Complejidad computacional de buscar árboles generadores con una sucesión de grados específica

Maria Elena Martinez Cuero

Universidad Autónoma Metropolitana-Iztapalapa

28 de febrero de 2020

XXXV Coloquio Víctor Neumann-Lara de Teoría de las Gráficas, Combinatoria y sus Aplicaciones

Introducción

Sea n un entero positivo. Una sucesión arbórea es una sucesión de enteros positivos $d_1, d_2, \ldots d_n$ tal que $\sum_{1 \le i \le n} d_i = 2(n-1)$.

Una sucesión $\sigma = d_1, d_2, \dots d_n$ es arbórea si y solo si hay un árbol cuyos vértices tienen grados $d_1, d_2, \dots d_n$.

Objetivo de la plática

Teorema

Sean $n \geq 4$ un número entero, G una gráfica etiquetada con el conjunto de vértices $V(G) = \{w_1, w_2, \ldots, w_n\}$ y $\sigma = d_1, d_2, \ldots, d_n$ una sucesión de grados arbórea, donde $d_1 \leq d_2 \leq \cdots \leq d_n$. El problema de decidir si G tiene un árbol generador T tal que $d_T(w_i) = d_i$, con $1 \leq i \leq n$, es NP-completo.

Objetivo de la plática

Teorema

Sean $n \geq 4$ un número entero, G una gráfica etiquetada con el conjunto de vértices $V(G) = \{w_1, w_2, \ldots, w_n\}$ y $\sigma = d_1, d_2, \ldots, d_n$ una sucesión de grados arbórea, donde $d_1 \leq d_2 \leq \cdots \leq d_n$. El problema de decidir si G tiene un árbol generador T tal que $d_T(w_i) = d_i$, con $1 \leq i \leq n$, es NP-completo.

$$\sigma = 1, 1, 1, 3$$

Estrategia usual

 Mostrar que el problema de decisión B esta en la clase NP

Estrategia usual

 Mostrar que el problema de decisión B esta en la clase NP

Estrategia usual.Punto número uno

• Mostrar que el problema esta en la clase NP

Estrategia usual. Punto número dos

Estrategia usual. Punto número dos

