TO-252

150V N-Channel Enhancement Mode Power MOSFET

Description

WMO09N15T1 uses advanced power trench technology that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Features

- V_{DS} = 150V, I_{D} = 8.6A $R_{DS(on)}$ < 300m Ω @ V_{GS} = 10V
- Fully Characterized Avalanche Voltage and Current
- Low Gate Charge
- Excellent Package for Good Heat Dissipation

- Power Switching Application
- Hard Switched and High Frequency Circuits

Absolute Maximum Ratings (T_A = 25°C, unless otherwise noted)

Parameter		Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	150	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current	T _C =25°C	ID	8.6	А	
Commission Brain Garrent	T _C =100°C	עי	5.4		
Pulsed Drain Current ¹		Ірм	35	А	
Single Pulse Avalanche Energy²		EAS	1.25	mJ	
Total Power Dissipation	T _C =25°C	P _D	39	W	
Operating Junction and Storage Temperature Range		TJ, TSTG	-55 to 150	°C	

Thermal Characteristics

Parameter	Symbol	Value	Unit	
Thermal Resistance from Junction-to-Ambient ³	R ₀ JA	65	°C/W	
Thermal Resistance from Junction-to-Case	Rejc	3.2	°C/W	

Rev.3.0, 2021 Doc:W0803364 1/7

Electrical Characteristics (T_J = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static Characteristics								
Drain-Source Breakdown V	oltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250μA	150	-	-	V	
Gate-body Leakage curren		I _{GSS}	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA	
Zero Gate Voltage Drain	T _J =25°C		V 450V V 0V	-	-	1		
Current	T _J =100°C	- I _{DSS}	V _{DS} = 150V, V _{GS} = 0V	-	-	100	μA	
Gate-Threshold Voltage		V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.5	2	2.5	V	
Drain-Source on-Resistanc	e ⁴	R _{DS(on)}	V _{GS} = 10V, I _D = 4A	-	245	300	mΩ	
Forward Transconductance	4	G fs	V _{DS} = 10V, I _D = 4A	-	25	-	S	
Dynamic Characteristic	: s ⁵							
Input Capacitance		Ciss		-	450	-	pF	
Output Capacitance		Coss	$V_{DS} = 75V, V_{GS} = 0V,$ $f = 1MHz$	-	23	-		
Reverse Transfer Capacita	nce	C _{rss}		-	14	-		
Gate Resistance		Rg	f=1MHz	-	1.5	-	Ω	
Switching Characteristics ⁵								
Total Gate Charge		Qg		-	8.2	-	nC	
Gate-Source Charge		Q _{gs}	V _{GS} = 10V,V _{DS} = 75V, I _D =1.5A	-	1.5	-		
Gate-Drain Charge		\mathbf{Q}_{gd}		-	2.2	-		
Turn-on Delay Time		t _{d(on)}		-	8.2	-		
Rise Time Turn-off Delay Time		tr	V _{GS} =10V, V _{DD} =75V,	-	10.2	-	ns	
		t _{d(off)}	$R_G = 6\Omega$, $I_D = 1A$, $R_G = 75\Omega$	-	20.5	-		
Fall Time		t _f		-	15.3	-		
Drain-Source Body Diode Characteristics								
Diode Forward Voltage ⁴		V _{SD}	I _S = 1A, V _{GS} = 0V	-	-	1.2	V	
Continuous Source Current	T _C =25°C	Is	-	-	-	8.6	Α	

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 2. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =5A.
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Characteristics

Test Circuit

Figure A. Gate Charge Test Circuit & Waveforms

Figure B. Switching Test Circuit & Waveforms

Figure C. Unclamped Inductive Switching Circuit & Waveforms

Mechanical Dimensions for TO-252

COMMON DIMENSIONS

SYMBOL	MM		
STIVIBUL	MIN	MAX	
Α	6.40	6.80	
В	5.13	5.50	
С	0.88	1.28	
D	5.90	6.22	
Е	0.68	1.10	
F	0.68	0.91	
G	2.29REF		
Н	2.90REF		
1	0.85	1.17	
J	0.51REF		
K	2.10	2.50	
L	0.40	1.00	

Ordering Information

Part P		Package	Marking	Packing method	
	WMO09N15T1	TO-252	WMO09N15T1	Tape and Reel	

Marking Information

WMO09N15T1 = Device code

WWXX XXX= Date code

Contact Information

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201207 Tel: 86-21-50310888 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

IIII P III R is registered trademarks of Wayon Corporation.

Disclaimer

WAYON reserves the right to make changes without further notice to any Products herein to improve reliability, function, or design. The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. WAYON does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.