

Fourth Industrial Summer School

Day 2: Data Analysis Foundations - Morning

Exploratory Data Analysis

Session Objectives

- ✓ Seaborn
 - heatmap
 - Correlation matrix
- ✓ Checking missing data
- ✓ Removing features with missing data
- ✓ Exploring
 - numeric data
 - categorical data

Exploratory Data Analysis (EDA)

- To give insight into your data
- Understand the underlying structure
- Extract important features and relationships
- Generate Hypothesis

Seaborn

- Seaborn is a Python data visualization library based on matplotlib.
- It provides a high-level interface for drawing attractive and informative statistical graphics.
- It introduces additional plot types.
- It also makes your traditional Matplotlib plots look a bit prettier.
- Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

Data Exploration example

Employee2.csv

- Company employees information
- Used before as Employee.csv, but with some missing data

emp_id	Gender	Age	Sales	ВМІ	Income	
1	M	34	123	123 Normal		
2	F	40	114	Overweight	450	
3	F	37	135	Obesity	169	
4	M	30	139	Underweight		
5	F	44	117	Underweight	183	
6	М	36	121	Normal	80	
7	M		133	Obesity	166	
8	F	26	140	Normal	120	
9		32	133	Normal	75	
10	M	36	133 Underweight		40	

Import

Import libraries

```
import pandas as pd
import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
```

Notice the missing data

```
df = pd.read_csv('Employee2.csv')
df.head()
```

	emp_id	Gender	Age	Sales	BMI	Income
0	1	М	34.0	123	Normal	350.0
1	2	F	40.0	114	Overweight	450.0
2	3	F	37.0	135	Obesity	169.0
3	4	М	30.0	139	Underweight	NaN
4	5	F	44.0	117	Underweight	183.0

Data Shape

- Data shape
 - 10 rows
 - 6 columns

```
1 df.shape (10, 6)
```

1 df.info()

```
Data information
```

Check data types

Descriptive Statistics

Specific variable statistics

```
1 df.Income.describe()
           9.000000
count
         181.44444
mean
         135,246175
std
min
        40.000000
25%
          80.000000
50%
         166.000000
75%
         183.000000
         450.000000
max
Name:
      Income, dtype: float64
```

Missing Values

Check missing values

Visualize Missing Values

Use heatmap to visualize the missing values

1 sns.heatmap(df.isnull(), cbar=False)

Handle Missing Data

Fill missing numerical values with mean

```
df_num = df.select_dtypes(include=['number'])
df[df_num.columns] = df_num.fillna(df_num.mean())
```

Fill missing categorical values with mode

```
df_cat = df.select_dtypes(exclude=['number'])
mode_values = df_cat.mode().iloc[0]
df[df_cat.columns] = df_cat.fillna(mode_values)
```

Re-Visualize Missing Values

Replot the heatmap

```
df = pd.concat([df_num, df_cat], axis=1)
          sns.heatmap(df.isnull(), cbar=False)
    <Axes: >
      0
      Į
      2
      3
      4
      2
      9
     7
      \infty
      6
           emp_id
                                 Sales
                                                     Gender
                                                                 BMI
                       Age
                                          Income
Link: h
```

Correlation Matrix

Correlation as a heatmap

Correlation Matrix

Correlation as a heatmap with correlation annotation

Correlation Matrix

Correlation matrix sorted

Calculate the top k correlations with 'Income'

Data Exploration session

House Sales

HouseSales.csv

```
1  df = pd.read_csv('HousePrices.csv')
2  df.head()
```

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities
0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI	AllPub
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllPub
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	AllPub
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	AllPub
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllPub

5 rows × 81 columns

Data information

1 df.info()

```
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
                 1460 non-null int64
Id
MSSubClass
                 1460 non-null int64
                 1460 non-null object
MSZoning
                 1201 non-null float64
LotFrontage
                 1460 non-null int64
LotArea
                 1460 non-null object
Street
                 91 non-null object
Alley
LotShape
                 1460 non-null object
LandContour
                 1460 non-null object
Utilities
                 1460 non-null object
LotConfig
                 1460 non-null object
LandSlope
                 1460 non-null object
Neighborhood
                 1460 non-null object
Condition1
                 1460 non-null object
Condition2
                 1460 non-null object
                 1460 non-null object
BldqType
                 1460 non-null object
HouseStyle
```

- Investigate missing data
 - Yellow color

```
sns.heatmap(df.isnull(), cbar=False, yticklabels=False, cmap='viridis')
```


lotfrontage
Alley
Alley
Utilities
Neighborhood
BldgType
OverallCond
RoofStyle
Exterior2nd

- Increase the figure size for better quality
- Try different colors

```
plt.subplots(figsize=(10,10))
sns.heatmap(df.isnull(), cbar=False, yticklabels=False, cmap='plasma')
```


- What are your observations?
- Some features has many missing values
 - Should we keep them?
- Let us remove features with too many missing data

Remove features with 50% or less missing data

Code to check which features were dropped

```
Features dropped:

Id
Alley
PoolQC
Fence
MiscFeature
```

Replot heatmap to check missing values

```
plt.subplots(figsize=(10,10))
sns.heatmap(df.isnull(), cbar=False, yticklabels=False, cmap='viridis')
```


- Study the House sales distribution
 - Seaborn provides a nice histogram plot function
 - displot

```
print(df['SalePrice'].describe())
plt.figure(figsize=(10, 10))
sns.distplot(df['SalePrice'], color='r', bins=100)
```

```
1460.000000
count
         180921.195890
mean
std
        79442,502883
min
         34900.000000
25%
         129975.000000
50%
         163000.000000
75%
         214000.000000
         755000,000000
max
Name: SalePrice, dtype: float64
```


- Data contains both Numerical and Categorical data
- We will explore both types in the next slides

- Numerical data exploration
- First, we need to filter the data based on their type
 - int and float

```
df_num = df.select_dtypes(include = ['float64', 'int64'])
```

- New dataframe with only numeric type
- Check how many features were retrieved.

Explore all the features using histograms

```
1 df_num.hist(figsize=(20, 20), bins=50, xlabelsize=8, ylabelsize=8)
```


- Which features histograms shares similar distribution as Sales ??
 - e.g. 1stFlrSF feature

- Next study correlation between features and Sales Price
 - Focus on high correlation with > 0.5 score

```
df_num_corr = df_num.corr()['SalePrice']
selectedFeatures=df_num_corr[abs(df_num_corr)>0.5].sort_values(ascending=False)
print(selectedFeatures)
```

```
SalePrice
               1.000000
OverallQual
               0.790982
GrLivArea
               0.708624
GarageCars
               0.640409
GarageArea
               0.623431
TotalBsmtSF
               0.613581
1stFlrSF
               0.605852
FullBath
               0.560664
TotRmsAbvGrd 0.533723
YearBuilt
            0.522897
YearRemodAdd
              0.507101
Name: SalePrice, dtype: float64
```

- Do you think correlation is effected by outliers?
 - Make a scatter plot to observe the relationships

Break

- Plot all features scatter plot
 - pairplot

```
for i in range(0,len(df_num.columns),5):
    | sns.pairplot(data=df_num,x_vars=df_num.columns[i:i+5], y_vars=['SalePrice'])
```

check if our correlated values have a linear relationship to the Sale Price.

- Plotting all the numerical features in a seaborn pairplot will be hard to interpret.
 - Heatmap

```
1 corr = df_num.corr()
2 plt.figure(figsize=(24,20))
3 sns.heatmap(corr, annot=True)
```

-1.00

-0.75

-0.50

-0.25

- 0 00

- Even this heatmap is difficult to interpret
- Some optimization will help!!

```
corr = df_num.corr()
mask = np.triu(np.ones_like(corr, dtype=bool))
plt.figure(figsize=(24, 20))
sns.heatmap(corr[(corr>=0.5)|(corr<=-0.5)],
mask=mask,
annot=True,
annot_kws={'size':8},
vmin=-1,
ymax=1)</pre>
```

- See the heatmap and state your observations?
 - There is a strong negative correlation between BsmtUnfSF and BsmtFinSF2
 - Others?

Can we decrease the number of features based on our previous observations?

- Let us look at some categorical features of our dataset and see if we can find some insight in them.
 - Consider (BsmtExposure) feature
- Use boxplot

```
1 sns.boxplot(x='BsmtExposure', y='SalePrice', data=df)
```


Check Sales Condition feature?

Exercise

Iris Dataset

Iris dataset

- Introduced by the British statistician / biologist Ronald Fisher in his 1936
- It is a multi-class classification problem.

Number of Instances:	150	Area:	Life
Number of Attributes:	4	Date Donated	1988-07-01
Missing Values?	No	Number of Web Hits:	4457610

https://archive.ics.uci.edu/ml/datasets/Iris

Iris dataset (cont'd)

- Balanced dataset
- 150 observations
- 4 numeric variables
 - Sepal length in cm
 - Sepal width in cm
 - Petal length in cm
 - Petal width in cm
- 1 target variable
 - Class (Iris Setosa, Iris Versicolour, Iris Virginica)

Iris dataset (cont'd)

No need to download it.

https://scikit-learn.org/stable/datasets/toy_dataset.html

<pre>load_boston(*[, return_X_y])</pre>	DEPRECATED: load_boston is deprecated in 1.0 and will be removed in 1.2.
<pre>load_iris(* [, return_X_y, as_frame])</pre>	Load and return the iris dataset (classification).
<pre>load_diabetes(* [, return_X_y, as_frame])</pre>	Load and return the diabetes dataset (regression).
<pre>load_digits(* [, n_class, return_X_y, as_frame])</pre>	Load and return the digits dataset (classification).
<pre>load_linnerud(* [, return_X_y, as_frame])</pre>	Load and return the physical exercise Linnerud dataset.
load_wine(* [, return_X_y, as_frame])	Load and return the wine dataset (classification).
<pre>load_breast_cancer(* [, return_X_y, as_frame])</pre>	Load and return the breast cancer wisconsin dataset (classification).

Iris dataset (cont'd)

```
from sklearn.datasets import load_iris
iris_dataset = load_iris()
```

return a **Dictionary** like object

Returns

data: ~sklearn.utils.Bunch
Dictionary-like object, with the following attributes.

Returns

df: pandas.DataFrame

Tabular data, possibly with some preprocessing applied.

sns.load_dataset("iris")

Iris data Vs. Real data

Exercise

Perform EDA on Iris dataset by doing:

- Descriptive statistics
- Removing duplicate data entries
- Compare between various species based on petal length and width.
 - Write your data insights in a notebook text
- Boxplot petal width distribution over species
 - Write your data insights in a notebook text