Teoria Kategorii

Weronika Jakimowicz

Lato 2024/25

Spis treści

1	Początek ko	ńca	1
	24.02.2025	Podstawowe definicje	1
	1.	Przykłady kategorii	1
	2.	Funktory	2
	25.02.2025	Produkty i koprodukty kategorii	5
	1.	O obiektach początkowych i końcowych słów kilka	5
	2.	(Ko)granice funktorów a (ko)produtky	6
	3.	Obiekty i kategorie monoidalne	9
	03.03.2025	Funktory dołączone	11
	1.	Motywacja abstrakcyjnego nonsensu	11
	2.	,	11
	3.	,	13
	10.03.2025	Funktory dołączone własności [wieczny WIP]	14
	1.		14
	2.	, , , , , , , , , , , , , , , , , , , ,	16
	3.	,	18
	17.03.2025		
	1.	Po co właściwie te monady?	
	2.	Definicja i przykłady monad	
	3.	1 6 7	23
	24.03.2025	3 3	
	1.	Kategoria Eilenberga-Moore'a	
	31.03.2025	we back in business	
	1.	Diagramy strunowe [string diagrams]	
	01 04 2025	humpty dumpty	30

Początek końca

W 1945 Eilenberg oraz Mac Lane napisali książkę "General theory of natural equivalences". Jest to powszechnie uznawane jako początek ery abstrakcyjnego nonsenu.

24.02.2025 Podstawowe definicje

1. Przykłady kategorii

Definicja 1.1: kategoria

Kategoria (lokalnie mała) C składa się z:

- obiektów Ob(C)
- oraz zbiorów morfizmów dla wszystkich par $A, B \in \mathsf{Ob}(\mathcal{C})$ oznaczanego $\mathcal{C}(A, B) = \mathsf{Hom}_{\mathcal{C}}(A, B)$, które spełniają:
 - id_X ∈ C(X, X)
 - składają się w dobry sposób, tzn. mamy dobrze określone odwzorowanie

$$\mathcal{C}(A, B) \times \mathcal{C}(B, C) \to \mathcal{C}(A, C)$$

które jest łączne.

Powiemy, że kategoria jest mała, jeśli jej obiekty są zbiorem, a nie klasą.

Dla wygody oznaczymy

$$C_0 := \mathsf{Ob}(C)$$

a jako C_1 będziemy rozumieć wszystkie morfizmy w kategorii C.

Rozważmy kilka prostych przykładów kategorii.

Przykłady

- 1. Kategoria Set, której obiekty Set_0 to wszystkie zbiory, a Set_1 to funkcje między zbiorami z normalnym składaniem funkcji.
- 2. Set_* to kategoria zbazowanych zbiorów, tzn. jej obiektami są pary (X, x_0) , gdzie X to zbiór, a $x_0 \in X$. Morfizmy muszą wtedy zachowywać wyróżniony punkt: $f: (X, x_0) \to (Y, y_0)$, $f(x_0) = y_0$.

- 3. Top to kategoria, której obiekty to przestrzenie topologiczne, a Top_1 to funkcje ciągłe między nimi.
- 4. Toph to kategoria przestrzeni topologicznych, w której morfizmy to klasy homotopii odwzorowań między przestrzeniami. To znaczy, jeśli $X, Y \in Ob(Toph)$ oraz $f_0, f_1: X \to Y$ jest ciągłym odwzorowaniem, dla którego istnieje ciągłe przekształcenie

$$F: X \times [0,1] \rightarrow Y$$

takie, że $F(x,0)=f_0(x)$ oraz $F(x,1)=f_1(x)$, to $f_0=f_1$ jako morfizm w kategorii Toph.

Pozostaje sprawdzić, że jeśli f, f' oraz g, g' to pary homotopijnie równoważnych odwzorowań, to wówczas $f \circ g$ jest homotopijnie równoważne $f' \circ g'$.

- 5. Kategoria Hask, której obiekty to typy w Haskelly, a morfizmy to klasy programów.
- 6. Kategoria relacji Rel, w której obiektami Rel_0 są zbiory, a morfizmami są podzbiory produktu, tzn. Rel(X, Y) zawiera wszystkie $S \subseteq X \times Y$. Wówczas składanie $S \subseteq X \times Y$ oraz $R \subseteq Y \times Z$ definiujemy jako zbiór

$$S \circ R = \{(x, z) : (\exists y \in Y) xRy \land ySz\},$$

gdzie xRy oznacza, że $(x, y) \in R$. Złożenie to działa jak połączenie dwóch relacji spójnikiem "i".

- 7. Niech R będzie tranzytywną i zwrotną relacją na zbiorze X. Definiujemy wtedy kategorię $\mathcal C$ o obiektach $\mathcal C_0=X$ będących elementami zbioru X, a morfizmy między $a,b\in X$ to zbiór 1-elementowy $\mathcal C(a,b)=\{\star\}$, gdy xRy jest prawdą lub zbiór pustym w przeciwnym wypadku.
 - Szczególnym przypadkiem tej kategorii jest topologia na przestrzeni topologicznej, gdzie relacja *R* to zawieranie zbiorów otwartych.
- 8. Graf skierowany tworzy kategorię, której obiektami są jego wierzchołki, a morfizmy to zorientowane ścieżki.

2. Funktory

Definicja 1.2: funktor

Funktor F między kategoriamii $\mathcal C$ a $\mathcal D$

- każdemu obiektowi X kategorii $\mathcal C$ przypisuje obiekt F(X) kategorii $\mathcal D$
- każdemu morfizmowi $\varphi\in\mathcal{C}(X,Y)$ przypisuje morfizm $F(\varphi):F(X)\to F(Y)$ w kategorii $\mathcal D$ taki, że

-
$$F(\psi \circ \varphi) = F(\psi) \circ F(\varphi)$$

-
$$F(id_X) = id_{F(X)}$$

Przykład

 $Ab: Gr \to Ab$ to funktor między kategorią wszystkich grup a kategorią grup abelowych, który grupie G przypisuje jej abelianizację $Ab(G) = G/[G, G] = G^{ab}$.

Definicja 1.3: kategoria odwrotna

Przez **kategorię odwrotną** do kategorii \mathcal{C} rozumiemy kategorię \mathcal{C}^{op} , której

- obiekty to obiekty oryginalnej kategorii: $\mathsf{Ob}(\mathcal{C}^{\mathsf{op}}) = \mathsf{Ob}(\mathcal{C})$
- morfizmy C(X, Y) "odwracają się" $C^{op}(Y, X)$.

Mówimy, że funktor $F: \mathcal{C} \to \mathcal{D}$ jest **kowariantny**, a funktor $F: \mathcal{C} \to \mathcal{D}^{op}$ kontrawariantny.

Zdefiniujmy teraz **kategorię funktorów** między kategoriami \mathcal{C} a \mathcal{D} , $Fun(\mathcal{C},\mathcal{D})$, której obiekty to wszystkie funktory $F:\mathcal{C}\to\mathcal{D}$, a morfizmy to φ takie, że dla dowolnych $X,Y\in\mathsf{Ob}\,\mathcal{C}$ oraz $f:X\to Y$ komutuje diagram

$$F(X) \xrightarrow{\varphi_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\varphi_Y} G(Y)$$

Zbiór morfizmów w tej kategorii oznaczymy Nat(F, G) - **naturalne przekształcenia** funktora F w funktor G.

Przykład

Cup product na kohomologiach $\cup: H^m(X) \otimes H^n(X) \to H^{m+n}(X)$ jest naturalnym przekształceniem między funktorami $H^m(-) \otimes H^n(-)$ i $H^{m+n}(-)$.

Definicja 1.4: równoważność kategorii

Powiemy, że kategorie \mathcal{C} i \mathcal{D} są **równoważne**, jeśli istnieją funktory $F:\mathcal{C}\to\mathcal{D}$ oraz $G:\mathcal{D}\to\mathcal{C}$ takie, że złożenie $F\circ G$ jest naturalnie izomorficzne do $Id_{\mathcal{D}}$, a $G\circ F$ - do $Id_{\mathcal{C}}$.

Przykład

Kategoria skończenie wymiarowych przestrzeni wektorowych nad ciałem k, $Vect_k^{fin}$, jest równoważna kategorii skończenie wymiarowych macierzy nad ciałem k, $Mat^{fin}(k)$.

GRUPOID PODSTAWOWY - dla p. top X obiekty to punkty X, a morfizmy to klasy homotopii ścieżek; jak weźmiemy konkretny punkt i popatrzymy na morfizmy $x \to x$ to mamy grupe podstawową zbazowaną w tym punkcie; grupoid to funktor z p. top w kategorię kategorii (zawęzić: kat. grupoidów); wtedy funkcja ciągła to morfizm między dwoma grupoidami, a homotopia to naturalna transformacj

25.02.2025 Produkty i koprodukty kategorii

1. O obiektach początkowych i końcowych słów kilka

Definicja 1.5: obiekt początkowy i końcowy

Powiemy, że obiekt $C \in \mathcal{C}_0$ jest **początkowy**, jeśli dla każdego $D \in \mathcal{C}_0$ istnieje dokładnie jeden morfizm $C \to D$, $|\mathcal{C}(C, D)| = 1$. Analogicznie definiujemy **obiekt końcowy** C: $\forall D \in \mathcal{C}_0 |\mathcal{C}(D, C)| = 1$.

Przykłady -

- 1. W kategorii, której obiektami jest odcinek $C_0 = [0, 1]$, a morfizmy to relacja \leq obiektem początkowym jest 0, a końcowym 1.
- 2. W kategorii zbiorów obiektem początkowym jest \emptyset , a obiektem końcowym jest singleton.
- 3. W Gr grupa trywialna jest zarówno obiektem początkowym jak i końcowym.
- 4. Kategoria, która ma dwa obiekty bez morfizmów między nimi nie ma obiektu końcowego ani początkowego.

Fakt 1.6

Obiekty końcowe i początkowe, jeśli istnieją, to są jedyne z dokładnością do izomorfizmu.

Dowód

Niech C i C' będą obiektami końcowymi kategorii C. Wiemy, że $C(C,C)=\{id_C\}$, czyli komutujący diagram

$$C \xrightarrow{id_C} C$$

$$\exists ! f \qquad C'$$

daje $g \circ f = id_C$. Analogiczny diagram daje $f \circ g = id_{C'}$. Stąd f i g to para wzajemnie odwrotnych izomorfizmów między C i C'

2. (Ko)granice funktorów a (ko)produtky

Niech $F: \mathcal{I} \to \mathcal{C}$ będzie funktorem, gdzie o kategorii \mathcal{I} myślimy jako o kategorii indeksów. Przez $\mathcal{C}^{\mathcal{I}}$ oznaczmy kategorię wszystkich takich funktorów. Powiemy, że funktor \mathcal{C} jest stały, jeżeli $\mathcal{C}(i) = \mathcal{C}$ dla każdego $i \in \mathcal{I}_0$ oraz $\mathcal{C}(f) = id_{\mathcal{C}}$ dla każdego morfizmu.

Budujemy kategorię, której

• obiekty to wszystkie naturalne przekształcenia funktora F w funktory stałe C, $\varphi: F \implies C$, czyli komutujące diagramy (kostożki)

- a morfizmy to strzałki C o D takie, że diagram

komutuje.

Diagram wyżej można rozpisać jako:

Definicja 1.7: kogranica funktora

Kogranicą (*granica prosta*) funktora F, $\varinjlim F$, nazywamy obiekt początkowy w wyżej zdefiniowanej kategorii naturalnych przekształceń.

Diagram wyżej możemy zdualizować i zamiast rozpatrywać naturalne przekształcenia $\varphi: F \implies C$ możemy rozważyć naturalne przekształcenia $\varphi: C \implies F$, czyli diagramy (stożki)

z morfizmami definiowanymi analogicznie.

Definicja 1.8: granica funktora

Granica (granica odwrotna) to obiekt końcowy powyższej kategorii stożków, lim F.

Rozważmy kategorię \mathcal{I} , która ma dwa obiekty $\mathcal{I}_0=\{0,1\}$. Niech $F:\mathcal{I}\to Set$ będzie funktorem, dla którego F(0)=A, a F(1)=B. Niech φ oraz ψ będzie parą naturalnych przekształceń, dla których

gdzie pionowa strzałka istnieje i jest jedyna, bo $\varinjlim F$ to obiekt końcowy. Jeśli weźmiemy $\varinjlim F = A \times B$, a $\varphi_0 = \pi_A$ oraz $\varphi_1 = \pi_B$ będą rzutami i $f(d) = (\psi_0(d), \varphi_1(d))$, to diagram nadal jest prawdziwy.

Granica odwrotna tego samego funktora, to z kolei suma rozłączna $A \sqcup B$, bo diagram

$$F(0) = A \xrightarrow{\psi_0} D \xleftarrow{\psi_1} F(1) = B$$

$$\lim_{\varphi_0 = i_A} F = A \sqcup B$$

gdzie $f(x) = \varphi_0(x)$, jeśli $x \in A$ oraz $f(x) = \psi_1(x)$ jeśli $x \in B$, komutuje.

Definicja 1.9: (ko)produkt —

Produktem obiektów A i B kategorii C nazywamy granicę prostą (kogranicę) funktora $F: \mathcal{I} \to C$ dla \mathcal{I} oraz F jak wyżej.

Koproduktem obiektów A i B kategorii C nazywamy granicę odwrotną (granicę) funktora $F: \mathcal{I} \to C$

Przykłady -

1. W kategorii grup produkt to iloczyn kartezjański dwóch grup, tak jak w kategorii zbiorów, tj. dla grup A, G, H komutuje diagram

Koprodukt to z kolei produkt wolny tych dwóch grup:

gdzie f nakłada na litery słów G*H pochodzące z G morfizm g, a na litery pochodzące z H - morfizm h.

2. Niech $F:\mathcal{I}\to (P,\leq)$ z dwuobiektowej kategorii \mathcal{I} w zbiór uporządkowany. Wtedy jeśli mamy diagram

$$F(0) = \mathbf{a} \longleftrightarrow \mathbf{d} \longrightarrow F(1) = \mathbf{b}$$

to znaczy, że $d \le a$, $d \le b$ oraz $d \le \varinjlim F$. Żeby więc miało to sens dla dowolnego $d \le a$, b to $\varinjlim F = \inf\{a,b\}$. Analogicznie dostajemy, że $\varliminf F = \sup\{a,b\}$.

3. Jeśli $\mathcal I$ jest kategorią o nieskończenie wielu obiektach bez morfizmów między różnymi obiektami, a $F:\mathcal I\to Set$ jest funktorem w kategorię zbiorów, to wówczas kogranicą tego funktora jest nieskończony iloczyn kartezjański $\prod_{i\in\mathcal I_0}F(i)$, a granicą - nieskończona suma rozłączna $\bigsqcup_{i\in\mathcal I_0}F(i)$.

Fakt 1.10 -

Granica i kogranica funktora, jeśli istnieje, to jest jedyna z dokładnością do izomorfizmu. Stąd również produkty i koprodukty są unikalne.

Dowód

Wynika z uniwersalności obiektów końcowych i początkowych.

Przykład -

Rozważmy funktor $F:\mathcal{I}^{op}\to Grp$, gdzie $\mathcal{I}=(\mathbb{N},\leq)$ taki, że dla każdych $i,j\in\mathbb{N}$, $i\leq j$ mamy

$$F(j) = \mathbb{Z}/p^j\mathbb{Z} \xrightarrow{F(i \to j) = q} F(i) = \mathbb{Z}/p^j\mathbb{Z}$$

gdzie q to morfizm ilorazowy.

Liczby *p*-adyczne to rozszerzenie liczb wymiernych różne od liczb rzeczywistych i zespolonych. Całkowite liczby *p*-adyczne to szeregi

$$\sum_{i=k}^{\infty} a_i p^i,$$

gdzie $k \in \mathbb{N}$ oraz $0 \le a_i < p$. Okazuje się, że całkowite liczby p-adyczne, \mathbb{Z}_p , można zdefiniować jako granicę funktora F:

Granica prosta takiego funktora jest trywialna, ale możemy rozważyć inny funktor, z kategorii \mathbb{Z} z porządkiem, tzn: $G: \mathbb{Z} \to Grp$ taki, że $G(n) = \mathbb{Z}/p^n\mathbb{Z}$, natomiast strzałkę $n+1 \to n$ przekształcamy na odwzorowanie

$$\mathbb{Z}/p^n\mathbb{Z} \ni x \mapsto p \cdot x \in \mathbb{Z}/p^{n+1}\mathbb{Z}.$$

Wtedy granicą prostą G jest $C_{p^{\infty}}$ - pierwiastki p^n -tego stopnia z 1, dla dowolnego n.

3. Obiekty i kategorie monoidalne

Monoid $(M, \star, 1)$ to struktura algebraiczna z binarną operacją oraz elementem neutralnym. Dodatkowo, komutować ma diagram

$$\begin{array}{ccc}
\mathsf{M}^3 & \xrightarrow{\star \times \mathsf{id}} & \mathsf{M}^2 \\
\mathsf{id} \times \star \downarrow & & \downarrow \star \\
\mathsf{M}^2 & \xrightarrow{\star} & \mathsf{M}
\end{array}$$

co znaczy, że działanie jest łączne.

Definicja 1.11: obiekt monoidalny, kategoria monoidalna

Niech $\mathcal C$ będzie kategorią z produktem i elementem początkowym. Niech $M\in\mathcal C$ będzie obiektem, dla którego mamy $\mu:M^2\to M$ oraz $\varepsilon:\{1\}\to M$ takie, że komutują diagramy

$$\begin{array}{c|c} M^3 & \xrightarrow{\mu \times id} & M^2 \\ id \times \mu \downarrow & & \downarrow \mu \\ M^2 & \xrightarrow{\mu} & M \\ M & \xrightarrow{\varepsilon \times id} & M^2 \\ id \times \varepsilon \downarrow & & \downarrow \mu \\ M^2 & \xrightarrow{\mu} & M \end{array}$$

Wtedy M jest obiektem monoidalnym.

Obiekt monoidalny w kategorii Cat nazywa się kategorią monoidalną.

Przykłady

- 1. Dowolna kategoria ${\mathcal C}$ z koproduktem i obiektem końcowym jest kategorią monoidalna.
- 2. Kategoria endofunktorów ma strukturę monoidalną. To znaczy, jeśli mamy dwa endofunktory $F, G \in End(\mathcal{C})$, to potrafimy je złożyć w dobry sposób. Funktor $T \in End(\mathcal{C})$ oraz dwa naturalne przekształcenia $\mu: T^2 \to T$, $\varepsilon: Id \to T$, nazywa się **monadą**.

03.03.2025 Funktory dołączone

1. Motywacja abstrakcyjnego nonsensu

Niech V będzie przestrzenią wektorową nad ciałem k, a B wybraną jej bazą. Dowolne odwzorowanie $B \to V$ możemy rozszerzyć na odwzorowanie liniowe $k[B] = V \to V$. To znaczy, mamy izomorfizm zbiorów

$$Hom(B, V) \cong Hom(V, V)$$
.

W języku abstrakcyjnego nonsensu możemy zdefiniować dwa funktory,

$$\mathsf{Set}(\mathsf{-,U}(\mathsf{-})):\mathsf{Set}^{\mathit{op}}\times\mathsf{Vect}^{\mathit{fin}}_k\to\mathsf{Set}$$

$$\mathsf{Vect}_k(k[-],-):\mathsf{Set}^{op}\times \mathsf{Vect}_k^{\mathit{fin}} o \mathsf{Set}$$

gdzie $U: Vect_k^{fin} \to Set$ to funktor zapominający strukturę przestrzeni wektorowej, między którymi istnieją naturalne izomorfizmy.

$$Set(-, U(-)) \cong Vect_{k}(k[-], -)$$

Definicja 1.12: funktory dołączone

Niech $L: \mathcal{C} \to \mathcal{D}$ oraz $R: \mathcal{D} \to \mathcal{C}$ będą funktorami. Powiemy, że L jest **lewo dołączony** do funktora R, a R **prawo dołączony** do L, jeśli funktory

$$\mathcal{C}(-,R-),\mathcal{D}(L-,-):\mathcal{C}^{op}\times\mathcal{D}\rightarrow\mathsf{Set}$$

są naturalnie izomorficzne. Taką parę funktorów dołączonych oznaczamy $L \dashv R$.

2. Dużo przykładów funktorów dołączonych

1. Niech $R: Set_* \to Set$ będzie funktorem z kategorii zbiorów zbazowanych w kategorię zbiorów, który zapomina o punkcie bazowym. Chcemy teraz znaleźć funktor $L: Set \to Set_*$, który będzie do niego lewo dołączony. Niech $L(X) = X \cup \{X\}$ (lub bardziej obrazowo: $X \sqcup \{*\}$), gdzie y_0 poślemy na $\{X\}$, to znaczy doklejamy do X singleton i staje się on punktem wyróżnionym.

Oba funktory są różnowartościowe na obiektach, więc wystarczy przekonać się, że

$$\mathsf{Set}_*(\mathit{LX}, (\mathsf{Y}, \mathsf{y}_0)) \cong \mathsf{Set}(\mathsf{X}, \mathsf{R}(\mathsf{Y}, \mathsf{y}_0))$$

jest izomorfizmem. Dowolna funkcja $X \to Y$ rozszerza się przez posłanie $\{X\} \mapsto y_0$ na funkcję $(X, \{X\}) \to (Y, y_0)$.

2. Podobna sytuacja ma miejsce, kiedy szukamy lewo dołączony funktor do $R:Ring \rightarrow Rng$ między kategorią pierścieni z jedynką, a wszystkimi pierścieniami. Definiujemy funktor

$$L: Rng \rightarrow Ring$$

jako doklejenie \mathbb{Z} , $L(S)=\mathbb{Z}\oplus S$ z działaniem (n,s)(n',s')=(nn',ns'+ss'+n's), wtedy $(1,0_S)$ jest jedynka w nowym pierścieniu. Pozostaje przyjrzeć się co się dzieje z morfizmami, skoro

$$Rng(S, RT) \cong Ring(LS, T)$$
.

Dowolny morfizm $\varphi:S\to RT$ wystarczy, że trzyma element neutralny ze względu na dodawanie i jest addytywny. Możemy go rozszerzyć na morfizm, który całą pierwszą współrzędną $LS=\mathbb{Z}\oplus S$ posyła w $1_T\in T$, a drugą zgodnie z φ . W drugą stronę wystarczy obciąć morfizm do drugiej współrzędnej.

3. Niech $\Delta: Set \to Set \times Set$ będzie funktorem takim, że $\Delta(C) = (C, C)$. Zaczniemy od szukania funktora dołączonego do niego z prawej strony, czyli $R: Set \times Set \to Set$ takiego, że

$$\operatorname{\mathsf{Hom}}(X,R(Y,Z))\cong\operatorname{\mathsf{Hom}}(\Delta(X),(Y,Z)).$$

Od razu narzuca się $R(Y,Z)=Y\times Z$, czyli zlepiamy współrzędne $\Delta(X)$ w jedną. Przypomnijmy, że iloczyn kartezjański w kategorii zbiorów jest produktem.

Funktor lewo dołączony musi zatem spełniać

$$\operatorname{\mathsf{Hom}}(L(X,Y),Z)\cong\operatorname{\mathsf{Hom}}((X,Y),\Delta(Z)),$$

czyli dowolną funkcję $(X, Y) \to (Z, Z)$ musimy umieć zapisać jako funkcję z pojedynczego zbioru, którym będzie suma rozłączna $L(X, Y) = X \sqcup Y$, czyli koprodukt w kategorii zbiorów.

Historia funktora Δ uogalnia się na dowolną kategorię, w której są produkty i koprodukty:

koprodukt
$$\dashv \Delta \dashv \mathsf{produkt}$$

4. Ustalmy zbiór $Y \in Set_0$ i niech $R : Set \to Set$ będzie funktorem, który zbiorowi X przypisuje wszystkie funkcje z Y w ten zbiór, R(X) = Set(Y, X). Chcemy znaleźć funktor lewo dołączony $L : Set \to Set$ do R. Patrzymy na morfizmy i mamy

$$Set(L(X), Z) \cong Set(X, \underbrace{Set(Y, Z)}_{R(Z)})$$

zbiór po prawej to funkcje z X w funkcje z Y w Z. Można to przedstawić jako funkcje $X \times Y \to Z$, czyli $LX = X \times Y$.

Technika tłumaczenia funkcji o więcej niż jednym argumencie na sekwencję funkcji nazywamy *currying*.

5. Analogicznie jak w poprzednim przykładzie, niech R będzie pierścieniem (przemiennym z jedynką), W R-modułem i R funktorem $R:RMod\to RMod$ takim, że $R(U)=\mathrm{Hom}_R(W,U)$ będzie zbiorem homomorfizmów R-modułów. Funktorem lewo-dołączonym do R będzie wtedy $L(V)=V\otimes W$:

$$RMod(V, Hom_R(W, U)) \cong RMod(V \otimes W, U).$$

Uwaga: tensor produkt zwykle nie ma funktora lewo do siebie dołączonego.

6. Założmy, że kategoria \mathcal{C} ma produkty i ustalmy $X \in \mathcal{C}$. Rozważmy funktor $L: \mathcal{C} \to \mathcal{C}$, $L(Y) = Y \times X$. Jeśli kategoria \mathcal{C} posiada obiekty eksponencjalne, czyli wiemy jak uogólnić na nią przestrzeń funkcji $X \to Y$ (oznaczane Y^X), to funktorem prawo dołączonym do L jest właśnie funktor przypisujący obiektowi Y jego eksponens Y^X ,

$$C(Y, Z^X) \cong C(Y \times X, Z).$$

Przykładem takiej kategorii są przestrzenie "core-compact".

W ramach kontrprzykładu rozważmy funktor zapominania $U: FinGrp \to FinSet$, i załóżmy, że $L: FinSet \to FinGrp$ jest jego funktorem lewo dołączonym. Niech p będzie taką liczbą pierwszą, że p > |L(1)| (wystarczy, że są względnie pierwsze). Wtedy

$$FinSet(1, U(\mathbb{Z}_p)) \cong FinGrp(L(1), \mathbb{Z}_p)$$

gdzie po lewej zbiór ma $|\mathbb{Z}_p| = p$ różnych funkcji z singletona w zbiór elementów grupy \mathbb{Z}_p , a po prawej mamy jedynie trywialny morfizm, bo żaden element L(1) nie ma rzędu podzielnego przez p, czyli nie może przejść w żaden nietrywialny element \mathbb{Z}_p .

3. Druga definicja

Definicja 1.13: funktory dołączone (naturalne transformacje)

Rozważmy parę funktorów

$$\mathcal{C} \overset{\mathsf{L}}{\underset{\mathsf{R}}{\longleftrightarrow}} \mathcal{D}.$$

Powiemy, że L jest lewo dołączony do R i na odwrót, jeśli istnieją dwie natrualne transformacje

$$\varepsilon: \mathsf{LR} \implies 1_{\mathcal{D}} \quad \eta: 1_{\mathcal{C}} \implies \mathsf{RL}$$

takie, że komutują diagramy

 η nazywamy unit, a ε to counit.

10.03.2025 Funktory dołączone własności [wieczny WIP]

1. Dowód równoważności

Twierdzenie 1.14

Dwie definicje funktorów dołączonych z poprzedniego wykładu są równoważne, tzn. naturalne transformacje *H*, *E*

$$\mathcal{D}(\mathsf{L}-,-) \overset{\mathcal{E}}{\underset{\mathsf{H}}{\rightleftharpoons}} \mathcal{C}(-,\mathsf{R}-)$$

istnieją \iff istnieją dwie naturalne transformacje $\varepsilon:LR\to 1_{\mathcal D}$ oraz $\eta:1_{\mathcal C}\to RL$ dla których komutują diagramy

Dowód

Niech $f:c'\to c$ będzie morfizmem w \mathcal{D} , a $g:d'\to d$ - morfizmem w \mathcal{C} .

Zacznijmy od zdefiniowania szukanych przekształceń naturalnych na obiektach. Niech $\eta_{\mathcal{C}}$

$$\mathcal{D}(\mathsf{Lc},\mathsf{Lc}) \xrightarrow{\mathsf{H}_{\mathsf{c},\mathsf{Lc}}} \mathcal{C}(\mathsf{c},\mathsf{RLc})$$

$$1_{Lc} \longrightarrow \eta_c = H(1_{Lc})$$

a ε_d definiujemy analogicznie używając E.

W drugą stronę, $H(\varphi)$ definiujemy mając η oraz ε . Dla $\varphi: Lc \to d$ definiujemy

$$\mathsf{H}(arphi) := \mathsf{R} arphi \circ \eta_{\mathsf{C}}$$
 ,

które bierze coś z c i oddaje RLc. Z drugiej strony bierzemy $\psi:c\to Rd$

$$E(\psi) := \varepsilon_{\mathbf{d}} \circ \mathsf{L} \psi.$$

===

Zakładamy, że H i E są naturalne i pokazujemy naturalność η , czyli komutowanie diagramu

$$RL(c') \leftarrow \frac{\eta_{c'}}{1_{\mathcal{C}}(c')}$$

$$RL(f) \downarrow \qquad \qquad \downarrow 1_{\mathcal{C}}(f)$$

$$RL(c) \leftarrow \frac{\eta_{c}}{\eta_{c}} \qquad 1_{\mathcal{C}}(c)$$

$$\begin{aligned} RLf \circ \eta_{c'} &\stackrel{\text{def. } \eta}{=} RLf \circ H(1_{Lc'}) = \\ &\stackrel{\text{funktorialność } H}{=} H(Lf \circ 1_{Lc'}) = \\ &= H(1_{Lc} \circ Lf) = \\ &= H(1_{Lc}) \circ f = \\ &\stackrel{\text{def. } \eta}{=} \eta_c \circ f. \end{aligned}$$

Analogicznie należy sprawdzić naturalność ε .

Pozostaje jeszcze udowodnić, że zdefiniowane przez nas η i ε spełnia warunek trójkąta w definicji, tzn. komutują diagramy

$$L \xrightarrow{1_L \eta} LRL \qquad \qquad R \xrightarrow{\eta 1_R} RLR \qquad \qquad \downarrow_{1_R \varepsilon} \downarrow_{1_R \varepsilon}$$

Ograniczymy się do sprawdzenia lewego diagramu.

$$Lc \xrightarrow{L(\eta_c)} LRLc$$

$$\downarrow_{Lc}$$

$$\downarrow_{Lc}$$

$$Lc$$

$$\varepsilon_{Lc} \mathit{L}(\eta_{c}) = \mathit{E}(1_{RLc}) \mathit{L}(\eta_{c}) = \mathit{E}(1_{RLc} \eta_{c}) = \mathit{EH}(1_{Lc}) = 1_{Lc}$$

 \Leftarrow

Wychodzimy teraz z założenia, że $\eta:1_{\mathcal{C}}\implies RL\,\mathrm{i}\,\varepsilon:LR\implies 1_{\mathcal{D}}$ to naturalne przekształcenia, czyli z komutowania diagramów

$$\begin{array}{cccc} c' & \xrightarrow{\eta_{c'}} & RLc' & d & \xleftarrow{\varepsilon_d} & LRd \\ f \downarrow & & \downarrow_{RLf} & g \downarrow & & \downarrow_{LRg} \\ c & \xrightarrow{\eta_c} & RLc & d' & \xleftarrow{\eta_{d'}} & LRd' \end{array}$$

dostajemy równości

$$RLf \circ \eta_{\mathit{C'}} = \eta_{\mathit{C}} \circ \mathit{f}$$

$$g \circ \varepsilon_d = \varepsilon_{d'} \circ \mathsf{LRg}$$
.

Powinniśmy najpierw pokazać, że H i E są naturalne. Zrobimy to tylko dla H. Interesuje nas diagram

$$\mathcal{D}(Lc, d) \xrightarrow{H_{c;d}} \mathcal{C}(c, Rd)$$

$$(Lf;g) \downarrow \qquad \qquad \downarrow (f;Rg)$$

$$\mathcal{D}(Lc', d') \xrightarrow{H_{c';d'}} \mathcal{C}(c', Rd')$$

$$\mathsf{EH}(\varphi) = \mathsf{E}(\mathsf{R}\varphi \circ \eta) = \mathsf{E}(\mathsf{R}\varphi)\mathsf{E}(\eta) = \varepsilon \mathsf{L}\mathsf{R}\varphi\varepsilon\mathsf{L}\eta$$

Twierdzenie 1.15

Istnieje bijekcja między zbiorem par naturalnych przekształceń (H, E) oraz (η, ε) .

Dowód

TO DO

2. Funktory dołączone a granice

Twierdzenie 1.16

Niech $L \dashv R$ będzie parą funktorów dołączonych. Wtedy L zachowuje granice proste, a R - granice odwrotne.

Przypomnijmy że kogranica (granica prosta) funktora $f: \mathcal{I} \to \mathcal{C}$ spełnia dla każdego g diagram

Dowód

Pokażemy tylko, że lewo dołączony funktor zachowuje kogranice, tj. dla dowolnego $d \in \mathcal{D}$ zachodzi diagram

Z uniwersalnej własności kogranicy mamy diagram

Nakładamy na niego funktor L. Potrzebujemy też strzałek $L\eta_i: Lf_i \to LRLf_i$ przychodzących z naturalnej transformacji $\eta: 1_{\mathcal{C}} \implies RL$. Dodatkowo wiemy, że $\varepsilon_d: Lrd \to d$ istnieje i jest w dodatku jedyne. Mamy więc diagram

w którym długie zielone strzałki są konsekwencją złożenia $\varepsilon_d \circ LR\psi_i = \psi_i$. Dostajemy więc $\varepsilon_d \circ Lu$ jako jedyną strzałkę $L \varinjlim f \to d$ komutującą z ψ_i oraz ψ_j .

3. Moduly

Jeśli R jest pierścieniem z 1, to powiemy, że M jest R-modułem, jeśli

- (M, +), jest grupą abelową
- oraz R działa na M tak, że

$$1x = x$$
, $rsx = r(sx)$
 $(r+s)(x+y) = (r+s)x + (r+s)y = rx + sx + ry + sy$

Grupy abelowe to \mathbb{Z} -moduły. Przestrzenie liniowe nad ciałem k to k-moduły.

Definicja 1.17: moduł projektywny

Mówimy, że R-moduł P w kategorii R-modułów jest projektywny, jeśli dla każdego surjektywnego homomorfizmu $f: N \twoheadrightarrow M$ oraz każdego homomorfizmu $g: P \rightarrow M$ istnieje homomorfizm modułów $h: P \rightarrow N$ taki, że fh = p. Innymi słowy, komutuje diagram

Przykład

Dla każdego R oraz n wolny moduł R^n jest modułem projektywnym. Niech x_1 , ..., x_n będą generatorami R^n . Dla każdego i wybieramy jeden element $n_i \in f^{-1}(g(x_i))$. Definiujemy $h(x_i) = n_i$.

Argument z przykładu uogólnia się na stwierdzenie, że każdy moduł jest **obrazem pewnego modułu projektywnego**.

Dualnie definiujemy moduły injektywne.

Definicja 1.18: moduł injektywny

Dla każdego injektywnego $f:M\to N$ oraz dla każdego $g:M\to Q$ istnieje $h:N\to Q$ takie, że komutuje diagram

$$M \xrightarrow{f} N$$

$$\downarrow g \downarrow \qquad \exists h$$

$$Q$$

Przykład

Liczby wymierne $\mathbb Q$ są injektywnym $\mathbb Z$ -modułem.

Twierdzenie 1.19

Dla każdego R-modułu M istnieje injektywny moduł Q taki, że $M \hookrightarrow Q$.

Dowód

a świat pali się 🔥

17.03.2025 Kategoria Kleislego

A monad is just a monoid in the category of endofunctors, what's the problem?

1. Po co właściwie te monady?

W programowaniu monady są używane do modelowania "robienia czegoś więcej" jako efektu działania funkcji. W OCamlu (autorka notatek dostaje oczopląsu na widok Haskella) jest definiowana jako

```
module type Monad = sig
   type 'a t
   val return : 'a -> 'a t
   val bind : 'a t -> ('a -> 'b t) -> 'b t
end
```

Przykładem namacalnej monady jest tzw. monada Maybe, która opakowuje dane w pudełko, tym samym pozwalając zwracać pudełka puste.

Powiedzmy, że potrzebujemy znaleźć element maksymalny listy, czyli maxElem : int list -> int. Co, jeśli nasza lista jest pusta? Możemy opakować zwracaną wartość i zmienić ją w int option. Wtedy w wypadku pustej listy zwracamy None.

```
let maxElem (x : int list) : int option =
  match x with
| [] -> None
| x::xs ->
  match maxElem(xs) with
| None -> Some x
| Some y -> Some max(x, y)
```

Pojawia się kolejny problem: zmiana zwracanego typu z int na int option nie pozwala nam dodawać elementów maksymalnych z różnych list, ani (po napisaniu minElem) odjąć od elementu maksymalnego elementu minimalnego. Potrzebujemy więc w elegancki sposób zmienić również operacje arytmetyczne. Zacznijmy od zdefiniowania funkcji potrzebnych w monadzie.

```
type 'a t = a' option
let return (x : int) : int option =
   Some x
```

```
let bind (x : int option) (op : int -> int option) : int option =
  match x with
  | None -> None
  | Some a -> op a
```

Funkcja return nie robi nic poza opakowaniem int w int option, natomiast funkcja bind wyjmuje int z pudełka i dopiero wtedy nakłada funkcję i pakuje z powrotem do pudła. Dla przykładu napiszemy tylko nową implementację dodawania, która będzie teraz pobierać dwa argumenty typu int option i zwracać int option.

```
let ( + ) : (x : int option) (y : int option) : int option =
  bind ( x, fun a -> bind(y, fun b -> Some(a+b)) )
```

Możemy teraz odpalić

```
maxElem([1; 4; 45]) + maxElem([44; -10; 9])
```

i na konsoli zobaczymy Some 69.

2. Definicja i przykłady monad

Definicja 1.20: monada

Monada na kategorii C składa się z

- endofunktora $T: \mathcal{C} \to \mathcal{C}$,
- naturalnej transformacji $\eta: 1_{\mathcal{C}} \to T$ (unit z funktorów dołączonych),
- naturalnej transformacji $\mu:T^2\to T$, która definiuje mnożenie na funktorze T takich, że poniższe diagramy komutują w kategorii $\mathcal{C}^\mathcal{C}$

Diagramy te są bardzo podobne do tych, które pojawiły się przy definiowaniu obiektu monoidalnego [1.11]. Nie jest to przypadkiem: monady są obiektem monoidalnym w kategorii endofunktorów $\mathcal{C}^{\mathcal{C}}$ z binarnym działaniem $\mathcal{C}^{\mathcal{C}} \times \mathcal{C}^{\mathcal{C}} \to \mathcal{C}^{\mathcal{C}}$ będącym składaniem funktorów.

Przykłady

1. Rozważmy parę funktorów sprzężonych znaną z poprzednich wykładów

Set
$$\stackrel{F}{\longleftrightarrow} Ab$$

gdzie F to funktor rozpinający wolną grupę abelową o generatorach równych zbiorowi, a U zapomina strukturę grupy. Niech $\eta:1_{Set} \implies UF$ oraz $\varepsilon:FY \implies 1_{Ab}$ będą unitem oraz counitem z definicji gunktorów sprzężonych.

Widzimy tutaj endofunktor UF oraz naturalną transformację η jak z definicji monady. Potrzebujemy jeszcze mnożenia na UF.

Naturalne przekształcenie $\varepsilon: FU \implies 1_{Ab}$ na dowolnej grupie A jest homomorfizmem ewaluującym formalną sumę jej elementów (obiekt z FUA) jako właściwy element grupy A. Możemy ten homomorfizm wyrazić jako funkcję, podkładając funktory U i F z odpowiednich stron, tzn. rozważając złożenie

$$U\varepsilon F: UFUF \rightarrow UF.$$

Jest to występujący w definicji monady sposób mnożenia funktorów.

- 2. W przykładzie z funkcją maxElem, endofunktorem T jest zmiana typów int -> int option. Naturalnym przekształceniem $\eta:1_{\mathcal{C}}\to T$ jest funkcja return, a funkcja bind mówi nam jak nałożyć funkcję int -> int option na element typu int option, czyli element poddany już działaniu endofunktora T.
- 3. Rozważmy kategorię Set i funktor $T: Set \to Set$, $T(X) = X \cup \{X\}$. Przypomnijmy, że jest to funktor będący złożeniem zapominającego funktora z kategorii zbiorów z wyróżnionym punktem z funktorem do niego dołączonym. $\eta: 1_{Set} \to T$ posyła elementy X w elementy X, tj. singleton $\{X\}$ nie jest w obrazie. $\mu_X: T^2X \to TX$ pośle elementy X w X, a zbiory $\{X\}$ oraz $\{X \cup \{X\}$ w singleton $\{X\}$. Czy widzisz podobieństwo z przykładem wyżej?

Lemat 1.21

Każda para $L \vdash R$ funktorów sprzężonych zadaje monadę, gdzie

- RL jest endofunktorem T,
- unit z definicji pary funktorów sprzężonych $\eta:1_{\mathcal{C}}\to\textit{RL}$ jest unitem z definicji monady,
- counit z nałożonymi funktorami, $R \varepsilon L : RLRL \implies RL$ jest mnożeniem $\mu : T^2 \to T$.

3. Konstruowanie funktorów sprzężonych z monad

Definicja 1.22

Niech $\mathcal C$ będzie kategorią z monadą (T, η, μ) . Wtedy **kategorią Kleislego**, oznaczane $\mathcal C_T$, na $\mathcal C$ nazwiemy kategorię której

- obiekty są obiektami z $\mathcal C$
- morfizmy z A do B w C_T , oznaczane (niekoniecznie konsekwentnie) $A \rightsquigarrow B$, jest morfizmem $A \rightarrow TB$ w kategorii C.

Identyczność $id_A:A\leadsto A$ definiujemy, posiłkując się monadą, jako $\eta_A:A\to TA$. Złożenie morfizmów $f:A\leadsto B$ oraz $g:B\leadsto C$ to z kolei

$$A \stackrel{f}{\longrightarrow} TB \stackrel{Tg}{\longrightarrow} T^2C \stackrel{\mu_C}{\longrightarrow} TC$$

Lemat 1.23

Składanie morfizmów w kategorii C_T jest łączne.

Dowód

Niech $f: A \leadsto B$, $g: B \leadsto C$ oraz $h: C \leadsto D$ będą morfizmami w kategorii \mathcal{C}_T . Chcemy pokazać, że $h \circ (g \circ f) = (h \circ g) \circ f$. Z definicji wiemy, że $h \circ g = \mu_D \circ Th \circ g$, ale ponieważ podkładamy pod to f, to musimy nałożyć na niego funktor f. Mamy diagram

Punktem zapalnym jest? w diagramie. Jeśli ten prostokąt komutuje, to koniec.

Z naturalności $\mu: \mathcal{T}^2 o \mathcal{T}$ dostajemy komutujący diagram

$$T^{2}C \xrightarrow{T^{2}h} T^{3}D = T^{2}(TD)$$

$$\downarrow^{\mu_{TD}}$$

$$TC \xrightarrow{Th} T(TD) = T^{2}D$$

czyli

$$\mu_{\mathsf{TD}}\mathsf{T}^2\mathsf{h}=\mathsf{TH}\mu_{\mathsf{C}},$$

co daje nam równość przejścia po pomarańczowych strzałkach na górze (prawa strona równości) i na dole (lewa strona równości).

Przykład

Dla monady $T: Set \to Set$, $T(X) = X \cup \{X\}$ z przykładów wyżej, kategoria Kleisliego zawiera jako obiekty wszystkie zbiory. Morfizmy $A \leadsto B$ posyłają część elementów A w "kosmos", czyli singleton $\{B\}$. Są to funkcje częsciowe! Czyli $Set_T = Set^\delta$ jest kategorią zbiorów z funkcjami częsciowymi.

24.03.2025 Kategoria algebr i Eilenberga-Moore'a

tutaj kiedyś będzie wzmianka o modułach

Definicja 1.24: kategoria algebr -

Niech (T, η, μ) będzie monadą na kategorii C. Definiujemy wtedy **kateogrię algebr** na T, oznaczane \mathfrak{alg}_T , jako kategorię której

obiekty to pary (θ, c) , gdzie $\theta : Tc \rightarrow c$

morfizmy $\mathfrak{alg}_T((\theta,c),(\theta',c'))$ to odwzorowania $f\in\mathcal{C}(c,c')$ takie, że komutuje diagram

$$\begin{array}{ccc}
Tc & \xrightarrow{Tf} & Tc' \\
\downarrow \theta & & \downarrow \theta' \\
c & \xrightarrow{f} & c'
\end{array}$$

Naturalnie, pytamy o istnienie obiektów początkowych i końcowych w tej kategorii.

Przykład

Niech $T\equiv c$ będzie funktorem stałym. Wtedy (θ,x) jest obiektem początkowym, jeśli dla każdego (ψ,y) jest dokładnie jeden komutujący diagram

$$Tx = c \xrightarrow{Tf = id_c} c = Ty$$

$$\psi$$

$$x \xrightarrow{f} y$$

czyli $\psi = f \circ \theta$. Możemy wywnioskować, że $(\theta, x) = (id_c, c)$ i wtedy dla każdego innego (ψ, y) będzie jedyny morfizm $f = \psi$ spełniający diagram.

1. Kategoria Eilenberga-Moore'a

Definicja 1.25: Eilenberg-Moore

Kategoria **Eilenberga-Moore'a** dla T (kategorię T-algebra), oznaczaną jako $\mathcal{C}^T \subseteq \mathfrak{alg}_T$, jest podkategorią \mathfrak{alg}_T w której

obiekty to pary (θ, a) , $a \in \mathcal{C}$, $\theta : Ta \to a$ dla których komutują diagramy w \mathcal{C}

morfizmy
$$f:(\theta,a)\to(\varphi,b)$$
 są mapami $f:a\to b$ w $\mathcal C$ takie, że komutuje diagram $Ta\stackrel{Tf}{\longrightarrow} Tb$

$$\begin{array}{ccc}
\mathsf{Ta} & \xrightarrow{\mathsf{Tf}} & \mathsf{Tb} \\
\theta \downarrow & & \downarrow \varphi \\
\mathsf{a} & \xrightarrow{\mathsf{f}} & \mathsf{b}
\end{array}$$

Chcemy teraz pokazać, że dla dowolnej monady możemy stworzyć parę funktorów sprzężonych.

Lemat 1.26

Istnieją funktory

$$\mathcal{C} \xrightarrow{\mathsf{L}} \mathcal{C}_{\mathsf{T}} \xrightarrow{\mathsf{J}} \mathcal{C}^{\mathsf{T}} \xrightarrow{\mathsf{R}} \mathcal{C}_{\mathsf{T}}$$

takie, że RJL = T.

Dowód

Zaczynamy od zdefiniowania wszystkich funktorów.

$$L: \mathcal{C} o \mathcal{C}_T$$
 $L(c) = c$, $L(f) = \eta \circ f$

Wypada sprawdzić, czy $\eta\circ (gf)=L(gf)=L(g)L(f)=(\eta\circ g)\circ (\eta\circ f)$, czyli czy komutuje największy prostokąt w diagramie

$$J: \mathcal{C}_T \to \mathcal{C}^T$$

$$J(c) = (Tc, \mu \circ \eta), \quad J(f: c \to Tc') = \mu \circ Tf: Tc \to Tc'$$

$$R: \mathcal{C}^T \to \mathcal{C}$$

$$R(c, \theta) = c, \quad R(f: (c, \theta) \to (c', \theta')) = f: c \to c'$$

Tutaj składanie działa bez problemów, bo f było morfizmem w C.

Teraz pokażemy, że RJL = T. Dla obiektów mamy:

$$RJL(c) = RJ(c) = R(Tc) = Tc$$

a dla dowolnego morfizmu $f: c \rightarrow c'$

$$RJL(f) = RJ(\eta \circ f) = R(\mu \circ T(\eta \circ f)) = R(\mu \circ T(\eta) \circ Tf) = R(1_T \circ Tf) = R(Tf) = Tf.$$

Pozostawiam ten dowód jako pomnik dla oryginalnego stwierdzenia, że RJ i L oraz R i JL to dwie pary funktorów dołączonych.

Twierdzenie 1.27

Dla dowolnej pary funktorów sprzężonych $\mathcal{C} \overset{L}{\rightleftharpoons} \mathcal{D}$ indukujących monadę (T, η, μ) istnieją jedyne funktory J i K

takie, że prawy i lewy trójkąt komutuje.

Dowód

Emily Proposition 5.2.12.

31.03.2025 we back in business

Przykłady

- 1. $F: Set \rightarrow Monoid$, $U: Monoid \rightarrow Set$ -> wolny monoid \iff słowa z konkatenacją
 - Set \xrightarrow{T} Set zbiór idzie w listę, $\eta:x\mapsto [x]$ idzie w jednoelementową listę, μ to spłaszczanie list
- 2. $F: Set \to AbMonoid$ przedłużamy tutaj $X \mapsto \{f: X \to \mathbb{N}, f=0 \text{ skończenie wiele razy}\}, \eta: x \to \delta_X$ (delta diraca), $\mu(\sum_n m_n \sum_x n_x x) = \sum_n (\sum_n m_n n_x) x$
- 3. $Vect \xrightarrow{F} AbAlg_k$, $V \mapsto \oplus S^n V$ podprzestrzeń $V^{\otimes n}$ niezmiennicza na S_n . η jest włożeniem
- 4. $F: Vect \rightarrow Alg_k, V \mapsto \oplus V^{\otimes n}$

1. Diagramy strunowe [string diagrams]

Do tej pory rysowaliśmy kropki jako kategorie, a strzałki jako funktory. Zmieniamy teraz konwencję i piszemy funktory jako kropki oraz kategorie jako kreski.

 \mathcal{E} \mathcal{D} \mathcal{C}

dokończyć rysunek wyżej

Niech teraz $L \vdash R$ będzie parą funktorów pochodnych i $\eta : 1_{\mathcal{C}} \implies RL$.

Diagramy czytamy od dołu do góry i od lewej do prawej.

Tutaj mamy narysowany unit

 $(\varepsilon 1_L)(1_L \eta)$ to z kolei

zdjęcia + obrazki dla monady

maybe, reader monad

01.04.2025 humpty dumpty

$$\mathcal{P}:\mathsf{Set}\to\mathsf{Set}$$

$$X \to \mathcal{P}(X)$$

$$\eta(\mathbf{x}) = \{\mathbf{x}\}$$

$$\mu_{\mathsf{X}}: \mathcal{PP}(\mathsf{X}) \to \mathcal{P}$$

$$\mu_{\mathsf{X}}(\mathcal{A}) = \bigcup \mathcal{A}$$

Liczymy teraz $Set_{\mathcal{P}}$, a potem $Set^{\mathcal{P}}$

$$\mathsf{Set}(\mathsf{X},\mathcal{P}(\mathsf{Y})=\mathcal{P}(\mathsf{X}\times\mathsf{Y})$$

$$X \to \mathcal{P}(Y)$$

$$X \to \mathcal{P}(Y) \to \mathcal{P}^2 Z \to \mathcal{P} Z$$

$$C = \{(x, z) : \exists y (x, y) \in A, (y, z) \in B\}$$

$$C = AB$$
, bo $xCz \iff \exists y \ xAyBz$

$$\theta(\bigcup A) = \theta(\{\theta(A) : A \in A), \quad \theta(\{x\}) = x$$

$$a < b \iff \theta(\{a,b\}) = b$$

1.
$$a \le a$$
 2. $a \le b \le c \implies a \le c$

$$\theta(\{a,c\}) = \theta(\{\theta(\{a\},\theta\{b,c\}\}) = \theta(\{a,b,c\}) = \theta(\{\theta\{a,b\},\theta\{c\}\}) = \theta(\{b,c\}) = c$$

3.
$$\theta(A) > A$$

Niech
$$a \in A$$
, $\theta(\{a, \theta\{A\}\}) = \theta(a \cup A) = \theta(A)$

4.
$$b \ge A \implies b \ge \theta(A)$$

$$\theta(\{\theta\{b\},\theta\{A\}\}) = \theta(b \cup A) = \theta(\bigcup \{b,a\}) = \theta(\theta\{b\}) = b$$

 $\bigwedge X$ to najmniejsze ograniczenie górne (ang. meet)

$$\begin{array}{ccc}
\mathcal{P}(X) & \xrightarrow{\mathcal{P}(f)} & \mathcal{P}(Y) \\
\downarrow & & \downarrow \wedge \\
X & \xrightarrow{f} & Y
\end{array}$$

Funktor zapominania i rozpinania grupy wolnej Set, Ab i bierzemy T=UF i mówimy, że o kategorii Kleislego myślimy jako o wolnych modułów abelowych.

tutaj zdjecie koloroffe, on tam definiował funktor monadyczny

definiujemy przestrzeń afiniczną przy pomocy algebr Eilenberga-Moore'a

Mamy $\mathit{Aff}_k: \mathit{Set} \to \mathit{Set}$, zbiorowi przyporządkowuje skończone kombinacje afiniczne

$$\mathit{Aff}_k(\mathit{X}) = \{ \sum \mathsf{a_X} \mathit{x} \ : \ \mathit{a} = 0 \ \mathit{p.w.} \ \sum \mathsf{a_X} = 1 \}$$

$$\eta \operatorname{\mathsf{robi}} X \ni \mathsf{x} \mapsto \sum \delta_{\mathsf{x},\mathsf{y}}\mathsf{y}$$

 μ to "wrzuć współczynniki pod jedną sumę"

kategoria korespondencji = kategoria Kleisliegomonady monady zbioru potęgoweg (continuation monad)

tutaj jak to działa w programowaniu funkcyjnym

 ${\mathcal D}$ jest pełną podkategorią ${\mathcal C}$ i włożenie ma prawy dołączony

 ${\mathcal D}$ grupy abelowe beztorsyjne, ${\mathcal C}$ wszystkie grupy abelowe

Fakt 1.28

Niech $\mathcal{D}\subseteq\mathcal{C}$ będzie pełną podkategorią i $L\mathcal{C}\to\mathcal{D}$ będzie lewym dołączonym do włożenia jest monadycznym dołączeniem