И.В. Яковлев

Показательные уравнения и неравенства

Показательные уравнения и неравенства — это уравнения и неравенства, в которых переменная величина входит в аргумент показательных функций. В настоящей статье мы изучим основные приёмы решения показательных уравнений и неравенств.

Начнём со следующего простого вопроса. Уравнение $3^x = 9$ имеет очевидный корень x = 2. Имеются ли у этого уравнения другие корни?

Легко понять, что других корней нет, поскольку функция $y=3^x$ является монотонно возрастающей. Каждое своё значение эта функция принимает ровно один раз. Следовательно, если отметить на оси ординат точку y = 9, то ей будет соответствовать единственная точка x = 3на оси абсцисс (рис. 1).

Рис. 1. Корни уравнений $3^x = 9$ и $3^x = 4$

На рисунке показан также единственный корень уравнения $3^x = 4$. Он уже не выражается целым числом и равен $\log_3 4$.

Вообще, рассмотрим простейшее показательное уравнение

$$a^x = b \tag{1}$$

при a>0 и $a\neq 1$. Показательная функция $y=a^x$ монотонна и принимает только положительные значения. Поэтому:

- при любом b > 0 уравнение (1) имеет единственный корень $x = \log_a b$;
- при $b \le 0$ уравнение (1) не имеет корней.

Показательные уравнения

При решении показательных уравнений мы постоянно пользуемся упомянутыми выше свойствами показательной функции: она монотонна и принимает только положительные значения.

Задача 1. Решить уравнение: $8^{x+2} = 32^{1-x}$.

Peшeнue. Заметим, что $8 = 2^3$ и $32 = 2^5$:

$$(2^3)^{x+2} = (2^5)^{1-x},$$

то есть

$$2^{3(x+2)} = 2^{5(1-x)}$$

Поскольку функция $y=2^x$ монотонно возрастает, равенство $2^a=2^b$ эквивалентно равенству a=b. Следовательно,

$$3(x+2) = 5(1-x),$$

откуда x = -1/8.

Omeem: $-\frac{1}{8}$.

Задача 2. Решить уравнение: $3^{x+1} + 3^x - 3^{x-2} = 35$.

Pemenue. Метод решения уравнений такого вида — вынести за скобки степень с наименьшим показателем. В данном случае выносим за скобки 3^{x-2} :

$$3^{x-2}(3^3+3^2-1) = 35 \Leftrightarrow 3^{x-2} \cdot 35 = 35 \Leftrightarrow 3^{x-2} = 1.$$

Последнее равенство запишем как $3^{x-2}=3^0$ и ввиду монотонности показательной функции заключаем, что x-2=0, то есть x=2.

Ответ: 2.

Задача 3. Решить уравнение: $4^x - 2^{x+1} - 8 = 0$.

Решение. Перепишем уравнение следующим образом:

$$2^{2x} - 2 \cdot 2^x - 8 = 0.$$

Вводя замену $t = 2^x$, получим квадратное уравнение относительно t:

$$t^2 - 2t - 8 = 0$$

Находим его корни: $t_1 = 4$, $t_2 = -2$. Остаётся сделать обратную замену.

Уравнение $2^x=4$ имеет единственный корень x=2. Уравнение $2^x=-2$ корней не имеет, так как показательная функция $y=2^x$ не может принимать отрицательных значений.

Ответ: 2.

Задача 4. Решить уравнение: $2 \cdot 4^x + 6 \cdot 9^x = 7 \cdot 6^x$.

Решение. Подставим в уравнение $4 = 2^2$, $9 = 3^2$ и $6 = 2 \cdot 3$:

$$2 \cdot 2^{2x} - 7 \cdot 2^x \cdot 3^x + 6 \cdot 3^{2x} = 0$$

Поделим обе части уравнения на величину 3^{2x} , которая ни при каких x не обращается в нуль. В результате получим равносильное уравнение:

$$2 \cdot \left(\frac{2}{3}\right)^{2x} - 7 \cdot \left(\frac{2}{3}\right)^x + 6 = 0.$$

Дальше действуем так же, как в предыдущей задаче. Замена $t = \left(\frac{2}{3}\right)^x$ приводит к квадратному уравнению:

$$2t^2 - 7t + 6 = 0.$$

Его корни равны 2 и 3/2. Обратная замена:

$$\begin{bmatrix} \left(\frac{2}{3}\right)^x = 2, \\ \left(\frac{2}{3}\right)^x = \frac{3}{2} \end{cases} \Leftrightarrow \begin{bmatrix} x = \log_{\frac{2}{3}} 2, \\ x = -1. \end{bmatrix}$$

Omeem: $\log_{\frac{2}{3}} 2$, -1.

Задача 5. Решить уравнение: $(2+\sqrt{3})^x + (2-\sqrt{3})^x = 4$.

Решение. Заметим, что

$$(2+\sqrt{3})^x (2-\sqrt{3})^x = (2^2-(\sqrt{3})^2)^x = 1^x = 1.$$

Поэтому делаем замену $t = (2 + \sqrt{3})^x$ и получаем:

$$t + \frac{1}{t} = 4.$$

Приходим к квадратному уравнению $t^2-4t+1=0$ с корнями $2\pm\sqrt{3}$. Обратная замена:

$$\begin{bmatrix} \left(2+\sqrt{3}\right)^x = 2+\sqrt{3}, \\ \left(2+\sqrt{3}\right)^x = 2-\sqrt{3} \end{cases} \Leftrightarrow \begin{bmatrix} x=1, \\ x=-1. \end{bmatrix}$$

 $Omeem: \pm 1.$

Показательные неравенства

При решении **показательных неравенств** мы постоянно пользуемся следующим известным вам фактом: показательная функция $y=a^x$ является монотонно возрастающей при a>1 и монотонно убывающей при 0< a<1.

Задача 6. Решить неравенство: $4^x < 0.125$.

Peшение. Заметим, что $4=2^2$ и $0.125=1/8=2^{-3}$. Неравенство примет вид:

$$2^{2x} < 2^{-3}.$$

Функция $y = 2^x$ монотонно возрастает, поэтому неравенство $2^a < 2^b$ эквивалентно неравенству a < b. Таким образом, основание степени отбрасывается без изменения знака неравенства:

$$2x < -3$$
,

откуда x < -3/2.

Omsem: $\left(-\infty; -\frac{3}{2}\right)$.

Задача 7. Решить неравенство: $\left(\frac{2}{3}\right)^{x^2-5x+10} \geqslant \frac{16}{81}$.

Решение. Неравенство переписывается в виде:

$$\left(\frac{2}{3}\right)^{x^2 - 5x + 10} \geqslant \left(\frac{2}{3}\right)^4.$$

Функция $y = \left(\frac{2}{3}\right)^x$ монотонно убывает, поэтому неравенство $\left(\frac{2}{3}\right)^a \geqslant \left(\frac{2}{3}\right)^b$ эквивалентно неравенству $a \leqslant b$. Основание степени отбрасывается c изменением знака неравенства:

$$x^2 - 5x + 10 \le 4$$
 \Leftrightarrow $x^2 - 5x + 6 \le 0$ \Leftrightarrow $2 \le x \le 3$.

Omeem: [2; 3].

Задача 8. Решить неравенство: $4^x - 10 \cdot 2^x + 16 > 0$.

Peшение. Делая замену $t=2^x$, приходим к квадратному неравенству относительно t:

$$t^2 - 10t + 16 > 0.$$

Его решения: t > 8 или t < 2. Обратная замена:

$$\begin{bmatrix} 2^x > 8, \\ 2^x < 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x > 3, \\ x < 1. \end{bmatrix}$$

Omsem: $(-\infty; 1) \cup (3; +\infty)$.

Задача 9. Решить неравенство: $5^{2x+1} \leqslant 5^x + 4$.

Решение. Перепишем неравенство в виде:

$$5 \cdot 5^{2x} - 5^x - 4 \le 0$$

и сделаем замену $t = 5^x$:

$$5t^2 - t - 4 \leqslant 0.$$

Решения полученного квадратного неравенства: $-\frac{4}{5} \leqslant t \leqslant 1$. Обратная замена:

$$\begin{cases} 5^x \geqslant -\frac{4}{5} \,, \\ 5^x \leqslant 1. \end{cases}$$

Первое неравенство системы выполнено при всех значениях x (поскольку функция $y=5^x$ принимает только положительные значения). Решения второго неравенства системы — множество $x\leqslant 0$.

Omeem: $(-\infty; 0]$.

Задача 10. Решить неравенство: $2^x + 2^{1-x} - 3 > 0$.

Решение. Замена $t = 2^x$ приводит неравенство к виду:

$$t+\frac{2}{t}-3>0\quad\Leftrightarrow\quad \frac{t^2-3t+2}{t}>0.$$

Теперь заметим, что t>0 (так как величина 2^x положительна при всех x). Поэтому полученное неравенство равносильно неравенству

$$t^2 - 3t + 2 > 0$$

Его решения: t < 1 или t > 2. Обратная замена даёт x < 0 или x > 1.

Omsem: $(-\infty; 0) \cup (1; +\infty)$.

Задача 11. Решить неравенство: $5^{2x} > 4^{x+\frac{1}{2}} + 10^x$.

Решение. Имеем:

$$5^{2x} - 2^x \cdot 5^x - 2 \cdot 2^{2x} > 0.$$

Разделим обе части неравенства на *положительную* величину 2^{2x} . Получим равносильное неравенство

$$\left(\frac{5}{2}\right)^{2x} - \left(\frac{5}{2}\right)^x - 2 > 0.$$

Делаем замену $t = \left(\frac{5}{2}\right)^x$:

$$t^2 - t - 2 > 0.$$

Решения полученного квадратного неравенства: t < -1 или t > 2. Обратная замена:

$$\left[\left(\frac{5}{2} \right)^x < -1, \\ \left(\frac{5}{2} \right)^x > 2. \right]$$

Первое неравенство совокупности не имеет решений. Решения второго неравенства — множество $x>\log_{\frac{5}{2}}2.$

Omeem: $(\log_{\frac{5}{2}} 2; +\infty)$.

Задача 12. Решить неравенство:

$$\frac{1}{3^x + 5} < \frac{1}{3^{x+1} - 1} \,.$$

Peшeнue. Замена $t = 3^x$:

$$\frac{1}{t+5} < \frac{1}{3t-1} \,.$$

Дальше действуем стандартным образом:

$$\frac{1}{t+5} - \frac{1}{3t-1} < 0 \quad \Leftrightarrow \quad \frac{2(t-3)}{(t+5)(3t-1)} < 0.$$

Полученное неравенство решается методом интервалов: t < -5 или $\frac{1}{3} < t < 3$. Обратная замена:

$$\begin{bmatrix} 3^x < -5, \\ \frac{1}{3} < 3^x < 3. \end{bmatrix}$$

Первое неравенство совокупности решений не имеет, а решениями второго неравенства служит интервал -1 < x < 1.

Omeem: (-1;1).