Distribution of effect sizes Γ , shape = 1.0 gaussian Γ , shape = 0.5 $Pr(|\gamma| >= \hat{\gamma}) = 0.75$ $Pr(|\gamma| >= \hat{\gamma}) = 0.75$ $Pr(|\gamma| >= \hat{\gamma}) = 0.75$ $\mu = 0.00025$ $\mu = 0.005$ $\mu = 0.001$ 0.0 -0.2 -0.4 -0.6 -0.8 $Pr(|\gamma| >= \hat{\gamma}) = 0.5$ $Pr(|\gamma| >= \hat{\gamma}) = 0.5$ $Pr(|\gamma| >= \hat{\gamma}) = 0.5$ $\mu = 0.00025$ $\mu = 0.001$ $\mu = 0.005$ 0.0 -0.2 -0.4 -0.6 -0.8 $Pr(|\gamma| >= \hat{\gamma}) = 0.25$ $Pr(|\gamma| >= \hat{\gamma}) = 0.25$ $Pr(|\gamma| >= \hat{\gamma}) = 0.25$ $\mu = 0.005$ $\mu = 0.00025$ $\mu = 0.001$ 0.0 -0.2 -0.4 -0.6 -0.8 $Pr(|\gamma| >= \hat{\gamma}) = 0.1$ $Pr(|\gamma| >= \hat{\gamma}) = 0.1$ $Pr(|\gamma| >= \hat{\gamma}) = 0.1$ $\mu = 0.00025$ $\mu = 0.001$ $\mu = 0.005$

Time since optimum shift (units of N generations)

Mean Tajima's D in central window