Linear Regression using Stats model

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels
import statsmodels.api as sm
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression
```

Step1: Reading the data

```
In [2]: data = pd.read_csv("advertising.csv")
    data.head()
```

```
TV Radio Newspaper Sales
Out[2]:
            230.1
                      37.8
                                   69.2
                                          22.1
              44.5
                      39.3
                                   45.1
                                          10.4
              17.2
                      45.9
                                   69.3
                                          12.0
          3 151.5
                                   58.5
                      41.3
                                          16.5
          4 180.8
                      10.8
                                   58.4
                                          17.9
```

```
In [3]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	TV	200 non-null	float64
1	Radio	200 non-null	float64
2	Newspaper	200 non-null	float64
3	Sales	200 non-null	float64
44	Cl+C1	(4)	

dtypes: float64(4)
memory usage: 6.4 KB

In [4]: data.describe()

ut[4]:		TV	Radio	Newspaper	Sales
	count	200.000000	200.000000	200.000000	200.000000
	mean	147.042500	23.264000	30.554000	15.130500
	std	85.854236	14.846809	21.778621	5.283892
	min	0.700000	0.000000	0.300000	1.600000
	25%	74.375000	9.975000	12.750000	11.000000
	50%	149.750000	22.900000	25.750000	16.000000

			TV	Radio	Newspaper	Sales
	75%	218.	825000	36.525000	45.100000	19.050000
	max	296.4	400000	49.600000	114.000000	27.000000
5]:	data	corr	•()			
]:			TV	/ Radio	Newspaper	Sales
		TV	1.000000	0.054809	0.056648	0.901208
	R	adio	0.054809	1.000000	0.354104	0.349631

0.157960 1.000000

Step 2: Training the model

Sales 0.901208 0.349631

```
In [6]: # Create X and Y
X = data['TV'] # Capital X matches documentation of libraries like scikit-learn, Ten
y = data['Sales']

In [7]: # train and test split
X_train, X_test, y_train, y_test = train_test_split(X,y, train_size=0.7, random_stat
# with random_state You'll always get the same 70% training and 30% test data split
```

• Statsmodel library doesn't include the constant c(intercept), it only include the coefficient of the predicted variable so we will add the constant to statsmodel library explicitly to train the model because we can't exclude the constant unless we are sure that it is zero.

```
In [8]: # training the model
    X_train_sm =sm.add_constant(X_train)
    X_train_sm.head()
Out[8]: const TV
```

```
74 1.0 213.4

3 1.0 151.5

185 1.0 205.0

26 1.0 142.9

90 1.0 134.3
```

general equation is y = c + m1.X1 # the above equation for statsmodel will be y = c.X0 + m1.X1 where X0 = 1

```
In [9]: # fitting the model, Objective of OLS: Find & values that minimize the total square
lr = sm.OLS(y_train, X_train_sm)
lr_model = lr.fit()
lr_model.params
```

Out[9]: const 6.948683 TV 0.054546 dtype: float64

- Objective of OLS: Find β values that minimize the total squared error between predicted and actual values:
- OLS comes with rich statistical inference tools: p-values, R-squared, confidence intervals, Fstatistics
- OLS provides the Best Linear Unbiased Estimator (BLUE) meaning among all linear unbiased estimators, OLS has the lowest variance.
- the above values are the constant and the coefficient of TV so the equation will be Sales =
 6.91 + 0.05*TV
- This is not the actual model unless we verify from summary that it is statistically significant.

```
In [10]:
            lr_model.summary() # only Statsmodel give you such summary
                                OLS Regression Results
Out[10]:
                                                      R-squared:
                                                                     0.816
               Dep. Variable:
                                         Sales
                                          OLS
                     Model:
                                                 Adj. R-squared:
                                                                     0.814
                    Method:
                                 Least Squares
                                                      F-statistic:
                                                                     611.2
                       Date: Mon, 30 Jun 2025 Prob (F-statistic): 1.52e-52
                       Time:
                                      20:06:25
                                                 Log-Likelihood:
                                                                   -321.12
           No. Observations:
                                          140
                                                            AIC:
                                                                     646.2
                Df Residuals:
                                                            BIC:
                                                                     652.1
                                          138
                   Df Model:
            Covariance Type:
                                    nonrobust
                    coef std err
                                       t P>|t| [0.025 0.975]
           const 6.9487
                           0.385 18.068
                                          0.000
                                                  6.188
                                                          7.709
              TV 0.0545
                           0.002 24.722 0.000
                                                  0.050
                                                          0.059
                 Omnibus:
                             0.027
                                     Durbin-Watson: 2.196
           Prob(Omnibus):
                             0.987
                                   Jarque-Bera (JB): 0.150
                     Skew: -0.006
                                           Prob(JB): 0.928
                  Kurtosis: 2.840
                                          Cond. No.
                                                       328.
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [11]: y_train_pred = lr_model.predict(X_train_sm)
```

Step 3: Residual analysis

• Linearity: the residuals should be randomly scattered around zero — no curve or trend.

- Homoscedasticity: Means the variance of residuals is constant across all levels of predicted values. Spread of residuals should be even not getting wider or narrower like a cone.
- Histogram of Residuals (Normality): Assumes the residuals follow a normal distribution (bell curve). A smooth, bell-shaped curve (especially with the KDE line) suggests normality.

```
In [12]: residuals_train = y_train - y_train_pred
```

Residual Plot (Linearity & Homoscedasticity)

```
In [13]: plt.figure(figsize=(6,4))
    sns.scatterplot(x=y_train_pred, y=residuals_train)
    plt.axhline(0, color='red', linestyle='--')
    plt.xlabel("Predicted values")
    plt.ylabel("Residuals")
    plt.title("Residuals vs Predicted (Train)")
    plt.show()
```


Histogram of Residuals (Normality)

```
In [14]: sns.histplot(residuals_train, kde=True)
  plt.title("Histogram of Residuals (Train)")
  plt.xlabel("Residuals")
  plt.show()
```



```
In [15]: r_train = r2_score(y_true=y_train, y_pred=y_train_pred)
r_train
```

Out[15]: 0.8157933136480389

Step 4: Predicting and evaluating on the test set

```
In [16]: # add a contant/intercept to test
    X_test_sm = sm.add_constant(X_test)

# Prediction on the test
    y_test_pred = lr_model.predict(X_test_sm)

In [17]: # evaluate the model, R-squared, on the test
    r_test = r2_score(y_true=y_test, y_pred=y_test_pred)
    r_test

Out[17]: 0.7921031601245658
```

Linear regression using SKlearn

```
# train and test split
In [18]:
          X_train, X_test, y_train, y_test = train_test_split(X,y, train_size=0.7, random_stat
         # reshape X_train to (n, 1) to ensure the input array has the correct 2D shape, espe
In [19]:
          X_train_lm = X_train.values.reshape(-1, 1)
          X_test_lm = X_test.values.reshape(-1, 1)
In [20]:
         # Steps in sklearn model building:
          # 1. create an object of linear regression
          lm = LinearRegression()
          # 2. fit the model
          lm.fit(X_train_lm, y_train)
Out[20]: LinearRegression()
         # 3. View coefficients
In [21]:
          print(lm.coef )
          print(lm.intercept_)
         [0.05454575]
         6.9486832000013585
In [22]: | # make predictions
          y_train_pred = lm.predict(X_train_lm)
          y test pred = lm.predict(X test lm)
         # 4. evaluate the model
In [23]:
          print(r2_score(y_true=y_train, y_pred=y_train_pred))
          print(r2_score(y_true=y_test, y_pred=y_test_pred))
         0.8157933136480388
         0.792103160124566
```

Multiple Regression

Step 1: Reading the Data

```
In [24]:
          import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
           import seaborn as sns
           import sklearn
          from sklearn.model_selection import train_test_split
           from sklearn.preprocessing import MinMaxScaler
           import statsmodels.api as sm
          from statsmodels.stats.outliers_influence import variance_inflation_factor
           from sklearn.metrics import r2 score
           import warnings
          warnings.filterwarnings('ignore')
          hous = pd.read_csv('Housing.csv')
In [25]:
          hous.head()
Out[25]:
                price
                           bedrooms
                                     bathrooms stories mainroad
                                                                 guestroom
                                                                            basement hotwaterheating
                      area
            13300000
                     7420
                                                             yes
             12250000
                     8960
                                                     4
                                                             yes
                                                                         no
                                                                                   no
                                                                                                  n
                                              2
            12250000 9960
                                   3
                                                     2
                                                             yes
                                                                                  yes
            12215000 7500
                                              2
                                                     2
                                                             yes
                                                                         no
                                                                                  yes
                                                                                                  n
            11410000 7420
                                              1
                                                     2
                                                             yes
                                                                        yes
                                                                                  yes
In [26]:
          hous.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 545 entries, 0 to 544
          Data columns (total 13 columns):
          #
               Column
                                  Non-Null Count
                                                   Dtype
          _ _ _
               -----
           0
               price
                                  545 non-null
                                                   int64
           1
                                  545 non-null
                                                   int64
               area
                                  545 non-null
           2
                                                   int64
               bedrooms
           3
                                  545 non-null
                                                   int64
               bathrooms
           4
                                  545 non-null
                                                   int64
               stories
           5
                                  545 non-null
                                                   object
               mainroad
           6
                                  545 non-null
                                                   object
               guestroom
           7
                                  545 non-null
                                                   object
               basement
           8
                                  545 non-null
                                                   object
               hotwaterheating
                                  545 non-null
                                                   object
               airconditioning
           10
               parking
                                  545 non-null
                                                   int64
                                  545 non-null
                                                   object
               prefarea
               furnishingstatus 545 non-null
                                                   object
          dtypes: int64(6), object(7)
          memory usage: 55.5+ KB
```

Step 2: Data Preparation

```
In [27]: # # Encode binary variables
varlist = ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditioning'
hous[varlist] = hous[varlist].apply(lambda x: x.map({'yes': 1, 'no': 0}))
hous[varlist].head()
```

Out[27]:		mainroad	guestroom	basement	hotwaterheating	airconditioning	prefarea
	0	1	0	0	0	1	1
	1	1	0	0	0	1	0
	2	1	0	1	0	0	1
	3	1	0	1	0	1	1
	4	1	1	1	0	1	0

Dummy variable

```
In [28]: # Creating dummy variable for furnishing status
    status = pd.get_dummies(hous['furnishingstatus'], drop_first=True)
    hous = pd.concat([hous, status], axis=1)
    hous.drop('furnishingstatus', axis=1, inplace=True)
    hous.head()
```

Out[28]:		price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating
	0	13300000	7420	4	2	3	1	0	0	
	1	12250000	8960	4	4	4	1	0	0	1
	2	12250000	9960	3	2	2	1	0	1	1
	3	12215000	7500	4	2	2	1	0	1	1
	4	11410000	7420	4	1	2	1	1	1	1
	4									>

Scaling is important because we interpret coefficients.

```
In [29]: # Scaling numeric variables
scaler = MinMaxScaler()
num_vars = ['area', 'bedrooms', 'bathrooms', 'stories', 'parking', 'price']
hous[num_vars] = scaler.fit_transform(hous[num_vars])
```

Split into train and test set

```
In [30]: df_train, df_test = train_test_split(hous, train_size=0.7, random_state=100)
```

Step 3: Training the Model

```
In [31]: # X_train, y_train
    y_train = df_train.pop('price')
    X_train = df_train

In [32]: # 1. Add constant
    X_train_sm = sm.add_constant(X_train)
    #fit the model
```

```
lr_model = sm.OLS(y_train, X_train_sm).fit()
print(lr_model.summary())
```

OLS Regression Results

Dep. Variable:	price	R-squared:	0.681
Model:	OLS	Adj. R-squared:	0.670
Method:	Least Squares	F-statistic:	60.40
Date:	Mon, 30 Jun 2025	<pre>Prob (F-statistic):</pre>	8.83e-83
Time:	20:06:52	Log-Likelihood:	381.79
No. Observations:	381	AIC:	-735.6
Df Residuals:	367	BIC:	-680.4
Df Model:	13		
	1 .		

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

	coet	sta err	τ	P> T	[0.025	0.975]
const	0.0162	0.021	0.768	0.443	-0.025	0.058
area	0.3005	0.039	7.795	0.000	0.225	0.376
bedrooms	0.0467	0.037	1.267	0.206	-0.026	0.119
bathrooms	0.2862	0.033	8.679	0.000	0.221	0.351
stories	0.1085	0.019	5.661	0.000	0.071	0.146
mainroad	0.0504	0.014	3.520	0.000	0.022	0.079
guestroom	0.0304	0.014	2.233	0.026	0.004	0.057
basement	0.0216	0.011	1.943	0.053	-0.000	0.043
hotwaterheating	0.0849	0.022	3.934	0.000	0.042	0.127
airconditioning	0.0669	0.011	5.899	0.000	0.045	0.089
parking	0.0607	0.018	3.365	0.001	0.025	0.096
prefarea	0.0594	0.012	5.040	0.000	0.036	0.083
semi-furnished	0.0009	0.012	0.078	0.938	-0.022	0.024
unfurnished	-0.0310	0.013	-2.440	0.015	-0.056	-0.006
=======================================	========	========		========	========	====

 Omnibus:
 93.687
 Durbin-Watson:
 2.093

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 304.917

 Skew:
 1.091
 Prob(JB):
 6.14e-67

 Kurtosis:
 6.801
 Cond. No.
 15.0

. . .

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

```
In [33]: # Calculate VIF
vif = pd.DataFrame()
vif['Features'] = X_train.columns
vif['VIF'] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.sh
vif = vif.sort_values(by='VIF', ascending=False)
print(vif)
```

```
Features VIF
bedrooms 7.373262
mainroad 6.085302
area 5.010193
stories 2.701669
semi-furnished 2.187446
parking 2.121678
basement 2.014989
unfurnished 1.823967
airconditioning 1.771997
bathrooms 1.666097
prefarea 1.506383
guestroom 1.468821
hotwaterheating 1.135913
```

```
In [34]: # Drop high VIF or high p-value variables and rebuild model
X_train = X_train.drop(['bedrooms', 'semi-furnished'], axis=1)
X_train_sm = sm.add_constant(X_train)
lr_model = sm.OLS(y_train, X_train_sm).fit()
print(lr_model.summary())
```

OLS Regression Results ______ Dep. Variable: price R-squared: OLS Adj. R-squared: Least Squares F-statistic: Model: 0.671 Method: 71.31 Mon, 30 Jun 2025 Prob (F-statistic): 2.73e-84 Date: 20:06:54 Log-Likelihood: Time: 380.96 No. Observations: 381 AIC: -737.9 Df Residuals: 369 BIC: -690.6 Df Model: 11 Covariance Type: nonrobust ______ coef std err t P>|t| [0.025 const 0.0319 0.015 2.142 0.033 0.003 area 0.3006 0.038 7.851 0.000 0.225 bathrooms 0.2947 0.032 9.132 0.000 0.231 stories 0.1178 0.018 6.654 0.000 0.083 mainroad 0.0488 0.014 3.423 0.001 0.021 guestroom 0.0301 0.014 2.211 0.028 0.003 basement 0.0239 0.011 2.183 0.030 0.002 hotwaterheating 0.0864 0.022 4.014 0.000 0.044 airconditioning 0.0665 0.011 5.895 0.000 0.044 parking 0.0629 0.018 3.501 0.001 0.028 prefarea 0.0596 0.012 5.061 0.000 0.036 unfurnished -0.0323 0.010 -3.169 0.002 -0.052 ______ 0.061 0.376 0.358 0.153 0.077 0.057 0.045 0.129 0.089 0.098 0.083 -0.012 ______ 97.661 Durbin-Watson: Omnibus: 0.000 Jarque-Bera (JB): 325.388 Prob(Omnibus): 1.130 Prob(JB): 2.20e-71 Skew: 6.923 Cond. No. Kurtosis: ______

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [35]: vif = pd.DataFrame()
    vif['Features'] = X_train.columns
    vif['VIF'] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.sh
    vif = vif.sort_values(by='VIF', ascending=False)
    print(vif)
```

```
Features
3
          mainroad 4.920987
0
             area 4.842720
2
           stories 2.226136
           parking 2.104392
5
          basement 1.872522
7 airconditioning 1.766005
1
         bathrooms 1.609070
9
          prefarea 1.502837
4
         guestroom 1.462664
10
       unfurnished 1.334898
   hotwaterheating 1.125136
```

Step 4: Residual Analysis

```
In [36]: # Residual analysis
    y_train_pred = lr_model.predict(X_train_sm)
    res = y_train - y_train_pred
    sns.scatterplot(x=y_train_pred, y=res)
    plt.axhline(0, color='red', linestyle='--')
    plt.title('Residuals vs Fitted Values')
    plt.show()
    sns.histplot(res, kde=True)
```

```
plt.title('Histogram of Residuals')
plt.show()
```



```
In [37]: # R² score on train
print('Train R²:', r2_score(y_train, y_train_pred))
```

Train R²: 0.6800930630265903

Prediction Evaluation on the Test Set

```
In [38]: # Prepare test set
    y_test = df_test.pop('price')
    X_test = df_test.drop(['bedrooms', 'semi-furnished'], axis=1)
    X_test_sm = sm.add_constant(X_test)
    X_test_sm = X_test_sm[lr_model.model.exog_names]
In [39]: # Predict and evaluate on test
```

```
In [39]: # Predict and evaluate on test
y_test_pred = lr_model.predict(X_test_sm)
print('Test R<sup>2</sup>:', r2_score(y_test, y_test_pred))
```

Test R²: 0.6713505684480789

Multiple Regression with RFE

```
In [40]: hous = pd.read_csv('Housing.csv')
hous.head()
```

ıt[40]:	price	area	bedrooms	bathrooms	stories	mainroad	guestroon	n basement	hotwaterheat		
	0 13300000	7420	4	2	3	yes	no	o no			
	1 12250000	8960	4	4	4	yes	no	o no			
	2 12250000	9960	3	2	2	yes	no	yes			
	3 12215000	7500	4	2	2	yes	no	yes			
	4 11410000		4	1	2	yes	ye	,			
	4	0	·	·		, , ,	_	, , , ,			
1 [41]:	<pre>from sklear from sklear</pre>					ression					
1 [42]:	lm = Linear	rRegre	ssion()								
1 [43]:	rfe = RFE(e rfe.fit(X_t			_features_	to_sele	ct=8)					
ut[43]:	RFE(estimato	or=Lir	earRegres	sion(), n_	feature	s_to_sele	ect=8)				
1 [44]:	top_feature print("Sele						ist())				
	Selected Fea						ries', 'm	ainroad', '	hotwaterhea		
F 4 - 3	<pre>X_train_rfe = X_train[top_features] X_train_rfe_sm = sm.add_constant(X_train_rfe) lr_model_rfe = sm.OLS(y_train, X_train_rfe_sm).fit() print(lr_model_rfe.summary())</pre>										
1 [45]:	X_train_rfe lr_model_rf	e_sm = fe = s	sm.add_co m.OLS(y_t	onstant(X_ rain, X_tr)				
1 [45]:	X_train_rfe lr_model_rf print(lr_mo	e_sm = fe = s odel_r	sm.add_com.OLS(y_t)	onstant(X_ rain, X_tr	ain_rfe	_sm).fit()				
1 [45]:	X_train_rfe lr_model_rf print(lr_mo	e_sm = fe = s odel_r	sm.add_com.OLS(y_t)	onstant(X_rain, X_tr y()) OLS Regr ======= pric	ain_rfe ession ===== e R-s	_sm).fit(Results ====== quared:			 0.658		
1 [45]:	X_train_rfe lr_model_rf print(lr_model_rf print(lr_model)	e_sm = fe = s odel_r	sm.add_c m.OLS(y_t fe.summar	onstant(X_rain, X_tr y()) OLS Regr ====== pric OL	ession ession =====e e R-s S Adj	_sm).fit(Results ====== quared: . R-squar			0.651		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ======= Dep. Variab Model: Method:	e_sm = fe = s odel_r	sm.add_c m.OLS(y_t fe.summary	onstant(X_rain, X_tr y()) OLS Regr ====== pric OL ast Square	ession ession e====e e R-s S Adj s F-s	_sm).fit(Results ====== quared: . R-squar tatistic:	====== ed:		0.651 89.63		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ======= Dep. Variab Model: Method: Date:	e_sm = fe = s odel_r	sm.add_c m.OLS(y_t fe.summary	onstant(X_rain, X_tr y()) OLS Regr ====== pric OL ast Square 30 Jun 202	ession ====== e R-s S Adj s F-s 5 Pro	_sm).fit(Results ======= quared: . R-squar tatistic: b (F-stat	ed:		0.651 89.63 43e-82		
1 [45]:	X_train_rfe lr_model_rf print(lr_model) ====================================	e_sm = fe = s odel_r ===== le:	sm.add_cc m.OLS(y_tc fe.summary ======= Le Mon,	onstant(X_rain, X_tr y()) OLS Regr ======= pric OL ast Square 30 Jun 202 20:07:0	ession ====== e R-s S Adj s F-s 5 Pro	_sm).fit(Results ======= quared: . R-squar tatistic: b (F-stat -Likeliho	ed:		0.651 89.63 43e-82 368.46		
1 [45]:	X_train_rfe lr_model_rf print(lr_model) ========= Dep. Variable Model: Method: Date: Time: No. Observate	e_sm = fe = s odel_r ===== le:	sm.add_cc m.OLS(y_tc fe.summary ======= Le Mon,	onstant(X_rain, X_train, X_tra	ession ======e e R-s S Adj s F-s 5 Pro 5 Log 1 AIC	_sm).fit(Results ======= quared: . R-squar tatistic: b (F-stat -Likeliho	ed:		0.651 89.63 43e-82 368.46 -718.9		
1 [45]:	X_train_rfe lr_model_rf print(lr_model_rf print(lr_model) Dep. Variable Model: Method: Date: Time: No. Observator	e_sm = fe = s odel_r ===== le:	sm.add_cc m.OLS(y_tc fe.summary ======= Le Mon,	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC	_sm).fit(Results ======= quared: . R-squar tatistic: b (F-stat -Likeliho	ed:		0.651 89.63 43e-82 368.46		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ======== Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance	e_sm = fe = s odel_r ===== le: tions: Type:	sm.add_cc m.OLS(y_t fe.summary ====== Le Mon,	onstant(X_rain, X_train, X_train, X_train, X_train) OLS Regrame pric OL ast Square 30 Jun 202 20:07:0 38 37 nonrobus	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8	_sm).fit(Results ======= quared: . R-squar tatistic: b (F-stat -Likeliho	====== ed: istic): od:		0.651 89.63 43e-82 368.46 -718.9 -683.4		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ======= Dep. Variabi Model: Method: Date: Time: No. Observat Df Residuals Df Model:	e_sm = fe = s odel_r ===== le: tions: Type:	sm.add_cc m.OLS(y_t fe.summary ====== Le Mon,	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======	_sm).fit(Results ======= quared: . R-squar tatistic: b (F-stat -Likeliho	====== ed: istic): od:		0.651 89.63 43e-82 368.46 -718.9 -683.4		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ======== Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance	e_sm = fe = s odel_r ===== le: tions: Type:	sm.add_cc m.OLS(y_t fe.summary ====== Le Mon,	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t =======	_sm).fit(Results ======= quared: . R-squar tatistic: b (F-stat -Likeliho : :	ed: istic): od: P> t		0.651 89.63 43e-82 368.46 -718.9 -683.4		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ======== Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance ====================================	e_sm = fe = s odel_r ===== le: tions: Type:	sm.add_cc m.OLS(y_t) fe.summary	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t =======	_sm).fit(Results ====================================	ed: istic): od: P> t 0.135 0.000	 [0.025 -0.006 0.236	0.651 89.63 43e-82 368.46 -718.9 -683.4 0.975] 0.048 0.391		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ======== Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance ========= const area bathrooms	e_sm = fe = s odel_r ===== le: tions: Type:	sm.add_cc m.OLS(y_t) fe.summary Le. Mon, coef 0.0207 0.3135 0.3216	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 tt ======= r	_sm).fit(Results ====================================	P> t 0.135 0.000 0.000	 [0.025 -0.006 0.236 0.257	0.651 89.63 43e-82 368.46 -718.9 -683.4 		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ======== Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance ========= const area bathrooms stories	e_sm = fe = s odel_r ===== le: tions: Type:	sm.add_cc m.OLS(y_tc) fe.summary Le. Mon, coef 	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======= r 4 9	_sm).fit(Results ====================================	P> t	 [0.025 -0.006 0.236 0.257 0.074	0.651 89.63 43e-82 368.46 -718.9 -683.4 		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ======== Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance ========= const area bathrooms stories mainroad	e_sm = fe = s odel_r ===== le: Type: =====	sm.add_cc m.OLS(y_t) fe.summary Le. Mon, coef 	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======= r 4 9 3	_sm).fit(Results ====================================	ed: istic): od: P> t 0.135 0.000 0.000 0.000 0.000		0.651 89.63 43e-82 368.46 -718.9 -683.4 		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ========= Dep. Variab Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance ====================================	e_sm = fe = s odel_r tions: s: Type: =====	sm.add_cc m.OLS(y_t) fe.summary	onstant(X_rain, X_train, X_tra	ession ======e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======= r 4 9 3 8 8 5	_sm).fit(Results ====================================	P> t		0.651 89.63 43e-82 368.46 -718.9 -683.4 		
1 [45]:	X_train_rfe lr_model_rf print(lr_model_rf print(lr_model: Dep. Variable Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance ====================================	e_sm = fe = s odel_r tions: s: Type: =====	sm.add_cc m.OLS(y_t) fe.summary	onstant(X_rain, X_train, X_tra	ession ======e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======= r 4 9 3 8 5 5 2	_sm).fit(Results ======= quared: . R-squar tatistic: b (F-stat -Likeliho : : ======== t 1.499 7.995 9.838 6.167 3.873 4.269 6.438	Pod:	[0.025 -0.006 0.236 0.257 0.074 0.028 0.051 0.051	0.651 89.63 43e-82 368.46 -718.9 -683.4 ========= 0.975] 0.386 0.143 0.085 0.138 0.097		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ========= Dep. Variab Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance ====================================	e_sm = fe = s odel_r tions: s: Type: =====	sm.add_cc m.OLS(y_t) fe.summary	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======= 4 9 3 8 5 2 2 8	_sm).fit(Results ====================================	P> t		0.651 89.63 43e-82 368.46 -718.9 -683.4 		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ========= Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance ====================================	e_sm = fe = s fe = s odel_r tions: tions: Type: ===== ting ning	sm.add_cc m.OLS(y_t) fe.summary Le Mon, 0.0207 0.3135 0.3216 0.1087 0.0565 0.0943 0.0741 0.0614 0.0693	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======= 4 9 3 8 5 2 2 8 2 ======	_sm).fit(Results ====================================	P> t		0.651 89.63 43e-82 368.46 -718.9 -683.4 		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ===================================	e_sm = fe = s fe = s odel_r tions: tions: Type: =====	sm.add_cc m.OLS(y_t) fe.summary Le Mon, 0.0207 0.3135 0.3216 0.1087 0.0565 0.0943 0.0741 0.0614 0.0693	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======= 4 9 3 8 5 2 2 8 2 ====== 6 Dur	_sm).fit(Results ====================================	P> t		0.651 89.63 43e-82 368.46 -718.9 -683.4 		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ========= Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance ====================================	e_sm = fe = s fe = s odel_r tions: tions: Type: =====	sm.add_cc m.OLS(y_t) fe.summary Le Mon, 0.0207 0.3135 0.3216 0.1087 0.0565 0.0943 0.0741 0.0614 0.0693	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======= 7 4 9 3 8 5 2 2 ====== 6 Dur 0 Jar	_sm).fit(Results ====================================	P> t		0.651 89.63 43e-82 368.46 -718.9 -683.4 		
1 [45]:	X_train_rfe lr_model_rf print(lr_mo ===================================	e_sm = fe = s fe = s odel_r tions: tions: Type: =====	sm.add_cc m.OLS(y_t) fe.summary Le Mon, 0.0207 0.3135 0.3216 0.1087 0.0565 0.0943 0.0741 0.0614 0.0693	onstant(X_rain, X_train, X_tra	ession ====== e R-s S Adj s F-s 5 Pro 5 Log 1 AIC 2 BIC 8 t ======= r 4 9 3 8 5 2 2 ====== 6 Dur 0 Jar 2 Pro	_sm).fit(Results ====================================	P> t		0.651 89.63 43e-82 368.46 -718.9 -683.4 		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [46]: vif_rfe = pd.DataFrame()
    vif_rfe['Features'] = X_train_rfe.columns
    vif_rfe['VIF'] = [variance_inflation_factor(X_train_rfe.values, i) for i in range(X_
    vif_rfe = vif_rfe.sort_values(by='VIF', ascending=False)
    print(vif_rfe)
```

```
Features VIF
0 area 4.753624
3 mainroad 4.384834
2 stories 2.119970
6 parking 2.075213
5 airconditioning 1.735078
1 bathrooms 1.558539
7 prefarea 1.446108
4 hotwaterheating 1.120494
```

```
In [47]: df_train, df_test = train_test_split(hous, train_size=0.7, random_state=100)
    df_test[num_vars] = scaler.transform(df_test[num_vars]) # re-scale
    y_test = df_test['price']
    X_test_rfe = df_test[top_features]
    X_test_rfe_sm = sm.add_constant(X_test_rfe)
```

```
In [48]: y_train_pred_rfe = lr_model_rfe.predict(X_train_rfe_sm)
    print("Train R<sup>2</sup> with RFE-selected features:", r2_score(y_train, y_train_pred_rfe))
```

Train R² with RFE-selected features: 0.6584118638839078

In this notebook, I developed and compared multiple linear regression models using both manual feature selection and RFE (Recursive Feature Elimination). Initially, I cleaned the dataset by encoding categorical variables and scaling numeric ones. I built a manual model by iteratively removing features with high p-values and high VIFs to ensure both statistical significance and low multicollinearity. This model achieved a Train R² of 0.68 and a Test R² of 0.67, with all predictors being interpretable and statistically sound.

To validate and possibly refine the selection, I implemented RFE to automatically select the top 8 predictive features. The resulting RFE model produced a Train R² of 0.658, slightly lower than the manual model. However, the RFE approach offered simplicity and speed, confirming the importance of core features like area, bathrooms, stories, and airconditioning.

Ultimately, the manual model offered better interpretability and slightly better performance, making it the more suitable choice in this case. This project demonstrates a balanced approach to model building—combining statistical rigor with machine-driven optimization—ensuring both robustness and explainability in predictive modeling.

```
In [ ]:
```