ESE 605 Homework 1

Xi Cao

Feb 24, 2022

Problems from Boyd & Vandenberghe: 3.15.

(a) According to L'Hospital's Rule,

$$\lim_{\alpha \to 0} u_{\alpha} = \lim_{\alpha \to 0} \frac{\frac{\partial}{\partial \alpha} (x^{\alpha} - 1)}{\frac{\partial}{\partial \alpha} \alpha} = \lim_{\alpha \to 0} \frac{x^{\alpha} logx}{1} = logx$$

(b) For $0 < \alpha < 1$

$$\frac{\partial^2}{\partial x^2}u_{\alpha}(x) = (\alpha - 1)x^{\alpha - 2} < 0$$

So $u_{\alpha}(x)$ is concave.

$$\frac{\partial}{\partial x}u_{\alpha}(x) = x^{\alpha - 1} > 0$$

So $u_{\alpha}(x)$ is monotone increasing.

$$0 < \alpha \le 1, \ u_{\alpha}(1) = \frac{1-1}{\alpha} = 0$$

 $\alpha = 0, \ u_{\alpha}(1) = log 1 = 0$

So
$$u_{\alpha}(1) = 0$$
.

3.18.

(a) Considering an arbitrary line, given by X = Z + tV, where $Z, V \in S_n$. We define g(t) = f(Z + tV), and restrict g to the interval of values of t for which $Z + tV \succ 0$. Without loss of generality, we can assume that t = 0 is inside this interval. define g(t) = f(Z + tV)

$$g(t) = tr((Z + tV)^{-1})$$

= $tr(Z^{-1/2}(I + t(Z^{-1/2}V(Z^{-1/2})^{-1}(Z^{-1/2})$

Let $Z^{-1/2}VZ^{-1/2}=Q\Lambda Q^T$ be the Schur decomposition, $Q^TQ=QQ^T=I$ and $\Lambda=diag(\lambda_1,\lambda_2,\cdots,\lambda_n)$,

$$g(t) = tr(Z^{-1}Q(I + t\Lambda)^{-1}Q^{T})$$

$$= tr(QZ^{-1}Q^{T}(I + t\Lambda)^{-1})$$

$$= \sum_{i=1}^{n} (Q^{T}Z^{-1}Q)_{ii} (1 + t\lambda_{i})^{-1}$$

Since $(1 + t\lambda_i)^{-1}$ is convex over t and $(Q^T Z^{-1} Q)_{ii}$ is positive, g(t) is convex. Thus f(X) is convex on its dom.

(b) Similarly, define g(t) = f(Z + tV). Let $Z^{-1/2}VZ^{-1/2} = Q\Lambda Q^T$. We have

$$g(t) = (\det(Z + tV))^{1/n}$$

$$= (\det(Z^{1/2}(I + tQ\Lambda Q^T)Z^{1/2})^{1/n}$$

$$= (\det Z)^{1/n} \left(\prod_{i=1}^{n} (1 + t\lambda_i)\right)^{1/n}$$

Since $(\det Z)^{1/n}$ is positive and geometric mean $(\prod_{i=1}^n (t))^{1/n}$ is concave, g(t) is concave. Thus f(X) is concave on its dom.

3.20.

- (a) Since norm function is convex and composition with affine function preserves convexity, f(x) is convex.
- (b) First we want to show that $h(X) = -(\det X)^{1/m}$, X > 0 is convex. Considering an arbitrary line, given by X = Z + tV, we define g(t) = h(Z + tV). Let $Z^{-1/2}VZ^{-1/2} = Q\Lambda Q^T$ be the Schur decomposition.

$$g(t) = -(\det(Z + tV))^{1/m}$$

$$= -\left(\det(Z^{1/2}(I + tQ\Lambda Q^T)Z^{1/2})\right)^{1/m}$$

$$= -(\det Z)^{1/m} \left(\prod_{i=1}^{n} (1 + t\lambda_i)\right)^{1/m}$$

Since $-(\det Z)^{1/m}$ is negative and geometric mean $(\prod_{i=1}^n (t))^{1/n}$ is concave, g(t) is convex. Thus h(X) is convex.

 $X = A_0 + x_1 A_1 + \cdots + x_n A_n$ is affine, therefore f(x) is convex.

(c) We have shown in 3.18 that $tr(X^{-1})$ is convex. Since $X = A_0 + x_1 A_1 + \cdots + x_n A_n$ is affine, f(x) is convex.

3.22.

(c)

$$h(x) = -\log x$$
 is convex on \mathbf{R}_{++} and nonincreasing $g(x, u, v) = uv - x^T x$ is positive and concave

So the composition f(x, u, v) = h(g(x, v, v)) is convex.

(d)

$$f(x) = -t^{p-1/p}(t - \|x\|_p^p/t^{p-1})^{1/p}$$

$$h(x,y) = -x^{1/p}y^{1-1/p} \text{ is convex and nonincreasing}$$

$$g_1(t) = t \text{ is concave}$$

$$g_2(x,t) = t - \|x\|_p^p/t^{p-1} \text{ is concave for } t^{p-1} > 0$$

So the composition f(x,t) = h(g(x,t)) is convex.

(e)

$$\begin{split} f(x) &= -\log \left(t^{p-1} (t - \|x\|_p^p / t^{p-1}) \right) = -(p-1) \log t - \log \left(t - \|x\|_p^p / t^{p-1} \right) \\ &- (p-1) \log t \text{ is concave} \\ h(x) &= -\log x \text{ is convex and nonincreasing} \\ g(x) &= t - \|x\|_p^p / t^{p-1} \text{ is concave for } t^{p-1} > 0 \\ \text{so, } h\left(g(x) \right) &= -\log \left(t - \|x\|_p^p / t^{p-1} \right) \text{ is convex} \end{split}$$

So the combination f(x) is convex.

3.27.

Since $X \in \mathbf{S}_{++}^n$, Y is SPD and Y^{-1} is SPD. So $z^TY^{-1}z$ is convex in z and Y. Then, $w - z^TY^{-1}z$ is concave in (w, z, Y), in other word, concave in X.

$$f(X) = (w-z^TY^{-1}z)^{1/2}$$

$$h(X) = X^{1/2} \text{ is concave and nondecreasing}$$

$$g(X) = w-z^TY^{-1}z \text{ is concave}$$

From the composition rule, $(w - z^T Y^{-1} z)^{1/2}$ is concave of X. **3.36.**

(a)

$$f^*(y) = \sup_{x_i \in \mathbf{R}^n} (y^T x - \max x_i)$$

$$\leq \sup_{x_i \in \mathbf{R}^n} (\max x_i ||y|| - \max x_i)$$

$$= \sup_{x_i \in \mathbf{R}^n} (\max x_i (||y|| - 1))$$

By setting $x_i = \max x_i$ goes to positive or negative infinity, we can show that if $f^*(y)$ has a upper bound, then ||y|| = 1.

Also, if $y \leq 0$, then by setting $\max x_i = -\infty$ and other entries all zero, $f^*(y) \to \infty$. Therefore, we have

$$f^*(y) = \begin{cases} 0 & ||y|| = 1, y \ge 0\\ \infty & \text{otherwise} \end{cases}$$

(d) When p > 1,

$$f^*(y) = \sup_{x \in \mathbf{R}_{++}} (xy - x^p)$$
$$\frac{\partial}{\partial x} (xy - x^p) = y - px^{p-1} = 0 \Rightarrow x = (\frac{y}{p})^{\frac{1}{p-1}}$$
$$f^*(y) = \begin{cases} (p-1)(\frac{y}{p})^{\frac{p}{p-1}} & y > 0\\ 0 & \text{otherwise} \end{cases}$$

When p < 0,

$$f^*(y) = \sup_{x \in \mathbf{R}_{++}} (xy - x^p)$$
$$\frac{\partial}{\partial x} (xy - x^p) = y - px^{p-1} = 0 \Rightarrow x = (\frac{y}{p})^{\frac{1}{p-1}}$$
$$f^*(y) = \begin{cases} (p-1)(\frac{y}{p})^{\frac{p}{p-1}} & y < 0\\ 0 & \text{otherwise} \end{cases}$$

(f)

$$f^*(y, u) = \sup_{(x,t) \in \mathbf{dom}f} (y^T x + ut + \log(t^2 - x^T x))$$

$$\frac{\partial}{\partial x} f^*(y) = y - \frac{2x}{t^2 - x^T x} = 0$$

$$\frac{\partial}{\partial t} f^*(y) = u + \frac{2t}{t^2 - x^T x} = 0$$

$$f^*(y, u) = \begin{cases} -2 + \log 4 + \log(y^T y - u^2) & ||y||_2 < -u \\ \infty & \text{otherwise} \end{cases}$$

3.39.

(a)

$$g^{*}(y) = \sup_{x} (y^{T}x - f(x) - c^{T}x - d)$$
$$= \sup_{x} ((y - c)^{T}x - f(x)) - d$$
$$= f^{*}(y - c) - d$$

(c)

$$g^{*}(y) = \sup_{x} (y^{T}x - \inf_{z} f(x, z))$$

$$= \sup_{x} (y^{T}x + \sup_{z} (-f(x, z)))$$

$$= \sup_{x, z} (y^{T}x - f(x, z))$$

$$= f^{*}(y, 0)$$

If we express $g(x) = \inf_z \{h(z) \mid Az + b = x\}$, then

$$f(x,z) = h(z), Az + b = x$$

$$f^{*}(y, v) = \sup_{x, z} (y^{T}x + v^{T}z - f(x, z))$$

$$= \sup_{Az+b=x} (y^{T}x + v^{T}z - h(z))$$

$$= \sup_{z} (y^{T}(Az + b) + v^{T}z - h(z))$$

$$= h^{*}(A^{T}y + v) + y^{T}b$$

We know that

$$q^*(y) = f^*(y, 0) = h^*(A^T y) + y^T b$$

(d)

$$f^*(y) = \sup_{x} (y^T x - f(x))$$

We want to show

$$f^{**}(y) = \sup_{x} (y^{T}x - f^{*}(y)) = f(x)$$

by showing that

$$g(x) = y^T x - f^*(y)$$

generates all affine functions that are global underestimators of f.

Immediately we know that $g(x) \leq f(x)$ and g(x) is affine. Further, if an affine function $h(x) = a^T x + b \leq f(x)$, then $a \in \operatorname{dom} f^*$ and $f^*(a) = \sup_x (a^T x - f(x)) \leq -b$. So h(x) = g(x). We have shown g(x) generates all affine functions that are global underestimators of f.

From the result exercise 3.28, we proved the conjugate of the conjugate of a closed convex function is itself.

3.49.

(a)

$$\log f(x) = \log(e^x/(1+e^x)) = x - \log(1+e^x)$$

We can show $\log(1+e^x)$ is convex by showing it has positive second derivative

$$\frac{\partial^2}{\partial x^2} \log(1 + e^x) = \frac{e^x}{(1 + e^x)^2} > 0$$

Since x is concave, $\log(1+e^x)$ is convex, $\log f(x)$ is concave.

(b) $\log f(x) = -\log(1/x_1 + \dots + 1/x_n)$

$$\frac{\partial^2}{\partial x_i x_j} (-\log(1/x_1 + \dots + 1/x_n)) = \frac{1/(x_i^2 x_j^2)}{(1/x_1 + \dots + 1/x_n)^2}$$

$$\frac{\partial^2}{\partial x_i x_j} (-\log(1/x_1 + \dots + 1/x_n)) = \frac{1/x_i^4}{(1/x_1 + \dots + 1/x_n)^2} - \frac{2/x_i^3}{1/x_1 + \dots + 1/x_n}$$

$$\Rightarrow \nabla^2 \log f(x) = \frac{1}{(1/x_1 + \dots + 1/x_n)^2} \left(qq^T - (1/x_1 + \dots + 1/x_n) \operatorname{diag}(2/x_1^3, \dots, 2/x_n^3) \right)$$

where $q_i = 1/x_i^2$.

We want to show $H = \nabla^2(-\log(1/x_1 + \cdots + 1/x_n)) \leq 0$, we must verify that $v^T H v \leq 0$ for all v,

$$v^{T}Hv = \frac{1}{(1/x_1 + \dots + 1/x_n)^2} \left(\left(\sum_{i=1}^{n} v_i/x_i^2 \right)^2 - 2 \sum_{i=1}^{n} 1/x_i \sum_{i=1}^{n} v_i^2/x_i^3 \right)$$

From Cauchy-Schwarz inequality,

$$\left(\sum_{i=1}^{n} v_i / x_i^2\right)^2 \le 2\sum_{i=1}^{n} 1 / x_i \sum_{i=1}^{n} v_i^2 / x_i^3$$

We have shown that $H \leq 0$ and therefore $\log f(x)$ is concave.

(c) $\log f(x) = \sum_{i=1}^{n} \log x_i - \log(\sum_{i=1}^{n} x_i)$

Consider its intersection with an arbitrary line:

$$g(t) = \log f(x + tv)$$

= $\sum_{i=1}^{n} \log(x_i + tv_i) - \log(\sum_{i=1}^{n} (x_i + tv_i))$

 $\mathbf{dom}g = \{t \mid x + tv > 0\}$

we want to check the convexity of g(t),

$$g''(t) = -\sum_{i=1}^{n} \frac{v_i^2}{(x_i + tv_i)^2} + \frac{(\sum_{i=1}^{n} v_i)^2}{(\sum_{i=1}^{n} (x_i + tv_i))^2}$$

We can just consider t = 0, since for any fixed t_0 , we can always redifine $x_0 = x + t_0 v$.

$$g''(0) = -\sum_{i=1}^{n} \frac{v_i^2}{x_i^2} + \frac{(\sum_{i=1}^{n} v_i)^2}{(\sum_{i=1}^{n} x_i)^2}$$

We notice that increase v by a factor c will lead to g''(0) increase by a factor c^2 , which means scale of v will not change the sign of g''(0). Without loss of generality, we can assume $\sum_{i=1}^{n} v_i = \sum_{i=1}^{n} x_i$.

Now we want to show $\sum_{i=1}^{n} \frac{v_i^2}{x_i^2} \ge 1$ by solving the following problem:

$$\min \sum_{i=1}^{n} \frac{v_i^2}{x_i^2}$$
s.t.
$$\sum_{i=1}^{n} v_i = \sum_{i=1}^{n} x_i$$

The Lagrangian is:

$$\begin{split} L(v,\lambda) &= \sum_{i=1}^n \frac{v_i^2}{x_i^2} - \lambda (\sum_{i=1}^n v_i - \sum_{i=1}^n x_i) \\ \frac{\partial}{\partial v_i} L(v,\lambda) &= \frac{2v_i}{x_i^2} - \lambda = 0 \Rightarrow v_i = \frac{\lambda x_i^2}{2} \end{split}$$

Since $\sum_{i=1}^{n} v_i = \sum_{i=1}^{n} x_i$, $\lambda = 2 \sum x_i / \sum x_i^2$.

Therefore the minimal value is:

$$\sum_{i=1}^{n} \frac{v_i^2}{x_i^2} = \left(\frac{\sum x_i}{\sum x_i^2}\right)^2 \sum x_i^2 = \frac{(\sum x_i)^2}{\sum x_i^2} \ge 1$$

We have proved $g''(0) \leq 0$ and thus g(t) is concave. So $\log f(x)$ is concave.

4.4.

(a)

$$Q_j \bar{x} = (1/k) \sum_{i=1}^k Q_i Q_j \bar{x}$$

Since \mathcal{G} is closed under products, $Q_iQ_j \in \mathcal{G}$. Therefore $Q_j\bar{x}=\bar{x}$, and $\bar{x}\in\mathcal{F}$.

(b) According to the definition of convexity,

$$f(\bar{x}) = f\left((1/k)\sum_{i=1}^{k} Q_i x\right) \le (1/k)\sum_{i=1}^{k} f(x) = f(x)$$

(c) For an optimal point x_0 , we show that for $\bar{x_0}$:

$$f_0(\bar{x_0}) = f_0\left((1/k)\sum_{i=1}^k Q_i x_0\right) \le (1/k)\sum_{i=1}^k f_0(x_0) = f_0(x_0)$$
$$f_i(\bar{x_0}) \le (1/k)\sum_{i=1}^k f_i(x_0) \le 0, \quad i = 1, \dots, m$$

So $\bar{x_0}$ is also optimal. As we have shown in (a), $\bar{x_0} \in \mathcal{F}$.

(d) We know that for permutation $P = P_1, \dots, P_m$,

$$Px = (1/m) \sum_{i=1}^{m} P_i x = (\mathbf{E}x)\mathbf{1}$$

For an optimal point x_0 , we show that for $\bar{x_0}$:

$$f(Px_0) = f((\mathbf{E}x_0)\mathbf{1}) \le f(x_0)$$

So $(\mathbf{E}x_0)\mathbf{1}$ is also optimal.

4.9.

Since A is square and nonsingular, A^{-1} exists. The problem could be written as:

minimize
$$c^T A^{-1} A x$$

subject to $Ax \leq b$

If $A^{-T}c \leq 0$, in order to minimize the objective function, we want to maximize Ax. So the optimal solution is Ax = b. The value of the objective function is $c^TA^{-1}b$.

If $A^{-T}c \npreceq 0$, which means at least one of the entries of $A^{-T}c$ is greater than zero, so we can let the corresponding entry of Ax goes to $-\infty$, and then the objective function goes to $-\infty$.

4.11.

(a)

$$||x||_{\infty} = \max |x_i|$$

We want to find the largest entry of Ax - b, name it t. It is equivalent to find the smallest value of t that is greater or equal to every entry of Ax - b.

Thus, the ℓ_{∞} -norm approximation problem is equivalent to the following LP:

minimize
$$t$$

subject to $-t\mathbf{1} \leq Ax - b \leq t\mathbf{1}$

where $t \in \mathbf{R}$.

(b)

$$||x||_1 = \sum_{i=1}^n |x_i|$$

For each entry of Ax - b, which is $a_i^T x - b_i$, let $t_i = |a_i^T x - b_i|$. We can see that t_i is the smallest value satisfies $-t_i < a_i^T x - b_i < t_i$

Thus, the ℓ_1 -norm approximation problem is equivalent to the following LP:

minimize
$$\mathbf{1}^T t$$

subject to $-t \leq Ax - b \leq t$

where $t \in \mathbf{R}^m$.

(c) Similar to what we have shown in (a), the restriction function $||x||_{\infty} \leq 1$ is equivalent to $-1 \leq x \leq 1$.

Combining the LP expression of the ℓ_1 -norm approximation problem that we have shown in (b), the original problem is equivalent to the following LP:

minimize
$$\mathbf{1}^T t$$

subject to $-t \leq Ax - b \leq t$
 $-\mathbf{1} \leq x \leq \mathbf{1}$

where $t \in \mathbf{R}^m$.

4.13.

If $x_i > 0$, then $a_i^T x \leq b_i$ is equivalent to

$$(\bar{a}_i + v_i)^T x \le b_i$$

If $x_i < 0$, then $a_i^T x \leq b_i$ is equivalent to

$$(\bar{a}_i - v_i)^T x \le b_i$$

So the original problem is equivalent to;

minimize
$$c^T x$$

subject to $\bar{A}x + V|x| \leq b$

which is equivalent to;

Bonus questions:

3.28.

(a) Since f(x) is convex, for an arbitrary point (a, f(a)), there exist an affine function $g_a(x) = a_a x + b_a$ that passes through (a, f(a)) and lies beneath f(x).

Therefore,

$$\sup_{a} g_a(x) \le f(x)$$

because all $g_a(x)$ lies beneath f(x).

$$\sup_{a} g_a(x) \ge f(x)$$

because $g_a(x)$ intersect f(x) at point (a, f(a)).

Also,

$$\sup\{g(x) \mid g \text{ affine }, g(z) \le f(z)\} = \sup_{a} g_a(x)$$

We can conclude that $\tilde{f}(x) = f(x)$.

3. conjugate function for the convex quadratic.

$$f^*(y) = \sup_{x} (y^T x - \frac{1}{2} x^T Q x)$$

If Qx = b has a solution,

$$\frac{\partial}{\partial x}(y^T x - \frac{1}{2}x^T Q x) = y - Q x = 0 \Rightarrow Q x = b$$
$$f^*(y) = \frac{1}{2}y^T Q y$$

If Qx = b has no solution, $y^Tx - \frac{1}{2}x^TQx$ is unbounded.

$$f^*(y, u) = \begin{cases} \frac{1}{2}y^T Q y & \text{Qx=b has a solution} \\ \infty & \text{otherwise} \end{cases}$$