70 pages of tables for Physics and Engineering usage.

Ames Labortory - Sunnyvale California

REPORT 1135

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

By AMES RESEARCH STAFF

Ames Aeronautical Laboratory

Moffett Field, Calif.

3

REPORT 1135

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW 1

By AMES RESEARCH STAFF

SUMMARY

This report, which is a revision and extension of NACA TN 1428, presents a compilation of equations, tables, and charts useful in the analysis of high-speed flow of a compressible fluid. The equations provide relations for continuous one-dimensional flow, normal and oblique shock waves, and Prandtl-Meyer expansions for both perfect and imperfect gases. The tables present useful dimensionless ratios for continuous one-dimensional flow and for normal shock waves as functions of Mach number for air considered as a perfect gas. One series of charts presents the characteristics of the flow of air (considered a perfect gas) for oblique shock waves and for cones in a supersonic air stream. A second series shows the effects of caloric imperfections on continuous one-dimensional flow and on the flow through normal and oblique shock waves.

INTRODUCTION

The practical analysis of compressible flow involves frequent application of a few basic results. A convenient compilation of equations, tables, and charts embodying these results is therefore of great assistance in both research and design. The present report makes one of the first such compilations (ref. 1) more readily available in a revised and extended form. The revisions include a complete rewriting of the lists of equations, as well as the correction of certain typographical errors which appeared in the earlier work. The extensions are primarily in the directions dictated by increasing flight speeds, that is, to higher Mach numbers and to higher temperatures with the accompanying gaseous imperfections.

Compilations similar to those of reference 1 have been given in other publications, as, for example, references 2 through 6. These references have been utilized in extending the tables and charts to higher values of the Mach number. The extension to imperfect gases is based on the relations presented in references 7 and 8.

esented in references ? and o.

SYMBOLS AND NOTATION PRIMARY SYMBOLS

a speed of sound
 A cross-sectional area of stream tube or channel

C_N	normal-force coefficient for cones, $\frac{\text{normal force}}{q_{\infty}S_b}$
c_p	specific heat at constant pressure specific heat at constant volume
<i>C</i> ,	enthalpy per unit mass, $u+pv$
$m{h}$	characteristic reference length
ι	_
M	Mach number, $\frac{V}{a}$
p	pressure ²
$oldsymbol{q}$	dynamic pressure, $ ho V^2/2$
$oldsymbol{q}$	heat added per unit mass
R	gas constant
R	Reynolds number, $\frac{\rho V l}{\mu}$
S_b	base area of cone
8	entropy per unit mass
$m{T}$	absolute temperature ²
\boldsymbol{u}	internal energy per unit mass
v	specific volume, $\frac{1}{\rho}$
u, v	velocity components parallel and perpendicular respectively, to free-stream flow direction
$ ilde{m{u}}, ilde{m{v}}$	velocity components normal and tangential,
, c	respectively, to oblique shock wave
V	speed of flow
V_m	maximum speed obtainable by expanding to
	zero absolute temperature
w	external work performed per unit mass
α	angle of attack
β	$\sqrt{ M^2-1 }$
γ	ratio of specific heats, $\frac{c_p}{c_q}$
δ	angle of flow deflection across an oblique shock wave
θ	shock-wave angle measured from upstream flow direction
θ	molecular vibrational-energy constant
μ	Mach angle, $\sin^{-1}\frac{1}{M}$
μ	absolute viscosity
v	Prandtl-Meyer angle (angle through which a
	supersonic stream is turned to expand from

M=1 to M>1

When used without subscripts, p, ρ , and T denote static pressure, static density, and static temperature, respectively.

Supersedes NACA TN 1428. "Notes and Tables for Use in the Analysis of Supersonic Flow" by the Staff of the Ames 1- by 3-foot Supersonic Wind-Tunnel Section, 1947.

614	REPORT 1135—NATIONAL ADVIS
Ę	pressure ratio across a shock wave, $\frac{p_2}{p_1}$
ρ	mass density 2
σ	semivertex angle of cone
	SUBSCRIPTS
œ	free-stream conditions
1	conditions just upstream of a shock wave
2	conditions just downstream of a shock wave
t	total conditions (i. e., conditions that would
	exist if the gas were brought to rest isen-
	tropically)
*	critical conditions (i. e., conditions where the
	local speed is equal to the local speed of sound)
\boldsymbol{c}	conditions on the surface of a cone
r	reference (or datum) values
perf	quantity evaluated for a gas which is both ther-
	mally and calorically perfect
therm perf	quantity evaluated for a gas which is thermally
	perfect but calorically imperfect
() _p	derivative evaluated at constant pressure
(),	derivative evaluated at constant entropy
$(\)_{T}$	derivative evaluated at constant temperature
().	derivative evaluated at constant specific volume
(),,,,	quantity evaluated over a reversible path
	NOTATION
The notat	ion in brackets [] after many of the equations

signifies that the equation is valid only within certain limitations. For example:

[perf] means that the equation is restricted to a gas which is both thermally and calorically perfect. (By "thermally perfect" it is meant that the gas obeys the thermal equation of state $p = \rho RT$. By "calorically perfect" it is meant that the specific heats c_p and c_p are constant.)

[therm perf] means that the only restriction on the gas is that it must be thermally perfect. Equations so marked may be used for calorically imperfect gases. (They are, of course, also valid for completely perfect gases.)

means that the flow process must take place [isen] isentropically. Equations so marked may not be applied to the flow across a shock wave.

means that the only restriction on the flow [adiab] process is that it must take place adiabatically—that is, without heat transfer. (Such a flow process may or may not be isentropic depending on whether it is or is not reversible.) Equations so marked may be applied to the flow across a shock wave.

An equation without notation has no restrictions beyond those basic to the study of thermodynamics and/or inviscid compressible flow.

FUNDAMENTAL RELATIONS

THERMODYNAMICS

THERMAL EQUATIONS OF STATE

A thermal equation of state is an equation of the form

$$p = p(v, T) \tag{1}$$

Several of the more commonly used thermal equations of state are the following:

Equation for thermally perfect gas

$$p = \frac{RT}{v} = \rho RT \text{ [therm perf]}$$
 (2)

or

$$\frac{dp}{p} - \frac{d\rho}{\rho} - \frac{dT}{T} = 0 \text{ [therm perf]}$$
 (3)

Equations for thermally imperfect gas

Van der Waals' equation (ref. 9)

$$p = \frac{RT}{v - b} - \frac{a}{v^2} \tag{4}$$

where a is the intermolecular-force constant and b is the molecular-size constant (see ref. 9, pp. 390 et seq. for numerical values).

Berthelot's equation (ref. 7)

$$p = \frac{RT}{v - b} - \frac{c}{v^2 T} \tag{5}$$

where b is the molecular-size constant and c is the intermolecular-force constant (see ref. 7 for numerical values).

Beattie-Bridgeman equation (ref. 10)

$$p = \frac{RT}{v^2} \left(1 - \frac{c}{vT^3} \right) \left[v + B_0 \left(1 - \frac{b}{v} \right) \right] - \frac{A_0}{v^2} \left(1 - \frac{a}{v} \right)$$
 (6)

where a, A_0 , b, B_0 , and c are constants for a given gas (see ref. 10, p. 270 for numerical values).

CALORIC EQUATION OF STATE

A caloric equation of state is an equation of the form

$$u = u(v, T) \tag{7}$$

It can be shown that

$$du = c \cdot dT + \left[T \left(\frac{\partial p}{\partial T} \right) - p \right] dv \tag{8a}$$

$$du = c dT$$
 [therm perf] (8b)

If the gas is calorically perfect—that is, the specific heats are constant—equation (8b) can be integrated to obtain

$$u = c_{\bullet}T + u_{\bullet} \quad [perf] \tag{9}$$

² When used without subscripts, p, ρ, and T denote static pressure, static density, and static temperature, respectively.

ENERGY RELATIONS

The law of conservation of energy gives

$$dq = du + dw \quad \text{(first law of thermodynamics)} = du + p \ dv = dh - v \ dp$$
 (10a)

SPECIFIC HEATS

The specific heats at constant pressure and constant volume are defined by

$$c_{p} \equiv \left(\frac{\partial q}{\partial T}\right)_{p} = \left(\frac{\partial h}{\partial T}\right)_{p} \tag{11}$$

$$c_{\bullet} = \left(\frac{\partial q}{\partial T}\right) = \left(\frac{\partial u}{\partial T}\right). \tag{12}$$

It can be shown that

$$c_{p}-c_{v}=\left[\left(\frac{\partial u}{\partial v}\right)_{T}+p\right]\left(\frac{\partial v}{\partial T}\right)_{p}=-T\frac{\left(\frac{\partial p}{\partial T}\right)_{v}^{2}}{\left(\frac{\partial p}{\partial v}\right)_{T}}$$
(13a)

$$c_n - c_n = R$$
 [therm perf] (13b)

The ratio of specific heats is defined as

$$\gamma \equiv \frac{c_p}{c_*} \tag{14}$$

According to the kinetic theory of gases, for many gases over a moderate range of temperature,

$$\gamma = \frac{n+2}{n} \tag{15}$$

where n is the number of effective degrees of freedom of the gas molecule. Useful relations for thermally perfect gases are

$$c_r = \frac{dh}{dT} = c_{\bullet} + R = \frac{\gamma R}{\gamma - 1}$$
 [therm perf] (16)

$$c_{\nu} = \frac{du}{dT} = c_{\nu} - R = \frac{R}{\gamma - 1}$$
 [therm perf] (17)

ENTHALPY

The enthalpy of a gas is defined by

$$h \equiv u + pv \tag{18}$$

It follows that

$$dh = du + p \ dv + v \ dp = dq + v \ dp$$

$$= \left\lceil c_{\bullet} + v \left(\frac{\partial p}{\partial T} \right)_{\bullet} \right\rceil dT + \left\lceil v \left(\frac{\partial p}{\partial v} \right)_{T} + T \left(\frac{\partial p}{\partial T} \right)_{v} \right\rceil dv \quad (19a)$$

$$dh = (c_n + R)dT = c_n dT$$
 [therm perf] (19b)

$$h = (c_{\bullet} + R)T + u_{\tau} = c_{\tau}T + u_{\tau} \quad [perf]$$
 (20)

ENTROPY

The entropy is defined by

$$ds = \left(\frac{dq}{T}\right)_{\text{cos}} \tag{21}$$

It follows that

$$ds = \left(\frac{du + dw}{T}\right)_{res} = \left(\frac{du + p dv}{T}\right)_{res} = c_{\bullet} \frac{dT}{T} + \left(\frac{\partial p}{\partial T}\right)_{\bullet} dv \qquad (22a)$$

$$ds = c_{\bullet} \frac{dT}{T} + R \frac{dv}{v}$$

$$= c_{\bullet} \frac{dT}{T} - R \frac{d\rho}{\rho}$$

$$= c_{\bullet} \frac{dT}{T} - R \frac{d\rho}{\rho}$$

$$= c_{\bullet} \frac{dp}{p} - c_{\bullet} \frac{d\rho}{\rho}$$
(22b)

$$s - s_r = c_r \ln \frac{T}{T_r} - R \ln \frac{\rho}{\rho_r}$$

$$= c_r \ln \frac{T}{T_r} - R \ln \frac{p}{p_r}$$

$$= c_r \ln \frac{p}{p_r} - c_r \ln \frac{\rho}{\rho_r}$$
[perf] (23a)

$$s - s_r = c_r \ln \frac{T/T_r}{(\rho/\rho_r)^{\gamma - 1}}$$

$$= c_r \ln \frac{T/T_r}{(p/p_r)^{(\gamma - 1)/\gamma}}$$

$$= c_r \ln \frac{p/p_r}{(\rho/\rho_r)^{\gamma}}$$
[perf] (23b)

$$\frac{p}{\rho^{\gamma}} = \frac{p_r}{\rho_r^{\gamma}} e^{(s-s_r)/c_s} \quad [perf]$$
 (24)

The second law of thermodynamics requires that

$$s - s_r \ge 0 \quad [adiab] \tag{25}$$

CONTINUOUS ONE-DIMENSIONAL FLOW BASIC EQUATIONS AND DEFINITIONS

The basic equations for the continuous flow of an inviscid non-heat-conducting gas along a streamline are as follows:

Thermal equation of state

$$\frac{p}{\rho} = RT$$
 [therm perf] (26)

Dynamic equation

$$\frac{1}{\rho} dp + V dV = 0 \tag{27}$$

Energy equation

$$du + d\left(\frac{p}{\rho}\right) + VdV = 0$$

$$dh + VdV = 0$$
[abiab] (28a)

$$\frac{c_p dT + V dV = 0}{\frac{\gamma}{\gamma - 1} d\left(\frac{p}{\rho}\right) + V dV = 0}$$
 [adiab, therm perf] (28b)

Additional useful variables are defined as follows: Speed of sound

$$a = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{t}} = \sqrt{\gamma \left(\frac{\partial p}{\partial \rho}\right)_{T}}$$
 (29a)

$$= \sqrt{\gamma \frac{p}{\rho}} = \sqrt{\gamma RT} \quad \text{[therm perf]}$$
 (29b)

 \cong 49.0 \sqrt{T} ft/sec for air if T is in degrees Rankine (=degrees Fahrenheit+459.6) (29c)

Mach number

$$M \equiv \frac{V}{a} \tag{30}$$

Dynamic pressure

$$q \equiv \frac{1}{2} \rho V^2 \tag{31a}$$

$$= \frac{\gamma}{2} p M^2 \quad \text{[therm perf]} \tag{31b}$$

INTEGRATED FORMS OF ENERGY EQUATION

The energy equation (28) can be integrated at once to obtain

$$h + \frac{V^2}{2} = \text{constant} = h_t \quad [\text{adiab}]$$
 (32a)

$$c_{p}T + \frac{V^{2}}{2} = c_{p}T_{t}$$

$$\frac{\gamma}{\gamma - 1} \left(\frac{p}{\rho}\right) + \frac{V^{2}}{2} = \frac{\gamma}{\gamma - 1} \left(\frac{p_{t}}{\rho_{t}}\right)$$

$$\frac{a^{2}}{\gamma - 1} + \frac{V^{2}}{2} = \frac{a_{t}^{2}}{\gamma - 1}$$

$$\frac{a^{2}}{\gamma - 1} + \frac{V^{2}}{2} = \frac{1}{2} \left(\frac{\gamma + 1}{\gamma - 1}\right) a_{+}^{2}$$

$$\frac{a^{2}}{\gamma - 1} + \frac{V^{2}}{2} = \frac{V_{m}^{2}}{2}$$
[adiab, perf] (32b)

The three reference speeds a_i , a_{\pm} , and V_m are related by

$$\left(\frac{a_{i}}{a_{*}}\right)^{2} = \frac{\gamma + 1}{2}$$

$$\left(\frac{V_{m}}{a_{*}}\right)^{2} = \frac{\gamma + 1}{\gamma - 1}$$
[adiab, perf]
$$\left(\frac{V_{m}}{a_{*}}\right)^{2} = \frac{2}{\gamma - 1}$$
(33)

PRESSURE-DENSITY RELATION

From equations (27) and (28b) it follows that

$$\frac{p}{\rho^{\gamma}} = \text{constant} = \frac{p_i}{\rho_i^{\gamma}}$$
 [isen, perf] (34)

from which

$$\frac{p}{p_t} = \left(\frac{\rho}{\rho_t}\right)^{\gamma} = \left(\frac{T}{T_t}\right)^{\frac{\gamma}{\gamma-1}} = \left(\frac{a}{a_t}\right)^{\frac{2\gamma}{\gamma-1}} \quad \text{[isen, perf]}$$
 (35)

BERNOULLI'S EQUATION

Combination of equations (32b) and (35) gives Bernoulli's equation for compressible flow in the form

$$\frac{\gamma}{\gamma - 1} \left(\frac{p_t}{\rho_t} \right) \left(\frac{p}{p_t} \right)^{\frac{\gamma - 1}{\gamma}} + \frac{V^2}{2} = \frac{\gamma}{\gamma - 1} \left(\frac{p_t}{\rho_t} \right) \quad [\text{isen, perf}] \quad (36)$$

RELATIONS BETWEEN LOCAL AND FREE-STREAM CONDITIONS

With the aid of the foregoing equations it can be shown that

$$\frac{T}{T_{\infty}} = 1 - \frac{\gamma - 1}{2} M_{\infty}^{2} \left[\left(\frac{V}{V_{\infty}} \right)^{2} - 1 \right] \qquad \text{[adiab, perf]} \quad (37)$$

$$\frac{p}{p_{\infty}} \doteq \left\{ 1 - \frac{\gamma - 1}{2} M_{\infty}^{-2} \left[\left(\frac{V}{V_{\infty}} \right)^2 - 1 \right] \right\}^{\frac{1}{\gamma - 1}} \quad \text{[isen, perf]} \quad (38)$$

$$\frac{\rho}{\rho_{\infty}} = \left\{ 1 - \frac{\gamma - 1}{2} M_{\infty}^2 \left[\left(\frac{V}{V_{\infty}} \right)^2 - 1 \right] \right\}^{\frac{1}{\gamma - 1}} \quad \text{[isen perf]} \quad (39)$$

In small-disturbance theory, where it is assumed that $(V-V_{\infty})\ll V_{\infty}$, these equations take on the simplified form

$$\frac{T}{T} \cong 1 - (\gamma - 1) M_{\infty}^2 \frac{V - V_{\infty}}{V} \quad [\text{adiab, perf}]$$
 (40)

$$\frac{p}{p_{\infty}} \cong 1 - \gamma M_{\infty}^{2} \frac{V - V_{\infty}}{V_{\infty}} \quad \text{[isen, perf]}$$
 (41)

$$\frac{\rho}{\rho} \cong 1 - M_{\infty}^2 \frac{V - V_{\infty}}{V} \quad \text{[isen, perf]}$$
 (42)

USEFUL RATIOS

On the basis of the above results, useful relations can be derived expressing various dimensionless ratios as functions of a single parameter. These relations are given below, grouped according to which of the various parameters $(M, V/a_*, V/a_t, \text{ or } V/V_m)$ is used as the independent variable.

In each case the second form of the equation applies for $\gamma = \frac{7}{5}$.

Parameter M.—

$$\frac{T}{T_c} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1} = \left(1 + \frac{M^2}{5}\right)^{-1} \quad [adiab, perf] \quad (43)$$

$$\frac{p}{n} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\frac{\gamma}{\gamma - 1}} = \left(1 + \frac{M^2}{5}\right)^{-\frac{7}{2}} \text{ [isen, perf] (44)}$$

$$\frac{\rho}{\rho_t} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\frac{1}{\gamma - 1}} = \left(1 + \frac{M^2}{5}\right)^{-\frac{5}{2}} \text{ [isen, perf] (45)}$$

$$\frac{a}{a} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\frac{1}{2}} = \left(1 + \frac{M^2}{5}\right)^{-\frac{1}{2}} \text{ [adiab, perf] (46)}$$

$$\frac{q}{p} = \frac{\gamma}{2} M^2 = \frac{7}{10} M^2 \quad \text{[therm perf]} \tag{47}$$

$$\frac{q}{p_t} = \frac{\gamma}{2} M^2 \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{-\frac{\gamma}{\gamma - 1}}$$

$$= \frac{7}{10} M^2 \left(1 + \frac{M^2}{5} \right)^{-\frac{7}{2}} \text{ [isen, perf]} \quad (48)$$

$$\left(\frac{V}{a_t}\right)^2 = M^2 \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-1}$$

$$= M^2 \left(1 + \frac{M^2}{5}\right)^{-1} \quad [\text{adiab, perf}] \quad (49)$$

$$\left(\frac{V}{a_*}\right)^2 = \frac{\gamma + 1}{2} M^2 \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1}$$

$$= \frac{6M^2}{5} \left(1 + \frac{M^2}{5}\right)^{-1}$$
 [adiab, perf] (50)

$$\left(\frac{V}{V_m}\right)^2 = \frac{\gamma - 1}{2} M^2 \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1}$$

$$= \frac{M^2}{5} \left(1 + \frac{M^2}{5}\right)^{-1} \quad [adiab, perf] \quad (51)$$

Parameter $\frac{V}{a_*}$.—

$$\frac{T}{T_t} = 1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_*}\right)^2 = 1 - \frac{1}{6} \left(\frac{V}{a_*}\right)^2 \quad [\text{adiab, perf}] \tag{52}$$

$$\frac{p}{p_{t}} = \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_{*}}\right)^{2}\right]^{\frac{\gamma}{\gamma - 1}}$$

$$= \left[1 - \frac{1}{6} \left(\frac{V}{a_{*}}\right)^{2}\right]^{\frac{7}{2}} \quad \text{[isen, perf]} \quad (53)$$

$$\frac{\rho}{\rho_i} = \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_*}\right)^2\right]^{\frac{1}{\gamma - 1}}$$

$$= \left[1 - \frac{1}{6} \left(\frac{V}{a_*}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (54)$$

$$\frac{a}{a_i} = \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_*}\right)^2\right]^{\frac{1}{2}}$$

$$= \left[1 - \frac{1}{6} \left(\frac{V}{a_*}\right)^2\right]^{\frac{1}{2}} \quad [adiab, perf] \quad (55)$$

$$\frac{q}{p} = \frac{\gamma}{\gamma + 1} \left(\frac{V}{a_*}\right)^2 \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_*}\right)^2\right]^{-1}$$

$$= \frac{7}{12} \left(\frac{V}{a_*}\right)^2 \left[1 - \frac{1}{6} \left(\frac{V}{a_*}\right)^2\right]^{-1} \quad \text{[adiab, perf]} \quad (56)$$

$$\frac{q}{p_t} = \frac{\gamma}{\gamma + 1} \left(\frac{V}{a_*}\right)^2 \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_*}\right)^2\right]^{\frac{1}{\gamma - 1}}$$

$$= \frac{7}{12} \left(\frac{V}{a_*}\right)^2 \left[1 - \frac{1}{6} \left(\frac{V}{a_*}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (57)$$

$$M^{2} = \frac{2}{\gamma + 1} \left(\frac{V}{a_{*}}\right)^{2} \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_{*}}\right)^{2}\right]^{-1}$$

$$= \frac{5}{6} \left(\frac{V}{a_{*}}\right)^{2} \left[1 - \frac{1}{6} \left(\frac{V}{a_{*}}\right)^{2}\right]^{-1} \quad [adiab, perf] \quad (58)$$

$$\left(\frac{V}{a_t}\right)^2 = \frac{2}{\gamma + 1} \left(\frac{V}{a_\star}\right)^2 = \frac{5}{6} \left(\frac{V}{a_\star}\right)^2 \quad [adiab, perf] \tag{59}$$

$$\left(\frac{V}{V_m}\right)^2 = \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_*}\right)^2 = \frac{1}{6} \left(\frac{V}{a_*}\right)^2 \quad [adiab, perf] \tag{60}$$

Parameter $\frac{V}{a_t}$.—

$$\frac{T}{T} = 1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_t}\right)^2 = 1 - \frac{1}{5} \left(\frac{V}{a_t}\right)^2 \quad [adiab, perf] \tag{61}$$

$$\frac{p}{p_{i}} = \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_{i}}\right)^{2}\right]^{\frac{\gamma}{\gamma - 1}}$$

$$= \left[1 - \frac{1}{5} \left(\frac{V}{a_{i}}\right)^{2}\right]^{\frac{\gamma}{2}} \quad \text{[isen, perf]} \quad (62)$$

$$\frac{\rho}{\rho_{t}} = \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_{t}}\right)^{2}\right]^{\frac{1}{\gamma - 1}}$$

$$= \left[1 - \frac{1}{5} \left(\frac{V}{a_{t}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (63)$$

$$\frac{a}{a_{i}} = \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_{i}}\right)^{2}\right]^{\frac{1}{2}}$$

$$= \left[1 - \frac{1}{5} \left(\frac{V}{a_{i}}\right)^{2}\right]^{\frac{1}{2}} \quad \text{[adiab, perf]} \quad (64)$$

$$\frac{q}{p} = \frac{\gamma}{2} \left(\frac{V}{a_t}\right)^2 \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_t}\right)^2\right]^{-1}$$

$$= \frac{7}{10} \left(\frac{V}{a_t}\right)^2 \left[1 - \frac{1}{5} \left(\frac{V}{a_t}\right)^2\right]^{-1} \quad [adiab, perf] \quad (65)$$

$$\frac{q}{p_t} = \frac{\gamma}{2} \left(\frac{V}{a_t}\right)^2 \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_t}\right)^2\right]^{\frac{1}{\gamma - 1}}$$

$$= \frac{7}{10} \left(\frac{V}{a_t}\right)^2 \left[1 - \frac{1}{5} \left(\frac{V}{a_t}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (66)$$

$$M^2 = \left(\frac{V}{a_i}\right)^2 \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_i}\right)^2\right]^{-1}$$

$$= \left(\frac{V}{a_t}\right)^2 \left[1 - \frac{1}{5} \left(\frac{V}{a_t}\right)^2\right]^{-1} \quad [adiab, perf] \quad (67)$$

$$\left(\frac{V}{a_{\star}}\right)^{2} = \frac{\gamma + 1}{2} \left(\frac{V}{a_{i}}\right)^{2} = \frac{6}{5} \left(\frac{V}{a_{i}}\right)^{2} \quad [adiab, perf]$$
 (68)

$$\left(\frac{V}{V_m}\right)^2 = \frac{\gamma - 1}{2} \left(\frac{V}{a_i}\right)^2 = \frac{1}{5} \left(\frac{V}{a_i}\right)^2 \quad [adiab, perf] \tag{69}$$

Parameter
$$\frac{V}{V_m}$$
.—

$$\frac{T}{T_t} = 1 - \left(\frac{V}{V_m}\right)^2 \quad [\text{adiab, perf}] \tag{70}$$

$$\frac{p}{p_t} = \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{\gamma}{\gamma - 1}} = \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{\gamma}{2}} \quad \text{[isen, perf]} \quad (71)$$

$$\frac{\rho}{\rho_i} = \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{1}{\gamma - 1}} = \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (72)$$

$$\frac{a}{a_t} = \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{1}{2}} \quad [adiab, perf] \tag{73}$$

$$\frac{q}{p} = \frac{\gamma}{\gamma - 1} \left(\frac{V}{V_m}\right)^2 \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{-1}$$

$$= \frac{7}{2} \left(\frac{V}{V_m}\right)^2 \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{-1} \quad [adiab, perf] \quad (74)$$

$$\frac{q}{p_{i}} = \frac{\gamma}{\gamma - 1} \left(\frac{V}{V_{m}}\right)^{2} \left[1 - \left(\frac{V}{V_{m}}\right)^{2}\right]^{\frac{1}{\gamma - 1}}$$

$$= \frac{7}{2} \left(\frac{V}{V_{m}}\right)^{2} \left[1 - \left(\frac{V}{V_{m}}\right)^{2}\right]^{\frac{5}{2}} \qquad \text{[isen, perf]} \quad (75)$$

$$M^{2} = \frac{2}{\gamma + 1} \left(\frac{V}{V_{m}}\right)^{2} \left[1 - \left(\frac{V}{V_{m}}\right)^{2}\right]^{-1}$$

$$= \frac{5}{6} \left(\frac{V}{V_{m}}\right)^{2} \left[1 - \left(\frac{V}{V_{m}}\right)^{2}\right]^{-1} \quad [adiab, perf] \quad (76)$$

$$\left(\frac{V}{a_t}\right)^2 = \frac{2}{\gamma - 1} \left(\frac{V}{V_m}\right)^2 = 5 \left(\frac{V}{V_m}\right)^2 \quad [adiab, perf] \tag{77}$$

$$\left(\frac{V}{a_*}\right)^2 = \frac{\gamma + 1}{\gamma - 1} \left(\frac{V}{V_m}\right)^2 = 6 \left(\frac{V}{V_m}\right)^2 \quad [adiab, perf]$$
 (78)

Tables I and II list numerical values of the following ratios with Mach number M as the independent variable:

$$\frac{p}{p_t}, \frac{\rho}{\rho_t}, \frac{T}{T_t}, \frac{q}{p_t}, \frac{V}{a_\star}$$

STREAM-TUBE-AREA RELATIONS

If it is assumed that the density and speed are uniform across any section of a given stream tube, then the equation of continuity is

$$\rho VA = \text{constant} = \rho \cdot a \cdot A \cdot \tag{79}$$

By combining this and certain of the foregoing equations, the area ratio A_*/A can be expressed as a function of any one of the four parameters used above. The final equations are

$$\frac{A_{\bullet}}{A} = \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}} M \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$= \frac{216}{125} M \left(1 + \frac{M^2}{5}\right)^{-3} \text{ [isen, perf]} (80)$$

$$\frac{A_{*}}{A} = \left(\frac{\gamma+1}{2}\right)^{\frac{1}{\gamma-1}} \left(\frac{V}{a_{*}}\right) \left[1 - \frac{\gamma-1}{\gamma+1} \left(\frac{V}{a_{*}}\right)^{2}\right]^{\frac{1}{\gamma-1}} \\
= \left(\frac{6}{5}\right)^{\frac{5}{2}} \left(\frac{V}{a_{*}}\right) \left[1 - \frac{1}{6} \left(\frac{V}{a_{*}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (81)$$

$$\frac{A_{*}}{A} = \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}} \left(\frac{V}{a_{t}}\right) \left[1 - \frac{\gamma-1}{2} \left(\frac{V}{a_{t}}\right)^{2}\right]^{\frac{1}{\gamma-1}} \\
= \frac{216}{125} \left(\frac{V}{a_{t}}\right) \left[1 - \frac{1}{5} \left(\frac{V}{a_{t}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (82)$$

$$\frac{A_*}{A} = \left(\frac{2}{\gamma - 1}\right)^{\frac{1}{2}} \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}} \left(\frac{V}{V_m}\right) \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{1}{\gamma - 1}}$$

$$= 5^{\frac{1}{2}} \left(\frac{216}{125}\right) \left(\frac{V}{V_m}\right) \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (83)$$

Numerical values of A_*/A as a function of M are given in tables I and II.

Equation (79) combined with equations (26), (29b), (45), and (46) can be employed to obtain the mass-flow rate per unit area ρV along a stream tube as a function of Mach number, total temperature, and total pressure. Numerical values can be obtained conveniently from chart 1 where the variation with Mach number of the mass-flow rate per unit cross-sectional area is presented for various total temperatures and a total pressure of 1 pound per square inch absolute.

SHOCK WAVES

NORMAL SHOCK WAVES

BASIC EQUATIONS

The previous relations for isentropic flow are valid on either side of a shock wave, but not across it, because at the shock wave the flow quantities have discontinuities. Jump

FIGURE 1.-Notation for normal shock wave.

conditions for a steady normal shock wave (fig. 1) result from requiring conservation of

$$p_1 u_1 = \rho_2 u_2 \tag{84}$$

momentum:
$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$
 (85)

energy:
$$\frac{1}{2}u_1^2 + h_1 = \frac{1}{2}u_2^2 + h_2$$
 [adiab] (86a)

¹ The actual relation for conservation of energy is $\rho_1 u_1 \left(\frac{1}{2} u_1^2 + h_1\right) = \rho_2 u_1 \left(\frac{1}{2} u_1^2 + h_2\right)$; it reduces to the above form in view of equation (84).

$$\frac{1}{2} u_1^2 + c_p T_1 = \frac{1}{2} u_2^2 + c_p T_2$$

$$\frac{1}{2} u_1^2 + \frac{\gamma}{\gamma - 1} \frac{p_1}{\rho_1} = \frac{1}{2} u_2^2 + \frac{\gamma}{\gamma - 1} \frac{p_2}{\rho_2}$$

$$\frac{1}{2} u_1^2 + \frac{1}{\gamma - 1} a_1^2 = \frac{1}{2} u_2^2 + \frac{1}{\gamma - 1} a_2^2$$
[adiab, perf] (86b)

together with the requirement that the entropy does not decrease:

$$\Delta s \equiv s_2 - s_1 \ge 0 \tag{87}$$

It follows immediately from the energy relation (86) that total enthalpy, total temperature, and total speed of sound are constant across the shock and hence (from the previous relations (33) for adiabatic flow) also the critical speed of sound and limiting speed:

$$\begin{array}{c}
h_{t_1} = h_t & \text{[adiab]} \\
T_{t_1} = T_{t_2} \\
a_{t_1} = a_{t_2} \\
a_{*_1} = a_{*_2} \\
V_{-} = V_{-}
\end{array}$$
[adiab, perf] (88b)

Combining equations (84) to (86) leads to Prandtl's relation

$$u_1 u_2 = a_*^2 = \frac{p_2 - p_1}{\rho_2 - \rho_1}$$
 [adiab, perf] (89)

which implies that the flow is supersonic ahead of the shock wave and subsonic behind (the reverse possibility is ruled out by the requirement of nondecreasing entropy), and to the Rankine-Hugoniot relations

$$\frac{p_2}{p_1} = \frac{(\gamma + 1) \ \rho_2 - (\gamma - 1) \ \rho_1}{(\gamma + 1) \ \rho_1 - (\gamma - 1) \ \rho_2} \quad [adiab, perf]$$
(90)

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) \ p_2 + (\gamma - 1) \ p_1}{(\gamma + 1) \ p_1 + (\gamma - 1) \ p_2} \quad [adiab, perf]$$
(91)

$$\frac{p_2 - p_1}{\rho_2 - \rho_1} = \gamma \frac{p_2 + p_1}{\rho_2 + \rho_1} \quad [adiab, perf]$$
(92)

USEFUL RELATIONS

Many relations for normal shock waves are conveniently expressed in terms of either upstream Mach number M_1 or the static-pressure ratio across the shock $\xi \equiv p_2/p_1$. The following relations apply to adiabatic flow of a completely perfect fluid. The last form of each equation holds for $\gamma = 7/5$.

Parameter M_1 .—

$$\frac{p_2}{p_1} = \xi = \frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1} = \frac{7M_1^2 - 1}{6}$$
(93)

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{u_1^2}{u_2^2} = \frac{a_*^2}{u_2^2} = \frac{(\gamma + 1) M_1^2}{(\gamma - 1) M_1^2 + 2} = \frac{6M_1^2}{M_1^2 + 5}$$
(94)

$$\frac{T_{2}}{T_{1}} = \frac{a_{2}^{2}}{a_{1}^{2}} = \frac{[2\gamma M_{1}^{2} - (\gamma - 1)] [(\gamma - 1) M_{1}^{2} + 2]}{(\gamma + 1)^{2} M_{1}^{2}} \\
= \frac{(7M_{1}^{2} - 1) (M_{1}^{2} + 5)}{36 M_{2}^{2}} \quad (95)$$

$$M_2^2 = \frac{(\gamma - 1) M_1^2 + 2}{2\gamma M_1^2 - (\gamma - 1)} = \frac{M_1^2 + 5}{7 M_1^2 - 1}$$
(96)

$$\frac{p_{2}}{p_{t_{1}}} = \frac{2\gamma M_{1}^{2} - (\gamma - 1)}{\gamma + 1} \left[\frac{2}{(\gamma - 1) M_{1}^{2} + 2} \right]^{\frac{\gamma}{\gamma - 1}}$$

$$= \frac{7M_{1}^{2} - 1}{6} \left(\frac{5}{M_{1}^{2} + 5} \right)^{\frac{7}{2}} (97)$$

$$\frac{p_2}{p_{i_2}} = \left[\frac{4\gamma M_1^2 - 2(\gamma - 1)}{(\gamma + 1)^2 M_1^2} \right]^{\frac{\gamma}{\gamma - 1}} = \left[\frac{5(7M_1^2 - 1)}{36M_1^2} \right]^{\frac{\gamma}{2}}$$
(98)

$$\frac{p_{i_2}}{p_{i_1}} = \frac{\rho_{i_2}}{\rho_{i_1}} = e^{-\frac{\Delta s}{R}}$$

$$= \left[\frac{(\gamma+1) M_{1}^{2}}{(\gamma-1) M_{1}^{2}+2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_{1}^{2}-(\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$

$$= \left(\frac{6 M_{1}^{2}}{M_{1}^{2}+5}\right)^{\frac{7}{2}} \left(\frac{6}{7 M_{1}^{2}-1}\right)^{\frac{5}{2}}$$
(99)

$$\frac{p_{i_2}}{p_1} = \left[\frac{(\gamma+1) \ M_1^2}{2} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_1^2 - (\gamma-1)} \right]^{\frac{1}{\gamma-1}} \\
= \left(\frac{6 M_1^2}{5} \right)^{\frac{7}{2}} \left(\frac{6}{7 M_1^2 - 1} \right)^{\frac{5}{2}} (100)$$

(Rayleigh pitot formula)

$$\frac{\Delta s}{c_{\bullet}} = (\gamma - 1) \frac{\Delta s}{R} = -(\gamma - 1) \ln \left(\frac{p_{i_2}}{p_{i_1}} \right)
= \ln \left[\frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1} \right] - \gamma \ln \left[\frac{(\gamma + 1)M_1^2}{(\gamma - 1)M_1^2 + 2} \right]
= \ln \left(\frac{7M_1^2 - 1}{6} \right) - \frac{7}{5} \ln \left(\frac{6M_1^2}{M_1^2 + 5} \right)$$
(101)

$$\frac{p_2 - p_1}{q_1} = \frac{4(M_1^2 - 1)}{(\gamma + 1)M_1^2} = \frac{5(M_1^2 - 1)}{3M_1^2}$$
 (102)

Numerical values from equations (93), (94), (95), (96), (99), and (100) (with $\gamma = 7/5$) are given in table II.

For weak shock waves (M_1) only slightly greater than unity the following series are useful:

$$\frac{p_{t_2}}{p_{t_1}} = 1 - \frac{2\gamma}{3(\gamma+1)^2} (M_1^2 - 1)^3 + \frac{2\gamma^2}{(\gamma+1)^3} (M_1^3 - 1)^4 + \cdots$$

$$= 1 - \frac{35}{216} (M_1^2 - 1)^3 + \frac{245}{864} (M_1^2 - 1)^4 + \cdots$$
(103)

$$\frac{\Delta s}{R} = \frac{1}{\gamma - 1} \frac{\Delta s}{c_v} = \frac{2\gamma}{3(\gamma + 1)^2} (M_1^2 - 1)^3 - \frac{2\gamma^2}{(\gamma + 1)^3} (M_1^2 - 1)^4 + \cdots
= \frac{35}{216} (M_1^2 - 1)^3 - \frac{245}{864} (M_1^2 - 1)^4 + \cdots$$
(104)

Parameter $\xi \equiv p_2/p_1$.—

$$M_1^2 = \frac{(\gamma+1)\xi + (\gamma-1)}{2\gamma} = \frac{6\xi + 1}{7}$$
 (105)

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{(\gamma+1)\xi + (\gamma-1)}{(\gamma-1)\xi + (\gamma+1)} = \frac{6\xi + 1}{\xi + 6}$$
 (106)

$$\frac{T_2}{T_1} = \frac{a_2^2}{a_1^2} = \xi \frac{(\gamma - 1)\xi + (\gamma + 1)}{(\gamma + 1)\xi + (\gamma - 1)} = \xi \frac{\xi + 6}{6\xi + 1}$$
(107)

$$M_2^2 = \frac{(\gamma - 1)\xi + (\gamma + 1)}{2\gamma\xi} = \frac{\xi + 6}{7\xi}$$
 (108)

$$\frac{p_{i}}{p_{i_{1}}} = \xi \frac{p_{1}}{p_{i_{1}}} = \xi \left\{ \frac{4\gamma}{(\gamma+1)[(\gamma-1)\xi+(\gamma+1)]} \right\}^{\frac{\gamma}{\gamma-1}} = \xi \left[\frac{35}{6(\xi+6)} \right]^{\frac{\gamma}{2}}$$
(109)

$$\frac{p_2}{p_{t_2}} = \xi \frac{p_1}{p_{t_2}} = \left\{ \frac{4\gamma\xi}{(\gamma+1)[(\gamma+1)\xi+(\gamma-1)]} \right\}^{\frac{\gamma}{\gamma-1}} = \left[\frac{35\xi}{6(6\xi+1)} \right]^{\frac{7}{2}}$$
(110)

$$\frac{p_{t_2}}{p_{t_1}} = \frac{\rho_{t_2}}{\rho_{t_1}} = e^{-\frac{\Delta s}{R}} = \xi^{-\frac{1}{\gamma - 1}} \left[\frac{(\gamma + 1)\xi + (\gamma - 1)}{(\gamma - 1)\xi + (\gamma + 1)} \right]^{\frac{\gamma}{\gamma - 1}}$$

$$= \left(\frac{1}{\xi} \right)^{\frac{5}{2}} \left(\frac{6\xi + 1}{\xi + 6} \right)^{\frac{7}{2}} \tag{111}$$

$$\frac{\Delta s}{c_t} = (\gamma - 1) \frac{\Delta s}{R} = -(\gamma - 1) \ln \left(\frac{p_{t_2}}{p_{t_1}} \right) = \ln \xi - \frac{1}{2} \left(\frac{1}{2} \right) \ln \left(\frac{p_{t_2}}{p_{t_1}} \right) = \ln \xi$$

$$\gamma \ln \left[\frac{(\gamma+1)\xi + (\gamma-1)}{(\gamma-1)\xi + (\gamma+1)} \right] = \ln \xi - \frac{7}{5} \ln \left(\frac{6\xi+1}{\xi+6} \right) \quad (112)$$

For weak shock waves (\$\xi\$ only slightly greater than unity)

$$\frac{p_{i_2}}{p_{i_1}} = 1 - \frac{\gamma + 1}{12\gamma^2} (\xi - 1)^3 + \frac{\gamma + 1}{8\gamma^2} (\xi - 1)^4 + \cdots$$

$$= 1 - \frac{5}{49} (\xi - 1)^3 + \frac{15}{98} (\xi - 1)^4 + \cdots$$
(113)

$$\frac{\Delta s}{R} = \frac{1}{\gamma - 1} \frac{\Delta s}{c_o} = \frac{\gamma + 1}{12\gamma^2} (\xi - 1)^3 - \frac{\gamma + 1}{8\gamma^2} (\xi - 1)^4 + \cdots$$

$$= \frac{5}{49} (\xi - 1)^3 - \frac{15}{98} (\xi - 1)^4 + \cdots \tag{114}$$

In unsteady flow a normal shock wave acts at each instant as a steady shock. Hence all the above relations are valid across a moving normal shock wave if instantaneous velocities are measured relative to the shock.

OBLIQUE SHOCK WAVES

In general, a three-dimensional shock wave will be curved, and will separate two regions of nonuniform flow. However, the shock transition at each point takes place instantaneously, so that it is sufficient to consider an arbitrarily small neighborhood of the point. In such a neighborhood

FIGURE 2.- Notation for oblique shock wave.

the shock wave may be regarded as plane to any desired degree of accuracy, and the flows on either side as uniform and parallel. Moreover, with the proper orientation of axes the flow is locally two-dimensional. Hence it is sufficient to consider a straight oblique shock wave in a uniform parallel two-dimensional stream, as shown in figure 2.

BASIC EQUATIONS

For a steady oblique shock wave, jump conditions result from requiring conservation of

mass:
$$\rho_1 \tilde{u}_1 = \rho_2 \tilde{u}_2 \qquad (115)$$

normal momentum:
$$p_1 + \rho_1 \tilde{u}_1^2 = p_2 + \rho_2 \tilde{u}_2^2$$
 (116)

tangential momentum:
$$\rho_1 \tilde{u}_1 \tilde{v}_1 = \rho_2 \tilde{u}_2 \tilde{v}_2$$
 (117)

energy⁴:
$$\frac{1}{2} (\tilde{u}_1^2 + \tilde{v}_1^2) + h_1 = \frac{1}{2} (\tilde{u}_2^2 + \tilde{v}_2^2) + h_2 [adiab]$$
 (118a)

$$\frac{1}{2} (\tilde{u}_{1}^{2} + \tilde{v}_{1}^{2}) + c_{p} T_{1} = \frac{1}{2} (\tilde{u}_{2}^{2} + \tilde{v}_{2}^{2}) + c_{p} T_{2}$$

$$\frac{1}{2} (\tilde{u}_{1}^{2} + \tilde{v}_{1}^{2}) + \frac{\gamma}{\gamma - 1} \frac{p_{1}}{\rho_{1}} = \frac{1}{2} (\tilde{u}_{2}^{2} + \tilde{v}_{2}^{2}) + \frac{\gamma}{\gamma - 1} \frac{p_{2}}{\rho_{2}}$$

$$\frac{1}{2} (\tilde{u}_{1}^{2} + \tilde{v}_{1}^{2}) + \frac{1}{\gamma - 1} a_{1}^{2} = \frac{1}{2} (\tilde{u}_{2}^{2} + \tilde{v}_{2}^{2}) + \frac{1}{\gamma - 1} a_{2}^{2}$$
(118b)

together with the requirement that the entropy does not decrease:

$$\Delta s \equiv s_2 - s_1 \ge 0 \tag{119}$$

(120)

Again it follows from the energy relation (118) that total enthalpy, total temperature, and total speed of sound are constant across the shock and hence also the critical speed of sound and limiting speed:

 $h_{t_1} = h_{t_0}$ [adiab]

⁴ Compare remark for normal shock waves, footnote on page 618.

CONNECTION WITH NORMAL SHOCK

A comparison of equation (115) with (117) shows that the tangential velocity is constant across the shock wave:

$$\tilde{v}_1 = \tilde{v}_2 \quad [adiab] \tag{122}$$

so that the change in velocity is normal to the shock. It follows that

$$\frac{1}{2} \, \tilde{v}_1^2 = \frac{1}{2} \, \tilde{v}_2^2$$

so that the energy equation (118a) reduces to

$$\frac{1}{2}\tilde{u}_1^2 + h_1 = \frac{1}{2}\tilde{u}_2^2 + h_2 \quad [adiab] \tag{123}$$

Now equations (115), (116), and (123) involve only the component of velocity \tilde{u} normal to the shock, and are identical with equations (84), (85), and (86) for normal shock waves. Hence an oblique shock wave acts as a normal shock to the component of flow perpendicular to it, while the tangential component is unchanged. This is also clear physically from the "sweepback principle" that the oblique flow is reduced to the normal flow by a uniform translation of axes (Galilean transformation).

Because the speed of sound depends on the tangential velocity, Prandtl's relation differs from that for normal shock waves (see ref. 11, pp. 302-303):

$$\tilde{u}_1 \tilde{u}_2 = a_*^2 - \frac{\gamma - 1}{\gamma + 1} \tilde{v}^2$$
 [adiab, perf] (124)

where a_* and \tilde{v} can be evaluated on either side of the shock. The Rankine-Hugoniot relations are the same as for normal shock waves:

$$\frac{p_2}{p_1} = \frac{(\gamma + 1)\rho_2 - (\gamma - 1)\rho_1}{(\gamma + 1)\rho_1 - (\gamma - 1)\rho_2} \quad [adiab, perf]$$
 (125)

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)p_2 + (\gamma-1)p_1}{(\gamma+1)p_1 + (\gamma-1)p_2} \quad \text{[adiab, perf]}$$
 (126)

$$\frac{p_2 - p_1}{\rho_2 - \rho_1} = \gamma \frac{p_2 + p_1}{\rho_2 + \rho_1} \quad [adiab, perf]$$
 (127)

USEFUL RELATIONS

Because an oblique shock wave acts as a normal shock to the flow perpendicular to it, the previous relations for normal shocks (except those for ratios of static to total pressures) apply to oblique shocks if M_1 and M_2 are replaced by their normal components M_1 sin θ and M_2 sin $(\theta - \delta)$. This gives most of the following relations; the remainder are derived from them by using the kinematic condition that the stream turns through an angle δ , together with the previous isentropic-flow relations.

Parameters M_1 and θ .—

$$\frac{p_2}{p_1} = \xi = \frac{2\gamma M_1^2 \sin^2\theta - (\gamma - 1)}{\gamma + 1} = \frac{7M_1^2 \sin^2\theta - 1}{6}$$
 (128)

$$\frac{\rho_2}{\rho_1} = \frac{\tilde{u}_1}{\tilde{u}_2} = \frac{(\gamma + 1)M_1^2 \sin^2 \theta}{(\gamma - 1)M_1^2 \sin^2 \theta + 2} = \frac{6M_1^2 \sin^2 \theta}{M_1^2 \sin^2 \theta + 5}$$
(129)

$$\begin{split} \frac{T_2}{T_1} &= \frac{a_2^2}{a_1^2} = \frac{[2\gamma M_1^2 \sin^2\theta - (\gamma - 1)][(\gamma - 1)M_1^2 \sin^2\theta + 2]}{(\gamma + 1)^2 M_1^2 \sin^2\theta} \\ &= \frac{(7M_1^2 \sin^2\theta - 1)(M_1^2 \sin^2\theta + 5)}{36M_1^2} \end{split} \tag{130}$$

$$M_{2}^{2} \sin^{2}(\theta-\delta) = \frac{(\gamma-1)M_{1}^{2} \sin^{2}\theta+2}{2\gamma M_{1}^{2} \sin^{2}\theta-(\gamma-1)} = \frac{M_{1}^{2} \sin^{2}\theta+5}{7M_{1}^{2} \sin^{2}\theta-1}$$
(131)

$$\begin{split} M_{2}^{2} &= \frac{(\gamma+1)^{2} M_{1}^{4} \sin^{2}\theta - 4(M_{1}^{2} \sin^{2}\theta - 1)(\gamma M_{1}^{2} \sin^{2}\theta + 1)}{[2\gamma M_{1}^{2} \sin^{2}\theta - (\gamma - 1)][(\gamma - 1)M_{1}^{2} \sin^{2}\theta + 2]} \\ &= \frac{36 M_{1}^{4} \sin^{2}\theta - 5(M_{1}^{2} \sin^{2}\theta - 1)(7M_{1}^{2} \sin^{2}\theta + 5)}{(7M_{1}^{2} \sin^{2}\theta - 1)(M_{1}^{2} \sin^{2}\theta + 5)} \end{split} \tag{132}$$

$$\frac{\tilde{u}_2}{V_1} = \frac{(\gamma - 1)M_1^2 \sin^2\theta + 2}{(\gamma + 1)M_1^2 \sin^2\theta} \sin \theta = \frac{M_1^2 \sin^2\theta + 5}{6M_1^2 \sin^2\theta} \sin \theta$$
 (133)

$$\frac{\tilde{v}_2}{V_1} = \frac{\tilde{v}_1}{V_1} = \cos \theta \tag{134}$$

$$\frac{u_2}{V_1} = 1 - \frac{2(M_1^2 \sin^2 \theta - 1)}{(\gamma + 1)M_1^2} = 1 - \frac{5(M_1^2 \sin^2 \theta - 1)}{6M_1^2}$$
(135)

$$\frac{v_2}{V_1} = \frac{2(M_1^2 \sin^2 \theta - 1)}{(\gamma + 1)M_1^2} \cot \theta = \frac{5(M_1^2 \sin^2 \theta - 1)}{6M_1^2} \cot \theta$$
(136)

$$\frac{V_2^2}{V_1^2} = 1 - 4 \frac{(M_1^2 \sin^2\theta - 1)(\gamma M_1^2 \sin^2\theta + 1)}{(\gamma + 1)^2 M_1^4 \sin^2\theta}
= 1 - \frac{5}{36} \frac{(M_1^2 \sin^2\theta - 1)(7 M_1^2 \sin^2\theta + 5)}{M_1^4 \sin^2\theta}$$
(137)

$$\cot \delta = \tan \theta \left[\frac{(\gamma + 1)M_1^2}{2(M_1^2 \sin^2 \theta - 1)} - 1 \right]$$

$$= \tan \theta \left[\frac{6M_1^2}{5(M_1^2 \sin^2 \theta - 1)} - 1 \right]$$
(138)

$$\tan \delta = \frac{2 \cot \theta (M_1^2 \sin^2 \theta - 1)}{2 + M_1^2 (\gamma + 1 - 2 \sin^2 \theta)} = \frac{5 \cot \theta (M_1^2 \sin^2 \theta - 1)}{5 + M_1^2 (6 - 5 \sin^2 \theta)}$$
(139a)

$$= \frac{M_1^2 \sin 2\theta - 2 \cot \theta}{2 + M_1^2 (\gamma + \cos 2\theta)} = 5 \frac{M_1^2 \sin 2\theta - 2 \cot \theta}{10 + M_1^2 (7 + 5 \cos 2\theta)}$$
(139b)

$$\frac{p_2}{p_{t_1}} = \frac{2\gamma M_1^2 \sin^2 \theta - (\gamma - 1)}{(\gamma + 1)} \left[\frac{2}{(\gamma - 1)M_1^2 + 2} \right]^{\frac{\gamma}{\gamma - 1}}$$

$$= \frac{7M_1^2 \sin^2 \theta - 1}{6} \left(\frac{5}{M_1^2 + 5} \right)^{7/2} \tag{140}$$

$$\frac{p_2}{p_{t_2}} = \left\{ 2 \frac{\left[2\gamma M_1^2 \sin^2 \theta - (\gamma - 1) \right] \left[(\gamma - 1) M_1^2 \sin^2 \theta + 2 \right]}{(\gamma + 1)^2 M_1^2 \sin^2 \theta \left[(\gamma - 1) M_1^2 + 2 \right]} \right\}^{\frac{\gamma}{\gamma - 1}}$$

$$= \left[5 \frac{(7M_1^2 \sin^2 \theta - 1)(M_1^2 \sin^2 \theta + 5)}{36M_1^2 \sin^2 \theta(M_1^2 + 5)}\right]^{7/2}$$
(141)

$$\begin{split} &\frac{p_{i_{2}}}{p_{i_{1}}} = \frac{\rho_{i_{2}}}{\rho_{i_{1}}} = e^{-\frac{\Delta s}{R}} \\ &= \left[\frac{(\gamma + 1)M_{1}^{2} \sin^{2}\theta}{(\gamma - 1)M_{1}^{2} \sin^{2}\theta + 2} \right]^{\frac{\gamma}{\gamma - 1}} \left[\frac{\gamma + 1}{2\gamma M_{1}^{2} \sin^{2}\theta - (\gamma - 1)} \right]^{\frac{1}{\gamma - 1}} \\ &= \left(\frac{6M_{1}^{2} \sin^{2}\theta}{M_{1}^{2} \sin^{2}\theta + 5} \right)^{7/2} \left(\frac{6}{7M_{1}^{2} \sin^{2}\theta - 1} \right)^{5/2} \qquad (142) \\ &\frac{p_{i_{2}}}{p_{1}} = \left[\frac{\gamma + 1}{2\gamma M_{1}^{2} \sin^{2}\theta - (\gamma - 1)} \right]^{\frac{1}{\gamma - 1}} \times \\ &\left\{ \frac{(\gamma + 1)M_{1}^{2} \sin^{2}\theta - (\gamma - 1)}{2[(\gamma - 1)M_{1}^{2} \sin^{2}\theta + 2]} \right\}^{\frac{\gamma}{\gamma - 1}} \\ &= \left(\frac{6}{7M_{1}^{2} \sin^{2}\theta - 1} \right)^{5/2} \left[\frac{6M_{1}^{2} \sin^{2}\theta (M_{1}^{2} + 5)}{5(M_{1}^{2} \sin^{2}\theta + 5)} \right]^{7/2} \qquad (143) \\ &\frac{\Delta s}{c_{s}} = (\gamma - 1)\frac{\Delta s}{R} = -(\gamma - 1) \ln\left(\frac{p_{i_{2}}}{p_{i_{1}}}\right) \\ &= \ln\left[\frac{2\gamma M_{1}^{2} \sin^{2}\theta - (\gamma - 1)}{\gamma + 1} \right] - \\ &\gamma \ln\left[\frac{(\gamma + 1)M_{1}^{2} \sin^{2}\theta}{(\gamma - 1)M_{1}^{2} \sin^{2}\theta + 2} \right] \\ &= \ln\left(\frac{7M_{1}^{2} \sin^{2}\theta - 1}{6} \right) - \frac{7}{5} \ln\left(\frac{6M_{1}^{2} \sin^{2}\theta + 5}{M_{1}^{2} \sin^{2}\theta + 5} \right) \qquad (144) \end{split}$$

 $\frac{p_2 - p_1}{q_1} = \frac{4(M_1^2 \sin^2 \theta - 1)}{(\gamma + 1)M_1^2} = \frac{5}{3} \frac{M_1^2 \sin^2 \theta - 1}{M_1^2}$ (145)

Values of the following ratios for oblique shock waves can be read from table II, provided $M_1 \sin \theta$ is used instead of M_1 in the first column:

$$\frac{p_2}{p_1}, \frac{\rho_2}{\rho_1}, \frac{T_2}{T_1}, \frac{p_{i_2}}{p_{i_1}}$$

For weak shock waves $(M_1 \sin \theta)$ only slightly greater than unity) the following series are obtained from equations (103) and (104) by replacing M_1 by $M_1 \sin \theta$:

$$\frac{p_{i_2}}{p_{i_1}} = 1 - \frac{2\gamma}{3(\gamma+1)^3} (M_1^2 \sin^2 \theta - 1)^3 + \frac{2\gamma^2}{(\gamma+1)^3} (M_1^2 \sin^2 \theta - 1)^4 + \dots
= 1 - \frac{35}{216} (M_1^2 \sin^2 \theta - 1)^3 + \frac{245}{864} (M_1^2 \sin^2 \theta - 1)^4 + \dots$$

$$\frac{\Delta s}{R} = \frac{1}{\gamma-1} \frac{\Delta s}{c_*} = \frac{2\gamma}{3(\gamma+1)^2} (M_1^2 \sin^2 \theta - 1)^3 - \frac{2\gamma^2}{(\gamma+1)^3} (M_1^2 \sin^2 \theta - 1)^4 + \dots$$

$$= \frac{35}{216} (M_1^2 \sin^2 \theta - 1)^3 - \frac{245}{864} (M_1^2 \sin^2 \theta - 1)^4 + \dots$$
(147)

Parameters θ and δ .—

$$\begin{split} \frac{1}{M_1^2} = \sin^2 \theta - \frac{\gamma + 1}{2} \frac{\sin \theta \sin \delta}{\cos (\theta - \delta)} = \sin^2 \theta - \frac{\gamma + 1}{2} \frac{\tan \delta}{\tan \delta + \cot \theta} \\ = \sin^2 \theta - \frac{\gamma + 1}{2} \frac{\tan \theta}{\tan \theta + \cot \delta} \\ & (148a) \end{split}$$

$$M_{1}^{2} = \frac{2(\cot \theta + \tan \delta)}{\sin 2\theta - \tan \delta(\gamma + \cos 2\theta)}$$

$$= \frac{10(\cot \theta + \tan \delta)}{5\sin 2\theta - \tan \delta(7 + 5\cos 2\theta)}$$
(148b)

$$\frac{p_2 - p_1}{q_1} = 2 \frac{\sin \theta \sin \delta}{\cos (\theta - \delta)}$$

$$= 2 \frac{\tan \delta}{\tan \delta + \cot \theta} = 2 \frac{\tan \theta}{\tan \theta + \cot \delta} \tag{149a}$$

$$\frac{\rho_2 - \rho_1}{\rho_2} = \frac{\sin \delta}{\sin \theta \cos (\theta - \delta)}$$
 (149b)

Parameters M_1 and δ .—

No convenient explicit relations exist. However, the value of $\sin^2 \theta$ can be found by solving the following cubic equation (ref. 12):

$$\sin^6 \theta + b \sin^4 \theta + c \sin^2 \theta + d = 0 \tag{150a}$$

where

$$b = -\frac{M_1^2 + 2}{M_1^2} - \gamma \sin^2 \delta$$

$$c = \frac{2M_1^2 + 1}{M_1^4} + \left[\frac{(\gamma + 1)^2}{4} + \frac{\gamma - 1}{M_1^2}\right] \sin^2 \delta$$

$$d = -\frac{\cos^2 \delta}{M_1^4}$$
(150b)

The smallest of the three roots corresponds to a decrease in entropy and should be disregarded.

For weak shock waves (small deflections δ) the following series are useful (note that δ must be measured in radians):

$$\frac{p_{2}}{p_{1}} = 1 + \frac{\gamma M_{1}^{2}}{(M_{1}^{2} - 1)^{1/2}} \delta + \gamma M_{1}^{2} \frac{(\gamma + 1)M_{1}^{4} - 4(M_{1}^{2} - 1)}{4(M_{1}^{2} - 1)^{2}} \delta^{2} + \frac{\gamma M_{1}^{2}}{(M_{1}^{2} - 1)^{7/2}} \left[\frac{(\gamma + 1)^{2}}{32} M_{1}^{8} - \frac{7 + 12\gamma - 3\gamma^{2}}{24} M_{1}^{6} + \frac{3}{4} (\gamma + 1)M_{1}^{4} - M_{1}^{2} + \frac{2}{3} \right] \delta^{3} + \dots \quad (151)$$

$$\frac{p_{2} - p_{1}}{q_{1}} = \frac{2}{(M_{1}^{2} - 1)^{1/2}} \delta + \frac{(\gamma + 1)M_{1}^{4} - 4(M_{1}^{2} - 1)}{2(M_{1}^{2} - 1)^{2}} \delta^{2} + \frac{1}{(M_{2}^{2} - 1)^{7/2}} \left[\frac{(\gamma + 1)^{2}}{16} M_{1}^{8} - \frac{7 + 12\gamma - 3\gamma^{2}}{12} M_{1}^{6} + \frac{1}{2} \right] \delta^{2} + \frac{1}{(M_{2}^{2} - 1)^{7/2}} \delta^{2}$$

$$\frac{3}{2} (\gamma + 1) M_1^4 - 2 M_1^2 + \frac{4}{3} \delta^3 + \dots$$
 (152)

$$\frac{\rho_{2}}{\rho_{1}} = 1 + \frac{M_{1}^{2}}{(M_{1}^{2} - 1)^{1/2}} \delta + M_{1}^{2} \frac{(3 - \gamma)M_{1}^{2}(M_{1}^{2} - 2) + 4}{4(M_{1}^{2} - 1)^{2}} \delta^{2} + \dots$$

$$\frac{T_{2}}{T_{1}} = 1 + \frac{(\gamma - 1)M_{1}^{2}}{(M_{1}^{2} - 1)^{1/2}} \delta + \tag{153}$$

$$(\gamma-1)M_1^2 \frac{(\gamma+1)M_1^4-2(M_1^2+2)(M_1^2-1)}{4(M_1^2-1)^2} \delta^2 + \dots$$
 (154)

Since flow through weak shock waves is nearly insentropic, compressions through small angles can also be calculated with the aid of table II by regarding them as reversed Prandtl-Meyer expansions (see later section). The resulting numerical accuracy is greater than that obtained by retaining terms up to δ^2 in the above series, and nearly equal to that obtained by retaining terms up to δ^3 .

Charts 2, 3, and 4 show the variation of shock-wave angle, pressure coefficient across a shock wave, and downstream Mach number with flow-deflection angle for various upstream Mach numbers.

Parameter $\xi \equiv p_1/p_2$.—

$$M_1^2 \sin^2 \theta = \frac{(\gamma+1)\xi + (\gamma-1)}{2\gamma} = \frac{6\xi + 1}{7}$$
 (155)

$$M_2^2 \sin^2(\theta - \delta) = \frac{(\gamma - 1)\xi + (\gamma + 1)}{2\gamma\xi} = \frac{\xi + 6}{7\xi}$$
 (156)

$$M_2^2 = \frac{M_1^2[(\gamma+1)\xi+(\gamma-1)]-2(\xi^2-1)}{\xi[(\gamma-1)\xi+(\gamma+1)]}$$

$$M_2^2(6\xi+1)-5(\xi^2-1)$$

$$=\frac{M_1^2(6\xi+1)-5(\xi^2-1)}{\xi(\xi+6)}$$
 (157)

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)\xi + (\gamma-1)}{(\gamma-1)\xi + (\gamma+1)} = \frac{6\xi+1}{\xi+6}$$
 (158)

$$\frac{T_2}{T_1} = \frac{a_2^2}{a_1^2} = \xi \frac{(\gamma - 1)\xi + (\gamma + 1)}{(\gamma + 1)\xi + (\gamma - 1)} = \xi \frac{\xi + 6}{6\xi + 1}$$
(159)

$$\begin{split} \tan^2\delta = & \left(\frac{\xi - 1}{\gamma M_1^2 - \xi + 1}\right)^2 \frac{2\gamma M_1^2 - (\gamma - 1) - (\gamma + 1)\xi}{(\gamma + 1)\xi + (\gamma - 1)} \\ = & \left[\frac{5(\xi - 1)}{7M_1^2 - 5(\xi - 1)}\right]^2 \frac{7M_1^2 - (6\xi + 1)}{6\xi + 1} \quad (160) \end{split}$$

$$\frac{p_{t_2}}{p_{t_1}} = \frac{\rho_{t_2}}{\rho_{t_1}} = e^{-\frac{\Delta t}{R}} = \left[\frac{(\gamma+1)\xi + (\gamma-1)}{(\gamma-1)\xi + (\gamma+1)} \right]^{\frac{\gamma}{\gamma-1}} \xi^{-\frac{1}{\gamma-1}}$$

$$= \left(\frac{6\xi+1}{\xi+6} \right)^{7/2} \xi^{-5/2} \tag{161}$$

$$\frac{V_{2}^{2}}{V_{1}^{2}} = 1 - \frac{2(\xi^{2} - 1)}{M_{1}^{2}[(\gamma + 1)\xi + (\gamma - 1)]} = 1 - \frac{5(\xi^{2} - 1)}{M_{1}^{2}(6\xi + 1)}$$
(162)

For weak shock waves, equations (113) and (114) apply to oblique as well as normal shocks.

SHOCK POLAR

The velocities associated with an oblique shock wave are conveniently represented in the velocity-vector (hodograph) plane. For a given Mach number ahead of the shock wave, all possible velocity vectors behind the shock lie on a single curve.

Only the closed loop represents real shock waves with non-decreasing entropy, and forms Busemann's shock polar (fig. 3). Its equation is

$$v_{2}^{2} = (V_{1} - u_{2})^{2} \frac{u_{2} - \frac{\dot{a}_{*}^{2}}{V_{1}}}{\frac{2}{\gamma + 1} V_{1} + \frac{a_{*}^{2}}{V_{1}} - u_{2}}$$
(163)

Other forms of this equation convenient for computation are, given V_1 and M_1 ,

$$\left(\frac{v_2}{V_1}\right)^2 = \left(1 - \frac{u_1}{V_1}\right)^2 \frac{(M_1^2 - 1) - \frac{\gamma + 1}{2} M_1^2 \left(1 - \frac{u_2}{V_1}\right)}{1 + \frac{\gamma + 1}{2} M_1^2 \left(1 - \frac{u_2}{V_1}\right)}$$

$$= \left(1 - \frac{u_2}{V_1}\right)^2 \frac{5(M_1^2 - 1) - 6M_1^2 \left(1 - \frac{u_2}{V_1}\right)}{5 + 6M_1^2 \left(1 - \frac{u_2}{V_1}\right)} \quad (164a)$$

FIGURE 3.—Shock polar.

given a_* and V_1 ,

$$\left(\frac{V_{2}}{a_{*}}\right)^{2} = \left(\frac{V_{1}}{a_{*}} - \frac{u_{2}}{a_{*}}\right)^{2} \frac{\frac{V_{1}}{a_{*}} \frac{u_{2}}{a_{*}} - 1}{1 + \frac{2}{\gamma + 1} \left(\frac{V_{1}}{a_{*}}\right)^{2} - \frac{V_{1}}{a_{*}} \frac{u_{2}}{a_{*}}}$$

$$\left(\frac{V_{1}}{a_{*}} - \frac{u_{2}}{a_{*}}\right)^{2} \frac{6\left(\frac{V_{1}}{a_{*}} \frac{u_{2}}{a_{*}} - 1\right)}{5\left(\frac{V_{1}}{a_{*}}\right)^{2} - 6\left(\frac{V_{1}}{a_{*}} \frac{u_{2}}{a_{*}} - 1\right)} \quad (164b)$$

and given V_1 and V_m .

$$\left(\frac{v_2}{V_m}\right)^2 = \left(\frac{V_1}{V_m} - \frac{u_2}{V_m}\right)^2 \frac{\frac{V_1}{V_m} \frac{u_2}{V_m} - \frac{\gamma - 1}{\gamma + 1}}{\frac{2}{\gamma + 1} \left(\frac{V_1}{V_m}\right)^2 + \frac{\gamma - 1}{\gamma + 1} - \frac{V_1}{V_m} \frac{u_2}{V_m}}$$

$$= \left(\frac{V_1}{V_m} - \frac{u_2}{V_m}\right)^2 \frac{\left(6 \frac{V_1}{V_m} \frac{u_2}{V_m} - 1\right)}{5 \left(\frac{V_1}{V_m}\right)^2 - \left(6 \frac{V_1}{V_m} \frac{u_2}{V_m} - 1\right)} (164c)$$

The shock-wave angle θ and wedge angle δ are given in terms of the velocity components by

$$\tan \theta = \frac{V_1 - u_2}{v_2} = \frac{\tilde{u}_1}{\tilde{v}_1}$$
 (165)

$$\tan \delta = \frac{v_2}{u_2} \tag{166}$$

The shock-wave angle θ_* for sonic flow behind the shock is found (by setting $M_2=1$ in eq. (132)) to be given by

$$\begin{aligned} \cdot \sin^2 \theta_* &= \frac{1}{4\gamma M_1^2} \{ (\gamma + 1) M_1^2 - (3 - \gamma) + \\ & \sqrt{(\gamma + 1)[(\gamma + 1) M_1^4 - 2(3 - \gamma) M_1^2 + (\gamma + 9)]} \} \\ &= \frac{1}{7M_1^2} \left[3 M_1^2 - 2 + \sqrt{3(3M_1^4 - 4M_1^2 + 13)} \right] \end{aligned}$$
 (167)

The shock-wave angle $\theta_{\delta_{max}}$ for maximum stream deflection behind the shock is given by

$$\sin^{2}\theta_{\delta_{max}} = \frac{1}{4\gamma M_{1}^{2}} \{ (\gamma+1) M_{1}^{2} - 4 + \sqrt{(\gamma+1) [(\gamma+1) M_{1}^{4} + 8 (\gamma-1) M_{1}^{2} + 16]} \}
= \frac{1}{7M_{1}^{2}} [3M_{1}^{2} - 5 + \sqrt{3} (3M_{1}^{4} + 4M_{1}^{2} + 20)]$$
(168)

For small deflection angles (hence Mach numbers close to unity), the deflection angle (radians) for sonic flow behind the shock is given approximately in terms of the upstream Mach number by

$$\delta_{*} = \frac{1}{\sqrt{2} (\gamma + 1)} \frac{(M_{1}^{2} - 1)^{3/2}}{M_{1}^{2}} = 0.2946 \frac{(M_{1}^{2} - 1)^{3/2}}{M_{1}^{2}} (169)$$

The maximum stream deflection angle for a specified upstream Mach number is given approximately by

$$\delta_{\max} = \frac{4}{3\sqrt{3}} \frac{(M_1^2 - 1)^{3/2}}{M_1^2} = 0.3208 \frac{(M_1^2 - 1)^{3/2}}{M_1^2} \quad (170)$$

In unsteady flow all the above relations are valid across a moving oblique shock wave if instantaneous velocities are measured relative to the shock.

SUPERSONIC FLOW PAST WEDGES AND CONES

A shock wave forms ahead of any body in supersonic flight and remains fixed relative to the body if the flight is steady. It stands ahead of blunt shapes, but may be attached to pointed shapes.

Just at the tip of a pointed airfoil or body of revolution the flow is the same as for the initially tangent wedge or cone. The bow wave is attached at sufficiently high Mach numbers for a wedge of semivertex angle δ less than $\sin^{-1}(1/\gamma) = 45.6^{\circ}$ for $\gamma = 7/5$, and for a circular cone of semivertex angle σ less than 57.5° for $\gamma=1.405$. Below these limits, the wave is attached above a minimum Mach number whose dependence upon nose angle is shown for wedges and cones in figure 4. (These values can be applied to pointed airfoils and bodies of revolution which are not concave.) Also shown in figure 4 are the slightly higher Mach numbers above which the velocity behind the shock wave is supersonic, and for the cone the still higher Mach number above which the flow is supersonic even at the surface. (For wedges these last two coincide.) For thin wedges, these Mach numbers are given approximately by equations (169) and (170).

FLOW PAST WEDGES

If the bow shock wave is attached to a wedge, it is straight, and the flow behind the shock consists of uniform streams parallel to either face of the wedge. The flow pattern above the upper face (fig. 5) may be regarded as obtained from the straight oblique shock-wave pattern of figure 2 by replacing the streamline behind the shock wave with a solid wall. Flow quantities are determined by the oblique-shock-wave relations, equations (115) to (170). As noted previously, table II can also be applied if $M_1 \sin \theta$ is used in place of M_1 in the first column.

The flows above and below the wedge are independent, so that inclined wedges can be treated if neither face exceeds the attachment angle shown in figure 4. However, if the angle of attack exceeds the semivertex angle, the flow over the upper (leeward) surface is given by a Prandtl-Meyer expansion (see fig. 4) rather than by the shock relations.

It is clear from the shock polar (fig. 3) that two different shock waves and flow patterns are theoretically possible for a given wedge and Mach number. However, it is believed that only the weaker shock wave (larger u_2 and smaller θ) can occur attached to an isolated convex body.

Charts 2, 3, and 4 show the dependence of shock-wave angle, surface pressure coefficient, and downstream Mach number upon wedge angle for various free-stream Mach numbers.

FLOW PAST CONES

If the bow shock wave is attached to an uninclined circular cone, the shock wave too has the form of a circular cone. Flow quantities are constant on all concentric conical surfaces lying between the shock wave and the body, and so depend upon only one space variable. The transition across the shock wave is governed by the oblique-shock relations,

Figure 4.—Upstream Mach numbers for shock attachment and for supersonic flow behind shock wave on wedges and cones, and for supersonic flow at surface of cones.

FIGURE 5.—Flow past a wedge.

and is followed by a continuous isentropic compression to surface conditions, as indicated in figure 6. The flow quantities have been extensively tabulated in reference 6 for $\gamma=1.405$ and for $\gamma=4/3$. As in the case of wedges, two solutions exist for each cone and Mach number, but it is believed that only the weaker shock wave can occur on an isolated convex body. Charts 5, 6, and 7 show the dependence of shock-wave angle, surface-pressure coefficient, and

FIGURE 6.—Flow past a cone.

surface Mach number on cone semivertex angle for various free-stream Mach numbers.

The effects of slightly inclining a cone have been considered by Stone (ref. 13) and numerical results are tabulated in reference 14. Chart 8 shows the variation with Mach number of the initial slope of the normal-force curve for various cone angles. Stone has also sought an approximation for larger inclinations by retaining squares as well as first powers of angle of attack (ref. 15), and numerical results have been tabulated (ref. 16); however, these results are not free of error (see refs. 17 and 18).

PRANDTL-MEYER EXPANSION

A uniform two-dimensional supersonic stream flowing over a convex bend expands isentropically. Convenient relations are found by considering the special case of a stream at Mach number unity flowing around a sharp corner (fig. 7).

FIGURE 7.—Prandtl-Meyer expansion around a corner.

For a perfect gas, the Prandtl-Meyer angle ν through which the stream turns in expanding from M=1 to a supersonic Mach number M is

$$\nu = \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \sqrt{\frac{\gamma - 1}{\gamma + 1}} (M^{2} - 1) - (90^{\circ} - \mu) \qquad (171a)$$

$$= \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \sqrt{\frac{\gamma - 1}{\gamma + 1}} (M^{2} - 1) - \cos^{-1} \frac{1}{M} \qquad (171b)$$

$$= \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \sqrt{\frac{\gamma - 1}{\gamma + 1}} (M^{2} - 1) - \tan^{-1} \sqrt{M^{2} - 1} \qquad (171c)$$

(For
$$\gamma = 7/5$$
, $\sqrt{\frac{\gamma+1}{\gamma-1}} = 2.4495$, and $\sqrt{\frac{\gamma-1}{\gamma+1}} = 0.40825$.) The

maximum expansion angle, for $M = \infty$, is

$$\nu_{max} = \left(\sqrt{\frac{\gamma+1}{\gamma-1}} - 1\right) \times 90^{\circ} = 130.45^{\circ} \text{ for } \gamma = 7/5 \quad (172)$$

The ratio of static to total pressure, corresponding to Mach number M is given by

$$\frac{\left(\frac{p}{p_{t}}\right)^{\frac{\gamma-1}{\gamma}}}{-\frac{1}{\gamma+1}} \left\{ 1 + \cos\left[2\sqrt{\frac{\gamma-1}{\gamma+1}} \left(\nu + 90^{\circ} - \mu\right)\right] \right\} \qquad (173a)$$

$$= \frac{1}{\gamma+1} \left\{ 1 + \cos\left[2\sqrt{\frac{\gamma-1}{\gamma+1}} \left(\nu + \cos^{-1}\frac{1}{M}\right)\right] \right\} \qquad (173b)$$

$$= \frac{1}{\gamma+1} \left\{ 1 + \cos\left[2\sqrt{\frac{\gamma-1}{\gamma+1}} \left(\nu + \tan^{-1}\sqrt{M^{2}-1}\right)\right] \right\} \qquad (173c)$$

which falls to zero as $\nu \rightarrow \nu_{max}$. Numerical values of ν , μ , and p/p_1 are given in table II as functions of M.

These relations and the values in table II apply to a uniform stream flowing past any convex surface in the ab-

sence of external disturbances. (They also give a very good approximation at all Mach numbers when, as on an airfoil, external disturbances arise only from interaction with a shock wave, and are disregarded.) If flow quantities are known at one point, the values at any second point can be read from table II by identifying the change in flow angle between the two points with $\Delta \nu = \nu_2 - \nu_1$, as indicated in figure 8.

FIGURE 8.—Prandtl-Meyer expansion over a convex surface.

For expansions through small angles $\Delta \nu$, the ratio of final to initial static pressures is given by the following series $(\Delta \nu$ in radians):

$$\frac{p_{2}}{p_{1}} = 1 - \frac{\gamma M_{1}^{2}}{\sqrt{M_{1}^{2} - 1}} (\Delta \nu) + \gamma M_{1}^{2} \frac{(\gamma + 1) M_{1}^{4} - 4 (M_{1}^{2} - 1)}{4(M_{1}^{2} - 1)^{2}} (\Delta \nu)^{2} - \frac{\gamma M_{1}^{2}}{2 (M_{1}^{2} - 1)^{7/2}} \left[\frac{\gamma + 1}{6} M_{1}^{8} - \frac{5 + 7\gamma - 2\gamma^{2}}{6} M_{1}^{6} + \frac{5}{3} (\gamma + 1) M_{1}^{4} - 2M_{1}^{2} + \frac{4}{3} \right] (\Delta \nu)^{3} + \dots (174)$$

Up to and including the term in $(\Delta \nu)^2$ this series is identical with that for compression through an oblique shock wave (eq. (151) with $\delta = -\Delta \nu$).

IMPERFECT-GAS EFFECTS

Methods for calculating the flow of a calorically imperfect, thermally imperfect gas and a calorically imperfect, thermally perfect gas at temperatures up to 5000° R are described in this section. The equations presented are in substantially the same form as those given in references 7 and 8. Effects of gaseous imperfections, such as molecular dissociation, which become important at temperatures greater than about 5000° R are not considered.

Atmospheric and wind-tunnel air flows are of primary concern here. In such flows air generally exhibits only caloric imperfections to any appreciable degree. Consequently, numerical results are presented only for the flow of a calorically imperfect, thermally perfect diatomic gas.

THERMODYNAMICS

EQUATIONS OF STATE

The thermal equation of state used here for a calorically and thermally imperfect gas is the Berthelot equation

(eq. (5)). The thermal equation of state used for a calorically imperfect, thermally perfect gas is equation (2). The caloric equation of state used for a calorically and thermally imperfect gas is equation (8a). The caloric equation of state used for a calorically imperfect, thermally perfect gas is equation (8b).

SPECIFIC HEATS

The assumption of a simple harmonic vibrator is used to account for the contribution of the vibrational heat capacity to the specific heats. The equations for the specific heats at constant volume and constant pressure, respectively, are (see ref. 7)

$$c_{v} = (c_{v})_{pert} \left\{ 1 + (\gamma_{pert} - 1) \left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} + \frac{2c\rho}{RT^{2}} \right] \right\}$$
(175)
$$c_{v} = (c_{v})_{pert} \left\{ 1 + (\gamma_{pert} - 1) \left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} \right] \right\} [therm perf]$$

$$c_{p} = (c_{p})_{pert} \left\{ 1 + \frac{\gamma_{pert} - 1}{\gamma_{pert}} \left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} + \frac{2c\rho}{RT^{2}} \right] \right\}$$
(177)
$$\frac{2c\rho}{RT^{2}} \left\{ 1 + \frac{2 - b\rho}{1 - b\rho} + \frac{c\rho}{2RT^{2}} \right\} \right\}$$
(177)

$$c_{p} = (c_{p})_{perf} \left\{ 1 + \frac{\gamma_{perf} - 1}{\gamma_{perf}} \left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} \right] \right\} [therm perf]$$
(178)

The ratio of specific heats is then

$$\frac{\gamma = \gamma_{\text{perf}} \times \left\{ \left(\frac{\Theta}{T} \right)^2 \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^2} + \frac{2c\rho}{RT^2} \left[1 + \frac{\frac{2 - b\rho}{1 - b\rho} + \frac{c\rho}{2RT^2}}{\frac{1}{(1 - b\rho)^2} - \frac{2c\rho}{RT^2}} \right] \right\} \\
\frac{1 + \frac{\gamma_{\text{perf}} - 1}{\gamma_{\text{perf}}} \left\{ \left(\frac{\Theta}{T} \right)^2 \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^2} + \frac{2c\rho}{RT^2} \right] + \frac{1}{(1 - b\rho)^2} \frac{2c\rho}{RT^2} \right\} \\
V^2 = 2RT_t \left[\frac{1 - \frac{T}{T_t}}{\gamma_{\text{perf}} - 1} + \frac{\Theta}{T_t} \left(\frac{1}{e^{\Theta/T_t} - 1} - \frac{1}{e^{\Theta/T_t} - 1} \right) + \frac{2c}{RT_t} \left(\frac{\rho}{T_t} - \frac{\rho_t}{T_t} \right) + \frac{1}{RT_t} \left(\frac{p_t}{\rho_t} - \frac{p}{\rho_t} \right) \right] \left[\frac{p_t}{\rho_t} - \frac{p}{\rho_t} \right] \left[\frac{p_t}{\rho_t}$$

or, for a thermally perfect gas,

$$\gamma = 1 + \frac{\gamma_{\text{perf}} - 1}{1 + (\gamma_{\text{perf}} - 1) \left[\left(\frac{\Theta}{T} \right)^2 \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^2} \right]} [\text{therm perf}] \quad (180)$$

The following values of γ are for temperatures from 400° R to 5000° R, with $\theta = 5500^{\circ}$ R (see ref. 7). For engineering purposes, these are a satisfactory approximation for air.

T, °R	7	<i>T</i> , °R	γ	<i>T</i> , °R	γ
500	1. 400	1300	1. 361	2200	1. 322 1. 317
600 700	1. 399 1. 396	1400 1500	1. 35 5 1. 34 9	2400 2600	1. 313
800	1. 392	1600	1. 344	2800	1. 309
900 1000	1. 387 1. 381	1700 1800	1. 339 1. 335	3000 3500	1. 300 1. 301
1100	1. 361	1900	1. 331	4000	1. 298
1200	1.368	2000	1.328	4500 5000	1, 296 1, 294

CONTINUOUS ONE-DIMENSIONAL FLOW BASIC EQUATIONS AND DEFINITIONS

Basic equations pertinent to this section are equations (26), (27), (28), (29), (30), and (31). The equations for the speed of sound are (see ref. 7)

$$\frac{1}{\left(\frac{\theta}{T}\right)^{2}} \frac{e^{\theta/T}-1)^{2}}{\left(e^{\theta/T}-1\right)^{2}} \left\{ \begin{array}{c} (176) \\ (176) \end{array} \right\} \left\{ \begin{array}{c} a^{2}=RT \\ \left(\frac{\theta}{T}\right)^{2} \frac{e^{\theta/T}}{\left(e^{\theta/T}-1\right)^{2}} + \\ \frac{2c\rho}{RT^{2}} \left\{ 1 + \frac{\frac{2-b\rho}{1-b\rho} + \frac{c\rho}{2RT^{2}}}{\frac{1}{(1-b\rho)^{2}} - \frac{2c\rho}{RT^{2}}} \right\} \\ \frac{1}{1+(\gamma_{perf}-1)\left[\left(\frac{\theta}{T}\right)^{2} \frac{e^{\theta/T}}{\left(e^{\theta/T}-1\right)^{2}} + \frac{2c\rho}{RT^{2}}\right]} \\ \text{and} \end{array} \right\}$$
and
$$(181)$$

$$a^{2} = RT \left\{ 1 + \frac{\gamma_{pert} - 1}{\left[1 + (\gamma_{pert} - 1) \left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} \right]} \right\}$$
 [therm perf] (182)

INTEGRATED FORMS OF ENERGY EQUATION

The integrated forms of the energy equation are (see ref. 7)

$$V^{2} = 2RT_{i} \left[\frac{1 - \frac{T}{T_{i}}}{\gamma_{pert} - 1} + \frac{\Theta}{T_{i}} \left(\frac{1}{e^{\Theta/T_{i}} - 1} - \frac{1}{e^{\Theta/T} - 1} \right) + \frac{2c}{RT_{i}} \left(\frac{\rho}{T} - \frac{\rho_{i}}{T_{i}} \right) + \frac{1}{RT_{i}} \left(\frac{p_{i}}{\rho_{i}} - \frac{p}{\rho} \right) \right] \text{ [adiab]} \quad (183)$$

and

$$V^{2} = 2RT_{i} \left[\frac{\gamma_{pert}}{\gamma_{pert} - 1} \left(1 - \frac{T}{T_{i}} \right) + \frac{\theta}{T_{i}} \left(\frac{1}{e^{\theta/T_{i}} - 1} - \frac{1}{e^{\theta/T} - 1} \right) \right] \text{ [adiab, therm perf]} \quad (184)$$

In terms of Mach number these equations become, respectively,

$$M^{2} = \frac{2T_{t} \left[\frac{1 - \frac{T}{T_{t}}}{\gamma_{pert} - 1} + \frac{\Theta}{T_{t}} \left(\frac{1}{e^{\Theta/T_{t}} - 1} - \frac{1}{e^{\Theta/T} - 1} \right) + \frac{2c}{RT_{t}} \left(\frac{\rho}{T} - \frac{\rho_{t}}{T_{t}} \right) + \frac{1}{RT_{t}} \left(\frac{p_{t}}{\rho_{t}} - \frac{p}{\rho} \right) \right]}{\sqrt{\frac{1}{(1 - b\rho)^{2}} - \frac{2c\rho}{RT^{2}}} + \frac{(\gamma_{pert} - 1)\left(\frac{c\rho}{RT^{2}} + \frac{1}{1 - b\rho} \right)^{2}}{1 + (\gamma_{pert} - 1)\left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} + \frac{2c\rho}{RT^{2}} \right]}}$$
[adiab]

and

$$M^{2} = \frac{2T_{t}}{\gamma T} \left[\frac{\gamma_{\text{pert}}}{\gamma_{\text{pert}} - 1} \left(1 - \frac{T}{T_{t}} \right) + \frac{\Theta}{T_{t}} \left(\frac{1}{e^{\Theta/T_{t}} - 1} - \frac{1}{e^{\Theta/T} - 1} \right) \right] \quad [\text{adiab, therm perf}]$$
(186)

where γ is given by equation (180).

The variations of $\frac{\left(\frac{V}{a_*}\right)_{\text{therm pert}}}{\left(\frac{V}{a_*}\right)_{\text{pert}}}$ and $\frac{\left(\frac{T}{T_t}\right)_{\text{therm pert}}}{\left(\frac{T}{T_t}\right)_{\text{pert}}}$ with Mach number for several values of total temperature T_t are given in

charts 9 and 10.

PRESSURE AND DENSITY RELATIONS

For isentropic flow, the relations between density and temperature are (see ref. 7)

$$\left(\frac{\rho}{\rho_t}\right)\left(\frac{1-b\rho_t}{1-b\rho}\right) = \left(\frac{e^{\theta/T_t}-1}{e^{\theta/T}-1}\right)\left(\frac{T}{T_t}\right)^{\frac{1}{\gamma_{per}-1}} \exp\left[\frac{c\rho_t}{RT_t^2} - \frac{c\rho}{RT^2} + \left(\frac{\theta}{T}\right)\frac{e^{\theta/T}}{e^{\theta/T}-1} - \left(\frac{\theta}{T_t}\right)\frac{e^{\theta/T_t}}{e^{\theta/T_t}-1}\right] \quad [\text{isen}]$$

and, for a thermally perfect gas,

$$\frac{\rho}{\rho_{i}} = \left(\frac{e^{\Theta/T_{i}} - 1}{e^{\Theta/T} - 1}\right) \left(\frac{T}{T_{i}}\right)^{\frac{1}{\gamma_{\text{per}} - 1}} \exp\left[\left(\frac{\Theta}{T}\right) \frac{e^{\Theta/T}}{e^{\Theta/T} - 1} - \left(\frac{\Theta}{T_{i}}\right) \frac{e^{\Theta/T_{i}}}{e^{\Theta/T_{i}} - 1}\right] \quad [\text{isen, therm perf}]$$
(188)

The variation of $\frac{\left(\frac{\rho}{\rho_t}\right)_{\text{therm perf}}}{\left(\frac{\rho}{\rho_t}\right)_{\text{perf}}}$ with Mach number for several total temperatures is presented in chart 11.

For the isentropic flow of a thermally imperfect, calorically imperfect gas, the relation between pressure, density, and temperature can be obtained by a trial-and-error procedure using equations (5) and (187).⁵ For the isentropic flow of a thermally perfect gas, the relation between pressure and temperature is

$$\frac{p}{p_{t}} = \left(\frac{e^{\Theta/T_{t}} - 1}{e^{\Theta/T} - 1}\right) \left(\frac{T}{T_{t}}\right)^{\frac{\gamma_{\text{perf}}}{\gamma_{\text{perf}} - 1}} \exp\left[\left(\frac{\Theta}{T}\right) \frac{e^{\Theta/T}}{e^{\Theta/T} - 1} - \left(\frac{\Theta}{T_{t}}\right) \frac{e^{\Theta/T_{t}}}{e^{\Theta/T_{t}} - 1}\right] \quad [\text{isen, therm perf}]$$
(189)

The relation between dynamic and static pressure for a thermally imperfect gas can be obtained by a trial-and-error procedure using equations (5), (31a), (183), and (187). The relation between dynamic and static pressure for a thermally perfect gas can be obtained with equations (31b) and (186), and is

$$\frac{q}{p} = \frac{\gamma_{\text{perf}}}{\gamma_{\text{perf}} - 1} \left(\frac{T_i}{T} - 1 \right) + \frac{\Theta}{T} \left(\frac{1}{e^{\Theta/T_i} - 1} - \frac{1}{e^{\Theta/T} - 1} \right)$$
[adiab, therm perf] (190)

The variations of $\frac{\left(\frac{p}{p_t}\right)_{\text{therm perf}}}{\left(\frac{p}{p_t}\right)_{\text{part}}}$ and $\frac{\left(\frac{q}{p_t}\right)_{\text{therm perf}}}{\left(\frac{q}{p_t}\right)_{\text{part}}}$ with Mach

number for several total temperatures are given in charts 12 and 13.

STREAM-TUBE-AREA RELATIONS

The stream-tube-area relation is given by equation (79), or, in more convenient form,

$$\frac{A}{A} = \frac{\rho_* a_*}{\rho_* a M} \tag{191}$$

This ratio can be evaluated for a thermally imperfect gas with the aid of equations (187), (181), (5), and (185), and for a thermally perfect gas with the aid of equations (188),

(182), and (186). The variation of
$$\frac{\left(\frac{A}{A_*}\right)_{\text{therm pert}}}{\left(\frac{A}{A_*}\right)_{\text{perf}}}$$
 with Mach

number for several values of total temperature is presented in chart 14.

In this, as in many of the cases to be presented, no direct solution for flow properties is possible if the gas exhibits both thermal and caloric imperfections. Approximate solutions of this type can be obtained, however, if the degree of imperfection is small (see ref. 7).

NORMAL SHOCK WAVES

The requirements for conservation of mass, momentum, and energy across a normal shock wave are given by equations (84), (85), and (86a). The energy relation can be written

$$\begin{split} \frac{u_2^2}{2} - \frac{u_1^2}{2} + \frac{R}{\gamma_{\mathsf{pert}} - 1} & (T_2 - T_1) - \left(\frac{2c\,\rho_2}{T_2} - \frac{2c\,\rho_1}{T_1}\right) + \left(\frac{p_2}{\rho_2} - \frac{p_1}{\rho_1}\right) + \\ & R\Theta\left(\frac{1}{e^{\Theta/T_2} - 1} - \frac{1}{e^{\Theta/T_1} - 1}\right) = 0 \quad [\mathsf{adiab}] \quad (1\,9\,2) \end{split}$$

or, for a thermally perfect gas,

$$\begin{split} \frac{{u_2}^2}{2} - \frac{{u_1}^2}{2} + \left(\frac{\gamma_{\text{pert}}}{\gamma_{\text{pert}} - 1}\right) R(T_2 - T_1) + \\ R\Theta\left(\frac{1}{e^{\Theta/T_2} - 1} - \frac{1}{e^{\Theta/T_1} - 1}\right) = 0 \quad \text{[adiab, therm perf]} \quad (193) \end{split}$$

No explicit equation has been found to relate the temperature downstream of a normal shock wave in thermally imperfect air to the upstream conditions. A trial-and-error procedure, starting with assumed values of ρ_2 and T_2 and involving equations (5), (84), (85), and (192), can be used to determine the downstream temperature.

For the flow of a thermally perfect gas, the simultaneous solution of equations (84), (85), (193), and (2) yields the following relation from which the temperature behind the shock wave can be found:

$$\left(u_{1} + \frac{RT_{1}}{u_{1}}\right)^{2} - \left(u_{1} + \frac{RT_{1}}{u_{1}}\right) \sqrt{\left(u_{1} + \frac{RT_{1}}{u_{1}}\right)^{2} - 4RT_{2}} - 2RT_{2} - 2$$

$$4R\Theta\left(\frac{1}{e^{\Theta/T_2}-1}-\frac{1}{e^{\Theta/T_1}-1}\right)=0 \quad [adiab, therm perf] \quad (194)$$

Since the total temperature T_t remains constant across a shock wave, other flow parameters behind the shock wave can be found with the aid of previously presented one-dimensional flow relations. The variations of

$$\frac{\left(\frac{T_2}{T_1}\right)_{\text{therm perf}}}{\left(\frac{T_2}{T_1}\right)_{\text{perf}}}, \frac{\left(\frac{\rho_2}{\rho_1}\right)_{\text{therm perf}}}{\left(\frac{\rho_2}{\rho_1}\right)_{\text{perf}}}, \frac{\left(\frac{p_1}{p_{t_2}}\right)_{\text{therm perf}}}{\left(\frac{p_1}{p_{t_2}}\right)_{\text{perf}}},$$

$$\frac{\left(\frac{p_2}{p_1}\right)_{\text{therm perf}}}{\left(\frac{p_2}{p_1}\right)_{\text{perf}}}, \frac{M_{2_{\text{therm perf}}}}{M_{2_{\text{perf}}}}, \text{ and } \frac{\left(\frac{p_{t_2}}{p_{t_1}}\right)_{\text{therm perf}}}{\left(\frac{p_{t_2}}{p_{t_1}}\right)_{\text{perf}}}$$

with upstream Mach number for several total temperatures are presented in charts 15 through 20, respectively.

OBLIQUE SHOCK WAVES

For a thermally imperfect gas, no simple equations can be found to relate the values of the flow parameters across oblique shock waves. In general, trial-and-error procedure, starting with assumed values of ρ_2 and T_2 , and involving the relations for the conservation of mass, momentum, and energy, must be used. (See eqs. (115), (116), (117), and (118a) as well as equations (5) and (183).) For a thermally perfect gas, the Mach number downstream of an oblique shock wave can be found with the aid of the energy equation (see eqs. (118a) and (186)), thus

$$M_{2}^{2} = \frac{2T_{1}}{\gamma_{2}T_{2}} \left[\frac{\gamma_{1}M_{1}^{2}}{2} + \left(\frac{\gamma_{pert}}{\gamma_{pert} - 1} \right) \left(1 - \frac{T_{2}}{T_{1}} \right) + \frac{\theta}{T_{1}} \left(\frac{1}{e^{\theta/T_{1}} - 1} - \frac{1}{e^{\theta/T_{2}} - 1} \right) \right] \quad [adiab, therm perf] \quad (195)$$

where γ_1 and γ_2 are the functions of T_1 and T_2 , respectively, given by equation (180). The pressure ratio across the shock is given by

$$\frac{p_{1}}{p_{2}} = \frac{1}{2} \left\{ (1 + \gamma_{2} M_{2}^{2}) - \frac{T_{1}}{T_{2}} (1 + \gamma_{1} M_{1}^{2}) + \sqrt{\left[(1 + \gamma_{2} M_{2}^{2}) - \frac{T_{1}}{T_{2}} (1 + \gamma_{1} M_{1}^{2}) \right]^{2} + 4 \frac{T_{1}}{T_{2}}} \right\}$$
[adiab, therm perf] (196)

The density ratio can be determined from the equation of state (eq. (2)) with the aid of the pressure and temperature ratios. The shock-wave and deflection angles are given by (see ref. 8)

$$\sin^2 \theta = \frac{\left(\frac{\gamma_2}{\gamma_1}\right) \left(\frac{T_2}{T_1}\right) \left(\frac{M_2}{M_1}\right)^2 - 1}{\left(\frac{\rho_1}{\rho_2}\right)^2 - 1} \quad \text{[adiab, therm perf]} \quad (197)$$

and

$$\cot \delta = \tan \theta \left(\frac{\gamma_1 M_1^2}{\frac{p_2}{p_1} - 1} \right) \quad [adiab, therm perf] \quad (198)$$

respectively.

The variation of θ with δ for various values of M_1 and T_1 is presented in chart 21. In addition, the variations of

$$\frac{(M_2)_{\text{therm perf}}}{(M_2)_{\text{perf}}} \text{ and } \frac{\left(\frac{p_2-p_1}{q_1}\right)_{\text{therm perf}}}{\left(\frac{p_2-p_1}{q_1}\right)_{\text{perf}}} \text{ with } \delta \text{ for various } M_1 \text{ and } T_1$$

are presented in charts 22 and 23.

Values of the ratios

$$\frac{p_2}{p_1}, \frac{\rho_2}{\rho_1}, \frac{T_2}{T_1}, \frac{p_{t_2}}{p_{t_1}}$$

for the flow of a thermally perfect gas across an oblique shock wave can be determined from the normal-shock relations,

provided that $M_1 \sin \theta$ is used instead of M_1 and that the static temperature T_1 just upstream of the shock wave is the same for the oblique shock wave as for the normal shock wave.

PRANDTL-MEYER EXPANSION

The Prandtl-Meyer angle for the flow of an imperfect gas can be found by graphically integrating the equation (see ref. 8)

$$\mathbf{r} = -\int_{p_*}^{p} \frac{dp}{\rho V^2 \tan \mu} \quad \text{[isen]} \tag{199}$$

The relations between p, ρ , V, and μ can be found with the

aid of equations (5), (187), (183), and (185). For a thermally perfect gas this equation becomes (see, again, ref. 8)

$$\nu = -\int_{p_{\bullet}}^{p} \frac{\sin 2\mu}{2\gamma p} dp$$
 [isen, therm perf] (200)

The relations between γ , p, and μ can be found with the aid of equations (180), (189), and (186) using the temperature as a parameter. The graphical integration of equation (200) has been carried out, and the variations of $\nu_{\text{therm pert}}$ and $\nu_{\text{therm pert}}$ with Mach number for various values of total

temperature are presented in chart 24.

APPENDIX A

VISCOSITY AND THERMODYNAMIC CONSTANTS FOR AIR

VISCOSITY

The viscosity of air is nearly independent of pressure; the variation with absolute temperature, between temperatures of about 300° R and 900° R, may be approximated by the formula

$$\frac{\mu}{\mu_r} = \left(\frac{T}{T_r}\right)^{0.76} \tag{A1}$$

For a wider range of temperatures, between about 180° R and 3400° R, Sutherland's formula (see ref. 19) is more accurate:

$$\frac{\mu}{\mu_r} = \frac{T_r + 198.6}{T + 198.6} \left(\frac{T}{T_r}\right)^{3/2} \tag{A2}$$

The viscosity of air, as determined from this relation, may be expressed as

$$\mu = 2.270 \frac{T^{3/2}}{T + 198.6} \times 10^{-8} \frac{\text{lb sec}}{\text{ft}^2}$$
 (A3)

This latter equation has been employed in the calculations of Reynolds number (chart 25).

THERMODYNAMIC CONSTANTS

The value of γ employed for air, when treated as a completely perfect gas, is 7/5. This simple value, which has been employed in table I, table II, charts 1 to 4, and chart 25, is a good approximation to the more precise values obtained from spectroscopic measurements (see ref. 20). Values of c_p , c_p , and R for air, consistent with the approximation $\gamma = 7/5$, are

$$c_p = 6006 \text{ ft}^2/\text{sec}^2 \text{ }^{\circ}\text{R}$$
 $c_v = 4290 \text{ ft}^2/\text{sec}^2 \text{ }^{\circ}\text{R}$
 $R = 1716 \text{ ft}^2/\text{sec}^2 \text{ }^{\circ}\text{R}$

APPENDIX B

REYNOLDS NUMBER

Reynolds number is defined as

$$R = \frac{\rho V l}{\mu} \tag{B1}$$

For sea-level conditions,

$$R \cong 10,000 \text{ (V in mph) (l in ft)}$$
 (B2)

In a wind tunnel (subsonic or supersonic), if isentropic expansion is assumed from a total pressure p_t and equation

(A2) is used for the variation of viscosity with temperature, the Reynolds number per unit reference length is given by

$$\frac{R}{l} = \frac{p_t M}{\mu_t} \sqrt{\frac{\gamma}{(\gamma - 1)c_t T_t}} \left(\frac{T_t}{T}\right)^{\frac{\gamma - 2}{\gamma - 1}} \frac{T_t}{T_t} + \frac{198.6}{T_t} \quad \text{[perf]} \quad \text{(B3)}$$

The Reynolds number per unit length for $p_t=1$ psia has been plotted in chart 25 as a function of M for various total temperatures T_t .

APPENDIX C

PRESSURE CONVERSION FACTORS AND CONSTANTS

Multiply—→ by to obtain	lb in.³	ib fü	in. H ₂ O at 70° F	in. Hg at 70° F	cm. Hg at 70° F	Standard atmos- pheres
ib/in.³ ib/ft³ in. H ₂ O (70° F) in. Hg. (70° F) cm. Hg. (70° F) Standard atmospheres	1 144 27. 73 2. 044 5. 192	0. 006944 1 . 1925 . 01420 . 03605 . 0004725	0. 03607 5. 194 1 . 07373 . 1873	0. 4892 70. 45 13. 56 1 2. 540	0. 1926 27. 74 5. 340 . 3937 1	14.70 2117 407.6 30.05 76.33

REFERENCES

- The Staff of the Ames 1- by 3-Foot Supersonic Wind-Tunnel Section: Notes and Tables for Use in the Analysis of Supersonic Flow. NACA TN 1428, 1947.
- Burcher, Marie A.: Compressible Flow Tables for Air. NACA TN 1592, 1948.
- Neice, Mary M.: Tables and Charts of Flow Parameters Across Oblique Shocks. NACA TN 1673, 1948.
- Moeckel, W. E., and Connors, J. F.: Charts for the Determination of Supersonic Air Flow Against Inclined Planes and Axially Symmetric Cones. NACA TN 1373, 1947.
- Anon.: Handbook of Supersonic Aerodynamics. Bur. of Ord., Navy Dept. NAVORD Rep. 1488, 1950.
- Mass. Inst. of Tech., Dept. of Elect. Engr., Center of Analysis.
 Tables of Supersonic Flow Around Cones by the Staff of the Computing Section, under the direction of Zdenek Kopal. Tech. Rep. no. 1. Cambridge, 1947.
- Eggers, A. J., Jr.: One-Dimensional Flows of an Imperfect Diatomic Gas. NACA Rep. 959, 1950.
- Eggers, A. J., Jr., and Syvertson, Clarence A.: Inviscid Flow About Airfoils at High Supersonic Speeds. NACA TN 2646, 1952.
- Van der Waals, J. D.: The Continuity of the Liquid and Gaseous States. Physical Memoirs, Physical Society of London, vol. I, pt. 3, 1888-90, pp. 332-496.
- Beattie, J. A., and Bridgeman, Oscar C.: A New Equation of State for Fluids. Proc. Amer. Acad. of Arts and Sci., vol. 63, no. 5, Dec. 1928, pp. 229-308.
- Courant, R., and Friedrichs, K. O.: Supersonic Flow and Shock Waves. Interscience Publishers, Inc., New York, 1948.
- Thompson, M. J.: A Note on the Calculation of Oblique Shock-Wave Characteristics. Jour. Aero. Sci., vol. 17, no. 11, Nov. 1950, pp. 741-744.
- Stone, A. H.: On Supersonic Flow Past a Slightly Yawing Cone. Jour. Math. and Phys., vol. XXVII, no. 1, April 1948, pp. 67-81.
- Mass. Inst. of Tech., Dept. of Elect. Engr., Center of Analysis.
 Tables of Supersonic Flow Around Yawing Cones by the Staff of the Computing Section, under the direction of Zdenek Kopal. Tech. Rep. no. 3. Cambridge, 1947.
- Stone, A. H.: On Supersonic Flow Past a Slightly Yawing Cone II. Jour. Math. and Phys., vol. XXX, no. 4, Jan. 1952.
- 16. Mass. Inst. of Tech., Dept. of Elect. Engr., Center of Analysis. Tables of Supersonic Flow Around Cones of Large Yaw by the Staff of the Computing Section under the direction of Zdenek Kopal. Tech. Rep. no. 5. Cambridge, 1949.
- Moore, Franklin K.: Laminar Boundary Layer on a Circular Cone in Supersonic Flow at a Small Angle of Attack. NACA TN 2521, 1951.
- Ferri, Antonio: Supersonic Flow Around Circular Cones at Angles of Attack. NACA Rep. 1045, 1951. (Supersedes NACA TN 2236.)
- Anon.: The NBS-NACA Tables of Thermal Properties of Gases.
 Table 2. 39 Dry Air, Coefficients of Viscosity. F. C. Morey, comp., National Bureau of Standards. Dec. 1950.

Anon.: The NBS-NACA Tables of Thermal Properties of Gases.
 Table 2.10 Dry Air (Ideal Gas State), Specific Heat, Enthalpy,
 Entropy. Harold W. Wooley, comp., National Bureau of Standards. July 1949.

TABLES

The tables that follow contain numerical values for certain quantities often required for the solution of problems in compressible flow. The symbols used in these tables are the same as those used in the preceding sections. For convenience, however, the symbols are redefined at the end of table II.

To conserve space, a modified computing-machine notation has been adopted to indicate the position of the decimal point in the tabulated quantities. The location of the decimal point is governed by the following rules:

(a) A group of digits followed by _n indicates that the decimal point should be n places to the left of the first digit.

Example: $.3268_{-3} = .0003268$

(b) A group of digits followed by +n indicates that the decimal point should be n places to the right of the last digit.

Example: $3268_{+3} = 3,268,000$

(c) A group of digits without a suffix indicates that the decimal point is correctly located as printed.

TABLE I.—SUBSONIC FLOW

The ratios given by equations (43), (44), (45), (48), (50), and (83) are given as functions of Mach number. If, at a point in an isentropic flow, any one of these ratios or the Mach number is known, then all other ratios for that point can be read or interpolated from the table. In addition, the parameter $\beta = \sqrt{|M^2 - 1|}$, which is sometimes more convenient to use than the Mach number itself, is also tabulated.

TABLE II.—SUPERSONIC FLOW

The ratios given in table I for subsonic flow are also given in table II for supersonic flow. The Mach angle μ and the Prandtl-Meyer angle ν are also given as functions of Mach number. In addition to these point functions for isentropic flow, the normal-shock relations given by equations (93), (94), (95), (96), (99), and (100) are tabulated as functions of the Mach number M_1 ahead of the shock wave. Although these values are for normal shock waves, the values of p_2/p_1 , ρ_2/ρ_1 , T_2/T_1 , and p_{t_2}/p_{t_1} may also be used for oblique shock waves, provided $M_1 \sin \theta$ is used instead of M_1 in the first column.

TABLE I.—SUBSONIC FLOW

 $\gamma = 7/5$

М	p p _i	<u> </u>	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$	М	$\frac{p}{p_i}$	<u>ρ</u> ρι	$\frac{T}{T_i}$	β	<u>q</u> p,	$\frac{A}{A_{\bullet}}$	<u>V</u>
0 . 01 . 02 . 03 . 04	1. 0000 . 9999 . 9997 . 9994 . 9989	1,0000 1,0000 ,9998 ,9996	1.0000 1.0000 .9999 .9998	1,0000 1,0000 ,9998 ,9995 ,9992	0 .7000 -4 .2799 -1 .6296 -1 .1119 -1	57. 8738 28. 9421 19. 3005 14. 4815	0 .01095 .02191 .03286 .04381	0. 50 . 51 . 52 . 53 . 54	0. 8430 . 8374 . 8317 . 8259 . 8201	0. 8852 . 5809 . 8766 . 8723 . 8679	0. 9524 . 9506 . 9487 . 9468 . 9449	0. 8660 . 8602 . 8542 . 8480 . 8417	0. 1475 , 1525 , 1574 , 1624 , 1674	1. 3398 1. 3212 1. 3034 1. 2865 1. 2703	0. 53452 . 54469 . 55483 . 56493 . 57501
. 05 . 06 . 07 . 06	. 9983 . 9975 . 9966 . 9955	. 9988 . 9982 . 9976 . 9968 . 9960	. 9995 . 9993 . 9990 . 9987 . 9984	. 9987 . 9982 . 9975 . 9968 . 9959	. 1747 -2 . 2514 -2 . 3418 -3 . 4460 -2 . 5638 -2	11. 5914 9. 6659 8. 2915 7. 2616 6. 4613	. 05476 . 06570 . 07664 . 08758 . 09851	. 55 . 56 . 57 . 58 . 59	. 8142 . 8082 . 8022 . 7962 . 7901	. 8634 . 8589 . 8544 . 8498 . 8451	. 9430 . 9410 . 9390 . 9370 . 9349	. 8352 . 8285 . 8216 . 8146 . 8074	. 1724 . 1774 . 1825 . 1875 . 1925	1. 2550 1. 2403 1. 2263 1. 2130 1. 2003	. 58506 . 59507 . 60505 . 61501 . 62492
. 10 . 11 . 12 . 13	, 9930 , 9916 , 9900 , 9883 , 9864	. 9950 . 9940 . 9928 . 9916 . 9903	. 9980 . 9976 . 9971 . 9966 . 9961	. 9950 . 9939 . 9928 . 9915 . 9902	. 6951 -2 . 8399 -3 . 9979 -2 . 1169 -1 . 1353 -1	5, 8218 5, 2992 4, 8643 4, 4969 4, 1824	. 10944 . 12035 . 13126 . 14217 . 15306	. 60 . 61 . 62 . 63 . 64	. 7840 . 7778 . 7716 . 7654 . 7591	. 8405 . 8357 . 8310 . 8262 . 8213	. 9328 . 9307 . 9286 . 9265 . 9243	. 8000 . 7924 . 7846 . 7766 . 7684	. 1976 . 2026 . 2076 . 2127 . 2177	1. 1882 1. 1767 1. 1657 1. 1552 1. 1452	. 63481 . 64466 . 65448 . 66427 . 67402
. 15 . 16 . 17 . 18 . 19	. 9844 . 9823 . 9800 . 9776 . 9751	. 9888 . 9873 . 9857 . 9840 . 9822	. 9955 . 9949 . 9943 . 9936 . 9928	. 9887 . 9871 . 9854 . 9837 . 9818	. 1550 -1 . 1760 -1 . 1983 -1 . 2217 -1 . 2464 -1	3, 9103 3, 6727 3, 4635 3, 2779 3, 1123	. 16395 . 17482 . 18569 . 19654 . 20739	. 65 . 66 . 67 . 68 . 69	. 7528 . 7465 . 7401 . 7338 . 7274	.8164 .8115 .8066 .8016 .7966	. 9221 . 9199 . 9176 . 9153 . 9131	. 7599 . 7513 . 7424 . 7332 . 7238	. 2227 . 2276 . 2326 . 2375 . 2424	1. 1356 1. 1265 1. 1179 1. 1097 1. 1018	. 68374 . 69342 . 70307 . 71268 . 72225
. 20 . 21 . 22 . 23 . 24	. 9725 . 9697 . 9668 . 9638 . 9607	. 9803 . 9783 . 9762 . 9740 . 9718	. 9921 . 9913 . 9904 . 9895 . 9886	. 9798 . 9777 . 9755 . 9732 . 9708	. 2723 -1 . 2994 -1 . 3276 -1 . 3569 -1 . 3874 -1	2. 9635 2. 8293 2. 7076 2. 5968 2. 4956	. 21822 . 22904 . 23984 . 25063 . 26141	. 70 . 71 . 72 . 73 . 74	. 7209 . 7145 . 7080 . 7016 . 6951	. 7916 . 7865 . 7814 . 7763 . 7712	. 9107 . 9084 . 9061 . 9037 . 9013	. 7141 . 7042 . 6940 . 6834 . 6726	. 2473 . 2521 . 2569 . 2617 . 2664	1. 0944 1. 0873 1. 0806 1. 0742 1. 0681	. 73179 . 74129 . 75076 . 76019 . 76958
. 25 . 26 . 27 . 28 . 29	. 9575 . 9541 . 9506 . 9470 . 9433	. 9694 . 9670 . 9645 . 9619 . 9592	. 9877 . 9867 . 9856 . 9846 . 9835	. 9682 . 9656 . 9629 . 9600 . 9570	.4189 -1 .4515 -1 .4851 -1 .5197 -1 .5553 -1	2. 4027 2. 3173 2. 2385 2. 1656 2. 0979	. 27217 . 28291 . 29364 . 30435 . 31504	. 75 . 76 . 77 . 78 . 79	. 6886 . 6821 . 6756 . 6691 . 6625	. 7660 . 7609 . 7557 . 7505 . 7452	. 8989 . 8964 . 8940 . 8915 . 8890	. 6614 . 6499 . 6380 . 6258 . 6131	. 2711 . 2758 . 2804 . 2849 . 2894	1. 0624 1. 0570 1. 0519 1. 0471 1. 0425	. 77894 . 78825 . 79753 . 80677 . 81597
. 30 . 31 . 32 . 33	. 9395 . 9355 . 9315 . 9274 . 9231	. 9564 . 9535 . 9506 . 9476 . 9445	. 9823 . 9811 . 9799 . 9787 . 9774	. 9539 . 9507 . 9474 . 9440 . 9404	. 5919 -1 . 6293 -1 . 6677 -1 . 7069 -1 . 7470 -1	2. 0351 1, 9765 1, 9219 1, 8707 1, 8229	. 32572 . 33637 . 34701 . 35762 . 36822	. 80 . 81 . 82 . 83 . 84	. 6560 . 6495 . 6430 . 6365 . 6300	. 7400 . 7347 . 7295 . 7242 . 7189	. 8865 . 8840 . 8815 . 8789 . 8763	. 6000 . 5864 . 5724 . 5578 . 5426	. 2939 . 2983 . 3027 . 3069 . 3112	1, 0382 1, 0342 1, 0305 1, 0270 1, 0237	. 82514 . 83426 . 84335 . 85239 . 86140
. 35 . 36 . 37 . 38 . 39	. 9188 . 9143 . 9098 . 9052 . 9004	. 9413 . 9380 . 9347 . 9313 . 9278	. 9761 . 9747 . 9733 . 9719	. 9367 . 9330 . 9290 . 9250 . 9208	.7879 -1 .8295 -1 .8719 -1 .9149 -1	1. 7780 1. 7358 1. 6961 1. 6587 1. 6234	. 37879 . 38935 . 39988 . 41039 . 42087	. 85 . 86 . 87 . 88 . 89	. 6235 . 6170 . 6106 . 6041 . 5977	. 7136 . 7083 . 7030 . 6977 . 6924	. 8737 . 8711 . 8685 . 8659 . 8632	. 5268 . 5103 . 4931 . 4750 . 4560	.3153 .3195 .3235 .3275 .3314	1. 0207 1. 0179 1. 0153 1. 0129 1. 0108	. 87037 . 87929 . 88818 . 89703 . 90583
. 40 . 41 . 42 . 43	. 8956 . 8907 . 8857 . 8807 . 8755	. 9243 . 9207 . 9170 . 9132 . 9094	. 9690 . 9675 . 9659 . 9643 . 9627	. 9165 . 9121 . 9075 . 9028 . 8980	. 1003 . 1048 . 1094 . 1140 . 1187	1, 5901 1, 5587 1, 5289 1, 5007 1, 4740	. 43133 . 44177 . 45218 . 46257 . 47293	.90 .91 .92 .93	. 5913 . 5849 . 5785 . 5721 . 5658	. 6870 . 6817 . 6764 . 6711 . 6658	. 8606 . 8579 . 8552 . 8525 . 8498	. 4359 . 4146 . 3919 . 3676 . 3412	.3352 .3390 .3427 .3464 .3500	1. 0089 1. 0071 1. 0056 1. 0043 1. 0031	. 91460 . 92332 . 93201 . 94065 . 94925
. 45 . 46 . 47 . 48	. 8703 . 8650 . 8596 . 8541 . 8486	. 9055 . 9016 . 8976 . 8935	. 9611 . 9594 . 9577 . 9560	. 8930 . 8879 . 8827 . 8773	. 1234 . 1281 . 1329 . 1378 . 1426	1. 4487 1. 4246 1. 4018 1. 3801 1. 3595	. 48326 . 49257 . 50385 . 51410 . 52433	. 95 . 96 . 97 . 98 . 99	. 5595 . 5532 . 5469 . 5407 . 5345	. 6604 . 6551 . 6498 . 6445 . 6392	. 8471 . 8444 . 8416 . 8389 . 8361	.3122 .2800 .2431 .1990 .1411	. 3534 . 3569 . 3602 . 3635 . 3667	1. 0022 1. 0014 1. 0008 1. 0003 1. 0001	. 95781 . 96633 . 97481 . 96325 . 99165
. 49	. 3480	,000%	. 5012	10171		1.5.00		1.00	. 5283	. 6339	. 8333	. 0000	. 3698	1.0000	1. 00000

TABLE II.—SUPERSONIC FLOW

							7-170								
M or M ₁	$\frac{p}{p_i}$	<u>ρ</u>	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$,	μ	М2	<u>p</u> 1	<u>ρ1</u> ρ1	$\frac{T_1}{T_1}$	$\frac{p_{i_1}}{p_{i_1}}$	<u>p</u> ₁
1, 00 1, 01 1, 02 1, 03 1, 04	0. 5283 . 5221 . 5160 . 5099 . 5039	0. 6339 . 6287 . 6234 . 6181 . 6129	0. 8333 . 8306 . 8278 . 8250 . 8222	0 .1418 .2010 .2468 .2857	0.3698 .3728 .3758 .3787 .3815	1. 000 1. 000 1. 000 1. 001 1. 001	1. 00000 1. 00831 1. 01658 1. 02481 1. 03300	0 . 04473 . 1257 . 2294 . 3510	90. 00 81. 93 78. 64 76. 14 74. 06	1.000 .9901 .9805 .9712 .9620	1, 000 1, 023 1, 047 1, 071 1, 095	1.000 1.017 1.033 1.050 1.067	1.000 1.007 1.013 1.020 1.026	1.000 1.000 1.000 1.000 1.000 ,9999	0. 5283 . 5221 . 5160 . 5100 . 5039
1. 05	. 4979	. 6077	. 8193	.3202	.3842	1. 002	1. 04114	. 4874	72. 25	. 9531	1. 120	1. 084	1, 033	, 9999	. 4980
1. 06	. 4919	. 6024	. 8165	.3516	.3869	1. 003	1. 04925	. 6367	70. 63	. 9444	1. 144	1. 101	1, 039	, 9997	. 4920
1. 07	. 4860	. 5972	. 8137	.3807	.3895	1. 004	1. 05731	. 7973	69. 16	. 9360	1. 169	1. 118	1, 046	, 9996	. 4861
1. 08	. 4800	. 5920	. 8108	.4079	.3919	1. 005	1. 06533	. 9680	67. 81	. 9277	1. 194	1. 135	1, 052	, 9994	. 4803
1. 09	. 4742	. 5869	. 8080	.4337	.3944	1. 006	1. 07331	1. 148	66. 55	. 9196	1. 219	1, 152	1, 059	, 9992	. 4746
1. 10	. 4684	. 5817	. 8052	. 4583	.3967	1. 008	1, 08124	1. 336	65. 38	.9118	1, 245	1. 169	1. 065	. 9989	. 4689
1. 11	. 4626	. 5766	. 8023	. 4818	.3990	1. 010	1, 08913	1. 532	64. 28	.9041	1, 271	1. 186	1. 071	. 9986	. 4632
1. 12	. 4568	. 5714	. 7994	. 5044	.4011	1. 011	1, 09699	1. 735	63. 23	.8966	1, 297	1. 203	1. 078	. 9982	. 4576
1. 13	. 4511	. 5663	. 7966	. 5262	.4032	1. 013	1, 10479	1. 944	62. 25	.8892	1, 323	1. 221	1. 084	. 9978	. 4521
1. 14	. 4455	. 5612	. 7937	. 5474	.4052	1. 015	1, 11256	2. 160	61. 31	.8820	1, 350	1. 238	1. 090	. 9973	. 4467
1. 15	. 4398	. 5562	. 7908	. 5679	. 4072	1. 017	1, 12029	2. 381	60. 41	. 8750	1, 376	1. 255	1. 097	. 9967	.4413
1. 16	. 4343	. 5511	. 7879	. 5879	. 4090	1. 020	1, 12797	2. 607	59. 55	. 8682	1, 403	1. 272	1. 103	. 9961	.4360
1. 17	. 4287	. 5461	. 7851	. 6074	. 4108	1. 022	1, 13561	2. 839	58. 73	. 8615	1, 430	1. 290	1, 109	. 9963	.4307
1. 18	. 4232	. 5411	. 7822	. 6264	. 4125	1. 025	1, 14321	3. 074	57. 94	. 8549	1, 458	1. 307	1. 115	. 9946	.4255
1, 19	. 4178	. 5361	. 7793	. 6451	. 4141	1. 026	1, 15077	3. 314	57. 18	. 8485	1, 485	1. 324	1, 122	. 9937	.4204
1. 20	. 4124	. 5311	. 7764	. 6633	.4157	1. 030	1. 15828	3. 558	56. 44	. 8422	1. 513	1, 342	1. 128	. 9928	.4154
1. 21	. 4070	. 5262	. 7735	. 6812	.4171	1. 033	1. 16575	3. 806	55. 74	. 8360	1. 541	1, 359	1. 134	. 9918	.4104
1. 22	. 4017	. 5213	. 7706	. 6989	.4185	1. 037	1. 17319	4. 057	55. 05	. 8300	1. 570	1, 376	1. 141	. 9907	.4035
1. 23	. 3964	. 5164	. 7677	. 7162	.4198	1. 040	1. 18057	4. 312	54. 39	. 8241	1. 598	1, 394	1. 147	. 9896	.4006
1. 24	. 3912	. 5115	. 7648	. 7332	.4211	1. 043	1. 18792	4. 569	53. 75	. 8183	1. 627	1, 411	1. 153	. 9884	.3958

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

					1	1	γ=7/	·		-					
M or M ₁	$\frac{p}{p_1}$	<u>ρ</u> ρι	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$	v	μ	M ₂	$\frac{p_2}{p_1}$	<u>ρ2</u>	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
1. 25 1. 26 1. 27 1. 28 1. 29	. 3809 . 3759 . 3708	. 5067 . 5019 . 4971 . 4923 . 4876	. 7619 . 7590 . 7561 . 7532 . 7503	. 7500 . 7666 . 7829 . 7990 . 8149	. 4223 . 4233 . 4244 . 4253 . 4262	1. 047 1. 050 1. 054 1. 058 1. 062	1. 19523 1. 20249 1. 20972 1. 21690 1. 22404	4. 830 5. 093 5. 359 5. 627 5. 898	53. 13 52. 53 51. 94 51. 38 50. 82	. 8126 . 8071 . 8016 . 7963 . 7911	1. 656 1. 686 1. 715 1. 745 1. 775	1. 429 1. 446 1. 463 1. 481 1. 498	1. 159 1. 166 1. 172 1. 178 1. 185	. 9871 . 9857 . 9842 . 9827 . 9811	. 3911 . 3865 . 3819 . 3774 . 3729
1. 30	.3609	. 4829	. 7474	. 8307	. 4270	1. 066	1, 23114	6. 170	50, 28	.7860	1, 805	1, 516	1. 191	. 9794	. 3685
1. 31	.3560	. 4782	. 7445	. 8462	. 4277	1. 071	1, 23819	6. 445	49, 76	.7809	1, 835	1, 533	1. 197	. 9776	. 3642
1. 32	.3512	. 4736	. 7416	. 8616	. 4283	1. 075	1, 24521	6. 721	49, 25	.7760	1, 866	1, 551	1. 204	. 9758	. 3599
1. 33	.3464	. 4690	. 7387	. 8769	. 4289	1. 080	1, 25218	7. 000	48, 75	.7712	1, 897	1, 568	1. 210	. 9738	. 3557
1. 34	.3417	. 4644	. "358	. 8920	. 4294	1. 084	1, 25912	7. 280	48, 27	.7664	1, 928	1, 585	1. 216	. 9718	. 3516
1. 35	.3370	. 4598	.7.129	. 9069	. 4299	1. 089	1, 26601	7. 561	47, 79	.7618	1. 960	1, 603	1, 223	. 9697	.3475
1. 36	.3323	. 4553	.7:00	. 9217	. 4303	1. 094	1, 27286	7. 844	47, 33	.7572	1. 991	1, 620	1, 229	. 9676	.3435
1. 37	.3277	. 4508	.7271	. 9364	. 4306	1. 099	1, 27968	8. 128	46, 88	.7527	2. 023	1, 638	1, 235	. 9653	.3395
1. 38	.3232	. 4463	.7212	. 9510	. 4308	1. 104	1, 28645	8. 413	46, 44	.7483	2. 055	1, 655	1, 242	. 9630	.3356
1. 39	.3187	. 4418	.7213	. 9655	. 4310	1. 109	1, 29318	8. 699	46, 01	.7440	2. 087	1, 672	1, 248	. 9607	.3317
1.40	.3142	. 4374	.7184	. 9798	. 4311	1. 115	1. 29987	8, 987	45. 58	. 7397	2. 120	1. 690	1. 255	. 9582	.3280
1.41	.3098	. 4330	.7155	. 9940	. 4312	1. 120	1. 30652	9, 276	45. 17	. 7355	2. 153	1. 707	1. 261	. 9557	.3242
1.42	.3055	. 4287	.7126	1. 008	. 4312	1. 126	1. 31313	9, 565	44. 77	. 7314	2. 186	1. 724	1. 268	. 9531	.3205
1.43	.3012	. 4244	.7097	1. 022	. 4311	1. 132	1. 31970	9, 855	44. 37	. 7274	2. 219	1. 742	1. 274	. 9504	.3169
1.44	.2969	. 4201	.7069	1. 036	. 4310	1. 138	1. 32623	10, 146	43. 98	. 7235	2. 253	1. 759	1. 281	. 9476	.3133
1. 45	. 2927	. 4158	. 7040	1. 050	. 4308	1, 144	1, 33272	10, 438	43. 60	.7196	2. 286	1.776	1, 287	. 9448	.3098
1. 46	. 2886	. 4116	. 7011	1. 064	. 4306	1, 150	1, 33917	10, 731	43. 23	.7157	2. 320	1.793	1, 294	. 9420	.3063
1. 47	. 2845	. 4074	. 6982	1. 077	. 4303	1, 156	1, 34558	11, 023	42. 86	.7120	2. 354	1.811	1, 300	. 9390	.3029
1. 48	. 2804	. 4032	. 6954	1. 091	. 4299	1, 163	1, 35195	11, 317	42. 51	.7083	2. 389	1.828	1, 307	. 9360	.2996
1. 49	. 2764	. 3991	. 6925	1. 105	. 4295	1, 169	1, 35828	11, 611	42. 16	.7047	2. 423	1.845	1, 314	. 9329	.2962
1.50	. 2724	. 3950	. 6897	1, 118	. 4290	1. 176	1. 36458	11. 905	41. 81	. 7011	2. 458	1.862	1, 320	. 9298	. 2930
1.51	. 2685	. 3909	. 6868	1, 131	. 4285	1. 183	1. 37083	12. 200	41. 47	. 6976	2. 493	1.879	1, 327	. 9266	. 2898
1.52	. 2646	. 3869	. 6840	1, 145	. 4279	1. 190	1. 37705	12. 495	41. 14	. 6941	2. 529	1.896	1, 334	. 9233	. 2866
1.53	. 2608	. 3829	. 6811	1, 158	. 4273	1. 197	1. 38322	12. 790	40. 81	. 6907	2. 564	1.913	1, 340	. 9200	. 2835
1.54	. 2570	. 3789	. 6783	1, 171	. 4266	1. 204	1. 38936	13. 086	40. 49	. 6874	2. 600	1.930	1, 347	. 9166	. 2804
1, 55	. 2533	. 3750	. 6754	1. 184	. 4259	1. 212	1.39546	13. 381	40. 18	. 6841	2, 636	1, 947	1, 354	. 9132	. 2773
1, 56	. 2496	. 3710	. 6726	1. 197	. 4252	1. 219	1.40152	13. 677	29. 87	. 6809	2, 673	1, 964	1, 361	. 9097	. 2744
1, 57	. 2459	. 3672	. 6698	1. 210	. 4243	1. 227	1.40755	13. 973	39. 56	. 6777	2, 709	1, 981	1, 367	. 9061	. 2714
1, 58	. 2423	. 3633	. 6670	1. 223	. 4235	1. 234	1.41353	14. 269	39. 27	. 6746	2, 746	1, 998	1, 374	. 9026	. 2685
1, 59	. 2388	. 3595	. 6642	1. 236	. 4226	1. 242	1.41948	14. 564	38. 97	. 6715	2, 783	2, 015	1, 381	. 8989	. 2656
1.60	. 2353	.3557	. 6614	1. 249	. 4216	1. 250	1. 42539	14. 861	38. 68	. 6684	2. 820	2. 032	1. 388	. 8952	. 2628
1.61	. 2318	.3520	. 6586	1. 262	. 4206	1. 258	1. 43127	15. 156	38. 40	. 6655	2. 857	2. 049	1. 395	. 8915	. 2600
1.62	. 2284	.3483	. 6558	1. 275	. 4196	1. 267	1. 43710	15. 452	38. 12	. 6625	2. 895	2. 065	1. 402	. 8877	. 2573
1.63	. 2250	.3446	. 6530	1. 287	. 4185	1. 275	1. 44290	15. 747	37. 84	. 6596	2. 933	2. 082	1. 409	. 8838	. 2546
1.64	. 2217	.3409	. 6502	1. 300	. 4174	1. 284	1. 44866	16. 043	37. 57	. 6568	2. 971	2. 099	1. 416	. 8799	. 2519
1.65	. 2184	. 3373	. 6475	1. 312	. 4162	1. 292	1, 45439	16. 338	37. 31	. 6540	3. 010	2. 115	1. 423	. 8760	. 2493
1.66	. 2151	. 3337	. 6447	1. 325	. 4150	1. 301	1, 46008	16. 633	37. 04	. 6512	3. 048	2. 132	1. 430	. 8720	. 2467
1.67	. 2119	. 3302	. 6419	1. 337	. 4138	1. 310	1, 46573	16. 928	36. 78	. 6485	3. 087	2. 148	1. 437	. 8680	. 2442
1.68	. 2088	. 3266	. 6392	1. 350	. 4125	1. 319	1, 47135	17. 222	36. 53	. 6458	3. 126	2. 165	1. 444	. 8640	. 2417
1.69	. 2057	. 3232	. 6364	1. 362	. 4112	1. 328	1, 47693	17. 516	36. 28	. 6431	3. 165	2. 181	1. 451	. 8598	. 2392
1.70	. 2026	.3197	.6337	1. 375	. 4098	1.338	1. 48247	17. 810	36, 03	. 6405	3, 205	2. 198	1. 458	. 8557	. 2368
1.71	. 1996	.3163	.6310	1. 387	. 4085	1.347	1. 48798	18. 103	35, 79	. 6380	3, 245	2. 214	1. 466	. 8516	. 2344
1.72	. 1966	.3129	.6283	1. 399	. 4071	1.357	1. 49345	18. 397	35, 55	. 6355	3, 285	2. 230	1. 473	. 8474	. 2320
1.73	. 1936	.3095	.6256	1. 412	. 4056	1.367	1. 49889	18. 689	35, 31	. 6330	3, 325	2. 247	1. 480	. 8431	. 2296
1.74	. 1907	.3062	.6229	1. 424	. 4041	1.376	1. 50429	18. 981	35, 08	. 6305	3, 366	2. 263	1. 487	. 8389	. 2273
1. 75	. 1878	. 3029	. 6202	1. 436	. 4026	1. 386	1,50966	19. 273	34, 85	. 6281	3. 406	2, 279	1. 495	. 8346	. 2251
1. 76	. 1850	. 2996	. 6175	1. 448	. 4011	1. 397	1,51499	19. 565	34, 62	. 6257	3. 447	2, 295	1. 502	. 8302	. 2228
1. 77	. 1822	. 2964	. 6148	1. 460	. 3996	1. 407	1,52029	19. 855	34, 40	. 6234	3. 488	2, 311	1. 509	. 8259	. 2206
1. 78	. 1794	. 2931	. 6121	1. 473	. 3980	1. 418	1,52555	20. 146	34, 18	. 6210	3. 530	2, 327	1. 517	. 8215	. 2184
1. 79	. 1767	. 2900	. 6095	1. 485	. 3964	1. 428	1,53078	20. 436	33, 96	. 6188	3. 571	2, 343	1, 524	. 8171	. 2163
1. 81 1. 82 1. 83 1. 84	.1714 .1688 .1662 .1637	. 2837 . 2806 . 2776 . 2745	. 6068 . 6041 . 6015 . 5989 . 5963	1. 497 1. 509 1. 521 1. 533 1. 545	. 3947 . 3931 . 3914 . 3897 . 3879	1. 439 1. 450 1. 461 1. 472 1. 484	1. 53598 1. 54114 1. 54626 1. 55136 1. 55642	20. 725 21. 014 21. 302 21. 590 21. 877	33, 75 33, 54 33, 33 33, 12 32, 92	. 6165 . 6143 . 6121 . 6099 . 6078	3. 613 3. 655 3. 698 3. 740 3. 783	2. 359 2. 375 2. 391 2. 407 2. 422	1. 532 1. 539 1. 547 1. 554 1. 562	.8127 .8082 .8038 .7993 .7948	.2142 .2121 .2100 .2080 .2060
1.86 1.87 1.88 1.89	.1587 .1563 .1539 .1516	. 2686 . 2656 . 2627 . 2598	. 5930 . 5910 . 5884 . 5859 . 5833	1, 556 1, 568 1, 580 1, 592 1, 604 1, 616	.3862 .3844 .3826 .3808 .3790	1. 495 1. 507 1. 519 1. 531 1. 543	1. 56145 1. 56644 1. 57140 1. 57633 1. 58123	22, 163 22, 449 22, 735 23, 019 23, 303	32. 72 32. 52 32. 33 32. 13 31. 94	. 6057 . 6036 . 6016 . 5996 . 5976	3. 913 3. 957 4. 001	2, 438 2, 454 2, 469 2, 485 2, 500	1. 569 1. 577 1. 585 1. 592 1. 600	.7902 .7857 .7811 .7765 .7720	. 2040 . 2020 . 2001 . 1982 . 1963
1. 91 1. 92 1. 93 1. 94	. 1470 . 1447 . 1425 . 1403	. 2542 . 2514 . 2486 . 2459	. 5782 . 5756 . 5731 . 5705	1. 627 1. 639 1. 651 1. 662 1. 674	.3771 .3753 .3734 .3715 .3696	1, 555 1, 568 1, 580 1, 593 1, 606	1. 58609 1. 59092 1. 59572 1. 60049 1. 60523	23, 586 23, 869 24, 151 24, 432 24, 712	31. 76 31. 57 31. 39 31. 21 31. 03	. 5956 . 5937 . 5918 . 5899 . 5880	4. 179 4. 224	2. 516 2. 531 2. 546 2. 562 2. 577	1. 608 1. 616 1. 624 1. 631 1. 639	. 7674 . 7627 . 7581 . 7535 . 7488	. 1945 . 1927 . 1909 . 1891 . 1873
1. 96 1. 97 1. 98 1. 99	. 1360 . 1339 . 1318 . 1298	. 2405 . 2378 . 2352 . 2326	. 5655 . 5630 . 5605 . 5580	1. 686 1. 697 1. 709 1. 720	.3677 .3657 .3638 .3618 .3598	1. 619 1. 633 1. 646 1. 660 1. 674	1. 60993 1. 61460 1. 61925 1. 62386 1. 62844	24. 992 25. 271 25. 549 25. 827 26. 104	30. 85 30. 68 30. 51 30. 33 30. 17	. 5862 . 5844 . 5826 . 5808 . 5791	4. 361 4. 407 4. 453	2, 592 2, 607 2, 622 2, 637 2, 652	1. 647 1. 655 1. 663 1. 671 1. 679	. 7442 . 7395 . 7349 . 7302 . 7255	. 1856 . 1839 . 1822 . 1806 . 1789
2. 01 2. 02 2. 03 2. 04 2. 05	. 1258 . 1239 . 1220 . 1201	. 2275 . 2250 . 2225 . 2200	. 5531 . 5506 . 5482 . 5458	1. 744 1. 755 1. 767 1. 778	.3579 .3559 .3539 .3518 .3498	1. 688 1. 702 1. 716 1. 730 1. 745	1. 63299 1. 63751 1. 64201 1. 64647 1. 65090	26, 380 26, 655 26, 929 27, 203 27, 476	30. 00 29. 84 29. 67 29. 51 29. 35	. 5774 . 5757 . 5740 . 5723 . 5707	4. 547 4. 594 4. 641 4. 689	2. 667 2. 681 2. 696 2. 711 2. 725	1. 688 1. 696 1. 704 1. 712 1. 720	. 7209 . 7162 . 7115 . 7069 . 7022	. 1773 . 1757 . 1741 . 1726 . 1710
2.06 2.07 2.08 2.09	. 1164 . 1146 . 1128 . 1111	. 2176 . 2152 . 2128 . 2104 . 2081	. 5409 . 5385 . 5361 . 5337	1. 801 1. 812 1. 824 1. 835	.3478 .3458 .3437 .3417 .3396	1.806 1.821	1. 65530 1. 65967 1. 66402 1. 66833 1. 67262	27. 748 28. 020 28. 290 28. 560 28. 829	29. 20 29. 04 28. 89 28. 74 28. 59	. 5691 . 5675 . 5659 . 5643 . 5628	4. 784 4. 832 4. 881 4. 929	2. 740 2. 755 2. 769 2. 783 2. 798	1. 729 1. 737 1. 745 1. 754 1. 762	. 6975 . 6928 . 6882 . 6835 . 6789	. 1695 . 1680 . 1665 . 1651 . 1636
2. 10 2. 11 2. 12 2. 13 2. 14	. 1077 . 1060 . 1043 . 1027	. 2038 . 2035 . 2013 . 1990 . 1968	. 5313 . 5290 . 5266 . 5243 . 5219	1.881	. 3376 . 3355 . 3334 . 3314 . 3293	1. 869 1. 885	1. 67687 1. 68110 1. 68530 1. 68947 1. 69362	29. 097 29. 364 29. 631 29. 897 30. 161	28. 44 28. 29 28. 14 28. 00 27. 86	. 5613 . 5598 . 5583 . 5568 . 5554	5. 027 5. 077 5. 126	2, 812 2, 826 2, 840 2, 854 2, 868	1. 770 1. 779 1. 787 1. 796 1. 805	. 6742 . 6696 . 6649 . 6603 . 6557	. 1622 . 1608 . 1594 . 1580 . 1567

TABLE II.—SUPERSONIC FLOW—Continued

							$\gamma = 7/5$								
M or M ₁	$\frac{p}{p_i}$	<u>ρ</u>	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$	v	μ	M ₁	$\frac{p_2}{p_1}$	<u>ρι</u>	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
2. 15	. 1011	. 1946	. 5196	1. 903	. 3272	1. 919	1. 69774	30. 425	27. 72	. 5540	5. 226	2. 882	1. 813	. 6511	. 1553
2. 16	. 9956 -1	. 1925	. 5173	1. 915	. 3252	1. 935	1. 70183	30. 689	27. 58	. 5525	5. 277	2. 896	1. 822	. 6464	. 1540
2. 17	. 9802 -1	. 1903	. 5150	1. 926	. 3231	1. 953	1. 70589	30. 951	27. 44	. 5511	5. 327	2. 910	1. 831	. 6419	. 1527
2. 18	. 9649 -1	. 1882	. 5127	1. 937	. 3210	1. 970	1. 70992	31. 212	27. 30	. 5498	5. 378	2. 924	1. 839	. 6373	. 1514
2. 19	. 9500 -1	. 1861	. 5104	1. 948	. 3189	1. 987	1. 71393	31. 473	27. 17	. 5484	5. 429	2. 938	1. 848	. 6327	. 1502
2. 20	. 9352 -1	. 1841	. 5081	1, 960	.3169	2. 005	1. 71791	31. 732	27. 04	. 5471	5. 480	2. 951	1, 857	. 6281	. 1489
2. 21	. 9207 -1	. 1820	. 5059	1, 971	.3148	2. 023	1. 72187	31. 991	26. 90	. 5457	5. 531	2. 965	1, 866	. 6236	. 1476
2. 22	. 9064 -1	. 1800	. 5036	1, 982	.3127	2. 041	1. 72579	32. 250	26. 77	. 5444	5. 583	2. 978	1, 875	. 6191	. 1464
2. 23	. 8923 -1	. 1780	. 5014	1, 993	.3106	2. 059	1. 72970	32. 507	26. 64	. 5431	5. 636	2. 992	1, 883	. 6145	. 1452
2. 24	. 8785 -1	. 1760	. 4991	2, 004	.3085	2. 078	1. 73357	32. 763	26. 51	. 5418	5. 687	3. 005	1, 892	. 6100	. 1440
2. 25	. 8648 -1	. 1740	. 4969	2. 016	. 3065	2. 096	1. 73742	33. 018	26. 39	. 5406	5. 740	3. 019	1. 901	. 6055	. 1428
2. 26	. 8514 -1	. 1721	. 4947	2. 027	. 3044	2. 115	1. 74125	33. 273	26. 26	. 5393	5. 792	3. 032	1. 910	. 6011	. 1417
2. 27	. 8382 -1	. 1702	. 4925	2. 038	. 3023	2. 134	1. 74504	33. 527	26. 14	. 5381	5. 845	3. 045	1. 919	. 5966	. 1405
2. 28	. 8251 -1	. 1683	. 4903	2. 049	. 3003	2. 154	1. 74882	33. 780	26. 01	. 5368	5. 898	3. 058	1. 929	. 5921	. 1394
2. 29	. 8123 -1	. 1664	. 4881	2. 060	. 2982	2. 173	1. 75257	34. 032	25. 89	. 5356	5. 951	3. 071	1. 938	. 5877	. 1382
2. 30	. 7997 -1	. 1646	. 4859	2. 071	. 2961	2. 193	1, 75629	34, 283	25. 77	. 5344	6. 005	3. 085	1. 947	. 5833	. 1371
2. 31	. 7873 -1	. 1628	. 4837	2. 082	. 2941	2. 213	1, 75999	34, 533	25. 65	. 5332	6. 059	3. 098	1. 956	. 5789	. 1360
2. 32	. 7751 -1	. 1609	. 4816	2. 093	. 2920	2. 233	1, 76366	34, 783	25. 53	. 5321	6. 113	3. 110	1. 965	. 5745	. 1349
2. 33	. 7631 -1	. 1592	. 4794	2. 104	. 2900	2. 254	1, 76731	35, 031	25. 42	. 5309	6. 167	3. 123	1. 974	. 5702	. 1338
2. 34	. 7512 -1	. 1574	. 4773	2. 116	. 2879	2. 274	1, 77093	35, 279	25. 30	. 5297	6. 222	3. 136	1. 984	. 5658	. 1328
2.35	. 7396 -!	. 1556	. 4752	2. 127	, 2859	2. 295	1, 77453	35. 526	25. 18	. 5286	6, 276	3, 149	1. 993	. 5615	. 1317
2.36	. 7281 -!	. 1539	. 4731	2. 138	, 2839	2. 316	1, 77811	35. 771	25. 07	. 5275	6, 331	3, 162	2. 002	. 5572	. 1307
2.37	. 7168 -!	. 1522	. 4709	2. 149	, 2818	2. 338	1, 78166	36. 017	24. 96	. 5264	6, 386	3, 174	2. 012	. 5529	. 1297
2.38	. 7057 -!	. 1505	. 4688	2. 160	, 2798	2. 359	1, 78519	36. 261	24. 85	. 5253	6, 442	3, 187	2. 021	. 5486	. 1286
2.39	. 6948 -!	. 1488	. 4668	2. 171	, 2778	2. 381	1, 78869	36. 504	24. 73	. 5242	6, 497	3, 199	2. 031	. 5444	. 1276
2. 40	. 6840 -1	. 1472	. 4647	2. 182	. 2758	2. 403	1. 79218	36. 746	24. 62	. 5231	6, 553	3, 212	2. 040	. 5401	.1266
2. 41	. 6734 -1	. 1456	. 4626	2. 193	. 2738	2. 425	1. 79563	36. 988	24. 52	. 5221	6, 609	3, 224	2. 050	. 5359	.1257
2. 42	. 6630 -1	. 1439	. 4606	2. 204	. 2718	2. 448	1. 79907	37. 229	24. 41	. 5210	6, 666	3, 237	2. 059	. 5317	.1247
2. 43	. 6527 -1	. 1424	. 4585	2. 215	. 2698	2. 471	1. 80248	37. 469	24. 30	. 5200	6, 722	3, 249	2. 069	. 5276	.1237
2. 44	. 6426 -1	. 1408	. 4565	2. 226	. 2678	2. 494	1. 80587	37. 708	24. 19	. 5189	6, 779	3, 261	2. 079	. 5234	.1228
2. 45	. 6327 -1	. 1392	. 4544	2. 237	. 2658	2. 517	1. 80924	37. 946	24.09	.5179	6. 836	3. 273	2. 088	. 5193	.1218
2. 46	. 6229 -1	. 1377	. 4524	2. 248	. 2639	2. 540	1. 81258	38. 183	23.99	.5169	6. 894	3. 285	2. 098	. 5152	.1209
2. 47	. 6133 -1	. 1362	. 4504	2. 259	. 2619	2. 564	1. 81591	38. 420	23.88	.5159	6. 951	3. 298	2. 108	. 5111	.1200
2. 48	. 6038 -1	. 1346	. 4484	2. 269	. 2599	2. 588	1. 81921	38. 655	23.78	.5149	7. 009	3. 310	2. 118	. 5071	.1191
2. 49	. 5945 -1	. 1332	. 4464	2. 280	. 2580	2. 612	1. 82249	38. 890	23.68	.5140	7. 067	3. 321	2. 128	. 5030	.1182
2. 50	. 5853 -1	. 1317	. 4444	2. 291	. 2561	2. 637	1, 82574	39. 124	23. 58	. 5130	7. 125	3. 333	2. 138	. 4990	.1173
2. 51	. 5762 -1	. 1302	. 4425	2. 302	. 2541	2. 661	1, 82898	39. 357	23. 48	. 5120	7. 183	3. 345	2. 147	. 4950	.1164
2. 52	. 5674 -1	. 1288	. 4405	2. 313	. 2522	2. 686	1, 83219	39. 589	23. 38	. 5111	7. 242	3. 357	2. 157	. 4911	.1155
2. 53	. 5586 -1	. 1274	. 4386	2. 324	. 2503	2. 712	1, 83538	39. 820	23. 28	. 5102	7. 301	3. 369	2. 167	. 4871	.1147
2. 54	. 5500 -1	. 1260	. 4366	2. 335	. 2484	2. 737	1, 83855	40. 050	23. 18	. 5092	7. 360	3. 380	2. 177	. 4832	.1138
2. 55	. 5415 -1	. 1246	. 4347	2. 346	. 2465	2. 763	1. 84170	40. 280	23. 09	. 5083	7, 420	3. 392	2, 187	.4793	.1130
2. 56	. 5332 -1	. 1232	. 4328	2. 357	. 2446	2. 789	1. 84483	40. 509	22. 99	. 5074	7, 479	3. 403	2, 198	.4754	.1122
2. 57	. 5250 -1	. 1218	. 4309	2. 367	. 2427	2. 815	1. 84794	40. 736	22. 91	. 5065	7, 539	3. 415	2, 208	.4715	.1113
2. 58	. 5169 -1	. 1205	. 4289	2. 378	. 2409	2. 842	1. 85103	40. 963	22. 81	. 5056	7, 599	3. 426	2, 218	.4677	.1105
2. 59	. 5090 -1	. 1192	. 4271	2. 389	. 2390	2. 869	1. 85410	41. 189	22. 71	. 5047	7, 659	3. 438	2, 228	.4639	.1097
2. 60	.5012 -1	. 1179	. 4252	2. 400	. 2371	2. 896	1. 85714	41. 415	22. 62	. 5039	7, 720	3. 449	2. 238	. 4601	. 1089
2. 61	.4935 -1	. 1166	. 4233	2. 411	. 2353	2. 923	1. 86017	41. 639	22. 53	. 5030	7, 781	3. 460	2. 249	. 4564	. 1081
2. 62	.4859 -1	. 1153	. 4214	2. 422	. 2335	2. 951	1. 86318	41. 863	22. 44	. 5022	7, 842	3. 471	2. 259	. 4526	. 1074
2. 63	.784 -1	. 1140	. 4196	2. 432	. 2317	2. 979	1. 86616	42. 086	22. 35	. 5013	7, 903	3. 483	2. 269	. 4489	. 1066
2. 64	.4711 -1	. 1128	. 4177	2. 443	. 2296	3. 007	1. 86913	42. 307	22. 26	. 5005	7, 965	3. 494	2. 280	. 4452	. 1058
2. 65	.4639 -1	. 1115	. 4159	2. 454	. 2280	3. 036	1. 87208	42. 529	22. 17	. 4996	8. 026	3. 505	2. 290	.4416	. 1051
2. 66	.4568 -1	. 1103	. 4141	2. 465	. 2262	3. 065	1. 87501	42. 749	22. 08	. 4988	8. 088	3. 516	2. 301	.4379	. 1043
2. 67	.4498 -1	. 1091	. 4122	2. 476	. 2245	3. 094	1. 87792	42. 968	22. 00	. 4980	8. 150	3. 527	2. 311	.4343	. 1036
2. 68	.4429 -1	. 1079	. 4104	2. 486	. 2227	3. 123	1. 88091	43. 187	21. 91	. 4972	8. 213	3. 537	2. 322	.4307	. 1028
2. 69	.4362 -1	. 1067	. 4086	2. 497	. 2209	3. 153	1. 88368	43. 405	21. 82	. 4964	8. 275	3. 548	2. 332	.4271	. 1021
2. 70	.4295 -1	. 1056	. 4068	2. 508	. 2192	3. 183	1. 88653	43. 621	21. 74	. 4956	8. 338	3. 559	2. 343	. 4236	. 1014
2. 71	.4229 -1	. 1044	. 4051	2. 519	. 2174	3. 213	1. 88936	43. 838	21. 65	. 4949	8. 401	3. 570	2. 354	. 4201	. 1007
2. 72	.4165 -1	. 1033	. 4033	2. 530	. 2157	3. 244	1. 89218	44. 053	21. 57	. 4941	8. 465	3. 580	2. 364	. 4166	. 9998 ~1
2. 73	.4102 -1	. 1022	. 4015	2. 540	. 2140	3. 275	1. 89497	44. 267	21. 49	. 4933	8. 528	3. 591	2. 375	. 4131	. 0929 ~1
2. 74	.4039 -1	. 1010	. 3998	2. 551	. 2123	3. 306	1. 89775	44. 481	21. 41	. 4926	8. 592	3. 601	2. 386	. 4097	. 0860 ~1
2. 75	.3978 -1	.9994 -1	.3980	2. 562	.2106	3. 338	1. 90051	44. 694	21. 32	. 4918	8, 656	3. 612	2. 397	. 4062	. 9792 -1
2. 76	.3917 -1	.9885 -1	.3963	2. 572	.2089	3. 370	1. 90325	44. 906	21. 24	. 4911	8, 721	3. 622	2. 407	. 4028	. 9724 -1
2. 77	.3858 -1	.9778 -1	.3945	2. 583	.2072	3. 402	1. 90598	45. 117	21. 16	. 4903	8, 785	3. 633	2. 418	. 3994	. 9658 -1
2. 78	.3799 -1	.9671 -1	.3928	2. 594	.2055	3. 434	1. 90868	45. 327	21. 08	. 4896	8, 850	3. 643	2. 429	. 3961	. 9591 -1
2. 79	.3742 -1	.9566 -1	.3911	2. 605	.2039	3. 467	1. 91137	45. 537	21. 00	. 4889	8, 915	3. 653	2. 440	. 3928	. 9526 -1
2.80	. 3685 -1	. 94631	. 3894	2. 615	. 2022	3. 500	1. 91404	45. 746	20. 92	. 4882	8. 980	3. 664	2. 451	. 3895	. 9461 -1
2.81	. 3629 -1	. 93601	. 3877	2. 626	. 2006	3. 534	1. 91669	45. 954	20. 85	. 4875	9. 045	3. 674	2. 462	. 3862	. 9397 -1
2.82	. 3574 -1	. 92591	. 3860	2. 637	. 1990	3. 567	1. 91933	46. 161	20. 77	. 4868	9. 111	3. 684	2. 473	. 3829	. 9334 -1
2.83	. 3520 -1	. 91581	. 3844	2. 647	. 1973	3. 601	1. 92195	46. 368	20. 69	. 4861	9. 177	3. 694	2. 484	. 3797	. 9271 -1
2.84	. 3467 -1	. 90591	. 3827	2. 658	. 1957	3. 636	1. 92455	46. 573	20. 62	. 4854	9. 243	3. 704	2. 496	. 3765	. 9209 -1
2.85	. 3415 ~1	.8962 -1	.3810	2. 669	. 1941	3. 671	1. 92714	46. 778	20. 54	. 4847	9. 310	3. 714	2. 507	.3733	.9147 -1
2.86	. 3363 ~1	.8865 -1	.3794	2. 679	. 1926	3. 706	1. 92970	46. 982	20. 47	. 4840	9. 376	3. 724	2. 518	.3701	.9086 -1
2.87	. 3312 ~1	.8769 -1	.3777	2. 690	. 1910	3. 741	1. 93225	47. 185	20. 39	. 4833	9. 443	3. 734	2. 529	.3670	.9026 -1
2.88	. 3263 ~1	.8675 -1	.3761	2. 701	. 1894	3. 777	1. 93479	47. 388	20. 32	. 4827	- 9. 510	3. 743	2. 540	.3639	.8966 -1
2.89	. 3213 ~1	.8581 -1	.3745	2. 711	. 1879	3. 813	1. 93731	47. 589	20. 24	. 4820	9. 577	3. 753	2. 552	.3608	.8906 -1
2. 90	. 3165 -1	.8489 -1	. 3729	2, 722	. 1863	3. 850	1. 93981	47. 790	20. 17	. 4814	9. 645	3. 763	2. 563	. 3577	.8848 -1
2. 91	. 3118 -1	.8398 -1	. 3712	2, 733	. 1848	3. 887	1. 94230	47. 990	20. 10	. 4807	9. 713	3. 773	2. 575	. 3547	.8790 -1
2. 92	. 3071 -1	.8307 -1	. 3696	2, 743	. 1833	3. 924	1. 94477	48. 190	20. 03	. 4801	9. 781	3. 782	2. 586	. 3517	.8732 -1
2. 93	. 3025 -1	.8218 -1	. 3681	2, 754	. 1818	3. 961	1. 94722	48. 388	19. 96	. 4795	9. 849	3. 792	2. 598	. 3487	.8675 -1
2. 94	. 2980 -1	.8130 -1	. 3665	2, 765	. 1803	3. 999	1. 94966	48. 586	19. 89	. 4788	9. 918	3. 801	2. 609	. 3457	.8619 -1
2. 95	. 2935 -1	.8043 -1	. 3649	2. 775	. 1788	4. 038	1. 95208	48. 783	19. 81	. 4782	9. 986	3.811	2. 621	. 3428	.8563 -1
2. 96	. 2891 -1	.7957 -1	. 3633	2. 786	. 1773	4. 076	1. 95449	48. 980	19. 75	. 4776	10. 06	3.820	2. 632	. 3398	.8507 -1
2. 97	. 2848 -1	.7872 -1	. 3618	2. 797	. 1758	4. 115	1. 95688	49. 175	19. 68	. 4770	10. 12	3.829	2. 644	. 3369	.8453 -1
2. 98	. 2805 -1	.7788 -1	. 3602	2. 807	. 1744	4. 155	1. 95925	49. 370	19. 61	. 4764	10. 19	3.839	2. 656	. 3340	.8398 -1
2. 99	. 2764 -1	.7705 -1	. 3587	2. 818	. 1729	4. 194	1. 96162	49. 564	19. 54	. 4758	10. 26	3.848	2. 667	. 3312	.8345 -1
3. 00	. 2722 -1	.7623 -1	. 3571	2. 828	. 1715	4. 235	1. 96396	49. 757	19. 47	. 4752	10. 33	3.857	2. 679	. 3283	.8291 -1
3. 01	. 2682 -1	.7541 -1	. 3556	2. 839	. 1701	4. 275	1, 96629	49. 950	19. 40	. 4746	10. 40	3.866	2. 691	. 3255	.8238 -1
3. 02	. 2642 -1	.7461 -1	. 3541	2. 850	. 1687	4. 316	1. 96861	50. 142	19. 34	. 4740	10. 47	3.875	2. 703	. 3227	.8186 -1
3. 03	. 2603 -1	.7382 -1	. 3526	2. 860	. 1673	4. 357	1. 97091	50. 333	19. 27	. 4734	10. 54	3.884	2. 714	3200	.8134 -1
3. 04	. 2564 -1	.7303 -1	. 3511	2. 871	. 1659	4. 399	1. 97319	50. 523	19. 20	. 4729	10. 62	3.893	2. 726	. 3172	.8083 -1

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

	1		1				γ=	7/5		 -					
or M ₁	<u>P</u>	<u>ρ</u>	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	₹' a•	ų	щ	M ₂	$\frac{p_2}{p_1}$	<u>P1</u>	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{I_2}}$
3. (3. (3. (3. (3. (06 . 2489 07 . 2452 08 . 2416 09 . 2380	-1 . 7074 -1 . 6999	-1 .3496 -1 .3481 -1 .3466 -1 .3452 -1 .3437	2. 881 2. 892 2. 903 2. 913 2. 924	. 1645 . 1631 . 1618 . 1604 . 1591	4. 441 4. 483 4. 526 4. 570 4. 613	1. 97547 1. 97772 1. 97997 1. 98219 1. 98441	50. 713 50. 902 51. 090 51. 277 51. 464	19. 14 19. 07 19. 01 18. 95 18. 88	. 4723 . 4717 . 4712 . 4706 . 4701	10. 69 10. 76 10. 83 10. 90 10. 97	3. 902 3. 911 3. 920 3. 929 3. 938	2. 738 2. 750 2. 762 2. 774 2. 786	. 3145 . 3118 . 3091 . 3065	. 8032 -1 . 7982 -1 . 7932 -t . 7882 -i
3. 1 3. 1 3. 1 3. 1 3. 1	2 .2310 . 2 .2276 . 3 .2243 . 4 .2210 -	-i .6852 - -i .6779 - -i .6708 - -i .6637 - -i .6568 -	-1 . 3408 -1 . 3393 -1 . 3379	2. 934 2. 945 2. 955 2. 966 2. 977	. 1577 . 1564 . 1551 . 1538 . 1525	4. 657 4. 702 4. 747 4. 792 4. 838	1. 98661 1. 98879 1. 99097 1. 99313 1. 99527	51. 650 51. 835 52. 020 52. 203 52. 386	18. 82 18. 76 18. 69 18. 63 18. 57	. 4695 . 4690 . 4685 . 4679 . 4674	11. 05 11. 12 11. 19 11. 26 11. 34	3. 947 3. 955 3. 964 3. 973 3. 981	2. 799 2. 811 2. 823 2. 835 2. 848	. 3038 . 3012 . 2986 . 2960 . 2935 . 2910	. 7833 -1 . 7785 -1 . 7737 -1 . 7689 -1 . 7642 -1
3. 1 3. 1 3. 1 3. 1 3. 1	6 .2146 - 7 .2114 - 8 .2083 - 9 .2053 -	6430 - 6363 - 1 6296 -	3337 3323 3309	2. 987 2. 998 3. 008 3. 019 3. 029	. 1512 . 1500 . 1487 . 1475 . 1462	4. 884 4. 930 4. 977 5. 025 5. 073	1. 99740 1. 99952 2. 00162 2. 00372 2. 00579	52. 569 52. 751 52. 931 53. 112 53. 292	18. 51 18. 45 18. 39 18. 33 18. 27	. 4669 . 4664 . 4659 . 4654 . 4648	11. 41 11. 48 11. 56 11. 63 11. 71	3. 990 3. 998 4. 006 4. 015 4. 023	2. 860 2. 872 2. 885 2. 897 2. 909	. 2885 . 2860 . 2835 . 2811 . 2786	. 7595 -1 . 7549 -1 . 7503 -1 . 7457 -1 . 7412 -1
3. 20 3. 21 3. 23 3. 23 3. 24	2 .1964 ~ 3 .1936 ~ 4 .1908 ~	6101 -	. 3267 . 3253 . 3240	3. 040 3. 050 3. 061 3. 071 3. 082	. 1450 . 1438 . 1426 . 1414 . 1402	5. 121 5. 170 5. 219 5. 268 5. 319	2. 00786 2. 00991 2. 01195 2. 01398 2. 01599	53. 470 53. 648 53. 826 54. 003 54. 179	18. 21 18. 15 18. 09 18. 03 17. 98	. 4643 . 4639 . 4634 . 4629 . 4624	11. 78 11. 85 11. 93 12. 01 12. 08	4. 031 4. 040 4. 048 4. 056 4. 064	2. 922 2. 935 2. 947 2. 960 2. 972	. 2762 . 2738 . 2715 . 2691 . 2668	. 7367 -1 . 7323 -1 . 7279 -1 . 7235 -1 . 7192 -1
3, 25 3, 26 3, 27 3, 28 3, 29	. 1853 . 1826 . 1799 . 1773	. 5790 -1 . 5730 -1 . 5671 -1	.3199 .3186 .5173	3. 092 3. 103 3. 113 3. 124 3. 134	. 1390 . 1378 . 1367 . 1355 . 1344	5. 369 5. 420 5. 472 5. 523 5. 576	2. 01799 2. 01998 2. 02196 2. 02392 2. 02587	54. 355 54. 529 54. 703 54. 877 55. 050	17. 92 17. 86 17. 81 17. 75 17. 70	. 4619 . 4614 . 4610 . 4605 . 4600	12. 16 12. 23 12. 31 12. 38 12. 46	4. 072 4. 080 4. 088 4. 096 4. 104	2. 985 2. 998 3. 011 3. 023 3. 036	. 2645 . 2622 . 2600 . 2577 . 2555	. 7149 -1 . 7107 -1 . 7065 -1 . 7023 -1 . 6982 -1 . 6941 -1
3. 30 3. 31 3. 32 3. 33 3. 34	. 1722 -1 . 1698 -1 . 1673 -1 . 1649 -1	. 5497 -1 . 5440 -1 . 5384 -1 . 5329 -1	.3134 .3121 .3108	3. 145 3. 155 3. 166 3. 176 3. 187	. 1332 . 1321 . 1310 . 1299 . 1288	5. 629 5. 682 5. 736 5. 790 5. 845	2. 02781 2. 02974 2. 03165 2. 03356 2. 03545	55, 222 55, 393 55, 564 55, 734 55, 904	17. 64 17. 58 17. 53 17. 48 17. 42	. 4596 . 4591 . 4587 . 4582 . 4578	12. 54 12. 62 12. 69 12. 77 12. 85	4. 112 4. 120 4. 128 4. 135 4. 143	3. 049 3. 062 3. 075 3. 088 3. 101	. 2533 . 2511 . 2489 . 2468	. 6941 -1 . 6900 -1 . 6860 -1 . 6820 -1 . 6781 -1 . 6741 -1
3. 35 3. 36 3. 37 3. 38 3. 39	. 1625 -1 . 1602 -1 . 1579 -1 . 1557 -1 . 1534 -1	. 5274 -1 . 5220 -1 . 5166 -1 . 5113 -1 . 5061 -1	. 3082 . 3069 . 3057 . 3044 . 3032	3. 197 3. 208 3. 218 3. 229 3. 239	. 1277 . 1266 . 1255 . 1245 . 1234	5, 900 5, 956 6, 012 6, 069 6, 126	2. 03733 2. 03920 2. 04106 2. 04290 2. 04474	56, 073 56, 241 56, 409 56, 576 56, 742	17. 37 17. 31 17. 26 17. 21 17. 16	. 4573 . 4569 . 4565 . 4560 . 4556	12. 93 13. 00 13. 08 13. 16 13. 24	4. 151 4. 158 4. 166 4. 173 4. 181	3. 114 3. 127 3. 141 3. 154 3. 167	. 2425 . 2404 . 2383 . 2363 . 2342	. 6702 -1 . 6664 -1 . 6626 -1 . 6588 -1 . 6550 -1
3. 40 3. 41 3. 42 3. 43 3. 44	. 1512 -1 . 1491 -1 . 1470 -1 . 1449 -1 . 1428 -1	. 5009 -1 . 4958 -1 . 4908 -1 . 4858 -1 . 4808 -1	.3019 .3007 .2995 .2982 .2970	3. 250 3. 260 3. 271 3. 281 3. 291	. 1224 . 1214 . 1203 . 1193 . 1183	6, 184 6, 242 6, 301 6, 360 6, 420	2. 04656 2. 04837 2. 05017 2. 05196 2. 05374	56. 907 57. 073 57. 237 57. 401 57. 564	17. 10 17. 05 17. 00 16. 95 16. 90	. 4552 . 4548 . 4544 . 4540 . 4535	13. 32 13. 40 13. 48 13. 56 13. 64	4. 188 4. 196 4. 203 4. 211 4. 218	3. 180 3. 194 3. 207 3. 220 3. 234	. 2322 . 2302 . 2282 . 2263 . 2243	. 6513 -1 . 6476 -1 . 6439 -1 . 6403 -1 . 6367 -1
3. 45 3. 46 3. 47 3. 48 3. 49	. 1408 -1 . 1388 -1 . 1368 -1 . 1349 -1 . 1330 -1	.4759 -1 .4711 -1 .4663 -1 .4616 -1 .4569 -1	. 2958 . 2946 . 2934 . 2922 . 2910	3. 302 3. 312 3. 323 3. 333 3. 344	.1173 .1163 .1153 .1144 .1134	6. 480 6. 541 6. 602 6. 664 6. 727	2. 05551 2. 05727 2. 05901 2. 06075 2. 06247	57. 726 57. 868 58. 050 58. 210 58. 370	16. 85 16. 80 16. 75 16. 70 16. 65	. 4531 . 4527 . 4523 . 4519 . 4515	13. 72 13. 80 13. 88 13. 96 14. 04	4. 225 4. 232 4. 240 4. 247 4. 254	3, 247 3, 261 3, 274 3, 288 3, 301	. 2224 . 2205 . 2186 . 2167 . 2148	. 6331 -1 . 6296 -1 . 6261 -1 . 6226 -1 . 6191 -1
3. 50 3. 51 3. 52 3. 53 3. 54	. 1311 -1 . 1293 -1 . 1274 -1 . 1256 -1 . 1239 -1	.4523 -1 .4478 -1 .4433 -1 .4388 -1 .4344 -1	. 2899 . 2887 . 2875 . 2864 . 2852	3.354 3.365 3.375 3.385 3.396	.1124 .1115 .1105 .1096 .1087	6. 790 6. 853 6. 917 6. 982 7. 047	2. 06419 2. 06589 2. 06759 2. 06927 2. 07094	58, 530 58, 689 58, 847 59, 004 59, 162	16. 60 16. 55 16. 51 16. 46 16. 41	. 4512 . 4508 . 4504 . 4500 . 4496	14. 13 14. 21 14. 29 14. 37 14. 45	4. 261 4. 268 4. 275 4. 282 4. 289	3. 315 3. 329 3. 343 3. 356 3. 370	. 2129 . 2111 . 2093 . 2075	.6157 -1 .6123 -1 .6089 -1 .6056 -1 .6023 -1
3. 55 3. 56 3. 57 3. 58 3. 59 3. 60	.1221 -1 .1204 -1 .1188 -1 .1171 -1 .1155 -1	. 4300 -1 . 4257 -1 . 4214 -1 . 4172 -1 . 4131 -1	. 2841 . 2829 . 2818 . 2806 . 2795	3. 406 3. 417 3. 427 3. 437 3. 448	. 1078 . 1069 . 1059 . 1051 . 1042	7. 113 7. 179 7. 246 7. 313 7. 382	2. 07261 2. 07426 2. 07590 2. 07754 2. 07916	59. 318 59. 474 59. 629 59. 784 59. 938	16. 36 16. 31 16. 27 16. 22 16. 17	. 4492 . 4489 . 4485 . 4481 . 4478	14. 54 14. 62 14. 70 14. 79 14. 87	4. 296 4. 303 4. 309 4. 316 4. 323	3. 384 3. 398 3. 412 3. 426 3. 440	. 2039 . 2022 . 2004 . 1987 . 1970	. 5990 -1 . 5957 -1 . 5925 -1 . 5892 -1 . 5861 -1
3. 61 3. 62 3. 63 3. 64 3. 65	.1138 -1 .1123 -1 .1107 -1 .1092 -1 .1076 -1	. 4089 -1 . 4049 -1 . 4008 -1 . 3968 -1 . 3929 -1	. 2784 . 2773 . 2762 . 2751 . 2740	3. 458 3. 469 3. 479 3. 490 3. 500	. 1033 . 1024 . 1016 . 1007 . 9984 -1	7. 450 7. 519 7. 589 7. 659 7. 730	2. 08077 2. 08238 2. 08397 2. 08556 2. 08713	60. 091 60. 244 60. 397 60. 549 60. 700	16, 13 16, 08 16, 04 15, 99 15, 95	. 4474 . 4471 . 4467 . 4463 . 4460	14, 95 15, 04 15, 12 15, 21 15, 29	4. 330 4. 336 4. 343 4. 350 4. 356	3. 454 3. 468 3. 482 3. 496 3. 510	. 1953 . 1936 . 1920 . 1903 . 1887	. 5829 -1 . 5708 -7 . 5767 -1 . 5736 -1 . 5705 -1
3. 66 3. 67 3. 68 3. 69 3. 70	.1062 ~1 .1047 ~1 .1032 ~1 .1018 ~1 .1004 ~1	. 3890 -1 . 3852 -1 . 3813 -1 . 3776 -1 . 3739 -1	. 2729 . 2718 . 2707 . 2697 . 2686	3. 510 3. 521 3. 531 3. 542 3. 552	. 9900 -1 . 9817 -1 . 9734 -1 . 9652 -1 . 9570 -1	7. 802 7. 874 7. 947 8. 020 8. 094	2. 08870 2. 09026 2. 09180 2. 09334 2. 09487	60. 851 61. 000 61. 150 61. 299 61. 447	15. 90 15. 86 15. 81 15. 77 15. 72	. 4456 . 4453 . 4450 . 4446 . 4443	15. 46 15. 55 15. 63	4. 363 4. 369 4. 376 4. 382 4. 388	3, 525 3, 539 3, 553 3, 568 3, 582	. 1871 . 1855 . 1839 . 1623 . 1807	. 5675 -1 . 5645 -1 . 5615 -1 . 5585 -1 . 5556 -1
3,71 8,72 3,73 3,74 3,75	. 9767 -2 . 9633 -2 . 9500 -2 . 9370 -2	. 3702 -1 . 3665 -1 . 3629 -1 . 3594 -1 . 3558 -1	. 2675 . 2665 . 2654 . 2644 . 2633	3. 562 3. 573 3. 583 3. 593 3. 604	. 9490 -1 . 9410 -1 . 9331 -1 . 9253 -1 . 9175 -1	8. 169 8. 244 8. 320 8. 397 8. 474	2. 09639 2. 09790 2. 09941 2. 10090 2. 10238	61. 595 61. 743 61. 889 62. 036 62. 181	15. 68 15. 64 15. 59 15. 55 15. 51	. 4439 . 4436 . 4433 . 4430 . 4426	15. 89 15. 98 16. 07	4. 395 4. 401 4. 408 4. 414 4. 420	3. 596 3. 611 3. 625 3. 640 3. 654	. 1792 . 1777 . 1761 . 1746 . 1731	. 5526 -1 . 5497 -1 . 5469 -1 . 5440 -1 . 5412 -1
3. 76 3. 76 3. 77 3. 78 3. 79	. 9242 -1 . 9116 -2 . 8991 -2 . 8869 -2 . 8748 -2 . 8629 -1	.3524 -1 .3489 -1 .3455 -1 .3421 -1 .3388 -1	. 2623 . 2613 . 2602 . 2592 . 2582	3. 614 3. 625 3. 635 3. 645 3. 656	. 9098 -1 . 9021 -1 . 8945 -1 . 8870 -1 . 8796 -1	8. 709 8. 789	2. 10386 2. 10533 2. 10679 2. 10824 2. 10968	62. 326 62. 471 62. 615 62. 758 62. 901	15. 47 15. 42 15. 38 15. 34 15. 30	. 4423 . 4420 . 4417 . 4414 . 4410	16, 33 16, 42 16, 50	4. 426 4. 432 4. 439 4. 445 4. 451	3, 669 3, 684 3, 698 3, 713 3, 728	. 1717 . 1702 . 1687 . 1673 . 1659	. 5384 -1 . 5356 -1 . 5328 -1 . 5301 -1 . 5274 -1
3. 81 3. 82 3. 83 3. 84 3. 85	.8512 -2 .8396 -1 .8283 -2 .8171 -2	. 3355 -1 . 3322 -1 . 3290 -1 . 3258 -1 . 3227 -1	. 2572 . 2562 . 2552 . 2542 . 2532	3. 666 3. 676 3. 667 3. 697 3. 708	. 8722 -1 . 8649 -1 . 8577 -1 . 8505 -1 . 8434 -1	9. 032 9. 115 9. 198	2. 11111 2. 11254 2. 11395 2. 11536 2. 11676	63. 044 63. 186 63. 327 63. 468 63. 608	15. 26 15. 22 15. 18 15. 14 15. 10	. 4407 . 4404 . 4401 . 4398 . 4395	16. 77 16. 86 16. 95	4. 457 4. 463 4. 469 4. 475 4. 481	3. 743 3. 758 3. 772 3. 787 3. 802	. 1645 . 1631 . 1617 . 1603 . 1589	. 5247 -1 . 5220 -1 . 5193 -1 . 5167 -1 . 5140 -1
3. 86 3. 87 3. 88 3. 89	. 7951 -1 . 7844 -2 . 7739 -2 . 7635 -2	.3195 -1 .3165 -1 .3134 -1 .3104 -1 .3074 -1	. 2522 . 2513 . 2503 . 2493 . 2484	3. 718 3. 728 3. 739 3. 749 3. 759	. 8363 -1 . 8293 -1 . 8224 -1 . 8155 -1 . 8067 -1	9. 451 9. 537 9. 624 9. 711	2. 11815 2. 11954 2. 12091 2. 12228 2. 12364	63. 748 63. 887 64. 026 64. 164 64. 302	15. 06 15. 02 14. 98 14. 94 14. 90	. 4392 . 4389 . 4386 . 4383 . 4380	17. 22 17. 31 17. 40	i. 487 i. 492 i. 498 i. 504 i. 510	3. 863	. 1576 . 1563 . 1549 . 1536 . 1523	. 5114 -1 . 5089 -1 . 5063 -1 . 5038 -1 . 5012 -1
3. 91 3. 92 3. 93 3. 94	. 7431 -2 . 7431 -2 . 7332 -1 . 7233 -2 . 7137 -2	. 3015 -1 . 2986 -1 . 2958 -1 . 2929 -1	. 2474 . 2464 . 2455 . 2446 . 2436	3. 770 3. 780 3. 790 3. 801 3. 811	. 8019 -1 . 7952 -1 . 7886 -1 . 7820 -1 . 7755 -1	9. 888 9. 977 10. 07	2. 12499 2. 12634 2. 12767 2. 12900 2. 13032	64, 440 64, 576 64, 713 64, 848 64, 983	14. 86 14. 82 14. 78 14. 74 14. 70	. 4377 . 4375 . 4372 . 4369 . 4366	17. 67 4 17. 76 4 17. 85 4	. 516 . 521 . 527 . 533 . 538	3. 908 3. 923 3. 939	. 1485	. 4987 -1 . 4962 -1 . 4938 -1 . 4913 -1 . 4889 -1

TABLE II.—SUPERSONIC FLOW—Continued

	 .						γ=1/3					1 1		1	
M or M ₁	$\frac{p}{p_i}$	<u>ρ</u> ρι	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$	V	μ	M ₂	<u>p</u> 1	<u>ρ1</u> ρ1	$\frac{T_2}{T_1}$	$\frac{p_{i_1}}{p_{i_1}}$	$\frac{p_1}{p_{l_2}}$
3. 95	. 7042 -2	. 2902 -1	. 2427	3. 821	. 7691 -1	10. 25	2. 13163	65, 118	14, 67	. 4363	18. 04	4. 544	3. 969	. 1448	. 4865 -1
3. 96	. 6948 -1	. 2874 -1	. 2418	3. 832	. 7627 -1	10. 34	2. 13294	65, 253	14, 63	. 4360	18. 13	4. 549	3. 985	. 1435	. 4841 -1
3. 97	. 6855 -2	. 2846 -1	. 2408	3. 842	. 7563 -1	10. 44	2. 13424	65, 386	14, 59	. 4358	18. 22	4. 555	4. 000	. 1423	. 4817 -1
3. 98	. 6764 -1	. 2819 -1	. 2399	3. 852	. 7500 -1	10. 53	2. 13553	65, 520	14, 55	. 4355	18. 31	4. 560	4. 016	. 1411	. 4793 -1
3. 99	. 6675 -1	. 2793 -1	. 2390	3. 863	. 7438 -1	10. 62	2. 13681	65, 652	14, 52	. 4352	18. 41	4. 566	4. 031	. 1399	. 4770 -1
4, 00	.6586 -2	. 2766 -1	. 2381	3, 873	. 7376 -1	10. 72	2, 13809	65. 785	14. 48	. 4350	18. 50	4, 571	4, 047	. 1388	.4747 -1
4, 01	.6499 -1	. 2740 -1	. 2372	3, 883	. 7315 -1	10. 81	2, 13936	65. 917	14. 44	. 4347	16. 59	4, 577	4, 062	. 1376	.4723 -1
4, 02	.6413 -2	. 2714 -1	. 2363	3, 894	. 7255 -1	10. 91	2, 14062	66. 048	14. 40	. 4344	18. 69	4, 582	4, 078	. 1364	.4700 -1
4, 03	.6328 -2	. 2688 -1	. 2354	3, 904	. 7194 -1	11. 01	2, 14188	66. 179	14. 37	. 4342	18. 78	4, 588	4, 094	. 1353	.4678 -1
4, 04	.6245 -2	. 2663 -1	. 2345	3, 914	. 7135 -1	11. 11	2, 14312	66. 309	14. 33	. 4339	18. 88	4, 593	4, 110	. 1342	.4655 -1
4, 05	.6163 -2	. 2638 -1	. 2336	3. 925	. 7076 -1	11. 21	2. 14436	66, 439	14. 30	. 4336	18, 97	4. 598	4, 125	.1330	. 4633 -1
4, 06	.6082 -2	. 2613 -1	. 2327	3. 935	. 7017 -1	11. 31	2. 14560	66, 569	14. 26	. 4334	19, 06	4. 604	4, 141	.1319	. 4610 -1
4, 07	.6002 -2	. 2589 -1	. 2319	3. 945	. 6959 -1	11. 41	2. 14682	66, 698	14. 22	. 4331	19, 16	4. 609	4, 157	.1308	. 4588 -1
4, 08	.5923 -2	. 2564 -1	. 2310	3. 956	. 6902 -1	11. 51	2. 14804	66, 826	14. 19	. 4329	19, 25	4. 614	4, 173	.1297	. 4566 -1
4, 09	.5845 -2	. 2540 -1	. 2301	3. 966	. 6845 -1	11. 61	2. 14926	66, 954	14. 15	. 4326	19, 35	4. 619	4, 189	.1286	. 4544 -1
4. 10	.5769 -2	. 2516 -1	. 2293	3. 976	. 6788 -1	11. 71	2. 15046	67, 082	14. 12	.4324	19. 45	4. 624	4, 205	. 1276	. 4523 -1
4. 11	.5694 -2	. 2493 -1	. 2284	3. 986	. 6732 -1	11. 82	2. 15166	67, 209	14. 08	.4321	19. 54	4. 630	4, 221	. 1265	. 4501 -1
4. 12	.5619 -1	. 2470 -1	. 2275	3. 997	. 6677 -1	11. 92	2. 15285	67, 336	14. 05	.4319	19. 64	4. 635	4, 237	. 1254	. 4480 -1
4. 13	.5546 -2	. 2447 -1	. 2267	4. 007	. 6622 -1	12. 03	2. 15404	67, 462	14. 01	.4316	19. 73	4. 640	4, 253	. 1244	. 4459 -1
4. 14	.5474 -1	. 2424 -1	. 2258	4. 017	. 6568 -1	12. 14	2. 15522	67, 588	13. 98	.4314	19. 83	4. 645	4, 269	. 1234	. 4438 -1
4. 15	. 5403 -2	. 2401 -1	. 2250	4. 028	. 6514 -1	12. 24	2. 15639	67, 713	13. 94	. 4311	19. 93	4. 650	4. 285	. 1223	. 4417 -1
4. 16	. 5333 -2	. 2379 -1	. 2242	4. 038	. 6460 -1	12. 35	2. 15756	67, 838	13. 91	. 4309	20. 02	4. 655	4. 301	. 1213	. 4396 -1
4. 17	. 5264 -2	. 2357 -1	. 2233	4. 048	. 6407 -1	12. 46	2. 15871	67, 963	13. 88	. 4306	20. 12	4. 660	4. 318	. 1203	. 4375 -1
4. 18	. 5195 -2	. 2335 -1	. 2225	4. 059	. 6354 -1	12. 57	2. 15987	68, 087	13. 84	. 4304	20. 22	4. 665	4. 334	. 1193	. 4355 -1
4. 19	. 5128 -2	. 2313 -1	. 2217	4. 069	. 6302 -1	12. 68	2. 16101	68, 210	13. 81	. 4302	20. 32	4. 670	4. 350	. 1183	. 4334 -1
4. 20	. 5062 -2	. 2292 -1	. 2208	4. 079	. 6251 -1	12. 79	2. 16215	68. 333	13. 77	. 4299	20. 41	4. 675	4. 367	. 1173	. 4314 -1
4. 21	. 4997 -2	. 2271 -1	. 2200	4. 090	. 6200 -1	12. 90	2. 16329	68. 456	13. 74	. 4297	20. 51	4. 680	4. 383	. 1164	. 4294 -1
4. 22	. 4932 -2	. 2250 -1	. 2192	4. 100	. 6149 -1	13. 02	2. 16442	68. 578	13. 71	. 4295	20. 61	4. 685	4. 399	. 1154	. 4274 -1
4. 23	. 4869 -2	. 2229 -1	. 2184	4. 110	. 6098 -1	13. 13	2. 16554	68. 700	13. 67	. 4292	20. 71	4. 690	4. 416	. 1144	. 4255 -1
4. 24	. 4806 -2	. 2209 -1	. 2176	4. 120	. 6049 -1	13. 25	2. 16665	68. 821	13. 64	. 4290	20. 81	4. 694	4. 432	. 1135	. 4235 -1
4. 25	. 4745 -2	. 2189 -1	. 2168	4. 131	. 5999 -1	13. 36	2. 16776	68. 942	13. 61	. 4288	20. 91	4. 699	4. 449	.1126	. 4215 -1
4. 26	. 4684 -2	. 2169 -1	. 2160	4. 141	. 5950 -1	13. 48	2. 16886	69. 063	13. 58	. 4286	21. 01	4. 704	4. 466	.1116	. 4196 -1
4. 27	. 4624 -2	. 2149 -1	. 2152	4. 151	. 5902 -1	13. 60	2. 16996	69. 183	13. 54	. 4283	21. 11	4. 709	4. 482	.1107	. 4177 -1
4. 28	. 4565 -2	. 2129 -1	. 2144	4. 162	. 5854 -1	13. 72	2. 17105	69. 302	13. 51	. 4281	21. 20	4. 713	4. 499	.1098	. 4158 -1
4. 29	. 4507 -2	. 2110 -1	. 2136	4. 172	. 5806 -1	13. 83	2. 17214	69. 422	13. 48	. 4279	21. 30	4. 718	4. 516	.1089	. 4139 -1
4. 30	. 4449 -2	. 2090 -1	. 2129	4. 182	.5759 -1	13. 95	2. 17321	69. 541	13. 45	. 4277	21. 41	4. 723	4. 532	. 1080	.4120 -1
4. 31	. 4393 -2	. 2071 -1	. 2121	4. 192	.5712 -1	14. 08	2. 17429	69. 659	13. 42	. 4275	21. 51	4. 728	4. 549	. 1071	.4101 -1
4. 32	. 4337 -2	. 2052 -1	. 2113	4. 203	.5666 -1	14. 20	2. 17535	69. 777	13. 38	. 4272	21. 61	4. 732	4. 566	. 1062	.4082 -1
4. 33	. 4282 -2	. 2034 -1	. 2105	4. 213	.5620 -1	14. 32	2. 17642	69. 895	13. 35	. 4270	21. 71	4. 737	4. 583	. 1054	.4064 -1
4. 34	. 4228 -1	. 2015 -1	. 2098	4. 223	.5574 -1	14. 45	2. 17747	70. 012	13. 32	. 4268	21. 81	4. 741	4. 600	. 1045	.4046 -1
4. 35	.4174 -2	. 1997 -1	. 2090	4. 233	. 5529 -1	14. 57	2. 17852	70. 128	13. 29	. 4266	21. 91	4. 746	4. 617	. 1036	. 4027 -1
4. 36	.4121 -2	. 1979 -1	. 2083	4. 244	. 5484 -1	14. 70	2. 17956	70. 245	13. 26	. 4264	22. 01	4. 751	4. 633	. 1028	. 4009 -1
4. 37	.4069 -2	. 1961 -1	. 2075	4. 254	. 5440 -1	14. 82	2. 18060	70. 361	13. 23	. 4262	22. 11	4. 755	4. 651	. 1020	. 3991 -1
4. 38	.4018 -2	. 1944 -1	. 2067	4. 264	. 5396 -1	14. 95	2. 18163	70. 476	13. 20	. 4260	22. 22	4. 760	4. 668	. 1011	. 3973 -1
4. 39	.3968 -2	. 1926 -1	. 2060	4. 275	. 5352 -1	15. 08	2. 18266	70. 591	13. 17	. 4258	22. 32	4. 764	4. 685	. 1003	. 3956 -1
4. 40	.3918 -2	. 1909 -1	. 2053	4. 285	. 5309 -1	15. 21	2. 18369	70. 706	13. 14	. 4255	22. 42	4. 768	4. 702	. 9949 -1	. 39381
4. 41	.3868 -2	. 1892 -1	. 2045	4. 295	. 5266 -1	15. 34	2. 18470	70. 820	13. 11	. 4253	22. 52	4. 773	4. 719	. 9867 -1	. 39211
4. 42	.3820 -2	. 1875 -1	. 2038	4. 305	. 5224 -1	15. 47	2. 18571	70. 934	13. 08	. 4251	22. 63	4. 777	4. 736	. 9787 -1	. 39031
4. 43	.3772 -2	. 1858 -1	. 2030	4. 316	. 5182 -1	15. 61	2. 18671	71. 048	13. 05	. 4249	22. 73	4. 782	4. 753	. 9707 -1	. 38861
4. 44	.3725 -2	. 1841 -1	. 2023	4. 326	. 5140 -1	15. 74	2. 187714	71. 161	13. 02	. 4247	22. 83	4. 786	4. 771	. 9628 -1	. 38691
4. 45	. 3678 -2	. 1825 -1	. 2016	4. 336	. 5099 -1	15. 87	2. 188708	71. 274	12. 99	. 4245	22. 94	4. 790	4. 788	.9550 -1	.3852 -1
4. 46	. 3633 -2	. 1808 -1	. 2009	4. 346	. 5058 -1	16. 01	2. 189697	71. 386	12. 96	. 4243	23. 04	4. 795	4. 805	.9473 -1	.3835 -1
4. 47	. 3587 -2	. 1792 -1	. 2002	4. 357	. 5017 -1	16. 15	2. 190681	71. 498	12. 93	. 4241	23. 14	4. 799	4. 823	.9396 -1	.3818 -1
4. 48	. 3543 -2	. 1776 -1	. 1994	4. 367	. 4977 -1	16. 28	2. 191659	71. 610	12. 90	. 4239	23. 25	4. 803	4. 840	.9320 -1	.3801 -1
4. 49	. 3499 -2	. 1761 -1	. 1987	4. 377	. 4937 -1	16. 42	2. 192632	71. 721	12. 87	. 4237	23. 35	4. 808	4. 858	.9244 -1	.3785 -1
4. 50	.3455 -2	. 1745 -1	. 1980	4. 387	. 4898 -1	16. 56	2. 193600	71. 832	12.84	. 4236	23. 46	4.812	4. 875	. 9170 -1	. 3768 -1
4. 51	.3412 -2	. 1729 -1	. 1973	4. 398	. 4859 -1	16. 70	2. 194563	71. 942	12.81	. 4234	23. 56	4.816	4. 893	. 9096 -1	. 3752 -1
4. 52	.3370 -2	. 1714 -1	. 1966	4. 408	. 4820 -1	16. 84	2. 195520	72. 052	12.78	. 4232	23. 67	4.820	4. 910	. 9022 -1	. 3735 -1
4. 53	.3329 -2	. 1699 -1	. 1959	4. 418	. 4781 -1	16. 99	2. 196473	72. 162	12.75	. 4230	23. 77	4.824	4. 928	. 8950 -1	. 3719 -1
4. 54	.3288 -2	. 1684 -1	. 1952	4. 428	. 4743 -1	17. 13	2. 197420	72. 271	12.73	. 4228	23. 88	4.829	4. 946	. 8878 -1	. 3703 -1
4. 55	.3247 -2	. 1669 -1	. 1945	4. 439	.4706 -1	17. 28	2. 198363	72. 380	12. 70	. 4226	23. 99	4. 833	4. 963	. 8806 -1	. 3687 -1
4. 56	.3207 -2	. 1654 -1	. 1938	4. 449	.4668 -1	17. 42	2. 199300	72. 489	12. 67	. 4224	24. 09	4. 837	4. 981	. 8735 -1	. 3671 -1
4. 57	.3168 -2	. 1640 -1	. 1932	4. 459	.4631 -1	17. 57	2. 200233	72. 597	12. 64	. 4222	24. 20	4. 841	4. 999	. 8665 -1	. 3656 -1
4. 58	.3129 -2	. 1625 -1	. 1925	4. 469	.4594 -1	17. 72	2. 201160	72. 705	12. 61	. 4220	24. 31	4. 845	5. 017	. 8596 -1	. 3640 -1
4. 59	.3090 -2	. 1611 -1	. 1918	4. 480	.4558 -1	17. 87	2. 202033	72. 812	12. 58	. 4219	24. 41	4. 849	5. 034	. 8527 -1	. 3624 -1
4. 60	.3053 -2	. 1597 -1	. 1911	4. 490	.4522 -1	18. 02	2. 203000	72. 919	12. 58	. 4217	24. 52	4. 853	5. 052	.8459 -1	. 3609 -1
4. 61	.3015 -3	. 1583 -1	. 1905	4. 500	.4486 -1	18. 17	2. 203913	73. 026	12. 53	. 4215	24. 63	4. 857	5. 070	.8391 -1	. 3593 -1
4. 62	.2978 -2	. 1569 -1	. 1898	4. 510	.4450 -1	18. 32	2. 204822	73. 132	12. 50	. 4213	24. 74	4. 861	5. 088	.8324 -1	. 3578 -1
4. 63	.2942 -2	. 1556 -1	. 1891	4. 521	.4415 -1	18. 48	2. 205725	73. 238	12. 47	. 4211	24. 84	4. 865	5. 106	.8257 -1	. 3563 -1
4. 64	.2906 -2	. 1542 -1	. 1885	4. 531	.4380 -1	18. 63	2. 206624	73. 344	12. 45	. 4210	24. 95	4. 869	5. 124	.8192 -1	. 3548 -1
4. 65	. 2871 -2	.1529 -1	. 1878	4. 541	.4345 -1	16. 79	2. 207518	73, 449	12. 42	.4208	25. 06	4. 873	5. 143	.8126 -1	. 3533 ~1
4. 66	. 2836 -2	.1515 -1	. 1872	4. 551	.4311 -1	18. 94	2. 208407	73, 554	12. 39	.4206	25. 17	4. 677	5. 160	.8062 -1	. 3518 ~1
4. 67	. 2802 -2	.1502 -1	. 1865	4. 562	.4277 -1	19. 10	2. 209291	73, 659	12. 37	.4204	25. 28	4. 681	5. 179	.7998 -1	. 3503 ~1
4. 68	. 2768 -1	.1489 -1	. 1859	4. 572	.4243 -1	19. 26	2. 210171	73, 763	12. 34	.4203	25. 39	4. 885	5. 197	.7934 -1	. 3488 ~1
4. 69	. 2734 -2	.1476 -1	. 1852	4. 582	.4210 -1	19. 42	2. 211047	73, 867	12. 31	.4201	25. 50	4. 889	5. 215	.7871 -1	. 3474 ~1
4.70	. 2701 -1	. 1464 -1	. 1846	4. 592	.4177 -1	19. 58	2. 211918	73 970	12. 28	.4199	25. 61	4.893	5, 233	.7809 -1	. 3459 -1
4.71	. 2669 -2	. 1451 -1	. 1839	4. 603	.4144 -1	19. 75	2. 212784	74,073	12. 26	.4197	25. 71	4.896	5, 252	.7747 -1	. 3445 -1
4.72	. 2637 -2	. 1438 -1	. 1833	4. 613	.4112 -1	19. 91	2. 213646	74,176	12. 23	.4196	25. 82	4.900	5, 270	.7685 -1	. 3431 -1
4.73	. 2605 -2	. 1426 -1	. 1827	4. 623	.4079 -1	20. 07	2. 214503	74,279	12. 21	.4194	25. 94	4.904	5, 289	.7625 -1	. 3416 -1
4.74	. 2573 -7	. 1414 -1	. 1820	4. 633	.4047 -1	20. 24	2. 215356	74,381	12. 18	.4192	26. 05	4.908	5, 307	.7564 -1	. 3402 -1
4. 75	. 2543 -1	. 1402 -1	. 1795	4. 644	. 4016 -1	20. 41	2. 216205	74. 483	12. 15	.4191	26. 16	4. 912	5, 325	.7505 -1	. 3388 -1
4. 76	. 2512 -1	. 1390 -1		4. 654	. 3964 -1	20. 58	2. 217049	74. 584	12. 13	.4189	26. 27	4. 915	5, 344	.7445 -1	. 3374 -1
4. 77	. 2482 -2	. 1378 -1		4. 664	. 3953 -1	20. 75	2. 217889	74. 685	12. 10	.4187	26. 38	4. 919	5, 363	.7387 -1	. 3360 -1
4. 78	. 2452 -2	. 1366 -1		4. 674	. 3922 -1	20. 92	2. 218725	74. 786	12. 08	.4186	26. 49	4. 923	5, 381	.7329 -1	. 3346 -1
4. 79	. 2423 -1	. 1354 -1		4. 684	. 3892 -1	21. 09	2. 219558	74. 886	12. 05	.4184	26. 60	4. 926	5, 400	.7271 -1	. 3333 -1
4. 80 4. 81 4. 82 4. 83 4. 84	. 2394 -1 . 2366 -2 . 2338 -1 . 2310 -1 . 2283 -2		. 1777 . 1771 . 1765	4. 695 4. 705 4. 715 4. 725 4. 736	.3862 -1 .3832 -1 .3802 -1 .3772 -1 .3743 -1	21. 26 21. 44 21. 61 21. 79 21. 97	2. 220383 2. 221206 2. 222024 2. 222838 2. 223649	74. 986 75. 086 75. 186 75. 285 75. 383	12. 03 12. 00 11. 97 11. 95 11. 92	.4183 .4181 .4179 .4178 .4176	26. 71 26. 83 26. 94 27. 05 27. 16	4. 930 4. 934 4. 937 4. 941 4. 945	5. 418 5. 437 5. 456 5. 475 5. 494	.7214 -1 .7157 -1 .7101 -1 .7046 -1 .6991 -1	. 3319 -1 . 3305 -1 . 3292 -1 . 3278 -1 . 3265 -1

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

ſ··	1						$\gamma = 7$	/5							
M or M ₁	$\frac{p}{p_i}$	<u>ρ</u> ρι	$\frac{T}{T_1}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$	v	д	M ₂	$\frac{p_2}{p_1}$	<u>ρ3</u>	$\frac{T_2}{T_1}$	$\frac{p_{t_2}}{p_{t_1}}$	$\frac{p_1}{p_{i_2}}$
4. 85 4. 86 4. 87 4. 88 4. 89	. 2255 -2 . 2229 -2 . 2202 -1 . 2177 -2 . 2151 -2	.1287 -1 .1276 -1 .1265 -1 .1254 -1 .1244 -1	. 1747	4. 746 4. 756 4. 766 4. 776 4. 787	.3714 -1 .3685 -1 .3657 -1 .3628 -1 .3600 -1	22. 15 22. 33 22. 51 22. 70 22. 88	2. 224455 2. 225257 2. 226055 2. 226848 2. 227638	75. 482 75. 580 75. 678 75. 775 75. 872	11. 90 11. 87 11. 85 11. 83 11. 80	. 4175 . 4173 . 4172 . 4170 . 4169	27. 28 27. 39 27. 50 27. 62 27. 73	4, 948 4, 952 4, 955 4, 959 4, 962	5, 512 5, 531 5, 550 5, 569 5, 588	. 6936 -1 . 6982 -1 . 6928 -1 . 6775 -1 . 6722 -1	. 3252 -1 . 3239 -1 . 3226 -1 . 3213 -1 . 3200 -1
4, 90	. 2126 -1	. 1233 -1	.1724	4. 797	.3573 -1	23. 07	2. 228424	75. 969	11. 78	. 4167	27. 85	4. 966	5, 607	. 6670 -1	. 3187 -1
4, 91	. 2101 -2	. 1223 -1	.1718	4. 807	.3545 -1	23. 25	2. 229206	76. 066	11. 75	. 4165	27. 96	4. 969	5, 626	. 6618 -1	. 3174 -1
4, 92	. 2076 -1	. 1213 -1	.1712	4. 817	.3518 -1	23. 44	2. 229984	76. 162	11. 73	. 4164	28. 07	4. 973	5, 646	. 6567 -1	. 3161 -1
4, 93	. 2052 -1	. 1202 -1	.1706	4. 828	.3491 -1	23. 63	2. 230758	76. 258	11. 70	. 4163	28. 19	4. 976	5, 665	. 6516 -1	. 3149 -1
4, 94	. 2028 -1	. 1192 -1	.1700	4. 838	.3464 -1	23. 82	2. 231528	76. 353	11. 68	. 4161	28. 30	4. 980	5, 684	. 6465 -1	. 3136 -1
4. 95	. 2004 -3	.1182 -1	. 1695	4, 848	.3437 -1	24, 02	2. 232294	76, 449	11. 66	. 4160	28, 42	4. 983	5. 703	. 6415 -1	.3124 -1
4. 96	. 1981 -2	.1173 -1	. 1689	4, 858	.3411 -1	24, 21	2. 233056	76, 544	11. 63	. 4158	28, 54	4. 987	5. 723	. 6366 -1	.3111 -1
4. 97	. 1957 -2	.1163 -1	. 1683	4, 865	.3385 -1	24, 41	2. 233815	76, 638	11. 61	. 4157	28, 65	4. 990	5. 742	. 6317 -1	.3009 -1
4. 98	. 1955 -3	.1153 -1	. 1678	4, 879	.3359 -1	24, 60	2. 234570	76, 732	11. 58	. 4155	28, 77	4. 993	5. 761	. 6268 -1	.3087 -1
4. 99	. 1912 -3	.1144 -1	. 1672	4, 889	.3333 -1	24, 80	2. 235321	76, 826	11. 56	. 4154	28, 88	4. 997	5. 781	. 6220 -1	.3075 -1
5, 00	. 1890 -2	.1134 -1	. 1667	4. 899	.3308 -1	25, 00	2. 236068	76. 920	11. 54	. 4152	29, 00	5, 000	5, 800	. 6172 -1	.3062 -1
5, 01	e 1868 -2	.1125 -1	. 1661	4. 909	.3282 -1	25, 20	2. 236811	77. 013	11. 51	. 4151	29, 12	5, 003	5, 820	. 6124 -1	.3051 -1
5, 02	. 1847 -2	.1115 -1	. 1656	4. 919	.3257 -1	25, 40	2. 237551	77. 106	11. 49	. 4149	29, 23	5, 007	5, 839	. 6077 -1	.3039 -1
5, 03	. 1825 -2	.1106 -1	. 1650	4. 930	.3233 -1	25, 61	2. 238287	77. 199	11. 47	. 4148	29, 35	5, 010	5, 859	. 6030 -1	.3027 -1
5, 04	. 1804 -2	.1097 -1	. 1645	4. 940	.3208 -1	25, 81	2. 239020	77. 291	11. 44	. 4147	29, 47	5, 013	5, 878	. 5984 -1	.3015 -1
5. 05	.1783 -2	. 1088 -1	. 1639	4. 950	.3184 -1	26. 02	2. 239749	77. 385	11. 42	. 4145	29, 59	5. 016	5. 898	. 5938 -1	. 3003 -1
5. 06	.1763 -2	. 1079 -1	. 1634	4. 960	.3159 -1	26. 22	2. 240474	77. 477	11. 40	. 4144	29, 70	5. 020	5. 918	. 5893 -1	. 2991 -1
5. 07	.1742 -2	. 1070 -1	. 1628	4. 970	.3135 -1	26. 43	2. 241195	77. 568	11. 38	. 4142	29, 82	5. 023	5. 937	. 5848 -1	. 2980 -1
5. 08	.1722 -2	. 1061 -1	. 1623	4. 981	.3112 -1	26. 64	2. 241914	77. 660	11. 35	. 4141	29, 94	5. 026	5. 957	. 5803 -1	. 2968 -1
5. 09	.1703 -2	. 1053 -1	. 1618	4. 991	.3088 -1	26. 86	2. 242628	77. 751	11. 33	. 4140	30, 06	5. 029	5. 977	. 5759 -1	. 2957 -1
5. 10	. 1683 -2	.1044 -1	. 1612	5. 001	.3065 -1	27. 07	2. 243339	77. 841	11. 31	. 4138	30. 18	5. 033	5. 997	.5715 -1	. 2945 -1
5. 11	. 1664 -2	.1035 -1	. 1607	5. 011	.3042 -1	27. 28	2. 244047	77. 931	11. 29	. 4137	30. 30	5. 036	6. 016	.5672 -1	. 2934 -1
5. 12	. 1645 -2	.1027 -1	. 1602	5. 021	.3019 -1	27. 50	2. 244751	78. 021	11. 26	. 4136	30. 42	5. 039	6. 036	.5628 -1	. 2923 -1
5. 13	. 1626 -2	.1019 -1	. 1597	5. 032	.2996 -1	27. 72	2. 245451	78. 111	11. 24	. 4134	30. 54	5. 042	6. 056	.5586 -1	. 2911 -1
5. 14	. 1608 -2	.1010 -1	. 1591	5. 042	.2973 -1	27. 94	2. 246148	78. 201	11. 22	. 4133	30. 66	5. 045	6. 076	.5543 -1	. 2900 -1
5. 15	. 1589 -2	.1002 -1	. 1586	5. 052	. 2951 -1	28. 16	2. 246842	78. 290	11. 20	. 4132	30. 78	5. 048	6. 096	. 5501 -t	. 2889 -1
5. 16	. 1571 -2	.9939 -2	. 1581	5. 062	. 2929 -1	28. 38	2. 247532	78. 379	11. 18	. 4130	30. 90	5. 051	6. 117	. 5460 -1	. 2878 -1
5. 17	. 1553 -2	.9858 -2	. 1576	5. 072	. 2907 -1	28. 60	2. 248219	78. 468	11. 15	. 4129	31. 02	5. 054	6. 137	. 5418 -1	. 2867 -1
5. 18	. 1536 -2	.9778 -2	. 1571	5. 083	. 2885 -1	28. 83	2. 248903	78. 556	11. 13	. 4128	31. 14	5. 058	6. 157	. 5377 -1	. 2856 -1
5. 19	. 1518 -2	.9699 -2	. 1566	5. 093	. 2863 -1	29. 06	2. 249583	78. 645	11. 11	. 4126	31. 26	5. 061	6. 177	. 5337 -1	. 2845 -1
5. 20	. 1501 -1	. 9620 -2	. 1561	5. 103	. 2842 -1	29. 28	2. 250260	78. 733	11.09	. 4125	31. 38	5. 064	6. 197	. 5297 -1	. 2834 -1
5. 21	. 1484 -1	. 9543 -2	. 1555	5. 113	. 2821 -1	29. 51	2. 250934	78. 820	11.07	. 4124	31. 50	5. 067	6. 217	. 5257 -1	. 2824 -4
5. 22	. 1468 -2	. 9466 -2	. 1550	5. 123	. 2799 -1	29. 74	2. 251604	78. 908	11.04	. 4123	31. 62	5. 070	6. 238	. 5217 -1	. 2813 -1
5. 23	. 1451 -2	. 9389 -2	. 1545	5. 134	. 2778 -1	29. 98	2. 252271	78. 995	11.02	. 4121	31. 75	5. 073	6. 258	. 5178 -1	. 2803 -1
5. 24	. 1435 -2	. 9314 -2	. 1540	5. 144	. 2758 -1	30. 21	2. 252935	79. 081	11.00	. 4120	31. 87	5. 076	6. 278	. 5139 -1	. 2792 -1
5. 25	. 1419 -2	. 9239 -2	. 1536	5. 154	. 2737 -1	30. 45	2. 253596	79, 167	10. 98	. 4119	31. 99	5. 079	6. 299	.5100 -1	. 2782 -1
5. 26	. 1403 -2	. 9165 -2	. 1531	5. 164	. 2717 -1	30. 65	2. 254254	79, 254	10. 96	. 4118	32. 11	5. 082	6. 319	.5062 -1	. 2771 -1
5. 27	. 1387 -2	. 9092 -1	. 1526	5. 174	. 2697 -1	30. 92	2. 254908	79, 340	10. 94	. 4116	32. 24	5. 085	6. 340	.5024 -1	. 2761 -1
5. 28	. 1372 -2	. 9019 -2	. 1521	5. 184	. 2677 -1	31. 16	2. 255559	79, 426	10. 92	. 4115	32. 36	5. 086	6. 360	.4987 -1	. 2750 -1
5. 29	. 1356 -2	. 8947 -2	. 1516	5. 195	. 2657 -1	31. 41	2. 256207	79, 511	10. 90	. 4114	32. 48	5. 090	6. 381	.4950 -1	. 2740 -1
5. 30	. 1341 -2	. 8875 -2	. 1511	5. 205	. 2637 -1	31, 65	2. 256852	79, 597	10. 88	. 4113	32. 61	5. 093	6. 401	. 4913 -1	. 2730 -1
5. 31	. 1326 -2	. 8805 -2	. 1506	5. 215	. 2617 -1	31, 89	2. 257494	79, 681	10. 86	. 4112	32. 73	5. 096	6. 422	. 4876 -1	. 2720 -1
5. 32	. 1311 -2	. 8734 -2	. 1501	5. 225	. 2598 -1	32, 14	2. 258133	79, 765	10. 83	. 4110	32. 85	5. 099	6. 443	. 4840 -1	. 2710 -1
5. 33	. 1297 -2	. 8665 -2	. 1497	5. 235	. 2579 -1	32, 39	2. 258769	79, 850	10. 81	. 4109	32. 98	5. 102	6. 464	. 4804 -1	. 2700 -1
5. 34	. 1282 -2	. 8596 -2	. 1492	5. 246	. 2560 -1	32, 64	2. 259401	79, 934	10. 79	. 4108	33. 10	5. 105	6. 484	. 4768 -1	. 2690 -1
5. 35	. 1268 -1	. 8528 -2	. 1487	5. 256	. 2541 -1	32. 89	2. 260031	80. 018	10. 77	. 4107	33. 23	5. 108	6. 505	.4733 -1	. 2680 -1
5. 36	. 1254 -2	. 8461 -2	. 1482	5. 266	. 2522 -1	33. 14	2. 260658	80. 101	10. 75	. 4106	33. 35	5. 111	6. 526	.4697 -1	. 2670 -1
5. 37	. 1240 -2	. 8394 -2	. 1478	5. 276	. 2504 -1	33. 40	2. 261281	80. 185	10. 73	. 4104	33. 48	5. 113	6. 547	.4663 -1	. 2660 -1
5. 38	. 1227 -1	. 8327 -2	. 1473	5. 286	. 2485 -1	33. 66	2. 261902	80. 268	10. 71	. 4103	33. 60	5. 116	6. 568	.4628 -1	. 2650 -1
5. 39	. 1213 -2	. 8262 -2	. 1468	5. 296	. 2467 -1	33. 91	2. 262520	80. 351	10. 69	. 4102	33. 73	5. 119	6. 589	.4594 -1	. 2641 -1
5. 40	. 1200 -2	. 8197 -2	. 1464	5. 307	. 2449 -1	34. 17	2. 263135	80. 434	10. 67	. 4101	33. 85	5. 122	6. 610	.4560 -1	. 2631 -1
5. 41	. 1187 -2	. 8132 -2	. 1459	5. 317	. 2431 -1	34. 44	2. 263747	80. 515	10. 65	. 4100	33. 98	5. 125	6. 631	.4526 -1	. 2621 -1
5. 42	. 1174 -2	. 8068 -2	. 1454	5. 327	. 2413 -1	34. 70	2. 264356	80. 597	10. 63	. 4099	34. 11	5. 127	6. 652	.4493 -1	. 2612 -1
5. 43	. 1161 -2	. 8005 -2	. 1450	5. 337	. 2395 -1	34. 97	2. 264962	80. 680	10. 61	. 4098	34. 23	5. 130	6. 673	.4460 -1	. 2602 -1
5. 44	. 1148 -2	. 7942 -2	. 1445	5. 347	. 2378 -1	35. 23	2. 265566	80. 760	10. 59	. 4096	34. 36	5. 133	6. 694	.4427 -1	. 2593 -1
5. 46 5. 47 5. 48 5. 49	. 1135 -2 . 1123 -2 . 1111 -2 . 1099 -2 . 1087 -2	. 7880 -1 . 7818 -2 . 7757 -2 . 7697 -2 . 7637 -2	. 1441 . 1436 . 1432 . 1427 . 1423	5. 357 5. 368 5. 378 5. 388 5. 398	. 2361 -1 . 2344 -1 . 2326 -1 . 2309 -1 . 2293 -1	35. 50 35. 77 36. 04 36. 32 36. 59	2. 266166 2. 266764 2. 267359 2. 267951 2. 268540	80. 842 80. 923 81. 004 81. 064 81. 165	10. 57 10. 55 10. 53 10. 51 10. 50	. 4095 . 4094 . 4093 . 4092 . 4091	34. 49 34. 61 34. 74 34. 87 35. 00	5. 136 5. 138 5. 141 5. 144 5. 146	6. 715 6. 737 6. 758 6. 779 6. 800	. 4395 -1 . 4362 -1 . 4330 -1 . 4299 -1 . 4267 -1	. 2583 -1 . 2574 -1 . 2565 -1 . 2556 -1 . 2546 -1
5. 51 5. 52 5. 53 5. 54 5. 55	. 1075 -2 . 1063 -2 . 1052 -2 . 1040 -1 . 1029 -2	. 7578 -1 . 7519 -2 . 7460 -2 . 7403 -2 . 7345 -2	. 1418 . 1414 . 1410 . 1405 . 1401	5. 408 5. 418 5. 429 5. 439 5. 449	. 2276 -1 . 2260 -1 . 2243 -1 . 2227 -1 . 2211 -1	36. 87 37. 15 37. 43 37. 71 38. 00	2. 269127 2. 269711 2. 270292 2. 270870 2. 271446	81, 245 81, 324 81, 404 81, 484 81, 563	10. 48 10. 46 10. 44 10. 42 10. 40	. 4090 . 4089 . 4088 . 4086 . 4085	35.38 35.51	5. 149 5. 152 5. 154 5. 157 5. 159	6. 822 6. 843 6. 865 6. 886 6. 908	.4236 -1 .4205 -1 .4175 -1 .4144 -1 .4114 -1	. 2537 -1 . 2528 -1 . 2519 -1 . 2510 -1 . 2501 -1
5. 56 5. 57 5. 58 5. 59	. 1007 -2 . 9961 -3 . 9853 -3 . 9748 -3	. 7289 -3 . 7232 -2 . 7177 -2 . 7121 -1 . 7067 -2	. 1397 . 1392 . 1388 . 1384 . 1379	5. 459 5. 469 5. 479 5. 490 5. 500	. 2195 -1 . 2179 -1 . 2163 -1 . 2148 -1 . 2132 -1	38. 28 38. 57 38. 86 39. 15 39. 44	2. 272019 2. 272589 2. 273157 2. 273722 2. 274285	81. 641 81. 720 81. 798 81. 876 81. 955	10. 38 10. 36 10. 34 10. 32 10. 31	. 4084 . 4083 . 4082 . 4081 . 4080	36. 03 36. 16	5. 162 5. 165 5. 167 5. 170 5. 172	6. 929 6. 951 6. 973 6. 994 7. 016	4084 -1 4054 -1 4025 -1 3996 -1 3967 -1	. 2492 -1 . 2483 -1 . 2475 -1 . 2466 -1 . 2457 -1
5. 60 5. 61 5. 62 5. 63 5. 64	. 9643 -3 . 9540 -3 . 9438 -3 . 9337 -3 . 9237 -3	. 7012 -3 . 6959 -3 . 6905 -3 . 6853 -3 . 6800 -3	. 1375 . 1371 . 1367 . 1363 . 1358	5. 510 5. 520 5. 530 5. 540 5. 551	. 2117 -1 . 2102 -1 . 2087 -1 . 2072 -1 . 2057 -1	39. 74 40. 04 40. 34 40. 64 40. 94	2. 274844 2. 275402 2. 275957 2. 276509 2. 277058	82. 032 82. 109 82. 187 82. 263 82. 340	10. 29 10. 27 10. 25 10. 23 10, 21	. 4079 . 4078 . 4077 . 4076 . 4075	36. 55 36. 68 36. 81	5. 175 5. 177 5. 180 5. 182 5. 185	7. 038 7. 060 7. 082 7. 103 7. 125	.3938 -1 .3910 -1 .3882 -1 .3854 -1 .3826 -1	. 2449 -1 . 2440 -1 . 2431 -1 . 2423 -1 . 2414 -1
5. 65 5. 66 5. 67 5. 68 5. 69	. 9139 -# . 9041 -# . 8945 -# . 8850 -# . 8756 -#	. 6748 -2 . 6697 -9 . 6646 -3 . 6596 -2 . 6545 -2	. 1354 . 1350 . 1346 . 1342 . 1338	5. 561 5. 571 5. 581 5. 591 5. 601	. 2042 -1 . 2028 -1 . 2013 -1 . 1999 -1 . 1984 -1	41. 25 41. 55 41. 86 42. 17 42. 48	2. 277606 2. 278150 2. 278692 2. 279232 2. 279769	82. 417 82. 493 82. 569 82. 645 82. 720	10. 20 10. 18 10. 16 10. 14 10. 12	. 4074 . 4073 . 4072 . 4071 . 4070	37. 21 37. 34 37. 47	5. 187 5. 190 5. 192 5. 195 5. 197	7. 147 7. 169 7. 191 7. 213 7. 236	. 3798 -1 . 3771 -1 . 3744 -1 . 3717 -1 . 3691 -1	. 2406 -1 . 2397 -1 . 2389 -1 . 2381 -1 . 2372 -1
5. 70 5. 71 5. 72 5. 73 5. 74	.8663 -3 .8572 -3 .8481 -3 .8392 -3 .8303 -3	. 6496 -2 . 6447 -2 . 6398 -2 . 6350 -2 . 6302 -2	. 1334 . 1330 . 1326 . 1322 . 1318	5. 632 5. 642	. 1970 -1 . 1956 -1 . 1942 -1 . 1929 -1 . 1915 -1	43. 75	2. 280304 2. 280836 2. 281366 2. 281894 2. 282419	82. 795 82. 871 82. 946 83. 020 83. 095	10. 10 10. 09 10. 07 10. 05 10. 03	. 4069 . 4068 . 4067 . 4066 . 4065	37. 87 38. 00 38. 14	5. 200 5. 202 5. 205 5. 207 5. 209	7. 258 7. 280 7. 302 7. 324 7. 347	.3664 -1 .3638 -1 .3612 -1 .3586 -1 .3561 -1	

TABLE II.—SUPERSONIC FLOW—Continued

							$\gamma = i/5$			- 1		1	I	1	
M or M ₁	$\frac{p}{p_i}$	<u>p</u>	$\frac{T}{T_i}$	β	$\frac{q}{p_0}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_*}$	y	μ	М1	<u>p</u> 1	<u>ρ1</u> ρι	$\frac{T_2}{T_1}$		$\frac{p_1}{p_{i_1}}$
5. 75 5. 76 5. 77 5. 78 5. 79	.8216 -3 .8130 -3 .8044 -1 .7960 -1 .7876 -1	. 6254 -2 . 6207 -2 . 6161 -2 . 6114 -2 . 6069 -3	. 1314 . 1310 . 1306 . 1302 . 1298	5. 662 5. 673 5. 683 5. 693 5. 703	. 1902 -1 . 1888 -1 . 1875 -1 . 1862 -1 . 1848 -1	44. 40 44. 72 45. 05 45. 38 45. 72	2. 282942 2. 283462 2. 283980 2. 284496 2. 285009	83. 169 83. 243 83. 317 83. 391 83. 463	10. 02 9, 998 9, 960 9, 963 9, 946	. 4064 . 4063 . 4062 . 4061 . 4060	38. 41 38. 54 38. 68 38. 81 38. 94	5. 212 5. 214 5. 217 5. 219 5. 221	7. 369 7. 392 7. 414 7. 436 7. 459	.3536 -1 .3510 -1 .3486 -1 .3461 -1 .3436 -1	. 2324 -1 . 2316 -1 . 2308 -1 . 2300 -1 . 2292 -1
5. 80 5. 81 5. 82 5. 83 5. 84	.7794 -1 .7713 -1 .7632 -1 .7553 -1	. 6023 -2 . 5978 -2 . 5934 -2 . 5889 -2 . 5846 -2	. 1294 . 1290 . 1286 . 1282 . 1279	5. 713 5. 723 5. 733 5. 744 5. 754	. 1835 -1 . 1823 -1 . 1810 -1 . 1797 -1 . 1784 -1	46. 05 46. 39 46. 72 47. 07 47. 41	2. 285520 2. 286029 2. 286535 2. 287040 2. 287542	83, 537 83, 609 83, 683 83, 755 83, 827	9. 928 9. 911 9. 894 9. 877 9. 860	. 4059 . 4059 . 4058 . 4057 . 4056	39. 08 39. 22 39. 35 39. 49 39. 62	5. 224 5. 226 5. 228 5. 231 5. 233	7. 481 7. 504 7. 527 7. 549 7. 572	.3412 -1 .3388 -1 .3364 -1 .3340 -1 .3317 -1	. 2284 -J . 2277 -L . 2269 -L . 2261 -L . 2254 -L
5. 85 5. 86 5. 87 5. 88 5. 89	. 7396 -1 . 7320 -3 . 7244 -1 . 7169 -1 . 7095 -1	. 5802 -2 . 5759 -1 . 5716 -2 . 5674 -2 . 5632 -2	. 1275 . 1271 . 1267 . 1263 . 1260	5. 764 5. 774 5. 784 5. 794 5. 804	. 1772 -1 . 1760 -1 . 1747 -1 . 1735 -4 . 1723 -1	47. 75 48. 10 48. 45 48. 80 49. 15	2. 288041 2. 288539 2. 289034 2. 289527 2. 290018	83, 899 83, 971 84, 042 84, 114 84, 185	9. 842 9. 826 9. 809 9. 792 9. 775	. 4055 . 4054 . 4053 . 4052 . 4051	39. 76 39. 90 40. 03 40. 17 , 40. 31	5. 235 5. 237 5. 240 5. 242 5. 244	7. 595 7. 618 7. 640 7. 663 7. 686	. 3293 -1 . 3270 -1 . 3247 -1 . 3225 -1 . 3202 -1	. 2246 -1 . 2238 -1 . 2231 -1 . 2223 -1 . 2216 -1
5. 90 5. 91 5. 92 5. 93 5. 94	. 7021 -3 . 6949 -3 . 6877 -3 . 6807 -3 . 6737 -3	. 5590 -2 . 5549 -2 . 5508 -2 . 5468 -2 . 5428 -2	. 1256 . 1252 . 1249 . 1245 . 1241	5. 815 5. 825 5. 835 5. 845 5. 855	. 1711 -1 . 1699 -1 . 1687 -1 . 1676 -1 . 1664 -1	49. 51 49. 86 50. 22 50. 59 50. 95	2. 290507 2. 290993 2. 291477 2. 291960 2. 292440	84. 257 84. 327 84. 398 84. 468 84. 539	9. 758 9. 742 9. 725 9. 708 9. 692	. 4050 . 4049 . 4049 . 4048 . 4047	40. 45 40. 58 40. 72 40. 86 41. 00	5. 246 5. 249 5. 251 \$. 253 5. 255	7. 709 7. 732 7. 755 7. 778 7. 801	.3180 -1 .3157 -1 .3135 -1 .3113 -1 .3092 -1	. 2208 -1 . 2201 -1 . 2194 -1 . 2186 -1 . 2179 -1
5. 95 5. 96 5. 97 5. 98 5. 99	. 6668 -1 . 6599 -1 . 6532 -1 . 6465 -1 . 6399 -1	. 5388 -1 . 5348 -2 . 5309 -2 . 5270 -1 . 5232 -1	. 1238 . 1234 . 1230 . 1227	5. 865 5. 876 5. 886 5. 896 5. 906	. 1652 -1 . 1641 -1 . 1630 -1 . 1618 -1 . 1607 -1	51. 32 51. 68 52. 05 52. 43 52. 80	2. 292918 2. 293394 2. 293967 2. 294339 2. 294809	84. 609 84. 679 84. 748 84. 817 84. 887	9. 675 9. 659 9. 643 9. 626 9. 610	. 4046 . 4045 . 4044 . 4043 . 4042	41. 14 41. 28 41. 41 41. 55 41. 69	5. 257 5. 260 5. 262 5. 264 5. 266	7. 824 7. 847 7. 871 7. 894 7. 917	. 3070 -1 . 3049 -1 . 3028 -1 . 3007 -1 . 2986 -1	. 2172 -1 . 2165 -1 . 2157 -1 . 2150 -1 . 2143 -1
6. 00 6. 01 6. 02 6. 03 6. 04	.6334 -4 .6269 -4 .6205 -4 .6142 -3 .6080 -4	.5194 -2 .5156 -1 .5118 -2 .5081 -2 .5044 -3	. 1220 . 1216 . 1212 . 1209	5. 916 5. 926 5. 936 5. 947 5. 957	.1596 -1 .1585 -1 .1574 -1 .1563 -1 .1553 -1	53. 18 53. 56 53. 94 54. 32 54. 71	2. 295276 2. 295742 2. 296205 2. 296667 2. 297126	84. 955 85. 025 85. 093 85. 162 85. 230	9. 594 9. 578 9. 562 9. 546 9. 530	. 4042 . 4041 . 4040 . 4039 . 4038	41. 83 41. 97 42. 11 42. 25 42. 40	5. 268 5. 270 5. 273 5. 275 5. 277	7. 941 7. 964 7. 987 8. 011 8. 034	. 2965 -1 . 2945 -1 . 2924 -1 . 2904 -1 . 2884 -1	. 2136 -1 . 2129 -1 . 2122 -1 . 2115 -1 . 2108 -1
6. 05 6. 06 6. 07 6. 08 6. 09	.6018 -3 .5957 -3 .5897 -3 .5838 -3 .5779 -3	.5008 -1 .4971 -2 .4935 -2 .4900 -2 .4864 -2	. 1202 . 1198 . 1195 . 1191	5. 967 5. 977 5. 987 5. 997 6. 007	. 1542 -1 . 1531 -1 . 1521 -1 . 1511 -1 . 1500 -1	55. 10 55. 49 55. 88 56. 28 56. 68	2. 297583 2. 298039 2. 298492 2. 298944 2. 299393	85. 297 85. 366 85. 433 85. 500 85. 568	9. 514 9. 498 9. 482 9. 467 9. 451	. 4037 . 4037 . 4036 . 4035 . 4034	42. 54 42. 68 42. 82 42. 96 43. 10	5. 279 5. 281 5. 283 5. 285 5. 287	8. 058 8. 081 8. 105 8. 129 8. 152	. 2864 -1 . 2844 -1 . 2825 -1 . 2806 -1 . 2786 -1	. 2101 -1 . 2094 -1 . 2088 -1 . 2081 -1 . 2074 -1
6. 10 6. 11 6. 12 6. 13 6. 14	.5721 -3 .5663 -1 .5606 -3 .5550 -3 .5494 -3	. 4829 -3 . 4795 -3 . 4760 -3 . 4726 -3 . 4692 -3	. 1185 . 1181 . 1178 . 1174	6. 017 6. 028 6. 038 6. 048 6. 058	.1490 -1 .1480 -1 .1470 -1 .1460 -1 .1450 -1	57. 08 57. 48 57. 88 58. 29 58. 70	2. 299841 2. 300286 2. 300730 2. 301172 2. 301612	85. 635 85. 702 85. 768 85. 834 85. 901	9. 435 9. 420 9. 404 9. 389 9. 373	. 4033 . 4033 . 4032 . 4031 . 4030	43. 25 43. 39 43. 53 43. 67 43. 82	5. 289 5. 291 5. 293 5. 295 5. 297	8. 176 8. 200 8. 223 8. 247 8. 271	. 2767 -1 . 2748 -1 . 2730 -1 . 2711 -1 . 2692 -1	. 2067 -1 . 2061 -1 . 2054 -1 . 2047 -1 . 2041 -1
6. 15 6. 16 6. 17 6. 18 6. 19	. 5439 -1 . 5385 -1 . 5331 -3 . 5278 -3 . 5225 -1	. 4658 -1 . 4625 -2 . 4592 -1 . 4559 -1 . 4527 -1	. 1168 . 1164 . 1161 . 1158	6. 068 6. 078 6. 088 6. 099 6. 109	. 1440 -1 . 1430 -1 . 1421 -1 . 1411 -1 . 1402 -1	59. 11 59. 53 59. 94 60. 36 60. 79	2. 302050 2. 302486 2. 302920 2. 303353 2. 303783	85, 967 86, 033 86, 099 86, 164 86, 229	9. 358 9. 343 9. 327 9. 312 9. 297	. 4029 . 4029 . 4028 . 4027 . 4026	43. 96 44. 10 44. 25 44. 39 44. 54	5. 299 5. 301 5. 303 5. 305 5. 307	8. 295 8. 319 8. 343 8. 367 8. 391	. 2674 -1 . 2656 -1 . 2638 -1 . 2620 -1 . 2602 -1	. 2034 -1 . 2028 -1 . 2021 -1 . 2015 -1 . 2008 -1
6. 20 6. 21 6. 22 6. 23 6. 24	.5173 -3 .5122 -3 .5071 -3 .5021 -3 .4971 -3	. 4495	. 1151 . 1148 1144 1141	6. 119 6. 129 6. 139 6. 149 6. 159	. 1392 -1 . 1383 -1 . 1373 -1 . 1364 -1 . 1355 -1	61. 21 61. 64 62. 07 62. 50 62. 93	2. 304212 2. 304639 2. 305064 2. 305487 2. 305908	86. 295 86. 360 86. 424 86. 490 86. 554	9. 282 9. 267 9. 252 9. 237 9. 222	. 4025 . 4025 . 4024 . 4023 . 4022	44. 68 44. 82 44. 97 45. 12 45. 26	5. 309 5. 311 5. 313 5. 315 5. 317	8. 415 8. 439 8. 464 8. 488 8. 512	. 2584 -1 . 2567 -1 . 2550 -1 . 2532 -1 . 2515 -1	. 2002 -1 . 1995 -1 . 1989 -1 . 1983 -1 . 1977 -1
6. 25 6. 26 6. 27 6. 28 6. 29	. 4922 -3 . 4874 -3 . 4825 -1 . 4778 -1 . 4731 -3	.4338 - .4307 - .4277 - .4246 -	2 .1135 2 .1132 2 .1128 2 .1125	6. 169 6. 180 6. 190 6. 200 6. 210	. 1346 -1 . 1337 -1 . 1328 -1 . 1319 -1 . 1310 -1	63. 37 63. 81 64. 25 64. 69 65. 14	2. 306328 2. 306746 2. 307162 2. 307576 2. 307989	86. 618 86. 683 86. 746 86. 810 86. 874	9. 207 9. 192 9. 177 9. 163 9. 148	. 4022 . 4021 . 4020 . 4019 . 4019	45. 41 45. 55 45. 70 45. 84 45. 99	5. 319 5. 321 5. 323 5. 325 5. 327	8. 536 8. 561 8. 585 8. 610 8. 634	.2498 -1 .2482 -1 .2465 -1 .2448 -1 .2432 -1	. 1970 -1 . 1964 -1 . 1958 -1 . 1952 -1 . 1945 -1
6. 30 6. 31 6. 32 6. 33 6. 34	.4684 -4 .4638 -4 .4593 -1 .4548 -3 .4504 -1	.4187 - .4158 - .4128 - .4100 -	3 .1119 2 .1116 2 .1113 2 .1109	6. 220 6. 230 6. 240 6. 251 6. 261	. 1302 -1 . 1293 -1 . 1284 -1 . 1276 -1 . 1267 -1	65. 59 66. 04 66. 50 66. 95 67. 41	2. 308400 2. 308809 2. 309216 2. 309622 2. 310026	86. 937 87. 000 87. 063 87. 126 87. 189	9. 133 9. 119 9. 104 9. 090 9. 075	. 4018 . 4017 . 4016 . 4016 . 4015	46. 14 46. 29 46. 43 46. 58 46. 73	5. 329 5. 331 5. 332 5. 334 5. 336	8. 658 8. 683 8. 708 8. 732 8. 757	. 2416 -1 . 2399 -1 . 2383 -1 . 2367 -1 . 2352 -1	. 1939 -1 . 1933 -1 . 1927 -1 . 1921 -1 . 1915 -1
6. 35 6. 36 6. 37 6. 38 6. 39	. 4460 -4 . 4416 -4 . 4373 -4 . 4331 -4 . 4288 -4	.4042 - .4014 - .3986 - .3958 -	. 1103 . 1100 . 1097	6. 271 6. 281 6. 291 6. 301 6. 311	.1259 -1 .1250 -1 .1242 -1 .1234 -1 .1226 -1	67. 88 68. 34 68. 81 69. 28 69. 75	2. 310428 2. 310828 2. 311227 2. 311625 2. 312020	87, 251 87, 315 87, 376 87, 438 87, 499	9. 061 9. 046 9. 032 9. 018 9. 004	. 4014 . 4014 . 4013 . 4012 . 4011	46. 88 47. 02 47. 17 47. 32 47. 47	5. 338 5. 340 5. 342 5. 344 5. 345	8, 781 8, 806 8, 831 8, 856 8, 881	. 2336 -1 . 2320 -1 . 2305 -1 . 2290 -1 . 2274 -1	. 1909 -1 . 1903 -1 . 1897 -1 . 1891 -1 . 1886 -1
6. 40 6. 41 6. 42 6. 43 6. 44	. 4247 -1 . 4206 -1 . 4165 -1 . 4125 -1 . 4085 -1	. 3904 . 3877 . 3850 . 3823	. 1088 -2 . 1085	6. 321 6. 332 6. 342 6. 352 6. 362	. 1218 -4 . 1210 -1 . 1202 -1 . 1194 -1 . 1186 -1	70. 23 70. 57 71. 19 71. 67 72. 16	2. 312414 2. 312906 2. 313197 2. 313586 2. 313973	87. 561 87. 623 87. 684 87. 745 87. 806	8. 989 8. 975 8. 961 8. 947 8. 933	. 4011 . 4010 . 4009 . 4009 . 4008	47. 62 47. 77 47. 92 48. 07 48. 22	5. 347 5. 349 5. 351 5. 353 5. 354	8, 905 8, 930 8, 955 8, 960 9, 005	.2259 -1 .2244 -1 .2230 -1 .2215 -1 .2200 -1	. 1880 -1 . 1874 -1 . 1868 -1 . 1862 -1 . 1857 -1
6. 45 6. 46 6. 47 6. 48 6. 49	. 4045 . 4006 . 3968 . 3930 . 3892	3771 3745 3719 3693	-3 .1073 -1 .1070 -1 .1067 -2 .1064 -1 .1061	6. 372 6. 382 6. 392 6. 402 6. 412	.1178 -1 .1170 -1 .1163 -1 .1155 -1 .1148 -1	74.13	2. 314359 2. 314743 2. 315126 2. 315507 2. 315886	87. 867 87. 927 87. 988 88. 048 88. 108	8. 919 8. 905 8. 891 8. 877 8. 864	. 4007 . 4007 . 4006 . 4005 . 4004	48. 37 48. 52 48. 67 48. 82 48. 97	5. 356 5. 358 5. 360 5. 362 5. 363	9. 031 9. 056 9. 081 9. 106 9. 131	.2186 -1 .2171 -1 .2157 -1 .2143 -1 .2129 -1	. 1851 -1 . 1845 -1 . 1840 -1 . 1834 -1 . 1828 -1
6. 50 6. 51 6. 52 6. 53 6. 54	. 3855 - . 3818 - . 3781 - . 3745 - . 3709 -	. 3643 . 3618 . 3593 . 3568	*****	6. 423 6. 433 6. 443 6. 453 6. 463	.1140 -1 .1133 -1 .1125 -1 .1118 -1 .1111 -1	76.66	2. 316264 2. 316640 2. 317015 2. 317388 2. 317760	88. 288 88. 347	8, 850 8, 836 8, 823 8, 809 8, 795	. 4004 . 4003 . 4002 . 4002 . 4001	49. 13 49. 28 49. 43 49. 58 49. 73	5. 365 5. 367 5. 369 5. 370 5. 372	9. 156 9. 182 9. 207 9. 232 9. 258	.2115 -1 .2101 -1 .2087 -1 .2073 -1 .2060 -1	. 1823 -1 . 1817 -1 . 1812 -1 . 1806 -1 . 1801 -1
6. 55 6. 56 6. 57 6. 58 6. 59	. 3674 - . 3639 - . 3604 - . 3570 - . 3536 -	. 3520 . 3496 . 3472 . 3449	(6. 473 6. 483 6. 493 6. 504 6. 514	.1103 -1 .1096 -1 .1089 -1 .1082 -1 .1075 -1	78. 21 78. 74 79. 26	2. 318130 2. 318499 2. 318866 2. 319232 2. 319596	88. 525 88. 584 88. 642	8. 782 8. 768 8. 755 8. 741 8. 728	. 4000 . 4000 . 3999 . 3998	49. 89 50. 04 50. 19 50. 35 50. 50	5. 374 5. 375 5. 377 5. 379 5. 381	9. 283 9. 309 9. 334 9. 360 9. 386	. 2047 -1 . 2033 -1 . 2020 -1 . 2007 -1 . 1994 -1	.1774 -1
6. 60 6. 61 6. 62 6. 63 6. 64	. 3503 - . 3470 - . 3437 - . 3404 -	3402 3 .3379 3 .3356 3 .3333	-2 .1030 -2 .1027 -2 .1024 -2 .1021 -2 .1019	6. 524 6. 534 6. 544 6. 554 6. 564	.1068 -1 .1061 -1 .1054 -1 .1048 -1	80.86 81.40 81.94	2. 319959 2. 320320 2. 320679 2. 321038 2. 321395	88.818 88.876 88.934	8. 715 8. 702 8. 688 8. 675 8. 662	. 3997 . 3996	50. 65 50. 81 50. 96 51. 12 51. 27	5. 382 5. 384 6. 386 5. 387 5. 389	9. 411 9. 437 9. 463 9. 488 9. 514	.1981 -1 .1968 -1 .1955 -1 .1943 -1 .1930 -4	.1758 -1 .1753 -1

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

							γ=7	/5							
M or M ₁	<u>p</u>	<u>ρ</u> ρι	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	1. a.	ν	μ	M ₂	<u>p</u> 2	<u>ρ1</u> ρ1	$\frac{T_3}{T_1}$	$\frac{p_{t_1}}{p_{t_1}}$	$\frac{p_1}{p_{I_2}}$
6, 65 6, 66 6, 67 6, 69	3 .3309 - 7 .3278 - 3 .3247 -	3 . 3267 - 3 . 3245 - 3 . 3223 -	1 . 1013 2 . 1010 2 . 1008	6. 574 6. 584 6. 595 6. 605 6. 615	. 1034	83. 58 84. 13 84. 68	2. 321750 2. 322104 2. 322456 2. 322807 2. 323157	89. 049 89. 106 89. 164 89. 221 89. 278	8. 649 8. 636 8. 623 8. 610 8. 597	. 3994 . 3993 . 3993 . 3992 . 3992	51. 43 51. 58 51. 74 51. 89 52. 05	5. 391 5. 392 5. 394 5. 395 5. 397	9. 540 9. 566 9. 592 9. 618	. 1918	. 1737 -1 . 1732 -1 . 1727 -1
6. 70 6. 71 6. 72 6. 73 6. 74	.3157 - .3127 - .3098 -	3158 3137 3116	9995 -1 9968 -1 9942 -1	6. 625 6. 635 6. 645 6. 655 6. 665	. 1001 -1 . 9950 -2 . 9886 -2 . 9823 -2 . 9761 -2		2. 323505 2. 323852 2. 324198 2. 324542 2. 324884	89. 335 89. 391 89. 448 89. 504 89. 561	8. 584 8. 571 8. 558 8. 545 8. 532	. 3991 . 3990 . 3990 . 3989 . 3988	52. 21 52. 36 52. 52 52. 68 52. 83	5. 399 5. 400 5. 402 5. 403 5. 405	9. 644 9. 670 9. 696 9. 722 9. 748 9. 775	. 1869 -1 . 1857 -1 . 1845 -1 . 1833 -1 . 1821 -1 . 1810 -1	.1716 -1 .1711 -1 .1706 -1 .1701 -1
6. 75 6. 76 6. 77 6. 78 6. 79	. 3041 = . 3013 = . 2985 = . 2957 = . 2930 = .	3055 -1 3034 -2 3014 -2 2994 -2	9862 9836 9810	6. 676 6. 686 6. 696 6. 706 6. 716	. 9699 -2 . 9637 -2 . 9576 -2 . 9515 -2 . 9454 -2	88. 66 89. 24 89. 82 90. 41 91. 00	2. 325226 2. 325566 2. 325904 2. 326242 2. 326578	89. 617 89. 673 89. 729 89. 784 89. 840	8. 520 8. 507 8. 494 8. 482 8. 469	. 3988 . 3987 . 3987 . 3986 . 3986	52, 99 53, 15 53, 31 53, 46 53, 62	5. 407 5. 408 5. 410 5. 411 5. 413	9. 801 9. 827 9. 853 9. 880 9. 906	. 1798 -1 . 1786 -1 . 1775 -1 . 1764 -1 . 1753 -1	. 1691 -1 . 1686 -1 . 1681 -1 . 1677 -1
6. 80 6. 81 6. 82 6. 83 6. 84	. 2902 -2 . 2876 -2 . 2849 -3 . 2823 -3 . 2797 -3	. 2955 -2 . 2935 -2 . 2916 -2 . 2897 -2	. 9732 -1 . 9706 -1 . 9681 -1 . 9655 -1	6. 726 6. 736 6. 746 6. 756 6. 767	. 9395 -2 . 9335 -2 . 9276 -2 . 9218 -2 . 9160 -2	91. 59 92. 19 92. 79 93. 39 94. 00	2. 326912 2. 327245 2. 327577 2. 327908 2. 328237	89. 895 89. 950 90. 005 90. 060 90. 116	8. 457 8. 444 8. 432 8. 419 8. 407	. 3985 . 3984 . 3984 . 3983 . 3983	53. 78 53. 94 54. 10 54. 26 54. 42	5. 415 5. 416 5. 418 5. 419 5. 421	9. 933 9. 959 9. 986 10. 01 10. 04	. 1741 -1 . 1730 -1 . 1719 -1 . 1709 -1 . 1698 -1	. 1667 -1 . 1662 -1 . 1657 -1
6, 85 6, 86 6, 87 6, 88 6, 89	. 2771 -3 . 2746 -3 . 2720 -3 . 2696 -3 . 2671 -3	. 2840 -2 . 2821 -2 . 2803 -2	. 9604 -1 . 9579 -1 . 9554 -1 . 9529 -1	6, 777 6, 787 6, 797 6, 807 6, 817	. 9102 -1 . 9045 -2 . 8988 -2 . 8931 -2 . 8875 -2	94. 61 95. 22 95. 83 96. 45 97. 08	2. 328565 2. 328892 2. 329217 2. 329541 2. 329864	90. 170 90. 225 90. 279 90. 333 90. 387	8. 394 8. 362 8. 370 8. 357 8. 345	.3982 .3981 .3981 .3980 .3980	54. 58 54. 74 54. 90 55. 06 55. 22	5. 422 5. 424 5. 425 5. 427 5. 428	10. 07 10. 09 10. 12 10. 15 10. 17	. 1687 -1 . 1676 -1 . 1666 -1 . 1655 -1 . 1645 -1	. 1643 -1 . 1638 -1 . 1633 -1 . 1628 -1 . 1624 -1
6. 90 6. 91 6. 92 6. 93 6. 94	. 2646 -4 . 2622 -4 . 2598 -1 . 2575 -4 . 2551 -2	. 2785 -1 . 2766 -2 . 2748 -2 . 2730 -2 . 2713 -2	. 9504 -1 . 9479 -1 . 9454 -1 . 9430 -1 . 9405 -1	6, 827 6, 837 6, 847 6, 857 6, 868	. 8820 -t . 8764 -1 . 8710 -2 . 8655 -1 . 8601 -2	97, 70 98, 33 98, 96 99, 60 100, 2	2. 330186 2. 330506 2. 330825 2. 331143 2. 331460	90. 441 90. 495 90. 549 90. 602 90. 655	8. 333 8. 321 8. 309 8. 297 8. 285	. 3979 . 3979 . 3978 . 3977 . 3977	55, 38 55, 54 55, 70 55, 86 56, 02	5. 430 5. 431 5. 433 5. 434 5. 436	10. 20 10. 23 10. 25 10. 28 10. 31	. 1634 -1 . 1624 -1 . 1614 -1 . 1604 -1 . 1504 -1	. 1619 -1 . 1614 -1 . 1610 -1 . 1605 -1 . 1601 -1
6, 96 6, 97 6, 98 6, 99	. 2505 -2 . 2482 -1 . 2460 -8 . 2438 -1	. 2677 -1 . 2660 -2 . 2643 -2 . 2626 -2	. 9380 -1 . 9356 -1 . 9332 -1 . 9307 -1 . 9283 -1	6, 878 6, 888 6, 898 6, 908 6, 918	. 8548 -2 . 8495 -1 . 8442 -2 . 8389 -2 . 8337 -1	100. 9 101. 5 102. 2 102. 8 103. 5	2. 331775 2. 332089 2. 332402 2. 332714 2. 333024	90, 709 90, 762 90, 815 90, 867 90, 920	8. 273 8. 261 8. 249 8. 237 8. 225	.3976 .3976 .3975 .3975 .3974	56, 19 56, 35 56, 51 56, 67 56, 84	5. 437 5. 439 5. 440 5. 442 5. 443	10. 33 10. 36 10. 39 10. 42 10. 44	. 1584 -1 . 1574 -1 . 1564 -1 . 1554 -1 . 1545 -1	. 1596 -1 . 1592 -1 . 1587 -1 . 1582 -1 . 1578 -1
7. 01 7. 02 7. 03 7. 04 7. 05	. 2394 -1 . 2372 -1 . 2351 -1 . 2330 -1	. 2609 -2 . 2592 -2 . 2575 -2 . 2559 -2 . 2542 -2	. 9259 -1 . 9235 -1 . 9211 -1 . 9186 -1 . 9164 -1	6. 928 6. 938 6. 948 6. 959 6. 969	. 8286 -1 . 8234 -2 . 8183 -2 . 8133 -2 . 8082 -2	104. 1 104. 8 105. 5 106. 1 106. 8	2. 333333 2. 333641 2. 333948 2. 334254 2. 334558	90. 973 91. 026 91. 078 91. 130 91. 182	8. 213 8. 201 8. 190 8. 178 8. 166	.3974 .3973 .3973 .3972 .3971	57. 00 57. 16 57. 33 57. 49 57. 66	5. 444 5. 446 5. 447 5. 449 5. 450	10. 47 10. 50 10. 52 10. 55 10. 58	. 1535 -1 . 1526 -1 . 1516 -1 . 1507 -1 . 1497 -1	. 1574 -1 . 1569 -1 . 1565 -1 . 1560 -1 . 1556 -1
7. 06 7. 07 7. 08 7. 09 7. 10	.2288 -3 .2267 -3 .2247 -3 .2227 -3	. 2510 -1 . 2494 -2 . 2478 -2 . 2462 -2	.9140 -1 .9117 -1 .9093 -1 .9070 -1 .9047 -1	6, 979 6, 989 6, 999 7, 009 7, 019	. 8032 -2 . 7983 -2 . 7934 -2 . 7885 -2 . 7837 -2	107. 5 108. 2 108. 9 109. 5 110. 2	2. 334862 2. 335164 2. 335465 2. 335765 2. 336063	91, 234 91, 286 91, 337 91, 389 91, 440	8. 155 8. 143 8. 131 8. 120 8. 108	.3971 .3970 .3970 .3969 .3969	57, 82 57, 98 58, 15 58, 31 58, 48	5. 452 5. 453 5. 454 5. 456 5. 457	10. 61 10. 63 10. 66 10. 69 10. 72	. 1488 ~1 . 1479 ~1 . 1470 ~1 . 1461 ~1 . 1452 ~1	. 1551 -1 . 1547 -1 . 1543 -1 . 1538 -1 . 1534 -1
7. 11 7. 12 7. 13 7. 14 7. 15	. 2187 -3 . 2168 -3 . 2149 -3 . 2130 -3	. 2430 -2 . 2415 -1 . 2400 -2 . 2384 -2	. 9024 -1 . 9001 -1 . 8978 -1 . 8955 -1 . 8932 -1	7. 029 7. 039 7. 049 7. 060 7. 070	. 7789 -2 . 7741 -2 . 7693 -2 . 7646 -2 . 7600 -2	110. 9 111. 6 112. 3 113. 0 113. 7	2. 336361 2. 336657 2. 336952 2. 337246 2. 337539	91. 492 91. 543 91. 594 91. 645 91. 695	8. 097 8. 085 8. 074 8. 062 8. 051	. 3968 . 3968 . 3967 . 3967 . 3966	58, 65 58, 81 58, 98 59, 14 59, 31	5. 459 5. 460 5. 461 5. 463 5. 464	10. 74 10. 77 10. 80 10. 83 10. 85	. 1443 -1 . 1434 -1 . 1425 -1 . 1416 -1 . 1408 -1	. 1530 -1 . 1525 -1 . 1521 -1 . 1517 -1 . 1513 -1
7. 16 7. 17 7. 18 7. 19 7. 20	. 2092 -4 . 2073 -3 . 2055 -1 . 2037 -3	. 2354 -1 . 2339 -1 . 2324 -1 . 2310 -1	. 8909 -1 . 8886 -1 . 8864 -1 . 8841 -1 . 8819 -1	7. 080 7. 090 7. 100 7. 110 7. 120	.7553 -3 .7507 -9 .7461 -3 .7416 -2 .7371 -2	114. 5 115. 2 115. 9 116. 6 117. 3	2. 337831 2. 338122 2. 338412 2. 338700 2. 338988	91. 746 91. 796 91. 847 91. 897 91. 947	8. 040 8. 028 8. 017 8. 006 7. 995	.3966 .3965 .3965 .3964 .3964	59. 48 59. 64 59. 81 59. 98 60. 15	5, 465 5, 467 5, 468 5, 470 5, 471	10. 88 10. 91 10. 94 10. 97 10. 99	. 1399 -1 . 1390 -1 . 1382 -1 . 1374 -1 . 1365 -1	. 1509 -1 . 1504 -1 . 1500 -1 . 1496 -1 . 1492 -1
7. 21 7. 22 7. 23 7. 24 7. 25	.2001 -3 .1983 -3 .1966 -3 .1949 -3	. 2281 -2 . 2286 -2 . 2252 -2 . 2238 -2	. 8797 -1 . 8774 -1 . 8752 -1 . 8730 -1 . 8708 -1	7. 130 7. 140 7. 150 7. 161 7. 171	. 7326 -2 . 7281 -1 . 7237 -2 . 7194 -2 . 7150 -3	118. 1 118. 8 119. 6 120. 3 121. 0	2. 339274 2. 339559 2. 339843 2. 340127 2. 340409	91. 997 92. 047 92. 097 92. 146 92. 196	7. 984 7. 972 7. 961 7. 950 7. 939	.3963 .3963 .3962 .3962 .3961	60. 31 60. 48 60. 65 60. 82 60. 99	5. 472 5. 474 5. 475 5. 476 5. 478	11. 02 11. 05 11. 08 11. 11 11. 13	. 1357 -1 . 1349 -1 . 1340 -1 . 1332 -1 . 1324 -1	. 1488 -1 . 1484 -1 . 1480 -1 . 1476 -1 . 1472 -1
7. 26 7. 27 7. 28 7. 29 7. 30	. 1915 -3 . 1898 -2 . 1881 -3 . 1865 -3 . 1848 -3	. 2210 -2 . 2196 -2 . 2182 -2 . 2169 -2 . 2155 -2	. 8664 -1 . 8643 -1 . 8621 -1 . 8599 -1	7. 181 7. 191 7. 201 7. 211 7. 221	.7107 -2 .7064 -2 .7021 -2 .6979 -2 .6937 -2	121. 8 122. 5 123. 3 124. 1 124. 8	2. 340690 2. 340969 2. 341248 2. 341526 2. 341803	92. 245 92. 294 92. 343 92. 392 92. 441	7. 928 7. 917 7. 906 7. 895 7. 884	. 3961 . 3960 . 3960 . 3959 . 3959	61. 16 61. 33 61. 50 61. 66 61. 63	5. 479 5. 480 5. 481 5. 483 5, 484	11. 16 11. 19 11. 22 11. 25 11. 28	. 1316 -1 . 1308 -1 . 1300 -1 . 1292 -1 . 1285 -1	. 1468 -1 . 1464 -1 . 1460 -1 . 1456 -1 . 1452 -1
7. 31 7. 32 7. 33 7. 34	. 1832 -3 . 1816 -3 . 1801 -3 . 1785 -3 . 1769 -2	. 2142 -2 . 2128 -3 . 2115 -1 . 2102 -3 . 2089 -2	. 8556 -1 . 8535 -1 . 8514 -1 . 8492 -1	7. 231 7. 241 7. 251 7. 261 7. 272	. 6896 -2 . 6854 -2 . 6813 -2 . 6772 -2 . 6731 -1	125. 6 126. 4 127. 2 127. 9 128. 7	2. 342079 2. 342353 2. 342627 2. 342900 2. 343171	92, 490 92, 538 92, 587 92, 635 92, 684	7. 874 7. 863 7. 852 7. 841 7. 830	. 3958 . 3958 . 3957 . 3957 . 3956	62. 35 62. 52	5. 485 5. 487 5. 488 5. 489 5. 490	11. 30 11. 33 11. 36 11. 39 11. 42	. 1277 -1 . 1269 -1 . 1262 -1 . 1254 -1 . 1246 -1	. 1448 -1 . 1444 -1 . 1440 -1 . 1436 -1 . 1432 -1
7. 36 7. 37 7. 38 7. 39	.1754 -3 .1739 -3 .1724 -3 .1709 -3	. 2076 -2 . 2063 -2 . 2050 -2 . 2037 -1 . 2025 -2	.8450 -1 .8429 -1 .8428 -1 .8388 -1		. 6691 -2 . 6651 -2 . 6612 -2 . 6572 -2 . 6533 -2	129. 5 130. 3 131. 1 131. 9 132. 7	2. 343442 2. 343711 2. 343980 2. 344248 2. 344514	92. 732 92. 780 92. 828 92. 876 92. 923	7. 820 7. 809 7. 798 7. 788 7. 777	. 3956 . 3955 . 3955 . 3955 . 3954	63. 03 63. 20 63. 38	5. 492 5. 493 5. 494 5. 495 5. 497	11. 45 11. 48 11. 50 11. 53 11. 56	. 1239 -1 . 1232 -1 . 1224 -1 . 1217 -1 . 1210 -1	.1428 -1 .1424 -1 .1421 -1 .1417 -1 .1413 -1
7. 41 7. 42 7. 43 7. 44 7. 45	. 1680 -3 . 1665 -3 . 1651 -3 . 1637 -3	. 2012 -2 . 2012 -2 . 2000 -2 . 1988 -2 . 1975 -3	.8367 -1 .8346 -1 .8326 -1 .8305 -1 .8285 -1	7. 362 7. 372	. 6494 -2 . 6456 -2 . 6417 -2 . 6379 -2 . 6341 -2	133. 5 134. 3 135. 2 136. 0 136. 8	2. 344780 2. 345044 2. 345308 2. 345571 2. 345832	92. 971 93. 018 93. 066 93. 112 93. 160	7. 756 7. 745 7. 735	. 3954 . 3953 . 3953 . 3952 . 3952	63. 89 64. 07 64. 24	5. 498 5. 499 5. 500 5. 502 5. 503	11. 65 11. 68	. 1188 -1	. 1409 -1 . 1405 -1 . 1402 -1 . 1398 -1 . 1394 -1
7. 48 7. 47 7. 48 7. 49 7. 50	. 1609 -a . 1595 -a . 1581 -a . 1568 -a . 1554 -a	. 1951 -2 . 1939 -2 . 1927 -2 . 1916 -2	. 8244 -1 . 8224 -1 . 8203 -1 . 8163 -1	7. 393 7. 403 7. 413 7. 423	. 6304 -1 . 6267 -1 . 6229 -2 . 6193 -2 . 6156 -2	137. 6 138. 5 139. 3 140. 1 141. 0	2. 346093 2. 346353 2. 346612 2. 346870 2. 347126	93. 207 93. 254 93. 300 93. 347 93. 394	7. 704 7. 693 7. 683	. 3951 . 3951 . 3950 . 3950 . 3950	64. 76 64. 93 65. 11	5, 504 5, 505 5, 507 5, 508 5, 509	11. 76 11. 79 11. 82	. 1160 -1 . 1153 -1 . 1146 -1	. 1390 -1 . 1387 -1 . 1383 -1 . 1379 -1 . 1376 -1
7. 51 7. 52 7. 53 7. 54	.1541 -1 .1528 -4 .1515 -1 .1502 -2	. 1892 -2 . 1881 -2 . 1869 -2 . 1858 -2	.8143 -1 .8123 -1 .8104 -1 .8084 -1	7. 443 7. 453 7. 463	. 6120 -2 . 6084 -2 . 6048 -2 . 6013 -2 . 5977 -2	141. 8 142. 7 143. 6 144. 4 145. 3	2. 347382 2. 347637 2. 347892 2. 348145 2. 348397	93, 440 93, 487 93, 533 93, 579 93, 624	7. 652 7. 642 7. 632	. 3949 . 3949 . 3948 . 3948 . 3947	65. 63 65. 81 65. 98	5. 510 5. 511 5. 513 5. 514 5. 515	11. 91 11. 94 11. 97	. 1126 -1 . 1120 -1 . 1113 -1	. 1372 -1 . 1368 -1 . 1365 -1 . 1361 -1 . 1358 -1

TABLE II.—SUPERSONIC FLOW—Continued

10 1 2,34 C#4 1 1 1

							$\gamma = 7/5$							1	
M or Mı	<u>p</u>	P Pi	$\frac{T}{T_i}$. в	q p.	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$,	μ	М1	<u>p</u> 1	<u>ρτ</u> ρι	$\frac{T_2}{T_1}$	p ₁₂ p ₁₁	$\frac{p_1}{p_{i_2}}$
7. 55 7. 56 7. 57 7. 58	.1489 -1 .1477 -2 .1464 -2 .1452 -1	. 1847 -1 . 1836 -1 . 1824 -2 . 1813 -1 1802 -2	.8064 -1 .8045 -1 .8025 -1 .8006 -1 .7986 -1	7. 483 7. 494 7. 504 7. 514 7. 524	.5942 -2 .5908 -2 .5873 -2 .5839 -2 .5805 -3	146. 2 147. 0 147. 9 148. 8 149. 7	2. 348648 2. 348899 2. 349148 2. 349397 2. 349644	93. 670 93. 716 93. 762 93. 807 93. 853	7. 611 7. 601 7. 591 7. 581 7. 571	. 3947 . 3946 . 3946 . 3946 . 3945	66. 34 66. 51 66. 69 66. 87 67. 04	5, 516 5, 517 5, 518 5, 520 5, 521	12. 03 12. 06 12. 09 12. 11 12. 14	. 1100 -1 . 1093 -1 . 1087 -1 . 1081 -1 . 1074 -1	. 1354 -1 . 1351 -1 . 1347 -1 . 1343 -1 . 1340 -1
7. 59 7. 60 7. 61 7. 62 7. 63	.1439 -3 .1427 -3 .1415 -1 .1403 -3 .1391 -3 1380 -4	.1792 -8 .1781 -1 .1770 -9 .1759 -3	.7967 -1 .7948 -1 .7928 -1 .7909 -1 .7890 -1	7. 534 7. 544 7. 554 7. 564 7. 574	.5771 -2 .5737 -2 .5704 -2 .5671 -2 .5638 -3	150. 6 151. 5 152. 4 153. 3 154. 2	2. 349891 2. 350137 2. 350382 2. 350626 2. 350869	93. 898 93. 943 93. 988 94. 033 94. 078	7, 561 7, 551 7, 541 7, 531 7, 521	. 3945 . 3944 . 3944 . 3943 . 3943	67. 22 67. 40 67. 58 67. 75 67. 93	5. 522 5. 523 5. 524 5. 525 5. 527	12. 17 12. 20 12. 23 12. 26 12. 29	. 1068 -1 . 1062 -1 . 1056 -1 . 1049 -1 . 1043 -1	. 1336 -1 . 1333 -1 . 1329 -1 . 1326 -1 . 1322 -1
7. 64 7. 65 7. 66 7. 67 7. 68	. 1368 -1 . 1357 -1 . 1345 -1 . 1334 -1	.1738 -2 .1728 -3 .1717 -3 .1707 -2	. 7871 -1 . 7852 -1 . 7833 -1 . 7815 -1 . 7796 -1	7. 584 7. 594 7. 605 7. 615 7. 625	. 5605 -3 . 5572 -3 . 5540 -2 . 5508 -3 . 5476 -3	155. 1 156. 0 157. 0 157. 9 158. 8	2, 351112 2, 351353 2, 351594 2, 351834 2, 352072	94. 123 94. 168 94. 212 94. 257 94. 301	7.511 7.501 7.491 7.482 7.472	.3943 .3942 .3942 .3941 .3941	68. 11 68. 29 68. 47 68. 65 68. 83	5. 528 5. 529 5. 530 5. 531 5. 532	12. 32 12. 35 12. 38 12. 41 12. 44	. 1037 -1 . 1031 -1 . 1025 -1 . 1019 -1 . 1013 -1	. 1316 -1 . 1312 -1 . 1309 -1 . 1305 -1
7. 69 7. 70 7. 71 7. 72 7. 73	. 1312 -1 . 1301 -3 . 1290 -1 . 1279 -1	.1697 -1 .1687 -1 .1677 -1 .1667 -1 .1657 -2 .1647 -1	7777 -1 7759 -1 .7740 -1	7. 635 7. 645 7. 655 7. 665 7. 675	.5445 -2 .5413 -2 .5382 -2 .5351 -3 .5320 -3	159. 8 160. 7 161. 7 162. 6 163. 6	2. 352310 2. 352548 2. 352784 2. 353019 2. 353254	94. 345 94. 389 94. 433 94. 477 94. 521	7. 462 7. 452 7. 443 7. 433 7. 423	.3941 .3940 .3940 .3939 .3939	69. 01 69. 18 69. 36 69. 55 69. 73	5. 533 5. 534 5. 536 5. 537 5. 538	12. 47 12. 50 12. 53 12. 56 12. 59	. 1008 -1 . 1002 -1 . 9959 -2 . 9902 -2 . 9845 -2	. 1299 - . 1295 - . 1292 - . 1289 -
7.74 7.75 7.76 7.77 7.78	. 1269 -3 . 1258 -3 . 1248 -3 . 1237 -3 . 1227 -3 . 1217 -3	. 1637 -1 . 1627 -2 . 1618 -2 . 1608 -2 . 1599 -2	. 7685 -1 . 7667 -1 . 7648 -1 . 7630 -1	7. 685 7. 695 7. 705 7. 715	. 5290 -2 . 5259 -2 . 5229 -2 . 5199 -2 . 5170 -2	164. 5 165. 5 166. 5 167. 4 168. 4	2. 353488 2. 353721 2. 353953 2. 354184 2. 354415	94, 565 94, 608 94, 652 94, 695 94, 739	7. 414 7. 404 7. 395 7. 385 7. 375	. 3939 . 3938 . 3938 . 3937 . 3937	69. 91 70. 09 70. 27 70. 45 70. 63	5. 539 5. 540 5. 541 5. 542 5. 543	12. 62 12. 65 12. 68 12. 71 12. 74	. 9732 -1 . 9676 -2 . 9620 -2 . 9565 -2	.1285 - .1282 - .1279 - .1276 - .1272 -
7. 79 7. 80 7. 81 7. 82 7. 83 7. 84	. 1207 -3 . 1197 -3 . 1187 -3 . 1177 -3 . 1168 -3	. 1589 -4 . 1580 -4 . 1571 -4 . 1561 -4 . 1552 -4	.7594 -1 .7576 -1 .7558 -1 .7540 -1	7.736 7.746 7.756 7.766	.5140 -2 .5111 -2 .5082 -2 .5053 -2 .5024 -1	169. 4 170. 4 171. 4 172. 4 173. 4	2. 354644 2. 354873 2. 355101 2. 355328 2. 355555	94. 782 94. 825 94. 868 94. 911 94. 954	7, 366 7, 356 7, 347 7, 338 7, 328	. 3937 . 3936 . 3936 . 3935 . 3935	70. 81 71. 00 71. 18 71. 36 71. 54	5. 544 5. 545 5. 547 5. 548 5. 549	12.77 12.80 12.83 12.86 12.89	. 9510 -2 . 9456 -2 . 9402 -2 . 9348 -2 . 9295 -2 . 9242 -1	. 1266 . 1263 . 1259 . 1256
7. 85 7. 86 7. 87 7. 88 7. 89	.1158 -1 .1149 -1 .1139 -1 .1130 -1 .1121 -3	. 1543	.7487 - .7470 - .7452 -	7. 796 7. 806 7. 816	. 4995 -2 . 4967 -2 . 4939 -2 . 4911 -3 . 4883 -3	174. 4 175. 4 176. 4 177. 5 178. 5	2. 355780 2. 356005 2. 356229 2. 356453 2. 356675	94. 996 95. 039 95. 082 95. 124 95. 166	7. 319 7. 309 7. 300 7. 291 7. 281	. 3935 . 3934 . 3934 . 3933 . 3933	71, 73 71, 91 72, 09 72, 28 72, 46	5. 550 5. 551 5. 552 5. 553 5. 554	12. 92 12. 96 12. 99 13. 02 13. 05	. 9189 -3 . 9137 -3 . 9085 -3 . 9033 -2	. 1250 . 1247 . 1244 . 1241
7. 90 7. 91 7. 92 7. 93 7. 94	.1111 -1 .1102 -3 .1093 -3 .1084 -3 .1076 -3	.1498 - .1490 - .1481 - .1472 - .1464 -	2 .7490 = 2 .7383 = 2 .7365 =	7. 847 7. 857 7. 867	. 4855 -1 . 4828 -2 . 4801 -2 . 4774 -1 . 4747 -2	179. 5 180. 5 181. 6 182. 6 183. 7	2. 356897 2. 357118 2. 357338 2. 357557 2. 357776	95. 208 95. 251 95. 293 95. 334 95. 376	7. 272 7. 263 7. 254 7. 245 7. 235	. 3933 . 3932 . 3932 . 3932 . 3931	72. 65 72. 83 73. 01 73. 20 73. 38	5. 555 5. 556 5. 557 5. 558 5. 559	13. 11 13. 14 13. 17 13. 20	. 8931 -2 . 8880 -2 . 8830 -2 . 8780 -2	. 1234 . 1231 . 1228 . 1225
7, 95 7, 96 7, 97 7, 98 7, 99	. 1067 -2 . 1058 -3 . 1050 -3 . 1041 -3 . 1033 -3	.1455 = .1447 = .1438 = .1430 =	7314	7. 897 7. 907 7. 917	. 4720 -2 . 4693 -2 . 4667 -3 . 4641 -2 . 4615 -3	186. 9 188. 0	2. 357994 2. 358211 2. 358427 2. 358642 2. 358857	95. 418 95. 460 95. 501 95. 542 95. 584	7. 226 7. 217 7. 208 7. 199 7. 190	. 3931 . 3930 . 3930 . 3930 . 3929	73. 57 73. 76 73. 94 74. 13 74. 31	5. 560 5. 561 5. 562 5. 563 5. 564	13. 26 13. 29 13. 33 13. 36	. 8682 -2 . 8633 -2 . 8594 -2 . 8536 -2	. 1219 . 1216 . 1213 . 1210
8. 00 8. 01 8. 02 8. 03 8. 04	.1024 = .1016 = .1008 = .9997 = .9916 =	. 1414 . 1405 . 1397 . 1389	-2 .7230 -2 .7213 -2 .7196	7. 937 7. 947 7. 957 7. 967 7. 978	. 4589 -1 . 4563 -1 . 4538 -1 . 4512 -1 . 4487 -1	191. 2 192. 3 193. 4	2. 359071 2. 359285 2. 359497 2. 359709 2. 359920	95. 625 95. 666 95. 707 95. 748 95. 789	7. 181 7. 172 7. 163 7. 154 7. 145	. 3929 . 3929 . 3928 . 3928 . 3927	74. 50 74. 69 74. 87 75. 06 75. 25	5. 565 5. 566 5. 567 5. 568 5. 569	13. 39 13. 42 13. 45 13. 48 13. 51	.8440 -2 .8393 -2 .8346 -2 .8299 -3	.1204 .1201 .1198 .1195
8. 05 8. 06 8. 07 8. 08 8. 09	. 9837 - . 9758 - . 9679 - . 9602 - . 9525 -	. 1373 . 1365 . 1358 . 1350	-1 .7147 -2 .7130 -1 .7114	7. 988 -1 7. 998 -1 8. 008 -1 8. 018 -1 8. 028	.4462	196.7 197.8 199.0	2. 360130 2. 360340 2. 360549 2. 360757 2. 360965	95. 830 95. 871 95. 911 95. 951 95. 992	7. 136 7. 127 7. 118 7. 109 7. 100	. 3927 . 3927 . 3926 . 3926 . 3926	75. 44 75. 62 75. 81 76. 00 76. 19	5. 570 5. 571 5. 572 5. 573 5. 574	13. 54 13. 57 13. 61 13. 64 13. 67	8207 -3 8161 -3 8115 -3 8070 -2	. 1189 . 1186 . 1183 . 1180
8. 10 8. 11 8. 12 8. 13 8. 14	. 9449 . 9373	. 1334 . 1327 . 1319 . 1312	-2 . 7065 -2 . 7049 -1 . 7033	-1 8. 038 -1 8. 048 -1 8. 058 -1 8. 068 -1 8. 068 -1 8. 078	. 4339 - . 4315 - . 4292 - . 4268 - . 4244 -	202. 4 203. 5 204. 6	2. 361172 2. 361378 2. 361583 2. 361788 2. 361992	96. 032 96. 073 96. 112 96. 153 96. 193	7. 092 7. 083 7. 074 7. 065 7. 057	. 3925 . 3925	76. 38 76. 57 76. 76 76. 95 77. 14	5. 575 5. 576 5. 577 5. 578 5. 579	13. 73 13. 76 13. 80 13. 83	. 7981 -2 . 7937 -2 . 7893 -2 . 7849 -2 . 7805 -2	.1174 .1172 .1169
8, 15 8, 16 8, 17 8, 18 8, 19	. 9078 . 9005 . 8934 . 8863	. 1297 . 1289 . 1282 . 1275	-2 .6985 -2 .6969 -2 .6953	-1 8. 088 -1 8. 098 -1 8. 109 -1 8. 119 -1 8. 129	. 4221 - 4197 - 4174 - 4151 - 4129	208.1 209.3	2. 362195 2. 362397 2. 362599 2. 362800 2. 363001	96. 233 96. 272 96. 312 96. 352 96. 391	7. 048 7. 039 7. 031 7. 022 7. 013	. 3923 . 3923 . 3923 . 3922	77. 33 77. 52 77. 71 77. 90 78. 09	5. 580 5. 581 5. 582 5. 583 5. 584	13. 86 13. 89 13. 92 13. 95 13. 99	7762 -2 .7719 -2 .7677 -2 .7634 -1	.1160 .1157 .1155 .1152
8. 20 8. 21 8. 22 8. 23	. 8723 . 8654 . 8586 . 8518	-4 .1260 -4 .1253 -4 .1246 -4 .1239 -4 .1232	-3 .6906 -1 .6890	-1 8. 139 -1 8. 149 -1 8. 159 -1 8. 169 -1 8. 179	. 4061 . 4039	212.8 214.0 215.2 216.4 217.7	2. 363201 2. 363400 2. 363596 2. 363796 2. 363993	96. 509 96. 548	7, 003 6, 996 6, 988 6, 973 6, 973	3 . 3921 3 . 3921 9 . 3921 1 . 3920	78. 86 79. 05	5. 588 5. 588	14. 05 14. 08 14. 11 14. 15	. 7551 -2 . 7509 -3 . 7468 -2 . 7427 -1	. 1146 . 1143 . 1141 . 1138
8. 24 8. 25 8. 26 8. 27 8. 28 8. 29	. 8384 . 8318 . 8253 . 8188	-4 .1225 -4 .1218 -4 .1211 -4 .1205 -4 .1198		-1 8. 189 -1 8. 199 -1 8. 209 -1 8. 219 -1 8. 229	. 3951 . 3930	–ı 220.1	2. 364190 2. 364385 2. 364581 2. 364775 2. 364969	96. 665 96. 704 96. 742	6. 96 6. 95 6. 94 6. 93 6. 92	4 .3920 5 .3919 7 .3919 8 .3919	79. 43 79. 63 79. 82 80. 01	5. 590 5. 591 5. 592 5. 593	14. 18 14. 21 14. 24 14. 27 14. 31	7386 - 7346 - 7306 - 7266 - 7226 - 7187 - 7187	. 1132 . 1130 . 1127 . 1124
8. 30 8. 31 8. 32 8. 33 8. 34	. 8060 . 7997 2 . 7935 3 . 7873	-4 .1191 -4 .1184 -4 .1178 -4 .1171 -4 .1165	-2 . 6767		. 3845 . 3824	-1 225. 0 -2 226. 3 -2 227. 5 -2 228. 8 -2 230. 0	2. 365738	96.858 96.896 96.935	6.88	2 .3918 3 .3918 5 .3917 7 .3917	80. 40 80. 56 7 80. 79 7 80. 96	5. 595 5. 596 5. 597 5. 598	14. 34 14. 37 14. 40 14. 44 14. 47	.7187 .7147 - .7109 - .7070 - .7031 -	. 1119 . 1116 . 1114 . 1111
8. 34 8. 35 8. 35 8. 35	. 7750 6 . 7690 7 . 7630 8 . 7571	-4 .1158 -4 .1152 -4 .1145	-1 . 6676 -2 . 6662 -2 . 6647	-1 8.310 -1 8.320	. 3762 . 3742 . 3722	-1 231. 3 -2 232. 6 -2 233. 9 -2 235. 2 -2 236. 5	2. 366307 2. 366496 2. 366684 2. 36687	97. 049 6 97. 087 4 97. 125 1 97. 162	6. 86 6. 84 6. 84	0 .391 32 .391 34 .391 35 .391	7 81.37 6 81.57 6 81.76 81.96	7 5. 599 7 5. 600 8 5. 601 5. 602	14. 53 14. 57 14. 60 14. 63	. 6955	2 . 1100 2 . 1100 2 . 1100 2 . 1090 2 . 1090
8. 4 8. 4 8. 4 8. 4 8. 4	0 .7454 1 .7396 2 .7339 3 .7282	→ .1120 → .1114	-2 . 6603 -2 . 6588 -2 . 6573	-1 8.350 -1 8.360 -1 8.370	. 3662 . 3642 . 3623	-1 237.8 -1 239.1 -1 240.4 -2 241.7 -1 243.0	2. 36724 2. 36743 2. 36761	97. 238. 0 97. 276 5 97. 313	6. 82 6. 82 6. 81	29 .391 21 .391 13 .391	5 82.3 5 82.5 4 82.7	5 5.604 5 5.605 4 5.606	14. 70 14. 73 14. 76	. 6769 . 6733 . 6697	

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

1			1	·	, .		γ= //S		1				1	1	1
M or M ₁	$\frac{p}{p_i}$	<u>ρ</u> ρι	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$	ν	щ	M ₁	<u>p</u> 1	<u>ρ1</u>	$\frac{T_3}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
8. 45	.7170 -4	. 1096 -2	. 6544 -1	8, 391	.3584 -2	244. 4	2. 367983	97. 388	6. 797	. 3914	83. 14	5. 607	14. 83	. 6625 -2	. 1082 -1
8. 46	.7115 -4	. 1090 -3	. 6530 -1	8, 401	.3565 -2	245. 7	2. 368166	97. 424	6. 788	. 3913	83. 33	5. 608	14. 86	. 6589 -3	. 1080 -1
8. 47	.7060 -4	. 1084 -2	. 6515 -1	8, 411	.3545 -2	247. 0	2. 368348	97. 462	6. 780	. 3913	83. 53	5. 609	14. 89	. 6554 -2	. 1077 -1
8. 48	.7006 -4	. 1078 -2	. 6501 -1	8, 421	.3526 -2	248. 4	2. 368530	97. 499	6. 772	. 3913	83. 73	5. 610	14. 93	. 6519 -2	. 1075 -1
8. 49	.6952 -4	. 1072 -2	. 6487 -1	8, 431	.3508 -2	249. 7	2. 368712	97. 536	6. 764	. 3912	83. 93	5. 611	14. 96	. 6484 -2	. 1072 -1
8. 50	. 6898 -4	. 1066 -2	. 6472 -1	8. 441	.3489 -2	251. 1	2. 368892	97. 573	6. 756	. 3912	84. 13	5. 612	14. 99	.6449 -2	. 1070 -1
8. 51	. 6846 -4	. 1060 -3	. 6458 -1	8. 451	.3470 -2	252. 5	2. 369072	97. 609	6. 748	. 3912	84. 32	5. 613	15. 02	.6415 -1	. 1067 -1
8. 52	. 6793 -4	. 1054 -3	. 6444 -1	8. 461	.3452 -2	253. 8	2. 369252	97. 646	6. 740	. 3911	84. 52	5. 613	15. 06	.6380 -1	. 1065 -1
8. 53	. 6741 -4	. 1048 -2	. 6430 -1	8. 471	.3433 -2	255. 2	2. 369431	97. 683	6. 732	. 3911	84. 72	5. 614	15. 09	.6346 -2	. 1062 -1
8. 54	. 6690 -4	. 1043 -2	. 6416 -1	8. 481	.3415 -2	256. 6	2. 369609	97. 719	6. 725	. 3911	84. 92	5. 615	15. 12	.6313 -2	. 1060 -1
8. 55	. 6638 -4	. 1037 -2	. 6402 -1	8. 491	. 3397 -2	258. 0	2. 369787	97. 756	6. 717	. 3911	85. 12	5. 616	15. 16	.6279 -3	. 1057 -1
8. 56	. 6588 -4	. 1031 -2	. 6388 -1	8. 501	. 3379 -2	259. 4	2. 369964	97. 792	6. 709	. 3910	85. 32	5. 617	15. 19	.6246 -3	. 1055 -1
8. 57	. 6538 -4	. 1026 -2	. 6374 -1	8. 511	. 3361 -2	260. 8	2. 370140	97. 828	6. 701	. 3910	85. 52	5. 618	15. 22	.6212 -3	. 1052 -1
8. 58	. 6488 -4	. 1020 -2	. 6260 -1	8. 522	. 3343 -2	262. 2	2. 370316	97. 865	6. 693	. 3910	85. 72	5. 618	15. 26	.6179 -3	. 1050 -1
5. 59	. 6438 -4	. 1015 -2	. 6346 -1	8. 532	. 3326 -2	263. 6	2. 370492	97. 901	6. 685	. 3909	85. 92	5. 619	15. 29	.6147 -2	. 1048 -1
8. 60	. 6390 -4	. 1009 -2	. 6332 -1	8. 542	.3308 -2	265. 0	2. 370667	97. 937	6. 677	. 3909	86. 12	5. 620	15. 32	.6114 -2	. 1045 -1
8. 61	. 6341 -4	. 1004 -2	. 6319 -1	8. 552	.3291 -1	266. 4	2. 370841	97. 973	6. 670	. 3909	86. 32	5. 621	15. 36	.6082 -2	. 1043 -1
8. 62	. 6293 -4	. 9981 -3	. 6305 -1	8. 562	.3273 -2	267. 9	2. 371015	98. 009	6. 662	. 3909	86. 52	5. 622	15. 39	.6050 -2	. 1040 -1
8. 63	. 6245 -4	. 9927 -3	. 6291 -1	8. 572	.3256 -2	269. 3	2. 371188	98. 045	6. 654	. 3908	86. 72	5. 623	15. 42	.6014 -2	. 1038 -1
8. 64	. 6198 -4	. 9873 -3	. 6277 -1	8. 582	.3239 -2	270. 8	2. 371360	98. 081	6. 646	. 3908	86. 92	5. 623	15. 46	.5986 -2	. 1035 -1
8. 65	.6151 -4	. 9820 -1	. 6264 -1	8. 592	.3222 ~1	272. 2	2. 371532	98. 116	6. 639	. 3908	87. 13	5. 624	15. 49	.5954 -2	. 1033 -1
8. 66	.6105 -4	. 9767 -1	. 6250 -1	8. 602	.3205 ~3	273. 7	2. 371704	98. 152	6. 631	. 3907	87. 33	5. 625	15. 53	.5923 -2	. 1031 -1
8. 67	.6059 -4	. 9714 -1	. 6237 -1	8. 612	.3188 ~1	275. 1	2. 371875	98. 187	6. 623	. 3907	87. 53	5. 626	15. 56	.5892 -2	. 1028 -1
8. 68	.6013 -4	. 9662 -1	. 6223 -1	8. 622	.3171 ~2	276. 6	2. 372045	98. 223	6. 616	. 3907	87. 73	5. 627	15. 59	.5861 -2	. 1026 -1
8. 69	.5968 -4	. 9610 -1	. 6210 -1	8. 632	.3155 ~2	278. 1	2. 372215	98. 258	6. 608	. 3906	87. 94	5. 627	15. 63	.5830 -2	. 1024 -1
8. 70	.5923 -4	. 9558 -2	.6197 -1	8. 642	.3138 -2	279. 6	2. 372384	98. 293	6. 600	.3906	88. 14	5, 628	15. 66	.5799 -2	. 1021 -1
8. 71	.5878 -4	. 9507 -3	.6183 -1	8. 652	.3122 -3	281. 1	2. 372553	98. 329	6. 593	.3906	88. 34	5, 629	15. 69	.5769 -2	. 1019 -1
8. 72	.5834 -4	. 9456 -2	.6170 -1	8. 662	.3105 -2	282. 6	2. 372721	98. 364	6. 585	.3906	88. 54	5, 630	15. 73	.5739 -2	. 1017 -1
8. 73	.5790 -4	. 9405 -3	.6157 -1	8. 673	.3089 -3	284. 1	2. 372889	98. 399	6. 578	.3905	88. 75	5, 631	15. 76	.5709 -2	. 1014 -1
8. 74	.5747 -4	. 9355 -3	.6143 -1	8. 683	.3073 -3	285. 6	2. 373056	98. 434	6. 570	.3905	88. 95	5, 631	15. 80	.5679 -2	. 1012 -1
8. 75	.5704 -4	. 9305 -3	.6130 -1	8. 693	. 3057 -2	287. 1	2. 373222	98. 469	6. 562	.3905	89. 16	5. 632	15, 83	. 5649 -2	. 1010 -1
8. 76	.5661 -4	. 9255 -3	.6117 -1	8. 703	. 3041 -2	288. 6	2. 373388	98. 504	6. 555	.3904	89. 36	5. 633	15, 86	. 5620 -2	. 1007 -1
8. 77	.5619 -4	. 9205 -3	.6104 -1	8. 713	. 3025 -2	290. 1	2. 373554	98. 539	6. 547	.3904	89. 57	5. 634	15, 90	. 5590 -2	. 1005 -1
8. 78	.5577 -4	. 9156 -3	.6091 -1	8. 723	. 3010 -2	291. 7	2. 373719	98. 573	6. 540	.3904	89. 77	5. 635	15, 93	. 5581 -2	. 1003 -1
8. 79	.5536 -4	. 9108 -2	.6078 -1	8. 733	. 2994 -3	293. 2	2. 373883	98. 608	6. 532	.3904	89. 97	5. 635	15, 97	. 5532 -2	. 1001 -1
8. 80	.5494 -4	. 9059 -3	. 6065 -1	8. 743	. 2078 -2	294. 8	2. 374047	98. 642	6. 525	. 3903	90, 18	5. 636	16. 00	.5504 -2	. 9983 -2
8. 81	.5453 -4	. 9011 -3	. 6052 -1	8. 753	. 2963 -2	296. 3	2. 374210	98. 677	6. 518	. 3903	90, 39	5. 637	18. 04	.5475 -2	. 9960 -2
8. 82	.5413 -4	. 8963 -3	. 6039 -1	8. 763	. 2948 -2	297. 9	2. 374373	98. 711	6. 510	. 3903	90, 59	5. 638	16. 07	.5447 -2	. 9938 -2
8. 83	.5373 -4	. 8915 -3	. 6026 -1	8. 773	. 2932 -2	299. 5	2. 374535	98. 745	6. 503	. 3903	90, 80	5. 638	16. 10	.5418 -2	. 9916 -2
8. 84	.5333 -4	. 8868 -2	. 6014 -1	8. 783	. 2917 -2	301. 0	2. 374697	98. 780	6. 495	. 3902	91, 00	5. 639	16. 14	.5390 -2	. 9893 -2
8. 85	.5293 -4	. 8821 -2	. 6001 -1	8. 793	. 2902 -2	302. 6	2, 374859	98, 814	6. 488	.3902	91, 21	5. 640	16. 17	. 5362 -2	. 9871 -2
8. 86	.5254 -4	. 8774 -3	. 5988 -1	8. 803	. 2887 -2	304. 2	2, 375019	98, 848	6. 481	.3902	91, 42	5. 641	16. 21	. 5335 -2	. 9849 -2
8. 87	.5215 -4	. 8728 -3	. 5975 -1	8. 813	. 2872 -2	305. 8	2, 375180	98, 882	6. 473	.3901	91, 62	5. 641	16. 24	. 5307 -2	. 9827 -2
8. 88	.5177 -4	. 8682 -3	. 5963 -1	8. 824	. 2857 -2	307. 4	2, 375339	98, 916	6. 466	.3901	91, 83	5. 642	16. 28	. 5280 -2	. 9805 -2
8. 89	.5139 -4	. 8636 -3	. 5950 -1	8. 834	. 2843 -2	309. 0	2, 375499	98, 950	6. 459	.3901	92, 04	5. 643	16. 31	. 5253 -2	. 9783 -2
8. 90	.5101 -4	. 8590 -1	. 5938 -1	8. 844	. 2828 -3	310. 6	2. 375657	98. 984	6. 451	.3901	92, 25	5. 644	16. 35	. 5226 -2	. 9761 -1
8. 91	.5063 -4	. 8545 -3	. 5925 -1	8. 854	. 2814 -3	312. 3	2. 375816	99. 018	6. 444	.3900	92, 45	5. 645	16. 38	. 5199 -2	. 9739 -1
8. 92	.5026 -4	. 8500 -2	. 5913 -1	8. 864	. 2799 -3	313. 9	2. 375973	99. 051	6. 437	.3900	92, 66	5. 645	16. 41	. 5172 -2	. 9718 -1
8. 93	.4989 -4	. 8456 -3	. 5900 -1	8. 874	. 2785 -3	315. 5	2. 376131	99. 085	6. 430	.3900	92, 87	5. 646	16. 45	. 5145 -2	. 9696 -1
8. 94	.4952 -4	. 8411 -3	. 5888 -1	8. 884	. 2771 -3	317. 2	2. 376287	99. 119	6. 422	.3900	93, 08	5. 647	16. 48	. 5119 -2	. 9675 -1
8. 95	.4916 -4	. 8367 -3	. 5875 -1	8. 894	. 2756 -3	318. 8	2. 376444	99. 152	6. 415	. 3899	93. 29	5. 647	16. 52	.5093 -2	. 9653 -3
8. 96	.4880 -4	. 8323 -3	. 5863 -1	8. 904	. 2742 -3	320. 5	2. 376599	99. 186	6. 408	. 3899	93. 50	5. 648	16. 55	.5067 -2	. 9631 -3
8. 97	.4844 -4	. 8280 -3	. 5851 -1	8. 914	. 2728 -3	322. 1	2. 376755	99. 219	6. 401	. 3899	93. 70	5. 649	16. 59	.5041 -2	. 9610 -3
8. 98	.4809 -4	. 8236 -3	. 5838 -1	8. 924	. 2714 -3	323. 8	2. 376909	99. 252	6. 394	. 3899	93. 91	5. 650	16. 62	.5015 -2	. 9589 -3
8. 99	.4773 -4	. 8193 -3	. 5826 -1	8. 934	. 2701 -3	325. 5	2. 377064	99. 286	6. 387	. 3898	94. 12	5. 650	16. 66	.4989 -2	. 9567 -3
9. 00	.4739 -4	. 8150 -3	. 5814 -1	8, 944	. 2687 -2	327. 2	2. 377217	99, 319	6. 379	. 3898	94. 33	5. 651	16. 69	. 4964 -2	. 9546 -1
9. 01	.4704 -4	. 8108 -3	. 5802 -1	8, 954	. 2673 -2	328. 9	2. 377371	99, 352	6. 372	. 3898	94. 54	5. 652	16. 73	. 4939 -2	. 9525 -1
9. 02	.4670 -4	. 8066 -3	. 5790 -1	8, 964	. 2660 -2	330. 6	2. 377524	99, 384	6. 365	. 3897	94. 75	5. 653	16. 76	. 4913 -2	. 9504 -1
9. 03	.4638 -4	. 8024 -3	. 5778 -1	8, 974	. 2646 -2	332. 3	2. 377676	99, 417	6. 358	. 3897	94. 96	5. 653	16. 80	. 4888 -2	. 9483 -1
9. 04	.4602 -4	. 7982 -3	. 5766 -1	8, 985	. 2633 -2	334. 0	2. 377828	99, 451	6. 351	. 3897	95. 18	5. 654	16. 83	. 4864 -2	. 9462 -1
9. 05	.4569 -4	. 7940 -1	. 5754 -1	8, 995	. 2619 -1	335. 7	2. 377979	99. 483	6, 344	. 3897	95, 39	5, 655	16. 87	. 4839 -1	. 9441 -3
9. 06	.4535 -4	. 7899 -3	. 5742 -1	9, 005	. 2606 -1	337. 5	2. 378130	99. 516	6, 337	. 3896	95, 60	5, 656	16. 90	. 4814 -2	. 9421 -3
9. 07	.4503 -4	. 7858 -1	. 5730 -1	9, 015	. 2593 -1	339. 2	2. 378281	99. 549	6, 330	. 3896	95, 81	5, 656	16. 94	. 4790 -2	. 9400 -3
9. 08	.4470 -4	. 7818 -1	. 5718 -1	9, 025	. 2580 -2	340. 9	2. 378431	99. 581	6, 323	. 3896	96, 02	5, 657	16. 97	. 4766 -2	. 9380 -2
9. 09	.4438 -4	. 7777 -3	. 5706 -1	9, 035	. 2567 -2	342. 7	2. 378580	99. 614	6, 316	. 3896	96, 23	5, 658	17. 01	. 4742 -2	. 9359 -1
9. 10	.4405 -4	.7737 -1	. 5694 -1	9. 045	. 2554 -1	344. 5	2, 378729	99. 646	6. 309	. 3895	96. 45	5. 658	17. 05	. 4718 -2	. 9338 -2
9. 11	.4374 -4	.7697 -2	. 5682 -1	9. 055	. 2541 -1	346. 2	2, 378878	99. 679	6. 302	. 3895	96. 66	5. 659	17. 08	. 4694 -2	. 9318 -2
9. 12	.4342 -4	.7657 -2	. 5671 -1	9. 065	. 2528 -1	348. 0	2, 379026	99. 711	6. 295	. 3895	96. 87	5. 660	17. 12	. 4670 -2	. 9298 -2
9. 13	.4311 -4	.7618 -2	. 5659 -1	9. 075	. 2515 -2	349. 8	2, 379174	99. 743	6. 288	. 3895	97. 08	5. 660	17. 15	. 4646 -2	. 9277 -2
9. 14	.4280 -4	.7578 -3	. 5647 -1	9. 085	. 2503 -2	351, 6	2, 379321	99. 775	6. 281	. 3894	97. 30	5. 661	17. 19	. 4623 -2	. 9257 -2
9. 15	.4249 -4	. 7539 -3	. 5636 -1	9, 095	. 2490 -1	353. 4	2. 379468	99. 807	6. 274	.3894	97. 51	5, 662	17. 22	. 4600 -1	. 9237 -2
9. 16	.4218 -4	. 7501 -3	. 5624 -1	9, 105	. 2478 -1	355. 2	2. 379614	99. 840	6. 268	.3894	97. 72	5, 663	17. 26	. 4577 -1	. 9217 -2
9. 17	.4188 -4	. 7462 -3	. 5612 -1	9, 115	. 2465 -1	357. 0	2. 379760	99. 872	6. 261	.3894	97. 94	5, 663	17. 29	. 4554 -2	. 9197 -2
9. 18	.4158 -4	. 7424 -3	. 5601 -1	9, 125	. 2453 -1	358. 8	2. 379905	99. 904	6. 254	.3893	98. 15	5, 664	17. 33	. 4531 -1	. 9177 -2
9. 19	.4128 -4	. 7386 -3	. 5589 -1	9, 135	. 2441 -2	360. 6	2. 380050	99. 936	6. 247	.3893	98. 37	5, 665	17. 37	. 4508 -2	. 9158 -2
9, 20	.4099	. 7348 -2	. 5578 -1	9, 145	. 2428 -1	362, 5	2, 380195	99. 967	6. 240	. 3893	98. 58	5. 665	17. 40	. 4496 -2	. 9138 -3
9, 21		. 7310 -3	. 5566 -1	9, 156	. 2416 -2	364, 3	2, 380339	99. 999	6. 233	. 3893	98. 79	5. 666	17. 44	. 4463 -2	. 9118 -3
9, 22		. 7273 -3	. 5555 -1	9, 166	. 2404 -1	366, 2	2, 380483	100. 031	6. 227	. 3892	99. 01	5. 667	17. 47	. 4441 -2	. 9096 -3
9, 23		. 7236 -3	. 5544 -1	9, 176	. 2392 -1	368, 0	2, 380626	100. 062	6. 220	. 3892	99. 23	5. 667	17. 51	. 4419 -3	. 9078 -3
9, 24		. 7199 -3	. 5532 -1	9, 186	. 2380 -2	369, 9	2, 380769	100. 094	6. 213	. 3892	99. 44	5. 668	17. 54	. 4397 -2	. 9059 -3
9. 25	.3954 -4	.7162 -8	. 5521 -1	9. 196	. 2368 -2	371. 7	2. 380911	100. 125	6. 206	.3892	99. 66	5.669	17. 58	4375 -2	. 9040 -8
9. 26	.3926 -4	.7126 -3	. 5510 -1	9. 206	. 2357 -2	373. 6	2. 381053	100. 157	6. 200	.3892	99. 87	5.669	17. 62	.4353 -2	. 9020 -3
9. 27	.3898 -4	.7090 -3	. 5499 -1	9. 216	. 2345 -3	375. 5	2. 381194	100. 188	6. 193	.3891	100. 1	5.670	17. 65	.4331 -2	. 9000 -2
9. 28	.3871 -4	.7054 -3	. 5487 -1	9. 226	. 2333 -1	377. 4	2. 381335	100. 219	6. 186	.3891	100. 3	5.671	17. 69	.4310 -2	. 8981 -2
9. 29	.3843 -4	.7018 -3	. 5476 -1	9. 236	. 2322 -3	379. 3	2. 381476	100. 251	6. 179	.3891	100. 5	5.671	17. 72	.4288 -2	. 8962 -3
9.30	.3816 -4	. 6982 -3	. 5465 -1	9. 246	. 2310 -3	381. 2	2. 381616	100, 282	6. 173	. 3891	100. 7	5. 672	17. 76	. 4267 -2	.8943 -3
9.31	.3789 -4	. 6947 -1	. 5454 -1	9. 256	. 2299 -3	383. 1	2. 381756	100, 313	6. 166	. 3890	101. 0	5. 673	17. 80	. 4246 -3	.8924 -9
9.32	.3762 -4	. 6912 -3	. 5443 -1	9. 266	. 2287 -3	385. 1	2. 381895	100, 344	6. 160	. 3890	101. 2	5. 673	17. 83	. 4225 -3	.8904 -9
9.33	.3735 -4	. 6877 -2	. 5432 -1	9. 276	. 2276 -2	387. 0	2. 382034	100, 375	6. 153	. 3890	101. 4	5. 674	17. 87	. 4204 -2	.8685 -9
9.34	.3709 -4	. 6842 -3	. 5421 -1	9. 286	. 2265 -3	389. 0	2. 382173	100, 406	6. 146	. 3890	101. 6	5. 675	17. 91	. 4183 -2	.8867 -2

TABLE II.—SUPERSONIC FLOW—Continued

,							γ=1/0								
M or M ₁	$\frac{p}{p_i}$	<u>ρ</u>	$\frac{T}{T_t}$	β	$\frac{q}{p_t}$	$\frac{A}{A_{ullet}}$	$\frac{V}{a_{\bullet}}$,	μ	М1	$\frac{p_1}{p_1}$	<u>ρι</u> ρι	$\frac{T_1}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
9. 35	. 3683 -4	.6807 -3	. 5410 -1	9. 296	. 2254 -3	390. 9	2. 382311	100. 436	6. 140	. 3889	101. 8	5, 675	17, 94	.4162 -2	.8849 -1
9. 36	. 3657 -4	.6773 -3	. 5399 -1	9. 306	. 2243 -3	392. 9	2. 382448	100. 467	6. 133	. 3889	102. 0	5, 676	17, 98	.4142 -2	.8828 -1
9. 37	. 3631 -4	.6739 -3	. 5388 -1	9. 316	. 2232 -3	394. 8	2. 382585	100. 498	6. 127	. 3889	102. 3	5, 677	18, 01	.4121 -2	.8809 -1
9. 38	. 3605 -4	.6705 -3	. 5377 -1	9. 327	. 2221 -3	396. 8	2. 382722	100. 529	6. 120	. 3889	102. 5	5, 677	18, 05	.4101 -2	.8791 -1
9. 39	. 3580 -4	.6671 -3	. 5366 -1	9. 337	. 2210 -3	398. 8	2. 382859	100. 559	6. 113	. 3888	102. 7	5, 678	18, 09	.4081 -2	.8773 -1
9. 40	.3555 →	.6638 -3	.5356 -1	9. 347	.2199 -3	400. 8	2. 382995	100, 590	6, 107	. 3888	102. 9	5. 679	18. 12	.4061 -2	.8754 -3
9. 41	.3530 →	.6604 -3	.5345 -1	9. 357	.2188 -2	402. 8	2. 383130	100, 620	6, 100	. 3888	103. 1	5. 679	18. 16	.4041 -2	.8736 -3
9. 42	.3505 →	.6571 -3	.5334 -1	9. 367	.2177 -1	404. 8	2. 383265	100, 651	6, 094	. 3888	103. 4	5. 680	18. 20	.4021 -2	.8718 -3
9. 43	.3481 →	.6538 -3	.5323 -1	9. 377	.2167 -2	406. 8	2. 383400	100, 681	6, 087	. 3888	103. 6	5. 681	18. 23	.4001 -3	.8699 -3
9. 44	.3456 →	.6506 -3	.5313 -1	9. 387	.2156 -3	408. 8	2. 383534	100, 711	6, 081	. 3887	103. 8	5. 681	18. 27	.3982 -2	.8681 -3
9. 45	.3432 →	.6473 -3	.5302 -1	9. 397	. 2146 -1	410.9	2. 383668	100. 742	6, 074	.3887	104.0	5. 682	18. 31	. 3962 -3	.8662 -3
9. 46	.3408 →	.6441 -3	.5291 -1	9. 407	. 2135 -2	412.9	2. 383802	100. 772	6, 068	.3887	104.2	5. 683	18. 34	. 3943 -2	.8644 -3
9. 47	.3384 →	.6409 -3	.5281 -1	9. 417	. 2125 -1	414.9	2. 383935	100. 802	6, 062	.3887	104.5	5. 683	18. 38	. 3924 -3	.8626 -3
9. 48	.3361 →	.6377 -3	.5270 -1	9. 427	. 2114 -2	417.0	2. 384068	100. 832	6, 055	.3886	104.7	5. 684	18. 42	. 3904 -3	.8607 -3
9. 49	.3337 →	.6345 -3	.5260 -1	9. 437	. 2104 -2	419.1	2. 384200	100. 862	6, 049	.3886	104.9	5. 684	18. 45	. 3885 -2	.8589 -3
9. 50	.3314 -4	.6313 -3	.5249 -1	9. 447	. 2094 -1	421. 1	2. 384332	100, 892	6. 042	. 3886	105. 1	5. 685	18. 49	.3866 -2	.8572 -9
9. 51	.3291 -4	.6282 -3	.5239 -1	9. 457	. 2084 -1	423. 2	2. 384464	100, 922	6. 036	. 3886	105. 3	5. 686	18. 53	.3848 -2	.8554 -1
9. 52	.3268 -4	.6251 -3	.5228 -1	9. 467	. 2073 -1	425. 3	2. 384595	100, 952	6. 030	. 3886	105. 6	5. 686	18. 57	.3829 -2	.8536 -1
9. 53	.3246 -4	.6220 -3	.5218 -1	9. 477	. 2063 -2	427. 4	2. 384726	100, 981	6. 023	. 3885	105. 8	5. 687	18. 60	.3810 -2	.8518 -2
9. 54	.3223 -4	.6189 -3	.5208 -1	9. 487	. 2053 -1	429. 5	2. 384856	101, 011	6. 017	. 3885	106. 0	5. 688	18. 64	.3792 -2	.8500 -8
9. 55	.3201 -4	.6158 -3	.5197 -1	9. 498	. 2043 -3	431. 6	2. 384986	101. 041	6. 011	. 3885	106. 2	5. 688	18. 68	.3773 -9	. 8483 -2
9. 56	.3179 -4	.6128 -3	.5187 -1	9. 508	. 2034 -3	433. 7	2. 385116	101. 070	6. 004	. 3885	106. 5	5. 689	18. 71	.3755 -9	. 8465 -2
9. 57	.3157 -4	.6098 -3	.5177 -1	9. 518	. 2024 -3	435. 9	2. 385245	101. 100	5. 998	. 3884	106. 7	5. 689	18. 75	.3737 -2	. 8447 -2
9. 58	.3135 -4	.6067 -3	.5167 -1	9. 528	. 2014 -3	438. 0	2. 385374	101. 129	5. 992	. 3884	106. 9	5. 690	18. 79	.3719 -2	. 8431 -2
9. 59	.3113 -4	.6037 -3	.5156 -1	9. 538	. 2004 -3	440. 2	2. 385502	101. 159	5. 985	. 3884	107. 1	5. 691	18. 83	.3701 -2	. 8412 -2
9. 60	.3092 -4	.6008 -3	.5146 -1	9. 548	. 1995 -2	442. 3	2. 385630	101. 188	5. 979	. 3884	107. 4	5. 691	18. 86	.3683 -3	.8394 -2
9. 61	.3070 -4	.5978 -3	.5136 -1	9. 558	. 1985 -2	444. 5	2. 385758	101. 217	5. 973	. 3884	107. 6	5. 692	18. 90	.3665 -2	.8378 -2
9. 62	.3049 -4	.5949 -3	.5126 -1	9. 568	. 1975 -2	446. 7	2. 385885	101. 247	5. 967	. 3883	107. 8	5. 692	18. 94	.3647 -3	.8360 -2
9. 63	.3028 -4	.5919 -3	.5116 -1	9. 578	. 1966 -2	448. 8	2. 386012	101. 276	5. 960	. 3883	108. 0	5. 693	18. 98	.3630 -3	.8343 -2
9. 64	.3007 -4	.5890 -3	.5106 -1	9. 588	. 1956 -1	451. 0	2. 386139	101. 305	5. 954	. 3883	108. 3	5. 694	19. 01	.3612 -2	.8325 -2
9. 65	. 2987 -4	. 5861 -3	.5096 -1	9, 598	. 1947 -1	453. 2	2. 386265	101. 334	5. 948	. 3883	108. 5	5. 694	19. 05	.3595 -1	. 8308 -1
9. 66	. 2966 -4	. 5833 -3	.5086 -1	9, 608	. 1938 -2	455. 4	2. 386391	101. 363	5. 942	. 3883	108. 7	5. 695	19. 09	.3578 -2	. 8291 -2
9. 67	. 2946 -4	. 5804 -3	.5076 -1	9, 618	. 1928 -2	457. 7	2. 386516	101. 392	5. 936	. 3882	108. 9	5. 695	19. 13	.3560 -2	. 8275 -2
9. 68	. 2926 -4	. 5776 -3	.5066 -1	9, 628	. 1919 -2	459. 9	2. 386641	101. 421	5. 930	. 3882	109. 2	5. 696	19. 16	.3543 -1	. 8257 -3
9. 69	. 2906 -4	. 5747 -3	.5056 -1	9, 638	. 1910 -2	462. 1	2. 386766	101. 450	5. 923	. 3882	109. 4	5. 697	19. 20	.3526 -2	. 8240 -2
9. 70	. 2886 -4	.5719 -3	. 5046 -1	9. 648	. 1901 -2	464. 4	2. 386890	101. 479	5. 917	. 3882	109. 6	5, 697	19. 24	. 3510 -1	.8224 -2
9. 71	. 2866 -4	.5691 -3	. 5036 -1	9. 658	. 1892 -3	466. 6	2. 387014	101. 507	5. 911	. 3882	109. 8	5, 698	19. 28	. 3493 -2	.8206 -2
9. 72	. 2847 -4	.5664 -3	. 5026 -1	9. 668	. 1883 -2	468. 9	2. 387138	101. 536	5. 905	. 3881	110. 1	5, 698	19. 31	. 3476 -2	.8190 -2
9. 73	. 2827 -4	.5636 -3	. 5016 -1	9. 678	. 1874 -2	471. 2	2. 387261	101. 564	5. 899	. 3881	110. 3	5, 699	19. 35	. 3459 -2	.8174 -2
9. 74	. 2808 -4	.5609 -3	. 5007 -1	9. 689	. 1865 -2	473. 4	2. 387384	101. 593	5. 893	. 3881	110. 5	5, 700	19. 39	. 3443 -2	.8155 -2
9. 75	. 2789 -4	.5581 -3	. 4997 -1	9. 699	. 1856 -3	475. 7	2. 387507	101. 621	5. 887	. 3881	110. 7	5. 700	19. 43	.3427 -1	.8139 -2
9. 76	. 2770 -4	.5554 -3	. 4987 -1	9. 709	. 1847 -3	478. 0	2. 387629	101. 650	5. 881	. 3880	111. 0	5. 701	19. 47	.3410 -1	.8123 -2
9. 77	. 2751 -4	.5527 -3	. 4977 -1	9. 719	. 1838 -3	480. 3	2. 387751	101. 678	5. 875	. 3880	111. 2	5. 701	19. 50	.3394 -1	.8107 -1
9. 78	. 2733 -4	.5501 -3	. 4968 -1	9. 729	. 1830 -3	482. 6	2. 387872	101. 707	5. 869	. 3880	111. 4	5. 702	19. 54	.3378 -1	.8090 -2
9. 79	. 2714 -4	.5474 -3	. 4958 -1	9. 739	. 1821 -3	485. 0	2. 387993	101. 735	5. 863	. 3880	111. 7	5. 703	19. 58	.3362 -2	.8073 -1
9.80	. 2696 -4	. 5447 -3	. 4949 -1	9. 749	. 1812 -3	487. 3	2. 388114	101. 763	5. 857	. 3880	111. 9	5. 703	19. 62	.3346 -1	.8057 -1
9.81	. 2677 -4	. 5421 -3	. 4939 -1	9. 759	. 1804 -3	489. 6	2. 388234	101. 791	5. 851	. 3879	112. 1	5. 704	19. 66	.3330 -3	.8040 -2
9.82	. 2659 -4	. 5395 -3	. 4929 -1	9. 769	. 1795 -3	492. 0	2. 388354	101. 820	5. 845	. 3879	112. 3	5. 704	19. 69	.3314 -3	.8025 -2
9.83	. 2641 -4	. 5369 -3	. 4920 -1	9. 779	. 1787 -2	494. 4	2. 388474	101. 848	5. 839	. 3879	112. 6	5. 705	19. 73	.3298 -3	.8008 -1
9.84	. 2624 -4	. 5343 -3	. 4910 -1	9. 789	. 1778 -2	496. 7	2. 388593	101. 876	5. 833	. 3879	112. 8	5. 705	19. 77	.3283 -1	.7992 -2
9.85	. 2606 -4	.5317 -3	. 4901 -1	9, 799	. 1770 -3	499. 1	2. 388712	101. 904	5. 827	. 3879	113. 0	5. 706	19. 81	.3267 -2	. 7977 -2
9.86	. 2588 -4	.5292 -3	. 4891 -1	9, 809	. 1762 -3	501. 5	2. 388831	101. 932	5. 821	. 3878	113. 3	5. 707	19. 85	.3252 -2	. 7960 -3
9.87	. 2571 -4	.5266 -3	. 4882 -1	9, 819	. 1753 -3	503. 9	2. 388949	101. 960	5. 815	. 3878	113. 5	5. 707	19. 89	.3237 -3	. 7944 -2
9.88	. 2554 -4	.5241 -3	. 4873 -1	9, 829	. 1745 -3	506. 3	2. 389067	101. 987	5. 809	. 3878	113. 7	5. 708	19. 92	.3221 -3	. 7928 -2
9.89	. 2537 -4	.5216 -3	. 4863 -1	9, 839	. 1737 -3	508. 7	2. 389185	102. 015	5. 803	. 3878	113. 9	5. 708	19. 96	.3206 -3	. 7912 -3
9. 90	. 2520 -4	.5191 -3	. 4854 -1	9, 849	.1729 -2	511. 2	2. 389302	102. 043	5. 797	. 3878	114. 2	5. 709	20. 00	.3191 -2	. 7896 -2
9. 91	. 2503 -4	.5166 -3	. 4845 -1	9, 859	.1720 -2	513. 6	2. 389419	102. 070	5. 792	. 3877	114. 4	5. 709	20. 04	.3176 -2	. 7880 -2
9. 92	. 2486 -4	.5141 -3	. 4835 -1	9, 869	.1712 -3	516. 0	2. 389536	102. 098	5. 786	. 3877	114. 6	5. 710	20. 08	.3161 -2	. 7864 -2
9. 93	. 2469 -4	.5117 -3	. 4826 -1	9, 880	.1704 -3	518. 5	2. 389652	102. 126	5. 780	. 3877	114. 9	5. 710	20. 12	.3146 -3	. 7848 -2
9. 94	. 2453 -4	.5092 -3	. 4817 -1	9, 890	.1696 -2	521. 0	2. 389768	102. 153	5. 774	. 3877	115. 1	5. 711	20. 15	.3132 -2	. 7831 -2
9. 95	. 2436 -4	.5068 -3	. 4808 -1	9. 900	.1689 -2	523. 4	2, 389684	102. 180	5. 768	. 3877	115. 3	5. 712	20. 19	.3117 -1	.7817 -2
9. 96	. 2420 -4	.5044 -1	. 4798 -1	9. 910	.1681 -2	525. 9	2, 389999	102. 208	5. 762	. 3877	115. 6	5. 712	20. 23	.3102 -1	.7801 -2
9. 97	. 2404 -4	.5020 -3	. 4789 -1	9. 920	.1673 -2	528. 4	2, 390114	102. 235	5. 756	. 3876	115. 8	5. 713	20. 27	.3088 -1	.7785 -2
9. 98	. 2388 -4	.4996 -3	. 4780 -1	9. 930	.1665 -2	530. 9	2, 390229	102. 262	5. 751	. 3876	116. 0	5. 713	20. 31	.3073 -1	.7770 -2
9. 99	. 2372 -4	.4972 -3	. 4771 -1	9. 940	.1657 -2	533. 4	2, 390343	102. 290	5. 745	. 3876	116. 3	5. 714	20. 35	.3059 -2	.7755 -3
10. 00	.2356 -4	.4948 -3	. 4762 -1	9. 950	.1649 -3	535. 9	2. 390457	102. 32	5. 739	. 3876	116. 5	5. 714	20. 39	. 3045 -1	.7739 -2
10. 02	.2325 -4	.4901 -3	. 4744 -1	9. 970	.1634 -3	541. 0	2. 390684	102. 37	5. 728	. 3875	117. 0	5. 715	20. 47	. 3016 -1	.7708 -2
10. 04	.2294 -4	.4855 -3	. 4726 -1	9. 990	.1619 -3	546. 1	2. 390910	102. 42	5. 716	. 3875	117. 4	5. 717	20. 54	. 2988 -1	.7678 -2
10. 06	.2264 -4	.4809 -3	. 4708 -1	10. 01	.1604 -3	551. 3	2. 391134	102. 48	5. 705	. 3875	117. 9	5. 718	20. 62	. 2961 -2	.7646 -2
10. 08	.2234 -4	.4764 -3	. 4690 -1	10. 03	.1589 -3	556. 4	2. 391358	102. 53	5. 693	. 3874	118. 4	5. 719	20. 70	. 2934 -1	.7616 -2
10. 10	.2205 -4	. 4719 -3	. 4673 -1	10. 05	.1575 -3	561. 7	2. 391579	102. 59	5. 682	. 3874	118. 9	5. 720	20. 78	. 2906 -1	.7588 -2
10. 12	.2176 -4	. 4675 -3	. 4655 -1	10. 07	.1560 -3	567. 0	2. 391800	102. 64	5. 671	. 3874	119. 3	5. 721	20. 86	. 2879 -1	.7558 -2
10. 14	.2148 -4	. 4631 -3	. 4637 -1	10. 09	.1546 -3	572. 3	2. 392020	102. 70	5. 660	. 3873	119. 8	5. 722	20. 94	. 2853 -2	.7528 -2
10. 16	.2120 -4	. 4588 -3	. 4620 -1	10. 11	.1532 -2	577. 6	2. 392238	102. 75	5. 648	. 3873	120. 3	5. 723	21. 01	. 2827 -2	.7498 -2
10. 18	.2092 -4	. 4545 -3	. 4603 -1	10. 13	.1518 -3	583. 0	2. 392455	102. 80	5. 637	. 3872	120. 7	5. 724	21. 09	. 2801 -2	.7469 -2
10. 20	. 2065 -4	. 4503 -3	. 4586 -1	10. 15	.1504 -3	588. 4	2. 392670	102. 85	5. 626	. 3872	121. 2	5. 725	21. 17	. 2775 -1	.7439 -2
10. 22	. 2038 -4	. 4461 -3	. 4568 -1	10. 17	.1490 -3	593. 9	2. 392885	102. 90	5. 615	. 3872	121. 7	5. 726	21. 25	. 2750 -1	.7411 -2
10. 24	. 2011 -4	. 4419 -3	. 4551 -1	10. 19	.1476 -3	599. 5	2. 393098	102. 95	5. 604	. 3871	122. 2	5. 727	21. 33	. 2725 -1	.7382 -2
10. 26	. 1985 -4	. 4378 -3	. 4534 -1	10. 21	.1463 -3	605. 0	2. 393310	103. 01	5. 593	. 3871	122. 7	5. 728	21. 41	. 2700 -2	.7354 -2
10. 28	. 1960 -4	. 4338 -3	. 4518 -1	10. 23	.1450 -3	610. 6	2. 393521	103. 06	5. 582	. 3871	123. 1	5. 729	21. 49	. 2676 -1	.7324 -2
10. 30	.1934 -4	. 4298 -3	. 4501 -!	10. 25	.1437 -3	616. 2	2. 393731	103. 11	5. 571	. 3870	123. 6	5. 730	21. 57	. 2651 -1	.7297 -1
10. 32	.1909 -4	. 4258 -1	. 4484 -!	10. 27	.1424 -3	621. 9	2. 393940	103. 16	5. 561	. 3870	124. 1	5. 731	21. 65	. 2627 -1	.7268 -2
10. 34	.1885 -4	. 4219 -3	. 4468 -!	10. 29	.1411 -3	627. 6	2. 394147	103. 21	5. 550	. 3870	124. 6	5. 732	21. 73	. 2603 -3	.7240 -2
10. 36	.1861 -4	. 4180 -3	. 4451 -!	10. 31	.1396 -3	633. 4	2. 394354	103. 27	5. 539	. 3869	125. 1	5. 733	21. 81	. 2580 -3	.7213 -2
10. 38	.1837 -4	. 4142 -3	. 4435 -!	10. 33	.1385 -2	639. 2	2. 394559	103. 31	5. 528	. 3869	125. 5	5. 734	21. 89	. 2557 -2	.7185 -2
10. 40	.1813 -4	.4104 -3	. 4419 -1	10. 35	.1373 -2	646. 1	2. 394763	103. 36	5. 518	. 3869	126. 0	5. 735	21. 97	. 2534 -3	.7157 -2
10. 42	.1790 -4	.4066 -3	. 4402 -1	10. 37	.1361 -2	651. 0	2. 394966	103. 41	5. 507	. 3868	126. 5	5. 736	22. 06	. 2511 -3	.7130 -2
10. 44	.1767 -4	.4029 -3	. 4386 -1	10. 39	.1348 -2	656. 9	2. 395167	103. 47	5. 497	. 3868	127. 0	5. 737	22. 14	. 2488 -3	.7102 -2
10. 46	.1745 -4	.3993 -3	. 4370 -1	10. 41	.1336 -2	662. 9	2. 395368	103. 52	5. 486	. 3868	127. 5	5. 738	22. 22	. 2466 -3	.7075 -2
10. 48	.1723 -4	.3956 -3	. 4354 -1	10. 43	.1324 -3	668. 9	2. 395568	103. 56	5. 476	. 3867	128. 0	5. 739	22. 30	. 2444 -3	.7049 -2

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

1		<u> </u>				1		γ=	7/5							
	M or M ₁	$\frac{p}{p_i}$	P Pi	$\frac{T}{T_i}$	8	$\frac{q}{p_t}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$	٧	μ.	M ₂	<u>p1</u>	<u>P1</u>	$\frac{T_3}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{I_2}}$
	10. 50 10. 52 10. 54 10. 56 10. 58	.1701 - .1679 - .1658 - .1637 - .1616 -	. 3885 - . 3850 - . 3815 -	3 .4323 - 3 .4307 - 1 .4291 -	10. 47 10. 49 10. 51	.1313 - .1301 - .1289 - .1278 - .1267 -	681. 1 687. 3 693. 5	2. 395766 2. 395964 2. 396160 2. 396355 2. 396550	103. 66 103. 71 103. 76	5. 465 5. 456 5. 444 5. 434 5. 424	. 386 . 3866	7 129.0 3 129.4 3 129.9	5. 740 5 741 5. 742 5. 743 5. 744	22. 38 22. 46 22. 54 22. 63 22. 71	. 2400 . 2379	-9 . 7022 -3 -2 . 6996 -3 -3 . 6968 -2 -3 . 6942 -3
	10. 60 10. 62 10. 64 10. 66 10. 68	. 1596 - . 1576 - . 1556 - . 1537 - . 1518 -	. 3713	. 4245 -1 . 4230 -1 . 4215 -1		.1255	712.3 718.7 725.2	2. 396743 2. 396935 2. 397126 2. 397316 2. 397505	103. 86 103. 90 103. 96 104. 01 104. 05	5. 413 5. 403 5. 393 5. 383 5. 373	. 3865 . 3865 . 3864	130.9	5. 744 5. 745 5. 746 5. 747 5. 748	22. 79 22. 87 22. 96 23. 04 23. 12	. 2317 - . 2296 - . 2276 - . 2256 - . 2236 -	2 . 6891 -1 . 6866 -2 . 6839 -2 . 6814 -2
	10. 70 10. 72 10. 74 10. 76 10. 78	.1499	. 3518 -3 . 3487 -3 . 3456 -3	. 4170 -1 . 4155 -1 . 4140 -1 . 4125 -1	10. 65 10. 67 10. 69 10. 71 10. 73	.1201 -2 .1191 -2 .1180 -2 .1170 -2 .1160 -2	744. 8 751. 4 758. 1	2. 397693 2. 397880 2. 398066 2. 398251 2. 398435	104. 10 104. 14 104. 19 104. 24 104. 29	5. 363 5. 353 5. 343 5. 333 5. 323	. 3863 . 3863	133. 4 133. 9 134. 4 134. 9 135. 4	5. 749 5. 750 5. 751 5. 752 5. 753	23. 21 23. 29 23. 37 23. 46 23. 54	. 2216 - . 2197 - . 2178 - . 2159 - . 2140 -	. 6763 -1 . 6737 -2 . 6712 -2 . 6688 -1
	10. 80 10. 82 10. 84 10. 86 10. 88	.1408 -4 .1391 -4 .1374 -4 .1357 -4 .1349 -4	. 3365 -2 . 3336 -3 . 3306 -3	. 4096 -1 . 4081 -1 . 4067 -1 . 4053 -1	10. 75 10. 77 10. 79 10. 81 10. 83	.1150 -2 .1140 -1 .1130 -2 .1120 -2 .1110 -2	785. 2 792. 1	2. 398618 2. 398801 2. 398982 2. 399162 2. 399341	104. 33 104. 38 104. 43 104. 48 104. 52	5. 313 5. 303 5. 293 5. 283 5. 274	. 3862 . 3862 . 3861 . 3861	135. 9 136. 4 136. 9 137. 4 137. 9	5. 753 5. 754 5. 755 5. 756 5. 757	23. 62 23. 71 23. 79 23. 88 23. 96	. 2121	. 6638 -2 . 6614 -2 . 6589 -2 . 6565 -2
	10. 90 10. 92 10. 94 10. 96 10. 98	.1324	. 3277 -8 . 3249 -8 . 3220 -2 . 3192 -3 . 3165 -3	. 4038 -1 . 4024 -1 . 4010 -3 . 3996 -1 . 3982 -1	10. 85 10. 87 10. 89 10. 91 10. 93	.1101 -2 .1091 -2 .1082 -3 .1073 -3 .1064 -2	806. 1 813. 1 820. 3 827. 4 834. 6	2, 399519 2, 399697 2, 399873 2, 400049 2, 400223	104. 57 104. 61 104. 66 104. 71 104. 75	5. 264 5. 254 5. 245 5. 235 5. 225	. 3861 . 3860 . 3860 . 3860 . 3860	138. 5 139. 0 139. 5 140. 0 140. 5	5. 758 5. 759 5. 759 5. 760 5. 761	24. 05 24. 13 24. 21 24. 30 24. 39	. 2031 -2 . 2013 -2 . 1996 -2 . 1979 -2 . 1962 -2	. 6518 -1 . 6494 -2
	11.02 11.04 11.06 11.08	.1230 -4 .1215 -4 .1200 -4 .1186 -4	.3137 -1 .3109 -1 .3083 -8 .3056 -1 .3030 -3	.3968 ~1 .3954 ~1 .3941 ~1 .3927 ~1 .3913 ~1	10. 95 10. 97 11. 00 11. 02 11. 04	. 1054 -2 . 1045 -2 . 1036 -2 . 1028 -2 . 1019 -2	841. 9 849. 2 856. 6 864. 0 871. 5	2. 400397 2. 400570 2. 400741 2. 400912 2. 401082	104. 80 104. 85 104. 89 104. 93 104. 98	5. 216 5. 206 5. 197 5. 188 5. 178	. 3859 . 3859 . 3859 . 3858 . 3858	141.0 141.5 142.0 142.5 143.1	5. 762 5. 763 5. 764 5. 764 5. 765	24, 47 24, 56 24, 64 24, 73 24, 81	. 1945 -2 . 1929 -2 . 1912 -2 . 1896 -2 . 1880 -2	. 6400 -2 . 6376 -2 . 6354 -2 . 6330 -2 . 6308 -1
	11. 12 11. 14 11. 16 11. 18	.1157 -4 .1143 -4 .1130 -4 .1116 -4	. 2978 -a . 2952 -a . 2927 -a . 2902 -a	.3900 -1 .3886 -1 .3873 -1 .3860 -1 .3846 -1	11. 06 11. 08 11. 10 11. 12 11. 14	. 1010 -2 . 1002 -3 . 9932 -3 . 9847 -3 . 9765 -3	879. 0 886. 6 894. 2 901. 9 909. 6	2. 401252 2. 401420 2. 401587 2. 401754 2. 401919	105. 02 105. 06 105. 11 105. 16 105. 20	5. 169 5. 159 5. 150 5. 141 5, 132	. 3858 . 3858 . 3857 . 3857 . 3857	143, 6 144, 1 144, 6 145, 1 145, 7	5. 766 5. 767 5. 768 5. 768 5. 769	24. 90 24. 99 25. 08 25. 16 25. 25	. 1864 -3 . 1848 -3 . 1832 -3 . 1817 -3 . 1801 -3	. 6286 -1 . 6263 -1 . 6241 -1 . 6218 -1 . 6197 -1
	11. 22 11. 24 11. 26 11. 28	.1090 -4 .1077 -4 .1064 -4 .1051 -4	. 2852 -3 . 2828 -3 . 2804 -3 . 2780 -3	. 3833 -1 . 3820 -1 . 3807 -1 . 3794 -1 . 3781 -1	11. 16 11. 18 11. 20 11. 22 11. 24	. 9683 -1 . 9602 -1 . 9521 -1 . 9440 -1 . 9362 -2	917. 4 925. 2 933. 1 941. 1 949. 1	2. 402084 2. 402248 2. 402412 2. 402574 2. 402735	105. 24 105. 28 105. 33 105. 37 105. 42	5, 123 5, 113 5, 104 5, 095 5, 086	. 3856 . 3856 . 3856 . 3856 . 3855	146. 2 146. 7 147. 2 147. 8 148. 3	5. 770 5. 771 5. 772 5. 772 5. 773	25. 33 25. 42 25. 51 25. 60 25. 69	.1786 -2 .1771 -2 .1756 -2 .1742 -2 .1727 -3	.6174 -3 .6152 -3 .6131 -2 .6108 -3 .6087 -3
	11. 32 11. 34 11. 36 11. 38	.1026 -4 .1014 -4 .1002 -4 .9905 -3	. 2756 -1 . 2733 -1 . 2710 -1 . 2687 -1 . 2664 -1	.3768 -1 .3755 -1 .3743 -1 .3730 -1 .3717 -1	11. 28 11. 28 11. 30 11. 32 11. 34	. 9283 -1 . 9206 -2 . 9130 -3 . 9054 -3 . 8979 -3	957, 1 965, 3 973, 5 981, 6 989, 9	2. 402996 2. 403056 2. 403215 2. 403373 2. 403531	105. 46 105. 50 105. 55 105. 59 105. 63	5, 077 5, 068 5, 059 5, 050 5, 041	. 3855 . 3855 . 3855 . 3854 . 3854	148. 8 149. 3 149. 9 150. 4 150. 9	5. 774 5. 775 5. 775 5. 776 5. 777	25. 77 25. 86 25. 95 26. 04 26. 12	.1712 -1 .1698 -2 .1684 -2 .1670 -2 .1656 -2	.6066 -2 .6044 -1 .6023 -1 .6002 -2 .5981 -2
	11. 42 11. 44 11. 46 11. 48	. 9673 -4 . 9559 -5 . 9447 -5 . 9337 -4	. 2642 -1 . 2620 -3 . 2598 -3 . 2576 -3 . 2554 -3	. 3705 -1 . 3692 -1 . 3680 -1 . 3688 -1 . 3655 -1	11.36 11.38 11.40 11.42 11.44	. 8904 -1 . 8830 -1 . 8757 -2 . 8685 -3 . 8613 -3	998.3 1007 1015 1024 1032	2. 403687 2. 403843 2. 403998 2. 404152 2. 404306	105. 67 105. 71 105. 75 105. 80 105. 84	5. 032 5. 024 5. 015 5. 006 4. 997	. 3854 . 3854 . 3853 . 3853 . 3853	151. 5 152. 0 152. 5 153. 1 153. 6	5. 778 5. 779 5. 779 5. 780 5. 781	26. 21 26. 30 26. 39 26. 48 26. 57	. 1642 -2 . 1629 -2 . 1615 -2 . 1602 -2 . 1589 -1	.5959 -2 .5939 -2 .5918 -2 .5897 -2 .5877 -2
	11. 52 11. 54 11. 56 11. 58	.9120 -4 .9014 -5 .8909 -5 .8806 -3	. 2533 -1 . 2512 -8 . 2491 -3 . 2470 -3 . 2450 -3	. 3643 -1 . 3631 -1 . 3619 -1 . 3607 -1 . 3595 -1	11. 46 11. 48 11. 50 11. 52 11. 54	.8543 -2 .8472 -3 .8403 -3 .8334 -3 .8266 -3	1041 1050 1058 1067 1076	2. 404459 2. 404610 2. 404762 2. 404912 2. 405062	105. 88 105. 92 105. 97 106. 01 106. 05	4, 989 4, 980 4, 971 4, 963 4, 954	. 3853 . 3852 . 3852 . 3852 . 3852	154. 1 154. 7 155. 2 155. 7 156. 3	5. 781 5. 782 5. 783 5. 784 5. 784	26. 66 26. 75 26. 84 26. 93 27. 02	.1575 -2 .1563 -2 .1550 -2 .1537 -2 .1525 -2	. 5858 -2 . 5836 -2 . 5816 -1 . 5797 -2 . 5776 -2
	11. 62 11. 64 11. 66 11. 68	.8604 -6 .8505 -1 .8406 -6 .8310 -6	. 2409 -1 . 2390 -1 . 2370 -1 . 2350 -3	. 3583 -1 . 3571 -1 . 3559 -1 . 3547 -1 . 3536 -1	11. 60 11. 62 11. 64	.8199 -2 .8132 -3 .8066 -3 .8000 -1 .7935 -3	1085 1094 1103 1112 1121	2. 405211 2. 405359 2. 405506 2. 405653 2. 405799	106. 09 106. 13 106. 17 106. 21 106. 25	4. 945 4. 937 4. 928 4. 920 4. 912	. 3851 . 3851 . 3851 . 3851 . 3850	156. 8 157. 4 157. 9 158. 5 159. 0	5. 785 5. 786 5. 787 5. 787 5. 788	27. 11 27. 20 27. 29 27. 38 27. 47	.1512 -3 .1500 -3 .1488 -3 .1475 -2 .1464 -3	.5757 -2 .5737 -2 .5717 -2 .5698 -1 .5678 -2
	11. 72 11. 74 11. 76 11. 78	.8120 -6 .8027 -6 .7935 -6 .7845 -6	. 2312 -1 . 2293 -1 . 2274 -1 . 2256 -1	. 3524 -1 . 3512 -1 . 3501 -1 . 3489 -1 . 3478 -1	11. 68 11. 70 11. 72 11. 74	. 7871 -3 . 7808 -3 . 7744 -3 . 7682 -3 . 7620 -3	1130 1140 1149 1158 1168	2. 405944 2. 406089 2. 406233 2. 406376 2. 406518	106. 29 106. 33 106. 37 106. 41 106. 45	4, 903 4, 895 4, 886 4, 878 4, 870	. 3850 . 3850 . 3850 . 3849 . 3849	159. 5 160. 1 160. 6 161. 2 161. 7	5. 789 5. 789 5. 790 5. 791 5. 791	27. 56 27. 65 27. 74 27. 84 27. 93	.1452 -2 .1440 -2 .1428 -2 .1417 -2 .1405 -2	. 5659 -2 . 5639 -1 . 5620 -2 . 5601 -1 . 5583 -2
	11. 82 11. 84 11. 86 11. 88	. 7667 -5 . 7580 -5 . 7494 -5 . 7409 -2	. 2219 -3 . 2201 -3 . 2183 -3 . 2165 -4	. 3466 -1 . 3455 -1 . 3444 -1 . 3433 -1 . 3422 -1	11. 78 11. 80 11. 82 11. 84	. 7559 -1 . 7498 -2 . 7438 -3 . 7379 -3 . 7320 -1	1177 1187 1197 1206 1216	2. 406660 2. 406801 2. 406942 2. 407081 2. 407220	106. 49 106. 53 106. 57 106. 61 106. 65	4. 861 4. 853 4. 845 4. 837 4. 829	. 3849 . 3849 . 3848 . 3848 . 3848	162. 3 162. 8 163. 4 163. 9 164. 5	5. 792 5. 793 5. 793 5. 794 5. 795	28. 02 28. 11 28. 20 28. 30 28. 39	. 1394 -2 . 1383 -2 . 1372 -2 . 1361 -2 . 1350 -2	. 5564 -2 . 5544 -2 . 5526 -2 . 5508 -2 . 5489 -1
1 1 1	1. 92 1. 94 1. 96 1. 98 2. 00	.7243 -6 .7161 -5 .7080 -5 .7000 -3	. 2131 -a . 2113 -3 . 2096 -3 . 2079 -3	.3410 -1 .3399 -1 .3388 -1 .3377 -1 .3367 -1	11. 88 11. 90 11. 92 11. 94	. 7261 -3 . 7204 -3 . 7146 -3 . 7089 -3 . 7033 -3	1226 1236 1246 1256 1266	2. 407359 2. 407496 2. 407633 2. 407770 2. 407905	106. 69 106. 73 106. 76 106. 81 106. 84	4. 820 4. 812 4. 804 4. 796 4. 788	. 3848 . 3848 . 3847 . 3847 . 3847	165. 1 165. 6 166. 2 166. 7 167. 3	5. 795 5. 796 5. 797 5. 797 5. 798	28. 48 28. 57 28. 67 28. 76 28. 85	. 1339 -2 . 1328 -2 . 1318 -2 . 1307 -2 . 1297 -2	. 5471 -2 . 5453 -1 . 5435 -1 . 5416 -2 . 5397 -2
1 1 1 1	2. 02 2. 04 2. 06 2. 08 2. 10	. 6845 -5 . 6768 -3 . 6692 -5 . 6618 -5	. 2063 -1 . 2046 -3 . 2030 -3 . 2014 -3 . 1998 -3	. 3356 -1 . 3345 -1 . 3334 -1 . 3324 -1 . 3313 -1	11. 98 12. 00 12. 02 12. 04	6978 -1 6922 -1 6868 -1 6814 -1 6760 -1	1276 1287 1297 1307 1318	2. 408040 2. 408175 2. 408308 2. 408441 2. 408574	106. 88 106. 92 106. 95 106. 99 107. 03	4. 780 4. 772 4. 764 4. 756 4. 748	. 3847 . 3846 . 3846 . 3846 . 3846	167. 8 168. 4 169. 0 169. 5 170. 1	5. 799 5. 799 5. 800 5. 801 5. 801	28, 94 29, 04 29, 13 29, 23 29, 32	. 1287 -2 . 1277 -2 . 1286 -2 . 1256 -1 . 1247 -1	. 5380 -1 . 5362 -2 . 5345 -1 . 5327 -2 . 5309 -2
1 1 1	2. 10 2. 12 2. 14 2. 16 2. 18	. 6472 -4 . 6400 -4 . 6328 -5 . 6259 -5	. 1966 -3 . 1950 -3 . 1935 -3 . 1920 -3	. 3271 -1	12. 08 12. 10 12. 12 12. 14	6707 -3 6655 -1 6602 -1 6550 -3 6500 -3	1328 1339 1349 1360 1371	2. 408706 2. 408837 2. 408967 2. 409097 2. 409226	107. 07 107. 11 107. 14 107. 18 107. 22	4. 741 4. 733 4. 725 4. 717 4. 709	. 3846 . 3845 . 3845 . 3845 . 3845	170. 7 171. 2 171. 8 172. 3 172. 9	5. 802 5. 903 5. 803 5. 804 5. 804	29. 41 29. 51 29. 60 29. 70 29. 79	. 1237 -2 . 1227 -3 . 1217 -3 . 1208 -1 . 1198 -1	. 5292 -2 . 5275 -2 . 5257 -2 . 5240 -3 . 5223 -2
1: 1: 1:	2. 22 2. 24 2. 26 2. 28	.6189 -3 .6122 -3 .6054 -4 .5987 -8 .5922 -1	. 1904 -2 . 1889 -3 . 1874 -1 . 1860 -3 . 1845 -3	.3230 -1 .3219 -1	12. 18 12. 20 12. 22	6448 -1 6399 -2 6349 -3 6299 -1 6251 -8	1382 1393 1404 1415 1426	2. 409355 2. 409483 2. 409611 2. 409738 2. 409864	107, 26 107, 29 107, 33 107, 36 107, 41	4. 702 4. 694 4. 686 4. 679 4. 671	. 3814 . 3844 . 3814 . 3844 . 3844	173. 5 174. 1 174. 6 175. 2 175. 8	5. 805 5. 806 5. 806 5. 807 5. 807	29. 89 29. 98 30. 08 30. 17 30. 27	. 1189 -1 . 1180 -1 . 1171 -2 . 1161 -1 . 1153 -1	. 5205 -2 . 5189 -2 . 5172 -2 . 5155 -2 . 5138 -2

TABLE II.—SUPERSONIC FLOW—Continued

							γ=7/5					,			
M or M ₁	<u>р</u> рі	<u>ρ</u>	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{ullet}}$	$\frac{V}{a_{\bullet}}$	ν	μ	М2	<u>p2</u> p1	<u>P1</u>	$\frac{T_1}{T_1}$	$\frac{p_{i_1}}{p_{i_1}}$	$\frac{p_1}{p_{i_1}}$
12. 30	. 5857 -8	. 1831 -3	.3199 -1	12. 26	. 6202 -3	1437	2. 409989	107. 44	4. 663	. 3843	176. 3	5, 808	30, 36	.1144 -2	. 5122 -2
12. 32	. 5792 -4	. 1816 -3	.3189 -1	12. 28	. 6154 -3	1448	2. 410115	107. 48	4. 656	. 3843	176. 9	5, 809	30, 46	.1135 -1	. 5105 -2
12. 34	. 5729 -8	. 1802 -3	.3179 -1	12. 30	. 6107 -3	1460	2. 410239	107. 51	4. 648	. 3843	177. 5	5, 809	30, 55	.1126 -1	. 5088 -2
12. 36	. 5667 -8	. 1788 -3	.3169 -1	12. 32	. 6060 -1	1471	2. 410363	107. 55	4. 641	. 3843	178. 1	5, 810	30, 65	.1117 -2	. 5072 -1
12. 38	. 5605 -8	. 1774 -3	.3159 -1	12. 34	. 6013 -3	1482	2. 410486	107. 59	4. 633	. 3843	178. 6	5, 810	30, 75	.1109 -1	. 5056 -2
12. 40	.5544 -8	. 1760 -3	. 3149 -1	12. 36	. 5967 -1	1494	2, 410609	107. 62	4. 626	.3842	179. 2	5. 811	30. 84	.1100 -2	. 5039 -2
12. 42	.5484 -5	. 1747 -3	. 3140 -1	12. 38	. 5921 -3	1506	2, 410731	107. 66	4. 618	.3842	179. 8	5. 812	30. 94	.1092 -2	. 5023 -1
12. 44	.5424 -8	. 1733 -3	. 3130 -1	12. 40	. 5876 -3	1517	2, 410853	107. 69	4. 611	.3842	180. 4	5. 812	31. 04	.1083 -3	. 5007 -2
12. 46	.5365 -5	. 1720 -3	. 3120 -1	12. 42	. 5831 -1	1529	2, 410974	107. 73	4. 603	.3842	181. 0	5. 813	31. 13	.1075 -3	. 4991 -3
12. 48	.5307 -8	. 1706 -3	. 3110 -1	12. 44	. 5786 -3	1541	2, 411094	107. 77	4. 596	.3842	181. 5	5. 813	31. 23	.1067 -2	. 4975 -2
12. 50	.5250 -5	. 1693 -3	.3101 -1	12. 46	. 5742 -3	1553	2. 411214	107. 80	4, 589	. 3841	182. 1	5. 814	31, 33	. 1059 -3	. 4960 -1
12. 52	.5193 -5	. 1680 -3	.3091 -1	12. 48	. 5698 -3	1565	2. 411333	107. 84	4, 581	. 3841	182. 7	5. 815	31, 42	. 1051 -3	. 4944 -2
12. 54	.5137 -5	. 1667 -3	.3082 -1	12. 50	. 5655 -3	1577	2. 411452	107. 87	4, 574	. 3841	183. 3	5. 815	31, 52	. 1043 -2	. 4927 -1
12. 56	.5062 -5	. 1654 -3	.3072 -1	12. 52	. 5612 -3	1589	2. 411571	107. 90	4, 567	. 3841	183. 9	5. 816	31, 62	. 1035 -2	. 4912 -2
12. 58	.5028 -5	. 1642 -8	.3063 -1	12. 54	. 5570 -3	1601	2. 411688	107. 94	4, 559	. 3841	184. 5	5. 816	31, 72	. 1027 -2	. 4897 -2
12. 60	. 4973 -4	. 1629 -3	.3053 -1	12. 56	.5527 -8	1614	2. 411805	107. 98	4, 552	. 3840	185, 1	5. 817	31. 81	.1019 -1	. 4881 -2
12. 62	. 4920 -4	. 1617 -3	.3044 -1	12. 58	.5486 -8	1626	2. 411922	108. 01	4, 545	. 3840	185, 6	5. 817	31. 91	.1011 -1	. 4865 -2
12. 64	. 4868 -5	. 1604 -3	.3035 -1	12. 60	.5444 -3	1639	2. 412038	108. 05	4, 538	. 3840	186, 2	5. 818	32. 01	.1004 -1	. 4850 -2
12. 66	. 4816 -3	. 1592 -3	.3025 -1	12. 62	.5403 -8	1651	2. 412154	108. 08	4, 530	. 3840	186, 8	5. 819	32. 11	.9961 -1	. 4835 -2
12. 68	. 4764 -5	. 1580 -3	.3016 -1	12. 64	.5362 -8	1664	2. 412269	108. 12	4, 523	. 3840	187, 4	5. 819	32. 21	.9885 -1	. 4820 -3
12. 70	. 4714 -3	.1568 =3	.3007 -1	12. 66	.5322 -4	1676	2. 412383	108. 15	4. 516	. 3839	188. 0	5. 820	32. 31	. 9810 -3	. 4805 -1
12. 72	. 4663 -3	.1556 =3	.2998 -1	12. 68	.5282 -4	1689	2. 412497	108. 18	4. 509	. 3839	188. 6	5. 820	32. 41	. 9737 -3	. 4790 -1
12. 74	. 4614 -3	.1544 =3	.2989 -1	12. 70	.5242 -3	1702	2. 412611	108. 22	4. 502	. 3839	189. 2	5. 821	32. 50	. 9664 -3	. 4775 -2
12. 76	. 4565 -3	.1532 =3	.2979 -1	12. 72	.5203 -3	1715	2. 412723	106. 25	4. 495	. 3839	189. 8	5. 821	32. 60	. 9591 -3	. 4760 -1
12. 78	. 4517 -3	.1521 =3	.2970 -1	12. 74	.5164 -3	1728	2. 412836	108. 29	4. 488	. 3839	190. 4	5. 822	32. 70	. 9520 -3	. 4745 -2
12. 80	. 4469 -4	.1509 -3	. 2961 -1	12. 76	.5126 -3	1741	2. 412948	108. 32	4. 481	. 3839	191. 0	5. 822	32. 80	.9448 -4	. 4730 -1
12. 82	. 4422 -3	.1498 -3	. 2952 -1	12. 78	.5087 -3	1754	2. 413059	108. 35	4. 474	. 3838	191. 6	5. 823	32. 90	.9378 -4	. 4715 -2
12. 84	. 4376 -4	.1487 -3	. 2944 -1	12. 80	.5070 -3	1767	2. 413170	108. 39	4. 467	. 3638	192. 2	5. 823	33. 00	.9308 -3	. 4701 -2
12. 86	. 4329 -3	.1475 -3	. 2935 -1	12. 82	.5012 -3	1781	2. 413280	108. 42	4. 460	. 3838	192. 8	5. 824	33. 10	.9239 -3	. 4686 -2
12. 88	. 4284 -4	.1464 -3	. 2926 -1	12. 84	.4975 -3	1794	2. 413390	108. 45	4. 453	. 3838	193. 4	5. 825	33. 20	.9170 -3	. 4672 -2
12. 90	.4239 -3	. 1453 -3	. 2917 -1	12. 86	.4938 -3	1807	2. 413500	108. 49	4. 446	. 3838	194. 0	5. 825	33. 30	. 9102 -3	. 4657 -2
12. 92	.4195 -3	. 1442 -3	. 2908 -1	12. 88	.4901 -3	1821	2. 413609	108. 52	4. 439	. 3837	194. 6	5. 826	33. 40	. 9035 -3	. 4643 -2
12. 94	.4151 -6	. 1432 -3	. 2900 -1	12. 90	.4865 -3	1835	2. 413717	108. 55	4. 432	. 3837	195. 2	5. 826	33. 50	. 8968 -3	. 4629 -2
12. 96	.4107 -6	. 1421 -3	. 2891 -1	12. 92	.4829 -1	1848	2. 413825	108. 59	4. 425	. 3837	195. 8	5. 827	33. 60	. 8902 -4	. 4614 -1
12. 98	.4065 -8	. 1410 -3	. 2882 -1	12. 94	.4794 -3	1862	2. 413932	108. 62	4. 419	. 3837	196. 4	5. 827	33. 70	. 5836 -4	. 4600 -2
13. 00	.4023 -5	.1400 -3	. 2874 -1	12. 96	. 4759 -1	1876	2. 414039	108. 65	4. 412	.3837	197. 0	5, 828	33. 81	.8771 -8	.4586 -2
13. 02	.3981 -5	.1389 -3	. 2665 -1	12. 98	. 4723 -3	1890	2. 414146	108. 69	4. 405	.3837	197. 6	5, 828	33. 91	.8706 -3	.4572 -2
13. 04	.3939 -5	.1379 -3	. 2857 -1	13. 00	. 4689 -1	1904	2. 414252	108. 72	4. 398	.3836	198. 2	5, 829	34. 01	.8642 -3	.4559 -3
13. 06	.3898 -5	.1369 -3	. 2848 -1	13. 02	. 4655 -1	1918	2. 414357	108. 75	4. 391	.3836	198. 8	5, 829	34. 11	.8580 -3	.4544 -2
13. 08	.3858 -5	.1359 -3	. 2840 -1	13. 04	. 4620 -3	1933	2. 414462	108. 78	4. 385	.3836	199. 4	5, 830	34. 21	.8517 -8	.4530 -2
13. 10	.3818 -5	. 1349 -3	. 2831 -1	13. 06	. 4586 -1	1947	2. 414567	108, 82	4. 378	. 3836	200. 1	5, 830	34. 31	.8453 -8	. 4517 -2
13. 12	.3779 -6	. 1339 -3	. 2823 -1	13. 08	. 4553 -1	1961	2. 414671	108, 85	4. 371	. 3836	200. 7	5, 831	34. 42	.8392 -3	. 4503 -2
13. 14	.3740 -5	. 1329 -3	. 2814 -1	13. 10	. 4520 -3	1976	2. 414775	108, 88	4. 365	. 3836	201. 3	5, 831	34. 52	.8331 -3	. 4489 -2
13. 16	.3701 -5	. 1319 -2	. 2806 -1	13. 12	. 4487 -1	1990	2. 414878	108, 91	4. 358	. 3835	201. 9	5, 832	34. 62	.8271 -3	. 4475 -3
13. 18	.3663 -5	. 1309 -3	. 2798 -1	13. 14	. 4454 -3	2005	2. 414981	108, 94	4. 351	. 3835	202. 5	5, 832	34. 72	.8210 -3	. 4462 -2
13. 20	.3626 -5	.1300 -3	. 2790 -1	13. 16	.4422 -3	2020	2. 415083	108. 97	4. 345	. 3835	203. 1	5. 833	34, 82	.8151 -3	. 4448 -7
13. 22	.3589 -5	.1290 -1	. 2781 -1	13. 18	.4390 -3	2034	2. 415185	109. 01	4. 338	. 3835	203. 7	5. 833	34, 93	.8091 -3	. 4435 -2
13. 24	.3552 -5	.1281 -3	. 2773 -1	13. 20	.4358 -3	2049	2. 415286	109. 04	4. 332	. 3835	204. 4	5. 834	35, 03	.8032 -3	. 4422 -1
13. 26	.3516 -5	.1271 -3	. 2765 -1	13. 22	.4327 -1	2064	2. 415387	109. 07	4. 325	. 3835	205. 0	5. 834	35, 13	.7974 -3	. 4409 -7
13. 28	.3480 -5	.1262 -3	. 2757 -1	13. 24	.4296 -3	2079	2. 415488	109. 10	4. 319	. 3834	205. 6	5. 835	35, 24	.7918 -3	. 4395 -2
13. 30	.3444 -5	. 1253 -3	. 2749 -1	13. 26	. 4264 -1	2095	2. 415588	109. 13	4. 312	.3834	206. 2	5, 835	35. 34	.7860 -3	.4382 -† .4369 -2 .4356 -3 .4342 -2 .4330 -2
13. 32	.3409 -5	. 1244 -3	. 2741 -1	13. 28	. 4234 -3	2110	2. 4156876	109. 16	4. 306	.3834	206. 8	5, 836	35. 44	.7802 -3	
13. 34	.3374 -5	. 1235 -3	. 2733 -1	13. 30	. 4203 -1	2125	2. 4157868	109. 20	4. 299	.3834	207. 5	5, 836	35. 55	.7747 -4	
13. 36	.3340 -5	. 1226 -3	. 2725 -1	13. 32	. 4173 -1	2141	2. 4158856	109. 23	4. 293	.3834	208. 1	5, 837	35. 65	.7691 -3	
13. 38	.3306 -5	. 1217 -3	. 2717 -1	13. 34	. 4143 -1	2156	2. 4159839	109. 26	4. 286	.3834	208. 7	5, 837	35. 76	.7636 -4	
13. 40	.3273 -3	. 1208 -3	. 2709 -1	13. 36	. 4113 -3	2172	2. 4160818	109. 29	4. 280	. 3833	209. 3	5. 838	35. 86	.7582 -3	. 4316 -1
13. 42	.3240 -8	. 1199 -3	. 2701 -1	13. 38	. 4084 -1	2188	2. 4161793	109. 32	4. 273	. 3833	210. 0	5. 838	35. 96	.7527 -3	. 4304 -3
13. 44	.3207 -4	. 1191 -3	. 2694 -1	13. 40	. 4055 -1	2204	2. 4162763	109. 35	4. 267	. 3833	210. 6	5. 838	36. 07	.7474 -3	. 4291 -3
13. 46	.3175 -3	. 1182 -3	. 2686 -1	13. 42	. 4026 -1	2219	2. 4163730	109. 38	4. 261	. 3833	211. 2	5. 839	36. 17	.7420 -3	. 4278 -1
13. 48	.3143 -8	. 1174 -3	. 2678 -1	13. 44	. 3997 -1	2236	2. 4164692	109. 41	4. 254	. 3833	211. 8	5. 839	36. 28	.7367 -3	. 4265 -1
13. 50	.3111 -3	. 1165 -3	. 2670 -1	13. 46	. 3969 -3	2252	2. 4165650	109.44	4. 248	.3833	212. 5	5, 840	36, 38	.7315 -3	. 4253 -1
13. 52	.3080 -4	. 1157 -3	. 2663 -1	13. 48	. 3941 -3	2268	2. 4166604	109.47	4. 242	.3832	213. 1	5, 840	36, 49	.7263 -3	. 4241 -2
13. 54	.3049 -3	. 1149 -3	. 2655 -1	13. 50	. 3913 -4	2284	2. 4167554	109.51	4. 235	.3832	213. 7	5, 841	36, 59	.7212 -3	. 4228 -1
13. 56	.3019 -3	. 1140 -3	. 2647 -1	13. 52	. 3885 -3	2300	2. 4168499	109.54	4. 229	.3832	214. 4	5, 841	36, 70	.7161 -3	. 4216 -2
13. 58	.2988 -3	. 1132 -3	. 2640 -1	13. 51	. 3858 -3	2317	2. 4169441	109.57	4. 223	.3832	215. 0	5, 842	36, 80	.7109 -3	. 4204 -1
13. 60	. 2958 -4	.1124 -3	. 2632 -1	13. 56	. 3830 -1	2334	2. 4170379	109. 59	4. 217	. 3832	215. 6	5. 842	36. 91	.7059 -1	.4191 -2
13. 62	. 2929 -4	.1116 -3	. 2625 -1	13. 58	. 3803 -2	2350	2. 4171312	109. 62	4. 211	. 3832	216. 3	5. 843	37. 02	.7009 -1	.4179 -1
13. 64	. 2900 -5	.1108 -3	. 2617 -1	13. 60	. 3777 -1	2367	2. 4172242	109. 65	4. 204	. 3832	216. 9	5. 843	37. 12	.6960 -1	.4166 -1
13. 66	. 2871 -4	.1100 -3	. 2610 -1	13. 62	. 3750 -1	2384	2. 4173167	109. 69	4. 198	. 3831	217. 5	5. 843	37. 23	.6911 -1	.4155 -1
13. 68	. 2842 -5	.1092 -3	. 2602 -1	13. 64	. 3724 -2	2401	2. 4174089	109. 72	4. 192	. 3831	218. 2	5. 844	37. 33	.6862 -1	.4142 -1
13. 70	. 2814 -3	. 1085 -3	. 2595 -1	13. 66	.3697 -3	2418	2. 4175007	109, 75	4. 186	. 3831	218. 8	5. 844	37. 44	. 6814 -3	. 4130 -2
13. 72	. 2787 -3	. 1077 -3	. 2588 -1	13. 68	.3672 -3	2435	2. 4175921	109, 77	4. 180	. 3831	219. 4	5. 845	37. 55	. 6767 -3	. 4118 -2
13. 74	. 2759 -3	. 1069 -3	. 2580 -i	13. 70	.3646 -3	2452	2. 4176831	109, 81	4. 174	. 3831	220. 1	5. 845	37. 65	. 6719 -3	. 4106 -1
13. 76	. 2732 -3	. 1062 -3	. 2573 -1	13. 72	.3620 -3	2470	2. 4177737	109, 84	4. 168	. 3831	220. 7	5. 846	37. 76	. 6672 -3	. 4094 -2
13. 78	. 2705 -3	. 1054 -3	. 2566 -1	13. 74	.3595 -3	2487	2. 4178639	109, 86	4. 162	. 3831	221. 4	5. 846	37. 87	. 6626 -3	. 4082 -2
13. 80	. 2678 -3	.1047 -3	. 2558 -1	13. 76	.3570 -3	2505	2. 4179537	109, 89	4. 156	. 3830	222. 0	5.847	37. 97	. 6580 -3	. 4070 -1
13. 82	. 2652 -3	.1040 -3	. 2551 -1	13. 78	.3545 -3	2522	2. 4180432	109, 92	4. 150	. 3830	222. 7	5.847	38. 08	. 6533 -3	. 4059 -2
13. 84	. 2626 -3	.1032 -3	. 2544 -1	13. 80	.3521 -3	2540	2. 4181323	109, 95	4. 144	. 3830	223. 3	5.847	38. 19	. 6489 -3	. 4047 -1
13. 86	. 2600 -3	.1025 -3	. 2537 -1	13. 82	.3497 -3	2558	2. 4182210	109, 98	4. 137	. 3830	224. 0	5.848	38. 30	. 6443 -1	. 4036 -1
13. 88	. 2575 -3	.1018 -3	. 2530 -1	13. 84	.3472 -3	2576	2. 4183093	110, 01	4. 132	. 3830	224. 6	5.848	38. 41	. 6398 -3	. 4024 -2
13. 90	. 2550 -8	1011 -1	. 2523 -1	13. 86	. 3448 -3	2594	2. 4183973	110, 04	4. 126	. 3830	225, 3	5. 849	38. 51	. 6354 -1	. 4013 -2
13. 92	. 2525 -8	1004 -1	. 2516 -1	13. 88	. 3424 -3	2612	2. 4184849	110, 07	4. 120	. 3830	225, 9	5. 849	38. 62	. 6310 -1	. 4001 -2
13. 94	. 2500 -8	19966 -1	. 2509 -1	13. 90	. 3401 -3	2630	2. 4185721	110, 09	4. 114	. 3829	226, 5	5. 850	38. 73	. 6267 -1	. 3989 -2
13. 96	. 2476 -8	19897 -1	. 2502 -1	13. 92	. 3377 -3	2648	2. 4186590	110, 12	4. 108	. 3829	227, 2	5. 850	38. 84	. 6223 -1	. 3976 -2
13. 98	. 2452 -4	19828 -1	. 2495 -1	13. 94	. 3354 -3	2667	2. 4187455	110, 15	4. 102	. 3829	227, 9	5. 850	38. 95	. 6180 -1	. 3967 -2
14.00 14.02 14.04 14.06 14.08	2428 -5 2404 -5 2381 -6 2358 -6 2335 -6	.9760 -4 .9692 -1 .9625 -4 .9558 -1 .9493 -1	. 2488 -1 . 2481 -1 . 2474 -1 . 2467 -1 . 2460 -1	13. 96 13. 98 14. 00 14. 02 14. 04	. 3331 -3 . 3308 -3 . 3286 -3 . 3263 -3 . 3241 -3	2685 2704 2723 2742 2761	2. 4188316 2. 4189174 2. 4190028 2. 4190879 2. 4191726	110. 21 110. 24 110. 26	4. 096 4. 090 4. 084 4. 079 4. 073	. 3829 . 3829 . 3829 . 3829 . 3828	228. 5 229. 2 229. 8 230. 5 231. 1	5, 851 5, 851 5, 852 5, 852 5, 852	39. 06 39. 16 39. 27 39. 38 39. 49	. 6138 -3 . 6096 -3 . 6054 -1 . 6013 -1 . 5971 -3	. 3956 -3 . 3944 -2 . 3933 -2 . 3922 -2 . 3911 -3

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

			1				γ=	= 7/5							
or M	<u> </u>	P	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	V a.	,	щ	М	72	ρ <u>2</u>		$\frac{p_{t_2}}{\overline{p_{t_1}}}$	$\frac{p_1}{p_{i_2}}$
14. 14. 14. 14. 14.	12 . 2290 14 . 2268 16 . 2246	-8 .9362 -5 .9297 -5 .9233	-4 . 2440 -4 . 2433	-1 14.08 -1 14.10	.3219 - .3197 - .3175 - .3153 - .3132 -	2799 2818 2838	2. 41925 2. 41934 2. 41942 2. 41950 2. 41959	09 110, 35 46 110, 38 79 110, 41	4. 067 4. 061 4. 055 4. 050 4. 044	385	28 232. 4 28 233. 1 28 233. 8	5, 85 5, 85 5, 85	3 39. 7 4 39. 82 4 39. 93	. 5931 . 5890 . 5849 . 5810	-3 .3900 - -3 .3889 - -3 .3878 - -3 .3867 -
14. 14. 14. 14. 14.	22 .2183 24 .2162 26 .2141 28 .2121	-5 .8983 -6 .8922 -5 .8861	-1 .2413 -1 .2406	-1 14.17 -1 14.19 -1 14.21 -1 14.23 -1 14.25	.3111 -3 .3089 -4 .3068 -3 .3048 -3 .3027 -3	2897 2916 2936	2. 419673 2. 419758 2. 41983 2. 419918 2. 420000	35 110.46 58 110.49 78 110.52 94 110.54	4. 038 4. 033 4. 027 4. 021 4. 016	. 382 . 382 . 382	28 235. 1 27 235. 7 27 236. 4 27 237. 1	5, 85, 5, 85	5 40. 15 5 40. 26 6 40. 37 6 40. 48	. 5732 . 5693 . 5654 . 5616	-3 .3845 -3 -3 .3845 -3 -3 .3834 -3 -3 .3824 -4 -3 .3813 -3
14.3 14.3 14.3 14.3 14.3	.2080 .4 .2061 .6 .2041 .8 .2022	-5 . 8740 - -5 . 8682 - -5 . 8623 - -5 . 8565 -	-4 .2387 -4 .2380 -4 .2374 -4 .2367 -4 .2361	14. 29 14. 31 14. 33 14. 35	.3006 -3 .2986 -3 .2967 -3 .2946 -3 .2927 -3	2997 3017 3038	2. 420081 2. 420162 2. 420242 2. 420322 2. 420402	22 110.63 25 110.65 25 110.68	4. 010 4. 004 3. 999 3. 993 3. 988	. 382	7 238. 4 7 239. 1 7 239. 7 7 240. 4	5, 857 5, 857 5, 858 5, 858 5, 858	40. 71 40. 82 40. 93 41. 04	. 5540 . 5503 . 5466 . 5429	-3 .3802 -1 -3 .3791 -2 -3 .3780 -2 -3 .3771 -2 -3 .3760 -2 -3 .3750 -1
14. 4 14. 4 14. 4 14. 4	2 .1984 4 .1965 6 .1947 8 .1929	-8	. 2348 - . 2342 - . 2335 - . 2329 -	1 14. 39 1 14. 41 1 14. 43 1 14. 45	. 2907 -3 . 2888 -3 . 2869 -1 . 2849 -3 . 2830 -3	3079 3100 3121 3142 3163	2. 420481 2. 420560 2. 420639 2. 420717 2. 420795	4 110.76 1 110.79 5 110.81	3. 982 3. 977 3. 971 3. 966 3. 960	. 382 . 382 . 382 . 382 . 382	6 242.4 6 243.1 6 243.8	5, 859 5, 859 5, 860 5, 860 5, 860	41. 26 41. 38	. 5357 - . 5321 - . 5285 - . 5250 - . 5215 -	3 .3739 -2 3 .3729 -2 3 .3719 -2 3 .3708 -2
14. 50 14. 50 14. 50 14. 58	. 1892 . 1875 . 1857 . 1840	-5 .8168 - -6 .8114 - -7 .8059 - -7 .8005 -	2317	14. 49 14. 51 14. 53 14. 55	. 2812 -3 . 2793 -3 . 2774 -3 . 2756 -3 . 2737 -3	3184 3206 3227 3249 3271	2. 420873; 2. 4209500 2. 421027; 2. 421104; 2. 4211810	6 110. 90 7 110. 92 5 110. 95	3. 955 3. 949 3. 944 3. 938 3. 933	. 3826 . 3825 . 3825 . 3825	245. 8 246. 5 247. 2	5. 861 5. 861 5. 862 5. 862	41. 83 41. 94 42. 05 42. 17 42. 28	. 5180 - . 5146 - . 5111 - . 5078 - . 5044 -:	3 . 3688 -2 3 . 3677 -2 1 . 3668 -2 3 . 3657 -2
14. 62 14. 64 14. 66 14. 68	.1806 - .1789 - .1772 - .1756 -	5 .7899	. 2286 -1 . 2280 -1 . 2274 -1 . 2268 -1	14. 61 14. 63 14. 65	. 2720 -3 . 2702 -3 . 2684 -1 . 2666 -3 . 2649 -1	3292 3314 3336 3359 3381	2. 4212572 2. 4213330 2. 4214086 2. 4214838 2. 4215588	111.03 111.05 111.08	3. 927 3. 922 3. 917 3. 911 3. 906	. 3825 . 3825 . 3825 . 3825 . 3825	249. 2 249. 9 250. 6	5. 863 5. 863 5. 864 5. 864	42. 39 42. 51 42. 62 42. 73 42. 85	.5011 -1 .4978 -1 .4945 -1 .4912 -1 .4880 -1	. 3638 -1 . 3628 -2 . 3618 -2 . 3608 -2
14. 72 14. 74 14. 76 14. 78	.1723 - .1707 -	.7640 -4 .7590 -4 .7540 -4 .7490 -4	. 2256 -1 . 2250 -1 . 2244 -1	14. 67 14. 69 14. 71 14. 73 14. 75	. 2631 -3 . 2614 -3 . 2597 -2 . 2580 -3 . 2563 -3	3404 3426 3449 3472 3494	2. 4216335 2. 4217078 2. 4217819 2. 4218557 2. 4219292	111 16	3. 901 3. 895 3. 890 3. 885 3. 880	. 3824 . 3824 . 3824 . 3824 . 3824	251. 9 252. 6 253. 3 254. 0 254. 7	5, 864 5, 865 5, 865 5, 865 5, 866	42. 96 43. 08 43. 19 43. 31 43. 42	. 4847 -3 . 4816 -3 . 4784 -3 . 4753 -3 . 4722 -1	. 3588 -2 . 3578 -2 . 3569 -2
14. 82 14. 84 14. 86 14. 88	.1645 -4 .1630 -4 .1615 -4 .1600 -5	7392 -4	. 2226 -1 . 2220 -1 . 2214 -1 . 2208 -1	14. 77 14. 79 14. 81 14. 83 14. 85	. 2546 -3 . 2530 -1 . 2513 -3 . 2497 -3 . 2480 -3	3518 3541 3564 3588 3611	2. 4220023 2. 4220752 2. 4221479 2. 4222202 2. 4222922	111. 26 111. 28 111. 31 111. 34 111. 36	3. 874 3. 869 3. 864 3. 859 3. 853	. 3824 . 3824 . 3824 . 3823 . 3823	255. 4 256. 1 256. 8 257. 5 258. 2	5. 866 5. 866 5. 867 5. 867 5. 868	43. 54 43. 65 43. 77 43. 88 44. 00	. 4691 -1 . 4660 -3 . 4630 -3 . 4600 -1 . 4570 -3	. 3540 -2 . 3531 -2 . 3521 -2 . 3512 -2 . 3502 -2
14. 92 14. 94 14. 96 14. 98	.1571 -6 .1557 -3 .1543 -3 .1529 -4	.7153 -4 .7106 -4 .7059 -4 .7014 -4	. 2197 -1 . 2191 -1 . 2185 -1 . 2180 -1	14. 87 14. 89 14. 91 14. 93 14. 95	. 2464 -3 . 2449 -3 . 2433 -3 . 2417 -3 . 2401 -3	3635 3659 3683 3707 3731	2. 4223640 2. 4224355 2. 4225066 2. 4225776 2. 4226482	111, 38 111, 41 111, 43 111, 46 111, 48	3. 848 3. 843 3. 838 3. 833 3. 828	. 3823 . 3823 . 3823 . 3823 . 3823	258. 9 259. 5 260. 2 260. 9 261. 6	5. 868 5. 868 5. 869 5. 869 5. 869	44. 11 44. 23 44. 35 44. 46 44. 58	. 4540 -1 . 4511 -8 . 4481 -3 . 4452 -3 . 4424 -3	. 3493 -2 . 3483 -2 . 3474 -2 . 3465 -1 . 3456 -2
15. 02 15. 04 15. 06 15. 08	.1501 -6 .1487 -6 .1474 -6 .1461 -6	.6923 -4 .6878 -4 .6833 -4 .6789 -4	. 2168 -1 . 2163 -1 . 2157 -1 . 2151 -1	14. 97 14. 99 15. 01 15. 03 15. 05	. 2386 -1 . 2371 -3 . 2355 -1 . 2340 -1 . 2325 -1	3755 3779 3804 3829 3854	2. 4227186 2. 4227886 2. 4228585 2. 4229280 2. 4229973	111. 51 111. 53 111. 56 111. 59 111. 61	3. 823 3. 817 3. 812 3. 807 3. 802	. 3823 . 3823 . 3822 . 3822 . 3822	262. 3 263. 0 263. 7 264. 4 265. 1	5. 870 5. 870 5. 870 5. 871 5. 871	44. 69 44. 81 44. 93 45. 05 45. 16	. 4395 -3 . 4367 -3 . 4339 -1 . 4311 -3 . 4283 -3	. 3446 -2 . 3437 -2 . 3428 -2 . 3419 -2 . 3410 -2
15. 12 15. 14 15. 16 15. 18	.1434 -5 .1421 -5 .1409 -5 .1396 -5	.6702 -4 .6658 -4 .6615 -4 .6573 -4	. 2140 -1 . 2135 -1 . 2129 -1 . 2124 -1 . 2118 -1	15. 07 15. 09 15. 11 15. 13 15. 15	. 2310 -1 . 2296 -1 . 2281 -1 . 2266 -1 . 2252 -1	3879 3904 3929 3955 3980	2. 4230663 2. 4231350 2. 4232035 2. 4232717 2. 4233396	111. 63 111. 66 111. 68 111. 71 111. 73	3. 797 3. 792 3. 787 3. 782 3. 777	. 3822 . 3822 . 3822 . 3822 . 3822	265. 9 266. 6 267. 3 268. 0 268. 7	5. 871 5. 872 5. 872 5. 872 5. 873	45, 28 45, 40 45, 52 45, 63 45, 75	. 4256 -3 . 4229 -3 . 4201 -3 . 4175 -3 . 4148 -3	.3401 -2 .3392 -2 .3383 -2 .3374 -2 .3365 -2
15. 22 15. 24 15. 26 15. 28 15. 30	.1371 -3 .1359 -3 .1347 -3 .1335 -5	.6489 -4 .6447 -4 .6406 -4 .6365 -4	.2113 -1 .2107 -1 .2102 -1 .2097 -1	15. 17 15. 19 15. 21 15. 23 15. 25	. 2237 -1 . 2223 -1 . 2209 -3 . 2195 -3 . 2181 -3	4005 4032 4057 4083 4110	2. 4234073 2. 4234747 2. 4235419 2. 4236088 2. 4236754	111. 76 111. 78 111. 80 111. 83 111. 85	3. 772 3. 767 3. 762 3. 757 3. 752	. 3822 . 3821 . 3821 . 3821 . 3821	269. 4 270. 1 270. 8 271. 5 272. 2	5. 873 5. 873 5. 874 5. 874 5. 874	45. 87 45. 99 46. 11 46. 22 46. 34	. 4122 -3 . 4096 -3 . 4070 -3 . 4044 -8 . 4018 -3	. 3357 -2 . 3347 -2 . 3339 -2 . 3330 -2 . 3321 -2
15. 32 15. 34 15. 36 15. 38	.1311 -5 .1299 -5 .1288 -5 .1276 -5	.6284 → .6244 → .6204 → .6165 →	. 2086 -1 . 2081 -1 . 2075 -1 . 2070 -1	15. 31 15. 33 15. 35	. 2167 -1 . 2154 -1 . 2140 -1 . 2127 -1 . 2113 -2	4135 4162 4189 4215 4242	2. 4237418 2. 4238079 2. 4238738 2. 4239394 2. 4240048	111. 88 111. 90 111. 92 111. 95 111. 97	3. 748 3. 743 3. 738 3. 733 3. 728	. 3821 . 3821 . 3821 . 3821 . 3821	272. 9 273. 7 274. 4 275. 1 275. 8	5. 875 5. 875 5. 875 5. 876 5. 876	46. 46 46. 58 46. 70 46. 82 46. 94	. 3992 -3 . 3967 -2 . 3942 -3 . 3917 -3 . 3893 -1	. 3313 -1 . 3304 -2 . 3295 -2 . 3287 -2 . 3278 -2
15. 42 15. 44 15. 46 15. 48	.1254 -4 .1243 -5 .1232 -6 .1221 -6	. 6087 -4 . 6049 -4 . 6010 -4 . 5972 -4	. 2060 -1 . 2054 -1 . 2049 -1 . 2044 -1	15. 39 15. 41 15. 43 15. 45	. 2100 -1 . 2087 -3 . 2074 -1 . 2061 -4 . 2048 -1	4269 4296 4323 4351 4378	2. 4240699 2. 4241348 2. 4241994 2. 4242638 2. 4243280	112. 00 112. 02 112. 04 112. 06 112. 09	3. 723 3. 718 3. 714 3. 709 3. 704	. 3820 . 3820 . 3820 . 3820 . 3820	276, 5 277, 2 278, 0 278, 7 279, 4	5. 876 5. 876 5. 877 5. 877 5. 877	47. 06 47. 18 47. 30 47. 42 47. 54	. 3868 -2 . 3844 -3 . 3820 -3 . 3796 -3 . 3772 -3	. 3270 -2 . 3262 -2 . 3253 -2 . 3245 -2 . 3236 -2
15. 52 15. 54 15. 56 15. 58	.1199 -8 .1189 -6 .1178 -5 .1168 -5	. 5897 -4 . 5861 -4 . 5824 -4 . 5787 -4	. 2034 -1 . 2029 -1 . 2023 -1 . 2018 -1	15. 49 15. 51 15. 53 15. 55	2035 -3 2022 -3 2010 -3 1997 -3 1985 -3	4406 4434 4462 4490 4518	2. 4243918 2. 4244555 2. 4245189 2. 4245821 2. 4246450	112. 11 112. 14 112. 16 112. 18 112. 20	3. 699 3. 694 3. 690 3. 685 3. 680	. 3820 . 3820 . 3820 . 3820 . 3819	280. 1 280. 9 281. 6 282. 3 283. 0	5. 878 5. 878 5. 878 5. 879 5. 879	47. 66 47. 78 47. 90 48. 02 48. 14	.3748 -3 .3725 -4 .3702 -2 .3679 -3 .3656 -3	. 3228 -2 . 3220 -2 . 3211 -2 . 3203 -2 . 3195 -2
15. 62 15. 64 15. 66 15. 68	.1148 -6 .1138 -5 .1128 -6 .1118 -6	.5715 -4 .5679 -4 .5643 -4 .5608 -4	. 2008 -1 . 2003 -1 . 1998 -1 . 1993 -1	15. 59 15. 61 15. 63 15. 65	1960 -5 1948 -3 1936 -3 1924 -3		2. 4247077 2. 4247702 2. 4248324 2. 4248944 2. 4249562	112. 23 112. 25 112. 27 112. 30 112. 32	3. 666 3. 661	. 3819 . 3819 . 3819 . 3819 . 3819	283. 5 284. 5 285. 2 285. 9 286. 7	5. 879 5. 880 5. 880 5. 880 5. 880	48. 26 48. 39 48. 51 48. 63 48. 75	. 3633 -3 . 3610 -3 . 3588 -3 . 3566 -2 . 3544 -3	.3187 -2 .3179 -2 .3170 -2 .3162 -2 .3154 -2
15. 72 15. 74 15. 76 15. 78	.1099 -5 .1089 -5 .1079 -4 .1070 -6	. 5539 -4 . 5505 -4 . 5470 -4 . 5436 -4	. 1983 -1 . 1978 -1 . 1973 -1 . 1968 -1	15. 69 15. 71 15. 73 15. 75	1912 -3 1900 -3 1889 -3 1877 -3 1865 -3	4749 4779 4809	2. 4251401 2. 4252009 2. 4252616	112. 34 112. 37 112. 39 112. 41 112. 43	3. 647 3. 643 3. 638	. 3819 . 3819 . 3819 . 3819 . 3818	287. 4 288. 1 288. 9 289. 6 290. 3	5. 881 5. 881 5. 881 5. 882 5. 882	48. 87 49. 00 49. 12 49. 24 49. 36	. 3522 -3 . 3500 -2 . 3479 -3 . 3457 -3 . 3436 -3	. 3147 -2 . 3139 -2 . 3131 -2 . 3122 -2 . 3114 -2
15. 82 15. 84 15. 86 15. 88	.1052 -4 .1043 -4 .1034 -3 .1025 -6	. 5369 -4 . 5336 -4 . 5303 -4 . 5271 -4	. 1959 -1 . 1954 -1 . 1949 -1	15. 79 .1 15. 81 .1 15. 83 .1	1843 -1 1831 -8 1820 -2	4868 4899 4929	2. 4253821 2. 4254421 2. 4255018	112. 45 112. 48 112. 50 112. 52 112. 55	3. 624 3. 620 3. 615	. 3818 . 3818 . 3818 . 3818 . 3818	293. 3	5, 882 5, 883 5, 883 5, 883 5, 883	49. 49 49. 61 49. 73 49. 86 49. 98	. 3415 -3 . 3394 -3 . 3373 -3 . 3352 -3 . 3332 -3	.3107 -2 .3099 -2 .3091 -2 .3093 -2 .3076 -2

TABLE II.—SUPERSONIC FLOW—Continued

							γ=7/5			-		,			 1
M or M1	$\frac{p}{p_i}$	<u>ρ</u>	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$	V	μ	М1	p 3	<u>ρ</u> 1	$\frac{T_1}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
15. 90	.1016 -5	.5238 ¬	. 1939 -1	15. 87	. 1798 -3	4990	2. 4256206	112. 57	3, 606	.3818	294. 8	5. 884	50. 10	. 3311 -3	. 3068 -2
15. 92	.1007 -5	.5206 ¬	. 1935 -1	15. 89	. 1787 -3	5020	2. 4256797	112. 59	3, 601	.3818	295. 5	5. 884	50. 23	. 3291 -3	. 3060 -1
15. 94	.9986 -6	.5174 ¬	. 1930 -1	15. 91	. 1776 -3	5051	2. 4257385	112. 61	3, 597	.3818	296. 3	5. 884	50. 35	. 3271 -3	. 3053 -2
15. 96	.9899 -4	.5142 ¬	. 1925 -1	15. 93	. 1765 -3	5082	2. 4257971	112. 63	3, 592	.3818	297. 0	5. 885	50. 47	. 3251 -3	. 3045 -2
15. 98	.9815 -6	.5111 ¬	. 1920 -1	15. 95	. 1754 -3	5113	2. 4258555	112. 66	3, 588	.3818	297. 8	5. 885	50. 60	. 3232 -3	. 3037 -2
16. 00	.9731 -4	.5079 -4	.1916 -1	15. 97	.1744 -3	5145	2. 4259137	112. 68	3. 583	. 3817	298, 5	5. 885	50. 72	. 3212 -3	.3030 -3
16. 02	.9647 -6	.5048 -4	.1911 -1	15. 99	.1733 -3	5176	2. 4259717	112. 70	3. 579	. 3817	299, 3	5. 885	50. 85	. 3192 -3	.3022 -3
16. 04	.9565 -6	.5017 -4	.1906 -1	16. 01	.1723 -2	5208	2. 4260295	112. 72	3. 574	. 3817	300, 0	5. 886	50. 97	. 3173 -3	.3015 -3
16. 06	.9484 -6	.4987 -4	.1902 -1	16. 03	.1712 -3	5239	2. 4260871	112. 74	3. 570	. 3817	300, 7	5. 886	51. 10	. 3154 -3	.3007 -2
16. 08	.9404 -6	.4957 -4	.1897 -1	16. 05	.1702 -3	5271	2. 4261444	112. 76	3. 566	. 3817	301, 5	5. 886	51. 22	. 3135 -3	.3000 -2
16. 10	.9323 -6	.4926 -4	.1892 -1	16. 07	.1692 -3	5304	2. 4262015	112. 79	3. 561	. 3817	302. 3	5, 887	51. 35	.3116 -3	. 2992 -2
16. 12	.9244 -6	.4897 -4	.1888 -1	16. 09	.1681 -3	5336	2. 4262585	112. 81	3. 557	. 3817	303. 0	5, 887	51. 47	.3097 -3	. 2985 -2
16. 14	.9165 -6	.4867 -4	.1883 -1	16. 11	.1671 -3	5369	2. 4263152	112. 83	3. 552	. 3817	303. 8	5, 887	51. 60	.3079 -3	. 2977 -3
16. 16	.9089 -6	.4838 -4	.1879 -1	16. 13	.1661 -3	5401	2. 4263717	112. 85	3. 548	. 3817	304. 5	5, 887	51. 72	.3060 -3	. 2970 -2
16. 18	.9011 -6	.4808 -4	.1874 -1	16. 15	.1651 -3	5434	2. 4264280	112. 87	3. 543	. 3817	305. 3	5, 888	51. 85	.3042 -3	. 2963 -2
16. 20	.8936 -4	.4779 -4	.1870 -1	16. 17	.1642 -3	5466	2. 4264841	112. 89	3. 539	. 3817	306. 0	5. 888	51. 97	.3024 -3	. 2955 -2
16. 22	.8860 -6	.4751 -4	.1865 -1	16. 19	.1632 -3	5499	2. 4265400	112. 91	3. 535	. 3816	306. 8	5. 888	52. 10	.3005 -3	. 2948 -2
16. 24	.8784 -6	.4721 -4	.1861 -1	16. 21	.1622 -3	5533	2. 4265958	112. 94	3. 530	. 3816	307. 5	5. 888	52. 23	.2987 -3	. 2941 -2
16. 26	.8712 -6	.4694 -4	.1856 -1	16. 23	.1612 -3	5566	2. 4266513	112. 96	3. 526	. 3816	308. 3	5. 889	52. 35	.2969 -3	. 2934 -2
16. 28	.8638 -6	.4665 -4	.1852 -1	16. 25	.1603 -3	5600	2. 4267066	112. 98	3. 522	. 3816	309. 0	5. 889	52. 48	.2952 -3	. 2926 -2
16. 30	.8565 -4	.4637 -4	.1847 -1	16. 27	.1593 -3	5634	2. 4267617	113.00	3. 517	. 3816	309. 8	5, 889	52. 61	. 2934 -1	. 2919 -2
16. 32	.8494 -6	.4609 -4	.1843 -1	16. 29	.1584 -3	5667	2. 4268166	113.02	3. 513	. 3816	310. 6	5, 889	52. 73	. 2916 -1	. 2912 -2
16. 34	.8423 -4	.4582 -4	.1838 -1	16. 31	.1574 -3	5701	2. 4268713	113.04	3. 509	. 3816	311. 3	5, 890	52. 86	. 2899 -3	. 2905 -2
16. 36	.8352 -6	.4554 -4	.1834 -1	16. 33	.1565 -3	5735	2. 4269258	113.06	3. 504	. 3816	312. 1	5, 890	52. 99	. 2882 -1	. 2898 -1
16. 38	.8283 -4	.4527 -4	.1830 -1	16. 35	.1556 -3	5770	2. 4269801	113.08	3. 500	. 3816	312. 9	5, 890	53. 12	. 2865 -1	. 2891 -2
16. 40	.8213 -4	.4500 -4	.1825 -1	16. 37	.1546 -3	5804	2. 4270342	113. 11	3. 496	. 3816	313. 6	5. 891	53, 24	. 2848 -3	. 2884 -3
16. 42	.8144 -6	.4473 -4	.1821 -1	16. 39	.1537 -3	5839	2. 4270881	113. 13	3. 492	. 3816	314. 4	5. 891	53, 37	. 2831 -3	. 2877 -3
16. 44	.8077 -6	.4447 -4	.1816 -1	16. 41	.1528 -3	5874	2. 4271418	113. 15	3. 487	. 3815	315. 2	5. 891	53, 50	. 2814 -3	. 2870 -4
16. 46	.8009 -6	.4420 -4	.1812 -1	16. 43	.1519 -3	5910	2. 4271954	113. 17	3. 483	. 3815	315. 9	5. 891	53, 63	. 2798 -3	. 2863 -2
16. 48	.7942 -6	.4394 -4	.1808 -1	16. 45	.1510 -3	5945	2. 4272487	113. 19	3. 479	. 3815	316. 7	5. 892	53, 75	. 2781 -3	. 2856 -2
16. 50	.7876 -6	.4367 -4	.1803 -1	16. 47	.1501 -3	5980	2. 4273019	113. 21	3. 475	. 3815	317. 5	5. 892	53, 88	. 2765 -3	. 2849 -1
16. 52	.7811 -4	.4341 -4	.1799 -1	16. 49	.1492 -3	6016	2. 4273548	113. 23	3. 470	. 3815	318. 2	5. 892	54, 01	. 2749 -3	. 2842 -2
16. 54	.7747 -6	.4316 -4	.1795 -1	16. 51	.1484 -3	6051	2. 4274076	113. 25	3. 466	. 3815	319. 0	5. 892	54, 14	. 2732 -4	. 2836 -2
16. 56	.7682 -6	.4290 -4	.1791 -1	16. 53	.1475 -3	6087	2. 4274602	113. 27	3. 462	. 3815	319. 8	5. 893	54, 27	. 2716 -3	. 2828 -1
16. 58	.7620 -6	.4265 -4	.1786 -1	16. 55	.1466 -8	6123	2. 4275126	113. 29	3. 458	. 3815	320. 6	5. 893	54, 40	. 2700 -3	. 2822 -2
16. 60	.7556 -4	.4240 -4	.1782 -1	16. 57	.1457 -8	6160	2. 4275648	113. 31	3. 454	. 3815	321.3	5. 893	54, 53	. 2685 -3	. 2814 -2
16. 62	.7493 -6	.4215 -4	.1778 -1	16. 59	.1449 -8	6196	2. 4276169	113. 33	3. 449	. 3815	322.1	5. 893	54, 66	. 2669 -3	. 2808 -2
16. 64	.7432 -6	.4190 -4	.1774 -1	16. 61	.1440 -8	6233	2. 4276687	113. 35	3. 445	. 3815	322.9	5. 894	54, 78	. 2653 -3	. 2801 -2
16. 66	.7372 -8	.4166 -4	.1770 -1	16. 63	.1432 -1	6268	2. 4277204	113. 37	3. 441	. 3815	323.7	5. 894	54, 91	. 2638 -3	. 2795 -2
16. 68	.7311 -6	.4141 -4	.1765 -1	16. 65	.1424 -8	6306	2. 4277719	113. 39	3. 437	. 3814	324.4	5. 894	55, 04	. 2622 -1	. 2788 -2
16. 70	.7250 -6	.4117 -4	.1761 -1	16. 67	.1415 -3	6343	2. 4278232	113. 41	3. 433	. 3814	325. 2	5. 894	55. 17	. 2607 -3	. 2781 -2
16. 72	.7191 -6	.4093 -4	.1757 -1	16. 69	.1407 -3	6380	2. 4278743	113. 43	3. 429	. 3814	326. 0	5. 895	55. 30	. 2592 -3	. 2774 -3
16. 74	.7132 -6	.4069 -4	.1753 -1	16. 71	.1399 -3	6417	2. 4279252	113. 45	3. 425	. 3814	326. 8	5. 895	55. 43	. 2577 -3	. 2768 -2
16. 76	.7074 -4	.4045 -4	.1749 -1	16. 73	.1391 -3	6455	2. 4279760	113. 47	3. 421	. 3814	327. 6	5. 895	55. 56	. 2562 -3	. 2762 -2
16. 78	.7016 -6	.4021 -4	.1745 -1	16. 75	.1383 -3	6493	2. 4280266	113. 49	3. 417	. 3814	328. 3	5. 895	55. 69	. 2547 -3	. 2755 -2
16. 80	.6959 -6	.3998 -4	.1741 -1	16. 77	.1375 -3	6531	2. 4280770	113. 51	3. 413	. 3814	329. 1	5. 896	55. 82	. 2532 -3	. 2748 -2
16. 82	.6902 -4	.3974 -4	.1737 -1	16. 79	.1367 -3	6570	2. 4281272	113. 53	3. 408	. 3814	329. 9	5. 896	55. 96	. 2517 -3	. 2742 -3
16. 84	.6846 -4	.3951 -4	.1733 -1	16. 81	.1359 -4	6607	2. 4281772	113. 55	3. 404	. 3814	330. 7	5. 896	56. 09	. 2503 -4	. 2735 -1
16. 86	.6790 -6	.3928 -4	.1729 -1	16. 83	.1351 -3	6647	2. 428271	113. 57	3. 400	. 3814	331. 5	5. 896	56. 22	. 2488 -3	. 2729 -2
16. 88	.6735 -4	.3905 -4	.1725 -1	16. 85	.1343 -3	6685	2. 4282768	113. 59	3. 396	. 3814	332. 3	5. 897	56. 35	. 2474 -3	. 2722 -2
16. 90	.6680 -4	.3883 -4	.1721 -1	16. 87	.1336 -4	6724	2. 4283264	113. 61	3. 392	.3814	333. 1	5. 897	56. 48	. 2460 -3	. 2716 -2
16. 92	.6626 -6	.3860 -4	.1717 -1	16. 89	.1328 -1	6763	2. 4283757	113. 63	3. 388	.3813	333. 8	5. 897	56. 61	. 2446 -3	. 2709 -2
16. 94	.6572 -4	.3838 -4	.1713 -1	16. 91	.1320 -3	6802	2. 4284249	113. 65	3. 384	.3813	334. 6	5. 897	56. 74	. 2432 -1	. 2703 -2
16. 96	.6520 -6	.3816 -4	.1709 -1	16. 93	.1313 -3	6841	2. 4284739	113. 67	3. 380	.3813	335. 4	5. 898	56. 88	. 2418 -3	. 2697 -2
16. 98	.6467 -6	.3794 -4	.1705 -1	16. 95	.1305 -3	6881	2. 4285228	113. 69	3. 376	.3813	336. 2	5. 898	57. 01	. 2404 -3	. 2690 -2
17. 00	.6415 -4	.3772 -4	.1701 -1	16. 97	.1298 -3	6920	2. 4285714	113. 71	3. 372	. 3813	337. 0	5, 898	57. 14	. 2390 -3	. 2684 -3
17. 02	.6364 -4	.3750 -4	.1697 -1	16. 99	.1290 -4	6960	2. 4286199	113. 73	3. 368	. 3813	337. 8	5, 898	57. 27	. 2376 -3	. 2678 -3
17. 04	.6311 -4	.3728 -4	.1693 -1	17. 01	.1283 -3	7001	2. 4286683	113. 75	3. 364	. 3813	338. 6	5, 898	57. 40	. 2363 -3	. 2671 -3
17. 06	.6261 -4	.3707 -4	.1689 -1	17. 03	.1276 -1	7042	2. 4287164	113. 77	3. 360	. 3813	339. 4	5, 899	57. 54	. 2349 -3	. 2665 -3
17. 08	.6211 -6	.3686 -4	.1685 -1	17. 05	.1268 -4	7081	2. 4287645	113. 79	3. 356	. 3813	340. 2	5, 899	57. 67	. 2336 -3	. 2659 -3
17. 10	.6161 -4	.3665 -4	.1681 -1	17. 07	.1261 -3	7122	2. 4288123	113. 81	3. 353	. 3813	341. 0	5, 899	57. 80	. 2322 -3	. 2653 -3
17. 12	.6111 -4	.3644 -4	.1677 -1	17. 09	.1254 -4	7163	2. 4288600	113. 83	3. 349	. 3813	341. 8	5, 899	57. 94	. 2309 -3	. 2646 -3
17. 14	.6063 -4	.3623 -4	.1674 -1	17. 11	.1247 -3	7204	2. 4289075	113. 85	3. 345	. 3813	342. 6	5, 900	58. 07	. 2296 -3	. 2641 -3
17. 16	.6014 -1	.3602 -4	.1670 -1	17. 13	.1240 -4	7246	2. 4289548	113. 87	3. 341	. 3813	343. 4	5, 900	58. 20	. 2283 -3	. 2634 -3
17. 18	.5966 -6	.3581 -4	.1666 -1	17. 15	.1233 -4	7287	2. 4290020	113. 88	3. 337	. 3812	344. 2	5, 900	58. 34	. 2270 -3	. 2628 -3
17. 20	.5918 -4	.3561 -4	.1662 -1	17. 17	.1226 -3	7329	2. 4290490	113. 90	3. 333	.3812	345. 0	5. 900	58. 47	. 2257 -1	. 2622 -1
17. 22	.5871 -4	.8541 -4	.1658 -1	17. 19	.1219 -3	7371	2. 4290959	113. 92	3. 329	.3812	345. 8	5. 901	58. 60	. 2245 -1	. 2616 -3
17. 24	.5824 -4	.3520 -4	.1654 -1	17. 21	.1212 -3	7413	2. 4291426	113. 94	3. 325	.3812	346. 6	5. 901	58. 74	. 2232 -3	. 2610 -3
17. 26	.5779 -4	.3501 -4	.1651 -1	17. 23	.1205 -4	7454	2. 4291891	113. 96	3. 321	.3812	347. 4	5. 901	58. 87	. 2219 -3	. 2604 -2
17. 28	.5732 -6	.3481 -4	.1647 -1	17. 25	.1198 -4	7497	2. 4292355	113. 98	3. 318	.3812	348. 2	5. 901	59. 01	. 2207 -3	. 2598 -3
17. 30	. 5687 -6	.3461 -4	.1643 -1	17. 27	.1192 -2	7539	2. 4292818	114.03	3. 314	. 3812	349. 0	5. 901	59. 14	.2194 -3	. 2592 -1
17. 32	. 5642 -6	.3441 -4	.1639 -1	17. 29	.1185 -4	7583	2. 4293278		3. 310	. 3812	349. 8	5. 902	59. 27	.2182 -3	. 2586 -2
17. 34	. 5597 -6	.3422 -4	.1636 -1	17. 31	.1178 -3	7626	2. 4293737		3. 306	. 3812	350. 6	5. 902	59. 41	.2170 -3	. 2580 -1
17. 36	. 5553 -6	.3403 -4	.1632 -1	17. 33	.1171 -3	7669	2. 4294195		3. 302	. 3812	351. 4	5. 902	59. 54	.2157 -8	. 2574 -2
17. 38	. 5509 -6	.3383 -4	.1628 -1	17. 35	.1165 -3	7713	2. 4294651		3. 299	. 3812	352. 2	5. 902	59. 68	.2145 -3	. 2568 -2
17. 40 17. 42 17. 44 17. 46 17. 48	.5465 -4 .5423 -4 .5380 -4 .5338 -4 .5295 -6	.3364 -4 .3346 -4 .3326 -4 .3308 -4 .3289 -4	. 1625 -1 . 1621 -1 . 1617 -1 . 1614 -1 . 1610 -1	17. 37 17. 39 17. 41 17. 43 17. 45	.1158 -3 .1152 -3 .1145 -4 .1139 -3 .1133 -3	7757 7799 7844 7888 7933	2. 4295105 2. 4295558 2. 4296010 2. 4296460 2. 4296909	114.11 114.13 114.15	3. 295 3. 291 3. 287 3. 283 3. 280	. 3812 . 3812 . 3811 . 3811 . 3811	353. 1 353. 9 354. 7 355. 5 356. 3	5. 903 5. 903 5. 903 5. 903 5. 903	59. 81 59. 95 60. 09 60. 22 60. 36	. 2133 -1 . 2121 -3 . 2109 -3 . 2098 -3 . 2086 -3	. 2562 -2 . 2557 -2 . 2550 -2 . 2545 -2 . 2539 -2
17. 50 17. 52 17. 54 17. 56 17. 58	.5254 -6 .5213 -3 .5172 -1 .5131 -1 .5092 -1	.3234 → .3216 →	.1606 -1 .1603 -1 1599 -1 .1596 -1 .1592 -1	17. 47 17. 49 17. 51 17. 53 17. 55	.1126 -4 .1120 -4 .1114 -2 .1108 -3 .1102 -3	7977 8022 8067 8113 8157	2. 4297355 2. 4297800 2. 4298244 2, 4298686 2. 4299127	114. 20 114. 22 114. 24	3. 276 3. 272 3. 268 3. 265 3. 261	.3811 .3811 .3811 .3811 .3811	357. 1 357. 9 358. 8 359. 6 360. 4	5. 904 5. 904 5. 904 5. 904 5. 905	60. 49 60. 63 60. 77 60. 90 61. 04	. 2074 -3 . 2063 -3 . 2051 -3 . 2040 -3 . 2029 -3	. 2533 -2 . 2527 -2 . 2522 -2 . 2516 -2 . 2510 -2
17. 60 17. 62 17. 64 17. 66 17. 68	. 5052 -4 . 5013 -4 . 4973 -4 . 4935 -6 . 4897 -6	.3145 → .3128 →	.1589 -1 .1585 -1 .1581 -1 .1578 -1 .1574 -1	17. 57 17. 59 17. 61 17. 63 17. 65	.1095 -3 .1090 -3 .1083 -3 .1077 -3 .1071 -3	8203 8248 8295 8341 8387	2. 4299566 2. 4300004 2. 4300441 2. 4300876 2. 4301309	114. 29 114. 31 114. 33	3. 257 3. 254 3. 250 3. 246 3. 242	.3811 .3811 .3811 .3811 .3811	361. 2 362. 0 362. 9 363. 7 364. 5	5. 905 5. 905 5. 905 5. 905 5. 906	61. 18 61. 31 61. 45 61. 59 61. 72	. 2017 -3 . 2006 -3 . 1995 -3 . 1984 -3 . 1973 -3	. 2504 -3 . 2499 -2 . 2493 -1 . 2488 -2 . 2482 -3

REPORT 1135—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

	-1-
γ=	//3

17.70	$\begin{array}{c c} q & \underline{A} \\ \hline A_{\bullet} \\ \hline 6 & -3 & 8434 \end{array}$	$\frac{V}{a_a}$							
17.72 .4821 → .3076 → .1567 - 17.67 .106	6 -1 9424			μ μ		$\frac{p_2}{p_1}$ $\frac{\rho_2}{\rho_1}$		$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
17. 76	0 -3 8481 4 -3 8529 8 -3 8575	2. 4301741 2. 4302172 2. 4302601 2. 4303029 2. 4303455	2 114.38 1 114.40 9 114.42	3. 239 3. 235 3. 231 3. 228 3. 224	. 3811 364 . 3810 366 . 3810 367 . 3810 368	.2 5.90 .0 5.90 .8 5.90	6 62.00 6 62.14 6 62.28	3 .1962 - 3 .1951 - 1941 - 1930 -	
17. 80	1 -3 8719 5 -3 8767 0 -3 8815	2. 4303880 2. 4304304 2. 4304726 2. 4305147 2. 4305566	114. 45 114. 47 114. 49 114. 51	3. 221 3. 217 3. 213 3. 210 3. 206	. 3810 368 . 3810 369 . 3810 370 . 3810 371 . 3810 372 . 3810 372	. 5	7 62. 55 7 62. 69 7 62. 83 7 62. 97	.1919 - .1909 - .1898 - .1888 - .1878 -	. 2454 -2 . 2449 -2 . 2443 -2 . 2437 -1 . 2432 -2
17. 92 4.462 -4 .2910 -4 .1533 -1 .17. 87 .100 17. 94 .4428 -4 .2895 -4 .1530 -1 .17. 89 .100 17. 96 .4394 -4 .2879 -4 .1526 -1 .17. 91 .9976 17. 98 .4361 -4 .2863 -4 .1523 -1 .17. 95 .9927 17. 98 .4361 -4 .2863 -4 .1523 -1 .17. 95 .9868	3 −3 8962 5 −4 9010 −4 9060	2. 4305984 2. 4306401 2. 4306816 2. 4307230 2. 4307642	114. 54 114. 56 114. 58 114. 59 114. 61	3. 203 3. 199 3. 195 3. 192 3. 188	. 3810 373. . 3810 374. . 3810 375. . 3810 376. . 3810 377.	7 5. 908 5 5. 908 3 5. 908 2 5. 908	63, 25 63, 39 63, 53 63, 67	. 1857 . 1847 . 1837 . 1827	2427 ~2 2421 ~2 2416 ~2 2411 ~2 2405 ~2
18. 02	→ 9210 → 9260 → 9311	2. 4308053 2. 4308463 2. 4308872 2. 4309279 2. 4309685	114. 63 114. 65 114. 66 114. 68 114. 70	3. 185 3. 181 3. 178 3. 174 3. 171	. 3810 377. . 3809 378. . 3809 379. . 3809 380. . 3809 381.	8 5, 909 7 5, 909 5 5, 909 4 5, 909	63. 94 64. 08 64. 23 64. 37	. 1817 -3 . 1807 -3 . 1797 -4 . 1788 -3 . 1778 -1	. 2395 -2 . 2389 -2 . 2384 -1 . 2379 -2
18.12 .4134 -4 .2756 -4 .1500 -1 18.07 .9552 .9500 .18.14 .4102 -4 .2741 -4 .1497 -1 18.16 .4071 -4 .2726 -4 .1494 -1 18.13 .9488 .18.18 .4041 -4 .2711 -4 .1490 -1 18.15 .9398 .9349	→ 9411 → 9463 → 9515 → 9566 → 9617	2. 4310089 2. 4310492 2. 4310894 2. 4311295 2. 4311694	114. 72 114. 73 114. 75 114. 77 114. 78	3. 167 3. 164 3. 160 3. 157 3. 153	. 3809 382. . 3809 382. . 3809 383. . 3809 384. . 3809 385.	5. 910 5. 910 5. 910 5. 910 5. 910	64, 65 64, 79 64, 93 65, 07	.1768 -3 .1759 -3 .1749 -3 .1740 -4 .1731 -3	. 2368 -2 . 2363 -2 . 2357 -2 . 2353 -2
18. 22	-4 9671 -4 9723 -4 9775 -4 9828 -4 9881	2. 4312092 2. 4312488 2. 4312884 2. 4313278 2. 4313671	114. 80 114. 82 114. 83 114. 85 114. 87	3. 150 3. 146 3. 143 3. 139 3. 136	. 3809 386. 3 . 3809 387. 1 . 3809 388. 0 . 3809 388. 8 . 3809 389. 7	5. 911 5. 911 5. 911 5. 911 5. 911	65. 21 65. 35 65. 49 65. 64 65. 78 65. 92	.1721 -3 .1712 -3 .1703 -1 .1694 -3 .1685 -3	. 2348 -2 . 2342 -2 . 2337 -2 . 2332 -2 . 2327 -1
18. 32 3832 - 2611 - 14.168 - 18.27 9052 18. 34 3803 - 2596 - 14.65 - 18.31 9053 18. 36 3775 - 2583 - 1465 - 18.31 8054 18. 38 3747 - 2569 - 14.62 - 18.33 807 18. 40 3718 - 2555 - 14.65 - 18.35 8861	9933 9987 1004 +1 1010 +1 1015 +1	2. 4314062 2. 4314452 2. 4314841 2. 4315229 2. 4315616	114. 89 114. 90 114. 92 114. 94 114. 95	3. 126 3. 122	. 3809 390. 5 . 3809 391. 4 . 3808 392. 3 . 3808 393. 1 . 3808 394. 0	5. 912 5. 912 5. 912 5. 912 5. 913	66, 06 66, 20 66, 35 66, 49 66, 63	. 1676 -3 . 1667 -2 . 1658 -3 . 1649 -1 . 1640 -2 . 1632 -3	. 2321 -2 . 2317 -3 . 2312 -2 . 2306 -2 . 2302 -2
18. 42	→ 1020 +1 → 1026 +1 → 1031 +1 → 1037 +1 → 1042 +1	2. 4316001 2. 4316385 2. 4316768 2. 4317149 2. 4317530	114. 97 114. 99 115. 00 115. 02 115. 04	3. 112 3. 109 3. 105	. 3808 394, 8 3808 395, 7 3808 396, 5 3808 397, 4 3808 398, 3	5. 913 5. 913 5. 913 5. 913 5. 913	66. 78 66. 92 67. 06 67. 21 67. 35	.1623 -3 .1614 -3 .1606 -3 .1597 -3 .1589 -3	. 2297 -2 . 2291 -2 . 2287 -2 . 2281 -2 . 2277 -2
18. 52	1065 +1	2. 4317909 2. 4318287 2. 4318664 2. 4319039 2. 4319413	115. 05 115. 07 115. 08 115. 10 115. 12	3. 095 3. 092 3. 089	3808 399. I 3808 400. 0 3808 400. 9 3808 401. 7 3808 402. 6	5. 914 5. 914 5. 914 5. 914 5. 914	67, 49 67, 64 67, 78 67, 93 68, 07	.1580 -3 .1572 -3 .1564 -3 .1555 -3	. 2272 -2 . 2267 -2 . 2262 -1 . 2257 -2 . 2252 -2
18. 62 3426 -4 2410 -4 1422 -1 18. 59 8315 18. 64 3400 -4 2397 -4 1419 -1 18. 61 8270 18. 68 3351 -4 2384 -4 1416 -1 18. 63 8226 18. 70 3326 -4 2352 -4 1418 -1 18. 65 8185	1082 +1 1088 +1 1093 +1	2. 4320529 2. 4320899	115. 13 115. 15 115. 17 115. 18 115. 20	3. 079 3. 075 3. 072	3808 403. 5 3808 404. 3 3808 405. 2 3807 406. 1 3807 406. 9	5. 915 5. 915 5. 915 5. 915 5. 915 5. 915	68. 21 68. 36 68. 50 68. 65 68. 79	.1547 -3 .1539 -3 .1531 -3 .1523 -3 .1515 -3	. 2248 -2 . 2243 -2 . 2238 -2 . 2233 -2 . 2228 -2
18. 72	1111 +1	2. 4322001 2. 4322366 2. 4322729		3. 062 3. 059 3. 056	3807 407. 8 3807 408. 7 3807 409. 6 3807 410. 4 3807 411. 3	5. 915 5. 916 5. 916 5. 916 5. 916	68. 94 69. 09 69. 23 69. 38 69. 52	. 1507 -3 . 1499 -3 . 1491 -3 . 1484 -3 . 1476 -3	. 2224 -2 . 2219 -1 . 2214 -2 . 2209 -1 . 2205 -2
18. 82	1140 +1 2 1146 +1 2 1152 +1 2	2. 4323814 2. 4324173 2. 4324531	115. 31 115. 33 115. 34	3. 046 .3 3. 043 .3 3. 039 .3	1807 412.2 1807 413.1 1807 413.9 1807 414.8 1807 415.7	5. 916 5. 917 5. 917 5. 917 5. 917	69. 67 69. 82 69. 96 70. 11	. 1460 -3 . 1453 -3 . 1445 -3 . 1438 -3	. 2200 -2 . 2195 -2 . 2191 -2 . 2186 -2 . 2182 -2
18. 92	1170 +1 2 1176 +1 2 1182 +1 2	2. 4325599 1 2. 4325953 1 3. 4326305 1	115.39 115.41 115.42	3. 033 . 3	807 416.6 807 417.5 807 418.3 907 419.2	5. 917 5. 917 5. 918 5. 918 5. 918	70. 26 70. 40 70. 55 70. 70 70. 84 70. 99	.1408 -3	. 2177 -2 . 2172 -2 . 2167 -2 . 2163 -2 . 2158 -2
19.02	1201 +1 2. 1207 +1 2. 1213 +1 2.	. 4327356 1 . 4327705 1 . 4328052 1	15. 47 15. 48 15. 50	3. 017 . 38 3. 014 . 38 3. 011 . 38 3. 008 . 38 3. 004 . 38	306 421.0 306 421.9 306 422.8 423.7	5. 918 5. 918 5. 918 5. 919 5. 919	71. 14 71. 29 71. 44 71. 58	. 1387 -2 . 1379 -2 . 1372 -3 . 1365 -3	. 2149 -2 . 2149 -2 . 2145 -2 . 2141 -2 . 2136 -2
19.12 .2854 -4 .2115 -4 .1349 -1 19.09 .7338 -4 .7349 -1 19.09 .7302 -4 .7349 -1 .7349 -	1232 +1 2. 1239 +1 2. 1245 +1 2.	4329087 11 4329430 11 4329771 11	15. 55 15. 56 2 15. 58	3.001 .38 2.998 .38 2.995 .38 2.992 .38 2.989 .38	06 426.3 06 427.2 06 428.1	5. 919 5. 919 5. 919 5. 919 5. 920	71. 88 72. 03 72. 18 72. 33	. 1351 -3 . 1344 -3 . 1337 -3 . 1331 -3	2131 -2 2127 -2 2123 -2 2118 -2 2114 -2
19. 22	1264 +1 2.4 1271 +1 2.4 1277 +1 2.4	4330790 11 4331128 11 4331464 11	15. 62 2. 15. 64 2. 5. 65 2.	. 996 . 386 . 982 . 386 . 979 . 386 . 976 . 386 . 973 . 380	06 429. 9 06 430. 8 06 431. 7 06 432. 6	5. 920 5. 920 5. 920 5. 920 5. 920 5. 920	72. 62 72. 77 72. 92 73. 07	. 1317 -3 . 1310 -2 . 1304 -3 . 1297 -3	2109 -2 2105 -2 2100 -2 2096 -2 2092 -2
19.32 .2655 .2009 .1322 .19.27 .6973 .4 19.34 .2636 .1999 .13122 .19.29 .6937 .4 19.36 .2617 .1988 .1316 .19.31 .6902 .4 19.38 .2599 .1979 .1314 .19.35 .6834 .4 19.40 .2581 .1968 .1211 .19.35 .6834 .4	1297 +1 2.4 1304 +1 2.4 1310 +1 2.4	4332468 11. 4332800 11. 4333132 11.	5. 70 2. 5. 71 2. 5. 73 2.	. 970 . 380 . 967 . 380 . 964 . 380 . 961 . 380 . 958 . 380	06 434, 4 06 435, 3 06 436, 2 05 437, 1	5, 921 5, 921 5, 921 5, 921	73. 37 73. 52 73. 67 73. 82	. 1284 -3 1277 -3 1271 -3 1265 -3	2088 -2 2083 -2 2079 -2 2074 -2 2070 -1 2066 -2
19.42	1330 +1 2.4 1337 +1 2.4 1344 +1 2.4	334120 113 334447 115 334774 115	5. 78 2.5 5. 79 2.6 5. 80 2.6	955 .380 952 .380 949 .380 946 .380 943 .380	5 438.9 5 439.8 5 440.7 5 441.6	5. 921 5. 922 5. 922 5. 922	74. 13 74. 28 74. 43 74. 58	1252 -4 .2 1245 -3 .2 1239 -3 .2 1233 -3 .2	2066 -2 2062 -2 2057 -2 2053 -2 2049 -2 2045 -1

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

The state of the s

TABLE II.—SUPERSONIC FLOW—Continued

						TAB	DE 11		,	RSON γ=7/							-				\top		
·,				T	В		<u>q</u>	$\frac{A}{A_{\bullet}}$		$\frac{V}{a_{\bullet}}$,	μ	N	M2	<u>p2</u>		<u>ρι</u>	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$		<u>p</u> ₁	
10.00	p p;	1909	-4 .12 -4 .12	71 1298 -1 1295 -1	19. 47 19. 49	. 6636 . 6595 . 6566	30 -4 95 -4 63 -4	1357 +1 1365 +1 1371 +	+1 2 +1 2	2, 4335424 2, 4335747 2, 4336070	47 115 70 115	5. 83 5. 85 5. 86 5. 88	2. 940 2. 937 2. 934 2. 931	. 38 . 38 . 38	3805 3805 3805 3805	443. 5 444. 4 445. 3 446. 2	5.9	922 922 923	74. 88 75. 03 75. 19 75. 34 75. 49	.1214 .1208 .1202	-1 .20 -1 .20 -1 .20	2041 -2 2036 -3 2032 -1 2028 -3 2024 -2	I
19. 52 19. 54 19. 56 19. 58	.2473 -4 .2455 -4 .2438 -4 .2421 -4	. 1900 . 1890 . 1881	-4 .12 -4 .13 -4 .13 -4 .13	1293 -1 1290 -1 1287 -1	19. 51 19. 53 19. 55 19. 57 19. 57	. 656 . 653 . 649 . 646 . 643	30 -4 97 -4 64 -4 32 -4	1378 + 1385 + 1392 + 1399 +	+1 2 +1 2 +1 2 +1 2	2. 4336391 2. 4336713 2. 433703 2. 433735 2. 433766	91 115 12 115 31 115 50 115	5. 98 5. 89 5. 91 5. 92 5. 94	2. 928 2. 925 2. 922 2. 919	3 .30 5 .30 2 .3 9 .3	3805 3805 3805 3805	447. 1 448. 0 448. 9 449. 9 450. 8	5. 9 5. 9 5. 9 5. 9	923 923 923 923	75. 64 75. 80 75. 95 76. 10	.1190 .1184 .1178	-3 2 -3 2 -1 2	2020 -1 2016 -2 2012 -3 2008 -3 2003 -2	
19. 62 19. 64 19. 66 19. 68	. 2387 -4 . 2371 -4 . 2354 -4 . 2337 -6	. 1862 . 1853 . 1843 . 1834	-4 .1: -4 .1: -4 .1:	1282 -1 1280 -1 1277 -1 1275 -1	19. 61 19. 63 19. 65	. 640 . 636 . 633	101 -4 1369 -4 1336 -4 1306 -4	1406 + 1413 + 1420 + 1427 + 1435	+1 +1 +1 +1 +1	2. 433798 2. 433830 2. 433861 2. 433892	115 115 115 115 115 116 116 117	15. 95 15. 97 15. 98 16. 00	2. 916 2. 913 2. 910 2. 907 2. 907	3 .3 0 .3 0 .3 0 .3	3805 3805 3805 3805 3805 3805	451. 7 452. 6 453. 5 454. 5	5. 5. 5. 5. 5. 5.	. 924 . 924 . 924 . 924	76. 25 76. 41 76. 56 76. 71 76. 87	. 1161 . 1155 . 1149	-3 .2 -3 .1 -3 .1	2000 -1 1995 -2 1991 -2 1988 -2	
19. 72 · 19. 74 · 19. 76 · ·	.2321 -4 .2305 -4 .2289 -4 .2273 -4 .2257 -4	. 1816 . 1807 . 1798 . 1788	-4 .1 -4 .1 -4 .1 -4 .1	1269 -1 1267 -1 1264 -1 1262 -1	19. 69 19. 72 19. 74 19. 76	. 627 . 624 . 621 . 618	243 -4 213 -4 180 -4	1442 1449 1456	+1 +1 +1	2. 433924 2. 433955 2. 433986 2. 43401	241 110 553 110 864 11	16. 01 16. 03 16. 04 16. 05 16. 07	2. 901 2. 896 2. 89 2. 89	95 92	. 3804 . 3804 . 3804 . 3804	455. 4 456. 3 457. 2 458. 1 459. 1	5. 2 5. 1 5. 1 5.	5. 924 5. 924 5. 925 5. 925	77. 02 77. 17 77. 33 77. 48	.1138 .1132 .1127 .1121 .1116	-1	. 1979 -3 . 1975 -2 . 1971 -2 . 1967 -3	
19. 82 19. 84 19. 86	. 2241 -4 . 2226 -6 . 2210 -4 . 2195 -4 . 2179 -6	. 1753	-4 .	. 1259 -1 . 1257 -1 . 1254 -1 . 1252 -1 . 1249 -1	19.80 19.82 19.84 19.86	. 61 . 60 . 60	120 = 1 1090 = 1 1059 = 1 1029 = 1	1471 1478 1486 1493	+1 +1 +1 +1	2. 43404 2. 43407 2. 43410 2. 43414 2. 43417	792 11 099 11 405 11	116.08 116.10 116.11 116.13	2. 88 2. 88 2. 88 2. 88 2. 88	89 86 83 80	. 3804 . 3804 . 3804 . 3804 . 3804	460. 9 460. 9 461. 9 462. 8	0 5. 9 5. 9 5. 8 5.	5, 925 5, 925 5, 925 5, 925	77. 64 77. 79 77. 95 78. 10 78. 26	.1110 .1105 .1099 .1094	5 -3 . 9 -3 . 4 -3 .	. 1963 -2 . 1960 -2 . 1956 -2 . 1952 -2	
19. 90 19. 92 19. 94 19. 96	.2165 -6 .2150 -6 .2135 -6 .2120 -6 .2105 -6	.1727 .1719 .1710	9 -4 .	.1247 -1 .1244 -1 .1242 -1 .1240 -1 .1237 -1	1 19.90 1 19.92 1 19.94	. 56 . 56	5971 -4 5971 -4 5941 -4 5913 -4 5883 -4	1508 1515 1523 1530	+1 +1 +1 +1	2. 43420 2. 43420 2. 43420 2. 43420	2015 1 2319 1 2622 1 2924 1	116. 14 116. 15 116. 17 116. 18	2.85 2.86 2.86 2.86	375 372 369	. 3804 . 3804 . 3804	463. 464. 465. 466.	7 5 5 6 5 5 5	5. 926 5. 926 5. 926 5. 926 5. 927	78. 41 78. 57 78. 72 80. 29	. 1088 . 1083 . 1078 . 1026	8 -3 3 -3 8 -1	. 1944 -2 . 1940 -2 . 1902 -2 . 1865 -1	2 2 2 3
20. 00 20. 20 20. 40 20. 60	. 2091 -4 . 1952 -4 . 1823 -0 . 1704 -4	6 .1694 6 .1612 6 .1536 6 .1463	14 -4 2 -4 36 -4 53 -4	.1235 -1 .1211 -1 .1187 -1 .1165 -1 .1143 -1	-1 20. 18 -1 20. 38 -1 20. 58	.5	5855 -4 5574 -4 5311 -4 5062 -4 4827 -4	1615 1695 1779	5 +1 5 +1 9 +1	2. 4343 2. 4346 2. 4349 2. 4351 2. 4354	6186 1 9062 1 51855 1 54569	116. 34 116. 47 116. 61 116. 74	2.8 2.8 2.7 2.7	838	.3803 .3803 .3802 .3802	485. 494. 504.	. 4 . 9 . 6	5. 929 5. 930 5. 932 5. 933	81. 86 83. 46 85. 07 86. 69 88. 34	. 8887 . 8478 . 809	19 -1 37 -1 78 -1 91 -1	. 1829 -2 . 1794 -2 . 1760 -2 . 1727 -2	-2 -2 -2 -2
20.80 21.00 21.20 21.40	.1594	-4 .1331 -4 .1276 -4 .1212 -4 .1156	31 -4 70 -4 12 -4 58 -4	.1121 -1 .1100 -1 .1080 -1	-1 20. 98 -1 21. 18 -1 21. 38 -1 21. 58	8 .4 8 .4 8 .4	. 4606 -4 . 4396 -4 . 4197 -6 . 4009 -6 . 3830 -7	-4 2049 -4 2147 -4 2248	9 +1 7 +1 8 +1	2. 4357 2. 4356 2. 436 2. 436 2. 436	59772 62265 64690	116. 87 117. 00 117. 12 117. 24 117. 36	2. 3 2. 4 2. 2 2. 2	704 678 654 629	. 3801 . 3801 . 3800 . 3800	524. 534. 0 544. 0 554.	1. 2 4. 1 4. 2 4. 3	5. 934 5. 935 5. 936 5. 938 5. 939	89, 99 91, 66 93, 35 95, 05	.772 .738 .705	25 -4 80 -4 052 -4	. 1663 -1 . 1633 -1 . 1604 -1 . 1575 -1	-3 -7 -2
21. 60 21. 80 22. 00 22. 20 22. 40	.1081 - .1081 - .1015 - .9541 -	-6 .1106 -6 .105 -6 .101 -7 .967	06 -4 057 -4 011 -4 070 -5	.1041 .1023 .1004 .9867 .9694	-1 21.78 -1 21.98 -1 22.18 -2 22.36 -2 22.56	18 · . 18 · . 38 · .	. 3662 - . 3502 - . 3351 - . 3207 -	-4 2461 -4 2574 -4 2690 -4 2811	31 +1 74 +1 90 +1 11 +1	2. 437	71581 873757	117. 48 117. 60 117. 71 117. 82 117. 93	2. 2. 2.	. 605 . 582 . 559 . 536 2. 514	. 3800 . 3799 . 3799 . 3799 . 3798	9 574 9 585 9 595 9 606	4. 8 5. 2 5. 7 6. 3	5, 940 5, 941 5, 942 5, 943	96. 77 98. 51 100. 3 102. 0	7 .644 1 .616 .590 .564	168 -4 904 -4 653 -4	. 1547 - . 1520 - . 1493 -	-1 -2 -3 -3
22. 60 22. 80 23. 00 23. 20	. 8971 . 8439 . 7943 . 7480	-7 .813 -7 .778	483 -5 127 -5 789 -5	9527 . 9363 . 9204 . 9049	-1 22.70 -1 22.9 -1 23.1 -1 23.3	78 98 18 38 58	. 2941 . 2818 . 2701 . 2590	-4 306 -4 319 -4 333 -4 348	65 +1 99 +1 138 +1 181 +1	2. 437 2. 438 2. 438 2. 438	379951 381911 383821 385683	118. 04 118. 15 118. 25 118. 36 118. 46	2.2	2, 492 2, 470 2, 449 2, 429 2, 408	. 3798 . 3798 . 3797 . 3797	98 62° 97 63° 97 64°	17. 0 27. 8 38. 7 49. 6 60. 7	5, 944 5, 945 5, 946 5, 947 5, 948	105. 6 107. 4 109. 2 111. 1	. 514 . 49 . 47 . 45		.1418 .1394 .1370	-2 -2 -2 -2
23. 40 23. 60 23. 80 24. 00 24. 20	. 6644 . 6266 . 5913 . 5582	-7 .74 -7 .71 -7 .68 -7 .65	467 -5 161 -5 3871 -5 3594 -5	.8750 .8606 .8465 .8328	-1 23.7 -1 23.9 -1 24.1 -1 24.3	78 98 18 38	. 2485 . 2384 . 2288 . 2197	-4 363 -4 378 -4 394 -4 410		2. 43 2. 43 2. 43 2. 43	387499 389270 390998 1392683 1394328	118. 56 118. 65 118. 75 118. 85	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2. 388 2. 368 2. 349 2. 330 2. 311	. 379 . 379 . 379 . 379 . 379	96 68 96 69 96 70	71. 8 83. 1 94. 4 705. 9 717. 4	5, 948 5, 949 5, 950 5, 951 5, 952	114.8 116.7 118.6	8 .42 7 .40 6 .38 5 .30	1211 = 1 4044 = 4 3884 = 4 3731 = 4	. 1325 . 1304 . 1283 . 1262	-1 -1 -1 -1
24. 40 24. 60 24. 80 25. 00	. 5272 . 4981 . 4709	-7 . 63 -7 . 66 -7 . 58 -1 . 56 -7 . 55	56079 -5 5839 -5 5611 -5 5394 -5	. 8195 . 8064 . 7937 . 7812	-1 24. -2 24. -1 24. -2 25.	. 58 . 78	. 2027 1948 . 1873	-4 44 -4 46 -4 48 -4 50	450 +1 631 +1 817 +1 6009 +1	2. 43 1 2. 43 1 2. 44 1 2. 4	4395934 4397502 4399033 4400528	118. 94 119. 03 119. 12 119. 21 119. 30	3 2 1	2. 292 2. 274 2. 256 2. 239	. 379 . 379 . 379	795 7: 795 7: 795 7: 795 7: 794 7	729. 0 740. 7 752. 5 764. 4 776. 4	5. 952 5. 953 5. 954 5. 955 5. 955	124.4 126.4 128.4	4 3 4 3 4 3	3596 ¬4 3447 ¬4 3315 ¬4 3189 ¬4 3069 ¬4	.1222 .1203 .1184 .1166	-1 -1 -1 -2
25. 20 25. 40 25. 60 25. 80 26. 00	3989 3777 3578 0 .3391	-7 .5 -7 .4 -7 .4	5187 -3 4988 -3 4800 -3	. 7572 . 7456 7342 7231	2 -1 25. 6 -1 25. 2 -2 25. 1 -2 26.	5. 58 5. 78 5. 98 6. 18	.1733 .1667 .1605 .1545	-4 52 -4 54 5 -4 56 5 -4 56	5208 +1 5412 +1 5624 +1 5841 +1 6066 +1	2.4 1 2.4 1 2.4 1 2.4 1 2.4	4401988 4403415 4404809 4406172 4407504	119. 38 119. 47 119. 55 119. 63	8 17 15 13	2. 221 2. 204 2. 187 2. 171 2. 154		794 7 794 8 794 8	788. 5 800. 7 813. 0 825. 3	5. 956 5. 957 5. 957 5. 958	6 132. 7 134. 7 136. 8 138.	.5	2953 -4 2844 -4 2739 -4 2638 -4 2542 -4	.1131 .1114 .1097	-1 -3 -1
26. 20 26. 40 26. 60 26. 80	0 .3216 0 .3050 0 .2894 30 .2747	3 -7 .4 3 -7 .4 4 -7 .4 7 -7 .3	4282 -3 4125 -5 3974 -8	5 .7123 5 .7017 6 .6913	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6, 38 6, 58 6, 78 6, 98 27, 18	. 1488 . 1434 . 1381 . 1331 . 1284	$ \begin{array}{c c} 4 & \neg & 6 \\ 1 & \neg & 6 \\ 1 & \neg & 6 \end{array} $	6297 +1 6535 +1 6781 +1 7033 +1	+1 2.4 +1 2.4 +1 2.4 +1 2.4	. 4408806 . 4410080 . 4411325 . 4412544	119.75 119.75 119.8 119.9	71 79 87 95	2. 138 2. 123 2. 107 2. 092	37	3793 8 3793 8 3793 8 3793 8	837.8 850.3 863.0 875.7 888.6	5, 959 5, 959 5, 960 5, 960 5, 961	59 142. 30 144. 50 146. 149.	2.7 4.8 5.9	. 2450 -4 . 2362 -4 . 2278 -4 . 2197 -4 . 2120 -4	-4 .1049 -4 .1034 -4 .1019	9 -1 4 -1 9 -1
27. 00 27. 20 27. 40 27. 60 27. 80	20 . 2476 40 . 2354 60 . 2239 80 . 2130	9 -7 55 -7 19 -7 90 -7	. 3692 -4 . 3560 -5 . 3434 -5 . 3313 -5	-5 .6616 -5 .6521 -5 .6428	16 -1 27 21 -2 27 28 -1 2 37 -1 2	27. 38 27. 58 27. 78 27. 98	.1238 .1194 .1152	8 - 7 14 - 4 152 - 1	7837 + 8121 + 8413 +	+1 2. +1 2. +1 2. +1 2.	2. 4413736 2. 4414902 2. 4416043 2. 4417160 2. 4418254	120.1 3 120.1 0 120.5 4 120.	10 18 25 32	2. 076 2. 061 2. 047 2. 032 2. 018	3 .3 .3 .3 .3 .3 .3 .3	3792 3792 3792 3792	901. 5 914. 5 927. 6 940. 8	5. 96 5. 96 5. 96 5. 96	61 151 62 153 63 155 63 157	3. 4 35. 6 37. 8	. 2046 . 1975 . 1907 . 1842	-4 .9902 -4 .9762 -4 .9626 -4 .9493)2 - 32 - 26 - 91 -
28. 00 28. 24 28. 4 28. 6 28. 8	20 .192 40 .183 60 .174	28 -7 36 -7 48 -7 65 -7	. 3086 . 2979 . 2877 . 2779	-8 .624 -5 .616 -5 .607 -5 .509	248 -2 2 161 -2 2 176 -2 2 1992 -2 2	28. 18 28. 38 28. 58 28. 78 28. 98	. 1073 . 103 . 100 . 966	36 -4 01 -4 69 -5	8713 9022 9340 9666	+1 2. +1 2. +1 2. +1 2.	2. 4419324 2. 4420373 2. 4421400 2. 442240 2. 442339	25 120.3 73 120. 00 120. 06 120. 91 120.	. 46 . 53 . 60). 67	2, 004 1, 990 1, 976 1, 966	76 63	. 3791 . 3791 . 3791	954. 1 967. 5 981. 0 994. 6 1008	5. 96 5. 96 5. 96	964 163 965 16 965 16 966 16	64. 5 66. 7 69. 0	. 1779 . 1719 . 1662 . 1606 . 1553	-4 .936 -4 .923 -4 .910 -4 .898 -4 .886	32 06 83 860
29. 0 29. 2 29. 4 29. 6 29. 6	. 20 . 15 . 40 . 14 . 60 . 13	113 ⁻⁷	2595 2509 2425	-5 . 584 -6 . 575 -5 . 56 -5 . 55	830 -1 751 -1 674 -1 599 -1	29, 18 29, 38 29, 58 29, 78	. 903 . 873 . 844 . 810)30 -5 /30 -5 140 -5 164 -6	1035 1070 1107	+3 2 +2 2 +2 3	2. 442435 2. 442530 2. 442623 2. 442713	120. 120. 120. 120. 120. 138.), 73), 80), 86 0, 93	1, 949 1, 93 1, 92 1, 91 1, 89	36 23 10	. 3791 . 3791 . 3791 . 3790 . 3790	1022 1036 1050 1064	5. 9 5. 9 5. 9 5. 9	966 17 966 17 967 17 967 17	71. 3 73. 6 175. 9 178. 3 180. 6	. 1453 . 1406 . 1361	-4 .865 -4 .85 -4 .84	743 626 512 400
30. 30. 30. 30.	0. 00 . 12 0. 20 . 11 0. 40 . 11 0. 60 . 10	254 -7 197 -7 143 -7 1092 -7	. 2195 . 2124 . 2056	-5 .54 -5 .53 -4 .55	5452 -2 5381 -3	29. 98 30. 18 30. 38 30. 58 30. 78	.76 .73 .71	641 -5 395 -6 158 -5 3931 -5	1182 1222 1262 1304	+2 +2 2 +2 1 +2	2. 44280 2. 44289 2. 44297 2. 44305 2. 44314	029 120 902 121 759 121 599 121 423 12	0. 99 11. 05 21. 11 21. 17	1.88 1.86 1.86	885 873 861 849	.3790 .3790 .3790 .3790	1078 1092 1107 1121 1136	5. 9 5. 9 5. 9	968 1 969 1 . 969 1 . 969 1	183. 0 185. 4 187. 8 190. 2	.1317 .1275 .1235 .1196 .1159	-4 .81 -4 .81 -4 .79 -4 .78	185 3079 7976 7874
31 31 31 . 31	31. 00 .9 31. 20 .9 31. 40 .9 31. 60 .8	9977 -5 9540 -8 9124 -8 8730 -5	. 1928 . 1867 . 1808 . 1752 . 1698	-\$.5 -\$.5 -\$.5 2 -\$.4	5176 -1 5110 -2 5046 -1 4982 -2 4920 -1	30. 98 31. 18 31. 38 31. 58 31. 78	. 6. . 6.	6711 -5 6500 -5 6297 -5 6102 -5 5914 -6	1390 1435 1481	0 +1 5 +1 1 +2 28 +1	2. 44322 2. 44330 2. 44330 2. 4434	2231 12 3023 12 3801 12 4564 12	21. 29 21. 35 21. 41 21. 46	1.8 1.8 1.8 1.8	825 813	. 3789 . 3789 . 3789	1150 1165 1180 1195	5. 5. 5.	5. 970 5. 970 5. 971 5. 971	192. 7 195. 1 197. 6 200. 1 202. 6	.1123 .1088 .1055 .1023	77 3 -4 .76 5 -4 .76 8 -4 .7	7775 7677 7583 7488 7396
31 32 33 33	31.80 32.00 32.20 32.40 32.60	8354 -8 7997 -8 7658 -8 7334 -8 7026 -8 6733 -8	.1646 .1596 .1547 .1501	6 -5 .4 6 -5 .4 7 -3	. 4859 -1 . 4799 -2 . 4740 -1 . 4683 -2 . 4626 -2	31. 98 32. 18 32. 38 32. 58		5733 -5 5558 -6 5389 -5 5227 -6 5071 -6	5 1626 5 1677 5 1726	26 +3 77 +2 29 +1	2. 4435 2. 4436 2. 4436 2. 4437 2. 4438	6049 12 6770 13 67479 1	21. 52 21. 57 121. 63 121. 68 121. 74	1. 1. 1.	. 780 . 769 . 758 . 747	. 3789 . 3789 . 3789 . 3789	1210 1225 1240 1255	5 5	5. 972 5. 972	205: 1 207: 6 210: 1	. 9916 . 9618 . 9330	8 -5 .7	7305 7217

TABLE II.—SUPERSONIC FLOW—Continued

				,			γ=	= 7/5 							
M or M	<u> </u>	<u>ρ</u>	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$,	μ	M	$\frac{p_2}{p_1}$	<u>P1</u>	T ₂ T ₁	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
33. 6 33. 33. 6 33. 6	20 . 6188 40 . 5935 50 . 5692	-1 1330 -1 1291	-3 .4516 -3 .4462	-2 32. 98 -2 33. 18 -2 33. 39 -2 33. 59 -2 33. 79	. 4774 . 4634 . 4499	-5 1837 -5 1893 -5 1950 -5 2009 -5 2069 -5	2. 44395 2. 44401 2. 44408	29 121.84 88 121.89 35 121.94	1. 737 1. 726 1. 716 1. 706 1. 695	. 378 . 378	8 1286 8 1301 8 1317	5. 973 5. 973 5. 973 5. 974 5. 974	3 215. 3 217. 9 220. 5	. 9053 - . 8785 - . 8527 - . 8277 -	3 .7129 -4 5 .7044 -3 5 .6960 -3 5 .6878 -4
34. 6 34. 4 34. 6 34. 8	0 .5032 0 .4832 0 .4640	-8 .1182 -8 .1148 -8 .1116	-5 .4257 -5 .4208 -5 .4159	-2 -2 -2 -2 -2 -2 -2 34. 19 34. 39 -2 34. 59 -2 34. 79	. 4120 . 4002 . 3889	-5 2131 + -5 2194 + -5 2259 + -5 2325 + -5 2392 +	2 2. 44427(2 2. 44433) 2 2. 44439(09 122.09 12 122.14 05 122.19	1. 685 1. 676 1. 666 1. 656 1. 647	. 378 . 378 . 378 . 378	8 1349 8 1364 8 1380 8 1397	5. 974 5. 975 5. 975 5. 975	225. 7 228. 4 231. 0 233. 7	. 8037 - . 7805 - . 7581 - . 7364 - . 7155 -	. 6716 -3 . 6638 -1 . 6561 -1
35. 0 35. 2 35. 4 35. 6 35. 8	0 .4116 0 .3957 0 .3804	-8 . 1024 -8 . 9956 -8 . 9680	-5 . 4019 -6 . 3974 -6 . 3930	-2 34. 99 -2 35. 19 -3 35. 39 -2 35. 59 -2 35. 79	. 3471 . 3375	-5 2462 + -5 2532 + -5 2605 + -5 2679 + -5 2754 +	2 2. 444562 2. 444617 2. 444672	30 122. 28 13 122. 33 17 122. 37 11 122. 42	1. 637 1. 628 1. 619 1. 610 1. 601	. 3788 . 3787 . 3787 . 3787	3 1429 1 1445 1 1462 1 1478	5. 975 5. 976 5. 976 5. 976 5. 976	239, 1 241, 9 244, 6 247, 4	. 6952	. 6411 -1 . 6338 -1 . 6267 -1 . 6197 -1
36. 00 36. 20 36. 40 36. 60 36. 80	3386 - 3258 - 3136 -	8 .8907 - 9 .8666 - 9 .8433 -	-6 . 3801 -6 . 3760 -6 . 3719	-2 35. 99 -2 36. 19 -2 36. 39 -2 36. 59 -2 36. 79	. 3022 - 2941	2832 +: 2832 +: 2911 +: 2992 +: 3075 +: 3159 +:	2. 444778 2. 444830 2. 444881 2. 444931	3 122. 51 0 122. 55 0 122. 60 1 122. 64	1. 592 1. 583 1. 574 1. 566 1. 557	. 3787 . 3787 . 3787 . 3787 . 3787 . 3787	1495 1512 1529 1546 1563	5. 977 5. 977 5. 977 5. 977 5. 978	250. 2 252. 9 255. 8 258. 6 261. 4	. 5874 -5 . 5714 -5 . 5560 -5 . 5410 -5	. 6059 -1 . 5991 -1 . 5925 -2 . 5860 -1 . 5797 -3
37. 00 37. 20 37. 40 37. 60 37. 80	. 2800 - . 2697 - . 2598 -	. 7777 - . 7572 - . 7373 -	6 . 3562 6 . 3524	-2 36.99 -1 37.19 -2 37.39 -2 37.59 -3 37.79	. 2786 - . 2712 - . 2641 - . 2572 - . 2504 -	3334 +2 5 3424 +2 5 3516 +2	2. 4450288 2. 4450768 2. 445123	8 122. 72 5 122. 77 5 122. 81 7 122. 85	1. 549 1. 540 1. 532 1. 524 1. 516	. 3787 . 3787 . 3787 . 3787 . 3786	1597 1614 1632 1649 1667	5. 978 5. 978 5. 978 5. 979 5. 979 5. 979	264. 3 267. 1 270. 0 272. 9 275. 8	. 5265 -3 . 5126 -5 . 4990 -5 . 4858 -5 . 4732 -3	.5734 -1 .5671 -1 .5611 -4 .5551 -3 .5492 -1
38. 00 38. 20 38. 40 38. 60 38. 80	. 2327	. 6814 - . 6639 - . 6469 -	6 . 3415 - 6 . 3379 - 6 . 3345 -	-2 37. 99 -2 38. 19 -2 38. 39 -2 38. 59 -2 38. 79	. 2440 - . 2377 - . 2316 - . 2257 - . 2199 -	3 3805 +2 3 3905 +2 4007 +2	2. 4452599 2. 4453040 2. 4453474 2. 4453901 2. 4454321	122. 97 123. 00 123. 04	1. 508 1. 500 1. 492 1. 485 1. 477	. 3786 . 3786 . 3786 . 3786 . 3786	1685 1702 1720 1738 1756	5. 979 5. 980 5. 980 5. 980 5. 980 5. 980	278. 8 281. 7 284. 7 287. 7 290. 7 293. 7	. 4608 -3 . 4489 -3 . 4373 -5 . 4260 -3 . 4152 -5 . 4046 -3	. 5434 -1 . 5377 -1 . 5321 -1 . 5266 -1 . 5212 -1
39. 00 39. 20 39. 40 39. 60 39. 80	. 2013 -8 . 1943 -8 . 1875 -8 . 1810 -9 . 1748 -8	. 5841 -6 . 5695 -6 . 5554 -6	3243 - 3211 - 3178 - 3147 -	2 39. 19 2 39. 39 1 39. 59	. 2144 =	4327 +1 4438 +2 4552 +2	2. 4454735 2. 4455143 2. 4455545 2. 4455940 2. 4456330		1. 469 1. 462 1. 454 1. 447 1. 440	. 3786 . 3786 . 3786 . 3786 . 3786	1774 1793 1811 1829 1848	5. 980 5. 981 5. 981 5. 981 5. 981	296. 7 299. 7 302. 8 305. 9 309. 0	. 4046 ~5 . 3944 ~5 . 3845 ~5 . 3749 ~5 . 3655 ~5 . 3565 ~2	.5158 -1 .5105 -3 .5053 -4 .5002 -3 .4952 -1
40. 00 40. 20 40. 40 40. 60 40. 80	.1688 -8 .1630 -8 .1574 -6 .1521 -6 .1470 -8	.5417 =6 .5284 =6 .5155 =6 .5029 =6 .4908 =6	. 3084 - . 3954 -	2 40. 19 2 40. 39 2 40. 59	. 1890 -8 . 1844 -5 . 1799 -5 . 1755 -5 . 1713 -5	5028 +2 5154 +2	2. 4456714 2. 4457092 2. 4457464 2. 4457831 2. 4458193	123. 30 123. 34 123. 37 123. 41 123. 44	1. 433 1. 425 1. 418 1. 411 1. 404	. 3786 . 3786 . 3786 . 3786 . 3785	1867 1885 1904 1923 1942	5. 981 5. 982 5. 982 5. 982 5. 982	312. 1 315. 2 318. 3 321. 5 324. 6	. 3477 -5 . 3392 -3 . 3309 -3 . 3229 -5 . 3151 -5	. 4902 = 8 . 4853 = 3 . 4805 = 3 . 4757 = 3 . 4710 = 8
41. 00 41. 20 41. 40 41. 60 41. 80	. 1420 -9 . 1373 -4 . 1327 -8 . 1283 -8 . 1241 -8	. 4789 = 6 . 4675 = 6 . 4563 = 6 . 4455 = 6 . 4349 = 6		41. 19 41. 39 41. 59	.1671 -5 .1631 -5 .1592 -5 .1555 -5 .1518 -3	5412 +2 5544 +2 5680 +2 5818 +2 5959 +2	2. 4458549 2. 4458901 2. 4459247 2. 4459588 2. 4459924	123. 48 123. 51 123. 54 123. 58 123. 61	1. 398 1. 391 1. 384 1. 377 1. 371	. 3785 . 3785 . 3785 . 3785 . 3785	1961 1980 2000 2019 2038	5. 982 5. 982 5. 983 5. 983 5. 983	327. 8 331. 0 334. 2 337. 4 340. 7	. 3075 -4 . 3001 -5 . 2029 -5 . 2860 -5 . 2793 -5	. 4619 -2 . 4575 -3 . 4531 -2 . 4487 -3
42. 00 42. 20 42. 40 42. 60 42. 80	.120t -8 .116t -8 .1124 -8 .1087 -8 .1052 -5	.4247 -6 .4148 -6 .4051 -6 .3957 -6 .3866 -6	. 2827 -2 . 2890 -2 . 2774 -2 . 2748 -2 . 2722 -2	42. 19 42. 39 42. 59	. 1482 -5 . 1448 -3 . 1414 -5 . 1381 -5 . 1349 -5	6102 +2 6248 +2 6397 +2 6549 +2 6704 +2	2. 4460256 2. 4460583 2. 4460905 2. 4461223 2. 4461536	123. 64 123. 67 123. 71 123. 74 123. 77	1. 364 1. 358 1. 351 1. 345 1. 339	. 3785 . 3785 . 3785 . 3785 . 3785	2058 2078 2097 2117 2137	5, 983 5, 983 5, 983 5, 984 5, 984	343. 9 347. 2 350. 5 353. 8 357. 1	. 2727 -5 . 2663 -5 . 2662 -5 . 2541 -5 . 2483 -5	. 4444 -1 . 4402 -3 . 4360 -1 . 4319 -3 . 4279 -1 4230 -3
43. 00 43. 20 43. 40 43. 60 43. 80	. 1019 -5 . 9861 -9 . 9548 -9 . 9246 -9 . 8956 -9	. 3777 -6 . 3691 -6 . 3607 -6 . 3525 -6 . 3445 -6	. 26972 . 26722 . 26482 . 26232 . 26002	42. 99 43. 19 43. 39 43. 59 43. 79	. 1318 -5 . 1288 -5 . 1259 -5 . 1230 -5 . 1203 -5	6861 +2 7022 +2 7186 +2 7352 +2 7522 +2	2. 4461845 2. 4462150 2. 4462451 2. 4462747 2. 4463039	123. 80 123. 83 123. 86 123. 89 123. 92	1. 333 1. 326 1. 320 1. 314 1. 308	. 3785 . 3785 . 3785 . 3785 . 3785	2157 2177 2197 2218 2238	5. 984 5. 984 5. 984 5. 984 5. 984	360. 5 363. 8 367. 2 370. 6 374. 0	. 2426 -4 . 2370 -3 . 2316 -3 . 2264 -5 . 2213 -5	. 4239 -3 . 4200 -3 . 4161 -1 . 4122 -3 . 4084 -3 . 4048 -3
44. 00 44. 20 44. 40 44. 60 44. 80	. 8676 -9 . 8405 -9 . 8144 -9 . 7893 -9 . 7650 -9	. 3368 -6 . 3293 -6 . 3219 -6 . 3148 -6 . 3078 -6	. 2576 -1 . 2553 -2 . 2530 -2 . 2507 -2 . 2485 -2	43. 99 44. 19 44. 39 44. 59 44. 79	.1176 -5 .1150 -3 .1124 -5 .1099 -5 .1075 -5	7694 +2 7870 +2 8049 +2 8232 +2 8418 +2	2. 4463328 2. 4463612 2. 4463893 2. 4464170 2. 4464443	123. 95 123. 98 124. 01 124. 04 124. 07	1. 302 1. 296 1. 291 1. 285 1. 279	. 3785 . 3785 . 3785 . 3785 . 3784	2259 2279 2300 2321 2341	5. 985 5. 985 5. 985 5. 985 5. 985	377. 4 380. 8 384. 3 387. 7 391. 2	. 2163 -5 . 2115 -5 . 2068 -5 . 2022 -5 . 1977 -5	. 4011 -3 . 3975 -3 . 3939 -3 . 3904 -3 . 3869 -1
45. 00 45. 20 45. 40 45. 60 45. 80 46. 00	.7416 -9 .7190 -9 .6971 -9 .6760 -9 .6557 -9	. 3011 -6 . 2945 -6 . 2881 -6 . 2818 -6 . 2758 -6	. 2463 -1 . 2441 -2 . 2420 -2 . 2399 -2 . 2378 -2	44. 99 45. 19 45. 39 45. 59 45. 79	.1051 -5 .1028 -5 .1006 -5 .9840 -6 .9629 -6	8606 +2 8798 +2 8995 +2 9194 +2 9396 +2	2. 4464713 2. 4464979 2. 4465241 2. 4465500 2. 4465756	124. 10 124. 12 124. 15 124. 18 124. 21	1. 273 1. 268 1. 262 1. 257 1. 251	. 3784 . 3784 . 3784 . 3784 . 3784	2362 2383 2405 2426 2447	5. 985 5. 985 5. 986 5. 986 5. 986	394. 7 398. 2 401. 7 405. 3 408. 8	. 1934 -5 . 1892 -5 . 1851 -5 . 1810 -3 . 1771 -6	. 3835 -3 . 3801 -3 . 3767 -1 . 3735 -3 . 3702 -3
46. 20 46. 40 46. 60 46. 80	.0301 -0 .6171 -0 .5987 -9 .5810 -0 .5639 -0	. 2641 -6 . 2584 -6 . 2529 -6 . 2476 -6	. 2357 -2 . 2337 -2 . 2317 -2 . 2297 -2 . 2278 -2	45. 99 46. 19 46. 39 46. 59 46. 79	. 9422 → . 9220 → . 9023 → . 8832 → . 8646 →	9603 +2 9813 +2 1003 +3 1024 +3 1047 +3	2. 4466009 2. 4466258 2. 4466504 2. 4466746 2. 4466986	124. 23 124. 26 124. 29 124. 31 124. 34	1. 246 1. 240 1. 235 1. 230 1. 224	. 3784 . 3784 . 3784 . 3784 . 3784	2469 2490 2512 2533 2555	5. 986 5. 986 5. 986 5. 986 5. 986	412. 4 416. 0 419. 6 423. 2 426. 8	. 1733 -5 . 1696 -5 . 1660 -5 . 1625 -6	. 3670 -3 . 3638 -1 . 3607 -3 . 3576 -1 . 3546 -3
47. 20 47. 40 47. 60 47. 80 48. 00	.5314 -9 .5159 -9 .5009 -9 .4865 -9	. 2424 -6 . 2373 -6 . 2323 -6 . 2275 -6 . 2228 -6	. 2258 -1 . 2239 -2 . 2221 -2 . 2202 -2 . 2184 -2	46. 99 47. 19 47. 39 47. 59 47. 79	.8464 -6 .8287 -6 .8114 -6 .7945 -6 .7782 -6	1069 +1 1092 +1 1115 +1 1139 +1 1163 +1	2. 4467223 2. 4467456 2. 4467687 2. 4467915 2. 4468140	124, 37 124, 39 124, 42 124, 44 124, 47	1. 219 1. 214 1. 209 1. 204 1. 199	. 3784 . 3784 . 3784	2599 2621 2643	5. 987 5. 987	430. 5 434. 1 437. 8 441. 5 445. 2	. 1557 -5 . 1525 -5 . 1493 -5 . 1462 -3	. 3516 -3 . 3486 -3 . 3457 -3 . 3427 -1 . 3399 -3
48, 20 48, 40 48, 60 48, 80 49, 00	.4590 - F .4459 - F .4332 - F .4210 - F .4091 - F	.2137 -6 .2094 -6 .2051 -6 .2009 -6	. 2165 -3 . 2148 -2 . 2130 -3 . 2112 -2 . 2095 -3	47. 99 48. 19 48. 39 48. 59 48. 79	.7620 -6 .7464 -6 .7312 -6 .7163 -6 .7018 -7	1187 +3 1212 +3 1238 +3 1263 +3 1289 +3	2. 4468362 2. 4468581 2. 4468798 2. 4469012 2. 4469223	124, 49 124, 52 124, 54 124, 56 124, 59	1. 189 1. 184 1. 179	. 3784 . 3784 . 3784	2710 2733 2756	5, 987 5, 987 5, 987	448. 9 452. 7 456. 4 460. 2 464. 0	.1402 -0 .1373 -5 .1345 -5 .1318 -5	3370 -4 3342 -1 3315 -4 3288 -1 3261 -1
49. 20 49. 40 49. 60 49. 80 50. 00	. 3076 -9 . 3865 -9 . 3758 -9 . 3653 -9	. 1909 -6 . 1929 -6 . 1890 -6 . 1853 -6 . 1816 -6	. 2078 -2 . 2061 -3 . 2045 -2 . 2028 -2 . 2012 -2 . 1996 -2	48. 99 49. 19 49. 39 49. 59 49. 79	. 6876 -6 . 6738 -6 . 6603 -6 . 6472 -6 . 6342 -6	1343 +3 1370 +3 1398 +3 1427 +3	2. 4470044 2. 4470243	124. 61 124. 64 124. 66 124. 68 124. 71	1. 165 1. 160 1. 155	. 3784 . 3784 . 3784	2824 2847 2870	5, 988 5, 988 5, 989	467. 8 471. 6 475. 5 479. 3 483. 2	. 1265 -3	3234 -3 3208 -3 3182 -3 3157 -3 3131 -3
51.00 52.00 53.00 54.00	. 3093 -9 . 2701 -9 . 2365 -9 . 2075 -9	.1612 -6 .1464 -6 .1331 -6 .1212 -6	. 1919 -2 . 1846 -1 . 1777 -2 . 1712 -2	49, 99 50, 99 51, 99 52, 99 53, 99	.6217 -6 .5632 -6 .5113 -6 .4649 -6 .4235 -6	1607 +3 1770 +3 1947 +3	2. 4471388 2. 4472282 2. 4473126	124. 73 124. 84 124. 95 125. 05 125. 15	1. 124 1. 102 1. 081	3783 3 3783 3 3783 3	034 5 155 5 277 5	5. 989 5 5. 989 5 5. 989 5	487, 1 506, 7 526, 7 547, 1 567, 9	. 1036 -5 . 9406 -6 . 8553 -6	3106 -3 2985 -3 2872 -3 2765 -1 2663 -3

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

TABLE II.—SUPERSONIC FLOW—Concluded

γ=7/5

							7-110						1	i	
M or M ₁	$\frac{p}{p_t}$	<u>ρ</u>	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{V}{a_{\bullet}}$,	Д	M ₂	<u>p</u> 1 p ¹	<u>ρ</u> ε ρι	$\frac{T^2}{T_1}$	$\frac{p_{i_1}}{p_{i_1}}$	<u>p</u> 1
55. 00 56. 00 57. 00 58. 00	.1826 -4 .1609 -4 .1422 -4 .1259 -4	.1106 -6 .1011 -6 .9256 -7 .8485 -7	. 1650 -2 . 1592 -2 . 1537 -2 . 1484 -3 . 1434 -2	54, 99 55, 99 56, 99 57, 99 58, 99	.3866 →6 .3533 →6 .3235 →6 .2965 →6 .2723 →6	2341 +3 2562 +3 2798 +3 3052 +3 3324 +3	2. 4474679 2. 4475394 2. 4476071 2. 4476714 2. 4477325	125. 25 125. 34 125. 43 125. 52 125. 60	1. 042 1. 023 1. 005 . 9879 . 9712	.3783 .3783 .3783 .3783 .3782	3529 3659 3790 3925 4061	5, 990 5, 990 5, 991 5, 991 5, 991	589. 1 610. 7 632. 7 655. 1 677. 8	.7111 → .6499 → .5950 → .5455 → .5009 →	. 2567 -1 . 2476 -1 . 2390 -1 . 2308 -1 . 2231 -1
59.00 60.00 61.00 62.00 63.00 64.00	. 1118 -9 . 9937 -10 . 8852 -10 . 7900 -10 . 7065 -10 . 6328 -10	.7165 -7 .6596 -7 .6082 -7 .5615 -7 .5190 -7	.1387 -2 .1342 -2 .1299 -2 .1258 -3 .1219 -2	59. 99 60. 99 61. 99 62. 99 63. 99	. 2504 -6 . 2306 -6 . 2126 -6 . 1963 -6 . 1814 -4	3615 +3 3926 +3 4258 +3 4612 +3 4990 +3	2. 4477905 2. 4478457 2. 4478982 2. 4479483 2. 4479961	125, 68 125, 76 125, 84 125, 91 125, 98	. 9550 . 9393 . 9241 . 9095 . 8953	.3782 .3782 .3782 .3782 .3782	4200 4341 4485 4630 4779	5. 992 5. 992 5. 992 5. 993 5. 993	700. 9 724. 5 748. 4 772. 7 797. 4	.4606 -4 .4241 -4 .3911 -4 .3611 -4 .3338 -9	. 2157 -4 . 2087 -4 . 2020 -4 . 1957 -4 . 1896 -4
65.00	.5678 -10	. 4803 -7	.1182 -2	64. 99	. 1679 -4	5391 +3	2, 4480416	126. 05	. 8815	. 3782	4929	5, 993	822. 5	. 3089 -6	. 1838 -2
66.00	.5103 -10	. 4451 -7	.1147 -2	65. 99	. 1556 -4	5818 +8	2, 4480851	126. 12	. 8682	. 3782	5082	5, 993	847. 9	. 2863 -6	. 1783 -3
67.00	.4594 -10	. 4129 -7	.1113 -2	66. 99	. 1444 -6	6271 +2	2, 4481267	126. 18	. 8552	. 3782	5237	5, 993	873. 8	. 2655 -6	. 1730 -3
68.00	.4141 -10	. 3834 -7	.1080 -2	67. 99	. 1340 -6	6754 +3	2, 4481665	126. 24	. 8426	. 3782	5395	5, 994	900. 1	. 2466 -6	. 1679 -3
69.00	.3740 -10	. 3565 -7	.1049 -2	68. 99	. 1246 -6	7264 +3	2, 4482045	126. 30	. 8304	. 3782	5554	5, 994	926. 7	. 2293 -6	. 1631 -3
70.00	.3382 -10	. 3318 -7	.1019 -2	69, 99	.1160 -6	7804 +3	2. 4482410	126. 36	.8185	. 3782	5717	5, 994	953. 7	.2134 -6	. 1585 -1
71.00	.3062 -18	. 3091 -7	.9909 -1	70, 99	.1081 -6	8378 +3	2. 4482759	126. 42	.8070	. 3782	5881	5, 994	981. 1	.1988 -6	. 1540 -1
72.00	.2777 -16	. 2882 -7	.9636 -1	71, 99	.1008 -6	8984 +3	2. 4483093	126. 48	.7958	. 3782	6048	5, 994	1009	.1854 -6	. 1498 -3
73.00	.2522 -10	. 2690 -7	.9374 -1	72, 99	.9406 -7	9625 +3	2. 4483414	126. 53	.7849	. 3781	6217	5, 994	1037	.1730 -6	. 1457 -3
74.00	.2293 -10	. 2513 -7	.9122 -8	73, 99	.8789 -7	1030 +4	2. 4483722	126. 59	.7742	. 3781	6389	5, 995	1066	.1617 -9	. 1418 -3
75. 00	. 2088 -10	. 2351 -7	. 8881 -1	74. 99	.8220 -7	1102 +4	2. 4484018	126, 64	. 7639	.3781	6562	5. 995	1095	.1512 -6	.1381 -3
76. 00	. 1903 -10	. 2200 -7	. 8649 -1	75. 99	.7693 -7	1177 +4	2. 4484302	126, 69	. 7539	.3781	6739	5. 995	1124	.1415 -6	.1345 -3
77. 00	. 1737 -10	. 2061 -7	. 8426 -1	76. 99	.7207 -7	1256 +4	2. 4484576	126, 74	. 7441	.3781	6917	5. 995	1154	.1326 -6	.1310 -3
78. 00	. 1587 -10	. 1932 -7	. 8212 -1	77. 99	.6757 -7	1340 +4	2. 4484838	126, 78	. 7345	.3781	7098	5. 995	1184	.1243 -6	.1276 -3
79. 00	. 1451 -10	. 1813 -7	. 8005 -8	78. 99	.6341 -7	1428 +4	2. 4485091	126, 83	. 7253	.3781	7281	5. 995	1215	.1166 -6	.1244 -3
80.00	. 1329 -10	.1703 -7	.7806 -3	79. 99	.5954 -7	1521 +4	2. 4485335	126. 88	. 7162	. 3781	7467	5, 995	1245	.1095 -6	.1214 -3
81.00	. 1219 -10	.1600 -7	.7615 -3	80. 99	.5596 -7	1618 +4	2. 4485569	126. 92	. 7074	. 3781	7654	5, 995	1277	.1030 -6	.1184 -3
82.00	. 1118 -10	.1505 -7	.7431 -3	81. 99	.5264 -7	1720 +4	2. 4485795	126. 96	. 6987	. 3781	7845	5, 996	1308	.9682 -7	.1155 -3
83.00	. 1027 -10	.1417 -7	.7253 -3	82. 99	.4954 -7	1828 +4	2. 4486013	127. 00	. 6903	. 3781	8037	5, 996	1341	.9113 -7	.1127 -3
84.00	. 9448 -11	.1334 -7	.7081 -3	83. 99	.4667 -7	1940 +4	2. 4486223	127. 05	. 6821	. 3781	8232	5, 996	1373	.8585 -7	.1101 -3
85. 00	. 8697 -11	.1258 -7	. 6916 -8	84, 99	.4399 -7	2059 +4	2. 4486426	127. 09	. 6741	.3781	8429	5. 996	1406	.8092 -7	. 1075 -1
86. 00	. 8014 -11	.1186 -7	. 6756 -3	85, 99	.4149 -7	2182 +4	2. 4486622	127. 12	. 6662	.3781	8629	5. 996	1439	.7632 -7	.1050 -1
87. 00	. 7391 -11	.1120 -7	. 6602 -3	86, 99	.3916 -7	2312 +4	2. 4486811	127. 16	. 6586	.3781	8530	5. 996	1473	.7204 -7	.1026 -3
88. 00	. 6823 -11	.1058 -7	. 6452 -3	87, 99	.3699 -7	2448 +4	2. 4486994	127. 20	. 6511	.3781	9035	5. 996	1507	.6804 -7	.1003 -1
89. 00	. 6305 -11	.9995 -8	. 6308 -3	88, 99	.3496 -7	2590 +4	2. 4487170	127. 24	. 6438	.3781	9241	5. 996	1541	.6431 -7	.9805 -4
90, 00	. 5831 -11	. 9452 -8	.6169 -3	89. 99	.3306 -7	2739 +4	2. 4487341	127. 27	. 6366	. 3781	9450	5. 996	1576	.6082 -7	.9588 -4
91, 00	. 5397 -11	. 8944 -8	.6034 -3	90. 99	.3129 -7	2894 +4	2. 4487506	127. 31	. 6296	. 3781	9661	5. 996	1611	.5755 -7	.9378 -4
92, 00	. 5000 -11	. 8469 -8	.5904 -3	91. 99	.2962 -7	3057 +4	2. 4487666	127. 34	. 6228	. 3781	9875	5. 997	1647	.5450 -7	.9175 -4
93, 00	. 4636 -11	. 8023 -5	.5778 -3	92. 99	.2807 -7	3226 +4	2. 4487820	127. 38	. 6160	. 3781	1009 +1	5. 997	1683	.5163 -7	.8978 -4
94, 00	. 4302 -11	. 7606 -8	.5656 -3	93. 99	.2661 -7	3403 +4	2. 4487970	127. 41	. 6095	. 3781	1031 +1	5. 997	1719	.4894 -7	.8790 -4
95. 00	. 3995 -11	.7214 -5	.5537 -3	94. 99	. 2524 -7	3588 +4	2. 4488115	127. 44	. 6031	.3781	1053 +1	5, 997	1756	.4642 -7	.8605 -4
96. 00	.3712 -11	.6846 -6	.5422 -3	95. 99	. 2395 -7	3781 +4	2. 4488255	127. 47	. 5968	.3781	1075 +1	5, 997	1793	.4405 -7	.8427 -4
97. 00	.3453 -11	.6501 -5	.5311 -3	96. 99	. 2274 -7	3982 +4	2. 4488392	127. 50	. 5907	.3781	1098 +1	5, 997	1831	.4183 -7	.8254 -4
98. 00	.3214 -11	.6176 -5	.5204 -3	97. 99	. 2161 -7	4191 +4	2. 4488524	127. 53	. 5847	.3781	1121 +1	5, 997	1869	.3974 -7	.8087 -4
99. 00	.2993 -11	.5870 -8	.5099 -3	98. 99	. 2054 -7	4410 +4	2. 4488652	127. 56	. 5787	.3781	1143 +1	5, 997	1907	.3778 -7	.7923 -4
100.00	. 2790 -11	. 5583 -5	.4998 -	100.00	. 1953 -7	4637 +4	2. 4488776	127. 59	. 5730	. 3781	1167 +1	5. 997	1945	.3593 -7	.7765 -

NOTATIONS FOR TABLES I AND II

M or M_1	local Mach number or Mach number upstream of a normal shock wave
$\frac{p}{p_i}$	ratio of static pressure to total pressure
$\frac{\rho}{\rho_1}$	ratio of static density to total density
$rac{T}{T_{\imath}}$	ratio of static temperature to total temperature
β	$\sqrt{M^2-1}$
$\frac{q}{p_t}$	ratio of dynamic pressure, $\frac{1}{2} \rho V^2$, to total pressure
$\frac{A}{A_*}$	ratio of local cross-sectional area of an isentropic stream tube to cross-sectional area at the point where $M=1$
$\frac{V}{a}$	ratio of local speed to speed of sound at the point

where M=1

	sonic stream is turned to expand from $M=1$
	to $M>1$), deg
μ	Mach angle, $\sin^{-1}\frac{1}{M}$, deg
M_2	Mach number downstream of a normal shock wave
$rac{oldsymbol{p_2}}{oldsymbol{p_1}}$	static pressure ratio across a normal shock wave
	static density ratio across a normal shock wave
$rac{ ho_2}{ ho_1} \ T_2 \ T_1$	static temperature ratio across a normal shock wave
$\frac{p_{i_2}}{p_{i_1}}$	total pressure ratio across a normal shock wave
$rac{p_1}{p_{t_2}}$	ratio of static pressure upstream of a normal shock wave to total pressure downstream

Prandtl-Meyer angle (angle through which a super-

Chart

CHARTS

The charts that follow present numerical values of certain physical quantities that are functions of two variables and hence are cumbersome to tabulate. These charts are designed to provide accuracy to three significant figures.

Charts 1 through 8 and chart 25 are for a perfect gas. The values presented in charts 1 through 4 and chart 25 were calculated for a ratio of specific heats of 7/5. The values presented in charts 5 through 8 were taken from references 6 and 14 and are for a ratio of specific heats of 1.405.

Charts 9 through 24 provide correction factors to account for the effects of caloric imperfections on the quantities tabulated in tables I and II and plotted in charts 2, 3, and 4.

On many charts, points corresponding to static temperatures of 5000° R and 100°R (-360° F) have been indicated. These temperatures represent very approximately the limits of validity of the charts. Exact limits cannot be stated simply as they depend on pressure as well as temperature. At temperatures near 5000° R dissociation effects, which were neglected in the calculations, can be significant at high altitudes though perhaps not at sea level. At temperatures less than about 100° R, air may condense at the pressures encountered in many wind tunnels.

On the Reynolds number chart (chart 25), points corresponding to a static temperature of 180° R (-280° F) also are indicated since this is the lowest temperature for which experimental viscosity data have been obtained. At temperatures much lower than -280° F, Sutherland's equation (A2) may significantly underestimate the true viscosity.

The contents of the charts are as follows:

The contents of the charts are as follows:	•
Chart	Page
1. Variation of mass-flow rate per unit area with Mach number for various total temperatures. Perfect gas, $\gamma = 7/5$	653
2. Variation of shock-wave angle with flow-deflection angle	
for various upstream Mach numbers. Perfect gas, $\gamma = 7/5$.	654
3. Variation of pressure coefficient across shock waves with	
flow-deflection angle for various upstream Mach numbers.	
Perfect gas, $\gamma = 7/5$	656
4. Variation of Mach number downstream of a shock wave with	
flow-deflection angle for various upstream Mach numbers.	
Perfect gas, $\gamma = 7/5$	658
5. Variation of shock-wave angle with cone semivertex angle	
for various upstream Mach numbers. Perfect gas, $\gamma =$	
1.405	660

6.	Variation of surface pressure coefficient with cone semivertex angle for various upstream Mach numbers. Perfect gas,
7.	γ=1.405. Variation of Mach number at the surface of a cone with cone
	semivertex angle for various upstream Mach numbers. Perfect gas, $\gamma = 1.405$
8.	Variation of the initial slope of the normal-force curve with upstream Mach number for various cone semivertex angles. Perfect gas, $\gamma = 1.405$
9.	Effect of caloric imperfections on the ratio of local speed to speed of sound at the point where $M=1$
10.	Effect of caloric imperfections on the ratio of static temperature to total temperature
11.	Effect of caloric imperfections on the ratio of static density to total density
	Effect of caloric imperfections on the ratio of static pressure to total pressure
	Effect of caloric imperfections on the ratio of dynamic pressure to total pressure
14.	Effect of caloric imperfections on the ratio of local cross- sectional area of a stream tube to the cross-sectional area at the point where $M=1$
	Effect of caloric imperfections on the static-temperature ratio across a normal shock wave
16.	Effect of caloric imperfections on the static-density ratio across a normal shock wave
17.	Effect of caloric imperfections on the ratio of static pressure upstream of a normal shock wave to total pressure downstream.
18.	Effect of caloric imperfections on the static-pressure ratio across a normal shock wave
19.	Effect of caloric imperfections on the Mach number down- stream of a normal shock wave
2 0.	Effect of caloric imperfections on the total-pressure ratio across a normal shock wave
21.	Effect of caloric imperfections on the variation with flow-deflection angle of the shock-wave angle for a weak oblique shock wave
22.	Effect of caloric imperfections on the variation with flow- deflection angle of the Mach number downstream of a weak oblique shock wave
23.	Effect of caloric imperfections on the variation with flow-deflection angle of the pressure coefficient across a weak oblique shock wave
	Effect of caloric imperfections on the Prandtl-Meyer angle
25 .	Variation of Reynolds number per unit length with Mach number for various total temperatures. Perfect gas, $\gamma = 7/5$

CHART 1.—Variation of mass-flow rate per unit area with Mach number for various total temperatures Perfect gas. $\gamma=\%$.

Chart 2.—Variation of shock-wave angle with flow-deflection angle for various upstream Mach numbers Perfect gas, $\gamma = \%$.

CHART 2.—Concluded

Chart 3.—Variation of pressure coefficient across shock waves with flow-deflection angle for various upstream Mach numbers. Perfect gas, $\gamma = \%$.

Chart 4.—Variation of Mach number downstream of a shock wave with flow-deflection angle for various upstream Mach numbers. Perfect gas, $\gamma = \frac{\gamma}{3}$.

CHART 4.—Concluded

Chart 5.—Variation of shock-wave angle with cone semivertex angle for various upstream Mach numbers. Perfect gas, $\gamma = 1.405$.

Chart 5,--Concluded

 $C_{\rm HART~6, 9-Variation~of~surface~pressure~coefficient~with~cone~semivertex~angle~for~various~upstream~Mach~numbers.~~Perfect~gas,~\gamma = 1.405.$

CHART 6.—Concluded

Chart 7.— Variation of Mach number at the surface of a cone with cone semivertex angle for various upstream Mach numbers. Perfect gas. $\gamma = 1.405$.

CHART 7.—Concluded

CHART 8.—Variation of the initial slope of the normal-force curve with upstream Mach number for various cone semivertex angles. Perfect gas,

CHART 9.—Effect of caloric imperfections on the ratio of local speed to speed of sound at the point where M=1.

Chart 10.—Effect of caloric imperfections on the ratio of static temperature to total temperature.

Chart 11.--Effect of calcric imperfections on the ratio of static density to total density.

Chart 12.—Effect of caloric imperfections on the ratio of static pressure to total pressure.

CHART 13.—Effect of caloric imperfections on the ratio of dynamic pressure to total pressure.

Chart 14. -- Effect of caloric imperfections on the ratio of local cross-sectional area of a stream tube to the cross-sectional area at the point where \$M==1\$.

Chart 15.— Effect of caloric imperfections on the static-temperature ratio across a normal shock wave.

Chart 16.- Effect of caloric imperfections on the static-density ratio across a normal shock wave.

Chart 17 .-- Effect of caloric imperfections on the ratio of static pressure upstream of a normal shock wave to total pressure downstream.

Chart 18.—Effect of caloric imperfections on the static-pressure ratio across a normal shock wave.

Chart 19.—Effect of caloric imperfections on the Mach number downstream of a normal shock wave.

Chart 20. "Effect of caloric imperfections on the total-pressure ratio across a normal shock wave.

CHART 21.—Effect of caloric imperfections on the variation with flow-deflection angle of the shock-wave angle for a weak oblique shock wav

CHART 21. -Continued

(c) 11-300 It

CHART 21.-Continued

CHART 21.—Concluded

CHART 22.--Effect of caloric imperfections on the variation with flow-deflection angle of the Mach number downstream of a weak oblique shock wave.

CHART 22,---Concluded

CHART 23.—Effect of caloric imperfections on the variation with flow-deflection angle of the pressure coefficient across a weak oblique shock wave.

Chart 24.—Effect of caloric imperfections on the Prandtl-Meyer angle.

