Teoría geométrica de la reducción y aplicación al retículo de Toda periódico

Trabajo de Fin de Grado

Samuel M. A. Luque Astorga 7 de junio de 2024

Universidad Complutense de Madrid Departamento de Física Teórica

Índice

- 1. Introducción
- 2. Marcos geométricos
- 3. La integrabilidad del sistema de Toda
- 4. Conclusiones y observaciones

Introducción

El retículo de Toda periódico

M. Toda, 1970: cadena lineal de d partículas descrita por

$$H(x,y) = \frac{1}{2} \sum_{k=1}^{d} y_k^2 + \sum_{k=1}^{d} e^{x_k - x_{k+1}}, \quad x_{k+d} = x_k.$$

Fig. 1: El retículo de Toda periódico

Uno de los primeros ejemplos de sistema no lineal completamente integrable.

El retículo de Toda periódico

M. Toda, 1970: cadena lineal de d partículas descrita por

$$H(x,y) = \frac{1}{2} \sum_{k=1}^{d} y_k^2 + \sum_{k=1}^{d} e^{x_k - x_{k+1}}, \quad x_{k+d} = x_k.$$

$$V_{12} = e^{x_1 - x_2} \qquad V_{23} = e^{x_2 - x_3}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_1 \qquad x_2 \qquad x_3 \qquad \vdots$$

Fig. 1: El retículo de Toda periódico

Uno de los primeros ejemplos de sistema no lineal completamente integrable.

El retículo de Toda periódico

M. Toda, 1970: cadena lineal de d partículas descrita por

$$H(x,y) = \frac{1}{2} \sum_{k=1}^{d} y_k^2 + \sum_{k=1}^{d} e^{x_k - x_{k+1}}, \quad x_{k+d} = x_k.$$

$$V_{12} = e^{x_1 - x_2} \qquad V_{23} = e^{x_2 - x_3}$$

$$\vdots$$

$$x_1 \qquad x_2 \qquad x_3 \qquad \vdots$$

Fig. 1: El retículo de Toda periódico

Uno de los primeros ejemplos de sistema no lineal completamente integrable.

1. Mediante un cambio de variable parecido al de Flaschka (1974):

$$a_k = -\frac{1}{4} e^{x_k - x_{k-1}}, \quad b_k = -\frac{1}{4} y_k,$$

las ecuaciones de movimiento son

$$\dot{a}_k = a_k (b_{k+1} - b_k), \quad \dot{b}_k = a_{k-1} - a_k.$$

2. Se puede entender como la discretización del sistema de KdV:

$$u_t + uu_x + u_{xxx} = 0.$$

Al igual que este, el retículo de Toda también admite soluciones distinguidas interesantes: los solitones.

1. Mediante un cambio de variable parecido al de Flaschka (1974):

$$a_k = -\frac{1}{4} e^{x_k - x_{k-1}}, \quad b_k = -\frac{1}{4} y_k,$$

las ecuaciones de movimiento son

$$\dot{a}_k = a_k(b_{k+1} - b_k), \quad \dot{b}_k = a_{k-1} - a_k.$$

2. Se puede entender como la discretización del sistema de KdV:

$$u_t + uu_x + u_{xxx} = 0.$$

Al igual que este, el retículo de Toda también admite soluciones distinguidas interesantes: los solitones.

1. Mediante un cambio de variable parecido al de Flaschka (1974):

$$a_k = -\frac{1}{4} e^{x_k - x_{k-1}}, \quad b_k = -\frac{1}{4} y_k,$$

las ecuaciones de movimiento son

$$\dot{a}_k = a_k(b_{k+1} - b_k), \quad \dot{b}_k = a_{k-1} - a_k.$$

2. Se puede entender como la discretización del sistema de KdV:

$$u_t + uu_x + u_{xxx} = 0.$$

Al igual que este, el retículo de Toda también admite soluciones distinguidas interesantes: los solitones.

1. Mediante un cambio de variable parecido al de Flaschka (1974):

$$a_k = -\frac{1}{4} e^{x_k - x_{k-1}}, \quad b_k = -\frac{1}{4} y_k,$$

las ecuaciones de movimiento son

$$\dot{a}_k = a_k(b_{k+1} - b_k), \quad \dot{b}_k = a_{k-1} - a_k.$$

2. Se puede entender como la discretización del sistema de KdV:

$$u_t + uu_x + u_{xxx} = 0.$$

Al igual que este, el retículo de Toda también admite soluciones distinguidas interesantes: los solitones.

Reducción

Procedimiento general en mecánica geométrica mediante el cual las simetrías de un sistema mecánico permiten eliminar algunos grados de libertad, reduciendo el espacio de fases y la dinámica.

(Espacio de fases M, Hamiltoniano H) $\downarrow \\ \&$ (Espacio de fases reducido $M_{\rm red}$, Hamiltoniano reducido $H_{\rm red}$)

Ejemplo paradigmático: movimiento planetario

Existen muchas teorías de reducción, una por cada formulación geométrica de la mecánica.

Reducción

Procedimiento general en mecánica geométrica mediante el cual las simetrías de un sistema mecánico permiten eliminar algunos grados de libertad, reduciendo el espacio de fases y la dinámica.

(Espacio de fases M, Hamiltoniano H) $\downarrow \\ \&$ (Espacio de fases reducido $M_{\rm red}$, Hamiltoniano reducido $H_{\rm red}$)

Ejemplo paradigmático: movimiento planetario.

Existen muchas teorías de reducción, una por cada formulación geométrica de la mecánica.

Reducción

Procedimiento general en mecánica geométrica mediante el cual las simetrías de un sistema mecánico permiten eliminar algunos grados de libertad, reduciendo el espacio de fases y la dinámica.

(Espacio de fases M, Hamiltoniano H) $\downarrow \\ (Espacio de fases reducido <math>M_{\rm red}$, Hamiltoniano reducido $H_{\rm red}$)

Ejemplo paradigmático: movimiento planetario.

Existen muchas teorías de reducción, una por cada formulación geométrica de la mecánica.

Marcos geométricos

El espacio de fases M tiene un corchete de Poisson $\{\bullet, \bullet\}$ (bilineal, antisimétrico, Jacobi y Leibniz).

Equivale a un bivector de Poisson

$$\pi^{\sharp}: \mathbf{T}^* M \to \mathbf{T} M,$$

$$\alpha \mapsto \mathbf{v} = {}^{\sharp} \alpha$$

según el cual podemos obtener ecuaciones de Hamilton: $X_H = {}^{\sharp} dH$.

Reducción de Marsden-Ratiu

Sea (M, H) un sistema hamiltoniano. Ingredientes:

- $S \subseteq M$ invariante por X_H
- ullet "buena" foliación en S (grados de libertad ignorables).

Entonces, $M_{\text{red}} = S/\mathcal{F}$ hereda un corchete de Poisson $\{\bullet, \bullet\}_{\text{red}}$ y la dinámica hamiltoniana se reduce: $H_{\text{red}} : M_{\text{red}} \to \mathbb{R}$.

El espacio de fases M tiene un corchete de Poisson $\{\bullet, \bullet\}$ (bilineal, antisimétrico, Jacobi y Leibniz).

Equivale a un bivector de Poisson

$$\pi^{\sharp}: \mathbf{T}^* M \to \mathbf{T} M,$$

$$\alpha \mapsto \mathbf{v} = {}^{\sharp} \alpha,$$

según el cual podemos obtener ecuaciones de Hamilton: $X_H = {}^{\sharp} dH$.

Reducción de Marsden-Ratiu

Sea (M, H) un sistema hamiltoniano. Ingredientes:

- $S \subseteq M$ invariante por X_H
- ullet "buena" foliación en S (grados de libertad ignorables).

Entonces, $M_{\text{red}} = S/\mathcal{F}$ hereda un corchete de Poisson $\{\bullet, \bullet\}_{\text{red}}$ y la dinámica hamiltoniana se reduce: $H_{\text{red}} : M_{\text{red}} \to \mathbb{R}$.

El espacio de fases M tiene un corchete de Poisson $\{\bullet, \bullet\}$ (bilineal, antisimétrico, Jacobi y Leibniz).

Equivale a un bivector de Poisson

$$\pi^{\sharp}: \mathbf{T}^* M \to \mathbf{T} M,$$

$$\alpha \mapsto \mathbf{v} = {}^{\sharp} \alpha,$$

según el cual podemos obtener ecuaciones de Hamilton: $X_H = {}^\sharp \mathrm{d} H.$

Reducción de Marsden-Ratiu

Sea (M, H) un sistema hamiltoniano. Ingredientes:

- $S \subseteq M$ invariante por X_H .
- ullet "buena" foliación en S (grados de libertad ignorables).

Entonces, $M_{\text{red}} = S/\mathcal{F}$ hereda un corchete de Poisson $\{\bullet, \bullet\}_{\text{red}}$ y la dinámica hamiltoniana se reduce: $H_{\text{red}} : M_{\text{red}} \to \mathbb{R}$.

El espacio de fases M tiene un corchete de Poisson $\{\bullet, \bullet\}$ (bilineal, antisimétrico, Jacobi y Leibniz).

Equivale a un bivector de Poisson

$$\pi^{\sharp}: \mathbf{T}^* M \to \mathbf{T} M,$$

$$\alpha \mapsto \mathbf{v} = {}^{\sharp} \alpha,$$

según el cual podemos obtener ecuaciones de Hamilton: $X_H = {}^\sharp \mathrm{d} H.$

Reducción de Marsden-Ratiu

Sea (M, H) un sistema hamiltoniano. Ingredientes:

- $S \subseteq M$ invariante por X_H .
- ullet "buena" foliación en S (grados de libertad ignorables).

Entonces, $M_{\text{red}} = S/\mathcal{F}$ hereda un corchete de Poisson $\{\bullet, \bullet\}_{\text{red}}$ y la dinámica hamiltoniana se reduce: $H_{\text{red}} : M_{\text{red}} \to \mathbb{R}$.

Geometría bihamiltoniana

El espacio de fases M tiene dos corchetes de Poisson $\{\bullet, \bullet\}$, $\{\bullet, \bullet\}'$ compatibles:

$$\{\bullet, \bullet\}_{\lambda} := \{\bullet, \bullet\} + \lambda \{\bullet, \bullet\}'$$

es un corchete de Poisson $\forall \lambda$.

Reducción bihamiltoniana: una reducción de Poisson en $(M, \{\bullet, \bullet\}_{\lambda})$ $\rightsquigarrow (M_{\text{red}}, \{\bullet, \bullet\}_{\lambda}^{\text{red}}).$

Geometría bihamiltoniana

El espacio de fases M tiene dos corchetes de Poisson $\{\bullet, \bullet\}$, $\{\bullet, \bullet\}'$ compatibles:

$$\{\bullet, \bullet\}_{\lambda} := \{\bullet, \bullet\} + \lambda \{\bullet, \bullet\}'$$

es un corchete de Poisson $\forall \lambda$.

Reducción bihamiltoniana: una reducción de Poisson en $(M, \{\bullet, \bullet\}_{\lambda})$ $\rightsquigarrow (M_{\text{red}}, \{\bullet, \bullet\}_{\lambda}^{\text{red}}).$

Geometría bihamiltoniana

El espacio de fases M tiene dos corchetes de Poisson $\{\bullet, \bullet\}$, $\{\bullet, \bullet\}'$ compatibles:

$$\{\bullet, \bullet\}_{\lambda} := \{\bullet, \bullet\} + \lambda \{\bullet, \bullet\}'$$

es un corchete de Poisson $\forall \lambda$.

Reducción bihamiltoniana: una reducción de Poisson en $(M, \{\bullet, \bullet\}_{\lambda})$ $\rightsquigarrow (M_{\text{red}}, \{\bullet, \bullet\}_{\lambda}^{\text{red}}).$

Procedimiento de Lenard

Campos

 $\{\bullet, \bullet\}$ — Hamiltonianos

Geometría de Poisson bianclada

El espacio de fases M tiene:

- Una estructura de Poisson π .
- Dos algebroides de Lie $(E, \{\bullet, \bullet\}_i, A_i)$ compatibles: $A_{\lambda} = A + \lambda A'$.
- Dos aplicaciones $J, J' : T^*M \to E$, que sueldan todas las piezas:

donde $\alpha \sim \beta \iff A^*\alpha = A'^*\beta$.

Geometría de Poisson bianclada

El espacio de fases M tiene:

- Una estructura de Poisson π .
- Dos algebroides de Lie $(E, \{\bullet, \bullet\}_i, A_i)$ compatibles: $A_{\lambda} = A + \lambda A'$.
- Dos aplicaciones $J, J' : T^*M \to E$, que sueldan todas las piezas:

donde $\alpha \sim \beta \iff A^*\alpha = A'^*\beta$.

Geometría de Poisson bianclada

El espacio de fases *M* tiene:

- Una estructura de Poisson π .
- Dos algebroides de Lie $(E, \{\bullet, \bullet\}_i, A_i)$ compatibles: $A_{\lambda} = A + \lambda A'$.
- Dos aplicaciones $J, J' : T^*M \to E$, que sueldan todas las piezas:

donde $\alpha \sim \beta \iff A^*\alpha = A'^*\beta$.

La integrabilidad del sistema de

Toda

El sistema inicial

 Espacio de fases: M = Map(Z_d, GL(2, ℝ)): discretización de Map(S¹, sl(2, ℂ)). Sus elementos son:

$$q=(q^1,\ldots,q^d),$$
 donde $q^k=egin{pmatrix} q_1^k&q_2^k\q_3^k&q_4^k \end{pmatrix},\quad k=1,\ldots,d.$

• Estructura de Poisson bianclada: Un bivector de Poisson Π' , un haz de algebroides $(E, \{\bullet, \bullet\}_{\lambda}, A_{\lambda})$ y dos aplicaciones J, J'.

El sistema inicial

• Espacio de fases: $M = \operatorname{Map}(\mathbb{Z}_d, \operatorname{GL}(2, \mathbb{R}))$: discretización de $\operatorname{Map}(\mathbb{S}^1, \mathfrak{sl}(2, \mathbb{C}))$. Sus elementos son:

$$q=(q^1,\dots,q^d),$$
 donde
$$q^k=\begin{pmatrix} q_1^k&q_2^k\ q_3^k&q_4^k \end{pmatrix},\quad k=1,\dots,d.$$

• Estructura de Poisson bianclada: Un bivector de Poisson Π' , un haz de algebroides $(E, \{\bullet, \bullet\}_{\lambda}, A_{\lambda})$ y dos aplicaciones J, J'.

El sistema inicial

• Espacio de fases: $M = \operatorname{Map}(\mathbb{Z}_d, \operatorname{GL}(2, \mathbb{R}))$: discretización de $\operatorname{Map}(\mathbb{S}^1, \mathfrak{sl}(2, \mathbb{C}))$. Sus elementos son:

$$q=(q^1,\dots,q^d),$$
 donde $q^k=egin{pmatrix} q_1^k&q_2^k\q_3^k&q_4^k \end{pmatrix},\quad k=1,\dots,d.$

• Estructura de Poisson bianclada: Un bivector de Poisson Π' , un haz de algebroides $(E, \{\bullet, \bullet\}_{\lambda}, A_{\lambda})$ y dos aplicaciones J, J'.

La reducción

Hacemos una reducción de Marsden-Ratiu en M:

• Subvariedad: Escogemos

$$S = \left\{ egin{pmatrix} q_1^k & q_2^k \ q_3^k & 0 \end{pmatrix} : q_2^k q_3^k
eq 0
ight\}.$$

• El espacio reducido: Viene dado por las coordenadas

$$a_1^k = q_1^k, \quad a_2^k = q_2^{k+1}q_3^k.$$

 La estructura en el espacio reducido: Estructura de Poisson bianclada en M → estructura bihamiltoniana en el espacio reducido: (N, π_λ), que es el espacio de fases del sistema de Toda.

La reducción

Hacemos una reducción de Marsden-Ratiu en M:

• Subvariedad: Escogemos

$$S = \left\{ egin{pmatrix} q_1^k & q_2^k \ q_3^k & 0 \end{pmatrix} : q_2^k q_3^k
eq 0
ight\}.$$

• El espacio reducido: Viene dado por las coordenadas

$$a_1^k = q_1^k, \quad a_2^k = q_2^{k+1}q_3^k.$$

 La estructura en el espacio reducido: Estructura de Poisson bianclada en M → estructura bihamiltoniana en el espacio reducido: (N, π_λ), que es el espacio de fases del sistema de Toda.

La reducción

Hacemos una reducción de Marsden-Ratiu en M:

• Subvariedad: Escogemos

$$S=\left\{egin{pmatrix}q_1^k&q_2^k\q_3^k&0\end{pmatrix}:q_2^kq_3^k
eq 0
ight\}.$$

• El espacio reducido: Viene dado por las coordenadas

$$a_1^k = q_1^k, \quad a_2^k = q_2^{k+1}q_3^k.$$

 La estructura en el espacio reducido: Estructura de Poisson bianclada en M → estructura bihamiltoniana en el espacio reducido: (N, π_λ), que es el espacio de fases del sistema de Toda.

C

Integrabilidad del sistema de Toda (I)

Idea: encontrar un casimir $C(\lambda)$ de π_{λ} , $\{\bullet, C(\lambda)\}_{\lambda} = 0$. Si expandimos

$$C(\lambda) = \sum_{i} H_{i} \lambda^{i}$$

se tendrá $\{\bullet, H_i\}' = -\{\bullet, H_{i+1}\}$ (relaciones de Lenard).

Proposición

Si $h_k \in \mathrm{C}^\infty(N)$ cumplen la ecuación característica

$$h_k h_{k+1} = (a_1^{k+1} + \lambda) h_k + a_2^k$$

entonces $C(\lambda) = h_1 \cdots h_d$ es un casimir del haz de Poisson

Integrabilidad del sistema de Toda (I)

Idea: encontrar un casimir $C(\lambda)$ de π_{λ} , $\{\bullet, C(\lambda)\}_{\lambda} = 0$. Si expandimos

$$C(\lambda) = \sum_{i} H_{i}\lambda^{i},$$

se tendrá $\{\bullet, H_i\}' = -\{\bullet, H_{i+1}\}$ (relaciones de Lenard).

Proposición

Si $h_k \in \mathrm{C}^\infty(N)$ cumplen la ecuación característica

$$h_k h_{k+1} = (a_1^{k+1} + \lambda) h_k + a_2^k$$

entonces $C(\lambda) = h_1 \cdots h_d$ es un casimir del haz de Poisson

Integrabilidad del sistema de Toda (I)

Idea: encontrar un casimir $C(\lambda)$ de π_{λ} , $\{\bullet, C(\lambda)\}_{\lambda} = 0$. Si expandimos

$$C(\lambda) = \sum_{i} H_{i}\lambda^{i},$$

se tendrá $\{\bullet, H_i\}' = -\{\bullet, H_{i+1}\}$ (relaciones de Lenard).

Proposición

Si $h_k \in \mathrm{C}^\infty(N)$ cumplen la ecuación característica

$$h_k h_{k+1} = (a_1^{k+1} + \lambda) h_k + a_2^k,$$

entonces $C(\lambda) = h_1 \cdots h_d$ es un casimir del haz de Poisson.

Integrabilidad del sistema de Toda (II)

En consecuencia de lo anterior: si

$$L = \begin{pmatrix} \mu(a_1^1 + \lambda) & -\mu^2 & 0 & \cdots & a_2^d \\ a_2^1 & \mu(a_1^2 + \lambda) & -\mu^2 & \ddots & \vdots \\ 0 & a_2^2 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \mu(a_1^{d-1} + \lambda) & -\mu^2 \\ -\mu^1 & 0 & \cdots & a_2^{d-1} & \mu(a_1^d + \lambda) \end{pmatrix},$$

y ponemos det $L=-\mu^{2d}+\mathcal{C}_1\mu^d+\mathcal{C}_2$, se tiene:

$$C_1(\lambda) = H_1 + H_2\lambda + \dots + H_{d-1}\lambda^{d-2} + K_1\lambda^{d-1} + \lambda^d,$$

$$C_2 = K_2 = (-1)^{d+1}a_2^1a_2^2 \cdots a_2^d.$$

y, en $\{K_1={\sf const.},\ K_2={\sf const.}\}$, las H_i son un CCFI para π'

Integrabilidad del sistema de Toda (II)

En consecuencia de lo anterior: si

$$L = \begin{pmatrix} \mu(a_1^1 + \lambda) & -\mu^2 & 0 & \cdots & a_2^d \\ a_2^1 & \mu(a_1^2 + \lambda) & -\mu^2 & \ddots & \vdots \\ 0 & a_2^2 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \mu(a_1^{d-1} + \lambda) & -\mu^2 \\ -\mu^1 & 0 & \cdots & a_2^{d-1} & \mu(a_1^d + \lambda) \end{pmatrix},$$

y ponemos det $L=-\mu^{2d}+\mathcal{C}_1\mu^d+\mathcal{C}_2$, se tiene:

$$C_1(\lambda) = H_1 + H_2\lambda + \dots + H_{d-1}\lambda^{d-2} + K_1\lambda^{d-1} + \lambda^d,$$

$$C_2 = K_2 = (-1)^{d+1}a_2^1a_2^2 \cdots a_2^d.$$

y, en $\{\mathit{K}_1 = \mathsf{const.}, \; \mathit{K}_2 = \mathsf{const.}\}$, las H_i son un CCFI para π'

Integrabilidad del sistema de Toda (II)

En consecuencia de lo anterior: si

$$L = \begin{pmatrix} \mu(a_1^1 + \lambda) & -\mu^2 & 0 & \cdots & a_2^d \\ a_2^1 & \mu(a_1^2 + \lambda) & -\mu^2 & \ddots & \vdots \\ 0 & a_2^2 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \mu(a_1^{d-1} + \lambda) & -\mu^2 \\ -\mu^1 & 0 & \cdots & a_2^{d-1} & \mu(a_1^d + \lambda) \end{pmatrix},$$

y ponemos det $L=-\mu^{2d}+\mathcal{C}_1\mu^d+\mathcal{C}_2$, se tiene:

$$C_1(\lambda) = H_1 + H_2\lambda + \dots + H_{d-1}\lambda^{d-2} + K_1\lambda^{d-1} + \lambda^d,$$

$$C_2 = K_2 = (-1)^{d+1} a_2^1 a_2^2 \cdots a_2^d.$$

y, en $\{K_1 = \text{const.}, K_2 = \text{const.}\}$, las H_i son un CCFI para π' .

Ejemplo: el caso de 3 partículas

Cambio de notación:

$$a_1^k \mapsto b_k, \quad a_2^k \mapsto a_k, \quad \varphi_1^k \mapsto \beta_k, \quad \varphi_2^k \mapsto \alpha_k.$$

Las funciones anteriores sor

$$H_1 = b_1b_2b_3 + a_2b_1 + a_1b_3 + a_3b_2,$$
 $K_1 = b_1 + b_2 + b_3,$
 $H_2 = b_1b_2 + b_1b_3 + b_2b_3 + a_1 + a_2 + a_3,$ $K_2 = a_1a_2a_3.$

En particular, el sistema

$$X_2: \begin{cases} \dot{a}_k = a_k (b_{k+1} - b_k), \\ \dot{b}_k = a_{k-1} - a_k. \end{cases}$$

es integrable.

Ejemplo: el caso de 3 partículas

Cambio de notación:

$$a_1^k \mapsto b_k, \quad a_2^k \mapsto a_k, \quad \varphi_1^k \mapsto \beta_k, \quad \varphi_2^k \mapsto \alpha_k.$$

Las funciones anteriores son

$$H_1 = b_1b_2b_3 + a_2b_1 + a_1b_3 + a_3b_2,$$
 $K_1 = b_1 + b_2 + b_3,$ $H_2 = b_1b_2 + b_1b_3 + b_2b_3 + a_1 + a_2 + a_3,$ $K_2 = a_1a_2a_3.$

En particular, el sistema

$$X_2: \begin{cases} \dot{a}_k = a_k (b_{k+1} - b_k), \\ \dot{b}_k = a_{k-1} - a_k. \end{cases}$$

es integrable.

Ejemplo: el caso de 3 partículas

Cambio de notación:

$$a_1^k \mapsto b_k, \quad a_2^k \mapsto a_k, \quad \varphi_1^k \mapsto \beta_k, \quad \varphi_2^k \mapsto \alpha_k.$$

Las funciones anteriores son

$$H_1 = b_1b_2b_3 + a_2b_1 + a_1b_3 + a_3b_2,$$
 $K_1 = b_1 + b_2 + b_3,$ $H_2 = b_1b_2 + b_1b_3 + b_2b_3 + a_1 + a_2 + a_3,$ $K_2 = a_1a_2a_3.$

En particular, el sistema

$$X_2: \begin{cases} \dot{a}_k = a_k(b_{k+1} - b_k), \\ \dot{b}_k = a_{k-1} - a_k. \end{cases}$$

es integrable.

Conclusiones y observaciones

Proposición

Sea M una variedad de Poisson bianclada. Escogemos

- $S \subseteq M$ una subvariedad regular.
- \mathcal{F} la foliación integral de $A(\ker A')$.
- \mathcal{H} una foliación en $E^*|_S$.

Bajo algunas condiciones técnicas, el haz de anclas duales A_{λ}^* se proyecta a $E^*|_S/\mathcal{H}$, y el bivector π definido en $M_{\rm red}=S/\mathcal{F}$ por

$$\pi^{\sharp}(\varphi) = \pi'^{\sharp}(\psi), \quad a^*\varphi = a'^*\psi$$

está bien definido y es cuasi-Poisson. Si es de Poisson y Im $a^* \supseteq \operatorname{Im} a'^*$, entonces es compatible con π' .

Proposición

Sea M una variedad de Poisson bianclada. Escogemos

- $S \subseteq M$ una subvariedad regular.
- \mathcal{F} la foliación integral de $A(\ker A')$.
- \mathcal{H} una foliación en $E^*|_{S}$.

Bajo algunas condiciones técnicas, el haz de anclas duales A_{λ}^* se proyecta a $E^*|_S/\mathcal{H}$, y el bivector π definido en $M_{\rm red}=S/\mathcal{F}$ por

$$\pi^{\sharp}(\varphi) = \pi'^{\sharp}(\psi), \quad a^*\varphi = a'^*\psi$$

está bien definido y es cuasi-Poisson. Si es de Poisson y Im $a^* \supseteq \operatorname{Im} a'^*$, entonces es compatible con π' .

Proposición

Sea M una variedad de Poisson bianclada. Escogemos

- $S \subseteq M$ una subvariedad regular.
- \mathcal{F} la foliación integral de $A(\ker A')$.
- \mathcal{H} una foliación en $E^*|_{S}$.

Bajo algunas condiciones técnicas, el haz de anclas duales A_{λ}^* se proyecta a $E^*|_S/\mathcal{H}$, y el bivector π definido en $M_{\rm red}=S/\mathcal{F}$ por

$$\pi^{\sharp}(\varphi) = \pi'^{\sharp}(\psi), \quad a^*\varphi = a'^*\psi$$

está bien definido y es cuasi-Poisson. Si es de Poisson y Im $a^* \supseteq \operatorname{Im} a'^*$ entonces es compatible con π' .

Proposición

Sea M una variedad de Poisson bianclada. Escogemos

- $S \subseteq M$ una subvariedad regular.
- \mathcal{F} la foliación integral de $A(\ker A')$.
- \mathcal{H} una foliación en $E^*|_{S}$.

Bajo algunas condiciones técnicas, el haz de anclas duales A_{λ}^* se proyecta a $E^*|_S/\mathcal{H}$, y el bivector π definido en $M_{\rm red}=S/\mathcal{F}$ por

$$\pi^{\sharp}(\varphi) = \pi'^{\sharp}(\psi), \quad a^*\varphi = a'^*\psi$$

está bien definido y es cuasi-Poisson. Si es de Poisson y Im $a^* \supseteq \operatorname{Im} a'^*$ entonces es compatible con π' .

Proposición

Sea M una variedad de Poisson bianclada. Escogemos

- $S \subseteq M$ una subvariedad regular.
- \mathcal{F} la foliación integral de $A(\ker A')$.
- \mathcal{H} una foliación en $E^*|_{S}$.

Bajo algunas condiciones técnicas, el haz de anclas duales A_{λ}^* se proyecta a $E^*|_S/\mathcal{H}$, y el bivector π definido en $M_{\text{red}} = S/\mathcal{F}$ por

$$\pi^{\sharp}(\varphi) = \pi'^{\sharp}(\psi), \quad a^*\varphi = a'^*\psi$$

está bien definido y es cuasi-Poisson. Si es de Poisson y Im $a^* \supseteq \text{Im } a'^*$, entonces es compatible con π' .

Proposición

Sea M una variedad de Poisson bianclada. Escogemos

- $S \subseteq M$ una subvariedad regular.
- \mathcal{F} la foliación integral de $A(\ker A')$.
- \mathcal{H} una foliación en $E^*|_{S}$.

Bajo algunas condiciones técnicas, el haz de anclas duales A_{λ}^* se proyecta a $E^*|_S/\mathcal{H}$, y el bivector π definido en $M_{\text{red}} = S/\mathcal{F}$ por

$$\pi^{\sharp}(\varphi) = \pi'^{\sharp}(\psi), \quad a^*\varphi = a'^*\psi$$

está bien definido y es cuasi-Poisson. Si es de Poisson y Im $a^* \supseteq \operatorname{Im} a'^*$, entonces es compatible con π' .

Bibliografía

- FLASCHKA, H. (1974). The Toda lattice. II. Existence of integrals. *Physical Review B*, 9(4), 1974.
- MAGRI, F., CASATI, P., FALQUI, G., & PEDRONI, M. (2004). Eight lectures on integrable systems. *Integrability of nonlinear systems*, 209-250.
- MARSDEN, J. E., & RATIU, T. (1986). Reduction of Poisson manifolds. *Letters in mathematical Physics*, 11(2), 161-169.
- MEUCCI, A. (2000). Compatible Lie algebroids and the periodic Toda lattice. *Journal of Geometry and Physics*, 35(4), 273-287.
- TODA, M. (1970). Waves in nonlinear lattice. *Progress of Theoretical Physics Supplement*, 45, 174-200.

