1. (20 pts) This question concerns the difference between an operator and a coordinate transformation viewpoint. Suppose frames 0 and 1 are initially aligned.

Homework 3

- (a) (10 pts) If frame 1 is obtained from frame 0 by a rotation of $\pi/2$ about the \mathbf{x}_0 -axis, followed by a rotation of π about the fixed \mathbf{y}_0 axis, find the rotation matrix ${}^0\mathbf{R}_1$ representing the composite transformation. Sketch the initial and final frames.
- (b) (10 pts) If frame 1 is obtained from frame 0 by rotation of $\pi/2$ about the \mathbf{x}_0 -axis, followed by a rotation of π about the current \mathbf{y}_1 axis, find the rotation matrix ${}^0\mathbf{R}_1$ representing the composite transformation. Sketch the initial and final frames.
- 2. (24pts) Consider the combination of robot, table, block, and camera below, with associated coordinate systems as shown. The relative locations of robot, table, block and camera are shown. Find ${}^{0}\mathbf{T}_{1}$, ${}^{1}\mathbf{T}_{2}$, ${}^{2}\mathbf{T}_{3}$, and ${}^{0}\mathbf{T}_{3}$ by inspection.

- 3. (20pts) Let $\mathbf{k} = [2 2 \ 1]^T / 3$, $\theta = \pi / 2$. Derive $\mathbf{R}_k(\theta)$.
- 4. (20pts) Derive the angle θ and axis k for

$$\mathbf{R} = \frac{1}{25} \begin{bmatrix} 16 & 12 & 15 \\ 12 & 9 & -20 \\ -15 & 20 & 0 \end{bmatrix}$$

5. (20 pts) This problem is for graduate students. When $\theta = \pi$, the derivation of the axis in the angle-axis formula does not work because of a divide by zero $(\sin \theta)$. Develop a new approach to derive the axis for this case. Your answer should have the appropriate number of solutions, and must be robust against special cases (e.g., $k_1 = 0$.).