

Istraživanje povezanosti prosječne visine državljana i uspjeha države na Olimpijskim igrama

Anamaria Čičak, Mihaela Jukić, Andrea Jurić, Igor Keserin, Filip Kustura

PMF-MO

Zagreb, lipanj 2021.

Sadržaj

0	O Motivacija		
1	Uvod		3
2	4		
3	Opisna	statistika	5
	3.1 Lje	tne olimpijske igre u Rio de Janeiru 2016. godine	5
	3.2 Zin	nske olimpijske igre u Pyeongchangu 2018. godine	7
4	Statistic	čki testovi	10
	4.1 Lje	etne OI	10
	4.1.2	Provjera pretpostavki t-testa za rez po gornjem kvartilu	12
	4.1.3	T-test	13
	4.2 Zin	nske OI	14
	4.2.1	Provjera pretpostavki t-testa za rez po medijanu	14
	4.2.2	Provjera pretpostavki t-testa za rez po gornjem kvartilu	16
	4.2.3	Provjera pretpostavki t-testa za rez po 6 medalja	17
	4.2.4	T-test za rez po 6 medalja	18
5	Zaključ	éak	20
6	Baza po	dataka	21
7	Izvori		24

0 Motivacija

Hrvatski sportaši već desetljećima u kontinuitetu postižu značajne uspjehe na velikim sportskim natjecanjima međunarodnih razmjera, što na pojedinačnom, a što na ekipnom planu. Budući da je riječ o državi s relativno malim brojem stanovnika, uspjesi hrvatskog sporta dobivaju na težini, pogotovo uzme li se u obzir činjenica da su hrvatska ulaganja u rekreaciju i sport minimalna u usporedbi s, recimo, ostalim državama Europske unije.

U jeku velikih sportskih natjecanja koja potvrđuju postignuća hrvatskog sporta, strani mediji ponekad se pitaju – ako ne u ulaganjima, u čemu leži tajna sportskih uspjeha male nacije? Strast, kultura, izražen patriotizam, a naročito genetika samo su neki od razloga koji se u kombinaciji nameću kao odgovor na to pitanje. Smatra se kako reljefno-klimatska šarolikost Hrvatske te surovost Dinarida igraju ulogu u genetskom razvoju zdravijeg, agilnog i višeg stanovništva. Jasno je kako su prve dvije od ovih triju karakteristika važan preduvjet uspješnih sportaša. Može li se isto tvrditi i za visinu? Prema raznim mjerenjima ispostavlja se kako je upravo stanovništvo na području Dinarida među najvišim na svijetu. Ima li to utjecaj na njihove sportske uspjehe? Empirijski gledano, visina je u nekim sportovima značajna karakteristika dok je u drugim sportovima od manje ili čak zanemarive važnosti.

Potaknuti ovom polemikom poželjeli smo ispitati kakav učinak, ako uopće ikakav, visina stanovništva ima na sportske uspjehe nacije. Promatramo li i ljetnu i zimsku varijantu, Olimpijske igre (OI) koje obuhvaćaju čak 40 različitih sportova nesumnjivo su najraznovrsnije sportsko natjecanje na svijetu. Pridodamo li tome činjenicu da se na njima natječe više od 200 nacija, smisleno je smatrati ih pogodnim uporištem našeg istraživanja.

1 Uvod

U ovom radu ispitujemo koliko je prosječna visina državljana neke države povezana s uspjehom te države na posljednjim Ljetnim olimpijskim igrama 2016. godine u Rio de Janeiru te posljednjim Zimskim olimpijskim igrama 2018. godine u Pyeongchangu.

Čelna organizacija, Međunarodni olimpijski odbor (MOO), ne primjenjuje nikakvo rangiranje država po njihovom uspjehu na Olimpijskim igrama, odnosno ne postoji službeno kvantitativno mjerilo uspjeha. Ova činjenica zasigurno je razlog zašto se koriste razne metode rangiranja, a ponekad države koriste ono mjerilo koje njima odgovara. Nerijetko smo svjedoci tablicama u kojima se države rangiraju s obzirom na količinu osvojenih medalja po broju stanovnika. Moguće je pronaći i tablice u kojima se države rangiraju s obzirom na varijablu koja obuhvaća broj osvojenih medalja te BDP države po stanovniku. Najčešće se kao mjerilo jednostavno uzima broj osvojenih medalja. Neki smatraju kako bi se prilikom rangiranja medalje *većeg sjaja* trebale više cijeniti od onih *manjeg sjaja*, no ni u tom slučaju ne postoji dogovor jer postoje mnogi omjeri u kojima bi se medalje različitog sjaja vrednovale. Uzevši u obzir činjenicu da je broj natjecatelja i broj ekipa koje sudjeluju na Olimpijskim igrama znatno veći od broja medalja koje se na Igrama dodjeljuju, u ovom istraživanju odlučujemo se za jednako vrednovanje svih medalja (zlatnih, srebrnih i brončanih), odnosno mjerilom uspjeha države smatramo broj osvojenih medalja.

Broj muških i ženskih natjecatelja koji sudjeluju na Olimpijskim igrama je podjednak. Uz to, postoje sportovi, odnosno discipline, u kojima se istovremeno natječu i sportaši i sportašice. Nadalje, razlika između visina državljana i državljanki neke države varira između 4 i 11 posto, ovisno o državi, dakle ti postotci su podjednaki. Potaknuti navedenim razlozima, odlučujemo se promatrati prosječnu visinu državljana neovisno o spolu.

U svrhu pronalaženja valjanog zaključka o temi kojom se bavimo, istraživanje provodimo u tri dijela:

- 1) Sakupljanje podataka
- 2) Opisna statistika
- 3) Statistički testovi

Ljetne i Zimske olimpijske igre promatramo zasebno, a na kraju ćemo komentirati razlikuju li se izvedeni zaključci s obzirom na to o kojem je tipu Olimpijskih igrama riječ.

2 Sakupljanje podataka

Broj osvojenih medalja svake države prikupili smo putem službene web stranice Međunarodnog olimpijskog odbora. Nadalje, podatke o prosječnoj visini državljana svake države prikupili smo s Wikipedijine stranice na kojoj se nalazi lista država i prosječnih visina državljana. Visine su izražene u centimetrima i zaokružene na jednu decimalu. Imajući na umu kako zbog logističkih razloga nije moguće provesti mjerenje cjelokupne populacije, važno je napomenuti kako je za svaku državu zapravo riječ o prosječnoj visini određenog uzorka stanovništva. Uzorci na temelju kojih su prosjeci dobiveni različiti su s obzirom na:

- veličinu,
- zastupljenost muškaraca i žena,
- zastupljenost dobnih skupina.

Za svaku državu veličina uzorka varira između nekoliko desetaka za države s manje stanovnika, npr. Maršalove Otoke, i nekoliko stotina tisuća za države s više stanovnika, npr. Japan. Zastupljenost muškaraca i žena u uzorcima uglavnom je podjednaka. Za neke države podaci su dobiveni mjerenjem tek punoljetnih osoba, dok za neke države uzorak čini odraslo stanovništvo neovisno o dobi.

Jasno je kako nije moguće provesti mjerenje cjelokupne populacije, ali prosječne visine dobivene na temelju navedenih uzoraka smatramo dovoljno dobrim procjenama i kao takve ih koristimo u ovom radu.

Preuzete podatke zbog dosljednosti filtriramo na način da ne uzimamo u obzir one države koje su sudjelovale na Olimpijskim igrama, a čiji podaci o prosječnim visinama stanovništva nedostaju u našem izvoru.

Na temelju ovako prikupljenih podataka radimo daljnje dijagrame, histograme, tablice i testove.

3 Opisna statistika

U ovom poglavlju prikupljene podatke obrađujemo pomoću programskog jezika R. Za svako od dvaju statističkih obilježja (prosječna visina i broj osvojenih medalja) određujemo karakterističnu petorku te crtamo histogram relativnih frekvencija i dijagram pravokutnika. Za podatke dobivene mjerenjem dvodimenzionalnog statističkog obilježja (prosječna_visina, broj_osvojenih_medalja) određujemo Pearsonov koeficijent korelacije. Dobiveni rezultati motiviraju nastavak našeg istraživanja, a to je poglavlje 4: Statistički testovi.

Kao što smo već najavili, Ljetne i Zimske olimpijske igre promatramo zasebno.

3.1 Ljetne olimpijske igre u Rio de Janeiru 2016. godine

Analizu provodimo na uzorku od 192 države sudionice.

Medalje i prosječne visine svake pojedine države sudionice promatramo zasebno.

Dijagram pravokutnika osvojenih medalja (Slika 1) i dijagram pravokutnika prosječnih visina (Slika 2) izgledaju ovako:

S dijagrama pravokutnika medalja možemo vidjeti da postoji manji broj država koje imaju puno bolji uspjeh od ostalih, stoga zbog njih graf ne izgleda uredno.

Sljedećim tablicama prikazane su karakteristične petorke za medalje (Tablica 1) i prosječne visine (Tablica 2):

Minimum	Donji kvartil	Medijan	Gornji kvartil	Maksimum
0.000	0.000	0.000	4.000	121.000

Tablica 1

Minimum	Donji kvartil	Medijan	Gornji kvartil	Maksimum
156.4	163.7	167.0	169.8	177.1

Tablica 2

U nastavku su dani histogrami:

Grafom koji slijedi prikazana je ovisnost broja osvojenih medalja o prosječnoj visini stanovništva:

Iz priloženog grafa naslućujemo da su podaci **pozitivno korelirani**, što se doista potvrđuje računanjem Pearsonovog koeficijenta korelacije koji iznosi 0.2893497.

3.2 Zimske olimpijske igre u Pyeongchangu 2018. godine

U ovom odjeljku analizu provodimo na uzorku od 87 država sudionica. Kao i prije, medalje i visine promatramo zasebno.

Dijagram pravokutnika medalja (Slika 6) i dijagram pravokutnika prosječnih visina (Slika 7) izgledaju ovako:

Karakteristične petorke za medalje (Tablica 3) i visine (Tablica 4) prikazane su sljedećim tablicama:

Minimum	Donji kvartil	Medijan	Gornji kvartil	Maksimum
0.000	0.000	0.000	2.000	39.000

Tablica 3

Minimum	Donji kvartil	Medijan	Gornji kvartil	Maksimum
156.4	166.4	169.4	172.7	177.1

Tablica 4

Uočavamo nešto veći medijan uzorka prosječnih visina u odnosu na Ljetne olimpijske igre 2016.

Histogrami su prikazani sljedećim slikama:

Sljedećim grafom prikazana je ovisnost broja osvojenih medalja o prosječnoj visini stanovništva:

Kao i ranije naslućujemo da su podaci **pozitivno korelirani**, što se opet potvrđuje računanjem Pearsonovog koeficijenta korelacije koji sada iznosi 0.2568832.

Uočavamo razliku u medijanu prosječnih visina

Primijetimo da su izračunati Pearsonovi koeficijenti korelacije za Ljetne i za Zimske olimpijske igre podjednaki (za Ljetne je koeficijent nešto veći), a grafovi ovisnosti su slični.

4 Statistički testovi

Kako bismo proveli testove, države ćemo podijeliti u dvije kategorije s obzirom na broj osvojenih medalja - na one uspješnije i na one manje uspješne. Potrebno je odrediti granicu između tih dviju kategorija. Medijan se intuitivno nameće kao izbor, stoga je to prva specifična granica po kojoj radimo "rez". Sada se postavlja pitanje utječe li sam odabir reza na zaključke o prosječnim visinama? Kako bismo to provjerili, odlučujemo se raditi i dodatni rez. Nakon medijana, iduće granice koje su prirodno od interesa su kvartili, gornji i donji. Dodatni rez radimo po gornjem kvartilu¹.

Provođenje t-testa s dva uzorka zahtijeva provjeravanje pretpostavki da su za pojedini rez prosječne visine uzoraka dobivene tim rezom normalno distribuirane s jednakim varijancama.

Kao i u prethodnom poglavlju za obradu podataka koristimo programski jezik R.

4.1 Ljetne OI

Budući da je medijan uzorka osvojenih medalja jednak 0, a gornji kvartil jednak 4, države najprije dijelimo na one sa 0 medalja i na one s više od 0 medalja, a zatim i na one s najviše 4 medalje i one s više od 4 medalje.

4.1.1 Provjera pretpostavki t-testa za rez po medijanu

⁻

¹s obzirom da donji kvartil i medijan uzorka poprimaju istu vrijednost, rez radimo samo po gornjem kvartilu

Iz priloženih histograma s nacrtanim grafovima, naslućujemo da podaci koje obrađujemo dolaze iz normalne razdiobe.

I. Pripadnost normalnoj distribuciji

Pripadnost normalnoj distribuciji provjeravamo koristeći Lillieforsovu inačicu Kolmogorov-Smirnovljevog testa, na nivou značajnosti $\alpha=0.05$, kako bismo ispitali dolaze li podaci iz normalne razdiobe ili ne, tj. jesu li razredi normalno distribuirani ili ne.

Testiranje provodimo za države koje imaju 0 medalja i države koje imaju više od 0 medalja, a hipoteze koje testiramo su:

 H_0 : podaci dolaze iz normalne razdiobe

 H_1 : podaci ne dolaze iz normalne razdiobe

Države sa 0 medalja:

Nakon provedbe testa, dobivena p-vrijednost je $0.398 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

• Države s više od 0 medalja:

Nakon provedbe testa, dobivena p-vrijednost je $0.753 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

II. <u>Jednakost varijanci</u>

Provodimo F-test na razini značajnosti $\alpha = 0.05$ uz već pokazanu pretpostavku normalne distribucije.

 X_1 = prosječne visine stanovništva država sa 0 osvojenih medalja,

 X_2 = prosječne visine stanovništva država s više od 0 osvojenih medalja

Dakle, postoje (nepoznati) μ_1, μ_2, σ_1 i σ_2 takvi da vrijedi:

$$X_1 \sim \mathrm{N}(\mu_1, \, \sigma_1^2), \, X_2 \sim \mathrm{N}(\mu_2, \, \sigma_2^2)$$

Testiramo hipoteze:

$$H_0: \ \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \ \sigma_2^2$$

$$F = \frac{S_1^2}{S_2^2} \stackrel{H_0}{\sim} F(107, 83)$$

Karakteristični podaci:

$$f_{0.025}(107,83) = 1.51$$

$$f_{1-0.025}(107,83) = \frac{1}{f_{0.025}(83,107)} = \frac{1}{1.50} = 0.67$$

Kritično područje je:

$$[0,0.67] \cup [1.51,\infty)$$

$$F = \frac{S_1^2}{S_2^2} = \frac{4.27^2}{3.85^2} = 1.23$$

Dobivenih 1.23 ne ulazi u kritično područje pa ne odbacujemo hipotezu H_0 u korist alternativne hipoteze H_1 na nivou značajnosti od 5%, tj. $\sigma_1 = \sigma_2$.

4.1.2 Provjera pretpostavki t-testa za rez po gornjem kvartilu

Kao i kod prethodnog reza naslućujemo da podaci dolaze iz normalne razdiobe.

I. Pripadnost normalnoj distribuciji

Testiranje provodimo za države koje imaju najviše 4 medalje i države koje imaju više od 4 medalje, a hipoteze koje testiramo su:

 H_0 : podaci dolaze iz normalne razdiobe

 H_1 : podaci ne dolaze iz normalne razdiobe

• Države s najviše 4 medalje:

Nakon provedbe testa, dobivena p-vrijednost je $0.670 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

• Države s više od 4 medalje:

Nakon provedbe testa, dobivena p-vrijednost je $0.504 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

II. <u>Jednakost varijanci</u>

Provodimo F-test (u R-u), na razini značajnosti $\alpha = 0.05$, uz hipoteze:

$$H_0: \ \sigma_1^2 = \sigma_2^2$$

$$H_1$$
: $\sigma_1^2 \neq \sigma_2^2$

Nakon provedbe testa, dobivena p-vrijednost je $0.118 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

4.1.3 T-test

Provodimo t-test za usporedbu očekivanja visina iz obiju skupina koje smo dobili rezovima. Možemo li na nivou značajnosti od 5% tvrditi da su države s većim prosječnim visinama uspješnije?

Neka su

 X_1 = prosječne visine stanovništva manje uspješnih država, μ_1 = E X_1 ,

 X_2 = prosječne visine stanovništva uspješnijih država, μ_2 = $\mathrm{E} X_2$.

Testiramo hipoteze:

$$H_0$$
: $\mu_1 = \mu_2$

$$H_1: \mu_1 < \mu_2$$

Nakon provedbe testova za rezove po medijanu, odnosno gornjem kvartilu, redom dobivamo p-vrijednosti: $8.857 \cdot e^{-9}$, $8.258 \cdot e^{-7} < 0.05 = \alpha$ pa za oba reza odbacujemo H_0 u korist H_1 na nivou značajnosti od 5%. Uz jasno definiranu granicu između uspješnih i manje uspješnih država, za oba reza **zaključujemo da je prosječna visina državljana uspješnijih država veća od prosječne visine državljana manje uspješnih država**.

4.2 Zimske OI

Budući da je medijan uzorka osvojenih medalja jednak 0, a gornji kvartil jednak 2, države najprije dijelimo na one sa 0 medalja i na one s više od 0 medalja, a zatim i na one s najviše 2 medalje i one s više od 2 medalje.

4.2.1 Provjera pretpostavki t-testa za rez po medijanu

Provjeru pretpostavki provodimo kao i u prethodnim odjeljcima.

I. Pripadnost normalnoj distribuciji

Testiranje provodimo za države koje imaju 0 medalja i države koje imaju više od 0 medalja, a hipoteze koje testiramo su:

 H_0 : podaci dolaze iz normalne razdiobe

 H_1 : podaci ne dolaze iz normalne razdiobe

• Države sa 0 medalja:

Nakon provedbe testa, dobivena p-vrijednost je $0.834 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

• Države s više od 0 medalja:

Nakon provedbe testa, dobivena p-vrijednost je $0.525 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

II. Jednakost varijanci

Provodimo F-test na razini značajnosti $\alpha = 0.05$ uz već pokazanu pretpostavku normalne distribucije.

 X_1 = prosječne visine stanovništva država sa 0 osvojenih medalja,

 X_2 = prosječne visine stanovništva država s više od 0 osvojenih medalja

Dakle, postoje (nepoznati) μ_1, μ_2, σ_1 i σ_2 takvi da vrijedi:

$$X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2)$$

Testiramo hipoteze:

$$H_0: \ \sigma_1^2 = \sigma_2^2$$
 $H_1: \sigma_1^2 \neq \sigma_2^2$
 $F = \frac{S_1^2}{S_2^2} {}^{H_0} \quad F(57, 28)$

Karakteristični podaci:

$$f_{0.025}(57,28) = 1.99$$

$$f_{1-0.025}(57,28) = \frac{1}{f_{0.025}(28,57)} = \frac{1}{1.85} = 0.54$$

Kritično područje je:

$$[0, 0.54] \cup [1.99, \infty)$$

$$F = \frac{S_1^2}{S_2^2} = \frac{4.51^2}{2.47^2} = 3.33$$

Dobivenih 3.33 ulazi u kritično područje pa odbacujemo H_0 u korist alternativne H_1 na nivou značajnosti od 5%, tj. $\sigma_1 \neq \sigma_2$.

Varijance se ne podudaraju pa pretpostavke t-testa nisu zadovoljene te ga za ovaj slučaj ne možemo provesti².

4.2.2 Provjera pretpostavki t-testa za rez po gornjem kvartilu

I. Pripadnost normalnoj distribuciji

Testiranje provodimo za države koje imaju najviše 2 medalje i države koje imaju više od 2 medalje, a hipoteze koje testiramo su:

 H_0 : podaci dolaze iz normalne razdiobe

 H_1 : podaci ne dolaze iz normalne razdiobe

• Države s najviše 2 medalje:

Nakon provedbe testa, dobivena p-vrijednost je $0.779 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

• Države s više od 2 medalje:

Nakon provedbe testa, dobivena p-vrijednost je $0.837 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

² Moguće je provesti Welch t-test, ali ga nećemo provoditi.

II. Jednakost varijanci

Provodimo F-test (u R-u), na razini značajnosti $\alpha = 0.05$, uz hipoteze:

$$H_0: \ \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

Nakon provedbe testa, dobivena p-vrijednost je $0.009 < 0.05 = \alpha$ pa odbacujemo H_0 u korist alternative H_1 na nivou značajnosti od 5%, tj. $\sigma_1 \neq \sigma_2$.

Varijance se ne podudaraju pa **pretpostavke t-testa nisu zadovoljene te ga ni za ovaj slučaj ne možemo provoditi**.

S obzirom da uvjeti t-testa nisu zadovoljeni u ova dva reza, tražimo pogodan rez koji će dati valjane uvjete za t-test. Ispostavlja se da je jedan takav smisleni rez onaj po 6 medalja što odgovara zaokruženom 82% - kvantilu:

$$x_{(82.\frac{87+1}{100})} = x_{(72.16)} = 6.16$$

4.2.3 Provjera pretpostavki t-testa za rez po 6 medalja

Iz priloženih grafova naslućujemo da podaci koje obrađujemo dolaze iz normalne razdiobe.

I. Pripadnost normalnoj distribuciji

Testiranje provodimo za države koje imaju najviše 6 medalja i države koje imaju više od 6 medalja, a hipoteze koje testiramo su:

 H_0 : podaci dolaze iz normalne razdiobe

 H_1 : podaci ne dolaze iz normalne razdiobe

Države s najviše 6 medalja:

Nakon provedbe testa, dobivena p-vrijednost je $0.682 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

Države s više od 6 medalja:

Nakon provedbe testa, dobivena p-vrijednost je $0.954 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

II. Jednakost varijanci

Provodimo F-test (u R-u), na razini značajnosti $\alpha = 0.05$, uz hipoteze:

$$H_0: \ \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

Nakon provedbe testa, dobivena p-vrijednost je $0.068 > 0.05 = \alpha$ pa ne odbacujemo H_0 na nivou značajnosti od 5%.

4.2.4 T-test za rez po 6 medalja

Provodimo t-test za usporedbu očekivanja visina iz obiju skupina koje smo dobili rezom. Možemo li kao i kod ljetnih OI na nivou značajnosti od 5% doći do zaključka da su države s većim prosječnim visinama uspješnije?

Neka su

 X_1 = prosječne visine stanovništva manje uspješnih država, $\mu_1 = EX_1$,

 X_2 = prosječne visine stanovništva uspješnijih zemalja, μ_2 = E X_2 .

Testiramo hipoteze:

$$H_0$$
: $\mu_1 = \mu_2$

$$H_1: \mu_1 < \mu_2$$

Nakon provedbe testa dobivamo p-vrijednost $0.012 < 0.05 = \alpha$ pa odbacujemo H_0 u korist H_1 na nivou značajnosti od 5%. Dakle, dolazimo do istog zaključka kao i u [4.1.3] (ljetne OI), odnosno da je prosječna visina državljana uspješnijih država veća od prosječne visine državljana manje uspješnih država.

5 Zaključak

Rezultati provedenih statističkih testova potvrđuju naše slutnje do kojih dolazimo pomoću opisne statistike. Prosječna visina državljana neke države povezana je s uspjehom države na Olimpijskim igrama, na način da veća prosječna visina državljana donekle znači i bolja postignuća države na Olimpijskim igrama. Ta povezanost možda nije velika, ali na temelju istraženog ima smisla očekivati da su uspješniji sportaši nešto viši od svojih manje uspješnih kolega. Do ovog zaključka dolazimo neovisno o tome koji tip Olimpijskih igara promatramo, ljetne ili zimske, unatoč činjenici da za zimsku varijantu nismo mogli provesti potpuno jednake testove. Dobivamo i općenitiji odgovor: s obzirom na to da uspjehom države na Olimpijskim igrama procjenjujemo sportske mogućnosti nacije, ovaj zaključak daje za pravo i visinu smatrati karakteristikom koja pogoduje sportašima.

Do ovih rezultata dolazimo primjenom specifičnog i neslužbenog, doduše značajnog i često korištenog kriterija uspjeha, a to je broj osvojenih medalja na Olimpijskim igrama. Iako nepostojanje službenog mjerila uspjeha ostavlja prostor diskusiji, razna mjerila uspjeha na Olimpijskim igrama suštinski su ista te uključuju broj osvojenih medalja u kombinaciji s još eventualno dodatnim parametrima, stoga je primjenom drugih mjerila prirodno za očekivati jednake zaključke. Fokusirajući se na sportove zasebno ne isključujemo mogućnost drukčijeg ili čak suprotnog zaključka.

Bitno je imati na umu korištene podatke o visinama koje unatoč nedostacima ipak opravdano smatramo relevantnima, uzevši u obzir da se poklapaju s našim iskustvom te intuicijom.

6 Baza podataka

• LJETNE OI

Države		Broj
sudionice	Visine	medalja
Nizozemska	177,1	19
Crna Gora	176,7	0
Estonija	175,8	1
Danska	175,7	15
Island	175,5	0
Bosna i	1==0	
Hercegovina	175,0	0
Latvija	175,0	0
Češka	174,6	10
Srbija	174,5	8
Litva	174,2	4
Slovačka	174,1	4
Slovenija	174,1	4
Hrvatska	173,8	10
Ukrajina	173,8	11
Dominika	173,6	0
Finska	173,6	1
Švedska	173,6	11
Norveška	173,5	4
Njemačka	173,3	42
Poljska	173,3	11
Bermudski		
otoci	172,9	0
Cookovi otoci	172,8	0
Bjelorusija	172,8	9
Austrija	172,7	1
Grčka	172,6	6
Američka	150.4	
Samoa	172,4	0
Grenada	172,4	1
Antigva i Barbuda	172,3	0
Australija Republika	171,8	29
Irska	171,8	2
Luksemburg	171,8	0
Kanada	171,7	22
Francuska	171,6	42
Švicarska		7
Barbados	171,5	0
	171,4	
Libanon	171,4	0

Sveti Vincent i Grenadini	171,4	0
Belgija	171,3	6
Portoriko	171,3	1
Rumunjska	171,3	4
Novi Zeland	171,3	18
Ujedinjeno	1/1,2	10
Kraljevstvo	171,1	67
Sveta Lucija	171,0	0
Jamajka	170,7	11
Rusija	170,6	56
Tonga	170,6	0
Senegal	170,1	0
SAD	170,1	121
Zelenortska		_
Republika	169,7	0
Trinidad i Tobago	169,7	1
Gruzija	169,6	7
Mađarska	169,6	15
Kina	169,6	70
Libija	169,5	0
Bugarska	169,4	3
Južna Koreja	169,4	21
Moldavija	169,3	0
Tunis	169,3	3
Fidži	169,2	1
Sejšeli	169,2	0
Brazil	169,1	19
Izrael	169,1	2
Samoa	169,1	0
Španjolska	169,1	17
Turska	169,1	8
Bahami	169,0	2
Maroko	168,8	1
Alžir	168,7	2
Malta		
Sjeverna	168,7	0
Makedonija	168,7	0
Kazahstan	168,6	18
Turkmenistan	168,6	0
Mali	168,5	0
Iran	168,4	8

Surinam	168,4	0
Sveti		
Kristofor i Nevis	168,3	0
Albanija	168,2	0
Palestina	168,2	0
Italija	168,1	28
Argentina	168,0	4
Sjeverna	100,0	
Koreja	168,0	7
Dominikanska	1.57.0	
Republika	167,9	1
Urugvaj	167,9	0
Egipat	167,8	3
Portugal	167,8	1
Azerbajdžan	167,7	18
Bocvana	167,7	0
Hong Kong	167,7	0
Kuvajt	167,6	0
Tuvalu	167,5	0
Singapur	167,4	1
Ujedinjeni Arapski		
Emirati	167,3	1
Kostarika	167,2	0
Jordan	167,2	1
Tajvan	167,1	3
Katar	167,0	1
Čad	167,0	0
Kuba	166,9	11
Armenija	166,8	4
Paragvaj	166,8	0
Venezuela	166,8	3
Cipar	166,7	0
Burkina Faso	166,6	0
Haiti	166,4	0
Irak	166,3	0
Sudan	166,3	0
Čile	166,2	0
Kirgistan	166,0	0
Mauricijus	166,0	0
Gvajana	165,9	0
Bahrein	165,6	2
Dainelli	105,0	4

Kiribati	165,6	0
Somalija	165,6	0
Uzbekistan	165,6	13
Sirija	165,5	0
Tajland	165,5	6
Džibuti	165,3	0
Gabon	165,3	0
Japan	165,3	41
Mongolija	165,3	2
Zimbabve	165,3	0
Gambija	165,1	0
Niger	165,1	1
Oman	165,1	0
Palau	165,1	0
Sveti Toma i		
Princip	165,1	0
Kenija	165,0	13
Namibija	165,0	0
Republika Kongo	165,0	0
Nigerija	164,9	1
Gvineja	164,8	0
Kolumbija	164,8	8
Saudijska	104,0	
Arabija	164,8	0
Mikronezija	164,7	0
Gana	164,6	0
Togo	164,6	0
Vanuatu	164,4	0
Srednjoafrička		
Republika	164,4	0
Esvatini	164,2	0
Panama	164,2	0
Eritreja	164,1	0
Meksiko	164,1	5
Južnoafrička Republika	164,1	10

Vijetnam	163,7	2
El Salvador	163,6	0
Nauru	163,6	0
Uganda	163,6	0
Obala		_
Bjelokosti	163,5	2
Gvineja Bisau	163,5	0
Benin	163,4	0
Angola	163,3	0
Tadžikistan	163,3	1
Malezija	163,2	5
Ekvatorijalna Gvineja	163,1	0
	163,0	8
Etiopija Mauritanija	162,8	0
Nikaragva	162,8	0
		0
DR Kongo	162,5	
Zambija	162,5	0
Honduras	162,4	0
Afganistan	162,3	0
Lesoto	162,2	0
Komori	162,1	0
Šri Lanka	162,0	0
Tanzanija	162,0	0
Bolivija	161,9	0
Sijera Leone	161,9	0
Ruanda	161,4	0
Ekvador	161,3	0
Burundi	161,2	1
Butan	161,1	0
Pakistan	161,1	0
Liberija	161,0	0
Indija	160,9	2
Malavi	160,9	0
Mijanmar	160,7	0
Brunej	160,6	0

Peru	160,6	0
Indonezija	160,4	3
Maršalovi		
Otoci	160,1	0
Kambodža	160,0	0
Papua Nova	1.60.0	0
Gvineja Solomonski	160,0	0
Otoci	160,0	0
Mozambik	159,9	0
	159,7	1
Filipini		
Jemen	159,6	0
Madagaskar	159,2	0
Bangladeš	158,8	0
Nepal	158,4	0
Laos	158,0	0
Gvatemala	157,7	0
Istočni Timor	156,4	0
Andora		0
Aruba		0
Belize		0
Kamerun		0
Kajmanski		
otoci		0
Guam		0
IOA		2
Kosovo		1
Lihtenštajn		0
Maldivi		0
Monako		0
ROT		0
San Marino		0
Južni Sudan		0
Djevičanski		
otoci, GB		0
Djevičanski otoci, US		0

• ZIMSKE OI

Države sudionice	Visine	Broj medalja
Nizozemska	177,1	20
Crna Gora	176,7	0
Estonija	175,8	0
Danska	175,7	0
Island	175,5	0
Latvija	175,0	1
Bosna i		
Hercegovina	175,0	0
Češka	174,6	7
Srbija	174,5	0
Litva	174,2	0
Slovenija	174,1	2
Slovačka	174,1	3
Hrvatska	173,8	0
Ukrajina	173,8	1
Švedska	173,6	14
Finska	173,6	6
Norveška	173,5	39
Njemačka	173,3	31
Poljska	173,3	2
Bermudski otoci	172,9	0
Bjelorusija	172,8	3
Austrija	172,7	14
Grčka	172,6	0
Luksemburg	171,8	0
Australija	171,8	3
Republika		
Irska	171,8	0
Kanada	171,7	29
Francuska	171,6	15
Švicarska	171,5	15
Libanon	171,4	0

Portoriko	171,3	0
Belgija	171,3	1
Rumunjska	171,3	0
Novi Zeland	171,2	2
Ujedinjeno		
Kraljevstvo	171,1	5
Jamajka	170,7	0
Tonga	170,6	0
OAR (Pugija)	170.6	17
(Rusija)	170,6	17
SAD	170,1	23
Gruzija	169,6	0
Kina	169,6	9
Mađarska	169,6	1
Bugarska	169,4	0
Južna Koroje	169,4	17
Koreja Maldavija	169,4	0
Moldavija Izrael		
	169,1	0
Turska	169,1	0
Španjolska	169,1	2
Brazil	169,1	0
Maroko	168,8	0
Malta	168,7	0
Sjeverna Melredonije	1607	0
Makedonija	168,7	
Kazahstan	168,6	1
Iran	168,4	0
Albanija	168,2	0
Italija	168,1	10
Argentina	168,0	0
Sjeverna	169.0	0
Koreja Portugal	168,0	
Portugal	167,8	0
Hong Kong	167,7	0
Azerbajdžan	167,7	0

Singapur	167,4	0
Tajvan	167,1	0
Armenija	166,8	0
Cipar	166,7	0
Čile	166,2	0
Kirgistan	166,0	0
Uzbekistan	165,6	0
Tajland	165,5	0
Japan	165,3	13
Mongolija	165,3	0
Kenija	165,0	0
Nigerija	164,9	0
Kolumbija	164,8	0
Gana	164,6	0
Togo	164,6	0
Meksiko	164,1	0
Eritreja	164,1	0
Južnoafrička		
Republika	164,1	0
Malezija	163,2	0
Bolivija	161,9	0
Ekvador	161,3	0
Pakistan	161,1	0
Indija	160,9	0
Filipini	159,7	0
Madagaskar	159,2	0
Istočni		
Timor	156,4	0
Andora		0
San Marino		0
Koreja		0
Kosovo		0
Lihtenštajn		1
Monako		0

7 Izvori

- https://www.oneindia.com/sports/rio-olympics-2016/countries/ države natjecateljice
- https://olympics.com/en/olympic-games/rio-2016/medals medalje 2016.
- https://en.wikipedia.org/wiki/2018_Winter_Olympics#Participating_National_Olympics_Committees
 države natjecateljice 2018.
- https://olympics.com/en/olympic-games/pyeongchang-2018/medals medalje 2018.
- https://en.wikipedia.org/wiki/Average human height by country#Estimated average
 height of 19 year olds by country podaci o prosječnim visinama