UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2021

Linear Systems Fundamentals

FINAL EXAM

Preface

- I recognize that final exams are stressful in the best of times, and this is an unusually hard time.
- Please remember that despite the stress, I am counting on you to uphold academic integrity while you complete your final exam.
- Posting or seeking exam questions or answers online, or by consulting unauthorized resources, is a gross violation of our principles of integrity and engineering ethics.
- To be fair to all students, any integrity violations discovered during the final exam will be reported to the Dean of Engineering and to the office of Academic Integrity.
- Please make sure you understand and follow the academic integrity guidelines for the exam. If you are not sure, ask me.
- An honest effort, no matter what the outcome, is something to be proud of, especially in these challenging times.
- I am very proud of the commitment and resilience you have displayed. You should feel proud, too.
- Good luck on the exam!

RINT YOUR NAME
tudent ID Number
gnature

Your signature confirms that you have completed this exam on your own and in accordance with the Academic Integrity Agreement.

Instructions

- No electronics allowed for problem solving.
- Notes and Tables from Chapters 3, 4, 5, 9 of the textbook are attached.
- Two 2-sided sheets of your own notes are allowed.
- Time allowed: 3 hours (including upload time).
- Write your solutions in the designated spaces in the exam.
- Justify all of your answers.
- If extra pages are needed to show all of your work, use the scratch pages at the end of the exam and submit them.
- Upload your solutions by 6pm via Gradescope.

Problem	Weight	Score
1	30 pts	
2	30 pts	
3	30 pts	
4	30 pts	
5	30 pts	
6	30 pts	
Total	180 pts	

Good luck!

Problem 1 [CTFT Properties] (30 points, 10 points each part)

Let x(t) be the CT signal below. Let $X(j\omega)$ denote its Fourier transform.

- (a) Determine $\int_{-\infty}^{\infty} X(j\omega)d\omega$.
- (b) Determine X(j0).

Let $x_1(t) = x(t-1)$, with Fourier transform $X_1(j\omega)$.

(c) Determine $Re\{X_1(j\omega)\}$.

Write answers to parts (a), (b), (c) on the following pages. Justify your answers.

Problem 1 (cont.)

(a) (10 points)

Determine $\int_{-\infty}^{\infty} X(j\omega)d\omega$.

Name/Student ID:		
Problem 1 (cont.)		

(b) (10 points) Determine X(j0).

Problem 1 (cont.)

Let $x_1(t) = x(t-1)$, with Fourier transform $X_1(j\omega)$.

(c) (10 points)

Determine $Re\{X_1(j\omega)\}.$

Problem 2 [DTFT] (30 points; 10 points each part)

Let S be the DT LTI system obtained by concatenating the two DT LTI systems S_1 and S_2 defined by:

$$S_1: y[n] = x[n] - \frac{1}{2}x[n-1]$$

$$S_2: y[n] = x[n] + \frac{1}{4}x[n-1]$$

(a) Determine the frequency response $H(e^{j\omega})$ of S and write it in the form

$$\frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}.$$

(b) Let S' be the inverse system to S. Determine the frequency response $G(e^{j\omega})$ of S' and write it in the form

$$\frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}.$$

(c) Let $x[n] = \delta[n] - \frac{1}{2}\delta[n-1]$ be the input signal to the system S'. Determine the output signal y[n].

Write answers to parts (a), (b), (c) on the following pages. Justify your answers.

Problem 2 (cont.)

(a) (10 points)

Determine the frequency response $H(e^{j\omega})$ of S and write it in the form $\frac{\sum_{k=0}^M b_k e^{-jk\omega}}{\sum_{k=0}^N a_k e^{-jk\omega}}.$

Name/Student ID:	
Problem 2 (cont.)	

(b) (10 points)

Let S' be the inverse system to S. Determine the frequency response $G(e^{j\omega})$ of S' and write it in the form $\frac{\sum_{k=0}^M b_k e^{-jk\omega}}{\sum_{k=0}^N a_k e^{-jk\omega}}$.

Problem 2 (cont.)

(c) (10 points)

Let $x[n] = \delta[n] - \frac{1}{2}\delta[n-1]$ be the input signal to the system S'. Determine the output signal y[n].

Problem 3 [Modulation] (30 points, 10 points each part)

Let x(t) be the signal with Fourier transform $X(j\omega)$ shown below.

(a) Let $x_1(t) = x(t)\cos(30t)$. The signal $x_1(t)$ is received and passed through a bandpass filter with frequency response

$$H_{BP}(j\omega) = \begin{cases} 2, & 20 < |\omega| < 30 \\ 0, & \text{otherwise.} \end{cases}$$

Write the CTFT $X_1(j\omega)$ of $x_1(t)$ in terms of $X(j\omega)$.

Let $y_1(t)$ be the output of the bandpass filter. Sketch precisely the Fourier transform $Y_1(j\omega)$ of the signal $y_1(t)$ and write it in terms of $X(j\omega)$.

(b) Using the signal $y_1(t)$ from part (a), define $x_2(t) = y_1(t)\cos(20t)$. The signal $x_2(t)$ is transmitted and then passed through the lowpass filter with frequency response

$$H_{LP}(j\omega) = \begin{cases} 2, & |\omega| < 20 \\ 0, & \text{otherwise.} \end{cases}$$

Let $y_2(t)$ be the output of the lowpass filter. Sketch precisely its Fourier transform $Y_2(j\omega)$ and write it in terms of $X(j\omega)$.

(c) Can the original signal x(t) be recovered from the signal $y_2(t)$ of part (c)? If not, explain why not. If so, describe a demodulation scheme to recover x(t). Write the transform of any intermediate signal you generate from $y_2(t)$ during the recovery process in terms of $X(j\omega)$ and sketch it precisely.

Write your answers to parts (a), (b), (c) on the following pages.

Problem 3 (cont.)

(a) (10 points)

Let $x_1(t) = x(t)\cos(30t)$. The signal $x_1(t)$ is received and passed through a bandpass filter with frequency response

$$H_{BP}(j\omega) = \begin{cases} 2, & 20 < |\omega| < 30 \\ 0, & \text{otherwise.} \end{cases}$$

Write the CTFT $X_1(j\omega)$ of $x_1(t)$ in terms of $X(j\omega)$.

Let $y_1(t)$ be the output of the bandpass filter. Sketch precisely the Fourier transform $Y_1(j\omega)$ of the signal $y_1(t)$ and write it in terms of $X(j\omega)$.

Problem 3 (cont.)

(b) (10 points)

Using the signal $y_1(t)$ from part (a), define $x_2(t) = y_1(t)\cos(20t)$. The signal $x_2(t)$ is transmitted and then passed through the lowpass filter of with frequency response

$$H_{LP}(j\omega) = \begin{cases} 2, & |\omega| < 20 \\ 0, & \text{otherwise.} \end{cases}$$

Let $y_2(t)$ be the output of the lowpass filter. Sketch precisely its Fourier transform $Y_2(j\omega)$ and write it in terms of $X(j\omega)$.

Name/Student ID: $_$	
Problem 3 (cont.)	

(c) (10 points)

Can the original signal x(t) be recovered from the signal $y_2(t)$ of part (c)? If not, explain why not. If so, describe a demodulation scheme to recover x(t). Write the transform of any intermediate signal you generate from $y_2(t)$ during the recovery process in terms of $X(j\omega)$ and sketch it precisely.

Problem 4 [Sampling Theory] (30 points)

(a) For each of the following signals x(t), determine if a sampling period of $T = \frac{1}{4}$ sec is sufficiently small to avoid aliasing and allow reconstruction of the signal from its samples. Justify your answers by determining the Fourier Transforms $X(j\omega)$ of the signals.

(i)
$$x(t) = \frac{\sin(3\pi t)}{\pi t}$$

(ii)
$$x(t) = \begin{cases} 1, & |t| < 3\pi \\ 0, & |t| > 3\pi \end{cases}$$

(b) Let x(t) be the signal with Fourier transform $X(j\omega)$ shown below.

Let $x_p(t)$ be obtained from x(t) by impulse train sampling with sampling period $T = \frac{\pi}{20}$, with Fourier transform by $X_p(j\omega)$. Let $x_d[n] = x(nT)$ be the DT sampled signal, with Fourier transform $X_d(e^{j\Omega})$.

- (i) Write $X_p(j\omega)$ in terms of $X(j\omega)$. Write the formula relating $X_d(e^{j\Omega})$ to $X_p(j\omega)$. Determine ω_0 such that $X_d(e^{j2\pi}) = X_p(j\omega_0)$.
- (ii) Sketch precisely $X_p(j\omega)$ in the range $|\omega| \leq \omega_0$ and $X_d(e^{j\Omega})$ in the range $|\Omega| \leq 2\pi$.

Justify your answers by referring to the formula for $X_p(j\omega)$ and its relation to $X_d(e^{j\Omega})$

Write your answers to parts (a), (b) on the following pages.

Name/Student ID: _____

Problem 4 (cont.)

(a) (16 points)

For each of the following signals x(t), determine if a sampling period of $T = \frac{1}{4}$ sec is sufficiently small to avoid aliasing and allow reconstruction of the signal from its samples.

(i)
$$x(t) = \frac{\sin(3\pi t)}{\pi t}$$

(ii)
$$x(t) = \begin{cases} 1, & |t| < 3\pi \\ 0, & |t| > 3\pi \end{cases}$$

Name/Student ID:	

Problem 4 (cont.)

- (b) (14 points) Let $x_p(t)$ be obtained from x(t) by impulse train sampling with sampling period $T = \frac{\pi}{20}$, with Fourier transform by $X_p(j\omega)$. Let $x_d[n] = x(nT)$ be the DT sampled signal, with Fourier transform $X_d(e^{j\Omega})$.
 - (i) (4 points) Write $X_p(j\omega)$ in terms of $X(j\omega)$. Write the formula relating $X_d(e^{j\Omega})$ to $X_p(j\omega)$. Determine ω_0 such that $X_p(j\omega_0) = X_d(e^{j2\pi})$.

(ii) (10 points) Sketch precisely $X_p(j\omega)$ in the range $|\omega| \leq \omega_0$ and $X_d(e^{j\Omega})$ in the range $|\Omega| \leq 2\pi$.

Name/Student ID: _____

Problem 5 [Laplace Transform and LTI Systems] (30 points)

Consider an LTI system S with transfer function

$$H(s) = \frac{s-1}{(s^2 - 2s + 2)(s+1)}.$$

- (a) Sketch precisely the pole-zero plot associated with H(s). Indicate the order of all poles and zeros.
- (b) Suppose S is stable.
 - (i) Determine |H(j0)| and $\angle H(j0)$.
 - (ii) Determine $|H(j\omega)|$ and $\angle H(j\omega)$ in the limit of as $\omega \to \pm \infty$.
 - (iii) Is the system lowpass, highpass, bandpass, or allpass?
- (c) Suppose S is causal. If the impulse response is h(t), does $h(t)e^{-2t}$ have a Fourier transform?

Write your answers to parts (a), (b), (c) on the following pages.

Problem 5 (cont.)

Consider the LTI system function $H(s) = \frac{s-1}{(s^2-2s+2)(s+1)}$.

(a) (10 points)

Sketch precisely the pole-zero plot associated with H(s). Indicate the order of all poles and zeros.

Name/Student ID: _____

Problem 5 (cont.)

Consider the LTI system function $H(s) = \frac{s-1}{(s^2-2s+2)(s+1)}$.

(b) (12 points)

Suppose S is stable.

(i) Determine |H(j0)| and $\angle H(j0)$.

(ii) Determine $|H(j\omega)|$ and $\angle H(j\omega)$ in the limit of as $\omega \to \pm \infty$.

(iii) Is the system have lowpass, highpass, bandpass, or allpass?

Problem 5 (cont.)

Consider the LTI system function $H(s) = \frac{s-1}{(s^2-2s+2)(s+1)}$.

(c) (8 points)

Suppose S is causal. If the impulse response is h(t), does $h(t)e^{-2t}$ have a Fourier transform?

Name/Student ID: _____

Problem 6 [LT and Differential Equations] (30 points, 10 points each) Consider the causal LTI system whose input x(t) and output y(t) satisfy the differential equation

$$\frac{d^2y(t)}{dt^2} - 2\frac{dy(t)}{dt} - 3y(t) = \frac{dx(t)}{dt} - x(t).$$

- (a) Determine the transfer function H(s) and sketch precisely the pole-zero plot.
- (b) Determine the region of convergence (ROC). and determine the impulse response h(t).
- (c) Draw a block diagram for the direct form (canonical) realization of the system using a cascade of integrators with feedforward and feedback components.

Write your answers to parts (a), (b), (c), and (d) on the following pages.

Problem 6 (cont.)

Causal LTI system defined by $\frac{d^2y(t)}{dt^2} - 2\frac{dy(t)}{dt} - 3y(t) = \frac{dx(t)}{dt} - x(t)$.

(a) (10 points)

Determine the transfer function H(s) and sketch precisely the pole-zero plot.

Problem 6 (cont.)

Causal LTI system defined by $\frac{d^2y(t)}{dt^2} - 2\frac{dy(t)}{dt} - 3y(t) = \frac{dx(t)}{dt} - x(t)$.

(b) (10 points)

Determine the region of convergence (ROC), and determine the impulse response h(t).

Problem 6 (cont.)

Causal LTI system defined by $\frac{d^2y(t)}{dt^2} - 2\frac{dy(t)}{dt} - 3y(t) = \frac{dx(t)}{dt} - x(t)$.

(c) (10 points)

Draw a block diagram for the direct form (canonical) realization of the system using a cascade of integrators with feedforward and feedback components.

Scratch page	Name/Student ID:
r F 6 -	

Scratch page	Name/Student ID:
r F 6 -	

Scratch page	Name/Student ID:
r F 6 -	

Scratch page	Name/Student ID:
I G	

Scratch page	Name/Student ID:
r F 6 -	