Express Mail Label No. EV608119736US

JC17 Rec'd PCT/PTO 20 JUN 2005

IN THE CLAIMS:

- 1. (Currently Amended) A 10-desmethyl macrolide comprising a 10-position substituent, wherein the 10-desmethyl macrolide comprises a saturated $C_{13}ON_x$ lactone ring substituted by one or more sugars, having no CH₃ at the 10-position carbon, and wherein x is 0 or 1.
- 2. (Currently Amended) The 10-desmethyl macrolides of claim 1, wherein the 10-position substituent comprises a carbon which is attached to the 10-position carbon of the macrolide lactone ring.
- 3. (Currently Amended) The 10-desmethyl macrolide of claim 1, wherein the 10-position substituent is methylene, substituted methyl, or CHO.
- 4. (Currently Amended) The 10- desmethyl macrolide of claim 3, wherein the 10-position substituent comprises an aryl group.
- 5. (Currently Amended) Themacrolide of claim 1, wherein the macrolide is substituted in the 2-position by methyl and hydrogen or fluorine; in the 3-position by oxo or optionally substituted hydroxy; in the 4-position by methyl; in the 5-position by an oxygen-attached desosamine; in the 6-position by methyl and an optionally substituted hydroxyl; in the 8-position by methyl and hydrogen or fluorine; in the 9-position by oxo; in the 10-position by methylene, CHO, substituted methyl, or carboxy or substituted carboxy; in the 11- and 12-positions by a group forming a fused ring at the 11, 12 and optionally 10-positions; at the 12-position additionally by a methyl group; and at the 13-position by an ethyl group.

6. Macrolides as claimed in claim 1 of formula II, III, IV or V

$$R^{2} = R^{4} \cdot NR^{7}R^{8}$$

$$R^{1} = R^{4} \cdot NR^{7}R^{8}$$

- (1) R is methyl substituted with one or more substituents selected from the group consisting of
- (i) CN,
- (ii) F,
- (iii) CO_2R^3 wherein R^3 is selected from hydrogen, C_1 - C_3 -alkyl or aryl substituted C_1 - C_3 -alkyl, or heteroaryl substituted C_1 - C_3 -alkyl,
- (iv) OR^4 wherein R^4 is selected from hydrogen, C_1 - C_4 -alkyl or aryl substituted C_1 - C_4 -alkyl, or heteroaryl substituted C_1 - C_4 -alkyl, heterocycloalkyl and optionally substituted cycloalkyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkoxy, C_2 - C_4 -alkenyl or aryl substituted C_2 - C_4 -alkenyl, or heteroaryl substituted C_2 - C_4 -alkenyl, heterocycloalkyl and optionally substituted cycloalkyl, aryl or optionally substituted aryl, heteroaryl or optionally substituted heteroaryl,
- (v) $S(O)_nR^3$ wherein n =0, 1 or 2 and R^3 is as previously defined
- (vii) NR⁴C(O)R³ wherein R³ and R⁴ are as previously defined (vii)NR⁴C(O)NR⁵R⁶ wherein R⁴ is defined as defined previously, and R⁵ and R⁶ are independently selected from hydrogen, C₁-C₃-alkyl, C₁-C₃ alkyl substituted with aryl, substituted aryl, heteroaryl, substituted heteroaryl (viii) NR⁷R⁸ wherein R⁷ and R⁸ are independently selected from the group consisting of
- (a) hydrogen
- (b) C_1 - C_{12} -alkyl, and optionally substituted C_1 - C_{12} -alkyl
- (c) C₂-C₁₂-alkenyl, and optionally substituted C₂-C₁₂-alkenyl
- (d) C₂-C₁₂-alkynyl, and optionally substituted C₂-C₁₂-alkynyl
- (e) aryl, and optionally substituted aryl
- (f) heteroaryl, and optionally substituted heteroaryl
- (g) heterocycloalkyl, and optionally substituted heterocycloalkyl
- (h) C₁-C₁₂ alkyl substituted with aryl, and optionally substituted with substituted aryl
- (i) C_1 - C_{12} alkyl substituted with heteroaryl, and optionally substituted with substituted heteroaryl
- (j) C_1 - C_{12} alkyl substituted with heterocycloalkyl, and with optionally substituted heterocycloalkyl, and
- (k) R⁷ and R⁸ taken together with the atom to which they are attached from a 3-10-membered heterocycloalkyl ring which may contain one or more additional heteroatoms and may be substituted with one or more substituents independently selected from the group consisting of

- (aa) halogen, hydroxy, C₁-C₃-alkoxy, alkoxy-C₁-C₃- alkoxy, oxo, C₁-C₃-alkyl, aryl and optionally substituted aryl, heteroaryl and optional substituted heteroaryl
- (bb) CO₂R³ wherein R³ is as previously defined, and
- (cc) C(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined,
- (ix) aryl, and optionally substituted aryl, and
- (x) heteroaryl, and optionally substituted heteroaryl,
- (2) C_2 - C_{10} -alkyl,
- (3) C_2 - C_{10} -alkyl substituted with one or more substituents selected from the group consisting of
- (i) halogen,
- (ii) OR⁴ wherein R⁴ is as defined previously
- (iii)-CHO,
- (iv) oxo
- (v) NR^7R^8 wherein R^7 and R^8 are defined as previously
- (vi) =N-O-R⁴ is wherein R³ is as previously defined
- (vii)-CN
- (viii)-S(O)_nR³ wherein n = 0, 1 or 2 and R³ is as previously defined
- (ix) aryl, and optionally substituted aryl
- (x) heteroaryl, and optionally substituted heteroaryl
- (xi) C₃-C₈-cycloalkyl, and optionally substituted C₃-C₈-cycloalkyl
- (xii)heterocycloalkyl, and optionally substituted heterocycloalkyl
- (xiii) NR⁴C(O)R³ where R³ and R⁴ are as previously defined
- (xiv) NR⁴C(O)NR⁵R⁶ wherein R⁴, R⁵ and R⁶ are as previously defined
- (xv) = $N-NR^7R^8$ wherein R^7 and R^8 are as previously defined
- (xvi)=N-R⁴ wherein R⁴ is as previously defined
- (xvii)=N-NR⁴C(O)R³ wherein R³ and R⁴ are as previously defined, and (xviii)=N-NR⁴C(O)NR⁵R⁶ wherein R⁴, R⁵ and R⁶ are as previously defined,
- (4) C_2 - C_{10} -alkenyl,
- (5) C_2 - C_{10} -alkenyl substituted with one or more substituents selected from the group consisting of
- (i) halogen,
- (ii) OR⁴ wherein R⁴ is as previously defined
- (iii) O-S(O)_nR³ where n and R³ are as previously defined
- (iv)-CHO,
- (v) oxo,

- (vi)-CO₂R³ where R³ is as previously defined
- (vii)-C(O)-R⁴ where R⁴ is as previously defined
- (viii) -CN
- (ix) aryl, and optionally substituted aryl
- (x) heteroaryl, and optionally substituted heteroaryl
- (xi) C₃-C₇-cycloalkyl
- (xii) C₁-C₁₂-alkyl substituted with heteroaryl
- (xiii)NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- (xiv) NR⁴C(O)R³ where R³ and R⁴ are as previously defined
- (xv) NR⁴C(O)NR⁵R⁶ where R⁴, R⁵ and R⁶ are as previously defined
- (xvi) = $N-O-R^4$ where R^4 is as previously defined
- (xvii)=N-NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- (xviii) =N-NR⁴ wherein R⁴ is as previously defined
- (xix)=N-NR⁴C(O)R³ wherein R³ and R⁴ are as previously defined, and
- (xx)=N-NR⁴C(O)NR⁵R⁶ wherein R⁴, R⁵ and R⁶ are as previously defined,
- (6) C_2 - C_{10} -alkynyl
- (7) C_2 - C_{10} -alkynyl substituted with one or more substituents selected from the group consisting of
- (i) trialkylsilyl
- (ii) halogen,
- (iii) -CN
- (iv) OR4 where R4 is defined as previously
- (v)-CHO,
- (vi) oxo,
- (vii)-CO₂R³ where R³ is as previously defined
- (viii)-C(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined
- (ix)NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- (x) O-S(O)_nR³ where n and R³ are as previously defined
- (xi) C₃-C₇-cycloalkyl
- (xii) C₁-C₁₂-alkyl substituted with heteroaryl
- (xiii)aryl, and optionally substituted aryl
- (xiv) heteroaryl, and optionally substituted heteroaryl
- (xv) NR⁴C(O)R³ where R³ and R⁴ are as previously defined
- (xvi) NR⁴C(O)NR⁵R⁶ where R⁴, R⁵ and R⁶ are as previously defined
- (xvii) =N-O-R⁴ where R⁴ is as previously defined
- (xviii)=N-NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined

- (xix)=N-NR⁴C(O)R³ wherein R³ and R⁴ are as previously defined, and (xx)=N-NR⁴C(O)NR⁵R⁶ wherein R⁴, R⁵ and R⁶ are as previously defined,
- (8) cyclic substituents
- (i) aryl, and optionally substituted aryl
- (ii) heteroaryl, and optionally substituted heteroaryl
- (iii) heterocycloalkyl, and optionally substituted heterocycloalkyl, and
- (iv) C₃-C₇-cycloalkyl, and optionally substituted C₃-C₇-cycloalkyl, and
- (9) C_1 substituents with the exception of 10-methyl derivatives which are part of the above definitions under (1)
- (i) -CHO
- (ii) -CN
- (iii)CO₂R³ wherein R³ is as previously defined
- (iv) C(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined
- (v) C(S)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined
- (vi) C(NR⁴)NR⁵R⁶ wherein R⁴, N⁵ and R⁶ are as previously defined
- (vii) CH=N-O-R⁴ wherein R⁴ is as previously defined
- (viii) CH=N-R⁴ is wherein R⁴ is as previously defined
- (ix) CH=N-NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- (x) CH=N-NR⁴C(O)R³ wherein R³ and R⁴ are as previously defined, and
- (xi) CH=N-NR⁴C(O)NR⁵R⁶ wherein R⁴, R⁵ and R⁶ are as previously defined;
- R1 is selected from the group consisting of
- (1) H
- (2) methyl
- (3) methyl substituted with one or more substituents selected from the group consisting of
- (i) F
- (ii) -CN
- (iii)- CO_2R^{11} where R^{11} is C_1 - C_3 -alkyl or aryl substituted C_1 - C_3 -alkyl, or heteroalkyl substituted C_1 - C_3 -alkyl
- (iv) -C(O)NR⁵R⁶ wherein R⁵ and R⁶ are defined as previously
- (v) aryl, and optionally substituted aryl, and
- (vi) heteroaryl, and optionally substituted heteroaryl
- (4) C_2 - C_{10} -alkyl
- (5) substituted C_2 - C_{10} -alkyl with one or more substituents selected from the group consisting of
- (i) halogen,

- (ii) OR⁴ where R⁴ is defined as previously
- (iii) C₁-C₃-alkoxy-C₁-C₃-alkoxy
- (iv)-CHO
- (v) oxo
- (vi)NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- (vii) =N-O-R⁴ where R⁴ is as previously defined
- (viii) -CN
- (ix) $-S(O)_nR^3$ where n = 0, 1, or 2 and R^3 is as previously defined
- (x)aryl, and optionally substituted aryl
- (xi) heteroaryl, and optionally substituted heteroaryl
- (xii) C₃-C₈-cycloalkyl, and optionally substituted C₃-C₈-cycloalkyl
- (xiii) C_1 - C_{12} -alkyl substituted with heteroaryl, and optionally substituted heteroaryl
- (xiv) heterocycloalkyl
- (xv) NHC(O)R³ where R³ is as previously defined
- (xvi) NHC(O)NR⁵R⁶ where R⁵ and R⁶ are as previously defined
- (xvii)=N-NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- (xviii) =N-R⁴ wherein R⁴ as previously defined, and
- (xix)=N-NHC(O)R³ wherein R³ is as previously defined,
- (4) C_1 - C_{10} -alkenyl substituted with one or more substituents selected from the group consisting of
- (i) halogen,
- (ii) OR⁴ where R⁴ is as previously defined
- (iii)-CHO
- (iv) oxo
- (v) -S(O)_nR³ where n and R³ are as previously defined
- (vi) -CN
- (vii) -CO₂R³ where R³ is as previously defined
- (viii)NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- (ix) =N-O-R⁴ where R⁴ is as previously defined
- (x) -C(O)-R⁴ where R⁴ is as previously defined
- (xi) -C(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined
- (xii)aryl, and optionally substituted aryl
- (xiii) heteroaryl, and optionally substituted heteroaryl
- (xiv) C₃-C₇-cycloalkyl
- (xv) C₁-C₁₂-alkyl substituted with heteroaryl
- (xvi) NHC(O)R³ where R³ is as previously defined

- (xvii) NHC(O)NR⁵R⁶ where R⁵ and R⁶ are as previously defined
- (xviii)=N-NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- $(xix) = N-R^4$ wherein R^4 is as previously defined,
- (xx)=N-NHC(O)R³ wherein R³ is as previously defined, and
- (xxi) =N-NHC(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined,
- (5) C_2 - C_{10} -alkynyl, and
- (6) C_2 - C_{10} -alkynyl substituted with one or more substituents selected from the group consisting of
- (i) halogen,
- (ii) OR⁴ where R⁴ is defined as previously
- (iii)-CHO
- (iv) oxo
- (v) -CO₂R³ where R³ is as previously defined
- (vi) -C(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined
- (vii) -CN
- (viii)NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- (ix) = $N-O-R^4$ where R^4 is as previously defined
- (x) -S(O)_nR³ where n and R³ are as previously defined
- (xi)aryl, and optionally substituted aryl
- (xii) heteroaryl, and optionally substituted heteroaryl
- (xiii) C₃-C₇-cycloalkyl
- (xiv) C_1 - C_{12} -alkyl substituted with heteroaryl
- (xv) NHC(O)R³ where R³ is as previously defined
- (xvi) NHC(O)NR⁵R⁶ where R⁵ and R⁶ are as previously defined
- (xvii)=N-NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
- (xviii) =N-R⁴ wherein R⁴ is as previously defined
- (xix)=N-NHC(O)R³ wherein R³ is as previously defined, and
- (xx) =N-NHC(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined;

R² is selected from the group consisting of

- (1) hydrogen
- (2) OH
- (3) OR³ where R³ is as previously defined
- (4) OC(O)R³ where R³ is as previously defined, and
- (5) O(CO)OR³ where R³ is as previously defined;

and X and Y taken together are selected from the group consisting of

(1) O

- (2) NOR⁴ wherein R⁴ is as defined previously
- (3) N-O C(R⁹)(CR¹⁰)-O-R⁴ where R⁴ is as previously defined and
 (i) R⁹ and R¹⁰ are each independently defined as R⁴, or
 (ii)R⁹ and R¹⁰ are taken together with the atom to which they are attached form a C₃-C₁₂ cycloalkyl ring,
- (4) NR⁴ wherein R⁴ is as previously defined, and
- (5) $N-NR^7R^8$ wherein R^7 and R^8 are as previously defined, or one of X and Y is hydrogen and the other is selected from the group consisting of
- (1) -OR⁴ wherein R⁴ is as previously defined, and
- (2) -NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined.

R^P is selected from the group consisting of

- (1) hydrogen
- (2) R³ as previously defined
- (3) COR³ where R³ is as previously defined;

subject to the proviso that when the structure is IV, Z and M are part of a five- or six- membered ring, said rings optionally being fully or partially unsaturated; for the six- membered ring, the bonding between Z and M is through a carbonyl group; for the five- membered ring, the bonding is directly between Z and M excluding CO; Z and M are independently selected from the group consisting of carbon, oxygen or N; and when M = N a second bridge may exist between this nitrogen and the oxygen of the 12-OH group whereby either an additional annulated oxazole or oxazine ring constitutes part of the molecule; and subject to the proviso that when the structure is V, Z and M are part of a five- or six- membered ring, said rings optionally being fully saturated or fully or partially unsaturated; for the six-membered ring, the bonding between Z and M is through a carbonyl group; for the five-membered ring, the bonding is directly between Z and M excluding CO; Z and M are independently selected from the group consisting of carbon, oxygen or nitrogen; and when M = N a second bridge may exist between this nitrogen and the urethane nitrogen.

- 7. (Currently Amended) A pharmaceutical composition comprising an antibiotic 10-desmethyl macrolide of claim 1 and a pharmaceutical excipient.
- 8. (Cancelled)

DEH-0018

- 9. (Currently Amended) A method of treatment of a human or animal subject to combat bacterial infection thereof, which method comprises administering to said subject an antibiotic 10-desmethyl macrolide of claim 1.
- 10. (Currently Amended) A 6-protected-hydroxy-10-acetyloxymethyl-10,11-unsaturated macrolide analog.