Design Optimization of a Linear Actuator

DSE311 Project Presentation IISER Bhopal

Mohammad Saifullah Khan, Rahul Kulkarni, Rahul Raj

Motivation

- The linear actuator is a critical component in various mechanical systems, requiring efficient performance under cost and space constraints.
- This project is motivated by the need to optimize its design to minimize manufacturing costs while satisfying mechanical strength and functional requirements using advanced optimization techniques.

Problem Statement

 Minimize the manufacturing cost of a drive screw linear actuator by optimizing its geometric and discrete design variables, subject to mechanical, spatial, and functional constraints.

Challenges

- Nonlinear Constraints: Numerous mechanical and operational constraints must be satisfied simultaneously.
- **Sensitivity to Assumptions:** Results heavily depend on added constraints and design assumptions.
- Balancing Robustness and Feasibility.
- Non-Standard Outputs: Optimal solutions may yield impractical, non-manufacturable dimensions.

Approach

The report uses three optimization approaches: Sequential Quadratic Programming (SQP) combined with Branch and Bound, Genetic Algorithms, and Differential Evolution. All methods were implemented in python and MATLAB and yielded consistent results.

Assumptions

- The material of the drive screw is stainless steel.
- The shape of the drive screw is pre-defined.
- Threads are standard unified threads.
- Assembly force is concentrated at the midpoint of a lead screw.
- Frictional forces are only assumed to exist between threads and load nut, negligible everywhere else.
- The material cost coefficient Cm to be unity (for simplicity).

Assumptions

Figure: Schematic of Drive Screw in linear actuator

Design Variables

- $d_1 = \text{Diameter of shaft/gear interface}$.
- d_2 = Diameter of threaded portion.
- d_3 = Diameters of the lower bearing surface.
- N_s = Number of teeth of the pinion gear.
- N_m = Number of teeth on the drive gear.
- N_T = Number of threads per inch.
- L_2, L_3 = Lengths of a screw having diameters as d_2, d_3 respectively.

Design Parameters

- $T_m = \text{Motor torque} = 2 \text{ inch-ounce}$
- $S_m = \text{Motor speed} = 300 \text{ rpm}$
- $\tau_{all} = \text{Maximum allowable shear stress} = 22,000 \text{ psi}$
- $\sigma_{all} = Maximum$ allowable bending stress = 20,000 psi
- F_a = Force required to assembly drive screw into the assembly = 6lb
- K = Stress concentration factor = 3
- W = Drive screw load = 3lb
- $\mu = \text{friction coefficient} = 0.35$
- $L_1 = \text{Length of gear/drive screw interface} = 0.405 \text{ inch}$
- α_n = Thread angle = 60°
- S = Linear cycle rate = 0.0583 inch/sec

Physics Constraints

• Constraint for Bending stress due to assembly force F_a :

$$\frac{M}{I}\frac{d_1}{2} \leq \sigma_{all}$$

Where, M = bending moment due to assembly force $= F_a \times L/2$. L = Total length of screw $= L_1 + L_2 + L_3$

• Shear stress due to torsion:

$$\frac{\mathit{KT}(\mathit{d}_1/2)}{\mathit{J}} \leq \tau_{\mathit{all}}$$

Where;

 $T = Applied torque = C_2 \times T_m \times N_s/N_m$

 $C_2 = \frac{1}{16} (\text{lb/ounce}) \text{ i.e (Conversion factor)}$

K =Stress concentration factor.

 $J = \text{Polar moment of inertia } (\pi d_1^4/32).$

Physics Constraints

No slip condition:

$$\left(\frac{N_1 \times d_2}{2}\right) \left[\frac{\pi \times \mu \times d_2 + N_T^{-1} \times \cos(\alpha_n)}{\pi \times d_2 \cos(\alpha_n) - N_T^{-1} \times \mu}\right] \leq T$$

The specified linear rate of oscillation:

$$C_4 \times N_m S_m / (N_s N_T) \leq S$$

$$C_4 = 60^{-1}$$
 (no. of threads/revolution) (min/S)

Upper bound for threads per inch due to mass production:

$$N_T \leq 24$$

 Limit on the number of teeth on gears to avoid interference:

$$N_m \geq 8$$
 and $N_s \leq 52$

Space constraints & packaging consideration:

$$8.75 \le L_1 + L_2 + L_3 \le 10.0$$

 $7.023 \le L_2 \le 7.523$
 $1.1525 \le L_3 \le 1.6525$
 $d_2 \le 0.625$

Optimization Problem

Minimize
$$\mathcal{F} = C_m imes \frac{\pi}{4} imes (d_1^2 imes L_1 + d_2^2 imes L_2 + d_3^2 imes L_3)$$

Optimization Problem

Subject to:

$$\begin{array}{l} \mathbf{g}_1: 38.88 + 96L_2 + 96L_3 - \pi \sigma_{\mathit{all}} d_1^3 \leq 0 \\ \mathbf{g}_2: 6(N_s/N_m) - \pi \tau_{\mathit{all}} d_1^3 \leq 0 \\ \mathbf{g}_3: 8.345 - L_2 - L_3 \leq 0 \\ \mathbf{g}_4: -9.595 + L_2 + L_3 \leq 0 \end{array}$$

$$g_5: L_2 - 7.523 \le 0$$

 $g_6: 7.023 - L_2 \le 0$

$$g_7: L_3 - 1.6525 \le 0$$

 $g_8: 1.1525 - L_3 \le 0$

$$g_9: d_2 - 0.625 \le 0$$

$$g_{10}:5(N_m/N_s)-0.0583N_T\leq 0$$

Optimization Problem

$$\begin{split} \mathbf{g}_{11} &: (1.5d_2) \left[\frac{\pi \mu d_2 + 0.5N_T^{-1}}{0.5\pi d_2 - 0.35N_T^{-1}} \right] - 0.125 (N_s/N_m) \leq 0 \\ \mathbf{g}_{12} &: N_T - 24 \leq 0 \\ \mathbf{g}_{13} &: 8 - N_m \leq 0 \\ \mathbf{g}_{14} &: N_s - 52 \leq 0 \end{split}$$

Optimization Methods

- SQP + Branch and Bound
 - Efficiently solve nonlinear problems with both continuous and integer variables.
 - SQP solves a local Quadratic Programming (QP) approximation of the problem at each step.
 - Integer constraints (like gear teeth count) are handled by Branch and Bound.
 - This splits the problem into subproblems, solves them, and eliminates unpromising branches.
 - Implemented using Python.

Optimization Methods

- Genetic Algorithm
 - A population of candidate solutions evolves over generations.
 - Key operations:
 - Selection Chooses best performers.
 - Crossover Combines features of two parents.
 - Mutation Introduces random changes for diversity.
 - Good for mixed-variable optimization (continuous + discrete).
 - Implemented using MATLAB GA Toolbox.

Optimization Methods

1. Initialize Population

Create a set of random candidate solutions (vectors).

2. Mutation

For each target vector, generate a mutant vector using:

$$\mathsf{Mutant} = \mathbf{x}_a + F \cdot (\mathbf{x}_b - \mathbf{x}_c)$$

3. Crossover

Combine target and mutant vectors to form a trial vector.

4. Selection

If the trial vector performs better than the target vector, replace it.

5. Repeat

Iterate through generations until convergence.

Results

Figure: Optimal Parameters and Result Comparisons

• The problem solution converges, and the results of all three techniques used agree well with each other.

Conclusion

- Multiple optimization methods (Differential Evolution, SQP+Branch Bound, Genetic Algorithm) were applied; the choice depends on problem formulation and study goals.
- The optimized diameters are reported to three decimal places; practical manufacturing will require rounding, which may slightly increase the objective value.
- Introducing additional realistic constraints (e.g. standard machining tolerances) can ensure design variables remain manufacturable without compromising cost too heavily.