Calculus II Homework on Lecture 7

- 1. Find a linear substitution (via completing the square) to transform the radical to a multiple of an expression of the form $\sqrt{u^2+1}$, $\sqrt{u^2-1}$ or $\sqrt{1-u^2}$.
 - (a) $\sqrt{x^2 + x + 1}$.
 - (b) $\sqrt{-2x^2 + x + 1}$.

1 Trig or Euler substitution, solutions use trig sub

- 1.1 Case 1: $\sqrt{x^2+1}$
- 2. Compute the integral.
 - (a) $\int \frac{\sqrt{1+x^2}}{x^2} dx.$
 - 1.2 Case 2: $\sqrt{1-x^2}$
- 3. Compute the integral using a trigonometric substitution.

(a)
$$\int \frac{\sqrt{9-x^2}}{x^2} dx .$$

2 Trig or Euler substitution, solutions use Euler sub

- **2.1** Case 1: $\sqrt{x^2+1}$
- 4. Compute the integral.

(a)
$$\int \sqrt{x^2 + 1} dx$$

(b)
$$\int \sqrt{x^2 + 2} dx$$

(c)
$$\int \sqrt{x^2 + x + 1} dx$$

(d)
$$\int \sqrt{(2x^2 + 2x + 1)} dx$$

(e)
$$\int \sqrt{(3x^2 + 2x + 1)} dx$$

$$(f) \int \frac{\sqrt{x^2+1}}{x+1} \mathrm{d}x$$

5. This problem will not be quizzed. Let $b^2-4ac<0$ and a>0 be (real) numbers. Show that

$$\int \sqrt{(ax^2 + bx + c)} dx = \frac{\sqrt{a}D}{2} \left(\ln \left(\sqrt{\left(\frac{2xa + b}{2\sqrt{D}a}\right)^2 + 1} + \frac{2xa + b}{2\sqrt{D}a} \right) + \frac{2xa + b}{2\sqrt{D}a} \sqrt{\left(\frac{2xa + b}{2\sqrt{D}a}\right)^2 + 1} \right) + C,$$

1

where
$$D = \frac{4ac - b^2}{4a^2}$$
.

2.2 Case 2: $\sqrt{1-x^2}$

6. Integrate

(a)
$$\int \sqrt{1-x^2} dx$$

(b)
$$\int \sqrt{2-x^2} dx$$

(c)
$$\int \sqrt{-x^2 + x + 1} dx$$

(d)
$$\int \sqrt{2-x-x^2} dx$$

(e)
$$\int \frac{\sqrt{1-x^2}}{1+x} \mathrm{d}x$$

(f)
$$\int \frac{\sqrt{1-x^2}}{2+x} \mathrm{d}x$$

2.3 Case 3: $\sqrt{x^2-1}$

7. Integrate

(a)
$$\int \sqrt{x^2 - 1} dx$$

(b)
$$\int \sqrt{x^2 - 2} dx$$

(c)
$$\int \sqrt{2x^2 + x - 1} dx$$

(d)
$$\int \sqrt{x^2 + x - 1} \mathrm{d}x$$

3 Theory through problems (Optional homework, will not be quizzed, will not be tested)

3.1 Case 1: $\sqrt{x^2+1}$

3.1.1
$$x = \cot \theta$$

- 8. (a) Express x, dx and $\sqrt{x^2 + 1}$ via θ and $d\theta$ for the trigonometric substitution $x = \cot \theta$, $\theta \in (0, \pi)$.
 - (b) Express x, dx and $\sqrt{x^2 + 1}$ via t and dt for the Euler substitution $x = \cot(2 \arctan t)$, t > 0. Express t via x.
- 9. Let the variables x and t be related via $\sqrt{x^2 + 1} = x + t$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2 + 1}$ via t alone.
 - (c) Express dx via t and dt.

3.1.2
$$x = \tan \theta$$

- 10. (a) Express x, dx and $\sqrt{x^2+1}$ via θ and $d\theta$ for the trigonometric substitution $x=\tan\theta,\,\theta\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.
 - (b) Express x, $\mathrm{d}x$ and $\sqrt{x^2+1}$ via t and $\mathrm{d}t$ for the Euler substitution $x=\tan(2\arctan t), t\in(-1,1)$. Express t via x.
- 11. Let the variables x and t be related via $\sqrt{x^2 + 1} = \frac{x}{t} 1$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2 + 1}$ via t alone.
 - (c) Express dx via t and dt.

3.2 Case 2: $\sqrt{1-x^2}$

3.2.1 $x = \cos \theta$

- 12. (a) Express x, dx and $\sqrt{1-x^2}$ via θ and $d\theta$ for the trigonometric substitution $x=\cos\theta, \theta\in[0,\pi]$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x=\cos(2\arctan t)$, $t\geq 0$. Express t via x.
- 13. Let the variables x and t be related via $\sqrt{-x^2+1} = (1-x)t$.
 - (a) Express x via t.
 - (b) Express $\sqrt{-x^2+1}$ via t alone.
 - (c) Express dx via t and dt.

3.2.2 $x = \sin \theta$

- 14. (a) Express x, dx and $\sqrt{1-x^2}$ via θ and $d\theta$ for the trigonometric substitution $x=\sin\theta, \theta\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x = \sin(2 \arctan t)$, $t \in [-1,1]$. Express t via x.
- 15. Let the variables x and t be related via $\sqrt{-x^2+1}=1-xt$.
 - (a) Express x via t.
 - (b) Express $\sqrt{-x^2+1}$ via t alone.
 - (c) Express dx via t and dt.

3.3 Case 3: $\sqrt{x^2-1}$

3.3.1 $x = \sec \theta$

- 16. (a) Express x, dx and $\sqrt{x^2-1}$ via θ and $d\theta$ for the trigonometric substitution $x=\csc\theta, \theta\in\left[0,\frac{\pi}{2}\right]\cup\left[\pi,\frac{3\pi}{2}\right)$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x=\sec(2\arctan t),\,t\in(-\infty,-1)\cup[1,0).$ Express t via x.
- 17. Let the variables x and t be related via $\sqrt{x^2 1} = (x + 1)t$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2-1}$ via t alone.
 - (c) Express dx via t and dt.

3.3.2 $x = \csc \theta$

- 18. (a) Express x, dx and $\sqrt{1-x^2}$ via θ and $d\theta$ for the trigonometric substitution $x=\csc\theta, \theta\in\left[0,\frac{\pi}{2}\right]\cup\left[\pi,\frac{3\pi}{2}\right)$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x=\csc(2\arctan t)$, $t\in(-\infty,-1)\cup[0,1)$. Express t via x.
- 19. Let the variables x and t be related via $\sqrt{x^2 1} = \frac{1}{t} x$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2 1}$ via t alone.
 - (c) Express dx via t and dt.