ASSIGNMENT1

180050023 Bhaskar Chalu

 $MSL(w,b) = \frac{1}{2N} \sum_{i=1}^{N} (wx_i + b - y_i)^2$ Sms(w,t) = 1 = (Wzi+1-yi) $Smse(w,b) = I(S(w)x_i + b-y_i)z_i$ Vmse (w, t) = [{ mse (w, t) }]

& mse (w, t)

& b

Resulting Line in the Jig we is the Best Fit, not necessarily hassing through all hairts

 $2.1 (9) \dot{y} = XW$ (t) mulw) = $\frac{1}{2} \sum_{i=1}^{N} (\lambda_i w_i - y_i)^2 = \int (\lambda_i w_i$ mselW) = 1 (XW-Y) (XW-Y)

 $= \frac{1}{2N} \left(N^{T} X^{T} X N - N^{T} X^{T} Y - Y^{T} X N + Y^{T} Y \right)$ $\left(W^{T} X^{T} Y = \left(Y^{T} X N \right)^{T} \right)$ $\left(W^{T} X^{T} Y = \left(Y^{T} X N \right)^{T} \right)$ $\left(Y^{T} X N \right) = \left(Y^{T} X N \right)^{T}$

max(W)=
$$\frac{1}{2}$$
 ($\frac{y^{7}y}{2}$ - $2w^{7}x^{7}y$ + $w^{7}(x^{7}x)w$)

Gradient of max (W) is as $\frac{1}{2}$ ($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ ($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ ($\frac{1}{2}$ $\frac{1}{2}$

E(W)=1 = 1 212 (4: -WT 21)2 = 1 = (1ihi - W nizi) te a déagonal matriz with R[ii] = 2i for 1=1:1 now X can be -> RX Y can be -> RY Closed form for linear regression is $w^{x} = (x^{T}x)^{-1}x^{T}y$ substituting the valighted points we get | W x = (xTR2x)-1 xTR2y | 1 st and 3 rd column are linearly dehendent hence XTX was not full Nank so i le invertible as X is not Jule rank So i just re moved the directamin 4.2

when X has linearly dependent alums.

i.e. it is not Jull rank XIX is
a singular matrix which lead
to the Jailure of above regression
but gradient descent will still converge
to a test fit solution as the cost
Junction is convex up hence we
reach the glotal minima regardless
as we use gradient descent