

High Voltage Isolated Differential Probe

EE314: EDL Project

Team Members:

Shashi prabha 200020043

Mouli Venkata Prakash 200020027

Devi Prasad 200020022

Project Supervisor

Prof. Dr.Abhijit Kshirsagar Dept. of Electrical Engineering IIT Dharwad

Project Timeline

A. First Evaluation

- 1. Study of existing solutions
- 2. Requirement Building / Spec freeze
- 3. High-level system Design by 27/Jan 2023

B. Second Evaluation

- Simulation
- 5. Prototyping
- 6. PCB design by 17/Feb 2023

C. Third Evaluation

- 7. Prototyping and Assembling
- 8. Integration 17/March 2023

D. Final Evaluation

- Testing and Calibration
- 10. Bugs and Fixing
- 11. Final PoC System Demonstration 10/April 2023

Presentation Outline

- Problem Statement
- Target Objective
- Wish Specifications
- Isolation Techniques
- Market Survey Details
- System Level Block Diagram
- Core Component
- Preliminary Design

Problem statement:

High Voltage Differential Probe

- Tektronix P5200A
- Too high bandwidth & voltage range for UG lab use

100MHz, 1500V

Cons:

- Imported
- Only works with MDO Series Tek DSOs (or needs adapters)
- Too expensive **₹4,00,000**

Wish specifications:

- Voltage Range: 0-600V
- Impedance: 10MΩ
- Bandwidth: DC-5Mhz
- Common Mode Rejection Ratio (CMRR): > 65dB
- Signal Noise Ratio (SNR): > 65dB
- Isolation Voltage Rating: 1000V
- Input Connector: Banana jack type
- Output Connector: BNC
- Operating Temperature: 10°C to 50°C
- Power Source: External

Current Probe:

- Tektronix A622
- Too expensive ₹ 1,50,000
- Too high bandwidth for lab use 100kHz
- Imported

Target objective:

 Replacement of P5200A Device at low budget at 35k.

Isolation Techniques

- RF, fibre optic, isolation mechanisms.
- **RF Isolation:** It is used to protect your RF components from excessive power reflection.
- **RF Isolator**: An RF isolator is a 2-port device that transmits microwave or radio frequency power in one direction only while blocking the signal in the opposite direction.
- RF ISOLATION TECHNIQUES: 1)grounding techniques:
- > It is used to have separate supplies for analog and digital sections of the chip to isolate the analog circuits from switching noise.

2)GUARD RINGS:

- current taken from a DC power source is properly isolated from the power source.
- The ring-guard isolation technique usually consists of three components: an insulating ring, a ground conductor, and a guard ring.

Pros:

Provide better isolation at lower frequencies

Cons:

At higher frequencies isolation becomes weak.

3)ON CHIP DECOUPLING:

- It improve signal integrity and reduce unwanted crosstalk between signals.
- The technique involves isolating the circuits or devices on the IC by using a dielectric material such as silicon dioxide (SiO2) or polyimide (PI)..

Optical isolation

Principle:

Uses a LED or laser diode as light source, directed into a single mode optical fiber, which travels and then incident on photo detector(photodiode), this generates electrical signal.

Cons:

Low bandwidth, more delay, used in less input voltage, etc.

Fiber Optic isolated voltage probe

- 10x attenuation
- +-50V input voltage range
- used battery for power supply
- it is noisy

Market Survey:

A Digital Isolated High Voltage Probe

In this probe isolation is provided by converting analog signals to digital using ADC and then isolating the digital dta lines

High Voltage differential probe 25MHz, 400V input, same which we are targeting but not isolated.

Survey on isolated amplifiers

AMC1301QDWVQ1

Isolation Amplifiers Automotive Precision +/-250mV-Input, Reinforced Isolated Amplifier.

Price: ₹966.22

HCPL-7520-300E
optoisolator. Which
have ADC and DAC all
built in, and basically
only requires a power
supply on each side.
Although the
bandwidth is only
100kHz.

COST \$7

Core Component

(isolation amplifier)

AMC1301-Q1

This barrier is certified to provide reinforced galvanic isolation of up to 7

kV peak.

Specs

GBWP $-1000 \, \text{kHz}$

CMRR -— 92 dB

Operating Temperature —(-40 to 125 c)

VDD - (-0.3 to 7) V

- (GND1 – 6) to (VDD+ 0.5) Input Voltage Range

AMC1301-Q1

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	PERCENTION	
NAME	NO.	1/0	DESCRIPTION	
GND1	4		High-side analog ground	
GND2	5	_	Low-side analog ground	
VDD1	1	. - -a	High-side power supply, 3.0 V to 5.5 V. See the <i>Power Supply Recommendations</i> section for decoupling recommendations.	
VDD2	8		Low-side power supply, 3.0 V to 5.5 V. See the <i>Power Supply Recommendations</i> section for decoupling recommendations.	
VINN	3	1	Inverting analog input	
VINP	2	1	Noninverting analog input	
VOUTN	6	0	Inverting analog output	
VOUTP	7	0	Noninverting analog output	

• Rough Schematic of Circuit Diagram

Future Work

Second Evaluation

- 1. Simulation
- 2. Prototyping
- 3. PCB design by 17/Feb 2023

System Block diagram

Input Attenuator Stage

Attenuation: 1/2000

Isolated Amplifier Stage

Bandwidth: 1MHz

gain: 8

Vdd: -0.3 to 7V

Input voltage range: 330mV (calculated by simulations)

Signal Conditioning

IC (LF356)

Differential amplifier: making output

single ended

Inverting amplifier: used for trimming of

gain and offset correction

Trimming Values Required for gain and offset correction

Frequency (Hz)	Gain (dB)	Trimming Values (Ohm)
1-10	-48.14	51075.(45892 to 45894)
10-100	-48.14	51075.(
100-1000	-48.14	
1000-10k	-48.14	
10k-100k	-48.1548.71	
100k-1000k	-48.71114.8	

Circuit Schematic

Stages:

Input attenuator(voltage divider) isolation amplifier (AMC1301 IC) (bandwidth=1000kHz) differential amplifier inverting amplifier (for gain correction) inverting amplifier (for offset correction)

High Voltage Input plot (± 600V)

AC analysis Output after Isolated amplifier stage

Output after differential amplifier vs output after Isolated amplifier

Transient analysis Output after Isolated amplifier stage

PCB schematic diagram

PCB Design

3D model of PCB Design

