Applied Probability and Statistics

- ▶ Unit 1: Introduction to Probability
- ▶ Unit 2: Probability Distributions
- ► Unit 3: Statistical Inference
- ▶ Unit 4: Introduction to Linear Regression
- ► Unit 5: Regression Analysis
- ▶ Unit 6: Regression Modeling

Announcements

► Past:

Unit 4 Individual Assignment solutions available and scores posted.

Present:

Unit 5 <u>Team</u> Assignment due Monday, 23:59 ET (Durham local time).

► Future:

Unit 6 materials available.

Unit 5: Regression Analysis

Multiple regression:

Population model: $\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X}_1 + \ldots + \beta_k \mathbf{X}_k + \epsilon$, where $\epsilon \sim \mathbf{N}(\mathbf{0}, \sigma_{\epsilon}^2)$

- conceptual description of how Y linearly depends on X_1,\dots,X_k

Sample model:
$$\widehat{\mathbf{Y}} = \widehat{eta}_{\mathbf{0}} + \widehat{eta}_{\mathbf{1}} \mathbf{X}_{\mathbf{1}} + \ldots + \widehat{eta}_{\mathbf{k}} \mathbf{X}_{\mathbf{k}} + \epsilon$$
, where $\epsilon \sim \mathbf{N}(\mathbf{0}, \mathsf{SE}^2_{\mathsf{reg}})$

- use sample data to estimate (a) coefficients, and (b) the standard deviation of the error term

Unit 5: Regression Analysis

Multiple regression:

Population model: $\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X}_1 + \ldots + \beta_k \mathbf{X}_k + \epsilon$, where $\epsilon \sim \mathbf{N}(\mathbf{0}, \sigma_{\epsilon}^2)$

- conceptual description of how Y linearly depends on X_1,\dots,X_k

Sample model:
$$\widehat{\mathbf{Y}} = \widehat{eta}_{\mathbf{0}} + \widehat{eta}_{\mathbf{1}} \mathbf{X}_{\mathbf{1}} + \ldots + \widehat{eta}_{\mathbf{k}} \mathbf{X}_{\mathbf{k}} + \epsilon$$
, where $\epsilon \sim \mathbf{N}(\mathbf{0}, \mathsf{SE}^2_{\mathsf{reg}})$

- use sample data to estimate (a) coefficients, and (b) the standard deviation of the error term

Evaluating regression models:

- ► In terms of underlying assumptions
 - Linearity: Each X_i should be linearly related to Y
 - Slope significance (*t*-stats or *p*-values)
 - Error term ϵ and residuals assumptions (normality, independence, homoskedasticity)
- In terms of accuracy
 - General forecasting accuracy: Standard error of regression (SE_{reg})
 - Accuracy of an individual forecast of interest: Standard error of forecast (SE $_{fcst}$)

- ► In terms of descriptive fit:
 - R-squared (R^2)
 - Adjusted R-squared

INC SIZ	CONS
85 5	8,120
85 7	7,020
55 1	2,340
55 2	1,840
55 1	1,950
90 5	8,840
65 4	3,560
65 3	3,840
65 3	3,650
55 2	2,810
55 1	1,240
80 4	6,850
75 6	4,850
70 4	4,850
90 4	8,380
65 5	4,520

Dependent Variable: Independent Variables:	CONS INC, SIZE	(Annual consumption of durable goods) (Household annual income and size)					
Regression Statistics	R Square	Adj.RSgr	Std.Err.Reg.	# Cases	# Missing	t(2.5%,37)	
	0.957	0.954	463.397	40	0	2.026	
Summary Table		CONS = -8,974.884 + 206.5492 INC - 175.9621 SIZE					
Variable	Coeff	Std.Err.	t-Stat.	P-value	Lower95%	Upper95%	
Intercept	-8,974.884	533.103	-16.835	0.000	-10,055.053	-7,894.715	
INC	206.549	10.251	20.150	0.000	185.780	227.319	
SIZE	-175.962	75.254	-2.338	0.025	-328.440	-23.484	
Forecasted : CONS		CONS = -8,974.884 + 206.5492 INC - 175.9621 SIZE					
	INC	SIZE	Forecast	StErrFst	Lower95%	Upper95%	
Fcst# 1	80.000	1	7,373.091	554.030	6,250.520	8,495.662	
Fcst# 2	80.000	4	6,845.205	478.513	5,875.645	7,814.764	

Dependent Variable: Independent Variables:	CONS INC	`	sumption of dura sehold income)			
Regression Statistics						
9	R Square	Adj.RSgr	Std.Err.Reg.	# Cases	# Missing	t(2.5%,38)
	0.950	0.949	489.880	40	0	2.024
Summary Table		CONS = -8,353.5514 + 188.2363 INC		8.2363 INC		
Variable	Coeff	Std.Err.	t-Stat.	P-value	Lower95%	Upper95%
Intercept	-8,353.551	488.569	-17.098	0.000	-9,342.607	-7,364.496
INC	188.236	6.991	26.925	0.000	174.083	202.389
Forecasted : CONS		CONS = -8,353.5514 + 188.2363 INC				
	INC	Forecast	StErrFst	Lower95%	Upper95%	
Fcst# 1	80.000	6,705.349	501.892	5,689.321	7,721.376	

Dependent Variable: Independent Variables:	CONS SIZE	(Annual consumption of durable goods) (Household size)					
Regression Statistics	R Square 0.480	Adj.RSqr 0.467	Std.Err.Reg. 1582.256	# Cases 40	# Missing	t(2.5%,38) 2.024	
Summary Table Variable	Coeff	Std.Err.	048.1943 + 982. t-Stat.	P-value	Lower95%	Upper95%	
Intercept SIZE	1,048.194 982.618	654.756 165.774	1.601 5.927	0.118 0.000	-277.291 647.025	2,373.680 1,318.211	
Forecasted : CONS		$CONS = 1, \\ \mathbf{Forecast}$	048.1943 + 982. StErrFst	618 SIZE Lower95%	Upper95%		
Fcst# 1 Fcst# 2	1 4	2,030.812 4,978.666	1,661.056 1,602.962	-1,331.821 1,733.639	5,393.445 8,223.694		

Proxy effects

Key insights:

- ▶ Slope of included variable captures some of the impact of the missing variable (omitted variable bias)
- ▶ "Too few variables" in the regression model

In applications, proxy effect can play a major role:

- Relevant in interpretations
- ▶ Relevant if we do not observe all the variables

Regression analysis

Evaluating regression models

- ▶ In terms of regression model assumptions
 - Linearity: Each X_i should be linearly related to Y
 - Slope significance (*t*-stats or *p*-values)
 - Error term ϵ and residuals assumptions: normality, independence, homoskedasticity (residual plots and statistics)
- ▶ In terms of accuracy
 - General forecasting accuracy: Standard error of regression (SE_{reg})
 - Accuracy of an individual forecast of interest: Standard error of forecast (SE_{fcst})
 (Error term assumptions need to be satisfied)
- In terms of descriptive fit of the (sample) data
 - R-squared (R^2)
 - Adjusted R-squared
 (Not suitable for inference out of the sample)

Consumption of durable goods: evaluating regression models

	$\begin{array}{c} \textbf{Model 1} \\ \textbf{CONS} \sim \textbf{INC} + \textbf{SIZE} \end{array}$	$\begin{array}{c} \textbf{Model 2} \\ \textbf{CONS} \sim \textbf{INC} \end{array}$	$\begin{array}{c} \textbf{Model 3} \\ \textbf{CONS} \sim \textbf{SIZE} \end{array}$
Linearity	VV		
Slope significance			
Error assumptions			\times
General forecasting (Std.Err.Reg.)	463.397	489.880	1200.25%
Individual forecast (INC = 80 , SIZE = 1)	554.030	501.892	1661.000
Individual forecast (INC = 80, SIZE = 4)	478. 513		1602.962
$\overline{R^2}$	0.957	0.90	0.480
Adjusted R^2	0.954	0.949	0.467

Unit 5 Team Assignment

- ▶ Due Monday, 23:59 ET (Durham local time).
- ▶ Three questions with different point allocations per question
- ▶ Need to provide support for your answers. Communicating effectively is important.
- ▶ One submission per team: two-page pdf document (no other documents)

Assignment questions:

- ▶ Question 1: analytics supported business decision
- Question 2: a specific forecast of interest
- Question 3: qualitative response that should provide a generic advice

Final exam (logistics)

- ► Available during the Final Exam Period: Saturday, December 2 Monday, December 11. Must be submitted by Monday, December 11, 23:59 ET (Durham local time)
- ▶ Flexibility: You may start the exam at any point during the Final Exam period
- ▶ 12 hour window: You have 12 hours to complete the exam, from the moment you start taking it
 - designed to be a 3-4 hours long exam
 - can work on the exam in multiple blocks of time, but must be completed within the 12 hour window one submission only (Your answers should be saved/visible if/when you resume taking the exam)
- ▶ Individual assignment: Consultation with or assistance from any other person or source is prohibited. You may neither give nor receive any help (Honor code applies)
- ▶ Open book, notes, and class materials, but communication prohibited: Applies from the moment you start the exam until the end of the Final Exam Period (December 11, 23:59 EDT)
 - Allowed: books (offline), your personally prepared notes, all course materials on the course site
 - Prohibited: any materials or solutions obtained from other Fuqua students or any other source; no access to any online sources except the course site
 - You are not allowed to communicate with anyone regarding the exam
- ▶ Variety of question formats: numeric, multiple choice, short essay