

Lecture 24.

Inference in Ontologies (Reasoning). Applications and Tools

Alexandra V. Vitko

KNURE, AI Department, alexandra_vitko@yahoo.com

Why Reasoning?

Ontology design

- Check class consistency and (unexpected) implied relationships
- Particularly important with large ontologies/multiple authors

Ontology integration

- Assert inter-ontology relationships
- Reasoner computes integrated class hierarchy/consistency

Ontology deployment

- Determine if set of facts are consistent with respect to ontology
- Determine if individuals are instances of ontology classes
- Query Inclusion
- Service description matchmaking
- Classification-based querying.

Reasoning Types

- Tool support for three types of reasoning exists:
 - Consistency checking: Can a class have any instances?
 - Classification:
 Is A a subclass of B? Are two classes equivalent?
 - Instance classification (Instantiaton): Which classes does an individual belong to?

Simple Inference: Instance Classification

 Given the definition for the property hasParent with domain=Animal, range=Animal and

```
<owl:Thing rdf:ID="Tuzik">
  <hasParent rdf:resource="#Layka"/>
  </owl:Thing>
```

we can infer that Tuzik is an Animal and Layka is an Animal

Classification

NationalPark

- A RuralArea is a Destination
- A Campground is BudgetAccomodation
- Hiking is a Sport
- Inference:
 Every NationalPark is
 a Backpackers Destiantion

BackpackersDestination

(Other BackpackerDestinations)

Reasoning

Classification results in Protege

Inference in Protege

- Protégé OWL plug-in
- Reasoner "Racer" for inference
 - Description Logic based reasoning engine
 - Server-based
 - Integrates with Protégé-OWL

Need for Inference Tools

- OWL is about content, not the syntax
- Statements from different documents about the same URI are automatically conjoined
- OWL can appear unintuitive to the uninitiated
 - Declare that no one can have more than one mother
 - Declare Mary is John's mother
 - Declare Jane is John's mother
- An OWL reasoner would say Mary = Jane

OWL Inference Tools

- Racer (see above)
- Pellet
 - DL based reasoner implemented in Java
- Euler
 - an inference engine supporting logic based proofs. Finds out whether a given set of facts support a given conclusion
- FaCT
 - DL classifier

OWL Tools (2)

- Hoolet
 - DL Reasoner that uses a First Order Prover to reason about ontologies
- Jena2
 - sound (but not complete) instance reasoning for OWL Lite
- Surnia
 - OWL Full reasoner
- etc.

Other Types of Ontology Tools

- Being able to express ontologies is not enough...we need tools!
- Existing tools, especially for DAML+OIL, are adapting to OWL
- Types of tools:
 - Ontology construction tools
 - Annotation tools
 - Inference engines (Reasoners)
 - Ontology articulation (integration) tools

Reasoning

Ontologies in Applications

- In the past, ontologies have been embedded in the application
- This introduces problems with:
 - Maintenance
 - Implementation
 - Exchange of terms
- Considering the ontology as a separate resource provides greater flexibility

Reasoning

Implementations of Ontologies

- What does it mean to provide implementations of ontologies?
- What do you want to do with the ontology?
 - Read it
 - Manipulate it
 - Reason about it
 - Where does the reasoner go?
 - Inside or outside?

Ontology Interactions

Modelling

Provide data structures that represent OWL ontologies/documents

Parsing

 Taking some syntactic presentation, e.g. OW-RDF and converting it to some [useful] internal data structure

Serialization

 Producing a syntactic presentation, e.g. OWL-XML from a local data structure

Manipulation

Being able to manipulate the underlying objects

Inference

Implementation Aspects

16

Layering

- OWL is layered on RDF.
- This layering provides us with a number of different options in terms of accessing the ontology.
- Direct access to the RDF triple structures
 - E.g. Jena, Sesame, 3store
 - May require client applications to "understand" or implement aspects of the language, e.g. inference.
- Access at a "higher level" using some API.
 - OWL-API, Protégé API, Jena Ontology API

Reasoner Outside

Reasoner Inside

Do You Really Need Reasoning?

Summary

- Reasoning services help knowledge engineers to check consistency of ontologies, to make them more full
- Reasoning services help user to query ontologies

Ontology tools are increasingly available

МУ к курсовому проекту

- ftp://10.12.57.254/upload/vitko/ITI/ Course Project/IIT_course-project.pdf
- Проверить содержание пояснительной записки и требования
- Проверить ГОСТы !!!