CHAPTER 3 DIODES

Chapter Outline

- 3.1 The Ideal Diode
- 3.2 Terminal Characteristics of Junction Diodes
- 3.3 Modeling the Diode Forward Characteristics
- 3.4 Operation in the Reverse Breakdown Region Zener Diodes
- 3.5 Rectifier Circuits
- 3.6 Limiting and Clamping Circuits

3.1 Ideal Diode

Ideal diode characteristics

- ☐ An diode is a two-terminal device:
 - **Anode**: the positive terminal
 - **Cathode**: the negative terminal
- \square Forward biased \rightarrow turned on \rightarrow short
- \square Reverse biased \rightarrow turned off \rightarrow open

Circuit applications

 $v_I \leq 0$

$$i > 0 \Rightarrow v = 0$$

$$Y = A \cdot B \cdot C$$

3.2 Terminal Characteristics of Junction Diodes

I-V characteristics of junction diodes

- □ Diode current: $i = I_S(e^{v/nV_T} 1)$
 - \blacksquare I_{S} (saturation current): proportional to diode area
 - \blacksquare *n* (ideality factor): between 1 and 2
 - $V_{\rm T}$ (thermal voltage) ≈ 25 mV at room temperature
- \Box The forward-bias region, determined by v > o
- \Box The reverse-bias region, determined by v < o
- \Box The breakdown region, determined by $v < -V_{ZK}$

Forward-bias region

- ☐ The simplified forward-bias I-V relationship:
 - For a given forward voltage: $i \approx I_s e^{v/nV_T}$
 - For a given forward current: $v \approx nV_T \ln(I/I_s)$
- ☐ Due to the exponential I-V relationship
 - $i \approx \text{o for } v < \text{o.5V } (\text{cut-in voltage})$
 - Fully conduction for o.6V < v < o.8V $\rightarrow V_{\rm on}$ = o.7V

Temperature dependence

- $\square I_{S}$ doubles for every 5°C rise in temperature
- □ Voltage decreases 2mV/°C for a given current
- ☐ Current increases with temperature for a given voltage

Reverse-bias region

 \square Reverse current: $i \approx -I_s$

☐ Ideally, the reverse current is independent of reverse bias

 \square In reality, reverse current is larger than I_S and also increases somewhat with the reverse bias

☐ Temperature dependence: reverse current doubles for every 10°C rise in temperature

Breakdown region

 \Box The knee of the I-V curve is specified as breakdown voltage $V_{\rm ZK}$ for Zener breakdown mechanism

☐ In breakdown region, the reverse current increases rapidly with a small increase in the reverse bias

□ Normally, the reverse current is specified by external circuitry to assure the power dissipation within a safe range (non-destructive operation)

3.3 Modeling the Diode Forward Characteristics

Circuit analysis

- \square Determine the diode current I_D and voltage V_D for circuit analysis
- ☐ The equation required for the analysis:
 - $\rightarrow I_D = I_S \exp(V_D/nV_T) \rightarrow \text{doide I-V characteristics}$
 - $\rightarrow I_D = (V_{DD} V_D)/R \rightarrow \text{Kirchhoff loop equation}$
- ■Need to solve non-linear equations

Graphical analysis

- ☐ Plot the two equations in the same I-V coordination
- ☐ The straight line is known as **load line**
- \Box The intersect is the solution for I_D and V_D

Iterative analysis

- \square Set initial value $V_D = V_o$
- \square Use $I_D = (V_{DD} V_D)/R$ to obtain I_1
- \square Use $V_D = nV_T \ln (I_D/I_S)$ to obtain V_2
- \square Repeat until it converges (I_3 , V_4 , I_5 , V_6 ...)
- ☐ Iterations are needed to solve the nonlinear circuit

The need for rapid analysis

- ☐ Rapid analysis using simplified models for initial design
- □ Accurate analysis (iterative analysis or computer program) for final design
- ☐ Rapid analysis (I): ideal-diode model
 - The most simplified model used when supply voltage is much higher than the diode voltage
 - Diode on: v_D = o V and i > o
 - Diode off: i = o and $v_D < o$ V
 - Equivalent circuit model as an ideal diode
- ☐ Rapid analysis (II): constant-voltage-drop model
 - The most widely used model in initial design and analysis phases
 - Diode on: v_D = 0.7 V and i > 0
 - Diode off: i = o and $v_D < o.7 V$
 - Equivalent circuit model as an ideal diode with a 0.7-V voltage source

NTUEE Electronics - L. H. Lu

 $0.7 \,\mathrm{V}$ v

0

Small-signal approximation

☐ The diode is operated at a dc bias point and a small ac signal is superimposed on the dc quantities:

$$v_D(t) = V_D + v_d(t)$$

$$i_D(t) = I_S e^{v_D/nV_T} = I_S e^{(V_D + v_d)/nV_T} = I_S e^{V_D/nV_T} e^{v_d/nV_T} = I_D e^{v_d/nV_T}$$

 \Box Under small-signal condition: $v_d / nV_T <<1$

$$i_D(t) \approx I_D(1 + \frac{v_d}{nV_T}) = I_D + \frac{I_D}{nV_T}v_d = I_D + i_d$$

- I_D associates with V_D → dc operating point Q
- i_d associates with v_d → small signal response
- ☐ The diode exhibits linear I-V characteristics under small-signal conditions ($v_d \le 10$ mV)

☐ Diode **small-signal resistance** and **conductance** at operating poin

$$i_{d} = \frac{I_{D}}{nV_{T}} v_{d} = g_{d} v_{d} = v_{d} / r_{d} \rightarrow g_{d} = \frac{I_{D}}{nV_{T}} = \left[\frac{\partial i_{D}}{\partial v_{D}}\right]_{i_{D} = I_{D}}$$

$$\rightarrow r_{d} = \frac{nV_{T}}{I_{D}} = 1/\left[\frac{\partial i_{D}}{\partial v_{D}}\right]_{i_{D} = I_{D}}$$

The diode small-signal model

- \Box Choose proper dc analysis technique or model to obtain the operation point Q
- \Box The small-signal model is determined once Q is provided
- \Box The small-signal model is used for circuit analysis when the diode is operating around Q

Circuit analysis techniques for total quantities (AC+DC)

- ☐ Eliminate all the time varying signals (ac voltage and current sources) for operation point analysis
- \square Use rapid analysis or accurate analysis to obtain dc voltage and current at operating point Q
- \Box Determine the parameters of small-signal models from Q
- ☐ Replace the devices with small-signal models and eliminate all the dc sources
- ☐ Circuit analysis under small-signal approximation
- ☐ The complete response of the circuit is obtained by superposition of the dc and ac components

Voltage regulator by diode forward drop

- ☐ A regulator is to provide a constant dc voltage regardless changes in load and power-supply voltage
- ☐ The forward-voltage drop remains almost constant at 0.7 V within a wide current range
- ☐ Multiple diodes in series to achieve the required voltage drop
- \Box Better regulation can be provided for higher bias current and smaller $r_{\rm d}$

Example 3.5 (Textbook)

Example 3.6 (Textbook)

Exercise 3.14 (Textbook)

3.4 Operation in the Reverse Breakdown Region – Zener Diodes

Symbol and circuit model for the Zener diode

- \square In breakdown region, a reverse bias (V_Z) beyond the knee voltage (V_{ZK}) leads to a large reverse current (I_Z) .
- ☐ The diode in breakdown region is given by $V_Z = V_{Zo} + r_z I_z$
 - The breakdown diode is modeled by a voltage source V_{Zo} in series with an incremental resistance r_z
 - Incremental voltage versus current: $\Delta V = r_z \Delta I$
 - The simplified model is only valid for $I_Z > I_{ZK}$ (knee current)
 - Equivalent r_z increases as I_Z decreases
- ☐ Diode types:
 - Diode: only forward and reverse regions are considered
 - Zener diode: forward, reverse and breakdown regions

Design of the Zener shunt regulator

□ Output voltage of the regulator:

$$V_{O} = \frac{R}{R + r_{z}} V_{Z0} + \frac{r_{Z}}{R + r_{Z}} V^{+} - \frac{Rr_{Z}}{R + r_{Z}} I_{L}$$

- Line regulation: $\frac{\Delta V_o}{\Delta V^+} = \frac{r_Z}{R + r_Z}$
- Load regulation: $\frac{\Delta V_O}{\Delta I_L} = -\frac{Rr_Z}{R + r_Z}$

- ☐ Line and load regulation should be minimized
- \square For $r_z \ll R$, line regulation can be minimized by choosing small r_z
- \square Load regulation can be minimized by choosing small r_z and large R
- □ There is an upper limit on the value of R to ensure sufficiently high current I_Z (r_z increases if I_Z is too low)
- $\square R$ should be selected from $R = \frac{V_{S \min} V_{Z0} r_z I_{Z \min}}{I_{Z \min} + I_{L \max}}$

Example 3.7 (Textbook)

Exercise 3.16 (Textbook)

Exercise 3.17(Textbook)

Exercise 3.18 (Textbook)

3.5 Rectifier Circuits

Block diagram of a dc power supply

- □DC power supply
 - Generate a dc voltage from ac power sources
 - The ac input is a low-frequency **large-signal** voltage

- ☐ Power transformer
 - Step the line voltage down to required value and provides electric isolation
- ☐ Diode rectifier
 - Converts the input sinusoidal to a **unipolar output**
 - Can be divided to **half-wave** and **full-wave rectifiers**
- ☐ Filter
 - Reduces the magnitude variation for the rectifier output
 - Equivalent to time-average operation of the input waveform
- ☐ Voltage Regulator
 - Further stabilizes the output to obtain a constant dc voltage
 - Can be implemented by Zener diode circuits

The half-wave rectifier

□ Voltage transfer curve:

$$v_S < V_{D0} \rightarrow v_O = 0$$

$$v_S \ge V_{D0} \rightarrow v_O = v_S - V_{D0}$$

- ☐ Rectifier diode specifications:
 - Current-handling capability: the largest current the diode is expected to conduct
 - **Peak inverse voltage** (PIV): the largest reverse voltage the diode can stand without breakdown
- \square PIV = V_s (input voltage swing) and the diode breakdown voltage is selected at least 50% higher

The full-wave rectifier (center-tapped transformer)

□ Voltage transfer curve:

$$|v_S| < V_{D0} \rightarrow v_O = 0$$

$$v_S \le -V_{D0} \rightarrow v_O = -v_S - V_{D0}$$

- ☐ Transformer secondary winding is center-tapped
- \square Peak inverse voltage (PIV) = ${}_{2}V_{s}-V_{Do}$
- □ Rectified output waveform for both positive and negative cycles

Full-wave rectifier (Bridge rectifier)

□ Voltage transfer curve:

$$|v_S| < 2V_{D0} \rightarrow v_O = 0$$

$$v_S \ge 2V_{D0} \rightarrow v_O = v_S - 2V_{D0}$$

$$v_S \le -2V_{D0} \longrightarrow v_O = -v_S - 2V_{D0}$$

- ☐ Does not require a center-tapped transformer
- \square Higher turn-on voltage (2 V_{Do})
- \square Peak inverse voltage (PIV) = V_s - V_{Do}
- ☐ Most popular rectifier circuit configuration

Exercise 3.19 (Textbook)

Exercise 3.20(Textbook)

Exercise 3.21 (Textbook)

Rectifier with a filter capacitor – the peak rectifier

☐ Output unloaded case:

☐ Output loaded case:

Precision half-wave rectifier – the superdiode

- ☐ Superdiode is composed of a op amp and a diode
- ☐ Superdiode works as an ideal diode with zero turn-on voltage
 - Positive input voltage:
 - → Diode turns on
 - → Closed-loop op amp with virtual short at input
 - →Output voltage follows input voltage
 - Negative input voltage:
 - **→**Diode turns off
 - →Op amp in open loop
 - →Output voltage is o V
- ☐ Rectifier with superdiode can demonstrates better efficiency

3.6 Limiting and Clamping Circuits

Limiter circuits

- ☐ For input in a certain range, the limiter acts as a linear circuit.
- ☐ For input exceeds the threshold, the output voltage swing is limited.
- ☐ Classification:
 - Based on transfer characteristics: **hard limiter** and **soft limiter**
 - Based on the polarity: **single limiter** and **double limiter**
- □ A variety of limiting circuits by diodes:

Clamped capacitor or DC restorer

☐ Output unloaded case:

☐ Output loaded case:

