Claims

15

- 1. An organic silane compound represented by the general formula (a);
- wherein T is an organic group derived from a fused polycyclic hydrocarbon compound of a fusion number of 2 to 10 composed of a 5-membered and/or 6-membered monocyclic hydrocarbon; k is an integer of 1 to 10; at least one group of X¹ to X³ is a group which gives a hydroxy group by hydrolysis, or a halogen atom, and other groups of X¹ to X³ are a group which does not react with an adjacent molecule.
 - 2. The organic silane compound according to claim 1, wherein T is the organic group derived from a fused polycyclic hydrocarbon compound selected from the group consisting of compounds represented by the general formulas (I) to (IX);

$$(I) \qquad (V)$$

$$(V)$$

$$(VI)$$

$$(VII)$$

$$(VIII)$$

$$(VIII)$$

$$(VIII)$$

in the formula (I), n¹ is an integer of 0 to 10; in the formula (II), n² and n³ are integers of 0 or more, a sum of which is 1 to 9, respectively; in the formula (III), n⁴ and n⁵ are integers of 1 or more, a sum of which is 2 to 9, respectively; in the formula (IV), n⁶ is an integer of 0 to 7; in the formula (X), Y is an atom selected from carbon, nitrogen, oxygen and sulfur atoms, or an organic residue containing any of these atoms.

5

3. The organic silane compound according to claim 1, wherein the organic group further has a functional group, and the functional group is a substituted or unsubstituted alkyl group, a halogenated alkyl group, a cycloalkyl group, an aryl group, a diarylamino group, a di- or

triarylalkyl group, an alkoxy group, an oxyaryl group, a nitrile group, a nitro group, or an ester group.

- 4. The organic silane compound according to claim 1, wherein the group which does not react with the adjacent molecule is a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, a diarylamino group, or a di- or triarylalkyl group.
- 5. The organic silane compound according to claim 3, wherein the fused polycyclic hydrocarbon compound is represented by the formula (1);

wherein m is 0 to 10; at least one group of R¹ to R¹⁰ is a silyl group represented by the general formula -SiX¹X²X³ (at least one group of X¹ to X³ is a group which gives a hydroxy group by hydrolysis, or a halogen atom, and other groups are a group which does not react with an adjacent molecule), and at least one group is an electron donating or electronattracting functional group, and other groups are a hydrogen atom.

20

15

6. The organic silane compound according to claim 5, wherein m is 0 to 7.

- 7. The organic silane compound according to claim 5, wherein at least one of R¹ and R² is the silyl group, and R³ and R⁴ are both a linear hydrocarbon group of a carbon number of 1 to 30.
- 8. The organic silane compound according to claim 5, wherein one of R³ and R⁴ is a linear hydrocarbon group of a carbon number of 1 to 30, and the other is a hydrogen atom.
- 9. The organic silane compound according to claim 3, wherein the organic silane compound is represented by the formula (V);

$$R_7$$
 R_9
 R_{10}
 (V)

15

20

wherein R⁷ and R⁸ are the same or different, and are a silyl group represented by SiX¹X²X³, or a hydrogen atom (provided that the case where R⁷ and R⁸ are a hydrogen atom at the same time is not included), Y is selected from C(R¹¹)₂, NR¹², O and S (herein, R¹¹ and R¹² are a hydrogen atom, and may be directly bound to other functional group), X¹ to X³ are the same or different, and are an alkoxy group represented by O(CH₂)_mCH₃ (m=0 to 9), or a halogen atom, and R⁹ and R¹⁰ are a hydrogen atom (provided that the case where R⁹ and R¹⁰ are a hydrogen atom at the same time is not included).

10. The organic silane compound according to claim 3, wherein the organic silane compound is represented by the formula (III)';

$$R_{15}$$
 R_{16}
 R_{16}
 R_{13}
 R_{14}
 R_{14}
 R_{14}

wherein R^{13} is a silyl group represented by $SiX^1X^2X^3$, R^{14} to R^{16} are the same or different, and are a hydrophobic group or a hydrogen atom (provided that the case where R^{14} to R^{16} are a hydrogen atom at the same time is not included), $n^{1'}$ and $n^{2'}$ are integers, a sum of which is 0 to 8, and X^1 to X^3 are the same or different, and are an alkoxy group represented by $O(CH_2)_mCH_3$ (m=0 to 9), or a halogen atom.

11. The organic silane compound according to claim 3, wherein the organic silane compound is represented by the formula (IV)';

$$R_{18}$$
 R_{19}
 R_{20}
 R_{19}

5

15

20

wherein R¹⁷ to R²⁰ satisfy any of the following two conditions: condition 1: R¹⁷ and R¹⁸ are the same or different, and are a silyl group represented by SiX¹X²X³, or a hydrogen atom (provided that the case where R¹⁷ and R¹⁸ are a hydrogen atom at the same time is not included), R¹⁹ and R²⁰ are the same or different, and are a hydrogen atom or a hydrophobic group (provided that the case where R¹⁹ and R²⁰ are a hydrogen atom at the same time is not included), and X¹ to X³ are the same or different, and are an alkoxy group represented by O(CH₂)_{III}CH₃ (m=0 to 9), or a halogen atom,

condition 2: R¹⁹ and R²⁰ are the same or different, and are a silyl group represented by SiX¹X²X³, or a hydrogen atom (provided that the case where R¹⁹ and R²⁰ are a hydrogen atom at the same time is not included), R¹⁷ and R¹⁸ are the same or different, and are a hydrogen atom or a hydrophobic group (provided that the case where R¹⁷ and R¹⁸ are a hydrogen atom at the same time is not included), and X¹ to X³ are the same or different, and are an alkoxy group represented by O(CH₂)_mCH₃(m=0 to 9), or a halogen atom.

12. A process for producing an organic silane compound, comprising Subjecting to the Grignard reaction of a compound represented by the general formula (b);

 $(T)_{k}$ -MgL¹ (b)

15

20

25

wherein T is an organic group derived from a fused polycyclic hydrocarbon compound of a fusion number of 2 to 10 composed of a 5-membered and/or 6-membered monocyclic hydrocarbon; k is an integer of 1 to 10; L¹ is a halogen atom, and a compound represented by the general formula (c);

 $L^2-SiX^1X^2X^3$ (c)

wherein L^2 is a hydrogen atom, a halogen atom, or an alkoxy group of a carbon number of 1 to 4; at least one group of X^1 to X^3 is a group which gives a hydroxy group by hydrolysis, or a halogen atom, and other groups are a group which does not react with an adjacent molecule, to obtain a π electron conjugation system organic silane compound represented by the general formula (a);

$$(T)_k$$
-SiX¹X²X³ (a)

wherein T, k, and X^1 to X^3 are as defined above.

13. The process for producing an organic silane compound

5 according to claim 12, wherein, via a first step of reacting a naphthalene
derivative represented by the formula (1-1);

$$(1-1)$$

wherein n is an integer of 0 to 10, with R³-Br (R³ is a hydrophobic group) using a Grignard reaction to form an intermediate represented by the

10 formula (1-2);

15

wherein n and R3 are as defined above,

a second step of brominating an α carbon of R^3 of the intermediate, and Subjecting to the Grignard reaction of this with R^4 -Br (R^4 is a hydrophobic group) to form the formula (1-3);

wherein n, R³ and R⁴ are as defined above,

a third step of brominating the intermediate represented by the formula (1-3) to obtain an intermediate represented by the formula (1-4);

$$R3$$
 $R4$
 $(1-4)$

wherein n, R^3 and R^4 are as defined above, or the formula (1-5);

$$R3$$
 $R3$
 $R4$
 $(1-5)$

5 wherein n, R³ and R⁴ are as defined above, and

a fourth step of reacting the intermediate represented by the formula (1-4) and (1-5) with a silane compound represented by H-SiX¹X²X³ (provided that at least one group of X¹ to X³ is a group which gives a hydroxy group by hydrolysis, or a halogen atom, and other groups are a group which does not react with an adjacent molecule), thereby obtain the formula (I)';

$$R1$$
 $R3$
 $R4$
 $R1$
 $R3$
 $R4$

wherein n, and R^1 to R^4 are as defined above.

15 14. The process for producing an organic silane compound according to claim 12, wherein T is represented by the formula (I);

10

wherein n¹ is an integer of 0 to 10, and

5

10

20

a fused polycyclic hydrocarbon compound represented by the formula (I) is obtained by:

- (1) a method of repeating a step of substituting a hydrogen atom binding to adjacent two carbon atoms of a raw material compound with an ethynyl group or a derivative thereof, and ring-closing reacting ethynyl groups, or
- (2) a method of repeating a step of substituting a hydrogen atom binding to a carbon atom of a raw material compound with a triflate group, reacting this with furan or a derivative thereof, and then oxidizing this.
- 15. The process for producing an organic silane compound according to claim 12, wherein T is represented by the formula (IV) or (V);

$$(IV) \qquad (V)$$

- wherein n^6 is an integer of 0 to 7, and
 - a fused polycyclic hydrocarbon compound represented by the formula (IV) or (V) is obtained by a method of repeating a step of substituting a hydrogen atom binding to adjacent two carbon atoms of a raw material compound with an ethynyl group or a derivative thereof, and ring-closing reacting ethynyl groups.
 - 16. A functional organic thin film comprising a thin film which is

derived from an organic silane compound represented by the general formula (a);

 $(T)_k$ -SiX¹X²X³ (a)

5

10

15

wherein T is an organic group derived from a fused polycyclic hydrocarbon compound of a fusion number of 2 to 10 composed of a 5-membered and/or 6-membered monocyclic hydrocarbon; k is an integer of 1 to 10; at least one group of X¹ to X³ is a group which gives a hydroxy group by hydrolysis, or a halogen atom, and other groups are a group which does not react with an adjacent molecule, and is bound to a substrate via a siloxane bond.

- 17. The functional organic thin film according to claim 16, wherein the organic group further has a hydrophobic group, and the hydrophobic group is a substituted or unsubstituted alkyl group, a halogenated alkyl group, a cycloalkyl group, an aryl group, a diarylamino group, a di- or triarylalkyl group, an alkoxy group, an oxyaryl group, a nitrile group, a nitro group, or an ester group.
- 18. The functional organic thin film according to claim 16,
 20 wherein the group which does not react with the adjacent molecule is a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, a diarylamino group, or a di- or triarylalkyl group.
- 19. The functional organic thin film according to claim 16,25 wherein T is the organic group derived from a fused polycyclic

hydrocarbon compound selected from the group consisting of compounds represented by the general formulas (I) to (IX);

$$(I) \qquad (V)$$

$$(VI)$$

$$(VII)$$

$$(VIII)$$

$$(VIII)$$

$$(VIII)$$

(in the formula (I), n¹ is an integer of 0 to 10; in the formula (II), n² and n³ are integers of 0 or more, a sum of which is 1 to 9, respectively; in the formula (III), n⁴ and n⁵ are integers of 1 or more, a sum of which is 2 to 9, respectively; in the formula (IV), n⁶ is an integer of 0 to 7; in the formula (X), Y is an atom selected from carbon, nitrogen, oxygen and sulfur atoms, or an organic residue containing any of these atoms).

10

5

20. The functional organic thin film according to claim 16, wherein the thin film is represented by the formula (I)";

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}
 \mathbb{R}^{3}
 \mathbb{R}^{4}
 \mathbb{R}^{3}

wherein n is an integer of 0 to 10, at least one of R¹ and R² constitutes a network composed of the following siloxane bond;

and is bound to the substrate via the siloxane bond (provided that the case where R¹ and R² are a hydrogen atom at the same time is not included), and R³ and R⁴ are a hydrophobic group, or a hydrophobic group and a hydrogen atom.

- 10 21. The functional organic thin film according to claim 20, wherein n is 0 to 7.
 - 22. The functional organic thin film according to claim 20, wherein R³ and R⁴ are both a linear hydrocarbon group of a carbon number of 1 to 30.
 - 23. The functional organic thin film according to claim 20, wherein one of R^3 and R^4 is a linear hydrocarbon group of a carbon number of 1 to 30, and the other is a hydrogen atom.

20

15

24. A process for manufacturing a functional organic thin film, comprising subjecting an organic silane compound represented by the

general formula (a);

 $(T)_{k}$ -SiX¹X²X³ (a)

wherein T is an organic group derived from a fused polycyclic hydrocarbon compound of a fusion number of 2 to 10 composed of a 5-membered and/or 6-membered monocyclic hydrocarbon; k is an integer of 1 to 10; at least one group of X¹ to X³ is a group which gives a hydroxy group by hydrolysis, or a halogen atom, and other groups are a group which does not react with an adjacent molecule, to a chemical binding method to bind to a substrate via a siloxane bond.

10

20

25

5

- 25. The process for manufacturing a functional organic thin film according to claim 24, wherein the chemical binding method is a LB method.
- 15 26. An organic thin transistor, comprising a substrate, a functional organic thin film which is derived from an organic silane compound represented by the general formula (a);

 $(T)_k$ -SiX₁X₂X₃ (a)

wherein T is an organic group derived from a fused polycyclic hydrocarbon compound of a fusion number of 2 to 10 composed of a 5-membered and/or 6-membered monocyclic hydrocarbon; k is an integer of 1 to 10; at least one group of X_1 to X_3 is a group which gives a hydroxy group by hydrolysis, or a halogen atom, and other groups are a group which does not react with an adjacent molecule, and is bound to a substrate via a siloxane bond, a gate electrode formed on one surface of

the functional organic thin film via a gate insulating film, and a source electrode/a drain electrode which are formed on both sides of the gate electrode, contacting with one surface or other surface of the functional organic thin film.

5

27, The organic thin film transistor according to claim 26, wherein the organic silane compound is represented by the formula (I)';

wherein n is an integer of 0 to 10, R¹ and R² are the same or different, and are a silyl group represented by SiX¹X²X³, or a hydrogen atom (provided that the case where R¹ and R² are a hydrogen atom at the same time is not included), X¹ to X³ are as defined above, and R³ and R⁴ are a hydrophobic group, or a hydrophobic group and a hydrogen atom.

15

10

28. A process for manufacturing an organic thin film transistor, comprising the steps of (A) forming a functional organic thin film which is derived from an organic silane compound represented by the general formula (a);

$$(T)_{k}$$
-SiX¹X²X³ (a)

20

wherein T is an organic group derived from a fused polycyclic hydrocarbon compound of a fused number of 2 to 10 composed of a 5-membered and/or 6-membered monocyclic hydrocarbon; k is an integer of 1 to 10; at least one group of X¹ to X³ is a group which gives a

hydroxy group by hydrolysis, or a halogen atom, and other groups are a group which does not react with an adjacent molecule, and is bound to a substrate via a siloxane bond, directly or indirectly on the substrate, (B) forming a gate electrode indirectly or directly on the substrate, (C) forming a source electrode•a drain electrode on one surface side or other surface side of the functional organic thin film, and (D) forming a gate insulating film between the gate electrode and the source electrode•drain electrode.

5

15

20

- 29. An organic electroluminescence device, comprising having one or more organic thin films between an anode and a cathode, wherein at least one organic thin film is a functional organic thin film which is derived from an organic silane compound represented by the general formula (a);
 - wherein T is an organic group derived from a fused polycyclic hydrocarbon compound of a fusion number of 2 to 10 composed of a 5-membered and/or 6-membered monocyclic hydrocarbon; k is an integer of 1 to 10; at least one group of X¹ to X³ is a group which gives a hydroxy group by hydrolysis, or a halogen atom, and other groups are a group which does not reactive with an adjacent molecule, and is bound to the anode, the cathode or other organic thin film via a siloxane bond.
- 30. The organic electroluminescence device according to claim25 29, wherein the construction having one or more organic thin films

between the anode and the cathode is a construction of anode-light emitting layer-electron transporting layer-cathode or a construction of anode-hole transporting layer-light emitting layer-electron transporting layer-cathode, and the electron transporting layer is bound to the light emitting layer via a chemical bond.

- 31. The organic electroluminescence device according to claim 29, wherein the construction having one or more organic thin films between the anode and the cathode is a construction of anode-hole transporting layer-light emitting layer-cathode or a construction of anode-hole transporting layer-light emitting layer-electron transporting layer-cathode, and the hole transporting layer is bound to the anode via a chemical bond.
- 32. The organic electroluminescence device according to claim 29, wherein the organic silane compound is represented by the formula (1);

5.

10

20

wherein m is 0 to 10; at least one group of R¹ to R¹⁰ is a silyl group represented by the general formula-SiX¹X²X³ (at least one group of X¹ to X³ is a group which gives a hydroxy group by hydrolysis, or a halogen atom, and other groups are a group which does not react with an adjacent molecule), at least one group is an electron donating or

electronattracting functional group, and other groups are a hydrogen atom.

33. The organic electroluminescence device according to claim
29, wherein the group which does not react with the adjacent molecule is
a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl
group, a diarylamino group, or a di- or triarylalkyl group.