VE281

Data Structures and Algorithms

Merge Sort; Quick Sort

Outline

• Merge Sort

• Quick Sort

Review: Merge Sort

```
void mergesort(int *a, int left, int
  right) {
    if (left >= right) return;
    int mid = (left+right)/2;
    mergesort(a, left, mid);  T(N/2)
    mergesort(a, mid+1, right);  T(N/2)
    merge(a, left, mid, right);  O(N)
}
```

• Let T(N) be the time required to merge sort N elements.

```
Recursive relation: T(N) = 2T(N/2) + O(N)
```

How to solve the recurrence?

Use master method

Solve Recurrence: Master Method

- Recurrence: $T(n) \le aT\left(\frac{n}{h}\right) + O(n^d)$
 - Base case: $T(n) \leq constant$ for all sufficiently small n.
 - $a = \text{number of recursive calls (integer } \ge 1)$
 - b = input size shrinkage factor (integer > 1)
 - $O(n^d)$: the runtime of merging solutions. d is real value ≥ 0 .
 - a, b, d are independent of n.

Claim:

base doesn't matter

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

base matters!

Example of Merge Sort

Recurrence:
$$T(n) \le aT\left(\frac{n}{h}\right) + O(n^d)$$

Claim:
$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

- $a = 2, b = 2, d = 1 \implies b^d = a$
- $T(n) = O(n \log n)$

Another Example: Binary Search

Recurrence:
$$T(n) \le aT\left(\frac{n}{h}\right) + O(n^d)$$

Claim:
$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

• Exercise: What is a, b, d?

Merge Sort

Characteristics

- Not in-place
 - For efficient merging two sorted arrays, we need an auxiliary O(N) space.
 - Recursion needs up to $O(\log N)$ stack space.
- Stable if **merge()** maintains the relative order of equal keys.

Divide-and-Conquer Approach

- Merge sort uses the divide-and-conquer approach.
- Recursively **breaking** down a problem into two or more sub-problems of the same (or related) type, until these become simple enough to be solved directly.
 - For merge sort, split an array into two and sort them respectively.
- The solutions to the sub-problems are then **combined** to give a solution to the original problem.
 - For merge sort, merge two sorted arrays.

Outline

• Merge Sort

• Quick Sort

Algorithm

Another divide-and-conquer approach to sort

partition()

- Choose an array element as **pivot**.
- Put all elements < pivot to the left of pivot.
- Put all elements \geq pivot to the right of pivot.
- Move pivot to its correct place on the array.
- Sort left and right subarrays recursively (not including pivot).

```
void quicksort(int *a, int left,
  int right) {
   int pivotat; // index of the pivot
   if(left >= right) return;
   pivotat = partition(a, left, right);
   quicksort(a, left, pivotat-1);
   quicksort(a, pivotat+1, right);
}
```

Choice of Pivot

- If your input is random, you can choose the **first** element.
 - But this is very bad for presorted input.
- A better strategy: **randomly** pick an element from the array as pivot.
 - Claim: for any input, the average running time is $O(n \log n)$.
 - <u>Note</u>: average is over random choice of pivots made by the algorithm, **not** on the input.

Partitioning the Array

- Once pivot is chosen, swap pivot to the beginning of the array.
- When another array B is available, scan original array A from left to right.
 - Put elements < pivot at the left end of B.
 - Put elements \geq pivot at the right end of B.
 - The pivot is put at the remaining position of B.
 - Copy B back to A.
 - A 6 2 8 5 11 10 4 1 9 7 3
 - B 2 5 4 1 3 6 7 9 10 11 8

In-Place Partitioning the Array

- 1. Once pivot is chosen, swap pivot to the beginning of the array.
- 2. Start counters i=1 and j=N-1.
- 3. Increment i until we find element A[i]>=pivot.
 - **A**[i] is the leftmost item \geq pivot.
- 4. Decrement j until we find element A[j]<pivot.
 - **A**[j] is the rightmost item < pivot.
- 5. If i<j, swap A[i] with A[j]. Go back to step 3.
- 6. Otherwise, swap the first element (pivot) with A[j].

In-Place Partitioning the Array

Example

• Now, j < i, swap the first element (pivot) with A[j].

A 4 2 3 5 1 6 10 11 9 7 8

In-Place Partitioning the Array

Time Complexity

- 1. Once pivot is chosen, swap pivot to the beginning of the array.
- 2. Start counters i=1 and j=N-1.
- 3. Increment i until we find element A[i]>=pivot.
- 4. Decrement j until we find element A[j]<pivot.
- 5. If i<j, swap A[i] with A[j]. Go back to step 3.
- 6. Otherwise, swap the first element (pivot) with A[j].
- Scan the entire array no more than twice.
- Time complexity is O(N), where N is the size of the array.

Time Complexity

```
void quicksort(int *a, int left,
  int right) {
   int pivotat; // index of the pivot
   if(left >= right) return;
   pivotat = partition(a, left, right); O(N)
   quicksort(a, left, pivotat-1); T(LeftSz)
   quicksort(a, pivotat+1, right); T(RightSz)
}
```

- Let T(N) be the time needed to sort N elements.
 - T(0) = c, where c is a constant.
- Recursive relation:

$$T(N) = T(LeftSz) + T(RightSz) + O(N)$$

• LeftSz + RightSz = N - 1

Worst Case Time Complexity

• Recursive relation:

$$T(N) = T(LeftSz) + T(RightSz) + O(N)$$

• Worst case happens when each time the pivot is the smallest item or the largest item

•
$$T(N) = T(N-1) + T(0) + O(N)$$

 $\leq T(N-1) + T(0) + dN$
 $\leq T(N-2) + 2T(0) + d(N-1) + dN$
...
 $\leq T(0) + NT(0) + d + 2d + \dots + d(N-1) + dN$
 $= O(N^2)$

Best Case Time Complexity

• Recursive realtaion:

$$T(N) = T(LeftSz) + T(RightSz) + O(N)$$

- Best case happens when each time the pivot divides the array into two equal-sized ones.
 - T(N) = T((N-1)/2) + T((N-1)/2) + O(N)
 - The recursive relation is similar to that of merge sort.
 - $\bullet \ T(N) = O(N \log N)$

Average Case Time Complexity

- Average case time complexity of quick sort can be proved to be $O(N \log N)$.
 - Assume **randomly** pick an element from the array as pivot.
 - <u>Note</u>: average is over random choice of pivots made by the algorithm, **not** on the input.
 - The claim holds for any input.

- Fix input array A of length N
- Sample space Ω : all possible pivot sequences that quick sort may choose
- Given random choice $\sigma \in \Omega$, define $C(\sigma)$ = total number of comparisons made by quicksort
 - $C(\sigma)$ is a random variable
- Lemma: running time of quicksort is dominated by # of comparisons
 - I.e., there exists a constant c so that for all $\sigma \in \Omega$, $RunTime(\sigma) \leq c \cdot C(\sigma)$
- Remaining goal: $E[C] = O(N \log N)$

• Define $z_i = i$ -th smallest element of A

$$\begin{bmatrix} 3 & 6 & 5 & 2 \\ Z_2 & Z_4 & Z_3 & Z_1 \end{bmatrix}$$

- For each $\sigma \in \Omega$, indices i < j, $X_{ij}(\sigma) = \#$ of times Z_i, Z_j get compared in quick sort with pivot sequence σ
- **Question**: what is the possible value of $X_{ij}(\sigma)$?
 - 0 or 1
 - **Reason**: two elements are compared only when one is the pivot. After that, they will not be compared any more

• Important relation:

$$C(\sigma) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} X_{ij}(\sigma)$$

• By linearity of expectation:

$$E[C(\sigma)] = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} E[X_{ij}(\sigma)]$$
0-1 random variable

• $E[X_{ij}(\sigma)] = \Pr(X_{ij} = 1)$

• Thus, $E[C(\sigma)] = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \Pr(z_i, z_j \ get \ compared)$

• Key claim: for all i < j,

$$\Pr(z_i, z_j \ get \ compared) = \frac{2}{j-i+1}$$

- Proof of the key claim:
 - Fix Z_i, Z_j , consider the sequence $Z_i, Z_{i+1}, \dots, Z_{j-1}, Z_j$
 - As long as none of these are chosen as a pivot, all are passed to the same recursive call
 - Consider the first among z_i , ..., z_j that gets chosen as a pivot.
 - 1. If z_i or z_j gets chosen first, then z_i and z_j are compared
 - 2. If one of $Z_{i+1}, ..., Z_{j-1}$ gets chosen first, then Z_i and Z_j are never compared: they are put into different recursive calls

• Key claim: for all i < j,

$$\Pr(z_i, z_j \ get \ compared) = \frac{2}{j-i+1}$$

- Proof of the key claim:
 - 1. If Z_i or Z_j gets chosen first, then Z_i and Z_j are compared
 - 2. If one of Z_{i+1}, \ldots, Z_{j-1} gets chosen first, then Z_i and Z_j are never compared
 - Since pivot sequence is chosen uniformly at random, each of $Z_i, Z_{i+1}, \dots, Z_{j-1}, Z_j$ is equally likely to be the first
 - Thus, $Pr(z_i, z_j \ get \ compared) = \frac{2}{j-i+1}$

2: # choices lead to case 1

j-i+1: total # of choices

- What we have so far: $E[C] = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{2}{j-i+1}$
- Our target: $E[C] = O(N \log N)$
- Note: for each fixed $i \geq 1$,

$$\sum_{j=i+1}^{N} \frac{1}{j-i+1} \le \sum_{j=i+1}^{N+i-1} \frac{1}{j-i+1} = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

- Claim: $\sum_{k=2}^{N} \frac{1}{k} < \ln N$
- Once we prove the above claim, we get $E[C] < 2N \ln N$

Proof of the Claim

• Claim: $\sum_{k=2}^{N} \frac{1}{k} < \ln N$

Average Case Time Complexity

- Average case time complexity of quick sort is $O(N \log N)$.
 - Assume randomly pick an element from the array as pivot.
 - <u>Note</u>: average is over random choice of pivots made by the algorithm, **not** on the input.
 - The claim holds for any input.

Other Characteristics

- In-place?
 - In-place partitioning.
 - Worst case needs O(N) stack space.
 - Average case needs $O(\log N)$ stack space.
 - "Weekly" in-place.
- Not stable.

Summary

- Like merge sort, quick sort is a divide-and-conquer algorithm.
- Merge sort: easy division, complex combination.
- Quick sort: complex division (partition with pivot step), easy combination.

- Insertion sort is faster than quick sort for small arrays.
 - Terminate quick sort when array size is below a threshold. Do insertion sort on subarrays.