(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 October 2002 (31.10.2002)

PCT

(10) International Publication Number WO 02/086443 A2

(51) International Patent Classification⁷: G01N

(21) International Application Number: PCT/US02/12476

(22) International Filing Date: 18 April 2002 (18.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/284,770	18 April 2001 (18.04.2001)	US
60/290,492	10 May 2001 (10.05.2001)	US
60/339,245	9 November 2001 (09.11.2001)	US
60/350,666	13 November 2001 (13.11.2001)	US
60/334,370	29 November 2001 (29.11.2001)	US
60/372,246	12 April 2002 (12.04.2002)	US

(71) Applicant (for all designated States except US): EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): AZIZ, Natasha [US/US]; 411 California Avenue, Palo Alto, CA 94306 (US). MURRAY, Richard [US/US]; 22643 Woodbridge Court, Cupertino, CA 95014 (US).
- (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111-3834 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv)) for US only

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHODS OF DIAGNOSIS OF LUNG CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF LUNG CANCER

5

10

15

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is related to USSN 60/284,770, filed April 18, 2001; USSN 60/290,492, filed May 10, 2001; USSN 60/334,370, filed November 29, 2001; USSN 60/339,245, filed November 9, 2001; USSN 60/350,666, filed November 13, 2001; and USSN 60/xxx,xxx, filed April 12, 2002 (Docket OMNI-002P); each of which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in lung cancer; and to the use of such expression profiles and compositions in diagnosis and therapy of lung cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit lung cancer or related conditions.

20

25

30

BACKGROUND OF THE INVENTION

Lung cancer is the second most commonly occurring cancer in the United States and is the leading cause of cancer-related death. It is estimated that there are over 160,000 new cases of lung cancer in the United States every year. Of those who are diagnosed with lung cancer, 86 percent will die within five years. Lung cancer is the most common visceral cancer in men and accounts for nearly one third of all cancer deaths in both men and women. In fact, lung cancer accounts for 7% of all deaths, due to any cause, in both men and women.

Smoking is the primary cause of lung cancer, with more than 80% of lung cancers resulting from smoking. About 400 to 500 separate gaseous substances are present in the smoke of a non-filter cigarette. The most noteworthy substances include nitrogen oxides, hydrogen cyanide, formaldehyde, benzene, and toluene. The particles present in cigarette smoke contain at least 3,500 individual compounds such as nicotine, tobacco alkaloids (nornicotine, anatabine, anabasine), polycyclic aromatic hydrocarbons (e.g., benzo(a)pyrene, B(a)P), naphthalenes, aromatic amines, phenols, and tobacco-specific nitrosamines.

Tobacco-specific nitrosamines are formed during tobacco curing and processing, and are suspected of causing lung cancer in humans. In rodent studies, regardless of the where or how it is applied, the tobacco-specific nitrosamine known as NNK produces lung adenomas and lung adenocarcinomas. The tobacco-specific nitrosamine known as NNAL also produces lung adenocarcinomas in rodents.

5

10

15

20

25

30

Many of the chemicals found in cigarette smoke also affect the nonsmoker inhaling "secondhand" or sidestream smoke. Indeed, the smoke inhaled by non-smokers has a chemical composition similar to the smoke inhaled by smokers, but, importantly, the concentrations of the carcinogenic tobacco-specific nitrosamines are present in higher concentrations in second hand smoke. For this and other reasons, "passive smoking" is an important cause of lung cancer, causing as many as 3,000 lung cancer deaths in nonsmokers each year.

In addition to smoking, other factors thought to be causes of lung cancer include onthe-job exposure to carcinogens such as asbestos and uranium, exposure to chemical hazards such as radon, polycyclic aromatic hydrocarbons, chromium, nickel, and inorganic arsenic, genetic factors, and diet.

Histological classification of various lung cancers define the types of cancer that begin in the lung. See, e.g., Travis, et al. (1999) <u>Histological Typing of Lung and Pleural Tumours</u> (International Histological Classification of Tumours, No 1. Four major cell types make up more than 88% of all primary lung neoplasms. These are: squamous or epidermoid carcinoma, small cell (also called oat cell) carcinoma, adenocarcinoma, and large cell (also called large cell anaplastic) carcinoma. The remainder include undifferentiated carcinomas, carcinoids, bronchial gland tumors, and other rarer types. The various cell types have different natural histories and responses to therapy, and, thus, a correct histologic diagnosis is the first step of effective treatment.

Small cell lung cancer (SCLC) accounts for 18-25% of all lung cancers, and occurs less frequently than non-small cell lung cancers, and generally spread to distant organs more rapidly than non-small cell lung cancer. In general, at the time of presentation small cell lung cancers have already spread beyond the beyond the bounds where surgery and curative intent can be undertaken. Hoever, if identified early enough, these cancers are often responsive to chemotherapy and thoracic radiation treatment.

Non-small cell lung cancers (NSCLC) are the more frequently occurring form of lung cancer. They comprise squamous cell carcinoma, adenocarcinoma, and large cell carcinoma

and account for more than 75% of all lung cancers. Non-small cell tumors that are localized at the time of presentation can sometimes be cured with surgery and/or radiotherapy, but usually are not identified until significant metastasis has occurred, which are typically not very responsive to surgical, chemotherapy, or radiation treatment..

The screening of asymptomatic persons at high risk for lung cancer has often proven ineffective. In general, only 5 to 15 percent of lung cancer patients have their disease detected while they are asymptomatic. Of course, early detection and treatment are critical factors in the fight against lung cancer. The average survival rate is 49% for those whose cancer is detected early, before the cancer has spread from the lung. Lung cancer often spreads outside of the lung, and it may have spread to the bones or brain by the time it is diagnosed. While the prognosis may be better for lung cancers that are detected early, because of the lack of effective curative treatments, early detection does not necessarily alter the total death rate from lung cancer.

Thus, methods for diagnosis and prognosis of lung cancer and effective treatment of lung cancer would be desirable. Accordingly, provided herein are methods that can be used in diagnosis and prognosis of lung cancer. Further provided are methods that can be used to screen candidate therapeutic agents for the ability to modulate, e.g., treat, lung cancer. Additionally, provided herein are molecular targets and compositions for therapeutic intervention in lung disease and other metastatic cancers.

20

25

30

5

10

15

SUMMARY OF THE INVENTION

The present invention provides nucleotide sequences of genes that are up- and down-regulated in lung cancer cells. Such genes are useful for diagnostic purposes, and also as targets for screening for therapeutic compounds that modulate lung cancer, such as antibodies. The methods of detecting nucleic acids of the invention or their encoded proteins can be used for a number of purposes. Examples include early detection of lung cancers, monitoring and early detection of relapse following treatment of lung cancers, monitoring response to therapy of lung cancers, determining prognosis of lung cancers, directing therapy of lung cancers, selecting patients for postoperative chemotherapy or radiation therapy, selecting therapy, determining tumor prognosis, treatment, or response to treatment, and early detection of precancerous lesions of the lung. Examples of benign or precancerous lesions include: atelectasis, emphysema, brochitis, chronic obstructive pulmonary disease, fibrosis, hypersensitivity pneumonitis (HP), interstitial pulmonary fibrosis (IPF), asthma, and

WO 02/086443 PCT/US02/12476 bronchiectasis. Other aspects of the invention will become apparent to the skilled artisan by

bronchiectasis. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

In one aspect, the present invention provides a method of detecting a lung cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16. Alternatively, the sample may be contacted with a specific binding reagent, e.g., antibody.

5

10

15

20

25

30

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1A-16. In another embodiment, the polynucleotide comprises a sequence as shown in Tables 1A-16.

In one embodiment, the biological sample is a tissue sample, or a body fluid. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label. In one embodiment, the polynucleotide is immobilized on a solid surface. In one embodiment, the patient is undergoing a therapeutic regimen to treat lung cancer. In another embodiment, the patient is suspected of having lung cancer. In one embodiment, the patient is a primate, e.g., a human.

In one embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby monitoring the efficacy of the therapy. Or the sample may be evaluated for protein, e.g., contacting the sample with an antibody.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated transcript to a level of the lung cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment. Or the sample may be evaluated for comparison of protein.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a

biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated antibody in the biological sample by contacting the biological sample with a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, wherein the polypeptide specifically binds to the lung cancer-associated antibody, thereby monitoring the efficacy of the therapy.

5

10

15

20

25

30

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated antibody to a level of the lung cancer-associated antibody in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated polypeptide in the biological sample by contacting the biological sample with an antibody, wherein the antibody specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby monitoring the efficacy of the therapy.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated polypeptide to a level of the lung cancer-associated polypeptide in a biological sample from the patient prior to, or earlier in, the therapeutic treatment. In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1A-16. In one embodiment, an expression vector or cell comprises the isolated nucleic acid. In one aspect, the present invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-16.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-16. In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical. In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

In one aspect, the present invention provides a method of detecting lung cancer in a a patient, the method comprising contacting a biological sample from the patient with an antibody or protein as described herein.

In another aspect, the present invention provides a method of detecting antibodies specific to a lung cancer gene in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprises a sequence from Tables 1A-16.

5

10

15

20

25

30

In another aspect, the present invention provides a method for identifying a compound that modulates a lung cancer-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a lung cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect. In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant. In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation or another critical process of a lung cancer-associated cell to treat lung cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein. In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having lung cancer or a cell isolated therefrom; (ii) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of lung cancer.

In one embodiment, the control is a mammal with lung cancer or a cell therefrom that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal, or a non-malignant lung disease.

In another aspect, the present invention provides a method for treating a mammal having lung cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having lung cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and treatment of lung disease or cancer, as well as methods for screening for compositions which modulate lung cancer. "Treatment, monitoring, detection or modulation of lung disease or cancer" includes treatment, monitoring, detection, or modulation of lung disease in those patients who have lung disease (whether malignant or non-malignant, e.g., emphysema, bronchitis, or fibrosis) as well as patients with lung cancers in which gene expression from a gene in Tables 1A-16 is increased or decreased, indicating that the subject is more likely to have disease. In particular, while these targets are identified primarily from lung cancer samples, these same targets are likely to be similarly found in analyses of other medical conditions. These other conditions may result from similar pathological processes which affect similar tissues, e.g., lung cancer, small cell lung carcinoma (oat cell carcinoma), non-small cell carcinomas (e.g., squamous cell carcinoma, adenocarcinoma, large cell lung carcinoma, carcinoid, granulomatous), fibrosis (idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis (HP), interstitial pneumonitis, nonspecific idiopathic pneumonitis (NSIP)), chronic obstructive pulmonary disease (COPD, e.g., emphysema, chronic bronchitis), asthma, bronchiectasis, and esophageal cancer. See, e.g., the NCI webpage and USSN 60/347,349 and USSN 60/xxx,xxx (docket LFBR-001-1P, filed March 29, 2002), each of which is incorporated herein by reference. The treatment may be of lung cancer or related condition itself, or treatment of metastasis.

In particular, identification of markers selectively expressed on these cancers allows for use of that expression in diagnostic, prognostic, or therapeutic methods. As such, the invention defines various compositions, e.g., nucleic acids, polypeptides, antibodies, and small molecule agonists/antagonists, which will be useful to selectively identify those markers. For example, therapeutic methods may take the form of protein therapeutics which use the marker expression for selective localization or modulation of function (for those markers which have a causative disease effect), for vaccines, identification of binding partners, or antagonism, e.g., using antisense or RNAi. The markers may be useful for molecular characterization of subsets of lung diseases, which subsets may actually require

very different treatments. Moreover, the markers may also be important in related diseases to the specific cancers, e.g., which affect similar tissues in non-malignant diseases, or have similar mechanisms of induction/maintenance. Metastatic processes or characteristics may also be targeted. Diagnostic and prognostic uses are made available, e.g., to subset related but distinct diseases, or to determine treatment strategy. The detection methods may be based upon nucleic acid, e.g., PCR or hybridization techniques, or protein, e.g., ELISA, imaging, IHC, etc. The diagnosis may be qualitative or quantitative, and may detect increases or decreases in expression levels.

Tables 1A-16 provide unigene cluster identification numbers for the nucleotide sequence of genes that exhibit increased or decreased expression in lung cancer samples. The tables also provide an exemplar accession number that provides a nucleotide sequence that is part of the unigene cluster. In Table 1A, genes marked as "target 1" or "target 2" are particularly useful as therapeutic targets. Genes marked as "target 3" are particularly useful as diagnostic markers. Genes marked as "chron" are upregulated in chronically diseased lung (e.g., emphysema, bronchitis, fibrosis) relative to lung tumors and normal tissue. In certain analyses, the ratio for the "chron" category was determined using the 70th percentile of chronically diseases lung samples divided by the 90th percentile of lung tumor samples divided by the 90th percentile of lung tumor samples divided by the 90th percentile of normal lung samples.

20

25

30

5

10

15

Definitions

The term "lung cancer protein" or "lung cancer polynucleotide" or "lung cancerassociated transcript" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1A-16 and conservatively modified variants thereof; or (4)

have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater amino sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. A "lung cancer polypeptide" and a "lung cancer polynucleotide," include both naturally occurring or recombinant forms.

5

10

15

20

25

30

A "full length" lung cancer protein or nucleic acid refers to a lung cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains the elements normally contained in one or more naturally occurring, wild type lung cancer polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of post-translational processing or splicing, including alternative splicing.

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of a lung cancer protein, polynucleotide, or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, archival materials, blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate, e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or other mammal; or a bird; reptile; fish. Livestock and domestic animals are of interest.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention in vivo. Archival tissues or materials, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the

same or have a specified percentage of amino acid residues or nucleotides that are the same (e.g., about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using, e.g., a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the complement of a test sequence. The definition also includes sequences that have deletions and/or insertions, substitutions, and naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of contiguous positions selected from the group consisting typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Nat'l. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer

Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Ausubel, et al. (eds. 1995 and supplements) <u>Current Protocols in Molecular Biology</u>.

5

10

15

20

25

30

Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms, which are described in Altschul, et al. (1977) Nuc. Acids Res. 25:3389-3402 and Altschul, et al. (1990) J. Mol. Biol. 215:403-410. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul, et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) <u>Proc. Nat'l. Acad. Sci. USA</u> 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between

two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be negative large numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

5

10

15

20

25

30

An indication that two nucleic acid sequences are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least about 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means removing at least one contaminant or component from the composition to be purified.

WO 02/086443

PCT/US02/12476

this sense purification does not require that the purified compound be homogeneous e.g.

In this sense, purification does not require that the purified compound be homogeneous, e.g., 100% pure.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.

5

10

15

20

25

30

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain some basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refer to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that function similarly to another amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG, and GCU each encode the amino acid alanine. Thus, at each position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of

conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. In certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally similar molecule. Accordingly, a silent variation of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not necessarily with respect to actual probe sequences.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. Typically conservative substitutions include for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts, et al. (1994) Molecular Biology of the Cell (3^{rd} ed.) and Cantor and Schimmel (1980) Biophysical Chemistry Part I: The Conformation of Biological Macromolecules. "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that often form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have at least one different linkage, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or Omethylphophoroamidite linkages (see Eckstein (1992) Oligonucleotides and Analogues: A Practical Approach Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, in Sanghui and Cook, eds. Carbohydrate Modifications in Antisense Research, ASC Symposium Series 580. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g., to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

5

10

15

20

25

30

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4° C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9° C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary

strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g., the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

5

10

15

20

25

30

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, physiological, chemical, or other physical means. For example, useful labels include ³²P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The labels may be incorporated into the cancer nucleic acids, proteins, and antibodies. Many methods known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter, et al. (1962) Nature 144:945; David, et al. (1974) Biochemistry 13:1014-1021; Pain, et al. (1981) J. Immunol. Meth., 40:219-230; and Nygren (1982) J. Histochem. and Cytochem. 30:407-412.

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; activatable moieties, a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method

using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

5

10

15

20

25

30

As used herein a "nucleic acid probe or oligonucleotide" is a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, e.g., through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, preferably one that does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. Probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled, e.g., with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled, e.g., with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operably linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e., using the in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered

recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as depicted above.

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

5

10

15

20

25

30

A "promoter" is typically an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, e.g., wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed in operable linkage to a promoter.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule selectively to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

5

10

15

20

25

30

Applications.

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to essentially no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in "Overview of principles of hybridization and the strategy of nucleic acid assays" in Tijssen (1993) Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes (vol. 24) Elsevier. Generally, stringent conditions are selected to be about 5-10° C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is typically at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions are often: 50% formamide, 5x SSC, and 1% SDS, incubating at 42° C, or, 5x SSC, 1% SDS, incubating at 65° C, with wash in 0.2x SSC, and 0.1% SDS at 65° C. For PCR, a temperature of about 36° C is typical for low stringency amplification, although annealing temperatures may vary between about 32° C and 48° C depending on primer length. For high stringency PCR amplification, a temperature of about 62° C is typical, although high stringency annealing temperatures can range from about 50° C to about 65° C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90° C - 95° C for 0.5 - 2 min., an annealing phase lasting 0.5 - 2 min., and an extension phase of about 72° C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis, et al.(1990) PCR Protocols, A Guide to Methods and

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This

occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C, and a wash in 1X SSC at 45° C. A positive hybridization is at least twice background. Alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., Ausubel, et al. (ed.) <u>Current Protocols in Molecular Biology</u> Lippincott.

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of a lung cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the lung cancer protein or nucleic acid, e.g., a physiological, enzymatic, functional, physical, or chemical effect, such as the ability to decrease lung cancer. It includes ligand binding activity; cell viability, cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein expression in cells undergoing metastasis, and other characteristics of lung cancer cells. "Functional effects" include *in vitro*, *in vivo*, and *ex vivo* activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a lung cancer protein sequence, e.g., physiological, functional, enzymatic, physical, or chemical effects. Such functional effects can be measured by many means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the lung cancer protein; measuring binding activity or binding assays, e.g., binding to antibodies or other ligands, and measuring cellular proliferation. Determination of the functional effect of a compound on lung cancer can also be performed using lung cancer assays known to those of skill in the art such as an *in vitro* assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein

expression in cells undergoing metastasis, and other characteristics of lung cancer cells. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for lung cancer-associated sequences, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β -gal, GFP, and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

5

10

15

20

25

30

"Inhibitors", "activators", and "modulators" of lung cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using in vitro and in vivo assays of lung cancer polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of lung cancer proteins, e.g., antagonists. Antisense or inhibitory nucleic acids may seem to inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate lung cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of lung cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the lung cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of lung cancer can also be identified by incubating lung cancer cells with the test compound and determining increases or decreases in the expression of 1 or more lung cancer proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more lung cancer proteins, such as lung cancer proteins encoded by the sequences set out in Tables 1A-16.

Samples or assays comprising lung cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of a lung cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more

WO 02/086443 PCT/US02/12476 preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably

1000-3000% higher.

5

10

15

20

25

30

The phrase "changes in cell growth" refers to any change in cell growth and proliferation characteristics *in vitro* or *in vivo*, such as cell viability, formation of foci, anchorage independence, semi-solid or soft agar growth, changes in contact inhibition and density limitation of growth, loss of growth factor or serum requirements, changes in cell morphology, gaining or losing immortalization, gaining or losing tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or immortalization of the cell. See, e.g., Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> pp. 231-241 (3rd ed.).

"Tumor cell" refers to precancerous, cancerous, and normal cells in a tumor.

"Cancer cells," "transformed" cells, or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation is associated with phenotypic changes, such as immortalization of cells, aberrant growth control, nonmorphological changes, and/or malignancy (see, Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> (3rd ed.)).

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD, and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See Paul, Fundamental Immunology.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible

for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

5

10

15

20

25

30

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Paul (ed. 1999) Fundamental Immunology (4th ed.). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized *de novo* either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized *de novo* using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty, et al. (1990) Nature 348:552-554).

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler and Milstein (1975) Nature 256:495-497; Kozbor, et al. (1983) Immunology Today 4:72; Cole, et al. (1985), pp. 77-96 in Monoclonal Antibodies and Cancer Therapy; Coligan (1991 and supplements) Current Protocols in Immunology; Harlow and Lane (1988) Antibodies, A Laboratory Manual; and Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty, et al. (1990) Nature 348:552-554; Marks, et al. (1992) Biotechnology 10:779-783).

A "chimeric antibody" is an antibody molecule in which, e.g, (a) the constant region, or a portion thereof, is altered, replaced, or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function, and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the

variable region, or a portion thereof, is altered, replaced, or exchanged with a variable region having a different or altered antigen specificity.

Identification of lung cancer-associated sequences

5

10

15

20

25

30

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is characteristic of the state of the cell. That is, normal tissue may be distinguished from cancerous or metastatic cancerous tissue, or metastatic cancerous tissue can be compared with tissue from surviving cancer patients. By comparing expression profiles of tissue in known different lung cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Molecular profiling may distinguish subtypes of a currently collective disease designation, e.g., different forms of lung cancer (chronic disease, adenocarcinoma, etc.)

The identification of sequences that are differentially expressed in lung cancer versus non-lung cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to downregulate lung cancer, and thus tumor growth or recurrence, in a particular patient. Alternatively, a treatment step may induce other markers which may be used as targets to destroy tumor cells. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Malignant diseasemay be compared to non-malignant conditions. Metastatic tissue can also be analyzed to determine the stage of lung cancer in the tissue, or origin of primary tumor, e.g., metastasis from a remote primary site. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the lung cancer expression profile. This may be done by making biochips comprising sets of the important lung cancer genes, which can then be used in these screens. PCR methods may be applied with selected primer pairs, and analysis may be of RNA or of genomic sequences. These methods can also be done on the protein basis; that is, protein expression levels of the lung cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the lung cancer

nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the lung cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs or as protein or DNA vaccines.

5

10

15

20

25

30

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in lung cancer relative to normal tissues and/or non-malignant lung disease, or in different types of lung disease, herein termed "lung cancer sequences." As outlined below, lung cancer sequences include those that are up-regulated (i.e., expressed at a higher level) in lung cancer, as well as those that are down-regulated (i.e., expressed at a lower level). In a preferred embodiment, the lung cancer sequences are from humans; however, as will be appreciated by those in the art, lung cancer sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other lung cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets (dogs, cats, etc.). Lung cancer sequences from other organisms may be obtained using the techniques outlined below.

Lung cancer sequences can include both nucleic acid and amino acid sequences. As will be appreciated by those in the art and is more fully outlined below, lung cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; e.g., biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the lung cancer sequences can be generated.

A lung cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the lung cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, e.g., using homology programs or hybridization conditions.

For identifying lung cancer-associated sequences, the lung cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, cancer and non-malignant conditions, non-malignant conditions and normal tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing lung cancer samples with metastatic cancer samples from other cancers, such as, breast, other gastrointestinal cancers, prostate, ovarian,

etc. Samples of, non metastatic disease tissue and tissue undergoing metastasis are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, e.g., from Affymetrix, Santa Clara, CA. Gene expression profiles as described herein are generated and the data analyzed.

5

10

15

20

25

30

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal lung, but also including, and not limited to colon, heart, brain, liver, breast, kidney, muscle, prostate, small intestine, large intestine, spleen, bone, and/or placenta. In a preferred embodiment, those genes identified during the lung cancer screen that are expressed in significant amounts in other tissues (e.g., essential organs) are removed from the profile, although in some embodiments, this is not necessary (e.g., where organs may be dispensible at a later stage of life). That is, when screening for drugs, it is usually preferable that the target expression be disease specific, to minimize possible side effects on other organs.

In a preferred embodiment, lung cancer sequences are those that are up-regulated in lung cancer; that is, the expression of these genes is higher in cancerous tissue than in normal lung or other tissue. "Up-regulation" as used herein means, when the ratio is presented as a number greater than one, that the ratio is greater than one, preferably 1.5 or greater, more preferably 2.0 or greater. Another embodiment is directed to sequences up-regulated in nonmalignant conditions relative to normal. Unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al (1998) Nucleic Acids Research 26:1-7 and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ). Another embodiment is directed to sequences up-regulated in non-malignant conditions relative to normal. In some situations, the sequences may be derived from assembly of available sequences or be predicted from genomic DNA using exon prediction algorithms, such as FGENESH (Salamov and Solovyev (2000) Genome Res. 10:516-522). In other situations, sequences have been derived from cloning and sequencing of isolated nucleic acids.

In another preferred embodiment, lung cancer sequences are those that are downregulated in the lung cancer; that is, the expression of these genes is lower in cancerous tissue

or normal lung or other tissue. "Down-regulation" as used herein means, when the ratio is presented as a number greater than one, that the ratio is greater than one, preferably 1.5 or greater, more preferably 2.0 or greater, or, when the ratio is presented as a number less than one, that the ratio is less than one, preferably 0.5 or less, more preferably 0.25 or less.

5

10

15

20

25

30

Informatics

The ability to identify genes that are over or under expressed in lung cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with lung cancer. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (see Anderson (1998) Pharmaceutical Proteomics: Targets,

Mechanism, and Function, paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in a form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample representing lung cancer, i.e., the identification of lung cancer-associated sequences described herein, provide an abundance of information, which can be correlated with

pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, genedisease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, data processing using high-speed computers is utilized.

5

10

15

20

25

30

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multidimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

See also Mount, et al. (2001) Bioinformatics; Durbin, et al. (eds., 1999) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (; Baxevanis and Oeullette (eds., 1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins); Rashidi and Buehler (1999) Bioinformatics: Basic Applications in Biological Science and Medicine; Setubal, et al. (eds 1997) Introduction to Computational Molecular Biology; Misener and Krawetz (eds, 2000) Bioinformatics: Methods and Protocols; Higgins and Taylor (eds., 2000) Bioinformatics: Sequence, Structure, and Databanks: A Practical

Approach; Brown (2001) Bioinformatics: A Biologist's Guide to Biocomputing and the Internet; Han and Kamber (2000) Data Mining: Concepts and Techniques (2000); and Waterman (1995) Introduction to Computational Biology: Maps, Sequences, and Genomes.

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

5

10

15

20

25

30

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for lung cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may

be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

5

10

15

20

25

30

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results.

Data for a query target is entered into the central processor via an I/O device. Execution of

the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC,

MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

15 Characteristics of lung cancer-associated proteins

5

10

20

25

30

Lung cancer proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the lung cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Alberts (ed. 1994) Molecular Biology of the Cell (3d ed.). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more structural motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2

domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of amino acid sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden (see, e.g., Bateman, et al (2000) Nuc. Acids Res. 28:263-266; Sonnhammer, et al. (1997) Proteins 28:405-420; Bateman, et al. (1999) Nuc. Acids Res. 27:260-262; and Sonnhammer, et al. (1998) Nuc. Acids Res. 26:320-322).

In another embodiment, the lung cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels, pumps, and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 17 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the

localization and number of transmembrane domains within the protein may be predicted (see, e.g., PSORT web site http://psort.nibb.ac.jp/).

5

10

15

20

25

30

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF, and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, hormones, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they may mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains may also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Lung cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for extracellular immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins *in situ* or in histological analysis. Alternatively, antibodies can also label intracellular proteins, in which case analytical samples are typically permeablized to provide access to intracellular proteins. In addition, some membrane proteins can be processed to release a soluble protein, or to expose a residual fragment. Released soluble proteins may be useful diagnostic markers, processed residual protein fragments may be useful lung markers of disease.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the lung cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins may have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; e.g., if circulating, they often serve to transmit

signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor), an endocrine manner (acting on cells at a distance, e.g., secretion into the blood stream), or exocrine (secretion, e.g., through a duct or to adjacent epithelial surface as sweat glands, sebaceous glands, pancreatic ducts, lacrimal glands, mammary glands, sax producing glands of the ear, etc.). Thus secreted molecules often find use in modulating or altering numerous aspects of physiology. Lung cancer proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or stool tests. Those which are enzymes may be antibody or small molecule targets. Others may be useful as vaccine targets, e.g., via CTL mechanisms.

Use of lung cancer nucleic acids

5

10

15

20

25

30

As described above, lung cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the lung cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The lung cancer nucleic acid sequences of the invention, e.g., the sequences in Tables 1A-16, can be fragments of larger genes, i.e., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the lung cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, et al., *supra*. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

Once a lung cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire lung cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant lung cancer nucleic acid can be further-used as a probe to identify and isolate

other lung cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant lung cancer nucleic acids and proteins.

The lung cancer nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the lung cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, RNAi, vaccine, and/or antisense applications. Alternatively, the lung cancer nucleic acids that include coding regions of lung cancer proteins can be put into expression vectors for the expression of lung cancer proteins, again for screening purposes or for administration to a patient.

5

10

15

20

25

30

In a preferred embodiment, nucleic acid probes to lung cancer nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the lung cancer nucleic acids, i.e., the target sequence (either the target sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under appropriate reaction conditions, particularly high stringency conditions, as outlined herein.

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally complements of ORFs or whole genes are not used. In some embodiments, nucleic acids of lengths up to hundreds of bases can be used.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a

particular target. The probes can be overlapping (i.e., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

5

10

15

20

25

30

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is typically meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to a biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. Often the substrate may contain discrete individual sites appropriate for ndivitual partitioning and identification. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in US application entitled Reusable Low Fluorescent Plastic Biochip, U.S.

Application Serial No. 09/270,214, filed March 15, 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

5

10

15

20

25

30

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g., using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

In this embodiment, oligonucleotides are synthesized, and then attached to the surface of the solid support. Either the 5' or 3' terminus may be attached to the solid support, or attachment may be via linkage to an internal nucleoside.

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized *in situ*, using known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affymetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of lung cancer-associated sequences. These assays are typically performed in conjunction with

reverse transcription. In such assays, a lung cancer-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of lung cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for quantitative PCR are provided, e.g., in Innis, et al. (1990) PCR Protocols, A Guide to Methods and Applications.

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4:560, Landegren, et al. (1988) Science 241:1077, and Barringer, et al. (1990) Gene 89:117), transcription amplification (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173), self-sustained sequence replication (Guatelli, et al. (1990) Proc. Nat. Acad. Sci. USA 87:1874), dot PCR, and linker adapter PCR, etc.

Expression of lung cancer proteins from nucleic acids

5

10

15

20

25

30

In a preferred embodiment, lung cancer nucleic acids, e.g., encoding lung cancer proteins, are used to make a variety of expression vectors to express lung cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, *supra*, and Fernandez and Hoeffler (eds 1999) Gene Expression Systems) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the lung cancer protein. The term "control sequences" refers to DNA

sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

5

10

15

20

25

30

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the lung cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences may be either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g., in mammalian or insect cells for expression and in a prokaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector often contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating

vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez and Hoeffler, *supra*).

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

5

10

15

20

25

30

The lung cancer proteins of the present invention are usually produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a lung cancer protein, under the appropriate conditions to induce or cause expression of the lung cancer protein. Conditions appropriate for lung cancer protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are *Saccharomyces cerevisiae* and other yeasts, *E. coli*, *Bacillus subtilis*, Sf9 cells, C129 cells, 293 cells, *Neurospora*, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the lung cancer proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez and Hoeffler, *supra*). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenylation signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used. Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

5

10

15

20

25

30

In a preferred embodiment, lung cancer proteins are expressed in bacterial systems. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the lung cancer protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez and Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, lung cancer proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, lung cancer protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for *Saccharomyces cerevisiae*, *Candida albicans* and *C. maltosa*, *Hansenula polymorpha*,

Kluyveromyces fragilis and K. lactis, Pichia guillerimondii, and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The lung cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the lung cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the lung cancer protein may be made as a fusion protein to increase expression for affinity purification purposes, or for other reasons. For example, when the lung cancer protein is a lung cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In a preferred embodiment, the lung cancer protein is purified or isolated after expression. Lung cancer proteins may be isolated or purified in a variety of appropriate ways. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the lung cancer protein may be purified using a standard anti-lung cancer protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes (1982) Protein Purification. The degree of purification necessary will vary depending on the use of the lung cancer protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the lung cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, therapeutic entities, for production of antibodies, as transcription or translation inhibitors, etc.

25 Variants of lung cancer proteins

5

10

15

20

30

In one embodiment, the lung cancer proteins are derivative or variant lung cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative lung cancer peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at a particular residue within the lung cancer peptide.

Also included within one embodiment of lung cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three

classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the lung cancer protein, using cassette or PCR mutagenesis or other techniques, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant lung cancer protein fragments having up to about 100-150 residues may be prepared by *in vitro* synthesis. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the lung cancer protein amino acid sequence. The variants typically exhibit a similar qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

5

10

15

20

25

30

While the site or region for introducing an amino acid sequence variation is often predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed lung cancer variants screened for the optimal combination of desired activity. Techniques exist for making substitution mutations at predetermined sites in DNA having a known sequence, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of mutants is often done using assays of lung cancer protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be occasionally tolerated. Deletions generally range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. Larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of a lung cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution chart provided in the definition section.

Variants typically exhibit essentially the same qualitative biological activity and will elicit the same immune response as a naturally-occurring analog, although variants also are selected to modify the characteristics of lung cancer proteins as needed. Alternatively, the

variant may be designed or reorganized such that a biological activity of the lung cancer protein is altered. For example, glycosylation sites may be added, altered, or removed.

5

10

15

20

25

30

Covalent modifications of lung cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a lung cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of a lung cancer polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking lung cancer polypeptides to a water-insoluble support matrix or surface for use in a method for purifying anti-lung cancer polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of serinyl, threonyl or tyrosyl residues, methylation of the γ-amino groups of lysine, arginine, and histidine side chains (Creighton (1983) Proteins: Structure and Molecular Properties, pp. 79-86), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the lung cancer polypeptide encompassed by this invention is an altered native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended herein to mean adding to or deleting one or more carbohydrate moieties of a native sequence lung cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express lung cancer-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to lung cancer polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence lung cancer polypeptide (for O-linked glycosylation sites). The lung cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the lung cancer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the lung cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330, and in Aplin and Wriston (1981) CRC Crit. Rev. Biochem., pp. 259-306.

5

10

15

20

25

30

Removal of carbohydrate moieties present on the lung cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al. (1987) <a href="https://dx.ncbi.nlm.nih.good.ncb

Another type of covalent modification of lung cancer comprises linking the lung cancer polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192, or 4,179,337.

Lung cancer polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a lung cancer polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a lung cancer polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the lung cancer polypeptide. The presence of such epitope-tagged forms of a lung cancer polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the lung cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a lung cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known and examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field, et al. (1988) Mol. Cell. Biol. 8:2159-2165); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies

thereto (Evan, et al. (1985) Molecular and Cellular Biology 5:3610-3616); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky, et al. (1990) Protein Engineering 3(6):547-553). Other tag polypeptides include the Flag-peptide (Hopp, et al. (1988) BioTechnology 6:1204-1210); the KT3 epitope peptide (Martin, et al. (1992) Science 255:192-194); tubulin epitope peptide (Skinner, et al. (1991) J. Biol. Chem. 266:15163-15166); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:6393-6397).

Also included are other lung cancer proteins of the lung cancer family, and lung cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related lung cancer proteins from primates or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include unique areas of the lung cancer nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. PCR reaction conditions are well known in the art (e.g., Innis, PCR Protocols, *supra*).

Antibodies to lung cancer proteins

5

10

15

20

25

30

In a preferred embodiment, when a lung cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the lung cancer protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller lung cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are well known (e.g., Coligan, *supra*; and Harlow and Lane, *supra*). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of Tables 1A-16 or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal

being immunized. Immunogenic proteins include, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Adjuvants include, e.g., Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art.

5

10

15

20

25

30

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein (1975) Nature 256:495. In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of the tables, or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if nonhuman mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding (1986) Monoclonal Antibodies: Principles and Practice, pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovin, or primate origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are typically monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid of the tables or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

In a preferred embodiment, the antibodies to lung cancer protein are capable of reducing or eliminating a biological function of a lung cancer protein, in a naked form or conjugated to an effector moiety. That is, the addition of anti-lung cancer protein antibodies (either polyclonal or preferably monoclonal) to lung cancer tissue (or cells containing lung cancer) may reduce or eliminate the lung cancer. Generally, at least a 25% decrease in activity, growth, size or the like is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

5

10

15

20

25

30

In a preferred embodiment the antibodies to the lung cancer proteins are humanized antibodies (e.g., Xenerex Biosciences, Medarex, Inc., Abgenix, Inc., Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of a human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. A humanized antibody optimally also will typically comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-329; and Presta (1992) Curr. Op. Struct. Biol. 2:593-596). Humanization can be performed following the method of Winter and co-workers (Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-327; Verhoeyen, et al. (1988) Science 239:1534-1536), by substituting rodent CDRs or CDR sequences for corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4.816.567), wherein substantially less than an intact human variable domain has been substituted by corresponding sequence from a non-human species.

Human-like antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom and Winter (1991) J. Mol. Biol. 227:381; Marks, et al. (1991) J. Mol. Biol. 222:581). The techniques of Cole, et al. and Boerner, et al. are also available for the preparation of human monoclonal antibodies (Cole, et al. (1985) Monoclonal Antibodies and Cancer Therapy, p. 77 and Boerner, et al. (1991) J. Immunol. 147(1):86-95). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in nearly all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, e.g., in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks, et al. (1992) Bio/Technology 10:779-783; Lonberg, et al. (1994) Nature 368:856-859; Morrison (1994) Nature 368:812-13; Fishwild, et al. (1996) Nature Biotechnology 14:845-51; Neuberger (1996) Nature Biotechnology 14:826; and Lonberg and Huszar (1995) Intern. Rev. Immunol. 13:65-93.

5

10

15

20

25

30

By immunotherapy is meant treatment of lung cancer with an antibody raised against a lung cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. The antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the lung cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, may bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted lung cancer protein.

In another preferred embodiment, the lung cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment may bind the extracellular domain of the lung cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The

antibody may cause down-regulation of the transmembrane lung cancer protein. The antibody may be a competitive, non-competitive or uncompetitive inhibitor of protein binding to the extracellular domain of the lung cancer protein. The antibody may be an antagonist of the lung cancer protein or may prevent activation of a transmembrane lung cancer protein, or may induce or suppress a particular cellular pathway. In some embodiments, when the antibody prevents the binding of other molecules to the lung cancer protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ, and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody may belong to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, lung cancer may be treated by administering to a patient antibodies directed against the transmembrane lung cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be various molecules, including labeling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of a lung cancer protein. In another aspect the therapeutic moiety may modulate an activity of molecules associated with or in close proximity to a lung cancer protein. The therapeutic moiety may inhibit enzymatic or signaling activity such as protease or collagenase activity associated with lung cancer.

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to lung cancer tissue or cells results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with lung cancer. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, saporin, auristatin, and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against lung cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane lung cancer proteins not only serves to increase the local concentration of therapeutic moiety in the lung cancer

afflicted area, but also serves to reduce deleterious side effects that may be associated with the untargeted therapeutic moiety.

In another preferred embodiment, the lung cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein or other entity which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the lung cancer protein can be targeted within a cell, i.e., the nucleus, an antibody theretomay contain a signal for that target localization, i.e., a nuclear localization signal.

The lung cancer antibodies of the invention specifically bind to lung cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding to the specific target and not to related other sequences is also important.

15

20

25

5

10

Detection of lung cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the lung cancer phenotype. Expression levels of genes in normal tissue (e.g., not undergoing lung cancer), in lung cancer tissue (and in some cases, for varying severities of lung cancer that relate to prognosis, as outlined below), or in non-malignant disease are evaluated to provide expression profiles. A gene expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state of the cell. While two states may have a particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

30

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g.,

WO 02/086443 PCT/US02/12476 normal versus lung cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays, Lockhart (1996) Nature Biotechnology 14:1675-1680, hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e., upregulation or downregulation) is typically at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

5

10

15

20

25

30

Evaluation may be at the gene transcript or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the RNA or DNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the lung cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to lung cancer genes, e.g., those identified as being important in a lung cancer or disease phenotype, can be evaluated in a lung cancer diagnostic test. In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes.

The lung cancer nucleic acid probes may be attached to biochips as outlined herein for the detection and quantification of lung cancer sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In a preferred embodiment nucleic acids encoding the lung cancer protein are detected. Although DNA or RNA encoding the lung cancer protein may be detected, of particular interest are methods wherein an mRNA encoding a lung cancer protein is detected.

Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed *in situ*. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a lung cancer protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

5

10

15

20

25

30

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, lung cancer proteins, including intracellular, transmembrane, or secreted proteins, find use as markers of lung cancer, e.g., for prognostic or diagnostic purposes. Detection of these proteins in putative lung cancer tissue allows for detection, prognosis, or diagnosis of lung cancer or similar disease, and perhaps for selection of therapeutic strategy. In one embodiment, antibodies are used to detect lung cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the lung cancer protein is detected, e.g., by immunoblotting with antibodies raised against the lung cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the lung cancer protein find use in *in situ* imaging techniques, e.g., in histology (e.g., Asai (ed. 1993) Methods in Cell Biology:

Antibodies in Cell Biology, volume 37. In this method cells are contacted with from one to many antibodies to the lung cancer protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label, e.g., multicolor fluorescence or confocal imaging. In another method the primary antibody to the lung cancer protein(s) contains a detectable label, e.g., an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of lung cancer proteins. Many other histological imaging techniques are also provided by the invention.

5

10

15

20

25

30

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing lung cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of lung cancer proteins. Antibodies can be used to detect a lung cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous lung cancer protein or vaccine.

In a preferred embodiment, *in situ* hybridization of labeled lung cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including lung cancer tissue and/or normal tissue, are made. *In situ* hybridization (see, e.g., Ausubel, *supra*) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to lung cancer, clinical, pathological, or other information, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. Single or multiple

genes may be useful in various combinations. As above, lung cancer probes may be attached to biochips for the detection and quantification of lung cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

5

10

15

20

25

30

Assays for therapeutic compounds

In a preferred embodiment, the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al. (1998) Science 279:84-8; Heid (1996) Genome Res. 6:986-94.

In a preferred embodiment, the lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified lung cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the lung cancer phenotype or an identified physiological function of a lung cancer protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified differentially expressed genes herein, a variety of assays may be performed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene with altered regulation in lung cancer, test compounds can be screened for the ability to modulate gene expression or for binding to the lung cancer protein. "Modulation" thus includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing lung cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in lung cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in lung

cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the lung cancer protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

5

10

15

20

25

30

In a preferred embodiment, gene or protein expression monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein.

In this embodiment, the lung cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of lung cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring can be performed to identify compounds that modify the expression of one or more lung cancer-associated sequences, e.g., a polynucleotide sequence set out in the tables. Generally, in a preferred embodiment, a test compound is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate lung cancer, modulate lung cancer proteins, bind to a lung cancer protein, or interfere with the binding of a lung cancer protein and an antibody, substrate, or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes a molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the lung cancer phenotype or the expression of a lung cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles of nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a lung cancer phenotype, e.g., to a normal or non-malignant tissue fingerprint. In another embodiment, a modulator induces a lung cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

In one aspect, a modulator will neutralize the effect of a lung cancer protein. By "neutralize" is meant that activity of a protein and the consequent effect on the cell is inhibited or blocked.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a lung cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

5

10

15

20

25

30

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop, et al. (1994) J. Med. Chem. 37(9):1233-1251).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka (1991) Pept. Prot. Res. 37:487-493, Houghton, et al. (1991) Nature, 354:84-88), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs, et al. (1993) Proc. Nat. Acad. Sci. USA 90:6909-6913), vinylogous polypeptides (Hagihara, et al. (1992) J. Amer. Chem. Soc. 114:6568), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann, et

al. (1992) J. Amer. Chem. Soc. 114:9217-9218), analogous organic syntheses of small compound libraries (Chen, et al. (1994) J. Amer. Chem. Soc. 116:2661), oligocarbamates (Cho, et al. (1993) Science 261:1303), and/or peptidyl phosphonates (Campbell, et al. (1994) J. Org. Chem. 59:658). See, generally, Gordon, et al. (1994) J. Med. Chem. 37:1385, nucleic acid libraries (see, e.g., Stratagene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn, et al. (1996) Nature Biotechnology 14(3):309-314, and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang, et al. (1996) Science 274:1520-1522, and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum (1993) C&EN, Jan 18, page 33; isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

5

10

15

20

25

30

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. The above devices, with appropriate modification, are suitable for use with the present invention. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect modulation of lung cancer gene transcription, polypeptide expression, and polypeptide activity.

High throughput assays for evaluating the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins,

U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

5

10

15

20

25

30

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate procedures, including sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that the nucleic acid or peptide consists of essentially random sequences of nucleotides and amino acids, respectively. Since these random peptides (or nucleic acids, discussed below) are often chemically synthesized, they may incorporate a nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. In a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc.

Modulators of lung cancer can also be nucleic acids, as defined above.

5

10

15

20

25

30

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. Digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

After a candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence is analyzed. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an *in vitro* transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

Nucleic acid assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos.

5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

5

10

15

20

25

30

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration, pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the lung cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state,

screens are performed to identify agents that bind and/or modulate the biological activity of the gene product, or evaluate genetic polymorphisms.

5

10

15

20

25

30

Genes can be screened for those that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a lung cancer expression pattern leading to a normal expression pattern, or to modulate a single lung cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated lung cancer tissue reveals genes that are not expressed in normal tissue or lung cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for lung cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated lung cancer tissue sample.

Thus, in one embodiment, a test compound is administered to a population of lung cancer cells, that have an associated lung cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e., a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once a test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, e.g., lung cancer or non-malignant tissue may be screened for agents that modulate, e.g., induce or suppress a lung cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on lung cancer activity. By defining such a signature for the lung cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

Measure of lung cancer polypeptide activity, or of lung cancer or the lung cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the metastatic polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of lung cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian lung cancer polypeptide is typically used, e.g., mouse, preferably human.

5

10

15

20

25

30

Assays to identify compounds with modulating activity can be performed *in vitro*. For example, a lung cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the lung cancer polypeptide levels are determined *in vitro* by measuring the level of protein or mRNA. The level of protein is typically measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the lung cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is typically detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using a lung cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed

genes are sometimes referred to herein as "lung cancer proteins." The lung cancer protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

5

10

15

20

25

30

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the lung cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining a lung cancer protein and a candidate compound, and determining the binding of the compound to the lung cancer protein. Preferred embodiments utilize the human lung cancer protein, although other mammalian proteins may also be used, e.g., for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative lung cancer proteins may be used.

Generally, in a preferred embodiment of the methods herein, the lung cancer protein or the candidate agent is non-diffusably bound to an insoluble support, preferably having isolated sample receiving areas (e.g., a microtiter plate, an array, etc.). The insoluble supports may be made of a composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of a convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is typically not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition, and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation

sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

5

10

15

20

25

30

In a preferred embodiment, the lung cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the lung cancer protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled *in vitro* protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the lung cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the lung cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, e.g., ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor may be a binding moiety known to bind to the target molecule (i.e., a lung cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40° C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically

between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

5

10

15

20

25

30

In a preferred embodiment, the competitor is added first, followed by a test compound. Displacement of the competitor is an indication that the test compound is binding to the lung cancer protein and thus is capable of binding to, and potentially modulating, the activity of the lung cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the lung cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the lung cancer protein.

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the lung cancer proteins. In one embodiment, the methods comprise combining a lung cancer protein and a competitor in a first sample. A second sample comprises a test compound, a lung cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the lung cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the lung cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native lung cancer protein, but cannot bind to modified lung cancer proteins. The structure of the lung cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a lung cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results.

Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

5

10

15

20

25

30

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a lung cancer protein. The methods comprise adding a test compound, as defined above, to a cell comprising lung cancer proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a lung cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g., hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (e.g., cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate lung cancer agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the lung cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting lung cancer cell division is provided. The method comprises administration of a lung cancer inhibitor. In another embodiment, a method of inhibiting lung cancer is provided. The method may comprise administration of a lung cancer inhibitor. In a further embodiment, methods of treating cells or individuals with lung cancer are provided, e.g., comprising administration of a lung cancer inhibitor.

In one embodiment, a lung cancer inhibitor is an antibody as discussed above. In another embodiment, the lung cancer inhibitor is an antisense molecule.

A variety of cell growth, proliferation, viability, and metastasis assays are known to those of skill in the art, as described below.

Soft agar growth or colony formation in suspension

5

10

15

25

30

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of lung cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> (3rd ed.), herein incorporated by reference. See also, the methods section of Garkavtsev, et al. (1996), *supra*, herein incorporated by reference.

20 Contact inhibition and density limitation of growth

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. See Freshney (1994), *supra*. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a lung cancer-associated sequence and are grown for 24 hours at saturation density in

non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined autoradiographically. See, Freshney (1994), *supra*.

Growth factor or serum dependence

Transformed cells typically have a lower serum dependence than their normal counterparts (see, e.g., Temin (1966) <u>J. Natl. Cancer Insti.</u> 37:167-175; Eagle, et al. (1970) <u>J. Exp. Med.</u> 131:836-879); Freshney, *supra*. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

10

15

20

5

Tumor specific markers levels

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) <u>Biological Responses in Cancer</u>, pp. 178-184). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman (1992) "Angiogenesis and Cancer" in <u>Sem Cancer Biol.</u>).

Various techniques which measure the release of these factors are described in Freshney (1994), *supra*. Also, see, Unkeless, et al. (1974) <u>J. Biol. Chem.</u> 249:4295-4305; Strickland and Beers (1976) <u>J. Biol. Chem.</u> 251:5694-5702; Whur, et al. (1980) <u>Br. J. Cancer</u> 42:305-312; Gullino, "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) <u>Biological Responses in Cancer</u>, pp. 178-184; Freshney <u>Anticancer Res.</u> 5:111-130 (1985).

25

30

Invasiveness into Matrigel

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate lung cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1994), *supra*, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), *supra*.

Tumor growth in vivo

5

10

15

20

25

30

Effects of lung cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the lung cancer gene is disrupted or in which a lung cancer gene is inserted. Knock-out transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous lung cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous lung cancer gene with a mutated version of the lung cancer gene, or by mutating the endogenous lung cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi, et al. (1989) Science 244:1288). Chimeric targeted mice can be derived according to Hogan, et al. (1988) Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory and Robertson (ed. 1987) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, , IRL Press, Washington, D.C.

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella, et al. (1974) <u>J. Natl. Cancer Inst.</u> 52:921), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley, et al. (1978) <u>Br. J. Cancer</u> 38:263; Selby, et al. (1980) <u>Br. J. Cancer</u> 41:52) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing a lung cancer-associated sequences are injected subcutaneously. After a suitable length of time,

preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

5 Polynucleotide modulators of lung cancer

Antisense and RNAi Polynucleotides

10

15

20

25

30

In certain embodiments, the activity of a lung cancer-associated protein is downregulated, or entirely inhibited, by the use of antisense or an inhibitory polynucleotide, i.e., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a lung cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or intersugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the lung cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the antisense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for lung cancer molecules. A preferred antisense molecule is for a lung cancer sequence in the tables, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein

WO 02/086443
PCT/US02/12476
is described in, e.g., Stein and Cohen (1988) Cancer Res. 48:2659 and van der Krol, et al.
(1988) BioTechniques 6:958).

RNA interference is a mechanism to suppress gene expression in a sequence specific manner. See, e.g., Brumelkamp, et al. (2002) <u>Sciencexpress</u> (21March2002); Sharp (1999) <u>Genes Dev.</u> 13:139-141; and Cathew (2001) <u>Curr. Op. Cell Biol.</u> 13:244-248. In mammalian cells, short, e.g., 21 nt, double stranded small interfering RNAs (siRNA) have been shown to be effective at inducing an RNAi response. See, e.g., Elbashir, et al. (2001) <u>Nature</u> 411:494-498. The mechanism may be used to downregulate expression levels of identified genes, e.g., treatment of or validation of relevance to disease.

10

15

20

25

30

5

Ribozymes

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of lung cancer-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto, et al. (1994) <u>Adv. in Pharmacology</u> 25: 289-317 for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, e.g., in Hampel, et al. (1990) Nucl. Acids Res. 18:299-304; European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6340-6344; Yamada, et al. (1994) Human Gene Therapy 1:39-45; Leavitt, et al. (1995) Proc. Natl. Acad. Sci. USA 92:699-703; Leavitt, et al. (1994) Human Gene Therapy 5:1151-120; and Yamada, et al. (1994) Virology 205: 121-126).

Polynucleotide modulators of lung cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of lung cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by

formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

5

10

15

20

25

30

Thus, in one embodiment, methods of modulating lung cancer in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-lung cancer antibody that reduces or eliminates the biological activity of an endogenous lung cancer protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding a lung cancer protein. This may be accomplished in any number of ways. In a preferred embodiment, e.g., when the lung cancer sequence is down-regulated in lung cancer, such state may be reversed by increasing the amount of lung cancer gene product in the cell. This can be accomplished, e.g., by overexpressing the endogenous lung cancer gene or administering a gene encoding the lung cancer sequence, using known gene-therapy techniques. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), e.g., as described in PCT/US93/03868, hereby incorporated by reference in its entirety. Alternatively, e.g., when the lung cancer sequence is up-regulated in lung cancer, the activity of the endogenous lung cancer gene is decreased, e.g., by the administration of a lung cancer antisense or RNAi nucleic acid.

In one embodiment, the lung cancer proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to lung cancer proteins. Similarly, the lung cancer proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify lung cancer antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to a lung cancer protein; that is, the antibodies show little or no cross-reactivity to other proteins. The lung cancer antibodies may be coupled to standard affinity chromatography columns and used to purify lung cancer proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the lung cancer protein.

Methods of identifying variant lung cancer-associated sequences

Without being bound by theory, expression of various lung cancer sequences is correlated with lung cancer. Accordingly, disorders based on mutant or variant lung cancer genes may be determined. In one embodiment, the invention provides methods for

identifying cells containing variant lung cancer genes, e.g., determining all or part of the sequence of at least one endogenous lung cancer genes in a cell. In a preferred embodiment, the invention provides methods of identifying the lung cancer genotype of an individual, e.g., determining all or part of the sequence of at least one lung cancer gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced lung cancer gene to a known lung cancer gene, i.e., a wild-type gene.

The sequence of all or part of the lung cancer gene can then be compared to the sequence of a known lung cancer gene to determine if any differences exist. This can be done using known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the lung cancer gene of the patient and the known lung cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the lung cancer genes are used as probes to determine the number of copies of the lung cancer gene in the genome.

In another preferred embodiment, the lung cancer genes are used as probes to determine the chromosomal localization of the lung cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the lung cancer gene locus.

Administration of pharmaceutical and vaccine compositions

5

10

15

20

25

30

In one embodiment, a therapeutically effective dose of a lung cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel, et al. (1992) Pharmaceutical Dosage Forms and Drug Delivery; Lieberman, Pharmaceutical Dosage Forms (vols. 1-3), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding; and Pickar (1999) Dosage Calculations). Adjustments for lung cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration,

drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

5

10

15

20

25

30

The administration of the lung cancer proteins and modulators thereof of the present invention can be done in a variety of ways, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the lung cancer proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise a lung cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose,

lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

5

10

15

20

25

30

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that lung cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise a lung cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Hardman, et al. (eds. 1996) Goodman and Gilman: The Pharmacologial Basis of Therapeutics).

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gilman, The Pharmacologial Basis of Therapeutics, supra.

5

10

15

20

25

30

The compositions containing modulators of lung cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer based, at least in part, upon gene expression profiles. Vaccine strategies may be used, in either a DNA vaccine form, or protein vaccine.

It will be appreciated that the present lung cancer protein-modulating compounds can be administered alone or in combination with additional lung cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in the tables, such as antisense or RNAi polynucleotides or ribozymes, will be introduced into cells, *in vitro* or *in vivo*. The present invention provides methods, reagents, vectors, and cells useful for expression of lung cancer-associated polypeptides and nucleic acids using *in vitro* (cell-free), *ex vivo*, or *in vivo* (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g.,

Berger and Kimmel, <u>Guide to Molecular Cloning Techniques</u>, <u>Methods in Enzymology</u> volume 152 (Berger), Ausubel, et al. (eds. 1999) <u>Current Protocols</u> (supplemented through 1999), and Sambrook, et al. (1989) <u>Molecular Cloning - A Laboratory Manual</u> (2nd ed., Vol. 1-3).

5

10

15

20

25

30

In a preferred embodiment, lung cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, lung cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the lung cancer coding regions) can be administered in a gene therapy application. These lung cancer genes can include antisense or inhibitory applications, e.g., as inhibitory RNA or gene therapy (e.g., for incorporation into the genome) or as antisense compositions.

Lung cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL, and antibody responses.. Such vaccine compositions can include, e.g., lipidated peptides (see, e.g., Vitiello, et al. (1995) J. Clin. Invest. 95:341), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al. (1991) Molec. Immunol. 28:287-294; Alonso, et al. (1994) Vaccine 12:299-306; Jones, et al. (1995) Vaccine 13:675-681), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi, et al. (1990) Nature 344:873-875; Hu, et al. (1998) Clin Exp Immunol. 113:235-243), multiple antigen peptide systems (MAPs) (see, e.g., Tam (1988) Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413; Tam (1996) J. Immunol. Methods 196:17-32), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al., p. 379 In: Kaufmann (ed. 1996) Concepts in vaccine development; Chakrabarti, et al. (1986) Nature 320:535; Hu, et al. (1986) Nature 320:537; Kieny, et al. (1986) AIDS Bio/Technology 4:790; Top, et al. (1971) J. Infect. Dis. 124:148; Chanda, et al. (1990) Virology 175:535), particles of viral or synthetic origin (see, e.g., Kofler, et al. (1996) J. Immunol, Methods 192:25; Eldridge, et al. (1993) Sem. Hematol, 30:16; Falo, et al. (1995) Nature Med. 7:649), adjuvants (Warren, et al. (1986) Annu. Rev. Immunol. 4:369; Gupta, et al. (1993) Vaccine 11:293), liposomes (Reddy, et al. (1992) J. Immunol. 148:1585; Rock (1996) Immunol. Today 17:131), or, naked or particle absorbed cDNA (Ulmer, et al. (1993) Science 259:1745; Robinson, et al. (1993) Vaccine 11:957; Shiver, et al., p. 423 In: Kaufmann (ed. 1996) Concepts in vaccine development; Cease and Berzofsky (1994) Annu. Rev. Immunol. 12:923 and Eldridge, et al. (1993) Sem. Hematol. 30:16). Toxin-targeted

delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

5

10

15

20

25

30

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff, et. al. (1990) Science 247:1465 as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode lung cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover, et al. (1991) Nature 351:456-460. A wide variety of other vectors useful for therapeutic administration or immunization e.g., adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the

like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata, et al. (2000) Mol Med Today 6:66-71; Shedlock, et al. (2000) J. Leukoc. Biol. 68:793-806; Hipp, et al. (2000) In Vivo 14:571-85).

5

10

15

20

25

30

Methods for the use of genes as DNA vaccines are well known, and include placing a lung cancer gene or portion of a lung cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in a lung cancer patient. The lung cancer gene used for DNA vaccines can encode full-length lung cancer proteins, but more preferably encodes portions of the lung cancer proteins including peptides derived from the lung cancer protein. In one embodiment, a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a lung cancer gene. For example, lung cancer-associated genes or sequence encoding subfragments of a lung cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the lung cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment lung cancer genes find use in generating animal models of lung cancer. When the lung cancer gene identified is repressed or diminished in metastatic tissue, gene therapy technology, e.g., wherein antisense or inhibitory RNA directed to the lung cancer gene will also diminish or repress expression of the gene. Animal models of lung cancer find use in screening for modulators of a lung cancer-associated sequence or modulators of lung cancer. Similarly, transgenic animal technology including gene knockout technology, e.g., as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the lung cancer protein. When desired, tissue-specific expression or knockout of the lung cancer protein may be necessary.

It is also possible that the lung cancer protein is overexpressed in lung cancer. As such, transgenic animals can be generated that overexpress the lung cancer protein.

Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene.

Animals generated by such methods will find use as animal models of lung cancer and are additionally useful in screening for modulators to treat lung cancer.

Kits for Use in Diagnostic and/or Prognostic Applications

5

10

15

20

25

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In diagnostic and research applications such kits may include at least one of the following: assay reagents, buffers, lung cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, RNAi, dominant negative lung cancer polypeptides or polynucleotides, small molecule inhibitors of lung cancer-associated sequences, etc. A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing instructions (e.g., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. A medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of lung cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: a lung cancer-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing lung cancer-associated activity. Optionally, the kit contains biologically active lung cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes typically will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

WO 02/086443 PCT/US02/12476 EXAMPLES

Example 1: Gene Chip Analysis

Molecular profiles of various normal and cancerous tissues were determined and analyzed using gene chips. RNA was isolated and gene chip analysis was performed as described (Glynne, et al. (2000) <u>Nature</u> 403:672-676; Zhao, et al. (2000) <u>Genes Dev.</u> 14:981-993).

Tables 1A and 1B were previously filed on April 18, 2001 in USSN 60/284,770 (18501-001500US) and on November 29, 2001 in USSN 60/334,370 (18501-001520US)

5	Table 1A					
•	Pkey	ExAccn	UnigenelD	Unigene Title	70% chron/90% NL	70% SQAD/90% NL
	100134	D13264	Hs.49	macrophage scavenger receptor 1	1.61	0.74
	100780	HG3731-HT4001		"""Immunoglobulin Heavy Chain, Vdjrc Reg	2.68	3.28
10	100971	J02874	Hs.83213	fatty acid binding protein 4; adipocyte	1.96 0.79	0.14 0.07
10	101088 101102	L05568 L07594	Hs.553 Hs.79059	solute carrier family 6 (neurotransmitte transforming growth factor; beta recepto	2.55	1
	101168	L15388	Hs.211569	G protein-coupled receptor kinase 5	0.88	0.27
	101277	L38486	Hs.118223	microfibrillar-associated protein 4	0.89	0.26
1	101330	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do	0.59	0.29
15	101336	L49169	Hs.75678	FBJ murine osteosarcoma viral oncogene h	1.15	0.41
	101345	L76380	Hs.152175	calcitonin receptor-like	0.81	0.31
	101678 101764	M62505 M80563	Hs.2161 Hs.81256	complement component 5 receptor 1 (C5a I S100 calcium-binding protein A4 (calcium	1.31 1.44	0.77 0.82
	101764	M81750	Hs.153837	myeloid cell nuclear differentiation ant	0.96	0.45
20	101842	M93221	Hs.75182	mannose receptor; C type 1	1.27	0.37
	102283	U31384	Hs.83381	guanine nucleotide binding protein 11	1.04	0.3
	102363	U39447	Hs.198241	amine oxidase; copper containing 3 (vasc	0.96	0.26
	102507	U52154	Hs.193044	potassium inwardly-rectifying channel; s	2.81	3.45
25	102698	U75272	Hs.1867	progastricsin (pepsinogen C)	0.95 1.62	0.23 0.21
23	103025 103280	X54131 X79981	Hs.123641 Hs.76206	protein tyrosine phosphatase; receptor t cadherin 5; VE-cadherin (vascular epithe	0.9	0.41
	103496	Y09267	Hs.132821	flavin containing monooxygenase 2	1.27	0.49
	103541		Hs.79197	CD83 antigen (activated B lymphocytes; i	1.86	1
• •	103554	Z18951	Hs.74034	caveolin 1; caveolae protein; 22kD	1.27	0.47
30	104212	AB002298	Hs.173035	KIAA0300 protein	1.17	0.16
	104691	AA011176	Hs.37744	ESTs	1.08	0.35
	104825		Hs.141883	ESTs	0.75 2.6	0.27 3.3
	104857 104865	AA043219 AA045136	Hs.19058 Hs.22575	ESTs ESTs	1.23	0.49
35	104989		Hs.118615	ESTs	0.63	0.32
	105729		Hs.3807	ESTs; Weakly similar to PHOSPHOLEMMAN PR	0.86	0.34
	105847		Hs.32241	ESTs	1.32	0.4
	105894		Hs.25691	calcitonin receptor-like receptor activi	0.78	0.28
40	106490		Hs.115537	ESTs; Weakly similar to dipeptidase prec	1.2	0.47
40	106536		Hs.23804	ESTs Homo sapiens mRNA; cDNA DKFZp564B076 (fr	0.82 0.99	0.15 0.07
	106605 106667	AA457718 AA461086	Hs.21103 Hs.16578	ESTs	1.17	0.4
	106773		Hs.188833	ESTs	1.46	0.43
	106797		Hs.169943	ESTs	1.18	0.32
45	106844	AA485055	Hs.158213	sperm associated antigen 6	0.98	0.51
	106870	AA487576	Hs.26530	serum deprivation response (phosphatidy)	1.05	0.14
	106954	AA496980	Hs.204038	ESTs	1.25	0.33 0.4
	107054 107292	AA600150 T30407	Hs.14366 Hs.4789	ESTs ESTs; Weakly similar to oxidative-stress	1.11 1.07	2.58
50	107292		Hs.165030	ESTs	0.7	0.21
-	107997		Hs.82223	Human DNA sequence from clone 141H5 on c	1.02	0.48
	108041		Hs.61957	ESTs	1.44	0.51
	108087	AA045709	Hs.40545	ESTs	1.98	1
55	108382		Hs.67726	macrophage receptor with collagenous str	1.52	0.72
55	108435		Hs.194101	ESTs .	2.53 1.56	1.53 0.48
	108480 109252		Hs.68055 Hs.85944	ESTs ESTs	2.69	3.18
	109550		Hs.26981	ESTs	1.19	0.65
	109613		Hs.27519	ESTs	1.01	0.29
60	109837	H00656	Hs.29792	ESTs	0.81	0.15
	109893		Hs.30484	ESTs	1.44	0.32
	109984		Hs.10299	ESTs	0.62	0.14
	110099 110837		Hs.23748 Hs.17424	ESTs ESTs; Weakly similar to semaphorin F [H.	1.01 1.1	0.28 0.22
65	111247		Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	1.26	0.26
00	111341		Hs.22483	ESTs	1.57	0.52
	111510	R07856	Hs.16355	ESTs	3.96	1
	111737		Hs.9218	ESTs	0.97	0.24
70	113195	T57112	11 400040	"""yc20g11.s1 Stratagene lung (#937210)	1.22	0.35
70	113238 113540		Hs.189813 Hs.16757	ESTs ESTs	2.27 1.06	0.45 0.22
	113552		Hs.16026	ESTs	1.16	0.42
	113606		Hs.17125	ESTs	1.48	0.7
	113695		Hs.17948	ESTs	1.54	0.28
75	113946		Hs.37896	ESTs	1.79	0.72
	114251		Hs.21948	ESTs	1.95	0.25
	114359		Hs.153483	ESTs; Moderately similar to H1 chloride ESTs	1.42 2.62	0.13 0.42
	115230 115279		Hs.182980 Hs.63671	ESTS	1.79	0.42
80	115566		Hs.43977	ESTs	0.86	0.2
	115965		Hs.173233	ESTs	0.79	0.04
	116166	AA461556	Hs.202949	KIAA1102 protein	2.29	0.68
	116279	AA486073	Hs.57362	ESTs	2.27	0.78
	117023	H88157	Hs.41105	ESTs	1.36	0.16

	W	O 02/08644	13			
	117209	H99959	Hs.42768	ESTs	1.46	0.48
	118901	N90719	Hs.94445	ESTs	1.51	1
	118981	N93839	Hs.39288	ESTs	1.34	0.48
5	119073	R32894 R98105	Hs.45514	v-ets avian erythroblastosis virus E26 o	1.14 1.32	0.27 0.53
,	119221 119824	W74536	Hs.184	"""yr30g11.s1 Soares fetal liver spleen advanced glycosylation end product-speci	1.02	0.19
	119861	W80715	110.101	ESTs; Moderately similar to !!!! ALU SUB	1.83	0.45
	120041	W92775	Hs.59368	ESTs	1.23	0.55
10	120132	Z38839	Hs.125019	ESTs; Highly similar to KIAA0886 protein	0.91	0.37
10	120467	AA251579	Hs.187628	ESTs	1.87	1.91
	121314 121643	AA402799 AA417078	Hs.182538 Hs.193767	ESTs ESTs	1.3 2.31	0.31 0.68
	121690	AA418074	Hs.110286	ESTs	1.47	0.51
	122633	AA454080	Hs.34853	inhibitor of DNA binding 4; dominant neg	1.31	0.63
15	123978	C20653	Hs.170278	ESTs	1.52	0.32
	124214	H58608	Hs.151323	ESTs	0.93	0.35
	124357	N22401	Un 102550	"""yw37g07.s1 Morton Fetal Cochlea Homo	1.29 1.36	1 0,7
	124438 125167	N40188 W45560	Hs.102550 Hs.102541	ESTs ESTs	1.46	0.69
20	125174	W51835	Hs.231082	EST	3.07	3.76
	125422	AA903229	Hs.153717	ESTs	1.34	0.3
	125561	Al417667	Hs.22978	ESTs	1.89	0.63
	125831	D60988	11. 04070	"""HUM145B09B Clontech human fetal brain	0.94	0.36
25	127002 127307	R35380 AA369367	Hs.24979 Hs.126712	ESTs ESTs; Weakly similar to pIL2 hypothetica	3.02 1.01	4.06 0.69
20	127609	AA622559	Hs.150318	ESTs	1.21	0.32
	127959	Al302471	Hs.124292	ESTs	2.5	1
	128458	D52193	Hs.56340	ESTs	1.13	0.33
20	128624	AA479209	Hs.102647	ESTs	1.45	0.58
30	128789 128798	AA486567	Hs.105695 Hs.105938	ESTs chemokine (C-C motif) receptor-like 2	1.1 1.16	0.34 0.55
	128952	AF014958 R51076	Hs.107361	ESTs; Highly similar to Rap2 interacting	2.04	2.4
	129057	X62466	Hs.214742	CDW52 antigen (CAMPATH-1 antigen)	1.77	0.73
	129210	AA401654	Hs.202949	KIAA1102 protein	1.11	0.36
35	129240	W24360	Hs.237868	interleukin 7 receptor	0.91	0.41
	129402	T63781	11- 400300	"""yc21g01.s1 Stratagene lung (#937210)	1.36	0.43
	129565 129593	X77777 AA487015	Hs.198726 Hs.98314	vasoactive intestinal peptide receptor 1 Homo sapiens mRNA; cDNA DKFZp586L0120 (f	0.67 1.3	0.08 0.42
	129626	AA447410	Hs.11712	ESTs; Weakly similar to !!!! ALU SUBFAM!	1.28	0.46
40	129699	AA458578	Hs.12017	KIAA0439 protein; homolog of yeast ubiqu	1.58	1
	129898	N48595	Hs.13256	ESTs	1.13	0.53
	129958	L20591	Hs.1378	annexin A3	0.81	0.31
	130273	U59914	Hs.153863	MAD (mothers against decapentaplegic; Dr	0.59 1.44	0.22 0.76
45	130655 130657	N92934 T94452	Hs.17409 Hs.201591	cysteine-rich protein 1 (intestinal) ESTs	0.96	0.42
	131061	N64328	Hs.22567	ESTs; Moderately similar to HYPOTHETICAL	1.51	0.45
	131066	F09006	Hs.22588	ESTs	0.97	0.37
	131263	R38334	Hs.24950	regulator of G-protein signalling 5	2.34	. 2.82
50	131589	U52100	Hs.29191	epithelial membrane protein 2 Grb2-associated binder 2	1.2 0.95	0.62 0.38
50	131686 131751	AA157428 H18335	Hs.30687 Hs.31562	ESTs	1.47	0.52
	132430	T23630	Hs.258675	EST	1.86	2.09
	132476	N67192	Hs.49476	Homo sapiens clone TUA8 Cri-du-chat regi	1.73	0.58
<i></i>	132836	F09557	Hs.57929	slit (Drosophila) homolog 3	0.91	0.29
55	133120	X64559	Hs.65424	tetranectin (plasminogen-binding protein	0.82 1.29	0.2 0.48
	133488 133565	D45370 H57056	Hs.74120 Hs.204831	adipose specific 2 FSTs	2.25	0.40
	133651	U97105	Hs.173381	dihydropyrimidinase-like 2	1.65	0.62
	133835	AA059489	Hs.76640	ESTs; Highly similar to RGC-32 [R.norveg	1.16	0.34
60	133978	W73859	Hs.78061	transcription factor 21	0.79	0.27
	133985	L34657	Hs.78146	platelet/endothelial cell adhesion molec	0.99 1.02	0.28 0.46
	134299 134300	AA487558 U81984	Hs.8135 Hs.166082	ESTs endothelial PAS domain protein 1,	0.86	0.42
	134323	AA028976	Hs.8175	Homo sapiens mRNA; cDNA DKFZp564M0763 (f	1.19	0.27
65	134343	D50683	Hs.82028	transforming growth factor; beta recepto	1.21	0.67
	134417	D87969	Hs.82921	solute carrier family 35 (CMP-sialic aci	1.28	1
	134561	U76421	Hs.85302	adenosine deaminase; RNA-specific; B1 (h	2.12	0.55
	134624 134696	W67147 H88354	Hs.8700 Hs.8861	deleted in liver cancer 1 ESTs	2.35 1.35	2.74 0.33
70	134749	L10955	Hs.89485	carbonic anhydrase IV	0.89	0.2
	134786	L06139	Hs.89640	TEK tyrosine kinase; endothelial (venous	0.48	0.21
	134869	T35288	Hs.90421	ESTs; Moderately similar to !!!! ALU SUB	2.14	2.64
	135346	M21056	Hs.992	phospholipase A2; group IB (pancreas)	0.63	0.13
75	100113	D00591	Hs.84746	Chromosome condensation 1	1 0.5	2.15
13	100147 100280	D13666 D42085	Hs.136348 Hs.155314	Homo sapiens mRNA for osteoblast specifi KIAA0095 gene product	0.5 1.02	2 1.39
	100280	D63391	Hs.6793	platelet-activating factor acetylhydrola	1	5.58
	100360	D78335	Hs.75939	Uridine monophosphate kinase	0.91	2.04
00	100372	D79997	Hs.184339	KIAA0175 gene product	0.75	2.03
80	100486	HG1112-HT1112		TIGR: ras-like protein TC4	1.09	1.93
	100559 100576	HG2197-HT2267 HG2290-HT2386		"collagen, type VII, alpha 1" "calcitonin/alpha-CGRP, alt. transcript	0.97 1	3.6 1
	100668	HG2981-HT3938		"TIGR: CD44 (epican, alt. transcript 12	0.85	1.9
0.7	100906	HG4716-HT5158		Guanosine 5'-Monophosphate Synthase	1.18	2.29
85	100930	HG721-HT4827		*TIGR: placental protein 14, endometrial	1	1.45

	W	O 02/0864	143			
	100960	J00124	Hs.117729	keratin 14 (epidermolysis bullosa simple	0.84	2.6
	101031	J05070	Hs.151738	"Matrix metalloproteinase 9 (gelatinase	0.77	1.52
	101111	L08424	Hs.1619	Achaete-scute complex (Drosophila) homol	1	1
	101124	L10343	Hs.112341	"Protease inhibitor 3, skin-derived (SKA	0.62	2.67
5	101175	L18920	Hs.36980	"Melanoma antigen, family A, 2"	1	1
	101204	L24203	Hs.82237	Ataxia-telangiectasia group D-associated	0.74	4.1
	101431	M19888	Hs.1076	Small proline-rich protein 1B (cornifin)	0.85	2.51
	101431	M21389	Hs.195850	keratin 5 (epidermolysis bullosa simplex	. 0.61	8.83
	101511	M27826	Hs.267319	Endogenous retroviral protease	1.03	1.13
10				Carcinoembryonic antigen-related cell ad	1.07	4.61
10	101526	M29540	Hs.220529		0.97	1.13
	101548	M31328	Hs.71642	"Guanine nucleotide binding protein (G p		1
	101625	M57293		"Human parathyroid hormone-related pepti	1	
	101649	M60047	Hs.1690	Heparin-binding growth factor binding pr	1	2.7
1 -	101724	M69225	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	1	8.98
15	101748	M76482	Hs.1925	Desmoglein 3 (pemphigus vulgaris antigen	1	2.78
	101759	M80244	Hs.184601	"Solute carrier family 7 (cationic amino	1.07	2.45
	101804	M86699	Hs.169840	TTK protein kinase	1	1
	101806	M86757	Hs.112408	S100 calcium-binding protein A7 (psorias	0.74	1.76
	101809	M86849		"Homo sapiens connexin 26 (GJB2) mRNA, c	1	7
20	101845	M93426	Hs.78867	"Protein tyrosine phosphatase, receptor-	1	1
	101851	M94250	Hs.82045	Midkine (neurite growth-promoting factor	1.13	2.6
	102083	U10323	Hs.75117	"Interleukin enhancer binding factor 2,	1.03	1.61
	102154	U17760	Hs.75517	"Laminin, beta 3 (nicein (125kD), kalini	0.94	3.62
	102193	U20758	Hs.313	secreted phosphoprotein 1 (osteopontin;	0.34	4.59
25	102305	U33286	Hs.90073	chromosome segregation 1 (yeast homolog)	1.45	2.97
23	102348	U37519	Hs.87539	Aldehyde dehydrogenase 8	0.52	2.25
	102546	U61145	Hs.77256	Enhancer of zeste (Drosophila) homolog 2	0.91	2.46
	1025610	U65011	Hs.30743	Preferentially expressed antigen in mela	1	3.88
				"Melanoma antigen, family A, 9 (MAGE-9)"	i	1
30	102623	U66083	Hs.37110		1	i
30	102669	U71207	Hs.29279	Eyes absent (Drosophila) homolog 2	•	2.77
	102696	U74612	Hs.239	Forkhead box M1	1.06	
	102829	U91618	Hs.80962	Neurotensin	1 ,	1
	102888	X04741	Hs.76118	Ubiquitin carboxyl-terminal esterase L1	1.13	2.59
26	102913	X07696	Hs.80342	keratin 15	0.7	4.72
35	102915	X07820	Hs.2258	Matrix Metalloproteinase 10 (Stromolysin	1.15	3.35
	102963	X15943	Hs.37058	"Calcitonin/calcitonin-related polypepti	1	1
	103021	X53587	Hs.85266	"Integrin, beta 4"	1.38	2.34
	103036	X54925	Hs.83169	Matrix metalloprotease 1 (interstitial c	1	14.93
	103058	X57348	Hs.184510	Stratifin	1.25	4.17
40	103060	X57766	Hs.155324	matrix metalloproteinase 11 (stromelysin	1	1.72
	103119	X63629	Hs.2877	"Cadherin 3, P-cadherin (placental)"	1.16	7.38
	103206	X72755	Hs.77367	monokine induced by gamma interferon	0.71	1.48
	103242	X76342	Hs.389	"Alcohol dehydrogenase 7 (class IV), mu	1	1
	103312	X82693	Hs.3185	"Lymphocyte antigen 6 complex, locus D;	0.92	1.28
45	103478	Y07755	Hs.38991	S100 calcium-binding protein A2	1.05	5.81
10	103558	Z19574	Hs.2785	keratin 17	0.65	6.68
	103576	Z26317	Hs.2631	Desmoglein 2	0.79	1.73
	103570	Z29083 .	Hs.82128	5T4 Oncofetal antigen	1	3.93
	103594	Z31560	Hs.816	"SRY (sex determining region Y)-box 2, p	0.71	7.23
50			115.010	"ESTs, Highly similar to integral membra	0.99	1.8
50	103768	AA089997	11- 0407		0.96	1.29
	104158	AA454908	Hs.8127	KIAA0144 gene product	1.23	7.23
	104558	R56678	Hs.88959	Human DNA sequence from clone 967N21 on	0.96	2.11
	104689	AA010665	11. 00074	ESTs		
<i>F F</i>	104733	AA019498	Hs.23071	ESTs	1.18	1.88
55	104906	AA055809	Hs.26802	Protein kinase domains containing protei	1.11	3.15
	104978	AA088458	Hs.19322	ESTs; Weakly similar to !!!! ALU SUBFAMI	1.64	2.89
	105012	AA116036	Hs.9329	"Homo sapiens mRNA for fls353, complete	1.19	3.91
	105175	AA186804	Hs.25740	ESTs; Weakly similar to unknown [S.cerev	0.9	4.63
	105263	AA227926	Hs.6682	ESTs	0.95	2.87
60	105298	AA233459	Hs.26369	ESTs	1	1.13
	105312	AA233854	Hs.23348	S-phase kinase-associated protein 2 (p45	1.32	3.01
	105719	AA291644	Hs.36793	Hypothetical protein FLJ23188	1.28	2.31
	105743	AA293300	Hs.9598	ESTs	1	1
	106012	. AA411621	Hs.8895	ESTs; same as BFH6?	0.94	2.04
65	106231	AA429571	Hs.38002	KIAA1355 protein	1.04	1.5
	106540	AA454607	Hs.38114	Hypothetical protein FLJ11100	1.26	2.26
	106575	AA456039	Hs.105421	ESTs	1	2
	106632	AA459897	Hs.11950	GPI-anchored metastasis-associated prote	0.87	1.32
	106727	AA465342	Hs.34045	Hypothetical protein FLJ20764	0.87	1.59
70	106906	AA490237	Hs.222024	Transcription factor BMAL2 (cycle-like f	0.61	1.6
, 0	107059	AA608545	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	0.48	2.67
	107104	AA609786	Hs.15243	Nucleolar protein 1 (120kD)	1.01	1.44
	107151	AA621169	Hs.8687	ESTs; procollagen I-N proteinase	0.97	2.89
	107131	S74039	Hs.291904	Accessory proteins BAP31/BAP29	1.15	3.65
75	107204	AA026418	Hs.91539	ESTs	0.72	3.44
, 5				lg superfamily receptor LNIR precursor	1	2.48
	107922	AA028028	Hs.61460		1	1
	107932	AA029317	Hs.18878	Hypothetical protein FLJ21620	0.91	3.53
	108695	AA121315	Hs.70823	KIAA1077 protein		3.55 1
80	108857	AA133250	Hs.62180	ESTs	1 0.73	7.3
οU	108860	AA133334	Hs.129911	ESTs	0.73	
	108990	AA152296	Hs.72045	ESTs	1	1
	109166	AA179845	Hs.73625	"RAB6 interacting, kinesin-like (rabkine	1	4.55
	109424	AA227919	Hs.85962	Hyaluronan synthase 3	1	1.28
0.~	109665	F05012	Hs.27027	Hypothetical protein DKFZp762H1311	1.42	2
85	109970	H09281	Hs.13234	ESTs	1.13	2.16
					-	

	w	O 02/086	443			
	110015	H10998	Hs.7164	A disintegrin and metalloproteinase doma	0.84	1.95
	110156	H18957	Hs.4213	ESTs	0.94	1.41
	110561	H59617	Hs.5199	HSPC150 protein similar to ubiquitin-con	0.91	3.18
_	111223	N68921	Hs.34806	ESTs; Weakly similar to neogenin [H.sapi	0.91	3.13
5	111345	N89820	Hs.14559	Hypothetical protein FLJ10540	1	1.25
	111876	R38239	Hs.293246	"ESTs, Weakly similar to putative p150 [0.83	1.27
	111902	R39191	Hs.109445	KIAA1020 protein	0.91 0.77	0.91 3.01
	112244 112973	R51309 T17271	Hs.70823	KIAA1077 protein "cDNA FLJ13308 fis, clone OVARC1001436,	1	1
10	112989	T23482	Hs.89981	"Diacylglycerol kinase, zeta (104kD)"	0.55	1.03
~ ~	113047	T25867	Hs.7549	ESTs	0.87	2
	113095	T40920	Hs.126733	ESTs	1	1
	113531	T90345	Hs.16740	Hypothetical protein FLJ11036	0.42	1.44
1 5	113970	W86748	Hs.8109	ESTs	1.17	1.73
15	114346	Z41450	Hs.130489	"ATPase, aminophospholipid transporter-l	0.86 0.8	0.82 1.88
	114407	AA010188	Hs.103305 Hs.104613	ESTs RP42 homolog	1.06	1.34
	114471 114509	AA028074 AA043551	Hs.101799	KIAA1350 protein	1.82	2.32
	115060	AA253214	Hs.198249	"Gap junction protein, beta 5 (connexin	0.79	1.49
20	115091	AA255900	Hs.184523	KIAA0965 protein	0.72	1.92
	115123	AA256642	Hs.236894	"ESTs, High sim to LRP1_hu low density I	0.59	1.97
	115291	AA279943	Hs.122579	ESTs	1	1.25
	115506	AA292537	Hs.45207	Hypothetical protein KIAA1335	1.15	1.48 3.29
25	115522	AA331393	Hs.47378	ESTs	0.5 1	3.29 1
23	115536 115697	AA347193	Hs.62180 Hs.63325	ESTs Homo sapiens type II membrane serine pro	i	6.53
	115997	AA411502 AA436666	Hs.59761	ESTs	i	6.98
	115978	AA447522	Hs.69517	Differentially expressed in Fanconi anem	i	2.31
	116028	AA452112	Hs.42644	thioredoxin-like	0.99	1.68
30	116107	AA456968	Hs.92030	ESTs	1.14	1.8
	116134	AA460246	Hs.50441	CGI-04 protein	1.11	1.86
	116157	AA461063	Hs.44298	Hypothetical protein	0.99	1.9
	116158	AA461187	Hs.61762	Hypoxia-inducible protein 2	0.44 0.62	0.86 3.89
35	116335	AA495830	Hs.87013 Hs.76118	"Homo sapiens cDNA FLJ10238 fis, clone H Ubiquitin carboxyl-terminal esterase L1	1.04	2.36
55	116483 117320	C14092 N23239	Hs.211092	LUNX protein; PLUNC(palate lung & nasal	0.51	0.64
	117557	N33920	Hs.44532	Diubiquitin	1.11	2.63
	117693	N40939	Hs.112110	PTD007 protein	0.98	1.79
	117881	N50073	Hs.260622	Butyrate-induced transcript 1	1	1.43
40	118368	N64339	Hs.48956	ESTs	0.67	2.86
	118566	N68558	Hs.42824	Hypothetical protein FLJ10718	1.21	0.83
	118695	N71781	Hs.50081	KIAA1199 see CVA7.doc	0.88 1	1.63 1
	119780	W72967	Hs.191381	ESTs; Weakly similar to hypothetical pro G protein-coupled receptor 87	1	1
45	119845 120102	W79920 W95428	Hs.58561 Hs.132927	"ESTs, Moderately similar to p53 regulat	i	i
13	120102	W95477	Hs.180479	ESTs	0.69	3.07
	120486	AA253400	Hs.137569	Tumor protein 63 kDa with strong homolog	1.08	12.05
	120859	AA350158	Hs.1619	Achaete-scute complex (Drosophila) homol	1	1
~ O	120880	AA360240	Hs.97019	EST	1	1
50	120948	AA397822	Hs.104650	Hypothetical protein FLJ10292	1.04	2.15
	120983	AA398209	Hs.97587	EST Chandramedulin I arrayman	1	1 1
	121362	AA405500	Hs.97932 Hs.128791	Chondromodulin I precursor CGI-09 protein	1	1.8
	121369 121791	AA405657 AA423978	Hs.293317	"ESTs, Weakly similar to JM27 [H.sapiens	i	1
55	123005	AA479726	Hs.105577	ESTs	1	1
	123044	AA481549	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro	0.95	1.88
	123160	AA488687	Hs.284235	ESTs	1.59	4.98
	123479	AA599469	Hs.135056	clone RP5-850E9 on chromosome 20	1.19	1.64
C 0	123571	AA608956	Hs.112619	"ESTs, Weakly similar to PQ0109 Purkinje	1.03	1.14
60	123829	AA620697	Hs.112208	XAGE-1 protein	1.39 1	2.2 4.85
	124006	D60302	Hs.108977 Hs.99769	ESTs ESTs	1 1.49	4.65 8.62
	124059 124960	F13673 T15386	Hs.194766	Seizure related gene 6 (mouse)-like	0.76	0.77
	125218	W73561	Hs.110024	NADH:ubiquinone oxidoreductase MLRQ subu	1.33	1.77
65	125453	R06041	Hs.18048	"Melanoma antigen, family A, 10"	0.8	1.42
	125759	AA425587	Hs.82226	Glycoprotein (transmembrane) nmb	1.52	2.26
	125972	AA434562	Hs.35406	"ESTs, Highly similar to unnamed protein	1.05	2.48
	125994	H55782	Hs.270799	EST	1	1.95
70	126395	N70192	Hs.278956	Hypothetical protein FLJ12929	1 1	1.35 2.23
70	126645	Al167942 Al354332	Hs.61635	STEAP1 (Homo sapiens BAC clone RG041D11 ESTs	0.73	3.27
	127221		Hs.72365 Hs.179729	collagen; type X; alpha 1 (Schmid metaph	0.51	1.94
	127479 128192	AA513722 Al204246	118.17.57.25	KIAA1085 protein	1.8	3.16
	128610	L38608	Hs.10247	activated leucocyte cell adhesion molecu	0.89	0.97
75	128777	U46006	Hs.10526	Cysteine and glycine-rich protein 2	1	1
-	128924	AA234962	Hs.26557	Plakophilin 3	1.3	2.97
	129041	H58873	Hs.169902	"Solute carrier family 2 (facilitated gl	0.84	2.04
	129099	H50398	Hs.108660	"ATP-binding cassette, sub-family C (CFT	0.87	1.04
90	129404	AA172056	Hs.111128	ESTs	1 0.72	1 12.67
80	129466	L42583	No 445047	"Genbank Homo sapiens keratin 6 isoform	0.72 0.92	12.67
	129605	S72493	Hs.115947 Hs.1174	Keratin 16 (focal non-epidermolytic palm "Cyclin-dependent kinase inhibitor 2A (m	0.85	1.93
	129628 130023	U26727 X13461	Hs.239600	Calmodulin-like 3	0.84	1.22
	130023	X14850	Hs.147097	"H2A histone family, member X"	0.98	1.96
85	130385	AA126474	Hs.155223	stanniocalcin 2	1	1

	W	O 02/0864	143			
	130410	V01514	Hs.155421	Alpha-fetoprotein	0.63	0.63
	130441	U35835	Hs.301387	"Human DNA-PK mRNA, partial cds"	1.15	3.65
	130482	L32866	Hs.1578	Baculoviral IAP repeat-containing 5 (sur	1	1.88
	130553	AA430032	Hs.252587	Pituitary tumor-transforming 1	0.92	1.96
5	130577	M35410	Hs.162	Insulin-like growth factor binding prote	1,17	4.7
9	130627	L23808	Hs.1695	Matrix metalloproteinase 12 (macrophage	0.69	4.05
	130800	AA223386	Hs.19574	ESTs; Weakly similar to katanin p80 subu	1.13	2.41
	130939	AA598689	Hs.21400	ESTs	0.8	0.89
	131046	X02530	Hs.2248	INTERFERON-GAMMA INDUCED PROTEIN PRECURS		1.15
10	131244	D38076	Hs.24763	RAN binding protein 1	1.13	1.85
10	131877	J04088	Hs.156346	Topoisomerase (DNA) II alpha (170kD)	1	1
	131927	AA461549	Hs.34780	"Doublecortex; lissencephaly, X-linked (0.81	0.62
	131965	W90146	Hs.35962	ESTs	0.74	3.27
	131978	D80008	Hs.36232	KIAA0186 gene product	1	1
15	132354	L05187	Hs.211913	Small proline-rich protein 1A	0.69	1.43
10	132543	AA417152	Hs.5101	ESTs; Highly similar to protein regulati	0.79	4.27
	132632	N59764	Hs.5398	guanine-monophosphate synthetase	1	1.08
	132653	U31201	Hs.54451	"laminin gamma2 chain gene (LAMC2), exon	i	1
	132659	Z75190	Hs.54481	"Low density lipoprotein receptor-relate	0.89	0.89
20	132710	W93726	Hs.55279	"Serine (or cysteine) proteinase inhibit	0.64	4.41
~0	132758	W52432	Hs.56105	"ESTs, Weakly similar to WDNM RAT WDNM1	1,55	2.08
	132767	L05188	Hs.231622	Small proline-rich protein 2B	0.83	1.66
	132816	M74542	Hs.575	Aldehyde dehydrogenase 3	0.55	0.55
	132990	AA458761	Hs.18387	transcription factor AP-2 alpha (activat	1	3.53
25	133070	U69611	Hs.64311	"A disintegrin and metalloproteinase dom	1.16	2
43	133282	U52960	Hs.286145	"SRB7 (suppressor of RNA polymerase B, y	1	2.7
	133317	AA215299	Hs.70830	U6 snRNA-associated Sm-like protein LSm7	0.95	1.42
	133370	AA156897	Hs.72157	Homo sapiens mRNA; cDNA DKFZp564I1922	1.12	2.55
	133370	X57579	Hs.727	H.sapiens activin beta-A subunit (exon 2	1.65	1.76
30	133832	H03387	Hs.241305	estrogen-responsive B box protein (EBBP)	1.02	1.39
50	134032	Z81326	Hs.78589	"Serine (or cysteine) proteinase inhibit	1	1
			Hs.181634		0.95	1.53
	134168	AA398908 AA227480		· · · · · · · · · · · · · · · · · · ·	1.36	2.48
	134218		Hs.80205	Pim-2 oncogene """collagen, type XI, alpha 1"""	0.76	2.86
35	134405	R67275	Hs.82772		1.89	3.78
33	134453	X70683	Hs.83484	SRY (sex determining region Y)-box 4	1.82	4.11
	134470	X54942	Hs.83758	CDC28 protein kinase 2	0.82	0.83
	134645	U87459	Hs.167379	"Cancer/testis antigen (NY-ESO-1, CTAG1,	1	1
	134781	M17183	Hs.89626	Parathyroid hormone-like hormone	1	ί
40	135002	U19147	Hs.272484	G antigen 6 AFFX control: STAT1	0.92	1.25
40	100040	M97935	Hs.2256		2.92	8.5
	101201	L22524		matrix metalloproteinase 7 (matrilysin;	1	1
	101664	M60752	Hs.121017	H2A histone family; member A	0.8	1.61
	102025	U03911	Hs.78934		1	1.01
45	102031	U04898	Hs.2156	RAR-related orphan receptor A	1	i
45	102221	U24576	11- 75000	LIM domain only 4	•	1.43
	102270	U30255	Hs.75888	phosphogluconate dehydrogenase	1.08	1.32
	102339	U37022	Hs.95577		0.88 1.07	1.58
	102391	U41668	Hs.77494		0.91	1.49
50	103000	X51956	Hs.146580		0.89	1.32
50	103395	X94754	Hs.119503			1.25
	105638	AA281599	Hs.20418		0.91 0.94	1.48
	105726	AA292328	Hs.9754		0.78	1.56
	114841	AA234722	Hs.55408	•	1	1
55	115206	AA262491	Hs.186572 Hs.82302	ESTs ESTs	0.74	2.52
55	115906	AA436616	Hs.107911	ATP-binding cassette; sub-family B (MDR/	1.1	1.51
	119132 124163	R49046 H30539	Hs.189838	ESTs	1	1
			,,,,,,,,,,,		1.01	1.46
	126487 127141	AA482505	Hs.184601 Hs.75478	solute carrier family 7 (cationic amino KIAA0956 protein	0.85	1.40
60	127141	AA307960 AA905754	Hs.75103	tyrosine 3-monooxygenase/tryptophan 5-mo	1	1.18
00	128609	AA234365	Hs.102456	survival of motor neuron protein interac	i	1.5
	128895	R37753	Hs.102436	ESTs	1.7	2
	130199	Z48579	Hs.172028	a disintegrin and metalloprotease domain	1	ī
	130524	U89995	Hs.159234	forkhead box E1	i	i
65	133000	U24152	Hs.62402	p21/Cdc42/Rac1-activated kinase 1 (yeast	i	i
05	133658	M25756	Hs.75426	secretogranin II (chromogranin C)	i	i
	135047	AA460466	Hs.93597	ESTs	i	i
	100053	M27830	113.50551		0.88	1.53
	100033	D00596	Hs.82962		0.68	1.86
70	100114	D11094	Hs.61153		1.29	2.03
70	100120	D14657	Hs.81892		0.71	4.26
	100161	D14694	Hs.77329		1.02	1.56
	100161	D14874	Hs.394		0.46	1.17
	100187	D17793	Hs.78183	aldo-keto reductase family 1; member C3	1	1
75	100187	D21063	Hs.57101		0.97	1.4
, ,	100217	D26600	Hs.89545		1.13	1.9
	100217	D28364	113.03040		1.11	1.53
	100220	D43950	Hs.1600		1.13	2.09
	100287	D43950 D49489	Hs.182429		0.92	1.78
80	100297	D55716	Hs.77152		1.07	1.61
00	100355	D78129	113.77 102		0.96	1.87
	100364	D78586	Hs.154868		1.49	2.46
	100364	D79987	Hs.153479		0.59	1.32
	100398	D84557	Hs.155462		1.08	1.9
85	100398	D87448	Hs.91417	topoisomerase (DNA) Il binding protein	1	2.15
J.J	100700	201-140	110.01717	representation (a.e.) it offering protein	•	

		U UZ/U8644				
	100455	D87953	Hs.75789	N-myc downstream regulated	0.91	1.48
	100491	HG1153-HT1153		Nucleoside Diphosphate Kinase Nm23-H2s	0.99	1.41
	100518	HG174-HT174		Desmoplakin I	1.28	3.17
_	100528	HG1828-HT1857		""Nexin, Glia-Derived""	0.68	1.9
5	100661	HG2874-HT3018		Ribosomal Protein L39 Homolog	1.1	5.44
-	100667	HG2981-HT3127		""Epican, Alt. Splice 11""	8.0	1.97
	100830	HG4074-HT4344		Rad2	1.01	2.12
	101061	K03515	Hs.944	glucose phosphate isomerase	0.91	1.79
	101131	L10838	Hs.167460	splicing factor; arginine/serine-rich 3	1.23	1.87
10	101162	L14595	Hs.174203	solute carrier family 1 (glutamate/neutr	1.35	2.73
10		L19686	Hs.73798	macrophage migration inhibitory factor (1.03	1.78
	101181				0.57	1.3
	101183	L19779	Hs.795	H2A histone family; member O		2.2
	101216	L25876	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	0.7	
15	101228	L27706	Hs.82916	chaperonin containing TCP1; subunit 6A (0.99	1.99
15	101233	L29008	Hs.878	sorbitol dehydrogenase	0.82	2.11
	101247	L33801	Hs.78802	glycogen synthase kinase 3 beta	1.2	1.91
	101332	L47276		"""Homo sapiens (cell line HL-6) alpha t	0.69	2.78
	101342	L76191	Hs.182018	interleukin-1 receptor-associated kinase	1.04	1.84
	101396	M15796	Hs.78996	proliferating cell nuclear antigen	0.95	3.55
20	101423	M18391	Hs.89839	EphA1	1	1.5
	101445	M21259	Hs.1066	small nuclear ribonucleoprotein polypept	1.21	1.96
	101505	M27396	Hs.75692	asparagine synthetase	0.93	1.6
	101525	M29536	Hs.12163	eukaryotic translation initiation factor	1.19	1.93
	101535	M30448	Hs.251669	casein kinase 2; beta polypeptide	0.96	1.42
25					1.11	1.25
23	101607	M38690	Hs.1244	CD9 antigen (p24)	1.17	1.98
	101624	M55998	11 70047	""'Human alpha-1 collagen type I gene, 3		3.45
	101758	M77836	Hs.79217	pyrroline-5-carboxylate reductase 1	1.77	
	101839	M93036	Hs.692	membrane component; chromosomal 4; surfa	0.71	1.45
20	101853	M94362	Hs.76084	lamin B2	0.84	1.19
30	101977	S83364		"""putative Rab5-interacting protein (cl	0.89	1.9
	101992	U01038	Hs.77597	polo (Drosophia)-like kinase	0.66	1.46
	102009	U02680	Hs.82643	protein tyrosine kinase 9	1.23	3.35
	102012	U03057	Hs.118400	singed (Drosophila)-like (sea urchin fas	0.85	1.88
	102039	U05861	Hs.201967	aldo-keto reductase family 1; member C1	0.93	2.32
35	102123	U14518	Hs.1594	centromere protein A (17kD)	1	4.28
	102130	U15009	Hs.1575	small nuclear ribonucleoprotein D3 polyp	0.89	1.42
	102148	U16954	Hs.75823	ALL1-fused gene from chromosome 1g	0.8	2.95
	102140	U23028	Hs.2437	eukaryotic translation initiation factor	1.01	1.34
				lysyl oxidase-like 1	1.15	2.34
40	102220	U24389	Hs.65436		1.14	2.69
40	102260	U28386	Hs.159557	karyopherin alpha 2 (RAG cohort 1; impor		1.7
	102330	U35451	Hs.77254	chromobox homolog 1 (Drosophila HP1 beta	1.05	
	102423	U44754	Hs.179312	small nuclear RNA activating complex; po	1.14	2.99
	102455	U48705	Hs.75562	discoidin domain receptor family; member	1.05	2.01
	102499	U51478	Hs.76941	ATPase; Na+/K+ transporting; beta 3 poly	1.27	1.92
45	102522	U53347	Hs.183556	solute carrier family 1 (neutral amino a	0.84	1.31
	102590	U62136		"""Homo sapiens enterocyte differentiati	1.11	1.6
	102676	U72514	Hs.12045	putative protein	1.04	2.17
	102687	U73379	Hs.93002	ubiquitin carrier protein E2-C	0.86	2.28
	102704	U76638	Hs.54089	BRCA1 associated RING domain 1	1.12	1.63
50	102781	U83843		""Human HIV-1 Nef interacting protein (0.9	1.39
50	102784	U85658	Hs.61796	transcription factor AP-2 gamma (activat	0.98	2.16
	102827	U91327	Hs.6456	chaperonin containing TCP1; subunit 2 (b	0.96	1.62
				small nuclear ribonucleoprotein polypept	1.21	4.2
	102935	X13482	Hs.80506		1.25	2.32
55	102972	X16662	Hs.87268	annexin A8		1.83
33	102983	X17620	Hs.118638	non-metastatic cells 1; protein (NM23A)	1.03	
	103023	X53793	Hs.117950	multifunctional polypeptide similar to S	1.58	5.44
	103038	X54941	Hs.77550	CDC28 protein kinase 1	1.32	3.79
	103075	X59543	Hs.2934	ribonucleotide reductase M1 polypeptide	1.11	2.58
C C	103168	X68314	Hs.2704	glutathione peroxidase 2 (gastrointestin	0.75	3.05
60	103185	X69910	Hs.74368	transmembrane protein (63kD); endoplasmi	1.01	1.97
	103212	X73874	Hs.2393	phosphorylase kinase; alpha 1 (muscle)	0.95	1.72
	103223	X74801	Hs.1708	chaperonin containing TCP1; subunit 3 (g	0.97	1.77
	103260	X78416	Hs.3155	casein; alpha	1	1
	103262	X78565	Hs.204133	hexabrachion (tenascin C; cytotactin)	1.23	3.09
65	103330	X85373	Hs.77496	small nuclear ribonucleoprotein polypept	1.12	2.25
05	103364	X90872	Hs.75854	SULT1C sulfotransferase	2.85	4.62
				sine oculis homeobox (Drosophila) homolo	1	2.48
	103375	X91868	Hs.54416		i	1.53
	103391	X94453	Hs.114366	pyrroline-5-carboxylate synthetase (glut		
70	103404	X95586	Hs.78596	proteasome (prosome; macropain) subunit;	0.92	1.53
70	103437	X98260	Hs.82254	M-phase phosphoprotein 11	0.92	1.54
	103448	X99133	Hs.204238	lipocalin 2 (oncogene 24p3)	0.55	0.96
	103605	Z35402	Hs.194657	cadherin 1; E-cadherin (epithelial)	1.32	2.51
	103646	Z68228	Hs.2340	junction plakoglobin	0.88	1.28
	103658	Z74615	Hs.172928	collagen; type I; alpha 1	1.06	2.98
75	103774	AA092898	Hs.92918	ESTs; Weakly similar to R07G3.8 [C.elega	1.88	4.66
	104261	AF008442	Hs.5409	RNA polymerase I subunit	0.87	2.17
	104276	C02193	Hs.85222	ESTs; Weakly similar to R27090_2 [H.sapi	1.4	2.49
	104276	C16281	Hs.75478	KIAA0956 protein	1.15	1.68
				collagen; type VII; alpha 1 (epidermolys	1.04	1.49
80	104434	L02870	Hs.1640			0.76
OU	104453	M19169	Hs.123114	cystatin SN	0.38	
	104611	R98280	Hs.125845	ribulose-5-phosphate-3-epimerase	1.08	2.25
	104758	AA024661	Hs.7010	ESTs; Weakly similar to ACYL-COA DEHYDRO	1.14	1.65
	105114	AA156532	Hs.11801	adenosine A2b receptor pseudogene	0.91	1.38
o -	105132	AA159501	Hs.247280	HBV associated factor	1.08	1.7
85	105174	AA186613	Hs.34744	ESTs	0.95	2.05

	w	O 02/086				
	105280	AA232215	Hs.14600	ESTs	1	1.4
	105344	AA235303	Hs.8645	ESTs	0.72	2.02
	105516	AA257971	Hs.21214	ESTs	1.35	3.56
_	105621	AA280865	Hs.6375	Homo sapiens mRNA; cDNA DKFZp564K0222 (f	1.23	1.82
5	105698	AA287393	Hs.15202	ESTs; Weakly similar to oligodendrocyte-	0.98	1.28
	105705	AA290767	Hs.101282	Homo sapiens mRNA; cDNA DKFZp434B102 (fr	0.92	1.32
	105724	AA292098	Hs.22934	ESTs; Weakly similar to ZINC FINGER PROT	0.99	1.41
	105782	AA350215	Hs.21580	ESTs	1	1
	105799	AA372018	Hs.24743	ESTs	1.08	1.78
10				ESTs; Moderately similar to COLLAGEN ALP	0.95	1.34
10	105807	AA393803	Hs.16869		0.87	2.25
	105891	AA400768	Hs.26662	ESTs; Weakly similar to tumor necrosis f		
	105936	AA404338		ESTs	1.14	1.46
	106069	AA417741	Hs.29899	ESTs; Weakly similar to ZINC FINGER PROT	1	1
	106103	AA421104	Hs.12094	ESTs	1.04	1.44
15	106140	AA424524	Hs.14912	KIAA0286 protein	1.23	2.11
_	106149	AA424881	Hs.256301	ESTs	0.83	1.48
	106154	AA425304	Hs.6994	ESTs	0.77	2.05
	106182	AA426609	Hs.10862	ESTs	0.74	2.23
				ESTs; Moderately similar to metargidin p	0.97	1.99
20	106220	AA428582	Hs.32196		0.99	1.54
20	106228	AA429290	Hs.17719	ESTs (OFFICE)		
	106318	AA436570	Hs.9605	pre-mRNA cleavage factor Im (25kD)	0.95	2.09
	106341	AA441798	Hs.5243	ESTs; Moderately similar to plL2 hypothe	0.98	2.66
	106432	AA448850	Hs.17138	ESTs	0.95	1.93
	106474	AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (fr	1	1
25	106483	AA451676	Hs.30299	IGF-II mRNA-binding protein 2	1.4	2.29
	106599	AA457235	Hs.12842	ESTs; Moderately similar to non-function	1	1.82
	106611	AA458904	Hs.26267	ESTs; Weakly similar to torsinA [H.sapie	1.49	2.78
	106654		Hs.3784	ESTs; Highly similar to phosphoserine am	1	1.4
		AA460449			1.11	1.49
20	107076	AA609145	Hs.21143	ESTs; Weakly similar to fos39554_1 [H.sa		
30	107115	AA610108	Hs.27693	ESTs; Highly similar to CGI-124 protein	1	1.03
	107129	AA620553	Hs.4756	flap structure-specific endonuclease 1	1.13	3.63
	107159	AA621340	Hs.10600	ESTs; Weakly similar to ORF YKR081c [S.c	1.05	2.09
	107444	W28391	Hs.5181	proliferation-associated 2G4; 38kD	1.18	1.9
	107481	W58247	Hs.27437	Homo sapiens kinesin superfamily motor K	0.99	2.74
35	107516	X56597	Hs.99853	fibrillarin	0.94	1.77
	107529	Y12065	Hs.5092	nucleolar protein (KKE/D repeat)	1.05	2.29
	107531	Y13936	Hs.17883	protein phosphatase 1G (formerly 2C); ma	1.06	1.62
					1.03	1.4
	107801	AA019433	Hs.173100	ESTs		1.46
40	107957	AA031948	Hs.57548	ESTs	0.95	
40	108565	AA085342	Hs.1526	ATPase; Ca++ transporting; cardiac muscl	0.59	1.35
	108780	AA128561	Hs.117938	collagen; type XVII; alpha 1	1	7.63
	108828	AA131584	Hs.71435	DKFZP564O0463 protein	1.33	2.56
	109060	AA160879	Hs.241551	chloride channel; calcium activated; fam	0.67	1.42
	109112	AA169379	Hs.72865	ESTs	1.03	2.31
45	109344	AA213696	Hs.86559	poly(A)-binding protein-like 1	0.97	1.55
1.0	109412	AA227145	Hs.209473	ESTs; Weakly similar to REGULATOR OF MIT	0.76	1.87
•			Hs.22891	solute carrier family 7 (cationic amino	0.9	0.95
	110780	N23174			1.17	2.26
	110958	N50550	Hs.24587	signal transduction protein (SH3 contain		1.85
50	111018	N54067	Hs.3628	mitogen-activated protein kinase kinase	1.21	
50	111337	N79612	Hs.16607	ESTs; Highly similar to Myosin heavy cha	1	1.45
	112305	R54822	Hs.26244	ESTs	1	1
	112401	R61279	Hs.237536	ESTs; Weakly similar to F25B5.3 [C.elega	1.24	1.64
	112853	T02843	Hs.4351	EST	1.56	1.96
	112869	T03313	Hs.4747	dyskeratosis congenita 1; dyskerin	1.03	1.57
55	112992	T23513	Hs.7147	ESTs	1	1
	113048	T25895	Hs.184008	ESTs; Weakly similar to RNA-binding prot	1.37	2.26
	113063	T32438	Hs.5027	ESTs	1	1
			Hs.152571	ESTs; Highly similar to IGF-II mRNA-bind	1.33	2.7
	113179	T55182	11 40000	max .		1.47
60	113573	T91166	Hs.15990	ESIS	0.76	
60	113811	W44928	Hs.4878	ESTs	0.79	1.51
	114086	Z38266	Hs.12770	Homo sapiens PAC clone DJ0777O23 from 7p	0.9	1.34
	114587	AA070827	Hs.180320	ESTs; Weakly similar to GOLGI 4-TRANSMEM	1.02	1.76
	114846	AA234929	Hs.44343	ESTs	1.32	2.36
	114964	AA243873	Hs.82184	ring finger protein 3	1.1	1.84
65	115047	AA252627	Hs.22554	homeo box B5	1.01	2.36
	115166	AA258409	Hs.198907	myelin protein zero-like 1	1.05	2.31
	115167	AA258421	Hs.43728	hypothetical protein	1.52	2.52
		AA278650	Hs.73291	ESTs; Weakly similar to similar to the b	0.7	2.57
	115239				1.14	2.12
70	115278	AA279757	Hs.67466	ESTs; Weakly similar to BACN32G11.d [D.m		4.67
70	115652	AA405098	Hs.38178	ESTs	0.82	
	115875	AA433943	Hs.43946	ESTs; Weakly similar to Weak similarity	1.2	1.98
	116004	AA449122	Hs.76086	ESTs; Highly similar to small zinc finge	0.96	1.31
	116121	AA459254	Hs.48855	ESTs	0.97	1.55
	116129	AA459956	Hs.49163	ESTs; Highly similar to putative ribonuc	1.08	2.73
75	116190	AA464963	Hs.67776	ESTs	0.8	1.57
	116312	AA490494	Hs.65403	ESTs	1.37	2.65
	116732	F13779	Hs.165909	ESTs	0.92	1.8
	117602	N35020	Hs.44685	ESTs; Weakly similar to GOLIATH PROTEIN	1.15	1.84
			Hs.75478	KIAA0956 protein	1.04	2.36
80	117950	N51394			0.62	1.29
OU	117992	N52000	Hs.172089	Homo sapiens mRNA; cDNA DKFZp586B0222 (f		
	118785	N75386	Hs.111867	GLI-Kruppel family member GLI2	1	1
	119717	W69134	Hs.57987	ESTs	1	1.4
	119814	W74069	Hs.58350	ESTs	0.78	1.77
~ 	120128	Z38499	Hs.91448	MKP-1 like protein tyrosine phosphatase	0.86	1.46
85	120242	Z98443	Hs.86366	ESTs	0.83	2.01
	·- ·-					

	W	O 02/086	443			
	120483	AA252994	Hs.1578	apoptosis inhibitor 4 (survivin)	0.74	1.64
	121054	AA398604	Hs.97387	ESTs	1.05	1.93
	121326	AA404246	Hs.97031	ESTs; Weakly similar to Similar to phyto ESTs; Moderately similar to SODIUM- AND	0.98 0.91	1.3 1.83
5	121376 121457	AA405699 AA411448	Hs.166232 Hs.208985	ESTs; Moderately similar to SODIOW- AND	0.91	1.59
5	121780	AA422086	Hs.124660	ESTs	0.46	0.55
	121781	AA422150	Hs.98370	cytochrome P540 family member predicted	1.07	1.54
	121844	AA425732	Hs.98485	gap junction protein; beta 2; 26kD (conn	0.94	1.4
10	122059	AA431737	Hs.98749	EST	1.93	2.33
10	122338	AA443311	Hs.98998	ESTs	1	1
	122354	AA443772	Hs.186692	ESTs ESTs; Weakly similar to MRJ [H.sapiens]	0.88 2.28	1.39 2.93
	122591 122790	AA453265 AA460156	Hs.99311 Hs.99556	ESTs; Weakly similar to MRJ [n.sapiens]	0.88	1.3
	123398	AA521265	Hs.105514	ESTs ·	1	1.93
15	123518	AA608531	Hs.170313	ESTs	1	1
	123673	AA609471	Hs.112712	ESTs	1	1.15
	124000	D57317	Hs.74861	activated RNA polymerase II transcriptio	0.74	1.12
	124367	N24006	Hs.99348	distal-less homeo box 5	0.67	1.1
20	124447	N48000	Hs.140945	Homo sapiens mRNA; cDNA DKFZp586L141 (fr	1.19 0.93	1.7 1.59
20	125756 125769	W25498 Al382972	Hs.81634 Hs.82128	ATP synthase; H+ transporting; mitochond 5T4 oncofetal trophoblast glycoprotein	1.65	6.76
	125769	H09290	Hs.76550	Homo sapiens mRNA; cDNA DKFZp564B1264 (f	0.72	2.26
	125924	AA526849	Hs.82109	syndecan 1	1.22	2.25
	126037	M85772	Hs.6066	KIAA1112 protein	1.36	1.63
25	126214	N29455	Hs.74316	desmoplakin (DPI; DPII)	1.93	3.55
	126414	N78770	Hs.223439	ESTs	1.21	1.66
	126737	AA488132	Hs.62741	ESTs	1 1.3	1 2.16
	126743 126926	AA179253 AA179546	Hs.172182 Hs.832	poly(A)-binding protein; cytoplasmic 1 ESTs; Highly similar to INTEGRIN BETA-8	2,53	2.10
30	127432	AA501734	Hs.170311	heterogeneous nuclear ribonucleoprotein	1.57	2.12
50	128218	H02682	Hs.99189	ESTs; Moderately similar to recombinatio	1.24	2.09
	128527	M31523	Hs.101047	transcription factor 3 (E2A immunoglobul	1.08	1.78
	128568	X60673	Hs.247568	adenylate kinase 3	1.23	3.48
25	128584	M11433	Hs.101850	retinol-binding protein 1; cellular	0.87	2.42
35	128628	C14037	Hs.251978	EST	1.22 1.1	1.9 1.73
	128691 128714	W27939 V00599	Hs.103834 Hs.179661	ESTs Homo sapiens clone 24703 beta-tubulin mR	0.92	1.17
	128733	AA328993	Hs.104558	ESTs	1.34	1.94
	128781	X85372	Hs.105465	small nuclear ribonucleoprotein polypept	0.9	1.34
40	129052	AA496297	Hs.182740	ribosomal protein S11	2.59	3.19
	129095	L12350	Hs.108623	thrombospondin 2	1.04	3.2
	129241	AA435665	Hs.109706	ESTs; Moderately similar to HN1 [M.muscu	0.95	1.61
	129665	M88458	Hs.118778	KDEL (Lys-Asp-Glu-Leu) endoplasmic retic	1.28 0.97	2.63 1.63
45	129703	AA401348	Hs.179999 Hs.12152	ESTs ESTs; Moderately similar to SIGNAL RECOG	1.09	1.79
43	129720 129850	AA476582 N20593	Hs.56845	GDP dissociation inhibitor 2	0.74	1.68
	129896	AA043021	Hs.13225	UDP-Gal:betaGlcNAc beta 1;4- galactosylt	1.43	4.19
	130069	AA055896	Hs.146428	collagen; type V; alpha 1	1.17	1.98
~ 0	130405	H88359	Hs.155396	nuclear factor (erythroid-derived 2)-lik	1.26	1.79
50	130541	X05608	Hs.211584	neurofilament; light polypeptide (68kD)	1	1
	130599	M91670	Hs.174070 Hs.2056	ubiquitin carrier protein UDP glycosyltransferase 1	1.07 1	1.66 4.8
	130867 131009	J04093 AA063596	Hs.22142	ESTs; Weakly similar to NADH-CYTOCHROME	0.93	1.05
	131028	U20240	Hs.2227	CCAAT/enhancer binding protein (C/EBP);	1	1.23
55	131083	U66661	Hs.22785	gamma-aminobutyric acid (GABA) A recepto	1.1	1.8
	131091	T35341	Hs.22880	ESTs; Highly similar to dipeptidyl pepti	1.28	1.98
۵	131144	C14412	Hs.23528	ESTs; Highly similar to HSPC038 protein	1.43	2.06
	131148	C00038	Hs.23579	ESTs	0.88	3.38
60	131164 131185	Y00503	Hs.182265 Hs.23960	keratin 19 cyclin B1	1.19 0.86	2.77 3.84
00	131219	M25753 C00476	Hs.24395	small inducible cytokine subfamily B (Cy	0.66	2.96
	131454	AA455896	Hs.2699	glypican 1	0.99	1.54
	131687	L11066	Hs.3069	heat shock 70kD protein 9B (mortalin-2)	1	1,18
~~	131689	AA599653	Hs.30696	transcription factor-like 5 (basic helix	1	1.95
65	131692	D50914	Hs.30736	KIAA0124 protein	1.55	2.39
	131786	AA135554	Hs.32125	ESTs	1 0.83	1.33 1.63
1	131843 131860	AA195893 U02082	Hs.184062 Hs.334	ESTs; Moderately similar to putative Rab Oncogene TIM	1.08	2.2
	131884	H90124	Hs.3463	ribosomal protein S23	1.23	1.24
70	131903	AA481723	Hs.3436	deleted in oral cancer (mouse; homolog)	0.91	1.18
	131945	M87339	Hs.35120	replication factor C (activator 1) 4 (37	1	2.8
	131958	AA093998	Hs.3566	ESTs; Highly similar to phosphorylation	0.87	1.36
	131964	W42508	Hs.3593	ESTs	1	1.25
75	132001	J00277 AA146843	Hs.37003 Hs.172894	v-Ha-ras Harvey rat sarcoma viral oncoge BH3 interacting domain death agonist	1.12 1	1.43 1.55
15	132040 132065	D82226	Hs.211594	proteasome (prosome; macropain) 26S subu	0.89	1.27
	132109	AA599801	Hs.40098	ESTs	1	1.05
	132112	AA150661	Hs.40154	jumonji (mouse) homolog	0.99	1.44
00	132123	AA447123	Hs.250705	ESTs	1.06	2.46
80	132162	H89551	Hs.41241	ESTs	1.08	2.46
	132180	AA405569	Hs.418	fibroblast activation protein; alpha; se	1.02 1.16	4.56 1.8
	132309 132371	AA460917 AA235448	Hs.2780 Hs.46677	jun D proto-oncogene ESTs	0.8	1.26
	132618	AA253330	Hs.5344	adaptor-related protein complex 1; gamma	0.5	1.49
85	132736	U68019	Hs.211578	MAD (mothers against decapentaplegic; Dr	1.21	1.81

	W	O 02/0864	143				PCT/US02/12476
	132771	AA488432	Hs.56407	phosphoserine phosphatase	1	1.3	
	132833	U78525	Hs.57783	eukaryotic translation initiation factor	0.91	1.43	
	132922		Hs.6066	KIAA1112 protein	1.16	1.53	
	132959	AA028103	Hs.61472	ESTs; Weakly similar to unknown [S.cerev	1.02	1.88	
5	132994	AA505133	Hs.7594	solute carrier family 2 (facilitated glu	0.72	2.97	
9	133005	C21400	Hs.103329	KIAA0970 protein	0.88	1.34	
	133065	X62535	Hs.172690	diacylglycerol kinase; alpha (80kD)	0.93	1.23	
			Hs.6456	chaperonin containing TCP1; subunit 2 (b	1.14	1.76	
	133083	N70633			0.97	1.43	
10	133086	L17131	Hs.139800	high-mobility group (nonhistone chromoso	1.1	1.8	
10	133134	T89703	Hs.65648	RNA binding motif protein 8	2.29	2.69	
	133195	AA350744	Hs.181409	KIAA1007 protein		1.68	
	133313	AA249427	Hs.70704	ESTs	1.07	1.18	
	133331	T62039	Hs.158675	ribosomal protein L14	0.85		•
15	133438	D13370	Hs.73722	APEX nuclease (multifunctional DNA repai	0.91	1.45	
15	133445	T99303	Hs.73797	guanine nucleotide binding protein (G pr	0.94	1.68	
	133483	X52426	Hs.74070	keratin 13	0.85	1.14	
	133492	L40397	Hs.74137	transmembrane trafficking protein	1.1	1.69	
	133504	W95070	Hs.74316	desmoplakin (DPI; DPII)	0.7	6.21	
20	133517	X52947	Hs.74471	gap junction protein; alpha 1; 43kD (con	0.95	1.3	
20	133540	D78151	Hs.74619	proteasome (prosome; macropain) 26S subu	0.91	1.25	
	133594	L07758	Hs.172589	nuclear phosphoprotein similar to S. cer	0.84	1.29	
	133627	U09587	Hs.75280	glycyl-tRNA synthetase	1.09	1.99	
	133671	T25747	Hs.75471	zinc finger protein 146	1.02	1.5	
~~	133859	U86782	Hs.178761	26S proteasome-associated pad1 homolog	1.11	3.33	
25	133865	F09315	Hs.170290	discs; large (Drosophila) homolog 5	1.84	6.7	
	133913	W84712	Hs.7753	calumenin	1.15	1.86	
	133963	L34587	Hs.184693	transcription elongation factor B (SIII)	1.3	1.91	
	133982	U47621	Hs.207251	nucleolar autoantigen (55kD) similar to	1.3	1.99	
•	134100	L07540	Hs.171075	replication factor C (activator 1) 5 (36	0.72	1.65	
30	134110	U41060	Hs.79136	LIV-1 protein; estrogen regulated	1.04	1.62	
	134158	U15174	Hs.79428	BCL2/adenovirus E1B 19kD-interacting pro	1	1.55	
	134161	U97188	Hs.79440	IGF-II mRNA-binding protein 3	0.82	1.95	
	134193	F09570	Hs.7980	ESTs	0.98	1.48	
~ =	134367	X54199	Hs.82285	phosphoribosylglycinamide formyltransfer	1	2.8	
35	134402	U25165	Hs.82712	fragile X mental retardation; autosomal	1.26	2	
	134457	D86963	Hs.174044	dishevelled 3 (homologous to Drosophila	1	1.47	
	134469	X17567	Hs.83753	small nuclear ribonucleoprotein polypept	0.94	1.57	
	134498	M63180	Hs.84131	threonyl-tRNA synthetase	1.2	2.64	
4.0	134501	W84870	Hs.211568	eukaryotic translation initiation factor	0.84	1.36	
40	134507	M63488	Hs.84318	replication protein A1 (70kD)	1.7	2.93	
	134548	U41515	Hs.85215	Deleted in split-hand/split-foot 1 regio	1.46	2.73	
	134599	X99226	Hs.86297	Fanconi anemia; complementation group A	1.36	2.22	
	134692	R73567	Hs.8850	a disintegrin and metalloproteinase doma	0.77	1.64	
	134693	N70361	Hs.8854	ESTs	1.09	1.82	
45	134806	Z49099	Hs.89718	spermine synthase	0.98	1.35	
	134821	Z34974	Hs.198382	plakophilin 1 (ectodermal dysplasia/skin	0.99	1.4	
	134864	Y08999	Hs.90370	actin related protein 2/3 complex; subun	0.95	1.42	
	134914	U29615	Hs.91093	chitinase 1 (chitotriosidase)	1.16	1.29	
~ ^	134953	L10678	Hs.91747	profilin 2	0.95	1.76	
50	134993	AA282343	Hs.9242	purine-rich element binding protein B	0.98	1.73	
	135051	C15324	Hs.93668	ESTs	1.35	2.11	
	135158	U51711		Human desmocollin-2 mRNA; 3' UTR	0.86	1.16	
							1 1

Table 1B shows the accession numbers for those pkeys in Table 1A lacking unigenelD's. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the Accession column.

	Pkey: l	Unique Eos probeset identifier number
60	CAT number: (Gene cluster number
	Accession: (Senbank accession numbers

	Pkey	CAT	Accessions
65	100661 100667	23182_1 26401_3	BE623001 L05096 AA383604 AW966416 N53295 AA460213 AW571519 AA603655 L05424 X56794 S66400 X55150 W60071 AW351820 X55938 M83326 BE005289 BE070059 M83324 BE005248 BE069717 BE181648 BE069700 AW606203 BE069721 AW382138 AW803776 BE463954 BE005334 BE005274 T27386 A92714 AA972695 AW377728 AI632506 T29066
70			A1783934 AW377727 BE163715 AL047291 AA279047 AA523003 BE008048 BE440141 W23614 BE090519 BE092193 N29181 N20358 N44153 BE546944 T69231 AW377441 AA907406 H50799 AW051416 N420712 BE620922 AL279161 AA992549 W47198 BE005241 A1342696 H50700 A1969974 AI863855 AA374490 AW130675 AI950633 AA146687 H99482 X55150 BE005414 BE005339 N28294 AI673068 AI887890 AW804171 AI675961 AW804172 AA778841 AL048050 AI127757 AI095568 AW204965 AW468978 W31898 AI052595 AI278771 BE464018 AI081503 AI824196 AA513211 AA411062 AW084376 N48752 AA703209 N35580 AW059918 AA054563 AI280942 T27619 BE621435 N66010 AW589527 AI160414 AA283090 AA962536 H82726 W52115 W45432 W60433 AA577548 AA146714 BE150994 AA054615 AW796025 AW382768 BE565671 C00444 AA054555
75	100668	26401_3	AA0049393 L05424 X56794 S66400 X55150 W60071 AW351820 X55938 M83326 BE005289 BE070059 M83324 BE005248 BE069717 BE181648 BE069700 AW606203 BE069721 AW382138 AW803776 BE463954 BE005334 BE005274 T27386 AA932714 AA972695 AW377728 Al632506 T29066 AI783934 AW377727 BE163715 AL047291 AA279047 AA523003 BE008048 BE440141 W23614 BE090519 BE092193 N29181 N20358 N44153
80			BE546944 T69231 AW377441 AA907406 H50799 AW051416 Al420712 BE620922 Al279161 AA992549 W47198 BE005241 Al342696 H50700 Al969974 Al863855 AA374490 AW130675 Al950633 AA146687 H99482 X56150 BE005414 BE005339 N28294 Al673068 Al887890 AW804171 Al675961 AW804172 AA778841 AL048050 Al127757 Al095568 AW204965 AW468978 W31898 Al052595 Al278771 BE464018 Al081503 Al824196 AA513211 AA411062 AW084376 N48752 AA703209 N35580 AW059918 AA054563 Al280942 T27619 BE621435 N66010 AW589527 Al160414 AA283090 AA962536 H82726 W52115 W45432 W60433 AA577548 AA146714 BE150994 AA054615 AW796025 AW382768 BE565671 C00444 AA054555
85	101332	25130_1	J04088 NM_001067 AF071747 AJ011741 N85424 AL042407 AA218572 BE296748 BE083981 AL040877 AW499918 AW675045 H17813 BE081283 AA670403 AW504327 BE094229 AA104024 AI471482 AI970337 AA737616 AI827444 AW003286 AI742333 AI344044 AI765634

	• • • •	02,000.	AI948838 AW235336 AW172827 AA095289 BE046383 AI734240 W16699 AI660329 AI289433 AA933778 AW469242 AA468838 AA806983
5			AA625873 W78031 BE206307 AA550803 AI743147 AI990075 AA948274 AA129533 AI635399 AA605313 AI624669 AW594319 AI221834 AI337434 AA307706 BE550282 AI760467 AI630636 AI221521 AW674314 AW078889 AI933732 AI686969 AI186928 AW074595 AI127486 AL079644 AI910815 H17814 AA310903 AW137854 T19279 AA026682 AA306035 AW383390 AW383389 AW383422 AW383427 AW383395 H09977 AA306247 AA352501 AW403639 F05421 AA224473 AA305321 H93904 AA089612 AW391543 AW402915 AW173382 AW402701 AW403113
J			R94438 N73126 H93466 AA090928 AA095051 T29025 AW951071 L47277 L47276 Al375913 BE384156 W24652 AA746288 AA568223 BE090591 H93033 N57027 AA504348 AA327653 AW959913 N53767 AA843715 Al453437 AW263710 Al076594 AA583483 AW873194 AW575166 Al128799 Al803319 AL042776 AW074313 Al887722 Al032284 AA447521 Al123885 N29334 Al354911 AW090687 AA236763 AA435535 AA236910
10			AA047124 AA236734 AW514610 H93467 AA962007 Al446783 AA127259 Al613495 Al686720 Al587374 AA936731 AA702453 Al859757 AA216786 Al251819 Al469227 AA806022 Al092324 N71868 AA968782 AA236919 AA809450 AA227220 AA765284 Al192007 AA768810 AA805794 AA729280 AA806238 AW768817 N71879 Al050686 AA505822 AA668974 Al688160 BE045915 AW466315 AA731314 AA649568 AA834316 AW591901 AW063876 AW294770 Al300266 Al336094 Al560380 AA721755 H09978 D20305 D29155 AW821790 BE150864 F01675
	100780	458_127	Al457474 AW466316 AA550969 AA630788 BE561958 BE561728 BE397612 BE514391 BE269037 BE514207 BE562381 BE514256 BE514403 BE514250 BE397832 BE269598 BE559865
15		100_1-1	BE396881 BE560031 BE514199 BE560037 BE560454
	100830	4002_1	AC004770 W05005 AA356068 AA094281 H29358 T56781 AW875313 L37374 BE312466 BE311755 BE207106 BE293320 BE018115 AW239090 BE548830 AW247547 AA776062 BE397382 AA486713 T10111 T09340 AW498981 BE547280 AA356003 AW581520 AW875331 AA580720 AW875336 BE276873 BE408229 AW188148 BE255166 BE253761 AW793727 AW373141 AW581548 AA471223 AA305950 BE263976 AA626820 BE257409 AW360962 AA090655 C00312 BE312741 BE407213 AA209352 AW297199 AW248553 AW297794 AW731722 BE300586 AW731972
20			AW615446 BE301599 AW615520 AA486714 AW440257 AA196516 AA564630 AA618079 AW192592 AW474985 AA604580 Al627461 AA765440 Al680394 AL135548 Al683224 Al581126 AW245096 AW194154 H29274 N70363 AA629758 AA580602 AA862006 Al863841 Al097667 Al928583 Al358774 BE243487 AA620553 AA653297 AA292690 T10110 Z38906 AA908544 AA340930 Al185438 T03328 T28844 Al687010 Al864965 Al872575 BE388740 T56780 AW373138 BE258717 AA699671
25	100906	4312_1	AU076916 BE298110 AW239395 AW672700 NM_003875 U10860 AW651755 BE297958 C03806 AI795876 AA644165 T36030 AW392852 AA446421 AW881866 AI469428 BE549103 T96204 R94457 N78225 AI564549 AW004984 AW780423 AW675448 AW087890 AA971454 AA305698 AA879433 AA535069 AI394371 AA928053 AI378367 N59764 AI364000 AI431285 T81090 AW674657 AW674987 AA897396 AW673412 BE063175 AW674408 AI202011 R00723 AI753769 AI460161 AW079585 AW275744 AI873729 D25791 BE537646 T81139 R00722
	100930	16865_1	J04129 NM_002571 AA293088 AA477016 AA404631 T28299 AA476904 AA433965 AA430486 AA495907 Al151391 AA291495 AA402723 W25651
30	100300	10005_1	AA706816 Äl826712 AW296294 AA293479 Al276581 AW044154 Al080180 Al417985 Al274168 Al474212 AA495908 AA635664 Al092114 Al804952 AA479874 Al597661 Al420511 AA479738 AA421417 AA421247 AA436220 AL047797 M34046 N42277 AA228076 W02698 Al420297 AA434011 Al369971 AA479731 Al865541 Al418020 AA421246 AA452764 AL048051
	102221	3861_1	NM_006769 U24576 AW161961 AW160473 AW160465 AW160472 AW161069 AI824831 AW162635 AI990356 AW162477 AW162571 AI520836 AW162352 AW162351 AW162752 AI962216 AI537346 AA853902 H17667 BE045346 BE559802 BE255391 AA985217 AA235051 AI129757 AW366451 T34489 D56106 D56351 AI936579 AW023219 AW889335 AW889120 AW889232 AW889175 BE093702 AW889349 AA147546
35			A1952998 AA912579 A1143356 AW902211 R64717 AW157236 AI815242 D45274 AW263991 AA442920 AA129965 AL035713 Al923255 Al949082 A142826 Al684160 Al701987 AI678954 AI827349 BE463635 AW628092 AW302281 AA493203 BE348856 BE536419 AW193969 AW673561 AW592609 Al224044 H43943 AA091912 R49632 R48353 Al568409 R48256 A1980486 H43899 Al678759 Al680310 Al664220 H17052 AA156410 N56062 AI699430 AA664529 T09406 T10459 AA627506 AI379584 N1983831 N88633 AW022651 AA971281 AA248036 Al039197 AI914689 AA973825 AL047305 AA129866 AI798369 AW264348 Al445879 AI658759 N67924 AI933507 AI216121 AI333174 T10972 AI375028
40			A1914009 AA973025 AL047305 AA729906 A1795309 AW204046 A1440019 A1050739 NO7524 A1050307 A1270721 A1050774 1 10572 A1070020 A1186756 A1273778 AA610487 A1797946 AA853903 AA903939 A1338587 A1278494 AW627595 AA904019
10	101809	32963_1	M86849 AA315280 NM_004004 AA315269 BE142653 AA461400 AW802042 BE152893 AW383155 AA490688 AW117930 AW384563 AW384544 AW384566 AW378307 AW378323 AW839085 AA257102 AW378317 AW276060 AW271245 AW378298 AW384497 Al598114 AW264544 Al018136 AW021810 AA961504 AW086214 AW771489 AW192483 Al290266 AW192488 AW384490 AW007451 AW890895 AA554460 AA613715
45			AW020066 AI783695 AI589498 AI917637 AW264471 AW384491 AI816732 AW368530 AW368521 AW368463 AA461087 AI341438 AI970613 AI040737 AI418400 AA947181 AA962716 AI280695 AW769275 AW023591 AI160977 AA055400 N71882 AA490466 AW243772 AW316636 AI076554 AW511702 N69323 H88912 AA257017 AI952506 H88913 AI912481 AA600714 BE465701 N64149 C00523 N64240 AA677120
	102590	15932_1	R61573 BE005029 X98091 AA297307 BE537267 BE566138 BE566139 F11561 BE564795 BE568776 AW064005 BE566479 BE380035 BE567012 BE568634 BE566568 AA298060 BE566043 BE568813 BE568618 AA283070 BE565414 BE566738 BE568585 BE565667 BE566116 BE566433 U62136 AF049140 BE567057 BE567297 BE567403 BE564316 BE567400 BE568854 BE566588 AA448772 AA071363 AW732642 BE564996
50	-		AA297763 AA278550 AA421083 AA298184 AA091007 AA984577 AA205916 N28759 AL031291 C15757 C15761 H02728 BE566410 AA129335 AA49499 N87741 BE379689 BE004824 BE379611 D25874 AA148454 AA323654 AW950311 AA448795 AW749423 AA773886 AA773843 AW020327 BE348580 BE504258 BE549990 BE220200 AI673334 AI202679 AA975515 D61421 AI168688 AA102843 AW246621 AI276203 AI074054 AI633824 AI962927 AI148926 N50969 AI308911 AA410994 AW373025 AA148455 H02620 AA688293 AI246318 N22220 AI917777
55			AI050943 AI097286 AA663794 AW368662 AW627826 AW078734 AI253060 AA749154 AA832236 AI192358 AW024676 AA448676 AA764891 BE439467 AA661534 AA258061 AI090546 AA995157 AI051011 AA584421 AI026032 AW591338 AW589563 AA776914 AW024684 AA421002 F09219 BE464500 AI383595 AA954244 AA601583 AA737304 AA195549 AA805778 AI055876 AA164942 AW013961 AI672608 AW514211 D59441
60	101977	29073_1	AW582574 AA160935 BE566501 BE564612 BE565353 BE568195 BE565447 BE568302 BE566097 BE565470 BE564249 AL036217 AW749424 BE567494 AA102842 AA314761 AV661237 C14211 AA651866 AW798997 AA470605 AF112213 AL050318 T24804 AW248136 BE386341 BE263177 W16677 BE250224 BE563669 BE267405 BE546577 AV651354 AV651292 AI346903 AI539128 A189171 S83364 AW073849 AI816760 AW073309 AI422690 AA296692 AI860301 AI805446 N77735 AI340328 BE092530
			AW028742 BE088442 AA657742 AA742438 AW170086 Al038920 Al432379 N36073 Al936194 AA868655 AA983612 Al077505 BE080433 Al375014 Al126547 Al348244 Al346077 Al748952 N26915 Al753574 Al093341 Al278762 BE092517 N74204 H06158 T58149 Al129303 N58366 AA524456 BE122661 AA542925 Al246120 Al735203 AA706829 AA877544 Al082289 AA926687 N92840 AW249798 AA934763 AW998363
65			Al128632 N25202 Al240209 AW118892 N80744 R35655 Al342321 Al340141 AW878792 Al857321 H09610 W04601 AW006650 AA126006 AA553675 Al052791 AW059835 Al041906 AA814658 AW002059 AA729483 Al609301 AA994633 AA903651 Al459183 T95072 AW088630 AA126112 Al800091 Al561215 H17502 AW475072 Al819003 Al683272 Al262701 AW793140 T81787 R99586 Al275160 Al310420 Al698929 AA159174 Al827968 F30305 F30309 AA806662 Al091923 AW878722 AA583430 AW571913 Al674584 AA292533 Al079471 AA642325 AA719050
70			AW793172 AA305476 AW103745 T23459 N79525 A1784438 AA534551 AW193751 A1074360 BE281214 T32229 W25066 W01205 T63086 AW795348 A1361287 AW795353 AW795349 AA594759 A1400295 D11489 A1370689 AA482356 AA485295 W40151 AA564661 AW300745 A1346938 A1374975 A1423782 AW193899 AA612604 A183409 AA996156 AW366963 AW366977 A1284860 AA846503 A1985064 AA844576 AA737921 AA873274 BE241546 BE241540 AA484058 AW468970 AA127876 AA159120 AW001568 AW795213 AW795258 AW795330 BE250589
	102781	20812_1	BE387572 AA910895 AA161217 BE250380 W31500 T95167 AI719306 AI359224 BE258778 BE281230 BE410044 T33723 AW672694 AW410439 NM_006429 AF026292 T35505 BE542333 T08940 AU076737 AW247471
75	102761	20012_1	BE393215 AW328640 BE542408 T32170 BE302544 T31955 BE206898 BE275738 T32570 BE386426 BE298746 BE389937 BE239991 BE315289 BE389578 R34739 R15312 BE279365 BE277756 AL036019 T33725 BE277779 BE302962 AL047294 BE276505 T09070 T33673 BE312580 AW387774 BE257175 AW674367 BE253331 BE270344 BE29881 BE273576 T32062 Al751831 BE618381 AA304899 BE252268 U46364 BE256790 BE207199 BE256209 BE251941 BE250791 BE313955 BE269806 BE543623 BE279212 BE252289 T31699 BE262220 T31669
80			AA315781 AA192212 N84547 BE292737 BE259631 AA232179 Al133144 T31292 AA315945 BE407301 BE251184 BE409006 Al880158 Al904003 Al904114 AW651768 AW651763 R58247 BE271897 U83843 C05298 BE261609 BE255973 AA351650 N84631 BE263637 AW452910 AA328465 AA324549 AW579525 BE252296 BE257551 AL048332 BE208630 AA359336 AW327897 AA151742 AA305816 BE076862 BE076796 BE263161
			AA323785 AA676588 AA626565 AA078917 W87657 R09002 R94021 AA312032 BE276665 AA295608 AW407162 AA329374 AW877912 N27885 AA369256 AA360968 BE250476 N85427 BE265569 AI278639 AI816576 AI691037 AW328583 AI567949 AI983455 AI927732 AI811297 AI571508 AW073674 BE296039 BE467326 AI828796 AI816578 AW511604 AI921213 AW152427 AI795787 AI801618 AW168866 AI628144 AI890339
85			AW173690 AW511540 BE535620 AA383014 BE301164 Al866596 AW514909 AA658050 AW575243 AA074631 Al093488 AW575408 AW675443 AW615636 AW732207 AW377638 AA321784 AA641629 AA633105 AA527640 AW129146 AW615672 BE394607 AA483902 AW475032 BE378532

	W	7 02/00044	AA872808 Al469388 AW105268 BE047301 AW591843 AW410066 AW517153 Al950495 AA746641 Al914878 AA873185 Al696911 AA548625
			AA911505 AA148762 AW674535 AI587329 BE328328 AW270348 AA158225 AW117705 AW47499 AW519193 AA614757 AW664383 Al082647 AW590973 AI476711 AA192213 N88741 BE464552 AW072679 AI453708 AA152166 AA805924 AI581078 AI125768 AW173484 AI961980 BE300766 AI199698 AI636792 AW247333 AW272861 AA078818 AA150012 AA551232 AA678821 AW873869 AW768266 AI660315 AA319210
5			AA814551 AA157994 AA318886 AIS82962 AW089224 AI356098 AI343694 AW072598 N21054 AI301249 AA742924 H17917 AW328584 AW248898 AI751830 AA907816 R08898 AW087989 AI828300 AA148596 AI269577 T33426 AA213571 AI973201 AA666279 R49612 AI573183 AW799762 AW410068 AW769666 AI962097 AI475204 D57490 AW517531 BE245270 AW470008 T33427 AW005731 AI795795 T23753 AW272981 T15747 AA552875 T2364 AW361289 AI758558 BE207435 AA876958 T03361 AA883569 F37533 AA582321 AW082524 R42212 AA973847
10			T18900 AA086202 AI559867 AI302418 AA948667 AA745670 T08939 T33724 T33722 BE621568 D57489 D25906 BE621151 F16510 C05966 T35127 AA630427 AI933481 AA309426 AI918440 BE561854 BE618666 BE394675 BE596173 AW951687 BE3383739 BE616141 BE312730 BE5535351 AW080575 BE313330 BE616664 AI354390 AA847315 BE544509 BE515212 BE297833 BE278808 BE544844 AW090178 AI890664 BE546708 AW189943 BE274412 BE382399 BE266392 BE254949 BE280696 BE38237 BE281756 BE57721 BE312683 BE275476 BE514880 BE545314 BE313587 BE384537 BE386691 BE264813 AW592575 AI336332 AI278641 AI795791 BE222662 AW249316 AA314361 AL036012
15			AW402923 BE266845 AA075945 AA314436 BE384640 AW731769 AW957077 AA552234 AA573560 AW367038 AA313399 AI983873 BE410159 BE263803 BE514339 BE409073 BE281296 BE543396 BE395387 BE088360 BE546946 BE546570 BE390626 AA074638 AA301821 AW845230 AW582379 AI949222 AW029572 AA515843 AW272394 BE250234
20	119221		C14322 W74050 Al074232 AA595624 BE048955 Al148417 Al583145 Al473460 Al801688 AW573593 Al950741 Al628140 AW467921 R98105 Al149258 Al247584 Al078378 Al139850 AA489411 W24744 R98104 Al033826 AA699589 Al033120 N55544 W88984 AW970771 AA703362 AA099138 AA706792 AA046150 H98891 Al916674 AA693018 Al972749 Al921343 AA909044 AA094751 Al203124 AA582143 Al446654
20	405004		AW235418 R70377 AA99236 F20703 AA524436 R69484
	125831		H04043 D60988 D60337
25	128192 113195	178688 1	AI204246 AI204250 AI194050 H83265 T63524 AA304359 AW960551 AI672874 AI749427 AA227777 AW027055 AA971834 T49644 T54122 AI983239 AI808233 T91264 T96544 AI350945 AI709114 R72382 T48788 R48726 AW385418 AI095484 T49645 AA928653 AA570082 AW007545 T57178 AA516413 AA913118 T57112
25			AA564433 AA774503 AA367671 T59757
20	119861 112973	4868_1	W78816 AI720806 AI633854 AI632086 AI668663 N70894 AW571809 AI383592 AI201348 W80715 N91880 AW963101 AA339011 AB33023 BE391906 BE275965 BE277872 BE003882 AA313774 BE019159 BE298024 BE299727 BE300011 BE390277 BE394764 N87550 BE409419 BE408652 BE408197 AL119332 AA622427 AI816265 AA610118 T07318 AA019839 AA634430 BE205794 BE049461 AI042322 AI652711 AI917645 AA630045 AW191969 AI817882 T17271 AI803663 AI095533 H46019 AW592438 AI624836 AI675552 D51119 AW132058
30	400400		AA639614 AI925762 AW088153 T17455 AA018640 AW751475 BE300241 AI816255 BE391981 AW408671 AA353910 AW875446 AW875703 AW875926 AW875645 AW875647 AW938037 AL138042 AW892619 BE243018 AW995454 BE246381 BE009082 BE278921 AW967842 AA262454 H30121 W72062 AF088057 W76255 AI827219 AI631461 AW449295 AI354957 AI913803 T62772 AI222040 T62921 T63781
35	129402 105936	260931_1	Al678765 H12175 R14664 Al914049 AA995383 H08009 H19418 AW953728 Al358021 AA587361 Al269377 AA369905 AW957113 H27693 Al300474 H73776 W74397 AA579604 Al131018 W72331 Al719085 AA568348 Al859045 Al814819 Al888714 BE467470 AW131268 H19419 H27694 Al342165 Al914155 AA534872 BE018176 R60206 H11647 R45641 Al860466 BE301656 Al125453 Al498120 AA593735 AA879110 Al016404 T35018 AA588397 AW449767 AA470365 BE501139 AA588354 Al337500 AW078532 Z41279 Al125449 AA935725 AA404338
	129466	2094_50	L42583 NM_005554 L42601 BE183076 Al541221 BE140567 L42610 V01516 J00269 AW275792 AW383052 AW380143 Al541102 BE612846
4.0			AI541344 AW238368 BE613405 BE615705 BE615530 BE615301 AW379823 AW794706 AA194806 AA194992 AW384024 AW384000 AA641239
40			AI246504 AI540333 AW238681 AA640939 AI540863 AI608860 AW862564 AW366725 AW368983 AW366870 AA596020 AW794721 AW794511
			Al591181 BE182523 AW794644 AW794620 Al935234 Al608903 Al608623 AW797060 AW084935 BE182517 BE182319 Al890082 AW238346 AW797012 BE182522 AW794838 Al608794 AW304289 AA147193 AA595995 AW381128 AW366720 AA583718 Al828416 BE122864 AW368343 AA431080 AW082039 AW380976 AA587144 AA443636 AW872937 AW794448 AW378382 AW085761 AW794718 AW263895 AA583587
			AA583991 AA583994 AA586886 AA586880 AW368365 AI814460 AA586991 AI282829 AW378406 AA586721 AI609242 AA431973 AA232959
45			AI831095 AW263854 AW378391 AW378415 AW378381 AA036990 AW238395 AI285446 BE208219 BE049526 AA583605 AA583918 AW366711
			A1285580 AW082642 A1285712 AA582875 AWS91216 AW368719 AW378408 BE122835 AA582976 BE350422 AA418328 A1541454 A1555930
			AA583700 AA150575 AW238427 Al287474 AA912658 AA584223 AW238528 C17918 AW136169 AA159847 Al923797 Al609009 BE182479 Al915198 AW378114 AA147179 AA584239 AA150532 AW168862 AW085999 AW082480 AA659742 AW079703 Al872793 AA583981 Al824571
			BE182316 BE182507 AA233331 AI824572 AI540586 D29492 BE182931 AA036948 BE551821 D29401 AW378365 C00141 D29181 D29567
50			AW103359 W95238 Al991663 AA587298 BE184608 AA099833 W95121 W95150 D29584 Al934111 D29456 D29533 AW265380 D29290
			AW238463 AA121041 D29204 AA595925 D29441 AW081840 AA587018 D29323 AA582891 BE182433 BE182437 BE158295 BE182434
	100220		AW015534 AA314369 AA200715 BE568683 AW629494 D28364 AW995678
	100355	12538_1	A)907114 AA580734 AL041945 AA101515 AA121344 D78130 NM_003129 AA341650 T84166 AF098865 AA130976 BE089553 6 T66122 AW175590 F05344 A)114790 R12900 AA194871 AA132298 D78129 AA132213 AW948930 AW948919 AA263053 AW946593 AW948840
55		HUD7 19 F 13440	AA278558 R50895 N26940 N40818 AW021255 AA054851 AA663379 AW948795 AW948893 AA400356 AW948911 N85024 W78844 AI341546
			AI760182 AA286783 BE617763 BE617263 AW263690 BE049454 BE617928 AW515038 AW950584 AA601009 AI079194 AA147204 AW083163 AA130981 AI218369 AA604784 AI806257 AI559556 AA232318 AA258065 AI471982 AA687949 AI143944 N30172 AA400196 AI769049 AI084342 AI221380 AA948469 AI802469 H05720 AA113270 AA158138 AA076231 AI521024 AI810962 AI133616 AA805106 AA101516 R40052 R50778 R43280 T65036 AW131924 AA114251 AA152331 F09650 AA580614 AA558927 C75491 Z38352 AA954595 C75606 W80742
60	100491	34803_1	D56165 M36981 X58965 NM_002512 BE379177 AA314836 BE256445 BE252016 AW248343 Al720933 AW085701 BE386050 BE619742
50	BE277805	AA147951 AA60	3113 BE253293 AI246588 AI183405 AI954174 AI126891 AI829101 AI123832 AW129670 AA471268 AW170242 AW873079 AA148011 AI608620
			AA482961 Al003658 H43261 AA657978 Al735072 R83138 AA722002 AA626271 AW273877 BE464626 AA071483 AA429973 AA494342
			AA620436 AA775597 AA775601 AA826847 A192585 AA826359 AA411159 A193419 A1204013 AA705323 AA716255 A1784611 A1081144
65			A1128227 AA828464 A1148911 A1493446 A1626084 A1189180 A1721196 A1190618 AA284987 A1128543 AA632064 A1333073 A1278470 AA131688 A1491768 AA937581 AA630065 AA834257 AW249841 AA583742 A1309756 AA961676 A1760860 AA557818 AA954238 H43655 A1302564
03			A41277545 A1609219 H20426 A1042292 A1056466 AA551836 W47002 AA422057 AA937673 F29757 AA829208 AW327462 AA372098 W02144
			AA036805 AA487365 AA961037 A 139946 AA487250 AA737118 A 952504 A 242293 AA650552 A 708401 A 633133 AA630848 AA654317 F24128
			Al434165 W46252 AW043879 Al033763 F37228 AA687809 N49087 AA876981 AA506947 Al914572 Al833284 F22253 AA026222 R50166
70			Al219267 N27095 AA496512 Al784222 Al289904 AA513146 AA528547 AA418700 F36721 Al880700 Al601170 Al862851 Al708633 AA524499 AA642220 AA496628 Al718709 W80579 Al720547 F20718 AA649943 AA588229 N40503 H46029 BE262669 BE391069 BE537538 Al510751
70			A3905968 A3318611 H46099 A1472604 T60667 AA373087 W32479 AA514034 BEE19183 AA134672 AA127544 H26942 BE536689 AW327461
			AA422139 AW262357 AW327348 F33510 Al630382 AW827126 F27133 Al335189 AW517599 W80471 AA885814 N89681 BE393173 AA617760
			AA584268 AA460537 AA446261 H20425 N64040 AW276801 AA316367 AA071232 BE545409 AA308292 BE274447 AA380861 AA340038
75			AA341806 AA865579 AI018634 AI766314 AI919302 AA872367 AA991404 AI906961 AA888375 BE621012 AA505388 AA935192 AA290828 R50220 H50814 H44721 AW951723 AA514796 AA418708 AW673377 AA379622 AA977995 AA708224 AA708216 AI318249 AI318233 AA411160
13			AA026221 AA316774 AA486908 Al500094 AA096362 AW583742 BE536422 BE618653 R70203 AA131732 AA345048 BE562720 T28342
	100518	13165_1	NM_004415 AL031058 M77830 BE149760 AW752599 AW848723 AW376697 AW376697 AW376699 AW848371 AW376782 AW848789
			AW361413 AW849074 AW997139 AW799304 AW799309 BE077020 BE077017 BE185187 AW997196 BE156621 BE179915 BE006561 BE143155
00			AW890985 BE002107 AW103521 AA857316 AW383133 BE011378 AW170253 BE18575 AW886475 BE160433 J05211 BE082576 BE082584
80			BE004047 AW607238 AW377700 AW377699 BE082526 BE082505 BE082507 BE082514 AW178000 AW177933 Al905935 AW747877 AW748114 BE148516 AW265328 AW847678 AW847688 AW365151 AW365148 AW365153 AW365156 AW365175 AW365157 AW365154 AW068840
			BE005272 AW365145 BE001925 BE182166 BE144243 BE001923 Al951766 Al434518 BE184920 BE184933 Al284090 BE184941 AW804674
			BE184924 C04715 W39488 AW995615 BE184948 BE159646 AW606653 AA099891 AA131128 AA337270 AA340777 AW384371 AA852212
0.7			R58704 AW366566 AW364859 AA025851 AA025852 AA455100 AA719958 AW352220 AW996245 BE165351 BE073467 AA377127 AW890264
85			AW609750 AW391912 AW849690 T87267 AW853812 AA852213 W74149 BE009090 AA056401 H91011 AW368529 AW390272 C18467

	WC	02/086443	PCT/US02/12476
5		A A A A A	\(\color=1000000000000000000000000000000000000
10		A A A	N494069 AI911702 AA149191 AA026864 AI830049 AI887258 AW780435 AI910434 AI819984 AI858282 AI078449 AI025932 AI860584 AI635878 AQ026047 AA703232 D12062 AW192085 AA658154 AW514597 AW591892 T87181 AA782066 AW243815 AW150038 AW268383 AW004633 N1927207 AA78109 AW473233 AI804485 AW169216 AI572669 AA602182 AW015480 AW771865 AI270027 AA961816 AA283207 AI076962 N498487 AI348053 AI783914 H44405 AW799118 AA128330 AA515500 AA918281 W02156 AI905927 AA022701 W38382 R20795 T77861 NW860878
15	100528	45979_1 B A H A	IE386801 AU077299 AA143755 BE302747 AA853375 U30162 BE274163 BE277479 BE408180 BE274874 C15000 AA047476 N27099 Al359165 N638794 Al151283 Al863925 AW444977 Al207392 AA931263 AA43112 R40138 AW068538 AA351008 AA676972 R62503 AA916492 AW001865 H42334 H38280 AA121497 AA114137 A1750938 M17783 AA383786 BE274462 Al753182 C05975 AA347404 AW069298 Al754931 Al754044 A188808 AA186879 AA565243 AL040655 AA456177 Al750722 AA045756 AA213580 C16936 AW578747 AW753731 H41632 N44761 R58560 K61260 AA039902 N59721 AW992543 R68380 AA149686 T29017 H03739 BE383822 BE387105 BE408251 BE410425 H41560 AA247591
20	100559	2260_1 N A' A'	NE389677 AI752233 AI566195 AA868004 AI424523 AW753720 AA852159 BE386803 IM_00094 L02870 D13694 S51236 M96984 AW946290 M65158 AI285422 D29523 AL119886 AW630655 L06862 AI884355 AW168737 T29085 IW797005 AW801340 AI3555504 AW079048 AW801337 AI690455 AI972063 AW268565 W68588 AA587326 AA883498 AI033523 AW510356 IW591998 H98463 AL043852 AI150055 AI566239 AI624803 AA844717 H40670 AA922334 AI864424 AW615094 AW451233 AI302203 F31221 IJ872170 W68589 AA904478 AI917631 AW014208 AW460759 AA847625 AI284033 AA848176 AA598507
25	100576 124357 101624 101625 135158	9986_1 X genbank_N22401 entrez_M55998 M entrez_M57293 M 57963_1 A	(00356 NM_001741 M26095 X03662 M12667 X02330 X02330 AA716058 AW296074 X04861 Al695720 AA719597 1 N22401 #55998

Tables 2A-8C were previously filed on November 9, 2001 in USSN 60/339,245 (18501-004100US)

Table 2A shows 504 genes down-regulated in lung tumors relative to normal lung and chronically diseased lung. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

	Pkey:			identifier number								
	ExAccn: Unigenell		ar Accession i e number	number, Genbank accession number								
10	Unigene	Fitle: Unidens	gene title									
	R1:			or normal lung samples divided by the 80th percei	ntile of Al for a	adenocarci	noma and	squamou	s cell carc	inoma lunç	j tumor	
	R2:	samples median	of Al for norm	al lung samples divided by 90th percentile of Al fo	r adenocarcin	noma and s	quamous	cell carcir	oma lung	tumor san	nples.	
15	R3:	median	of Al for norm	al lung samples minus the 15th percentile of Al fo	r all normal lu	ng, chronic	ally disea	ised lung a	ind tumor	samples d	ivided by	
15		lung ch	ronically disea	f AI for adenocarcinoma and squamous cell carcin ased lung and tumor samples.						At IOI dil III	Jilla	
	R4:	average	of Al for norn	nal lung samples divided by average Al for squam	ous cell carcir	noma and	adenocar	cinoma lun	g tumors.			
	R5: R6:	median median	of Al for norm	hal lung samples divided by the 90th percentile of h all lung samples minus the 15th percentile of Al fo	al for agenoca r all normal lu	arcinomas. .na. chronic	ally disea	sed lung a	and tumor	samples d	ivided by th	ne 90th
20		percent	ile of At for ad	enocarcinomas minus the 15th percentile of Al for	ali normal lur	na, chronic	ally disea:	sed lung a	nd tumor s	amples.	•	
	R7: R8:	average median	of Al for norm	nal lung samples divided by the 90th percentile of nal lung samples minus the 15th percentile of Al fo	Al for squamo r all normal lu	ous cen car ing, chronic	cinomas. ally disea	sed lung a	and tumor	samples d	ivided by th	ne 90th
	110.	percent	ile of Al for sq	uamous cell carcinomas minus the 15th percentile	of Al for all n	iormal lung	, chronica	illy disease	ed lung an	d tumor sa	mples.	
25	Pkey	ExAcen	UnigeneID	Unigene Title	R1	R2	R3	R4	R5	R6	R7	R8
20	•		•									
	100095 100115	Z97171 NM_002084	Hs.78454 Hs.336920	myocilin; trabecular meshwork inducible glutathione peroxidase 3 (plasma)	40.20							3.46
••	100113	U83508	Hs.2463	angiopoietin 1			2.30					
30	100299	D49493	Hs.2171 Hs.80598	growth differentiation factor 10 transcription elongation factor A (SII);		11.00				3.06		
	100306 100447	U86749 NM_014767		KIAA0275 gene product						4,50		3.16
	100458	S74019	Hs.247979	Vpre-B	42.40					4.13		
35	100862 100959	AA005247 AA359129	Hs.285754 Hs.118127	Hepatocyte Growth Factor Receptor actin; alpha; cardiac muscle				125.60		4.10		
	101032	BE206854	Hs.46039	phosphoglycerate mutase 2 (muscle)	36.40			34.60				
	101081 101088	AF047347 X70697	Hs.4880 Hs.553	amyloid beta (A4) precursor protein-bind solute carrier family 6 (neurotransmitte				193.20				
40	101125	AJ250562	Hs.82749	transmembrane 4 superfamily member 2				E4 0C		3.10		
40	101180 101308	U11874 L41390	Hs.846	interleukin 8 receptor; beta "Homo sapiens core 2 beta-1,6-N-acetylgl	33.20			54.86				
	101330	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do				36.40	-			
	101345 101346	NM_005795 Al738616	Hs.152175 Hs.77348	Calcitonin receptor-like hydroxyprostaglandin dehydrogenase 15-(N			2.29	70.55				
45	101340	M26380	Hs.180878	lipoprotein lipase								3.54
	101414	NM_000066 NM_001100	Hs.38069	complement component 8; beta polypeptide actin; alpha 1; skeletal muscle				34.60			3.81	
	101435 101507	X16896	Hs.82112	interleukin 1 receptor; type l				37.60				
50	101530	M29874	Hs.1360	cytochrome P450; subfamily IIB (phenobar			2.54					4.25
30	101537 101542	Al469059 NM_000102	Hs.184915 Hs.1363	zinc finger protein; Y-linked cytochrome P450; subfamily XVII (steroid		5.50	2.04					
	101545	BE246154	Hs.154210	EDG1; endothelial differentiation, sphin	39.40	13.00			*			
	101554 101560	BE207611 AW958272	Hs.123078 Hs.83733	thyroid stimulating hormone receptor Intercellular adhesion molecule 2, exon		13.00						3.38
55	101574	M34182	Hs.158029	protein kinase; cAMP-dependent; catalyti						4.37		3.80
	101605 101621	M37984 BE391804	Hs.118845 Hs.62661	troponin C; slow guanylate binding protein 1; interferon-	30.20							3.00
	101680	AA299330	Hs.1042	Sjogren syndrome antigen A1 (52kD; ribon						יכ ני	2.75	
60	101829 101842	AW452398 M93221	Hs.129763 Hs.75182	solute carrier family 8 (sodium/calcium mannose receptor; C type 1				38.20		3.37		
00	101961	AW004056	Hs.168357	"Hs-TBX2=T-box gene {T-box region} [huma			2.32					C 05
	101994 102020	T92248 AU077315	Hs.2240 Hs.154970	uteroglobin transcription factor CP2			2.45					6.85
<i></i>	102091	BE280901	Hs.83155	aldehyde dehydrogenase 7								6.75
65	102112 102190	AW025430 AA723157	Hs.155591 Hs.73769	forkhead box F1 folate receptor 1 (adult)	54.60							3.98
	102202	NM_000507		fructose-bisphosphatase 1								3.62
	102241	NM_007351 U33839	Hs.268107	Multimerin Accession not listed in Genbank		7.00	2.32					
70	102310 102397	U41898		"Human sodium cotransporter RKST1 mRNA,	29.40	7.00						
	102571	U60115	Hs.239069	"Homo sapiens skeletal muscle LIM-protei Human clone W2-6 mRNA from chromosome X						3.07		3.75
	102620 102636	AA976427 U67092	Hs.121513	"Human ataxia-telangiectasia locus prote			2.40			0.01		
75	102667	U70867	Hs.83974	solute carrier family 21 (prostaglandin			3.15			3.56		
75	102675 102698	U72512 M18667	Hs.7771 Hs.1867	"Human B-cell receptor associated protei progastricsin (pepsinogen C)						0.50		4.51
	102727	U79251	Hs.99902	opioid-binding protein/cell adhesion mol	07.40			•	12.00			
	102852 103026	V00571 X54162	Hs.75294 Hs.79386	corticotropin releasing hormone thyroid and eye muscle autoantigen D1 (6	37.40				13.00			
80	103028	X54380	Hs.74094	pregnancy-zone protein	28.80							
	103098 103117	M86361 X63578	Hs.295449	Human mRNA for T cell receptor; clone IG parvalbumin		6.00			10.00			
	103241	X76223		H.sapiens MAL gene exon 4			2.47					
85	103280 103360	U84722 Y16791	Hs.76206 Hs.73082	Cadherin 5, VE-cadherin (vascular epithe keratin; hair; acidic; 5			2.69				2.16	
55	100000	0.01	110.1 0002	nordany nany dalatoj o								

	W	O 02/086	6443							PCT/	US02/1	12476
	103496	Y09267 Y10141	Hs.132821	flavin containing monooxygenase 2 "H.sapiens DAT1 gene, partial, VNTR"						3.27		5.97
	103508 103561	NM_001843	Hs.143434	contactin 1			2.40			0.27		
5	103569 103575	NM_005512 Z26256	Hs.151641	glycoprotein A repetitions predominant "H.sapiens isoform 1 gene for L-type cal			2.99			4.18		
3	103627	Z48513		H.sapiens XG mRNA (clone PEP6)						3.44		
	103767 103850	BE244667 AA187101	Hs.296155 Hs.213194	CGI-100 protein Hypothetical protein MGC10895; sim to SR				46.55			2.25	
10	104078	AA402801	Hs.303276	ESTs						3.05		
10	104326 104352	AW732858 BE219898	Hs.143067 Hs.173135	ESTs dual-specificity tyrosine-(Y)-phosphoryl						3.54 3.16		
	104398	AI423930	Hs.36790	ESTs; Weakly similar to putative p150 [H	64.80							3.38
	104473 104493	Al904823 AW960427	Hs.31297 Hs.79059	ESTs ESTs; Moderately similar to TGF-BETA REC			2.47					0.00
15	104495	AW975687	Hs.292979	ESTs ESTs	28.60					3.42		
	104595 104597	A1799603 A1364504	Hs.271568 Hs.93967	ESTs; Weakly similar to Slit-1 protein [6.00				0.12		
	104659 104686	AW969769 AA010539	Hs.105201 Hs.18912	ESTs ESTs	34.00	11.00						
20	104691	U29690	Hs.37744	ESTs; Beta-1-adrenergic receptor	56.80			00.40				
	104764 104776	AI039243 AA026349	Hs.278585	ESTs ESTs	34.20			60.40				
	104825	AA035613	Hs.141883	ESTs			3.03					
25	104865 104942	T79340 NM_016348	Hs.22575 Hs.10235	Homo sapiens cDNA: FLJ21042 fis, clone C ESTs	41.20							3.27
	104989	R65998	Hs.285243	ESTs				40.00				3.20
	105062 105101	AW954355 H63202	Hs.36529 Hs.38163	ESTs ESTs	34.20							
30	105173	U54617	Hs.8364	ESTs ESTs		16.00						4.17
50	105194 105226	R06780 R58958	Hs.19800 Hs.26608	ESTs		10.00	2.34					
	105256 105394	AA430650 BE245812	Hs.16529 Hs.8941	transmembrane 4 superfamily member (tetr ESTs			2.72 2.61					
25	105647	Y09306	Hs.30148	homeodomain-interacting protein kinase 3	33.60							0.50
35	105789 105817	AF106941 AA397825	Hs.18142	arrestin; beta 2 synaptopodin						4.46		3.59
	105847	AW964490	Hs.32241	ESTs			0.40	35.40				
	105894 105999	Al904740 BE268786	Hs.25691 Hs.21543	calcitonin receptor-like receptor activi ESTs		7.00	3.43					
40	106075	AA045290	Hs.25930	ESTs	34.80			42.60				
	106178 106381	AL049935 AB040916	Hs.301763 Hs.24106	KIAA0554 protein ESTs	34.00				12.00			
	106467	AA450040	Hs.154162	ADP-ribosylation factor-like 2				96.40		3.69		
45	106536 106569	AA329648 R20909	Hs.23804 Hs.300741	ESTs sorcin				47.20		,		
	106605 106842	AW772298 AF124251	Hs.21103 Hs.26054	Homo sapiens mRNA; cDNA DKFZp564B076 (fr novel SH2-containing protein 3			2.55	220.40				
	106844	AA485055	Hs.158213	sperm associated antigen 6	39.20							
50	106870 106943	A1983730 AW888222	Hs.26530 Hs.9973	serum deprivation response (phosphatidyl ESTs			2.28					4.28
50	106954	AF128847	Hs.204038	ESTs					40 AC			4.32
	107106 107163	AA862496 AF233588	Hs.28482 Hs.27018	ESTs ESTs			2.57		10.45			
<i>5 5</i>	107201	D20378	Hs.30731	EST		8.00				3.84		
55	107238 107376	D59362 U90545	Hs.330777 Hs.327179	EST solute carrier family 17 (sodium phospha		10.67						
	107530	Y13622	Hs.85087	latent transforming growth factor beta b			2.32	34.60				
	107688 107706	AW082221 AA015579	Hs.60536 Hs.29276	ESTs ESTs	28.40			34.00				
60	107723 107727	AA015967 AA149707	Hs.173091	EST DKFZP434K151 protein				80.80		3.29		
	107750	AA017291	Hs.60781	ESTs				51.40		244		
	107751 107873	AA017301 AK000520	Hs.235390 Hs.143811	ESTs ESTs		9.00				3.14		
65	107899	BE019261	Hs.83869	ESTs; Weakly similar to !!!! ALU SUBFAMI				44.00		3.65		
	107994 107997	AA036811 AL049176	Hs.48469 Hs.82223	ESTs Human DNA sequence from clone 141H5 on c				44.60 32.00				
	108041	AW204712	Hs.61957	ESTs				30.80			4.75	
70	108048 108338	AI797341 AA070773	Hs.165195	ESTs "zm53g11.s1 Stratagene fibroblast (#9372			2.33					
	108434	AA078899		"zm94b1.s1 Stratagene colon HT29 (#93722 "zm92a11.s1 Stratagene ovarian cancer (#						3.06	2.92	
	108447 108480	AA079126 AL133092	Hs.68055	ESTs				34.00		0.00		
75	108499 108535	AA083103 R13949	Hs.226440	"zn1b12.s1 Stratagene hNT neuron (#93723 Homo sapiens clone 24881 mRNA sequence					19.00			3.36
, 5	108550	AA084867		"zn11f6.s1 Stratagene hNT neuron (#93723			0.00		12.00			
	108604 108625	AA934589 AW972330	Hs.49696 Hs.283022	ESTs ESTs			2.33					5.82
90	108629	AA102425	. 10.200022	"zn24c6.s1 Stratagene neuroepithelium NT		7.00					3.42	
80	108655 108756	AA099960 AA127221	Hs.117037	"zm65c6.s1 Stratagene fibroblast (#93721 Homo sapiens mRNA; cDNA DKFZp564N1164 (f		7.00 6.05						
	108864	Al733852	Hs.199957	ESTs	28.80	• •						
	108895 108921	AL138272 Al568801	Hs.62713 Hs.71721	ESTs ESTs	32.80			57.80				
85	108967	AA142989	Hs.71730	ESTs	28.80							

	\mathbf{W}	O 02/086	6443							PCT/U	U S02/ 1	12476
	109001 109003	Al056548 AA147497	Hs.72116 Hs.71825	ESTs, Moderately similar to hedgehog-int ESTs			2.57				2.11	
	109003	AA156235	Hs.139077	EST		5.60					2	
5	109065	AA161125	Hs.252739	EST					10.00		3.44	
3	109250 109490	H83784 AA233416	Hs.62113 Hs.139202	ESTs; Weakly similar to PHOSPHATIDYLETHA ESTs							2.92	
	109510	A1798863	Hs.87191	ESTs		40.00	2.40					
	109578 109601	F02208 F02695	Hs.27214 Hs.311662	ESTs EST		10.00		40.80				
10	109613	H47315	Hs.27519	ESTs				54.40				
	109650 109682	R31770 H18017	Hs.23540 Hs.22869	ESTs ESTs	31.20	8.40						
	109002	D59899	Hs.127842	ESTs		0. 10		29.40				
15	109782	AB020644 R79864	Hs.14945	long fatty acyl-CoA synthetase 2 gene ESTs		10.00			8.00			
13	109833 109837	H00656	Hs.29889 Hs.29792	ESTs		10.00	6.49					
	109977	T64183	Hs.282982	ESTs				107.00			2.75	
	109984 110146	Al796320 H41324	Hs.10299 Hs.31581	ESTs ESTs; Moderately similar to SYNTAXIN 1B				107.00			2.22	
20	110271	H28985	Hs.31330	ESTs	44.00					3.48		
	110280 110420	AW874263 R93141	Hs.32468 Hs.184261	ESTs ESTs	44.20			32.00				
	110578	T62507	Hs.11038	ESTs	28.40							
25	110634 110726	R98905 AW961818	Hs.35992 Hs.24379	ESTs potassium voltage-gated channel; shaker-					20.00			4.15
23	110837	H03109	Hs.108920	ESTs; Weakly similar to semaphorin F [H.				56.80				
	110875	N35070	Hs.26401	tumor necrosis factor (ligand) superfami ESTs; Moderately similar to cytoplasmic		5.33	3.13					
	110894 110971	R92356 Al760098	Hs.66881 Hs.21411	ESTs Moderately similar to cytopiasmic		3.33		44.60				
30	111023	AV655386	Hs.7645	ESTs	32.40				47 4 4			
	111057 111247	T79639 AW058350	Hs.14629 Hs.16762	ESTs Homo sapiens mRNA; cDNA DKFZp564B2062 (f					17.14		4.58	
	111330	BE247767	Hs.18166	KIAA0870 protein								3,42
35	111374 111442	BE250726 AW449573	Hs.283724 Hs.181003	ESTs; Moderately similar to HYA22 [H.sap ESTs				33.20				3.91
33	111737	H04607	Hs.9218	ESTs				53.00				
	111747 111807	Al741471 R33508	Hs.23666 Hs.18827	ESTs ESTs	46.20	16.00						
	111862	R37472	Hs.21559	EST		10.00				3.91		
40	112045	Al372588	Hs.8022	TU3A protein							2.74 4.92	
	112057 112214	R43713 AW148652	Hs.22945 Hs.167398	EST ESTs					13.00		4.32	
	112263	R52393	Hs.25917	ESTs		0.00	2.43					
45	112314 112324	AW206093 R55965	Hs.748 Hs.26479	ESTs limbic system-associated membrane protei		9.00			14.00			
	112362	AW300887	Hs.26638	ESTs; Weakly similar to CD20 receptor [H			2.49					
	112380 112425	H63010 AA324998	Hs.5740 Hs.321677	ESTs ESTs; Weakly similar to !!!! ALU SUBFAMI		8.00	2.34					
70	112473	R65993	Hs.279798	pregnancy specific beta-1-glycoprotein 9				00.00		4.53		
50	112492 112541	N51620 AF038392	Hs.28694 Hs.116674	ESTs ESTs				29.80		3.62		
	112620	R80552	Hs.29040	ESTs			2.37					
	112623 112867	AW373104 T03254	Hs.25094 Hs.167393	ESTs ESTs			2.26		12.00			
55	112894	T08188	Hs.3770	ESTs		6.50			,2,00			
	112954 113029	AA928953 AW081710	Hs.6655 Hs.7369	ESTs ESTs; Weakly similar to !!!! ALU SUBFAMI		7.00						4.39
	113025	AA346839	Hs.209100	DKFZP434C171 protein								4.47
60	113140	T50405	Hs.175967	ESTs		14.00			10.00			
00	113252 113257	NM_004469 AI821378	Hs.11392 Hs.159367	c-fos induced growth factor (vascular en ESTs		14.00				3.72		
	113394	T81473	Hs.177894	ESTs	25.00					3.60		
	113437 113454	T85349 Al022166	Hs.15923 Hs.16188	EST ESTs	35.00	6.00						
65	113502	T89130		ESTs	39.60							2.00
	113552 113645	A1654223 T95358	Hs.16026 Hs.333181	ESTs ESTs							2.58	3.88
	113691	T96935	Hs.17932	EST				38.20				
70	113706 113883	AA004693 U89281	Hs.269192 Hs.11958	ESTs oxidative 3 alpha hydroxysteroid dehydro			2.31			3.09		
70	113924	BE178285	Hs.170056	Homo sapiens mRNA; cDNA DKFZp586B0220 (f	30.40		2.01					
	114035	W92798	Hs.269181 Hs.114727	ESTs ESTs					13.00		•	5.00
	114058 114084	AK002016 AA708035	Hs.12248	ESTs				40.60				0.00
75	114121	H05785	Hs.25425	ESTs		7.00	2.31					
	114124 114275	W57554 AW515443	Hs.125019 Hs.306117	Human lymphoid nuclear protein (LAF-4) interleukin 13 receptor; alpha 1		7.00 6.00						
	114297	AA149707	Hs.173091	DKFZP434K151 protein				48.80		3.45		
80	114427 114449	AA017176 AA020736	Hs.33532	ESTs; Highly similar to Miz-1 protein [H "ze63b11.s1 Soares retina N2b4HR Homo sa					10.00	0.40		•
	114452	Al369275	Hs.243010	ESTs, Moderately similar to RTC0_HUMAN G		14.00				2 42		
	114609 114648	AA079505 AA101056		"zm97a5.s1 Stratagene colon HT29 (#93722 "zn25b3.s1 Stratagene neuroepithelium NT				35.40		3.13		
0.5	114731	BE094291	Hs.155651	Homo sapiens HNF-3beta mRNA for hepatocy						-		3.42
85	114762	AA146979	Hs.288464	ESTs	33.00							

	\mathbf{W}	O 02/086	6443							PCT/	US02/1	2476
	114776	AA151719	Hs.95834	ESTs	34.40							
	115009 115272	AA251561 AW015947	Hs.48689	ESTs ESTs; Weakly similar to hypothetical L1	30.20 32.60							
_	115279	AW964897	Hs.290825	ESTs		6.00			40.00			
5	115302 115365	AL109719 AW976252	Hs.47578 Hs.268391	ESTs ESTs					12.00	3.32		
	115559	AL079707	Hs.207443	ESTs				48.00		0.42		
	115566	AI142336	Hs.43977	ESTs Weekly similar to (defline not sup	31.40			56.20				
10	115683 115744	AF255910 AA418538	Hs.54650 Hs.43945	ESTs, Weakly similar to (defline not ava ESTs; Highly similar to dJ1178H5.3 [H.sa	31.40			33.60				
	115819	AA486620	Hs.41135	Endomucin 2			2.40	74.40		•		
	115949 115965	Al478427 AA001732	Hs.43125 Hs.173233	ESTs ESTs			3.18	388.80				
1.5	116035	AA621405	Hs.184664	ESTs .				33.20				
15	116049 116081	AA454033 Al190071	Hs.41644 Hs.55278	ESTs ESTs				45.80		3.57		
	116082	AB029496	Hs.59729	ESTs	50.00		3.06					
	116213 116228	AA292105 Al767947	Hs.326740 Hs.50841	leucine rich repeat (in FLII) interactin ESTs; Weakly similar to tuftelin [M.musc	50.60		3.85					
20	116250	N76712	Hs.44829	ESTs		6.00						
	116419 116617	Al613480 D80761	Hs.47152 Hs.45220	ESTs; Weakly similar to testicular tekti EST			2.27	30.00				
	116784	AB007979	Hs.301281	tenascin R (restrictin; janusin)	47.20							
25	116835 116970	N39230 AB023179	Hs.38218 Hs.9059	ESTs KIAA0962 protein				41.20	11.00			
23	117023	AW070211	Hs.102415	ESTs				91.00	,			
	117027 117036	AW085208 H88908	Hs.130093 Hs.41192	ESTs EST	49.40			32.60				
	117110	AA160079	Hs.172932	ESTs		8.67						
30	117209	W03011	Hs.306881	ESTs				30.60	9.29			
	117325 117454	N23599 N29569	Hs.43396 Hs.44055	ESTs ESTs					0.20	3.19		
	117475	N30205	Hs.93740	ESTs	44.00	16.00						
35	117543 117567	BE219453 AW444761	Hs.42722 Hs.44565	ESTs ESTs		10.00			12.00			
	117570	N48649	Hs.44583	ESTs					11.00	3.74		
	117600 117730	N34963 N45513	Hs.44676 Hs.46608	EST ESTs		6.00				3.74		
40	117791	N48325	Hs.93956	EST		9.00		00.00				
40	117929 117990	N51075 AA446167	Hs.47191 Hs.47385	ESTs ESTs		8.00		29.20				
	118224	N62275	Hs.48503	EST	31.40							
	118244 118357	N62516 AL109667	Hs.48556 Hs.124154	ESTs Homo sapiens mRNA full length insert cDN	32.80		2.40			,		
45	118446	N66361	Hs.269121	ESTs			2.28					
	118447 118530	N66399 N67900	Hs.49193 Hs.118446	EST ESTs	30.80					3.10		
	118549	N68163	Hs.322954	EST						3.41		
50	118823 118862	W03754 W17065	Hs.50813 Hs.54522	ESTs; Weakly similar to long chain fatty ESTs			3.94			3.58		
20	118935	Al979247	Hs.247043	KIAA0525 protein				33.00	44.40			
	118944 118995	A1734233 N94591	Hs.226142 Hs.323056	ESTs; Weakly similar to !!!! ALU SUBFAMI ESTs		14.00			11.43			
~ ~	119073	BE245360	Hs.279477	ERG-2/ERG-1; V-ets avian erythroblastosi				52.60				
55	119268 119514	T16335 W37937	Hs.65325	EST Accession not listed in Genbank	31.40					3.50		
	119824	W74536	Hs.184	advanced glycosylation end product-speci			2.75			0.00		
	119831	AL117664	Hs.58419 Hs.49943	DKFZP586L2024 protein ESTs; Moderately similar to !!!! ALU SUB				33.80				3.21
60	119861 119889	W78816 W84346	Hs.58671	ESTs				30.03				
	119921	W86192	Hs.58815	ESTs	29.00					3.80		
	120082 120094	H80286 AA811339	Hs.40111 Hs.124049	ESTs ESTs		6.00				0.00		
65	120132	W57554	Hs.125019	Human lymphoid nuclear protein (LAF-4)		12.00		36.60				
65	120378 120404	AA223249 AB023230	Hs.285728 Hs.96427	ESTs KIAA1013 protein	39.40	12.00						
	120504	AA256837		ESTs	22.00				8.00			
	120512 120667	N55761 AA287740	Hs.194718 Hs.78335	ESTs microtubule-associated protein; RP/EB fa	33.00							4.18
70	120777	AA287702	Hs.10031	KIAA0955 protein				46.60 39.00				
	121082 121191	AA398722 AA400205	Hs.104447	ESTs ESTs	41.60			39.00				
	121248	AA400914	Hs.97827	EST					10.00		5.08	
75	121363 121366	Al287280 Al743515	Hs.97933	ESTs ESTs					12.00 20.00			
. •	121483	A1660332	Hs.25274	ESTs; Moderately similar to putative sev				00.00		3.32		
	121518 121545	AA412155 AA412442	Hs.98132	ESTs ESTs			2.29	30.20				
0.0	121622	AA416931	Hs.126065	ESTs		9.00	•					
80	121665 121709	AA416556	Hs.98234	ESTs Homo sapiens mRNA; cDNA DKFZp586L0120 (f	34.80			34.80				
	121709	Al338247 Al140683	Hs.98314 Hs.98328	ESTs	38.80							
	121740	AA421138	Hs.98334	EST Homo sapiens mRNA for alpha integrin bin	36.20	7.00						
85	121772 121821	A1590770 AL040235	Hs.110347 Hs.3346	ESTs	JJ.2U							3.61

	W	O 02/086	5443							PCT/	US02/1	2476
	121835	AB033030	Hs.300670	ESTs			2.34					
	121841	AA427794	Hs.104864	ESTs			2.61				2.25	
	121885 121888	AA934883 AA426429	Hs.98467 Hs.98463	ESTs ESTs							2.25 2.92	
5	121938	AA428659	Hs.98610	ESTs				46.80			2.02	
·	121950	AA429515		EST				31.40				
	122030	AA431310	Hs.98724	ESTs	34.40						3.58	
	122054 122211	AA431725 AA300900	Hs.98746 Hs.98849	EST ESTs; Moderately similar to bithoraxoid-	49.40						0.00	
10	122233	AA436455	Hs.98872	EST	29.80							
	122247	AA436676	Hs.98890	EST		0.00		39.80				*
	122253 122266	AA436703 AA436840	Hs.104936 Hs.98907	ESTs; Weakly similar to hypothetical pro EST		9.00				3.60		
	122285	AA436981	Hs.121602	EST						3.14		
15	122409	AA446830	Hs.99081	ESTs	30.80		0.00					
	122485 122697	AA524547 AA420683	Hs.160318 Hs.98321	phospholemman Homo sapiens cDNA FLJ14103 fis, clone MA		15.00	2.65					
		AW117452	Hs.99489	ESTs		6.67						
•	122831	AI857570	Hs.5120	ESTs						3.37		
20	122913	A1638774	Hs.105328	ESTs				32.20 41.80				
	123049 123076	BE047680 Al345569	Hs.211869 Hs.190046	ESTs ESTs	35.80			41.00				
	123136	AW451999	Hs.194024	ESTs	******						2.58	
25	123309	N52937	Hs.102679	ESTs				00.00	19.00			
25	123455 123691	AA353113 AA609579	Hs.112497 Hs.112724	ESTs ESTs				82.80		3.95		
	123756	AA609971	Hs.112795	EST	35.40				•	•		
	123802	AA620448		Homo sapiens clone 24760 mRNA sequence	58.00			00.40				
30	123837 123844	Ai807243 AA938905	Hs.112893 Hs.120017	ESTs olfactory receptor; family 7; subfamily			2.63	32.40				
50	123936	NM_004673	Hs.241519	ESTs	29.00		2.00					
	123987	C21171	Hs.95497	ESTs; Weakly similar to GLUCOSE TRANSPOR				70.60				
	124013 124160	Al521936 R40290	Hs.107149 Hs.124685	ESTs; Weakly similar to PTB-ASSOCIATED S ESTs	28.40				13.00			
35	124205	H77570	Hs.108135	ESTs					10.00	4.74		
	124226	AA618527	Hs.190266	ESTs			2.35	00.10				
	124246	H67680	Hs.270962 Hs.10299	ESTS		17.00		29.40				
	124348 124358	AI796320 AW070211	Hs.10299 Hs.102415	ESTs "yw35g11.s1 Morton Fetal Cochlea Homo sa		17.00	3.07					
40	124409	A1814166	Hs.107197	ËSTs						3.14		•
	124442 124468	AW663632 N51413	Hs.285625 Hs.109284	TATA box binding protein (TBP)-associate ESTs			2.48	30.80				
	124479	AB011130	Hs.127436	calcium channel; voltage-dependent; alph				00.00				6.03
15	124519	Al670056	Hs.137274	ESTs; Weakly similar to SPLICEOSOME ASSO	#0.00		2.50					
45	124711 124866	NM_004657 Al768289	Hs.26530 Hs.304389	serum deprivation response (phosphatidyl ESTs	59.20	8.00						
	124874	BE550182	Hs.127826	ESTs		0.00		37.60				
	125097		Hs.335774	ESTs					10.00	2.42		
50	125179 125200	AW206468 AW836591	Hs.103118 Hs.103156	ESTs ESTs						3.12	2.79	
50	125299	T32982	Hs.102720	ESTs				34.20				
	125400	AL110151	Hs.128797	DKFZP586D0824 protein	29.00							
	125810 126176	H00083 BE242256	Hs.2441	aryl hydrocarbon receptor-interacting pr KtAA0022 gene product	32.20	12.00						
55	126303	D78841		HUM525A05B Human placenta polyA+ (TFuji				33.60				
	126403	AW629054	Hs.125976	ESTs; Weakly similar to metalloprotease/	35.80			29.80				
	126507 126773	AL040137 AA648284	Hs.23964 Hs.187584	ESTs; Weakly similar to HC1 ORF [M.muscu ESTs	39.60			23.00				
~	127307	AW962712	Hs.126712	ESTs; Weakly similar to pIL2 hypothetica	28.80							
60	127462	AA760776	Hs.293977	aa59b04.s1 NCI_CGAP_GCB1 Homo sapiens c ESTs		9.00		34.40				
	127486 127572	AW002846 AA594027	Hs.105468 Hs.191788	ESTs		3.00	2.36					
	127609	X80031	Hs.530	ESTs				29.40				*
65	127832 127898		Hs.292396 Hs.128970	ESTs ESTs				37.20			4.42	
05	128073	AW340720	Hs.125983	ESTs				38.40				
	128101	AA905730	Hs.128254	ESTs		7.33					0.00	
	128149 128212	NM_012214 W27411	Hs.177576 Hs.336920	mannosyl (alpha-1;3-)-glycoprotein beta- glutathione peroxidase 3 (plasma)			3.09				2.58	
70	128333	W68800	Hs.12126	ESTs; Weakly similar to LR8 [H.sapiens]			0,00	34.40				
	128364	N76462	Hs.269152	ESTs; Weakly similar to ZINC FINGER PROT		10.00					4.31	
	128426 128598	Al265784 AA305407	Hs.145197 Hs.102308	ESTs potassium inwardly-rectifying channel; s	31.20						4.51	
		AA464918	7101702000	ESTs; Moderately similar to !!!! ALU SUB				41.60				
75	128687	AW271273	Hs.23767	ESTs				87.00				4.02
	128726 128773	Al311238 NM_004131	Hs.104476 Hs.1051	ESTs granzyme B (granzyme 2; cytotoxic T-lymp					9.00			7.02
	128833	W26667	Hs.184581	ESTs								3.76
80	128870	H39537	Hs.75309	eukaryotic translation elongation factor ESTs			2.66			3.10		
30	128878 128885	R25513 AF134803	Hs.10683 Hs.180141	cofilin 2 (muscle)					11.00	5.10		
	128998	W04245	Hs.107761	ESTs; Weakly similar to PUTATIVE RHO/RAC							3.21	268
	129000 129038	AA744902 AW156903	Hs.107767 Hs.108124	ESTs; Moderately similar to CaM-KII inhi ribosomal protein L41						3.17		3.68
85	129098	AW580945	Hs.330466	ESTs	34.60					•		

	W	O 02/086	5443							PCT/	US02/1	12476
	129210 129240	AL039940 AA361258	Hs.202949 Hs.237868	KIAA1102 protein			2.29					4.09
	129240	BE222198	Hs.109843	interleukin 7 receptor ESTs			2.29			3.30		
5	129301	AF182277	Hs.330780 Hs.279772	Human cytochrome P450-IIB (hIiB3) mRNA; ESTs; Highly similar to CGI-38 protein [4.05 4.09
3	129331 129381	AW167668 AW245805	Hs.110903	claudin 5 (transmembrane protein deleted			2.93					4.00
	129565 129595	X77777 U09550	Hs.198726 Hs.1154	vasoactive intestinal peptide receptor 1				160.80	10.00			
4.0	129613	AW978517	Hs.172847	oviductal glycoprotein 1; 120kD ESTs; Weakly similar to collagen alpha 1					10.00	3.40		
10	129782	AW016932	Hs.104105 Hs.1369	EST		9.00		87.80				
	129950 129958	F07783 R27496	Hs.1378	decay accelerating factor for complement annexin A3				44.60				
	129959 130160	AL036554 AA305688	Hs.274463 Hs.267695	defensin; alpha 1; myeloid-related seque UDP-Gal:betaGlcNAc beta 1;3-galactosyltr			2.72	42.20				
15	130259	NM_000328	Hs.153614	retinitis pigmentosa GTPase regulator			2.54					
	130273 130312	AW972422 AF056195	Hs.153863 Hs.15430	MAD (mothers against decapentaplegic; Dr DKFZP586G1219 protein				51.60		3.16		
	130436	NM_001928	Hs.155597	D component of complement (adipsin)								4.11
20	130523 130799	AA999702 AB028945	Hs.214507 Hs.12696	ESTs ESTs		6.00				4.77		
	130885	NM_005883	Hs.20912	adenomatous polyposis coli like						3.54		2.50
	131002 131012	AL050295 AL039940	Hs.22039 Hs.202949	KIAA0758 protein KIAA1102 protein		20.00						3.50
25	131031	NM_001650	Hs.288650	aquaporin 4	41.20			04.10				
25	131061 131066	N64328 AW169287	Hs.268744 Hs.22588	ESTs; Moderately similar to KIAA0273 [H. ESTs				31.40 29.60				
	131082	Al091121	Hs.246218	ESTs; Weakly similar to zinc finger prot					9.00			2.06
	131087 131161	AF147709 AF033382	Hs.22824 Hs.23735	ESTs; Weakly similar to p160 myb-binding potassium voltage-gated channel; subfami						3.14		3.86
30	131179	AA171388	Hs.184482	DKFZP586D0624 protein						3.80		2.67
	131182 131205	Al824144 NM_003102	Hs.23912 Hs.2420	ESTs superoxide dismutase 3; extracellular			2.98					3.67
	131277	AA131466	Hs.23767	ESTs			3.15	20.00				
35	131281 131282	AA251716 X03350	Hs.25227 Hs.4	ESTs alcohol dehydrogenase 3 (class I); gamma				32.20				3.44
	131285	Al567943	Hs.25274	ESTs; Moderately similar to putative sev		0.00				6.40		
	131355 131391	R52804 AW085781	Hs.25956 Hs.26270	DKFZP564D206 protein ESTs		8.00 10.00						
40	131461	AA992841	Hs.27263	butyrate response factor 2 (EGF-response	28.80						4.03	
40	131487 131517	F13036 AB037789	Hs.27373 Hs.263395	Homo sapiens mRNA; cDNA DKFZp56401763 (f ESTs; Highly similar to semaphorin VIa [39.00						4.03	
	131545	AL137432	Hs.28564	ESTs					11.00 10.00			
	131583 131647	AK000383 AA359615	Hs.323092 Hs.30089	ESTs; Weakly similar to dual specificity ESTs		-	2.47		10.00			
45	131675	H15205	Hs.30509	ESTs	45.80					3.06		
	131676 131708	Al126821 S60415	Hs.30514 Hs.30941	ESTs calcium channel; voltage-dependent; beta	45.60		2.28					
	131717	X94630 AA443966	Hs.3107 Hs.31595	CD97 antigen ESTs				40.60				3.78
50	131756 131762	AA744902	Hs.107767	ESTs; Moderately similar to CaM-KII inhi				40.00				3.67
	131821 131839	AA017247 AB014533	Hs.164577 Hs.33010	ESTs KIAA0633 protein			2.87				3.48	
	131861	AL096858	Hs.184245	KIAA0929 protein Msx2 interacting nuclea	54.00						07.0	
55	132015 132070	Al418006 BE622641	Hs.3731 Hs.38489	ESTs ESTs				49.20 34.80				
	132242	AA332697	Hs.42721	ESTs			2.68					
	132334 132476	AW080704 AL119844	Hs.45033 Hs.49476	lacrimal proline rich protein Homo sapiens clone TUA8 Cri-du-chat regi	34.20		4.66					
C O	132490	NM_001290	Hs.4980	LIM binding domain 2		40.00	2.66					
60	132533 132598	Al922988 X80031	Hs.172510 Hs.530	ESTs collagen; type IV; alpha 3 (Goodpasture		13.00		30.60				
	132619	H28855	Hs.53447	ESTs; Moderately similar to kinesin ligh						4.02		
	132652 132726	N41739 N52298	Hs.61260 Hs.55608	ESTs ESTs; Weakly similar to cDNA EST yk484g1					11.43	3.18		
65	133028	R51604	Hs.300842	ESTs			2.37					
	133071 133120	BE384932 NM_003278	Hs.64313 Hs.65424	ESTs tetranectin (plasminogen-binding protein			2.27 2.63				•	
	133129	AA428580	Hs.65551	ESTs			6.20					5.49
70	133147 133151	AA026533 NM_014051	Hs.66 Hs.94896	interleukin 1 receptor-like 1 ESTs			0.20			3.69		
	133213 133276	AA903424 AW978439	Hs.6786 Hs.69504	ESTs ESTs				31.40	9.00			
	133377	AJ131245	Hs.7239	SEC24 (S. cerevisiae) related gene famil	41.20	-			3.00			
75	133407 133535	AF017987 AL134030	Hs.7306 Hs.284180	secreted frizzled-related protein 1 protocadherin 2 (cadherin-like 2)	50.20					3.72		
, 5	133537	U41518	Hs.74602	aquaporin 1 (channel-forming integral pr						v.,		3.35
	133656 133689	BE149455 NM_001872	Hs.75415 Hs 75572	Accession not listed in Genbank carboxypeptidase B2 (plasma)			2.65	90.80				
0.0	133779	T58486	Hs.222566	ESTs				55.50		3.05		
80	133978 133985	AF035718 L34657	Hs.78061 Hs.78146	transcription factor 21 platelet/endothelial cell adhesion molec			2.92	•				3.45
	134000	AW175787	Hs.334841	selenium binding protein 1			4.10					4.05
	134111 134185	Al372588 AA285136	Hs.8022 Hs.301914	TU3A protein Homo sapiens mRNA; cDNA DKFZp586K1220 (f			4.49				3.27	
85	134204	AI873257	Hs.7994	ESTs; Weakly similar to CGI-69 protein [40.80				

	\mathbf{W}	O 02/086	443						PCT/U	S02/12476
	134641	Al092634	Hs.156114	protein tyrosine phosphatase; non-recept					3.76	
	134677	AA251363	Hs.177711	ESTs				32.20		
	134745	NM_000685	Hs.89472	angiotensin receptor 1B		15.00				
_	134749	T28499	Hs.89485	carbonic anhydrase IV			3.05			
5	134786	T29618	Hs.89640	angiopoletin 1 receptor; TEK tyrosine ki				57.80		
	134825	U33749	Hs.197764	thyroid transcription factor 1						3.73
	134978	A1829008	Hs.333383	ficolin (collagen/fibrinogen domain-cont			2.52	04.00		
	135010	N50465	Hs.92927	ESTs				31.60	0.04	
10	135053	AW796190	Hs.93678	ESTs	00.00				3.21	
10	135081	AF069517	Hs.173993	RNA binding motif protein 6	28.80					4.04
	135091	AA493650	Hs.94367	ESTs		8.00				4.24
	135135 135203	AA775910 C15737	Hs.95011 Hs.269386	syntrophin; beta 1 (dystrophin-associate		0.00			4.31	
	135236	Al636208	Hs.96901	ESTs ESTs	43.00				4.51	
15	135266	R41179	Hs.97393	Human mRNA for KIAA0328 gene; partial cd	43.00					6.42
10	135346	NM_000928	Hs.992	phospholipase A2; group IB (pancreas)			3.82			0.42
	135378	AW961818	Hs.24379	potassium voltage-gated channel; shaker-			4.15			
	135387	NM_001972	Hs.99863	elastase 2; neutrophil	37.20		4.10			
	135388	W27965	Hs.99865	EST	38.80					
20	135402	L12398	Hs.99922	dopamine receptor D4	00.00				4.21	
				askaninia rasakiii a .						

TABLE 2B shows the accession numbers for those primekeys lacking unigenelD's for Table 2A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" cluster.

Unique Eos probeset identifier number Pkey: CAT number: Gene cluster number 30 Accession: Genbank accession numbers CAT number Pkey Accessions AA079126 108447 43452_-7 35 120073_1 108550 AA084867 AA084996 108655 127522_1 AA099960 AA113013 102397 44371_-1 U41898 D78841 D78880 126303 1525933_1 H00083 R81062 Z48513 Z48512 AI743515 AA405617 AW276706 1554054_1 125810 40 103627 121366 2615_2 280401_1 116777_1 AA079505 AA079537 114609 115272 172113_1 AW015947 AA211890 AA279425 108338 112186_1 AA070773 AA070774 45 AA078899 AA078782 AA075788 108434 114012_1 genbank_AA620448 AA620448
NOT_FOUND_entrez_U33839
entrez_U67092 U67092
genbank_AA026349 AA026349 123802 U33839 102310 102636 104776 50 genbank_AA256837 genbank_T89130T89130 120504 AA256837 113502 108499 genbank_AA083103 AA083103 101308 entrez_L41390 L41390 genbank_AA102425 AA102425 108629 55 M86361 Z26593 X02850 D13070 AE000659 M17649 M87869 M87871 X61077 M16286 AF018169 X61079 S59351 X60142 AF043169 221_215 entrez_X76223 entrez_Y10141 103098 X76223 Y10141 103241 103508 entrez_Z26256 Z26256 103575 119514 NOT_FOUND_entrez_W37937 W37937 60 121082 genbank_AA398722 AA398722 128634 AA397825 AA412155 AA020736 105817 121518 114449 genbank_AA020736 genbank_AA101056 genbank_AA429515 65 114648 AA101056 121950 AA429515 107723 genbank_AA015967 AA015967

Table 3A shows 452 genes up-regulated in chronically diseased lung relative to normal lung. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5 Unique Eos probeset identifier number ExAccn: Exemplar Accession number, Genbank accession number UnigenelD: Unigene Title: R1: Unigene number

10

Unigene title
Unigene gene title
80th percentile of AI for chronically diseased lung samples divided by the 90th percentile of AI for normal lung samples.
80th percentile of AI for chronically diseased lung samples divided by the 90th percentile of normal lung samples, squamous cell carcinomas and R2:

R3:

70th percentile of AI for chronically diseased lung samples minus the 15th percentile of AI for all normal lung, chronically diseased lung and tumor samples divided by the 90th percentile of normal lung samples, squamous cell carcinomas and adenocarcinomas minus the 15th percentile of AI for all normal lung.

1.5				lung and tumor samples	nomas and ac	ienocarcino	itas illinus i
15							
	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2	R3
20	135423	U50531	Hs.138751	Human BRCA2 region, mRNA sequence CG030	12.40		0.40
20	135378 135346	AW961818 NM_000928	Hs.24379 Hs.992	MUM2 protein phospholipase A2, group IB (pancreas)			2.13
	135235	AW298244	Hs.293507	ESTs	12.40		
	135057 134951	U90268 BE305081	Hs.93810 Hs.169358	cerebral cavernous malformations 1 hypothetical protein	11.67	8.00	
25	134799	M36821	Hs.89690	GRO3 oncogene		8.20	
	134786	T29618	Hs.89640	TEK tyrosine kinase, endothelial (venous	20.00		
	134772 134752	NM_000829 BE246762	Hs.163697 Hs.89499	glutamate receptor, ionotrophic, AMPA 4 arachidonate 5-lipoxygenase	29.80		1.93
20	134749	T28499	Hs.89485	carbonic anhydrase IV			2.07
30	134696 134636	BE326276 NM_005582	Hs.8861 Hs.87205	ESTs lymphocyte antigen 64 (mouse) homolog, r	13.60		
	134627	AI018768	Hs.12482	glyceronephosphate O-acyltransferase	10.00		1.92
	134622	AW975159	Hs.293097	ESTs, Weakly similar to A55380 faciogeni	13.20		1.92
35	134570 134561	U66615 U76421	Hs.172280 Hs.85302	SWI/SNF related, matrix associated, acti adenosine deaminase, RNA-specific, B1 (h	10.20		1.78
	134468	NM_001772	Hs.83731	CD33 antigen (gp67)		6.20	
	134417 134343	NM_006416 D50683	Hs.82921 Hs.82028	solute carrier family 35 (CMP-sialic aci transforming growth factor, beta recepto			
4.0	134323	BE170651	Hs.8700	deleted in liver cancer 1			
40	134300	NM_001430	Hs.8136	endothelial PAS domain protein 1 complement component C1q receptor			
	134299 134253	AW580939 X52075	Hs.97199 Hs.80738	sialophorin (gpL115, leukosialin, CD43)	20.60		
	134182	D52059	Hs.7972	KIAA0871 protein	12.20		
45	133985 133978	L34657 AF035718	Hs.78146 Hs.78061	platelet/endothelial cell adhesion molec transcription factor 21			
	133835	A1677897	Hs.76640	RGC32 protein			•
•	133651	A)301740	Hs.173381	dihydropyrimidinase-like 2 nucleolar and coiled-body phosphprotein	15.20		
	133633 133565	D21262 AW955776	Hs.75337 Hs.313500	ESTs, Moderately similar to ALU7_HUMAN A	10.20		
50	133548	AW946384	Hs.178112	DNA segment, single copy probe LNS-CAI/L			1.77
	133488 133478	AA335295 X83703	Hs.74120 Hs.31432	adipose specific 2 cardiac ankyrin repeat protein			2.08
	133337	AF085983	Hs.293676	ESTs		9.60	
55	133200 133153	AB037715 AF070592	Hs.183639 Hs.66170	hypothetical protein FLJ10210 HSKM-B protein	30.60		1.77
55	133130	Al128606	Hs.6557	zinc finger protein 161	22.60		
	133120	NM_003278	Hs.65424 Hs.169449	tetranectin (plasminogen-binding protein protein kinase C, alpha	13.80		
	132928 132836	AW168082 AB023177	Hs.29900	KIAA0960 protein	13.00		
60	132799	W73311	Hs.169407	SAC2 (suppressor of actin mutations 2,	41.60		
	132742 132548	AA025480 X12830	Hs.292812 Hs.193400	ESTs, Weakly similar to T33468 hypotheti interleukin 6 receptor	40.40	7.20	
	132476	AL119844	Hs.49476	Homo sapiens clone TUA8 Cri-du-chat regi		4.76	
65	132439 132240	AK001942 AB018324	Hs.4863 Hs.42676	hypothetical protein DKFZp566A1524 KIAA0781 protein	21.20		1.88
05	132210	NM_007203	Hs.42322	A kinase (PRKA) anchor protein 2			1.99
	132199	AL041299	Hs.165084	ESTs	15.20		1.76
	131751 131745	T96555 Al828559	Hs.31562 Hs.31447	ESTs ESTs, Moderately similar to A46010 X-li	27.80		1.70
70	131694	NM_000246	Hs.3076	MHC class II transactivator		4.00	
	131686 131676	NM_012296 Al126821	Hs.30687 Hs.30514	GRB2-associated binding protein 2 ESTs		6.20	
	131629	Z45794	Hs.238809	ESTs	21.40		
75	131589	C18825 AA019201	Hs.29191 Hs.269210	epithelial membrane protein 2 ESTs		9.40	
13	131536 131517	AB037789	Hs.263395	sema domain, transmembrane domain (TM),		3.59	
	131355	R52804	Hs.25956	DKFZP564D206 protein	45.00	4.48	
	131253 131207	R71802 AF104266	Hs.24853 Hs.24212	ESTs latrophilin	15.00		1.75
80	131156	A1472209	Hs.323117	ESTs			1.84
	131066 131061	AW169287 N64328	Hs.22588 Hs.268744	ESTs KIAA1796 protein		3.54	
	131053	AA348541	Hs.296261	guanine nucleotide binding protein (G pr			1.93
85	130895	AA641767	Hs.21015 Hs.1898	hypothetical protein DKFZp564L0864 simil paraoxonase 1	16.60 12.00		
55	130762	D84371	113.1030	paraozonase i	12.00		

	W	O 02/086	443				
	130657	AW337575	Hs.201591	ESTs			
	130655	Al831962	Hs.17409	cysteine-rich protein 1 (intestinal)			
	130589	AL110226	Hs.16441	DKFZP434H204 protein			2.08
_	130562	D50402	Hs.182611	solute carrier family 11 (proton-coupled			1.91
5	130555	R69743	Hs.116774	integrin, alpha 1		9.60	
	130365	W56119	Hs.155103	eukaryotic translation initiation factor	11.60		
	130273	AW972422	Hs.153863	MAD (mothers against decapentaplegic, Dr		6.60	
	130259	NM_000328	Hs.153614	retinitis pigmentosa GTPase regulator			1.91
10	130090	H97878	Hs.132390	zinc finger protein 36 (KOX 18)	21.20	- 0-	
10	129958	R27496	Hs.1378	annexin A3		5.05	
	129898	Al672731	Hs.13256	ESTs	10.00		
	129875	AA181018	Hs.13056	hypothetical protein FLJ13920	18.60		
	129699	AB007899	Hs.12017	homolog of yeast ubiquitin-protein ligas			
15	129626	F13272	Hs.111334	ferritin, light polypeptide	00.00		
15	129598	N30436	Hs.11556	Homo sapiens cDNA FLJ12566 fis, clone NT	22.63		
	129593	Al338247	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f			0.50
	129565	X77777	Hs.198726	vasoactive intestinal peptide receptor 1	20.00		2.53
	129527	AA769221	Hs.270847	delta-tubulin	39.20		0.11
20	129402	W72062	Hs.11112	ESTs	15 20		2.11
20	129385	AA172106	Hs.110950	Rag C protein	15.20		
	129315	NM_014563	Hs.174038	spondyloepiphyseal dysplasia, late	12.40 20.83		
	129312	T97579	Hs.110334	ESTs, Weakly similar to 178885 serine/th	20.03		1.95
	129240 129210	AA361258	Hs.237868 Hs.202949	interleukin 7 receptor KIAA1102 protein			1.90
25	129122	AL039940 AW958473	Hs.301957	nudix (nucleoside diphosphate linked moi		4.20	
23	129057	N90866	Hs.276770	CDW52 antigen (CAMPATH-1 antigen)		4.20	
	128946	Y13153	Hs.107318	kynurenine 3-monooxygenase (kynurenine 3		5.20	
	128798	AF015525	Hs.302043	chemokine (C-C motif) receptor-like 2		0.20	
	128789	AW368576	Hs.139851	caveolin 2			2.24
30	128778	AA504776	Hs.186709	ESTs, Weakly similar to 138022 hypothet	12.20		2,27
50	128766	AW160432	Hs.296460	craniofacial development protein 1	26.40		
	128631	R44238	Hs.155546	KIAA1080 protein; Golgi-associated, gamm	20.40		1.78
	128624	BE154765	Hs.102647	ESTs, Weakly similar to TRHY_HUMAN TRICH			2.51
	128609	NM_003616	Hs.102456	survival of motor neuron protein interac	16.00		
35	128603	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	12.80		
55	128598	AA305407	Hs.102308	potassium inwardly-rectifying channel, s	12.00	4.00	
	128458	H55864	Hs.56340	ESTs			
	128061	AF150882	Hs.186877	sodium channel, voltage-gated, type XII,	17.20		
	127968	AA830201	Hs.124347	ESTs	21.30		
40	127959	Al302471	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L			
• •	127944	Al557081	Hs.262476	S-adenosylmethionine decarboxylase 1	10.60		
	127925	AA805151	Hs.3628	mitogen-activated protein kinase kinase	13.40		
	127896	AI669586	Hs.222194	ESTS		7.00	
	127859	AA761802	Hs.291559	ESTs	14.00		
45	127817	AA836641	Hs.163085	ESTs	14.00		•
	127742	AW293496	Hs.180138	ESTs	11.00		
	127628	Al240102	Hs.322430	NDRG family, member 4	11.10		
	127609	X80031	Hs.530	collagen, type IV, alpha 3 (Goodpasture			
	127582	AA908954	Hs.130844	ESTs	19.60		
50	127543	AK000787	Hs.157392	Homo sapiens cDNA FLJ20780 fis, clone CO	15.40		
	127535	AA568424	Hs.164450	ESTs	17.50		
	127404	AJ379920	Hs.270224	ESTs	14.60		
	127396	L31968	Hs.187991	DKFZP564A122 protein	15.40		
~ ~	127374	AA442797	Hs.312110	ESTs, Weakly similar to 138022 hypothet	14.60		
55	127346	AA203616	Hs.44896	DnaJ (Hsp40) homolog, subfamily B, membe	21.00		
	127340	BE047653	Hs.119183	ESTs, Weakly similar to ZN91_HUMAN ZINC	15.80		
	127307	AW962712	Hs.126712	ESTs, Weakly similar to AF191020 1 E2IG5			
	127242	AW390395	Hs.181301	cathepsin S	22.60		
C O	127167	AA625690	Hs.190272	ESTs	21.40		
60	127046	AA321948	Hs.293968	ESTs	41.20		
	126928	AA480902	Hs.137401	ESTs	11.00		4 ===
	126900	AF137386	Hs.12701	plasmolipin		E 60	1.78
	126852	AA399961		gb:zu68c01.r1 Soares_testis_NHT Homo sap		5.60	
C =	126816	AA248234		gb:csg2228.seq.F Human fetal heart, Lamb	12.20		
65	126812	AB037860	Hs.173933	nuclear factor I/A	17.19		
	126666	AA648886	Hs.151999	ESTs	13.57		
	126645	AA316181	Hs.61635	six transmembrane epithelial antigen of	15.40	4.07	
	126592	AI611153	Hs.6093	Homo sapiens cDNA: FLJ22783 fis, clone K	40.00	4.67	
70	126556	AF255303	Hs.112227	membrane-associated nucleic acid binding	18.00		
70	126433	AA325606	11. 000000	gb:EST28707 Cerebellum II Homo sapiens c	16.77		
	126299	AW979155	Hs.298275	amino acid transporter 2	14.60	2.50	
	126218	AL049801	Hs.13649	Novel human gene mapping to chomosome 13	42.40	3.50	
	126182	AA721331	Hs.293771	ESTs	13.40		
75	126177 126142	AW752782	Hs.129750	hypothetical protein FLJ10546	18.20		
13		H86261	Hs.40568	ESTs	14.00		
	126077	M78772	Hs.210836	ESTS	16.59 17.40		
	125994	Al990529	Hs.270799	ESTs	17.40 13.00		
	125934 125847	AA193325 AM161885	Hs.32646	hypothetical protein FLJ21901			
	12004/	AW161885	Hs.249034	ESTs gb:yj45c03.r1 Soares placenta Nb2HP Homo	49.57		
80				OCCUPATION A LA COMPANION DISCOURS INVALIF FORMS			
80	125831	H04043	He 26012		13.20		
80	125831 125731	R61771	Hs.26912 Hs 151073	ESTs	13.20 11.20		
80	125831 125731 125676	R61771 BE612918	Hs.151973	ESTs hypothetical protein FLJ23511	13.20 11.20		
	125831 125731 125676 125561	R61771 BE612918 F18572	Hs.151973 Hs.22978	ESTs hypothetical protein FLJ23511 ESTs, Weakly similar to ALU4_HUMAN ALU S	11.20		
80 85	125831 125731 125676	R61771 BE612918	Hs.151973	ESTs hypothetical protein FLJ23511			

12542 Asp08229 12616 12636 126
125109
125167 AL373540 Hs.102641 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.2650 H
1.25193
126042 T78906
124911 MM, 004667 Hs. 285830 Hs. 270594 Hs. 102670 EST 23.40 124678 M8, 132695 Hs. 270594 Hs. 102670 EST 24472 NS2617 Hs. 102670 EST 24474 Hs6608 Hs. 193930 EST 24497 AV282925 Hs. 102670 EST 24494 Hs6608 Hs. 193930 EST 24497 AV282925 Hs. 102670 EST 24494 Hs6608 Hs. 193930 EST 24497 AV282925 Hs. 102670 EST 24494 Hs6608 Hs. 193930 EST 24497 AV282925 Hs. 102670 EST 24497 AV282926 Hs. 102670 EST 24497 AV282926 Hs. 102670 Hs.
124831 ML, 014053
124678 N88221
124674 AL036596
124438 E1776536 H. s.11090 membrane-spanning 4-domains, subfamily A gbyw37g07.s 1 Morton Fetal Cochlea Homo 14.64
124367 N22401
124306
1242/14 Hisp608
124097 My298235 hs.101689 ESTS ESTS 27.20
123978 T89832
123972 746848 Hs.20337 Inmunoglobulin superfamily, member 4
153398 MM_004673 Hs.241619 applications 15.80 pubac8509.s1 Stratagene lung carcinoma 4.23 4.20 pubac8509.s1 Stratagene lung carcinoma 4.23 4.20 pubac8509.s1 Stratagene lung carcinoma 4.20 pubac85075 pubac850575 pub
123802
123734
123619
123596
23476
123340
123190
123073
123055
122699
122679
122633 NN_001546
12253
122544
122415
122127 AW207175 Hs.106771 ESTs 1.9 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8
122011
40 121992 Al860775 Hs.98506 ESTs 3.60 121989 W56487 Hs.193784 Homo sapiens mRNA; cDNA DKFZp586K1922 (f 2.0 121835 AB033030 Hs.300670 KIAA1204 protein 1.8 121726 AF241254 Hs.178098 angiotensin I converting enzyme (peptidy 12.43 121690 AV660305 Hs.110286 ESTs 14.00 121633 AA417011 Hs.98175 EST 14.00 121622 AA416931 Hs.126065 ESTs 14.00 121351 AW206227 Hs.287727 hypothetical protein FLJ23132 12.20 121351 AW206227 Hs.287727 hypothetical protein FLJ23132 12.20 121314 W07343 Hs.182538 phospholipid scramblase 4 121049 AA400857 Hs.97509 ESTs 22.40 121059 AA393283 gb:2774e03:r1 Soares_testis_NHT Homo sapiens 14.80 120934 AA226198 Hs.97509 ESTs 22.40 120755 AA312934 Hs.190745 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 20.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 20.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 20.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 30.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 30.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 30.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 30.00 120484 AA253170 Hs.96473 EST 40.20 120340 AA830882 Hs.59368 ESTs 40.20 120340 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119996 W88996 Hs.59134 EST 40.4000 F.7.20 1199970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-119864 W74536 Hs.184 advanced glycosylation end product-speci
121989 W56487
121835
121726
121690
121643
121622 AA416931 Hs.126065 ESTs 16.40 121497 AA412031 Hs.97901 EST 11.20 121351 AW206227 Hs.287727 hypothetical protein FLJ23132 12.20 121314 W07343 Hs.182538 phospholipid scramblase 4 1.8 121242 AA400857 Hs.97509 ESTs 22.40 121059 AA393283 gb:rr.26a07.sr1 NCI_CGAP_Pr1 Homo sapiens 21.20 120934 AA226198 gb:rr.26a07.sr1 NCI_CGAP_Pr1 Homo sapiens 21.20 120755 AA312934 Hs.190745 Homo sapiens cDNA: FLJ21326 fis, clone gb:rb.039a05.s1 NCI_CGAP_GCB1 Homo sapiens 20.00 12048 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 6.60 120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 120132 W57554 Hs.125019 ESTs 4.73 119996 W88996 Hs.59368 ESTS 4.73 119996 W88996 Hs.59368 ESTS 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein — 20.20
121497 AA412031 Hs.97901 EST 11.20 121351 AW206227 Hs.287727 hypothetical protein FLJ23132 12.20 121314 W07343 Hs.182538 phospholipid scramblase 4 12.80 121242 AA400857 Hs.97509 ESTs 22.40 121059 AA393283 gb:zt74e03.r1 Soares_testis_NHT Homo sap 14.80 120934 AA226198 gb:nc26a07.s1 NCI_CGAP_Pr1 Homo sapiens 21.20 120755 AA312934 Hs.190745 Homo sapiens 20.00 120637 AA811804 gb:nc39a05.s1 NCI_CGAP_GCB1 Homo sapiens 20.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 6.60 120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 12031 AA830882 Hs.59368 ESTs 1.7 119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein prote
121351 AW206227
50 121314 W07343 Hs.182538 phospholipid scramblase 4 1.8 121242 AA400857 Hs.97509 ESTs 22.40 121059 AA393283 gb:zt74e03.r1 Soares_testis_NHT Homo sap 14.80 120934 AA226198 gb:zt74e03.r1 Soares_testis_NHT Homo sapiens 21.20 55 120657 AA312934 Hs.190745 Homo sapiens cDNA: FLJ21326 fis, clone 20.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 6.60 120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 120132 W57554 Hs.125019 ESTs 4.73 119990 W88996 Hs.59368 ESTs 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119824 W74536 Hs.184943 ESTs, Weakly similar to S65657 alpha-1C- 3.78 65 119740 AW021407 Hs.21068 hypoth
121242
121059 AA393283 gb:zt74e03.r1 Soares_testis_NHT Homo sap pb:nc26a07.s1 NCI_CGAP_Pr1 Homo sapiens 21.20 120934 AA226198 gb:nc26a07.s1 NCI_CGAP_Pr1 Homo sapiens 21.20 120637 AA811804 gb:nc39a05.s1 NCI_CGAP_GCB1 Homo sapiens 20.00 120484 AA253170 Hs.96473 EST 40.20 120366 N85785 Hs.181165 eukaryotic translation elongation factor 40.20 120132 W57554 Hs.125019 ESTs 4.73 120132 W57554 Hs.125019 ESTs 4.73 119996 W88996 Hs.59134 EST 7.20 119996 W88996 Hs.59134 EST 7.20 1199970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein pro
120934
55 120755 A312934 120637 AA811804 120484 AA253170 AA811804 120484 AA253170 120336 N85785 Hs.181165 120266 A1807264 Hs.205442 EST W57554 Hs.125019 W85795 Hs.59368 EST S 119996 W88996 Hs.59368 EST S 119997 AA767718 Hs.93581 Hs.93581 19997 AA767718 Hs.93581
120637
120336 N85785 Hs. 181165 eukaryotic translation elongation factor 6.60 120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 120132 W57554 Hs.125019 ESTs 4.73 120041 AA830882 Hs.59368 ESTs 7.20 119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 119824 W74536 Hs.184 advanced glycosylation end product-speci 65 119740 AW021407 Hs.21068 hypothetical protein 20.20
120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 120132 W57554 Hs.125019 ESTs 4.73 120041 AA830882 Hs.59368 ESTs 5.720 119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-3.78 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
60 120132 W57554 Hs.125019 ESTs 4.73 120041 AA830882 Hs.59368 ESTs 5.7 119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-19824 W74536 Hs.184 advanced glycosylation end product-speci hypothetical protein 20.20
60 120041 AA630882 Hs.59368 ESTs 1.7 119996 W88996 Hs.59134 EST 7.20 119970 AA7677718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 3.78 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
65 119740 AW021407 Hs.21068 hypothetical protein 20.20
119271 AID61118 Hs.65328 Fanconi anemia complementation group E 15.20
119221 C14322 Hs.250700 tryptase beta 1 119126 R45175 Hs.117183 ESTs 12.60
119126 R45175 Hs.117183 ESTs 12.60 - 119073 BE245360 Hs.279477 ESTs
70 118928 AA312799 Hs.283689 activator of CREM in testis 10.00
118901 AW292577 Hs.94445 ESTs 3.96
118661 AL137554 Hs,49927 protein kinase NYD-SP15 9.60
118607 Al377444 Hs.54245 ESTs, Weakly similar to S65824 reverse t 10.40
118449 Al813865 Hs.164478 hypothetical protein FLJ21939 similar to 1.9
75 118416 N66028 Hs.49105 FKBP-associated protein 16.20
118379 N64491 Hs.48990 ESTs 4.00
AADDO NOORDO SANDON SAN
118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60
118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 118320 N63451 Hs.141600 ESTs, Weakly similar to alternatively s 3.80
118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 118320 N63451 Hs.141600 ESTs, Weakly similar to alternatively s 3.60 118253 AA497044 Hs.20887 hypothetical protein FLJ10392 17.60
118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 118320 N63451 Hs.141600 ESTs, Weakly similar to alternatively s 3.80 118253 AA497044 Hs.20887 hypothetical protein FLJ10392 17.60 118124 N56968 Hs.46707 chromosome 21 open reading frame 37 14.00
80 118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 sold for the state of alternatively sold for the state of alterna
80 118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 118320 N63451 Hs.141600 ESTs, Weakly similar to alternatively s 3.80 118253 AA497044 Hs.20887 hypothetical protein FLJ10392 17.60 118124 N56968 Hs.46707 chromosome 21 open reading frame 37 14.00 118032 N52802 Hs.47544 EST 5.00 117840 T26379 Hs.48802 Homo sapiens clone 23632 mRNA sequence 4.00
80 118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 start of alternatively s 3.80 sta

	vv	O 02/086	443				
	117209	W03011	Hs.306881	MSTP043 protein			
	117023	AW070211	Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f			2.31
	116814	H50834		gb:yp86a10.s1 Soares fetal liver spleen	20.20		
_	116784	AB007979	Hs.301281	Homo sapiens mRNA, chromosome 1 specific		3.51	
5	116766	Al608657	Hs.95097	ESTs	16.20		
	116712	AW901618	Hs.61935	Homo sapiens mRNA; cDNA DKFZp761l071 (fr		6.80	
	116707	H10344	Hs.49050	ESTs, Weakly similar to A Chain A, Human	18.60		
	116351	AL133623	Hs.82501	similar to mouse Xm1 / Dhm2 protein	19.40		
	116279	AW971248	Hs.291289	ESTs, Weakly similar to ALU1_HUMAN ALU S			
10	116166	AL039940	Hs.202949	KIAA1102 protein			2.13
~ 0	116152	AL040521	Hs.15220	zinc finger protein 106			1.75
	116117	BE613410	Hs.31575	SEC63, endoplasmic reticulum translocon	13.20		,,,,
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	30.11		
	115965	AA001732	Hs.173233	hypothetical protein FLJ10970	00.11		2.36
15	115955	AF263613	Hs.44198	intracellular membrane-associated calciu	18.20		2.00
10	115844	Al373062	Hs.332938	hypothetical protein MGC5370	18.57		
	115683	AF255910	Hs.54650	junctional adhesion molecule 2	10.51	23.00	
	115673	AA406341	Hs.269908	Homo sapiens cDNA FLJ11991 fis, clone HE	11.82	20.00	
	115673		Hs.73251	ESTs	10.60		
20		A)889110			10.00		1.76
20	115566	AI142336	Hs.43977	Human DNA sequence from clone RP11-196N1	25.20		1.70
	115313	AA808001	Hs.184411	albumin	25.20	0.00	
	115279	AW964897	Hs.290825	ESTs		8.00	4.00
	115230	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	44.00		1.80
25	115110	AK001671	Hs.11387	KIAA1453 protein	14.20		
25	114999	BE246481	Hs.87856	ESTs	19.20		
	114930	AA237022	Hs.188717	ESTs		5.60	
	114922	AA235672	Hs.87491	ESTs		3.60	
	114837	BE244930	Hs.166895	ESTs	43.70		
20	114769	AA149060	Hs.296100	ESTs	11.00		
30	114761	AA143781	Hs.126280	hypothetical protein FLJ23393	14.00		
	114736	Al610347	Hs.103812	ESTs, Moderately similar to ALU1_HUMAN A		4.20	
	114596	AA310162	Hs.169248	cytochrome c	10.71		
	114518	AW163267	Hs.106469	suppressor of var1 (S.cerevisiae) 3-like	20.40		
	114455	H37908	Hs.271616	ESTs, Weakly similar to ALU8_HUMAN ALU S	20.40		
35	114452	Al369275	Hs.243010	Homo sapiens cDNA FLJ14445 fis, clone HE		17.20	
	114359	NM_016929	Hs.283021	chloride intracellular channel 5			2.09
	114357	R41677	Hs.6107	Homo sapiens cDNA FLJ14839 fis, clone OV	12.40		
	114251	H15261	Hs.21948	ESTs			2.00
	114138	AW384793	Hs.15740	Homo sapiens mRNA; cDNA DKFZp434E033 (fr		11.40	
40	114124	W57554	Hs.125019	ESTs		6.04	
. •	113946	AW083883	Hs.37896	Homo sapiens cDNA FLJ13510 fis, clone PL		0.0.	1.82
	113695	T96965	Hs.17948	ESTs, Weakly similar to ALUB_HUMAN !!!!			
	113606	NM_013343	Hs.278951	NAG-7 protein			2.15
	113590	R49642	Hs.142447	ESTs, Weakly similar to ALU1_HUMAN ALU S		3.60	2,10
45					33.00	0.00	
45	113560	T91015	Hs.268626	ESTs	32.00	5.22	
45	113560 113552	T91015 Al654223	Hs.268626 Hs.16026	ESTs hypothetical protein FLJ23191	32.00	5.55	
45	113560 113552 113540	T91015 Al654223 AW152618	Hs.268626	ESTs hypothetical protein FLJ23191 ESTs	32.00		
45	113560 113552 113540 113502	T91015 Al654223 AW152618 T89130	Hs.268626 Hs.16026 Hs.16757	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H		8.35	
	113560 113552 113540 113502 113288	T91015 Al654223 AW152618 T89130 Al076838	Hs.268626 Hs.16026 Hs.16757 Hs.12967	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs	32.00 12.40	8.35	
4550	113560 113552 113540 113502 113288 113252	T91015 Al654223 AW152618 T89130 Al076838 NM_004469	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en			
	113560 113552 113540 113502 113288 113252 113238	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs	12.40	8.35	
	113560 113552 113540 113502 113288 113252 113238 113203	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs		8.35	4.00
	113560 113552 113540 113502 113288 113252 113238 113203 113195	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom	12.40 21.20	8.35	1.92
50	113560 113552 113540 113502 113288 113252 113238 113203 113195 113089	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs	12.40	8.35 4.27	1.92
	113560 113552 113540 113502 113288 113252 113238 113203 113195 113089 113076	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204	12.40 21.20	8.35 4.27 6.00	1.92
50	113560 113552 113540 113502 113288 113252 113238 113203 113195 113089 113076 113009	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs	12.40 21.20	8.35 4.27 6.00 9.40	1.92
50	113560 113552 113540 113502 113288 113252 113238 113203 113195 113089 113076 113009 112937	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.270862 Hs.8198 Hs.7246 Hs.6295	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti	12.40 21.20 14.33	8.35 4.27 6.00	1.92
50	113560 113552 113540 113502 113288 113252 113238 113203 113195 113076 113009 112937 112891	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li	12.40 21.20 14.33	8.35 4.27 6.00 9.40	1.92
50 55	113560 113552 113540 113502 113288 113252 113238 113203 113195 113089 113076 113009 112937 112891 112794	T91015 Al654223 AW152618 T89130 AI076838 NI766838 NI766838 NI766838 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen	12.40 21.20 14.33 10.57 26.60	8.35 4.27 6.00 9.40	1.92
50	113560 113552 113540 113502 113288 113252 113238 113203 113195 113089 113076 113009 112891 112891	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs	12.40 21.20 14.33 10.57 26.60 15.33	8.35 4.27 6.00 9.40	1.92
50 55	113560 113552 113540 113502 113288 113252 113288 113203 113195 113076 113009 112937 112891 112794 112692	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.270862 Hs.8198 Hs.270862 Hs.6295 Hs.293147 Hs.220647 Hs.203365	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs	12.40 21.20 14.33 10.57 26.60 15.33 15.60	8.35 4.27 6.00 9.40	1.92
50 55	113560 113552 113540 113502 113288 113283 113293 113076 113099 113076 113099 112937 112891 112794 112691 112602 112366	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.203365 Hs.12533	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs ESTs Homo sapiens clone 23705 mRNA sequence	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40	8.35 4.27 6.00 9.40	1.92
50 55	113560 113552 113502 113502 113288 113252 113238 113203 113195 113076 113076 113079 112937 112891 112794 112602 112366 112210	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.220647 Hs.233365 Hs.12533 Hs.7004	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00	8.35 4.27 6.00 9.40	1.92
505560	113560 113552 113540 113502 113288 113283 113293 113076 113099 113076 113099 112937 112891 112794 112691 112602 112366	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.203365 Hs.12533	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs ESTs Homo sapiens clone 23705 mRNA sequence	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00	8.35 4.27 6.00 9.40	1.92
50 55	113560 113552 113502 113502 113288 113252 113238 113203 113195 113076 113076 113079 112937 112891 112794 112602 112366 112210	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.220647 Hs.233365 Hs.12533 Hs.7004	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00	8.35 4.27 6.00 9.40	1.92
505560	113560 113552 113502 113502 113288 113252 113238 113203 113195 113009 112937 112891 112691 112602 112360 112260 112360	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83266 T40707 AF033199 T23699 Al694320 T03927 R997018 R88708 AW004045 AF035318 R49645 AL049390	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.203365 Hs.12533 Hs.12533 Hs.12533 Hs.22689	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs, Weakly similar to S41044 chromosom ESTs eSTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp58601318 (f	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00	8.35 4.27 6.00 9.40	1.92
505560	113560 113552 113560 113502 113288 113252 113238 113295 113089 113079 112937 112891 112794 112692 112366 112210 112064 111998	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF0331199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.203365 Hs.12533 Hs.7004 Hs.22689 Hs.138283	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00	8.35 4.27 6.00 9.40	1.92
505560	113560 113552 113540 113502 113288 113252 113288 113203 113195 113008 1130076 113009 112937 112891 112694 112602 112366 112210 112064 111998 111987	T91015 A1654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 A1694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.203365 Hs.12533 Hs.7004 Hs.22689 Hs.138283 Hs.6763	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTS KIAA0942 protein	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00	8.35 4.27 6.00 9.40	
50556065	113560 113552 113502 113502 113288 113252 113238 113203 113195 113009 112937 112891 112691 112602 112366 1121064 111988 111987 111803 1111803	T91015 Al654223 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R997018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.203365 Hs.12533 Hs.7004 Hs.2689 Hs.138283 Hs.6763 Hs.325823 Hs.9218	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs eSTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00	8.35 4.27 6.00 9.40	1.77
505560	113560 113552 113542 113502 113288 113252 113293 113293 113099 112937 112994 112692 112602 112366 112210 112064 111998 111987 111803	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.22089 Hs.12533 Hs.7004 Hs.22689 Hs.138283 Hs.138283 Hs.325823	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40	8.35 4.27 6.00 9.40	1.77
50556065	113560 113552 113502 113288 113252 113238 113252 113238 11309 113079 112937 112891 112794 112602 112366 112210 112964 111987 111803 111987 111803 111105	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.203365 Hs.12533 Hs.7004 Hs.22689 Hs.138283 Hs.6763 Hs.325823 Hs.9218 Hs.194178	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs zinc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to AŁU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40	8.35 4.27 6.00 9.40	1.77
50556065	113560 113552 113502 113502 113288 113233 113293 11309 113076 113009 112937 112894 112691 112602 112360 11291 112064 111987 111803 111987 111805 111737 111605 111510	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91065 AL157484	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.22336 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12589 Hs.138283	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr	12.40 21.20 14.33 10.57 26.60 15.33 15.60 14.00 13.00 11.00 22.40 23.00 11.02	8.35 4.27 6.00 9.40	1.77 1.86
50556065	113560 113552 113502 113502 113288 113253 113293 11309 113076 113009 112937 112691 112691 112606 112210 112064 111987 111803 111737 111803 111737 111605	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061 R07856 AL157484 AA373527	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.220647 Hs.22689 Hs.138283 Hs.7004 Hs.22689 Hs.138283 Hs.7663 Hs.325823 Hs.325823 Hs.994178 Hs.16355	kypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40	8.35 4.27 6.00 9.40	1.77 1.86
5055606570	113560 113552 113502 113502 113288 113252 113238 113203 113195 113009 112937 112891 112691 112692 112366 112210 112064 111988 111987 111803 111737 111605 111510 111510 111341 111341	T91015 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061 R07856 AL157484 AA373527 AW058350	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.203365 Hs.12533 Hs.7004 Hs.22689 Hs.138283 Hs.6763 Hs.12533 Hs.9218 Hs.194178 Hs.16355 Hs.194178 Hs.16355 Hs.19385 Hs.19385 Hs.19762	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40 23.00 11.02 18.40	8.35 4.27 6.00 9.40	1.77 1.86
5055606570	113560 113552 113502 113502 113288 113253 113293 11309 113076 113009 112937 112891 112691 112602 112664 111987 111803 111737 111605 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 111600 111987 119	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061 R07856 AL157484 AA373527 AW058350 Al247763	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.220647 Hs.22689 Hs.138283 Hs.7004 Hs.22689 Hs.138283 Hs.9218 Hs.194178 Hs.194178 Hs.194555 Hs.194555 Hs.194555 Hs.194555 Hs.1946555 Hs.1946555 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.194655 Hs.19465 Hs.19465 Hs.19465 Hs.19465 Hs.19465 Hs.19465 Hs.19465 Hs.19465 Hs.19465 Hs.19465 Hs.19465 Hs.19466 Hs.19	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs inc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein Homo sapiens mRNA; cDNA DKFZp564B2062 (f	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40 23.00 11.02 18.40 27.60	8.35 4.27 6.00 9.40	1.77 1.86
50556065	113560 113552 113502 113502 113288 113233 113293 11309 113076 113009 112937 112891 112691 112602 112360 111293 111988 111983 111983 111983 111983 1111803 1111247 111280 111247 111282 111282	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 AI694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061 R07856 AL157484 AA373527 AW058350 AI247763 R63503	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.6295 Hs.293147 Hs.203665 Hs.293147 Hs.220647 Hs.203365 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12533 Hs.12689 Hs.16355 Hs.16555 Hs.16762 Hs.16928 Hs.16928 Hs.16928 Hs.16928 Hs.28419	kypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs ESTs ESTs	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40 23.00 11.02 18.40 27.60 14.80	8.35 4.27 6.00 9.40	1.77 1.86
5055606570	113560 113552 113502 113502 113288 113252 113238 113203 113195 113079 112937 112891 112794 112602 112366 112210 112064 111998 111987 111803 111737 111605 111510 111341 111280 111247 111222 110924	T91015 Al654223 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061 R07856 AL157484 AA373527 AW058350 Al247763 R63503 AW058463	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.293147 Hs.220647 Hs.203365 Hs.223147 Hs.22689 Hs.12533 Hs.6763 Hs.12533 Hs.9218 Hs.194178 Hs.16355 Hs.194178 Hs.16355 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19418 Hs.19419 Hs.1940	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs inc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T404010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs zinc-fingers and homeoboxes 1	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40 23.00 11.02 18.40 27.60	8.35 4.27 6.00 9.40	1.77 1.86 1.88
5055606570	113560 113552 113542 113502 113288 113253 113293 113095 113099 112997 112691 112694 111294 111997 111803 111737 111803 111737 111803 111737 111803 111737 111605 111510 111341 111247 111247 111247 111247 111232 110942 110942 110942	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061 R07856 AL157484 AA373527 AW058350 Al247763 R63503 AW058463 H03109	Hs.268626 Hs.16026 Hs.16026 Hs.16757 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.87286 Hs.220847 Hs.220647 Hs.220347 Hs.22089 Hs.138283 Hs.7004 Hs.22689 Hs.138283 Hs.763 Hs.325823 Hs.9218 Hs.16355 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.16928 Hs.16928 Hs.16928 Hs.16928 Hs.16928 Hs.16920	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Mederately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs ESTs ESTs ESTs ESTs ESTS ESTS	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40 23.00 11.02 18.40 27.60 14.80 24.71	8.35 4.27 6.00 9.40	1.77 1.86
505560657075	113560 113552 113542 113502 113288 113252 113233 113195 113076 113079 112937 11294 112691 112692 112210 112064 111987 111803 111737 111803 111737 111803 111737 111602 111241 111280 111241 111280 111241 111281 111282 110942 110942 110937 110824	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061 R07856 AL157484 AA373527 AW058350 Al247763 R63503 AW058463 H03109 AI767183	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.220849 Hs.138283 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.166762 Hs.16928 Hs.16928 Hs.16928 Hs.16928 Hs.26419 Hs.16920 Hs.16920 Hs.16920 Hs.16920 Hs.16942 Hs.16942 Hs.16942 Hs.16942 Hs.16942	kypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-tos induced growth factor (vascular en ESTs ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs inc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T404010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40 23.00 11.02 18.40 27.60 14.80	8.35 4.27 6.00 9.40	1.77 1.86 1.88
505560657075	113560 113552 113540 113502 113288 113233 113293 113099 113076 113009 112937 112891 112691 112602 112360 111293 111998 111998 111998 111983 1111803 1111247 111510 111247 11247 1	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 N4607 T91061 R07856 AL157484 AA373527 AW058350 AL157484 AA373527 AW058350 AW058463 H03109 AL767183 AB032417	Hs.268626 Hs.16026 Hs.16757 Hs.112967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.203365 Hs.293147 Hs.22689 Hs.13533 Hs.94178 Hs.16763 Hs.16763 Hs.16763 Hs.16763 Hs.1694178 Hs.16955 Hs.16942 Hs.16928 Hs.16928 Hs.16928 Hs.16928 Hs.16929 Hs.12940 Hs.12940 Hs.12940 Hs.12940 Hs.26942 Hs.19545	kypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs zinc-fingers and homeoboxes 1 HT018 protein ESTs frizzled (Drosophila) homolog 4	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 22.40 23.00 11.02 18.40 27.60 14.80 24.71 12.20	8.35 4.27 6.00 9.40	1.77 1.86 1.88
5055606570	113560 113552 113502 113502 113288 113252 113238 113203 113195 113079 112937 112891 112794 112602 112366 112210 112064 111988 111987 111803 111737 111605 111510 111247 111247 111247 111247 111247 1110837 110824 110924 110837 110876 110576	T91015 Al654223 Al654223 AW152618 T89130 Al076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061 R07856 AL157484 AA373527 AW058350 Al247763 R63503 AW058463 H03109 Al767183 AB032417 H60869	Hs.268626 Hs.16026 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.203365 Hs.7034 Hs.7004 Hs.22689 Hs.138283 Hs.6763 Hs.194178 Hs.194178 Hs.16355 Hs.194178 Hs.16355 Hs.194178 Hs.16928 Hs.1948 Hs.194178 Hs.16929 Hs.16929 Hs.16928 Hs.26942 Hs.108920 Hs.26942 Hs.19545 Hs.37889	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs inc finger protein 204 ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs zinc-fingers and homeoboxes 1 HT018 protein ESTs frizzled (Drosophila) homolog 4 ESTs	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 13.00 11.00 22.40 23.00 11.02 18.40 27.60 14.80 24.71	8.35 4.27 6.00 9.40 12.20	1.77 1.86 1.88
505560657075	113560 113552 113542 113502 113288 113253 113293 113195 113099 112937 112691 112794 112691 112696 112210 112064 111987 111803 111737 111803 111737 111605 111510 111341 111247 111247 111232 110942 110942 110942 110942 110956 110776 110856 110576 110576 110576 110566	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T91061 R07856 AL157484 AA373527 AW058350 Al247763 R63503 AW058463 H03109 AI767183 AB032417 H60869 AK000768	Hs.268626 Hs.16026 Hs.16026 Hs.16757 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.220647 Hs.220647 Hs.220647 Hs.22089 Hs.138283 Hs.7004 Hs.22689 Hs.138283 Hs.7603 Hs.138283 Hs.9218 Hs.19515 Hs.16355 Hs.22483 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.19385 Hs.19540 Hs.26942 Hs.19545 Hs.37889 Hs.19545 Hs.37889 Hs.107872	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTS ESTS ESTS ESTS ESTS ESTS ESTS	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 22.40 23.00 11.02 18.40 27.60 14.80 24.71 12.20	8.35 4.27 6.00 9.40	1.77 1.86 1.88 2.18 1.75
505560657075	113560 113552 113542 113502 113288 113223 113233 113195 113076 113079 112937 112891 112691 112602 112366 111987 111803 111737 111803 111737 111803 111737 111803 111241 111280 111241 111280 111241 111280 111241 111281 111281 111281 111281 111281 111282 110942 110837	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T9104607 T910460	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.22089 Hs.138283 Hs.19385 Hs.194178 Hs.294178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.294178 Hs.194178 Hs.194178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 H	kypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-tos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs zinc-fingers and homeoboxes 1 HT018 protein ESTs frizzled (Drosophila) homolog 4 ESTs hypothetical protein FLJ20761	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 22.40 23.00 11.02 18.40 27.60 14.80 24.71 12.20	8.35 4.27 6.00 9.40 12.20	1.77 1.86 1.88
505560657075	113560 113552 113540 113502 113288 113233 113293 113099 113076 113009 112937 112891 112691 112602 112360 111293 111998 111983 111983 111983 111983 1111264 111264 111264 111264 111264 111264 11127 111803 111737 111605 111510 111247 111280 111247 111292 110924 110824 110924 110839 1109984	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R99018 R88708 AW004045 AF033199 T23699 AI694320 T03927 R99018 R88708 AW004045 AF035319 T03927 R99018 R88708 AW005045 AF035311 H04607 T91061 R07856 AL157484 AA373527 AW058350 AL157484 AA373527 AW058350 AL247763 R63503 AW058463 H03109 AK000768 R44557 AI796320	Hs.268626 Hs.16026 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.203365 Hs.223347 Hs.22689 Hs.138283 Hs.6763 Hs.12533 Hs.94178 Hs.16355 Hs.12483 Hs.16942 Hs.16928 Hs.198478 Hs.16928 Hs.19848 Hs.108920 Hs.12940 Hs.108920 Hs.137889 Hs.107872 Hs.37889 Hs.107872 Hs.37889 Hs.107872 Hs.37889 Hs.107872 Hs.378784 Hs.10299	ESTs hypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-fos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Moderately similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs ESTs Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs zinc-fingers and homeoboxes 1 HT018 protein ESTs frizzled (Drosophila) homolog 4 ESTs hypothetical protein FLJ20761 ESTs Homo sapiens cDNA FLJ13545 fis, clone PL	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 22.40 23.00 11.02 18.40 27.60 14.80 24.71 12.20 13.00	8.35 4.27 6.00 9.40 12.20	1.77 1.86 1.88 2.18 1.75
505560657075	113560 113552 113542 113502 113288 113223 113233 113195 113076 113079 112937 112891 112691 112602 112366 111987 111803 111737 111803 111737 111803 111737 111803 111241 111280 111241 111280 111241 111280 111241 111281 111281 111281 111281 111281 111282 110942 110837	T91015 Al654223 AW152618 T89130 AI076838 NM_004469 R45467 AA743563 H83265 T40707 AF033199 T23699 Al694320 T03927 R97018 R88708 AW004045 AF035318 R49645 AL049390 R42379 NM_015310 AA593731 H04607 T9104607 T910460	Hs.268626 Hs.16026 Hs.16757 Hs.12967 Hs.11392 Hs.189813 Hs.10305 Hs.8881 Hs.270862 Hs.8198 Hs.7246 Hs.6295 Hs.293147 Hs.220647 Hs.22089 Hs.138283 Hs.19385 Hs.194178 Hs.294178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.194178 Hs.294178 Hs.194178 Hs.194178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 Hs.194178 Hs.294178 H	kypothetical protein FLJ23191 ESTs gb:ye12d01.s1 Stratagene lung (937210) H ESTs c-tos induced growth factor (vascular en ESTs ESTs ESTs, Weakly similar to S41044 chromosom ESTs ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to T17248 hypotheti ESTs, Weakly similar to A46010 X-li gb:yq74b08.s1 Soares fetal liver spleen ESTs ESTs Homo sapiens clone 23705 mRNA sequence ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs KIAA0942 protein ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs, Moderately similar to PC4259 ferri ESTs Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs ESTs zinc-fingers and homeoboxes 1 HT018 protein ESTs frizzled (Drosophila) homolog 4 ESTs hypothetical protein FLJ20761	12.40 21.20 14.33 10.57 26.60 15.33 15.60 15.40 14.00 22.40 23.00 11.02 18.40 27.60 14.80 24.71 12.20	8.35 4.27 6.00 9.40 12.20	1.77 1.86 1.88 2.18 1.75

	\mathbf{W}	O 02/086	443				
	109842	AW818436	Hs.23590	solute carrier family 16 (monocarboxylic	23.83		
	109837	H00656	Hs.29792	ESTs, Weakly similar to 138022 hypotheti			3.91
	109796	Al800515	Hs.12024	ESTs		17.20	
	109688	R41900	Hs.22245	ESTs		9.60	
5	109648	H17800	Hs.7154	ESTs	22.80		
_	109613	H47315	Hs.27519	ESTs			
	109550	AW021488	Hs.26981	ESTs			
	109523	AW193342	Hs.24144	ESTs			1.89
	109472	AK001989	Hs.91165	hypothetical protein		6.00	
10	109355	AA524525	Hs.48297	DKFZP586C1620 protein	15.00		
	109260	AW978515	Hs.131915	KIAA0863 protein	25.60		
	108781	AA128654	1101101010	gb:zn98g07.s1 Stratagene fetal retina 93	14.20		
	108663	BE219231	Hs.292653	ESTs, Weakly similar to T26845 hypotheti	11.00		
	108573	AA086005		gb:zl84c04.s1 Stratagene colon (937204)	26.00		
15	108480	AL133092	Hs.68055	hypothetical protein DKFZp434I0428			
~~	108382	NM_006770	Hs.67726	macrophage receptor with collagenous str			1.83
	108174	AA055632	Hs.303070	ESTs	15.20		
	108138	AL049990	Hs.51515	Homo sapiens mRNA; cDNA DKFZp564G112 (fr		3.60	
	108087	AA045708	Hs.40545	ESTs	15.44		
20	108048	Al797341	Hs.165195	Homo sapiens cDNA FLJ14237 fis, clone NT		11.40	
	108041	AW204712	Hs.61957	ESTs			
	107997	AL049176	Hs.82223	chordin-like		4.76	
	107994	AA036811	Hs.48469	LIM domains containing 1			
	107922	BE153855	Hs.61460	lg superfamily receptor LNIR	14.20		
25	107681	BE379594	Hs.49136	ESTs, Moderately similar to ALU7_HUMAN A	51.80		
	107666	AA010611	Hs.60418	EST	29.20		
	107332	T87750	Hs.183297	DKFZP566F2124 protein	10.73		
	107292	BE166479	Hs.4789	Homo sapiens serologically defined breas	32.00		
	107230	Al034467	Hs.34650	ESTs	17.40		
30	107168	W57578	Hs.237955	RAB7, member RAS oncogene family	10.43		
	107160	AA314490	Hs.27669	KIAA1563 protein	11.40		
	107054	AI076459	Hs.15978	KIAA1272 protein			
	107029	AF264750	Hs.288971	myeloid/lymphoid or mixed-lineage leukem	21.40		
	106999	H93281	Hs.10710	hypothetical protein FLJ20417	35.80		
35	106954	AF128847	Hs.204038	indolethylamine N-methyltransferase			1.76
	106870	Al983730	Hs.26530	serum deprivation response (phosphatidy)			
	106865	AW192535	Hs.19479	ESTs	13.40		
	106844	AA485055	Hs.158213	sperm associated antigen 6		7.13	
4.0	106820	NM_016831	Hs.12592	period (Drosophila) homolog 3		7.00	
40	106818	AK002135	Hs.3542	hypothetical protein FLJ11273	13.00		
	106797	A!768801	Hs.169943	Homo sapiens cDNA FLJ13569 fis, clone PL			2.05
	106773	AA478109	Hs.188833	ESTs			
	106747	NM_007118	Hs.171957	triple functional domain (PTPRF interact	12.60		
4.5	106743	BE613328	Hs.21938	hypothetical protein FLJ12492	10.60		
45	106667	AW360847	Hs.16578	ESTs			0.40
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr			2.40
	106567	AW450408	Hs.86412	chromosome 9 open reading frame 5			1.78
	106562	AL031846	Hs.152151	plakophilin 4			1.76
50	106536	AA329648	Hs.23804	ESTs, Weakly similar to PN0099 son3 prot	00.00		2.19
50	106533	AL134708	Hs.145998	ESTs	23.20		
	106507	AA259068	Hs.267819	protein phosphatase 1, regulatory (inhib	15.20		
	106490	AA404265	Hs.115537	putative dipeptidase	10.44		
	106474	BE383668	Hs.42484	hypothetical protein FLJ10618	10.44	29.80	
55	106211	AA428240	Hs.126083	ESTs		3.70	
55	105986	AB037722	Hs.8707 Hs.25691	KiAA1301 protein		0.10	1.94
	105894 105847	A1904740 AW964490	Hs.32241	receptor (calcitonin) activity modifying ESTs, Weakly similar to S65657 alpha-1C-			1.75
				ESTs, Moderately similar to A56194 throm			2.47
	105803 105731	AW747996 AA834664	Hs.160999 Hs.29131	nuclear receptor coactivator 2	10.71		
60	105729	H46612	Hs.293815	Homo sapiens HSPC285 mRNA, partial cds			
OO	105688	A)299139	Hs.17517	ESTs	23.40		
	105510	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	37.20		
	1055101	H63202	Hs.38163	ESTs		8.30	
	104989	R65998	Hs.285243	hypothetical protein FLJ22029		8.09	
65	104986	AW088826	Hs.117176	poly(A)-binding protein, nuclear 1			1.92
00	104969	A1670947	Hs.78406	phosphatidylinositol-4-phosphate 5-kinas		5.40	
	104903	Al436323	Hs.31141	Homo saplens mRNA for KIAA1568 protein,		7.60	
	104896	AW015318	Hs.23165	ESTs	13.80		
	104865	T79340	Hs.22575	Homo sapiens cDNA: FLJ21042 fis, clone C			
70	104825	AA035613	Hs.141883	ESTs			1.87
	104781	AA099904	Hs.21610	DKFZP434B203 protein			1.93
	104776	AA026349		gb:zj99f01.s1 Soares_pregnant_uterus_NbH		10.20	
	104691	U29690	Hs.37744	Homo sapiens beta-1 adrenergic receptor		5.69	
	104667	Al239923	Hs.30098	ESTs		3.82	
75	104404	H58762		gb:EST00057 HE6W Homo sapiens cDNA clone		4.20	
	104392	AA076049	Hs.274415	Homo sapiens cDNA FLJ10229 fis, clone HE	27.20		
	104212	AB002298	Hs.173035	KIAA0300 protein			1.91
	104074	AL162039	Hs.31422	Homo sapiens mRNA; cDNA DKFZp434M229 (fr	11.20		
0.0	103749	AL135301	Hs.8768	hypothetical protein FLJ10849	10.86		
80	103645	AW246253	Hs.7043	succinate-CoA ligase, GDP-forming, alpha	12.00		
	103554	Al878826	Hs.323469	caveolin 1, caveolae protein, 22kD			· 1.80
	103541	AI815601	Hs.79197	CD83 antigen (activated B lymphocytes, i			
	103496	Y09267	Hs.132821	flavin containing monooxygenase 2			
0.5	103428	BE383507	Hs.78921	A kinase (PRKA) anchor protein 1	11.20		
85	103353	X89399	Hs.119274	RAS p21 protein activator (GTPase activa	19.80		

	W	O 02/086	443					PCT/US02/12476
	103295	X81479	Hs.2375	egf-like module containing, mucin-like,		3.60		
	103280	U84722	Hs.76206 Hs.184585	cadherin 5, type 2, VE-cadherin (vascula LIM domain only 2 (rhombotin-like 1)			1.76	
	103100 103025	NM_005574 NM_002837	Hs.123641	protein tyrosine phosphatase, receptor t			2.15	
5	102698	M18667	Hs.1867	progastricsin (pepsinogen C)				
•	102659	BE245169	Hs.211610	CUG triplet repeat, RNA-binding protein	11.00			
	102580	U60808	Hs.152981	CDP-diacylglycerol synthase (phosphatida	25.40			
		AA034127	Hs.153487	signal transducing adaptor molecule (SH3	14.00			
10	102363	NM_003734	Hs.198241	amine oxidase, copper containing 3 (vasc	10.86			
10	102302 102283	AA306342 AW161552	Hs.69171 Hs.83381	protein kinase C-like 2 guanine nucleotide binding protein 11	10.00			
	102263	U20350	Hs.78913	chemokine (C-X3-C) receptor 1		7.40		
	102151	T27013	Hs.3132	steroidogenic acute regulatory protein	16.40			
	101957	L28824	Hs.74101	spleen tyrosine kinase	15.40			
15	101842	M93221	Hs.75182	mannose receptor, C type 1				
	101771	NM_002432	Hs.153837	myeloid cell nuclear differentiation ant			4.70	
		Al198550	Hs.81256	S100 calcium-binding protein A4 (calcium	18.80		1.78	
	101716 101678	AF050658 M62505	Hs.2563 Hs.2161	tachykinin, precursor 1 (substance K, su complement component 5 receptor 1 (C5a l	10.00		2.22	
20	101447	M21305	113.2101	gb:Human alpha satellite and satellite 3	504.80			
~~	101383	NM_000132	Hs.79345	coagulation factor VIII, procoagulant co		31.00		
	101346	Al738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N			1.75	
	101345	NM_005795	Hs.152175	calcitonin receptor-like				
25	101336		Hs.75678	FBJ murine osteosarcoma viral oncogene h			2.24	
25	101330	L43821	Hs.80261 Hs.296049	enhancer of filamentation 1 (cas-like do microfibrillar-associated protein 4				
	101277 101262	BE297626 L35854	HS.290049	gb:Human dystrophin (dp140) mRNA, 5' end	19.00			
	101168	NM_005308	Hs.211569	G protein-coupled receptor kinase 5	10.00		2.01	
	101102	NM 003243	Hs.79059	transforming growth factor, beta recepto				
30	101088	X70697	Hs.553	solute carrier family 6 (neurotransmitte		7.52		
	101066	AW970254	Hs.889	Charot-Leyden crystal protein	19.38		4.04	
	100971	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte	15.40		1.91	
	100893 100770	BE245294 W25797.comp	Hs.180789 Hs.177486	S164 protein amyloid beta (A4) precursor protein (pro	11.20			
35	100776	X89887	Hs.172350	HIR (histone cell cycle regulation defec	14.80			
55	100555	M69181	110.11 2000	gb:Human nonmuscle myosin heavy chain-B	33.00			
	100425	NM_014747	Hs.78748	KIAA0237 gene product	16.20			
	100408	D86640	Hs.56045	src homology three (SH3) and cysteine ri		4.00		
40	100382	D83407	Hs.156007	Down syndrome critical region gene 1-lik		4.24 6.20		
40	100351	D64158	Hs.2171	growth differentiation factor 10		21.20		
	100299 100134	D49493 AA305746	Hs.49	macrophage scavenger receptor 1		21,20		
	100104	U09577	Hs.76873	hyaluronoglucosaminidase 2			1.79	
	100095	Z97171	Hs.78454	myocilin, trabecular meshwork inducible		5.40		
45	100066				11.29			

TABLE 3B shows the accession numbers for those primekeys lacking unigenelD's for Table 3A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

CO	Pkey	CAT number	Accessions	
60				
	123619	371681_1	AA602964 A	
	126433			A099517 N89423
	125831	1522905_1	H04043 D60	
~ ~	126816	122973_1	AA248234 A	
65	126852	136135_1	AA399961 A	
	121059	273450_1	AA393283 A	
	120637		AA811804 A	A809404 AA286907 AW977624
	122011	76172	AA431082	
70	120934			A226513 AA383773
70	123802			AA620448
	116814	genbank_H5083	34	H50834
	118329	genbank_N6352	20	N63520
	104404		H58762	
	104776			AA026349
75	113502	genbank_T8913	0T89130	
	101262	entrez_L35854		
	108573	genbank_AA086	5005	AA086005
	101447	entrez_M21305	M21305	
	124357	genbank_N2240)1	N22401
80	108781	genbank_AA128	3654	AA128654
	112794	genbank_R9701	18	R97018
	100351	entrez_D64158	D64158	
	100555	tigr_HT2245	M69181 M8	1105 U51039
85				
05				

WO 02/086443 PCT/US02/12476

Table 4A shows 202 genes up-regulated in samples from patients treated with chemotherapy or radiotherapy. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5

Pkey: Unique Eos probeset identifier number
EXACCRI: Exemplar Accession number, Genbank accession number
UnigenelD: Unigene number
Unigene Title: Unigene gene title
R1: average of Al for samples from patients treated with chemotherapy or radiotherapy divided by the average of Al for normal lung samples.

10	R1:	average of	Al for samples	s from patients treated with chemotherapy or radiother	apy divided
10	Pkey	ExAcon	UnigenelD	Unigene Title	R1
	,	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Jg	- mgene vise	
	100113	NM_001269	Hs.84746	chromosome condensation 1	27.20
15	100187	D17793	Hs.78183	aldo-keto reductase family 1, member C3	20.60
15	100210 100225	D26361 D28539	Hs.3104 Hs.167185	KIAA0042 gene product glutamate receptor, metabotropic 5	20.40
	100225	NM_001949	Hs.1189	E2F transcription factor 3	29.40
	100438	AA013051	Hs.91417	topoisomerase (DNA) II binding protein	23.50
••	100877	X80821	Hs.27973	KIAA0874 protein	35.56
20	100893	BE245294	Hs.180789	S164 protein	43.40
	101273	Z11933	Hs.182505	POU domain, class 3, transcription facto	21.80 193.60
	101447 101649	M21305 AW959908	Hs.1690	gb:Human alpha satellite and satellite 3 heparin-binding growth factor binding pr	38.40
	101724	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	198.80
25	101748	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	78.60
	101809	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	162.20
	101879	AA176374	Hs.243886	nuclear autoantigenic sperm protein (his	50.00
	101915	AF207881	Hs.155185	cytosolic ovarian carcinoma antigen 1	26.00 37.20
30	101973 102025	U41514 U04045	Hs.80120 Hs.78934	UDP-N-acetyl-alpha-D-galactosamine:polyp mutS (E. coli) homolog 2 (colon cancer,	37.20
50	102023	U04898	Hs.2156	RAR-related orphan receptor A	32.00
	102052	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	51.20
	102391	AA296874	Hs.77494	deoxyguanosine kinase	13.90
25	102420	U44060	Hs.14427	Homo sapiens cDNA: FLJ21800 fis, clone H	28.80
35	102610	U65011	Hs.30743	preferentially expressed antigen in mela	110.60
	102829 103000	NM_006183 NM_001975	Hs.80962 Hs.146580	neurotensin enolase 2, (gamma, neuronal)	116.80 2.30
	103036	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	181.40
	103507	AJ000512	Hs.296323	serum/glucocorticoid regulated kinase	49.20
40	103587	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	86.60
	104660	BE298665	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (fr	42.60
	104896	AW015318	Hs.23165	ESTs	29.40 21.50
	105038 105298	AW503733 BE387790	Hs.9414 Hs.26369	KIAA1488 protein hypothetical protein FLJ20287	32.80
45	105230	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	20.20
	105667	AA767526	Hs.22030	paired box gene 5 (B-cell lineage specif	28.40
	106073	AL157441	Hs.17834	downstream neighbor of SON	25.40
	106205	AW965058	Hs.111583	ESTs, Weakly similar to I38022 hypotheti	32.00
50	106516	AL137311	Hs.234074	Homo sapiens mRNA; cDNA DKFZp761G02121 (40.60 59.80
50	106533 106575	AL134708 AW970602	Hs.145998 Hs.105421	ESTs ESTs	43.40
	106654	AW075485	Hs.286049	phosphoserine aminotransferase	50.80
	106851	Al458623		gb:tk04g09.x1 NCI_CGAP_Lu24 Homo sapiens	53.40
~ ~	106995	AB023139	Hs.37892	KIAA0922 protein	20.88
55	107332	T87750	Hs.183297	DKFZP566F2124 protein	23.60 57.20
	107532 107922	AA443473 BE153855	Hs.173684 Hs.61460	Homo sapiens mRNA; cDNA DKFZp762G207 (fr lg superfamily receptor LNIR	49.00
	108609	BE409857	Hs.69499	hypothetical protein	19.67
	108780	AU076442	Hs.117938	collagen, type XVII, alpha 1	48.17
60	109166	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	59.20
	109260	AW978515	Hs.131915	KIAA0863 protein	28.60
	109280	AK001355	Hs.279610	hypothetical protein FLJ10493	22.80
	109292 109384	AW975746 AA219172	Hs.188662 Hs.86849	KIAA1702 protein ESTs	21.00
65	109415	U80736	Hs.110826	trinucleotide repeat containing 9	31.60
•	109445	AA232103	Hs.189915	ESTs	24.20
	109502	AW967069	Hs.211556	hypothetical protein MGC5487	21.40
	109633	AW003785	Hs.170267	ESTs	20.40
70 -	109786	AI989482	Hs.146286 Hs.133521	kinesin family member 13A ESTs	19.60 24.00
70 .	109958 110920	AA001266 N47224	Hs.20521	HMT1 (hnRNP methyltransferase, S. cerevi	28.40
	110924	AW058463	Hs.12940	zinc-fingers and homeoboxes 1	36.00
	111084	H44186	Hs.15456	PDZ domain containing 1	61.20
76	111132	AB037807	Hs.83293	hypothetical protein	24.60
75	111229	AW389845	Hs.110855	ESTs	27.20
	111337	AA837396	Hs.263925	LIS1-interacting protein NUDE1, rat homo	48.00 37.80
	111987 112046	NM_015310 AA383343	Hs.6763 Hs.22116	KIAA0942 protein CDC14 (cell division cycle 14, S. cerevi	26.80
	112268	W39609	Hs.22003	solute carrier family 6 (neurotransmitte	63.80
80	112685	R87650	Hs.33439	ESTs, Weakly similar to ALU1_HUMAN ALU	26.40
	112871	AL110216	Hs.12285	ESTs, Weakly similar to 155214 salivary	47.64
	112897	AW206453	Hs.3782	ESTs	22.00 65.00
	112973 112992	AB033023 AL157425	Hs.318127 Hs.133315	hypothetical protein FLJ10201 Homo sapiens mRNA; cDNA DKFZp761J1324 (f	42.00
85	113073	N39342	Hs.103042	microtubule-associated protein 1B	55.40
-				·	

	W	O 02/086	443		
	113494	T91451	Hs.86538	ESTs	22.80
	113560	T91015	Hs.268626	ESTs	22.80
	113849	AA457211	Hs.8858	bromodomain adjacent to zinc finger doma	51.80
_	113950	Al267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	28.20
5	114339	AA782845	Hs.22790	ESTs	20.20
	114365	H42169	Hs.18653	hypothetical protein FLJ14627	21.00
	114455	H37908	Hs.271616	ESTs, Weakly similar to ALU8_HUMAN ALU S	25.80
	114518	AW163267	Hs.106469	suppressor of var1 (S.cerevisiae) 3-like	23.60 27.20
10	114824	AA960961	Hs.305953	zinc finger protein 83 (HPF1)	30.20
10	114837	BE244930	Hs.166895	ESTs	20.80
	114974 115075	AW966931 AA814043	Hs.179662 Hs.88045	nucleosome assembly protein 1-like 1 ESTs	30.60
	115075	BE383668	Hs.42484	hypothetical protein FLJ10618	28.86
	115291	BE545072	Hs.122579	hypothetical protein FLJ10461	38.00
15	115313	AA808001	Hs.184411	albumin	22.60
10	115697	D31382	Hs.63325	transmembrane protease, serine 4	173.60
	115909	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	27.77
	116090	Al591147	Hs.61232	ESTs	20.80
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	164.20
20	116399	AA889120	Hs.110637	homeo box A10	38.00
	117099	H93699		gb:yv16a11.s1 Soares fetal liver spleen	21.60
	117881	AF161470	Hs.260622	butyrate-induced transcript 1	49.40
	118091	AW005054	Hs.47883	ESTs, Weakly similar to KCC1_HUMAN CALCI	22.40
~ ~	118138	AA374756	Hs.93560	Homo sapiens mRNA for KIAA1771 protein,	22.00
25	118720	N73515		gb:za49d07.s1 Soares fetal liver spleen	20.00
	118873	A1824009	Hs.44577	ESTs	19.40
	119126	R45175	Hs.117183	ESTs	111.20
	119717	AA918317	Hs.57987	B-cell CLL/lymphoma 11B (zinc finger pro	33.00
20	119940	AL050097	Hs.272531	DKFZP586B0319 protein	31.00
30	120266	Al807264	Hs.205442	ESTs, Weakly similar to T34036 hypotheti	20.20
	120515	AA258356	11- 4040	gb:zr59c10.s1 Soares_NhHMPu_S1 Homo sapi	25.00
	120859	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol	95.40 105.20
	120983	AA398209	Hs.97587	EST ESTs	38.80
35	121054	AW976570 AW450737	Hs.97387 Hs.128791	CGI-09 protein	41.60
55	121369 122335	AA443258	Hs.241551	chloride channel, calcium activated, fam	30.80
	122612	AA974832	Hs.128708	ESTs	19.60
	123130	AA487200	113.120700	gb:ab19f02.s1 Stratagene lung (937210) H	33.20
	123440	Al733692	Hs.112488	ESTs	23.17
40	123596	AA421130	Hs.112640	EST	23.00
	123619	AA602964		gb:no97c02.s1 NCI_CGAP_Pr2 Homo sapiens	28.80
	124006	Al147155	Hs.270016	ESTs	77.60
	124169	BE079334	Hs.271630	ESTs	22.20
	124281	Al333756	Hs.111801	arsenate resistance protein ARS2	42.20
45	124472	N52517	Hs.102670	EST	32.60
	124617	AW628168	Hs.152684	ESTs	21.80
	124631	NM_014053	Hs.270594	FLVCR protein	30.40
	124839	R55784	Hs.140942	ESTs	21.20
50	125186	AA610620	Hs.181244	major histocompatibility complex, class	42.80
50	125321	T86652	Hs.178294	ESTs	27.00
	125535	NM_013243	Hs.22215	secretogranin III	23.80
	125646	AA628962	Hs.75209	protein kinase (cAMP-dependent, catalyti	23.20
	125684	AW589427	Hs.158849	Homo sapiens cDNA: FLJ21663 fis, clone C	21.20 48.80
55	125724	AL360190	Hs.295978	Homo sapiens mRNA full length insert cDN ESTs	31.00
55	125847 125934	AW161885 AA193325	Hs.249034 * Hs.32646	hypothetical protein FLJ21901	21.20
	126077	M78772	Hs.210836	ESTs	49.80
	126299	AW979155	Hs.298275	amino acid transporter 2	21.80
	126395	A1468004	Hs.278956	hypothetical protein FLJ12929	71.00
60	126433	AA325606		gb:EST28707 Cerebellum II Homo sapiens c	23.20
	126509	R47400	Hs.23850	ESTs	23.80
	126538	AB030656	Hs.17377	coronin, actin-binding protein, 1C	23.10
	126666	AA648886	Hs.151999	ESTs	36.00
	126812	AB037860	Hs.173933	nuclear factor I/A	20.80
65	126872	AW450979		gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su	46.29
	127046	AA321948	Hs.293968	ESTs	22.80
	127431	AW771958	Hs.175437	ESTs, Moderately similar to PC4259 ferri	30.00
	127489	AA650250	Hs.272076	ESTs	20.80
70	127521	AW297206	Hs.164018	ESTs	25.20
70	127742	AW293496	Hs.180138	ESTs	28.00
	127925	AA805151	Hs.3628	mitogen-activated protein kinase kinase	21.20
	127930	AA809672	Hs.123304	ESTs	20.54
	127968	AA830201	Hs.124347	ESTs	28.20
75	127987	A1022103	Hs.124511	ESTs	19.60
75	128116	H07103	Hs.286014	Homo sapiens, clone IMAGE:3867243, mRNA	20.40
	128609	NM_003616	Hs.102456	survival of motor neuron protein interac	34.40
	128777	Al878918	Hs.10526	cysteine and glycine-rich protein 2	53.80
	128949	AA009647	Hs.8850	a disintegrin and metalloproteinase doma	23.00
80	129168	Al132988	Hs.109052	chromosome 14 open reading frame 2	37.60
30	129404	AI267700	Hs.317584	ESTs delta-tubulin	28.60
	129527	AA769221	Hs.270847	UMP-CMP kinase	40.80 31.20
	129574 129598	AA026815 N30436	Hs.11463 Hs.11556	Homo sapiens cDNA FLJ12566 fis, clone NT	29.60
	129596	H19006	Hs.184780	ESTs	72.20
85	129970	AV655806	Hs.296198	chromosome 12 open reading frame 4	22.20

	W	O 02/086	443		
	130149	AW067805	Hs.172665	methylenetetrahydrofolate dehydrogenase	29.60
	130199	Z48579	Hs.172028	a disintegrin and metalloproteinase doma	27.60
	130441	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	28.36
	130466	W19744	Hs.180059	Homo sapiens cDNA FLJ20653 fis, clone KA	20.20
5	130482	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur	22.40
	130617	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	19.60
	130703	R77776	Hs.18103	ĔSTs ·	19.40
	130732	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)	21.40
	130867	NM 001072	Hs.284239	UDP glycosyltransferase 1 family, polype	110.00
10	131028	Al879165	Hs.2227	CCAAT/enhancer binding protein (C/EBP),	25.20
	131086	AL035461	Hs.2281	chromogranin B (secretogranin 1)	40.60
	131284	NM 001429	Hs.25272	E1A binding protein p300	24.60
	131775	AB014548	Hs.31921	KIAA0648 protein	21.00
	131860	BE383676	Hs.334	Rho guanine nucleotide exchange factor (33.40
15	131945	NM 002916	Hs.35120	replication factor C (activator 1) 4 (37	60.80
	132040	NM 001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fis, clone H	. 20.40
	132084	NM_002267	Hs.3886	karyopherin alpha 3 (importin alpha 4)	29.40
	132389	AA310393	Hs.190044	ESTs	32.40
	132437	AA152106	Hs.4859	cyclin L ania-6a	27.40
20	132550	AW969253	Hs.170195	bone morphogenetic protein 7 (osteogenic	75.60
	132617	AF037335	Hs.5338	carbonic anhydrase XII	31.36
	132632	AU076916	Hs.5398	guanine monphosphate synthetase	32.40
	132672	W27721	Hs.54697	Cdc42 guanine exchange factor (GEF) 9	23.40
	132742	AA025480	Hs.292812	ESTs, Weakly similar to T33468 hypotheti	61.20
25	132771	Y10275	Hs.56407	phosphoserine phosphatase	22.33
	133070	U92649	Hs.64311	a disintegrin and metalloproteinase doma	23.50
	133153	AF070592	Hs.66170	HSKM-B protein	30.00
	133181	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	23.80
	133282	AA449015	Hs.286145	SRB7 (suppressor of RNA polymerase B, ye	51.60
30	133350	Al499220	Hs.71573	hypothetical protein FLJ10074	33.00
	133592	AV652066	Hs.75113	general transcription factor IIIA	82.00
	133658	AA319146	Hs.75426	secretogranin II (chromogranin C)	
	133865	AB011155	Hs.170290	discs, large (Drosophila) homolog 5	69.33
	134032	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	33.20
35	134125	NM_014781	Hs.50421	KIAA0203 gene product	31.60
	134158	U15174	Hs.79428	BCL2/adenovirus E1B 19kD-interacting pro	30.60
	134321	BE538082	Hs.8172	ESTs, Moderately similar to A46010 X-lin	23.40
	134367	AA339449	Hs.82285	phosphoribosylglycinamide formyltransfer	49.20
4.0	134570	U66615	Hs.172280	SWI/SNF related, matrix associated, acti	20.20
40	134753	NM_006482	Hs.173135	dual-specificity tyrosine-(Y)-phosphoryl	20.80
	135002	AA448542	Hs.251677	G antigen 7B	37.60
	135029	H58818	Hs.187579	hydroxysteroid (17-beta) dehydrogenase	53.40
	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	31.60
4 ~	135345	X53655	Hs.99171	neurotrophin 3	28.80
45					

TABLE 4B shows the accession numbers for those primekeys lacking unigenelD's for Table 4A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column. 50

PCT/US02/12476

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

55

70

	Pkey	CAT number	Accessions
60	123619 126433 126872	371681_1 127143_1 142696_1	AA602964 AA609200 AA325606 AA099517 N89423 AW450979 AA136653 AA136656 AW419381 AA984358 AA492073 BE168945 AA809054 AW238038 BE011212 BE011359 BE011367 BE011368 BE011362 BE011215 BE011365 BE011363
65	106851 118720 120515 117099 101447 123130	322947_1 genbank_N7351 genbank_AA258 321871_1 entrez_M21305 genbank_AA487	Al458623 AA639708 AA485409 R22065 AA485570 5 N73515 I356 AA258356 H93699 H97976 H80036 M21305

PCT/US02/12476

Table 5A shows 680 genes up-regulated in squamous cell carcinoma or adenocarcinoma lung tumors relative to normal lung and chronically diseased lung. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5	Pkey:	Unique Eos probeset identifier number
	ExAccn:	Exemplar Accession number, Genbank accession number
	UnigenelD:	Unigene number
	Unigene Title:	Unigene gene title
	R1:	70th percentile of Al for squamous cell carcinoma and adenocarcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically
10		diseased lung samples.
	R2:	80th percentile of Al adenocarcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically diseased lung samples.
	R3:	80th percentile of Al squamous cell carcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically diseased lung samples.
	R4:	80th percentile of Al adenocarcinoma lung tumor samples divided by the 80th percentile of Al for squamous cell carcinoma lung tumor samples.
	R5:	70th percentile of Al for squamous cell carcinoma and adenocarcinoma lung tumor samples minus the 15th percentile of Al for all normal lung, chronically
15		diseased lung and tumor samples divided by 90th percentile of AI for normal and chronically diseased lung samples minus the 15th percentile of AI for all
		normal lung, chronically diseased lung and tumor samples

20	Pkey	ExAccn	UnigeneID	Unigene Title	R1	R2	R3	R4	R5
20	100035			AFFX control: GAPDH AFFX control: GAPDH					6.76 5.77
	100036 100037	,		AFFX control: GAPDH					5.75
	100071	A28102		Human GABAa receptor alpha-3 subunit		8.00			
25	100114	X02308	Hs.82962	thymidylate synthetase					5.71
	100154	H60720	Hs.81892	KIAA0101 gene product	3.84 3.33				
	100187 100188	D17793 AW247090	Hs.78183 Hs.57101	aldo-keto reductase family 1, member C3 minichromosome maintenance deficient (S.	3.33				4.52
	100100	BE294407	Hs.99910	phosphofructokinase, platelet					5.49
30	100216	AA489908	Hs.1390	proteasome (prosome, macropain) subunit,					5.67
	100269	NM_001949	Hs.1189	E2F transcription factor 3	2.55				
	100287	AU076657	Hs.1600	chaperonin containing TCP1, subunit 5 (e					5.66
	100297	AU077258	Hs.182429	protein disulfide isomerase-related prot minichromosome maintenance deficient (S.					3.81 4.50
35	100330 100335	AW410976 AW247529	Hs.77152 Hs.6793	platelet-activating factor acetylhydrola	5.07				7.00
55	100360	W70171	Hs.75939	uridine monophosphate kinase	0.0.				4.82
	100372	NM_014791	Hs.184339	KIAA0175 gene product					3.79
	100474	NM_000699	Hs.300280	amylase, alpha 2A; pancreatic				15.65	E 40
40	100486	T19006	Hs.10842	RAN, member RAS oncogene family					5.49
40	100491	D56165	Hs.275163	non-metastatic cells 2, protein (NM23B) carcinoembryonic antigen-related cell ad		7.20			4.17
	100516 100522	D90278 X51501	Hs.11 Hs.99949	prolactin-induced protein		1.20		14.20	
	100559	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys	3.10				
	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid				9.30	
45	100629	AA015693	Hs.21291	mitogen-activated protein kinase kinase				20.60	
	100661	BE623001	Hs.132748	Homo sapiens ribosomal protein L39 mRNA,	3.85	8.60			
	100677 100696	AA353686 D14887	Hs.57813 Hs.121686	zinc ribbon domain containing, 1 general transcription factor IIA, 1 (37k		0.00		10.00	
	100090	N26539	Hs.100469	myeloid/lymphoid or mixed-lineage leukem			24.80		
50	100761	BE208491	Hs.295112	KIAA0618 gene product		7.60			
	100830	AC004770	Hs.4756	flap structure-specific endonuclease 1					7.99
	100867	U14622	11 000000	gb:Human transketolase-like protein gene		10.20			
	100902	M16029	Hs.287270	ret proto-oncogene (multiple endocrine n quanine monphosphate synthetase		8.00			5.16
55	100906 100960	AU076916 J00124	Hs.5398 Hs.117729	keratin 14 (epidermolysis bullosa simple	2.57				0.70
55	101045	J05614	110.111720	gb:Human proliferating cell nuclear anti					4.69
	101061	NM_000175	Hs.180532	glucose phosphate isomerase					4.19
	101071	L02840	Hs.84244	potassium voltage-gated channel, Shab-re	0.40	12.91			
60	101124	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL melanoma antigen, family A, 2	3.12 3.50				
00	101175 101181	U82671 BE262621	Hs.36980 Hs.73798	macrophage migration inhibitory factor (0.00				5.69
	101101	L24203	Hs.82237	ataxia-telangiectasia group D-associated	4.08				
	101210	L29301	Hs.2353	opioid receptor, mu 1			6.40		
<i>(</i>	101216	AA284166	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	2.53				7.00
65	101228	AA333387	Hs.82916	chaperonin containing TCP1, subunit 6A (7.90 4.45
	101233 101273	AL135173 Z11933	Hs.878 Hs.182505	sorbitol dehydrogenase POU domain, class 3, transcription facto	8.50				4.40
	101342	U52112	Hs.182018	interleukin-1 receptor-associated kinase	0.00				4.17
	101346	Al738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N				21.89	
70	101369	NM_000892	Hs.1901	kallikrein B, plasma (Fletcher factor) 1	0.04			12.80	
	101396	BE267931	Hs.78996	proliferating cell nuclear antigen	3.24				7.90
	101431 101448	BE185289 NM_000424	Hs.1076 Hs.195850	small proline-rich protein 1B (cornifin) keratin 5 (epidermolysis bullosa simplex	8.31				1.50
	101462	AL035668	Hs.73853	bone morphogenetic protein 2	0.01			38.80	
75	101466	BE262660	Hs.170197	glutamic-oxaloacetic transaminase 2, mit					4.01
	101484	AA053486	Hs.20315	interferon-induced protein with tetratri				12.00	
	101502	M26958		gb:Human parathyroid hormone-related pro	10.50				4.46
	101505	AA307680	Hs.75692	asparagine synthetase aconitase 1, soluble	4.02				4.40
80	101526 101535	NM_002197 X57152	Hs.154721 Hs.99853	fibrillarin	7.04				4.65
	101577	M34353	Hs.1041	v-ros avian UR2 sarcoma virus oncogene h				9.09	
	101649	AW959908	Hs.1690	heparin-binding growth factor binding pr	54.00				
	101663	NM_003528	Hs.2178	H2B histone family, member Q	5.59				
85	101664 101669	AA436989 L24498	Hs.121017 Hs.80409	H2A histone family, member A growth arrest and DNA-damage-inducible,	7.00	7.60			
0.5	101003	LL7770	110,00700	grown arrost and providence					

	w	O 02/086	443						PCT/US02/12476
	101695	M69136	Hs.135626	chymase 1, mast cell	4.79				
	101724	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	15.21				
	101748	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	55.50				
5	101759	M80244	Hs.184601	solute carrier family 7 (cationic amino				40.57	4.10
5	101771 101804	NM_002432 M86699	Hs.153837 Hs.169840	myeloid cell nuclear differentiation ant TTK protein kinase	4.50			18.57	
	101804	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	140.00				
	101833	AU076442	Hs.117938	collagen, type XVII, alpha 1	2.56				
4.0	101842	M93221	Hs.75182	mannose receptor, C type 1				12.80	
10	101851	BE260964	Hs.82045	midkine (neurite growth-promoting factor					5.88
	102002	NM_002484	Hs.81469	nucleotide binding protein 1 (E.coli Min		7.80			4.05
	102039	AL134223	Hs.306098	aldo-keto reductase family 1, member C1			7.40		4.35
	102072 102083	U09410 T35901	Hs.78743 Hs.75117	zinc finger protein 131 (clone pHZ-10) interleukin enhancer binding factor 2, 4			7.40		5.12
15	102003	L36196	Hs.81884	sulfotransferase family, cytosolic, 2A,				12.00	0.12
	102123	NM_001809	Hs.1594	centromere protein A (17kD)	6.20				
	102154	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	2.62				
	102193	AL036335	Hs.313	secreted phosphoprotein 1 (osteopontin,	5.85				0.40
20	102217	AA829978	Hs.301613	JTV1 gene					6.18 4.49
40	102224 102234	NM_002810 AW163390	Hs.148495 Hs.278554	proteasome (prosome, macropain) 26S subu heterochromatin-like protein 1	•				5.80
	102251	NM_004398	Hs.41706	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	4.50				0.00
	102305	AL043202	Hs.90073	chromosome segregation 1 (yeast homolog)					5.15
~~	102330	BE298063	Hs.77254	chromobox homolog 1 (Drosophila HP1 beta					4.17
25	102340	U37055	Hs.278657	macrophage stimulating 1 (hepatocyte gro				9.33	
	102348	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member	8.87				
	102368 102394	U39817 NM_00381 6	Hs.36820 Hs.2442	Bloom syndrome a disintegrin and metalloproteinase doma	15.91		19.20		
	102394	NM_005429	Hs.79141	vascular endothelial growth factor C			13.20	14.00	
30	102537	U57094	Hs.50477	RAB27A, member RAS oncogene family				12.00	
	102581	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2					4.57
	102605	AI435128	Hs.181369	ubiquitin fusion degradation 1-like					3.98
	102610	U65011	Hs.30743	preferentially expressed antigen in mela	77.50				
35	102623	AW249285	Hs.37110	melanoma antigen, family A, 9 G protein-coupled receptor	12.50		22.00		
33	102642 102654	AA205847 AV649989	Hs.23016 Hs.24385	Human hbc647 mRNA sequence		12.00	22.00		
	102659	BE245169	Hs.211610	CUG triplet repeat, RNA-binding protein		12.00		12.80	
	102669	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	6.50				
40	102672	U72066	Hs.29287	retinoblastoma-binding protein 8	8.50				
40	102687	NM_007019	Hs.93002	ubiquitin carrier protein E2-C					9.24
	102696	BE540274	Hs.239	forkhead box M1		6.60			5.54
	102768 102781	U82321 BE258778	Hs.108809	gb:Homo sapiens clone 14.98 mRNA sequenc chaperonin containing TCP1, subunit 7 (e		6.60			3.78
	102784	U85658	Hs.61796	transcription factor AP-2 gamma (activat					4.26
45	102824	U90916	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H			14.40		
	102829	NM_006183	Hs.80962	neurotensin	8.00				
	102888	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1					5.50
	102892	BE440042	Hs.83326	matrix metalloproteinase 3 (stromelysin	4.04		6.70		
50	102913 102935	NM_002275	Hs.80342 Hs.80506	keratin 15 small nuclear ribonucleoprotein polypept	4.64 2.93				
50	102955	BE561850 X15218	Hs.2969	v-ski avian sarcoma viral oncogene homol	2.50			11.40	
	102983	BE387202	Hs.118638	non-metastatic cells 1, protein (NM23A)					7.26
	103023	AW500470	Hs.117950	multifunctional polypeptide similar to S	3.01				
- -	103036	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	27.90				4.50
55	103038	AA926960	Hs.334883	CDC28 protein kinase 1					8.79
	103060 103099	NM_005940 Al693251	Hs.155324 Hs.8248	matrix metalloproteinase 11 (stromelysin NADH dehydrogenase (ubiquinone) Fe-S pro		9.80			4.27
	103099	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	4.05	5.00			
	103168	X53463	Hs.2704	glutathione peroxidase 2 (gastrointestin	3.07				
60	103185	NM_006825	Hs.74368	transmembrane protein (63kD), endoplasmi					5.62
	103192	M22440	Hs.170009	transforming growth factor, alpha		7.40	•		
	103223	BE275607	Hs.1708	chaperonin containing TCP1, subunit 3 (g			400.00		4.70
	103242	X76342 X83301	Hs.389 Hs.324728	alcohol dehydrogenase 7 (class IV), mu o SMA5			100.00	9.80	
65	103316 103375	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	9.71			3.00	
05	103376	AL036166	Hs.323378	coated vesicle membrane protein	14.00				
	103385	NM_007069	Hs.37189	similar to rat HREV107				11.00	
	103391	X94453	Hs.114366	pyrroline-5-carboxylate synthetase (glut	2.93				
70	103404	BE394784	Hs.78596	proteasome (prosome, macropain) subunit,					5.15
70	103430	BE564090	Hs.20716	translocase of inner mitochondrial membr				24.40	3.98
	103446 103476	X98834 Y07701	Hs.79971 Hs.293007	sal (Drosophila)-like 2 aminopeptidase puromycin sensitive		13.00		21.40	
	103470	AJ011812	Hs.119018	transcription factor NRF		15.00	6.40		
	103478	BE514982	Hs.38991	S100 calcium-binding protein A2	5.02		*****		
75	103515	Y10275	Hs.56407	phosphoserine phosphatase	10.50				
	103558	BE616547	Hs.2785	keratin 17	6.41				
	103580	AA328046	Hs.46405	polymerase (RNA) II (DNA directed) polyp	70.50				3.84
	103587	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein SRY (sex determining region Y)-box 2	78.50 6.51				
80	103594 103636	Al368680 NM_006235	Hs.816 Hs.2407	POU domain, class 2, associating factor	3.50				
55	103768	AF086009	. 10.2-101	gb:Homo sapiens full length insert cDNA	0.50				4.48
	103841	AA314821	Hs.38178	hypothetical protein FLJ23468		8.00			
	103847	AF219946	Hs.102237	tubby super-family protein		10.40		45.00	
85	103913	AW967500	Hs.133543	ESTs			6.60	15.60	
0.5	104094	AA418187	Hs.330515	ESTs			6.60		

	XX.	O 02/086	112						DC	T/US02/12476
	104150		Hs.331633	hypothetical protein DKFZp566N034				26.00	PC	1/0502/124/0
	104257	BE560621	Hs.9222	estrogen receptor binding site associate		6.80				
	104261	AW248364	Hs.5409	RNA polymerase I subunit					3.98	
5	104331 104415	AB040450 BE410992	Hs.279862 Hs.258730	cdk inhibitor p21 binding protein heme-regulated initiation factor 2-alpha		6.80 10.29				
	104558	R56678	Hs.88959	hypothetical protein MGC4816	4.21	10.25				
	104590	AW373062	Hs.83623	nuclear receptor subfamily 1, group I, m				15.79		
	104658	AA360954	Hs.27268	Homo sapiens cDNA: FLJ21933 fis, clone H				17.40		
10	104660	BE298665	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (fr	6.40				0.55	
10	104689 104754	AA420450 Al206234	Hs.292911 Hs.155924	ESTs, Highly similar to S60712 band-6-pr cAMP responsive element modulator				10.00	6.55	
	104758	BE560269	Hs.7010	NPD002 protein				10.00	4.47	
	104971	BE311926	Hs.15830	hypothetical protein FLJ12691	2.87					
15	105011	BE091926	Hs.16244	mitotic spindle coiled-coil related prot	3.83					
13	105012 105026	AF098158 AA809485	Hs.9329 Hs.124219	chromosome 20 open reading frame 1 hypothetical protein FLJ12934	2.86	11.00				
	105026	A1598252	Hs.37810	hypothetical protein MGC14833		11.00			5.01	
	105132	AA148164	Hs.247280	HBV associated factor					3.99	
20	105143	Al368836	Hs.24808	ESTs, Weakly similar to 138022 hypotheti			11.00			
20	105158 105175	AW976357 AA305384	Hs.234545 Hs.25740	hypothetical protein NUF2R ERO1 (S. cerevisiae)-like	4.32	16.00				
	105173	AA328102	Hs.24641	cytoskeleton associated protein 2	3.00					
	105264	AA227934		gb:zr57e08.s1 Soares_NhHMPu_S1 Homo sapi				10.00		
25	105298	BE387790	Hs.26369	hypothetical protein FLJ20287	3.69					
25	105409	AW505076	Hs.301855	DiGeorge syndrome critical region gene 8 Homo sapiens, clone IMAGE:4179986, mRNA,			7.00	9.20		
	105460 105667	AW296078 AA767526	Hs.271721 Hs.22030	paired box gene 5 (B-cell lineage specif	4.12		7.80			
	105743	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	3.82					
20	105782	H09748	Hs.57987	B-cell CLL/lymphoma 11B (zinc finger pro			27.00			
30	105848	AW954064	Hs.24951	ESTs			7.60			
	105891 106019	U55984 AF221993	Hs.289088 Hs.46743	heat shock 90kD protein 1, alpha McKusick-Kaufman syndrome			16.80		4.14	
	106069	BE566623	Hs.29899	ESTs, Weakly similar to G02075 transcrip			23.40			
2 =	106073	AL157441	Hs.17834	downstream neighbor of SON	9.50					
35	106126	AA576953	Hs.22972	hypothetical protein FLJ13352	6.00					
	106159 106220	AK001301	Hs.3487 Hs.32196	hypothetical protein FLJ10439					3.95 6.04	
	106260	D61329 Al097144	Hs.5250	mitochondrial ribosomal protein L36 ESTs, Weakly similar to ALU1_HUMAN ALU S			13.20		0.04	
40	106300	Y10043	Hs.19114	high-mobility group (nonhistone chromoso			10.20		5.02	
40	106307	AA436174	Hs.37751	ESTs, Weakly similar to putative p150 [6.60				
	106318 106341	AA025610	Hs.9605	cleavage and polyadenylation specific fa					5.04	
	106341	AF191020 AA449563	Hs.5243 Hs.151393	hypothetical protein, estradiol-induced glutamate-cysteine ligase, catalytic sub			13.80		7.25	
	106481	D61594	Hs.17279	tyrosylprotein sulfotransferase 1	4.75		10.00			
45	106586	AA243837	Hs.57787	ÉSTS				10.84		
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr	20.00			45.60		
	106654 106785	AW075485 Y15227	Hs.286049 Hs.20149	phosphoserine aminotransferase deleted in lymphocytic leukemia, 1	28.00 3.00					
	106813	C05766	Hs.181022	CGI-07 protein	0.00		11.40			
50	106895	AK001826	Hs.25245	hypothetical protein FLJ11269			6.00			
	106913	AI219346	Hs.86178	M-phase phosphoprotein 9		6.56			4.07	
	106919 107054	AW043637 Al076459	Hs.21766 Hs.15978	ESTs, Weakly similar to ALU5_HUMAN ALU S KIAA1272 protein				34.80	4.27	
	107059	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	4.71			04.00		
55	107098	Al823593	Hs.27688	ESTs				24.80		
	107104	AU076640	Hs.15243	nucleolar protein 1 (120kD)	0.00				7.05	
	107129 107198	AC004770 AV657225	Hs.4756 Hs 9846	flap structure-specific endonuclease 1	2.60	10 20				
	107203	D20426	Hs.9846 Hs.41639	KIAA1040 protein programmed cell death 2		19.20 7.60				
60	107217	AL080235	Hs.35861	DKFZP586E1621 protein	9.50					
	107284	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte	2.71		0.74			
	107318 107516	T74445 X57152	Hs.5957 Hs.99853	Homo sapiens clone 24416 mRNA sequence fibrillarin			8.71		4.33	
	107529	BE515065	Hs.296585	nucleolar protein (KKE/D repeat)					4.00	
65	107728	AA019551	Hs.294151	Homo sapiens, clone IMAGE:3603836, mRNA,		10.80				
	107851	AA022953	Hs.61172	EST			8.00			
	107901 107922	L42612 BE153855	Hs.335952 Hs.61460	keratin 6B Ig superfamily receptor LNIR	3.40					
	107932	AW392555	Hs.18878	hypothetical protein FLJ21620	2.88 7.50					
70	108015	AW298357	Hs.49927	protein kinase NYD-SP15				23.40		
	108056	AA043675	Hs.62633	ESTs				12.80		
	-108075	Al867370	Hs.139709	hypothetical protein FLJ12572		7.00		12.80		
	108187 108296	BE245374 N31256	Hs.27842 Hs.161623	hypothetical protein FLJ11210 ESTs		6.60				
75	108305	AA071391		gb:zm61e06.r1 Stratagene fibroblast (937		0.00		11.80		
	108393	AA075211		gb:zm86a08.r1 Stratagene ovarian cancer				11.80		
	108480	AL133092	Hs.68055	hypothetical protein DKFZp434I0428		6.40		20.80		
	108554 108573	AA084948 AA086005		gb:zn13b09.s1 Stratagene hNT neuron (937 gb:zl84c04.s1 Stratagene colon (937204)		6.40		25.40		
80	108584	AA088326	Hs.120905	Homo sapiens cDNA FLJ11448 fis, clone HE		9.60		-0.70		
	108597	AK000292	Hs.278732	hypothetical protein FLJ20285				14.60		
	108695	AB029000	Hs.70823	KIAA1077 protein	3.00			10.00		
_	108699 108700	AA121514 AA121518	Hs.70832 Hs.193540	ESTs ESTs, Moderately similar to 2109260A B c			11.00	10.00		
85	108780	AU076442	Hs.117938	collagen, type XVII, alpha 1	11.21					
				• • • •						

	***	0.00/00/	4.42						DCT/US00/40/5/
		O 02/086		hundhatiaal aratain MCC5250	0.50				PCT/US02/12476
	108810 108816	AW295647 AA130884	Hs.71331 Hs.270501	hypothetical protein MGC5350 ESTs, Moderately similar to ALU2_HUMAN	8.50	7.40			
	108857	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act	4.00				
5	108860	AA133334	Hs.129911	ESTs	6.09				
3	108937 109010	AL050107 NM_007240	Hs.24341 Hs.44229	transcriptional co-activator with PDZ-bi dual specificity phosphatase 12	3.00 2.69				
	109121	BE389387	Hs.49767	NADH dehydrogenase (ubiquinone) Fe-S pro	2.00				4.53
	109166	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	10.58				
10	109227 109415	AA766998 U80736	Hs.85874 Hs.110826	Human DNA sequence from clone RP11-16L21 trinucleotide repeat containing 9		9.00 51.40			
10	109418	Al866946	Hs.161707	ESTs		31.40		11.00	
	109454	AA232255	Hs.295232	ESTs, Moderately similar to A46010 X-li			17.60		
	109502	AW967069	Hs.211556	hypothetical protein MGC5487		10.67	9.49		
15	109543 109648	AA564994 H17800	Hs.222851 Hs.7154	ESTs - ESTs		12.67		10.40	
10	109680	AB037734	Hs.4993	KIAA1313 protein			33.20	10.10	
	109700	F09609		gb:HSC33H092 normalized infant brain cDN			44.00	16.00	
	109704 109792	Al743880 R49625	Hs.12876	ESTs gb:yg61f03.s1 Soares infant brain 1NIB H			11.00	12.60	
20	109792	BE546208	Hs.26090	hypothetical protein FLJ20272	4.00			12.00	
	109998	AL042201	Hs.21273	transcription factor NYD-sp10		7.80			
	110039	H11938	Hs.21907	histone acetyltransferase		7.00			101
	110156 110500	AA581322 AA907723	Hs.4213 Hs.36962	hypothetical protein MGC16207 ESTs	4.50				4.24
25	110551	AW450381	Hs.14529	ESTs	4.00	8.60			
	110561	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	3.06				
	110854	BE612992	Hs.27931	hypothetical protein FLJ10607 similar to		6.80	8.80		
	110886 110916	AW274992 BE178102	Hs.72249 Hs.24349	three-PDZ containing protein similar to ESTs		6.80	0.80		
30	111003	N52980	Hs.83765	dihydrofolate reductase		0.00		16.80	
	111337	AA837396	Hs.263925	LIS1-interacting protein NUDE1, rat homo	2.54				
	111434	R01608	Hs.142736	ESTs		•		9.80 10.40	
	111439 111540	A1476429 U82670	Hs.19238 Hs.9786	ESTs zinc finger protein 275			15.40	10.40	
35	111597	R11499	Hs.189716	ESTs				9.20	
	111895	T80581	Hs.12723	Homo sapiens clone 25153 mRNA sequence		6.80		44.07	
	111929 112054	AF027208 R43590	Hs.112360	prominin (mouse)-like 1 gb:yc85g02.s1 Soares infant brain 1NIB H		10.80		14.67	
	112210	R49645	Hs.7004	ESTs		10.00		10.20	
40	112244	AB029000	Hs.70823	KIAA1077 protein	2.99				
	112382	R59904	11. 400074	gb:yh07g12.s1 Soares infant brain 1NIB H		6.60	7.40		
	112392 112442	R60763 AA280174	Hs.193274 Hs.285681	ESTs, Moderately similar to 157588 HSrel Williams-Beuren syndrome chromosome regi	3.00		7.10		
	112539	R70318	Hs.339730	ESTs	0.00			37.20	
45	112772	Al992283	Hs.35437	ESTs, Moderately similar to 138026 MLN 6				14.60	
	112869 112935	BE261750 R71449	Hs.4747 Hs.268760	dyskeratosis congenita 1, dyskerin ESTs	2.73				4.83
	112933	AA694010	Hs.6932	Homo sapiens clone 23809 mRNA sequence	2.10			12.00	
~ 0	112973	AB033023	Hs.318127	hypothetical protein FLJ10201	11.50				
50	112992	AL157425	Hs.133315	Homo sapiens mRNA; cDNA DKFZp761J1324 (f	45.00		10.89		
	113063 113073	W15573 N39342	Hs.5027 Hs.103042	ESTs, Weakly similar to A47582 B-cell gr microtubule-associated protein 1B	15.00		15.31		
	113078	T40444	Hs.118354	CAT56 protein		7.00	10.01		
EE	113238	R45467	Hs.189813	ESTs				41.20	
55	113591 113702	T91881 T97307	Hs.200597	KIAA0563 gene product gb:ye53h05.s1 Soares fetal liver spleen	25.00			9.40	
	113844	Al369275	Hs.243010	Homo sapiens cDNA FLJ14445 fis, clone HE	25.00			13.91	
	113984	R96696	Hs.35598	ESTs		7.80			
60	114073	R44953	Hs.22908	Homo sapiens mRNA; cDNA DKFZp434J1027 (f	2.40	7.20			
00	114162 114208	AF155661 AL049466	Hs.22265 Hs.7859	pyruvate dehydrogenase phosphatase ESTs	3.42		6.74		
	114251	H15261	Hs.21948	ESTs				33.20	
	114285	R44338	Hs.22974	ESTs				13.20	
65	114313 114339	H18456 AA782845	Hs.27946 Hs.22790	ESTs ESTs		7.80		10.00	
05	114407	BE539976	Hs.103305	Homo sapiens mRNA; cDNA DKFZp434B0425 (f		7.00			4.14
	114560	AI452469	Hs.165221	ESTs				9.80	
	114699	AA127386	11- 454440	gb:zn90d09.r1 Stratagene lung carcinoma	2.04	7.60			
70	114767 114793	A1859865 AA158245	Hs.154443	minichromosome maintenance deficient (S qb:zo76c03.s1 Stratagene pancreas (93720	3.21		6.00		
, 0	114833	Al417215	Hs.87159	hypothetical protein FLJ12577			0.00	11.40	
	115047	BE270930	Hs.82916	chaperonin containing TCP1, subunit 6A (4.31
	115060	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3				35.40	4.03
75	115097 115113	AA256213 AA256460	Hs.72010	ESTs qb:zr81a04.s1 Soares_NhHMPu_S1 Homo sapi				15.20	
	115123	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m					4.19
	115134	AW968073	Hs.194331	ESTs, Highly similar to A55713 inositol	05.00			12.40	
	115291 115347	BE545072 AA356792	Hs.122579 Hs.334824	hypothetical protein FLJ10461 hypothetical protein FLJ14825	25.00	7.00			
80	115414	AA662240	Hs.283099	AF15q14 protein	3.25				
	115522	BE614387	Hs.333893	c-Myc target JPO1	3.68				
	115536 115566	AK001468 Al142336	Hs.62180 Hs.43977	anillin (Drosophila Scraps homolog), act Human DNA sequence from clone RP11-196N1	10.50			24.40	
	115645	A1142336 A1207410	Hs.69280	Homo sapiens, clone IMAGE:3636299, mRNA,	4.17			27.70	
85	115648	AW016811	Hs.234478	Homo sapiens cDNA: FLJ22648 fis, clone H			6.00		

	W	O 02/086	443						PCT/US02/12476
	115652	BE093589	Hs.38178	hypothetical protein FLJ23468	3.81	•			
	115697 115793	D31382 AA424883	Hs.63325 Hs.70333	transmembrane protease, serine 4 hypothetical protein MGC10753	62.14			11.80	
~	115816	BE042915	Hs.287588	Homo sapiens cDNA FLJ13675 fis, clone PL				9.71	
5	115892 115906	AA291377 Al767756	Hs.50831 Hs.82302	ESTs Homo sapiens cDNA FLJ14814 fis, clone NT	2.53		27.40		
	115900	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	11.82				
	115965	AA001732	Hs.173233	hypothetical protein FLJ10970				34.29	8.23
10	115978 115985	AL035864 AA447709	Hs.69517 Hs.268115	cDNA for differentially expressed CO16 g ESTs, Weakly similar to T08599 probable	3.00				6.23
	116090	Al591147	Hs.61232	ESTs	5.17		0.00		
	116096 116127	AA682382 AF126743	Hs.59982 Hs.279884	ESTs DNAJ domain-containing		10.60	8.20		
4 -	116157	BE439838	Hs.44298	mitochondrial ribosomal protein S17		70.00			5.82
15	116190	Al949095	Hs.67776 Hs.47504	ESTs, Weakly similar to T22341 hypotheti exonuclease 1	9.50				4.08
	116278 116335	NM_003686 AK001100	Hs.41690	desmocollin 3	3.67				
	116496	AW450694	Hs.21433	hypothetical protein DKFZp547J036		7.00		12.60	
20	116503 116674	Al925316 Al768015	Hs.212617 Hs.92127	ESTs ESTs			32.00	12.00	
	116929	AA586922	Hs.80475	polymerase (RNA) II (DNA directed) polyp		7.60			
	116973 116993	Al702054 Al417023	Hs.166982 Hs.40478	phosphatidylinositol glycan, class F ESTs	•	9.80		10.20	
2.5	117079	H92325		gb:ys85f05.s1 Soares retina N2b4HR Homo				15.20	
25	117317	Al263517	Hs.43322 Hs.241420	ESTs Homo sapiens mRNA for KIAA1756 protein,				13.40 20.60	
	117326 117396	N23629 W20128	Hs.296039	ESTs				10.60	
	117412	N32536	Hs.42645	ESTs				16.00 9.11	
30	117519 117693	N32528 AW179019	Hs.146286 Hs.112110	kinesin family member 13A mitochondrial ribosomal protein L42				3.11	4.01
•	117721	N46100	Hs.93939	EST	0.74			19.80	
	117881 117903	AF161470 AA768283	Hs.260622 Hs.47111	butyrate-induced transcript 1 ESTs	2.71			17.80	
	117992	Al015709	Hs.172089	Homo sapiens mRNA; cDNA DKFZp586l2022 (f					4.17
35	118013	Al674126 Al813444	Hs.94031 Hs.42197	ESTs ESTs			8.82	10.60	
	118017 118186	N22886	Hs.42380	ESTs		7.00	0.02		
	118325	Al868065	Hs.166184	intersectin 2			6.14	13.80	
40	118367 118368	N64269 N64339	Hs.48946 Hs.48956	EST gap junction protein, beta 6 (connexin 3	3.14		0.14		
	118472	AL157545	Hs.42179	bromodomain and PHD finger containing, 3			12.40	12.20	
	118709 119025	AA232970 BE003760	Hs.293774 Hs.55209	ESTs Homo sapiens mRNA; cDNA DKFZp434K0514 (f	4.50			12.20	•
4.5	119027	AF086161	Hs.114611	hypothetical protein FLJ11808	3.22				
45	119052 119164	R10889 AF221993	Hs.46743	gb:yf38d02.s1 Soares fetal liver spleen McKusick-Kaufman syndrome		9.60	6.60		
	119186	Al979147	Hs.101265	hypothetical protein FLJ22593			0.00	10.80	
	119243	T12603	11- 000000	gb:CHR90123 Chromosome 9 exon Il Homo sa ESTs, Moderately similar to B34087 hypot				9.44 11.80	
50	119490 119499	AA195276 Al918906	Hs.263858 Hs.55080	ESTs, Moderatery Similar to B34067 hypot			14.80	11.00	
	119599	W45552		gb:zc26d03.s1 Soares_senescent_fibroblas	47.00	12.60			
	119780 119845	NM_016625 W79123	Hs.191381 Hs.58561	hypothetical protein G protein-coupled receptor 87	17.00 13.50				
	119941	AA699485	Hs.58896	ESTs	7 70	8.00			
55	119994 120102	AA642402 W67353	Hs.59142 Hs.170218	ESTs KIAA0251 protein	7.73		39.60		•
	120104	AK000123	Hs.180479	hypothetical protein FLJ20116	2.91				•
	120294 120486	AK000059 AW368377	Hs.153881 Hs.137569	Homo sapiens NY-REN-62 antigen mRNA, par tumor protein 63 kDa with strong homolog	8.73		8.20		
60	120599	AA804448	Hs.104463	ESTs	0.10	7.00			
	120699	A1683243	Hs.97258	ESTs, Moderately similar to S29539 ribos gb:zs59a06.s1 NCI_CGAP_GCB1 Homo sapiens		9.40		10.00	
	120715 120821	AA292700 Y19062	Hs.96870	staufen (Drosophila, RNA-binding protein				13.80	
65	120859	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol		9.00			
65	120880 120983	AA360240 AA398209	Hs.97019 Hs.97587	EST EST		15.60	27.66		
	121034	AL389951	Hs.271623	nucleoporin 50kD			20.80		
	121121 121313	AA399371 AA402713	Hs.189095 Hs.97872	similar to SALL1 (sal (Drosophila)-like ESTs		22.80		10.00	
70	121369	AW450737	Hs.128791	CGI-09 protein	25.71				w 10
	121376 121476	AA448103 AA412311	Hs.187958 Hs.97903	solute carrier family 6 (neurotransmitte ESTs		8.30			5.42
	121509	AA868939	Hs.97888	ESTs		8.59			
75	121553	AA412488	Hs.48820	TATA box binding protein (TBP)-associat	18.50 7.00				
13	121753 121838	AK000552 AA425680	Hs.323518 Hs.98441	WD repeat domain 5 ESTs				10.40	
	121857	BE387162	Hs.280858	ESTs, Highly similar to A35661 DNA excis	6.00			12.20	
	121991 122089	AA430058 AW016543	Hs.98649 Hs.98682	EST hypothetical protein FKSG32			8.60	12.2U	
80	122105	AW241685	Hs.98699	ESTs			6.14	10.40	
	122163 122318	AA435702 AA429743	Hs.98829	EST gb:zv60b05.r1 Soares_testis_NHT Homo sap				10.40 18.20	
	122335	AA443258	Hs.241551	chloride channel, calcium activated, fam	13.50				
85	122338 122414	AA443311 Al313473	Hs.98998 Hs.99087	ESTs ESTs, Weakly similar to S47073 finger pr	4.80	8.00			
33	166414	, 110 (UT/U	110.00001	20.0, froming common to a read migat pr		JV			

	W	O 02/086	443						PCT/US02/12476
		AF053305	Hs.98658	budding uninhibited by benzimidazoles 1			8.80	0.10	
		AA449352	Hs.99217	ESTs		9.20		9.40	
	122702	Al220089 Al580056	Hs.99439 Hs.98992	ESTs ESTs		5.20		10.40	
5	122925	AW268962	Hs.111335	ESTs		6.80			
	123005	AW369771	Hs.52620	integrin, beta 8			12.60		5.35
	123044 123160	AK001035 AA488687	Hs.130881 Hs.284235	B-cell CLL/lymphoma 11A (zinc finger pro ESTs, Weakly similar to I38022 hypotheti			6.06		0.00
4.0	123315	AA496369	110120 1200	gb:zv37d10.s1 Soares ovary tumor NbHOT H			12.40		
10	123329	Z47542	Hs.179312	small nuclear RNA activating complex, po		12.00	11.80		
	123497 123518	AA765256 AL035414	Hs.135191 Hs.21068	ESTs, Weakly similar to unnamed protein hypothetical protein		12.00	13.00		
	123519	AW015887	Hs.112574	ESTs		12.20			
15	123614	AK000492	Hs.98806	hypothetical protein			7.80	10.60	
13	123616 123673	AA680003 BE550112	Hs.109363 Hs.158549	Homo sapiens cDNA: FLJ23603 fis, clone L ESTs, Weakly similar to T2D3_HUMAN TRANS	23.00			10.00	
	123727	AI083986	Hs.282977	hypothetical protein FLJ13490		7.00			
	123731	AA609839	N- 470700	gb:ae62f01.s1 Stratagene lung carcinoma	3.50		9.80		
20	123752 123900	AA227714 AA621223	Hs.179703 Hs.112953	KIAA0129 gene product EST	3.30			12.80	
 0	124006	Al147155	Hs.270016	ESTs	97.00				
	124059	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	3.02		27.80		
	124069 124191	AF134160 T96509	Hs.7327 Hs.248549	claudin 1 ESTs, Moderately similar to S65657 alpha			27.00	35.80	
25	124273	AA457211	Hs.8858	bromodomain adjacent to zinc finger doma		7.20			
	124297	AL080215	Hs.102301	Homo sapiens mRNA; cDNA DKFZp586J0323 (f				11.00 16.00	
	124305 124676	AW963221 Al360119.com	nHs 181013	gb:EST375294 MAGE resequences, MAGH Homo phosphoglycerate mutase 1 (brain)				10.00	6.08
• •	124874	BE550182	Hs.127826	RalGEF-like protein 3, mouse homolog				21.00	
30	124904	AK000483	Hs.93872	KIAA1682 protein		9.40		10:80	•
	124969 125000	Al650360 T58615	Hs.100256 Hs.110640	ESTs ESTs				9.80	
	125201	AA693960	Hs.103158	ESTs, Weakly similar to T33296 hypotheti		7.60			
25	125266	W90022	Hs.186809	ESTs, Highly similar to LCT2_HUMAN LEUKO		6.59		9.57	
35	125299 125356	T32982 Al057052	Hs.102720 Hs.133554	ESTs ESTs, Weakly similar to Z195_HUMAN ZINC				14.00	
	125370	AA256743	Hs.134158	Homo sapiens, Similar to KIAA0092 gene p			8.20		
	125418	AA777690	Hs.188501	ESTs		21.40		13.20	•
40	125433 125437	AL162066 Al609449	Hs.54320 Hs.140197	hypothetical protein DKFZp762D096 ESTs		6.96			
	125446	BE219987	Hs.166982	phosphatidylinositol glycan, class F		8.80			
	125711	AA305800	Hs.5672	hypothetical protein AF140225				11.20	4.31
	125756 125757	BE174587 Al274906	Hs.289721 Hs.166835	growth arrest specific transcript 5 ESTs, Highly similar to 1814460A p53-ass				15.60	4.51
45	125769	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	3.20				
	125839	AW836261	Hs.337717	ESTs	2.65	8.20			
	125850 125875	W85858 H14480	Hs.99804	ESTs gb:ym18b09.r1 Soares infant brain 1NIB H	2.00	7.40			·
7 0	125924	BE272506	Hs.82109	syndecan 1					4.23
50	125972	Al927475	Hs.35406	ESTs, Highly similar to unnamed protein gb:yr39b04.r1 Soares fetal liver spleen				10.60	3.98
	126034 126327	H60340 AA432266	Hs.44648	ESTs		11.60		10.00	
	126345	N49713		gb:yv23f06.s1 Soares fetal liver spleen		6.67		40.00	
55	126435	AW614529	Hs.285847	CGI-19 protein solute carrier family 7 (cationic amino				10.60	4.38
55	126487 126521	AA283809 AI475110	Hs.184601 Hs.203933	ESTs		6.60			4.00
	126522	W31912		gb:zc76d03.s1 Pancreatic Islet Homo sapi				14.80	* 404
	126543	AL035864	Hs.69517	cDNA for differentially expressed CO16 g ESTs, Weakly similar to KIAA0758 protein			7.80		4.01
60	126567 126605	AA058394 AA676910	Hs.57887	gb:zi65h07.s1 Soares_fetal_liver_spleen_			7.00	11.60	
	126627	AA497044	Hs.20887	hypothetical protein FLJ10392	0.00			14.60	
	126628 126737	N49776 AW976516	Hs.170994 Hs.283707	hypothetical protein MGC10946 Homo sapiens cDNA: FLJ21354 fis, clone C	8.00 2.92				
	126795	AW975076	Hs.172589	nuclear phosphoprotein similar to S. cer	7.50				
65	126802	AW805510	Hs.97056	hypothetical protein FLJ21634	0.50	11.60			
	126892 126928	AF121856 AA480902	Hs.284291 Hs.137401	sorting nexin 6 ESTs	3.50			22.83	
	126979	AA210954	115.137401	gb:zq89h10.r1 Stratagene hNT neuron (937				11.80	
70	126986	Al279892	Hs.46801	sorting nexin 14				11.60	
70	126992 127066	Al809521 R25066	•	gb:wf30e03.x1 Soares_NFL_T_GBC_S1 Homo s gb:yg42c07.r1 Soares infant brain 1NiB H				20.80 27.60	
	127000	AA347668		gb:EST54026 Fetal heart II Homo sapiens				21.60	
	127139	AA830233	Hs.293585	ESTs	0.40			11.20	
75	127209 127221	AA305023 BE062109	Hs.81964 Hs.241551	SEC24 (S. cerevisiae) related gene famil chloride channel, calcium activated, fam	3.10 2.76				
, 5	127221	AA315933	Hs.120879	ESTs				16.80	
	127313	AK002014	Hs.47546	Homo sapiens cDNA FLJ11458 fis, clone HE	14.00			12.00	
	127444 127500	AW978474 AW971353	Hs.7560 Hs.162115	Homo sapiens mRNA for KIAA1729 protein, ESTs		11.20		13.60	
80	127524	Al243596	Hs.94830	ESTs, Moderately similar to T03094 A-kin			7.80		
	127540	N45572	Hs.105362	Homo sapiens, cione MGC:18257, mRNA, com	3.53			13.80	
	127599 127609	AA613204 X80031	Hs.150399 Hs.530	ESTs collagen, type IV, alpha 3 (Goodpasture				28.00	
0.5	127662	W80755	Hs.8294	KIAA0196 gene product				19.80	
85	127668	A1343257	Hs.139993	ESTs				11.20	

	w	O 02/086	443						PCT/US02/12476
		Al239495	Hs.120189	ESTs				14.18	1 C1/0502/124/0
	127812	AA741368	Hs.291434	ESTs	4.50			`	
	127817 127959		Hs.163085 Hs.124292	ESTs Homo sapiens cDNA: FLJ23123 fis, clone L				24.60 9.20	
5	127960	Al613226	Hs.41569	phosphatidic acid phosphatase type 2A				16.83	
	127969	F06498	Hs.93748	Homo sapiens cDNA FLJ14676 fis, clone NT		13.60			
	128015 128027	Z21169 AI433721	Hs.334659 Hs.164153	hypothetical protein MGC14139 ESTs		7.00		37.40	
4.0	128077		Hs.128720	ESTs				9.60	
10	128166	NM_006147	Hs.11801	interferon regulatory factor 6	40.00			9.24	
	128226 128305	Al284940 Al954968	Hs.289082 Hs.279009	GM2 ganglioside activator protein matrix Gla protein	19.00			10.40	
	128341	AA191420	Hs.185030	ESTs		9.00			•
1.5	128527	AA504583	Hs.101047	transcription factor 3 (E2A immunoglobul		40.00			4.30
15	128539 128568	R46163 H12912	Hs.258618 Hs.274691	ESTs adenylate kinase 3		12.60			4.56
	128572		Hs.256583	interleukin enhancer binding factor 3, 9				10.00	
	128777	Al878918	Hs.10526	cysteine and glycine-rich protein 2			16.80		4.40
20	128781 128796	N71826 AJ000152	Hs.105465 Hs.105924	small nuclear ribonucleoprotein polypept defensin, beta 2		8.12			4.48
20	128920	AA622037	Hs.166468	programmed cell death 5		0			4.62
	128924	BE279383	Hs.26557	plakophilin 3		10.60			4.04
	128971 129008	H05132 AL079648	Hs.107510 Hs.301088	ESTs ESTs		12.60 8.80			
25	129041	BE382756	Hs.169902	solute carrier family 2 (facilitated glu					6.05
	129075	BE250162	Hs.83765	dihydrofolate reductase	2.59		0.07		
	129105 129189	A!769160 AB023179	Hs.108681 Hs.9059	Homo sapiens brain tumor associated prot KIAA0962 protein		8.00	6.67		
	129229	AF013758	Hs.109643	polyadenylate binding protein-interactin	4.00	0.00			
30	129241	A1878857	Hs.109706	hematological and neurological expressed	0.55				4.06
	129300 129404	W94197 Al267700	Hs.110165 Hs.317584	ribosomal protein L26 homolog ESTs	2.55 18.00				
	129457	X61959	Hs.207776	aspartylglucosaminidase	6.50				
2.5	129466	L42583	Hs.334309	keratin 6A	12.94			44.00	
35	129494 129605	AI148976 AF061812	Hs.112062 Hs.115947	ESTs keratin 16 (focal non-epidermolytic palm				11.00	4.46
	129605	AP001012 Al911527	Hs.11805	ESTs				12.00	-110
	129665	AW163331	Hs.118778	KDEL (Lys-Asp-Glu-Leu) endoplasmic retic					4.70
40	129703	BE388665 AA156214	Hs.179999 Hs.12152	Homo sapiens, clone IMAGE:3457003, mRNA APMCF1 protein					4.02 5.71
40	129720 129748	M16707	Hs.123053	H4 histone, family 2	3.50				0.71
	129890	Al868872	Hs.282804	hypothetical protein FLJ22704					4.21
	129896	BE295568	Hs.13225	UDP-Gal:betaGlcNAc beta 1,4- galactosylt	2.56				4.03
45	129945 130010	BE514376 AA301116	Hs.165998 Hs.142838	PAI-1 mRNA-binding protein nucleolar phosphoprotein Nopp34			7.00		4.00
	130026	T40480	Hs.332112	EST		6.40			4.05
	130080	X14850	Hs.147097 Hs.172665	H2A histone family, member X methylenetetrahydrofolate dehydrogenase	2.74				4.65
	130149 130285	AW067805 AA063546	Hs.75981	ubiquitin specific protease 14 (tRNA-gua	2.14		7.40		
50	130441	U63630	Hs.155637	protein kinase, DNA-activated, catalytic					3.91
	130482 130500	AW409701 AB007913	Hs.1578 Hs.158291	baculoviral IAP repeat-containing 5 (sur KIAA0444 protein	4.87			9.60	
	130524	U89995	Hs.159234	forkhead box E1 (thyroid transcription f			13.40	0.00	
	130541	X05608	Hs.211584	neurofilament, light polypeptide (68kD)			8.20		0.00
55	130553 130567	AF062649 AA383092	Hs.252587 Hs.1608	pituitary tumor-transforming 1 replication protein A3 (14kD)			7.00		6.06
	130577	M69241	Hs.162	insulin-like growth factor binding prote	3.04		1.00		
	130627	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	3.87			40.00	
60	130648 130697	Al458165 L29472	Hs.17296 Hs.1802	hypothetical protein MGC2376 major histocompatibility complex, class				16.20 17.80	
00	130744	H59696	Hs.18747	POP7 (processing of precursor, S. cerevì					5.28
	130800	Al187292	Hs.19574	hypothetical protein MGC5469	40.04				4.43
	130867	NM_001072 J03626	Hs.284239 Hs.2057	UDP glycosyltransferase 1 family, polype uridine monophosphate synthetase (orotat	16.84				4.92
65	130869 130925	ÅF093419	Hs.169378	multiple PDZ domain protein				9.60	
	130994	W17044	Hs.327337	ESTs	40.04	12.40			
	131028 131031	Al879165 NM_001650	Hs.2227 Hs.288650	CCAAT/enhancer binding protein (C/EBP), aquaporin 4	10.21			9.80	
	131041	T15767	Hs.22452	Homo sapiens mRNA for KIAA1737 protein,				9.60	,
70	131058	W28545	Hs.101514	hypothetical protein FLJ10342				17.00	
	131090 131112	AI143139 H15302	Hs.2288 Hs.168950	visinin-like 1 Homo sapiens mRNA; cDNA DKFZp566A1046 (f	2.74		8.80		
	131148	AW953575	Hs.303125	p53-induced protein PIGPC1	3.12		0.00		
7.5	131185	BE280074	Hs.23960	cyclin B1	3.07				
75	131200	BE540516	Hs.293732 Hs.24395	hypothetical protein MGC3195 small inducible cytokine subfamily B (Cy	3.07 2.87				
	131219 131257	W25005 AW339037	Hs.24395 Hs.24908	ESTs	£.U!			14.67	
	131375	AW293165	Hs.143134	ESTs			19.20	*	
80	131460	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	3.50 15.00				
OU	131476 131510	AI521663 BE245374	Hs.334644 Hs.27842	hypothetical protein FLJ14668 hypothetical protein FLJ11210	15.00		7.80		
	131646	BE302464	Hs.30057	MRS2 (S. cerevisiae)-like, magnesium hom	0.55		7.00		
	131786	BE000971	Hs.306083	Novel human gene mapping to chomosome 22 KIAA0633 protein	2.65			35.20	
85	131839 131843	AB014533 AA192315	Hs.33010 Hs.184062	putative Rab5-interacting protein				30.20	4.11

	XX 7	A 02/086	112						DCT/HS02/12476
	131877	O 02/0864 J04088	443 Hs,156346	topoisomerase (DNA) II alpha (170kD)	19.00				PCT/US02/12476
	131885	BE502341	Hs.3402	ESTs	6.48				
	131921	AA456093	Hs.34720	ESTs			8.40		
5	131945	NM_002916	Hs.35120	replication factor C (activator 1) 4 (37	56.00				3.82
5	131958 131965	NM_014062 W79283	Hs.3566 Hs.35962	ART-4 protein ESTs	3.03				3.02
	132000	AW247017	Hs.36978	melanoma antigen, family A, 3		9.80			
	132040	NM_001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fis, clone H	3.30				
10	132109 132114	AW190902 NM_006152	Hs.40098 Hs.40202	cysteine knot superfamily 1, BMP antagon lymphoid-restricted membrane protein	21.00	8.40			
10	132162	AA315805	Hs.94560	desmoglein 2		0			12.25
	132164	Al752235	Hs.41270	procollagen-lysine, 2-oxoglutarate 5-dio	2.70				
	132180 132181	NM_004460 AW961231	Hs.418 Hs.16773	fibroblast activation protein, alpha Homo sapiens clone TCCCIA00427 mRNA sequ	2.71 3.83				
15	132182	NM_014210	Hs.70499	ecotropic viral integration site 2A	0.00			13.20	
	132231	AA662910	Hs.42635	hypothetical protein DKFZp434K2435	9.50				
	132277	AK001745	Hs.184628	hypothetical protein FLJ10883	4.50			9.20	
	132328 132394	NM_014787 AK001680	Hs.44896 Hs.30488	DnaJ (Hsp40) homolog, subfamily B, membe DKFZP434F091 protein				9.20 19.80	
20	132424	AA417878	Hs.48401	ESTs, Moderately similar to ALU8_HUMAN A			8.60	10.00	•
	132528	T78736	Hs.50758	SMC4 (structural maintenance of chromoso			27.40		
	132543	BE568452	Hs.5101	protein regulator of cytokinesis 1	4.38	7.00			
	132544 132550	L19778 AW969253	Hs.51011 Hs.170195	H2A histone family, member P bone morphogenetic protein 7 (osteogenic	2.64	7.00			
25	132552	BE621985	Hs.296922	thiopurine S-methyltransferase			*	15.83	
	132581	AK000631	Hs.52256	hypothetical protein FLJ20624	4.00		6.60		
	132617 132638	AF037335 Al796870	Hs.5338 Hs.54277	carbonic anhydrase XII DNA segment on chromosome X (unique) 992	4.95	8.20			
	132653	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	4.38	0.20			
30	132669	W38586	Hs.293981	guanine nucleotide binding protein (G pr					4.36
	132710	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	4.60				
	132771 132799	Y10275 W73311	Hs.56407 Hs.169407	phosphoserine phosphatase SAC2 (suppressor of actin mutations 2,	3.71			9.48	
	132833	U78525	Hs.57783	eukaryotic translation initiation factor				0.10	5.83
35	132892	AW834050	Hs.9973	tensin				12.00	
	132906	BE613337	Hs.234896	geminin	3.09				3.87
	132959 132962	AW014195 AA576635	Hs.61472 Hs.6153	ESTs, Weakly similar to YAE6_YEAST HYPOT CGI-48 protein	3.50				5.67
40	132990	X77343	Hs.334334	transcription factor AP-2 alpha (activat	6.18				
40	132994	AA112748	Hs.279905	clone HQ0310 PRO0310p1	3.19				
	133000 133050	AL042444 X73424	Hs.62402 Hs.63788	p21/Cdc42/Rac1-activated kinase 1 (yeast propionyl Coenzyme A carboxylase, beta p	2.96 2.55				
	133083	BE244588	Hs.6456	chaperonin containing TCP1, subunit 2 (b	2.00				4.00
15	133086	L17131	Hs.139800	high-mobility group (nonhistone chromoso					8.96
45	133134 133155	AF198620 M58583	Hs.65648 Hs.662	RNA binding motif protein 8A cerebellin 1 precursor				10.80	4.28
	133181	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	3.00			10.00	
	133204	BE267696	Hs.254105	enolase 1, (alpha)					4.63
50	133412	U41493	Hs.73112	guanine nucleotide binding protein (G pr	2.00	12.50			
30	133421 133451	AF134160 AW970026	Hs.7327 Hs.73818	claudin 1 ubiquinol-cytochrome c reductase hìnge p	2.85				4.66
	133453	A1659306	Hs.73826	protein tyrosine phosphatase, non-recept		6.80			
	133504	NM_004415	Hs.74316	desmoplakin (DPI, DPII)	6.14				4.55
55	133506 133615	BE562958 M62843	Hs.74346 Hs.75236	hypothetical protein MGC14353 ELAV (embryonic lethal, abnormal vision,				17.80	4.55
55	133627	NM_002047	Hs.75280	glycyl-tRNA synthetase					4.85
	133649	U25849	Hs.75393	acid phosphatase 1, soluble				44.00	6.34
	133669 133749	NM_006925 L20852	Hs.166975 Hs.10018	splicing factor, arginine/serine-rich 5 solute carrier family 20 (phosphate tran			6.11	14.00	
60	133776	BE268649	Hs.177766	ADP-ribosyltransferase (NAD+; poly (ADP-			0.11		4.91
	133865	AB011155	Hs.170290	discs, large (Drosophila) homolog 5	3.07				
	133946	AJ001258	Hs.173878	NIPSNAP, C. elegans, homolog 1				13.00	4.60
	133973 134047	N55540 BE262529	Hs.78026 Hs.78771	ESTs, Weakly similar to similar to ankyr phosphoglycerate kinase 1				13.00	3.85
65	134098	BE513171	Hs.79086	mitochondrial ribosomal protein L3	2.56				
	134107	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte			8.20		1.00
	134112 134158	AW449809 U15174	Hs.79150 Hs.79428	chaperonin containing TCP1, subunit 4 (d BCL2/adenovirus E1B 19kD-interacting pro	31.00				4.08
	134160	T98152	Hs.79432	fibrillin 2 (congenital contractural ara	01.00		24.60		
70	134168	AA398908	Hs.181634	Homo sapiens cDNA: FLJ23602 fis, clone L					6.71
	134185 134201	AA285136	Hs.301914 Hs.79886	neuronal specific transcription factor D ribose 5-phosphate isomerase A (ribose 5		8.40		14.74	
	134272	L35035 X76040	Hs.278614	protease, serine, 15	4.50	0.40			
75	134276	BE083936	Hs.80976	antigen identified by monoclonal antibod	-	9.00		40.1-	
75	134353	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	2 20			16.40	
	134367 134380	AA339449 AU077143	Hs.82285 Hs.179565	phosphoribosylglycinamide formyltransfer minichromosome maintenance deficient (S.	2.80 4.68				
	134423	H53497	Hs.83006	CGI-139 protein					3.84
80	134469	AA279661	Hs.83753	small nuclear ribonucleoprotein polypept					5.81
80	134470 134498	X54942 AW246273	Hs.83758 Hs.84131	CDC28 protein kinase 2 threonyl-tRNA synthetase					4.21 7.30
	134502	BE148534	Hs.84168	UV-B repressed sequence, HUR 7		13.60			
	134510	NM_002757	Hs.250870	mitogen-activated protein kinase kinase				9.70	4.00
85	134548	N95406 AK001741	Hs.333495	Deleted in split-hand/split-foot 1 regio hypothetical protein FLJ10879	6.00		•		4.63
0.5	134654	7111001741	Hs.8739	ulboriagion biologi, i en 1001 p	0.00				

	\mathbf{W}	O 02/086	443					PCT/US02/12476		
	134724	AF045239	Hs.321576	ring finger protein 22				12.00		
	134743	AA044163	Hs.89463	potassium large conductance calcium-acti	4.00					
	134781	AA374372	Hs.89626	parathyroid hormone-like hormone			25.20			
_	134806	AD001528	Hs.89718	spermine synthase					4.58	
5	134853	BE268326	Hs.90280	5-aminoimidazole-4-carboxamide ribonucle					4.79	
	134859	D26488	Hs.90315	KIAA0007 protein			6.20			
	134891	R51083	Hs.90787	ESTs			7.40			
	134960	BE246400	Hs.285176	acetyl-Coenzyme A transporter	4.00					
10	134993	BE409809	Hs.301005	purine-rich element binding protein B	_				4.48	
10	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	9.50					
	135080	Al761180	Hs.94211	rcd1 (required for cell differentiation,	5.00					
	135103	NM_003428	Hs.9450	zinc finger protein 84 (HPF2)		11.00				
	135145	AW014729	Hs.95262	nuclear factor related to kappa B bindin					4.01	
1 5	135184	U13222	Hs.96028	forkhead box D1			7.00			
15	135242	A1583187	Hs.9700	cyclin E1	13.50					
	135286	AW023482	Hs.97849	ESTs	6.46					
	135289	AW372569	Hs.9788	hypothetical protein MGC10924 similar to	40.00	8.80				
	135355	AK001652	Hs.99423	ATP-dependent RNA helicase	10.00					
20	135371	NM_006025	Hs.997	protease, serine, 22	8.00			44.00		
20	135393	L11244	Hs.99886	complement component 4-binding protein,				14.60		

TABLE 5B shows the accession numbers for those primekeys lacking unigenelD's for Table 5A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the 25 "Accession" column.

Unique Eos probeset identifier number Pkev: CAT number: Gene cluster number 30 Genbank accession numbers Pkev CAT number Accessions 117079 1621717_1 H92325 T97125 35 124305 242183_1 AW963221 AA344870 AA344871 H93331 18202_-6 101502 M26958 109792 754958_1 R49625 F10674 126034 1598157_1 H60340 N91637 44641_1 102768 U82321 H66077 40 N49713 N49819 W03810 126345 1653833 1 R25066 R20144 R20145 Z43845 1703458_1 127066 AA347668 AW956810 Z44271 F07065 F07064 R13506 127099 244301_1 119243 1774795_1 T12603 T12604 H14480 N98295 125875 1566433_1 45 112054 1538292_1 R43590 F10439 126979 171411_1 AA210954 AA211007 Al809521 H12174 Z42556 126992 880655 1 122318 292419 1 AA429743 AA442754 AA127386 R15644 AA127404 114699 135322 1 50 150742_1 AA158245 AA158235 114793 AA071391 AA069892 AA069891 108305 111550_1 AA075211 AA075245 AA075126 AA074946 108393 113411 1 100867 tigr_HT4586 U14622 123731 genbank_AA609839 AA609839 55 genbank_F09609 F09609 109700 120715 genbank_AA292700 genbank_T97307 T AA292700 T97307 113702 genbank_AA256460 115113 AA256460 101045 entrez_J05614 J05614 60 108554 genbank_AA084948 AA084948 108573 genbank_AA086005 AA086005 119052 149538_1 R10889 R10888 W31912 Al167491 126522 416020_1 126605 439280_1 AA676910 AA778853 AA778865 W86800 65 W42667 Al580740 Al690440 Al561350 AW467906 AW151450 Al825927 AL041716 Al885600 Al742213 AW248624 Al955498 AA033947 103768 46922_1 AA845593 AJ623711 N68583 C00064 AA193567 AW083868 AW163216 AA191595 AA522778 AJ628008 AJ915518 AA843508 AJ926195 AA176265 AW167963 AA992115 W93647 AW103572 AI862994 AI342059 AA911719 AA176155 AA024712 AA069988 AA205591 AI591107 Al199673 Al811766 Al275832 Al422233 Al191852 Al096682 Al580124 Al683612 AA582453 AA927559 AA486415 T32414 Al084978 H44849 H48848 H20477 T91695 W47039 AA070055 AA024795 AA328855 AA379248 BA379330 AA36580 W25920 W03688 AA448359 AA093881 AW362477 AA089997 AI350265 W93479 N99688 AA932257 AW351469 H68590 AA663402 AA069771 AW087986 AI858420 AA600214 AI970774 AI857712 AI683081 AI885584 AW131150 AI567981 AW002714 AW189973 AW075495 AW168303 AA953714 AW516881 AI357375 AI566663 AW512676 AI570580 AI023690 AA448216 AI079853 AI422707 AA779516 AW026972 AW130082 AW162307 AW438646 AA709332 AW192394 AI167350 AI217879 AI129152 AA719509 AI350480 AA663418 AI003634 AW118546 AA180261 AA442833 AI268625 AA888881 70 AI038759 AA846723 AI248770 AA993694 AI280335 AI885107 AW518649 AA641563 AA995835 AA582521 AI276744 AA436478 AI017360 75 Al620763 Al859887 N73926 Al076327 Al741615 Al160617 AW172819 Al492005 AA677429 AA996334 Al693771 Al950039 Al245629 Al288515 Al866186 T93293 AA173262 AA599779 Al680092 AW439316 Al084555 Al272672 Al583507 AW473219 AA738132 AW473283 Al367492 AA995410 Al689624 AA206353 Al033095 Al040382 AA873630 Al221074 Al934840 Al418680 AA844306 R94503 AA773520 AA843169 AA219425 AA629658 AI811719 AW411275 AI690981 W37907 AI591178 AI684051 AA983238 AA669347 AA976239 AA704570 AI628339 AI884391 AI241580 AI003539 AW176687 AA009650 N34566 AI333493 AI186070 AA070827 AA411683 AI280884 AA872023 AA207255 AA021576 N71953 AI885888 AW076039 T15777 AI537673 AW248048 H09554 W93480 W47001 AW079114 AA063160 AA757453 R60788

80

85

Al859431 H20478 AA218882 AA757465 AA100995 Al864135 Al934209 AA070503 H47008 AA219646 W61039 W93907 AW385050 W37967 W78028 AA189007 AA479136 R93650 AA442312 T30287 AA847628 AA180262 AA009649 C03892 AW149464 AA310963 AA219693 AA069747 R29207 AA094784 AA293615 AA447848 Al984167 N90393 C05097 N56499 AW292351 AW149681 AW473258 AA629322 Al004409 AW105577 AI954937 AI811070 AA902422 AW514437 AA535460 AA916877 AW517122 AA974657 AA975649 AW517130 AW517129 F31737

W07688 AA193645 AA378994 AA489273 F32267 W39303 AA021181 N86810 AA406524 AA062553 AA436801 H08985 H15979 N40310

WO 02/086443 PCT/US02/12476

AA436789 AA232172 AW360778 W25862 R60282 AA436530 AA378894 AA187461 AI940535 AA604210 AA089514 AA360421 N88243 N84281 AA209340 N56174 N88374 AA191088 AW247691 AA249013 AA093111 AA972536 AW298594 AA375893 T12139 W28186 AW243849 AI288629 AA843996 W15260 AI188286 AW248079 R15836

5 119599 genbank_W45552 W45552 genbank_R59904 R59904 genbank_AA227934 AA227934 100071 entrez_A28102 A28102 714071 1 AA496369 AA49646

10

Table 6A shows 99 genes up-regulated nonsmokers with lung cancer relative to smokers with lung cancer. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

15 Pkey: Unique Eos probeset identifier number

ExAccn: Exemplar Accession number, Genbank accession number

Unigene D: Unigene number Unigene Title: Unigene gene title

R1: average of AI for samples from non-smokers with adenocarcinoma divided by the 90th percentile of AI for samples from smokers with adenocarcinoma average of AI for samples from non-smokers with squamous cell carcinoma divided by the 90th percentile of AI for samples from smokers with squamous cell carcinoma divided by the 90th percentile of AI for samples from smokers with squamous cell

carcinoma R2 R1 ExAccn UnigenelD Unigene Title Pkey fatty acid binding protein 4, adipocyte pre-T/NK cell associated protein 25 BE379727 Hs.83213 3.64 100971 15.00 1.17330 Hs.280 101174 thyroid hormone receptor interactor 11 2.46 101296 Y12490 Hs.85092 thyroid hormone receptor interactor 8 12.00 101304 AA001021 Hs.6685 Hs.112408 S100 calcium-binding protein A7 (psorias 2.68 101806 AA586894 30 101972 S82472 gb:beta -pol=DNA polymerase beta (exon a 2 11 UDP glycosyltransferase 8 (UDP-galactose a disintegrin and metalloproteinase doma Hs.158540 7.50 102274 U30930 7.50 NM_003816 102394 Hs.2442 gb:Human clone 143789 defective mariner 13.50 U92015 X52509 102832 tyrosine aminotransferase 9.50 Hs.161640 103010 35 gb:H.sapiens mRNA for ligase like protei 2.50 X98266 103439 activin A receptor, type I 9.00 103563 L02911 Hs.150402 3.94 Al076795 Hs.45033 lacrimal proline rich protein 103857 13.50 104239 AB002367 Hs.21355 doublecortin and CaM kinase-like 1 nuclear receptor subfamily 1, group I, m ESTs, Weakly similar to ALU1_HUMAN ALU 12.66 104590 AW373062 Hs.83623 40 16.50 Hs.196701 104907 AA055829 Hs.296244 SNARE protein 2.17 BF514788 106131 7.00 Hs.30643 H47233 **ESTs** 106672 106872 T56887 Hs.18282 KIAA1134 protein 11.50 Hs.32501 2.38 106960 AA156238 45 9.50 Z43846 Hs.194478 Homo sapiens mRNA; cDNA DKFZp434O1572 (f 106971 2.95 107982 AA035375 Hs.57887 ESTs, Weakly similar to KIAA0758 protei 16.50 gb:zm26c06.s1 Stratagene pancreas (93720 108562 AA100796 Hs.69328 MD-2 protein 13.00 108599 AB018549 ESTs, Weakly similar to T26845 hypotheti 2.40 Hs.292653 108663 BF219231 50 Hs.85950 7.00 AA314907 ESTs 109247 109630 R44607 Hs.22672 **ESTs** 5.00 A1004874 Hs.310764 Homo sapiens mRNA; cDNA DKFZp434M082 (fr 12.50 110193 110234 H24458 Hs.32085 16.50 8.00 110644 R94207 Hs.268989 ESTs, Highly similar to type II CALM/AF1 55 17.00 Hs.72249 110886 AW274992 three-PDZ containing protein similar to 16.50 111057 T79639 Hs.14629 Hs.110457 **FSTs** AF071594 Wolf-Hirschhorn syndrome candidate 1 11.00 111950 3.00 112291 R53972 Hs.26026 **ESTs** Hs.75893 ankyrin 3, node of Ranvier (ankyrin G) 2.79 112956 Z43784 60 113009 T23699 Hs.7246 4.50 hypothetical protein FLJ14827 113060 BE564162 Hs.250820 9.79 113073 N39342 Hs.103042 microtubule-associated protein 1B 32.50 3.82 AK001335 protein tyrosine phosphatase, receptor t 113074 Hs.31137 Hs 8764 2.21 113121 T48011 EST 65 AA968672 Hs.8929 hypothetical protein FLJ11362 19.50 113125 AA703095 Hs.18631 2.65 113757 113848 W52854 Hs.27099 hypothetical protein FLJ23293 similar to 6.00 6.00 Al333076 Hs.28529 chromosome 12 open reading frame 2 113884 nuclear receptor subfamily 1, group I, m Homo sapiens mRNA; cDNA DKFZp564N1063 (4.63 113936 W17056 Hs.83623 70 7.00 114875 AA235609 Hs.236443 6.00 AA251016 Hs.87808 114987 EST AW958439 Hs.38613 **FSTs** 115460 W91892 Hs.59609 **ESTs** 9.00 115722 Hs.190150 9.50 AA481788 116261 75 H61037 Hs.70404 ESTs, Weakly similar to ALU2_HUMAN ALU 8.50 116830 AB023179 Hs.9059 KIAA0962 protein 7.50 116970 2.68 117178 H98675 Hs.269034 **EST's** 7.50 AF088019 117757 Hs.46732 **EST** ESTs, Weakly similar to A46010 X-linked 16.50 118283 118384 AA287747 Hs.173012 80 Down syndrome cell adhesion molecule AF217525 Hs.49002 2.50 Al822106 2.39 Hs.49902 118657 **ESTs** ESTs, Weakly similar to protease [H.sapi 3.50 AA923278 Hs.290905 120328 KIAA 1013 protein 7.00 120404 AB023230 Hs.96427 AA261852 Hs.192905 6.00 120524 85 Homo sapiens cDNA: FLJ23004 fis, clone L 120688 AW207555 Hs.97093 17.92

	W	O 02/0864	143				PCT/US02/12476
	121558	AA412497		gb:zt95g12.s1 Soares_testis_NHT Homo sap		2.95	
	121676	H56037	Hs.108146	ESTs	10.00		
	121936	A1024600	Hs.98612	ESTs	15.00		
	121938	AA428659	Hs.98610	ESTs	14.00		
5	122177	AA435789	Hs.98833	EST	8.93		
-	123442	AA299652	Hs.111496	Homo sapiens cDNA FLJ11643 fis, clone HE	13.04		
	123551	AA608837	113,1111400	gb:af03h12.s1 Soares_testis_NHT Homo sap	11.50		
	123756	AA609971	Hs.112795	EST	11.00		
	123861	AA620840	113.112700	gb:af89g01.s1 Soares_testis_NHT Homo sap	******	2.50	
10	124371	N24924	Hs.188601	ESTs	6.50		
10	127477	BE328720	Hs.280651	ESTs	0.00	4.33	
	127591	Al190540	Hs.131092	ESTs		3.02	
	128252	AA455924	Hs.192228	ESTs	7.00	0.02	
	128426	Al265784	Hs.145197	ESTs	1.00	2.08	
15	128925	R67419	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT		2.11	
13	128945	Al990506	Hs.8077	Homo sapiens mRNA; cDNA DKFZp547E184 (fr	10.00	2	
	129105	Al769160	Hs.108681	Homo sapiens brain tumor associated prot	15.50		
	129105	AW977238	Hs.126084	KIAA1055 protein	10.00	4.25	
	129235	AB020684	Hs.11217	KIAA0877 protein	6.50	-1.20	
20		U09550	Hs.1154	oviductal glycoprotein 1, 120kD (mucin 9	0.00	10.00	
20	129595	AA305688	Hs.267695	UDP-Gal:betaGlcNAc beta 1,3-galactosyltr	20.00	10.00	
	130160	D82326	Hs.239106	solute carrier family 3 (cystine, dibasì	11.50		
	130340	AB023194	Hs.300855	KIAA0977 protein	17.50		
	131220			fatty acid binding protein 7, brain	6.10		
25	131430	AI879148	Hs.26770	lymphoid-restricted membrane protein	0.10	6.15	
23	132114	NM_006152		Homo sapiens cDNA: FLJ21693 fis, clone C		5.58	
	132458	AA935315	Hs.48965	sialyltransferase 4B (beta-galactosidase	7.50	5.50	
	132647	NM_006927			7.50	2.53	
	132655	D49372	Hs.54460	small inducible cytokine subfamily A (Cy		2.50	
30	132682	A1077500	Hs.54900	serologically defined colon cancer antig ESTs, Weakly similar to KIAA1330 protein		2.83	
30	132747	AA345241	Hs.55950			3.82	
	132812	R50333	Hs.92186	Leman coiled-coil protein ESTs		5.00	
	133337	AF085983	Hs.293676			3.00	
	133876	AL134906	Hs.771	phosphorylase, glycogen; liver (Hers dis		2.06	
35	134119	AW157837	Hs.79226	fasciculation and elongation protein zet	•	2.27	
33	134464	AA302983	Hs.239720	CCR4-NOT transcription complex, subunit		11.50	
	134542	M14156	Hs.85112	insulin-like growth factor 1 (somatomedi	07.00	11.50	
	135002	AA448542	Hs.251677	G antigen 7B	87.00	6.50	
	135305	AA203555	Hs.98288	Homo sapiens cDNA FLJ14903 fis, clone PL		0.00	
40							
40	7.0.50		•	See the continuous leaking universal Die for Table 64. Es	probonot wo h	our listed the ac	no alustor number from which the

TABLE 6B show the accession numbers for those primekeys lacking unigenelD's for Table 6A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

45

50

	Pkey	CAT number Accessions .
55	108562 103439 123551 123861 102832 101972	36375_1
60	121558	genbank_AA412497 AA412497

WO 02/086443

Table 7A shows 98 genes down-regulated in non-smokers with lung cancer relative to smokers with lung cancer. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number ExAccn:

UnigenelD: Unigene number Unigene Title:

Unigene further
Unigene gene title
90th percentile of AI for samples from smokers with adenocarcinoma divided by the average of AI for samples from non-smokers with adenocarcinoma.
90th percentile of AI for samples from smokers with squamous cell carcinoma divided by the average of AI for samples from non-smokers with squamous cell carcinoma. R1: R2: 10

	Pkey	ExAcen	UnigenelD	Unigene Title	R1	R2
15	100187	D17793	Hs.78183	aldo-keto reductase family 1, member C3		164.10
	100380	D82343	Hs.18551	neuroblastoma (nerve tissue) protein		77.40
	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid	102.40	
	100971 101046	BE379727 K01160	Hs.83213	fatty acid binding protein 4, adipocyte (NONE)	463.80 672.00	
20	101046	AW970254	Hs.889	Charot-Leyden crystal protein	66.00	
	101175	U82671	Hs.36980	melanoma antigen, family A, 2	00.00	77.20
	101497	W05150	Hs.37034	homeo box A5	62.80	
	101663	NM_003528	Hs.2178	H2B histone family, member Q	78.00	
25	101677	NM_000715	Hs.1012	complement component 4-binding protein,	186.20 80.08	
23	101745 101941	M88700 S77583	Hs.150403	dopa decarboxylase (aromatic L-amino aci gb:HERVK10/HUMMTV reverse transcriptase	99.20	
	102125	NM_006456	Hs.288215	sialyltransferase	00.20	103.10
	102242	U27185	Hs.82547	retinoic acid receptor responder (tazaro	67.00	
20	102340	U37055	Hs.278657	macrophage stimulating 1 (hepatocyte gro	71.60	
30	102369	U39840	Hs.299867	hepatocyte nuclear factor 3, alpha	452.00	69.70
	102457 102669	NM_001394 U71207	Hs.2359 Hs.29279	dual specificity phosphatase 4 eyes absent (Drosophila) homolog 2	153,00	65.70
	102003	AL079646	Hs.107019	symplekin; Huntingtin interacting protei		58.80
	102829	NM_006183	Hs.80962	neurotensin		268.80
35	103207	X72790		gb:Human endogenous retrovirus mRNA for	70.00	
	103242	X76342	Hs.389	alcohol dehydrogenase 7 (class IV), mu o		212.10
	103260 103351	X78416 X89211	Hs.3155	casein, alpha gb:H.sapiens DNA for endogenous retrovir	64.60	130.70
	103331	AB002298	Hs.173035	KIAA0300 protein	66.80	
40	104252	AF002246	Hs.210863	cell adhesion molecule with homology to	63.80	
	104258	AF007216	Hs.5462	solute carrier family 4, sodium bicarbon	94.40	
	105024	AA126311	Hs.9879	ESTs	68.20	
	106260	Al097144	Hs.5250	ESTs, Weakly similar to ALU1_HUMAN ALU S		74.60
45	106440 106566	AA449563 BE298210	Hs.151393	glutamate-cysteine ligase, catalytic sub gb:601118016F1 NIH_MGC_17 Homo sapiens c	73.20	71.10
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr	83.80	
	106614	AA648459	Hs.335951	hypothetical protein AF301222		62.30
	106654	AW075485	Hs.286049	phosphoserine aminotransferase		202.40
50	106999	H93281	Hs.10710	hypothetical protein FLJ20417		89.60
50	108700 108810	AA121518 AW295647	Hs.193540 Hs.71331	ESTs, Moderately similar to 2109260A B c hypothetical protein MGC5350		66.40 95.50
	108857	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act		63.40
	109597	AA989362	Hs.293780	ESTs	85.00	•••••
<i>5 5</i>	109691	T65568	Hs.12860	ESTs		58.70
55	109704	A1743880	Hs.12876	ESTs	70.40	60.60
	110942 111722	R63503 R23924	Hs.28419 Hs.23596	ESTs EST	76.40 74.60	
	112891	T03927	Hs.293147	ESTs, Moderately similar to A46010 X-li	64.80	
	112992	AL157425	Hs.133315	Homo sapiens mRNA; cDNA DKFZp761J1324 (f		76.70
60	113073	N39342	Hs.103042	microtubule-associated protein 1B		120.20
	114251	H15261	Hs.21948	ESTs	127.20	
	115230 115291	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	174.00	91.00
	115251	BE545072 AW905328	Hs.122579 Hs.180842	hypothetical protein FLJ10461 ribosomal protein L13	66.40	31.00
65	115909	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	00.10	226.60
	115965	AA001732	Hs.173233	hypothetical protein FLJ10970	82.80	
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	20.00	361.60
	116552	D20508	Hs.164649	hypothetical protein DKFZp434H247	69.00 64.20	
70	116571 118466	D45652 N66741		gb:HUMGS02848 Human adult lung 3' direct gb:yz33g08.s1 Morton Fetal Cochlea Homo	04.20	63.50
, ,	120484	AA253170	Hs.96473	EST Constant Control of Control o	81.60	00.00
	120983	AA398209	Hs.97587	EST		81.10
	121034	AL389951	Hs.271623	nucleoporin 50kD		66.20
75	121423	AW973352	Hs.290585	ESTs	64,40	co 40
15	122553 122946	AA451884 A1718702	Hs.190121 Hs.308026	ESTs major histocompatibility complex, class	188.60	60.40
	123130	AA487200	. 10.000020	gb:ab19f02.s1 Stratagene lung (937210) H	.00.00	80.20
	124472	N52517	Hs.102670	EST	71.00	
90	124526	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci		104.90
80	125489	H49193	Hs.124984	ESTs, Moderately similar to ALU7_HUMAN A		72.00
	125731 - 125747	R61771 NM_002884	Hs.26912 Hs.865	ESTs RAP1A, member of RAS oncogene family	69.00	69.90
	126020	H79863	Hs.114243	ESTs	05.00	62.40
0.5	126547	U47732	Hs.84072	transmembrane 4 superfamily member 3		62.80
85	126966	R38438	Hs.182575	solute carrier family 15 (H+/peptide tra		60.10

	W	O 02/086	443			PCT/US02/1	12476
	127472	AA761378	Hs.192013	ESTs	70.20		
	127610	AA960867	Hs.150271	ESTs, Highly similar to unnamed protein	64.00		
	127742	AW293496	Hs.180138	ESTs	85.20		
	127987	Al022103	Hs.124511	ESTs	96.60		
5	128233	AW889132	Hs.11916	ribokinase		78.90	
	128420	AA650274	Hs.41296	fibronectin leucine rich transmembrane p		106.90	
	128766	AW160432	Hs.296460	craniofacial development protein 1	66.80		
	129014	AW935187	Hs.170162	KIAA1357 protein		58.53	
4.0	129215	AB040930	Hs.126085	KIAA1497 protein	64.20		
10	130090	H97878	Hs.132390	zinc finger protein 36 (KOX 18)	63.80		
	130385	AW067800	Hs.155223	stanniocalcin 2		139.60	
	130732	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)		64.60	
	131025	AB040900	Hs.6189	KIAA1467 protein	64.40		
4 =	131241	BE501914	Hs.24654	Homo sapiens cDNA FLJ11640 fis, clone HE	76.20		
15	131775	AB014548	Hs.31921	KIAA0648 protein	97.80		
	132240	AB018324	Hs.42676	KIAA0781 protein		71.00	
	132856	NM_001448	Hs.58367	glypican 4		88.40	
	132977	AA093322	Hs.301404	RNA binding motif protein 3	133.20		
20	133749	L20852	Hs.10018	solute carrier family 20 (phosphate tran		59.30	
20	133818	Al110684	Hs.7645	fibrinogen, B beta polypeptide	341.00	24.00	
	134264	AF149297	Hs.8087	NAG-5 protein		64.30	•
	134265	M83772	Hs.80876	flavin containing monooxygenase 3		232.53	
	134346	X84002	Hs.82037	TATA box binding protein (TBP)-associate	66.00	75.00	
0.5	134395	AA456539	Hs.8262	lysosomal-associated membrane protein 2		75.80	
25	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su		108.30	
	135056	N75765	Hs.93765	lipoma HMGIC fusion partner	71.40		
	135309	Al564123	Hs.42500	ADP-ribosylation factor-like 5	70.40		
30	TABLE 7	B shows the ac	cession numbe	ers for those primekeys lacking unigenelD's for Ta	ble 7A. For each p	robeset we have listed the gene cluster number from w	hìch the
	oligonucl	eotides were de	signed. Gene	clusters were compiled using sequences derived	from Genbank ES1	s and mRNAs. These sequences were clustered base	d on sequence
	similarity	using Clustering	g and Alignme	nt Tools (DoubleTwist, Oakland California). The G	Senbank accession	numbers for sequences comprising each cluster are lis	ted in the
	"Accession	on" column.				•	
35	Diana	Unique Co	s probeset ide	ntifor number			
55	Pkey:	onique Ed ber: Gene clus		HINIEL HAMBE			
		n Conbook		hore			

35	Pkey: CAT num Accession	ber: Gene cluste	probeset identifier number r number cession numbers	
40	Pkey	CAT number	Accessions	
70	103207	306354	X72790	
	106566	120358_1	BE298210 Al672315 AW086489 BE298417 AA455921 AA902537 BE327124 R14963 AA085210 AW274273 Al333584 Al369742 Al039658	
			AI885095 AI476470 AI287650 AI885299 AI985381 AW592624 AW340136 AI266556 AA456390 AI310815 AA484951	
15	116571	genbank_D45		
45	118466	genbank_N66		
	101046	entrez_K0116		
	101941	entrez_S7758		
	103351	entrez_X8921		
~ ^	123130	genbank_AA4	87200 AA487200	
50				

PCT/US02/12476 WO 02/086443

Table 8A shows 1720 genes either up or down-regulated in lung tumors or chronically diseased lung relative to a broad collection of over 40 distinct normal body tissues. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 39494 probesets on the Eos/Affymetrix Hu02 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

Pkey: ExAccn: Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number

UnigeneID:

5

Unigene Title: Unigene gene title

R1: 70th percentile of Al for lung tumors divided by 90th percentile of Al for normal lung

R2: 70th percentile of Al for chronically diseased lung divided by 90th percentile of Al for normal lung 10

	R2:	70th perc	entile of Al for o	thronically diseased lung divided by 90th percentile c	of Al for norm	al lung
	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2
15	300097	Al916973	Hs.213603	ESTs	5.46	4.69
	300117	AW189787	Hs.147474	ESTs	0.58	0.56
	300197	Al686661	Hs.218286	ESTs	4.26	5.44
	300201	Al308300	11 407505	gb:ta90c06.x1 NCI_CGAP_Brn20 Homo sapien	0.62	0.83
20	300225	Al989963	Hs.197505	ESTs	1.68 1.08	1.75 2.28
20	300247 300256	AW274682 Al469095	Hs.161394 Hs.298241	ESTs Transmembrane protease, serine 3	0.86	1.00
	300236	A1707881	Hs.202090	ESTs	5.80	9.09
	300362	Z42308	113.202030	gb:HSC0FB121 normalized infant brain cDN	4.18	12.78
	300374	Al859947	Hs.314158	ESTs	2.99	4.38
25	300387	AW270150	Hs.254516	ESTs	1.50	2.53
	300440	Al421541	Hs.146164	ESTs	3.98	5.25
	300441	R10367	Hs.307921	EST, Weakly similar to Z232_HUMAN ZINC F	3.18	6.80
	300449	Al362967	Hs.132221	hypothetical protein FLJ12401	0.43	0.62
30	300469	AW135830	Hs.233955	hypothetical protein FLJ20401	0.16 4.10	0.83 9.75
30	300552	X85711	Hs.21838	hypothetical protein FLJ11191 gb:ab37d01.r1 Stratagene HeLa cell s3 93	4.60	12.60
	300627 300630	W27363 AW118822	Hs.128757	ESTs	2.91	5.86
	300716	AI216113	Hs.126280	hypothetical protein FLJ23393	1.00	0.92
	300738	Al623332	Hs.130541	KIAA1542 protein	1.82	1.71
35	300777	AA235361	Hs.96840	KIAA1527 protein	4.48	8.22
	300790	Al492471	Hs.188270	ESTs	1.29	1.18
	300832	AI688147	Hs.220615	ESTs, Weakly similar to T03829 transcrip	5.51	8.56
	300836	Z44942	Hs.22958	calcium channel alpha2-delta3 subunit	4.90	6.34
40	300838	AI582897	Hs.192570	hypothetical protein FLJ22028	1.70	2.81
40	300878	AW449802	Hs.285901	Homo sapiens cDNA FLJ20428 fis, clone KA	4.56	7.91
	300897	A1890356	Hs.127804	ESTs, Weakly similar to T17233 hypotheti	2.23	1.58
	300926	AA504860		gb:ab03a10.s1 Stratagene fetal retina 93	2.13	3.50
	300960	Al041019	Hs.152454	ESTs	2.74 1.00	4.46 1.00
45	300961	AW204069 AA593373	Hs.312716 Hs.293744	ESTs, Weakly similar to unnamed protein ESTs	1.46	1.51
45	300962 300967	AA565209	Hs.269439	ESTs	0.39	1.30
	300987	AW450840	Hs.148590	ESTs, Weakly similar to AF208846 1 BM-00	1.49	1.08
	300988	Al927208	Hs.208952	ESTs	0.16	0.37
	301050	AW136973	Hs.288516	ESTs, Weakly similar to S69890 mitogen i	3.23	1.94
50	301098	AA677570	Hs.185918	ESTs	6.76	14.28
	301157	AA729905	Hs.231916	ESTs	3.16	8.85
	301162	Al142118	Hs.129004	ESTs	1.68	7.18
	301170	AA737594	Hs.247606	ESTs	4.40	6.42
55	301192	Al808751	Hs.121188	ESTs	6.38	11.59 7.78
55	301193	AA758115	Hs.128350	ESTs, Weakly similar to JC5423 2-hydroxy	4.35 1.56	1.61
	301267	AW297762	Hs.255690	ESTs ESTs	2.19	1.78
	301281 301341	AA843986 Al819198	Hs.190586 Hs.208229	ESTS	0.76	0.76
	301382	AA912839	Hs.163369	ESTs	1.00	1.81
60	301407	AW450466	Hs.126830	ESTs	1.48	1.51
-	301452	AA975688	Hs.159955	ESTs	0.51	1.46
	301483	AW272467	Hs.254655	Untitled	2.40	5.02
	301494	A1678034	Hs.131099	ESTs	2.79	3.41
	301521	AI733621	Hs.133011	zinc finger protein 117 (HPF9)	0.67	0.67
65	301531	Al077462	Hs.134084	ESTs	2.52	3.76
	301580	Al878959	Hs.73737	splicing factor, arginine/serine-rich 1	7.41	11.92
	301676	Z43570	Hs.27453	ESTs, Moderately similar to G01251 Rar p	8.31 2.70	10.70 4.22
	301690	F05865	Hs.108323 Hs.7987	ubiquitin-conjugating enzyme E2E 2 (homo	4.20	8.78
70	301718	F07744 AA384252	Hs.286132	DKFZP434F162 protein D15F37 (pseudogene)	5.93	7.04
70	301799 301804	AA581004	Hs.62180	anillin (Drosophila Scraps homolog), act	1.70	0.76
	301822	X17033	Hs.271986	integrin, alpha 2 (CD49B, alpha 2 subuni	1.58	1.36
	301846	R20002	Hs.6823	hypothetical protein FLJ10430	1.00	1.00
	301868	T71508	Hs.13861	ESTs, Weakly similar to pH sensitive max	2.88	5.49
75	301882	T78054		gb:yc97g09.r1 Soares infant brain 1NIB H	2.28	3.80
	301905	Al991127	Hs.117202	ESTs	1.00	1.00
	301948	AA344647	Hs.116724	aldo-keto reductase family 1, member B11	5.28	2.28
	301960	AW070252	Hs.27973	KIAA0874 protein	5.38	6.48
90	302011	T91418	Hs.125156	transcriptional adaptor 2 (ADA2, yeast,	3.03	3.42
80	302016	N40834	Hs.23495	hypothetical protein FLJ11252	1.00	1.25
	302041	NM_001501		gonadotropin-releasing hormone 2	0.71	0.99
	302072	AJ238381	Hs.132576	paired box gene 9	1.60 0.52	1.71 1.20
	302094 302095	Al286176 AW044300	Hs.6786 Hs.137506	ESTs Homo sapiens BAC clone RP11-120J2 from 7	2.75	4.93
85	302093	AW269618	Hs.23244	ESTs	3.04	3.87
	002170	, 500 10				

124

	W	O 02/080	5443				
	302155	AI088485	Hs.144759	ESTs	0.45	1.15	
	302201	AJ006276	Hs.159003	transient receptor potential channel 6	0.33	0.84	
					0.52	0.94	
	302202	AF097159	Hs.159140	UDP-Gal:betaGlcNAc beta 1,4- galactosylt			
_	302206	Al937193	Hs.41143	phosphoinositide-specific phospholipase	2.76	3.65	
5	302209	AF047445	Hs.159297	killer cell lectin-like receptor subfami	1.00	1.00	
	302235	AL049987	Hs.166361	Homo sapiens mRNA; cDNA DKFZp564F112 (fr	1.68	1.50	
	302290	AL117607	Hs.175563	Homo sapiens mRNA; cDNA DKFZp564N0763 (f	1.00	2.11	
	302328	AA354849	Hs.23240	Homo sapiens cDNA FLJ13496 fis, clone PL	9.38	13.08	
	302346	AL039101	Hs.194625	dynein, cytoplasmic, light intermediate	3.27	7.24	
10	302360	AJ010901	Hs.198267	mucin 4, tracheobronchial	2.54	1.88	
10					1.00	0.91	
	302384	Y08982	Hs.202676	synaptonemal complex protein 2			
	302406	U86751	Hs.211956	CD3-epsilon-associated protein; antisens	2.63	2.67	
	302409	AF155156	Hs.218028	adaptor-related protein complex 4, epsil	5.82	9.34	
	302423	AB028977	Hs.225974	KIAA1054 protein	3.66	3.18	
15	302432	AL080068	Hs.272534	Homo sapiens mRNA; cDNA DKFZp564J062 (fr	2.44	6.77	
	302435	AF092047	Hs.227277	sine oculis homeobox (Drosophila) homolo	0.44	0.84	
	302437	AB024730	Hs.227473	UDP-N-acetylglucosamine:a-1,3-D-mannosid	4.18	5.64	
	302455	AA356923		nuclear cap binding protein subunit 2, 2	1.85	0.92	
			Hs.240770		2.04	2.13	
20	302472	AA317451	Hs.6335	SWI/SNF related, matrix associated, acti			
20	302476	AF182294	Hs.241578	U6 snRNA-associated Sm-like protein LSm8	1.44	1.89	
	302489	T80660	Hs.230424	Homo sapiens cDNA FLJ13540 fis, clone PL	0.51	1.10	
	302490	AA885502	Hs.187032	ESTs	2.64	4.87	
	302562	AJ005585	Hs.48956	gap junction protein, beta 6 (connexin 3	5.34	2.68	
	302566	AA085996	Hs.248572	hypothetical protein FLJ22965	1.00	1.21	
25	302630	AB029488	Hs.272100	SMS3 protein	0.52	1,24	
2.0			Hs.173560	odd Oz/ten-m homolog 2 (Drosophila, mous	1.00	1.00	
	302634	AB032953			1.58	1.02	
	302638	AA463798	Hs.102696	MCT-1 protein			
	302647	X57723	Hs.198273	NADH dehydrogenase (ubiquinone) 1 beta s	2.72	6.85	
~ ^	302655	AJ227892	Hs.146274	ESTs	1.00	4.32	
30	302656	AW293005	Hs.70704	Homo sapiens, clone IMAGE:2823731, mRNA,	2.97	0.93	
	302668	AA580691	Hs.180789	S164 protein	0.80	0.95	
	302679	H65022		gb:yu66g11.r1 Weizmann Olfactory Epithel	1.68	5.04	
	302680	AW192334	Hs.38218	ESTs	2.70	7.98	
			115.50210		4.25	8.13	
25	302697	AJ001408		gb:Homo sapiens mRNA for immunoglobulin		8.68	
35	302705	U09060		gb:Human immunoglobulin heavy chain, V-r	3.91		
	302711	L08442		gb:Human autonomously replicating sequen	2.20	2.73	
	302719	W69724	Hs.288959	hypothetical protein FLJ20920	0.54	1.02	
	302742	L12069		gb:Homo sapiens (clone WR4.10VH) anti-th	4.28	11.57	
	302755	AW384815	Hs.149208	KIAA1555 protein	1.57	2.38	
40	302771	H98476	Hs.42522	ESTs	2.94	4.68	
	302789	AJ245067	110112022	gb:Homo sapiens mRNA for immunoglobulin	3.49	6.31	
			Un 272020	hypothetical protein FLJ10494	0.80	2.74	
	302795	AJ245313	Hs.272838			0.77	
	302802	Y08250		gb:H.sapiens mRNA for variable region of	1.13		
4 ~	302803	AA442824	Hs.293961	ESTs, Moderately similar to putative DNA	3.14	10.68	
45	302812	N31301	Hs.152664	hypothetical protein FLJ20051	3.04	8.24	
	302847	X98940		gb:H.sapiens rearranged lg heavy chain (1.80	1.92	
	302885	AL137763	Hs.132127	hypothetical protein LOC57822	1.00	1.00	
	302943	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti	0.53	0.67	
	302977	AW263124	Hs.315111	hypothetical protein FLJ12894	2.45	2.62	
50	303006	AF078950	Hs.24139	Homo sapiens cDNA: FLJ23137 fis, clone L	4.88	8.61	
50			113.24100		1.41	1.86	
	303011	AF090405	11- 000000	gb:Homo sapiens clone 2A1 scFV anitbody		1.19	
	303013	F07898	Hs.288968	RAB22A, member RAS oncogene family	1.51		
	303061	AF151882	Hs.27693	peptidylprolyl isomerase (cyclophilin)-l	0.72	0.76	
	303077	AF163305		gb:H.sapiens T-cell receptor mRNA	1.17	3.90	
55	303090	AA443259	Hs.146286	kinesin family member 13A	4.08	6.46	
	303091	AF192913	Hs.130683	zinc finger protein 180 (HHZ168)	2.50	4.37	
	303094	AF195513	Hs.278953	Pur-gamma	5.38	8.38	
	303095	AF202051	Hs.134079	NM23-H8	3.26	4.08	
	303131	AW081061	Hs.103180	DC2 protein	2.02	1.83	
60				myosin, light polypeptide, regulatory, n	1.32	3.95	
00	303195	AA082211	Hs.233936		0.77	0.53	
	303196	AA082298	Hs.59710	ESTs			
	303216	AA581439	Hs.152328	ESTs	0.24	0.63	
	303222	AA333538	Hs.204501	hypothetical protein FLJ10534	3.56	6.22	
	303234	AA132255	Hs.143951	ESTs	2.28	3.17	
65	303251	AW340037	Hs.115897	protocadherin 12	0.38	1.02	
	303295	AA205625	Hs.208067	ESTs	2.30	1.00	
	303297	T80072	Hs.13423	Homo sapiens clone 24468 mRNA sequence	1.86	4.48	
	303316	AF033122	Hs.14125	p53 regulated PA26 nuclear protein	0.10	0.80	
		AA398801		ESTs	4.54	9.65	
70	303467		Hs.323397				
70	303506	AA340605	Hs.105887	ESTs, Weakly similar to Homolog of rat Z	0.09	0.04	
	303552	AA359799	Hs.224662	ESTs, Weakly similar to unnamed protein	1.00	1.72	
	303598	AA382814		gb:EST96097 Testis I Homo sapiens cDNA 5	4.96	9.14	
	303637	AF056083	Hs.24879	phosphatidic acid phosphatase type 2C	2.06	2.02	
	303655	AA504702	Hs.258802	ATPase, (Na+)/K+ transporting, beta 4 po	1.00	1.24	
75	303756	A1738488	Hs.115838	ESTs	1.08	1.43	
	303856	AA968589	Hs.180532	glucose phosphate isomerase	1.76	1.31	
			Hs.113503	karyopherin (importin) beta 3	2.30	2.57	
	303893	N88597			3.10	5.79	
	303907	AW467774	Hs.171880	polymerase (RNA) II (DNA directed) polyp			
00	303946	AW474196	Hs.306637	Homo sapiens cDNA FLJ12363 fis, clone MA	5.06	11.86	
80	303978	AW513315		gb:xo43c12.x1 NCI_CGAP_Ut1 Homo sapiens	5.14	7.31	
	303981	AW513804	Hs.278834	ESTs, Weakly similar to ALU1_HUMAN ALU S	2.83	4.06	
	303990	AW515465		gb:xu71a11.x1 NCI_CGAP_Kid8 Homo sapiens	1.15	2.35	
	303998	AW516449		gb:xt68f05.x1 NCI_CGAP_Ut2 Homo sapiens	2.20	9.35	
	303999	AW516611		gb:xp70b11.x1 NCI_CGAP_Ov39 Homo sapiens	4.85	6.28	
85	304006	AW517947		gb:xt66h02.x1 NCI_CGAP_Ut2 Homo sapiens	3.21	4.07	
	004000	7111011041		gamagaant troi_oo. " = troineplone	•		

	W	O 02/08	6443			
	304008	AW518198	Hs.3297	ribosomal protein S27a	6.50	11.08
	304009	AW518206	Hs.181165	eukaryotic translation elongation factor	1.88	3.27
	304024	T03036		gb:FB21B7 Fetal brain, Stratagene Homo s	2.15	3.55
_	304026	T03160		gb:FB26F2 Fetal brain, Stratagene Homo s	5.88	11.80
5	304028	T03266		gb:FB7C1 Fetal brain, Stratagene Homo sa	5.59	13.46
	304036	T16855	Hs.244621	ribosomal protein S14	6.55	14.43
	304046	T54803		gb:yb42d06.s1 Stratagene fetal spleen (9	6.18 2.64	12.19 8.23
	304061 304063	T61521 T62536		gb:yb73g01.s1 Stratagene ovary (937217) gb:yc04c12.s1 Stratagene lung (937210) H	0.53	1.61
10	304003	R25376	Hs.177592	ribosomal protein, large, P1	6.49	11.67
	304114	R78946		gb:yi87g02.s1 Soares placenta Nb2HP Homo	2.90	4.18
	304122	H28966		gb:ym31a06.s1 Soares infant brain 1NIB H	1.00	2.76
	304155	H68696		gb:yr78b06.s1 Soares fetal liver spleeп	0.79	1.18
15	304203	N56929		gb:yy82d08.s1 Soares_multiple_sclerosis_	4.28	11.34
15	304234	W81608	11- 20240	gb:zd88h06.s1 Soares_fetal_heart_NbHH19W ribosomal protein, large, P0	6.47 1.34	11.03 1.16
	304267 304270	AA064862 AA069711	Hs.73742 Hs.297753	vimentin	3.40	5.40
	304270	AA079286	Hs.78466	proteasome (prosome, macropain) 26S sub	2.93	4,42
	304348	AA179868	110.11 0 100	gb:zp38g12.s1 Stratagene muscle 937209 H	3.98	10.96
20	304415	AA290747	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	3.32	5.99
	304430	AA347682		gb:EST54044 Fetal heart II Homo sapiens	1.00	1.00
	304456	AA411240		gb:zv26g05.s1 Soares_NhHMPu_S1 Homo sapi	1.42	3.33
	304521	AA464716		gb:zx82c11.s1 Soares ovary tumor NbHOT H	2.18 5.38	1.15 14.11
25	304526 304542	AA476427 AA482602	Hs.169476	gb:zx02c05.s1 Soares_total_fetus_Nb2HF8_ glyceraldehyde-3-phosphate dehydrogenase	4.16	8.23
23	304546	AA486074	Hs.297681	serine (or cysteine) proteinase inhibito	0.55	1.20
	304607	AA513322	110.201001	gb:nh85e08.s1 NCI_CGAP_Br1.1 Homo sapien	1.95	2.10
	304640	AA524440	Hs.111334	ferritin, light polypeptide	2.10	2.83
•	304650	AA527489	Hs.3463	ribosomal protein S23	3.33	12.62
30	304735	AA576453		gb:nm75h11.s1 NCI_CGAP_Co9 Homo sapiens	1.33	0.88
	304760	AA580401	11- 40004	gb:nn13g09.s1 NCI_CGAP_Co12 Homo sapiens	3.68	8.14 3.70
	304849	AA588157	Hs.13801	KIAA1685 protein PRO2047 protein	2.77 7.16	11.01
	304917 304921	AA602685 AA603092	Hs.284136 Hs.297753	vimentin	2.47	4.24
35	304966	AA613893	Hs.282435	ESTs	6.78	11.66
	304987	AA618044	Hs.300697	immunoglobulin heavy constant gamma 3 (G	0.90	1.23
	305016	AA626876		gb:zu89h06.s1 Soares_testis_NHT Homo sap	6.46	10.17
	305034	AA630128		gb:ab99c04.s1 Stratagene lung (937210) H	1.00	1.00
40	305072	AA641012	11- 000405	gb:nr72a12.s1 NCI_CGAP_Pr24 Homo sapiens	5.68	11.59 1.37
40	305111	AA644187	Hs.303405	ESTs gb:nt01g08.s1 NCI_CGAP_Lym3 Homo sapiens	1.48 1.76	4.61
	305148 305159	AA654070 AA659166	Hs.275668	EST, Weakly similar to EF1D_HUMAN ELONG	1.00	2.15
	305190	AA665955	113.21 0000	gb:ag57d12.s1 Gessler Wilms tumor Homo s	5.31	8.14
	305232	AA670052	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	0.78	1.18
45	305235	AA670480		gb:ag37e01.s1 Jia bone marrow stroma Hom	3.11	8.66
	305245	AA676695	Hs.81328	nuclear factor of kappa light polypeptid	4.38	7.53
	305312	AA700201	11. 400040	gb:zj44f07.s1 Soares_fetal_liver_spleen_	2.13 1.20	2.66 1.40
	305322 305394	AA701597 AA720942	Hs.163019 Hs.300697	EST immunoglobulin heavy constant gamma 3 (G	1.16	0.68
50	305413	AA724659	FIS.300037	gb:ai10f08.s1 Soares_parathyroid_tumor_N	5.86	9.87
-	305447	AA737856		gb:nx10c08.s1 NCI_CGAP_GC3 Homo sapiens	2.21	2.86
	305476	AA745664	Hs.287445	hypothetical protein FLJ11726	3.36	6.54
	305483	AA748030	Hs.303512	EST	1.00	2.02
55	305528	AA769156		gb:nz12e05.s1 NCI_CGAP_GCB1 Homo sapiens	6.44	9.10
55	305612	AA782347	Hs.272572	hemoglobin, alpha 2	0.19 1.00	0.79 1.00
	305614	AA782866 AA782884	Hs.275865	gb:aj09h02.s1 Soares_parathyroid_tumor_N ribosomal protein S18	7.57	10.20
	305616 305637	AA806124	HS.210000	gb:oe29a12.s1 NCI_CGAP_Pr25 Homo sapiens	4.78	12.42
	305639	AA806138		gb:oe29c12.s1 NCI_CGAP_Pr25 Homo sapiens	0.89	0.70
60	305650	AA807709		gb:nw31e04.s1 NCI_CGAP_GCB0 Homo sapiens4	.49	8.71
	305690	AA813477		gb:ai67a05.s1 Soares_testis_NHT Homo sap	4.91	9.40
	305726	AA828156	Hs.73742	ribosomal protein, large, P0	0.19	0.81
	305728	AA828209		gb:of34a02.s1 NCI_CGAP_Kid6 Homo sapiens	5.12 1.66	9.29 4.11
65	305759 305792	AA835353 AA845256		gb:ak72b06.s1 Barstead spleen HPLRB2 Hom gb:ak84a08.s1 Barstead spleen HPLRB2 Hom	2.34	4.25
05	305864	AA864374	Hs.73742	ribosomal protein, large, P0	0.30	1.40
	305901	AA872968	11011 01 12	gb:oh63h08.s1 NCI_CGAP_Kid5 Homo sapiens	2.10	5.21
	305910	AA875981		gb:nx21h02.s1 NCI_CGAP_GC3 Homo sapiens	0.32	1.01
7 0	306015	AA897116		gb:am08b07.s1 Soares_NFL_T_GBC_S1 Homo s1		1.12
70	306017	AA897221	Hs.109058	ribosomal protein S6 kinase, 90kD, polyp	5.21	7.90
	306020	AA897630	Hs.130027	EST	1.96	6.59
	306063	AA906316 AA906725		gb:ok03g03.s1 Soares_NFL_T_GBC_S1 Homo s gb:ok78g02.s1 NCI_CGAP_GC4 Homo sapiens	7.38 7.19	20.69 13.48
	306065 306104	AA910956		gb:ok85h11.s1 NCI_CGAP_Kid3 Homo sapiens	6.50	9.13
75	306109	AA911861		gb:og21a07.s1 NCI_CGAP_PNS1 Homo sapiens	4.21	5.25
	306148	AA917409	Hs.288036	tRNA isopentenylpyrophosphate transferas	2.20	2.70
	306242	AA932805		gb:oo60g04.s1 NCI_CGAP_Lu5 Homo sapiens	2.84	5.35
	306288	AA936900		gb:oi53h05.s1 NCI_CGAP_HN3 Homo sapiens	1.60	1.12
80	306325	AA953072	Hs.210546	interleukin 21 receptor	1.65 3.78	2.26 6.32
00	306353 306375	AA961382 AA968650	Hs.275865 Hs.276018	ribosomal protein S18 EST, Moderately similar to JC4662 ribos	4.30	5.74
	306375	AA970223	113.210010	gb:op09d05.s1 NCI_CGAP_Kid6 Homo sapiens	0.95	2.45
	306428	AA975110	Hs.191228	hypothetical protein FLJ20284	3.19	4.10
0.5	306442	AA976899		gb:oq35e09.s1 NCI_CGAP_GC4 Homo sapiens	4.67	7.44
85	306446	AA977348		gb:oq72e12.s1 NCI_CGAP_Kid6 Homo sapiens	3.92	6.27

	**	0 02/00	0443			
	306458	AA978186		gb:op33c06.s1 Soares_NFL_T_GBC_S1 Homo s	3.35	5.77
	306467	AA983508	Hs.163593	ribosomal protein L18a	3.72	5.37
	306510	AA988546		gb:or84d07.s1 NCI_CGAP_Lu5 Homo sapiens	1.00	1.00
_	306555	AA994304	Hs.276083	EST, Weakly similar to RL23_HUMAN 60S R	6.61	10.91
5	306557	AA994530		gb:ou57e08.s1 NCI_CGAP_Br2 Homo sapiens	16.20	31.83
•	306572	AA995686		gb:os25c12.s1 NCI_CGAP_Kid5 Homo sapiens	2.51	6.52
	306582	AA996248		gb:os18c10.s1 NCI_CGAP_Kid5 Homo sapiens	1.42	3.13
	306598	Al000320	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	4.91	8.68
					1.96	8.60
10	306605	A1000497	Hs.119500	ribosomal protein, large P2	0.11	0.45
10	306656	A1004024	11 001100	gb:ou11b07.x1 Soares_NFL_T_GBC_S1 Homo s		
	306676	AI005603	Hs.284136	PRO2047 protein	9.56	17.28
	306686	Al015615		gb:ov29f10.x1 Soares_testis_NHT Homo sap	1.86	3.60
	306702	AI022565	Hs.307670	EST	1.47	1.19
	306728	AI027359	Hs.272572	hemoglobin, alpha 2	1.28	2.83
15	306751	AI032589		gb:ow70h12.s1 Soares_fetal_liver_spleen_	3.91	5.21
	306767	Al038963	Hs.249118	ESTs	3.33	6.06
	306892	Al092465		gb:qa75h12.x1 Soares_fetal_heart_NbHH19W	3.77	7.46
	306897	Al093967		gb:qa33c06.s1 Soares_NhHMPu_S1 Homo sapi	2.12	2.85
	306956	Al125111		gb:am66f03.s1 Barstead spleen HPLRB2 Hom	6.10	10.52
20	306958	Al125152		gb:am55e09.x1 Johnston frontal cortex Ho	1.72	1.56
20	307035	Al142774	Hs.119122	ribosomal protein L13a	2.00	4.70
			115.115122	qb;qb85b12.x1 Soares_fetal_heart_NbHH19W	9.12	12.56
	307041	Al144243			4.88	8.52
	307091	Al167439		gb:ox70h06.s1 Soares_NhHMPu_S1 Homo sapi		6.44
25	307181	Al189251		gb:qc99g06.x1 Soares_pregnant_uterus_NbH	3.55	
25	307297	AI205798	Hs.111334	ferritin, light polypeptide	2.46	4.65
	307317	Al208303	Hs.147333	EST	5.64	10,13
	307327	Al214142	Hs.246381	CD68 antigen	3.18	5.15
	307382	Al223158	Hs.147885	ESTs	2.02	3.73
	307410	AI241715	Hs.77039	ribosomal protein S3A	0.72	0.48
30	307415	Al242118		gb:qh92b02.x1 Soares_NFL_T_GBC_S1 Homo s	2.38	3.51
	307423	Al243206	Hs.179573	collagen, type I, alpha 2	2.60	5.44
	307426	Al243364		gb:qh30g11.x1 Soares_NFL_T_GBC_S1 Homo s	3.18	7.67
	307517	A1275055		gb:ql72d03.x1 Soares_NhHMPu_S1 Homo sapi	1.00	1.00
	307551	Al281556		gb:qu52f11.x1 NCI_CGAP_Lym6 Homo sapiens	3.40	11.20
35	307561	Al282207		gb:qp65a12.x1 Soares_fetal_lung_NbHL19W	4.74	15.51
	307608	Al290295		gb:gm01f02.x1 Soares_NhHMPu_S1 Homo sapi	3.50	7.19
	307657	AI306428	Hs.298262	ribosomal protein S19	1.76	2.44
	307691	Al318285	7.0.20202	gb:tb17b01.x1 NCI_CGAP_Ov37 Homo sapiens	1.59	1.31
	307701	Al318583	Hs.276672	EST, Weakly similar to RL6_HUMAN 60S RI	1.90	2.13
40	307718	Al333406	Hs.83753	small nuclear ribonucleoprotein polypept	0.45	0.99
10	307730	Al336092	110.00100	gb:qt43b07.x1 Soares_fetal_lung_NbHL19W	1.51	0.99
	307760	Al342387		gb:qt27f07.x1 Soares_pregnant_uterus_NbH	1.00	1.00
	307764	Al342731		gb:qo26a07.x1 NCI_CGAP_Lu5 Homo sapiens	4.52	12.58
		Al347274		gb:tc05d02.x1 NCI_CGAP_Co16 Homo sapiens	1.42	1.00
45	307783				6.57	9.61
43	307796	Al350556		gb:qt18f09.x1 NCI_CGAP_GC4 Homo sapiens gb:qt09d02.x1 NCI_CGAP_GC4 Homo sapiens	3.38	7.68
	307807	AI351799			0.33	0.86
	307808	Al351826		gb:qt09g03.x1 NCI_CGAP_GC4 Homo sapiens	7.94	21.57
	307820	Al355761	11- 070707	gb:qt94a11.x1 NCI_CGAP_Co14 Homo sapiens	2.05	3.32
50	307830	Al358722	Hs.276737	EST, Weakly similar to R5HU22 ribosomal	3.18	5.21
50	307852	Al365541		gb:qz08g05.x1 NCI_CGAP_CLL1 Homo sapiens		
	307902	Al380462		gb:tg02h05.x1 NCI_CGAP_CLL1 Homo sapiens	3.13	4.99
	307997	Al434512	Hs.181165	eukaryotic translation elongation factor	1.00	3.01
	308002	AI435240	Hs.283442	ESTs	5.86	12.64
	308011	Al439473		gb:ti60a08.x1 NCI_CGAP_Lym12 Homo sapien	3.79	5.83
55	308023	A1452732	Hs.251577	hemoglobin, alpha 1	0.38	0.88
	308041	A1458824	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	4.36	6.06
	308059	A1468938	Hs.276877	EST, Weakly similar to RL10_HUMAN 60S R	1.80	1.98
	308085	AI474135	Hs.181165	eukaryotic translation elongation factor	3.38	4.14
	308101	Al475950	Hs.181165	eukaryotic translation elongation factor	1.30	3.87
60	308106	Al476803		gb:tj77e12.x1 Soares_NSF_F8_9W_OT_PA_P_S2.	38	8.72
	308122	AI480123	Hs.309411	EST	2.70	3.86
	308154	Al500600		gb:tn93d08.x1 NCI_CGAP_Ut2 Homo sapiens	0.66	1.33
	308171	Al523632	Hs.298766	ESTs, Weakly similar to schlafen4 [M.mu	2.48	4.86
	308211	Al557029	Hs.278572	anaplastic lymphoma kinase (Ki-1)	2.43	2.14
65	308213	Al557041	110.21 0012	gb:PT2.1_12_E04.r tumor2 Homo sapiens cD	3.34	3.79
00	308216	Al557135		gb:PT2.1_13_H06.r tumor2 Homo sapiens cD	4.61	4.78
	308219	Al557246		gb:PT2.1_15_D07.r tumor2 Homo sapiens cD	4.87	7.94
		Al567844	Hs.252259	ribosomal protein S3	2.40	6.35
	308271			eukaryotic translation elongation factor	2.45	3.33
70	308319	Al583983	Hs.181165		1.24	1.41
70	308362	Al613519 Al636253	Hs.105749	KIAA0553 protein ESTs	3.16	4.82
	308413		Hs.196511			2.68
	308450	A1660860	Hs.96840	KIAA1527 protein	1.79 4.87	8.27
	308464	Al672425	Hs.277117	EST, Moderately similar to 138055 myosi	4.87	
75	308588	Al718299		gb:as51g12.x1 Barstead aorta HPLRB6 Homo	3.90	5.64
75	308599	AI719893	11- 404=	gb:as47d07.x1 Barstead aorta HPLRB6 Homo	3.32	5.12
	308615	AI738593	Hs.101774	hypothetical protein FLJ23045	3.11	2.36
	308643	Al745040		gb:tr19a12.x1 NCI_CGAP_Ov23 Homo sapiens	3.98	3.69
	308673	Al760864		gb:wi09c10.x1 NCI_CGAP_CLL1 Homo sapiens	0.82	0.99
0.0	308697	Al767143		gb:wi97a07.x1 NCl_CGAP_Kid12 Homo sapien	2.76	5.59
80	308762	Al807405	Hs.259408	ESTs	3.17	6.30
	308778	Al811109		gb:tr04c11.x1 NCI_CGAP_Ov23 Homo sapiens	1.00	1.00
	308782	Al811767	Hs.2186	eukaryotic translation elongation factor	2.94	5.15
	308808	Al818289		gb:wk52c01.x1 NCI_CGAP_Pr22 Homo sapiens	4.41	8.34
0.5	308823	Al824118	Hs.217493	annexin A2	1.85	1.92
85	308875	AI832332		gb:at48g03.x1 Barstead colon HPLRB7 Homo	2.52	3.80

	W	O 02/086	5443			
	308879	Al832763	Hs.75968	thymosin, beta 4, X chromosome	3.38	7.96
	308886	A1833240	115.70000	gb;at76d10.x1 Barstead colon HPLRB7 Homo	3.06	2.65
	308898	Al858845		gb:wl32d10.x1 NCI_CGAP_Ut1 Homo sapiens	2.45	3.44
	308934	Al865023	Hs.177	phosphatidylinositol glycan, class H	4.14	6.76
5	308966	AI870704		gb:wi47h01.x1 NCI_CGAP_Ut1 Homo sapiens	1.00	1.00
_	308979	Al873111		gb:wl52h05.x1 NCI_CGAP_Brn25 Homo sapien	7.15	11.10
	309045	Al910902		gb:tq39f01.x1 NCI_CGAP_Ut1 Homo saplens	0.61	0.59
	309051	Al911975		gb:wd78d01.x1 NCI_CGAP_Lu24 Homo sapiens	1.78	4.42
10	309069	Al917366	Hs.78202	SWI/SNF related, matrix associated, act	3.27	5.88
10	309083	Al922426	Hs.119598	ribosomal protein L3	2.39	3.34
	309105	A1925503	Hs.265884	ESTS	5.54 1.00	17.78 2.92
	309122	Al928178	De 100042	gb:wo95a11.x1 NCI_CGAP_Kid11 Homo sapien ribosomal protein L13	1.38	5.55
	309128 309164	Al928816 Al937761	Hs.180842	gb:wp84b09.x1 NCI_CGAP_Brn25 Homo sapien	2.43	3.11
15	309177	Al951118		gb:wx63g05.x1 NCI_CGAP_Br18 Homo sapiens	0.81	0.97
13	309288	Al991525	Hs.299426	ESTs	4.86	7.46
	309299	AW003478	110.200 120	gb:wq66c06.x1 NCI_CGAP_GC6 Homo sapiens	4.36	9.43
	309303	AW004823		gb:ws93a08.x1 NCI_CGAP_Co3 Homo sapiens	2.88	7.54
	309411	AW085201	Hs.244144	EST	4.30	7.14
20	309437	AW090702	Hs.278242	tubulin, alpha, ubiquitous	2.49	3.11
	309459	AW117645	Hs.65114	keratin 18	2.88	4.55
	309476	AW129368		gb:xe14b05.x1 NCI_CGAP_Ut4 Homo sapiens	2.08	6.60
	309499	AW136325	Hs.279771	Homo sapiens clone PP1596 unknown mRNA	2.82 4.78	3.55 3.95
25	309529	AW150807	Hs.181357	laminin receptor 1 (67kD, ribosomal pro	1.18	4.40
23	309532 309626	AW151119 AW192004	Hs.297681	gb:xg33e10.x1 NCI_CGAP_Ut1 Homo sapiens serine (or cysteine) proteinase inhibit	4.46	12.06
	309641	AW194230	Hs.253100	EST, Moderately similar to GHHU Ig gamm	1.47	1.39
	309675	AW205681	Hs.253506	EST, Moderately similar to ATPN_HUMAN A	5.68	15.20
	309693	AW237221	Hs.181357	laminin receptor 1 (67kD, ribosomal prot	1.00	1.00
30	309695	AW238011	Hs.295605	mannosidase, alpha, class 2A, member 2	5.45	9.61
	309700	AW241170	Hs.179661	tubulin, beta polypeptide	1.41	1.25
	309747	AW264889		gb:xq36h02.x1 NCI_CGAP_Lu28 Homo sapiens	5.00	8.35
	309769	AW272346		gb:xs13c10.x1 NCI_CGAP_Kid11 Homo sapien	5.76	11.90
25	309782	AW275156	Hs.156110	immunoglobulin kappa constant	0.42	0.69
35	309783	AW275401	Hs.254798	EST	1.00	4.11 1.44
	309799	AW276964		gb:xp58h01.x1 NCI_CGAP_Ov39 Homo sapiens	1.68 3.02	5.04
	309866	AW299916	11- 200607	gb:xs44c01.x1 NCI_CGAP_Kid11 Homo sapien immunoglobulin heavy constant gamma 3 (G	1.05	1.18
	309903	AW339071	Hs.300697	gb:hd05g08.x1 Soares_NFL_T_GBC_S1 Homo s	2.30	3.67
40	309923 309928	AW340684 AW341418		gb:hd08c03.x1 Soares_NFL_T_GBC_S1 Homo s	7.41	13.71
70	309931	AW341683		gb:hd13d01.x1 Soares_NFL_T_GBC_S1 Homo s	1.20	12.70
	309933	AW341936		gb:hb73f10.x1 NCI_CGAP_Ut2 Homo sapiens	4.90	18.29
	309964	AW449111	Hs.257111	hypothetical protein MGC3265	1.99	3.07
	310002	Al439096	Hs.323079	Homo sapiens mRNA; cDNA DKFZp564P116 (fr	0.20	0.47
45	310096	AW136822	Hs.172824	ESTs, Weakly similar to B48013 proline-r	1.51	1.22
	310098	Al685841	Hs.161354	ESTs	0.31	0.76
	310109	Al203094	Hs.148633	ESTs	2.06	5.83
	310112	AW197233	Hs.147253	ESTs	2.92	3.55 0.84
50	310115	AI611317	Hs.223796	ESTs	1.25 1.00	2.71
30	310121 310146	AW195642	Hs.148901	ESTs ESTs	9.50	15.31
	310146	A1206614 A1627653	Hs.197422 Hs.147562	ESTs	2.85	4.18
	310255	AW450439	Hs.153378	ESTs	4.26	10.63
	310261	Al240483	Hs.201217	ESTs	3.28	4.40
55	310264	AI915771	Hs.74170	metaliothionein 1E (functional)	0.26	0.86
	310275	AI242102	Hs.213636	ESTs	5.43	8.19
	310282	A1243332	Hs.156055	ESTs	3.15	8.06
	310290	AW013815	Hs.149103	ESTs	2.19	3.12
60	310333	Al253200	Hs.145402	ESTs	1.17	1.91
60	310346	AI261340	Hs.145517	ESTs	4.81 5.96	9.95 7.79
	310385	Al263392	Hs.156151	ESTs ESTs	2.90	4.63
	310443	AW119018 AW196632	Hs.164231 Hs.252956	ESTS	0.85	1.01
	310444 310446	AI275715	Hs.145926	ESTs	2.18	3.85
65	310468	AI984074	Hs.196398	ESTs	3.39	5.19
00	310477	AI948801	Hs.171073	ESTs	1.00	1.00
	310512	AW275603	Hs.200712	ESTs	3.87	8.12
	310514	AI681145	Hs.160724	ESTs	3.30	7.33
	310524	AW082270	Hs.12496	ESTs, Highly similar to AC004836 1 simil	0.72	1.44
70	310547	Al302654	Hs.208024	ESTs	3.26	3.46
	310584	AI653007	Hs.156304	ESTs	2.39	4.08
	310608	AI962234	Hs.196102	ESTs	5.60 4.91	6.49 9.09
	310624	Al341594	He 16/175	gb:Human endogenous retrovirus H proteas	1.85	1.71
75	310636 310648	AI814373 AI347863	Hs.164175 Hs.156672	ESTs ESTs	0.17	0.69
, 5	310694	AI654370	Hs.157752	Homo sapiens mRNA full length insert cDN	5.40	13.22
	310695	A1472124	Hs.157757	ESTs	4.82	6.27
	310714	AI418446	Hs.157882	ESTs	1.76	3.51
•	310722	A1989803	Hs.157289	ESTs	1.14	6.85
80	310756	AI916560	Hs.158707	ESTs	8.46	13.01
	310764	Al376769	Hs.167172	ESTs	4.76	7.37
	310848	AI459554	Hs.161286	ESTs	2.84	1.96
	310851	AW291714	Hs.221703	ESTs	1.00 6.37	2.32 7.94
85	310854	AI421677	Hs.161332	ESTS	6.07	7.94 9.84
05	310858	AI871000	Hs.161330	ESTs	V.V.	5.0-1

	w	O 02/080	5443			
	310864	A)924558	Hs.161399	ESTs	0.87	0.78
	310875	T47764	Hs.132917	ESTs	1.00	3.63
	310896	AW157731	Hs.270982	ESTs, Moderately similar to ALU7_HUMAN A	7.07	16.68
~	310922	AW195634	Hs.170401	ESTs	1.00	1.00
5	310955	Al560210	Hs.263912	ESTs	10.08	17.66
	310957	AW190974	Hs.196918	ESTs	2.18	3.18
	311000	AI521830	Hs.171050	ESTs	3.06	6.64
	311012	AW298070	Hs.241097	ESTs	1.23	3.77
10	311034	Al564023	Hs.311389	ESTs, Moderately similar to PT0375 natur	2.44	2.09
10	311074	AW290922	Hs.199848	ESTs	6.04	14.19
	311134	A1990849	Hs.196971	ESTs	3.54	6.96
	311174	AW450552	Hs.205457	periaxin	0.65	0.95
	311187	AI638374	Hs.224189	ESTs	2.46	2.78
1.5	311220	A1656040	Hs.196532	ESTs	1.10	2.52
15	311230	A1989808	Hs.197663	ESTs	1.41	1.75
	311236	Al653378	Hs.197674	ESTs	2.18	2.11
	311242	AW016812	Hs.200266	ESTs	0.63	5.11
	311258	Al671221	Hs.199887	ESTs	1.00	1.41 1.94
20	311277	AW072813	Hs.270868	ESTs, Moderately similar to ALU4_HUMAN A	2.56 1.04	2.69
20	311294	AA826425	Hs.291829	ESTs	1.96	6.70
	311308	F12664	Hs.49000	ESTs	4.77	9.38
	311351	A1682303	Hs.201274	ESTs ESTs	2.80	6.06
	311390 311405	AW392997 AW290961	Hs.202280 Hs.201815	ESTS	3.80	11.66
25	311409	A1698839	115.201010	gb:wd31f02.x1 Soares_NFL_T_GBC_S1 Homo s	3.84	6.94
45	311420	Al936291	Hs.209867	ESTs	5.30	12.56
	311443	Al791521	Hs.192206	ESTs	4.39	6.09
	311467	Al934909	Hs.175377	ESTs	1.00	1.04
	311479	Al933672	Hs.211399	ESTs	2.76	5.61
30	311488	R57390	Hs.301064	arfaptin 1	2.50	5.73
-	311495	AW300077	Hs.221358	ESTs	3.63	6.09
	311511	AW444568	Hs.210303	ESTs	2.00	2.87
	311534	AW130351	Hs.243549	ESTs	0.31	1.33
	311537	Al805121	Hs.211828	ESTs	3.69	5.85
35	311543	Al681360	Hs.201259	ESTs	1.73	- 1.34
	311551	AW449774	Hs.296380	POM (POM121 rat homolog) and ZP3 fusion	3.31	6.12
	311557	Al819230	Hs.211238	interleukin-1 homolog 1	1.00	1.00
	311558	Z44432	Hs.63128	KIAA1292 protein	2.25	3.41
40	311559	AW008271	Hs.265848	similar to rat myomegalin	2.68	5.90
40	311563	Al922143	Hs.211334	ESTs	2.39	3.32
	311586	Al827834	Hs.211227	ESTs	2.47	3.85
	311616	AW450675	Hs.212709	ESTs	1.00	1.00
	311621	Al924307	Hs.213464	ESTs	4.16	6.74
4.5	311635	Al928456	Hs.213081	ESTs	2.17	3,76
45	311668	AW193674	Hs.240044	ESTs	2.60	3.12
	311672	R11807	Hs.20914	hypothetical protein FLJ23056	2.79	5.18
	311683	AW183738	Hs.232644	ESTs	0.19	0.96 8.83
	311700	R49601	Hs.171495	retinoic acid receptor, beta ESTs, Weakly similar to CIKG_HUMAN VOLTA	6.28 5.00	8.17
50	311714	AW131785	Hs.246831	Homo sapiens cDNA FLJ12981 fis, clone NT	0.96	0.72
50	311735	AW294416	Hs.144687 Hs.191194	ESTs	1.00	1.95
	311743	T99079 Al682478	Hs.13528	hypothetical protein FLJ14054	0.16	0.77
	311783 311785	A1056769	Hs.133512	ESTs	1.34	3.97
	311799	AA780791	Hs.14014	ESTs, Weakly similar to KIAA0973 protein	8.52	13.32
55	311819	AW265275	Hs.254325	ESTs	3.58	3.91
55	311823	A1089422	Hs.131297	ESTs	1.40	1.72
	311877	AA349893	Hs.85339	G protein-coupled receptor 39	0.95	0.91
	311886	AA522738	Hs.132554	ESTs	0.88	0.87
	311896	AW206447		gb:UI-H-BI1-afg-g-02-0-UI.s1 NCI_CGAP_Su	1.66	1.13
60	311910	N28365	Hs.22579	Homo sapiens clone CDABP0036 mRNA sequen	1.66	2.30
-	311923	T60843	Hs.189679	ESTs	0.42	2.63
	311933	Al597963	Hs.118726	ESTs	1.88	3.02
	311959	T67262	Hs.124733	ESTs	2.02	2.33
- -	311960	AW440133	Hs.189690	ESTs	3.87	6.62
65	311967	A1382726	Hs.182434	ESTs	5.80	8.14
	311975	AA804374	Hs.272203	Homo sapiens cDNA FLJ20843 fis, clone AD	0.98	3.26
	312005	T78450	Hs.13941	ESTs	0.12	1.39
	312028	T78886	Hs.284450	ESTs	3.78	4.92
70	312046	Al580018	Hs.268591	ESTs	4.11	7.32
70	312056	T83748	Hs.268594	ESTs	2.36	3.08
	312064	AA676713	Hs.191155	ESTs	3.34	5.28
	312088	AW303760	Hs.13685	ESTs	1.60	1.15
	312093	T91809	Hs.121296	ESTs	0.68	0.85
75	312094	Z78390	Un 440400	gb:HSZ78390 Human fetal brain S. Meier-E	3.05	4.48 9.70
13	312097	Al352096	Hs.112180	zinc finger protein 148 (pHZ-52)	4.52 2.40	2.60
	312118	T85332	Hs.178294	ESTs Homo sapiens cDNA FLJ20118 fis, clone CO	2.40	3.53
	312128	Al052609	Hs.17631		2.39 0.67	1.03
	312147 312175	T89855 AA953383	Hs.195648 Hs.127554	ESTs ESTs	5.85	10.60
80	312179	AA953363 Al052572	Hs.269864	ESTS	2.41	3.32
00	312201	A1052572 A1928365	Hs.91139	solute carrier family 1 (neuronal/epithe	0.24	0.89
	312207	H90213	Hs.191330	ESTs	2.20	4.55
	312220	N74613	. 10. 10 1000	gb:za55a07.s1 Soares fetal liver spleen	4.28	11.13
	312252	Al128388	Hs.143655	ESTs	1.64	1.57
85	312304	AA491949	Hs.269392	ESTs	0.12	2.47

	W	O 02/080	0443			
	312318	AW235092	Hs.143981	ESTs	3.46	5.69
	312319	AA216698	Hs.180780	TERA protein	5.78	4.46
	312321	R66210	Hs.186937	ESTs	0.44	1.74
_	312331	AA825512	Hs.289101	glucose regulated protein, 58kD	3.73	5.96
5	312339	AA524394	Hs.165544	ESTs	3.07	0.95
	312363	AI675558	Hs.181867	ESTs	10.08	16.73
	312375	Al375096	Hs.172405	cell division cycle 27	2.78	3.71
	312376	R52089	Hs.172717	ESTs	1.00	1.00
	312389	Al863140		gb:tz43h12.x1 NCI_CGAP_Brn52 Homo sapien	2.37	3.98
10	312437	AA995028		gb:RC4-BT0629-120200-011-b10 BT0629 Homo	4.06	5.41
	312440	AI051133	Hs.133315	Homo sapiens mRNA; cDNA DKFZp761J1324 (f	1.00	1.00
	312451	R59989	Hs.176539	ESTs	4.96	10.04
	312458	Al167637	Hs.146924	ESTs	1.11	1.00
	312507	AI168177	Hs.143653	ESTs	5.89	8.24
15	312520	Al742591	Hs.205392	ESTs	3.30	8.92
10	312548	AI566228	Hs.159426	hypothetical protein PRO2121	1.38	1.65
	312564	H21520	Hs.35088	ESTs	0.40	0.77
	312583	Al193122	Hs.124141	ESTs	0.13	0.94
	312599	AI865073	Hs.125720	ESTs	3.75	5.29
20	312602	AA046451	Hs.165200	ESTs	6.78	12.93
20	312645	H52121	Hs.193007	ESTs	0.38	1.13
				ESTs	0.98	2.03
	312666	Al240582	Hs.214678		0.21	0.61
	312689	AW450461	Hs.203965	ESTs ESTs	1.51	0.85
25	312817	H75459	Hs.233425		8.93	13.78
23	312846	AW152104	Hs.200879	ESTs	4.20	6.23
	312873	Al690071	Hs.283552	ESTs, Weakly similar to unnamed protein	2.67	3.15
	312893	AI016204	Hs.172922	ESTs	1.19	0.71
	312902	AW292797	Hs.130316	ESTs, Weakly similar to T2D3_HUMAN TRANS		4.25
20	312925	N90868	Hs.271695	ESTs	2.50	
30	312936	Al681581	Hs.121525	ESTs	1.00	1.17
	312975	Al640506	Hs.293119	ESTs, Weakly similar to ALU7_HUMAN ALU S	2.30	4.80
	312978	N24887	Hs.292500	ESTs	0.80	1.05
	312980	AA497043	Hs.115685	ESTs	3.12	3.60
25	312984	N25871	Hs.177337	ESTs	2.03	2.13
35	313000	Al147412	Hs.146657	ESTs	5.52	8.42
	313029	AA731520	Hs.170504	ESTs	0.96	1.39
	313039	Al419290	Hs.149990	ESTs, Weakly similar to unnamed protein	6.48	13.20
	313049	AW293055	Hs.119357	ESTs	6.44	10.73
40	313056	Al651930	Hs.135684	ESTs	1.51	2.04
40	313058	D81015	Hs.125382	ESTs	0.25	1.50
	313070	Al422023	Hs.161338	ESTs	8.56	11.60
	313097	A1676164	Hs.204339	ESTs	3.72	4.56
	313130	AW449171	Hs.168677	ESTs	3.28	5.06
1 =	313136	N59284	Hs.288010	ESTs	0.49	1.36
45	313153	AI240838	Hs.132750	ESTs	5.36	5.52
	313210	N74077	Hs.197043	ESTs	0.30	0.66
	313236	AW238169	Hs.83513	ESTs, Weakly similar to ALU1_HUMAN ALU S	5.16	8.76
	313239	W19632	Hs.124170	ESTs	1.00	3.87
50	313265	N93466	Hs.121764	ESTs, Weakly similar to testicular tekti	0.74	2.06
50	313267	A1770008	Hs.129583	ESTs	0.23	1.30
	313275	Al027604	Hs.159650	ESTs	6.68	9.57
	313290	A!753247	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	1.34	1.07
	313292	Al362991	Hs.202121	ESTs, Weakly similar to env protein [H.s	2.00	4.32
	313325	Al420611	Hs.127832	ESTs	1.20	2.27
55	313357	AW074848	Hs.201501	ESTs	4.02	5.33
	313393	Al674685	Hs.200141	ESTs	1.36	2.84
	313399	AW376889	Hs.194097	ESTs	2.58	5.26
	313414	Al241540	Hs.132933	ESTs	6.57	15.07
	313417	AA741151	Hs.137323	ESTs	0.63	3.01
60	313457	AA576052	Hs.193223	Homo sapiens cDNA FLJ11646 fis, clone HE	2.78	4.70
	313499	Al261390	Hs.146085	KIAA1345 protein	0.91	2.37
	313516	AA029058	Hs.135145	ESTs	3.41	7.08
	313556	AA628517	Hs.118502	ESTs	0.23	0.70
	313569	Al273419	Hs.135146	hypothetical protein FLJ13984	1.88	1.00
65	313570	AA041455	Hs.209312	ESTs	0.73	2.27
	313638	Al753075	Hs.104627	Homo sapiens cDNA FLJ10158 fis, clone HE	1.00	1.72
	313662	AA740151	Hs.130425 '	ESTs	0.20	1.42
	313671	W49823	Hs.104613	RP42 homolog	1.00	1.00
	313672	AW468891	Hs.122948	ESTs	3.46	5.80
70	313690	Al493591	Hs.78146	platelet/endothelial cell adhesion molec	0.51	0.97
	313711	AA398070	Hs.133471	ESTs	0.18	1.01
	313723	AA070412		gb:zm68c10.s1 Stratagene neuroepithelium	1.08	1.03
	313726	A1744687	Hs.257806	ESTs	2.13	2.99
	313774	AW136836	Hs.144583	ESTs	1.38	1.19
75	313784	AA910514	Hs.134905	ESTs	3.88	5.78
•	313790	AW078569	Hs.177043	ESTs	0.22	2.06
	313832	AW271022	Hs.133294	ESTs	1.15	0.91
	313834	AW418779	Hs.114889	ESTs	0.68	3.14
	313835	A1538438	Hs.159087	ESTs	5.74	8.88
80	313852	H18633	Hs.123641	protein tyrosine phosphatase, receptor t	0.16	1.14
-	313854	AW470806	Hs.275002	ESTs	2.09	4.06
	313865	AA731470	Hs.163839	ESTs	3.41	4.09
	313871	AW471088	Hs.145950	ESTs	5.28	6.83
o =	313883	A1949384		gb:nu76d01.s1 NCI_CGAP_Alv1 Homo sapiens	2.90	10.91
85	313915	Al969390	Hs.163443	Homo sapiens cDNA FLJ11576 fis, clone HE	1.00	1.00

	W	O 02/080	6443			
	313926	AW473830	Hs.171442	ESTs	3.40	4.11
	313948	AW452823	Hs.135268	ESTs	5.77	9.15
	313978	AI870175	Hs.13957	ESTs	0.46	0.75
	313983	Al829133	Hs.226780	ESTs	4.10	6.40
5	314035	AA164199	Hs.270152	ESTs	5.88	7.90
_	314037	AW300048	Hs.275272	ESTs	1.00	3.79
	314040	AA166970	Hs.118748	ESTs	7.60	11.33
	314067	AW293538	Hs.51743	KIAA1340 protein	1.86	1.21
	314103	AI028477	Hs.132775	ESTs	2.90	5.29
10	314107	AA806113	Hs.189025	ESTs	2.00	1.66
10	314113	AA218986	Hs.118854	ESTs	0.91	4.17
	314124	AW118745	Hs.9460	Homo sapiens mRNA; cDNA DKFZp547C244 (fr	2.53	3.32
	314126	AA226431	HS.5400	gb:nc18b12.s1 NCI_CGAP_Pr1 Homo sapiens	3.13	5.08
			Un 104600	ESTs	2.90	6.35
15	314128	AA935633	Hs.194628	== : -	4.15	6.45
13	314151	AA236163	Hs.202430	ESTs	3.44	4.65
	314184	AW081795	Hs.233465	ESTs		
	314192	AW290975	Hs.118923	ESTs	1.00	1.23
	314244	AL036450	Hs.103238	ESTs	2.88	3.67
20	314253	AA278679	Hs.189510	ESTs	4.98	7.16
20	314262	AW086215	Hs.246096	ESTs	0.38	1.94
	314320	AA811598	Hs.275809	ESTs .	3.34	5.66
	314332	AL037551	Hs.95612	ESTs	2.85	2.09
	314335	AA287443	Hs.142570	Homo sapiens clone 24629 mRNA sequence	4.35	4.78
0.5	314340	AW304350	Hs.130879	ESTs, Moderately similar to putative p15	0.77	0.86
25	314351	AA292275	Hs.193746	ESTs	3.07	3.77
	314376	A1628633	Hs.324679	ESTs	4.10	6.11
	314443	AA827125	Hs.192043	ESTs	6.20	13.67
	314458	Al217440	Hs.143873	ESTs	0.58	2.49
	314466	AA767818	Hs.122707	ESTs	2.53	2.62
30	314478	Al521173	Hs.125507	DEAD-box protein	3.94	5.65
	314482	AL043807	Hs.134182	ESTs	1.30	1.44
	314506	AA833655	Hs.206868	Homo sapiens cDNA FLJ14056 fis, clone HE	3.28	3.47
	314519	R42554	Hs.210862	T-box, brain, 1	3,12	6.16
	314529	AL046412	Hs.202151	ESTs	3.43	6.87
35	314546	AW007211	Hs.16131	hypothetical protein FLJ12876	1.38	1.00
55	314562	AI564127	Hs.143493	ESTs	2.29	5.27
	314579	AW197442	Hs.116998	ESTs	3.87	5.75
	314580	AW451832	Hs.255938	ESTs, Moderately similar to KIAA1200 pro	0.10	0.71
	314585	AA918474	Hs.216363	ESTs	1.08	1.40
40	314589	AW384790	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT	1.00	1.00
70				ESTs	0.90	2.60
	314592	AA435761	Hs.192148	ESTs	4.56	6.29
	314603	AA418024	Hs.270670		3.42	3.92
	314604	AA946582	Hs.8700	deleted in liver cancer 1	2.97	4.55
45	314606	AA418241	Hs.188767	ESTS		
43	314648	AA878419	1) 400004	gb:EST391378 MAGE resequences, MAGP Homo1		1.36
	314699	A1038719	Hs.132801	ESTs	3.66	4.97
	314701	Al754634	Hs.131987	ESTs	0.03	0.90
	314710	Al669131	Hs.290989	EST	3.40	7.52
50	314750	Al095005	Hs.135174	ESTs	2.80	6.54
50	314767	AW135412	Hs.164002	ESTs	3.20	4.26
	314801	AA481027	Hs.109045	hypothetical protein FLJ10498	1.00	1.00
	314817	Al694139	Hs.192855	ESTs	0.91	0.99
	314835	Al281370	Hs.76064	ribosomal protein L27a	5.75	7.44
	314852	Al903735		gb:MR-BT035-200199-031 BT035 Homo sapien	1.68	4.34
55	314853	AA729232	Hs.153279	ESTs	0.60	1.85
	314940	AW452768	Hs.162045	ESTs	10.10	16.20
	314941	AA515902	Hs.130650	ESTs	0.31	1.02
	314943	Al476797	Hs.184572	cell division cycle 2, G1 to S and G2 to	2.18	0.37
	314955	AA521382	Hs.192534	ESTs	2.59	3.90
60	314973	AW273128	Hs.300268	ESTs	1.05	1.25
	315004	AA527941	Hs.325351	EST	5.64	13.63
	315006	Al538613	Hs.298241	Transmembrane protease, serine 3	0.52	1.78
	315033	A1493046	Hs.146133	ESTs	2.46	1.00
	315035	A1569476	Hs.177135	ESTs	0.34	1.33
65	315056	Al202703	Hs.152414	ESTs	2.10	2.64
•	315069	AI821517	Hs.105866	ESTs	1.00	1.30
	315071	AA552690	Hs.152423	Homo sapiens cDNA: FLJ21274 fis, clone C	1.78	1.00
	315073	AW452948	Hs.257631	ESTs	1.17	1.52
	315078	AA568548	Hs.190616	ESTs	3.00	3.79
70	315080	AA744550	Hs.136345	ESTs	1.00	1.00
, 0	315120	AA564991	Hs.269477	ESTs	0.64	1.44
	315175	Al025842	Hs.152530	ESTs	0.61	1.91
	315193	Al241331	Hs.131765	ESTs	1.06	0.97
	315193	AA972756	Hs.44898	Homo sapiens clone TCCCTA00151 mRNA sequ	0.48	1.96
75	315200	A1808235	Hs.307686	EST	3.76	9.40
, 5				ESTS	5.37	9.36
	315254	AI474433	Hs.179556		1.00	1.30
	315353	AW452608	Hs.279610	hypothetical protein FLJ10493		2.24
	315397	AA218940	Hs.137516	fidgetin-like 1	3.38	5.23
80	315403	AW362980	Hs.163924	ESTs	2.04	
οU	315431	AA622104	Hs.184838	ESTS	2.36	8.04 7.64
	315454	A1239473	11- 450040	gb:qh36f02.x1 Soares_NFL_T_GBC_S1 Homo s	3.46	7.64 5.76
	315455	AW393391	Hs.156919	ESTs	3.78	5.76
	315473	AI681671	Hs.312671	ESTs, Moderately similar to OVCA1	0.89	2.15
0.5	315483	AW512763	Hs.222024	transcription factor BMAL2	2.32	1.96
85	315526	Al193048	Hs.128685	ESTs	1.67	1.78

	W	O 02/080	6443			
	315530	A1200852	Hs.127780	ESTs	1.05	1.01
	315541	Al168233	Hs.123159	sperm associated antigen 4	0.85	0.56
	315552	AW445034	Hs.256578	ESTs	1.00	2.22
	315562	AA737415	Hs.152826	ESTs	2.66	2.48
5	315577	AW513545	Hs.17283	hypothetical protein FLJ10890	2.20	2.25
	315587	Al268399	Hs.140489	ESTs	1.00	1.04
		AW072387		Homo sapiens mRNA; cDNA DKFZp434B1272 (f	0.14	1.05
	315589		Hs.158258		7.44	12.56
	315623	AA364078	Hs.258189	ESTs		
10	315634	AA837085	Hs.220585	ESTs	0.50	1.40
10	315668	AA912347	Hs.136585	ESTs	0.43	1.22
	315677	Al932662	Hs.164073	ESTs	0.60	1.39
	315706	AW440742	Hs.155556	hypothetical protein FLJ20202	2.18	3.77
	315707	Al418055	Hs.161160	ESTs	2.88	2.63
	315730	H25899	Hs.201591	ESTs	0.11	0.60
15	315745	Al821759	Hs.191856	ESTs	3.50	7.25
	315791	AA678177		gb:zi15a05.s1 Soares_fetal_liver_spleen_	1.78	2.63
	315801	AA827752	Hs.266134	ESTs	4.31	6.23
			Hs.258785	ESTs	2.35	3.01
	315820	A1652022			2.12	2.64
20	315878	AA683336	Hs.189046	ESTs		
20	315905	Al821911	Hs.209452	ESTs	1.03	1.97
	315923	Al052789	Hs.133263	ESTs	2.63	5.06
	315954	AW276810	Hs.254859	ESTs, Moderately similar to ALU5_HUMAN A	1.21	0.85
	315978	AA830893	Hs.119769	ESTs	3.09	3.41
	316001	Al248584	Hs.190745	Homo sapiens cDNA: FLJ21326 fis, clone C	2.20	6.82
25	316011	AW516953	Hs.201372	ESTs	0.35	1.63
	316012	AA764950	Hs.119898	ESTs	6.56	8.13
	316040	Al983409	Hs.189226	ESTs	5.69	10.69
	316048	Al720759	Hs.224971	ESTs	2.84	10.45
	316076	AW297895	Hs.116424	ESTs	0.30	1.05
30					1.00	1.43
50	316124	Al308862	Hs.167028	ESTs		
	316151	Al806016	Hs.156520	ESTs	5.80	9.03
	316187	AW518299	Hs.192253	ESTs	1.20	3.96
	316204	AA731509	Hs.120257	ESTs	4.92	6.94
~ ~	316232	AW297853	Hs.251203	ESTs	1.48	1.60
35	316275	A)671041	Hs.292611	ESTs, Moderately similar to ALU1_HUMAN A	5.86	12.14
	316291	AW375974	Hs.156704	ESTs	2.73	2.69
	316303	AA740994	Hs.209609	ESTs	1.53	1.26
	316344	AA744518	Hs.120610	ESTs	3.66	8.34
	316346	Al028478	Hs.157447	ESTs	3.51	6.69
40	316365	Al627845	Hs.210776	ESTs	2.50	4.33
40		Al393378	Hs.164496	ESTs	1.16	2.16
	316380			ESTs	5.40	10.34
	316470	AA809902	Hs.243813		2.46	2.89
	316509	AA767310	Hs.291766	ESTs		
15	316514	AA768037	Hs.291671	ESTs	4.70	6.04
45	316519	Al929097		gb:od10c11.s1 NCI_CGAP_GCB1 Homo sapiens	4.41	9.70
	316609	AW292520	Hs.122082	ESTs	1.00	2.89
	316633	Al125586	Hs.127955	ESTs	2.61	3.72
	316700	AW172316	Hs.252961	ESTs, Weakly similar to ALU1_HUMAN ALU S	3.46	4.64
	316711	Al743721	Hs.285316	ESTs, Moderately similar to ALU7_HUMAN A	4.45	6.95
50	316713	AI090671	Hs.134807	hypothetical protein FLJ12057	0.30	2.40
	316715	Al440266	Hs.170673	ESTs, Weakly similar to AF126780 1 retin	0.20	1.45
	316787	AW369770	Hs.130351	ESTs	4.05	5.53
	316809	AA825839	Hs.202238	ESTs	2.25	3.82
	316811	AA922060	Hs.132471	ESTs	1.00	1.32
55	316812	AW135045	Hs.232001	ESTs	3.28	4.70
55				ESTs	0.67	1.81
	316818	AA827176	Hs.124316		3.53	6.00
	316824	AA837416	Hs.124299	ESTS		1,56
	316827	Al380429	Hs.172445	ESTs	0.72	
60	316891	AW298119	Hs.202536	ESTs	1.64	2.97
60	316951	AA134365	Hs.57548	ESTs ·	1.45	1.08
	316970	AA860172	Hs.132406	ESTs	1.00	1.53
	316971	AA860212	Hs.170991	ESTs	1.08	1.96
	316990	AA861611	Hs.130643	ESTs	5.44	10.04
	317001	Al627917	Hs.233694	hypothetical protein FLJ11350	3.56	4.37
65	317008	AW051597	Hs.143707	ESTs	0.69	1.37
	317051	AA873253	Hs.126233	ESTs	6.18	12.72
	317128	AA971374	Hs.125674	ESTs	1.87	2.66
	317129	H12523	Hs.78521	Homo sapiens cDNA: FLJ21193 fis, clone C	4.12	6.64
	317137	AW341567	Hs.125710	ESTs	2.82	5.12
70		Al348258	Hs.153412	ESTs	1.98	2.51
70	317196				1.86	2.83
	317212	A1866468	Hs.148294	ESTs		1.57
	317223	AW297920	Hs.130054	ESTs	0.83	
	317224	D56760	Hs.93029	sparc/osteonectin, cwcv and kazal-like d	2.74	0.86
75	317266	AA906289	Hs.203614	ESTs	1.00	1.00
75	317282	Al807444	Hs.176101	ESTs	2.60	4.21
	317285	AW370882	Hs.222080	ESTs	1.96	3.49
	317302	AA908709	Hs.135564	ESTs	7.16	8.32
	317304	AW449899	Hs.130184	ESTs	1.38	2.28
	317320	AA927151	Hs.130452	ESTs	3.58	8.13
80	317413	AW341701	Hs.126622	ESTs	2.08	4.92
	317417	AA918420	Hs.145378	ESTs	3.06	4.79
	317452	AA972965	Hs.135568	ESTs	4.22	9.21
	317519	AI859695	Hs.126860	ESTs	1.88	4.15
	317521	AI824338	Hs.126891	ESTs	3.12	4.55
85		A1024330 A1916517	Hs.126865	ESTs	2.73	3.34
	317529	MIS LUST I	1 13. 1 20000		20	5.61

	W	O 02/086	5443			
	317570	Al733361	Hs.127122	ESTs	1.00	2.43
	317571	AA938663	Hs.199828	ESTs	5.20	11.95
	317598	AW206035	Hs.192123	ESTs	0.33	1.56
	317627	Al346110	Hs.132553	ESTs	1.50	1.39
5	317650	Al733310	Hs.127346	ESTs	0.48	1.46
	317659	AA961216	Hs.127785	ESTs	4.18	7.14
	317674	AW294909	Hs.132208	ESTs	2.92	3.20
	317686	AA969051	Hs.187319	ESTs	1.00 5.33	1.01 9.59
10	317692 317701	Al307659	Hs.174794 Hs.128014	ESTs ESTs	1.00	1.00
10	317711	Al674774 Al733015	Hs.272189	ESTs	5.13	7.81
	317722	Al733373	Hs.128119	ESTs	2.50	6.03
	317756	AA973667	Hs.128320	ESTs	1.59	1.30
	317777	Al143525	Hs.47313	KIAA0258 gene product	1.00	2.48
15	317799	Al498273	Hs.128808	ESTs	1.78	2.11
	317803	AA983251	Hs.128899	ESTs	0.80	1.06
	317821	Al368158	Hs.70983	PTPL1-associated RhoGAP 1	0.17	0.68
	317848	Al820575	Hs.129086	Homo sapiens cDNA FLJ12007 fis, clone HE	5.30	8.16
20	317850	N29974	Hs.152982	hypothetical protein FLJ13117	1.30	2.28 5.93
20	317861	AW341064	Hs.129119	ESTs ESTs	2.18 4.48	8.20
	317865 317869	Al298794 AW295184	Hs.129130 Hs.129142	deoxyribonuclease II beta	0.44	0.99
	317881	Al827248	Hs.224398	Homo sapiens cDNA FLJ11469 fis, clone HE	4.06	2.23
	317890	AI915599	Hs.129225	ESTs	4.68	7.48
25	317899	Al952430	Hs.150614	ESTs, Weakly similar to ALU4_HUMAN ALU S	3.14	3.37
	317986	Al005163	Hs.201378	ESTs, Weakly similar to T12545 hypotheti	0.28	1.66
	318001	AW235697	Hs.130980	ESTs	5.12	9.97
	318016	AI016694	Hs.256921	ESTs	1.86	4.50
20	318023	AW243058	Hs.131155	ESTs	2.92	5.22
30	318054	AW449270	Hs.232140	ESTs ESTs	3.92 1.21	6.37 1.27
	318068	Al024540	Hs.131574 Hs.250114	ESTS	0.86	1.17
	318117 318187	Al208304 Al792585	Hs.133272	ESTs. Weakly similar to ALUC_HUMAN !!!!	5.90	6.98
	318223	A1077540	Hs.134090	ESTs	1.05	0.90
35	318240	Al085377	Hs.143610	ESTs	3.10	2.40
	318255	AI082692	Hs.134662	ESTs	0.02	1.05
	318266	AI554341	Hs.271443	ESTs	6.12	10.55
	318330	Al093840	Hs.143758	ESTs	4.98	7.90
40	318369	Al493501	Hs.170974	ESTs	2.46	5.62
40	318428	Al949409	Hs.194591	ESTs	0.77 3.54	0.45 4.92
	318458 318467	Al149783 Al151395	Hs.158438 Hs.144834	ESTs ESTs	4.56	5.62
	318473	A1939339	Hs.146883	ESTs	2.08	4.05
	318476	Al693927	Hs.265165	ESTs	4.22	8.07
45	318487	Al167877	Hs.143716	ESTs	1.47	1.05
	318488	Al217431	Hs.144709	ESTs	1.40	4.14
	318491	T26477	Hs.22883	ESTs, Weakly similar to ALUS_HUMAN ALU S	1.84	1.90 5.20
	318499	T25451	Un 12254	gb:PTHI188 HTCDL1 Homo sapiens cDNA 5'/3 ESTs	2.58 3.26	5.20 4.18
50	318537 318538	AA377908 N28625	Hs.13254 Hs.74034	Homo sapiens clone 24651 mRNA sequence	0.35	1.07
50	318547	R20578	Hs.90431	ESTs	3.22	4.60
	318552	R18364	Hs.90363	ESTs	4.87	9.06
	318575	R55102	Hs.107761	ESTs, Weakly similar to unnamed protein	1.91	1.98
	318580	T34571	Hs.49007	poly(A) polymerase alpha	2.74	6.22
55	318587	AA779704	Hs.168830	Homo sapiens cDNA FLJ12136 fis, clone MA	0.85	2.46
	318596	Al470235	Hs.172698	EST	4.88	4.93
	318622	T48325	Hs.237658	apolipoprotein A-II	4.80 0.39	12.51 1.04
	318629 318637	N25163 AA243539	Hs.8861 Hs.9196	ESTs hypothetical protein	1.72	3.57
60	318648	T77141	Hs.184411	albumin	6.27	9.91
00	318650	AA393302	Hs.176626	hypothetical protein EDAG-1	3.96	8.84
	318671	AA188823	Hs.299254	Homo sapiens cDNA: FLJ23597 fis, clone L	1.53	0.81
	318679	T58115	Hs.10336	ESTs	1.00	2.19
~ ~	318711	Al936475	Hs.101282	Homo sapiens cDNA: FLJ21238 fis, clone C	3.05	3.18
65	318725	Al962487	Hs.242990	ESTs	1.08	2.46
	318728	Z30201	Hs.291289	ESTs, Weakly similar to ALU1_HUMAN ALU S	0.77	1.33
	318740	NM_002543		oxidised low density lipoprotein (lectin	0.25	1.49 3.01
	318776	R24963	Hs.23766	ESTs proliferation-associated 2G4, 38kD	1.00 2.70	3.86
70	318784 318816	H00148 F07873	Hs.5181 Hs.21273	ESTs	3.90	7.13
70	318865	H10818	113.21270	gb:ym04f10.r1 Soares infant brain 1NIB H	2.25	3.56
	318879	R56332	Hs.18268	adenylate kinase 5	1.78	5.00
	318881	Z43224	Hs.124952	ESTs	4.79	14.13
7.5	318894	F08138	Hs.7387	DKFZP564B116 protein	5.31	7.00
75	318901	AW368520	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	1.03	0.91
	318925	Z43577	Hs.21470	ESTs	2.23	3.80
	318936	AI219221	Hs.308298	ESTs	1.86	7.16 9.79
	318982	Z44140	Hs.269622	ESTs ESTs, Highly similar to MAON_HUMAN NADP-	5.84 1.00	1.00
80	318986 319041	Z44186 Z44720	Hs.169161 Hs.98365	ESTs, Highly similar to MACN_HOWAN NADP- ESTs, Weakly similar to weak similarity	3.38	6.11
00	319103	H05896	Hs.4993	KIAA1313 protein	1.00	1.07
	319170	R13678	Hs.285306	putative selenocysteine lyase	3.79	5.03
	319196	F07953	Hs.16085	putative G-protein coupled receptor	1.00	2.98
0.7	319199	F07361	Hs.13306	ESTs	3.53	5.66
85	319242	F11472	Hs.12839	ESTs	5.87	7.26

	W	O 02/086	5443			
	319263	T65331	Hs.81360	Homo sapiens cDNA: FLJ21927 fis, clone H	1.81	1.57
	319267	F11802	Hs.6818	ESTs	1.10	4.72
	319270	R13474	Hs.290263	ESTs	4.80	10.40
_	319279	T65094	Hs.12677	CGI-147 protein	1.50	2.11
5	319282	AA461358	Hs.12876	ESTs	1.00	1.00
	319289	W07304	Hs.79059	transforming growth factor, beta recepto	0.18	0.68
	319291	W86578	Hs.285243	hypothetical protein FLJ22029	0.26	0.62
	319293	F12119	Hs.12583	ESTs	3.13	4.50
10	319312	Z45481	11- 225022	gb:HSC2QE041 normalized infant brain cDN	1.10 0.16	1.00 0.73
10	319370 319391	H54254 R06304	Hs.325823 Hs.13911	ESTs, Moderately similar to ALU5_HUMAN A ESTs	1.26	2.43
	319396	H67130	Hs.301743	ESTs	0.70	0.76
	319398	AA359754	Hs.191196	ESTs	2.45	3.59
	319407	R05329		gb;ye91b04.r1 Soares fetal liver spleen	2.00	3.54
15	319425	T82930		gb:yd39f07.r1 Soares fetal liver spleen	4.28	8.81
	319433	R06050	Hs.191198	ESTs	6.15	14.13
	319437	AA282420	Hs.111991	ESTs, Weakly similar to Y48A5A.1 [C.eleg	3.26	5.68
	319466	AI809937	Hs.116417	ESTs	1.76	5.65
20	319471	R06546	Hs.19717	ESTs	4.29 1.00	4.84
20	319480	R06933	Hs.184221	ESTs	2.81	1.00 4.88
	319484 319486	T91772 Al382429	Hs.250799	gb:yd52a10.s1 Soares fetal liver spleen ESTs	2.08	2.82
	319508	T99898	Hs.270104	ESTs, Moderately similar to ALU8_HUMAN A	2.80	4.39
	319523	T69499	Hs.191184	ESTs	1.55	3.25
25	319545	R83716	Hs.14355	Homo sapiens cDNA FLJ13207 fis, clone NT	1.65	1.19
	319546	R09692		gb:yf23b12.r1 Soares fetal liver spleen	5.11	8.54
	319552	AA096106	Hs.20403	ESTs	1.89	3.36
	319582	T82998	Hs.250154	hypothetical protein FLJ12973	3.48	4.82
20	319586	D78808	Hs.283683	chromosome 8 open reading frame 4	0.26	0.82
30	319604	R11679	Hs.297753	vimentin	1.68	3.41
	319609	AW247514	Hs.12293	hypothetical protein FLJ21103 gb:ym19c10.r1 Soares infant brain 1NIB H	3.06 2.76	4.24 4.24
	319611 319653	H14957 AA770183	Hs.173515	uncharacterized hypothalamus protein HTO	2.70	3.55
	319657	R19897	Hs.106604	ESTs	5.32	7.68
35	319658	R13432	Hs.167481	syntrophin, gamma 1	3.35	5.00
	319661	H08035	Hs.21398	ESTs, Moderately similar to A Chain A, H	5.18	12.55
	319662	H06382	Hs.21400	ESTs	1.58	1.56
	319708	R15372	Hs.22664	ESTs	1.00	1.22
40	319742	T77668	Hs.21162	ESTs	2.48	3.13
40	319748	R18178	Hs.295866	Homo sapiens mRNA; cDNA DKFZp434N1923 (f	3.02	4.85
	319772	R76633	Hs.22646	ESTs	4.36	11.61
	319788	AA321932 R92857	Hs.117414 Hs.271350	KIAA1320 protein likely ortholog of mouse polydom	2.56 4.63	3.68 6.56
	319805 319812	N74880	Hs.264330	N-acylsphingosine amidohydrolase (acid c	0.63	1.32
45	319834	AA071267	110.204000	gb:zm61g01.r1 Stratagene fibroblast (937	0.30	0.94
	319878	T78517	Hs.13941	ESTs	3.99	6.44
	319882	AA258981	Hs.291392	ESTs ·	5.09	7.36
	319912	T77559	Hs.94109	Homo sapiens cDNA FLJ13634 fis, clone PL	3.24	3.21
50	319935	H79460	Hs.271722	ESTs, Weakly similar to ALU1_HUMAN ALU S	4.40	9.42
50	319944	T79248	Hs.133510	ESTS	3.31 2.90	5.39 4.95
	319947 319962	AA160967 H06350	Hs.14479 Hs.135056	Homo sapiens cDNA FLJ14199 fis, clone NT Human DNA sequence from clone RP5-850E9	1.81	1.57
	320007	AA336314	FIS. 100000	gb:EST40943 Endometrial tumor Homo saple	3.42	6.29
	320018	T83263		gb:yd40h09.r1 Soares fetal liver spleen	2.77	5.14
55	320030	H63789	Hs.296288	ESTs, Weakly similar to KIAA0638 protein	4.10	6.69
	320032	Al699772	Hs.292664	ESTs, Weakly similar to A46010 X-linked	3.27	3.27
	320040	AA233671	Hs.87164	hypothetical protein FLJ14001	1.81	1.64
	320047	T86564	Hs.302256	EST	3.38	7.36
60	320063	AA074108	Hs.120844	FOXJ2 forkhead factor	5.90	16.73
60	320096	H58138	Hs.117915	ESTs	2.08	4.47
	320099 320112	AW411307 T92107	Hs.114311 Hs.188489	CDC45 (cell division cycle 45, S.cerevis ESTs	1.00 2.27	1.00 2.06
	320112	H94179	Hs.119023	SMC2 (structural maintenance of chromoso	1.00	1.00
	320188	AW419200	Hs.172318	ESTs	1.26	1.00
65	320193	AA831259	Hs.17132	ESTs	2.58	6.23
	320195	R62203	Hs.24321	Homo sapiens cDNA FLJ12028 fis, clone HE	2.85	4.53
	320199	R78659	Hs.29792	ESTs	0.40	0.94
	320203	AL049227	Hs.124776	Homo sapiens mRNA; cDNA DKFZp564N1116 (f	0.84	1.18
70 .	320219	AA327564	Hs.127011	tubulointerstitial nephritis antigen	1.00	1.17
70	320220	AF054910	Hs.127111	tektin 2 (testicular)	0.18	1.09
	320225	AF058989	Hs.128231	G antigen, family B, 1 (prostate associa ESTs	5.26 1.59	13.75 1.93
	320231	H03139	Hs.24683	G protein-coupled receptor 65	1.38	4.56
	320260 320267	NM_003608 AL049337	Hs.131924 Hs.132571	Homo sapiens mRNA; cDNA DKFZp564P016 (fr	1.00	1.92
75	320268	H06019	Hs.151293	Homo sapiens cDNA FLJ10664 fis, clone NT	5.58	5.70
-	320322	AF077374	Hs.139322	small proline-rich protein 3	1.41	1.01
	320325	Al167978	Hs.139851	caveolin 2	0.05	0.67
	320330	AF026004	Hs.141660	chloride channel 2	2.17	1.26
90	320339	H10807	Hs.281434	Homo sapiens cDNA FLJ14028 fis, clone HE	1.81	2.32
80	320388	H16065	Hs.31286	ESTs	1.00	3.22
	320402	R22291	Hs.23368	Homo sapiens clone FLC0578 PRO2852 mRNA,	1.41 2.31	1.36 3.61
	320413 320432	AA203711 R62786	Hs.173269 Hs.124136	ESTs ESTs	11.25	20.78
_	320436	AA253352	Hs.293663	ESTs	2.22	3.49
85	320438	W24548	Hs.5669	ESTs	3.53	8.14

	W	O 02/08	6443			
	320448	Al240233	Hs.80887	v-yes-1 Yamaguchi sarcoma viral related	1.42	3.46
	320451	R26944	Hs.180777	Homo sapiens mRNA; cDNA DKFZp564M0264 (f	0.87	0.81
	320484	AA094436	Hs.296267	follistatin-like 1	0.65	1.18
_	320499	R32555	Hs.24321	Homo sapiens cDNA FLJ12028 fis, clone HE	3.44	7.15
5	320514	AB007978	Hs.158278	KIAA0509 protein	6.44	13.62
	320521	N31464	Hs.24743	hypothetical protein FLJ20171	1.48	1.04
	320526	AW374205	Hs.111314	ESTs	3.66	7.87
	320527	R34672	Hs.324522	ESTs	3.16	5.63
10	320536	AA331732	Hs.137224	ESTs	2.83 1.28	5.83 1.00
10	320556	AF054177 AF056209	Hs.14570 Hs.159396	hypothetical protein FLJ22530 peptidylglycine alpha-amidating monooxyg	1.22	0.81
	320564 320587	Z44524	Hs.167456	Homo sapiens mRNA full length insert cDN	1.84	2.44
	320635	R54159	Hs.80506	small nuclear ribonucleoprotein polypept	1.00	6.25
	320639	AA243258	Hs.7395	hypothetical protein FLJ23182	2.60	2.30
15	320648	N48521	Hs.26549	Homo sapiens mRNA for KIAA1708 protein,	1.00	1.53
	320651	AA489268	Hs.111334	ferritin, light polypeptide	0.14	0.79
	320664	Al904216	Hs.91251	hypothetical protein FLJ11198	5.02	8.84
	320676	AA132650	Hs.300511	ESTs	3.63	5.37
20	320683	R59291	Hs.26638	ESTs, Weakly similar to unnamed protein	0.37	1.31 1.02
20	320689	AA334609	Hs.171929	ESTs, Weakly similar to A54849 collagen	1.27 3.53	4.60
	320696 320714	AW135016 Al445591	Hs.172780	ESTs gb:yq04a10.r1 Soares fetal liver spleen	1.06	0.85
	320727	U96044	Hs.181125	immunoglobulin lambda locus	1.35	1.49
	320771	Al793266	Hs.117176	poly(A)-binding protein, nuclear 1	0.04	0.82
25	320794	AA281993	Hs.91226	ESTs	2.96	4.33
	320822	AF100780	Hs.194679	WNT1 inducible signaling pathway protein	0.10	0.79
	320824	AF120274	Hs.194689	artemin	1.16	1.11
	320830	AJ132445	Hs.266416	claudin 14	1.06	1.75
20	320843	AA317372	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr	1.36	1.47
30	320849	D60031	Hs.34771	ESTs	5.30 1.00	7.49 1.00
	320853	Al473796	Hs.135904 Hs.271580	ESTs uroplakin 1B	5.90	2.55
	320896 320921	AB002155 R94038	Hs.199538	inhibin, beta C	2.20	1.17
	320927	Al205786	Hs.213923	ESTs	0.18	1.46
35	320957	AJ878933	Hs.92023	core histone macroH2A2.2	1.67	2.18
	320997	H22544		gb:yn69f11.r1 Soares adult brain N2b5HB5	3.26	3.62
	321045	W88483	Hs.293650	ESTs	2.25	4.55
	321046	H27794	Hs.269055	ESTs	2.69	4.25
40	321052	AW372884	Hs.240770	nuclear cap binding protein subunit 2, 2	2.14	2.56
40	321059	Al092824	Hs.126465	ESTs	1.69 2.76	0.53 5.20
	321062 321067	R87955 AF131782	Hs.241411 Hs.241438	Homo sapiens mRNA full length insert cDN Homo sapiens clone 24941 mRNA sequence	4.79	7.41
	321102	AA018306	113.241400	gb:ze40d08.r1 Soares retina N2b4HR Homo	1.79	4.27
	321130	H43750	Hs.125494	ESTs	1.00	3.14
45	321142	Al817933	Hs.298351	ASPL protein	8.73	15.36
	321155	AA336635	Hs.99598	hypothetical protein MGC5338	3.04	5.03
	321158	AA700289		gb:yu76f11.r1 Soares fetal liver spleen	4.62	8.39
	321170	N53742	Hs.172982	ESTs	2.21	4.46
50	321199	AW385512	11- 006460	gb:yy56d10.s1 Soares_multiple_sclerosis_	5.69 4.00	8.01 7.32
50	321206 321225	H54178 AL080073	Hs.226469 Hs.251414	Homo sapiens cDNA FLJ12417 fis, clone MA Homo sapiens mRNA; cDNA DKFZp564B1462 (f	4.17	4.63
	321236	AW371941	Hs.18192	Ser/Arg-related nuclear matrix protein (1.00	1.00
	321244	AF068654	710.10702	gb:Homo sapiens isolate AN.1 immunoglobu	2.18	9.13
	321270	R83560		gb:yv76c06.s1 Soares fetal liver spleen	3.80	5.26
55	321317	AI937060	Hs.6298	KIAA1151 protein	1.81	1.65
	321318	AB033041	Hs.137507	KiAA1215 protein	1.00	1.00
	321325	AB033100	Hs.300646	KIAA protein (similar to mouse paladin)	0.44	0.93
	321342	AA127984	Hs.222024	transcription factor BMAL2	4.94 3.10	4.93 4.66
60	321356	R93443	Hs.271770	ESTs ESTs	2.28	2.54
00	321418 321420	Al739161 Al368667	Hs.161075 Hs.132743	ESTS	1.13	0.97
	321430	U05890	1101102110	gb:H.sapiens (DIG3) mRNA for immunoglobu	2.42	3.35
	321453	N50080	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H	1.60	3.11
	321467	X13075		gb:Human 2a12 mRNA for kappa-immunoglobu	0.42	0.72
65	321468	AA514198	Hs.38540	ESTs	2.46	6.50
	321491	H70665	Hs.292549	ESTs	1.00	1.25
	321498	AW295517	Hs.255436	ESTs	3.19	6.24 3.86
	321504	W02356	Hs.268980 Hs.255748	ESTs ESTs	2.28 2.14	3.94
70	321510 321513	AA703650 H84972	Hs.108551	ESTs	2.78	5.37
70	321516	Al382803	Hs.159235	ESTs	3.06	7.19
	321565	Al525773	Hs.266514	hypothetical protein FLJ11342	4.89	7.82
	321577	H84260		gb:ys90g04.r1 Soares retina N2b5HR Homo	1.00	1.73
75	321581	AA019964	Hs.28803	ESTs	4.88	6.73
75	321582	AA143755	Hs.21858	trinucleotide repeat containing 3	1.00	2.08
	321587	H95531	11- 00000	gb:ys76e02.r1 Soares retina N2b4HR Homo	2.26	4.52
	321626	AA295430	Hs.96322	hypothetical protein FLJ23560	1.95	3.83
	321628	H87064 AW085917	Hs.161051 Hs.247084	ESTs, Moderately similar to ALU6_HUMAN A ESTs	0.47 1.52	1.02 1.38
80	321642 321669	H95404	Hs.294110	ESTS	2.17	2.45
00	321687	AA625149	. 10.20-7110	gb:af70c12.r1 Soares_NhHMPu_S1 Homo sapi	4.31	6.95
	321688	H97646	Hs.123158	Homo sapiens cDNA FLJ12830 fis, clone NT	2.82	3.28
	321693	AA700017	Hs.173737	ras-related C3 botulinum toxin substrate	0.51	1.08
0.5	321700	N55160	Hs.167260	ESTs	4.57	7.46
85	321701	AW390923	Hs.42568	ESTs	1.00	1.00

	W	O 02/08	6443			
	321709	N25847	Hs.108923	RAB38, member RAS oncogene family	1.00	1.00
	321710	N35682	Hs.259743	ESTs	2.97	5.26
	321775	Al694875	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	1.00	1.00
_	321777	A1637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	1.68	0.45
5	321779	N42729	Hs.163835	ESTs tumor endothelial marker 8	0.90 2.69	0.90 3.89
	321829 321846	D81993 AA281594	Hs.8966 Hs.87902	ESTs	5.11	7.64
	321879	AL109670	Hs.302809	ESTs	6.49	9.58
10	321883	AA426494	Hs.46901	KIAA1462 protein	0.28	0.95
10	321899	N55158	Hs.29468	ESTs	0.39	0.95
	321911	AF026944	Hs.293797	ESTs	6.20 4.62	10.76 10.51
	321949 321955	R49202 Al651866	Hs.181694 Hs.195689	EST ESTs	2.89	5.47
	321956	AL110177	Hs.132882	ESTs	0.32	1.25
15	321987	AL133612	Hs.272759	KIAA1457 protein	1.00	1.83
	321991	AL133627	Hs.158923	Homo sapiens mRNA; cDNA DKFZp434K0722 (f	4.00	6.47
	322002	AA328801	Hs.84522	ESTs	2.10	3.48
	322035	AL137517	Hs.306201	hypothetical protein DKFZp564O1278	1.00	1.90
20	322044	AW340926 N92197	Hs.154679	gb:xy51b10.x1 NCI_CGAP_Lu34.1 Homo sapie synaptotagmin 1	3.20 1.55	9.67 1.07
20	322057 322060	Al341937	H5.104075	gb:qt10e03.x1 NCI_CGAP_GC4 Homo sapiens	4.59	7.68
	322070	U80769	Hs.210322	Homo sapiens mRNA for KIAA1766 protein,	2.78	4.52
	322083	AF074982	Hs.226031	ESTs, Highly similar to KIAA0535 protein	3.10	5.52
25	322091	Ai819863	Hs.106243	ESTs	1.59	1.75
25	322125	R93901	11- 447707	gb:yq16c12.r1 Soares fetal liver spleen	2.06 10.12	5.27 16.49
	322130 322147	R98978 AF085919	Hs.117767 Hs.114176	ESTs ESTs	0.94	0.64
	322166	AF085958	110.114110	gb:yr88b03.r1 Soares fetal liver spleen	4.09	6.67
	322173	H52567		gb:yt85d04.r1 Soares_pineal_gland_N3HPG	3.46	4.85
30	322178	H56535		gb:yt88g03.r1 Soares_pineal_gland_N3HPG	0.44	2.54
	322179	H92891		gb:yl94c02.s1 Soares_pineal_gland_N3HPG	4.52	7.50
	322186	H67346	Hs.269187	ESTs ESTs	0.15 2.20	0.98 5.04
	322196 322212	W87895 AF087995	Hs.211516 Hs.134877	ESTS	3.42	4.84
35	322221	Al890619	Hs.179662	nucleosome assembly protein 1-like 1	0.82	2.14
	322277	Al640193	Hs.226389	ESTs	3.62	3.98
	322278	AF086283		gb:zd46f01.r1 Soares_fetal_heart_NbHH19W	1.00	1.00
	322284	Al792140	Hs.49265	ESTs	0.66 0.71	2.76 0.70
40	322288 322320	AL037273 AF086419	Hs.7886	pellino (Drosophila) homolog 1 gb:zd78d03,r1 Soares_fetal_heart_NbHH19W	2.02	2.76
70	322326	AA308526	Hs.76152	decorin	2.92	4.44
	322339	W17348		gb:zb18c07.x5 Soares_fetal_lung_NbHL19W	8.50	11.56
	322366	AW404274	Hs.122492	hypothetical protein	0.61	1.34
15	322372	W25624	Hs.153943	ESTs	7.37	12.07 10.50
45	322374 322378	Al394663 AF064819	Hs.122116 Hs.201877	ESTs, Moderately similar to Osf2 [M.musc DESC1 protein	4.78 1.00	1.00
	322376	Al815730	Hs.247474	hypothetical protein FLJ21032	7.09	8.49
	322416	AA223183	Hs.298442	adaptor-related protein complex 3, mu 1	3.20	5.80
~^	322419	AA248987	Hs.14084	ring finger protein 7	1.64	1.57
50	322425	W37943	Hs.34892	KIAA1323 protein	0.83	1,00
	322431	AA069222	Hs.141892	ESTs ESTs	3.96 5.18	5.22 12.67
	322450 322465	AA040131 AA137152	Hs.25144 Hs.286049	phosphoserine aminotransferase	3.41	2.23
	322467	AF116826	Hs.180340	putative protein-tyrosine kinase	1.00	1.30
55	322473	AA744286	Hs.266935	tRNA selenocysteine associated protein	1.75	2.03
	322509	T52172	Hs.302213	ESTs	1.00	2.27
	322523	W80398	Hs.193197	ESTs	2.75 1.25	5.49 1.27
	322527 322560	AF147359 Al916847	Hs.270947	gb:Homo sapiens full length insert cDNA ESTs	4.57	8.81
60	322566	W87285	Hs.269587	ESTs	1.00	1.42
	322585	AA837622		gb:zh69c01.r1 Soares_fetal_liver_spleen_	4.18	6.94
	322635	AA679084		gb:zh90h08.r1 Soares_fetal_liver_spleen_	2.40	4.85
	322641	AA007352	Hs.256042	ESTs	2.94 0.48	4.64 0.38
65	322653 322664	Al828854 AA011522	Hs.258538	striatin, calmodulin-binding protein gb:zi03g07.r1 Soares_fetal_liver_spleen_	1.92	2.18
05	322687	Al110759		gb:AF074666 Human fetal liver cDNA libra	4.14	6.75
	322692	AA018117	Hs.60843	potassium voltage-gated channel, shaker-	3.50	5.00
	322694	Al110872	Hs.279812	PRO0327 protein	1.80	1.72
70	322708	AF113674	Hs.283773	clone FLB1727	1.00	3.43
70	322712	AA021328	Hs.23607	hypothetical protein FLJ11109 Homo sapiens cDNA FLJ12280 fis, clone MA	3.28 1.63	3.86 1.53
	322766 322770	AW068805 AA045796	Hs.288467 Hs.122682	ESTs	1.53	1.06
	322794	Al608591	Hs.38991	S100 calcium-binding protein A2	12.06	1.94
	322810	Al962276	Hs.127444	ESTs	4.09	6.90
75	322818	AW043782	Hs.293616	ESTs	1.20	1.63
	322820	AI377755	Hs.120695	ESTs	0.21 2.04	1.93 1.63
	322872 322882	AA827228 AW248508	Hs.126943 Hs.279727	ESTs Homo sapiens cDNA FLJ14035 fis, clone HE	5.26	1.03
	322887	A1986306	Hs.86149	phosphoinositol 3-phosphate-binding prot	2.80	2.24
80	322913	AI733737	Hs.68837	ESTs	2.38	6.61
	322926	AI825940	Hs.211192	ESTs	4.02	5.79
	322929	Al365585	Hs.146246	ESTs	0.30	1.14 1.13
	322968 322971	Al905228 C15953	Hs.83484 Hs.212760	SRY (sex determining region Y)-box 4 hypothetical protein FLJ13649	2.06 1.18	2.00
85	322981	AA493252	Hs.159577	ESTs	2.28	2.61

	W	O 02/08	6443			
	322988	C18727	Hs.171941	ESTs	0.39	2.00
	323003	Al733859	Hs.149089	ESTs	3.28	1.00
	323013	AA134042	Hs.191451	ESTs	3.38	5.68
_	323025	AL157565	Hs.315369	Homo sapiens cDNA: FLJ23075 fis, clone L	0.06	1.10
5	323032	AW244073	Hs.145946	ESTs	10.18	21.27
	323052	R21124	Hs.85573 Hs.49359	Homo sapiens DC29 mRNA, complete cds	1.46 3.08	1.90 5.64
	323064 323098	AL119341 Al700025	Hs.49359 Hs.270471	Homo sapiens mRNA; cDNA DKFZp547E052 (fr ESTs	2.31	4.49
	323102	AL119913	Hs.163615	ESTs	5.38	11.64
10	323155	AL135041		gb:DKFZp762K2310_r1 762 (synonym: hmel2)	2.38	5.56
	323176	AW071648	Hs.82101	pleckstrin homology-like domain, family	1.06	1.41
	323191	AA195600	Hs.301570	ESTs	0.73	1.24
	323225	AA205654	Hs.24790	KIAA1573 protein	5.25	11.95
15	323232	AA148722	Hs.224680	ESTs	0.45	1.35 1.83
15	323266 323281	AW003362 Al697556	Hs.243886 Hs.292659	nuclear autoantigenic sperm protein (his ESTs	1.71 1.24	3.21
	323283	AA256014	Hs.86682	Homo sapiens cDNA: FLJ21578 fis, clone C	12.68	15.05
	323314	AA226310	Hs.191501	ESTs	4.42	9.61
	323316	AL134620	Hs.280175	ESTs	2.98	5.93
20	323334	Al336501	Hs.77273	ras homolog gene family, member A	1.98	3.30
	323338	R74219	Hs.23348	S-phase kinase-associated protein 2 (p45	1.62	1.00
	323348	AA233056	Hs.191518	ESTs	1.00 1.43	1.07 1.68
	323351	AA704103 AA234172	Hs.24049 Hs.137418	ESTs ESTs	0.34	1.18
25	323359 323360	AA716061	Hs.161719	ESTs	3.01	3.71
20	323405	AW139550	Hs.115173	ESTs	1.90	8.81
	323420	A1672386	Hs.263780	ESTs	0.29	1.01
	323434	AW081455	Hs.120219	ESTs	2.27	1.92
20	323445	AA253103	Hs.135569	ESTs, Weakly similar to NEUROD [H.sapien	0.43	0.80
30	323449	AA282865	Hs.284153	Fanconi anemia, complementation group A	3.19	3.85
	323492	H00978	Hs.20887	hypothetical protein FLJ10392 ESTs	2.70 2.04	3.20 3.31
	323501 323505	AA182461 Al652287	Hs.84520	gb:EST382593 MAGE resequences, MAGK Homo2		3.08
	323515	AA282274	Hs.256083	ESTs	2.69	3.40
35	323541	Al185116	Hs.104613	RP42 homolog	1.20	1.09
	323545	A!814405	Hs.224569	ESTs	1.25	1.55
	323635	R63117	Hs.9691	Homo sapiens cDNA: FLJ23249 fis, clone C	0.27	0.72
	323675	AA984759	Hs.272168	tumor differentially expressed 1	3.70 3.33	5.80 5.10
40	323678 323691	AL042121 AA317561	Hs.20880 Hs.145599	ESTs ESTs	1.00	1.00
-10	323693	AW297758	Hs.249721	ESTs	2.01	1.54
	323746	AW298611	Hs.12808	MARK	4.11	5.53
	323774	AA329806	Hs.321056	Homo sapiens mRNA; cDNA DKFZp586F1322 (f	2.06	3.70
15	323856	AA355264	Hs.267604	hypothetical protein FLJ10450	3.42	8.13
45	323857	T18988	Hs.293668	ESTs	5.97 3.17	12.51 4.52
	323870 323876	AA341774 AL042492	Hs.129212 Hs.147313	ESTs ESTs	0.36	1.00
	323885	AA344308	Hs.128427	Homo sapiens BAC clone RP11-335J18 from	2.31	3.33
	323911	AL043212	Hs.92550	ESTs	4.38	5.41
50	323919	AA862973	Hs.220704	ESTs	5.80	10.20
	323972	Al869964	Hs.182906	ESTs	3.10	5.14
	324005	AA610011	Hs.208021	ESTs	5.34 1.00	10.07 5.03
	324036 324055	Al472078 AA528794	Hs.303662 Hs.128644	ESTs ESTs	0.86	1.00
55	324063	AW292740	Hs.272813	dual oxidase 1	0.45	0.91
-	324072	AA381829	1,0,2,20,0	gb:EST94855 Activated T-cells I Homo sap	2.82	5.12
	324092	AW269931	Hs.202473	Homo sapiens cDNA: FLJ22278 fis, clone H	2.40	2.52
	324095	AW377983	Hs.298140	Homo sapiens cDNA: FLJ22502 fis, clone H	1.32	4.30
C O	324129	Al381918	Hs.285833	Homo sapiens cDNA: FLJ22135 fis, clone H	1.40	1.77
60	324132	AW504860	Hs.288836	hypothetical protein FLJ12673	4.24 6.96	6.21 10.69
	324214	AA412395	Hs.225740	ESTs Homo sapiens cDNA: FLJ22141 fis, clone H	0.80	0.53
	324227 324266	AA295552 AL047634	Hs.28631 Hs.231913	ESTs	2.42	4.05
	324275	AA429088	Hs.98523	ESTs	3.62	5.38
65	324281	AL048026	Hs.124675	ESTs, Weakly similar to T14742 hypotheti	0.14	0.70
	324290	AA432032	Hs.304420	ESTs	3.71	4.34
	324303	AL118754		gb:DKFZp761P1910_r1 761 (synonym: hamy2)	0.95	0.91
	324312	Al198841	Hs.128173	ESTs	4.06 5.88	5.91 8.25
70	324325 324338	AL138153 AL138357	Hs.300410 Hs.145078	ESTs regulator of differentiation (in S. pomb	0.87	1.25
, 0	324341	AW197734	Hs.99807	ESTs, Weakly similar to unnamed protein	1.28	1.00
	324343	AW452016	Hs.293232	ESTs	2.54	3.46
	324371	AA452305	Hs.270319	ESTs	5.85	8.36
75	324382	AW502749	Hs.24724	MFH-amplified sequences with leucine-ric	0.76	1.64
75	324384	AA453396	Hs.127656	KIAA1349 protein	2.88 1.81	5.69 1.99
	324385 324388	F28212 Al924963	Hs.284247 Hs.306206	KIAA1491 protein hypothetical protein FLJ11215	1.00	1.00
	324432	AA464510	Hs.152812	ESTs	2.73	2.17
00	324497	AW152624	Hs.136340	ESTs, Weakly similar to unnamed protein	0.71	1.90
80	324510	AI148353	Hs.287425	Homo sapiens cDNA FLJ11569 fis, clone HE	1.00	1.00
	324580	AA492588	Un 120020	gb:ng99c08.s1 NCI_CGAP_Thy1 Homo sapiens ESTs, Weakly similar to ALU1_HUMAN ALU S	2.18 5.96	3.50 11.36
	324582 324633	AA506935 AA572994	Hs.132036 Hs.325489	ESTs, Weakly Slimiar to ALO I_HOWAN ALO S	2.92	4.22
6.5	324640	AW295832	Hs.134798	ESTs, Moderately similar to TTL MOUSE TU	5.48	11.74
85	324675	AW014734	Hs.157969	ESTs	0.39	0.73

		0 02/00	0443			
	324699	AW504732	Hs.21275	hypothetical protein FLJ11011	0.93	0.93
	324747	AA603532	Hs.130807	ESTs	1.57	1.81
				ESTs	1.55	1.34
	324748	AA657457	Hs.292385			
-	324801	Al819924	Hs.14553	sterol O-acyltransferase (acyl-Coenzyme	1.00	6.56
5	324804	Al692552		gb:wd73f12.x1 NCI_CGAP_Lu24 Homo sapiens	1.00	7.53
	324828	AA843926	Hs.124434	ESTs	2.00	3.25
	324855	AW152305	Hs.122364	ESTs	2.74	3.43
		Al541214	Hs.46320	Small proline-rich protein SPRK [human,	1.07	0.95
	324866					1.21
10	324871	AW297755	Hs.271923	Homo sapiens cDNA: FLJ22785 fis, clone K	1.68	
10	324886	AA806794	Hs.131511	ESTs	2.56	5.61
	324889	D31010		gb:HUML12147 Human fetal lung Homo sapie	2.20	4.65
	324948	AW383618	Hs.265459	ESTs, Moderately similar to ALU2_HUMAN A	5.28	7.05
	324953	Al264628	Hs.125428	ESTs	3.37	5.51
				==::	5.12	9.81
1 =	324958	AA625076	Hs.132892	protocadherin 20		
15	324988	T06997	Hs.121028	hypothetical protein FLJ10549	2.52	1.08
	325024	F13254	Hs.78672	taminin, alpha 4	5.24	10.22
	325105	H97109	Hs.105421	ESTs	1.00	1.00
	325108	AA401863	Hs.22380	ESTs	1.99	2.14
	325114	D83901	Hs.315562	ESTs	2.73	3.17
20					1.86	3.41
20	325146	Al064690	Hs.171176	ESTs		
	325149	D61117	Hs.187646	ESTs	0.42	0.93
	325187	Al653682	Hs.197812	ESTs	6.50	11.31
	325228				6.18	15.76
	325235				2.64	4.12
25	325328				2.87	4.42
20					0.29	0.33
	325340				16.56	24.29
	325367					
	325373				0.63	1.22
	325389				0.88	1.05
30	325436				5.75	14.14
-	325471				8.46	17.82
					3.32	6.42
	325498				5.51	8.28
	325557					
~ ~	325559				7.48	21.40
35	325560				4.08	6.25
	325569				4.20	5.24
	325585				1.10	1.13
					1.00	1.00
	325587				2.98	13.40
40	325597					
40	325639				0.78	0.78
	325685				0.46	0.66
	325686				0.95	1.55
	325735				4.48	9.20
					0.59	0.88
45	325739				2.42	6.61
43	325740					
	325792				7.88	9.83
	325819				4.74	7.18
	325883				2.02	2.64
	325895		•		7.78	15.98
50	325925				2.04	10.60
50					4.18	7.36
	325932					
	325941				3.66	9.03
	325969				0.61	0.80
	325971				4.88	7.42
55	326025				0.55	1.07
	326046				7.21	14.72
					3.60	5.98
	326099					1.06
	326108				1.27	
	326163			•	3.27	5.70
60	326165				0.45	1.11
	326189				0.13	0.45
	326204				5.60	9.00
	326230				7.00	12.01
					1.00	8.09
65	326274					15.35
65	326360				9.86	
	326393				0.52	0.77
	326505				1.00	1.42
	326515				1.24	5.84
	326589				9.20	13.49
70	326592				2.77	4.01
, 0					2.01	2.53
	326605					1.00
	326692				1.00	
	326693				1.00	1.31
	326720				0.19	0.65
75	326742				2.34	7.20
	326770				0.25	0.83
					3.09	4.56
	326818				2.08	3.45
	326936					J.40 4 70
00	326964	•			0.41	1.70
80	326983				2.02	3.80
	326991				1.09	1.20
	327036				1.00	8.04
					3.05	4.22
	327040					6.31
0.5	327053				3.55	
85	327075				1.59	1.40

	W O 02/080443		
	327085	2.50	12.5
	327130	5.38	8.04
	327 130	5.50	0.04
	327156	3.74	6.58
	327220	1.28	1.54
5			42.0
9	327224	6.56	12.9
	327288	2.61	5.40
	327321	2.42	3.11
		6.60	
	327332	6.62	10.58
	327361	2.69	4.41
10	327377	2.04	6.72
10			0.72
	327396	2.61	4.50
	327414	1.00	8.01
	327442	5.91	9.65
	327467	6.58	18.01
15	327473	3.79	7.48
			0.07
	327483	4.08	8.87
	327562	0,68	2.86
	327568	1.00	2.00
		0.00	2.00
20	327606	2.06	3.61
20	327611	5.90	14.26
	327642	4.06	8.74
		7.00	0.74
	327654	1.05	2.08
	327734	1.00	1.00
	327775	1.46	11.79
25		1,40	11.73
25	327796	3.47	5.65
	327840	3.26	6.64
		504	
	327940	5.84	15.58
	327984	0.36	1.50
	328004	1.87	1.42
30		0.40	0.50
30	328021	0.42	0.59
	328068	2.83	4.68
	328100	3.04	5.39
		0.04	5.55
	328101	3.54	5.20
	328113	0.72	0.91
35		E CO	5.16
55	328157	5.58	0.10
	328196	√5.76	11.13
	328197	5.98	10.58
		2.44	4.00
	328264	3.11	4.88
	328299	2.20	3.06
40	328342	1.49	1.94
-10		1.45	1.04
	328365	1.00	1.00
	328369	4.40	7.36
	328381	1.86	4.93
			7.50
4 ==	328451	5.51	7.56
45	328481	0.13	0.72
		2.71	3.97
	328500	2./ 1	
	328530	5.41	7.62
	328600	3.14	10.68
		4.56	
50	328608		8.17
50	328616	2.24	11.91
	328623	3.04	5.46
	328632	0.70	1.19
	328664	3.48	6.80
	328666	10.42	26.47
55			
33	328698	9.68	14.56
	328700	2.74	10.22
	328708	0.15	0.57
	328735	6.23	8.91
	328743	3.62	6.54
60		0.22	
00	328806		0.78
	328861	3.68	10.54
	328908	5.42	16.36
		2.02	
	328933	2.02	5.29
	328934	1.73	4.45
65	328949	3.34	5.41
		2.88	
	329005	2.00	7.26
	329011	2.52	3.72
	329033	1.00	1.03
		1.00	1.00
70	329037	5.07	8.16
70	329067	1.98	2.41
	329134	2.24	3.25
		2.24	
	329157	2.30	11.04
	329178	2.64	5.02
		6.44	1E 07
75	329192	6.41	15.27
75	329194	0.31	0.79
-	329204	1.60	3.75
		0.00	0.10
	329224	2.99	6.11
	329228	0.83	0.83
	329288	0.63	1.01
90		0.00	1.01
80	329337	1.00	1.00
	329541	0.76	1.68
		4 94	2.00
	329560	1.34	2.02
	329588	1.68	2.22
	329643	4.18	11.77
85		4.00	
Oυ	329703	1.00	1.00

	W	O 02/080	5443				
	329764				5.78	15.50	
	329816			•	2.09	5.44	
	329860				3.13	10.77	
	329993				7.83	14.21	
5	330020				5.58	13.12	
	330036				3.32	5.57	
	330052				4.31	7.97	
	330085				1.34	1.76	
	330088				4.70	12.46	
10	330093				0.44	1.06	
10	330100				3.47	4.83	
	330106				2.14	3.61	
					3.17	6.87	
	330107				5.61	11.89	
15	330120				4.50	12.74	
13	330123				1.55	7.62	
	330208						
	330263				13.10	23.38	
	330300				2.81	4.98	
00	330313				3.00	4.41	
20	330366				0.67	0.76	
	330372				4.76	11.82	
	330385	AA449749	Hs.182971	karyopherin alpha 5 (importin alpha 6)	2.14	2.15	
	330397	D14659	Hs.154387	KIAA0103 gene product	0.40	1.15	
	330468	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	1.11	0.94	
25	330472	L24203	Hs.82237	ataxia-telangiectasia group D-associated	1.67	1.17	
	330478	L38486	Hs.296049	microfibrillar-associated protein 4	0.46	1.07	
	330493	M27826	Hs.267319	endogenous retroviral protease	1.07	0.95	
	330495	M31328	Hs.71642	guanine nucleotide binding protein (G pr	0.97	0.96	
	330506	M61906	Hs.6241	phosphoinositide-3-kinase, regulatory su	0.17	3.66	
30	330512	M80563	Hs.81256	S100 calcium-binding protein A4 (calcium	0.60	1.06	
50	330537	U19765	Hs.2110	zinc finger protein 9 (a cellular retrov	2.81	2.07	
	330547	U32989	Hs.183671	tryptophan 2,3-dioxygenase	3.91	1.49	
			Hs.299867	hepatocyte nuclear factor 3, alpha	1.15	1.03	
	330551	U39840 U56244	NS.233007		2.83	4.79	
35	330568			(NONE)	2.08	1.54	
33	330599	U90437	11- 00045	gb:Human RP1 homolog mRNA, 3'UTR region	0.89	1.35	
	330601	U90916	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H			
	330605	X02419	Hs.77274	plasminogen activator, urokinase	1.87	1.55	
	330609	X04741	Hs.76118	ubiquitin carboxyl-terminal esterase L1	1.83	1.30	
40	330617	X53587	Hs.85266	integrin, beta 4	1.54	1.15	
40	330630	X78669	Hs.79088	reticulocalbin 2, EF-hand calcium bindin	1.39	1.19	
	330644	Y07755	Hs.38991	S100 calcium-binding protein A2	3.83	1.13	
	330650	Z68228	Hs.2340	junction plakoglobin	1.25	0.95	
	330660	AA347868	Hs.139293	ESTs, Weakly similar to ALU7_HUMAN ALU S	15.50	29.07	
	330692	AA017045	Hs.6702	ESTs	1.00	1.00	
45	330707	AA133891	Hs.293690	ESTs	0.20	1.35	
	330715	AA233707	Hs.11571	Homo sapiens cDNA FLJ11570 fis, clone HE	0.12	1.40	
	330717	AA233926	Hs.52620	Integrin, beta 8	6.62	5.42	
	330722	AA243560	Hs.34382	ESTs	1.40	1.65	
	330740	AA297746	Hs.22654	Homo sapiens voltage-gated sodium channe	0.27	2.04	
50	330742	AA400979	Hs.25691	receptor (calcitonin) activity modifying	0.44	0.90	
50	330744	AA406142	Hs.12393	dTDP-D-glucose 4,6-dehydratase	0.71	3.23	
	330751	AA428286	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	1.66	1.52	
	330760	AA448663	Hs.30469	ESTs	0.52	0.90	
		AA450200	Hs.274337	hypothetical protein FLJ20666	0.37	0.97	
55	330763		Hs.49136	ESTs, Moderately similar to ALU7_HUMAN A	0.78	0.84	
55	330786	D60374			0.23	3.17	
	330790	T48536	Hs.105807	ESTs ESTs. Weakly similar to transformation-r	0.23	2.07	
	330814	AA015730	Hs.265398		1.60	1.00	
	330827	AA040332	Hs.12744	ESTs			
60	330844	AA063037	Hs.66803	ESTs	0.93	1.16	
60	330901	AA157818	Hs.267319	endogenous retroviral protease	1.02	1.03	
	330931	F01443	Hs.284256	hypothetical protein FLJ14033 similar to	0.24	0.88	
	330952	H02855	Hs.29567	ESTs	0.08	1.31	
	330961	H10998	Hs.7164	a disintegrin and metalloproteinase doma	1.29	1.26	
c=	330968	H16568	Hs.23748	ESTs	0.48	0.96	
65	331014	H98597	Hs.30340	hypothetical protein KIAA1165	0.29	0.74	
	331046	N66563	Hs.191358	ESTs	0.99	8.56	
	331060	N75081	Hs.157148	Homo sapiens cDNA FLJ11883 fis, clone HE	1.24	1.00	
	331099	R36671	Hs.83937	hypothetical protein	0.75	1.03	
	331108	R41408	Hs.21983	ESTs	1.00	2.75	
70	331131	R54797		gb:yg87b07.s1 Soares infant brain 1NIB H	6.04	10.68	
	331135	R61398	Hs.4197	ESTs	0.80	0.96	
	331170	T23461	Hs.159293	ESTs	2.63	4.29	
	331180	T32446	Hs.6640	Human DNA sequence from PAC 75N13 on chr	1.78	2.71	
	331183	T40769	Hs.8469	ESTs	1.00	3.01	
75	331203	T82310	110.0 100	(NONE)	1.70	3.80	
15			He 82226	glycoprotein (transmembrane) nmb	1.20	3.19	
	331271	AA059347	Hs.82226	dachshund (Drosophila) homolog	0.31	1.30	
	331306	AA252079	Hs.63931		2.09	2.41	
	331327	AA281076	Hs.109221	ESTs	0.72	2.43	
0Λ	331341	AA303125	Hs.23240	Homo sapiens cDNA FLJ13496 fis, clone PL			
80	331359	AA416979	Hs.46901	KIAA1462 protein	0.09	0.91	
	331363	AA421562	Hs.91011	anterior gradient 2 (Xenepus laevis) hom	1.02	0.87	
	331378	AA448881	Hs.49282	hypothetical protein FLJ11088	1.03	1.23	
	331384	AA456001	Hs.93847	NADPH oxidase 4	1.40	1.00	
0.5	331402	AA505135	Hs.44037	ESTs	1.80	3.93	
85	331422	F10802	Hs.163628	ESTs, Moderately similar to ALU7_HUMAN	1.65	1.89	

WO 02/086443 PCT/US02/12476

	W	O 02/080	6443			
	331490	N32912	Hs.26813	CDA14	2.48	1.73
	331531	N51343		gb:yz15g04.s1 Soares_multiple_sclerosis_	0.98	1.68
	331547	N54811		gb:od74f04.s1 NCI_CGAP_Ov2 Homo sapiens	3.80	5.75
	331578	N67960	Hs.249989	ESTs	0.11	0.67
5	331589	N71027	Hs.152618	ESTs	1.09	1.38
_	331608	N89861	Hs.112110	PTD007 protein	0.93	0.76
	331614	N92293	Hs.240272	EST	0.17	1.34
	331668	W69707	Hs.58030	EST	2.24	3.82
	331671	W72033	Hs.194695	ras homolog gene family, member I	1.00	1.24
10				ESTs, Weakly similar to rhotekin [M.musc	0.08	1.07
10	331676	W79834	Hs.58559		8.72	4.27
	331681	W85712	Hs.119571	collagen, type III, alpha 1 (Ehlers-Danl		
	331692	W93592	Hs.152213	wingless-type MMTV integration site fami	0.94	0.54
	331717	AA190888	Hs.153881	Homo sapiens NY-REN-62 antigen mRNA, par	1.57	1.34
1 ~	331718	AA191404	Hs.104072	ESTs	6.80	11.77
15	331811	AA404500	Hs.301570	ESTs	1.10	1.00
	331820	AA405970	Hs.97996	transcription termination factor, mitoc	0.73	0.59
	331831	AA412031	Hs.97901	EST	2.77	4.08
	331852	AA418988	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f	0.23	0.93
	331943	AA453418	Hs.21275	hypothetical protein FLJ11011	0.36	1.88
20	331969	AA460702	Hs.82772	collagen, type XI, alpha 1	1.00	1.00
	331990	AA478102	Hs.139631	ESTs	3.04	3.87
	332002	AA482009	Hs.105104	ESTs	1.19	0.78
	332027	AA489671	Hs.65641	hypothetical protein FLJ20073	1.27	1.03
				ESTs	0.30	1.62
25	332029	AA489697	Hs.145053		2.30	3.70
23	332033	AA489840	Hs.251014	EST	0.17	0.52
	332048	AA496019	Hs.201591	ESTs		
	332071	AA598594	Hs.205293	KIAA1211 protein	1.35	1.23
	332074	AA599012		gb:ae41e11.s1 Gessler Wilms tumor Homo s	0.19	2.00
20	332083	AA600200	Hs.155546	KIAA1080 protein; Golgi-associated, gamm	0.31	1.18
30	332085	AA600353	Hs.173933	nuclear factor I/A	0.30	1.50
	332125	AA609861	Hs.312447	ESTs	0.22	0.62
	332177	F10812	Hs.101433	ESTs	8.21	18.03
	332180	H03348	Hs.7327	claudin 1	2.27	1.57
	332185	H10356	Hs.101689	ESTs	0.09	1.18
35			Hs.317769	EST	8.05	5.02
55	332203	H49388			0.78	0.85
	332232	N48891	Hs.101915	Stargardt disease 3 (autosomal dominant)		
	332240	N54803	Hs.324267	ESTs, Weakly similar to putative p150 [0.96	1.23
	332261	N70294	Hs.269137	ESTs	2.40	3.74
4.0	332275	R08838	Hs.26530	serum deprivation response (phosphatidyl	0.27	0.75
40	332280	R38100	Hs.146381	RNA binding motif protein, X chromosome	0.39	1.88
	332299	R69250	Hs.21201	nectin 3; DKFZP566B0846 protein	5.24	12.76
	332304	R74041	Hs.101539	ESTs	1.44	3.18
	332314	T25862	Hs.101774	hypothetical protein FLJ23045	0.68	1.32
	332384	M11433	Hs.101850	retinol-binding protein 1, cellular	1.71	0.88
45				Homo sapiens cDNA FLJ11918 fis, clone HE	0.43	0.86
43	332434	N75542	Hs.289068		0.43	1.00
	332445	T63781	Hs.11112	ESTs		1.00
	332453	L00205	Hs.111758	keratin 6A	31.54	
	332458	M33493	Hs.250700	tryptase beta 1	0.51	1.00
- 0	332504	AA053917	Hs.15106	chromosome 14 open reading frame 1	0.79	1.24
50	332525	M17252	Hs.278430	cytochrome P450, subfamily XXIA (steroid	0.98	1.70
	332530	M31682	Hs.1735	inhibin, beta B (activin AB beta polypep	0.88	0.66
	332535	N20284	Hs.19280	cysteine-rich motor neuron 1	0.22	1.46
	332539	AA412528	Hs.20183	ESTs, Weakly similar to AF164793 1 prote	0.93	1.49
	332559	M13955	Hs.166189	cytokeratin 2	0.35	1.13
55	332563	N92924	Hs.274407	protease, serine, 16 (thymus)	1.00	1.00
55		AA234896	Hs.25272	E1A binding protein p300	0.36	1.05
	332565			methyl CpG binding protein 2 (Rett syndr	0.53	0.59
	332594	AA279313	Hs.3239		0.38	1.16
	332634	S38953	Hs.283750	tenascin XA		
CO	332638	AA283034	Hs.50640	JAK binding protein	1.00	1.70
60	332640	AA417152	Hs.5101	protein regulator of cytokinesis 1	6.15	1.16
	332654	AA001296	Hs.288217	hypothetical protein MGC2941	1.50	2.73
	332665	AA223335	Hs.63788	propionyl Coenzyme A carboxylase, beta p	1.20	0.91
	332692	AA496035	Hs.247926	gap junction protein, alpha 5, 40kD (con	0.17	1.12
	332716	L00058	Hs.79070	v-myc avian myelocytomatosis viral oncog	1.00	1.44
65	332736	L13773	Hs.114765	myeloid/lymphoid or mixed-lineage leukem	1.00	1.81
00	332758	X93921	Hs.296938	dual specificity phosphatase 7	0.53	0.78
		AA233258	Hs.247112	hypothetical protein FLJ10902	1.44	1.56
	332781	AAZJJZJO	115.247 1 12	hypothetical protein i La rosoz	1.70	1.19
	332792					2.47
70	332816				1.85	
70	332858				1.04	1.57
	332906				3.48	8.04
	332911				1.00	1.00
	332912				1.06	4.40
	332922				1.00	1.00
75	332956				0.42	0.88
, 5	332959				1.96	6.34
					0.56	0.99
	332982				0.30	0.33
	332984					
oΛ	332998				1.47	2.01
80	333058				0.47	1.38
	333097				2.14	3.19
	333121				2.76	3.70
	333122				1.92	1.21
	333123				1.85	1.39
85	333138				0.47	0.52
	555100					

	WO 02/086443		
	333139	1.88	0.84
	333140	0.21	0.64
	333221	1.51	1.11
~	333260	0.75	1.01
5	333380	6.68	15.75
	333387	4.56 5.05	12.61 8.01
	333512	2.03	3.98
	333524	2.28 2.31	1.53
10	333585 333603	2.23	1.17
10	333604	2.51	1.58
	333618	0.52	0.98
	333627	1.44	1.36
	333628	1.90	1.90
15	333650	1.85	2.10
	333678	1.85	2.35
	333750	2.18	5.67
	333763	1.99 1.02	2.60
20	333767	1.78	0.96 1.65
20	333768	2.15	2.13
	333769 333772	1.46	2.53
	333777	1.46 1.00	1.42
	333846	2.99	4.50
25	333884	0.47	0.94
	333887	0.50	1.00
	333891 .	0.43	0.89
	333892	0.51	0.91
20	333904	0.26	1.13
30	333906	0.55	0.98
	333948	1.70 0.37	2.15
	333954	8.10	1.09 14.30
	333966	0.63	1.38
35	333968 334061	4.24	12.30
55	334094	4.24 1.30	12.03
	334113	4.55	8.63
	334161	ი გე	1.59
	334183	0.47 1.36	0.76
40	334187	1.36	3.70
	334219	0.69	1.04
	334222	1.88 4.72	1.70
	334223	4.72	3.14 0.62
45	334239	0.79 0.45	1.10
43	334255	1.00	3.56
	334333 334378	3.98	5.76
	334382	1.50	1.31
	334492	3.59	4.75
50	334562	5.94	15.40
	334588	8.14	19.53
	334616	1.55	1.56
	334633	5.16	8.07
	334648	0.59	2.13 7.15
55	334787	3.70 8.13	10.60
	334866	0.32	1.14
	334891	1.00	3.84
	334933 334934	4.01	7.43
60	334945	1.04	2.96
00	334967	0.29 1.50	1.14
	334990	1.50	1.39
	335015	5.88	18.65
	335093	0.55	1.75
65	335120	4.31	8.01
	335125	0.38	1.97
	335179	1.24 0.46	1.98 1.47
	335188	1.61	1.42
70	335211 335288	0.73	0.97
70	335289	0.20	0.26
	335361	2.18	1.58
	335379	0.50	0.71
	335414	3.64	14.94
75	335416	2.93	3.98
. •	335496	0.96	0.91
	335497	1.71	1.92
	335548	1.15	2.40
0.0	335551 .	3.22 3.42	10.54
80	335558	3.42 5.50	4.89
	335586	2.99	12.75 3.07
	335619	2.99 3.80	8.29
	335620 335621	0.28	0.57
85	335682	0.46	1.17
55		- 	
	·		

	WO 02/086443		
	335686	2.55	3.81
	335755	2.24	1.07
	335784	0.20	0.97
		1.13	1.48
5	335814	2.45	3.51
2	335815	1.00	4.16
	335823		4.10
	335835	0.49	1.70
	335851	1.66	1.39
	335868	2.98	6.43
10	335896	0.98	0.99
- 0	335936	12.10	21.93
		1.00	1.64
	335948		4.21
	335983	1.00	4.21
4 ~-	335995	0.37	1.17
15	336021	1.04	0.84
	336034	11.40	23.54
	336038	1.19	1.21
	336066	0.54	1.63
		0.95	0.70
20	336107	3.13	6.29
20	336205		
	336275	3.20	10.10
	336292	2.34	3.09
	336331	1.00	1.00
	336419	0.65	0.79
25	336632	2.33	2.16
	336633	2.55	2.23
		2.19	2.03
	336634	2.69	2.48
	336635	2.03	
20	336636	2.13	1.83
30	336637	2.43	2.24
	336638	2.31	2.03
	336659	0.60	1.31
		0.31	1.18
	336675	1.50	1.14
25	336684	1.00	
35	336694	4.74	7.10
	336716	4.43	6.37
	336721	2.20	0.74
	336798	1.64	2.14
		6.14	12.73
40	336900		1.00
40	336948	1.00	2.00
	337028	1.30	2.09
	337043	4.01	11.53
	337046	1.67	1.84
	337054	2.78	7.35
45	337128	7.20	16.14
43		3.45	5.34
	337162		
	337183	5.72	11.41
	337184	3.72	5.90
	337192	1.27	1.06
50	337194	1.88	1.68
50	337229	0.22	1.03
		1.00	3.31
	337268	2.00	
	337299	3.23	5.14
	337325	2.76	3.72
55	337389	5.80	10.42
	337493	2.06	6.30
	337497	7.88	20.29
		3.80	4.48
	337500		2.31
C O	337549	1.66	
60	337603	1.27	8.54
	337605	5.76	7.16
	337671	0.73	0.97
	337755	1.54	0.92
	337786	5.07	9.73
65		6.18	12.87
05	337809	3.78	12.97
	337862		
	337871	2.66	8.16
	337958	0.26	1.34
	338008	1.48	1.12
70	338033	2.38	14.59
	338083	0.65	2.16
		1.00	1.61
	338110		8.25
	338112	5.86	
7-	338145	1.70	1.97
75	338148	8.07	18.19
	338158	1.30	4.55
	338161	2.58	3.57
		1.00	1.00
	338179	3.32	4.63
90	338182	4.00	
80	338189	1.00	3.34
	338197	0.99	1.69
	338199	4.58	7.62
	338215	6.01	15.85
	338279	0.53	0.95
85		20.58	38.66
$\sigma_{\mathcal{J}}$	338316	20.00	00.00

	WO 02/086443			PCT/US02/12476
	338322	3.23	7.39	
	338357	4.10	11.39	
	338359	10.12	21.59	
	338366	0.69	1.02	
5	338374	0.40	1.18	
	338414	0.47	1.06	
	338418	6.12	13.86	
	338469	3.09	5.11	
	338501	6.28	10.32	
10	338506	6.97	12.41	
	338523	3.10	5.84	
	338549	1.70	2.70	
	338561	0.79	0.81	
	338662	1.72	1.46	
15	338671	0.17	0.91	
	338676	2.10	15.86	
	338726	1,20	1.09	
	338779	0.12	0.57	
	338804	0.99	1.67	
20	338836	1.00	1.00	
	338871 338872 ′	4.30	9.81	
	338872 ´	5.02	12.81	
	338879	0.23	1.12	
	338937	6.55	12.26	
25	338966	1.76	5.42	
	338993	1.00	2.40	
	339047	5.26	10.81	
	339100	5.10	6.88	
	339114	1.00	1.70	
30	339121	1.00	3.75	
	339170	10.36	19.67	
	339229	4.08	13.48	
	339264	2.64	3.83	
0.5	339293	1.73	1.94	
35				

TABLE 8B shows the accession numbers for those Pkeys in Table 8A lacking unigenelD's. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

CAT number: Gene cluster number Accession: Genbank accession numbers Pkey CAT number Accessions 322044 187363_1 AW340926 AA249063 N86075 322060 44320_1 Al341937 AW03063 U34725 AA904742 321430 42705_1 X57414 X57415 321457 43034_1 X13075 X13076 322125 46779_1 R93901 AF075073 R93902 322166 46861_1 H69434 AF08598 H69846 322173 46873_1 H52567 H52657 AF086970 H52164 322179 46885_1 H52651 H52557 AF086970 H52164 322179 46885_1 H92891 AF085982 H92777 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 60 320997 627492_1 H22544 H46842 Al204929 322278 47271_1 W69304 AF085283 W69200 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA625149 AA313030 AA313052 H97463 32230 47422_1 W79150 AF086419 32230 47422_1 W79150 AF086419 32230 47422_1 W79150 AF086419 32339 814584_1 Al668646 Al734214 W17348 314648 293660_1 AW979268 AA678419 AA431342 AA431628 300201 682222_1 Al308300 Al308296 300201 682222_1 Al308300 Al308296 32365 82986_1 AA005129 AA69198 AA93499 322635 82298_1 TA42051 AA005129 AA691399 322635 82298_1 AA005129 AA69198 AA931399 322664 85042_1 AA005129 AA691984 AA9011691 AA330797		Pkey:	Р	Unique Eos p	probeset identifier number
70 Pkey CAT number Accessions 322044		CAT number:	С	Gene cluster	number
Pkey	4 =	Accession:	Α	Genbank acc	ession numbers
322044 187363_1 AW340926 AA249063 N86075 322060 44320_1 AI341937 AW003063 U34725 AA904742 321467 43034_1 X13075 X13076 322125 46779_1 R93901 AF075073 R93902 322166 46861_1 H69434 AF085958 H69846 322173 46873_1 H52567 H52567 AF085970 H52164 55 322178 46885_1 H52567 H52567 AF085970 H52164 32179 46885_1 H92891 AF085982 H92777 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 47271_1 W69304 AF086283 W69200 32278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA655089 AA135130 AA484059 AA102419 AW877765 32230 47422_1 W99150 AF086419 56 32230 47422_1 AM686646 AI734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 3008697 251962 Al093967 322557 38927_1 AF147359 T58511 T58560 32265 473768_2 W88919 W89125 322664 85042_1 AA005129 AA702841 AA011691 AA330797	45				
50 322060 44320_1 Al341937 AW003063 U34725 AA904742		Pkey	Р	CAT number	Accessions
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		322044	3:	187363_1	AW340926 AA249063 N86075
321467 43034_1 X13075 X13076 322125 46779_1 R93901 AF075073 R93902 322166 46861_1 H69434 AF085958 H69846 322173 46873_1 H52567 H52567 AF085970 H52164 55 322178 46882_1 H56535 AF085980 H56712 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 161533_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 47271_1 W69304 AF086283 W69200 32278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA665089 AA135130 AA484059 AA102419 AW877765 32230 47422_1 W79150 AF086419 47425 AA665089 AA135130 AA484059 AA102419 AW877765 32230 47422_1 AN079268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 300807 25196_2 A1093967 322557 38927_1 AF147359 T58511 T58560 322655 473768_2 W88919 W89125 322664 85042_1 AA005129 AA702841 AA011691 AA330797	~ ^	322060	3	44320_1	Al341937 AW003063 U34725 AA904742
322125 46779_1 R93901 AF075073 R93902 322166 46861_1 H69434 AF085958 H69846 322178 46873_1 H52567 H52557 AF085970 H52164 322179 46885_1 H56535 AF085980 H56712 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 47271_1 W69304 AF086283 W69200 322678 47271_1 W69304 AF086283 W69200 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 W79150 AF086419 322320 47422_1 W79150 AF086419 322339 814584_1 AI668646 AI734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 68222_1 AI308300 AI308296 323155 979809_1 AL120701 AL135041 AL121524 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	50	321430	3		X57414 X57415
322166 46861_1 H69434 AF085958 H69846 322173 46873_1 H52567 H52567 AF085970 H52164 322179 46885_1 H56535 AF085980 H56712 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 161533_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 60 320997 627492_1 H22544 H46842 AI204929 322278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA652149 AA313030 AA313052 H97463 313883 129439_1 AA6565089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 3134648 293660_1 AW979268 AA878419 AA431342 AA431628 3108097 25196_2 AI308300 AI308296 308997 25196_2 AI308300 AI308296 322585 473768_2 W88919 W89125 322635 82296_1 AA001529 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797		321467	3:	43034_1	X13075 X13076
55 322173 468873_1 H52567 H52557 AF085970 H52164		322125	3:	46779_1	R93901 AF075073 R93902
55 322178 46882_1 H56535 AF085980 H56712		322166	3	46861_1	
32179 46885_1 H92891 AF085982 H92777 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 161533_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 322978 47271_1 W69304 AF086283 W69200 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 W79150 AF086419 322320 47422_1 W79150 AF086419 322339 814584_1 AI668646 AI734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 323155 979809_1 AL120701 AL135041 AL121524 AF147359 T58511 T58560 322527 38927_1 AF147359 T58511 T58560 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA0011522 AA702841 AA011691 AA330797		322173	3	46873_1	
321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 320997 627492_1 H22544 H46842 AI204929 321687 218439_1 AA65283 W69200 313883 129439_1 AA652689 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 322339 814584_1 AI668646 AI734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 306897 251962 AI093967 323155 979809_1 AL120701 AL135041 AL121524 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	22				
321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 627492_1 H22544 H46842 Al204929 322278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA662149 AA313030 AA313052 H97463 313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 322339 814584_1 Al668646 Al734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 Al308300 Al308296 306897 251962 Al093967 323155 979809_1 AL120701 AL135041 AL121524 322585 473768_2 W88919 W89125 320635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA0011522 AA702841 AA011691 AA330797		322179	3		
60 313723 111953_1 AA070412 AA102346 AA081885 320997 627492_1 H22544 H46842 A1204929 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 47822_1 A668646 A1734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 A1308300 A1308296 300897 251962 A1093967 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 AA005129 AA679084 AA694399 322664 85042_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
60 320997 627492_1 H22544 H46842 Al204929					
32278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 322339 814584_1 Al668646 Al734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 68222_1 Al308300 Al308296 306897 251962 Al093967 323155 979809_1 AL120701 AL135041 AL121524 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	CO		3		
321687 218439_1 AA6525149 AA313030 AA313052 H97463 313883 129439_1 AA656089 AA135130 AA484059 AA102419 AW877765 322330 47422_1 W79150 AF086419 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 306897 251962 AI093967 323155 979809_1 AL120701 AL135041 AL121524 302527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	60				
313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 308897 25196_2 AI093967 323155 979809_1 AL120701 AL135041 AL121524 AF147359 T58511 T58560 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W99125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
65 322320 47422_1 W79150 AF086419 322339 814584_1 Al668646 Al734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 Al308300 Al308296 306897 251962 Al093967 323155 979809_1 AL120701 AL135041 AL121524 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
65 322339 81458-1 Al668646 Al734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 68222_1 Al308300 Al308296 323155 979809_1 AL120701 AL135041 AL121524 322585 473768_2 W88919 W89125 2300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 Al308300 Al308296 306897 251962 Al093967 323155 979809_1 AL120701 AL135041 AL121524 322587 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	65				
70 30201 68222_1 Al308300 Al308296 308897 25196_2 Al093967 323155 979809_1 AL120701 AL135041 AL121524 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	03				
70 323155 979809_1 AL120701 AL135041 AL121524 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA0015129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
70 323155 97980 0 1 AL120701 AL135041 AL121524 322527 38927 1 AF147359 T58511 T58560 322585 473768 2 W88919 W89125 300362 1574395 1 Z42308 H23514 322635 82296 1 AA005129 AA679084 AA694399 322664 85042 1 AA011522 AA702841 AA011691 AA330797					
70 322527 38927_1 AF147359 T58511 T58560 32585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	70				
300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	70				
322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
322664 85042_1 AA011522 AA702841 AA011691 AA330797					
/5 315454 380580_1 Al239464 Al239473 AA625812 Al208703	75			380580_1	A1239464 A1239473 AA625812 A1208703
322687 37372_1 AF074666 AI110759 AF090902	75				
314852 327472_1 Al903735 AA491283 Al694953 AW976903 AA761362					
307783 697809 1 Al347274 AW844024					
324072 269032 1 AA381722 AA381829 AW963906 AW963902 AA381242					
80 300627 221345 1 AA488472 W27363 AA317053 BE082689 AW967036 BE079872	80				
323505 196389_1 AW970512 AA280251 Al652287 BE466438 Al650725 AA551854 AA281574 AW571481			_		
315791 403558 1 AA678177 AA677034					
324303 233842_1 AL118754 AA333202 H38001					
316519 442885 1 AA847835 AA768376			3		
85 300926 333127_1 AA504860 AA504911	85		3	333127_1	AA504860 AA504911

	wo	02/0864	43 PCT/US02/12476
	324580	328264_1	AA492588 AA492498 AA492571
	301882	275087_1	T78054 T79888 AA398185
	324804 324889	398093_1 1515978_1	Al692552 Al393343 Al800510 Al377711 F24263 AA661876 D31010 D30991 D31168 D31166 D31465
5	302697	43219 1	AJ001409 AJ001410
-	302711	45419_1	L08442 D51348
	302742	458_39	L12061
	318499 310624	364430_1 34624_4	T25451 AA585296 AA585305 U88896 U88898 AA916056 T03285 Al341594 Al359534 Al634031 U88897
10	302847	458_105	X98941 X98942 X98943 X98953 X98949
	304122	772715	H28966
	303598 311409	270283_1 837264_1	AA382814 AA402411 AA412355 Al698839 Al909260 Al909259
	311409	797889_1	Z78390 T97427
15	319312	1540116_1	Z45481 F12393 T74437
	319407	1688823_1	R05329 R01555 R08276 T82930 R02424 T85145
	319425 320007	1689571_1 229683_1	AA336314 T82938 AA327744 AW967388 AA639967 T10753
• •	320018	1815987_1	T83263 T85731 T85730
20	319484	1691553_1	T91772 R07257 R07098
	318865 312220	1535937_1 1671607_1	H10818 F07831 Z43072 N74613 T98756 T98589
	319546	243305_1	R09692 R09414 AA346353
25	312389	902067_1	AI863140 W80703 R43474
25	319611 312437	1566863_1 291472_1	H14957 R56522 R11908 BE080180 AW827313 AW231970 AA995028 AA428584 AW872716 AW892508 AW854593 AA578441 AW975234 AA664937 AA984131
	312437	231472_1	AA528743 AA552874 AA564788 AW063245 Al267534 AW070190 AW893483 AA770330 AA906928 AA906582 AA758746 AA551717
			AW063311 AA429538
30	311896	579192_1	AW206447 Al248530 Al084433 Al400976 R16553
50	319834 321102	112523_1 80531_1	AA071267 T65940 T64515 AA071334 AA018306 H38925 AA001221
	321158	410938_1	H79670 H47798 AA700289
	321199	212379_1	N34524 AA305071 AW954803 AA502335 Al433430 Al203597 AW026670 AW265323 AW850787 AA317554 AW993643 AW835572 AW385512 Al334966 W32951 H62656 H53902 R88904 AW835732
35	305528	288323	AA769156
	321270	1662057_1	N59537 N78278 R83560
	314126	177666_1	AA226431 AA22669 AA488748
	320714 306442	743644_1 AA976899	R91883 Al445591
40	306446	AA977348	
	306458	AA978186	
	306510 306557	AA988546 AA994530	
	306572	AA995686	•
45	306582	AA996248	
	306656 306686	AI004024 AI015615	
	306751	AI032589	
50	308011	Al439473	
50	306892 308106	Al092465 Al476803	
	308154	Al500600	
	306956	Al125111	
55	306958 308213	Al125152 Al557041	
33	308216	A1557135	
	308219	Al557246	
	308588 308599	Al718299 Al719893	
60	308643	A1745040	
	308673	Al760864	
	308697 308778	Al767143 Al811109	
	308808	Al818289	
65	308875	Al832332	
	308886 308898	A1833240 A1858845	
	308966	A1870704	
70	308979	Al873111	
70	303011 303077	41689_1 44060_1	AF090405 AF090407 AF090406 AF163305 AF163307 AF163303
	305016	AA626876	All 10000 All 10000 All 10000
	305034	AA630128	
75	305072 305148	AA641012 AA654070	
75	305148	AA665955	
	303978	AW513315	
	303990	AW515465 AW516449	
80	303998 303999	AW516449 AW516611	
	305235	AA670480	
	305312 305413	AA700201 AA724659	
o =	305447	AA737856	
85	321244	29327_1	AF068654 AF068656 AF068655

	wo	02/08644	3	
	305614	AA782866	.5	
	305637	AA806124		
	305639 305650	AA806138 AA807709		
5	305690	AA813477		
	305728	AA828209		
	305759 305792	AA835353 AA845256		
4.0	307041	Al144243		
10	307091	Al167439		
	307181 305901	AI189251 AA872968		
	305910	AA875981		
1.5	307415	Al242118		
15	307426 307517	A1243364 A1275055		
	307551	Al281556		
	307561	Al282207		
20	307608 307691	Al290295 Al318285		
	307730	Al336092		
	307760	Al342387		
	307764 307796	Al342731 Al350556		
25	309045	AI910902		
	309051	AI911975		
	307807 307808	Aì351799 Aì351826		
20	307820	Al355761		
30	307852 309122	Al365541 Al928178		
	309164	Al937761		
	309177	Al951118		
35	307902 309299	Al380462 AW003478		
33	309303	AW003478 AW004823		
	309476	AW129368		
	309532 309747	AW151119 AW264889		
40	309769	AW272346		
	309799	AW276964		
	309866 302679	AW299916 311853_1	H65022 AA18	6889
4.5	309923	AW340684	110002270110	0000
45	309928	AW341418		
	309931 309933	AW341683 AW341936		
	302705	31765_1	U09060 U090	
50	302789 304006	34161_1 AW517947	AJ245067 AJ2	45070
50	304008	T03036		
	304026	T03160		
	304028 304046	T03266 T54803		
55	304040	T61521		
	304063	T62536		
	302802 304114	34487_1 B78946	Y08250 Y0824	15
<i>-</i> 0	304155	H68696		
60	304203	N56929		
	304234 304348	W81608 AA179868		
	304430	AA347682		
65	304456	AA411240		
05	304521 304526	AA464716 AA476427		
	304607	AA513322		
	304735 304760	AA576453 AA580401		
70	306015	AA897116		
	306063	AA906316		
	306065 306104	AA906725 AA910956		
	306109	AA911861		
75	306242	AA932805		
	306288 306396	AA936900 AA970223		
	330568	NOT_FOUND		J56244
80	330599	1532312	U90437	DC 4707
30	331131 331203	genbank_R54 NOT_FOUND		R54797 F82310
	331531	genbank_N51	343 1	N51343
	331547 332074	467396_1 genbank_AA8	AA828597 N54	
85	JJE014	gerinalit_AAC	10001Z /	AA599012

PCT/US02/12476

WO 02/086443 PCT/US02/12476

TABLE 8C shows the genomic position for those Pkeys in Table 8A lacking unigene ID's and accession numbers. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5	Pkey: Ref:	Sequer		7 digit number	Sos probeset rs in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication Dunham I. et al., Nature (1999) 402:489-495.	entitled "The DNA
10	Strand: Nt_position: Pkey	Indicate		om which exor	ns were predicted.	
	rkey	Kei	Stialiu	M_position		
	332792	Dunham, I		Plus	73381-73768	
15	332816 332906	Dunham, I. Dunham, I.		Plus Plus	359844-360030 1923101-1923205	
1.0	332911	Dunham, I		Plus	1961767-1961858	
	332912	Dunham, I.	. et.al.	Plus	1962120-1962246	
	332922	Dunham, I.		Plus	2009620-2009738	
20	332956 332959	Dunham, I. Dunham, I.		Plus Plus	2510528-2510658 2518145-2518213	
, = 0	333138	Dunham, I.		Plus	3369205-3369323	
	333139	Dunham, I.		Plus	3369495-3369571	
	333221 333380	Dunham, I.		Plus	3978070-3978187 4904775-4904846	
25	333387	Dunham, I. Dunham, I.		Plus Plus	4910935-4910997	
	333512	Dunham, I.		Plus	5560510-5560564	
	333524	Dunham, 1.		Plus	5612620-5612780	
	333585 333618	Dunham, I. Dunham, I.		.Plus Plus	6234778-6234894 6562391-6562566	
30	333627	Dunham, I.		Plus	6620584-6620903	
	333628	Dunham, I.		Plus	6629004-6629233	
	333650 333678	Dunham, I. Dunham, I.		Plus Plus	6796852-6797128 7068223-7068288	
	333750	Dunham, I.		Plus	7608165-7608234	
35	333763	Dunham, I.	et.al.	Plus	7692491-7692630	
	333767	Dunham, I.		Plus	7694407-7694623	
	333768 333769	Dunham, I. Dunham, I.		Plus Plus	7695440-7695697 7696625-7696707	
40	333772	Dunham, I.		Plus	7706773-7706902	
40 -	333777	Dunham, I.		Plus	7746805-7746916	
	333846 333884	Dunham, I. Dunham, I.		Plus Plus	8008623-8008757 8153960-8154161	
	333887	Dunham, I.		Plus	8154882-8155025	
15	333891	Dunham, I.		Plus	8156437-8156709	
45	333892 333948	Dunham, I. Dunham, I.		Plus Plus	8156825-8157001 8583497-8583627	
	333954	Dunham, I.		Plus	6563186-6563335	
	333966	Dunham, I.		Plus	8655643-8655826	
50	333968 334061	Dunham, I. Dunham, I.		Plus Plus	8681004-8681241 9686941-9687077	
-	334094	Dunham, I.		Plus	9889953-9890105	
	334113	Dunham, I.		Plus	10282459-10282597	
	334161 334219	Dunham, I. Dunham, I.		Plus Plus	10599033-10599180 12716160-12716384	
55	334239	Dunham, I.		Plus	13056569-13056693	
	334333	Dunham, I.	et.al.	Plus	13603544-13603657	
	334378 334382	Dunham, I. Dunham, I.		Plus Plus	13907239-13907370 13915866-13916036	
	334562	Dunham, I.		Plus	14987847-14987940	
60	334588	Dunham, I.		Plus	15032740-15032817	
	334616 334633	Dunham, I. Dunham, I.		Plus Plus	15176123-15176470 15333206-15333305	
	334866	Dunham, I.		Plus	18872214-18872317	
<i>(</i>	334891	Dunham, I.	et.al.	Plus	19299770-19299944	
65	334934 335015	Dunham, I. Dunham, I.		Plus Plus	20103970-20104058 20682792-20682945	
	335120	Dunham, I.		Plus	21436286-21436384	
	335125	Dunham, I.	et.al.	Plus	21441390-21441471	
70	335179 335188	Dunham, I. Dunham, I.		Plus Plus	21634405-21634526 21669118-21669328	
70	335211	Dunham, I.		Plus	21774611-21774680	
	335361	Dunham, I.	et.al.	Plus	22807292-22807445	
	335379	Dunham, I.		Plus	22899306-22899420	
75	335414 335416	Dunham, I. Dunham, I.		Plus Plus	23235546-23235684 23237354-23237465	
	335496	Dunham, I.		Plus	24164386-24164545	
	335497	Dunham, I.		Plus	24167666-24167869	
	335558 335586	Dunham, I. Dunham, I.		Plus Plus	24740167-24740347 24990333-24990497	
80	335686	Dunham, I.		Plus	25439839-25439920	
	335784	Dunham, I.	et.al.	Plus	25942710-25942792	
	335823 335983	Dunham, I. Dunham, I.		Plus Plus	26365925-26366004 27938968-27939070	
0.5	335995	Dunham, I.		Plus	28009044-28009184	
85	336021	Dunham, I.	et.al.	Plus	28686482-28686559	

WO 02/086443 PCT/US02/12476

	w) 02/086443		
	336034	Dunham, I. et.al.	Pius	29014404-29014590
	336038	Dunham, l. et.al.	Plus	29022963-29023165
	336107	Dunham, I. et.al.	Plus	29987731-29987869
_	336632	Dunham, I. et.al.	Plus	983890-985529
5	336633	Dunham, I. et.al.	Plus	985591-986221
	336634	Dunham, I. et.al.	Plus	986296-986670
	336635	Dunham, I. et.al.	Plus	987908-988364
	336636	Dunham, I. et.al.	Plus	988418-989185
10	336637	Dunham, I. et.al.	Plus	989276-990813
10	336638	Dunham, I. et.al.	Plus	991906-993240
	336659	Dunham, I. et.al.	Plus	1896402-1896478
	336694	Dunham, I. et.al.	Plus	2420546-2420616
	336721	Dunham, I. et.al.	Plus	3371522-3371586
1.5	336900	Dunham, I. et.al.	Plus	10236423-10236523
15	336948	Dunham, I. et.al.	Plus	12692290-12692381
	337028	Dunham, I. et.al.	Plus	16644817-16644942
	337054	Dunham, I. et.al.	Plus	17821742-17821922
	337162	Dunham, I. et.al.	Plus	23478943-23479145
20	337183	Dunham, I. et.al.	Plus	23943606-23943696
20	337184	Dunham, I. et.al.	Plus	23973949-23974016
	337268	Dunham, I. et.al.	Plus	28011979-28012034
	337299	Dunham, I. et.al.	Plus	29022656-29022775 31401509-31401579
	337389 337493	Dunham, I. et.al.	Plus Plus	33330760-33330981
25	337549	Dunham, I. et.al. Dunham, I. et.al.	Plus	34474472-34474531
23	337755	Dunham, I. et.al.	Plus	3971764-3971900
	337809	Dunham, I. et.al.	Plus	4449069-4449193
	337871	Dunham, I. et.al.	Plus	5443027-5443101
	337958	Dunham, I. et.al.	Plus	6969162-6969270
30	338008	Dunham, I. et.al.	Plus	7697068-7697236
	338033	Dunham, I. et.al.	Plus	8092128-8092271
	338110	Dunham, I. et.al.	Plus	10384481-10384621
	338112	Dunham, I. et.al.	Plus	10391398-10391600
	338145	Dunham, I. et.al.	Plus	11386629-11386692
35	338148	Dunham, I. et.al.	Plus	11448985-11449085
	338179	Dunham, I. et.al.	Plus	12808775-12808833
	338197	Dunham, I. et.al.	Plus	13638107-13638181
	338279	Dunham, I. et.al.	Plus	16168944-16169091
40	338316	Dunham, I. et.al.	Plus	17089711-17089988
40	338322	Dunham, i. et.al.	Plus	17132477-17132547
	338357	Dunham, I. et.al.	Plus	18062184-18062402
	338359	Dunham, I. et.al.	Plus	18074402-18074501
	338366	Dunham, I. et.al.	Plus	18252026-18252189
15	338374	Dunham, I. et.al.	Plus	18371200-18371282
45	338414	Dunham, I. et.al.	Plus	19345573-19345660
	338418	Dunham, I. et.al.	Plus	19435506-19435596
	338501	Dunham, I. et.al.	Plus	21244713-21244828
	338506	Dunham, I. et.al.	Plus	21221871-21221953 21509763-21509864
50	338523	Dunham, i. et.al. Dunham, l. et.al.	Plus Plus	24404720-24404899
50	338662 338804	Dunham, I. et.al.	Plus	27236005-27236108
	338836	Dunham, I. et.al.	Plus	27792166-27792272
	338879	Dunham, I. et.al.	Plus	28410653-28410734
	338937	Dunham, I. et.al.	Plus	29160655-29160725
55	338993	Dunham, I. et.al.	Plus	30077787-30078184
•	339047	Dunham, I. et.al.	Plus	30760793-30760968
	339100	Dunham, I. et.al.	Plus	31141580-31141765
	339114	Dunham, I. et.al.	Plus	31456454-31456519
	339121	Dunham, I. et.al.	Plus	31583467-31583536
60	339170	Dunham, I. et.al.	Plus	32216399-32216527
	339293	Dunham, I. et.al.	Plus	33223671-33223819
	332858	Dunham, I. et.al.	Minus	1339607-1339397
	332982	Dunham, f. et.al.	Minus	2628296-2628109
~~	332984	Dunham, I. et.al.	Minus	2632606-2632457
65	332998	Dunham, l. et.al.	Minus	2711704-2711565
	333058	Dunham, I. et.al.	Minus	3028925-3028811
	333097	Dunham, I. et.al.	Minus	3204124-3204036
	333121	Dunham, I. et.al.	Minus	3308446-3308358
70	333122	Dunham, I. et.al.	Minus	3309596-3309531
70	333123	Dunham, I. et.al.	Minus	3310817-3310749
	333140	Dunham, I. et.al.	Minus	3377220-3376309
	333260	Dunham, I. et.al.	Minus	4308400-4308304
	333603	Dunham, I. et.al.	Minus	6466335-6465727 6467090-6466768
75	333604 333904	Dunham, I. et.al.	Minus Minus	8217374-8217261
15	333904	Dunham, I. et.al. Dunham, I. et.al.	Minus	8218238-8218063
	334183	Dunham, I. et.al.	Minus	11832582-11832508
	334187	Dunham, I. et.al.	Minus	11921456-11921205
	334222	Dunham, I. et.al.	Minus	12732417-12732289
80	334223	Dunham, I. et.al.	Minus	12734365-12734269
	334255	Dunham, I. et.al.	Minus	13200776-13200692
	334492	Dunham, I. et.al.	Minus	14478333-14478172
	334648	Dunham, I. et.al.	Minus	15363301-15363222
	334787	Dunham, I. et.al.	Minus	16299093-16298937
85	334933	Dunham, I. et.al.	Minus	20078117-20077991

	**7	0.00/00/4	42		
	334945	O 02/08644 Dunham, i. el		Minus	20138885-20138637
	334967	Dunham, I. et	t.al.	Minus	20173311-20173218
	334990 335093	Dunham, I. el Dunham, I. et		Minus Minus	20341159-20341087 21297367-21297214
5	335288	Dunham, I. et		Minus	22304275-22303770
	335289	Dunham, I. et		Minus	22305950-22305708
	335548 335551	Dunham, I. et Dunham, I. et		Minus Minus	24662773-24662673 24679828-24678961
	335619	Dunham, I. et		Minus	25082677-25082498
10	335620	Dunham, I. et	.al.	Minus	25092561-25092434
	335621	Dunham, I. et		Minus	25098878-25098767
	335682 335755	Dunham, I. et Dunham, I. et		Minus Minus	25421215-25421093 25763806-25763747
1 ~	335814	Dunham, I. et		Minus	26320043-26319845
15	335815	Dunham, I. et		Minus	26320518-26320421
	335835 335851	Dunham, I. et Dunham, I. et		Minus Minus	26393311-26393245 26604863-26604742
	335868	Dunham, I. et		Minus	26711437-26711300
20	335896	Dunham, I. et	.al.	Minus	26977639-26977558
20	335936	Dunham, I. et		Minus	27360474-27360400
	335948 336066	Dunham, I. et Dunham, I. et		Minus Minus	27555924-27555788 29241080-29240842
	336205	Dunham, I. et		Minus	30477456-30477311
25	336275	Dunham, I. et	.al.	Minus	32086675-32086536
25	336292	Dunham, I. et		Minus	32818035-32817927
	336331 336419	Dunham, I. et Dunham, I. et		Minus Minus	33594527-33594371 34052568-34052445
	336675	Dunham, I. et		Minus	2020758-2020664
20	336684	Dunham, I. et		Minus	2158060-2157993
30	336716 336798	Dunham, I. et. Dunham, I. et.		Minus	3259952-3259862
	337043	Dunham, I. et.		Minus Minus	5888954-5888757 17407330-17407251
	337046	Dunham, I. et.		Minus	17610892-17610821
35	337128	Dunham, I. et.		Minus	22215251-22215034
33	337192 337194	Dunham, I. et. Dunham, I. et.		Minus Minus	24591853-24591771 24610510-24610359
	337229	Dunham, I. et.		Minus	26716579-26716481
	337325	Dunham, I. et.	al.	Minus	30015948-30015800
40	337497	Dunham, I. et.		Minus	33371317-33371258
40	337500 337603	Dunham, I. et. Dunham, I. et.		Minus Minus	33376212-33376158 1299296-1299194
	337605	Dunham, I. et.		Minus	1346555-1346397
	337671	Dunham, I. et.		Minus	3260634-3260547
45	337786 337862	Dunham, I. et. Dunham, I. et.		Minus Minus	4133203-4133081 5347658-5347550
	338083	Dunham, I. et.		Minus	9318438-9318301
	338158	Dunham, I. et.		Minus	11794465-11794343
	338161 338182	Dunham, I. et.		Minus	12124716-12124658 12824919-12824827
50	338189	Dunham, I. et. Dunham, I. et.		Minus Minus	12878594-12878478
	338199	Dunham, l. et.		Minus	13760865-13760780
	338215	Dunham, I. et.		Minus	14055447-14055355
	338469 338549	Dunham, I. et. Dunham, I. et.		Minus Minus	20520387-20520242 22049171-22049081
55	338561	Dunham, I. et.		Minus	22311966-22311856
	338671	Dunham, I. et.	al.	Minus	24508421-24508346
	338676	Dunham, I. et. Dunham, I. et.		Minus	24637427-24637369 25926206-25925618
	338726 338779	Dunham, I. et.		Minus Minus	27030151-27029795
50	338871	Dunham, I. et.		Minus	28301708-28301611
	338872	Dunham, I. et.		Minus	28300921-28300790
	338966 339229	Dunham, I. et.: Dunham, I. et.:		Minus Minus	29614876-29614749 32722330-32722199
	339264	Dunham, I. et.:		Minus	32975145-32975053
55	325228			2630-2694	
	325235 329588			162154-1622 1169-1619	264
	329560			2095-2990	
70	329541	3983503		2765-3059	
70	325328			86780-86854	
	325340 325373			166656-1668 1136686-113	
	325367			922881-9229	
7.5	325389			239672-2397	
75	325436			29778-29907	
	325498 325471			173372-1739 289268-2893	
	325557	*		50921-51050	
30	325559			118590-1191	
υ	325560 325569			133794-1339 79927-80217	
	325587			79927-60217 126724-1269	
	325585	6682462 F	Plus	73476-73574	
35	325597			1065020-106	
<i>ي</i> ر	325639	5867002 I	Plus	253525-2536	מטו

	WO	02/0864	12	
	325739	5867038	Minus	205138-205269
	325740	5867038	Minus	207533-207690
	325792 325735	6469828 6552447	Minus Minus	1018-1176 269122-269190
5	325685	6682468	Plus	117397-117483
	325686	6682468	Plus	118337-118439
	325819 329764	6682490 6048195	Minus Minus	130314-130370 109733-109968
	329703	6065793	Minus	139994-140138
10	329643	6448539	Plus	53403-53537
	329816 329860	6624888 6687260	Minus Minus	70296-70423 163474-163605
	325883	5867087	Plus	22498-22663
15	325895	5867097	Plus	358317-358476
13	325925 325932	5867124 5867127	Plus Plus	115749-115962 7369-7441
	325941	5867133	Minus	64228-64402
	325969	5867153	Plus	101911-102081
20	325971 329993	5867153 4567166	Plus Minus	105841-106035 101307-101434
	330020	6671887	Plus	172397-172491
	326163	5867168	Minus	7831-8035
	326274 326025	5867171 5867176	Minus Plus	410289-410404 70854-70915
25	326046	5867182	Minus	62668-62825
	326099	5867186	Minus	661381-661510
	326108 326165	5867187 5867208	Minus Minus	23784-23903 62787-62929
••	326189	5867212	Plus	69288-69413
30	326204	5867218	Minus	148088-148200
	326230 330052	5867230 4567182	Minus Plus	301868-301972 352560-352963
	330036	6042048	Plus	117120-117216
35	326360	5867293	Plus	13627-13844
33	326589 326393	5867320 5867341	Plus Plus	22760-22919 41702-41841
	326505	5867435	Minus	8818-8949
	326515	5867439	Plus	36683-36809
40	326592 330107	6138928 6015249	Plus Minus	23689-23828 100091-100282
• •	330106	6015249	Minus	99443-99778
	330100	6015253	Plus	21166-21301
	330093 330088	6015278 6015293	Plus Plus	1043-1199 37517-37638
45	330085	6015302	Minus	59613-59770
	330120 330123	6671864 6671869	Minus	127553-127656 35311-35406
	326742	5867611	Minus Minus	95187-95248
50	326605	5867637	Plus	24656-24749
50	326818 326720	6117831 6552456	Minus Plus	15199-15309 84525-84677
	326770	6598307	Minus	513603-513668
	326692	6682502	Plus	117697-117899
55	326693 326983	6682502 5867657	Minus Minus	335002-335095 16023-16581
55	326991	5867660	Plus	18147-18339
	326936	6004446	Minus	10217-10357
	326964 327040	6469836 6531965	Plus Plus	75340-75456 783670-783817
60	327053	6531965	Plus	2247267-2247437
	327075	6531965	Plus	4041318-4041431
	327085 327036	6531965 6531965	Plus Plus	4734947-4735069 319951-320040
	327130	6531976	Plus	20247-22343
65	327156	5866841	Minus	2462-2620
	327288 327332	5867481 5867516	Plus Minus	48583-48773 56361-56532
	327220	5867525	Minus	65701-65781
70	327224	5867534	Plus	188468-188544
70	327321 327361	6249562 6552412	Minus Minus	99745-99836 61013-62130
	327396	5867743	Plus	8702-8820
	327414	5867750	Plus	102461-102586
75	327442 327467	5867759 5867772	Plus Plus	111483-111618 88030-88151
. –	327473	5867775	Plus	75101-75181
	327483	5867783	Plus	181573-181662
	327377 327562	5867793 5867804	Minus Minus	37610-37676 343989-344474
80	327568	5867811	Minus	46152-46287
	327606	6004463	Plus	200262-200495
	327611 327642	5867868 5867891	Minus Minus	175063-175392 2513-2743
0.5	327654	5867910	Minus	97564-97710
85	327734	5867940	Minus	31003-31583

WO 02/086443 PCT/US02/12476

	327775	5867964	Minus	130791-130871
	327796	5867982	Plus	85267-85405
	327840	6249578	Minus	73065-73206
_	330208	6013599	Plus	66517-66931
5	330263	6671884	Minus	101503-101634
	328004	5867993	Minus	157407-157887
	328101	5868020	Plus	289920-290014
	328100 328113	5868020 5868024	Minus Minus	263545-263635 80378-80491
10	328157	5868064	Plus	73326-73615
10	328196	5868080	Minus	16551-16729
	328197	5868081	Minus	42133-42438
	327940	5868197	Minus	95240-95428
	327984	5868216	Plus	66611-66677
15	328021	5902482	Plus	713478-714590
	328068	6117819	Plus	253903-254022
	328264	6381912	Plus	55086-55404
	330300	2905862	Minus	3246-3302
	328608	5868222	Minus	87770-87953
20	328600	5868229	Minus	38889-40010
	328616	5868239	Plus	293920-294224
	328623	5868246	Minus	120020-120126
	328632	5868247	Plus	76734-76853
25	328666	5868254	Minus	778-901
25	328698	5868264	Minus	625555-625633
	328700	5868264	Plus	764089-764203
	328708	5868271	Minus	68114-68854 89389-89455
	328735	5868289 5868289	Plus Plus	274638-274726
30	328743 328806	5868324	Plus	29408-29684
50	328299	5868366	Minus	149708-149889
	328342	5868383	Plus	59955-60094
	328365	5868387	Minus	270724-270798
	328369	5868388	Plus	75371-75583
35	328381	5868392	Plus	662758-662848
	328451	5868425	Minus	217275-217336
	328481	5868449	Minus	8987-9180
	328500	5868464	Plus	59098-59481
40	328530	5868482	Plus	334973-335406
40	328664	6004473	Plus	1193739-1193866
	328861	6381928	Minus	108317-108403
	328908	5868493	Plus	117002-117059
	328933 328934	5868500 5868500	Plus Plus	771755-771889 846342-846448
45	328949	6456765	Minus	43552-43619
73	330313	6042030	Minus	33642-33775
	329005	5868542	Plus	85470-85673
	330366	2944106	Plus	151837-151914
	330372	6580495	Minus	317461-317688
50	329033	5868561	Minus	5390-5479
	329037	5868562	Minus	32466-32562
	329067	5868591	Minus	146417-147652
	329134	5868679	Plus	29959-30018
	329157	5868687	Minus	145940-146155
55	329178	5868704	Plus	179177-179463
	329192	5868716	Plus	166936-167020
	329194	5868716	Minus	304450-304559
	329204	5868720	Minus	3050-3190
60	329224	5868728	Plus	27422-27664
UU	329228	5868728	Minus	50118-50287 25554-26299
	329288 329337	5868771 5868806	Plus Minus	467155-467222
	329337 329011	6682532	Plus	48658-48741
	323011	0002002	Flub	1 + 100-000

TABLE 9A: Potential Therapeutic, Diagnostic and Prognostic targets for Therapy of Lung Cancer

Table 9A shows about 1312 genes up-regulated in lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) relative to normal body tissues. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 9B show the accession numbers for those Pkey's lacking UnigenelD's for table 9A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 9C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 9A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey: Unique Eos probeset identifier number ExAcon: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number Unigene Title: Unigene gene title

5

10

20

R1: Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the

average of normal lung samples

R2: Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2
	400195		· ·	NM_007057*:Homo sapiens ZW10 interactor	1.00	1.00
25	400205			NM_006265*:Homo sapiens RAD21 (S. pombe)	15.80	396.00
	400220			Eos Control	2.28	2.84
	400277			Eos Control	7.68	9.72
	400285			Eos Control	1.00	1.00
20	400288	X06256	Hs.149609	integrin, alpha 5 (fibronectin receptor,	1.04	2.24
30	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	132.45	4.00
	400298	AA032279	Hs.61635	six transmembrane epithelial antigen of	43.86	74.00
	400301	X03635	Hs.1657	estrogen receptor 1	1.00	1.00
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	1.75	1.65
25	400328	X87344	Hs.180062	transporter 2, ATP-binding cassette, sub	0.87	1.80
35	400419	AF084545		Target	156.55	253.00
	400512			NM_030878*:Homo sapiens cytochrome P450,	1.00	2.00
	400517	AF242388		lengsin	3.67	87.00
	400560			NM_030878*:Homo sapiens cytochrome P450,	1.00	1.00
40	400664			NM_002425:Homo sapiens matrix metallopro	20.26 1.36	45.00 1.07
40	400665			NM_002425:Homo sapiens matrix metallopro	3.26	3.22
	400666			NM_002425:Homo sapiens matrix metallopro	1.00	91.00
	400749			NM_003105*:Homo sapiens sortilin-related	7.63	24.00
	400763			Target Exon	1.00	1.00
45	401027			Target Exon C12000586*:gi 6330167 db BAA86477.1 (A	1.00	155.00
43	401093				1.00	86.00
	401203 401212			Target Exon C12000457*:gi 7512178 pir T30337 polypr	1.00	400.00
	401411			ENSP0000247172*:HYPOTHETICAL 126.2 kDa	1.00	72.00
	401435			C14000397*;gi]7499898[pir][T33295 hypoth	1.00	64.00
50	401464	AF039241		histone deacetylase 5	3.82	49.00
50	401714	AI 000241		ENSP00000241802*:CDNA FLJ11007 FIS, CLON	2.02	40.00
	401747			Homo sapiens keratin 17 (KRT17)	128.43	68.00
	401760			Target Exon	1.74	35.00
	401780			NM_005557*:Homo sapiens keratin 16 (foca	26.47	10.50
55	401781			Target Exon	10.33	4.61
55	401785			NM_002275*:Homo sapiens keratin 15 (KRT1	4.13	2.70
	401797			Target Exon	1.44	2.10
	401961			NM_021626:Homo sapiens serine carboxypep	1.41	1.86
	401985	AF053004		class I cytokine receptor	1.00	177.00
60	401994			Target Exon	61.84	47.00
	402075			ENSP00000251056*:Plasma membrane calcium	1.00	1.00
	402260			NM_001436*:Homo sapiens fibrillarin (FBL	1.58	1.39
	402265			Target Exon	2.09	35.00
	402297			Target Exon	1.00	92.00
65	402408			NM_030920*:Homo sapiens hypothetical pro	28.87	13.00
	402420			C1000823*:gij10432400 emb CAC10290.1 (A	1.00	1.44
	402674			Target Exon	7.44	243.00
	402802			NM_001397:Homo sapiens endothelin conver	1.00	70.00
=-	402994			NM_002463*:Homo sapiens myxovirus (influ	1.37	1.43
70	403137			NM_005381*:Homo sapiens nucleolin (NCL),	1.00	19.00
	403306	NM_006825		transmembrane protein (63kD), endoplasmi	1.00	43.00
	403329			Target Exon	1.00	61.00
	403381			ENSP00000231844*:Ecotropic virus integra	1.00	119.00
75	403478			NM_022342:Homo sapiens kinesin protein 9	28.13	136.00
75	403485			C3001813*:gi 12737279 ref XP_012163.1 k	20.23	76.00
	403627			Target Exon	6.30	29.33
	403715			Target Exon	1.30	35.00 54.00
	404044			ENSP00000237855*:DJ398G3.2 (NOVEL PROTEI	1.00	54.00 91.00
90	404076			NM_016020*:Homo sapiens CGI-75 protein (14.29	
80	404101			C8000950:gi 423560 pir A47318 RNA-bindi	1.00 1.42	1.00 1.44
	404140			NM_006510:Homo sapiens ret finger protei	1.42	54.00
	404165			ENSP00000244562:NRH dehydrogenase [quino	1.00	117.00
	404185			Target Exon	5.93	13.77
85	404210			NM_005936:Homo sapiens myeloid/lymphoid NM_021058*:Homo sapiens H2B histone fami	1.00	1.00
33	404253			HIM_02 1000 II IOIIIO SEPICIO FIAD IIISUII IIIIII	1.00	1.00

	W	O 02/086	443				Pe
	404287		•	C6001909:gi 704441 dbj BAA18909.1 (D298	29.71	42.00	
	404298			C6001238*:gi[121715 sp P26697 GTA3_CHICK	1.30	1.00	
	404347			Target Exon	1.00 1.00	1.00 15.00	
5	404440 404721			NM_021048:Homo sapiens melanoma antigen, NM_005596*:Homo sapiens nuclear factor I	1.00	60.00	
,	404721	NM_000078		cholesteryl ester transfer protein, plas	1.07	1.38	
	404854	71111_000070		Target Exon	1.61	2.01	
	404877			NM_005365:Homo sapiens melanoma antigen,	1.00	1.00	
10	404927			Target Exon	1.00	1.00	
10	404996			Target Exon	1.00	1.00	
	405449			CY000047*:gi 11427234 ref XP_009399.1 z	1.00	1.00	
	405568			NM_031413*:Homo sapiens cat eye syndrome	1.00 0.76	78.00 1.14	
	405572 405646			Target Exon C12000200:gi 4557225 ref NP_000005.1 al	1.01	1.28	
15	405676	BE336714		cytochrome c-1	1.13	2.89	
10	405770	D2000111		NM_002362:Homo sapiens melanoma antigen,	45.52	37.00	
	405932			C15000305:gi[3806122 gb]AAC69198.1] (AF0	1.99	1.99	
	406137			NM_000179*:Homo sapiens mutS (E. coli) h	2.77	2.38	
20	406360			Target Exon	1.00	35.00	
20	406399			NM_003122*:Homo sapiens serine protease	1.00 1.00	39.00	
	406467 406621	X57809	Hs.181125	Target Exon immunoglobulin lambda locus	1.41	1.00 1.74	
	406642	AJ245210	115.101125	gb:Homo sapiens mRNA for immunoglobulin	2.16	3.91	
	406663	U24683	Hs.293441	immunoglobulin heavy constant mu	2.07	2.93	
25	406671	AA129547	Hs.285754	met proto-oncogene (hepatocyte growth fa	15.00	51.00	
	406673	M34996	Hs.198253	major histocompatibility complex, class	0.98	3.09	
	406676	X58399	Hs.81221	Human L2-9 transcript of unrearranged im	1.30	1.53	
	406678	U77534		gb:Human clone 1A11 immunoglobulin varia	1.33	1.45	
30	406685	M18728	11- 070000	gb:Human nonspecific crossreacting antig	1.46	2.85 8.50	
30	406687	M31126 M29540	Hs.272822 Hs.220529	pregnancy specific beta-1-glycoprotein 9 carcinoembryonic antigen-related cell ad	8.61 226,37	350.00	
	406690 406698	X03068	Hs.73931	major histocompatibility complex, class	1.01	2.52	
	406815	AA833930	Hs.288036	tRNA isopentenylpyrophosphate transferas	20.25	32.00	
	406851	AA609784		major histocompatibility complex, class	0.75	1.91	
35	406964	M21305		gb:Human alpha satellite and satellite 3	38.15	1114.00	
	406967	M24349		gb:Human parathyroid hormone-like protei	1.00	1.00	
	406974	M57293	050004	gb:Human parathyroid hormone-related pep	1.00	1.00	
	407103	AA424881	Hs.256301	hypothetical protein MGC13170	1.77 1.00	1.10 1.00	
40	407128 407137	R83312 T97307	Hs.237260	EST gb:ye53h05.s1 Soares fetal liver spleen	142.70	135.00	
70	407168	R45175	Hs.117183	ESTs	2.16	18.00	
	407239	AA076350	Hs.67846	leukocyte immunoglobulin-like receptor,	1.10	1.57	
	407242	M18728		gb:Human nonspecific crossreacting antig	1.12	2.85	
4.5	407244	M10014	Hs.75431	fibrinogen, gamma polypeptide	3.24	15.38	
45	407289	AA135159	Hs.203349	Homo sapiens cDNA FLJ12149 fis, clone MA	3.53	3.68	
	407300	AA102616	Hs.120769	gb:zn43e07.s1 Stratagene HeLa cell s3 93	19.74	73.00	
	407366 407378	AF026942 AA299264	Hs.271530 Hs.57776	gb:Homo sapiens cig33 mRNA, partial sequ ESTs, Moderately similar to l38022 hypot	0.06 1.00	8.25 26.00	
	407430	AF169351	115.57770	gb:Homo sapiens protein tyrosine phospha	1.00	25.00	
50	407453	AJ132087		gb:Homo sapiens mRNA for axonemal dynein	1.00	75.00	
	407577	AW131324	Hs.246759	hypothetical protein MGC12538	1.00	1.00	
	407634	AW016569	Hs.136414	UDP-GlcNAc:betaGal beta-1,3-N-acetylgluc	111.20	228.00	
	407710	AW022727	Hs.23616	ESTs	1.00	28.00	
55	407720	AB037776	Hs.38002	KIAA1355 protein	1.89 1.00	1.31	
55	407746 407756	AK001962 AA116021	Hs.38260	hypothetical protein FLJ11100 ubiquitin specific protease 18	4.51	1.00 5.00	
	407758	D50915	Hs.38365	KIAA0125 gene product	1.00	28.00	
	407782	AA608956	Hs.112619	ESTs, Moderately similar to PURKINJE CEL	0.97	1.14	
	407788	BE514982	Hs.38991	S100 calcium-binding protein A2	7.88	3.83	
60	407790	Al027274	Hs.288941	Homo sapiens cDNA FLJ14866 fis, clone PL	3.63	42.00	
	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	89.96	109.00	
	407839	AA045144	Hs.161566	ESTs	173.91	108.00	
	407944 408000	R34008	Hs.239727	desmocollin 2 bullous pemphigoid antigen 1 (230/240kD)	111.30 151.17	70.00 8.00	
65	408031	L11690 AA081395	Hs.620 Hs.42173	Homo sapiens cDNA FLJ10366 fis, clone NT	9.91	93.00	
05	408063	BE086548	Hs.42346	calcineurin-binding protein calsarcin-1	195.78	231.00	
	408070	AW148852		gb:xf05d05.x1 NCI_CGAP_Brn35 Homo sapien	1.00	1.00	
	408101	AW968504	Hs.123073	CDC2-related protein kinase 7	37.84	61.00	
70	408122	A1432652	Hs.42824	hypothetical protein FLJ10718	0.85	1.71	
70	408212	AA297567	Hs.43728	hypothetical protein	5.88	7.91	
	408243	Y00787	Hs.624	interleukin 8	4.27 3.79	9.98	
	408349	BE546947	Hs.44276	homeo box C10 mitochondrial ribosomal protein S17	1.88	3.46 1.65	
	408353 408354	BE439838 Al382803	Hs.44298 Hs.159235	ESTs	1.00	73.00	
75	408369	R38438	Hs.182575	solute carrier family 15 (H??? transport	1.41	16.50	
	408380	AF123050	Hs.44532	diubiquitin	15.19	37.22	
	408482	NM_000676	Hs.45743	adenosine A2b receptor	1.65	1.19	
	408522	Al541214	Hs.46320	Small proline-rich protein SPRK [human,	1.98	1.24	
QΛ	408536	AW381532	Hs.135188	ESTs	1.55	1.50	
80	408545	AW235405	Hs.253690	ESTs Madaratoly similar to ALLIA HUMAN A	1.00 1.00	1.00 44.00	
	408572 408633	AA055611 AW963372	Hs.226568 Hs.46677	ESTs, Moderately similar to ALU4_HUMAN A PRO2000 protein	107.16	56.00	
	408660	AA525775	. 10.70011	ESTs, Moderately similar to PC4259 ferri	1.00	1.00	
	408761	AA057264	Hs.238936	ESTs, Weakly similar to (defline not ava	52.24	141.00	
85	408771	AW732573	Hs.47584	potassium voltage-gated channel, delayed	3.05	109.00	

	W	O 02/086	443			
	408783	AF192522	Hs.47701	NPC1 (Niemann-Pick disease, type C1, gen	1.02	1.07
	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,	41.19	61.00
	408805	H69912	Hs.48269	vaccinia related kinase 1	24.67	45.00
				ESTs	1.00	58.00
5	408841	AW438865	Hs.256862			
5	408873	AL046017	Hs.182278	calmodulin 2 (phosphorylase kinase, delt	1.00	89.00
	408908	BE296227	Hs.250822	serine/threonine kinase 15	7.76	1.00
	408992	AA059325	Hs.71642	guanine nucleotide binding protein (G pr	1.00	1.00
	408996	Al979168	Hs.344096	glycoprotein (transmembrane) nmb	3.71	5.50
	409015	BE389387	Hs.49767	NM_004553:Homo sapiens NADH dehydrogenas	1.44	1.24
10	409038	T97490	Hs.50002	small inducible cytokine subfamily A (Cy	4.28	5.32
	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	112.42	195.00
	409077	AA401369	Hs.190721	ESTs	1.00	17.00
	409093		Hs.50441	CGI-04 protein	2.02	1.93
		BE243834			80.44	40.00
15	409103	AF251237	Hs.112208	XAGE-1 protein		
15	409142	AL136877	Hs.50758	SMC4 (structural maintenance of chromoso	14.87	6.00
	409187	AF154830	Hs.50966	carbamoyl-phosphate synthetase 1, mitoch	1.00	1.00
	409228	A1654298	Hs.271695	ESTs, Weakly similar to 2109260A B cell	1.22	1.00
	409234	A1879419	Hs.27206	ESTs	1.00	1.00
	409268	AA625304	Hs.187579	ESTs	11.90	23.00
20	409269	AA576953	Hs.22972	hypothetical protein FLJ13352	1.00	1.00
	409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	168.91	35.00
	409404	BE220053	Hs.129056	ESTs	1.00	1.00
	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	79.74	96.00
					1.45	2.10
25	409430	R21945	Hs.346735	splicing factor, arginine/serine-rich 5		
25	409446	Al561173	Hs.67688	ESTs	1.00	4.00
	409506	NM_006153	Hs.54589	NCK adaptor protein 1	3.97	28.00
	409522	AA075382		gb:zm87b03.s1 Stratagene ovarian cancer	15.98	141.00
	409582	AA401369	Hs.190721	ESTs	1.00	17.00
•	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	292.12	79.00
30	409705	M37762	Hs.56023	brain-derived neurotrophic factor	1.00	82.00
	409719	Al769160	Hs.108681	Homo sapiens brain tumor associated prot	1.00	1.00
	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	0.12	18.12
	409744	AW675258	Hs.56265	Homo sapiens mRNA; cDNA DKFZp586P2321 (f	20.75	51.00
	409757	NM_001898	Hs.123114	cystatin SN	22.46	15.80
35	409866		113.120114	gb:UI-HF-BR0p-ajr-f-11-0-UI.r1 NIH_MGC_5	1.00	1.00
55		AW502152	11- 57404		1.50	1.09
	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.		
	409902	Al337658	Hs.156351	ESTs	25.92	50.00
	409935	AW511413	Hs.278025	ESTs	2.63	2.11
40	409956	AW103364	Hs.727	inhibin, beta A (activin A, activin AB a	2.17	4.01
40	409958	NM_001523	Hs.57697	hyaluronan synthase 1	0.91	2.07
	410001	AB041036	Hs.57771	kallikrein 11	1.04	2.28
	410032	BE065985		gb:RC3-BT0319-120200-014-a09 BT0319 Homo	1.00	58.00
	410037	AB020725	Hs.58009	KIAA0918 protein	1.00	34.00
	410044	BE566742	Hs.58169	highly expressed in cancer, rich in leuc	1.00	1.00
45	410048	W76467	Hs.58218	proline oxidase homolog	1.03	1.44
	410076	T05387	Hs.7991	ESTs	1.12	1.50
	410102	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	9.89	1.00
	410153	BE311926	Hs.15830	hypothetical protein FLJ12691	1.00	1.00
	410166	AK001376	Hs.59346	hypothetical protein FLJ10514	1.00	1.00
50	410193	AJ132592	Hs.59757	zinc finger protein 281	42.01	51.00
50					1.72	1.32
	410274	AA381807	Hs.61762	hypoxia-inducible protein 2		2.00
	410309	BE043077	Hs.278153	ESTs	1.00	
	410340	AW182833	Hs.112188	hypothetical protein FLJ13149	32.08	75.00
	410348	AW182663	Hs.95469	ESTs	1.00	1.00
55	410407	X66839	Hs.63287	carbonic anhydrase IX	1.40	1.11
	410418	D31382	Hs.63325	transmembrane protease, serine 4	4.30	2.03
	410438	AB037756	Hs.45207	hypothetical protein KIAA1335	1.00	18.00
	410553	AW016824	Hs.255527	hypothetical protein MGC14128	1.34	1.04
	410555	W27235	Hs.64311	a disintegrin and metalloproteinase doma	23.99	1.41
60	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	10.04	1.00
	410681	AW246890	Hs.65425	calbindin 1, (28kD)	10.88	18.92
	410781	Al375672	Hs.165028	ESTs	1.00	57.00
	411027	AF072099	Hs.67846	leukocyte immunoglobulin-like receptor,	1.62	3.78
				adenvlate cyclase activating polypeptide	1.00	1.15
65	411074	X60435	Hs.68137			1.58
03	411089	AA456454		cell division cycle 2-like 1 (PITSLRE pr	1.56	
	411152	BE069199		gb:QV3-BT0379-010300-105-g03 BT0379 Homo	1.00	84.00
	411248	AA551538	Hs.334605	Homo sapiens cDNA FLJ14408 fis, clone HE	1.82	1.45
	411252	AB018549	Hs.69328	MD-2 protein	7.32	12.74
- 0	411263	BE297802	Hs.69360	kinesin-like 6 (mitotic centromere-assoc	3.44	2.55
70	411365	M76477	Hs.289082	GM2 ganglioside activator protein	1.35	2.02
	411402	BE297855	Hs.69855	NRAS-related gene	1.00	46.00
	411573	AB029000	Hs.70823	KIAA1077 protein	11.40	11.35
	411579	AC005258	Hs.70830	U6 snRNA-associated Sm-like protein LSm7	1.08	1.90
	411617	AA247994	Hs.90063	neurocalcin delta	1.74	2.57
75	411732	AA059325	Hs.71642	quanine nucleotide binding protein (G pr	1.02	1.00
, 5	411773	NM_006799	Hs.72026	protease, serine, 21 (testisin)	1.34	2.19
	411773			Adlican	2.19	2.79
		AF245505	Hs.72157		23.34	34.00
	411800	N39342	Hs.103042	microtubule-associated protein 1B		8.00
90	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral oncog	1.00	
80	412115	AK001763	Hs.73239	hypothetical protein FLJ10901	2.07	1.64
	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	118.48	92.00
	412276	BE262621	Hs.73798	macrophage migration inhibitory factor (1.98	1.49
	412464	T78141	Hs.22826	ESTs, Weakly similar to I55214 salivary	1.16	1.34
0.5	412530	AA766268	Hs.266273	hypothetical protein FLJ13346	41.52	84.00
8 <i>5</i>	412537	AL031778		nuclear transcription factor Y, alpha	17.90	55.00
				·		

		O 02/086	443			
	412659	AW753865	Hs.74376	olfactomedin related ER localized protei	14.65	47.00
	412719	AW016610	Hs.816	ESTs	382.46	128.00
	412723	AA648459	Hs.335951	hypothetical protein AF301222	54.90	1.00
_	412811	H06382		ESTs	1.00	11.00
5	412817	AL037159	Hs.74619	proteasome (prosome, macropain) 26S subu	1.63	1.42
	412863	AA121673	Hs.59757	zinc finger protein 281	17.63	56.00
	412924	BE018422	Hs.75258	H2A histone family, member Y	1.00	22.00
	413004	T35901	Hs.75117	interleukin enhancer binding factor 2, 4	2.19	2.05
	413011	AW068115	Hs.821	biglycan	1.22	1.88
10	413048	M93221	Hs.75182	mannose receptor, C type 1	0.30	6.23
	413063	AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycoprote	3.43	8.71
	413129	AF292100	Hs.104613	RP42 homolog	4.67	4.77
	413142	M81740	Hs.75212	ornithine decarboxylase 1	1.92	2.59
	413223	AI732182	Hs.191866	ESTs	5.73	27.00
15	413248	T64858	Hs.21433	hypothetical protein DKFZp547J036	0.99	1.06
10	413273	U75679	Hs.75257	stem-loop (histone) binding protein	1.00	18.00
	413278	BE563085	Hs.833	interferon-stimulated protein, 15 kDa	1.10	1.09
	413281	AA861271	Hs.222024	transcription factor BMAL2	95.94	69.00
		BE536218	Hs.137516	fidgetin-like 1	1.00	1.00
20	413364				0.95	2.09
20	413385	M34455	Hs.840	indoleamine-pyrrole 2,3 dioxygenase	1.00	1.00
	413409	Al638418	Hs.1440	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	1.00	31.00
	413453	AA129640	Hs.128065	ESTs		1.46
	413527	BE250788	Hs.179882	hypothetical protein FLJ12443	1.08	
25	413554	AA319146	Hs.75426	secretogranin II (chromogranin C)	79.15	114.00
25	413573	Al733859	Hs.149089	ESTs	1.00	1.00
	413582	AW295647	Hs.71331	hypothetical protein MGC5350	8.80	10.00
	413597	AW302885	Hs.117183	ESTs	1.00	1.00
	413690	BE157489		gb:RC1-HT0375-120200-011-e06 HT0375 Homo	1.00	1.00
20	413691	AB023173	Hs.75478	ATPase, Class VI, type 11B	3.16	2.32
30	413719	BE439580	Hs.75498	small inducible cytokine subfamily A (Cy	2.88	9.52
	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	144.10	108.00
	413801	M62246	Hs.35406	ESTs, Highly similar to unnamed protein	1.00	17.00
	413833	Z15005	Hs.75573	centromere protein E (312kD)	1.00	1.00
	413882	AA132973	Hs.184492	ESTs	64.24	148.00
35	413926	AA133338	Hs.54310	ESTs	1.00	67.00
	413943	AW294416	Hs.144687	Homo sapiens cDNA FLJ12981 fis, clone NT	43.42	42.00
	413995	BE048146	Hs.75671	syntaxin 1A (brain)	1.23	1.11
	414035	Y00630	Hs.75716	serine (or cysteine) proteinase inhibito	2.02	2.51
	414142	AW368397	Hs.334485	Homo sapiens cDNA FLJ14438 fis, clone HE	1.00	102.00
40	414180	Al863304	Hs.120905	Homo sapiens cDNA FLJ11448 fis, clone HE	6.92	77.00
	414245	BE148072	Hs.75850	WAS protein family, member 1	1.00⋅	1.00
	414275	AW970254	Hs.889	Charot-Leyden crystal protein	1.00	59.00
	414317	BE263280	Hs.75888	phosphogluconate dehydrogenase	1.52	1.73
	414334	AA824298	Hs.21331	hypothetical protein FLJ10036	1.78	1.72
45	414341	D80004	Hs.75909	KIAA0182 protein	33.90	151.00
	414368	W70171	Hs.75939	uridine monophosphate kinase	171.60	97.00
	414416	AW409985	Hs.76084	hypothetical protein MGC2721	2.32	1.85
	414430	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1	226.15	66.00
	414570	Y00285	Hs.76473	insulin-like growth factor 2 receptor	1.64	1.98
50	414618	A1204600	Hs.96978	hypothetical protein MGC10764	1.87	72.00
50	414675	R79015	Hs.296281	interleukin enhancer binding factor 1	1.51	1.39
	414683	S78296	Hs.76888	hypothetical protein MGC12702	43.61	64.00
		AF002020	Hs.76918	Niemann-Pick disease, type C1	28.63	71.00
	414696			Homo sapiens cDNA FLJ13522 fis, clone PL	14.86	42.00
55	414711	Al310440	Hs.288735		1.00	5.00
55	414718	H95348	Hs.107987	ESTs	1.64	1.44
	414732	AW410976	Hs.77152	minichromosome maintenance deficient (S.	65.01	74.00
	414747	U30872	Hs.77204	centromere protein F (350/400kD, mitosin		121.00
	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2	130.35	
60	414774	X02419	Hs.77274	plasminogen activator, urokinase	2.24	2.19
60	414806	D14694	Hs.77329	phosphatidylserine synthase 1	1.63	1.53
	414809	Al434699	Hs.77356	transferrin receptor (p90, CD71)	1.97	2.60
	414812	X72755	Hs.77367	monokine induced by gamma interferon	3.48	10.60
	414825	X06370	Hs.77432	epidermal growth factor receptor (avian	103.22	143.00
C =	414839	X63692	Hs.77462	DNA (cytosine-5-)-methyltransferase 1	1.80	1.69
65	414883	AA926960		CDC28 protein kinase 1	14.29	10.06
	414907	X90725	Hs.77597	polo (Drosophia)-like kinase	1.95	2.20
	414914	U49844	Hs.77613	ataxia telangiectasia and Rad3 related	3.00	2.90
	414945	BE076358	Hs.77667	lymphocyte antigen 6 complex, locus E	1.02	1.21
~~	414972	BE263782	Hs.77695	KIAA0008 gene product	1.00	1.00
70	415014	AW954064	Hs.24951	ESTs	1.42	2.84
	415091	AL044872	Hs.77910	3-hydroxy-3-methylglutaryl-Coenzyme A sy	1.00	30.00
	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2	34.72	107.00
	415227	AW821113	Hs.72402	ESTs	1.87	49.00
	415238	R37780	Hs.21422	ESTs	1.00	1.00
75	415263	AA948033	Hs.130853	ESTs	1.00	1.00
-	415295	R41450	Hs.6546	ESTs	1.00	1.00
	415339	NM_015156	Hs.78398	KIAA0071 protein	51.18	166.00
	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	30.84	63.00
_	415674	BE394784	Hs.78596	proteasome (prosome, macropain) subunit,	1.48	1.39
80	415709	AA649850	Hs.278558	ESTs	1.00	1.00
	415735	AA704162	Hs.120811	ESTs, Weakly similar to I38022 hypotheti	1.00	72.00
	415799	AA653718	Hs.225841	DKFZP434D193 protein	6.23	31.00
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	24.30	1.00
	415857	AA866115	Hs.127797	Homo sapiens cDNA FLJ11381 fis, clone HE	32.51	35.00
85	415989	A1267700		ESTs	78.89	1.00

	W	O 02/086	443			
	416018	AW138239	Hs.78977	proprotein convertase subtilisin/kexin t	1.00	1.00
	416065	BE267931	Hs.78996	proliferating cell nuclear antigen	3.35	2.32
	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (39.03	3.00
5	416177	AA174069	Hs.187607	ESTs	1.00	9.00
5	416178 416208	Al808527	Hs.192822 Hs.41295	serologically defined breast cancer anti ESTs, Weakly similar to MUC2_HUMAN MUCIN	3.83 3.67	3.76 1.00
	416209	AW291168 AA236776	Hs.79078	MAD2 (mitotic arrest deficient, yeast, h	9.70	1.00
	416239	AL038450	Hs.48948	ESTs	83.87	129.00
4.0	416250	AA581386	Hs.73452	hypothetical protein MGC10791	1.96	2.12
10	416322	BE019494	Hs.79217	pyrroline-5-carboxylate reductase 1	2.08	1.73
	416423	H54375	Hs.268921	ESTs	1.00	89.00
	416448	L13210	Hs.79339	lectin, galactoside-binding, soluble, 3	1.28	1.54
	416498 416658	U33632 U03272	Hs.79351 Hs.79432	potassium channel, subfamily K, member 1 fibrillin 2 (congenital contractural ara	27.29 53.29	67.00 51.00
15	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	9.96	5.00
10	416722	AA354604	Hs.122546		3.68	33.00
	416819	U77735	Hs.80205	pim-2 oncogene	1.59	1.84
	416936	N21352	Hs.42987	ESTs, Weakly similar to S21348 probable	1.00	1.00
20	417034	NM_006183	Hs.80962	neurotensin	1.00	1.00
20	417061	A1675944	Hs.188691	Homo sapiens cDNA FLJ12033 fis, clone HE	32.95	156.00
	417079 417218	U65590 AA129547	Hs.81134 Hs.285754	interleukin 1 receptor antagonist met proto-oncogene (hepatocyte growth fa	3.91 1.00	4.93 51.00
	417233	W25005	Hs.24395	small inducible cytokine subfamily B (Cy	3.38	2.05
	417308	H60720	Hs.81892	KIAA0101 gene product	82.94	25.36
25	417315	A1080042	Hs.180450	ribosomal protein S24	106.61	121.00
	417324	AW265494		ESTs	1.20	1.28
	417366	BE185289	Hs.1076	small proline-rich protein 1B (cornifin)	8.97	3.27
	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	2.59	1.82
30	417428	N87579	Hs.278871	gb:LL2030F Human fetal heart, Lambda ZAP	1.00 304.75	52.00 173.00
50	417433 417466	BE270266 Al681547	Hs.82128 Hs.59457	5T4 oncofetal trophoblast glycoprotein hypothetical protein FLJ22127	1.24	1.34
	417512	A1979168	Hs.344096	glycoprotein (transmembrane) nmb	2.14	5.50
	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated	2.66	1.68
2 ~	417542	J04129	Hs.82269	progestagen-associated endometrial prote	1.28	1.35
35	417576	AA339449	Hs.82285	phosphoribosylglycinamide formyltransfer	42.76	51.00
	417715	AW969587	Hs.86366	ESTs	6.35	2.75
	417720 417791	AA205625 AW965339	Hs.208067 Hs.111471	ESTs ESTs	113.31 39.98	56,00 16.00
	417830	AW504786	Hs.122579	hypothetical protein FLJ10461	2.61	31.00
40	417866	AW067903	Hs.82772	collagen, type XI, alpha 1	2.35	2.44
	417900	BE250127	Hs.82906	CDC20 (cell division cycle 20, S. cerevi	1.52	1.11
	417933	X02308	Hs.82962	thymidylate synthetase	4.74	2.55
	417944	AU077196	Hs.82985	collagen, type V, alpha 2	3.61	5.21
45	417975	AA641836	Hs.30085	hypothetical protein FLJ23186	12.49 1.00	38.00 26.00
73	417991 418004	AA731452 U37519	Hs.190008 Hs.87539	ESTs aldehyde dehydrogenase 3 family, member	3.02	2.12
	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	187.59	1.00
	418054	NM_002318	Hs.83354	lysyl oxidase-like 2	2.85	2.63
~^	418057	NM_012151	Hs.83363	coagulation factor VIII-associated (intr	1.54	1.69
50	418113	Al272141	Hs.83484	SRY (sex determining region Y)-box 4	6.82	5.22
	418140	BE613836 .	Hs.83551	microfibrillar-associated protein 2	1.26 134.19	1.46 144.00
	418203 418207	X54942 C14685	Hs.83758 Hs.34772	CDC28 protein kinase 2 ESTs	1.00	1.00
	418216	AA662240	Hs.283099	AF15q14 protein	64.66	61.00
55	418236	AW994005	Hs.337534	ESTs	18.53	147.00
	418249	H89226	Hs.34892	KIAA1323 protein	30.53	106.00
	418281	U09550	Hs.1154	oviductal glycoprotein 1, 120kD (mucin 9	1.00	3.00
	418283	S79895	Hs.83942	cathepsin K (pycnodysostosis)	3.96	5,16 2.01
60	418300 418322	AI433074 AA284166	Hs.86682 Hs.84113	Homo sapiens cDNA: FLJ21578 fis, clone C cyclin-dependent kinase inhibitor 3 (CDK	3.18 11.96	2.91 6.68
00	418327	U70370	Hs.84136	paired-like homeodomain transcription fa	9.23	2.22
	418345	AJ001696	Hs.241407	serine (or cysteine) proteinase inhibito	1.00	1.00
	418379	AA218940	Hs.137516	fidgetin-like 1	21.68	44.00
CE	418397	NM_001269	Hs.84746	chromosome condensation 1	1.00	8.00
65	418403	D86978	Hs.84790	KIAA0225 protein	16.91	18.98
	418462	BE001596	Hs.85266	integrin, beta 4	1.56 3.22	1.16
	418478 418506	U38945 AA084248	Hs.1174 Hs.85339	cyclin-dependent kinase inhibitor 2A (me G protein-coupled receptor 39	2.66	2.38 2.22
	418526	BE019020	Hs.85838	solute carrier family 16 (monocarboxylic	2.04	2.21
70	418538	BE244323	Hs.85951	exportin, tRNA (nuclear export receptor	1.33	37.00
	418543	NM_005329	Hs.85962	hyaluronan synthase 3	1.04	1.23
	418574	N28754		M-phase phosphoprotein 9	48.60	85.00
	418592	X99226	Hs.284153	Fanconi anemia, complementation group A	18.24	26.00 1.41
75	418641	BE243136	Hs.86947	a disintegrin and metalloproteinase doma	1.19 29.05	
, 5	418661 418663	NM_001949 AK001100	Hs.1189 Hs.41690	E2F transcription factor 3 desmocollin 3	29.05 112.17	43.00 19.00
	418678	NM_001327	Hs.87225	cancer/testis antigen	1.18	1.10
	418686	Z36830	Hs.87268	annexin A8	1.54	1.98
0.0	418689	Al360883	Hs.274448	hypothetical protein FLJ11029	1.19	1.04
80	418712	Z42183		gb:HSC0BF041 normalized infant brain cDN	1.00	12.00
	418727	AA227609	Hs.94834	ESTs	1.00	49.00
	418738	AW388633	Hs.6682	solute carrier family 7, (cationic amino ESTs	49.85 1.00	1.00 140.00
	418819 418830	AA228776 BE513731	Hs.191721 Hs.88959	hypothetical protein MGC4816	20.97	23.00
85	418882	NM_004996	Hs.89433	ATP-binding cassette, sub-family C (CFTR	57.09	35.00
-				• • • •		

	w	O 02/086	443			
	418971	AA360392	Hs.87113	ESTs	1.00	12.00
	418973	AA233056	Hs.191518	ESTs	4.89	28.00
	419078	M93119	Hs.89584	insulinoma-associated 1	1.00	10.00
	419079	AW014836	Hs.18844	ESTs	1.09	1.98
5	419080	AW150835	Hs.18878	hypothetical protein FLJ21620	2.06	1.68
•	419088	AI538323	Hs.52620	integrin, beta 8	15.60	51.00
	419092	J05581	Hs.89603	mucin 1, transmembrane	1.11	1.83
		AA374372	Hs.89626	parathyroid hormone-like hormone	1.00	1.00
	419121				1.10	1.14
10	419171	NM_002846	Hs.89655	protein tyrosine phosphatase, receptor t	1.00	1.00
10	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin		
	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy	3.18	2.43
	419288	AA256106	Hs.87507	ESTs	1.00	34.00
	419335	AW960146	Hs.284137	hypothetical protein FLJ12888	1.00	8.00
	419354	M62839	Hs.1252	apolipoprotein H (beta-2-glycoprotein I)	22.63	54.00
15	419359	AL043202	Hs.90073	chromosome segregation 1 (yeast homolog)	2.50	1.98
	419423	D26488	Hs.90315	KIAA0007 protein	1.00	7.00
	419443	D62703	110.00010	qb:HUM316G10B Clontech human aorta polyA	1.00	12.00
	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	1.64	1.84
					13.63	62.00
20	419474	AW968619	Hs.155849	ESTs		
20	419485	AA489023	Hs.99807	ESTs. Weakly similar to unnamed protein	4.27	2.26
	419488	AA316241	Hs.90691	nucleophosmin/nucleoplasmin 3	3.66	3.63
	419502	AU076704		fibrinogeп, A alpha polypeptide	13.05	115.00
	419539	AF070590	Hs.90869	Homo sapiens clones 24622 and 24623 mRNA	74.60	117.00
	419556	U29615	Hs.91093	chitinase 1 (chitotriosidase)	1.47	4.98
25	419569	AI971651	Hs.91143	jagged 1 (Alagille syndrome)	1.00	4.00
	419594	AA013051	Hs.91417	topoisomerase (DNA) II binding protein	94.30	94.00
,	419703	Al793257	Hs.128151	ESTs	15.26	50.00
	419721	NM_001650	Hs.288650	aquaporin 4	1.00	191.00
			Hs.21411	gb:no53a03.s1 NCI_CGAP_SS1 Homo sapiens	1.00	59.00
30	419729	AA586442			2.02	1.08
20	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C		
	419745	AF042001	Hs.93005	slug (chicken homolog), zinc finger prot	1.00	1.00
	419752	AA249573	Hs.152618	ESTs, Moderately similar to ZN91_HUMAN Z	29.87	77.00
	419839	U24577	Hs.93304	phospholipase A2, group VII (platelet-ac	50.99	214.00
	419936	Al792788		gb:ol91d05.y5 NCI_CGAP_Kid5 Homo sapiens	1.00	1.00
35	419937	AB040959	Hs.93836	DKFZP434N014 protein	1.64	2.47
	419983	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f	15.72	94.00
	420005	AW271106	Hs.133294	ESTs	3.15	1.43
	420047	Al478658	Hs.94631	brefeldin A-inhibited guanine nucleotide	12.45	39.00
	420058	AK001423	Hs.94694	Homo sapiens cDNA FLJ10561 fis, clone NT	1.00	117.00
40				cyclin-dependent kinase 4	1.43	1.21
40	420162	BE378432	Hs.95577		2.35	3.23
	420251	AW374968	Hs.348112	Human DNA sequence from clone RP5-1103G7		
	420259	AF004884	Hs.96253	calcium channel, voltage-dependent, P/Q	0.77	1.15
	420281	Al623693	Hs.323494	ESTs	45.04	54.00
	420309	AW043637	Hs.21766	ESTs, Weakly similar to ALU5_HUMAN ALU S	49.22	31.00
45	420332	NM_001756	Hs.1305	serine (or cysteine) proteinase inhibito	0.05	2.82
	420380	AA640891	Hs.102406	ESTs	0.99	2.74
	420462	AF050147	Hs.97932	chondromodulin I precursor	1.00	1.00
	420520	AK001978	Hs.98510	similar to rab11-binding protein	49.74	133.00
	420552	AK000492	Hs.98806	hypothetical protein	94.65	88.00
50	420560	AW207748	Hs.59115	ESTs	1.00	17.00
50	420610	AI683183	Hs.99348	distal-less homeo box 5	1.00	13.00
			Hs.88678	ESTs	50.09	95.00
	420689	H79979			1.00	31.00
	420721	AA927802	Hs.159471	ZAP3 protein		
55	420759	T11832	Hs.127797	Homo sapiens cDNA FLJ11381 fis, clone HE	1.00	48.00
55	420783	Al659838	Hs.99923	lectin, galactoside-binding, soluble, 7	3.04	1.25
	420900	AL045633	Hs.44269	ESTs	2.24	7.00
	420931	AF044197	Hs.100431	small inducible cytokine B subfamily (Cy	1.00	8.00
	421002	AF116030	Hs.100932	transcription factor 17	1.00	27.00
	421027	AA761198	Hs.55254	ESTs	2.87	38.00
60	421037	AI684808	Hs.197653	ESTs	1.00	46.00
	421041	N36914	Hs.14691	ESTs, Moderately similar to 138022 hypot	1.00	98.00
	421073	NM_004689	Hs.101448	metastasis associated 1	1.34	1.46
	421110	AJ250717	Hs.1355	cathepsin E	119.47	427.00
	421133	AA401369	Hs.190721	ESTs	1.10	17.00
65					1.45	1.63
UJ	421150	Al913562	Hs.189902	ESTs	1.00	15.00
	421155	H87879	Hs.102267	lysyl oxidase		
	421307	BE539976	Hs.103305	Homo sapiens mRNA; cDNA DKFZp434B0425 (f	1.37	1.10
	421316	AA287203	Hs.324728	SMA5	1.00	21.00
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy	1.92	3.94
70	421451	AA291377	Hs.50831	ESTs	5.89	14.00
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans	1.46	1.76
	421506	BE302796	Hs.105097	thymidine kinase 1, soluble	1.56	1.08
	421508	NM_004833	Hs.105115	absent in melanoma 2	5.11	5.23
	421515	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, I	1.00	3.00
75	421513	AA312082	Hs.105332	GDNF family receptor alpha 1	2.63	10.58
, 5				DKFZP564O0823 protein	1.46	1.88
	421526	AL080121	Hs.105460		30.21	50.32
	421552	AF026692	Hs.105700	secreted frizzled-related protein 4		
	421574	AJ000152	Hs.105924	defensin, beta 2	1.67	1.74
00	421582	AI910275		trefoil factor 1 (breast cancer, estroge	1.23	1.00
80	421633	AF121860	Hs.106260	sorting nexin 10	1.00	116.00
	421659	NM_014459	Hs.106511	protocadherin 17	0.05	6.33
	421677	H64092	Hs.38282	ESTs	1.31	1.42
	421753	BE314828	Hs.107911	ATP-binding cassette, sub-family B (MDR/	1.41	1.20
_	421773	W69233	Hs.112457	ESTs	1.12	1.14
85	421777	BE562088	Hs.108196	HSPC037 protein	1.97	1.29
				· · · · · · · · · · · · · · · · · · ·		

	W	O 02/086	443				PC 1/USU2/124 /
	421800	AA298151	Hs.222969	ESTs	1.03	1.30	
	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	1.88	1.59	
	421896	N62293	Hs.45107	ESTs polyadenylate binding protein-interactin	11.84 45.89	22.80 90.00	
5	421928 421931	AF013758 NM_000814	Hs.109643 Hs.1440	gamma-aminobutyric acid (GABA) A recepto	1.13	1.49	
,	421948	L42583	Hs.334309	keratin 6A	51.83	20.25	
	421975	AW961017	Hs.6459	hypothetical protein FLJ11856	1.17	1.15	
	422026	U80736	Hs.110826	trinucleotide repeat containing 9	1.00	52.00	
4.0	422094	AF129535	Hs.272027	F-box only protein 5	67.61	62.00	
10	422095	Al868872	Hs.282804	hypothetical protein FLJ22704	4.37	2.34	
	422109	S73265	Hs.1473	gastrin-releasing peptide	4.18	95.50	
	422128	AW881145	11- 4470	gb:QV0-OT0033-010400-182-a07 OT0033 Homo	40.89	71.00	
	422129	AU076635	Hs.1478	serine (or cysteine) proteinase inhibito	1.13 41.59	1.38 96.00	
15	422134 422158	AW179019 L10343	Hs.112110 Hs.112341	mitochondrial ribosomal protein L42 protease inhibitor 3, skin-derived (SKAL	2.37	1.10	
13	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias	3.29	1.68	
	422278	AF072873	Hs.114218	frizzled (Drosophila) homolog 6	4.93	5.73	
	422282	AF019225	Hs.114309	apolipoprotein L	1.49	1.71	
••	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	25.99	10.91	
20	422310	AA316622	Hs.98370	cytochrome P450, subfamily IIS, polypept	1.54	1.41	
	422311	AF073515	Hs.114948	cytokine receptor-like factor 1	1.15	1.78	
	422330	D30783	Hs.115263	epiregulin	1.00	112.00	
	422364	AF067800	Hs.115515	C-type (calcium dependent, carbohydrate-	9.39	60.00	
25	422406	AF025441	Hs.116206	Opa-interacting protein 5	18.33 1.71	53.00 3.21	
23	422424 422440	AI186431 NM_004812	Hs.296638 Hs.116724	prostate differentiation factor aldo-keto reductase family 1, member B10	47.53	32.00	
	422487		Hs.198267	mucin 4, tracheobronchial	73.68	35.54	
	422511	AU076442	Hs.117938	collagen, type XVII, alpha 1	173.97	26.00	
	422515	AW500470	Hs.117950	multifunctional polypeptide similar to S	4.68	2.92	
30	422656	AI870435	Hs.1569	LIM homeobox protein 2	1.00	1.00	
	422737	M26939	Hs.119571	collagen, type III, alpha 1 (Ehlers-Danl	3.89	4.55	
•	422756	AA441787	Hs.119689	glycoprotein hormones, alpha polypeptide	1.05	1.46	
	422765	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur	3.88	1.53	
35	422809	AK001379	Hs.121028	hypothetical protein FLJ10549	99.56	53.00	
33	422867 422938	L32137	Hs.1584	cartilage oligomeric matrix protein (pse centromere protein A (17kD)	1.69 70.46	3.17 61.00	
	422956	NM_001809 BE545072	Hs.1594 Hs.122579	ECT2 protein (Epithelial cell transformi	77.74	3.00	
	422960	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)	5.88	8.55	
	422963	AA401369	Hs.190721	ESTs	171.41	17.00	
40	422976	AU076657	Hs.1600	chaperonin containing TCP1, subunit 5 (e	2.12	1.62	
	422981	AF026445	Hs.122752	TATA box binding protein (TBP)-associate	10.49	35.00	
	422986	AA319777	Hs.221974	ESTs	12.40	32.47	
	423034	AL119930		gb:DKFZp761A092_r1 761 (synonym: hamy2)	16.41	60.00	
15	423049	X59373	Hs.188023	ESTs, Moderately similar to HXDA_HUMAN H	1.00	1.00	
45	423081	AF262992	Hs.123159	sperm associated antigen 4	1.82 1.14	2.96 1.53	
	423184 423217	NM_004428 NM_000094	Hs.1624 Hs.1640	ephrin-A1 collagen, type VII, alpha 1 (epidermolys	2.14	1.69	
	423248	AA380177	Hs.125845	ribulose-5-phosphate-3-epimerase	7.18	14.00	
	423309	BE006775	Hs.126782	sushi-repeat protein	21.90	64.00	
50	423361	AW170055	Hs.47628	ESTs	1.00	1.00	
	423453	AW450737	Hs.128791	CGI-09 protein	55.52	66.00	
	423511	AF036329	Hs.129715	gonadotropin-releasing hormone 2	0.88	1.17	
	423516	AB007933	Hs.129729	ligand of neuronal nitric oxide synthase	1.76	5.40	
55	423551	AA327598	Hs.233785	ESTs	3.54	4.33	
55	423554	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	1.00	50.00	
	423575	C18863 Al807408	Hs.163443 Hs.166368	Homo sapiens cDNA FLJ11576 fis, clone HE ESTs	38.88 1.00	70.00 67.00	
	423624 423634	AW959908	Hs.1690	heparin-binding growth factor binding pr	76.02	1.00	
	423642	AW452650	Hs.157148	hypothetical protein MGC13204	19.14	58.00	
60	423662	AA642452	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro	3.61	13.57	
	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	240.73	40.00	
	423698	AA329796	Hs.1098	DKFZp434J1813 protein	1.00	59.00	
	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	4.20	1.00	
~~	423761	NM_006194	Hs.132576	paired box gene 9	1.00	1.00	
65	423787	AJ295745	Hs.236204	nuclear pore complex protein	7.18	6.64	
	423816	AF151064	11- 4707	hypothetical protein	1.00 1.00	44.00	
	423826	U20325	Hs.1707	cocaine- and amphetamine-regulated trans Homo sapiens mRNA; cDNA DKFZp761J1324 (f	1.00	1.00 1.00	
	423849 423887	AL157425 AL080207	Hs.133315 Hs.134585	DKFZP434G232 protein	1.00	1.00	
70	423934	U89995	Hs.159234	forkhead box E1 (thyroid transcription f	31.33	31.00	
, ,	423954	AW753164	Hs.288604	KIAA1632 protein	5.81	10.87	
	423961	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin	3.55	3.30	
	424012	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	233.42	68.00	
	424016	AW163729	Hs.6140	hypothetical protein MGC15730	0.93	1.01	
75	424028	AF055084	Hs.153692	Homo sapiens cDNA FLJ14354 fis, clone Y7	21.30	52.00	
	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito	1.00	1.00	
	424086	Al351010	Hs.102267	lysyl oxidase	21.91	70.00	
	424098	AF077374	Hs.139322	small proline-rich protein 3	137.82	54.00	
80	424120	T80579	Hs.290270	ESTs	1.00 1.00	1.00 34.00	
ou	424165	AW582904	Hs.142255	islet amyloid polypeptide gb:EST41944 Endometrial tumor Homo sapie	13.06	48.00	
	424200 424279	AA337221 L29306	Hs.171814	tryptophan hydroxylase (tryptophan 5-mon	1.00	1.00	
	424308	AW975531	Hs.154443	minichromosome maintenance deficient (S.	164.58	87.00	•
_	424326	NM_014479	Hs.145296	disintegrin protease	53.72	302.00	
85	424340	AA339036	Hs.7033	ESTs	0.88	1.15	
							

	W	O 02/086	443			
	424351	BE622117	Hs.145567	hypothetical protein	0.93	1.03
	424364	AW383226	Hs.201189	ESTs, Weakly similar to G01763 atrophin-	7.02	3.24
	424381	AA285249	Hs.146329	protein kinase Chk2	95.55	92.00
	424411	NM 005209	Hs.146549	crystallin, beta A2	1.63	3.25
5	424420	BE614743	Hs.146688	prostaglandin E synthase	1.63	1.33
-	424441	X14850	Hs.147097	H2A histone family, member X	1.82	1.29
	424502	AF242388	Hs.149585	lengsin	1.00	1.00
	424503	X06256	Hs.149609	integrin, alpha 5 (fibronectin receptor,	1.02	2.24
	424513	BE385864	Hs.149894	mitochondrial translational initiation f	1.00	17.00
10	424539	L02911	Hs.150402	Activin A receptor, type I (ACVR1) (ALK	32.46	108.00
	424568	AF005418	Hs.150595	cytochrome P450, subfamily XXVIA, polype	3.40	2.58
	424602	AK002055	Hs.151046	hypothetical protein FLJ11193	31.87	25.00
	424629	M90656	Hs.151393	glutamate-cysteine ligase, catalytic sub	3.58	2.37
	424645	NM_014682	Hs.151449	KIAA0535 gene product	1.00	1.00
15	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	2.12	2.23
	424717	AW992292	Hs.152213	wingless-type MMTV integration site fami	1.00	1.00
	424834	AK001432	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT	56.19	12.00
	424840	D79987	Hs.153479	extra spindle poles, S. cerevisiae, homo	2.65	1.30
	424867	AI024860	Hs.153591	Not56 (D. melanogaster)-like protein	1.23	1.05
20	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related k	21.35	1.00
	424979	D87989	Hs.154073	UDP-galactose transporter related	1.36	1.35
	424999	AW953120		gb:EST365190 MAGE resequences, MAGB Homo	1.24	1.41
	425048	H05468	Hs.164502	ESTs	1.00	11.00
	425057	AA826434	Hs.1619	achaete-scute complex (Drosophila) homo!	7.46	87.00
25	425081	X74794	Hs.154443	minichromosome maintenance deficient (S.	2.52	3.82
	425118	AU076611	Hs.154672	methylene tetrahydrofolate dehydrogenase	4.84	4.03
	425159	NM_004341	Hs.154868	carbamoyl-phosphate synthetase 2, aspart	3.62	2.73
	425202	AW962282	Hs.152049	ESTs, Weakly similar to 138022 hypotheti	1.00	53.00
•	425234	AW152225	Hs.165909	ESTs, Weakly similar to I38022 hypotheti	100.77	44.00
30	425236	AW067800	Hs.155223	stanniocalcin 2	3.30	2.90
	425245	A1751768	Hs.155314	KIAA0095 gene product	1.91	2.32
	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	1.41	1.49
	425266	J00077	Hs.155421	alpha-fetoprotein	1.00	68.00
25	425274	BE281191	Hs.155462	minichromosome maintenance deficient (mi	1.97	1.63
35	425322	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	141.49	123.00
	425349	AA425234	Hs.79886	ribose 5-phosphate isomerase A (ribose 5	1.00	84.00
	425371	D49441	Hs.155981	mesothelin	0.87	1.59
	425397	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)	14.90	5.76
40	425420	BE536911	Hs.234545	hypothetical protein NUF2R	1.00	1.00
40	425424	NM_004954	Hs.157199	ELKL motif kinase	10.58	9.74
	425483	AF231022	Hs.158159	FAT tumor suppressor (Drosophila) homolo	1.74	1.40
	425566	AW162943	Hs.250618	UL16 binding protein 2	1.49	1.14
	425580	L11144	Hs.1907	galanin	53.29	233.00
45	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	33.45 1.00	1.00 55.00
73	425692	D90041	Hs.155956	N-acetyltransferase 1 (arylamine N-acety	1.00	10.00
	425695 425734	NM_005401	Hs.159238 Hs.159396	protein tyrosine phosphatase, non-recept peptidylglycine alpha-amidating monooxyg	1.00	41.00
	425776	AF056209 U25128	Hs.159499	parathyroid hormone receptor 2	1.00	48.00
	425810	Al923627	Hs.31903	ESTs	27.39	98.00
50	425811	AL039104	Hs.159557	karyopherin alpha 2 (RAG cohort 1, impor	1.99	1.58
50	425849	A1077288	Hs.296323	serum/glucocorticoid regulated kinase	71.16	3.42
	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member	1.35	1.34
	426067	AA401369	Hs.190721	ESTs	1.01	17.00
	426088	AF038007	Hs.166196	ATPase, Class I, type 8B, member 1	26.26	47.00
55	426215	AW067800	Hs.155223	stanniocalcin 2	1.91	2.90
	426227	U67058	Hs.154299	Human proteinase activated receptor-2 mR	22.40	25.00
	426269	H15302	Hs.168950	Homo sapiens mRNA; cDNA DKFZp566A1046 (f	1.00	1.00
	426283	NM_003937	Hs.169139	kynureninase (L-kynurenine hydrolase)	91.39	229.00
	426329	AL389951	Hs.271623	nucleoporin 50kD	4.34	4.08
60	426427	M86699	Hs.169840	TTK protein kinase	7.02	1.00
	426432	AF001601	Hs.169857	paraoxonase 2	1.16	1.68
	426440	BE382756	Hs.169902	solute carrier family 2 (facilitated glu	2.59	1.71
	426459	AF151812	Hs.169992	hypothetical 43.2 Kd protein	1.56	1.66
	426471	M22440	Hs.170009	transforming growth factor, alpha	20.60	26.00
65	426496	D31765	Hs.170114	KIAA0061 protein	9.81	22.00
	426501	AA401369	Hs.190721	ESTs	19.23	17.00
	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic	103.74	41.00
	426536	A1949749	Hs.44441	ESTs	4.65	23.00
~~	426572	AB037783	Hs.170623	hypothetical protein FLJ11183	1.00	43.00
70	426682	AV660038	Hs.2056	UDP glycosyltransferase 1 family, polype	160.06	8.00
	426691	NM_006201	Hs.171834	PCTAIRE protein kinase 1	1.51	1.35
	426746	J03626	Hs.2057	uridine monophosphate synthetase (orotat	2.13	1.68
	426752	X69490	Hs.172004	titin	0.02	5.14
~~	426784	U03749	Hs.172216	chromogranin A (parathyroid secretory pr	1.72	1.71
75	426807	AA385315	Hs.156682	ESTs	1.30	1.64
	426812	AF105365	Hs.172613	solute carrier family 12 (potassium/chlo	1.47	1.53
	426814	AF036943	Hs.172619	myelin transcription factor 1-like	1.00	1.00
	426831	BE296216	Hs.172673	S-adenosylhomocysteine hydrolase	1.51	1.25
0.0	426897	AA401369	Hs.190721	ESTs	141.56	17.00
80	426925	NM_001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fis, clone H	32.61	38.00
	426935	NM_000088	Hs.172928	collagen, type I, alpha 1	2.65	3.16
	426964	AA393739	Hs.287416	Homo sapiens cDNA FLJ11439 fis, clone HE	1.97	3.49
	426966	Al493134		sclerostin	1.00	1.00
0.E	426991	AK001536		Homo sapiens cDNA FLJ10674 fis, clone NT	3.39	2.28
85	427099	AB032953	Hs.173560	odd Oz/ten-m homolog 2 (Drosophila, mous	4.24	17.00

	**/	O 02/086	113			
	427239	BE270447	Hs.174070	ubiquitin carrier protein	1.58	1.05
	427260	AA663848		gb:ae70b06.s1 Stratagene schizo brain S1	1.34	1.60
	427281	AA906147	Hs.102869	ESTs	1.00	66.00
5	427335	AA448542 T57896	Hs.251677 Hs.191095	G antigen 7B	51.83 1.17	4.00 1.95
3	427354 427356	AW023482	Hs.97849	ESTs ESTs	7.31	41.00
	427376	AA401533	Hs.19440	ESTs	1.00	57.00
	427383	NM_005411	Hs.177582	surfactant, pulmonary-associated protein	0.42	1.32
10	427427	AF077345	Hs.177936	lectin, superfamily member 1 (cartilage-	1.00	20.00
10	427441 427445	AA412605 X80818	Hs.343879 Hs.178078	SPANX family, member C glutamate receptor, metabotropic 4	1.00 0.97	1.00 1.03
	427505	AA361562	Hs.178761	26S proteasome-associated pad1 homolog	4.60	4.04
	427510	Z47542	Hs.179312	small nuclear RNA activating complex, po	22.00	45.00
1.5	427528	AU077143	Hs.179565	minichromosome maintenance deficient (S.	97.45	92.00
15	427546	AA188763	Hs.36793 Hs.26534	hypothetical protein FLJ23188 ESTs	1.50 6.81	3.24 40.00
	427562 427585	R56424 D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	69.91	62.00
	427660	Al741320	Hs.114121	Homo sapiens cDNA: FLJ23228 fis, clone C	2.70	49.00
20	427666	Al791495	Hs.180142	calmodulin-like skin protein	1.37	1.88
20	427668	AA298760	Hs.180191	hypothetical protein FLJ14904	29.55	67.00
	427677 427701	NM_007045 AA411101	Hs.180296 Hs.243886	FGFR1 oncogene partner nuclear autoantigenic sperm protein (his	3.52 7.41	2.63 34.00
	427711	M31659	Hs.180408	solute carrier family 25 (mitochondrial	15.84	70.00
	427719	Al393122	Hs.134726	ESTs	7.03	4.52
25	427722	AK000123	Hs.180479	hypothetical protein FLJ20116	2.92	1.74
	427747	AW411425	Hs.180655	serine/threonine kinase 12	1.76 9.63	1.26 59.00
	427912 427961	AL022310 AW293165	Hs.181097 Hs.143134	tumor necrosis factor (ligand) superfami ESTs	41.97	118.00
	428004	AA449563	Hs.151393	glutamate-cysteine ligase, catalytic sub	23.82	1.00
30	428023	AL038843	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Homo sapiens cDNA: FLJ23602 fis, clone L	1.40	1.33
	428046	AW812795	Hs.337534	ESTs, Moderately similar to 138022 hypot	96.28	167.00
	428093	AW594506	Hs.104830	ESTs protein disulfide isomerase-related prot	1.25 1.86	1.29 1.60
	428098 428129	AU077258 Al244311	Hs.182429 Hs.26912	ESTs	1.00	42.00
35	428169	Al928984	Hs.182793	golgi phosphoprotein 2	2.76	2.11
	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT	1.00	1.00
	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy	85.59 9.57	181.00
	428242 428330	H55709 L22524	Hs.2250 Hs.2256	leukemia inhibitory factor (cholinergic matrix metalloproteinase 7 (matrilysin,	8.57 7.77	21.64 15.90
40	428434	Al909935	Hs.65551	Homo sapiens, Similar to DNA segment, Ch	0.58	1.43
	428450	NM_014791	Hs.184339	KIAA0175 gene product	237.53	204.00
	428471	X57348	Hs.184510	stratifin	6.00	4.60
	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to	56.54 3.53	16.00 2.15
45	428484 428505	AF104032 AL035461	Hs.184601 Hs.2281	solute carrier family 7 (cationic amino chromogranin B (secretogranin 1)	1.00	1.00
	428532	AF157326	Hs.184786	TBP-interacting protein	1.00	58.00
	428645	AA431400	Hs.98729	ESTs, Weakly similar to 2017205A dihydro	1.00	16.00
	428664	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	1.00 187.37	1.00 255.00
50	428698 428728	AA852773 NM_016625	Hs.334838 Hs.191381	KIAA1866 protein hypothetical protein	47.24	80.00
50	428748	AW593206	Hs.98785	Ksp37 protein	1.00	87.00
	428758	AA433988	Hs.98502	hypothetical protein FLJ14303	1.06	1.13
	428771	AB028992	Hs.193143	KIAA1069 protein	1.98	92.00
55	428801	AW277121 AF068236	Hs.254881 Hs.193788	ESTs nitric oxide synthase 2A (inducible, hep	1.67 1.03	6.15 1.27
55	428810 428839	Al767756	Hs.82302	Homo sapiens cDNA FLJ14814 fis, clone NT	124.17	43.00
	428845	AL157579	Hs.153610	KIAA0751 gene product	1.00	1.00
	428959	AF100779	Hs.194680	WNT1 inducible signaling pathway protein	15.16	27.00
60	428969	AF120274	Hs.194689	artemin	1.36 0.97	1.24 3.31
00	429038 429065	AL023513 Al753247	Hs.194766 Hs.29643	seizure related gene 6 (mouse)-like Homo sapiens cDNA FLJ13103 fis, clone NT	6.82	16.47
	429164	AI688663	Hs.116586	ESTs	19.08	67.00
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	16.18	105.00
65	429183	AB014604	Hs.197955	KIAA0704 protein	79.72 1.00	104.00 1.00
03	429201 429211	X03178 AF052693	Hs.198246 Hs.198249	group-specific component (vitamin D bind gap junction protein, beta 5 (connexin 3	1.33	1.09
	429220	AW207206	113.1302-3	ESTs	1.00	7.00
	429228	Al553633	Hs.326447	ESTs	39.47	29.25
70	429259	AA420450	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	2.01	1.18
70	429263	AA019004	Hs.198396	ATP-binding cassette, sub-family A (ABC1	1.07	1.00 142.00
	429276 429359	AF056085 W00482	Hs.198612 Hs.2399	G protein-coupled receptor 51 matrix metalloproteinase 14 (membrane-in	3.70 1.30	1.94
	429412	NM_006235	Hs.2407	POU domain, class 2, associating factor	94.09	86.00
	429413	NM_014058	Hs.201877	DESC1 protein	41.91	10.00
75	429486	AF155827	Hs.203963	hypothetical protein FLJ10339	12.19	1.00
	429504	X99133	Hs.204238	lipocalin 2 (oncogene 24p3)	1.61 4.43	1.08 2.90
	429538 429547	BE182592 AA401369	Hs.11261 Hs.190721	small proline-rich protein 2A ESTs	4.43 1.06	2.90 17.00
	429551	AW450624	Hs.220931	ESTs	2.89	65.00
80	429563	BE619413	Hs.2437	eukaryotic translation initiation factor	1.49	1.37
	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	61.86	100.00
	429610 429612	AB024937 AF062649	Hs.211092 Hs.252587	LUNX protein; PLUNC (palate lung and nas pituitary tumor-transforming 1	1.59 2.78	1.69 1.74
	429612	AF062649 Al982722	Hs.120845	ESTs	1.00	1.00
85	429656	X05608	Hs.211584	neurofilament, light polypeptide (68kD)	1.00	4.00

	w	O 02/086	443			
	429663	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic,	69.95	104.00
	429736	AF125304	Hs.212680	tumor necrosis factor receptor superfami	1.25	1.21
	429782	NM 005754	Hs.220689	Ras-GTPase-activating protein SH3-domain	1.00	7.00
_	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	11.80	1.00
5	429918	AW873986	Hs.119383	ESTs	1.00	78.00
	429978	AA249027		ribosomal protein S6	1.98	3.09
	429986	AF092047	Hs.227277	sine oculis homeobox (Drosophila) homolo	1.00	48.00
	430044	AA464510	Hs.152812	ESTs	69.27 1.00	59.00 1.00
10	430114	AA847744	Hs.99640	ESTs Milestly similar to T33188 hypotheti	1.00	51.00
10	430134 430147	BE380149 R60704	Hs.105223 Hs.234434	ESTs, Weakly similar to T33188 hypotheti hairy/enhancer-of-split related with YRP	1.10	2.22
	430287	AW182459	Hs.125759	ESTs, Weakly similar to LEU5_HUMAN LEUKE	1.00	127.00
	430294	AI538226	Hs.32976	guanine nucleotide binding protein 4	3.80	1.47
	430300	U60805	Hs.238648	oncostatin M receptor	1.00	35.00
15	430315	NM_004293	Hs.239147	guanine deaminase	92.31	28.00
	430337	M36707	Hs.239600	calmodulin-like 3	1.18	1.08
	430378	Z29572	Hs.2556	tumor necrosis factor receptor superfami	5.28	66.00
	430388	AA356923	Hs.240770	nuclear cap binding protein subunit 2, 2	16.76	38.00
20	430393	BE185030	Hs.241305	estrogen-responsive B box protein	1.63	1.50
20	430439	AL133561	11- 007030	DKFZP434B061 protein	1.00 1.64	1.00 2.12
	430451	AA836472	Hs.297939	cathepsin B	63.35	44.00
	430454	AW469011	Hs.105635 Hs.241517	ESTs polymerase (DNA directed), theta	2.47	1.91
	430466 430481	AF052573 AA479678	Hs.203269	ESTs, Moderately similar to ALU8_HUMAN A	1.00	31.00
25	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	12.28	41.00
	430508	Al015435	Hs.104637	ESTs	4.75	7.27
	430533	AA480895	Hs.57749	ESTs, Weakly similar to T17288 hypotheti	1.00	1.00
	430563	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	1.00	1.59
	430677	Z26317	Hs.94560	desmoglein 2	1.72	1.30
30	430678	AA401369	Hs.190721	ESTs	0.90	17.00
	430686	NM_001942	Hs.2633	desmoglein 1	1.00	1.00
	430788	Al742925	Hs.7179	ESTs, Weakly similar to 2004399A chromos	1.62	1.84 1.40
	430890	X54232	Hs.2699	glypican 1 zinc finger protein 131 (clone pHZ-10)	1.58 90.28	132.00
35	430935 430985	AW072916 AA490232	Hs.27323	ESTs, Weakly similar to 178885 serine/th	0.94	1.28
33	431009	BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3	60.25	28.00
	431089	BE041395	113.40000	ESTs, Weakly similar to unknown protein	23.32	941.00
	431092	Al332764	Hs.125757	ESTs	13.46	63.00
	431124	AF284221	Hs.59506	doublesex and mab-3 related transcriptio	49.43	62.00
40	431164	AA493650	Hs.94367	Homo sapiens cDNA: FLJ23494 fis, clone L	0.44	2.20
	431211	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	182.26	101.00
	431221	AW207837	Hs.286145	SRB7 (suppressor of RNA polymerase B, ye	4.15	13.97
	431277	AA501806	Hs.345824	ESTS	1.00	86.00 200.00
45	431322	AW970622	Lie 046E0	gb:EST382704 MAGE resequences, MAGK Homo ESTs	40.55 1.00	53.00
43	431342 431384	AW971018 BE158000	Hs.21659 Hs.285026	gb:MR2-HT0377-150200-202-e03 HT0377 Homo	0.94	1.14
	431462	AW583672	Hs.256311	granin-like neuroendocrine peptide precu	1.30	1.25
	431494	AA991355	Hs.298312	hypothetical protein DKFZp434A1315	3.90	26.00
	431515	NM_012152	Hs.258583	endothelial differentiation, lysophospha	1.41	1.87
50	431548	Al834273	Hs.9711	novel protein	5.66	15.00
	431630	NM_002204	Hs.265829	integrin, alpha 3 (antigen CD49C, alpha	0.99	1.44
	431745	AW972448	Hs.163425	ESTs	0.99	3.51
	431770	BE221880	Hs.268555	5'-3' exoribonuclease 2	67.12 3.36	91.00 4.71
55	431830	Y16645	Hs.271387	small inducible cytokine subfamily A (Cy	4.49	2.51
33	431846 431890	BE019924 X17033	Hs.271580 Hs.271986	uroplakin 1B integrin, alpha 2 (CD49B, alpha 2 subuni	2.20	3.32
	431934	AB031481	Hs.272214	STG protein	1.01	1.04
	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	51.17	46.35
	432006	AL137382	Hs.272320	Homo sapiens mRNA; cDNA DKFZp434L1226 (f	0.94	1.65
60	432023	R43020	Hs.236223	EST	0.94	47.00
	432201	Al538613	Hs.298241	Transmembrane protease, serine 3	1.10	2.24
	432210	Al567421	Hs.273330	Homo sapiens, clone IMAGE:3544662, mRNA,	1.42	1.45
	432226	AW182766	Hs.273558	phosphate cytidylyltransferase 1, cholin	1.00	1.00
65	432239	X81334	Hs.2936	matrix metalloproteinase 13 (collagenase	18.67 1.09	1.00 1.21
65	432265	BE382679	Hs.285753	SCG10-like-protein hypothetical protein FLJ10377	40.98	58.00
	432281 432365	AK001239 AK001106	Hs.274263 Hs.274419	hypothetical protein FLJ10244	1.00	214.00
	432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, clone PL	157.34	37.00
	432375	BE536069	Hs.2962	S100 calcium-binding protein P	1.65	1.06
70	432407	AA221036		gb:zr03f12.r1 Stratagene NT2 neuronal pr	73.71	75.00
	432441	AW292425	Hs.163484	ESTs	56.35	72.00
	432489	Al804855	Hs.207530	ESTs	1.00	24.00
	432543	AA552690	Hs.152423	Homo sapiens cDNA: FLJ21274 fis, clone C	137.72	98.00
75	432552	A1537170	Hs.173725	ESTs, Weakly similar to ALU8_HUMAN ALU S	1.00	31.00 35.18
75	432583	AW023624	Hs.162282	potassium channel TASK-4; potassium chan	0.27 2.87	35.18 6.22
	432606	NM_002104	Hs.3066	granzyme K (serine protease, granzyme 3;	2.87	56.00
	432625	A1243596	Hs.94830	ESTs, Moderately similar to T03094 A-kin ESTs, Weakly similar to JC7328 amino aci	1.92	5.29
	432653 432677	N62096 NM_004482	Hs.293185 Hs.278611	UDP-N-acetyl-alpha-D-galactosamine:polyp	1.00	48.00
80	432715	AA247152	Hs.200483	ESTs, Weakly similar to KIAA1074 protein	45.13	31.00
-	432753	NM_014075	Hs.336938	Homo sapiens PRO0593 mRNA, complete cds	1.00	68.00
	432788	AA521091	Hs.178499	Homo sapiens cDNA: FLJ23117 fis, clone L	2.69	3.67
	432842	AW674093	Hs.334822	hypothetical protein MGC4485	1.22	1.34
0 <i>E</i>	432867	AW016936	Hs.233364	ESTs	1.00	1.00
85	432917	NM_014125	Hs.241517	PRO0327 protein	10.25	6.62

	W	O 02/086	143			
	432920	U37689	Hs.3128	polymerase (RNA) II (DNA directed) polyp	1.44	1.30
	433001	AF217513	Hs.279905	clone HQ0310 PRO0310p1	154.79	85.64
	433023	AW864793	Hs.87409	thrombospondin 1	20.96	100.00
_	433042	AW193534	Hs.281895	Homo sapiens cDNA FLJ11660 fis, clone HE	1.00	10.00
5	433091	Y12642	Hs.3185	lymphocyte antigen 6 complex, locus D	1.20	1.09
	433159	AB035898 AF231338	Hs.150587 Hs.222024	kinesin-like protein 2 transcription factor BMAL2	13.82 1.00	39.00 69.00
	433183 433258	AA622788	Hs.203613	ESTs, Weakly similar to ALUB_HUMAN !!!!	1.00	1.25
	433409	Al278802	Hs.25661	ESTs	44.81	117.00
10	433437	U20536	Hs.3280	caspase 6, apoptosis-related cysteine pr	70.39	105.00
	433485	Al493076	Hs.201967	aldo-keto reductase family 1, member C2	11.55	2.00
	433537	Al733692	Hs.112488	ESTs	8.66	55.00
	433547	W04978	Hs.303023	beta tubulin 1, class VI	25.16	83.00 19.00
15	433556 433647	W56321 AA603367	Hs.111460 Hs.222294	calcium/calmodulin-dependent protein kin ESTs	1.00 20.30	49.00
15	433658	L03678	Hs.156110	immunoglobulin kappa constant	5.92	10.03
	433800	AI094221	Hs.135150	lung type-I cell membrane-associated gly	2.29	2.22
	433819	AW511097	Hs.112765	ESTs	3.71	8.00
20	433862	D86960	Hs.3610	KIAA0205 gene product	62.08	104.00
20	433980	AA137152	Hs.286049	phosphoserine aminotransferase	108.91	47.00
	434088	AF116677	Hs.249270	hypothetical protein PRO1966	1.00 121.27	1.00 87.00
	434094 434105	AA305599 AW952124	Hs.238205 Hs.13094	hypothetical protein PRO2013 presenilins associated rhomboid-like pro	1.22	1.23
	434217	AW014795	Hs.23349	ESTs	14.11	57.00
25	434340	Al193043	Hs.128685	ESTs, Weakly similar to T17226 hypotheti	2.10	2.56
	434360	AA401369	Hs.190721	ESTs	40.98	17.00
	434414	Al798376		gb:tr34b07.x1 NCI_CGAP_Ov23 Homo sapiens	1.48	1.56
	434424	AI811202	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L	1.00	64.00
30	434467	BE552368	Hs.231853	Homo sapiens cDNA FLJ13445 fis, clone PL	54.91 2.46	85.00 2.00
50	434551 434627	BE387162 Al221894	Hs.280858 Hs.39311	ESTs, Highly similar to A35661 DNA excis	1.00	1.00
	434699	AA643687	Hs.149425	Homo sapiens cDNA FLJ11980 fis, clone HE	1.00	23.00
	434769	AA648884	Hs.134278	Homo sapiens cDNA FLJ12676 fis, clone NT	7.08	56.00
~ -	434792	AA649253	Hs.132458	ESTs	8.52	44.00
35	434808	AF155108	Hs.256150	Homo sapiens, Similar to RIKEN cDNA 2810	11.33	1.00
	434828	D90070	Hs.96	phorbol-12-myristate-13-acetate-induced	1.00 1.25	1.00 1.29
	434876 434891	AF160477 AA814309	Hs.61460 Hs.123583	lg superfamily receptor LNIR ESTs	1.00	6.00
	434928	AW014509 AW015595	Hs.4267	Homo sapiens clones 24714 and 24715 mRNA	1.00	1.00
40	435013	H91923	Hs.110024	Target CAT	1.26	1.10
	435066	BE261750	Hs.4747	dyskeratosis congenita 1, dyskerin	1.69	1.37
	435087	AW975241	Hs.23567	ESTs	1.00	1.00
	435099	AC004770	Hs.4756	flap structure-specific endonuclease 1	2.90	1.93
45	435159	AA668879	Hs.116649	ESTs	1.00 1.02	1.00 1.46
40	435205 435232	X54136 NM_001262	Hs.181125 Hs.4854	immunoglobulin lambda locus cyclin-dependent kinase inhibitor 2C (p1	2.04	2.70
	435304	H10709	Hs.269524	ESTs	27.58	139.00
	435313	AI769400	Hs.189729	ESTs	1.00	14.00
~ 0	435505	AF200492	Hs.211238	interleukin-1 homolog 1	1.00	38.00
50	435509	Al458679	Hs.181915	ESTs	1.00	1.00
	435525	AI831297	Hs.123310	ESTs	1.00	56.00 2.00
	435532 435550	AW291488 Al224456	Hs.117305 Hs.324507	Homo sapiens, clone IMAGE:3682908, mRNA H.sapiens polyA site DNA	1.00 3.42	3.92
	435602	AF217515	Hs.283532	uncharacterized bone marrow protein BM03	3.95	1.80
55	435766	R11673	Hs.186498	ESTs	1.00	28.00
	435793	AB037734	Hs.4993	KIAA1313 protein	23.68	42.00
	436069	A1056879	Hs.263209	ESTs	1.00	58.00
	436170	AW450381	Hs.14529	ESTs	1.00	18.00
60	436211	AK001581	Hs.334828 Hs.71472	hypothetical protein FLJ10719; KIAA1794 hypothetical protein FLJ10774; KIAA1709	5.84 1.42	22.00 1.27
00	436213 436217	AA325512 T53925	Hs.107	fibrinogen-like 1	57.97	31.00
	436238	AK002163	Hs.301724	hypothetical protein FLJ11301	2.51	1.71
	436251	BE515065	Hs.296585	nucleolar protein (KKE/D repeat)	2.33	1.64
~~	436291	BE568452	Hs.344037	protein regulator of cytokinesis 1	108.99	52.00
65	436302	AL355841	Hs.99330	hypothetical protein FLJ23588	0.75	2.81
	436396	AW992292	Hs.152213	wingless-type MMTV integration site fami	60.01 2.50	1.00 2.19
	436414 436419	BE264633 Al948626	Hs.143638 Hs.171356	WD repeat domain 4 ESTs	0.95	1.33
	436443	AW138211	Hs.128746	ESTs	1.12	9.26
70	436474	AJ270693	Hs.199887	ESTs	1.00	1.00
	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	3.28	1.56
	436486	AA742221	Hs.120633	ESTs	1.00	19.00
	436511	AA721252	Hs.291502	ESTs	16.76	14.00
75	436553	X57809	Hs.181125	immunoglobulin lambda locus ESTs, Weakly similar to A47582 B-cell gr	1.08 19.20	1.74 9.75
13	436557 436608	W15573 AA628980	Hs.5027	down syndrome critical region protein DS	33.92	25.00
	436667	AW025183	Hs.127680	ESTs	0.89	1.19
	436771	AW975687	Hs.292979	ESTs	1.00	10.00
0.0	436839	AA401369	Hs.190721	ESTs	1.00	17.00
80	436887	AW953157	Hs.193235	hypothetical protein DKFZp547D155	1.06	1.15
	436944	AW268614	Hs.5840	ESTs	1.00	1.00
	436961	AW375974	Hs.156704	ESTs	25.13 1.59	25.00 1.46
	436972 437016	AA284679 AU076916	Hs.25640 Hs.5398	claudin 3 guanine monphosphate synthetase	2.35	1.78
85	437044	AL035864	Hs.69517	cDNA for differentially expressed CO16 g	1.34	1.13
				. ,		

	W	O 02/086	443			
	437181	Al306615	Hs.125343	ESTs, Weakly similar to KIAA0758 protein	1.00	17.00
	437204	AL110216	Hs.22826	ESTs, Weakly similar to 155214 salivary	40.55	82.00
	437205	AL110232	Hs.279243	Homo sapiens mRNA; cDNA DKFZp564D2071 (f	1.00	112.00
_	437259	Al377755	Hs.120695	ESTs	1.00	205.00
5	437270	R18087	Hs.323769	cisplatin resistance related protein CRR	1.56 113.25	1.54 125.00
	437271 437370	AL137445 AL359567	Hs.28846 Hs.161962	Homo sapiens mRNA; cDNA DKFZp566O134 (fr Homo sapiens mRNA; cDNA DKFZp547D023 (fr	1.82	4.57
	437390	Al125859	Hs.112607	ESTs	1.35	1.75
	437412	BE069288	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr	3.58	3.20
10	437435	Al306152	Hs.27027	hypothetical protein DKFZp762H1311	3.03	1.08
	437444	H46008	Hs.31518	ESTs	1.00	39.00
	437568	Al954795	Hs.156135	ESTs chromosome condensation-related SMC-asso	1.00 1.95	19.00 1.57
	437623 437789	D63880 Al581344	Hs.5719 Hs.127812	ESTs, Weakly similar to T17330 hypotheti	1.00	3.00
15	437814	Al088192	Hs.135474	ESTs, Weakly similar to DDX9_HUMAN ATP-D	1.00	45.00
	437840	AA884836	Hs.292014	ESTs	1.07	1.78
	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa	1.68	3.26
	437879	BE262082	Hs.5894	hypothetical protein FLJ10305	1.87	2.52
20	437915	AI637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	74.05 23.15	35.00 89.00
20	437916 437937	BE566249 Al917222	Hs.20999 Hs.121655	hypothetical protein FLJ23142 ESTs	1.00	1.00
	437942	Al888256	Hs.307526	ESTs	12,28	31.00
	438091	AW373062		nuclear receptor subfamily 1, group 1, m	1.53	10.85
0.5	438113	AI467908	Hs.8882	ESTs	1.80	2.39
25	438119	AW963217	Hs.203961	ESTs, Moderately similar to AF116721 89	22.67	36.90
	438274	Al918906	Hs.55080	ESTs	1.00 38.92	1.00 38.00
	438378 438403	AW970529 AA806607	Hs.86434 Hs.292206	hypothetical protein FLJ21816 ESTs	1.00	1.00
	438494	AA908678	Hs.130183	ESTs	2.05	80.00
30	438546	AW297204	Hs.125811	ESTs	1.00	131.00
	438552	AJ245820	Hs.6314	type I transmembrane receptor (seizure-r	1.43	1.45
	438702	Al879064	Hs.54618	ESTs	1.00	34.00
	438724	AW612553	Hs.114670	Human DNA sequence from clone RP11-16L21	1.33 2.42	1.10 1.59
35	438746 438779	Al885815 NM_003787	Hs.184727 Hs.6414	Human melanoma-associated antigen p97 (m nucleolar protein 4	1.00	18.00
55	438821	AA826425	Hs.192375	ESTs	2.03	2.57
	438885	A1886558	Hs.184987	ESTs	6.42	88.00
	438898	AA401369	Hs.190721	ESTs	22.41	17.00
40	438915	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi	1.00	1.00 1.88
40	438956	W00847 AW979121	Hs.135056	Human DNA sequence from clone RP5-850E9 gb:EST391231 MAGE resequences, MAGP Homo	2.20 2.78	4.81
	439000 439023	AA745978	Hs.28273	ESTs	1.17	1.31
	439024	R96696	Hs.35598	ESTs	1.00	28.00
	439128	Al949371	Hs.153089	ESTs	1.00	67.00
45	439146	AW138909	Hs.156110	immunoglobulin kappa constant	1.38	1.41
	439223	AW238299	Hs.250618	UL16 binding protein 2	1.93 46.23	1.64 139.00
	439285 439318	AL133916 AW837046	Hs.6527	hypothetical protein FLJ20093 G protein-coupled receptor 56	2.00	2.20
	439343	AF086161	Hs.114611	hypothetical protein FLJ11808	6.10	7.37
50	439394	AA401369	Hs.190721	ESTs	3.39	17.00
	439410	AA632012	Hs.188746	ESTs	1.83	3.07
	439451	AF086270	Hs.278554	heterochromatin-like protein 1	23.28 18.76	52.00 122.00
	439452 439453	AA918317 BE264974	Hs.57987 Hs.6566	B-cell CLL/lymphoma 11B (zinc finger pro thyroid hormone receptor interactor 13	2.78	1.58
55	439477	W69813	Hs.58042	ESTs, Moderately similar to GFR3_HUMAN G	1.22	1.44
	439492	AF086310	Hs.103159	ESTs	7.46	39.00
	439523	W72348	Hs.185029	ESTs	1.00	1.19
	439592	AF086413	Hs.58399	ESTs	1.00	1.00
60	439606	W79123	Hs.58561	G protein-coupled receptor 87 ESTs, Weakly similar to AC004858 3 U1 sm	33.61 1.00	1.00 1.00
00	439670 439702	AF088076 AW085525	Hs.59507 Hs.134182	ESTs. Veakly similar to Accordage 5 of sim	4.30	10.00
	439706	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	86.55	11.00
	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	2.36	1.88
C =	439750	AL359053	Hs.57664	Homo sapiens mRNA full length insert cDN	2.02	6.08
65	439759	AL359055	Hs.67709	Homo sapiens mRNA full length insert cDN	1.00 7.27	21.00 25.00
	439780 439840	AL109688 AW449211	Hs.105445	gb:Homo sapiens mRNA full length insert GDNF family receptor alpha 1	1.00	1.00
	439926	AW014875	Hs.137007	ESTs	32.58	71.00
	439963	AW247529	Hs.6793	platelet-activating factor acetylhydrola	21.28	9.55
70	439979	AW600291	Hs.6823	hypothetical protein FLJ10430	68.83	61.00
	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	1.83	4.02
	440028	AW473675	Hs.125843	ESTs, Weakly similar to T17227 hypotheti	1.42	2.54
	440106 440138	AA864968 AB033023	Hs.127699 Hs.318127	KIAA1603 protein hypothetical protein FLJ10201	1.00 24.18	54.00 52.00
75	440138	AB053025 Al805392	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L	3.21	4.72
	440289	AW450991	Hs.192071	ESTs	38.63	113.00
	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma	62.88	147.00
	440492	R39127	Hs.21433	hypothetical protein DKFZp547J036	2.35	3.62
80	440527	AV657117	Hs.184164	ESTs, Moderately similar to S65657 alpha	10.84	57.00 2.37
ou	440659 440704	AF134160 M69241	Hs.7327 Hs.162	claudin 1 insulin-like growth factor binding prote	3.18 2.89	2.09
	440704	AW082298	Hs.146161	hypothetical protein MGC2408	2.02	1,41
	440994	Al160011	Hs.272068	ESTs	1.29	1.14
0.5	441020	AA401369	Hs.190721	ESTs	142.99	17.00
85	441031	Al110684	Hs.7645	fibrinogen, B beta polypeptide	1.41	99.00

	W	O 02/086	443			
	441128	AA570256		ESTs, Weakly similar to T23273 hypotheti	4.13	3.50
	441290	W27501	Hs.89605	cholinergic receptor, nicotinic, alpha p	1.00	1.00
	441362	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	130.23	43.00
_	441377	BE218239	Hs.202656	ESTs	22.03	1.00
5	441390	A1692560	Hs.131175	ESTs	3.65	7.70
	441497	R51064	Hs.23172	ESTs	1.00 1.53	1.00 1.42
	441525 441553	AW241867 AA281219	Hs.127728 Hs.121296	ESTs ESTs	1.89	1.57
	441607	NM_005010	Hs.7912	neuronal cell adhesion molecule	1.47	2.11
10	441633	AW958544	Hs.112242	normal mucosa of esophagus specific 1	216.22	363.00
	441636	AA081846	Hs.7921	Homo sapiens mRNA; cDNA DKFZp566E183 (fr	2.31	2.05
	441737	X79449	Hs.7957	adenosine deaminase, RNA-specific	1.30	1.49
	441790	AA401369	Hs.190721	ESTs	44.15	17.00
1 5	441801	AW242799	Hs.86366	ESTs	1.00	1.00
15	441919	Al553802	Hs.128121	ESTs	1.00 0.86	122.00 1.37
	441937	R41782	Hs.22279	ESTs Fanconi anemia, complementation group G	1.48	1.39
	441954 442025	A1744935 AW887434	Hs.8047 Hs.11810	CDA11 protein	1.00	46.00
	442029	AW956698	Hs.14456	neural precursor cell expressed, develop	9.92	45.00
20	442072	A1740832	Hs.12311	Homo sapiens clone 23570 mRNA sequence	25.05	77.00
	442108	AW452649	Hs.166314	ESTs	3.61	3.14
	442117	AW664964	Hs.128899	ESTs	3.00	5.49
	442137	AA977235	Hs.128830	ESTs, Weakly similar to Z192_HUMAN ZINC	1.00	1.00
25	442159	AW163390	Hs.278554	heterochromatin-like protein 1	1.92 27.22	1.66 50.00
25	442179	AA983842	Hs.333555	chromosome 2 open reading frame 2 ESTs, Weakly similar to ALU4_HUMAN ALU S	5.00	3.42
	442328 442432	AI952430 BE093589	Hs.150614 Hs.38178	hypothetical protein FLJ23468	181.59	76.00
	442530	Al580830	Hs.176508	Homo sapiens cDNA FLJ14712 fis, clone NT	10.59	144.00
	442547	AA306997	Hs.217484	ESTs, Weakly similar to ALU1_HUMAN ALU S	109.23	98.00
30	442556	AL137761	Hs.8379	Homo sapiens mRNA; cDNA DKFZp586L2424 (f	1.00	53.00
	442619	AA447492	Hs.20183	ESTs, Weakly similar to AF164793 1 prote	29.02	50.00
	442710	Al015631	Hs.23210	ESTs	1.00	19.00
	442717	R88362	Hs.180591	ESTs, Weakly similar to T23976 hypotheti	1.00 22.85	5,00 50,00
35	442875 442914	BE623003	Hs.23625 Hs.99519	Homo sapiens cione TCCCTA00142 mRNA sequ hypothetical protein FLJ14007	25.33	82.00
55	442932	AW188551 AA457211	Hs.8858	bromodomain adjacent to zinc finger doma	3.18	4.41
	442942	AW167087	Hs.131562	ESTs	8.45	64.00
	443068	Al188710		ESTs	1.00	27.00
40	443204	AW205878	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	1.00	24.00
40	443211	Al128388	Hs.143655	ESTs	12.42 128.84	2.00 96.00
	443247 443324	BE614387 R44013	Hs.333893 Hs.164225	c-Myc target JPO1 ESTs	0.02	4.59
	443383	Al792453	Hs.166507	ESTs	1.00	47.00
	443400	R28424	Hs.250648	ESTs	18.52	61.00
45	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	4.02	1.75
	443572	AA025610	Hs.9605	cleavage and polyadenylation specific fa	2.98	2.57
	443575	A1078022	Hs.269636	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.00 1.00	29.00 16.00
	443614 443633	AV655386 AL031290	Hs.7645 Hs.9654	fibrinogen, B beta polypeptide similar to pregnancy-associated plasma p	1.00	39.00
50	443648	A1085377	Hs.143610	ESTs	39.81	70.00
	443715	Al583187	Hs.9700	cyclin E1	48.74	7.00
	443723	A1144442	Hs.157144	syntaxin 6	1.29	1.30
	443802	AW504924	Hs.9805	KIAA1291 protein	1.75	1.61
55	443859	NM_013409	Hs.9914	follistatin	1.35 1.00	1.13 17.00
55	443892	AA401369	Hs.190721	ESTs gb:zb47f09.r1 Soares_fetal_lung_NbHL19W	1.33	1.64
	443947 443991	W24187 NM_002250	Hs.10082	potassium intermediate/small conductance	5.71	6.87
	444006	BE395085	Hs.10086	type I transmembrane protein Fn14	1.47	1.92
	444009	Al380792	Hs.135104	ÉSTs	1.00	77.00
60	444017	U04840	Hs.214	neuro-oncological ventral antigen 1	1.00	1.00
	444127	N63620	Hs.13281	ESTs	1.00 1.00	29.00 1.00
	444129	AW294292	Hs.256212 Hs.89605	ESTs cholinergic receptor, nicotinic, alpha p	0.60	7.80
	444279 444371	U62432 BE540274	Hs.239	forkhead box M1	2.91	1.14
65	444378	R41339	Hs.12569	ESTs	1.00	1.00
	444381	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	469.00	556.00
	444461	R53734	Hs.25978	ESTs, Weakly similar to 2109260A B cell	12.88	105.00
	444471	AB020684	Hs.11217	KIAA0877 protein	24.91	90.00 111.00
70	444489	Al151010	Hs.157774 Hs.8172	ESTs ESTs, Moderately similar to A46010 X-lin	1.00 1.00	70.00
70	444619 444665	BE538082 BE613126	Hs.47783	B aggressive lymphoma gene	30.56	139.00
	444707	Al188613	Hs.41690	desmocollin 3	1.00	1.00
	444735	BE019923	Hs.243122	hypothetical protein FLJ13057 similar to	77.02	90.00
~~	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote	1.57	1.31
75	444783	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act	77.55	2,00
	445236	AK001676	Hs.12457	hypothetical protein FLJ10814 ESTs	1.00 1.00	27.00 73.00
	445258 445413	Al635931 AA151342	Hs.147613 Hs.12677	CGI-147 protein	28.14	50.00
	445413	AK001058	Hs.12680	Homo sapiens cDNA FLJ10196 fis, clone HE	1.81	2.62
80	445443	AV653838	Hs.322971	ESTs	1.00	1.00
-	445462	AA378776	Hs.288649	hypothetical protein MGC3077	2.09	1.70
	445517	AF208855	Hs.12830	hypothetical protein	1.87	70.00
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	1.71 1.52	2.72 1.34
85	445580 445654	AF167572 X91247	Hs.12912 Hs.13046	skb1 (S. pombe) homolog thioredoxin reductase 1	1.52	1.52
55	-75004	101671	1,5,10040			

	W	O 02/086	443			
	445669	AI570830	Hs,174870	ESTs	10.95	11.45
	445818	BE045321	Hs.136017	ESTs	1.00	1.00
	445873	AA250970	Hs.251946	poly(A)-binding protein, cytoplasmic 1-i	49.42	54.00
_	445885	A1734009	Hs.127699	KIAA1603 protein	1.00	132.00
5	445898	AF070623	Hs.13423	Homo sapiens clone 24468 mRNA sequence	1.00	1.00
	445903	Al347487	Hs.132781	class I cytokine receptor	1.00	36.00
	445932	BE046441	Hs.333555	Homo sapiens clone 24859 mRNA sequence	2.41	2.88
	445982	BE410233	Hs.13501	pescadillo (zebrafish) homolog 1, contai	1.60	1.35
10	446078	Al339982	Hs.156061	ESTs	1.00	42.00
10	446102	AW168067	Hs.317694	ESTs	1.00	1.00 1.53
	446157	BE270828	Hs.131740	Homo sapiens cDNA: FLJ22562 fis, clone H hypothetical protein FLJ10540	1.70 73.01	48.00
	446269 446292	AW263155 AF081497	Hs.14559 Hs.279682	Rh type C glycoprotein	1.55	1.26
	446293	AI420213	Hs.149722	ESTs	1.00	2.00
15	446423	AW139655	Hs.150120	ESTs	1.10	4.19
15	446428	AW082270	Hs.12496	ESTs, Weakly similar to ALU4_HUMAN ALU S	0.53	3.26
	446432	Al377320	Hs.150058	ESTs	1.00	5.00
	446528	AU076640	Hs.15243	nucleolar protein 1 (120kD)	1.36	1.31
	446574	Al310135	Hs.335933	ESTs	3.89	72.00
20	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	32.03	20.23
	446636	AC002563	Hs.15767	citron (rho-interacting, serine/threonin	4.19	5.07
	446783	AW138343	Hs.141867	ESTs	2.82	9.47
	446839	BE091926	Hs.16244	mitotic spindle coiled-coil related prot	110.28	28.00
25	446849	AU076617	Hs.16251	cleavage and polyadenylation specific fa	3.26	2.94
25	446856	Al814373	Hs.164175	ESTs	6.38 1.98	11.30 2.03
	446872	X97058	Hs.16362 Hs.108646	pyrimidinergic receptor P2Y, G-protein c Homo sapiens cDNA FLJ14934 fis, clone PL	94.90	113.00
	446880 446921	Al811807 AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	1.67	3.90
	446989	AK001898	Hs.16740	hypothetical protein FLJ11036	2.82	3.12
30	447022	AW291223	Hs.157573	ESTs	1.00	170.00
-	447033	Al357412	Hs.157601	ESTs	7.15	107.00
	447078	AW885727	Hs.9914	ESTs	47.24	24.00
	447081	Y13896	Hs.17287	potassium inwardly-rectifying channel, s	0.12	17.88
~~	447131	NM_004585	Hs.17466	retinoic acid receptor responder (tazaro	0.97	1.48
35	447149	BE299857	Hs.326	TAR (HIV) RNA-binding protein 2	1.24	1.26
	447153	AA805202	Hs.315562	ESTs	1.00	54.00
	447164	AF026941	Hs.17518	Homo sapiens cig5 mRNA, partial sequence	1.00 3.42	67.00 50.00
	447178	AW594641	Hs.192417	ESTs	1,60	1.52
40	447250 447289	A1878909 AW247017	Hs.17883 Hs.36978	protein phosphatase 1G (formerly 2C), ma melanoma antigen, family A, 3	1.00	1.00
70	447342	Al199268	Hs.19322	Homo sapiens, Similar to RIKEN cDNA 2010	28.63	1.00
	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m	146,62	51.00
	447350	Al375572	Hs.172634	ESTs	1.00	12.00
	447377	N27687	Hs.334334	transcription factor AP-2 alpha (activat	2.55	63.00
45	447415	AW937335	Hs.28149	ESTs, Weakly similar to KF3B_HUMAN KINES	0.91	1.13
	447425	Al963747	Hs.18573	acylphosphatase 1, erythrocyte (common)	1.00	35.00
	447519	U46258	Hs.339665	ESTs	59.89	49.00
	447532	AK000614	Hs.18791	hypothetical protein FLJ20607	1.23	1.63
50	447534	AA401369	Hs.190721	ESTs	1.00 1.41	17.00 1.11
30	447636 447688	Y10043	Un 40226	high-mobility group (nonhistone chromoso Target CAT	1.00	39.00
	447733	N87079 AF157482	Hs.19236 Hs.19400	MAD2 (mitotic arrest deficient, yeast, h	1.17	1.12
	447769	AW873704	Hs.320831	Homo sapiens cDNA FLJ14597 fis, clone NT	6.47	5.95
	447802	AW593432	Hs.161455	ESTs	0.73	2.34
55	447850	AB018298	Hs.19822	SEC24 (S. cerevisiae) related gene famil	86.45	116.00
	447924	AI817226	Hs.313413	ESTs, Weakly similar to T23110 hypotheti	1.00	1.00
	447973	AB011169	Hs.20141	similar to S. cerevisiae SSM4	3.50	4.27
	448030	N30714	Hs.325960	membrane-spanning 4-domains, subfamily A	4.13	142.00
C O	448105	Al538613	Hs.298241	Transmembrane protease, serine 3	1.15	2.24
60	448243	AW369771	Hs.52620	integrin, beta 8	15.84	1.00
	448278	W07369	Hs.11782	ESTS	0.97 1.00	1.90 1.00
	448290	AK002107	Hs.20843 Hs.10949	Homo sapiens cDNA FLJ11245 fis, clone PL Homo sapiens cDNA FLJ14162 fis, clone NT	2.42	2.17
	448296 448357	BE622756 BE274396	Hs.108923	RAB38, member RAS oncogene family	1.44	1.08
65	448390	AL035414	Hs.21068	hypothetical protein	1.00	43.00
05	448469	AW504732	Hs.21275	hypothetical protein FLJ11011	2.63	2.49
	448569	BE382657	Hs.21486	signal transducer and activator of trans	1,84	2.53
	448663	BE614599	Hs.106823	hypothetical protein MGC14797	3.29	46.00
	448672	Al955511	Hs.225106	ESTs	1.00	21.00
70	448733	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte	1.82	1.08
	448741	BE614567	Hs.19574	hypothetical protein MGC5469	2.48	1.92
	448757	Al366784	Hs.48820	TATA box binding protein (TBP)-associate	23.53	20.00
	448775	AB025237	Hs.388	nudix (nucleoside diphosphate linked moi	2.34	1.97
75	448826	Al580252	Hs.293246	ESTs, Weakly similar to putative p150 [H	74.07 1.37	62.67 1.31
75	448830	AL031658	Hs.22181	hypothetical protein dJ310O13.3 ESTs	1.00	31.00
	448844 448988	Al581519	Hs.177164 Hs.22785	gamma-aminobutyric acid (GABA) A recepto	1.84	1.95
	448993	Y09763 Al471630	110.22100	KIAA0144 gene product	1.63	1.49
	449003	X76342	Hs.389	alcohol dehydrogenase 7 (class IV), mu o	1.00	1.00
80	449029	N28989	Hs.22891	solute carrier family 7 (cationic amino	1.97	2.26
	449040	AF040704	Hs.149443	putative tumor suppressor	0.97	1.56
	449048	Z45051	Hs.22920	similar to S68401 (cattle) glucose induc	27.13	90.00
	449053	A1625777	Hs.344766	ESTs	8.33	44.00
05	449054	AF148848	Hs.22934	myoneurin	73.85	104.00
85	449101	AA205847	Hs.23016	G protein-coupled receptor	2.58	27.00

	w	O 02/086	443			
	449167	T05095	Hs.19597	KIAA1694 protein	1.61	2.36
	449207	AL044222	Hs.23255	nucleoporin 155kD	2.36	1.56
	449228	AJ403107	Hs.148590	protein related with psoriasis	1.15	1.15
	449230	BE613348	Hs.211579	melanoma cell adhesion molecule	206.65	151.00
5	449305	Al638293		gb:tt09b07.x1 NCI_CGAP_GC6 Homo sapiens	17.28	45.00
-	449318	AW236021	Hs.78531	Homo sapiens, Similar to RIKEN cDNA 5730	26.39	35.00
	449448	D60730	Hs.57471	ESTs	1.00	1.00
	449467	AW205006	Hs.197042	ESTs	1.00	1.00
1.0	449523	NM_000579	Hs.54443	chemokine (C-C motif) receptor 5	56.80	216.86
10	449722	BE280074	Hs.23960	cyclin B1	150.03	1.00
	449976	H06350	Hs.135056	Human DNA sequence from clone RP5-850E9	2.16	2.85
	450001	NM_001044	Hs.406	solute carrier family 6 (neurotransmitte	1.17	1.45
	450098	W27249	Hs.8109	hypothetical protein FLJ21080	1.79	2.38
15	450101	AV649989	Hs.24385	Human hbc647 mRNA sequence	1.00	69.00
15	450149	AW969781	Hs.132863	Zic family member 2 (odd-paired Drosophi	1.00	1.00
	450193	Al916071	Hs.15607	Homo sapiens Fanconì anemia complementat	29.85	34.00
	450221	AA328102	Hs.24641	cytoskeleton associated protein 2	1.00 1.00	1.00 1.00
	450372	BE218107	Hs.202436	ESTs	51.26	93.00
20	450375	AA009647	Hs.8850 Hs.25010	a disintegrin and metalloproteinase doma hypothetical protein P15-2	123.20	181.00
20	450447 450568	AF212223 AL050078	Hs.25159	Homo sapiens cDNA FLJ10784 fis, clone NT	1.00	19.00
	450589	AL030076 AI701505	Hs.202526	ESTs	1.00	23.00
	450684	AA872605	Hs.25333	interleukin 1 receptor, type II	1.00	100.00
	450701	H39960	Hs.288467	Homo sapiens cDNA FLJ12280 fis, clone MA	1.89	1.55
25	450705	U90304	Hs.25351	iroquois homeobox protein 2A (IRX-2A) (1.00	45.00
20	450832	AA401369	Hs.190721	ESTs	25.17	17.00
	450937	R49131	Hs.26267	ATP-dependant interferon response protei	90.92	90.00
	450983	AA305384	Hs.25740	ERO1 (S. cerevisiae)-like	3.33	1.70
	451105	Al761324	1101201 10	gb:wi60b11.x1 NCI_CGAP_Co16 Homo sapiens	15.02	124.00
30	451110	Al955040	Hs.265398	ESTs, Weakly similar to transformation-r	1.00	143.00
	451253	H48299	Hs.26126	claudin 10	3.02	2.29
	451291	R39288	Hs.6702	ESTs	1.00	1.00
	451320	AW498974		diacylglycerol kinase, zeta (104kD)	2.92	18.00
	451380	H09280	Hs.13234	ESTs	6.90	6.67
35	451386	AB029006	Hs.26334	spastic paraplegia 4 (autosomal dominant	35.75	72.00
	451437	H24143	Hs.31945	hypothetical protein FLJ11071	1.00	69.00
	451462	AK000367	Hs.26434	hypothetical protein FLJ20360	1.83	2,10
	451524	AK001466	Hs.26516	hypothetical protein FLJ10604	1.13	1.07
40	451541	BE279383	Hs.26557	plakophilin 3	1.88	1.33
40	451592	Al805416	Hs.213897	ESTs	1.00	1.00
	451635	AA018899	Hs.127179	cryptic gene	1.52	1.92
	451743	AA401369	Hs.190721	ESTs	4.95	17.00 31.00
	451806	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	13.55 1.55	35.00
45	451807	W52854	N= 440500	hypothetical protein FLJ23293 similar to ESTs	1.81	2.53
40	451871 451952	Al821005 AL120173	Hs.118599 Hs.301663	ESTs	1.00	22.00
	451932	AA307703	Hs.279766	kinesin family member 4A	3.43	2.26
*	452046	AB018345	Hs.27657	KIAA0802 protein	56.59	19.00
	452194	Al694413	Hs.332649	olfactory receptor, family 2, subfamily	1.67	4.09
50	452206	AW340281	Hs.33074	Homo sapiens, clone IMAGE:3606519, mRNA,	9.31	53.00
• •	452240	AA401369	Hs.190721	ESTs	13.42	17.00
	452256	AK000933	Hs.28661	Homo sapiens cDNA FLJ10071 fis, clone HE	39.03	94.00
	452281	T93500	Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL	153.01	340.00
	452291	AF015592	Hs.28853	CDC7 (cell division cycle 7, S. cerevisi	1.95	23.00
55	452295	BE379936	Hs.28866	programmed ceil death 10	42.33	61.00
	452304	AA025386	Hs.61311	ESTs, Weakly similar to S10590 cysteine	1.17	2.14
	452340	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	1.00	13.00
	452349	AB028944	Hs.29189	ATPase, Class VI, type 11A	1.09	1.42
C 0	452367	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	54.49	53.00
60	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro	1.00	32.00
	452410	AL133619		Homo sapiens mRNA; cDNA DKFZp434E2321 (f	1.26	1.99
	452461	N78223	Hs.108106	transcription factor	24.47	35.00
	452571	W31518	Hs.34665	ESTs	54.61	102.00
65	452613	AA461599	Hs.23459	ESTs	1.39	1.32
05	452699	AW295390	Hs.213062	ESTS	1.00 1.00	26,00 1,00
	452705	H49805	Hs.246005	ESTs	112.87	1.29
	452747	AF160477	Hs.61460 Hs.222707	lg superfamily receptor LNIR KIAA1718 protein	1.00	1.00
	452787 452795	AW294022 AW392555	Hs.18878	hypothetical protein FLJ21620	1.00	1.00
70	452823	AB012124	Hs.30696	transcription factor-like 5 (basic helix	7.91	75.00
, 0	452833	BE559681	Hs.30736	KIAA0124 protein	3.16	1.92
	452838	U65011	Hs.30743	preferentially expressed antigen in mela	174.35	1.00
	452862	AA401369	Hs.190721	ESTs	98.26	17.00
	452865	AW173720	Hs.345805	ESTs, Weakly similar to A47582 B-cell gr	1.55	1.00
75	452934	AA581322	Hs.4213	hypothetical protein MGC16207	1.73	1.19
	452946	X95425	Hs.31092	EphA5	1.00	1.00
	452976	R44214	Hs.101189	ESTs	1.58	1.98
	453028	AB006532	Hs.31442	RecQ protein-like 4	1.80	1.60
	453095	AW295660	Hs.252756	ESTs	0.77	1.50
80	453102	NM_007197	Hs.31664	frizzled (Drosophila) homolog 10	1.00	1.00
	453103	A1301052	Hs.153444	ESTs	1.00	1.00
	453120	AA292891	Hs.31773	pregnancy-induced growth inhibitor	1.23	1.20
	453153	N53893	Hs.24360	ESTs	1.00	83.00
0.5	453160	Al263307	Hs.239884	H2B histone family, member L	1.00	30.00
85	453197	Al916269	Hs.109057	ESTs, Weakly similar to ALU5_HUMAN ALU S	1.00	134.00

	W	O 02/0864	143				PCT/US02/12476	
	453210	AL133161	Hs.32360	hypothetical protein FLJ10867	1.69	1.93	101,000,121.0	
	453240	Al969564	Hs.166254	hypothetical protein DKFZp5661133	1.00	1.00		
	453317 453323	NM_002277 AF034102	Hs.41696 Hs.32951	keratin, hair, acidic,1 solute carrier family 29 (nucleoside tra	1.19 4.90	1.27 4.11		
5	453331	AI240665	Hs.8850	ESTs	199.42	340.00		
_	453392	U23752	Hs.32964	SRY (sex determining region Y)-box 11	1.00	16.00		
	453431	AF094754	Hs.32973	glycine receptor, beta	1.00	1.00		
	453439 453459	Al572438 BE047032	Hs.32976 Hs.257789	guanine nucleotide binding protein 4 ESTs	3.44 2.84	5.17 5.58		
10	453563	AW608906.cor		Hs.181163		protein MGC5629	4.58 90.00	
•	453633	AA357001	Hs.34045	hypothetical protein FLJ20764	1.74	1.60		
	453775	NM_002916	Hs.35120	replication factor C (activator 1) 4 (37	19.49	1.00		
	453830	AA534296	Hs.20953	ESTs	24.92 167.59	25.00 66.00		
15	453857 453867	AL080235 Al929383	Hs.35861 Hs.33032	DKFZP586E1621 protein hypothetical protein DKFZp434N185	1.00	39.00		
10	453883	Al638516	Hs.347524	cofactor required for Sp1 transcriptiona	1.97	1.58		
	453884	AA355925	Hs.36232	KIAA0186 gene product	63.89	20.00		
	453900	AW003582	Hs.226414	ESTs, Weakly similar to ALUS_HUMAN ALU S	20.41	16.00		
20	453922 453941	AF053306 U39817	Hs.36708 Hs.36820	budding uninhibited by benzimidazoles 1 Bloom syndrome	7.09 29.75	22.00 19.00		
20	453964	Al961486	Hs.12744	ESTs	1.00	1.00		
	453968	AA847843	Hs.62711	Homo sapiens, clone IMAGE:3351295, mRNA	2.06	1.81		
	453976	BE463830	Hs.163714	ESTs	3.02	131.00		
25	454024 454034	AA993527 NM_000691	Hs.293907 Hs.575	hypothetical protein FLJ23403 aldehyde dehydrogenase 3 family, member	1.00 1.23	131.00 1.02		
23	454042	T19228	Hs.172572	hypothetical protein FLJ20093	30.63	171.00		
	454059	NM_003154	Hs.37048	statherin	1.00	1.00		
	454066	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid	1.01	1.45		
30	454098	W27953	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	1.26 6.33	1.11 5.04		
50	454241 454417	BE144666 Al244459	Hs.110826	gb:CM2-HT0176-041099-017-c02 HT0176 Homo trinucleotide repeat containing 9	4.30	7.82		
	454439	AW819152	Hs.154320	DKFZP566O1646 protein	1.00	1.00		
	455175	AW993247		gb:RC2-BN0033-180200-014-h09 BN0033 Homo	13.75	103.00		
25	455601	Al368680	Hs.816	SRY (sex determining region Y)-box 2	206.11	1.00		
35	456237 456321	AA203682 NM_001327	Hs.87225	gb:zx52e07.r1 Soares_fetal_liver_spleen_ cancer/testis antigen	1.00 1.14	1.00 1.10		
	456475	NM_000144	Hs.95998	Friedreich ataxia	1.00	48.00		
	456508	AA502764	Hs.123469	ESTs, Weakly similar to AF208855 1 BM-01	162.25	189.00		
40	456534	X91195	Hs.100623	phospholipase C, beta 3, neighbor pseudo	2.12	1.80		
40	456736	AW248217	Hs.1619 Hs.127792	achaete-scute complex (Drosophila) homol delta (Drosophila)-like 3	1.15 1.00	1.94 1.00		
	456759 456990	BE259150 NM_004504	Hs.171545	HIV-1 Rev binding protein	16.42	84.00		
	457200	U33749	Hs.197764	thyroid transcription factor 1	0.57	1.76		
4 ~	457234	AW968360	Hs.14355	Homo sapiens cDNA FLJ13207 fis, clone NT	2.71	4.15	7	
45	457465	AW301344	Hs.122908	DNA replication factor	46.37 1.12	47.00 1.35		
	457489 457646	Al693815 AA725650	Hs.127179 Hs.112948	cryptic gene ESTs	1.55	2.51		
	457733	AW974812	Hs.291971	ESTs	1.00	55.00		
~^	457819	AA057484	Hs.35406	ESTs, Highly similar to unnamed protein	4.36	3.18		
50	458092	BE545684	Hs.343566	KIAA0251 protein	1.00 1.00	1.32 22.00		
	458098 458207	BE550224 T28472	Hs.7655	metallothionein 1E (functional) U2 small nuclear ribonucleoprotein auxil	2.06	1.88		
	458242	BE299588	Hs.28465	Homo sapiens cDNA: FLJ21869 fis, clone H	1.00	1.00		
~~	458247	R14439	Hs.209194	ESTs	7.00	9.85		
55	458679	AW975460	Hs.142913	ESTs	1.00 1.31	3.00 2.01		
	458778 458933	AW451034 Al638429	Hs.326525 Hs.24763	arylsulfatase D RAN binding protein 1	1.98	1.71		
	459352	AW810383	Hs.206828	ESTs	12.60	63.00		
<i>c</i> 0	459670	F01020	Hs.172004	titin	1.00	1.00		
60	459702	Al204995		gb:an03c03.x1 Stratagene schizo brain S1	1.00	237.00		
	TABLE 9	В		•				
~~								
65	Pkey:			ntifier number	•			
	Accession	iber: Gene cluste	er number ccession num	hare				
	Accession	n. Genbank at	LUGGGGIOIT ITUITI	0613				
~ ^	Pkey	CAT Number	Access					
70	407746	10125_1		962 R69415 BE464605 AA418699 AA053293 AA1490				
				1982 AA730033 AA576507 AA991217 AA782067 A198 1 T27343 AA306950 AA360989 R58778	5851 AA805864 AA	505598 AVV469857 Rt	69546 AA968279 AVVUU1647 NG3320	
	408070	1036688 1		1 12/343 AA300990 AA300909 R30/70 3852 BE350895				
	408660	107294_1		775 AA056342 Al538978 AW975281 AA664986				
75	409522	113735_1		382 AA075431				
	409866	1156522_1		2152 H41202 H29772				
	410032 411089	1170435_1 123172_1		985 BE065944 BE066008 BE066083 BE066093 454 AA713730 AA091294 AA584921 N86077 AW836	781 ልልፍበ1በጓ1 ልልፍን	79876 AA551106 AA6	33188 AW905577 AI955808 AI679386	
	411003	1201161	A16798	195 AA514764 AA454562 A1082382 AA595822 AA551	351 AA586369 AA66	66384 AA188934 AA6	666398 AA551297 AA565188	
80	411152	1234028_1	BE069	199 AW936012 AW877466 AW819782 AW935798 AV	V835546 AW936042	! BE069121 AW83562	25 AW877536 AW935885 BE069202	
			AW820	0019 AW935937 BE160180 AW935946 BE069101 BE	069125 AW877527 I	BE160316 BE160398	AW935794 AW835701 AW935784	
	412537	1304_1	AL031	778 X59711 NM_002505 M59079 A1870439 A1494259 3 BE079412 BE079428 N90322 A1631202 A1141758 A	AVV664010 AA4050	/03 AA436132 BE174 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DID AA412091 AI400314 AA436024 I208445 AW235763 AI 044113 AA38266	6
			AW953	3 BE079412 BE079426 N90322 A1831202 A1141756 A 3918 AA927051 AA889823 BE003094 AW390155 AW	360805 AW360823	AW360810 AA425472	2 A1694282 AL044114 A1684577 A180986	5

WO 02/086443 PCT/US02/12476
Al478773 Al160445 Al674630 N69088 AW665529 N49278 Al129239 Al457890 Al621264 AW297152 Al268215 AA907787 Al286170 Al0178

	***	02,000110	Al478773 Al160445 Al674630 N69088 AW665529 N49278 Al129239 Al457890 Al621264 AW297152 Al268215 AA907787 Al286170 Al017982
5	412811	132943_1	Al963541 Al469807 Al969353 BE552356 N66509 AA736741 AA382555 AW075811 AW292026 H06382 AW957730 AA352014 R13591 AA121201 D60420 BE263253 BE047862 Z41952 Al424991 Al693507 Al863108 AA599060 Al091148 AA598689 R39887 AA813482 AW016452 H06383 R41807 Al364268 AA620528 Al241940 AW089149 AW090733 AW088875 Z38240
3	413690 414883	1383256_1 15024_1	AA121202 R17734 BE157489 BE157560 AA926960 AA926959 W76521 W24270 W21526 AA037172 BE267636 H83186 AA469909 N86396 AA001348 BE535736 AA081745 BE566245 AA082436 H72525 H77575 N49786 W80565 H78746 BE569085 W04339 R98127 T55938 BE279271 AW960304 T29812 AA476873 BE297387
10			AA292753 AA177048 NM_001826 X54941 BE314366 AA908783 AI719075 BE270172 BE269819 AA889955 AI204630 W25243 AI935150 AA872039 W72395 T99630 AI422691 H98460 N31428 BE255916 H03265 AI857576 AA7776920 AA910644 AA459522 AA293140 AW514667 R75953 AW662396 AA662522 AI865147 AI423153 AW262230 AA584410 AA683187 AW024595 AW0697434 AI828996 AA282997 AA876046 AW613002 AA527373 AW972459 AI831360 AA621337 AA100926 AA772418 AA594628 AI033892 W95096 AI034317 AA398727 AI085031
15			N95210 Al459432 Al041437 AA932124 AA627684 AA935829 Al004827 Al423513 Al094597 H42079 R54703 Al630359 AA617681 AA978045 AA643280 W444561 Al991988 Al537692 Al090262 AA740817 Al312104 Al911822 AA416871 Al185409 AA129784 AA701623 Al075239 Al139549 AA633648 Al339996 Al336880 AA399239 Al078708 Al085351 Al362835 Al346618 Al146955 Al989380 Al348243 N92892 AA765850 Al494230 Al278887 AA962596 Al492600 W80435 AA001979 R97424 Al129015 N24127 AA157451 AA235549 AA459292 AA037114 AA129785 Al494231 AW059601 AW886710 R92790 N59755 Al361128 AW589407 H47725 H97534 H48076 H48450 T99631 AW300758 H03431 R76789
20	415989	156454_1	AA954344 H77576 R96823 AI457100 N92845 N49682 H42038 BE220698 BE220715 H99552 AA701624 N74173 R54704 H79520 H72923 H03266 BE261919 AA769633 AA480310 AA507454 AA910586 AI203723 AW104725 W25611 W25071 T88980 H03513 T77589 R99156 W95095 R97470 AA702275 T77551 AA911952 H82956 N83673 AA283672 AI267700 AI720344 AA191424 AI023543 AI469633 AA172056 AW958465 AA172236 AW953397 AA355086
25	417324 418574	166714_1 17690_1	AW265494 AA455904 AA195677 AW265432 AW991605 AA456370 N28754 N28747 Al568146 Al979339 AA322671 AA322672 AW955043 Al990326 AA776406 Al016250 AA843678 AW451882 N23137 N23129 W70051 Al038748 AA831327 Al925845 AW945895
2.3	418712 419443 419502	1784125_1 184788_1 18535_1	Z42183 T31621 T97478 D62703 AA242966 D79798 AU076704 T74854 T74860 T72098 T73265 T73873 T69180 T74658 T58786 T60385 T73410 T68781 T67845 T67593 T73952 T67864 T60630 T68367 T68401 T53959 T72360 T72099 T60377 T58961 T71712 T72821 T64738 T74645 T72037 T68688 T72063 T73258 T72826 T64242
30			T68220 T74673 T71800 T68355 T61227 T62738 T69317 T53850 T64692 T73768 T73962 T73382 T68914 T70975 T73400 T60631 T73277 T73203 T70498 T61409 T68925 NM_000508 M64982 T68301 T73729 T69445 T60424 T67922 T67736 T68716 T67755 T74765 T73419 T58719 T74756 T60477 T74863 T61109 T68329 T58850 T71857 T73425 T53736 T68607 T58898 T64309 T72031 T72079 T64305 T71908 T68107 T71916 T73787 T56035 T64425 T71870 T60476 T61376 T67820 T71895 T41006 T69441 T68170 T74617 T71958 T69440 T61875 R06796 H48353 T71914 T53939 T64121 AA693996 T72525 T67779 T68078 AA011465 AA345378 AV654847 AV654272 AV656001 AI064740 T82897
35			N33594 AA344542 AW805054 Al207457 T61743 AA026737 H94389 AA382695 AA918409 T68044 S82092 T39959 Al017721 AA312395 AA312919 T40156 H66239 AV652989 H38728 R98521 AV655200 R95790 W03250 W00913 AA344136 AV660126 R97923 AA343596 AW470774 AV651256 N54417 AA812862 AW182929 Al111192 H61463 H72060 AA344503 H38639 Al277511 AV661108 Al207625 T47810 AA23525 T27853 T47778 R95746 H70620 AA701463 AW827166 R98475 C20925 AV657287 T71959 T71313 T73920 T73333 T61618 T69293 T69283 T73931 T72178 T72456 AV645639 AV6553476 T72957 T72300 T58906 T71457 T70494 T72956 T70495 T68267 T74407 T85778
40	o		AA344726 T27854 T74485 T74101 T73868 T71518 T72304 AA343853 T73909 T68070 T72065 H72149 T73493 T73495 AV645993 R02293 T70475 T64751 AA344441 AA343657 AA345732 AA344328 Al110639 AA344603 AF063513 T64696 T68516 T72223 T60507 T67633 R29500 T72517 R02292 T60599 T69206 T70452 T74697 R29366 T61277 T74914 T60352 R29675 T74843 AV645792 AA344408 T61917 T72057 T69368 T69358 T68258 AV650429 T73341 T61702 T74598 T40095 K02272 T40106 AA343045 AA341908 AA341907 AA342807 AA341964 T63747 T72042 T62764 Al064899 AA343060 T67832 T72440 T74770 T68091 T69108 T72449 T69167 T71289 T68251 AV654844 T64375
45			AA345234 T67598 AA011414 T68036 H48262 Al207557 T68219 W86031 T69081 T64232 R93196 T62136 AV650539 H67459 T72978 AA344583 T60362 H68121 T95711 T72803 T68055 T71715 R29036 T72793 T69122 T64595 T62888 T69139 T68291 T64652 T67971 T46862 AA693592 Al248502 R29454 T64764 T57001 T73052 T71429 T51176 T58866 AV655414 H90426 AA342489 T73666 T67848 T72512 T53835 T67837 T73317 T74273 T69420 T68245 T74380 T67862 T74474 T56068
50	419936 421582	189181_1 2041_1	Al792788 BE142230 AA252019 Al910275 X00474 X52003 X05030 NM_003225 AA314326 AA308400 AA506787 AA314825 Al571948 AA507595 AA614579 AA587613 R83818 AA568312 AA614409 AA307578 Al925552 AW950155 Al910083 M12075 BE074052 AW004668 AA578674 AA582084 BE074053 BE074126 BE074140 AA514776 AA588034 BE074051 BE074068 AW009769 AW050690 AA858276 R55389 Al001051 AW050700 AW750216 AA614539 BE074045 Al307407 AW602303 BE073575 Al202532 AA524242 Al970839 Al909751 BE076078 Al909749 R55292
55	422128 423034 423816 424200	211994_1 224122_1 23234_1 236595_1	AW881145 AA490718 M85637 AA304575 T06067 AA331991 AL119930 AA320696 AW752565 AL031965 AL137241 Al792386 Al733664 Al857654 Al049911 AA337221 AA336756 AW966196
60	424999 426966 426991 427260	245835_1 273896_1 27415_1 276598_1	AW953120 R56325 AA349562 Al493134 Al498691 AW771508 Al498457 Al768408 Al783624 Al383985 Al580267 D79813 AA393768 AK001536 AA191092 AW510354 Al554256 AL353968 AA134266 AA663848 AA400100 AA401424
	428023	28589_2	AL038843 AA161338 BE268213 AA425597 N87306 AA092969 BE566038 AA247451 N47392 Al928802 AW182584 AW027872 Al819831 Al936994 W56258 Al653448 Al278611 Al283557 Al824306 AW338658 AW150899 AA687514 N47393 N29885 AA973469 Al038904 Al292064 Al034339 AW674593 N72156 Al079733 Al038683 Al291616 AA491599 AA993675 AA837380 BE006554 BE006473 Al087090 T33044 AA652043 Al203503 AA583959 W35283 Al129926 Z41844 AW020925 AW575848 Al684603 AA493297 Al140689 Al277175 AA425444
65	429220 429978	301384_1 31150_1	AI932767 W02632 BE396786 R37261 AW207206 AW341473 AA448195 AI951341 AA249027 AL038984 AK001993 AL080066 AV652725 BE566226 AA345557 AA315222 AA090585 AA375688 AA301092 AA298454 W05762 AW607939 H51658 D83880 N84323 BE296821 AW947007 D61461 AW079261 AA329482 AW901780 AI354442 AA772275 R31663 AI354441
70	430439	31808_1	AI767525 H92431 AI916735 H93575 AI394255 AW014741 AI573090 C06195 AW612857 AW265195 AI339558 AI377532 AI308821 AI919424 AI589705 AW055215 AI336532 AI338051 AA806547 C75509 C00618 AW071172 AW769904 AA630381 AI678018 AI863985 D79662 BE221049 AW265018 AI589700 AW196655 N76573 AI370908 BE042393 N75017 AI698870 AW960115 AL133561 AL041090 AL117481 AL122069 AW439292 AI968826
75	430935 431089 431322 432407	325772_1 327825_1 331543_1 34624_1	AW072916 Al184913 AA489195 AW466994 AW469044 N59350 Al819642 Al280239 Al220572 AA789302 Al473611 AW841126 D60937 BE041395 AA491826 AA621946 AA715980 AA666102 AW970622 AA503009 AA502998 AA502989 AA502805 T92188 AA221036 R87170 BE537068 BE544757 C18935 AW812058 T92565 AA227415 AA233942 AA223237 AA668403 AA601627 AW869639
80	434414	38585_1	BE061833 BE000620 AW961170 AW847519 AA308542 AW821833 AW945688 C04699 AA205504 AA377241 AW821667 AA055720 AW817981 AW856468 AA155719 AA179928 T03007 AW754298 AA227407 AA113928 AA307904 C16859 Al798376 S46400 AW811617 AW811616 W00557 BE142245 AW858232 AW861851 AW858362 AA232351 AA218567 AA055556 AW858231 AW857541 AW814172 H66214 AW814398 AF134164 AA243093 AA173345 AA199942 AA223384 AA227092 AA227080 T12379 AA092174 T61139 AA149776 AA699829 AW879188 AW813657 AW813538 Al267168 AA157718 AA157719 AA100774 AA130756 AA157705 AA157730 AA157715 AA053524 AW849581 AW854566 C05254 AW882836 T92637 AW812621 AA206583 AA209204 BE156909 AA226824
85	436608	42361_3	AI829309 AW991957 N66951 AA527374 H66215 AA045564 AI694265 H60808 AA149726 AW195620 BE081333 BE073424 AW817662 AW817705 AW817703 AW817659 BE081531 H59570 AA628980 AI126603 BE504035

	W	O 02/086	443	PCT/US02/12476
E	438091	44964_1	A\ A\ A\	W373062 T55662 Al299190 BE174210 AW579001 H01811 W40186 R67100 Al923886 AW952164 AA628440 AW898607 AW898616 A709126 AW898628 AW898544 AA947932 AW898625 AW898622 Al276125 Al185720 AW510698 AA987230 T52522 BE467708 AW243400 W043642 Al288245 Al186932 D52654 D55017 D52715 D52477 D53933 D54679 Al298739 Al146984 Al922204 N98343 BE174213 AA845571 B13854 Al214518 Al635262 Al139455 Al707807 Al698085 AW884528 Al024768 Al004723 AW087420 Al565133 N94964 Al268939
5	439000	467716_1	A\ Al	W513280 AI061126 AI435818 AI859106 AI360506 AI024767 AA513019 AA757598 X56196 AA902959 AI334784 AI860794 AA010207 W890091 AW513771 AI951391 AI337671 T52499 AA890205 AI640908 H75966 AA463487 AA358688 AI961767 AI866295 AA780994 985913 BE174196 AA029094 AW592159 T55581 N79072 AI611201 AA910812 AI220713 AW149306 AI758412 AA045713 R79750 N76096 W979121 AA847986 AA829098
10	439285 439780	47065_1 47673_1	Ai A	L133916 N79113 AF086101 N76721 AW950828 AA364013 AW955684 AI346341 AI867454 N54784 AI655270 AI421279 AW014882 A775552 N62351 N59253 AA626243 AI341407 BE175639 AA456968 AI358918 AA457077 L109688 R23665 R26578
	441128 443068	51021_2 558874_1	A. Al	A570256 AW014761 AA573721 AI473237 AI022165 AA554071 AA127551 N90525 AW973623 AA447991 AA243852 BE328850 AI148171 359627 AI005068 AI356567 AA232991 AW016855 AA906902 AA233101 AA127550 BE512923 188710 AI032142 AW078833 N30308 AW675632 AI219028 AI341201 N22181 H95390
15	443947 447636	586160_1 7301_1	W Y A A	'24187 W24194 R17789 10043 NM_005342 L05085 AL034450 BE614226 AW749053 AA379173 AA248230 BE514634 AA334622 R70656 AA367593 AA214649 A369318 AW957081 R05760 AA039903 AI886597 AW630122 AA906264 AA041527 R01145 Al088688 BE463637 AA398795 Al354883 1768938 Al569996 Al452952 A1168582 A1189869 Al086670 AW262560 AW613854 AA862839 AA435840 AA670197 Al024032 Al990659 1990089 N81095 AA847919 AW960150 AA211075 AA044704 AA367594 AW582587 AW858854 AW818630 AW818281 AW818433 AW582595
20	448993	79225_1	Al A' A	A096002 N83992 471630 BE540637 BE265481 AW407710 BE513882 BE546739 AA053597 BE140503 BE218514 AW956702 Al656234 Al636283 Al567265 W340858 BE207794 AA053085 R69173 AA292343 AA454908 AA293504 Al659741 Al927478 AA399460 Al760441 AA346416 BE047245 A730380 AA394063 AA454833 Al982791 Al567270 Al813332 Al767858 AA427705 D20284 Al221458 BE048637 Al263048 AA346417 A911497 BE537702
25	449305 451105 451320	804424_1 859083_1 86576_1	A A A	I638293 AW813561 1761324 AW880941 AW880937 W118072 AI631982 T15734 AA224195 AI701458 W20198 F26326 AA890570 N90552 AW071907 AI671352 AI375892 T03517 R88265 I124088 AA224388 AI084316 AI354686 T33652 AI140719 AI720211 T03490 AI372637 T15415 AW205836 AA630384 T03515 T33230 A017131 AA443303 T33623 AI222556 T33511 T33785 AI419606 D55612
30	451807 452410	8865_1 9163_1	W A'	752854 AL117600 BE208116 BE208432 BE206239 BE082291 AW953423 AA351619 BE180648 BE140560 W60080 AA865478 N90291 W450652 AW449519 AA993634 AI806539 AA351618 AW449522 AI827626 AA904788 AA380381 AA886045 AA774409 BE003229 Z41756 L133619 AA468118 AA383064 AI476447 T09430 AI673758 AA524895 AI581345 AI300820 AW498812 AA256162 AI559724 AI685732 A602400 AA905453 AI204595 AW166541 AA157456 AA156269 AA383652 AA431072 AW592707 AI435410 AW272464 AI215594 AA622747
35	454241	1067807_1	R A B	74039 N35031 AI804128 AWS13821 AA868351 AI026826 AI493388 AA614641 W81604 AI567080 AI214351 AA730140 A125754 AI200813 I269603 AI565082 AI807095 AI476629 AA505909 AI368449 AI686077 AI582930 AW085038 AA757863 AA730154 AI767072 AA468316 I734130 AI734138 AA426284 AA433997 AI741241 AW043563 AI732741 AI732734 AA437369 AA425820 AA664048 R74130 E144666 BE184942 AW238414 BE184946
40	455175 456237 458098	1257335_1 168730_1 47395_1	A B A	W993247 AW861464 A203682 R11958 E550224 AA832519 N45402 AW885857 N29245 BE465409 W07677 AW970089 Al299731 AA482971 BE503548 H18151 W79223 AF086393 A461301 W74510 R34182 Al090689 N46003 BE071550 R28075 AW134982 Al240204 Al138906 AW026179 Al572316 BE466182 Al206395 I276154 Al273269 Al422817 Al371014 Al421274 Al188525 AA939164 BE549810 AW137865 Al694996 BE503841 AA459718 BE327407 E467534 BE218421 BE467767 AA989054 BE467063 Al797130 BE327781
45	TABLE 9C			
50	Pkey: Ref: Strand: Nt_position	Sequence sequence Indicates D	source. of humar DNA strar	responding to an Eos probeset The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication of the publication of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication of the publication of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999)
55	Pkey 400512 400517 400560 400664	9796593 9796686 9843598 8118496	Strand Minus Minus Plus Plus	Nt_position 1439-1615 49996-50346 94182-94323,97056-97243,101095-101236,102824-103005 13558-13721,13942-14090,14554-14679
60	400665 400666 400749 400763 401027	8118496 7331445 8131616	Plus Plus Minus Minus Minus	16879-17023 17982-18115,20297-20456 9162-9293 35537-35784 70407-70554,71060-71160
65	401093 401203 401212 401411 401435	8516137 9743387 9858408 7799787	Minus Minus Plus Minus Minus	22335-23166 172961-173956,173868-173928 87839-88028 144144-144329 54508-55233
70	401464 401714 401747	6682291 6715702	Minus Plus Minus	3-9-03-03-03-03-03-03-03-03-03-03-03-03-03-
75	401760 401780 401781 401785 401797	7249190 7249190 7249190 6730720	Plus Minus Minus Minus Plus	83126-83250,85320-85540,94719-95287 28397-28617,28920-29045,29135-29296,29411-29567,29705-29787,30224-30573 83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814 165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942 6973-7118
80	401961 401985 401994 402075 402260	2580474 4153858 8117407 3399665	Minus Plus Minus Plus Minus	124054-124209 61542-61750 42904-43124,43211-43336,44607-44763,45199-45281,46337-46732 121907-122035,122804-122921,124019-124161,124455-124610,125672-126076 113765-113910,115653-115765,116808-116940
85	402265 402297 402408	6598824	Plus Plus Minus	21059-21168 35279-35405,35573-35659 110326-110491

	W	O 02/08	6443	
	402420	9796339	Plus	129750-129919
	402674	8077108	Minus	39290-39502
	402802	3287156	Minus	53242-53432
	402994	2996643	Minus	4727-4969
5	403137	9211494	Minus	92349-92572,92958-93084,93579-93712,93949-94072,94591-94748,95214-95337
-	403306	8099945	Plus	127100-127251
	403329	8516120	Plus	96450-96598
	403381	9438267	Minus	26009-26178
	403478	9958258	Plus	116458-116564
10	403485	9966528	Plus	2888-3001,3198-3532,3655-4117
-	403627	8569879	Minus	23868-24342
	403715	7239669	Plus	85128-85292
	404044	9558573	Minus	225757-225939
	404076	9931752	Minus	3848-3967
15	404101	8076925	Minus	125742-125997
	404140	9843520	Plus	37761-38147
	404165	9926489	Minus	69025-69128
	404185	4572584	Minus	129171-129327
	404210	5006246	Plus	169926-170121
20	404253	9367202	Minus	55675-56055
	404287	2326514	Plus	53134-53281
	404298	9944263	Minus	73591-73723
	404347	9838195	Plus	74493-74829
	404440	7528051	Plus	80430-81581
25	404721	9856648	Minus	173763-174294
	404794	4826439	Plus	101619-101898
	404854	7143420	Plus	14260-14537
	404877	1519284	Plus	1095-2107
	404927	7342002	Plus	68690-69563
30	404996	6007890	Plus	37999-38145,38652-38998,39727-39872,40557-40674,42351-42450
	405449	7622497	Plus	42236-42570
	405568	6006906	Plus	35912-36065
	405572	3800891	Plus	85230-85938
	405646	4914350	Plus	741-969
35	405676	4557087	Plus	73195-73917
	405770	2735037	Plus	61057-62075
	405932	7767812	Minus	123525-123713
	406137	9166422	Minus	30487-31058
	406360	9256107	Minus	7513-7673
40	406399	9256288	Minus	63448-63554
	406467	9795551	Plus	182212-182958

TABLE 10A: Potential Therapeutic, Diagnostic and Prognostic targets for Therapy of Lung Cancer and Non-malignant Lung Disease
Table 2A shows about 307 genes up-regulated in non-malignant lung disease relative to lung tumors and normal body tissues and/or down-regulated in lung tumors relative to
normal lung and non-malignant lung disease. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. 45

Table 10B show the accession numbers for those Pkey's lacking UnigenelD's for table 10A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequences similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the 50

PCT/US02/12476

Table 10C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 10A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Unique Eos probeset identifier number Pkey:

ExAccn: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number Unigene Title: Unigene gene title

55

60

Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the R1:

average of normal lung samples

Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples R2:

65	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2
	404394		-	ENSP00000241075:TRRAP PROTEIN.	0.79	3,10
	404916			Target Exon	1.00	159.00
	405257			Target Exon	1.00	422.00
	407228	M25079	Hs.155376	hemoglobin, beta	0.47	2.33
70	407568	AA740964	Hs.62699	ESTs	1.00	123.00
	408562	A1436323	Hs.31141	Homo sapiens mRNA for KIAA1568 protein,	1.00	230.00
	409031	AA376836	Hs.76728	ESTs	1.00	128.00
	410434	AF051152	Hs.63668	toll-like receptor 2	39.65	149.00
	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	1.00	109.00
75	410808	T40326	Hs.167793	ESTs	1.14	13.14
	412351	AL135960	Hs.73828	T-cell acute lymphocytic leukemia 1	0.37	2,27
	412372	R65998	Hs.285243	hypothetical protein FLJ22029	1.00	173.00
	413795	AL040178	Hs.142003	ESTs	0.10	11.90
	414154	AW205314	Hs.323060	ESTs	0.62	2.09
80	414214	D49958	Hs.75819	glycoprotein M6A	0.03	4.55
	414998	NM_002543	Hs.77729	oxidised low density lipoprotein (lectin	0.64	2.97
	415122	D60708	Hs.22245	ESTs	0.07	8.97
	415765	NM_005424	Hs.78824	tyrosine kinase with immunoglobulin and	0.67	1.65
~ =	415775	H00747	Hs.29792	ESTs, Weakly similar to 138022 hypotheti	0.29	2.64
85	415910	1120350	Hs 78913	chemokine (C-X3-C) receptor 1	1.00	145.00

	W	O 02/086	443			
	416319	Al815601	Hs.79197	CD83 antigen (activated B lymphocytes, i	15.32	237.00
	416402	NM_000715	Hs.1012	complement component 4-binding protein,	0.64	4.00
	417355	D13168	Hs.82002	endothelin receptor type B	0.01	3.90
5	417421	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	36.30	357.00
5	417511	AL049176 U76421	Hs.82223 Hs.85302	chordin-like adenosine deaminase, RNA-specific, B1 (h	1.00 0.02	179.00 6.00
	418489 418726	BE241812	Hs.87860	protein tyrosine phosphatase, non-recept	1.00	113.00
	418741	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom	0.44	1.90
10	418883	BE387036	Hs.1211	acid phosphatase 5, tartrate resistant	0.96	2.04
10	419086	NM_000216	Hs.89591	Kallmann syndrome 1 sequence	0.62	2.74
	419150	T29618	Hs.89640 Hs.288433	TEK tyrosine kinase, endothelial (venous neurotrimin	0.03 1.48	6.90 5.13
	419235 419407	AW470411 AW410377	Hs.41502	hypothetical protein FLJ21276	37.55	336.00
	420556	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	0.80	3.65
15	420656	AA279098	Hs.187636	ESTs	1.65	8.07
	420729	AW964897	Hs.290825	ESTs	2.99	25.82
	421177	AW070211	Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f	0.46 1.00	1.95 156,00
	422060 422426	R20893 W79117	Hs.325823 Hs.58559	ESTs, Moderately similar to ALU5_HUMAN A ESTs	0.03	7.44
20	422652	AW967969	Hs.118958	syntaxin 11	0.14	3.62
	423099	NM_002837	Hs.123641	protein tyrosine phosphatase, receptor t	0.01	3.16
	424433	H04607	Hs.9218	ESTs	0.75	141.75
	424585	AA464840	Hs.131987	ESTs	1.00	167.00 3.01
25	424711 424973	NM_005795 X92521	Hs.152175 Hs.154057	calcitonin receptor-like matrix metalloproteinase 19	0.43 0.37	19.45
23	425023	AW956889	Hs.154210	endothelial differentiation, sphingolipi	0.14	3.35
	425664	AJ006276	Hs.159003	transient receptor potential channel 6	1.00	94.00
	425998	AU076629	Hs.165950	fibroblast growth factor receptor 4	0.68	1.42
20	426657	NM_015865	Hs.171731	solute carrier family 14 (urea transport	0.03	3,74 141,00
30	426753	T89832	Hs.170278 Hs.2171	ESTs growth differentiation factor 10	1.00 1.00	141.00
	427558 427983	D49493 M17706	Hs.2233	colony stimulating factor 3 (granulocyte	0.75	2.20
	428467	AK002121	Hs.184465	hypothetical protein FLJ11259	0.76	2.25
0.5	428927	AA441837	Hs.90250	ESTs	0.01	3.62
35	429496	AA453800	Hs.192793	ESTs	1.00	138.00
	430468 431385	NM_004673 BE178536	Hs.241519 Hs.11090	angiopoietin-like 1 membrane-spanning 4-domains, subfamily A	1.00 1.00	132.00 157.00
	431728	NM_007351	Hs.268107	multimerin	1.00	157.00
	431848	Al378857	Hs.126758	ESTs, Highly similar to AF175283 1 zinc	0.34	2.24
40	432128	AA127221	Hs.117037	ESTs	0.00	1.15
	432519	Al221311	Hs.130704	ESTs, Weakly similar to BCHUIA S-100 pro	0.01	2.06
	433043 433803	W57554	Hs.125019 Hs.27688	lymphoid nuclear protein (LAF-4) mRNA ESTs	1.00 1.00	267.00 105.00
	434730	AI823593 AA644669	Hs.193042	ESTs	1.05	3.15
45	435472	AW972330	Hs.283022	triggering receptor expressed on myeloid	0.83	1.94
	436532	AA721522		gb:nv54h12.r1 NCI_CGAP_Ew1 Homo sapiens	1.00	218.00
	437119	Al379921	Hs.177043	ESTs	1.00	133.00 122.67
	437140 437211	AA312799 AA382207	Hs.283689 Hs.5509	activator of CREM in testis ecotropic viral integration site 2B	0.67 1.00	142.00
50	437960	A1669586	Hs.222194	ESTs	1.00	147.00
	438202	AW169287	Hs.22588	ESTs	1.00	141.00
	438873	Al302471	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	0.71	3.66
	438875	AA827640	Hs.189059	ESTs	23.32 0.77	370.00 8.50
55	441048 441188	AA913488 AW292830	Hs.192102 Hs.255609	ESTs ESTs	3.43	16.36
55	441499	AW298235	Hs.101689	ESTs	1.00	167.00
	444513	AL120214	Hs.7117	glutamate receptor, ionotropic, AMPA 1	1.00	151.00
	444527	NM_005408	Hs.11383	small inducible cytokine subfamily A (Cy	46.47	153.00
60	444561	NM_004469	Hs.11392	c-fos induced growth factor (vascular en	0.01	3.08 141.00
UU	445279 446017	R41900 N98238	Hs.22245 Hs.55185	ESTs ESTs	0.60 0.18	2.39
	446984	AB020722	Hs.16714	Rho guanine exchange factor (GEF) 15	0.10	2.16
	446998	N99013	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	0.01	2.53
65	447357	Al375922	Hs.159367	ESTs	0.46	2.64
65	448106	A1800470	Hs.171941	ESTs	18.05 1.00	296.00 141.00
	448253 449275	H25899 AW450848	Hs.201591 Hs.205457	ESTs periaxin	0.56	1.38
	450400	AI694722	Hs.279744	ESTs	0.88	4.33
7 0	450696	AI654223	Hs.16026	hypothetical protein FLJ23191	0.52	2.08
70	450726	AW204600	Hs.250505	retinoic acid receptor, alpha	0.79	2.01
	451497	H83294	Hs.284122	Wnt inhibitory factor-1 serum deprivation response (phosphatidy)	0.35 0.13	2.03 2.25
	451533 453636	NM_004657 R67837	Hs.26530 Hs.169872	ESTs	1.00	116.00
	458332	AI000341	Hs.220491	ESTs	1.00	192.00
75	459580	AA022888	Hs.176065	ESTs	0.20	2.98
	400269			Eos Control	0.40	2.40 1.77
	403421 407570	Z19002	Hs.37096	NM_016369*:Homo sapiens claudin 18 (CLDN zinc finger protein 145 (Kruppel-like, e	0.53 0.01	1.77 3.18
	412295	AW088826	Hs.117176	poly(A)-binding protein, nuclear 1	0.56	1.74
80	414517	M24461	Hs.76305	surfactant, pulmonary-associated protein	0.64	1.50
	417204	N81037	Hs.1074	surfactant, pulmonary-associated protein	0.33	1.16
	418307	U70867	Hs.83974	solute carrier family 21 (prostaglandin	0.53 0.20	1.55 1.28
	418935 421502	T28499 AF111856	Hs.89485 Hs.105039	carbonic anhydrase IV solute carrier family 34 (sodium phospha	0.20	1.20
85	421798	N74880	Hs.29877	N-acylsphingosine amidohydrolase (acid c	0.59	1.54

•

	VX.	O 02/086	113			
	423354	AB011130	Hs.127436	calcium channel, voltage-dependent, alph	0.59	1.55
	423738	AB002134	Hs.132195	airway trypsin-like protease	10.14	51.00
	425211	M18667	Hs.1867	progastricsin (pepsinogen C)	0.35	1.62
~	425438	T62216	Hs.270840	ESTs	0.23	9.45
5	426828	NM_000020	Hs.172670	activin A receptor type II-like 1	0.03 0.01	1.71 1.49
	427019 428043	AA001732 T92248	Hs.173233 Hs.2240	hypothetical protein FLJ10970 uteroglobin	0.42	1.26
	430280	AA361258	Hs.237868	interleukin 7 receptor	0.46	2.43
4.0	431433	X65018	Hs.253495	surfactant, pulmonary-associated protein	0.57	1.59
10	431723	AW058350	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	0.29	1.80
	432985	T92363	Hs.178703	ESTs	0.32	2.27
	441835	AB036432	Hs.184	advanced glycosylation end product-speci	0.31 0.55	1.51 1.78
	442275 443709	AW449467 Al082692	Hs.54795 Hs.134662	ESTs ESTs	0.00	3.02
15	444325	AW152618	Hs.16757	ESTs	0.32	2.49
	450954	A)904740	Hs.25691	receptor (calcitonin) activity modifying	0.46	1.74
	451558	NM_001089	Hs.26630	ATP-binding cassette, sub-family A (ABC1	0.52	1.87
	453310	X70697	Hs.553	solute carrier family 6 (neurotransmitte	0.00	3.30
20	456855	AF035528	Hs.153863	MAD (mothers against decapentaplegic, Dr	0.01	2.31 2.20
20	444342 400754	NM_014398	Hs.10887	similar to lysosome-associated membrane Target Exon	0.66 1.00	297.00
	401045			C11001883*:gi 6753278 ref NP_033938.1\c	1.00	109.00
	401083			NM_016582*:Homo sapiens peptide transpor	0.89	1.39
	402474			NM_004079:Homo sapiens cathepsin S (CTSS	1.45	4.47
25	402808			ENSP00000235229:SEMB.	1.00	1.87
	403021			C21000030:gi 9955960 ref NP_063957.1 AT	1.00	149.00 2.96
	403438			NM_031419*:Homo sapiens molecule possess	1.06 0.04	2.90 4.89
	403687 403764			NM_007037*:Homo sapiens a disintegrin-li NM_005463:Homo sapiens heterogeneous nuc	1.00	225.00
30	404277			NM_019111*:Homo sapiens major histocompa	0.97	1.93
-	404288			NM_002944*:Homo sapiens v-ros avian UR2	1.00	68.00
	404518	Al815601		CD83 antigen (activated B lymphocytes, i	0.02	1.83
	405106			C11001637*:gij5032241[ref[NP_005732.1] z	1.00	235.00
35	405381			Target Exon	1.00	93.00 6.02
33	406387 406646	M33600		Target Exon major histocompatibility complex, class	1.37 0.86	2.46
	406714	Al219304	Hs.266959	hemoglobin, gamma G	0.01	3.19
	406753	AA505665	Hs.217493	annexin A2	1.00	147.00
40	406973	M34996	Hs.198253	major histocompatibility complex, class	1.03	2.04
40	407248	U82275	Hs.94498	teukocyte immunoglobulin-like receptor,	1.00	64.00
	407510	U96191	11- 00000	gb:Human trophoblast hypoxia-regulated f	1.00	90.00
	407731	NM_000066	Hs.38069	complement component 8, beta polypeptide	1.00 1.00	67.00 102.00
	407830 408045	NM_001086 AW138959	Hs.587 Hs.245123	arylacetamide deacetylase (esterase) ESTs	1.00	70.00
45	408074	R20723	113.243120	ESTs	1.00	112.00
	408374	AW025430	Hs.155591	forkhead box F1	0.07	10.17
	409064	AA062954	Hs.141883	ESTs	0.39	2.31
	409083	AF050083	Hs.673	interleukin 12A (natural killer cell sti	1.00	95.00
50	409153	W03754 AA780473	Hs.50813 Hs.687	hypothetical protein FLJ20022 cytochrome P450, subfamily IVB, polypept	0.01 0.01	4.55 3.72
50	409203 409238	AL049990	Hs.51515	Homo sapiens mRNA; cDNA DKFZp564G112 (fr	1.00	79.00
	409389	AB007979	Hs.301281	Homo sapiens mRNA, chromosome 1 specific	0.14	27.35
	409718	D86640	Hs.56045	src homology three (SH3) and cysteine ri	1.00	113.00
c	410798	BE178622	Hs.16291	gb:PM3-HT0605-270200-001-a02 HT0605 Homo	0.64	2.47
55	411020	NM_006770	Hs.67726	macrophage receptor with collagenous str	0.55	2.40
	411667	BE160198	Un 15790	gb:QV1-HT0413-010200-059-h03 HT0413 Homo ATP-binding cassette, sub-family A (ABC1	1.00 1.00	111.00 95.00
	412000 412358	AW576555 BE047490	Hs.15780 Hs.24172	ESTs	1.00	87.00
	412420	AL035668	Hs.73853	bone morphogenetic protein 2	1.43	8.07
60	412564	X83703	Hs.31432	cardiac ankyrin repeat protein	0.02	3.07
	412869	AA290712	Hs.82407	CXC chemokine ligand 16	0.93	1.72
	412870	N22788	Hs.82407	CXC chemokine ligand 16	0.97	1.51
	413529	U11874	Hs.846	interleukin 8 receptor, beta gb:QV4-HT0222-011199-019-e05 HT0222 Homo	0.02 0.65	2.42 1.50
65	413533 413689	BE146973 BE157286	Hs.20631	zinc finger protein, subfamily 1A, 5 (Pe	20.87	232.00
05	413724	AA131466	Hs.23767	hypothetical protein FLJ12666	1.00	80.00
	413800	Al129238	Hs.192235	ESTs	1.00	85.00
	413802	AW964490	Hs.32241	ESTs, Weakly similar to S65657 alpha-1C-	1.00	213.00
70	413829	NM_001872	Hs.75572	carboxypeptidase B2 (plasma)	0.02	3.93
70	414376	BE393856	Hs.66915	ESTs, Weakly similar to 16.7Kd protein [1.00	115.00 1.94
	414577 414700	Al056548 H63202	Hs.72116 Hs.38163	hypothetical protein FLJ20992 similar to ESTs	0.49 0.03	3.75
	415078	AA311223	Hs.283091	found in inflammatory zone 3	0.86	1.95
	415120	N64464	Hs.34950	ESTs	1.00	120.00
75	415323	BE269352	Hs.949	neutrophil cytosolic factor 2 (65kD, chr	0.60	2.48
	415335	AA847758	Hs.111030	ESTs 500 500 500 500 500 500 500 500 500 50	1.00	95.00
	415582	W92445	Hs.165195	Homo sapiens cDNA FLJ14237 fis, clone NT	1.00	136.00
	416030	H15261 BE244050	Hs.21948 He 70307	ESTs Rac/Cdc42 guanine exchange factor (GEF)	0.02 1.00	8.07 73.00
80	416427 416464	NM_000132	Hs.79307 Hs.79345	coagulation factor VIII, procoagulant co	0.70	3.36
	416585	X54162	Hs.79386	leiomodin 1 (smooth muscle)	0.06	6.56
	416847	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do	0.70	3.66
	417148	AA359896	Hs.293885	hypothetical protein FLJ14902	1.00	114.00
95	417370	T28651	Hs.82030	tryptophanyl-tRNA synthetase	0.85 0.15	1.30 15.54
85	417673	T87281	Hs.16355	ESTs	0.10	13.34

	W	O 02/086	443			
	418067	Al127958	Hs.83393	cystatin E/M	0.81	1.74
	418296	C01566	Hs.86671	ESTs	1.00	99.00
	418643	J03798	Hs.86948	small nuclear ribonucleoprotein D1 polyp	1.00	60.00
_	418832	X04011	Hs.88974	cytochrome b-245, beta polypeptide (chro	2.40	14.74
5	418945	BE246762	Hs.89499	arachidonate 5-lipoxygenase wingless-type MMTV integration site fami	0.67 1.00	° 3.16 73.00
	419261 419564	X07876 U08989	Hs.89791 Hs.91139	solute carrier family 1 (neuronal/epithe	1.00	192.00
	419574	AK001989	Hs.91165	hypothetical protein	1.00	94.00
4.0	419968	X04430	Hs.93913	interleukin 6 (interferon, beta 2)	61.16	500.00
10	420256	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula	0.52	1.70
	420285	AA258124	Hs.293878	ESTs, Moderately similar to ZN91_HUMAN Z	1.00	172.00
	420577	AA278436	Hs.186649	ESTS	1.00 1.00	97.00 64.00
	421262 421445	AA286746 AA913059	Hs.9343 Hs.104433	Homo sapiens cDNA FLJ14265 fis, clone PL Homo sapiens, clone IMAGE:4054868, mRNA	0.88	1.51
15	421470	R27496	Hs.1378	annexin A3	0.05	11.26
	421478	AI683243	Hs.97258	ESTs, Moderately similar to S29539 ribos	1.00	73.00
	421563	NM_006433	Hs.105806	granulysin	0.82	2.42
	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	5.50	31.57
20	421855	F06504	Hs.27384	ESTs, Moderately similar to ALU4_HUMAN A	1.00 1.00	129.00 101.00
20	421913 421952	Al934365 AA300900	Hs.109439 Hs.98849	osteoglycin (osteoinductive factor, mime ESTs, Moderately similar to AF161511 1 H	0.60	63.60
	422232	D43945	Hs.113274	transcription factor EC	1.00	148.00
	422386	AF105374	Hs.115830	heparan sulfate (glucosamine) 3-O-sulfot	1.40	3.98
0.5	423168	R34385	Hs.124940	GTP-binding protein	0.34	3.59
25	423196	AK001866	Hs.125139	hypothetical protein FLJ11004	0.55	2.00
	423387	AJ012074	11- 400422	vasoactive intestinal peptide receptor 1	0.09 1.00	2.13 141.00
	423424 423456	AF150241 AL110151	Hs.128433 Hs.128797	prostaglandin D2 synthase, hematopoietic DKFZP586D0824 protein	1.00	66.00
	423696	Z92546	113.120101	Sushi domain (SCR repeat) containing	0.73	1.27
30	424027	AW337575	Hs.201591	ESTs	0.54	2.58
	424212	NM_005814	Hs.143131	glycoprotein A33 (transmembrane)	0.77	2.47
	425087	R62424	Hs.126059	ESTs	1.00	74.00
	425175	AF020202	Hs.155001 Hs.159494	UNC13 (C. elegans)-like Bruton agammaglobulinemia tyrosine kinas	0.85 1.18	1.96 2.56
35	425771 426486	BE561776 BE178285	Hs.170056	Homo sapiens mRNA; cDNA DKFZp586B0220 (f	1.00	76.00
55	427507	AF240467	Hs.179152	toll-like receptor 7	1.00	63.00
	427618	NM_000760	Hs.2175	colony stimulating factor 3 receptor (gr	0.60	2.19
	427732	NM_002980	Hs.2199	secretin receptor	0.97	1.42
40	427952	AA765368	Hs.293941	ESTs, Moderately similar to A53959 throm	1.00	105.00 80.00
40	428709 428769	BE268717 AW207175	Hs.104916 Hs.106771	hypothetical protein FLJ21940 ESTs	1.00 0.09	2.55
	428780	Al478578	Hs.50636	ESTs	1.00	98.00
	428833	Al928355	Hs.185805	ESTs	1.00	113.00
4 ~	429657	D13626	Hs.2465	KIAA0001 gene product; putative G-protei	1.00	52.00
45	430212	AA469153		gb:nc67f04.s1 NCI_CGAP_Pr1 Homo sapiens	1.00	132.00
	430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	0.11 1.00	15.60 103.00
	430376 430414	AW292053 AW365665	Hs.12532 Hs.120388	chromosome 1 open reading frame 21 ESTs	0.50	6.96
	430656	AA482900	Hs.162080	ESTs	1.00	70.00
50	430843	Al734149	Hs.119514	ESTs	1.00	90.00
	430998	AF128847	Hs.204038	indolethylamine N-methyltransferase	0.29	1.84
	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	1.00 0.91	79.00 1.67
	431921 432176	N46466 AW090386	Hs.58879 Hs.112278	ESTs arrestin, beta 1	0.66	2.63
55	432203	AA305746	Hs.49	macrophage scavenger receptor 1	1.00	76.00
	432231	AA339977	Hs.274127	CLST 11240 protein	0.46	1.46
	432485	N90866	Hs.276770	CDW52 antigen (CAMPATH-1 antigen)	0.79	2.25
	432522	D11466	Hs.51	phosphatidylinositol glycan, class A (pa	1.93	4.83
60	432596 432850	AJ224741 X87723	Hs.278461 Hs.3110	matrilin 3 angiotensin receptor 2	0.04 1.00	5.79 167.00
00	433138	AB029496	Hs.59729	semaphorin sem2	0.04	9.16
	433563	A1732637	Hs.277901	ESTs	1.00	91.00
	433588	Al056872	Hs.133386	ESTs	120.16	315.00
65	434445	Al349306	Hs.11782	ESTs	0.60	1.84
65	435496	AW840171	Hs.265398	ESTs, Weakly similar to transformation-r	1.00 1.00	128.00 108.00
	435974 436061	U29690 A1248584	Hs.37744 Hs.190745	Homo sapiens beta-1 adrenergic receptor Homo sapiens cDNA: FLJ21326 fis, clone C	1.00	91.00
	437157	BE048860	Hs.120655	ESTs	1.00	87.00
	437207	T27503	Hs.15929	hypothetical protein FLJ12910	1.00	105.00
70	437311	AA370041	Hs.9456	SWI/SNF related, matrix associated, acti	1.00	71.00
	437439	H29796	Hs.269622	ESTs	1.00	115.00
	438199	AW016531 W72062	Hs.122147 Hs.11112	ESTs ESTs	1.00 0.30	80.00 3.10
	439551 440515	AJ131245	Hs.7239	SEC24 (S. cerevisiae) related gene famil	1.00	77.00
75	440887	A1799488	Hs.135905	ESTs	1.00	85.00
	441025	AA913880	Hs.176379	ESTs	1.00	82.00
	441384	AA447849	Hs.288660	Homo sapiens cDNA: FLJ22182 fis, clone H	0.79	1.89
	441735	A1738675	Hs.127346	ESTS	1.00 0.78	75.00 5.83
80	442200 442832	AW590572 AW206560	Hs.235768 Hs.253569	ESTs ESTs	0.78	10.88
5 0	442957	AVV200500 Al949952	Hs.49397	ESTs	1.00	70.00
	443282	T47764	Hs.132917	ESTs	1.00	197.00
	443547	AW271273	Hs.23767	hypothetical protein FLJ12666	1.00	253.00
85	443951	F13272	Hs.111334	ferritin, light polypeptide	0.55 1.00	2.09 90.00
GD.	444330	Al597655	Hs.49265	ESTs	1.00	30,00

WO 02/086443 PCT/US02/12476 84.00 444515 AW204908 1.00 Hs.169979 **ESTs** 4.38 445769 Al741471 Hs.23666 **ESTs** 0.02 Homo sapiens clone 24425 mRNA sequence 97.00 Hs.13436 1.00 445908 R13580 Hs.14623 0.93 1.69 446291 BE397753 interferon, gamma-inducible protein 30 5 106.00 446917 Al347863 Hs.156672 **ESTs** 1.00 NM_006691 Hs.17917 extracellular link domain-containing 1 0.40 47.20 447261 AW958473 447432 Hs.301957 nudix (nucleoside diphosphate linked moi 1.00 100.00 447482 AB033059 Hs.18705 KiAA1233 protein 0.05 8.21 ESTs, Weakly similar to I38022 hypotheti hypothetical protein FLJ10392 KIAA0758 protein 5.42 447997 H00656 Hs.29792 0.02 10 1.00 79.00 AA497044 Hs.20887 448299 448782 AL050295 Hs.22039 0.42 1.56 NM_005859 purine-rich element binding protein A 11.33 Hs.29117 0.17 450575 AA040403 Hs.60371 1.00 94.00 450584 450693 AW450461 Hs.203965 **ESTs** 1.00 91.00 15 Hs.31570 ESTs, Weakly similar to KIAA1324 protein 1.00 152.00 450715 Al266484 86.00 451103 R52804 Hs.25956 DKFZP564D206 protein 1.00 novel SH2-containing protein 3 0.60 1.30 451220 AF124251 Hs.26054 1.91 Hs.326444 0.54 451668 Z43948 cartilage acidic protein 1 AW023595 Hs.232048 1.00 67.00 **FSTs** 452197 20 Hs.29117 purine-rich element binding protein A 4.53 11.07 AA598509 452331 epithelial membrane protein 2 0.72 2.24 Hs.29191 452353 C18825 BE537217 1.00 68.00 453049 Hs.30343 NM_016113 Hs.279746 vanilloid receptor-like protein 1 0.83 1.70 453107 132.00 453355 AW295374 Hs.31412 Homo sapiens cDNA FLJ11422 fis, clone HE 1.00 25 72.00 1.00 453390 AA862496 Hs.28482 **ESTs** ESTs, Weakly similar to JC5795 CDEP prot 1.00 68.00 453531 454741 AA417940 gb:CM2-HT0342-091299-050-b05 HT0342 Homo 0.57 2.89 BF154396 up-regulated by BCG-CWS 82.00 Hs.284205 1.00 AA287827 456579 Homo sapiens, clone MGC:16327, mRNA, com 0.79 1.96 AK002016 Hs.114727 456672 30 1.03 3.25 457400 AF032906 Hs.252549 cathepsin Z ESTs, Weakly similar to ALU4_HUMAN ALU S 113.00 Hs.22978 1.00 457718 F18572 459696 F03027 gb:HSC1KA072 normalized infant brain cDN 1.00 544.00 TABLE 10B 35 Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Genbank accession numbers Accession: 40 Pkey 408074 CAT Number R20723 AA263003 AA333976 AA334725 AA334151 AW965490 AA310513 AI810530 D31302 AW134897 AA830127 AA046953 AI668930 103684_1 C06094 AW104534 1253334_1 BE160198 AW935898 T11520 AW935930 AW856073 AW861034 411667 BE146973 BE146972 BE147042 BE147018 BE146783 BE147020 BE146781 BE147019 BE146766 BE147021 BE146952 BE146767 BE147044 1375344_1 413533 BE146797 BE146776 BE146985 BE146793 BE146768 BE146771 BE146954 BE146760 BE147048 BE147025 BE147030 AJ012074 U11087 L13288 X75299 L20295 AW630780 H14880 T28037 AI872991 R72136 AW449839 T81622 T79697 T29519 R94105 T83923 45 423387 22779_1 R73300 AJ97007 R7330 AA961010 H74168 Al689932 BE045643 Al808912 Al806573 AW884084 AW872978 AW872985 AA565655 Al022915 R50647 R73210 H45098 R46451 AW166269 T71132 Al264547 R52146 Al304920 R73391 AW884059 AW884085 H73241 T60038 T79612 R73145 R50549 Al094557 Al668793 R72302 Al564366 W01956 AA418962 W32571 R72840 H45409 R72085 R46356 R46758 50 AA508805 AA418798 T83751 R94072 T16182 AA928785 AA903896 Z92546 AA330586 Al570568 AW341487 Al827050 AW298668 Al792189 Al015693 Al733599 Al572251 Al672488 AW193262 Al244716 423696 23112 1 Al864375 Al206100 AA912444 Al269365 Al640254 AW772466 Al867336 AA627604 H16914 AA358477 AA338009 430212 314437_1 AA469153 Al718503 AA469225 436532 421802_1 AA721522 AW975443 T93070 55 453531 97026_1 AA417940 AA036735 T07025 454741 1232559_1 BE154396 AW817959 BE154393 TABLE 10C 60 Unique number corresponding to an Eos probeset Pkev: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Strand: Indicates DNA strand from which exons were predicted. 65 Nt_position: Indicates nucleotide positions of predicted exons. Strand Nt position Pkev Ref 400754 144559-144684 7331445 Plus 401045 8117619 Plus 90044-90184,91111-91345 70 3242744 33192-33360 401083 Plus 53526-53628,55755-55920,57530-57757 402474 7547175 Minus 114964-115136.115461-115585,115931-116047,117666-117771,118004-118102 402808 6456148 Minus 120799-120966 403021 7547270 Plus 126609-126773,139986-140205 9665041 403421 Minus 75 90792-90938 403438 9719679 Plus 9009-9534 403687 7387384 Plus 118692-118853 403764 7717105 Minus 404277 1834458 Minus 91665-91946 404288 2769644 Plus 3512-3691 80 37121-37205.37491-37762.41053-41140.41322-41593,41773-41919 404394 3135305 Minus 84494-84603 404518 8151988 Plus 7341826 91057-91188 404916 Plus 8079395 80877-81418 405106 Minus 7329310 Plus 73121-73273 405257

85

405381

6006920

Minus

7636-8054

TABLE 11A: Genes Distinguishing Adenocarcinoma from Other Lung Diseases and Normal Lung

Table 11A shows about 84 genes upregulated in lung adenocarcinomas relative to other lung tumors, non-malignant lung disease, and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 11B show the accession numbers for those Pkey's lacking UnigenelD's for table 11A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 11C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 11A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey: Unique Eos probeset identifier number 15

Exemplar Accession number, Genbank accession number ExAccn:

UnigenelD: Unigene number Unigene Title:

5

10

Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the average of normal lung samples R1:

20 R2: Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

	Pkey 403329	ExAccn	UnigenelD	Unigene Title Target Exon	R1 1.00	R2 61.00
~ -	406399			NM_003122*:Homo sapiens serine protease	1.00	39.00
25	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad	226.37	350.00
	407869	A1827976	Hs.24391	hypothetical protein FLJ13612	0.77 1.00	1.18 10.00
	407881 408908	AW072003 BE296227	Hs.40968 Hs.250822	heparan sulfate (glucosamine) 3-0-sulfot serine/threonine kinase 15	7.76	1.00
	409103	AF251237	Hs.112208	XAGE-1 protein	80.44	40.00
30	409187	AF154830	Hs.50966	carbamoyl-phosphate synthetase 1, mitoch	1.00	1.00
	409269	AA576953	Hs.22972	hypothetical protein FLJ13352	1.00	1.00
	410076	T05387	Hs.7991	ESTs	1.12	1.50
	410102	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	9.89	1.00 1.06
35	410399 411908	BE068889 L27943	Hs.72924	synuclein, gamma (breast cancer-specific cytidine deaminase	0.92 1.00	1.00
55	412612	NM_000047	Hs.74131	arylsulfatase E (chondrodysplasia puncta	1.02	1.03
	414075	U11862	Hs.75741	amiloride binding protein 1 (amine oxida	0.84	1.07
	416208	AW291168	Hs.41295	ESTs, Weakly similar to MUC2_HUMAN MUCIN	3.67	1.00
40	417542	J04129	Hs.82269	progestagen-associated endometrial prote	1.28	1.35
40	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin	1.00 13.05	1.00 115.00
	419502 419631	AU076704 AW188117	Hs.303154	fibrinogen, A alpha polypeptide popeye protein 3	1.00	13.00
	420931	AF044197	Hs.100431	small inducible cytokine B subfamily (Cy	1.00	8.00
	421155	H87879	Hs.102267	lysyl oxidase	1.00	15.00
45	421190	U95031	Hs.102482	mucin 5, subtype B, tracheobronchial	1.17	1.55
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans	1.46	1.76
	421515	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, I	1.00 1.23	3.00 1.00
	421582 422026	Al910275 U80736	Hs.110826	trefoil factor 1 (breast cancer, estroge trinucleotide repeat containing 9	1.00	52.00
50	422020	Ai868872	Hs.282804	hypothetical protein FLJ22704	4.37	2.34
50	422311	AF073515	Hs.114948	cytokine receptor-like factor 1	1.15	1.78
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	1.69	3.17
	423472	AF041260	Hs.129057	breast carcinoma amplified sequence 1	48.13	72.00
55	423554	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	1.00 1.00	50.00 1.00
55	424502 424544	AF242388 M88700	Hs.149585 Hs.150403	lengsin dopa decarboxylase (aromatic L-amino aci	1.00	59.00
	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related k	21.35	1.00
	424960	BE245380	Hs.153952	5' nucleotidase (CD73)	1.00	1.00
	425523	AB007948	Hs.158244	KIAA0479 protein	1.00	35.00
60	426230	AA367019	Hs.241395	protease, serine, 1 (trypsin 1)	1.00	83.00
	427701	AA411101	Hs.243886	nuclear autoantigenic sperm protein (his	7.41 1.00	34.00 6.00
	428585 428758	AB007863 AA433988	Hs.185140 Hs.98502	KIAA0403 protein hypothetical protein FLJ14303	1.06	1.13
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	16.18	105.00
65	429263	AA019004	Hs.198396	ATP-binding cassette, sub-family A (ABC1	1.07	1.00
	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas	1.59	1.69
	430508	AI015435	Hs.104637	ESTs	4.75	7.27
	430985 431548	AA490232 Al834273	Hs.27323 Hs.9711	ESTs, Weakly similar to 178885 serine/th novel protein	0.94 5.66	1.28 15.00
70	431566	AF176012	Hs.260720	J domain containing protein 1	49.76	37.00
, •	431986	AA536130	Hs.149018	Novel human gene mapping to chomosome 20	1.19	1.47
	432375	BE536069	Hs.2962	S100 calcium-binding protein P	1.65	1.06
	432677	NM_004482	Hs.278611	UDP-N-acetyl-alpha-D-galactosamine:polyp	1.00	48.00
75	433556	W56321	Hs.111460	calcium/calmodulin-dependent protein kin	1.00	19.00
13	433819 434001	AW511097 AW950905	Hs.112765 Hs.3697	ESTs serine (or cysteine) proteinase inhibito	3.71 29.31	8.00 72.00
	434424	A1811202	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L	1.00	64.00
	434792	AA649253	Hs.132458	ESTs	8.52	44.00
00	436217	T53925	Hs.107	fibrinogen-like 1	57.97	31.00
80	436749	AA584890	Hs.5302	lectin, galactoside-binding, soluble, 4	1.10	1.41
	436972	AA284679	Hs.25640	claudin 3	1.59	1.46 101.00
	437866 437935	AA156781 AW939591	Hs.5940	metallothionein 1E (functional) mucin 13, epithelial transmembrane	3.62 1.60	1.39
	437935	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi	1.00	1.00
85	439451	AF086270	Hs.278554	heterochromatin-like protein 1	23.28	52.00
				•		

	W	O 02/086	443				PCT/US02/12476				
5	439759 441031 441377 443614 443813 443991 444670	AL359055 Al110684 BE218239 AV655386 AA876372 NM_002250 H58373	Hs.67709 Hs.7645 Hs.202656 Hs.7645 Hs.93961 Hs.10082 Hs.332938	Homo sapiens mRNA full length insert cDN fibrinogen, B beta polypeptide ESTs fibrinogen, B beta polypeptide Homo sapiens mRNA; cDNA DKFZp667D095 (fr potassium intermediate/small conductance hypothetical protein MGC5370	1.00 1.41 22.03 1.00 1.20 5.71 1.98	21.00 99.00 1.00 16.00 1.99 6.87 38.00					
10	444931 446102 446163 446469 447388 447532	AV652066 AW168067 AA026880 BE094848 AW630534 AK000614	Hs.75113 Hs.317694 Hs.25252 Hs.15113 Hs.76277 Hs.18791	general transcription factor IIIA ESTs Homo sapiens cDNA FLJ13603 fis, clone PL homogentisate 1,2-dioxygenase (homogenti Homo sapiens, clone MGC:9381, mRNA, comp hypothetical protein FLJ20607	1.00 1.00 1.00 1.00 1.00 1.24 1.23	54.00 1.00 36.00 11.00 1.16 1.63					
15	448243 448844 449444 451807 452689	AW369771 AI581519 AW818436 W52854 F33868	Hs.52620 Hs.177164 Hs.23590 Hs.284176	integrin, beta 8 ESTs solute carrier family 16 (monocarboxylic hypothetical protein FLJ23293 similar to transferrin	15.84 1.00 1.00 1.55 1.54	1.00 31.00 83.00 35.00 1.44					
20	453392 453464 453735	U23752 Al884911 Al066629	Hs.32964 Hs.32989 Hs.125073	SRY (sex determining region Y)-box 11 receptor (calcitonin) activity modifying ESTs	1.00 1.55 1.01	16.00 2.45 1.30					
	TABLE 1	1B									
25	Pkey: CAT num Accessio	nber: Gene clus		entifier number nbers							
30	Pkey 410399	CAT Numbe 11995_1	BE068 Al936	sion 1889 BE068882 AF044311 AF017256 NM_003087 AF 527 AA804675 AA394097 Al139933 AA946606 BE17 1737 H49348 AA486472 AA411094 AA235594 AA402	1313 AA72240	7 AA293803 A14684	80 AA056035 AA055968 AW796957 Al637713				
35	419502	18535_1									
40			T71916 T73787 T56035 T64425 T71870 T60476 T61376 T67820 T71895 T41006 T69441 T68170 T74617 T71958 T69440 T61875 R06796 H48353 T71914 T53939 T64121 AA693996 T72525 T67779 T68078 AA011465 AA345378 AV654847 AV654272 AV656001 A1064740 T82887 N33594 AA344542 AW805054 A1207457 T61743 AA026737 H94389 AA382695 AA918409 T68044 S82092 T39959 AI017721 AA312395 AA312919 T40156 H66239 AV652989 H38728 R98521 AV655200 R95790 W00913 AA344136 AV660126 R97923 AA343596 AW470774 AV651256 N54417 AA812862 AW182929 AI111192 H61463 H72060 AA344503 H38639 AI277511 AV661108 AI207625 T47810								
45	-		AA235252 T27853 T47778 R95746 H70620 AA701463 AW827166 R98475 C20925 AV657287 T71959 T71313 T73920 T73333 T61618 T69293 T69283 T73931 T72178 T72456 AV645639 AV653476 T72957 T72300 T68906 T71457 T70494 T72956 T70495 T68267 T74407 T85778 AA344726 T27854 T74485 T74101 T73868 T71518 T72304 AA343853 T73909 T68070 T72065 H72149 T73495 AV645993 R02293 T70475 T64751 AA344441 AA343657 AA344528 A110639 AA344603 AF063513 T64696 T68516 T7223 T60507 T67633 R29500 T72517 R02292 T60599 T69206 T70452 T74677 R29366 T61277 T74914 T60352 R29675 T74843 AV645792 AA344408 T69197 T72057 T69368 T69258 T69258 AV650429 T73341 T61702 T74598 T40095 K02272 T40106 AA343045 AA341908 AA341907 AA342807 AA341964								
50			AA345 AA344 AA693	7 T72042 T62764 Al064899 AA343060 T67832 T724 1234 T67598 AA011414 T68036 H48262 Al207557 T6 1583 T60362 H58121 T95711 T72803 T68055 T7171 1592 Al248502 R29454 T64764 T57001 T73052 T714 7 T73317 T74273 T69420 T68245 T74380 T67862 T	88219 W86031 5 R29036 T727 29 T51176 T58	T69081 T64232 R9 93 T69122 T64595	3196 T62136 AV650539 H67459 T72978 T62888 T69139 T68291 T64652 T67971 T46862				
55	421582	2041_1	Al9102 AA568 BE074 BE074	275 X00474 X52003 X05030 NM_003225 AA314326 1312 AA614409 AA307578 A1925552 AW950155 A191 140 AA514776 AA588034 BE074051 BE074068 AW 1045 A1307407 AW602303 BE073575 A1202532 AA52	AA308400 AA5 0083 M12075 009769 AW050 4242 AI970839	BE074052 AW0046 690 AA858276 R55 AI909751 BE0760	68 AA578674 AA582084 BE074053 BE074126 389 Al001051 AW050700 AW750216 AA614539 78 Al909749 R55292				
<i>(</i> 0	437866	44433_2	AA837	.781 AW293839 U52054 AA024963 AA778446 BE073 481 AW468444 BE185091 AW468002 AA687333 AA	3977 AW44490 .811830 AA581	4 AW602574 BE16 806 Al866686 Al57	4040 BE164012 BE163972 BE163974 BE163992 2124 AA043777 AA040926 D20160 AI536733				
60	451807	8865_1	W5288	489 AW874142 A1471883 W84421 AA156850 54 AL117600 BE208116 BE208432 BE206239 BE082 0652 AW449519 AA993634 A1806539 AA351618 AW							
65	TABLE 1	1C									
	Pkey: Ref:	Sequence	source. The	onding to an Eos probeset 7 digit numbers in this column are Genbank Identifier		"Dunham I, et al." re	efers to the publication entitled "The DNA				
70	Strand: Nt_positi	sequence Indicates I	of human chro DNA strand fro	omosome 22." Dunham I. et al., Nature (1999) 402:48 im which exons were predicted. itions of predicted exons.							
75	Pkey 403329 406399	Ref 8516120 9256288	Strand Plus Minus	Nt_position 96450-96598 63448-63554							

WO 02/086443 PCT/US02/12476

TABLE 12A; Genes Distinguishing Squamous Cell Carcinoma from Other Lung Diseases and Normal Lung

Table 12A shows about 72 genes upregulated in squamous cell carcinomas of the lung relative to other lung tumors, non-malignant lung disease, and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. 5

Table 12B show the accession numbers for those Pkey's lacking UnigenelD's for table 12A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 12C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 12A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15

10

Unique Eos probeset identifier number

Pkey: ExAccn: Exemplar Accession number, Genbank accession number

UnigeneID: Unigene number

Unigene Title: Unigene gene title

20 Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the

average of normal lung samples

Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples R2:

Prest		51	F. A	H-tID	Uniness Title	R1	R2
400666	25						
Main	23		A0/020	HS.2250			
401785							
1978 1978							
1999							
402075	30						
404996 407839 A046144 Hs. 16166 408000 L1 1690 L1 1690 Hs. 620 A08522 A161214 Hs. 620 A106611 BE540255 Hs. 6994 A16961 A16961 BE540255 Hs. 6994 A16961 A16961 A16968 A0001100 Hs. 79432 A17366 BE185289 Hs. 79867 A18668 A0001100 Hs. 41690 A18678 A0001100 Hs. 41690 A18678 A0001100 Hs. 41690 A18678 A18678 A0001100 Hs. 41690 A18678 A18678 A1869393 Hs. 112457 A21948 A121948 A124982 A21948 A124984 A12948 A	50						
A07839							
\$4,000			AA045144	Hs 161566			
A							
416561 BE540255 Hs.6994 Hs.79910 Hs.79910 Hs.798167 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.79816 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.79816 Hs.798168 Hs.798168 Hs.798168 Hs.79816 Hs.798168 Hs.79816 Hs.7	35						
415031	-					10.04	1.00
418817 U88967 Hs.78867 profein fyrosine pfosphafase, receiptor-1 24.30 1.0							30.00
416688						24.30	
417034						53.29	51.00
417366 BE185289 Hs.1076 small proline-rich protein 1B (cornilin) 8.97 3.27 19.00 418678 NM_001327 Hs.87225 Hs.89626 Hs.1027 Hs.89231 Hs.89231 Hs.112457 421773 W69233 Hs.112457 421978 AJ243662 Hs.110196 AJ24364 AW95900 Hs.132127 AJ243662 Hs.13241 Hs.13241 Hs.13241 Hs.13241 AJ23738 AB002134 Hs.132195 AJ24064 AF027866 Hs.132195 AJ24046 AF027866 Hs.138202 AJ24046 AF027866 Hs.138202 AJ24834 AK001432 Hs.13408 AJ24834 AJ24834 AJ24834 AJ24834 AJ248364 Hs.193560 AJ24836 AJ448464 Hs.1925 AJ24834 AJ44834 AJ24836 AJ448364 Hs.193560 AJ24836 AJ44834 Hs.193560 AJ24836 AJ448364 Hs.19356 AJ448364 AJ44836 AJ44	40					1.00	1.00
418663				Hs.1076	small proline-rich protein 1B (cornifin)	8.97	3.27
418678						112.17	19.00
445 419121 AA374372 Hs.89626 parathyroid hormone-like hormone 1.00 1.00 421773 W69233 Hs.112457 ESTs 1.12 1.14 421978 L42583 Hs.334309 keralin 6A 51.83 20.25 50 422158 L10343 Hs.112411 protease inhibitor 3, skin-derived (SKAL 2.37 1.10 423634 AW9589908 Hs.1690 heparin-binding growth factor binding pr 76.02 1.00 423725 AJ403108 Hs.132195 aido-kelo reductase family 1, member B10 47.53 32.00 423725 AJ403108 Hs.132195 aido-kelo reductase family 1, member B10 47.53 32.00 424012 AW368377 Hs.138202 Averality 1, member B10 47.53 32.00 424012 AW368377 Hs.138202 as fall protein 10C57822 4.20 1.00 420406 AF027866 Hs.138202 serine (or cysteine) protein as enhibito 1.00 1.01 42834 AK001432 Hs.15246 Hs.251677 Agasta						1.18	1.10
420783				Hs.89626	parathyroid hormone-like hormone	1.00	1.00
A	45	420783		Hs.99923	lectin, galactoside-binding, soluble, 7	3.04	1.25
A 1978 A J243662 Hs. 110196 Hs. 110343 Hs. 110343 Hs. 110345 Hs. 110345 Hs. 110345 Hs. 116724 Hs.		421773	W69233	Hs.112457	ESTs	1.12	
1.00		421948	L42583	Hs.334309	keratin 6A		
50 422440 Ag3634 AW959998 Ag43634 AW959998 Hs.1690 Ag3634 AW959998 Hs.1690 Ag3634 AW959998 Ag43636 Ag403108 Ag406 Ag406 Ag406 Ag4032 Ag406 Ag406 Ag4032 Ag406 Ag406 Ag4032 Ag406 Ag406 Ag4032 Ag406 Ag406 Ag4032 Ag406 Ag		421978	AJ243662	Hs.110196			
423634		422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL		
A23725	50	422440	NM_004812				
A		423634	AW959908				
55 424012 AW368377 AF0.27866 424046 AF0.27866 Hs. 138202 serine (or cysteine) proteinase inhibito 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
55 424046 AF027866 AF027874 Hs.138202 A24988 AF027374 Hs.138322 Hs.1539322 Hs.153960 A25050 NM_001944 Hs.1925 desmoglein 3 (pemphigus vulgaris antigen 33.45 1.00 desmoglein 3 (pemphigus vulgaris antigen 34.24 17.00 desmoglein 3 (pemphigus vulgaris antigen 33.45 1.00 desmoglein 3 (pemphigus vulgaris antigen 34.24 17.00 desmoglein 7.00 desmoglein 3 (pemphigus vulgaris antigen 34.24 17.00 desmoglein 7.00 desmog							
424098							
A	22						
August A							
60 427099 AB032953 AA448542 Hs.251677 G antigen 7B 51.83 A.00 428182 BE386042 Hs.293317 ESTs, Weakly similar to GGC1_HUMAN G ANT 1.00 1.00 1.00 1.00 428645 AA431400 Hs.98729 ESTs, Weakly similar to 2017205A dihydro 1.00 16.00 1.00 87.00 428748 AW593206 Hs.98785 Ksp37 protein 1.00 87.00 1.00 87.00 429259 AA420450 Hs.292911 429933 AL134197 Hs.93597 cyclin-dependent kinase 5, regulatory su 11.80 1.00 1.18 429903 AL134197 Hs.93597 v30486 BE062109 Hs.241551 430890 X54232 Hs.2699 glypican 1 1.58 43109 BE149762 Hs.48956 gap junction protein, beta 6 (connexin 3 60.25 28.00 1.58 1.40 431099 BE149762 Hs.48956 y43800 U02388 Hs.101 434860 U02388 Hs.101 434860 U02388 Hs.101 v35605 AF200492 Hs.21238 Hs.101 cytochrome P450, subfamily IVF, polypept 1.00 1.00 38.00 1.20 1.09 38.00 435793 AB037734 Hs.4993 AB037734 Hs.4993 AB036 W79123 Hs.291502 ESTs 1.00 438403 AA806607 Hs.292206 ESTs 1.00 439285 AL133916 Hs.291502 ESTs 1.00 1.00 439285 AL133916 Hs.59507 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439606 W79123 Hs.59501 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439606 W79123 Hs.59501 ESTs, Weakly similar to DAP1_HUMAN DEATH B6.55 11.00 440325 NM_003812 Hs.7164 Hs.27728 ESTS 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00 A5 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00							
60 427335 AA448542 Hs.251677 G antigen 7B 51.83 4.00 428182 BE386042 Hs.293317 ESTs, Weakly similar to GGC1_HUMAN G ANT 1.00 1.00 428645 AA431400 Hs.98729 ESTs, Weakly similar to 2017205A dihydro 1.00 16.00 428748 AW593206 Hs.98785 Ksp37 protein 1.00 87.00 429259 AA420450 Hs.292911 ESTs, Highly similar to S60712 band-6-pr 2.01 1.18 429930 AL134197 Hs.93597 cyclin-dependent kinase 5, regulatory su 11.80 1.00 430486 BE062109 Hs.241551 chloride channel, calcium activated, fam 12.28 41.00 431009 BE149762 Hs.48956 gap junction protein, beta 6 (connexin 3 60.25 28.00 433091 Y12642 Hs.211580 uroplakin 1B 4.49 2.51 434880 U02388 Hs.101 cytochrome P450, subfamily IVF, polypept 1.00 1.00 43505 AF200492 Hs.29123 Hs.2993 KlAA1313							
A28182	60						
A28645	UU						
428748 AW593206 Hs.98785 Ksp37 protein 1.00 87.00 428259 AA420450 Hs.292911 ESTs, Highly similar to S60712 band-6-pr 2.01 1.18 428538 BE182592 Hs.11261 small proline-rich protein 2A 4.43 2.90 429903 AL134197 Hs.93597 cyclin-dependent kinase 5, regulatory su 11.80 1.00 430486 BE062109 Hs.241551 chloride channel, calcium activated, fam 12.28 41.00 430890 X54232 Hs.2699 glypican 1 1.58 1.40 431009 BE149762 Hs.38956 gap junction protein, beta 6 (connexin 3 60.25 28.00 433091 Y12642 Hs.271580 uroplakin 1B 4.49 2.51 433939 Y12642 Hs.3185 lymphocyte antigen 6 complex, locus D 1.20 1.09 434880 U02388 Hs.101 cytochrome P450, subfamily IVF, polypept 1.00 1.00 43505 AF200492 Hs.211238 KIAA13313 protein 23.68 42.00							
65 429259 AA420450 Hs.292911 Hs.11261 small proline-rich protein 2A 4.43 2.90 429538 BE182592 Hs.11261 429903 AL134197 Hs.93597 AL134197 Hs.93597 Hs.93597 yagaba 429603 Hs.241551 Hs.93597 hs.93597 yold-dependent kinase 5, regulatory su 11.80 1.00 430486 BE062109 Hs.241551 Hs.2669 Alta (100) BE149762 Hs.241551 Hs.271580 yold-dependent kinase 5, regulatory su 11.58 1.40 431009 BE149762 Hs.271580 Hs.271580 Alta (100) Alta (10							
65 429538							
1.00	65						
12.28	05						
70 430890 431009 431009 431846 431846 431846 43091 433091 434360 43							
To Fig. 2 To To To To To To To							
70 431846 433091 BE019924 Y12642 Hs.271580 Hs.3185 uroplakin 1B lymphocyte antigen 6 complex, locus D 4.49 1.20 1.20 1.20 1.20 1.20 1.20 1.09 27.00 40.98 27.00 40.98 27.00 40.98 27.00 40.98 27.00 1.00 1.00 38.00 1.00 38.00 1.00 38.00 1.00 38.00 38.00 436511 AF200492 AF201502 AF201502 AF201502 ESTs Hs.4993 KIAA1313 protein 1.00 23.68 42.00 23.68 42.00 438403 42.00 43.68 42.00 439285 AL133916 AL33916 AF201502 AF201502 AF201502 ESTS 16.76 14.00 14.00 14.00 14.00 439606 1.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00							
1.00	70						
75	, ,						
75 434880 435505 AF200492 Hs.211238 Hs.211238 Hs.211238 Hs.211238 Hs.291502 ESTs 1.00 38.00 3							27.00
75 435505 AF200492 A35793 Hs.211238 Hs.4993 KIAA1313 protein 1.00 38.00 A38.00 KIAA1313 protein 23.68 42.00 A2.00						1.00	1.00
75 435793 AB037734 Hs.4993 KIAA1313 protein 23.68 42.00 436511 AA721252 Hs.291502 ESTs 16.76 14.00 438403 AA806607 Hs.292206 ESTs 1.00 1.00 439285 AL133916 hypothetical protein FLJ20093 46.23 139.00 439606 W79123 Hs.58561 G protein-coupled receptor 87 33.61 1.00 439670 AF088076 Hs.59507 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439706 AW872527 Hs.59761 ESTs, Weakly similar to DAP1_HUMAN DEATH 86.55 11.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00						1.00	38.00
80 436511 AA721252 Hs.291502 ESTs 16.76 14.00 439403 AA806607 Hs.292206 ESTs 1.00 1.00 439285 AL133916 hypothetical protein FLJ20093 46.23 139.00 439606 W79123 Hs.58561 G protein-coupled receptor 87 33.61 1.00 439670 AF088076 Hs.59507 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439706 AW872527 Hs.59761 ESTs, Weakly similar to DAP1_HUMAN DEATH 86.55 11.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00	75				KIAA1313 protein	23.68	42.00
80 439285 AL133916 hypothetical protein FLJ20093 46.23 139.00 439606 W79123 Hs.58561 G protein-coupled receptor 87 33.61 1.00 439706 ASSTORM AF088076 Hs.59507 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439706 AW872527 Hs.59761 ESTs, Weakly similar to DAP1_HUMAN DEATH 86.55 11.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00		436511		Hs.291502	ESTs	16.76	14.00
80 439285 AL133916 W79123 Hs.58561 G protein FLJ20093 46.23 139.00 G protein FLJ20093 46.23 139.00 Hs.59507 Hs.59507 Hs.59507 Hs.59507 Hs.59761 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00					ESTs	1.00	1.00
80			AL133916		hypothetical protein FLJ20093	46.23	
439706 AW872527 Hs.59761 ESTs, Weakly similar to DAP1_HUMAN DEATH 86.55 11.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00	00			Hs.58561			
440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00	80	439670	AF088076	Hs.59507	ESTs, Weakly similar to AC004858 3 U1 sm		
441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00		439706	AW872527	Hs.59761			
443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00							
OF HOUSE HOUSE		441525					
63 444378 R41339 Hs.12569 ESTs 1.00 1.00	0.5						
	92	444378	R41339	Hs.12569	ESIS	1.00	1.00

	W	02/086	443				PCT/US02/12476		
5	446292 447078 447342 449003 449101 450832 452240 453317	AF081497 AW885727 A1199268 X76342 AA205847 AW970602 A1591147 NM_002277	Hs.279682 Hs.9914 Hs.19322 Hs.389 Hs.23016 Hs.105421 Hs.61232 Hs.41696	Rh type C glycoprotein ESTs Homo sapiens, Similar to RIKEN cDNA 2010 alcohol dehydrogenase 7 (class IV), mu o G protein-coupled receptor ESTs ESTs ESTs keratin, hair, acidic,1	1.55 47.24 28.63 1.00 2.58 25.17 13.42 1.19	1.26 24.00 1.00 1.00 27.00 36.00 1.00 1.27			
10	453830 454098 455601	AA534296 W27953 Al368680	Hs.20953 Hs.292911 Hs.816	ESTs ESTs, Highly similar to S60712 band-6-pr SRY (sex determining region Y)-box 2	24.92 1.26 206.11	25.00 1.11 1.00			
	TABLE 12B	}							
15									
20	Pkey CAT Number Accession 439285 47065_1 AL133916 N79113 AF086101 N76721 AW950828 AA364013 AW955684 AI346341 AI867454 N54784 AI655270 AI421279 AW014882 AA775552 N62351 N59253 AA626243 AI341407 BE175639 AA456968 AI358918 AA457077								
25	TABLE 12C								
23	Pkey: Ref:								
30	Strand: Nt_position	Indicates D	NA strand fron	n which exons were predicted. ons of predicted exons.					
35	401785 7249190 Minus 165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942 401994 4153858 Minus 42904-43124,43211-43336,44607-44763,45199-45281,46337-46732 402075 8117407 Plus 121907-122035,122804-122921,124019-124161,124455-124610,125672-126076								
40	404996	6007890	1 100	5, 555 551, 15,55552 5566,por.El Boor.El 1856.	, ,	-			

TABLE 13A: Genes Distinguishing Non-Malignant Lung Disease from Lung Tumors and Normal lung

Table 13A shows about 23 genes upregulated in non-malignant lung disease relative to lung tumors and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 13B show the accession numbers for those Pkey's lacking UnigenelD's for table 13A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10

5

Table 13C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 13A. For each gredicted exon, we have listed the genomic

				ing for those Pkey's lacking Unigene ID's and access Nucleotide locations of each predicted exon are also		ole 13A. For each predicted exon, we have listed the genomic
15	UnigenelD: Unigene number Unigene Title: Unigene gene title			et identifier number n number, Genbank accession number		•
20	R1:	Averag	ge of lung tur ge of normal l	ing samples		carcinomas, granulomatous and carcinoid tumors) divided by the atlactasis, asthma) divided by the average of normal lung samples
25	412372 R659 415910 U203	6323 76836 198 150	UnigeneID Hs.31141 Hs.76728 Hs.285243 Hs.78913	Unigene Title Homo sapiens mRNA for KIAA1568 protein, ESTs hypothetical protein FLJ22029 chemokine (C-X3-C) receptor 1	R1 1.00 1.00 1.00 1.00	R2 230.00 128.00 173.00 145.00
30	418819 AA23 422060 R208 424585 AA46 426753 T898	34840	Hs.82223 Hs.191721 Hs.325823 Hs.131987 Hs.170278 Hs.192793	chordin-like ESTs ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs ESTs	1.00 1.00 1.00 1.00 1.00 1.00	179.00 140.00 156.00 167.00 141.00 138.00
35	430719 AA48 431089 BE04 431385 BE17 431728 NM_	38988 11395 78536	Hs.293796 Hs.11090 Hs.268107	ESTs ESTs, Weakly similar to unknown protein membrane-spanning 4-domains, subfamily A multimerin ngb:nv54h12.r1 NCI_CGAP_Ew1 Homo sapiens	1.00 23.32 1.00 1.00 1.00	133.00 941.00 157.00 157.00 218.00
40	437960 Al66 438202 AW1 441499 AW2	9586 69287 98235 9214	Hs.222194 Hs.22588 Hs.101689 Hs.7117 Hs.201591	ESTs ESTs glutamate receptor, ionotropic, AMPA 1 ESTs	1.00 1.00 1.00 1.00 1.00	147.00 141.00 167.00 151.00 141.00
45	453636 R678 458332 Al00	37	Hs.169872 Hs.220491	ESTs ESTs gb:zk15e04.s1 Soares_pregnant_uterus_NbH	1.00 1.00 1.00	116.00 192.00 154.00
	TABLE 13B					
50	CAT number: G	ene clus		enlifier number nbers		
- -	Pkey C	AT Num	ber Accessio	n		

55

327825_1 421802_1 BE041395 AA491826 AA621946 AA715980 AA666102 AA721522 AW975443 T93070 431089

436532

TABLE 13C 60

Pkey:

Unique number corresponding to an Eos probeset
Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.
Indicates DNA strand from which exons were predicted. Ref:

Strand: 65 Indicates nucleotide positions of predicted exons.

Nt_position:

Pkey Ref Strand Nt_position

121907-122035,122804-122921,124019-124161,124455-124610,125672-126076 402075 8117407 Plus 70

TABLE 14A: Preferred Utility and Subcellular Localization for Potential Lung Disease Targets

Table 14A shows the subcellular localization and preferred utility for the genes appearing in Tables 9A and 10A. mAb symbolizes monoclonal antibody, diag symbolizes diagnostic, s.m. symbolizes small molecule, and CTL symbolizes cytotoxic lymphocytic ligand. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 5

Table 14B show the accession numbers for those Pkey's lacking UnigenelD's for table 14A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 14C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 14A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15

20

10

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number ExAccn:

UnigenelD: Unigene number Unigene Title: Unigene gene title
Pref.Utility: Preferred Utility Pref.Utility:

Predicted subcellular localization Pred.Loc:

	Pkey	ExAccn	UnigeneID	Unigene Title	Pref Utility	Pred. Loc
25	400289 400303	X07820 AA242758	Hs.2258 Hs.79136	matrix metalloproteinase 10 (stromelysin LIV-1 protein, estrogen regulated	mAb & diag & s.m. mAb	extracellular plasma membrane
23	400303	AA242100	ns./9130	ENSP00000251056*:Plasma membrane calcium		secreted
	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	diag	secreted
	408243	Y00787	Hs.624	interleukin 8	diag	secreted
• •	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,	mAb & s.m.	plasma membrane
30	408908	BE296227	Hs.250822	serine/threonine kinase 15	s.m.	cytoplasm
	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	CTL & diag	secreted
	409103	AF251237	Hs.112208	XAGE-1 protein	CTL diag	nuclear secreted
	409420 409632	Z15008 W74001	Hs.54451 Hs.55279	laminin, gamma 2 (nicein (100kD), kalini serine (or cysteine) proteinase inhibito	diag	secreted
35	409052	NM_001898	Hs.123114	cystatin SN	diag	extracellular
	409893	AW247090	Hs,57101	minichromosome maintenance deficient (S.	CTL	nuclear
	409956	AW103364	Hs.727	inhibin, beta A (activin A, activin AB a	diag	extracellular
	410001	AB041036	Hs.57771	kallikrein 11	diag	extracellular
40	410407	X66839	Hs.63287	carbonic anhydrase IX	mAb & s.m.	plasma membrane
40	410418	D31382	Hs.63325	transmembrane protease, serine 4	mAb & diag & s.m.	plasma membrane
	412140 412719	AA219691 AW016610	Hs.73625 Hs.816	RAB6 interacting, kinesin-like (rabkines ESTs	s.m. s.m.	nuclear
	414774	X02419	Hs.77274	plasminogen activator, urokinase	diag	extracellular
	414883	AA926960	110.77277	CDC28 protein kinase 1	s.m.	07tti 000ttotat
45	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2	CTL & diag	extracellular
	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	mAb & diag & s.m.	secreted
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	mAb & s.m.	plasma membrane
	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	diag	extracellular
50	417034	NM_006183	Hs.80962	neurotensin	diag	extracellular extracellular
50	417079 417308	U65590 H60720	Hs.81134 Hs.81892	interleukin 1 receptor antagonist KIAA0101 gene product	diag s.m.	mitochondrial
	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	mAb & diag	secreted
	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	mAb	plasma membrane
	417933	X02308	Hs.82962	thymidylate synthetase	s.m.	endoplasmic reticulum
55	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	s.m.	cytoplasm
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	mAb & s.m.	plasma membrane
	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)	CTL	cytoplasmic
	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	diag mAb & s.m.	secreted plasma membrane
60	419171 419183	NM_002846 U60669	Hs.89655 Hs.89663	protein tyrosine phosphatase, receptor t cytochrome P450, subfamily XXIV (vitamin	CTL & s.m.	mitochondrial
00	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy	diag	secreted
	419235	AW470411	Hs.288433	neurotrimin	mAb & diag	plasma membrane
	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	mAb & s.m.	plasma membrane
	419556	U29615	Hs.91093	chitinase 1 (chitotriosidase)	mAb & diag	extracellular*
65	420610	Al683183	Hs.99348	distal-less homeo box 5	CTL	nuclear
	421110	AJ250717	Hs.1355	cathepsin E	sm & diag	extracellular
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy solute carrier family 1 (glutamate trans	diag mAb & s.m.	secreted plasma membrane
	421474 421552	U76362 AF026692	Hs.104637 Hs.105700	secreted frizzled-related protein 4	diag	secreted
70	421753	BE314828	Hs.103700	ATP-binding cassette, sub-family B (MDR/	mAb & s.m.	plasma membrane
, 0	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	mAb & s.m.	plasma membrane
	422109	S73265	Hs.1473	gastrin-releasing peptide	diag	secreted
	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	diag	secreted
75	422282	AF019225	Hs.114309	apolipoprotein L	diag	secreted
75	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	s.m.	nuclear
	422424 422765	Al186431 AW409701	Hs.296638	prostate differentiation factor baculoviral IAP repeat-containing 5 (sur	diag s.m.	extracellular cytoplasm
	422765	AK001379	Hs.1578 Hs.121028	hypothetical protein FLJ10549	s.m.	nuclear
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	diag	extracellular
80	422956	BE545072	Hs.122579	ECT2 protein (Epithelial cell transformi	CTL & s.m.	
	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr	diag	
	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	mAb & diag & s.m.	secreted
	423961	D13666	Hs.136348	periostin (OSF-2os)	mAb & diag	extracellular
85	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito	diag	secreted
02	424381	AA285249	Hs.146329	protein kinase Chk2	s.m.	nuclear

		AE040000		1		outoplocmio
	424502	AF242388	Hs.149585	lengsin	s.m.	cytoplasmic
	424503	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,	mAb & s.m.	plasma membrane
	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	diag	extracellular
_	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	mAb & diag & s.m.	secreted
5	425322	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	s.m.	cytoplasmic
	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	mAb	plasma membrane
	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg	s.m.	
	425776	U25128	Hs.159499	parathyroid hormone receptor 2	mAb & diag	plasma membrane
	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member	mAb & s.m.	plasma membrane
10	426215	AW963419	Hs.155223	stanniocalcin 2	mAb & diag	secreted
	426427	M86699	Hs.169840	TTK protein kinase	CTL & s.m.	nuclear
	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic	mAb & diag	secreted
	427335	AA448542	Hs.251677	G antigen 7B	CTL	cytoplasmic
	427747	AW411425	Hs.180655	serine/threonine kinase 12	s.m.	cytoplasmic
15	428242	H55709	Hs.2250	leukemia inhibitory factor (cholinergic	diag	Ojtopiaoiino
13		L22524			mAb & diag & s.m.	extracellular
	428330		Hs.2256	matrix metalloproteinase 7 (matrilysin,		nuclear
	428450	NM_014791	Hs.184339	KIAA0175 gene product	s.m.	nuclear
	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to	s.m.	
20	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino	mAb & s.m.	plasma membrane
20	428664	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	CTL & s.m.	nuclear
	428698	AA852773	Hs.334838	KIAA1866 protein	mAb	
	428748	AW593206	Hs.98785	Ksp37 protein	diag	extracellular
	428758	AA433988	Hs.98502	CA125 antigen; mucin 16	diag	mitochodria*
	428969	AF120274	Hs.194689	artemin	diag	extracellular
25	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3	mAb & s.m.	plasma membrane
	429263	AA019004	Hs.198396	ATP-binding cassette, sub-family A (ABC1	mAb & s.m.	plasma membrane
	429547	AW009166	Hs.99376	ESTs	diag	secreted
	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas	mAb & diag	secreted
	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	s.m.	000.0.00
30	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	mAb & s.m.	plasma membrane
50					diag	extracellular
	431462	AW583672	Hs.256311	granin-like neuroendocrine peptide precu		
	431515	NM_012152	Hs.258583	endothelial differentiation, lysophospha	mAb & s.m.	plasma membrane
	431846	BE019924	Hs.271580	uroplakin 1B	mAb & diag	plasma membrane
25	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	mAb & diag	plasma membrane
35	432201	Al538613	Hs.298241	Transmembrane protease, serine 3	mAb & diag & s.m.	plasma membrane
	433001	AF217513	Hs.279905	clone HQ0310 PRO0310p1	s.m.	nuclear
	435505	AF200492	Hs.211238	interleukin-1 homolog 1	diag	secreted
	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	s.m.	
	437016	AU076916	Hs.5398	guanine monphosphate synthetase	s.m.	cytoplasm
40	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an	CTL	ER
	437789	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti	CTL.	nuclear
	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa	mAb & s.m.	plasma membrane
	439223	AW238299	Hs.250618	UL16 binding protein 2	mAb	plasma membrane
	439477	W69813	Hs.58042	ESTs, Moderately similar to GFR3_HUMAN G	mAb & s.m.	.
45	439606	W79123	Hs.58561	G protein-coupled receptor 87	mAb & s.m.	plasma membrane
7.7	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	mAb & s.m.	plasma membrane
					s.m.	nuclear
	440006	AK000517	Hs.6844	NALP2 protein; PYRIN-Containing APAF1-li		Tiucicai
	441362	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	s.m.	nleeme membrone
50	442117	AW664964	Hs.128899	ESTs; hypothetical protein for IMAGE:447	mAb & s.m.	plasma membrane
50	443247	BE614387	Hs.333893	c-Myc target JPO1	CTL	extracellular*
	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	CTL	
	443859	NM_013409	Hs.9914	follistatin	diag	extracellular
	444006	BE395085	Hs.10086	type I transmembrane protein Fn14	mAb	plasma membrane
	444371	BE540274	Hs.239	forkhead box M1	s.m.	nuclear
55	444381	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	diag	secreted
	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote	mAb & diag	plasma membrane
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	mAb & diag	secreted
	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	diag	secreted
	446921	AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	diag	extracellular
60	447033	Al357412	Hs.157601	ESTs	CTL & diag	secreted
00	447342	Al199268	Hs.19322	Homo sapiens, Similar to RIKEN cDNA 2010	CTL	
						niasma memorane
	448243	AW369771	Hs.52620	integrin, beta 8	mAb & s.m. ~	plasma membrane
	448844	Al581519	Hs.177164	ESTs	mAb & s.m.	•
65	448844 449048	Al581519 Z45051	Hs.177164 Hs.22920	ESTs similar to S68401 (cattle) glucose induc	mAb & s.m. mAb	plasma membrane
65	448844 449048 449722	Al581519 Z45051 BE280074	Hs.177164 Hs.22920 Hs.23960	ESTs similar to S68401 (cattle) glucose induc cyclin B1	mAb & s.m. mAb s.m.	plasma membrane cytoplasm
65	448844 449048 449722 450001	Al581519 Z45051 BE280074 NM_001044	Hs.177164 Hs.22920	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte	mAb & s.m. mAb s.m. mAb & s.m.	plasma membrane cytoplasm plasma membrane
65	448844 449048 449722 450001 450375	Al581519 Z45051 BE280074 NM_001044 AA009647	Hs.177164 Hs.22920 Hs.23960 Hs.406	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m.	plasma membrane cytoplasm plasma membrane plasma membrane
65	448844 449048 449722 450001 450375 450701	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane
	448844 449048 449722 450001 450375 450701 450983	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ER01 (S. cerevisiae)-like	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane secreted
65 70	448844 449048 449722 450001 450375 450701 450983 451668	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane
	448844 449048 449722 450001 450375 450701 450983 451668 452281	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag	plasma membrane oytoplasm plasma membrane plasma membrane plasma membrane secreted plasma membrane
	448844 449048 449722 450001 450375 450701 450983 451668	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag diag	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane secreted plasma membrane extracellular
	448844 449048 449722 450001 450375 450701 450983 451668 452281	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitle a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ER01 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens CDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro Ig superfamily receptor LNIR	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag	plasma membrane oytoplasm plasma membrane plasma membrane plasma membrane secreted plasma membrane
70	448844 449048 449722 450001 450375 450701 450983 451668 452281 452401	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500 NM_007115	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792 Hs.29352	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro 1g superfamily receptor LNIR preferentially expressed antigen in meta	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag diag mAb & diag	plasma membrane cytoplasm plasma membrane plasma membrane secreted plasma membrane extracellular plasma membrane nuclear
70	448844 449048 449722 450001 450375 450701 450983 451668 452281 452401 452747 452838	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500 NM_007115 BE153855	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792 Hs.29352 Hs.61460	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro 1g superfamily receptor LNIR preferentially expressed antigen in meta	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag diag diag mAb	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane secreted plasma membrane extracellular plasma membrane
	448844 449048 449722 450001 450375 450701 450983 451668 452281 452401 452747	AI581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500 NM_007115 BE153855 U65011	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792 Hs.29352 Hs.61460 Hs.30743	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitle a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ER01 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens CDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro Ig superfamily receptor LNIR	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag diag mAb & diag	plasma membrane cytoplasm plasma membrane plasma membrane secreted plasma membrane extracellular plasma membrane nuclear

TABLE 14B

80

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

CAT Number Accession Pkey

	wo	02/086443	3	PCT/US02/12476	
	414883	15024_1	AA082436 AA292753) AA926959 W76521 W24270 W21526 AA037172 BE267636 H83186 AA469909 N86396 AA001348 BE535736 AA081745 BE566245 6 H72525 H77575 N49786 W80565 H78746 BE569085 W04339 R98127 T55938 BE279271 AW960304 T29812 AA476873 BE297387 8 AA177048 NM_001826 X54941 BE314366 AA908783 AI719075 BE270172 BE269819 AA889955 AI204630 W25243 AI935150	
5			R75953 A AW61300 N95210 A	3 W72395 T99630 AI422691 H98460 N31428 BE255916 H03265 AI857576 AA776920 AA910644 AA459522 AA293140 AW514667 W662396 AA662522 AI865147 AI423153 AW262230 AA584410 AA683187 AW024595 AW069734 AI828996 AA282997 AA876046 2 AA527373 AW972459 AI831360 AA621337 AA100926 AA772418 AA594628 AI033892 W95096 AI034317 AA398727 AI085031 H459432 AI041437 AA932124 AA627684 AA935829 AI004827 AI423513 AI094597 H42079 R54703 AI630359 AA617681 AA978045 3 W44561 AI991988 AI537692 AI090262 AA740817 AI312104 AI911822 AA416871 AI185409 AA129784 AA701623 AI075239	
10			Al494230 Al494211 AA95434	AA633648 Al339996 Al336880 AA399239 Al078708 Al085351 Al362835 Al346618 Al146955 Al989380 Al348243 N92892 AA765856 Al278887 AA962596 Al492600 W80435 AA001979 R97424 Al129015 N24127 AA157451 AA235549 AA459292 AA037114 AA12978 AW059601 AW886710 R92790 N59755 Al361128 AW589407 H47725 H97534 H48076 H48450 T99631 AW300758 H03431 R76789 H777576 R96823 Al457100 N92845 N49682 H42038 BE220698 BE220715 H99552 AA701624 N74173 R54704 H79520 H72923 E261919 AA769633 AA480310 AA507454 AA910586 Al203723 AW104725 W25611 W25071 T88980 H03513 T77589 R99156	5
15	450375	83327_1	W95095 F AA00964	E201919 AV 08033 AA4603 (AA60474) 8747470 AA702275 T77551 AA911952 H82956 N83673 AA283672 7 AA131254 AA374293 AW954405 H04410 AW606284 AA151166 BE157467 BE157601 H04384 W46291 AW663674 H04021 H0153 8 H03231 H59605 H01642 AA852876 AA113758 AA626915 AA746952 AI161014 AA099554 R69067	2
20	TABLE 14C				
20	Pkey: Ref:	Sequence soul	rce. The 7 di	ing to an Eos probeset git numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA some 22." Dunham I. et al., Nature (1999) 402:489-495.	
25	Strand: Nt_position:	Indicates DNA	strand from	which exons were predicted. ns of predicted exons.	
	Pkey	Ref S	Strand	Nt_position	
30	402075	8117407 I	Plus	121907-122035,122804-122921,124019-124161,124455-124610,125672-126076	

TABLE 15A: Information for all sequences in Table 16

Table 15A shows the Seq ID No, Pkey, ExAcon, UnigeneID, and Unigene Title for all of the sequences in Table 16.

- Table 15B show the accession numbers for those Pkey's lacking UnigenelD's for table 15A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.
- Table 15C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 15A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Seq ID No: Sequence ID number

15

Pkey: Unique Eos probeset identifier number

ExAccn: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number Unigene Title: Unigene gene title

20	Seq ID No:	Pkey	ExAccn	UnigenelD	Unigene Title
	Seq ID No: 1 & 2	410407	X66839	Hs.63287	carbonic anhydrase IX
	Seq ID No: 3 & 4	412719	AW016610	Hs.816 Hs.80962	ESTs neurotensin
25	Seq ID No: 5 & 6 Seq ID No: 7 & 8	417034 430486	NM_006183 BE062109	Hs.241551	chloride channel, calcium activated, fam
25	Seg ID No: 9 & 10	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Seq ID No: 11 & 12	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Sea ID No: 13 & 14	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Seq ID No: 15 & 16	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
30	Seq ID No: 17 & 18	439285	AL133916		hypothetical protein FLJ20093
-	Seq ID No: 19 & 20	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin
	Seq ID No: 21 & 22	120486	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog
	Seq ID No: 23 & 24	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen
25	Seq ID No: 25 & 26	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines
35	Seq ID No: 27 & 28	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage
	Seq ID No: 29 & 30	452838	U65011	Hs.30743	preferentially expressed antigen in mela desmocollin 3
	Seq ID No: 31 & 32	418663	AK001100	Hs.41690 Hs.41690	desmocollin 3
	Seq ID No: 33 & 34 Seq ID No: 35 & 36	418663 409632	AK001100 W74001	Hs.55279	serine (or cysteine) proteinase inhibito
40	Seq ID No: 37 & 38	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas
40	Seq ID No: 39 & 40	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad
	Seg ID No: 41 & 42	431846	BE019924	Hs.271580	uroplakin 1B
	Seg ID No: 43 & 44	418830	BE513731	Hs.88959	hypothetical protein MGC4816
	Seg ID No: 45 & 46	424098	AF077374	Hs.139322	small proline-rich protein 3
45	Seq ID No: 47 & 48	443648	A1085377	Hs.143610	ESTs
	Seq ID No: 49	311034	BE567130	Hs.311389	ESTs, Highly similar to NKGD_HUMAN NKG2-
	Seq ID No: 50 & 51	408522	Al541214	Hs.46320	Small proline-rich protein SPRK [human,
	Seq ID No: 52 & 53	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL interleukin-1 homolog 1
50	Seq ID No: 54 & 55	435505	AF200492	Hs.211238 Hs.1076	small proline-rich protein 1B (cornifin)
30	Seq ID No: 56 & 57 Seq ID No: 58 & 59	417366 431958	BE185289 X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta
	Sea ID No: 60 & 61	441020	W79283	Hs.35962	ESTs
	Seg ID No: 62 & 63	423217	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys
	Seq ID No: 64 & 65	429538	BE182592	Hs.11261	small proline-rich protein 2A
55	Seq ID No: 66 & 67	448733	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte
	Seq ID No: 68 & 69	444371	BE540274	Hs.239	forkhead box M1
	Seq ID No: 70 & 71	444371	BE540274	Hs.239	forkhead box M1
	Seq ID No: 72 & 73	444371	BE540274	Hs.239	forkhead box M1
60	Seq ID No: 74 & 75	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias S100 calcium-binding protein A7 (psorias
60	Seq ID No: 76 & 77	422168	AA586894	Hs.112408 Hs.292911	Plakophilin
	Seq ID No: 78 & 79	429259 426440	AA420450 BE382756	Hs.169902	solute carrier family 2 (facilitated glu
	Seq ID No: 80 & 81 Seq ID No: 82 & 83	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an
	Seq ID No: 84 & 85	423662	AK001035	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro
65	Seq ID No: 86 & 87	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino
••	Seq ID No: 88 & 89	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3
	Seq ID No: 90 & 91	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor
	Seq ID No: 92 & 93	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr
70	Seq ID No: 94 & 95	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated
70	Seq ID No: 96 & 97	441362	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re
	Seq ID No: 98 & 99	425322	U63630	Hs.155637 Hs.389	protein kinase, DNA-activated, catalytic alcohol dehydrogenase 7 (class IV), mu o
	Seq ID No: 100 & 101	449003 431009	X76342 BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3
	Seq ID No: 102 & 103 Seq ID No: 104 & 105	409103	AF251237	Hs.112208	XAGE-1 protein
75	Seq ID No: 104 & 103	417542	J04129	Hs.82269	progestagen-associated endometrial prote
75	Seg ID No: 108 & 109	428471	X57348	Hs.184510	stratifin
	Seq ID No: 110 & 111	418004	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member
	Seq ID No: 112 & 113	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2
0.0	Seq ID No: 114 & 115	418203	X54942	Hs.83758	CDC28 protein kinase 2
80	Seq ID No: 116	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m
	Seq ID No: 117 & 118	437016	AU076916	Hs.5398	guanine monphosphate synthetase
	Seq ID No: 119 & 120	449230	BE613348	Hs.211579	melanoma cell adhesion molecule
	Seq ID No: 121 & 122	446989	AK001898	Hs.16740 Hs.35406	hypothetical protein FLJ11036 ESTs, Highly similar to unnamed protein
85	Seq ID No: 123 & 124 Seq ID No: 125 & 126	457819 424687	AA057484 J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B
95	Jey ID NO. 120 & 120	424001	000010	5. 10 11 00	

	WO 02/086	443			
	Seq ID No: 127 & 128	414430	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1
	Seq ID No: 129 & 130	418462	BE001596	Hs.85266	integrin, beta 4
	Seq ID No: 131 & 132	100668	L05424	Hs.169610	CD44 antigen (homing function and Indian
	Seq ID No: 133 & 134	458933	AI638429	Hs.24763	RAN binding protein 1
5	Seq ID No: 135 & 136	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
-	Seq ID No: 137 & 138	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
		418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
	Seq ID No: 139 & 140 Seq ID No: 141 & 142	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
				Hs.14559	hypothetical protein FLJ10540
10	Seq ID No: 143 & 144	446269	AW263155		
10	Seq ID No: 145 & 146	422765	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur
	Seq ID No: 147 & 148	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con
	Seq ID No: 149 & 150	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma
	Seq ID No: 151 & 152	439606	W79123	Hs.58561	G protein-coupled receptor 87
	Seq ID No: 153 & 154	453884	AA355925	Hs.36232	KIAA0186 gene product
15	Seq ID No: 155 & 156	453884	AA355925	Hs.36232	KIAA0186 gene product
	Seq ID No: 157 & 158	453884	AA355925	Hs.36232	KIAA0186 gene product
	Sea ID No: 159 & 160	453884	AA355925	Hs.36232	KIAA0186 gene product
	Seq ID No: 161 & 162	404877			NM_005365:Homo sapiens melanoma antigen,
	Seg ID No: 163 & 164	413129	AF292100	Hs.104613	RP42 homolog
20	Seq ID No: 165 & 166	413281	AA861271	Hs.222024	transcription factor BMAL2
20	Seq ID No: 167 & 168	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote
		416819	U77735	Hs.80205	pim-2 oncogene
	Seq ID No: 169 & 170			115.00200	diacylglycerol kinase, zeta (104kD)
	Seq ID No: 171 & 172	451320	AW118072	Un OFOCO	
25	Seq ID No: 173 & 174	418543	NM_005329	Hs.85962	hyaluronan synthase 3
25	Seq ID No: 175 & 176	454034	NM_000691	Hs.575	aldehyde dehydrogenase 3 family, member
	Seq ID No: 177 & 178	425397	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)
	Seq ID No: 179 & 180	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 181 & 182	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 183 & 184	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
30	Seg ID No: 185 & 186	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 187 & 188	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
9	Seg ID No: 189 & 190	419121	AA374372	Hs.89626	parathyroid hormone-like hormone
	Seq ID No: 191 & 192	448993	AI471630	Hs.8127	KIAA0144 gene product
	Seg ID No: 193 & 194	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR
35	Seq ID No: 195 & 196	430393	BE185030	Hs.241305	estrogen-responsive B box protein
55		425057	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol
	Seq ID No: 197 & 198				chondromodulin I precursor
	Seq ID No: 199 & 200	420462	AF050147	Hs.97932	
	Seq ID No: 201 & 202	102963	X02404	Hs.274534	calcitonin-related polypeptide, beta
40	Seq ID No: 203 & 204	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid
40	Seq ID No: 205 & 206	101175	U82671	Hs.36980	melanoma antigen, family A, 2
	Seq ID No: 207 & 208	429038	AL023513	Hs.194766	seizure related gene 6 (mouse)-like
	Seq ID No: 209 & 210	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 211 & 212	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 213 & 214	131927	AJ003112	Hs.34780	doublecortex; lissencephaly, X-linked (d
45	Seq ID No: 215 & 216	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT
	Seg ID No: 217 & 218	427335	AA448542	Hs.251677	G antigen 7B
	Seq ID No: 219 & 220	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini
	Seq ID No: 221 & 222	114346	AL137256	Hs.130489	ATPase, aminophospholipid transporter-li
	Seq ID No: 223 & 224	438956	W00847	Hs.135056	Human DNA sequence from clone RP5-850E9
50	Seg ID No: 225 & 226	404440			NM_021048:Homo sapiens melanoma antigen,
50	Seg ID No: 227 & 228	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito
	Seq ID No: 229 & 230	103312	Y12642	Hs.3185	lysosomal
		320843	BE069288	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr
	Seq ID No: 231 & 232				Homo sapiens cDNA FLJ13103 fis, clone NT
55	Seq ID No: 233	429065	A1753247	Hs.29643	
23	Seq ID No: 234 & 235	446102	AW168067	Hs.317694	ESTs
	Seq ID No: 236 & 237	330495	U47924	Hs.71642	guanine nucleotide binding protein (G pr
	Seq ID No: 238	413573	AI733859	Hs.149089	ESTs
	Seq ID No: 239 & 240	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to
	Seq ID No: 241 & 242	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to
60	Seq ID No: 243 & 244	332180	AF134160	Hs.7327	claudin 1
	Seq ID No: 245	437915	A1637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca
	Seq ID No: 246 & 247	441553	AA281219	Hs.121296	ESTs
	Seq ID No: 248 & 249	331692	Al683487	Hs.152213	wingless-type MMTV integration site fami
	Seq ID No: 250 & 251	429413	NM_014058	Hs.201877	DESC1 protein
65	Seq ID No: 252 & 253	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis
05	Seq ID No: 254 & 255	448357	N20169	Hs.108923	RAB38, member RAS oncogene family
		446292	AF081497	Hs.279682	Rh type C glycoprotein
	Seq ID No: 256 & 257			Hs.79078	MAD2 (mitotic arrest deficient, yeast, h
	Seq ID No: 258 & 259	416209	AA236776		
70	Seq ID No: 260 & 261	453922	AF053306	Hs.36708	budding uninhibited by benzimidazoles 1
70	Seq ID No: 262 & 263	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito
	Seq ID No: 264 & 265	439223	AW238299	Hs.250618	UL16 binding protein 2
	Seq ID No: 266 & 267	429228	A1553633	Hs.326447	ESTs
	Seq ID No: 268 & 269	409757	NM_001898	Hs.123114	cystatin SN
<i></i>	Seq ID No: 270 & 271	411089	AA456454	Hs.214291	cell division cycle 2-like 1 (PITSLRE pr
75	Seq ID No: 272 & 273	436511	AA721252	Hs.291502	ESTs
-	Seq ID No: 274 & 275	428969	AF120274	Hs.194689	artemin
	Seq ID No: 276 & 277	428969	AF120274	Hs.194689	artemin
	Seq ID No: 278 & 279	428969	AF120274	Hs.194689	artemin
		428969	AF120274	Hs.194689	artemin
~ ~		-14-0000	T97307		gb:ye53h05.s1 Soares fetal liver spleen
80	Seq ID No: 280 & 281	407137			
80	Seq ID No: 282	407137		Hs 335951	
80	Seq ID No: 282 Seq ID No: 283 & 284	412723	AA648459	Hs.335951	hypothetical protein AF301222
80	Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 285 & 286	412723 450701		Hs.335951 Hs.288467	hypothetical protein AF301222 hypothetical protein XP_098151 (leucine-
80	Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 285 & 286 Seq ID No: 287 & 288	412723 450701 405770	AA648459 H39960	Hs.288467	nypothetical protein AF301222 hypothetical protein XP_098151 (leucine- NM_002362:Homo sapiens melanoma antigen,
	Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 285 & 286 Seq ID No: 287 & 288 Seq ID No: 289 & 290	412723 450701 405770 439453	AA648459 H39960 BE264974	Hs.288467 Hs.6566	hypothetical protein AF301222 hypothetical protein XP_098151 (leucine- NM_002362:Homo sapiens melanoma antigen, thyroid hormone receptor interactor 13
85	Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 285 & 286 Seq ID No: 287 & 288	412723 450701 405770	AA648459 H39960	Hs.288467	nypothetical protein AF301222 hypothetical protein XP_098151 (leucine- NM_002362:Homo sapiens melanoma antigen,

	WO 02/086	443			
	Seq ID No: 293 & 294	424629	M90656	Hs.151393	glutamate-cysteine ligase, catalytic sub
	Seq ID No: 295 & 296	437789	Al581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
	Seq ID No: 297 & 298	437789	Al581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
_	Seq ID No: 299 & 300	437789	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
5	Seq ID No: 301 & 302	437789	A1581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
	Seq ID No: 303 & 304	437789	Al581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
	Seq ID No: 305 & 306	453968	AA847843	Hs.62711	High mobility group (nonhistone chromoso
	Seq ID No: 307 & 308	403478			NM_022342:Homo sapiens kinesin protein 9
	Seq ID No: 309	441525	AW241867	Hs.127728	ESTs
10	Seq ID No: 310 & 311	434105	AW952124	Hs.13094	presenilins associated rhomboid-like pro
	Seq ID No: 312 & 313	428810	AF068236	Hs.193788	nitric oxide synthase 2A (inducible, hep
	Seg ID No: 314 & 315	413691	AB023173	Hs.75478	ATPase, Class Vi, type 11B
	Seq ID No: 316 & 317	423934	U89995	Hs.159234	forkhead box E1 (thyroid transcription f
	Seq ID No: 318 & 319	409228	R16811	Hs.22010	ESTs, Weakly similar to 2109260A B cell
15	Seq ID No: 320 & 321	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg
13	Seq ID No: 322 & 323	413582	AW295647	Hs.71331	hypothetical protein MGC5350
	Seg ID No: 324 & 325	438403	AA806607	Hs.292206	ESTs
	Seq ID No: 326 & 327	403329	, 0 1000001	TID.LULLUU	unnamed protein product [Homo sapiens]
	Seq ID No: 328 & 329	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.
20	Seq ID No: 330 & 331	119073	BE245360	Hs.279477	v-ets erythroblastosis virus E26 oncogen
20		113195	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom
	Seq ID No: 332 & 333	102283	AW161552	Hs.83381	guanine nucleotide binding protein 11
	Seq ID No: 334 & 335	102265	NM_005795	Hs.152175	calcitonin receptor-like
	Seq ID No: 336 & 337				cadherin 5, type 2, VE-cadherin (vascula
25	Seq ID No: 338 & 339	103280	U84722	Hs.76206	
23	Seq ID No: 340 & 341	102012	BE259035	Hs.118400 Hs.293815	singed (Drosophila)-like (sea urchin fas
	Seq ID No: 342 & 343	105729	H46612		Homo sapiens HSPC285 mRNA, partial cds
	Seq ID No: 344 & 345	134299	AW580939	Hs.97199	complement component C1q receptor
	Seq ID No: 346 & 347	412719	AW016610	Hs.816	ESTs
30	Seq ID No: 348 & 349	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL
30	Seq ID No: 350 & 351	128924	BE279383	Hs.26557	plakophilin 3
	Seq ID No: 352 & 353	100486	T19006	Hs.10842	RAN, member RAS oncogene family
	Seq ID No: 354 & 355	419121	AA374372	Hs.89626	parathyroid hormone-like hormone
	Seq ID No: 356 & 357	409459	D86407	Hs.54481	low density lipoprotein receptor-related
25	Seq ID No: 358 & 359	330493	M27826	11. 00770	endogenous retroviral protease
35	Seq ID No: 360 & 361	417866	AW067903	Hs.82772	collagen, type XI, alpha 1
	Seq ID No: 362 & 363	418113	Al272141	Hs.83484	SRY (sex determining region Y)-box 4
	Seq ID No: 364 & 365	437016	AU076916	Hs.5398	guanine monphosphate synthetase
	Seq ID No: 366 & 367	429612	AF062649	Hs.252587	pituitary tumor-transforming 1
40	Seq ID No: 368 & 369	440704	M69241	Hs.162	insulin-like growth factor binding prote
40	Seq ID No: 370 & 371	431221	AA449015	Hs.286145	SRB7 (suppressor of RNA polymerase B, ye
	Seq ID No: 372 & 373	431565	AF161470	Hs.260622	butyrate-induced transcript 1
	Seq ID No: 374 & 375	431565	AF161470	Hs.260622	butyrate-induced transcript 1
	Seq ID No: 376 & 377	132354	BE185289	Hs.1076	small proline-rich protein 1B (cornifin)
15	Seq ID No: 378 & 379	424441	X14850	Hs.147097	H2A histone family, member X
45	Seq ID No: 380 & 381	103768	AF086009	Hs.296398	gb:Homo sapiens full length insert cDNA
	Seq ID No: 382 & 383	417512	X76534	Hs.82226	glycoprotein (transmembrane) nmb
	Seq ID No: 384 & 385	425266	J00077	Hs.155421	alpha-fetoprotein
	Seq ID No: 386 & 387	424503	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,
50	Seq ID No: 388 & 389	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin
50	Seq ID No: 390 & 391	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial
	Seq ID No: 392 & 393	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial
	Seq ID No: 394 & 395	418738	AW388633	Hs.6682	solute carrier family 7, (cationic amino
	Seq ID No: 396 & 397	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2
~ ~	Seq ID No: 398 & 399	418506	AA084248	Hs.85339	G protein-coupled receptor 39
55	Seq ID No: 400 & 401	423961	D13666	Hs.136348	periostin (OSF-2os)
	Seq ID No: 402 & 403	414812	X72755	Hs.77367	monokine induced by gamma interferon
	Seq ID No: 404 & 405	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein
	Seq ID No: 406 & 407	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein
C O	Seq ID No: 408 & 409	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse
60	Seq ID No: 410 & 411	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy
	Seq ID No: 412 & 413	444381	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti
	Seq ID No: 414 & 415	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated
	Seq ID No: 416 & 417	411789	AF245505	Hs.72157	Adlican
<i>CE</i>	Seq ID No: 418 & 419	428698	AA852773	Hs.334838	KIAA1866 protein
65	Seq ID No: 420 & 421	450098	W27249	Hs.8109	hypothetical protein FLJ21080
	Seq ID No: 422 & 423	421552	AF026692	Hs.105700	secreted frizzled-related protein 4
	Seq ID No: 424 & 425	452747	BE153855	Hs.61460	lg superfamily receptor LNIR
	Seq ID No: 426 & 427	450375	AA009647		a disintegrin and metalloproteinase doma
70	Seq ID No: 428 & 429	426215	AW963419	Hs.155223	stanniocalcin 2
70	Seq ID No: 430 & 431	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin
	Seq ID No: 432 & 433	432201	AI538613	Hs.298241	Transmembrane protease, serine 3
	Seq ID No: 434 & 435	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph
	Seq ID No: 436 & 437	442117	AW664964	Hs.128899	ESTs; hypothetical protein for IMAGE:447
	Seq ID No: 438 & 439	431211	M86849	Hs.323733	gap junction protein, beta 2, 26kD (сопл
75	Seq ID No: 440 & 441	447033	A1357412	Hs.157601	ESTs
	Seq ID No: 442 & 443	447033	Al357412	Hs.157601	ESTs
	Seq ID No: 444 & 445	447033	Al357412	Hs.157601	ESTs
	Seq ID No: 446 & 447	115522	BE614387	Hs.333893	c-Myc target JPO1
0.0	Seq ID No: 448 & 449	410418	D31382	Hs.63325	transmembrane protease, serine 4
80	Seq ID No: 450 & 451	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119
	Seq ID No: 452 & 453	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119
	Seq ID No: 454 & 455	452461	N78223	Hs.108106	transcription factor
	Seq ID No: 456 & 457	412420	AL035668	Hs.73853	bone morphogenetic protein 2
0.7	Seq ID No: 458 & 459	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara
85	Seq ID No: 460 & 461	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon

	W O 02/080				EOE 14 11 1 11 1 1005040 4 111
	Seq ID No: 462 & 463	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa
	Seq ID No: 464 & 465	402075		11 4000	ENSP00000251056*:Plasma membrane calcium
	Seq ID No: 466 & 467	421110	AJ250717	Hs.1355	cathepsin E
	Seq ID No: 468 & 469	451668	Z43948	Hs.326444	cartilage acidic protein 1
5	Seq ID No: 470 & 471	451668	Z43948	Hs.326444	cartilage acidic protein 1
	Seq ID No: 472 & 473	451668	Z43948	Hs.326444	cartilage acidic protein 1
	Seq ID No: 474 & 475	422282	AF019225	Hs.114309	apolipoprotein L
	Seq ID No: 476 & 477	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member
	Seq ID No: 478 & 479	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),
10	Seq ID No: 480 & 481	427747	AW411425	Hs.180655	serine/threonine kinase 12
	Seq ID No: 482 & 483	420281	Al623693	Hs.323494	Predicted cation efflux pump
	Seq ID No: 484 & 485	405932			C15000305:gi[3806122]gb]AAC69198.1] (AF0
	Seq ID No: 486 & 487	405932			C15000305;gi 3806122 gb AAC69198.1 (AF0
	Seq ID No: 488 & 489	444342	NM_014398	Hs.10887	similar to lysosome-associated membrane
15	Seq ID No: 490 & 491	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy
13	Seq ID No: 492 & 493	417079	U65590	Hs.81134	interleukin 1 receptor antagonist
		430890	X54232	Hs.2699	glypican 1
	Seq ID No: 494 & 495	419721	NM_001650	Hs.288650	aquaporin 4
	Seq ID No: 496 & 497	444471	AB020684	Hs.11217	KIAA0877 protein
20	Seq ID No: 498 & 499		AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycoprote
20	Seq ID No: 500 & 501	413063	AI034361	Hs.135150	lung type-I cell membrane-associated gly
	Seq ID No: 502 & 503	433800			tumor necrosis factor, alpha-induced pro
	Seq ID No: 504 & 505	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro
	Seq ID No: 506 & 507	452401	NM_007115	Hs.29352	
25	Seq ID No: 508 & 509	450001	NM_001044	Hs.406	solute carrier family 6 (neurotransmitte
25	Seq ID No: 510 & 511	410407	X66839	Hs.63287	carbonic anhydrase IX
	Seq ID No: 512 & 513	309931	AW341683		gb:hd13d01.x1 Soares_NFL_T_GBC_S1 Homo s
	Seq ID No: 514 & 515	412719	AW016610	Hs.816	ESTs
	Seq ID No: 516 & 517	417034	NM_006183	Hs.80962	neurotensin
	Seq ID No: 518 & 519	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam
30	Seq ID No: 520 & 521	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin
	Seq ID No: 522 & 523	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen
	Seq ID No: 524 & 525	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage
	Seg ID No: 526 & 527	418663	AK001100	Hs.41690	desmocollin 3
	Seq ID No: 528 & 529	418663	AK001100	Hs.41690	desmocollin 3
35	Seq ID No: 530 & 531	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas
	Seq ID No: 532 & 533	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad
	Seq ID No: 534 & 535	431846	BE019924	Hs.271580	uroplakin 1B
	Seq ID No: 536 & 537	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL
	Seq ID No: 538 & 539	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta
40	Seq ID No: 540 & 541	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an
	Seq ID No: 542 & 543	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino
	Seg ID No: 544 & 545	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3
	Seq ID No: 546 & 547	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor
	Seq ID No: 548 & 549	431009	BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3
45	Seq ID No: 550 & 551	417542	J04129	Hs.82269	progestagen-associated endometrial prote
45		449230	BE613348	Hs.211579	melanoma cell adhesion molecule
	Seq ID No: 552 & 553	410555	U92649	Hs.64311	a disintegrin and metalloproteinase doma
	Seq ID No: 554 & 555			Hs.64311	a disintegrin and metalloproteinase doma
	Seq ID No: 556 & 557	410555	U92649	Hs.151738	matrix metalloproteinase 9 (gelatinase B
50	Seq ID No: 558 & 559	424687	J05070	Hs.85266	integrin, beta 4
50	Seq ID No: 560 & 561	418462	BE001596		hypoxia-inducible protein 2 ·
	Seq ID No: 562 & 563	410274	AA381807	Hs.61762	G protein-coupled receptor 87
	Seq ID No: 564 & 565	439606	W79123	Hs.58561	NM_005365:Homo sapiens melanoma antigen,
	Seq ID No: 566 & 567	404877	NN4 044400	11- 44050	CDL anchored metastasis associated prote
<i>E E</i>	Seq ID No: 568 & 569	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote
55	Seq ID No: 570 & 571	418543	NM_005329	Hs.85962	hyaluronan synthase 3
	Seq ID No: 572 & 573	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 574 & 575	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 576 & 577	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
60	Seq ID No: 578 & 579	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
60	Seq ID No: 580 & 581	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 582 & 583	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 584 & 585	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR
	Seq ID No: 586 & 587	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 588 & 589	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
65	Seq ID No: 590 & 591	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini
	Seq ID No: 592 & 593	332180	AF134160	Hs.7327	claudin 1
	Seq ID No: 594 & 595	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,
	Seq ID No: 596 & 597	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,
	Seq ID No: 598 & 599	439223	AW238299	Hs.250618	UL16 binding protein 2
70	Seq ID No: 600 & 601	409757	NM_001898	Hs.123114	cystatin SN
• -	Seq ID No: 602 & 603	428969	AF120274	Hs.194689	artemin
	Seq ID No: 604 & 605	428969	AF120274	Hs.194689	artemin
	Seg ID No: 606 & 607	428969	AF120274	Hs.194689	artemin
	Seq ID No: 608 & 609	428969	AF120274	Hs.194689	artemin
75	Seq ID No: 610 & 611	450701	H39960	Hs.288467	hypothetical protein XP_098151 (leucine-
	Seq ID No: 612 & 613	450701	H39960	Hs.288467	hypothetical protein XP_098151 (leucine-
	Seq ID No: 614 & 615	414774	X02419	Hs.77274	plasminogen activator, urokinase
	Seq ID No: 616 & 617	407944	R34008	Hs.239727	desmocollin 2
	Seq ID No: 618 & 619	407944	R34008	Hs.239727	desmocollin 2
80	Seq ID No: 620 & 621	457489	Al693815	Hs.127179	cryptic gene
50	Seq ID No: 622 & 623	429547	AW009166	Hs.99376	ESTs
				110,00010	gb:Human nonspecific crossreacting antig
	Seq ID No: 624 & 625	407242	M18728		gb:Human nonspecific crossreacting antig
	Seq ID No: 626 & 627	407242	M18728		gb:Human nonspecific crossreacting antig
95	Seq ID No: 628 & 629	407242	M18728	He 10095	type I transmembrane protein Fn14
85	Seq ID No: 630 & 631	444006	BE395085	Hs.10086	type i transmembrane protein FIL14

+ 7

	wo	02/0864	143			PCT/US02/12476
	Seq ID No:		429597 422109	NM_003816 S73265	Hs.2442 Hs.1473	a disintegrin and metalloproteinase doma gastrin-releasing peptide
	Seq ID No:	636 & 637	419235 449048	AW470411 Z45051	Hs.288433 Hs.22920	neurotrimin similar to S68401 (cattle) glucose induc
5	Seq ID No:	640 & 641	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy
	Seq ID No:	644 & 645	431462 448243	AW583672 AW369771	Hs.256311 Hs.52620	granin-like neuroendocrine peptide precu integrin, beta 8
	Seq ID No: (426427 445537	M86699 AJ245671	Hs.169840 Hs.12844	TTK protein kinase EGF-like-domain, multiple 6
10	Seq ID No:		422278 428450	AF072873 NM_014791	Hs.114218 Hs.184339	frizzled (Drosophila) homolog 6 KIAA0175 gene product
	Seg ID No:	654 & 655	446619 453392	AU076643 U23752	Hs.313 Hs.32964	secreted phosphoprotein 1 (osteopontin, SRY (sex determining region Y)-box 11
15	Seq ID No:	658 & 659	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic
15	Seq ID No:	662 & 663	425776 425776	U25128 U25128	Hs.159499 Hs.159499	parathyroid hormone receptor 2 parathyroid hormone receptor 2
	Seq ID No:		431515 419452	NM_012152 U33635	Hs.258583 Hs.90572	endothelial differentiation, lysophospha PTK7 protein tyrosine kinase 7
20	Seq ID No:	668 & 669	432653 432653	N62096 N62096	Hs.293185 Hs.293185	ESTs, Weakly similar to JC7328 amino aci ESTs, Weakly similar to JC7328 amino aci
20	Seq ID No:	672 & 673	432653 432653	N62096 N62096	Hs.293185 Hs.293185	ESTs, Weakly similar to JC7328 amino aci ESTs, Weakly similar to JC7328 amino aci
	Seq ID No:	676 & 677	410001	AB041036	Hs.57771	kallikrein 11
25	Seq ID No:	680 & 681	426501 408369	AW043782 R38438	Hs.293616 Hs.182575	ESTs solute carrier family 15 (H??? transport
	Seq ID No:		445413 422424	AA151342 Al186431	Hs.12677 Hs.296638	CGI-147 protein prostate differentiation factor
	Seq ID No: Seq ID No:		428330 420610	L22524 Al683183	Hs.2256 Hs.99348	matrix metalloproteinase 7 (matrilysin, distal-less homeo box 5
30	TABLE 15B		420010	711000.00	1.0.000.0	
35	Pkey: CAT numbe Accession:	r: Gene clust		dentifier number umbers		
	Pkey	CAT Numb		ession		
	309931 330493	AW341683 33264_5	M27			AW957800 AA633529 H03662
40	439285	47065_1	AA7	75552 N62351 N	9253 AA626243 A	W950828 AA364013 AW955684 Al346341 Al867454 N54784 Al655270 Al421279 AW014882 Al341407 BE175639 AA456968 Al358918 AA457077
	450375	83327_1	AA1	90993 H03231 H5	9605 H01642 AA8	4405 H04410 AW606284 AA151166 BE157467 BE157601 H04384 W46291 AW663674 H04021 H01532 852876 AA113758 AA626915 AA746952 A1161014 AA099554 R69067
45.	451320	86576_1	AW1 Al12	18072 Al631982 4088 AA224388 /	T15734 AA224195 Al084316 Al35468	5 AI701458 W20198 F26326 AA890570 N90552 AW071907 AI671352 AI375892 T03517 R88265 6 T33652 AI140719 AI720211 T03490 AI372637 T15415 AW205836 AA630384 T03515 T33230 I T33511 T33785 AI419606 D55612
50	TABLE 15C					
	Pkey: Ref:			ponding to an Eo: e 7 digit numbers		Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA
<i></i>	Strand:	sequence (of human ch NA strand t	romosome 22." I from which exons	Dunham I. et al., N were predicted.	lature (1999) 402:489-495.
55				ositions of predict		
	Pkey 402075	Ref 8117407	Strand Plus		2035,122804-1229	921,124019-124161,124455-124610,125672-126076
60	403329 403478	8516120 9958258	Plus Plus	96450-9659 116458-116	3564	
	404440 404877	7528051 1519284	Plus Plus	80430-8158 1095-2107		
	405770 405932	2735037 7767812	Plus Minus	61057-6207 123525-123		
65						

Table 16

		1 DNA seque		16			
5		ience: 43		10			
	1	11	21 I	31	41 	51 (
1.0		ACCGTGTGCT					60
10	AGCCCCTGGC	TCCCTCTGTT	GATCCCGGCC	CCTGCTCCAG	GCCTCACTGT	GCAACTGCTG	120 180
	TCCCCCTTGG	TGCTTCTGAT GAGGAGGCTC	TTCTGGGGAA	GATGACCCAC	TGGGCGAGGA	GGATCTGCCC	240
	AGTGAAGAGG	ATTCACCCAG	AGAGGAGGAT	CCACCCGGAG	AGGAGGATCT	ACCTGGAGAG	300
15		CTGGAGAGGA TAGAGGATCT					360 420
13	AATAATGCCC	ACAGGGACAA	AGAAGGGGAT	GACCAGAGTC	ATTGGCGCTA	TGGAGGCGAC	480
	CCGCCCTGGC	CCCGGGTGTC	CCCAGCCTGC	GCGGGCCGCT	TCCAGTCCCC	GGTGGATATC	540
	CGCCCCCAGC	TCGCCGCCTT TCCCAGAACT	GCGCCTGCGC	AACAATGGCC	ACAGTGTGCA	ACTGACCCTG	600 660
20	CCTCCTGGGC	TAGAGATGGC	TCTGGGTCCC	GGGCGGGAGT	ACCGGGCTCT	GCAGCTGCAT	720
		GGGCTGCAGG TCCACGTGGT					780 840
		GAGGCCTGGC					900
25	AGTGCCTATG	AGCAGTTGCT	GTCTCGCTTG	GAAGAAATCG	CTGAGGAAGG	CTCAGAGACT	960
25		GACTGGACAT CTCTGACTAC					1020 1080
	CAGACAGTGA	TGCTGAGTGC	TAAGCAGCTC	CACACCCTCT	CTGACACCCT	GTGGGGACCT	1140
	GGTGACTCTC	GGCTACAGCT TCCCTGCTGG	GAACTTCCGA	GCGACGCAGC	CTTTGAATGG	GCGAGTGATT AGTCCAGCTG	1200 1260
30	AATTCCTGCC	TGGCTGCTGG	TGACATCCTA	GCCCTGGTTT	TTGGCCTCCT	TTTTGCTGTC	1320
	ACCAGCGTCG	CGTTCCTTGT	GCAGATGAGA	AGGCAGCACA	GAAGGGGAAC	CAAAGGGGGT	1380
		GCCCAGCAGA CAGCCAGAGG					1440 1500
25		CTTTTAACTG					
35	Sea ID NO:	2 Protein s	and and a				
	-	cession #: 1	•				
	1	11	21	31	41	51	
40	1	1		1	1	1	
		PLLIPAPAPG SPREEDPPGE					60 120
	DPQEPQNNAH	RDKEGDDQSH	WRYGGDPPWP	RVSPACAGRF	QSPVDIRPQL	AAFCPALRPL	180
45	ELLGFQLPPL	PELRLRNNGH	SVQLTLPPGL	EMALGPGREY	RALQLHLHWG	AAGRPGSEHT	240
70							
	EEGSETQVPG	LDISALLPSD	FSRYFQYEGS	GLAVLAAFLE LTTPPCAQGV	IWTVFNQTVM	LSAKQLHTLS	300 360
	EEGSETQVPG DTLWGPGDSR	LDISALLPSD LQLNFRATQP	FSRYFQYEGS LNGRVIEASF	LTTPPCAQGV PAGVDSSPRA	IWTVFNQTVM	LSAKQLHTLS	
50	EEGSETQVPG DTLWGPGDSR	LDISALLPSD	FSRYFQYEGS LNGRVIEASF	LTTPPCAQGV PAGVDSSPRA	IWTVFNQTVM	LSAKQLHTLS	360
50	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO:	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR	LTTPPCAQGV PAGVDSSPRA PAEVAETGA	IWTVFNQTVM	LSAKQLHTLS	360
50	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac:	LDISALLPSD LQLNFRATQP FLVQMRRQHR	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC01392	LTTPPCAQGV PAGVDSSPRA PAEVAETGA	IWTVFNQTVM	LSAKQLHTLS	360
	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac:	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC01392	LTTPPCAQGV PAGVDSSPRA PAEVAETGA	IWTVFNQTVM	LSAKQLHTLS	360
50 55	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession sence: 438-1	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC01392 1391	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 23	IWTVFNQTVM AEPVQLNSCL 41	LSAKQLHTIS AAGDILALVF 51	360 420
	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequ 1 AGCGGGGGTTG	LDISALLPSD LQINFRATQP FLVQMRRQHR 3 DNA seque id Accession Lence: 438-	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC0139: 1391 21 1 TGTTCAAAAA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 23 31 GTATCAGGAG	IWTVFNQTVM AEPVQLNSCL 41 TTGTCAAGGC	LSAKQLHTLS AAGDILALVF 51 AGAGAAGAGA	360
	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGGGGGGTTG GTGTTTGCAA AGAGGAGAGA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession Lence: 438-1 11 TCTATTAACT AAGGGGGAAA GAAAGAAAGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG	IWTVFNQTVM AEFVQLNSCL 41 TTGTCAAGGC GACTAGGACT GCTTAAGCCT	LSAKQLHTLS AAGDILALVF 51 AGAGAAGAG AGAGAAGA TTCCAAAAAA	360 420 60 120 180
55	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGGA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 23 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG TCGGCCAGAG	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GAGAGGGAA	LSAKQLHTLS AAGDILALVF 51 AGAGAAGAA GAGAAAAAA GCGCTTTTTT	360 420 60 120
	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequ AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAT TCCTCGCGGA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession Lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGGTTGC GCCCTGCGCT	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGG CTCTCTCTTTCTCTCTCTCTCTCTCTCTCTCTCTCTC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGGCCAGAC TCTTCCCCCA CCGCCCGCCT	IWTVFNQTVM AEFVQLNSCL 41 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GAGGAGGGAA AATTATTCTT CCCCTCCTCC	LSAKQLHTLS AAGDILALVF 51 AGAGAAGAA GAGAAAGA TTCCAAAAAA GCGCTTTTT TCTCCCCCG	60 120 180 240 300 360
55	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTCGCGGA CCCGCGGGCC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCTGCGCT CCCCAAAGTC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGGA CTCTCTCTTTT CCCGACACCC CCGGCCGGGC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCTGCCCAGG TTTTCCCCCA CCGCCCGCCT CGAGGGTCGG	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GAGGAGGGAA AATTATTCTT CCCCTCCCCCCCCCC	S1 AGGAAAGA GAGAAAAA GCGCTTTTT TCTCCCCCC CGGCCGGCC	60 120 180 240 300 360 420
55 60	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding seq 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTCGCGGA CCCGCGGGCC CCGCGGGCC AGCAAACTTC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGATTTGC GCCTGCGCT CCCCAAAGTC GGGGGGCGGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence m #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCCGGCAGGA CTCTCTCTTT CCCGACACCC CCGGCCGGGC GCGGCGGGC GCGGCGGGCG	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCTGCCAGAG TCTTCCCCA CCGCCGCCT CGAGGTCGG TGGAGACGGA CCACCGCGGC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT CAGGAGGAA AATTATTCTT CCCTCCTCC CGGCCGCGG GCTGAAGCCG GCGCCGGC	51 AGAGAAGAGA GAGAAAGA TTCCAAAAAA GCGCTTTTT TCTCCCCCG GCGGCCCGC CCGGGCCCGGC CCGGGCCCGGC	60 120 180 240 360 420 480 540
55	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAATACAC CCGCGGCACAG AGCAAACTTC AAAACAGCCC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession Lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCTGCGCT CCCCAAAGTC CGCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGGA CTCTCTCTTT CCCGACACCC CCGGCCGGGC TACAACATGA GGCGGCAACT AAGCGGCCCC AAGCGCCCC AAGCGCCCC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCTTCCCCAG CTTTCCCCCAG CTGAGGGTCGG TGGAGACGGA CTGACCGCGGC TGGAGGCCGGC TGGATGCCTT TGAATGCCTT	A1 TTGTCAAGGC GACTAGACCT GCTTAAGCCT GCGCGCCGG GCTGAAGCCG GCTGAAGCCG CGCGCCGG CCTAAGCCT CCCTCCTCC	51 AGAGAAGAA AGAGAAGAA TCCAAAAAA CGCTTTTT TCTCCCCCG CGGGCCCGG CCGGCCCGC CGGGCCCGG TCCCCCGCCCCCCCC	60 120 180 240 300 360 420 480 540 600
55 60	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequ 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTCGCGGG CCGCGCACAG AGCAAACTTC AAAACAGCCC AGCGGGCGCACAA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGATTTGC GCCTGCGCT CCCCAAAGTC GGGGGGCGGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PICE TH: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCCGGCAGGA CTCTCTCTTT CCCGACACCC CCGGCCGGGC TACAACATGA GGGGCAACT GAGGGCCACAC GAGAACCCCA GAGAACCCCA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGCCCAGCT CCGCCCGCCT CGAGGGTCGG TGGAGACGGA CCACGCGCGCT TGGAGACGGA CCACGCGCT TGGAGACGGA CCACGCGCT TGGAGACGCA CCACGCGCT AGATGCACAA	A1 TTGTCAAGGC GACTAGAGCT GCTTAAGCCT GCGCCGCGGGCGCGGCCGGCCGCCGCCGCCGCCGCCGCC	51 AGAGAAGAGA AGAGAAGAGA GAGAAAAAA GCGCTTTTTT CGCCTGATTT TCTCCCCCG CGGGCCCGG CCGGGCCCGC CGGGCCAGC AGCAACCAGA ACCAGGAACCAGA ACCAGAAGCAGCAACAGCACAACA	60 120 180 240 360 420 480 540
55 60	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TCGTCGCGGA CCCGCGGGCC CCGCGGGCC AGCAAACTTC AAAACAGCCC AGCGCGCACAA AGGAGCGCACAA AGGAGCGCACAA AGGAGCACAA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGATTTGC GCCTGCGCT CCCAAAGTC CCCCAAAGTC GGGGGGCGGC GGACCGCGTC GATGGCCCGCATG GGGGGGCGGC GATGGCCCAA	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR Ence m #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCCGGCAGGA CTCTCTCTTT CCCGACACCC CCGGCCGGGC ACACACATGA GAGAACCCCA AAGCGCCCA GAGAACCCCA AAGCAGCACA ATTGTCGAGA ATTGAGAGA ATTGAGAGA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGA TCTGCCCAGAG TCTTCCCCA CCGCCGCCT CGAGGTCGG CGAGAGAGAG CCACCGCGGC TGAATGCCTA AGATGCCTA ACCGGGATTA	A1 ITTGTCAAGGC GACTAGGACT GCTTAAGCCT CGGCGCCGG GCTGCGCGCGC GCGCCGGC CATGGTGTG CTCAGGAGCCG CTCGGAGTC CTCGGAGTC CTCGGAGTC TAAATACCG	51 AGAGAAGAGA GAGAAAGA TTCCAAAAAA GCGCTTTTT TCTCCCCCG GGGCCGGC CCGGGCCGC GCAACCAGA TCCCGCGGC GCAAGCAGA CCCGCGCGC AGCAAGCCGC AGCAAGCCGC AGCAAGCCGC AGCAAGCCGC AGCAAGCCGC AGCAAGCCGC	60 120 180 240 360 420 600 600 620 780
556065	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC CCGGGGGCC CCGCGCACAG AGCAAACTTC AAAACAGCCC AGCGCCCAA TGGGCGCCGA AGCGGCCCGA AGCGGCCCGA AGCGGCCCGA AGCGGCCCGA AGCAGCCCGA AACCAAGAC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAGG AATCATCGGC TCCAGTTGC GCCCGCATG CGCCCGCATG CGCCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT CCCGACACCC CCGGCCGGGC TACAACATGA GGCGGCAACT AAGCGGCCCA GAGAACCCCA ATGTTCGGAGAC ATGTTCGGAGAC AAGCAGCCA ATGTAGGAGAC AAGAACACACA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGA TCTTCCCCA CCGCCGCCT CGAGGGTCGG TGAAGACCGA CCACCGCGGC TGAATGCCTT AGATGCACA ACACGGGATTA ACACGCTGCC ACACCGGGATTA ACACGCTGCC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GAGGAGGGAA AATTATTCTT CCCTCCTCC GGCGGCCGG CCTGAAGCCG GCTGAAGCCG CATGGTGTG CTCGGAGGAGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGT	S1 AGAGAAGAGA GAGAAGAAGA TTCCAAAAAA GCGCTTTTT TCTCCCCCG CGGGCCCGC GGCAACCAGA TCCCGCGGCC GCAACCAGA TCCCGCGGC GCAACCAGA TCCCGCGGC GCAACCAGA TCCCGCGGC CGCGGCC CGCGGCCCGC CGCGGCCCGC CGCGGCCCGC CGCGGCCCGC CGCGGCCCCC CACGGCGCA	60 120 180 300 360 420 480 540 600 600 720
55 60	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTGGCGA CCCGCGGCC CCGCGCACA AGCAAACTTC AAAACAGCCC AGCGGCGCAA AGCGCGCAA AGCGCGCAA AGCGCCCGA AGCGCGCAAA AGCGCCCGAAAC AGCGCGCAAAGAC AGCGCAATAG AGCGCAATAG	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCACAAGTT CGCCCGCATG GGGGGGCGGC GATGGCCCAG GGTGGAACTT AGCGCTGCCAG GTGGAAACTT AGCGCTGACG GCTGATGAAG CATGGCCAG GCTGATGACG CATTACGCC CAGTTACGCC CAGTTACGCC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC01392 13391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT CCCGACACCC CCGGCCGGGC TACAACATGA GGCGCCAAC AGCGCCCA GTAGAACCCA AGCGACCCA AGCGCCCA AGCGCCAAC AGCGCCAAC AAGCGCCAA ATGAACATGA AGCAACCCA ATGAACACCCA ATGAACGCGCCAACTGAACC CACATGAACC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG TCTTCCCCCA CGCCGCCTCCCAGGCCCGCCT CGAGGGTCGG TGAAGACGCA CCACCGCGGC TGAATGCACTA CGAGAAGCCT ACACGCTGCC ACCCGGATTA ACACGCTGCC GCTGGAGCAA	A1 TTGTCAAGGC GACTAGGACT CCTTAAGCCT GCTGAAGCCG GCGCCGG GCTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGC CTGGAGT CTCATCT CCCCTCCCC CCGCCGC CCGCCGC CCGCCGC CCGCCGC CCCGCCCC CCGCCCCC CCCCCC	51 AGAGAAGAGA GAGAAAGAGA GAGAAAGAA TTCCAAAAA GCGCTTTTT TCTCCCCG GCGCCGGC CCGGGCCGC GCAACCAGA TCCCGCGGGC CCGGGCCGC GCAACCAGA TCCCGCGGGC TCCCGCGGGC AGCAGGCTA CCCGGGGCA CTGGCCCCG GACAGGCTA CCCGGCGGA CTGGCCCCC GACAGGCTA CCCAGGCGA CTGGCCCCC AGCATGATGC	60 120 180 240 300 360 420 600 660 720 780 840 900
556065	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TCGTCGCGGA CCGCGCGCACAG AGCAAACTTC AAAACAGCCC AGCGGCGCAAA AGGGCGCGAAA AGGGCGCGAAA AGGGCGCGAAA AGGGCGCGAAA AGGGCGCGAAAAACTAC AAACAAGAC AGCAATAG AGCAATAG AGGACCAGCA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG ATCATCGGC TCCAGATTTGC GCCCGCATG GGGGGGCGGC GGACCGCGTC GATGGCCGAACTC AAGGCCTGCATG GATGGCCATG GATGGCAAC CATTACACGC GTCATGAAG CATTGCCAAG CATTGCCAGAG CATTACCCG GGGTACCCCG GGGCTACCCC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR Ence m #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCCGGCAGGG CTCTCTCTTT CCCGACACCC CCGGCCGGGC ACACACATGAA GAGAACCCCA AAGCAGCACCA AAGAACCCCA AAGAACACATGAAG ATGAAGAAG ATGAAGAAG CACATGAAG CACATGAAG CACATGAAC CAGCACCCG CAGCACCCG CAGCACCCC CAGCACCCC CAGCACCCC CAGCACCCC CAGCACCCCC CAGCACCCCC CAGCACCCCC CAGCACCCCCC CAGCACCCCCC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCTTCCCCA CCGCCGCCT CCAGGGTCGG TGGAGACGGA CCACCGCGGC TGAATGCCTA AGATGCCTA AGATGCCTA AGATGCCTA ACACGCGGC ACCGGGTTA ACACGCTGCC TGGGGCGCC TGGAGAAGCG ACCCGGATTA ACACGCTGCC TGGGGCGCCA ACCCGCGCT GCGGGCTCATGCC ACCCGCGCCT GCGCGCCCACGCCC ACCCCCACTGCC ACCCCCACTGCC ACCCCCACTGCC ACCCCCACTGCC ACCCCCCACTGCC ACCCCCACTGCC ACCCCCCACTGCC ACCCCCCACTGCC ACCCCCCCCCC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT CGGCGCGGG GCGCCGGC CATGGTGTG CTCAAGCCG GCGCCGGC CATGGTGTG CCTCCTCC CGGCGCGC CATGGTGTG CCTCGGAGAT CCCGGCGCC CCGGCGCC CCGGCGCCGC CCTCGGCGCC CCGGCGCCGC CCGCGCCGC CCGCGCCGC CCGCGCCGC	51	60 120 180 240 360 420 600 600 600 620 780 840 900 1020
55606570	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTGGCGA AGCAGACAC AGCAGACAC AGCAGCCAC AGCGGCCCAA AGCGGCCAAA AGACCAACA AGCACAACA AGCACAACA AGCCCATGCA ACCCTACATGAA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCGCATG GGGGGGCGGC GGACCGCGTC GATGGCCTA GGTGAAACT AGGGCTACAG GCTATGAAC GCTCATGAAC GCTATGAAC GCTATGAAC CAGGTTACGCC GGGGTACCCG GGGGTACCCG GGGCTACCAC CGGCTACGAC CGGCTACGAC CGGCTACGAC CGGCTACGAC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE 1 #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGCC CCGGCCGGC TACAACATGA GGCGCAACT AAGCGCCAA TTGTCGGAGA ATGAAGAGAGA ATGAAGAGACCCA TTGTCGGAGA ATGAAGGACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCCG CAGCACCCG CAGCACCCG CAGCACCCGC ACCTACAGCA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TTTTCCCCA CGGCCGCCT CGAGGGTCGG TGAATGCCT AGATGCACAA CCACCGCGC TGAATGCCT AGATGCACAA ACACGCTGC ACCCGCGCT ACACGCTGAATGC ACCCGCGATTA ACACGCTGCC ACCCGCGATTA ACACGCTGCC TGGAGAACAA TGCCTCAATGC TGCAGTACAA TGTCCTACTC	A1 TTGTCAAGGC GACTAGGACT CCCTCCTC CGCCGCCGG GCTGAAGCCG GCTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGG CCTGAAGCCG GCGGCCGC CCTGAGAGTC CCCGCCGCG CCGCGCGCG CCGCGCGCGCG CCCGCGCGCGCGCCGC	51 AGAGAAGAGA GAGAAAGAGA TTCCAAAAAA GCGCTTTTT TCTCCCCCG GGCCGGC CCGGGCCGC GGCAACCAGA TCCCGCGGGC GCAACCAGA TCCCGCGGGC GGCAACCAGA TCCCGCGGGC GACAGAGCCC GACGAGGCT ACCCGCGGGA CTGGCCCCC GGCGTGAACC AGCATGATGC CCGCAGATGA ACCCCTGGCAA	60 120 180 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140
556065	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGGTTG GTGTTTGCAA AGAGAGAGA TAATAATAAC TCGTCGGGGA CCGGGGCCAA AGAAACTTC AAAACAGCCC AGCGGCGCAA AGCAAACTTC AGCGCGAAA AGCGCCAAA AGCGCATGCA AGCGCATGCA AGCGCATGCA AGCCATGCA AGCCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA TGGCTCTTGG	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGGAAA GAAAGAAAGG GACTGCGC TCCACAGTTGC GCCTGCGCT GGCGGCTC GATGGCCCAG GTGGAAACTT AGCGCTGCAC GTTGAAACT AGCGCTGCAC GTTGAAACT AGCGCTGCAC GCTCATGAGA CAGTTACGCG GGCTACCAC GCTCATGAGAC CCGCTACCGC CCGCTACCAC CCGCTCCCC CCGCTACGAC CCGCTCCCC CCCCTCCATGGCC CCGCTCCCC CCCCTCCATGGCT	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE # #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT CCCGACAGCC CCGGCCGGGC TACAACATGA AGGACCCA AGGAACCCCA TTGTCGGAGA ATGAAGGAGC AAGGATAAGT GGGGTCGGG CACATGAAC CACACCCC CACACCC CACACCC CACACCC CACACCC CACACCC CACACC CACACCC CACACC CACACC CACACCC CACACC CACACCC CACACC CACTACAGC TCGGTGGTC TCGTGGTC TCGTGTGTC TCGTGTC TCGTTC TCT TCGTTC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TTTTCCCCCA CGCCGGCT CGAGGGTCGG TGAGACGAGA CCACCGCGGC TGAATGCCTA AGATGCACTA ACACGCTGCC GCGGGCTGATA ACACGCTGCC GCTGGAGCAGA CCCGGATTA ACACGCTGCC TGGAGCAGA TGCAGTACAA TGTCCTAATGC AGTCCGAGGG AGTCCGAGGCA ACACCTCAATGC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCTGAGGAGGAA AATTATTCTT CCCCTCCTCC CGGCGCGGG GCTGAAGCCG GCGGCGGC CTCGGAGATC TAAATACCGG CCGGCGGCGC CCGGCGCGCC CCGCAGCTAC CCTCCATGAC CCTCCATGAC CCACGAGCAC CCACGAGCAC CCACGAGGAC CCACGAGCAC CCACGAGGAC CCACGAGGAC CAGCACAGCCC CAGCAGCAC CAGCAGCAC CAGCAGCAC CAGCACAGCC CAGCACAGCC CAGCACAGCC CAGCACACC CCACCACGC CCACCACGC CCACCACGC CCACCACC CCACCACC CCACCACC CCACCACC CCACCA	51 AGAGAAGAGA GAGAAAGA GAGAAAGA GAGAAAGA TTCCAAAAA TTCCAAAAA CGCTTTTT TCTCCCCG GCCGGCC GGCAACCAGA TCCCGCGGGC CGGGCCGGC GGCAACCAGA TCCCGCGGGC AGCAAGCGC AGCAAGCACA CCCGGCGAA CCCCGGCGAACCAGA CCCCGGCGAACCAGA ACCCCTGCACACCCCCCTGCGC CCCCCTGTGG	60 120 180 240 300 360 420 660 660 6720 780 840 960 1020 1080 1020 1140 1200
55606570	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGGTTG GTGTTTGCAA AGAGGAGAGA AGATAATAAT TCCTCGCGGA CCCGCGCACAG AGCAAACTTC AAAACAGCCC AGCGCCACAG AGCACGCACAG AGCAACTGC AACCAAGAC AGCACTGCA AGCCCCAAGAC AGCACTGCA AGCCCATGCA AGCCCATGCA AGCCCTTCC TTACCTTGC TTACCTTTC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-: 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGATTGC GCCCGCATG GGGGGGCGC GGACCGCGTC GATGGCCGCATG GGGAACTT AGGGCTGCAC GCTCATGAAG CCTGAAACTT CCGCATGCAC GCTCATGAAC CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAGC CCGCTACCAC CCGCTACCAC CCCCCACTCC CTCCATGGGT CTCCCACTCC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE # #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT CCCGACAGCC CCGGCCGGGC ACCAACACATGA AGCGGCAACCC AAGAACCCCA ATGAAGAAGT AAGCGGCCA ATGAAGAAGG CACATGAAG CACATGAAG CACATGAAC CAGCACCCG GTGAGCCCC ACCTACAGCA ACGGGCCCC ACCTACAGCA ACGGGGCCCC ACGACCCCC ACGGCGCCCC ACGGCCCCC ACGGCCCCC ACGGCGCCCC ACGGCGCCCC ACGGCGCCCC ACGGCGCCCC ACGGCGCCCCT	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGGCCAGAG TCTTCCCCA CCGCCGCCT CCAGGGTCGG CGAGAGAGCG ACACCGCGGC TGAATGCCTT AGATGCACA ACACGCGGC TGGAGCAG GCTGAGCAC GCTGAGCAC TGGAGCAC TGGAGCAC TGCAGTACAC TGCAGTACAC TGCAGTCCC TGCAGTCCC TGCAGTCCC TGCAGCCGG	A1 ITTGTCAAGGC GACTAGGACT GGTTAAGCCT GAGGAGGGA AATTATTCTT CCCTCCTCC CGGCGCGGC GCTGAAGCCG GCTGAAGCCG GCGGCCGGC CATGGTCATC TAAATACCGG CGCGGCTGC CCCGCAGCTAC CCCCCCCC CAGCAGCGC CGCAGCTAC CCACAGCAGGC CACACAGGC CAGCAGCAGC CAGCAGCAGC CAGCAGCAGC CAGCAGCAGC CAGCAGCAGC CAGCAGCAGC CAGCACAGC CAGCACAGC CAGCACAGC CAGCACAGC CAGCACCACC CAGCACAGC CAGCTCCAGC CGCACCCCC CAGCACCAGC CAGCTCCCAGC CGCACCTCCCG CGCACCTCCCC CACCTCCCCC CACCTCCCCC CACCTCCCCC CACCTCCCCC CCACCTCCCC CCACCCCCC CCACCCCCC CCACCCCCC CCACCCCCC	51	60 120 180 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140
55606570	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGAGAGA TAATAATAAC TGATCCTGAT TCCTGGCGA AGCAGACAC AGCACACAC AGCGCGCAAAC AGCACACAC AGCGCAAC AGCGCAATAG AGCACACAC AGCGCAATAG AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA TGGCTCTTCC CCCAGCACTA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCGCATG GGGGGCGCC GATGGCCCA GCTGAAACT AGGGCTACCAC GCTCATCAC GCTCATCAC GCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCACCC CCCCTACGAC CCCCTCCCCC CCCCCCCCCC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE 1 #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGCC TACAACATGA GCGGCAACT AAGCGCCAA TTGTCGGAGA ATGAAGAGAGT GGGGTAGGAC CACTACACCC AGCACCCC CACCACC CACCACC CACCACC CACCACC CACCAC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG TTTTCCCCCA CCGCCGCCT CGAGGGTCGG TGAATGCCT CAGAGACGAA CCACCGCGGC TGAATGCCT ACACGCTGCA ACCCGGATTA ACACGCTGCA ACCCGGAGA GCTCAATGC GCTGAATGC TGGAGACAA GCCTCAATGC ACCCCAGCCGG GCTGAATGC ACCCCAGCCGG GCAGCCCGC GCCAGCCCGC GCCAGCCCGC GCCAGCCCGC GCCAGCCCAT	A1 TTGTCAAGGC GACTAGGACT CCCTCCTC CGCCGCGG GCTGAAGCCG GCGGCCGG CTGAGGAGT CTCATGCT TAAATACCGG CCGCGGCGG CCGCGGCGG CCGCGGCGGC CCTGAGGAGT CCCTCCTC CCTCCCC CCGCCGCGG CCGCGCGC CCGCGCGC CCGCGCGGC CCGCGCGC CCGCGCGGC CCGCGCGC CCGCGCGC CCGCGCGC CCCGCGCGC CCCGCAGCAGC CCCCGCGGC CCCCGCGGC CCCCGCGGC CCCCGCGGCACACACA	51 AGAGAAGAGA GAGAAAGAGA GAGAAAGAA TTCCAAAAAA GCGCTTTTT TCTCCCCCG GCGGCCCGC GGCAACCAGA TCCCGCGGC GCAACCAGA CCCGGGCCC GACGAGCCCC GACGAGCTA CCCCGCGGC GCAGCCCCC GCCGGGCCCC GCCGCGCC GCCGCGCACCCC GCCGCGCCC GCCGCGCCC CCCCCCCC	60 120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1140 1200 12180
5560657075	EEGSETQVPG DTIMGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding seq 1 AGCGGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TCGTCGCGGA CCGCGCACAG AGCAAACTTC AAAACAGCCC AGCGCACAG AGCGCATGCA AGGCCATGCA AGGCCATGCA AGGCCATGCA AGGCCATGCA TGGCTCTTCG CCATGTTTGCTCTTCGCATTTCCCCAGCACTTCCCCAGCACTTCCCCCCCC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCTGCGCT CGCCCGCATG GGGGGCGCG GGACCGCTG GTGGAAACTT AGCGCTGCAC GCTGCACA GCTCATGACG CATTACGCC GCCTATGCCCC CCCCAAGTC CCCCAAGTC CCCCAAGTC CAGTTGCCCAC GGCTCATGACG CATTACGCC CCCTCATGCGC CCCCTCCACCC CCCCCACCCC CCCCGGCGCC CCCCAGGGCC CCCCAGGCGCC CCCCAGGCGCC CCCAGGCGCC CCCCAGGCGCC CCCCAGGCGCC CCCCAGGCGCC CCCCAGGCGCC CCCCAGGCGCC CCCAGGCCGCA	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGGA CTCTCTCTTT CCCGACACCC CAGCCGGC TACAACATGA AGGGCCCAC ATGAAGGAC ATGAAGGAC ATGAAGGAC ATGAAGGAC CACATGAAC CACACCCA ATGAACGCC ACTACAGC ATCATGAC CACTACAGC ATCATGAC AGGACCCCG GTGACCCC ACCTACAGC ACGAGCCCCT ACGGTGCCCC ACGGGCCCCC AGGGGCCCCC AGGGGCCCCC AGGGGCCCCC AGGGGCCCCC ACGGGGCCCCC ACGGGGCCCCC ACGGGGCCCCC ACGGGGCCCCC ACGGGGCCCCC ACGGGGCCCCC ACGGGGCCCCC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGA TTTTCCCCCA CCGCCGCCT CGAGGGTCGG TGAAGACGAA CCACCGCGCC TGAATGCCTA ACACGCTGCC TGGGGCAGAA ACACGCTGCC TGGGGCAGA ACCCGGATTA ACACGTTGC TGGGGCCGG ACCCGCGC TGCAGTACAA GCCTCAATGC TGCAGTACAA GCCTCAATGC TGCAGTACAA GCCTCAATGC TGCAGTACAA GCCTCAATGC TGCAGCCGG ACCGCGCG ACCGCGCGC ACCGCGCGCACCACGCCGCACGCCGCACGCCGCACGCCACACGCCGC	A1 TTGTCAAGGC GACTAGGACT GATTAGACT CAGGAGGGA AATTATTCTT CCCTCCCC GGCGCCGG GCTGAAGCCG GCTGAAGCCG CTCGAGATC GCTTCATC TAAATACCGG CGCGGCGCC CCCGCGCGCCC CGCAGCAGC CTCCATGAC CCCCAGCCAA AATTTTCAA AACCGG AGCACCAACAA AATTTTCAAA	51 AGAGAAGAGA GAGAAAGA TTCCAAAAA GCGCTTTTT TCTCCCCCG GGGCCGGC GGCAACCAGA TCCCGCGGGC GGCAACCAGA TCCCGCGGGC AGCAAGCATA CCCCGGCGA CTGGCCCCG AGCAGGCTA CCCCGCGGA CTGGCCCCG GCCAACCAGA TCCCCCGGGGA CTGGCCCCG AGCATGATGC CCCCTGTGG ACCCTGTGG ACCCTGTGG GACATGATCA TCTCACATGT TTGCCCCTT GAAAAACGAG	60 120 180 240 360 420 600 600 600 600 600 1020 1020 1140 1260 1320 1380 1440
55606570	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTGGCGACACG AGCACACAGG AAACCACGC AAACCACGC AACCAAGGA AGCACAGGACAGG AGCCATGCA AGCGCATGCA AGCGCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA CCTACATGTA TGCTCTTC CCCAGCACTA CACACATGTG GGAAATGGGA TCAAAAAAAAA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE # #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGCCC TACAACATCA AGCGCCCA ATGTCGGACAC TTGTCGGAGA ATGAAGAGAGT GAGAACCCA ATGACGGCCA ATGACGCCCA ATGACGCCCA ATGACGCCCA AGGACACCCG CACACCCG CACACCCG CACACCCG CACACCCG CACCACCC ACGACCCC ACGACCCC ACGACCCC ACGACCCC ACGACCCC ACGACCCCA AGGACCCCA AGGAACTGC AGGAACTGC AAGACCCAT AAAATCCCAT	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGC TTGCAGCAGGAG TTTTCCCCA CGGCCGCCT CGAGGGTCGG TGAATGCCT AGATGCACAA CCACCGCGGC TGAATGCCT AGATGCACAA TGCACAATGC TGGAGGACGA TTGCACAATGC TGCAGTACAA TGCCCACAGCCGG GCTGAAGCA ACCCGCGCG GCTGAAGCA ACCCGCCGC GCACGCCGC GCACGCCGC ACCCGCCGC ACCCGCCGC ACCCGCCGC ACCCGCCGC CACCCCCACAGC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCTTAAGCCT GCTGAAGCCG GCGGCCGG GCTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGG CCTGAGCCG GCGGCCGG CCTGAGCCG GCAGCTAC CCTCCCC CCTCCCC CCTCCCCG CCGCCGCG CCTGAGCCG CCTGAGCCG CCCCGCCGC CCCCGCCGCACAGC CAGCAGCACA ATTTTCAAA AATGACAAA	51 AGAGAAGAGA AGAGAAGAGA GAGAGAAGAGA TTCCAAAAAA GCGCTTTTT TCTCCCCCG GGGCCGGC CCGGGCCCGC GGCAACCAGA TCCCGCGGGC GGCAACCAGA CCCGGGGCC GACGAGGCTA CCCCGGGGC AGCAGAGCCC GACGAGAGCC CCCGGGGCAACCAGA CTCGCAGAGAC CTCGCAGATG ACCCTTGGCA ACCCTTGGCA CCCCTTGGC GACAATGATC CCCCTTGTGG GACATGATC CCTCCTTGCA CCCCTTTGG CACATGATC CCCCTTTGG CACATGATC CTTCACATGT CTGCCCCTCT GAAAAAACGAG CCCGGTACGC TGCAAAAGAG	60 120 180 300 360 420 480 540 660 720 780 900 960 1020 1140 1220 1380 1440 1500 1560
5560657075	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGGTTG GTGTTTGCAA AGAGAGAGA TAATAATAAC TGATCCTGAT TCCTGGCGA ACCAGAGAC AGCAAACTTC AAAACAAGCCC AGCGGCGCCAA AGCGCGCAAC AGCGCATGGA AGCGCATGGA AGCGCATGGA AGCCCATGCA AGCCCATGCA TGGCTCTTGG TTACCTCTTGG TTACCTCTTGG TTACCTGTTGG TAACAAAAAA ACCAATGTG GGAAATGGGA TCAAAAAAAA AACACCAATG	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT CCCGACACCC CCGGCCGGGC TACAACATGA AGCGCCAG ATGAACATGA AGGAACCCA ATGAAGAGAGT ATGATGGGG CACATGAACA CCACACCCC CAGGCCGGC ATGACCCA AGGAACCCCA ATGAAGGACCCA ATGAAGGACCA ATGAAGGACCA ATGAAGGACCA ATGAAGGACCCA ACGACCCGG GTGAGCGCC CACATGAACC ACCTACAGCA ACGGTGCCCG ACGAGTGCCCG AGGGACCCT CAGGTGCCCC AGGGACCCC AGGGACCCCT AGAGGACCCT AAAACCCAAT AAAATCCCAAT AAAATCCCAAT ACACCCAAAAA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG TTTTCCCCCA CGCCGCCTCCCAGGCCGCCT CGAGGGTCGG TGAAGACGCA ACACGCGCGC TGAAGACGAA ACACGCTGCC GCCGGATTA ACACGCTGCC GCCGGATTA ACACGCTGCC GCCGGATTA ACACGCTGCC GCCGGATTA ACACGCTGCA ACACGCCGCAGCCAACGC GCCAGGCCGA ACCCGCAGCCGAACACAC ACACCGCCGCAACACACAC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCTTAAGCCT GCTGCGCGGG GCGGCCGG GCTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGC CTCATGCTCC CCTCCCC CCGCCGGCGC CCTGCATCATC TAAATACCGG CCGCGGCCGC CCGCAGCAGCTAC GCACGGCCCA CCCCACCAGC CACCCACCAGC CACCCAGCAGC CACCCAGCAGC CACCAGCAGC CACCAGCAGC CACCAGCAGC CACCAGCAGC CACCAGCAGC CCAGCAGCAC AATTTTCAAA ATGAGAAAA ATGAGAAAAA	51 AGAGAAGAGA GAGAAAGAGA GAGAGAAGAGA GAGAGAAGA	60 120 180 240 300 360 420 780 840 900 960 1020 1140 1200 1140 1200 1320 1380 1440 1560 1620
556065707580	EEGSETQVPG DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequity 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGGTA TCCTCGCGGA AGCAAACTTC AAACAGCC AGCGGCCCAA AGCGACAGC AGCGCATGGA AGCGCATGGA AGCGCATGGA AGCCCATGCA TGGCGCTACATGAA TGGCTCTTCG CCAGCACTA TGAGACAGCT CCCAGCACTA TGAGACAGCT AGCCATGGA AGCACATGGA TGACAGTTGG TTACCTCTTC GCATGTATCT CCCAGCACTA CACACTGTG GGAAATGGGA TCAAAAAAAA AACACAATC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAGG AATCATCGGC TCCCAAAGTC CGCCGCATG GGACGGCCCGCATG GGACGGCGCC GATGGCCAG GTGAAACTA AGCAGTACGC CCTCATGAC CCTCATGAC CCTCATGAC CCTCATGAC CCTCATGAC CCTCCATGCC CCCCATGGCC CCCCATGGCC CCCCATGGCC CCCCATGGCC CCCCATGGCC CCCCATGGCC CCCCATGGCC CCCCATGGCC CCCCATGGCC CCCCAGGCGCC CCCCAGGCGCC CCCAGGCGCC CCCAGGCCC CCCGGCGCC CCCGGCCC CCCGGCGCC CCCGGCCC CCCCGGCCC CCCCGGCCC CCCCGGCCC CCCCGGCCC CCCCGCCCC CCCCGCCCC CCCCGCCCC CCCCGCCCC CCCCCC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR #: BC0139:	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGGCCAGAG TTTTCCCCAA TCGGCCAGAG TCTTCACCCAAGCCGCT TGAATGCACAA CGCAGACGAG TGAATGCACAA ACACGCCGG TGGAGACAA ACACGCCGG TGCAGGCCGG TGCAGGCCGG TGCAGGCCGG TGCAGGCCGG TGCAGGCCGG TGCAGGCCGG TGCAGGCCGG TGCAGGCCGG ACCCGCGATC AGTCCGAGGC AACCCGCACGC CACCCCACAGC ACCCCACAGC ACTTTTTGTAC	A1 TTGTCAAGGC GACTAGGACT GAGGAGGGAA AATTATTCTT CCCTCCTCC CGCCGGCGG GCTGAAGCCG GCTGAAGCCG GCTGAGGCT CATGGTGTG CTCGGAGGTC CATGGTGTG CTCGGAGAT CCCATCATC CCAGCAGCA CTCATGACC CGCAGCAGCA CTCATGACC CAGCAGCAGA AATTTCTAA ATGGAGAAA AATGACAGC CGACAGGAA AAATGACAGC CCCAACAGAA AAATGACAGC CGACAAGAA AAATGACAGC CGACAAGAA AAATGACAGC CGACAAGAA AAATGACAACA	51 AGAGAAGAA AGAGAAGAA AGAGAAAAA CGCTTTTT CGCCTGATT TCTCCCCCG CGGCCCGGCC	60 120 180 300 360 420 480 540 660 720 780 900 960 1020 1140 1220 1380 1440 1500 1560
5560657075	EEGSETQVPG DTIMGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTGGGGA AGCAGACAC AGCGGCCAAAC AGCACACAC AGCGCAATAG AGCACACAC AGCGCAATAG AGCCATGCA TGGCTCTTCC CCCAGCACTA CACACATGTG GGAAATGGG TTAACATTC GAGAATCCA GGGAGGCCG TTTAAAAGAT	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession id Accession id Accession itence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAG GAACGCTTGC GCCCGCATG GGGGGCCCAAGTC CGCCGCATG GGGGGCCCAAGTC AGCGCTACGAC CATGGCCAG CATGACCCAG CTCATGAGC CCCCTACGAC CCGCTACGAC CCGCTACGAC CCGCTACGAC CCGCTACGAC CCGCTACGAC CCGCTCGCCC CCCCAGGGC CCCCAGGGC CCCCAGGGC CCCCAGGGC CCCCAGGGC CCCCAGGCGC CCCCAGAC AGGACTCCTCT GGGGAATGGA CCATCCACAC GGACTTCTTT GGGGAATGGA CTAGTGGTAC CTATGGGTACAC CGGACTCCACC CCCGGCCC CCCAGAGCGGC CCCAGAGCGCC CCCAGAGCGGC CCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGCC CCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGCC CCCAGAGCGGC CCCCAGAGCGGC CCCAGAGCGGC CCCAGAGCGGC CCCAGAGCGGC CCCAGAGCGGC CCCCAGAGCGGC CCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGCC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGGC CCCCAGAGCGC CCCCAGAGCGC CCCCAGAGCGC CCCCAGAGCGCC CCCCAGAGCGC CCCCAGAGCGC CCCCAGAGCGCC CCCCAGAGCGC CCCCAGAGCGC CCCCAGAGCGCC CCCCAGAGCGCC CCCCAGAGCGCC CCCCAGAGCGC CCCCAGAGCGCC CCCCAGAGCGC CCCCAGAGCGC CCCCAGAGCGCC CCCCAGAGCGCC CCCCAGAGCGC CCCCAGAGCGC CCCCAGAGCGC CCCCAGAGCGC CCCCAGAGC CCCCCAGAGC CCCCCAGAGC CCCCCC CCCCAGAGC CCCCCAGAGC CCCCCCC CCCCAGAGC CCCCCC CCCCAGAGC CCCCCCC CCCCAGAGC CCCCC CCCCCAGAGC CCCCC CCCCAGAGC CCCC CCCCCAGAGC CCCCCC CCCCC CCCCCC CCCCAGAGC CCCCC CCCCCC CCCCCC CCCCCC CCCCCC CC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE # #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGGC CTCTCTTT CCCGACACCC CCGGCCGGC TACAACATGA GGCGCAACT AAGCGCCAA ATGAGAGAGT GGGGTCGGG CACTGAGAC CACTACACC AGCACCCG GTGACCCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC TTGTCGGAGA ATGAAGGAGC CACTACACC CAGCACCCG CGGTGCCCG CGGTGCCCG ACGAACTCG CCGGTGCCCG ACGAACTGA TCGGAGACT TCACGCAAAA TKGGGGGACT TCACGCAAAA TKGGGGGACT TCACGCAAAA TKGGGGGACT CCTTGTATAG GGTAGGACC CCTTGTATAG	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG TTTTCCCCCA CGGCCGCCT CGAGGGTCGG TGAATGCCTAG ACACGCGGC TGAATGCTT ACACGCTGCA ACACGCTGCA ACACGCTGCA ACCCGGATTA ACACGCTGCC ACCCGGATCA ACACGCTGCC ACCCGCGCCAGCCAG CCCAGGCCGC ACCCGCAGCCAG ACCCGCCAGCCA	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCTTAAGCCT GCTGAAGCCG GCGCGCGG GCGAGCCGC GCGGCCGGC CTGAGAGCCG CTGGAGATC CCCTCTCC CCTCCCC CCCCCCGC GCGGCCGC CCGCGCGC CCGCAGCAGC CCCCAGCAGC CCCCAGCAGC AATTTTCAAA ATGGAGAAA ATGGAGAAA ATGGAGAAA ATGGAGAAAA ATGAGAAAACC AAGAAAACCTA ATTGCAAAAG ATGGAAAAA	51 AGAGAAGAGA GAGAAAAAA GAGAACAGA TTCCAAAAAA GCGCTTTTT TCTCCCCG GCGCCGGGC CCGGGCCGG GCAACCAGA TCCCGCGGGC GCAACCAGA CCCCGGGGC GACGAGGCTA CCCCGGGGC GACGAGGCTA CCCCGGGGC GCAACCAGA CTGCCCCCG GGCAGTGAACC AGCATGATGC CCCCTGTGG GACATGATGC CCCCTGTGG CCCCTGTGG CACCATGATCA CTTCACATGT CTGCCCCTT GAAAAACGAG CCCGGTACGC CCGGTACGC CCGGTACGC CCGGTACGC CCGGTACGC CCGGTACGC CCCGGTACGC CCCGGTACGC CCCTGTGG ACCCTTTGACAAAAGAG ACTTTTATGA TGGGGAGGGT TCGCAAAAGACTT TCGAAAAACTT CGAAAAACTT CGAAAAACTT	60 120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1140 1200 1140 1500 1620 1620 1620 1740 1800
556065707580	EEGSETQVPG DTIMGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGGTTG GTGTTTGCAA AGAGAGAGA TAATAATAAC TCCTCGCGGA CCCGCGGCC CCCGCGGCCAC AGCAAACTTC AAAACAAGCCC AGCGGCACAA AGCACCAAGAC AGCACTGCA AGCCATGCA AGCCCATGCA AGCCCATGCA AGCCCATGCA TGGCTCTTCG GCAATGTATTCCCCAGCACTC CACACATGTA CCCACACTTC CCAACATGTA CACACATGTC GGAAATGGGAATGGGAAATGGGC TTAAAAAAAA AACACCAATC GGGGAGGCC TTTAAAAGTT TAAAAGTT TAAAAGTT TAAAAGTT TAAAAGTT TAAAAGTT TAAAAGTT TAAAATTTAG	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GGCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTTT CCCGACACCC CCGGCCGGG TACAACATGA AGCGCCAGA ATGAAGAACTT AAGCGGCCAG ATGAAGACCCA ATGAAGAACT AAGCACCCA CAGAACCCCA CAGAACCCCA CAGAACCCCA ATGAAGGACCCA ATGAAGGACCCA ATGAAGGACCCA ATGAAGCACCCG GTGACCCCC CACTACAGCA TCGGTGGTCA AGGGCGCCCT CAGGTGCCCG AGCGAACTG AAATCCCAT TCACGCAAAA TKGGGGGACT CCTTGTATAG GGTTGCAGAC CCTTGTATAG	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGA TTTTCCCCCA CGCCGCCTCC CGAGGGTCGG TGAAGACGCA CCACCGCGGC TGAAGACCAA ACACGCTGCC GCCGGCTTA AGATGCACAA ACACGCTGCC GCCGGCTTA ACACGCTGCC GCCGGCCGGC GCCGGATTA ACACGCTGCC GCCGGATTA ACACGCTGCC GCCGGAGAAAACAGC ACCCCACAGC GCCAGGCCGG AACACCGCCGA AAGAAACAGC CACCCACAGC ACCCCACAGC ATTTTTGTAC ATTCTGAGGAA ATTCTGAGAAA AAAAATGTT	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCTTAAGCCT GCGCGCCGCG GCGCGCCGC GCGCCGCGC GCGCGCGC CTCGGAGATC TAAATACCG CCGCGCGCC CCGCAGCAGC CCTCCATCAC CCCCCCCCC CCCCCCCC CCCCCCCC	51 AGAGAAGAGA GAGAAAGA GAGAAAGA GAGAAAGA GAGAAAGA GAGCTTTTT TCTCCAAAAA GCGCTTTTT TCTCCCCG GCCGGCCGG CCGGGCCGC GGCAACCAGA TCCCGCGGGC AGCAAGCGC AGCAAGCCT ACCCGGGGC AGCAGATGC CCCCTGTGG ACCACGATGC CCCCTGTGG ACCCCTGTGG ACCCCTGTTG CCCAAAAACTT TTGCCAAAAACTT TCTTTACCAA CAAGCACTT	360 420 180 120 240 300 360 420 480 540 660 720 780 960 1080 1140 1200 1320 1320 1440 1560 1560 1680 1740

		/086443					
5	TTAGGACAGT TAAAAATTGT GTTTAAAAAG	TATTTTCAA TGCAAACGTG ACAAAAGGAA GGCAAAAGTT GCAGGTTGAC	AAAAGAAGAA AAAATTAGAA TTAGACTGTA	AATTATTCAA TAAGTACTGG CTAAATTTTA	ATTTGGACAT CGAACCATCT TAACTTACTG	TTTAATTGTT CTGTGGTCTT TTAAAAGCAA	1980 2040 2100 2160 2220
	TTCCATTTTG GTTTGTAATA GTAGTTGTAT	TTCAGATAAA TTTCTGTAAA TTTAAAAGAT GAACTAATAT	AAAAACCATG TTTATTGTGA TCGGCTCTGT	AAATTACTGT TATTTTAAGG ATTATTTGAA	GTTTGAAATA TTTTCCCCCC TCAGTCTGCC	TTTTCTTATG TTTATTTTCC GAGAATCCAT	2280 2340 2400 2460
10	CCATTATGCA AAAAAAACAA CACAACACAA	CAGTTTGAGA AACAAAAAA AAACAAAAAA AACAACAACA	TAAATAAATT CAAAAAAACAA AAAAAAAAAGA	TTTGAAATAT AAACAGAAAA	GGACACTGAA AACAAAAAAA	AAAAAAAAAA AAAACAAAAC	2520 2580 2640
15	•	4 Protein a	-				
	1	11	21	31	41	51	
20	1	1	1	1	1	1	
20	QENPKMHNSE KKDKYTLPGG PQHPGLNAHG	PPGPQQTSGG ISKRLGAEWK LLAPGGNSMA AAQMQPMHRY	LLSETEKRPF SGVGVGAGLG DVSALQYNSM	IDEAKRLRAL AGVNQRMDSY TSSQTYMNGS	HMKEHPDYKY AHMNGWSNGS PTYSMSYSQQ	RPRRKTKTLM YSMMQDQLGY GTPGMALGSM	60 120 180 240
25	GSVVKSEASS GPVPGTAING	SPPVVTSSSH TLPLSHM	SRAPCQAGDL	RDMISMYLPG	AEVPEPAAPS	RLHMSQHYQS	300
30	Nucleic Ac	5 DNA seque id Accession lence: 29-54	ı #: U91618				
50	1	11	21	31	41	51	
	1	1	[1	1	60
		TTGTTAGAAG CTGGCTTTCA					60 120
35	AGCATTAGAA	GCAGATTTCT	TGACCAATAT	GCATACATCA	AAGATTAGTA	AAGCACATGT	180
		AAGATGACTC ACAGGAGAAG					240 300
		GGCTTTAGCT					360
40		GCTTTTCAAC					420
40		GGAAAGGAAG AATAAACCCA					480 540
	AGAGAATAAA	TCATTTATTT	ACATGTGATT	GTGATTCATC	ATCCCTTAAT	TAAATATCAA	600
*		TGTGAAAATG					660 720
45	ATTGAATGTG	TGTGAAAATG TTTTTCTGCA AAAAAAAAAA	CTAATAGAAA	TTAGACTAAG			720
45	ATTGAATGTG	TTTTTCTGCA	CTAATAGAAA	TTAGACTAAG			
45	ATTGAATGTG TCTTCAAAAA Seq ID NO:	TTTTTCTGCA	CTAATAGAAA AAATGGGGCC sequence:	TTAGACTAAG			
	ATTGAATGTG TCTTCAAAAA Seq ID NO:	TTTTTCTGCA AAAAAAAAA 6 Protein s	CTAATAGAAA AAATGGGGCC sequence:	TTAGACTAAG			
	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc 1 MMAGMKIQLV VCSLVNNLNS	TTTTTCTGCA AAAAAAAAAA 6 Protein s cession #: A	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP	TTAGACTAAG GCAATT 31 KALEADFLIN TALDGFSLEA	TGTTTCAAA 41	TAAATCTAAA 51 VPSWKMTLLN	
50 55	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP	TGTTTCAAA 41	TAAATCTAAA 51 VPSWKMTLLN	720 60
50	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP	TGTTTCAAA 41	TAAATCTAAA 51 VPSWKMTLLN	720 60
50 55	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP	TGTTTCAAA 41	TAAATCTAAA 51 VPSWKMTLLN	720 60
50 55	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession lence: 109-2	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21	TTAGACTAAG GCAATT 31 KALEADFLIN TALDGFSLEA QLYENKPRRP 536.2 31	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY	TAAATCTAAA 51 VPSWKMTLLN CHSRAFQHWE 51	720 60 120
50 55	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequence Acctaaaacc Attatgcag	TTTTCTGCA AAAAAAAAA 6 Protein s cession #: I 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAAC GTGAGTGAAC	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA CATATTGAAA	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG	720 60
50 55 60	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequence ACCTAAAACC ATGTATGCAG AGCATTGCAG	TTTTTCTGCA AAAAAAAAA 6 Protein : cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC CAACCTGAAG	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC TTGGAGGCTTC	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GGCCCAAAGG CTTAAGTTCA	60 120 60 120
50 55 60	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ ACCTAAAACC ATGTATGCAG AGCATTGCAG GAACTCCCAT	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0065 2940 21 AGGAAGAAAC GTGAGTGAAC CAACCTGAAG TGGAGTACAG	TTAGACTAAG GCAATT 31 KALEADFLIN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC TTTGTGGACTC CTTCAAGACA	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGGTATAA	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC	60 120 60 120 180 240
50556065	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: I 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG GTCCTATTTG ATCCTCAGGT CTTCATTTTA	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC CTAACTGAGAT TGGAGTACAG ACCTGAGAAT CCTATTAAT	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGGCTTC TTGGAGGCTTC TTTGTGACTC CTTCAAGACA CAGAACCTCA GGTACCTAAGA	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT	60 120 180 240 300 360
50 55 60	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequence ACCTAAAACC ATGTATGCAG AGCATTGCAG AGCATTGCAG AGACTCCCAT ATTGCAATTA ATAACTGAAA ATAACTGAAA ATAACTGAAA ATAAAGATTT	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGTT GTCCTAGTTTG TCCTGGGAGC ATCCTCAGGT CTCATTTTA TAATACCTGC	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRLP KRKIPYILKR ence a #: NM_0065 2940 21 AGGAAGAAAC GTGAGTGAAC CAACCTGAAG TCGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAAA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 336.2 31 CATCTGCATC TGGAGGCTTC TTGGAGGCTTC TTTGTGACTC CTTCAAGACA GCTACCAAGA GCTACCAAGA GCTACCAAGA	41 HTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGGTATAA TCTCAAACAT TCTCAAACAT TCAAGAGTATT ACAGCAAAAT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCT TAAGGAAAT AAACAGAAA	60 120 60 120 240 300 240 360 420
50556065	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequence ACCTAAAACC ATGTATGCAG AGCATTGCAG GAACTCCCAT ATTGCAATTA ATTACTGAAG ATAAACTGAAG ATAAACCCTAC	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAG ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AATACAGAGG	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC ACCTGAAGA TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACAC GTGTGGAAAA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC TTGGAGCTC TTTCAAGAC CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGAAAAT	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCTGGTTTGA TCTCAAACAT TCTCAAACAT ACAGCAAAAAT GAAGAGTATT ACAGCACATGGACACATGGACACATGGACACATT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCT TGAGGAAAT AAAACAAGAA TTTCAGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT	60 120 60 120 180 240 360 420 480 540
50556065	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession ence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTCCATTTA TAATACCTGC AGGCAAATGT TAATACCTGC AGGCAAATGT TAATACAGGG ATGATAACTT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC CCAACTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGCT TTGTGACTC CTTCAAGACA CAGAACCTCA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACTAGATATA GACTGGTATG GAGGGAAAAT TACGGATCAC	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGTATAA ATCTCAAACAT GAGGACATG GAGCACATG GAGCACATG GAGTACTT GAGGCCGAGT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCAC CACACCTAAT GTTTGTCCAT	60 120 180 240 300 420 480 540 600
5055606570	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ ACCTAAAACC ATGTATGCAG AGCATTGCAG AGCATTGCAG AGCATTGCAG ATTGCAATTA ATAACTGAAG ATTAACTGAAG ATTAACTGAAG ATTAAGAATTT TCATATGAAA TACCCTAC TCCTACTGA GAATGGGCCC	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession dence: 109-2 11 TTGCAAGTTC CAGGCTCAGTT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG ACCTCCGTTG	CTAATAGAAA AAATGGGGCC GEQUENCE: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR PICE 1 #: NM_0065 2940 21 AGGAAGAAAC GTGAGTGAAC CAACCTGAAG TCGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAAA CATAGTGACAC GTGTGGAAAA CATAGTGACAC GTGTGGAAAA CATAGTGACAC GTGTGGAAAA CATAGTGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGGC GGGTGTTTC	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGCTC TTGGAGGCTTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GATGGGATAC GAGGGAAAAT TACGGGATCAC GATGAGTATA	41	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCT TAAGGAAAT AAAACAGAA AGATGATCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC	60 120 60 120 300 420 480 540 600 660
50556065	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: I 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession dence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGCCAAAT AAAACCAAGG ATGATAACTT ACTCCGTTG ACACCGTTG ACACCGTTG ACACCGTTG ACACCGTTG ACAAACAAAT AAAGGCCATTG	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC CCAACTGAAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGC GTGTGGAAAA AACAGCTGC GTGTGGAAAA AACAGCTGC GTGTGGAAAA CATAGTGACT CTGTTGGAAAA AACAGCTGC GTGTGGAAAA CATAGTACT CTGTTGGAAAA CATAGTACT CTGTTGGAAAA CATAGTACT CTGTTGGAAAA CATAGTACT CTGTTGGAAAA CATAGTACT CTGTTGGAAAA CACACTGCC CGCAAGAA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGGCTTC TTGGAGCCTC CTTCAAGACA GCTACCAAGA GCTAATAATA GACTGGTATT GAGGGAAACT TACGGATCA GAGGACAAT TACGGATCAC AGGATCAC AGGATCAC AGGATCAC AGGATCAC AGGGTGTTCAT AACTGTATTA	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGTATAC ATGGTATAC ATGGCACATG GAGCACATG GACACTT GAGCCCAGT ACAATGACAC TTAGTACAC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGGTTCA TAAGGATTGTC TAAGGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTTCAT ACGCATTTTT TTTTAAAGAA	60 120 180 240 480 600 600 600 780
5055606570	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ I ACCTAAAACC ATGTATGCAGT AGCATTGCAGTA ATTACTGAATA ATTACTGAATT TCATATGAAT ATTACTGAATA TCATATGAAT ATTACTGAGT ATTACTACTGA GAATGCCCTAC TCCTACTGA GAATGGCCC ATAAATGGCC GTGTGGAAA GGATGGACA GGATGGACA GGATGGACA	TTTTTCTGCA AAAAAAAAA 6 Protein : Cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession Lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT TCCTGGGAGC ATCCTCAGTT TATCTATTTA TATACTGC AGGCAAATGT AATACAGAG ATGATAACTT ACTCCGTTG AAAACAAAT ACCTCCGTTG AAAACAAAT AAGGTCCTTG TTATCTACAA	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC CCAACTGAAG TCGAGTACAG ACCTGAGAAT CCTATTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGACA CCCCAAGAC CCCCAAGAC CCCCAAGAC TAAAGTGACA CCCCCAAGAC ACCCCCAAGA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGACTC TTGGAGCT CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACTACAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGGATCA GATGGATCA GATGAGTATA AGGTGTTCTA AGTGTTCTA AATGCAACTG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTCAACAT TCCTGGTTGC ATGGTATAA TCTCAAACAT ACAGCAATAAT ACAGCAATAAT GGGCACATGG ACATTCATT GAGGCCGAGT ACAATGACAA CTGACATCAC CTAGCAATAAT CTGACAATAAT CTAGCAATAAT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAACAGAA AGATGATCCA CACCCAAAT GTTTCAGAAAT ACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT ACCTTTCTAC AGGCATTTTT ACCTTTCTAC AGGCATTTTT AGGCATAGCAA	60 120 180 240 300 480 540 660 720 780 840
50 55 60 65 70	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession Lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAAACCTGC ATCCTCAGGT AATCAAGAG ATGATAACTT ACTCCGTTG AATCACAAT AAAGTCCTTG TTATCTACAA CTGTGGTTGA TTATCTACAA AAGGTCCTTG TTATCTACAA AGGTGTGTAGAGTGAGAGTGAGAACTGAGAGTGAAACCAGAT AAAGGTCCTTG TTATCTACAA AGGTGTGGTTGA AGGTGTGAAAGGTGCAG	CTAATAGAAA AAATGGGGCC Sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGGC GGGTGTGTTC CTGAGAAA ATTTGTAAT CCCCAAGAA ATTTGTAAT CCCCAAGAA TTGGACCCAAA ATTTGTAAT CCCCCAAGAG	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGGCTTC TTGGAGGCTTC TTGTGACTC GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AAGTGTTATA AAGTGTTATA AAGTGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GCAAGTACCC GCATGGGATG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGA ATGGTATAA CATGGAAAAT GAAGAGTATT ACAGCAAAAT GAGCACATGG GCGCACATGG ACAATGACAA CTGACATCA TTAGTAAGCT CATCAATAAT CTAGAACAACA ACAACAAGA ACAACAAGA AAACCAAGA	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTCTTA TGTTCTCAT ACCTTTCTT TTTTAAAGAA GTTCATGCAA CTCTGCTGAC CTCTGCTGAC CTCTGCTGAC	60 120 180 240 480 600 600 600 780 840 900
5055606570	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ ACCTAAAACC ATGTATGCAG AGCATTGCAG AGCATTGCAG ATTAATGGAG ATAAAGGATTT TCAATTAA TACACCCTAC TTCCTACTGA GAATGGCCC ATAAATGGG CCTGTGTGAAA GGATGCACCT AGTTTATCTC CTACAGAACC CTTTCACCACA CTTTCACCACA	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession ence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTCCATTTA TAATACCTGC AGGCAAATGT AAAACAAAT AAGAGG ATGATAAACTT ACCTCGGTTG AAAATCAAA CTGTGGTTGA AGATGTCACAA CTGTGGTTGA AGATGTCACA CTGTGGTTGA AGATGTCACA GGCTTTCCCAT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC CGTGAGGAAC CCAACTGAAG ACCTGAGAAT CCTATTAAT CACATGGAAA ACATGGGAAA ACAGCTGGC GGGTGTGTC TAAAGTGCC GGGTGTGTC TAAAGTGCAC CCCCCAAGAA TAGCACCCAA ATTTTGTAAT CCTCAGAAGT CCTCAGAAGT TGGAAGAT CCTCAGAAGT TGGATGGCCCAA ATTTTGTAAT CCTCAGAAGT CCTCAGAAGT TGGATGAGT CCTCAGAAGT AGGACCCAA ATTTTGTAAT CCTCAGAAGT CCTCAGAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAGT C	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGTC TTGGAGCTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGGATCA GATGATTTA AATGCAACTG GCAAGTACTC GCAATGGATC GCAATGGATC GCATGGATC GCATGGATC GCATGGATC GAGCTTCCAC	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTCAAACAT TCCTGGTTGC ATGGTATAA TCTCAAACAT GAGCACATGG GACATCATT GAGCCGAGT ACAATCATT GAGCCGAGT ACAATGACA CTGACATCAA CTGACATCAA CTAGACATCAA CTAGACATCAA CTAGACATCAA CTAGACATCAA CTAGACATCAA CTAGACATCAA CTAGACACAAGA ACAACCAAGA CTCCTCCCAC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAGAA AGATGATCCA CACACCTAAT GTTTCTACACA ACCTTATTT TTTTAAAGAA GTTCATGCAA AGCACAAAC GTTCATGCAA AGCTCATCACAA ACTTCATCAA ACTTCATCAA ACTTCATCAA ACTTCATCAA ACTTCATCAA ACTCATCACAA ACTCACCAAAC ATTCTCGCTTA	60 120 180 240 300 420 480 540 660 720 840 900 900 900 1020
50 55 60 65 70	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ I ACCTAAAACC ATGTATGCAG AGCATTGCAG AGCATTGCAG ATTACAGAATT TCATATGAAA ATAACTGAG TTCCTACTGA GAATGGGCC ATTAATGGGCC ATTAATGGAC GTTGTGAAA GGATGGGCCC ATTACTGAA GGATGCACCTTC TTCCACACA GGATCACCTTC TTCCACACA GGTTTATCTT CTACAGGACC TTTCACAGGACC TTTCACAGGACC GTTCAGGGCTG GTACAGGCTG GTACAGGCTG GTACAGGCTG	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGTT GTCCTAGTTTG TCCTGGGAGC ATCCTCAGTTTATATACCTGC AGGCAAATGT AAAACAAAGT ACGTCCGTTG AAAATCAAAT AAGGTCCTTTG ATTTTATTATACAAGCT TTATCTACAA CTGTGGTTGA AGATGTCAATTG GCTTTCCCAT GTGACAAAGT GTGACAAAGT GTGACAAAGT GTGACAAAGT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence a #: NM_0069 2940 21 AGGAAGAAAC CTGAGAT CCTATTAAT CCTATTAAT CCACTGGAAA ACAGCTGGAC ACCCCAAGAA ATTTGTAAT CCTAGTAAT CCTAGTAGT CCCCAAGAAT TAGCACCCAA ATTTTGTAAT CCTAGTAGT CAATGGAAGA ATTTTGTAAT CCTAGTAGT GAATGGACT GGTCTGTTTA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGCTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACAAGA GCTACAAGA GCTACAAGA TACGGATAT AACTGGATCA GAGGGAAAAT AACTGTATTA AAGTGTATA AAGTGTATA AAGTGTATA AAGTGTATA GATGACTC GCAAGACCTC GCATGGGATC GCATGGGATC GCATGGGATC GCATGGGATG GGGCTTCCAC GTGCTGGATG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTCAAACAT TCCTAGATTGC ATGGTATAC ATGGCAATAAT ACAGCAAAAT GGGCACATGG ACATCATTT GAGGCCGAGT ACAATCACT TAGTAAGCT TAGTAAGCT TAGTAAGCT CATCAATAAT ACAACAAGA TAATCACAGA TAATCACCAC TTGCCACCAC TGTCCAGCAA	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAGAA AGATGATCCA ACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGATTTTT TTTTAAAGAA GTTCATGCAT ACTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	60 120 60 120 120 180 240 300 480 540 600 720 780 960 1020 1080
50 55 60 65 70	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequence ACCTAAAACC ATTATGCAG AGCATTGCAG AGCATTGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG TCCTACTGA GATATGGGCC CATAAATGGGCC CATAAATGGGCC CATTATGTAA GGATGCACC TTCTACTGAGACC TTTCACCACA GGTTGTGAAAC GGTTGTGAAAC GGTTGTGAAAC GGTTGTGAAC CTTTCACCACA GTTCACACAC ATTCATACCT TCTACAGACC TTTCACCACA ATTCATACCT	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession dence: 109-2 11 TTGCAAGTTC CAGGCTCAGT TCCTGGGAGC CTTCATTTG TCCTAGGTTCA ATACCAGG ATGATAACTT ACTCCGTTG AAAACTAA ACTGTGGTTGA AGAGTCCTTG TTATCTACAA CTGTGGTTGA AGATCCTTG TTATCTACAA CTGTGGTTGA AGATCCAT TTATCTACAA CTGTGGTTGA AGATCCAT TCCTTGGGTCAT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGCC GGGTGTGTC TGCAGAGTACA CTATTTGTAAT CCCCAAGAA TTGTAAT CCCCAAGAA TTTGTAAT CCTCAGAAGT GAATGGGCC GAATGGGACT CCTAGAAGT GAATGGGACT CCTAGAAGT GAATGGGACT CCTAGAAGT CCTCAGAAGT GAATGGGACT GGAACAAGCC CGAACAAGCC CGCCAGTTTC	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGGCTTC TTGGAGGCTTC CTTCAAGAC GCTACCAAGA GCTACCAAGA GCTAATAATA GACTGGTATT AGACGTATC GAGGGAACAT TACGGATCAC GAGGGAACAC GCATGGGATG GCAAGTACCC GCATGGGATG GCAGGAATTTT GACAGCAAAG GCGGAATTTTT GACAGCAAAAG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGTATAC AAGGAAAAT ACAACAAT GAGCACAATG ACAATCAATAT GAGCCGAGT ACAATCAATAT CAACAATAC CTAACAACA CTAACAACA CTAACAACA CTAACAAGA TAATCACAG CATCCCCCC GTCCCCCC GTCCCCCC GAGAGATCCA GAGAGATCA GAGAGATCA GAGAGATCAC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TAAGGATTGTC TAAGGATTGTC TAAGGAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTTC TTTTAAAGAA GTCATGCAA AGCACACAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGA GATTGTCAAA AGCCCAACT	60 120 180 240 480 660 720 840 900 1020 1080 1140
50 55 60 65 70 75	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ ACCTAAAACC ATGTATGCAG AGCATTGCAG AGCATTGCAG ATTAGCAGATTA ATAACTGAAG ATAAATGGGCC ATAAATGGGCC ATAAATGGGCC ATTACTACTAC GGATGCACCT AGTTTATCT CTACAGAAC GTACAGGCTG GCTGACAGCA GTACAGGCTG GCTGACAGCA ATTCATACCT CTACTGACA ATTCATACCT CTACTGACA AGTACAGCAC CTTCTACTGACAC ATTCATACCT CTACAGAACT CTACAGAACT CTACAGAATTA	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession ence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT ACACCGTTG AAAACCAAT ACGTCGTTG AAAACCAAT TCTCGGTTG AGAATGTCACA CTGTGGTTGA AGATGTCACA CTGTGGTTGA AGATGTCACA CTGTGGTTGA AGATGTCACA TCGTGGGCAT TCCTCCAT TCGTGGGCAT TCGTGGGCAT TCGTGGGCAT ACGGCGATGA ACAGCAATGA	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC CAACCTGAAG ACCTGAGAAT CCTAGTAGTACT GTGTGGAAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACT CCCCAAGAA ATTTGTAAT CCTCAGAAGT TGTAAT CCTCAGAAGT TGACCCCAA ATTTTGTAAT CCTCAGAAGT CCCCCAAGAA TGGTGACT CCCCCAAGAA TTTGTAAT CCTCAGAAGT CCCCCAAGAA TTTTGTAAT CCTCAGAAGT CGTCTGTTTA ACAACAAGCC CTGCCAGTTTC TGATCGAAAG	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGTC TTGGAGCTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GCAAGGACCC GCATGGATC GCAAGTACC GCATGGATC GCAAGTACC GCATGGATC GAGCTTCCAC GTGCTGCT GAGCTTCCAC TTGCTGGTTT GACAGCAAAG TTGCTGGTTT TTGCTGGTTT TTGCAGCAAAG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTGGTTGC ATGGTATAT ACAGCAAAAT GGGCACATGG ACATCATT ACAGCAAAAT GAGCACATGA ACAATGACAT ACAACAAGA ACAATGACAA ATTAATCACAGA ATTAATCACAGA ATTTGATCACACAGA ATTTGATCACACACACACACACACACACACACACACACAC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAGAA AGATGATCCA ACCTTATCTA CTTTCTACA AGCATTTCTAC AGGCATTTT TTTAAAGAA AGACCAAAC CTTGCTGAC AGTCCTGCTGAC ATTCTGCTGAC ATTCTTGCTGAC ATTCTTGCTTAC ATTCTTCATCAT ACCACACTTT CATGCCAAA CTCACACACTTA CACCACTTT	60 120 180 240 300 420 480 540 660 720 900 900 900 1020 1080 1140 1200 1260
50 55 60 65 70	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG GTCCTATTTA TACTACTGC AGCAAATGT AAAACCAGG ATGATAACCTG AGCAAATGT AAAATCAAAC TTATCTACAAA CTGTGGTTGA AAAATCAAAT TTATCTACAA CTGTGGTTGA AGATGTACAGC GCTTCCCAT TCCTCGTGGCTT TCCTCCAT TCCTCGGGCAT TCCTCCAT GTGACAAAGT TCCTTCAACT TCCTTCAACT TCCTTCGACAT TCCTTCGACAT ACAGCAATGA CAGCAATGA CAGCAATGA CAGACATCAG GAAAAGCTTA	CTAATAGAAA AAATGGGGCC Sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC ACATGAAAA CATAGTGACAT CCTATTTAAT CACATGGAAA ACAGCTGGAC GGGTGTGTC TAAAGTGACA CTGAGACAT CCCCAAGAA TAGCACCAA ATTTGTTAAT CCTCAGAAGT CCCCCAAGAA TAGCACCCAA ACTTGGAAAA CTTAGTTAAT CTCAGAAGT CACAGAGT CCCCCAAGAA TAGCACCCAA ACTTGTTCA TGCCAGTTTC TGCAGATTC TGCAGTTTC TGCAAAGC TTGCCAGTTTC TGCATTGTAC ACTTCGTTCA TTGCTCTGTTCA TTGCTCTGTTTA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC TTGGAGCTC TTGTGACTC CTTCAAGAC GCTACCAAGA GCTAATAATA AACTGGTATG GAGGAAAT TACGGATCAC GATGAGTATTA AAGTGTTCAT AATGCAACC GCATGGATC GCAAGGATCAC GCATGGATC GCAGGATC GCATGGATC GCAGGATT AACTGTTCAT AATGCAACT GCAAGTACC GCATGGATC GCAGGATC TGCTGGATC GCAGGATT GACAGCAAAG TTGCTGGATT GACAGCAAAG TTGCTGGTTT GACAGCAAAG ATGATATTAG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCTCGGTTGA TCTCAGACAT GAAGAGTATT ACAGCAAAAA TCTCAAACAT GAGCACATG GACATCATT GAGCCGAGT ACAATGACAA TCTGATAAGCT TCTGATAAGCT ACTACAACAA ATTCATTT GAGCCGAGA TAATCACAGA CTCCCCCC CATCAACAAC TGTCCAGCAA ATTTGATGCA GAGAGATCAG GAGAGATCAG CATATCTTGATGACAA TAATCACAGA TAATCACAGA TAATCACAGA TAATCACAGA TAATCACAGA TGACCAGCA AGGAGATTGA TGACCAGCGG	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TAAGGATTGTC TAAGGATTGTC TAAGGAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTTC TTTTAAAGAA GTCATGCAA AGCACACAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGA GATTGTCAAA AGCCCAACT	60 120 180 240 480 240 600 660 720 780 840 960 1020 1140 1200 1260 1320 1380

WO 02/086443 CTGGGTTCAT CTGCAGCCCC AAATCTGGAG GAATTATCAC GTCTTACAGG AGGTTTAAAG 1500 TTCTTTGTTC CAGATATATC AAACTCCAAT AGCATGATTG ATGCTTTCAG TAGAATTTCC 1560 TCTGGAACTG GAGACATTTT CCAGCAACAT ATTCAGCTTG AAAGTACAGG TGAAAATGTC 1620 AAACCTCACC ATCAATTGAA AAACACAGTG ACTGTGGATA ATACTGTGGG CAACGACACT 1680 5 ATGTTTCTAG TTACGTGGCA GGCCAGTGGT CCTCCTGAGA TTATATTATT TGATCCTGAT 1740 GGACGAAAAT ACTACACAAA TAATTTTATC ACCAATCTAA CTTTTCGGAC AGCTAGTCTT 1800 TGGATTCCAG GAACAGCTAA GCCTGGGCAC TGGACTTACA CCCTGAACAA TACCCATCAT 1860 TCTCTGCAAG CCCTGAAAGT GACAGTGACC TCTCGCGCCT CCAACTCAGC TGTGCCCCCA 1920 GCCACTGTGG AAGCCTTTGT GGAAAGAGAC AGCCTCCATT TTCCTCATCC TGTGATGATT 10 TATGCCAATG TGAAACAGGG ATTTTATCCC ATTCTTAATG CCACTGTCAC TGCCACAGTT 2040 GAGCCAGAGA CTGGAGATCC TGTTACGCTG AGACTCCTTG ATGATGGAGC AGGTGCTGAT 2100 GTTATAAAAA ATGATGGAAT TTACTCGAGG TATTTTTCT CCTTTGCTGC AAATGGTAGA 2160 TATAGCTTGA AAGTGCATGT CAATCACTCT CCCAGCATAA GCACCCCAAC CCACTCTATT 2220 CCAGGGAGTC ATGCTATGTA TGTACCAGGT TACACAGCAA ACGGTAATAT TCAGATGAAT 15 GCTCCAAGGA AATCAGTAGG CAGAAATGAG GAGGAGCGAA AGTGGGGCTT TAGCCGAGTC 2340 AGCTCAGGAG GCTCCTTTTC AGTGCTGGGA GTTCCAGCTG GCCCCACCC TGATGTGTTT 2400 CCACCATGCA AAATTATTGA CCTGGAAGCT GTAAAAGTAG AAGAGGAATT GACCCTATCT 2460 TGGACAGCAC CTGGAGAAGA CTTTGATCAG GGCCAGGCTA CAAGCTATGA AATAAGAATG 2520 AGTAAAAGTC TACAGAATAT CCAAGATGAC TTTAACAATG CTATTTTAGT AAATACATCA 2580 20 AAGCGAAATC CTCAGCAAGC TGGCATCAGG GAGATATTTA CGTTCTCACC CCAGATTTCC 2640 ACGAATGGAC CTGAACATCA GCCAAATGGA GAAACACATG AAAGCCACAG AATTTATGTT GCAATACGAG CAATGGATAG GAACTCCTTA CAGTCTGCTG TATCTAACAT TGCCCAGGCG 2760 CCTCTGTTTA TTCCCCCCAA TTCTGATCCT GTACCTGCCA GAGATTATCT TATATTGAAA 2820 GGAGTTTTAA CAGCAATGGG TTTGATAGGA ATCATTTGCC TTATTATAGT TGTGACACAT 2880 25 2940 CATACTITAA GCAGGAAAAA GAGAGCAGAC AAGAAAGAGA ATGGAACAAA ATTATTATAA ATAAATATCC AAAGTGTCTT CCTTCTTAGA TATAAGACCC ATGGCCTTCG ACTACAAAAA 3000 CATACTAACA AAGTCAAATT AACATCAAAA CTGTATTAAA ATGCATTGAG TTTTTGTACA 3060 ATACAGATAA GATTTTTACA TGGTAGATCA ACAATTCTTT TTGGGGGTAG ATTAGAAAAC 3120 CCTTACACTT TGGCTATGAA CAAATAATAA AAATTATTCT TTAAAGTAAT GTCTTTAAAG 3180 30 GCAAAGGAA GGGTAAAGTC GGACCAGTGT CAAGGAAAGT TTGTTTTATT GAGGTGGAAA 3240 AATAGCCCCA AGCAGAGAAA AGGAGGGTAG GTCTGCATTA TAACTGTCTG TGTGAAGCAA
TCATTTAGTT ACTTTGATTA ATTTTTCTTT TCTCCTTATC TGTGCAGTAC AGGTTGCTTG 3300 3360 TTTACATGAA GATCATGCTA TATTTTATAT ATGTAGCCCC TAATGCAAAG CTCTTTACCT CTTGCTATTT TGTTATATAT ATTTCAGATG ACATCTCCCT GCTAATGCTC AGAGATCTTT 3480 35 TTTCACTGTA AGAGGTAACC TTTAACAATA TGGGTATTAC CTTTGTCTCT TCATACCGGT 3540 TTTATGACAA AGGTCTATTG AATTTATTTG TNTGTAAGTT TCTACTCCCA TCAAAGCAGC 3600 TTTCTAAGTT TATTGCCTTG GGTTATTATG GAATGATAGT TATAGCCCCN TATAATGCCT 3660 TACCTAGGAA A 40 Seg ID NO: 8 Protein sequence: Protein Accession #: NP_006527.1 51 31 41 45 MTORSIAGPI CNLKFVTLLV ALSSELPFLG AGVOLODNGY NGLLIAINPO VPENQNLISN IKEMITEASF YLFNATKRRV FFRNIKILIP ATWKANNNSK IKQESYEKAN VIVTDWYGAH 120 GDDPYTLOYR GCGKEGKYIH FTPNFLLNDN LTAGYGSRGR VFVHEWAHLR WGVFDEYNND 180 KPFYINGQNQ IKVTRCSSDI TGIFVCEKGP CPQENCIISK LFKEGCTFIY NSTQNATASI 240 MFMQSLSSVV EFCNASTHNQ EAPNLQNQMC SLRSAWDVIT DSADFHHSFP MNGTELPPPP 300 50 TFSLVOAGDK VVCLVLDVSS KMAEADRLLO LOOAAEFYLM OIVEIHTFVG IASFDSKGEI 360 RAQLHQINSN DDRKLLVSYL PTTVSAKTDI SICSGLKKGF EVVEKLNGKA YGSVMILVTS 420 GDDKLLGNCL PTVLSSGSTI HSIALGSSAA PNLEELSRLT GGLKFFVPDI SNSNSMIDAF 480 SRISSGTGDI FQQHIQLEST GENVKPHHQL KNTVTVDNTV GNDTMFLVTW QASGPPEIIL 540 FDPDGRKYYT NNFITNLTFR TASLWIPGTA KPGHWTYTLN NTHHSLQALK VTVTSRASNS 600 55 AVPPATVEAF VERDSLHFPH PVMIYANVKQ GFYPILNATV TATVEPETGD PVTLRLLDDG 660 AGADVIKNDG IYSRYFFSFA ANGRYSLKVH VNHSPSISTP AHSIPGSHAM YVPGYTANGN 720 IOMNAPRKSV GRNEEERKWG FSRVSSGGSF SVLGVPAGPH PDVFPPCKII DLEAVKVEEE LTLSWTAPGE DFDQGQATSY EIRMSKSLQN IQDDFNNAIL VNTSKRNPQQ AGIREIFTFS 840 POISTNGPEH QPNGETHESH RIYVAIRAMD RNSLQSAVSN IAQAPLFIPP NSDPVPARDY 900 60 LILKGVLTAM GLIGIICLII VVTHHTLSRK KRADKKENGT KLL Seg ID NO: 9 DNA seguence Nucleic Acid Accession #: Eos sequence 65 Coding sequence: 336-632 21 31 41 51 CTCCCCTCAC CCCGGTCCAG GATGCCCAGT CCCCACGACA CCTCCCACTT CCCACTGTGG 70 CCTGGGTGGG CTCAGGGGCT GCCCTTGACC TGGCCTAGAG CCCTCCCCCA GCTGGTGGTG 120 GAGCTGGCAC TCTCTGGGAG GGAGGGGCT GGGAGGGAAT GAGTGGGAAT GGCAAGAGGC 180 CAGGGTTTGG TGGGATCAGG TTGAGGCAGG TTTGGTTTCC TTAAAATGCC AAGTTGGGGG 240 CCAGTGGGGC CCACATATAA ATCCTCACCC TGGGAGCCTG GCTGCCTTGC TCTCCTTCCT 300 GGGTCTGTCT CTGCCACCTG GTCTGCCACA GATCCATGAT GTGCAGTTCT CTGGAGCAGG 360 75 CGCTGGCTGT GCTGGTCACT ACCTTCCACA AGTACTCCTG CCAAGAGGGC GACAAGTTCA 420 AGCTGAGTAA GGGGGAAATG AAGGAACTTC TGCACAAGGA GCTGCCCAGC TTTGTGGGGG 480 AGAAAGTGGA TGAGGAGGGG CTGAAGAAGC TGATGGGCAG CCTGGATGAG AACAGTGACC 540 AGCAGGTGGA CTTCCAGGAG TATGCTGTTT TCCTGGCACT CATCACTGTC ATGTGCAATG 600 ACTICTICCA GGGCTGCCCA GACCGACCCT GAAGCAGAAC TCTTGACTTC CTGCCATGGA 660 80 TCTCTTGGGC CCAGGACTGT TGATGCCTTT GAGTTTTGTA TTCAATAAAC TTTTTTTGTC 720 TGTTGATAAT ATTTTAATTG CTCAGTGATG TTCCATAACC CGGCTGGCTC AGCTGGAGTG CTGGGAGATG AGGGCCTCCT GGATCCTGCT CCCTTCTGGG CTCTGACTCT CCTGGAAATC 840 TCTCCAAGGC CAGAGCTATG CTTTAGGTCT CAATTTTGGA ATTTCAAACA CCAGCAAAAA 900 ATTGGAAATC GAGATAGGTT GCTGACTTTT ATTTTGTCAA ATAAAGATAT TAAAAAAGGC 960

Seg ID NO: 10 Protein sequence:

85

AAATACCA

PCT/US02/12476

Protein Accession #: NP_005969.1

```
51
                                         31
 5
       MMCSSLEQAL AVLVTTFHKY SCQEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM
       GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP
       Seq ID NO: 11 DNA sequence
10
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 336-626
                                                                51
                                                     41
                                         31
15
       CTCCCCTCAC CCCGGTCCAG GATGCCCAGT CCCCACGACA CCTCCCACTT CCCACTGTGG
                                                                              60
       CCTGGGTGGG CTCAGGGGCT GCCCTTGACC TGGCCTAGAG CCCTCCCCCA GCTGGTGGTG
                                                                             120
       GAGCTGGCAC TCTCTGGGAG GGAGGGGCT GGGAGGGAAT GAGTGGGAAT GGCAAGAGGC
                                                                             180
       CAGGGTTTGG TGGGATCAGG TTGAGGCAGG TTTGGTTTCC TTAAAATGCC AAGTTGGGGG
                                                                             240
       CCAGTGGGGC CCACATATAA ATCCTCACCC TGGGAGCCTG GCTGCCTTGC TCTCCTTCCT
20
       GGGTCTGTCT CTGCCACCTG GTCTGCCACA GATCCATGAT GTGCAGTTCT CTGGAGCAGG
                                                                             360
       CGCTGGCTGT GCTGGTCACT ACCTTCCACA AGTACTCCTG CCAAGAGGGC GACAAGTTCA
                                                                             420
       AGCTGAGTAA GGGGGAAATG AAGGAACTTC TGCACAAGGA GCTGCCCAGC TTTGTGGGGC
                                                                             480
       ATTCCAGAGA ACCATGTGCT GTGAGGGCCT TCCGAGTCCA TCTGTTTAAT CCTGTCATTG
                                                                             540
       GAGACTTGAG AAACCAGAGC CCAGAAGGGA AAAGTGATTG TCCCAAGATC ACACAGCACT
                                                                             600
25
       GGAGAAAGTG GATGAGGAGG GGCTGAAGAA GCTGATGGGC AGCCTGGATG AGAACAGTGA
                                                                             660
       CCAGCAGGTG GACTTCCAGG AGTATGCTGT TTTCCTGGCA CTCATCACTG TCATGTGCAA
                                                                             720
       TGACTTCTTC CAGGGCTGCC CAGACCGACC CTGAAGCAGA ACTCTTGACT TCCTGCCATG
                                                                             780
       GATCTCTTGG GCCCAGGACT GTTGATGCCT TTGAGTTTTG TATTCAATAA ACTTTTTTTG
                                                                             840
       TCTGTTGATA ATATTTTAAT TGCTCAGTGA TGTTCCATAA CCCGGCTGGC TCAGCTGGAG
                                                                             900
30
       TGCTGGGAGA TGAGGGCCTC CTGGATCCTG CTCCCTTCTG GGCTCTGACT CTCCTGGAAA
                                                                             960
       TCTCTCCAAG GCCAGAGCTA TGCTTTAGGT CTCAATTTTG GAATTTCAAA CACCAGCAAA
       AAATTGGAAA TCGAGATAGG TTGCTGACTT TTATTTTGTC AAATAAAGAT ATTAAAAAAG
       GCAAATACCA
35
       Seq ID NO: 12 Protein sequence:
       Protein Accession #: Eos sequence
40
       MMCSSLEQAL AVLVTTFHKY SCQEGDKFKL SKGEMKELLH KELPSFVGHS REPCAVRAFR
                                                                              60
       VHLFNPVIGD LRNQSPEGKS DCPKITQHWR KWMRRG
       Seq ID NO: 13 DNA sequence
45
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 58-354
                                                                51
                  11
                              21
                                         31
                                                     41
50
       GTGAGCTCAC CATGTGGGGG TGAGGCTGAG AGAAAACAAG TACACAGCCA CAGATCCATG
       ATGTGCAGTT CTCTGGAGCA GGCGCTGGCT GTGCTGGTCA CTACCTTCCA CAAGTACTCC
                                                                             120
       TGCCAAGAGG GCGACAAGTT CAAGCTGAGT AAGGGGGAAA TGAAGGAACT TCTGCACAAG
                                                                             180
       GAGCTGCCCA GCTTTGTGGG GGAGAAAGTG GATGAGGAGG GGCTGAAGAA GCTGATGGGC
                                                                             240
       AGCCTGGATG AGAACAGTGA CCAGCAGGTG GACTTCCAGG AGTATGCTGT TTTCCTGGCA
                                                                             300
55
       CTCATCACTG TCATGTGCAA TGACTTCTTC CAGGGCTGCC CAGACCGACC CTGAAGCAGA
                                                                             360
       ACTCTTGACT TCCTGCCATG GATCTCTTGG GCCCAGGACT GTTGATGCCT TTGAGTTTTG
                                                                             420
       TATTCAATAA ACTTTTTTTG TCTGTTGATA ATATTTTAAT TGCTCAGTGA TGTTCCATAA
                                                                             480
       CCCGGCTGGC TCAGCTGGAG TGCTGGGAGA TGAGGGCCTC CTGGATCCTG CTCCCTTCTG
                                                                             540
       GGCTCTGACT CTCCTGGAAA TCTCTCCAAG GCCAGAGCTA TGCTTTAGGT CTCAATTTTG
                                                                             600
60
                                                                             660
       GAATTTCAAA CACCAGCAAA AAATTGGAAA TCGAGATAGG TTGCTGACTT TTATTTTGTC
       AAATAAAGAT ATTAAAAAAG GCAAATACCA
       Seq ID NO: 14 Protein sequence:
       Protein Accession #: NP_005969.1
65
                             21
                                         31
                                                     41
                                                                51
                  11
       MMCSSLEOAL AVLVTTFHKY SCOEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM
       GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP
70
       Seq ID NO: 15 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 62-358
75
                                                                51
                              21
                                         31
                                                     41
       GGAGGGTGTG CCGCTGAGTC ACTGCCTGGG CATCTGGGCC TGGAACCTCG GCCACAGATC
       CATGATGTGC AGTTCTCTGG AGCAGGCGCT GGCTGTGCTG GTCACTACCT TCCACAAGTA
                                                                             120
       CTCCTGCCAA GAGGGCGACA AGTTCAAGCT GAGTAAGGGG GAAATGAAGG AACTTCTGCA
80
       CAAGGAGCTG CCCAGCTTTG TGGGGGAGAA AGTGGATGAG GAGGGGCTGA AGAAGCTGAT
                                                                             240
       GGGCAGCCTG GATGAGAACA GTGACCAGCA GGTGGACTTC CAGGAGTATG CTGTTTTCCT
                                                                             300
       GGCACTCATC ACTGTCATGT GCAATGACTT CTTCCAGGGC TGCCCAGACC GACCCTGAAG
                                                                             360
       CAGAACTCTT GACTTCCTGC CATGGATCTC TTGGGCCCAG GACTGTTGAT GCCTTTGAGT TTTGTATTCA ATAAACTTTT TTTGTCTGTT GATAATATTT TAATTGCTCA GTGATGTTCC
                                                                             420
                                                                             480
85
       ATAACCCGGC TGGCTCAGCT GGAGTGCTGG GAGATGAGGG CCTCCTGGAT CCTGCTCCCT
                                                                             540
       TCTGGGCTCT GACTCTCCTG GAAATCTCTC CAAGGCCAGA GCTATGCTTT AGGTCTCAAT
                                                                             600
       TTTGGAATTT CAAACACCAG CAAAAAATTG GAAATCGAGA TAGGTTGCTG ACTTTTATTT
                                                                             660
```

WO 02/086443 TGTCAAATAA AGATATTAAA AAAGGCAAAT ACCA

Seq ID NO: 16 Protein sequence: Protein Accession #: NP 005969.1 5 11 21 31 41 51 MMCSSLEQAL AVLVTTFHKY SCOEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP 10 Sea ID NO: 17 DNA sequence Nucleic Acid Accession #: Eos sequence 15 Coding sequence: 939-2372 21 31 41 51 AAGACGGATT CTCAGACAAG GCTTGCAAAT GCCCCGCAGC CATCATTTAA CTGCACCCGC 60 20 AGAATAGTTA CGGTTTGTCA CCCGACCCTC CCGGATCGCC TAATTTGTCC CTAGTGAGAC 120 CCCGAGGCTC TGCCCGCGCC TGGCTTCTTC GTAGCTGGAT GCATATCGTG CTCCGGGCAG 180 CGCGGGCGCA GGGCACGCGT TCGCGCACAC CCTAGCACAC ATGAACACGC GCAAGAGCTG 240 AACCAAGCAC GGTTTCCATT TCAAAAAGGG AGACAGCCTC TACCGCGATT GTAGAAGAGA 300 CTGTGGTGTG AATTAGGGAC CGGGAGGCGT CGAACGGAGG AACGGTTCAT CTTAGAGACT 360 25 AATTTTCTGG AGTTTCTGCC CCTGCTCTGC GTCAGCCCTC ACGTCACTTC GCCAGCAGTA 420 GCAGAGGCGG CGGCGGCGC TCCCGGAATT GGGTTGGAGC AGGAGCCTCG CTGGCTGCTT 480 CGCTCGCGCT CTACGCGCTC AGTCCCCGGC GGTAGCAGGA GCCTGGACCC AGGCGCCGCC 540 GGCGGGCGTG AGGCGCCGGA GCCCGGCCTC GAGGTGCATA CCGGACCCCC ATTCGCATCT 600 AACAAGGAAT CTGCGCCCCA GAGAGTCCCG GGAGCGCCGC CGGTCGGTGC CCGGCGCGCC 660 30 GGGCCATGCA GCGACGGCCG CCGCGGAGCT CCGAGCAGCG GTAGCGCCCC CCTGTAAAGC 720 GGTTCGCTAT GCCGGGGCCA CTGTGAACCC TGCCGCCTGC CGGAACACTC TTCGCTCCGG 780 ACCAGCTCAG CCTCTGATAA GCTGGACTCG GCACGCCCGC AACAAGCACC GAGGAGTTAA 840 GAGAGCCGCA AGCGCAGGGA AGGCCTCCCC GCACGGGTGG GGGAAAGCGG CCGGTGCAGC 900 GCGGGGACAG GCACTCGGGC TGGCACTGGC TGCTAGGGAT GTCGTCCTGG ATAAGGTGGC 960 35 ATGGACCGC CATGGCGCG CTCTGGGGCT TCTGCTGGCT GGTTGTGGGC TTCTGGAGGG 1020 CCGCTTTCGC CTGTCCCACG TCCTGCAAAT GCAGTGCCTC TCGGATCTGG TGCAGCGACC 1080 CTTCTCCTGG CATCGTGGCA TTTCCGAGAT TGGAGCCTAA CAGTGTAGAT CCTGAGAACA 1140 TCACCGAAAT TTTCATCGCA AACCAGAAAA GGTTAGAAAT CATCAACGAA GATGATGTTG 1200 AAGCTTATGT GGGACTGAGA AATCTGACAA TTGTGGATTC TGGATTAAAA TTTGTGGCTC 1260 40 ATAAAGCATT TCTGAAAAAC AGCAACCTGC AGCACATCAA TTTTACCCGA AACAAACTGA 1320 CGAGTTTGTC TAGGAAACAT TTCCGTCACC TTGACTTGTC TGAACTGATC CTGGTGGGCA 1380 ATCCATTTAC ATGCTCCTGT GACATTATGT GGATCAAGAC TCTCCAAGAG GCTAAATCCA 1440 GTCCAGACAC TCAGGATTTG TACTGCCTGA ATGAAAGCAG CAAGAATATT CCCCTGGCAA 1500 ACCTGCAGAT ACCCAATTGT GGTTTGCCAT CTGCAAATCT GGCCGCACCT AACCTCACTG 1560 45 TGGAGGAAGG AAAGTCTATC ACATTATCCT GTAGTGTGGC AGGTGATCCG GTTCCTAATA 1620 TGTATTGGGA TGTTGGTAAC CTGGTTTCCA AACATATGAA TGAAACAAGC CACACACAGG 1680 GCTCCTTAAG GATAACTAAC ATTTCATCCG ATGACAGTGG GAAGCAGATC TCTTGTGTGG 1740 CGGAAAATCT TGTAGGAGAA GATCAAGATT CTGTCAACCT CACTGTGCAT TTTGCACCAA 1800 CTATCACATT TCTCGAATCT CCAACCTCAG ACCACCACTG GTGCATTCCA TTCACTGTGA 1860 50 AAGGCAACCC CAAACCAGCG CTTCAGTGGT TCTATAACGG GGCAATATTG AATGAGTCCA 1920 AATACATCTG TACTAAAATA CATGTTACCA ATCACACGGA GTACCACGGC TGCCTCCAGC 1980 TGGATAATCC CACTCACATG AACAATGGGG ACTACACTCT AATAGCCAAG AATGAGTATG 2040 GGAAGGATGA GAAACAGATT TCTGCTCACT TCATGGGCTG GCCTGGAATT GACGATGGTG 2100 CAAACCCAAA TTATCCTGAT GTAATTTATG AAGATTATGG AACTGCAGCG AATGACATCG 2160 55 GGGACACCAC GAACAGAAGT AATGAAATCC CTTCCACAGA CGTCACTGAT AAAACCGGTC 2220 GGGAACATCT CTCGGTCTAT GCTGTGGTGG TGATTGCGTC TGTGGTGGGA TTTTGCCTTT TGGTAATGCT GTTTCTGCTT AAGTTGGCAA GACACTCCAA GTTTGGCATG AAAGGTTTTG 2340 TTTTGTTTCA TAAGATCCCA CTGGATGGGT AGCTGAAATA AAGGAAAAGA CAGAGAAAGG 2400 GGCTGTGGTG CTTGTTGGTT GATGCTGCCA TGTAAGCTGG ACTCCTGGGA CTGCTGTTGG 2460 60 CTTATCCCGG GAAGTGCTGC TTATCTGGGG TTTTCTGGTA GATGTGGGCG GTGTTTGGAG 2520 GCTGTACTAT ATGAAGCCTG CATATACTGT GAGCTGTGAT TGGGGAACAC CAATGCAGAG 2580 GTAACTCTCA GGCAGCTAAG CAGCACCTCA AGAAAACATG TTAAATTAAT GCTTCTCTTC TTACAGTAGT TCAAATACAA AACTGAAATG AAATCCCATT GGATTGTACT TCTCTTCTGA 2700 AAAGTGTGCT TTTTGACCCT ACTGGACATT TATTGACTTA ATTGCTTCTG TTTATTAAAA 2760 65 TTGACCTGCA AAGTTAAAAA AAAATTAAAG TTGAGAACAG GTATAAGTGC ACACTGAATA 2820 GTCTAATCTA CATGTAACAC ATATTTTAGT GTGATTTTCT ATACTCTAAT CAGCACTGAA 2880 TTCAGAGGGT TTGACTTTTT CATCTATAAC ACAGTGACTA AAAGAGTTAA GGGTATATAT 2940 ACCATCACTT TGGGACTTGG TAGTATTATT AAAAGGTTAT TTCCTTCACT GTCAATAAAA GTCCAAATGT TTAGCTTAGG TCTGAGAGTC AAACAATGTT AAGGATTGTC TTAAAGTTCC 3060 70 TTAGCCAGCA AAACAAAACA AAACAAAACA AACAAATGAA AAACGTTTAA AAAGAAGAAG 3120 AAGAAAAAA ACAAGAACAA GCAGCAACAG CTGTTTTGTT GGGGCTATAG ATTTAAGTTA 3180 GGCATAGTCA ATTTCAGAAT AACTAAGAGT GGAATATATG CATATGGTGA AATTATAACC 3240 TTGCCCTTTT TTATTTGCCC TCTGCGATCC ACCTGCTTTT TAGAAGTCTG CCGAGTGAGA 3300 AGGCCACAGT ATCTCATGCT GTTTGCATTA CAGAACTGCA GCTTTTCTAC TCTGAAAAGG 3360 75 CCTGGGAGCA GAATGGCTGG CCTGCTGTGA GCAGGAGAGG AGATTCTAAG AAGGATAGTC CCCCCTACAA CATACTGTCA TACTGCTGGG TTTTCATGGG TAGGAAAGCT TGTCCTGACC 3480 CCAGCAGCAA AGAGGTGGCA GGTCGCTAAT GAATATATGC TTTATAATGT CCTTCTTCAT 3540 TGCTGAGAGG GCAGCCTTAG AGCTGTGGAT TTCTGCATCC CCCCTGAGTC TGACCCATGG 3600 ACACCTGTTT CATTCACTTT AGCATCACAG TGACCTTTGT ATGCTCTGTT CAGTCTGTGT 3660 80 TGTTCCTTTT TTATCAGGAG GACTTCAGAG CCAGGCCTGC AGCATTTTGT TTGAAAACAC 3780 AATCAGCTCT GACAGTTAGA CATGCACACA GACGCCATAG CTGGATTGGA AACATTGATG 3840 TTTTAAAAAT TTATTTTTT TGGAAATAGT TGCACAAATG CTGCAATTTA GCTTTAAGGT 3900 TCTATAGATT TTTAACTAGT CCAACACAGT CAGAAACATT GTTTTGAATC CTCTGTAAAC 3960 85 CAAGGCATTA ATCTTAATAA ACCAGGATCC ATTTAGGTAC CACTTGATAT AAAAAGGATA 4020 TCCATAATGA ATATTTTATA CTGCATCCTT TACATTAGCC ACTAAATACG TTATTGCTTG ATGAAGACCT TTCACAGAAT CCTATGGATT GCAGCATTTC ACTTGGCTAC TTCATACCCA

	WO 02	/086443					
5	TCCTAACTCC TCTGAATTCC GATCTTTCCC	AGGGGCAGTT ATTTGAATGT CATTTTCTTG AAAGGTGTTG TGAAATTCAA	AAGGGCAGCT TTCGCGGCTA ATTTACAAAG	GGCCCCCAAT AATGACAGTT AGGCCAGCTA	GTGGGGAGGT TCTGTCATTA ATAGCAGAAA	CCGAACATTT CTTAGATTCC TCATGACCCT	4200 4260 4320 4380 4440
	GAGAATCAGC ATAGAAAGGC AATAAAAAAA	CATTTGGTAC TATGGATTGT AAGGAATATT AGAGAAGTGG	AAAAAAGATT TTAAGAACTA TGTACCCAAC	TTTAAAGCTT TTTTAAAGTG AGCTAGAAGG	TTATGTTATA TTCCAGACCC ATTGCAAGGT	CCATGGAGCC AAAAAGGAAA AGATTTTTGT	4500 4560 4620 4680
10		ATGATGAAAA 18 Protein		T			
	Protein Acc	cession #: (CAA53571				
15	NSVDPENITE		IINEDDVEAY	VGLRNLTIVD	SGLKFVAHKA	FLKNSNLQHI	
20	SKNIPLANLQ NETSHTQGSL WCIPFTVKGN LIAKNEYGKD	SRKHFRHLDL IPNCGLPSAN RITNISSDDS PKPALQWFYN EKQISAHFMG LSVYAVVVIA	LAAPNLTVEE GKQISCVAEN GAILNESKYI WPGIDDGANP	GKSITLSCSV LVGEDQDSVN CTKIHVTNHT NYPDVIYEDY	AGDPVPNMYW LTVHFAPTIT EYHGCLQLDN GTAANDIGDT	DVGNLVSKHM FLESPTSDHH PTHMNNGDYT TNRSNEIPST	180 240 300 360 420
25	DVIDKIGRER	LSVIAVVVIA	SVVGFCHHVII	DF HEIKEMKIIS	REGERGE VIII	111111111111111111111111111111111111111	
20	Nucleic Act	19 DNA sequid Accession	1 #: NM_0002 500				
30	1	11 	21	31	41	51 	
		GATCTGGAGA ATTGGCTGAA					60 120
35	CTCCTGCATG	CCCAACAAGC GGACCCGGTT	CTGCTCCCGT	GGGGCCTGCT	ATCCACCTGT	TGGGGACCTG	180 240
33	ACCTACTGCA	CCCAGTATGG	CGAGTGGCAG	ATGAAATGCT	GCAAGTGTGA	CTCCAGGCAG	300
		ACTACAGTCA CCCAGAATGA					360 420
40	TTCCAGCTTC	AAGAAGTCAT	GATGGAGTTC	CAGGGGCCCA	TGCCCGCCGG	CATGCTGATT	480
40		CAGACTTCGG TCCCTCGGGT					540 600
	CAGTCCCTGC	CTCAGAGGCC	TAATGCACGC	CTAAATGGGG	GGAAGGTCCA	ACTTAACCTT	660
		TGTCTGGGAT TGAGAGTCAA					720 780
45	CCTCCCAGCG	CCTACTATGC	TGTGTCCCAG	CTCCGTCTGC	AGGGGAGCTG	CTTCTGTCAC	840
		ATCGCTGCGC ATGTCTGTGT					900 960
	GCACCCTTCT	ACAACAACCG	GCCCTGGAGA	CCGGCGGAGG	GCCAGGACGC	CCATGAATGC	1020
50		ACTGCAATGG GGGCATATGG					1080 1140
	AACTGTGAGC	GGTGTCAGCT	GCACTATTTC	CGGAACCGGC	GCCCGGGAGC	TTCCATTCAG	1200
		TCTCCTGCGA GGCAGTGTGT					1260 1320
	AAGCCGGGCT	TCACTGGACT	CACCTACGCC	AACCCGCAGG	GCTGCCACCG	CTGTGACTGC	1380
55		GGTCCCGGAG TGGTGGGTCC					1440 1500
	AGTGGCCAGG	GCTGTGAACC	GTGTGCCTGC	GACCCGCACA	ACTCCCCTCA	GCCCACAGTG	1560
	CAACCAGTTC	ACAGGGCAGT GCCAGTGTCC	GCCCTGTCGG	GAAGGCTTTG	TGGCCACAGG	GTGCAGCGCT ATGCCGAGCC	1620 1680
60	TGTGACTGTG	ATTTCCGGGG	AACAGAGGGC	CCGGGCTGCG	ACAAGGCATC	AGGCCGCTGC	1740
	CTCTGCCGCC	CTGGCTTGAC	CGGGCCCCGC	TGTGACCAGT	GCCAGCGAGG CCTATGATGC	CTACTGCAAT GGACCTCCGG	1800 1860
	GAGCAGGCCC	TGCGCTTTGG	TAGACTCCGC	AATGCCACCG	CCAGCCTGTG	GTCAGGGCCT	1920
65	GGGCTGGAGG	ACCGTGGCCT TTCTCAGCAG	GGCCTCCCGG	ATCCTAGATG	CAAAGAGTAA AGGTGGCTCA	GATTGAGCAG GGTGGCCAGT	1980 2040
00	GCCATCCTCT	CCCTCAGGCG	AACTCTCCAG	GGCCTGCAGC	TGGATCTGCC	CCTGGAGGAG	2100
		CCCTTCCGAG AGAGGAAGAG					2160 2220
70	GCCTTCCGGA	TGCTGAGCAC	AGCCTACGAG	CAGTCAGCCC	AGGCTGCTCA	GCAGGTCTCC	2280
70		GCCTTTTGGA GAGGAGGAGG				GAGGCTGGTG GAGGCTGGAG	2340 2400
	ATGTCTTCGT	TGCCTGACCT	GACACCCACC	TTCAACAAGC	TCTGTGGCAA	CTCCAGGCAG	2460
		CCCCAATATC GCTGCAGGGG					2520 2580
75	CAGGTGGCTG	AGCAGCTGCG	GGGCTTCAAT	GCCCAGCTCC	AGCGGACCAG	GCAGATGATT	2640
		AGGAATCTGC GCCGCTCCCA					2700 2760
	CAGGTCCGGG	ACTTCCTAAC	AGACCCCGAC	ACTGATGCAG	CCACTATCCA	GGAGGTCAGC	2820
80	GAGGCCGTGC GAGATCCACC	TGGCCCTGTG CCATTGCAGC	GCTGCCCACA	GACTCAGCTA AACGTGGACT	TGGTGCTGTC	GAAGATGAAT CCAGACCAAG	2880 2940
	CAGGACATTG	CGCGTGCCCG	CCGGTTGCAG	GCTGAGGCTG	AGGAAGCCAG	GAGCCGAGCC	3000
	CATGCAGTGG	AGGGCCAGGT CTCAGGACAC	GGAAGATGTG	GTTGGGAACC ACCAGCCGCT	TGCGGCAGGG CCCTTCGGCT	GACAGTGGCA TATCCAGGAC	3060 3120
0.5	AGGGTTGCTG	AGGTTCAGCA	GGTACTGCGG	CCAGCAGAAA	AGCTGGTGAC	AAGCATGACC	3180
85	AAGCAGCTGG	GTGACTTCTG	GACACGGATG	GAGGAGCTCC	GCCACCAAGC	CCGGCAGCAG GGCATTGAGT	3240 3300
	GCCCAAGAGG	GATTTGAGAG	AATAAAACAA	AAGTATGCTG	AGTTGAAGGA	CCGGTTGGGT	3360

5	GAGCTGTTTG CTGCGGGGCA GTGGAGCAGA TGCTACAGCT GATTGGGTTG GACCACCCT GGGACAGTTA CTCTCAAGTC	GGGAGACCAT GCCAGGCCAT TCCAGCCCGT GAATGCTTTC GGTGTGTAGC CACTTGACAG AAGGAAGCTG ACCAAGCACA	GCAGGGTGCC GGAGATGATG CATGCTGCGC CATCAATGGG TGCCCCACTC CATCTCCAGG TAGTAAGATT AGAAAGATGG GGCTGGGCAG AAAACTTAAC	GACAGGATGA TCGGCGGACC CGCGTGCTCT ATCTGCCGCC AGACTTTCAT ACCCTGAGCT TGGAGATTGG TATCCCCCGC	AAGACATGGA TGACAGGACT ACTATGCCAC TTTGCTTTTG GCAGCCTAAA GCAGCTGAGC CATGCCATTG CTTTAGTTCT	GTTGGAGCTG GGAGAAGCGT CTGCAAGTGA GTTGGGGGCA GTACAGCCTG CTGAGCCAAT AAACTAAGAG CCACTGGGGA	3420 3480 3540 3600 3660 3720 3780 3840 3900 3960
15		20 Protein cession #: 1					
	1	11 	21 	31 	41 	51 	
20	EWQMKCCKCD MEFQGPMPAG NARLNGGKVQ VSQLRLQGSC PWRPAEGQDA	SRQPHNYYSH MLIERSSDFG LNLMDLVSGI FCHGHADRCA HECQRCDCNG	CSRGACYPPV RVENVASSSG KTWRVYQYLA PATQSQKIQE PKPGASAGPS HSETCHFDPA	PMRWWQSQND ADCTSTFPRV VGEITNLRVN TAVQVHDVCV VFAASQGAYG	VNPVSLQLDL RQGRPQSWQD FTRLAPVPQR CQHNTAGPNC GVCDNCRDHT	DRRFQLQEVM VRCQSLPQRP GYHPPSAYYA ERCAPFYNNR EGKNCERCQL	60 120 180 240 300 360
25	TYANPQGCHR CACDPHNSPQ TEGPGCDKAS RLRNATASLW	CDCNILGSRR PTVQPVHRAV GRCLCRPGLT SGPGLEDRGL	CDPDGAVPGA DMPCDEESGR PCREGFGGLM GPRCDQCQRG ASRILDAKSK	CLCLPNVVGP CSAAAIRQCP YCNRYPVCVA IEQIRAVLSS	KCDQCAPYHW DRTYGDVATG CHPCFQTYDA PAVTEQEVAQ	KLASGQGCEP CRACDCDFRG DLREQALRFG VASAILSLRR	420 480 540 600 660
30	AYEQSAQAAQ TPTFNKLCGN GFNAQLQRTR DPDTDAATIQ	QVSDSSRLLD SRQMACTPIS QMIRAAEESA EVSEAVLALW	DLESLDRSFN QLRDSRREAE CPGELCPQDN SQIQSSAQRL LPTDSATVLQ	RLVRQAGGGG GTACGSRCRG ETQVSASRSQ KMNEIQAIAA	GTGSPKLVAL VLPRAGGAFL MEEDVRRTRL RLPNVDLVLS	RLEMSSLPDL MAGQVAEQLR LIQQVRDFLT QTKQDIARAR	720 780 840 900 960
35	RLQAEAEEAR VLRPAEKLVT IKQKYAELKD	SRAHAVEGQV SMTKQLGDFW RLGQSSMLGE	EDVVGNLRQG TRMEELRHQA QGARIQSVKT INGRVLYYAT	TVALQEAQDT RQQGAEAVQA EAEELFGETM	MQGTSRSLRL QQLAEGASEQ	IQDRVAEVQQ ALSAQEGFER	1020 1080 1140
40	Nucleic Ac	21 DNA sequid Accession lence: 145-3	n #: NM_0037	722 ,			
	1	11	21	31	41	51	
45	ACAGTACTGC AAAGAAAGTT CCAGAGGTTT	CCTGACCCTT ATTACCGATC TCCAGCATAT	TGAAGGAAAT ACATCCAGCG CACCATGTCC CTGGGATTTT	TTTCGTAGAA CAGAGCACAC CTGGAACAGC	ACCCAGCTCA AGACAAATGA CTATATGTTC	TTTCTCTTGG ATTCCTCAGT AGTTCAGCCC	60 120 180 240
50	AGCATGGACT ACGAACCTGG AGTCCCTATA CCCAGCTCCA	GTATCCGCAT GGCTCCTGAA ACACAGACCA CCTTCGATGC	TGAACCATCA GCAGGACTCG CAGCATGGAC CGCGCAGAAC TCTCTCTCCA	GACCTGAGTG CAGCAGATTC AGCGTCACGG TCACCCGCCA	ACCCCATGTG AGAACGGCTC CGCCCTCGCC TCCCCTCCAA	GCCACAGTAC CTCGTCCACC CTACGCACAG CACCGACTAC	300 360 420 480 540
55	TGGACGTATT CAGATCAAGG AAAAAAGCTG GAATTCAACG	CCACTGAACT TGATGACCCC AGCACGTCAC AGGGACAGAT	CGTGTCCTTC GAAGAAACTC ACCTCCTCAG GGAGGTGGTG TGCCCCTCCT	TACTGCCAAA GGAGCTGTTA AAGCGGTGCC AGTCATTTGA	TTGCAAAGAC TCCGCGCCAT CCAACCATGA TTCGAGTAGA	ATGCCCCATC GCCTGTCTAC GCTGAGCCGT GGGGAACAGC	600 660 720 780 840
60	CCACCCAGG TGTGTTGGAG GGGCAAGTCC AGGAAGGCGG	TTGGCACTGA GGATGAACCG TGGGCCGACG ATGAAGATAG	CATCAGAAAG	GTCTTGTACA TTAATCATTG GCCCGGATCT CAGCAAGTTT	ATTTCATGTG TTACTCTGGA GTGCTTGCCC CGGACAGTAC	TAACAGCAGT AACCAGAGAT AGGAAGAGAC AAAGAACGGT	900 960 1020 1080 1140 1200
65	AAACGAAGAT GAAATGCTGT ATTGAAACGT CTTTCAGCCT	CCCCAGATGA TGAAGATCAA ACAGGCAACA GCTTCAGGAA	TCGTCAGAAC TGAACTGTTA AGAGTCCCTG GCAACAGCAG TGAGCTTGTG	TACTTACCAG GAACTCATGC CAGCACCAGC GAGCCCCGGA	TGAGGGGCCG AGTACCTTCC ACTTACTTCA GAGAAACTCC	TGAGACTTAT TCAGCACACA GAAACATCTC AAAACAATCT	1260 1320 1380 1440
70	TCTATATTTT TGTGTGTGCG CCCAACTGCT	AAGTGTGTGT TGTGTATCTA CAAAGGCACA	CAAGCCCCA GTTGTATTTC GCCCTCATAA AAGCCACTAG TGCAGATTTT	CATGTGTATA ACAGGACTTG TGAGAGAATC	TGTGAGTGTG AAGACACTTT TTTTGAAGGG	TGTGTGTGTA GGCTCAGAGA ACTCAAACCT	1500 1560 1620 1680 1740
75	GAAAGGGGCA AATTCACAGG AAAAAAGTTG	TTAAGATGTT GAAGCTTTTG TTATTGTCTG	GAGCTTTCTG TATTGGAACC AGCAGGTCTC TGCATAAGTA TAATAATATT	CTTTTCTGTC AAACTTAAGA AGTTGTAGGT	TTCTTCTGTT TGTCTTTTTA GACTGAGAGA	GTTTTTCTAA AGAAAAGGAG CTCAGTCAGA	1800 1860 1920 1980 2040
80	TACTGCTGGG TTTGTGAGAA GCTGTGTACC	CAGCGAGGTG CTTGCATTAT TGCCTCTGCC	ATCATTACCA TTGTGTCCTC ACTGTATGTT ACTACAAAAA	AAAGTAATCA CCCTCATGTG GGCATCTGTT	ACTTTGTGGG TAGGTAGAAC ATGCTAAAGT	TGGAGAGTTC ATTTCTTAAT TTTTCTTGTA	2100 2160 2220 2280
85	CATGAAACCC CTCATTTTGT TGTTTACCAT	GCTTTTAATA	GAAAGACAAA	TCCACCCCAG	TAATATTGCC	CTTACGTAGT	2340

	WO 02	/086443					
-	TTAAGATAAT CACCAGCACT	TACTCAAAAG AGCATAAAGA GTATTTTCTG GTGATTTTAA	CTTTAAAAAT TCACCAAGAC	GTTCCTCCCC AATGATTTCT	$\begin{array}{c} \texttt{TCCATCTTCC} \\ \texttt{TGTTATTGAG} \end{array}$	CACACCCAGT GCTGTTGCTT	2640 2700 2760
5	_	22 Protein cession #: 1	_				
10	1	11	21	31	41	51	
10	DSDLSDPMWP SPSPAIPSNT	 LSPEVFQHIW QYTNLGLLNS DYPGPHSFDV VYKKAEHVTE	MDQQIQNGSS SFQQSSTAKS	STSPYNTDHA ATWTYSTELK	QNSVTAPSPY KLYCQIAKTC	AQPSSTFDAL PIQIKVMTPP	60 120 180 240
15	FEARICACPG LLYLPVRGRE	YEPPQVGTEF RDRKADEDSI TYEMLLKIKE QSDVFFRHSK	RKQQVSDSTK SLELMQYLPQ	NGDGTKRPFR	QNTHGIQMTS	IKKRRSPDDE	300 360 420
20							
	Nucleic Ac	23 DNA sequid Accession lence: 84-30	1 #: NM_001	944.1			
25	1	11	21	31	41	51	
	TTTCACCAGG	CATTAACTGC GAAATCAGAG GGTGGTCATA	ACAATGATGG	GGCTCTTCCC	CAGAACTACA	GGGGCTCTGG	60 120 180
30	ATGATGAAGA AATTTGCCAA TTACTTCAGA ATCAGCCGCC	AGAGATGACT ACCCTGCAGA TTACCAAGCA TTTTGGAATC CCGGGAGGAA	ATGCAACAAG GAAGGAGAAG ACCCAGAAAA TTTGTTGTTG	CTAAAAGAAG ATAACTCAAA TCACCTACCG ACAAAAACAC	GCAAAAACGT AAGAAACCCA AATCTCTGGA TGGAGATATT	GAATGGGTGA ATTGCCAAGA GTGGGAATCG AACATAACAG	240 300 360 420 480
35	AAGGACTAGA ATCCTCCAGT ACTCACTGGT AAATTGCCTT	TGTAGAGAAA ATTTTCACAA GATGATACTA CAAAATTGTC	CCACTTATAC CAAATTTTCA AATGCCACAG TCTCAGGAAC	TAACGGTTAA TGGGTGAAAT ATGCAGATGA CAGCAGGCAC	AATTTTGGAT TGAAGAAAAT ACCAAACCAC ACCCATGTTC	ATTAATGATA AGTGCCTCAA TTGAATTCTA CTCCTAAGCA	540 600 660 720 780
40	ATCGTCTGGT GTAATATTAA CAGCACGTAT TGGATGAAGA	GGAAGTCCGT TGTGAGTGGT AGTGAAAGAT TGAAGAAAAT GTACACAGAT	GCAGACAAAG GTCAACGATA ATTTTAAGTT AATTGGCTTG	ATGGAGAAGG ACTTCCCAAT CTGAATTACT CAGTATATTT	ACTATCAACT GTTTAGAGAC TCGATTTCAA CTTTACCTCT	CAATGTGAAT TCTCAGTATT GTAACAGATT GGGAATGAAG	840 900 960 1020
45	AGGCTCTAGA CTGAATTTCA AGGTAATAAA AAAAAGGCAT	TGAAATACAA TTATGAACAA CCAATCAGTT TGTAAGAGAA AAGTAGCAAA	CTACAAAGCG ATCTCTCGAT GGAATTGCAT AAATTGGTGG	TGAAACTTAG ACCGAGTTCA TCCGTCCTGC ATTATATCCT	TATTGCTGTC GTCAACCCCA TTCCAAGACA GGGAACATAT	AAAAACAAAG GTCACAATTC TTTACTGTGC CAAGCCATCG	1080 1140 1200 1260 1320
50	GATACCTAAT ATTCTACTTT CGGGTAAAAC CAACAGCTGT	TAACAAAGCT GATTGATTCA CATAGTTAAC TTCTACAGGC CCTCGAAAAA GAATAATAGA	AAAACTGCTG AAAACAATCA ACGGTATATG GATGCAGTTT	AAATCAAATT CAGCTGAGGT TTAGAGTACC GCAGTTCTTC	TGTCAAAAAT TCTGGCCATA CGATTTCAAT ACCTTCCGTG	ATGAACCGAG GATGAATACA GACAATTGTC GTTGTCTCCG	1380 1440 1500 1560 1620 1680
55	TAAAGTTGCC CCCAGGAACA ACAATCGGTG GCATCTGTGG	TGCCGTATGG GATACCTCCT TGAGATGCCA AACTTCTTAC GGGGCCTGCC	AGTATCACAA GGAGTATACC CGCAGCTTGA CCAACCACAA	CCCTCAATGC ACATCTCCCT CACTGGAAGT GCCCTGGGAC	TACCTCGGCC GGTACTTACA CTGTCAGTGT CAGGTATGGC	CTCCTCAGAG GACAGTCAGA GACAACAGGG AGGCCGCACT	1740 1800 1860 1920 1980
60	TGGCCCCCT GTGGTTTTAT GAGCCCATCC GAGCCGATTT	TCTGCTGTTG CCCAGTTCCT TGAAGACAAG CATGGAAAGT	ACCTGTGACT GATGGCTCAG GAAATCACAA TCTGAAGTTT	GTGGGGCAGG AAGGAACAAT ATATTTGTGT GTACAAATAC	TTCTACTGGG TCATCAGTGG GCCTCCTGTA GTATGCCAGA	GGAGTGACAG GGAATTGAAG ACAGCCAATG GGCACAGCGG GAATCTGGAG	2040 2100 2160 2220
65	GTGCTGCAGG CTGGAGTTGG GAGGAACCAA TTTCTCAGAA	CTTTGCAACA CATCTGTTCC TAAGGACTAC AGCATTTGCC	GGGACAGTGT TCAGGGCAGT GCTGATGGG TGTGCGGAGG	CAGGAGCTGC CTGGAACCAT CGATAAGCAT AAGACGATGG	TTCAGGATTC GAGAACAAGG GAATTTTCTG CCAGGAAGCA	GGAGCAGCCA CATTCCACTG GACTCCTACT AATGACTGCT TCCGTGGGTT	2340 2400 2460 2520
70	GTTGCAGTTT TTAAAAAACT CCTCTAAAGA CAGGATTTGT	TATTGCTGAT TGCAGAGATA CAGCGGTTAT TAAGTGCCAG	GACCTGGATG AGCCTTGGTG GGGATTGAAT ACTTTGTCAG	ACAGCTTCTT TTGATGGTGA CCTGTGGCCA GAAGTCAAGG	GGACTCACTT AGGCAAAGAA TCCCATAGAA AGCTTCTGCT	GGACCCAAAT GTTCAGCCAC GTCCAGCAGA TTGTCCGCCT	2640 2700 2760 2820
75	TAACGGAGAC CACTTCTCAC CTGGCAACCT ATCCTTGCTC	TTACTCGGCT ACAAAATGTG AGCTGGCCCA CCGTCTAATA	TCTGGTTCCC ATAGTGACAG ACGCAGCTAC TGACCAGAAT	TCGTGCAACC AAAGGGTGAT GAGGGTCACA GAGCTGGAAT	TTCCACTGCA CTGTCCCATT TACTATGCTC ACCACACTGA	AACTATTTAG GGCTTTGATC TCCAGTGTTC TGTACAGAGG CCAAATCTGG	2940 3000 3060 3120
80	TGGCACTTAT TACCCCAAAA TCTTAAAGTT	TAGCTTCTCT GCAATATGTT TTTCAAAACC	CATAAACTGA GTCACTCCTA CTAAAATCAT	TCACGATTAT ATTCTCAAGT	AAATTAAATG	GCTAATAATT TTTGGGTTCA TTGTAGTAAA	3240
85		24 Protein cession #: 1					
	1	11	21	31	41	51	

```
MMGLFPRTTG ALAIFVVVIL VHGELRIETK GQYDEEEMTM QQAKRRQKRE WVKFAKPCRE
       GEDNSKRNPI AKITSDYQAT QKITYRISGV GIDQPPFGIF VVDKNTGDIN ITAIVDREET
                                                                            120
       PSFLITCRAL NAQGLDVEKP LILTVKILDI NDNPPVFSQQ IFMGEIEENS ASNSLVMILN
                                                                            180
 5
       ATDADEPNHL NSKIAFKIVS QEPAGTPMFL LSRNTGEVRT LTNSLDREQA SSYRLVVSGA
                                                                            240
       DKDGEGLSTQ CECNIKVKDV NDNFPMFRDS QYSARIEENI LSSELLRFQV TDLDEEYTDN
                                                                            300
       WLAVYFFTSG NEGNWFEIQT DPRTNEGILK VVKALDYEQL QSVKLSIAVK NKAEFHOSVI
                                                                            360
       SRYRVQSTPV TIQVINVREG IAFRPASKTF TVQKGISSKK LVDYILGTYQ AIDEDTNKAA
                                                                            420
       SNVKYVMGRN DGGYLMIDSK TAEIKFVKNM NRDSTFIVNK TITAEVLAID EYTGKTSTGT
10
       VYVRVPDFND NCPTAVLEKD AVCSSSPSVV VSARTLNNRY TGPYTFALED QPVKLPAVWS
                                                                            540
       ITTLNATSAL LRAQEQIPPG VYHISLVLTD SQNNRCEMPR SLTLEVCQCD NRGICGTSYP
                                                                            600
       TTSPGTRYGR PHSGRLGPAA IGLLLLGLLL LLLAPLLLLT CDCGAGSTGG VTGGFIPVPD
                                                                            660
       GSEGTIHOWG IEGAHPEDKE ITNICVPPVT ANGADFMESS EVCTNTYARG TAVEGTSGME
                                                                            720
       MTTKLGAATE SGGAAGFATG TVSGAASGFG AATGVGICSS GOSGTMRTRH STGGTNKDYA
                                                                            780
15
       DGAISMNFLD SYFSQKAFAC AEEDDGQEAN DCLLIYDNEG ADATGSPVGS VGCCSFIADD
                                                                            840
       LDDSFLDSLG PKFKKLAEIS LGVDGEGKEV OPPSKDSGYG IESCGHPIEV QQTGFVKCQT
                                                                            900
       LSGSQGASAL SASGSVQPAV SIPDPLQHGN YLVTETYSAS GSLVQPSTAG FDPLLTQNVI
                                                                            960
       VTERVICPIS SVPGNLAGPT QLRGSHTMLC TEDPCSRLI
20
       Seg ID NO: 25 DNA seguence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 56-1642
                                                    41
                                                               51
                             21
                                         31
25
       AGTATCCCAG GAGGAGCAAG TGGCACGTCT TCGGACCTAG GCTGCCCCTG CCGTCATGTC
                                                                             60
       GCAAGGGATC CTTTCTCCGC CAGCGGGCTT GCTGTCCGAT GACGATGTCG TAGTTTCTCC
       CATGTTTGAG TCCACAGCTG CAGATTTGGG GTCTGTGGTA CGCAAGAACC TGCTATCAGA
                                                                            180
       CTGCTCTGTC GTCTCTACCT CCCTAGAGGA CAAGCAGCAG GTTCCATCTG AGGACAGTAT
                                                                            240
30
       GGAGAAGGTG AAAGTATACT TGAGGGTTAG GCCCTTGTTA CCTTCAGAGT TGGAACGACA
                                                                            300
       GGAAGATCAG GGTTGTGTCC GTATTGAGAA TGTGGAGACC CTTGTTCTAC AAGCACCCAA
                                                                            360
       GGACTCTTTT GCCCTGAAGA GCAATGAACG GGGAATTGGC CAAGCCACAC ACAGGTTCAC
                                                                            420
       CTTTTCCCAG ATCTTTGGGC CAGAAGTGGG ACAGGCATCC TTCTTCAACC TAACTGTGAA
       GGAGATGGTA AAGGATGTAC TCAAAGGGCA GAACTGGCTC ATCTATACAT ATGGAGTCAC
                                                                            540
35
       TAACTCAGGG AAAACCCACA CGATTCAAGG TACCATCAAG GATGGAGGGA TTCTCCCCCG
                                                                            600
       GTCCCTGGCG CTGATCTTCA ATAGCCTCCA AGGCCAACTT CATCCAACAC CTGATCTGAA
                                                                            660
       GCCCTTGCTC TCCAATGAGG TAATCTGGCT AGACAGCAAG CAGATCCGAC AGGAGGAAAT
                                                                            720
       GAAGAAGCTG TCCCTGCTAA ATGGAGGCCT CCAAGAGGAG GAGCTGTCCA CTTCCTTGAA
                                                                            780
       GAGGAGTGTC TACATCGAAA GTCGGATAGG TACCAGCACC AGCTTCGACA GTGGCATTGC
40
       TGGGCTCTCT TCTATCAGTC AGTGTACCAG CAGTAGCCAG CTGGATGAAA CAAGTCATCG
                                                                            900
       ATGGGCACAG CCAGACACTG CCCCACTACC TGTCCCGGCA AACATTCGCT TCTCCATCTG
                                                                            960
       GATCTCATTC TTTGAGATCT ACAACGAACT GCTTTATGAC CTATTAGAAC CGCCTAGCCA
                                                                           1020
       ACAGCGCAAG AGGCAGACTT TGCGGCTATG CGAGGATCAA AATGGCAATC CCTATGTGAA
                                                                           1080
       AGATCTCAAC TGGATTCATG TGCAAGATGC TGAGGAGGCC TGGAAGCTCC TAAAAGTGGG
                                                                           1140
45
       TCGTAAGAAC CAGAGCTTTG CCAGCACCCA CCTCAACCAG AACTCCAGCC GCAGTCACAG
       CATCTTCTCA ATCAGGATCC TACACCTTCA GGGGGAAGGA GATATAGTCC CCAAGATCAG
                                                                           1260
       CGAGCTGTCA CTCTGTGATC TGGCTGGCTC AGAGCGCTGC AAAGATCAGA AGAGTGGTGA
                                                                           1320
       ACGGTTGAAG GAAGCAGGAA ACATTAACAC CTCTCTACAC ACCCTGGGCC GCTGTATTGC
                                                                           1380
       TGCCCTTCGT CAAAACCAGC AGAACCGGTC AAAGCAGAAC CTGGTTCCCT TCCGTGACAG
                                                                           1440
50
                                                               GCATGATTGT
                                                                           1500
       CAAGTTGACT CGAGTGTTCC AAGGTTTCTT CACAGGCCGA GGCCGTTCCT
       CAATGTGAAT CCCTGTGCAT CTACCTATGA TGAAACTCTT CATGTGGCCA AGTTCTCAGC
                                                                           1560
       CATTGCTAGC CAGGTGACTT GTGCATGCCC CACCTATGCA ACTGGGATTC CCATCCCTGC
                                                                           1620
       ACTCGTTCAT CAAGGAACAT AGTCTTCAGG TATCCCCCAG CTTAGAGAAA GGGGCTAAGG
                                                                           1680
       CAGACACAGG CCTTGATGAT GATATTGAAA ATGAAGCTGA CATCTCCATG TATGGCAAAG
                                                                           1740
55
       AGGAGCTCCT ACAAGTTGTG GAAGCCATGA AGACACTGCT TTTGAAGGAA CGACAGGAAA
                                                                           1800
       AGCTACAGCT GGAGATGCAT CTCCGAGATG AAATTTGCAA TGAGATGGTA GAACAGATGC
                                                                           1860
       AACAGCGGGA ACAGTGGTGC AGTGAACATT TGGACACCCA AAAGGAACTA TTGGAGGAAA
       TGTATGAAGA AAAACTAAAT ATCCTCAAGG AGTCACTGAC AAGTTTTTAC CAAGAAGAGA
                                                                           1980
       TTCAGGAGCG GGATGAAAAG ATTGAAGAGC TAGAAGCTCT CTTGCAGGAA GCCAGACAAC
                                                                           2040
60
       AGTCAGTGGC CCATCAGCAA TCAGGGTCTG AATTGGCCCT ACGGCGGTCA CAAAGGTTGG
                                                                           2100
       CAGCTTCTGC CTCCACCCAG CAGCTTCAGG AGGTTAAAGC TAAATTACAG CAGTGCAAAG
                                                                           2160
       CAGAGCTAAA CTCTACCACT GAAGAGTTGC ATAAGTATCA GAAAATGTTA GAACCACCAC
                                                                           2220
       CCTCAGCCAA GCCCTTCACC ATTGATGTGG ACAAGAAGTT AGAAGAGGGC CAGAAGAATA
                                                                           2280
       TAAGGCTGTT GCGGACAGAG CTTCAGAAAC TTGGTGAGTC TCTCCAATCA GCAGAGAGAG
                                                                           2340
65
       CTTGTTGCCA CAGCACTGGG GCAGGAAAAC TTCGTCAAGC CTTGACCACT TGTGATGACA
                                                                           2400
       TCTTAATCAA ACAGGACCAG ACTCTGGCTG AACTGCAGAA CAACATGGTG CTAGTGAAAC
                                                                           2460
       TGGACCTTCG GAAGAAGGCA GCATGTATTG CTGAGCAGTA TCATACTGTG TTGAAACTCC
                                                                           2520
       AAGGCCAGGT TTCTGCCAAA AAGCGCCTTG GTACCAACCA GGAAAATCAG CAACCAAACC
                                                                           2580
       AACAACCACC AGGGAAGAAA CCATTCCTTC GAAATTTACT TCCCCGAACA CCAACCTGCC
                                                                           2640
70
       AAAGCTCAAC AGACTGCAGC CCTTATGCCC GGATCCTACG CTCACGGCGT TCCCCTTTAC
                                                                           2700
       TCAAATCTGG GCCTTTTGGC AAAAAGTACT AAGGCTGTGG GGAAAGAGAA GAGCAGTCAT
                                                                           2760
       GGCCCTGAGG TGGGTCAGCT ACTCTCCTGA AGAAATAGGT CTCTTTTATG CTTTACCATA
                                                                           2820
       TATCAGGAAT TATATCCAGG ATGCAATACT CAGACACTAG CTTTTTCTC ACTTTTGTAT
                                                                           2880
       TATAACCACC TATGTAATCT CATGTTGTTG TTTTTTTTTA TTTACTTATA TGATTTCTAT
                                                                           2940
75
       GCACACAAAA ACAGTTATAT TAAAGATATT ATTGTTCACA TTTTTTATTG AATTCCAAAT
       GTAGCAAAAT CATTAAAACA AATTATAAAA GGGACAGAAA AA
       Seq ID NO: 26 Protein sequence:
       Protein Accession #: Eos sequence
80
                                                    41
                                         31
                             21
                                                                             60
       MSOGILSPPA GLLSDDDVVV SPMFESTAAD LGSVVRKNLL SDCSVVSTSL EDKQQVPSED
       SMEKVKVYLR VRPLLPSELE RQEDQGCVRI ENVETLVLQA PKDSFALKSN ERGIGQATHR
                                                                            120
85
       FTFSQIFGPE VGQASFFNLT VKEMVKDVLK GQNWLIYTYG VTNSGKTHTI QGTIKDGGIL
                                                                            1.80
       PRSLALIFNS LQGQLHPTPD LKPLLSNEVI WLDSKQIRQE EMKKLSLLNG GLQEEELSTS
                                                                            240
       LKRSVYIESR IGTSTSFDSG IAGLSSISQC TSSSQLDETS HRWAQPDTAP LPVPANIRFS
                                                                            300
```

			SQQRKRQTLR				360
			HSIFSIRILH IAALRONQON				420 480
_			SAIASQVTCA			FFIGRGREEN	400
5					~		
		27 DNA sequ					
		id Accession lence: 13-14	1 #: Eos sed 124	quence			
10	couring bequ						
10	1	11	21	31	41	51	
	TACA ACTUTA	('AATGAAGTT	 TCTTCTAATA		AGGCCACTGC	TTCTGGAGCT	60
			AAGCCTGGAA				120
1.5			TGAGATAAAC				180
15			AATCCAAGAA				240
			CCTGGAGATG GCCAGGGGGG				300 360
			TGACATGAAC				420
20			TGTTACCCCC				480
20			TGCCCGTGGA				540 600
			TGCTTTTGGA GACTACACAT				660
			CTTAGGTCTT				720
0.5	TTCCCCACCT	ACAAATATGT	TGACATCAAC	ACATTTCGCC	TCTCTGCTGA	TGACATACGT	780
25	GGCATTCAGT	CCCTGTATGG	AGACCCAAAA	GAGAACCAAC	GCTTGCCAAA	TCCTGACAAT	840
			CCCCAATTTG CAGGTTCTTC				900 960
			CTTATGGCCA				1020
20	GAAATTGAAG	CCAGAAATCA	AGTTTTTCTT	TTTAAAGATG	ACAAATACTG	GTTAATTAGC	1080
30			TTATCCCAAG				1140
	GTGAAAAAA	TTGATGCAGC	TGTTTTTAAC TGATGAAAGG	CCACGTTTTT	TGGACCTGG	TTATCCCAAA	1200 1260
			AGGAATCGGG				1320
0.5	AACAAATACT	ACTATTTCTT	CCAAGGATCT	AACCAATTTG	AATATGACTT	CCTACTCCAA	1380
35			AAGCAATÁGC				1440
			CAGCTTAATA ATGTATCATA				1500 1560
			TTTTCAATTT				1620
40	CTCTACTATT	AAGTTTGAAA	ATAGTTACCT	TCAAAGCAAG	ATAATTCTAT	TTGAAGCATG	1680
40			CATCCTTGGA		ATACTTACTT	CTGGCATAAC	1740
	TAAAATTAAG	TATATATATT	TTGGCTCAAA	TAAAATTG			
	Seq ID NO:	28 Protein	sequence:				
	Protein Acc						
15			ob bequeste	-			
45			_		4.1	E1	
45	1	11	21	31 	41	51 	
45	1]	11 }	_	31 		1	60
	1 MKFLLILLLQ KEKIQEMQHF	11 ATASGALPLN LGLKVTGQLD	21 SSTSLEKNNV TSTLEMMHAP	31 LFGERYLEKF RCGVPDVHHF	 YGLEINKLPV REMPGGPVWR	 TKMKYSGNLM KHYITYRINN	120
4550	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL	 YGLEINKLPV REMPGGPVWR VVFARGAHGD	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI	120 180
	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY	120 180 240
	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF	120 180
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SEDPKTSVNL FGFPNFVKKI	21 STSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR LYGDPKENQR ISSLWPTLPS DAAVFNPRFY	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300
	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SEDPKTSVNL FGFPNFVKKI	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLQ KEKIQEMQHF YTFDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SEDPKTSVNL FGFPNFVKKI	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLLQ KEKIQEMQHF YTTDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequ	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE	31 	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50 55	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac:	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequ	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE tence 1 #: NM_0061	31 	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic According sequ	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LIGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKNL AVFYSKNKYY 29 DNA sequid Accession Lence: 236.	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE lence 1 #: NM_0061	31 	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360
50 55	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236.	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H#: NM_0061	31 	YGLEINKLPV YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360
50 55	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNLI FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1 #: NM_0061 .1765 21 CGCAGCCAGA	31 LFGERYLEKF RCGVPDVHHF KINTGMADIF KINTGMADIF LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360 420
50 55 60	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LIGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !EINCe 1 #: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NIFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA	YGLEINKLPV YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTTCGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360 420
50 55	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCGGCTTC GAAAAACCAT	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPFY YFFQGSNQFE HENCE 1 #: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT	31	YGLEINKLPV YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT	120 180 240 300 360 420
50 55 60	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACGACCTAGAA ACGAAGGCGT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKNL AVFYSKNKYY 29 DNA sequid Accession dence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NIFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CCGATACATC	YGLEINKLPV YGLEINKLPV YGLEINKLPV YFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCG CTTAGGCGTGCA AGCATGAGTG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGAA TGTGGACAAG	120 180 240 300 360 420
50 55 60	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequal GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT CCCACGGAGA	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LIGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCT TTGTGGGGGTT CTTGTGGGAGC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGT LYGDPKENQR ISSLWPTLPS DAAVFNPFFY YFFQGSNQFE 1#: NM_0061 .1765 21 GGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTC CCATTCAGAG TGGCAGGCAG TGGCAGGCGA	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NIFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CCGATACATC GAGCCTGCTG GAGCCTGCTG	YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGGTGGCA AGCATGAGT AAGTAGGT AAGGATGAGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATTGA CCCTGGCCAT	120 180 240 300 360 420 60 120 180 240 360
50556065	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCAGGGT CGGGACACCI ACTCTCTGAG GAGACCTAGA ACCAAGGGGT TCCCACGGAGA TGCCGCCTG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGTT CTTGTGGAGCG GAGTTGCTGC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG CCAGGCAGGAC CCAGGCAGGAC CCAGGCAGCAC CCAGGCAGCAC CCAGGCAGCAC CCAGGCAGCAC CCAGGCAGCAC CCAGGCAGCAC CCAGGCAGCAC CCAGGCAGCAC CCAGGCAGCAC CCAGGGAGCCT	31 LFGERYLEKF RCGYPDVHHF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA ATYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC ACTCTCAGAC TGAGGCCAGC CGAGACATC GAGCCTGCTC CTTCCCGCCA	YGLEINKLPV YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GCAACTTCGC GTGCGTGGCA CTAAGTCGCT AGCATGAGTG AAGGATGAGG CTCTTCATGG CTCTTCATGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCAT CAGCCTTTGA	120 180 240 300 360 420
50 55 60	MKFLLILLQ KEKIQEMQHF YTPDMNREDU LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT CCCACGGAGAGA TGCCGCCCTG CCGGAGACACC	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession dence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGTT CTTGTGGGAGC CAGCTGCTGC CAGCTGCTGC CAGCTGCTGC CAGAGTGCTGC CAGAGACCAC AGCCAGACCC AGCTGCTGC AGCCAGACCCC AGCTGCAGACCCC AGCTGCAGACCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE #: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGGCAT TGAGGGCAT TGAAGGCAAT	31 LFGERYLEKF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CCGATACATC GAGCCTGCTC GAGCCTGCCC GATCCAGCC GTGCAGGCC GGTGCAGGCC GGTGCAGGCC	YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTCGC GTGCGTGGCA CTAAGTCGCT AGCATGAGTG AGGATGAGT TGGCCCTTCATGG TGGCCCTTCA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCAT CAGCCTTTGA CCTGCCCTCCC	120 180 240 300 360 420 60 120 180 240 360
50556065	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV ENNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTTGAG GAGACCTGAG TCCACGGAGAA TCCACGGAGAC TCTGGGAGTG TCGGCTTGAT TGGACTTGAT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LIGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTTGTGGAGC GAGTTGCTGC CCTGATGAAGG GTGCTCCTTG GTGTAAGG GTGCTCCTTG GGGTTCCTTG GGGGTTCCTTGTGGAGC GGGTTCCTTGTGGAGC GGGTTCCTTGTGGAGC GTGCTCCTTGTGTAAGG GTGCTCCTTTG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPFFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGGCAG CCAGGAGCAG CCAGGAGCAT TGAAGGCAT TGAAGGCAT TGAAGGCAT TGAAGGCAGT CCCAGGAGGCA CCAGGGAGGT CCCAGGAGGTC CCCAGGAGGTC CCCAGGAGGTC CCCAGGAGGTC CCCAGGAGGGT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CCGATACATC GAGCTGCTG CTTCCCGCCA GGTGCAGGCC TCACCTGGAG CTACCTGGAG CTCCCGCCA GTGCAGGCC TCACCTGGAG TCGCCCCAGG	YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGCTGCA TAGCATGAGTG AAGGATGAGG CTCTTCATGG TGGCCCTTCAAGA AGGTGGAAA AGGTGGAAAA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA CCTGGCCATC CAGCCTTTGA CCTGGCTTGA CCTGGCTTGA TTCAAGTGCT	120 180 240 300 360 420 60 120 180 240 300 360 420
50556065	MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV SPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ CGGGACACC ACTCTCTGGAG GAGACTTAGA ACGAAGGCGT CCCACGGAGA TCCCACGAGA TCCCACGCCTG CGGGAGACAC TCTGGGAGT TGGACTTAGA TGGACTTGGT TGGACTTGAG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACTCT CTTGTGGAGC TGTGTGGAGT CTTGTGGAGC AGCCAGACCC CTGATGAAGACC CTGATGAAGACC GTGCTCCTTG AAGAACTCT	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !#: NM_0061 .1765 21 CGCAGCCAGA CCAGGCCTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGGCAT GCAGGCAT GCAGGCAGC TGAAGGCAT GAAGACATCT CCAGGAGGT ACCAGGAGGT ACCAGGAGGT ACCAGGAGGT ACCAGGAGGT ATCAGGACTT	31	YGLEINKLPV YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGCTGGCA CTAAGTCGCT AGCATGAGTG TGGCCCTTCATGG TGGCCCTTCATGG TGGCCCTTCATGG TGGCCCTTCAAG ACTTCAATG TGGCCCTTCAAG ACTTCAATG TGGCCCTTCAAG TGGCCCTTCAAG TGGCCCTTCAAG TGGCCCTTCAAG TGGCCCTTCAAG TGGCCCTTCAAG TGGCCCTTCAAG TGGTCTGGAA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGCCATC CAGCCTTTGA CCTGCCATC CTGCCTCC CTGTGCTTCA ACAGTGCT ACAGGGCCAG	120 180 240 300 360 420 120 180 240 300 420 480 540 600 660
5055606570	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGGA GAGACCTAGA ACGAAGGCGT CCCACGGAGA TGCCGCCCTG CGGGAGACAC TCTGGGAGTG TGGACTTGAT TGGACTTGAT TGGACTTGAT TGGACTTGAT TGGACTTGAT	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTTGTGGAGC GAGTTGCTCC CACCAGACCC CTGATGAAGC CTGATGAAGG GTGCTCCTTT TTCCAGAGC TTTCCAGAGC TTTCCAGAGC TTTCCAGAGC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1.1765 #: NM_0061 1.765 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGATATATT TTGATATATT TTGAGGGTCC CCATTCAGAG CCAGGAGGCT CCAGGAGGCT TGAAGGACT CCCAGGAGGT CCAGGAGGT TGAAGCATCT CCCAGGAGGT ATCAGGACTT ATCAGGACTT CAGAAGCATC CCCAGGAGGT TGAAGGACTT CCAGGAGGT ATCAGGACTT CAGAAGCAGC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TCAGGCCTGCTG CTGCAGCC GAGCCTGCTG CTTCCCGCCA GGTGCAGGC TCACCTGGAG TCGCCCAGG TCGCCCAGG	YGLEINKLPV YGLEINKLPV YGRAGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTCCGC GTGCGTGGCA CTAAGTCGCT AGCATGAGTG TGGCCCTTCA ACGTTCAAGA AGGTGGAA AGGTGGAAA ACGTTCAAAG AGGTGGAAA ACCTTCAAAG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCTT CAGCCTTTGA CCTGCCTTGA TTCAAGTGCT TCAAGTGCT TCAAGTGCT ACAGGGCCAG GAAAAGTAGA	120 180 240 300 360 420 60 120 180 240 300 360 420 600 720
50556065	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EDNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequence 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT CCCACGGAGA TGCCGCCTG TGGAGTT TGGACTTACTAG GATTTACGG TCTGTACTA GATTTACGG TCTGTACTAGA TGGTTTTGAGG TCTGTACTCA	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LIGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTTGTGGAGC AGCCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTT CTGAGAGC ACCCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTTC TTCCAGAGC ACAGAGGCAG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGAGGTCC CCATTCAGAG TGGCAGGCAT TGAAGCAAT TGAAGCAAT TGAAGACATCT CCCAGGAGGT ATCAGAGCTT CAGAAGCAGC AGCAGCACTT CAGAAGCAGC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNFDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC CCGATACATC GAGCCTGCTG CTTCCCGCCA GGTGCAGC CTCCCCCAGC CTCCCCAGG CTCCCCAGG CTCCCCAGG CTCCCCCAGG CTCGCCAGG CTCGCCCAGG CTGGCCCAGG CTGGCCCAGG CTGGACTGTA CAGCCATG CATCCCAGTA	YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA AGGATGAGG CTCTTCATGG TGGCCCTTCA AGGTTGAAG AGGTGGAAC AGGTGGAAC TGGTCGAAAG AGGTGGAAAC AGAGGTGCTCG GAAGGTGCTCG GAAGGACC CAGGTGCTCG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATTGA CCTGGCCTCC CTGTGCCTCC CTGTGCCTCC CTGTGCTTGA TCAAGTGCT ACAGGGCCAG TCAAGTGCTT ACAGGGCCAG ACAAGTAGA TTCAAGTGCT ACAGGCCCTT ACAGGGCCAG TAGACCTGTT	120 180 240 300 360 420 120 180 240 300 420 480 540 600 660
5055606570	MKFLLILLQ KEKIQEMQHF YTPDMNREDY LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequence 1 GCTTCAGGGT CGGGACACCC ACTCTGGA ACGAAGGCGT CCCACGAGAG ACGACGCCTG CGGCACTGC CGGGAGACAC TCTGGGAGT CGGCCCTG TGGACTTGAC TGGACTTGAC TGGACTTCAGGAC TCTGAGGAC TCTGAGGAC TCTGAGGAC TCTGAGGAC TCTTAAGGA TCTTAAGGA GAAAAATGTA	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERFKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession dence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGAGC TGGTGGAGC AGCCAGACCC CTGATGAAGC CTGATGAAGC TTTCCAGAGC AGCAGACCT TTTCCAGAGC ACAGAGGCAG CTGTTCCTT TTTCCAGAGC CTACGCTGTG CTACGCCTGTG CTACGCCTGTG CTACGCCTGTG CTACGCCTGTG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISLWPTLPS DAAVFNPRFY YFFQGSNQFE !#: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGGCAGT GCAGGCAGT GCAGGCAGT TGAGGAGGCT TGAAGGAGT TGAGGAGT CCAGGAGGT TGAAGGAGT TGAAGGACT CCAGGAGGT ATCAGGACT ATCAGGACT ATCAGGACT TCAGAGCAT TCAGAGCAGC TGAAGGACT TCAGAAGCAGC TCAGAAGCAT TCAGAAGCAGC TCAGAAGCAT TCAGAAGCAGC TTAGAAATAGT ATGAATTGTT GCTGTAAGAA	31	YGLEINKLPV YGLEINKLPV YGLEINKLPV YFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGGTGGCA CTAAGTCGCT AGCATGAGTG TGGCCCTTCAAGG TTGGAAAG ACAAAGAAGC TTGGAAAG TTTGCAATGC	TKMKYSGNLM TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51. AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGCCAT CAGCCTTTGA CCTGCCAT CAGCCTTTGA TCAAGTGCT ACAGGGCCAG GAAAAGTAGA TAGACCTGTT TGAAGCCAT TGAAGCCAAA CCATGCAGGA	120 180 240 300 360 420 600 120 180 240 300 360 480 540 600 720 780 840 900
5055606570	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGGA GAGACCTAGA ACGAAGGCGT CCCACGGAGA TGCCGCCCTG TCGGGAGACAC TCTGGGAGTG TGGACTTGAT TGGATTTACGC TCTGGGAGTG TGGACTTGAT TGGATTTACGG TCTGTACTCA TGGTTTGACT TGGTTTGAC TGGTTTGACT TGGTTTGACT TGGTTTGACT TATCAAGATG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCC CACCGGTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTGTGGGAGC CAGTTGCTGC GAGTTGCTGC AGCAGACCC CTGATGAAGG GTGCTCTTG TTTCCAGAGC ACAGAGCCAG ACAGAGCCAG CTCACCCCTGTC CTTTCCAGAGC ACAGAGCCAG ACAGAGCCAG CTACCCCTGT AGCAGCCAGCCAGCCCTGT CTTCCAGAGC ACAGAGCCAG CTACGCCTGT ATCCTGAAAA	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTGATTATT TTGATTATT TTGATATT TGAGGTCC CCAGGAGGT GACACATCT CCCAGGAGGT GACACATCT CCCAGGAGGT ATCAGGACT ATCAGGACT ATCAGACT ATCAGACT ATCAGACTT CAGAAGCAGC AGCAGCCCTT ATGAATTGTT CGTAGAATAGT TGCTGCAGCCT TGCTGAAGAA TGGTGCAGCCT TGCTGAAGAA TGGTGCAGCCT	31 LFGERYLEKF RCGVPDVHHF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC ACTCTCAGAC CTGAGCCAGC CCGATACATC GAGCCTGCTG CTTCCCGCCA GGTGCAGGC TCACCTGGAG TCGCCCAGG TCGCCCAGG CTGACCTGAGA CTCCACTGAG CTGCCCAGG CTGACTGTA CATCCAGTA CATCCAGTA CATCCAGTA CTCCTACCTT GGACTGTAT GGACTCTATT	YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTTCGC GTAGGTGGCA ACTAGAGTGGCT AAGATGAGT AGCATGAGTG ACCTTCAAGA AGGTGGAAAC TGGTCTGGAA ACAAAGAAGC GAGGTCTCG ATTGAGAAGC GAGGTGCTCG ATTGAGAATCC GTTGAATGC GAAGATTTGG GAAGATTTGG GAAGATTTGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGCCAT CAGCCTTTGA CCTGCCTCC CTGTCTTGA TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TGAAGCCAAG CACTGCTTT TGAAGCCAT CAGCCTTT TGAAGCCAT CAGCAGGA AAGTGACTT	120 180 240 300 360 420 600 120 180 360 420 540 660 660 720 780 840 960
505560657075	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EDNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACCACGGAGA TGCCGCCCTG TGGAGTCCCGCCCTG TGGACTTACGG TCTGGAGT TGGACTTACGG TCTGTACTACGATTACGG TCTGTACTACTACGATTTACGG TCTGTACTACTACTACTACTACTACTACTACTACTACTACTACT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LIGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT CTTGTGGAGC CAGCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTTC CTGAGGC CTTCCAGAGC CTGATGAAGG GTGCTCTTTCAGAGC CTACCCCTTTTCAGAGC CTACCCCTTTTCAGAGC ACAGAGGCAG GGTGCCTGTTTCAGAGC ACAGAGGCAG GGTGCCTGTTTTCCAGACC CTACCCCTGTTTTCAGACC CTACCCCTGTTTTCAGACCACCTTGT ATCCTGAAAA CTACCCACCT	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCCAGA CCAGGCCTGA TTTGAGTGTCC CCATTCAGAG TGCAGGAGT TGAAGGCAT TCAGAGCAT CCCAGGAGCT ATCAGAGCTT ATCAGACTCT AGCAGCCCTT ATGAATTGTT GCTGTAAGAA TGGTGCAGCCTT ATGAATTGTT GCTGTAAGAA TGGTGCAGACT TGGCGAAATT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNFDNSEPA GIEAAYEIEA RTYFFVDNY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC CCGATACATC GAGCCTGCT CTGCCCAG CTGCCAGG CTGCCCAGG CTGCCCAGG CTGGCCTGCTCCCCCAG CTGCCCAGG CTGCCCAGG CTGGACTGTA CTCCCTGCACAC CTGCCATG CTGCCATG CTGCCATG CTGCCATG CATCCAGTA CTCCTACCT CTCTACCTT GGACTCTT TTCTCCTTAC	YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA AGGATGAGG CTCTCAAGG CTCTCAAGG AGCTCTCAAG AGGTGGAAAC AGGTGGAAAC TGGAAAGAAC TGGTCTGGAA ACATTCGC ATTGAAAG ACATTCGAAG ACGTTCAAAG ACGTTCAAAG ACGTTCGAAA ACAAAGAAC CGAGATTTGC ATTGCAATG CGAAGATTGC CAAGGATTGC CAGGCCAGA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATTGA TCTGGCCTCC CTGTGCCTCC CTGTGCTTCA CCTGGCTCT ACAGGCCAT ACAGGCCAT ACAGGCCAT ACAGGCCAT ACAGGCCAT TCAAGTGCT TCAAGTGCT TCAAGTGCT ACAGGCCAG AAAGTAGA TTCAAGTCT TGAAGCCAAA CCATGCAGGA AACTAGAT TGAAGCCATT TGAAGCCAAA CCATGCAGGA AAGTGACTTG TGATTAATCT	120 180 240 300 360 420 120 180 240 360 420 480 600 650 720 840 900 960 1020
5055606570	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDU LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACGACTAGA ACGAAGGCGT CCCACGGAGA TGCCGCCCTG TCGGAGACACC TCTGGGAGTG TCGGAGTTGAT TGGATTTACGG TCTTAAGGA TGCTTAACGA TGGTTTAACG TCTTAAGGA TGCTTAAGGA TATCAAGATG TATCAAGATG TATCAAGATG TATCAAGATG TATCAAGATG TATCAAGATG TATCAAGATG CCTGAAGCAC TCGGAGTAGACTC TGGTAGACTC TGGTAGACTC TGGTAGACTC TGCAGTAGATC TACCTGGAAGT TACCTGAAGT TACCTGGAAGT TACCTGAAGT TAC	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTTGTGGAGC CAGGTTGCCC CAGATGCAGACCC CTGATGAAGC CTGATGAAGC ACAGACCCC TTTCCAGAGC ACAGAGCCAG CTCCTCTCCC CTACCCCCTGT ATCCTGAAAA CTACCCACTT TTCCCCC GCCAGTTCCC GCCAGTTCA	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE #: NM_0061 1.765 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGATTATT TTGAGGTCC CCATTCAGAG TGAGAGCAT GACAGCATCT CCCAGGAGGT ATCAGGACT ATCAGGACT ATGAGACTT CAGAAGCAGC AGCAGCCTT ATGAGATGT TGAGAGTCT TGAGAGCAT TGCGGAAATT TGCTGAAGAA TGCTGCAGCAT TGCGGAAATT TGCGGAAATT TGCGGAAATT TGCGGAAATT TGCGGAAATT TGCGCAATGC	31 LFGERYLEKF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TCAGCCCAGCC	YGLEINKLPV YGLEINKLPV YGLEINKLPV YEARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTCGG GTGCGTGGCA CTAAGTCGCT AGCATGAGTG TGGCCTTCAAGG TGGCCTTCAAGG AGGTGGAAAC TTGTCAAGG AGGTGGAAAC TTGTCAGG GAGGTGCTGGA ACAAAGAAGC CAGGGCCAGA TTTGCAATGC CTGGGCCAGA ACAAGAAGC CAGGGCCAGA ATTTCCCCGG CAGTGCCTGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLPP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGCCTCC CTGTCCTTGA CCTGCCTTGA TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TGAAGCCAGG GAAAGTAGA TCAAGTGCT TGAAGCCAGG GAAAGTAGA CCATGCAGGA AGGTGACTTG TGAATGAGGA AGGAGAA AGGTCTCTTA	120 180 240 300 360 420 120 180 240 360 420 480 600 650 720 840 900 960 1020
505560657075	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFEPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACTCAGA ACGAAGGCGT CCCACGGAGAC TCTCGGAGT TGGACTTGAT GGATTTACG TCTGAGGAT TCTGGGAGTG TGGACTTGAG TCTGAGGAAA CAAAAATGTA TATCAAGATG TACCTGGAAG CCTAGAAG GCGTAGATC TGTGGACTC TGTGGACTC TGTGGACTC TGTGGACTC TGTGGACTC TGTGGACTC TGTGGACTC TGTGGACTC	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNLI FGFPNFVKLI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT TATTGGGGGTT CTTGTGGAGC TTGTGGAGC AGCCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTTG AAGAACTCTTG ACCAGAGCCC CTGATGAAGG GTGCTCTTG ACGAGCCC CTCCTGTGAAAA CTACCCACTTTTCCCTCTCCC CTCCCTCTCCCC CTCCCCAGTTCA TTATTTTTCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAGT TGCAGGAGT ATCAGGACTT CAGAAGCAT CAGAACATCT CCCAGGAGGT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT TCAGAATGT CTGTAAGAA TGGTGCAGC TGCCGAAATT ACATCCATGC CCTCTCAGTT TTGAGGCCC TTTAGAGGCCC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC CTGACGCCAGC CTGACATC CTGCCCCCC CTGCCAGC CTGACATC CTCCAGCT CTGCCCCC CTGACATC TCACCTC CATCCAGAC TCACCTC CATCCAGAC TCACCTC CATCCAGAC TCACCTC CATCCAGAC TCACCTC CATCCAGAC CTCCAGTC CATCCAGTC CTCCTACCT CCTCAGTC CCTCAGTCT CCTCCTACC CCTCAGTCT CCTCCTACC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC	YGLEINKLPV YGLEINKLPV YGNEGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA AGGATGAGG CTCTTCATGG AGGTTGGAAAG AGGTTGGAAAG ACGTTCAAAG AGGTGGAAAG TGGTCTGAAAG ACATTCCATGG ATTGCAATGC GAGATTTCCATGG ATTGCAATGC CTAGGAAAG CTTTCAATGC ATTGCAATGC CTAGGAAAG CTTTCCATGG ATTGCAATGC CTAGGCCTTC ATTGCAATGC CTAGGCCTGC TTTCCCCGG CTTGCTCAGGC CTTGCTCAGGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATTGAA CCTGGCTCC CTGTGCCTTC CTGGTCTCA ACAGGCCAT ACAGGCCAT ACAGGCCAT ACAGGCCAG TCAAGTGATT TCAAGTGCT ACAGGCCAG AAAGTAGA TAGACCTGTT GAAACTAGA ACATGCAGAA CCATGCAGAA CCATGCAGAA ACATGCAGAA ACATGCAGAA ACATGCAGAA AGGCTCTCTA AGAAGGAAAA AGGCTCTCTA ACGTGATGAAA	120 180 240 300 360 420 600 120 180 240 360 420 780 840 960 1020 1080 1020 1140 1200
505560657075	MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT GGGACACCC ACTCTGGAG TCCGCCCTG CGGAGACACC TCTGGGAGT TGGACTTGGT TGGACTTGGT TGGACTTGGT TGGACTTGGT TGGACTTGGA TGGACTTGGAC TCTGGAAG GAAAAATGTA TATCAAGATG TACCTGGAAG GCGTAGACTC TCTGGACTC TCCCCTTGGAAC CCCCTTGGAAC CCCCTTGGAAC TCCCCCTTGGAAC TCCCCCTTGAAC TCCCCCTTGAAC TCCCCCTTGAAC TCCCCCTTGAAC TCCCCCCTTGAAC TCCCCCTTGAAC TCCCCCTTGAAC TCCCCCTTGAAC TCCCCCCTTGAAC TCCCCCTTGAAC TCCCCCCTCTTGAAC TCCCCCTTGAAC TCCCCTTTGAAC TCCCCTTTGAAC TCCCCTTTGAAC TCCCCTTTGAAC TCCCCTTTGAAC TCCCCTTTGAAC TCCCCTTTGAAC TCCCCTTTTTTTTTT	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL EFGPPNFVKKI AVFYSKNKYY 29 DNA sequidance: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGTT CTTGTGGAGC CTGATGAAGC GTGCTCCTC CACAGCAGCCCC CTGATGAAGC CTGATGAAGC CTGATGAAGC CTGCTCTCCC CCGCTGTG CTACGCCTGT CTACGCCTGTC CTCCTCTCCC GCCCAGTTCA CTCCTCTCCC GCCCAGTTCA CTCCTCTCAA	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !!! NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG CCAGGAGGTT GAAAGCACAT CCCAGGAGGT ATCAGAGCAT ATCAGAGCT ATCAGAGCAT ATCAGAGCT TGAGAGCAGC TGAGAGCAGC TGAGAGCAGC TGAGAGCAGC TGAGAGCAGC TTGAGAGCAGC TTAGAGCCG TTAGAGCCG TTAGAGCCG TTAGAGGCCG TTAACTAACTG	31	YGLEINKLPV YGLEINKLPV YGLEINKLPV YEARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTTCGC GTAGCTGGCA AGCATGAGT AGCATGAGT AGCATGAGT AGCATGAGT AGCATGAAG ACTTCAAAG AGGTGGAAAC TGGTCTGAA ACAAAGAAGC TGGTCTGGA ATTGCAATG CTGGAATGCT CTGAGAAGATTGG CAAGTTTGCAATGC CAAGTGCCTGG CAAGGGCAGA ATTTCCCCGG CAAGGGCAGG CAAGGGGATG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT CAGCCTTTGA CCTGGCCTCC CTGTGCTTGA CCTGGCTAG AAAAGTAGA ACAGTGACT ACAGGGCAG GAAAAGTAGA ACAGTGACT TGAAGCGAA CCATGCTTGA CAGGGCCAG GAAAAGTAGA AGGTACTT TGAAGCGAAA CCATGCAGGA AAGTGACTT TGAAGCGAAA CCATGCATGA AAGTGACTT AGAACGAAA AAGTGACTT AGAACGAAA AAGTGACTT AGAACGAAA AAGTGACTCT AGAAGGAAGA AGGTCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGTGATGAA TGATGCATCT	120 180 240 300 360 420 120 180 240 360 420 480 660 660 720 780 840 900 1020 1080 1140 1200 1200 1260
50 55 60 65 70 75	MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequence 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACGACGGCCTA CCCACGAGAG TCCCACGAGG TCGGACTACC TCTGGGACTCC TCTGGGACTCC TCTGAGGACTCC TCTGAGGACTC TCTGAGGACTC TCTGAGACTTACC TCTGAGACTTACC TCTTAAGCA GAAAAATGTA TATCAAGATG TACCTGAAG GCATAGACT GCCTTGGGAC TCGTGGACTC TCTGGGACTC TCTGGGACTC TCTGGGACTC TCTGGGACTC TCTGGAACTC TCTGGAACTC TCTGGAACTC TCTGGAACTC TCCCCTGGAA GTCCCAGAGT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGAGC AGCTGCCC CTGATGAAGC CTGATGAAGC GTGCTCCTC TTTCCAGAGC GTGCTCTTC TTTCCAGAGC GTGCTCTTC TTTCCAGACC CTACGCTTG ACAGCCTGT ACCCACCT CTACCCCC CTACCTCTCCC CCCCAGTTCA CCCCCCTCTCA CCCCCCTCTCA CCCCCTCTCA CCCCTCTCAA CCCAGCGTCA	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG GCAGCCAGA GCAGCCAGT GAAGGCAT GACAACATCT CCAGGAGGT TGAAGGCAT TGAAGGCAT TGAGGACTT CAGAAGCAT TCAGAGCT TCAGAGGCT TCAGAGCT TCAGAGCT TCAGAGCT TCAGAGCT TCAGAATTGT TCTGTAAGAA TGGTGCAGCT TGGCGAAATT TTAGAGGCC TTGAGGGCCT TTAGAGGCC TTGAGGACT TTAGAGGCC TTTAGAGGCC TAACTAACTG CCTCTCAGTT TTAGAGGCC TAACTAACTG TCAGCTAAG	31 LFGERYLEKF RCGYPDVHHF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGCA TGAGGCCAGC CCGATACATC GAGCCTGCTC GCTCCACGC GCTGCACGC TCACCTGGAG TCGCCCCAGG CTGCCCCAGG CTGCCCCAGG CTGCCCAGG CTGCCCAGT TTCCTTAC CTTCCTTAC CCTCAGTCTG CCTGGATCAG CCGCCTTCC CTTCCTGGAT TTCCCTGAGT TTCCTGAGT TTCCCTGAGT TTCCTGAGT TTCCCTGAGT TTCCTTGCT TTCCCTGAGT TTCCTGAGT TTCCCTGAGT TTCCCTGAGT TTCCCTGAGT TTCCCTGAGT TTCCCTGAGT TTC	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGMEGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTTCGC GCAACTTCGC GTGCGTGGCA ACGATGAGTG TGGCCCTTCAAGG AGGTGGAAA ACAAAGAAGC CAGGTGCTCG ATTGGAAAA ACAAAGAAGC CAGGTGCTCG ATTGCAATGC GAGGTGCTCG ATTGCAATGC GAGGTGCTCG CATGCAGG CTGCCAGG CTGCCAGG CTGCCCAGG CTGCCTCAGGC CAGTGCCTGC CAAGGGATG CTAAGTGGGG CAGTGCCTGC CTAAGTGGGG CTTAAGTGGGG CTTAAGTGGGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51. AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TCTGGCCAT CAGCCTTTGA CCTGCCAG CCTGCCAG CAGCAGTGACT TCAAGTGAT TCAAGTGAT ACAGGGCAG GAAAAGTAGA CCATGCAGA AGGTGACTT TGAAGCGAAA CCATGCAGGA AGGTGATTAATCT AGAAGGAAGA AGGCTCTCTA ACGTGATTAA ACGTGATTAA ACGTGATTAAATCT TCAAGGAACA TGATGCATCA TCATGCATGA TGATGCATCA TCATGCTGAC	120 180 240 300 360 420 120 180 240 300 360 480 540 660 720 780 960 1020 960 1020 1260 1260 1260 1320
505560657075	MKFLLILLQ KEKIQEMQHF YTPDMNREDU LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCCTGGA ACGACGCAGGACACCC TCTGGGAGTC TCGGGAGACAC TCTGGGAGTG TGGACTTGAT TGGATTTACGG TCTGTACTCA TGGTTTACGG TCTGTACTCA TGGTTTACGG TCTGTACTCA TGGTTTACGG TCTGAGAGT TGGACTTGAT TACCAGAGT CCCCTTGGAA GCCAGTATATC TCTGGAATC CCCCTTGGAA GCCCAGAGT CCAGTAGACT CCCCTTGGAA TGTCAGAGT CCAGTATATC	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTTGTGGAGC CAGGTTGCC CAGGACCCC CTGATGAAGC CTGATGAAGC CTGATGAAGC CTGATGAGC ACAGACCCC CTGATGAGC ACAGACCCC CTGATGAGC ACAGACCCC CTGATGAGC ACAGACCCC CTCACCCC CTCACCCCC CTCACCCCC CCCAGCTTCA ACCCCCCCCCC	STSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1.1765 1 #: NM_0061 1.1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGAGAGGTCC CCATTCAGAG TGACAGACATCT CCCAGGAGGTCT ATCAGAGACTT ATCAGAGTTT ATCAGAGTTT ATCAGAGTTT ATGAATGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGCGGAAATT TGCAGATTT TTAGAGGCCG TAACTACTT TTAGAGGCCG TAACTACTT TTAGAGGCCG TAACTACT TTAGAGGCCG TAACTACT TCCAAGCTCT TCCAAGCTCT	31 LFGERYLEKF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA TCAGGCCAGGC CCGATACATC GAGCCTGCTC CTTCCCGCA TCACCTGGAG TCGCCCAGGC TCACCTGGAG TCACCTGGAG TCACCTGGAG TCACCTGAGT TCACCTCAGTCT CATTCCAGTA TCAGCCCATG CTGAACATT CATTCCAGTA TCAGCCCATG CTGACTGT CCTCACCTC CCTCAGTCT GCTGAACATT TCTCCTTAC CCTCAGTCT CCTCAGTCT CCTCAGTCT CCTCAGTCT CCTCAGTCT CCTGGATCAG CCGGCTTTCC TGTCCTGAGT GCTGGAGAGAA	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTTCGC GTAGGTGGCA ACTAGGTGGCA ACGTGAGGGC ACTCTCAAGG AGGTGCTGA AGGTGGAAC TGGTCTGGAA ACAAGAAGA GGTGCTGG ATTGGAAAG TTTGCAATGC TTGGGCCAAGC CTGGCCAATC CTGGTCTGGA ACAAGAGAGG CTGGCCTGC TTGGCCAAGC CTGGCCAGGC CTGGCCAGGC CTGGCCAGGC CTAGTGGGCCGG CTAGTGCCTGC CTAGTGGGGC GAAGGGGTGC TTGCTCAGGC GAAGGGGTTC CTAAGTGGGG CTTGCTCAGGC GATGCCTGC CTAGTGGGGC GCCTCTGCCA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT CAGCCTTTGA CCTGGCCTCC CTGTGCTTGA CCTGGCTAG AAAAGTAGA ACAGTGACT ACAGGGCAG GAAAAGTAGA ACAGTGACT TGAAGCGAA CCATGCTTGA CAGGGCCAG GAAAAGTAGA AGGTACTT TGAAGCGAAA CCATGCAGGA AAGTGACTT TGAAGCGAAA CCATGCATGA AAGTGACTT AGAACGAAA AAGTGACTT AGAACGAAA AAGTGACTT AGAACGAAA AAGTGACTCT AGAAGGAAGA AGGTCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGTGATGAA TGATGCATCT	120 180 240 300 360 420 120 180 240 360 420 480 660 660 720 780 840 900 1020 1080 1140 1200 1200 1260
50 55 60 65 70 75	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTCAGGAGA ACGAAGGCGT CCCACGGAGACAC TCTGGGAGTA TGCATTGAT GGATTTACGG TCTGAGGAT TGGATTTACGC TCTGAGGAA GAAAAATGTA TATCAAGATG TACCTGGAAG GCCTAGACT TGTGGACTC TCTGGAAG CCTCAAGGAAG CCTCAAGGAAG CCTCAAGGAAG CCTCAAGGAA TATCAAGATT TACCAGGATATCC TCTGGAAG TCCCAGGACT CCCCTTGGAA GCCTAGACT CCCCTTGGAA CTCCCAGGAGT CCGATGTAAGT CCGTGTACTT CCCTTGGAAG CCCTTGGAAG CCCTTGGAAG CCTCTGGAAGT CCTCTGGTAGT CCTGGTCTTT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession dence: 236. 11 ACAGCTCCC CACCCGCTTC GAAAAACCAT TTGTGGGGTT CTTGTGGAGC TTGTGGAGC CTGATGAAGG GTGCTCTC AAGACCTCTTC AAGACTCTC TTTCCAGAGC CTAGCTGTG ATCCTGTGAGC CTACCCGCTTTC CTCCCTCCC CTCCCTCCCC CCCCAGCTTCA CCCAGCTTCA CCCAGCTTCA CCCAGCTCCA CCCAGCTCCA CCCAGCCTCA CCCAGCCTCCA CCCAGCCTCCA CCCAGCCTCCA CCCAGCCCCC GATGAGTGTG	STSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1.1765 1 #: NM_0061 1.1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGAGAGGTCC CCATTCAGAG TGACAGACATCT CCCAGGAGGTCT ATCAGAGACTT ATCAGAGTTT ATCAGAGTTT ATCAGAGTTT ATGAATGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGAAGTGTT TGCGGAAATT TGCAGATTT TTAGAGGCCG TAACTACTT TTAGAGGCCG TAACTACTT TTAGAGGCCG TAACTACT TTAGAGGCCG TAACTACT TCCAAGCTCT TCCAAGCTCT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TCGAGGCCAGC CTGACATCCAGCT GAGCCTGCT GATCAGCT CTGCCACCT GAGCCTAGT CACTCAGAG TCGCCAGG CTGACTT TCACTCCACT CCTGAAGATT GACTCTACT CCTCACTC CCTGAAGATT TCTCCTACT CCTCACTC CCTGAAGATT TCTCCTACT CCTCAGTT TCTCCTACT CCTCAGTCT CCTCAGTCT CCTCGATCAT TCCTCTAC TCCTCCTAC TCCTCCTCCT CCTGAAGATT TCCTCTAC TCCTCACT CCTCGATCAG CCTGGATCAG CCTGGATCAG CCTCGAGTCAG CCTGGAGAGAA TGATCAGCTC	YGLEINKLPV YGLEINKLPV YGNEGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA AGGATGAGG TGGCCCTTCAAGG ACCTTCAAGG ACGTTCAAAG AGGTGGAAAC AGGTGGAAAC TGGTCTGAAAG ACAAAGAAGC CAAGTCCCTC ATTGCAATG CTTGCAATG CTGAGTCCTCG CAAGTCCCTC CTAAGTCCCTC CTAAGTCCCTC CTAAGTCCCTC CTAAGTCCCTC CTAAGTCCCCTC CTTGCCCTCC CTTGCCCTCC CTTGCCCTCC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATTGAA TCTGGCCTCC CTGTGCCTTCC CTGTGCTTGA TCAAGTGCTT ACAGGGCCAG AAAGTAGA TCAAGTGCTT TGAAGCCTTT TGAAGCCTTT TGAAGCCTT TGAAGCCTT TGAAGCCTT TGAAGCCTT TGAAGCCTT TGAAGCCTT TGATCAGAA ACTTGCTAA CCATGCAGAA CCATCCAGA ACGTGATCAA TGATCAAA TGATGCATCT TCATGCTTCA ACGTGATCAA TGATGCACC CCCTCCAGGA TGCCTTCCCT	120 180 240 300 360 420 120 120 240 300 360 420 720 780 840 900 960 1020 1140 1200 1240 1200 1320 1380

	WO 02	2/086443					
	CTTGCAGAGT	CTCCTGCAGC	ACCTCATCGG	GCTGAGCAAT	CTGACCCACG	TGCTGTATCC	1560
	TGTCCCCCTG	${\tt GAGAGTTATG}$	AGGACATCCA	TGGTACCCTC	CACCTGGAGA	GGCTTGCCTA	1620
	TCTGCATGCC	AGGCTCAGGG	AGTTGCTGTG	TGAGTTGGGG	CGGCCCAGCA	TGGTCTGGCT	1680
5	TAGTGCCAAC	CCCTGTCCTC	ACTGTGGGGA	CAGAACCTTC	TATGACCCGG	AGCCCATCCT	1740
)		TTCATGCCTA					1800 1860
		AAGCCAGGAT AGTGTGAGTG					1920
		GAAAAAAAGG					1980
		GGGAGATACA					2040
10		TGGGAAGTAC					2100
10		AAAGAGAAGC					
	Seq ID NO:	30 Protein	sequence:				
1 ~	Protein Acc	cession #: N	TP_006106.1				
15							
	1	11	21	31	41	51	
	ļ)	60
	GCTTCAGGGT	ACAGCTCCCC CACCCGCTTC	CGCAGCCAGA	AGCCGGGCCT	CCAACCTCCC	COTOTOTOTO	120
20	ACTICTICAC	GAAAAACCAT	TTTCATTATT	ACTCTCAGAC	GUARCITUGU	ACAAGTGACT	180
20	CACACCTACA	AATCCAAGCG	TTGGAGGTCC	TGAGGCCAGC	CTAAGTCGCT	TCAAAATGGA	240
	ACGAAGGCGT	TTGTGGGGTT	CCATTCAGAG	CCGATACATC	AGCATGAGTG	TGTGGACAAG	300
		CTTGTGGAGC					360
		GAGTTGCTGC					420
25	CGGGAGACAC	AGCCAGACCC	TGAAGGCAAT	GGTGCAGGCC	TGGCCCTTCA	CCTGCCTCCC	480
	TCTGGGAGTG	CTGATGAAGG	GACAACATCT	TCACCTGGAG	ACCTTCAAAG	CTGTGCTTGA	540
	TGGACTTGAT	GTGCTCCTTG	CCCAGGAGGT	TCGCCCCAGG	AGGTGGAAAC	TTCAAGTGCT	600
	GGATTTACGG	AAGAACTCTC	ATCAGGACTT	CTGGACTGTA	TGGTCTGGAA	ACAGGGCCAG	660
30	TCTGTACTCA	TTTCCAGAGC	CAGAAGCAGC	TCAGCCCATG	ACAAAGAAGC	TACACCTCTT	720 780
30		ACAGAGGCAG GGTGCCTGTG					840
		CTACGCCTGT					900
	TATCAAGATG	ATCCTGAAAA	TGGTGCAGCT	GGACTCTATT	GAAGATTTGG	AAGTGACTTG	960
		CTACCCACCT					1020
35	GCGTAGACTC	CTCCTCTCCC	ACATCCATGC	ATCTTCCTAC	ATTTCCCCGG	AGAAGGAAGA	1080
	GCAGTATATC	GCCCAGTTCA	CCTCTCAGTT	CCTCAGTCTG	CAGTGCCTGC	AGGCTCTCTA	1140
	TGTGGACTCT	TTATTTTTCC	TTAGAGGCCG	CCTGGATCAG	TTGCTCAGGC	ACGTGATGAA	1200
		ACCCTCTCAA					1260
40		CCCAGCGTCA					1320 1380
40		CCCGAGCCCC					1440
		TCCCAGCTTA					1500
		CTCCTGCAGC					1560
		GAGAGTTATG					1620
45		AGGCTCAGGG					1680
	TAGTGCCAAC	CCCTGTCCTC	ACTGTGGGGA	CAGAACCTTC	TATGACCCGG	AGCCCATCCT	1740
		TTCATGCCTA					1800
	TTGGACACTA	AAGCCAGGAT	GTGCATGCAT	CTTGAAGCAA	CAAAGCAGCC	ACAGTTTCAG	1860
50		AGTGTGAGTG					1920
50		GAAAAAAAGG					1980 2040
		GGGAGATACA TGGGAAGTAC					2100
		AAAGAGAAGC				GIAMAGAMAG	2100
	IGIIGAAAAI	MMONONHOC	PHIOTOPHICC				
55							
	Seq ID NO:	31 DNA sequ	ience				
	Nucleic Aci	id Accession	ı#: Eos sed	quence			
	Coding sequ	ience: 64-2	754				
C 0							
60	1	11	21	31	41	51	
			 		TO COTO COCOCO	GCCCGGCATC	60
	CCCATCCCCC	CCCCTCGGCA	CCCTCCCGC	GTGCGCGGAG	CCGTCTGCCT	GCATCTGCTG	120
	CTGACCCTCG	TGATCTTCAG	TCGTGATGGT	GAAGCCTGCA	AAAAGGTGAT	ACTTAATGTA	180
65	CCTTCTAAAC	TAGAGGCAGA	CAAAATAATT	GGCAGAGTTA	ATTTGGAAGA	GTGCTTCAGG TGGGTCAGTG ATGGCTTTCT	240
	TCTGCAGACC	TCATCCGGTC	AAGTGATCCT	GATTTCAGAG	TTCTAAATGA	TGGGTCAGTG	300
	TACACAGCCA	GGGCTGTTGC	GCTGTCTGAT	AAGAAAAGAT	CATTTACCAT	ATGGCTTTCT	360
	GACAAAAGGA	AACAGACACA	GAAAGAGGTT	ACTGTGCTGC	TAGAACATCA	GAAGAAGGTA	420
70	TCGAAGACAA	GACACACTAG	AGAAACTGTT	CTCAGGCGTG	CCAAGAGGAG	ATGGGCACCT	480
70	ATTCCTTGCT	CTATGCAAGA	GAATTCCTTG	GGCCCTTTCC	CATTGTTTCT	TCAACAAGTT	540
	GAATCTGATG	CAGCACAGAA	CTATACTGTC	TTCTACTCAA	TAAGTGGACG	TGGAGTTGAT TTGCACTCGG	660
	AAAGAACCTT	TAAATTTGTT	TTATATAGAA	AGAGACACTG	CTTATCCCTC	AACTGCAGAT	720
	CCATATTCAC	CACATCTCCC	CCTCCCACTA	CCCATCAGGG	TAGAGGATGA	AAATGACAAC	780
75	CACCCTGTTT	TCACAGAAGC	ΔΑΤΤΤΑΤΑΑΤ	TTTGAAGTTT	TGGAAAGTAG	TAGACCTGGT	840
, ,	ACTACAGTGG	GGGTGGTTTG	TGCCACAGAC	AGAGATGAAC	CGGACACAAT	GCATACGCGC	900
	CTGAAATACA	GCATTTTGCA	GCAGACACCA	AGGTCACCTG	GGCTCTTTTC	TGTGCATCCC	960
	AGCACAGGCG	TAATCACCAC	AGTCTCTCAT	TATTTGGACA	GAGAGGTTGT	AGACAAGTAC	1020
0.0	TCATTGATAA	TGAAAGTACA	AGACATGGAT	GGCCAGTTTT	TTGGATTGAT	AGGCACATCA	1080
80	ACTTGTATCA	TAACAGTAAC	AGATTCAAAT	GATAATGCAC	CCACTTTCAG	ACAAAATGCT	1140
	TATGAAGCAT	TTGTAGAGGA	AAATGCATTC	AATGTGGAAA	TCTTACGAAT	ACCTATAGAA	1200
	GATAAGGATT	TAATTAACAC	TGCCAATTGG	AGAGTCAATT	ATGARCCATTTT	AAAGGGAAAT TCTTTCTGTT	1220
	GAAAATGGAC	ATTTCAAAAT	AGAAAAACCC	CANCTCANCC	TCCANAGGTGT	AGTAAACAAT	1320
85	GAAGCGCCAC	TTGCTACACA	TATTCCCAGA	GTGACAGCCT	TGAACAGAGC	CTTGGTTACA	1440
00	GTTCATCTCA	GGGATCTGGA	TGAGGGGCCT	GAATGCACTC	CTGCAGCCCA	ATATGTGCGG	1500
	ATTAAAGAAA	ACTTAGCAGT	GGGGTCAAAG	ATCAACGGCT	ATAAGGCATA	TGACCCCGAA	1560

	770777000	GCAATGGTTT	* * CCO * C* * * *	7 7 7 mmaana	አምሮሮሞል አ አሮሮ	TTCCNTCNCC	1620
							1680
		TTTCAGGGTC					1740
		AGTTGTATAA					
5		TTGCTGTGAA					1800
3		TCATTTGCAA					1860
		TCCATGGAGC					1920
		GGAGCCTCAC					1980
		TTCAAGAATA					2040
10		TATTGAGAGT					2100
10	ACTTCAAGGA	GTACAGGAGT	AATACTTGGA	AAATGGGCAA	TCCTTGCAAT	ATTACTGGGT	2160
		TCTTTTCTGT					2220
	GGGAAACGTT	TTCCTGAAGA	TTTAGCACAG	CAAAACTTAA	TTATATCAAA	CACAGAAGCA	2280
		ATAGAGTGTG					2340
		TTTGTGGTAC					2400
15							2460
15		AAGGAGGAAA					
	ACCCTGGACT	CCTGCAGGGG	AGGACACACG	GAGGTGGACA	ACTGCAGATA	CACTTACTCG	2520
		GTTTTACTCA					2580
	GAAGACCGCA	TGCCATCCCA	AGATTATGTC	CTCACTTATA	ACTATGAGGG	AAGAGGATCT	2640
	CCAGCTGGTT	CTGTGGGCTG	CTGCAGTGAA	AAGCAGGAAG	AAGATGGCCT	TGACTTTTTA	2700
20		AACCCAAATT					2760
		TTAGGTCTTT					2820
		ACATGTATGT					2880
							2940
	CCAATTTATA	TTTTTAAAGC	CAGTTGTTGC	TTATCTTTTC	CAAAAAGTGA	AAAATGITAA	
25		TGGTAAATCT					3000
25		TTTTACGGAT					3060
		TATGCTAATA					3120
		AATATTGAGT					3180
		ATTAAAAATG					3240
		TTTGACTTTG					3300
30		TATAGTTGGA					3360
20		AAATGAGAAC					3420
		TACAATAGAA					3480
		AGTCTATGAG					3540
25		TAAACTTTTC					3600
35		TTGCAGTCTG					3660
	GAATACTCGC	TGCAGCTGGG	GTTCCCTGCT	TTTTGGTAGC	AAGGGTCCAG	AGATGAGGTG	3720
		GGAGCTAATA					3780
		GTTTCTATTC					3840
		CTCCTAGAGT					3900
40		GAGATTGATT					3960
70							4020
		TACAAAATTT					
		GAAAGCCAGG					4080
		GAGATTCCCT					4140
4 ~		CAGTTTGCTT					4200
45	TTGAATGTAT	AAAAGAAAAA	GATCAAGTTG	TCATTTTAGA	ACAGAGGGAA	CTTTGGGAGA	4260
	AAGCAGCCCA	AGTAGGTTAT	TTGTACAGTC	AGAGGGCAAC	AGGAAGATGC	AGGCCTTCAA	4320
	GGGCAAGGAG	AGGCCACAAG	GAATATGGGT	GGGAGTAAAA	GCAACATCGT	CTGCTTCATA	4380
		GGCTTGGCAC					4440
		GGATCAGCCA					4500
50	BACCACA CAC	AGCTGACTGC	AUCICITUTE	TOTALCCCATT	TCCACCATCA	CCCTCAACTC	4560
50							
		ACAAACAAGG					4620
		AGAAGGTCTA					4680
	TTTTCTGTTT	TCTAATTTGA	CCCTAAAATC	TATGTGTTTT	AGACTTAGAC	TTTTTATTGC	4740
	CCCCCCCCC	TTTTTTTTTG	AGACGGAGTC	TCGCTCTGAC	GCACAGGCTG	GAGTGCAGTG	4800
55	GCTCCGATCT	CTGCTCACTG	AAAGCTCCGC	CTCCCGGGTT	CATGCCATTC	TCCTGCCTCA	4860
	GCCTCCTGAG	TAGCTGGGAC	TACAGGCGCC	CACCACCACG	GGGGGGGT N.T.	TTTTTGTATT	4920
					CCCGGCTAAT		
		∆CGGGGTTTC	ACTGTGTTAG	CCAGGATGGT			
					CTCGATCTCC	TGACCTCGTG	4980
	ATCCGCCTGC	CTCGGCCTCC	CAAAGTGCTG	GGATTACAGG	CTCGATCTCC CATGACCCAC	TGACCTCGTG CGCTCCCGGC	4980 5040
60	ATCCGCCTGC CTTGTTTTCC	CTCGGCCTCC GTTTAAAGTC	CAAAGTGCTG GTCTTCTTTT	GGATTACAGG AATGTAATCA	CTCGATCTCC CATGACCCAC TTTTGAACAT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT	4980 5040 5100
60	ATCCGCCTGC CTTGTTTTCC TGATCATACG	CTCGGCCTCC GTTTAAAGTC AATTGGATCA	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT	GGATTACAGG AATGTAATCA ACTCAACCAA	CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG	4980 5040 5100 5160
60	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAAGA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT	CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG	4980 5040 5100 5160 5220
60	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAAGA TTGCTGAAAT	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC	CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC	4980 5040 5100 5160 5220 5280
60	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAAGA TTGCTGAAAT ACTGTGTTTTT	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC	CAAAGTGCTG GTCTTCTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT	CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA	4980 5040 5100 5160 5220 5280 5340
	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC	CTCGATCTCC CATGACCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC	4980 5040 5100 5160 5220 5280 5340 5400
60 65	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTGACCG CAAAGAGCAA GAACATGCTG	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCACT	CTCGATCTCC CATGACCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA	4980 5040 5100 5160 5220 5280 5340
	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTGACCG CAAAGAGCAA GAACATGCTG	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCACT	CTCGATCTCC CATGACCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA	4980 5040 5100 5160 5220 5280 5340 5400
	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTCA	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GAACATGCTG AATGAAAATT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCACCT TAATTTTAGG	CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTC	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTT TATGCCCGAA TATATTTCA	4980 5040 5100 5160 5220 5280 5340 5400 5460
	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT	CTCGGCCTCC GTTTAAAGTCA AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTCT TTTTTCTCTCT ATTATTCTTCA ATTATTATTT	CAAAGTGCTG GTCTTCTATAT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT	GGATTACAGG AATGTAATCAA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCACCT TAATTTTAGG GTAAGGTGAA	CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTCATG GATTCATTTC ATTTATGGTA	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAA TATATTTCA TTTGAGTGTG	4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580
	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CTATATGTAGT CAAGAAAATA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATTATAAA	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GCTTTCATTT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ACCAGTATCAAACCT CCAGTATCAC AAAACCACCT TAATTTTAGG GTAAGGTGAA TTCCCCCAGT	CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC TCCCTGTTT GGTCTGCATG GATTCATTTC GATTCATTTA GATTCATTTA GAATGATTA	TGACCTCGTG CGCTCCCGGG GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCT CAAGACTTTA ATAAACCTC TATGCCCGAA TATATTTTCA TTTTGAGTGTG GAATTTTTTA	4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640
65	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CAGAAAATAT TGTAAATATA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATAT TATTTTAAA CAGAATGTTT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GTTTCATTT TTTCTTACTT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCACCT TAATTTAGG GTAAGGTGAA TTCCCCCAGT TTATAAAGGAA	CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTA ATTTATGGTA GAATGATTTA GCAGCTGTCT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT	4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700
	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CAAGAAAATA TGTAAATATA GGGGTTTGTT	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATT TATTTTTAAA CAGAATGTTT TTGCAATGTT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GCTTTCATTT TTTCTTACTT TTTAAACAGAG	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCACCT TAATTTTAGG GTAAGGTGAA TTCCCCCAGT TTATAAGGAA TTTTAGGAA TTTTAGTATT	CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC CTTCCCTGTTT GGTCTGCATG GATTCATTC ATTTATGGTA GAATGATTTA GAAGCTGTCT GCAGCTGCTCT GCAGCTGCTCT GCAGCTGTCT GCAGCTGTCT GCAGCTGTCT GCAGCTGTCT GCTATTAAAA	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCTAG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTCA TTTGAGTGTG GAATTTTTG AAAATGCAGT GAAGTTACTT	4980 5040 5100 5160 5220 5280 5340 5400 5520 5520 5580 5700 5760
65	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTCC CATATGTAGT CAAGAAAATA TGTAAATATA GGGGTTTGTT TGCTTTTAAA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATT TATTTTTAAA CAGAATGTTT TTGCAATGTT TAGCAATGTT GAAACTTGGC	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA AATGATAGTT AATGAAAATT CCTTATATGT GCTTTCTTACTT TTTCTTACTT TTAAACAGAG TGCTTAAAAT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCACCT TAATTTTAGG GTAAGGTGAA TTCCCCCAGT TTATAAGGAA TTTTAGTATT AAGCAAAAAT	CTCGATCTCC CATGACCCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTCACTG ATTCATTC ATTTATGGTA GAATGATTTA GCAGCTGTCT GCTATTAAAA TGGATGCATA	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAA TATATTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT AAGATACTT AAGTATATT	4980 5040 5100 5160 5280 5340 5400 5460 5520 5580 5640 5760 5760
65	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CAGGAAAATA TGTAAATATA GGGTTTGTAAT TGCTTTTAAA TACAGATGTG	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TTTGTTCTTT TTTTCTCTCA ATTATTATTT TATTTTTAAA CAGAATGTTT TGAAATGTT TGAAACTTGGC GGGAGATGTA	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CCAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GCTTTCATTT TTTAAACAGAG TGCTTAAAATA ATAAAACAAT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CAGTATCAC AAAACCACCT TAATTTTAGG GTAAGGTGAA TTCCCCCAGT TTATAAGGAAA TTTTAGTATT AAGCAAAAAT AATTAACTTGG	CTCGATCTCC CATGACCCAC CATGACCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC TTCCCTGTTT GGTCTGCATG GATTCATTTC ATTTATGGTA GAATGATTTA GCAGCTGTCT GCTATTTA GCAGCTGTCT TGCATGTATTATGTA TTTATTATTATTATGTA TTTATTATTATTATGTA TTTATTATTATATGTA TTTCTTGTTT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAACCTC TATGCCCGAA TATATTTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT AGAGTTACT TTGCTGTATT TTGCTGTATT	4980 5040 5100 5160 5220 5340 5400 5520 5580 5640 5760 5760 5880
65	ATCCGCCTGC CTTGTTTTCC GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CAAGAAAATA TGTAAATAT GGGGTTTGT TGCTTTTAAA TACAGATGTG TAGAGATTA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATTT TATTTTTAAA CAGAATGTTT TGCAATGTT GAAACTTGG GGGAGATGTA ATAATTCTAA	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCA GAACATGCTG AATGAAAATT CCTTATATGT TCTTATATT TTTATACAGAG TGCTTAAACAT TGCTTAAACAG TGCTTAAACAT GATGATCACT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT TAATTTTAGG GTAAGGTGAT TTCCCAGT TTATAGGAA TTTCCCAGT TTATAGGAA TTTTAGTATT AAGCAAAAT ATTAACTTG TTGCAAAATT	CTCGATCTCC CATGACCCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC TTCCCTGTTT GGTCTGCATG GATTCATTC ATTTATGGTA GAATGATTA GCAGCTGTCT GCTGTTT GCAGCTGTCT TCCTGTTT ATGCTTATGGT ATTTATGGT ATGTATAAAA TGGATGCATA TTTCTTGTTT ATGCTTATGG	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT AAGTAATATT TGCTGTATT TGCTGTATT CTGCCGTATT CTGCCATGGA	4980 5040 5160 5120 5220 5340 5400 5520 5520 5540 5700 5760 5820 5940
65 70	ATCCGCCTGC CTTGTTTTCC GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CAAGAAAATA TGTAAATAT GGGGTTTGT TGCTTTTAAA TACAGATGTG TAGAGATTA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATTT TATTTTTAAA CAGAATGTTT TGCAATGTT GAAACTTGG GGGAGATGTA ATAATTCTAA	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCA GAACATGCTG AATGAAAATT CCTTATATGT TCTTATATT TTTATACAGAG TGCTTAAACAT TGCTTAAACAG TGCTTAAACAT GATGATCACT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT TAATTTTAGG GTAAGGTGAT TTCCCAGT TTATAGGAA TTTCCCAGT TTATAGGAA TTTTAGTATT AAGCAAAAT ATTAACTTG TTGCAAAATT	CTCGATCTCC CATGACCCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC TTCCCTGTTT GGTCTGCATG GATTCATTC ATTTATGGTA GAATGATTA GCAGCTGTCT GCTGTTT GCAGCTGTCT TCCTGTTT ATGCTTATGGT ATTTATGGT ATGTATAAAA TGGATGCATA TTTCTTGTTT ATGCTTATGG	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAACCTC TATGCCCGAA TATATTTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT AGAGTTACT TTGCTGTATT TTGCTGTATT	4980 5040 5100 5160 5220 5340 5400 5520 5580 5640 5760 5760 5880
65 70	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CAAGAAAATA TGCAGAAATAT GGGGTTTGTT TGCTTTTAAA TACAGATGT TAGAGATATA AATAGAAATA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATA TATTTTTAAT CAGAATGTT GAAACTTGGC GGGAGATGTA ATAATTCTAA CTCAATTATG CTCAATTATG	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GCTTTCATTT TTTACACAGAG TGCTTAAAACAAA ATAAAACAAA GATGATCACT TCTTTGTTGTT TTTGTTGTT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCACCT TAATTTAGG GTAAGGTGAA TTCCCCCAGT TTATAAGGAA TTTTAGTATT AAGCAAAAAT ATTAACTTGG TTGCAAAATT ATTAATTGGG	CTCGATCTCC CATGACCCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTATGGTA GAATGATTTA GCAGCTGTCT GCTATTATAGAAA TGGATGCATA TTTCTTGTTT ATGCTTATGG AATATTTTGG AATATTTTGG	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT AAGTAATATT TGCTGTATT TGCTGTATT CTGCCGTATT CTGCCATGGA	4980 5040 5160 5120 5220 5340 5400 5520 5520 5540 5700 5760 5820 5940
65	ATCCGCCTGC CTTGTTTTCC CGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTGTAATTC CATATGTAGT CAGGAAAATA TGTAAATATT TGTAAATTAT TGCTTTTAAA TACAGATGTG TAGGAGATTAA AATAGAAATA AATAGAAATA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTTCTCTCA ATTATTATTATTATTATATATT TTGCAATGTT TGAAACTGGC GGGAGATGTA ATAATTCTAA ATAATTCTAA CACAATTATG TGTCGACATT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CCAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GCTTTCATTT TTAAACCAGA TGGTTAAAACAAT ATAAACAAAT ATAAAACAAT GATGATCACT TCTTTGTTGT TCTTTGTTGT TCTTTGTTGT TCTTTGTTGT ATTAATATATATATATATATATATATATATA	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAACCT CAGTATCAC AAACCACCT TAATTTAGG TTATAGGAA TTTTAGTAT ATTAACTTG TTGCAAAAT ATTAACTGG ATTAATGGAA	CTCGATCTCC CATGACCCAC CATGACCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCCTGTTT GGTCTGCATG GATTCATTTC ATTCATGTA GCAGCTGTT GCAATGATTTA GCAGCTGTCT GCTATTAAA TGGATGCATA TTTCTTGTTT ATGCTTATGG AATATTTGG TGGAAGAGA	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAA TATATTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT AGGTAATATT TTGCTGTATT CTGGCATGGA ACAATGTTTC TCACTATTTT	4980 5040 5160 5160 5220 5280 5340 5460 5520 5580 56700 5760 5880 5940 6000
65 70	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT TGCAGAAATA TGTAAATATA GGGTTTGTT TGCTTTTAAATATA TGCAGATGTG TAGAGATTAA AATAGAAATA AATAGAAATA GAGCACAGC	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCT TTTGTTCTTT TTTTCTCTCA ATTATTATT TATTTTTAAA CAGAATGTTT GAAACTTGG GGGAGATGTA ATAATTCTAA ATAATTCTAA CTCAATTATC TGCAATTATC TTGCAATTATC TTGCAATTATC TTGCAATTATC TTGCAATTATC TTGCAATTATC TTTTCAATTATA	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCAA GAACATGCTG AATGAAAAT CCTTATATGT TCTTACTTT TTAAACAGAG TGCTTAAAAT ATAAAACAAT GATGATCACT TCTTTGTTGT TCTTTGTTGT TCTTTGTTGT TCTTTTTTTT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT TAATTTTAGG GTAAGGTGAA TTCCCCCAGT TTATAAGGGAA TTTTAGTATTAGAAACT TATAAGATAT AAGCAAAAT AATTAACTTGG TTGCAAAATT ATTAACTTGG ATTGTAATGT	CTCGATCTCC CATGACCCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTC GATTCATGTA GAATGATTTA GCAGCTGTCT GCTATTAATGGTA TGGATGCATA TTCTTTGTTT ATGCTTATGAT ATGCTTATGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATATTTTGG AATATATAT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCTAG TGAAACACCT CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTTCA TTTGAGTGTG GAAGTTATTTA AAAATGCAGT GAAGTTACTT AAGTAATATT TTGCTGTATT TTGCTGTATT CTGGCATGGA ACAATGTTTC TCACTATTTT TTGATTCGGT	4980 5040 5100 5220 5280 5400 5460 5520 55640 5700 5760 5880 5940 6000 6060 6120
65 70	ATCCGCCTGC CTTGTTTTCC GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CAAGAAAATA GGGTTTGTT TGCTTTAAA TACAGATGT TAGAGATATA AATAGAAATA AATAGAAATA AATAGAAATA AATAGAAATA AATAGAAATA AATAGAAATA ATTAAAAGTA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATAT CAGAATGTTT TGCAATGTT GAAACTTGGC GGGAGATGTA ATAATTCTAA CTCAATTATG TTCAATTATG TTCAATTATG TTCAATTATG TTTACACATG TTTACAGATG TTTACAGATG TTTACAGATG TTACAGATGT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GAACATGCTG AATGAAAAT TCTTATATGT TTTCTTACTT TTAAACAGAG TGCTTAAAAT ATAAAACAAT GATGATCACT TCTTTGTTGT ATTAATATTG TCTTTGTTGT ATTAATATAT GATGATCATG GTTATAATTG GTTATAATTG	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCACT TAATTTAGG GTAAGGTGAA TTCCCCAGT TTATAAGGAA TTTTAGTATT AAGCAAAAT ATTAACTAG TTGCAAAATT ATTAACTAG ATTGTAATGT ATTAATGTATT ATTAATGTATT ATTAATGTATT ATTAATGTATT ATTAATGTATT ATTAATGTATT ATTAATGTATTT ATTAATGTATTT ATTAATGTATTT ATAATATGT ATACATATGT CAGAGTATTC	CTCGATCTCC CATGACCCAC CATGACCACAC GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTC ATTTATGGTA GCAGCTGTCT GCTATTATGGTA TGGATGCATA TGGATGCATA TTTCTTGTTT ATGCTTATGG AATATTTTGG AATATAAATT CATGAATAGT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTTCA TTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT AAGTAATATT TGCTGTATT CTGGCATGGA ACAATGTTTC TCACTGTATT TCACTGCAT	4980 5040 5160 5160 5220 5280 5340 5460 5520 5580 5760 5760 5880 5940 6000 6060 6120 6180
65 70	ATCCGCCTGC CTTGTTTTCC CGGAGAAAGA TTGCTGATATT CTAGTGCTTT CTAGTGCCGA TAACCATCC TTTGTAATTC CATATGTAGT CAGAAAATA TGTAAATATA TGCAGATGTT TGCTTTTAAA TACAGATGTG TAGAGATTAA ATTATCAAAT ATTATCAAAT ATTATAAAAGA ATTAAAAGAA ATTAAAAGTA ATTAAAAGTA ATGAAAGCA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTTCTCTCA ATTATTATTT TATTTTTAAA CAGAATGTT TGCAATGTT GAAACTTGGC GGGAGATGTA ATAATTCTAA CTCAATTATG TGTCGACATC TTTACAGATG TTTACAGATG TTTACAGATG TTACAGATG TTTACAGATG TTTACAGATG TTTACAGATG TTTACAGATG TTTACAGATG TTTACAGATG TTTACAGATG TTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTTACAGATG TTTTTACAGATG TTTTTTACAGATG TTTTTTACAGATG TTTTTTACAGATG TTTTTTACAGATG TTTTTTACAGATG TTTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTTTACAGATG TTTTTACAGATG TTTTTACAGATG TTTTT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CCAAAGAGCAA GAACATGCTG AATGAAAATT TCTTATATTT TTTCTTACTT TTAAACAGAG GTGTTAAAAT ATAAACAAT ATAAAACAAT GATGATCACT ATTAATATAT GATGATCACT ATTAATATAT ATTAATATAT ATTAATATAT AGTATCTATG CTATTATATT GTTATATTT GTTATATTT CATGTTATATT GTATATATT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC CAGTATCAAACCT CCAGTATCAC AAAACCACCT TAATTTAGG GTAAGGTGAA TTTTAGTATT AAGCAAAAT ATTAACTTGG TTGCAAAATT ATTAACTTGG ATTGTAATGGAA ATTGTAATGGAAATT ATTAATGGGAATATGT ATAATGGGAATATGT ATAACATATGT AAGGAATATGT AAGGAGTATTC AAGGGAAAACC AAGGGAAAACC	CTCGATCTCC CATGACCAC TATTGACACA AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTC GATTCATTTA GCAGCTGCTA TCCTATTAAAA TGCATTAAAA TTCTTGTTT ATGCTTATGGT AATATTATGGT AATATATTTGG TGGGAAGAGA ATAATAAAAT CATGAATAGT ATGAGTTAAA	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAAA TATATTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT AAGTAATATT TGCTGTATT CTGGCATGGA ACAATGTTTC TCACTATTTT TTGATCGGTT TCACTATTTT TTGATCGGAT ACAATGTTTC TCACTATTTT TTGATCGGCT ACACTGACCA AAGAAAACCA	4980 5040 5100 5160 5220 5280 5400 5460 5520 5640 5760 5820 5820 5940 6000 6060 6120 6240
657075	ATCCGCCTGC CTTGTTTTCC CGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTGTAATTC CATATGTAGT TGAAATAT TGTAAATATA GGGTTTGTT TAGATTTT TGCTTTAAA TACAGATGTG TAGAGATTAA AATAGAAATA AATAGAAATA AATAGAAATA AATAGAAATA AATAAAATA AATAAAATA AATAAAATA AAGCACAGC ATTAAAAGTA AGGGGTTTTA AGGGGTTTTA AGGGGTTTTTA AGGGGTTTTTA AGGGGATATTG	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TTTGTTCTTT TTTTCTCTCA ATTATTATTT TATTTTTAAA CAGAATGTTT TGAAACTTGGC GGAGATGTA ATAATTCTAA ATAATTCTAA CTCAATTATT TGTCGACATC TTTACAGATG TTTACAGATG TTTACAGATG CTTTACAGATC CTTTACAGACC CAGTCTTGAC	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CCAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GCTTTCATTT TTTAAACAGAG GAGTAAAAAT ATAAAACAAT GATGATCACT TCTTTGTTGT TCTTTGTTTGT TCTTTGTTTGTTTG	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CAGTATCAC AAACCACCT TAATTTTAGG GTAAGGTGAA TTTTAGTATT AAGCAAAATT ATTAACTTGG TTGCAAAATT ATTAATGTGGA ATTGTAATGT ATTAATGTGGAAATT ATTAATGTGGAAATT ATTAATGTGGAAATT ATTAATGTGAAATT ATTAATGTGAAATT ATTAATGTGAAATT ATTAATGTGAAAATT ATTAATGTGAAAATT ATTAATGTGAAAATT ATTAATGTGAAAATT ATTAATGTGAAAATA ACAGGATAACA ACAGGAAAACA ACAGGAAAACA	CTCGATCTCC CATGACCAC CATGACCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTC ATTCATTTA GCAGCTGTT GCTATTATGGTA TGGATGCATA TTCTTGTTT ATGCTATATA ATGCTTATGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG ATGGAAGAGA ATAATAAATT CATGAATAGA TAGAGTTAAA TAATGCCTGA	TGACCTCGTG CGCTCCCGGG GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC TATGCCCGAA TATATTTTCA TATAATTTTTA AAAATGCAGT GAAGTTATTTTA AAAATGCAGT GAAGTTATTT TGGGGTTAT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGATCGGGT ACACTGACAC ACATGACAC ACTTAATGA	4980 5040 5100 5160 5220 5280 5400 5460 5520 5640 5700 5760 5880 5940 6000 60120 6120 6120 6300
65 70	ATCCGCCTGC CTTGTTTTCC GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT TGTAAATAT GGGTTTGT TGCATATATAT GGGTTTGT TGCATATATAT ATAGAAATA ATAGAAATA ATTACAAAT ATTACAAAT ATTACAAAG ATTAAAAGTA AGGGTTTTA AGGGTTTTA AGGGTTTTA AATAGAAATA ATTACAAAT ATTACAAAT AGAGCACAGC ATTAAAAGTA AGGGGTTTTA AGGGGTTTTT CAGACATATTG CAAGATGATC	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTTCTCTCA ATTATTATT TATTTATT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCAA GAACATGCTG AATGAAAAT CCTTATATGT TTTCTTACTT TTAAACAGAG TGCTTAAACT TGTTAAACAT GATGATCACT TCTTTGTTGT TTTTTTTTTT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT TAATTTTAGG GTAAGGTGAA TTCCCCCAGT TTATAAGGTAT ATTAAGGAA TTTTAGTATT AAGCAAAAT ATTAACTTGG TTGCAAAATT ATTAACTTGG TTGCAAAATT ATTAATGGGG ATTATAATGT ATTAATGTATT ATTAATGTATT ATTAATGTATT ATTAATGTATT ATTAATGTAATGT ATAATATGTAATGT ATACATATGT ATACATATGT AAGAGAAAAC CAGGATATC AAGAGAAAAC GAGGATAGA	CTCGATCTCC CATGACCAC CATGACCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC TTCCCTGTTT GGTCTGCATG GATTCATTTC GATTCATGTA GAATGATTTA GCAGCTGTCT GCTATTAAAA TGGATGCATA TTTCTTGTTT ATGCTTATGG AATATTTTGG AATATTTTGT ATGAATAGT ATGAATAGT AATAGCTTGA GAATCTTTT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGCATGTAT TTGCTGTATT TTGATCGGGT ACACTGACAC AGGAAAAGCA CCCATGCAGG	4980 5040 5100 5160 5220 5280 5400 5460 5520 55640 5700 5760 5880 5940 6060 6120 6180 6240 6360
657075	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CAAGAAAATA GGGGTTTGTT TGCTTTTAAA TACAGATGTG TAGAGATATA AATAGAAATA CAAGATGTTC CAAGATGTC CAAGATGTC CAAGATGTCC	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATAT CAGAATGTTT GAAACTTTGC GGGAGATGTT TGCAATTATG TTCAATTATG TTCAATTATG TTCAATTATG TTCAATTATG TTTACAGATG TTTACAGATG TTTACAGATG CTTTGAGGAC CAGTCTTGAT CAGCCTTGAT CAGCCATAAACG	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GACATGCTG AATGAAAAT CCTTATATGT TTTCTTACTT TTAAACAGAG TGCTTAAAAT ATAAAACAAT GATGATACT TCTTTGTTGT ATTAATATAT GATGATATATG GTTATATTG GTTATATTT CAGTGTAGTC TCTTGCACTT TCTGCACTT TCTTGCACTT TCTTGCACTT TCTTGCACTT TCTTGCACTT TCTTGCACTT TCTTGCACTT TCTTGCACTT TTAAGACTGA	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC AAAACCAC TTATTTAGG GTAAGGTGAA TTCCCCAGT TTATAAGGAA TTTTAGTATT AAGCAAAAT ATTAACTAG TTGCAAAATT ATTAATGGG ATTGTAATGT ATTAATGGG ATTGTAATGT ATAATGTATT ATAATGTATT ATAATGTATT ATAATGTATT ATAATGTATT ATAATGTATT ATAATGTATT ATAATGT CAGAGTATTC AAGGAAAAC ACAGGATAGA CCTTCACAGT TCATTCAAA	CTCGATCTCC CATGACCCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTATGGTA GAATGATTTA GCAGCTGTCT GCTATTATAGAA TGGATGATTA TTCTTGTTT ATGCTTATGG AATATTTTGG TGGGAAGAGA ATAATATTTGG TGGGAAGAGT ATGATTAAA TGGTTATGG AATATTTTGG TGGAATAGT ATGATTAAA TAATATTTTGG TAGGAATAGT ATGATTAAA TAATATTTTGATTTATGAATATATAT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAAA TATATTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTATTT AGTAATATT TTGCTGTATT CTGGCATGAT ACACTAGTT TTGACTGTT TTGATGTTT TTGATGTGAT ACACTATTT TTGATGACGAC AAGAAAAGCA ACTATTAATGA CCTATTAATGA CCTATGACAG CTATATCAAA	4980 5040 5100 5160 5220 5340 5400 5520 5520 5520 5520 5760 5760 5820 6060 6060 6120 6240 6300 6420
657075	ATCCGCCTGC CTTGTTTTCC CGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT TGCTGAAAT TGTAAATATA TGTAAATATA TGTAAATATA TGAGATGTG TAGAGATTAA AATAGAAATA AATAGAAATA AATAGAAATA AATAGAAATA AATAGAAAT AATAAAGTA AGGGTTTTA AGGATTTA AGGATTTA AGGATTTA AGGATTTA AGGATTTA AGGATTTT CAAGATGATC AGGATGATC AGGATGATC AGGATGATC AGGATGATC AGGATGATC AGGATGATC AGGATTACAT	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTTCTCTCA ATTATTATTATTATATATTT TGAAACTTTT GAAACTTGGA GGGAGATGTA ATAATTCTAA CTCAATTATG TGTCGACATC TTTACAGATG TTTACAGATG TTTACAGATG CTTTACAGATG CTTTACAGATC CTTTACAGATC CTTTGACACATC CTTTGACACATC CTTTGACACATC CTTTGACACAC CTTTCAAACC CTTTCAAAAC CTACAAACC	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CCAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GCTTTCATTT TTAAACAGAG TGATAAACAAT ATAAACAAT ATAAACAAT CATTATTTT TCTTGTTGT TCTTTGTTGT TCTTGTTGT TCTTTGTTGT TCTTTGTTGT TCTTTGTTGT TCTTTGTTGT TCTTTGTTGT TCTTGTTGT TCTTTGTTGT TCTTGTTGT TCTTGTTGT TCTTGTTGT TCTTGTTGT TTAAAATAT AGTATCTATG GTTGAACCAT GGTGCTCTGT TTAAGACTGA GTTGAACCAA	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC CCAGTATCAC AAACCACCT TAATTTAGG GTAAGGTGAA TTCCCCAGT TTATAGGAAAT ATTAACTTG TTGCAAAAT ATTAACTTGG ATTGCAAAAT ATTAATGTGAAATT ATTAATGGGA ATTGTAATGT ATAATGTGAAATT ATAATGTGAAATT ATAACTTGG ATTGTAATGT CAGAGTATTC AAGGGAAAAC ACAGGATAGA GCTTCACAGT TCATTCAAAT ATTACATTAGATATAATTCAATTC	CTCGATCTCC CATGACCAC CATGACCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTA GCAGCTGCT GCTATTATGGTA TGCATGTATTA TGCATGTATTA TGCATGTATTA ATGCTTATGG AATATTATGG TGGGAAGAG ATAATATTTC CATGAATAGT ATGAATAGT ATGAATAGT ATGAATAGT ATGAATAGT ATGAATAGT ATGAATAGT ATGAATATAA TATGCCTGA GAATCTTTTC CATTATAG CAGTTAACT	TGACCTCGTG CGCTCCCGGG GTGTGAAAGT AGAAGCCTAG GTAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAA TATATTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTATT TGCTGTATT TCGCATGAA ACAATGTTC TCACTATTT TTGATCGGAT TCACTATTT TTGATCGGAT ACAATGTTC ACACTACTAT ACACTACTAC ACATTTT TGATCGGAT ACATTTT TGATCGGAT ACATTTT TGATCGGAT ACATTTT TGATCGGAT ACATTTT TGATCGGAT ACATTTT TGATCGGAT ACATTTT TTGATCGGAT ACATTTT ACACTACTAC ACATTTATTAATGA CCCATGCAG CTATTAATGA CCTATGTAAC	4980 5040 5100 5160 5220 5280 5400 5460 5520 55640 5700 5760 5880 5940 6060 6120 6180 6240 6360
657075	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAATT CTAGTGCTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT TGAAAATA TGTAAATATA GGGGTTTGTT TAGAGATATA AATAGAAATA AATAGAAATA AATATCAAAT GAAGCACAGC ATTAAAAGTA AGGGGTTTTA AGGGGTTTTA AGGGGTTTTA AGGGGTTTTA AGGGGTTTTA AGGGATTTA AGGGATTTA AGGGATTTTA AGGATGATC CAAGATGATC CAAGATGATC AGCCTTACAAT CATATTTTT	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TCCTGCTGT GCTCACTCCC TAAACTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATTT TATTTTTAAA CAGAATGTTT GGAACTTGGC GGGAGATGTA ATAATTCTAA TTACAATTATC TTTCAATTATC TTTACAATTATC TTTACAATTATC TTTACAATTATC TTTACAATTATC TTTACAATTATC TTTACAGATG TTTACAGATG CTTTACAGATG CTTTACAAAAC CAGTCTTGAT CAACCATAAA CCTACAAAAC TTTAATATAG GTGTATATATG	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCAA GAACATGCTG AATGAAAAT CCTTATATTG TTTCTTACTT TTTACTTACTT TTAAACAGAG TGATTAAAT GATGATCACT TCTTTGTTGT ATTAAATAT AGTATCTTTG GTTATATTG GTATATATTG GTATATATTG GTATATATTG GATGTGCACTT GGTGCTCTGT TTAAGACTGA	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC CCAGTATCAC AAAACCAC AAAACCACT TAATTTTAGG GTAAGGTGAA TTCCCCCAGT TTATAAGGAA TTTTAGTATT ATTAACTTGG TTGCAAAATT ATTAATGGGA ATTGTAATGT ATACATATGT CAGAGTATC AGAGGATATC AGAGGATAGA GCTTCACAGT TCATTCAAT TCATTCAAT TCATTGGATT	CTCGATCTCC CATGACCAC CATGACCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTA GCAGCTGTCT GCTATTATGGTA GCAGTGTCT TGCTATTATGGTA TGGATGCATA TTTCTTGTTT ATGCTTATGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGATAAATT CATGAATAGT ATGAGTAAAA TAATGCCTAAG GAATCTTTTC AATCTATTAG CCAGTAACTT TTTGTTTGTA	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAA TATATTTTCA ACAATTTTTA AAAATGCAGT GAAGTTATTTTA AAAATGCAGT GAAGTTACT TTGGCATAGA ACAATGTTTC TCACTATTT TTGATCGGGT ACACTGACAC ACTTAATGA ACCATGACAC ACTTAATGA CCCATGCAGG CTATATCAAA CCCATGCAGG CTATATCAAA CTATTGTAAC ATAGTAAAA	4980 5040 5100 5160 5220 5340 5400 5520 5520 5520 5520 5760 5760 5820 6060 6060 6120 6240 6300 6420
65707580	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAGA TTGCTGAATT CTAGTGCTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT TGAAAATA TGTAAATATA GGGGTTTGTT TAGAGATATA AATAGAAATA AATAGAAATA AATATCAAAT GAAGCACAGC ATTAAAAGTA AGGGGTTTTA AGGGGTTTTA AGGGGTTTTA AGGGGTTTTA AGGGGTTTTA AGGGATTTA AGGGATTTA AGGGATTTTA AGGATGATC CAAGATGATC CAAGATGATC AGCCTTACAAT CATATTTTT	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TCCTGCTGT GCTCACTCCC TAAACTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATTT TATTTTTAAA CAGAATGTTT GGAACTTGGC GGGAGATGTA ATAATTCTAA TTACAATTATC TTTCAATTATC TTTACAATTATC TTTACAATTATC TTTACAATTATC TTTACAATTATC TTTACAATTATC TTTACAGATG TTTACAGATG CTTTACAGATG CTTTACAAAAC CAGTCTTGAT CAACCATAAA CCTACAAAAC TTTAATATAG GTGTATATATG	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCAA GAACATGCTG AATGAAAAT CCTTATATTG TTTCTTACTT TTTACTTACTT TTAAACAGAG TGATTAAAT GATGATCACT TCTTTGTTGT ATTAAATAT AGTATCTTTG GTTATATTG GTATATATTG GTATATATTG GTATATATTG GATGTGCACTT GGTGCTCTGT TTAAGACTGA	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC CCAGTATCAC AAAACCAC AAAACCACT TAATTTTAGG GTAAGGTGAA TTCCCCCAGT TTATAAGGAA TTTTAGTATT ATTAACTTGG TTGCAAAATT ATTAATGGGA ATTGTAATGT ATACATATGT CAGAGTATC AGAGGATATC AGAGGATAGA GCTTCACAGT TCATTCAAT TCATTCAAT TCATTGGATT	CTCGATCTCC CATGACCAC CATGACCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTA GCAGCTGTCT GCTATTATGGTA GCAGTGTCT TGCTATTATGGTA TGGATGCATA TTTCTTGTTT ATGCTTATGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGG AATATTTTGATAAATT CATGAATAGT ATGAGTAAAA TAATGCCTAAG GAATCTTTTC AATCTATTAG CCAGTAACTT TTTGTTTGTA	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAA TATATTTTCA ACAATTTTTA AAAATGCAGT GAAGTTATTTTA AAAATGCAGT GAAGTTACT TTGGCATAGA ACAATGTTTC TCACTATTT TTGATCGGGT ACACTGACAC ACTTAATGA ACCATGACAC ACTTAATGA CCCATGCAGG CTATATCAAA CCCATGCAGG CTATATCAAA CTATTGTAAC ATAGTAAAA	4980 5040 5100 5160 5220 5280 5460 5520 5640 5700 5820 5880 5940 6060 6180 6360 6420 6420 6480
65707580	ATCCGCCTGC CTTGTTTTCC TGATCATACG GGGAGAAAA ACTGTGTTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATAATGTAGT TGCAGAAAATA TGTAAATATA GGGTTTGTT TGCTTTTAAATATA TACAGATGTG TAGAGATAAA ATTACAAAA ATTACAAAA ATTACAAAA ATTACAAAA ATTACAAAA CAGGGTTTTA GGGGTTTTA GGGGTTTTA GCAGATGTC AGCGTTACAT ACTTATTTT ACCGGATACAT ACCGGATACAT	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TTTGTTCTTT TTTTCTCTCA ATTATTATT TATTTTTAAA CAGAATGTTT GGAATGTT GGAACTTGGC GGGAGATGTA ATAATTATT TTGCAATTATA TTGCAATTATA CTCAATTATA CTCAATTATA CTCAATTATA CTCAATTATA CTCAATTATA CTCAATTATA CTAATAAGATG TTTACAGATG TTTACAGATG TTAGAACG CAGTCTTGAT CAACCATAAA CCTACAAACG TTTAATATAG CTTTAATATAG CTTTAATATAG CTTTAATATAG CTGTTTTATTTT TTTCACGTGT	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCA GAACATGCTG AATGAAAAT CCTTATATGT TCTTACTTT TTACTTACTT TTAAACAGAG TGCTTAAAAT ATAAAAT GATGATCACT CTTTGTTGT TTTATATATAT AGTATCATAT GGTTATATGT GTTATATGT GTTATATATG GTTATATATG GTTATATGT GTTATATGT CAGTGTAGTC CCTCGCACTT GGTGCCCTTT TTAGACCAA TCAAGAAATGT TCAAGAATGT TCAAGAATGT CCTTCAGTAT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT TAATTTTAGG GTAAGGTGAA TTCCCCAGT TTATAAGGAA TTTTAGTATT AAGCACAT AATCAAAACT TATAAGGAA TTTTAGTATT AAGCAAAAT AATTAATGGG ATTGTAATGT ATTAATGTATGT	CTCGATCTCC CATGACCCAC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTC GATTCATGGTA GAATGATTTA GCAGCTGTCT GCTATTAAGGTA TTTCTTGTTT ATGCTTATGG AATATTATGG AATATTTTC TGGGAAGAG ATAATATTT CATGAATAGT ATGAATAGT ATGATTAAG TAATGCTTAAG GAATCTTTTC AATCTATTAA CCAGTAACT TTTTTTTTT TTTTTTTTT TTTTTTTTTT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCT CAAGACTTCA ATAAAACCTC TATGCCCGAA TATATTTTCA CAAGATTATTTTA AAAATGCAGT GAAGTTACTT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGATCGGGT ACAATGTTTC TAGATGGTACAC AAGAAAGCTA ACAATGTTTC ACACTGACAC AAGAAAGCAC AAGAAAGCAC AAGAAAGCAC AAGAAAGCAC AAGTAACTATT TTGATCGGGT ACACTGACAC AAGAAAGCAC AAGTAACAC CCATGCAGG CTATTTAATGAA CCCATGCAGG CTATTTAATGAA CTATTGTAAAC CTATTGTAAAC TTATTGTAAAC TTATTGTAAC TTATAATGGT	4980 5040 5100 5160 5220 5280 53400 5460 5520 55640 5700 5760 5880 5940 6060 6120 6180 6360 6420 6480 6540 6600
657075	ATCCGCCTGC CTTGTTTTCC CTGATCATACG GGGAGAAGA TTGCTGATATT CTAGTGCTTT CTAGTGCCGA TAACCATCC TTGTAATTC CAGAAAATA TGTAAATATA TGTAAATATA TGCAGATGTG TAGAGATATA TACAGATGTG TAGAGATTAA ATTATCAAAT GAGAGATAAA ATTAAAAGTA ATTAAAAGTA ATGAAATA ATGAAATA ATGAAATA ATGAAATTA ATGAAATTA AGGGTTTTA GGCAATATTG CAAGATGATC AGTGTGCTCC AGCCTTACAT CATTATTTTT ACCGGATACA TGAGAAGCA	CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCC TTAAACTTCT TTTTCTCTCA ATTATTTTATATT TATTTTTAAA CAGAATGTTT TGCAATGTT GAAACTTGGC GGGAGATGTA ATAATTATG TTTACAATGT TTACAGATG TTACAGATG CTTACAGATG CTTTACAGATG CTTTGAGGC CAGTCTTGAT CAACCATAAAC CTTTAATATAG GTGTATGTC TTTACAGTG CTTTAATATAG GTGTATGTC TTTACAGTG GTTTAATATAG GTGTATGTCT TTTCACGTGT GGACACTAGA	CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CCAAAGAGCAA GAACATGCTG AATGAAAAT TCTTATATGT GCTTTCATTT TTTAAACAGAG TGCTTAAAAT ATAAACAAT ATAAAACAAT ATAAAACAAT ATTAATATAT AGTATATATAT AGTATATATAT GGTTATATATT GGTTATATAT GTTATATATG GTTATATATG GTTATATATG GTTATAATTG CAGTGTAGTC TCAGCACTT GGTGCTCTG GTTGACCAA TCAAGAATGT CCTTCAGTAT GCTGAATAG GCCAGAATGC	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC CAGTATCAAACCT CCAGTATCAC AAAACCACCT TAATTTAGG TTCCCCCAGT TTATAGGAA TTTTAGTAT AAGCAAAAT ATTAGTAT AATAACTTG ATTAACTTG ATTAATGGA ATTGTAATGT AAGCAAAAT ATTAATGTAATT CAAGGATATT CAGGATATT CAGGATATT CAGGATATT TCATTCAAA AATTTCAAT TCATTGGATT TCATTGGATT TCATTGGATT TCATTGGATT TCATTGGATT TCATTGGATT TCATTGGATT TCATTGGATT TGATTTCAAT TGATTTCAAT TGATTTGGTT TTGGATATGA	CTCGATCTCC CATGACCCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCC TTCCCTGTTT GGTCTCACTG AATTATGGTA GAATGATTA GCAGCTGTCT GCTATTAAAA TGGATGCATA TTCTTGTTT ATGCTATGGATG ATAATAATA TGGAAATAATA TATGAGTTAAA TAGGATTAAA ATGAGTTAAA ATGATTATGG AATATTTTG CAGGAACAGA ATAATCTTTT CATGAATACT ATGAGTTAAA TAGACTTATA CAGGAACAGA CAATCTTTTC AATCTATTAG CAGTAACTT TTTGTTTTGT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAACACCC CAAGACTTTA ATAAACCTC TATGCCCGAA TATATTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT AAGTAATATT TGGCATGGA ACAATGTTT TTGATCGGGT TCACTATTTT TTGATCGGCAT ACATTTTT TTGATCGGCAT ACATTATTT TTGATCGGCAT ACATTATTT TTGATCGGCAT CACATATTT TTGATCGGCAT ACATTATTA ACACTGACAC AAGAAAAGCA ACTTTAATGA CCCATGCAGG CTATATCAAA CTATTGTAAC ATAGTAAAAAT TCATAATGT TGTACTTT TCACATATTCAAA CTATTGTAAC ATAGTAAAAT TCATAATGGT TGTCACTTAC	4980 5040 5100 5160 5220 5280 5400 5460 5520 5760 5760 5820 5760 6060 6120 6300 6420 6420 6440 6440 6460 6660
65707580	ATCCGCCTGC CTTGTTTTCC CTGATCATACG GGGAGAAGA TTGCTGATTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT TCAGAGAATA TGTAAATATA GGGGTTTGTT TAGAGATTAA AATAGAAATA AATAGAAATA AATAGAATTA GAGGTTTTA GCAATATCAAAT GAGATGTC AATGTAGT CAAGATGTC AATGTAATTC CATATTTAAA ATTATCAAAT GAAGCATTTA ACGGGTTTTA GCAATATTT CAAGATGTC CATTATTTT ACGGAATACT TACTGGATCAT TACTGGAAGCAT TTCTGTGTGA	CTCGGCCTCC GTTTARAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCC TAAACTTTCT TTTTCTCTCA ATTATTATTATTATATATTT TGCAATGTT TGAACTTGGC GGGAGATGTA ATAATTCTAA CTCAATTATG TTTGACAGTG TTTACAGATG CAGTCTTGAT CAACCATAAA CCTACAAAC GTGTATGTC TTTCACGTGT TGCACATGT TTTCACGTGT GGACACTAGA GCTTTGAAAG CTTTCACGTGT GGACACTAGA CCTTTGAAAG CCTTTGAAAG	CAAAGTGCTG GTCTTCTTTT TACTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GCTTCATTT TTTATACAGAG TGATAAACAAAT ATAAACAAAT ATAAACAAT CTTTGTTGT TCTTGTTGT TCTTGTTGT TCTTATATATG GTTAATATAT GTTATATATG GTTAAAATA ATAAACAAT GTTAAAATA ATAAACTATG GTTGCCACTT GGTGCTCTGT GTTGCCACTT GTTGCCACTT GTTGAACCAA TCAGGAATGC CCTACGAATGC GCTACATATT	GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAACCT CAGTATCAC AAACCACCT TAATTTAGG GTAAGGTGAA TTCCCCCAGT TTATAGGAAAT ATTAACTTGG ATGAAAAT ATTAACTTGG ATGAAAAT ATTAATGGG ATGTAATGT AAGGAAAAT ATTAATGGG ATGTAATGT CAGAGTATTC AAGGAAAAT ATGATATGT TCATTCAAAA ACTTCACAGT TCATTCAAAT TCATTCGATT TCATTGGATATT TCATTGGATATT TGATATGG TCCTCTTTA	CTCGATCTCC CATGACCAC CATGACCAC TATTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCCTGTTT GGTCTGCATG GATTCATTTA GCAGCTGCTAT GCAGCTGCTAT GCAGCTGCTAT TATGATAAA TTCTTGTTT ATGCTATAGG AATATTTTGG AATATATTGG TGGAAGAGA ATAATATTTC ATGAATAGT ATGAGTAAA TAGAGTTAAA TAGAGTTAAA TAGAGTAAC TAGAATAGT CAGAATATTTTC CAGTAACAT TATGATTAG GAATCTTTTC TATGATTAG CCAGTAACTT TTTGTTTGTA GAATATTTGG GAATATTTGG CAGTAACTT TTTGTTTGTA GAATATTGGG ATCCTGGATC GCTTTCTCAT	TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCT CAAGACTTCA ATAAAACCTC TATGCCCGAA TATATTTTCA CAAGATTATTTTA AAAATGCAGT GAAGTTACTT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGATCGGGT ACAATGTTTC TAGATGGTACAC AAGAAAGCTA ACAATGTTTC ACACTGACAC AAGAAAGCAC AAGAAAGCAC AAGAAAGCAC AAGAAAGCAC AAGTAACTATT TTGATCGGGT ACACTGACAC AAGAAAGCAC AAGTAACAC CCATGCAGG CTATTTAATGAA CCCATGCAGG CTATTTAATGAA CTATTGTAAAC CTATTGTAAAC TTATTGTAAAC TTATTGTAAC TTATAATGGT	4980 5040 5100 5160 5220 5280 53400 5460 5520 55640 5700 5760 5880 5940 6060 6120 6180 6360 6420 6480 6540 6600

	WO 02	/086443					
	GTAGTTGGAT	GCCTGCACAT ATACTACCGA CCCGAAACAT	ACAATATCTA				6840 6900
5		32 Protein ession #: N					
	1	11	21 	31	41	51	
10	ADLIRSSDPD KTRHTRETVL EPLNLFYIER	RGAVCLHLLL FRVLNDGSVY RRAKRRWAPI DTGNLFCTRP	TLVIFSRDGE TARAVALSDK PCSMQENSLG VDREEYDVFD	KRSFTIWLSD PFPLFLQQVE LIAYASTADG	KRKQTQKEVT SDAAQNYTVF YSADLPLPLP	VLLEHQKKVS YSISGRGVDK IRVEDENDNH	60 120 180 240
15	TGVITTVSHY EAFVEENAFN KPLNYEENRQ KENLAVGSKI	EVLESSRPGT LDREVVDKYS VEILRIPIED VNLEIGVNNE NGYKAYDPEN	LIMKVQDMDG KDLINTANWR APFARDIPRV RNGNGLRYKK	QFFGLIGTST VNFTILKGNE TALNRALVTV LHDPKGWITI	CIITVTDSND NGHFKISTDK HVRDLDEGPE DEISGSIITS	NAPTFRQNAY ETNEGVLSVV CTPAAQYVRI KILDREVETP	300 360 420 480 540
20	EPVHGAPFYF TKLLRVNLCE KRFPEDLAQQ MMKGGNQTLE	AIDKDDRSCT SLPNTSPEIS CTHPTQCRAT NLIISNTEAP SCRGAGHHHT	RLWSLTKVND SRSTGVILGK GDDRVCSANG LDSCRGGHTE	TAARLSYQKN WAILAILLGI FMTQTTNNSS VDNCRYTYSE	AGFQEYTIPI ALLFSVLLTL QGFCGTMGSG WHSFTQPRLG	TVKDRAGQAA VCGVFGATKG MKNGGQETIE EKLHRCNQNE	600 660 720 780 840
25	DKWPSQDIVL	TYNYEGRGSP	AGSVGCCSEA	QEEDGEDFIN	NDEPRETIDA	EACIAN	
20	Nucleic Act	33 DNA sequid Accession tence: 64-25	ı #: Eos sed	quence		•	
30	1	11	21	31	41	51	
	 GGCAGGTCTC	 GCTCTCGGCA	CCCTCCCGGC	 GCCCGCGTTC	TCCTGGCCCT	 GCCCGGCATC	60
35	CCGATGGCCG	CCGCTGGGCC TGATCTTCAG	CCGGCGCTCC	GTGCGCGGAG	CCGTCTGCCT	GCATCTGCTG	120 180
33	CCTTCTAAAC	TAGAGGCAGA	CAAAATAATT	GGCAGAGTTA	ATTTGGAAGA	GTGCTTCAGG	240
		TCATCCGGTC GGGCTGTTGC					300 360
40	GACAAAAGGA	AACAGACACA GACACACTAG	GAAAGAGGTT	ACTGTGCTGC	TAGAACATCA	GAAGAAGGTA	420 480
40	ATTCCTTGCT	CTATGCAAGA	GAATTCCTTG	GGCCCTTTCC	CATTGTTTCT	TCAACAAGTT	540
		CAGCACAGAA TAAATTTGTT					600 660
45	CCTGTGGATC	GTGAAGAATA	TGATGTTTTT	GATTTGATTG	CTTATGCGTC	AACTGCAGAT	720
43	GGATATTCAG CACCCTGTTT	CAGATCTGCC TCACAGAAGC	AATTTATAAT	TTTGAAGTTT	TGGAAAGTAG	TAGACCTGGT	780 840
	ACTACAGTGG	GGGTGGTTTG GCATTTTGCA	TGCCACAGAC	AGAGATGAAC	CGGACACAAT	GCATACGCGC	900 960
50	AGCACAGGCG	TAATCACCAC	AGTCTCTCAT	TATTTGGACA	GAGAGGTTGT	AGACAAGTAC	1020
50		TGAAAGTACA TAACAGTAAC					1080 1140
	TATGAAGCAT	TTGTAGAGGA	AAATGCATTC	AATGTGGAAA	TCTTACGAAT	ACCTATAGAA	1200
		TAATTAACAC ATTTCAAAAT					1260 1320
55	GTAAAGCCAC	TGAATTATGA	AGAAAACCGT	CAAGTGAACC	TGGAAATTGG	AGTAAACAAT	1380
		TTGCTAGAGA GGGATCTGGA					1440 1500
	ATTAAAGAAA	ACTTAGCAGT	GGGGTCAAAG	ATCAACGGCT	ATAAGGCATA	TGACCCCGAA	1560
60		GCAATGGTTT TTTCAGGGTC					1620 1680
00	CCCAAAAATG	AGTTGTATAA	TATTACAGTC	CTGGCAATAG	ACAAAGATGA	TAGATCATGT	1740
	ACTGGAACAC GAATATGTAG	TTGCTGTGAA TCATTTGCAA	CATTGAAGAT	GTAAATGATA GGGTATACCG	ATCCACCAGA ACATTTTAGC	AATACTTCAA TGTTGATCCT	1800 1860
65	GATGAACCTG	TCCATGGAGC	TCCATTTTAT	TTCAGTTTGC	CCAATACTTC	TCCAGAAATC	1920
65		GGAGCCTCAC TTCAAGAATA				ATATCAGAAA CGGCCAAGCT	1980 2040
	GCAACAAAAT	TATTGAGAGT	TAATCTGTGT	GAATGTACTC	ATCCAACTCA	GTGTCGTGCG	2100
	ACTTCAAGGA ATAGCACTGC	GTACAGGAGT TCTTTTCTGT	ATTACTTGGA	TTAGTATGTG	GAGTTTTTGG	TGCAACTAAA	2160 2220
70	GGGAAACGTT	TTCCTGAAGA ATAGAGTGTG	TTTAGCACAG	CAAAACTTAA	TTATATCAAA	CACAGAAGCA	2280 2340
	AGCCAAGGTT	TTTGTGGTAC	TATGGGATCA	GGAATGAAAA	ATGGAGGGCA	GGAAACCATT	2400
	GAAATGATGA	AAGGAGGAAA CCTGCAGGGG	CCAGACCTTG	GAATCCTGCC	GGGGGGCTGG	GCATCATCAT	2460 2520
75	GAGTGGCACA	GTTTTACTCA	ACCCCGTCTC	GGTGAAGAAT	CCATTAGAGG	ACACACTGGT	2580
	TAAAAATTAA	ACATAAAAGA GTCCTCACTT	AATTGCATCG	ATGTAATCAG	AATGAAGACC	GCATGCCATC	2640 2700
	CTGCTGCAGT	GAAAAGCAGG	AAGAAGATGG	CCTTGACTTT	TTAAATAATT	TGGAACCCAA	2760
80	ATTTATTACA	TTAGCAGAAG	CATGCACAAA	GAGATAATGT	CACAGTGCTA	CAATTAGGTC TCAACATGTA	2820 2880
50	TGTATATGAT	GATTTTTTC	TCAATTTTGA	ATTATGCTAC	TCACCAATTT	ATATTTTTAA	2940
	AGCCAGTTGT	TGCTTATCTT	TTCCAAAAAG	TGAAAAATGT	TAAAACAGAC	AACTGGTAAA	3000
	GATATTTTAG	TAATAAATAT	GCTGGATAAA	TATTAGTCCA	ACAATAGCTA	TTTTTTTACG AGTTATGCTA	3120
85	ATATCACATT	ATTATGTATT	CACTTTAAGT	GATAGTTTAA	AAAATAAACA	AGAAATATTG	3180
	AGTATCACTA ATGTTGCAGC	TGTGAAGAAA TCATAAAGAA	GTTTTGGAAA TTGGGACTCA	AGAAACAATG CCCCTACTGC	ACTACCAAAT	TAAATTAAAA TCATTTGACT	3240 3300

		AATGTGTTGA	AGTGCCCTAT	GAAGTAGCAA	TTTTCTATAG	GAATATAGTT	3360
	GGAAATAAAT	GTGTGTGT	ATATTATTAT	TAATCAATGC	AATATTTAAA	ATGAAATGAG	3420
		AAAATGGTAA					3480
5		AGAGCTTCCT					3540
5		TTCCTGTCCA TGTGGGAAGG					3600 3660
		ATTTCTGCAT					3720
		GCTTTTTGGT					3780
		CATTTTAAAA					3840
10	TTCTCTCTTA	TAGTGACCAA	CATCTTTTTA	ATTTAGATCC	AAATAACCAT	GTCCTCCTAG	3900
		CTAGAGGGAG					3960
		AACCTAAGCC					4020
		CTCCTCACTG GGCCCCCTTC					4080 4140
15		CTCCAGGTTT					4200
		AGAAATTTTA					4260
		TTGTCATTTT					4320
		GTCAGAGGGC					4380
20		GGTGGGAGTA					4440
20		TCCTTTCTCA					4500
		CTCTATGGCT GTCTGAAGGC					4560 4620
		GGGAATTGTT					4680
		AATGCCTATC					4740
25		ATCTATGTGT					4800
		GTCTCGCTCT					4860
		CGCCTCCCGG					4920
		GCCCACCACC					4980 5040
30		TAGCCAGGAT CTGGGATTAC					5100
50		TTTAATGTAA					5160
		AATACTCAAC					5220
	GCACAAAATA	TTGGTCTGAG	AÁTGGAATTC	TCTGTAAGCC	TAGTTGCTGA	AATTTCCTGC	5280
25		AGCCAGTTTT					5340
35		GATCAAAACC					5400
		ACCAGTATCA					5460 5520
	TGAACATGCT	GAAAACCACC TTAATTTTAG	CGATTCATTT	CTATGCCCGA	ACATATGTAG	TATTATTATT	5580
		TGTAAGGTGA					5640
40		TTTCCCCCAG					5700
	TTTTCTTACT	TTTATAAGGA	AGCAGCTGTC	TAAAATGCAG	TGGGGTTTGT	TTTGCAATGT	5760
		GTTTTAGTAT					5820
		TAAGCAAAAA					5880
45		TATTAACTTG TGGGGAGATG					5940 6000
43		AAATAATTCT					6060
		TACTCAATTA					6120
		ATTGTCGACA					6180
~~	TTGAAGCACA	GCTTTACAGA	TGAGTATCTA	TGATACATAT	GTATAATAAA	TTTTGATCGG	6240
50		TATTAGAAGG					6300
		TACTTTGAGG					6360
		TGCAGTCTTG TCCAACCATA					6420 6480
		CCCCTACAAA					6540
55		ATTTTAATAT					6600
		TTGTGTATGT					6660
		CATTTCACGT					6720
		ATGGACACTA					6780
60		GACCTTTGAA					6840 6900
00		CCAGCCTCAT CTGCCTGCAC					6960
						AAAGTTTGTG	7020
		ATCCCGAAAC					
_ =							
65	Seq ID NO:	34 Protein	sequence:				
	Protein Acc	cession #: 1	NP_077741.1				
	_					F-1	
	1	11	21	31	41	51 1	
70	MAAAGDDDGV	RGAVCLHLLL	TINTESPORE	ACKKVII.NVP	SKLEADKIIG	RVNLEECERS	60
, 0		FRVLNDGSVY					120
		RRAKRRWAPI					180
		DTGNLFCTRP					240
75		EVLESSRPGT					300
75		LDREVVDKYS					360
		VEILRIPIED					420 480
		VNLEIGVNNE NGYKAYDPEN					540
		AIDKDDRSCT					600
80	EPVHGAPFYF	SLPNTSPEIS	RLWSLTKVND	TAARLSYQKN	AGFQEYTIPI	TVKDRAGQAA	660
	TKLLRVNLCE	CTHPTQCRAT	SRSTGVILGK	WAILAILLGI	ALLFSVLLTL	VCGVFGATKG	720
		NLIISNTEAP					780
	MMKGGNQTLE	SCRGAGHHHT	LDSCRGGHTE	VDNCRYTYSE	WHSFTQPRLG	EESIRGHTG	
85	Sec ID NO-	35 DNA seq	ience				
		id Accession		quence			

5 Seq ID NO: 35 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 146-1273

```
21
                                        31
      GGGAGTGGGC GTGGCGGTGC TGCCCAGGTG AGCCACCGCT GCTTCTGCCC AGACACGGTC
 5
      GCCTCCACAT CCAGGTCTTT GTGCTCCTCG CTTGCCTGTT CCTTTTCCAC GCATTTTCCA
                                                                           120
      GGATAACTGT GACTCCAGGC CCGCAATGGA TGCCCTGCAA CTAGCAAATT CGGCTTTTGC
                                                                           180
      CGTTGATCTG TTCAAACAAC TATGTGAAAA GGAGCCACTG GGCAATGTCC TCTTCTCTCC
                                                                           240
      AATCTGTCTC TCCACCTCTC TGTCACTTGC TCAAGTGGGT GCTAAAGGTG ACACTGCAAA
                                                                           300
      TGAAATTGGA CAGGTTCTTC ATTTTGAAAA TGTCAAAGAT ATACCCTTTG GATTTCAAAC
10
      AGTAACATCG GATGTAAACA AACTTAGTTC CTTTTACTCA CTGAAACTAA TCAAGCGGCT
                                                                           420
      CTACGTAGAC AAATCTCTGA ATCTTTCTAC AGAGTTCATC AGCTCTACGA AGAGACCCTA
                                                                           480
      TGCAAAGGAA TTGGAAACTG TTGACTTCAA AGATAAATTG GAAGAAACGA AAGGTCAGAT
                                                                           540
      CAACAACTCA ATTAAGGATC TCACAGATGG CCACTTTGAG AACATTTTAG CTGACAACAG
                                                                           600
      TGTGAACGAC CAGACCAAAA TCCTTGTGGT TAATGCTGCC TACTTTGTTG GCAAGTGGAT
                                                                           660
15
      GAAGAAATTT CCTGAATCAG AAACAAAAGA ATGTCCTTTC AGACTCAACA AGACAGACAC
                                                                            720
      CAAACCAGTG CAGATGATGA ACATGGAGGC CACGTTCTGT ATGGGAAACA TTGACAGTAT
                                                                           780
       CAATTGTAAG ATCATAGAGC TTCCTTTTCA AAATAAGCAT CTCAGCATGT TCATCCTACT
                                                                           840
      900
      AGAGTCACTG TCACAGTGGA CTAATCCCAG CACCATGGCC AATGCCAAGG TCAAACTCTC
                                                                           960
20
      CATTCCAAAA TTTAAGGTGG AAAAGATGAT TGATCCCAAG GCTTGTCTGG AAAATCTAGG
                                                                          1020
      GCTGAAACAT ATCTTCAGTG AAGACACATC TGATTTCTCT GGAATGTCAG AGACCAAGGG
      AGTGGCCCTA TCAAATGTTA TCCACAAAGT GTGCTTAGAA ATAACTGAAG ATGGTGGGGA
                                                                          1140
                                                                          1200
      TTCCATAGAG GTGCCAGGAG CACGGATCCT GCAGCACAAG GATGAATTGA ATGCTGACCA
      TCCCTTTATT TACATCATCA GGCACAACAA AACTCGAAAC ATCATTTCT TTGGCAAATT
                                                                          1260
25
      CTGTTCTCCT TAAGTGGCAT AGCCCATGTT AAGTCCTCCC TGACTTTTCT GTGGATGCCG
                                                                          1320
      ATTTCTGTAA ACTCTGCATC CAGAGATTCA TTTTCTAGAT ACAATAAATT GCTAATGTTG
                                                                          1380
      CTGGATCAGG AAGCCGCCAG TACTTGTCAT ATGTAGCCTT CACACAGATA GACCTTTTTT
                                                                          1440
      TTTTTCCAAT TCTATCTTTT GTTTCCTTTT TTCCCATAAG ACAATGACAT ACGCTTTTAA
                                                                          1500
      TGAAAAGGAA TCACGTTAGA GGAAAAATAT TTATTCATTA TTTGTCAAAT TGTCCGGGGT
                                                                          1560
30
      AGTTGGCAGA AATACAGTCT TCCACAAAGA AAATTCCTAT AAGGAAGATT TGGAAGCTCT
                                                                          1620
      TCTTCCCAGC ACTATGCTTT CCTTCTTTGG GATAGAGAAT GTTCCAGACA TTCTCGCTTC
                                                                          1680
      CCTGAAAGAC TGAAGAAAGT GTAGTGCATG GGACCCACGA AACTGCCCTG GCTCCAGTGA
                                                                          1740
      AACTTGGGCA CATGCTCAGG CTACTATAGG TCCAGAAGTC CTTATGTTAA GCCCTGGCAG
      GCAGGTGTTT ATTAAAATTC TGAATTTTGG GGATTTTCAA AAGATAATAT TTTACATACA
35
      CTGTATGTTA TAGAACTTCA TGGATCAGAT CTGGGGCAGC AACCTATAAA TCAACACCTT
                                                                          1920
      AATATGCTGC AACAAAATGT AGAATATTCA GACAAAATGG ATACATAAAG ACTAAGTAGC
                                                                          1980
      CCATAGGGG TCAAAATTTG CTGCCAAATG CGTATGCCAC CAACTTACAA AAACACTTCG
                                                                          2040
      TTCGCAGAGC TTTTCAGATT GTGGAATGTT GGATAAGGAA TTATAGACCT CTAGTAGCTG
                                                                          2100
      AAATGCAAGA CCCCAAGAGG AAGTTCAGAT CTTAATATAA ATTCACTTTC ATTTTTGATA
                                                                          2160
40
      GCTGTCCCAT CTGGTCATGT GGTTGGCACT AGACTGGTGG CAGGGGCTTC TAGCTGACTC
      GCACAGGGAT TCTCACAATA GCCGATATCA GAATTTGTGT TGAAGGAACT TGTCTCTTCA
                                                                          2280
      TCTAATATGA TAGCGGGAAA AGGAGAGGAA ACTACTGCCT TTAGAAAATA TAAGTAAAGT
                                                                          2340
      GATTAAAGTG CTCACGTTAC CTTGACACAT AGTTTTTCAG TCTATGGGTT TAGTTACTTT
                                                                          2400
      AGATGGCAAG CATGTAACTT ATATTAATAG TAATTTGTAA AGTTGGGTGG ATAAGCTATC
                                                                          2460
45
      CCTGTTGCCG GTTCATGGAT TACTTCTCTA TAAAAAATAT ATATTTACCA AAAAATTTTG
      TGACATTCCT TCTCCCATCT CTTCCTTGAC ATGCATTGTA AATAGGTTCT TCTTGTTCTG
                                                                          2580
      AGATTCAATA TTGAATTTCT CCTATGCTAT TGACAATAAA ATATTATTGA ACTACC
      Seq ID NO: 36 Protein sequence:
50
      Protein Accession #: NP_002630.1
                                                   41
      MDALQLANSA FAVDLFKQLC EKEPLGNVLF SPICLSTSLS LAQVGAKGDT ANEIGQVLHF
                                                                            60
55
      ENVKDIPFGF QTVTSDVNKL SSFYSLKLIK RLYVDKSLNL STEFISSTKR PYAKELETVD
                                                                           120
      FKDKLEETKG QINNSIKDLT DGHFENILAD NSVNDQTKIL VVNAAYFVGK WMKKFPESET
                                                                           180
      KECPFRLNKT DTKPVQMMNM EATFCMGNID SINCKIIELP FQNKHLSMFI LLPKDVEDES
      TGLEKIEKOL NSESLSOWTN PSTMANAKVK LSIPKFKVEK MIDPKACLEN LGLKHIFSED
                                                                            300
      TSDFSGMSET KGVALSNVIH KVCLEITEDG GDSIEVPGAR ILQHKDELNA DHPFIYIIRH
60
      NKTRNIIFFG KFCSP
      Seg ID NO: 37 DNA seguence
      Nucleic Acid Accession #: NM 0168583
65
      Coding sequence: 72-842
                                                              51
                             21
                                        31
                                                   41
      GGAGTGGGGG AGAGAGAGA GACCAGGACA GCTGCTGAGA CCTCTAAGAA GTCCAGATAC
70
      TAAGAGCAAA GATGTTTCAA ACTGGGGGCC TCATTGTCTT CTACGGGCTG TTAGCCCAGA
      CCATGGCCCA GTTTGGAGGC CTGCCCGTGC CCCTGGACCA GACCCTGCCC TTGAATGTGA
                                                                           180
      ATCCAGCCCT GCCCTTGAGT CCCACAGGTC TTGCAGGAAG CTTGACAAAT GCCCTCAGCA
                                                                           240
      ATGGCCTGCT GTCTGGGGGC CTGTTGGGCA TTCTGGAAAA CCTTCCGCTC CTGGACATCC
                                                                           300
      TGAAGCCTGG AGGAGGTACT TCTGGTGGCC TCCTTGGGGG ACTGCTTGGA AAAGTGACGT
                                                                           360
75
      CAGTGATTCC TGGCCTGAAC AACATCATTG ACATAAAGGT CACTGACCCC CAGCTGCTGG
                                                                            420
      AACTTGGCCT TGTGCAGAGC CCTGATGGCC ACCGTCTCTA TGTCACCATC CCTCTCGGCA
       TAAAGCTCCA AGTGAATACG CCCCTGGTCG GTGCAAGTCT GTTGAGGCTG GCTGTGAAGC
                                                                           540
      TGGACATCAC TGCAGAAATC TTAGCTGTGA GAGATAAGCA GGAGAGGATC CACCTGGTCC TTGGTGACTG CACCCATTCC CCTGGAAGCC TGCAAATTTC TCTGCTTGAT GGACTTGGCC
                                                                           600
                                                                           660
80
      CCCTCCCAT TCAAGGTCTT CTGGACAGCC TCACAGGGAT CTTGAATAAA GTCCTGCCTG
                                                                            720
      AGTTGGTTCA GGGCAACGTG TGCCCTCTGG TCAATGAGGT TCTCAGAGGC TTGGACATCA
      CCCTGGTGCA TGACATTGTT AACATGCTGA TCCACGGACT ACAGTTTGTC ATCAAGGTCT
                                                                           840
      AAGCCTTCCA GGAAGGGGCT GGCCTCTGCT GAGCTGCTTC CCAGTGCTCA CAGATGGCTG
                                                                           900
      GCCCATGTGC TGGAAGATGA CACAGTTGCC TTCTCTCCGA GGAACCTGCC CCCTCTCCTT
                                                                           960
85
      TCCCACCAGG CGTGTGTAAC ATCCCATGTG CCTCACCTAA TAAAATGGCT CTTCTTCTGC
                                                                          1020
      ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ
```

WO 02/086443 Seq ID NO: 38 Protein sequence: Protein Accession #: NP_057667

5	SGGLLGILEN	11 YGLLAQTMAQ LPLLDILKPG VTIPLGIKLQ	GGTSGGLLGG	LLGKVTSVIP	GLNNIIDIKV	TDPQLLELGL	60 120 180
10	THSPGSLQIS DIVNMLIHGL	LLDGLGPLPI	QGLLDSLTGI	LNKVLPELVQ	GNVCPLVNEV	LRGLDITLVH	240
15	Nucleic Act	39 DNA sequid Accession lence: 115-2	1 #: NM_0043	363.1			
	1	11	21	31	41	51	
20	TCTCGGAACT TCTCCCTCGG TCACTTCTAA	AGGGAGGAAG CAAGCTCTTC CCCCTCCCA CCTTCTGGAA CAGAGGGGAA	TCCACAGAGG CAGATGGTGC CCCGCCCACC	AGGACAGAGC ATCCCCTGGC ACTGCCAAGC	AGACAGCAGA AGAGGCTCCT TCACTATTGA	GACCATGGAG GCTCACAGCC ATCCACGCCG	60 120 180 240 300
25	TTTGGCTACA GTAATAGGAA CCCAATGCAT CACGTCATAA GAGCTGCCCA	GCTGGTACAA CTCAACAAGC CCCTGCTGAT AGTCAGATCT AGCCCTCCAT	AGGTGAAAGA TACCCCAGGG CCAGAACATC TGTGAATGAA CTCCAGCAAC	GTGGATGCA CCCGCATACA ATCCAGAATG GAAGCAACTG AACTCCAAAC	ACCGTCAAAT GTGGTCGAGA ACACAGGATT GCCAGTTCCG CCGTGGAGGA	TATAGGATAT GATAATATAC CTACACCCTA GGTATACCCG CAAGGATGCT	360 420 480 540 600
30	CAGAGCCTCC TTCAATGTCA GCCAGGCGCA TCCCCTCTAA	CCTGTGAACC CGGTCAGTCC CAAGAAATGA GTGATTCAGT ACACATCTTA	CAGGCTGCAG CACAGCAAGC CATCCTGAAT CAGATCAGGG	CTGTCCAATG TACAAATGTG GTCCTCTATG GAAAATCTGA	GCAACAGGAC AAACCCAGAA GCCCGGATGC ACCTCTCCTG	CCTCACTCTA CCCAGTGAGT CCCCACCATT CCACGCAGCC	660 720 780 840 900
35	GAGCTCTTTA AACTCAGACA CCCAAACCCT TTAACCTGTG	CTGCACAGTA TCCCCAACAT CTGGCCTCAA TCATCACCAG AACCTGAGAT	CACTGTGAAT TAGGACCACA CAACAACTCC TCAGAACACA	AATAGTGGAT GTCACGACGA AACCCCGTGG ACCTACCTGT	CCTATACGTG TCACAGTCTA AGGATGAGGA GGTGGGTAAA	CCAAGCCCAT TGCAGAGCCA TGCTGTAGCC TAATCAGAGC	960 1020 1080 1140 1200
40	GTCACAAGGA CACAGCGACC TCATACACCT	GTCCCAGGCT ATGATGTAGG CAGTCATCCT ATTACCGTCC AGTATTCTTG	ACCCTATGAG GAATGTCCTC AGGGGTGAAC	TGTGGAATCC TATGGCCCAG CTCAGCCTCT	AGAACGAATT ACGACCCCAC CCTGCCATGC	AAGTGTTGAC CATTTCCCCC AGCCTCTAAC	1260 1320 1380 1440 1500
45	GCCAGTGGCC CCCTCCATCT TGTGAACCTG GTCAGTCCCA	ACATCACTGA ACAGCAGGAC CCAGCAACAA AGGCTCAGAA GGCTGCAGCT	TACAGTCAAG CTCCAAACCC CACAACCTAC GTCCAATGGC	ACAATCACAG GTGGAGGACA CTGTGGTGGG AACAGGACCC	TCTCTGCGGA AGGATGCTGT TAAATGGTCA TCACTCTATT	GCTGCCCAAG GGCCTTCACC GAGCCTCCCA CAATGTCACA	1560 1620 1680 1740 1800
50	AGAAATGACG GACCCAGTCA TCGTCTTACC CCGCAGTATT GCCAAAATCA	CAAGAGCCTA CCCTGGATGT TTTCGGGAGC CTTGGCGTAT CGCCAAATAA	TGTATGTGGA CCTCTATGGG GAACCTCAAC CAATGGGATA TAACGGGACC	ATCCAGAACT CCGGACACCC CTCTCCTGCC CCGCAGCAAC TATGCCTGTT	CAGTGAGTGC CCATCATTTC ACTCGGCCTC ACACACAAGT TTGTCTCTAA	AAACCGCAGT CCCCCCAGAC TAACCCATCC TCTCTTTATC CTTGGCTACT	1860 1920 1980 2040 2100
55	CTCTCAGCTG TAGCAGCCCT TAAAGCATTT AGACTCTGAC	ATTCCATAGT GGGCCACTGT GGTGTAGTTT GCAACAGCTA CAGAGATCGA	CGGCATCATG CTTCATTTCA CAGTCTAAAA GACCATCCTA	ATTGGAGTGC GGAAGACTGA TTGCTTCTTT GCCAACATCG	TGGTTGGGGT CAGTTGTTTT ACCAAGGATA TGAAACCCCA	TGCTCTGATA GCTTCTTCCT TTTACAGAAA TCTCTACTAA	2160 2220 2280 2340 2400
60	TGAGGCAGGA ACTGCACTCC TCTGACCTGT AACTTTAATG	ATGAGCTGGG GAATCGCTTG AGTCTGGCAA ACTCTTGAAT AACTAACTGA	AACCCGGGAG CAGAGCAAGA ACAAGTTTCT CAGCTTCATG	GTGGAGATTG CTCCATCTCA GATACCACTG AAACTGTCCA	CAGTGAGCCC AAAAGAAAAG CACTGTCTGA CCAAGATCAA	AGATCGCACC AAAAGAAGAC GAATTTCCAA GCAGAGAAAA	2460 2520 2580 2640 2700
65	TTCCCAGATT AAATATACTT AGACTTGGGA	CATGGGACTA TCAGGAAACT TTGTGAACAA AACTATTCAT TCTGCTCTTT	TTTTTTCTTT AAATTGAGAC GAATATTTAT	TAAGCTATCC ATTTACATTT ATTGTATGGT	ACTCTTACAG TCTCCCTATG	CAATTTGATA TGGTCGCTCC	2760 2820 2880 2940
70		40 Protein cession #: 1					
75	HLFGYSWYKG TLHVIKSDLV	11 WCIPWQRLLL ERVDGNRQII NEEATGQFRV LQLSNGNRTL	GYVIGTQQAT YPELPKPSIS	PGPAYSGREI SNNSKPVEDK	IYPNASLLIQ DAVAFTCEPE	NIIQNDTGFY TQDATYLWWV	60 120 180 240
80	TISPLNTSYR AHNSDTGLNR QSLPVSPRLQ SPSYTYYRPG	SGENLNLSCH TTVTTITVYA LSNDNRTLTL VNLSLSCHAA VKTITVSAEL	AASNPPAQYS EPPKPFITSN LSVTRNDVGP SNPPAQYSWL	WFVNGTFQQS NSNPVEDEDA YECGIQNELS IDGNIQQHTQ	TQELFIPNIT VALTCEPEIQ VDHSDPVILN ELFISNITEK	VNNSGSYTCQ NTTYLWWVNN VLYGPDDPTI NSGLYTCQAN	300 360 420 480 540
85	LPVSPRLQLS PDSSYLSGAN	NGNRTLTLFN LNLSCHSASN SITVSASGTS	VTRNDARAYV PSPQYSWRIN	CGIQNSVSAN GIPQQHTQVL	RSDPVTLDVL FIAKITPNNN	YGPDTPIISP	660

Nucleic Acid Accession #: NM_006952.1 Coding sequence: 11-793 5 1.1 21 31 . 41 51 AATCCCGACA ATGGCGAAAG ACAACTCAAC TGTTCGTTGC TTCCAGGGCC TGCTGATTTT TGGAAATGTG ATTATTGGTT GTTGCGGCAT TGCCCTGACT GCGGAGTGCA TCTTCTTTGT 120 10 ATCTGACCAA CACAGCCTCT ACCCACTGCT TGAAGCCACC GACAACGATG ACATCTATGG 180 GGCTGCCTGG ATCGGCATAT TTGTGGGCAT CTGCCTCTTC TGCCTGTCTG TTCTAGGCAT 240 TGTAGGCATC ATGAAGTCCA GCAGGAAAAT TCTTCTGGCG TATTTCATTC TGATGTTTAT 300 AGTATATGCC TTTGAAGTGG CATCTTGTAT CACAGCAGCA ACACAACGAG ACTTTTTCAC 360 ACCCAACCTC TTCCTGAAGC AGATGCTAGA GAGGTACCAA AACAACAGCC CTCCAAACAA 15 TGATGACCAG TGGAAAACA ATGGAGTCAC CAAAACCTGG GACAGGCTCA TGCTCCAGGA 480 CAATTGCTGT GGCGTAAATG GTCCATCAGA CTGGCAAAAA TACACATCTG CCTTCCGGAC 540 TGAGAATAAT GATGCTGACT ATCCCTGGCC TCGTCAATGC TGTGTTATGA ACAATCTTAA 600 660 AGAACCTCTC AACCTGGAGG CTTGTAAACT AGGCGTGCCT GGTTTTTATC ACAATCAGGG CTGCTATGAA CTGATCTCTG GTCCAATGAA CCGACACGCC TGGGGGGTTG CCTGGTTTGG 720 20 ATTTGCCATT CTCTGCTGGA CTTTTTGGGT TCTCCTGGGT ACCATGTTCT ACTGGAGCAG AATTGAATAT TAAGAA Seg ID NO: 42 Protein sequence: Protein Accession #: NP_008883.1 25 51 31 41 21 MAKDNSTVRC FOGLLIFGNV IIGCCGIALT AECIFFVSDQ HSLYPLLEAT DNDDIYGAAW 60 IGIFVGICLF CLSVLGIVGI MKSSRKILLA YFILMFIVYA FEVASCITAA TQRDFFTPNL 120 30 180 FLKOMLERYO NNSPPNNDDQ WKNNGVTKTW DRLMLQDNCC GVNGPSDWQK YTSAFRTENN DADYPWPRQC CVMNNLKEPL NLEACKLGVP GFYHNQGCYE LISGPMNRHA WGVAWFGFAI 240 LCWTFWVLLG TMFYWSRIEY 35 Seq ID NO: 43 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 83-2605 21 31 41 40 GCCGGACAGA TCTGCGCGTA TCCTGGAGCC GGCCCAGTTG TGAACTAGGA GAGCTTTGGG 60 ACCTCTGTCC CAAGCAAGAG AGATGAATGG AGAGTATAGA GGCAGAGGAT TTGGACGAGG 120 AAGATTTCAA AGCTGGAAAA GGGGAAGAGG TGGTGGGAAC TTCTCAGGAA AATGGAGAGA 180 AAGAGAACAC AGACCTGATC TGAGTAAAAC CACAGGAAAA CGTACTTCTG AACAAACCCC 240 45 ACAGTTTTTG CTTTCAACAA AGACCCCACA GTCAATGCAG TCAACATTGG ATCGATTCAT 300 ACCATATAAA GGCTGGAAGC TTTATTTCTC TGAAGTTTAC AGCGATAGCT CTCCTTTGAT 360 TGAGAAGATT CAAGCATTTG AAAAATTTTT CACAAGGCAT ATTGATTTGT ATGACAAGGA 420 TGAAATAGAA AGAAAGGGAA GTATTTTGGT AGATTTTAAA GAACTGACAG AAGGTGGTGA 480 AGTAACTAAC TTGATACCAG ATATAGCAAC TGAACTAAGA GATGCACCTG AGAAAACCTT 540 50 GGCTTGCATG GGTTTGGCAA TACATCAGGT GTTAACTAAG GACCTTGAAA GGCATGCAGC 600 TGAGTTACAA GCCCAGGAAG GATTGTCTAA TGATGGAGAA ACAATGGTAA ATGTGCCACA 660 TATTCATGCA AGGGTGTACA ACTATGAGCC TTTGACACAG CTCAAGAATG TCAGAGCAAA 720 TTACTATGGA AAATACATTG CTCTAAGAGG GACAGTGGTT CGTGTCAGTA ATATAAAGCC 780 TCTTTGCACC AAGATGGCTT TTCTTTGTGC TGCATGTGGA GAAATTCAGA GCTTTCCTCT 840 55 TCCAGATGGA AAATACAGTC TTCCCACAAA GTGTCCTGTG CCTGTGTGTC GAGGCAGGTC 900 ATTTACTGCT CTCCGCAGCT CTCCTCTCAC AGTTACGATG GACTGGCAGT CAATCAAAAT 960 CCAGGAATTG ATGTCTGATG ATCAGAGAGA AGCAGGTCGG ATTCCACGAA CAATAGAATG 1020 TGAGCTTGTT CATGATCTTG TGGATAGCTG TGTCCCGGGA GACACAGTGA CTATTACTGG 1080 AATTGTCAAA GTCTCAAATG CGGAAGAAGG TTCTCGAAAT AAGAATGACA AGTGTATGTT 1140 60 CCTTTTGTAT ATTGAAGCAA ATTCTATTAG TAATAGCAAA GGACAGAAAA CAAAGAGTTC 1200 TGAGGATGGG TGTAAGCATG GAATGTTGAT GGAGTTCTCA CTTAAAGACC TTTATGCCAT 1260 CCAAGAGATT CAAGCTGAAG AAAACCTGTT TAAACTCATT GTCAACTCGC TTTGCCCTGT 1320 CATTTTTGGT CATGAACTTG TTAAAGCAGG TTTGGCATTA GCACTCTTTG GAGGAAGCCA 1380 GAAATACGCA GATGACAAAA ACAGAATTCC AATTCGGGGA GACCCCCACA TCCTTGTTGT 1440 65 TGGAGATCCA GGCCTAGGAA AAAGTCAAAT GCTACAGGCA GCGTGCAATG TTGCCCCACG 1500 TGGCGTGTAT GTTTGTGGTA ACACCACGAC CACCTCTGGT CTGACGGTAA CTCTTTCAAA 1560 AGATAGTTCC TCTGGAGATT TTGCTTTGGA AGCTGGTGCC CTGGTACTTG GTGATCAAGG 1620 TATTTGTGGA ATCGATGAAT TTGATAAGAT GGGGAATCAA CATCAAGCCT TGTTGGAAGC 1680 CATGGAGCAG CAAAGTATTA GTCTTGCTAA GGCTGGTGTG GTTTGTAGCC TTCCTGCAAG 1740 70 AACTTCCATT ATTGCTGCTG CAAATCCAGT TGGAGGACAT TACAATAAAG CCAAAACAGT 1800 1860 TTCTGAGAAT TTAAAAATGG GGAGTGCACT ACTATCCAGA TTTGATTTGG TCTTTATCCT GTTAGATACT CCAAATGAGC ATCATGATCA CTTACTCTCT GAACATGTGA TTGCAATAAG 1920 AGCTGGAAAG CAGAGAACCA TTAGCAGTGC CACAGTAGCT CGTATGAATA GTCAAGATTC 1980 AAATACTTCC GTACTTGAAG TAGTTTCTGA GAAGCCATTA TCAGAAAGAC TAAAGGTGGT 2040 75 TCCTGGAGAA ACAATAGATC CCATTCCCCA CCAGCTATTG AGAAAGTACA TTGGCTATGC 2100 TCGGCAGTAT GTGTACCCAA GGCTATCCAC AGAAGCTGCT CGAGTTCTTC AAGATTTTTA 2160 CCTTGAGCTC CGGAAACAGA GCCAGAGGTT AAATAGCTCA CCAATCACTA CCAGGCAGCT 2220 GGAATCTTTG ATTCGTCTGA CAGAGGCACG AGCAAGGTTG GAATTGAGAG AGGAAGCAAC 2280 CAAAGAAGAC GCTGAGGATA TAGTGGAAAT TATGAAATAT AGCATGCTAG GAACTTACTC 2340 80 TGATGAATTT GGGAACCTAG ATTTTGAGCG ATCCCAGCAT GGTTCTGGAA TGAGCAACAG 2400 GTCAACAGCG AAAAGATTTA TTTCTGCTCT CAACAACGTT GCTGAAAGAA CTTATAATAA TATATTTCAA TTTCATCAAC TTCGGCAGAT TGCCAAAGAA CTAAACATTC AGGTTGCTGA 2520 TTTTGAAAAT TTTATTGGAT CACTAAATGA CCAGGGTTAC CTCTTGAAAA AAGGCCCAAA 2580 AGTTTACCAG CTTCAAACTA TGTAAAAGGA CTTCACCAAG TTAGGGCCTC CTGGGTTTAT 2640 85 TGCAGATTAA AGCCATCTCA GTGAAGATAT GCGTGCACGC ACAGACAGAC AGACACACAC 2700 ACACACACA ACACACACA ACACACACA ACACACAGTC AAATACTGTT CTCTGAAAAA 2760

TGATGTCCCA AAAGTATTAT AATAGGAAAA AAGCATTAAA TATAATAAAC TAATTTAAGA

Seq ID NO: 41 DNA sequence

		/086443					
		TCTCCAGATG					2880
	GGTGAGAGGA	TTCCTTGAGG	CCAGGGTTCG	AGACCAACCT	TGGGCAACAT	AGCAAGACCC	2940
		AAAAAAAAA					3000
_		TACTTGTGAG					3060
5	TACAGTGAGC	CACAATCACA	CCAATCACTG	CACTCCAGCC	TGGGCAATAA	AGTAACTCTT	3120
	GACTCAAAAA	AATAAAAAAA	ATTGTAGTGG	TAGCCATGTG	TTAATTGTTA	AATAAATTCT	3180
	CCAAAGGGCT	AAAAGTAAAT	TACTTATAAA	TTTTTTATAG	TTGTATTTTT	GACCTGCCTT	3240
	TTATATGTAT	GAATATTTCA	TAGTTTTGCA	TATCAGATGT	AGGCATACAG	ACAAATACAT	3300
		ATATATTACA					3360
10	ATTTGAATTT	CATAAAATTT	TCCCATGTCA	AGAATACAAA	ATACTTGAGT	TTTGTTTTTA	3420
20		AATAGGTCTC					3480
		GACTGATTAA					3540
		AGGCAGGTGA					3600
		TGGACTAAGG					3660
15		GCTGCCTCCC					3720
13							3780
		ACCCGCACCG					
		TCAAAAAAGA					3840
		TCATAGGCTG					3900
20		GAATTTCTCA					3960
20		TCATGTATAA					4020
	GTGAACCATT	GTTGGAGAAT	CTACTAAAAT	ACGGCTTCCC	GCAAACGAAG	ATGAATGGAA	4080
		AAAAGAACTG					4140
	GATGTGGAGA	CTATTGCCAT	AGACCACAAT	GTAAATTTTT	AAGTGAGGAA	GGAAAAATCA	4200
	GGAATCAAAA	GGGGCCAGGT	GCAGTGGCTC	ACATCTATAA	TCCCAGAGCT	TTGGGAGTTC	4260
25		GATCACTTGA					4320
		AAAAATAGAT					4380
		AAGTAGGAAA					4440
		GCACTCCAGC					
	IINIACCACI	CCACICCAGC	CIGGGGGGGG	0.100.110.100			
30	eog ID NO.	44 Protein	gemience:				
50							
	Protein Acc	cession #: (JAB55276.2				
	_			2.1	4.1	E-1	
	1	ŢI	21	31	41	51	
25		1	I				
35		GRGRFQSWKR					60
		RFIPYKGWKL					120
		GGEVTNLIPD					180
	LSNDGETMVN	VPHIHARVYN	YEPLTQLKNV	RANYYGKYIA	LRGTVVRVSN	IKPLCTKMAF	240
	LCAACGEIOS	FPLPDGKYSL	PTKCPVPVCR	GRSFTALRSS	PLTVTMDWQS	IKIQELMSDD	300
40		IECELVHDLV					360
		KSSEDGCKHG					420
		GSQKYADDKN					480
							540
		LSKDSSSGDF					
4 =		PARTSIIAAA					600
45		AIRAGKQRTI					660
	IPHOLLRKYI	GYARQYVYPR	LSTEAARVLQ	DFYLELRKQS	QRLNSSPITT	RQLESLIRLT	720
		EATKEDAEDI					780
		YNNIFQFHQL					
	OILLIAN TILLIAN I						
50							
-	Sec ID NO:	45 DNA sequ	ience				
		id Accession		116.1			
		lence: 149.					
	couring sedi	dence. 149.	. 050				
55	•	7 7	71	31	41	51	
55	1	11	21	37	4T	51	
				<u> </u>	<u> </u>		
				TTCTCTGCAC			60
		GAAAAGCCAC	TAAGACTTTC	TGCTTAATTC	AGGAGCTTAG	AGGATTCTTC	120
60			TAAGACTTTC	TGCTTAATTC	AGGAGCTTAG	AGGATTCTTC	
υU	AAAGAGTGTG	GAAAAGCCAC TCCACGATCC	TAAGACTTTC TTTGAAGCAT	TGCTTAATTC GAGTTCTTAC	AGGAGCTTAG CAGCAGAAGC	AGGATTCTTC AGACCTTTAC	120
60	AAAGAGTGTG CCCACCACCT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC	AGGATTCTTC AGACCTTTAC CACCTCAGGA	120 180
UU	AAAGAGTGTG CCCACCACCT AATATTTGTT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC	120 180 240 300
UU	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA	120 180 240 300 360
υυ	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT ACCAAGGTCC	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGAGCCAGG	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGCTGTAC	120 180 240 300 360 420
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGAGCCAGG GTACCAAGGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGCTGTAC AGGTCCCTGA	120 180 240 300 360 420 480
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTT ATCAAGGTCC	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGAGCCAGG GTACCAAGGT CTGACCAAGGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTTCATCAAG	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGCTGTAC AGGTCCCTGA CAGGTCCCTGA	120 180 240 300 360 420 480 540
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CAAAGTTCCT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTT ATCAAGGTCC GAGCAAGGAT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGAGCCAGG GTACCAAGGT CTGACCAAGGT ACACCAAAGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTTCATCAAG TCCTGTGCCA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGCTGTAC AGGTCCCTGA CAGGTGCCAT AGCTACCAGA	120 180 240 300 360 420 480 540 600
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAGGTTCCT GCCATGTCCT	GAAAAGCCAC TCCACGATCA CAGCTTCAAC CACACACACA GAGCAGGCT ACCAAGGTCC GAGCAAGGTT ATCAAGGTCA TCAACGGTCA	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT ACACCAAAGT CTCCAAGGCC	TGCTTAATTC GAGTTCTTAC GAAACAACC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTCATCAACAG TTCATCAAC TTCATCAACAAG ACCTCAGCAA	AGGAGCTTAG CAGCAGAAGC GCCAGCCTC GTTCCACAAC GCTGTACCA GTCCTGAGC GCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT	120 180 240 300 360 420 480 540
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAGGTTCCT GCCATGTCCT	GAAAAGCCAC TCCACGATCA CAGCTTCAAC CACACACACA GAGCAGGCT ACCAAGGTCC GAGCAAGGTT ATCAAGGTCA TCAACGGTCA	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT ACACCAAAGT CTCCAAGGCC	TGCTTAATTC GAGTTCTTAC GAAACAACC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTCATCAACAG TTCATCAAC TTCATCAACAAG ACCTCAGCAA	AGGAGCTTAG CAGCAGAAGC GCCAGCCTC GTTCCACAAC GCTGTACCA GTCCTGAGC GCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT	120 180 240 300 360 420 480 540 600
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CAAAGTTCCT TGCATGTCCT TGGTGCACAG	GAAAAGCCAC TCCACGATCC CCACAACCA CCCACAACCA GAGCCAGGCT ACCAAGGTC ATCAAGGTCC GAGCCAGGAT TCAAGGTCC AACCAACGTCA ACAACGTCA ACAACGCCTT	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGG GTACCAAGGT CTGACCAAGG ACACCAAAGT CTCCAGGCC GAGAAGCCAA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACCC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGCATACTACTACTACTACTACTACTACTACTACTACTACTA	120 180 240 300 360 420 480 540 600 660
65	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACCA TGTTCTGTG	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGTC ACCAAGGTCC GAGCCAGGTT ATCAAGGTCC GAGCAAGGAT TCAACGGTCT TCTAATTGT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC CAGAAGCCAA CTGTAGACCA CTGTAGACCCA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTCATCAAG TCCTGTGCCA AGCTCAGCAA GCTCAGCAA TCCTGTGCCA TCCTCAGCATG TCTAATCAGC	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AGACCAAGC CTGGACACCC ACATTGTCAC ACATTGTCAC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT	120 180 240 300 360 420 480 540 600 660 720
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAGGTCCT TGGTGCACAG TGTTTCTGTG AGTCCTCTC	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGTC ACCAAGGTCC GAGCAAGGTCC GAGCAAGGAT TCAACGGTCA ACAAGCCCTT TCTTAATTGT TTATTTGTAT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT CTCCAGGCCC GAGAAGCCAA CTGTAGACCT CCTAAAAATA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTCATCAAG CTTCATCAAG TCCTGTGCCA AGCTCAGCAG TGCACCAGATC TGTAATCAGC CGTACTATAA	AGGAGCTTAG CAGCAGAAGC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GTTCCTGAGC GGCTACACCA ATTTCCTGAGC GGCTACACAA AAGACCAAGC ATGACACA AAGACTATGTCAC AGCTTTTGTT	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT CACACACACACT	120 180 240 300 360 420 480 540 660 720 780 840
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAAGTCCCT ACCAGGCAGC GCCATGTCCT TGGTGCACAG TGTTTCTTGTG AGTTCTCTCTCTCTCTGTG CTGAAGAATC	GAAAAGCCAC TCCACGATCC CCACCAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAAGGCCTT TCTTAATTGT TTTATTTGTAT CTGTAAAGCCC	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGG CTGACCAAGG CTGACCAAGG CTCACGAGCCC CAGAAGCCAA CTGTAGACCA CTGTAGACCA CTGTAGACT CCTAAAATA CTGAATTAAG	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGATTCCT GCCATGTCCT TGGTGCACAG TGTTTCTGTG AGTCTCTCTC CTGAAGAATC GGCTGCTCAG	GAAAAGCCAC TCCACGATCC CCACAACCA GAGCCAGGCT ACCAAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGTCA ACAACGTTCT TCATTGTAT TTATTTGTAT TCTTAAGCCC GGTTCATCTC GGTTCATCTC	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGG CTGACCAAGG CTCCAGGCC GAGAAGCCAA CTGTAGACCA CTGTAGACCA CTGTAGACCT CCTAAAATTA AAGATTCGAA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT CACACACACACT	120 180 240 300 360 420 480 540 660 720 780 840
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGATTCCT GCCATGTCCT TGGTGCACAG TGTTTCTGTG AGTCTCTCTC CTGAAGAATC GGCTGCTCAG	GAAAAGCCAC TCCACGATCC CCACCAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAAGGCCTT TCTTAATTGT TTTATTTGTAT CTGTAAAGCCC	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGG CTGACCAAGG CTCCAGGCC GAGAAGCCAA CTGTAGACCA CTGTAGACCA CTGTAGACCT CCTAAAATTA AAGATTCGAA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGATTCCT GCCATGTCCT TGGTGCACAG TGTTTCTGTG AGTCTCTCTC CTGAAGAATC GGCTGCTCAG	GAAAAGCCAC TCCACGATCC CCACAACCA GAGCCAGGCT ACCAAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGTCA ACAACGTTCT TCATTGTAT TTATTTGTAT TCTTAAGCCC GGTTCATCTC GGTTCATCTC	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGG CTGACCAAGG CTCCAGGCC GAGAAGCCAA CTGTAGACCA CTGTAGACCA CTGTAGACCT CCTAAAATTA AAGATTCGAA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACAG TGTTTCTGTG AGTCCTCTC CTGAAGAATC GCTGCTCAG CTCATTAAAT	GAAAAGCCAC TCCACGATCC CCACCAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAAGCCCTT TCTTAATTGT TTATTTGTAT CTGTAAGCCC GGTTCATCTG TGCTTTAATTGT	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGG CTGACCAAGG CTGACCAAGG CTGACCAAG CTGACCAAG CTCTAAAAT CTCAAAATAAC CTGAATTAAG AAGATTCGAA TCCA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGTTCCT GGCATGTCCT TGGTGCACAG TGTTTCTTGTG AGTCTCTCC CTGAAGAATC CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCAAC GAGCCAGGCT ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGGTCT TCATATTGTT TCATTGTAT TCTAAGCCC GGTTCATCTAAT TGTAAGCCC GGTTCATCTAAT TGTAAGCCC GGTTCATCTAAT TGCTTTTAAT 46 Protein	TAAGACTTTC TTTGAAGCAT AGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT CTCAAGGCC GAGAAGCCAA CTGTAGACCT CCTAAAAATA CTGAATTAAG AAGATTCGAA TCCA Sequence:	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGTTCCT GGCATGTCCT TGGTGCACAG TGTTTCTTGTG AGTCTCTCC CTGAAGAATC CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAAGCCCTT TCTTAATTGT TTATTTGTAT CTGTAAGCCC GGTTCATCTG TGCTTTAATTGT	TAAGACTTTC TTTGAAGCAT AGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT CTCAAGGCC GAGAAGCCAA CTGTAGACCT CCTAAAAATA CTGAATTAAG AAGATTCGAA TCCA Sequence:	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT CCAAGGTCCT GCCATGTCCT GCCATGTCCT TGGTGCACAG AGTCCTCTC CTGAAGAATC GCCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CAGCAAGCA GAGCCAGGTC ACCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGTCT TCTAACGTCA ACAAGCCCTT TCTTAATTGT TTATTTGTAT CTGTAACCC GGTTCATCTA TCGTTCATCT TCGTTAATTGT TCGTTTAATTGT TGTTAATTGT TGTTTTAATTGT TGTTTTAATTGT TGTTTTAATTGT TGTTTTAATTGT TGTTTTAATTAT 46 Protein	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC GAGAAGCCAA CTGTAGACCT CCTAAAAATA CTGAATTCAA AAGATTCGAA TCCA sequence: NP_005407.1	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAC CTGGACACC ACATTGTCAC AGCTTTTGTT TCATGGCTTT TGCATGTTTC	AGGATTCTTC AGACCTTTAC AGACCTTAGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGCTCCACAC AGGTCCCACA AGCACCACT CCCAAGCCAT CCCAAGCCAT CCCAAGCCAT CCCACCCTCCCCACCCCCCCCCC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70 75	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGTTCCT GGCATGTCCT TGGTGCACAG TGTTTCTTGTG AGTCTCTCC CTGAAGAATC CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCAAC GAGCCAGGCT ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGGTCT TCATATTGTT TCATTGTAT TCTAAGCCC GGTTCATCTAAT TGTAAGCCC GGTTCATCTAAT TGTAAGCCC GGTTCATCTAAT TGCTTTTAAT 46 Protein	TAAGACTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGG CTGACCAAGG CTGACCAAGGC CTGACCAAGC CTGAAGACCA CTGTAGACCT CCTAAAAATA CTGAATTAAG AAGATTCGAA TCCA sequence: NP_005407.1	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACAG AGTTCTCTCTC CTGAAGAATC GGCTGCTCAC CTCATTAAAT Seq ID NO: Protein Acc	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCAACCA GAGCCAAGGCT ATCAACGTCC GAGCCAGGTT ATCAACGTCC GAGCAACGATC TCAACGTCT TCTTAATTGT TTATTTGTAT TGTAAGCCC GGTTCATCATCATCACCTC TCCTTAATCGT TCTTAATCTT TCTTAATCTT TCTTAACCC TCTTTAATCT TCTTAACCC TCTTTAATCT TCTTTAAT 46 Protein cession #: 1	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC GAGAAGCCAA CTGTAGACCTA CCTAAAAATA CCTAAAAATA CTGAATTCGAA TCCA sequence: NP_005407.1	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTGAGCA CCTTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG TGTAATCAGC TGTAATCAGC TGTAATCAGC TGTAATCAGC TGTAATCAGC TGTAATCAGA CAGAAAGTCT TGAAAAGAAA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA AGACCCAAGC CTGGACACCC ACATTGTCAC AGCTTTTGTT TCATGGCTTT TGCATGTTTC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGCTACCAGA AGAGTACCAGA AGAGTACCAGA TCTTCCCATC CCCAAGCCAT CCCAAGCCAT TCTGGTCTTC CTGCTCTTCC 51	120 180 240 360 420 480 660 780 840 900 960
65 70 75	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CCAAGTTCCT GCCATGTCCT GCCATGTCCT TGTGTGAAGAATC GCCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CAGCAGGCT ACCAAGGTCC GAGCCAGGTT ATCAACGTCC GAGCAAGGTT TCAACGGTCT TCTAATTGT TTATTTGTAT TTATTGTAT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTTAAT 46 Protein cession #: 1 11 1 TPPPPQLQQQQ	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC GAGAAGCCAA CTGTAGACCAC CCTAAAAATA CTGAATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CCTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG TCTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 EIFVPTTKEP	AGGAGCTTAG CAGCAGAGC GCTGCACAAC GCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AGACCAAGC ACATTGTCAC AGCTTTTGTT TCATGGCTTT TGCATGTTTC 41 CHSKVPQPGN	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CCAAGTTCCT GCCATGTCCT GCCATGTCCT TGTGTGAAGAATC GCCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CAGCAGGCT ACCAAGGTCC GAGCCAGGTT ATCAACGTCC GAGCAAGGTT TCAACGGTCT TCTAATTGT TTATTTGTAT TTATTGTAT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTTAAT 46 Protein cession #: 1 11 1 TPPPPQLQQQQ	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC GAGAAGCCAA CTGTAGACCAC CCTAAAAATA CTGAATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CCTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG TCTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 EIFVPTTKEP	AGGAGCTTAG CAGCAGAGC GCTGCACAAC GCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AGACCAAGC ACATTGTCAC AGCTTTTGTT TCATGGCTTT TGCATGTTTC 41 CHSKVPQPGN	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 360 420 480 660 780 840 900 960
65 70 75	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACAG AGTTCCTCT CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF VPEPGCTKVP	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTTCAC CCCACAACCA GAGCCAGGCT ATCAAGGTCC GAGCCAGGTT ATCAAGGTCC TCACAGGTCA ACAAGCCTT TCTAATTGT TTATTTGTAT CTGTAAGCCC GGTTCATCTG TGCTTTAAT 46 Protein cession #: 1 11 TPPPPQLQQQ EPGCTKVPEP	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGG CTGACCAAGGT CTCAGGCCC GAGAAGCCAA CTGTAGACCA CTGTAGACTA CTGAAAATT CCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTGTGCCA CTTCATCAAG TCCTGTGCCA CCACCAGATG TGTAATCAGC CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 ELFVPTTKEP TKVPEPGCTK	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGCTACCAGA AGAGTACCAGA AGAGTACCAGA TCTTCCCATC CCCAAGCCAT CCCAAGCCAT TCTGGTCTTC CTGCTCTTCC 51	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75 80	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACAG AGTTCCTCT CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF VPEPGCTKVP	GAAAAGCCAC TCCACGATCAC CCACATCAC CAGCTCACACACAC GAGCCAGGCT ATCAAGGTCC GAGCAAGGAT TCAACGGTCA ACAAGGTCT TCTTAATTGT TTATTGTAT TGTAAGCCC GGTTCATCTG TGCTTTTAAT 46 Protein cession #: 1 TPPPPQLQQQ EPGCTKVPEP IKVPEQGYTK	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGG CTGACCAAGGT CTCAGGCCC GAGAAGCCAA CTGTAGACCA CTGTAGACTA CTGAAAATT CCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTGTGCCA CTTCATCAAG TCCTGTGCCA CCACCAGATG TGTAATCAGC CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 ELFVPTTKEP TKVPEPGCTK	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75 80	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT GCCATGTCCT GCCATGTCCT GGCTGTCATGTCTCTC GCTGAAGAATC GGCTGCTCAC AGTCTCTCT GGCTGCTCAC TCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF VPEPGCTKVP GFIKFPEPGA	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCACACCA GAGCCAGGCT ATCAACGTCC GAGCCAGGTT TCAACGTCC GAGCCAGGTT TCAACGTTC TCTTAATTGT TTATTTGTAT TGTAAGCCC GGTTCATCTATTTAAT 46 Protein cession #: 1 1 TPPPQLQQQ EPGCTKVPEP IKVPEQGYTK	TAAGACTTTC TTTGAAGCAT AGCAGGAGCATG AGAGCCATG GTACCAAGGT CTGACCAAGG CTGACCAAGGT CTCAGGCCC GAGAAGCCAA CTGTAGACCAA CTGTAGACCAA CTGTAGACCA CTGTAGACCA CTGAATTAAG CTGAATTAGA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC VPVFGYTKLP	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTGTGCCA CTTCATCAAG TCCTGTGCCA CCACCAGATG TGTAATCAGC CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 ELFVPTTKEP TKVPEPGCTK	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT GCATGTCCT GCATGTCCT GCATGTCCT GCATGTCTCT CTGAAGAATC CTGATCTCT GGCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF VPEPGCTKVP GFIKFPEPGA Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCACACCA GAGCCAGGTT ATCAACGTCC GAGCAAGGAT TCAACGTCC GAGCAAGGAT TCTAATTGT TTATTTGTAT CTGTAACCC GGTTCATTAAT 46 Protein cession #: 1 1 1 TPPPPQLQQQ EPGCTKVPEP IKVPEQGYTK 47 DNA sequest	TAAGACTTTC TTTGAAGCAT AGCAGGAGCATG AGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC CGAGAAGCCAA CTGTAGACCAA CTGTAGACTAA CTGAATTAAG AAGATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC VPVPGYTKLP	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA CTTGTACCAAG CCTTGATCAAG TCCTGTGCCA AGCTCAGCAG TGTAATCAGC TGTACTATAA CAGAAAGTCT TGAAAAGAAA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75 80	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT GCATGTCCT GCATGTCCT GCATGTCCT GCATGTCTCT CTGAAGAATC CTGATCTCT GGCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF VPEPGCTKVP GFIKFPEPGA Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCACACCA GAGCCAGGCT ATCAACGTCC GAGCCAGGTT TCAACGTCC GAGCCAGGTT TCAACGTTC TCTTAATTGT TTATTTGTAT TGTAAGCCC GGTTCATCTATTTAAT 46 Protein cession #: 1 1 TPPPQLQQQ EPGCTKVPEP IKVPEQGYTK	TAAGACTTTC TTTGAAGCAT AGCAGGAGCATG AGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC CGAGAAGCCAA CTGTAGACCAA CTGTAGACTAA CTGAATTAAG AAGATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC VPVPGYTKLP	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA CTTGTACCAAG CCTTGATCAAG TCCTGTGCCA AGCTCAGCAG TGTAATCAGC TGTACTATAA CAGAAAGTCT TGAAAAGAAA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960

```
41
                                                             51
                            21
                                       31
      GCGTCGTGTG CAGGCGTCCC CGGGCTGTGG ATAATTAGAC ACGTTCTTCC CTCATTGCCC
                                                                           60
       AAGGCTCGTT AGAATTCGCC CTAGAGCTGT ATCATGTATT TTCTTTCAAA TTAACTTTGC
                                                                          120
 5
      TTGCAATTAA GCTTAGGGAA CCAGCAACAA AAGCAAACTT GGCCCGAGGT CGTTCACCGC
                                                                          180
       GAAAATGGAT TAGAGAAACT TCTTCCCCGA TTTAAGGGGA AAGATTCCTG CGGCCAGCGC
                                                                          240
      TTTGGGGAAA GTGCCCCGAC CGCAGAGGCG ACGACAGGGG AGCAGGAAGC TGCTCACGGT
                                                                          300
       AGTCGGCGTT GGCGGCAGCG GTGGCCTTCC TCATCTGGGC GATGTGGGCT CCTAGAAGAG
                                                                          360
       TAAGGATAAC ATCCTGGAAA TGACTTCTGT ACGGTTTGAG CCCAACTGCA CACTCATGAC
10
       TTGGAGCTGC CCTGTGGAGT TACAGTTTAC CAAACACATT CATGAACATA ATCTCATTTA
                                                                          480
      CTAAAAACTT TGTGAGAATT TTCTTTTACT AAAATTTTTT CTTATTACAA A
      Seg ID NO: 48 DNA seguence:
      Nucleic Acid Accession #: CAT cluster
15
                 11
                            21
                                       31
                                                  41
                                                             51
      TTCCAAATTT TTTTTTTGT AATAAGAAAA AATTTTAGTA AAAGAAAATT CTCACAAAGT
                                                                          60
20
      TTTTAGTAAA TGAGATTATG TTCATGAATG TGTTTGGTAA ACTGTAACTC CACAGGGCAG
                                                                          120
      CTCCAAGTCA TGAGTGTGCA GTTGGGCTCA AACCGTACAG AAGTCATTTC CAGGATGTTA
      TCCTTACTCT TCTCGGAGCC CACATCGCCC AGATGAGGAA GGCCACCGCT GCCGCCAACG
                                                                          240
       CCGACTACCG TGAGCAGCTT CCTGCTCCCC TGTCGTCGCC TCTGCGGTCG GGGCACTTTC
                                                                          300
      CCCAAAGCGC TGGCCGCAGG AATCTTTCCC CTTAAATCGG GGAAGAAGTT TCTCTAATCC
                                                                         360
25
      ATTTCGCGG TGAACGACCT CGGGCCAAGT TTGCTTTTGT TGCTGGTTCC CTAAGCTTAA
                                                                          420
      TTGCAAGCAA AGTTAATTTG AAAGAAAATA CATGATACAG CTCTAGGGCG AATTCTAACG
                                                                          480
      AGCCTTGGGC AATGAGGGAA GAACGTGTCT AGTTATCCAC AGCCCGGGGA CGCCTGCACA
                                                                          540
30
      Seg ID NO: 49 DNA sequence
      Nucleic Acid Accession #: CAT cluster
                                                  41
35
      60
      CCTGCCGACC TCTGTTGTCT CTTCTCTGAT GGCGGGGGC GGGAGAAGCT GACCGGTGAG
                                                                         120
      ACCGTAGACC CGAAACCATT GGGTGTCACA AGCCGGTCGC CGGCTTTTTT GGGAGAACCC
                                                                          180
      GACACATGCA GACCAGTTTT CCTGGAACNG CATGACCATG TTATTACTAT GGGCCGCCTC
                                                                          240
      CCCAACCAAA GTGTTTAAAA CTTTTTAGGG CACCCCCAAA ATTTTTTTT TTTTTTTTT
40
       TTCATTTAAA AAACTCTAAT ATTTATATTA AATACAAAGA TACCCAAACC CTTTATGCTT
                                                                          360
      CTTTCTCTGA TCTGTGTCTT TTTTCTTTGA CAGCATCTCC ATTTTTTTC TGCTGCTTCA
                                                                          420
      TCGCTGTAGC CATGGGAATC CGTTTCATTA TTATGGTAGC AATATGGAGT GCTGTATTCC
                                                                          480
      TAAAGAAACT GACACAGGAG AATCACTTGA ACTTGGGAGG CAGAGTTTGC AGTGAGCCGA
                                                                         540
      GATTGAACCA GTGCACTCCA GCCTTGGCAG CGGAGCAAGA TTCTGTCACA GTTCCTGAAG
                                                                          600
45
      TGCTGGTATC GTCCTGCAGC CCCATCCTCG GTTCCATTGC GCTGCCAGGC AGGGTGCTGG
                                                                          660
      GACGTGGGGA GAGCTGGTCT ATATATCCGG GTGAAGCTCA GCTGTGGCAC ACCTTGGATG
                                                                          720
      CCGGGTCTCT CCTGGCCCCG GGGACCTAGT ATTTTTGCCA CGAGTGTACA CCAAACAAAG
                                                                          780
      GAGACAGCAT CATTTATGAG CCTGCAGCAT CCACCCTACT GCTGTATCCA GTTTCCATTG
                                                                         840
50
      Seq ID NO: 50 DNA sequence
      Nucleic Acid Accession #: L05187
      Coding sequence: 1991..2260
55
                            21
                                       31
                                                  41
                                                             51
      CTGCAGGGAG GCAGGTAGAA AAGGCTTTTG GGTTTTCAGG TGGGGGGCAG TCTAGCCTGA
      TCAGAAAGGA GGAAAAGGCC AGGGCAGATG TCTGGGTGGA GTGAAGGGAA AAAGTGATCC
                                                                         120
      CAGAAGAAGG ATTAGCCCCT GAAAGTCCCT GAAGTAGGAG AAGGGTAAAG GTGTGGTTGG
                                                                         180
60
      TGAAGGAAAG CAGGTTTTCC CAGATTAGCA ACCAGTCAGG GGGAGGAAGG TGAGAGTGGG
                                                                         240
      AGAGTCATAA GTAAATTATT CTGAATGTGT GTAGTTTAAT GGAATTGGGA AAAAGATGGG
                                                                          300
      GGAAATGGAT GGAAGGTCTT GGACTCTGAG ACAAGGGGTC TATAATCAGT CCATTTCATT
                                                                          360
      ATTTCTAGCT TCCACCTTCA CCAAGGCAGA CAAGGAGGGC CCACCTCAGC TCCTCTGCTC
      CCCCTCCTT TCCCACCTAT TCATGTGTGC AAGAGTGCCC TGTCCCACAG AACACGGGGA
                                                                          480
65
      ACAACCATCT CAATGACAAG GACAGCAGGT GGCAAGGCTC AACAGGACTC AGATGTCCCC
                                                                         540
      CCAGGGTTAA CTCATGAAAC CCTCCATGAA GCCTGCTGCT CACCCCTCCC TCAAGGCAAG
                                                                         600
      CCCTGCACCT GGGTCTGAGG ATGAGGGTGG CAGTGAAAAT TAGGCCAGTG ACATCATTTT
                                                                         660
      CAGCCAGCTA GTGCCAAAAA ATATCAGGTG GTGTTCATCA AATAAGCCGA GCCAACCGGT
                                                                          720
      GATGAGGATG GTAGTGTGAG TCATGTGTGA CAGGTGAGGA ATGAAAACAG AGTGCCCGAG
70
      AGCTTCTATT TCCTTGAGGC AGGGCTCATT CATCTTATAA AAGCCAGCTG GCCATTGCCT
                                                                         840
       TCACACCAAA CCCAAGGGAC CACACAGCCC ATTCTGCTCC GTATACCAGG TAAGTCTCTG
                                                                         900
      ATTGCAACAA ACTGGCAATT CTAGTGTACT TTTTCATTAT TAGAAATTAG CTAAAGGCAA
                                                                         960
      ATATGTGTAA GCAGGTTAAT CCAGGGTTTC AATGGGAGAT AGAGAATAGT GGAATATCTT
                                                                        1020
      TATTTTAAGT TAAATTACAG TCTGGATTTG AAAGGACCTT AGAGATGGTT AGGGCTCCCA
                                                                        1080
75
      CCTCAGTAGA TAGTCATTGA ACTGGGAGTC CTGGAGAAGA TTGTTCAAAT GCCCATGGGA
                                                                        1140
      AGTTCATAGC AGAACTAGAA CTCAGGCCAG AGCACTCTCA GTAACACTGC AATTTCCCCC
                                                                        1200
      TGACAAGATA TTTATAGAAA TTTTAATTTA TTAGATGGAT CTCTACTGAG CATTTATTCC
                                                                        1260
      ATTTAAGGCA GTATGCTAGG CACTTTGGAC AAATCAATGC CCTAACGTAC TTACTTAACA
                                                                        1320
      1380
80
      AGTAATTGGC ATGACGGAGA TGGGCAGAGA AGGGCTGTGC ACTTTTGGGA GACTTGCTCA
                                                                        1440
      AGGAGACCTC TAGGGTGTCA AGTGATGTGA GCTATGATGG AGGGGTATTT GGACAAGCAG
                                                                        1500
      AGATGGGAAG AAAAGCATTT GGAAGGGACT GTGTAAGCAC AGACCAGAAG CAAAACCATA
                                                                        1560
      GAGGCTTAGA TGAATATAAA GCCATCCTAT AAGTCACAGG CTTTCTACAT GGTACTAGGA
                                                                        1620
      GAGGAAAGTG GTCTGATGCC ATTTTCCAAA AGACCTAATA TGCGGACCTC ATGTCCCTCA
                                                                        1680
85
      GAAGCCAGCT TTAGTAGGGC ATTTTTCCAG AACAGATATA AGGTGCCTTG GGTAGGAAGG
                                                                        1740
      GAGCCAAGAA GAGAACTCCA ATAAAATGGA GCAGAAGAAA TTGCCTTTTA GCTCCTCCTC
                                                                        1800
       TTCAAAGGGC CTGAAAATTA TCCAAGCTTA TTTCATTTTT AAATGTAATG GGGGAGCTAA
```

```
GGGAGATGAA AGGCTTTCTC TTCTAAAGGG TCCTGAAATA AAATCTGTTT GGCATTGAAT
                                                                         1920
      TTGTATCCAT CTTTCTTTAA TTGAATCACT GTGTCAGCTT TCTGTCTCTA GAAAAAAACA
                                                                         1980
       2040
       GCAGCAGCAG GTGAAACAAC CTTGCCAGCC TCCACCCCAG GAACCATGCA TCCCCAAAAC
                                                                          2100
 5
       CAAGGAGCCC TGCCAACCCA AGGTGCCTGA GCCCTGCCAC CCCAAAGTGC CTGAGCCCTG
                                                                          2160
       CCAGCCCAAG ATTCCAGAGC CCTGCCAGCC CAAGGTGCCT GAGCCCTGCC CTTCAACGGT
                                                                          2220
       CACTCCAGCA CCAGCCCAGC AGAAGACCAA GCAGAAGTAA TGTGGTCCAC AGCCATGCCC
                                                                          2280
       TTGAGGAGCT GGCCACTGGA TACTGAACAC CCTACTCCAT TCTGCTTATG AATCCCATTT
                                                                          2340
       GCCTATTGAC CCTGCAGTTA GCATGCTGTC ACCCTGAATC ATAATCGCTC CTTTGCACCT
10
                                                                          2460
       CTAAAAAGAT GTCCCTTACC CTCATTCTGG AGGCTCCTGA GCCTCTGCGT AAGGCTGAAC
       GTCTCACTGA CTGAGCTAGT CTTCTTGTTG CTCGGGTGCA TTTGAGGATG GATTTGGGGA
      AGGTCAAGTG ACCATCCCTA G
      Seg ID NO: 51 Protein sequence:
15
       Protein Accession #: AAC26838
                  11
                             21
                                        31
                                                   41
                                                              51
       MNSQQQKQPC TPPPQPQQQQ VKQPCQPPPQ EPCIPKTKEP CQPKVPEPCH PKVPEPCQPK
                                                                            60
20
       IPEPCOPKVP EPCPSTVTPA PAOOKTKOK
       Seq ID NO: 52 DNA sequence
      Nucleic Acid Accession #: NM_002638.1
25
      Coding sequence: 120-473
                                        31
                                                   41
       CAATACAGCT AAGGAATTAT CCCTTGTAAA TACCACAGAC CCGCCCTGGA GCCAGGCCAA
                                                                            60
30
      GCTGGACTGC ATAAAGATTG GTATGGCCTT AGCTCTTAGC CAAACACCTT CCTGACACCA
                                                                           120
      TGAGGGCCAG CAGCTTCTTG ATCGTGGTGG TGTTCCTCAT CGCTGGGACG CTGGTTCTAG
                                                                           180
      AGGCAGCTGT CACGGGAGTT CCTGTTAAAG GTCAAGACAC TGTCAAAGGC CGTGTTCCAT
                                                                           240
      TCAATGGACA AGATCCCGTT AAAGGACAAG TTTCAGTTAA AGGTCAAGAT AAAGTCAAAG
       CGCAAGAGCC AGTCAAAGGT CCAGTCTCCA CTAAGCCTGG CTCCTGCCCC ATTATCTTGA
                                                                           360
35
       TCCGGTGCGC CATGTTGAAT CCCCCTAACC GCTGCTTGAA AGATACTGAC TGCCCAGGAA
                                                                           420
      TCAAGAAGTG CTGTGAAGGC TCTTGCGGGA TGGCCTGTTT CGTTCCCCAG TGAAGGGAGC CGGTCCTTGC TGCACCTGTG CCGTCCCCAG AGCTACAGGC CCCATCTGGT CCTAAGTCCC
                                                                           480
                                                                           540
       TGCTGCCCTT CCCCTTCCCA CACTGTCCAT TCTTCCTCCC ATTCAGGATG CCCACGGCTG
                                                                           600
       GAGCTGCCTC TCTCATCCAC TTTCCAATAA A
40
       Seq ID NO: 53 Protein sequence:
      Protein Accession #: NP_002629.1
                             21
                                        31
                                                   41
45
       MRASSFLIVV VFLIAGTLVL EAAVTGVPVK GQDTVKGRVP FNGQDPVKGQ VSVKGQDKVK
                                                                            60
       AQEPVKGPVS TKPGSCPIIL IRCAMLNPPN RCLKDTDCPG IKKCCEGSCG MACFVPQ
      Sea ID NO: 54 DNA sequence
50
      Nucleic Acid Accession #: NM 019618
       Coding sequence: 75-584
                             21
                                        31
                                                   41
                                                              51
55
      GGCACGAGCC ACGATTCAGT CCCCTGGACT GTAGATAAAG ACCCTTTCTT GCCAGGTGCT
                                                                            60
      GAGACAACCA CACTATGAGA GGCACTCCAG GAGACGCTGA TGGTGGAGGA AGGGCCGTCT
                                                                           120
      ATCAATCAAT GTGTAAACCT ATTACTGGGA CTATTAATGA TTTGAATCAG CAAGTGTGGA
       CCCTTCAGGG TCAGAACCTT GTGGCAGTTC CACGAAGTGA CAGTGTGACC CCAGTCACTG
                                                                           240
       TTGCTGTTAT CACATGCAAG TATCCAGAGG CTCTTGAGCA AGGCAGAGGG GATCCCATTT
                                                                           300
60
      ATTTGGGAAT CCAGAATCCA GAAATGTGTT TGTATTGTGA GAAGGTTGGA GAACAGCCCA
                                                                           360
       CATTGCAGCT AAAAGAGCAG AAGATCATGG ATCTGTATGG CCAACCCGAG CCCGTGAAAC
                                                                           420
      CCTTCCTTTT CTACCGTGCC AAGACTGGTA GGACCTCCAC CCTTGAGTCT GTGGCCTTCC
                                                                           480
      CGGACTGGTT CATTGCCTCC TCCAAGAGAG ACCAGCCCAT CATTCTGACT TCAGAACTTG
                                                                           540
      GGAAGTCATA CAACACTGCC TTTGAATTAA ATATAAATGA CTGAACTCAG CCTAGAGGTG
                                                                           600
65
       GCAGCTTGGT CTTTGTCTTA AAGTTTCTGG TTCCCAATGT GTTTTCGTCT ACATTTTCTT
                                                                           660
      AGTGTCATTT TCACGCTGGT GCTGAGACAG GGGCAAGGCT GCTGTTATCA TCTCATTTTA
                                                                           720
      TAATGAAGAA GAAGCAATTA CTTCATAGCA ACTGAAGAAC AGGATGTGGC CTCAGAAGCA
                                                                           780
      GGAGAGCTGG GTGGTATAAG GCTGTCCTCT CAAGCTGGTG CTGTGTAGGC CACAAGGCAT
                                                                           840
      CTGCATGAGT GACTTTAAGA CTCAAAGACC AAACACTGAG CTTTCTTCTA GGGGTGGGTA
70
       TGAAGATGCT TCAGAGCTCA TGCGCGTTAC CCACGATGGC ATGACTAGCA CAGAGCTGAT
                                                                           960
       CTCTGTTTCT GTTTTGCTTT ATTCCCTCTT GGGATGATAT CATCCAGTCT TTATATGTTG
                                                                          1020
       CCAATATACC TCATTGTGTG TAATAGAACC TTCTTAGCAT TAAGACCTTG TAAACAAAAA
                                                                          1080
       TAATTCTTGT GTTAAGTTAA ATCATTTTTG TCCTAATTGT AATGTGTAAT CTTAAAGTTA
      75
       Seq ID NO: 55 Protein sequence:
       Protein Accession #: NP_062564
                                                              51
                  11
                             21
                                        31.
                                                   41
80
      MRGTPGDADG GGRAVYOSMC KPITGTINDL NQQVWTLQGQ NLVAVPRSDS VTPVTVAVIT
       CKYPEALEQG RGDPIYLGIQ NPEMCLYCEK VGEQPTLQLK EQKIMDLYGQ PEPVKPFLFY
                                                                           120
       RAKTGRTSTL ESVAFPDWFI ASSKRDQPII LTSELGKSYN TAFELNIND
85
       Seq ID NO: 56 DNA sequence
      Nucleic Acid Accession #: NM 003125
       Coding sequence: 65-334
```

	W O 02	/000443					
	1	11	21	31 .	41	51	
5	CAGCATGAGT GCAGGTGAAA GCCCTGCCAC	AGGGACCATA TCCCAGCAGC CAGCCTTGCC CCCAAGGTGC GAGCCATGCC	AGAAGCAGCC AGCCTCCACC CTGAGCCCTG	CTGCATCCCA TCAGGAACCA CCACCCCAAA	CCCCCTCAGC TGCATCCCCA GTGCCTGAGC	TTCAGCAGCA AAACCAAGGA CCTGCCAGCC	60 120 180 240 300
10	AGCCGGCCAC CAATTAGCAT TCTGAGTCTC	CAGCAGAAGA CAGATGCTGA TCTGTCTCCC TGAATGAAGC AGAGAGACTT	ATCCCCTATC CCAAAAAAGA TGAAGGTCTT	CCATTCTGTG ATGTGCTATG AGTACCAGAG	TATGAGTCCC AAGCTTTCTT CTAGTTTTCA	ATTTGCCTTG TCCTACACAC GCTGCTCAGA	360 420 480 540 600
15	AAATTCACTT	TCAATTCCA					
		57 Protein cession #: N					
20	Procern Acc	cession #. I	_				
	1	11	21	31 1	41	51 1	
	MSSQQQKQPC	 IPPPQLQQQQ	VKQPCQPPPQ	EPCIPKTKEP	CHPKVPEPCH	PKVPEPCQPK	60
25		EPCPSIVTPA					
23	Nucleic Act	58 DNA sequid Accession lence: 71-25	1 #: NM_0017	793.2			
30	1	11	21	31	41	51	
	1	1	1	1		mar againsm	60
	AAAGGGGCAA	GAGCTGAGCG ATGGGGCTCC	GAACACCGGC	TCTCGCGTCGC	CTCCTCCTTC	TCACCCCTCT	60 120
25	CTGGCTGCAG	TGCGCGGCCT	CCGAGCCGTG	CCGGGCGGTC	TTCAGGGAGG	CTGAAGTGAC	180
35	CTTGGAGGCG	GGAGGCGCGG CAAGAGCCAG	AGCAGGAGCC	CGGCCAGGCG	CTGGGGAAAG	TATTCATGGG	240 300
	TGGCGAGACA	GTCCAGGAAA	GAAGGTCACT	GAAGGAAAGG	AATCCATTGA	AGATCTTCCC	360
	ATCCAAACGT	ATCTTACGAA	GACACAAGAG	AGATTGGGTG	GTTGCTCCAA	TATCTGTCCC	420
40	TGAAAATGGC	AAGGGTCCCT ATTTTCTACA	TCCCCCAGAG	ACTGAATCAG	GACAGCCCCC	CTGAGGGTGT	480 540
40	CTTCGCTGTA	GAGAAGGAGA	CAGGCTGGTT	GTTGTTGAAT	AAGCCACTGG	ACCGGGAGGA	600
	GATTGCCAAG	TATGAGCTCT	TTGGCCACGC	TGTGTCAGAG	AATGGTGCCT	CAGTGGAGGA	660 720
	GGACACCTTC	ATCTCCATCA CGAGGGAGTG	TCTTAGAGGG	AGTCCTACCA	GGTACTTCTG	TGATGCAGGT	780
45	GACAGCCACG	GATGAGGATG	ATGCCATCTA	CACCTACAAT	GGGGTGGTTG	CTTACTCCAT	840
	CCATAGCCAA	GAACCAAAGG GTCATCTCCA	ACCCACACGA GTGGCCTGGA	CCCCGGAAAA	ACCATTCACC	ACACACTGAC	900 960
	CATCCAGGCC	ACAGACATGG	ATGGGGACGG	CTCCACCACC	ACGGCAGTGG	CAGTAGTGGA	1020
50	GATCCTTGAT	GCCAATGACA	ATGCTCCCAT	GTTTGACCCC	CAGAAGTACG	AGGCCCATGT	1080 1140
50	CAACTCACCA	GCAGTGGGCC GCGTGGCGTG	CCACCTACCT	TATCATGGGC	GGTGACGACG	GGGACCATTT	1200
	TACCATCACC	ACCCACCCTG	AGAGCAACCA	GGGCATCCTG	ACAACCAGGA	AGGGTTTGGA	1260
	TTTTGAGGCC	AAAAACCAGC CCAACCTCCA	ACACCCTGTA	CGTTGAAGTG	ACCAACGAGG	TGAATGAGGC	1320 1380
55	ACCTGTGTTT	GTCCCACCCT	CCAAAGTCGT	TGAGGTCCAG	GAGGGCATCC	CCACTGGGGA	1440
	GCCTGTGTGT	GTCTACACTG	CAGAAGACCC	TGACAAGGAG	AATCAAAAGA	TCAGCTACCG	1500
	CATCCTGAGA	GACCCAGCAG CTCGACCGTG	GGTGGCTAGC	CATGGACCCA	AACAACATCT	ATGAAGTCAT	1560 1620
	GGTCTTGGCC	ATGGACAATG	GAAGCCCTCC	CACCACTGGC	ACGGGAACCC	TTCTGCTAAC	1680
60	ACTGATTGAT	GTCAATGACC	ATGGCCCAGT	CCCTGAGCCC	CGTCAGATCA	CCATCTGCAA CCCACACCTC	1740 1800
	CCCTTTCCAG	GCCCAGCTCA	CAGATGACTC	AGACATCTAC	TGGACGGCAG	AGGTCAACGA	1860
	GGAAGGTGAC	ACAGTGGTCT	TGTCCCTGAA	GAAGTTCCTG	AAGCAGGATA	CATATGACGT	1920
65	GCACCTTTCT	CTGTCTGACC	ATGGCAACAA TCGAAACCTG	AGAGCAGCTG	TGGAAGGGAG	GGGCCACTGT GTTTCATCCT	1980 2040
05	CCCTGTGCTG	GGGGCTGTCC	TGGCTCTGCT	GTTCCTCCTG	CTGGTGCTGC	TTTTGTTGGT	2100
	GAGAAAGAAG	CGGAAGATCA	AGGAGCCCCT	CCTACTCCCA	GAAGATGACA	CCCGTGACAA ACATCACCCA	2160 2220
	GCTCCACCGA	GGTCTGGAGG	CCAGGCCGGA	GGTGGTTCTC	CGCAATGACG	TGGCACCAAC	
70	CATCATCCCG	ACACCCATGT	ACCGTCCTCG	GCCAGCCAAC	CCAGATGAAA	TCGGCAACTT	2340
	TATAATTGAG	AACCTGAAGG	CGGCTAACAC	AGACCCCACA	TCCCTGAGCT	ACGACACCCT CCCTCACCTC	2400 2460
	CTCCGCCTCC	GACCAAGACC	AAGATTACGA	TTATCTGAAC	GAGTGGGGCA	GCCGCTTCAA	2520
75	GAAGCTGGCA	GACATGTACG	GTGGCGGGGA	GGACGACTAG	GCGGCCTGCC	TGCAGGGCTG	2580
75	GGGACCAAAC GACTTCGGAG	GTCAGGCCAC CTTCTCAGGA	AGAGCATCTC AGTGGCCGTA	GCAACTTGGC	GGAGACAGGC	TTCAGCTGAG TATGAGTCTG	2640 2700
	ACGTTAGAGT	GGTTGCTTCC	TTAGCCTTTC	AGGATGGAGG	AATGTGGGCA	GTTTGACTTC	2760
	AGCACTGAAA	ACCTCTCCAC	CTGGGCCAGG	GTTGCCTCAG	AGGCCAAGTT	TCCAGAAGCC	2820
80	TACAGTGGAG	TTTCTCTCTC	GAATGGAACC	TTCTTAGGCC	TCCTGGTGCA	GTGACTGACC ACTTAATTTT	2880 2940
	TTTTTTTAAT	GCTATCTTCA	AAACGTTAGA	GAAAGTTCTT	CAAAAGTGCA	GCCCAGAGCT	3000
	GCTGGGCCCA	CTGGCCGTCC	TGCATTTCTG	GTTTCCAGAC	CCCAATGCCT	CCCATTCGGA	3060 3120
	GTTGCGTTGC	TATAGATGAA	GGGTGAGGAC	AATCGTGTAT	ATGTACTAGA	TATTTTCCCT ACTTTTTAT	3180
85		TTTCCCAGAA					

Seq ID NO: 59 Protein sequence:

	1	11	21	31	41	51	
5	1	1]				
3		LLLLQVCWLQ DDFTVRNGET					60 120
		LKSNKDRDTK					180
		NGASVEDPMN					240
10		GVVAYSIHSQ TAVAVVEILD					300 360
10		GDDGDHFTIT					420
		VEDVNEAPVF					480
		DSGQVTAVGT					540
15		RQITICNQSP KODTYDVHLS					600 660
13		LVLLLLVRKK					720
		RNDVAPTIIP				APPYDTLLVF	780
	DYEGSGSDAA	SLSSLTSSAS	DQDQDYDYLN	EWGSRFKKLA	DMYGGGEDD		
20	Sea ID NO:	60 DNA sequ	ience				
	Nucleic Ac:	id Accession	ı#: Eos se	quence			
	Coding sequ	uence: 162-4	128				
	1	11	21	31	41	51	
25	1	1	I	1	1	1	
		GGCGGCGGAT GGATTGTTTT					60 120
		AAGCTGAGGC					180
20	TCTCCCAGAG	GAAGCAGATA	AAGCGGAAGG	CTCCCCGTGG	CTTTCTAAAG	CGAGTCTTCA	240
30		GCCTCAACTT TGTTCATCGA					300 360
		TAACAAGGAG					420
	GAGGTTAGAA	GTCAAAGAAC	ATATTCTTGA	AAGTTATGAT	GCATTCTTTT	GGGTGGTAAC	480
35	AGATCATAAA	GACATTTTT	ACACATCAGT	TAATATGGGA	TTATTAAATA	TTGG	
55	Seg ID NO:	61 Protein	sequence:				
	Protein Acc	cession #: 1	Eos sequence	9			
	1	11	21	31	41	51	
40	1	1	1	1	1	1	
		KQIKRKAPRG NKEHVLAAAK		PQLRLEKSGD	LLVHLNCLLF	VHRLAEESRT	60
	NACASKCKVI	NKERVIDAMAK	VIDRESKG				
4 =	Seq ID NO:	62 DNA sequ	ience				
45		id Accession	_	094.2			
45		id Accession uence: 99-89	_	94.2			
45			_	31	41	51	
	Coding sequ	uence: 99-89 11 	933 — 21 	31 	1		60
50	Coding sequence of the	uence: 99-8:	21 TCGGACCTGC CGGCTTTTAC	31 CAAGGCCACC TGCCTAGGAT	 GCAGGGGGGA GACGCTGCGG	 GCAAGGGACA CTTCTGGTGG	60 120
	Coding sequence of the	11 GGCGCTGGGC TCCTAGCTGA CGCCGGGATC	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT	 GCAGGGGGA GACGCTGCGG GCGAGCCCAG	 GCAAGGGACA CTTCTGGTGG CACAGGGAGA	120 180
	Coding sequence of the	11 GGCGCTGGGC TCCTAGCTGA CGCCGGGATC CACGCGCCTT	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG	31 CAAGGCCACC TGCCTAGGAT CGCCCCGAGT ACATTGTGTT	 GCAGGGGGA GACGCTGCGG GCGAGCCCAG CTTACTGGAT	 GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT	120 180 240
	Coding sequence of the coding sequence of the code of	nence: 99-8: 11 GGCGCTGGGC TCCTAGCTGA CGCCGGGATC	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CGCGAGGTCC	31 CAAGGCCACC TGCCTAGGAT CGCCCCGAGT ACATTGTGTT GCAGCTTTCT	GCAGGGGGA GACGCTGCGG GCGAGCCCAG CTTACTGGAT CGAAGGGCTG	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT	120 180
50	Coding sequence of the control of th	11 GGCGCTGGGC TCCTAGCTGA CGCCGGGATC CACGCGCCTT CAGCAATTTC AGCCAGTGCA GTTCGGCCTG	21 TCGGACCTGC CGGCTTTTAC CTGCCAGAGG TACGCCGCTG CACGAGGTCC CAGGGTGTGC GATGCACTTG	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCC GCTTTGCCAC GCTCTGGGGG	CAGGGGGGA GACGCTGCGG GCGAGCCCAG CTTACTGGAT CGAAGGGCTG AGTGCAGTAC TGATGTGATC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CGCGCCATCC	120 180 240 300 360 420
50	Coding sequence of the control of th	11 	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CGCGAGGTCC CAGGGTGTGC GATGCACTTG GGCAACACTC	31 CAAGGCCACC TGCCTAGGAT CGCCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTTGCCAG GCTCTGGGGG GCACAGGGGC	GCAGGGGGA GACGCTGCGG GCGAGCCCAG CTTACTGGAT CGAAGGGCTG AGTGCAGTAC TGATGTGATC TGCAATTCTC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CGCGCCATCC CATGTGGCTG	120 180 240 300 360 420 480
50 55	Coding sequence of the control of th	11 GGCGCTGGGC TCCTAGCTGA CGCCGGGATC CACGCGCCTT CAGCAATTTC AGCCAGTGCA GTTCGGCCTG	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CGCGAGGTCC CAGGGTGTGC CATGCACTTG GGCAACACTC CTGGCCCGAC	31 CAAGGCCACC TGCCTAGGAT CGCCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTTGCCAC GCTCTGGGGG GCACAGGGGC CTGGTGTCCC	CAGGGGGGA GACGCTGCGG GCGAGCCCAG CTTACTGGAT CGAAGGGCTG AGTGCAGTAC TGATGTGATC TGCAATTCTC CAAGGTCTGC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CGCGCCATCC CATGTGGCTG ATCCTGATCA	120 180 240 300 360 420
50	Coding sequence of the control of th	11 	21 TGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTGTGC GATGCACTTG GGCAACACTC CTGGCCCGAC ATCAAGAATG	31 CAAGGCCACC TGCCTAGGAT GCCCCGAGT ACATTGTGTT GCAGCTTTCCAC GCTCTGGGGG GCACAGGGGC CTGGTGTCCC CAGCTGCCCACCCCAC	CAGGGGGGA GACGCTGCGG GCAGCCCAG CTTACTGGAT CGAAGGCTG AGTGCAGTAC TGATGTGATC TGAATTCTC CAAGGTCTGC AAGGCTGAAG GGAGCTGAAG	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCGATGACC CGCGCCATCC CATGTGGCTG ATCCTGATCA GGGCAGGGG CGAGTTGCCT	120 180 240 300 360 420 480 540 600
50 55	Coding sequence of the control of th	11 	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CGCGAGGTCTC CAGGGTGTGC GATGCACTTG GGCAACACTC CTGGCCCGAC ATCGAGGACA ATCAAGAATG TTCTTCTTCG	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTTGCGAG GCACAGGGGC CTGATGCCC CAGCTGCCC CAGCTGCCCAG TCAATGACTT	CAGGGGGGA GACGCTGCGG GCGAGCCCAG CTTACTGGAT CGAAGGCTGA TGATGTGATTC TGATGTGAT TGAAGTCTC CAAGGTCTGA GAGGCTGAA GGAGCTGAAG GAGCTGAAG CAGCATCTTG	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCGATGACC CGCGCCATCC CATGTGGCTG ATCCTGATCA GGGCAGGGG CGAGTTGCCT AGGACACTAC	120 180 240 300 360 420 480 540 600 660 720
50 55	Coding sequence of the control of th	11	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTGTGC GATGCACTTG GGCAACACTC CTGGCCCGAC ATCAAGAATG TTCTTCTTCG GTGTGCACGA CCACGAGACCA	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTGCCAC GCTCTGGGGG GCACAGGGGC CTGGTGTCCC CAGCTGCCCA CTGACCCTGA TCAATGACT CTGCTGGTGT CTGCTGGTGT	CAGGGGGGA GACGCTGCGG GCAGCCCAG CTTACTGGAT CGAAGGGCTA TGATGTGAT TGATGTGAT TGCAATTCTC CAAGGTCTGC AAGGCTGAAG GGAGCTGAAG GGAGCTGAAG CGGGCTGTGT TGAGCCAAGC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CAGGGCATCC CATGTGGCTG ATCCTGATCA ACCCGACGCA ACCCGACCTC AGGACACTAC AGCCAATCCT	120 180 240 300 360 420 480 540 600 660 720 780 840
505560	Coding sequence of the control of th	11	21 TGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG GATGCACTTG GATGCACTTG GCAACACTC CTGGCCGAC ATCAAGAATG TTCTTCTTCG GTGTGACAC GTGTGCACGA CCACGAGACC GCCAGTGGCC CCCAGTGGCC	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCCCAC GCTCTGGGGG GCACAGGGGC CTGGTGTCCC CAGCTGCCCAC TCAATGACTT CTGCTGGTGC CTGTGTGTGTGTCTC CTGTGTGTG	CAGGGGGGA GACGCTGCGG GCGAGCCCAG CTTACTGGAT CGAAGGCTG TGATGTGATTCTC CAAGGTCTGC AAGGCTGAG GGAGCTGAAG GGAGCTGAAG CAGCTGTGC CGTGCCTGTG TGAGCCAAGC CTACAAGGTC CTACAAGGTC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCGATGACC CATGTGGCTG ATCCTGATCA AGCGAGGGG CGAGTTGCCT AGGACACTAC ACCCGACCTC CAGGACACTCC CAGGACACCTC CAGGACACCTC CAGTACACCC	120 180 240 300 420 480 540 600 660 720 780 840 900
50 55	Coding sequence of the control of th	11	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CGCAGGTCC CAGGGTGTGC CTGGCCGAC CTGGCCGAC CTGGTGACAC TTCTTCTCG GTGTGACAGA TCATCAGAATG CCACAGAGACC CCACAGAGACC CCACTGCCGA	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCT GCTCTGGGGG GCACAGGGGC CTGGTGTCCC CAGCTGCCCA TCAACCCTGA TCAATGACCTT CTGCTGGTGG TGGTGCTGCTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGT	CAGGGGGGA GACGCTGCGG GAGGCCAG CTTACTGGAT CGAAGGGCTG AGTGCAGTAC TGATGTGAT CCAAGTCTC CAAGGTCTGC AAGGCTGAAG GGAGCTGAAG CAGCATCTTG CGTGCCTGTG TGAGCCAAGG CTACAAGGTC CTACAAGGTC CGAGGTGAAC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CATGTGGCTG ATCCTGATCA GGGCAGCGG GGAGTTGCCT AGGACACTCC ACCGACCTC AGCCATCCT AGCCATCCT AGCCATCCT GTCCCAGCTG GTCCCAGCTG	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
505560	Coding sequence of the control of th	11	21 TGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTGTGC CAGGGTGC CTGGCCGAC ATCAAGAATG TTCTTCTTCG GTGTGCAGAC CCAGGAGCC CCAGTGGCCAC ACCACGAGACC CCACTGCCCA CCACTGCCCA ACCACGAGACC CCACTGCCCA ACCACGAGACC CCACTGCCCA ATCAGGAGACC CCACTGCCCA ATCAGGAGACC CACTGCCGA ATCAGGAGACC CACTGCCGA ATCAGGAGACC CACTGCCGA ATCAGGGAGAGC	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTGGCGG GCACAGGGGC CTGGTGTCCC CTGACCCTGA TCAATGACT CTGTGGTGG CTGTGGTGG CTGTGGTGG CTGTGGTGG CTGTGACCGG GTGACCGTGA CGCACTGAC CTGTGACCGC CTGTGACCGG CTGTGACCGC	CAGGGGGGA GACGCTGCGG GCAGCCCAG CTTACTGGAT CGAAGGGCTG TGATGTGAT TGATGTGAT TGCAATTCTC CAAGGTCTGC AAGGCTGAAG GCAGCTGAAG CAGCATCTTG CGAGCTGAAG CAGCATCTTG CGAGCCAAGC CTACAAGGTC CGAGGTGAAC GAAGGTCAAG GAAGGTCAAG CAAGGTCAA	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCGATGCC CATGTGGCTG ATCCTGATC AGCGACTGC AGGACACTAC ACCCGACCT AGGACACTAC ACCCGACCT AGCAATCCT CAGTACACTC CTCCCAGCTG GTGACTGCACTC AGCAATCCT AGCAATCCT AGCAATCCT AGCAATCCT AGCACTCC ACCCGCTC ACCCGCTC ACCCCACCTC ACCCACCTC ACCCCC	120 180 240 300 360 420 480 660 720 840 900 900 1020 1080
505560	Coding sequence of the control of th	11	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCT GAGGGTGTGC GAGGCACACCC CTGGCAGACC CTGGCAGACACTC CTGGCAGACA ATCAAGAATG TTCTTCTTCG GTGTGACA CCACGAGACC CCACGAGACC CCACGAGACC CCACTGCCGA CCACTGCCGA CGAGGGTCTCC CACTGCCGA ATCCAGAATA	31 CAAGGCCACC TGCTAGGAT ACATTGTGTT GCAGCTTTCT GCTTTGCCAG GCTCTGGGGG GCACAGGGGC CTGGTGTCCC AGCTGCCA TCAATGACTT CTGCTGGTGG TGGTGTGTC TGGTGTGTG TGGTGTGTG TGGTGTGTG TGGTGTGTG TGGTGTGTG TGGTGTGTG TGTGACTGG GCCACTGAC CCACAGCCCA	CAGGGGGGA GAGGCCAG GAGGCCAG GCAGAGGCCAG CTTACTGGAT CGAAGGCTGC TGATTCTC CAAGGTCTCC CAAGGTCTGC GAGCTAAAG GCACTCTTG CGAGCTAAAG CAGCTCTTG CGAGCCAAGC CTACAAGGTC CGAGGTGAAC CAAGCTCAAG CAAGCTCAAG CAACCTCCAG CAACCCCACAC CAACCCCCC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCGATGACC CATGTGGCTG ATCCTGATCA AGCGATGACC CAGGGCATCC CATGTGGCTG ATCCTGATCA ACCAGGACGATCC CAGGACATCC CAGTACATC CAGTACATC GTGACTGTGACT GTGACTGTGAC GTGACTGTGAC TGGACTGCC GTGGCCTGGCC	120 180 240 300 360 420 480 660 720 780 900 900 960 1020 1080 1140
50556065	Coding sequence of the control of th	11	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CGCAGGTCC CAGGGTGTGC CAGGGTGTGC CTGGCCGAC CTGGCCGAC CTGGTGACAC TTCTTCTCG GTGTGCACGA CCACAGAGAC CCACAGAGAC CCACAGAGAC CCACTGCCGA CGCGGTCTCC ATCGCGAAGAC ATCAGAATA GGCTACCGTG	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTTGGCAC GCTCTGGGGG GCACAGGGGC CTGGTGTCCC AGCTGCCTGA TCAATGACTT CTGCTGGTG TGGTGTGTG TGGTGGTGG GTGACCTGA TCAATGACTT CTGTGACCTGA CTGTGACCTG CTGTGACCTG CTGTGACTGC TTGACTGC TTGACTGAC TTGACTGC TTGACTGC TGACAGCCCA TGACATGCCC TGACATGCCC	CAGGGGGGGA GAGGCCAG GAGGCCAG CTTACTGGAT CGAAGGGCTG AGTGCAGTAC TGATGTGAT TGCAATTCTC CAAGGTCTGC AAGGCTGAA GGAGCTGAAG CAGCATCTTG CGTGCCTGTG TGAGCCAAGC CTACAAGGTCA CAGCTCAA GACACTCCAG GAAGCTCAA GACACTCCAG GAGCTCCTG GGTCCTCAGT	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CGGGCCATCC CATGTGGCTG ATCCTGATCA GGGACGAGCG CGAGTTGCCT AGGACATCAC ACCCGACCTC CAGTACACTCC GTCCAGCTG GTGACTTGCAGTCACCTC GTCCAGCTG GTGACTGTGA ACCATCCTC GTGACTGTGA ACCACTGCC GTGGCCCCACCG GTGGCCCCACCG	120 180 240 300 360 420 600 660 720 780 840 900 1020 1080 1140 1200
505560	Coding sequence of the control of th	11	21 TGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTGTC CAGGGTGC CAGGGTGC CTGGCCGAC ATCAAGAATG TTCTTCTCG GTGTGACA CCACGAGAC CCACGAGAC CCACTGCCGA CGCATTCCCG CCACTGCCGA ATCAAGAATG GCTACTCC ATCGGGAGAC CGCGTTCCC ATCGGGAGAC CGCGTTCCC ATCGGGAGAC CGGGTTCCC CTGGGCAGG CTGGGCAGC CTGAGGCACC CTGGGCAGC CTGAGCACC	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCCT GCTTTGCCAC GCTCTGGGGG GCACAGGGCC CTGACCCTA TCAATGACTT CTGCTGGTGTCC CTGCTGGTGTCC CTGACCCTA CCACTGACCCA GCCACTGAC GCCACTGAC CTGACGCCA TGACGCCA TGACGCCA TGACGCCA TTATTGGCCG TTATTTGGCCC	CAGGGGGGA GACGCTGCGG GCAGGCCCAG CTTACTGGAT CGAAGGCTG TGATGTGATC TGATGTGATC TGAATTCTC CAAGGTCTGAG GCAGCTGAAG CAGCTGAAG CAGCTGAAG CAGCTGAAG CAGCTGAAG CAGCTGAAG CAGCTGAAG CAGCTGAAG CAGCTCAGG CAAGCTCAGG CAAGCTCAGG CAAGCTCAGG CAAGCTCAGG CACGCTCCAGG CAGCCTCAGC CAGCTCCAGG CAGCTCCAGG CAGCTCCAGG CAGTGCAGC CAGTGTGGGG	GCAAGGGACA CTTCTGGTTG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCATGACC CATGTGGCTG ATCCTGATCA ACCCTGATCA ACCCGACCTC AGGACACTAC ACCCGACCTC AGCAATCAC ACCCGACCTC CAGTACACTC GTCCCAGCTG GTGACTGTG GTGACTGTG GTGACTGGC GTGGCCTGG GGTGGCCCACTT CCCGCCTT	120 180 240 300 360 420 480 540 660 720 900 900 91020 1080 1140 1200 1260 1320
50556065	Coding sequence of the control of th	11	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCT GAGGGTCTG CAGGAGGTCC CAGGGTGTGC GATGCACTAC CTGGCAGAC CTGGCAGAC CTGGCAGAC CTGGCAGAC CTGGTGAC CACGAGAC CCACGAGAC CCACGAGAC CCACGAGAC CCACTGCCGA CCACTGCCGA ATCAGAATA GCTACCGTG CCTGGCAGAC CCGGGAGGC CCACTGCCGA CGGGGTCTCC CTGGCCAGAC CCGGGAGAC ATCAGAATA GCTACCGTG CCTTCTGTTG	31 CAAGGCCACC TGCCTAGGAT ACATTGTGTT GCAGCTTTCT GCTTTGCCAG GCTCTGGGGG GCACAGGGGC CTGGTGTCCC AGCTGCCA TCAATGACTT CTGCTGGTGG TGGTGCTGC TGGTGACTGC GTGAGCGCA GGCCACTGAC CTGAGCGCA TGACTGCCC TGTGACTGG GTTAGTGGGG TGTAGCGGG TTATTGGCG TTATTGGCCG AGCAGACCCT AGCAGCCCC	CAGGGGGGGA GACGCTGCGG GCAGGCCCAG CTTACTGGAT CGAAGGCTGC CTTACTGAT CGAAGTCTC CAAGGTCTC CAAGGTCTGC CAGGCTGAAG GCAGCTGAAG CAGCTCTGC CTACAAGGTCTGC CTACAAGGTC CGAGGTGAAC CAGCTCAAG CAGCTCCGG CAGCTCCGG CAGCTCCGG CAGCCTCCGG CCAGCTCCGG CCAGCTCCGG CCAGCTCCGG CCAGCTCCGG CCAGCTCCGG CCAGCTCCGG CCACCCCGCTC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCCATCC CATGTGGCTG ATCCTGATCA ACCCTGATCA AGCCATCCC CAGGACGACC CAGGACGACCT AGGACACTAC ACCCGACCTC CAGTACACTC GTGCATCAC GTGCCAGCTG GTGACTCT GTGCCTGCC GTGGCCTGC GTGGCCTGC GTGGCCTGC GTGGGCCCAT ATCCTGGGCC	120 180 240 300 360 420 540 600 720 780 840 900 960 1020 1140 1200 1230 1380
5055606570	Coding sequence of the control of th	11	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGGC TACGCCGCTG CAGGGTGTGC CAGGGTGTGC CTGGCCGAC ATCAAGAATG TTCTTCTTCT GCCAGTGCACA ATCAAGAATG CCACTGCCAC CCACTGGCCGA CCACTGCCA CCACTGCCGA TCCGGGAGG CCTGGGCAGG CTTCGGCAGG CTTGGCAGG CTTGGCAGG CTTTGGTTTG TGGAACTTGG	31 CAAGGCCACC CTGCCTAGGAT CGCCCGAGT ACATTGTGT GCAGCTTTCT GCTTTGCCAC GCTCTGGGGG GCACAGGGGC CTGGTGCCCC AGCTGCCCA CTGACCCTGA TCAATGACTT CTGCTGGTG TGGTGTCC CTGTGACCTGA CCTGACCGCA TCAATGACTT CTGTTGACTGC GTGAGCGGC AGCCACTGAC CTGTGACGGG CCACAGCCCA TGACAGCCCT TGCACGGGC TTCAGTGTT TATTTGGCCG AGCAGACCCT TGCCTGAGGG TGCCTGAGGG TGCCTGAGGGC	CAGGGGGGGA GAGGCTGCAG GCAAGGCTCAG GTTACTGGAT GGAAGGCTG TGATGTGATC TGATGTATC TGATGTATC TGAAGTCTC CAAGGTCTGAAGGCTGAAG GAGCTGAAG CAGCATCTT TGAGCAATCTT CGTGCCTGTG TGAGCCAAGC CTACAAGGTC GGAGGTGAAC GAAGGTCC GGAGGTAAC GACCTCCTG GAGCTCCAG GCTCCAGT GCTGCGTGAC CAGTTGCGGCCCGGTC CCGTGGCTAC CCGTGGCTAC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CGCGCCATCC CATGTGGCTG ATCCTGATCA GGGACGACC ACCGACCTC AGGACATCC CAGGACCTC AGCAATCCT AGCAATCCT CAGTACACT CGTCCAGCTG GTCCAGCTG GTGACTGTGA ACCACTGCCC GTGGCCTGC TGGACCTC AGCACTGCCC CGGCCACTT ACCAGCCCC CCGCCACTT ACCTGGCCCCC CCGCCACTT ATCCTGGGCC CGGTTGGAAT	120 180 240 300 360 420 480 540 660 720 900 900 91020 1080 1140 1200 1260 1320
50556065	Coding sequence of the control of th	11	21 TGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTGTGC CAGGGTGTGC CTGGCAGACA ATCAAGAATG TTCTTCTTCG GTGTGACA ATCAAGAATG TCTTCTCTCC GTGTGCCGAC CCACTGCGA ATCAAGAATC GCCAAGACC CCACTGCGA ATCAGAGAC CGCGTTCTCC ATCGGGAGAG CCTGCGAGAC CCTGCGCAG CCTGCTCCC CCTTCTTCC CCTGGCCAG CCTTCTCTC CCTGGCCAG CCTTCTGTTG CCTGGCCAG CCTCCTGTCC CCTCCTCTC CCACCCGCCAC CCACCCGCCACCCC CCTCCTCTCTC CCACCCGCCACCCC CCCTCCTCTCC CCCCCCCCCC	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTTGCCAG GCTCTGGGGG GCACAGGGCC CTGACCCCA TCAATGACT CTGCTGTG CTGTGTGCCC AGCTGCCCA GCCACTGAC GCACAGCCCA TGACAGCCCA TGACAGCCCA TGACAGCCCA TGACATGAC TTATTGGCCG AGCAGACCCT TACTTGGTGT TATTTGGCCG AGCAGACCCT TGCCTGAGGC AGCAGACCCT TGCCTGAGGC AGCAGACCCT TGCCTGAGGC AGCAGACCCT TGCCTGAGGC AGCAGGCCCA CGAGACCCT TGCCTGAGGC CTGAGGTACCC AGCAGGTACCC CTGAGGCC AGCAGGCCCT TGCCTGAGGC CTGAGGTACCC	CAGGGGGGA GACGCTGCGG GCAGGCCCAG CTTACTGGAT CGAAGGCTG CTTACTGGAT CGAAGTAC TGATGTGAT TGATGTGAT TGATGTGAT CAAGGTCTGC CAGGCTGAAG GCAGCTGAAG CAGCATCTTG CAGCATCTTG CAGCATCTGG CAGCATCAGC CAAGCTCAGC CAGCATCACC CAGCTCCAG CAGCTCCAG CAGCTCCAG CAGCTCCAG CAGTGTGGGC CAGTGTGGGG CAGCCCGGTC CCGTGGCTAC CCTCACACTC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCATGACC CATGTGGCTG ATCCTGATCA ACCCTGATCA AGCAATGACC CAGGGCAGGG	120 180 240 300 360 420 480 660 720 840 900 900 1020 1140 1220 1380 1440 1320 1380 1450 1500
5055606570	Coding sequence of the control of th	11	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCT GAGGGTCTGC CAGGGTGTGC GATGCACTGC CTGGCAGACACTC CTGGCAGACA ATCAAGAATG TTCTTCTTCG GTGTGACAC CCAGGAGCC CCACTGCCGA CCACTGCCGA ATCAGAGATGC GCACTGCGGA ATCAGAGATT GCTACCGTG ATCAGACT CCTGGCAGAC ATCAGACT CCTGGCAGACC CCACTGCCGA ATCAGACT CCTGGCAGACC CCTTCTGTTG TGGAACTTC TGGAACTTC CAGCCGGCA ACCCCTGCAA	31 CAAGGCCACC TGCCTAGGAT ACATTGTGTT GCAGCTTTCT GCTTTGCCAG GCTCTGGGGG GCACAGGGGC CTGGTGTCCC CAGCTGCCC AGCTGCCGAGT TCAATGACTT CTGCTGGTGG GTGAGCGCA GGCCACTGAC GTGACGCCA TGACAGCCCA TGCCTGAGGC TTCCTGAGGC CCGTGACCC CCGTGGTTCC CCGTGGTTCC	GCAGGGGGG GCAGCCCAG GCAGCCCAG CTTACTGGAT CGAAGGCTGC CTTACTGAT CGAAGGCTGC TGATTCTC CAAGGTCTGC AAGGCTAAG GCAGCTGAAG GCAGCTGAAG CAGCTGAAG CAGCTGAAG CAGCTGAAG CAGCTCTG GGAGTACAAG CAGCTCCTG GGTCCTCAGT GCTCCTGGGTCACAG CAGCTCCTG CCTGCGTGAC CAGCTCCTG CCTGCGTGAC CAGCTCCTC CCTGCGTCACACC CCATGCCCTCC CCTGCCTCC CCTGCCTCC CCTGCCTCC CCTGCCCCCC CACTGCCCCCC CACTGCCCCCC CACTGGACCA	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CATGTGGCTG ATCCTGATCA ACCCTGATCA AGGCAGGGG GGAGTTGCCT AGGACACTC CAGTACACT AGCCAATCCT CAGTACACTC GTGACTGAC GTGACTGCC GTGGCCTG GTGGCCTGC GTGGCCTGC GTGGCCTGC GTGGCCTGC CCGCCACTT ATCCTGGAC CCGGTTGGAAT CACTCTGCA CCGGCTGCC CGGTTGGAAT CTCTGGGCC CGGTTGGAAT CACTCTGC CAGTTGCACT CACTCTGCC CGGTTGGAAT CACTCTGCC CGGTTGGAAT CACTCTGCC CGGTTGGAAT CACTCTGCC CGGTTGGAAT CACTCTGCC CAGCTTCCC CGGTTGCCTG	120 180 240 300 360 420 600 660 720 780 840 900 960 1020 1140 1200 1140 1320 1380 1440 1560 1620
5055606570	Coding sequence of the control of th	11	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CGAGGTCC CAGGGTGC CAGGGTGC CTGGCCGAC ATCACACTC CTGGCCGAC ATCACACAC ATCACACAC ATCACACAC ATCACACAC ATCACACAC CCACTGCCGA CCACTGCCGA CCACTGCCGA CCACTGCCGA CCACTGCCGA CCACTGCCGA CCTGCTGCAC ATCGCGAGACC CCTTCTGTT GGACACTC CCTTCTGTT TGGACACT GCAGCACCC CACTCCGCA ACCCCCCCACACC CACTCCCGC ATCGCGAAC ACCCCCCCACACC CACCCCCCACACC CACCCCCC	31 CAAGGCCACC CGAGCTTCCC GCCCGAGT ACATTGTGT GCAGCTTTCCT GCTTGCGGG GCACAGGGGC CTGGTGCCCC AGCTGCCCA CTGACCCTGA TCAATGACTT CTGTGTGTCC CTGACCCTGA CTGACCCTGA CCACAGCCCA GCCACAGCCCA GCCACAGCCCA GCCACAGCCCA AGACATGGT TATTTGGCCG AGCAGACCCT AGAGACCCT AGAGACCCT AGCTGAGCCCA CCCGAGGCCCA CCCGAGGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCCCA AGCAGCCCCA AGCTGCCCG	CAGGGGGGA GAGGCTGCAG GCAGGCCCAG GCTACTGGAT GGAAGGCTG AGTGCAGTACT TGATGTATC TGATGTATC TGATGTATC TGAATTCTC CAAGGTCTGC AAGGCTGAAG GCAGCTGAAG CAGCATCATG GGAGGTGAAG GCAGCTCAG GCAGCTCCTG GCAGCTCCTG GCTGCCTGAG CCTCCAGT GCTCCGGTGAC CAGTGTGAC CCGTGGCTAC CCTCACACTC CCACTGGACC CACTGGACC CACTGGACC CACTGGACC CACTGGACCA CCACTGGACCA CCAGCGGGTG CCACTGGACCA CCACTGCACTC CCACTGGACCA CCACTGCACTC CCACTGGACCA CCACTGCACTC CCACTC CCACTGCACTC CCACTGCACTC CCACTC CCAC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CGCGCCATCC CATGTGGCTG ATCCTGATCA GGGACACTAC AGGACACTAC AGCGACCTC AGCAATCCT AGCAATCCT AGCCAATCCT AGCCAATCCT AGCCAATCCT GTCCCAGCTG GTCACACTCG CTGACCTC AGCCACTT ATCCTGGCCTG CCGCCACTT ATCCTGGGC CGGTTGGAAT GATGTGACCC TACACTCTGC CGGTTGGAAT GATGTGACCC TACACTCTGC CAGCTGCCTG CAGCTGCCTG CGGTTGGAAT CATCTGCCC CGGTTGGAAT CATCTGCCC CGGTTGGACCC CGGTTGCCCTG CAGCTCCCTC CGAGTGTCCT	120 180 240 300 360 420 600 6600 780 840 900 1020 1140 1260 1320 1380 1440 1500 1560 1620 1680
505560657075	Coding sequence of the control of th	11	21 TGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTGTGC CAGGGTGTGC GATGCACTAC ATCAAGAATG TTCTTCTTCG GCAACACTC CTGGCAGAG CCACTGCCGA CCACTGCCGA ATCAAGAATG GCTACCGTG ATCCAGAGAC ATCAGAGAC ATCAGAGAC CAGGGGCC CCACTGCCGA ACCCTGCCGA CCACTGCCGA ACCCCTGCAA CAGCACCGC CAGCCGGCAA ACCCCTGCAA CAAGCCACCG GCGCACCACGACAC CAGCACCACGACACACAC	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGGTTTCT GCTTTGCCAC GCTCTGGGGG GCACAGGGCC CTGACTGCCC CAGCTGCCTGA TCAATGACTT CTGCTGGTGC CTGTGACTGC GCCACTGAC GCCACTGAC TGACATGCCC AGCACGCCA TGACATGCCC AGCACGCCA TGACATGCCC TTATTGAGCGG TTATTGGCCG AGCAGACCCT TGCCTGAGGC AGCAGACCCT TGCCTGAGGC AGCAGACCCT TGCCTGAGGC AGCAGACCCT TGCCTGAGGC CCGTGGTTCC AGCAGCCCA AGCACACTCCA AGCACACTCC CCGTGGTTCC AGCAGCCCA CCGTGGTTCC AGCACACTCCA AGCACCCCG CCGTGGTTCC AGCACATTCGA	CAGGGGGGA GACGCTGCGG GCAGGCCCAG CTTACTGGAT CGAAGGCTG CTTACTGGAT CGAAGTAC TGATGTGATC TGCAATTCTC CAAGGTCTGAG GCAGCTGAAG GCAGCTGAAG CAGCATCTTG CAGCATCTTG CAGCATCTTG CAGCATCTTG CAGCATCTTG CAGCACCAG CAGCATCAGC CAGCTCCAG CAGCTCCAG CAGCTCCAG CAGCTCCAG CCAGCACCAC CCTCACACCC CCTCACACCC CTTGGATGAC CCCTTTGGATGAC CCCTTTGGATGAC CCCTCACACCC CCTCACACCC CTTGGATGAC CCTTTGGATGAC CCTTTGGATGAC CCTTTGGATGAC CCTTTGGATGAC CCTTTGGATGAC CTTTGGATGAC CTTTGGATGAC CCTTACACTC CTTTGGATGAC CTTTGGATGAC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCGATGACC CATGTGGCTG ATCCTGATCA ACCCGACCTC AGGACACTAC ACCCGACCTC CAGTACCC GTGCCGACTC CAGTACACTC CAGTACACTC GTCCCAGCTG GTGACTGCC GTGGCCTGC GTGGCCTGC GTGGCCTGC CGGTTGGACT ACCCTGCTC CAGTTGCCT CAGTACACTC CAGTACACTC CGGTTGGCCTGC GTGGCCTGC GTGGCCTGC CGGTTGGACT ATCCTGGCC CGGTTGGAC CCGCCACTT ATCCTGGCC CGGTTGGACT CAGGCTGC CAGGTTCC CAGGTGCCT CAGGGGTTC CAGGGGTTC CAGGGGTTC CAGGGGTTC CAGGGGTTC GTTCAGCCTG	120 180 240 300 360 420 600 660 720 780 840 900 960 1020 1140 1200 1140 1320 1380 1440 1560 1620
5055606570	Coding sequence of the control of th	11 GGCGCTGGGC TCCTAGCTGA CGCGGGATC CAGCAGTTCC CAGCATTTC CAGCAGTGCA GTTCGGCCTG GTACAAGGGG GTCCCAGGAC TGCTGCCCAG GTCCCAGGAC TTCCGGACTT CGCCTGGCCCAG GCCGAGACAGC GCCAACAGC GCCAACAGC GGAACTGAC TGGGCCTG CGCCACAGC CGCCACAGC CGCAACAGC CGCAACAGC CGAGTGCC CCCCCTGCCCC GACTGCC CCCCCTGCCCC CACAGGCCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCCC CCACTGCCC CCCCTGGTGCC CCCCTGGTGCC CCCCTGTGCC CCCCTGTGCCC CCCCTGTGCCG CCCTGTGCCG CCCTGTGCCC CCCTGTGCCG CCCTGTGCCG CCCTGTGCCG CCCTGTGCCG CCCTGTGCCG CCCTGTGCCC CCCTGCTCCC CCCTGTGCCC CCCTGTGCCC CCCTGCTCCC CCCTGTGCCC CCCTCTGTGCCC CCCTGCTCCC CCCTGCTCCC CCCTGCTCCC CCCTCTGTGCCC CCCTCTGCTCCC CCCTCTGTGCCC CCCTCTCTCT	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTGTGC CAGGGTGTGC CTGGCAGACTC CTGGCAGACTC CTGGCCGAC ATCAAGAATG TTCTTCTTCT GCCAGTGCCAC CCACTGCAC CCACTGCCAC CCACTGCCC CCACTGCCC CCACTGCCC CCACTGCCC CTGGCAGAC ATCAGAATG CCACTGCCC CCACTGCCC CCACTGCCC CCACTGCCC ATCGGGAGAC CCTGCTGCC CGCTTCTGTTG CCTGCCAC CACCCC CACCCCC CACCCCC CACCCCCC CACCCCCC	31 CAAGGCCACC CTGCCTAGGAT CGCCCGAGT ACATTGTGT GCAGCTTTGCAC GCTCTGGGGG GCACAGGGGC CTGGTGCCCA CTGACCCTGA TCAATGACT CTGTGGTGTC CTGTGGTGTC CTGTGGTGTC CTGTGACCTGA CTGACCTGA CTGACCTGA CTGACCTGAC	CAGGGGGGA CAGGGGGGA CAGGCTGCAG CAGGCTGCAG CAGGCTGCAG CAGGCTGCAG CAGGCTGCAG CAGGCTGAAG CAGCATCTC CAAGGTCTGC CAGGCTGAAG CAGCATCTTC CAGGCTGAAG CAGCATCTTG CAGGCTGAAG CAGCATCTTG CAGGTCAGG CAGCTCAGG CAGCTCCAG GCAGCTCCAG GCTCCTCAGT GCTCCTCAGT CCTCACACT CCACGGGCCC CCTCGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGACGCC CCTTGGACGCC CCTTGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGGACGCC CCTTGACGCC CCTTGACGC CCTTGACGCC CCTTGACCC CCTTGACGCC CCTTGACGCC CCTTGACGCC CCTTGACGCC CCTTGACGCC CCTTGACGCC CCTTGACGCC CCTTGACGCC CCTTGACGCC CCTTGACCC CCTTGACC CCTTGACC CCTTGACC CCTTGACC CCTTGACC CCTTGACC CCTTGACC CCTTCAC CCTCAC CCTTCAC CCTTCAC CCTTCAC CCTCAC CCTTCAC CCTCAC CCTTCAC CCTCAC CCTTCAC CCTCAC CCTTCAC CCTCAC CCTCAC CCTCAC CCTCAC CCTCAC CCTTCAC CCTCAC CCCC CCTCAC CCCC CCTCAC CCCC CCCC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CGCGCCATCC CATGTGGCTG ATCCTGATCA AGGAATGACC AGGACATCC CAGGACTCC CAGGACTC AGCAATCCT AGCAATCCT AGCAATCCT AGCAATCCT CAGTACACT GTGCCAGCTG GTGACTGTGA ACCCGACTG CTGACTGCC GTGGCCTGC CTGCCAGCTG CCGCACTT ATCCTGGCCCAGC ATTGGAGCCTG CCGGTTGGAAT GATGTGACC CAGGTTGGACT CAGGTTGCCC CAGGTGCCCC CAGGTGCCCC CAGGTGCCCC CAGGTGCCTG CAGGGGTTCC CAGGGGGTTC CAGGGGGTTC CAGGGGGTTC CAGGGGGTTG AGTGCCAGTG AGCACTCACACT AGCAGCATG AGTGCCAGTG AGCACACT ACCACACACACACACACACACACACACACACAC	120 180 240 300 360 420 600 660 780 960 1020 1140 1200 1140 1320 1440 1560 1680 1740 1800 1800
505560657075	Coding sequence of the control of th	11 GGCGCTGGGC TCCTAGCTGA CGCGGGATC CACGCGCCTT CAGCAATTTC CAGCAGTGCA GTTCGGCCTG CTACAAGGGG CTTGCCCCAG GTCCGAGAC TGCTGGACAT TCCGGAGA TGCTGGGCCG GTGGACAGC GGTGGACAGC GGTGGACAGC GGTGCCAGCC GGTGGACAGC GGTGCCCCACAGC GGTGCCCCC AGGTGCCCC AGGTGCCCC TGAGGACAC TGAGGTGGCC TGAGGTGCCC TGAGGTGCCC TGAGGTGCCC TGAGGTGGCC GACTGGCTG CCCCCGGTGCC CCCTGGTCC CCTGGTGCC CCTGGTGCC CCTGGTGCC CCCCGGGAG	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTCC CAGGGTGC CAGGGTGC CTGGCCGAC ATCAAGAATG TTCTTCTTCT GTGCCAGAG ATCAAGAATG TTCTTCTTCT GTGAGAGAC CCACTGCCGA ATCAGAGACC CCACTGCCGA ATCAGAGACC CCACTGCCGA ATCAGAGACC CCACTGCCGA ATCAGAGACC ACCCGCACACCCC CATCTCTGTG GAGCACCCC CAGCCGCCACCCCCACCCCCCACCCCCCCC	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCT GCTGTGCCAC GCTCTGGGGG GCACAGGGGC CTGACCCTGA TCAATGACTT CTGCTGGTGTCC CTGTGTGTCC CTGTGACCTGA CTGACCCTGA CTGACCTGA CTGACCTGA CTGACCTGA CTGACCGG GTGACCGG GTGACCGG GTCAGGCGC GTTCAGGGG GTTCAGTGT TATTTGGCG AGCAGACCCT AGCAGACCCT AGCAGGCG CCGTGGTTC CCGTGGTTC CCGTGGTTC AGCTGCTGC CCGTGGTTC CAGCATTCGC CACTTGCTGT CAGCATTCGC CACTTGCTGT TGCCTGGGTCC CACTTGCTGT CACTTGCTGT TGCCTGGGTCC CACTTGCTGT CACTTGCTGT TGCTCTGGTTGCT	CAGGGGGGA GAGGCCCAG GCAAGGCCCAG GCAAGGCCCAG GCAAGGCCCAG GCAAGAGCCCC TGAATTCTC TGAATTCTC CAAGGTCTGC AAGGCTGAAG GCACCTGTG TGAGCCAAGC CTACAAGGTC TGAGCCAAGC CTACAAGGTC GGAGCTCAGG GCACCCAGT GCTCCTCG GGTCCTCAGT GCTCCTCAGT CCGTGGCTAC CCGTGGCTAC CCTCACACTC CCTCACACTC CCTCACACTC CCTCACACCC CCTTGGATGAC CCGTGACCC CCTTGGATGAC CCGTGGCTAC CCTCTCACACTC CCTCACACTC CCTCACACT CCACACTC CCTCACACTC CCTCACACTC CCTCACACT CCACACTC CCTCACACT CCACACT	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CGCGCCATCC CATGTGGCTG ATCCTGATCA GGGCAGGGGG CGAGTTGCCT AGGACCTC AGGACACTAC AGCCAATCCT CAGTACACTC CGCCACTT AGCCATCCT AGCCACTC AGCCACTC AGCCACTC AGCCACTC AGCCACTC ACCCACCT ACCCACCT ATCCCAGCT ATCCCAGCT CGGTGGCCCA TTGGAGCCT CAGTGCCC CGGTTGGACT CAGTGCCC CGGTTGGACT CAGTGCCC CGGTTGGACT CAGGCTT CAGGGGTT CAGGGGTT CAGGGGTT CAGGGGTT CAGGGCTT CAGGGCTT CAGGGCTT CAGGGCTT CAGGGCTT CAGGGCTT CAGGCCAGTT CCGGCTTGTGG CCGGCTTGTGG CGGGTTGTGG CGGGTTGTGG CGGGTTGTGG CGGGTTGTGG CGGGTTGTGG CGGGTTGTGG CGGGTTGTGG CGGGTTGTGG CGGGTTGTGG CGCCACTT CGGGCTT	120 180 240 300 360 420 600 660 720 780 840 900 1020 11200 1260 1320 1380 1440 1500 1620 1680 1740 1860 1920
505560657075	Coding sequence of the control of th	11 GGCGCTGGGC TCCTAGCTGA CGCGGGATC CAGCAGTTCC CAGCATTTC CAGCAGTGCA GTTCGGCCTG GTACAAGGGG GTCCCAGGAC TGCTGCCCAG GTCCCAGGAC TTCCGGACTT CGCCTGGCCCAG GCCGAGACAGC GCCAACAGC GCCAACAGC GGAACTGAC TGGGCCTG CGCCACAGC CGCCACAGC CGCAACAGC CGCAACAGC CGAGTGCC CCCCCTGCCCC GACTGCC CCCCCTGCCCC CACAGGCCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGCCC CCACTGCCC CCCCTGGTGCC CCCCTGGTGCC CCCCTGTGCC CCCCTGTGCCC CCCCTGTGCCG CCCTGTGCCG CCCTGTGCCC CCCTGTGCCG CCCTGTGCCG CCCTGTGCCG CCCTGTGCCG CCCTGTGCCG CCCTGTGCCC CCCTGCTCCC CCCTGTGCCC CCCTGTGCCC CCCTGCTCCC CCCTGTGCCC CCCTCTGTGCCC CCCTGCTCCC CCCTGCTCCC CCCTGCTCCC CCCTCTGTGCCC CCCTCTGCTCCC CCCTCTGTGCCC CCCTCTCTCT	21 TGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG GATGCACTGC CAGGGTGC GATGCACTGC CTGGCCGAC ATCAGAACT TCTTCTCTCG GTGTGCCGAC GCAGTGCCCA ACCAGTGCCC ATCGGGAGC CCACTGCGA ATCAGAATA GGCTACCGT CTGGCAGA ACCACGAGACC CACTGCGA ACCACGAGACC CACTGCGA ACCACGCGCG ACCCGCGCA ACCCCTGCAA CAGCCCCC CAGCGGCA ACCCCTGCAA CAGCCACCC CACCGGAACT CGGAACT GGGAACT CCGGAACT ACCGGAACT ACCGGAACT ACCCGGAACT CCCGGAACT ACGGAACT ACGGAACT CCCGGAACT AGGGTGCCC AGGCGGAACT CCCGGAACT CCCGGAACT AGGGTGGCCT AGGGTGGCCT AGGGTGGCCC AGGCGGAACT CCCGGAACT CCCGGAACT AGGGTGGCCT AGGGTGGCCC AGGGGAACT CCCGGAACT CCCGGAACT CCGGAACT AGGGTGGCCT AGGGTGGCCT AGGGTGGCCC AGGGTGGCCCT AGGGTGGCCCT AGGGTGGCCCT AGGGTGGCCCT	31 CAAGGCCACC TGCCTAGGAT CGCCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTTGCGGG GCACAGGGGC CTGGTGTCCC CTGACCCTGA TCAATGACT TCTGCTGTG TGCTGTGTG TGTGTGTGT CTGTGTGTG	CAGGGGGGA GAGGCCCAG GAGGCCCAG GCAAGGCCCAG GCAAGGCCCAG CTTACTGGAT CGAAGGCCTAC TGATGTGATC TGATGTGATC TGCAATTCTC CAAGGTCTGC GAGCTGAAG GCAGCTGAAG CAGCATCTGG CAGCACCAG CAGCTCCAG GAGCTCAGC CAGCTCCAG CAGCTCCAG CAGCTCCAG CAGCTCCC CCTCACACTC CCTCACACTC CACTGGACCA CCAGCGGTC CCTCACACCC CTTGGATGAC CCTTGGATGAC CCTTGGATGAC CCTTGGATGAC CCTCACACCC CTTGGATGAC CCCTGAGGCCC CCTTGGATGAC CCCTGAGGCCC CCTCACAGCCC CCTCACAGCCC CCTCACAGCCC CCTCGAGGCCC CCCAGGGCCC CCCAGGACCC CCCAGGGCCC CCCAGGACCC CCCCAGGCCC CCCCAGGCCC CCCCAGGCCC CCCCAGGCCC CCCCAGGCCC CCCCAGGCCCC CCCCAGGCCCC CCCCAGGCCCC CCCCAGGCCC CCCCAGGCCCC CCCCAGGACCC CCCCAGGCCCC CCCCAGGACCC CCCCAGGCCCC CCCCAGCCCC CCCCAGCCCC CCCCAGCCCC CCCCAGCCCC CCCCAGCCC CCCCAGCCC CCCCCAGCCC CCCCAGCCC CCCCCAGCCC CCCCAGCCC CCCCCAGCCC CCCCAGCCC CCCCAGCCC CCCCCAGCCC CCCCCAGCCC CCCCCAGCCC CCCCCAGCCC CCCCCAGCCC CCCCCCC CCCCCCC CCCCCCC CCCCCCC CCCC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCT AGCGCCATC CATGTGGCTG ATCCTGATC AGCGACGGGGGG CGAGTTGCCT AGGACACTAC ACCCGACCTC AGGACACTAC ACCCGACCTC GTGACTGGCCG GTGACTGGCCG GTGGCCTGGC GGGCCACTT ATCCTGGGCC CGGTTGGACT ACCCTGGCCG CGGCACTT ATCCTGGGCC CGGTTGGACT CAGGCTGCC CGGTTGGACT CAGGCTGCT CAGGCTGC CGGTTGGACT ATCCTGGGCC CGGTTGGACT CAGGCTGC CGGTTGGACT CAGGCGCT CAGGCTGCT CAGGGGCTG CGGGTTGCAC CGGGTTGTGAC CACGCACT CTCTCTCTC CGGGTTGTGC CGGGTTGTGC CGGGTTGTGC CGGGTTTGTGC CGGGTTTGTGC CGGGTTTTC	120 180 240 300 360 420 600 660 780 960 1020 1140 1200 1140 1320 1440 1560 1680 1740 1800 1800
50 55 60 65 70 75	Coding sequence of the control of th	11 GGCGCTGGGC TCCTAGCTGA CGCGGGATC CACGCGCCTT CAGCAATTTC CAGCAGTGCA GTTCGGCCTG GTACAAGGG CCTGCCCAG GTCCCAGACT TCCGACTTC TTCCGACTTC GTGACACTC GTGACACTC GTGACACAC GCTGGACA GCCAGTGCA GCTGGACAC GCTGGACAC GCTGGACAC GCTGGACAC CGCCACACAC CGCCACACAC GCTGGCTTC CGACTGC CGCACTGC CTCGCTTTCC GAACTGCC CCTCGTTCC GACTGCC CCTCGTTCC CACTGCC CCTCGTTCC CACTGCC CCTCGTCC CCCGGGAC AACAGCCC CCTCGTCC CCCCGGGAC AACAGCCC CCCCGGGAC AACAGCCC CCCCGGGAC AACAGCCC CCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCCGCACC CCCCCCCC	21 TCGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CGAGGTCC CAGGGTGC CAGGGTGC CTGGCCGAC ATCAAGAATG TTCTTCTTCT GCCAGAGGCC CCACTGCCGA CCACGAGGCC CCACTGCCGA CCACGAGACC CCACTGCCGA CCACGAGACC CCACTGCCGA CCAGGAGAC CCTGCGAC ATCAGAATA GCTACCGA ATCAGAATA GCTACCGC CTTTCTTT TGGACACT CCTGGCAGG CAGCCGC CACTGCCG ATCCGCAACCC CCTTCTGTT CGAGCACCC CACCCTGCAA CAAGCCACCC CCCTGCAA CCAGTACC CGGAACTC CCGGAACTC CCGGAACTC CCGGAACTC CCGGAACTC CCGGAACTC AGGGTGGCCT AGTGTGCCCG CTTCCAGCCTGC CTGCAGCCTGC CCTGCAACCC CCTGCAACCC CCTGCAACCC CCTGCAACCC CCTGCAACCC CCTGCAACCC CCGGAACCC CCTGCAACCC CCGGAACCC CCTGCACCC CTGCAGCCT CTCCAGCCT	31 CAAGGCCACC CGAGCTTCCAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCCT GCTTGCGGG GCACAGGGGC CTGGTGCCC CAGCTGCCCAGCTGCCCAGCTGCCCAGCTGACCTGAC	CAGGGGGGA GAGGCTGCAG GCAGGCCCAG GCTACTGGAT GGAAGGCTG TGATGTGAT TGATGTGAT TGATGTAT TGAATTCTC CAAGGTCTGC AAGGCTGAAG GCAGCTGAAG CAGCATCTT TGAGATTCTT GGAGCTAAG CAGCATCTT TGAGAGTCTGC GGAGGTGAAG GCAGCTCCTG GCAGCTCCTG GCTGCGTGAC CAGTGTGCCTGAC CAGTGTGGCTCAC CCTCACACTC CCTCACACTC CACTGGACC CTTGGATGAC CCGTGGAGCC CTTGGATGAC CCGTGGAGCC CCTTGGATGAC CCGTGGAGCC CCTTGGATGAC CCGTGAGGCT CCCTGGAGGC CCCTGGAGCC CCCTGGAGCC CCCTGGAGCC CCCTGGAGCC CCCTGCCCC CCAGGTGCC CCAGGTGCCC CCAGGTGCCC CCAGGTGCCC CCAGGTGCCC CCAGGTGCCC CCAGGTGCCC CCAGGTGCCC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT AGCGATGACC CGCGCCATCC CATGTGGCTG ATCCTGATCA GGGACACTAC AGGACACTAC AGGACACTAC AGCCAATCCT AGCAATCAC AGCCAATCCT AGCAATCCT AGCCAATCCT AGCCAATCCT AGCCAATCCT AGCCAATCCT ATCCAGCTG GTGACTGTGA ACCACTGCCC GTGGCCTGTA ACCACTGCCC CGGTTGGAAT CCTGCCCACTT ATCCTGGGC CGGTTGGAAT GATGTGACCC CAGGTGTCCT CAGGGGGTTG CGAGTGTCCT CAGGGGGTTG CTTCAGCTTG CTTCAGCTTG AGTGCCAGTTG CGGGTTGTGA AGTGCCAGTTG CCGGTTGTGA CCCAGACTCTA CCGGGTTGTGG AGTGGATTTC CCAGACTCTA CCGGACTCTA CTGTCCGGTAC CCAGACTCTA CTGTCGGTAC	120 180 240 300 360 420 600 660 720 780 840 900 1020 1140 1200 1140 1560 1320 1440 1560 1620 1680 1740 1860 1920 1980 2040 2100
505560657075	Coding sequence of the control of th	11	21 TCGGACCTGC CGGCTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTGTGC CAGGGTGTGC CAGGGTGGCCAA ATCAAGAATG TTCTTCTTCT GTGCCGAC CACACTGCGA ATCAGAGACC CCACTGCGA ATCAGAGACC CCACTGCGA ATCAGAGACC GCAGTGCCC ATCGGGAGG ATCCAGAGACC GCTACCGG ATCCAGACT CCTGGCAGG CTGCAGCAC ACCCTGCAA ACCCCTGCAA ACCCCTGCAA ACCCCTGCAA ACCCAGTACC CAGGGCCAC CCAGTCCCAGCCA ACCCAGTACC CAGCAGCCCC CAGCAGCCCC CAGCAGCCCC CAGCAGCCCC CAGCAGCCCC CCCAGTACC CCGGAAACTC AGGGTGGCCT AGTGGTCCGC CTGCAGCCTG CTGCAGCCTG CCTGCAGCCTG CCTGCTGCAGCCTC CCTGCTGCAGCCTC CCTGCTGCAGCCTG CCTGCTGCCAGCCTG CCTGCTGCCAGCTTC	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTGCCAC GCTCTGGGGG GCACAGGGGC CTGGTGCCC AGCTGCCTAG TCAATGACTT CTGCTGGTGTC CTGTGGCGG GTGACCCTGA CTGACCTGA CTGACCTGA CTGACCTGA CTGACCTGA CTGTGACTGC CTGTGACCGC GTGACCTGAC CTGTGACCGC GTCAGGCCCA AGACATGCC AGACATGCC AGACAGCCCA AGACATGCC GCTGGTTC CCTGTGCCC GCTGGTTC CCTGTGCCC GCATCATTGT CAGCATTCGA GAGTGGTC CACTTGCTGT CAGCACCTA CACTCGTGC CACTTGCTGT CAGCACCTA CACCCTA CACCCTA CACCCCTA CCCCCCCC	CAGGGGGGA GAGGCCCAG GCAAGGCCCAG GCAAGGCCCAG GCAAGGCCCAG GCAAGGCCCAG GCAATTCTC CAAGGTCTGC AAGGCTGAAG GCACCTGAAG GCACCAGAG GCACCAGAG CAGACCACAG CAGACCACAG GCACCAGAG CAGCCCCCCC CCCAGAGCCCCCCC CCCAGAGCCCCCCCC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CGCGCCATCC CATGTGGCTG ATCCTGATCA ACCAGGGGGG CGAGTTGCCT AGGACACTAC AGCAATCAC AGCCAATCCT CAGTACACTC CGTCCCACTC GTGCCTGACCT AGCAATCCT CTCCAGCTG ACCACTCC GTGGCCTGG CGGTGGCCCA TTGGAGCCCT ATCCTGGGCCCA TTGGAGTGCCC TTGGAGTGCCC TTGGAGTGCCC TTGGAGTGCCC TTGGACTTC CAGTTGCCC TTGGACTTC CAGTTGCCC TTGGACTTC CAGTTGCCC TACACTCTCC CAGTTGCCCT CAGGGGTTT CAGGGGTTC CAGGGGTTG CGGGTTGTGC AGTGCCACTT CAGGGGTTG CGGGTTGTGG AGTGCCACT CCAGGCTCT CCAGGCTCT CCAGGCTCT CCAGGCTCT CCAGGCTCT CCAGGCTCT CCAGGCTCT CCAGGCTCC CCACTGGGCC CCACTGGCC CCACTGGCC CCACTGGGCC CCACTGGCC CCACTGCC CCCC CC	120 180 240 300 360 420 600 660 720 780 840 900 1020 11200 1260 1320 1380 1500 1500 1620 1680 1740 1800 1980 2040 2100 2100 2100
50 55 60 65 70 75	Coding sequence of the control of th	11 GGCGCTGGGC TCCTAGCTGA CGCGGGATC CACGCGCCTT CAGCAATTTC CAGCAGTGCA GTTCGGCCTG GTACAAGGG CCTGCCCAG GTCCCAGACT TCCGACTTC TTCCGACTTC GTGACACTC GTGACACTC GTGACACAC GCTGGACA GCCAGTGCA GCTGGACAC GCTGGACAC GCTGGACAC GCTGGACAC CGCCACACAC CGCCACACAC GCTGGCTTC CGACTGC CGCACTGC CTCGCTTTCC GAACTGCC CCTCGTTCC GACTGCC CCTCGTTCC CACTGCC CCTCGTTCC CACTGCC CCTCGTCC CCCGGGAC AACAGCCC CCTCGTCC CCCCGGGAC AACAGCCC CCCCGGGAC AACAGCCC CCCCGGGAC AACAGCCC CCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCGGAC CCCCCCGCACC CCCCCCCC	21 TGGACCTGC CGGCTTTTAC CTGGCAGAGG TACGCCGCTG CAGGGTGC GATGCACTGC CAGGGTGC CTGGCAGAC ATCAAGAATG TTCTTCTTCG GTGTGCACGA CCAGGAGCC CCAGTGCCC GCTTCTGTCC GTGACACTC CGGCAGACC CACGGACC CACTGCGA ATCAAGAATA GCTACCGTG ATCAGACC CCAGTGCC ATCGGCAGA CCAGGACC CGCTTCTGTTC CGGCAGC CAGCCGCC CAGCCGCCA ACCCGCAC ACCCGCAC ACCCGCAC ACCCGCAC ACCCGGCAC CGCAGTCCC ACGCGGCA ACCCAGTACC CCGGAACTC CCGGAACTC CCGGAACTC AGGGTGCCC CTCCAGCCC ACCCGCACC CCTCCAC ACCCGGCAC CCCGCACC CCGCACCC CCCGCACCC CCCCCCCC	31 CAAGGCCACC TGCCTAGGAT CGCCCGAGT ACATTGTGTT GCAGCTTTCT GCTTTGCGGG GCACAGGGGC CTGACCCTAA TCAATGACTT CTGCTGGTGTCCC CAGCTGCCCA TCAATGACTT CTGCTGGTGCCC CTGTGACTGG GCACAGGGCC AGCACTGAC TGACTGAC GCACATGAC TTATTGGCCG AGCACTGAC TTATTGGCCG AGCAGACCCT TGCCTGAGGGT CCGTGGTTCC CGTGGTTCC AGCAGCCCA AGCACTGCC AGCACTGCC AGCACTGCC AGCACTGCC AGCACTGCC AGCACTCCC AGCTGCCCG AGCACCCT AGCACCCG AGCACTCCC AGCTGCCCG AGCACCCT CCGTGGTTCC CGTGGTTCC CGTGGTTCC CGTGGTTCC CGTGGTCCC CGTGGTTCC CGCTGCCCG AGCACCCT AGCACCCT AGCACCCT AGCCCC GCACCCCC CGCGTGCTCC CGCGGGTCCCC CGCGGTCCCC CGCGCTCCCC CGCGCTCCCC CGCGCCCC CGCCCCC CGCCCCC CGCCCCC CGCCCCC CGCCCCC CCCCCC	GCAGGGGGG GCAGCCCAG GCAGCCCAG CTTACTGGAT CGAAGGCCTA TGATGTGAT TGATGTGAT TGATGTGAT TGCAATTCTC CAAGGTCTG GGAGCTGAAG GCTGAAG GCTGAAG CAGCATCTG TGAGCTAGA CAGCATCTG CAGAGTCAAG CAGCACCAG CAGCTCACA CAGCACCAC CACTGGACC CCTCACACT CCTCACACT CCTCACGGC TCCAGGGCC CCAGGGCGC CCCAGGCC CCCAGGCCC CCAGGCCC CCAGCCC CCAGGCCC CCAGCCC CCAGCC CCAGCC CCAGCC CCAGCC CCAGCC CCAGCC CCAGCC CCACC	GCAAGGGACA CTTCTGGTGG CACAGGGAGA GGCTCCTCAT GTGCTGCCTT AGCGATGACC CATGTGGCTG ATCCTGATCA ACCCTGATCA ACCCGACCTC AGGACACTAC ACCCGACCTC AGGACACTAC ACCCGACCTC AGGACACTCC GTGCCAGCTG GTGACTGGAC CCGGCCACTT ATCCTGGCC GGTGGCCCA CCGGCACTT ATCCTGGGC CGGTTGGAC CCGGCACTT ATCCTGGGC CGGTTGGAC CCGGCACTT ATCCTGGGC CGGTTGGAC CCGGCACTT ATCCTGGGC CGGTTGGAC CCGGCACTT CAGGGGTTGC CAGGTGCCTG CAGGTGCCTG CAGGTGCCTG CAGGTGCCTG CAGGGGTTC CAGGGGTTC CAGGGGTTC CAGGGGTTC CAGGGGTTC CCGGCACTT ATCCTGC CAGGGGTTC CCGGCACTT CCAGGGGTTC CCAGGGGTTC CCGGCACTT CCGGCTCCT CCGGCACTT CCGGCTCCT CCGGCTTCC CCGGCTTCC CGGCTTCCC CCGCACTT CCGGCTTCC CCGCCACTT CCGGCTCC CCGCCACTT CCGGCTCC CCGCCACTC CCGCCACTC CCGCCACTC CCGCCACTC CCGCCACTC CCGCCACTC CCGCCACTC CCGCCACTC CCGCCCC CCGCCACTC CCGCCCC CCGCCCC CCGCCCC CCCCCC CCCCCC CCCCCC	120 180 240 300 360 420 600 660 720 780 840 900 1020 1140 1200 1140 1560 1320 1440 1560 1620 1680 1740 1860 1920 1980 2040 2100

	CCCAGTTGGT	TTCTGGGGAG	GCCACGGTGG	CTGAGCTGGA	TGGACTGGAG	CCAGATACTG	2340
	AGTATACGGT	GCATGTGAGG	GCCCATGTGG	CTGGCGTGGA	TGGGCCCCCT	GCCTCTGTGG	2400
	TTGTGAGGAC	TGCCCCTGAG	CCTGTGGGTC	GTGTGTCGAG	GCTGCAGATC	CTCAATGCTT	2460
_	CCAGCGACGT	TCTACGGATC	ACCTGGGTAG	GGGTCACTGG	AGCCACAGCT	TACAGACTGG	2520
5		GAGTGAAGGC					2580
	CTGCAGAGAT	CCGGGGTCTC	GAAGGTGGAG	TCAGCTACTC	AGTGCGAGTG	ACTGCACTTG	2640
	TCGGGGACCG	CGAGGGCACA	CCTGTCTCCA	TTGTTGTCAC	TACGCCGCCT	GAGGCTCCGC	2700
	CAGCCCTGGG	GACGCTTCAC	GTGGTGCAGC	GCGGGGAGCA	CTCGCTGAGG	CTGCGCTGGG	2760
	AGCCGGTGCC	CAGAGCGCAG	GGCTTCCTTC	TGCACTGGCA	ACCTGAGGGT	GGCCAGGAAC	2820
10	AGTCCCGGGT	CCTGGGGCCC	GAGCTCAGCA	GCTATCACCT	GGACGGGCTG	GAGCCAGCGA	2880
	CACAGTACCG	CGTGAGGCTG	AGTGTCCTAG	GGCCGGCTGG	AGAAGGCCC	TCTGCAGAGG	2940
	TGACTGCGCG	CACTGAGTCA	CCTCGTGTTC	CAAGCATTGA	ACTACGTGTG	GTGGACACCT	3000
		GGTGACTTTG					3060
	CCTGGCGGCC	ACTCAGAGGC	CCTGGCCAGG	AAGTGCCTGG	GTCCCCGCAG	ACACTTCCAG	3120
15		CTCCCAGCGG					3180
		CCTGGATGGT					3240
	GCCCCCGTGG	CCTGGCGGAT	GTGGTGTTCC	TACCACATGC	CACTCAAGAC	AATGCTCACC	3300
		TACGAGGAGG					3360
• •	CACAGGCAGT	TCAGGTTGGC	CTGCTGTCTT	ACAGTCATCG	GCCCTCCCCA	CTGTTCCCAC	3420
20	TGAATGGCTC	CCATGACCTT	GGCATTATCT	TGCAAAGGAT	CCGTGACATG	CCCTACATGG	3480
		GAACAACCTG					3540
	CAGATGCTCC	TGGGCGCCGC	CAGCACGTAC	CAGGGGTGAT	GGTTCTGCTA	GTGGATGAAC	3600
		TGACATATTC					3660
~ -		AATGGCTGGA					3720
25	ACTCTGTCCA	GACCTTCTTC	GCCGTGGATG	ATGGGCCAAG	CCTGGACCAG	GCAGTCAGTG	3780
		AGCCCTGTGT					3840
	CAGTGTATTG	TCCAAAGGGC	CAGAAGGGGG	AACCTGGAGA	GATGGGCCTG	AGAGGACAAG	3900
		TGGCGACCCT					3960
20		TGCCACTGCC					4020
30		CCGCGCCGGG					4080
		TGGCCCTCGT					4140
	AGCCGGGGGC	TCCCGGACAA	GTCATCGGAG	GTGAAGGACC	TGGGCTTCCT	GGGCGGAAAG	4200
		ACCATCGGGC					4260
25		AGGGCTTCCT					4320
35	GGGGTCCCCC	TGGACCAGGT	GAAGGTGGCA	TTGCTCCTGG	GGAGCCTGGG	CTGCCGGGTC	4380
		CCCTGGACCC					4440
		GGATGGAGCT					4500
		ACCTCCTGGA					4560
40		TGGAGAGAAG					4620
40		TGCTGGACGT					4680
		AGAGAAGGGG					4740
		ACCCAAAGGA					4800
		AGGGGAACGG					4860
15		TGGAGACCGG					4920
45	ACTCAGGGCC	TCCTGGAGAG	AAGGGAGACC	CTGGGCGGCC	TGGCCCCCCA	GGACCTGTTG	4980
		ACGAGATGGT					5040 5100
	CGGGTTTGCC	TGGAAAAGCA	GGCGAGCGTG	GCCTTCGGGG	TOTAL CONTRACT	CCCACCCCTC	5160
	CTGTGGGTGA	AAAGGGAGAC ACCCAAGGGT	CAGGGAGATC	ACCCCCCTCC	CCCACGACCC	CCCCCACCCCIG	5220
50		AGGACCTGGA					5280
50		GCCCAAGGGT					5340
		GGGACCCCCA					5400
		CCGGGGTCCC					5460
		GCCCTCTGGG					5520
55		AGGCCTCCGT					5580
		GCCAGGCGAG					5640
		AGAAGACGGG					5700
	AAGGTCGTGA	TGGCCCCAAG	GCTGAGCGTG	GAGCTCCTGG	TATCCTTGGA	CCCCAGGGGC	5760
	CTCCAGGCCT	CCCAGGGCCA	GTGGGCCCTC	CTGGCCAGGG	TTTTCCTGGT	GTCCCAGGAG	5820
60	GCACGGGCCC	CAAGGGTGAC	CGTGGGGAGA	CTGGATCCAA	AGGGGAGCAG	GGCCTCCCTG	5880
	GAGAGCGTGG	CCTGCGAGGA	GAGCCTGGAA	GTGTGCCGAA	TGTGGATCGG	TTGCTGGAAA	5940
		CAAGGCATCT					6000
		GCCTGTGCCC					6060
		CAAGGAGGGC					6120
65	GTGGAGACCC	TGGCCCTCAG	GGGCCACCTG	GTCTGGCCCT	TGGGGAGAGG	GGCCCCCCG	6180
	GGCCTTCCGG	CCTTGCCGGG	GAGCCTGGAA	AGCCTGGTAT	TCCCGGGCTC	CCAGGCAGGG	6240
	CTGGGGGTGT	GGGAGAGGCA	GGAAGGCCAG	GAGAGAGGGG	AGAACGGGGA	GAGAAAGGAG	6300
	AACGTGGAGA	ACAGGGCAGA	GATGGCCCTC	CTGGACTCCC	TGGAACCCCT	GGGCCCCCCG	6360
	GACCCCCTGG	CCCCAAGGTG	TCTGTGGATG	AGCCAGGTCC	TGGACTCTCT	GGAGAACAGG	6420
70	GACCCCCTGG	ACTCAAGGGT	GCTAAGGGGG	AGCCGGGCAG	CAATGGTGAC	CAAGGTCCCA	6480
	AAGGAGACAG	GGGTGTGCCA	GGCATCAAAG	GAGACCGGGG	AGAGCCTGGA	CCGAGGGGTC	6540
	AGGACGGCAA	CCCGGGTCTA	CCAGGAGAGC	GTGGTATGGC	TGGGCCTGAA	GGGAAGCCGG	6600
	GTCTGCAGGG	TCCAAGAGGC	CCCCCTGGCC	CAGTGGGTGG	TCATGGAGAC	CCTGGACCAC	6660
	CTGGTGCCCC	GGGTCTTGCT	GGCCCTGCAG	GACCCCAAGG	ACCTTCTGGC	CTGAAGGGGG	6720
75	AGCCTGGAGA	GACAGGACCT	CCAGGACGGG	GCCTGACTGG	ACCTACTGGA	GCTGTGGGAC	6780
	TTCCTGGACC	CCCCGGCCCT	TCAGGCCTTG	TGGGTCCACA	GGGGTCTCCA	GGTTTGCCTG	6840
	GACAAGTGGG	GGAGACAGGG	AAGCCGGGAG	CCCCAGGTCG	AGATGGTGCC	AGTGGAAAAG	6900
	ATGGAGACAG	AGGGAGCCCT	GGTGTGCCAG	GGTCACCAGG	TCTGCCTGGC	CCTGTCGGAC	6960
00	CTAAAGGAGA	ACCTGGCCCC	ACGGGGGCCC	CTGGACAGGC	TGTGGTCGGG	CTCCCTGGAG	7020
80	CAAAGGGAGA	GAAGGGAGCC	CCTGGAGGCC	TTGCTGGAGA	CCTGGTGGGT	GAGCCGGGAG	7080
	CCAAAGGTGA	CCGAGGACTG	CCAGGGCCGC	GAGGCGAGAA	GGGTGAAGCT	GGCCGTGCAG	7140
	GGGAGCCCGG	AGACCCTGGG	GAAGATGGTC	AGAAAGGGGC	TCCAGGACCC	AAAGGTTTCA	7200
	AGGGTGACCC	AGGAGTCGGG	GTCCCGGGCT	CCCCTGGGCC	TCCTGGCCCT	CCAGGTGTGA	7260
95	AGGGAGATCT	GGGCCTCCCT	GGCCTGCCCG	GTGCTCCTGG	TGTTGTTGGG	TTCCCGGGTC	7320
85	AGACAGGCCC	TCGAGGAGAG	ATGGGTCAGC	CAGGCCCTAG	1 GGAGAGCGG	GGTCTGGCAG	7380
	GCCCCCAGG	GAGAGAAGGA	ATCCCAGGAC	CCCTGGGGCC	ACCTGGACCA	CCGGGGTCAG	7440
	TGGGACCACC	TGGGGCCTCT	GGACTCAAAG	GAGACAAGGG	AGACCCTGGA	GTAGGGCTGC	7500

		/086443					
			GGGGAGCCAG				7560
			ACGGGGCCCC				7620
	GTGATGTTGG	GAGTGCAGGA	CTAAAGGGTG	ACAAGGGAGA	CTCAGCTGTG	ATCCTGGGGC	7680
-	CTCCAGGCCC	ACGGGGTGCC	AAGGGGGACA	TGGGTGAACG	AGGGCCTCGG	GGCTTGGATG	7740
5	GTGACAAAGG	ACCTCGGGGA	GACAATGGGG	ACCCTGGTGA	CAAGGGCAGC	AAGGGAGAGC	7800
	CTGGTGACAA	GGGCTCAGCC	GGGTTGCCAG	GACTGCGTGG	ACTCCTGGGA	CCCCAGGGTC	7860
			CCTGGTGACC				7920
			GATGTTGGCT				7980
			GGCCTTGATG				8040
10			GCAGGACACA				8100
10			AAGGAGGGCC				8160
			GGTGACCAGG				8220
			AGTGGAAATG				8280
1 =			CCCGAAGGAC				8340
15	CCGGAGAGAG	AGTGGTGGGG	GCTCCTGGGG	TCCCTGGAGC	TCCTGGCGAG	AGAGGGGAGC	8400
	AGGGGCGGCC	AGGGCCTGCC	GGTCCTCGAG	GCGAGAAGGG	AGAAGCTGCA	CTGACGGAGG	8460
	ATGACATCCG	GGGCTTTGTG	CGCCAAGAGA	TGAGTCAGCA	CTGTGCCTGC	CAGGGCCAGT	8520
			CCCCTCCCTA				8580
			CGCGTCTCTC				8640
20			TACTCCGAGT				8700
20							8760
			CCCTGTTCCC				
			CGGGCTGTGA				8820
			AATGCCAACC				8880
0.5	GCTGCCCACC	CCGGGTGGTC	CAGAGCCAGG	GGACAGGTAC	TGCCCAGGAC	TGAGGCCCAG	8940
25	ATAATGAGCT	GAGATTCAGC	ATCCCCTGGA	GGAGTCGGGG	TCTCAGCAGA	ACCCCACTGT	9000
	CCCTCCCCTT	GGTGCTAGAG	GCTTGTGTGC	ACGTGAGCGT	GCGAGTGCAC	GTCCGTTATT	9060
	TCAGTGACTT	GGTCCCGTGG	GTCTAGCCTT	CCCCCCTGTG	GACAAACCCC	CATTGTGGCT	9120
			CTCACTGTGG				9180
			TTGACCCAAG				9240
30					CAIGGIGCIG	ATICIGGGG	3240
50	GCATTAAAGC	TGCTGTTTTA	AAAGGCAAAA	AA			
	-	63 Protein	-				
	Protein Acc	cession #: 1	NP_000085.1				
25							
35	1	ļı	21	31	41	51	
	j				1		
			VRAQHRERVT				60
	LEGLVLPFSG	AASAQGVRFA	TVQYSDDPRT	EFGLDALGSG	GDVIRAIREL	SYKGGNTRTG	120
	AAILHVADHV	FLPQLARPGV	PKVCILITDG	KSQDLVDTAA	QRLKGQGVKL	FAVGIKNADP	180
40			FSILRTLLPL				240
			GYKVQYTPLT				300
			GTARTTALEG				360
			LLRDLEPGTD				420
15			ARGYRLEWRR	ETGLEPPQKV	VLPSDVTRYQ		480
47							
45			PTGPELPVSP				540
72			PTGPELPVSP DLDDVQAGLS				540 600
7.7	VRSTQGVERT	LVLPGSQTAF	DLDDVQAGLS	YTVRVSARVG	PREGSASVLT	VRREPETPLA	
77	VRSTQGVERT VPGLRVVVSD	LVLPGSQTAF ATRVRVAWGP	DLDDVQAGLS VPGASGFRIS	YTVRVSARVG WSTGSGPESS	PREGSASVLT QTLPPDSTAT	VRREPETPLA DITGLQPGTT	600 660
72	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR	YTVRVSARVG WSTGSGPESS TVHVTQASSS	PREGSASVLT QTLPPDSTAT SVTITWTRVP	VRREPETPLA DITGLQPGTT GATGYRVSWH	600 660 720
	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS	600 660 720 780
50	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY	600 660 720 780 840
	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW	600 660 720 780 840 900
	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI	600 660 720 780 840 900 960
	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQ1LNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP	600 660 720 780 840 900 960 1020
50	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQ1LNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP	600 660 720 780 840 900 960 1020
	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQ1LNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSY1FSLTP	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV	600 660 720 780 840 900 960 1020
50	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILINASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA	LVLPGSQTAF ATRVRVAWGP REGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH	DLDDVQAGLS VPGASGFRIS ARTDPLGPVT DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT	600 660 720 780 840 900 960 1020
50	VRSTQGVERT VPGLRVVVSU YQVAVSVLRG SAHGPEKSQL RLQILNASSD QPEGGQEQSR ELRVVDTSID GYSYIFSLTP LALGPLGPQA AHRYMLAPDA	LVLPGSQTAF ATRVRVAWGP REGGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML	VRREPETPLA DITGLOPGTI GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL	600 660 720 780 840 900 960 1020 1080 1140
50	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPAA ARRYMLAPDA RRLAPGMDSV	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG WVLLVDEPLR SLDQAVSGLA	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG	600 660 720 780 840 900 960 1020 1080 1140 1200 1260
50	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRIAPGMDSV EMGLRGQVGP	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIRES TALCQASFTT SATAKGERGF	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG	600 660 720 780 840 900 960 1020 1080 1140 1200 1260
50 _. 55	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILMASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GYSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRLAPGMDSV EMGLRGQVGP APGLKGSPGL	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYV VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR GAPGPQGPPG GPRGPKGEPG	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG	600 660 720 780 840 900 960 1020 1140 1200 1320 1380
50	VRSTQGVERT VPELRVVVSI SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PLGDPGPRGP	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGF	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG PGPGEGGIAP	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTTG GPSGPPGPRG SPGPQGPVGP	600 660 720 780 840 900 960 1020 1140 1200 1260 1320 1380
50 _. 55	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGEP PGLPGTAMKG EDGAPGLPGQ	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG WVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGFKGEPG PKGDRGERGP PGSPGEQGPR	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQA GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE GPPGAIGPKG	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRIREPEP GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLGE	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPPG SPGPPGPPG SPGPQGPVGP AGEKGERGPP	600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500
50 _. 55	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILMASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRYMLAPDA EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGL QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLA GAPGPQGPPG GPRGPKGEPG PGSPGEQGPR EGPPGFTGRQ	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR ADIFSPIRES TALCQASFTT SATAKGERGF APGQVIGGEG PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLGE DPAVVGPAVA	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPPQGPVGP AGEKGERGPP GPKGEKGDVG	600 660 720 840 900 960 1080 1140 1200 1320 1380 1440 1500
50 _. 55	VRSTQGVERT VPELRVVVSU SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV	LVLPGSQTAF ATRVRVAWGP REGPPAAVIV VSGEATVAEL VLRITWVGVT VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAFGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGSPFGEQGPR LPGDPGFKGD	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GPPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEFGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG	VRREPETPLA DITGLOPGTI GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP PPGEKGDVGP	600 660 720 840 900 900 1020 1140 1200 1320 1380 1440 1500 1620
50 55 60	VRSTQGVERT VPELRVVVSU SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV	LVLPGSQTAF ATRVRVAWGP REGPPAAVIV VSGEATVAEL VLRITWVGVT VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLS GAPGPQGPPG GPRGPKGEPG PGSPGEQGPR EGPPGFTGRQ	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GPPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEFGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG	VRREPETPLA DITGLOPGTI GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP PPGEKGDVGP	600 660 720 840 900 960 1080 1140 1200 1320 1380 1440 1500
50 _. 55	VRSTQGVERT VPELRVVVSI SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GWSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG GPAGSRGLPG PGPFGPVGPP	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA QVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAFGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGSPFGEQGPR LPGDPGFKGD	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG GEKGEPGRPG PGDRGPIGLT PGKAGERGLR	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP GEPGLPGRKGDP GEPGLPGLPG DPAVVGPAV GRAGPPGDSG GRAGPPGDSG GAPGVRGPVG	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG EKGDQGPGE EKGDQGPGE	600 660 720 840 900 900 1020 1140 1200 1320 1380 1440 1500 1620
50 55 60	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV DGRNGSPGSS	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GRDGEVGEKG GRDGEVGEKG	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GMVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG PKGPRGEQGPR EGPPGPTGRQ LPGDPGPKGD DEGPPGDPGLUP	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE GPGGEGGIAP GPPGAIGPKG GEKGEPGRPG GEKGEPGRPG TGKAGERGLR TGPGAREKGE	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP GLPGRKGDP GEPGLPGRKGDP GEPGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLEELV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDPG EKGDQGDPGE GPKGDPGE GPKGDPGE	600 660 720 780 840 900 1020 1140 1200 1320 1380 1440 1500 1560 1620
50 55 60	VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILMASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG RGPPGPQGDP	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLG GAPGPQGPPG GPRGPKGEPG GPRGPKGEPG EGPPGPTGRQ LPGDPGPKGD LPGDPGPKGD LPGDPGPKGD EGPPGPTGRQ LPGDPGPKGD GPGPPGRIVD GVRGPAGEKG	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQRA TALCQASFTT SATAKGERGF APGQVIGGEG GPPGEGGIA GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLE TGPGAREKGE DRGPPGLDGR	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP GLPGRKGDP GEPGLPGLPG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG FGDRGVEGPP SGLDGKPGAA	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGR EKGDQGDPGE EKGDQGDPGE GPKGPPGLPG GPSGPNGAAG	600 660 720 840 900 900 1020 1140 1220 1380 1440 1500 1560 1620 1680 1740 1800
50 55 60	VRSTQGVERT VPELRVVVSI SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS KAGDPGGDGL	LVLPGSQTAF ATRVRVAWGP REGPAAVIV VSGEATVAEL VLRITWVGVT VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEFG GRGPPGPQDP PGLRGEQGLP	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGFKGD DEGPPGDPGL PPGPPGRLVD EVRGPAGEKG GPSGPPGLPG	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLR TGKAGERGLR TGFGAREKGE DRGPPGLIGK KPGEDGKPGL	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRAFVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR SGLDGKPGAD NGKNGEPGDP	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTFG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGR EKGDQGDPGE GPKGDPGLPG GPSGPNGAAG GEDGRKGEKG	600 660 720 780 840 900 1020 1140 1260 1320 1440 1560 1680 1740 1860
50 55 60	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF DGRNGSPGGL DGRNGSPGGL DGRNGSPGGL DGRNGSPGSS APGERGIEGF DGRAGGPGGL DSGASGREGR	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA QVQELLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGE PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QEERGPPGLV GRDGEVGEKG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPFGPQGDP PGLRGEQGLP DGPKGERGAP	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLIG SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGD DEGPPGDPGLPG PGPPGRLVD GVRGPAGEKG GPSGPPGLPG GPSGPPGLPG GILGPQGPPG GILGPQGPPG	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQA GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG GEKGEPGRPG FGKAGERGLR TGPGAREKGE DRGPFGLDGR KPGEDGKPGL LPGPVGPPGQ	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRAFFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR SGLDGKPGAR MGKNGEPGDTG	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PFGEKGDPG EKGDQGDPGE GPKGDPGLPG GPSGPNGAAG GEDGRKGEKG PKGDRGETGS	600 660 720 840 900 1020 1200 1200 1320 1380 1500 1560 1680 1740 1800 1740 1800
50556065	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV DGRNGSPGSS APGERGIEGF KAGDPGRDGI DSGASGREGR KGEQGLPGER	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QEERGPPGLV GRDGEVGEK GPKGDRGEPG RGPGPGPGDP GRDGEVGEK GPKGDRGEPG RGPGPGDP GLRGEQGLP GLRGEQGLP GLRGEGGAP GLRGEGGAP GLRGEPGSVP	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GPRGPKGEFG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGD DEGPPGDPGL PGPPGRLVD GVRGPAGEKG GPSGPFGPG GPSGPFGPG CFGPFGPGRQ LPGDPGPKGD DEGPPGRLVD GVRGPAGEKG GPSGPPGDPG GVRGPAGEKG GPSGPPGPG GULGPQGPPG NVDRLLETAG	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGGGIAP GPPGAIGPKG GEKGEPGRPIGL GEKGEPGRPIG TGKAGERGLR TGPGAREKGE DRGPPGLLDGR KPGEDGKPGL LPGPVGPPGL LPGPVGPPGL IKASALREIV	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDE, QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR SGLDGKPGAA NGKNGEPGDD GFPGPDGT GFPGPDGT GFPGVPGGTG ETWDESSGSF	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVI GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPG SPGPQGPVGP AGEKGERGPP GPKGEKGDPG EKGDQGDPGE EKGDQGDPGE GPKGDPGLPG GPSGPNGAAG GEDGRKGEKG LPVPERRRGP	600 660 720 840 900 1020 1080 1140 1260 1320 1380 1560 1560 1620 1740 1800 1800 1920
50 55 60	VRSTQGVERT VPELRVVVSI SAHGPEKSQL RLQILNASSD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG GPKGERGEP GLRGEQGLP DGPKGERGAP GLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEQSVP GKEGPIGFPG	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR LPGDPGPKGD DEGPPGPTGRQ LPGDPGPKGD DEGPPGRUD GVRGPAGEKG GPSGPPGLPG GVRGPAGEKG GPSGPPGLPG GILGPQGPPG GILGPQGPPG GILGPQGPG MVDRLLETAG ERGLKGDRGD	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGI ILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GPFGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLR TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGL IKASALREIV PGPQGPPGLA	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP GEFGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR SGLDGKPGAA NGKNGEPGDP GFFQVPGGTG ETWDESSGSF LGERGPPGPS	VRREPETPLA DITGLOPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP PGEKGDPG EKGDQGDPGE EKGDQGDPGE GPKGERGPG GPSGPNGAAG GEDGRKGEKG PKGDRGLFG FKGDRGLFG FKGRGEKGP KGDRGETGS LPVPERRRGP GLAGEPGKPS	600 660 720 780 840 960 1020 1140 1200 1320 1380 1440 1560 1680 1740 1860 1860 1920 2040
50556065	VRSTQGVERT VPELRVVVSIR SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEDGGPPGPPGLPGAGR	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA QVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG GRGPPGPQDP PGLRGEQGLP DGPKGERGAP GLRGEPGSVP GKEGPIGFPG VGEAGRPGERG	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GFRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGRCD DEGPPGDPGL PFGPPGRCLVD GVRGPAGEKG GPSGPPGLVG GILGPQGPPG GILGPQGPPG GTLGPQGPPG GTLGPQGPG GTLGPQG GTLGPG GTLGPQG GTLGPQG GTLGPG GTLGPG GTLGPG GTLGPG GTLGPG GTLGPG GTLGP	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGEGGIAP GPPGAIGPKG GEKGEPGRPC PGDRGPIGLT PGKAGERGLR TGPGAREKGE DRGPPGLIGE KPGEDGKPGL LPGPVGPPGQ LKASALREIV PGPQGPPGLA EQGRDGPPGL	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP GEPGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG FGDRGQEGPR SGLDGKPGAA NGKNGEPGDP GFPGVPGGTG ETWDESSGSF LGERGPPGPP PGTPGPPGPP	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGR EKGDQDPGE GPKGDPGLPG GPKGDPGLPG GPKGDRGLPG GPKGDRGEKG PKGDRGETGS LPVPERRRGP GLAGEPGKG GPKVSVDEPG	600 660 720 840 900 1020 1140 1260 1320 1380 1440 1560 1680 1740 1800 1800 1920 1980 2040 2100
50556065	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQG RRLAPGMDSV EMGLRGQVGP AFGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV DGRNGSPGSS APGERGIEGF KAGDPGRDGL NGCAGGERGERG KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEQGLPGER KGENGSEGGP PGLSGEQGPP	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA QVQELLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGE PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QERGPPGLV GRDGEVGEKG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGERGAP GLRGEPGSVP KEGPIGFPG VGEAGRPGER GLRGEPGEPG VGEAGRPGER GLKGAKGEPG	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLIN SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGD DEGPPGDPGL PGDPGRLVD GVRGPAGEKG GPSGPPGPG GPLGPGPGPG GPLGPGPGPG GPGPGPGPG CVGPAGEKG GPLGPPGPGPG GPLGPGPGPG GPGGPGPG GPGGPGPG GPGGPGC GRGEKGERG SNGDQGPKGD	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQA GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE GEKGEPGRPG GEKGEPGRPG GEKGEPGRPG GEKGEPGRPG TGBAGEKGE TGPGAREKGE DRGPFGLDGR KPGEDGKPGL LPGPVGPFGL IKASALREIV PGPQGPPGL RGVPGIKGDR	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRAVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR GGLDGKPGAA GKNGEPGDP GFFGVPGGTG ETWDESSGSF LGERGPPGPB GEPGPRGQDG	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPVGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGE EKGDQGDPGE EKGDQGDPGE GPKGDPGLPG GPSGPNGABG GEDGRKGEKG PKGDRGETGS LPVPERRRGP GLAGEPGKM GPKVSVDEPG NPGLPGERGM	600 660 720 840 900 1020 1080 11200 1260 1320 1380 1560 1620 1680 1740 1860 1920 1980 2040 2160
50556065	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV DGRNGSPGSS APGERGIEGF KAGDPGROGL DSGASGREGE KAGDPGROGL DSGASGREGE KGEQGLPGER KGDSGEQGPP IPGLPGRAGG PGLSGEQGPP AGPEGKPGLQ	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QEERGPPGLVG GRDGEVGEKG GPKGDRGEPG RGPPGPQGDP FGLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEGG GLRGEG GLRGEG GLRGEG GLRGEG GLRGEG GLRGEG GLRGEG GLRGE GLRGEG GLRGEG GLRGE GLRGE GLRGEG GLRGE GLR	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GPRGPKGEPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGD DEGPPGDPGL PGPPGBPKUD GVRGPAGEKG GPSGPPGLPG GPSGPPGLPG THE TOTAL TOTAL GREGKGERG GREGKGERG GRILGPQGPPG NVDRLLETAG ERGLKGDRG GRICGPKGD GRICGPKGD GERGEKGERG SRGLQGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GHGDPGPPGA	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGGGIAP GPPGAIGPKG GEKGEPGRPG GEKGEPGRPG TGKAGERGLR TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGL LRGPVGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQVPGIKGDR FGLAGPAGPQ	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP GLPGLPGLPG DPAVVGPAVA GRAGPPGDSC GAPGVRGDP GAPGVRGDP GAPGVRGPV GFGLPGLPG GFPGPPGPD GFPGPPGPD GFPGPPGPD GTPGPPGPP GTPGPPGPP GTPGPPGPP GPPGPRGQDG GPSGLKGEPG	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGDPG EKGDVG PPGEKGDPGE GPKGDPGLPG GPSGPNGAAG GEDGRKGEKG LPVPERRGP GLAGEPGKPG GPKVSVDEPG GPKVSVDEPG MPGLPGERGM ETGPPGRGLT	600 660 720 840 900 1020 1080 11400 1260 1320 1380 1560 1560 1740 1800 1920 1980 2040 2160 2220
5055606570	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV DGRNGSPGSS APGERGIEGF KAGDPGROGL DSGASGREGE KAGDPGROGL DSGASGREGE KGEQGLPGER KGDSGEQGPP IPGLPGRAGG PGLSGEQGPP AGPEGKPGLQ	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QEERGPPGLVG GRDGEVGEKG GPKGDRGEPG RGPPGPQGDP FGLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEGG GLRGEG GLRGEG GLRGEG GLRGEG GLRGEG GLRGEG GLRGEG GLRGE GLRGEG GLRGEG GLRGE GLRGE GLRGEG GLRGE GLR	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLIN SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGD DEGPPGDPGL PGDPGRLVD GVRGPAGEKG GPSGPPGPG GPLGPGPGPG GPLGPGPGPG GPGPGPGPG CVGPAGEKG GPLGPPGPGPG GPLGPGPGPG GPGGPGPG GPGGPGPG GPGGPGC GRGEKGERG SNGDQGPKGD	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGGGIAP GPPGAIGPKG GEKGEPGRPG GEKGEPGRPG TGKAGERGLR TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGL LRGPVGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQRDGPPGL EQVPGIKGDR FGLAGPAGPQ	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP GLPGLPGLPG DPAVVGPAVA GRAGPPGDSC GAPGVRGDP GAPGVRGDP GAPGVRGPV GFGLPGLPG GFPGPPGP GFPGPPGPD GFPGPPGPD GFPGPPGPP GTPGPPGPP GTPGPPGPP GPPGPRGQDG GPSGLKGEPG	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGDPG EKGDVG PPGEKGDPGE GPKGDPGLPG GPSGPNGAAG GEDGRKGEKG LPVPERRGP GLAGEPGKPG GPKVSVDEPG GPKVSVDEPG MPGLPGERGM ETGPPGRGLT	600 660 720 840 900 1020 1080 11200 1260 1320 1380 1560 1620 1680 1740 1860 1920 1980 2040 2160
50556065	VRSTQGVERT VPELRVVVSI SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGE KGEQGLPGE KGEQGLPGE IPGLPGRAGG PGLSGEQGPP IPGLPGRAGG PGLSGEQGPP AGPEGKPGLQ GPTGAVGLPG	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEFG GPKGPRGED GERGEQGLP DGPKGERGAP GLRGEQGLP GKEGPIGFPG VGEAGRPGEV GKEGPIGFPG VGEAGRPGER VGEAGRPGER GLKGAKGEPG GLKGAKGEPG GPKGPPGPVG PPGPSGLVG PPGPSGLVG	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GPRGPKGEPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGD DEGPPGDPGL PGPPGBPKUD GVRGPAGEKG GPSGPPGLPG GPSGPPGLPG THE TOTAL TOTAL GREGKGERG GREGKGERG GRILGPQGPPG NVDRLLETAG ERGLKGDRG GRICGPKGD GRICGPKGD GERGEKGERG SRGLQGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GRICGPKGD GHGDPGPPGA	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH HDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLR TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGL LPGPVGPPGL EQGRDGPPGLA EQGRDGPPG ETGKPGAPQ ETGKPGAPG	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR SGLDGKPGAA NGKNGEPGDP GFPGVPGGTG GFWDESSGSF LGERGPPGPP GEPGPRGQDP GEPGPRGQDP GEPGPRGQDP GEPGPRGQDP GEPGPRGQDG GPSGLKGEPG RDGASGKDGD	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTFG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGLPG GPKGDPGLPG GPKGDPGLPG GPKGDPGLPG GPKGDPGLPG GPKGPHGAG GEDGRKGEKG PKGDRGTGS LPVPERRRGP GLAGEPGKPG GPKVSVDEPG NPGLPGERGM ETGPPGRGLT RGSPGVPGSP	600 660 720 840 900 1020 1080 11400 1260 1320 1380 1560 1560 1740 1800 1920 1980 2040 2160 2220
5055606570	VRSTQGVERT VPELRVVVSIR SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GWSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS GPAGRATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGDSGEQGPP 1PGLPGRAGG PGLSGEQGPP AGPEGKPGLQ GPTGAVGLPG GPTGAVGLPG GLPGPVGPKG	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA QVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGE GPKGDRGEPG GRGPPGPUG GRDGEVGEKG GPKGDRGEPG GPKGERGAP GLRGEPGSVP GKEGPIGFPG VGEAGRAPG GLRGEPGSVP GKEGPIGFPG VGEAGRAPGERG GPKGERGAP GLRGEPGSVP GKEGPIGFPG VGEAGRAPGERG GPRGPPGPUG GPRGPPGPUG GPRGPPGPGPUG GPRGPPGPUG EPGPTGAPGQ	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ UPGDPGGLPGDPGL PGDPGGLVGDRGERGF PGSPGEVGEV GVRGPAGEKG GPSGPPGLVD GVRGPAGEKG GPSGPPGLVG GILGPQGPPG RVDRLLETAG GERGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GHGDPGPPGA QCSPGLPGQV AVVGLPGAKG	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG GEKGEPGRPG FGDRGPIGLT PGKAGERGLR TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGL LPGPVGPPGQ LKASALREIV PGPQGPPGLA EQGRDGPPGLA EQGRDGPPGL RGVPGIKGDR GETGKPGAPG EKGAPGGLAG	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP GEPGLPGLPG DRAFFEPDPG DRAFFEPDPG GRAFPPGDS GAPGVRGPVG FGDRQCEGPR SGLDGKPGAD MGKNGEPGDP GFPGVPGGTG ETWDESSGSF LGERGPPGPS GEPGPRGQDG GPSGLKGEPG GPSGLKGEPG GPSGLKGEPG DPASGLKGEPG DDGASGKGPG DDGASGKDGD DLVGEPGAKG DLVGEPGAKG	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPGBG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG EKGDPGLPG GPKGPGLPG GPSGPPGAAG GEDGRKGEKG PKGDRGETGS LPVPERRRGP GLAGEPGKP GLAGEPGKP GPKVSVDEPG NPGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGPRGE	600 660 720 840 900 1020 1080 1140 1260 1380 1500 1560 1580 1740 1800 1920 1980 2040 2160 2220 2280 2340
5055606570	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP PAGRAGE PGKKGEKGDS GPAGSRGLPG PAGPRGATG PGRPGPYGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSCASGREGG KGEQGLPGER KGDSGEQGPP IPGLPGRAGG PGLSGEQGPP AGPEGKPGLQ GPTGAVGLPG GPTGAVGLPG GPTGAVGLPG GLFGAVGLPG GLFGAVGEPK KCEAGRAGEF	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGE EDGAPGLPGQ VAGRPGAKGP QEERGPPGLVG GRDGEVGEKG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GPKGPGBPG GPKGPGBPG VGEAGRPGE GPKGPGPG VGEAGRPGE GPRGPGPGPG PPGPSGLVGP PPGPSGLVGP EPGPTGAPG GDPGEDGQKG	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGDL GVRGPAGEKG GPSGPPGLPG GVRGPAGEKG GPSGPPGLPG GULGPQGPPG NVDRLLETAG ERGLKGDRGD GERGEKGERG SNGDQGPKGD GHGDPGPPGA QGSPGLPGQ VGSPGLPGQ VDRLLETAG ERGLKGDRGD GERGEKGERG SNGDQGPKGD GHGDPGPPGA VGSPGLPGQV AVVGLPGAKG APGPKGFKGD	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQA GDIFSPIREA TALCQASFTT SATAKGERGF GPGGGGIAP GPPGAIGPKG GEKGEPGRPG GEKGEPGRPG GEKGEPGRDG TGPGALGE TGPGAREKGE DRGPFGLDG KPGPGLDGR LPGPVGPPGL LPGPVGPPGL LPGPVGPPGL LPGPVGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EXGAPGCA GEKGAPGCA GEKGAPGCA GEKGAPGCA GEKGAPGCA GEKGAPGCA GEKGAPGCA FGVGVFSFG	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRIMEPP GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLGD DAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR GGLDGKPGAA GRAGPPGDSG GAPGVRGPVG FFGVPGGTG ETWDESSGSF LGERGPPGPS LGERGPPGPS GGLGGPGRQDG GPSGLKGEPG RDGASGKDGD DLVGEPGAKG PPGPPGVKGD	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG GPSGPPGPRG EKGDVG PPGEKGDPGE GPKGDPGE GPKGDPGLPG GPSGPNGAAG GEDGRKGEKG LPVPERRGP GLAGEPGKP GPKVSVDEPG MPGLPGERGM ETGPPGRGLT RGSPGVEGP BRGLPGFGEM ETGPPGRGLT RGSPGVEGSP	600 660 720 840 900 1020 1080 11200 1260 1320 1560 1560 1620 1740 1860 1740 1860 2040 2100 2210 2220 2280 2340 2400
5055606570	VRSTQGVERT VPELRVVVSI SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS KAGDPGRDGL DSGASGREGR KGEQGLPGGR KGEQGLPGGP IPGLPGRAGG PGLSGEQGPP IPGLPGRAGG GPTGAVGLPG GPTGAVGLPG GKGEAGRAGEP GLFGFKPGLQ GPTGAVGLPG GKGEAGRAGEP GVVGFPGQTG	LVLPGSQTAF ATRVRVAWGP REGPPAAVIV VSGEATVAEL VLRITWVGVT VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGR PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGPRGERG GPKGPRGERG GPKGPRGERG GLKGEQGLP UGERGEQGLP DGPKGERGAP GLKGEQGLP GKGGPIGFPG VGEAGRPGER GLKGAKGEP GKGGPPGPVG FGEGPGPVG FGEGPGPVG PGPGPGPVG PGPGPGPVG PFGPSGLVGP EPGPTGAPGQ GDPGEDGQKG PRGEMGQPGP	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR MVLLVDEPLR SLDQAVSGLA GAFGPQGPPG DKGDRGERGP GSPGEQGPR EGPPGPTGRQ LPGDPGPKGD DEGPPGDPGL PFGPPGRLV GVKGPAGEKG GPSGPPGLPG GVKGPAGEKG GPSGPPGLPG GVKGPAGEKG GPSGPPGLPG GVKGPAGEKG GPSGPPGLPG GVGPAGEKG GPSGPPGLPG GVGPAGEKG GPSGPPGLPG GVGPAGEKG GPSGPPGLPG AVVGLPGAKG QSSPGLPGQV AVVGLPGAKG APGPKGFKGD SGERGLAGPP	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH HDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGKR TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGLA EQGRDGPPGLA EQGRDGPPGLA EQGRDGPPGLA EQGRDGPPGLA EQGRDGPPGLA EQGRDGPPGLA EQGRDGPGC GETGKPGAPG GETGKPGAPG GETGKPGAPG GRGQPGSPG GRGQIPGPLG	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE LTRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEFGLPGLPG DRAVEGPPGDSG GAPGVRGPVG GAPGVRGPVG GFRUPGSP GTPGPPGPP GETWDESSGSF LGERGPPGPS PGTPGPPGPP GEPGPRGQDG GPSGLKGEPG RDGASGKDGD DLVGEPGAKG PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD	VRREPETPLA DITGLOPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGBPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGEROPG EKGDQGDPGE GPKGENGDPGE GPKGPNGAAG GEDGRKGEKG EKGDPGBFG GPKGPNGAAG GEDGRKGEKG PKGDRGLTGS LPVPERRRGP GPKVSVDEPG NPGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGERGM EGLPGERGB EGLPGERGB EGLPGERGB EGLPGERGB EGLPGERGB EGLPGERGB EGLPGERGB EGLPGERGB EGLPGERGB	600 660 720 780 840 900 1020 1140 1200 1320 1380 1440 1560 1680 1740 1860 1980 2040 2160 2220 2280 2240 2400 2460
5055606570	VRSTQGVERT VPELRVVVSIR SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER GLBGGGQGP IPGLPGRAGG PLLGGGGGGG PGLSGEQGPP GPTGAVGLPG GPTGAVGLPG GLPGPVGPKG KGEAGRAGEP GUPGPVGPKG KGEAGRAGEP GVGFPGQTG GVPGVGLPGF	LVLPGSQTAF ATRVRVAWGP REGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGELSSYH SVTLAWTPVS VLDGELSSYH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QERGPPGLV GRDGEVGEKG GPKGDRGEPG GPKGERGAP GLRGEPGSVP GLRGEPGSVP VGEAGRPGERG GLKGAKGEPG VGEAGRPGERG GPKGERGPGPG VGEAGRPGERG GPRGPGPGP VGEAGRPGERG GPRGPPGPV PGPSGLVGP EPGPTGAPGQ GPRGEMGQPG PRGEMGQPGP RGERGEPGIR	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GFRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGR LUPGDPGPKGD DEGPPGDPGL PGGPPGPCBC GILGPQGPPG GILGPQGPPG GILGPQGPPG GILGPQGPPG GERGLKGDRGD ERGLKGDRGD GERGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD QGSPGLPGQV AVVGLPGAKG APGPKGFKGD GGERGLAGPP GGERGLAGPP GGERGLAGPP GEDGRPGQEG	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGEGGIAP GPPGAIGPKG GEKGEPGRPC PGDRGPIGLT PGKAGERGLR TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGQ LKASALREIV PGPQGPPGLA EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL GETGKPGAPG EKGAPGGPG EKGAPGGLAG PGUSPG EKGAPGGLAG PGUSPG EKGAPG EK	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSD GEPGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG FGDRGQEGPR SGLDGKPGAA NGKNGEPGDP GFPGVPGGTG ETWDESSGSF PGTPGPPGPP GEPGPRGQDG GPSGLKGEPG DLVGEPGKG DLVGEPGKG PFGPPGVKGD DLVGEPGKG PFGPPGSVGP RGERGEKGDV	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGL GPKGDPGLPG GPSGPPGAAG GEDGRKGEKG PKGDRGETGS LPVPERRRCP GLAGEPGRG GPKGPKGEKG GPKVSVDEPG NPGLPGERGM ETGPPGRGLT RGSPGVPCSP DRGLPGLPGAE LGLPGLPGAE LGLPGLPGAP GSAGLKGDKG	600 660 720 780 840 900 1020 1140 1260 1320 1560 1560 1680 1740 1860 1920 2040 2160 2220 2340 2460 2460 2520
505560657075	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GWSYIFSLTP LALGPLGPQG RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS GPAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEQGLPGER GPTGAVGLPG GLFGPVGPKG KGEAGRAGEP GVGFPGQTG GDFGVGLPG GDFGVGLPG GDFGVGLPG DSAVILGPPG	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG GPPGPQDPG GRDFGERGAP GLRGEPGSVP GKEGPIGFP GKGERGAP GLRGEPGSVP GKEGPIGFP GPRGPGPGPG GPPGPGGDP GPGPGGDPGPG GPGPGGPGPGPG GPGPGPGP	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLIN SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGRLVG EGRLKGDRG GPSGPPGLYG GILGPQGPPG GPLGPC GREGERGE GREGERGERG AVDGLETAG GERGEKGERG SNGDQGPKGD GHGDPGPCA AVGLIPGAKG APGPKGFB GEGERGLAGPP GEDGRPGQEG RGPRGLOGDK	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVVQGES PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE APGAGIGPKG GEKGEPGRPG GEKGEPGRPG FGDRGPIGLT FGKAGERGLR TGPGAREKGE LFGPVGPFGL LFGPVGPPGL KASALREIV PGPQGPPGL RGVPGIKGDR RGUFGRPGL RGVPGIKGDR FGLAGPAGPG GETGKPGAPG GEKGAPGGPG GETGKPGAPG GEKGAPGGPG GETGKPGAPG GEKGAPGGPG GREGIPGPG GREGIPG	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSPP PGLPGRKGDP GEPGLPGLPG DRAVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR GGLDGKPGAD GFPGVPGGT ETWDESSGSF LGERGPPGST LGERGPPGPP GEPGPRGQDG GPSGLKGEPG RDGASGKDG DLVGEPGAKG PPGPPGVKGD PKGSKGEPGD DKGSKGEPGD DKGSKGEPGD DKGSKGEPGD DKGSKGEPGD	VRREPETPLA DITGLQFGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPVGPYGP AGEKGEROPG PFGEKGDPGE GPKGDPGLPG GPSGPNGABG GEDGRKGEKG PKGDRGETGS LPVPERRGP GLAGEPGKRG GRAGEFGKG TGSPPGRGBT SCHAGEPGKGP GPKGSVDE TGSPPGRGBT LGPGPGGE LGLGEPGKGP RGLAGEPGKGP RGLAGEPGKGP RGLAGEPGKGB LGLPGLPGAP PGASGLKGDK GKGSAGLKGDK KGSAGLKGDK KGSAGLKGDK KGSAGLFGLR	600 660 720 840 900 1020 11200 1260 1320 1500 1560 1560 1680 1740 1800 1920 2100 2100 2220 22340 2440 2450 2580
5055606570	VRSTQGVERT VPELRVVVSI VPELRVVVSI SAHGPEKSQL RLQILNASSD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER GPGLSGEQGPP IPGLPGRAGG PGLSGEQGPP GLSGEQGPP GLSGEQGPP GLPGPVGPKG GUPGPVGPKG GUPGPC GUPGPVGPKG GUPGPKG GUPG GUP	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG GPKGPRGPGDP GLRGEQGLP GLRGEPGSVP GKEGPIGFPG VGEAGRPGER GLKGEPGSVP GKEGPIGFPG VGEAGRPGER GLKGAKGEPG GPRGPFGPVG PFGPSGLVGP PFGPSGLVGP PFGPSGLVGP PFGPSGLVGP PFGPFGAFG PRGEMGQPGP RGERGEPGIR RGERGEPGIR RGERGEPGIR PRGAKGDMGE AAGIPGDGS	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP DSSPGEQGPR LPGDPGPKGD DEGPPGRLVD GYNGPAGEKG GPSGPPGLPG GILGPQGPPG GILGPQGPPG GILGPQGPRG GERGEKGERG GRGEKGERG GRGEKGERG GHGDPGPGA QGSPGLPGQV AVVGLPGAKG APGPKGKG SGERGLAGPP GEDGRPGQEG GRGPRGLDGDK RGRGRGLDGDK RGRGRGLDGDK RGKDGVPGIR	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGI ILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG PGPGEGGIAP GPFGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLA KPGEDGKPGL LPGPVGPPGLAG KKAGERGF KPGEDGKPGL LPGPVGPPGLAG EQGRDGPPGL EQGRDGPGC EGGRGPGPG GETGKPGAPG GEGGIPGPLG PRGLIGPPGS GREGIPGPLG PRGLIGPPGS GPRGDNGDPG GEKGDVGFMG	PREGSASVLT QTLPPDSTAS SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLMVVML QPRPEPCPVY PGADGRPGSP GEPGLPGLPG DPAVVGPAVA GRAGPPGDSG GAPGVRGPV GGDRGQEGP SGLDGKPGAA MGKNGEPGDP GFPGPLGE GTWDESSGSF LGERGPPGPS GTPGPPGPP GEPGPRGQDG GPSGLKGEPG RDGASGKDGD DLVGEPGAKG PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD PGPGPCKGD PGPGPCKGD PGPGSVGP RGERGEKGDV RGERGEKGDV PGPPGSVGP RGERGEKGDV PRGLKGEPGD PRGLKGEPGD PRGLKGEPGD PRGLKGEPGD	VRREPETPLA DITGLOPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLY GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP PGEKGDPGR EKGDQGDFGE GPKGPAGPAG GPKGPKGPKG GPSGPNGAAG GEDGRKGEKG PKGDPGLPG GPKGPNGAAG GEDGRKGEKG PKGDPGLPG GPKGVSVDEPG NPGLPGREG NPGLPGREG NPGLPGREG LGLPGLPGREG LGLPGLPGREG LGLPGLPGRAG GSAGLKGDK GSAGLKGDK KGSAGLKGDK KGSAGLPGLE KGSAGLPGLE KGSAGLPGLE KGACGLDGEK	600 660 720 840 900 1020 1260 1320 1320 1560 1560 1560 1740 1800 1740 2140 2100 22160 2220 2280 2280 2400 2460 2520 2580 2640
505560657075	VRSTQGVERT VPELRVVVSI SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS KAGDPGRDGL DSGASGREGR KGEQGLPGG PGLPGRAGG PGLPGRAGG GPLPGRAGG GPLSGEQGPP IPGLPGRAGG GPLPGRAGG GPLPGRAGG GPLPGRAGG GPLPGRAGG GPTGAVGLPG GPTGAVGLPG GLFGPVGLPG GDFGVGLPGP GDFGVGLPGP GDLGPGQQPG GDKGEAGPPG	LVLPGSQTAF ATRVRVAWGP REGPPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGPRGERG GPKGPRGERG GPKGPRGEP GLKGEQGLP DGPKGERGAP GLKGEYGVP GKEGPIGFPG VGEAGRPGER GLKGAKGEPG GPRGPPGPVG PFGPSGLVG PFGPSGLAGHKG	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP DSGPPGDFGRQ LPGDPGPKGD DEGPPGDFGRQ LPGDPGPKGD DEGPPGDPGR GVRGPAGEKG GPSGPPGLPG GVRGPAGEKG GPSGPPGLPG GVBCPGRGD GERGEKGERG GPSGPPGLPG AVVGLPGAG QGSPGLPGQV AVVGLPGAKG SGERGLAGPP GEDGRPGQEG RGPRGLDGDR KGKDRGPG GEDGRPGQEG RGPRGLDGDR KGKDRGPG GEDGRPGQEG RGPRGLDGDR KGKDRGPG KGKDRGP	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH HDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPFGLIGT TGKAGERGLR TGPGAREKGE RGPGPGBGGHAP GPGAGERGR KPGEDGKPGL LPGPVGPPGLAG EQGRDGPPGLAG EQGRDGPPGLAG EQGRDGPPGLAG EQGRDGPGC GGYGGPGC GGYGGPGC GGTGRPGC GGTGC GGTG GGTG GGTGC GGTG G	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE LRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEFGLPGLPG DRAVFPGDSG GAPGVRGPPG GAPGVRGPVGGTG GFFGPVPGGTG GFFGPPGPP GEFGPRGQDG GFFGPPGPP GEFGPRGQDG GFSGLKGEPG RDGASGKDGD DLVGEPGAKG PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD PRGPKGDP RGEKGBV RGERGEKGDV DKGSKGEPGD RGEKGEVGP PRGLKGERGV PKGDRGFDGQ PKGDRGFFGD	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGBPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERCPP GPKGEKGDPG EKGDQGDPGE GPKGPDGLPG EKGDQGDPGE GPKGPDGLPG EKGDQGDFG GPSGPNGAAG GEDGRKGEKG PKGDPGLPG EKGDQGDFG GPSGPNGAAG GEDGRKGEKG PKGDRGLTGS LPVPERRRGP GPKVSVDEPG NPGLPGERGM TGSPGVPGSP DRGLPGERGM TGSPGVPGSP DRGLPGERGM GSAGLKGDK GSAGLKGDK GSAGLKGDK KGSAGLPGLR KGACGLDGEK PGPKGDQGEK	600 660 720 780 840 900 1020 1140 1200 1320 1380 1440 1560 1680 1740 1860 1920 2140 2140 2240 2240 2240 2240 22520 22520 2250 2264 2700
505560657075	VRSTQGVERT VPELRVVVSIR SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GWSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGLKGSPGL PGLKGSPGL PGAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER GLLGGEQGPP IPGLPGRAGG PLSGEQGPP GPTGAVGLPG GPTGAVGLPG GPTGAVGLPG GPPGVGPKG KGEAGRAGEP GVGFPGQTG GDPGVGLPGP GDKGEAGPPG GERGTPGIGG	LVLPGSQTAF ATRVRVAWGP REGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGELSSYH SVTLAWTPVS VLDGELSSYH FGRRQHVPGV QTFFAVDDGP FGDPGLPGRT FGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKG GPKGPRGENG GPKGPRGPGV GROGEVGEKG GPKGPRGPGP GERGPPGPVG KEGPIGFPG VGEAGRAGE GLKGAKGEPG GPRGPCGPG PRGPRGPGPG GPRGPPGPVG PFGPSGLVGP EPGPTGAPG GPRGENGQPG FRGERGQPG FRGERGQPG RGERGEPGIR RGERGEPGIR PRGAKGDMGE AAGIPGDPGS APGLAGHKGE FPGPSGNDGS	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGR DEGPPGPTGR QVRGPAGEKG GPSGPPGLVG GILGPQGPPG GILGPQGPPG GULGPQGPPG GVRGPAGEKG GPSGPPGLPG GERGEKGERG GNGDQGPKGD GERGEKGERG SNGDQGPKGD GHGDPGPPG AVVGLPGAKG APGPRGFKGD GERGEKGERG SNGDQGPKGD GSPGLPGQV AVVGLPGAKG APGPRGFRGL GEDGRPGQEG RGPRGLDGDK PGKDGVPGIS RGPRGLDGDK PGKDGVPGIS RGPRGLDGDK PGKDGVPGQS AGPPGPPGSSV	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGEGGIAP GPGEGGIAP GPPGAIGPKG GEKGEPGRPC PGDRGPIGLT PGKAGERGLR TGPGAREKGE RGPPGLDGR KPGEDGKPGL LPGPVGPPGL LPGPVGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL RGVPGIKGDP GEKGAPAGP GEKGAPGGP GETGKPGAPG GETGKPGAPG GRGPIGPG GRGPIGPG GRGPIGPG GRGPGPG GRGPG GRGP GRGPG GRGP GR	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG FGDRGQEGPR SGLDGKPGAA NGKNGEPGDP GFPGVPGGTG ETWDESSGSF PGTPGPPGPP GEPGPRGQDG GPSGLKGEPG DLVGEPGAKG PPGPPGSVG DLVGEPGKG PPGPPGSVG PRGERGEKGDV DKGSKGEPGD PRGERGEKGDV DKGSKGEPGD PRGERGEKGPV PKGDRGFDGQ QKGERGPPGE	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPGRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGL GPKGDPGLPG GPSGPPGAAG GEDGRKGEKG PKGDRGETGS LPVPERRRGP GLAGEPGKPG GPKUSVDEPG NPGLPGERGM ETGPPGRGT GSPGVPGSP DRGLPGERGM ETGPPGRGLT GSPGVPGSP DRGLPGLPGLPGAP GSAGLKGDKG KGSAGLKGDKG KGSAGLFGLR KGACGLDGEK KGACGLDGEK RGPKGDQGEK RVVGAPGVPG	600 660 720 840 900 1020 1260 1320 1320 1560 1560 1560 1740 1800 1740 2140 2100 22160 2220 2280 2280 2400 2460 2520 2580 2640
505560657075	VRSTQGVERT VPELRVVVSIR SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GWSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGLKGSPGL PGLKGSPGL PGAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER GLLGGEQGPP IPGLPGRAGG PLSGEQGPP GPTGAVGLPG GPTGAVGLPG GPTGAVGLPG GPPGVGPKG KGEAGRAGEP GVGFPGQTG GDPGVGLPGP GDKGEAGPPG GERGTPGIGG	LVLPGSQTAF ATRVRVAWGP REGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGELSSYH SVTLAWTPVS VLDGELSSYH FGRRQHVPGV QTFFAVDDGP FGDPGLPGRT FGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKG GPKGPRGENG GPKGPRGPGV GROGEVGEKG GPKGPRGPGP GERGPPGPVG KEGPIGFPG VGEAGRAGE GLKGAKGEPG GPRGPCGPG PRGPRGPGPG GPRGPPGPVG PFGPSGLVGP EPGPTGAPG GPRGENGQPG FRGERGQPG FRGERGQPG RGERGEPGIR RGERGEPGIR PRGAKGDMGE AAGIPGDPGS APGLAGHKGE FPGPSGNDGS	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP DSGPPGDFGRQ LPGDPGPKGD DEGPPGDFGRQ LPGDPGPKGD DEGPPGDPGR GVRGPAGEKG GPSGPPGLPG GVRGPAGEKG GPSGPPGLPG GVBCPGRGD GERGEKGERG GPSGPPGLPG AVVGLPGAG QGSPGLPGQV AVVGLPGAKG SGERGLAGPP GEDGRPGQEG RGPRGLDGDR KGKDRGPG GEDGRPGQEG RGPRGLDGDR KGKDRGPG GEDGRPGQEG RGPRGLDGDR KGKDRGPG KGKDRGP	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGEGGIAP GPGEGGIAP GPPGAIGPKG GEKGEPGRPC PGDRGPIGLT PGKAGERGLR TGPGAREKGE RGPPGLDGR KPGEDGKPGL LPGPVGPPGL LPGPVGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL RGVPGIKGDP GEKGAPAGP GEKGAPGGP GETGKPGAPG GETGKPGAPG GRGPIGPG GRGPIGPG GRGPIGPG GRGPGPG GRGPG GRGP GRGPG GRGP GR	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG FGDRGQEGPR SGLDGKPGAA NGKNGEPGDP GFPGVPGGTG ETWDESSGSF PGTPGPPGPP GEPGPRGQDG GPSGLKGEPG DLVGEPGAKG PPGPPGSVG DLVGEPGKG PPGPPGSVG PRGERGEKGDV DKGSKGEPGD PRGERGEKGDV DKGSKGEPGD PRGERGEKGPV PKGDRGFDGQ QKGERGPPGE	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPGRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGL GPKGDPGLPG GPSGPPGAAG GEDGRKGEKG PKGDRGETGS LPVPERRRGP GLAGEPGKPG GPKUSVDEPG NPGLPGERGM ETGPPGRGT GSPGVPGSP DRGLPGERGM ETGPPGRGLT GSPGVPGSP DRGLPGLPGLPGAP GSAGLKGDKG KGSAGLKGDKG KGSAGLFGLR KGACGLDGEK KGACGLDGEK RGPKGDQGEK RVVGAPGVPG	600 660 720 780 840 900 1020 1140 1200 1320 1380 1440 1560 1680 1740 1860 1920 2140 2140 2240 2240 2240 2240 22520 22520 2250 2264 2700
50556065707580	VRSTQGVERT VPELRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQG RRLAPGMDSV EMGLRGQVGP AFGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGFPGPVGPR DGRNGSPGSS AFGERGIEGF KAGDPGROBE KAGDPGROBE LFGLPGERGP PGLSGEQGPP AGPEGKPGLQ GPTGAVGLPG GLJFGPVGLPG GUFGPVGLPG GLJFGPVGLPG GLJFGPG GLJFGPVGLPG GLJFGPVGLPG GLJFGPVGLPG GLJFGPVGLPG GLJFGPVGLPG GLJFGPVGLPG GLJFGPVGLPG GLJFGPGGLGG APGERGTPGIGG APGERGEGGGR	LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA QVVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG GPKGBRGAP GLRGEPGSV GPKGBRGAP GLRGEPGSV GPGBPGGUVG PPGPSGLVG PPGPSGLVG PPGPSGLVG PRGEMGQPGP REERGEPGIR PRGAKGDMGE AAGIPGDPGS RPGLAGHKGE FPGPSGNDGS FPGPSGNDGS FPGPAGRGEK	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLIN SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGRCBCPG EGPPGPTGRQ GVRGPAGEKG GPSGPPGPG GILGPQGPPG GILGPQGPPG GULGPGCPG GULGPGCPG AVVGLETAG GERGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GHGDPGPCA AVGLPGAKG APGPKGF GERGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GHGDPGPCA AVGLPGAKG APGPKGFKGD SGERGLAGPP GEDGRPGQCE RGPRGLDGDK PGKDGVPGIR MGEPGVPGQS AGPPGPGSV GEAALTEDDI	YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE PGPGAIGPKG GEKGEPGRPG GEKGEPGRPG GDRGPIGLT TGPGAREKGE DRGPPGLDGR LPGPGRPGL LFGPGRPGL LFGPGRPGL LFGPGRPGL RGVPGIKGDR PGLAGPAGPQ GETGKPGAPG GEKGAPGGPG GETGKPGAPG GEKGAPG GRUPGIKGDR PGLAGPAGPC GETGKPGAPG GETGKPGAPG GETGKPGAPG GETGKPGAPG GETGKPGAPG GEKGAPGGLAG PGVGVPGSPG GREGIPGPG GRGLTGPPGS GRGLTGPPGS GPRGDNGDPG GEKGDVGFMG GAPGKEGLIG GPRGPEGLQG RGFVRQEMSQ	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPY GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSPP PGLPGRKGDP GEPGLPGLPG DRAVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR GGLDGKPGAD GFRGPPGPSG ETWDESSGSF LGERGPPGPP GEPGPRGQDG GPSGLKGEPG RDGASGKDG DLVGEPGAKG PPGPPGVKGD PFGPPGVKGD PGPPGVKGD PGGPGSVGP PGPPGVKGD PFGPPGVKGD PFGPPGVKGD PFGPPGVKGD PFGPPGVKGD PFGPPGVKGD PFGPPGVKGD PFGPPGVKGD PFGPPGVKGD PFGPPGVKGD PFGPFGVKGD PFGLKGERGPV PKGDRGFDGQ QKGERGPPGE HCACQQFIA	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPVGPRG SPGPCGPVGP AGEKGDVG PPGEKGDPGE GPKGDPGE GPKGDPGE GPKGDPGE GPKGDPGE GPKGDPGE GPKGDRGETGS LAPUPERRRGP GLAGEPGKRG GRAGEFGKP RGSPGPVPGSP NPGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGEPGB LGLPGLPGAP PGASGLKGDK GSAGLKGDK GSAGLKGDK GSAGLKGDK KGSAGLFGLR KGACGLDGEK PGPKGDQGEK RVVSGPGPVPGS SGSRPLPSYA	600 660 720 840 900 1020 1080 11200 1260 1380 1500 1560 1620 1620 2040 2100 22100 22100 2220 2280 2340 2400 2450 2580 2750 2820
50556065707580	VRSTQGVERT VPELRVVVSI VPELRVVVSI SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER GPTGAVGLPG GPTGAVGLPG GLIGPGVGLPG GVGFPGQTG GDPGVGLPGP CSLGEQGPP DSAVILGPPG GDKGEAGPPG GLIGPQGQPG GDKGEAGPPG GERGTPGIGG APGERGEQGR ADTAGSQLHA	LVLPGSQTAF ATRVRVAWGP REGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDPELSSYH SVTLAWTPVS QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ QCERGPPGLV GRDGEVGEKG GPKGPRGPGDP PGLRGEQGLP DGPKGERGAP GLKGEPGSVP GKGGPIGFPG VGEAGRPGER GLKGEPGSVP GKGGPIGFPG VGEAGRPGEPG GPRGPPGPQ GPGPPGPQGP PGLRGEQGLP PGLRGEQGLP RGEAGRPGER GLKGAKGEP GRGPPGPVG PPGPSGLVGP RGERGEPGIF RGAKGDMGE AAGIPGDPGS RPGLAGHKGE FPGPSGNDGS RPGLAGHKGE FPGPSGNDGS RPGLAGHKGE FPGPAGPRGEK VPVLRVSHAE	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP DSSPGEQGPR LPGDPGPKGD DEGPPGDPGRU DFGPPGRUD GVRGPAGEKG GPSGPPGLPG GILGPQGPPG GULGPQGPG GHGPPGRUD GERGEKGERG GPSGPPGLPG GHGDPGPGG GHGDPGPGG GRGFKGERG GRGFKGERG GRGFKGDGG GRGFKGDGG GRGFKGDGG GRGFKGDGG GRGFKGDGG GRGFKGDGG GRGFKGDGG GRGFKGDGG AVVGLPGAKG ASGPGLPGQV AVVGLPGAKG ASGPGLPGQV AVGLPGAKG GRGFKGDG GRGFRGLDGDK FGKDGVPGIR MGEPGVPGQS AGPPGPPGSV GEAALTEDDI EEERVPPEDD	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGI ILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLA TGPAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGL EQGRDGPPGL EGGPGCBC EKGAPGGAPG GETGKPGAPG GETGKPGAPG GETGKPGAPG GRGFTFGPGS GPRGDNGDPG GEKGDVGFMG GAPGKEGLIG GPRGPEGLQG GRGFVRQEMSQ EYSEYSEYSV	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE QREPGLPGIS ATQDNAHRAE QREPGLPGLPG GEFGLPGLPG DRGFPGPLGE GEFGLPGLPG GEFGLPGLPG DRAVGPAVA GRAGPPGDSG GAPGVRGPVG GAPGVRGPVG GFDGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPG	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP PGEKGDPGP EKGDQGDPGE GPKGEKGDPG GPSGPNGAAG GEDGRKGEKG FRGDPGLPG GPKGPKGEKGPPG GPKGPKGEKGPPG GPKGPKGEKGPPG GPKGPGPGPG GPKGPNGAAG GEDGRKGEKG PKGDRGETGS LPVPERRGP GLAGEPGKGE GPKGVSVDEPG NPGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGFRGE LGLPGLPGRG KGSAGLKGDK GSAGLKGDK KGACGLDGEK PGPKGDQGEK RVVGAPGVPG SGSRPLPSYA DSDDPCSLPL	600 660 720 780 840 900 1020 1140 1200 1140 1560 1680 1740 1860 1980 2040 2160 2220 2280 2240 22520 2460 2700 2760 2760 2880
505560657075	VRSTQGVERT VPELRVVVSI SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS KAGDPGRDGL DSGASGREGR KGEQGLPGE KGEQGLPGE KGEQGLPGE CDLFGEQGPP IPGLPGRAGG PGLLSGEQGPP IPGLPGRAGG GLLGGEQGP GPTGAVGLPG GPTGAVGLPG GULPGPVGPK GEAGRAGG GULPGPVGPK GEAGRAGG GULPGPVGPK GEAGRAGG GULPGPUGPK GEAGRAGG GULPGPVGPK GEAGRAGG GULPGPVGPK GEAGRAGG GULPGPVGPK GEAGRAGG GULPGPVGPK GEAGRAGG GULFGPVGPK GEAGRAGG AGGEGGP DSAVILGPPG GLLGPQGPG GDKGEAGPPG GERGTPGIGG APGERGEQGR ADTAGSQLHA DEGSCTAYTL	LVLPGSQTAF ATRVRVAWGP REGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDPELSSYH SVTLAWTPVS QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ QCERGPPGLV GRDGEVGEKG GPKGPRGPGDP PGLRGEQGLP DGPKGERGAP GLKGEPGSVP GKGGPIGFPG VGEAGRPGER GLKGEPGSVP GKGGPIGFPG VGEAGRPGEPG GPRGPPGPQ GPGPPGPQGP PGLRGEQGLP PGLRGEQGLP RGEAGRPGER GLKGAKGEP GRGPPGPVG PPGPSGLVGP RGERGEPGIF RGAKGDMGE AAGIPGDPGS RPGLAGHKGE FPGPSGNDGS RPGLAGHKGE FPGPSGNDGS RPGLAGHKGE FPGPAGPRGEK VPVLRVSHAE	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLIN SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGRCBCPG EGPPGPTGRQ GVRGPAGEKG GPSGPPGPG GILGPQGPPG GILGPQGPPG GULGPGCPG GULGPGCPG AVVGLETAG GERGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GHGDPGPCA AVGLPGAKG APGPKGF GERGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GHGDPGPCA AVGLPGAKG APGPKGFKGD SGERGLAGPP GEDGRPGQCE RGPRGLOGDK PGKDGVPGIR MGEPGVPGQS AGPPGPGSV GEAALTEDDI	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGI ILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLA TGPAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGL EQGRDGPPGL EGGPGCBC EKGAPGGAPG GETGKPGAPG GETGKPGAPG GETGKPGAPG GRGFTFGPGS GPRGDNGDPG GEKGDVGFMG GAPGKEGLIG GPRGPEGLQG GRGFVRQEMSQ EYSEYSEYSV	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE QREPGLPGIS ATQDNAHRAE QREPGLPGLPG GEFGLPGLPG DRGFPGPLGE GEFGLPGLPG GEFGLPGLPG DRAVGPAVA GRAGPPGDSG GAPGVRGPVG GAPGVRGPVG GFDGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPG	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP PGEKGDPGP EKGDQGDPGE GPKGEKGDPG GPSGPNGAAG GEDGRKGEKG FRGDPGLPG GPKGPKGEKGPPG GPKGPKGEKGPPG GPKGPKGEKGPPG GPKGPGPGPG GPKGPNGAAG GEDGRKGEKG PKGDRGETGS LPVPERRGP GLAGEPGKGE GPKGVSVDEPG NPGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGFRGE LGLPGLPGRG KGSAGLKGDK GSAGLKGDK KGACGLDGEK PGPKGDQGEK RVVGAPGVPG SGSRPLPSYA DSDDPCSLPL	600 660 720 840 900 1020 1080 11200 1260 1380 1500 1560 1620 1620 2040 2100 22100 22100 2220 2280 2340 2400 2450 2580 2750 2820
50556065707580	VRSTQGVERT VPELRVVVSI VPELRVVVSI SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER GPTGAVGLPG GPTGAVGLPG GLIGPGVGLPG GVGFPGQTG GDPGVGLPGP CSLGEQGPP DSAVILGPPG GDKGEAGPPG GLIGPQGQPG GDKGEAGPPG GERGTPGIGG APGERGEQGR ADTAGSQLHA	LVLPGSQTAF ATRVRVAWGP REGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDPELSSYH SVTLAWTPVS QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ QCERGPPGLV GRDGEVGEKG GPKGPRGPGDP PGLRGEQGLP DGPKGERGAP GLKGEPGSVP GKGGPIGFPG VGEAGRPGER GLKGEPGSVP GKGGPIGFPG VGEAGRPGEPG GPRGPPGPQ GPGPPGPQGP PGLRGEQGLP PGLRGEQGLP RGEAGRPGER GLKGAKGEP GRGPPGPVG PPGPSGLVGP RGERGEPGIF RGAKGDMGE AAGIPGDPGS RPGLAGHKGE FPGPSGNDGS RPGLAGHKGE FPGPSGNDGS RPGLAGHKGE FPGPAGPRGEK VPVLRVSHAE	DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP DSSPGEQGPR LPGDPGPKGD DEGPPGDPGRU DFGPPGRUD GVRGPAGEKG GPSGPPGLPG GILGPQGPPG GULGPQGPG GHGPPGRUD GERGEKGERG GPSGPPGLPG GHGDPGPGR GDGPFGRQ GRGPGLFG GRGFKGERG GRGFKGBRG GRGFKGBRG GRGFKGBRG GRGFKGBRG GRGFKGBRG GRGFKGBRG GRGPGPGPG GRGFKGBRG AVPRLETAG BRGFKGBRG GRGFKGBRG GRGFKGBRG GRGFKGBRG GRGFKGBRG GRGFKGBRG GRGFRGLBGBK GRGFRGBK GRGFRGLBGBK GRGFRGLBGK GRGFRGBK GRGFRGLBGK GRGFRGLBGK GRGFRGLBGK GRGFRGLBGK GRGFRGLBGK GRGFRGBK GRGFRGLBGK GRGFRGLBGK GRGFRGLBGK GRGFRGLBGK GRGFRGLBGK GRGFRGBK GRGFRGLBGK GRGFRGLBGK GRGFRGLBGK GRGFRGLBGK GRGFRGLBGK GRGFRGB	YTVRVSARVG WSTGSGPESS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGI ILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLA TGPAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGL EQGRDGPPGL EGGPGCBC EKGPGCBC GREGIPGPC GREGIPGREG EXCHOLOR GREG EXCHOLOR GREGIPG EXCHOLOR GREGIPG EXCHOLOR GREGIPG EXCHOLOR GREGIPG EXCHOLOR GREG	PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE QREPGLPGIS ATQDNAHRAE QREPGLPGLPG GEFGLPGLPG DRGFPGPLGE GEFGLPGLPG GEFGLPGLPG DRAVGPAVA GRAGPPGDSG GAPGVRGPVG GAPGVRGPVG GFDGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPG	VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP PGEKGDPGP EKGDQGDPGE GPKGEKGDPG GPSGPNGAAG GEDGRKGEKG FRGDPGLPG GPKGPKGEKGPPG GPKGPKGEKGPPG GPKGPKGEKGPPG GPKGPGPGPG GPKGPNGAAG GEDGRKGEKG PKGDRGETGS LPVPERRGP GLAGEPGKGE GPKGVSVDEPG NPGLPGERGM ETGPPGRGLT RGSPGVPGSP DRGLPGFRGE LGLPGLPGRG KGSAGLKGDK GSAGLKGDK KGACGLDGEK PGPKGDQGEK RVVGAPGVPG SGSRPLPSYA DSDDPCSLPL	600 660 720 780 840 900 1020 1140 1200 1140 1560 1680 1740 1860 1980 2040 2160 2220 2280 2240 22520 2460 2700 2760 2760 2880

WO 02/086443
Seq ID NO: 64 DNA sequence
Nucleic Acid Accession #: NM_006945
Coding sequence: 1-219

*	Coding sequ	ience: 1-215	,				
5	1	11	21	31	41	51	
_	Ī]	1	1	1		
			GTGCAAGCAG				60
			TCCACCCCCG				120
10			TCAGCAGTGC		ATCCTCCTGT	GACACCTTCC	180
10	CCACCCTGCC	AGCCAAAGTA	TCCACCGAAG	AGCAAGTAA			
	Sec ID NO.	65 Protein	semience:				
		cession #: 1					
1 ~			-				
15	1	11	21	31	41	51	
				 	(DODGDDOOG	OOKADDAMDG	60
	PPCOPKYPPK		PKCPEPCPPP	KCPEPCPPPK	CPQPCPPQQC	QQKIPFVIPS	90
	FFCQFKIFFK	DIC.					
20	Seq ID NO:	66 DNA sequ	ience				
			1 #: NM_005	629.1			
	Coding sequ	lence: 639-2	2546				
	1	11	21	31	41	51.	
25	Ī	Ī	Ī		1		
			GTCGCTGAGC				60
			GCGAGGCGCG				120
			GGAGTCGCGG				180 240
30			ACAGGCCCCT TTAGGATGAG				300
50			CAGGAGCCTC				360
			GCGCGCCCC				420
			GGACTGCTTC				480
25			CCCCGGCCCG				540
35			CCGCCGGTGC				600 660
			GTGCGGCCCG GGCGACGAGA				720
			GACGGCCCCG				780
	CCGTGCCGCC	GCGCGAGACC	TGGACGCGCC	AGATGGACTT	CATCATGTCG	TGCGTGGGCT	840
40	TCGCCGTGGG	CTTGGGCAAC	GTGTGGCGCT	TCCCCTACCT	GTGCTACAAG	AACGGCGGAG	900
	GTGTGTTCCT	TATTCCCTAC	GTCCTGATCG	CCCTGGTTGG	AGGAATCCCC	ATTTTCTTCT	960
	TAGAGATCTC	GCTGGGCCAG	TTCATGAAGG	CCGGCAGCAT	CHATGTCTGG	AACATCTGTC	1020 1080
	ACATCATCAA	AGGCCTGGGC	TACGCCTCCA GGCTTCTATT	ACCTGGTCAA	GTCCTTTTACC	ACCACGCTGC	1140
45	CCTGGGCCAC	ATGTGGCCAC	ACCTGGAACA	CTCCCGACTG	CGTGGAGATC	TTCCGCCATG	1200
	AAGACTGTGC	CAATGCCAGC	CTGGCCAACC	TCACCTGTGA	CCAGCTTGCT	GACCGCCGGT	1260
			GAGAACAAAG				1320
			GTGACCCTTT				1380
50	TCTGTGTCTG	GAAGGGGGTC	AAATCCACGG	GAAAGATCGT	GTACTTCACT	GCTACATTCC	1440 1500
50	CCTACGTGGT	CTATCTCAAG	CTGCTGGTGC CCTGACTGGT	CAAAGCTGGG	GTCCCCTCAG	GTGTGGATAG	1560
			TTTTCTTACG				1620
	GCAGCTACAA	CCGCTTCAAC	AACAACTGCT	ACAAGGACGC	CATCATCCTG	GCTCTCATCA	1680
<i></i>	ACAGTGGGAC	CAGCTTCTTT	GCTGGCTTCG	TGGTCTTCTC	CATCCTGGGC	TTCATGGCTG	1740
55	CAGAGCAGGG	CGTGCACATC	TCCAAGGTGG	CAGAGTCAGG	GCCGGGCCTG	GCCTTCATCG	1800
	CCTACCCGCG	CCTCCTTCACG	CTGATGCCAG CTCGACAGCC	AGTTTCTAGG	TGTGGAGGGC	TTCATCACCG	1860 1920
	GCCTCCTCGA	CCTCCTCCCG	GCCTCCTACT	ACTTCCGTTT	CCAAAGGGAG	ATCTCTGTGG	1980
	CCCTCTGTTG	TGCCCTCTGC	TTTGTCATCG	ATCTCTCCAT	GGTGACTGAT	GGCGGGATGT	2040
60	ACGTCTTCCA	GCTGTTTGAC	TACTACTCGG	CCAGCGGCAC	CACCCTGCTC	TGGCAGGCCT	2100
			GCCTGGGTGT				2160
	CCTGTATGAT	CGGGTACCGA	CCTTGCCCCT	GGATGAAATG	GTGCTGGTCC	CTCCTTCACCC	2220 2280
	CGCTGGTCTG	COTOTACCCC	TTCATCTTCA TGGTGGGGTG	ACGUIGIGIA	CTACGAGCCG	CCCCTCTCCCT	2340
65	CCATGCTGTG	CGTGCCGCTG	CACCTCCTGG	GCTGCCTCCT	CAGGGCCAAG	GGCACCATGG	
0.0	CTGAGCGCTG	GCAGCACCTG	ACCCAGCCCA	TCTGGGGCCT	CCACCACTTG	GAGTACCGAG	2460
	CTCAGGACGC	AGATGTCAGG	GGCCTGACCA	CCCTGACCCC	AGTGTCCGAG	AGCAGCAAGG	2520
	TCGTCGTGGT	GGAGAGTGTC	ATGTGACAAC	TCAGCTCACA	TCACCAGCTC	ACCTCTGGTA	2580
70	GCCATAGCAG	CCCCTGCTTC	AGCCCCACCG	CACCCCTCCA	GGGGGCCTGC	CTTTCCCTGA	2640
70	CACTTTTGGG	GTCTGCCTGG	A A CCCCA A A A	ATATCACAAC	CCACCAAAAA	CACTAAAACA TAGATGCCTC	2700 2760
	TCCCCCTCCA	GCCCTAGCCG	AGCTGGTCCT	AGGCCCCGCC	TAGTGCCCCA	CCCCCACCCA	2820
	CAGTGCTGCA	CTCCTCCTGC	CCCTGCCACG	CCCACCCCCT	GCCCACCTCT	CCAGGCTCTG	2880
	CTCTGCAGCA	CACCCGTGGG	TGACCCCTCA	CCCCAGAAGC	AGCAGTGGCA	GCTTGGGAAA	2940
75	TGTGAGGAAG	GGAAGGAGGG	AGAGACGGGA	GGGAGGAGAG	AGAGGAGAAG	GGAGGCAGGG	3000
						CCCATCCCTG	
						CCAATCGCCA	
						GGAGAGTATA TCTGGGCAAA	
80						TGCTTGTATA	
	TTTCTAAAAA	GAGGAAGGAG	CCCAAACCAT	CCTCTCCTTA	CCACTCCCAT	CCCTGTGAGC	3360
	CCTACCTTAC	CCCTCTGCCC	CTAGCCAAGG	AGTGTGAATT	TATAGATCTA	ACTTTCATAG	3420
	GCAAAACAAA	AGCTTCGAGC	TGTTGCGTGT	GTGAGTCTGT	TGTGTGGATG	TGCGTGTGTG	3480
85						CTGTCCCCAC	
05						CTGGGTGTCT CCCAGGAAGG	
						CACCTCCAGT	

	WO 02	/086443					
5	TGACCCCAAG	AAAGGCTTCC CCTGCGGGGA	CCCACGTTTG CCGACACCCA CATTCTACTG	GACAGAGGCT	GCAGGGCTGG	GGCTGGGTGA	3780 3840 3900
3		67 Protein cession #: 1					
10	į.	11	21	31	41	51	
10	FIMSCVGFAV INVWNICPLF CVEIFRHEDC	GLGNVWRFPY KGLGYASMVI ANASLANLTC	 PLIAPGPDGA LCYKNGGGVF VFYCNTYYIM DQLADRRSPV	LIPYVLIALV VLAWGFYYLV IEFWENKVLR	GGIPIFFLEI KSFTTTLPWA LSGGLEVPGA	SLGQFMKAGS TCGHTWNTPD LNWEVTLCLL	60 120 180 240
15	GSPQVWIDAG SILGFMAAEQ GVEGFITGLL TTLLWQAFWE	TQIFFSYAIG GVHISKVAES DLLPASYYFR CVVVAWVYGA	VYFTATFPYV LGALTALGSY GPGLAFIAYP FQREISVALC DRFMDDIACM	NRFNNNCYKD RAVTLMPVAP CALCFVIDLS IGYRPCPWMK	AIILALINSG LWAALFFFML MVTDGGMYVF WCWSFFTPLV	TSFFAGFVVF LLLGLDSQFV QLFDYYSASG CMGIFIFNVV	300 360 420 480 540
20			GWAFALSSML PVSESSKVVV		LRAKGTMAER	WQHLTQPIWG	600
25	Nucleic Act	68 DNA sequid Accession lence: 178-2	1 #: NM_0219	953.1			
	1	11	21	31	41	51	
30	GGCACGAGGG	 	GGTCCGGCGC	GAGCCCCCGT	CCGGGGCCCT	GGCTCGGCCC	60
	CCAGGTTGGA	GGAGCCCGGA	GCCCGCCTTC	GGAGCTACGG	CCTAACGGCG	GCGGCGACTG	120
			TGTGATTCTC				180
			ACTGATTCTC AGAGGAGGAA				240 300
35			GGAAGTGGCG				360
			CACCATGCCC				420
			CACAGCACTG CATCAGCTGT				480 540
4.0			CTATGATGCC				600
40			GGATGTGAAT				660
			AGATGGTGAG AAAGATGAGT				720 780
			GAATTGTCAC				840
			CTGGCAGAAC				900
45	ATGGCCATGA	TACAATTCGC	CATCAACAGC	ACTGAGAGGA	AGCGCATGAC	TTTGAAAGAC	960
			CCACTTTCCC				1020
			CCTTTCCCTG GACCATTCAC				1080 1140
			CCCAGGGTCT				1200
50			GCTCCGCCGG				1260
			GCCACTGCTA				1320
			ACTGGTGTTG AGAGCTTGCC				1380 1440
			GGGGATAGCT				1500
55			AGGGTTTTCT				1560
			GGAAATGCCA				1620 1680
			CTCCCCGGCC				1740
			GGAAATGCTT				1800
60			GCATCTACTG				1860
			TTCCCGCTGG			AGCAGACTCC TAAGACACCC	1920 1980
						CAGAACCCCT	
<i></i>						CCCAGTACAA	2100
65						TCTCAGCACC	
						TTCAGAACCC CGTCCCCAAG	
						GACAGAAGGC	
70						CAGCTTTCCT	
70						TATTCCTGAG	
						GGGCACTCCA TCTGCTCCTC	
						CTGCTGGGAC	
75						GAAGGGTGGG	
75						CATTCTCTGC	
						GTATAAATTC TCCAGAGACT	
	GCCAGAAGGT	GGGTAGGATG	ACCTGGGGTT	TCAATTGACT	TCTGTTCCTT	GCTTTTAGTT	2940
90	TTGATAGAAG	GGAAGACCTG	CAGTGCACGG	TTTCTTCCAG	GCTGAGGTAC	CTGGATCTTG	3000
80						TTTTGCCCCT	
						CTGGTTAAAA CAACTGAAGC	
						CCCAATCATA	
0.5	CCAGGGAGAC	TGGCATTGAC	GAGAACTCAG	GTGGAGGCTT	GAGAAGGCCG	AAAGGGCCCC	3300
85						CTAGGCCCCA	
				AACACTAACT	ACTCAATAAA	AGCGAAGGTG	3420
	GACCINAAAAA	AAAAAAAA	nnnn				

Seq ID NO: 69 Protein sequence: Protein Accession #: NP_068772.1

	FIOCEAN ACC	Conton #. 1					
5	•		21	2.7	41	51	
9	1	11	1	31	i i	1	
				HDKD CD¥ COH	ONOVEYORE	A DOMOGRADA	60
		LKRRRLPLPV	_				
		PNTQVVAIPN					120
1.0		AKRTEVTLET					180
10		SSDGLGSRSI					240
	YMAMIQFAIN	STERKRMTLK	DIYTWIEDHF	PYFKHIAKPG	WKNSIRHNLS	LHDMFVRETS	300
	ANGKVSFWTI	HPSANRYLTL	DQVFKPLDPG	SPQLPEHLES	QQKRPNPELR	RNMTIKTELP	360
	LGARRKMKPL	LPRVSSYLVP	IOFPVNOSLV	LOPSVKVPLP	LAASLMSSEL	ARHSKRVRIA	420
		APLSSAGPGK					480
15		APSFKEESSH					540
10		LPPCVDEPEL					600
		TPSKSVLPRT					660
		ESPQRLLSSE				GLAANRSLTE	720
20	GLVLDTMNDS	LSKILLDISF	PGLDEDPLGP	DNINWSQFIP	ELQ		
20							
	Sea ID NO:	70 DNA sequ	ience				
		ld Accession		29.1			
		ience: 178-2					
25	couring sequ	iciicc. 170 L					
25	1	11	21	31	41	51	
	1	11		31	1	1	
	1	1	<u> </u>	<u> </u>		1	
		GGACCCGGCC					60
20		GGAGCCCGGA					120
30	CAGTCTGGAG	GGTCCACACT	TGTGATTCTC	AATGGAGAGT	GAAAACGCAG	ATTCATAATG	180
	AAAACTAGCC	CCCGTCGGCC	ACTGATTCTC	AAAAGACGGA	GGCTGCCCCT	TCCTGTTCAA	240
		GTGAAACATC					300
		AGGCCTCCAA					360
		TTAACCACCC					420
35							
33		ACAGCATCAT					480
		AATTCATCCT					540
		CCCAAACCAG					600
	GGACCAAAAC	CTGCAGCTAG	GGATGTGAAT	CTTCCTAGAC	CACCTGGAGC	CCTTTGCGAG	660
		AGACCTGTGC					720
40		AGTGGCTTCG					780
-10		AGGAAAAGGA					840
		CATCAGCGTC					900
		TACAATTCGC					960
. ~	ATCTATACGT	GGATTGAGGA	CCACTTTCCC	TACTTTAAGC	ACATTGCCAA	GCCAGGCTGG	1020
45	AAGAACTCCA	TCCGCCACAA	CCTTTCCCTG	CACGACATGT	TTGTCCGGGA	GACGTCTGCC	1080
	AATGGCAAGG	TCTCCTTCTG	GACCATTCAC	CCCAGTGCCA	ACCGCTACTT	GACATTGGAC	1140
	CAGGTGTTTA	AGCAGCAGAA	ACGACCGAAT	CCAGAGCTCC	GCCGGAACAT	GACCATCAAA	1200
		CCCTGGGCGC					1260
		CTATCCAGTT					1320
50							
50		CCCTGGCGGC					1380
		CCCCCAAGGT					1440
		AAGAGGAGAA					1500
	CAGACTATCA	AGGAGGAAGA	AATCCAGCCT	GGGGAGGAAA	TGCCACACTT	AGCGAGACCC	1560
	ATCAAAGTGG	AGAGCCCTCC	CTTGGAAGAG	TGGCCCTCCC	CGGCCCCATC	TTTCAAAGAG	1620
55	GAATCATCTC	ACTCCTGGGA	GGATTCGTCC	CAATCTCCCA	CCCCAAGACC	CAAGAAGTCC	1680
		TTAGGTCCCC					1740
		AGAGGAGCCG					1800
		TGCTCTTCTC					1860
60		ACTCCTCTGA					1920
60		CACCCATTAA					1980
	CTCCCCAGAA	CCCCTGAATC	CTGGAGGCTC	ACGCCCCAG	CCAAAGTAGG	GGGACTGGAT	2040
		TACAAACCCC					2100
	ATGGATCTCA	GCACCACTCC	CTTGCAAAGT	GCTCCCCCCC	TTGAATCACC	GCAAAGGCTC	2160
	CTCAGTTCAG	AACCCTTAGA	CCTCATCTCC	GTCCCCTTTG	GCAACTCTTC	TCCCTCAGAT	2220
65	ATAGACCTCC	CCAAGCCAGG	CTCCCCGGAG	CCACAGGTTT	CTGGCCTTGC	AGCCAATCGT	2280
00	TCTCTCACAC	AACCCCTCCT	CCTGGACACA	ATGAATGACA	GCCTCAGCAA	GATCCTGCTG	
						CAACTGGTCC	
	GACATCAGCT	TTCCTGGCCT	GGACGAGGAC	CCACTGGGCC	CIGACAACAI	CAACIGGICC	2400
						GCTGTCCACC	
7 0						GCAGGCAGGG	
70	ACTGTTCTGC	TCCTCATAGC	TCCCTGCTGC	CTGATTATGC	AAAAGTAGCA	GTCACACCCT	2580
	AGCCACTGCT	GGGACCTTGT	GTTCCCCAAG	AGTATCTGAT	TCCTCTGCTG	TCCCTGCCAG	2640
						CCCCCAGCCT	2700
	CHARTECOVERC	TOTOCOLLICIAL	A CONCORCOUNT C	CTTCCCTCAT	CTTTCCACCC		2760
75						TTCCTTAGAT	
75						TGACTTCTGT	
						TCCAGGCTGA	
						GCTTGCCAGA	
						CTGCAAGAAG	
	AAATCCTCCT	TAAAAAAATC	արդագարաա <u>ա</u>	GGTCAGGAGT	TGAATTTGGG	GTGGGAGGAT	3120
80						TTCTCTGATA	
50						GGCTTGAGAA	
	ATGTCCCCAA	TCATACCAGG	GAGACTGGCA	TIGHCGAGAA	CAGGETGGA	GGCIIGAGAA	3240
	GGCCGAAAGG	GCCCCTGACC	TGCCTGGCTT	CCTTAGCTTG	CCCCTCAGCT	TTGCAAAGAG	3300
	CCACCCTAGG	CCCCAGCTGA	CCGCATGGGT	GTGAGCCAGC	TTGAGAACAC	TAACTACTCA	3360
o ~	ATAAAAGCGA	AGGTGGAAAA	AAAAAAAAA	AAAAAA			
85							
	Sea ID NO.	71 Protein	sequence:				
		cession #: 2					
	TIOCETH WC	COSTON #: 4					

Protein Accession #: AAH06529.1

	1	11	21	31	41	51	
_	 MKTSPRRPLI	LKRRRLPLPV	ONAPSETSEE	EPKRSPAQQE	 SNQAEASKEV	AESNSCKFPA	60
5		PNTQVVAIPN AKRTEVTLET					120 180
	LSNIQWLRKM	SSDGLGSRSI	KQEMEEKENC	HLEQRQVKVE	EPSRPSASWQ	NSVSERPPYS	240
		STERKRMTLK HPSANRYLTL					300 360
10	SYLVPIQFPV	NQSLVLQPSV	KVPLPLAASL	MSSELARHSK	RVRIAPKVLL	AEEGIAPLSS	420 480
		FGEGFSPLLP SQSPTPRPKK					540
		PSTSRWAAEL LTPPAKVGGL					600 660
15	LLSSEPLDLI	SVPFGNSSPS	DIDVPKPGSP				720
	LDISFPGLDE	DPLGPDNINW	SQFIPELQ				
	Seq ID NO:	72 DNA sequ	ience				
20	•	id Accession Lence: 178-2		.1			
				2.1	41		
2.5	1	11	21	31	41	51	
25		GGACCCGGCC GGAGCCCGGA					60 120
	CAGTCTGGAG	GGTCCACACT	TGTGATTCTC	AATGGAGAGT	GAAAACGCAG	ATTCATAATG	180
		CCCGTCGGCC GTGAAACATC				TCCTGTTCAA .	240 300
30	AATCAAGCAG	AGGCCTCCAA	GGAAGTGGCA	GAGTCCAACT	CTTGCAAGTT	TCCAGCTGGG	360
		TTAACCACCC ACAGCATCAT					420 480
		ACAGCATCAT					540
25	CGGCCTCAAA	CCCAAACCAG	CTATGATGCC	AAAAGGACAG	AAGTGACCCT	GGAGACCTTG	600
35		CTGCAGCTAG AGACCTGTGC					660 720
		AGTGGCTTCG					780
		AGGAAAAGGA					840
40		CATCAGCGTC TACAATTCGC					900 960
-10		GGATTGAGGA					1020
		TCCGCCACAA					1080
		TCTCCTTCTG AGCCACTGGA					1140 1200
45		CGAATCCAGA					1260
		GGAAGATGAA					1320
		TGAACCAGTC TCATGAGCTC					1380 1440
~~		GGGAACAGGT					1500
50		GTACACCCAT					1560
		AGGAGGGGAT GAGAAGGGTT					1620 1680
		GGGAGGAAAT					1740
55		GGCCCTCCCC					1800 1860
33		AATCTCCCAC TCTCGGAAAT					1920
		AACAGCATCT					1980
		GTACTTCCCG					2040
60		AGCTCAGCTA CCATCTCCTC					2100 2160
	TGGAGGCTCA	CGCCCCAGC	CAAAGTAGGG	GGACTGGATT	TCAGCCCAGT	ACAAACCTCC	2220
						CACCACTCCC	2280 2340
						ACCCTTAGAC CAAGCCAGGC	2400
65	TCCCCGGAGC	CACAGGTTTC	TGGCCTTGCA	GCCAATCGTT	CTCTGACAGA	AGGCCTGGTC	
						TCCTGGCCTG TGAGCTACAG	
						TCCAAGGCTC	2640
70	AGTGCACCCC	AAGCCTCTGA	GTGAGGACAG	CAGGCAGGGA	CTGTTCTGCT	CCTCATAGCT	2700
70						GGACCTTGTG TGGGAACAAC	2760 2820
		GTGAAAAGAG					2880
	GTCTCTTACC	TTCCCTGATC	TTTGCAGGGT	${\tt GGTCCGTGTA}$	AATAGTATAA	ATTCTCCAAA	2940
75		ATTATAAATG GATGACCTGG					3000 3060
, ,	GAAGGGAAGA	CCTGCAGTGC	ACGGTTTCTT	CCAGGCTGAG	GTACCTGGAT	CTTGGGTTCT	3120
	TCACTGCAGG	GACCCAGACA	AGTGGATCTG	CTTGCCAGAG	TCCTTTTTGC	CCCTCCCTGC	3180
		TGTTTCCAAG GTCAGGAGTT				AAAAAAGTCT	3240 3300
80							3360
	AGACTGGCAT	TGACGAGAAC	TCAGGTGGAG	GCTTGAGAAG	GCCGAAAGGG	CCCCTGACCT	
						CCCAGCTGAC GGTGGACAAA	
0.5	AAAAAAAAA		_ JAGAACACI		while conn	CCICORONIA	2240
85							
	Seq ID NO:	73 Protein	sequence:				

Seq ID NO: 73 Protein sequence: Protein Accession #: AAC51128.1

```
MKTSPRRPLI LKRRRLPLPV QNAPSETSEE EPKRSPAQQE SNQAEASKEV AESNSCKFPA
                                                                             60
 5
       GIKIINHPTM PNTQVVAIPN NANIHSIITA LTAKGKESGS SGPNKFILIS CGGAPTQPPG
                                                                            120
       LRPOTOTSYD AKRTEVILET LGPKPAARDV NLPRPPGALC EQKRETCADG EAAGCTINNS
                                                                            180
       LSNIOWLRKM SSDGLGSRSI KOEMEEKENC HLEOROVKVE EPSRPSASWQ NSVSERPPYS
                                                                            240
       YMAMIQFAIN STERKRMTLK DIYTWIEDHF PYFKHIAKPG WKNSIRHNLS LHDMFVRETS
                                                                            300
       ANGKVSFWTI HPSANRYLTL DQVFKPLDPG SPQLPEHLES QQKRPNPELR RNMTIKTELP
10
       LGARRKMKPL LPRVSSYLVP IQFPVNQSLV LQPSVKVPLP LAASLMSSEL ARHSKRVRIA
                                                                            420
       PKVFGEQVVF GYMSKFFSGD LRDFGTPITS LFNFIFLCLS VLLAEEGIAP LSSAGPGKEE
                                                                            480
       KLLFGEGFSP LLPVOTIKEE EIOPGEEMPH LARPIKVESP PLEEWPSPAP SFKEESSHSW
                                                                            540
       EDSSQSPTPR PKKSYSGLRS PTRCVSEMLV IQHRERRERS RSRRKQHLLP PCVDEPELLF
                                                                            600
       SEGPSTSRWA AELPFPADSS DPASOLSYSO EVGGPFKTPI KETLPISSTP SKSVLPRTPE
                                                                            660
15
       SWRLTPPAKV GGLDFSPVQT SQGASDPLPD PLGLMDLSTT PLQSAPPLES PQRLLSSEPL
                                                                            720
       DLISVPFGNS SPSDIDVPKP GSPEPQVSGL AANRSLTEGL VLDTMNDSLS KILLDISFPG
                                                                            780
       LDEDPLGPDN INWSQFIPEL Q
       Seg ID NO: 74 DNA seguence
20
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 111-416
                                                   41
                                                              51
                             21
                                        31
25
       GGGAAGAGCC AGGCTGAGCC TTATAAAGGA CTGCTCTTTG TCCAAACACA CACATCTCAC
                                                                             60
       TCATCCTTCT ACTCGTGACG CTTCCCAGCT CTGGCTTTTT GAAAGCAAAG ATGAGCAACA
                                                                            120
       CTCAAGCTGA GAGGTCCATA ATAGGCATGA TCGACATGTT TCACAAATAC ACCAGACGTG
       ATGACAAGAT TGAGAAGCCA AGCCTGCTGA CGATGATGAA GGAGAACTTC CCCAACTTCC
                                                                            240
       TTAGTGCCTG TGACAAAAG GGCACAAATT ACCTCGCCGA TGTCTTTGAG AAAAAGGACA
                                                                            300
30
       AGAATGAGGA TAAGAAGATT GATTTTCTG AGTTTCTGTC CTTGCTGGGA GACATAGCCA
                                                                            360
       CAGACTACCA CAAGCAGAGC CATGGAGCAG CGCCCTGTTC CGGGGGCAGC CAGTGACCCA
                                                                            420
       GCCCCACCAA TGGGCCTCCA GAGACCCCAG GAACAATAAA ATGTCTTCTC CCACCAGA
       Seq ID NO: 75 Protein sequence:
35
       Protein Accession #: Eos sequence
                                                               51
                             21
                                        31
                                                   41
       MSNTOAERSI IGMIDMFHKY TRRDDKIEKP SLLTMMKENF PNFLSACDKK GTNYLADVFE
40
       KKDKNEDKKI DFSEFLSLLG DIATDYHKQS HGAAPCSGGS Q
       Seg ID NO: 76 DNA sequence
       Nucleic Acid Accession #: Eos sequence
45
       Coding sequence: 111-416
                                        31.
                                                   41
                                                              51
       GGGAAGAGCC AGGCTGAGCC TTATAAAGGA CTGCTCTTTG TCCAAACACA CACATCTCAC
                                                                             60
50
       TCATCCTTCT ACTCGTGACA CTTCCCAGTT CTGGCTTTTT GAAAGCAAAG ATGAGCAACA
                                                                            120
       CTCAAGCTGA GAGGTCCATA ATAGGCATGA TCGACATGTT TCACAAATAC ACCGGACGTG
                                                                            180
       ATGGCAAGAT TGAGAAGCCA AGCCTGCTGA CGATGATGAA GGAGAACTTC CCCAATTTCC
                                                                            240
       TCAGTGCCTG TGACAAAAAG GGCATACATT ACCTCGCCAC TGTCTTTGAG AAAAAGGACA
                                                                            300
       AGAATGAGGA TAAGAAGATT GATTTTCTG AGTTTCTGTC CTTGCTGGGA GACATAGCCG
                                                                            360
55
       CAGACTACCA CAAGCAGAGC CATGGAGCGG CGCCCTGTTC TGGGGGAAGC CAGTGATCCA
                                                                            420
       GCCCACCAA GGGGCCTCCA GAGACCCCAG GAACAATAAG TGTCTCCTCC CACCAGA
       Seq ID NO: 77 Protein sequence:
       Protein Accession #: XP_048124.1
60
                                                              51
                                        31
                                                   41
       MSNTQAERSI IGMIDMFHKY TGRDGKIEKP SLLTMMKENF PNFLSACDKK GIHYLATVFE
                                                                             60
       KKDKNEDKKI DFSEFLSLLG DIAADYHKQS HGAAPCSGGS Q
65
       Seg ID NO: 78 DNA seguence
       Nucleic Acid Accession #: Z73678.1
       Coding sequence: 253-2433
70
                                                               51
                             21
                                        31
                                                   41
       GGGGTGGTGC AGGGCAGGGG TGGTATATCC TGTCTGACGG AGGGCGGGCC TCGCCAGTGC
                                                                             60
       CAGAGAGGGA CGAACCAGGG TGGAAGCGCC AGGAGCAGCT GCAGGGAGCC CTCACGCGGA
                                                                            120
75
       CCTCGCACTC TATGGCCGTA GGGAGCCGCT GAGAGCGAGA AGAGCACGCT CCTGCCCGCC
                                                                            180
       CGCTGCACCG CACCTCGCCT CGCCTCTCTG CTCTCCTAGG CCCCGGCCGC GCGCCACCCG
                                                                            240
       CCTCCCGCCA CCATGAACCA CTCGCCGCTC AAGACCGCCT TGGCGTACGA ATGCTTCCAG
                                                                            300
       GACCAGGACA ACTCCACGTT GGCTTTGCCG TCGGACCAAA AGATGAAAAC AGGCACGTCT
                                                                            360
       GGCAGGCAGC GCGTGCAGGA GCAGGTGATG ATGACCGTCA AGCGGCAGAA GTCCAAGTCT
                                                                            420
80
       TCCCAGTCGT CCACCCTGAG CCACTCCAAT CGAGGTTCCA TGTATGATGG CTTGGCTGAC
                                                                            480
       AATTACAACT ATGGGACCAC CAGCAGGAGC AGCTACTACT CCAAGTTCCA GGCAGGGAAT
       GGCTCATGGG GATATCCGAT CTACAATGGA ACCCTCAAGC GGGAGCCTGA CAACAGGCGC
                                                                            600
       TTCAGCTCCT ACAGCCAGAT GGAGAACTGG AGCCGGCACT ACCCCCGGGG CAGCTGTAAC
                                                                            660
       ACCACCGCC CAGGCAGCGA CATCTGCTTC ATGCAGAAAA TCAAGGCGAG CCGCAGTGAG
                                                                            720
85
       CCCGACCTCT ACTGTGACCC ACGGGGCACC CTGCGCAAGG GCACGCTGGG CAGCAAGGGC
                                                                            780
       CAGAAGACCA CCCAGAACCG CTACAGCTTT TACAGCACCT GCAGTGGTCA GAAGGCCATA
       AAGAAGTGCC CTGTGCGCCC GCCCTCTTGT GCCTCCAAGC AGGACCCTGT GTATATCCCG
```

	WO 02/						
		GCAACAAGGA					960
		TCGAGTGCAG					1020
		AGTACCAGGC					1080
-	GAATCTGCCA	AGCAACAGGT	CTATCAGCTG	GGAGGCATCT	GCAAGCTGGT	GGACCTCCTC	1140
5		ACCAGAACGT					1200
	AGGAGCACCA	CCAACAAGCT	GGAGACCCGG	AGGCAGAATG	GGATCCGCGA	GGCAGTCAGC	1260
		GAACCGGGAA					1320
		CTGACGAGCT					1380
1.0		TCATTCCCTT					1440
10	GTGGTGGACC	CTGAGGTCTT	CTTCAATGCC	ACAGGCTGCT	TGAGGAACCT	GAGCTCGGCC	1500
		GCCAGACCAT					1560
		GTGTAGCGGC					1620
		ACCTCTCCTA					1680
4 =		CCCGCAACGC					1740
15		TGATGAACAA					1800
		GCTGGTTGTA					1860
	AAGAGCAAGA	AAGATGCTAC	CCTGGAGGCC	TGTGCTGGTG	CCCTGCAGAA	CCTGACAGCC	1920
		TGATGTCCAG					1980
•		CCCGCCTCCT					2040
20		ACATGTCCCG					2100
	CCGGAGGTGA	CCAGGCTCCT	CACCAGCCAC	ACTGGCAATA	CCAGCAACTC	CGAAGACATC	2160
	TTGTCCTCGG	CCTGCTACAC	TGTGAGGAAC	CTGATGGCCT	CGCAGCCACA	ACTGGCCAAG	2220
	CAGTACTTCT	CCAGCAGCAT	GCTCAACAAC	ATCATCAACC	TGTGCCGAAG	CAGTGCCTCA	2280
25	CCCAAGGCCG	CAGAAGCTGC	CCGGCTTCTC	CTGTCTGACA	TGTGGTCCAG	CAAGGAACTG	2340
25		TCAGACAGCA					2400
		GGAACTTCAC					2460
	TGCAGGAAGA	TATGACCCAG	CTGAGAAGCC	CTCAGGCCTC	GCTGGATGGG	GTTTTCTGTC	2520
		AGTATTTGGG					2580
20		GATTTTTAGA					2640
30		GGGCGGGGG					2700
	TTTCTTCCTC	TGAGAAATGG	TATATATATG	TGTCTAATGT	AAGTGTGTGC	ATGCATGTGC	2760
	GCGTGCATGT	GTGTGTGTGT	GAGTGTCTTA	AAGCATAACC	ACAAACTGCA	AAAAGCTAGG	2820
		TGTTGCAGCT					2880
~ -	TAGGCAAGGA	CAACATGTGC	TTTTTGGTGA	GCTGCTCATA	ATTCCTGAAA	TGTGTGGTGC	2940
35	CAGGGCAAGG	${\tt GGGCCATCAC}$	TGCAGTCAGG	CCCTCAGAGG	AGTCCTGCAG	GCTTCCTACC	3000
		AAGGGTGCAG					3060
		AAGGGAGGTC					3120
	ACCCCTCCAG	CAGCGCCACA	AGGACTGAGG	TTGGGTAGGT	GTGAGGTTCC	AGAGGACAGC	3180
40	AGGACACTCT	$\mathtt{CGCATACTTT}$	GCCAAATGAG	GCCTGCTCAG	AGGAGTAGGA	GCTGAAAGAT	3240
40	GGTGCCTTCC	ACCCTCTTGG	GCTGTGTGCC	CATCAGAGCA	GGCTCAGCCT	GCAAAGGCCC	3300
	TGCATTCAGA	$\operatorname{GGTCTTGTAA}$	TCTACTTGTT	GCAGGAGAAA	GAAGGTAAAA	AATGATTTT	3360
	TTAAGAAAAG	CTATTTTATT	GCAGCTCTTT	CCCAAGAGCT	GTTCTGGGAA	TGGCTGGTCT	3420
		AGTGGAGAGG					3480
15		GTTGGGGTAT					3540
45		GGGAGTGTTT					3600
		AGTGCCATAT					3660
		CTTCCCCTGA					3720
		CAGGGCTATT					3780
50	TCAGACCAGC	AGCAGCAGGA	GGGCTCCCGA	GGGCCTTATG	AGAAAACCTG	TGTGGACATC	3840
50	CCTTGGTGTA	CACTAAGACA	GAGCAGAGCC	CAGCGCTCCC	AAGCCTTCCT	CCTTCCAGCT	3900
		TGCTAGCATT					3960
		AATATAAGAT					4020
		CACCACCCC					4080
<i></i>	AACACTGATG	TGGACTCAGT	ATGACAACTG	AGATGGGGGA	AGCCAGACAT	GTGAGGACGC	4140
55		GAGGTGTCCC					4200
	ATACCCTCCC	TTGCTTCTGT	TCACACTGGG	AGGCCCACTC	CTGGCTCACC	TCTCCCTCTC	4260
	AGGGACCCAC	GTGGGAGCCT	GGATCCCTGG	ACTGTCCTGG	GCATAGGTTT	CAGGGGCCTC	4320
	CTTTGTTGTC	ATCAGAACCC	AGAGGAATTC	TTCTCCTAAA	AAATACGTAT	GGCATACCAA	4380
60		GCAGTGTCCT					4440
60		TGCGGCTTAT					4500
		GGCTGGGGGC					4560
	CATGTGAACC	TTACCAGCCC	AGGCGGATGC	CCCTTCCCCT	TAGCACTACC	CTGGCCTCCT	4620
	GCATCCCCTC	GCCTCATGTT	CCTCCCACCT	TCAAAGAATG	AAGAGCCCCA	TGGGCCCAGC	4680
65	CCCTGCCCTG	GGAACCAGGC	AGCCTTCCAG	ACCTCAGGGG	CTGAGGCAGA	CTATTAGGGC	4740
65	AGGGCTGACT	TTGGTGACAC	TGCCCATTCC	CTCTCAGGCC	AGCTCAGGTC	ACCCGGGCCT	4800
	CTGACCCAGG	CCTGTCACTT	TGAGAGGGGC	AAAACTGAGA	GGGGCTTTTC	CTAGAGAAAG	4860
	AGAACAAGGA	GCTTGCCAGG	CTTCATGTAG	CCGACACACG	TCTCAGGATT	TTAAGTCCAC	4920
	ATTGGCCTCA	CACTAGCCTA	GGCCAATGCC	CAAAATAAGG	AGTTCCAATT	TGGGGCCAAA	4980
70	TGAGGAAGGA	CACAGACTCT	GCCCTGGGAT	CTCCTGTGCT	AGCGGCCAAT	GACAAATCCA	5040
70	GTCATTGGCC	ACCAGCCACC	TCTGCAGTGG	GGACCACACT	AGCAGCCCTG	ACTCCACACT	5100
	CCTCCTGGGG	ACCCAAGAGG	CAGTGTTGCT	GTCTGCGTGT	CCACCTTGGA	ATCTGGCTGA	5160
	ACTGGCTGGG	AGGACCAAGA	CTGCGGCTGG	GGTGGGCAGG	GAAGGGAAGC	CGGGGGCTGC	5220
	TGTGAGGGAT	CTTGGAGCTT	CCCTGTAGCC	CACCTTCCCC	TTGCTTCATG	TTTGTAGAGG	5280
75		CGGCCAGGCC				IGCITITIT	5340
75	GGAAATAGAG	AAAATCAATA	AATTGCTAGT	GTTTCTTTGA	AAAAAAAA		
		79 Protein cession #: 0					
00							
80	1	11	21	31	41	51	
	1		1	1	1	1	
	MNHSPLKTAL	AYECFQDQDN	STLALPSDQK	MKTGTSGRQR	VQEQVMMTVK	KQKSKSSQSS	60
	TLSHSNRGSM	YDGLADNYNY	GTTSRSSYYS	KFQAGNGSWG	YPIYNGTLKR	EPDNRRFSSY	120
0.5	SOMENWSRHY	PRGSCNTTGA	GSDICFMOKI	KASRSEPDLY	CDPRGTLRKG	TLGSKGQKTT	180
85	QNRYSFYSTC	SGQKAIKKCP	VRPPSCASKQ	DPVYIPPISC	NKDLSFGHSR	ASSKICSEDI	240
	ECSGLTIPKA	VQYLSSQDEK	YQAIGAYYIQ	HTCFQDESAK	QQVYQLGGIC	KLVDLLRSPN	300
	QNVQQAAAGA	LRNLVFRSTT	NKLETRRQNG	IREAVSLLRR	TGNAEIQKQL	TGLLWNLSST	360

5	DELKEELIAD QTMRNYSGLI RNAYTEKSST DATLEACAGA MSRHPLLHRV	ALPVLADRVI DSLMAYVQNC GCFSNKSDKM LQNLTASKGL MGNQVFPEVT CRSSASPKAA	VAASRCDDKS MNNNYDCPLP MSSGMSQLIG RLLTSHTGNT	VENCMCVLHN EEETNPKGSG LKEKGLPQIA SNSEDILSSA	LSYRLDAEVP WLYHSDAIRT RLLQSGNSDV CYTVRNLMAS	TRYRQLEYNA YLNLMGKSKK VRSGASLLSN QPQLAKQYFS	420 480 540 600 660 720
10	Nucleic Aci	80 DNA sequid Accession lence: 180-1	1 #: NM_006	516.1			
1.5	1	11	21	31	41	51	
15	}	1	1	1	1	<u> </u>	
		TCCCCGAGTG					60
		CAGTGGGAGT TCGCCACCCG					120 180
		CAGCAAGAAG					240
20		GCAGTTTGGC					300
20		CAACCAGACA					360
		CTGGTCCCTC					420
		CCTTTTCGTT					480
~ =		CGTGTCCGCC					540
25		GGGCCGCTTC					600
		GGGTGAAGTG					660
		CGTCGTCGGC					720 780
		CCTGTGGCCC					840
30		CAAGAGTGTG					900
20		GAAGGAAGAG					960
		CTCCCCCGCC					1020
		GTCTGGCATC					1080
35		GCAGCCTGTG					1140
33		GCTGTTTGTG GGCGGGTTGT					1200 1260
		GTCCTATCTG					1320
		CCCCATCCCA					1380
40		${\tt TGCCGTTGCA}$					1440
40		TGTGGAGCAA					1500
		CTTCATCTTC TTCCGGCTTC					1560 1620
		TCCCCTGGGG					1680
		AGCAGCCCTA					1740
45	AACCTGACAG	ATGTCAGCCG	AGCCGGGCCT	GGGGCTCCTT	TCTCCAGCCA	GCAATGATGT	1800
	CCAGAAGAAT	ATTCAGGACT	TAACGGCTCC	AGGATTTTAA	CAAAAGCAAG	ACTGTTGCTC	1860
		AGACAAGCAA					1920
		GAGTCTCCTG ACTAAGCCCT					1980 2040
50		GTCCTAAGGA					2100
•		TGGCCACCCG					2160
		TGCCCCTTCC					2220
		GTTGGGAGCA					2280
55		AGTCTCCTTT AAACTCACTG					2340 2400
55		TTATATATAT					2460
		AAGCCAACTT					2520
	TATAAATGGC	TGGTTTTTAG	AAACATGGTT	TTGAAATGCT	TGTGGATTGA	GGGTAGGAGG	2580
C O		AGTGAGACAG					2640
60						CAAAAATCTG	2700
						AGGCATTTCT CGTGATGCTC	2760 2820
		TCGCATTATT			TIGIGCEAGE	00101110010	2020
~ ~							
65		81 Protein					
	Protein Acc	cession #: 1	NP_006507.1				
٥	1	11	21	31.	41	51	
	Ī	Ī	ĺ	1	1	1	•
70	MEPSSKKLTG	RLMLAVGGAV	LGSLQFGYNT	GVINAPQKVI	EEFYNQTWVH	RYGESILPTT	60
		IFSVGGMIGS					120
						AQVFGLDSIM	180
		SIIFIPALLQ MMREKKVTIL					240 300
75		IGSGIVNTAF					360
		AIFGFVAFFE					420
	CFQYVEQLCG	PYVFIIFTVL	LVLFFIFTYF	KVPETKGRTF	DEIASGFRQG	GASQSDKTPE	480
	ELFHPLGADS	QV					
80	Sea ID NO.	82 DNA sequ	ience				
		id Accession		91			
		uence: 44-5					
	1		0.1	3.1	43	E1	
85	1,	11	21 I	31 I	41 	51 }	
	GGGGGCGCCG	CGCGCTGACC	CTCCCTGGGC	ACCGCTGGGG	ACGATGGCGC	TGCTCGCCTT	60
	GCTGCTGGTC	GTGGCCCTAC	CGCGGGTGTG	GACAGACGCC	AACCTGACTG	CGAGACAACG	120

		/086443					
			GAACGGACGA				180
	TGAGAGAGAA	AACACTTTCG	AGTGCCAGAA	CCCAAGGAGG	TGCAAATGGA	CAGAGCCATA	240
			AAATATTTCC				300
_			AGAGACCCAA				360
5			TCAAGTGTTG				420
			TCAAAGAATA				480
			TGCTGCTGGC				540
			CTGAGCCTTC				600
10			TTTCTGTTGA				660
10	GGGATGGGAG	AGTGGGGATC	AGGTGCAGTT	GGCTCTTAAC	CCTCAAGGGT	TCTTTAACTC	720 780
			TCTCCTGAGT				840
			TTTATTGCTG GATGGGGAGG				900
			TTCAGGTGAC				960
15			TGAAGGACTC				1020
10			GGTGGAGGCG				1080
			GAAGATAACT				1140
			AGATTCATAA				1200
			ATCAGGGTAA				1260
20			ATCAGACTCA				1320
			AAAAAAAA				
	Seq ID NO:	83 Protein	sequence:				
25	Protein Acc	cession #: A	AAH01291				
25							
	1	11	21	31	41	51	
		1	1	1			
			LTARQRDPED				60
20			VAKQCSAGCA			FYLKCCKIRY	120
30	CNLEGPPINS	SVFKEYAGSM	GESCGGLWLA	ILLLLASIAA	GLSLS		
		84 DNA sequ		000 1			
			1 #: NM_0228	893.1			
35	coaing sequ	ience: 229-2	3/20				
55	1	11	21	31	41	51	
	i	1	ī	ĭ	1	ī	
	անանակարարարար 	<u> </u>	AAAAAAAAGC	CATGACGGCT	CTCCCACAAT	TCATCTTCCC	60
			TCTAATTTAT				120
40			TTTCTAACCC				180
			GCCGCCGCCG				240
			CTTAAGCAAA				300
			AGACCACGGC				360
	CTCCTCACCT	GTGGGCAGTG	CCAGATGAAC	TTCCCATTGG	GGGACATTCT	TATTTTTATC	420
45			CAATGGCAGC				480
			GATGAAAAA				540
			TTGTTTATCA				600
			TCTGCACTGG				660
50			TGGGATGAGT				720
50			ATGTACAACT				780
	CTCTTGCAAC	ACGCACAGAA	CACTCATGGA	TTAAGAATCT	ACTTAGAAAG	CGAACACGGA	840
			TGGTATCCCT				900
			TATTGCAGAC				960
55			TTCCGGCCTG ACATCACTTG				1020 1080
33			CCATCACCCG				1140
			CGCCATGGAT				1200
			GTCCCCAGGC				1260
			GCCGCCCTTC				1320
60			GCCCCGGTC				1380
•			CCTGGTGGTG				1440
			CCACGCGTGC				1500
	AAGACGCACA	TGCACAAATC	GTCCCCCATG	ACGGTCAAGT	CCGACGACGG	TCTCTCCACC	1560
	GCCAGCTCCC	CGGAACCCGG	CACCAGCGAC	TTGGTGGGCA	GCGCCAGCAG	CGCGCTCAAG	1620
65			GAGCGAGAAC				1680
			CGAGGAAGAG				1740
			GGACTACGGC				1800
			CGCGGTCGTG				1860
70			GCTCAGCTCC				1920
70			GCGCGGCCAC				1980
			CGGCGAGTCG				2040
			GTCGGCCTCG				2100
	AGCCCCAGCT	CGCTGAGCCC	CTTCTCTAAG	CGCATCAAGC	A CECCOCECCO	CCCCTACCCC	2160
75	CCCCCGGCCA	ACCTONANCE	CACGGAGAAC TCCCTTCCTT	ACCULACTOR	PCACGGGTCGC	VACCCOMMAN.	2220 2280
15	GCCTCCAGGC	AGC I CAAAGA	CTCGGAGAAC	GGGAGCTTCGGAG	CCTTCTCCACACA	VICGCCIIII	2340
			GGGGCGCAGC				2400
			CAGGCCCAGC				2460
	GAGTACTCTC	GGAAAGTCTT	CAAGAACTGT	AGCAATCTCA	CTGTCCACAG	GAGAAGCCAC	2520
80			ATGCGAGCTG				2580
	CTCACCAGGC	ACATGAAAAC	GCATGGCCAG	GTGGGGAAGG	ACGTTTACAA	ATGTGAAATT	2640
	TGTAAGATGC	CTTTTAGCGT	GTACAGTACC	CTGGAGAAAC	ACATGAAAAA	ATGGCACAGT	2700
			TATAAAAACT				2760
0.5	CTCCCACCTG	ACACCCCCTT	TTTCACCACT	CCCTTTCCCC	ATCGCCCTCC	AGCCCCACTC	2820
85	CCTGTAGGAT	TTTTTTCTAG	TCCCATGTGA	TTTAAACAAA	CAAACAAACA	AACAGAAGTA	2880
	ACGAAGCTAA	GAATATGAGA	GTGCTTGTCA	CCAGCACACC	TGTTTTTTT	CTTTTTCTTT	2940
	TTCTTTTTTC	TTTTTCCTTT	TTTTTTTTT	TCCTTTATGT	TCTCACCGTT	TGAATGCATG	3000

```
ATCTGTATGG GGCAATACTA TTGCATTTTA CGCAAACTTT GAGCCTTTCT CTTGTGCAAT
                                                                           3060
       AATTTACATG TTGTGTATGT TTTTTTTAA ACTTAGACAG CATGTATGGT ATGTTATGGC
       TATTTTAAAT TGTCCCTAAT TCGTTGCTGA GCAAACATGT TGCTGTTTCC AGTTCCGTTC
                                                                           3180
       TGAGAGAAAA AGAGAGAGA AGAGAAAAAG ACCATGCTGC ATACATTCTG TAATACATAT
                                                                           3240
 5
       CATGTACAGT TTTATTTTAT AACGTGAGGA GGAAAAACAG TCTTTGGATT AACCCTCTAT
                                                                           3300
       AGACAGAATA GATAGCACTG AAAAAAAATC TCTATGAGCT AAATGTCTGT CTCTAAAGGG
                                                                           3360
       TTAAATGTAT CAATTGGAAA GGAAGAAAAA AGGCCTTGAA TTGACAAATT AACAGAAAAA
                                                                           3420
       CAGAACAAGT TTATTCTATC ATTTGGTTTT AAAATATGAG TGCCTTGGAT CTATTAAAAC
                                                                           3480
       CACATCGATG GTTCTTTCTA CTTGTTATAA ACTTGTAGCT TAATTCAGCA TTGGGTGAGG
                                                                           3540
10
       TAATAAACCT TAGGAACTAG CATATAATTC TATATTGTAT TTCTCACAAC AATGGCTACC
                                                                           3600
       TAAAAAGATG ACCCATTATG TCCTAGTTAA TCATCATTTT TCCTTTAGTT TAATTTTATA
                                                                           3660
       AACAAAACTG ATTATACCAG TATAAAAGCT ACTTTGCTCC TGGTGAGAGC TTAAAAGAAA
                                                                           3720
       TGGGCTGTTT TGCCCAAAGT TTTATTTTTT TTAAACAATG ATTAAATTGA ATGTGTAATG
                                                                           3780
       TGCAAAAGCC CTGGAACGCA ATTAAATACA CTAGTAAGGA GTTCATTTTA TGAAGATATT
15
       TGCTTTAATA ATGTCTTTTT AAAAATACTG GCACCAAAAG AAATAGATCC AGATCTACTT
                                                                           3900
       GGTTGTCAAG TGGACAATCA AATGATAAAC TTTAAGACCT TGTATACCAT ATTGAAAGGA
                                                                           3960
       AGAGGCTGAC AATAAGGTTT GACAGAGGGG AACAGAAGAA AATAATATGA TTTATTAGCA
                                                                           4020
       CAACGTGGTA CTATTTGCCA TTTAAAACTA GAACAGGTAT ATAAGCTAAT ATTGATACAA
                                                                           4080
       TGATGATTAA CTATGAATTC TTAAGACTTG CATTTAAATG TGACATTCTT AAAAAAAGAA
                                                                           4140
20
       GAGAAGAAT TTTAAGAGTA GCAGTATATA TGTCTGTGCT CCCTAAAAGT TGTACTTCAT
                                                                           4200
       TTCTTTTCCA TACACTGTGT GCTATTTGTG TTAACATGGA AGAGGATTCA TTGTTTTAT
       TTTTATTTT TTAATTTTT CTTTTTTATT AAGCTAGCAT CTGCCCCAGT TGGTGTTCAA
                                                                           4320
       ATAGCACTTG ACTCTGCCTG TGATATCTGT ATCTTTTCTC TAATCAGAGA TACAGAGGTT
                                                                           4380
       GAGTATAAAA TAAACCTGCT CAGATAGGAC AATTAAGTGC ACTGTACAAT TTTCCCAGTT
                                                                           4440
25
       TACAGGTCTA TACTTAAGGG AAAAGTTGCA AGAATGCTGA AAAAAAATTG AACACAATCT
                                                                           4500
       CATTGAGGAG CATTTTTTAA AAACTAAAAA AAAAAAAACT TTGCCAGCCA TTTACTTGAC
                                                                           4560
       TATTGAGCTT ACTTACTTGG ACGCAACATT GCAAGCGCTG TGAATGGAAA CAGAATACAC
       TTAACATAGA AATGAATGAT TGCTTTCGCT TCTACAGTGC AAGGATTTTT TTGTACAAAA
                                                                           4680
       CTTTTTTAAA TATAAATGTT AAGAAAAATT TTTTTTAAAA AACACTTCAT TATGTTTAGG
                                                                           4740
30
       GGGGAACTGC ATTTTAGGGT TCCATTGTCT TGGTGGTGTT ACAAGACTTG TTATCCATTT
                                                                           4800
       AAAAATGGTA GTGGAAATTC TATGCCTTGG ATACACACCG CTCTTCAGGT TGTAAAAAAA
                                                                           4860
       AAAAACATAC ATTGGGGAAA GGTTTAAGAT TATATAGTAC TTAAATATAG GAAAATGCAC
                                                                           4920
       ACTCATGTTG ATTCCTATGC TAAAATACAT TTATGGTCTT TTTTCTGTAT TTCTAGAATG
       GTATTTGAAT TAAATGTTCA TCTAGTGTTA GGCACTATAG TATTTATATT GAAGCTTGTA
                                                                           5040
35
       TTTTTAACTG TTGCTTGTTC TCTTAAAAGG TATCAATGTA CCTTTTTTGG TAGTGGAAAA
                                                                           5100
       AAAAAAGACA GGCTGCCACA GTATATTTTT TTAATTTGGC AGGATAATAT AGTGCAAATT
                                                                           5160
       ATTTGTATGC TTCAAAAAAA AAAAAAAGAG AGAAACAAAA AAGTGTGACA TTACAGATGA
                                                                           5220
       GAAGCCATAT AATGGCGGTT TGGGGGAGCC TGCTAGAATG TCACATGGAT GGCTGTCATA
                                                                           5280
       GGGGTTGTAC ATATCCTTTT TTGTTCCTTT TTCCTGCTGC CATACTGTAT GCAGTACTGC
40
       AAGCTAATAA CGTTGGTTTG TTATGTAGTG TGCTTTTTGT CCCTTTCCTT CTATCACCCT
                                                                           5400
       ACATTCCAGC ATCTTACCTT CATATGCAGT AAAAGAAAGA AAGAAAAAA AAGGAAAAAA
                                                                           5460
       AAAAAAAAC CAATGTTTTG CAGTTTTTTT CATTGCCAAA AACTAAATGG TGCTTTATAT
                                                                           5520
       TTAGATTGGA AAGAATTTCA TATGCAAAGC ATATTAAAGA GAAAGCCCGC TTTAGTCAAT
                                                                           5580
       ACTITITGT AAATGCCAAT GCAGAATATT TTGTTATTGG CCTTTTCTAT TCCTGTAATG
                                                                           5640
45
       AAAGCTGTTT GTCGTAACTT GAAATTTTAT CTTTTACTAT GGGAGTCACT ATTTATTATT
       GCTTATGTGC CCTGTTCAAA ACAGAGGCAC TTAATTTGAT CTTTTATTTT TCTTTGTTTT
                                                                           5760
       TATTTTTTT TTTATTTAGA TGACCAAAGG TCATTACAAC CTGGCTTTTT ATTGTATTTG
                                                                           5820
       TTTCTGGTCT TTGTTAAGTT CTATTGGAAA AACCACTGTC TGTGTTTTTT TGGCAGTTGT
                                                                           5880
       CTGCATTAAC CTGTTCATAC ACCCATTTTG TCCCTTTATT GAAAAAATAA AAAAAATTAA
                                                                           5940
50
       Seq ID NO: 85 Protein sequence:
       Protein Accession #: NP 075044.1
55
                  11
                             21
                                         31
                                                    41
                                                               51
       MSRRKQGKPQ HLSKREFSPE PLEAILTDDE PDHGPLGAPE GDHDLLTCGQ CQMNFPLGDI
       LIFIEHKRKQ CNGSLCLEKA VDKPPSPSPI EMKKASNPVE VGIQVTPEDD DCLSTSSRRI
                                                                            120
       CPKQEHIADK LLHWRGLSSP RSAHGALIPT PGMSAEYAPQ GICKDEPSSY TCTTCKQPFT
                                                                            1.80
60
       SAWFLLOHAO NTHGLRIYLE SEHGSPLTPR VGIPSGLGAE CPSQPPLHGI HIADNNPFNL
                                                                            240
       DRIPGSVSRE ASGLAEGREP PTPPLESPPP RHHLDPHRIE RLGAEEMALA THHPSAFDRV
                                                                            300
       LRLNPMAMEP PAMDFSRRLR ELAGNTSSPP LSPGRPSPMQ RLLQPFQPGS KPPFLATPPL
                                                                            360
       PPLQSAPPPS QPPVKSKSCE FCGKTFKFQS NLVVHRRSHT GEKPYKCNLC DHACTQASKL
       KRHMKTHMHK SSPMTVKSDD GLSTASSPEP GTSDLVGSAS SALKSVVAKF KSENDPNLIP
                                                                            480
65
       ENGDEEEED DEEEEEEEE EEEELTESER VDYGFGLSLE AARHHENSSR GAVVGVGDES
                                                                            540
       RALPDVMOGM VLSSMOHFSE AFHOVLGEKH KRGHLAEAEG HRDTCDEDSV AGESDRIDDG
                                                                            600
       TVNGRGCSPG ESASGGLSKK LLLGSPSSLS PFSKRIKLEK EFDLPPATMP NTENVYSOWL
                                                                            660
       AGYAASROLK DPFLSFGDSR QSPFASSSEH SSENGSLRFS TPPGELDGGI SGRSGTGSGG
                                                                            720
       STPHISGPGT GRPSSKEGRR SDTCEYCGKV FKNCSNLTVH RRSHTGERPY KCELCNYACA
70
       OSSKLTRHMK THGOVGKDVY KCEICKMPFS VYSTLEKHMK KWHSDRVLNN DIKTE
       Seg ID NO: 86 DNA seguence
       Nucleic Acid Accession #: XM_035292.2
75
       Coding sequence: 53-1576
                                                               51
                                                    41
                                         31
       GCTCGCTGGG CCGCGGCTCC CGGGTGTCCC AGGCCCGGCC GGTGCGCAGA GCATGGCGGG
                                                                             60
80
       TGCGGGCCCG AAGCGGCGCC CGCTAGCGGC GCCGGCGGCC GAGGAGAAGG AAGAGGCGCG
                                                                            120
       GGAGAAGATG CTGGCCGCCA AGAGCGCGGA CGGCTCGGCG CCGGCAGGCG AGGGCGAGGG
       CGTGACCCTG CAGCGGAACA TCACGCTGCT CAACGGCGTG GCCATCATCG TGGGGACCAT
       TATCGGCTCG GGCATCTTCG TGACGCCCAC GGGCGTGCTC AAGGAGGCAG GCTCGCCGGG
                                                                            300
       GCTGGCGCTG GTGGTGTGGG CCGCGTGCGG CGTCTTCTCC ATCGTGGGCG CGCTCTGCTA
                                                                            360
85
       CGCGGAGCTC GGCACCACCA TCTCCAAATC GGGCGGCGAC TACGCCTACA TGCTGGAGGT
CTACGGCTCG CTGCCCGCCT TCCTCAAGCT CTGGATCGAG CTGCTCATCA TCCGGCCTTC
                                                                            420
                                                                            480
       ATCGCAGTAC ATCGTGGCCC TGGTCTTCGC CACCTACCTG CTCAAGCCGC TCTTCCCCAC
                                                                            540
```

```
CTGCCCGGTG CCCGAGGAGG CAGCCAAGCT CGTGGCCTGC CTCTGCGTGC TGCTGCTCAC
                                                                           600
       GGCCGTGAAC TGCTACAGCG TGAAGGCCGC CACCCGGGTC CAGGATGCCT TTGCCGCCGC
                                                                           660
       CAAGCTCCTG GCCCTGGCCC TGATCATCCT GCTGGGCTTC GTCCAGATCG GGAAGGGTGA
                                                                            720
       TGTGTCCAAT CTAGATCCCA ACTTCTCATT TGAAGGCACC AAACTGGATG TGGGGAACAT
                                                                           780
 5
       TGTGCTGGCA TTATACAGCG GCCTCTTTGC CTATGGAGGA TGGAATTACT TGAATTTCGT
                                                                           840
       CACAGAGGAA ATGATCAACC CCTACAGAAA CCTGCCCCTG GCCATCATCA TCTCCCTGCC
                                                                           900
       CATCGTGACG CTGGTGTACG TGCTGACCAA CCTGGCCTAC TTCACCACCC TGTCCACCGA
                                                                           960
       GCAGATGCTG TCGTCCGAGG CCGTGGCCGT GGACTTCGGG AACTATCACC TGGGCGTCAT
                                                                           1020
       GTCCTGGATC ATCCCCGTCT TCGTGGGCCT GTCCTGCTTC GGCTCCGTCA ATGGGTCCCT
10
       GTTCACATCC TCCAGGCTCT TCTTCGTGGG GTCCCGGGAA GGCCACCTGC CCTCCATCCT
                                                                           1140
       CTCCATGATC CACCCACAGC TCCTCACCCC CGTGCCGTCC CTCGTGTTCA CGTGTGTGAT
                                                                          1200
       GACGCTGCTC TACGCCTTCT CCAAGGACAT CTTCTCCGTC ATCAACTTCT TCAGCTTCTT
                                                                          1260
       CAACTGGCTC TGCGTGGCCC TGGCCATCAT CGGCATGATC TGGCTGCGCC ACAGAAAGCC
                                                                           1320
       TGAGCTTGAG CGGCCCATCA AGGTGAACCT GGCCCTGCCT GTGTTCTTCA TCCTGGCCTG
                                                                           1380
15
       CCTCTTCCTG ATCGCCGTCT CCTTCTGGAA GACACCCGTG GAGTGTGGCA TCGGCTTCAC
                                                                           1440
       CATCATCCTC AGCGGGCTGC CCGTCTACTT CTTCGGGGTC TGGTGGAAAA ACAAGCCCAA
                                                                           1500
       GTGGCTCCTC CAGGGCATCT TCTCCACGAC CGTCCTGTGT CAGAAGCTCA TGCAGGTGGT
                                                                          1560
       CCCCCAGGAG ACATAGCCAG GAGGCCGAGT GGCTGCCGGA GGAGCATGC
20
       Seg ID NO: 87 Protein seguence:
       Protein Accession #: XP_035292.2
                                                   41
                                                              51
                                        31
25
       MAGAGPKRRA LAAPAAEEKE EAREKMLAAK SADGSAPAGE GEGVTLQRNI TLLNGVAIIV
                                                                             60
       GTIIGSGIFV TPTGVLKEAG SPGLALVVWA ACGVFSIVGA LCYAELGTTI SKSGGDYAYM
                                                                           120
       LEVYGSLPAF LKLWIELLII RPSSQYIVAL VFATYLLKPL FPTCPVPEEA AKLVACLCVL
       LLTAVNCYSV KAATRVQDAF AAAKLLALAL IILLGFVQIG KGDVSNLDPN FSFEGTKLDV
                                                                            240
       GNIVLALYSG LFAYGGWNYL NFVTEEMINP YRNLPLAIII SLPIVTLVYV LTNLAYFTTL
                                                                            300
30
       STEOMLSSEA VAVDFGNYHL GVMSWIIPVF VGLSCFGSVN GSLFTSSRLF FVGSREGHLP
                                                                            360
       SILSMIHPQL LTPVPSLVFT CVMTLLYAFS KDIFSVINFF SFFNWLCVAL AIIGMIWLRH
                                                                            420
       RKPELERPIK VNLALPVFFI LACLFLIAVS FWKTPVECGI GFTIILSGLP VYFFGVWWKN
                                                                            480
       KPKWLLQGIF STTVLCQKLM QVVPQET
35
       Seq ID NO: 88 DNA sequence
       Nucleic Acid Accession #: NM_005268.1
       Coding sequence: 168-989
40
                                        31
                                                               51
       TAAAAAGCAA AAGAATTCGC GGCCGCGTCG ACACGGGCTT CCCCGAAAAC CTTCCCCGCT
                                                                             60
       TCTGGATATG AAATTCAAGC TGCTTGCTGA GTCCTATTGC CGGCTGCTGG GAGCCAGGAG
                                                                           120
       AGCCCTGAGG AGTAGTCACT CAGTAGCAGC TGACGCGTGG GTCCACCATG AACTGGAGTA
                                                                            180
45
       TCTTTGAGGG ACTCCTGAGT GGGGTCAACA AGTACTCCAC AGCCTTTGGG CGCATCTGGC
       TGTCTCTGGT CTTCATCTTC CGCGTGCTGG TGTACCTGGT GACGGCCGAG CGTGTGTGGA
                                                                            300
       GTGATGACCA CAAGGACTTC GACTGCAATA CTCGCCAGCC CGGCTGCTCC AACGTCTGCT
                                                                            360
       TTGATGAGTT CTTCCCTGTG TCCCATGTGC GCCTCTGGGC CCTGCAGCTT ATCCTGGTGA
                                                                            420
       CATGCCCCTC ACTGCTCGTG GTCATGCACG TGGCCTACCG GGAGGTTCAG GAGAAGAGGC
                                                                            480
50
       ACCGAGAAGC CCATGGGGAG AACAGTGGGC GCCTCTACCT GAACCCCGGC AAGAAGCGGG
                                                                            540
       GTGGGCTCTG GTGGACATAT GTCTGCAGCC TAGTGTTCAA GGCGAGCGTG GACATCGCCT
                                                                            600
       TTCTCTATGT GTTCCACTCA TTCTACCCCA AATATATCCT CCCTCCTGTG GTCAAGTGCC
                                                                            660
       ACGCAGATCC ATGTCCCAAT ATAGTGGACT GCTTCATCTC CAAGCCCTCA GAGAAGAACA
                                                                            720
       TTTTCACCCT CTTCATGGTG GCCACAGCTG CCATCTGCAT CCTGCTCAAC CTCGTGGAGC
                                                                            780
55
       TCATCTACCT GGTGAGCAAG AGATGCCACG AGTGCCTGGC AGCAAGGAAA GCTCAAGCCA
                                                                            840
       TGTGCACAGG TCATCACCCC CACGGTACCA CCTCTTCCTG CAAACAAGAC GACCTCCTTT
                                                                            900
       CGGGTGACCT CATCTTTCTG GGCTCAGACA GTCATCCTCC TCTCTTACCA GACCGCCCCC
       GAGACCATGT GAAGAAAACC ATCTTGTGAG GGGCTGCCTG GACTGGTCTG GCAGGTTGGG
                                                                           1020
       CCTGGATGGG GAGGCTCTAG CATCTCTCAT AGGTGCAACC TGAGAGTGGG GGAGCTAAGC
                                                                           1080
60
       CATGAGGTAG GGGCAGGCAA GAGAGAGGAT TCAGACGCTC TGGGAGCCAG TTCCTAGTCC
                                                                           1140
       TCAACTCCAG CCACCTGCCC CAGCTCGACG GCACTGGGCC AGTTCCCCCT CTGCTCTGCA
                                                                           1200
       GCTCGGTTTC CTTTTCTAGA ATGGAAATAG TGAGGGCCAA TGC
       Seq ID NO: 89 Protein sequence:
65
       Protein Accession #: NP_005259.1
                                                    41
                                                               51
       MNWSIFEGLL SGVNKYSTAF GRIWLSLVFI FRVLVYLVTA ERVWSDDHKD FDCNTRQPGC
70
       SNVCFDEFFP VSHVRLWALQ LILVTCPSLL VVMHVAYREV QEKRHREAHG ENSGRLYLNP
                                                                            120
                                                                            180
       GKKRGGLWWT YVCSLVFKAS VDIAFLYVFH SFYPKYILPP VVKCHADPCP NIVDCFISKP
       SEKNIFTLFM VATAAICILL NLVELIYLVS KRCHECLAAR KAQAMCTGHH PHGTTSSCKQ
                                                                           240
       DDLLSGDLIF LGSDSHPPLL PDRPRDHVKK TIL
75
       Seg ID NO: 90 DNA sequence
       Nucleic Acid Accession #: NM_002391.1
       Coding sequence: 26-457
80
                                                    41
                                                               51
                             21
                                         31
       CGGGCGAAGC AGCGCGGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
       CGCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG
                                                                            120
       CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG
                                                                            180
       CGGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT
85
                                                                            240
       GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
       TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
```

5	CAATGCTCAG AAAGGCCAAA GCCCCTGGTG CACCAGTGCC ACTCCCCAGC TGAGCCTCCC	TGCAGGAGA GCCAAGAAAG TCACATGGGG TTCTGTCTGC CCCACCCCTA CCAAAGCAAT AACACATCAA	GGAAGGAAA CCTGGCCACG TCGTTAGCTT AGTGCCCAAA GTGAGTCCCA	GGACTAGACG CCCTCCCTCT TAATCAATCA GTGGGGAGGG GAGCCCGCTT	CCAAGCCTGG CCCAGGCCCG TGCCCTGCCT ACAAGGGATT TTGTTCTTCC	ATGCCAAGGA AGATGTGACC TGTCCCTCTC CTGGGAAGCT CCACAATTCC	420 480 540 600 660 720 780
10		91 Protein cession #: N					
	1	11	21	31	41	51	
15	CGAQTQRIRC	I LLALLALTSA RVPCNWKKEF KAKAKAKKGK	GADCKYKFEN				60 120
20	Nucleic Act	92 DNA sequ id Accession nence: 98-80	1 #: NM_005	130.1			
25	1	11	21	31	41	51 ,	
30	CGTGTGCTCA GCTCTCCTTC GAATGGACTT	CACAGCTGCA GAACAAGGTG CTCCTACTGG CACAGCAAAG	AACGCCCAGC CTGCTCAGGT TGGTCTCAGA	TGCAGCCATG GCTCCTGGTG ACAAAAGGAC	AAGATCTGTA GAGGGGAAAA ACTCTGGGCA	GCCTCACCCT AAAAAGTGAA ACACCCAGAT	60 120 180 240
	CAGATGGGCT GGACCATGAA TGAGAGAGTC ATATTCCAAG	AGCAGGCCCG GCTACTGAGC TTTTCCTGTG TATTGGAAAC ACAGCTGTGA	AGGAGGAGGG TCTTTGCTGG AAGTTGCCCG AAACCAGAGT	CATCTCTCTC CAATCCAACC GAATCTGCGC GTGCAGAAAG	AAGGTTGAGT TCATGCCTAA TCACAGAAAG GATTTTCCAG	GCACTCAATT AGCTCAAGGA ACATCTGTAG AATCCAGTCT	300 360 420 480 540
35	GTCCCCCAGG GACCATGGCC GACTGCCCTG	AGCTCCACTC GAGCACATCA ACCAAAGCTC GAGTTCTGTG ACGTCATGCT	AGGGCAAAGA CCGAGTGTGT GAGAGACTTG	GACCACCCC GGAGGACCCA GAGCTCTCTC	TCTAGCCTAG GATATGGCAA TGCACATTCT	CAGTGACCCA ACCAGAGGAA TCCTCAGCAT	600 660 720 780 840
40	TGTGCTTAGT TGGAATTTGC TTCCATGGCC	CCCTCTGTAT GAGTGCAACG CTTATTTTC CACACAGCTA TTCAGTGCAA	AAATATTTAA TTGGATGCGA TGTGTTTGAG	ACAAGTTTTG TGTTCAGAGG CAGCGAAGAG	TATTTTTTGC CTGTTTCCTG TCTTTGAGCT	TTTTGTGTTT CAGCATGTAT GAATGAGCCA	900 960 1020 1080 1140
45	TTTTTCAAAA Seq ID NO:	AAAAAAAAAA 93 Protein cession #: 1	AAA sequence:				
50					4.7	e 1	
50	1 	11	21]	31	41	51	
55	VTKDQANCRW RSQKDICRYS	FLLLAAQVLL AATEQEEGIS KTAVKTRVCR ATKAPECVED	VEGKKKVKNG LKVECTQLDH KDFPESSLKL	EFSCVFAGNP VSSTLFGNTK	TSCLKLKDER PRKEKTEMSP	VYWKQVARNL REHIKGKETT	60 120 180
	Nucleic Ac:	94 DNA sequid Accession	1 #: NM_0121	.01			
60		1					
	1 	11	21	31	41.	51	
		GTGTGTCTCT					60 120
65		GTCACCTATC GCTGCAGATG					180
		TCGGGCCCCA					240 300
		ACCAACGGGC GGGGAAGGTA					360
70		GTCGAGTCCG AGGTCGCCGT					420 480
, 0	TACCTTTGCC	GAAAAGGGCG	ACGTGCGCAA	GTCCATTTTC	TCGGAGTCCC	GGAAGCCCAC	540
		ATGGAGCCCG CGGTCCAAGT					600 660
75	CAAGCAGAAG	GCGGTCAAGT	CCTGCCTGGT	GTGCCAGGCC	TCCTTCTGCG	AGCTGCATCT	720
75		CTGGAGGGCG CGCAAGTGTC					780 840
	CCAGACCTGC	ATCTGCTACC	TTTGCATGTT	CCAGGAGCAC	AAGAATCATA	GCACCGTGAC	900
		GCCAAGGCCG ATTGAGATTG					960 1020
80	CAAGAGCTTC	ACCACCAATG	AGAAGGCCAT	CCTGGAGCAG	AACTTCCGGG	ACCTGGTGCG	1080
		AAGCAAAAGG GTGAAGGTGA					1140 1200
	GGACAAGCAG	ACCCGGGAGC	AGCTGCATAG	CATCAGCGAC	TCTGTGTTGT	TTCTGCAGGA	1260
85		TTGATGAGCA GAGGGCCTGG					1320 1380
	ATGCATGCGC	CACGTTGAGA GAGAACGGTG	AGATGTGCAA	GGCGGACCTG	AGCCGTAACT	TCATTGAGAG	1440 1500
	OUNCERCATO	GNONNCOOLG	CIONCONICO				

```
GGGTGAGTGG AGTGCACCGG ACACCATGAA GAGATACTCC ATGTACCTGA CACCCAAAGG
                                                                         1560
      TGGGGTCCGG ACATCATACC AGCCCTCGTC TCCTGGCCGC TTCACCAAGG AGACCACCCA
                                                                         1620
      GAAGAATTTC AACAATCTCT ATGGCACCAA AGGTAACTAC ACCTCCCGGG TCTGGGAGTA
                                                                         1680
      CTCCTCCAGC ATTCAGAACT CTGACAATGA CCTGCCCGTC GTCCAAGGCA GCTCCTCCTT
                                                                         1740
 5
                                                                         1800
       CTCCCTGAAA GGCTATCCCT CCCTCATGCG GAGCCAAAGC CCCAAGGCCC AGCCCCAGAC
       TTGGAAATCT GGCAAGCAGA CTATGCTGTC TCACTACCGG CCATTCTACG TCAACAAAGG
                                                                          1860
       CAACGGGATT GGGTCCAACG AAGCCCCATG AGCTCCTGGC GGAAGGAACG AGGCGCCACA
       CCCCTGCTCT TCCTCCTGAC CCTGCTGCTC TTGCCTTCTA AGCTACTGTG CTTGTCTGGG
                                                                         1980
      TGGGAGGGAG CCTGGTCCTG CACCTGCCCT CTGCAGCCCT CTGCCAGCCT CTTGGGGGGCA
                                                                         2040
10
      GTTCCGGCCT CTCCGACTTC CCCACTGGCC ACACTCCATT CAGACTCCTT TCCTGCCTTG
                                                                         2100
       TGACCTCAGA TGGTCACCAT CATTCCTGTG CTCAGAGGCC AACCCATCAC AGGGGTGAGA
                                                                         2160
       TAGGTTGGGG CCTGCCCTAA CCCGCCAGCC TCCTCCTCTC GGGCTGGATC TGGGGGCTAG
      CAGTGAGTAC CCGCATGGTA TCAGCCTGCC TCTCCCGCCC ACGCCCTGCT GTCTCCAGGC
CTATAGACGT TTCTCTCCAA GGCCCTATCC CCCAATGTTG TCAGCAGATG CCTGGACAGC
                                                                          2280
                                                                          2340
       ACAGCCACCC ATCTCCCATT CACATGGCCC ACCTCCTGCT TCCCAGAGGA CTGGCCCTAC
                                                                          2400
15
       GTGCTCTCTC TCGTCCTACC TATCAATGCC CAGCATGGCA GAACCTGCAG TGGCCAAGGG
                                                                          2460
       CTGCAGATGG AAACCTCTCA GTGTCTTGAC ATCACCCTAC CCAGGCGGTG GGTCTCCACC
                                                                          2520
       ACAGCCACTT TGAGTCTGTG GTCCCTGGAG GGTGGCTTCT CCTGACTGGC AGGATGACCT
                                                                          2580
       TAGCCAAGAT ATTCCTCTGT TCCCTCTGCT GAGATAAAGA ATTCCCTTAA CATGATATAA
                                                                          2640
       TCCACCCATG CAAATAGCTA CTGGCCCAGC TACCATTTAC CATTTGCCTA CAGAATTTCA
20
                                                                          2700
       2760
       GTGCCTTACA CACTGCCCCC ACCCTCAGCC GTTGCCCCAT CAGAGGCTGC CTCCTCCTTC
                                                                          2820
       2880
       AGCAGCACAG TGGGGACATC TCCCGTCTCA ACAGCCCCAG GCCTATGGGG GCTCTGGAAG
                                                                          2940
       GATGGGCCAG CTTGCAGGGG TTGGGGAGGG AGACATCCAG CTTGGGCTTT CCCCTTTGGA
25
       ATAAACCATT GGTCTGTC
       Seq ID NO: 95 Protein sequence:
       Protein Accession #: NP_036233.1
30
                                                   41
                  11
                             21
                                        31
       MEAADASRSN GSSPEARDAR SPSGPSGSLE NGTKADGKDA KTTNGHGGEA AEGKSLGSAL
                                                                           120
       KPGEGRSALF AGNEWRRPII QFVESGDDKN SNYFSMDSME GKRSPYAGLQ LGAAKKPPVT
35
       FAEKGDVRKS IFSESRKPTV SIMEPGETRR NSYPRADTGL FSRSKSGSEE VLCDSCIGNK
                                                                           180
       QKAVKSCLVC QASFCELHLK PHLEGAAFRD HQLLEPIRDF EARKCPVHGK TMELFCQTDQ
       TCICYLCMFQ EHKNHSTVTV EEAKAEKETE LSLQKEQLQL KIIEIEDEAE KWQKEKDRIK
                                                                           300
       SFTTNEKAIL EQNFRDLVRD LEKQKEEVRA ALEQREQDAV DQVKVIMDAL DERAKVLHED
                                                                           360
       KOTREQLHSI SDSVLFLQEF GALMSNYSLP PPLPTYHVLL EGEGLGQSLG NFKDDLLNVC
40
                                                                           420
       MRHVEKMCKA DLSRNFIERN HMENGGDHRY VNNYTNSFGG EWSAPDTMKR YSMYLTPKGG
                                                                           480
       VRTSYQPSSP GRFTKETTQK NFNNLYGTKG NYTSRVWEYS SSIQNSDNDL PVVQGSSSFS
       LKGYPSLMRS QSPKAQPQTW KSGKQTMLSH YRPFYVNKGN GIGSNEAP
45
       Seq ID NO: 96 DNA sequence
       Nucleic Acid Accession #: NM_080668.1
       Coding sequence: 83-841
                                                              51
                                        31
                                                   41
50
       GGCACGAGGG CAGCGAGTGG CCTTCCCGGT TGGCGCGCGC CCGGGGCGGC GGCGCTGGAG
       GAGCTCGAGA CGGAGCCTAG TTATGTCTGG GAGGCGAACG CGGTCCGGAG GAGCCGCTCA
                                                                           120
       GCGCTCCGGG CCAAGGGCCC CATCTCCTAC TAAGCCTCTG CGGAGGTCCC AGCGGAAATC
                                                                           180
       AGGCTCTGAA CTCCCGAGCA TCCTCCCTGA AATCTGGCCG AAGACACCCA GTGCGGCTGC
                                                                           240
       AGTCAGAAAG CCCATCGTCT TAAAGAGGAT CGTGGCCCAT GCTGTAGAGG TCCCAGCTGT
55
       CCAATCACCT CGCAGGAGCC CTAGGATTTC CTTTTTCTTG GAGAAAGAAA ACGAGCCCCC
                                                                           360
       TGGCAGGGAG CTTACTAAGG AGGACCTTTT CAAGACACAC AGCGTCCCTG CCACCCCCAC
                                                                            420
       CAGCACTCCT GTGCCGAACC CTGAGGCCGA GTCCAGCTCC AAGGAAGGAG AGCTGGACGC
                                                                            480
       CAGAGACTTG GAAATGTCTA AGAAAGTCAG GCGTTCCTAC AGCCGGCTGG AGACCCTGGG
                                                                           540
       CTCTGCCTCT ACCTCCACCC CAGGCCGCCG GTCCTGCTTT GGCTTCGAGG GGCTGCTGGG
                                                                            600
60
       GGCAGAAGAC TTGTCCGGAG TCTCGCCAGT GGTGTGCTCC AAACTCACCG AGGTCCCCAG
       GGTTTGTGCA AAGCCCTGGG CCCCAGACAT GACTCTCCCT GGAATCTCCC CACCACCCGA
                                                                            720
       GAAACAGAAA CGTAAGAAGA AGAAAATGCC AGAGATCTTG AAAACGGAGC TGGATGAGTG
                                                                            780
       GGCTGCGGCC ATGAATGCCG AGTTTGAAGC TGCTGAGCAG TTTGATCTCC TGGTTGAATG
                                                                            840
       AGATGCAGTG GGGGGTGCAC CTGGCCAGAC TCTCCCTCCT GTCCTGTACA TAGCCACCTC
                                                                           900
65
       CCTGTGGAGA GGACACTTAG GGTCCCCTCC CCTGGTCTTG TTACCTGTGT GTGTGCTGGT
                                                                            960
       GCTGCGCATG AGGACTGTCT GCCTTTGAGG GCTTGGGCAG CAGCGGCAGC CATCTTGGTT
       TTAGGAAATG GGGCCGCCTG GCCCAGCCAC TCACTGGTGT CCTGTCTCTT GTCGTCCTGT
                                                                           1080
       CCTTCCTATC TCCCCAAAGT ACCATAGCCA GTTTCCAGAT GGGCCACAGA CTGGGGAGGA
                                                                           1140
70
       GAATCAGTGG CCCAGCCAGA AGTTAAAGGG CTGAGGGTTG AGGTGAGAGG CACCTCTGCT
                                                                          1200
       CTTGTTGGGA GGGGTGGCTG CTTGGAAATA GGCCCAGGGG CTCTGCCAGC CTCGGCCTCT
                                                                           1260
       CCCTCCTGAG TTGCCTTCTG TTGGTGGCTT TCTTCTTGAA CCCACCTGTG TAAAGAGGTT
                                                                           1320
       TTCAGTTCCG TGGGTTTCCC CTTTGATTCT GTAAATAGTC CCAGAGAGAA TTCGTGGGCT
                                                                           1380
        GAGGGCAATT CTGTCTTGGA GGAAGAAGCT GGACATTCAG CCTGTGGAGT CTGAGTTTTG
                                                                           1440
        AAGGATGTAG GGAGCCTTAG TTGGGTCTCA GACCATAAGT GTGTACTACA CAGAAGCTGT
                                                                           1500
 75
        GTTTTCTAGT TCTGGTCTGC TGTTGAGATG TTTGGTAAAT GCCAGGTTGA TAGGGCGCTG
                                                                           1560
        GCTGCTTGGA GCAAAGGGTG CATTTCAGGG TGTGGCCACC AGGTGCTGTG AGTTTCTGTG
                                                                           1620
        GCTCATGGCC TCTGGGCTGG TCCCTTGCAC AGGGCCCACG CTGGAGTCTT ACCACTCTGC
                                                                           1680
        TGCAGGGGTG GAAGGTGGCC CCTCTTGTCA CCCATACCCA TTTCTTACAA AATAAGTTAC
                                                                           1740
 80
        ACCGAGTCTA CTTGGCCCTA GAAGAGAAAG TTGAAGAGTC CCAGACCTAC TAGCATTTTG
                                                                           1800
        CAACTATGCT TGTAAAGTCC TCGGAAAGTT TCCTCGCGTA CCAGACAGCG GCGGGGGCTG
                                                                           1860
        ATAGCAATTT TAGTTTTTGG CCTCCCTATC CTCTCACATG AGAACACTGC CTGGATGCAT
                                                                           1920
        CTCATGATCT CTGGAGAATT TCCCCATCTT TCTCTTCTTT CCATCGTGTG GATTCAATAG
                                                                           1980
        TTTGGATTTG AAGGCTGCCC TGCCCCCGAC TCTCCTGCCG CACCCCTGGC CATTGTACCT
                                                                           2040
        TTTGATGTTT AGAAGTTCGT GGAAGTAGAC GCTGAGGTGT GCAGAGGAGC TGGTGGATAA
 85
                                                                           2100
        CAGAGAATGC CAGGGAAGAT GAGTGCTGGG TCAGGGTACT TGGATGAAAC GGTGCAGGCC
        AGGCGGGCCC TAATAAAACC CTCTGCCAGG TCTGGGAGTC CCAGGCCATC TGCTCAACGC
```

	WO 02	/086443					
E	CTGAACCGCA GTCTTAGTCC AGTTCTCTGT	CTGAAGAACT TGCAGAATCA TCCTGAGGAA	CTTGTCCTCA GGAGTCACCA CTAAATTTAA	CCCTGCTGGG CTGGCTGATG GATGATGCAG GGAAAAAATG	CAGCAGAACT AGTTGAGATC GGATTTTGTT	CTTGGGAAAT ATCATTGCAA TTAGAGTTGG	2280 2340 2400 2460
5	Seq ID NO:	97 Protein	sequence:	GTTAAAAAA	AAAAAAAA	AAAAA	
4.0	Protein Aco	cession #: N	IP_542399.1				
10	1	11	21 I	31	41	51 I	
	 MSGRRTRSGG	AAORSGPRAP	SPTKPLRRSQ	 RKSGSELPSI	LPEIWPKTPS	AAAVRKPIVL	60
				EPPGRELTKE			120
1-5				TLGSASTSTP PPEKQKRKKK			180 240
	FEAAEQFDLL						
	Sea ID NO:	98 DNA sequ	lence				
20	Nucleic Ac	id Accession	ı #: Eos sed	quence			
20	Coding sequ	lence: 58-12	2444				
	1	11	21	31	41	51	
2.5	 GGGGCATTTC	CGGGTCCGGG	CCGAGCGGGC	GCACGCGCGG	GAGCGGGACT	CGGCGGCATG	60
25				CTGCTGCGGC			120
				CATCAACTGA GCATTACAGA			180 240
	GATTTCGGTT	TGCTTGTATT	TGTCCGGAAG	TCACTCAACA	GTATTGAATT	TCGTGAATGT	300
30				TTCTTAGAAA ACCAGTGTTT			360 420
50				ATTAAGTTAC			480
	AGACTCATGG	ATGAATTTAA	AATTGGAGAA	TTATTTAGTA	AATTCTATGG	AGAACTTGCA	540
				GAAAAAGTAT AATGCAGAAA			600 660
35				GTAAGAGAGC			720
				TGCAACTTCA			780
				GTACTAAAGG TTGCGCCTAT			840 900
40	TTTAGCACCT	GCCTTCTGGA	CAACTACGTG	TCTCTATTTG	AAGTCTTGTT	AAAGTGGTGT	960
40				GCACTTTCAG			1020
				GAAATGCATA GTGGATTCGA			1080 1140
				CCGTGCAAGG			1200
45				TGCAAGCAGA AGCTTCCTCC			1260 1320
10				ACTCCAGTTC			1380
				AAAATGCAGC			1440
				GGGCCAGTTC TCTAAACCAG			1500 1560
50	GAGTCTGAAT	CTGAAGACCA	CCGTGCTTCA	GGGGAAGTCA	GAACTGGCAA	ATGGAAGGTG	1620
				AGACATCTCC TCTGTGAATT			1680 1740
				GTTTTGAAGA			1800
55				GAGAATGGAG			1860 1920
33				TTGCATCCAG GAGATTCTCC			1920
				GAATTAATTT			2040
				ATTACAGTAA AAACACTCTC			2100 2160
60				AAAGAGGTGG			2220
				TTTCTTCTGT			2280
				CTGCAGATGG GCTCTAGAAG			2340 2400
<i>(</i> =	AGACATGTAA	TGCAGCCTTA	TTACAAAGAC	ATTCTCCCCT	GCCTGGATGG	ATACCTGAAG	2460
65				AACTGGGAAG AAGCATCTGA			2520 2580
				AGAATTAGAG			2640
				ACAGTCACGT			2700
70				CTGAGCTTTG CCTCGAGTCA			2760 2820
, 0				GAACTTTTAC			2880
				GGACAGGGAG			2940
				CTTGCGTGTG ATTCACTGGT			3000 3060
75	GAAAGTCAGG	ATACTGTTGC	CTTACTAGAA	GCTATATTGG	ATGGAATTGT	GGACCCTGTT	3120
				TGTATTCGAG AGTCCAGTAA			3180 3240
				GCTTTCAAGA			3300
80	TTTAATAATA	TCTACAGGGA	ATTCAGGGAA	GAAGAGTCTC	TGGTGGAACA	GTTTGTGTTT	3360
80				GCCTTAGCAC GATCACCTAT			3420 3480
	CATGTTTCTT	TAAATAAAGC	AAAGAAACGA	CGTTTGCCGC	GAGGATTTCC	ACCTTCCGCA	3540
	TCATTGTGTT	TATTGGATCT	GGTCAAGTGG	CTTTTAGCTC	ATTGTGGGAG	GCCCCAGACA	3600 3660
85	AGATCCCCTA	ACAAATCCAT	GAAAGATGTT	TATAAATTCG CTCAAGGAAG	AAGGTGTCTC	TTTTCTCATC	3720
•	AACACCTTTG	AGGGGGGTGG	CTGTGGCCAG	CCCTCGGGCA	TCCTGGCCCA	GCCCACCCTC	3780
	TTGTACCTTC	GGGGGCCATT	CAGCCTGCAG	GCCACGCTAT	GCTGGCTGGA	CCTGCTCCTG	3840