中間レポート1提出用紙

提出締め切り 2024年11月15日(金)15時10分00秒(日本標準時刻)

学籍番号: 名前

提出方法

- 11月15日の授業が始める時にレポートを回収いたします。
- この用紙を表紙にしてホッチキスで左上をとめて提出すること.
- 解答に関しては答えのみならず、答えを導出する過程をきちんと記すこと。
- レポート問題に関しては CLE に解答があるのでそれを活用してよい. ただし意味もなく丸 写ししても時間の無駄なので, 使う際はなぜその解答になるのか考えながら活用すること.

レポート問題

- 問題.1 (演習問題 1.1) $S^n:=\{(x_1,x_2,\ldots,x_{n+1})\in\mathbb{R}^{n+1}|\sum_{i=1}^{n+1}x_i^2=1\}$ とおく. S^n の座標近傍系を具体的に構成することにより, S^n は n 次元の C^∞ 級多様体となることを示せ. なお座標近傍系 (U,φ) に関して φ が同相であることは示さなくても良い.
- 問題.2(演習問題 1.2) $f:\mathbb{R}^{n+1}\to\mathbb{R}$ となる C^∞ 級写像で $f^{-1}(1)=S^n$ かつ $1\in\mathbb{R}$ が f の正則値であるようなものを一つ求めよ.またこれを用いて S^n は n 次元の C^∞ 級多様体であることを示せ.
- 問題.3 (演習問題 2.2) $f(r,\theta)=e^{-r^2}\cos\theta,\ g(x,y,z)=\log \left(x^2+y^2+z^2\right)$ について、df と dg を求めよ。
- 問題.4 (演習問題 2.3) $(xdx+ydy) \wedge (-xdx+ydy)$ と $(xdx+ydy) \wedge (-ydx+xdy)$ を計算せよ.
- 問題.5 (演習問題 2.5) $(xdx + ydy) \wedge (ydy + zdz) \wedge (xdx + zdz)$ を計算せよ.
- 問題.6 (演習問題 2.7) $\omega = \frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$ について, $d\omega$ を求めよ.
- 問題.7 (演習問題 2.9) $\varphi(x,y)=(x^m,y^n)$ とし, $\eta=\frac{1}{x}dx+dy$ とする. $\varphi^*\eta$ を求めよ.
- 問題.8 (演習問題 2.10) $\varphi(r,\theta)=(r\cos\theta,r\sin\theta)$ とし、 $\eta=\frac{-y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy$ とする. $\varphi^*\eta$ を求めよ.
- 問題.9 (演習問題 2.12) $\varphi(r,\theta)=(r\cos\theta,r\sin\theta)$ とし, $\eta=\frac{1}{x^2+u^2}dx\wedge dy$ とする. $\varphi^*\eta$ を求めよ.