

CubeSat Flight Software Workshop

Lab Project

Timothy Canham
Flight Software Engineer
June 3, 2019

Lab Project – Raspberry Pi Robot Arm

Hardware Description

- Robotic Arm
 - 4 servos
 - Yaw
 - Arm extension
 - Claw angle
 - Claw open/close
 - Assembly: https://microbotlabs.com/armuno-2.0-desktop-robotic-arm-kit.html
- Raspberry Pi
 - Target for F' application
- Sparkfun Pi servo hat:
 - https://www.sparkfun.com/products/14328

Lab Project - Objectives

- Follow the flight software processes and design a software application
- Come up with requirements for your task
- Decompose the system into the software layers from system engineering layers
 - Drivers, managers, applications and their interfaces
- Implement the software in the provided Fprime framework
 - Use the Raspberry Pi demo as a basis
- Organized into teams
 - One Pi/Arm set per team
- Use JPL host or your own laptop/VM for development
- Run ground system on host

Component Model

- Three components:
 - I2C driver (1x)
 - Linux I2C API
 - Servo Manager (4x)
 - Knows how to control SG90 servos
 - Application
 - Knows how to use robot arm
 - Team can decide behavior

Component Model

Plan

- Night 1 homework
 - Assemble the robot
- Night 2 finish application
 - Implementation
 - Testing
- Afternoon day 3 finish and demo

jpl.nasa.gov