STAT 345/445 Lecture 9

Differentiating under an integral sign – Section 2.4

 A technical section on when we can switch the order of limits, integrals, and sums

Moment Generating functions

Proof of

ike this:
$$\frac{d}{dt}M_X(t)\Big|_{t=0} = E(X) \xrightarrow{\text{tx}} f(X) \text{ is}$$

$$\frac{d}{dt}M_X(t) = \frac{d}{dt}\int_{-\infty}^{\infty} e^{tx}f(x)dx = \int_{-\infty}^{\infty} \left(\frac{\partial}{\partial t}e^{tx}f(x)\right)dx \xrightarrow{\text{t}}$$

goes like this:

if we can differentiate under the integral sign

$$\Rightarrow \frac{d}{dt}M_X(t) = \int_{-\infty}^{\infty} \underbrace{xe^{tx}f(x)dx}_{t} = E\left(Xe^{tX}\right)$$
$$\Rightarrow \frac{d}{dt}M_X(t)\Big|_{t=0} = E\left(Xe^{0\cdot X}\right) = E(X)$$

Differentiating under an integral sign

Theorem: (Simplified Leibnitz's Rule)

If $f(x, \theta)$ is differentiable with respect to θ and a and b are constants then

$$\frac{d}{d\theta} \int_{a}^{b} f(x,\theta) dx = \int_{a}^{b} \frac{\partial}{\partial \theta} f(x,\theta) dx$$

- Finite range integral \Rightarrow can switch the order of $\frac{d}{d\theta}$ and $\int dx$
- If $a = -\infty$ and/or $b = \infty$ we have to be careful
 - Recall: A derivative is a limit
 - ⇒ The issue is actually: When can we change the order of limits and integration?

What is it we want to do?

Recall:

$$\frac{\partial}{\partial \theta} f(x, \theta) = \lim_{\delta \to 0} \frac{f(x, \theta + \delta) - f(x, \theta)}{\delta}$$

Therefore:

Therefore.
$$\int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} f(x, \theta) dx = \int_{-\infty}^{\infty} \lim_{\delta \to 0} \frac{f(x, \theta, \delta) - f(x, \theta)}{\delta} dx$$

$$\frac{d}{d\theta} \int_{-\infty}^{\infty} f(x,\theta) dx = \lim_{\delta \to 0} \frac{\int_{-\infty}^{\infty} f(x,\theta) dx - \int_{-\infty}^{\infty} f(x,\theta) dx}{\int_{-\infty}^{\infty} f(x,\theta) dx}$$

$$= \lim_{\delta \to 0} \int_{-\infty}^{\infty} f(x,\theta) dx = \lim_{\delta \to 0} \int_{-\infty}^{\infty} f(x,\theta) dx - \int_{-\infty}^{\infty} f(x,\theta) dx$$

$$= \lim_{\delta \to 0} \int_{-\infty}^{\infty} f(x,\theta) dx = \lim_{\delta \to 0} \int_{-\infty}^{\infty} f(x,\theta) dx - \int_{-\infty}^{\infty} f(x,\theta) dx$$

$$= \lim_{\delta \to 0} \int_{-\infty}^{\infty} f(x,\theta) dx = \lim_{\delta \to 0} \int_{-\infty}^{\infty} f(x,\theta) dx - \int_{-\infty}^{\infty} f(x,\theta) dx$$

$$= \lim_{\delta \to 0} \int_{-\infty}^{\infty} f(x,\theta) dx = \lim_{\delta \to 0} \int_{-\infty}^{\infty} f(x,\theta) dx - \int_{-\infty}^{\infty} f(x,\theta) dx$$

$$= \lim_{\delta \to 0} \int_{-\infty}^{\infty} f(x,\theta) dx - \int_{-\infty}^{\infty} f(x,\theta) dx - \int_{-\infty}^{\infty} f(x,\theta) dx$$

When can we differentiate under the integral sign?

Theorem

If $f(x, \theta)$ is differentiable with respect to θ and there exists a constant $\delta_0 > 0$ and a function $g(x, \theta)$ that satisfies

$$\begin{aligned} \text{(i)} \ \left| \frac{\partial}{\partial \theta} f(x,\theta) \right|_{\theta=\theta'} \right| &\leq g(x,\theta) \qquad \text{derivative of } f(x,\theta) \\ \text{for all } \theta' \text{ such that } |\theta'-\theta| &\leq \delta_0 \qquad \text{was } f_0 \text{ behave } ! \\ \text{(ii)} \ \int_{-\infty}^{\infty} g(x,\theta) dx &< \infty \qquad \text{need } f_0 \text{ be bounded by} \\ \text{then} \qquad \qquad \frac{d}{d\theta} \int_{-\infty}^{\infty} f(x,\theta) dx &= \int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} f(x,\theta) dx \end{aligned}$$

STAT 345/445 Theoretical Statistics I Lecture 9

When can we differentiate under the integral sign?

- Grad: Understand that conditions (i) and (ii) basically mean:
 - The (partial) derivative $\frac{\partial}{\partial \theta} f(x, \theta)$ has to behave!
 - It has to be dominated by a function $g(x, \theta)$ that has a finite integral (w.r.t. x)
 - at least at some θ' close to θ
- UG: Just remember that changing the order of a derivative and an integral with an infinite range can't always be done

Example

• Let $X \sim \text{Expo}(\lambda)$. The pdf for X is

$$f(x) = \frac{1}{\lambda} e^{-x/\lambda}$$
 for $x > 0$

Show that for an integer $n \ge 1$

$$E\left(X^{n+1}\right) = \lambda E\left(X^{n}\right) + \lambda^{2} \frac{d}{d\lambda} E\left(X^{n}\right)$$

Derivatives and infinite sums

Finite sums are no problem:

$$\frac{d}{d\theta} \sum_{x=0}^{n} f(x,\theta) = \sum_{x=0}^{n} \frac{\partial}{\partial \theta} f(x,\theta)$$

When does the following hold?

$$\frac{d}{d\theta} \sum_{x=0}^{\infty} f(x,\theta) = \sum_{x=0}^{\infty} \frac{\partial}{\partial \theta} f(x,\theta)$$

 Basically: Both series have to converge See Theorem 2.4.8 in the textbook

Example: Geometric distribution

• Let $X \sim \text{Geometric}(\theta)$. The pmf for X is

$$f(x) = \theta(1 - \theta)^{x}$$
 for $x = 0, 1, 2, ...$ and $0 < \theta < 1$

• Lets see where this takes us:
$$\frac{d}{d\theta} \sum_{x=0}^{\infty} f(x)$$
 $\frac{\partial}{\partial x} \int_{x=0}^{\infty} f(x) dx = \frac{\partial}{\partial x} \int_{x=0}^{\infty} f(x) dx =$

• Convenient facts about the **geometric series** = $0 \times (1 - \beta)^{\times}$

$$\sum_{x=0}^{\infty} r^{x} = \frac{1}{1-r} \quad \text{for } |r| < 1$$

$$\sum_{x=0}^{n} r^{x} = \frac{1-r^{n+1}}{1-r} \quad \text{for } r \neq 1$$

$$\sum_{x=0}^{\infty} r^{x} = \frac{1-r^{n+1}}{1-r} \quad \text{for } r \neq 1$$

Jivse.
$$\frac{d}{d\theta} \sum_{K=0}^{\infty} \int_{\Gamma(K)} |z| = \frac{d\theta}{d\theta} = 0$$
 (UVI'=VU+VV
Second, $\frac{d\theta}{d\theta} \sum_{K=0}^{\infty} \int_{\Gamma(K)} |z| = \frac{d\theta}{d\theta} \int_{\Gamma(K)} |z| = \frac{$

Take this together we get

$$= \frac{1}{\theta} - \frac{1}{1-\theta} \sum_{k=0}^{\infty} x \theta(k-0)^{k}$$

$$= \frac{1}{\theta} - \frac{1}{1-\theta} \sum_{k=0}^{\infty} x \theta(k-0)^{k}$$

$$= \frac{1}{\theta} - \frac{1}{\theta} \sum_{k=0}^{\infty} x \theta(k-0)^{k}$$

$$O = \frac{1}{\theta} - \frac{1}{1-\theta} E(X)$$

$$= \sum_{i=0}^{\theta} E(X_i) = \frac{1-\theta}{\theta}$$