Séance 2 : Amplification

Objectifs : à la fin de cette séance, l'étudiant sera capable de :

- Déterminer le gain d'un circuit
- Résoudre un circuit à base d'amplificateur opérationnel à l'aide du zéro virtuel
- Identifier et caractériser les montages inverseur et non-inverseur

Exercice 1.

Quel est le gain en tension du diviseur résistif suivant?

Exercice 2.

Un amplificateur a un gain en tension en boucle ouverte de 20, une résistance d'entrée de 10 k Ω et une résistance de sortie de 75 Ω . L'entrée de l'amplificateur est connectée à une source de tension de 0.5 V ayant une résistance de sortie de 200 Ω , et sa sortie est connectée à une résistance de charge de 1 k Ω . Quelle sera la valeur de la tension en sortie ? Quel constat pouvez-vous faire au sujet du gain du montage ?

Exercice 3.

Présentez les caractéristiques d'un amplificateur opérationnel « idéal ».

Exercice 4.

Tracez le quadripôle équivalent d'un amplificateur opérationnel idéal.

Exercice 5.

Quelles sont les plages usuelles du gain en tension en circuit ouvert et des résistances d'entrée et de sortie d'un amplificateur opérationnel ordinaire?

Exercice 6.

Quelles sont les plages usuelles d'alimentation d'un amplificateur opérationnel ordinaire?

Exercice 7.

Un amplificateur différentiel a un gain en tension de 100. Si une tension de 18.3 V est appliquée à son entrée non-inverseuse et qu'une tension de 18.2 V est appliquée à son entrée inverseuse, quelle est la tension de sortie?

Exercice 8.

Soit le montage ci-dessous, comprenant un ampli-op de gain 10^5 .

Que vaut V_{out} dans les cas suivants :

V_{+}	V_{-}
$-$ 1 μV	0 V
0 V	1 V
0 V	$1 \text{ V} \cdot \sin(2 \cdot \pi \cdot 1000 \cdot \text{t})$
$1 \text{ V} \cdot \sin(2 \cdot \pi \cdot 1000 \cdot \text{t})$	-3 V
$1 \ \mu V \cdot \sin(2 \cdot \pi \cdot 1000 \cdot t)$	-3 V
$1 \mu V \cdot \sin(2 \cdot \pi \cdot 1000 \cdot t)$	0 V

Exercice 9.

Expliquez le principe du zéro virtuel et ses conditions d'application.

Exercice 10.

Résolvez les circuits suivants en utilisant le principe du zéro virtuel, avec $R_1=1k\Omega$ et $R_2=10k\Omega$:

- a) Pour $V_{in} = 500 \text{mV} \cdot \sin(2 \cdot \pi \cdot 1000 \cdot t)$
- b) Pour $V_{in} = -4V$
- c) Pour $V_{\rm in} = 4V \cdot \sin(2 \cdot \pi \cdot 1000 \cdot t)$

Exercice 11.

Déterminez le gain en tension du montage amplificateur suivant :

Exercice 12.

Résolvez le circuit suivant :

- a) Avec $R_1=1k\Omega,\,R_2=10k\Omega,\,R3=1k\Omega$ et $V_{in}=2V\cdot\sin(2\cdot\pi\cdot1000\cdot t)$
- b) Avec $R_1=1k\Omega,\,R_2=10k\Omega,\,R3=20k\Omega$ et $V_{\rm in}=2V\cdot\sin(2\cdot\pi\cdot1000\cdot t)$

Exercice 13.

Résolvez le circuit suivant :

 $\mathrm{Avec}\ R_1 = 1 \mathrm{k}\Omega,\, R_2 = 5 \mathrm{k}\Omega,\, R_3 = 1 \mathrm{k}\Omega\ \mathrm{et}\ V_{\mathrm{in}} = 500 \mathrm{mV} \cdot \sin(2 \cdot \pi \cdot 1000 \cdot \mathrm{t})$

Exercice 14.

Soit les montages suivants :

- 1. Calculez le gain en tension.
- 2. Quelle est l'utilité de ce genre de montage?
- 3. Pour illuster votre réponse, on souhaite connecter les deux blocs suivants :

${\rm Calculez}\ {\rm V}_1:$

- en connectant directement les deux blocs;
- en insérant un des deux montages ci-dessus entre les deux blocs.

Exercice 15.

Résolvez les montages suivants :

1.
$$R_1=1k\Omega,\,R_2=5k\Omega,\,R_3=1k\Omega$$
 and $V_{\rm in}=500{\rm mV}\cdot\sin(2\cdot\pi\cdot1000\cdot t)$

2. $R_1=1k\Omega,\,R_2=5k\Omega,\,R_3=1k\Omega,\,R_4=1k\Omega,\,R_5=500\Omega$ et $V_{in}=500mV\cdot\sin(2\cdot\pi\cdot1000\cdot t)$

Exercice 16.

Déterminez l'expression de la tension de sortie V_o des circuits suivants en fonction des entrées V_1 et V_2 . Déduisez-en la valeur de la tension de sortie si $V_1 = 1V$ et $V_2 = 0.5V$.

Exercice 17.

Résolvez le circuit suivant :

- a) $R_1 = 1k\Omega, R_2 = 5k\Omega, V_1 = 500mV \cdot \sin(2 \cdot \pi \cdot 1000 \cdot t)$ et $V_2 = 50mV \cdot \sin(2 \cdot \pi \cdot 500 \cdot t)$
- b) $R_1 = 1k\Omega, R_2 = 20k\Omega, V_1 = 100mV \cdot \sin(2 \cdot \pi \cdot 1000 \cdot t) \text{ et } V_2 = 50mV \cdot \sin(2 \cdot \pi \cdot 1000 \cdot t)$

Résolvez les circuits suivants avec $R_1=1k\Omega,\,R_2=5k\Omega$, $R_3=4k\Omega$ et $I_1=0.5mA$:

Exercice 19. Examen de janvier 2005

On considère le montage ci-dessus pour lequel :

- $-- V_{\rm in} = 50 \,\mathrm{mV} \cdot \sin(2 \cdot \pi \cdot 50 \,\mathrm{t})$
- $I_1 = 1\mu A$
- À la fréquence de la source de tension, la capacité C peut être considérée comme un court-circuit.
- 1. Calculez les composantes continue et alternative de la tension Vout.
- 2. Indiquez l'utilité du premier étage à ampli-op.