

DUAL COMPLEMENTARY PAIR PLUS INVERTER

- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- MEDIUM SPEED OPERATION $t_{PD} = 30$ ns (Typ.) AT 10V
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT

The HCF4007UB is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4007UB type is comprised of three n-channel and three p-channel enhancement type MOS transistors. The transistor elements are accessible through the package terminals to provide a convenient means for constructing the various typical circuits as shown in typical

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4007UBEY	
SOP	HCF4007UBM1	HCF4007UM013TR

applications. More complex functions are possible using multiple packages. Number shown in parentheses indicate terminals that are connected together to form the various configuration listed.

PIN CONNECTION

March 2004 1/9

INPUT EQUIVALENT CIRCUIT

LOGIC DIAGRAM

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
2, 11	S _{P2} , S _{P3}	Source Connections to 2nd and 3rd p-channel transistors
13, 1	D _{P1} , D _{P2}	Drain Connections from the 1st and 2nd p-channel transistors
8, 5	D _{N1} , D _{N2}	Drain Connections from the 1st and 2nd n-channel transistors
4, 9	S _{N2} , S _{N3}	Source Connections to the 2nd and 3rd n-channel
12	D _{N/P3}	Common connection to the 3rd p-channel and n-channel transistor drains
6, 3, 10	G ₁ to G ₃	Gate connections to n-channel and p-channel of the three transistor pairs
7	V _{SS}	Negative Supply Voltage
14	V_{DD}	Positive Supply Voltage

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to $\ensuremath{V_{\text{SS}}}$ pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

			Test Con	dition		Value							
Symbol	Parameter	VI	v _o	I _O	V _{DD}	Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)	(μA)	(μ A) (V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.01	0.25		7.5		7.5	
		0/10			10		0.01	0.5		15		15	μΑ
		0/15			15		0.01	1		30		30	μΑ
		0/20			20		0.02	5		150		150	
V_{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V _{OL} Low Level Output	5/0		<1	5		0.05			0.05		0.05		
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	4			4		4		
	Voltage		1/9	<1	10	8			8		8		V
			1.5/13.5	<1	15	12.5			12.5		12.5		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1		1		1	
	Voltage		9/1	<1	10			2		2		2	V
			13.5/1.5	<1	15			2.5		2.5		2.5	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.15		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mΑ
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		1117 \
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I_{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mΑ
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
II	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
CI	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \ (T_{amb} = 25 ^{\circ}C, \ C_{L} = 50 pF, \ R_{L} = 200 K\Omega, \ t_{f} = t_{f} = 20 \ ns)$

Symbol Parameter	Test Condition		Value (*)			Unit	
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{PLH} t _{PHL}	Propagation Delay Time	5			55	110	
		10			30	60	ns
		15			25	50	
t _{TLH} t _{THL}	Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	

(*) Typical temperature coefficient for all V_{DD} value is 0.3%/°C.

TYPICAL APPLICATIONS

TRIPLE INVERTERS: (14, 2, 11); (8,13); (1, 5); (4, 7, 9)

3-INPUT NOR GATE: (13, 2); (1, 11); (12, 5, 8); (4, 7, 9)

3-INPUT NAND GATE: (1, 12, 13); (2, 14, 11); (4, 8); (5, 9)

DUAL BIDIRECTIONAL TRASMISSION GATING: (1, 5, 12); (2, 9); (11, 4); (8,13,10); (6, 3)

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200K Ω R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)

Plastic DIP-14 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	1.39		1.65	0.055		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		15.24			0.600		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z	1.27		2.54	0.050		0.100	

SO-14 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.2	0.003		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	8.55		8.75	0.336		0.344	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.68			0.026	
S		•	8° (r	max.)			

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.4		6.6	0.252		0.260	
Во	9		9.2	0.354		0.362	
Ko	2.1		2.3	0.082		0.090	
Po	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

HCF4007UBEY HCF4007UBM013TR