1. Topology and vector spaces

DEFINITION 1.1. A topological group is a group G with a topology τ such that \cdot : $G \times G \to G$, $\cdot(g,h) = gh$ and $I: G \to G$, $I(g) = g^{-1}$ is continuous.

- Example 1.2. (1) Let G be group and $d(g,h) = \begin{cases} 1 & \text{if } g \neq h \\ 0 & \text{else} \end{cases}$. This induces the discrete metric. In the induced topology every set is open and hence G is a topological group.
 - (2) Let us consider $\mathbb{R}^{\mathbb{R}}$ with the topology of pointwise convergence. Then $(\mathbb{R}^{\mathbb{R}}, +)$ is a commutative topological group.

DEFINITION 1.3. A topological vector space is a vector space over $K \in \{\mathbb{R}, \mathbb{C}\}$ with a topology on V such that (V, +) is a topological group and $\cdot : K \times V \to V$ is continuous.

Why topology? For differentiation. We need even more.

DEFINITION 1.4. V be vector spaces with a metric. Let $\Omega \subset V$ be an open set and $f: \Omega \to \mathbb{R}$ be a map. f is called differentiable at $x_0 \in \Omega$ if there exists a continuous linear map $T: V \to \mathbb{R}$ such that

$$\lim_{d(x_0,x)\to 0} \frac{|f(x)-f(x_0)+T(x-x_0)|}{d(x,x_0)} = 0.$$

REMARK 1.5. Let $V = \mathbb{R}(\mathbb{N})$ equipped with the pointwise topology. Then a linear map $T: V \to \mathbb{R}$ is continuous if and only if $\sum_k |T(e_k)| < \infty$. Indeed, $C = \{(\varepsilon_1, \varepsilon_2,\varepsilon_n) : \varepsilon \in \{-1, 0, 1\}\} \cap V$ is compact. Thus

$$\sum_{k} |T(e_k)| = \sup_{x \in C} |T(x)|.$$

Differentiation is usually done in normed vector spaces.

DEFINITION 1.6. (V, || ||) is called a normed vector space if V is a vector space and $|| || : V \to [0, \infty)$ satisfies.

- i) $||x|| = 0 \Leftrightarrow x = 0$,
- ii) $\|\lambda x\| = |\lambda| \|x\|$,
- iii) $||x + y|| \le ||x|| + ||y||$,

for all $x, y \in V$, $\lambda \in K$. The associated metric on $(V, \| \ \|)$ is defined by

$$d_{\| \|}(x,y) = \|x-y\|.$$

Remark 1.7. For a normed vector space (V, +) is a topological group.

LEMMA 1.8. A normed vector space (V, || ||) is complete if and only if every absolutely convergent series is convergent.

PROOF. Let us assume that V is complete and that

$$\sum_{n} \|x_n\| < \infty.$$

Using the Cauchy criterion in \mathbb{R} , we find for every $\varepsilon > 0$ an natural number n_0 such that for $m \ge n \ge n_0$

$$\sum_{k=n+1}^{m} \|x_k\| < \varepsilon.$$

This shows that $y_n = \sum_{k=1}^n x_k$ satisfies

$$||y_m - y_n|| = ||\sum_{k=n+1}^m x_k|| \le \sum_{k=n+1}^m ||x_k|| < \varepsilon.$$

Thus (y_n) is Cauchy. Since V is complete we find a limit $y = \lim_n y_n$. For the converse we assume that (y_n) is Cauchy. Passing to a subsequence (if necessary) we may assume $||y_{n+1}-y_n|| = d(y_{n+1},y_n) < 2^{-n}$. Then the series $x_0 = y_0$, $x_n = y_n - y_{n-1}$ satisfies

$$\sum_{n} \|x_n\| < \infty .$$

By assumption, the partial sums

$$z_n = x_0 + x_1 - x_0 + x_2 - x_1 + \cdots + x_n - x_{n-1} = x_n$$

converge. Thus (x_n) is convergent.

DEFINITION 1.9. V and W be normed vector spaces. Let $\Omega \subset V$ be an open set and $f: \Omega \to W$ be a map. f is called differentiable at $x_0 \in \Omega$ if there exists a linear map T such that

$$\lim_{\|v\|\to 0} \frac{\|f(x_0+v)-f(x_0)+T(v)\|}{\|v\|} = 0.$$

Remark 1.10. If f is differentiable at x_0 , then f is continuous at x_0 .

Funny, the derivative is a linear map! In order to understand what it means to be continuously differentiable we need a norm on L(X,Y).

PROPOSITION 1.11. Let X be a normed space and Y be a Banach space. We define L(X,Y) as the space of map $T:X\to Y$ which are linear, i.e.

$$T(x + \lambda y) = T(x) + \lambda T(y)$$
.

and continuous. The norm on L(X,Y) is given by

$$||T||_{op} = \sup_{||x|| \le 1} ||T(x)||.$$

Then L(X,Y) is a Banach space.

PROOF. Let us first show that a linear map $T: X \to Y$ is continuous iff $||T|| < \infty$. Indeed, if ||T|| is finite, then

$$||T(x) - T(y)|| = ||T(x - y)|| \le ||T||_{op} ||x - y||$$

holds for all $x,y \in V$. Thus T is Lipschitz and thus continuous. For the converse, we assume that T is continuous. Then $T^{-1}(B(0,1))$ is open and henceforth contains $B(0,\varepsilon)$ for some $\varepsilon > 0$. Now let $||x|| \le 1$ and $0 < \delta < \varepsilon$. Then $||(\varepsilon - \delta)x|| < \varepsilon$ and hence

$$||T(x)|| = (\varepsilon - \delta)^{-1} ||T(\varepsilon - \delta)(x)|| < (\varepsilon - \delta)^{-1}.$$

This shows that $||T||_{op} \leq (\varepsilon - \delta)^{-1}$ for every $\delta > 0$ and thus $||T||_{op} \leq \varepsilon^{-1}$. Now, we observe that $|| ||_{op}$ is a norm. We only check the triangle inequality. Indeed,

$$||T + S||_{op} = \sup_{\|x\| \le 1} ||(T + S)(x)|| = \sup_{\|x\| \le 1} ||T(x) + S(x)|| \le \sup_{\|x\| \le 1} ||T(x)|| + ||S(x)||$$

$$\le ||T||_{op} + ||S||_{op}.$$

Finally we have to show that L(X,Y) is complete. Let (T_n) be a Cauchy sequence of linear maps. For fixed $x \in X$, we have

$$||T_n(x) - T_m(x)|| \le ||T_n - T_m|| ||x||.$$

Thus $(T_n(x))$ is Cauchy and we may define

$$T(x) = \lim_{n} T_n(x) .$$

Then we have

$$T(x + \lambda y) = \lim_{n} T_n(x + \lambda y) = \lim_{n} T_n(x) + \alpha T_n(y) = T(x) + \lambda T(y).$$

Thus T is linear. Let us show that

$$\lim_{n} ||T - T_n||_{op} = 0.$$

Indeed, let $x \in X$ with $||x|| \le 1$. Then we have

$$||T(x) - T_n(x)|| = ||\lim_m T_m(x) - T_n(x)|| \le \limsup_{m \ge n} ||T_m(x) - T_n(x)||$$

$$\le \sup_{m \ge n} ||T_m - T_n|| ||x|| \le \sup_{m \ge n} ||T_m - T_n||.$$

In particular $||T||_{op} \leq ||T - T_1||_{op} + ||T_1||_{op}$ is finite and T is continuous. Moreover, $\lim_n d(T, T_n) = 0$ implies that $\lim_n T_n = T$.

PROPOSITION 1.12. (Chain rule) $\Omega \subset V$ open, $\tilde{\Omega} \subset W$ open. $f: \Omega \to W$, $g: \tilde{\Omega} \to Z$, $x_0 \in \omega$, $y_0 = f(x_0) \in \tilde{\Omega}$. If f is differentiable at x_0 and g is differentiable at y_0 , then $g \circ f$ is differentiable and

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

PROOF. Let us introduce the error functions

$$\varepsilon_f(v) = f(x_0 + v) - f(x_0) - T(v)$$

and

$$\varepsilon_g(q) = g(y_0 + w) - g(y_0) - S(w)$$
.

Note that

$$\lim_{\|v\|\to 0} \frac{\|\varepsilon_f(v)\|}{\|v\|} \ = \ 0 \ = \ \lim_{\|w\|\to 0} \frac{\|\varepsilon_g(w)\|}{\|w\|} \ .$$

For $v \in V$ we introduce $w = f(x_0 + v) - f(x_0) = T(v) + \varepsilon_f(v)$. Moreover, $R = S \circ T$. Then we have

$$g(f(x_0 + v)) - g(f(x_0)) - R(v) = g(f(x_0) + w) - g(f(x_0)) - R(v)$$

= $S(w) + \varepsilon_g(w) - R(v) = S(\varepsilon_f(v)) + \varepsilon_g(w)$.

Since S is continuous, we have

$$\lim_{\|v\| \to 0} \frac{\|S(\varepsilon_f(v))\|}{\|v\|} \le \|S\| \frac{\|\varepsilon_f(v)\|}{\|v\|} = 0.$$

Now, we use the standard cancellation trick

$$\frac{\|\varepsilon_g(w)\|}{\|v\|} = \frac{\|\varepsilon_g(w)\|}{\|w\|} \frac{\|w\|}{\|v\|}
= \frac{\|\varepsilon_g(w)\|}{\|w\|} \frac{\|f(x_0 + v) - f(x_0)\|\|}{\|v\|}
= \frac{\|\varepsilon_g(w)\|}{\|w\|} \frac{\|T(v) + \varepsilon_f(v)\|\|}{\|v\|}.$$

Note that for ||w|| = 0 we have $\varepsilon_g(w) = 0$ and thus we may assume here that $||w|| \neq 0$. Since f is continuous we have

$$\lim_{\|v\|\to 0} \|w\| = \lim_{\|v\|\to 0} \|f(x_0+v) - f(x_0)\| = 0.$$

Therefore it suffices to show that

$$\left\{ \frac{\|T(v) + \varepsilon_f(v)\|\|}{\|v\|} : \|v\| < \delta_1 \right\}$$

is bounded for δ_1 small enough. However, we know that there exists a $\delta_1 > 0$ such that

$$\frac{\|\varepsilon_f(v)\|}{\|v\|} \le 1$$

holds for $||v|| \leq \delta_1$. Thus we get

$$\frac{\|T(v) + \varepsilon_f(v)\|\|}{\|v\|} \le \|T\|\|v\| + \|v\| \le (\|T\| + 1)\|v\|$$

for $||v|| \leq \delta_1$. This implies

$$\lim_{\|v\| \to 0} \frac{\|\varepsilon_g(w)\|}{\|v\|} \ = \ 0 \ .$$

This clearly implies $(g \circ f)'(x_0) = R = S \circ T$ and the assertion is proved.

Example 1.13. Let u be continuously differentiable function in two variables. We are looking for the derivative of

$$h(t) = \int_{0}^{t} u(t,s)ds.$$

Solution: We define $g(t,r) = \int_0^t u(r,s)ds$. The derivative is given by the gradient

$$\begin{split} T(x,y) &= \nabla g(t,r) \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \frac{\partial g}{\partial t}(t,r)x + \frac{\partial u}{\partial r}(t,r)y \ = \ u(r,t)x + (\int_0^t \frac{\partial u}{\partial r}u(r,s)ds)y \end{split}$$

We define f(t) = (t, t). The derivative is $f'(t) = \begin{pmatrix} 1 & 1 \end{pmatrix}$. Hence, we get

$$h'(t) = F'(t,t)f'(t) = u(t,t) + \int_0^t \frac{\partial u}{\partial r} u(t,s)ds$$
.

Remark 1.14. Let $T: V \to W$ be a linear map. Then T'(x) = T for all $x \in V$.

EXAMPLE 1.15. Consider det: $M_n(\mathbb{R}) \to \mathbb{R}$. Then

$$(\det)'(A)(B) = \sum_{k=1}^{n} \det(A(e_1), ..., B(e_k), ..., A(e_n)).$$

Here $B(e_j)$ is the j-th column and for k = 1, ..., m we replace the k'th column of B by the k-th column of A. Moreover, the derivative of the function

$$g(t) = \det(1 + tA)$$

is given by

$$g'(0) = tr(A) = \sum_{i=1}^{n} a_{ii}$$
.

Indeed, we note

$$\det(A+B) = \sum_{\sigma} \varepsilon(\sigma) \prod_{i=1}^{n} (A+B)_{i,\sigma(i)}$$

$$= \sum_{\sigma} \varepsilon(\sigma) \prod_{i=1}^{n} (a_{i,\sigma(i)} + b_{i,\sigma(i)})$$

$$= \det(A) + \sum_{\sigma} \varepsilon(\sigma) \sum_{k=1}^{n} b_{k,\sigma(k)} \prod_{i \neq k} a_{i,\sigma(i)}$$

+ higher monomials in the coefficient b_{ij} .

This yields the first assertion. For the second that if $a_{ij} = \delta_{ij}$ only the term $\sigma = id$ survives and we get

$$det(1 + tA) = 1 + t tr(A) + higher monomials in t$$
.

2. Taylor formula

We will first consider the Taylor formula for functions with values in \mathbb{R} . Recall the scalar Taylor formula

THEOREM 2.1. (Taylor formula with integral remainder) Let $f: I \to \mathbb{R}$ a (n+1)-times continuously differentiable. Then

$$f(x_0 + t) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} t^k + R_n(x_0, t)$$

where

$$R_n(x_0,t) = \frac{1}{n!} \int_0^t f^{(n+1)}(x_0+s)(t-s)^n ds$$
.

LEMMA 2.2. Let $f: \Omega \to \mathbb{R}$ be n times differentiable in Ω . Let $v \in V$ such that $[x_0, x_0 + v] = \{x_0 + tv : 0 \le t \le v\} \subset \Omega$. Define $h(t) = x_0 + tv$. Then the scalar function $g(t) = f(x_0 + tv)$ satisfies

$$g^{(n)}(t) = f^{(n)}(x_0 + tv,, x_0 + tv)$$
.

PROOF. n = 1: By the chain rule we know that

$$g'(t) = f'(x_0 + tv)(v).$$

Now, we consider $f': \Omega \to L(V,\mathbb{R})$ and an the function $F: \Omega \to \mathbb{R}$ defined by

$$F(x) = f'(x)(v)$$

We apply the chain rule again and get

$$g''(t) = \frac{d}{dt}F(x_0 + tv) = F'(x_0 + tv)(v)$$
.

In order to calculate this derivative we write $F(x) = e_v(f'(x))$, were $e_v : L(V, \mathbb{R}) \to \mathbb{R}$ is given by $e_v(T) = T(v)$. Since e_v is linear, we deduce from the chain rule

$$F'(x)(w) = e_v \circ f''(x) = f''(x)(v)(w)$$
.

The general case is proved by induction following the same arguments.

COROLLARY 2.3. Let $\Omega \subset V$ be an open set and $f: \Omega \to \mathbb{R}$ be (n+1)-times continuously differentiable. Let $x_0 \in \Omega$ and $v \in V$ such $[x_0, x_0 + v] \subset \Omega$. Then

$$f(x_0 + v) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (\underbrace{v, \dots, v}_{k \ times}) + R_n(x_0, v)$$

where

tay1

$$R_n(x_0, v) = \frac{1}{n!} \int_0^t f^{(n+1)}(x_0 + sv,, x_0 + sv)(t-s)^n ds$$
.

Now, we want to consider function $f: I \to X$ where X is a Banach space.

fund LEMMA 2.4. Let $f:[a,b] \to X$ be continuous function. For a partition $\pi = \{a = x_0, ..., x_n = b\}$ and $\xi_1, ..., \xi_n$ with $\xi_i \in [x_{i-1}, x_i]$ the Riemann sum is given by

$$S(\pi,\xi) = \sum_{i=1}^{n} f(\xi)(x_i - x_{i-1}).$$

Then

$$\int_{a}^{b} f(s)ds = \lim_{mesh(\pi)\to 0} S(\pi, \xi)$$

exists. Moreover,

$$F(t) = \int_{a}^{t} f(s)ds$$

satisfies F'(t) = f(t).

PROOF. Since f is uniformly continuous, we can find for $\varepsilon > 0$ a $\delta > 0$ such that $|t-s| < \delta$ implies

$$||f(t) - f(s)|| < \varepsilon$$
.

We consider two partitions such that π_1 and π_2 with mesh $(\pi_1) < \delta$ and mesh $(\pi_2) < \delta$. Let $\pi = \pi_1 \cup \pi_2$. Let us assume that π_1 has n+1 points and $\xi = (\xi_1,, \xi_n)$ is an intermediate vector (i.e. such that $\xi_i \in (x_{i-1}^1, x_i^1)$). We assume that π has m+1 points η is an intermediate vector for π . Let us agree to use the ξ_i 's for every interval of π which is contained in $[x_{i-1}, x_i]$. Then, we get

$$||S(\pi_1, \xi) - S(\pi, \eta)|| = ||\sum_{i=1}^n [f(x_i)(x_i - x_{i-1}) - \sum_{[y_{j-1}, y_j] \subset [x_{i-1}, x_i]} f(\eta_j)(y_j - y_{j-1})||$$

$$\leq \sum_{i=1}^n \sum_{[y_{j-1}, y_j] \subset [x_{i-1}, x_i]} ||f(\xi_i) - f(\eta_j)|| (y_j - y_{j-1}) \leq \varepsilon(b - a).$$

Thus we get

$$||S(\pi_1,\xi) - S(\pi_2,\tilde{\xi})|| \le 2\varepsilon(b-a)$$
.

This proves the first assertion. Let us also note the immediate consequences

$$\|\int_a^b f(s)ds\| \le \int_a^b \|f(s)\|ds$$

and

$$\int_{a}^{b} (f(s) + g(s))ds = \int_{a}^{b} f(s)ds + \int_{a}^{b} g(s)ds.$$

For the prove of the second assertion, we observe that

$$\| \int_{a}^{b+t} f(s)ds - \int_{a}^{b} f(s)ds - f(b)t \| = \| \int_{b}^{b+t} (f(s) - f(b))ds \|$$

$$\leq \int_{b}^{b+t} \| f(s) - f(b) \| ds.$$

Given $\varepsilon > 0$ we may find $\delta > 0$ such that $|s| < \delta$ implies $||f(s) - f(b)|| < \varepsilon$. This yields

$$\|\varepsilon(t)\| = \|\int_a^{b+t} f(s)ds - \int_a^b f(s)ds - f(b)t\| \le \varepsilon |t|.$$

The assertion follows.

Comp Lemma 2.5. Let $[a,b] \subset \bigcup_{x \in [a,b]} B(x,\delta_x)$ be an open cover for [a,b]. Then there exists a partition $\pi = \{a = t_0 < t_1 < \cdots < t_m = b\}$ such that for every i = 1, ..., m we find $x_i \in [t_i, t_{i+1}]$ and $\max\{|x_i - t_i|, |t_{i+1} - x_i|\} < \delta_{x_i}$.

PROOF. Let us denote by S the set of all points $s \in [a, b]$ such that there are $t_0 = a < t_1 < \cdots < t_m$ with $x_i \in [t_{i-1}, t_i]$, $\max\{|x_i - t_i|, |t_{i+1} - x_i|\} < \delta_{x_i}$ and $x_{m+1} \in [t_m, y]$ such that

$$\max\{|x_{m+1}-t_m|,|y-x_{m+1}|\}<\delta_{x_{m+1}}.$$

Note that S is not empty because $a \in S$. Let $s = \sup S$. We claim that $s \in S$. Indeed, let we may find $y \in S$ such that $y > s - \delta_s$. Then we find $t_0 = a < \cdots t_m < y$ and $t_m \le x_{m+1} \le y$. We may define $t_{m+1} = y$ and $x_{m+2} = s$. Also, we must have s = b. Indeed, assume s < b. $s \in S$ implies that $s - x_{m+1} < \delta_{x_{m+1}}$. Let $\rho < \delta_{x_{m+1}} - (s - x_{m+1})$ such that also $s + \rho < b$. Then $s + \rho \in S$ yields a contradiction. Thus s = b and the assertion is proved.

fund2 LEMMA 2.6. Let $f:[a,b] \to X$ be continuously differentiable. Then

$$\int_a^b f(s)ds = f(b) - f(a).$$

PROOF. By continuity it suffices to assume that f is differentiable on an open subset of [a, b]. Let $\varepsilon > 0$ and $\delta > 0$. For every $x \in [a, b]$ we may find $\delta_x < \delta$ such that

$$|t-x| < 2\delta_x \Rightarrow ||f(t) - f(x) - f'(x)(t-x)|| \leq \varepsilon |t-x|$$
.

Then we have $[a, b] \subset B(x, \delta_x)$. By compactness, we may find a finite subset $\xi_1,, \xi_n$ such that

$$[a,b] \subset \bigcup_{i=1}^n B(\xi_i,\delta_{\xi_i})$$
.

We apply Lemma (2.5) and find a partition $\pi = \{a = t_0 < t_1 < \dots < t_m = b\}$ such that for every $i = 1, \dots, m$ we find $\xi_i \in [t_i, t_{i+1}]$ and $\max\{|\xi_i - t_i|, |t_{i+1} - \xi_i|\} < \delta_{\xi_i}$. This yields

$$||f(b) - f(a) - S(\pi, \xi)|| = ||\sum_{i=1}^{n} f(x_{i+1}) - f(x_i) - f'(\xi_i)(x_{i+1} - x_i)||$$

$$\leq \sum_{i=1}^{n} ||f(x_{i+1}) - f(\xi_i) - f'(\xi_i)(x_{i+1} - \xi)||$$

$$+ ||f(\xi) - f(\xi_{i-1}) - f'(\xi_i)(\xi - x_{i-1})||$$

$$\leq \sum_{i=1}^{n} \varepsilon(|(x_{i+1} - \xi)| + |\xi - x_{i-1})|) \leq \varepsilon(b - a).$$

Thus for δ small enough we find

$$||f(b) - f(a) - \int_{a}^{b} f'(s)ds|| \le ||f(b) - f(a) - S(\pi, \xi)|| + ||\int_{a}^{b} f'(s)ds - S(\pi, \xi)||$$

$$< \varepsilon(b - a) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we deduce the assertion.

COROLLARY 2.7. Let X be a Banach space and $f:(a,b)\to X$ be (n+1) times continuously differentiable. Then

$$f(x_0+t) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} + R_n(x_0,t)$$

where

$$R_n(x_0,t) = \frac{1}{n!} \int_0^t f^{(n+1)}(x_0+s)(t-s)^n ds$$
.

PROOF. We use induction on n. For n = 1 we deduce from Lemma $\frac{\text{fund2}}{2.6 \text{ that}}$

$$f(x_0+t)-f(x_0) = \int_0^t f'(x_0+s)ds$$
.

For n=2 we consider

$$F(t) = f'(x_0 + t)t.$$

Then we have

$$F'(t) = f''(x_0 + t)t + f'(x_0 + t).$$

This yields

$$f(x_0 + t) - f(x_0) = \int_0^t f'(x_0 + s)ds = \int_0^t (F'(s) - f''(x_0 + s)s)ds$$

$$= F(t) - F(0) - \int_0^t f''(x_0 + s)sds = f'(x_0 + t)t - \int_0^t f''(x_0 + s)sds$$

$$= \int_0^t f''(x_0 + s)(t - s)ds.$$

For general n it is best to use integration by parts (justified as above):

$$\frac{1}{(k-1)!} \int_0^t f^{(k)}(x_0+s)(t-s)^{k-1} ds$$

$$\leq \left[-\frac{1}{k!} f^{(k)}(x_0+s)(t-s) \right]_0^t + \frac{1}{k!} \int_0^t f^{(k+1)}(x_0+s)(t-s)^k ds$$

$$= \frac{f^{(k)}(x_0)t^k}{k!} + \frac{1}{k!} \int_0^t f^{(k+1)}(x_0+s)(t-s)^k ds$$

Iterating yields assertion.

COROLLARY 2.8. Let V be a normed space and X be a Banach space. Let $\Omega \subset V$ be open, $f: \Omega \to X$ be (n+1)-times (continuously) differentiable. Let $x_0 \in \Omega$ such that $B(x_0, \delta) \subset \Omega$. Then

$$f(x_0 + v) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0)(v, ..., v) + R_n(x_0, v)$$

such that

$$||R_n(x_0, v)|| \le \frac{1}{(n+1)!} \sup_{y \in B(x_0, \delta)} ||f^{(n+1)}(y)|| ||v||^{n+1}$$

holds for all $||v|| \leq \delta$.

PROOF. Since Ω is open we may $\delta > 0$ such that $B(x_0, \delta) \subset \Omega$. Let $||v|| \leq \delta$ and consider the function $g(t) = f(x_0 + tv)$. Then g is (n + 1) times continuously differentiable and we get

$$g(1) = \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} + R_n(0,1).$$

As in Corollary 2.3 we find

$$g^k(t) = f^{(k)}(x_0 + tv)(v,, v)$$
.

Therefore, we get

$$||R_n(0,1)|| = ||\frac{1}{n!} \int_0^1 g^{(n+1)}(s)(1-s)^n ds||$$

$$= ||\frac{1}{n!} \int_0^1 f^{(n+1)}(x_0 + sv)(v, \dots, v)(1-s)^n ds||$$

$$\leq \frac{1}{n!} \sup_{y \in B(x_0, \delta)} ||f^{(n+1)}(y)|| ||v||^{n+1} \int_0^1 (1-s)^n ds$$

$$= \frac{1}{(n+1)!} \sup_{y \in B(x_0, \delta)} ||f^{(n+1)}(y)|| ||v||^{n+1}.$$

This is exactly the estimate for the remainder claimed in the assertion.

A power series with values in a Banach space X is given by

$$f(t) = \sum_{k=0}^{\infty} x_k (t - t_0)^k$$

where $x_k \in X$. We will focus on $t_0 = 0$. The radius of convergence is given by

$$R = (\limsup_{k} ||x_k||^{\frac{1}{k}})^{-1}.$$

Remark 2.9. Let $0 \le r < u < R$. Then for $n \ge n_0$

$$\sum_{k \ge n} |t|^k ||x_k|| \le \frac{\left(\frac{r}{u}\right)^n}{1 - r/u}.$$

Thus f is a convergent sum of continuous functions and hence continuous.

Lemma 2.10. On (-R, R) f is infinitely often differentiable and

$$f^{(n)}(t) = \sum_{k=n}^{\infty} \frac{k!}{n!} x_k (t - t_0)^{k-n}$$

PROOF. We assume $t_0 = 0$. Let 0 < r < R and |t| < r. Let |s| < r. Let r < u. Then we find n_0 such that $||x_k|| \le u^{-k}$. First we observe that for $k \ge 2$

$$|s^{k} - t^{k} - kt^{k-1}(s-t)| = |\int_{t}^{s} k(v^{k-1} - t^{k-1})dv|$$

$$= |\int_{t}^{s} k(k-1) \int_{t}^{v} w^{k-2}dwdv| \le k(k-1)r^{k-2} \int_{t}^{s} \int_{t}^{w} dwdv$$

$$= \frac{k(k-1)}{2} r^{k-2} |s-t|^{2}$$

Then we get for all $n \geq n_0$

$$\| \sum_{k \ge n} s^k x_k - \sum_{k \ge n} t^k x_k - \sum_{k \ge n} t^{k-1} k x_k (s-t) \|$$

pow

$$= \| \sum_{k \ge n} (s^k - t^k - kt^{k-1}(s-t)) x_k \|$$

$$\leq \sum_{k \ge n} |s^k - t^k - kt^{k-1}(s-t)| \|x_k\|$$

$$\leq \sum_{k \ge n} |t^k - s^k - kt^{k-1}(t-s)| u^{-k}$$

$$\leq \sum_{k \ge n} \frac{k(k-1)}{2} r^{k-2} |s-t|^2 u^{-k}$$

$$\leq \frac{|s-t|^2}{2} \sum_{k \ge n_0} k(k-1) (\frac{r}{u})^k.$$

Note that the sum on the right hand side is convergent. This yields

$$\left(\sum_{k>n} t^k x_k\right)' = \sum_{k>n} t^{k-1} k x_k .$$

Differentiating the polynomial $p(t) = \sum_{k=0}^{n_0} t^k x_k$ is no threat and the assertion follows for n = 1. Induction yields the assertion in full generality.