Color Visualization Thanks to Penny Rheingans (UMBC)

February 04, 2013

and Chuck Hansen (Utah)

Overview

- Uses of Color
- Survey of Color Scales
- Evaluating Color Scales
- Visualization Tasks
- Design Considerations

Uses of Color

- Show classification
- Mimic reality
- Show value
- Draw attention
- Show grouping

Important Note

- What we see depends on the particular display device
- Things appear different on different monitors
- Reminder: effectiveness of color choices depends on
 - Display, data set, application, observers, etc...

Ware and Beatty '85, p. 22

Some Univariate Color Scales

- Paths through color space
- Color model component
- Redundant scales
- Double-ended
- Banded
- Standard color scales

Color Model Component & Scales Strategies

- Value a single color model component with other components held constant
- Examples
 - Grey scale
 - Saturation scale
 - Spectrum scale

Redundant Color Scales

- Two or more color components varied together
- Examples
 - Hue with lightness
 - Heated object scale
 - Levkowitz's optimal scales
- Characteristics
 - Reinforces signal
 - Combines characteristics of simpler scales

Double-ended Scale

- Two distinct scales joined at neutral middle
- Characteristics
 - segments values into two groups
 - can emphasize both extremes of data range

Olson '97, fig. 11-8.

Some Standard Color Scales

- Grey
- Linearized grey
- Rainbow
- Magenta
- Heated
- Optimal
- Linearized optimal
- Blue-cyan
- Blue-yellow

Greyscale

Greyscale

Linearized Greyscale

Linearized Greyscale

Rainbow S. Pizer

Rainbow

Magenta S. Pizer

Magenta

- Natural scale
- Intuition

Heated

Linearized Optimal Levkowitz

- No perceived boundaries
- Ordering
- Distance

Linearized Optimal

Blue-Cyan

Blue-Cyan

Blue-Yellow

Blue-Yellow

- Color model components
- Census Bureau
- Complementary display parameters

CVD + Person/Room

Constructing Scales

- Manually
 - element
 - curves/ranges for components
- Rule-based approach
 - PRAVDAcolor in IBM DX
 - ex: Bergman95
- Search-based approaches
 - automatically generate and evaluate scales
 - ex: He96

Trumbo's Principles

Order: ordered values should be represented by ordered colors

Separation: significantly different levels should be represented by distinguishable colors

Rows and columns: to preserve univariate information, display parameters should not obscure one another

Trumbo's Principles

Order: ordered values should be represented by ordered colors

Separation: significantly different levels should be represented by distinguishable colors

Rows and columns: to preserve univariate information, display parameters should not obscure one another

Trumbo's Principles

Order: ordered values should be represented by ordered colors

Separation: significantly different levels should be represented by distinguishable colors

Rows and columns: to preserve univariate information, display parameters should not obscure one another

• Tufte '83, pg. 153.

Trumbo's Principles

Order: ordered values should be represented by ordered colors

Separation: significantly different levels should be represented by distinguishable colors

Rows and columns: to preserve univariate information, display parameters should not obscure one another

Exploration Tasks

- Discover extrema
- Look up metric information
- Identify clusters
- Recognize pattern/structure

Ware's experiments

metric (quantitative) judgements surface (qualitative) judgements redundant color scales

Results

Some scales are better at qualitative judgments Relative shapes and sizes

Other color scales are better for quantitative judgments Looking up values

Ware's Color Scales

Ware '88.

Tufte '97, pg. 77.

Tufte '97, pg. 76.

Considerations

- Consider task
- Consider data
- Consider whole visualization
- Consider audience
- Consider color connotations

Consider Task

- Quantitative comprehension?
 - Vary across opponent color channels
- Qualitative comprehension?
 - Vary lightness
- Other judgements?

Consider Data

- Interesting values?
 - Position striking colors at interesting values
- Zero in range?
 - Double-ended scale
- High spatial frequency?
 - Vary lightness

Consider Whole Visualization

- 3D color mapped objects?
 - Don't vary lightness in color scale
- Multiple variables displayed?
 - Map to different perceptual channels

Consider Audience

- Color deficient viewers?
 - Don't depend on red-green differentiation
 - Use redundant scales
- Application area conventions?
 - Use familiar scales (or at least know when you're not)

Consider Cultural Connotations

- Color associations with variables?
 - Use associated color
- Color associations with data ranges?
 - Use red for bad range
 - Use red for hot

