PMAT 319 Winter 2016. Chapter 2: Transformations.

A transformation of \mathbb{R}^2 is a bijection from \mathbb{R}^2 to \mathbb{R}^2 . Let \mathcal{G} be the set of all transformations of \mathbb{R}^2 . We define the binary operation \circ on \mathcal{G} as follows:

for
$$\alpha, \beta \in \alpha \circ \beta(P) = \alpha(\beta(P))$$
 for each $P \in \mathbb{R}^2$.

Theorem 2.1: (\mathcal{G}, \circ) is a group.

Proof:

For simplicity, when we write $\alpha\beta$, we means $\alpha \circ \beta$. Let \mathcal{C} be the set of all collineations from \mathbb{R}^2 to \mathbb{R}^2 .

Theorem 2.2: (\mathcal{C}, \circ) is a group.

Proof: We prove that (\mathcal{C}, \circ) is a subgroup of (\mathcal{G}, \circ) using Theorm 0.1.

We note that \mathcal{G} and \mathcal{C} are not abelian.

An element $\alpha \in \mathcal{G}$ is called an *involution* if and only if $\alpha^2 = i$ and $\alpha \neq i$.