

CLAIMS:

1. A lighting system, comprising:

a substrate;

5 a light emitting element located on the substrate, wherein the light emitting element has a first surface and a second surface, wherein the first and second surfaces are on opposite sides of the light emitting element, wherein the second surface faces the substrate, and wherein the
10 light emitting element contains an electroluminescent material;

a first electrode located on the first surface, wherein the first electrode is of a light transmittance type;

15 a second electrode located on the second surface, wherein, when a voltage is applied across the first electrode and the second electrode, the entire light emitting element emits light;

20 a passivation film located on the first electrode, wherein the passivation film is of a light transmittance type and covers the entire surface of the first electrode that faces away from the light emitting element; and

25 a light outputting surface located on the passivation film, wherein light emitted by the light emitting element is outputted from the light outputting surface.

2. The lighting system according to claim 1, wherein the light emitting element is formed as a sheet.

30 3. The lighting system according to claim 1, which includes a reflecting portion, wherein the reflecting portion faces the second surface and reflects light that reaches the reflecting portion.

35 4. The lighting system according to claim 3, wherein

the second electrode functions as the reflecting portion.

5. The lighting system according to claim 1, wherein
the electroluminescent material is an organic material.

5

6. The lighting system according to claim 1, wherein
the electroluminescent material is an inorganic material.

7. The lighting system according to claim 1, wherein
10 the passivation film is made of silicon nitride, silicon
oxide, or diamond-like carbon.

8. A display, comprising:
a backlighting unit, wherein the backlighting unit
15 includes:
a substrate;
a light emitting element located on the substrate,
wherein the light emitting element has a first surface
and a second surface, wherein the first and second
20 surfaces are on opposite sides of the light emitting
element, wherein the second surface faces the
substrate, and wherein the light emitting element
contains an electroluminescent material;

25 a first electrode located on the first surface,
wherein the first electrode is of a light
transmittance type;

30 a second electrode located on the second surface,
wherein, when a voltage is applied across the first
electrode and the second electrode, the entire light
emitting element emits light;

35 a passivation film located on the first electrode,
wherein the passivation film is of a light
transmittance type and covers the entire surface of
the first electrode that faces away from the light
emitting element; and

a light outputting surface located on the passivation film, wherein light emitted by the light emitting element is outputted from the light outputting surface; and

5 a display unit located on the backlighting unit, wherein the display unit displays an image by using light outputted from the light outputting surface.

9. The display according to claim 8, wherein the
10 display unit includes a plurality of liquid crystal elements.

10. The display according to claim 9, wherein the display unit is a transmissive liquid crystal unit or a
15 semitransmissive liquid crystal unit.

11. The display according to claim 8, wherein the light emitting element is formed as a sheet.

20 12. The display according to claim 8, wherein the display unit is located on the light outputting surface.

13. The display according to claim 12, wherein the display unit is brought into intimate contact with the
25 passivation film.

14. The display according to claim 8, wherein the backlighting unit includes a reflecting portion, wherein the reflecting portion faces the second surface and
30 reflects light that reaches the reflecting portion.

15. The display according to claim 14, wherein the second electrode functions as the reflecting portion.

35 16. The display according to claim 8, wherein the

electroluminescent material is an organic material.

17. The display according to claim 8, wherein the electroluminescent material is an inorganic material.

5

18. The display according to claim 8, wherein the passivation film is made of silicon nitride, silicon oxide, or diamond-like carbon.