

Day, Feb 2020

How to cook delicious spherical chicken? feat. thermodynamics

Dominik Kufel

What is a spherical chicken?

"Okay, I know what's wrong with your chicken, but only if it's spherical and in a vacuum."

from

https://journeys.dartmouth.edu/folklorearchive/2017/11/13/sick-chicken/

from

https://journeys.dartmouth.edu/folklorearchive/2017/11/13/ sick-chicken/

"Okay, I know what's wrong with your chicken, but only if it's spherical and in a vacuum."

from

https://journeys.dartmouth.edu/folklorearchive/2017/11/13/sick-chicken/

How to transform normal chicken into spherical chicken? (and inverse transform)

How to transform normal chicken into spherical chicken? (and inverse transform)

Use Wolfram Mathematica!!!

Some spherical chicken related-papers

nature > news & views > article

a nature research journal

Search E-alert Submit Login

News & Views | Published: 04 June 1998

Planetary science

MENU Y

Making and braking asteroids

Alan W. Harris

Nature 393, 418-419(1998) | Cite this article

26 Accesses | 8 Citations | 0 Altmetric | Metrics

There is an old joke about the limitations of physics and its need for mathematical abstraction, the punchline of which runs, "We assume a spherical chicken". In trying to model the collisional evolution of asteroids, however, theorists have been unable to avoid assuming a spherical chicken. To create the present asteroid belt, asteroids must have been undergoing collisions throughout the age of the Solar System, but to make tractable analytical calculations of what happens when one asteroid hits another, one is forced into the unrealistic assumption that the bodies are spherical and rigid.

Download PDF **Associated Content** Nature | Letter Disruption of kilometre-sized asteroids by energetic collisions E. Asphaug, S. J. Ostro[...] W. Benz Sections Figures References References Author information Rights and permissions About this article

Further reading

Comments

Cooking a delicious chicken!!!

Chicken cooking 'law': "Pre-heat your oven to 190°C/375°F/Gas Mark 5. Remove all packaging. Place chicken in a roasting tin in the centre of the oven and cook for 40 minutes per kilo, plus 30 minutes, basting occasionally (refer to guidelines on front of label)."

from https://groceries.morrisons.com/webshop/product/Morrisons-Whole-Chicken-/232830011

Result?

Cooking a delicious chicken!!!

Chicken cooking 'law': "Pre-heat your oven to 190°C/375°F/Gas Mark 5. Remove all packaging. Place chicken in a roasting tin in the centre of the oven and cook for 40 minutes per kilo, plus 30 minutes, basting occasionally (refer to guidelines on front of label)."

from https://groceries.morrisons.com/webshop/product/Morrisons-Whole-Chicken-/232830011

Cooking a delicious chicken!!!

Chicken cooking 'law': "Pre-heat your oven to 190°C/375°F/Gas Mark 5. Remove all packaging. Place chicken in a roasting tin in the centre of the oven and cook for 40 minutes per kilo, plus 30 minutes, basting occasionally (refer to guidelines on front of label)."

from https://groceries.morrisons.com/webshop/product/Morrisons-Whole-Chicken-/232830011

Cooking a delicious chicken!!!

Chicken cooking 'law': "Pre-heat your oven to 190°C/375°F/Gas Mark 5. Remove all packaging. Place chicken in a roasting tin in the centre of the oven and cook for 40 minutes per kilo, plus 30 minutes, basting occasionally (refer to guidelines on front of label)."

from https://groceries.morrisons.com/webshop/product/Morrisons-Whole-Chicken-/232830011

Goal

Use thermodynamics to show what's wrong!

What do we care about?

Posted by u/tripostrophe 6 years ago =

Every damn time. Pan-fried chicken raw on the inside.

"Cutting into the chicken breast shows that it is definitely not cooked. **Don't eat this!"**

What do we care about?

Every damn time. Pan-fried chicken raw on the inside.

"Cutting into the chicken breast shows that it is definitely not cooked. **Don't eat this!**"

Objective: the meat should be well-cooked at the center of the chicken!

Our delicious spherical chicken problem

lpha - chicken radius

Heat equation

$$\boxed{\frac{\partial T}{\partial t} = D\nabla^2 T}$$

If
$$\frac{\partial T}{\partial t} = 0$$
 \longrightarrow $\nabla^2 T = 0$

Laplace's equation!
Crucial in electrostatics,
gravitation, fluid dynamics etc.

In spherical coordinates the solution to the steady-state equation is:

$$T(r) = A + \frac{B}{r}$$

B = const.

Laplace's equation - digression

$$\nabla^2 T = 0$$

Solution in spherical coordinates is:

$$T(r) = A + \frac{B}{r}$$

with A,B=const.

Laplace's equation - digression

$$\nabla^2 V = 0$$

Solution in spherical coordinates is:

$$V(r) = \frac{B}{r}$$

Which is equivalent to:

$$E(r) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r^2}$$

Coulomb's law in electrostatics!

Heat equation with proper symmetry

For a sphere T will have no angular and azimuthal dependence which will come in handy*:

$$\frac{\partial T}{\partial t} = D\nabla^2 T \qquad \longrightarrow \qquad \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial T}{\partial r}) = \frac{\partial T}{\partial t} \right]$$

Heat equation with proper symmetry

For a sphere T will have no angular and azimuthal dependence which will come in handy*:

$$\frac{\partial T}{\partial t} = D\nabla^2 T \qquad \longrightarrow \qquad \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial T}{\partial r}) = \frac{\partial T}{\partial t} \right]$$

* however, later we may be interested in relaxing the sphericality assumption

Heat equation with proper symmetry

* however, later we may be interested in relaxing the sphericality assumption

How to solve the equation?

$$\left(\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial T}{\partial r}) = \frac{\partial T}{\partial t}\right)$$

Subject to boundary conditions:

$$T(r,0) = T_0 \qquad (r < a)$$

$$T(a,t) = T_1$$

A neat trick to simplify the equation

Recall the solution to the steady state:

$$T(r) = A + \frac{B}{r}$$

Generalize it:

$$T(r,t) = T_1 + \frac{B(r,t)}{r}$$

Plug-into the equation:

$$\frac{\partial B}{\partial t} \frac{1}{r} = -\frac{1}{r^2} \frac{\partial B}{\partial r} + \frac{1}{r^2} \frac{\partial B}{\partial r} + r \frac{1}{r^2} \frac{\partial^2 B}{\partial r^2}$$

Hence:

$$\frac{\partial B}{\partial t} = D \frac{\partial^2 B}{\partial r^2}$$
 Just a 1D heat equation

Typical technique: separation of variables + superposition principle

Typical technique: separation of variables + superposition principle

(Or just magically guess the solution)

Typical technique: separation of variables + superposition principle

(Or just magically guess the solution)

Mathematicians Hate Him!

He does **MATH**Without **REALS**

Local professor exposes shocking math secret. Learn the rational tricks to his stunning results.

LEARN THE TRUTH NOW

Typical technique: separation of variables + superposition principle

(Or just magically guess the solution)

$$B(r,t) = \sum_{n=-\infty}^{+\infty} A_n e^{i(k_n r - \omega_n t)}$$

a.k.a. Fourier series

Impose boundary conditions by Fourier analysis methods!

The solution for arbitrary point within the sphere

$$T(r,t) = T_1 + \frac{2a}{\pi}(T_1 - T_0) \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \frac{\sin(n\pi r/a)}{r} e^{-D(n\pi/a)^2 t}$$

The solution for arbitrary point within the sphere

The solution for arbitrary point within the sphere

Can we make it simpler?

The solution at the centre of the sphere

At the center of the chicken previous equation reduces to:

$$T(0,t) = T_1 + 2(T_1 - T_0) \sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-D(n\pi/a)^2 t}$$

by using Taylor expansion:
$$\lim_{r\to 0} \frac{\sin(n\pi r/a)}{r} = \frac{n\pi r}{ar} = \frac{n\pi}{a}$$

The solution at the centre of the sphere

At the center of the chicken previous equation reduces to:

$$T(0,t) = T_1 + 2(T_1 - T_0) \sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-D(n\pi/a)^2 t}$$

by using Taylor expansion:

$$\lim_{r \to 0} \frac{\sin(n\pi r/a)}{r} = \frac{n\pi r}{ar} = \frac{n\pi r}{a}$$

Truncating the sum

$$T(0,t) \approx T_1 - 2(T_1 - T_0)e^{-D(\pi/a)^2 t}$$
 for $t \gg \tau$

For large times the lowest coefficient for the exponent will dominate!

$$e^{-(1)^2} = \frac{1}{e} \approx 0.37$$

$$e^{-(2)^2} = \frac{1}{e^4} \approx 0.018$$

Characteristic timescale

Could this be predicted?

Yes! By dimensional analysis – always use dimensional analysis!!!

Relevant parameters: D, a

$$[D] = m^2/s \qquad [a] = m$$

$$|a|=m$$

What is such combination of parameters that produces unit of time?

$$\left[\frac{a^2}{D}\right] = [s] \quad \longrightarrow \quad \left[\tau \propto \frac{a^2}{D}\right]$$

$$\tau = \frac{a^2}{D\pi^2}$$

$$\boxed{\tau = \frac{a^2}{D\pi^2}}$$

$$m(a) = \frac{4}{3}\pi a^3 \rho = Ca^3$$

$$\tau = \frac{a^2}{D\pi^2}$$

$$m(a) = \frac{4}{3}\pi a^{3}\rho = Ca^{3}$$
$$m^{2/3} = C^{2/3}a^{2}$$

$$m^{2/3} = C^{2/3}a$$

$$\tau = \frac{a^2}{D\pi^2}$$

$$m(a) = \frac{4}{3}\pi a^{3}\rho = Ca^{3}$$
$$m^{2/3} = C^{2/3}a^{2}$$

$$m^{2/3} = C^{2/3}a^3$$

Chicken cooking 'law': "Pre-heat your oven to 190°C/375°F/Gas Mark 5. Remove all packaging. Place chicken in a roasting tin in the centre of the oven and cook for 40 minutes per kilo, plus 30 minutes, basting occasionally (refer to guidelines on front of label)."

from https://groceries.morrisons.com/webshop/product/Morrisons-Whole-Chicken-/232830011

They propose the linear relationship:

$$\tau(m) = Fm + const.$$

Chicken cooking 'law': "Pre-heat your oven to 190°C/375°F/Gas Mark 5. Remove all packaging. Place chicken in a roasting tin in the centre of the oven and cook for 40 minutes per kilo, plus 30 minutes, basting occasionally (refer to guidelines on front of label)."

from https://groceries.morrisons.com/webstart result/Morrisons-Whole-Chicken-/232830011

They pro the lationship:

$$au(m) = Fm + \infty$$
 s.

Time vs mass laws comparisons

- Heat equation gives us a nice rigorous way to justify for how long to cook chicken

- Heat equation gives us a nice rigorous way to justify for how long to cook chicken
- Dimensional analysis would give us the result up to a constant with less hassle

- Heat equation gives us a nice rigorous way to justify for how long to cook chicken
- Dimensional analysis would give us the result up to a constant with less hassle
- While solving this problem we have used couple of nice tricks

- Heat equation gives us a nice rigorous way to justify for how long to cook chicken
- Dimensional analysis would give us the result up to a constant with less hassle
- While solving this problem we have used couple of nice tricks
- You have seen or you will see the above tricks all over the undergraduate course

- Heat equation gives us a nice rigorous way to justify for how long to cook chicken
- Dimensional analysis would give us the result up to a constant with less hassle
- While solving this problem we have used couple of nice tricks
- You have seen or you will see the above tricks all over the undergraduate course
- Cookery books discriminate small and very large chickens!

Why to bother?

Spherical Chicken > "Normal" Chicken

Submitted by the Chief Meme Officer (CMO) **Alex Smola**

Now MORE delicious than ever!!!

