Current & Future NLP Research

A Few Random Remarks

Computational Linguistics

We can study anything about language ...

- 1. Formalize some insights
- 2. Study the formalism mathematically
- 3. Develop & implement algorithms
- 4. Test on real data

Reprise from Lecture 1: What's hard about this story?

John stopped at the donut store on his way home from work. He thought a coffee was good every few hours. But it turned out to be too expensive there.

- These ambiguities now look familiar
- You now know how to solve some (e.g., conditional log-linear models):
 - PP attachment
 - Coreference resolution (which NP does "it" refer to?)
 - Word sense disambiguation
 - Hardest part: How many senses? What are they?
- Others still seem beyond the state of the art (except in limited settings):
 - Anything that requires much semantics or reasoning
 - Quantifier scope
 - Reasoning about John's beliefs and actions
 - "Deep" meaning of words and relations

Deep NLP Requires World Knowledge

- The pen is in the box.
 The box is in the pen.
- The police watched the demonstrators because they feared violence.
 The police watched the demonstrators because they advocated violence.
- Mary and Sue are sisters.
 Mary and Sue are mothers.
- Every American has a mother.
 Every American has a president.
- John saw his brother skiing on TV. The fool
 - ... didn't have a coat on!
 - ... didn't recognize him!
- George Burns: My aunt is in the hospital.

I went to see her today, and took her flowers.

Gracie Allen: George, that's terrible!

Big Questions of CL

- What formalisms can encode various kinds of linguistic knowledge?
 - Discrete knowledge: what is possible?
 - Continuous knowledge: what is likely?
 - What kind of p(...) to use (e.g., a PCFG)?
 - What is the prior over the structure (set of rules) and parameters (rule weights)?
 - How to combine different kinds of knowledge, including world knowledge?
- How can we compute efficiently within these formalisms?
 - Or find approximations that work pretty well?
 - Problem 1: Prediction in a given model. Problem 2: Learning the model.
- How should we learn within a given formalism?
 - Hard with unsupervised, semi-supervised, heterogeneous data ...
 - Maximize $p(data \mid \theta) \cdot p_{prior}(theta)$?
 - Pick θ to directly minimize error rate of our predictions?
 - Online methods? (adapt θ gradually in response to data, then forget)
 - Don't pick a single θ at all, but consider all values even at test time?
 - Learn just the feature weights θ , or also which features to have?
 - What if the formalism is wrong, so no θ works well?

Some of the Active Research

Syntax:

- Non-local features for scoring parses; discriminative models
- Efficient approximate parsing (e.g., coarse to fine)
- Unsupervised or partially supervised learning (learn a theory more detailed than one's Treebank)
- Other formalisms besides CFG (dependency grammar, CCG, ...)
- Using syntax in applied NLP tasks

Machine translation:

- Best-funded area of NLP, right now
- Models and algorithms
- How to incorporate syntactic structure?
- "Low-resource" and morphologically complex languages?

Some of the Active Research

- Semantic tasks (how would you reduce these to prediction problems?)
 - Sentiment analysis
 - Summarization
 - Information extraction, slot-filling
 - Discourse analysis
 - Textual entailment
- Speech:
 - Better language modeling (predict next word) syntax, semantics
 - Better models of acoustics, pronunciation
 - fewer speaker-specific parameters
 - to enable rapid adaptation to new speakers
 - more robust recognition
 - emotional speech, informal conversation, meetings
 - juvenile/elderly voices, bad audio, background noise
 - Some techniques to solve these:
 - non-local features
 - physiologically informed models
 - dimensionality reduction

Some of the Active Research

- All of these areas have learning problems attached.
- We're really interested in unsupervised learning.
- How to learn FSTs and their probabilities?
- How to learn CFGs? Deep structure?
- How to learn good word classes?
- How to learn translation models?

Semantics Still Tough

- "The perilously underestimated appeal of Ross Perot has been quietly going up this time."
 - Underestimated by whom?
 - Perilous to whom, according to whom?
 - "Quiet" = unnoticed; by whom?
 - "Appeal of Perot" ← "Perot appeals ..."
 - a court decision?
 - to someone/something? (actively or passively?)
 - "The" appeal
 - "Go up" as idiom; and refers to amount of subject
 - "This time" : meaning? implied contrast?

Deploying NLP

- Speech recognition and IR have finally gone commercial.
- And there is a ton of text and speech on the Internet, cellphones, etc.
- But not much NLP is out in the real world.
- What killer apps should we be working toward?
- Resources (see Linguistic Data Consortium, LREC conference)
 - Treebanks (parsed corpora)
 - Other corpora, sometimes annotated
 - CORPORA mailing list
 - Mechanical Turk, annotation games
 - WordNet; morphologies; maybe a few grammars
 - Research tools:
 - Published systems (write to the authors & ask for the code!)
 - Toolkits: finite-state, machine learning, machine translation, info extraction
 - Dyna a new programming language being built at JHU
 - Annotation tools
 - Emerging standards like VoiceXML
- Still out of the reach of J. Random Programmer

Deploying NLP

- Sneaking NLP in through the back door:
 - Add features to existing interfaces
 - "Click to translate"
 - Spell correction of queries
 - Allow multiple types of queries (phone number lookup, etc.)
 - IR should return document clusters and summaries
 - From IR to QA (question answering)
 - Machines gradually replace humans @ phone/email helpdesks
 - Back-end processing
 - Information extraction and normalization to build databases: CD Now, New York Times, ...
 - Assemble good text from boilerplate
 - Hand-held devices
 - Translator
 - Personal conversation recorder, with topical search

"In most presidential elections, Al Gore's detour to California today would be a sure sign of a campaign in trouble. California is solid Democratic territory, but a slip in the polls sent Gore rushing back to the coast."

```
AG
           "Al Gore"
NAME
        CA "California"
NAME
NAME
        CO "coast"
        AG
            CA
MOVE
                       TIME=Oct. 31
MOVF
        AG CO
                       TIME=Oct. 31
        CA Location
KIND
        CA "territory"
KIND
            "Democratic"
PROPRTY CA
KIND
        PLL
            "polls"
MOVE
        PLL
                       PATH=down, TIME<Oct. 31
ABOUT
        PII AG
```

"In most presidential elections, Al Gore's detour to California today would be a sure sign of a campaign in trouble. California is solid Democratic territory, but a slip in the polls sent Gore rushing back to the coast."

- "Where did Al Gore go?"
- "What are some Democratic locations?"
- "How have different polls moved in October?"

- Allow queries over meanings, not sentences
- Big semantic network extracted from the web
- Simple entities and relationships among them
- Not complete, but linked to original text
- Allow inexact queries
 - Learn generalizations from a few tagged examples
- Redundant; collapse for browsability or space

Dialogue Systems

- Games
- Command-and-control applications
- "Practical dialogue" (computer as assistant)
- The Turing Test

Turing Test

Q: Please write me a sonnet on the subject of the Forth Bridge.

A [either a human or a computer]: Count me out on this one. I never could write poetry.

Q: Add 34957 to 70764.

A: (Pause about 30 seconds and then give an answer) 105621.

Q: Do you play chess?

A: Yes.

Q: I have my K at my K1, and no other pieces. You have only K at K6 and R at R1. It is your move. What do you play?

A: (After a pause of 15 seconds) R-R8 mate.

Turing Test

Q: In the first line of your sonnet which reads "Shall I compare thee to a summer's day," would not "a spring day" do as well or better?

A: It wouldn't scan.

Q: How about "a winter's day"? That would scan all right.

A: Yes, but nobody wants to be compared to a winter's day.

Q: Would you say Mr. Pickwick reminded you of Christmas?

A: In a way.

Q: Yet Christmas is a winter's day, and I do not think Mr. Pickwick would mind the comparison.

A: I don't think you're serious. By a winter's day one means a typical winter's day, rather than a special one like Christmas.

TRIPS System

19

TRIPS System

600.465 - Intro to NLP - J. Eisner

Dialogue Links (click!)

- Turing's article (1950)
- Eliza (the original chatterbot)
 - Weizenbaum's article (1966)
 - Eliza on the web try it!
- Loebner Prize (1991-2001), with transcripts
 - Shieber: "One aspect of progress in research on NLP is appreciation for its complexity, which led to the dearth of entrants from the artificial intelligence community - the realization that time spent on winning the Loebner prize is not time spent furthering the field."
- TRIPS Demo Movies (1998)

JHU's Center for Language & Speech Processing (one of the biggest centers for NLP/speech research)

CLSP Vision Statement

• Understand how human language is used to communicate ideas/thoughts/information.

• Develop technology for machine analysis, translation, and transformation of multilingual speech and text.

The form of linguistic knowledge: Mathematical formalisms for writing grammars

Recovering meaning in a noisy, ambiguous world: Statistical modeling of speech & language

Natural Language Processing Lab: All of the above, plus algorithms

Human Language Technology Center of Excellence (HLT-CoE)

rocessing

Ken Church

Mark Dredze

Christine (Piatko

(+ several others)

Computer Engineering

CLSP
Computer Science

Cognitive Science

(Linguistics, Brains)

600.465 - Intro to NLP - J. Eisner

Center for Language & Speech Processing

Why Language?

y₀ ?

Well, at least you can use it to make jokes with ...

Why Language?

- Selfish reasons
 - Really interesting data
 - Use both sides of your brain
 - Great problems => lifetime employment?
- \$elfish reason\$
 - space telescope: "all" cosmological data
 - genome: "all" biological data
 - online text/speech: "all" human thought and culture
 - suddenly PCs can see lots of speech & text but they can't help you with it until they understand it!
- Sound fun? 600.465 Natural Language Processing
 - techniques are transfertable (Confipoloio, stocks)

Typical problems & solution

Map input to output:

- speech → text
- text → speech
- Arabic → English
- sentence → meaning
- unedited → edited
- document → summary
- document → database record
- query → relevant documents
- question → answer
- email → is it spam?

 Intro to NLP J. Eisner

- 1. Dream up a model of p(output | input)
- 2. Fit the model's parameters from whatever data you can get
- 3. Invent an algorithm to maximize p(output | input) on new inputs

