Otimização da Observação Ambiental em Unidades de Conservação

Integração de Heurística e Programação Linear Inteira Mista

Luryan D. Dorneles, Ícaro B. Q. Araujo, Glauber R. Leite, Rian G. S. Pinheiro, Bruno C. S. Nogueira

Observação Ambiental com Imagens de Satélite

Desafio Principal:

- Como observar eficientemente UCs ao longo do tempo?
- Milhares de imagens disponíveis
- Qualidade variável (nuvens, dados faltantes)

Abordagem Proposta:

- Método híbrido (Heurística Gulosa + PLIM)
- Seleção automática e ótima
- Métricas de qualidade
- Cobertura temporal consistente

1.941 Imagens Candidatas

Mosaicos de Imagens de Satélite

MOSAICO = Conjunto de imagens que cobrem uma área

- Cada imagem cobre parte da região
- Com sobreposição, criam o efeito de uma única imagem
- Qual a melhor combinação escolher?

Problema: Seleção combinatória complexa

Desafios do Monitoramento

Problema 1

Até 40% da imagem inútil

Problema 2

Dados faltantes/inválidos

Problema 3

Análise multitemporal

Necessário: Selecionar a mesma área em diferentes períodos

Problemas Visuais: Nuvens e Cobertura

Exemplo real: Nuvens (branco) e dados faltantes prejudicam o monitoramento

Unidades de Conservação Estudadas

13 UCs em 9 Estados Brasileiros

MG-SP-RJ:

PARNA Mantiqueira (437.192 ha)

Rio Grande do Sul:

APA Ibirapuitã (318.767 ha)

Mato Grosso:

 PARNA Pantanal (33.800 ha)

Alagoas:

- APA Muricy (129.742 ha)
- APA Santa Rita (9.633 ha)
- APA Catolé (3.708 ha)
- APA Pratagy (20.873 ha)

Bahia:

- PARNA Pau Brasil (18.934 ha)
- PARNA Monte Pascoal (22.239 ha)
- PARNA Descobrimento (22.607 ha)
- REVIS Rio dos Frades (907 ha)

PI-PE-CE:

- APA Chapada Araripe (1.019.460 ha)
- FLONA Araripe-Apodi (38.920 ha)

Metodologia Híbrida

FASE 1

Heurística Gulosa

Mosaicos Candidatos

FASE 2 Modelo PLIM

Mosaicos Ótimos

Fase 1 — Heurística Gulosa:

- Calcula efetividade das imagens
- Forma grupos compatíveis
- Cobertura mínima de 85%

Fase 2 — Otimização:

- Modelo PLIM para seleção final
- Maximiza cobertura útil
- Minimiza nuvens
- Garante sobreposição ≥ 80%

Notação Principal do Modelo

Dados de Entrada:

- *I* = Imagens Sentinel-2 candidatas
- A = Área de Interesse (UC)
- A_i = Cobertura geográfica da imagem i
- P_i = Proporção de pixels válidos
- N_i = Proporção de nuvens
- $\Delta T_{\text{max}} = \text{Janela temporal (5 dias)}$

Variáveis do Modelo:

- E_i = Efetividade da imagem i
- M = Conjunto de mosaicos candidatos
- E_i = Cobertura efetiva do mosaico j
- N_i = Cobertura máxima de nuvens
- $y_j = V$ ariável binária de seleção
- $\gamma = \mathsf{Peso} \ \mathsf{de} \ \mathsf{penaliza}$ ção

Algoritmo de Seleção de Mosaicos

Algorithm 1 Seleção de mosaicos candidatos

```
1 Entrada: I, A, \Delta T_{\text{max}}, \Delta A^{\text{min}}, A_{M}^{\text{alvo}}, A_{M}^{\text{min}}, N_{M}^{\text{max}}
 2 Saída: M
 3 Inicializar M \leftarrow \emptyset; filtrar I \text{ com } N_i < N_M^{\text{max}}
 4 while há regiões de A não cobertas do
         M_{povo} \leftarrow \emptyset
        Para cada i \in I, calcular E_i = A_i \cdot P_i \cdot Q_i (Efetividade)
        Selecionar i^* = \arg \max_{i \in I} E_i como semente
        Definir I_{comp} = \{i \in I : |t_i - t_{i*}| < \Delta T_{max} \} (compatíveis temporais)
         while I_{comp} \neq \emptyset e cobertura pode ser melhorada do
             Para cada i \in I_{comp}, calcular E_i; definir I'_{comp} com sobreposição válida
10
             Selecionar i^* = \arg\max_{i \in I'_{comp}} E_i
11
             if i^* aumenta cobertura em > \Delta A^{\min} then
12
13
                  Adicionar i^* ao M_{poyo}; atualizar I_{comp} para janela temporal
14
             else
15
                  I_{comp} \leftarrow \emptyset (parada: sem melhoria)
16
             end if
17
        end while
        if Cobertura (M_{novo}) \geq A_M^{\min} (85%) then
18
             Adicionar M_{novo} a M
19
20
        end if
21 end while
22 Aplicar PLIM nos mosaicos candidatos M para seleção ótima
```

23 Retornar Mosaicos selecionados

Maximizar:

$$\sum_{j} E_{j} \cdot y_{j} - \gamma \sum_{j} N_{j} \cdot y_{j}$$

Componentes da função objetivo:

- **Termo 1:** Benefício da cobertura útil (E_j)
- **Termo 2:** Penalização por nuvens $(\gamma \times N_i)$
- Peso γ ajustado empiricamente

Resultado: Prioriza mosaicos com alta cobertura e baixa nebulosidade

Restrições do Modelo PLIM

Restrições principais do modelo de otimização:

- **①** Limite de mosaicos: $\sum_{j \in M} y_j \leq N_{\text{max}}$
 - Evita fragmentação excessiva
 - Facilita análise temporal
- **2** Exclusividade de imagens: $\sum_{i \in M(i)} y_i \leq 1 \quad \forall i \in I'$
 - Cada imagem em no máximo 1 mosaico
 - Elimina redundâncias
- **3** Sobreposição mínima: $y_j + y_k \le 1 \quad \forall j, k \mid I_{j,k} < 80\%$
 - Garante continuidade espacial
 - Permite comparação multitemporal

Visão Geral: Dados e Algoritmo

Dados de Entrada:

- 1.941 imagens Sentinel-2 (junho/2024–abril/2025)
- Filtros: max 40% nuvens, min 2% cobertura
- Janela temporal: 5 dias
- 13 Unidades de Conservação

Processamento:

- Efetividade: $E_i = A_i \times P_i \times Q_i$
- Seleção gulosa por janela temporal
- Otimização via PLIM

Critérios de Qualidade:

- Cobertura mínima: 85%
- Sobreposição entre mosaicos: $\geq 80\%$
- Exclusividade de imagens
- Penalização por nuvens (γ)

Saída Esperada:

- 6 mosaicos por região
- Sequência temporal consistente
- Alta redução dos dados de entrada

Redução significativa no número de mosaicos:

Região	Candidatos	Selecionados	Redução (%)
MG-SP-RJ	45	6	86,7%
RS	16	5	68,8%
MT	18	6	66,7%
AL	24	4	83,3%
BA	9	5	44,4%
PI-PE-CE	46	6	87,0%
Total	158	32	

Destaque: Eficiência de 96,2% na otimização pelo modelo PLIM, com PI-PE-CE e MG-SP-RJ apresentando maior redução absoluta.

Resultados: Redução Significativa

Região/Estado	Candidatos	Selecionados
MG-SP-RJ	45	6
RS	16	5
MT	18	6
AL	24	4
BA	9	5
PI-PE-CE	46	6

Redução Média

Qualidade dos Mosaicos Selecionados

Cobertura, nuvens e qualidade por região:

Região	Cobertura (%)	Nuvens máx. (%)	Qualidade mín. (%)
ВА	100,00	18,44	74,65
AL	100,00	21,55	75,09
RS	98,93	3,36	73,08
MG-SP-RJ	89,14	1,86	94,33
PI-PE-CE	92,52	3,26	98,58
MT	100,00	0,00	99,90

• Melhor caso: MT (0% nuvens, 99,9% qualidade)

• Cenário desafiador: Regiões nebulosas (até 23,68% nuvens máx.)

• Cobertura média: >98% (ponderada por área)

Visualização dos Mosaicos Selecionados

Mosaicos finais selecionados pelo PLIM para todas as regiões. Consistência espacial e temporal garantida para análise multitemporal.

Impacto e Aplicações

Contribuições:

- Metodologia híbrida eficiente
- Controle de qualidade automático
- Continuidade espacial garantida
- Aplicável a diferentes UCs

Aplicações:

- Monitoramento de desmatamento
- Detecção de incêndios
- Mudanças de cobertura
- Análise multitemporal

Contexto e Perspectiva Científica

Visão ampla da otimização multidimensional:

Algumas Referências:

- Rodriguez-Puerta et al.: Apenas remoção de nuvens (89,4%)
- Shepherd et al.: Qualidade radiométrica sazonal (<0,1% nuvens)
- Combarro-Simon: Heurística gulosa simples

Contribuições desta Pesquisa:

- Otimização multidimensional
- Sequências temporais consistentes
- Heurística + PLIM híbrida
- Exclusividade de imagens
- Sobreposição garantida (≥80%)

Limitações e Trabalhos Futuros

Limitações:

- Espaçamento variável entre mosaicos devido ao clima
- Cobertura subótima em regiões com alta nebulosidade
- Dependência de sensoriamento óptico

Próximos Passos:

- Integração SAR para áreas nubladas
- Janelas temporais maiores para cobrir lacunas
- Fusão de imagens com base em máscaras de nuvens
- Expansão para diferentes perfis climáticos

Futuro: Completar mosaicos parcialmente nublados com recortes limpos de outras imagens usando comparação de máscaras de nuvens

Agradecimentos

Agradecimentos à meus pais, meus orientadores, à Universidade Federal de Alagoas ao Instituto de Computação e à organização do SBPO 2025.

Perguntas?