STANDARD COMBINATIONAL MODULES

- DECODERS
- ENCODERS
- MULTIPLEXERS (Selectors)
- DEMULTIPLEXERS (Distributors)
- SHIFTERS

BINARY DECODERS

HIGH-LEVEL DESCRIPTION:

Inputs: $\underline{x} = (x_{n-1}, \dots, x_0), x_j \in \{0, 1\}$

Enable $E \in \{0, 1\}$

Outputs: $\underline{y} = (y_{2^{n}-1}, \dots, y_0), y_i \in \{0, 1\}$

Function: $y_i = \begin{cases} 1 & \text{if } (x=i) \text{ and } (E=1) \\ 0 & \text{otherwise} \end{cases}$

$$x = \sum_{j=0}^{n-1} x_j 2^j$$

and

$$i = 0, \dots, 2^n - 1$$

Figure 9.1: n-INPUT BINARY DECODER.

\overline{E}	x_2	x_1	x_0	x	y_7	y_6	y_5	y_4	y_3	y_2	y_1	y_0
1	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	1	0	0	0	0	0	0	1	0
1	0	1	0	2	0	0	0	0	0	1	0	0
1	0	1	1	3	0	0	0	0	1	0	0	0
1	1	0	0	4	0	0	0	1	0	0	0	0
1	1	0	1	5	0	0	1	0	0	0	0	0
1	1	1	0	6	0	1	0	0	0	0	0	0
1	1	1	1	7	1	0	0	0	0	0	0	0
0	_	-	-	ı	0	0	0	0	0	0	0	0

BINARY SPECIFICATION:

Inputs: $\underline{x} = (x_{n-1}, \dots, x_0), x_j \in \{0, 1\}$

 $E \in \{0, 1\}$

Outputs: $\underline{y} = (y_{2^{n}-1}, \dots, y_0), y_i \in \{0, 1\}$

Function: $y_i = E \cdot m_i(\underline{x})$, $i = 0, \dots, 2^n - 1$

$$y_0 = x_1' x_0' E$$
 $y_1 = x_1' x_0 E$ $y_2 = x_1 x_0' E$ $y_3 = x_1 x_0 E$

Figure 9.2: GATE NETWORK IMPLEMENTATION OF 2-INPUT BINARY DECODER.

Figure 9.3: OPERATION DECODING.

Figure 9.4: RANDOM ACCESS MEMORY (RAM): a) MODULE; b) ADDRESSING OF BINARY CELLS.

UNIVERSAL

Example 9.5:

$x_2x_1x_0$	z_2	z_1	z_0
000	0	1	0
001	1	0	0
010	0	0	1
011	0	1	0
100	0	0	1
101	1	0	1
110	0	0	0
111	1	0	0

$$(y_7, \dots, y_0) = \text{DEC}(x_2, x_1, x_0, 1)$$

$$z_2(x_2, x_1, x_0) = y_1 + y_5 + y_7$$

$$z_1(x_2, x_1, x_0) = y_0 + y_3$$

$$z_0(x_2, x_1, x_0) = y_2 + y_4 + y_5$$

Figure 9.5: NETWORK IN EXAMPLE 9.5

$$\underline{x} = (\underline{x}_{\text{left}}, \underline{x}_{\text{right}})$$

$$\underline{x}_{\text{left}} = (x_7, x_6, x_5, x_4)$$

$$\underline{x}_{\text{right}} = (x_3, x_2, x_1, x_0)$$

$$x = 2^4 \times x_{\text{left}} + x_{\text{right}}$$

Figure 9.6: 8-INPUT COINCIDENT DECODER.

$$y = \text{DEC}(\underline{x}_{\text{left}}, E)$$

$$\underline{w} = \text{DEC}(\underline{x}_{\text{right}}, 1)$$

$$\underline{z} = (\text{AND}(y_{2^{n/2}-1}, w_{2^{n/2}-1}), \dots, \text{AND}(y_s, w_t), \dots, \text{AND}(y_0, w_0))$$

Figure 9.7: n-INPUT COINCIDENT DECODER.

$$\underline{x} = (\underline{x}_{\text{left}}, \underline{x}_{\text{right}})$$

$$\underline{x}_{\text{left}} = (x_3, x_2)$$

$$\underline{x}_{\text{right}} = (x_1, x_0)$$

Figure 9.8: 4-INPUT TREE DECODER.

$$\underline{w} = \text{DEC}(\underline{x}_{\text{left}}, E)$$

$$\underline{z} = (\text{DEC}(\underline{x}_{\text{right}}, w_{2^{n/2}-1}), \dots, \text{DEC}(\underline{x}_{\text{right}}, w_t), \dots, \text{DEC}(\underline{x}_{\text{right}}, w_0))$$

Figure 9.9: n-INPUT TWO-LEVEL TREE DECODER.

	Coincident	Tree
Decoder modules	2	$2^k + 1$
AND gates	2^{2k}	_
Load per network input	1 decoder input	2^k decoder inputs (max)
	•	1 enable input
Number of module inputs	$2k + 2 + 2^{2k+1}$	$1 + k + 2^k + k2^k$
(related to number of		
connections)		
Delay	$t_{ m decoder} + t_{ m AND}$	$2t_{ m decoder}$

Figure 9.10: IMPLEMENTATION OF 6-INPUT DECODER. a) COINCIDENT DECODER. b) TREE DECODER.

	Coincident	Tree
Decoder modules	2	9
AND gates	64	_
Load per network input	1 decoder input	8 decoder inputs (max)
Fanout per decoder output	8 AND inputs	1 enable input
Number of module inputs	136	36
Delay	3d	4d

Figure 9.11: a) SYSTEM WITH TREE DECODER.

Figure 9.11: b) SYSTEM WITH COINCIDENT DECODER.

Figure 9.12: 2^n -INPUT BINARY ENCODER.

Inputs: $\underline{x} = (x_{2^n-1}, \dots, x_0), x_i \in \{0, 1\}, \text{ with at most one } x_i = 1$

 $E \in \{0, 1\}$

Outputs: $\underline{y} = (y_{n-1}, \dots, y_0), y_j \in \{0, 1\}$

 $A \in \{0, 1\}$

Function:
$$y = \begin{cases} i & \text{if } (x_i = 1) \text{ and } (E = 1) \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{cases} 1 & \text{if } (\text{some } x_i = 1) \text{ and } (E = 1) \\ 0 & \text{otherwise} \end{cases}$$

$$y = \sum_{j=0}^{n-1} y_j 2^j$$

and

$$i = 0, \dots, 2^n - 1$$

E	x_7	x_6	x_5	x_4	x_3	x_2	x_1	x_0	y	y_2	y_1	y_0	A
1	0	0	0	0	0	0	0	1	0	0	0	0	1
1	0	0	0	0	0	0	1	0	1	0	0	1	1
1	0	0	0	0	0	1	0	0	2	0	1	0	1
1	0	0	0	0	1	0	0	0	3	0	1	1	1
1	0	0	0	1	0	0	0	0	4	1	0	0	1
1	0	0	1	0	0	0	0	0	5	1	0	1	1
1	0	1	0	0	0	0	0	0	6	1	1	0	1
1	1	0	0	0	0	0	0	0	7	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	_	-	-	-	-	-	-	_	0	0	0	0	0

Inputs: $\underline{x} = (x_{2^n-1}, \dots, x_0), \quad x_i \in \{0, 1\}, \text{ with at most one } x_i = 1$

$$E \in \{0, 1\}$$

Outputs: $y = (y_{n-1}, \dots, y_0), y_j \in \{0, 1\}$

$$A \in \{0, 1\}$$

Function: $y_j = E \cdot \Sigma(x_k), \quad j = 0, \dots, n-1$

$$A = E \cdot \Sigma(x_i), \quad i = 0, \dots, 2^n - 1$$

$$y_0 = E \cdot (x_1 + x_3 + x_5 + x_7)$$

$$y_1 = E \cdot (x_2 + x_3 + x_6 + x_7)$$

$$y_2 = E \cdot (x_4 + x_5 + x_6 + x_7)$$

$$A = E \cdot (x_0 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7)$$

Figure 9.13: IMPLEMENTATION OF AN 8-INPUT BINARY ENCODER.

Figure 9.14: WIND DIRECTION ENCODER.

Inputs:
$$\underline{x} = (x_{2^{n}-1}, \dots, x_{0}), x_{i} \in \{0, 1\}$$

Outputs: $y = (y_{n-1}, \dots, y_{0}), y_{j} \in \{0, 1\}$

Function:

$$y = \begin{cases} i & \text{if } (x_i = 1) \text{ and } (x_k = 0, k > i) \text{ and } (E = 1) \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{cases} 1 & \text{if } (\text{some } x_i = 1) \text{ and } (E = 1) \\ 0 & \text{otherwise} \end{cases}$$

$$y = \sum_{j=0}^{n-1} y_j 2^j$$

and

$$i, k \in \{0, 1, \dots, 2^n - 1\}$$

\overline{E}	x_7	x_6	x_5	x_4	x_3	x_2	x_1	x_0	y_2	y_1	y_0	A
1	0	0	0	0	0	0	0	1	0	0	0	1
1	0	0	0	0	0	0	1	-	0	0	1	1
1	0	0	0	0	0	1	_	-	0	1	0	1
1	0	0	0	0	1	_	_	1	0	1	1	1
1	0	0	0	1	_	-	_	-	1	0	0	1
1	0	0	1	-	_	-	_	-	1	0	1	1
1	0	1	_	_	_	_	_	•	1	1	0	1
1	1	-	_	_	_	_	_	1	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0
0	_	-	_	-	_	-	_	-	0	0	0	0

Figure 9.15: PRIORITY ENCODER.

PRIORITY RESOLUTION: HIGH-LEVEL AND BINARY-LEVEL DESCRIPTION

Inputs:
$$\underline{x} = (x_{2^{n}-1}, \dots, x_{0}), x_{i} \in \{0, 1\}$$

Outputs: $\underline{z} = (z_{2^{n}-1}, \dots, z_{0}), z_{i} \in \{0, 1\}$

Function:
$$z_i = \begin{cases} 1 & \text{if } (x_i = 1) \text{ and } (x_k = 0, k > i) \\ 0 & \text{otherwise} \end{cases}$$
 with $i, k = 0, 1, \dots, 2^n - 1$

BINARY DESCRIPTION:

$$z_i = x'_{2^n-1} x'_{2^n-2} \dots x'_{i+1} x_i$$
, $i = 0, 1, \dots, 2^n - 1$

OR ITERATIVELY

$$c_{i-1} = c_i + x_i$$
$$z_i = c'_i x_i$$

 $\label{eq:Figure 9.16: 4-BIT PRIORITY RESOLUTION NETWORKS: a) PARALLEL; b) ITERATIVE.$

Figure 9.17: RESOLVING INTERRUPT REQUESTS USING A PRIORITY ENCODER.

Figure 9.18: DETECTING THE LEFTMOST 1 IN A BIT-VECTOR AND REMOVING LEADING ZEROES.

HIGH-LEVEL AND BINARY-LEVEL DESCRIPTION

Inputs: $\underline{x} = (x_{2^{n}-1}, \dots, x_0), x_i \in \{0, 1\}$

 $\underline{s} = (s_{n-1}, \dots, s_0), \quad s_j \in \{0, 1\}$

 $E \in \{0, 1\}$

Outputs: $z \in \{0, 1\}$

Function: $z = \begin{cases} x_s & \text{if } E = 1 \\ 0 & \text{if } E = 0 \end{cases}$

$$s = \sum_{j=0}^{n-1} s_j 2^j$$

$$z = E \cdot \left[\sum_{i=0}^{2^{n}-1} x_{i} \cdot m_{i}(\underline{s}) \right]$$

Figure 9.19: 2^n -INPUT MULTIPLEXER.

E	s_1	s_0	z
1	0	0	x_0
1	0	1	x_1
1	1	0	x_2
1	1	1	x_3
0	_	-	0

$$z = E \cdot (x_0 m_0(s_1, s_0) + x_1 m_1(s_1, s_0) + x_2 m_2(s_1, s_0) + x_3 m_3(s_1, s_0))$$

= $E \cdot (x_0 s_1' s_0' + x_1 s_1' s_0 + x_2 s_1 s_0' + x_3 s_1 s_0)$

Figure 9.20: GATE IMPLEMENTATION OF 4-INPUT MULTIPLEXER

Figure 9.21: MULTIPLEXER: EXAMPLE OF USE.

- ullet connect input variables \underline{x} to select inputs of multiplexer \underline{s}
- set data inputs to multiplexer equal to values of function for corresponding assignment of select variables

• using a variable at data inputs reduces size of the multiplexer

EXAMPLE

$$E(x_2, x_1, x_0) = \sum m(1, 2, 4, 6, 7)$$

$$= x'_2(x'_1x_0) + x'_2(x_1x'_0) + x_2(x'_1x'_0) + x_2(x_1x'_0) + x_2(x_1x_0)$$

$$= x'_2m_1(x_1, x_0) + x'_2m_2(x_1, x_0)$$

$$+ x_2m_0(x_1, x_0) + x_2m_2(x_1, x_0) + x_2m_3(x_1, x_0)$$

$$= x_2m_0(x_1, x_0) + x'_2m_1(x_1, x_0) + 1 \cdot m_2(x_1, x_0) + x_2m_3(x_1, x_0)$$

Figure 9.22: IMPLEMENTATION OF $f(x_2, x_1, x_0) = one\text{-}set(1,2,4,6,7)$: a) 8-INPUT MULTIPLEXER; b) K-map; c) 4-INPUT MULTIPLEXER.

Inputs: $a, b, c_{in} \in \{0, 1\}$ Outputs: $z, c_{out} \in \{0, 1\}$

\overline{a}	b	c_{in}	z	c_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$z = (a'b') \cdot c_{in} + (a'b) \cdot c'_{in} + (ab') \cdot c'_{in} + (ab) \cdot c_{in}$$

$$= c_{in}m_0(a,b) + c'_{in}m_1(a,b) + c'_{in}m_2(a,b) + c_{in}m_3(a,b)$$

$$c_{out} = 0 \cdot m_0(a,b) + c_{in}m_1(a,b) + c_{in}m_2(a,b) + 1 \cdot m_3(a,b)$$

Figure 9.23: IMPLEMENTATION OF ONE-BIT ADDER WITH 4-INPUT MULTIPLEXERS.

$$\underline{s}_{\mathrm{left}} = (s_3, s_2)$$

$$\underline{s}_{\mathrm{right}} = (s_1, s_0)$$

$$w_j = x_{(4j+s_{\mathrm{right}})} \quad , \quad 0 \le j \le 3$$

$$z = w_{s_{\mathrm{left}}}$$

$$s = 4s_{\mathrm{left}} + s_{\mathrm{right}}$$

$$z = x_{4s_{\mathrm{left}} + s_{\mathrm{right}}} = x_s$$

Figure 9.24: TREE IMPLEMENTATION OF A 16-INPUT MULTIPLEXER.

A HIGH-LEVEL DESCRIPTION:

Inputs: $x, E \in \{0, 1\}$

 $\underline{s} = (s_{n-1}, \dots, s_0) , \quad s_j \in \{0, 1\}$

Outputs: $\underline{y} = (y_{2^n-1}, \dots, y_0)$, $y_i \in \{0, 1\}$

Function: $y_i = \begin{cases} x & \text{if } (i=s) \text{ and } (E=1) \\ 0 & \text{if } (i \neq s) \text{ or } (E=0) \end{cases}$

$$s = \sum_{j=0}^{n-1} s_j 2^j, \ 0 \le i \le 2^n - 1$$

Figure 9.25: 2^n -OUTPUT DEMULTIPLEXER.

E	s_1	s_0	s	y_3	y_2	y_1	y_0
1	0	0	0	0	0	0	x
1	0	1	1	0	0	\boldsymbol{x}	0
1	1	0	2	0	\boldsymbol{x}	0	0
1	1	1	3	0 0 0 x	0	0	0
0	_	_	-	0		0	0

$$y_i = E \cdot x \cdot m_i(\underline{s}), \quad 0 \le i \le 2^n - 1$$

 $\label{eq:figure 9.26} \mbox{Figure 9.26: GATE NETWORK IMPLEMENTATION OF A 4-OUTPUT DEMULTIPLEXER. }$

Figure 9.27: DEMULTIPLEXER: example of use.

Figure 9.28: n-BIT SIMPLE SHIFTER: a) BLOCK DIAGRAM; b) RIGHT SHIFT; c) LEFT SHIFT.

SIMPLE SHIFTER: HIGH-LEVEL DESCRIPTION

Inputs:
$$\underline{x} = (x_n, x_{n-1}, \dots, x_0, x_{-1}) \ , \quad x_j \in \{0, 1\}$$

$$d \in \{RIGHT, \ LEFT\}$$

$$s \in \{YES, \ NO\}$$

$$E \in \{0, 1\}$$
Outputs: $\underline{y} = (y_{n-1}, \dots, y_0) \ , \quad y_j \in \{0, 1\}$

Function:

$$y_i = \begin{cases} x_{i-1} & \text{if} \quad (d = LEFT) \text{ and } (s = YES) \text{ and } (E = 1) \\ x_{i+1} & \text{if} \quad (d = RIGHT) \text{ and } (s = YES) \text{ and } (E = 1) \\ x_i & \text{if} \quad (s = NO) \text{ and } (E = 1) \\ 0 & \text{if} \quad (E = 0) \end{cases}$$
 for $0 \le i \le n-1$.

$$x_{-1} = \begin{cases} 0 & \text{left shift with 0 insert} \\ 1 & \text{left shift with 1 insert} \\ x_{n-1} & \text{left rotate} \end{cases}$$
 $x_n = \begin{cases} 0 & \text{right shift with 0 insert} \\ 1 & \text{right shift with 1 insert} \\ x_0 & \text{right rotate} \end{cases}$

	Control		Data					
	s	d	x_4	x_3	x_2	x_1	x_0	x_{-1}
			1	0	0	1	1	0
No shift	NO	_		0	0	1	1	
Right shift	YES	RIGHT		1	0	0	1	
Left shift	YES	LEFT		0	1	1	0	
				y_3	y_2	y_1	y_0	

Coding:

$$egin{array}{c|c} s & & d & \\ \hline 0 & \mathrm{NO} & & 0 & \mathrm{RIGHT} \\ 1 & \mathrm{YES} & & 1 & \mathrm{LEFT} \\ \hline \end{array}$$

Figure 9.29: IMPLEMENTATION OF A SIMPLE SHIFTER: a) WITH GATES; b) WITH MULTIPLEXERS.

Inputs:
$$\underline{x} = (x_{n+p-1}, \dots, x_n, x_{n-1}, \dots, x_0, x_{-1}, \dots, x_{-p}) , \quad x_j \in \{0, 1\}$$
 $s \in \{0, 1, \dots, p\}$ $d \in \{LEFT, RIGHT\}$ $E \in \{0, 1\}$ Outputs: $y = (y_{n-1}, \dots, y_0) , \quad y_j \in \{0, 1\}$

Function:

$$y_i = \begin{cases} x_{i-s} & \text{if } (d = LEFT) \text{ and } (E = 1) \\ x_{i+s} & \text{if } (d = RIGHT) \text{ and } (E = 1) \\ 0 & \text{if } (E = 0) \\ 0 \le i \le n-1 \end{cases}$$

Figure 9.30: *n*-BIT *p*-SHIFTER.

Figure 9.31: BARREL SHIFTER FOR p=15.

Figure 9.32: MULTIPLEXER IMPLEMENTATION OF A 4-BIT RIGHT 3-SHIFTER.

- ALIGNMENT OF A BIT-VECTOR
- REMOVAL OF THE LEADING (or trailing) BITS OF A VECTOR
- PERFORMING MULTIPLICATION OR DIVISION BY A POWER OF TWO
- EXTRACTING A SUBVECTOR from a bit-vector, using a shifter instead of a selector