3.2 n×n型线性方程组

本节主要研究 $n \times n$ 型线性方程组有唯一解的充要条件及其解法,线性方程组的一般理论及一般方程组的解法将在第 6 章中进行介绍.

3.2.1 n×n型齐次线性方程组

- 1. 若 $\mathbf{u} \neq \mathbf{0}$ 也是 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的解,则称 \mathbf{u} 是 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的非零解. 齐次线性方程组的解分为两种情况: (1) 只有零解; (2) 有非零解.
- 2. 注: 当 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 有非零解时,它一定是有无穷多个解。

原因:设 \mathbf{u} 是 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的非零解,则 $\mathbf{A}\mathbf{u} = \mathbf{0}$. 在上式两边乘以数 k ,得 $\mathbf{A}(k\mathbf{u}) = \mathbf{0}$. 这说明 $\mathbf{x} = k\mathbf{u}$ 都是 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的解,所以 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 有无穷多个解。

3. 定理 3-5

 $n \times n$ 型齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 只有零解 ⇔ $|\mathbf{A}| \neq 0$...

 $n \times n$ 型齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 有非零解 $\Leftrightarrow |\mathbf{A}| = \mathbf{0}$.

注意:不要把两种情况搞混了。可以这样来想:

当 $|\mathbf{A}| \neq 0$ 时, **A** 可逆,在 **Ax** = **0** 的两边同时从左侧乘 **A**⁻¹,得 **x** = **0**,因此 **Ax** = **0** 只有零解。

这里就和从2x = 0消去 2 的感觉一样。

关于有非零解的情况,想一下具体的例子就很清楚了。例如: $\begin{cases} x_1 + x_2 = 0 \\ 2x_1 + 2x_2 = 0 \end{cases}$ 有非零解.

3.2.2 n×n型非齐次线性方程组

1. 对于非齐次线性方程组,它的解的情况比较复杂。它可能有解,也可能无解;有解时,可能是有唯一解,也可能是有无穷多个解。在这一部分中,我们只对 $n \times n$ 型非齐次线性方程组有唯一解的充要条件及其解法进行研究。

例:
$$\begin{cases} x_1 + x_2 = 1 \\ 2x_1 + 2x_2 = 0 \end{cases}$$
 无解,
$$\begin{cases} x_1 + x_2 = 1 \\ 2x_1 + 2x_2 = 2 \end{cases}$$
 有无穷多个解,
$$\begin{cases} x_1 + x_2 = 1 \\ x_1 + 2x_2 = 2 \end{cases}$$
 有唯一解

2. **定理 3-6** $n \times n$ 型非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有唯一解的充要条件是 $|\mathbf{A}| \neq 0$ (即 \mathbf{A} 可逆), 其解为 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

关于这个定理可以这样想:

当 $|\mathbf{A}| \neq 0$ 时, \mathbf{A}^{-1} 存在. 在 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的两边同时从左侧乘 \mathbf{A}^{-1} ,得 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

所以可以想到 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有唯一解 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

上面的思考过程就和由 2x = 3 得到 $x = \frac{3}{2}$ 的感觉一样。

3. **定理 3-7** 【克拉默(Cramer)法则】 当 $|\mathbf{A}| \neq 0$ 时, $n \times n$ 型非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有

唯一解 $x_i = \frac{|\mathbf{B_i}|}{|\mathbf{A}|}$ $(i = 1, 2, \dots, n)$. 其中, $\mathbf{B_i}$ 是把 \mathbf{A} 的第i 列换为 \mathbf{b} 所得的矩阵。

- 4. 解系数矩阵为可逆矩阵的线性方程组共有三种方法:
 - (1) 初等行变换法 $[\mathbf{A}, \mathbf{b}] \xrightarrow{\text{froph}} [\mathbf{E}, \mathbf{c}],$ 解为 $\mathbf{x} = \mathbf{c}$.
 - (2) 求逆矩阵法 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.
 - (3) 利用克拉默法则 $x_i = \frac{|\mathbf{B_i}|}{|\mathbf{A}|}$.

这三种方法的运算量是依次增加的。

注意:解方程组一般都是用初等行变换的方法,克拉默法则的优点是可以把解的表达式直接写出来。