MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

DIM5068 – MATHEMATICAL TECHNIQUES 2

(For DIT students only)

14 MARCH 2018 09.00 am - 11.00 am (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 2 pages with 4 questions. Key formulae are given in the Appendix.
- 2. Answer ALL questions.
- 3. Write your answers in the answer booklet provided.
- 4. All necessary working steps must be shown.

Question 1

- a) Differentiate the following functions with respect to x by using Chain Rule.
 - i) $y = \sin(x^4 6x^2 2x)$. (5 marks)

ii)
$$y = -\frac{4}{\sqrt[3]{3x^2 + 5x}}$$
. (6 marks)

b) Differentiate $9y^2 - 5x^4 + 3xy^2 = x^3y^3$ by using implicit differentiation.

(7 marks)

c) Find the coordinates of the critical points of the given function $f(x) = x^3 - x^2 - x$. (7 marks)

[TOTAL 25 MARKS]

Question 2

- a) Evaluate the following definite integral.
 - i) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2y^3 + \cos y) \, dy$. [Note: leave your answer in terms of π] (5 marks)
 - ii) $\int_{0}^{\pi} (3x+5)\sin x \, dx$. [Hint: use **Integration by Parts**] (8 marks)
- b) Find the indefinite integral $\int (3x^4 7)^6 (12x^3) dx$. [Hint: use Substitution Method] (5 marks)
- c) Find the area of the region bounded by the graphs of $y = 4 x^2$, y = -x + 2, x = -1, x = 2 as shown below. (7 marks)

[TOTAL 25 MARKS]

Continued...

Question 3

a) Solve the first order differential equation $\frac{dy}{dx} = \frac{x^3 + 6x + 2}{y}$, by using the **Separable Method**. (5 marks)

b) Given the differential equation $\frac{dy}{dx} + \frac{y}{x} = \frac{29}{x}$.

i) Identify the p(x) and q(x). (2 marks)

ii) Calculate the integrating factor, μ . (1.5 marks)

iii) Find y given $\mu y = \int \mu q(x) dx$. (3.5 marks)

iv) From your answer in part b(iii), determine the solution of the initial value problem if y(7)=33. (2 marks)

v) State the general solution of y. (1 mark)

c) Given the non-homogeneous differential equation 8y''-6y'+y=29x+4.

i) Determine the complementary solution, y_c . (3 marks)

ii) Compute the particular solution, y_p . (7 marks)

[TOTAL 25 MARKS]

Question 4

a) Let a = 2i + 4j - 2k and b = 7i + 4j + 5k.

i) Compute $3\mathbf{b} \cdot (-2\mathbf{a})$. (4 marks)

ii) Find the value of x and y if $\mathbf{a} + \mathbf{b} = \langle 9, y + 3x, x \rangle$. (3 marks)

b) Given that $|\mathbf{u}| = 5$, $|\mathbf{v}| = 7$, $\mathbf{u} \cdot \mathbf{v} = 3x - 15$ and angle between \mathbf{u} and \mathbf{v} is $\frac{\pi}{2}$, find \mathbf{x} .

(3 marks)

c) Anita wants to design a card with a triangular shape. Given the vertices of the triangle P = (2, 9, 0), Q = (-4, 1, 9), and R = (8, -7, 0).

i) Determine \overrightarrow{PQ} and \overrightarrow{PR} . (2 marks)

ii) Calculate the cross product of \overrightarrow{PQ} and \overrightarrow{PR} . (3 marks)

iii) Compute the total area of the card. Round your answer to 2 decimal points. (3 marks)

d) If a line passing through the points (6, 6, 2) and (7, -5, 5), compute;

i) The parametric equations of the line. (4 marks)

ii) The symmetric equations of the line. (3 marks)

[TOTAL 25 MARKS]

End of page.

APPENDIX

Derivatives:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Differentiation Rules

General Formulae

1.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

$$3. \frac{d}{dx}(x^n) = nx^{n-1}$$

1.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
 2. $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$

4.
$$\frac{d}{dx}[f(u)] = \frac{dy}{du} \cdot \frac{du}{dx}$$

Exponential and Logarithmic Functions

1.
$$\frac{d}{dx}(e^x) = e^x$$

$$3. \frac{d}{dx}(\ln x) = \frac{1}{x}$$

2.
$$\frac{d}{dx}(a^x) = a^x \ln a$$

4.
$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

Trigonometric Functions

1.
$$\frac{d}{dx}(\sin x) = \cos x$$

$$3. \frac{d}{dx}(\tan x) = \sec^2 x$$

$$5. \frac{d}{dx}(\sec x) = \sec x \tan x$$

2.
$$\frac{d}{dx}(\cos x) = -\sin x$$

4.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

6.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Table of Integrals

$$1. \int u \ dv = uv - \int v \ du$$

$$3. \int \frac{du}{u} = \ln|u| + C$$

$$5. \int \sin u \ du = -\cos u + C$$

$$7. \int \sec^2 u \ du = \tan u + C$$

9.
$$\int \sec u \tan u \ du = \sec u + C$$

2.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

$$4. \int e^u du = e^u + C$$

6.
$$\int \cos u \ du = \sin u + C$$

$$8. \int \csc^2 u \ du = -\cot u + C$$

10.
$$\int \csc u \cot u \ du = -\csc u + C$$

Application of Integrals:

Areas between Curve, $A = \int_{a}^{b} [f(x) - g(x)] dx$

Differential Equations

Linear Differential Equations

$$\frac{dy}{dx} + p(x)y = q(x) \qquad \Rightarrow \qquad \mu y = \int \mu q(x) \, dx, \text{ where } \mu = e^{\int p(x) \, dx}$$

Constant Coefficient of Homogeneous Equations

Roots of Auxiliary Equation,
$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

General Solutions to the Auxiliary Equation:

2 Real & Unequal Roots
$$(b^2 - 4ac > 0)$$
 $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
Repeated Roots $(b^2 - 4ac = 0)$ $y = c_1 e^{r_1 x} + c_2 x e^{r_2 x}$

2 Complex Roots
$$(b^2 - 4ac < 0)$$
 $y = e^{ax}(c_1 \cos bx + c_2 \sin bx)$

Constant Coefficient of Non-Homogeneous Equations

$$y = y_c + y_p$$
 [y_c : complementary solution, y_p : particular solution]

Vector

Length of Vector

The length of the vector
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
 is $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

Dot Product

If
$$\theta$$
 is the angle between the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3 = |\mathbf{a}||\mathbf{b}|\cos\theta$

Cross Product

If
$$\theta$$
 is the angle between the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then $\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$ $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta$

Area for parallelogram PQRS

Area for parallelogram
$$\overrightarrow{PQRS}$$
 Area for triangle \overrightarrow{PQRS}

$$= |\overrightarrow{PQ} \times \overrightarrow{PR}|$$

$$= \frac{1}{2} |\overrightarrow{PQ} \times \overrightarrow{PR}|$$

Equation of Lines

Vector equation:
$$\mathbf{r} = \mathbf{r}_0 + \mathbf{t}\mathbf{v}$$

Parametric equations:
$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

Symmetric equation:
$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Equation of Planes

Vector equation:
$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

Scalar equations:
$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Linear equation:
$$ax + by + cz + d = 0$$

Angle between Two Planes:
$$\theta = \cos^{-1} \left(\frac{n_1 \cdot n_2}{|n_1| |n_2|} \right)$$