Génération mélodies

8INF887 - Apprentissage profond

★ PROBLÉMATIQUE

- → Génération de mélodies par apprentissage profond
 - Exploration de méthodes
 - Manipulation d'un nouveau type de données (musique)

METHODOLOGIE ★

DONNÉES

- Mélodies simples
- Dynastie Han+1600 morceaux
- Comptines allemandes +1700 morceaux

OUTILS

MODELES

- Génération aléatoire
- RNN-LSTM
- VAE

★ RNN-LSTMPré-traitement

Enlever durées de notes non acceptables

Transposer en do majeur/la mineur

Encoder les musiques en texte

★ RNN-LSTM Entrainement

outoputoput in pinqubut

Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, None, 38)	0
1stm (LSTM)	(None, 256)	302,080
dropout (Dropout)	(None, 256)	0
dense (Dense)	(None, 38)	9,766

★ RNN-LSTMMélodies générées

Modèle deutsch

Modèle han

A partir de "ah vous dirais-je maman":

Modèle deutsch

Modèle han

VARIATIONAL AUTOENCODER *

VARIATIONAL AUTOENCODER

- **★** Transposition
- ★ Encodage
 - Hauteur ∈ [50;97]
 - o Silence = 99
- ★ Padding (ajout de silences)
- **★** Normalisation

PRYTHMES

- ★ Encodage de la durée
 - 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4
 - $\circ \rightarrow [0, 1, 2, 3, 4, 5, 6, 7]$
- ★ Padding (ajout de rondes)
- ★ Normalisation

VARIATIONAL AUTOENCODER

MODÈLE - VAE

Encodeur

- 1e couche linéaire de input_dim → hidden_dim
- LeakyReLU(0.2)
- 2e couche linéaire de hidden_dim → hidden_dim
- LeakyReLU(0.2)
- Deux sorties parallèles :
 - o FC_mean : moyenne de la distribution latente
 - FC_var : log-variance de la distribution latente

Reparamétrisation

 $\epsilon \sim N(0, I)$: bruit gaussien $z = mean + logvar * \epsilon$: vecteur latent échantillonné

Décodeur

- 1e couche linéaire de latent_dim → hidden_dim
- LeakyReLU(0.2)
- 2e couche linéaire de hidden_dim → hidden_dim
- LeakyReLU(0.2)
- FC_output : couche linéaire de hidden_dim → output_dim
- Sigmoid: activation finale (entre 0 et 1)


```
hidden_dim = 500
latent_dim = 250
epochs = 200
batch_size = 32
```

Optimiseur Adam:

- Taux d'apprentissage : 1r = 1e-5
- Régularisation L2 : weight_decay = 1e-6

RYTHMES

```
hidden_dim = 500
latent_dim = 300
epochs = 8
batch_size = 64
```

Optimiseur Adam:

Taux d'apprentissage : lr = 1e-3

VARIATIONAL AUTOENCODER

RÉSULTATS

RÉSULTATS

ORIGINALE

RECONSTRUCTION

BILAN

- Données de bonnes qualités
- Pré-traitement
- Données inhabituelles

PERSPECTIVES

- **GAN**
- Transformeurs

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>