4.- Postulados y Teoremas: para cada una de las siguientes expresiones, escribir cuál es un Postulado y su nombre; y cuál es un Teorema y su nombre.

Expresión	Postulado, Teorema y su nombre	Expresión	Postulado, Teorema y su nombre
$I) \mathbf{a} + \mathbf{a} = \mathbf{a}$	T. UNICIDAD	7) $a \cdot 1 = a$	Elem Neutro.
$2) \mathbf{a} + \mathbf{a} \cdot \mathbf{b} = \mathbf{a}$	T. ABSORCION	8) $(a \cdot b) + c = (a + c) \cdot (b + c)$?	DISTRIBUT
3) $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$	COPHUTAT.	$.9) \ a + \overline{a} = 1 $ \bigcep.	Flem, Op.
4) $a + 0 = a$	Elem. Net	10) $\overline{\mathbf{a}} \cdot \overline{\mathbf{b}} = \overline{\mathbf{a} + \mathbf{b}}$	T. De Morgan
5) $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$.	ASOCIAT.	11) $(\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}$	DISTRIB.
6) a . a = a	T. UMICIDAD	12) $\mathbf{a} + 1 = 1 \ \mathbf{y} \ \mathbf{a} \cdot 0 = 0$	Tecrema 2

6.- El resultado de simplificar la siguiente expresión aplicando los postulados de Huntington, es:

$$f_{(c,b,a)} = \overline{\mathbf{a}} \cdot \mathbf{c} + \mathbf{a} \cdot \mathbf{b} \cdot \overline{\mathbf{c}} + \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} + \mathbf{a} \cdot \mathbf{c}$$

a)
$$f = c \cdot b + a$$

d)
$$f = c + a$$

b)
$$f = a + b + c$$

e)
$$f = b + a \cdot c$$

(c)
$$f = c + a \cdot b$$

7.- El resultado de simplificar la siguiente expresión aplicando los postulados de Huntington, es:

$$f_{(c,b,a)} = \overline{a} \cdot b \cdot (a + \overline{a}) + c \cdot b + c \cdot \overline{b} + \overline{b} \cdot b$$

$$\overline{a} \cdot b \cdot \bot + c \cdot b + c \cdot b + \delta$$

$$\overline{a} \cdot b + c \cdot (b + \overline{b})$$

$$\overline{a} \cdot b + c \cdot \bot$$

$$\overline{a} \cdot b + c \cdot \bot$$

a)
$$f = c \cdot b + a$$

d)
$$f = c + a$$

(b)
$$f = \overline{a} \cdot b + c$$

e)
$$f = b + a.\overline{c}$$

c)
$$f = c + a \cdot b$$

8.- Escribir la expresión booleana correspondiente a la función dada en la siguiente tabla de verdad en sus dos formas canónicas (minitérminos y maxitérminos). Luego, seleccionar la respuesta correcta para cada caso, entre las opciones propuestas. erminos $\mathcal{E}_3(0,4,5,6)$

					_		
	С	b	a	f	Him		
7	0	0	0	Ι	0		
	0	0	1	0	1		
(5,	0	I	0	0	2		
4	0	I	1	0	3		
3	1	0	0	I	4		
2	1	0	1	I	5)		
1	1	I	0	I			
	1	I	1	0	7		
MAXITERKINOS							

Minitérminos

a.) Ninguna es correcta

b.)
$$f = (c.b.a) + (c.b.a) + (c.b.a) + (c.b.a)$$

$$f = (c.b.a) + (c.b.a) + (c.b.a) + (c.b.a)$$

d.)
$$f=(c.b.a)+(c.b.a)+(c.b.a)+(c.b.a)$$

e.)
$$f = (c.b.a) + (c.b.a) + (c.b.a) + (c.b.a)$$

N3 (0,45,6)

Maxitérminos

a.)
$$f = (c + b + a) \cdot (c + b + a) \cdot (c + b + a) \cdot (c + b + a)$$

(b.)
$$f = (c + b + a) \cdot (c + b + a) \cdot (c + b + a) \cdot (c + b + a)$$

c.)
$$f = (c + b + a) \cdot (c + b + a) \cdot (c + b + a) \cdot (c + b + a)$$

d.)
$$f = (c + b + a) \cdot (c + b + a) \cdot (c + b + a) \cdot (c + b + a)$$

Ninguna es verdadera

9- Simplificar la siguiente expresión:

- Aplicando los postulados de Huntington
- Aplicando el método de Karnaugh
- Expresarla en forma de minitérminos y en forma de maxitérminos.

• Seleccionar, luego, la opción correcta entre las siguientes

propuestas.

$$(a+b)\cdot(c+a\cdot b)$$

$$(a+b)\cdot c+(a+b)\cdot(a\cdot b)$$

$$a\cdot c+bc+a\cdot b+b\cdot a$$

$$a\cdot c+bc+a\cdot b+b\cdot a$$

$$a\cdot c+bc+a\cdot b$$

$$a\cdot c+bc+a\cdot b$$

a)
$$f_{(c,b,a)} = \overline{\mathbf{b}} \cdot \overline{\mathbf{a}} + \mathbf{c} \cdot \overline{\mathbf{b}} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \mathbf{b}$$

• b)
$$f_{(c,b,a)} = c \cdot a + b \cdot a + c \cdot b$$

c)
$$f_{(c,b,a)} = \mathbf{b} \cdot \mathbf{a} + \mathbf{c} \cdot \overline{\mathbf{b}} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \mathbf{b}$$

d)
$$f_{(c,b,a)} = \mathbf{b} \cdot \mathbf{a} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \overline{\mathbf{b}} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \mathbf{b}$$

c.a + b.a + c.b

$$ca.1+ba.1+cb.1$$
 $ca(b+b)+ba(c+c)+cb(a+a)$
 $cab+cab+bac+cba+cba$
 $cba+cba+cba+cba$
 $cba+cba+cba+cba$
 $cpa+cba+cba$
 $f(cba)=2_3(3,5,6,7)$

$$f(c,b,a) = \mathcal{E}_3(3,5,6,7)$$
 Hinterninos

 $f(c,b,a) = \mathcal{E}_3(0,1,2,4)$ No Funcióm (los que Farran)

 $f(c,b,a) = \mathcal{H}_3(1,6,5,3)$ Conpletentato.

 $f(c,b,a) = \mathcal{H}_3(3,5,6,7)$ MAXITÉRNINOS.

$$f(c,5,a)=\pi_3(3,5,6,7)$$

c	00	01	11	10
0	0			2
1	4	5		

ca+c.b+b.a

a)
$$f_{(c,b,a)} = \overline{\mathbf{b}} \cdot \overline{\mathbf{a}} + \mathbf{c} \cdot \overline{\mathbf{b}} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \mathbf{b}$$

$$\Sigma_3$$
 (3, 4, 5, 7) Π_3 (1, 2, 3, 7)

$$(b) f_{(c,b,a)} = c \cdot a + \cdot b \cdot a + c \cdot b$$

$$\Sigma_3$$
 (3, 5, 6, 7) Π_4 (3, 5, 6, 7)

c)
$$f_{(c,b,a)} = \mathbf{b} \cdot \mathbf{a} + \mathbf{c} \cdot \overline{\mathbf{b}} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \mathbf{b}$$

$$\Sigma_3$$
 (2, 3, 4, 5)

$$\Pi_4$$
 (1, 2, 3, 6)

d)
$$f_{(c,b,a)} = \mathbf{b} \cdot \mathbf{a} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \overline{\mathbf{b}} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \mathbf{b}$$

$$\Sigma_3$$
 (0, 3, 5, 7)

$$\Pi_4(1, 2, 3, 6)$$