脳波を用いた運動想起型 Brain Computer Interface のための End to End 学習

佐野 光

Sano Hikaru

2018年1月27日

目次

第1章	序論	1
1.1	背景	1
	1.1.1 脳信号の計測	2
	1.1.2 EEG に基づく BCI の概要	6
	1.1.3 運動想起型 BCI 周辺の研究	8
1.2	目的	10
	1.2.1 モチベーション	10
	1.2.2 目的	12
1.3	本論文の構成	12
第2章	BCI のための要素技術	14
2.1	周波数解析	14
	2.1.1 4種類のフーリエ変換	14
	2.1.2 パワースペクトル密度	17
2.2	多变量解析	18
	2.2.1 Principal Component Analysis(PCA)	19
	2.2.2 Indipendent Component Analysis(ICA)	22
	2.2.3 Blind Source Separation(BSS)	24
2.3	分類手法	26
	2.3.1 Linear Discriminant Analysis(LDA)	26

	2.3.2	Support Vector Machine(SVM)	30		
	2.3.3	Logistic Regression(LR)	35		
第3章	運動想	起型 BCI の従来手法	38		
3.1	時間周]波数解析の基づく手法	38		
	3.1.1	頭皮領域と空間フィルタ	38		
	3.1.2	時間周波数解析	42		
3.2	Comm	non Spatial Pattern とその派生手法	42		
	3.2.1	脳波信号の定式化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42		
	3.2.2	Common Spatial Pattern(CSP)	43		
	3.2.3	Common Sparse Spatio Spectral Pattern(CSSSP)	45		
	3.2.4	Filter Bank Common Spatial Pattern(FBCSP)	47		
第4章	4章 足動作検知のための BCI				
4.1	計測し	た EEG について	48		
4.2	EEG 0	か解析と BCI の構築	49		
	4.2.1	スペクトル密度推定による ERD の確認	49		
	4.2.2	足動作検知のための信号処理	52		
	4.2.3	分類器	54		
	4.2.4	考察	58		
	4.2.5	畳込みニューラルネットワークを用いた分類	60		
4.3	結論		60		
第 5 章	End to	End に向けた提案手法	62		
5.1	提案手	法の狙い	62		
	5.1.1	従来手法の問題点	62		
	5.1.2	End to End 学習	63		
5.2		・ラルネットワーク	65		

	5.2.1	ニューラルネットワークに用いられる層	65		
	5.2.2	活性化関数	67		
	5.2.3	ニューラルネットワークの設計と学習	70		
5.3	FilterBa	ank Network (提案手法 1)	70		
5.4	3DCon	OConvlution + 2DConvLSTM(提案手法 2)			
第6章	型 実験結果と考察				
6.1	提案手	法の評価	74		
	6.1.1	EEG データ	74		
	6.1.2	評価方法	75		
	6.1.3	ニューラルネットワークの構成	77		
	6.1.4	結果	78		
	6.1.5	考察	79		
6.2	被験者の	のデータを混合した BCI 構築	80		
	6.2.1	データの混合	80		
	6.2.2	混合データに対する結果	81		
	6.2.3	活性化関数に elu を用いた場合の結果	81		
	6.2.4	考察	83		
6.3	新規被	験者への適用検討	84		
	6.3.1	実験内容と結果	84		
	6.3.2	考察	84		
第7章	結論		87		
7.1	まとめ		87		
7.2	今後の	展望	88		
参考文献			90		

第1章

序論

1.1 背景

約1世紀前に Hans Berger によって世界で初のヒトの脳活動計測の試みがなされた [1-3]。以降、脳活動を計測するための測定装置が開発され、特に近年は以下の応用を目指した脳信号の解析と解読に大きな関心が寄せられている。

- 医療応用:脳信号は、認知症やてんかん発作のような様々な精神障害の診断、および治療のために活用されている [4,5]。
- 生体認証:脳信号は偽造、盗聴が困難であることから、固体の識別のための普遍的な生体情報となりうる [6,7]。
- Brain Computer Interface(BCI): BCI は "direct neural interface" や "brain machine interface" とも表現され、外界と筋肉の動作無しに相互作用するためのインターフェースの役割を担う [8]。特に研究初期における BCI は麻痺患者や障害のある患者の生活補助装置を制御するように設計された [9]。更に、近年は高度な精神的タスクを実行する健常者の支援や仮想空間での入力装置としての商用 BCI を目指した研究も登場するに至っている [10,11]。特に米国の FaceBook 社が 2017 年 4 月に"Typing by Brain"プロジェクト(文字入力を行う BCI の開発)に取り組むことを発表し、産業界においても注目を浴びている。

本研究では医療の現場における患者の補助装置あるいはリハビリテーション装置としての みならず、産業応用への拡がりも見せている BCI に着目した。

1.1.1 脳信号の計測

BCI において脳信号を計測する方法は、大きく分けて以下の3つがある[12]。

- 侵襲式:脳へセンサを直接埋め込む方式
- 部分侵襲式:頭蓋骨の内部、脳の表面へセンサを埋め込む方式
- 非侵襲式:センサを頭蓋骨外部へ配置し、外科手術を必要としない方式

非侵襲式は外科手術の必要性がなく、医療的な応用のみならず、商業利用に向けた更なる 発展の可能性があるため本研究では非侵襲式の計測方法に着目する。

BCI で用いられる非侵襲式の計測には以下のようなものがある [13]。

- functional Magnetic Resonance Imaging (fMRI): MRI によって脳活動時の血流によって生ずる磁場を測定する。この測定は、脳の神経細胞が活動中により多くの酸素を含む血流を必要とするという事実に基づいている。
- functional Near-Infrared Spectroscopy (fNIR): 近赤外線電磁波を用いて、脳皮質の 異なる部分における酸素化および脱酸素化ヘモグロビンの濃度を測定する。
- Magnetoencephalography (MEG): この方法は、高感度磁力計アレイを使用して、脳の神経活動によって生成される磁場を直接測定する。MEG を利用する大きな利点は、頭蓋骨や他の組織は磁場に対してほとんど透明であるため、減衰や歪みが生じないことが挙げられる。
- Electroencephalography (EEG): この方法では頭皮上にいくつかの小さな電極を配置し、脳全体の神経アセンブリによって生成された電場を測定する。

これらの方法の中で、fMRI および MEG は、fNIR および EEG と比較して比較的高い空間分解能を提供する [13]。しかし、fMRI(図 1.1) 及び MEG(図 1.2) は非常に高価な装置

図 1.1: fMRI

である上に大型機器であるため、BCI アプリケーションで必要とされるような要件を満たすとは言い難い。一方で fNIR はポータブルであるが、脳活動から数秒程度の遅れで測定が行われるという欠点を有する [13]。

宮内氏の技術報告書 [13] によると、EEG による脳活動の計測に関して以下の記述がある(一部改変)。

ヒトの脳活動計測によって獲得したいものは、精神活動・行動の生物学的基盤となる脳の神経細胞(ニューロン)の電気的活動だが、個々のニューロンの活動を非侵襲的に計測する事は不可能である。しかし、ニューロンの活動に伴って様々な生理現象が生ずる。まずニューロンが電気的な活動(一次信号)を行うためにはエネルギーを必要とし、糖の分解のための代謝活動(二次信号)が生ずる。酸素と糖は脳にはほとんど貯蔵されていないため、代謝活動に伴ってエネルギーを必要としている脳の部位に関して、局所脳血流(三次信号)が増大する。EEG や MEG は脳の

図 1.2: MEG

図 1.3: EEG キャップ (ミユキ技研)

図 1.4: 一次信号、二次信号、三次信号と計測方法の関係図 [13]

電気的な活動である一次信号を計測しており、fMRI や NIRS は血流に関する三次信号を計測している(図 1.4 [13])。

EEG は一次信号を計測したものであり NIRS や fMRI に比べ脳活動に対する測定値の遅れは少ないことが利点となる。この利点に加え、EEG の測定装置は比較的安価であるため本研究の焦点とする。

続いて同様に[13]には EEG の分解能に関して以下の記述がある。

また非侵襲計測の中では最も時間分解能が高いとされる。ここで時間分解能とは脳の同一の場所が短時間に二回活動した場合に、それぞれを時間的に独立した脳活動として計測できる最短の時間間隔である。一方で頭蓋骨や皮膚、毛髪などは電位にとっては透明ではないため空間分解能は低いとされる。ここで空間分解能とは脳の異なる部位が同時に二箇所活動した場合に、それぞれを活動部位が異なる独立した脳活動として計測できる最小の距離である。ただし、通常の計測においては計測

装置の空間分解能や時間分解能は測定対象には依存しないが、脳活動計測の場合に おいては一般的に計測対象としている現象の時空間特性や脳活動の強さ、あるいは 発生源が皮膚表面であるか脳の深部であるかなどにも依存する。

時間分解能の高さは BCI を EEG に基づいて動作させる利点となるが、空間分解能の低さ は明らかな欠点となるため、何らかの対策が必要となる。

1.1.2 EEG に基づく BCI の概要

BCI の動作原理

BCIの動作を以下の流れに分けて説明する。

- 1. 脳信号の獲得:センサによりアナログ信号を獲得しディジタル信号へ変換
- 2. 信号の前処理:データの成形及びアーチファクトの除去
- 3. 特徴量抽出:神経科学や統計に基づいた特徴量の選定
- 4. 分類:特徴量から閾値に基づいて意図を分類
- 5. 制御信号出力:分類結果に基づいて外部機器へ信号を出力

BCI の種類に関わらず動作原理の根本は同様であるが、スキームのどの段階に課題が生じるかは異なると考えられる。侵襲式の場合は"1. 脳信号の獲得"自体が外科手術を伴うために困難であり、安全性やメンテナンス性に課題が生ずる。一方で信号の発生源から直接信号を計測できるため、"2. 信号の前処理"や"3. 特徴抽出"に対する課題は少ない。"4. 分類"に関しては神経科学に基づいた適切な処理が必要であるが、既に肢体のキネマティックスを復元できるほどに精度が高い。非侵襲式の場合は"1. 脳信号の獲得"は気軽に実施できるが、信号源とセンサの間には各組織の細胞や頭蓋骨、頭皮や毛髪などがあるために測定値にはノイズが混入していると考えられる。従って"2. 信号の前処理"を行い脳信号を適切に取り出し、更に人間の意図を復元するような優れた"3. 特徴量抽出"を行い精度の高い"4. 分類"を行うことが課題となる(図 1.5)。

図 1.5: BCI の動作スキーム

また EEG に基づく BCI システムに関しても、着目する EEG の種類に応じて以下の二種に大別することができる。

誘発型 BCI

外部刺激によって誘発されるタイプの BCI を本論文では誘発型 BCI とまとめて表記する。例として、ユーザが BCI システムを使用してマウスカーソルを動作させたいとする。この時、異なる周波数で点滅する複数の光源をユーザに提示することで、注視した光源に応じた誘発電位を生成させることができる [14]。結果として、光源を見たユーザの脳信号を分析することでマウスカーソルの動作方向を決定することが可能である。

誘発電位を用いた BCI システムは非常に正確であるが、ユーザは常に刺激に直面するため、長期的な使用には向いていないと考えられる。また、BCI システム自体が刺激装置などの外部機器を必要とする。

自発型 BCI

一方で外部刺激に依らない EEG を用いて動作する BCI を自発型 BCI と呼ぶ。自発型 BCI の中でも特に、特定の身体部位の動作を想像することで動作する運動想起型 BCI に注目する。運動想起型 BCI の簡単な例を示すために、ユーザが BCI システムを使用してマウスカーソルを動作させる例を見る。この時、マウスカーソルを左に動かしたい場合は左手の運動を想起し、マウスカーソルを右に動かしたい場合は右手の運動を想起する。また、下に動かしたい場合は左足、上に動かしたい場合は右足、というように想起する身体部位に応じて外部機器への制御信号を対応させることが可能である。同様の応用方法が車いすなどにも適用できる。

運動想起型 BCI を使う利点の 1 つは、運動想起によって生成された EEG 信号は、物体の想像、あるいは抽象的な概念を想像する他の精神的イメージのタスクと比較して一貫性がある点である。一般に、運動想起によって活性化される神経は、運動を実際に実行する場合と同様であるとされる [15]。本研究では運動想起型 BCI に焦点を当てる。これまでの BCI の分類について図 1.6 に示す。

1.1.3 運動想起型 BCI 周辺の研究

運動想起時には運動野付近で特定の周波数帯域において活動電位が減少する事象関連脱同期 (Event Related Desynchronization: ERD) と、ERD の発生後に活動電位が増大する事象関連同期 (Event Related Synchronization: ERS) が知られている [16]。ERD に関しては特に研究が盛んで、[17] では感覚情報として電気刺激を与えた場合の ERD への影響が調べられており、また、運動想起時における脳活動を被験者にフィードバックすることでERD の出現に差異が生ずることが [18] にて調べられるなどの神経科学的な研究がある。また、ERD が BCI の動作スイッチの役割を担うほど再現性を有することが [19] で調査されており、EEG を用いた運動想起型 BCI の代表的な特徴量となっている。ERD を特徴量に使う場合には特定の頭皮領域の EEG に対して短時間フーリエ変換を用いる方法 [20] や

図 1.6: BCI の分類と本研究の焦点

ウェーブレット変換を用いる方法 [21] が提案されている。これらの時間周波数解析に基づく方法では、EEG のある特定の周波数帯域に着目し、パワースペクトル密度に閾値を設けて分類を行うことができる。

また、人の随意運動の約 0.5 秒から 1 秒前に現れる運動準備電位も特徴量になると考えられている。実動作以前に発生するという極めて特殊な現象であるため、その特性から BCI が人の意志に対して優れた反応速度で動作することが期待され、運動準備電位に基いて実肢体動作の分類を行う研究 [22] や、実指動作の分類を行う研究 [23] などがある。実 運動を行わなくとも運動準備電位が生ずるかを計測し [24]、実際に BCI への適用を検討した例 [25] もある。

一方で特定の EEG の現象を直接獲得せずに運動想起型 BCI を構築する手法も提案されており、それらの多くが統計的信号処理や機械学習を活用したものである。特に Common Spatial Pattern(CSP) と呼ばれる手法は [26] にて提案され、2 種類の脳波を区別するための空間フィルタとして有望であることが示唆された。その後、過学習抑制のための正則化を

導入した CSP [27]、非線形な空間フィルタを獲得できるカーネル法を導入した CSP [28]、バンドパスフィルタと空間フィルタを同時に最適化する CSP [29] などが提案された。また、Filter Bank Common Spartial Pattern [30] と呼ばれる CSP の発展手法は、複数のバンドパスフィルタに対してそれぞれ CSP を適用し、各バンドパスフィルタと CSP を通過した複数の信号に対して Linear Discriminant Analysis(LDA) を用いて特徴量の選定を再度行うことで、頭皮領域と周波数領域を広くカバーした上で最適な特徴量を獲得可能にした。

1.2 目的

1.2.1 モチベーション

BCIを構築する基本的なアプローチは以下の二種に大別できる。

- 神経科学的アプローチ: EEG に生じる特定の現象を特徴量として用い、分類器を 構築する。
- 機械学習的アプローチ:特徴量抽出自体を統計的な処理によって行い、分類器を構築する。

神経科学的アプローチでは運動想起時の ERD や運動前に生ずる運動準備電位、点滅刺激を視認した際の Steady State Visual Evoked Potential(SSVEP) など、脳神経科学において既知の現象を精度よく検出することで BCI の構築を目指す。これらの神経科学的アプローチは、EEG から人間の脳活動状態を分類可能であるかを調べる上で非常に重要な役割を担うと考えているが、BCI を実際に応用する場面を考慮すると個々人の EEG の解析と適切な特徴量の選定、更に分類器の設計も別途必要となり今後の応用範囲の拡大を考える上では限界がある。また、仮にタスク間での EEG の違いを可視化したい場合や、脳機能自体を解明したい場合には綿密な EEG の解析は有効であるが、その際には解析はあくまで人間が解釈する手段であり、解析のために処理された信号がそのまま BCI を用いる際の特徴量として有望だとは限らない。なぜなら人間がデータを解釈、あるいは可視化できる

ような形に加工することで分類に有用な情報が失われている可能性もあるためである。

一方で機械学習的なアプローチでは、綿密な EEG の解析を実施するか否かに関わらず、(例えば左手を動作させる場合と右手を動作させる場合とでは脳の活動は事実異なっているため)その違いを顕著に示す信号の表現の獲得を機械学習や統計的信号処理によって行い、その後、更に分類器を機械学習によって設計することで BCI を構築する。しかし、統計的信号処理や機械学習に基づく特徴量抽出手法と分類手法にも数多くの種類が存在するため、実際に BCI を構築する際には複数の手法とその組み合わせに関しての検討に多くの時間を要することとなる。BCI の一部として用いられる信号処理、あるいは機械学習手法の代表を以下に記す。この中の幾つかは第2章にて解説する。

- Laplacian Filter(LF)
- Principal Component Analysis(PCA)
- Independent Component Analysis(ICA)
- Canonical Correspondence Analysis(CCA)
- Common Spartial Pattern(CSP)
- バンドパスフィルタバンク
- フーリエ変換
- ウェーブレット変換
- ・ 自己回帰モデル
- Emperical Mode Decomposition(EMD)
- Linear Discriminat Analysis(LDA)
- Support Vector Machine(SVM)
- Logistic Regression(LR)

1.2.2 目的

神経科学的アプローチのように個人事に綿密な EEG の解析を行う必要性が残る限り、専門家が常にいる医療の現場などの特定の分野でのみしか BCI の発展は望めない。また現在の機械学習的アプローチで BCI を構成する場合には、考えうる手法の組み合わせは無数にあるため、決定的なアーキテクチャが存在しないと言える。そこで、本研究の目的として神経科学的アプローチと機械学習的アプローチの両方の問題点を同時に解決するために、個人事の EEG の解析を行うこと無く入力から出力までの運動想起 BCI の構成をデータから一貫して推定する "End to End 学習"を提案し、運動想起 BCI を構築する。更に、多数の被験者の EEG を用いて End to End 学習した BCI が、新規の被験者に対して適用可能かを転移学習 [31] によって検討する。

End to End 学習を達成するために、音声認識と画像認識の分野で既に大きな成功を収めているニューラルネットワークに着目した。BCI として考えうる構成と、ニューラルネットワークを用いた BCI の構成図を図 1.7 に示す。

1.3 本論文の構成

第1章では研究の背景と目的について述べた。以降の章では以下の項目について説明 する。

- 第 2 章: BCI に用いられる基礎的な信号処理・機械学習手法を説明し EEG に対する利用用途と考えられる問題点について述べる。この章の手法の幾つかは第 4 章の実験にて用いられる。
- 第 3 章:基本的な手法を組み合わせた従来の BCI の構成について述べる。特に EEG の基礎研究でよく知られている現象を検知するための時間周波数解析に基づ く方法(第 4 章で実データを用いて更に詳細に述べる)と、BCI の分野で登場した信号処理手法である Common Spartial Pattern を用いた手法について詳細に説明

図 1.7: 従来の BCI の構成と本研究が目指す BCI の構成

する。

- 第4章:計測した EEG から事象関連脱同期を検出する実験について説明する。本研究の立場からは従来手法に相当する話題となる。
- 第 5 章: 従来手法の問題点について再考し、End to End 学習を目指したニューラルネットワークの提案モデルについて説明する。また、提案モデルに用いられるニューラルネットワークの基本について記述する。
- 第6章:提案手法を評価する実験とその結果の考察について順次述べる。
- 第7章:実験を通して得られた結果から本研究の結論を述べ、今後の研究の発展性 について記述する。

最後に本研究の遂行と論文の執筆を支援してくださった方への謝辞を述べ、本論文の終了とする。

第2章

BCI のための要素技術

2.1 周波数解析

スカラーの時間波形 x(t) に対して、周波数スペクトルを算出する際に用いられるフーリエ変換について述べる。t が連続量である時 x(t) をアナログ信号と呼び、離散的であればディジタル信号と呼ぶ。このセクションではアナログ信号とディジタル信号が混在するため、アナログ信号に関しては x(t) と表記し、ディジタル信号を x_n と表記することで明確に区別する。

2.1.1 4 種類のフーリエ変換

時間を連続的に扱うか離散的に扱うかの違いだけでなく、周波数を連続的に扱うか否かによってもフーリエ変換の式は異なっており、 $2 \times 2 = 4$ つのフーリエ変換がある。通常はフーリエ変換について議論する場合は時間も周波数も連続であるとみなした式を使う場合が多いが、コンピュータ上で数値の処理を行う場合は原則離散的であるため、4 つのフーリエ変換について全て簡単に説明する。

フーリエ変換

スカラーの時間波形 x(t) に対して、フーリエ変換は以下の (2.1) で表され、逆フーリエ変換の式は (2.2) で表される。

$$X(\Omega) = \int_{-\infty}^{\infty} x(t) \exp(-i\Omega t) dt$$
 (2.1)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) \exp(i\Omega t) d\Omega$$
 (2.2)

ここで、i は虚数単位であり $X(\Omega)$ は Ω を変数とするスカラー関数である。逆フーリエ変換はスカラーの時間波形 x(t) をある周波数 Ω の波形 $\exp(i\Omega t)$ の線型結合によって表現した式である。このときの結合係数が $X(\Omega)$ である。工学的な立場では時間波形 x(t) が与えられた時に、波形 $\exp(i\Omega t)$ による線型結合をすることで、波形にどのような周波数の波形がどれくらいの割合で含まれているかを知りたいケースがある。それを可能にするのがフーリエ変換であり、x(t) から結合係数 $X(\Omega)$ を算出することが可能である。通常はこの時の結合係数 $X(\Omega)$ を周波数スペクトルと呼ぶ。逆フーリエ変換 (2.2) に登場する定数倍 $1/2\pi$ は、フーリエ変換 $F(\cdot)$ と逆フーリエ変換 $F^{-1}(\cdot)$ が、フーリエ変換可能な時間波形 x(t) に対して $F^{-1}(F(x(t))) = x(t)$ となるように調整するための係数である。この係数は逆フーリエ変換の式ではなくフーリエ変換の式に付いていてもよく、あるいは両方の式に平方根の形で分配されていても構わない。またフーリエ変換可能な時間波形とは以下を満たす x(t) である

$$\int_{-\infty}^{\infty} |x(t)|dt < \infty \tag{2.3}$$

離散周波数フーリエ変換

取りうる周波数を離散的にした場合のフーリエ変換について説明する。離散周波数フーリエ変換という命名は便宜的にこの論文内で行っているものであり一般的ではない。通常、ここで紹介するフーリエ変換は「フーリエ級数展開」として知られている。歴史的には微分方程式を解くために開発され、フーリエ変換よりも先に発見されている。離散周波

数フーリエ変換と離散周波数逆フーリエ変換はそれぞれ(2.4)と(2.5)で表される。

$$X_{k} = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} x(t) \exp(-i\Omega_{0}kt) dt$$
 (2.4)

$$x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(i\Omega_0 kt)$$
 (2.5)

離散周波数逆フーリエ変換は、スカラーの時間波形 x(t) を離散的な周波数 $\Omega_0 k$ の波形 $\exp(i\Omega_0 kt)$ の線型結合によって表現した式である。このときの結合係数が X_k である。ここに T_0 は時間波形の周期であり、 $\Omega_0 = 2\pi/T_0$ を基本周波数と呼ぶ。離散周波数フーリエ変換が、時間波形が与えられた時の周波数スペクトルを算出する役割を担うことは、フーリエ変換と同様である。フーリエ変換との最たる違いは、時間波形に対して周期性を仮定している点であり、その周期は既知でなければならない。時間波形が周期性を持つ場合には周波数は離散的な値を取る。

離散時間フーリエ変換

取りうる時間を離散的にした場合のフーリエ変換について説明する。離散時間フーリエ変換と離散時間逆フーリエ変換はそれぞれ(2.6)と(2.7)で表される。

$$X(\omega) = \sum_{n = -\infty}^{\infty} x_n \exp(-i\omega n)$$
 (2.6)

$$x_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) \exp(i\omega n) d\omega$$
 (2.7)

離散時間逆フーリエ変換が、時間波形 x_n を周波数スペクトル $X(\omega)$ を結合係数とした $\exp(i\omega n)$ の線型結合を表しているのはこれまでと同様である。しかし、離散時間フーリエ変換では周波数スペクトル $X(\omega)$ が周期的な関数となることは強調しておかねばならない。

離散フーリエ変換

離散フーリエ変換は、取りうる時間も周波数も離散的であるとした場合のフーリエ変換である。離散フーリエ変換と離散逆フーリエ変換はそれぞれ(2.8)と(2.9)で表される。

$$X_k = \sum_{n=0}^{N-1} x_n \exp\left(-i\frac{2\pi}{N}kn\right)$$
 (2.8)

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \exp\left(i\frac{2\pi}{N}kn\right)$$
 (2.9)

ここで N はサンプル時間点数の意味で周期である。時間波形に対する周期は N であるが、周波数スペクトルに対する周期も N となる。仮に 1 周期が 1000 点のサンプル点によって構成される時間波形に対し離散フーリエ変換を用いた場合は、得られる周波数スペクトルは 1000 点で周期を有する形式となる。離散フーリエ変換は有限の数列から有限の数列への変換であり、他のフーリエ変換と異なり無限大を扱う必要はないためコンピュータ上で計算を実行することが可能である。高速フーリエ変換と呼ばれる実応用で頻繁に用いられるアルゴリズムは、離散フーリエ変換 (2.8) を高速に実行する手続きのことである。

2.1.2 パワースペクトル密度

パワースペクトル密度 $PSD(\Omega)$ とは時間信号 x(t) の周波数スペクトルを $X(\Omega)$ とした時、

$$PSD(\Omega) = |X(\Omega)|^2 \tag{2.10}$$

に相当する関数である。信号 x(t) のエネルギーが周波数 Ω に関してどのように分布するかを示している。コンピュータでパワースペクトル密度を計算する場合は (2.8) で計算される X_k の二乗 $|X_k|^2$ を算出する。しかし、数学的な定式化を行う上では以下の定義が用いられ、 $|X_k|^2$ はピリオドグラムと呼び区別する。

$$PSD(\Omega) = \int_{-\infty}^{\infty} R(\tau) \exp(-i\Omega\tau) d\tau$$
 (2.11)

ここに、 $R(\tau)$ は

$$R(\tau) = \mathbb{E}[x(t)x(t+\tau)] \tag{2.12}$$

であり、信号 x(t) の自己相関関数である。(2.11) は、ウィーナー・ヒンチンの定理としても知られており、自己相関関数のフーリエ変換がパワースペクトル密度になることを示している。この定義から明らかなようにパワースペクトル密度とは統計量であって、解析的に算出されるのではなく、推定されるものである。

ピリオドグラムはパワースペクトル密度の推定を行う手段として用いられる。一般的に ピリオドグラムによる推定値は平均と標準偏差が同じ大きさを持ち、時系列の長さを長く しても推定誤差は改善されない。時系列を長くすることで周波数分解能を高くすることは できるが、個々の周波数でのスペクトルの相対誤差は変化しない。そこで、通常は何らか の平滑化を行って個々の周波数成分の推定値の誤差を減少させる方法が一般に採用され る。主な方法として、時間領域で波形を分割し、複数のピリオドグラムの平均を算出する 方法がある。時間領域で波形を分割する際には、波形が時間で互いに重なりを持つように 分割する、Welch のオーバーラッピング法が用いられる。また最大エントロピー法を用い てパワースペクトル密度を推定する方法もあり、その場合には(2.11)を制約条件とした エントロピー最大化の変分問題を解くこととなる。このパワースペクトル密度推定方法は バーグ法として知られている。スペクトル解析に関する記述は書籍[32]に詳しい。

脳波は、運動想起時に特定の周波数領域でエネルギーが減少する事象関連脱同期が生じるとされているため、適切な電極選定を行い、脳波のパワースペクトル密度 $PSD(\Omega)$ を推定することができれば、とある Ω で著しくパワーが減少する様子が確認できる。

2.2 多变量解析

多変量解析とは多変量データを統計的に扱う手法である。扱うデータの科学的知識に基づいた特徴量抽出に加え、実データの統計的な性質を考慮した特徴量抽出も様々な分野で行われている。この章では脳波解析で用いられている多変量解析について紹介し、その有用性と限界について考察する。

2.2.1 Principal Component Analysis(PCA)

Principal Component Analysis(PCA) は特徴量抽出手法として幅広い分野で活用されている。簡単のため時間平均が 0 の多次元信号 $x(t) \in \mathbb{R}^D$ に対して PCA による特徴抽出を考える。PCA では変換行列 $W^T \in \mathbb{R}^{D \times D}$ を左から作用させ、特徴量

$$z(t) = W^T x(t) \in \mathbb{R}^D \tag{2.13}$$

を獲得するが、この際、z(t) の各成分が互いに無相関になるように W を決定する。z(t) が無相関となるためには、その分散共分散行列 $\Sigma_z=\mathbb{E}[z(t)z^T(t)]$ が対角行列になることが要請される。ここで x(t) の分散共分散行列を $\Sigma_x=\mathbb{E}[x(t)x^T(t)]$ とすると、z(t) の分散共分散行列 Σ_z について

$$\Sigma_{z} = \mathbb{E}[z(t)z^{T}(t)]$$

$$= \mathbb{E}[W^{T}x(t)x^{T}(t)W]$$

$$= W^{T}\mathbb{E}[x(t)x^{T}(t)]W$$

$$= W^{T}\Sigma_{x}W$$
(2.14)

と表すことができる。(2.14) が対角行列になるような W は、 Σ_x の固有値分解によって求まる。今、 Σ_x の D 個の固有値を $\lambda_1 \geqslant \cdots \geqslant \lambda_D$ とする。この固有値を対角成分に並べた行列を $\Lambda = \mathrm{diag}(\lambda_1, \cdots, \lambda_D)$ とすると、 Σ_x の固有値分解は、ある U が存在して以下の形式となる。

$$\Sigma_x = U\Lambda U^{-1} \tag{2.15}$$

 U^{-1} を左から、U を右から掛けることで $U^{-1}\Sigma_xU=\Lambda$ が得られ、 $U^{-1}=W^T$ で U=W とすれば (2.14) への要請を直ちに満たす。これは $W^T=W^{-1}$ という条件が満たされれば良く、実数信号の分散共分散行列 Σ_x は一般に正定値実対称行列となっており、直交行列によって固有値分解が可能であるため条件を満たす。また、このとき全ての i について固有値 λ_i は正の値となり、固有値 λ_i に属する固有ベクトルにデータを射影した際の分散

を表す。これらの数学的な扱いやすさから PCA は非常に広く普及している。

PCA の働きを見るため D=2 とした場合の線形変換 $z(t)=W^Tx(t)$ を図で確認する。図 2.1 は人工的に作成した 2 次元波形 x(t) と各成分の散布図である。この x(t) に対して PCA を用いると、図 2.2 に示す z(t) が得られ、散布図から z(t) の各成分は無相関となっていることが確認できる。図 2.3 は x(t) に対して PCA を施した場合に得られる新たな直交基底を表しており、z(t) は新たな直交基底に x(t) を射影したものに他ならない。PCA では基底を取り直すことで各成分が無相関な信号を獲得でき、その結果、新たに得られた信号の各成分がどのような意味を持つのかを考察しやすくなる。

しかし、応用上は単に基底を取り直すことを目的とするケースは少ない。通常は固有値分解によって求まった固有ベクトル(新たな基底)を全て利用するのではなく、値の大きな固有値に属する固有ベクトル w を d(< D) 個選び、 $W_d = (w_1, \cdots, w_d)$ によって変換行列を構成することで、

$$z(t) = W_d^T x(t) \in \mathbb{R}^d$$
 (2.16)

図 2.3: PCA によって得られる基底

と次元削減を行う。値の大きな固有値に属する固有ベクトルによって基底を構成することは、 W_d による基底の元で、信号の分散(あるいは振幅)が最大化されることを要請することと等価である。また、射影先での分散最大化に伴い、(2.16) での変換行列 W_d は、元々の信号 x(t) と、x(t) を \mathbb{R}^D の部分空間 \mathbb{R}^d へ射影した信号 z(t) との二乗誤差を最小化する変換行列となっている。

以上から PCA は、元々の信号 x(t) の情報損失を二乗誤差の意味で最小限に抑えながら、射影先で大きな変動を有し、かつ各成分が無相関となる特徴量 z(t) を抽出する。しかし、脳波への応用を考える上では PCA の性質は必ずしも有効には働かない。運動想起 BCI を考える上では、脳波に含まれる全ての情報の中から識別したい身体部位に関する情報のみを抽出する必要がある。この場合、脳波信号のごく一部のみが重要である可能性が

あり、射影先で大きな分散を持つような信号となっているかは定かではないためである。

2.2.2 Indipendent Component Analysis(ICA)

Indipendent Component Analysis(ICA) は PCA を発展させた比較的新しい信号解析手法である。ICA は PCA と同様に変換行列 $W^T \in \mathbb{R}^{D \times D}$ を左から作用させ、特徴量

$$z(t) = W^T x(t) \in \mathbb{R}^D \tag{2.17}$$

を獲得するが、この際、z(t) の各成分が互いに独立になるように W を決定する。独立性は無相関性の十分条件であり、PCA に比べて z(t) により強い条件を要請する。PCA では無相関性が固有値分解という数学的によく知られた問題と関連していたが、独立性は簡単な問題への定式化は困難であるため、通常は独立性を測る目的関数を設定し、勾配法などの逐次最適化法を用いる。ICA の求解アルゴリズムを述べるのは本研究テーマから逸脱するため、主要なアルゴリズムに絞って簡単に説明する。最も普及している求解アルゴリズムは FastICA として知られており、独立性の必要条件である無相関性を要請した後、独立性を最大化することで解を得る。無相関性を満たすようにするためには前処理としてPCA を用いることができる(正確には PCA を用いた中心化と白色化処理が行われる)。前処理後は独立性の最大化問題が、z(t) の各成分のエントロピー最小化問題に変換されるが、この最小化問題も容易ではない。従って更にネゲントロピーなる量を導入し、最大化問題に書き換える。ネゲントロピーは信号の非ガウス性を測る尺度であり、ガウス分布から遠いほど大きな値となる。FastICA ではネゲントロピーの最大化を各成分ごとに順次取り出していく。この時、非ガウス性が高い成分の順番に取り出されていく。独立成分分析の解説は次の文献が詳しい [33] [34]。

図 2.4 に PCA と ICA の振る舞いをトイデータを用いて比較を掲載する。図 2.4 の base vectors of ICA and PCA から分かるように ICA で得られる基底は直交するとは限らない。また、PCA の基底の大きさは等しく 1 であり正規直交基底を構築するが、ICA では正規性も持つとは限らない。

図 2.4: 無相関な基底を得る PCA と独立な基底を獲る ICA の比較

脳波への応用では、脳波計測時に混入した脳波以外の信号(筋電位、眼電位など)が脳波とは統計的に独立であると考え、脳波以外の信号成分を除去する目的で利用される。一方で運動想起 BCI において身体部位に関する脳波成分を直接抽出することは PCA 同様に難しい。筋電などの場合、脳波と独立であるという仮定は妥当であり、かつ振幅が目視可能なほど脳波に比べて大きくなる。従って、ICA によって分解された独立な成分から筋電などを見分けるのは比較的容易である。しかし、一方で身体部位に関する脳波成分がその他のあらゆる脳波と独立であるかは定かではなく、仮に独立であった場合にも分解された

信号から目視によって特定することは困難であると推察される。

2.2.3 Blind Source Separation(BSS)

上記では PCA と ICA が次元削減として用いられることを見た。一方でこれらの手法は Blind Source Separation(BSS) 問題の解法として解釈されることも多いため、ここで簡単に述べておく。まず信号源 $s(t) \in \mathbb{R}^d$ を直接観測できない場合に、D 個のセンサで $x(t) \in \mathbb{R}^D$ という信号を観測したとする。このとき、観測信号 x(t) のみから信号源 s(t) を推定する問題が BSS 問題である。計測機器や環境に応じて、信号源 s(t) は何らかの変換 $f(\cdot)$ を受けて観測されると考えられる。従って x(t) は

$$x(t) = f(s(t)) \tag{2.18}$$

と表記できる。このときに観測に伴う変換 $f(\cdot)$ が線形変換 A であると仮定した場合、

$$x(t) = As(t) (2.19)$$

と表記することができ、BSS 問題は x(t) から A と s(t) を同時に推定する問題であると見なせる。ここで仮に適当な線形変換によって、観測信号 x(t) を

$$z(t) = Wx(t) \tag{2.20}$$

と変換することを考える。W を上手く選ぶことに成功すれば、 $z(t)=Wx(t)\simeq s(t)$ となることが期待できる。ここで D=d、すなわち信号源の次元と観測信号の次元が一致している場合を考える。このとき (2.19) において、A が正則であるとし、

$$s(t) = A^{-1}x(t) (2.21)$$

と表すことが可能になる。従って、(2.20) の W を $W=A^{-1}$ とすることができれば、

$$z(t) = Wx(t) = A^{-1}x(t) = s(t)$$
(2.22)

と信号源を求めることが可能である。ただし、z(t)=s(t)となる W が存在するとしても、既知の x(t) に対して未知の W,s(t) を求めようとしている状況に変わりはなく、BSS問題は基本的に不良設定問題である。また、実データでは信号源と観測信号の次元が一致しない場合が多く A は逆行列を持たないため、状況はより複雑である場合が多い。通常は BSS 問題を解くためには何らかの条件を追加するか、正則化の手法を導入する必要がある。PCA や ICA は信号源 s(t) が各成分について無相関あるいは独立であると仮定することで条件式を追加し、観測信号 x(t) から条件式を満たすような W と z(t) を求め、z(t) が信号源 s(t) の良い近似になっていると考える BSS 問題の解法の一種である。

PCAとICAのBSS問題への振る舞いを確認するために、トイデータによる実験結果を図 2.5 に示す。周波数の異なる 2 つの正弦波と 1 つのノコギリ波にそれぞれガウスノイズを加算した信号源(図 2.5 の True Sources)を準備し、適当な線形変換を施して観測信号(図 2.5 の Observations)とする。図 2.5 の ICA recoverd signals が FastICAによって推定された信号源に適当なゲインを加えたものであり、図 2.5 の PCA recoverd signals が PCAによって推定された信号源に適当なゲインを加えたものである。ICAでは周波数の異なる正弦波とノコギリ波を明確に分解できており、信号源に近い波形が得られていることが確認できるが、PCAでは信号源と異なる信号が得られている。PCAの振る舞いは各成分を無相関にしつつ、射影先で分散を最大化するような基底を求めるためノコギリ波と位相が一致している正弦波を1つの成分に集約してしまっている。

トイデータによる実験では ICA が BSS 問題に対して有効に働くことが確認できるが、本来信号源がどのようなものであるかは未知であるため、信号源推定が正しく行われたかを確認するのは実データでは困難である。運動想起 BCI を想定して脳波に BSS 問題を適用する場合には、観測された信号 x(t) から脳波信号の根源である s(t) を復元することを目的とするが、ICA によって推定された信号源のいずれの成分が運動想起と関連しているのかを判別するのは極めて難しい。ただし、脳波と筋電では波形が明らかに異なるため、筋電と脳波が独立であるという仮定を用いて ICA によって筋電成分を取り出すことは可能である。一般に、不良設定問題である BSS 問題に対しては何らかの仮定を置かざるを

図 2.5: BSS 問題に対する PCA と ICA

得なく、複雑な脳波に対して適切な仮定を設けることが重要な課題となる。

2.3 分類手法

2.3.1 Linear Discriminant Analysis(LDA)

Linear Discriminant Analysis(LDA) は統計分析において伝統的に用いられてきた歴史ある手法である。LDA では多次元データを部分空間で切り取り、切り取った空間で分類超平面を構築することでクラス分類を行う。分類超平面を構築する手段を与えなければ、LDA は特徴量抽出手法としても機能する。まず、多次元データ $x \in \mathbb{R}^D$ を基底 $w \in \mathbb{R}^D$

へ射影すると、以下の式で表されるスカラー値を獲得できる。

$$z = w^T x \in \mathbb{R} \tag{2.23}$$

z に対してある閾値を設定し、 $z\geqslant -w_0$ の場合はクラス C_1 とし、そうでない場合はクラス C_2 であるとすることで分類器を獲得できる。多次元データを 1 次元空間へ射影した場合には多くの情報損失が生ずるが、w の取り方を上手く調整することによって、クラス分類を行いやすい射影を選択できる。まず以下のようにクラス毎の平均ベクトル m_1,m_2 を定義する。

$$m_1 = \frac{1}{|C_1|} \sum_{x \in C_1} x \tag{2.24}$$

$$m_2 = \frac{1}{|C_2|} \sum_{x \in C_2} x \tag{2.25}$$

ここに、 $|C_i|$ はクラス C_i に属するデータの数である。クラス C_1 とクラス C_2 の平均間の 距離が射影先で大きな値となれば、異なるクラスのデータは平均的に離れて配置され、ク ラス分類を行いやすい射影になっていると想定できる。従って、まずは以下の距離の最大 化を考慮する。

$$d = |w^T(m_1 - m_2)| (2.26)$$

しかし実際には (2.26) の最大化を考慮しただけでは分類が上手く行くとは限らない (図 2.6)。射影先での各クラスのデータの分散が大きい場合には、異なるクラスのデータが重なってしまう場合が生じるからである。この問題を解決するためにはデータの分散を考慮する必要がある。まず射影先での各クラスの分散は以下で表記できる。

$$\sigma_1^2 = \sum_{x \in C_1} \{ w^T (x - m_1) \}^2$$
 (2.27)

$$\sigma_2^2 = \sum_{x \in C_2} \{ w^T (x - m_2) \}^2$$
 (2.28)

ここで、全データのクラス毎の分散の和を総クラス内分散として以下で定義する。

$$\sigma^2 = \sigma_1^2 + \sigma_2^2 \tag{2.29}$$

図 2.6: クラス毎の平均間の距離を射影先で最大化した判別分析 [35]

総クラス内分散 (2.29) を小さくしながらクラス間の平均の距離 (2.26) を大きくすること を考慮し LDA では以下の評価関数を用いる。

$$J(w) = \frac{d^2}{\sigma^2}$$

$$= \frac{\{w^T(m_1 - m_2)\}^2}{\sum_{x \in C_1} \{w^T(x - m_1)\}^2 + \sum_{x \in C_2} \{w^T(x - m_2)\}^2}$$
(2.30)

このクラス間の平均とクラス内の分散を考慮した評価関数を用いることで、射影先でデータがクラス毎に小さくまとまり、かつ異なるクラスのデータがなるべく離れるようになる(図 2.7)。

1次元の空間(数直線上)でクラス毎にデータが上手く分離できた後、数直線上に閾値 $w_0=(m_1+m_2)/2$ を設けることで分離平面が得られる。これはクラス毎の平均値の平均値によって分離平面を設定したことに相当する。しかし、射影のされ方によってはこの閾値は適当ではない。より精密な分類を行うためには、 $z=w^Tx$ がクラス毎に異なるガウ

図 2.7: クラス毎の平均間の距離を射影先で最大化し、総クラス内分散を最小化した判別分析 [35]

ス分布から生じる確率変数だと考え、クラス C_i の条件付き確率 $p(z|C_i)$ を算出した判別基準を設け、条件付き確率が大きいクラスへ分類するなどの方法を取る。

また LDA の評価関数 (2.30) は以下のように変形が可能である。

$$J(w) = \frac{\{w^{T}(m_{1} - m_{2})\}^{2}}{\sum_{x \in C_{1}} \{w^{T}(x - m_{1})\}^{2} + \sum_{x \in C_{2}} \{w^{T}(x - m_{2})\}^{2}}$$

$$= \frac{w^{T}(m_{1} - m_{2})(m_{1} - m_{2})^{T}w}{w^{T} \{\sum_{x \in C_{1}} (x - m_{1})(x - m_{1})^{T} + \sum_{x \in C_{2}} (x - m_{2})(x - m_{2})^{T}\}w}$$

$$= \frac{w^{T} S_{B} w}{w^{T} S_{W} w}$$

$$(2.31)$$

ここで

$$S_B = (m_1 - m_2)(m_1 - m_2)^T (2.32)$$

$$S_W = \sum_{x \in C_1} (x - m_1)(x - m_1)^T + \sum_{x \in C_2} (x - m_2)(x - m_2)^T$$
 (2.33)

である。このとき S_B をクラス間共分散行列、 S_W をクラス内共分散行列と言う。(2.31) を w に関して微分して 0 と置くことで問題は解析的に解くことができる。また問題は一般化固有値問題となり、複数の固有ベクトルを用いて多次元の特徴量を獲得することも可能である。

2.3.2 Support Vector Machine(SVM)

脳波の分類では Support Vector Machine(SVM) の応用例もある。基本的に SVM はマージン最大化の考えによって汎化性能の向上に成功した 2 クラス分類のための線形分類器である。まずマージン最大化という概念について説明する。マージンとは端的に述べるとデータ点と分類超平面との距離のことを表す。学習データに対してマージンを最大化することで、学習データが空間上で僅かに移動した際にも誤分類を起こしづらくなると期待できる。SVM ではこのマージン最大化によって以下の分類超平面を定める。

$$y(x) = w^T x + w_0 (2.34)$$

ここにx は D 次元のデータベクトルであり、w は D 次元のパラメータベクトルである。 w_0 もスカラーパラメータであり閾値の役割を担う。分類面の役割により y(x) は x がクラス C_1 に属する場合には正の値を、 C_2 に属する場合には負の値を取るように学習される。 ここで、(2.34) の超平面と、あるデータ点 x_n との距離は以下で表される。

$$|r| = \frac{|y(x_n)|}{|w|}$$
 (2.35)

ここで、 x_n がクラス C_1 に属する場合は $t_n=1$ とし、クラス C_2 に属する場合には $t_n=-1$ と定めた t_n を導入する。さらに x_n には分類面から最も近いデータ点のみを考慮することとし、そのときの |r| をマージンと呼び以下で表す。

$$|r|_{margin} = \min_{x_n} \frac{t_n y(x_n)}{|w|} \tag{2.36}$$

この (2.36) を最大化するようにパラメータを決定することでマージン最大化を実現することができる。従って、SVM のパラメータ決定は以下の最適化問題によって定式化される。

$$\underset{w_0,w}{\arg\max}\left(\min_{x_n}\frac{t_ny(x_n)}{|w|}\right) \tag{2.37}$$

しかしこの最適化問題において、 w,w_0 の大きさは本質的ではない。なぜなら w,w_0 を同時に kw,kw_0 と定数倍した場合にも (2.36) の値は変化しないためである。従って、 w,w_0 の大きさに関して制約を設ける必要がある。そこで分類面から最も近い x_n に関して $t_n(w^Tx+w_0)=1$ となるような制約を w,w_0 に対して要請する。この条件式に伴って、任意のデータ点において $t_n(w^Tx+w_0)\geqslant 1$ という制約が与えられる。最終的にマージン最大化問題 (2.37) は以下で定式化される。

$$\underset{w_0, w}{\operatorname{arg \, min}} \quad \frac{|w|^2}{2}$$
 s.t.
$$t_n(w^T x + w_0) \geqslant 1$$
 (2.38)

目的関数の分母は、単に勾配を計算する際に約分できるというテクニックによるものである。分子の二乗は、最適化問題の解を変更せずに勾配計算などを容易に行うための変形である。図 2.8 に分類面の定め方によりマージンが異なっている様子を見ることができる。左右いずれの図も学習データに対して正しく分類が行える分類面になっているが、新規のデータに対しての分類結果が異なってくる。SVM では右図の分類面の方が優れていると考える場合に用いる手法である。ここまで線形分類を行う場合の SVM を見てきたが、一般的に線形分類器はデータ点を非線形関数 $\phi(\cdot)$ によって別の特徴空間へ写像し、特徴空間上で線形分類を行う問題へ拡張することができる。SVM では分類超平面を以下の式によって構築することに相当する。

$$y(x) = w^{T} \phi(x) + w_0 \tag{2.39}$$

図 2.8: 分類面によってマージンの大きさが異なる様子

この場合においてもこれまでと同様の議論で最適化問題を以下のように定式化できる。

$$\underset{w_0, w}{\operatorname{arg min}} \quad \frac{|w|^2}{2}$$
s.t.
$$t_n(w^T \phi(x) + w_0) \geqslant 1$$
(2.40)

実データは線形分離不可能な場合が多いため、通常 SVM を用いる場合は上記のような非線形に拡張されたものを用いる。また実データは異なるクラスのデータが重なって分布することも多々あるため、厳密な分類を行うことは不可能な場合が多い。そういった場合に対応したソフトマージンと呼ばれる考えがあり、学習データの誤分類に対して寛容になる指標を導入する。このソフトマージンの考え方は機械学習で過学習抑制に用いられる正則化の考えと本質的には変わりない。また、制約付き最適化問題をラグランジュ法によって変形することで双対問題を獲得することができる。双対問題においては非線形変換後の空間での内積のみが必要となり、具体的な非線形変換の計算をデータ x に対して実施する必要はない。すなわち、非線形変換 $\phi(x)$ による特徴空間への写像を具体的に考える代わりに、最終的に計算の必要性がある内積 $\phi(x)^T\phi(x')$ を定義することで SVM の非線形への拡張が可能である。このような方法はカーネル法として知られており、このときに用いられる内積計算をカーネル $k(x,x')=\phi(x)^T\phi(x')$ と呼ぶ。カーネルを定めることが特徴空間の設計を行うことに相当するが、BCI も含めた多くの応用では既に知られた優れた性質を持つカーネルを活用することがほとんどである。以下に代表的なカーネルについて記

図 2.9: 線形 SVM (線形分離可能)

図 2.10: 線形 SVM (線形分離不可能)

載する。

・線形カーネル:非線形変換を行わないことに対応。

$$k(x, x') = x^T x'$$

・多項式カーネル:多項式関数による非線形変換に対応。

$$k(x, x') = (x^T x' + c)^M$$

・ガウス基底カーネル:特徴空間が無限次元となる。

$$k(x, x') = \exp\left(-\frac{|x - x'|^2}{2\sigma^2}\right)$$

通常、カーネルを用いる場合にはハイパーパラメータが付随する。多項式カーネルの場合はスカラーの c, M、ガウス基底カーネルの場合はスカラーの σ がハイパーパラメータとなり、これらの調整次第で得られる分類面は異なる。応用上はソフトマージンカーネルSVM を用いればよく、ソフトマージンのハイパーパラメータとカーネルの設計を変えることで通常の線形 SVM の働きをさせることも可能である。図 2.9-2.11 に 2 次元データに対する SVM の分類境界を示す。図 2.10 の通り、線形 SVM では線形分離不可能な問題に対して不適切な境界を設ける。

図 2.11: ガウシアンカーネル SVM (線形分離不可能)

ソフトマージンカーネル SVM の識別関数は以下で表される。

$$y(x) = \sum_{n=1}^{N} a_n t_n k(x, x_n) + b$$
 (2.41)

ここで学習データの数を N としている。また a_n はスカラーのパラメータであり、ラグランジュ法で双対問題を考えた際のラグランジュ乗数である。また最適化問題は以下で定式化される [36]。

$$\underset{a_1,\dots,a_N}{\operatorname{arg \, max}} \quad \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j t_i t_j k(x_i, x_j)$$
s.t.
$$0 \leqslant a_n \leqslant C$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

$$(2.42)$$

ここに C はソフトマージンのハイパーパラメータでありスカラーである。値が小さいほど a_n の取れる範囲が制限され、値が大きいほど誤分類に寛容となる。最適化問題の解である a_1,\cdots,a_N と任意の n を選んで以下の条件式に代入することで閾値 b も求まる。

$$t_n \left(\sum_{m=1}^{N} a_m t_m k(x_n, x_m) + b \right) = 1$$
 (2.43)

ただし、(2.43) は無駄な計算も含まれている。 $a_n=0$ となるような x_n に対して $\sum_{n=1}^N a_n t_n k(x,x_n)$ の計算を実行する必要はない。 $a_n\neq 0$ となっている x_n のことを サポートベクトルと呼び、実際にはサポートベクトルのみ計算に考慮すれば良い。このことは新規のデータに対して (2.41) の計算を行うときも同様である。従って学習後に保持しておかねければならないデータはサポートベクトルのみに限定でき、実用上省メモリに 貢献できる。

2.3.3 Logistic Regression(LR)

Logistic Regression(LR) は対数オッズ比を線形モデルで表現した分類手法である。クラス分類においてデータxがクラス C_i に属する確率を $p(y=C_i\mid x)$ と表す。この時、事象 $y=C_i$ のオッズ比は以下で表される。

$$odds(y = C_i) = \frac{p(y = C_i \mid x)}{1 - p(y = C_i \mid x)}$$
(2.44)

2 クラス分類においては $odds(y=C_1)\geqslant 1$ であれば C_1 に分類するなどの規則を設けることで分類が可能になる。ここで、対数オッズは以下で表される。

$$logodds(y = C_i) = \log \left\{ \frac{p(y = C_i \mid x)}{1 - p(y = C_i \mid x)} \right\}$$
 (2.45)

(2.44) が 1 以上の値となる時、(2.45) は 0 以上の値となる。LR では多次元データ $x\in\mathbb{R}^D$ に対して $w\in\mathbb{R}^D$ として、線形モデル $z=w^Tx\in\mathbb{R}$ によって対数オッズ比を出力するモデルを構築する。 $y=C_1$ の対数オッズ比を線形モデルで表現すると以下で表される。

$$\log \left\{ \frac{p(y = C_1 \mid x)}{1 - p(y = C_1 \mid x)} \right\} = w^T x \tag{2.46}$$

この時、以下の式変形によってよく知られたシグモイド関数 $\sigma(z)=1/(1+\exp(-z))$ が 導出される。

$$\log \left\{ \frac{p(y = C_1 \mid x)}{1 - p(y = C_1 \mid x)} \right\} = w^T x$$

$$\iff \frac{p(y = C_1 \mid x)}{1 - p(y = C_1 \mid x)} = \exp(w^T x)$$

$$\iff \frac{1}{p(y = C_1 \mid x)} - 1 = \exp(-w^T x)$$

$$\iff p(y = C_1 \mid x) = \frac{1}{1 + \exp(-w^T x)}$$
(2.47)

シグモイド関数に関しては、

$$\sigma(-z) = 1 - \sigma(x) \tag{2.48}$$

$$\sigma'(z) = \sigma(z)(1 - \sigma(z)) \tag{2.49}$$

という性質が知られている。ここで $y=C_1$ という事象を y=1 に対応させ、 $y=C_2$ という事象を y=-1 に対応させると、(2.47) と (2.48) 用いて、

$$p(y \mid x, w) = \sigma(yw^T x) \tag{2.50}$$

とすることができる。i.i.d. を仮定して対数尤度の最尤推定を考えると以下のロジスティック損失の最小化問題に帰着される。ここで、N は訓練データ数とした。

$$\arg\max_{w} \sum_{i=1}^{N} \log\{\sigma(y_n w^T x_n)\} = \arg\min_{w} \sum_{i=1}^{N} -\log\{\sigma(y_n w^T x_n)\}$$

$$= \arg\min_{w} \sum_{n=1}^{N} \log\left\{\frac{1}{\sigma(y_n w^T x_n)}\right\}$$

$$= \arg\min_{w} \sum_{n=1}^{N} \log\left\{1 + \exp(-y_n w^T x_n)\right\} \quad (2.51)$$

以上から、LR の学習はオッズ比を対数線形モデルで表現し最尤推定を行うことに相当する。導出の過程から明らかなようにシグモイド関数は非線形変換であるが、スケールの 変換を行うだけで線形分離不可能な問題に対応できるわけではなく、モデルとしては単 層パーセプトロンと等価である。目的関数は凸であり、学習は勾配法、ニュートン法、準 ニュートン法などが用いられる。

第3章

運動想起型 BCI の従来手法

3.1 時間周波数解析の基づく手法

運動想起型 BCI では EEG 信号から運動想起部位を識別することが目的となる。既に運動想起時には ERD という現象が生ずることが知られているため [16]、運動想起型 BCI では ERD を正確に検知することを主眼にした時間周波数解析を用いた研究が多数存在することを 1.1.3 で述べた。以下、時間周波数解析に基づいた手法の基本形について述べる。

3.1.1 頭皮領域と空間フィルタ

スモールラプラシアンとラージラプラシアン

まず EEG を基にした運動想起型 BCI では ERD の検出に必要な電極の選定やセンサ領域への変換である空間フィルタに関して考慮するのが一般的であり、代表的な空間フィルタとしてスモールラプラシアンフィルタとラージラプラシアンフィルタがある。一般に 2

変数関数 f(x,y) に関してラプラシアンは一般的に以下で表される。

$$\nabla^{2} f(x,y) = \frac{\partial^{2}}{\partial x^{2}} f(x,y) + \frac{\partial^{2}}{\partial y^{2}} f(x,y)$$

$$= \frac{\partial}{\partial x} \left\{ \frac{f(x+dx,y) - f(x,y)}{dx} \right\} + \frac{\partial}{\partial y} \left\{ \frac{f(x,y+dy) - f(x,y)}{dy} \right\}$$

$$= \frac{\{f(x+dx,y) - f(x,y)\} - \{f(x,y) - f(x-dx,y)\}}{dx^{2}}$$

$$+ \frac{\{f(x,y+dy) - f(x,y)\} - \{f(x,y) - f(x,y-dy)\}}{dy^{2}}$$

$$= \frac{1}{dr^{2}} \{f(x+dx,y) + f(x-dx,y)$$

$$+ f(x,y+dy) + f(x,y-dy) - 4f(x,y)\}$$
(3.1)

ここに $dr^2=dx^2=dy^2$ である。この定義式について変数 x,y を離散化すると以下の式となる。

$$\nabla^2 f(x,y) = -4f(x,y) + f(x-1,y) + f(x+1,y) + f(x,y-1) + f(x,y+1)$$
 (3.2)

EEG に対するラプラシアンフィルタは上記の式の正負を反転し、4 で割った以下の式が用いられ、スモールラプラシアンと呼ばれている [37]。

SmallLap
$$f(x,y) = f(x,y) - \frac{1}{4} \{ f(x-1,y) + f(x+1,y) + f(x,y-1) + f(x,y+1) \}$$
 (3.3)

また、ラージラプラシアンと呼ばれる概念もあり [37]、差分を取るインデックスを 1 つ飛ばした以下の式が用いられる。

LargeLap
$$f(x,y) = f(x,y) - \frac{1}{4} \{ f(x-1,y) + f(x+1,y) + f(x,y-1) + f(x,y+1) \}$$
 (3.4)

例として、A 電極によって計測された EEG を $x_A(t)\in\mathbb{R}$ と表記するとし、Cz 電極に対するスモールラプラシアンフィルタとラージラプラシアンフィルタが適用された EEG をそれぞれ $x_{smallCz}(t), x_{largeCz}(t)$ として、以下の式で表される(図 3.1,3.2)。

$$x_{smallCz}(t) = x_{Cz}(t) - \frac{1}{4}(x_{C1}(t) + x_{C2}(t) + x_{FCz}(t) + x_{CPz}(t))$$
 (3.5)

$$x_{largeCz}(t) = x_{Cz}(t) - \frac{1}{4}(x_{C3}(t) + x_{C4}(t) + x_{Fz}(t) + x_{Pz}(t))$$
(3.6)

一般的な空間フィルタ

スモールラプラシアンやラージラプラシアンの処理によって必ずしも有効な特徴量が得られるとは限らないため、適切な空間フィルタを獲得するために統計的なフィルタ設計方法が用いられる場合もある。電極を D 個用いて $\mathrm{EEG}x(t) \in \mathbb{R}^D$ を計測した場合に、 $w \in \mathbb{R}^D$ によって

$$z(t) = w^T x(t) \in \mathbb{R} \tag{3.7}$$

を計算した場合は w を空間フィルタと呼ぶ。より一般的には行列 $W=(w_1,w_2,\cdots,w_d)\in\mathbb{R}^{D\times d}$ によって、

$$z(t) = W^T x(t) \in \mathbb{R}^d \tag{3.8}$$

を計算する場合にも空間フィルタを用いたと言える。この場合は、W の各列が空間フィルタ 1 つ 1 つに対応し、d 個の空間フィルタについて一挙に計算を行うことが可能である。特に Independet Componet Analysis(ICA) による空間フィルタの設計は既に EEG 解析で一定の地位を築いている。また EEG 解析ソフトウェアの機能の 1 つとして実装されているケースが多く、書籍 [38] では、1 章を割いて ICA の応用方法について解説がなされている。

より一般的に、多数のセンサ間(あるいは頭皮領域)にどのような関連があるかを明らかにするため、東らの [39] では、グラフフーリエ領域と呼ばれる信号構造で定義される領域へ信号を変換する方法を提案している。この手法は、電極の配置における空間的距離と観測信号の類似性に基づいて、電極間の繋がりの強さを示すグラフ構造を獲得する。グラフフーリエ領域を用いて空間的な平滑化を行った後に、従来の信号源推定手法であるPrincipan Component Analysis などを用いると、真の信号源に近い信号の抽出が可能であると主張されている。

図 3.1: Cz 電極に対するスモールラプラシアンフィルタ

図 3.2: Cz 電極に対するラージラプラシアンフィルタ

3.1.2 時間周波数解析

空間フィルタによる処理を行った EEG のスペクトログラムを時間周波数解析によって獲得することで、ERD を直接的に検知し、運動想起 BCI を構築することが可能である [19]。ERD や ERS を検知するための時間周波数解析には、最も単純なものとして短時間フーリエ変換を用いることができる。しかし、フーリエ変換対に対する不確定性関係やスペクトル密度推定の精度の問題もありウェーブレット変換を用いる方法やバーグ法に基づく方法も検討されている。また ERD 検知に有効な時間周波数解析の比較についても研究報告がある [40]。更に、非定常時系列に対する時間周波数解析として提案された Empirical Mode Decomposition(EMD) を用いる方法もいくつか検討がなされている [41,42]。

3.2 Common Spatial Pattern とその派生手法

運動想起型 BCI において非常に活発に用いられている "Common Spatial Pattern(CSP)" は 1990 年に Zoltan [26] により提案されてから、数々の派生手法が生み出されてきた [27–30,43–47]。このセクションでは CSP の基本的な概要と、BCI に適した形で発展してきた CSP の派生手法について述べる。

3.2.1 脳波信号の定式化

これまで多次元の信号を $x(t) \in \mathbb{R}^D$ と表記し、連続時間信号として扱ってきた。しかし、通常は計測された脳波はコンピュータで処理するために離散時間信号 $x_n \in \mathbb{R}^D$ に変換される。従って、以降、脳波信号を離散時間信号として取り扱う。また、運動想起時の脳波信号を計測する際には、被験者に対して定められたタイムスケジュールで運動想起を行うように指示がなされる。例として 64 個の電極を用い、サンプリング周波数 $100 \mathrm{Hz}$ で 10 秒間の計測を行った場合、計測された運動想起 1 回分の脳波信号は $X \in \mathbb{R}^{64 \times 1000}$ と表すことができる。従って、以降統一のため、M を電極の個数、N を計測時間点数とした

図 3.3: CSP の利用方法

場合の脳波信号を以下で定義する

$$X = (x_1, \cdots, x_N) \in \mathbb{R}^{M \times N}$$
(3.9)

運動想起を K 回行った場合には、K 個の X が得られる。通常は運動想起時の脳波を数個から数十個集め、統計的な指標を元に有用な特徴量を抽出する。CSP は運動想起 BCI に対して極めて有効に働くとされている特徴量抽出手法である。

3.2.2 Common Spatial Pattern(CSP)

CSP は複数の電極で計測されることが一般的である脳波に対して、適切な電極の重み付けを行うことで、重要な頭皮領域の脳波を取り出す手法である [26]。 CSP を脳波に用いる際は、脳波信号 X を直接扱うのではなく、何らかの前処理を施した信号 $\hat{X}=\mathcal{H}(X)$ を用いる。通常、 \mathcal{H} には、運動想起に関連のある周波数帯域のみを通過させるバンドパスフィルタを用いる (図 3.3)。バンドパスフィルタ通過後の脳波信号を以下のように表記する。

$$\hat{X} = (\hat{x}_1, \cdots, \hat{x}_N) \in \mathbb{R}^{M \times N}$$
(3.10)

 $\hat{x}_i\in\mathbb{R}^M$ における添字 i はサンプル時刻の添え字である。CSP では、新たな基底 $w\in\mathbb{R}^M$ にバンドパスフィルタ通過後の脳波信号を射影し、スカラー時間信号である $z=w^T\hat{X}\in\mathbb{R}^N$ を抽出する。この時の w の決め方を以下に記す。

まず \hat{X} を基底 w に射影した際の時間分散 $\sigma^2(\hat{X},w)$ を以下で定義する。

$$\sigma^{2}(\hat{X}, w) = \frac{1}{N} \sum_{i=1}^{N} \left| w^{T} \left(\hat{x}_{i} - \frac{1}{N} \sum_{j=1}^{N} \hat{x}_{j} \right) \right|^{2}$$
(3.11)

ここで計測された複数個の \hat{X} は必ず集合 C_1 か C_2 のいずれか一方に属するとし、 $C_1 \cap C_2 = \phi$ であるとする。CSP では、ベクトル $w \in \mathbb{R}^M$ を新たな基底とした電極空間において、一方のクラスに属する信号 $\hat{X} \in C_d$ についての時間分散 (3.11) が最大となるように、w を決める。これは以下の最大化問題によって定式化される。

$$\max_{w} \quad \mathbb{E}_{X \in C_{1}} \left[\sigma^{2}(\hat{X}, w) \right]$$
s.t.
$$\sum_{d=1,2} \mathbb{E}_{X \in C_{d}} \left[\sigma^{2}(\hat{X}, w) \right] = 1$$
(3.12)

最大化問題 (3.12) を解いて得られる w_{csp} は、クラス C_1 に属する脳波の分散を最大化するような基底である。一方で、制約条件によって 2 つのクラスの分散の和が 1 であるとされているため、自動的にクラス C_2 に属する脳波の分散を最小化する基底ともなる。すなわち w_{csp} によって得られるスカラー信号は一方のクラスの信号のみを増幅させ、他方を減衰させる働きをする。(3.12) は更に以下で定式化することができる。

$$\max_{w} \quad w^{T} \Sigma_{1} w$$
s.t.
$$w^{T} (\Sigma_{1} + \Sigma_{2}) w = 1$$
(3.13)

ここで

$$\Sigma_i = \mathbb{E}_{X \in C_i} \left[\frac{\hat{X}\hat{X}^T}{\operatorname{tr}(\hat{X}\hat{X}^T)} \right]$$
 (3.14)

である。この問題の解はラグランジュ法によって解析的に求めることが可能である。簡単な計算によって(3.13)は以下の一般化固有値問題に帰着される[45]。

$$\Sigma_1 w = \lambda (\Sigma_1 + \Sigma_2) w \tag{3.15}$$

この一般化固有値問題は右辺の $\Sigma_1+\Sigma_2$ が正則であれば、その逆行列を両辺左から掛けることで普通の固有値問題に変形できる。

一般化固有値問題が解けた時の M 個の固有値を $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_M$ とする。また、 λ_i に属する固有ベクトルを $w^{(i)}$ とする。このとき最適化問題の解に相当するのは $w^{(1)}$ であり、 C_1 に属する脳波を増幅し、 C_2 に属する脳波を減衰させたスカラー信号を獲得できる。一方で $w^{(M)}$ は C_1 に属する脳波を減衰し、 C_2 に属する脳波を増幅させたスカラー信号を獲得できる。従って通常は、 $w^{(1)},w^{(M)}$ の固有ベクトルを対で用いる。同様に $w^{(2)},w^{(M-1)}$ を対で取り出して 4 つの固有ベクトルを用いることもできる。一般に 2m(<M) 個の固有ベクトルを使うこととすれば、特徴量 $\sigma^2(\hat{X},w^{(i)})$ を 2m 個準備することができる。ここで単に $z=w^{(i)}\hat{X}$ を用いないのは、CSP によって得られる特徴量は振幅に大きな違いがあるためである。通常は CSP によって獲得される特徴量 y は以下の形式となる。

$$y = (\sigma^{2}(\hat{X}, w^{(1)}), \cdots, \sigma^{2}(\hat{X}, w^{(m)}), \cdots, \sigma^{2}(\hat{X}, w^{(M-m+1)}), \cdots, \sigma^{2}(\hat{X}, w^{(M)}))^{T}$$
(3.16)

あるいは $y=(y_1,\cdots,y_{2m})$ に対して以下のような変換を行った特徴量 Y を使う。

$$Y_i = \log\left(\frac{y_i}{\sum_{i=1}^{2m} y_i}\right)$$

$$Y = (f_1, \dots, f_{2m})^T$$
(3.17)

また m=1,2 が多くの CSP の応用研究で使われており、m を増やしても BCI の性能向上には繋がらないことが報告されている [44]。

3.2.3 Common Sparse Spatio Spectral Pattern(CSSSP)

CSPではバンドパスフィルタ 升 通過後の信号を扱ったため、バンドパスフィルタの設計を終えてからでなければ CSP の問題を解くことができない。従って、あるバンドパスフィルタを通過した脳波に対して、最適化問題を解いているに過ぎなく、バンドパスフィルタ自体が適切であったかに関して述べられない。CSSSP の主なモチベーションはバンドパスフィルタの設計を CSP の問題の中に取り込むことである [29]。

まず脳波信号 $X=[x_1,\cdots,x_N]\in\mathbb{R}^{M imes N}$ に対して、観測時間点を au>0 だけずらし

図 3.4: CSSSP の働き

た $X_{\tau}=(x_{1+\tau},\cdots,x_{N+\tau})\in\mathbb{R}^{M\times N}$ を考える。ここで $\tau=1,\ldots,T$ である。更にクラス C_d に属する X に関して各 τ 毎に、

$$\Sigma_d^{\tau} = \mathbb{E}_{X \in C_d} \left[X X_{\tau}^T + X_{\tau} X^T \right] \tag{3.18}$$

を定義する。ただし au=0 のとき $\Sigma_d^0=\mathbb{E}_{X\in C_d}\left[XX^T\right]$ とする。更に、T 個の要素を持つ係数ベクトル $b=(b_1,b_2,\dots,b_T)^T$ とする。ここで CSSSP の最適化問題は以下で表現される。

$$\max_{b_2,\dots,b_T} \max_{w} \quad w^T \left\{ \sum_{\tau=0}^{T-1} \left(\sum_{j=1}^{T-\tau} b_j b_{j+\tau} \right) \Sigma_1^{\tau} \right\} w - \frac{\alpha}{T} |b|_1$$
subject to
$$w^T \left[\sum_{\tau=0}^{T-1} \left\{ \sum_{j=1}^{T-\tau} b_j b_{j+\tau} \right\} (\Sigma_1^{\tau} + \Sigma_2^{\tau}) \right] w = 1$$

$$(3.19)$$

この最適化問題の目的関数第 1 項は b を FIR フィルタ f の係数ベクトルとした場合に、f を通過後の脳波 X に対して CSP の最適化問題を適用していることに相当する。従って CSSSP では空間重みベクトル $w \in \mathbb{R}^M$ と次数が T の FIR フィルタのフィルタ係数 b を 同時に評価することが可能である (図 3.4)。目的関数における第二項は正則化項であり、 α はハイパーパラメータである。この正則化によって FIR フィルタの系列ベクトルに対してスパース性が要請され、フィルタリングに用いられる時系列点数は必要最小限に抑えられる。このことにより FIR フィルタが必要以上に複雑になることが避けられる。

3.2.4 Filter Bank Common Spatial Pattern(FBCSP)

CSSSP は FIR フィルタの設計を CSP の最適化問題に含むことで、バンドパスフィルタと CSP の同時最適化の定式化に成功した。しかし、CSSSP によって求まる特徴量はフィルタ係数 b を持つ FIR フィルタを通過し、変換行列 W^T の CSP によって変換された脳波信号であり、ある 1 つの周波数領域のみしか考慮されていないこととなる。CSSSP を解いて得られるフィルタ係数 b は最適化問題の解であるが、必ずしもそのフィルタ係数のみを用いることが最良であるとは言い難い。なぜなら、運動想起を行う際にはその身体部位に応じて特徴的な変動を持つ周波数領域は異なっているためである。例えば左手の運動想起時と下肢の運動想起時では重要な周波数帯域が異なり、CSSSP の解がいずれかの情報を失ってしまっている可能性が考えられる。FBCSP はこのような問題の解決を図る手法である [30]。

まず、FBCSP ではバンドパスフィルタバンク $\{\mathcal{H}_1,\dots,\mathcal{H}_K\}$ を定義する。このバンドパスフィルタバンクは 1 つ 1 つのフィルタ \mathcal{H}_k が異なる周波数領域を通過させるように設計される。各バンドパスフィルタを通過した $\hat{X}_k=\mathcal{H}_k(X)$ に対して、それぞれ CSP の問題を解くことで各周波数領域における空間的な特徴量を獲得することが可能となる。 \hat{X}_k に対して CSP によって取り出した特徴量を Y_k とすれば、最終的な特徴ベクトル Y は

$$Y = (Y_1^T, \dots, Y_K^T)^T$$
 (3.20)

であり、単に各周波数帯域の CSP による特徴量を連結したベクトルとなる。ただし CSSSP とは異なり、CSP とバンドパスフィルタの同時最適化を行ってはいない。従って、特徴ベクトル f のいずれの要素が重要であるか、すなわちいずれの周波数帯域が重要であるかに関しての最適化は行われておらず、あくまで複数の周波数帯域においてそれぞれの最適な電極の重み付けを CSP によって獲得したにすぎない。そのため、FBCSP によって得られた特徴量から更に特徴量を抽出する手法が別途用いられる。また、FBCSP 後の特徴量の選定を行う方法として相互情報量を用いた手法が提案されている [48]。

第4章

足動作検知のための BCI

この章では足動作検知を目標として構築した BCI について説明する。BCI は個人の脳波の解析と、信号処理、特徴量抽出器。分類器を組み合わせて構築した。

4.1 計測した EEG について

まず、被験者が 8 秒間静止(以後 rest 状態)と 8 秒間足動作(以後 walk 状態)を 8 サイクル繰り返したときの EEG を計測した。被験者はリラックスできる椅子に着席した状態で前方に配置されたディスプレイの指示に従って動作を行った(図 4.1)。ただし、8 サイクル中最初の 1 サイクルについてはフィルタの応答の特性上、EEG の解析には適さないと判断し、解析時には除外した。従って以後の解析で用いられるのは 7 サイクル分の EEG である。EEG の計測機器としては g.tec 社の g.USBamp(図 4.2)を用い、ウェット式の電極を採用した。ウェット式では頭皮と電極の間に導電性のジェルを注入することで EEG を計測する。EEG の計測時にはジェルの注入を行いながら、すべての電極に関して電極インピーダンスが $5k\Omega$ 以下になったことを確認した。またサンプリング周波数は 128Hz とした。

計測に用いた電極の個数は5つであり、Cz、C1、C2、CPz、FCz 電極である。Cz 電極は足に関する運動野が脳の頭頂部に存在するため選出し、スモールラプラシアンフィルタが適用できるように残りの4つを選出した(図3.1)。また、EEGの計測時には定常成分

図 4.1: EEG 計測時のタイムスケジュール

図 4.2: g.tec 社の g.USBamp

と ERD とは無関係な高周波成分を削除するために通過帯域を 0.3Hz から 36Hz とした 2 次のバタワースバンドパスフィルタを用いた。

4.2 EEG の解析と BCI の構築

4.2.1 スペクトル密度推定による ERD の確認

まず Cz 電極で計測された EEG & Cz 電極に対してスモールラプラシアンフィルタを用いた際の EEG を図 4.3 に添付する。ここで、 $x_A(t)$ は A 電極によって計測された波形であるとして Cz 電極に対してスモールラプラシアンフィルタを用いた際の波形 z(t) は以下

図 4.3: Cz 電極の EEG (上) とスモールラプラシアンフィルタを用いた EEG (下)

である。

$$z(t) = x_{Cz}(t) - \frac{1}{4}(x_{C1}(t) + x_{C2}(t) + x_{FCz}(t) + x_{CPz}(t))$$
(4.1)

スモールラプラシアンフィルタの定義から、頭皮上で Cz 電極に際立った電位分布が獲得されていることが期待できる。

次にスモールラプラシアンフィルタを用いた EEG の rest 状態(8 秒間)の波形と walk 状態(8 秒間)の波形それぞれに対してパワースペクトル密度推定を行った。スペクトル密度推定には 1 秒間(128 点)の時間窓を用いたウェルチのオーバラップ法を利用し、オーバラップは 0.5 秒(64 点)とした。 rest 状態と walk 状態は計 7 回繰り返し行なっているため図 4.4 に 7 回分すべてのスペクトル密度の比較を示す。また図 4.5 に 7 回分の平均を示す。ERD の生ずる周波数帯域は個人差があるとされるが、 μ 律動(8-12Hz)や β 律動(18-26Hz)でパワーの減少が観測できる報告があり [49]、また [19] では 6-40Hz の領域に渡って ERD を検知し BCI を構築した例がある。概ね先行研究において観測されている周波数帯域で walk 時のパワーの減少が確認された。

しかし、平均(図4.5)を確認すると4、8、20Hz 付近で際立ったパワーの減少が見られるが、個々のスペクトル密度(図4.4)は必ずしもパワーの減少がすべてのサイクルで同様に確認できることを示してはいない。例として 20Hz で際立ったパワーの減少(ERD)が生ずると考えた場合には、図4.4の上から2番目に関しては検知ができないことになる。従って、ERD を検知してBCIを動作させることを考える場合には、複数の周波数帯域のパワーを総合的に評価する必要があると考えられる。

図 4.4: rest 時と walk 時のパワースペクトル密度の比較

図 4.5: rest 時と walk 時のパワースペクトル密度の平均 (7回分)の比較

また、パワースペクトル密度の絶対値を評価するよりも rest 状態と walk 状態の相対的なパワーの差の方が重要であることが言える。例として、図 4.5 から 20Hz のパワースペクトル密度が 0.1 以下になった場合に walk 状態であると判定する BCI は図 4.4 の下から二番目のグラフの rest 状態を walk 状態と判定することになる。パワーの絶対値がさほど重要な指標にならないことは、EEG の計測が電極のインピーダンス (ジェルの塗布状況)や頭皮のインピーダンス (皮脂や毛髪)に左右されることからも想定されることである。

従って ERD を検知するためには複数の周波数帯域に跨って、rest 状態と walk 状態の相対的なパワーの変化に着目する必要があると考えた。

4.2.2 足動作検知のための信号処理

解析結果に基づいて、EEG に対して以下の信号処理によって特徴量を獲得した。

- 1. 2 種類のバンドパスフィルタ:通過帯域を 3-14Hz と 13-33Hz
- 2. スモールラプラシアンフィルタ: Cz 電極に適用
- 3. バーグ法によるスペクトル密度推定:時間窓を1秒(128点) オーバラップ127点
- 4. ローパスフィルタ:スペクトル密度の時間変化の平滑化
- 5. ハイパスフィルタ:パワースペクトル密度の時間変化の定常成分カット

図 4.6: EEG から特徴量を獲得する処理の流れ

上記の処理における $1.\sim5$. の概略図を図 4.6 に示す。 $1.\sim3$. の処理では 2 種類のバンドパスフィルタを通過した EEG に対してそれぞれスペクトル密度推定が行われる。 3-14Hz のバンドパスフィルタを通過した波形に関しては、パワースペクトル密度の 4-13Hz のみを利用し、13-33Hz のバンドパスフィルタを通過した波形に関しては、パワースペクトル密度の 15-32Hz のみを利用した。この着目する帯域は、EEG の α 律動及び μ 律動、 β 律動などの周波数帯域と解析した EEG のピークの位置を加味し、経験的に定めた。時間窓は 1 秒間であるため周波数分解能は 1Hz であり、各時間窓において計 28 の特徴量が得られる。時間窓は 1 サンプル点ずつ移動させるため、1/128 秒毎に 28 次元の特徴量が出力される。図 4.7 に $1.\sim3$. の処理を施した出力を添付する。図 4.7 からは、特徴量が全体的に減少している様子が 8 回分観測できる。また特徴量はパワースペクトル密度の時間変化に他ならないため、特徴量の減少は ERD であり 8 回の足動作に由来していると考えられる。

次に、特徴量の変化が rest 状態と walk 状態において際立つことが重要であり、同一状態においては変化が少ない方が好ましいことを考慮し 4. ローパスフィルタによる平滑化を行った。この処理によって、状態が切り替わる程の大きな特徴量の変化が強調される(図 4.8)。

また、ERD を検知する場合には rest 状態と walk 状態の各状態間のパワースペクトル密度の相対的差異が重要であると考えられることを前述した。同時に、分類器にとっても相対的差異のみが重要であり絶対値は影響しないことを考慮し、5. ハイパスフィルタによって定常成分をカットした(図 4.9)。

バーグ法によるスペクトル密度推定値をピリオドグラムに置き換え、同様の処理を行った際の特徴量の時間変化を図 4.10 に示す。またバーグ法をウェルチのピリオドグラム法で置き換えた際の特徴量の時間変化を図 4.11 に示す。いずれもスペクトル密度推定として広く用いられる方法であるが、バーグ法を用いた場合のスペクトル密度の時間変化(図 4.9)は特徴量(ERD)が目視できるほどに強調されていることが分かる。

4.2.3 分類器

ここまでの処理によって得られた特徴量の次元は 28 であり、以後 $x_i \in \mathbb{R}^{28}$ と表記する。ここに i はサンプル時刻を表すインデックスである。 x_i はサンプル時刻 i における特徴量を格納しており、特徴量は ERD を強調するための処理が施されたものである。仮に特徴量 x_i を引数として rest 状態か walk 状態を識別する分類器 $y_i = f(x_i)$ を、2.3 で述べた手法によって構築することを考えた場合には、時刻の情報を完全に破棄して各時刻の x_i に対して個々に分類を行うことになる。各点の正解ラベルは EEG 計測時の rest 状態を x_i 0、walk 状態を x_i 1 とした(図 x_i 2 とした(図 x_i 3 とした(図 x_i 4.12)。

ただし、フィルタの特性上 EEG 計測時の最初のサイクル $(0 \sim 16 \)$ は学習データとしても検証データとしても用いないこととし、利用するのは $114 \$ 秒間 $(16 \)$ $0 \sim 128 \)$ でデータ点数は 14336 点 $0 \sim 128 \)$ とする。

バーグ法による特徴量を用いた分類

まず、バーグ法により推定されたパワースペクトル密度から得た特徴量を用いて、ロジスティック回帰による分類を行った。7 交差検証により Accuracy を算出した結果、ロジスティック回帰では 0.826 となった。続いて、同日に同一被験者から計測した EEG を用

図 4.7: 28 個の特徴量の時間変化

図 4.8: ローパスフィルタを追加した 28 個の特徴量の時間変化

図 4.9: ローパスフィルタとハイパスフィルタを追加した 28 個の特徴量の時間変化

図 4.10: ピリオドグラムを用いた 28 個の特徴量の時間変化

図 4.11: ウェルチのピリオドグラム法を用いた 28 個の特徴量の時間変化

図 4.12: 学習時の教師信号 (0: rest 状態、1:walk 状態)

いて抽出した特徴量 (14336 点) に対しての学習済モデルのテスト Accuracy は 0.729 となった。

交差検証時に比べ著しい性能の低下が見られる。ロジスティック回帰にはハイパーパラメータが用いられていないため、同一被験者であっても新規の EEG に対しては上手く特徴量が得られていない可能性が示唆される。

EEG の場合は同一被験者であり、仮に脳活動がほとんど等しくとも頭皮やジェルの状況に応じて計測される EEG の波形には差異が存在することが想定される。従って獲得された 28 個の特徴量のうちのいずれかが、訓練データとテストデータの間で大きく変化している場合には分類器の性能低下が起こる。そこで、28 個の特徴量の中から分類に関連する重要な次元を選定することとした。

次元削減として用いられる PCA では変換先で各成分が無相関となるように変換が行われる。すなわち変換前において相関のある成分は適切な線型結合によって1つの成分に集約される。今回の場合は ERD を抽出することから開始したために、28 次元の特徴量の各成分は明らかに相関性を有しており(図 4.9) 一方で期待される ERD の挙動とは異なる波形も見受けられる。PCA によって不要な成分を削除することで、分類器のテストデータへの性能の向上を試みた。

結果として、次元削減によって 28 次元を 2 次元へ変換した場合にはロジスティック回帰の交差検証 Accuracy は 0.787 となった。一方でテスト Accurcy は 0.842 となった。交差検証の結果は PCA を用いる前に比べて悪化しているが、テストの結果は向上した。この結果から 28 次元から 2 次元に削減された際に、削除された次元 26 次元に過学習の要因が含まれていたものと推測できる。

ウェルチ法特徴量を用いた分類

次に、ウェルチ法によって推定されたパワースペクトル密度から得た特徴量を用いて、ロジスティック回帰による分類を行った。7 交差検証により Accuracy を算出した結果、ロジスティック回帰では 0.889 となった。続いて、同日に同一被験者から計測した EEGを用いて抽出した特徴量 (14336 点) に対しての学習済モデルのテスト Accuracy は 0.849

表 4.1: テスト Accuracy の比較

分類手法\解析手法	バーグ	ウェルチ
LR	0.729	0.849
PCA + LR	0.842	0.843
LDA	0.829	0.839

となった。また、PCA を用いた次元削減による分類を行った場合の Accuracy は交差検証で 0.758、テストで 0.846 となった。表 6.2 に分類手法(ロジスティック回帰を LR と表記)とスペクトル密度推定の手法の組み合わせに対するテスト Accuracy の表を添付する。

4.2.4 考察

この結果は想定外のものであり、バーグ法によって抽出された特徴量である図 4.9 に比べ、ウェルチ法によって抽出された特徴量である図 4.11 の方が一見、粗悪な特徴量に見えるためである。しかし、バーグ法とウェルチ法の特徴量のいずれも PCA による第一主成分は極めて似た波形(相関係数 0.875)である(図 4.13、図 4.14、図 4.15)。

バーグ法で得られた特徴量に関しては、第一主成分が図 4.13 の波形になることは図 4.9 を見れば計算前から想定ができる(元来、ERD を可視化するために構築した信号処理であるため)。一方ウェルチ法で得られた特徴量(図 4.11)から明確に ERD を見出すことは難しいが、第一主成分が図 4.14 の波形として得られ ERD が潜在していたことが明らかになった。

また、分類としてもウェルチ法で得た特徴量が良い結果を出しており、28 の特徴量を用いた分類では PCA を用いなくとも同等の Accuracy が得られている。しかし、一方でLDA を用いてバーグ法の 28 の特徴量を入力として分類器の作成を行った場合、テストデータに対して 0.829、ウェルチ法を用いた場合には 0.839 の結果となり、ウェルチ法を特徴量の方が僅かに良い結果だが、特徴量と分類器の組み合わせに関して明確な指針が得られたとは言えない。

図 4.13: バーグ法で得られた特徴量の第一主成分

図 4.14: ウェルチ法で得られた特徴量の第一主成分

図 4.15: 第一主成分の比較

表 4.2: テスト Accuracy の比較

分類手法\解析手法	バーグ	ウェルチ
LR	0.729	0.849
PCA + LR	0.842	0.843
LDA	0.829	0.839
畳み込み NN	0.871	

4.2.5 骨込みニューラルネットワークを用いた分類

次に畳込みニューラルネットワークを用いて次元削減と分類までを一貫して行う手法を用いることとした。スペクトル密度推定によって得た特徴量である x_i を 28 個並べた行列 $z_i=(x_i^T,x_{i+1}^T,\cdots,x_{i+27}^T)\in\mathbb{R}^{28\times28}$ を画像とみなし、畳込みニューラルネットワークの入力とする。

バーグ法によって抽出された 28 個の特徴量を用いた場合のテスト Accuracy は 0.871 であり、バーグ法による特徴を用いた場合で最高の Accuracy となった (表 4.2、ウェルチ については未実施)。

4.3 結論

EEG からスペクトル解析によって ERD を検出し、特徴量として用いることで BCI の構築が可能である。また、パワースペクトル密度から ERD を陽に検出できない場合でもPCA によって潜在的に含まれていることを確認することができる。また、スペクトル密度の時間変化を入力とした分類器を構築することで足の動作を検知することが可能であると結論付けられ、本実験では分類器として畳み込みニューラルネットワークが良い性能を出した。

しかし、特徴量や分類器の可能なすべての組み合わせから、どのような BCI の構成が最適であるかを知ることは困難である。本実験のように各個人に対して BCI を構築する場合はいくつかの組み合わせを検証することは可能であるが商業利用が検討されている BCI

が今後普及するためには、EEGの解析と信号処理、機械学習の技術で個人事に逐一設計を行わなければならない方法では不十分である。

従って End to End 学習による BCI の設計は重要な課題であると考えられる。第 5 章以降、End to End 学習に向けた研究について述べる。

第5章

End to End に向けた提案手法

5.1 提案手法の狙い

5.1.1 従来手法の問題点

典型的な運動想起型 BCI は、運動想起に関連している EEG を取り出すための前処理 $\mathcal{H}(\cdot)$ によって EEG の生データ X から \hat{X} を獲得することが一般的である。

$$\hat{X} = \mathcal{H}(X) \tag{5.1}$$

次に、運動想起に関連している空間的な情報を抽出する処理を $f(\cdot)$ を適用し、特徴量 Z を取り出す。

$$Z = f(\hat{X}) \tag{5.2}$$

続いて Z に対して、運動想起部位 Y を出力する分類器 $g(\cdot)$ を準備することで、運動想起 BCI が構成されている。

$$Y = g(Z) (5.3)$$

従って、BCI は EEGX を引数とした合成関数という形式を取る。

$$Y = (g \circ f \circ \mathcal{H})(X) \tag{5.4}$$

実際に合成関数としてどのようなものが選択されるか、EEG がどのように測定されるかはタスクに依存するが、典型的な CSP を用いた BCI では X を運動想起時の EEG、 $\mathcal H$ をバンドパスフィルタ、f を CSP、g を LDA や SVM として各々個別に設計する。

一方で時間周波数解析に基づく BCI でも特徴抽出として何らかの時間周波数解析 $h(\cdot)$ が関数内に挿入され、

$$Y = (g \circ h \circ f \circ \mathcal{H})(X) \tag{5.5}$$

という形式で表せる。この時、 \mathcal{H} や f は ERD を検出するための神経科学的な知見に基づいた設計がなされる場合もあれば、機械学習の手法が用いられる場合もある。更に時間周波数解析によって得られるパワースペクトログラムに対して非負値行列分解などを用いて特徴量を抽出する試みもある [50,51]。この場合も行列分解による変換を $a(\cdot)$ と置けば

$$Y = (g \circ a \circ h \circ f \circ \mathcal{H})(X) \tag{5.6}$$

と表され、形式上は合成関数である。それぞれの関数の役割を明示しなければ、BCI は単に以下の合成関数である。

$$Y = (f_K \circ \dots \circ f_1)(X) \tag{5.7}$$

すなわち BCI は設計を終えた時には何らかの合成関数として構築されている。実際に設計を行う際には各々の合成関数に対して関数族を仮定し、学習やヒューリスティクスによって関数を決定し、最後に合成する。しかしこのとき、BCI のデータの流れから明らかに関数 f_i を設計するためには f_{i-1} の設計が終了していなければならない。

更に、商業利用が目される中で従来の方法によって設計が個別に行われることを想定した場合には BCI の設計者の負担と不足が見込まれる。

5.1.2 End to End 学習

End to End 学習による狙いは EEG の個別の解析を排除し、BCI の設計を自動化することである。

図 5.1: 従来の BCI 設計法

図 5.2: 提案する BCI 設計法

本研究では BCI が元来合成関数として構築されてきたことを考慮し、適切なニューラルネットワークを構成することで End to End 学習を目指した。ニューラルネットワークの実体は巨大な合成関数であり、事実上単なるパラメトリックな数理モデルである。誤差逆伝播学習によって原理上極めて深い合成関数の形式であっても学習が可能であるため、問題に応じてネットワーク構造の設計を適切に行うことで、特徴量抽出と分類を同時に達

成できる可能性がある。更にその学習のアルゴリズム自体は極めて単純であるが効果的に働き [52]、再学習可能であるため有用なニューラルネットワークの構造が発見された場合にその再利用性が高い。加えて、ニューラルネットワークの深層構造によって高い性能が引き出されること [53] や、モデルの複雑さと比較して最適化問題の目的関数は病理的ではない、あるいは病理的な形状を回避できることが示唆されるようになった [54]。

更にニューラルネットワークは学習済のパラメータを初期値に再学習が可能である。また、学習済のパラメータの一部を定数として扱うことで、一種の特徴抽出器として転用(転移学習)することもできる。この性質を利用することで End to End で多数の人間の EEG を学習させておき、実際に BCI を利用する際には個別用に転移学習という形で簡易に設計が済まされる。従来の設計方法との違いの概念図を図 5.1、5.2 に示す。

初めに提案手法の大部分を占めるニューラルネットワークについて説明する。ニューラルネットワークは近年、"深層学習"あるいは"ディープラーニング"の名の元に、再注目を浴びている学習モデルである。ニューラルネットワークは元々脳の神経活動を模倣したモデルとして提案されたが、現在では学習の力学特性や統計物理学の知見など数理的な解析が行われている [53,54]。あるいはヒューリスティクスによる発展が著しい。従って、本論文では単にある特定の形式で表される数理モデルとしてニューラルネットワークを扱う。

5.2 ニューラルネットワーク

5.2.1 ニューラルネットワークに用いられる層

Linear 層

ニューラルネットワークで最も基本的な層は Linear 層である。Linear 層は入力としてベクトル $x\in\mathbb{R}^D$ 、パラメータとして $W\in\mathbb{R}^{d\times D}$ と $b\in\mathbb{R}^d$ を有した関数 L(x,W)=Wx+b である。具体的には入力を $x=(x_1,\cdots,x_D)^T$ に対して出力 $y=(y_1,\cdots,y_d)^T$ を以下で

表すことができる。

$$y_j = \sum_{i=1}^{D} w_{j,i} x_i + b_j \tag{5.8}$$

ここに $w_{i,i}$ は行列 W の (j,i) 成分、 b_i はベクトル b の j 番目の成分である。

Convolution 層

Convolution 層はパラメータとして $H \in \mathbb{R}^{P \times Q \times C \times L}$ と $B \in \mathbb{R}^{I \times J \times L}$ を有し、入力を $X \in \mathbb{R}^{I \times J \times C}$ として、出力 $Y \in \mathbb{R}^{I' \times J' \times L}$ は以下で表される。

$$y_{i,j,l} = \sum_{c=1}^{C} \sum_{p=0}^{P-1} \sum_{q=0}^{Q-1} x_{i+p,j+q,c} h_{p,q,c,l} + b_{i,j,l}$$
 (5.9)

ここでも n 階のテンソル $A \in \mathbb{R}^{D_1,\cdots,D_n}$ の (d_1,\cdots,d_n) 成分を a_{d_1,\cdots,d_n} と表記している。 出力テンソルの大きさを決める I',J' は I,J と P,Q に依存し、それぞれ I'=P-I+1 と J'=Q-J+1 となる。しかし、Convolution 層は実応用では stride や padding、dilation などのテクニックによって更に複雑な動作をする。これらのテクニックはそれぞれハイパーパラメータを持ち、I',J' はその全てに依存する。

Recurrent 層

Recurrent 層は入力 $X=(x_1,\cdots,x_T)\in\mathbb{R}^{D\times T}$ 、出力 $Y=(y_1,\cdots,y_T)\in\mathbb{R}^{d\times T}$ として以下で表される。

$$y_t = \tanh(W_{in}x_t + W_{out}y_{t-1} + b) \tag{5.10}$$

ここにパラメータは $W_{in}\in\mathbb{R}^{d\times D}$ と $W_{out}\in\mathbb{R}^{d\times d}$ ならびに、 $b\in\mathbb{R}^d$ である。元々系列データへの応用のために考案されたため、D 次元のベクトル $x_t\in\mathbb{R}^D$ が時間変化していくような場合を想定して (5.10) と定式化される。しかし、実際には入力は画像のような静的なデータでも構わなく、画像を左から右に走査するような働きを担う。 $\tanh(\cdot)$ は双曲線正接関数であるが、ニューラルネットワークの活性化関数として広く持ちいられている。

LSTM 層

LSTM は Long Short-Term Memory の略であり、LSTM 層は Reccurent 層が長期的な系列データを上手く学習できない問題を解決した [55]。 LSTM 層は入力 $X=(x_1,\cdots,x_T)\in\mathbb{R}^{D\times T}$ 、出力 $Y=(y_1,\cdots,y_T)\in\mathbb{R}^{d\times T}$ として以下で表される。

$$i_t = \sigma(W_{ii}x_t + W_{hi}h_{t-1} + b_i) \tag{5.11}$$

$$f_t = \sigma(W_{if}x_t + W_{hf}h_{t-1} + b_f)$$
 (5.12)

$$o_t = \sigma(W_{io}x_t + W_{ho}h_{t-1} + b_o) \tag{5.13}$$

$$g_t = \tanh(W_{iq}x_t + W_{hq}h_{t-1} + b_q) \tag{5.14}$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t \tag{5.15}$$

$$y_t = o_t \odot \tanh(c_t) \tag{5.16}$$

ここに \odot は同じ次元のベクトルの要素ごとの積である。パラメータは $W_{ii},W_{if},W_{io},W_{ig}$ \in $\mathbb{R}^{d\times D}$ と、 $W_{hi},W_{hf},W_{ho},W_{hg}$ \in $\mathbb{R}^{d\times d}$ および、 b_i,b_f,b_o,b_g \in \mathbb{R}^d である。Recurrent 層 同様に、系列データを想定した定式化がなされているが、実際には入力が画像でも構わない。 $\sigma(\cdot)$ はシグモイド関数であり (2.47) と同じものである。ここでのシグモイド関数は、値域が (0,1) であるために用いられている。

 i_t, f_t, o_t, g_t は現在の入力 x_t と過去の出力 y_{t-1} を引数に取り、それぞれ個別のパラメータを用いて値が算出される。 c_t は Memory Cell と呼ばれ、過去の情報を層の内部に記憶する役割を担っている。 $f_t \in (0,1)^d$ を乗じることで、過去の情報 c_{t-1} を一定の割合のみ保持し(あるいは忘却し)、 i_t に対して $g_t \in (-1,1)^d$ を乗じた値を新たに加算して保持する。 y_t は内部情報である c_t を $(-1,1)^d$ にスケーリングしたベクトルと o_t との要素積によって算出される。すなわち、 o_t の値が内部情報 c_t に応じて大きさと正負が調整されてLSTM 層の出力となる。

5.2.2 活性化関数

ここではパラメータを持たない変換について述べる。

シグモイド関数

シグモイド関数 $\sigma(x)$ は以下で定義される。

$$\sigma(z) = \frac{1}{1 + \exp(-z)} \tag{5.17}$$

ニューラルネットワークは当初、神経活動の数理モデルとしての一面を有しており、入力値がある閾値を超えると発火するというモデルを表現するためにステップ関数が利用されていた。シグモイド関数は、ステップ関数を微分可能な形で表現することを動機に考案された。

双曲線正接関数

双曲線正接関数 tanh(z) は以下で定義される。

$$\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$$
(5.18)

先に述べたシグモイド関数とは $\sigma(z)=(anh(x/2)+1)/2$ という関係にあり、負の値を 取ることもできるため状況に応じてシグモイド関数の代わりに用いられる。

ランプ関数

ランプ関数はニューラルネットワークでは Rectified Linear Unit(ReLU) 関数と呼ばれ、 以下で表される。

$$ReLU(z) = \max(z, 0) \tag{5.19}$$

入力が正で-1の勾配を持ち、その他の場合は勾配は0となる。この性質がニューラルネットワークの勾配消失問題を大きく改善したとされる。

leaklyReLU 関数

ReLU 関数が入力が負の場合にも値を有するように提案された。

$$leaklyReLU(z) = \max(z, 0) + \alpha \min(z, 0)$$
(5.20)

図 5.3: 5 つの活性化関数

入力が正で-1の勾配を持ち、その他の場合は勾配は α でハイパーパラメータである。

elu 関数

ReLU 関数を全域で微分可能にするように調整された関数。

$$elu(z) = \max(z, 0) + \min(\alpha(\exp(z) - 1), 0)$$
(5.21)

図 5.3 はここまでに述べた 5 つの活性化関数の入出力を表した図である。どのような場面でどの活性化関数が有効であるか、理論的な根拠は確認されておらず、試行錯誤的に決定される。

ソフトマックス関数

ソフトマックス関数は一般的に、分類問題におけるニューラルネットワークの出力層に 用いられる。ベクトルの入力を受け取りベクトルの出力を行うが、以下に要素毎の計算を 示す。

$$softmax_i(z) = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$
 (5.22)

ここで、 z_i はベクトル z の i 番目の要素である。定義から明らかに、値域は (0,1) に制限され、出力の要素の総和は 1 である。

5.2.3 ニューラルネットワークの設計と学習

ニューラルネットワークはパラメータを持つ関数とパラメータを持たない関数の合成関数を定義することにより設計される。パラメータを持つ層が入出力関係を柔軟に調整する 役割を担い、活性化関数によって非線形性を与えることが可能となる。

設計されたニューラルネットワークを引数とする損失関数 (汎関数) を定義し、損失関数の最小化問題を解くことで学習を実行する。この際、損失関数はパラメータに関して微分可能なように設計することで誤差逆伝搬法による学習が可能となる。。

クラス分類においては多くの場合にソフトマックス交差エントロピーを用いる。ニューラルネットワークは膨大なパラメータを有するため、学習させる入出力関係に対して冗長である場合がほとんどであり、過学習を抑制する手段を同時に検討しなければならない。機械学習で基本的な正則化に加え、ニューラルネットワークの過学習抑制方法としてはドロップアウトやバッチ正規化、ノイズの入力が用いられる。

5.3 FilterBank Network (提案手法 1)

Convlution 層による FIR フィルタバンク

 ${\sf EEG}$ を $X\in\mathbb{R}^{M\times N\times 1}$ とする。ここに、M は電極の数、N はサンプル点数、1 は後に周波数を示すためのダミーインデックスである。X に対する Convolution 層による演算は以下で表される。

$$u_{m,n,k} = \sum_{c=1}^{C} \sum_{p=0}^{P-1} \sum_{q=0}^{Q-1} x_{m+p,n+q,c} h_{p,q,c,k} + b_{m,n,k}$$
 (5.23)

この演算に関して、 $P=1, b_{m,n,k}=0, C=1$ でパラメータを与えることにより、

$$u_{m,n,k} = \sum_{q=0}^{Q-1} x_{m,n+q,1} h_{1,q,1,k}$$
 (5.24)

図 5.4: Convlution 層を用いた FIR フィルタバンクによるデータの形状変化

という演算を行うことができる。ここでパラメータ $H \in \mathbb{R}^{1 \times D \times 1 \times K}$ と与えることで、フィルタ次数 Q-1 の FIR フィルタ K 個からなるフィルタバンクとなる。

Convlution 層による空間フィルタ

続いて、第2層について Q=1 でパラメータを与えることにより

$$v_{m,n,l} = \sum_{p=0}^{P-1} u_{m+p,n,k} g_{1,q,1,k}$$
 (5.25)

という演算を行うことが可能であり、EEG に対して電極の重み付けを行っていることに相当する。ここで q がパラメータである。

以降ニューラルネットワークの演算を適宜定義することで、2層目以降の層は、EEGを入力としたフィルタバンクからの出力を受け取ることが可能となる。本研究では2層目以降も Convlution 層のみを用いて特徴量の抽出を試みた。提案手法におけるデータの形状の変化について図 5.4 に示す。

同時に最適化可能な点である。具体的なニューラルネットワークの構造は実験結果と共に記す。

5.4 3DConvlution + 2DConvLSTM (提案手法 2)

高階テンソルとしての EEG データ構造

通常、EEG のデータは時間の次元を持つサンプル点数と空間的な情報を有する電極をインデックスとした 2 階テンソルとして表現されるが、本論文では運動想起時の EEG は

時間、電極、周波数をインデックスとした高階テンソルで表されると仮定する。この仮定は EEG 従来より周波数帯域毎に異なる脳波として捉えられてきたこと、特定の身体部位に対応する脳の領域が局所的であること、時系列データであることから妥当であると考えられる。

また電極のインデックスについては任意の配置によってテンソル化がなされるが、頭皮上の空間的配置によって電極間の関連性は異なっている。したがって時間、電極、周波数のインデックスに関して電極のインデックスの取り方を2次元に展開し時間、頭皮上の座標1、頭皮上の座標2、周波数をインデックスとする4階テンソルとして捉え直す。

この場合における EEG の測定データは EEG が $X \in \mathbb{R}^{M_1 \times M_2 \times N \times 1}$ と与えられ、Convlution 層を用いた FIR フィルタバンクは、3DConvlution 層を用いることで以下の式で書き換えられる。

$$u_{m_1,m_2,n,k} = \sum_{c=1}^{C} \sum_{p_1=0}^{P_1-1} \sum_{p_2=0}^{P_2-1} \sum_{q=0}^{Q-1} x_{m_1+p_1,m_2+p_2,n+q,c} h_{p_1,p_2,q,c,k} + b_{m_1,m_2,n,k}$$
(5.26)
$$u_{m_1,m_2,n,k} = \sum_{p_1=0}^{Q-1} x_{m_1,m_2,n+q,1} h_{1,1,q,1,k}$$
(5.27)

 $u_{m_1,m_2,n,k}$ について m_1,m_2 が頭皮上の座標を表すインデックスである。3DConvlution によるデータの形状の変化を図 5.5 に示す。

ConvLSTM

ConvLSTM は、通常の LSTM の Linear 層の計算を Convolution 層に変更することで入力 $X=(X_1,\cdots,X_T)\in\mathbb{R}^{M_1\times M_2\times T\times K}$ を受け取り出力 $Y=(Y_1,\cdots,Y_T)\in\mathbb{R}^{M_1'\times M_2'\times T\times C}$ を出力する。ここに C は任意の正数であり、 M_1',M_2' はパラメータの与え方で決定される。この構造を入れることによって、電極のインデックスを頭皮上に展開しフィルタバンクを通過した 4 階テンソル EEG を入力として受け取ることができる。ここで ConvLSTM 内での Covolution 演算は頭皮上の 2 次元に対して行い、LSTM の処理は時間方向に行うようにする (図 5.6)。

この手法には頭皮空間上で EEG を観測しながら、その時間経過を追うことで運動想起

図 5.5: 3DConvlution 層を用いた FIR フィルタバンクによるデータの形状変化

図 5.6: ConvLSTM によるデータ形状変化

部位を分類するというモデルを構築する狙いがある。また、頭皮上に展開された2次元に対してConvolution 演算を用いることは、電極配置が距離的に近い場合において強い関連性を有するという仮定が入る。Convolution の演算時にパラメータのサイズによって覆われる空間的領域以外の部分は全く関連しないという無限に強い事前分布を与えることになるためである。しかし実際にはConvolution 層を積層することによって、空間的に離れた電極間にも関連性を有する形に修正が可能であるため、事前分布を与えながらも、実際の関連性の探索はニューラルネットワークの学習によって獲得される。

このような仮定を置くことの妥当性を示すものとして、信号源推定を行う際にグラフフーリエ領域へ変換を行うことで良い推定結果が得られるという東らの研究 [39] がある。グラフフーリエでも、空間的に距離の近い電極によって測定される EEG ほど類似性が高いという仮定が決定論的に与えられる。

第6章

実験結果と考察

6.1 提案手法の評価

6.1.1 EEG データ

実験データとして BCI2000 システム [56] を用いて記録された PhysioNet [57] が提供する運動想起データセットを用いた。電極の配置は標準的な 10-10 システム (図 6.1) であり、サンプリング周波数は 160Hz である。109 人の被験者が定められたタイムスケジュールに従い、左手、右手、両手および両足の運動想起を行っている。運動想起のタイムスケジュールを表す図を図 6.2 に示す。運動想起の開始時には被験者の前面に配置されたディスプレイから右手あるいは左手の運動想起の指示が出される。被験者は 4 秒間指示された手の指を開いたり閉じたりする運動想起試行を続け、その後 4.2 秒間の休息時間が与えられる。休息時間を終えると再びディスプレイから両手あるいは両足の運動想起の指示が出され、被験者は 4 秒間の支持された部位の指を開いたり閉じたりする運動想起試行を行う。その後 4.2 秒の休息時間が再び与えられる。計 16.4 秒を 1 サイクルとし、被験者 1 人につき 45 サイクルを繰り返し行う。従って被験者は左手、右手、両手、両足で計 90 回の運動想起を行っている。

PhysioNet が提供する運動想起時の EEG データベースは、世界最大規模の被験者数を 有している。また、EEG の計測時に用いられた BCI2000 システムは運動想起型 BCI のみ

図 6.1: 10-10 システムの電極配置

ならず、多種多様な BCI システムを構築するために公開されたプログラム群であり、多くの脳研究者に利用されている。従って、手法の評価と検討を行うためのデータとして信頼性が高いと考えたため利用した。

6.1.2 評価方法

本研究では各運動想起時間である 4 秒間のデータを取り出して、2 クラス分類の問題を $_4C_2=6$ 種類準備した。ここで運動想起は一人あたり計 90 回行っており 4 部位あるため、1 つの部位につき 22 回あるいは 23 回の試行が行われている。従って準備した 2 クラス問題におけるデータ数は $44\sim46$ となっている。また、以降 2 クラス分類の問題は表

図 6.2: 運動想起 EEG 測定のタイムスケジュール

表 6.1: 分類問題の種類と論文内の表記

分類問題	論文内の表記			
左手 or 右手	LR			
両手 or 両足	HF			
左手 or 両手	LH			
左手 or 両足	LF			
右手 or 両手	RH			
右手 or 両足	RF			

6.1 に示す通り表記する。問題 LR を例にする。ニューラルネットワークは 4 秒間の EEG データを受け取り、L か R かのいずれかを出力するように構成する。EEG データの与え 方及びニューラルネットワークの構成を被験者や問題ごとに変更を行わないことで、単一のニューラルネットワークが被験者に関わらず、また問題に関わらず BCI を構成可能かを評価する。

また評価指標としては正解率を用いる。正解率はニューラルネットワークが EEG を元に出力する分類結果と、EEG 計測時に被験者が行った運動想起が一致している割合である。また、評価に用いられる EEG は学習には用いていないデータである。被験者は 99人とし、それぞれ 6 つの分類問題が準備されているため計 594 の正解率が得られる。 594の正解率はそれぞれ 10-交差検証によって算出する。各問題について 99人の被験者の正解率の平均を取ることで、単一のニューラルネットワークが各問題に適応可能かを評価する。

6.1.3 ニューラルネットワークの構成

n 階のテンソル $A\in\mathbb{R}^{D_1,\cdots,D_n}$ の (d_1,\cdots,d_n) 成分を a_{d_1,\cdots,d_n} と表記する。入力 $X\in\mathbb{R}^{M\times N\times C}$ に対して Convolution 層のパラメータを $H\in\mathbb{R}^{P\times Q\times C\times L}$ として

$$u_{m,n,k} = \sum_{c=1}^{C} \sum_{p=0}^{P-1} \sum_{q=0}^{Q-1} x_{m+p,n+q,c} h_{p,q,c,k} + b_{m,n,k}$$
(6.1)

と計算する。ここでテンソルの各次元について $X \in \mathbb{R}^{space \times time \times frequency}$ であると仮定する。提案手法のニューラルネットワークの構成は入力側から

- 1. 時間平均と時間分散による正規化
- 2. 畳み込み層 $H_1 \in \mathbb{R}^{1 \times 75 \times 1 \times 32}$
- 3. 畳み込み層 $H_2 \in \mathbb{R}^{64 \times 1 \times 32 \times 32}$
- 4. バッチ正規化
- 5. 平均プーリング 1 (プーリングサイズ:75 とストライド:25)
- 6. ドロップアウト
- 7. $H_3 \in \mathbb{R}^{1 \times 12 \times 32 \times 2}$
- 8. 平均プーリング 2 (出力サイズが $1 \times 1 \times 2$ となるように設定)
- 9. ソフトマックス

とした。損失関数としては交差エントロピー関数を用いた。最適化法としては比較的収束が速いとされる Adam を利用した。ドロップアウト率は 0.5 であり、 L_1 正則化や L_2 正則化などの手法は用いていない。平均プーリング 1 は time 方向のみに行った。平均プーリング 2 は出力の要素数が 2 になるように調整し、各要素が 2 クラス分類における logit を出力するようにした。ここでニューラルネットワークでは一般的には用いられない言葉である時間平均と時間分散による正規化について説明する。時間平均と時間分散による正規

図 6.3: LR 問題の正解率ヒストグラム

図 6.4: LR 問題の正解率ヒストグラム

化は、 $X \in \mathbb{R}^{M \times N \times C}$ に対して

$$\mu_{m,1,1} = \frac{1}{N} \sum_{n} x_{m,n,1} \tag{6.2}$$

$$var_{m,1,1} = \frac{1}{N} \sum_{n} (x_{m,n,1} - mu)^2$$
(6.3)

$$x_{m,n,1} \mapsto \frac{x_{m,n,1} - \mu_{m,1,1}}{\sqrt{\text{var}_{m,1,1} + \epsilon}}$$
 (6.4)

という処理を行う層である。

6.1.4 結果

各分類問題における正解率のヒストグラムを示す(図 6.3-6.8)。横軸が正解率で、縦軸が破験者の数である。どの分類問題においても 60~70% 付近の正解率となる被験者が多い。一方で、80% 以上の正解率となる被験者から 50% の正解率となる被験者までいる。

各分類問題における全被験者の平均を表 6.2 に示す。分類問題毎の平均の差異は小さく、タスクに依らず一定の性能を確保できることが分かる。しかし、この結果はバタワースバンドパスフィルタと CSP と LDA を組み合わせた手法 [58] (表 6.3) に対して性能が高いとは言い難い。

RH

16

14

12

12

10

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

cross validation accuracy

図 6.5: LH 問題の正解率ヒストグラム

図 6.6: RH 問題の正解率ヒストグラム

図 6.7: LF 問題の正解率ヒストグラム

図 6.8: RF 問題の正解率ヒストグラム

表 6.2: 提案手法の問題毎の平均

分類問題	平均正解率 0.6712			
LR				
HF	0.6636			
LH	0.6322			
LF	0.6643			
RH	0.6517			
RF	0.6427			

表 6.3: 従来手法の問題毎の平均 [58]

分類問題	平均正解率			
LR	0.6124 0.6701			
HF				
LH	0.7719			
LF	0.8093			
RH	0.7760			
RF	0.8196			

6.1.5 考察

表 6.2 によると提案手法 1 のニューラルネットワークはいずれの問題に対しても平均的には同等の対応力を有するように捉えられる。しかし図 6.3-6.8 からは、問題ごとに異

なったヒストグラムが得られており任意のタスクに対して同等に学習が可能であるとは言い難い。また、問題 LR 以外は従来手法よりも性能が劣っている。

このような結果となった理由として、実験に対して一回の学習に用いるデータ数が高々40個程であったことが問題であると考える。従来手法の最適化は第2章で述べた通り、解析的に実行が可能である。また凸最適化問題であるため、BCIの構成要素1つ1つは仮定した関数族の中で最適であることが保証されている。従って、与えられた分類問題に有効な入出力関係を包含する関数族となっていれば、極めて高い性能を保証することができる。一方でニューラルネットワークの学習は一般的に非凸の最適化問題であり、逐次的な最適化方法を用いなければならない。学習データが少ない場合は逐次最適化で得られる勾配のバリエーションが乏しくなり、探索範囲が極めて狭くなってしまうと推察できる。

一般にニューラルネットワークが表現できる関数の集合は非常に大きい。すなわち提案 した手法は分類問題に有効な入出力関係を包含する関数族となっているはずである。し かし、学習データが少ない場合には大きな関数の集合の中を十分に探索することができ ない。

従って特定のタスクに対する個人のための BCI を、ごく少数の学習データによって構築する場合にはニューラルネットワークを用いる方法は不適だと考えられる。

6.2 被験者のデータを混合した BCI 構築

6.2.1 データの混合

実験では LR 問題のみを扱った。LR 問題のデータを 50 人分集めすべてのデータを統合し、2200 個へと増加させた。すなわち左手の運動想起が 1100 回分と右手の運動想起が 1100 回分準備されたことになる。実際には質の悪い EEG に関しては排除したため、右手のデータを 1042 個、左手のデータを 1050 個用いることにし 10-交差検証によって正解率を算出した。

表 6.4: 10 交差検証の内訳

検証 1	検証 2	検証 3	検証 4	検証 5	検証 6	検証 7	検証 8	検証 9	検証 10
0.8318	0.8136	0.7909	0.7955	0.7909	0.7500	0.8090	0.8318	0.8045	0.8136

6.2.2 混合データに対する結果

ニューラルネットワークの構造やハイパーパラメータの調整は行っておらず、個人事に 学習を行った際に使ったニューラルネットと全く同等のモデルを用いた。結果として交差 検証の平均正解率は 0.8032 となった。

また表 6.4 に 10 回の検証のそれぞれの正解率を示した。各検証では 50 人の被験者のデータからランダムに 220 個のデータが検証データに用いられ、残りの 1980 個のデータが学習データとして用いられている。どのような組み合わせで学習が行われても 75% 以上の高い性能を発揮している。

学習時の Accuracy の変化を図 6.9 に示す。訓練データに対する Accuracy は学習 epoch が進む毎に増加傾向にあるにも関わらず、検証データに対する Accuracy は学習 epoch が進むに連れて減少していく様子が分かる。現状では過学習に陥ってしまっていることが確認される。

6.2.3 活性化関数に elu を用いた場合の結果

ニューラルネットワークのすべての畳込み層の後に elu 関数を追加した。その他の変更は行っていない。活性化関数をニューラルネットワークに導入することで、通常は表現力を向上させ、高い性能を引き出すことが可能である。ニューラルネットワークは通常何らかの活性化関数を用いるが、活性化関数を用いない場合においても、既に過学習に陥っていることから

結果としては交差検証の平均正解率は 0.8000 となった。活性化関数を用いない場合に比べ、性能は若干劣っている。しかし学習は極めて素早く収束したことが伺える (図 6.10)。ただし、学習を続けても検証データに対する性能は向上しなかった。一方で活性

図 6.9: 過学習の様子:活性関数を用いない場合

図 6.10: 過学習の様子: elu 活性化関数を用いた場合

関数を用いない場合には検証データに対して 80% を越える正解率にたどり着く代わりに 収束は極めて遅い。また学習を続けていくと活性関数を用いる場合と同様に過学習引き起 こしている。

6.2.4 考察

結果は個々の人間に対して学習させた正解率の結果よりも向上している。すなわち、学習データが多い場合には、EEG に対してもニューラルネットワークの性能を活用することが可能であると言える。また、50 人すべての LR 問題に対応できるようにニューラルネットワークが学習を行っている点で、個人事に学習したニューラルネットワークよりも難しいタスクをこなしていると言える。

非線形活性化関数を用いない場合にはニューラルネットワークの表現力は著しく制限される。これは学習によって探索する範囲がもともと狭いためであり、その結果として過学習も引き起こりにくくなる。しかし、実際には学習を続けると次第に過学習が引き起こされているのが分かる。

一方で活性化関数を用いる方法では性能こそは劣っているものの極めて収束が速いのが分かる。これは学習によって探索する範囲が広く、勾配学習の際にパラメータ点が移動できる選択肢が多いため最適点を素早く見つけられたためと考えられる。結果として過学習が起こりやすくなるが、今回の場合は過学習した結果検証データに対して著しく性能が低くなることはなかった。活性化関数を用いない方法と正解率は僅差であるので、適切な正則化によって非線形の表現力を維持しながら過学習を抑えるという方向性が有効だと言える。

多数のデータを用いることでニューラルネットが学習可能になったが、多くの被験者の 学習データを用いて構築されたニューラルネットワークが社会的に大きなメリットを有す るためには、新規の被験者へ転用できることが望ましい。従って以下の実験を実施し、新 規の被験者への適用が可能であるかを検討した。

6.3 新規被験者への適用検討

6.3.1 実験内容と結果

ニューラルネットワークの学習データに用いた 50 人の被験者を、以後トレーナーと記す。またトレーナー以外の被験者 49 人をテスターと記す。まずトレーナーの LR データを入力し、学習が確実に行われたのかを確認した。トレーナーのデータは学習に使われた訓練データも学習に使われていない検証データもまとめてニューラルネットワークへ入力した。従ってニューラルネットワークの評価としては無意味な正解率を算出することとなるが、テスターとの比較を行うために用意した。次にニューラルネットワークに対してテスターの LR データを入力し、その正解率を算出した。すなわち、ニューラルネットワークにとっては全く未知の人間の EEG を受け取ることとなる。

テスターとトレーナーの正解率のヒストグラムを図 6.11-6.12 に示す。図の通りトレーナーとテスターではトレーナーの正解率のほうが比較的高い。これは学習に参加している被験者であるため当然の結果と言える。しかし、テスターのヒストグラム図 6.11 を図 6.13 とを比較した場合に、図 6.11 の方が比較的高い正解率を有する被験者が多いことが分かる。テスターのデータに対する正解率の平均値は 0.7696 であり、テスターに対して個別に学習を行った際の交差検証の正解率 0.6681 よりも高い。

6.3.2 考察

テスターのデータに対する正解率が個々の学習時よりも高かったことから、多数のデータを用いなければニューラルネットワークの性能を引き出せない一方で、多数のデータを用いて学習したニューラルネットワークは運動想起実行時に人間に共通した EEG の特徴を取り出すことができていると考えられる。

図 6.11: テスターの正解率ヒストグラム

図 6.12: トレーナーの正解率ヒストグラム

図 6.13: テスター毎に学習した際の交差検証正解率ヒストグラム

第7章

結論

7.1 まとめ

第1章でBCIに期待される社会的応用と、運動想起型BCIに対する研究背景を述べた。第2章と第3章では、現状多くの特徴量抽出手法や機械学習手法が試されている中で、決定的なBCIのアーキテクチャが生まれていないことについて触れた。第4章ではEEGの計測を行い、計測データからERDを検知する手法について提案した。またERDに基づいた特徴量から足動作を検知する分類器について比較と検討を行った。しかし、脳波解析に基づいてBCIを設計する場合にはユーザーの増大には対応が難しいと考えた。第5章以降は、今後のBCIの社会応用に向けたEnd to End 学習について提案と実験を行った。BCIのアーキテクチャとしてニューラルネットワークを用いることとし、特に以下の2つの項目を強調した。

- 個人差における EEG の解析の必要性を排除
- 人類に共通した一般的な BCI の基本モデル構築

まず第一の結論として、個々人の EEG のみを収集しユーザーに対してオーダーメイドで BCI を構築するようなケースでは、性能面とモデルの冗長性による学習困難を考慮し、 End to End 学習によるメリットは現状ではほとんど存在しないと言える。このような社会 応用の場としては医療用途に特化し EEG の専門家が患者の EEG を解析できるような場面が想定でき、本論文の第4章で示したような手法が適していると考える。

一方で社会応用を考える上では設計済の BCI を再利用することは必須であると思われる。ユーザーが増加した場合に一人ひとりの EEG を解析し BCI を構築することは困難であるためである。本研究の第二の結論として多数の被験者の EEG で学習を行うことにより、新規の被験者に対しても従来手法並の性能を発揮できることが確認された。このことは、個人事の EEG の解析や設計の必要性を排除することに直接的に貢献できる。

次に、多数の被験者の EEG により学習を行った BCI に対して、個人向けに特化させることを想定し転移学習による実験を試みた。結果としては、転移学習によって性能が向上する者と悪化する者が同等数見受けられた。転移学習では学習済モデルが扱うタスクに近いタスクでなければ学習が上手く行かないが、今回の場合はタスクは同じで被験者が全くの新規であるため、学習に参加した被験者の中に EEG が似た人が含まれていることが焦点となりうる。

また、同様にして"人類に共通した一般的な BCI の基本モデル構築"の可能性を示唆した。

7.2 今後の展望

本研究では他分野のニューラルネットワーク応用に比べ、比較的簡易なニューラルネットワークの構造を採用した。理由としては End to End の学習が可能であるかを検討し、EEG への応用の裾野を広げたいと考えていたためである。従って、性能を追求した複雑かつ巨大なニューラルネットワークについては実験を行っていない。ある特定の人物と特定の問題に特化させる場合には更なる工夫が必要であると考えられる。しかし、本研究が示唆する成果によれば、多様性のあるデータで学習した後に特定の問題に調整し直す転移学習が BCI でも可能であると推察される。従って特化型の BCI を考える場合においても、転移学習の可能性を模索していくことが重要だと思われる。

謝辞

制御システム研究室の成清辰生教授には新規の研究の開始を快諾して頂き、新たな研究環境の提供と議論を通して日頃より熱心なご指導を頂きました。ここに深謝の意を表します。同じく制御システム研究室の川西通裕准教授には、研究に要する計算機の提供と終始熱心なご指導をして頂き、深謝致します。機械創成研究室の古谷克司教授には専門外である研究にも関わらず副査を引き受けていただき多くの助言を頂きました。ここに深く感謝の意を表します。トヨタ自動車株式会社の山下勝司様には研究開始当初より事前知識の指導、更にはその後共同研究での議論を通して多くの示唆を頂きました。ここに感謝の気持ちを申し上げます。また、研究において必要なデータの収集において被験者として参加してくださった同期・後輩の皆様にはお礼の意を謝辞にかえさせて頂きます。最後になりましたが、修士課程に進学する機会を与えてくださり、経済的支援と共にありとあらゆる場面で私を温かく見守り続けてくれた両親に深く感謝いたします。

参考文献

- [1] 宮内哲. Hans berger の夢 how did eeg become the eeg? その 1. 臨床神経生理学, Vol. 44, No. 1, pp. 20–27, 2016.
- [2] 宮内哲. Hans berger の夢 how did eeg become the eeg? その 2. 臨床神経生理学, Vol. 44, No. 2, pp. 60–70, 2016.
- [3] 宮内哲. Hans berger の夢 how did eeg become the eeg? その 3. 臨床神経生理 学, Vol. 44, No. 3, pp. 106-114, 2016.
- [4] 谷口豪, 澤田欣吾, 渡辺雅子, 成島健二. 総合病院精神科臨床における脳波の役割. 総合病院精神医学, Vol. 26, No. 1, pp. 11-20, 2014.
- [5] 高梨淳子. 認知症の脳波検査. 医学検査, Vol. 66, pp. 55-61, 2017.
- [6] 石川由羽, 吉田智奈美, 高田雅美, 城和貴. 脳波個人認証のための特徴抽出. 研究報告 数理モデル化と問題解決 (MPS), Vol. 2014, No. 20, pp. 1-6, feb 2014.
- [7] 唐山英明. ウェアラブル型 bmi 走査のための屋外脳波個人認証-直立・歩行時の少人数集団への適用-. 知能と情報(日本知能情報ファジィ学会誌), Vol. 26, No. 2, pp. 606-616, 2014.
- [8] Gaurav Rathee and Niti Gupta himanshu sharma. Direct neural interface(dni). In *Proceedings of National Conference on Recent Advances in Electronics and Communication Engineering(RACE-2014)*, 2014.
- [9] J. R. Wolpaw, N. Birbaumera, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain-computer interfaces for communication and control. *Clinical Neurophysiology*, Vol. 113, No. 6, pp. 767–791, 2002.

- [10] A. LÃlcuyer, F. Lotte, R. B. Reilly, R. Leeb, M. Hirose, and M. Slater. Brain-computer interfaces, virtual reality, and videogames. *Computer*, Vol. 41, No. 10, pp. 66–72, Oct 2008.
- [11] S. Li, A. Leider, M. Qiu, K. Gai, and M. Liu. Brain-based computer interfaces in virtual reality. In 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 300–305, June 2017.
- [12] Bernhard Graimann, Bredan Allison, and Gert Pfurstcheller. *BRAIN-COMPUTER IN-TERFACES*, p. 31. Springer, 2010.
- [13] 宮内哲. 脳を測る -改定 ヒトの脳機能の非侵襲的測定. Technical report, 情報通信研究機構 未来 ICT 研究所, 2014.
- [14] 柏瀬啓起, 松宮一通, 栗木一郎, 塩入諭. 内発的な視覚的注意による定常的視覚誘発電 位の変調効果. In *VISION*, 第 21 巻, pp. 39-44, 2009.
- [15] M. Jeannerod and V. Frak. Mental imaging of motor activity in humans. *Current opinion in neurobiology*, Vol. 9, No. 6, pp. 735–739, 1999.
- [16] G. Pfurtscheller and F. H. L. da Silva. Event-related eeg/meg synchronization and desyn-chronization: Basic principles. *Clinical Neurophysiology*, Vol. 110, No. 11, pp. 1842–1857, 1999.
- [17] 高橋光, 郷古学, 伊藤宏司. 機能的電気刺激 (fes) による感覚情報の事象関連非同期 (erd) への影響. 電子情報通信学会技術研究報告. NC, ニューロコンピューティング, Vol. 108, No. 130, pp. 7–12, jul 2008.
- [18] 高橋光, 郷古学, 伊藤宏司. 運動想起フィードバック訓練による事象関連脱同期 (erd) 出現の検証. システム制御情報学会論文誌, Vol. 22, No. 5, pp. 199-205, 2009.
- [19] G. Pfurtscheller and T. Solis-Escalante. Could the beta rebound in the eeg be suitable to realize a "brain switch"? *Clinical Neurophysiology*, Vol. 120, No. 1, pp. 24–29, 2009.
- [20] D. Huang, K. Qian, S. Oxenham, D. Y. Fei, and O. Bai. Event-related desynchronization/ synchronization-based brain-computer interface towards volitional cursor control in a 2d

- center-out paradigm. In 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), pp. 1–8, April 2011.
- [21] Q. Xu, H. Zhou, Y. Wang, and J. Huang. Fuzzy support vector machine for classification of eeg signals using wavelet-based features. *Medical Engineering & Physics*, Vol. 31, No. 7, pp. 858–865, 2009.
- [22] 北山真平, 佐々木実, 伊藤聡, 安田晴信, 小嶋俊史. 運動準備電位による四肢動作推定. 日本 AEM 学会誌, Vol. 22, No. 2, 2014.
- [23] Yong Li, Xiaorong Gao, Hesheng Liu, and Shangkai Gao. Classification of single-trial electroencephalogram during finger movement. *IEEE Transactions on Biomedical Engineering*, Vol. 51, No. 6, pp. 1019–1025, June 2004.
- [24] 中村翔太郎, 吉川大弘, 古橋武. 脳波を用いた手足の運動想起判別への空間フィルタ適用に関する検討. 日本知能情報ファジィ学会 ファジィ システム シンポジウム 講演論文集, Vol. 25, pp. 19–19, 2009.
- [25] 翔太郎中村, 弘武高橋, 大弘吉川, 武古橋. 脳波を用いた手足の運動想起判別における 準備電位の傾きを用いた特徴抽出法に関する検討. 知能と情報:日本知能情報ファ ジィ学会誌: journal of Japan Society for Fuzzy Theory and Intelligent Informatics, Vol. 22, No. 4, pp. 427–433, aug 2010.
- [26] Zoltan J. Koles, Michael S. Lazar, and Steven Z. Zhou. Spatial patterns underlying population differences in the background eeg. *Brain Topography*, Vol. 2, pp. 275–284, 1990.
- [27] F. Lotte and C. Guan. Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms. *IEEE Transactions on Biomedical Engineering*, Vol. 58, No. 2, pp. 355–362, 2011.
- [28] N. Behrooz, B. Reza, and J. M. Zolghadri. An efficient hybrid linear and kernel csp approach for eeg feature extraction. *Neurocomputing*, Vol. 73, pp. 432–437, 2009.
- [29] Guido Dornhege, Benjamin Blankertz, Matthias Krauledat, Florian Losch, Gabriel Cu-

- rio, and Klaus-Robert Muller. Combined optimization of spatial and temporal filters for improving brain-computer interfacing. *IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING*, Vol. 53, , 2006.
- [30] Kai Keng Ang, Zheng Yang Chin, Haihong Zhang, and Cuntai Guan. Filter bank common spatial pattern (fbcsp) in brain-computer interface. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390–2397, June 2008.
- [31] S. J. Pan and Q. Yang. A survey on transfer learning. *IEEE Transactions on Knowledge* and Data Engineering, Vol. 22, No. 10, pp. 1345–1359, Oct 2010.
- [32] 日野幹雄. スペクトル解析 (統計ライブラリー). 朝倉書店, 1977.
- [33] Hiromu Gotanda, Takaaki Ishibashi, Nobuo Iwasaki, and Katsuhiro Inoue. 独立成分分析の基礎と応用. Technical Report 1743, 数理解析研究所, 2011.
- [34] 村田昇. 入門 独立成分分析. 東京電機大学出版, 2004.
- [35] David Barber. Bayesian reasoning and machine learning. http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/131214.pdf(2018年1月24日).
- [36] C.M.Bishop, 元田浩, 栗田多喜夫, 樋口知之, 松本裕治, 村田昇. パターン認識と機械学習下, pp. 35-44. 丸善出版, 2012.
- [37] Bernhard Graimann, Bredan Allison, and Gert Pfurstcheller. *BRAIN-COMPUTER IN-TERFACES*, pp. 309–310. Springer, 2010.
- [38] 開一夫, 金山範明河内山隆紀, 松本敦宮腰誠. 脳波解析入門:EEGLAB と SPM を使い こなす, pp. 157-186. 東京大学出版会, 2016.
- [39] 東広志, 田中聡久. 信号構造を利用する脳波処理. 計測と制御, Vol. 55, No. 11, pp. 960-965, 2016.
- [40] Kenji Kato, Kensho Takahashi, Nobuaki Mizuguchi, and Junichi Ushiba. Online detection of amplitude modulation of motor-related eeg desynchronization using a lock-in amplifier: Comparison with a fast fourier transform, a continuous wavelet transform, and

- an autoregressive algorithm. *Journal of Neuroscience Methods*, Vol. 293, pp. 289–298, 2018.
- [41] Guo Xiaojing, Wu Xiaopei, and Zhang Dexiang. Motor imagery eeg detection by empirical mode decomposition. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2619–2622, June 2008.
- [42] SachinTaran, VarunBajaj, DheerajSharma, SiulySiuly, and A.Sengur. Features based on analytic imf for classifying motor imagery eeg signals in bci applications. *Measurement*, Vol. 116, pp. 68–76, 2018.
- [43] G. Pfurtscheller, C. Guger, and H. Ramoser. International work-conference on artificial neural networks. In *Engineering Applications of Bio-Inspired Artificial Neural Networks*, 1999.
- [44] Jyoti Singh Kirara and R. K. Agrawala and. Optimal spatio-spectral variable size subbands filter formotor imagery brain computer interface. *Procedia Computer Science*, Vol. 84, pp. 14–21, 2016.
- [45] B. Blankertz, M. Kawanabe, R. Tomioka, F. Hohlefeld, V. Nikulin, and K. R. M. In-variant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing. *Advances in Neural Information Processing Systems*, Vol. 20, pp. 113–120, 2008.
- [46] S. R. Sreeja, Joytirmoy Rabha, Debasis Samanta, Pabitra Mitra, and Monalisa Sarma. *Classification of Motor Imagery Based EEG Signals Using Sparsity Approach*, pp. 47–59. Springer International Publishing, Cham, 2017.
- [47] Rachel Rajan and Sunny Thekkan Devassy. *Improving Classification Performance by Combining Feature Vectors with a Boosting Approach for Brain Computer Interface* (*BCI*), pp. 73–85. Springer International Publishing, Cham, 2017.
- [48] Kai Keng Ang, Zheng Yang Chin, ChuanchuWang, Cuntai Guan, and Haihong Zhang.

- Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b. *frontiers in NEUROSCIENCE*, Vol. 29, pp. 2390–2397, March 2012.
- [49] Bernhard Graimann, Bredan Allison, and Gert Pfurstcheller. *BRAIN-COMPUTER IN-TERFACES*, pp. 98–99. Springer, 2010.
- [50] M. Sakai. Kernel nonnegative matrix factorization with constraint increasing the discriminability of two classes for the eeg feature extraction. In *2013 International Conference on Signal-Image Technology Internet-Based Systems*, pp. 966–970, Dec 2013.
- [51] Hyekyoung Lee, Andrzej Cichocki, and Seungjin Choi. Kernel nonnegative matrix factorization for spectral EEG feature extraction. *Neurocomputing*, Vol. 72, No. 13-15, pp. 3182–3190, 2009.
- [52] Henry W. Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning work so well? *Journal of Statistical Physics*, Vol. 168, pp. 1223–1247, 2017.
- [53] Hrushikesh Mhaskar and Tomaso A. Poggio. Deep vs. shallow networks: An approximation theory perspective. *Analysis and Applications*, Vol. 14, , November 2016.
- [54] Kenji Kawaguchi. Deep learning without poor local minima. In D. D. Lee, M. Sugiyama,
 U. V. Luxburg, I. Guyon, and R. Garnett, editors, *Advances in Neural Information Processing Systems* 29, pp. 586–594. Curran Associates, Inc., 2016.
- [55] 岡谷貴之. 深層学習, pp. 120-124. 講談社, 2015.
- [56] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw. Bci2000: a general-purpose brain-computer interface (bci) system. *IEEE Transactions on Biomedical Engineering*, Vol. 51, No. 6, pp. 1034–1043, June 2004.
- [57] Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley. Physiobank, physiotoolkit, and physionet. *Circulation*, Vol. 101, No. 23, pp. e215–e220, 2000.
- [58] Hyun Seok Kim, Min Hye Chang, Hong Ji Lee, and Kwang Suk Park. A comparison

of classification performance among the various combination of motor imagery tasks for brain-computer interface. In *6th IEEE Annual International EMBS Conference of Neural Engineering*, pp. 435–438, November 2013.