Indian Blood Group System

Number of antigens 4

Low prevalence In^a

High prevalence In^b, INFI, INJA

Terminology

ISBT symbol (number) IN (023) CD number CD44

Obsolete name ISBT Collection 203

History Named because the first In(a+) people were from

India.

Expression

Other blood cells Neutrophils, lymphocytes, monocytes

Tissues Brain, breast, colon epithelium, gastric, heart, kidney,

liver, lung, placenta, skin, spleen, thymus, fibroblasts

Gene

Chromosome 11p13Name IN (CD44)

Organization At least 19 exons distributed over 50 kbp of gDNA

(10 exons are variable). The hemopoietic isoform

uses exons 1 to 5, 15 to 17, and 19

Product CD44, Indian glycoprotein, Hermes antigen

Database accession numbers

GenBank M59040 (mRNA); NG_008937 (gene)

Entrez Gene ID 960

Molecular basis of Indian phenotypes

The reference allele, *IN*02* or *IN*B* (Accession number M59040) encodes In^b (IN2), IN3, IN4. Nucleotide differences from this reference allele, and the amino acids affected, are given.

Allele encodes	Allele name	Exon	Nucleotide	Amino acid	Ethnicity (prevalence)
In(a+b-) or IN:1,-2	IN*01 or IN*A	2 3 6	137G>C 326A>C 716G>A	Arg46Pro Tyr109Ser Gly239Glu	Arabs, Iranians, South Asian Indians (Several), Asians, Blacks, Caucasians (Rare)
INFI- or IN:-3	IN*0203	3	255C>G	His85Gln	Moroccan (Rare)
INJA- or IN:-4	IN*0204	5	488C>A	Thr163Lys [^]	Pakistani (Rare)

^{^=} Originally reported, incorrectly, as Thr163Arg1.

Molecular basis of IN:-1,-2 phenotype (suppression)

KLF1 encodes erythroid Krüppel-like factor (EKLF). Several nucleotide changes in this gene are responsible for the dominant Lu(a–b–) phenotype, which is also known as the In(lu) phenotype (see Lutheran blood group system). The *KLF1* gene, which is located at 19p13.1–p13.12, has 3 exons; the initiation codon is in exon 1, and the stop codon is in exon 3. GenBank accession numbers are U37106 (gene) and NM_006563 (mRNA). Differences from the *KLF1*01* reference allele (Accession number NM_006563), and amino acid affected, are given.

Allele name	Exon	Nucleotide	Amino acid	Ethnicity (Prevalence)
KLF1*BGM10	3	973G>A^	Glu325Lys	Rare

^{^=} This change caused dyserythropoietic anemia and suppression of CO, IN, and LW antigens^{1,2}.

Amino acid sequence²

MDKFWWHAAW	GLCLVPLSLA	QIDLNITCRF	AGVFHVEKNG	RYSISRTEAA	50
DLCKAFNSTL	PTMAQMEKAL	SIGFETCRYG	FIEGHVVIPR	IHPNSICAAN	100
NTGVYILTYN	TSQYDTYCFN	ASAPPEEDCT	SVTDLPNAFD	GPITITIVNR	150
DGTRYVQKGE	YRTNPEDIYP	SNPTDDDVSS	GSSSERSSTS	GGYIFYTFST	200
VHPIPDEDSP	WITDSTDRIP	ATRDQDTFHP	SGGSHTTHES	ESDGHSHGSQ	250
EGGANTTSGP	IRTPQIPE <u>WL</u>	<u> IILASLLALA</u>	<u>LILAVCIAV</u> N	SRRRCGQKKK	300
LVINSGNGAV	EDRKPSGLNG	EASKSQEMVH	LVNKESSETP	DQFMTADETR	350
NLQNVDMKIG	V				361

Signal peptide: 20 amino acid residues; which are sometimes cleaved.

Carrier molecule^{2,3}

A single pass (type 1) membrane glycoprotein.

 $M_{\rm r}$ (SDS-PAGE) Reduced 80,000

CHO: N-glycan 6 sites

CHO: O-glycan Depends on isoform

Chondroitin sulfate 4 sites

Cysteine residues Depends on isoform

Copies per RBC 2,000 to 5,000 on mature RBCs

Two amino acid domains have been identified as being important in hyaluronate binding: residues 18 to 26, and 130 to 142.

Function

CD44 is an adhesion molecule in lymphocytes, monocytes, and other tumor cells, binds to hyaluronate and other components of the extracellular matrix, and is also involved in immune stimulation and signaling between cells. Its function in RBCs is not known.

Disease association

In(a-b-) individuals with CDA may also be Co(a-b-)⁴, and have weak expression of LW antigens.

Joint fluid from patients with inflammatory synovitis has higher than normal levels of soluble CD44³. Serum CD44 is elevated in some patients with lymphoma.

Phenotypes (% occurrence)

Phenotype	Caucasians & Blacks	Indians (South Asians)	Iranians & Arabs
In(a+b-)	Rare	Rare	Rare
In(a-b+)	99.9	96	90
In(a+b+)	<0.1	4	10

Comments

CD44 is present in reduced (variable) amounts in dominant type Lu(a–b–) RBCs, but is expressed normally in other cells from these people.

Ser-Gly is a potential chondroitin sulfate linkage site. After Thr202, various sequences can be generated by alternative splicing of at least 10 exons. Different splicing events occur during different stages of hemopoiesis. In mature RBCs, nine exons are usually encoded. A protein of 361 amino acids is the predominant type in the RBC membrane.

Indian

References

- Poole, J., et al., 2007. Correction to "Two missense mutations in the CD44 gene encode two new antigens of the Indian blood group system". Transfusion 47, 1306–1311. Transfusion 47, 1741.
- ² Spring, F.A., et al., 1988. The In^a and In^b blood group antigens are located on a glycoprotein of 80,000 MW (the CDw44 glycoprotein) whose expression is influenced by the *In(Lu)* gene. Immunology 64, 37–43.
- Moulds, J.M., 1994. Association of blood group antigens with immunologically important proteins. In: Garratty, G. (Ed.), Immunobiology of Transfusion Medicine. Marcel Dekker, Inc., New York, NY, pp. 273–297.
- ⁴ Parsons, S.F., et al., 1994. A novel form of congenital dyserythropoietic anemia associated with deficiency of erythroid CD44 and a unique blood group phenotype [In(a-b-), Co(a-b-)]. Blood 83, 860–868.

Ina Antigen

Terminology

ISBT symbol (number) IN1 (023001 or 23.1)

Obsolete name 203001

History "In" is an abbreviation of Indian, in honor of the

ethnic group in which this antigen was first found.

Occurrence

Caucasians 0.1%
Asians and Blacks 0.1%
Indians (South Asians) 4%
Iranians 10.6%
Arabs 11.8%

Antithetical antigen

In^b (**IN2**)

Expression

Cord RBCs Weak

Altered Weak on RBCs from pregnant women

Molecular basis associated with Ina antigen1

Amino acid Pro46

Nucleotide C at bp 137 in exon 2

Effect of enzymes and chemicals on Ina antigen on intact RBCs

Ficin/Papain Sensitive Trypsin Sensitive α-Chymotrypsin Sensitive

DTT 200 mM/50 mM Sensitive/sensitive (thus sensitive to WARMTM and

ZZAP)

Acid Resistant

In vitro characteristics of alloanti-Ina

Immunoglobulin class IgG; IgM Optimal technique IAT; RT

Clinical significance of alloanti-Ina

Transfusion reaction Decreased cell survival

HDFN Positive DAT; no clinical HDFN

Comments

Anti-In^a can be naturally-occurring.

Reference

¹ Telen, M.J., et al., 1996. A blood group-related polymorphism of CD44 abolishes a hyaluronan-binding consensus sequence without preventing hyaluronan binding. J Biol Chem 271, 7147–7153.

In^b Antigen

Terminology

ISBT symbol (number) IN2 (023002 or 23.2)

Obsolete names 203002; Salis

History Named when its antithetical relationship to In^a was

identified.

Occurrence

Caucasians 99% Indians (South Asians) 96%

Antithetical antigen

In^a (**IN1**)

Expression

Cord RBCs Weak

Altered Weak on dominant Lu(a-b-) RBCs

Weak on RBCs from pregnant women

Indian

Molecular basis associated with Inb antigen1

Amino acid Arg46

Nucleotide G at bp 137 in exon 2

Effect of enzymes and chemicals on Inb antigen on intact RBCs

DTT 200 mM/50 mM Sensitive/sensitive (thus sensitive to WARMTM and

ZZAP)

Acid Resistant

In vitro characteristics of alloanti-Inb

Immunoglobulin class IgG Optimal technique IAT

Clinical significance of alloanti-Inb

Transfusion reaction No to severe/delayed and hemolytic²
HDFN Positive DAT, but no clinical HDFN³

References

- ¹ Telen, M.J., et al., 1996. A blood group-related polymorphism of CD44 abolishes a hyaluronan-binding consensus sequence without preventing hyaluronan binding. J Biol Chem 271, 7147–7153.
- ² Joshi, S.R., 1992. Immediate haemolytic transfusion reaction due to anti-In^b. Vox Sang 63, 232–233.
- ³ Longster, G.H., et al., 1981. Four further examples of anti-In^b detected during pregnancy. Clin Lab Haemat 3, 351–356.

INFI Antigen

Terminology

ISBT symbol (number) IN3 (023003 or 23.3)

History Reported and named in 2006, "IN" from the Indian

system and "FI" from the INFI- proband's name.

Occurrence

The three INFI- probands (found as a result of anti-INFI in pregnancy) were from Morocco.

Expression

Cord RBCs Weak

Altered Weak on dominant Lu(a-b-) RBCs

Weak on RBCs from pregnant women

Molecular basis associated with INFI antigen^{1,2}

Amino acid His85

Nucleotide C at bp 255 in exon 3 INFI- Gln85 and G at bp 255

Effect of enzymes and chemicals on INFI antigen on intact RBCs

DTT 200 mM/50 mM Sensitive/sensitive (thus sensitive to WARMTM and

ZZAP)

Acid Resistant

In vitro characteristics of alloanti-INFI

Immunoglobulin class IgG Optimal technique IAT

Clinical significance of alloanti-INFI

Transfusion reaction No data because anti-INFI is rare^{1,2}

HDFN The baby of a woman with anti-INFI had mild

HDFN

Comments

INFI- RBCs have a weaker than normal expression of Inb.

References

¹ Poole, J., et al., 2007. Two missense mutations in the CD44 gene encode two new antigens of the Indian blood group system. Transfusion 47, 1306–1311.

² Poole, J., et al., 2007. Correction to Two missense mutations in the CD44 gene encode two new antigens of the Indian blood group system. Transfusion 47, 1306–1311. Transfusion 47, 1741.

INJA Antigen

Terminology

ISBT symbol (number) IN4 (023004 or 23.4)

History Reported and named in 2006, "IN" from the Indian

system and "JA" from the INJA- proband's name.

Occurrence

The two INJA- probands (both found as a result of anti-INJA in pregnancy) were from Pakistan.

Expression

Cord RBCs Weak

Altered Weak on dominant Lu(a–b–) RBCs

Weak on RBCs from pregnant women

Molecular basis associated with INJA antigen^{1,2}

Amino acid Thr163

Nucleotide C at bp 488 in exon 5

INJA- Lys163 (not Arg as originally reported) and A at bp 488

Effect of enzymes and chemicals on INJA antigen on intact RBCs

Ficin/Papain Sensitive Trypsin Sensitive α -Chymotrypsin Sensitive

DTT 200 mM/50 mM Sensitive/sensitive (thus sensitive to WARMTM and

ZZAP)

Acid Resistant

In vitro characteristics of alloanti-INJA

Immunoglobulin class IgG Optimal technique IAT

Clinical significance of alloanti-INJA

No data because only two examples of anti-INJA have been described.

References

¹ Poole, J., et al., 2007. Two missense mutations in the CD44 gene encode two new antigens of the Indian blood group system. Transfusion 47, 1306–1311.

² Poole, J., et al., 2007. Correction to "Two missense mutations in the CD44 gene encode two new antigens of the Indian blood group system". Transfusion 47, 1306–1311. Transfusion 47, 1741.