

Corr_x (y)[k]
=
$$\sum_{i=-2}^{4} x[i] \cdot y[i-k]$$

k=0:	n	-2	-1	0	1	2	3	
	S,[n]	0	٥	l	2	3	0	
	S ₂ [n]	0	0	2	4	3	٥	
(5. 5 mz)		0.1	0	+ 2 -	8	<u> </u>	+ 0	

2

0 +

+8

Q

0

(5,5,61)

2 Save Mr. Muffin!

Berkeley Compus

N

E

Durant

Channing

Haste

Derby

Mr. Muffin is lost!

Luckily his Blue-Tooth & collar pings 4 city sensors to provide an absolute distance between Mr. Muffin an each sensor. (Up to 5 Blocks)

a) Provided these data, can you identify where Mr. Muffin is?

Sensor Data:

$$N \sim 5 = \sqrt{3^2 + 4^2}$$

 $W \sim \sqrt{20} = \sqrt{2^2 + 4^2}$
 $E \sim \sqrt{5} = \sqrt{1^2 + 2^2}$
 $S \sim \sqrt{10} = \sqrt{1^2 + 3^2}$

(Distances, in)
city blocks

$$D_{N}^{2} = (x-0)^{2} + (y-2)^{2}$$

b) Can you accomplish this by setting up a system of equations?

$$D_{N}^{2} = 25 = (x-0)^{2} + (y-2)^{2}$$

$$= x^{2} + y^{2} - 4y + 4$$

$$21 = (x^{2} + y^{2}) - 4y$$
Ean,

$$D_{W}^{2} = 20 = (x+1)^{2} + y^{2}$$

$$= x^{2} + 2x + 1 + y^{2}$$

$$= (x^{2} + y^{2}) + 2x$$

$$D_{E}^{2} = 5 = (x-2)^{2} + y^{2}$$

$$= x^{2} - 4x + 4 + y^{2}$$

$$= (x^{2} + y^{2}) - 4x$$

Sensor

$$V \sim (0, Z)$$
 $W \sim (-1, 0)$
 $E \sim (+2, 0)$

5 ~ (0,-1)

EQN_N-EQN_E:
$$20 = -4y + 4x$$

EQN_W-EQN_E: $18 = 2x + 4x = 6x$
 $x = 3$ $20 + 4y = 12$ $4y = -8$

C) Provided new data in which E&S are now out of range, where is Mr. Muffin?

$$\begin{cases} x = -5 \\ y = +2 \end{cases}$$

d) Provided uncertain date in which Wis are given with ±0.5 and NiE are out of range, where is Mr. Muffin?

