Effect of spin motion perturbation on the EDM statistic

Alexander Aksentev

November 20, 2018

Problem statement

▶ The spin precession axis (SPA) of a particle involved in betatron motion moves about the invariant spin axis defined on the CO:

$$\mathbf{\Omega} = \mathbf{\Omega}_0(\Theta) + \boldsymbol{\omega}(\Theta, \Delta \mathbf{r}).$$

Simultaneously, it was claimed that: for two beams, $\gamma_{\text{eff}}^1(\frac{\Delta L}{L}, \frac{\Delta p}{p}) = \gamma_{\text{eff}}^2(\frac{\Delta L}{L}, \frac{\Delta p}{p}) \rightarrow$ $(\Omega_x^1, \Omega_y^1, \Omega_z^1) = (\Omega_x^2, \Omega_y^2, \Omega_z^2),$ regardless of the particulars of their orbital motion.

The last statement makes sense so long as by "frequency" we mean $|\Omega|$. Couldn't see how γ_{eff} alone can guarantee the equality of the \bar{n} orientations. Must be an implicit assumption.

Single particle ν_s , \bar{n} , and Ω_x

Implicit assumption (sic!): All spin vectors in the beam precess about the same \bar{n}_{CO} . (More carefuly: $\bar{n}_i - \bar{n}_{CO} \ll 1$.) Below: 270 MeV (FS@270.0092 MeV), FS lattice w/E+B elements tilted about the optic axis by $\theta \sim N(8 \cdot 10^{-2}, 10^{-2})$ rad. Observe a significant $\sigma[\Omega_x]$.

Hypothesis: averaging out in the polarization vector.

Simulation: Uniform beam

- Same lattice; beam represented by 4,000 rays; $x_0, y_0 \in [-1mm, +1mm], d_0 := \Delta K/K_{ref} \in [-10^{-4}, +10^{-4}].$
- $\blacktriangleright \mathbf{P} = \frac{\sum_{i \in E} \mathbf{s}_i}{||\sum_{i \in E} \mathbf{s}_i||}.$
- Fit P_y by model $g(t) = \sin(2\pi f \cdot t)$.
- Residuals exhibit a systematic pattern (model error); also $\hat{f}_{P_y} < \hat{f}_{s_y}^{CO}$.
- ▶ However, $\hat{f}_{P_y}^{CW} \hat{f}_{P_y}^{CCW}$ is below statistical precision.
- But what if the CW & CCW beams are not identical?

Table 1: Frequency estimates for the Uniform CW & CCW beams, reference ray and full beam, in Hz

Data		Polarization		Reference ray	
Frequency	Offset	CW	CCW	CW	CCW
Estimate	360.1103	$3.986 \cdot 10^{-5}$	$3.985 \cdot 10^{-5}$	$9.88274 \cdot 10^{-5}$	$9.88274 \cdot 10^{-5}$
SE	_	$3 \cdot 10^{-8}$	$3 \cdot 10^{-8}$	$5 \cdot 10^{-10}$	$5 \cdot 10^{-10}$

Simulation: Gaussian beams

Table 2: Frequency estimates for the Gaussian CW & CCW beams, reference ray and full beam, in Hz

Data		Polarization		Reference ray	
Frequency	Offset	CW	CCW	CW	CCW
Estimate	3900.353	$3.81688 \cdot 10^{-4}$	$3.87826 \cdot 10^{-4}$	$7.613845 \cdot 10^{-4}$	$7.613845 \cdot 10^{-4}$
SE	_	$2 \cdot 10^{-9}$	$6 \cdot 10^{-9}$	$5 \cdot 10^{-12}$	$4 \cdot 10^{-11}$

Error: $\varepsilon := \hat{f}^{CW} - \hat{f}^{CCW} = 6 \cdot 10^{-6} \text{ (model)} \pm 6 \cdot 10^{-9} \text{ (fit) Hz.}$

Multiple runs

Hypothesis: the systematic error component likely depends on the beam centroid difference. Define the centroid by $\mathbf{c} = (\langle x_0 \rangle, \langle y_0 \rangle, \langle d_0 \rangle)$. Then do linear regression of $\hat{f}^{CW} - \hat{f}^{CCW}$ on $\mathbf{c}^{CW} - \mathbf{c}^{CCW}$.

Effect size dependence on the beam size

- $\mathbf{\varepsilon} = a_0 + a_1 \Delta \mathbf{c};$
- all beams in the simulation had the same CO; c_y deviated from 0 only b/c of a finite sample size;
- $\sigma_{\langle y \rangle} \equiv \sigma_{4k} = \sigma/\sqrt{n}$, hence if $n=4\cdot 10^3 \to n=4\cdot 10^9$, then $\sigma_{4b} = \sigma_{4k}\cdot 10^{-3}$;
- ▶ then the model part of ε would also drop 3 orders of magnitude, and would be comparable with fit error.

Extra

Moving

frame fit estimates.