Greedy Algorithms

CSci 4041: Algorithms and Data Structures

Instructor: Arindam Banerjee

March 31, 2015

Greedy Algorithms

- Uses greedy choice
 - Choice that looks the best at the moment
- Greedy algorithms
 - Not always optimal
 - Can be optimal at times
 - Can give good approximations at times
 - Usually much faster than dynamic programming

Activity Selection Problem

- Set $S = \{a_1, a_2, \dots, a_n\}$ of activities
 - Each activity a_i has start time s_i and finish time f_i
 - Activity a_i takes place in the interval $[s_i, f_i]$
- Two non-overlapping activities a_i and a_j are compatible
 - Intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap
 - Either $s_i \geq f_j$ or $s_j \geq f_i$
- Example: Activities sorted by finish times

- Maximum size subset of mutually compatible activities
 - $\{a_3, a_9, a_{11}\}$ are compatible, but not maximum
 - Two maximum subsets: $\{a_1, a_4, a_8, a_{11}\}, \{a_2, a_4, a_9, a_{11}\}$

Optimal Substructure of Activity Selection

- S_{ij} : Activities after a_i finishes and before a_j starts
- ullet A_{ij} : Maximum compatible subset in S_{ij}
 - Assume A_{ij} includes activity a_k
 - Consider S_{ik} , and let $A_{ik} = A_{ij} \cap S_{ik}$
 - Consider S_{kj} , and let $A_{kj} = A_{ij} \cap S_{kj}$
 - We have $A_{ij} = A_{ik} \cap \{a_k\} \cap A_{kj}$ so that

$$|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$$

- ullet Optimal A_{ij} includes optimal solutions to S_{ik} and S_{kj}
 - The 'cut-and-paste' argument
- For S_{kj} , if there was a better solution A'_{kj} , with $|A'_{kj}| > |A_{kj}|$
 - We could get a better solution $A'_{ij} = A_{ik} \cup \{a_k\} \cup A'_{kj}$
 - In particular, $|A'_{ij}| = |A_{ik}| + |A'_{kj}| + 1 > |A_{ik}| + |A_{kj}| + 1 = |A_{ij}|$
 - But that violates the optimality of A_{ij}

Optimal Substructure of Activity Selection (Contd.)

ullet Size of the optimal solution for S_{ij} be c[i,j]

$$c[i,j] = egin{cases} 0 & ext{if } S_{ij} = \emptyset \;, \\ \max_{a_k \in S_{ij}} \; \{c[i,k] + c[k,j] + 1\} & ext{if } S_{ij}
eq \emptyset \;. \end{cases}$$

- One can develop a dynamic programming algorithm
- But we can take advantage of structure in the problem

Greedy Choice

- Pick the activity which leaves most time left for others
- Pick activity a₁ with earliest finish time
 - There will always be a first activity
 - f_1 is the earliest finish time among all activities
 - Leaves the most room for other activities
- ullet Remaining problem: Finding activities that start after a_1 finishes
- Let $S_k = \{a_i \in S : s_i \geq f_k\}$
- ullet If a_1 is in the optimal subset, we can focus only on \mathcal{S}_1

Greedy Choice (Contd.)

- Theorem: Let a_m be an activity in S_k with earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k
- Proof by the 'cut-and-paste' style argument
 - Let A_k be an optimal solution
 - Let $a_j \in A_k$ be the activity with the earliest finish time
 - If $a_j = a_m$, then we are done
 - If $a_j \neq a_m$, we can replace a_j by a_m and still get an optimal solution
- Idea: Always pick the activity with the earliest finish time, then focus on the rest

Algorithm: RECURSIVE-ACTIVITY-SELECTOR

```
REC-ACTIVITY-SELECTOR (s, f, k, n)
m = k + 1
while m \le n and s[m] < f[k] // find the first activity in S_k to finish m = m + 1
if m \le n
return \{a_m\} \cup \text{REC-ACTIVITY-SELECTOR}(s, f, m, n)
else return \emptyset
```

- Initial call Recursive-Activity-Selector(s, f, 0, n)
- Use a fictitious activity a_0 with $f_0 = 0$
- Always picks the activity with the earliest finish time among compatible activities

Example: Recursive Activity Selector

Algorithm: Greedy-Activity-Selector

```
GREEDY-ACTIVITY-SELECTOR (s, f)

n = s.length

A = \{a_1\}

k = 1

for m = 2 to n

if s[m] \ge f[k]

A = A \cup \{a_m\}

k = m

return A
```

• k indexes the most recent addition to A

$$f_k = \max\{f_i : a_i \in A\}$$

- Considers activities with $s_m \ge f_k$
- Picks the ones with the earliest finish time
- Activities are already sorted by finish time

Elements of Greedy Strategy

- Overall structure we followed was a bit indirect
- Determine the optimal substructure of the problem
- Develop a recursive solution
- If we make the greedy choice, only one subproblem remains
- It is always safe to make the greedy choice
- Develop recursive algorithm implementing the greedy strategy
- Convert the recursive algorithm to an iterative algorithm

Elements of Greedy Strategy (Contd.)

- Simpler approach for a direct strategy
 - Optimization problem: Make a choice, left with one subproblem
 - Prove that greedy choice is always safe
 - There is always an optimal solution that makes the greedy choice
- Demonstrate optimal substructure
 - Make the greedy choice, get a subproblem
 - Combine greedy choice with optimal solution to subproblem
 - Get optimal solution to overall problem

Greedy Choice Property

- Greedy choice gives locally optimal solution
- Dynamic programming works bottom up
 - From smaller to larger problems
 - Relies on solutions to subproblems
- Greedy choice may depend on past choices
 - Does not depend on solutions to subproblems
 - Does not depend on future decisions
- Need to show that greedy choice leads to optimum
- Greedy choice is usually more efficient

Optimal Substructure

- Optimal global solution
 - Contains optimal solutions to subproblems
- Needed for dynamic programming and greedy algorithms
- Greedy algorithms use a more direct structure
 - A greedy choice results in a subproblem
 - Prove that greedy choice + optimal solution to subproblem
 optimal solution to original problem

Greedy vs. Dynamic Programming

- Comparison based on knapsack problems
- 0-1 knapsack problem
 - n items, a knapsack which carry W pounds
 - Item i has value v_i and weight w_i
 - How to choose items to maximize value in knapsack?
- Fractional knapsack problems
 - Same setup as above
 - Additionally, can take fractional amount of an item
- Gold ingots/bars (0-1) vs. gold dust (fractional)

Optimal Substructure in Knapsack Problems

- 0-1 Knapsack
 - ullet Consider most valuable itemset with at most W pounds
 - Remove item *j*
 - Remaining must be most valuable itemset with at most $W-w_j$ pounds
- Fractional knapsack
 - Compute value per pound v_i/w_i for each item
 - Sort items based on value per pound
 - Start filling with most valuable, then next most valuable, etc.
 - Continue till knapsack is full
- 0-1 Knapsack cannot be solved by a greedy strategy

Example: Knapsack Problems

- Item 1 is the most valuable
- For 0-1, item 1 left out, not greedy

Compression by Character Coding

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- Designing a binary character code
- Each character is represented as a unique binary string
- Fixed length code: 300,000 bits
- Variable length code: 224,000 bits

Prefix Codes

- No codeword is a prefix of another
- Suitable prefix code can always achieve optimal compression
- Encoding: Just concatenate the codewords For abc, we get $0 \cdot 101 \cdot 100 = 0101100$
- Decoding: Sequentially, identify codeword, output character
 0010111001 = 0 · 0 · 101 · 1101 decodes to aabe

Example: Decoding and Binary Trees

- Traverse down the tree, decode character at leaf
- Optimal code is always a full binary tree
 - Every nonleaf node has two children
- For C characters, |C| leaves, |C| 1 internal nodes

Huffman Coding

- T: binary tree, $d_T(c)$: length of codeword c
- Given a binary tree T, total number of bits needed

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$

- Huffman coding: Optimal prefix code with a greedy algorithm
 - Begins with |C| leaves
 - ullet Sequential |C|-1 merges to form tree

Algorithm: HUFFMAN

```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = EXTRACT-MIN(Q)

6 z.right = y = EXTRACT-MIN(Q)

7 z.freq = x.freq + y.freq

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q) // return the root of the tree
```

- Merge two nodes with lowest frequencies
- Create a new (meta)node after merging
- Total $O(n \log n)$
 - Build min heap in O(n)
 - (n-1) heap operations, each $O(\log n)$

Example: Huffman Coding

Correctness of Huffman's Algorithm

- Lemma: x and y be characters in C with the lowest frequencies.
 There exists an optimal prefix code where x and y have the same length, and differ only in the last bit
- Let T be an optimal code
 - a and b are siblings in T at maximum depth
 - 'Wlog' $a.freq \le b.freq, x.freq \le y.freq$
 - We have $x.freq \le a.freq, y.freq \le b.freq$
 - Assume $x.freq \neq b.freq$, otherwise problem is trivial
- Create new tree by swapping
 - Swap x and a to get T'
 - Then swap y and b to get T''

T' is as good as T since

$$B(T) - B(T') = \sum_{c \in C} c.freq \cdot d_T(c) - \sum_{c \in C} c.freq \cdot d_{T'}(c)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)$$

$$= (a.freq - x.freq)(d_T(a) - d_T(x)) \ge 0$$

- Similarly, T'' is as good as T', so $B(T'') \leq B(T)$
- But since T is optimal, B(T'') = B(T)
- Thus, T'' is optimal, with x, y as siblings at max depth

- Allows for greedy choice for merge
 - Merge the two least frequent nodes
 - Always part of an optimal solution
 - No need to consider other nodes/frequencies
- Merge x and y to get new node z
 - z.freq = x.freq + y.freq
 - C' be a reduced character set: $C' = C \{x,y\} \cup \{z\}$
- Lemma: T' be an optimal prefix code tree for C', then T obtained from T' by replacing z with an internal node with x, y as children is an optimal prefix code for C

By construction

$$x.freq \cdot d_T(x) + y.freq \cdot d_T(y) = z.freq \cdot d_{T'}(z) + (x.freq + y.freq)$$

As a result

$$B(T') = B(T) - x.freq - y.freq$$

- ullet Proof by contradiction: Suppose T is not optimal
 - There exists T'' such that B(T'') < B(T)
 - Then, T'' has x and y as siblings
 - Construct T''' by merging x, y to get node z
- Note that we are using the cut-and-paste argument

By construction

$$B(T''') = B(T'') - x.freq - y.freq$$

$$< B(T) - x.freq - y.freq = B(T)$$

- ullet Contradicts the optimality of T'
- Thus, T must be optimal for C