Aufgabe 1 (2+2+4 Punkte) \overline{n} unterscheidbare Kugeln sollen zufällig auf drei durch die Zahlen 1. 2 und 3 gekennzeichnete Urnen verteilt werden. Berechnen Sie die Wahrscheinlichkeiten folgender (a) Urne 1 ist als einzige Urne leer. (2) $A_2 = I_1 \in \mathbb{Q}$ $I_2 \in \mathbb{Q}$ $I_3 = I_2 \in \mathbb{Q}$ $I_4 = I_4 \in \mathbb$ (c) Keine Urne ist leer. (6) $A_6 = \{ f \in Q : |f(M)| = 3\}$ $\{ P(A_6) = \frac{3n_3}{3n} \}$ Aufgabe 2 (3+2+2 Punkte) Seien $X = (X_1, X_2, X_3)$ eine 3-dimensionale Zufallsvariable über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$, $A = \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)\}$ und P(X = x) = (0, 0, 0, 1)(a) Bestimmen Sie die Wahrscheinlichkeitsverteilungen P^{X_i} für i=1,2,3. (b) Untersuchen Sie, ob die Familie $(X_i)_{i\in I}$ für $I=\{1,2,3\}$ unabhängig ist. (c) Untersuchen Sie, ob X_1 und X_2 unabhängig sind. $f_Z(x,y) = c \cdot (1+x \cdot y) \cdot 1_A(x,y), \ (x,y) \in \mathbb{R}^2,$ -stalken wir nort

Aufgabe 3 (4 Punkte) Seien $c \in \mathbb{R}$, $A = [-1, +1]^2$ und Z = (X, Y) eine 2-dimensionale Zufallsvariable über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ mit der durch E(X)= = X(w) P(EW) definierten λ^2 -Dichte) Berechnen Sie c. Aufgabe 4 (3+3 Punkte) Sei X eine reellwertige Zufallsvariable über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ mit P(X = -2) = 1/5, P(X = -1) = 1/6, P(X = 0) = 1/5, P(X = 1) = 1/15 und P(X = 2) = 11/30. Außerdem sei $Y = X^2$. Margo PX= 4. 60+ = 51+ 45. 64 Aufgabe 5 (5 Punkte) Seien $\lambda > 0$ und X, Y reellwertige Zufallsvariablen über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ mit $X \sim \mathfrak{P}(\lambda)$ und $P(Y = y) = P(X = y | X \in \mathbb{N})$ für alle $y \in \mathbb{R}$. Berechnen Sie E(Y). Aufgabe 6 (4+4+2 Punkte)

Seien X, Y reellwertige Zufallsvariablen über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ mit $X \sim U(-1, 2)$ und Y = |X|. $(-1, 2) = \Omega$ SEL-1, 0, 1, 23 1 $\Omega = \frac{1}{4}$ (a) Berechnen und skizzieren Sie die Verteilungsfunktion F_Y .

Berechnen Sie EY. = \(\mathread \text{Mixi)} \cdot P(\lambda \text{Wid)} = \(\mathread \text{Mixi)} \cdot P(\lambda \text{Wid)} \) = \(\mathread \text{Mixi)} \cdot P(\lambda \text{Wid)} \)

Y = |X| = P(X = 1)= $P(X = 0) = P(X = 0) = \frac{1}{2}$ $P(Y = 0) = P(X = 0) = \frac{1}{4}$