

代数结构

Algebra Structures

内容提要

- 1. 运算及其性质
- 2. 代数系统
- 3. 群与子群
- 4. 阿贝尔群和循环群
- 5. 环与域
- 6. 格与布尔代数

内容提要

- 1. 运算及其性质
- 2. 代数系统
- 3. 群与子群
- 4. 阿贝尔群和循环群
- 5. 环与域
- 6. 格与布尔代数

1、运算及其性质

概念:

运算, 封闭的, 可交换的, 可结合的, 可分配的, 吸收律, 幂等的, 幺元, 零元, 逆元, 消去律

运算中的特殊元素

单位元(幺元)(Identity)

设*是A上二元运算, e_1 , e_r , $e \in A$

若∀x∈A,有 e_1 *x=x,称 e_1 为运算*的左幺元;

若∀x∈A,有x*e_r=x,称e_r为运算*的右幺元

若e既是左幺元又是右幺元,称e为运算*的幺元

>∀x∈A, 有e*x=x, x*e=x

定理:设*是A上的二元运算,具有左幺元e₁,右幺元e_r,则e₁=e_r=e。

证明:
$$e_r = e_1 * e_r = e_1$$

推论: 二元运算的幺元若存在则唯一。

证明: 反证法。设有二个幺元e, e'。则e = e*e' = e'。

零元 (Zero)

设*是A上二元运算, θ_1 , θ_r , $\theta \in A$,

若∀x∈A, 有 θ_1 *x= θ_1 , 称 θ_1 为运算*的左零元;

若∀x∈A, 有x* θ_r = θ_r , 称 θ_r 为运算*的右零元;

若θ既是左零元又是右零元,称θ为运算*的零元。

 $\triangleright \forall x \in A$,有 $\theta * x = x * \theta = \theta$

例:

- a) 〈Z, x〉, Z为整数集。 则幺元为1, 零元为0。
- b) ⟨℘(A), ∪, ∩⟩
 对运算 ∪, Ø是幺元, A是零元;
 对运算 ∩, A是幺元, Ø是零元。
- c) 〈N, +〉 有幺元0, 无零元。

例:代数A=〈{a, b, c, d}, *〉用下表定义:

*	a	b	c	d
a	a	a	a	a
b	b	b	b	b
c	c	d	a	b
d	d	d	b	c

左幺元 无

右幺元 a

左零元 a, b

右零元 无

定理: 设*是A上的二元运算,具有左零元 θ_1 ,右零元 θ_r ,则 θ_1 = θ_r = θ_0 .

推论: 二元运算的零元若存在则唯一。

逆元 (Inverse)

设*是A上的二元运算,e是运算*的幺元。

若x*y=e那对于运算*,x是y的左逆元,y是x的右逆元。

若x*y=e, y*x=e, 则称x是y的逆元。若x唯一, 则将它记为y-1。

▶存在逆元(左逆无,右逆元)的元素称为可逆的(左可逆的,右可逆的)

例:

a) 代数 〈N,+〉。 仅有幺元0,有逆元0。

b) A= 〈{a, b, c}, *〉由下表定义:

*	a	b	c
a	a	a	b
b	a	b	c
c	a	c	c

b是幺元,

a的右逆元为c, 无左逆元,

b的逆元为b,

C无右逆元, 左逆元为a

c) $\forall x, y \in Z^+, x * y = lcm(x, y)$ (最小公倍数)

结合、交换、幂等 单位元:1 零元:无 逆元:1

定理:对于可结合运算 o,如果元素x有左逆元 l,右逆元r,则1=r=x-1。

证明: $l = l \circ e = l \circ (x \circ r) = (l \circ x) \circ r = e \circ r = r$

∴逆元存在,为r。

引理:对于可结合运算 0, 逆元若存在,则唯一。

证明: 若存在X的另一个逆元r1,则

$$r^{1} = r^{1} \circ e = r^{1} \circ (x \circ r) = (r^{1} \circ x) \circ r = e \circ r = r$$

消去律 (Cancellation Law)

已知 $\langle A, * \rangle$, 若 $\forall x, y, z \in A$, 有

- (1) 若 $x*y = x*z且 x \neq \theta$, 则y=z;
- (2) 若 y*x = z*x且 x ≠**0**,则y=z; 则称*满足消去律。

- 例: (1) 整数集上的加法和乘法都满足消去律;
 - (2) S = {1, 2, 3}, P(S)的交、并运算不满足消去律。