MAT0236 - Funções Diferenciáveis e Séries Lista 1 - 2019

- 1. Para cada $n \in \mathbb{N}$, seja $a_n = \left(1 + \frac{1}{n}\right)^n$.
 - (a) Mostre que se $a,b \in \mathbb{R}$ e $0 \le a < b$, então $\frac{b^{n+1} a^{n+1}}{b-a} < (n+1)b^n$.
 - (b) Deduza que $b^n[(n+1)a nb] < a^{n+1}$, para todos $0 < n \in \mathbb{N}$ e $a, b \in \mathbb{R}$ com $0 \le a < b$.
 - (c) Use a = 1 + 1/(n+1) e b = 1 + 1/n na parte (b) para demonstrar que $(a_n)_n$ é crescente.
 - (d) Use a = 1 e b = 1 + 1/(2n) na parte (b) para demonstrar que $a_{2n} < 4$, para todo $n \in \mathbb{N}$.
 - (e) Use as partes (c) e (d) para concluir que $a_n < 4$ para todo $n \in \mathbb{N}$. Conclua, usando também (c) que o limite $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ existe.
- 2. Mostre que:

(a)
$$\left(1 + \frac{1}{2n+3}\right)^{2n+3} \to e$$
; (b) $\left(1 + \frac{1}{n^2}\right)^{n^2} \to e$; (c) $\left(1 + \frac{1}{n}\right)^{2n} \to e^2$; (d) $\left(1 + \frac{1}{2n}\right)^n \to \sqrt{e}$.

3. Decida se cada uma das sequências abaixo é convergente ou divergente, calculando o limite no caso convergente.

1)
$$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \dots$$
2) $1, \frac{1}{2}, 1, \frac{1}{4}, 1, \frac{1}{8}, 1, \frac{1}{16}, \dots$
3) $\frac{1}{2}, -\frac{1}{2}, \frac{1}{4}, -\frac{3}{4}, \frac{1}{8}, -\frac{7}{8}, \dots$
4) $a_n = (4 + \frac{1}{n})^{\frac{1}{2}}$
5) $c_k = \frac{\sqrt{k+1}}{k-1}, k \ge 2$
6) $a_n = \frac{n^3 + 3n + 1}{4n^3 + 2}$
7) $a_n = \sqrt{n+1} - \sqrt{n}$
8) $a_n = \frac{n+(-1)^n}{n-(-1)^n}$
9) $a_n = \frac{2n}{n+1} - \frac{n+1}{2n}$
10) $a_n = n(\sqrt{n^2 + 1} - n)$
11) $a_n = \frac{senn}{n}$
12) $a_n = senn; b_n = sen(n\pi); c_n = sen\left(\frac{n\pi}{2}\right)$
13) $a_n = \frac{2n + senn}{5n+1}$
14) $a_n = \frac{(n+3)! - n!}{(n+4)!}$
15) $a_n = \sqrt[n]{n^2 + n}$
16) $a_n = \frac{sen(n!)}{n^2 + 1}$
17) $a_n = \frac{3^n}{2^n + 10^n}$
18) $a_n = (\frac{n+2}{n+1})^n$
19) $a_n = \frac{(n+1)^n}{n^{n+1}}$
20) $a_n = na^n, a \in \mathbb{R}$
21) $a_n = \frac{n!}{n^n}$
22) $a_n = n - n^2 sen \frac{1}{n}$
22) $a_n = n - n^2 sen \frac{1}{n}$
23) $a_n = (-1)^n + \frac{(-1)^n}{n}$
24) $a_n = \sqrt[n]{n}$
25) $a_n = (1 - \frac{1}{2})(1 - \frac{1}{3}) \dots (1 - \frac{1}{n})$
26) $a_n = (1 - \frac{1}{2^2})(1 - \frac{1}{3^2}) \dots (1 - \frac{1}{n^2})$
27) $a_n = \frac{1}{n} \cdot \frac{1.35 \dots (2n-1)}{2.46 \dots (2n)}$
28) $a_n = \sqrt[n]{n}$
31) $a_n = \sqrt[n]{n}$
32) $a_n = (\frac{n+1}{n})^n$
33) $a_n = (\frac{n+1}{n})^n$
34) $a_n = (\frac{n+1}{n})^{n^2}$
35) $a_n = (\frac{n+1}{n})^{\sqrt{n}}$
36) $a_n = (\frac{n+1}{n})^n$
37) $a_n = (\frac{3n+5}{5n+1})^n (\frac{5}{3})^n$
38) $a_n = (1 + \frac{1}{n^2})^n$

- 4. Sejam $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ sequências numéricas. Decida se cada afirmação abaixo é verdadeira ou falsa. Justifique sua resposta.
 - (a) Se $a_n \to a$ então $|a_n| \to |a|$.
 - (b) Se $|a_n| \to |a|$ então $a_n \to a$.
 - (c) Se $a_n \to a$ e $a_n \le 0$ então $a \le 0$.
 - (d) Se $a_n \rightarrow a$ e $a_n > 0$ então a > 0.
 - (e) Se $a_n \to a$ e $(b_n)_{n \in \mathbb{N}}$ não converge então $(a_n + b_n)_{n \in \mathbb{N}}$ não converge.

- (f) Se $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ não convergem então $(a_n+b_n)_{n\in\mathbb{N}}$ não converge.
- (g) Se $a_n \cdot b_n \to d$ então $(a_n)_{n \in \mathbb{N}}$ e $(b_n)_{n \in \mathbb{N}}$ convergem.
- (h) Se $a_n \cdot b_n \to 0$ então ou $a_n \to 0$ ou $b_n \to 0$
- 5. (a) Sejam $A \subset \mathbb{R}$ e $f: A \to A$ uma função contínua em A e $a \in A$. Seja $(a_n)_{n \in \mathbb{N}}$ uma sequência definida por: $a_0 \in A$ e $a_{n+1} = f(a_n)$, para todo $n \geq 0$ e suponha que $(a_n)_n$ converge para a. Prove que f(a) = a.
 - (b) Considere a sequência $a_1 = \sqrt{2}$, $a_2 = \sqrt{2\sqrt{2}}$, $a_3 = \sqrt{2\sqrt{2\sqrt{2}}}$, Verifique que a sequência é crescente e limitada superiormente por 2 e calcule seu limite.
 - (c) Seja a sequência definida por recorrência da seguinte forma: $x_1 = \sqrt{2}$ e $x_{n+1} = \sqrt{2 + x_n}$, para $n \in \mathbb{N}$, com $n \ge 2$. Mostre que a sequência é crescente e limitada superiormente. Obtenha o seu limite.
 - (d) Mostre que $\sqrt{2}^{\sqrt{2}^{\sqrt{2}\dots}} \rightarrow 2$.

6. Sequência de Fibonacci e Razão Áurea

- (a) Diz-se que um ponto B de um segmento \overline{OA} divide este segmento na **Razão Áurea** se $\frac{OA}{OB} = \frac{OB}{BA}$. Seja $\varphi = \frac{OB}{BA}$. Mostre que φ é a raiz positiva da equação $x^2 x 1 = 0$.
- (b) (**Sequência de Fibonacci**). Considere a sequência dada por $f_0 = f_1 = 1$ e $f_n = f_{n-2} + f_{n-1}$, para $n \ge 2$. Prove que a sequência $x_n = \frac{f_{n+1}}{f_n}$ converge e que seu limite é φ .
- 7. Considere a sequência $(\frac{p_n}{q_n})_{n \in \mathbb{N}}$, tal que $p_1 = q_1 = 1$ e, para $n \ge 2$, $p_n = p_{n-1} + 2q_{n-1}$ e $q_n = p_{n-1} + q_{n-1}$. Prove que a sequência é convergente e que $\lim \frac{p_n}{q_n} = \sqrt{2}$.
- 8. Mostre que

$$\left[\frac{n+1}{n^2} + \frac{(n+1)^2}{n^3} + \dots + \frac{(n+1)^n}{n^{n+1}}\right] \to e-1.$$

0

RESPOSTAS

3.

1) converge para 1	2) diverge	3) diverge
4) converge para 2	5) converge para 0	6) converge para $\frac{1}{4}$
7) converge para 0	8) converge para 1	9) converge para $\frac{3}{2}$
10) converge para $\frac{1}{2}$	11) converge para 0	12) a_n e c_n divergem ; $b_n \rightarrow 0$
13) converge para $\frac{2}{5}$	14) converge para 0	15) converge para 1
16) converge para 0	17) converge para 0	18) converge para e
19) converge para 0	20) converge para 0 se $ a < 1$	21) converge para 0
22) converge para 0	23) diverge	24) converge para <i>b</i>
25) converge para 0	26) converge para $\frac{1}{2}$	27) converge para 0
28) converge para 1	29) converge para $\bar{0}$, $\alpha \in \mathbb{R}$	30) converge para 0
31) diverge	32) converge para 1	33) 1/ <i>e</i>
34) diverge	35) 1	36) 0
37) exp(22/15)	38) 1	
5. (b) 2; (c) 2.		