Les technologies numériques dans l'éducation et la formation

Daniel K. Schneider
TECFA – FPSE - Université de Genève
daniel.schneider@unige.ch
http://tecfa.unige.ch/DKS

CAS eLearning (V4) Genève, septembre, 2019

Les technologies numériques dans l'education?

Types d'<u>utilisation</u> des technologies numériques:

Les technologies numériques dans l'éducation (synonymes)

^{* «}e-learning» est parfois défini de façon restreinte: formation numérique à distance

Technologie éducative – quelques termes en Anglais:

Cognitive tools for learning, computer-assisted language learning, computer-based trackage, computer-systems, computer-based trackage, computer-mediated communicative for computer-supported collaborative for dearning, distributed learning environments, electronic performance support systems, interactive learning positionments, interactive multimedia exercisms, interactive simulations and painties, intelligent agents on the Internet, intelligent tutoring systems, microworlds, virtual reality based learning systems, MOOCs,

La technologie éducative vise à améliorer l'éducation

Le e-learning est l'utilisation des nouvelles technologies multimédias de l'Internet pour améliorer la qualité de l'apprentissage en facilitant d'une part l'accès à des ressources et à des services, d'autre part les échanges et la collaboration à distance

(Commission Européenne 2001)

Educational technology is the study and ethical practice of facilitating learning and improving performance by creating, using, and managing appropriate technological processes and resources.

(Association for Educational Communications and Technology)

Qui utilise des technologies éducatives ?

Partout

- L'enseignement à distance (EAD, FOAD, MOOC)
- L'enseignement hybride (mixte, blended)
- L'enseignement présentiel (école)
- L'éducation initiale et avancée
- La formation continue
- La formation sur la place de travail
- La formation de patients, citoyens, etc.
- L'apprentissage formel, informel, incident
- •

Deux grandes variantes du e-learning

Typologie des technologies

Présentation	Présentation et organisation de contenus (textes, images, schémas, animations multimédias, vidéos,) sur différents supports techniques.
• (Extra) Information	L'ordinateur en tant que bibliothèque comprenant des encyclopédies en ligne, des référentiels de contenu, etc.
• Interaction	Quiz, EAO (exerciseurs/didacticiels), simulations, micromondes, jeux sérieux, simulations de business, etc.
Communication	Outils de communication assistée par ordinateur (CMC), tels que courrier électronique, forums, discussion en ligne, conférences audio / vidéo, environnements virtuels, etc.
 Outils professionnels 	Par exemple traitements de texte, systèmes de CAO, logiciels de simulation, logiciels de laboratoire, etc.
Outils cognitifs	Les outils cognitifs aident à résoudre des problèmes (par exemple des cartes conceptuelles, wikis, organiseurs,)
Outils d'intégration	Plateformes pédagogiques, environnements numériques de travail, outils de «classe», plateformes MOOC,

09.09.2019

Pratiques dominantes du e-learning = variées:

- Dans l'éducation à distance:
 - Organisation, tutorat & matériaux (textes, vidéos)
- Dans l'éducation présentielle:
 - Digitalisation de pratiques existantes (textes, évaluation)
 - Technologies de «salle de classe», simulations/jeux sérieux, didacticiels,
- Dans l'éducation mixte:
 - Organisation, tutorat & matériaux
 - Encadrement de projets, coaching
- Dans la formation professionnelle:
 - Apprentissage de faits et procédures (EAO/CBT)
 - Simulations
 - Soutien de pratiques
- Education informelle de masses:
 - MOOCs, ressources pédagogiques ouvertes

Questions:

- Comment faire du «bon» e-learning?
- Comment le rendre rentable ?
- Comment former les gens ?

Rôle & évolution de la technologie

E-learning = Une histoire de «hype cycles»

09.09.2019

Hype Curve for Education, 2016 Gartner

Figure 1. Hype Cycle for Education, 2016

Source: Gartner (July 2016)

Il est difficile de prédire l'avenir

Le hype cycle ignore le fait qu'il faut plusieurs tentatives pour créer une techno-pédagogie qui "marche" (qualité + diffusion)

09.09.2019

Historiques des technologies éducatives (exemples)

D.Peraya 2010, modifié par DKS

L'innovation est lente. Des changements rapides ont lieu, mais percent rarement. On recommence souvent à zéro ou presque. Par ex.: le «tsunami» MOOC était initié il y a 100 ans...

La notion d'environnement d'apprentissage = un tout

Chaque nouvelle technologie apporte des opportunités, mais:

- Est-elle compatible avec des bons principes pédagogiques ?
 avec vos conceptions de l'enseignement ?
- Analysez les «réussites» des technologies similaires dans le passé!
 Peu de choses sont vraiment nouvelles.

Principes pédagogiques & choix d'outils

Premiers principes pédagogiques ?

Connecter & appliquer

1. Le principe de démonstration

- on apprend mieux mieux quand on observe une démonstration
- 2. Le principe d'application (manipulation)
 - on apprend mieux mieux quand on applique un nouveau savoir
- 3. Le principe d'activation
 - on apprend mieux mieux quand on active un savoir ou expérience préalable
- 4. Le principe d'intégration :
 - on apprend mieux mieux quand on intègre le nouveau savoir dans la pratique
- 5. Le principe centration sur des tâches
 - on apprend mieux mieux quand on s'engage dans des tâches qui aboutissent à un résultat (artefact)

https://mdavidmerrill.wordpress.com/publications/first%20principles%20of%20instruction/

Résultat de nombreuses études «méta»:

Les apprenants ont besoin d'encadrement et de feedback

Les stratégies ambitieuses nécessitent de la scénarisation / «scripting»

Il faut un challenge formel pour la plupart des apprenants

La qualité du design compte plus que sa "puissance" Education
= design
pour
apprendre

09.09.2019

Il faut adapter la pédagogie au niveau et type d'apprentissage

Taxonomie de Anderson & Krathwohl (image de Wikipedia)

Dimension des processus cognitifs						
Dimension des savoirs	Se rappeler	comprendre	appliquer	analyser	évaluer	créer
Faits						
Concepts						
Procédures						
Métacognition						

Les grandes stratégies: Learning I-I-II (Baumgartner)

Transmission	Tutorat	Coaching	
Mise en oeuvre de stratégies d'action adéquates	Savoir procédural, "know- how"	Savoir applicable, "knowing in action"	
Transfert de savoirs propositionnels	Présentation de problèmes prédéterminés	Action en situation (complexes et sociales)	
savoir, se souvenir	faire, pratiquer	réussir, maîtriser, gérer	
Production de réponses correctes	Sélection de méthodes correctes et leur utilisation	Mise en oeuvre de stratégies d'action adéquates	
Savoir verbal, mémorisation	skill	responsabilité "sociale"	
enseigner, expliquer	observer, aider, démontrer	coopérer, assister	
Pédagogie I	Pédagogie II	Pédagogie III	
Apprentissage I	Apprentissage II	Apprentissage III	

Alignement des stratégies et technologies avec le type d'apprentissage			
Types d'apprentiss.	Ex. stratégies	Ex. technologies	
r-a Faits : rappel, description, identification, etc	Enseignement explicite, Instruction programmée, Pédagogie de maîtrise	Presentation de contenus (textes, images, diagrammes, animations) sur supports variés, enseignement assisté par ordinateur (EAO)	
I-b Concepts: discrimination,catégorisation, discussion,	Découverte guidée, Apprentissage exploratoire	Logiciels d'écriture et de dessin, hypertexte, librairies en ligne.	

simulation. п-a Raisonnement et jeux de rôle, procédures: inférences, laboratoire (virtuel), déductions, etc. + application problems à résoudre procédures 11-b Résolution de

problèmes/stratégies.

application d'heuristiques,

strategies dans des situations

motivation, emotion, reflexion

complexes et authentiques

division en sous-buts,...

III Action citué

Apprentissage par cas, par enquête, par problèmes, ...

Apprentissage par

projets

Portfolios

d'apprentissage

Outils de communication (email, forums, conference audio/video conferences), environments virtuels, outils professionnels.

dessin, simulation, laboratoire, etc.

professionnels de traitement de données,

Outils qui favorisent la metacognition et la

Outils sociaux, portails, outils

Diacticiels interactifs, e.g. EAO,

etc.

présence.

simulations, micromondes, jeux sérieux,

Le challenge du e-learning – comment faire plus (avec parfois moins)

La notion de scénario pédagogique (learning design)

Formule magique pour planifier un module d'enseignement qui vise des objectifs:

Qui fait quoi et quand, utilisant quels outils et ressources, produisant quoi This is an example activity. It shows bow Tutor some of the learning design node types can be Read the "Explanation of Resource the learning design node types" document 0 hrs Feedback, ask questions Forum Check conceptions etc. Produce and edit prototype learning design Prototype designs Publish designs E-portfolio Timina info Stop

Certaines stratégies pédagogiques nécessitent du temps Inquiry-based learning en biologie (Lombard, 2012)

Il faut 3 mois pour déclencher un apprentissage profond!!

Retour aux outils.... La boîte à outils d'une formation

Les activités sont soutenues par des outils et peuvent conduire à des «produits». Il faut aligner objectifs, activités et outils.

Environnements numériques

Modèle SCIL / UniSG: 4 dimensions qui déterminent le choix ...

Stratégies pédagogiques et choix de technologies (II)

Stratégie dominante	Transfert (learning I: faits et concepts)	Tutorat (learning II: procédures et problèmes)	Coaching (learning III: mise en oeuvre)
	LMS Présentations	LMS (Fichiers et forums)	Plateformes sociales
	multimédia avec quiz EAO	Simulations guidées Collectiels	Plateformes de co-production et de partage
Technologies préférées	Vidéographies	pédagogiques/ professionnels (Groupware)	E-portfolios
	MOOCs 	Conférences vidéo en temps réel	

Tutorat et présence

Taux d'abandon:

- MOOCs: 95% (des inscrits)
- EAD avec peu de tutoring et présence: 60-70 %
- EAD avec tutorat et présence: 10-30 %
- Enseignement universitaire: 10-40 %

Dans l'enseignement à distance (EAD), il faut créer une structure d'encadrement (tutoring) et engendrer un sentiment de présence

09.09.2019

Une bonne pédagogie numérique:

- utilise une stratégie pédagogique appropriée,
 alignée avec les objectifs, outils, ressources et contraintes
- crée un apprentissage actif et des apprenants actifs.

La technologie:

soutient les tactiques pédagogiques utilisées dans une stratégie avec des outils appropriés

Les gens?

Culture numérique du domaine et pédagogique La formation des enseignants / formateurs / praticiens

TPACK framework pour la formation des enseignants

La génération du Net – apprenants & enseignants (I) G_{OOV} V_{ews} .

La pénétration d'outils sociaux actifs augmente (écrire des blogs, création de vidéos, création de profiles, utilisation de forums)

http://wave.umww.com/

Mais,

09.09.2019

La génération du Net – apprenants & enseignants (II)

«1% Rule»
Seul 1% des utilisateurs d'un site web communautaire est actif

Variantes: 1-9-90 rule ou 90-9-1 principle: Dans une communauté:

- 90% regardent le contenu,
- 9% modifient du contenu
- 1% créent activement du nouveau contenu
- http://fr.wikipedia.org/wiki/Règle du 1 %25

Statistiques de Wikipédia (Février 2014)

- 18 billion page views
- 500 million unique visitors each month.
- 22 million accounts
- ~70,000 active editors (0.01 %)
- ~7000 do half of the content (0.001 %)

09.09.2019

La génération du Net – apprenants & enseignants (III)

Les gens savent:

- participer à une conversation digitale
- créer des simples objets digitaux (messages, vidéos, petits textes,)
- échanger des objets digitaux

Le savoir-faire Internet est conversationnel

Les ne savent pas:

- (efficacement) utiliser des logiciels professionnels
- participer dans des environnements de creation de savoirs (wiki, etc.)
- articuler des scénarios (enseignants)

Tout savoir supplémentaire doit être enseigné / encouragé

Compétence e-learning: beaucoup de composants, nécessite un processus de développement

09.09.2019

Innovation et diffusion

L'acceptation de la technologie

Les gens vont (peut-être) utiliser une technopédagogie si elle est:

- familière
- utile
- utilisable
- maitrisée
- disponible
- fiable
- Rentable
- avec soutien
- ..

Modèle de Moore (Rogers revisité) et la hype curve

L'innovation dans les institutions de formation ? Burkhardt and Schoenfeld, Educational Researcher (2003)

- Model 1: Teachers read research and implement it in their classrooms: pas de temps, pas les capacités
- Model 2: Summary guides: pas explicites, pas assez
- Model 3: General professional development: A long terme, peut être effectif. (Briars, 2001; Briars & Resnick, 2000).
- Model 4: The policy route: diagnostique spéculatif des causes, pas les mêmes échelles de temps. (Dillon, 2003).
- Model 5: The long route: 25 ans ou plus: dialectique productive entre recherche et pratique.
- Model 6: Design experiments: Marche, mais ne peut pas être généralisé

Durée de changement dans une école = 25 ans ou plus

Rentabilité (coût / bénéfice)

Une pédagogie numérique à qualité égale coûte plus ! Pour réduire les coûts:

- Utiliser des standards (durabilité, portabilité)
- Automatiser ce qui est facile (e.g. testing)
- Faire contribuer les étudiants (contenus, peercommenting, peer-evaluation, peer-tutoring)
- Engager des étudiants avancés comme tuteurs bon marchés. Dans le privé, faire participer des collaborateurs
- Dans présentiel, viser à améliorer un cours (e.g. créer des vidéos qui expliquent des concepts difficiles, didacticiels pour les procédures, outils projets, etc.)
- Collaborer avec d'autres institutions
- Réutiliser du matériel (c.f. OERs)
-

Conclusion

Conclusion

Un bonne pédagogie numérique peut avoir lieu si:

- 1. les objectifs pédagogiques sont (re)discutés,
- 2. on vise plus haut (pédagogies actives),
- 3. les participants se mettent d'accord sur les principes fondamentaux & compatibles avec leur culture,
- 4. on crée une communauté de «mise en œuvre» qui comprend tous les «stakeholders»,
- 5. on identifie des stratégies et tactiques pédagogiques appropriés et faisables,
- 6. on choisit des technologies alignées et utilisables
- 7. on permet aux enseignants (ou autres acteurs) d'apprendre

Merci

Questions? Commentaires?

http://edutechwiki.unige.ch/

Slides en trop....

E-learning - «grandes» inventions tous les 10-15 ans (exemples)

- Nouvelles structures administratives, peu de communication
- Le nouveaux amènent des idées, mais ne maîtrisent pas les principes
- Cycles (the «return of …»)

Exemple: Stratégie pour l'enseignement de faits et de procédures

«9 events of instruction» (Gagné), un modèle populaire:

- dans l'enseignement explicite (direct instruction)
- pour préparer des contenus e-learning
- 1. Gagner l'attention
- 2. Décrire l'objectif d'apprentissage
- 3. Rappel des connaissances antérieures
- 4. Présentation du matériel d'apprentissage
- 5. Guide pour l'activité d'apprentissage
- 6. Mise en pratique
- 7. Feedback formatif
- 8. Test de performance
- 9. Assurer la rétention et le transfert

Exemple: Jeux sérieux (crédibles et interactifs)

«Nothing for dinner», apprendre à gérer un parent qui a eu des lésions cérébrales avec un récit fortement interactif (Szilas, 2015)

Exemple: Didacticiel exploratoire interactif

Utile pour l'apprentissage de procédures et de faits

cadre de mes cours en <u>master MALTT</u>. Cet outil a pour but d'aider les personnes apprenant la DNP à retenir l'association entre couleurs, sons et positionnements sur le soleil. L'animation reproduit le mouvement que nous effectuons normalment avec nos pouces sur le soleil peint sur une plaque en bois

Cliquer sur les bulles à droite pour voir le déplacement des pouces sur le soleil.

Exemple: Principe de l'enseignement orienté projets

53

Exemple: Modèle d'apprentissage par investigation

Modèle utile pour créer du savoir «profond» (e.g. faire de la recherche)

- Eliciter des questions
- Expérimenter, observer, lire.
- Composer Q & R
- Presenter / Discuter
- Repenser

Ask

The crucial difference between current formulations of inquiry and the traditional "scientific method" is the explicit recognition that inquiry is cyclic and nonlinear.»

Reflect

•Sandoval 2004p. 216

Investigate

La «technology hype curve» dans l'education (2015)

https://hypecycle.umn.edu/ (lien mort)

09.09.2019 55

Ingénierie et design pédagogique: un tout

