# **Assignment 04**

Name: Yan Qinlin SID: 12231096 Due: 2022/11/29

#### In [1]:

```
import random
from math import *
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import datetime
import netCDF4
import xarray as xr
%matplotlib inline
import matplotlib.ticker as mticker
import cartopy.crs as ccrs
import cartopy. feature as cfeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import cartopy.io.shapereader as shapereader
plt.rcParams['font.sans-serif'] = ['SimHei']
```

**Ref:** All the programming details were referred to the handout of course ESE5023 by professor Zhu (https://zhu-group.github.io/ese5023 (https://zhu-group.github.io/ese5023)).

# 1. Global Earthquakes

**Data reference:** The relief data is downloaded from Natural Earth (<a href="https://www.naturalearthdata.com/downloads/">https://www.naturalearthdata.com/downloads/</a> (<a href="https://www.

# In [112]:

```
df1 = pd. read_csv("usgs_earthquakes.csv")
df1. head()
```

# Out[112]:

|   | time                       | latitude  | longitude | depth | mag  | magType | nst | gap    | dmin    | rms    |
|---|----------------------------|-----------|-----------|-------|------|---------|-----|--------|---------|--------|
| 0 | 2014-01-31<br>23:53:37.000 | 60.252000 | -152.7081 | 90.20 | 1.10 | ml      | NaN | NaN    | NaN     | 0.2900 |
| 1 | 2014-01-31<br>23:48:35.452 | 37.070300 | -115.1309 | 0.00  | 1.33 | ml      | 4.0 | 171.43 | 0.34200 | 0.0247 |
| 2 | 2014-01-31<br>23:47:24.000 | 64.671700 | -149.2528 | 7.10  | 1.30 | ml      | NaN | NaN    | NaN     | 1.0000 |
| 3 | 2014-01-31<br>23:30:54.000 | 63.188700 | -148.9575 | 96.50 | 0.80 | ml      | NaN | NaN    | NaN     | 1.0700 |
| 4 | 2014-01-31<br>23:30:52.210 | 32.616833 | -115.6925 | 10.59 | 1.34 | ml      | 6.0 | 285.00 | 0.04321 | 0.2000 |

### In [113]:

```
#读入数据并查看
df1 = pd. read_csv("usgs_earthquakes.csv")
#删除mag列空值所在行
df1. dropna(subset=['mag'], inplace=True)
df1. info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 120065 entries, 0 to 120107
Data columns (total 15 columns):

| #    | Column      | Non-Null Count  | Dtype   |
|------|-------------|-----------------|---------|
|      |             | 100005          | 1 :     |
| 0    | time        | 120065 non-null | object  |
| 1    | latitude    | 120065 non-null | float64 |
| 2    | longitude   | 120065 non-null | float64 |
| 3    | depth       | 120065 non-null | float64 |
| 4    | mag         | 120065 non-null | float64 |
| 5    | magType     | 120065 non-null | object  |
| 6    | nst         | 59653 non-null  | float64 |
| 7    | gap         | 94893 non-null  | float64 |
| 8    | dmin        | 85641 non-null  | float64 |
| 9    | rms         | 119676 non-null | float64 |
| 10   | net         | 120065 non-null | object  |
| 11   | id          | 120065 non-null | object  |
| 12   | updated     | 120065 non-null | object  |
| 13   | place       | 120065 non-null | object  |
| 14   | type        | 120065 non-null | object  |
| dtvp | es: float64 | (8), object(7)  |         |

dtypes: float64(8), object(7)

memory usage: 14.7+ MB

### In [114]:

```
#按照mag从大到小排序
df_temp = df1.loc[df1['time'].str.contains('2014')].sort_values("mag", ascending=False)

##选出时空信息和mag
df2 = df_temp[['time', 'latitude', 'longitude', 'mag']]

#重新排序,并只要前50个,并打印检查
df2.reset_index(drop=True, inplace=True)
df2 = df2.loc[0:50]
df2.head(50)
```

|    | time                    | latitude | longitude | mag |
|----|-------------------------|----------|-----------|-----|
| 0  | 2014-04-01 23:46:47.260 | -19.6097 | -70.7691  | 8.2 |
| 1  | 2014-06-23 20:53:09.700 | 51.8486  | 178.7352  | 7.9 |
| 2  | 2014-04-03 02:43:13.110 | -20.5709 | -70.4931  | 7.7 |
| 3  | 2014-04-12 20:14:39.300 | -11.2701 | 162.1481  | 7.6 |
| 4  | 2014-04-19 13:28:00.810 | -6.7547  | 155.0241  | 7.5 |
| 5  | 2014-04-13 12:36:19.230 | -11.4633 | 162.0511  | 7.4 |
| 6  | 2014-10-14 03:51:34.460 | 12.5262  | -88.1225  | 7.3 |
| 7  | 2014-04-18 14:27:24.920 | 17.3970  | -100.9723 | 7.2 |
| 8  | 2014-04-11 07:07:23.130 | -6.5858  | 155.0485  | 7.1 |
| 9  | 2014-11-15 02:31:41.720 | 1.8929   | 126.5217  | 7.1 |
| 10 | 2014-11-01 18:57:22.380 | -19.6903 | -177.7587 | 7.1 |
| 11 | 2014-10-09 02:14:31.440 | -32.1082 | -110.8112 | 7.0 |
| 12 | 2014-06-29 07:52:55.170 | -55.4703 | -28.3669  | 6.9 |
| 13 | 2014-08-03 00:22:03.680 | 0.8295   | 146.1688  | 6.9 |
| 14 | 2014-06-23 19:19:15.940 | -29.9772 | -177.7247 | 6.9 |
| 15 | 2014-02-12 09:19:49.060 | 35.9053  | 82.5864   | 6.9 |
| 16 | 2014-07-21 14:54:41.000 | -19.8015 | -178.4001 | 6.9 |
| 17 | 2014-04-01 23:57:58.790 | -19.8927 | -70.9455  | 6.9 |
| 18 | 2014-05-24 09:25:02.440 | 40.2893  | 25.3889   | 6.9 |
| 19 | 2014-07-07 11:23:54.780 | 14.7240  | -92.4614  | 6.9 |
| 20 | 2014-03-10 05:18:13.400 | 40.8287  | -125.1338 | 6.8 |
| 21 | 2014-04-15 03:57:01.370 | -53.4967 | 8.7220    | 6.8 |
| 22 | 2014-11-26 14:33:43.640 | 1.9604   | 126.5751  | 6.8 |
| 23 | 2014-08-24 23:21:45.520 | -14.5980 | -73.5714  | 6.8 |
| 24 | 2014-03-16 21:16:29.600 | -19.9807 | -70.7022  | 6.7 |
| 25 | 2014-09-17 06:14:45.410 | 13.7641  | 144.4294  | 6.7 |
| 26 | 2014-11-16 22:33:20.450 | -37.6478 | 179.6621  | 6.7 |
| 27 | 2014-06-23 20:06:20.710 | -29.9414 | -177.6073 | 6.7 |
| 28 | 2014-06-29 17:15:09.340 | -14.9831 | -175.5096 | 6.7 |
| 29 | 2014-05-04 09:15:52.880 | -24.6108 | 179.0856  | 6.6 |
| 30 | 2014-04-13 13:24:59.710 | -11.1284 | 162.0520  | 6.6 |
| 31 | 2014-12-08 08:54:52.520 | 7.9401   | -82.6865  | 6.6 |
| 32 | 2014-05-01 06:36:35.550 | -21.4542 | 170.3546  | 6.6 |
| 33 | 2014-12-02 05:11:31.000 | 6.1572   | 123.1261  | 6.6 |
| 34 | 2014-10-09 02:32:05.140 | -32.0953 | -110.8647 | 6.6 |
| 35 | 2014-11-07 03:33:55.280 | -5.9873  | 148.2315  | 6.6 |
| 36 | 2014-12-07 01:22:02.180 | -6.5108  | 154.4603  | 6.6 |

|    | time                    | latitude | longitude | mag |
|----|-------------------------|----------|-----------|-----|
| 37 | 2014-04-11 20:29:12.970 | 11.6420  | -85.8779  | 6.6 |
| 38 | 2014-04-19 01:04:03.820 | -6.6558  | 155.0869  | 6.6 |
| 39 | 2014-02-07 08:40:13.550 | -15.0691 | 167.3721  | 6.5 |
| 40 | 2014-11-21 10:10:19.630 | 2.2999   | 127.0562  | 6.5 |
| 41 | 2014-02-02 09:26:37.820 | -32.9076 | -177.8806 | 6.5 |
| 42 | 2014-03-02 20:11:23.430 | 27.4312  | 127.3674  | 6.5 |
| 43 | 2014-04-03 01:58:30.530 | -20.3113 | -70.5756  | 6.5 |
| 44 | 2014-04-11 08:16:45.660 | -6.7878  | 154.9502  | 6.5 |
| 45 | 2014-06-23 19:21:45.990 | -29.9379 | -177.5159 | 6.5 |
| 46 | 2014-07-11 19:22:00.820 | 37.0052  | 142.4525  | 6.5 |
| 47 | 2014-02-18 09:27:13.120 | 14.6682  | -58.9272  | 6.5 |
| 48 | 2014-04-24 03:10:10.150 | 49.6388  | -127.7316 | 6.5 |
| 49 | 2014-07-04 15:00:27.860 | -6.2304  | 152.8075  | 6.5 |
|    |                         |          |           |     |

#### In [23]:

```
import matplotlib. ticker as ticker
# Create and define the size of a figure object
plt.figure(figsize=(8,8), dpi=150)
# Create an axes with Robinson projection style, 调整中心经度为180
ax = plt. axes(projection=ccrs. Robinson(central_longitude=180))
#画浮雕图
ax. imshow(plt. imread("NE1_50M_SR_W. tif"), origin='upper', transform=ccrs. PlateCarree(), extent=[-18
0, 180, -90, 90]
#选择colorbar的style
cm = plt.cm.get_cmap('Reds')
#画散点——2014年最严重(按mag)的50次地震
sc = ax. scatter(df2['longitude'], df2['latitude'], s=20, c=df2['mag'], edgecolors=['black'], cmap=c
m, transform=ccrs. PlateCarree())
#定义colorbar的刻度值
#画colorbar,与老师给的图一样
c = plt.colorbar(sc, label='magnitude', fraction=0.014, pad=0.05)
tick locator = ticker. MaxNLocator(nbins=9)
c.locator = tick_locator
c. update_ticks()
ax.set_title("Top 50 Earthquakes of 2014")
```

#### Out[23]:

Text (0.5, 1.0, 'Top 50 Earthquakes of 2014')



**Ref:** The usage of relief file and the overlap of both the relief and the scatter were referred to the blog of *野生* 的气象小流星(https://blog.csdn.net/weixin 42372313/article/details/119885922

(https://blog.csdn.net/weixin\_42372313/article/details/119885922)). The usage of ticks resetting of the colorbar was referred to the blogs of *Mr.Jcak* 

(https://blog.csdn.net/weixin\_38314865/article/details/109499030?

<u>spm=1001.2101.3001.6650.14&utm\_medium=distribute.pc\_relevant.none-task-blog-</u>

2%7Edefault%7ECTRLIST%7ERate-14-109499030-blog-

117259630.pc\_relevant\_3mothn\_strategy\_recovery&depth\_1-utm\_source=distribute.pc\_relevant.none-task-

blog-2%7Edefault%7ECTRLIST%7ERate-14-109499030-blog-

117259630.pc relevant 3mothn strategy recovery&utm relevant index=14

(https://blog.csdn.net/weixin 38314865/article/details/109499030?

spm=1001.2101.3001.6650.14&utm\_medium=distribute.pc\_relevant.none-task-blog-

2%7Edefault%7ECTRLIST%7ERate-14-109499030-blog-

117259630.pc\_relevant\_3mothn\_strategy\_recovery&depth\_1-utm\_source=distribute.pc\_relevant.none-task-

blog-2%7Edefault%7ECTRLIST%7ERate-14-109499030-blog-

117259630.pc\_relevant\_3mothn\_strategy\_recovery&utm\_relevant\_index=14)).

# 2. Explore a netCDF dataset

#### Data Ref:

Xie, P., and P.A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539 - 2558.

### 2.1

#### In [3]:

```
# Open a netCDF4 file
ds3 = xr.open_dataset("precip.mon.mean.nc", engine="netcdf4")

# Show dataset
ds3

#按月度统计,
precip_clim = ds3.groupby('time.month').mean()
```

```
In [82]:
```

```
import matplotlib as mp
import matplotlib. patches as mpatches
from matplotlib. patches import Patch
from matplotlib.lines import Line2D
#创建画布
fig = plt. figure (figsize=(20, 10))
#创建投影,选择cartopy的platecarree投影
proj = ccrs.LambertCylindrical()
ax = fig. subplots (1, 1, subplot kw={'projection': proj})
#画数据
precip_clim.precip.sel(month=8).plot(ax=ax, transform=ccrs.PlateCarree(),
         cbar kwargs={'shrink': 0.4})
# Add lat/lon gridlines, draw gridlines
gl = ax. gridlines (crs=ccrs. PlateCarree(), draw labels=False, linewidth=1, color='lightgrey', zorde
r=5)
#设置label格式为经纬专用
ax. xaxis. set major formatter(LongitudeFormatter(zero direction label=True))
ax. yaxis. set major formatter (LatitudeFormatter ())
#画tick
ax. set_xticks(np. linspace(-180, 180, 7), crs=proj)
ax. set_yticks(np. linspace(-50, 50, 7), crs=proj)
ax. set xlabel ("Longitude", fontsize=15)
ax. set_ylabel("Latitude", fontsize=15)
# Mask ocean data by adding ocean feature and changing its zorder
ax. add feature (cfeature. OCEAN, zorder=1)
ax. add feature (cfeature. BORDERS)
ax. add feature (cfeature. RIVERS, edgecolor='#4aa3e6', zorder=2)
ax. coastlines (resolution='10m')
#legend
legend elements = [Line2D([0], [0], color='black', lw=2, label='Borders'),
                   Line2D([0], [0], color='#4aa3e6', lw=2, label='Rivers'),
                   Patch(facecolor='#97b6e1', edgecolor='#97b6e1', label='Ocean')]
# Create the figure
ax.legend(handles=legend elements, fontsize=15,
    loc='lower left', bbox to anchor=(0.7, 0.04), fancybox=True)
#annotation & text box
t = ax. text(108, 30, "China", ha="center", va="center", rotation=0, size=15,
   bbox=dict(boxstyle="round4, pad=0.3", fc="white", ec="r", lw=2))
bb = t.get bbox patch()
bb.set_boxstyle("round4", pad=0.6)
#annotation
ax. annotate ('Relatively Wet', xy=(91, 24), color='white', fontsize=20,
            xytext = (-40, -20),
```

### Out[82]:

Text(0.5, 1.0, 'Global Precipitation Under LambertCylindrical Coordinate')



2.2

#### In [70]:

```
import matplotlib as mp
import matplotlib. patches as mpatches
from matplotlib. patches import Patch
from matplotlib.lines import Line2D
#创建画布
fig = plt. figure (figsize=(10, 10))
#创建投影,选择cartopy的platecarree投影
proj = ccrs.PlateCarree()
ax = fig. subplots (1, 1, subplot kw={'projection': proj})
#画数据
precip_clim.precip.sel(month=8).plot(ax=ax, transform=ccrs.PlateCarree(),
         cbar kwargs={'shrink': 0.4})
#local 局部画
ax. set extent([70, 140, 0, 55], crs=proj)
# Add lat/lon gridlines, draw gridlines
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False,linewidth=0.5,color='lightgrey',zor
der=5)
#设置label格式为经纬专用
ax. xaxis. set_major_formatter(LongitudeFormatter(zero_direction_label=True))
ax. yaxis. set major formatter(LatitudeFormatter())
#画tick
ax. set xticks (np. linspace (70, 140, 8), crs=proj)
ax. set yticks (np. linspace (0, 50, 6), crs=proj)
#写label
ax. set_xlabel("Longitude", fontsize=15)
ax. set_ylabel("Latitude", fontsize=15)
# Mask ocean data by adding ocean feature and changing its zorder
ax. add feature (cfeature. OCEAN, zorder=1)
ax. add feature (cfeature. BORDERS)
ax. add feature (cfeature. RIVERS, edgecolor='#4aa3e6', zorder=2)
ax. coastlines (resolution='10m')
#legend
legend_elements = [Line2D([0], [0], color='black', lw=2, label='Borders'),
                   Line2D([0], [0], color='#4aa3e6', lw=2, label='Rivers'),
                   Patch(facecolor='#97b6e1', edgecolor='#97b6e1', label='0cean')]
# Create the figure
ax. legend (handles=legend elements, fontsize=15,
    loc='lower left', bbox_to_anchor=(0.7, 0.04), fancybox=True)
#annotation & text box
t = ax. text(
    108, 35, "China", ha="center", va="center", rotation=0, size=17,
    bbox=dict(boxstyle="round4, pad=0.3", fc="white", ec="r", lw=2))
bb = t.get bbox patch()
bb. set boxstyle ("round4", pad=0.6)
```

### Out[70]:

Text(0.5, 1.0, 'Regional Precipitation Under PlateCarree Coordinate')



**Ref:** The usage of lat/lon format and ticks were referred to the handout on ModelWhale website(<a href="https://www.heywhale.com/mw/project/620d03ab7a7c9a0017c95995">https://www.heywhale.com/mw/project/620d03ab7a7c9a0017c95995</a>). The usage of user-defined legend was referred to the official wedsite of matplotlib

(https://www.osgeo.cn/matplotlib/gallery/text\_labels\_and\_annotations/custom\_legends.html (https://www.osgeo.cn/matplotlib/gallery/text\_labels\_and\_annotations/custom\_legends.html)).