Statistische Inferenz | 02 | Zentraltendenz, Streuung, Standardfehler

Prof. Dr. Roland Schäfer | Germanistische Linguistik FSU Jena

7. November 2024

Hinweis: Wo nicht anders angegeben, runden Sie die Ergebnisse auf zwei Nachkommastellen.

1 Skalenniveaus

Bestimmen Sie das Skalenniveau von folgenden Messgrößen:

- 1. Prozentwerte
- 2. Wortfrequenz-Rang (häufigstes Wort, ..., seltenstes Wort)
- 3. Kasus
- 4. Geschwindigkeit
- 5. Akzentsitz (Erstsilbe, Mittelsilbe, Endsilbe)
- 6. Satzlänge, gemessen in Wörtern
- 7. Frequenz eines Wortes im Korpus (absolute Zahl)
- 8. Höhe über NN
- 9. DSH-Prüfungsniveau (I III)
- 10. Verhältnis Satzlänge in Wörtern zu Wortlänge in Silben in einem Text
- 11. Wortklasse (= Wortart)
- 12. Beschleunigung
- 13. Textniveau (leicht, mittel, schwer)
- 14. Frequenz eines Wortes im Korpus pro eine Millionen Wörter
- 15. Textsorte

2 Modus und Median

Ermitteln Sie den Modus und wo möglich den Median für folgende Messreihen von Hand (ohne Software):

- 1. $x_1 = [\text{Nom, Akk, Akk, Akk, Nom, Dat, Gen, Nom, Nom, Akk, Dat, Dat, Akk, Akk}]$
- 2. $x_2 = [4, 5, 3, 3, 3, 2, 1, 2, 2, 1, 5, 4, 2, 2, 1, 3, 2]$
- 3. $x_3 = [4.3, 5.0, 3.0, 3.3, 3.7, 2.3, 1.3, 2.7, 2.0, 1.0, 5.0, 4.3, 2.0, 2.0, 1.3, 3.0, 2.7]$

3 Mittel und Streuung

Ermitteln Sie von Hand für die untenstehenden Messreihen das arithmetische Mittel, die Varianz und die Standardabweichung:

1.
$$x_4 = [2.73, 1.85, 21.24, 17.97, 5.49, 18.90, 12.46, 0.97, 6.45, 7.43]$$

2.
$$x_5 = [1.00, 1.91, 3.12, 4.38, 4.72, 5.29, 3.82, 3.25, 2.04, 0.93]$$

3.
$$x_6 = [1.07, 1.06, 0.94, 1.84, 3.04, 3.22, 4.18, 5.27, 6.27, 6.75]$$

4 z-Werte und Standardfehler

Ermitteln Sie für die Messreihen aus Aufgabe 3 die z-Werte für die Messpunkte und die Standardfehler von Hand. Formulieren Sie in eigenen Worten (jeweils ein Satz), was z-Werte und Standardfehler angeben.

5 Konfidenzintervalle (Anteilswerte)

5.1 Berechnung des Konfidenzintervalls für Anteilswerte

Berechnen Sie für folgende Anteilswerte (q) die Konfidenzintervalle bei den Stichprobengrößen n=10 und n=100 auf den Konfidenzniveaus $\alpha=0.9$ und und $\alpha=0.99$ (also je vier Mal den unteren un oberen Wert des Konfidenzintervalls). Die kritischen Werte der Normalverteilung entnehmen Sie bitte der zur Verfügung gestellten Tabelle. Runden Sie auf drei Nachkommastellen.

1.
$$q_1 = 0.21$$

2.
$$q_2 = 0.49$$

3.
$$q_3 = 0.89$$

5.2 Konfidenzintervalle für Mittelwerte

5.2.1 Fehler finden

Warum hätte folgende Tabelle ganz nicht gedruckt werden dürfen? Der Fehler ist ohne nachzurechnen erkennbar?

			95%	95% CI	
Measure	М	SD	Lower	Upper	
Age at testing (years) Age of onset of L2 learning (years)	20.23 5.13	2.94 1.78	19.59 5.74	20.88 5.53	

Ingrid Mora-Plaza, Joan C. Mora, Mireia Ortega and Cristina Aliaga-Garcia. Is L2 pronunciation affected by increased task complexity in pronunciation-unfocused speaking tasks? *Studies in Second Language Acquisition*. First View. https://doi.org/10.1017/S0272263124000470

5.2.2 Stichprobengröße (Transfer)

Aus den Zahlen für *Age at testing* können wir den Standardfehler und die Stichprobengröße rekonstruieren **auch ohne in den Originalartikel zu schauen**. Finden Sie zuerst den Standardfehler und dann die Stichprobengröße. Mit der Stichprobengröße können Sie dann das korrekte KI für *Age of onset* berechnen.