Seat No.:	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- I & II (NEW) EXAMINATION - WINTER 2019

Subject Code: 3110015 Date: 01/01/2020

Subject Name: Mathematics –2

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

- Q.1 (a) Find the length of curve of the portion of the circular helix $\vec{r}(t) = \cos t \,\hat{i} + \sin t \,\hat{j} + t \,\hat{k}$ from t = 0 to $t = \pi$
 - (b) $\int_{(1,2)}^{(3,4)} (xy^2 + y^3) dx + (x^2y + 3xy^2) dy$ is independent of path joining the points (1, 2) and (3,4). Hence, evaluate the integral.
 - (c) Verify tangential form of Green's theorem for $\vec{F} = (x \sin y)\hat{i} + (\cos y)\hat{j}$, where C is the boundary of the region bounded by the lines $y = 0, x = \pi/2$ and y = x.
- Q.2 (a) Find the Laplace transform of f(t) defined as $f(t) = \frac{t}{k} \qquad 0 < t < k$ $= 1 \qquad t > k$
 - Find the inverse Laplace transform of $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$
 - (c) (i) Calculate the curl of the vector xyzî + 3x²yĵ + (xz² y²z)k
 (ii) The temperature at any point in space is given by T = xy + yz + zx.
 Determine the derivative of T in the direction of the vector 3î 4k at the point (1, 1, 1).

OR

- (c) Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $r = |\vec{r}|$, and \vec{a} is a constant vector. Find the value of $div\left(\frac{\vec{a} \times \vec{r}}{r^n}\right)$
- Q.3 (a) Find constants a, b and c such that 03 $\vec{V} = (x+2y+az)\hat{i} + (bx-3y-z)\hat{j} + (4x+cy+2z)\hat{k} \text{ is irrotational.}$
 - (b) Using Fourier cosine integral representation show that $\int_{0}^{\infty} \frac{\cos \omega x}{k^{2} + \omega^{2}} d\omega = \frac{\pi e^{-kx}}{2k}$
 - (c) Solve the following differential equations: $(i) \cos(x+y) dy = dx$ 07
 - (ii) $\sec^2 y \frac{dy}{dx} + x \tan y = x^3$

Q.3	(a)	Find the Laplace transform of (i) $\int_{0}^{t} \frac{\sin t}{t} dt$ (ii) $t^{2}u(t-3)$	03	
	(b)	Using Convolution theorem obtain $L^{-1}\left(\frac{1}{s(s^2+a^2)}\right)$	04	
	(c)	Find the power series solution of $\frac{d^2y}{dx^2} + xy = 0$	07	
Q.4	(a)	Find the Laplace transform of the waveform	03	
		$f(t) = \left(\frac{2t}{3}\right), 0 \le t \le 3$		
	(b)	Using the Laplace transforms, find the solution of the initial value problem $y'' + 25y = 10\cos 5t$ $y(0) = 2$, $y'(0) = 0$	04	
	(c)	Using variation of parameter method solve $(D^2 + 1)y = x \sin x$	07	
		OR		
Q.4	(a)	Solve $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \frac{dy}{dx}$	03	
	(b)	Solve $y''' - 3y'' + 3y' - y = 4e^t$	04	
	(c)	Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$ using method of undetermined	07	
		coefficients.		
Q.5	(a)	Classify the singular points of the equation $x^3(x-2)y'' + x^3y' + 6y = 0$	03	
	(b)			
	(c)	Solve (i) $ye^x dx + (2y + e^x) dy = 0$ (ii) $\frac{dy}{dx} + 2y \tan x = \sin x$	07	
		OR		
Q.5	(a)	Solve $\frac{dy}{dx} = \frac{y^3}{e^{2x} + y^2}$	03	
	(b)	If $y_1 = x$ is one of solution of $x^2y'' + xy' - y = 0$ find the second solution.	04	
	(c)	Using Frobenius method solve $x^2y'' + 4xy' + (x^2 + 2)y = 0$	07	

Seat No.:	Enrolment No.
-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (NEW) EXAMINATION – SUMMER-2019

Subject Code: 3110015 Date: 01/06/2019

Subject Name: Mathematics –2

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

(a) Find the Fourier integral representation of 03

- Q.1 (a) Find the Fourier integral representation of $f(x) = \begin{cases} x \ ; x \in (0, a) \\ 0 \ ; x \in (a, \infty) \end{cases}$
 - (b) Define: Unit step function. Use it to find the Laplace transform of $f(t) = \begin{cases} (t-1)^2 \; ; \; t \in (0,1] \\ 1 \; ; \; t \in (1,\infty) \end{cases}$
 - (c) Use the method of undetermined coefficients to solve the differential equation $y'' 2y' + y = x^2 e^x$.
- Q.2 (a) Evaluate $\oint_C \bar{F} \cdot d\bar{r}$; where $\bar{F} = (x^2 y^2)\hat{i} + 2xy\hat{j}$ and C is the curve given by the parametric equation $C: r(t) = t^2 \hat{i} + t \hat{j}$; $0 \le t \le 2$.
 - (b) Apply Green's theorem to find the outward flux of a vector field $\overline{F} = \frac{1}{xy}(x \hat{\imath} + y \hat{\jmath})$ across the curve bounded by $y = \sqrt{x}$, 2y = 1 and x = 1.
 - (c) Integrate $f(x, y, z) = x yz^2$ over the curve $C = C_1 + C_2$, where C_1 is the line segment joining (0,0,1) to (1,1,0) and C_2 is the curve $y=x^2$ joining (1,1,0) to (2,4,0).

OR

- (c) Check whether the vector field $\bar{F} = e^{y+2z} \hat{\imath} + x e^{y+2z} \hat{\jmath} + 2x e^{y+2z} \hat{k}$ is conservative or not. If yes, find the scalar potential function $\varphi(x, y, z)$ such that $\bar{F} = \operatorname{grad} \varphi$.
- Q.3 (a) Write a necessary and sufficient condition for the differential equation M(x,y)dx + N(x,y)dy = 0 to be exact differential equation. Hence check whether the differential equation $[(x+1)e^x e^y]dx xe^y dy = 0$ is exact or not.
 - (b) Solve the differential equation $(1+y^2)dx = (e^{-\tan^{-1}y} x)dy$
 - (c) By using Laplace transform solve a system of differential equations $\frac{dx}{dt} = 1 y$, $\frac{dy}{dt} = -x$, where x(0) = 1, y(0) = 0.

OR

1

Q.3 (a) Solve the differential equation $(2x^3 + 4y)dx - xdy = 0.$

	(b)	Solve: $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$.	04
	(c)	By using Laplace transform solve a differential equation $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y =$	07
		e^{-t} , where $y(0) = 0$, $y'(0) = -1$.	
		c, where $y(0) = 0$, $y(0) = 1$.	
0.4	()		0.2
Q.4	(a)	Find the general solution of the differential equation	03
	a >	$e^{-y}\frac{dy}{dx} + \frac{e^{-y}}{x} = \frac{1}{x^2}$	
	(b)	Solve: $\frac{d^3y}{dx^3} - 7\frac{dy}{dx} + 6y = e^x$	04
	(c)	Find a power series solution of the differential equation $y'' - xy = 0$ near	07
		an ordinary point $x=0$.	
ΩA	(a)	OR Find the general solution of the differential equation	03
Q.4	(a)	$\frac{dy}{dx} + \frac{y}{x} - \sqrt{y} = 0.$	03
	(b)	an x	04
	(b)	Solve: $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = x$	
	(c)	Find a Frobenius series solution of the differential equation $2x^2y'' + xy' -$	07
		(x+1)y = 0 near a regular-singular point $x=0$.	
Q.5	(a)	Write Legendre's polynomial $P_n(x)$ of degree-n and hence obtain $P_1(x)$	03
	<i>a</i> >	and $P_2(x)$ in powers of x.	0.4
	(b)	Classify ordinary points, singular points, regular-singular points and irregular-singular points (if exist) of the differential equation $y'' + xy' =$	04
		0.	
	(c)	Solve the differential equation	07
		$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^3 \cos x$	
		$\frac{dx^2}{dx}$ by using the method of variation of parameters.	
		OR	
Q.5	(a)	Write Bessel's function $J_p(x)$ of the first kind of order-p and hence show	03
		that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.	
	(b)		04
	(b)	Classify ordinary points, singular points, regular-singular points and irregular-singular points (if exist) of the differential equation $xy'' + y' =$	04
		0.	
	(c)	Solve the differential equation $y'' + 25y = \sec 5x$	07
		by using the method of variation of parameters.	

Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER 1&2 EXAMINATION – SUMMER 2020

Subject Code: 3110015 Date:09/11/2020

Subject Name: Mathematics II Time: 10:30 AM TO 01:30 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

- **Q.1** (a) Evaluate $\int_{c} \overline{F} \cdot d\overline{r}$ along the parabola $y^{2} = x$ between the points (0, 0) and (1, 1) where $\overline{F} = x^{2}\hat{i} + xy\hat{j}$
 - (b) Find the work done in moving particle from A (1, 0, 1) to B (2,1,2) 04 along the straight-line AB in the force field $\bar{F} = x^2 \hat{i} + (x y) \hat{j} + (y + z) \hat{k}$
 - (c) Verify green's theorem for $\iint_c (2xydx y^2dy)$ where C is the boundary of the region bounded by the ellipse $3x^2 + 4y^2 = 12$
- Q.2 (a) Find the Laplace transform of $te^{-4t} \sin 3t$.
 - (b) Find the inverse Laplace transform of $\frac{5s+3}{(s-1)(s^2+2s+5)}$.
 - (c) Show that the vector field $\bar{F} = (y \sin z \sin x)\hat{i} + (x \sin z + 2yz)\hat{j} + (xy \cos z + y^2)\hat{k}$ is conservative and find the corresponding scalar potential.

OR

- (c) Show that $\overline{F} = 2xyz\hat{i} + (x^2z + 2y)\hat{j} + x^2y\hat{k}$ is irrotational and find a scalar function ϕ such that $\overline{F} = grad\phi$.
- Q.3 (a) Find the directional derivative of $f(x, y) = xy + xe^y + \cos(xy)$ at the point P(1,0) in the direction of $\overline{u} = 3\hat{i} 4\hat{j}$.
 - (b) Find the inverse Laplace transform of $\log \left(1 + \frac{1}{s^2}\right)$.
 - (c) Find the singular solution and general solution of $y + px = x^4 p^2$

OR

- Q.3 (a) Find the Laplace transform of $\frac{\cos at \cos bt}{t}$.
 - Show that $\int_{0}^{\infty} \frac{\omega^{3} \sin \omega x}{\omega^{4} + 4} d\omega = \frac{\pi}{2} e^{-x} \cos x; x > 0.$
 - (c) Find the power series solution of y' 2xy = 0; y(0) = 1 near x = 0.

Q.4	(a)	Find the Laplace transform of $e^{-t} \{1-u(t-2)\}$.	03
	(b)	Solve $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$ with $x = 2$, $\frac{dx}{dt} = -1$ at $t = 0$.	04
	(c)	Solve $(D^2 - 1)y = xe^x \sin x$	07
		OR	
Q.4	(a)	Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$	03
	(b)	Using method of variation of parameter, solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$.	04
	(c)	Using method of undetermined coefficients solve	07
		$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2 e^x.$	
Q.5	(a)	Classify the singular points of $x^2y'' + xy' - 2y = 0$.	03
	(b)	Solve $\frac{d^2y}{dx^2} + 9y = \sin 2x \sin x.$	04
	(c)	Solve (i) $(x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0.$	07
		(ii) $\frac{dy}{dx} + y \cot x = 2 \cos x$.	
		OR	
Q.5	(a)	Solve $\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}$.	03
	(b)	Solve $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + y = \cos(\ln x)$.	04
	(c)	Using Frobenius method solve $2x^2y'' + xy' - (x+1)y = 0$.	07

Seat No.:	

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE- SEMESTER-I & II(NEW)EXAMINATION – SUMMER 2022	
Sub	iect	Code:3110015 Date:22-	08-2022
	•	Name:Mathematics - 2	00 2022
	•		Iarks:70
	ruction		
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
		Simple and non-programmable scientific calculators are anowed.	Marks
Q.1	(a)	Find the Laplace transform of t^2e^{-3t} .	03
		Define conservative vector field and potential function.	04
	(c)	Solve $y''' - 3y'' + 3y' - y = 4e^x$ using the method of undetermined coefficients.	07
Q.2	(a)	Find the divergence of	03
	a \	$\mathbf{F} = (x^2 - y)\mathbf{i} + (xy - y^2)\mathbf{j}.$	0.4
	(b)	Find Fourier cosine integral of	04
	(a)	$f(x) = e^{-kx}(x > 0, k > 0)$ Integrate $f(x, y, z) = 3x^2 - 2y + z$ over the line segment C joining the	07
	(c)	origin to the point $(2,2,2)$.	U/
		OR	
	(c)	Write Green's theorem. Evaluate the integral $\oint_C \{xydy - y^2dx\}$ where	07
		C is the square cut from the first quadrant by the lines $x = 1$ and $y = 1$.	
Q.3	(a)	Obtain convolution of t and e^t .	03
	(b)	Find the Laplace transform of $\frac{cosat-cos bt}{t}$.	04
	(c)	ι	07
	(C)	y'' - y' - 2y = 0, $y(0) = 1$, $y'(0) = 0$ using Laplace transform.	07
		OR	
Q.3	(a)	Find the inverse Laplace transform of $\frac{s-4}{s^2-4}$.	03
	(b)	State second shifting theorem and find the inverse Laplace transform of	04
	` ′	the function $\frac{se^{-\pi s}}{s^2+1}$.	
	(c)	State convolution theorem and using it obtain the inverse Laplace	07
	(C)	transform of $\frac{1}{s(s^2+4)}$.	07
		$s(s^2+4)$.	
Q.4	(a)	Solve $\frac{dy}{dx} - 2y = 4 - x$.	03
	(b)		04
	(c)	Solve $y'' + 4y = 4 \tan 2x$ using the method of variation of parameters. OR	07
Q.4	(a)	Find particular solution of	03
	.	$y'' - 2y' + y = \cos 3x.$	
	(b)	Solve $x^2y'' - 3xy' + 4y = 0$	04

	(c)	Solve the initial value problem	07
		y''' + y' = 0, y(0) = 0, y'(0) = 1, y''(0) = 2	
Q.5	(a)	Write Legendre's and Bessel's differential equations.	03
	(b)	Solve the differential equation	04
	` ′	$(y\cos x + 2xe^y) + (\sin x + x^2e^y - 1)y' = 0$	
	(c)	Find the power series solution of the equation $(x^2 + 1)y'' + xy' -$	07
	. ,	xy = 0 in powers of x.	
		OR	
Q.5	(a)	Write Legendre polynomials of degree one and two.	03
	` /	Solve $y = 2px + p^2y$.	04
		Solve $x(x-1)y'' + (3x-1)y' + y = 0$ about $x = 0$ using Frobenius method.	07
