5.2. Base64 Content-Transfer-Encoding

The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of octets in a form that need not be humanly readable. The encoding and decoding algorithms are simple, but the encoded data are consistently only about 33 percent larger than the unencoded data. This encoding is virtually identical to the one used in Privacy Enhanced Mail (PEM) applications, as defined in RFC 1421. The base64 encoding is adapted from RFC 1421, with one change: base64 eliminates the "*" mechanism for embedded clear text.

A 65-character subset of US-ASCII is used, enabling 6 bits to be represented per printable character. (The extra 65th character, "=", is used to signify a special processing function.)

NOTE: This subset has the important property that it is represented identically in all versions of ISO 646, including US ASCII, and all characters in the subset are also represented identically in all versions of EBCDIC. Other popular encodings, such as the encoding used by the uuencode utility and the base85 encoding specified as part of Level 2 PostScript, do not share these properties, and thus do not fulfill the portability requirements a binary transport encoding for mail must meet.

The encoding process represents 24-bit groups of input bits as output strings of 4 encoded characters. Proceeding from left to right, a 24-bit input group is formed by concatenating 3 8-bit input groups. These 24 bits are then treated as 4 concatenated 6-bit groups, each of which is translated into a single digit in the base64 alphabet. When encoding a bit stream via the base64 encoding, the bit stream must be presumed to be ordered with the most-significant-bit first. That is, the first bit in the stream will be the high-order bit in the first byte, and the eighth bit will be the low-order bit in the first byte, and so on.

Each 6-bit group is used as an index into an array of 64 printable characters. The character referenced by the index is placed in the output string. These characters, identified in Table 1, below, are selected so as to be universally representable, and the set excludes characters with particular significance to SMTP (e.g., ".", CR, LF) and to the encapsulation boundaries defined in this document (e.g., "-").

Table 1: The Base64 Alphabet

0 A 17 R 34 i 51 z	
1 B 18 S 35 j 52 0	
2 C 19 T 36 k 53 1	
3 D 20 U 37 1 54 2	
4 E 21 V 38 m 55 3	
5 F 22 W 39 n 56 4	
6 G 23 X 40 o 57 5	
7 H 24 Y 41 p 58 6	
8 I 25 Z 42 q 59 7	
9 J 26 a 43 r 60 8	
10 K 27 b 44 s 61 9	
11 L 28 c 45 t 62 +	
12 M 29 d 46 u 63 /	
13 N 30 e 47 v	
14 O 31 f 48 w $(pad) =$	
15 P 32 g 49 x	
16 Q 33 h 50 y	

The output stream (encoded bytes) must be represented in lines of no more than 76 characters each. All line breaks or other characters not found in Table 1 must be ignored by decoding software. In base64 data, characters other than those in Table 1, line breaks, and other white space probably indicate a transmission error, about which a warning message or even a message rejection might be appropriate under some circumstances.

Special processing is performed if fewer than 24 bits are available at the end of the data being encoded. A full encoding quantum is always completed at the end of a body. When fewer than 24 input bits are available in an input group, zero bits are added (on the right) to form an integral number of 6-bit groups. Padding at the end of the data is performed using the '=' character. Since all base64 input is an integral number of octets, only the following cases can arise: (1) the final quantum of encoding input is an integral multiple of 24 bits; here, the final unit of encoded output will be an integral multiple of 4 characters with no "=" padding, (2) the final quantum of encoding input is exactly 8 bits; here, the final unit of encoded output will be two characters followed by two "=" padding characters, or (3) the final quantum of encoding input is exactly 16 bits; here, the final unit of encoded output will be three characters followed by one "=" padding character.

Because it is used only for padding at the end of the data, the occurrence of any '=' characters may be taken as evidence that the end of the data has been reached (without truncation in transit). No such assurance is possible, however, when the number of octets transmitted was a multiple of three.

Any characters outside of the base64 alphabet are to be ignored in base64-encoded data. The same applies to any illegal sequence of characters in the base64 encoding, such as "====="

Care must be taken to use the proper octets for line breaks if base64 encoding is applied directly to text material that has not been converted to canonical form. In particular, text line breaks must be converted into CRLF sequences prior to base64 encoding. The important thing to note is that this may be done directly by the encoder rather than in a prior canonicalization step in some implementations.

NOTE: There is no need to worry about quoting apparent encapsulation boundaries within base64-encoded parts of multipart entities because no hyphen characters are used in the base64 encoding.