

1/11

FIGURE 1

Figure 1: At ① Alice adds a watermark W using key K to her object O to make O' . At ② Bob steals a copy of O' . At ③ Charles extracts the watermark from O' using the key K to show that O' is owned by Alice. At ④ Bob successfully removes W from O . At ⑤ Bob adds new watermarks W' and W'' to make it hard for Charles to prove that W is Alice's original watermark. At ⑥ Bob distorts O' (and W) making it difficult for Charles to detect W . At ⑦ Charles attempts to extract the watermark from the distorted object, and either fails completely or gets a distorted watermark. At ⑧ Alice adds tamperproofing T to O . At ⑨ Bob tries to remove W from O , but, due to the tamperproofing, O will be rendered useless to Bob.

2/11

FIGURE 2

Figure 2: In ④ Alice embeds a watermark in the initialized data (string) section of her program. In ⑤ the watermark is embedded in the text (code) section of the program. In ⑥ the watermark gets embedded in a global variable V when the program is run with input I. In ⑦ the watermark is embedded in the execution trace when the program is run with input I. In ⑧ the watermark is embedded in the unexpected behavior (an "Easter Egg") of the program when it is run with input I.

3/11

```

String G (int n) {
    int i=0,k;
    String S;
    while (1) {
        L1: if (n==1) {S[i++]= "A"; k=0; goto L6};
        L2: if (n==2) {S[i++]= "B"; k=-2; goto L6};
        L3: if (n==3) {S[i++]= "C"; goto L9};
        L4: if (n==4) {S[i++]= "X"; goto L9};
        L5: if (n==5) {S[i++]= "C"; goto L11};
            if (n>12) goto L1;
        L6: if (k++<=2) {S[i++]= "A"; goto L6} else goto L8;
        L8: return S;
        L9: S[i++]= "C"; goto L10;
        L10: S[i++]= "B"; goto L8;
        L11: S[i++]= "C"; goto L12;
        L12: goto L10;
    }
}
}

```

FIGURE 3

Figure 3: A function producing the strings "AAA", "AAAAA", "XCB", and "CCB".

DRAFT - PROVISIONAL

FIGURE 4

Figure 4: Inserting bogus predicates in a program. In ① an opaque predicate $b > 5^T$ is inserted. This predicate is always true. In ② an opaque predicate $\text{rand}(0, 9) < 5^T$ is inserted. This predicate is sometimes true (in which case B is executed), and sometimes false (in which case an obfuscated version of B is executed). In ③ an opaque true predicate is inserted. This predicate appears to sometimes execute an obfuscated buggy version of B , but, in fact, never does.

4/11

$g(V)$		$f(p, q)$	V	$2p + q$	$\text{AND}[A, B]$		A			
p	q				0	1	2	3		
0	0	False		0		0	3	0	0	0
0	1	True		1	B	1	3	1	2	3
1	0	True		2		2	0	2	1	3
1	1	False		3		3	3	0	0	3

(1) bool A,B,C;
(2) B = False;
(3) C = False;
(4) C = A & B; \xrightarrow{T} (1') short a1,a2,b1,b2,c1,c2;
(5) C = A & B;
(6) if (A) ...;
(7) if (B) ...;

(2') b1=0; b2=0;
(3') c1=1; c2=1;
(4') x=AND[2*a1+a2, 2*b1+b2]; c1=x/2; c2=x%2;
(5') c1=(a1 ^ a2) & (b1 ^ b2); c2=0;
(6') x=2*a1+a2; if ((x==1) || (x==2)) ...;
(7') if (b1 ^ b2) ...;

FIGURE 5

Figure 5: Variable splitting example. We show one possible choice of representation for split boolean variables. The table indicates that boolean variable V has been split into two short integer variables p and q . If $p = q = 0$ or $p = q = 1$ then V is False, otherwise, V is True. Given this new representation, we devise substitutions for the built-in boolean operations. In the example, we provide a run-time lookup table for each operator. Given two boolean variables $V_1 = [p, q]$ and $V_2 = [r, s]$, " $V_1 \& V_2$ " is computed as "AND[$2p + q, 2r + s$]".

$$\begin{aligned} Z(X+r, Y) &= 2^{32} \cdot Y + (r+X) &= Z(X, Y) + r \\ Z(X, Y+r) &= 2^{32} \cdot (Y+r) + X &= Z(X, Y) + r \cdot 2^{32} \\ Z(X \cdot r, Y) &= 2^{32} \cdot Y + X \cdot r &= Z(X, Y) + (r-1) \cdot X \\ Z(X, Y \cdot r) &= 2^{32} \cdot Y \cdot r + X &= Z(X, Y) + (r-1) \cdot 2^{32} \cdot Y \end{aligned}$$

(1) int X=45;
int Y=95; (1') long Z=167759086119551045;
(2) X += 5;
(3) Y += 11; \xrightarrow{T} (2') Z += 5;
(4) X += c;
(5) Y += d; (3') Z += 47244640256;
(4') Z += (c-1)*(Z & 4294967295);
(5') Z += (d-1)*(Z & 18446744069414584320);

FIGURE 6

Figure 6: Merging two 32-bit variables X and Y into one 64-bit variable Z . Y occupies the top 32 bits of Z , X the bottom 32 bits. If the actual range of either X or Y can be deduced from the program, less intuitive merges could be used. First we give rules for addition and multiplication with X and Y , then show some simple examples.

5/11

```

int Sum(int A[]) {
    int sum=0, i=0, pc=0;
    int s[] = new int [5], sp=-1;
    loop: while (true)
        switch("fcgabcd".charAt(pc)) {
            case 'a': sum += s[sp--]; pc++; break;
            case 'b': i++; pc++; break;
            case 'c': s[++sp] = i; pc++; break;
            case 'd': if (s[sp-1] > s[sp]) pc -= 6;
                        else break loop; break;
            case 'e': s[++sp] = A.length; pc++; break;
            case 'f': pc += 5; break;
            case 'g': s[sp] = A[s[sp]]; pc++; break;
        }
    return sum;
}

```

FIGURE 7

Figure 7: The Java method Sum on the left is obfuscated by translating it into the bytecode "fcgabcd". This code is then executed by a stack-based interpreter specialized to handle this particular virtual machine code. This technique is similar to Probsting's superoperators [20].

6/11

TOP SECRET - G99E074260

FIGURE 8

Figure 8: At ① Alice selects two large primes P and Q , and computes their product n . At ② she embeds n in the topology of a graph. This graph is her watermark W . At ③ W is converted to a program which builds the graph. At ④ the program is embedded into the original program O_0 , such that when O_0 is run with I as input, W is built. Also, a recognizer program R is constructed, which is able to identify W on the heap, and extract n from it. At ⑤ tamperproofing is added, to prevent the graph from being obfuscated to such an extent that R cannot identify it. At ⑥ the application (including the watermark, tamperproofing code, and recognizer) is obfuscated. At ⑦ the recognizer is removed from the application. O_3 is the version of Alice's program that is distributed. At ⑧ Charles links in the recognizer program R with O_3 . At ⑨ the application is run with I as input, and the recognizer R produces n . Since Charles is the only one who can factor n , he can prove the legal origin of Alice's program.

7/11

$$3 \cdot 6^4 + 2 \cdot 6^3 + 3 \cdot 6^2 + 4 \cdot 6^1 + 1 \cdot 6^0 = 4453 = 61 \cdot 73$$

FIGURE 9

Figure 9: Embedding a watermark into a graph structure. The structure is essentially a linked list. The rightmost pointer of each node is the next field, while the second field encodes a digit. In this example, 0=null (/), 1=a self-pointer, 2=a one-step back pointer, 3=a one step forward pointer, 4=a two step back pointer, and 5=a 2 step forward pointer. This allows us to encode a value $61 * 73 = 4453_{10}$ as the base-6 value 32341_6 .

FIGURE 10

Figure 10: The twenty-second tree in an enumeration of the oriented trees with seven vertices.

FIGURE 11

Figure 11: A 5-clique is used to mark the beginning of an encoded value.
SUBSTITUE SHEET (Rule 26)

8/11

FIGURE 12

Figure 12: Obfuscation of dynamic structures. In ① we add bogus pointer fields to all nodes of type T. In ② we rename and reorder fields. In ③ we add a level of indirection by splitting all nodes in two.

9/11

```

class C {public int a; public C car, cir;}

public static void main(String[] args) {
    Field[] F = C.class.getFields();
    if (F.length != 3)
        die();
    if (F[0].getType() != java.lang.Integer.TYPE)
        die();
    if (F[1].getType() != C.class)
        die();
    if (F[2].getType() != C.class)
        die();
}

```

(a)

```

class C {public int a; public C car, cir;}

public static void main(String[] args)
    throws NoSuchFieldException,
    IllegalAccessException {
    Field f;
    String V;
    C n = new C();
    Class c = n.getClass();
    if (PF) {
        f = c.getField(V=>car);
        ① f.set(n, null);
    }
    Field F = c.getFields();
    int R;
    ② F[R=1].set(n, n.car);
}

```

(b)

FIGURE 13

Figure 13: Examples of tamperproofing Java code using the reflection interface.

09/719399

WO 99/64973

PCT/NZ99/00081

10/11

FIG 14

Figure 15 Tamperproofing against node-splitting. At ① we expand each node of our original watermark tree into a 4-cycle. At ② an adversary splits two nodes. The structure of the graph ensures that these nodes will fall on a cycle. At ③ the recognizer shrinks the biconnected components of the underlying (undirected) graph. The result is a graph isomorphic to our original watermark.

FIG 15