LISTA 1

Exercício 1. Sejam $\Omega \subset \mathbb{C}$ um conjunto aberto e $f \in \mathcal{H}(\Omega)$ uma função holomorfa tal que $f(z) \neq 0$ para todo $z \in \Omega$. Prove que a função $\frac{1}{f}$ é holomorfa em Ω .

Exercício 2. Prove que

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

para todo $z \in \mathbb{C}$.

Exercício 3. Sejam $\Omega \subset \mathbb{C}$ um conjunto aberto e conexo e $f \in \mathcal{H}(\Omega)$ uma função holomorfa. Suponha que f'(z) = 0 para todo $z \in \Omega$. Prove que f é constante.

Exercício 4. Dadas duas funções contínuas $h, \phi \colon [0, 1] \to \mathbb{C}$ e um conjunto aberto $\Omega \subset \mathbb{C}$ tais que $\Omega \cap \phi([0, 1]) = \emptyset$, definimos a função

$$f \colon \Omega \to \mathbb{C}, \quad f(z) := \int_0^1 \frac{h(t)}{\phi(t) - z} dt.$$

Prove que f é analítica em Ω .

Exercício 5. Seja $\gamma \subset \mathbb{C}$ um caminho suave por partes. Suponha que

$$f_n \to f$$
 uniformemente em γ quando $n \to \infty$,

onde f e $\{f_n\}_{n\geq 1}$ são funções integráveis.

Prove que

$$\int_{\gamma} f_n(z)dz \to \int_{\gamma} f(z)dz$$
 quando $n \to \infty$.

Exercício 6. Seja Ω a região angular definida por

$$\Omega:=\left\{z\in\mathbb{C}\colon z=z_0+re^{i\theta},\ r>0,\ \theta\in[\theta_1,\theta_2]\right\},$$

onde o vértice $z_0 \in \mathbb{C}$ e os ângulos $\theta_1, \theta_2 \in [0, 2\pi]$ são dados.

Suponha que $f\colon \Omega \to \mathbb{C}$ seja uma função contínua tal que

$$\lim_{z \to \infty} (z - z_0) f(z) = a.$$

Prove que

$$\lim_{R \to \infty} \int_{\gamma_R} f(z) dz = i(\theta_2 - \theta_1) a,$$

onde γ_R é o caminho $\gamma_R \colon [\theta_1, \theta_2] \to \mathbb{C}, \, \gamma_R(t) = Re^{it}$.

Exercício 7. Seja f uma função inteira. Prove que a imagem de f é um conjunto denso em \mathbb{C} .

Exercício 8. Mostre que

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2} \, .$$

Exercício 9. Sejam $\Omega \subset \mathbb{C}$ um conjunto aberto e conexo e $f \in \mathcal{H}(\Omega)$ uma função tal que $f \not\equiv 0$. Denote por $\mathcal{Z}(f)$ o conjunto de todos os zeros de f em Ω , isto é, $\mathcal{Z}(f) := \{z \in \Omega \colon f(z) = 0\}$.

- (i) Prove que $\mathcal{Z}(f)$ é um conjunto discreto.
- (ii) Prove que dado qualquer conjunto compacto $K \subset \Omega$, tem-se $\mathcal{Z}(f) \cap K$ é finito.
- (iii) Prove que $\mathcal{Z}(f)$ é finito ou enumerável.

Exercício 10. Sejam $f \in \mathcal{H}(\Omega)$ uma função holomorfa e não constante e $\mathcal{R} = [a, b] \times [c, d] \subset \Omega$ um retângulo. Prove que

$$\inf_{t \in \mathbb{R}} \sup_{y \in [c,d]} \inf_{x \in [a,b]} |f(x+iy) - t| =: \epsilon_0 > 0.$$

Ou seja, prove que existe $\epsilon_0 > 0$ com a seguinte propriedade: para todo $t \in \mathbb{R}$ existe $y \in [c, d]$ tal que para todo $x \in [a, b]$, tem-se

$$\left| f(x+iy) - t \right| \ge \epsilon_0.$$

Exercício 11. Sejam $\mathcal{R} = [0,1] \times [0,1] \subset \mathbb{C}$ e $f : \mathcal{R} \to \mathbb{C}$ dada por $f(z) := z^2 - 2z$. Determine $\sup_{z \in \mathcal{R}} |f(z)|.$

Exercício 12. Estabeleça o seguinte princípio do módulo mínimo.

Sejam $\Omega \subset \mathbb{C}$ um conjunto aberto e conexo e $f \in \mathcal{H}(\Omega)$ uma função não constante.

- (i) Suponha que |f| possua um mínimo local $z_0 \in \Omega$. Prove que $f(z_0) = 0$.
- (ii) Suponha que f seja contínua até a fronteira de Ω , isto é, f possui uma extensão contínua $f: \overline{\Omega} \to \mathbb{C}$. Prove que ou f possui um zero em $\overline{\Omega}$ ou |f| atinge seu mínimo somente na fronteira de Ω .

Exercício 13. Denotamos por $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ o disco unitário aberto. Seja $f \in \mathcal{H}(\mathbb{D})$.

(i) Prove que para todo 0 < r < 1,

$$2f'(0) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(\zeta) - f(-\zeta)}{\zeta^2} d\zeta.$$

(ii) Prove que

$$2f'(0) \le \sup_{z,w \in \mathbb{D}} |f(z) - f(w)|.$$

Exercício 14. Seja $f \in C(\overline{\mathbb{D}}) \cap \mathcal{H}(\mathbb{D})$, isto é, f é uma função contínua no disco unitário fechado e holomorfa no disco unitário aberto. Suponha que $f(z) \neq 0$ para todo $z \in \mathbb{D}$ e |f(z)| = 1 para todo z com |z| = 1. Prove que f deve ser constante.

Dica: Estenda f para o plano complexo inteiro por

$$f(z) = \frac{1}{f(\frac{1}{z})}$$
 quando $|z| > 1$

usando a ideia da prova do princípio da reflexão de Schwarz.

Exercício 15. (i) Prove que a função $\log(1-z)$ possui um ramo holomorfo em \mathbb{D} .

(ii) Use a fórmula de Cauchy para deduzir que para todo 0 < r < 1, tem-se

$$\int_0^{2\pi} \ln\left|1 - re^{i\theta}\right| d\theta = 0.$$