

In the Claims

Kindly amend the claims, as follows:

Claims 1-38 (Canceled)

39. (Currently Amended): An interconnect structure S containing a plurality of nodes and a plurality of interconnects selectively coupling the nodes, the interconnect structure comprising:

a node set T;

an interconnect set I that selectively connects nodes in the node set T;

a device set A mutually exclusive of the node set T with each device in the device set A being capable of sending data to a node in the node set T;

a device set Z mutually exclusive of the node set T with each device in the device set Z being capable of receiving data from a node in the node set T;

a collection C of node sets that are subsets of the node set T, each node in the node set T being contained in exactly one member of the collection C;

for a device x in the device set Z, a sequence cx = cx₀, cx₁, cx₂, ..., cx_j exists with each member of the sequence cx being a node set in the collection C, the sequence cx being capable of passing data from devices in the device set A to the device x on a plurality of paths, among the plurality of paths being a path set P(x) characterized in that a path R is included in the path set P(x) only if each node on the path R is in a member of the sequence cx, a node of the path R that receives a message directly from a device in the device set A being in a set having the form cx_u and a node of the path R that sends data directly to the device x being in a set of the form cx_v with U being larger than V;

for a member Q of the collection C, a corresponding set of devices Z(Q) exists in the device plurality set Z such that a device q is included in the set of devices Z(Q) only if the member Q is also a member of the a sequence cq;

for members CXH and CXK of the sequence cx with H > K, a device set Z(cx_K) is a subset of a device set Z(cx_H) and a device exists in the device set Z(cx_H) that is not included in the device set Z(cx_K); and

the node set T includes three distinct nodes p, q, and r, the node p being in a member cz_D of sequence cz, the nodes q and r being in a member cz_E of the sequence cz with D > E, in one path of paths P(x) a message moves directly from the node p to the node r and in another path of paths P(x) a message moves directly from the node q to the node r.

40. (Currently Amended): An interconnect structure according to Claim 39 wherein:

the paths P(x) include a path such that if a message hops from a node in a member cz_n to a node in a member cz_m, then n ≥ m.

41. (Previously presented): An interconnect structure according to Claim 39 wherein:

the collection C includes distinct member node sets D and E, and for corresponding device sets Z(D) and Z(E) with the device set Z(D) being a subset of the device set Z(E), a device y in the device set Z(D) exists such that member node set D is a node set cy_R and member node set E is a node set cy_S and R is greater than S.

42. (Currently Amended): An interconnect structure according to Claim 39 further comprising:

an arrangement of the nodes in the interconnect structure into a hierarchy of levels of node sets L = L₀, L₁, ..., L_J, each member of the hierarchy L being a node set that is subset of the node set T and each node in the node set T is contained in exactly one member of the node sets L; and

for the device x of the device set Z, a node set cx_N is a subset of the a level N node set L_N, with N not exceeding J.

43. (Previously presented): An interconnect structure according to claim 42
wherein:

a message M_y targeted for a device y in the device set Z enters at a node on level L_j and exits at an output port on level L_0 with the output port being connected to the device y ; and

for a hop in a path of the message M_y from a node of L_U to a node of L_V , U being greater than or equal to V .

44. (Currently Amended): An interconnect structure according to claim 43
wherein:

the collection C includes 2^{J-N} members on a level N ;

the collection C includes three members D , E and F such that member node set D is on the level L_N and member node sets E and F are on the a level L_{N-1} ;

the interconnect set I includes interconnects positioned to allow data to pass directly from the member node set D to the member node set E and to pass directly from the node set D to the node set F ; and

the device set Z includes device sets $Z(D)$, $Z(E)$, and $Z(F)$ that correspond to the three members D , E , and F , the device sets $Z(E)$ and $Z(F)$ being mutually exclusive device sets, and the device set $Z(D)$ is the union of the device sets $Z(E)$ and $Z(F)$.

45. (Previously presented): An interconnect structure according to Claim 39 further comprising:

a member node set c in the collection C ; and

a plurality of interconnects in the interconnect set I connecting nodes in the member c so that the nodes of the node set c are arranged in a ring.

46. (Currently Amended): An interconnect structure in accordance with Claim 39 further comprising:

a logic L_p associated with the node p wherein for a message M_p that arrives at the node p , the logic L_p uses information concerning the sending of messages

from the node q for the logic L_p to determine where the node p is to send the message M_p.

47. (Previously Presented): An interconnect structure according to claim 46 wherein:

the node q has priority over the node p to send data to the node r so that a message M_q located at the node q is not blocked from being sent to the node r by a message M_p at the node p.

48. (Previously Presented): An interconnect structure according to claim 47 wherein:

the node q is capable of sending a control signal to the node p wherein the purpose of the control signal is to enforce the priority of the node q over the node p to send data to the node r.

49. (Previously Presented): An interconnect structure according to Claim 39 wherein:

the node set T is a proper subset of nodes in the interconnect structure; and the interconnect set I is a proper subset of the interconnects in the interconnect structure.

50. (Previously Presented): An interconnect structure according to Claim 39 wherein:

each node in the interconnect structure is included in the node set T; and each interconnect in the interconnect structure is included in the interconnect set I.

51. (Currently Amended): An interconnect structure S containing a plurality of nodes and a plurality of interconnects selectively coupling the nodes, the interconnect structure comprising:

a node set T;

an interconnect set I that selectively connects nodes in the node set T;

a device set A mutually exclusive of the node set T with each device in the device set A being capable of sending data to a node in the node set T;

a device set Z mutually exclusive of the node set T with each device in the device set Z being capable of receiving data from a node in the node set T;

a collection C of node sets that are subsets of the node set T, each node in the node set T being contained in exactly one member of the collection C;

for a device x in the device set Z, a sequence $cx = cx_0, cx_1, cx_2, \dots, cx_j$ exists with each member of the sequence cx being a node set in the collection C, the sequence cx being capable of passing data from devices in the device set A to the device x on a plurality of paths, among the plurality of paths being a path set $P(x)$ characterized in that a path R is included in the path set $P(x)$ only if each node on the path R is in a member of the sequence cx, a node of the path R that receives a message directly from a device in the device set A being in a set having the form cx_U and a node of the path R that sends data directly to the device x being in a set of the form cx_V with U being larger than V;

for a member Q of the collection C, a corresponding set of devices $Z(Q)$ exists in the device plurality set Z such that a device q is included in the set of devices $Z(Q)$ only if the member Q is also a member of the a sequence cq;

for members cx_H and cx_K of the sequence cx with $H > K$, a device set $Z(cx_K)$ is a subset of a device set $Z(cx_H)$ and a device exists in the device set $Z(cx_H)$ that is not included in the device set $Z(cx_K)$; and

the node set T includes three distinct nodes p, q, and r, the nodes p and q being in a member cz_D of sequence cz, the node r being in a member cz_E of the sequence cz with $D > E$, in a first path of paths $P(x)$ a message moves directly from the node p to the node q, in a second path of paths $P(x)$ a message moves directly from the node p to the node r.

52. (Currently Amended): An interconnect structure according to Claim 51
wherein:

the paths $P(x)$ include a path such that if a message hops from a node in a member cz_n to a node in a member cz_m , then $n \geq m$.

53. (Currently Amended): An interconnect structure according to Claim 51 further comprising:

an arrangement of the nodes in the interconnect structure into a hierarchy of levels of node sets $L = L_0, L_1, \dots, L_J$, each member of the hierarchy L being a node set that is subset of the node set T and each node in the node set T is contained in exactly one member of the node set L ; and

for the device x of the device set Z , member node set c_{ZN} is a subset of the a level N node set L_N , N not exceeding J .

54. (Previously Presented): An interconnect structure according to Claim 53 wherein:

a message M_y targeted for a device y in the device set Z enters at a node on level L_U and exits at an output port on level L_0 with the output port being connected to the device y ; and

for a hop in a path of the message M_y from a node of L_U to a node of L_V , U being greater than or equal to V .

55. (Currently Amended): An interconnect structure according to Claim 54 wherein:

the collection C includes 2^{J-N} members on a level N ;

the collection C includes three members D, E and F such that member node set D is on the level L_N and member node sets E and F are on the a level L_{N-1} ;

the interconnect set I includes interconnects positioned to allow data to pass directly from the member node set D to the member node set E and to pass directly from the node set D to the node set F ; and

the device set Z includes device sets $Z(D), Z(E)$, and $Z(F)$ that correspond to the three members D, E , and F , the device sets $Z(E)$ and $Z(F)$ being mutually exclusive device sets, and the device set $Z(D)$ is the union of the device sets $Z(E)$ and $Z(F)$.

56. (Previously Presented): An interconnect structure according to Claim 51 further comprising:

a member node set c in the collection C; and

a plurality of interconnects in the interconnect set I connecting nodes in the member c so that the nodes of the node set c are arranged in a ring.

57. (Currently Amended): An interconnect structure comprising:

a plurality of nodes including a node N_E and a node set P, the node set P including a plurality of nodes that are capable of sending data to the node N_E ; and

a plurality of interconnect paths interconnecting the plurality of nodes, the

interconnect paths including data interconnect paths that couple nodes in pairs, a node pair including a sending node and a receiving node, the sending node being capable of sending data to the receiving node;

the nodes in the node set P having a priority relationship for sending data to the node

N_E , the nodes in the node set P including distinct nodes N_F and N_A , the node N_F having a highest priority among the nodes in the node set P for sending data to the node N_E so that the message M_F arriving at the node N_F is not blocked from traveling to the node N_E by the message M_A arriving at the node N_A ; and

for a message M arriving at the node N_A and the message M is blocked from being sent to the node N_E , then the blocking of the message M from being sent to the node N_E causes, sending of the message M from the node N_A to a node distinct from the node N_E .

58. (Currently Amended): An interconnect structure according to Claim 57

wherein:

the node N_F is capable of sending data to a node N_T distinct from the nodes N_F and N_E .

59. (Previously Presented): An interconnect structure according to Claim 57

wherein:

a node N_U of the node set P is not blocked from sending data to the node N_E as a result of data sent to the node N_E from a node N_V having a priority lower than the node N_U for sending data to the node N_E .

60. (Currently Amended): An interconnect structure according to Claim 57

wherein:

the priority relationship among the nodes in the node set P capable of sending data to the node N_E depends on the position of the individual nodes in the node set P within the interconnect structure.

61. (Previously Presented): An interconnect structure according to Claim 57 further comprising:

the plurality of nodes including the distinct nodes N_A , N_E , and N_F ; a plurality of logic elements associated with the plurality of nodes;

a plurality of data interconnect paths coupling the plurality of nodes, a data interconnect path coupling the plurality of nodes in pairs including a receiving node and a sending node capable of sending data to the receiving node;

a plurality of control signal interconnect paths coupling the plurality of nodes to send a control signal from a source associated with the sending node to a logic element associated with the receiving node;

the plurality of nodes including:

a logic L_A associated with the node N_A that makes routing decisions for the node N_A ;

a data interconnect path from the node N_F operative as the sending node to the node N_E operative as the receiving node;

a data interconnect path from the node N_A operative as the sending node to the node N_E operative as the receiving node; and

a control signal interconnect path from a source associated with the node N_F operative as a sending node to the logic L_A , the control signal

enforcing a priority for sending data from the node N_F to the node N_E over sending data from the node N_A to the node N_E .

62. (Currently Amended): An interconnect structure according to Claim 57 further comprising:

the plurality of nodes including the node N_F , the node N_A , and a node set R , the nodes N_F and N_A being distinct nodes that are excluded from the node set R , the node N_A being capable of sending data to each node in the node set R ;

the plurality of data interconnect paths coupling the plurality of nodes, a data interconnect path coupling a pair of the plurality of nodes as a sending node capable of sending data to a receiving node; and

the a plurality of control interconnect paths coupling the plurality of nodes, a the control interconnect path paths used to carry control signals from a source associated with a control signal sending node to a logic associated with a control signal using node, the plurality of control interconnect paths including a control interconnect path from a source associated with the node N_F to the a logic L_A associated with the node N_A , the logic L_A using a control signal from a source associated with the node N_F to determine to which node of the node set R the node N_A sends data.

63. (Currently Amended): An interconnect structure according to Claim 57 wherein:

the plurality of nodes include the nodes N_A , N_B , N_E , and N_F , and a node N_D ;

the interconnect paths include control interconnect paths and data interconnect paths, the control interconnect paths capable of sending a control signal from a source associated with a control-signal-sending node to a logic associated with a control- signal-using node, the data interconnect paths capable of sending data from a data sending node to a data receiving node;

the plurality of interconnect paths further include data interconnect paths for sending data from the node N_A to the node N_E and to the node N_D , and a control interconnect path for sending a control signal from a source associated with the node N_F to the a logic element L_A associated with the node N_A , and

for a message M arriving at the node N_F, a source associated with the node N_F sends a control signal S to the logic element L_A, the logic element L_A using the control signal S to determine between sending the message M to the node N_E or to the node N_D.

64. (Currently Amended): An interconnect structure according to Claim 57 further comprising:

the plurality of nodes including input data ports, output data ports, and a plurality of logical elements that control the flow of data through the nodes, the plurality of nodes including distinct nodes N_F, N_A, N_E, and N_D;

the plurality of data-carrying interconnect paths coupling the plurality of nodes to form paths from the output data ports of data sending nodes to the input data ports of data receiving nodes;

~~the a~~ plurality of control signal interconnect paths for sending control signals to a logical element associated with a node having a data flow that depends on the control signals; and

a logical element L_A associated with the node N_A, the logical element L_A that uses a control signal from a source associated with the node N_F to determine where to route a message M passing through the node N_A, a control signal S received from a source associated with the node N_F that causes sending of the message M from the node N_A to the node N_E, and a control signal S' received from the node N_F that causes sending of the message M from the node N_A to the node N_D.

65. (Previously Presented): An interconnect structure according to Claim 57 further comprising:

one or more output ports in which each output port that is accessible from the node N_F is also accessible from the node N_E.

66. (Previously Presented): An interconnect structure according to Claim 57 further comprising:

one or more output ports in which an output port that is accessible from the node N_A is not accessible from the node N_E .

67. (Currently Amended): An interconnect structure according to Claim 57 further comprising:

the distinct nodes N_A and N_F of the plurality of nodes;

means for sending a plurality of messages including a the message M_A and a the message M_F through the interconnect structure nodes, the message M_F including one or more header bits;

means for routing the message M_F to enter the node N_F of the interconnect structure;

means for routing the message M_A to enter the node N_A of the interconnect structure; and

means for using header bits of the message M_F at the node N_F to route the message M_A from the node N_A .

68. (Currently Amended): An interconnect structure comprising:

a plurality of nodes including a node N_E and a node set P, the node set P including a plurality of nodes that are capable of sending data to the node N_E ; and

a plurality of interconnect paths interconnecting the plurality of nodes, the interconnect paths including data interconnect paths that couple nodes in pairs including a receiving node and a sending node that is capable of sending data to the receiving node; and

the nodes in the node set P having a priority relationship for sending data to the node N_E , the nodes in the node set P including distinct nodes N_F and N_A , the node N_F having a highest priority among the nodes in the node set P for sending data to the node N_E , the a message M_F arriving at the node N_F is not blocked from traveling to the node N_E by the a message M_A arriving at the node N_A , wherein:

when a message M arrives at the node N_A and is targeted for the node N_E and not blocked by a message M' arriving at a node in the node set P having a higher priority than the node N_A for sending messages to the node N_E , the node N_A sends the message M to the node N_E .

69. (Currently Amended): An interconnect structure according to Claim 68

wherein:

the node N_F is capable of sending data to a node N_T distinct from the nodes N_F and N_E .

70. (Previously Presented): An interconnect structure according to Claim 68

wherein:

a node N_U of the node set P is not blocked from sending data to the node N_E as a result of data sent to the node N_E from a node N_V having a priority lower than the node N_U for sending data to the node N_E .

71. (Previously Presented) An interconnect structure according to Claim 68

wherein:

the priority relationship among the nodes in the node set P capable of sending data to the node N_E depends on the position of the individual nodes in the node set P within the interconnect structure.

72. (Previously Presented): An interconnect structure according to Claim 68 further comprising:

the plurality of nodes including the distinct nodes N_A , N_E , and N_F ;

a plurality of logic elements associated with the plurality of nodes;

a plurality of data interconnect paths coupling the plurality of nodes, a data

interconnect path coupling the plurality of nodes in pairs including a receiving node and a sending node capable of sending data to the receiving node;

a plurality of control signal interconnect paths coupling the plurality of nodes to send a control signal from a source associated with the sending node to a logic element associated with the receiving node;

a logic L_A associated with the node N_A that makes routing decisions for the node N_A ;

a data interconnect path from the node N_F operative as the sending node to the node N_E operative as the receiving node;

a data interconnect path from the node N_A operative as the sending node to the node N_E operative as the receiving node; and

a control signal interconnect path from a source associated with the node N_F operative as a sending node to the logic L_A , the control signal enforcing a priority for sending data from the node N_F to the node N_E over sending data from the node N_A to the node N_E .

73. (Currently Amended): An interconnect structure according to Claim 68 further comprising:

the plurality of nodes including the node N_F , the node N_A , and a node set R , the nodes N_F and N_A being distinct nodes that are excluded from the node set R , the node N_A being capable of sending data to each node in the node set R ;

the plurality of data interconnect paths coupling the plurality of nodes, a data interconnect path coupling a pair of the plurality of nodes as a sending node capable of sending data to a receiving node; and

~~the~~ a plurality of control interconnect paths coupling the plurality of nodes, a control interconnect path used to carry control signals from a source associated with a control signal sending node to a logic associated with a control signal using node, the plurality of control interconnect paths including a control interconnect path from a source associated with the node N_F to ~~the~~ a logic L_A associated with the node N_A , the logic L_A using a control signal from a source associated with the node N_F to determine to which node of the node set P the node N_A sends data.

74. (Currently Amended): An interconnect structure according to Claim 68 wherein:

the plurality of nodes include the nodes N_A , N_B , N_E , and N_F , and a node N_D ;

the interconnect paths include control interconnect paths and data interconnect paths, the control interconnect paths capable of sending a control signal from a source associated with a control-signal-sending node to a logic associated with a control- signal-using node, the data interconnect paths capable of sending data from a data sending node to a data receiving node;

the plurality of interconnect paths further include data interconnect paths for sending data from the node N_A to the node N_E and to the node N_D , and a control

interconnect path for sending a control signal from a source associated with the node N_F to the a logic element L_A associated with the node N_A , and for a message M arriving at the node N_F , a source associated with the node N_F sends a control signal S to the logic element L_A , the logic element L_A using the control signal S to determine between sending the message M to the node N_E or to the node N_D .

75. (Currently Amended): An interconnect structure according to Claim 68 further comprising:

the plurality of nodes including input data ports, output data ports, and a plurality of logical elements that control the flow of data through the nodes, the plurality of nodes including distinct nodes N_F , N_A , N_E , and N_D ;

the plurality of data-carrying data interconnect paths coupling the plurality of nodes to form paths from the output data ports of data sending nodes to the input data ports of data receiving nodes;

the a plurality of control signal interconnect paths for sending control signals to a logical element associated with a node having a data flow that depends on the control signals; and

a logical element L_A associated with the node N_A , the logical element L_A that uses a control signal from a source associated with the node N_F to determine where to route a message M passing through the node N_A , a control signal S received from a source associated with the node N_F that causes sending of the message M from the node N_A to the node N_E , and a control signal S' received from the node N_F that causes sending of the message M from the node N_A to the node N_D .

76. (Currently Amended): An interconnect structure according to Claim 68 further comprising:

one or more output ports in which each output port that is accessible from the node N_F is also I accessible from the node N_E .

77. (Previously Presented): An interconnect structure according to Claim 68 further comprising:

one or more output ports in which an output port that is accessible from the node N_A is not accessible from the node N_E .

78. (Currently Amended): An interconnect structure according to Claim 68 further comprising:

the distinct nodes N_A and N_F of the plurality of nodes;

means for sending a plurality of messages including a message M_A and a message M_F through the interconnect structure nodes, the message M_F including one or more header bits;

means for routing the message M_F to enter the node N_F of the interconnect structure;

means for routing the message M_A to enter the node N_A of the interconnect structure; and

means for using header bits of the message M_F at the node N_F to route the message M_A from the node N_A .

79. (Currently Amended): An interconnect structure S containing a plurality of nodes and a plurality of interconnects selectively coupling the nodes, the interconnect structure comprising:

a node set T ;

an interconnect set I that selectively connects nodes in the node set T ;

a device set A mutually exclusive with the node set T with each device in the device set A capable of sending data to a node in the node set T ;

a device set Z mutually exclusive with the node set T with each device in the device set Z capable of receiving data from a node in the node set T ;

a set of data-carrying paths P , each path of the path set P being capable of carrying data from a device in the device set A to a device in the device set Z , each node on the path of the path set P is included in the node set T , and each interconnect in the path is included in the interconnect set I ;

a node set U characterized as the set of nodes within the node set T that are on a path included in the path set P ;

for a node N in the node set T such that the node N is on a path in the path set P, a corresponding set of devices Z(N) exists in the device set Z such that a device w is, included in the device set Z(N) only if a path exists in the path set P from a member of the device set A to the device w such that the path contains the node N; and

the node set U includes three distinct nodes N_A, N_D, and N_E such that the node N_A is capable of sending data to the node N_D and the node N_E, and a device set Z(N_A) is the same as a device set Z(N_D), and a device set Z(N_E) is a proper subset of the device set Z(N_A).

80. (Previously Presented): An interconnect structure according to Claim 79 wherein:

the interconnect S is a part of a larger interconnect structure T.

81. (Previously Presented): An interconnect structure according to Claim 79 further comprising:

the interconnect S is not a subset of a larger interconnect structure T.

82. (Previously Presented): An interconnect structure according to Claim 79 wherein:

a time T_A is associated with the node N_A such that messages arriving at the node N_A are sent to another node within the time T_A of the messages' arrival at the node N_A.

83. (Previously Presented): An interconnect structure according to Claim 79 further comprising:

a logic element L_A associated with the node N_A that determines routing from the node N_A;

a node N_X distinct from the node N_A;

a logical element L_X associated with the node N_X that determines routing for the node N_X, the logical element L_X being distinct from the logical element L_A.

84. (Previously Presented): An interconnect structure according to Claim 79 further comprising:

the plurality of nodes including a node N_F , the nodes N_A , N_E , and N_B being mutually distinct;

a plurality of logic elements associated with the plurality of nodes;

a plurality of data interconnect paths coupling the plurality of nodes, a data

interconnect path coupling the plurality of nodes in pairs including a receiving node and a sending node capable of sending data to the receiving node;

a plurality of control signal interconnect paths coupling the plurality of nodes to send a control signal from a source associated with the sending node to a logic element associated with the receiving node;

the plurality of nodes including:

a logic L_A associated with the node N_A that makes routing decisions for the node N_A ;

a data interconnect path from the node N_F operative as the sending node to the node N_E operative as the receiving node;

a data interconnect path from the node N_A operative as the sending node to the node N_E operative as the receiving node; and

a control signal interconnect path from a source associated with the node N_F operative as a sending node to the logic L_A , the control signal enforcing a priority for sending data from the node N_F to the node N_E over sending data from the node N_A to the node N_E .

85. (Currently Amended): An interconnect structure according to Claim 79 further comprising:

the plurality of nodes including a node N_F and a node set R , the nodes N_F and N_A being distinct nodes that are excluded from the node set R , the node N_A being capable of sending data to each node in the node set R ;

the a plurality of data interconnect paths coupling the plurality of nodes, a data interconnect path coupling a pair of the plurality of nodes as a sending node capable of sending data to a receiving node; and

~~the a~~ plurality of control interconnect paths coupling the plurality of nodes, a control interconnect path used to carry control signals from a source associated with a control signal sending node to a logic associated with a control signal using node, the plurality of control interconnect paths including a control interconnect path from a source associated with the node N_F to ~~the a~~ logic L_A associated with the node N_A , the logic L_A using a control signal from a source associated with the node N_F to determine to which node of the node set R the node N_A sends data.

86. (Previously Presented): An interconnect structure according to Claim 85
wherein:

the node N_A is capable of sending data only to nodes in the node set R .

87. (Previously Presented): An interconnect structure according to Claim 85
wherein:

the node N_A is capable of sending data to a node outside the node set R .

88. (Currently Amended): An interconnect structure according to Claim 79
wherein further comprising:

the plurality of nodes ~~include~~ including a node N_F ;

~~the a~~ plurality of interconnect paths ~~include~~ including control interconnect paths and data interconnect paths, the control interconnect paths capable of sending a control signal from a source associated with a control-signal-sending node to a logic associated with a control- signal-using node, the data interconnect paths capable of sending data from a data sending node to a data receiving node;

the plurality of interconnect paths further ~~include~~ including data interconnect paths for sending data from the node N_A to the node N_E and to the node N_D , and a control interconnect path for sending a control signal from a source associated with the node N_F to ~~the a~~ logic element L_A associated with ~~the~~ node N_A , and for a message M arriving at the node N_F , a source associated with the node N_F sends a control signal S to the logic element L_A , the logic element L_A using the control

signal S to determine between sending the message M to the node N_E or to the node N_D.

89. (Previously Presented): An interconnect structure according to Claim 88 wherein:

a message M' arriving at the node N_A is routed to a node N_Z distinct from the nodes N_E, N_D, and N_F.

90. (Previously Presented): An interconnect structure according to Claim 88 wherein:

the control interconnect path from the node N_F to the node N_A is a direct link from a logic L_F associated with the node N_F to the logic L_A.

91. (Previously Presented): An interconnect structure according to Claim 88 wherein:

the control signal sent to the node N_A is tapped from an output data port of the node N_F.

92. (Currently Amended): An interconnect structure according to Claim 79 further comprising:

the plurality of nodes including input data ports, output data ports, and a plurality of logical elements that control the flow of data through the nodes, the plurality of nodes including a node N_F, the nodes N_F, N_A, N_E, and N_D being mutually distinct;

the plurality set of data-carrying interconnect paths coupling the plurality of nodes to form paths from the output data ports of data sending nodes to the input data ports of data receiving nodes;

the a plurality of control signal interconnect paths for sending control signals to a logical element associated with a node having a data flow that depends on the control signals; and

a logical element L_A associated with the node N_A, the logical element L_A that uses a control signal from a source associated with the node N_F to determine where to route a message M passing through the node N_A, a control signal S received

from a source associated with the node N_F that causes sending of the message M from the node N_A to the node N_E , and a control signal S' received from the node N_F that causes sending of the message M from the node N_A to the node N_D .

93. (Previously Presented): An interconnect structure according to Claim 92
wherein:

the control signal interconnection path is a direct link from the node N_F to the node N_A .

94. (Previously Presented): An interconnect structure according to Claim 92
wherein:

routing of a message M' passing through the node N_A is the same whether the control signal from the node N_F is the control signal S or the control signal S' .

95. (Previously Presented): An interconnect structure according to Claim 92
wherein:

the control signal sent to the logic L_A is tapped from an output data port of the node N_F .

96. (Previously Presented): An interconnect structure according to Claim 79 further comprising:

distinct nodes N_A and N_F of the plurality of nodes;
means for sending a plurality of messages including a message M_A and a message M_F through the interconnect structure nodes, the message M_F including one or more header bits;

means for routing the message M_F to enter the node N_F of the interconnect structure;
means for routing the message M_A to enter the node N_A of the interconnect structure;
and

means for using header bits of the message M_F at the node N_F to route the message M_A from the node N_A .

97. (Previously Presented): An interconnect structure according to Claim 96
wherein:

the means for routing the message M_F uses the one or more header bits of the message M_F to route the message M_F ; and
the means for routing the message M_A uses information relating to the routing of the message M_F to route the message M_A .

98. (Currently Amended): An interconnect structure S containing a plurality of nodes and a plurality of interconnects selectively coupling the nodes, the interconnect structure comprising:

a node set T ;
an interconnect set I that selectively connects nodes in the node set T ;
a device set A mutually exclusive with the node set T with each device in the device set A capable of sending data to a node in the node set T ;
a device set Z mutually exclusive with the node set T with each device in the device set Z capable of receiving data from a node in the node set T ;
a set of data-carrying paths P , each path being capable of carrying data from a device in the device set A to a device in the device set Z , each node on the path is included in the node set T , and each interconnect in the path is included in the interconnect set I ;
a node set U characterized as the set of nodes within the node set T that are on a path included in the path set P ;
for an interconnect link L in the interconnect set I , the interconnect link L being an interconnect link on a path in the path set P , a corresponding set of devices $Z(L)$ exists in the device set Z such that a device w is included in the device set $Z(L)$ only if a path containing the interconnect link L in the path set P exists from a device in the device set A to the device w ; and
the node set U includes distinct nodes N_A , N_D , and N_E such that the node N_A is capable of sending data to the node N_D on a link L_{AD} , the node N_A is capable of sending data to the node N_E on a link L_{AE} , and the a device set $Z(L_{AE})$ is a proper subset of the a device subset $Z(L_{AD})$.

99. (Previously Presented): An interconnect structure according to Claim 98 wherein:

the interconnect S is a part of a larger interconnect structure T.

100. (Previously Presented): An interconnect structure according to Claim 98 further comprising:

the interconnect S is not a subset of a larger interconnect structure T.

101. (Previously Presented): An interconnect structure according to Claim 98 wherein:

a time T_A is associated with the node N_A such that messages arriving at the node N_A are sent to another node within the time T_A of the messages' arrival at the node N_A .

102. (Previously Presented): An interconnect structure according to Claim 98 further comprising:

a logic element L_A associated with the node N_A that determines routing from the node N_A ;

a node N_X distinct from the node N_A ;

a logical element L_X associated with the node N_X that determines routing for the node N_X , the logical element L_X being distinct from the logical element L_A .

103. (Previously Presented): An interconnect structure according to Claim 98 further comprising:

the plurality of nodes including a node N_F , the nodes N_A , N_E , and N_F being mutually distinct;

plurality of logic elements associated with the plurality of nodes;

a plurality of data interconnect paths coupling the plurality of nodes, a data interconnect path coupling the plurality of nodes in pairs including a receiving node and a sending node capable of sending data to the receiving node;

a plurality of control signal interconnect paths coupling the plurality of nodes to send a control signal from a source associated with the sending node to a logic element associated with the receiving node;

the plurality of nodes including:

a logic L_A associated with the node N_A that makes routing decisions for the node N_A ;

data interconnect path from the node N_F operative as the sending node to the node N_E operative as the receiving node;

a data interconnect path from the node N_A operative as the sending node to the node N_E operative as the receiving node; and

a control signal interconnect path from a source associated with the node N_F operative as a sending node to the logic L_A , the control signal enforcing a priority for sending data from the node N_F to the node N_E over sending data from the node N_A to the node N_E .

104. (Currently Amended): An interconnect structure according to Claim 98 further comprising:

the plurality of nodes including a node N_F and a node set R , the nodes N_F and N_A being distinct nodes that are excluded from the node set R , the node N_A being capable of sending data to each node in the node set R ;

~~the~~ a plurality of data interconnect paths coupling the plurality of nodes, a data interconnect path coupling a pair of the plurality of nodes as a sending node capable of sending data to a receiving node; and

~~the~~ a plurality of control interconnect paths coupling the plurality of nodes, a control interconnect path used to carry control signals from a source associated with a control signal sending node to a logic associated with a control signal using node, and

the plurality of control interconnect paths including a control interconnect path from a source associated with the node N_F to the logic L_A associated with the node N_A , the logic L_A using a control signal from a source associated with the node N_F to determine to which node of the node set R the node N_A sends data.

105. (Previously Presented): An interconnect structure according to Claim 104 wherein:

the node N_A is capable of sending data only to nodes in the node set R .

106. (Previously Presented): An interconnect structure according to Claim 104
wherein:

the node N_A is capable of sending data to a node outside the node set R.

107. (Currently Amended): An interconnect structure according to Claim 98
wherein:

the plurality of nodes include a node N_F ;

the ~~interconnect paths~~ plurality of interconnects include control interconnect paths and data interconnect paths, the control interconnect paths capable of sending a control signal from a source associated with a control-signal-sending node to a logic associated with a control-signal-using node, the data interconnect paths capable of sending data from a data sending node to a data receiving node;

the plurality of ~~interconnect paths~~ plurality of interconnects further include data interconnect paths for sending data from the node N_A to the node N_E and to the node N_D , and a control interconnect path for sending a control signal from a source associated with the node N_F to the a logic element L_A associated with the node N_A , and

for a message M arriving at the node N_F , a source associated with the node N_F sends a control signal S to the logic element L_A , the logic element L_A using the control signal S to determine between sending the message M to the node N_E or to the node N_D .

108. (Previously Presented): An interconnect structure according to Claim 107
wherein:

a message M' arriving at the node N_A is routed to a node N_Z distinct from the nodes N_E , N_D , and N_F .

109. (Previously Presented): An interconnect structure according to Claim 107
wherein:

the control interconnect path from the node N_F to the node N_A is a direct link from a logic L_F associated with the node N_F to the logic L_A .

110. (Previously Presented): An interconnect structure according to Claim 107
wherein:

the control signal sent to the node N_A is tapped from an output data port of the node N_F .

111. (Currently Amended): An interconnect structure according to Claim 98 further comprising:

the plurality of nodes including input data ports, output data ports, and a plurality of logical elements that control the flow of data through the nodes, the plurality of nodes including a node N_F , the nodes N_F , N_A , N_E , and N_D being mutually distinct;

~~the a~~ plurality of data-carrying interconnect paths coupling the plurality of nodes to form paths from the output data ports of data sending nodes to the input data ports of data receiving nodes;

~~the a~~ plurality of control signal interconnect paths for sending control signals to a logical element associated with a node having a data flow that depends on the control signals; and

a logical element L_A associated with the node N_A , the logical element L_A that uses a control signal from a source associated with the node N_F to determine where to route a message M passing through the node N_A , a control signal S received from a source associated with the node N_F that causes sending of the message M from the node N_A to the node N_E , and a control signal S' received from the node N_F that causes sending of the message M from the node N_A to the node N_D .

112. (Previously Presented): An interconnect structure according to Claim 111
wherein:

the control signal interconnection path is a direct link from the node N_F to the node N_A .

113. (Previously Presented): An interconnect structure according to Claim 111
wherein:

routing of a message M' passing through the node N_A is the same whether the control signal from the node N_F is the control signal S or the control signal S'

114. (Previously Presented): An interconnect structure according to Claim 111 wherein:

the control signal sent to the logic L_A is tapped from an output data port of the node N_F .

115. (Previously Presented): An interconnect structure according to Claim 98 further comprising:

distinct nodes N_A and N_F of the plurality of nodes;
means for sending a plurality of messages including a message M_A and a message M_F through the interconnect structure nodes, the message M_F including one or more header bits;

means for routing the message M_F to enter the node N_F of the interconnect structure;
means for routing the message M_A to enter the node N_A of the interconnect structure;
and

means for using header bits of the message M_F at the node N_F to route the message M_A from the node N_A .30.

116. (Previously Presented): An interconnect structure according to Claim 115 wherein:

the means for routing the message M_F uses the one or more header bits of the message M_F to route the message M_F ; and
the means for routing the message M_A uses information relating to the routing of the message M_F to route the message M_A .