Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Катедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Проєктування алгоритмів»

"Проєктування структур даних"

Виконав(ла)	<u>ІП-11 Лесів В.І.</u> (шифр, прізвище, ім'я, по батькові)	
Перевірив	<u>Головченко М.Н.</u> (прізвище, ім'я, по батькові)	

3MICT

1	МЕТА ЛАБОРАТОРНОЇ РОБОТИ	3
2	ЗАВДАННЯ	4
3	ВИКОНАННЯ	7
	3.1 ПСЕВДОКОД АЛГОРИТМІВ	7
	3.2 Часова складність пошуку	12
	3.3 ПРОГРАМНА РЕАЛІЗАЦІЯ	12
	3.3.1 Вихідний код	12
	3.3.2 Приклади роботи	18
	3.4 ТЕСТУВАННЯ АЛГОРИТМУ	19
	3.4.1 Часові характеристики оцінювання	19
BV	ИСНОВОК	20
КР	РИТЕРІЇ ОПІНЮВАННЯ	21

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи – вивчити основні підходи проєктування та обробки складних структур даних.

2 ЗАВДАННЯ

Відповідно до варіанту (таблиця 2.1), записати алгоритми пошуку, додавання, видалення і редагування запису в структурі даних за допомогою псевдокоду (чи іншого способу по вибору).

Записати часову складність пошуку в структурі в асимптотичних оцінках.

Виконати програмну реалізацію невеликої СУБД з графічним (не консольним) інтерфейсом користувача (дані БД мають зберігатися на ПЗП), з функціями пошуку (алгоритм пошуку у вузлі структури згідно варіанту таблиця 2.1, за необхідності), додавання, видалення та редагування записів (запис складається із ключа і даних, ключі унікальні і цілочисельні, даних може бути декілька полів для одного ключа, але достатньо одного рядка фіксованої довжини). Для зберігання даних використовувати структуру даних згідно варіанту (таблиця 2.1).

Заповнити базу випадковими значеннями до 10000 і зафіксувати середнє (із 10-15 пошуків) число порівнянь для знаходження запису по ключу.

Зробити висновок з лабораторної роботи.

Таблиця 2.1 – Варіанти алгоритмів

№	Структура даних
1	Файли з щільним індексом з перебудовою індексної області,
	бінарний пошук
2	Файли з щільним індексом з областю переповнення, бінарний
	пошук
3	Файли з не щільним індексом з перебудовою індексної області,
	бінарний пошук
4	Файли з не щільним індексом з областю переповнення, бінарний
	пошук
5	АВЛ-дерево
6	Червоно-чорне дерево

7	В-дерево t=10, бінарний пошук		
8	В-дерево t=25, бінарний пошук		
9	В-дерево t=50, бінарний пошук		
10	В-дерево t=100, бінарний пошук		
11	Файли з щільним індексом з перебудовою індексної області,		
	однорідний бінарний пошук		
12	Файли з щільним індексом з областю переповнення, однорідний		
	бінарний пошук		
13	Файли з не щільним індексом з перебудовою індексної області,		
	однорідний бінарний пошук		
14	Файли з не щільним індексом з областю переповнення, однорідний		
	бінарний пошук		
15	АВЛ-дерево		
16	Червоно-чорне дерево		
1.7	В-дерево t=10, однорідний бінарний пошук		
17	В-дерево t=10, одноріднии бінарний пошук		
17 18	В-дерево t=10, однорідний бінарний пошук В-дерево t=25, однорідний бінарний пошук		
18	В-дерево t=25, однорідний бінарний пошук		
18 19	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук		
18 19 20	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук В-дерево t=100, однорідний бінарний пошук		
18 19 20	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук В-дерево t=100, однорідний бінарний пошук Файли з щільним індексом з перебудовою індексної області, метод		
18 19 20 21	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук В-дерево t=100, однорідний бінарний пошук Файли з щільним індексом з перебудовою індексної області, метод Шарра		
18 19 20 21	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук В-дерево t=100, однорідний бінарний пошук Файли з щільним індексом з перебудовою індексної області, метод Шарра Файли з щільним індексом з областю переповнення, метод Шарра		
18 19 20 21	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук В-дерево t=100, однорідний бінарний пошук Файли з щільним індексом з перебудовою індексної області, метод Шарра Файли з щільним індексом з областю переповнення, метод Шарра Файли з не щільним індексом з перебудовою індексної області,		
18 19 20 21 22 23	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук В-дерево t=100, однорідний бінарний пошук Файли з щільним індексом з перебудовою індексної області, метод Шарра Файли з щільним індексом з областю переповнення, метод Шарра Файли з не щільним індексом з перебудовою індексної області, метод Шарра		
18 19 20 21 22 23	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук В-дерево t=100, однорідний бінарний пошук Файли з щільним індексом з перебудовою індексної області, метод Шарра Файли з щільним індексом з областю переповнення, метод Шарра Файли з не щільним індексом з перебудовою індексної області, метод Шарра Файли з не щільним індексом з областю переповнення, метод		
18 19 20 21 22 23 24	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук В-дерево t=100, однорідний бінарний пошук Файли з щільним індексом з перебудовою індексної області, метод Шарра Файли з щільним індексом з областю переповнення, метод Шарра Файли з не щільним індексом з перебудовою індексної області, метод Шарра Файли з не щільним індексом з областю переповнення, метод Шарра Файли з не щільним індексом з областю переповнення, метод Шарра		
18 19 20 21 22 23 24 25	В-дерево t=25, однорідний бінарний пошук В-дерево t=50, однорідний бінарний пошук В-дерево t=100, однорідний бінарний пошук Файли з щільним індексом з перебудовою індексної області, метод Шарра Файли з щільним індексом з областю переповнення, метод Шарра Файли з не щільним індексом з перебудовою індексної області, метод Шарра Файли з не щільним індексом з областю переповнення, метод Шарра Файли з не щільним індексом з областю переповнення, метод Шарра АВЛ-дерево		

29	В-дерево t=50, метод Шарра
30	В-дерево t=100, метод Шарра
31	АВЛ-дерево
32	Червоно-чорне дерево
33	В-дерево t=250, бінарний пошук
34	В-дерево t=250, однорідний бінарний пошук
35	В-дерево t=250, метод Шарра

3.1 Псевдокод алгоритмів

Вставлення запису.

```
function insert(k : BTreeNode)
        if length(root.keys) = (2 * t) - 1 then
      begin
            temp -> BTreeNode()
            self.root -> temp
            temp.child.insert(0, root)
            self.splitChild(temp, 0)
            self.insertNonFull(temp, k)
        else
            self.insertNonFull(root, k)
      end if
   end function
Вставлення запису, якщо вершина не заповнена.
  function insertNonFull(x : BTreeNode, k : BTreeNode)
        i \rightarrow length(x.keys) - 1
        if x.leaf = True then
            begin
            x.keys.append((None, None))
            while i \ge 0 and k[0] < x.keys[i][0] do
                begin
                x.keys[i + 1] \rightarrow x.keys[i]
                 i -> i - 1
                end while
            x.keys[i + 1] \rightarrow k
        else
            while i \ge 0 and k[0] < x.keys[i][0] do
                 i -> i - 1
            i -> i + 1
            if length(x.child[i].keys) = (2 * t) - 1 then
                 self.splitChild(x, i)
                 if k[0] > x.keys[i][0] then
                     i -> i + 1
             self.insertNonFull(x.child[i], k)
            end if
  end function
```

Розділення нащадків після додавання запису

```
function splitChild(x : BTreeNode, i : int)
```

```
y -> x.child[i]
        z -> BTreeNode(y.leaf)
        x.child.insert(i + 1, z)
        x.keys.insert(i, y.keys[t - 1])
        z.keys -> y.keys[t: (2 * t) - 1]
        y.keys -> y.keys[0: t - 1]
        if not y.leaf then
            begin
            z.child -> y.child[t: 2 * t]
            y.child -> y.child[0: t - 1]
            end if
  end function
Видалення запису
  function delete(x : BTreeNode, k : BTreeNode)
        while i < length(x.keys) and k[0] > x.keys[i][0] do
            i -> i + 1
        if x.leaf then begin
            if i < len(x.keys) and x.keys[i][0] = k[0] then
                x.keys.pop(i)
                return
            return
            end if
        if i < length(x.keys) and x.keys[i][0] = k[0] then
            return self.deleteInternalNode(x, k, i)
        elif length(x.child[i].keys) >= t then
            self.delete(x.child[i], k)
        else
            if i != 0 and i + 2 < length(x.child) then begin
                if length(x.child[i - 1].keys) >= t then
                    self.deleteSibling(x, i, i - 1)
                elif length(x.child[i + 1].keys) >= t then
                    self.deleteSibling(x, i, i + 1)
                else
                    self.deleteMerge(x, i, i + 1)
            elif i = 0 then
                if length(x.child[i + 1].keys) >= t then
                    self.deleteSibling(x, i, i + 1)
                else
                    self.deleteMerge(x, i, i + 1)
            elif i + 1 = length(x.child) then
                if length(x.child[i - 1].keys) >= t then
```

```
self.deleteSibling(x, i, i - 1)
                else
                    self.deleteMerge(x, i, i - 1)
            self.delete(x.child[i], k)
            end if
Видалення запису, коли лежить не в листку
  function deleteInternalNode(x : BTreeNode, k : BTreeNode, I : int)
        if x.leaf then
            if x.keys[i][0] = k[0] then
                x.keys.pop(i)
                return
            return
        if length(x.child[i].keys) >= t then
            x.keys[i] -> self.deletePredecessor(x.child[i])
            return
        elif length(x.child[i + 1].keys) >= t then
            x.keys[i] -> self.deleteSuccessor(x.child[i + 1])
            return
        else
            self.deleteMerge(x, i, i + 1)
            self.deleteInternalNode(x.child[i], k, self.t - 1)
  end function
Видалення заміщенням попередником.
  function deletePredecessor(x : BTreeNode)
        if x.leaf then
            return x.pop()
        n \rightarrow length(x.keys) - 1
        if length(x.child[n].keys) >= self.t then
            self.deleteSibling(x, n + 1, n)
        else
            self.deleteMerge(x, n, n + 1)
        self.deletePredecessor(x.child[n])
   end function
Видалення заміщенням наступником.
  function deleteSuccessor(x : BTreeNode)
        if x.leaf then
            return x.keys.pop(0)
        if length(x.child[1].keys) >= self.t then
            self.deleteSibling(x, 0,1)
```

```
else
            self.deleteMerge(x, 0, 1)
        self.deletePredecessor(x.child[0])
   end function
Видалення з об'єднанням дітей.
  function deleteMerge(x : BTreeNode, I : int, j : int):
        cnode -> x.child[i]
        if j > I then
            begin
            rsnode -> x.child[j]
            cnode.keys.append(x.keys[i])
            for k -> 0 to length(rsnode.keys) do
                cnode.keys.append(rsnode.keys[k])
                if length(rsnode.child) > 0 then
                    cnode.child.append(rsnode.child[k])
            if length(rsnode.child) > 0 then
                cnode.child.append(rsnode.child.pop())
            new -> cnode
            x.keys.pop(i)
            x.child.pop(j)
        else
            lsnode -> x.child[j]
            lsnode.keys.append(x.keys[j])
            for i -> 0 to length(cnode.keys) do
                lsnode.keys.append(cnode.keys[i])
                if length(lsnode.child) > 0 then
                    lsnode.child.append(cnode.child[i])
            if length(lsnode.child) > 0 then
                lsnode.child.append(cnode.child.pop())
            new -> lsnode
            x.keys.pop(j)
            x.child.pop(i)
        end if
        if x = self.root and length(x.keys) = 0 then
            self.root -> new
   end function
Видалення сусідньої на одному рівні.
  function deleteSibling(x : BTreeNode, I : int, j : int):
        cnode -> x.child[i]
        if i < j then</pre>
           begin
```

```
cnode.keys.append(x.keys[i])
                  x.keys[i] -> rsnode.keys[0]
                  if length(rsnode.child) > 0 then
                       cnode.child.append(rsnode.child[0])
                       rsnode.child.pop(0)
                   rsnode.keys.pop(0)
              else
                   lsnode -> x.child[j]
                   cnode.keys.insert(0, x.keys[i - 1])
                   x.keys[i - 1] -> lsnode.keys.pop()
                  if len(lsnode.child) > 0 then
                       cnode.child.insert(0, lsnode.child.pop())
              end if
         end function
      Пошук і зміна записів.
        function searchEdit(k : Tuple, x : BTreeNode = None, ed : int = None):
              if x is not None then
                  begin
                  lst -> x.keys[::]
                  d -> trunc(len(lst) / 2)
                   i -> d
                   if length(lst) % 2 = 0 then
                       lst.append((lst[-1][0] ^ 2 + 1, 0))
                  while d != 0 do
                      begin
                       if lst[i][0] = k then
                           self.window.lab.setText("Знайдено:
                                                                      ( "
str(x.keys[i][0]) + ", " + str(x.keys[i][1]) + ")")
                           if ed is not None then
                               x.keys[i] \rightarrow (x.keys[i][0], ed)
                           return x, (x.keys[i])
                       elif lst[i][0] < k then</pre>
                           i \rightarrow i + (trunc(d / 2) + 1)
                       else
                           i \rightarrow I - (trunc(d / 2) + 1)
                       d -> trunc(d / 2)
                  end while
                   if i < length(lst) and lst[i][0] = k then</pre>
                                                                    ( "
                       self.window.lab.setText("Знайдено:
str(x.keys[i][0]) + ", " + str(x.keys[i][1]) + ")")
                       if ed is not None then
```

rsnode -> x.child[j]

```
x.keys[i] -> (x.keys[i][0], ed)
return x, (x.keys[i])
elif x.leaf:
    self.window.lab.setText("Не знайдено:(")
    return None
else:
    if lst[i][0] > k then
        return self.searchEdit(k, x.child[i], ed)
else:
    return self.searchEdit(k, x.child[i + 1], ed)
else:
    return self.searchEdit(k, self.root, ed)
end if
end function
```

3.2 Часова складність пошуку

Середня часова складність пошуку становить:

 $\theta(\log n)$

Найкраща часова складність становить:

0(1)

- 3.3 Програмна реалізація
- 3.3.1 Вихідний код

```
Main.py
from visualisation import *
import sys

def main():
    app = QApplication(sys.argv)
    window = MainWindow()
    window.show()
    app.exec()
if pame == '__main__'.
```

```
scrollabel.py
from PyQt6.QtWidgets import *

class ScrollLabel(QScrollArea):
    def __init__(self):
```

```
QScrollArea.__init__(self)
self.setWidgetResizable(True)

content = QWidget(self)
self.setWidget(content)

lay = QVBoxLayout(content)

self.label = QLabel(content)
self.label.setWordWrap(True)
lay.addWidget(self.label)
```

visualization.py

```
self.conButton = QPushButton("Виконати")
self.conButton.setCheckable(True)
```

bTree1.py

```
from math import trunc
```

```
class BTreeNode:
   def insertNonFull(self, x, k):
           x.keys.append((None, None))
```

```
def splitChild(self, x, i):
        self.delete(x.child[i], k)
                self.deleteSibling(x, i, i + 1)
                self.deleteSibling(x, i, i + 1)
                self.deleteSibling(x, i, i - 1)
            x.keys.pop(i)
```

```
def deletePredecessor(self, x):
        self.deleteSibling(x, n + 1, n)
    self.deletePredecessor(x.child[n])
def deleteMerge(self, x, i, j):
        rsnode = x.child[j]
        cnode.keys.append(x.keys[i])
        for k in range(len(rsnode.keys)):
            cnode.keys.append(rsnode.keys[k])
            if len(rsnode.child) > 0:
                cnode.child.append(rsnode.child[k])
        if len(rsnode.child) > 0:
        x.keys.pop(i)
        x.child.pop(j)
        lsnode = x.child[j]
                lsnode.child.append(cnode.child[i])
            lsnode.child.append(cnode.child.pop())
        cnode.keys.append(x.keys[i])
            cnode.child.append(rsnode.child[0])
            rsnode.child.pop(0)
        rsnode.keys.pop(0)
```

```
x.keys[i - 1] = lsnode.keys.pop()
def printTree(self, x, l=0):
                self.window.lab.setText("Знайдено: (" + str(x.keys[i][0])
```

3.3.2 Приклади роботи

На рисунках 3.1 i 3.2 показані приклади роботи програми для додавання i пошуку запису.

Рисунок 3.1 – Додавання запису

Рисунок 3.2 – Пошук запису

3.4 Тестування алгоритму

3.4.1 Часові характеристики оцінювання

В таблиці 3.1 наведено кількість порівнянь для 15 спроб пошуку запису по ключу.

Таблиця 3.1 – Число порівнянь при спробі пошуку запису по ключу

Номер спроби пошуку	Число порівнянь	
1	17	
2	17	
3	17	
4	16	
5	18	
6	18	
7	16	
8	17	
9	17	
10	16	
11	19	
12	17	
13	17	
14	18	
15	17	
Середня	17	

ВИСНОВОК

В рамках лабораторної роботи було вивчено основні підходи проєктування та обробки складних структур даних, реалізовано програмне забезпечення, що дає здійснювати змогу здійснювати додавання, видалення, пошук та зміну даних, в основі яких лежить В-дерево з t=25 та однорідний бінарний пошук. У ході роботи було досліджено алгоритм пошуку і ми дійшли висновку, що для того, щоб знайти запис нам потрібно не більше, ніж log n. Середня кількість порівнянь при пошуку становить 17.

КРИТЕРІЇ ОЦІНЮВАННЯ

За умови здачі лабораторної роботи до 13.11.2022 включно максимальний бал дорівнює — 5. Після 13.11.2022 максимальний бал дорівнює — 1.

Критерії оцінювання у відсотках від максимального балу:

- псевдокод алгоритму -15%;
- аналіз часової складності -5%;
- програмна реалізація алгоритму 65%;
- тестування алгоритму 10%;
- висновок -5%.
- +1 додатковий бал можна отримати за реалізацію графічного зображення структури ключів.