Animation & Simulation

He Wang (王鹤)

Before the course

- What is computer animation?
- Where/How is it used?
- How to do computer animation?
- Expected you have learnt:
 - Math (linear algebra, calculus, discrete mathematics, numerical)
 - Physics
 - Computer graphics (rendering, geometry)
 - C++, OpenGL, GUI library (e.g. Qt)
 - Complexity analysis, numerical, optimisation, statistics, machine learning

During the course

- 10 weeks, 20 lectures (approx. 45-60 min) 20 hours
- 12 hour labs (week 4, 7-11) 12 + X hours
 - Assignment feedback labs online/in-person
 - Normal Labs online/in-person
 - Asynchronous lab activities (do the lab before coming to the lab).
 - More online labs will be scheduled for more support on a random basis.
- Week 5 reading week
- 3 assignments & self study (2/3 weeks each, 100% total!) 112 hours
- No exams
- Totally 150 hours
- Online resources-Minerva, Yammer, Email, Teams.

After the course

- Basic knowledge of computer animation
 - Interpolation, Free-form deformation, physical simulation, etc.
- Hands-on experience on four kinds of animations
 - FFD tool, Inverse Kinematics for character animation, Cloth Simulation and Fluid Simulation.
- In-depth knowledge to some animation techniques
 - Character Animation, Facial Animation, Collision Detection, etc.

- Background (skip chapter 2)
 - Representations of rotation
 - Homogeneous transformation
- Foundation of animation
 - Show a series of static images quickly so that objects look moving
- Key elements (Key frame)
- Function descriptor
 - Automatically generate trajectories?
 - How to describe a trajectory?
 - Starting from animating a point.

- Interpolation
 - Interpolation vs approximation
 - Motion as a function, given key positions
 - The function needs to go through (interpolation) or not (approximation)
 - Position constraints
 - Joint angles for walking (if a skeletal pose is seen as a high-dimensional point)
 - Hybrid (position constraints plus velocity constraints)

An interpolating spline in which the spline passes through the interior control points

An approximating spline in which only the endpoints are interpolated; the interior control points are used only to design the curve

- Interpolation
 - Interpolation
 - Linear Interpolation

$$P(u) = (1 - u)P_0 + uP_1$$

Geometric form

$$P(u) = F_0(u)P_0 + F_1(u)P_1$$

$$P(u) = \begin{bmatrix} F_0(u) \\ F_1(u) \end{bmatrix} [P_0 P_1] = FB^T$$

Algebraic form

$$P(u) = (P_1 - P_0)u + P_0$$

 $P(u) = a_1u + a_0$

$$P(u) = \begin{bmatrix} u & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = U^T A$$

$$P(u) = \begin{bmatrix} u & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \end{bmatrix} = U^T M B = F B = U^T A$$

- Interpolation
 - Parameterised by arcs

$$P(u) = \begin{bmatrix} u & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = U^T A$$

$$P(u) = \begin{bmatrix} u & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \end{bmatrix} = U^T M B = F B = U^T A$$

e.g. quadratic form
$$P(u) = P_0 + ((1-u)u + u)(P_1 - P_0)$$

Or cubic
$$P(u) = U^{T}MB = |u^{3} u^{2} u | 1 | MB$$

Or higher order

- Interpolation
 - Parameterised by arcs
 - Derivatives of interpolate functions (higher order behaviours)

e.g. quadratic form
$$P(u) = P_0 + ((1-u)u + u)(P_1 - P_0)$$
 $P(u) = U^T M B = |u^3 u^2 u \ 1 | M B$ $P'(u) = U^T M B = |3u^3 \ 2u \ 1 \ 0 | M B$ $P'(u) = U'^T M B = |6u \ 2 \ 0 \ 0 | M B$

Or higher order

- Interpolation
 - Complexity
 - Order of polynomials (related to linear regression)

point

- Continuity
 - Information higher than zero-order
- Local vs global

- Interpolation
 - Complexity
 - Continuity
 - Local vs global
 - Global
 - Lagrange Interpolation
 - Local
 - Parabolic blending
 - Catmull-Rom
 - Cubic Bezier
 - Cubic B-spline

Local control: moving one control point only changes the curve over a finite bounded region

Global control: moving one control point changes the entire curve; distant sections may change only slightly

- Basic concepts
 - Explicit
 - Implicit
 - Parametric

- Basic concepts
 - Explicit
 - y = f(x), i.e. $y = x^2$
 - Pros: a y for any x
 - Cons: depend on choice of coordinate axes; Ambiguous y = sqrt(x)
 - Implicit
 - Parametric

- Basic concepts
 - Explicit
 - Implicit
 - $f(x, y) = 0, x^2 + y^2 = 1$
 - Pros: good for testing if a point is on the curve
 - Cons: not generative, if a series of points are desired, not easy
 - Parametric

- Basic concepts
 - Explicit
 - Implicit
 - Parametric
 - x = f(t), y = g(t), t does not have to be time, i.e. x = t, $y = t^2$
 - Pros: an order list of points given t; also useful for multi-value x functions

- Basic concepts
 - Polynomials
 - Named by the highest order, ax + b is *linear*, ax² + bx + c is *quadratic*
 - Highest order also refereed as the degree
 - Other functions: trigonometrics, logs, called transcendental here

- Basic concepts
 - Polynomials
 - Other functions: trigonometrics, logs, called transcendental here
 - Continuity, number of continuous derivatives
 - Zeroth-order, C^0 , for a value arbitrarily close to x, if the function is close to f(x)

Continuous but not differentiable at x=0

- Basic concepts
 - Polynomials
 - Other functions: trigonometrics, logs, called transcendental here
 - Continuity, number of continuous derivatives
 - Zeroth-order, C^0 , for a value arbitrarily close to x, if the function is close to f(x)

$$g(x)=egin{cases} x^2\sin{(rac{1}{x})} & ext{if } x
eq 0, \ 0 & ext{if } x=0 \end{cases} \qquad g'(x)=egin{cases} -\cos(rac{1}{x})+2x\sin(rac{1}{x}) & ext{if } x
eq 0, \ 0 & ext{if } x=0. \end{cases}$$

Differentiable but not continuous at x=0

- Basic concepts
 - Polynomials
 - Other functions: trigonometrics, logs, called transcendental here
 - Continuity, nth-order continuous derivatives
 - Zeroth-order, C^0 , for a value arbitrarily close to x, if the function is close to f(x)
 - C¹, continuous first-order derivative
 - C², continuous first and second-order derivative
 - What about sin(x)?

- Basic concepts
 - Polynomials
 - Other functions: trigonometrics, logs, called transcendental here
 - Continuity, nth-order continuous derivatives
 - A function formed by curve segments has *piece-wise* properties

- Basic concepts
 - Polynomials
 - Other functions: trigonometrics, logs, called transcendental here
 - Continuity, nth-order continuous derivatives
 - A function formed by curve segments has piece-wise properties
 - Distinction between parametric continuity and geometric continuity
 - Geometric continuity is less restrictive
 - Parametric: the end tangent of the first segment equal to the one in the beginning of the second segment
 - Geometric: the direction should be the same, not the magnitude

- Interpolation
 - Parameterised by arcs
 - Derivatives of interpolate functions (higher order behaviours)

e.g. quadratic form
$$P(u) = P_0 + ((1-u)u + u)(P_1 - P_0)$$
 $P(u) = U^T M B = |u^3 u^2 u \ 1 | M B$ $P'(u) = U^T M B = |3u^3 \ 2u \ 1 \ 0 | M B$ $P'(u) = U'^T M B = |6u \ 2 \ 0 \ 0 | M B$

Or higher order

- Interpolation
 - Hermite interpolation

$$P(u) = U^{T}MB = |u^{3} u^{2} u | 1 |MB|$$

$$M = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} P_i \\ P_{i+1} \\ P'_i \\ P'_{i+1} \end{bmatrix}$$

Need to provide first order on every P

A composite Hermite, piecewise cubic

- Interpolation
 - Catmull-Rom Spline

First order for the middle point is computed

$$P(u) = U^{T}MB = |u^{3} u^{2} u \ 1 | MB$$

$$P'_{i} = (1/2)(P_{i+1} - P_{i-1})$$

$$U^{T} = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix}$$

$$M = \frac{1}{2} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \\ P_{i+2} \end{bmatrix}$$

- Interpolation
 - Catmull-Rom Spline

$$P'(0.0) = \frac{1}{2}(P_1 - (P_2 - P_1) - P_0) = \frac{1}{2}(2P_1 - P_2 - P_0)$$

an internal tangent vector is not dependent on the position of the internal point relative to its two neighbours

- Interpolation
 - Four-point form (fit a cubic curve to four points)

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} m_{0,0} & m_{0,1} & m_{0,2} & m_{0,3} \\ m_{1,0} & m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,0} & m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,0} & m_{3,1} & m_{3,2} & m_{3,3} \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} u_0^3 & u_0^2 & u_0 & 1 \\ u_1^3 & u_1^2 & u_1 & 1 \\ u_2^3 & u_2^2 & u_2 & 1 \\ u_3^3 & u_2^2 & u_3 & 1 \end{bmatrix} \begin{bmatrix} m_{0,0} & m_{0,1} & m_{0,2} & m_{0,3} \\ m_{1,0} & m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,0} & m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,0} & m_{3,1} & m_{3,2} & m_{3,3} \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

$$\begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} u_0^3 & u_0^2 & u_0 & 1 \\ u_1^3 & u_1^2 & u_1 & 1 \\ u_2^3 & u_2^2 & u_2 & 1 \\ u_3^3 & u_2^3 & u_3 & u_3 & 1 \end{bmatrix} \begin{bmatrix} m_{0,0} & m_{0,1} & m_{0,2} & m_{0,3} \\ m_{1,0} & m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,0} & m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,0} & m_{3,1} & m_{3,2} & m_{3,3} \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

$$M = \frac{1}{2} \begin{bmatrix} -9 & 27 & -27 & -\\ 18 & -45 & 36 & -9\\ -11 & 18 & -9 & 2\\ 2 & 0 & 0 & 0 \end{bmatrix}$$

No way to guarantee the continuity

- Interpolation
 - Blended parabolas
 - A parabola for each triplets of points
 - A cubic segment by linearly interpolating two overlapping parabolas
 - Reparameterise the overlapped region to 0 and 1, then linearly blend the two

- Interpolation
 - Tension, continuity and bias control

Tension

$$T_i^L = T_i^R = (1-t)\frac{1}{2}((P_{i+1} - P_i) + (P_i - P_{i-1}))$$

- Interpolation
 - Tension, continuity and bias control

Continuity

$$T_i^L = \frac{1-c}{2}(P_i - P_{i-1}) + \frac{1+c}{2}(P_{i+1} - P_i)$$

$$T_i^R = \frac{1+c}{2}(P_i - P_{i-1}) + \frac{1-c}{2}(P_{i+1} - P_i)$$

- Interpolation
 - Tension, continuity and bias control

Bias

$$T_i^R = T_i^L = \frac{1+b}{2}(P_i - P_{i-1}) + \frac{1-b}{2}(P_{i+1} - P_i)$$

- Interpolation
 - Tension, continuity and bias control

Tension
$$T_{i}^{L} = T_{i}^{R} = (1-t)\frac{1}{2}((P_{i+1}-P_{i}) + (P_{i}-P_{i-1}))$$

$$T_{i}^{L} = \frac{1-c}{2}(P_{i}-P_{i-1}) + \frac{1+c}{2}(P_{i+1}-P_{i})$$

$$T_{i}^{R} = \frac{1+c}{2}(P_{i}-P_{i-1}) + \frac{1-c}{2}(P_{i+1}-P_{i})$$

$$T_{i}^{R} = T_{i}^{L} = \frac{1+b}{2}(P_{i}-P_{i-1}) + \frac{1-b}{2}(P_{i+1}-P_{i})$$

$$T_i^R = \frac{((1-t)(1+c)(1+b))}{2} (P_i - P_{i-1}) + \frac{((1-t)(1-c)(1-b))}{2} (P_{i+1} - P_i)$$

$$T_i^L = \frac{((1-t)(1-c)(1+b))}{2} (P_i - P_{i-1}) + \frac{((1-t)(1+c)(1-b))}{2} (P_{i+1} - P_i)$$

- Interpolation
 - Bezier interpolation/approximation
 - A cubie Bezier is similar to Hermite, but use auxiliary ctr points to control tangents

$$P'(0) = 3(P_1 - P_0)$$
 and $P'(1) = 3(P_3 - P_2)$.

$$M = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad P_0$$

$$P(u) = U^{T}MB = |u^{3} u^{2} u | 1 | MB$$

- Interpolation
 - De Casteljau construction of Bezier Curve

Interpolation steps

- 1/3 of the way between paired points
- 2. 1/3 of the way between points of step 1
- 3. 1/3 of the way between points of step 2

$$P(u) = U^{T}MB = |u^{3} u^{2} u | 1 |MB|$$

Interpolation

- B-splines
 - Decouple the ctr point number from the degree of the polynomial
 - Knot vector [0, 1, 2, ..., n + k 1], n the ctr point number, k the degree
 - Values vary between the first and last knot value
 - The knot vector establishes a relationship between the parametric value and the control points.

- Interpolation
 - B-splines

$$P(u) = \frac{1}{6} \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_i \\ P_{i+1} \\ P_{i+2} \\ P_{i+3} \end{bmatrix}$$

Segments of the curve defined by different sets of four points

None of the control point is interpolated