DE 21 42 245 C

21 42 245 **Patentschrift** (1) P 21 42 245.7-43 Aktenzeichen: 2 24. 8.71 2 Anmeldetag: Offenlegungstag: 1. 3.73 € Bekanntmachungstag: 3. 1.80 ຝ 4. 9.80 ❸ Ausgabetag: Patentschrift stimmt mit der Auslegeschrift überein 3 Unionsprioritāt: **@ @ 9** (5) Bezeichnung: Farbstoffe auf der Basis von Imino-isoindolin, deren Herstellung und Verwendung als Pigmente für Lacke und zum Anfärben von Polyestermaterialien BASF AG, 6700 Ludwigshafen Patentiert für: **(3) @** Erfinder: Elser, Wolfgang, Dr., 6710 Frankenthal; Bock, Gustav, Dr., 6730 Neustadt

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

₿

Nichts ermittelt

1. Farbstoffe auf der Basis von 3-Imino-isoindolinderivaten der Formel

$$\begin{array}{c|c}
X \\
NH \\
N = C
\end{array}$$

$$\begin{array}{c}
R^1 \\
P^2
\end{array}$$

in der

R¹ Wasserstoff oder Alkyl mit 1 bis 4 C-Atomen, 20
R² Alkyl mit 1 bis 4 C-Atomen, Phenyl, das Chlor, Brom, Hydrozy, Methyl und/oder Methoxy als Substituenten tragen kann, 2-Hydroxynaphthyl-1, Indolyl-3, 2-Phenylindolyl-3 oder 2,4-Dihydroxychinolyl-3 oder R¹ und R² gemeinsam mit dem Methylenkohlenstoff einen gegebenenfalls mit Benzolkernen anellierten 5- oder 6-gliedrigen heterocyclischen Ring aus der Gruppe N-Methylbenzthiazol, Benzimidazol, Benzoxazol und Isoindolon-3 und

X eine der Gruppen

$$\begin{array}{c}
O \\
C - OR^3
\end{array}$$
=C
$$\begin{array}{c}
CN
\end{array}$$

$$\begin{array}{c}
O \\
\parallel \\
C - OR^{3}
\end{array}$$

$$\begin{array}{c}
C - OR^{3} \\
\parallel \\
O
\end{array}$$

$$=C$$

$$=C$$

$$C$$

 $oder = N - R^6$

worin

R3 für Alkyl mit 1 bis 4 C-Atomen, 2-Methoxyāthyl.

R⁴ für Wasserstoff, Alkyl mit 1 bis 4 C-Atomen, da lurch Hydroxy, Halogen oder Alkoxy mit 1 bis 4 C-Atomen substituiert sein kann, Aralkyl mit 7 bis 9 C-Atomen, Phenyl oder α-Naphtyl, wobei Phenyl und Naphthyl durch Halogen, Methyl und/oder Methoxy substituiert sein können,

R³ für Acetyl oder Benzoyl, das durch Halogen, Methyl und/oder Methoxy substituiert sein kann, Phenyl, p-Nitrophenyl, Benzimidazolyl-2, Pyrazolyl-3 cder isoxazolyl-4 und

R6 für Benzthiazolyl-2, Benzimidazolyl-2, Imidazolyl-2, Oxazolyl-2, Indazolyl-3, Phenyl, das durch Chlor, Methyl und/oder Methoxy substituiert sein kann, Benzoxazolyl-2 oder Thiazolyl-2 stehen, oder

X einen Rest methylenaktiven Verbindungen, die sich vom Pyrazolon-5, das in der 3-Stellung durch Methyl, eine Carbonamidgruppe, eine Carbonestergruppe mit 2 bis 4 C-Atomen oder Phenyl und in der 1-Stellung ein gegebenenfalls durch Halogen, Methyl und/oder Methoxy substituiertes Phenyi tragen kann, vom Oxazolon-5, vom Isoxazolon-5, wobei Oxazolon und Isoxazolon durch Alkyl mit 1 bis 4 C-Atomen oder Phenyl substituiert sein können, vom 2,4-Dihydroxychinolin, von der Barbitursäure, von der N-Cyaniminobarbitursäure oder vom 4,6-Dihydroxy-2-phenylpyrimidin ableiten,

hedeuter

55

2. Verfahren zur Herstellung von Farbstoffen gemäß Anspruch 1, durch Umsetzen von Monosubstitutionsprodukten des 3-Iminoisoindolins mit Hydrazinverbindungen, in Lösungs- und Verdünnungsmitteln in der Wärme, dadurch gekennzeichnet, daß man

a) Monosubstitutionsprodukte der allgemeinen Formel

in der X die in Anspruch 1 genannte Bedeutung hat, mit einem Hydrazon der allgemeinen Formel

$$H_2N-N=C$$
 R^2

in der R¹ und R² die obengenannte Bedeutung haben, oder

3

b) 1-Amino-3-iminoisoindolenin mit Hydrazonen der allgemeinen Formel

$$H_2N-N=C$$

$$R^2$$

im Molverhältnis 1:1 kondensiert und das Monosubstitutionsprodukt des 3-Iminoisoindolins dann
mit einer methylenaktiven Verbindung, einem
aromatischen oder heterocyclischen primären Amin
umsetzt.

3. Verwendung der Farbstoffe gemäß Anspruch 1 15 als Pigmente für Lacke und zum Anfärben von Polyestermaterialien.

Die Erfindung betrifft neue Farbstoffe auf der Basis von 3-Imino-isoindolinderivaten.

Die neuen Farbstoffe haben die Formel

$$N = C$$

$$R^{1}$$

$$R^{2}$$

in der

R1 Wasserstoff oder Alkyl mit 1 bis 4 C-Atomen,

R² Alkyl mit 1 bis 4 C-Atomen, Phenyl, das Chlor, Brom, Hydroxy, Methyl und/oder Methoxy als 5 Substituenten tragen kann, 2-Hydroxynaphthyl-1, Indolyl-3, 2-Phenylindolyl-3 oder 2,4-Dihydroxychinolyl-3 oder R¹ und R² gemeinsam mit dem Methylenkohlenstoff einen gegebenenfalls mit Benzolkernen anellierten 5- oder 6-gliedrigen 50 heterocyclischen Ring aus der Gruppe N-Methylbenzthiazol, Benzimidazol, Benzoxazol und Isoindolon-3 und

X eine der Gruppen

$$=C$$

$$CN$$

$$C - OR^{3}$$

$$= C$$

$$CN$$

$$C - OR^{3}$$

$$= C$$

$$C - OR^{3}$$

$$0$$

$$C - N$$

$$= C$$

$$C - N$$

$$R^{5}$$

$$= C$$

$$CN$$

$$CN$$

oder = $N - R^6$

R3 für Alkyl mit 1 bis 4 C-Atomen, 2-Methoxyathyl

R⁴ für Wasserstoff, Alkyl mit 1 bis 4 C-Atomen, das durch Hydroxy, Halogen oder Alkoxy mit 1 bis 4 C-Atomen substituiert sein kann, Aralkyl mit 7 bis 9 C-Atomen, Phenyl oder α-Naphtyl, wobei Phenyl und Naphthyl durch Halogen, Methyl und/oder Methoxy substituiert sein können,

Rs für Acetyl oder Benzoyl, das durch Halogen, Methyl und/oder Methoxy substituiert sein kann, Phenyl, p-Nitrophenyl, Benzimidazolyl-2, Pyrazolyl-3 oder Isaxozolyl-4 und

R6 für Benzthiazolyl-2, Benzimidazolyl-2, Imidazolyl-2, Oxazolyl-2, Indazolyl-3, Phenyl, das durch Chlor, Methyl und/oder Methoxy substituiert sein kann, Benzoxazolyl-2 oder Thiazolyl-2 stehen, oder

X einen Rest methylenaktiven Verbindungen, die sich vom Pyrazolon-5, das in der 3-Stellung durch Methyl, eine Carbonamidgruppe, eine Carbonestergruppe mit 2 bis 4 C-Atomen oder Phenyl und in der 1-Stellung ein gegebenenfalls durch Halogen, Methyl und/oder Methoxy substituiertes Phenyl tragen kann, vom Oxazolon-5, vom Isoxazolon-5, wobei Oxazolon und Isoxazolon durch Alkyl mit 1 bis 4 C-Atomen oder Phenyl substituiert sein können, vom 2,4-Dihydroxychinolin, von der Barbitursäure, von der N-Cyaniminobarbitursäure oder vom 4,6-Dihydroxy-2-phenyl-pyrimidin ableiten,

bedeuten.

Die neuen Farbstoffe sind gelbe bis rote Farbstoffe, die je nach ihrer Löslichkeit als Dispersions- oder als Pigmentfarbstoffe geeignet sind. Die farbstoffe lassen sich nach dem Carrier-Verfahren vor allem aber nach dem HT-Verfahren auf Polyester färben, wobei brillante gelbe bis rote Farbtöne erhalten werden. Die Färbungen auf Polyester weisen außerdem sehr gute Lichtechtheiten auf.

In den für X genannten Gruppen kommen als Substituenten R³, R⁴, R⁵ und R⁶ im einzelnen z. B. in Be-65 tracht:

R3 Alkyl mit 1 bis 4 C-Atomen: Methyl, Äthyl, n- oder i-Propyl, n- oder i-Butyl;

R4 Wasserstoff, Alkyl mit 1 bis 4 C-Atomen, das durch Hydroxy, Halogen oder Alkoxy mit 1 bis 4 C-Atomen substituiert sein kann: Methyl, Äthyl, Butyl, 3-Methoxypropyl, 3-Äthoxypropyl, 2-Hydroxyäthyl, 3-Hydroxypropyl, 2-Methoxyäthyl, 3-Äthoxyäthyl; Aralkyl mit 7 bis 9 C-Atomen; 2-Phenylätnyl, Benzyl; Phenyl oder α-Naphthyl, die durch Halogen, Methyl und/oder Methoxy substituiert sein können;

R⁵ Acetyl oder Benzoyl, das durch Halogen, Methyl 10 und/oder Methoxy substituiert sein kann, Phenyl, oder p-Nitrophenyl, Benzimidazolyl-2, Pyrazolyl-3 oder Isoxazolyl-3:

R6 Benzthiazolyl-2, Benzimicazolyl-2, Imidazolyl-2, Oxazolyl-2, Indazolyl-3, Phenyl, 2- oder 4-Chlor-15 phenyl, p-Tolyl, Thiazolyl-2, p-Anisidyl und Benzoxazolyl-2.

Außerdem kommen für KReste von Methylenaktiven Verbindungen in Betracht, die sich vom Pyrazolon-(5), das in der 3-Stellung Methyl, eine 20 Carbonamid- oder Carbonestergruppe mit 2 bis 4 C-Atomen und in 1-Stellung ein gegebenenfalls durch Halogen, Methyl und/oder Methoxy substituiertes Phenyl tragen kann, vom Oxazolon-(5), vom Isoxazolon-(5), wobei Oxazolon und Isoxazolon Alkylreste mit 1 bis 4 C-Atomen oder Phenyl tragen können, vom 2,4-Dihydrochinolin (=1,2,3,4-Tetrahydro-chinolindion-2,4), von der Barbitursäure, von deren N-Cyaniminoderivat oder vom 2-Phenyl-3,4,5,6-tetrahydropyrimidindion-4,6 ableiten.

Für die Gruppe

$$C$$
 R^1

kommen Reste in Betracht, die sich von den Hydrazonen aliphatischer, aromatischer oder heterocyclischer Aldehyde oder Ketone, wie

Acetaldehyd, n-Butyraldehyd, Benzaldehyd, Salicylaldehyd, 3,5-Dichlorsalicylaldehyd, 2-Hydroxynaphthaldehyd, Indolaldehyd-(3), 2-Phenylindol-aldehyd-(3), Aceton, Acetophenon, Propionphenon, Acenaphthenon, 3-Acetyl-2,4-dihydroxychinolin, von heterocyclischen Amidrazonen wie N-Methylbenzthiazolon-(2)-hydrazon, 6-Methoxy-N-methylbenzthiazolon-(2)-hydrazon, 6-Nitro-N-methylbenzthiazolon-(2)-hydrazon,

6-Nitro-N-methylbenzthiazolon-(2)-hydrazo Benzimidazolon-(2)-hydrazon, Benzoxazolon-(2)-hydrazon und

Hydrazino-isoindolon

ableiten.

Die neuen Farbstoffe werden in an sich bekannter Weise entweder durch Kondensation von Monosubstitutionsprodukten des 3-Iminoisoindolins der allgemeinen Formel

in der X die obengenannte Bedeutung hat, mit

Hydrazonen der allgemeinen Formel

$$H_2N \cdot N = C \tag{III}$$

$$R^2$$

in der R¹ und R² die obengenannte bedeutung haben, oder durch Kondensation von Monosubstitutionsprodukten des Iminoisoindolins der Formel

$$\begin{array}{c}
NH \\
NH \\
N-N=C
\end{array}$$

$$\begin{array}{c}
R^{1} \\
R^{2}
\end{array}$$

mit methylenaktiven Verbindungen, heterocyclischen oder aromatischen primären Aminen der Formel

wobei R¹, R² und X die obengenannte Bedeutung haben, in einem Lösungs- oder Verdünnungsmittel in 30 der Wärme erhalten.

Die Kondensation wird zweckmäßigerweise bei Temperaturen zwischen 50 und 130°C durchgeführt.

Zur Kondensation wird das Monosubstitutionsprodukt (II) mit dem Hydrazon (III) bzw. das Monosubstitutionsprodukt (IV) mit der Verbindung (V) in dem Lösungs- und Verdünnungsmittel erwärmt. Nach der Beendigung der Raktion kann der Farbstoff je nach seiner Löslichkeit direkt oder nach dem Fällen, z. B. durch Eingießen in Wasser, durch Absaugen isoliert werden.

Anstelle von reinen Farbstoffen können auch Farbstoffgemische, die aus zwei oder mehr Farbstoffen bestehen, hergestellt werden, indem man

a) Gemische der Verbindung (II), mit dem Hydrazonderivat (III) bzw. Gemische der Verbindung (IV)
mit der Verbindung (V) oder einheitliche Monosubstitutionsprodukte des 3-Iminoisoindolins (II)
bzw. (IV) mit einem Gemisch der Hydrazone (III)
bzw. der Verbindungen der Formel (V) umsetzt.

Als Lösungs- und Verdünnungsmittel sind polare organische Lösungsmittel, vor allem solche, die mit Wasser in jedem Verhältnis mischbar sind, wie

N,N-Dimethylformamid, N,N-Diathylformamid, N,N-Diathylacetamid, N,N-Dimethylacetamid, N-Methylpyrrolidon, Eisessig, Ameisensaure,

Glykolmonomethyläther, Glykolmonoäthyläther oder Gemische davon, geeignet. Als Lösungs- und Verdünnungsmittel sind Mischungen aus N,N-Dimethylformamid und Eisessig besonders bevorzugt.

Die Monosubstitutionsprodukte des 3-Iminoisondolins der allgemeinen Formel II werden in bekannter Weise durch Umsetzen des 3-Imino-1-amino-isoindolenins mit verbindungen der Formel XH₂, in der X die obengenannte Bedeutung hat, in Lösungs- und Verdünnungsmitteln erhalten.

Als methylenaktive Verbindung XH₂ kommen beispielsweise Malondinitril, Cyanessigsäurealkylester mit 1 bis 4 C-Atomen im Alkyl, wie

35

8

Canessigsäuremethyl-, -äthyl-, -n-propyl-,
-n- oder -i-butylester,
Cyanessigsäure-3-äthoxypropylester oder
Cyanessigsäure-β-phenyläthylester,
Cyanacetamid, N-substituierte Cyanacetamide wie
N-Methyl, N-Äthyl-, N-Butyl-, 2-Hydroxyäthyl-,
2-Methoxy-äthyl-, 3-Äthoxy-propyl-,

3-Methoxypropyl-, 2-Phenyläthyl-, N-Phenyl- oder N-α-Naphthylcyanacetamid,

aliphatische oder aromatische α-Cyanketone wie 10 Cyanaceton, Cyanacetophenon oder

Cyanmethylverbindungen wie Benzylcyanid, p-Nitrobenzylacy

Benzylcyanid, p-Nitrobenzylacyanid, 2-Cyanmethylbenzimidazol, 3-Cyanmethylpyrazol,

3-Cyanmethylisoazol

in Betracht.

Als methylenaktive Verbindungen XH₂ kommen weiterhin solche in Betracht, bei denen die Methylengruppe Bestandteil eines iso- oder heterocyclischen Ringes ist. Als Vertreter sind zu nennen: das Pyrazolon-(5), das in 3-Stellung Methyl, eine Carbonamid- oder Carbonestergruppe mit 2 bis 4 C-Atomen und in der 1-Stellung ein gegebenenfalls durch Halogen, 25 Methyl und/oder Methoxy substituiertes Phenyl tragen kann, wie

3-Methylpyrazolon-(5).

3-Carbonamido-pyrazolon-(5),

1-Phenylpyrazolon-(5) oder

2-Phenyloxazolon-(5),

3-Phenylisoxazolon-(5).

3-Methyl-isoxazolon-(5),

2,4-Dihydroxychinolin,

Barbitursäure, N,N'-dialkyl- oder diarylsubstituierte Barbitursäuren wie

N,N'-Dimethylbarbitursäure,

N-Methyl-N'-methoxyāthylbarbitursāure und N-Methyl-N'-(3-āthoxypropyl)-barbitursāure oder

4,6-Dihydroxy-2-phenylpyrimidin (=2-Phenyl-

3,4,5,6-tetrahydropyrimidindion-4,6).

Außerdem kommen als Verbindungen der allgemeinen Formel XH₂ aromatische und heterocyclische primäre Amine wie

Anilin, p-Chloranilin, o-Chloranilin, p-Toluidin, p-Anisidin, 2-Aminobenzthiazol, 2-Aminothiazol,

2-Aminobenzimidazol, 2-Aminoimidazol,

2-Aminobenzoxazol, 2-Aminooxazol und

3-Amino-indazol

und deren im aromatischen Kern durch Halogen, Methyl und/oder Methoxy substituierten derivate in Betracht.

Als Hydrazone der allgemeinen Formel III kommen 55 Hydrazone aliphatischer, aromatischer oder heterocyclischer Aldehyde wie

Acetaldehyd, Butyraldehyd, Benzaldehyd, Salicylaldehyd, 3,5-Dichlorsalicylaldehyd, 2-Hydroxynaphthaldehyd, Indolaldehyd-(3), 2-Phenylindolaldehyd-(3),

Hydrazone aliphatischer, aromatischer oder heterocyclischer Ketone wie

Aceton, Acetophenon, Propiophenon, Acenaphthenon oder 2,4-Dihydroxy-3-acetylchinolin und cyclische Amidrazone wie N-Methyl-benzthiazolonhydrazon-(2), 6-Methoxy-N-methylbenzthiazolonhydrazon-(2), 6-Nitro-N-methyl-benzthiazolonhydrazon-(2), Benzimidazolon-hydrazon-(2), Benzoxazolon-hydrazon-(2) und 3-Hydrazino-isoindolon-(1)

in Betracht.

Die Monosubstitutionsprodukte des 3-Iminoisoindolenins der allgemeinen Formel IV werden in an sich bekannter Weise durch Kondensation 3-Imino-1amino-isoindolienins mit Hydrazonen der allgemeinen Formel

$$H_2N-N=C$$

$$R^2$$
(III)

in der R^1 und R^2 die obengenannte Bedeutung haben, in Lösungs- und Verdünnungsmitteln erhalten.

Gegenüber den aus der belgischen Patentschrift 7 03 669 bekannten Hydrazinderivaten des 3-Imino-1amino-isoindolenins zeichnen sich die neuen Farbstoffe der Erfindung durch eine höhere Brillanz und deutlich höhere Farbstärken aus.

Die im folgenden genannten Teile und Prozentangaben beziehen sich auf das Gewicht. Die Volumenteile stehen zu den Gewichtsteilen wie das Liter zum Kilogramm.

Beispiel 1

10,6 Teile 1-(Cyano-carbonamido)-3-imino-isoindoin und 3-Acetyl-2,4-dihydroxy-chinolinhydrazon werden in 100 Teilen Dimethylformamid und 10 Teilen
Eisessig 1 Stunde bei 100°C gerührt. Nach dem
Abkühlen wird der entstandene Farbstoff abgesaugt,
gewaschen und mit Methanol getrocknet. Man erhält so
15,6 Teile des Farbstoffs der Formel

65 in Form eines gelben Farbstoffpulvers, das in Lacke eingearbeitet brillante Färbungen liefert.

Auf analoge Weise wurden die in der folgenden Tabelle aufgeführten Verbindungen hergestellt:

15

Farbe

orange

Beispiel 11

10,6 Teile 1-(Cyano-carbonamido-methylen)-3-iminoisoindolin und 1-Hydrazinoisoindolon-(3) werden in Eis-5 essig bei 100°C 5 Stunden gerührt. Nach dem Abkühlen wird der erstandene gelbe Farbstoff abgesaugt, mit Methanol gewaschen und getrocknet. Man erhält 15,5 Teile des Farbstoffs der Formel

in Form eines gelben Farbstoffpulvers, welches in 25 Lacke eingearbeitet gelbe Färbungen liefert.

Auf analoge Weise werden die in der folgenden Tabelle genannten Farbstosse erhalten:

orange

orange

gelb

gelb

gelb

Farbe

13

12

Н

orange

55

orange

$$= N - \sqrt{N}$$

$$= N - N$$

orange

Beispiel

7

8

$$_{2}$$
 NC-C-CONH

rot 3 Н

$$9 = N - \sqrt{\frac{N}{S}}$$

15

Beispiel 16

15 Teile 1-[Cyano-(N-3-äthoxypropyl)-carbonamidomethylen]-3-iminoisoindolin und 11,5 Teile 1-Methylbenzthiazolonhydrazon-(2) werden in Dimethylformamid 2 Stunden bei 100°C gerührt. Nach dem Abkühlen erhält man 9,3 Teile des Farbstoffs der **Formel**

in Form eines gelben Farbstoffpulvers, das Polyester in 25 brillanten gelben Tönen anfärbt.

Beispiel 17

a) Herstellung des Monokondensationsproduktes

116 Teile Diiminoisoindolin und 232 Teile 1-Methylbenzthiazolon-(2)-hydrazon werden in 800 ml Äthanol 5 Stunden bei 70°C gerührt. Nach dem Abkühlen und Absaugen erhält man 290 Teile 1-[1-Methyl-benzthiazolon-(2)-hydrazono]-3-iminoisoindolin.

b) 15,4 Teile 1-[1-Methyl-benzthiazolon-(2)-hydrazono]-3-iminoisoindolin und 5 Teile 3-Methylpyrazokon-(5) werden in 100 Teilen N,N-Dimethylformamid und 10 Teilen Ameisensäure 4 Stunden bei 100°C gerührt. Nach Abkühlen erhält man 9,6 Teile des 40 man die in der folgenden Tabelle genannten Farbstoffe:

Farbstoffs der Formel

12

20 der Polyester rot anfärbt.

Beispiel 18

19,4 Teile 1-Biscyanomethylen-3-iminoisoindolin und 22,8 Teile N-Methyl-benzthiazolonhydrazon-(2) werden in einer Mischung von 200 Teilen N.N-Dimethylformamid und 40 Teilen Ameisensäure 2 Stunden bei 120°C gerührt. Nach dem Abkühlen und Abfiltrieren erhält man 21 Teile des Farbstoffs der Formel

$$\begin{array}{c|c}
CH_3 \\
N \\
N \\
N \\
N \\
N \\
CN
\end{array}$$

in Form eines gelben Pulvers, welches Polyester in äußerst brillanten gelben Tönen von mittleren Echtheiten einfärbt.

Analog den Angaben der Beispiele 17b und 18 erhält

p. P. Farbe						
Beispiel	x	R ₁	R ₂	rance		
19	NC-C-COCH ₃	CH ₃	Н	orange ·		
20	$NC-C-CONH-CH_2-CH_2$	СН3	Н	grün-gelb		
21	$NC-C-CO_2-CH_2-CH_2-OCH_3$	CH ₃	н	gelb		

Fortsetzung

Beispiel	x	Ri	R ₂	Farbe
22	\parallel NC-C-CO-NH C_2 H ₅	CH ₃	Н	gelb
23	$NC-C-CONH-CH_2-CH_2-OH$	CH ₃	Н	gelb
24	$=N-\langle N \rangle$	СН₃	Н	gelb
25	=N	СН	Н	gelb
	H	•		
26	=N	CH ₃	Н	gelb
27	N = N = N	CH3	Н	gelb
28	$O = \bigvee_{N-N} O$	СН,	Ħ	rot
29	O N H	СН₃	н	rol
30	NC-C-COCH,	СН	OCH ₃	orange
31	NC-C-CO-NH-(CH2)2	CH ₃	OCH ₃	orange
32	$NC-C-CO-NH-C_2H_5$	CH ₃	OCH3	orange
33	$NC-C-CO-NH-(CH_2)_3-OC_2H_5$	CH ₃	OCH ₃	orange
34	$NC-C-CO-NH-(CH_2)_2-OH$	CH ₃	OCH ₃	orange
35	$NC-C-CO_2-(CH_2)_3-OCH_3$	CH,	OCH ₃	orange
36	$NC-C-CO_2-(CH_2)_2-CI$	CH3	OCH ₃	orange

Fortsetzung

Beispiel

$$37 = N \longrightarrow N$$

$$=N-\sqrt{N}$$

$$R_1 \hspace{1cm} R_2 \hspace{1cm} \textbf{Farbe}$$

Beispiel 47

106 Teile 1-(Cyano-carbonamido-methylen)-3-iminoisoindolin und 98 Teile β-Oxynaphthaldehydhydrazon werden in 100 Teilen N,N-Dimethylformamid und 120 Teilen Ameisensäure 2 Stunden bei 130°C gerührt. Nach dem Abkühlen und Abfiltrieren erhält man 160 Teile des Farbstoffs der Formel

$$NC$$
 $C = N - N = CH$
 H_2NCO
 H
 HO

in Form eines gelben Farbstoffpulvers, welches in Lacke eingearbeitet farbstarke Gelbfärbungen ergibt.

Beispiel 48

14,5 Teile 1-(Cyano-benzimidazolyl-2'-methylen)3-iminoisoindolin und 10,2 Teile 3,5-Dichlorsalicylaidehydhydrazon werden in 100 Teilen N,N-Dimethylformamid und 20 Teilen Ameisensäure 30 Minuten auf
130°C erwärmt. Nach dem Absaugen und Trocknen bei
80°C erhält man 18 Teile des Farbstoffs der Formel

in Form eines roten Farbstoffpulvers, welches in Lacke eingearbeitet rote Färbungen ergibt.