Full Name: _

Lab Section:

EEL 4750 / EEE 5502 (Fall 2018) - HW #01

Due Date:

Aug. 30, 2018

Homework learning objectives: By the end of this homework, you should have reviewed:

- Sketching discrete-time signals and their operations
- Identifying signal properties
- Computing signal energy and power
- Computing fundamental frequencies
- Understanding series and parallel systems

Question #1: (2 pts) How many hours did you spend on this homework?

Question #2: (6 pts) Let $x[n] = 5(-1)^{n+2} - 1$ be a discrete-time signal.

- (a) Sketch the signal x[n] for -4 < n < 4.
- (b) Compute the energy of x[n] [for all time].
- (c) Compute the power of x[n] [for all time].
- (d) Is x[n] an energy signal, a power signal, or neither?
- (e) Is x[n] an even signal, an odd signal, or neither.
- (f) Is x[n] causal?

Question #3: (5 pts) Sketch and determine the energy and power of each signal.

(a)
$$x_1[n] = 2[\delta(n+1) - \delta(n-1)]$$

(b)
$$x_2[n] = \sum_{m=-1}^{2} [u(n-2m) - u(n-1-2m)]$$

(c)
$$x_3[n] = e^{-j\pi n}$$
 (sketch the real and imaginary part)

(d)
$$x_4[n] = 2 \left[\delta(n+3) - \delta(n+2) + \delta(n+1) \right]$$

(e)
$$x_5[n] = (-1/2)^n$$

Question #4: (2 pts) Consider the following discrete-time signal r[n], shown below.

- (a) Mathematically express r[n] using only step functions (and shifted step functions).
- (b) Mathematically express r[n] using only impulse functions (and shifted impulse functions).

Question #5: (5 pts) Let $x_1[n]$ and $x_2[n]$ be the following discrete-time signals.

- (a) Sketch $x_1[-n]$
- (b) Sketch $x_1[n-2]$
- (c) Sketch $x_2[n+1]$
- (d) Sketch $-2x_2[2-n]$
- (e) Sketch $x_1[-n] x_2[n+1]$

Question #6: (6 pts) Determine whether or not each of the following discrete-time signals are periodic, and if they are, determine their fundamental period.

- (a) $x_1[n] = \cos(3\pi n)$
- (b) $x_2[n] = \cos(2n)$
- (c) $x_3[n] = \cos((2\pi/3)n + \pi/3) + \cos(\pi n)$
- (d) $x_4[n] = \delta[n] + \delta[n+1]$
- (e) $x_6[n] = \sum_{m=-\infty}^{\infty} \delta[n-m] + \delta[n-10m]$
- (f) $x_5[n] = e^{-j(\pi/2)n}$

Question #7: (7 pts) Consider the system with output y[n] and input x[n]: $y[n] = \sum_{m=-\infty}^{n} |x[m]|^2$

- (a) Is the system causal? Why?
- (b) Is the system memoryless (instantaneous)? Why?
- (c) Is the system BIBO stable? Why?
- (d) Is the system linear? Why?
- (e) Is the system time-invariant? Why?
- (f) Sketch the output for input $x[n] = \delta[n] 4\delta[n-1]$
- (g) What do you think this system does? What application is the system used for?

Question #8: (6 pts) Consider three discrete-time systems (known as systems 1, 2, and 3) with input signals $x_1[n]$, $x_2[n]$, $x_3[n]$ and output signals $y_1[n]$, $y_2[n]$, and $y_3[n]$.

$$y_1[n] = 2x_1[n]$$

 $y_2[n] = x_2[n-2]$
 $y_3[n] = 3x_3[n] + 1$

(a) Suppose the three systems are connected as shown below:

Write the input-output relationship (i.e., write the output y[n] as a function of the input x[n]) for this new system.

- (b) Write the output y[n] for an impulse input $x[n] = \delta[n]$
- (c) Sketch the output y[n] for an input x[n] = u[n] u[n-1]