

Controlador de pH para cultivos hidropónicos

Autor:

Ing. Iván Podoroska

Director:

Ing. Juan Pepito (pertenencia)

Índice

1. Descripción técnica-conceptual del proyecto a realizar	. 5
2. Identificación y análisis de los interesados	. 6
3. Propósito del proyecto	. 6
4. Alcance del proyecto	. 6
5. Supuestos del proyecto	. 7
6. Requerimientos	. 7
7. Historias de usuarios ($Product\ backlog$)	. 8
8. Entregables principales del proyecto	. 9
9. Desglose del trabajo en tareas	. 9
10. Diagrama de Activity On Node	. 10
11. Diagrama de Gantt	. 11
12. Presupuesto detallado del proyecto	. 15
13. Gestión de riesgos	. 15
14. Gestión de la calidad	. 17
15. Procesos de cierre	18

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	29 de abril de 2024
1	Se completa hasta el punto 5 inclusive	7 de mayo de 2024
2	Se completa hasta el punto 9 inclusive	14 de mayo de 2024
3	Se completa hasta el punto 12 inclusive	21 de mayo de 2024
4	Se completa el plan	28 de mayo de 2024

Acta de constitución del proyecto

Buenos Aires, 29 de abril de 2024

Por medio de la presente se acuerda con el Ing. Ing. Iván Podoroska que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Controlador de pH para cultivos hidropónicos" y consistirá en la implementación de un prototipo de un sistema de control de pH para cultivos hidropónicos. El trabajo tendrá un presupuesto preliminar estimado de 648 horas y un costo de \$13111000, con fecha de inicio el 29 de abril de 2024 y fecha de presentación pública el 14 de noviembre de 2024.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Francisco Yuvone Cannfeel SA

Ing. Juan Pepito Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

La agricultura hidropónica es un método utilizado para cultivar plantas sin tierra, usando una solución rica en nutrientes. Mediante el contacto directo de las raíces con la solución nutritiva se logra un suministro constante y eficiente de macronutrientes y micronutrientes esenciales. Para su absorción, intervienen procesos de transporte activo y ósmosis, que requieren un pH controlado para garantizar el transporte de los nutrientes hacia la planta.

La empresa Cannfeel incorpora equipos para la medición y control de cultivos de precisión mediante Internet de las Cosas (IOT, por sus siglas en inglés). El objetivo de este proyecto es sumar un producto más al ecosistema, que sea capaz de regular y controlar el pH de soluciones nutritivas. Deberá poder integrarse a los equipos existentes y funcionar de manera autónoma.

El proyecto permitirá abstraer al cultivador de la tarea manual de la regulación del pH de la solución nutritiva. Al estar incluida en el ecosistema de la empresa, el usuario podrá tener acceso en tiempo real al estado de la solución nutritiva a través de una aplicación web ya implementada.

El sistema deberá ser capaz de medir el pH y la temperatura de una solución nutritiva. Contará con un *encoder* rotativo con botón y una pantalla, donde el usuario podrá ingresar el valor de pH que desee para la solución. El sistema tendrá que ser capaz de controlar el pH, utilizando una solución *buffer*. Para llevar a cabo la inyección de la sustancia reguladora, se contará con una bomba peristáltica como se observa en la figura 1.

El reto del presente proyecto es poder implementar tanto el hardware como el firmware asociado para alcanzar la solución propuesta en el tiempo estimado.

En la figura 1 se representa el diagrama en bloques del sistema.

Figura 1. Diagrama en bloques del sistema.

En la figura 2 se representa el diagrama en bloque del esquema de control a implementar.

Figura 2. Diagrama de control del sistema.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Francisco Yuvone	Cannfeel SA	CTO
Responsable	Ing. Iván Podoroska	FIUBA	Alumno
Orientador	Ing. Juan Pepito	pertenencia	Director del Trabajo Final

3. Propósito del proyecto

Desarrollar un prototipo funcional capaz de medir y controlar en línea el pH de una solución nutritiva para cultivos hidropónicos. Se busca que el cultivador no deba realizar de manera manual esta tarea.

4. Alcance del proyecto

El presente proyecto incluye:

- Diseño e implementación de un prototipo.
 - Diseño de hardware.
 - Diseño de firmware.
- Elección del display para la interfaz.
- Elección del *encoder* rotativo.
- Elección del sensor de pH.
- Elección del método de sensado de temperatura.
 - Elección del sensor de temperatura.
- Elección de la bomba peristáltica.
- Ensayos de funcionamiento en campo.

El presente proyecto no incluye:

- Diseño y fabricación de la carcaza del dispositivo.
- Modificaciones en la aplicación web existente.
- Manual de usuario.
- Manual de instalación.

5. Supuestos del proyecto

- Se tendrá a disposición los equipos de la empresa Cannfeel SA cuando sean requeridos.
- Se utilizarán herramientas que no requieran licencia.
- Todos los componentes estarán disponibles para su compra.
- Será posible desarrollar los PCBs del prototipo de prueba.
- Los tiempos de importación y de fabricación estarán dentro de lo planeado.
- No habrá problemas para la importación de lo requerido.
- El presupuesto no superará en gran medida a lo estimado.

6. Requerimientos

1. Requerimientos técnicos

- 1.1. El sistema se deberá alimentar con una fuente de alimentación externa.
- 1.2. El hardware deberá tener un driver para manejar una bomba peristáltica.
- 1.3. El hardware deberá contar con un conector para una sonda de pH.
- 1.4. El hardware deberá contar con un conector para una sonda de temperatura.
- 1.5. El hardware deberá acondicionar la señal de la sonda de pH.
- 1.6. El hardware deberá acondicionar la señal de la sonda de temperatura.
- 1.7. El sistema deberá encender y apagar una bomba de recirculación opcional.

2. Requerimientos funcionales

- 2.1. El sistema deberá compensar la medición de pH con la temperatura de la solución.
- 2.2. El sistema deberá reconocer una falla por falta de solución buffer.
- 2.3. El sistema deberá reconocer si no puede controlar el pH de la solución nutritiva.
- 2.4. El sistema deberá tener un modo de control donde intente corregir el pH de la solución constantemente.
- 2.5. El sistema deberá contar con un modo de solo lectura que se limite a mostrar en la pantalla los valores obtenidos de los sensores.
- 2.6. El sistema deberá contar con un modo de configuración donde se podrán calibrar los sensores y configurar el valor deseado de pH para el control.

3. Requerimientos de interoperabilidad

- 3.1. El controlador se deberá integrar al ecosistema de dispositivos de la empresa Cannfeel mediante un protocolo propietario.
- 4. Requerimientos de la interfaz
 - 4.1. El hardware deberá contar con una pantalla no táctil.
 - 4.2. El hardware deberá contar con un encoder rotativo incremental con botón.
 - 4.3. El sistema permitirá configurar los parámetros del controlador desde la interfaz local.
 - 4.4. El usuario deberá poder calibrar la sonda de pH en tres puntos desde la interfaz local.
 - 4.5. El usuario deberá poder calibrar la sonda de temperatura desde la interfaz local.
- 5. Requerimientos de pruebas
 - 5.1. El sistema no deberá funcionar en modo de regulación si detecta la falta de solución buffer.
- 6. Requerimientos de documentación
 - 6.1. Se confeccionarán informes de avance dirigidos al cliente y al director con la finalidad de controlar el avance del proyecto.
 - 6.2. Se confeccionará una memoria técnica al finalizar el proyecto.

7. Historias de usuarios (*Product backlog*)

En esta sección se mostrarán las historias de usuarios según los roles de: cliente, usuario final y desarrollador. Se valoraron de acuerdo a un sistema de *story points* basado en la estimación de tres categorías:

- Complejidad del trabajo (C):
 - Bajo: 1
 - Medio: 5
 - Alto: 13
- Dificultad del trabajo (D):
 - Bajo: 1
 - Medio: 3
 - Alto: 5
- Riesgo del trabajo (R):
 - Bajo: 1
 - Medio: 3
 - Alto: 5

Para obtener la estimación final, se sumaron los valores asignados a cada aspecto y se aproximaron al siguiente número de la serie de Fibonacci. Por ejemplo, si la complejidad del trabajo es media (5), la dificultad es alta (5) y la incertidumbre es media (3), las suma de los story points es 13 y se aproxima al siguiente número de Fibonacci, que es 21. La valoración final será 21.

- 1. Como cliente, quiero que el sistema sea capaz de comunicarse con otros dispositivos del ecosistema de la empresa para que se integren y mejoren la solución ofrecida.
 - Story points: 8 (C:1, D:5, R:1).
- 2. Como usuario final, quiero modificar los parámetros de medición del sensor de pH con el objetivo de calibrarlo.
 - Story points: 3 (C:1, D:1, R:1).
- 3. Como usuario final, quiero poder configurar el valor de pH a controlar de manera local para no depender de la conexión a una plataforma.
 - Story points: 21 (C:13, D:3, R:3).
- 4. Como desarrollador, quiero implementar un controlador de pH preciso y de bajo costo para poder controlar la absorción de nutrientes de las plantas en cultivos hidropónicos.
 - Story points: 21 (C:13, D:5, R:3).

8. Entregables principales del proyecto

Los entregables de proyecto son:

- Prototipo funcional.
- Archivos para la producción del PCB.
- Diagrama de circuitos esquemáticos.
- Lista de materiales (BOM, por sus siglas en inglés).
- Código fuente del firmware.
- Informes de avance.
- Memoria del trabajo final.

9. Desglose del trabajo en tareas

- 1. Investigación y documentación (92 h)
 - 1.1. Investigar sobre el estado del arte (8 h).
 - 1.2. Armar el plan de proyecto (32 h).
 - 1.3. Investigación y elección de sensor de pH (16 h).

- 1.4. Investigación y elección de sensor de temperatura (16 h).
- 1.5. Investigación y elección de pantalla (12 h).
- 1.6. Investigación y elección de encoder rotativo incremental (8 h).
- 2. Diseño general (36 h)
 - 2.1. Diseño de diagrama de módulos (8 h).
 - 2.2. Diseño de diagrama de conexiones (8 h).
 - 2.3. Elección de la fuente de alimentación externa (4 h).
 - 2.4. Diseño de las interfaces de la pantalla (16 h).
- 3. Desarrollo del hardware (132 h)
 - 3.1. Elección de conectores y componentes de potencia (24 h).
 - 3.2. Selección de componentes varios (8 h).
 - 3.3. Diseño de diagramas esquemáticos (40 h).
 - 3.4. Diseño del PCB y de los archivos de fabricación (40 h).
 - 3.5. Armado del prototipo (20 h).
- 4. Desarrollo del firmware (244 h)
 - 4.1. Elección de la arquitectura (12 h).
 - 4.2. Diseño en papel de los módulos a implementar (12 h).
 - 4.3. Diseño de las máquinas de estados (40 h).
 - 4.4. Diseño de pruebas (40 h).
 - 4.5. Programación de firmware (100 h).
 - 4.6. Verificación y validación (40 h).
- 5. Pruebas y calibración (52 h)
 - 5.1. Prueba del prototipo en modo de funcionamiento normal (20 h).
 - 5.2. Prueba del prototipo en modo de funcionamiento en falla (16 h).
 - 5.3. Ajustes finales y puesta a punto (16 h).
- 6. Presentación final (92 h)
 - 6.1. Redacción del informe de avances (12 h)
 - 6.2. Redacción de la memoria técnica (60 h).
 - 6.3. Presentación final (20 h).

Cantidad total de horas: 648 h.

10. Diagrama de Activity On Node

En rojo se marca el camino crítico.

Figura 3. Diagrama de Activity on Node.

11. Diagrama de Gantt

En la figura 5 y 6 se muestran el diagrama de Gantt correspondiente a las tareas detalladas en la figura 4. Se toma un calendario de 5 días laborales por semana y se estima un trabajo de 20 horas semanales dividido en 4 horas diarias. Cada 'd' del diagrama representa 4 horas.

WBS	Name	Start	Finish	Work	Duration	Slack	Cost	Assigned to	% Complete
1	Investigación y documentación	abr 29	may 10	23d	10d	134d	0		0
1.1	Investigar sobre el estado del arte	abr 29	abr 30	2d	2d		0		0
1.2	Armar el plan de proyecto	may 1	may 10	8d	8d		0		0
1.3	Investigación y elección de sensor de pH	may 1	may 6	4d	4d	138d	0		0
1.4	Investigación y elección de sensor de temperatura	may 1	may 6	4d	4d	138d	0		0
1.5	Investigación y elección de pantalla	may 1	may 3	3d	3d	139d	0		0
1.6	Investigación y elección de encoder rotativo incremental	may 1	may 2	2d	2d	140d	0		0
2	Diseño general	may 13	may 23	9d	9d	125d	0		0
2.1	Diseño de diagrama de módulos	may 14	may 15	2d	2d		0		0
2.2	Diseño de diagrama de conexiones	may 16	may 17	2d	2d		0		0
2.3	Elección de la fuente de alimentación externa	may 13	may 13	1d	1d		0		0
2.4	Diseño de las interfaces de la pantalla	may 20	may 23	4d	4d		0		0
3	Desarrollo del hardware	may 24	jul 5	33d	31d	94d	0		0
3.1	Elección de conectores y componentes de potencia	may 24	may 31	6d	6d		0		0
3.2	Selección de componentes varios	may 24	may 27	2d	2d	123d	0		0
3.3	Diseño de diagramas esquemáticos	jun 3	jun 14	10d	10d		0		0
3.4	Diseño del PCB y de los archivos de fabricación	jun 17	jun 28	10d	10d		0		0
3.5	Armado del prototipo	jul 1	jul 5	5d	5d		0		0
4	Desarrollo del firmware	jul 8	sep 30	61d	61d	33d	0		0
4.1	Elección de la arquitectura	jul 8	jul 10	3d	3d		0		0
4.2	Diseño en papel de los módulos a implementar	jul 11	jul 15	3d	3d		0		0
4.3	Diseño de las máquinas de estados	jul 16	jul 29	10d	10d		0		0
4.4	Diseño de pruebas	jul 30	ago 12	10d	10d		0		0
4.5	Programación de firmware	ago 13	sep 16	25d	25d		0		0
4.6	Verificación y validación	sep 17	sep 30	10d	10d		0		0
5	Pruebas y calibración	oct 1	oct 17	13d	13d	20d	0		0
5.1	Prueba del prototipo en modo de funcionamiento normal	oct 1	oct 7	5d	5d		0		0
5.2	Prueba del prototipo en modo de funcionamiento en falla	oct 8	oct 11	4d	4d		0		0
5.3	Ajustes finales y puesta a punto	oct 14	oct 17	4d	4d		0		0
6	Presentación final	may 13	nov 14	23d	134d		0		0
6.1	Redacción del informe de avances	may 13	may 15	3d	3d	111d	0		0
6.2	Redacción de la memoria técnica	oct 18	nov 7	15d	15d		0		0
6.3	Presentación final	nov 8	nov 14	5d	5d		0		0

Figura 4. Tabla de diagrama de Gantt.

Figura 5. Diagrama de Gantt 1

Figura 6. Diagrama de Gant
t $\boldsymbol{2}$

12. Presupuesto detallado del proyecto

Para la siguiente estimación de costos se toma 1 USD = 1000 ARS como tasa de cambio.

COSTOS DIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
Salario ingeniero	648	USD 15	USD 9720				
Punta de prueba de pH	1	USD 100	USD 100				
Soluciones buffers de calibración	3	USD 10	USD 30				
Bomba peristáltica	1	USD 100	USD 100				
Manguera de silicona	1	USD 20	USD 20				
Sensor de temperatura	1	USD 50	USD 50				
Encoder rotativo con botón	1	USD 5	USD 5				
Fuente de alimentación	1	USD 10	USD 10				
Componentes varios para el prototipo	1	USD 50	USD 50				
SUBTOTAL	SUBTOTAL						
COSTOS INDIR	ECTOS						
Descripción	pción Cantidad Valor unitario		Valor total				
30% del costo directo	1	USD 3026	USD 3026				
SUBTOTAL							
TOTAL							

13. Gestión de riesgos

a) Identificación de los riesgos y estimación de sus consecuencias:

Riesgo 1: Problemas de compatibilidad o limitaciones en las herramientas sin licencia seleccionadas para llevar a cabo el proyecto.

- Severidad (6): Darse cuenta en una etapa avanzada del proyecto de un problema de este tipo, puede representar una importante pérdida tiempo.
- Probabilidad de ocurrencia (4): Las herramientas sin licencia son ampliamente utilizadas, pero las limitaciones no siempre son evidentes.

Riesgo 2: Que los componentes requeridos para el prototipo no estén disponibles para la compra.

- Severidad (8): La falta de componentes puede detener el desarrollo y pruebas del hardware retrasando el proyecto.
- Probabilidad de ocurrencia (7): Hay poca disponibilidad de componentes específicos, o de precisión, en el mercado local.

Riesgo 3: Falta de disponibilidad de equipos de Cannfeel SA requeridos para las pruebas.

- Severidad (8): Causaría retrasos en las pruebas y el desarrollo del proyecto.
- Probabilidad de ocurrencia (4): Existe *stock* de los dispositivos requeridos.

Riesgo 4: Características del hardware seleccionado insuficientes para satisfacer las necesidades del sistema.

- Severidad (8): Podría causar un mal funcionamiento del equipo en etapas avanzadas del proyecto.
- Probabilidad de ocurrencia (3): El hardware será verificado y validado por el director.

Riesgo 5: Informe de avances inadecuado.

- Severidad (7): La falta de transparencia y comunicación puede conducir a tomas de decisiones erroneas.
- Probabilidad de ocurrencia (2): Las reuniones mensuales y continua comunicación con el director disminuyen la ocurrencia de este riesgo.
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*
1	6	4	24			
2	8	7	56	5	4	20
3	8	4	32	8	2	20
4	8	3	24			
5	7	2	14			

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a 30.

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Acción de mitigación del riesgo 2: Identificar proveedores en el país de componentes electrónicos y consultar disponibilidad de componentes. Diseñar en función de la disponibilidad local y capacidad de reemplazo.

- Severidad (5): Mediante un diseño basado en la disponibilidad, el riesgo disminuye.
- Probabilidad de ocurrencia (4): La aparición de posibles reemplazos disminuye la ocurrencia inicial.

Acción de mitigación del riesgo 3: Reservar con antelación los equipos que se necesitarán para hacer las pruebas requeridas.

- Severidad (8): El riesgo seguirá existiendo.
- Probabilidad de ocurrencia (2): La ocurrencia disminuye debido a las acciones de previsión.

14. Gestión de la calidad

- Requerimiento 1.2: El hardware deberá tener un driver para manejar una bomba peristáltica.
 - Verificación: Asegurarse que el diseño del hardware incluye un driver adecuado para controlar una bomba peristáltica. Verificar que los esquemáticos y las especificaciones del driver cumplen con los requisitos de la bomba peristáltica.
 - Validación: Activar y controlar la bomba peristáltica utilizando el driver y verificar el correcto funcionamiento.
- Requerimiento 1.7: El sistema deberá encender y apagar una bomba de recirculación opcional.
 - Verificación: Asegurarse que el diseño de hardware y de firmware incluyen la capacidad de controlar una bomba de recirculación opcional.
 - Validación: Activar el control de la bomba y verificar que el sistema la puede encender y apagar.
- Requerimiento 2.1: El sistema deberá compensar la medición de pH con la temperatura de la solución.
 - Verificación: Se analizarán distintos métodos de medición con sus compensaciones.
 - Validación: Realizar mediciones de pH a diferentes temperaturas y validar que el sistema compensa adecuadamente las lecturas.
- Requerimiento 2.2: El sistema deberá reconocer una falla por falta de solución buffer.
 - Verificación: Asegurarse que el diseño de hardware y de firmware incluye mecanismos para detectar la presencia o ausencia de la solución buffer.
 - Validación: Simular la condición de falta de solución buffer y validar que el sistema reconoce la falla y notifica adecuadamente.
- Requerimiento 2.3: El sistema deberá reconocer si no puede controlar el pH de la solución nutritiva.
 - Verificación: Verificar que el algoritmo de detección de fallos en el control del pH está implementado correctamente en el código.
 - Validación: Simular condiciones en las que el sistema no puede controlar el pH y validar que la falla se reconoce y notifica adecuadamente.
- Requerimiento 2.4: El sistema deberá tener un modo de control donde intente corregir el pH de la solución constantemente.
 - Verificación: Verificar que el algoritmo de control de pH está implementado correctamente en el código.
 - Validación: Activar el modo de control de pH y verificar que el sistema lo corrige continuamente.
- Requerimiento 2.5: El sistema deberá contar con un modo de solo lectura que se limite a mostrar en la pantalla los valores obtenidos de los sensores.

- Verificación: Verificar que la interfaz de usuario y el firmware están implementados para soportar este modo.
- Validación: Monitorear el comportamiento del sistema durante un período prolongado para asegurar que mantiene la funcionalidad de solo lectura sin fallos.
- Requerimiento 2.6: El sistema deberá contar con un modo de configuración donde se podrán calibrar los sensores y configurar el valor deseado de pH para el control.
 - Verificación: Corroborar que la interfaz de usuario y el firmware están implementados para soportar la calibración de los sensores y la configuración del valor de pH.
 - Validación: Verificar que los sensores pueden ser calibrados correctamente. Configurar el valor deseado de pH y corroborar que el sistema guarda y utiliza este valor correctamente.
- Requerimiento 3.1: El controlador se deberá integrar al ecosistema de dispositivos de la empresa Cannfeel mediante un protocolo propietario.
 - Verificación: Lectura de los documentos internos de funcionamiento del protocolo. Corroboración de la implementacion en el firmware.
 - Validación: Demostración de funcionamiento dentro del ecosistema de la empresa.
- Requerimiento 4.1: El hardware deberá contar con una pantalla no táctil.
 - Verificación: Asegurarse que el diseño del hardware incluye una pantalla no táctil que cumple con los requisitos del proyecto.
 - Validación: Verificar que la pantalla muestra la información esperada de manera clara y precisa. Monitorear el comportamiento durante un período prolongado para asegurar un funcionamiento confiable.

15. Procesos de cierre

Se establecen las siguientes actividades de finalización de proyecto:

- Analizar si se respetó el Plan de Proyecto original teniendo en cuenta las fechas y duración de las tareas. Se hará lo mismo con los costos y riesgos previstos desde el comienzo.
 - Para llevar a cabo esta tarea, se confeccionará una hoja de cálculo comparativa donde se contrastará lo estimado con lo real.
 - Responsable: Ing. Iván Podoroska.
- Identificación de las técnicas y procedimientos útiles e inútiles que se utilizaron, y los problemas que surgieron y cómo se solucionaron.
 - Responsable: Ing. Iván Podoroska.
- Archivado de toda la documentación requerida y generada para la realización del proyecto.
 - Responsable: Ing. Iván Podoroska.
- Acto de cierre y finalización de proyecto. Se agradecerá a todas las partes involucradas.
 - Responsable: Sr. Francisco Yuvone.