Machine Learning

- Gradient Descent Algorithm
- Linear Regression
- Non-Linear Regression
- Logistic Regression
- Decision Trees
 - o Regression Trees
 - o Classification Trees
- Clustering Algorithms
 - o K-Means
 - Hierarchical clustering
 - o DB-Scan
 - Mean Shift
 - o GMM
- Support Vector Machine

Deep Learning

- o MLP
- o CNN

Datasets

- Breast Cancer Wisconsin
- o MIMIC-III
- Framingham Heart Study
- Alzheimer's Disease Neuroimaging Initiative
- Drug discovery
- Microbiome

Tree Based Models

C4 - Decision Trees

Decision Tree

GOAL: Learn if else-questions with each question involving one feature and one split-point **HOW:**

• Divides the feature-space (N-dimensional) into regions where all instances in one region are assigned to only one class-label (discrete or continue).

Decision Tree building blocks

- DT: data structure consisting of a hierarchy of nodes (individual units).
- NODE:
 - **ROOT**: no-parent node
 - **INTERNAL NODE**: question giving rise to two children nodes
 - LEAF: prediction(discrete or continue), no children nodes.

Decision Tree construction/learning

- Nodes are grown recursively.
- The obtention of an internal node or a leaf depends on the state of its predecessors.
- At each node, split the data based on:
 - Feature f and split-point sp to maximize criteria (gini-index, info-gain).

Decision Regions

Decision regions are separated by surfaces called decision-boundaries (SVM)

Decision boundaries

Classifier (binary)

Model complexity

Regressor

Regressor

Model complexity

Code

Bibliography

https://github.com/kamperh/data414

https://polakowo.io/datadocs/docs/machine-learning/tree-based-models

https://towardsdatascience.com/why-random-forests-outperform-decision-trees-1b0f175a0b5

https://www.statistics.cool/post/why-do-random-forests-work/

https://luisvalesilva.com/datasimple/random forests.html

Information

- Low Probability Event: High Information (surprising).
- High Probability Event: Low Information (unsurprising).
- The basic intuition behind information theory is that learning that an unlikely event has occurred is more informative than learning that a likely event has occurred.
- Page 73, Deep Learning, 2016.

Rare events are more uncertain or more surprising and require more information to represent them than common events.

Information

The calculation of information is often written as h(); for example:

•
$$h(x) = -log(p(x))$$

The negative sign ensures that the result is always positive or zero.

Information will be zero when the probability of an event is 1.0 or a certainty, e.g. there is no surprise.

Information Gain

TODO

my humble ML course

Entropy

TODO

more tree based models

TODO

