아래의 가중치/바이어스/정답/학습율 초기 값과 가상의 시그모이드 함수가 아래와 같을 때,

$$W2 = \begin{pmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$

$$W3 = \begin{pmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$T = (2 \ 1)$$

$$b2 = (1 \ 1) , b3 = (0 \ 2)$$

$$learning_rate = 0.1$$

가상의 sigmoid 함수	
sigmoid(0)	-3
sigmoid(1)	-2
sigmoid(2)	-1
sigmoid(3)	0
sigmoid(4)	1
sigmoid(5)	2
sigmoid(6)	3
sigmoid(7)	4

[1] 주어진 입력 값, 가중치 W2, W3, 바이어스 b2, b3, 가상의 sigmoid 함수를 이용하여 feed forward 1회 수행 할 경우 $a^{(1)}1$, $a^{(1)}2$, $a^{(2)}1$, $a^{(2)}2$, $a^{(3)}1$, $a^{(3)}2$ 를 계산하시오

[2] feed forward를 수행한 후에 back propagation 1회 실행 할 경우 업데이트된 W3, b3, W2, b2를 구하시오