CSCI - GA 3033 - 91 Introduction to Deep Learning Systems Final Project Report

Hanwei Peng (hp2166) Zijing Sun (zs2198)

Project Description

Our project topic is to train a food image classifier and to implement a food nutrition analyzer. The user can upload the photo of food and our system will recognize what the food is and analyze its nutrition details, such as its Energy, Vitamins, Minerals and its nutrition score. To train the food image classifier, we used the Food-101 dataset which has one hundred and one types of food and we trained a ResNet50 model and a Inception V3 model to compare their accuracy and choose the one with the highest performance. To implement the food nutrition analyzer, we used the Open Food Facts dataset and recreated an excel file to take out the nutrition information we want and correspond them with food names. Finally, we will output a visualization of the nutrition details for a given food picture, including a pie chart showing the vitamin percentage and a pie chart showing the micronutrients, as well as a nutrition score and calorie.

Approach

Collect data

From Open Food Facts and HappyForks.com these two organizations, we collected the Energy, Vitamins, Minerals facts of each type of food we need and corresponded them with the name of food. We organized these data into an Excel file for later search. Here is a screenshot of the nutrition detail table we collected.

name	Energy kcal/100 g	Vitamin C	Vitamimn B	Vitamimn B2 V	itamimn B3	Vitamimn B5	Vitamimn B6	Vitamin B12	ا Vitamin A	/itamimn E	Vitamimn D Vita	nimn k	Calcium mg M	agnesium	Phosphorus	Iron	Potassium
apple_pie	258	866		27	263	119	38		3.37	1.52			10	0.182	24	0.776	65
baby_back_ribs	229			309	500		487						29	22	163	1.29	225
baklava	485	130		203	1895	230	111	1	5	2280			40	40	115	6.6	4.6
bread_pudding	111	1000	33	171	136	310	32	0.37		30		0.2	112	21	94	0.34	156
breakfast_burrito	221	3000	287	143	248	403	85	0.08		37		7.6	52	31	117	2.51	210
bruschetta	258																
caesar_salad	71	3500	89	107	504	201	76	0.11	7.6	150		89.1	140	18	95	1.04	230
caprese_salad	141	8600	51	105	411	174	74	0.64	0.88	910		27.2	213	16	161	0.32	176
carrot_cake	415	1200	265	170	2205	294	79	0.04	1.93				172	8	247	1.8	169
cheesecake	321	400	28	193	195	517	52		0.54	560		4.4	51	11	93	0.63	90
chicken_curry	80	8900	58	82	1477	200				780			30	20	61	0.72	214
chicken_quesadilla	312	7200		226	191	2408	97	0.24		490		6.8	268	22	269	2.17	151
chicken_wings	211		74	242	5500	545	142	0.4	0.058	360			28	20	205	2.41	190
chocolate_cake	389	100		57	773	190				433		28.9	30	31	137	3.04	270
chocolate_mousse	260	500	51	147	595	202	29	0.21	0.413				77	32	231	1.08	285
churros	444		163	125	1421		11			1650		13.9	7	6	30	1.27	30
clam_chowder	61	2100	82	173	813	297	70	4.93					68	12	175	1.24	181
crab_cakes	415	1200	265	170	2205	294	79	0.04	1.93				172	8	247	1.8	169
creme_brulee	257	500							0.5				150				
deviled_eggs	198		61	468	58	1286	111	1.02	0.479	1210	0.08	13.9	46	9	158	1.1	116
donuts	426	100	233	198	1512	435	27	0.24					60	17	117	1.06	102
dumplings	152	1500	207	156	1793	256	71	0.04			0.12	2.4	39	12	63	1.5	98
edamame	122	6100	200	155	915	395	100			680		26.7	63	64	169	2.27	436
falafel	235	1500	139	145	944		122			2110		24.5	55	77	189	2.94	402
french fries	260	6300	74	21	2241	540	180			100			q	18	77	1 32	430

Manage Input data

We downloaded the Food101 dataset and divided the dataset to train and test folder. Reduced the input dataset size to a quantity so that the training time won't last for too long. We decreased the input classes from 101 to 60 and limited the food image size to 299x299.

Train and Eval Model

We wanted to train a model that having an food image as input, will output the name of food with high accuracy. Because Food101 is a larger dataset whose size is 5 GB, we used services provided by Google Colab Pro (RAM 25GB, V100 GPU) and Google Cloud Platform (RAM 29GB, V100 GPU) to train our model. During the training, we adjusted hyperparameters like learning rate, epoch and used SGD optimizer and Dropout to improve the accuracy. Also, we trained both Resnet50 and Inception V3 models, because after some research [5], we were concerned that Resnet50 accuracy may can't reach our expectations. Finally, we compared the accuracy from

the Resnet50 model and Inception V3 model and chose the model with the best accuracy as our final model.

Analyze Nutrition

After getting the predicted name of food from our final model, we used the Excel file we created before to retrieve the nutrition details according to the food name. And we used pie charts to visualize the percentage of vitamins and minerals.

Solution Diagram

Implementation Details

Dataset: Tensorflow Food101, Open Food Facts, HappyForks.com

FrameWork: Pytorch 1.8.1, Scipy 1.1.0, Keras 2.4.3, TensorFlow 2.4

Model: ResNet50, Inception V3

Platform: Colab Pro (RAM 25BG, GPU V100), GCP (RAM 26BG, GPU V100)

When Colab Pro reached GPU limitation, we changed our platform to Google Cloud Platform to continue training.

Experimental Results

After training both the Inception V3 model and the ResNet50 model, we compared their accuracy to decide which one to choose. The following picture shows the accuracy vs epoch for Inception V3 model and ResNet50 model among 32 epoches training. Inception V3 (acc 0.8701) shows a better accuracy than ResNet50 (acc 0.8135) in our result. So we chose the model Inception V3 as our final model. (Detailed training process can be checked in Resnet50.ipynb and 3303FinalProjectTrainIncV3.ipynb)

For a user, he can test our model in Demo.ipynb. After importing the Excel file we produced before and the final model we trained (both can be found on github), he can upload the food image to get the name of food and its nutrition details. Below are the figures that show the outputs of our project. The left side figure shows the name of food our model predicted and also shows the food image the user upload. The figure located at the right side and the figure below it show the nutrition details of the input food, such as its energy, its nutrition score, and show the vitamin percentage and the mineral percentage in form of pie charts.

Observations

Choosing the right model is important. Using the same input dataset, different models had different accuracy. We trained ResNet50 at first, and we got our "final model" with accuracy of 0.8135. Then we trained the Inception V3 model and we got our new final model with accuracy of 0.8701. Therefore, by changing the model, we improved the accuracy of our final model from 0.8135 to 0.8701. And the lower the learning rate, the higher the accuracy. We trained the Inception V3 model two times with different learning rates and we found the one with lower learning rate had higher accuracy. In addition, for the same model, different food types had different accuracy. When only testing the model with the images of popular food, it had relatively higher accuracy than only testing the images of unpopular food. For example, When only testing the images of donuts, our final model had accuracy around 0.6. When only testing the images of waffles, our final model had accuracy around 0.3, which was lower than the donuts case. (Detailed can be checked from PredictOneKind.ipnyb)

Conclusion

In our project, the Inception V3 shows a better accuracy than ResNet50. Adjusting hyperparameters and choosing models are both important.

Also, it's hard to define a kind of food. When we collected the data, we found that if you search for a kind of food, there will be hundreds of products shown as results. Take humburger as an example, it can be a beef burger, egg burger or even a veggie burger. It's hard to give a comprehensive definition whether the food is healthy or not. In our project, we just choose the general case. In the future work, we need more specific classification which means larger quantities of labeling. In addition, our project can only output the nutrition details for a specific type of food. If there is an image with many kinds of food, for example, a hamburger and a french fries on one image, we can't output the nutrition details for both foods at one time. Therefore, the way we can improve is to consider incorporating food detection into our project.

Reference

1.Happyforks.com

https://happyforks.com/

2. Open food facts dataset

https://world.openfoodfacts.org/

3.Snap-n-eat github repo

https://github.com/gabrielilharco/snap-n-eat

- 4. Food Image Classification with Convolutional Neural Networks, Malina Jiang http://cs230.stanford.edu/projects fall 2019/reports/26233496.pdf
- 5. Convolutional neural networks are fantastic for visual recognition tasks https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/