Image Segmentation

Eunju Lee

Department of Statistics Pusan National University

December 8, 2021

1. Image Segmentation

Image Analysis

Classification

CAT

Object Detection

CAT, DOG, DUCK

Instance Segmentation

CAT, DOG, DUCK

Image Segmentation

segmented

1: Person 2: Purse

3: Plants/Grass

4: Sidewalk

5: Building/Structures

Input Semantic Labels

[Dense Prediction]

Image Segmentation

Instance Segmentation

Classification model Segmentation model

① Convolutionalization

Classification model → Segmentation model

1 Convolutionalization

Classification model Segmentation model

2 UpSampling

***** Bilinear Interpolation

$$X = \left(A\frac{H2}{H1 + H2} + B\frac{H1}{H1 + H2}\right)\frac{W2}{W1 + W2} + \left(D\frac{H2}{H1 + H2} + C\frac{H1}{H1 + H2}\right)\frac{W1}{W1 + W2}$$

Classification model → Segmentation model

② UpSampling

***** Deconvolution

Classification model Segmentation model

3 Skip Architecture

Classification model Segmentation model

3 Skip Architecture

2. U-Net

U-Net

U-Net

Contracting Path

: 이미지의 전반적인 Context 정보

- ✓ 3x3 convolutions 반복
- ✓ Activation Function : ReLU
- √ 2x2 max-pooling (stride: 2)
- ✓ Down-sampling

Expanding Path

: 높은 해상도의 Output을 얻기 위한 Up-sampling

- ✓ 2x2 convolution ("up-convolution")
- ✓ 3x3 convolutions 반복
- ✓ Activation Function : ReLU
- √ Skip Architecture

3. Analysis

0. Data

X = Original Image

Y = Masked Image

Train: 367개, Test: 101개

Image size: 224 × 224

Class: 12개 (사람, 건물, 자동차, 나무 등)

1. U-Net

	Train	Validation
Loss	0.9456	0.9541
Accuracy	0.7016	0.6833

Test Accuracy: 0.5961

Predicted Masked Image Original Image Masked Image

1. U-Net

*** Batch Normalization**

	Train	Validation
Loss	0.5300	1,0207
Accuracy	0.8435	0.7460

Test Accuracy: 0.7396

**** Batch Normalization & Dropout**

	Train	Validation
Loss	0.5473	0.8628
Accuracy	0.8388	0.7478
		P ² The

Test Accuracy: 0.8055

2. U-Net based on pretrained VGG16

**** Base Model: Pretrained VGG16**

	Train	Validation
Loss	0.4270	0.4992
Accuracy	0.8788	0.8617

Test Accuracy: 0.8550

Predicted Masked Image Original Image Masked Image

2. U-Net based on pretrained VGG16

*** Batch Normalization**

	Train	Validation
Loss	0.3464	0.4996
Accuracy	0.9001	0.8588
		Longie

Test Accuracy: 0.8553

**** Batch Normalization & Dropout**

	Train	Validation
Loss	0.3530	0.5465
Accuracy	0.8992	0.8345
		S The second

Test Accuracy: 0.8643

3. Data Augmentation

367개 Train Data → Small Data

: 원본의 각종 변환을 통해 Data 개수를 증대

3. Data Augmentation

***** Rotation

Test Accuracy: 0.5816

***** Bright

	Train	Validation
Loss	0.2617	0.3755
Accuracy	0.9253	0.8988
		A STATE OF THE PARTY OF THE PAR

Test Accuracy: 0.8684

Conclusion

Conclusion

Test Accuracy	Basic	Batch Normalization	Batch Normalization & Dropout
U-Net	0.5961	0.7396	0.8055
VGG16 U-Net	0.8550	0.8553	0.8643

VGG16 U-Net (Batch Normalization & Dropout)	Rotation	Bright	
	0.5816	0.8684	

Thank You!

Code & Reference

[Code]

https://colab.research.google.com/drive/1RG5CXrgOhkt5HbLsiNJQlaSAx6HOMVFx?usp=sharing https://colab.research.google.com/drive/1lbPlw2R4KxNkx5qXaXPlEKz_Qe841rpq?usp=sharing

[Reference]

Jonathan Long, Evan Shelhamer, Trevor Darrell. 2015.

:Fully Convolutional Networks for Semantic Segmentation

Olaf Ronneberger, Philipp Fischer, Thomas Brox. 2015.

:U-Net: Convolutional Networks for Biomedical Image Segmentation

zhixuhao. 2018. Github:unet

:https://github.com/zhixuhao/unet/blob/master/model.py