Model Performance Test

Date	4 November 2023
Team ID	592321
Project Name	Diabetes Prediction using Machine Learning

Model Performance Testing:

S.No. Paran	eter	Values	Screenshot
1. Metri	CS	Regression Model: MAE - , MSE - , RMSE - , R2 score - Classification Model: Confusion Matrix - , Accuray Score- & Classification Report -	Random Forest Classifier [] rf-fieldodom/crestClassifier/max_depth=12_m_estimator=10_random_tase=200 rf.fit(x_tran_x_tra

			Logistic Regression
			[] lg=logisticRegression(max_iter=1500) lg_fit(x_train,y_train) - LogisticRegression
			LogisticRegression(max_iter=1500)
			<pre>y_pred=lg.predict(x_test) print('Training set score: {:.4f}'.format(lg.score(x_train, y_train))) print('Test set score: {:.4f}'.format(lg.score (x_test, y_test)))</pre>
			Training set score: 0.8704 Test set score: 0.8725
			<pre>[] mse *mean_squared_error(y_test, y_pred) print('Mean_Squared_Error: '+ str(mse)) rmse *(mean_squared_error(y_test, y_pred))**(0.5) print('Root Hean Squared Trori' '+ str(rmse))</pre>
			Hean Squared Error: 0.12748809378434486 Root Hean Squared Error: 0.3570547490012489
			0 - 20927 379 (0.98) (0.02) - 0.6
			1 - 2753 508 (0.16) - 0.2
			previoced label
2.	Tune the Model	Hyperparameter Tuning - Validation Method -	lg=LogisticRegression max_iter=1500 rf-RandomForestClassifier (max_depth=12,n_estimators=10,random_state=20)
			dt=DecisionTreeClassifier(max_depth=12)