Bottom-up parsing

Fabrizio d'Amore Alberto Marchetti-Spaccamela DIAG - Sapienza

approcci al parsing

top-down

- obiettivo: fissata una grammatica non-contestuale G, data una stringa x in input, costruire un albero di derivazione di x a partire dalla radice, usando le produzioni di G
 - G è fissata
- metodi
 - analisi a discesa ricorsiva (esponenziale)
 - analisi predittiva (lineare, basata su grammatiche LL(k))

bottom-up

- obiettivo: fissata una grammatica non-contestuale G, data una stringa x in input, costruire un albero di derivazione di x a partire dalle foglie, usando le produzioni di G
 - G è fissata
- metodo: analisi shift-reduce
 - lineare
 - analisi predittiva(basata su grammatiche LR(k))
 - esistono altri metodi

parsing shift-reduce

L'idea generale

- leggere i token dall'input e inserirli in stack tentando di costruire sequenze che riconosciamo come il lato destro di una produzione
- Quando si trova la corrispondenza, sostituire quella sequenza con il non terminale dal lato sinistro
- Questo processo crea l'albero di analisi dal fondo verso l'alto (bottom-up), l'inverso del parser top-down.
- Se tutto va bene, alla fine si esamina tutto l'input e in stack rimane il simbolo iniziale

- Si eseguono "sostituzioni inverse" (riduzioni) su sottostringhe dell'input, percorrendo al contrario il processo di derivazione
- Utilizza una pila (inizialmente vuota), e si legge l'input un token alla volta,
- Operazioni possibili ad ogni lettura
 - **shift** (continua a leggere input e push stack)
 - Reduce (applica una produzione e riduci pila)
 - se non è possibile operare shift o reduce allora o errore oppure termina e si accetta la stringa

parsing shift-reduce

- ricostruisce una derivazione sinistra della stringa in input, o restituisce messaggio di errore in caso la derivazione non esista
- durante l'esecuzione effettua "sostituzioni inverse" (riduzioni) su sottostringhe dell'input, percorrendo al contrario il processo di derivazione
- basato su una pila (inizialmente vuota), legge l'input un token alla volta, eseguendo ad ogni lettura uno shift oppure uno o più reduce
 - se non è possibile operare uno shift o una reduce allora si produce un messaggio di errore

l'input è diviso in due parti quella ancora da leggere (undigested) e quella letta, inserita in pila e parzialmente processata (semi-digested)

- operazione shift
 - sposta in pila (shift) prossimo token in input
- operazione reduce
 - individua stringa $\alpha \in V^*$ affiorante nella pila, tale che esiste $X \rightarrow \alpha$, esegui pop di tutti i caratteri di α ed esegui push di X (reduce); α è detta handle
 - dopo una reduce potrebbe essere possibile eseguire un'altra reduce
 - se dopo una reduce la pila contiene solo l'assioma e l'input è stato letto interamente allora il parsing termina con successo

semplice esempio

linguaggio non-contestuale $L = \{a^n b^m c^{n+m} \mid n, m > 0\}$

Produzioni (S assioma, simb. terminali a,b,c))

$$S \rightarrow aSc \mid aTc$$

$$T \rightarrow bTc \mid bc$$

esempio generazione abbbcccc

$$\underline{S} \Rightarrow a\underline{T}c \Rightarrow ab\underline{T}cc \Rightarrow abb\underline{T}ccc \Rightarrow abbbcccc$$

HANDLE: sequenza di caratteri in pila che sono usati in reduce; sono il lato destro della produzione (in rosso e sottolineato a destra)

simbolo convenzionale di fine input: \$

	pila	undigested	azione
1		abbbcccc\$	shift
2	а	bbbcccc\$	shift
3	ab	bbcccc\$	shift
4	abb	bcccc\$	shift
5	abbb	cccc\$	shift
6	abb <u>bc</u>	ccc\$	reduce $(T \rightarrow bc)$
7	abbT	ccc\$	shift
8	ab <u>bTc</u>	cc\$	reduce $(T \rightarrow bTc)$
9	abT	cc\$	shift
10	a <u>bTc</u>	<i>c</i> \$	reduce $(T \rightarrow bTc)$
11	аТ	<i>c</i> \$	shift
12	<u>aTc</u>	\$	reduce ($S \rightarrow aTc$)
13	S	\$	accetta

Esempio

data la grammatica $S \rightarrow E$ $E \rightarrow T \mid E + T$ $T \rightarrow id \mid (E)$ e la stringa in input (id+id)

PARSE	REMAINING	PARSER
STACK	INPUT	ACTION
	(id + id)\$	Shift
		(push next token from input on stack, advance
0		input)
(id + id)\$	Shift
(id	+ id)\$	Reduce: T -> id
	14 17 15 3 90	(pop right-hand side of production off stack,
		push left-hand side, no change in input)
(T	+ id)\$	Reduce: E -> T
(E	+ id)\$	Shift
(E +	id)\$	Shift
(E + id)\$	Reduce: T -> id
(E + T)\$	Reduce: E -> E + T
		(Ignore: E -> T)
(E)\$	Shift
(E)	\$	Reduce: T -> (E)
T	\$	Reduce: E -> T
E	\$	Reduce: S -> E
S	\$	

Passi

1: stack vuoto; input da esaminare: tutto; azione: shift (poni primo input in stack)

2: shift

-3: in input id; si applica (reduce) T→id equivale a togliere id da stack e mettere al suo posto T; input non cambia

•••

Shift: avanza in input

Reduce: applica produzione e togli uno o piu' elementi da stack (lato destro prod. e li sostituisci con un solo simbolo (lato sinistro produzione)

Alla fine: stack e input hanno solo S (simbolo iniziale – stack) e \$ (simbolo fine input)

Esempio data la

grammatica

 $S \rightarrow E E \rightarrow T \mid E + T \quad T \rightarrow id \mid (E)$

stringa input (id+id)

PARSE	REMAINING	PARSER
STACK	INPUT	ACTION
	(id + id)\$	Shift
		(push next token from input on stack, advance
12		input)
(id + id)\$	Shift
(id	+ id)\$	Reduce: T -> id
	14 (455)456	(pop right-hand side of production off stack,
		push left-hand side, no change in input)
(T	+ id)\$	Reduce: E -> T
(E	+ id)\$	Shift
(E +	id)\$	Shift
(E + id)\$	Reduce: T -> id
(E + T)\$	Reduce: E -> E + T
3749		(Ignore: E -> T)
(E)\$	Shift
(E)	\$	Reduce: T -> (E)
Т	\$	Reduce: E -> T
E	\$	Reduce: S -> E
S	\$	

Conflitti: Nell'analisi precedente potevamo ridurre in due modi diversi In particolare, abbiamo ignorato la possibilità di ridurre E → T perché ciò avrebbe creato la sequenza (E + E nello

stack che non è un prefisso praticabile di

Infatti non esiste un lato destro che corrisponda alla sequenza (E + E e nessuna possibile riduzione che la trasforma in tale, questo è un vicolo cieco e non viene considerato.

una forma sentenziale corretta.

Vedremo come il parser può determinare quali riduzioni sono valide in una situazione particolare.

conflitti

ad ogni passo del parsing potrebbero nascere conflitti

- reduce-reduce, ovvero potrei eseguire il reduce con due produzioni differenti:
 - come scegliere la produzione giusta?
- *shift-reduce*, ovvero potrei eseguire *shift* o *reduce*
 - Come scegliere fra shift o reduce?
 - esempio del dangling else (else "appeso")

Dangling else (else appeso): conflitto *shift-reduce*

 $S \rightarrow \text{if E then } S \mid \text{if E then S else S}$

se il parser esaminando la sequenza
if E then if E then S else S
avremo a un certo punto nella pila
if E then if E then S

il prossimo token in input è else

- reduce cambia la pila in if E then S
- shift (e successivi shift) cambia la pila in if E then if E then S else S

le due possibilità hanno diverse conseguenze nell'attribuire l'else (al primo o al secondo if, rispettivamente nei casi *reduce* e *shift*)

Quale opzione è quella usata nei linguaggi che conoscete?

conflitti

- Se applico 1 ottengo
 if E then {if E then S} else S
- Se applico 2 ottengo
 if E then {if E then S else S}
 L'ambiguità viene risolta con
- una regola aggiuntiva (che non appare nella grammatica): ad es. in C, Java si sceglie interpretazione 2
- Obbligando ad usare parentesi {} per delimitare (ad es. ADA, Modula)

NOTA i conflitti *reduce-reduce* sono rari e sono causati da problemi nella costruzione delle grammatiche

Dangling else (else appeso): conflitto *shift-reduce*

S → if E then S | if E then S else S

se il parser sta derivando

if E then if E then S else S

avremo a un certo punto nella pila

if E then if E then S

il prossimo token in input sarà else

- Applico reduce cambia la pila in if E then S
- 2. shift (e successivi shift) cambia la pila in if E then if E then S else S le due possibilità hanno diverse conseguenze nell'attribuire l'else (al primo o al secondo if, rispettivamente nei casi reduce e shift)

l'ambiguità viene risolta con una regola aggiuntiva che non appare nella grammatica

i conflitti *reduce-reduce* sono rari e sono causati da problemi nella costruzione delle grammatiche

conflitti

Conflitti reduce-reduce

Poter eseguire *reduce* con due produzioni differenti

```
Esempio:

L' = \{a^n b^m c^{n+m} \mid n+m > 0\}

= L U \{ac, bc\}

produzioni

S \rightarrow aSc \mid aTc \mid ac \mid bc

T \rightarrow bTc \mid bc

generazione abbbcccc

S \Rightarrow aTc \Rightarrow abTcc \Rightarrow abbTccc \Rightarrow abbbcccc
```

Nota: questi conflitti si possono risolvere con il parser bottom-up

simbolo convenzionale di fine input: \$

passi	pila	undigested	azione
1		abbbcccc\$	shift
2	а	bbbcccc\$	shift
3	ab	bbcccc\$	shift
4	abb	bcccc\$	shift
5	abbb	cccc\$	shift
6	abb <u>bc</u>	ccc\$	reduce $(T \rightarrow bc)$
7	abbT	ccc\$	shift
8	ab <u>bTc</u>	cc\$	reduce (<i>T→bTc</i>)
9	abT	cc\$	shift
10	a <u>bTc</u>	<i>c</i> \$	reduce (<i>T→bTc</i>)
11	аТ	<i>c</i> \$	shift
12	<u>aTc</u>	\$	reduce ($S \rightarrow aTc$)
13	S	\$	end

perché non *S→bc* ?

LR parsing (Left Right)

- per risolvere i conflitti occorre stabilire come
 - riconoscere un handle
 - decidere la produzione da usare in una riduzione (in presenza di conflitti reduce/reduce)
 - utilizzare strumenti (come il lookahead) per dirimere un conflitto shift/reduce
- studieremo parser LR
 - L: left-to-right scan dell'input
 - R: costruzione di una derivazione rightmost (destra)

Confronto fra parser LR (bottom-up) e parser LL (top-down)

- le grammatiche che ammettono parsing LR sono più numerose di quelle che ammettono parsing predittivo LL
 - in pratica includono tutte quelle dei linguaggi di programmazione
- per il parsing LR c'è un minor bisogno di "aggiustare" le produzioni,
- c'è un lungo lavoro di preparazione di tabelle che permettono di riconoscere casi e definire azioni per fortuna automatizzabile, poiché non richiede creatività
- Una volta realizzate le tabelle la realizzazione del parser (sia LL che LR) è semplice

LR parsing: diverso uso della pila

Vediamo prima come realizzare il parsing; poi come costruire le tabelle

- nel parsing shift-reduce la pila contiene le forme di frase che vengono via via elaborate per applicare in senso inverso le produzioni, fino ad arrivare all'assioma
- in molti casi la produzione da applicare non dipende solo da quale è lo handle individuato ma anche dagli altri simboli in pila, e quindi da un contesto
- per meglio catturare il contesto si mettono in pila non semplici token, ma veri e propri stati, che rappresentano il contesto sinistro al momento
- lo stato che affiora dalla pila, eventualmente aiutato da un lookahead, consente di prendere la decisione corretta (shift o reduce, e con quale produzione)
 - una più precisa definizione di stato verrà data nel seguito attraverso opportuni automi a stati finiti

tavole Action e Goto

i parser LR fanno uso di due tavole Action table Action[s, a] Goto table Goto[s, X]

Action[s, a] ((Azioni)
---------	---------	----------

descrive quale azione eseguire quando lo stato affiorante in pila è s e il prossimo token in input è il terminale a

Possibili azioni

- Shift: inserire uno stato sulla pila (push)
- Reduce: uno handle associato a uno o più stati in cima alla pila (attenzione: si eliminano solo elementi dalla pila)
- accept, termina con successo
- report error, se non è possibile procedere

State	Go	Gото		GOTO ACTION				
	E	T	id	()	+	\$	
0	G1	G8	S4					
1						S2	ACC	
2		G3	S4					
3					R2	R2	R2	
4				S5	R5	R5	R5	
5	G6	G8	S4					
6					S7	S2		
7					R4	R4	R4	
8					R3	R3	R3	

Goto[s, X]

indica il nuovo stato da piazzare in cima alla pila (push) dopo la riduzione del nonterminale *X*, mentre lo stato affiorante è *s*, e serve per completare la riduzione

- riduzione del non-terminale X significa che è stato individuato uno handle α ed usata la produzione X→α
- Dopo aver eliminato da stack i simboli α affiora in pila lo stato s
- l'indicazione della tavola Goto è il nuovo stato di cui fare il push (dopo i pop già eseguiti)

operazioni di un LR parser

pila inizializzata con stato iniziale s_0 token in input: a stato corrente: s_t Parser usa due tavole

Action specifica se eseguire shift o reduce e i dettagli

GOTO indica il nuovo stato da inserire in cima allo stack dopo una riduzione

- Se Action [s, a] è shift st, inseriamo lo stato t nello stack. Quindi si esamina il token successivo dall'input.
- Se Action [st, a] è reduce Y -> X1 ... Xk, elimina k stati X1, ... Xk dallo stack lasciando lo stato su in alto. GOTO[s_u, Y] dà il nuovo stato da inserire sullo stack. Il token di input è lo stesso (ovvero, l'input rimane invariato).
- Se Action [st, a] è ACCETTA, l'analisi ha esito positivo e abbiamo terminato.
- Se Action [st, a] è ERRORE (ovvero la posizione della tabella è vuota), abbiamo un errore di sintassi.

operazioni di un LR parser

pila inizializzata con stato iniziale s_0

token in input: a stato corrente (in cima alla pila): s_t

- Action[s_t, a] == shift(s_u)
 esegue push(s_u) e legge il prossimo token
- Action[s_t, a] == reduce(A→B₁...B_k)
 esegue k pop (estrazione di k stati), dopodiché, se s_v è lo stato affiorante, esegue push(GOTO(s_v, A));
 il token in input non cambia
- Action[s_t, a] == accept
 il parser conclude le operazioni con successo
- Action[s_t, a] == error
 errore sintattico (con la pila corrente e il token in input
 non è possibile raggiungere una forma di frase con un
 handle da ridurre)
 in questo caso è in genere possibile stampare
 messaggio diagnostico sull'errore

N.B. per ciascuna reduce si fornisce in output la produzione ridotta

Grammatica

1) $E \rightarrow E + T$ 2) $E \rightarrow T$ 3) $T \rightarrow (E)$ 4) $T \rightarrow id$

Input: id+(id)

Tavole Action e GOTO unite

(sy indica shift e nuovo stato y - rx indica reduce su produz. x)

Stato			Action			GC	ОТО
in cima stack	id	+	()	\$	E	Т
0	s4		s3			1	2
1		s5			accetta		
2	r2	r2	r2	r2	r2		
3	s4		s3			6	2
4	r4	r4	r4	r4	r4		
5	s4		s3				8
6		s5		s7			
7	r3	r3	r3	r3	r3		
8	r1	r1	r1	r1	r1		

PILA	INPUT	Azioni
s0	id + (id)\$	Shift: s4 in pila; avanza in input
s0 s4	+ (id)\$	Reduce: 4) T -> id; Pop da pila; goto(s0,T)= 2 inserisci s2 in pila input non cambia
s0 s2	+ (id)\$	Reduce: 2) E -> T; goto s1
s0 s1	+ (id)\$	Shift: s5 in pila; avanza in input

Esempio Grammatica 1)
$$E \rightarrow E + T$$
 2) $E \rightarrow T$ 3) $T \rightarrow (E)$ 4) $T \rightarrow id$ Input $id+(id)$

Tavole Action e GOTO insieme

Stato			Action			G	ОТО
in cima stack	id	+	()	\$	Е	Т
0	s4		s3			1	2
1		s2			accetta		
2	r2	r2	r2	r2	r2		
3	s4		s3			6	2
4	r4	r4	r4	r4	r4		
5	s4		s3				8
6		s5		s7			
7	r3	r3	r3	r3	r3		
8	r1	r1	r1	r1	r1		

analisi di id+(id (continua))

PILA	INPUT	Azioni
s0 s1 s5	(id)\$	Shift: s3
s0 s1 s5 s3	id)\$	Shift s4
s0s1s5s3 s4)\$	Reduce: 4) T –>id; goto s2
s0s1s5s3s2)\$	Reduce: 2) E ->T; goto s6
s0s1s5s3s6)\$	Shift s7
s0s1s5s3s6s7	\$	Reduce 3: T→(E) goto s8
s0s1s5 s8	\$	Reduce 1: E→E+T goto s1
s0 s1	\$	accetta

Esempio Grammatica 1)
$$E \rightarrow E + T$$
 2) $E \rightarrow T$ 3) $T \rightarrow (E)$ 4) $T \rightarrow id$ Input $id+(id)$

3)
$$T -> (E)$$

4)
$$T -> id$$

Tavole Action e GOTO insieme

Stato	Action					GOTO	
in cima stack	id	+	()	\$	Е	Т
0	s4		s3			1	2
1		s2			accetta		
2	r2	r2	r2	r2	r2		

Nota

Le produzioni 3 e 1 nel lato destro hanno tre simboli; Quindi si eliminano tre stati dalla pila e si inserisce uno stato (dato da goto) che corrisponde al lato sin. della produzione

Dopo eliminazione s0 affiora in pila Dato che GOTO(s0,E)=s1, metto in pila s1

analisi di id+(id (continua))

PILA	INPUT	Azioni
s0 s1 s5	(id)\$	Shift: s3
s0 s1 s5 s3	id)\$	Shift s4
s0s1s5s3s4)\$	Reduce: 4) T –>id; goto s2
s0s1s5s3s2)\$	Reduce: 2) E –>T; goto s6
s0s1s5s3s6)\$	Shift s7
s0s1s5s3s6s7	\$	Reduce 3: T→(E) goto s8
s0s1s5 s8	\$	Reduce 1: E→E+T goto s1
s0 s1	\$	accetta

$$L' = \{a^n b^m c^{n+m} \mid n+m > 0\}$$

G':
$$S' \rightarrow S$$

 $S \rightarrow aSc \mid aTc \mid ac \mid bc$
 $T \rightarrow bTc \mid bc$

Input: abbbcccc $S' \rightarrow S \rightarrow aTc \rightarrow$ $abTcc \rightarrow abbbcccc$ Pila

- <s0>, input a: shift s2
- <s0 s2>, input b:shift s7
- <s0 s2 s7>, input b: shift s13
- <s0 s2 s7 s13> input b:shift s13
- <s0 s2 s7 s13 s13> input c:shift 15
- <s0 s2 s7 s13 s13 s15> input c: reduce T→bc (togli s13 e s15 da pila; ora in pila affiora s13; vedi che goto (13, T)= 12; metti s12 in pila)

stato	а	b	С	\$	S	Т
0	shift 2	shift 3			goto 1	
1				accept		
2	shift 2	shift 7	shift 6		goto 4	goto 5
3			shift 8			
4			shift 9			
5			shift 10			
6		reduce $S \rightarrow ac$				
7		shift 13	shift 11			goto 12
8	reduce $S \rightarrow bc$					
9	reduce S → aSc					
10		reduce S → aTc				
11		reduce $S \to bc$ reduce $T \to bc$				
12			shift 14			
13		shift 13	shift 15			goto 12
14	reduce $T \rightarrow bTc$					
15	reduce T → bc					
	Tavola Action			Tavola Goto		

```
L' = \{a^n b^m c^{n+m} \mid n, m > 0\}

= L U \{ac, bc\}

G': S' \rightarrow S

S \rightarrow aSc \mid aTc \mid ac \mid bc

T \rightarrow bTc \mid bc
```

Input: abbbcccc $S' \rightarrow S \rightarrow aTc \rightarrow$ $abTcc \rightarrow abbbcccc$

Pila

- <s0>, input a: shift s2
- <s0 s2>, input b:shift s7
- <s0 s2 s7>, input b: shift s13
- <s0 s2 s7 s13> input b:shift s13
- <s0 s2 s7 s13 s13> input c:shift 15
- <s0 s2 s7 s13 s13 s15> input c: reduce T→bc (togli s13 e s15 da pila, affiora s13 vedi che goto (13, T)= 12; metti s12 in pila)

stato	а	b	с	\$	S	Т
0	shift 2	shift 3			goto 1	
1				accept		
2	shift 2	shift 7	shift 6		goto 4	goto 5
3			shift 8			
4			shift 9			
5			shift 10			
6		reduce $S \rightarrow ac$				
7		shift 13	shift 11			goto 12
8		reduce $S \rightarrow bc$				
9		reduce S → aSc				
10		reduce $S o aTc$				
11		reduce $S \to bc$ reduce $T \to bc$				
12			shift 14			
13		shift 13	shift 15			goto 12
14	reduce $T \rightarrow bTc$					
15	reduce $T o bc$					
	Tavola Action			Tavola Goto		

```
• G': S' \rightarrow S

S \rightarrow aSc \mid aTc \mid ac \mid bc

T \rightarrow bTc \mid bc
```

- Analisi di abbbcccc
 (shift = s, reduce = r, goto = g)
- s(2), s(7), s(13), s(13), s(15), $r(T \rightarrow bc)$, g(12), s(14), $r(T \rightarrow bTc)$, g(12), s(14), $r(T \rightarrow bTc)$, g(5), s(10), $r(S \rightarrow aTc)$, g(1)
- in input rimane \$ (fine input), per cui: accept

stato	а	b	с	\$	S	Т
0	shift 2	shift 3			goto 1	
1				accept		
2	shift 2	shift 7	shift 6		goto 4	goto 5
3			shift 8			
4			shift 9			
5			shift 10			
6		reduce $S \rightarrow ac$				
7		shift 13	shift 11			goto 12
8	reduce $S \rightarrow bc$					
9	reduce S → aSc					
10	reduce S → aTc					
11		$reduce S \rightarrow bc$ $reduce T \rightarrow bc$				
12			shift 14			
13		shift 13	shift 15			goto 12
14	reduce $T \rightarrow bTc$					
15	reduce $T \rightarrow bc$					
	Tavola Action			Tavola Goto		

Parser bottom-up: cosa abbiamo visto finora

 Si definisce handle la sequenza di caratteri più a sinistra che corrisponde al lato destro di una produzione

Idea: dividi input in due parti:

- la parte sinistra (in pila) è l'area di lavoro
- la parte destra è l'input non ancora esaminato Nota:
- Non si inseriscono direttamente in pila i terminali e i non terminali ma si inseriscono stati
- Gli stati sono utilizzati per risolvere conflitti e memorizzano informazioni su input e su come siamo arrivati a quel punto (come gli stati in ASF)
- poiché applichiamo la prima produzione a sinistra non abbiamo bisogno di tornare indietro

Nel parser bottom-up si esamina input da sinistra a destra.

Ad ogni iterazione si esegue un'operazione di shift o di reduce

- Shift: muovi a destra in input e poni informazioni in pila relative ai terminali esaminati
- Reduce: trovato handle α si applica una produzione del tipo A α eliminando dalla pila il lato destro gli stati corrispondenti a (handle) α e ponendo in pila lo stato corrispondente a non terminale A
- Dove sono gli handle? in cima alla pila

Parser bottom-up: cosa abbiamo visto finora faremo

Nel parser bottom-up si esamina input da sinistra a destra.

Ad ogni iterazione si esegue un'operazione di shift o di reduce

- Dobbiamo capire come costruire le tavole ACTION e GOTO
- Questo richiede essere in grado di riconoscere gli handle (la sequenza di caratteri più a sinistra che corrisponde al lato destro di una produzione)
- Per fare questo dobbiamo riconoscere i conflitti

COSA FAREMO

- Capire bene le derivazioni destre
 Per fare questo useremo tre punti di vista diversi
- 2. Data una grammatica costruiremo un automa a stati finiti
- 3. L'automa a stati finiti ci permette di derivare le tavole ACTION e GOTO

Una prima vista analisi bottom-up: albero sintattico

Grammatica

$$E \rightarrow T$$
 $E \rightarrow E + T$
 $T \rightarrow id$ $T \rightarrow (E)$

Input id + (id + id + id)

Una seconda vista analisi bottom-up: derivazione destra

$$E \rightarrow T$$
 $E \rightarrow E + T$
 $T \rightarrow id$ $T \rightarrow (E)$

input
$$id + (id + id + id)$$

A destra abbiamo la sequenza di derivazioni (reduce) che con l'analisi bottom-up mi porta ad ottenere l'assioma

$$id + (id + id + id)$$

$$\Rightarrow T + (id + id + id)$$

$$\Rightarrow E + (id + id + id)$$

$$\Rightarrow E + (T + id + id)$$

$$\Rightarrow E + (E + id + id)$$

$$\Rightarrow E + (E + T + id)$$

 $\Rightarrow \mathsf{E}$

Una seconda vista analisi bottom-up: derivazione destra

$$E \rightarrow T$$
 $E \rightarrow E + T$
 $T \rightarrow id$ $T \rightarrow (E)$

L'analisi bottom-up da sinistra a destra (LR) è una derivazione destra tracciata in ordine inverso

Ricorda: in una derivazione destra espando sempre il non terminale più a destra

$$id + (id + id + id)$$

$$\Rightarrow T + (id + id + id)$$

$$\Rightarrow E + (id + id + id)$$

$$\Rightarrow E + (T + id + id)$$

$$\Rightarrow E + (E + id + id)$$

$$\Rightarrow E + (E + T + id)$$

 $\Rightarrow \mathbf{E}$

Nota:

$$id + (id + id + id)$$

$$\Rightarrow$$
 T + (id + id + id)

$$\Rightarrow$$
 E + (id + id + id)

$$\Rightarrow$$
 E + (T + id + id)

$$\Rightarrow$$
 E + (E + id + id)

$$\Rightarrow$$
 E + (E + T + id)

$$\Rightarrow$$
 E + (E + id)

$$\Rightarrow$$
 E + (E + T)

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

 $\Rightarrow E$


```
id + (id + id + id)
\Rightarrow T + (id + id + id)
\Rightarrow E + (id + id + id)
\Rightarrow E + (T + id + id)
                                   Reduce:
\Rightarrow E + (E + id + id)
                                   Produzione
\Rightarrow E + (E + T + id)
                                   T \Rightarrow id
\Rightarrow E + (E + id)
                                   Handle(in rosso)
\Rightarrow E + (E + T)
                                   la parte destra
\Rightarrow E + (E)
                                   della produzione
                                   applicata
\Rightarrow E + T
```

 $\Rightarrow E$


```
id + (id + id + id)
\Rightarrow T + (id + id + id)
\Rightarrow E + (id + id + id)
\Rightarrow E + (T + id + id)
\Rightarrow E + (E + id + id)
\Rightarrow E + (E + T + id)
\Rightarrow E + (E + id)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow E
```

Reduce: Produzione T ⇒id

$$T + (id + id + id)$$

$$\Rightarrow E + (id + id + id)$$

$$\Rightarrow E + (T + id + id)$$

$$\Rightarrow E + (E + id + id)$$

$$\Rightarrow E + (E + T + id)$$

$$\Rightarrow E + (E + T + id)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

 $\Rightarrow E$

Proseguendo Otteniamo

Nota: le foglie ora rappresentano la stringa derivata finora dall'assioma


```
T + (id + id + id)
\Rightarrow E + (id + id + id)
\Rightarrow E + (T + id + id)
\Rightarrow E + (E + id + id)
\Rightarrow E + (E + T + id)
\Rightarrow E + (E + T)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow E
```


$$E + (id + id + id)$$

$$\Rightarrow E + (T + id + id)$$

$$\Rightarrow E + (E + id + id)$$

$$\Rightarrow E + (E + T + id)$$

$$\Rightarrow E + (E + id)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$


```
E + (id + id + id)
\Rightarrow E + (T + id + id)
\Rightarrow E + (E + id + id)
\Rightarrow E + (E + T + id)
\Rightarrow E + (E + id)
\Rightarrow E + (E + T)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow E
```

Nota: per eseguire reduce T ⇒id Bisogna eseguire shift e inserire in pila: + (

$$E + (T + id + id)$$

$$\Rightarrow E + (E + id + id)$$

$$\Rightarrow E + (E + T + id)$$

$$\Rightarrow E + (E + id)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$E + (T + id + id)$$

$$\Rightarrow E + (E + id + id)$$

$$\Rightarrow E + (E + T + id)$$

$$\Rightarrow E + (E + id)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$\Rightarrow E + (E + id + id)$$

$$\Rightarrow E + (E + T + id)$$

$$\Rightarrow E + (E + id)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$\Rightarrow E + (E + id + id)$$

$$\Rightarrow E + (E + T + id)$$

$$\Rightarrow E + (E + id)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$\Rightarrow E + (E + T + id)$$

$$\Rightarrow E + (E + id)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$\Rightarrow E + (E + id)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$


```
E + (E)
\Rightarrow E + T
\Rightarrow E
```


E + T

 $\Rightarrow E$

FINE!!!

 $\Rightarrow E$

FINE!!!

F

Analisi bottom-up: tre punti di vista (intuizioni)

- La prima intuizione (ricostruzione dell'analisi albero dal basso verso l'alto) motiva il modo in cui l'analisi dovrebbe funzionare
- La seconda intuizione (derivazione più a destra al contrario) descrive l'ordine in cui costruire l'albero di analisi
- La terza intuizione (individuare le produzioni da applicare) è la base per gli algoritmi di analisi bottom-up: quando si esegue una operazione di Reduce si sostituisce ad handle il (non terminale) lato sinistro della produzione

- Shift avanza nell'input alla ricerca di un handle
- Reduce sostituisce ad handle il non terminale a sinistra della produzione
- Un analizzatore left-to-right di tipo bottom-up ripetutamente cerca un handle e quindi lo riduce, fino a quando non completa la stringa di input e ottiene il solo simbolo iniziale

Handle

- Che algoritmo usiamo per trovarli?
- Una volta trovato un handle come sappiamo che è corretto?

- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

```
E \rightarrow F

E \rightarrow E + F

F \rightarrow F * T

F \rightarrow T

T \rightarrow id

T \rightarrow (E)
```


- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

Le risposte alle due domande non sono ovvie

$$E \rightarrow F$$

 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow id$
 $T \rightarrow (E)$

id + id * id

- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

$$E \rightarrow F$$

 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow id$
 $T \rightarrow (E)$

Questo caso è facile: esiste una sola produzione con id nel lato destro

Nel seguito

- in rosso (a sinistra) la produzione oggetto di reduce
- In giallo (in basso) input esaminato (a seguito di operazioni di shift)

- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

$$E \rightarrow F$$

 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow id$
 $T \rightarrow (E)$

Anche questo caso è facile: esiste una sola produzione con T nel lato destro all'inizio

- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

```
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow id
T \rightarrow (E)
```


- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

```
E \rightarrow F

E \rightarrow E + F

F \rightarrow F * T

F \rightarrow T

T \rightarrow id

T \rightarrow (E)
```


- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

$$E \rightarrow F$$

 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow id$
 $T \rightarrow (E)$

- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

```
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow id
T \rightarrow (E)
```


- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

```
E \rightarrow F

E \rightarrow E + F

F \rightarrow F * T

F \rightarrow T

T \rightarrow id

T \rightarrow (E)
```


- Come trovare un handle?
- Una volta trovato come sappiamo se è corretto?

$$E \rightarrow F$$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow id$
 $T \rightarrow (E)$

La riduzione più a sinistra non sempre fornisce l'handle corretto : conflitto shift -reduce

costruzione tavole Action e Goto

notazione punto ·

- si introduce un punto · per separare la parte destra di una produzione in due sottosequenze: a sinistra del punto · elementi già letti e impilati (shifted), a destra elementi ancora da analizzare
- es.: E → E·+T sono già stati impilati elementi derivati da E e occorre ora accettare in input il simbolo +
- ciascuna di queste produzioni con il punto si chiama LR(0) item, o semplicemente item, e descrive lo stato del parser

grammatica aumentata

- Sia S il simbolo iniziale (o assioma); si aggiunge la produzione S'→S
- S' è il nuovo simbolo (che non compare in parti destre); l'obiettivo è avere l'assioma originale come parte destra di una produzione, così da poter effettuare una reduce conclusiva
- per ogni produzione $A \rightarrow \alpha$ si considerano gli item ottenuti introducendo in tutte le posizioni possibili di α il puntino
- es. da E → E+T otteniamo 4 produzioni
 E → ·E+T. E → E·+T. E → E+·T. E → E+T ·

chiusura di un set di item

- solitamente non è possibile descrivere lo stato di un parser con un singolo item perché in presenza di ·X possono esistere vari elementi in First(X)
 - o elementi in Follow(X) qualora si annulli
- lo stato viene caratterizzato collezionando più item, attraverso una procedura detta di chiusura (closure)
- ad ogni collezione di item corrisponde uno stato

chiusura (closure) di un set di item

- se il set contiene un item $A \rightarrow \alpha \cdot B\beta$, $B \in V_N$, allora aggiungere al set $B \rightarrow \cdot \gamma$, per ciascuna produzione $B \rightarrow \gamma$, $\gamma \in V^*$
- continuare su tutte le produzioni nel set finché possibile, aggiungendo produzioni aventi come parte sinistra non-terminali che appaiono in parti destre preceduti dal punto
 - la parte dx di una produzione aggiunta inizierà con il punto

si definisce stato l'insieme risultante dall'operazione di chiusura di un set di item (perfeziona e completa la def. informale già fornita prima)

```
S \rightarrow E (S nuovo simbolo iniziale)

E \rightarrow F

E \rightarrow E + F

F \rightarrow F * T

F \rightarrow T

T \rightarrow id
```

 $T \rightarrow (E)$

Prima abbiamo visto che non trovaiamo l'albero giusto e abbiamo errore quando arriviamo al terminale *

- Vediamo ora come la notazione punto risolve il problema
- La notazione punto permette di specificare nella pila a che punto siamo con una produzione

```
S → E (S nuovo simbolo iniziale)
```

 $E \rightarrow F$

 $E \rightarrow E + F$

 $F \rightarrow F * T$

 $F \rightarrow T$

 $T \rightarrow id$

 $T \rightarrow (E)$

Analizziamo solo fino a

```
S \rightarrow E (S nuovo simbolo iniziale)

E \rightarrow F

E \rightarrow E + F

F \rightarrow F * T

F \rightarrow T

T \rightarrow id

T \rightarrow (E)
```


 $S \rightarrow . E$

```
S \rightarrow E (S nuovo simbolo iniziale)

E \rightarrow F

E \rightarrow E + F

F \rightarrow F * T

F \rightarrow T

T \rightarrow id

T \rightarrow (E)
```

Per brevità assumiamo input sia in basso a destra (omettiamo produzioni inutili)

*	id
---	----

```
S → E (S nuovo simbolo iniziale)
```

 $E \rightarrow F$

 $E \rightarrow E + F$

 $F \rightarrow F * T$

 $F \rightarrow T$

 $T \rightarrow id$

 $T \rightarrow (E)$

Per brevità assumiamo input sia in basso a destra (omettiamo produzioni inutili)

 $S \rightarrow E$ (S nuovo simbolo iniziale)

 $E \rightarrow F$

 $E \rightarrow E + F$

 $F \rightarrow F * T$

 $F \rightarrow T$

 $T \rightarrow id$

 $T \rightarrow (E)$

Per brevità assumiamo input sia in basso a destra (omettiamo produzioni inutili)

 $S \rightarrow E$ (S nuovo simbolo iniziale)

 $E \rightarrow F$

 $E \rightarrow E + F$

 $F \rightarrow F * T$

 $F \rightarrow T$

 $T \rightarrow id$

 $T \rightarrow (E)$

Per brevità assumiamo input sia in basso a destra (omettiamo produzioni inutili)

 $S \rightarrow E$ (S nuovo simbolo iniziale)

 $E \rightarrow F$

 $E \rightarrow E + F$

 $F \rightarrow F * T$

 $F \rightarrow T$

 $T \rightarrow id$

 $T \rightarrow (E)$

Per brevità assumiamo input sia in basso a destra (omettiamo produzioni inutili)

eseguiamo shift

$$S \rightarrow E$$
 $E \rightarrow E + F$
 $E \rightarrow F * T$
 $T \rightarrow id$

S → E (S nuovo simbolo iniziale)

 $E \rightarrow F$

 $E \rightarrow E + F$

 $F \rightarrow F * T$

 $F \rightarrow T$

 $T \rightarrow id$

 $T \rightarrow (E)$

Per brevità assumiamo input sia in basso a destra (omettiamo produzioni inutili)

$$E \rightarrow E + . E$$

$$F \rightarrow F^* \cdot T$$

$$T \rightarrow id$$

Abbiamo
terminato
analisi di
T id
pop su pila

 $S \rightarrow E$ (S nuovo simbolo iniziale)

 $E \rightarrow F$

 $E \rightarrow E + F$

 $F \rightarrow F * T$

 $F \rightarrow T$

 $T \rightarrow id$

 $T \rightarrow (E)$

Per brevità assumiamo input sia in basso a destra (omettiamo produzioni inutili)

$$E \rightarrow E + . E$$

$$F \rightarrow F * T$$

Abbiamo terminato analisi di F→ F * T

$$S \rightarrow E$$
 (S nuovo simbolo iniziale)

 $E \rightarrow F$

 $E \rightarrow E + F$

 $F \rightarrow F * T$

 $F \rightarrow T$

 $T \rightarrow id$

 $T \rightarrow (E)$

Per brevità assumiamo input sia in basso a destra (omettiamo produzioni inutili)

Abbiamo terminato analisi di F→ F * T

....

• consideriamo la grammatica G' che genera il linguaggio

$$L' = \{a^n b^m c^{n+m} \mid n+m > 0\}$$

$$S' \to S$$

$$S \to aSc \mid ac \mid T$$

$$T \to bTc \mid bc$$

determiniamo i set of item

$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

- inizio: assioma $S' \rightarrow \cdot S$
- chiusura:
 - $S' \rightarrow \cdot S$
 - (+) $S \rightarrow \cdot aSc \mid \cdot T \mid \cdot ac \mid$
- questa collezione di produzioni definisce uno stato (s_0)
- il simbolo (+) indica che la riga di produzioni è aggiunta durante la chiusura

per definire gli altri item sets si procede ricorsivamente

- per ogni produzione $A \rightarrow \alpha \cdot B\beta$, $B \in V_N$, si crea un nuovo stato (se non già creato) contenente la produzione $A \rightarrow \alpha B \cdot \beta$, e se ne fa la chiusura
- il simbolo "scavalcato" dal punto determina la transizione fra stati

determinazione altri stati

stato
$$s_0$$

 $S' \rightarrow \cdot S$
 $(+) S \rightarrow \cdot aSc \mid \cdot T \mid \cdot ac$
 $(+) T \rightarrow \cdot bTc \mid \cdot bc$

• da
$$s_0$$
 a s_1 (simbolo a) • da s_0 a s_3 (simbolo T)
 $S \rightarrow a \cdot Sc \mid a \cdot c$ $S' \rightarrow T \cdot$
 $(+) S \rightarrow aSc \mid ac \mid T$ • da s_0 a s_4 (simbolo s)
 $S' \rightarrow S \cdot$

• da s₀ a s₂ (simbolo b)

$$T \rightarrow b \cdot Tc \mid b \cdot c$$

 $(+) T \rightarrow \cdot bTc \mid \cdot bc$

$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

- $S' \to T$
- $(+) S \rightarrow aSc \mid ac \mid T$ da s_0 a s_4 (simbolo S) $S' \rightarrow S$

goto-graph (transition diagram)

determinazione altri stati

$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

stesso insieme

da s_1 a s_1 (simbolo a) — chiusura fornisce lo

stato
$$s_1$$
 (simbolo a)
 $S \rightarrow a \cdot Sc \mid T \cdot \mid a \cdot c$
 $(+) S \rightarrow \cdot aSc \mid \cdot T \mid \cdot ac$
 $(+) T \rightarrow \cdot bTc \mid \cdot bc$

da
$$s_1$$
 a s_2 (simbolo b)
 $T \rightarrow b \cdot Tc \mid b \cdot c$
(+) $T \rightarrow b \cdot Tc \mid bc$
da s_1 a s_3 (simbolo T)
 $S \rightarrow aT \cdot c$
da s_1 a s_5 (simbolo c)
 $S \rightarrow ac$
da s_1 a s_6 (simbolo s)

 $S \rightarrow T$

goto-graph (transition diagram)

$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

determinazione altri stati

$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

• stato
$$s_2$$
 (simbolo b)
 $T \rightarrow b \cdot Tc \mid b \cdot c$
(+) $T \rightarrow \cdot bTc \mid \cdot bc$

da
$$s_2$$
 a s_2 (simbolo b)
da s_2 a s_7 (simbolo c)
 $S \rightarrow bc$ ·
da s_2 a s_8 (simbolo T)
 $S \rightarrow bT \cdot c$

goto-graph (transition diagram)

determinazione altri stati

$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

stato
$$s_6$$
 (simbolo S)
 $S \rightarrow a S \cdot c$

da
$$s_6$$
 a s_9 (simbolo c)
 $S \rightarrow a S c$.

stato
$$s_8$$
 (simbolo T)
 $T \rightarrow b \ T \cdot c$

da
$$s_8$$
 a s_{10} (simbolo c)
 $T \rightarrow bT c$

determinazione altri stati

$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

stato
$$s_{12}$$
 (simbolo T)
 $T \rightarrow bT \cdot c$
stato s_{13} (simbolo b)
 $T \rightarrow b \cdot Tc \mid b \cdot c$
 $(+) T \rightarrow \cdot bTc \mid \cdot bc$

da
$$s_{12}$$
 a s_{14} (simbolo c)
 $T \rightarrow bTc \cdot$
da s_{13} a s_{12} (simbolo T)
da s_{13} a s_{15} (simbolo c)
 $T \rightarrow bc \cdot$
da s_{13} a s_{13} (simbolo b)

goto-graph (transition diagram)

$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

Tavole Action e Goto

$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

- Un arco fra due stati s_a e s_b etichettato con simbolo terminale x: equivale a passare da s_a a s_b quando input è x (shift): si inserisce s_b in pila
- Quando si giunge in uno stato con . alla fine bisogna eseguire reduce: si tolgono tanti stati dalla pila quanti sono i simboli a destra della produzione e si inserisce un nuovo stato in pila (tavola Goto)
- Goto[s,U]: dice quale stato inserire in pila quando lo stato affiorante è s e il simbolo a sinistra della produzione oggetto di reduce è U (in questo modo tengo conto della storia pregressa)

stato	а	b	С	\$	S	Т
0	shift 1	shift 2			goto 4	goto 3
1	shift 1	shift 2	shift 5		goto 6	goto 3
2		shift 2	shift 7			goto 8
3	reduce $S \to T$					
4				accept		
5	reduce S → ac					
6			shift 9			
7	reduce $T \rightarrow bc$					
8			shift 10			
9	reduce S → aSc					
10	reduce T → bTc					
	Tavola Action				Tavola Goto	

Tavole Action e Goto

• G":
$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

- parse di abcc \$
- (*shift* = s, *reduce* = r, *goto* = g)
- s(1), s(2), s(7), $r(T \rightarrow bc)$, g(3), $r(S \rightarrow T)$, g(6), s(9), $r(S \rightarrow aSc)$, g(4)
- in input rimane \$ (fine input), per cui: accept

stato	а	b	с	\$	S	Т
0	shift 1	shift 2			goto 4	goto 3
1	shift 1	shift 2	shift 5		goto 6	goto 3
2		shift 2	shift 7			goto 8
3		reduce S				
4				accept		
5		reduce $S \rightarrow ac$				
6			shift 9			
7		reduce $T \rightarrow bc$				
8			shift 10			
9	reduce $S \rightarrow aSc$					
10	reduce $T \rightarrow bTc$					
	Tavola Action			Tavola Goto		

Tavole Action e Goto

• G":
$$S' \rightarrow S$$

 $S \rightarrow aSc \mid ac \mid T$
 $T \rightarrow bc \mid bTc$

• Input abcc\$

Pila input (da esaminare)

s0 abcc\$

stato	а	b	С	\$	S	Т
0	shift 1	shift 2			goto 4	goto 3
1	shift 1	shift 2	shift 5		goto 6	goto 3
2		shift 2	shift 7			goto 8
3		reduce S				
4				accept		
5		reduce $S \rightarrow ac$				
6			shift 9			
7		reduce $T \rightarrow bc$				
8			shift 10			
9	reduce $S \to aSc$					
10	reduce $T \rightarrow bTc$					
	Tavola Action			Tavola Goto		

goto-graph (diagramma transizioni): altro esempio

Riconsideriamo la grammatica

```
S \rightarrow E

E \rightarrow T;

E \rightarrow T + E

T \rightarrow id

T \rightarrow (E)
```


Inizio: metti produzione da simbolo iniziale

```
S \rightarrow E

E \rightarrow T;

E \rightarrow T + E

T \rightarrow id

T \rightarrow (E)
```

$$S \rightarrow . E$$

 $E \rightarrow . T;$
 $E \rightarrow . T + E$

Chiudi su E

Completa la chiusura includendo T

```
S \rightarrow E

E \rightarrow T;

E \rightarrow T + E

T \rightarrow id

T \rightarrow (E)
```

```
S \rightarrow . E
E \rightarrow . T;
E \rightarrow . T + E
T \rightarrow . id
T \rightarrow . (E)
E
```

Scelgo la prima produzione (reduce) Sposto il punto

 $s_2 \longrightarrow E$.

La produzione è completata (abbiamo il . alla fine)

Avanzo in input (shift)
Sposto il punto

Continuo in modo analogo da s0 con E→T. e E→ T. + E ottengo (non devo chiudere perché dopo il punto simboli terminali)

da s0 con E→T.;
Ottengo T→ T;.
(nota il punto alla fine:
questo è uno stato che indica
che siamo alla fine dell'analisi
produzione)

 $S \rightarrow E$ $E \rightarrow T$; $E \rightarrow T + E$ $T \rightarrow id$ $T \rightarrow (E)$

Continuo in modo analogo da E→T. +E ottengo (ricorda faccio chiusura)

$$S \rightarrow E$$

 $E \rightarrow T$;
 $E \rightarrow T + E$
 $T \rightarrow id$
 $T \rightarrow (E)$

NOTA: gli stati s0 e s5 sono quasi identici s5 non ha $S \rightarrow .E$ s1 non ha $E \rightarrow T + .E$ Usiamo la notazione punto per cui $E \rightarrow T + .E$ è diversa da $E \rightarrow T + .E$ (che a sua volta è uno degli stati di s1)

diagramma transizioni $E \rightarrow T + . E$ **S**₆ $E \rightarrow . T$; $E \rightarrow T + E$. $E \rightarrow . T + E$ $T \rightarrow . id$ $S \rightarrow . E$ id $T \rightarrow . (E)$ $E \rightarrow . T$; da s5 e E id $E \rightarrow . T + E$ $T \rightarrow id$. con $E \rightarrow T + . E$ $T \rightarrow . id$ ottengo s6 $T \rightarrow . (E)$ $E \rightarrow T$.; $E \rightarrow T + E$. T $E \rightarrow T. + E$ E da s5 e id **S**₂ $S \rightarrow E$. Con $T \rightarrow . Id$ ottengo s1 T→id. *S*₄ $T \rightarrow T$; stato già trovato

 $S \rightarrow E$

 $E \rightarrow T$;

 $T \rightarrow id$

 $T \rightarrow (E)$

 $E \rightarrow T + E$

diagramma transizioni: abbiamo finito?

diagramrada Line in a costruzione quando abbiamo considerato per ogni stato tutte le possibili transizioni in corrispondenza a ciascuna produzione associata allo stato tenendo conto della notazione punto ed escludendo quelle che nella parte destra finiscono con il punto)

Questo è vero per s0? NO MANCA (!! id

diagramma transizioni finale

Analisi:

Tavole Action e Goto

La tavola Action mappa ogni stato ad un'azione

- shift, esamina prossimo simbolo terminale
- reduce $A \rightarrow \alpha$, che esegue la riduzione $A \rightarrow \alpha$
- solo gli stati della forma $A \rightarrow \alpha$.
- tutti gli altri shift that reduction; everything else shifts.

La tavola Goto mappa le coppie simbolo/stato dando il uovo stato

 La tavola è la tabella di transizione dell'automa ESERCIZIO
Costruire le tavole per
il diagramma di transizione
precedente (automa)

grammatica LR(0)

- Una grammatica è detta LR(0) se, per ciascuno degli stati:
 - è presente al più una sola produzione con il punto finale (assenza di conflitti reduce-reduce)
 - non sono contemporaneamente presenti una produzione con il punto finale e un'altra con il punto non finale (assenza di conflitti shift-reduce)
- in una grammatica LR(0) la decisione shift/reduce viene presa senza guardare l'input (lookahead nullo)

Algoritmo di analisi LR(0) con tavole Action e Goto

Limiti analisi LR(0)

- Se la grammatica non è LR(0) ci potrebbero essere più valori nella tavola Action.
 I possibili casi sono
- Sia shift che reduce sono presenti: conflitto shift-reduce. In questo caso l'analizzatore non sa decidere se continuare a eseguire shift o applicare una operazione di reduce (vedi caso espressioni aritmetiche considerato in precedenza)
- Analogamente un conflitto *reduce-reduce* si verifica quando l'analizzatore può scegliere fra più produzioni da applicare; questo caso si verifica tipicamente con le grammatiche ambigue (ma non solo)
- Un modo di risolvere i conflitti è riscrivere la grammatica oppure quello di analizzare l'input con maggiore dettaglio (andare avanti nela scansione dell'input).

LR(0) vs LR(k)

- il parsing LR(0), che usa lookahead nullo, si applica a poche grammatiche
 - in particolare: non funziona per la grammatica G' di slide 5, che è ambigua
- in generale, guardando k ≥ 1 caratteri in input è possibile effettuare LR parsing su molte più grammatiche
 - NOTA Una grammatica ambigua non può naturalmente ammettere alcun tipo di parser, proprio a causa dell'ambiguità

alcuni enunciati (senza prova)

- un linguaggio può essere generato da una grammatica LR(k) se e solo se è context free deterministico (riconosciuto da un automa a pila deterministico)
- un linguaggio ammette una grammatica LR(1) se e solo se ammette una grammatica LR(k), $k \ge 1$

conseguenza:

• tutti i linguaggi context free deterministici ammettono una grammatica generatrice LR(1)

La seguente grammatica genera liste annidate con sole x (nota grammatica aumentata); es. (x,x,x)\$ (x,(x))\$ (x,(x),((x),x))\$ $0: S' \rightarrow S$ \$ $1: S \rightarrow (L)$ $2: S \rightarrow x$ $3: L \rightarrow S$ $4: L \rightarrow L$, S

Terminali: x , () \$ (fine stringa)

- 1. Trovare derivazione sinistra di (x,(x))\$
- 2. Date tabelle Action e Goto analizzare (x,(x))\$
- 3. Costruire tabelle Action e Goto

Date tabelle Action e Goto analizzare (x,(x))\$

	()	x	,	\$	S	L
0	s2		s1			goto3	
1	r2	r2	r2	r2	r2		
2	s2		s1			goto6	goto4
3					Accetta		
4		s5		s7			
5	r1	r1	r1	r1	r1		
6	r3	r3	r3	r3	r3		
7	s2		s1			goto8	
8	r4	r4	r4	r4	r4		

Stato	Action	Goto

```
0: S' \rightarrow S$ 1: S \rightarrow (L)

2: S \rightarrow X 3: L \rightarrow S

4: L \rightarrow L, S
```

pila input action
0 (x,(x))\$ s2
In tabella riga O colonna (c'è s2
s2= shift input. Quindi metti in pila (e vai a stato 2
Otteniamo in pila 0(2

0(2 x,(x))\$ s1
Infatti riga 2, colonna x c'è s1
(analogo a prima)

Date tabelle Action e Goto analizzare (x,(x))\$

	()	x	,	\$	S	L
0	s2		s1			goto3	
1	r2	r2	r2	r2	r2		
2	s2		s1			goto6	goto4
3					Accetta		
4		s5		s7			
5	r1	r1	r1	r1	r1		
6	r3	r3	r3	r3	r3		
7	s2		s1			goto8	
8	r4	r4	r4	r4	r4		

	1	<u> </u>
Stato	Action	Goto

$$0: S' \rightarrow S \Leftrightarrow 1: S \rightarrow (L)$$

 $2: S \rightarrow X$
 $4: L \rightarrow L, S$

pila	input	action			
0	(x,(x))\$	s2			
0(2	x,(x))\$	s 1			
0(2x <mark>1</mark>	,(x))\$	r2: S→x			
Infatti riga 1 col., c'è r2 - reduce					
produzione 2: S→x. Quindi					

- togli x1 dalla pila e in pila trovi 2
- In tabella riga 2 e S (lato sinistro di prod.2) trovi goto6; quindi metti in pila S e 6 e ottieni)(2S6

$$0(2S6 ,(x))$$
\$ r3: L \rightarrow S (analogo)

2. Date tabelle Action e Goto analizzare (x,(x))\$

	()	x	,	\$	S	L
0	s2		s1			goto3	
1	r2	r2	r2	r2	r2		
2	s2		s1			goto6	goto4
3					Accetta		
4		s5		s7			
5	r1	r1	r1	r1	r1		
6	r3	r3	r3	r3	r3		
7	s2		s1			goto8	
8	r4	r4	r4	r4	r4		

Stato	Action	Goto

0: $S' \rightarrow S \Rightarrow$ 1: $S \rightarrow (L)$ 2: $S \rightarrow x$ 3: $L \rightarrow S$ 4: $L \rightarrow L$, S

pila	input	action
0	(x,(x))\$	s2
0(2	x,(x))\$	s 1
0(2x1	,(x))\$	r2: S→ x
0(2S6	,(x))\$	r3: L→ S
0(2L4	,(x))\$	s7
0(2L4,7	(x))\$	s2
0(2L4,7(2	x))\$	s 1
0(2L4,7(2x1))\$	r2: $S \rightarrow x$
0(2L4,7(2S6))\$	r3: L→ S
0(2L4,7(2L4))\$	s5
0(2L4,7(2L4)5)\$	r1: $S \rightarrow (L)$
0(2L4,7S8)\$	r4: L→ L,S
0(2L4)\$	s5
0(2L4)5	\$	r1:S→ (L)
03S	\$	Accetta

Algoritmo per generare le tabelle Action e Goto

Per generare le tavole Action e Goto due passi

- 1. costruzione diagramma delle transizioni fra stati
- 2. costruzione tabelle di analisi (tabelle Action e Goto)
- Gli stati rappresentano possibili avanzamenti nell'analisi di una produzione (si usa il punto per segnalare a che punto siamo con l'analisi)
- Gli shift e i goto esplicitamente connettono gli stati; arco **shift** è etichettato con simbolo terminale / arco **reduce** con simbolo non terminale
- Le operazioni di Reduce implicitamente muovono in un altro stato con operazioni pop sulla pila dopo cui si usa la tabella goto per produrre il nuovo stato

Algoritmo per generare le tabelle Action e Goto

1. costruzione diagramma delle transizioni fra stati

Cosa è uno stato?: uno stato è qualcosa del tipo $[A \rightarrow \alpha.B\beta,a]$ e rappresenta la previsione di eseguire la produzione $A \rightarrow \alpha B\beta$

- Il punto prima di B segnala che α è già stato esaminato ed è in pila
- Ci aspettiamo di vedere simboli che sono genarati da B
- Se Bβ è ε (vuoto) e se il prossimo simbolo è un non terminale applica la produzione e riduci A

Costruzione dell'insieme di stati:

- 1. Inizia con lo stato iniziale: prendi produzione da assioma e considera la sua chiusura
- 2. Determina il prossimo stato a partire da stato iniziale esaminando le possibili produzioni; esegui la chiusura e determina un nuovo stato
- 3. Itera il passo precedente fino a quando tutte le transizioni sono state esaminate

Algoritmo per generare le tabelle Action e Goto

2. costruzione tabelle di analisi (tabelle Action e Goto)

- Gli shift e i goto esplicitamente connettono gli stati ; shift corrisponde ad arco con simbolo terminale / reduce ad arco con simbolo non terminale
- Ricorda se Action[s_m,a_i] = reduce A → β.
 allora si esegue produzione A → β: pop |β| simboli da pila; se t è lo stato in cima alla pila dopo pop si inserisce GOTO[t,A] in pila}
 per ogni arco X(I, J) del diagramma ottenuto
 se X è terminale, metti shift J a (I, X)
 se X è non-terminale, metti goto J a (I, X)
 se I contiene S' → . \$, metti accetta a (I, \$)
 se I contiene A → α . dove A → α . è la produzione n della grammatica
 (analisi lato destro completata infatti il . è alla fine)
 per ogni terminale x, metti reduce n a (I, x)

0: $S' \rightarrow S \Leftrightarrow$ 1: $S \rightarrow (L)$ 2: $S \rightarrow x$ 3: $L \rightarrow S$ 4: $L \rightarrow L$, S

3. Costruire tabelle Action e Goto

Consideriamo la grammatica in alto a sinistra -simboli terminali (,),x

- Si inizia da stato 0 con l'unica produzione dall'assioma S' $S' \rightarrow S$ \$
- Usiamo la notazione punto abbiamo: S' → . S\$ (le produzioni con "." sono dette item e indicano cosa c'è nello stack - a sinistra del . e cosa ci aspettiamo in input – a destra del .
- L'input può iniziare con qualunque cosa con cui può iniziare S (ricorda insieme First). In questo caso abbiamo x o (
- Quindi effettuiamo la chiusura inserendo nello stato 0:

$$S \rightarrow .x$$
\$ e $S \rightarrow .(L)$ \$

• Alla fine otteniamo lo stato 0 composto da

$$S' \rightarrow .S \Leftrightarrow S \rightarrow .x \Leftrightarrow S \rightarrow .(L)$$

```
0: S' \rightarrow S$ 1: S \rightarrow (L)

2: S \rightarrow X 3: L \rightarrow S

4: L \rightarrow L, S
```

3. Costruire tabelle Action e Goto

- Nello stato 0: $S' \rightarrow .S$ \$ $S' \rightarrow .x$ \$ $S \rightarrow .(L)$ possiamo avere come successivo carattere di input x o (oppure riduzione su produzione $S' \rightarrow S$ \$
- Questo corrisponde a creare tre stati
- Stato 1: da stato 0 con input x a stato $1 \stackrel{S'}{\rightarrow} x$. (shift) in questo stato siamo alla fine di un item (il . è in fondo) quindi non dobbiamo fare chiusura e dopo faremo reduce
- Stato 2: da stato 0 con input (andiamo in S→(.L) (shift) effettuiamo la chiusura su L e otteniamo S→(.L) L→.L,S L→.S S→.x S→.(L)
- Stato 3: da stato 0 possiamo eseguire reduce su S consideriamo la produzione S' → S\$ della grammatica ottenendo S' → S.\$ nota si utilizza notazione ': in stato 0 ho S' → .S\$ applicarla permette di ottenere S→S.\$


```
0: S' \rightarrow S$ 1: S \rightarrow (L)
2: S \rightarrow X
                         3: L \rightarrow S
4: L \rightarrow L, S
```

Come calcolo produzioni di stato 2?

- Parto da $S \rightarrow (.L)$ (ottenuto da stato 0)
- dopo il punto ho L simb. nonterminale presente nel lato sinistro di due prod. $L\rightarrow L,S$ e $L\rightarrow S$; aggiungo $L \rightarrow .L,S$ e $L \rightarrow .S$ (con punto all'inizio del lato sinistro)
- L→.L,S ha L dopo il punto (già fatto)
- L -> .S miichiede di aggiungere chiusura di S Gli shift e i goto esplicitamente connettono gli stati ; shift arco con simbolo terminale / reduce arco con simbolo non terminale
- Reduce implicitamente muovono in un altro stato con operazioni pop sulla pila dopo cui si usa la tabella goto per produrre un nuovo stato

 $0: S' \rightarrow S$ \$ $1: S \rightarrow (L)$

Data la grammatica

$$F' \rightarrow \cdot F \$$$

$$F \rightarrow \cdot F \land C \mid C$$

$$C \rightarrow \cdot (L \lor L \lor L)$$

$$L \rightarrow \cdot id \mid \cdot \neg id$$

Nota grammatica

- con assioma presente in una sola produzione
- con simbolo \$ alla fine della stringa in input

Data la grammatica

```
F' \rightarrow \cdot F \$
F \rightarrow \cdot F \land C \mid C
C \rightarrow \cdot (L \lor L \lor L)
L \rightarrow \cdot id \mid \cdot \neg id
```

Nota grammatica

- con assioma presente in una sola produzione
- con simbolo \$ alla fine della stringa in input

```
\begin{array}{c}
s_0 \\
F' \to \cdot F \\
(+) F \to \cdot F \land C \mid \cdot C \\
(+) C \to \cdot (L \lor L \lor L)
\end{array}
```

Stato 0 include $F' \rightarrow \cdot F$ \$

- dobbiamo aggiungere la sua chiusura
- la chiusura indica cosa può seguire nell'analisi dopo il punto in questo caso cercare cosa può seguire dopo F
- le produzioni coinvolte sono $F \rightarrow \cdot F \wedge C$ e $F \rightarrow \cdot C$ che sono inserite in stato 0
- Considerare F → ·C implica che dobbiamo anche inserire produzioni con C a sinistra di →

```
F' \rightarrow FS
F \rightarrow F \wedge C \mid C
C \rightarrow (L \lor L \lor L)
L \rightarrow id \mid \neg id
```

```
Stato 0: F' \rightarrow .FS
```

- Bisogna aggiungere la chiusura di F e considerare le due produzioni
 - 1) $F \rightarrow \cdot F \wedge C$ e 2) $F \rightarrow C$
- La chiusura di 1) non aggiunge altro
 - La seconda richiede di aggiungere la chiusura di C e considerare la produzione $C \rightarrow \cdot (L \lor L \lor L)$

Come proseguire? Quanti archi uscenti da so? Basta guardare i simboli nella parte destra subilto dopo il punto e le produzioni relative (usando sempre notazione punto)

```
I simboli dopo il . In s0 sono : F, C e (
per F' le produzioni sono : F' \rightarrow F·\landC e F' \rightarrow F·\diamondsuit per C abbiamo : F\rightarrow C
Per (abbiamo C \rightarrow \cdot (LV L V L)
```


$$F' \rightarrow \cdot F \$$$

$$F \rightarrow \cdot F \land C \mid C$$

$$C \rightarrow \cdot (L \lor L \lor L)$$

$$L \rightarrow \cdot id \mid \cdot \neg id$$

Stato 0: $F' \rightarrow .FS$

 Bisogna aggiungere la chiusura di F e considerare le due produzioni

1)
$$F \rightarrow \cdot F \wedge C = 2$$
 $F \rightarrow C$

- La chiusura di 1) non aggiunge altro
- La seconda richiede di aggiungere la chiusura di C e considerare la produzone

$$C \rightarrow \cdot (L \land L \land L)$$

 $F' \rightarrow \cdot F \$$ $F \rightarrow \cdot F \land C \mid C$ $C \rightarrow \cdot (L \lor L \lor L)$ $L \rightarrow \cdot id \mid \cdot \neg id$

 $F' \rightarrow \cdot F \$$ $F \rightarrow \cdot F \land C \mid C$ $C \rightarrow \cdot (L \lor L \lor L)$ $L \rightarrow \cdot id \mid \cdot \neg id$

Grammatiche ambigue generano conflitti

Esempio

Considera la nostra grammatica amnbigua preferita

```
E \rightarrow E + E \mid E^*E \mid (E) \mid int
```

Analisi di : int * int + int

```
Derivazio e 1:

| int * int + int ... shift

....

E * E | + int reduce E \rightarrow E * E

E | + int shift

E + | int shift

E + int | reduce E \rightarrow E

E + E | reduce E \rightarrow E + E

E | FINE
```

Grammatiche ambigue generano conflitti

Esempio

Considera la nostra grammatica amnbigua preferita

```
E \rightarrow E + E \mid E^*E \mid (E) \mid int
```

Analisi di : int * int + int

```
Derivazione 2:

| int * int + int ... shift
| ....
| E * E | + int shift
| E * E + | int | shift
| E * E + int | reduce E \rightarrow int
| E * E + E | reduce E \rightarrow E + E
| E * E | FINE
```