

Software de diseño de PCBs

El software de diseño de PCB es la principal herramienta para el desarrollo del circuito impreso.

Esta dividido en dos grandes partes principales: Ingreso de esquemático (schematic capture) y dibujo del PCB (PCB layout).

Algunos de los programas GRATUITOS más conocidos son:

- Kicad
- Fritzing
- FreePCB
- Geda
- ZenitPCB
- Osmond PCB
- ExpressPCB CAD
- DesignSpark PCB

DE CIRCUITO IMPRESO

INGRESO

Algunos de los programas PAGOS más conocidos son:

- Altium (ex Protel)
- AutoTrax
- Eagle
- CADSTAR
- PADS
- Allegro
- Orcad

Si bien existe una metodología general para el diseño de un PCB, el software utilizado definirá algunos métodos, procedimientos y flujos de trabajo particulares asociados al mismo.

DIBUJO DEL

De las alternativas gratuitas, KiCad es sin dudas la más completa y avanzada.

Comparativa:

https://en.wikipedia.org/wiki/Comparison of EDA software

Esquemático

Un **esquemático** es una representación pictórica de un circuito eléctrico. Muestra los diferentes componentes del circuito de manera simple y con **símbolos uniformes** de acuerdo a normas. Además muestra las **conexiones de alimentación y de señal** entre los distintos dispositivos.

El arreglo de los
componentes e
interconexiones en el
esquema no
corresponde a sus
ubicaciones físicas en
el dispositivo
terminado, pero sí nos
brinda pautas de
proximidad o
asociaciones.

Definición obtenida de: https://es.wikipedia.org/wiki/Diagrama_electr%C3%B3nico

Esquemático - Única hoja

Podemos tener diseños esquemáticos de solo una hoja.

VENTAJAS

- Se ven fácilmente.
- Fácil de seguir.
- Fácil de editar.

DESVENTAJAS

- No permiten muchos componentes.
- Poco usado en diseños complejos.

Esquemático - Múltiples hojas

Podemos tener diseños esquemáticos de múltiples hojas, generalmente utilizados en diseños complejos.

VENTAJAS

- Permiten muchos componentes.
- Permiten organizar las hojas según los subcircuitos del diseño.

DESVENTAJAS

 Es más compleja su comprensión y el seguimiento de señales.

ATENCIÓN

Un esquemático en múltiples hojas puede ser plano o jerárquico.

Esquemático - Múltiples hojas - Sin jerarquía o plano

Significa que todas las hojas están interconectadas entre sí. Básicamente, una señal puede ir de una hoja a cualquier otra (etiquetas globales). Todas las hojas están al mismo nivel y cualquier hoja podría relacionarse con cualquier otra.

Esquemático - Múltiples hojas - Jerarquía

Las hojas se conectan entre ellas mediante un esquema organizado y definido por el diseñador. El esquema de jerarquía puede ser simple o complejo. En el diseño jerárquico, está "casi" prohibido el uso de etiquetas globales.

VENTAJAS

- La jerarquía, si está bien aplicada, refleja la organización del circuito.
- Cada hoja se puede considerar como un módulo con entradas y salidas bien definidas.
- Facilita el trabajo en grupo.
- Facilita el seguimiento cuando el diseño es multihoja.

Artículo sobre esquemático jerárquico vs. plano: http://www.eetimes.com/author.asp?doc_id=1285266

Esquemático - Diagrama en bloques

En esquemáticos de múltiples hojas, se puede comenzar con un diagrama en bloques general que ayuda a comprender el circuito que seguirá. Puede que no esté directamente relacionado con la estructura jerárquica.

Esquemático - Rótulo

El rótulo es de gran importancia, ya que detalla información como el nombre del proyecto, los autores, la revisión, la cantidad de hojas, etc.

Símbolos del esquemático

Los símbolos del esquemático representan principalmente los componentes electrónicos.

Aunque cada software tiene sus propios símbolos, hay normas que los estandarizan:

- IEC 60617.
- IEEE Std 315 (ANSI Y32.2).
- IEEE Std 91/91a.

Dependiendo el software, también se usan símbolos para representar logos del PCB, agujeros de sujeción, marcas fiduciales y otros elementos del PCB que no son componentes electrónicos.

https://en.wikipedia.org/wiki/File:Circuit_elements.svg

Símbolos del esquemático - multiparte regular

Los componentes con varias unidades iguales pueden representarse en un símbolo multiparte.

Encapsulado

Símbolo multiparte

Huella en PCB

Símbolos del esquemático - multiparte regular

Los componentes con varias unidades iguales pueden representarse en un símbolo multiparte.

VENTAJAS

- Se desacopla el formato físico del componente de su utilización en el esquemático.
- Mejora la comprensión del circuito esquemático.

Se utilizan mucho en:

- Compuertas
- Operacionales
- Optoacopladores
- Buffers.
- Arrays de resistores, capacitores, transistores, etc.

Símbolos del esquemático - multiparte irregular

Los componentes varias con unidades diferentes dentro también pueden representar como se símbolo multiparte, pero irregular ya que sus partes no son todas iguales.

En el ejemplo, el multiparte separa el conexionado de alimentación de los adaptadores de nivel. Esto puede aportar claridad al esquemático.

U2B

RS232

U2A

Un driver RS-232 como símbolo simple.

Un driver RS-232 como símbolo multiparte irregular.

Símbolos del esquemático - De muchos pines

Los componentes de muchos pines merecen atención especial.
Se pueden incorporar como un símbolo único.

Símbolos del esquemático - De muchos pines

Símbolos del esquemático - Campos de información

Los símbolos del esquemático tienen campos de información asociados a ellos.

Obligatorios

REFERENCIA

Identifica al componente en todo el diseño. Es **OBLIGATORIO.** Compuestos por una o dos letras y un número.

VALOR

Valor del componente, o modelo. Es un campo **LIBRE** para que el desarrollador complete.

HUELLA

Indica que footprint será asociado en el PCB. Debe ser completado por el diseñador, pero puede ser semi-automático.

DESCRIPCIÓN

FABRICANTE

CODIGO

HOJA DATOS

PRECIO

TEMP.

Se pueden agregar campos, la mayoría son optativos. En diseños complejos se los debe aprovechar.

Las letras usadas para las referencias estan normalizadas en IEEE-315-1975. Más información en:

https://en.wikipedia.org/wiki/Reference_designator

Un error muy común en los primeros esquemáticos es confundir REFERENCIA con VALOR.

Símbolos del esquemático - Referencias

El campo de referencia es uno de los más importantes.

REFERENCIA (Reference designator)

Identifica al componente en todo el diseño. Es **OBLIGATORIO.** Compuesto por una o dos letras y un número.

Ejemplos:

- R20
- C205
- U3
- U4B
- JP10

Símbolos del esquemático - Referencias

Designator	Component Type
Α	Separable assembly or sub-assembly (e.g. printed circuit assembly)
AT	Attenuator or isolator
BR	Bridge rectifier
ВТ	Battery
С	Capacitor
CN	Capacitor network
D	Diode (including LED, TVS, Thyristor, Zener)
DL	Delay line
DS	Display
F	Fuse
FB	Ferrite bead
FD	Fiducial
FL	Filter
G	Generator or oscillator
GN	General Network
Н	Hardware, e.g., screws, nuts, washers
HY	Circulator or directional coupler
J	Jack (least-movable connector of a connector pair) Jack connector (connector may have "male" pin contacts and/or "female" socket contacts)
JP	Jumper (Link)
K	Relay or contactor
L	Inductor or coil or ferrite bead
LS	Loudspeaker or buzzer

Designator	Component Type	
М	Motor	
MK	Microphone	
MP	Mechanical part (including screws and fasteners)	
Р	Plug (most-movable connector of a connector pair) Plug connector (connector may have "male" pin contacts and/or "female" socket contacts)	
PS	Power supply	
Q	Transistor (all types)	
R	Resistor	
RN	Resistor network	
RT	Thermistor	
RV	Varistor	
S	Switch (all types, including push-buttons)	
Т	Transformer	
TC	Thermocouple	
TP	Test point	
U	Integrated Circuit (IC)	
V	Vacuum tube	
VR	Variable resistor (potentiometer or rheostat)	
X	Socket connector for another item not P or J, paired with the letter symbol for that item (XV for vacuum tube socket, XF for fuse holder, XA for printed circuit assembly connector, XU for integrated circuit connector, XDS for light socket, etc.)	
Υ	Crystal or oscillator	
Z	Zener diode	

Símbolos del esquemático - Campos de información

La mayoría de los programas para ingresar esquemático contemplan el uso de campos adicionales para el usuario además de referencia y valor.

KiCAD

 $http://techdoc.altium.com/display/ADRR/Sch_Dlg-SchComponentPropertiesForm ((Properties+for+Schematic+Component))_ADRLOG (Properties+for+Schematic+Component)) and the properties of the proper$

Símbolos del esquemático - Pin de conexión

Los símbolos, además del dibujo propio, tiene puntos de conexión. Estos puntos definen donde debe realizarse la conexión. Además estos puntos tienen propiedades que indican el tipo de terminal.

Los puntos de conexión generalmente tienen asociada alguna propiedad que luego permite hacer una verificación general. Por ejemplo:

- Entrada
- Salida
- Entrada de alimentación
- Salida de alimentación
- Colector abierto
- Pasivo

	4		
7 B C C D C C C C C C C C C C C C C C C C	U3 74LS47	a) 13	

Tabla de pines						
Número	Nombre	Tipo	Posición			
8	GND	Entrada de alimentación	(-300,-400)			
16	VCC	Entrada de alimentación	(-300,400)			
1	В	Entrada	(-700,250)			
2	С	Entrada	(-700,150)			
3	LT	Entrada	(-700,-150)			
4	BI	Entrada	(-700,-250)			
5	RBI	Entrada	(-700,-350)			
6	D	Entrada	(-700,50)			
7	A	Entrada	(-700,350)			
9	е	Colector abierto	(700,-50)			
10	d	Colector abierto	(700,50)			
11	С	Colector abierto	(700,150)			
12	b	Colector abierto	(700,250)			
13	a	Colector abierto	(700,350)			
14	g	Colector abierto	(700,-250)			
15	f	Colector abierto	(700,-150)			

Esquemático - Bibliotecas de símbolos

La mayoría de los símbolos se agrupan en bibliotecas (librerias). Dependiendo el software utilizado se agrupan con diferentes criterios:

- Tecnología.
- Fabricante.
- Funcionalidad.
- Tipo de elemento.

Según la procedencia de las bibliotecas podemos dividirlas en:

- Provistas por el software de diseño.
- Propias.
- Provistas por un tercero.

https://techdocs.altium.com/display/ADRR/Sch_Pnl-SCHLibrary((SCH+Library))_AD Curso de diseño de circuitos impresos (Glosario)

Esquemático - Bibliotecas de símbolos

Por ejemplo, las principales bibliotecas de KiCad son:

CONN Conectores de propósito general.

DEVICE

Dispositivos electrónicos
DISCRETOS de todo tipo, cubre
los más utilizados en electrónica.
En general de pocos terminales
(uno a seis terminales), salvo los
arrays de resistores.

POWER

Referencias de alimentación, power flag y distintos tipos de tierra.

Esquemático - Líneas de interconexión y uniones

Las líneas de interconexión (cables o wires) unen terminales formando los nodos.

Las uniones (junction) marcan los puntos donde se unen segmentos. Son de utilidad para evidenciar los casos donde las líneas se cruzan pero no se conectan.

Esquemático - Interconexiones - buses

Las líneas de interconexión de bus, agrupan varias interconexiones.

Se utilizan en los casos de señales asociadas y para dar claridad al esquemático.

SIN BUS CON BUS

Esquemático - Interconexiones - Etiquetas locales

Las etiquetas locales permiten realizar interconexiones sin utilizar líneas visibles.

Las etiquetas locales solo tienen alcance dentro de la hoja donde son creadas.

Esquemático - Interconexiones - Etiquetas globales

Las etiquetas globales permiten definir nodos realizando interconexiones sin utilizar líneas visibles.

Las etiquetas globales aplican a todas las hojas de un esquemático.

Esquemático - Interconexiones - Referencia de tensión

Las referencias de tensión son un tipo particular de etiquetas globales.

Aplican a todas las hojas de un circuito.

Esquemático - Interconexiones - Etiquetas jerárquicas

Las etiquetas jerárquicas permiten ir de una hoja a la otra en forma específica.

Las etiquetas jerárquicas solo aplican a las dos hojas involucradas.

Esquemático - Textos, gráficos y líneas adicionales

Los textos o notas en el circuito son de gran utilidad para el posterior diseño del pcb, fabricación, prueba y medición del circuito. Se pueden especificar ubicación de componentes, características de las líneas, información de jumpers, consideraciones de ensamblaje, aclaraciones de funcionamiento, etc.

Esquemático - ERC (Electrical Rules Check)

El Electric Rule Check es una herramienta de verificación que analizará las conexiones realizadas, basándose en la información del tipo de pin y otras reglas generales.

Algunas de las situaciones que puede reportar el ERC:

- Conexiones sin terminar (abiertas).
- Más de un pin de salida en un nodo.

 Un pin de entrada de alimentación sin un pin de salida de alimentación en el mismo nodo.

Esquemático - Netlist

El Netlist es un listado de las conexiones eléctricas del circuito desarrollado. Es la forma más común de comunicar el esquemático con el PCB. Está estandarizado como EDIF (Electronic Design Interchange Format).

El netlist además puede tener información adicional como encapsulados, bibliotecas y nombres para recuperar los símbolos usados, información de valor y campos adicionales, etc.

Esquemático - Lista de materiales - Bill of Materials (BOM)

Contacto

Autores de esta presentación y contacto:
Diego Brengi - djavier@ieee.org
Colaboración de Ignacio Zaradnik en las
primeras versiones. izaradnik@yahoo.com.ar

Versión 29/10/17

Glosario: Documentación y esquemático. "Curso de diseño de circuitos impresos" Preparado para la Carrera de Especialización en Sistemas Embebidos del LSE-FIUBA (CESE)

Glosario: Documentación y esquemático. "Taller de Electrónica" Usado para el Taller de Electrónica de la Universidad Nacional de La Matanza.

Las imágenes de clipart se tomaron de: https://openclipart.org/

Imagen de portada de dominio público: https://pixabay.com/es/servidor-placa-de-circuito-906525/

Todas las capturas de pantalla fueron realizadas por los autores y están bajo la misma licencia que esta presentación.

El resto de las imágenes se cita la fuente debajo de cada una.

