Doc. 1-1 on ss 7 from WPIL using MAX

©Derwent Information

Use of enamine derivatives as ultraviolet-A filters - are more stable than current UV-A filters

Patent Number: EP-852137

International patents classification : A61K-00° 42 C0°C-05° 00 C0°C-255 04 C0°C-409 22 A61K-00° 00 A61K-00° 00 A61K-00° 40 A61K-00° 48 A61K-031 13 A61K-031 255 A61K-031 255 A61K-031 255 A61K-031 255 A61K-031 255 A61K-031 255 A61K-031 256 C0°C-022 00 C0°C-021 49 C0°C-21° 54

EP-852137 A Use of enamine derivatives of formula (R3)(R4NH)C C(R1)(R2) (I) as UV filters in cosmetic and pharmaceutical preparations for protection of hair or skin against sun-radiation, alone or in combination with UV absorbers is new: R1 = COOR5, COR5, CONR5R6, CN, SO2R5, SO2OR5 or P(=OX)R7OR8; R2 = COX)R6, COR6, CONR5R6, CN, SO2R6, SO2OR6 or P(=OX)R7OR8; R3 - H, or optionally substituted aliphatic, cycloaliphatic, arylaliphatic or aromatic residue with up to 18C; R4 = optionally substituted 5-12C aromatic or heteroaromatic residue; and R5, R6 = H or aliphatic, cycloaliphatic, or optionally substituted aromatic with up to 18C; or R3-R8 together with their bonded carbon atoms may form a 5-6 membered ring which may be further annelated.

USE - (I) are useful as UV-A filters (claimed).

ADVANTAGE - (I) show greater photostability than usual UV-A filters. (Dwg.0'0)

Publication data :

Patent Family: EP-852137 A2 19980708 DW1998-31 A61K-007/42 Ger 53p • AP: 1997EP-0119397 19971106 DSR: AL AT BE CH DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI JP10158140 A 19980616 DW1998-34 A61K-007/42 58p AP: 1997JP-0328052 19971128 AU9745406 A 19980604 DW1998-39 C07C-057/00 AP: 1997AU-0045406 19971127 DE19712033 A1 19980924 DW1998-44 A61K-007/42 AP 1997DE-1012033 19970321

BR9706035 A 19990518 DW1999-25 C07C-409/22 AP: 1997BR-0006035 19971127

US5945091 A 19990831 DW1999-42 A61K-007/42 AP: 1997US-0972391 19971118

MX9709075 A1 19980501 DW2000-07 A61K-007/42 AP: 1997MX-0009075 19971125

US6037487 A 20000314 DW2000-20 C07C-255/04 FD: Div ex US5945091 AP: 1997US-0972391 19971118; 1999US-0266968 19990312

Priority nº: 1997DE-1012033 19970321; 1996DE-1049381

Covered countries: 29 Publications count: 8

· Accession codes :

Accession N°: 1998-350154 [31] Related Acc. N°: : 1998-313409 Sec. Acc. nº CPI: C1998-108199 · Derwent codes :

Manual code: CPI: A08-A03 A12-V04C B05-B01E B05-B01F B07-H B10-A08 B10-A09B B10-A15 B10-B02 B14-R05 D08-B09A D09-E E05-G01 E05-G02 E05-G03 E07-H03 E10-A09B E10-A10C E10-A10D E10-A15A E10-A15C E10-B02 E10-B04A2 E10-B04B

Derwent Classes: A96 B07 D21 E19

· Patentee & Inventor(s):

Patent assignee: (BADI) BASF AG Inventor(s): AUMULLER A; HABECK T; SCHEHLMANN V; WESTENFELDER H, WUNSCH T, AUMUELLER A, HAREMZA S; WUENSCH T

Update codes :

Basic update code:1998-31 Equiv. update code:1998-34; 1998-39, 1998-44; 1999-25; 1999-42; 2000-07; 2000-

BUNDESREPUBLIK **DEUTSCHLAND**

(i) Offenlegungsschrift _® DE 197 12 033 A 1

(51) Int. CI.6: A 61 K 7/42

A 61 K 31/235 A 61 K 31/425 A 61 K 31/275

DEUTSCHES PATENTAMT

Aktenzeichen: 197 12 033.4 ② Anmeldetag: 21. 3.97

(43) Offenlegungstag: 24. 9.98

(1) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder:

Habeck, Thorsten, Dr., 67149 Meckenheim, DE; Aumüller, Alexander, Dr., 67435 Neustadt, DE; Schehlmann, Volker, Dr., 67354 Römerberg, DE; Westenfelder, Horst, 67435 Neustadt, DE; Wünsch. Thomas, Dr., 67346 Speyer, DE; Haremza, Sylke, Dr., 69151 Neckargemünd, DE

- (A) Photostabile UV-Filter enthaltende kosmetische und pharmazeutische Zubereitungen
- Verwendung von Verbindungen der Formel I

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und die Variablen folgende Bedeutung ha-

ben: R¹ COOR⁵, COR⁵, CONR⁵R⁶, CN, O=S(-R⁵)=O, O=S(-OR⁵)= O, R⁷O-P(-OR⁸)=O; R² COOR⁶, COR⁶, CONR⁵R⁶, CN, O=S(-R⁶)=O, O=S(-OR⁶)=

O, R⁷O-P(-OR⁸)=O; R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aro-

matischen Rest mit jeweils bis zu 18 C-Atomen; R⁴ einen gegebenenfalls substituierten aron einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen;

R⁸ unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphatischen, cycloaliphatischen oder gegebenenfalls substituierten aro-

matischen Rest mit jeweils bis zu 18 C-Atomen, wobei die Variablen R³ bis R⁸ untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, gemeinsam einen 5- bis 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann, als UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Ver-

sche oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten.

Besonders bevorzugt ist die Verwendung von Verbindungen der Formel I, in der R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und COR⁵ und COR⁵ und R² für CN, COOR⁵ und COR⁵ stehen, wobei R⁵ und R⁶ voneinander unabhängig offenkettige oder verzweigte aliphatische oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten und R⁴ für einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit bis zu 10 C-Atomen im Ring, insbesondere einen substituierten Phenyl-, Thienyl-, Furyl-, Pyridyl-, Indolyl- oder Naphthylenrest und besonders bevorzugt für einen gegebenenfalls substituierten Phenyl- oder Thienylrest steht.

Als Substituenten kommen sowohl lipophile als auch hydrophile Substituenten mit z. B. bis zu 20 C-Atomen in Betracht. Lipophile d. h. die Öllöslichkeit der Verbindungen der Formel I verstärkende Reste sind z. B. aliphatische oder cycloaliphatische Reste insbesondere Alkylreste mit 1 bis 18 C-Atomen, Alkoxy-, Mono- und Dialkylamino-, Alkoxycarbonyl-, Mono- und Dialkylaminocarbonyl-, Mono- und Dialkylaminocarbonyl-, Mono- und Dialkylaminosulfonylreste, ferner Cyan-, Nitro-, Brom-, Chlor-, Iod- oder Fluorsubstituenten.

Hydrophile d. h. die Wasserlöslichkeit der Verbindungen der Formel I ermöglichende Reste sind z. B. Carboxy- und Sulfoxyreste und insbesondere deren Salze mit beliebigen physiologisch verträglichen Kationen, wie die Alkalisalze oder wie die Trialkylammoniumsalze, wie Tri-(hydroxyalkyl)-ammoniumsalze oder die 2-Methylpropan-1-ol-2-ammoniumsalze. Ferner kommen Alkylammoniumreste mit beliebigen physiologisch verträglichen Anionen in Betracht.

Als Alkoxyreste kommen solche mit 1 bis 12 C-Atomen, vorzugsweise mit 1 bis 8 C-Atomen in Betracht.

Beispielsweise sind zu nennen:

methoxy n-propoxy-

n-butoxy-

2-methylpropoxy-1,1-dimethylpropoxy-

hexoxy-

heptoxy-

2-ethylhexoxy-

isopropoxy-

1-methylpropoxy-

n-pentoxy-

3-methylbutoxy-

2,2-dimethylpropoxy-

1-methyl-1-ethylpropoxy-

octoxy-

Als Mono- oder Dialkylaminoreste kommen z. B. solche in Betracht, die Alkylreste mit 1 bis 8 C-Atomen enthalten, wie Methyl-, n-Propyl-, n-Butyl-, 2-Methylpropyl-, 1,1-Dimethylpropyl-, Hexyl-, Heptyl-, 2-Ethylhexyl-, Isopropyl-, 1-Methylpropyl-, n-Pentyl-, 3-Methylbutyl-, 2,2-Dimethylpropyl-, 1-Methyl-1-ethylpropyl- und Octyl in Betracht. Diese Reste sind gleichermaßen in den Mono- und Dialkylaminocarbonyl- und Sulfonylresten enthalten.

Alkoxycarbonylreste sind z. B. Ester, die die oben genannten Alkoxyreste oder Reste von höheren Alkoholen z. B. mit bis zu 20 C-Atomen, wie iso-C₁₅-Alkohol, enthalten.

Die Erfindung betrifft auch die neuen Verbindungen der Formel II

$$R^4$$
 NH C CC CH_3 C

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der gegebenenfalls durch einen oder mehrere Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonyl-, mit jeweils bis zu 20 C-Atomen oder Cyan- oder Carboxyreste oder durch wasserlöslich machende Reste ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten substituiert ist. Solche Reste sind z. B. Alkalicarboxylat oder Carbonyloxy-tri-(hydroxyethyl)ammonium- oder Sulfonyloxy-tri-(hydroxyethyl)ammoniumreste.

Weiterhin betrifft die Erfindung die neuen Verbindungen der Formel III,

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der gegebenenfalls durch einen oder mehrere Alkoxyreste mit bis zu 20 C-Atomen oder Alkoxycarbonylreste mit 4 bis zu 20 C-Atomen, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat, Sulfonat- oder Alkylammoniumresten, substituiert ist und R⁵ eine offenkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Alkoxyalkylgruppe mit jeweils bis zu 18 C-Atomen oder eine Aryloxygruppe bedeutet.

Beispielhaft sind in der folgenden Tabelle 1 die bevorzugten erfindungsgemäßen Verbindungen der Formel III ge-

15

20

25

30

X	R ⁵	7-5	Position	
^		n	Position	
C ₁₂ H ₂₅ OCO	CH ₃	1	meta	
C ₁₂ H ₂₅ OCO	CH ₃	1 1	ortho	
C ₁₂ H ₂₅ OCO	CH ₃	2	ortho/para	
C ₁₃ H ₂₇ OCO	CH ₃	1		
	CH ₃	1	para	
C ₁₃ H ₂₇ OCO			meta	
C ₁₃ H ₂₇ OCO	CH ₃	1 1	ortho	
C ₁₃ H ₂₇ OCO	CH ₃	2	ortho/para	
C ₁₄ H ₂₉ OCO	CH ₃	1	para	
C ₁₄ H ₂₉ OCO	CH ₃	1	meta	
C ₁₄ H ₂₉ OCO	CH ₃	1	ortho	
C ₁₄ H ₂₉ OCO	CH ₃	2	ortho/para	
C ₁₅ H ₃₁ OCO	CH ₃	1	para	
C ₁₅ H ₃₁ OCO	CH ₃	1	meta	
C ₁₅ H ₃₁ OCO	CH ₃	1	ortho	
C ₁₅ H ₃₁ OCO	CH ₃	2	ortho/para	
C ₁₆ H ₃₃ OCO	CH ₃	1	para	
C ₁₆ H ₃₃ OCO	CH ₃	1	meta	
C ₁₆ H ₃₃ OCO	CH ₃	1	ortho	
C ₁₆ H ₃₃ OCO	CH ₃	2	ortho/para	
C ₁₇ H ₃₅ OCO	CH ₃	1	para	
C ₁₇ H ₃₅ OCO	CH ₃	1	meta	
C ₁₇ H ₃₅ OCO	CH ₃	1	ortho	
C ₁₇ H ₃₅ OCO	CH ₃	2	ortho/para	
C ₁₈ H ₃₇ OCO	CH ₃	1	para	
C ₁₈ H ₃₇ OCO	CH ₃	1	meta	
C ₁₈ H ₃₇ OCO	CH ₃	1	ortho	
C ₁₈ H ₃₇ OCO	CH ₃	2	ortho/para	
C ₃ H ₇ OCO	C ₂ H ₅	1	para	
C ₃ H ₇ OCO	C ₂ H ₅	1	meta	
C ₃ H ₇ OCO	C ₂ H ₅	1	ortho	
C ₃ H ₇ OCO	C ₂ H ₅	2	ortho/para	
C ₄ H ₉ OCO	C ₂ H ₅	1	para	
C ₄ H ₉ OCO	C ₂ H ₅	1	meta	
C ₄ H ₉ OCO	C ₂ H ₅	1	ortho	
C ₄ H ₉ OCO	C ₂ H ₅	2	ortho/para	
C ₅ H ₁₁ OCO	C ₂ H ₅	1	para	
C ₅ H ₁₁ OCO	C ₂ H ₅	1	meta	
C ₅ H ₁₁ OCO	C ₂ H ₅	1	ortho	
C ₅ H ₁₁ OCO	C ₂ H ₅	2	ortho/para	
C ₆ H ₁₃ OCO	C ₂ H ₅	1	para	
C ₆ H ₁₃ OCO	C ₂ H ₅	1	meta	
C ₆ H ₁₃ OCO	C ₂ H ₅	1	ortho	
C ₆ H ₁₃ OCO	C ₂ H ₅	2	ortho/para	
C ₈ H ₁₇ OCO	C ₂ H ₅	1	para	
C ₈ H ₁₇ OCO	C ₂ H ₅	1	meta	
C ₈ H ₁₇ OCO	C ₂ H ₅	1	ortho	
C ₈ H ₁₇ OCO	C ₂ H ₅	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	para	
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	meta	
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	ortho	

Tv	R ⁵	1	1722/102	
Х	R ³	n	Position	
á " ogo	 	 		
C ₁₃ H ₂₇ OCO	C ₃ H ₇	1	meta	
C ₁₃ H ₂₇ OCO	C ₃ H ₇	1	ortho	
C ₁₃ H ₂₇ OCO	C ₃ H ₇	2	ortho/para	
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	para	
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	meta	
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	ortho	
C ₁₄ H ₂₉ OCO	C ₃ H ₇	2	ortho/para	
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	para	
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	meta	
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	ortho	
C ₁₅ H ₃₁ OCO	C ₃ H ₇	2	ortho/para	
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	para	
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	meta	
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	ortho	
C ₁₆ H ₃₃ OCO	C ₃ H ₇	2	ortho/para	
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	para	
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	meta	
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	ortho	
C ₁₇ H ₃₅ OCO	C ₃ H ₇	2	ortho/para	
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	para	
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	meta	
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	ortho	
C ₁₈ H ₃₇ OCO	C ₃ H ₇	2	ortho/para	
C ₃ H ₇ OCO	C ₄ H ₉	1	para	
C ₃ H ₇ OCO	C ₄ H ₉	1	meta	•
C ₃ H ₇ OCO	C ₄ H ₉	1	ortho	
C ₃ H ₇ OCO	C ₄ H ₉	2	ortho/para	
C ₄ H ₉ OCO	C ₄ H ₉	1	para	
C ₄ H ₉ OCO	C ₄ H ₉	1	meta	
C ₄ H ₉ OCO	C ₄ H ₉	1	ortho	
C ₄ H ₉ OCO	C ₄ H ₉	2	ortho/para	•
C ₅ H ₁₁ OCO .	C ₄ H ₉	1	para	
C5H11OCO	C ₄ H ₉	1	meta	
C ₅ H ₁₁ OCO	C ₄ H ₉	1	ortho .	
C5H11OCO	C ₄ H ₉	2	ortho/para	
C ₆ H ₁₃ OCO	C ₄ H ₉	1	para	
C ₆ H ₁₃ OCO	C ₄ H ₉	1	meta	
C ₆ H ₁₃ OCO	C ₄ H ₉	1	ortho	
C ₆ H ₁₃ OCO	C ₄ H ₉	2	ortho/para	
C ₈ H ₁₇ OCO	C ₄ H ₉	1	para	
C ₈ H ₁₇ OCO	C ₄ H ₉	1	meta	
C ₈ H ₁₇ OCO	C ₄ H ₉	1	ortho	
C ₈ H ₁₇ OCO	C ₄ H ₉	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	para	
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	meta	
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	ortho	
C ₁₂ H ₂₅ OCO	C ₄ H ₉	2	ortho/para	
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	para	
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	meta	
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	ortho	
013.12/000				

	R ⁵		Position
X	R ³	n	FOSICION
C ₁₄ H ₂₉ OCO	C ₅ H ₁₁	1	meta
C ₁₄ H ₂₉ OCO	C ₅ H ₁₁	1	ortho
C ₁₄ H ₂₉ OCO	C ₅ H ₁₁	2	ortho/para
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	para
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	meta
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	ortho
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	2	ortho/para
C ₁₆ H ₃₃ OCO	C ₅ H ₁₁	1	para
C ₁₆ H ₃ 3OCO	C ₅ H ₁₁	1	meta
C ₁₆ H ₃ 3OCO	C ₅ H ₁₁	1	ortho
C ₁₆ H ₃ 3OCO	C ₅ H ₁₁	2	ortho/para
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	1	para
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	1	meta
	C ₅ H ₁₁	1	ortho
C ₁₇ H ₃₅ OCO C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	2	ortho/para
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	1	para
	C ₅ H ₁₁	1	meta
C ₁₈ H ₃₇ OCO C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	1	ortho
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	2	ortho/para
C ₁₈ H ₃ 7OCO C ₃ H ₇ OCO	C ₆ H ₁₃	1	para
C ₃ H ₇ OCO	C ₆ H ₁₃	1	meta
C ₃ H ₇ OCO	C ₆ H ₁₃	1	ortho
C ₃ H ₇ OCO	C ₆ H ₁₃	2	ortho/para
C_4H_9OCO	C ₆ H ₁₃	1	para
	C ₆ H ₁₃	1	meta
C ₄ H ₉ OCO C ₄ H ₉ OCO	C ₆ H ₁₃	1	ortho
C4H9OCO	C ₆ H ₁₃	2	ortho/para
C ₅ H ₁ 10CO	C ₆ H ₁₃	1	para
C5H11OCO	C ₆ H ₁₃	1	meta
C ₅ H ₁₁ OCO	C ₆ H ₁₃	1	ortho
C5H11OCO	C ₆ H ₁₃	2	ortho/para
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	para
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	meta
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	ortho
C ₆ H ₁₃ OCO	C ₆ H ₁₃	2	ortho/para
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	para
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	meta
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	ortho
C ₈ H ₁₇ OCO	C ₆ H ₁₃	2	ortho/para
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	para
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	meta
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	ortho
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	2	ortho/para
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	para
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	meta
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	ortho
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	2	ortho/para
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1	para
	C ₆ H ₁₃	1	meta
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1 1	ortho
C ₁₄ H ₂₉ OCO	C 61113		

.

X	R ⁵	n	Position	
C ₁₅ H ₃₁ OCO	CH ₃ O	1	meta	
C ₁₅ H ₃ 10CO	CH ₃ O	1	ortho	
C ₁₅ H ₃ 10CO	CH ₃ O	2	ortho/para	
	CH ₃ O	1	para	
C ₁₆ H ₃₃ OCO	CH ₃ O	1	meta	
C ₁₆ H ₃₃ OCO	CH ₃ O	1	ortho	
C ₁₆ H ₃₃ OCO	CH ₃ O	2	ortho/para	
C ₁₆ H ₃₃ OCO	CH ₃ O	1	para	
C ₁₇ H ₃₅ OCO		1	meta	
C ₁₇ H ₃₅ OCO	CH ₃ O	1	ortho	
C ₁₇ H ₃₅ OCO	CH ₃ O			
C ₁₇ H ₃₅ OCO	CH ₃ O	2	ortho/para	
C ₁₈ H ₃₇ OCO	CH ₃ O	1	para	
C ₁₈ H ₃₇ OCO	CH ₃ O	1	meta	
C ₁₈ H ₃₇ OCO	CH ₃ O	1	ortho	
C ₁₈ H ₃₇ OCO	CH ₃ O	2	ortho/para	
C ₃ H ₇ OCO	C ₂ H ₅ O	1	para	
C ₃ H ₇ OCO	C ₂ H ₅ O	1	meta	
C ₃ H ₇ OCO	C ₂ H ₅ O	1	ortho	
C ₃ H ₇ OCO	C ₂ H ₅ O	2	ortho/para	
C ₄ H ₉ OCO	C ₂ H ₅ O	1	para	
C ₄ H ₉ OCO	C ₂ H ₅ O	. 1	meta	
C ₄ H ₉ OCO	C ₂ H ₅ O	1	ortho	
C ₄ H ₉ OCO	C ₂ H ₅ O	2	ortho/para	
C5H110CO	C ₂ H ₅ O	1	para	
C5H11OCO	C ₂ H ₅ O	1	meta	
C5H110CO	C ₂ H ₅ O	1	ortho	
C5H11OCO	C ₂ H ₅ O	2	ortho/para	
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	para	
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	meta	
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	ortho	
C ₆ H ₁₃ OCO	C ₂ H ₅ O	2	ortho/para	
C ₈ H ₁₇ OCO	C ₂ H ₅ O	1	para	
C ₈ H ₁₇ OCO	C ₂ H ₅ O	1	meta	
C ₈ H ₁₇ OCO	C ₂ H ₅ O	1	ortho	
C ₈ H ₁₇ OCO	C ₂ H ₅ O	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1	para	
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1	meta	
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1	ortho	
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	2	ortho/para	
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1	para	
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1	meta	
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1	ortho	
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	2	ortho/para	ļ
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	para	ļ
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	meta]
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	ortho]
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	2	ortho/para]
C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	1	para	1
C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	1	meta	1
C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	1	ortho	1
1 61 511 1 1 1 6 6			1	

v	R5	n	Position
X	Λ-	11	1.09101011
C ₁₆ H ₃₃ OCO	H ₇ O د	1	meta
	C ₃ H ₇ O	1	ortho
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	2	ortho/para
C ₁₆ H ₃₃ OCO		1	
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	$\frac{1}{1}$	para
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O		meta
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	ortho
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	2	ortho/para
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	para
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	meta
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	ortho
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	2	ortho/para
C ₃ H ₇ OCO	C ₄ H ₉ O	1	para
C₃H ₇ OCO	C ₄ H ₉ O	1	meta
C ₃ H ₇ OCO	C ₄ H ₉ O	1	ortho
C₃H ₇ OCO	C ₄ H ₉ O	2	ortho/para
C ₄ H ₉ OCO	C ₄ H ₉ O	1	para
C ₄ H ₉ OCO	C ₄ H ₉ O	1	meta
C ₄ H ₉ OCO	C ₄ H ₉ O	1	ortho
C ₄ H ₉ OCO	C ₄ H ₉ O	2	ortho/para
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	para
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	meta
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	ortho
C ₅ H ₁₁ OCO	C ₄ H ₉ O	2	ortho/para
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	para
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	meta
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	ortho
C ₆ H ₁₃ OCO	C ₄ H ₉ O	2	ortho/para
C ₈ H ₁₇ OCO	C ₄ H ₉ O	1	para
C ₈ H ₁₇ OCO	C ₄ H ₉ O	1	meta
C ₈ H ₁₇ OCO	C ₄ H ₉ O	1	ortho
C ₈ H ₁₇ OCO	C ₄ H ₉ O	2	ortho/para
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	para
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	meta
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	ortho
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	2	ortho/para
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	para
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	meta
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	ortho
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	2	ortho/para
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	para
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	meta
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	ortho
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	2	ortho/para
	C ₄ H ₉ O	1	para
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	meta
C ₁₅ H ₃₁ OCO		1	ortho
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	2	ortho/para
C ₁₅ H ₃₁ OCO	C ₄ H ₂ O		
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	1 1	para
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	1	meta
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	1	ortho

(...)

(3)

	R ⁵	n	Position	
X		**	100201011	
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	1	meta	
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	1	ortho	
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	2	ortho/para	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	para	
C ₁₈ H ₃₇ OCO	C5H11O	1	meta	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	ortho	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	2	ortho/para	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	para	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	meta	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	ortho	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	para	
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	meta	
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	ortho	
C ₄ H ₉ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₅ H ₁₁ OCO	C ₆ H ₁₃ O	1	para	
	C ₆ H ₁₃ O	1	meta	
C ₅ H ₁₁ OCO	C ₆ H ₁₃ O	1	ortho	
C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO	C ₆ H ₁₃ O	2	ortho/para	
	C ₆ H ₁₃ O	1	para	
C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	1	meta	
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	1	ortho	
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1	para	
C _B H ₁₇ OCO	C ₆ H ₁₃ O	1	meta	
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1	ortho	
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	para	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	meta	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	ortho	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	para	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	meta	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	ortho	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	1	para	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	1	meta	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	1	ortho	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1	para	
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1.	meta	
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1	ortho	
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1	para	
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1	meta	
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1	ortho	
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	para	
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	meta	
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	<u> </u>	ortho	

X	R ⁵	n	Position
C ₁₈ H ₃₇ OCG	C7H15O	1	meta
C ₁₈ H ₃₇ OCO	C ₇ H ₁₅ O	1	ortho
C ₁₈ H ₃₇ OCO	C ₇ H ₁₅ O	2	ortho/para
	C ₈ H ₁₇ O	1	para
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	meta
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	ortho
C ₃ H ₇ OCO		2	ortho/para
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	para
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	
C ₄ H ₉ OCO	C ₈ H ₁₇ O		meta
C ₄ H ₉ OCO	C ₈ H ₁₇ O	$\frac{1}{2}$	ortho
C ₄ H ₉ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	1	para
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	1	meta
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	1	ortho
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	para
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	meta
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	ortho
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	para
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	meta
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	ortho
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	para
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	meta
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	ortho
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	para
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	meta
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	ortho
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	para
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	meta
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	ortho
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	para
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	meta
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	ortho
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	para
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	meta
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	ortho
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	para
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	meta
	C ₈ H ₁₇ O	1	ortho
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	2	ortho/para
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	para
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	meta
C ₁₈ H ₃₇ OCO		1	ortho
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	OI CILO

Х	R ⁵	n	Position
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	1	meta
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	1	para
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	1	meta
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	para
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	meta
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	para
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	meta
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	para
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	meta
C _B H ₁₇ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	para
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	meta
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	para
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	meta
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	para
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	meta
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	para
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	meta
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	para
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	meta
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	para
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	meta
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	para
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	meta
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	ortho
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	1	para
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	1	meta
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	1	ortho

	R5		Position
X	R ³	n	POSICION
C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1	meta
C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	2	ortho/para
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	para
	C ₁₈ H ₃₇ O	1	meta
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	2	ortho/para
C ₅ H ₁₁ OCO		1	para
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	meta
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	-1	ortho/para
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O		para
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	meta
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	para
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	meta
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	2	ortho/para
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	para
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	meta
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	1	para
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	1	meta
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	11	ortho
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	2	ortho/para
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	para
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	meta
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	2	ortho/para
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	1	para
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	1	meta
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	2	ortho/para
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	para
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	meta
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	2	ortho/para
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	para
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	meta
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	ortho
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para
CH ₃ O	СНэ	1	para
CH ₃ O	CH ₃	1	meta
CH ₃ O	CH ₃	1	ortho
CH ₃ O	CH ₃	2	ortho/para
C ₂ H ₅ O	CH ₃	1	para
C ₂ H ₅ O	CH ₃	1	meta
C ₂ H ₅ O	CH ₃	1	ortho
I - 6 3			

X	R ⁵	n	Position	}
Giv ö	ļ. <u></u>		1	
CH ₃ O	C ₂ H ₅	1	meta	
CH ₃ O	C ₂ H ₅	1	ortho	
CH ₃ O	C ₂ H ₅	2	ortho/para	
C ₂ H ₅ O	C ₂ H ₅	1	para	
C ₂ H ₅ O	C ₂ H ₅	1	meta	
C ₂ H ₅ O	C ₂ H ₅	1	ortho	
C ₂ H ₅ O	C ₂ H ₅	2	ortho/para	
C ₃ H ₇ O	C ₂ H ₅	1	para	
C ₃ H ₇ O	C ₂ H ₅	1	meta	
C ₃ H ₇ O	C ₂ H ₅	1	ortho	
C ₃ H ₇ O	C ₂ H ₅	2	ortho/para	·
C ₄ H ₉ O	C ₂ H ₅	1	para	
C ₄ H ₉ O	C ₂ H ₅	1	meta	
C ₄ H ₉ O	C ₂ H ₅	1	ortho	
C ₄ H ₉ O	C ₂ H ₅	2	ortho/para	
C5H11O	C ₂ H ₅	1	para	
C5H11O	C ₂ H ₅	1	meta	
C5H11O	C ₂ H ₅	1	ortho	
C5H11O	C ₂ H ₅	2	ortho/para	. 5
C ₆ H ₁₃ O	C ₂ H ₅	1	para	
C ₆ H ₁₃ O	C ₂ H ₅	1	meta	
C ₆ H ₁₃ O	C ₂ H ₅	1	ortho	
C ₆ H ₁₃ O	C ₂ H ₅	2	ortho/para	
C ₈ H ₁₇ O	C ₂ H ₅	1	para	
C ₈ H ₁₇ O	C ₂ H ₅	1	meta	
C ₈ H ₁₇ O	C ₂ H ₅	1	ortho	,
C ₈ H ₁₇ O	C ₂ H ₅	2	ortho/para	
C ₁₂ H ₂₅ O	C ₂ H ₅	1	para	
C ₁₂ H ₂₅ O	C ₂ H ₅	1	meta	
C ₁₂ H ₂₅ O	C ₂ H ₅	1	ortho	
C ₁₂ H ₂₅ O	C ₂ H ₅	2	ortho/para	
C ₁₃ H ₂₇ O	C ₂ H ₅	1	para	
C ₁₃ H ₂₇ O	C ₂ H ₅	1	meta	
C ₁₃ H ₂₇ O	C ₂ H ₅	1	ortho	
C ₁₃ H ₂₇ O	C ₂ H ₅	2	ortho/para	*
C ₁₄ H ₂₉ O	C ₂ H ₅	1	para	
C ₁₄ H ₂₉ O	C ₂ H ₅	1	meta	
C ₁₄ H ₂₉ O	C ₂ H ₅	1	ortho	
C ₁₄ H ₂₉ O	C ₂ H ₅	2	ortho/para	
C ₁₅ H ₃₁ O	C ₂ H ₅	1	para	
C ₁₅ H ₃₁ O	C ₂ H ₅	1	meta	
C ₁₅ H ₃₁ O	C ₂ H ₅	1	ortho	
C ₁₅ H ₃₁ O	C ₂ H ₅	2	ortho/para	1
C ₁₆ H ₃₃ O	C ₂ H ₅	1	para	
C ₁₆ H ₃₃ O	C ₂ H ₅	1	meta	
C ₁₆ H ₃₃ O	C ₂ H ₅	1	ortho	
C ₁₆ H ₃₃ O	C ₂ H ₅	2	ortho/para	
C ₁₇ H ₃₅ O	C ₂ H ₅	1	para	
C ₁₇ H ₃₅ O	C ₂ H ₅	1	meta	1
C ₁₇ H ₃₅ O	C ₂ H ₅	1	ortho	
L-1/2020	1 2445	<u> </u>	1	ı

Х	R ⁵	n	Position
C ₁₆ H ₃₃ O	C ₃ H ₇	1	meta
C ₁₆ H ₃₃ O	C ₃ H ₇	1	ortho
C ₁₆ H ₃₃ O	C ₃ H ₇	2	ortho/para
C ₁₇ H ₃₅ O	C ₃ H ₇	1	para
C ₁₇ H ₃₅ O	C ₃ H ₇	1	meta
C ₁₇ H ₃₅ O	C ₃ H ₇	1	ortho
C ₁₇ H ₃₅ O	C ₃ H ₇	2	ortho/para
C ₁₈ H ₃₇ O	C ₃ H ₇	1	para
C ₁₈ H ₃₇ O	C ₃ H ₇	1 1	meta
C ₁₈ H ₃₇ O	C ₃ H ₇	+ 1	ortho
C ₁₈ H ₃₇ O	C ₃ H ₇	2	ortho/para
CH ₃ O	C ₄ H ₉	1	para
CH ₃ O	C ₄ H ₉	1	meta
CH ₃ O	C ₄ H ₉	1	ortho
CH ₃ O	C ₄ H ₉	2	ortho/para
C ₂ H ₅ O	C ₄ H ₉	1 1	para
C ₂ H ₅ O	C ₄ H ₉	1	meta
C ₂ H ₅ O	C ₄ H ₉	1 1	ortho
C ₂ H ₅ O	C ₄ H ₉	1 2	ortho/para
C ₃ H ₇ O	C ₄ H ₉	1	para
C ₃ H ₇ O	C ₄ H ₉	1	meta
		1	ortho
C ₃ H ₇ O C ₃ H ₇ O	C ₄ H ₉	2	ortho/para
C ₄ H ₉ O	C ₄ H ₉	1	
		1 1	para meta
C ₄ H ₉ O	C ₄ H ₉	1	ortho
C ₄ H ₉ O	C ₄ H ₉	2	ortho/para
C ₄ H ₉ O	C ₄ H ₉	1	para
C ₅ H ₁₁ O C ₅ H ₁₁ O	C4H9	1	meta
C5H110	C ₄ H ₉	$\frac{1}{1}$	ortho
C ₅ H ₁₁ O	C ₄ H ₉	2	ortho/para
C ₆ H ₁₃ O	C ₄ H ₉	1	para
C ₆ H ₁₃ O	C ₄ H ₉	1	meta
C ₆ H ₁₃ O	C ₄ H ₉	1	ortho
C ₆ H ₁₃ O	C ₄ H ₉	2	ortho/para
C ₈ H ₁₇ O	C ₄ H ₉	1	para
C ₈ H ₁₇ O	C ₄ H ₉	1	meta
C ₈ H ₁₇ O	C ₄ H ₉	1	ortho
C ₈ H ₁₇ O	C ₄ H ₉	2	ortho/para
C ₁₂ H ₂₅ O	C ₄ H ₉	1	para
C ₁₂ H ₂₅ O	C ₄ H ₉	1	meta
	C4H9	1	ortho
С ₁₂ Н ₂₅ О С ₁₂ Н ₂₅ О	C ₄ H ₉	2	ortho/para
C ₁₃ H ₂₇ O	C ₄ H ₉	1	para
C ₁₃ H ₂₇ O	C ₄ H ₉	1	meta
C ₁₃ H ₂₇ O	C ₄ H ₉	1	ortho
C ₁₃ H ₂₇ O		2	ortho/para
	C ₄ H ₉	1 1	
	LAHO	1 1	para
C ₁₄ H ₂₉ O C ₁₄ H ₂₉ O	C ₄ H ₉	1	meta

Contact Contac

 $\xi \gg$

r 	1 55		162232322
X	R ⁵	n	Position
G 77 0	C-II	1	
C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	meta
C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	ortho
C ₁₃ H ₂₇ O	C ₅ H ₁₁	2	ortho/para
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	para
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	meta
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	ortho
C ₁₄ H ₂₉ O	C ₅ H ₁₁	2 .	ortho/para
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	para
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	meta
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	ortho
C ₁₅ H ₃₁ O	C ₅ H ₁₁	2	ortho/para
C ₁₆ H ₃₃ O	C5H11	1	para
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	meta
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	ortho
C ₁₆ H ₃₃ O	C ₅ H ₁₁	2	ortho/para
C ₁₇ H ₃₅ O	C ₅ H ₁₁	1	para
C ₁₇ H ₃₅ O	C ₅ H ₁₁	1	meta
C ₁₇ H ₃₅ O	C ₅ H ₁₁	1	ortho
C ₁₇ H ₃₅ O	C ₅ H ₁₁	2	ortho/para
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1	para
C ₁₈ H ₃₇ O	C5H11	1	meta
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1	ortho
C ₁₈ H ₃₇ O	C ₅ H ₁₁	2	ortho/para
CH ₃ O	C ₆ H ₁₃	1	para
CH ₃ O	C ₆ H ₁₃	1	meta
CH ₃ O	C ₆ H ₁₃	1	ortho
CH ₃ O	C ₆ H ₁₃	2	ortho/para
C ₂ H ₅ O	C ₆ H ₁₃	1	para
C ₂ H ₅ O	C ₆ H ₁₃	1	meta
C ₂ H ₅ O	C ₆ H ₁₃	1	ortho
C ₂ H ₅ O	C ₆ H ₁₃	2	ortho/para
C ₃ H ₇ O	C ₆ H ₁₃	1	para
C ₃ H ₇ O	C ₆ H ₁₃	1	meta
C ₃ H ₇ O	C ₆ H ₁₃	1	ortho
C ₃ H ₇ O	C ₆ H ₁₃	2	ortho/para
C ₄ H ₉ O	C ₆ H ₁₃	1	para
C ₄ H ₉ O	C ₆ H ₁₃	1	meta
C ₄ H ₉ O	C ₆ H ₁₃	1	ortho
C ₄ H ₉ O	C ₆ H ₁₃	2	ortho/para
C ₅ H ₁₁ O	C ₆ H ₁₃	1	para
C ₅ H ₁₁ O	C ₆ H ₁₃	1	meta
C ₅ H ₁₁ O	C ₆ H ₁₃	1	ortho
C ₅ H ₁₁ O	C ₆ H ₁₃	2	ortho/para
C ₆ H ₁₃ O	C ₆ H ₁₃	1	para
		1	meta
C ₆ H ₁₃ O	C ₆ H ₁₃	1	ortho
C. H. O	C ₆ H ₁₃	2	
C ₆ H ₁₃ O	C ₆ H ₁₃		ortho/para
C ₈ H ₁₇ O	C ₆ H ₁₃	1	para
C ₈ H ₁₇ O	C ₆ H ₁₃	1	meta
C ₈ H ₁₇ O	C ₆ H ₁₃	1	ortho

Х	R ⁵	n	Position
C ₆ H ₁₃ O	CH ₃ O	1	meta
C ₆ H ₁₃ O	CH ₃ O	1	ortho
C ₆ H ₁₃ O	CH ₃ O	2	ortho/para
C ₈ H ₁₇ O	CH ₃ O	1	para
C ₈ H ₁₇ O	CH ₃ O	1	meta
C ₈ H ₁₇ O	CH ₃ O	1	ortho
C ₈ H ₁₇ O	CH ₃ O	2	ortho/para
C ₁₂ H ₂₅ O	CH ₃ O	1	para
C ₁₂ H ₂₅ O	CH ₃ O	1	meta
C ₁₂ H ₂₅ O	CH ₃ O	1	ortho
C ₁₂ H ₂₅ O	CH ₃ O	2	ortho/para
C ₁₃ H ₂₇ O	CH ₃ O	1	para
C ₁₃ H ₂₇ O	CH ₃ O	1	meta
C ₁₃ H ₂₇ O	CH ₃ O	1	ortho
C ₁₃ H ₂₇ O	CH ₃ O	2	ortho/para
C ₁₄ H ₂₉ O	CH ₃ O	1	para
C ₁₄ H ₂₉ O	CH ₃ O	1	meta
C ₁₄ H ₂₉ O	CH ₃ O	1	ortho
C ₁₄ H ₂₉ O	CH ₃ O	2	ortho/para
C ₁₅ H ₃₁ O	CH ₃ O	1	para para
C ₁₅ H ₃₁ O	CH ₃ O	1	meta
C ₁₅ H ₃₁ O	CH ₃ O	1	ortho
C ₁₅ H ₃₁ O	CH ₃ O	2	ortho/para
C ₁₆ H ₃₃ O	CH ₃ O	1	para
C ₁₆ H ₃₃ O	CH ₃ O	1	meta
C ₁₆ H ₃₃ O	CH ₃ O	1	ortho
C ₁₆ H ₃₃ O	CH ₃ O	2	ortho/para
C ₁₇ H ₃₅ O	CH ₃ O	1	para
C ₁₇ H ₃₅ O	CH ₃ O	1	meta
C ₁₇ H ₃₅ O	CH ₃ O	1	ortho
C ₁₇ H ₃₅ O	CH ₃ O	2	ortho/para
C ₁₈ H ₃₇ O	CH ₃ O	1	para
C ₁₈ H ₃₇ O	CH ₃ O	1	meta
C ₁₈ H ₃₇ O	CH ₃ O	1	ortho
C ₁₈ H ₃₇ O	CH ₃ O	2	ortho/para
CH ₃ O	C ₂ H ₅ O	1	para
CH ₃ O	C ₂ H ₅ O	1	meta
CH ₃ O	C ₂ H ₅ O	1	ortho
CH ₃ O	C ₂ H ₅ O	2	ortho/para
C ₂ H ₅ O	C ₂ H ₅ O	1	para
C ₂ H ₅ O	C ₂ H ₅ O	1	meta
C ₂ H ₅ O	C ₂ H ₅ O	1	ortho
C ₂ H ₅ O	C ₂ H ₅ O	2	ortho/para
C ₃ H ₇ O	C ₂ H ₅ O	1	para
C ₃ H ₇ O	C ₂ H ₅ O	1	meta
C ₃ H ₇ O	C ₂ H ₅ O	1	ortho
C ₃ H ₇ O	C ₂ H ₅ O	2	ortho/para
C ₄ H ₉ O	C ₂ H ₅ O	1	para
C ₄ H ₉ O	C ₂ H ₅ O	1	meta
C ₄ H ₉ O	C ₂ H ₅ O	1	ortho
<u> </u>	C21150		101 0110

x	R ⁵	n	Position	7
C ₃ H ₇ O	C ₃ H ₇ O	1	meta	7
C ₃ H ₇ O	C ₃ H ₇ O	1	ortho	
C ₃ H ₇ O	C ₃ H ₇ O	2	ortho/para	
C ₄ H ₉ O	C ₃ H ₇ O	1	para	
C ₄ H ₉ O	C ₃ H ₇ O	1	meta	_
C ₄ H ₉ O	C ₃ H ₇ O	1	ortho	
C ₄ H ₉ O	C ₃ H ₇ O	2	ortho/para	-
C ₅ H ₁₁ O	C ₃ H ₇ O	1	para	-
C ₅ H ₁₁ O	C ₃ H ₇ O	1	meta	-
C ₅ H ₁₁ O	C ₃ H ₇ O	1	ortho	_
	C ₃ H ₇ O	2	ortho/para	
C ₅ H ₁₁ O	C ₃ H ₇ O	1	para	
C ₆ H ₁₃ O	C ₃ H ₇ O	1	meta	⊣ '
C ₆ H ₁₃ O	C ₃ H ₇ O	1	ortho	
C ₆ H ₁₃ O	C ₃ H ₇ O	2	ortho/para	
C ₆ H ₁₃ O	C ₃ H ₇ O	1	para	
C ₈ H ₁₇ O	C ₃ H ₇ O	1	meta	
C ₈ H ₁₇ O		1	ortho	
C ₈ H ₁₇ O	C ₃ H ₇ O	2	ortho/para	-
C ₈ H ₁₇ O	C ₃ H ₇ O	1	para	
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1 1	meta	
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	ortho	
C ₁₂ H ₂₅ O		2	ortho/para	-
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	para	⊣
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	meta	
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	ortho	
C ₁₃ H ₂₇ O	C ₃ H ₇ O	2	ortho/para	
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	para	
C ₁₄ H ₂₉ O	C ₃ H ₇ O	1	meta	-
C14H29O	C3H7O	1	ortho	-
C14H29O	C ₃ H ₇ O	2	ortho/para	
C14H29O	C ₃ H ₇ O	1	para	
C ₁₅ H ₃₁ O C ₁₅ H ₃₁ O	C ₃ H ₇ O	1	meta	
C ₁₅ H ₃₁ O	C ₃ H ₇ O	1	ortho	
C ₁₅ H ₃₁ O	C ₃ H ₇ O	2	ortho/para	-
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	para	-
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	meta	_
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	ortho	_
C ₁₆ H ₃₃ O	C ₃ H ₇ O	2	ortho/para	=
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1	para	-
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1	meta	-
	C ₃ H ₇ O	1	ortho	-
C ₁₇ H ₃₅ O C ₁₇ H ₃₅ O	C ₃ H ₇ O	2	ortho/para	
C ₁₈ H ₃₇ O	C ₃ H ₇ O	1	para	_
	C ₃ H ₇ O	1	meta	
C18H37O	C ₃ H ₇ O	1	ortho	\dashv
C ₁₈ H ₃₇ O	C ₃ H ₇ O	2	ortho/para	
CH-0	C ₄ H ₉ O	1	meta	-
CH ₃ O		1	para	
CH ₃ O	C ₄ H ₉ O	1 +	lhara	

			Duniklan
X	₹5	n	Position
C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	meta
	C ₄ H ₉ O	1	ortho
C ₁₈ H ₃₇ O	C ₄ H ₉ O	2	ortho/para
C ₁₈ H ₃₇ O	C ₅ H ₁₁ O		meta
CH ₃ O	C ₅ H ₁₁ O	1	para
CH ₃ O	C ₅ H ₁₁ O	1	ortho
CH ₃ O		2	ortho/para
CH ₃ O	C ₅ H ₁₁ O	1	para
C ₂ H ₅ O	C ₅ H ₁₁ O		meta
C ₂ H ₅ O	C ₅ H ₁₁ O	1	
C ₂ H ₅ O	C ₅ H ₁₁ O	1	ortho
C ₂ H ₅ O	C ₅ H ₁₁ O	2	ortho/para
C ₃ H ₇ O	C ₅ H ₁₁ O	1	para
C ₃ H ₇ O	C ₅ H ₁₁ O	1	meta
C ₃ H ₇ O	C ₅ H ₁₁ O	1	ortho
C ₃ H ₇ O	C ₅ H ₁₁ O	2	ortho/para
C4H9O	C ₅ H ₁₁ O	1	para
C ₄ H ₉ O	C ₅ H ₁₁ O	1	meta
C ₄ H ₉ O	C ₅ H ₁₁ O	1	ortho
C ₄ H ₉ O	C ₅ H ₁₁ O	2	ortho/para
C ₅ H ₁₁ O	C ₅ H ₁₁ O	1	para
C ₅ H ₁₁ O	C ₅ H ₁₁ O	1	meta
C ₅ H ₁₁ O	C ₅ H ₁₁ O	1	ortho
C ₅ H ₁₁ O	C ₅ H ₁₁ O	2	ortho/para
C ₆ H ₁₃ O	C ₅ H ₁₁ O	1	para
C ₆ H ₁₃ O	C ₅ H ₁₁ O	1	meta
C ₆ H ₁₃ O	C ₅ H ₁₁ O	1	ortho
C ₆ H ₁₃ O	C ₅ H ₁₁ O	2	ortho/para
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1	para
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1	meta
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1	ortho
C ₈ H ₁₇ O	C ₅ H ₁₁ O	2	ortho/para
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	para
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	meta
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	ortho
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	2	ortho/para
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	para
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	meta
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	ortho
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	2	ortho/para
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	para
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	meta
	C ₅ H ₁₁ O	1	ortho
C14H29O	C ₅ H ₁₁ O	2	ortho/para
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	para
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1	meta
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1	ortho
C ₁₅ H ₃₁ O		2	ortho/para
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1	para
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O		meta
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O	1	ortho
C16H33O	C ₅ H ₁₁ O	1	OTCHO

x	R ⁵	n	Position	
Α.	, "			
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1	meta	
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1	ortho	
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	2	ortho/para	
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	para	
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	meta	
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	ortho	
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	2	ortho/para	
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	para	
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	meta	
	C ₆ H ₁₃ O	1	ortho	
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	2	ortho/para	
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	para	
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	meta	
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	ortho	
C ₁₈ H ₃₇ O		2	ortho/para	
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	meta	
CH ₃ O	C ₇ H ₁₅ O	1	para	
CH ₃ O	C ₇ H ₁₅ O	1	ortho	
CH ₃ O	C ₇ H ₁₅ O	2	ortho/para	
CH ₃ O	C ₇ H ₁₅ O	1		
C ₂ H ₅ O	C7H15O	1	para meta	
C ₂ H ₅ O	C7H15O	1		
C ₂ H ₅ O	C ₇ H ₁₅ O		ortho	
C ₂ H ₅ O	C ₇ H ₁₅ O	2	ortho/para	
C ₃ H ₇ O	C ₇ H ₁₅ O	1	para	
C ₃ H ₇ O	C ₇ H ₁₅ O	1	meta ortho	
C ₃ H ₇ O	C ₇ H ₁₅ O			
C ₃ H ₇ O	C7H15O	1	ortho/para	
C ₄ H ₉ O	C7H15O		para	
C ₄ H ₉ O	C ₇ H ₁₅ O	1	meta ortho	
C ₄ H ₉ O	C7H15O	1	ortho/para	
C ₄ H ₉ O	C ₇ H ₁₅ O	2		
C ₅ H ₁₁ O	C ₇ H ₁₅ O	1	para	
C5H11O	C ₇ H ₁₅ O	1	meta	
C ₅ H ₁₁ O	C ₇ H ₁₅ O	1 2	ortho ortho/para	
C5H11O	C ₇ H ₁₅ O	<u> </u>		
C ₆ H ₁₃ O	C7H15O	1	para	
C ₆ H ₁₃ O	C7H15O	1	meta	
C ₆ H ₁₃ O	C ₇ H ₁₅ O	1	ortho ortho/para	
C ₆ H ₁₃ O	C7H15O	2		
C ₈ H ₁₇ O	C7H15O	1	para	
C ₈ H ₁₇ O	C ₇ H ₁₅ O	1	meta	
C ₈ H ₁₇ O	C7H15O	1	ortho	
C ₈ H ₁₇ O	C7H15O	2	ortho/para	
C ₁₂ H ₂₅ O	C ₇ H ₁₅ O	1	para	
C ₁₂ H ₂₅ O	C ₇ H ₁₅ O	1	meta	
C ₁₂ H ₂₅ O	C7H15O	1	ortho	
C ₁₂ H ₂₅ O	C7H15O	2	ortho/para	
C ₁₃ H ₂₇ O	C7H15O	1	para	İ
C ₁₃ H ₂₇ O	C7H15O	1	meta	
C ₁₃ H ₂₇ O	C7H15O	1	ortho	

10

20

25

30

35

40

Х	R ⁵	n	Position
		1	mot a
C ₁₂ H ₂₅ O	C ₈ H: ₇ O	1	meta
C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	1	ortho
C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	1	para
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	11	meta
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	1	ortho
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	para
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	meta
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	ortho
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	para
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	meta
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	ortho
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	para
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	meta
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	ortho
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	para
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	meta
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	ortho
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	para
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	meta
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	ortho
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	2	ortho/para
C1811370	58176		

Die erfindungsgemäß zu verwendenden Verbindungen der Formel I bis III können nach der Gleichung

$$R^{1}$$
— CH_{2} — R^{2} + R^{4} — NH_{2} + R^{3} C- $(OR)_{3}$ —

 $R = CH_{3}, C_{2}H_{5}$

durch Kondensation hergestellt werden, wohei R1 bis R4 die ohen genannte Bedeutung haben.

Beispielsweise ergibt die Umsetzung von 2,4-Pentandion mit Anthranilsäure-2-ethylhexylester und Triethylorthoformiat die Verbindung 24 in Tabelle 2.

Die Lichtschutzmittel enthaltenden kosmetischen und pharmazeutischen Zubereitungen sind in der Regel auf der Basis eines Trägers, der mindestens eine Ölphase enthält. Es sind aber auch Zubereitungen allein auf wäßriger Basis bei Verwendung von Verbindungen mit hydrophilen Substituenten möglich. Demgemäß kommen Öle, Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, Cremes und Pasten. Lippenschutzstiftmassen oder fettfreie Gele in Betracht.

Solche Sonnenschutzpräparate können demgemäß in flüssiger, pastöser oder fester Form vorliegen, beispielsweise als Wasser-in-Öl-Cremes, Öl-in-Wasser-Cremes und -Lotionen, Aerosol-Schaumeremes, Gele, Öle, Fettstifte, Puder, Sprays oder alkoholisch-wäßrige Lotionen.

Übliche Ölkomponenten in der Kosmetik sind beispielsweise Paraffinöl, Glycerylstearat, Isopropylmyristat, Diisopropyladipat, 2-Ethylhexansäurecetylstearylester, hydriertes Polyisobuten, Vaseline, Caprylsäure/Caprinsäure-Triglyceride, mikrokristallines Wachs, Lanolin und Stearinsäure.

Übliche kosmetische Hilfsstoffe, die als Zusätze in Betracht kommen können, sind z. B. Co-Emulgatoren, Fette und Wachse, Stabilisatoren, Verdickungsmittel, biogene Wirkstoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, Pigmente, Elektrolyte (z. B. Magnesiumsulfat) und pH-Regulatoren. Als Co-Emulgatoren kommen vorzugsweise bekannte W/O- und daneben auch O/W-Emulgatoren wie etwa Polyglycerinester, Sorbitanester oder teilveresterte Glyceride in Betracht. Typische Beispiele für Fette sind Glyceride; als Wachse sind u. a. Bienenwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen zu nennen. Als Stabilisatoren können Metallsalze von Fettsäuren wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden. Geeig-

(40

Nr.	Stoff	CAS-Nr. (=Säure)
1	4-Aminobenzoesäure	150-13-0
2	3-(4'Trimethylammonium)-benzylidenbornan-2-on- methylsulfat	52793-97-2
3	3,3,5-Trimethyl-cyclohexyl-salicylat (Homosalatum)	118-56-9
4	2-Hydroxy-4-methoxy-benzophenon (Oxybenzonum)	131-57-7
5	2-Phenylbenzimidazol-5-sulfonsäure und ihre Kalium-, Natrium- u. Triethanolaminsalze	27503-81-7
6	3,3'-(1,4-Phenylendi- methin)-bis(7,7-dimethyl-2-oxobicyclo[2.2.1]hep- tan-1-methansulfonsäure) und ihre Salze	90457-82-2
7	4-Bis(polyethoxy)amino-benzoesäurepolyethoxy- ethylester	113010-52-9
8	4-Dimethylamino-benzoesäure-2-ethylhexylester	21245-02-3
9	Salicylsäure-2-ethylhexylester	118-60-5
10	4-Methoxy-zimtsäure-2-isoamylester	7/6/7-10-2
11	4-Methoxy-zimtsäure-2-ethylhexylester	5466-77-3
12	2-Hydroxy-4-methoxy-benzophenon-5-sulfon- (Sulisobenzonum) und das Natriumsalz	4065-45-6
13	3-(4'-Sulfo)benzyliden-bornan-2-on und Salze	58030-58-6
14	3-(4'-Methyl)benzyliden-bornan-2-on	36861-47-9
15	3-Benzylidenbornan-2-on	16087-24-8
16	1-(4'-Isopropylphenyl)-3-phenylpropan-1,3-dion	63260-25-9
17	4-Isopropylbenzylsalicylat	94134-93-7
18	2,4,6-Trianilin-(o-carbo-2',-ethylhexyl-1'-oxy)-1,3,5-triazin	88122-99-0
19	3-Imidazol-4-yl-acrylsaure und ihr Ethylester	104-98-3*
20	2-Cyano-3,3-diphenylacrylsäureethylester	5232-99-5
21	2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexyl- ester	6197-30-4
22	Menthyl-o-aminobenzoate oder: 5-Methyl-2-(1-methylethyl)-2-aminobenzoate	134-09-8
23	Glyceryl p-aminobenzoat oder: 4-Aminobenzoesäure-1-glyceryl-ester	136-44-7
24	2,2'-Dihydroxy-4-methoxybenzophenon (Dioxyben-zone)	131-53-3
25	2-Hydroxy-4-methoxy-4-methylbenzophenon (Mexonon)	1641-17-4
26	Triethanolamin Salicylat	2174-16-5
27	Dimethoxyphenylglyoxalsäure oder: 3,4-dimethoxy-phenyl-glyoxal-saures Natrium	
28	3-(4'Sulfo)benzyliden-bornan-2-on und seine Salze	56039-58-8

Tabelle 2

	HN CO-	-C — CH3	
r . T	R	λmax	E ¹ 1
5	4-COOC ₈ H ₁₇ 1)	346	860
5	3-CH ₃	338	978
5	4-OCH ₃	348	841
,	4-tert.C ₄ H ₉	342	888
)	4-n-C ₄ H ₉	342	884
	4-CONHC ₈ H ₁₇ 1)	346	773
)	4-iso-C ₃ H ₇	342	903
)	4-n-C ₃ H ₇	342	918
)	2-COOC ₈ H ₁₇ 1)	348	717
0)	2 - CN	338	995
	2-COOC ₁₅ H ₃₁ (iso)(Öl)	346	583
	3-iso OC ₃ H ₇	340	829
3)	2-COO [⊖] x N [⊕] H (C ₂ H ₄ OH) ₃	346	667 (Wasser)
4)	2,5-Di-OCH ₃	362	491
	2-COOH	346	965
6)	4-SO3 × +HN (C2H4OH) 3	340	666 (Wasser)
7)	4-SO ₃ ⊖ _{Na} ⊕	340	1010 (Wasser)
8)	2-OC ₂ H ₅	352	876
9)	2-COOCH3	348	995
0)	2-COOCH ₂ CH (CH ₃) ₂	348	864
L)	2-COOC4H9	346	825
- -	Verbindung	λmax	E11
)	H	380	768
	H ₅ C ₂ OOC (CH ₃) ₃ CH ₃ COC (CH ₃) ₃		
23)	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	350	817
	y s		

(Ly

(T)

	R H C	-C ← CH ₃ CH ₃		5
Nr.	R	λmax	E11	
30)	COOCH3 COOCH3	344	1008	10
31)	н соснз	344	717	20
	COOC (CH ₃) ₃			25
		*		30
32)	$C = C$ $COOC_8H_{17} (1)$ OCH_3	346	646	35
	OCH ₃			40
33)	CCH_3 CCH_3 CCH_3 CCH_3 CCH_3	350	612	45
24)	н ₃ со	200	361	50
34)	$C = C CN$ $COOC_8H_{17} 1)$	322	761	55
	н₃со			60

		$\begin{array}{c c} H & C & C \\ \hline \\ R & C & C \end{array}$	∠CH3	
		HN		
	Nr. R		λmax	E ¹ 1
	40)	$C = C$ $COOC_8H_{17} $	358	743
€ <u>G</u>	41)	C = C CN CN CN CN CN CN CN C	330	1191
	42)	$C = C$ $COOC_8H_{17}$	374	1175
(%) (%)	43)	$C = C CN$ $COPh$ $COOC_8H_{17}^{1)}$	362	869
	44)	COOC8H17 1)	336	896

1) $C_8H_{17} = 2-Ethylhexyl$

Beispiel 7

Zusammensetzung für Sunblocker mit Mikropigmenten

ad 100 Wasser 10,00 Octyl Methoxcinnamat 6,00 PEG-7-Hydrogenated Castor Öl 6,00 Titanium Dioxid 0,5-10 Verbindung Nr. 24 der Tabelle 2 5,00 Mineral Öl 5,00 Isoamyl p-Methoxycinnamat 5,00 Propylen Glycol 3,00 Jojoba Öl 3,00 4-Methylbenzyliden Campher 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 Dimethicon 0,50 PEG-40-Hydrogenated Castor Öl 0,50 Tocopheryl Acetat 0,50 Phenoxyethanol 0,20 EDTA	10
Beispiel 8	
Fettfreies Gel	
ad 100 Wasser 8,00 Octyl Methoxycinnamat	25
7,00 Titanium Dioxid 0,5–10 Verbindung Nr. 1 der Tabelle 2 5,00 Glycerin 5,00 PEG-25 PABA	30
1,00 4-Methylbenzyliden Campher 0,40 Acrylate C10-C30 Alkyl Acrylat Crosspolymer 0,30 Imidazolidinyl Urea 0,25 Hydroxyethyl Cellulose 0,25 Sodium Methylparaben 0,20 Disodium EDTA 0,15 Fragrance 0,15 Sodium Propylparaben 0,10 Sodium Hydroxid	35 40
Beispiel 9	
Fettfreies Gel	45
ad 100 Wasser 8,00 Octyl Methoxycinnamat	
7,00 Titanium Dioxid 0,5-10 Verbindung Nr. 24 der Tabelle 2 5,00 Glycerin 5,00 PEG-25 PABA	50
1,00 4-Methylbenzyliden Campher	
0,40 Acrylate C10–C30 Alkyl Acrylat Crosspolymer 0,30 Imidazolidinyl Urea	
0,25 Hydroxyethyl Cellulose 0,25 Sodium Methylparaben	55
0,20 Disodium ED'l'A 0,15 Fragrance	
0,15 Sodium Propylparaben 0,10 Sodium Hydroxid	60
Beispiel 10	
Sonnencreme (LSF 20)	
	65
ad 100 Wasser 8,00 Octyl Methoxycinnamat 8,00 Titanium Dioxid	

4,00 Glycerin 3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid 1,50 PEG-45/Dodecyl Glycel Copolymer 1,50 Dimethicon 0,70 Magnesium Solfat 0,50 Magnesium Stearat 0,15 Fragrance		5
	Beispiel 14	10
	Sonnenmilch (LSF 6)	
ad 100 Wasser 10,00 Mineral Ol 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat		15
3.50 Cetyl Methoxycinnamat 0.5 10 Verbindung Nr. 1 der Tabelle 2 3.00 Caprylic/Capric Triglycerid 3.00 Jojoba Öl 2.00 PEG-45/Dodecyl Glycol Copolymer		20
0,70 Magnesium Sulfat 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,30 Glycerin 0,25 Methylparaben		25
0.15 Propylparaben 0.05 Tocopherol		30
	Beispiel 15	
	Sonnenmilch (LSF 6)	35
ad 100 Wasser 10,00 Mineral Öl 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat 3,50 Octyl Methoxycinnamat 0,5-10 Verbindung Nr. 24 der Tabelle 2		40
3,00 Caprylic/Capric Triglycerid 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 0,70 Magnesium Sulfat 0,00 Magnesium Stearat 0,50 Tocopheryl Acetat		45
0,30 Glycerin 0,25 Methylparahen 0,15 Propylparaben 0,05 Tocopherol		50
	Beispiel 16	
	Sonnencreme wasserfest	55
ad 100 Wasser 8,00 Octyl Methoxycinnamat 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol		64
4,00 Isopropyl Palmitat 4,00 Caprylic/Capric Triglycerid 0,5-10 Verbindung Nr. 17 der Tabelle 2 0,5-10 Verbindung Nr. 24 der Tabelle 2 4,00 Glyccrin 3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid		6

$$C = C \stackrel{R^1}{\underset{R^4 \longrightarrow NH}{\longrightarrow}} C = C \stackrel{R^1}{\underset{R^2}{\longrightarrow}} I$$

enthalten, in der die Variablen die Bedeutung gemäß Anspruch 1 haben.

- 8. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen, wobei R⁵ und R⁶ gegebenenfalls substituierte aliphatische oder aromatische Reste mit bis zu 8 C-Atomen bedeuten.
- 9. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei R⁴ für gegebenenfalls durch hydrophile oder lipophile Substituenten substituiertes Phenyl steht.
- 10. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei wobei R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen und R⁴ für einen Phenylrest steht, der durch Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonylreste, mit jeweils bis zu 20 C-Atomen, oder mit Cyan- oder Carboxyresten, sowie mit wasserlöslich machenden Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert sein kann.
- 11. Neue Verbindungen der Formel II,

$$\begin{array}{c|c}
H & C & C & CH_3 \\
\hline
CO & C & CH_3 & II \\
\hline
CH_3 & CH_3 & II
\end{array}$$

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der durch einen oder mehrere Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonylreste, mit jeweils bis zu 20 C-Atomen oder Cyan- oder Carboxyreste, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert sein kann.

12. Neue Verbindungen der Formel III,

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der durch einen oder mehrere Alkoxyreste mit bis zu 20 C-Atomen oder Alkoxycarbonylreste mit 4 bis zu 20 C-Atomen, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat, Sulfonat- oder Alkylammoniumresten, substituiert sein kann und R⁵ eine offenkettige, verzweigte oder cyclische Alkyl-, Alkoxy-, oder Alkoxyalkylgruppe mit jeweils bis zu 18 C-Atomen oder eine Aryloxygruppe bedeutet.

13. Verbindungen der Formel I zur Verwendung als Arzneimittel.
14. Pharmazeutische Zubereitung, dadurch gekennzeichnet, daß sie eine wirksame Menge mindestens einer der Verbindung der Formel I nach Anspruch 1 enthält.

50

45

5

10

55

60