

حدس كارتان ا سينا رضازاده بقال

در این مقاله اثبات Mihailecu Preda را برای حدس کارتان بررسی می کنیم.

حدس کارتان: تنها دو عدد متوالی کامل ۸ و ۹ هستند. به بیانی دیگر در دنبالهی زیر تنها دو عدد ۸ و ۹ متوالی هستند. ۱, ۴, ۸, ۹, ۱۶, ۲۵, ۲۷, ۳۲, ۳۶,

البته توجه کنید، برای هر ۲ $k \geq 1$ ثابت، اعداد توان kام کامل به اندازه ی کافی از یکدیگر فاصله دارند. بنابراین باید نشان دهیم که معادله ی x = r, y = r که x = r, y = r که x = r, y = r است.

بدون کاسته شدن از کلیت می توان فرض کرد که n,m اعداد اول هستند، زیرا که اگر $p\mid n$ و $p\mid n$ و در این صورت: $x^n-y^m=1\Rightarrow (x^{\frac{n}{q}})^q-(y^{\frac{m}{p}})^p=1$

پس صورت نهایی حدس کارتان به صورت زیر است.

۲ q = q و ۲ q = q را هر کدام به صورت جداگانه اثبات می کنیم. اما اثبات برای حالتی که q = q اعداد اول فرد هستند را در مقالههای بعدی می آوریم. البته برای اثبات این حالت ابتدا سه قضیه زیر را ثابت می کنیم.

نصيه ۱. اگر ۱ $y^q=x^p-y^q=1$ جواب نابديهي داشته باشد و q و p فرد باشند، آنگاه: $p^{q-1}\equiv 1 \mod q^r$, $q^{p-1}\equiv 1 \mod p^r$

قضیه ۲. اگر ۱ $y^q=x^p-y^q=x^p$ جواب نابدیهی داشته باشد و p,q فرد باشند آنگاه: $p\equiv 1\mod q$ یا $q\equiv 1\mod p$

قضیه ۳. اگر ۱ $y^q=x^p-y^q$ جواب نابدیهی داشته باشد و p,q فرد باشند آنگاه: $p<\mathbf{f}q^{\mathsf{T}},q<\mathbf{f}p^{\mathsf{T}}$

حال نشان می دهیم که این سه قضیه چگونه حدس کارتان را در حالت p,q فرد نتیجه می دهد.

(-y,-x,q,p) طبق قضیه ی ۲، $p\equiv 1 \mod q$ یا $q\equiv 1 \mod q$ یا $q\equiv 1 \mod q$ مساله باشد، در این صورت $q\equiv 1 \mod q$ طبق قضیه ی کند. پس بدون کاسته شدن از کلیت می توان فرض کرد $p\equiv 1 \mod q$. اگر $q\equiv 1 \mod q$ آنگاه: $p^{q-1}=(qt+1)^{q-1}\equiv (q-1)qt+1\equiv 1 \mod q^1 \Rightarrow q\mid t\Rightarrow p\equiv 1 \mod q^1$

اما طبق قضیه $q^{r} + 1, q^{r} + 1$ و $q^{r} + 1, q^{r} + 1$ اگر $q \neq p$ آنگاه $q^{r} + 1, q^{r} + 1, q^{r} + 1, q^{r} + 1$ هم زوج هستند. پس q = p و q = 1 اما در این حال q^{r} به پیمانهی $q^{r} + 1$ همنهشت نیست و طبق قضیه $q^{r} + 1, q^{r} + 1, q^{r} + 1$ همنهشت نیست و طبق قضیه $q^{r} + 1, q^{r} + 1, q^{r} + 1$ همنهشت نیست و طبق قضیه $q^{r} + 1, q^{r} +$

Conjecture Cartan\

قضيه ۴. (V.A.Lebesgue-۱۸۵۰) برای هر عدد اول ۲ $y \geq 0$ ، معادلهی $x^p = y^r + 1$ جواب صحيح نابديهي ندارد.

اثبات. اگر p=1 که به وضوح حکم برقرار است. اما اگر p فرد باشد در این صورت چون که $x^p=(1+iy)(1-iy)$ و چون $c\in\mathbb{Z}[i]$ هستند. بنابراین $z\in\mathbb{Z}[i]$ هستند.

$$\mathsf{Y} = (c + \overline{c})(c^{p-1} - \dots + \overline{c}^{p-1}) \Rightarrow c + \overline{c} \mid \mathsf{Y}$$

و چون $\overline{c}=c+\overline{c}$ صحیح است پس $c+\overline{c}=c+\overline{c}$ و لذا $c=\pm (1+bi)$ که $z=\pm 1$. از طرفی z+i. چون اگر $z=\pm 1$ آن گاه $z=\pm 1$ از گاه ابنا $z=\pm 1$ و لذا $z=\pm 1$ بست. پس $z=\pm 1$ است. پس $z=\pm 1$ و لذا $z=\pm 1$ و لذا المناطق و الم

$$(1+bi)^p + (1-bi)^p = \pm \Upsilon \Rightarrow \binom{p}{\Upsilon} (bi)^{\Upsilon} + \dots + \binom{p}{p-\Upsilon} (bi)^{p-\Upsilon} = 0$$

اما توجه كنيد كه:

$$\operatorname{Ord}_{\mathbf{Y}}(\binom{p}{k}(bi)^k) > \operatorname{Ord}_{\mathbf{Y}}(\binom{p}{\mathbf{Y}}(bi)^{\mathbf{Y}})$$

چون که:

$$\binom{p}{k}(bi)^k \binom{p}{\mathbf{r}}^{-1}(bi)^{-\mathbf{r}} = \binom{p-\mathbf{r}}{k-\mathbf{r}} \cdot \frac{\mathbf{r}}{k(k-\mathbf{r})}(bi)^{k-\mathbf{r}}$$

اما k زوج است و در نتیجه:

$$Ord_{\mathtt{T}}(\mathtt{T}(bi)^{k-\mathtt{T}}) \geq k-\mathtt{T} > \frac{\log k}{\log \mathtt{T}} \geq Ord_{\mathtt{T}}(k) = Ord_{\mathtt{T}}(k(k-\mathtt{T}))$$

پس

$$Ord_{\mathsf{T}}(\binom{p}{k}(bi)^k) > Ord_{\mathsf{T}}(\binom{p}{\mathsf{T}}(bi)^{\mathsf{T}})$$

برای هر ۲> و زوج. اکنون به لم زیر توجه کنید.

لم ۵. اگر
$$(rd_p(x_i) < Ord_p(x_i) < rd_p$$
 برای $(rd_p(x_i) < Ord_p(x_i) < rd_p$ لم ۵. اگر $(rd_p(x_i) < Ord_p(x_i) < rd_p$

كه p عدد اول دلخواه است.

پس داریم:

$$Ord_{\mathsf{T}}(\sum_{k=1}^{\frac{p-1}{\mathsf{T}}} \binom{p}{\mathsf{T}k} (bi)^{\mathsf{T}k}) = Ord_{\mathsf{T}}(\binom{p}{\mathsf{T}} (bi)^{\mathsf{T}})$$

 $y=\circ$ و د الما $b=\circ$ و لذا بايستى داشته باشيم $b=\circ$ و لذا $Crd_{\mathsf{Y}}(\circ)=+\infty$ اما

اکنون حدس را برای حالت p=1 نشان می دهیم.

قضيه ۶. معادلهي

$$x^{\mathsf{Y}} = y^q + \mathsf{Y} \tag{Y}$$

در مجموعهی اعداد صحیح دارای تنها جواب نابدیهی $x= exttt{m},y= exttt{t},q= exttt{m}$ است.

برای اثبات قضیه، ابتدا لمهای زیر را ثابت می کنیم.

لم ۷. اگر $q \geq q$ ، عددی فرد باشد و در معادلهی (۱) صدق کند، در این صورت x یا x- در معادلههای زیر صدق می کند:

وجود دارند که:
$$(7a,b) = 1 \quad \forall a,b \in \mathbb{Z} \quad (i)$$
 $x-1=\mathsf{T}^{q-1}a^q, x+1=\mathsf{T}b^q, y=\mathsf{T}ab$

$$y > \Upsilon^{q-1} - \Upsilon$$
 (ii)

اثبات. y^q (i جون هر دو توان yامل هستند و اختلاف (x-1)(x+1)=(x-1)(x+1)=1 $x=\circ$ دارند پس بایستی ± 1 باشند ولذا

 $x\equiv 1 \mod \mathfrak{k}$ پس x فرد است و لذا (x-1)(x+1) با تغییر علامت x می توان فرض کرد که $\left(\frac{x-1}{yq-1}\right)\left(\frac{x+1}{y}\right) = \left(\frac{y}{y}\right)^q$

ولی $(\frac{x-1}{yq}, \frac{x+1}{y})$ ، یس:

$$\frac{x-1}{Y^{q-1}} = a^q, \frac{x+1}{Y} = b^q$$

پس قسمت اول ثابت شد. حال برای (ii) داریم:

$$\mathsf{Y}^{q-\mathsf{I}} \mid x - \mathsf{I} \Rightarrow \mathsf{I} b^q \equiv \mathsf{I} \mod \mathsf{I}^{q-\mathsf{I}} \Rightarrow b^q \equiv \mathsf{I} \mod \mathsf{I}^{q-\mathsf{I}}$$

 $b \equiv 1 \mod \mathsf{Y}^{q-\mathsf{Y}}$ توانی از ۲ است زیرا که $\|\mathsf{Z}^*_{\mathsf{Y}^{q-\mathsf{Y}}}\|$ توان ۲ است. پس از رابطهی بالا نتیجه می شود که $\mathbb{Z}^*_{\mathsf{Y}^{q-\mathsf{Y}}}$ اما Ord(b) اما

$$\mid b \mid \geq \mathsf{Y}^{q-\mathsf{Y}} - \mathsf{Y} \Rightarrow \mid \mathsf{Y}ab \mid \geq \mathsf{Y}^{q-\mathsf{Y}} - \mathsf{Y}$$

يس اين لم نيز ثابت مي شود.

xله ۸. فرض کنید q>7 عددی اول و y=1 . در این صورت x

: داریم
$$d=\gcd(y+q,rac{y^q+1}{y+1})$$
 . اگر $(y+1)(rac{y^q+1}{y+1})=x^7$. قرارت داریم $rac{y^q+1}{y+1}=y^{q-1}-y^{q-1}+\cdots-1\equiv -q\mod d\Rightarrow d\mid q$

 $\frac{y^q+1}{y+1}=v^\intercal$ و $y+1=u^\intercal$ و $y+1=u^\intercal$ هردو مربع کامل هستند. و مثلا $y+1=u^\intercal$ و $y+1=u^\intercal$ و $y+1=u^\intercal$. $\mathbb{Z}[\sqrt{y}]$ حال $(x,y^{rac{q-1}{\gamma}})$ حال $x^{\mathsf{r}}-Yy^{\mathsf{r}}=1$ است. چون $x^{\mathsf{r}}-Yy^{\mathsf{r}}=1$ حال ($x,y^{rac{q-1}{\gamma}}$) یکال است. حال به لم زیر توجه کنید: $x+y^{\frac{q-1}{\gamma}}\sqrt{y}$

لم ۹. گروه یکالهای $\mathbb{Z}[\sqrt{y}]$ در حالتی که $y=u^{r}$ توسط $u+\sqrt{y}$ تولید می شوند.

برهان لم: اگر $a+b\sqrt{y}$ در $\mathbb{Z}[\sqrt{y}]$ یکال باشد، در این صورت $k\in\mathbb{Z}$ را به گونهای انتخاب میکنیم که: $1 \le (a + b\sqrt{y})(u + \sqrt{y})^k < u + \sqrt{y}$

 $0.1 \leq a + b\sqrt{y} < u + \sqrt{y}$ پس از ابتدا بدون کاسته شدن از کلیت فرض کنید چون $a \neq 1$ یکال است پس $a \neq 1$ یکال است پس $a \neq 0$. به راحتی میتوان بررسی کرد برای $a \neq 0$ رابطهی $1 < a + b\sqrt{y} < u + \sqrt{y}$

نمی تواند برقرار باشد. پس $a=\circ,a=\circ$ و لذا برای هر یکال مانند $a+b\sqrt{y}$ در $\mathbb{Z}[\sqrt{y}]$ توان $a=\circ,a=\circ$ وجود دارد که $(u + \sqrt{y})^k = a + b\sqrt{y}$

پس، \mathbb{Z} و بخود دارد که $(u+\sqrt{y})^m=-(-u+\sqrt{y})$. از آنجا که $(u+\sqrt{y})^m=(u+\sqrt{y})^m$ بنابراین: $x+y^{\frac{q-1}{\gamma}}\sqrt{y}=(u+\sqrt{y})^m$ بنابراین: $x\pm(u^m+um^{m-1}\sqrt{y})\mod y\mathbb{Z}[\sqrt{y}]$

y اما $y \mid m$ ولی $u^m = 1$ و لذا $u^m = 1$ و در نتیجه $u^{m-1} \equiv 0 \mod y$ و لذا $u^m \equiv u^{m-1} \sqrt{y}$ و لذا $u^m \equiv u^{m-1} \sqrt{y}$ پس y پس روج سند. داریم: ورج است. داریم: $x+y^{\frac{q-1}{\gamma}}\sqrt{y}=\pm(u^{\gamma}+y+\gamma u\sqrt{y})^{\frac{m}{\gamma}}$

$$x+y^{rac{q-1}{7}}\sqrt{y}=\pm(u^{7}+y+7u\sqrt{y})^{rac{m}{7}}$$

اگر دو طرف معادله را به پیمانه $u\mathbb{Z}[\sqrt{y}]$ در نظر بگیریم، بدست می آید: $x + y^{\frac{q-1}{7}} \sqrt{y} \equiv \pm y^{\frac{m}{7}} \mod u \mathbb{Z}[\sqrt{y}]$ $\Rightarrow u \mid x + y^{\frac{q-1}{\gamma}} \sqrt{y} \pm y^{\frac{m}{\gamma}}$ $\Rightarrow u \mid u^{\frac{q-1}{7}}$

(y,u)=1 اما (y,u)=1 یس (y,u)=0 و (y,u)=1 تناقض حاصل نشان میدهد که فرض خلف باطل است و

اكنون با توجه به لم زير حكم به راحتى نتيجه مىشود.

 $x \equiv \pm r \mod q$ اگر $x \equiv \pm r \mod q$ در این صورت $x^{r} - y^{q} = 1$

اثبات. می دانیم که $x-1=\mathsf{T}^{q-1}a^q$ و $x+1=\mathsf{T}b^q$ برای $x+1=\mathsf{T}b^q$ که $x-1=\mathsf{T}^{q-1}a^q$. داریم: $b^{\mathsf{r}q} - (\mathsf{r}a)^q = (\frac{x+\mathsf{l}}{\mathsf{r}})^{\mathsf{r}} - \mathsf{r}(x-\mathsf{l}) = (\frac{x-\mathsf{r}}{\mathsf{r}})^{\mathsf{r}}$ $\Rightarrow (b^{\mathsf{T}} - \mathsf{T}a)(\frac{b^{\mathsf{T}q} - (\mathsf{T}a)^q}{b^{\mathsf{T}} - \mathsf{T}a}) = (\frac{x - \mathsf{T}}{\mathsf{T}})^{\mathsf{T}}$

حال اگر ۱ a را کاه سمت چپ عبارت بالا منفی خواهد شد. $b^{\mathsf{r}} < \mathsf{r}a$ آنگاه، $\mathbf{gcd}(b^{\mathsf{r}} - \mathsf{r}a, \frac{b^{\mathsf{r}q} - (\mathsf{r}a)^q}{b^{\mathsf{r}} - \mathsf{r}a}) = 1$ آنگاه سمت چپ عبارت بالا منفی خواهد شد. $\mathbf{b}^{\mathsf{r}} = \mathbf{c}^{\mathsf{r}}$ پس $\mathbf{c}^{\mathsf{r}} = \mathbf{c}^{\mathsf{r}}$ داریم:

 $| \Upsilon a | = | c^{\Upsilon} - b^{\Upsilon} | \geq \Upsilon | b | - 1 \Rightarrow | a | \geq | b |$

از طرفی دیگر:

 $\mid a \mid^q = \frac{\mid x - 1 \mid}{\mathbf{y}q^{-1}} \le \frac{\mid x - 1 \mid}{\mathbf{y}\mathbf{y}} < \frac{\mid x + 1 \mid}{\mathbf{y}} = \mid b \mid^q \Rightarrow \mid a \mid < \mid b \mid$

 $q \geq 0$ توجه کنید که برای $q = \infty$ م از لم قبل نتیجه می شود، پس فرض کردیم $q \geq 0$. تناقض حاصل نشان می دهد که q = 0 به $\gcd(b^{\mathsf{r}} - \mathsf{r}a, \frac{b^{\mathsf{r}q} - (\mathsf{r}a)^q}{b^{\mathsf{r}} - \mathsf{r}a}) = 1$ تناقض حاصل نشان می دهد که $\gcd(b^{\mathsf{r}} - \mathsf{r}a, \frac{b^{\mathsf{r}q} - (\mathsf{r}a)^q}{b^{\mathsf{r}} - \mathsf{r}a}) = 1$ آنگاه $\gcd(x - y, \frac{x^q - y^q}{x - y}) \mid q$ $\gcd(x - y, \frac{x^q - y^q}{x - y}) \mid q$ $\gcd(x - y, \frac{x^q - y^q}{x - y}) \mid q$ $\gcd(x - y, \frac{x^q - y^q}{x - y}) \mid q$

اما (d,x) اما بایستی x را هم در نظر بگیریم، چون x را به $q \mid (\frac{x-r}{r})^r$ بابراین $q \mid (\frac{x-r}{r})^r$ و لذا $q \equiv x$ به پیمانه $q \mid (\frac{x-r}{r})^r$ و لذا $q \mid x \equiv x$ به پیمانه $q \mid x \equiv x$ س در حالت کلی $q \mid x \equiv x$ س در حالت کلی $q \mid x \equiv x$ س در حالت کلی $q \mid x \equiv x$ س در حالت کلی $q \mid x \equiv x$ س در حالت کلی $q \mid x \equiv x$

یس کافی است حالت ۱ $y^{\mathsf{r}} = x^{\mathsf{r}} - y^{\mathsf{r}}$ را حل کنیم که آن را در مقالهی بعد بررسی می کنیم.