Vectors & Vector Arithmetic

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 11.2 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to perform arithmetic operations on vectors and understand the geometric consequences of the operations.
- Know how to compute the magnitude of a vector and normalize a vector.
- Be able to use vectors in the context of geometry and force problems.

PRACTICE PROBLEMS:

1. Find the components of vector \overrightarrow{v} and sketch an equivalent vector with its initial point at the origin.

2. Sketch the vector $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}$ and express it in component form.

3. The figure below is a parallelogram. Express \overrightarrow{w} in terms of \overrightarrow{u} and \overrightarrow{v} .

$$\overrightarrow{w} = \frac{1}{2} \left(\overrightarrow{u} + \overrightarrow{v} \right)$$

4. Consider the points $P_1(2,3)$ and $P_2 = (5,-1)$. Find the components of the vector $\overrightarrow{P_1P_2}$. Sketch P_1 , P_2 , $\overrightarrow{P_1P_2}$, and an equivalent vector with its initial point at the origin.

- 5. Consider the points $P_1(1,2,3)$ and $P_2(5,4,6)$. Find the components of the vector $\overrightarrow{P_1P_2}$. $\overrightarrow{P_1P_2} = \langle 4,2,3 \rangle$
- 6. Let $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} \mathbf{k}$, $\mathbf{v} = -2\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, and $\mathbf{w} = 7\mathbf{i} + 4\mathbf{j} + \mathbf{k}$. Compute each of the following:
 - (a) $2\mathbf{u} 3\mathbf{w}$ $\boxed{-15\mathbf{i} 8\mathbf{j} 5\mathbf{k}}$
 - (b) $\|\mathbf{u} + \mathbf{v}\|$ $\sqrt{41}$
 - $(c) \|\mathbf{u}\| + \|\mathbf{v}\|$ $\sqrt{14} + \sqrt{29}$
 - $(d) \frac{\|2\mathbf{u}\|}{2\sqrt{14}}$
 - (e) $\left\| \frac{1}{\|\mathbf{v}\|} \mathbf{v} \right\|$
- 7. For each of the following, find a vector which satisfies the given conditions.
 - (a) A unit vector which is in the opposite direction of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$
 - $-\frac{3}{5}\mathbf{i} \frac{4}{5}\mathbf{j}$; Detailed Solution: Here

(b) A unit vector which is in the same direction as the vector from $P_1(1,0,5)$ to $P_2(3,-1,2)$

$$\left\langle \frac{2}{\sqrt{14}}, -\frac{1}{\sqrt{14}}, -\frac{3}{\sqrt{14}} \right\rangle$$
; Video Solution: Here

(c) A vector which is in the opposite direction of $\overrightarrow{v} = \langle 1, 2, 3 \rangle$ and whose maginitude is half that of \overrightarrow{v} .

$$\left\langle -\frac{1}{2}, -1, -\frac{3}{2} \right\rangle$$
; Detailed Solution: Here

(d) A vector which is in the same direction of $\mathbf{w} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and which has a length of $\sqrt{5}$

$$\frac{\sqrt{5}}{\sqrt{14}}\mathbf{i} - \frac{2\sqrt{5}}{\sqrt{14}}\mathbf{j} + \frac{3\sqrt{5}}{\sqrt{14}}\mathbf{k}$$
; Detailed Solution: Here

(e) A vector in 2-space which makes an angle of $\theta = \frac{\pi}{6}$ with the positive x-axis and which has a magnitude of 4.

$$\langle 2\sqrt{3}, 2 \rangle$$
; Detailed Solution: Here

(f) A vector in 2-space which makes an angle of $\theta=210^{\circ}$ with the positive x-axis and which has a length of 2.

$$\left\langle -\sqrt{3}, -1 \right\rangle$$
; Detailed Solution: Here

- 8. Find the value(s) of a so that the vectors $\overrightarrow{v} = \langle a^2, 6 \rangle$ and $\overrightarrow{w} = \langle 4a, 2 \rangle$ are parallel. a = 0 or a = 12
- 9. Vectors \overrightarrow{v} and \overrightarrow{w} , shown below, are unit vectors. Find the components of $\overrightarrow{v} + \overrightarrow{w}$.

$$\left\langle \frac{\sqrt{2}+\sqrt{3}}{2}, \frac{\sqrt{2}-1}{2} \right\rangle$$
; Detailed Solution: Here

10. For each of the following, find the magnitude of the resultant force and the angle that it makes with the positive x-axis.

(a)

(b)

- (a) The magnitude is $20\sqrt{5}$ lb at an angle of $\pi \tan^{-1}\left(\frac{1}{2}\right)$ radians counterclockwise with the positive x axis.
- (b) The magnitude is $150\sqrt{10}$ N at an angle of $\tan^{-1}\left(\frac{1}{2}\right)$ radians counterclockwise with the positive x axis.

11. A weight of 200 Newtons (N) is being supported by two wires, as shown below. Find the tension in each wire.

Let F_1 be the wire which makes an angle of 45° clockwise with the ceiling and F_2 be the wire which makes an angle of 30° counterclockwise with the ceiling. Then $\|F_2\| = \frac{400}{1+\sqrt{3}} \text{ N}$ and $\|F_1\| = \frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{400}{1+\sqrt{3}} \text{ N}$.

$$||F_2|| = \frac{400}{1+\sqrt{3}} \text{ N and } ||F_1|| = \frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{400}{1+\sqrt{3}} \text{ N}$$