence of an electric charge, which can be either positive or negative, produces an electric field.
- The movement of electric charges is an electric current and produces a magnetic field.
- We will circle back around to this later.

Activity: Build an Electromagnet

Activity: Build a Generator

STATIC ELECTRICITY

What is static electricity?

Have you ever rubbed a balloon against your shirt?

What happened? Why? -> Static Electricity!

 https://phet.colorado.edu/en/simulation/balloonsand-static-electricity

How does this happen?

- When you rub certain materials together (typically 2 insulators), they can swap electrons.
- Electrons are easily dislodged.
- Rubbing puts the atoms in close proximity causing certain materials to lose electrons and causing others to gain electrons.
 - Materials like rubber, silk tend to gain electrons.
 - Negative
 - Materials like wool, glass tend to lose electrons.
 - Positive

Static Electricity

- Static electricity is an imbalance of electric charges within or on the surface of a material.
- The charge remains until it is able to move away by means of an electric current or electrical discharge.
- Static Electricity is named in contrast with Current Electricity, which flows through wires or other conductors and transmits energy.

Activity: Static Electricity

CONSERVATION OF CHARGE

Conservation of Charge

- The total quantity of charge in the universe is constant.
- It is assumed to be zero.
- The total charge in a given isolated volume does not become positive or negative, it can only be redistributed.
- Charges want to spread out and become neutral, so a force must be applied to redistribute.

ELECTRIC CHARGE

What is electric charge?

- The presence of electric charge causes an electrostatic force.
- A charge can be:
 - Positive: fewer electrons than protons
 - Negative: more electrons than protons
- In 1785, Charles-Augustin de Coulomb discovered the forces caused by opposite and like charges.
- He did this by rubbing glass and amber rods with a cloth and finding that they would attract each other.
- *The term electricity comes from the Greek word for Amber!

Coulomb's Law

- Electric charge is abbreviated with an uppercase "Q".
- Units are in Coulombs (C).

•
$$F = k_e \frac{Q_1 Q_2}{r^2}$$
; $k_e \approx 9 \times 10^9 \frac{N * m^2}{C^2}$

- If charges are opposite, F is negative -> attractive.
- If charges are the same, F is positive -> repulsive.

- As the charges increase, the force increases.
- As the distance increases, the force decreases.

Charge of an Electron

- An electron has a charge of $q_e = -1.6022 \times 10^{-19}$ C
- Known as the elementary charge.

How do we carry a charge?

ELECTRIC FIELDS

Electric Fields

- An electric field surrounds an electric charge, and exerts force on other charges in the field, attracting or repelling them.
- Units are $\frac{Newtons}{Coulomb} \left(\frac{N}{C} \right) or \frac{Volts}{Meter} \left(\frac{V}{m} \right)$

Electric Fields

 We will return to this concept later to learn more about Electric Fields.

Just know that every charged particle exerts a force

outward.

CONDUCTORS & INSULATORS

Conductivity

- Some materials have electrons that move more easily.
- Free electrons electrons with a high mobility.
- Conductivity is the property that describes how freely the electrons can move. High conductivity means electrons are more free.
- We can classify materials as two types:
 - Conductors high conductivity, more free e⁻
 - Insulators low conductivity, less free e⁻

Conductors

- Materials with high conductivity or more free electrons.
- Useful for carrying electric charge.
- We use conductors to transmit electricity!
- Examples: silver, copper, gold, aluminum, iron, steel, brass, bronze, mercury, graphite, dirty water.

Insulators

- Materials with low conductivity or less free electrons.
- Useful for preventing the carriage of electric charge.
- We use insulators to stop the flow of or shield us from electricity!
- Examples: glass, rubber, plastic, wood/paper, cotton, fiberglass, porcelain, air, diamond, clean water.

CURRENT ELECTRICITY

Current Electricity

- Current Electricity or Dynamic Electricity is contrasted with Static Electricity.
- Static Electricity an imbalance of electric charges.
 - No energy transmitted. Potential Energy
- <u>Current Electricity</u> charges flow through conductors and transmit energy.
 - Energy is transmitted. Kinetic Energy

CURRENT

Electric Current

- Electric Current the rate of flow of electric charge.
- Abbreviated with an uppercase "I".
- Units are in Amperes or Amps (A)
- $I = \frac{Q}{t}$
- 1 Amp is equivalent to 1 Coulomb of charge crossing a specific point in 1 second.
- Named after André-Marie Ampère who worked in electromagnetics writing Ampere's Law in 1825.

VOLTAGE

Electric Potential or Voltage

- Voltage is the difference in electric potential between two points.
- Unit is volts (V). Abbreviation is uppercase "V".
- $Voltage\ (volts) = \frac{Energy\ (joules)}{Charge\ (coulombs)}$
- Voltage is the amount of work to be done (or potential energy) per unit charge.
- Named after Alessandro Volta who developed the voltaic pile (early battery) in 1799.

Voltage Sources

- Provide a specified voltage level to a circuit.
- Can be lab power supply, batteries, generator, etc.

Current Convention

- In electrical engineering, we standardized on current flowing from higher voltage to lower voltage.
- This is the opposite direction of electron flow.
- Think about it as flow of positive charge.

RESISTANCE

Resistance

- Resistance is a measure of an object's opposition to the flow of electric current.
- It is the inverse of conductivity.
- $Resistance = \frac{1}{Conductivity}$
- Insulators have a very high resistance.
- Conductors have a very low resistance.
- Units are Ohms (Ω) . Abbreviation is uppercase "R".

Resistors

A passive circuit component that provides a constant resistance.

Can be lab power supply, batteries, generator, etc.

Resistor Color Guide

2%, 5%, 10% 560k Ω ± 5%						
COLOR	1 ST BAND	2 ND BAND	3 RD BAND	MULTIPLIER	TOLERANCE	
Black	0	0	0	1Ω		
Brown	1	1	1	10Ω	± 1% (F)	
Red	2	2	2	100Ω	± 2% (G)	
Orange	3	3	3	1ΚΩ		
Yellow	4	4	4	10ΚΩ		
Green	5	5	5	100ΚΩ	± 0.5% (D)	
Blue	6	6	6	1ΜΩ	± 0.25% (C)	
Violet	7	7	7	10ΜΩ	± 0.10% (B)	
Grey	8	8	8	100ΜΩ	± 0.05%	
White	9	9	9	1GΩ		
Gold				0.1Ω	± 5% (J)	
Silver				0.01Ω	± 10% (K)	
0.1%, 0.25%, 0.5%, 1% 5-Band-Code 237 Ω ± 1%						

https://www.digikey.com/en/resources/conversion-calculators/conversion-calculators/ resistor-color-code-4-band

Resistors in Your Kit

- You should have the following resistors in your kit
 - 10x 10 Ω Resistors
 - $10x100 \Omega$ Resistors
 - 10x 220 Ω Resistors
 - 10x 330 Ω Resistors
 - 10x 1 k Ω Resistors
 - 10x 2 kΩ Resistors
 - 10x 5.1 k Ω Resistors
 - 10x 10 k Ω Resistors
 - 10x 100 kΩ Resistors
 - 10x 1 M Ω Resistors
- See if you can identify them by their color bands.

CIRCUITS

Circuit

- Circuit a circular journey or one beginning and ending at the same place; a round. (Dictionary definition)
- In terms of an electricity, a circuit is a never-ending path for electrical charge to be carried.
- If a circuit is broken, it ceases to be a circuit.
 - The charge cannot continue to flow.
 - There is no more current. I = 0 A

*Known as an open circuit

Circuits and Switches

- Switches turn circuits on or off by allowing current to either flow or not.
- Switches are either in the open state (off, no current flow) or closed state (on, current flow)
- Switch closed = on or short
- Switch open = off or open

OHM'S LAW

Ohm's Law

- Developed by Georg Ohm developed a relationship between voltage, current, and resistance in 1827.
- Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points.

•
$$I = \frac{V}{R}$$
; $V = IR$; $R = \frac{V}{I}$

Ohm's Law Animation

- https://phet.colorado.edu/sims/html/ohmslaw/latest/ohms-law_en.html
- https://www.falstad.com/circuit/circuitjs.html
 - Basics Ohm's Law
 - Basics Resistors

WATER FLOW ANALOGY

Water Flow Analogy

- Voltage water pressure
- Current water flow rate. Water flows from high pressure to low pressure
- Charge quantity of water
- Conductor a simple pipe
- Resistor a constricted pipe (smaller diameter, harder to flow through).

Water Flow Analogy

 http://hyperphysics.phyastr.gsu.edu/hbase/electric/watcir.html

VOLTAGE REFERENCES

Common or Ground Reference

• The ground signal in our circuit is used to show a common reference.

- Anything connected to Ground is OV.
- In electronics, it is used as a common reference to O V. It does not necessarily mean that it is earth grounded. More on this later.

Voltage References

 Start from ground reference and go from there.

Voltage References Continued

- If current flows into the positive side of a component in a circuit, voltage is dropped.
- If current flows into the negative side of a component in a circuit, the voltage is gained.
- Called the Passive Sign Convention.

Sign Convention

Is power absorbed or generated?

Is power absorbed or generated?

OHM'S LAB

Solderless Breadboard Connections

Breadboards

Why is it called a breadboard?

Collin's Lab Breadboard:

<u> https://www.youtube.com/watch?v=HrG98HJ3Z6w</u>

Activity: Measuring V, I, R

- Voltmeter measures voltage
 - Must be put in parallel with the component you would like to measure the voltage across.
- Ammeter measures current
 - Must be put in series with the circuit so the current flows through it. (circuit must be broken)
- Ohmmeter measures resistance
 - Must be put in parallel with the component you would like to measure the resistance of.
- Multimeter measures V, I, & R. Must move probes to measure I, then back again to measure V or R.

Activity: Ohm's Law

- Set up circuit as shown below using 5V supply.
- What happens to the current as you increase resistance?
 - Use at least 3 different resistors.
 - Measure V, I, & R.
 - Do your measurements agree with Ohm's law?

*Make sure probes are properly connected to multimeter.

Quick Note about LEDs

- LED or light emitting diode is a type of semiconductor that we will discuss in more detail later.
- LEDs have polarity and only allow current flow in one direction from the anode to cathode.
- LEDs have a specific turn-on or forward voltage.
 - Typically between 1.8 and 3.3V, depends on color.
- LEDs want to maintain that forward voltage.
 - If there is too much voltage across them or too much current flowing through them, they will blow.
 - Typically only want 10-20 mA of current.

LEDs – Series Resistor

- In order to protect LEDs, we add a series resistor.
- Series resistors limit current by helping the LED maintain the forward voltage.
- $V_S = V_R + V_F$
 - V_s supply voltage
 - ullet V_R voltage across resistor
 - V_F forward voltage (V across LED)
- How do we calculate series resistor value?
 - Hint: Use Ohm's Law

5mm Clear Lens (I _F =20mA)	Forward Voltage / V
White	3.0~3.6
Red	2.0~2.5
Blue	3.5~4.0
Yellow	2.0~2.5
Green	3.6~4.0

LEDs – Series Resistor

$$V_S = V_R + V_F$$

•
$$V_R = I \times R$$
; $R = \frac{V_R}{I}$; $V_R = V_S - V_F$

$$R = \frac{V_S - V_F}{I}$$

- V_s supply voltage
- ullet V_R voltage across resistor
- I − target current (typically 10-20mA)

_

Types of Switches

- Types of switches: pushbutton, rocker switch, DIP switch, knife switch, toggle switch, rotary switch, and many, many more.
- We will mostly use these three:

DIP Switch

Pushbutton

Tilt Ball Switch

Activity: Switches?

- Figure out how these switches work using a multimeter to test conductivity or measure resistance.
- When is it opened?
- When is it closed?

Lab Activity: Switch on/off LED

- Use 5V supply voltage.
- Use LED of your choice.
- Use switch of your choice.
- Calculate appropriate series resistor value.

$$\blacksquare R = \frac{V_S - V_F}{I}$$

- Try other LEDs, switches, & resistors.
- Measure/record I, V_R, V_F for each iteration of your circuit.

OHM'S LAW PRACTICE PROBLEMS

