Ch.3 – Processes

- <u>Process</u> contains a program counter, stack, and data section.
 - Text section: program code itself
 - <u>Stack</u>: temporary data (function parameters, return addresses, local variables)
 - <u>Data section</u>: global variables
 - Heap: contains memory dynamically allocated during run-time
- <u>Process Control Block (PCB)</u>: contains information associated with each process: process state, PC, CPU registers, scheduling information, accounting information, I/O status information
- Types of processes:
 - <u>I/O Bound</u>: spends more time doing I/O than computations, many short CPU bursts
 - <u>CPU Bound</u>: spends more time doing computations, few very long CPU bursts
- When CPU switches to another process, the system must save the state of the old process (to PCB) and load the saved state (from PCB) for the new process via a <u>context switch</u>
 - Time of a context switch is dependent on hardware
- Parent processes create children processes (form a tree)
 - o PID allows for process management
 - Parents and children can share all/some/none resources
 - Parents can execute concurrently with children or wait until children terminate
 - o fork() system call creates new process
 - exec() system call used after a fork to replace the processes' memory space with a new program
- Cooperating processes need interprocess communication (IPC): shared memory or message passing
- Message passing may be blocking or non-blocking
 - <u>Blocking</u> is considered <u>synchronous</u>
 - <u>Blocking send</u> has the sender block until the message is received
 - Blocking receive has the receiver block until a message is available
 - Non-blocking is considered asynchronous
 - Non-blocking send has the sender send the message and continue
 - Non-blocking receive has the receiver receive a valid message or null

Ch.4 – Threads

- Threads are fundamental unit of CPU utilization that forms the basis of multi-threaded computer systems
- Process creation is heavy-weight while thread creation is light-weight
 - Can simplify code and increase efficiency