# Time Series Forecasting PROJECT - 7 REPORT – Part 2

Piyush Kumar Singh

PGP – DSBA Online May-21 Batch

Date: 16/01/2022

### **Table of Contents**

| • List | t of Figures                                                                                                                                                                                                                                                                                                     | .3 |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| • List | t of Tables                                                                                                                                                                                                                                                                                                      | .4 |
| • Da   | taset 1 – Rose.csv                                                                                                                                                                                                                                                                                               | .5 |
| 1.1)   | Read the data as an appropriate Time Series data and plot the data                                                                                                                                                                                                                                               | .5 |
| 1.2)   | Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition                                                                                                                                                                                                              | .7 |
| 1.3)   | Split the data into training and test. The test data should start in 1991                                                                                                                                                                                                                                        | 12 |
| 1.4)   | Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression, naïve forecast models, simple average models etc. should also be built on the training data and check the performance on the test data using RMSE.          | ge |
| 1.5)   | Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. |    |
| 1.6)   | Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this mode on the test data using RMSE                                                                                             | el |
| 1.7)   | Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.                                                                                                                                                                  |    |
| 1.8)   | Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data                                                                                                                                                                                | 25 |
|        | Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands                                                                                                                                     |    |
| 1.10)  | Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales                                                                                                                                                                             |    |

## **List of Figures**

| Fig.1 – Line plot of rose Time Series along with mean and median of our Time Series            | 6  |
|------------------------------------------------------------------------------------------------|----|
| Fig.2 – Yearly boxplot of rose sales                                                           | 7  |
| Fig.3 – Monthly boxplot of rose sales                                                          | 8  |
| Fig.4 – Monthly plot showing mean and variation of units sold                                  | 8  |
| Fig.5 – Line chart of sales across years                                                       | 9  |
| Fig.6 – Empirical cumulative distribution graph                                                | 10 |
| Fig.7 – Average sales and sales percentage change across years                                 | 10 |
| Fig.8 – Additive model decomposition                                                           | 11 |
| Fig.9 — Multiplicative model decomposition                                                     | 11 |
| Fig.10 – Original Time Series Vs Time Series with decomposed component                         | 12 |
| Fig.11 – Train and Test set line plot                                                          | 13 |
| Fig.12 – Prediction graph of various models w.r.t to test set                                  | 16 |
| Fig.13 – Time Series of difference of order 1                                                  | 17 |
| Fig.14 – Diagnostic plot of ARIMA(2,1,3)                                                       | 19 |
| Fig.15 – Diagnostic plot of SARIMA(3,1,1)(3,0,2,12)                                            | 20 |
| Fig.16 – ACF and PACF plot of differenced time series                                          | 21 |
| Fig.17 – Diagnostic plot of ARIMA(0,1,0)                                                       | 22 |
| Fig.18 – Diagnostic plot of SARIMA(0,1,0)(0,0,0,12)                                            | 24 |
| Fig.19 – Line plot of Time Series Vs fitted values by model vs future prediction for 12 months | 26 |
| Fig.20 — Line plot of actual data Vs predicated data with 95% confidence interval              | 27 |
| Fig.21 – Line plot of 12 months future prediction with 95% confidence interval                 | 27 |

## **List of Tables**

| Table 1. | Time Series dataset info                        | 6    |
|----------|-------------------------------------------------|------|
| Table 2. | Summary of Time Series Rose Dataset             | 7    |
| Table 3. | Monthly sales across the years                  | 9    |
| Table 4. | ARIMA Automated Summary results                 | . 18 |
| Table 5. | SARIMA Automated Summary results                | . 20 |
| Table 6. | ARIMA Manual Summary results                    | . 22 |
| Table 7. | SARIMA Manual Summary results                   | . 23 |
| Table 8. | Model comparison table using test RMSE          | . 25 |
| Table 9. | Sales Prediction values for 12 months in future | . 26 |

### **Dataset: Rose.csv**

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

- **1.1** Read the data as an appropriate Time Series data and plot the data.
  - Monthly sales of 'rose' wine from period Jan 1980 to July 1995 is provided in the Rose.csv file.
  - The given data files is read and date range is inserted and the YearMonth column is to daterange and set as index to create a time series data having one column of 'Rose' showing sales value.

|           | Rose  |            |
|-----------|-------|------------|
| earMonth  |       | YearMonth  |
| 980-01-31 | 112.0 | 1995-03-31 |
| 0-02-29   | 118.0 | 1995-04-30 |
| 3-31      | 129.0 | 1995-05-31 |
| -04-30    | 99.0  | 1995-06-30 |
| -05-31    | 116.0 | 1995-07-31 |
| Head      |       | Tail       |

- Numbers of records in the dataset is 187.
- There are 2 null values in our time series.

|            | Rose |
|------------|------|
| YearMonth  |      |
| 1994-07-31 | NaN  |
| 1994-08-31 | NaN  |

- I am using interpolate method 'pad' to replace the missing values.
- After replacement we get the following values in our time series for year 1994.

| Rose |           | 30.0       | 35.0       | 42.0       | 48.0       | 44.0       | 45.0       | 45.0       | 45.0       | 46.0       | 51.0       | 63.0       | 84.0       |
|------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|      | YearMonth | 1994-01-31 | 1994-02-28 | 1994-03-31 | 1994-04-30 | 1994-05-31 | 1994-06-30 | 1994-07-31 | 1994-08-31 | 1994-09-30 | 1994-10-31 | 1994-11-30 | 1994-12-31 |

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 187 entries, 1980-01-31 to 1995-07-31
Data columns (total 1 columns):
    # Column Non-Null Count Dtype
    ------
0 Rose 187 non-null float64
dtypes: float64(1)
memory usage: 2.9 KB
```

Table.1

• Info of dataset after replacement of missing values. As we can see there are no missing values now in our dataset.



Fig.1

- Here we have plotted our time series to analyse it behaviour visually.
- Sales of Rose wine is showing a downward trend with sales decreasing over the given time period.
- Rose time series has significant seasonality.

**1.2** Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition Read the data as an appropriate Time Series data and plot the data.

|       | Rose    |
|-------|---------|
| count | 187.000 |
| mean  | 89.909  |
| std   | 39.244  |
| min   | 28.000  |
| 25%   | 62.500  |
| 50%   | 85.000  |
| 75%   | 111.000 |
| max   | 267.000 |

Table.2

- The descriptive summary of the data shows that on an average 89 units of rose were sold each month on the given time period. 50 % of the sales have more than 85 unit's sales every month.
- Maximum sale in a month was of 267 units and minimum sale in a month was 28 units.



Fig.2

- The yearly boxplot shows that the average sales of rose wine is showing a downward trend over the years.
- The outliers in the yearly-boxplot most probably represents seasonal sales during the seasonal months.



Fig.3

- The monthly boxplot show sales within different months spread across various years.
- The monthly boxplot shows clear seasonality during the months of November and December. Though sales drops drastically in month of January, it slowly picks up during the course of a year.
- The highest such numbers are being recorded in the month of December across various years.



Fig.4

- This monthly plot shows mean and variation of units sold each month across various years.
- Sales in the seasonal months show higher variation.
- The red line is the mean sales value of each month across various years.
- Sales from Jan Oct has been very slowly increasing over a particular the year.
- Dec month shows highest mean value representing highest sales amongst all the months.

| YearMonth | 1     | 2     | 3     | 4    | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|-----------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| YearMonth |       |       |       |      |       |       |       |       |       |       |       |       |
| 1980      | 112.0 | 118.0 | 129.0 | 99.0 | 116.0 | 168.0 | 118.0 | 129.0 | 205.0 | 147.0 | 150.0 | 267.0 |
| 1981      | 126.0 | 129.0 | 124.0 | 97.0 | 102.0 | 127.0 | 222.0 | 214.0 | 118.0 | 141.0 | 154.0 | 226.0 |
| 1982      | 89.0  | 77.0  | 82.0  | 97.0 | 127.0 | 121.0 | 117.0 | 117.0 | 106.0 | 112.0 | 134.0 | 169.0 |
| 1983      | 75.0  | 108.0 | 115.0 | 85.0 | 101.0 | 108.0 | 109.0 | 124.0 | 105.0 | 95.0  | 135.0 | 164.0 |
| 1984      | 88.0  | 85.0  | 112.0 | 87.0 | 91.0  | 87.0  | 87.0  | 142.0 | 95.0  | 108.0 | 139.0 | 159.0 |
| 1985      | 61.0  | 82.0  | 124.0 | 93.0 | 108.0 | 75.0  | 87.0  | 103.0 | 90.0  | 108.0 | 123.0 | 129.0 |
| 1986      | 57.0  | 65.0  | 67.0  | 71.0 | 76.0  | 67.0  | 110.0 | 118.0 | 99.0  | 85.0  | 107.0 | 141.0 |
| 1987      | 58.0  | 65.0  | 70.0  | 86.0 | 93.0  | 74.0  | 87.0  | 73.0  | 101.0 | 100.0 | 96.0  | 157.0 |
| 1988      | 63.0  | 115.0 | 70.0  | 66.0 | 67.0  | 83.0  | 79.0  | 77.0  | 102.0 | 116.0 | 100.0 | 135.0 |
| 1989      | 71.0  | 60.0  | 89.0  | 74.0 | 73.0  | 91.0  | 86.0  | 74.0  | 87.0  | 87.0  | 109.0 | 137.0 |
| 1990      | 43.0  | 69.0  | 73.0  | 77.0 | 69.0  | 76.0  | 78.0  | 70.0  | 83.0  | 65.0  | 110.0 | 132.0 |
| 1991      | 54.0  | 55.0  | 66.0  | 65.0 | 60.0  | 65.0  | 96.0  | 55.0  | 71.0  | 63.0  | 74.0  | 106.0 |
| 1992      | 34.0  | 47.0  | 56.0  | 53.0 | 53.0  | 55.0  | 67.0  | 52.0  | 46.0  | 51.0  | 58.0  | 91.0  |
| 1993      | 33.0  | 40.0  | 46.0  | 45.0 | 41.0  | 55.0  | 57.0  | 54.0  | 46.0  | 52.0  | 48.0  | 77.0  |
| 1994      | 30.0  | 35.0  | 42.0  | 48.0 | 44.0  | 45.0  | 45.0  | 45.0  | 46.0  | 51.0  | 63.0  | 84.0  |
| 1995      | 30.0  | 39.0  | 45.0  | 52.0 | 28.0  | 40.0  | 62.0  | NaN   | NaN   | NaN   | NaN   | NaN   |

Table.3

- Table of monthly sales across all the years.
- December 1980 has highest number of rose wine units sold 267 among all the years.
- Least sale in December month was in 1994 having only 84 units sold.



- Line chart of sales across various years. We can see December month has the highest number of sales of rose wine.
- Highest units sold in December was in 1980.
- Charts shows a decreasing trend in sale of the rose wine.



- This is an empirical cumulative distribution graph. This graph tells us what percentage of data points refer to what number of sales.
- 80% of the month have at least 120 units' sales of rose wine.



Fig.7

- The above two graphs tells us the Average 'Sales' and the Percentage change of 'Sales' with respect to the time.
- Average sales shows decreasing trend over the years with sales reaching below 50 units in the most recent years.

### Time Series Decomposition:

### Additive Model



Fig.8

### Multiplicative Model



Fig.9

- As we can see from decomposition plot shows visible seasonality and a downward trend.
- The residual shows high variability across the period of time series, which is more or less consistent in both additive and multiplicative decompositions.
  - o Residual mean of additive decomposition is: -0.08
  - o Residual mean of multiplicative decomposition is: 0.99
- P-value of shapiro test for both models is also not significant.
- As the seasonality peaks are consistently reducing in altitude along with the trend, our time series can be treated as multiplicative in model building.



Fig.10

- The above graphs shows the original time series, Seasonality plot and trend plot.
- Second graph shows time series without trend and time series without seasonality.
- **1.3** Split the data into training and test. The test data should start in 1991. Read the data as an appropriate Time Series data and plot the data.
  - The time series is split into train and test set with test set starting from year 1991.
  - Train Set

|            | Rose  |
|------------|-------|
| YearMonth  |       |
| 1980-01-31 | 112.0 |
| 980-02-29  | 118.0 |
| 980-03-31  | 129.0 |
| 980-04-30  | 99.0  |
| 1980-05-31 | 116.0 |
| <b>+</b> · |       |
| Train He   | eaa   |

Test Set

|            | Rose |            | Rose |
|------------|------|------------|------|
| YearMonth  |      | YearMonth  |      |
| 1991-01-31 | 54.0 | 1995-03-31 | 45.0 |
| 1991-02-28 | 55.0 | 1995-04-30 | 52.0 |
| 1991-03-31 | 66.0 | 1995-05-31 | 28.0 |
| 1991-04-30 | 65.0 | 1995-06-30 | 40.0 |
| 1991-05-31 | 60.0 | 1995-07-31 | 62.0 |
|            |      |            |      |

Test Head Test Tail



Fig.11

• Plot of train and test set for the rose time series.

**1.4** Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data.

Other models such as regression, naïve forecast models, simple average models etc. should also be built on the training data and check the performance on the test data using RMSE. Read the data as an appropriate Time Series data and plot the data.

### Linear Regression on Time:

- To regress the sale of rose wine, numerical time instance needs to be added to train and test set respectively for regression algorithm to work on our time series.
- Model is trained on training set and RMSE evaluated on test set.
  - ❖ Test RMSE 15.275

### Naïve Forecasting:

- In naïve model, the value at the end of train set is applied to all the test set records. Prediction is made using these values with actual values in test set.
  - ❖ Test RMSE 79.738
- Model is very poor fitted and does not capture neither trend nor seasonality present in the dataset.

### Simple Average Forecasting:

- In simple average model, the forecast is done using the mean of the target variable of training set of the time series.
  - ❖ Test RMSE 53.480
- Model is very poor fitted and does not capture neither trend nor seasonality present in the dataset.

### Trailing Moving Average:

- For this model we will calculate the rolling means for different time intervals. The best interval can be determined by the least RMSE value.
- Trailing moving average models are built for 2, 4, 6 and 9 points moving averages.
  - Test RMSE 2 Trailing Average 11.529
  - Test RMSE 4 Trailing Average 14.455
  - Test RMSE 6 Trailing Average 14.572
  - Test RMSE 9 Trailing Average 14.731
- The best trailing interval for moving average is 2.

### Simple Exponential Smoothing-Auto fit:

- Simple exponential smoothing is applied if the time series has neither trend nor seasonality, which is not the case for our dataset.
- For SES auto fit we are just passing the train set to the base model and evaluating on test set. We get best value for alpha 0.098 from auto fit SES model.
  - ❖ Test RMSE 36.816

### Simple Exponential Smoothing Manual:

- Here we are manually finding the best value for alpha between 0 and 1.
- For different value of alpha, we are fitting it to the SES model and we are evaluating the test RMSE value. The best test RMSE value found is for 0.1 alpha.
  - ❖ Test RMSE 36.848

### Double Exponential Smoothing-Manual:

- Double exponential smoothing model is applied when the data has trend, but no seasonality, which is not the case for our dataset. Our dataset has downward trend and seasonality both.
- For DES model we trying to find the best value for both alpha and beta respectively. The best combination of both alpha and beta are chosen based on the test RMSE value. We get the best test RMSE value at alpha = 0.1 and beta = 0.1.
  - ❖ Test RMSE 36.900

### Triple Exponential Smoothing-Auto fit:

- Triple exponential smoothing model is applied when data has both trend and seasonality. Our wine time series has both trend and seasonality present.
- For auto fit TES model we are just passing the train set to the base model and evaluating on the test set.
- We get the best value for alpha = 0.06, beta=0.05, gamma=0.0 from the auto fit model.
  - ❖ Test RMSE 21.045

### Triple Exponential Smoothing Manual:

- For TES manual model we try to find the best value of alpha, beta and gamma from range between 0.1 -1 for each respectively. Trying to find the best combination of value and testing on test set to find the least RMSE value.
- We see that we get the least value for alpha=0.1, beta=0.2 and gamma=0.2.
  - ❖ Test RMSE 9.647

### **Model Comparison:**



Fig.12

- We have plotted the test data against predictions from all the models.
- Out of all the models we can see that the best model is TES manual model. Test RMSE value for the TES manual model is also least among all the models built so far.
- 1.5 Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Read the data as an appropriate Time Series data and plot the data.
  - Augmented Dickey Fuller test is the statistical test to check the stationarity of a time series. The test
    determine the presence of unit root in the series to understand if the series is stationary or not.
  - For checking the stationary of the series we have the following hypothesis as below:
    - H0: The series has a unit root, hence it is not stationary.
    - H1: The series has no unit root, hence it is stationary.
  - Now to test our hypothesis we perform the Dickey Fuller Test on the whole data.

### **Output:**

DF test statistic is -2.241
DF test p-value is 0.46694206026101637
Number of lags used 13

Since p-value is significant (greater than 0.05) we fail to reject the null hypothesis. So data is not stationary.

• Taking differencing of order 1 on the whole series and again testing for stationarity.

### **Output:**

DF test statistic is -8.161 DF test p-value is 3.028272263687806e-11 Number of lags used 12

Since the p-value is low less than alpha=0.05 we reject the null hypothesis. So for differencing of order 1 we get a stationary time series.



**Fig.13** 

- We can see that the data has trend and seasonality component present in it but the series is now stationary around 0.
- We also check for stationarity of the train set and get the value of d=1.

**1.6** Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

### ARIMA:

- We build an automated ARIMA model on the dataset taking order of differencing as 1 and p and q value from range 0-4. Finding all combination of values of (p,d,q) and fitting in the ARIMA model to find the least AIC score.
- We get least AIC value for ARIMA(2,1,3).
  - ❖ AIC value for ARIMA(2,1,3) 1274.694

|               |                     | SAF          | RIMAX Resul | ts            |          |          |      |
|---------------|---------------------|--------------|-------------|---------------|----------|----------|------|
|               | =========<br>-      |              |             |               |          |          |      |
| Dep. Variab   |                     |              |             | Observations: |          | 132      |      |
| Model:        |                     | ARIMA(2, 1,  | ,           | Likelihood    |          | -631.347 |      |
| Date:         | TI                  | nu, 30 Dec 2 | 2021 AIC    |               |          | 1274.695 |      |
| Time:         |                     | 12:13        | 8:45 BIC    |               |          | 1291.946 |      |
| Sample:       |                     | 01-01-1      | L980 HQIC   |               |          | 1281.705 |      |
|               |                     | - 12-01-1    | 1990        |               |          |          |      |
| Covariance    | Type:               |              | opg         |               |          |          |      |
|               | coef                | std orr      |             | P> z          | [0 025   | a 0751   |      |
|               |                     |              |             |               |          | 0.973]   |      |
| ar.L1         | -1.6781             | 0.084        | -20.035     | 0.000         | -1.842   | -1.514   |      |
| ar.L2         | -0.7289             | 0.084        | -8.703      | 0.000         | -0.893   | -0.565   |      |
| ma.L1         | 1.0450              | 0.685        | 1.527       | 0.127         | -0.297   | 2.387    |      |
| ma.L2         | -0.7716             | 0.137        | -5.636      | 0.000         | -1.040   | -0.503   |      |
| ma.L3         | -0.9046             | 0.622        | -1.455      | 0.146         | -2.123   | 0.314    |      |
| sigma2        | 858.3595            | 576.845      | 1.488       | 0.137         | -272.237 | 1988.956 |      |
| Ljung-Box (   | =======<br>L1) (0): |              | 0.02        | Jarque-Bera   | (JB):    | 2.       | 4.45 |
| Prob(Q):      | / (-/-              |              |             | Prob(JB):     | (/-      |          | 0.00 |
| Heteroskeda   | sticity (H)         |              | 0.40        |               |          |          | 0.71 |
| Prob(H) (tw   |                     | •            | 0.00        |               |          |          | 4.57 |
| 1100(11) ( CW | o siaca).           |              | 0.00        | Kai Cosis.    |          |          | 4.57 |

<sup>[1]</sup> Covariance matrix calculated using the outer product of gradients (complex-step).

### Table.4

• From the model summary it can be inferred that all MA lag 1 and MA lag 2 terms are not significant, as their values are above 0.05.



Fig.14 Diagnostics plot – ARIMA(2,1,3)

- The diagnostics plot of model was derived and the standardized residuals are found to follow a mean of zero, and the histogram shows the residuals follow a normal distribution.
- Test RMSE for ARIMA(2,1,3) 36.838

### SARIMA:

- We build an automated SARIMA model on the dataset taking order of differencing as 1 and P,p,Q,q value from range 0-4. We have taking seasonality value as 12, as data is of monthly period in the entire series and D=0. Finding all combination of values of (p,d,q)(P,D,Q,S) and fitting in the SARIMA model to find the least AIC score.
- The value of (p,d,q)(P,D,Q,S) for which SARIMA model is stable is (3,1,1)(3,0,2,12).
- We get the least AIC values for the above values and evaluate the model with these values on test set.
  - AIC value for SARIMA (3,1,1)(3,0,2,12) 774.400

|                                 |               |             | 2,         | MAX Results |             |         |         |
|---------------------------------|---------------|-------------|------------|-------------|-------------|---------|---------|
| Dep. Varia                      | ble:          |             |            | V           | No. Observa | tions:  | 133     |
| Model:                          | SARI          | MAX(3, 1, 1 | )x(3, 0, [ |             | Log Likelih | ood     | -377.20 |
| Date:                           |               | • • •       | Fri, 1     | 4 Jan 2022  | AIC         |         | 774.40  |
| Time:                           |               |             |            | 15:56:29    | BIC         |         | 799.61  |
| Sample:                         |               |             |            | 0           | HQIC        |         | 784.57  |
|                                 |               |             |            | - 132       |             |         |         |
| Covariance                      | Type:         |             |            | opg         |             |         |         |
|                                 |               |             |            |             |             |         |         |
|                                 | coef          | std err     | Z          | P> z        | [0.025      | 0.975]  |         |
| ar.L1                           | 0.0464        | 0.126       | 0.367      | 0.714       | -0.202      | 0.294   |         |
| ar.L2                           | -0.0060       | 0.120       | -0.050     | 0.960       | -0.241      | 0.229   |         |
| ar.L3                           | -0.1808       | 0.098       | -1.837     | 0.066       | -0.374      | 0.012   |         |
| ma.L1                           | -0.9370       | 0.067       | -13.904    | 0.000       | -1.069      | -0.805  |         |
| ar.S.L12                        | 0.7639        | 0.165       | 4.639      | 0.000       | 0.441       | 1.087   |         |
| ar.S.L24                        | 0.0840        | 0.159       | 0.527      | 0.598       | -0.229      | 0.397   |         |
| ar.S.L36                        | 0.0727        | 0.095       | 0.764      | 0.445       | -0.114      | 0.259   |         |
| na.S.L12                        | -0.4968       | 0.250       | -1.988     | 0.047       | -0.987      | -0.007  |         |
| na.S.L24                        | -0.2191       | 0.210       | -1.044     | 0.296       | -0.630      | 0.192   |         |
| sigma2                          | 192.1613      | 39.630      | 4.849      | 0.000       | 114.487     | 269.835 |         |
| iung-Roy                        | <br>(11) (0): |             | a 3a       | Jarque-Bera |             | 1.6     | =<br>1  |
| Ljung-Box (L1) (Q):<br>Prob(Q): |               |             |            | Prob(JB):   | (30).       | 0.4     |         |
| Heteroskedasticity (H):         |               |             | 1.11       |             |             | 0.3     |         |
| Prob(H) (t                      |               |             |            | Kurtosis:   |             | 3.0     |         |
| ` ' '                           | •             |             |            |             |             |         |         |

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

### Table.5

• From the model summary it can be inferred that most AR and MA terms are not significant.



Fig.15 Diagnostics plot – SARIMA(3,1,1)(3,0,2,12)

- Inference from model diagnostics confirms that the model residuals are normally distributed.
- Standardised residual Do not display any obvious seasonality.
- **Histogram plus estimated density** –The KDE plot of the residuals is similar with the normal distribution, hence the model residuals are normally distributed.
- **Normal Q-Q plot** There is an ordered distribution of residuals(blue dots) following the linear trend of the samples taken from the standard normal distribution with N(0,1)
- Correlogram The time series residuals have low correlation with lagged versions of itself.
- Test RMSE for SARIMA(3,1,1)(3,0,2,12) 18.903

**1.7** Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.



While reading the PACF and ACF plot:

We always look at the positive side.

We exclude 1 lag as it represents the series itself.

Look at consecutive bars that exceed the threshold to find the values from graph.

### ARIMA Model Using PACF and ACF:

- Best parameters are selected by looking at the ACF and the PACF plot
- Here, we have taken alpha=0.05.

The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PACF plot cuts-off to 0.

The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to 0.

By looking at the above plots, we can say that both the PACF and ACF plot cuts-off at lag 0. Difference order is of 1.

ARIMA Model using p, q = 0 and d=1.

| SARIMAX Results         |          |             |           |               |          |          |      |
|-------------------------|----------|-------------|-----------|---------------|----------|----------|------|
|                         |          |             |           |               |          |          |      |
| Dep. Variable:          | :        | Ro          | se No.    | Observations: | :        | 132      |      |
| Model:                  | A        | RIMA(0, 1,  | 0) Log    | Likelihood    |          | -665.577 |      |
| Date:                   | Sat      | , 15 Jan 20 | 22 AIC    |               |          | 1333.155 |      |
| Time:                   |          | 20:12:      | 11 BIC    |               |          | 1336.030 |      |
| Sample:                 |          | 01-31-19    | 80 HQIC   |               |          | 1334.323 |      |
|                         |          | - 12-31-19  | 90        |               |          |          |      |
| Covariance Typ          | pe:      | О           | pg        |               |          |          |      |
|                         |          |             |           |               |          |          |      |
|                         | coef     | std err     | Z         | P> z          | [0.025   | 0.975]   |      |
| sigma2 1                | 515.6738 | 122.418     | 12.381    | 0.000         | 1275.740 | 1755.608 |      |
| Ljung-Box (L1) (Q):     |          |             | 17.11     | Jarque-Bera   | (JB):    | 59       | 9.55 |
| Prob(Q):                |          |             | 0.00      | Prob(JB):     |          | (        | 9.00 |
| Heteroskedasticity (H): |          | 0.38        | Skew:     |               | -6       | 9.95     |      |
| Prob(H) (two-sided):    |          | 0.00        | Kurtosis: |               | 9        | 5.70     |      |
|                         |          |             |           |               |          |          |      |

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

### Table.6



Fig.17

- Since we know that our time series has both trend and seasonality components ARIMA model thus built using p and q = 0 is not correct at all.
- Test RMSE for ARIMA(0,1,0) 79.738
- As we can see from the test RMSE also the model is performing very poorly.

### SARIMA Model Using PACF and ACF:

• Here, we have taken alpha=0.05.

We are going to take the seasonal period as 12. We will keep the p = 0, q = 0 and d=1 parameters same as the ARIMA model.

The Auto-Regressive parameter in an SARIMA model is 'P' which comes from the significant lag after which the PACF plot cuts-off to 0.

The Moving-Average parameter in an SARIMA model is 'Q' which comes from the significant lag after which the ACF plot cuts-off to 0.

We have checked the ACF and the PACF plots only at multiples of 12 (since 12 is the seasonal period).

SARIMA Model using p,d,q = 0,1,0 and P,D,Q = 0,0,0,12.

|                  |          | SAR         | RIMAX Resu                 | lts           |          |          |
|------------------|----------|-------------|----------------------------|---------------|----------|----------|
|                  |          |             |                            |               |          |          |
| Dep. Variable:   |          |             | ,                          | Observations: | :        | 132      |
| Model:           | SAF      | RIMAX(0, 1, | <ol> <li>e) Log</li> </ol> | Likelihood    |          | -660.983 |
| Date:            | Sat      | , 15 Jan 2  | 022 AIC                    |               |          | 1323.966 |
| Time:            |          | 20:15       | :08 BIC                    |               |          | 1326.833 |
| Sample:          |          |             | 0 HQI                      | C             |          | 1325.131 |
|                  |          | -           | 132                        |               |          |          |
| Covariance Type  | :        |             | opg                        |               |          |          |
|                  |          |             |                            |               |          |          |
|                  | coef     | std err     | Z                          | P> z          | [0.025   | 0.975]   |
| sigma2 152       | 7.0558   | 124.361     | 12.279                     | 0.000         | 1283.314 | 1770.798 |
| Ljung-Box (L1)   | (Q):     |             | 17.02                      | Jarque-Bera   | (JB):    | 57.4     |
| Prob(Q):         |          |             | 0.00                       | Prob(JB):     |          | 0.6      |
| Heteroskedastic: | ity (H): |             | 0.38                       | Skew:         |          | -0.9     |
|                  | ded):    |             | 0.00                       | Kurtosis:     |          | 5.6      |

Table.7

<sup>[1]</sup> Covariance matrix calculated using the outer product of gradients (complex-step).



Fig.18

- Again as the value of p,q and P,Q has been taken from the ACF and PACF plots our model is not generalising well and performing very poorly for the SARIMA model as well.
- Test RMSE for SARIMA(0,1,0)(0,0,0,12) 79.738

**1.8** Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

|                                                                              | Test RMSE |
|------------------------------------------------------------------------------|-----------|
| Alpha=0.1,Beta=0.2,Gamma=0.2,TripleExponentialSmoothing                      | 9.647756  |
| 2pointTrailingMovingAverage                                                  | 11.529409 |
| 4pointTrailingMovingAverage                                                  | 14.455221 |
| 6pointTrailingMovingAverage                                                  | 14.572009 |
| 9pointTrailingMovingAverage                                                  | 14.731209 |
| RegressionOnTime                                                             | 15.275732 |
| pdq=(3,1,1),PDQS=(3,1,1,12),SARIMA Automated                                 | 18.903315 |
| Alpha = 0.06, Beta = 0.05, Gamma = 0.0, Triple Exponential Smoothing-Autofit | 21.045505 |
| Alpha=0.098, Simple Exponential Smoothing-Autofit                            | 36.816889 |
| Alpha=2,Beta=1,Gamma=3,ARIMA Automated                                       | 36.838008 |
| Alpha=0.1,SimpleExponentialSmoothing                                         | 36.848694 |
| Alpha=0.1,Beta=0.1,DoubleExponentialSmoothing                                | 36.900871 |
| Simple Average                                                               | 53.480857 |
| Naive Model                                                                  | 79.738550 |
| Alpha=0,Beta=1,Gamma=0,ARIMA Manual                                          | 79.738550 |
| pdq=(0,1,0),PDQS(0,0,0,12),SARIMA Manual                                     | 79.738550 |

Table.8

- The above table provides test RMSE value for all the models that we have performed so far.
- We have arranged the table in ascending order of Test RMSE values.
- Model with lowest Test RMSE value will help in predicting the future sales of rose wine much hetter.
- The best model as per the table is Triple Exponential Smoothing manual model. Having the least RMSE value of 9.64.

- **1.9** Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.
  - Now we built our best model that is Triple Exponential Smoothing on the complete dataset using the best parameters values we found earlier.
  - Parameter values used for Triple Exponential Smoothing are:

Alpha: 0.1 Beta: 0.2 Gamma: 0.2 Optimized: True Use\_brute: True

Now using the above model we predict for 12 month sales figure of 'rose' wine in the future.

| 1995-08-31   | 47.427154   |
|--------------|-------------|
| 1995-09-30   | 48.269176   |
| 1995-10-31   | 50.273106   |
| 1995-11-30   | 58.463029   |
| 1995-12-31   | 82.124581   |
| 1996-01-31   | 31.701252   |
| 1996-02-29   | 39.442812   |
| 1996-03-31   | 45.376744   |
| 1996-04-30   | 46.826433   |
| 1996-05-31   | 40.738726   |
| 1996-06-30   | 47.021406   |
| 1996-07-31   | 53.990737   |
| Freq: M, dty | pe: float64 |

Table.9

- Plotting our time series against the values found out by our model for the complete data and our prediction for 12 months in the future.
- We can visually see that our model is able to mimic the time series pattern guite reasonably well.



Fig.19



Fig.20

 Plot original data and of our prediction for 12 month sale in the future against confidence interval of 95%.



Fig.21

• Plot of our forecast along with the confidence interval band of 95%.

- **1.10** Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.
  - The model forecast sale of 592 units of rose wine in 12 months in the future with average sale of 49 units per month.
  - Highest sales is predicted to occur in Dec-1995 with unit's sales hitting maximum of 82 units.
  - Rose sales shows a decrease in trend compared to the previous years.
  - November and December month shows the highest Sales across the years from 1980-1995.
  - The models are built considering the Trend and Seasonality into account and we see from the output plot that the future prediction is in line with the trend and seasonality in the previous years.
  - The Sales of Rose wine is seasonal, hence the company cannot have the same stock through the year. The predictions would help here to plan the Stock need basis the forecasted sales.
  - The company should use the prediction results and capitalize on the high demand seasons and ensure to source and supply the high demand.
  - The company should use the prediction results to plan the low demand seasons to stock as per the demand.
  - The forecast also indicates that year-on-year the sales of rose wine is declining. The wine company should investigate the low demand of rose wine and must adopt innovative marketing skills to stop the sales from decreasing further.

# **THE END**