Proof. By Formula (3.2) we have $R(\lambda,A) = S_{\lambda}^{-1}R(\lambda,A_{0})$ for $\lambda > \|\phi\|+w$, (where $S_{\lambda}f = f - \varepsilon_{\lambda} \otimes R(\lambda,B) \otimes f$ for $f \in E$). Thus the fact that $R(\lambda,A_{0})$ is positive (C-II,Prop.4.1) reduces the problem to showing that S_{λ}^{-1} is a positive operator for $\lambda > \|\phi\|+w$. Since $S_{\lambda} = Id - \varepsilon_{\lambda} \otimes R(\lambda,B) \otimes and \|\varepsilon_{\lambda} \otimes R(\lambda,B) \otimes \|\leq (\lambda-w)^{-1} \cdot \|\phi\| < 1$ we see that $S_{\lambda}^{-1} = \sum_{n=0}^{\infty} (\varepsilon_{\lambda} \otimes R(\lambda,B) \otimes n)$ is positive. Hence $(T(t))_{t\geq 0}$ is a positive semigroup again by C-II,Prop.4.1.

Remark. Suppose that ϕ has no mass in zero (i.e., for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\|\phi f\| \le \varepsilon \|f\|$ for all $f \in E$, supp $(f) \subset [-\delta,0]$). Then the positivity hypotheses in the above proposition are necessary in order to obtain positivity of $(T(t))_{t \ge 0}$ (cf. B-II,1.22 for the case dim $F < \infty$ and [Kerscher (1986)] for the general case).

<u>Proposition</u> 3.6. Let $\phi \in L(E,F)$ be positive and assume that B generates a positive semigroup on F. The "spectral bound function" $\lambda \to s(B + \phi_{\lambda})$ is decreasing and continuous from the left on $\mathbb R$. If, additionally, B has compact resolvent and there exists $\lambda' \in \mathbb R$ with $\sigma(B + \phi_{\lambda'}) \neq \emptyset$, then $\lambda \to s(B + \phi_{\lambda})$ is continuous and the spectral bound s(A) is the unique solution of the equation

$$\lambda = s(B + \phi_{\lambda}) .$$

<u>Proof</u> (cf. also C-IV,Lemma 3.4). For $\lambda \leq \mu$ we have $0 \leq \varphi_{\mu} \leq \varphi_{\lambda}$ and hence $0 \leq R_{\mu}(t) \leq R_{\lambda}(t)$, $t \geq 0$, for the respective semigroups generated by $B + \varphi_{\mu}$ and $B + \varphi_{\lambda}$ (see A-II,Sec.1). This implies $s(B + \varphi_{\mu}) \leq s(B + \varphi_{\lambda})$. The left-continuity follows by the semicontinuity of the spectrum (see [Kato (1976) Chap.IV, Thm.3.1]). If B has compact resolvent then $B + \varphi_{\lambda}$ has compact resolvent as well. Now C-III,Thm.1.1.(a) shows that $s(B + \varphi_{\lambda})$ belongs to $\sigma(B + \varphi_{\lambda})$ and, by A-III,3.6 is a pole with residue of finite rank. This completes the proof since spectral points of compact operators depend continuously on smooth perturbations (see [Dunford-Schwartz (1958), VII,6.Thm.9]).

If $\sigma(B) \neq \emptyset$, then $-\infty < s(B) \le s(B + \phi_{\lambda})$ for all $\lambda \in \mathbb{R}$ which implies $\sigma(B + \phi_{\lambda}) \neq \emptyset$. On the other hand, if $\sigma(B + \phi_{\lambda}) = \emptyset$ for all $\lambda \in \mathbb{R}$ then $\sigma(A) = \emptyset$ by Prop.3.4.

We are now able to characterize the spectral bound of the generator $\,A\,$ in $\,E\,$ through spectral bounds of generators in $\,F\,$.