Randomized experiments

INFO/STSCI/ILRST 3900: Causal Inference

29 Aug 2023

Learning goals for today

At the end of class, you will be able to:

- 1. Explain why exchangeability holds in randomized experiments
- 2. Understand why exchangeability allows for direct estimation of causal effects

Logistics

- ▶ Problem Set 1 is due on Aug 31 at 5pm on Canvas
- Come to office hours!
 - ► Ian: Tuesday 10:30-11:30 (Gates 223)
 - ► Sam: Wednesday 3-4 (Comstock 1192)
 - ► Daniel: Thursday 1-2 (Uris Hall 302)
 - ► Mayleen: Friday 9-10 (Rhodes 657, Room 2)

Potential outcome notation review

- ► We typically use *i* to denote a generic unit in our study
- \triangleright Y_i is the observed outcome for unit i
- $ightharpoonup A_i$ is treatment received by unit i
- ▶ We typically use a to denote a generic treatment in our study
- Y_i^a denotes the outcome we would have observed for unit i if assigned treatment value a

Potential outcome exercise

- We observe that Martha ate a Mediterranean diet, and we observe that Martha survived.
 Suppose Martha had eaten a standard diet, we would have observed that Martha survived.
- ▶ We observe that Ezra ate a standard diet, and we observe that Ezra did not survive Suppose Ezra had eaten a Mediterranean diet, we would have observed that Ezra survived.

Potential outcome exercise

- We observe that Martha ate a Mediterranean diet, and we observe that Martha survived.
 Suppose Martha had eaten a standard diet, we would have observed that Martha survived.
- ▶ We observe that Ezra ate a standard diet, and we observe that Ezra did not survive Suppose Ezra had eaten a Mediterranean diet, we would have observed that Ezra survived.

Assuming consistency, what is A_i , Y_i , Y_i^{MedDiet} and Y_i^{StanDiet}

- ▶ When i = Martha?
- ▶ When i = Ezra?

Potential outcome exercise

Suppose we know the following pieces of information:

- ► We observe that Martha ate a Mediterranean diet, and we observe that Martha survived.
 - Suppose Martha had eaten a standard diet, we would have observed that Martha survived.
- We observe that Ezra ate a standard diet, and we observe that Ezra did not survive

Suppose Ezra had eaten a Mediterranean diet, we would have observed that Ezra survived.

	A_i	Y_i	$Y_i^{a} = Med$	$\gamma_i^{a} = Stan$
Martha				
Ezra				

Randomized experiments

¹https://xkcd.com/552/

Randomized experiments

The New york Times

TheUpshot

What Coronavirus Researchers Can Learn From Economists

Randomized controlled trials remain the gold standard, but natural experiments can help doctors who need answers now.

By Anupam B. Jena and Christopher M. Worsham June 30, 2020

Fundamental problem of causal inference

- Randomized experiments are the gold standard for estimating causal effects
- ► Fundamental problem of causal inference is that we don't observe counterfactual outcomes
- ▶ Data is still missing in random experiments

	A	$Y^{a=1}$	Y ^{a=0}	$Y^{a=1}-Y^{a=0}$
Ind 1	0	?	0	?
Ind 2	0	?	1	?
Ind 3	0	?	0	?
Ind 4	1	1	?	?
Ind 5	1	0	?	?
Ind 6	1	1	?	?

Fundamental problem of causal inference

- Randomized experiments are the gold standard for estimating causal effects
- ► Fundamental problem of causal inference is that we don't observe counterfactual outcomes
- ▶ Data is still missing in random experiments

	A	$Y^{a=1}$	Y a=0	$Y^{a=1}-Y^{a=0}$
Ind 1	0	?	0	?
Ind 2	0	?	1	?
Ind 3	0	?	0	?
Ind 4	1	1	?	?
Ind 5	1	0	?	?
Ind 6	1	1	?	?

► Why do randomized experiments "work"?

What can go wrong?

Suppose we have data gathered by surveying individuals in Fall of 2021

- ▶ Whether the individual was vaccinated for Covid $A_i = 1$ if vaccinated, $A_i = 0$ if not vaccinated
- ▶ Whether the individual tested positive for Covid in 2021 $Y_i = 1$ if positive test, $Y_i = 0$ if no positive test

What can go wrong?

Left side of class

- ▶ Of the individuals who are **vaccinated** $(A_i = 1)$, 50% had a positive Covid test $(Y_i = 1)$
- ▶ Of the individuals who are **not vaccinated** $(A_i = 0)$, 70% had a positive Covid test $(Y_i = 1)$
- ► How might a vaccine skeptic explain the data?

What can go wrong?

Left side of class

- ▶ Of the individuals who are **vaccinated** $(A_i = 1)$, 50% had a positive Covid test $(Y_i = 1)$
- ▶ Of the individuals who are **not vaccinated** $(A_i = 0)$, 70% had a positive Covid test $(Y_i = 1)$
- ▶ How might a vaccine skeptic explain the data?

Right side of class

- ▶ Of the individuals who are **vaccinated** $(A_i = 1)$, 70% had a positive Covid test $(Y_i = 1)$
- ▶ Of the individuals who are **not vaccinated** $(A_i = 0)$, 50% had a positive Covid test $(Y_i = 1)$
- How might a vaccine advocate explain the data?

Randomized experiment

Experiment designed by Pfizer **randomly assign** each individual (43,000 total) into two groups²:

- ► Two doses of BNT162b2 vaccine 21 days apart
- ► Two doses of placebo 21 days apart
- ► Whether a positive Covid test was recorded between 7 days and 14 weeks after the injection

²Polack et. al. NEJM 2020

Randomized experiment

Experiment designed by Pfizer **randomly assign** each individual (43,000 total) into two groups²:

- ► Two doses of BNT162b2 vaccine 21 days apart
- ► Two doses of placebo 21 days apart
- ► Whether a positive Covid test was recorded between 7 days and 14 weeks after the injection
- ▶ Of the individuals who were given the vaccine $(A_i = 1)$, 0.04% had a positive Covid test $(Y_i = 1)$
- ▶ Of the individuals who were given the placebo $(A_i = 0)$, 0.9% had a positive Covid test $(Y_i = 1)$
- \blacktriangleright Individuals who received the placebo were ≈ 20 times more likely to get Covid

²Polack et. al. NEJM 2020

Randomized experiment

Experiment designed by Pfizer **randomly assign** each individual (43,000 total) into two groups²:

- ► Two doses of BNT162b2 vaccine 21 days apart
- ► Two doses of placebo 21 days apart
- ► Whether a positive Covid test was recorded between 7 days and 14 weeks after the injection
- ▶ Of the individuals who were given the vaccine $(A_i = 1)$, 0.04% had a positive Covid test $(Y_i = 1)$
- ▶ Of the individuals who were given the placebo $(A_i = 0)$, 0.9% had a positive Covid test $(Y_i = 1)$
- \blacktriangleright Individuals who received the placebo were ≈ 20 times more likely to get Covid

Do the skeptics objections still hold?

²Polack et. al. NEJM 2020

Characteristic	BNT162b2 (N=18,860)	Placebo (N=18,846)	Total (N=37,706)
Sex — no. (%)			
Male	9,639 (51.1)	9,436 (50.1)	19,075 (50.6)
Female	9,221 (48.9)	9,410 (49.9)	18,631 (49.4)
Race or ethnic group — no. (%)†			
White	15,636 (82.9)	15,630 (82.9)	31,266 (82.9)
Black or African American	1,729 (9.2)	1,763 (9.4)	3,492 (9.3)
Asian	801 (4.2)	807 (4.3)	1,608 (4.3)
Native American or Alaska Native	102 (0.5)	99 (0.5)	201 (0.5)
Native Hawaiian or other Pacific Islander	50 (0.3)	26 (0.1)	76 (0.2)
Multiracial	449 (2.4)	406 (2.2)	855 (2.3)
Not reported	93 (0.5)	115 (0.6)	208 (0.6)
Hispanic or Latinx	5,266 (27.9)	5,277 (28.0)	10,543 (28.0)
Country — no. (%)			
Argentina	2,883 (15.3)	2,881 (15.3)	5,764 (15.3)
Brazil	1,145 (6.1)	1,139 (6.0)	2,284 (6.1)
South Africa	372 (2.0)	372 (2.0)	744 (2.0)
United States	14,460 (76.7)	14,454 (76.7)	28,914 (76.7)
Age group — no. (%)			
16–55 yr	10,889 (57.7)	10,896 (57.8)	21,785 (57.8)
>55 yr	7,971 (42.3)	7,950 (42.2)	15,921 (42.2)
Age at vaccination — yr			
Median	52.0	52.0	52.0
Range	16-89	16-91	16-91
Body-mass index:			
≥30.0: obese	6,556 (34.8)	6,662 (35.3)	13,218 (35.1)

^{*} Percentages may not total 100 because of rounding.

[†] Race or ethnic group was reported by the participants. ‡The body-mass index is the weight in kilograms divided by the square of the height in meters.

In random experiments, the distribution of **potential outcomes** for those who are treated and those who are not treated (control group) are similar!

In random experiments, the distribution of **potential outcomes** for those who are treated and those who are not treated (control group) are similar!

This is a concept called **exchangeability**

In random experiments, the distribution of **potential outcomes** for those who are treated and those who are not treated (control group) are similar!

This is a concept called exchangeability

Sometimes also referred to as exogenous

Definition: Exchangeability means that the potential outcomes, $Y^{a=1}$ and $Y^{a=0}$, are independent of the observed treatment (A)

Definition: Exchangeability means that the potential outcomes, $Y^{a=1}$ and $Y^{a=0}$, are independent of the observed treatment (A)

► Two random variables are **independent** if the outcome of one does not give any information about the outcome of the other

Definition: Exchangeability means that the potential outcomes, $Y^{a=1}$ and $Y^{a=0}$, are independent of the observed treatment (A)

- ► Two random variables are **independent** if the outcome of one does not give any information about the outcome of the other
- ► What we would have observed if an individual was given the treatment (Y^{a=1}) is independent of whether or not the individual actually received treatment
- ► What we would have observed if an individual was not given the treatment (Y^{a=0}) is independent of whether or not the individual actually received treatment

Definition: Exchangeability means that the potential outcomes, $Y^{a=1}$ and $Y^{a=0}$, are independent of the observed treatment (A)

- ► Two random variables are **independent** if the outcome of one does not give any information about the outcome of the other
- ► What we would have observed if an individual was given the treatment (Y^{a=1}) is independent of whether or not the individual actually received treatment
- ► What we would have observed if an individual was not given the treatment (Y^{a=0}) is independent of whether or not the individual actually received treatment
- ightharpoonup Exchangeability means that the **potential** outcomes Y^a are independent of the observed treatment
- ► Exchangeability does **not** mean that the **observed** outcome *Y* is independent of the observed treatment!

A=1 means vaccinated; A=0 means unvaccinated Y=1 means covid; Y=0 means no covid;

	$Y^{a=1}$	Y a=0	A	Y
Low Risk 1	0	0	?	?
Low Risk 2	0	0	?	?
High Risk 3	0	1	?	?
High Risk 4	0	1	?	?

A=1 means vaccinated; A=0 means unvaccinated Y=1 means covid; Y=0 means no covid;

	Y ^{a=1}	Y ^{a=0}	A	Y
Low Risk 1	0	0	?	?
Low Risk 2	0	0	?	?
High Risk 3	0	1	?	?
High Risk 4	0	1	?	?

Average Causal Effect =
$$\underbrace{\mathbb{E}(Y^{a=1})}_{0} - \underbrace{\mathbb{E}(Y^{a=0})}_{1/2} = -1/2$$

A=1 means vaccinated; A=0 means unvaccinated Y=1 means covid; Y=0 means no covid;

	Y ^{a=1}	Y ^{a=0}	A	Y
Low Risk 1	0	0	0	0
Low Risk 2	0	0	0	0
High Risk 3	0	1	1	0
High Risk 4	0	1	1	0

Average Causal Effect =
$$\underbrace{\mathbb{E}(Y^{a=1})}_{0} - \underbrace{\mathbb{E}(Y^{a=0})}_{1/2} = -1/2$$

Suppose Low Risk choose $A_i=0$ and High Risk choose $A_i=1$ so the potential outcomes are not independent of the observed treatment

$$\underbrace{\mathsf{E}(Y\mid A=1)}_{\text{observed unvac}} - \underbrace{\mathsf{E}(Y\mid A=0)}_{\text{observed unvac}} = 0$$

A=1 means vaccinated; A=0 means unvaccinated Y=1 means covid; Y=0 means no covid;

	Y ^{a=1}	Y a=0	A	Y
Low Risk 1	0	0	1	0
Low Risk 2	0	0	0	0
High Risk 3	0	1	1	1
High Risk 4	0	1	0	0

Average Causal Effect =
$$\underbrace{\mathbb{E}(Y^{a=1})}_{0} - \underbrace{\mathbb{E}(Y^{a=0})}_{1/2} = -1/2$$

A=1 means vaccinated; A=0 means unvaccinated Y=1 means covid; Y=0 means no covid;

	Y ^{a=1}	Υ a=0	Α	Y
Low Risk 1	0	0	1	0
Low Risk 2	0	0	0	0
High Risk 3	0	1	1	1
High Risk 4	0	1	0	0

Average Causal Effect =
$$\underbrace{\mathsf{E}(Y^{a=1})}_0 - \underbrace{\mathsf{E}(Y^{a=0})}_{1/2} = -1/2$$

$$\underbrace{\mathsf{E}(Y \mid A=1)}_{\text{observed vac}} - \underbrace{\mathsf{E}(Y \mid A=0)}_{\text{observed unvac}} = -1/2$$

In mathematical notation, exchangeability means

The average causal effect (ACE) is the difference in average outcome that would occur if everyone is treated compared to the average outcome that would occur if no-one is treated

$$\mathsf{ACE} = \underbrace{\mathsf{E}(Y^{\mathsf{a}=1}=1)}_{\text{if everyone is treated}} - \underbrace{\mathsf{E}(Y^{\mathsf{a}=0}=1)}_{\text{if no-one is treated}}$$

The average causal effect (ACE) is the difference in average outcome that would occur if everyone is treated compared to the average outcome that would occur if no-one is treated

$$\mathsf{ACE} = \underbrace{\mathsf{E}(Y^{a=1}=1)}_{\text{if everyone is treated}} - \underbrace{\mathsf{E}(Y^{a=0}=1)}_{\text{if no-one is treated}}$$

The problem is, we only know

- ► $E(Y^{a=1} \mid A=1)$, the average $Y^{a=1}$ among individuals who are actually treated
- ▶ $E(Y^{a=0} \mid A=0)$, the average $Y^{a=0}$ among individuals who are actually not treated

When exchangeability is true, it implies

$$\underbrace{\mathsf{E}(Y^{a=1}=1\mid A=1)}_{\text{Within treated}} = \underbrace{\mathsf{E}(Y^{a=1}=1\mid A=0)}_{\text{Within not treated}} = \underbrace{\mathsf{E}(Y^{a=1}=1)}_{\text{everyone}}$$

When exchangeability is true, it implies

$$\underbrace{\mathsf{E}(Y^{a=1}=1\mid A=1)}_{\mathsf{Within \ treated}} = \underbrace{\mathsf{E}(Y^{a=1}=1\mid A=0)}_{\mathsf{Within \ not \ treated}} = \underbrace{\mathsf{E}(Y^{a=1}=1)}_{\mathsf{everyone}}$$

This allows us to identify the average causal effect (ACE)

ATE =
$$E(Y^{a=1} = 1)$$
 - $E(Y^{a=0} = 1)$ if everyone is treated if no-one is treated

because we can plug-in

$$\underbrace{\mathsf{E}(Y^{a=1}=1\mid A=1)}_{\text{outcomes for people who}} \quad \text{and} \quad \underbrace{\mathsf{E}(Y^{a=0}=1\mid A=0)}_{\text{outcomes for people who}}$$
 outcomes for people who are **actually** not treated

Learning goals for today

At the end of class, you will be able to:

- 1. Explain why exchangeability holds in randomized experiments
- 2. Understand why exchangeability allows for direct estimation of causal effects