Συναρτήσεις Αντίστροφη

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Αντίστροφη

Ορισμός

Εστω συνάρτηση $f: A \to B$ που είναι 1-1. Η αντίστροφή της $f^{-1}: B \to A$ ορίζεται η συνάρτηση που για κάθε $x \in f(A)$ αντιστοιχεί ένα $y \in A$ ώστε:

$$f^{-1}(x) = y \iff f(y) = x$$

Συναρτήσεις 2/20

Αντίστροφη

Ορισμός

Εστω συνάρτηση $f: \mathbf{A} \to B$ που είναι 1-1. Η αντίστροφή της $f^{-1}: \mathbf{B} \to \mathbf{A}$ ορίζεται η συνάρτηση που για κάθε $x \in f(\mathbf{A})$ αντιστοιχεί ένα $y \in \mathbf{A}$ ώστε:

$$f^{-1}(x) = y \iff f(y) = x$$

Και επειδή συνήθως το x αφορά το D_f

Λόλας (10^o ΓΕΛ) Συναρτήσεις 2/20

Αντίστροφη

Ορισμός

Εστω συνάρτηση $f: A \to B$ που είναι 1-1. Η αντίστροφή της $f^{-1}: B \to A$ ορίζεται η συνάρτηση που για κάθε $y \in f(A)$ αντιστοιχεί ένα $x \in A$ ώστε:

$$f^{-1}(y) = x \iff f(x) = y$$

Συναρτήσεις 3/20

•
$$f(x) = x + 3$$

- f(x) = 2x
- $f(x) = \sqrt{x}$
- $f(x) = e^x$
- $f(x) = x^2!!$
- Πιο σύνθετες?

•
$$f(x) = x + 3$$

$$f(x) = 2x$$

•
$$f(x) = \sqrt{x}$$

$$f(x) = e^x$$

•
$$f(x) = x^2!!!$$

• Πιο σύνθετες!

•
$$f(x) = x + 3$$

$$\bullet$$
 $f(x) = 2x$

•
$$f(x) = \sqrt{x}$$

$$f(x) = e^x$$

•
$$f(x) = x^2!!$$

• Πιο σύνθετες?

•
$$f(x) = x + 3$$

$$\bullet$$
 $f(x) = 2x$

•
$$f(x) = \sqrt{x}$$

$$f(x) = e^x$$

•
$$f(x) = x^2!!$$

• Πιο σύνθετες?

•
$$f(x) = x + 3$$

$$\bullet$$
 $f(x) = 2x$

•
$$f(x) = \sqrt{x}$$

$$\bullet$$
 $f(x) = e^x$

•
$$f(x) = x^2!!!$$

Πιο σύνθετες?

•
$$f(x) = x + 3$$

- f(x) = 2x
- $f(x) = \sqrt{x}$
- \bullet $f(x) = e^x$
- $f(x) = x^2!!!$
- Πιο σύνθετες?

Ικανότητες?

Τι προσπαθούμε να κάνουμε?

- ullet Να βρίσκουμε από πού ήρθαμε, το x!
- Σύνολο τιμών

Ικανότητες?

Τι προσπαθούμε να κάνουμε?

- Να βρίσκουμε από πού ήρθαμε, το x!
- Σύνολο τιμών

Ικανότητες?

Τι προσπαθούμε να κάνουμε?

- Να βρίσκουμε από πού ήρθαμε, το x!
- Σύνολο τιμών

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$
- Πιο σύνθετες?

- y = x + 3
- y = 1
- $y = \sqrt{a}$
- $y = e^{\alpha}$
- $y = x^2!!$
- Πιο σύνθετες?

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$
- Πιο σύνθετες?

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^{x}$
- $y = x^2!!!$
- Πιο σύνθετες?

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$
- Πιο σύνθετες?

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$
- Πιο σύνθετες?

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$
- Πιο σύνθετες?

Σχεδιάστε γραφικά μια 1-1 συνάρτηση.

Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Αρα:

- ullet Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Προσοχή στα spam

Σχεδιάστε συνάρτηση που δεν έχει μόνο στην y=x κοινά σημεία με την αντίστροφή της.

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1}

Συναρτήσεις 7/20

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Αρα:

- ullet Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Προσοχή στα spam

Σχεδιάστε συνάρτηση που δεν έχει μόνο στην y=x κοινά σημεία με την αντίστροφή της.

Λόλας (10^o ΓΕΛ) Συναρτήσεις 7/20

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Αρα:

- ullet Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Συναρτήσεις 7/20

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Αρα:

- ullet Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Προσοχή στα spam

Σχεδιάστε συνάρτηση που δεν έχει μόνο στην y=x κοινά σημεία με την αντίστροφή της.

Συναρτήσεις 7/20

Βασική Ιδιότητα

Κρατηθείτε!

$$f\left(f^{-1}(x)\right) = x$$
, για κάθε $x \in f(D_f)$

$$f^{-1}\left(f(x)\right)=x$$
, για κάθε $x\in D_{f}$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 8/20

Βασική Ιδιότητα

Κρατηθείτε!

- $f\left(f^{-1}(x)\right) = x$, για κάθε $x \in f(D_f)$
- $f^{-1}\left(f(x)\right)=x$, για κάθε $x\in D_f$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 8/20

Δίνεται η συνάρτηση $f(x)=e^x-1$

- ① Να δείξετε ότι είναι 1-1.
- $oxed{2}$ Να δείξετε ότι αντιστρέφεται και να βρείτε την f^{-1}

Δίνεται η συνάρτηση $f(x) = e^x - 1$

- 1 Να δείξετε ότι είναι 1-1.
- ② Να δείξετε ότι αντιστρέφεται και να βρείτε την f^{-1}

Δίνεται η συνάρτηση $f(x) = \frac{x+4}{x+1}$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1

Συναρτήσεις 10/20

Δίνεται η συνάρτηση $f(x) = \frac{x+4}{x+1}$.

- f 1 Να δείξετε ότι η f είναι συνάρτηση 1-1
- ② Να βρείτε την f^{-1}
- 3 Να βρείτε τα κοινά σημεία των C_f και $C_{f^{-1}}$ με τον άξονα συμμετρίας τους.

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 10/20

Δίνεται η συνάρτηση $f(x) = \frac{e^x - 1}{e^x + 1}$.

- ① Να δείξετε ότι η f αντιστρέφεται

Δίνεται η συνάρτηση $f(x) = \frac{e^x - 1}{e^x + 1}$.

- $oldsymbol{1}$ Να δείξετε ότι η f αντιστρέφεται
- f Q Να βρείτε την f^{-1}

Εστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2.$

- $oldsymbol{1}$ Να δείξετε ότι η f αντιστρέφεται
- $oldsymbol{2}$ Να βρείτε την αντίστροφη της f
- $\, exttt{3} \,$ Να σχεδιάσετε τις C_f και $C_{f^{-1}}$ στο ίδιο σύστημα αξόνων

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 12/20

Εστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2.$

- $oldsymbol{1}$ Να δείξετε ότι η f αντιστρέφεται
- $oldsymbol{2}$ Να βρείτε την αντίστροφη της f
- ${ t 3}$ Να σχεδιάσετε τις C_f και $C_{f^{-1}}$ στο ίδιο σύστημα αξόνων
- Φ Για κάθε $x \geq 1$ θεωρούμε τα σημεία $\mathbf{A}(x,f(x))$ και $\mathbf{B}(f(x),x)$ των C_f και $C_{f^{-1}}$ αντίστοιχα. Να βρείτε την ελάχιστη απόσταση d των σημείων \mathbf{A} και \mathbf{B} .

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 12/20

Εστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2$.

- Να δείξετε ότι η f αντιστρέφεται
- Na $\beta \rho \epsilon i \tau \epsilon \tau \eta \nu \alpha \nu \tau i \sigma \tau \rho \sigma \phi \eta \tau \eta c f$
- Να σχεδιάσετε τις C_f και $C_{f^{-1}}$ στο ίδιο σύστημα αξόνων
- Για κάθε $x \geq 1$ θεωρούμε τα σημεία $\mathrm{A}(x,f(x))$ και $\mathrm{B}(f(x),x)$ των C_f

Συναρτήσεις 12/20

Εστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2$.

- Να δείξετε ότι η f αντιστρέφεται
- Na $\beta \rho \epsilon i \tau \epsilon \tau \eta \nu \alpha \nu \tau i \sigma \tau \rho \sigma \phi \eta \tau \eta c f$
- Να σχεδιάσετε τις C_f και $C_{f^{-1}}$ στο ίδιο σύστημα αξόνων
- Για κάθε $x \geq 1$ θεωρούμε τα σημεία $\mathrm{A}(x,f(x))$ και $\mathrm{B}(f(x),x)$ των C_f και $C_{f^{-1}}$ αντίστοιχα. Να βρείτε την ελάχιστη απόσταση d των σημείων Α και Β.

Συναρτήσεις 12/20

Δίνεται η συνάρτηση $f(x)=x^3$. Να δείξετε ότι η f αντιστρέφεται και να βρείτε την αντίστροφή της.

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 13/20

Δίνεται η συνάρτηση
$$f(x) = \begin{cases} \frac{1}{x}, & x < 0 \\ x^2, & x \geq 0 \end{cases}$$

Να δείξετε ότι η f αντιστρέφεται και να βρείτε την f^{-1}

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία ικανοποιεί την σχέση $f^3(x) + f(x) - x - 1 = 0$, για κάθε $x \in \mathbb{R}$

- Να δείξετε ότι η f αντιστρέφεται και να βρείτε τη συνάρτηση f^{-1}
- Να βρείτε τα κοινά σημεία της C_f και της ευθείας y=x

Συναρτήσεις 15/20

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία ικανοποιεί την σχέση $f^3(x) + f(x) - x - 1 = 0$, για κάθε $x \in \mathbb{R}$

- Να δείξετε ότι η f αντιστρέφεται και να βρείτε τη συνάρτηση f^{-1}
- Να βρείτε τα κοινά σημεία της C_f και της ευθείας y=x

Συναρτήσεις 15/20

Δίνεται η συνάρτηση $f(x)=x^5+x$, με $f(\mathbb{R})=\mathbb{R}$

- $oldsymbol{1}$ Να δείξετε ότι η f αντιστρέφεται
- $\ \ \, \ \,$ Να βρείτε τα κοινά σημεία των C_f και $C_{f^{-1}}$

Δίνεται η συνάρτηση $f(x)=x^5+x$, με $f(\mathbb{R})=\mathbb{R}$

- f 1 Να δείξετε ότι η f αντιστρέφεται
- $\ensuremath{\text{2}}$ Να βρείτε τα κοινά σημεία των C_f και $C_{f^{-1}}$

Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως Φθίνουσα και f(0) = 1, f(1) = -2.

- Να δείξετε ότι η f αντιστρέφεται

Συναρτήσεις 17/20

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0)=1, f(1)=-2.

- f 0 Να δείξετε ότι η f αντιστρέφεται
- $oldsymbol{2}$ Να βρείτε τις ρίζες και το πρόσημο της f^{-1}
- $\$ Να λύσετε την εξίσωση $f\left(f^{-1}(3x+4)-f^{-1}(-2)\right)=1$
- Φ Να λύσετε την ανίσωση $f^{-1}(3 + f(\ln x)) > 0$

Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0) = 1, f(1) = -2.

- Να δείξετε ότι η f αντιστρέφεται
- Να βρείτε τις ρίζες και το πρόσημο της f^{-1}
- Να λύσετε την εξίσωση $f(f^{-1}(3x+4)-f^{-1}(-2))=1$

Συναρτήσεις 17/20

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0)=1, f(1)=-2.

- f 0 Να δείξετε ότι η f αντιστρέφεται
- $oldsymbol{2}$ Να βρείτε τις ρίζες και το πρόσημο της f^{-1}
- f 3 Να λύσετε την εξίσωση $f\left(f^{-1}(3x+4)-f^{-1}(-2)
 ight)=1$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 17/20

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως αύξουσα.

- Να δείξετε ότι η f αντιστρέφεται και $f^{-1} \uparrow$

$$f^{-1}(x) < x$$
, για κάθε $x \in \mathbb{R}$

Συναρτήσεις 18/20

Εστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως αύξουσα.

- Nα δείξετε ότι η f αντιστρέφεται και $f^{-1} \uparrow$
- Aν η f είναι περιττή, να αποδείξετε ότι και η f^{-1} είναι περιττή

$$f^{-1}(x) < x$$
, για κάθε $x \in \mathbb{R}$

Συναρτήσεις 18/20

Εστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως αύξουσα.

- Nα δείξετε ότι η f αντιστρέφεται και $f^{-1} \uparrow$
- Aν η f είναι περιττή, να αποδείξετε ότι και η f^{-1} είναι περιττή
- ③ Αν ισχύει f(x) > x για κάθε $x \in \mathbb{R}$, να δείξετε ότι

$$f^{-1}(x) < x$$
, για κάθε $x \in \mathbb{R}$

Συναρτήσεις 18/20

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0)=1.

- f 1 Να δείξετε ότι η f αντιστρέφεται
- ② Να λύσετε την ανίσωση $f(x) f^{-1}(1-x) < x+1$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 19/20

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0)=1.

- f 1 Να δείξετε ότι η f αντιστρέφεται
- ② Να λύσετε την ανίσωση $f(x) f^{-1}(1-x) < x+1$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 19/20

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση