ETS Time series model

Chapter 8. Forecasting: principles and practice (Hyndman & Athanasopoulos, 2018)

Exponential smoothing (ETS) models

- Exponential smoothing models are based on a description of the trend and seasonality (+ an error term) in the data.
- ARIMA models aim to describe the autocorrelations in the data.
- Forecasts produced using exponential smoothing methods are weighted averages of past observations, with the weights decaying exponentially as the observations get older.
 - the more recent the observation the higher the associated weight.

Simple exponential smoothing (SES)

The naïve method

- Suitable for forecasting data with no clear trend or seasonality
- all forecasts for the future are equal to the last observed value of the series

$$\hat{y}_{T+h|T} = y_T,$$

• all future forecasts are equal to a simple average of the observed data

$$\hat{y}_{T+h|T} = rac{1}{T} \sum_{t=1}^T y_t,$$

 However, we want to attach larger weights to more recent observations than to observations from the distant past.

Simple exponential smoothing (SES)

Weighted averages

 the weights decrease exponentially as observations come from further in the past — the smallest weights are associated with the oldest observations

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha)y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots,$$

- where $0 \le \alpha \le 1$ is the smoothing parameter
- For any α between 0 and 1, the weights attached to the observations decrease exponentially going back in time, indicates the name "exponential smoothing".
- Component form:

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1},$$

Methods with trend

Holt's linear trend method

A forecast equation and two smoothing equations

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level equation $\ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1})$
Trend equation $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1}$,

- α is the smoothing parameter for the level ($0 \le \alpha \le 1$), a weighted average of observation y_t and the one-step-ahead training forecast for time t.
- β_* is the smoothing parameter for the trend (0 $\leq \beta \leq$ 1), a weighted average of the estimated trend at time t, and the previous estimate of the trend.

Methods with trend

Damped trend methods

- The forecasts generated by Holt's linear method display a constant trend (increasing or decreasing) indefinitely into the future. => over-forecast
- Gardner & McKenzie (1985) introduced a parameter that "dampens" the trend to a flat line some time in the future. If $\phi = 1$, the method is identical to Holt's linear method. For values between 0 and 1, ϕ dampens the trend so that it approaches a constant some time in the future.

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

Methods with seasonality

Holt-Winters's extension

- Seasonal variations are roughly constant through the series additive method (preferred)
- Seasonal variations are changing proportional to the level of the series multiplicative method (preferred)

Methods with seasonality

Holt-Winters's additive term

Component form:

$$egin{aligned} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \ \ell_t &= lpha(y_t - s_{t-m}) + (1-lpha)(\ell_{t-1} + b_{t-1}) \ b_t &= eta^*(\ell_t - \ell_{t-1}) + (1-eta^*)b_{t-1} \ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1-\gamma)s_{t-m}, \end{aligned}$$

- *k* is the integral part of (h-1)/m, which ensures that the estimates of the seasonal indices used for forecasting come from the final year of the sample.
- The usual parameter restriction: $0 \le \gamma \le 1 \alpha$

Methods with seasonality

Holt-Winters's multiplicative term

Component form:

$$egin{aligned} \hat{y}_{t+h|t} &= (\ell_t + hb_t) s_{t+h-m(k+1)} \ \ell_t &= lpha rac{y_t}{s_{t-m}} + (1-lpha) (\ell_{t-1} + b_{t-1}) \ b_t &= eta^* (\ell_t - \ell_{t-1}) + (1-eta^*) b_{t-1} \ s_t &= \gamma rac{y_t}{(\ell_{t-1} + b_{t-1})} + (1-\gamma) s_{t-m}. \end{aligned}$$

A taxonomy of exponential smoothing methods (T, S) — Trend and Seasonal components

 By considering variations in the combinations of the trend and seasonal components, nine exponential smoothing methods are possible.

Trend Component	Seasonal Component		
	N	A	M
	(None)	(Additive)	(Multiplicative)
N (None)	(N,N)	(N,A)	(N,M)
A (Additive)	(A,N)	(A,A)	(A,M)
A_d (Additive damped)	(A_d,N)	(A_d,A)	(A_d,M)

Short hand	Method
(N,N)	Simple exponential smoothing
(A,N)	Holt's linear method
(A_d,N)	Additive damped trend method
(A,A)	Additive Holt-Winters' method
(A,M)	Multiplicative Holt-Winters' method
(A_d,M)	Holt-Winters' damped method