Continued

Finite Fields

Jiang-Hua Lu

The University of Hong Kong

MATH4302, Algebra II

Monday April 14, 2025

Outline

In this file:

1 §3.2.6: Finite fields, confined

On Thursday, April 10, 2025, we proved

Theorems to be proved: Let p be a prime number.

11

- For any $n \ge 1$, there is one field, and only one up to isomorphism, with p^n elements, which is denoted as \mathbb{F}_{p^n} .
- ② For each $n \ge 1$ and for each $d \mid n$, there is exactly one sub-field of \mathbb{F}_{p^n} which is \mathbb{F}_{p^d} .

Today

N

A description of all irreducible polynomials over \mathbb{F}_p for every prime p. $\chi^{p^n} - \chi \in \overline{\mathbb{F}_p}(\chi)$

We turn to Irreducible polynomials over \mathbb{F}_p , where p is a prime number.

Lemma. For any $n \ge 1$,

- **1** irreducible polynomials over \mathbb{F}_p of degree n exist;
- ② every monic irreducible polynomial of degree n is a factor of

$$f_n(x) = x^{p^n} - x.$$

 $oldsymbol{\circ}$ every monic irreducible polynomial of degree d|n is a factor of f_n .

Proof.

- We proved that $\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$ for some $\alpha \in \mathbb{F}_{p^n}$.
- ullet the minimal polynomial of lpha over \mathbb{F}_p is irreducible and has degree n.

Proof cont'd:

- Let $q \in \mathbb{F}_p[x]$ be any irreducible monic with degree n.
- Then the field $L = \mathbb{F}_p[x]/\langle q \rangle$ has p^n elements;
- The element $a=ar{x}\in L$ satisfies $f_n(a)=0$, so $q|f_n$. This proves 2)
- Assume now that $q \in \mathbb{F}_p[x]$ is irreducible monic with degree d|n.
- Then $q|f_d$. Since $f_d|f_n$, we have $q|f_n$. Then $q|f_d$. Since $f_d|f_n$, we have $q|f_n$. Q.E.D.

Consider the factorization

$$f_n=q_1^{k_1}q_2^{k_2}\cdots q_l^{k_l}\in\mathbb{F}_p[x]$$

into irreducible factors, where the q_i 's are pairwise distinct and monic.

First some observations:

- Since f_n splits completely in \mathbb{F}_{p^n} with no repeated roots, must have $k_1 = \cdots = k_l = 1$.
- Consider the factor q_i and let $d_i = \deg(q_i)$.
- q_i splits completely in \mathbb{F}_{p^n} with no repeated roots;
- Let $a \in \mathbb{F}_{p^n}$ be a root of q_i .
- Then $\mathbb{F}_p(a)$ is a sub-field of \mathbb{F}_{p^n} with p^{d_j} elements;
- By results on sub-fields of \mathbb{F}_{p^n} , must have $d_j|n$.

We have thus proved the following Theorem on the polynomial

$$f_n(x) = x^{p^n} - x \in \mathbb{F}_p[x]$$

<u>Theorem</u>: For any prime number p and any $n \ge 1$,

- **1** the irreducible factors of $f_n(x)$ in $\mathbb{F}_p[x]$ are precisely all the monic irreducible polynomials in $\mathbb{F}_p[x]$ with degrees d|n;
- 2 each such polynomial appears exactly once in the prime factorization of $f_n(x)$.

Examples. In $\mathbb{F}_2[x]$, one has

$$x^{2} - x = x(x - 1),$$

$$x^{4} - x = x(x - 1)(x^{2} + x + 1),$$

$$x^{8} - x = x(x - 1)(x^{3} + x + 1)(x^{3} + x^{2} + 1),$$

$$x^{16} - x = x(x - 1)(x^{2} + x + 1)(x^{4} + x + 1)$$

$$(x^{4} + x^{3} + 1)(x^{4} + x^{3} + x^{2} + x + 1).$$

The Frobenius homomorphism:

Lemma-Definition. For a field L of characteristic p > 0, the map

$$\sigma: L \longrightarrow L, \quad \sigma(a) = a^p,$$

is an injective ring homomorphism, called the Frobenius homomorphism of L.

$$(a+b)^{p} = a^{p} + b^{p}$$
, $(ab)^{p} = a^{p}b^{p}$

For any comm. ring R of characteristic
$$p$$
.

Consider $\sigma: R \rightarrow R$, $\sigma(a) = a^{p}$
 $\sigma(a+b) = \sigma(a)^{\dagger}\sigma(b)$ $\sigma(ab) = \sigma(a)\sigma(b)$

Proof. The Frobenius morphism $\sigma: L \to L$ is injective, so $\sigma(L)$ is a subset of L, and $|\sigma(L)| = |L|$. Thus $\sigma(L) = L$, i.e., σ is surjective.

So
$$\sigma \in Aut_{\mathbb{F}_p}(L)$$
, ie $\sigma: L \to L$ isom and $\sigma|_{\mathbb{F}_p} = Iol_{\mathbb{F}_p}$

$$(a^p = Q \quad \forall a \in \mathbb{F}_p)$$

$$(a^{H} = 1 \quad \forall a \in \mathbb{F}_p)[o]_{2/25}$$

Example. The Frobenius morphism on $L = \mathbb{F}_p(t)$ is not surjective: $t \in \mathbb{F}_p(t)$ is not in the image σ .

Proof. We prove by contradiction.

- Suppose that $\alpha = \frac{f(t)}{g(t)} \in L$ satisfies $\sigma(\alpha) = t$, where $f(t), g(t) \in \mathbb{F}_2[t].$ • Then $\alpha^p = t$, so $f(t)^p = tg(t)^p$.
- Let $m = \deg(f)$ and $n = \deg(g)$. Then mp = 1 + np, not possible.
- Thus $t \in L$ is not in image of σ .

Q.E.D.

Question: The prime p and integer n,

let Ipn = the set of all irred,

poly over topix) of def n. What is [Ip, n] = ip,n What structure does it have? 7: 20 [p(x) -> [p(x), f(x)) -> f(x+1) If P,, P2 = Ipn, FP(X)/P(X)> = (FP(X)/P(X))