Fundamentos de Ingeniería Eléctrica

Tema 10: Potencia en circuitos trifásicos

Contenidos

Potencia instantánea

• Potencia activa, reactiva y aparente

Compensación reactiva

• Medida de potencia activa y reactiva

Potencia instantánea en un circuito de alterna monofásico

$$v(t) = V_m \cos(\omega t + \phi_v)$$
$$i(t) = I_m \cos(\omega t + \phi_i)$$

$$p(t) = \underbrace{\frac{V_m I_m}{2} \cos(\phi_v - \phi_i)}_{\text{Potencia activa } (P)} (1 + \cos 2\omega t) - \underbrace{\frac{V_m I_m}{2} \sin(\phi_v - \phi_i)}_{\text{Potencia reactiva } (Q)} \sin 2\omega t$$

Potencia instantánea en un circuito de alterna trifásico (s. directa)

$$p(t) = p_a(t) + p_b(t) + p_c(t) = v_{an}(t)i_a(t) + v_{bn}(t)i_b(t) + v_{cn}(t)i_c(t) =$$

$$= 2VI\cos(\omega t)\cos(\omega t - \phi) + 2VI\cos(\omega t - 120)\cos(\omega t - \phi - 120) +$$

$$+ 2VI\cos(\omega t + 120)\cos(\omega t - \phi + 120) = VI\left(\cos(2\omega t - \phi) + \cos(\phi) + \cos(2\omega t - 240 - \phi) + \cos(\phi) + \cos(2\omega t + 240 - \phi) + \cos(\phi)\right) =$$

$$= 3VI\cos(\phi) \rightarrow \text{ Potencia instantánea constante!!}$$

Alternador monofásico

- P. instantánea variable
- P. activa menor
- Mayor tamaño
- Más vibraciones y fatiga

Alternador trifásico

- P. instantánea constante
- P. activa mayor
- Menor tamaño
- Menos vibraciones y fatiga

Potencia activa, reactiva y aparente

$$\begin{aligned} |\mathcal{V}_c^L| &= \sqrt{3} |\mathcal{V}_c^F| \\ |\mathcal{I}_c^L| &= |\mathcal{I}_c^F| \end{aligned}$$

 $Q_a = Q_b = Q_c = |\mathcal{V}_c^F| |\mathcal{I}_c^F| \sin \phi$

$$P_a = P_b = P_c = |\mathcal{V}_c^F| |\mathcal{I}_c^F| \cos \phi$$

$$P = P_a + P_b + P_c$$

$$P = 3|\mathcal{V}_c^F| |\mathcal{I}_c^F| \cos \phi$$

 $P = \sqrt{3} |\mathcal{V}_c^L| |\mathcal{I}_c^L| \cos \phi$

$$Q = Q_a + Q_b + Q_c$$
$$Q = 3|\mathcal{V}_c^F||\mathcal{I}_c^F|\sin\phi$$

$$Q = \sqrt{3} |\mathcal{V}_c^L| |\mathcal{I}_c^L| \sin \phi$$

$$S = \sqrt{P^2 + Q^2} = \sqrt{3} |\mathcal{V}_c^L| |\mathcal{I}_c^L|$$

Potencia activa, reactiva y aparente

$$\begin{aligned} |\mathcal{V}_c^L| &= |\mathcal{V}_c^F| \\ |\mathcal{I}_c^L| &= \sqrt{3} |\mathcal{I}_c^F| \end{aligned}$$

$$P_a = P_b = P_c = |\mathcal{V}_c^F| |\mathcal{I}_c^F| \cos \phi$$

$$P = P_a + P_b + P_c$$

$$P = 3|\mathcal{V}_c^F| |\mathcal{I}_c^F| \cos \phi$$

$$P = \sqrt{3}|\mathcal{V}_c^L| |\mathcal{I}_c^L| \cos \phi$$

$$Q_a = Q_b = Q_c = |\mathcal{V}_c^F| |\mathcal{I}_c^F| \sin \phi$$

$$Q = Q_a + Q_b + Q_c$$

$$Q = 3|\mathcal{V}_c^F| |\mathcal{I}_c^F| \sin \phi$$

$$Q = \sqrt{3}|\mathcal{V}_c^L| |\mathcal{I}_c^L| \sin \phi$$

$$S = \sqrt{P^2 + Q^2} = \sqrt{3}|\mathcal{V}_c^L||\mathcal{I}_c^L|$$

Una red trifásica equilibrada alimenta (RTE) alimenta a una carga trifásica equilibrada (CTE) con una impedancia de fase $\mathcal{Z}_c=R+jX$ tal que $\frac{X}{R}=\frac{\beta}{\alpha}$. Calcula la potencia activa consumida por la carga [kW,con] si:

- a) la carga está conectada en estrella
- b) la carga está conectada en triángulo

Datos: $V = 200 + 10 \cdot \kappa \text{ [V]}, A = 10 \cdot \lambda \text{ [A]}$

Una RTE con tensión de línea V_q^L alimenta una CTE que consume una potencia activa P_c con un factor de potencia igual a $0.1 \cdot \alpha$ (ind). Calcula

- a) A [A] c) $\operatorname{Re}(\mathcal{Z}^{\Delta})$ [Ω] e) $\operatorname{Re}(\mathcal{Z}^{Y})$ [Ω] b) Q_c [kvar,con] d) $\operatorname{Im}(\mathcal{Z}^{\Delta})$ [Ω] f) $\operatorname{Im}(\mathcal{Z}^{Y})$ [Ω]

 $\mathcal{Z}^{\Delta} \to \mathsf{Impedancia}$ de fase para carga en triángulo $\mathcal{Z}^Y \to \text{Impedancia de fase para carga en estrella}$

Datos:
$$V_g^L = 200 + 10 \cdot \epsilon \text{ [V]}, P_c = \eta \text{ [kW,con]}$$

Una RTE alimenta dos CTEs. Calcula

a) $|\mathcal{I}_1|$ [A] b) $|\mathcal{I}_2|$ [A]

- c) $|\mathcal{I}_3|$ [A]
- d) P_g [kW,gen]

e) Q_g [kvar,gen]

Datos:
$$V_g^L=200+10\cdot\alpha$$
 [V], $Q_2=\eta$ [kvar,gen], $\cos\phi_2=0.1\cdot\beta$ (cap), $\mathcal{Z}_3=\gamma+j\delta$ [Ω]

Una RTE (s. directa) alimenta dos CTEs y una carga monofásica entre las fases b y c. Calcula

Datos:
$$V_g^L = 200 + 10 \cdot \beta$$
 [V], $f = 50$ [Hz], $S_2 = \gamma$ [kVA,con], $\cos \phi_2 = 0.1 \cdot \delta$ (cap), $\mathcal{Z}_1 = \epsilon - j\eta$ [Ω], $R = \theta$ [Ω], $L = \kappa$ [mH]

La carga CTE₅ consumiría una potencia S_5 con fdp $\cos \phi_5$ (cap) a la

g) $|\mathcal{V}_{ef}|$ [V]

13 / 46

tensión de línea nominal de
$$200 + 10 \cdot \kappa$$
 [V]. Calcula

a) $|\mathcal{I}_1|$ [A] c) $|\mathcal{I}_3|$ [A] e) $|\mathcal{V}_{ab}|$ [V] b) $|\mathcal{I}_2|$ [A] d) $|\mathcal{I}_4|$ [A] f) $|\mathcal{V}_{cd}|$ [V]

Compensación de reactiva

Para compensar reactiva usamos el equivalente monofásico estrella-estrella

$$C^{Y} = \frac{P_{a}(\tan \phi - \tan \phi')}{2\pi f(V_{c}^{F})^{2}} = \frac{\frac{P}{3}(\tan \phi - \tan \phi')}{2\pi f\left(\frac{V_{c}^{L}}{\sqrt{3}}\right)^{2}} = \frac{P(\tan \phi - \tan \phi')}{2\pi f(V_{c}^{L})^{2}}$$

$$C^Y = 3C^{\Delta}$$

P o Potencia activa consumida por la carga trifásica equilibrada $\cos\phi/\cos\phi' o$ Factor de potencia inicial/deseado de la carga trifásica $V^L_c o$ Módulo de la tensión de línea en bornas de la carga a compensar

Una RTE alimenta una CTE. Calcula la capacidad de la batería de condensadores a colocar en paralelo con dicha carga para el factor de potencia sea la unidad.

Datos:
$$V_g^L=200+10\cdot\alpha$$
 [V], $f=50$ [Hz], $P_c=\beta$ [kW,con], $\cos\phi_c=0.8+0.01\cdot\gamma$ (ind)

Una RTE alimenta una CTE que **consumiría** una potencia P_c con fdp $\cos\phi_c$ a la tensión de línea nominal de $200+10\alpha$ [V]. Calcula la capacidad de la batería de condensadores $[\mu {\rm F}]$ a colocar en estrella en paralelo con la fuente para que esta no consuma ni genere potencia reactiva.

Datos:
$$V_g^L=200+10\cdot\alpha$$
 [V], $f=50$ [Hz], $P_c=\beta$ [kW,con], $\cos\phi_c=0.8+0.01\cdot\gamma$ (ind), $\mathcal{Z}_l=\delta+j\epsilon$ [Ω]

Una RTE alimenta tres CTEs. Calcula la capacidad de la batería de condensadores a colocar en triángulo $[\mu F]$ en paralelo con las tres cargas para que el factor de potencia resultante sea $0.9+0.01\cdot\beta$ (ind).

Datos: $V_g^L = 200 + 10 \cdot \alpha$ [V], f = 50 [Hz], $\mathcal{Z}_1 = \gamma + j\delta$ [Ω], $\mathcal{Z}_2 = \epsilon + j\eta$ [Ω], $P_3 = \theta$ [kW,con], $\cos \phi_3 = 0.1 \cdot \kappa$ (ind)

Una RTE alimenta dos CTEs. Sabiendo que el factor de potencia del conjunto de las dos cargas es la unidad calcula

- a) C_3 [μ F] c) $|\mathcal{I}_2|$ [A] e) $|\mathcal{I}_4|$ [A]

g) P_a [kW,g]

- b) $|\mathcal{I}_1|$ [A] d) $|\mathcal{I}_3|$ [A]
- f) V [V]

h) Q_q [kvar,g]

Datos:
$$V_g^L = 300 + 10 \cdot \alpha$$
 [V], $f = 50$ [Hz], $\mathcal{Z}_1 = \gamma + j\delta$ [Ω], $\mathcal{Z}_2 = (30 + \epsilon) + j(20 + \eta)$ [Ω]

Medida de potencia activa

La representación de un vatímetro en un circuito es la siguiente:

 Los puntos indican los terminales correspondientes de las bobinas. El vatímetro de la figura medirá

$$W = VI\cos(\phi_v - \phi_i)$$

- Si $\cos(\phi_v \phi_i) < 0$, un vatímetro analógico no medirá nada
- El vatímetro mide el consumo de potencia activa "aguas abajo"

Medida de potencia activa y reactiva

Los métodos para medir la potencia en un circuito trifásico son:

Circuito	Número vatímetros	Activa	Reactiva
Desequilibrado con neutro	3	/	X
Equilibrado con neutro	3	✓	X
Equilibrado con neutro	1	✓	X
Equilibrado sin neutro	3	✓	X
Equilibrado sin neutro	2	✓	✓
Desequilibrado sin neutro	2	✓	X
Equilibrado sin neutro	1	X	✓

Método de tres vatímetros con neutro (activa)

Este método se puede aplicar a circuitos trifásicos equilibrados y desequilibrados con acceso al neutro

$$W_{1} = |\mathcal{V}_{an}||\mathcal{I}_{a}|\cos(\widehat{\mathcal{V}_{an}}, \overline{\mathcal{I}_{a}}) = P_{a}$$

$$W_{2} = |\mathcal{V}_{bn}||\mathcal{I}_{b}|\cos(\widehat{\mathcal{V}_{bn}}, \overline{\mathcal{I}_{b}}) = P_{b}$$

$$W_{3} = |\mathcal{V}_{cn}||\mathcal{I}_{c}|\cos(\widehat{\mathcal{V}_{cn}}, \overline{\mathcal{I}_{c}}) = P_{c}$$

$$P = P_{a} + P_{b} + P_{c} \Longrightarrow \boxed{P = W_{1} + W_{2} + W_{3}}$$

Método de un vatímetro con neutro (activa)

Este método es únicamente válido para circuitos trifásicos equilibrados con acceso al neutro

$$|\mathcal{V}_{an}| = |\mathcal{V}_{bn}| = |\mathcal{V}_{cn}| \qquad |\mathcal{I}_{a}| = |\mathcal{I}_{b}| = |\mathcal{I}_{c}|$$

$$\cos(\widehat{\mathcal{V}_{an}}, \mathcal{I}_{a}) = \cos(\widehat{\mathcal{V}_{bn}}, \mathcal{I}_{b}) = \cos(\widehat{\mathcal{V}_{cn}}, \mathcal{I}_{c})$$

$$P_{a} = P_{b} = P_{c}$$

$$W = |\mathcal{V}_{an}||\mathcal{I}_{a}|\cos(\widehat{\mathcal{V}_{an}}, \mathcal{I}_{a}) = P_{a}$$

$$P = P_{a} + P_{b} + P_{c} = 3 \cdot P_{a} \Longrightarrow \boxed{P = 3 \cdot W}$$

Método de tres vatímetros sin neutro (activa)

Este método es válido para circuitos trifásicos equilibrados

Este método es válido para circuitos trifásicos equilibrados (s. directa)

$$W_1 = |\mathcal{V}_{ac}||\mathcal{I}_a|\cos(\widehat{\mathcal{V}_{ac}}, \mathcal{I}_a) =$$

$$= V^L I^L \cos(\phi - 30^\circ) =$$

$$= V^L I^L (\cos\phi \frac{\sqrt{3}}{2} + \sin\phi \frac{1}{2})$$

$$W_1 = |\mathcal{V}_{ac}||\mathcal{I}_{ac}| + |\widehat{\mathcal{V}}_{ac}||\mathcal{I}_{ac}|$$

$$W_2 = |\mathcal{V}_{bc}||\mathcal{I}_b|\cos(\widehat{\mathcal{V}_{bc}}, \widehat{\mathcal{I}_b}) =$$

$$= V^L I^L \cos(\phi + 30^\circ) =$$

$$= V^{L} I^{L} \left(\cos \phi \frac{\sqrt{3}}{2} - \sin \phi \frac{1}{2}\right)$$

$$W_{1} + W_{2} = \sqrt{3} V^{L} I^{L} \cos \phi \implies$$

$$P = W_1 + W_2$$

$$W_1 - W_2 = V^L I^L \sin \phi \implies$$

$$Q = \sqrt{3}(W_1 - W_2)$$

Este método es válido para circuitos trifásicos equilibrados (s. inversa)

$$W_2 = |\mathcal{V}_{ac}||\mathcal{I}_a|\cos(\widehat{\mathcal{V}_{ac}}, \mathcal{I}_a) =$$

$$= V^L I^L \cos(\phi + 30^\circ) =$$

$$= V^L I^L (\cos\phi \frac{\sqrt{3}}{2} - \sin\phi \frac{1}{2})$$

$$W_2 = |\mathcal{V}_{ac}||\mathcal{I}_{ac}||_{\mathcal{I}_{ac}} = \widehat{\mathcal{V}_{ac}} = \widehat{\mathcal{I}_{ac}}$$

$$W_1 = |\mathcal{V}_{bc}||\mathcal{I}_b|\cos(\widehat{\mathcal{V}_{bc}}, \overline{\mathcal{I}_b}) =$$

$$= V^L I^L \cos(\phi - 30^\circ) =$$

$$= V^{L} I^{L} \left(\cos \phi \frac{\sqrt{3}}{2} + \sin \phi \frac{1}{2}\right)$$

$$W_{1} + W_{2} = \sqrt{3} V^{L} I^{L} \cos \phi \implies$$

$$P = W_1 + W_2$$

$$W_1 - W_2 = V^L I^L \sin \phi \implies$$

$$Q = \sqrt{3}(W_1 - W_2)$$

- Conectamos los terminales positivos de la bobina voltimétrica y la amperimétrica del primer vatímetro a una de las fases
- Conectamos los terminales positivos de la bobina voltimétrica y amperimétrica del segundo vatímetro a otra de las fases
- Los terminales negativos de las dos bobinas voltimétricas se conectan a la tercera fase
- ullet Llamamos W_1 al vatímetro correspondiente a la fase que va más adelantada
- ullet Llamamos W_2 al vatímetro correspondiente a la fase que va más retrasada
- Calculamos la potencia activa y reactiva como

$$P=W_1+W_2$$

$$Q=\sqrt{3}(W_1-W_2) \begin{cases} Q>0 \to & \text{Inductivo} \\ Q<0 \to & \text{Capacitivo} \end{cases}$$

• El método de los dos vatímetros es válido para calcular la potencia activa en sistemas desequilibrados sin neutro como $P=W_1+W_2$ 26/46

Dadas las lecturas de los vatímetros y sabiendo que la red es de secuencia inversa, determina si la carga trifásica es inductiva o capacitiva.

- La potencia reactiva se calcula como $Q=\sqrt{3}(W_1-W_2)$
- Un vatímetro está conectado a la fase a y otro a la fase c
- Como la red tiene secuencia inversa, la fase a adelanta a la fase c
- W_1 corresponde a la fase más adelantada, $W_1=20$
- W_2 corresponde a la fase más atrasada, $W_2=60$
- $Q = \sqrt{3}(20-60) = -69{,}28$ [var,con] \rightarrow Carga capactiva

Contesta en goo.gl/e3fQAq si la carga es inductiva o capacitiva

s. inversa

Dadas las lecturas de los vatímetros y sabiendo que la carga trifásica es inductiva, determina si la secuencia de la red es directa o inversa.

- La potencia reactiva se calcula como $Q = \sqrt{3}(W_1 W_2)$
- Un vatímetro está conectado a la fase b y otro a la fase c
- Como la carga es inductiva Q>0 y por lo tanto $W_1=50$ y $W_2=30\,$
- Como W_1 corresponde a la fase más adelantada y W_2 a la fase más retrasada, la fase b va adelantada con respecto a la fase c
- La fase b adelanta a la fase c en secuencia directa

Contesta en goo.gl/WywPgm si la secuencia de la red es directa o inversa capacitivo capacitivo

Sabiendo que la red trifásica tiene secuencia inversa y dadas las lecturas de los vatímetros calcula:

a) P_l [kW,con]

c) P_c [kW,con]

b) Q_l [kvar,con]

d) Q_c [kvar,con]

Datos:

$$W1 = 10 + \beta \text{ [kW]}, W2 = \alpha \text{ [kW]}, W3 = 10 + \gamma \text{ [kW]}, W4 = \delta \text{ [kW]}$$

Sabiendo que la red trifásica tiene secuencia inversa calcula

a) W1 [W]

b) W2 [W]

Datos:
$$A = \eta$$
 [A], $\mathcal{Z}_c = \theta - j\kappa$ [Ω]

La CTE es inductiva y está conectada en estrella. Si la inductancia de fase de la carga es $\mathcal{Z}_c=R+jX$ determina

a)
$$R\left[\Omega\right]$$
 b) $X\left[\Omega\right]$

Justifica si la secuencia de la red es directa o inversa

Datos: $V=200+10\cdot\kappa$ [V], $A=10\cdot\lambda$ [A], $W=500\cdot\lambda+25\cdot\kappa\cdot\lambda$ [W]

Dibuja otro vatímetro W2 para que junto con W1 formen el método de dos vatímetros. Sabiendo que W2>0 y que la carga tiene caracter inductivo determina la secuencia de fases y calcula

Datos: $V = 200 + 10 \cdot \eta$ [V], $A = 10 + \theta$ [A], W1 = 0 [kW]

Ejercicio 10-14*

Sabiendo las lecturas de V y W1 con el interrumptor s cerrado, que la red es de secuencia directa y que la impedancia en estrella de la CTE es puramente resistiva $\mathcal{Z}_c=R$ calcula

- a) R [Ω] c) C^{Δ} [nF] (s cerrado) e) W2 [W] (s abierto) b) W2 [W] (s cerrado) d) W1 [W] (s abierto)
- $C^{\Delta}[nF] \rightarrow$ batería de condensadores en triángulo a conectar en bornes del **generador** para que el conjunto tenga fdp unidad.

Datos:

$$V = 200 + 10 \cdot \gamma \text{ [V]}, f = 50 \text{ [Hz]}, W1 = 500 + 20 \cdot \delta \text{ [W]}, \mathcal{Z}_l = j\epsilon \text{ [}\Omega\text{]}_{\text{ }35/46}$$

Método un vatímetro (reactiva)

Este método es válido para circuitos trifásicos equilibrados

Secuencia directa

$$W = |\mathcal{V}_{bc}||\mathcal{I}_a|\cos(\widehat{\mathcal{V}_{bc}}, \mathcal{I}_a) =$$

$$= V^L I^L \cos(90^\circ - \phi) =$$

$$= V^L I^L \sin \phi \implies$$

$$Q = \sqrt{3}W$$

Método un vatímetro (reactiva)

Este método es válido para circuitos trifásicos equilibrados

Secuencia inversa

$$\begin{split} W_1 &= |\mathcal{V}_{bc}| |\mathcal{I}_a| \cos(\widehat{\mathcal{V}_{bc}, \mathcal{I}_a}) = \\ &= V^L I^L \cos(90^\circ + \phi) = \\ &= -V^L I^L \sin \phi \implies \\ \hline Q &= \sqrt{3}W_1 < 0 \text{ (generada)} \end{split}$$

$$W_2 = |\mathcal{V}_{cb}| |\mathcal{I}_a| \cos(\widehat{\mathcal{V}_{cb}, \mathcal{I}_a}) =$$

$$= V^L I^L \cos(90^\circ - \phi) =$$

$$= V^L I^L \sin \phi \implies$$

$$Q = \sqrt{3}W_2 > 0 \text{ (consumida)}$$

Método un vatímetro (reactiva)

$$Q = \sqrt(3) \cdot W(Q > 0 \to \text{ Carga inductiva}, Q < 0 \to \text{ Carga capacitiva})$$

Secuencia directa

Secuencia inversa

Terminal positivo de la bobina voltimétrica conectado a la fase va retrasada con respecto a la fase que atraviesa la bobina amperimétrica 38/46

Sabiendo que el circuito trifásico es equilibrado y de secuencia directa determina si la carga es inductiva o capacitiva y calcula:

Datos: $W1 = 100 \cdot \alpha \, [W], W2 = 100 \cdot \beta \, [W]$

Ejercicio 10-16*

La red es de secuencia directa. Calcula:

- a) $\operatorname{Re}(\mathcal{Z}_c^\Delta)$ $[\Omega]$ d) Q_c [kvar,con] b) $\operatorname{Im}(\mathcal{Z}_c^\Delta)$ $[\Omega]$ e) W1 [kW]

g) W3 [kW]

c) P_c [kW,con]

f) W2 [kW]

Datos:
$$\mathcal{Z}_l = 0.1 \cdot \alpha + j0.1 \cdot \beta$$
 [Ω], $V = 300 + 10 \cdot \gamma$ [V], $A = 40 + \delta$ [A], $\cos \phi_g = 0.8$ (ind)

Ejercicio 10-17*

Sabiendo que la red es de secuencia directa calcula:

a) W1 [kW]

c) W3 [kW]

e) $\operatorname{Im}(\mathcal{Z}_2^{\Delta})$ $[\Omega]$

b) W2 [kW]

- d) $\operatorname{Re}(\mathcal{Z}_2^{\Delta})$ $[\Omega]$ f) C^{Δ} $[\mu F]$

 $C^\Delta \to {\rm bater\'ia}$ de condensadores en triángulo a conectar en paralelo con las cargas para que el conjunto tenga fdp $0.9 + 0.01 \cdot \alpha$ (ind).

Datos: $V = 300 + 10 \cdot \beta$ [V], $P_1 = 5 + \gamma$ [kW], $\cos \phi_1 = 0.8$ (ind), $P_2 =$ δ [kW], $Q_2 = 0.5 \cdot \epsilon$ [kvar,gen], $S_3 = 10 + \eta$ [kVA], $\cos \phi_3 = 0.5$ (ind), $\mathcal{Z}_l = 0.5$ $0.1 \cdot \theta + i0.1 \cdot \kappa \ [\Omega]$

Sabiendo que C1 está conectada en triángulo y C2 en estrella y que la red es de secuencia directa dibuja el diagrama monofásico y calcula:

- a) W1 [kW] c) $\operatorname{Im}(\mathcal{Z}_l)$ [Ω] e) C^{Δ} [μ F] b) $\operatorname{Re}(\mathcal{Z}_l)$ [Ω] d) $|\mathcal{V}_q^L|$ [V]

 $C^{\Delta} \rightarrow$ batería de condensadores en triángulo a conectar en paralelo con las cargas para que el conjunto tenga fdp unidad.

Datos:

$$V = 200 + 10 \cdot \lambda \text{ [V]}, P_1 = 15 + \alpha \text{ [kW,con]}, \cos \phi_1 = 0.8 \text{ (ind)}, P_2 = 2 \cdot \beta \text{ [kW,con]}, \cos \phi_2 = 1, W2 = 6 + \alpha \text{ [kW]}, W3 = 5 + \beta \text{ [kW]}$$

Ejercicio 10-19*

Determina la secuenca de fases de la red y calcula:

a) W2 [W]

Datos:
$$W1 = -1200 - 10 \cdot \kappa$$
 [W], $\mathcal{Z} = \lambda/-20 - \eta^{\circ}$ [Ω]

Ejercicio 10-20*

La red tiene secuencia directa y cede reactiva. Con el interrumptor cerrado se conocen las lecturas de W2 y A. Dibuja los diagramas fasoriales con el interrumptor abierto y cerrado y calcula:

a) $\operatorname{Re}(\mathcal{Z})[\Omega]$

d) A [A] (s abierto)

b) $\operatorname{Im}(\mathcal{Z}) [\Omega]$

e) W1 [kW] (s abierto)

c) W1 [kW] (s cerrado)

f) W2 [kW] (s abierto)

Datos:

$$V = 900 + 10 \cdot \alpha \text{ [V]}, A = 40 + \beta \text{ [A]}, W2 = 20 + 0.5 \cdot \beta + 0.2 \cdot \alpha \text{ [kW]}_{_{44/46}}$$

Ejercicio 10-21*

La carga trifásica equilibrada está conectada en estrella y es de caracter inductivo. Determina la secuencia de la red y calcula:

Datos: $V = 300 + 10 \cdot \epsilon \text{ [V]}, W2 = 2 + 0.1 \cdot \eta \text{ [kW]}, W1 = 0.1 \cdot \theta \text{ [kW]}$

Ejercicio 10-22*

Si la red es de secuencia directa y todas las impedancias son iguales, calcula

Datos: $A_1 = 10 + \eta$ [A]