Vitual Memory:

1. 作用:

Use main memory as a "cache" for secondary (disk) storage Programs share main memory

2. 概念: page page fault

由于page Fault Penalty太大,希望尽可能少miss,因此采取Fully associated

- Try to minimize page fault rate
 - Fully associative placement
 - Smart replacement algorithms
- 1. Vitual address如何与实际地址对应: Page Table

Page Tables

- Where is the placement information? Page Table
 - Array of page table entries (PTE), indexed by virtual page number
 - Page table register in CPU points to page table in physical memory
- Each program has its page table. Page table is in memory
- If page is present in memory
 - PTE stores the physical page number
 - Plus other status bits (referenced, dirty, ...)
- If page is not present
 - PTE can refer to location in swap space on disk

Page table储存Vpn到ppn的映射

Page table储存在memory内,是一块memory

Valid 为0 代表此vitual address对应内容在disk中 还有dirty referrence等其他status bit Page table register 不同程序有不同的page table

2. Replacement and write

Use bit/referrence bit—replacement—LRU appromiate Dirty bit—write back

3. TLB

通过vitual address去Access memory需要两次memory access 因此有了TLB

TLB miss:

- If page is in memory
 - Load the PTE from memory and retry
 - Could be handled in hardware
 - Can get complex for more complicated page table structures
 - Or in software
 - Raise a special exception, with optimized handler
- If page is not in memory (page fault)
 - OS handles fetching the page and updating the page table
 - Then restart the faulting instruction

TLB interaction with cache:

4. Memory Protect

不同程序可以share相同的虚拟内存,但需要OS协助保证不发生错误访问 OS特权模式