

A NOTE ON LINEAR CODES AND NONASSOCIATIVE ALGEBRAS OBTAINED FROM SKEW-POLYNOMIAL RINGS

S. PUMPLÜN

ABSTRACT. Different approaches to construct linear codes using skew polynomials can be unified by using the nonassociative algebras built from skew-polynomial rings by Petit.

INTRODUCTION

In recent years, several classes of linear codes were obtained from skew-polynomial rings (also called Ore rings). Using this approach, self-dual codes with a better minimal distance for certain lengths than previously known were constructed: while the classical *cyclic codes* of length m over a finite field \mathbb{F}_q are obtained from ideals in the commutative ring $\mathbb{F}_q[t]/(t^m - 1)$, and *constacyclic codes* from ideals in the commutative ring $\mathbb{F}_q[t]/(t^m - d)$, $d \in \mathbb{F}_q$, *ideal σ -codes* are associated with left ideals in the non-commutative ring $\mathbb{F}_q[t; \sigma]/(t^m - 1)$, where $t^m - 1 \in R$ is a two-sided element in the twisted polynomial ring $\mathbb{F}_q[t; \sigma]$, $\sigma \in \text{Aut}(\mathbb{F}_q)$, see [4]. Because $t^m - 1$ is required to be a two-sided element in order for $\mathbb{F}_q[t; \sigma]/(t^m - 1)$ to be a ring, this enforces restrictions on the possible lengths of the codes obtained: $t^m - 1$ is two-sided if and only if the order n of σ divides m [10, (15)].

If Rf denotes the left ideal generated by an element $f \in R$, R a ring, then R/Rf is a left R -module. In [3], linear codes associated with left R -submodules Rg/Rf of R/Rf are considered, where $R = \mathbb{F}_q[t; \sigma]$ and g is a right divisor of f . These codes are called *module σ -codes*. Another generalization is discussed in [1] and [6], where codes obtained from submodules of the R -module R/Rf for some monic $f \in R$ are investigated, where now $R = \mathbb{F}_q[t; \sigma, \delta]$ is a skew-polynomial ring.

We show that all these approaches can be unified since the codes mentioned above are associated to the left ideals of the nonassociative algebra S_f defined by Petit [10]. For a unital division ring D (which here will be a finite field), and a polynomial f in the skew-polynomial ring $R = D[t; \sigma, \delta]$, Petit defined a nonassociative ring on the set $R_m = \{h \in D[t; \sigma, \delta] \mid \deg(h) < m\}$, using right division $g \circ h = gh \text{ mod}_r f$ to define the algebra multiplication. $S_f = (R_m, \circ)$ is a nonassociative algebra over $F_0 = \{a \in D \mid ah = ha \text{ for all } h \in S_f\}$ whose left ideals are generated by the polynomials g which are right divisors of f .

The scenarios treated with respect to the linear codes mentioned above all require f to be reducible, so the corresponding, not necessarily associative, algebra S_f is not allowed to be a division algebra here. The cyclic submodules studied in [1], [2] are exactly the left ideals

Date: 23.3.2015.

2010 *Mathematics Subject Classification.* Primary: 94B05, 94B15; Secondary: 16S36, 17A35.

Key words and phrases. Skew polynomials, Ore rings, finite rings, nonassociative algebras, linear code, σ -constacyclic code, ideal σ -code, module σ -code, (σ, δ) -code.

in the algebra S_f . The (σ, δ) -codes of [6] are the codes \mathcal{C} associated to a left ideal of S_f generated by a right divisor g of f with $f \in K[t; \sigma, \delta]$. We show that if σ is an automorphism of $K = \mathbb{F}_q$ and \mathcal{C} a linear code over \mathbb{F}_q of length m , then \mathcal{C} is a σ -constacyclic code with constant d iff the skew-polynomial representation $\mathcal{C}(t)$ with elements $a(t)$ obtained from $(a_0, \dots, a_{m-1}) \in \mathcal{C}$ is a left ideal of S_f with $f = t^m - d \in R = \mathbb{F}_q[t; \sigma]$, generated by a monic right divisor g of f in R .

1. PRELIMINARIES

1.1. Nonassociative algebras. Let F be a field and let A be a finite-dimensional F -vector space. We call A an *algebra* over F if there exists an F -bilinear map $A \times A \rightarrow A$, $(x, y) \mapsto x \cdot y$, denoted simply by juxtaposition xy , the *multiplication* of A . An algebra A is called *unital* if there is an element in A , denoted by 1 , such that $1x = x1 = x$ for all $x \in A$. We will only consider unital algebras.

An algebra $A \neq 0$ is called a *division algebra* if for any $a \in A$, $a \neq 0$, the left multiplication with a , $L_a(x) = ax$, and the right multiplication with a , $R_a(x) = xa$, are bijective. A is a division algebra if and only if A has no zero divisors ([12], pp. 15, 16).

1.2. Skew-polynomial rings. In the following, we use results by Jacobson [7] and Petit [10]. Let D be a unital associative division ring, σ a ring endomorphism of D and δ a *left σ -derivation* of D , i.e. an additive map such that

$$\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$$

for all $a, b \in D$, implying $\delta(1) = 0$. The *skew-polynomial ring* $D[t; \sigma, \delta]$ is the set of polynomials

$$a_0 + a_1 t + \cdots + a_n t^n$$

with $a_i \in D$, where addition is defined term-wise and multiplication by

$$ta = \sigma(a)t + \delta(a) \quad (a \in D).$$

$D[t; \sigma] = D[t; \sigma, 0]$ is called a *twisted polynomial ring* and $D[t; \delta] = D[t; id, \delta]$ a *differential polynomial ring*. For the special case that $\sigma = id$ and $\delta = 0$, we obtain the usual ring of left polynomials $D[t] = D[t; id, 0]$, often also denoted $D_L[t]$ in the literature, with its multiplication given by

$$(\sum_{i=1}^s a_i t^i)(\sum_{i=1}^t b_i t^i) = \sum_{i,j} a_i b_j t^{i+j}.$$

If D has finite dimension over its center and σ is a ring automorphism of D , then $R = D[t; \sigma, \delta]$ is either a twisted polynomial or a differential polynomial ring by a linear change of variables [7, Thm. 1.2.21]. Note also that if σ and δ are F -linear maps then $D[t; \sigma, \delta] \cong D[t]$ by a linear change of variables.

For $f = a_0 + a_1 t + \cdots + a_n t^n$ with $a_n \neq 0$ define $\deg(f) = n$ and $\deg(0) = -\infty$. Then $\deg(fg) = \deg(f) + \deg(g)$. An element $f \in R$ is *irreducible* in R if it is no unit and it has no proper factors, i.e if there do not exist $g, h \in R$ with $\deg(g), \deg(h) < \deg(f)$ such that $f = gh$.

$R = D[t; \sigma, \delta]$ is a left principal ideal domain (i.e., every left ideal in R is of the form Rf) and there is a right-division algorithm in R [7, p. 3]: for all $g, f \in R$, $g \neq 0$, there exist unique $r, q \in R$, and $\deg(r) < \deg(f)$, such that

$$g = qf + r.$$

(We point out that our terminology is the one used by Petit [10], Lavrauw and Sheekey [9], and in the coding literature; it is different from Jacobson's [7], who calls what we call right a left division algorithm and vice versa.)

1.3. How to obtain nonassociative division algebras from skew-polynomial rings. Let D be a unital associative division algebra, σ an injective ring homomorphism and $f \in D[t; \sigma, \delta]$ of degree m .

Definition 1. (cf. [10, (7)]) Let $\text{mod}_r f$ denote the remainder of right division by f . Then

$$R_m = \{g \in D[t; \sigma, \delta] \mid \deg(g) < m\}$$

together with the multiplication

$$g \circ h = gh \text{ mod}_r f$$

becomes a unital nonassociative algebra $S_f = (R_m, \circ)$ over

$$F_0 = \{a \in D \mid ah = ha \text{ for all } h \in S_f\}.$$

This algebra is also denoted by R/Rf [10, 11] if we want to make clear which ring R is involved in the construction. F_0 is a subfield of D [10, (7)].

Remark 1. For $f(t) = t^m - d \in R = D[t; \sigma]$, the multiplication in S_f is defined via

$$(at^i)(bt^j) = \begin{cases} a\sigma^i(b)t^{i+j} & \text{if } i + j < m, \\ a\sigma^i(b)t^{(i+j)-m}d & \text{if } i + j \geq m, \end{cases}$$

for all $a, b \in D$ and then linearly extended.

2. LINEAR CODES ASSOCIATED TO LEFT IDEALS OF S_f

Let K be a finite field, σ an automorphism of K and $F = \text{Fix}(\sigma)$, $[K : F] = n$. By a linear base change we could always assume $\delta = 0$. However, [1] and [6] show that this limits the choices of available codes.

Unless specified otherwise, let $R = K[t; \sigma, \delta]$ and $f \in R$ be a monic polynomial of degree m . Analogously as for instance in [1], [2], [3], [4], we associate to an element $a(t) = \sum_{i=0}^{m-1} a_i t^i$ in S_f the vector (a_0, \dots, a_{m-1}) . Our codes \mathcal{C} of length m consist of all (a_0, \dots, a_{m-1}) obtained this way from the elements $a(t) = \sum_{i=0}^{m-1} a_i t^i$ in a left ideal I of S_f . Conversely, for a linear code \mathcal{C} of length n we denote by $\mathcal{C}(t)$ the set of skew-polynomials $a(t) = \sum_{i=0}^{m-1} a_i t^i \in S_f$ associated to the codewords $(a_0, \dots, a_n) \in \mathcal{C}$.

Proposition 2. *Let D be a unital associative division ring and $f \in R = D[t; \sigma, \delta]$.*

- (i) *All left ideals in S_f are generated by some monic right divisor g of f in R .*
- (ii) *If f is irreducible, then S_f has no non-trivial left ideals.*

Proof. (i) The proof is analogous to the one of [5, Lemma 1], only that now we are working in the nonassociative ring S_f : Let I be a left ideal of S_f . If $I = \{0\}$ then $I = (0)$. So suppose $I \neq (0)$ and choose a monic non-zero polynomial g in $I \subset R_m$ of minimal degree. For $p \in I \subset R_m$, a right division by g yields unique $r, q \in R$ with $\deg(r) < \deg(g)$ such that

$$p = qg + r$$

and hence $r = p - qg \in I$. Since we chose $g \in I$ to have minimal degree, we conclude that $r = 0$, implying $p = qg$ and so $I = Rg$.

(ii) follows from (i). \square

Corollary 3. (i) The cyclic submodules studied in [1], [2] are exactly the left ideals in the algebra S_f where $f \in \mathbb{F}_q[t; \sigma, \delta]$.

(ii) The (σ, δ) -codes \mathcal{C} in [6] are exactly the codes associated to a left ideal of S_f generated by a non-trivial right divisor g of $f \in D[t; \sigma, \delta]$, whenever D is an associative division ring (usually, $D = \mathbb{F}_q$).

Note that when we look at the nonassociative case, where f is not two-sided anymore, it can happen that f is irreducible in $K[t; \sigma, \delta]$, hence does not have any non-trivial right divisors g .

Remark 4. Let $m \geq 2$. Since for $a(t) \in S_f$ also $ta(t) \in S_f$, we obtain for $f(t) = t^m - d \in K[t; \sigma]$ that

$$ta(t) = \sigma(a_0)t + \sigma(a_1)t^2 + \cdots + \sigma(a_{m-1})t^m = \sigma(a_{m-1})d + \sigma(a_0)t + \sigma(a_1)t^2 + \cdots + \sigma(a_{m-2})t^{m-1}$$

in S_f , so that

$$(a_0, \dots, a_{m-1}) \in \mathcal{C} \Rightarrow (\sigma(a_{m-1})d, \sigma(a_0), \dots, \sigma(a_{m-2})) \in \mathcal{C}$$

is a σ -constacyclic code (even if S_f is division). With the same argument, every left ideal Rg in S_f with $g \in R$ a right divisor of $f = t^m - d$ yields a σ -constacyclic code \mathcal{C} for $d \neq 1$ and a σ -cyclic code for $d = 1$.

In [5, Theorem 1] it is shown that the code words of a σ -cyclic code are coefficient tuples of elements $a(t) = \sum_{i=0}^{m-1} a_i t^i \in \mathbb{F}_q[t; \sigma]/(t^m - 1)$, which are left multiples of some element $g \in \mathbb{F}_q[t; \sigma]/(t^m - 1)$ which is a right divisor of f , under the assumption that the order n of σ divides m . The assumption that n divides m guarantees that Rf is a two-sided ideal, i.e. that S_f is associative, but is not required:

Theorem 5. Let σ be an automorphism of $K = \mathbb{F}_q$ and \mathcal{C} a linear code over \mathbb{F}_q of length m . Then \mathcal{C} is a σ -constacyclic code (with constant d) iff the skew-polynomial representation $\mathcal{C}(t)$ with elements $a(t)$ obtained from $(a_0, \dots, a_{m-1}) \in \mathcal{C}$ is a left ideal of S_f with $f = t^m - d \in R = \mathbb{F}_q[t; \sigma]$, generated by a monic right divisor g of f in R .

Proof. \Leftarrow : This is Remark 8.

\Rightarrow : The argument is analogous to the proof of [5, Theorem 1]: If we have a σ -constacyclic code \mathcal{C} , then its elements define polynomials $a(t) \in \mathbb{F}_q[t; \sigma] = K[t; \sigma]$. These form a left

ideal $\mathcal{C}(t)$ of S_f with $f = t^m - d \in \mathbb{F}_q[t; \sigma]$: The code is linear and so the skew-polynomial representation $\mathcal{C}(t)$ is an additive group. For $(a_0, \dots, a_{m-1}) \in \mathcal{C}$,

$$ta(t) = \sigma(a_0)t + \sigma(a_1)t^2 + \cdots + \sigma(a_{m-1})t^m$$

and since $f = t^m - d$ we get in $S_f = R/Rf$ that

$$ta(t) = \sigma(a_{m-1})d + \sigma(a_0)t + \sigma(a_1)t^2 + \cdots + \sigma(a_{m-2})t^{m-1}.$$

Since \mathcal{C} is σ -constacyclic with constant d , $ta(t) \in \mathcal{C}(t)$. Clearly, by iterating this argument, also $t^s a(t) \in \mathcal{C}(t)$ for all $s \leq m-1$. By iteration and linearity of \mathcal{C} , thus $h(t)a(t) \in \mathcal{C}(t)$ for all $h(t) \in R_m$, so $\mathcal{C}(t)$ is closed under multiplication and a left ideal of S_f . \square

Corollary 6. *Let σ be an automorphism of $K = \mathbb{F}_q$ and \mathcal{C} a linear code over \mathbb{F}_q of length m . Then \mathcal{C} is a σ -cyclic code iff the skew-polynomial representation $\mathcal{C}(t)$ with elements $a(t)$ obtained from $(a_0, \dots, a_{m-1}) \in \mathcal{C}$ is a left ideal of S_f generated by a monic right divisor g of $f = t^m - 1 \in R = \mathbb{F}_q[t; \sigma]$.*

Remark 7. Let $f(t) = t^m - d \in R = K[t; \sigma]$ and $F = \text{Fix}(\sigma)$. Then f is a two-sided element (thus S_f associative and f reducible) iff m divides the order n of σ and $d \in F$ by [10, (7), (9)]. For $d = 1$ in particular, f is two-sided iff m divides the order n of σ . Any right divisor g of degree k of, for instance, $f = t^m - d$ can be used to construct a σ -constacyclic $[m, m-k]$ -code (with constant d). (If f is not two-sided, it can happen that f is irreducible in $K[t; \sigma]$, hence does not have any non-trivial right divisors g .) We note:

(i) $f(t) = t^3 - d$ is reducible in R if and only if

$$\sigma(z)^2\sigma(z)z = d \text{ or } \sigma(z)^2\sigma(z)z = d$$

for some $z \in K$ [10, (18)]. (Thus $t^3 - 1$ is always reducible in $K[t; \sigma]$.)

(ii) Suppose m is prime and F contains a primitive m th root of unity. Then $f(t) = t^m - d$ is reducible in R if and only if

$$d = \sigma^{m-1}(z) \cdots \sigma(z)z \text{ or } \sigma^{m-1}(d) = \sigma^{m-1}(z) \cdots \sigma(z)z$$

for some $z \in K$ [10, (19)]. (Thus $t^m - 1$ is always reducible in $K[t; \sigma]$, if F contains a primitive m th root of unity.)

(iii) Let K/F have degree m , $\text{Gal}(K/F) = \langle \sigma \rangle$ and $R = K[t; \sigma]$, $f = t^m - d$ with $d \notin F$. Then the nonassociative cyclic algebra $(K/F, \sigma, d)$ is the algebra S_f with $R = K[t; \sigma^{-1}]$ and $f(t) = t^m - d$ (cf. [10, p. 13-13]).

(a) If the elements $1, d, \dots, d^m$ are linearly dependent over F , then f is reducible.

(b) If m is prime then f is irreducible [13] and thus there are no σ -constacyclic codes with constant d apart from the $[m, m]$ -code associated with S_f itself.

When working over finite fields, the division algebras S_f are finite semifields which are closely related to the semifields constructed by Johnson and Jha [8] obtained by employing semi-linear transformations. Results for these semifields and their spreads might be useful for future linear code constructions.

REFERENCES

- [1] D. Boucher, F. Ulmer, *Linear codes using skew polynomials with automorphisms and derivations*, Des. Codes Cryptogr. 70 (3) (2014), 405-431.
- [2] D. Boucher, F. Ulmer, *Self-dual skew codes and factorization of skew polynomials*, J. Symbolic Comput. 60 (2014), 47-61.
- [3] D. Boucher, F. Ulmer, *Codes as modules over skew polynomial rings. Cryptography and coding*, Lecture Notes in Comput. Sci., 5921, Springer, Berlin, 2009, 38-55.
- [4] D. Boucher, F. Ulmer, *Coding with skew polynomial rings*, J. Symbolic Comput. 44 (12) (2009), 1644-1656.
- [5] D. Boucher, W. Geiselmann, F. Ulmer, *Skew-cyclic codes*, AAECC 18 (2007), 370-389.
- [6] M. Boulagouaz, A. Leroy, (σ, δ) -codes, Adv. Math. Comm. 7 (4) (2013), 463-474.
- [7] N. Jacobson, “Finite-dimensional division algebras over fields,” Springer Verlag, Berlin-Heidelberg-New York, 1996.
- [8] V. Jha, N. L. Johnson, *An analogue of the Albert-Knuth theorem on the orders of finite semifields, and a complete solution to Cofman’s subplane problem*, Algebras, Group, Geom. 6 (1) (1989), 1-35.
- [9] M. Lavrauw, J. Sheekey, *Semifields from skew-polynomial rings*, Adv. Geom. 13 (4) (2013), 583-604.
- [10] J.-C. Petit, *Sur certains quasi-corps généralisant un type d’anneau-quotient*, Séminaire Dubriel. Algèbre et théorie des nombres 20 (1966 - 67), 1-18.
- [11] J.-C. Petit, *Sur les quasi-corps distributifs à base momogène*, C. R. Acad. Sc. Paris 266 (1968), Série A, 402-404.
- [12] R.D. Schafer, “An Introduction to Nonassociative Algebras,” Dover Publ., Inc., New York, 1995.
- [13] A. Steele, “Nonassociative cyclic algebras,” Israel J. Math. 200 (1) (2014), 361-387.

E-mail address: susanne.pumpluen@nottingham.ac.uk

SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF NOTTINGHAM, UNIVERSITY PARK, NOTTINGHAM NG7 2RD, UNITED KINGDOM