NCEA Level 3 Calculus (Differentiation)

4. The Chain Rule

Consider the function $x \mapsto \sin(x^2)$. This function is made up of two functions, applied one after the other:

$$x \xrightarrow{f} x^2 \xrightarrow{g} \sin(x^2).$$

We often notate this function composition as $g \circ f$ (note that we evaluate from the right, so $(g \circ f)(x) =$ g(f(x)).

Obviously the derivative of $\sin(x^2)$ is not just $\cos(2x)$, since the former has a stationary point at $x = \sqrt{\frac{\pi}{2}}$ but $\cos(\sqrt{2\pi}) \neq 0$. This shows us that, in general, the derivative of a function composition is not simply the composition of the derivatives.

In fact, it turns out that the derivative of $f \circ g$ is $g'(f' \circ g)$; in other words,

$$\frac{\mathrm{d}}{\mathrm{d}x}f(g(x)) = g'(x)f'(g(x)).$$

This is known as the *chain rule*, since we are "chaining" together functions.

Before proving the chain rule, let us convince ourselves that it is plausible. We can interpret the derivative $\frac{dg}{dx}$ as the rate of change of g with respect to x, and the derivative $\frac{df}{dg}$ as the derivative of f with respect to small changes in g; it is intuitive that if g changes twice as fast as x at some point, and f changes five times as fast as g, then f changes $2 \times 5 = 10$ times as fast as x.

A rigorous proof is given below, and it matches our intuition reasonably well.

Example. The correct derivative of
$$\sin(x^2)$$
 is $2x\cos(x^2)$.
Example. If $f(r) = \sqrt{r^2 - 3}$, then $f'(r) = 2r\frac{1}{2}\left(r^2 - 3\right)^{-1/2} = \frac{r}{\sqrt{r^2 - 3}}$.

Example. If $g(x) = \sin((\sin^7 x^7 + 1)^7)$, then we compute:

$$g(x) = \sin\left(\left[\left(\sin x^{7}\right)^{7} + 1\right]^{7}\right)$$

$$g'(x) = 7x^{6} \cdot \cos x^{7} \cdot 7\left(\sin x^{7}\right)^{6} \cdot 7\left[\left(\sin x^{7}\right)^{7} + 1\right] \cdot \cos\left(\left[\left(\sin x^{7}\right)^{7} + 1\right]^{7}\right)$$

This result can probably be simplified, however the point is to evaluate the derivative chain from inside to outside in a systematic fashion.

Example. One of the main uses of the chain rule is in related rates problems. For example, consider a disc of radius r. The area of this disc is given by $A = \pi r^2$, and so $\frac{dA}{dr} = 2\pi r$. But what if r is itself changing with respect to time, say at a rate of 3 m s^{-1} ? Then $\frac{dA}{dt} = \frac{dr}{dt}(2\pi r) = 6\pi r = 6\pi(r_0 + 3t)$ (where r_0 is the radius at t = 0).

Proof of the chain rule (optional). The proof is a little fiddly, and comes in two parts. Recall that in the work on limits, we found that an alternative definition of the derivative of f at x was

$$f'(x) = \lim_{k \to x} \frac{f(x) - f(k)}{x - k}.$$

Now, suppose we wish to find the derivative of $f \circ g$ at x. In the first case, suppose that g is not constant around x (in other words, we can zoom in 'far enough' towards x so that for all k in the zoomed in area, $g(k) \neq g(x)$). Then:

$$\lim_{k \to x} \frac{f(g(x)) - f(g(k))}{x - k} = \lim_{k \to x} \frac{f(g(x)) - f(g(k))}{g(x) - g(k)} \cdot \frac{g(x) - g(k)}{x - k}$$

$$= \lim_{k \to x} \frac{f(g(x)) - f(g(k))}{g(x) - g(k)} \cdot \lim_{k \to x} \frac{g(x) - g(k)}{x - k}$$

$$= f'(g(x))g'(x),$$

(noting that as $k \to x$, $g(k) \to g(x)$). This calculation only works when g is not constant around x, because if g is constant around x then for all k sufficiently close to x, g(x) - g(k) = 0 and the limit does not exist.

To deal with this case, assume that g is constant around x. Then g'(x) = 0, and also for all h close enough to zero we have g(x + h) = g(x). Then

$$(f \circ g)'(x) = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h} = \lim_{h \to 0} \frac{f(g(x)) - f(g(x))}{h} = 0 = 0 \times f'(g(x)) = g'(x)f'(g(x)).$$

Questions

- 1. A Identify the inner and outer functions, but do not attempt to differentiate.
 - (a) $\sqrt{\sin x}$
 - (b) $\sin \cos \tan x$
 - (c) $(2x+3)^{17}$
 - (d) $97(x+2)^2$
 - (e) $\ln \sin x$
 - (f) $\frac{1}{\sqrt{23x-x^2}}$
- 2. \blacksquare Differentiate with respect to t:
 - (a) $(2t+3)^{3000}$

(g) $\cot(t + \sec t)$

(b) $\sin \ln t$

(h) $\sin^2((t+\sin t)^2)$

(c) $\sqrt{t^3+10t^2+3}$

(i) $\ln \sqrt{t+9}$

(d) $\csc e^t$

(j) $\sqrt{t} + \frac{1}{\sqrt[3]{t^4}}$

(e) $\sin^3 t + 14 \ln(3t)$

(k) $e^{\sec(t^2)}$

(f) $\sin \sin \sin t$

- (1) $\sin \sqrt{t + \tan t}$
- 3. \blacksquare The derivative of a function is $2\cos 2x$. What could the original function be?
- 4. M Differentiate $y = \sin^2 x + \cos^2 x$, and hence prove that $\sin^2 x + \cos^2 x = 1$.
- 5. A Suppose that the displacement of a particle on a vibrating spring is given by $x(t) = 5 + \frac{1}{8}\sin(5\pi t)$, where x is measured in centimetres and t in seconds.
 - (a) Find the velocity of the particle at time t.
 - (b) At which times is the particle momentarily stationary?
- 6. The volume of a spherical balloon at a time t is given by V(t), and its radius is given by r(t).
 - (a) A What do the derivatives $\frac{dV}{dt}$ and $\frac{dV}{dr}$ represent?
 - (b) M The volume of a sphere of radius r is $V_{\text{sphere}} = \frac{4}{3}\pi r^3$. Find $\frac{dV}{dt}$ in terms of $\frac{dr}{dt}$.
- 7. M If F(x) = f(3f(4f(x))), where f(0) = 0 and f'(0) = 2, find F'(0).
- 8. A Suppose f(x) = g(x + g(a)) for some differentiable function g and constant a. Find f'(x).
- 9. The depth of water at the end of a jetty in a harbour varies with time due to the tides. The depth of the water is given by the formula

$$W = 4.5 - 1.2\cos\frac{\pi t}{6}$$

where W is the water depth in metres, and t is the time in hours after midnight.

- (a) A What is the rate of change of water depth 5 hours after midnight?
- (b) M When is the first time after t = 0 that the tide changes direction?
- (c) **E** At that time, is the water changing from rising to falling or from falling to rising?

10. Consider the function ψ given by

$$\psi(t) = \frac{e^t + e^{-t}}{2}$$

- (a) \triangle Compute ψ' .
- (b) $\boxed{\mathtt{M}}$ Find $\psi^{(2017)}$ (the 2017th derivative of ψ).
- (c) A Show that ψ satisfies the differential equation $\frac{d}{dt}(\psi + \psi') = \psi + \psi'$.
- 11. The force F (in newtons) acting at an angle θ with the horizontal that is needed to drag a mass of W kilograms along a horizontal surface at a constant velocity is given by

$$F = \frac{\mu W}{\cos \theta + \mu \sin \theta}$$

where μ is the coefficient of static friction (a constant).

- (a) A If $W = 200 \,\mathrm{kg}$ and $\mu = 0.2$, find $\frac{\mathrm{d}F}{\mathrm{d}\theta}$ when $\theta = \frac{\pi}{6} \,\mathrm{rad}$.
- (b) M Suppose now that θ is a function of time, so that $\frac{d\theta}{dt} = 0.5 \,\text{rad/s}$. Find $\frac{dF}{dt}$.
- 12. $\boxed{\mathbf{E}}$ Find the 73rd derivative of $\sin 6x$.
- 13. \blacksquare Recall that the absolute value of x, denoted |x|, is the value obtained by 'throwing away the sign' of x.
 - (a) Prove that

$$\frac{\mathrm{d}}{\mathrm{d}x}|x| = \frac{x}{|x|}.$$

[Hint: Write $|x| = \sqrt{x^2}$.]

(b) If $f(x) = |\sin x|$, find f'(x) and sketch the graphs of both f and f'.