Análise e Projeto de Sistemas

Universidade Federal do Ceará – UFC

Campus de Quixadá

Curso de Sistemas de Informação

Prof. Marcos Antonio de Oliveira (deoliveira.ma@gmail.com)

"Qualquer um pode escrever código que um computador pode entender. Bons programadores escrevem código que seres humanos podem entender."

(Martin Fowler)

MODELAGEM DE ATIVIDADES

Esses slides são uma adaptação das notas de aula do professor Eduardo Bezerra autor do livro Princípios de Análise e Projeto de Sistemas com UML

Índice

- Diagrama de atividade
- Diagrama de atividade no processo de desenvolvimento iterativo

DIAGRAMA DE ATIVIDADE

Diagrama de Atividade

- Há diversos diagramas da UML que descrevem os aspectos dinâmicos de um sistema
 - Diagramas de estados, diagramas de seqüência e de comunicação e diagrama de atividade
- O diagrama de atividade é um tipo especial de DTE, onde são representados os <u>estados de uma atividade</u>
- Um diagrama de atividade exibe passos de uma computação
 - Cada atividade é um passo da computação
 - É orientado a fluxos de controle

Diagrama de Atividade

- Elementos podem ser divididos em dois grupos
 - Controle sequencial e controle paralelo
- Elementos utilizados em fluxos seqüenciais
 - Estado ação, estado atividade, estados inicial e final, e condição de guarda, transição de término e pontos de ramificação e de união
- Elementos utilizados em fluxos paralelos
 - Barras de sincronização, barra de bifurcação (*fork*) e barra de junção (*join*)

Fluxos de Controle Sequenciais

- Um estado em um diagrama de atividade pode ser
 - Um **estado atividade** leva um certo tempo para ser finalizado
 - Um **estado ação**, realizado instantaneamente
- Deve haver um estado inicial e pode haver vários estados finais e guardas associadas a transições
 - Pode não ter estado final, o que significa que o processo ou procedimento é cíclico
- Uma transição de término significa o término de um passo e o consequente início do outro
 - Em vez de ser disparada pela ocorrência de um evento, é disparada pelo término de um passo

Fluxos de Controle Sequenciais

- Um *ponto de ramificação* possui uma única transição de entrada e várias transições de saída
 - Para cada transição de saída, há uma condição de guarda associada
 - Quando o fluxo de controle chega a um ponto de ramificação,
 uma e somente uma das condições de guarda deve ser verdadeira
 - Pode haver uma transição com [else]
- Um ponto de união reúne diversas transições que, direta ou indiretamente, têm um ponto de ramificação em comum

Diagrama de Atividade

Fluxo de Controle Paralelo

- Fluxos de controle paralelos: dois ou mais fluxos sendo executados simultaneamente
- Uma barra de bifurcação recebe uma transição de entrada, e cria dois ou mais fluxos de controle paralelos
 - Cada fluxo é executado independentemente e em paralelo com os demais
- Uma barra de junção recebe duas ou mais transições de entrada e une os fluxos de controle em um único fluxo
 - Objetivo é sincronizar fluxos paralelos
 - A transição de saída da barra de junção somente é disparada quando todas as transições de entrada tiverem sido disparadas

Fluxo de Controle Paralelo

- Algumas vezes, as atividades de um processo podem ser distribuídas por vários agentes que o executarão
 - Processos de negócio de uma organização
- Isso pode ser representado através de raias de natação (swim lanes)
- As raias de natação dividem o diagrama de atividade em compartimentos
- Cada compartimento contém atividades que são realizadas por uma entidade

Exemplo (Raias de Natação)

DIAGRAMA DE ATIVIDADE NO PROCESSO I&I

Uso de Diagramas de Atividades

Não são frequentemente utilizados na prática...

Importante: na orientação a objetos o sistema é dividido em objetos, e não em módulos funcionais como na Análise Estruturada (Diagrama de Fluxos de Dados).

Modelar Processo de Negócio

- Modelagem também é um processo de entendimento
 - O desenvolvedor constrói modelos para entender melhor um problema

- Neste caso, o enfoque está em entender o comportamento do sistema no decorrer de diversos casos de uso (processos de negócio)
 - Como determinados casos de uso do sistema se relacionam no decorrer do tempo

Modelar Processo de Negócio

Modelar a Lógica de um Caso de Uso

- A realização de um caso de uso requer que alguma computação seja realizada
 - Esta computação pode ser dividida em atividades
 - "Passo P ocorre até que a C seja verdadeira"
 - "Se ocorre C, vai para o passo P"
- Nessas situações, é interessante complementar a descrição do caso de uso com um diagrama de atividade.

Modelar a Lógica de um Caso de Uso

Modelar a Lógica de uma Operação

- Quando um sistema é adequadamente decomposto em seus objetos, a maioria das operações são bastante simples
 - Estas não necessitam de modelagem gráfica

- No entanto, pode haver a necessidade de descrever a lógica de uma operação mais complexa
 - Implementação de regras de negócio

Referências

 BEZERRA, E. Princípios de Análise e Projeto de Sistemas com UML. 2ª ed. Rio de Janeiro: Elsevier, 2007.

• FOWLER, M. 3. UML Essencial. 3. ed. Porto Alegre: Bookman, 2007.