Econ 240A, Fall 2018 Problem Set 3

Due date: Wednesday, Sept. 26

Review of exponential family, sufficient statistics, minimal sufficiency, completeness, Rao-Blackwell theorem, Cramér lower bound, UMVU estimation.

Note: Problems start with a star, *, are optional and don't count for grade. Of course, you can feel free to write them up if you want.

1. Sufficient statistic of Gamma random sample

Suppose $X_i \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha, \beta)$, i = 1, ..., n with pdf $f_{\alpha,\beta}(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1} \exp\left\{-\frac{x}{\beta}\right\} \mathbb{1}\left\{x \geq 0\right\}$ where α, β are unknown. (More precisely, the model here is $\mathcal{P} = \{\Pi_{i=1}^n \text{Gamma}(\alpha, \beta) : \alpha, \beta > 0\}$.) Find a two-dimensional complete sufficient statistic for α, β .

2. Poisson random sample

Suppose $X_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$ and $i = 1, \dots, n$ with $\lambda > 0$ unknown.

- (a) Show that $\sum_{i=1}^{n} X_i$ is a sufficient statistic for λ .
- (b) Find a method of moments estimator, $\hat{\lambda}_{MM}$, and maximum likelihood estimator, $\hat{\lambda}_{ML}$, for λ .
- (c) Show that $\hat{\lambda}_{MM}$ is an unbiased estimator of λ .
- (d) Find the Cramér-Rao lower bound on variance for any unbiased estimator of λ .
- (e) Is $\hat{\lambda}_{MM}$ UMVU?

3. Uniform location family

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} U[\theta - \frac{1}{2}, \theta + \frac{1}{2}]$, with $\theta \in \mathbb{R}$ unknown.

- (a) Find a two-dimensional minimal sufficient statistic and show it is minimal.
- (b) Show that the minimal sufficient statistic is not complete.
- (c) Suppose we want to estimate θ under the squared error loss $L(\theta, d) = (\theta d)^2$. The sample mean \bar{X} seems to be a reasonable estimator of θ . However, we can improve upon it by Rao-Blackwellizing it. Find this new estimator $\delta(X_1, \ldots, X_n)$.
- (d) * Compare the MSE of these two estimators. What happens to the ratio $MSE_{\theta}(\bar{X})/MSE_{\theta}(\delta)$ as $n \to \infty$?
- (e) * Is δ UMVU?

4. Minimal sufficiency of the likelihood ratio

Suppose $\mathcal{P} = \{p_{\theta} : \theta \in \Theta\}$ is a family of densities (defined with respect to a common measure μ on \mathcal{X}). Assume $\Theta = \{\theta_0, \theta_1, \dots, \theta_m\}$ is a finite set, and there exists some $\theta \in \Theta$ such that $p_{\theta}(x) > 0$, $\forall x \in \mathcal{X}$ (without loss of generality we assume it is θ_0).

(a) Show that the likelihood function, defined as

$$T(X) = (p_{\theta}(X))_{\theta \in \Theta} = (p_{\theta_0}(X), \dots, p_{\theta_m}(X))$$

is sufficient.

(b) Prove that the likelihood ratio, defined as

$$T(X) = \left(\frac{p_{\theta}(X)}{p_{\theta_0}(X)}\right)_{\theta \in \Theta}$$

is minimal sufficient.

(c) Show that the $likelihood\ function$ is not, in general, minimal sufficient.