Computer Communication & Networking

Data Link Control - MAC

Sudipta Mahapatra

Medium Access Control Techniques

- Important in distributed channels.
- ALOHA Protocol
 - Pure ALOHA
 - Slotted ALOHA
- CSMA
 - One persistent
 - Non persistent
 - p-persistent Slotted channels
- CSMA/CD
- · CSMA/CA

Definitions

- Medium Access: A station wants to put a data frame into the shared medium or channel.
- Contention Resolution: Multiple stations trying to access the medium simultaneously.
- Collision: Transmissions by two or more stations overlap in time.
- Carrier: An unmodulated signal.
- Jamming signal: In telecommunication, this is a signal that carries a bit pattern sent by a data station to inform the other stations that they must not transmit.

ALOHA Protocol

- Pure ALOHA
- A node transmits a packet whenever it has one to send.
- In case of collision the packet is retransmitted after a random time interval.

Slotted ALOHA

- The time is divided into slots of fixed length (equal to the packet duration Tp).
- All the nodes start their transmission only at the beginning of a new time slot.

Throughput Analysis

Modeling of Packet Arrivals

Arrival Process: Poisson

Rate of Arrivals: λ

Poisson Distribution

$$P_n(T) = \frac{(\lambda \cdot T)^n}{n!} e^{-\lambda \cdot T}$$

Poisson Process n(T)

- n(T) counts the number of packet arrivals that have occurred from t=0 up to time T
- The time between arrivals is a statistically independent, identically (exponentially) distributed random variable

Throughput Analysis

Traffic: $G = \lambda_t T_p$

(Transmitted packets per time slot)

Throughput: $S = G P_S$ (Successful packets per time slot)

Probability of successful transmission using Pure ALOHA

Packet A is successfully transmitted, if **no** other packet arrives within the vulnerable period of **two** packet durations:

$$P_S = P_0(2T_P) = e^{-2\lambda_t \cdot T_P} = e^{-2G}$$

Throughput Analysis (Contd.)

- Throughput Analysis
 - Assumptions:
 - Packet duration=Tp
- Packet transmission rate = λ
- Pr[Successful transmission]=Ps
- Increase in transmission rate due to retransmissions=λr
- Total packet transmission rate observed
 - $\lambda t = \lambda + \lambda r$
 - Definitions:
 - Traffic, $G=\lambda tTp$. At low load, $S\approx G$, at high load G>S.
- Throughput, S=GPs.
- Pr[Success in k attempts]= $P_0(1-P_0)^{k-1} = \sum_{k=1}^{\infty} ke^{-G}(1-e^{-G})^{k-1}$
- Expected number of transmissions= e^{G}

Throughput Analysis (Slotted Aloha)

Traffic: $G = \lambda_t T_p$

(Transmitted packets per time slot)

Throughput: $S = GP_S$ (Successful packets per time slot)

Probability of successful transmission using Slotted ALOHA

Packet A is successfully transmitted, if **no** other packet arrives within the vulnerable period of **one** packet duration:

$$P_S = P_0(T_P) = e^{-\lambda_t \cdot T_P}$$

$$S = G \cdot P_S$$

$$= G \cdot e^{-\lambda_t \cdot T_P} = G \cdot e^{-G}$$

Analytical Throughput curve

Carrier sense multiple access (CSMA)

- A refinement of the ALOHA protocol that is used in Ethernet.
- Improves performance when there is a higher medium utilisation.
- When a NIC has data to transmit, it first listens to the cable (using a transceiver) to see if a carrier (signal) is being transmitted by another node.
- This may be achieved by monitoring whether a current is flowing in the cable (each bit corresponds to 18-20 mA of current).

CSMA (Contd.)

Station willing to transmit senses the medium (carrier sensing)
 If a busy medium is detected, the transmission is deferred:
 1-persistent CSMA
 If medium is idle, transmit directly, otherwise wait until it becomes idle and then transmit directly
 If medium is idle, transmit directly, otherwise defer for a random interval and try again
 If medium is idle, transmit directly with probability of p, otherwise defer for a random interval and try again

Non persistent CSMA

- 1. If the medium id idle, transmit; otherwise, go to step 2.
- 2. If the channel is busy, wait for a random amount of time and repeat step1.

1-persistent CSMA

- 1. If the medium id idle, transmit; otherwise, go to step 2.
- 2. If the channel is busy, continue to sense the channel until it is sensed to be idle; then transmit immediately.

p-persistent CSMA

- A compromise that attempts to reduce collisions while ensuring less idle time.
- If the medium id idle, transmit with a probability of p, and delay for one time unit with probability (1-p); typically, the time unit is set equal to the maximum propagation delay.
- 2. If the channel is busy, continue to sense the channel until it is sensed to be idle; then repeat step 1.
- 3. If transmission is delayed by one time unit, repeat step 1.

Throughput Curve

MAC Protocol used in IEEE 802.3

- CSMA with Collision Detection (CSMA/CD)
- The Channel can be in one of three states:
 - (i) Transmission (ii) Contention (iii) Idle

CSMA/CD?

 Collision detection logic is embedded in the transceiver interfacing a node to the medium.

CSMA/CD Operation

A station that detects a collision:

- > Abruptly stops transmission.
- > Puts a jamming signal into the channel.
- ➤ Chooses a retransmission time using the Binary exponential Backoff algorithm.

CSMA/CD Operation

Source: Forouzan - DCN

Binary exponential Backoff Algorithm Slotted Channel

- After the first collision, each station waits for either 0 or 1 time slots.
- After second collision, each station waits for either 0, 1, 2, or 3 time slots at random.
- After I collisions, a random number is chosen between 0 and 2ⁱ-1 and that many slots are skipped.
- After 10 collisions, the randomization interval is frozen at 1023 slots.
- After 16 collisions, failure is reported and now it's the job of higher layers to ensure recovery.

CSMA/CA

- CSMA/CA is used in 802.11 based wireless LANs.
- In wireless LANs, CSMA/CD cannot be implemented as here it is not possible to listen while sending.
- Thus, collision detection is not possible.
- Another reason is the hidden terminal problem, whereby a node A, in range of the receiver R, is not in range of the sender S, and therefore cannot know that S is transmitting to R.
- Still another problem is the exposed terminal problem.

Hidden terminal problem

- In wireless networking, the hidden node problem occurs when a node is visible from a wireless access point (AP), but not from other nodes communicating with the said AP.
- In the above figure, nodes A and B can each communicate with the hub, but one can not know when the other one is transmitting.

Exposed terminal problem

 In the following figure, S2 can not transmit to R2 as it hears S1 transmitting to R1, though R2 is not in the range of S1.

CSMA/CA Protocol

- CSMA/CA: explicit channel reservation
 - -sender: send short RTS: request to send
 - receiver: reply with short CTS: clear to send
- CTS reserves channel for sender, notifying (possibly hidden) stations
- Avoids hidden station collisions

CSMA/CA: IEEE 802.11

IEEE 802.11 Multiple Access Principle:

- Station willing to transmit senses the medium (carrier sensing)
- If medium is idle for a duration longer than the priority-dependant Interframe Space (IFS), the station directly accesses the medium
- Otherwise, the station waits for the next idle IFS and additionally defers its access by a random backoff time
- If the medium is accessed during the backoff phase by other stations, the backoffcounter is stopped

