Homework 12 (Solutions)

Question 1. (Prob 40, Page 583) Let R_1 and R_2 be the "divides" and "is a multiple of" relations on the set of all positive integers, respectively. That is, $R_1 = \{(a,b)|a \text{ divides } b\}$ and $R_2 = \{(a,b)|a \text{ is a multiple of } b\}$. Find

- a) $R_1 \cup R_2$.
- b) $R_1 \cap R_2$.
- c) $R_1 R_2$.
- d) $R_2 R_1$.
- e) $R_1 \oplus R_2$.

Ans:

a)
$$R_1 \cup R_2 = \{(a,b)|a \text{ divides } b \text{ or } a \text{ is a multiple of } b\}$$

$$= \{(a,b)|a \text{ divides } b \text{ or } b \text{ divides } a\}.$$

b)
$$R_1 \cap R_2 = \{(a,b)|a \text{ divides } b \text{ and } a \text{ is a multiple of } b\}$$
$$= \{(a,b)|a \text{ divides } b \text{ and } b \text{ divides } a\}$$
$$= \{(a,b)|a = \pm b \text{ and } a \neq 0\}.$$

c)
$$R_1 - R_2 = \{(a, b) | a \text{ divides } b \text{ and } a \text{ is not a multiple of } b\}$$
$$= \{(a, b) | a \text{ divides } b \text{ and } b \text{ does not divide } a\}$$
$$= \{(a, b) | a \text{ divides } b \text{ and } a \neq \pm b\}.$$

d)
$$R_2 - R_1 = \{(a, b) | a \text{ is a multiple of } b \text{ and } a \text{ does not divide } b\}$$
$$= \{(a, b) | b \text{ divides } a \text{ and } a \neq \pm b\}.$$

e)
$$R_1 \oplus R_2 = \{(a,b) | (a \ \ \text{divides} \ \ b \ \text{or} \ b \ \text{divides} \ a) \ \text{and} \ a \neq \pm b\}.$$

Question 2. (Prob 41, Page 583) Let R_1 and R_2 be the "congruent modulo 3" and the "congruent modulo 4" relations, respectively, on the set of integers. That is, $R_1 = \{(a,b)|a \equiv b \pmod{3}\}$ and $R_2 = \{(a,b)|a \equiv b \pmod{4}\}$. Find

- a) $R_1 \cup R_2$.
- b) $R_1 \cap R_2$.

```
c) R_1 - R_2.
```

d)
$$R_2 - R_1$$
.

$$e)$$
 $R_1 \oplus R_2$.

Ans:

```
a) R_1 \cup R_2 = \{(a,b)|a-b \equiv 0, 3, 4, 6, 8 \text{ or } 9 \pmod{12}\}.
```

b)
$$R_1 \cap R_2 = \{(a, b) | a \equiv b \pmod{12} \}.$$

c)
$$R_1 - R_2 = \{(a, b) | a - b \equiv 3, 6 \text{ or } 9 \pmod{12} \}.$$

d)
$$R_2 - R_1 = \{(a, b) | a - b \equiv 4 \text{ or } 8 \pmod{12} \}.$$

e)
$$R_1 \oplus R_2 = \{(a,b)|a-b \equiv 3,4,6,8 \text{ or } 9 \pmod{12}\}.$$

Question 3. (Prob 42, Page 583) List the 16 different relations on the set $\{0,1\}$.

Ans: The possible ordered pairs are $\{(0,0),(0,1),(1,0),(1,1)\}$. Here are the 16 different relations on the set $\{0,1\}$:

- *φ*
- $\{(0,0)\}$
- $\{(0,1)\}$
- {(1,0)}
- {(1,1)}
- $\{(0,0),(0,1)\}$
- $\{(0,0),(1,0)\}$
- $\{(0,0),(1,1)\}$
- $\{(0,1),(1,0)\}$
- $\{(0,1),(1,1)\}$
- $\{(1,0),(1,1)\}$
- $\{(0,0),(0,1),(1,0)\}$
- $\{(0,0),(0,1),(1,1)\}$
- $\bullet \ \{(0,0),\!(1,\!0),\!(1,\!1)\}$
- $\{(0,1),(1,0),(1,1)\}$
- $\{(0,0),(1,0),(0,1),(1,1)\}.$

Question 4. (Prob 43, Page 583) How many of the 16 different relations on $\{0,1\}$ contain the pair $\{0,1\}$?

Ans: The following 8 relations contain the pair (0,1):

- {(0,1)}
- $\{(0,0),(0,1)\}$
- {(0,1),(1,0)}
- $\{(0,1),(1,1)\}$
- $\{(0,0),(0,1),(1,0)\}$
- $\{(0,0),(0,1),(1,1)\}$
- $\{(0,1),(1,0),(1,1)\}$
- $\{(0,0),(1,0),(0,1),(1,1)\}.$

Question 5. (Prob 44, Page 583) Which of the 16 relations on $\{0,1\}$, which you listed in previos Exercise, are

- a) reflexive?
- b) irreflexive?
- c) symmetric?
- d) antisymmetric?
- e) asymmetric?
- f) transitive?

Ans:

- a) reflexive: $\{(0,0),(0,1)\},\{(0,0),(0,1),(1,1)\},\{(0,0),(1,0),(1,1)\},\{(0,0),(1,0),(0,1),(1,1)\}.$
- b) irreflexive: ϕ , $\{(0,1)\}$, $\{(1,0)\}$, $\{(0,1),(1,0)\}$.
- c) symmetric: ϕ , $\{(0,0)\}$, $\{(1,1)\}$, $\{(0,0),(1,1)\}$, $\{(0,1),(1,0)\}$, $\{(0,0),(0,1),(1,0)\}$, $\{(0,1),(1,0),(1,1)\}$, $\{(0,0),(1,0),(0,1),(1,1)\}$.
- d) antisymmetric: ϕ , $\{(0,0)\}$, $\{(0,1)\}$, $\{(1,0)\}$, $\{(1,1)\}$, $\{(0,0),(0,1)\}$, $\{(0,0),(1,0)\}$, $\{(0,0),(1,1)\}$, $\{(0,1),(1,1)\}$, $\{(1,0),(1,1)\}$, $\{(0,0),(0,1),(1,1)\}$, $\{(0,0),(1,0),(1,1)\}$.
- e) asymmetric: ϕ , $\{(0,1)\}$, $\{(1,0)\}$.
- f) transitive: ϕ , $\{(0,0)\}$, $\{(0,1)\}$, $\{(1,0)\}$, $\{(1,1)\}$, $\{(0,0),(0,1)\}$, $\{(0,0),(1,0)\}$, $\{(0,0),(1,1)\}$, $\{(0,1),(1,1)\}$, $\{(1,0),(1,1)\}$, $\{(0,0),(0,1),(1,1)\}$, $\{(0,0),(1,0),(1,1)\}$, $\{(0,0),(1$

Question 6. (Prob 9, Page 590) The 5- tuples in a 5-ary relation represent these attributes of all people in the United States: name, Social Security number, street address, city, state.

- a) Determine a primary key for this relation.
- b) Under what conditions would (name, street address) be a composite key?
- c) Under what conditions would (name, street address, city) be a composite key?

Ans:

- a) Social security number.
- b) No two people with the same name live at the same street address (which is likely to occur).
- c) No two people with the same name live at the same street address in the same city.

Question 7. (*Prob 29*, *Page 590*)

a) What are the operations that correspond to the query expressed using this SQL statement? SELECT Supplier

 $FROM\ Part_needs$

WHERE $1000 \le Part_number \le 5000$

b) What is the output of this query given the database in Table 9 as input?

Ans:

- a) $P_1(S_C(R))$ with $C = 1000 \leq Part_number \leq 5000$. Here R is Part_needs data set.
- b) Suplier- 23,31,33.

Question 8. (Prob 13, Page 596) Let R be the relation represented by the matrix

$$M_R = \left[egin{array}{ccc} 0 & 1 & 0 \ 1 & 1 & 0 \ 1 & 0 & 1 \end{array}
ight]$$

Find the matrix representing

- a) R^{-1}
- $b) \ \overline{R}$
- $c) R^2$.

Ans:

a)
$$M_{R^{-1}} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = M_R.$$

b)
$$M_{\overline{R}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
.

$$\text{c)} \ \ M_{R^2} = M_R \odot M_R = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right] \odot \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right].$$

Question 9. (Prob 14, Page 596) Let R_1 and R_2 be relations on a set A represented by the matrices

$$M_{R_1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 and $M_{R_2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Find the matrices that represent

- a) $R_1 \cup R_2$.
- b) $R_1 \cap R_2$.
- c) $R_2 \odot R_1$.
- d) $R_1 \odot R_1$.
- e) $R_1 \oplus R_2$.

Ans:

a)
$$M_{R_1 \cup R_2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = M_{R_1} \vee M_{R_2}.$$

b)
$$M_{R_1 \cap R_2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = M_{R_1} \wedge M_{R_2}.$$

c)
$$M_{R_2 \odot R_1} = M_{R_1} \odot M_{R_2} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
.

d)
$$M_{R_1 \odot R_1} = M_{R_1} \odot M_{R_1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
.

e)
$$M_{R_1 \oplus R_2} = M_{R_1} \oplus M_{R_2} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
.

Question 10. (Prob 22, Page 597) Draw the directed graph that represents the relation

$$\{(a,a),(a,b),(b,c),(c,b),(c,d),(d,a),(d,b)\}.$$

Ans:

Question 11. (Prob 26, Page 597) List the ordered pairs in the relations represented by the directed graph

Ans: Ordered pairs in the relations are:

$$\{(a,a),(a,b),(b,a),(c,c),(b,b),(c,a),(c,d),(d,d)\}.$$