

LEAP powered by Intel® oneAPI AI Analytics Toolkit

Problem Statement: Open Innovation in Education

Team Name: C5ailabs

Team Members: Rohit Sroch, Sujith R Kumar, Mohan K Rachumallu, Shubham Jain

intel.

Problem Statement

MOOCs

(Massive Open Online Courses)

200K

Users in 2012

380M

Users in 2020

34.26%

CAGR 2022-27*

5% -10%

Completion rate

Key Challenges

Lengthy videos

Instructor Availability

Slow response from forums

No real time Q&A/Mentor

Approach

LEAP

(Learning Enhancement and Assistance Platform)

AI based

platform

All time Availability

Key Features of LEAP

Ask Question/Doubt

Conversational AI Examiner

Feedback from AI Examiner

Multilingual Support

Reference: PRNewswire, Edtechreview; holonia

High Level Architecture

LEAP: Detailed Model Architecture Diagram for Both Components

Result Summary (unique aspects of oneAPI/SYCL used)

Demo Link and Screenshots

Link: https://www.youtube.com/watch?v=CXkR5tklZm0

Demo Link and Screenshots

Demo Link and Screenshots

Screen-6 (Interactive Conversational AI Examiner provides hints and motivates a student in case of a wrong answer)

Extractive QA Model (BERT Topology) Latency/Speed-Up Comparison with IPEX and Intel® Neural Compressor

Extractive QA Model Speed Up Comparison

Fig: Latency/Speed-Up Benchmark result for our Extractive Question Answering ALBERT Model (Multilingual) on Intel® Dev Cloud machine (Intel® Xeon® Platinum 8480+ (4th Gen: Sapphire Rapids) - 224v CPUs 503GB RAM) with optimization using IPEX-FP32 and Static INT8-Quantization using Intel® Neural Compressor.

For Ask Question/Doubt Extractive QA Model

Extractive QA Model (BERT Topology) Throughput/F1 Score Comparison with IPEX and Intel® Neural Compressor

Extractive QA Model F1 Score (SQuAD-v1) Comparison

Fig: Throughput/F1 Score Benchmark result for our Extractive Question Answering ALBERT Model (Multilingual) on Intel® Dev Cloud machine (Intel® Xeon® Platinum 8480+ (4th Gen: Sapphire Rapids) - 224v CPUs 503GB RAM) with optimization using IPEX-FP32 and Static INT8-Quantization using Intel® Neural Compressor. Also, the model (https://huggingface.co/ai4bharat/indic-bert) was fine-tuned on SQuAD-v1 dataset.

For Ask Question/Doubt Extractive QA Model

Scikit-Learn (Base) vs Intel® Extension for Scikit-Learn

Fig: Benchmark results for **TFIDFVectorizer** Embedding model during training and inference on Intel® Dev Cloud machine (Intel® Xeon® Platinum 8480+ (4th Gen: Sapphire Rapids) - 224v CPUs 503GB RAM). Please Note that we don't see much of a difference may be because we used a tiny dataset.

GitHub Link (Codes should be public and available after hackathon also)

https://github.com/rohitc5/intel-oneAPI

Step-by-Step Code Execution Instructions:

Quick Setup Option

- Make sure you have already installed docker (https://docs.docker.com/get-docker/) and docker-compose (https://docs.docker.com/compose/)
- · Clone the Repository

\$ git clone https://github.com/rohitc5/intel-oneAPI/
\$ cd intel-oneAPI

 Start the LEAP RESTFul Service to consume both components (Ask Question/Doubt and Interactive Conversational Al Examiner) as a REST API. Also Start the webapp demo build using streamlit.

copy the dataset \$ cp -r ./dataset webapp/ # build using docker compose \$ docker-compose build # start the services \$ docker-compose up

. Go to http://localhost:8502

Model Checkpoint Release

https://huggingface.co/rohitsroch

THANK YOU