Poznámky z Kombinatorických štruktúr

Peter Csiba, petherz@gmail.com, https://github.com/Petrzlen/fmfi-poznamky 17.01.2013

Obsah

1 Úvod

Autor neabsolvoval prednášky ani skúšku z predmetu Kombinatorické štruktúry. Poznámky sú voľným prepisom poznámok Martina Šrámeka doplnených o komentár autora.

Nakoniec poznamenajme, že autor sa snažil písať pravdu a len pravdu, keďže jeho odpoveď na skúškach vychádza z tototo materiálu. Ak čitateľ chce prispieť ku kvalite textu, nech autorovi napíše a ten mu udelí prístup do repozitára.

2 Latinské štvorce

- \bullet $n \times n$
- $\{1, ..., n\} = X$
- Každý riadok aj stĺpec je permutácia.
- S_n sym. grupa n!
- Φ, Ψ permutacie na X
- $\bullet \ \Phi, \Psi$ su $\mathit{dis...ntne}$ na Yak $\forall x \in Y \Psi(x) \neq \Phi(x)$
- Φ, Ψ su $dis...ntne \Leftrightarrow$ su dis...ntne na X

Poznamky.

1

- Latinsky stvorec maximalny latinsky obdlznik.
- Maximalna mnoznina navzajom maximalne vzdialencyh permutacii.

2.1 Metrika medzi permutaciami

2.1.1 Vseobecna metrika

- $S(x,y) = 0 \Leftrightarrow x = y$
- S(x,y) = S(y,x)
- $S(x,y) + S(y,z) \ge S(x,z)$

2.1.2 Metricky system permutacii

- $S(\Psi, \Phi)$ max pocet prvkov mnoziny $Y \subseteq X$ pri ktorej Ψ a Φ su dis...ntne.
- $S(\Psi, \Phi) = |\{x \in X, \Psi(x) \neq \Phi(x)\}|$
- $S(\Psi, \Phi) = S(\Phi^{-1}\Psi, id)$

2.2 Hallova veta

Latinsky stvorec je maximalna mnozina dis...permutacii z S_n . $L_n = [\Phi_1, \dots, \Phi_n]$.

¹ Podla pravidla o generalizacii kde nedavame kvantifikatory, tak su vseobecne.

Hallova veta. Nech (X_1, \ldots, X_k) je system mnozin $X_i \subseteq X$. $T \subseteq X$ je system rozlicnych reprezentantov ak $T = [x_1, \ldots, x_k], x_i \in X_i, x_i \neq x_j$ pre $i \neq j$. Potom system X ma system rozlicnych reprezentantov \Leftrightarrow pre kazdy system mnozin $Y \subseteq X$ plati $| \cup Y_i | \geq |Y|$.

Veta. Kazdy latinsky obdlznik s k riadkami sa da doplnit na stvorec. Lebo Hallova veta. Presnejsie: Urobme si bipartitny graf, kde jednu particiu predstavuju stlpce a druhu cisla. Hrana je medzi cislami, ktore mozeme dat do daneho stlpca. Tento graf je n-k-regularny(zo stlpcovej particie to je jasne a cislo sa mohlo vyskytnut v max k stlpcoch, takze ma este n-k volnych) a teda ma 1-faktor z ktoreho vieme doplnit dalsi riadok.

2.3 Normalizovane LS

```
1 2 ...
2 3 ...
```

2.4 Ortogonalne LS

- $L_n = [\Phi_1, \dots \Phi_n]$ jeden LS
- $L'_n = [\Phi_1, \dots \Phi_n]$ sruhy LS
- $L_n \perp L'_n \Leftrightarrow (i,j) \neq (k,l) \in X \times X$ plati $(\Phi_i(j), \Phi'_i(j)) \neq (\Phi_k(l), \Phi'_k(l))$
- Tj. vsetky dvojice (i, j).

Vlastnosti 1-2.

- $L_n \perp L'_n \Leftrightarrow L_n \cdot L'_n$ je LS.
- Ak $L_n \perp L'_n \Rightarrow \forall \Phi, \Psi \in S_n : \Psi L_n \perp \Phi L'_n \wedge L_n \Psi \perp L'_n \Phi$.

2.5 Polonormalizovane LS

```
[id, \Phi_2, \ldots, \Phi_n].
```

Vlastnost 3. Nech $L_n^{(1)}, \ldots, L_n^{(r)}$ je mnozina navzajom \bot LS. Potom $r \le n-1$. TODO - polonormalizovane prelozene cez seba.

2.6 Uplna mnozina.

Uplna mnozina. Uplna mnozina $L_n^{(1)}, \ldots, L_n^{(n-1)}$ je mnozina n-1 LS.

Sievers. Nech $n=p^r$, kde p je prvocislo a $n\geq 1$. Potom existuje uplna mnozina (n-1) navzajom ortogonalnych LS radu n. TODO - $\exists GF(n)=F$, technicky sporom.

Basic idea: Zobereme konecne pole GF(n) a polozime $L_a(i,j) = a * i + j$. Zbytok je technicka dokazovacia otrava.

3 Vyvazene blokove plany

 (v, k, λ) -konfiguracia.

- $X = \{x_1, \dots, x_v\}$ body.
- System podmnozin $B = X_1, \dots, X_v$ bloky.
- 1. $|X_i| = k \text{ (konst)}$
- 2. $X_i \cap X_j = \lambda \text{ (konst) } i \neq j.$
- 3. $0 < \lambda < k < v 1$

Incidencia matica. $A = (a_{ij}), a_{ij} = 1 \Leftrightarrow x_j \in X_i$

Jednotkova matica. J = (1)

3.1 Vlastnosti

- 1. AJ = kJ
- 2. $AA^T = \lambda J + (k \lambda)I$
- 3. $det(AA^T) = (det A)^2 = [k + \lambda(v-1)](k-\lambda)^{v-1} > 0$, TODO, rozvoj podla riadka
- 4. $k(k-1) = \lambda(v-1)$, TODO, z AA^T na JAJ.
- 5. JA = AJ = kJ, TODO
- 6. $AA^T = A^T A$, zamenitelnost blokov a bodov, TODO

3.2 Bruck, Ryser

Nutne podmienky na existenciu (v, k, λ) konfiguracie:

- v je parne, tak $k \lambda$ je stvorec
- v je neparne, $z^2 = (k \lambda)x^2 + (-1)^{\frac{v-1}{2}}\lambda yz$ ma nenulove riesenie v \mathbb{Z} .

3.3 Diference mnoziny

Specialny pripad.

3.3.1 Definovane na \mathbb{Z}_v

 $\mathbb{Z}_v \supseteq D = \{d_1, \dots, d_k\}$, ak kazdy prvok $a \in \mathbb{Z}_v - 0$ sa da vyjadrit λ roznymi sposobmi ako rozdiel dvoch prvkov z D.

Konstrukcia.

- $X = \mathbb{Z}_v$
- \bullet $X_i = D + i$

Napriklad $X = \mathbb{Z}_7, D = \{1, 2, 4\}$ dava [1, 2, 4], [2, 3, 5], [3, 4, 6], [4, 5, 0], [5, 6, 1], [6, 0, 2], [0, 1, 3] - Fannova rovina (7, 3, 1).

3.3.2 Definovane na grupach

Nech G je konecna grupa radu v, nie nutne komutativna. Mnozina $D = \{d_1, \ldots, d_k\} \subseteq G$ sa nazyva DM zalozena na G, ak je splnena jedna z dvoch podmienok:

- $\forall a \neq e \,\exists_{\lambda}(d_i, d_j), i \neq j : a = d_i d_i^{-1}$
- $\forall a \neq e \,\exists_{\lambda}(d_i, d_j), i \neq j : a = d_i^{-1}d_j$

Tvrdenie. Kazda (v, k, λ) dif. mnozina zalozena na G definuje (v, k, λ) konfiguraciu:

- \bullet X = G
- $\bullet \ B = \{Dg, g \in G\}$

TODO

Priklad. (16, 6, 2)-konfiguracia.

- $G = \mathbb{Z}_4$
- $D = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,0,0), (0,0,1,1)\}$

4 Hadamardove matice

Len strucne. Nechcelo sa mi texovat matice. $H_n = (a_{ij})$

- (i) $a_{ij} = \pm 1$
- ullet (ii) $HH^T=nI$ navzajom ortogonalne, maximalny objem spomedzi jednotkovych

4.1 Vlastnosti

Zakladne.

- 1. $\langle H_i, H_j \rangle = n$ ak i = j, 0 ak $i \neq j$. Len iny zapis (ii)
- 2. H je uzavreta na vymeny riadkov a stlpcov, nasobenie -1
- 3. Kazda Hje normalna, tj. $HH^T=H^TH.$
- 4. Kazdu H maticu je mozne previest na normalnu prvy riadok a prvy stlpec ma same 1.

Delitelnost 4. n = 1 orn = 2 or4 | n. Normalizacia. Spocitame kolko je typov stlpcov podla prvych torch riadkov.

4.2 Konstrukcie

4.2.1 Sylvestrova

H H

H -H

4.2.2 Kroneckerov sucin

```
a_{11}H ... a_{1n}H
... ... a_{n1}H ... a_{nn}H
```

4.3 Hadamarova hypoteza

Pre kazde n delitene 4 existuje matica. Nezname su pre 168,224,284,312. (Najdi bug). Usamec: Skoviera je outdated, podla tohoto http://designtheory.org/library/encyc/topics/had.pdf je najmensia neznama 668.

4.4 Ekvivalencia s blokovymi planmi

Normalizovane H matice su ekvivalentne s (4n-1,2n-1,n-1)-konfiguraciami. TODO: Trivialne.

Kvadraticke rezidua. TODO. Kvadraticke rezidua -¿ Diferencna mnozina -¿ Hadamardova matica.

5 Konecne projektivne roviny

Uz len to najdolezitejsie.

- $V_{n+1}(F) = F^{n+1} 0$
- (PP1) Kazdymi dvoma bodmi vedie prave jedna priamka.
- (PP2) Kazde dve priamky maju prave jeden spolocny bod.
- (PP3) Existuju styri rozne body vo vseobecnej polohe (ziadne tri z nich nie su kolinearne)

Priklady.

- Polgula kde stotoznime priamky cez s bodmi na obale.
- $\mathbb{Z}_2^3 0$
- Znizenim dimenzie. Stotoznime body $y = kx, k \in F$.

5.1 Desarguesova veta

Ak sú trojuholníky T1, T2 perspektivne z bodu S, tak su perspektivne aj z priamky.

5.2 Vlastnosti

Nech $n \geq 2$, Π je projektivna geometria. NPSE:

- 1. Nejaka priamka obsahuje prave n+1 bodov.
- 2. Nejakym bodom prechadza prave n+1 priamok.
- 3. Kazda priamka obsahuje presne n+1 bodov.
- 4. Kazdym bodom prechadza n+1 priamok.
- 5. V Π sa nachadza presne $n^2 + n + 1$ bodov.
- 6. V Π sa nachadza presne $n^2 + n + 1$ priamok.

Oznacenie. *n*-rad projektivnej roviny

5.3 (v, k, λ) -konfiguracie

Kazda projektivna rovina, ktora ma na nejakej priamke konecny pocet bodov definuje (v, k, λ) -konfiguraciu:

- $v = n^2 + n + 1$ body
- k = n + 1 priamka obsahujuca body
- $\lambda = 1$ prisecniky priamok

5.4 Existencia projektivnej roviny

Tvrdenie. Pre existenciu proj. roviny radu n je nutne, aby pre $n \equiv 1, 2((mod)4)$ existovali a, b, take, ze $n = a^2 + b^2$. Bez dokazu.

Hypoteza. PR radu n existuje iba pre $n = p^r$.

5.5 Ortonormalne latinske stvorce

Latinska vlastnost. Matica $C = (c_{ij})$ rozmerov $n \times (t+2)$ ma latinsku vlastnost, ak $(c_{ik}, c_{il}) \neq (c_{jk}, c_{jl})$.

Lema. Nech $n \ge 3$ a $t \ge 2$ su z N. Potom mnozina t navzajom roznych ortogonalnych latinskych stvorcov radu n existuje \Leftrightarrow existuje matica $C = (c_{ij}), n^2 \times (t+2)$ s latinskou vlastnostou. Usamec: Robi sa to tak, ze do prvych dvoch stlpcov vypises veci $(1,1),(1,2),\ldots,(1,n),\ldots,(n,n)$, do dalsich tie stvorce pod seba. Potom je obvious. TODO. Ake su rozmery matice v dokaze?

Veta. Ak existuje mnozina t navzajom ortogonalnych LS radu n a mnozina t ortogonalnych LS radu m, tak existuje aj mnozina t OLS radu nm.

Dosledok. $n = p^{\alpha_1} \dots p^{\alpha_k}$.

5.5.1 LS a PR

Veta. Nech $n \ge 3$. Potom PR radu n existuje \Leftrightarrow existuje n-1 navzajom ortogonalnych LS radu n. Dobry dokaz tu: http://www.math.cornell.edu/~web4520/CG10-0.pdf

 \Rightarrow . Fixujeme jednu priamku $X=x_1,\ldots,x_{n+1}$. Zvysnych n^2 bodov oznacime y_1,\ldots,y_{n^2} . Priamky prechadzajuce x_j oznacime postupne L_{j1},\ldots,L_{jn} . Potom $c_{ij}=k\Leftrightarrow y_i\in L_{jk}$. Sporom. \Leftarrow . Majme n-1 OLS radu n a skonstruujeme C rozmerov $n^2\times(n+1)$ s LV. Bod a hodnota v C urcuju na ktorej priamke lezi $y_i\in L_{jk}$. TODO.

5.6 Singerove diference mnoziny

PG. Kvadraticke rezidua. Bikvadraticke rezidua. Tetrakvadraticke rezidua.

6 Nevyvazene blokove plany

Nevyvazena (b, r, v, k, λ) -konfiguracia je system podmnozin-blokov $\{X_1, \ldots, X_b\}, X_i \subseteq X$, kde $X = \{x_1, \ldots, x_v\}$ a plati:

- 1. $|X_i| = k$
- 2. x_i sa vyskytuje prave v r blokoch
- 3. x_i, x_i sa spolocne vyskytuju v λ blokoch
- 4. $0 < \lambda, k < v 1$ (netrivialnost)

Steinerovske systemy trojic. $k = 3, \lambda = 1.$

Graf K_v^{λ} . Kompletny graf o v vrcholoch s λ nasobnymi hranami. (b, r, v, k, λ) -konfiguracia odpovedaju jej rozkladu.

6.1 Vlastnosti

Incidenc
na matica $b \times v$.

- 1. $AJ_v = kJ_{b,v}$
- $2. J_b A = r J_{b,v}$
- 3. $AA^T = \lambda J_v (r \lambda)I_v$
- 4. bk = vr. Zratame dvojice dvoma roznymi sposobmi.
- 5. $r(k-1) = \lambda(v-1)$. Zratame dvojice s fixnym prvkom.
- 6. $det(A^T A = (r + \lambda(v 1))(r \lambda)^{v-1}$
- 7. $b \geq v$ (Fischerova nerovnost). Dokaz z predoslych dvoch. Dosledok $r \geq k.$

7 Steinerovske systemy trojic

SST je dvojica S = (P, B) kde

- \bullet |P| = v
- B ke system trojprvkovych podm
nozin P takych, ze $\forall \{x_i, x_j\} \in \frac{P}{2}$ patri prave do jednej trojice.

Zjavne blokovy plan je k=3 a $\lambda=1$. Mozeme nahliadnut na SST ako na rozklad K_v na K_3 .

7.1 Veta Kirkman

Tvrdenie. Nutne $v \equiv 1, 3 \pmod{6}$

Veta. Pre kazde $v \equiv 1, 3 \pmod{6}$ existuje SST. $N(v) \geq (e^{-5}v)\frac{v^2}{6}$. Bez dokazu.

7.2 Konstrukcie

7.2.1 Projektivne SST

- $\mathbb{Z}_2^{n+1} 0$ $\log PG(2, n)$
- \bullet bloky $\{x,y,z\},\,x+y+z=0$ -
į priamky v $\mathrm{PG}(2,\!\mathrm{n})$

TODO

7.2.2 Afinne SST

- \mathbb{Z}_3^n body AG(3,n)
- $\bullet \ \, \text{bloky} \, \left\{ x,y,z \right\}$ priamky v PG(2,n)

TODO

7.2.3 Priamy sucin SST

- R = (P, B)
- S = (Q, C)
- $R \times S = (P \times Q, D)$

D obsahuje bloky v jednom z troch tvarov. TODO

7.2.4 2n+1 konstrukcia

TODO

7.2.5 Wilsonova-Schreiberova konstrukcia

- $\bullet\,$ Abelovska grupa Aradun.
- $P = A \cup \{\alpha, \beta\}$
- \bullet TODO
- TODO

7.3 Ciastocny SST

Pozadujeme, aby kazda dvojica bodov bola nanajvys v jednej trojici.

Tvrdenie. Kazdy SST sa da (s pridanim nejakeho poctu bodov) doplnit na SST. TODO: niekde chyba ciastocny.

7.4 T-design

Steinerovsky system S(t, k, n) je t-blokovy plan, taky, ze $\lambda = 1$. (System k-prvkovych podmnozin n-prvkovej mnoziny taky, ze kazda t-prvkova podmnozina je obsiahnuta v prave jednom bloku.) Navyse musi platit 1 < t < k < n.

7.4.1 Steinerovske systemy stvoric

S(3, 4, n)

7.4.2 Steinerovske systemy petic

S(4, 5, n)

7.5 Projektivne specialne linearne grupy

k-tranzitivita, ostra k-tranzitivita. TODO.

Tvrdenie (Klasifikacia $K \cup G$). TODO

7.5.1 Mathieuove grupy

TODO

8 Symetricke konfiguracie

- \bullet Kazdym bodom prechadza k priamok (kazdy bod je vk blokoch)
- $\bullet\,$ Kazda priamka prechadza k bodmi (velkost bloku je k)

8.1 Napriklad

- $\bullet~7_3$ Fannova rovina
- 8_3 Mobius-Kantor
- $\bullet~9_3$ Pappus z Alexandrie
- 10_3 Desargues
- $\bullet~15_3$ Cremona-Richmond

TODO

9 Matroidy

Axiomatizacia linearnej nezavislosti.

9.1 Definicia

- ullet X konecnorozmerny vektorovy priestor.
- $A \subseteq X$ nezavisla mnozina vektorov.
- (i) $A < alef_0$
- (ii) A je LN $\Rightarrow A' \subseteq A$ je LN
- (iii) Ø je LN (trivialny dosledok (ii))
- (iv) $|A_1| < |A_2| \Rightarrow \exists x \in A_2 A_1 : A_1 \cup \{x\} \text{ je LN}$

Matroid. Nech X je konecna mnozina, $N \subseteq P(X)$. Potom (X, N) je matroid, ak plati:

- N0) $\emptyset \in N$
- N1) $\forall A \in N : A' \subseteq A \Rightarrow A' \subseteq N \text{ (dedicnost)}$
- N2) $\forall A, B \in N : |A| < |B| \Rightarrow \exists x \in B A : A \cup x \in N.$

9.2 Specialne matroidy

Linearny matroid.

- $V = \{R_1, \dots, R_n\}$ vektory nad polom F.
- Nech $X = \{1, ..., n\}$
- $\forall A : A \subseteq X \Rightarrow (A \in N \Leftrightarrow \{R_i, i \in A\} \text{ je LN})$
- Potom (Xn, N) je linearny matroid.

Grafovy matroid.

- X = E(G)
- \bullet A je acyklicka

9.3 Vlastnosti

Tvrdenie. Nech N_1, N_2 su maximalne matroidy vzhladom na inkluziu. Potom $|N_1| = |N_2|$.

Baza matroidu. Bazou matroidu nazyvame kazdu maximalnu nezavislu mnozinu vzhladom na inkluziu.

Veta. Nech (X, S) je lubovolny system (asi ze $S \subseteq P(X)$). NPSE:

- (X, S) je matroid.
- S je neprazdny dedicny system (t.j. NO, N1) splnajuci podmienku N2': $\forall A \subseteq X : \forall$ maximalne $B \subseteq A, B \in S$ maju rovnaku mohutnost. Dokaz: ked nie, tak vieme doplnit.

9.4 Hodnotova funkcia

 $r_u:P(X)\to \mathbb{N}, r_u(A)=$ najvecsia mohutnost nezavislej mnoziny v A.

Veta. Nech M = (X, N) je matroid, r je hodnotova funkcia. Potom plati:

- •
- •
- •
- •
- •
- •
- •