Package 'PredPsych'

September 9, 2016

ype Package
Citle Generic Package for Predictive approaches in Psychology
Version 0.1
Date 2015-06-18
Author Atesh Koul
Maintainer <atesh.koul@iit.it></atesh.koul@iit.it>
Description The functions for Predictive approaches in Psychology
cicense GPL-V3
LazyData TRUE
Depends R (>= 3.1.0)
mports plyr, ggplot2, openxlsx, caret, rpart, plotly, e1071, mclust
RoxygenNote 5.0.1
Suggests knitr, rmarkdown
'ignetteBuilder knitr
CartModel
PredPsych
ndex

2 CartModel

CartModel

Generic Classification and Regression Tree Function

Description

A simple function to create Classification and Regression Trees

Usage

CartModel(Data, responseCol, selectedCol, tree, ...)

Arguments

Data (dataframe) a data frame with regressors and response responseCol (numeric) which column should be used as response col

selected Col (optional)(numeric) which columns should be treated as data(features + response)

(defaults to all columns)

tree which cart model to implement; One of the following values:

• modelF = Full Model Tree;

• modelNAHF = Crossvalidated Half Model Tree removing missing values;

• modelHF = Crossvalidated Half Model Tree With missing values;

• modelCF = Conditional inference framework Tree;

• modelRF = Random Forest Tree;

Details

The function implements the CaRT modelling. CaRT models fall under the general 'Tree based methods' involving generation of a recursive binary tree (Hastie et al., 2009). In terms of input, Cart models can handle both continuous and categorical variables as well as missing data. From the input data, Cart models build a set of logical 'if ..then' rules that permit accurate prediction of the input cases.

Unlike regression methods like GLMs, CaRT models are more flexible and can model nonlinear interactions.

Value

Cart model result for the input tree Results

Author(s)

```
Atesh Koul, C'MON unit, Istituto Italiano di Tecnologia <atesh.koul@iit.it>
```

Examples

```
\#\ generate\ a\ cart\ model\ for\ 10\%\ of\ the\ data\ with\ cross-validation\\ model\ <-\ CartModel\ (Data=KinData[,c(1,2,12,22,32,42,52,62,72,82,92,102,112)], responseCol=1, tree='modelHF')
```

classifyFun 3

classifyFun	Generic Classification Analyses	

Description

function for performing generic classification Analysis

Usage

```
classifyFun(Data, predictorCol, selectedCols, ranges = NULL, tune = FALSE, cost = 1, gamma = 0.5, classifierName = "svm", genclassifier = Classifier.svm, silent = FALSE, SetSeed = TRUE, ...)
```

Arguments

Data	(dataframe) dataframe of the data
$\operatorname{predictorCol}$	(numeric) column number that contains the variable to be predicted
${\it selected Cols}$	(optional) (numeric) all the columns of data that would be used either as predictor or as feature
ranges	(optional) (list) ranges for tuning support vector machine
tune	(optional) (logical) whether tuning of svm parameters should be performed or not
cost	(optional) (numeric) regularization parameter of svm
gamma	(optional) (numeric) rbf kernel parameter
${\it classifierName}$	(optional) (string) name of the classifier to be used
genclassifier	(optional) (function or string) a classifier function or a name (e.g. Classifier.svm)

Details

This function implents Classification Analysis. Classification Analysis is a supervised machine learning approach that attempts to identify holistic patters in the data and assign to it classes (classification). Given a set of features, a classification analysis automatically learns intrinsic patterns in the data to be able to predict respective classes. If the data features are informative about the classes, a high classification score would be achieved.

Value

Outputs Crossvalidation accuracy acc and Test accuracy acc Test

Author(s)

```
Atesh Koul, C'MON unit, Istituto Italiano di Tecnologia <atesh.koul@iit.it>
```

ClassPerm ClassPerm

Examples

```
  \# classification \ analysis \ with \ SVM \\ Results <- classify Fun(Data = KinData, predictorCol = 1, selectedCols = c(1,2,12,22,32,42,52,62,72,82,92,102,112)) \\ \# \ output \\ \# \ [1] \ "Begining \ k-fold \ Classification" \\ \# \ [1] \ "Mean \ CV \ Accuracy \ 0.66" \\ \# \ [1] \ "Mean \ Test \ Accuracy \ 0.62"
```

ClassPerm

Permutation Analysis for classification

Description

simple function to create permutation testing of a classifier

Usage

```
ClassPerm(Data, predictorCol, selectedCols, classifierFun, nSims = 1000, ...)
```

Arguments

Data (dataframe) dataframe of the data

predictorCol (numeric) column number that contains the variable to be predicted

selected Cols (optional) (numeric) all the columns of data that would be used either as predic-

tor or as feature

classifierFun (optional) (function) classifier function
nSims (optional) (numeric) number of simulations

Details

The function implements Permutation tests for classification. Permutation tests are a set of non-parametric methods for hypothesis testing without assuming a particular distribution (Good, 2005). In case of classification analysis, this requires shuffling the labels of the dataset (i.e. randomly shuffling classes/conditions between observations) and calculating accuracies obtained.

Value

Returns actualAcc of the classification analysis, p-value from permutation testing, nullAcc distribution of the permutation figure containing null distribution

Author(s)

```
Atesh Koul, C'MON unit, Istituto Italiano di Tecnologia
```

<atesh.koul@iit.it>

DimensionRed 5

Examples

```
\# perform a permutation testing for 10% of the kinematics movement data PermutationResult <- ClassPerm(Data = KinData, predictorCol = 1, selectedCols = c(1,2,12,22,32,42,52,62,72,82,92,102,112), nSims = 1000)
```

DimensionRed

Generic Dimensionallity Reduction Function

Description

A simple function to perform dimensionality reduction

Usage

```
DimensionRed(Data, method = "MDS", selectedCols, outcome = NA, plot = FALSE, ...)
```

Arguments

Data (dataframe) a data frame with variable/feature columns

selectedCol (optional)(numeric) which columns should be treated as data(features/columns)

(defaults to all columns)

Details

Dimensionality Reduction is the process of reducing the dimensions of the dataset. Multivariate data, even though are useful in getting an overall understanding of the underlying phenomena, do not permit easy interpretability. Moreover, variables in such data often are correlated with each other .For these reasons, it might be imperative to reduce the dimensions of the data. Various models have been developed for such dimensionality reduction. Of these, MDS and PCA has been demonstrated in the current implementation.

Value

Data frame with Results

Author(s)

```
Atesh Koul, C'MON unit, Istituto Italiano di Tecnologia <atesh.koul@iit.it>
```

Examples

```
# reducing dimension of Grip aperture from 10 to 2
GripAperture <- DimensionRed(KinData,selectedCols = 12:21,outcome = KinData[,"Object.Size"],plot = TRUE)
```

6 LinearDA

fscore f-score

Description

A simple function to generate F-scores (Fisher scores) for ranking features

Usage

```
fscore(Data, featSep, featureCol)
```

Arguments

Data (dataframe) Data dataframe

featureCol (numeric) all the columns that contain features

featSel (numeric) column with different classes

Details

The function implements F-score for feature selection. F-score provides a measure of how well a single feature at a time can discriminate between different classes. The higher the F-score, the better the discriminatory power of that feature

Value

named numeric f-scores

Author(s)

```
Atesh Koul, C'MON unit, Istituto Italiano di Tecnologia <atesh.koul@iit.it>
```

Examples

```
\# calculate f-scores for 10% of movement fscore(KinData,featSep = 1,featureCol = c(2,12,22,32,42,52,62,72,82,92,102,112))
```

LinearDA

Cross-validated Linear Discriminant Analysis

Description

A simple function to perform cross-validated Linear Discriminant Analysis

Usage

```
LinearDA(Data, predictorCol, selectedCols, CV = FALSE, cvFraction = 0.8, extendedResults = FALSE, SetSeed = TRUE, ...)
```

LinearDA 7

Arguments

Data	(dataframe) Data dataframe
$\operatorname{predictor} \operatorname{Col}$	(numeric) column number that contains the variable to be predicted
${\it selected Cols}$	(optional) (numeric) all the columns of data that would be used either as predictor or as feature
CV	(optional) (logical) perform Cross validation of training dataset? If TRUE, posterior probabilites are present with the model $$
$\operatorname{cvFraction}$	(optional) (numeric) Fraction of data to keep for training data
extendedResults	(optional) (logical) Return extended results with model?

Details

The function implements Linear Disciminant Analysis, a simple algorithm for classification based analyses .LDA builds a model composed of a number of discriminant functions based on linear combinations of data features that provide the best discrimination between two or more conditions/classes. The aim of the statistical analysis in LDA is thus to combine the data features scores in a way that a single new composite variable, the discriminant function, is produced (for details see Fisher, 1936; Rao, 1948)).

Value

Depending upon extended Results. extended Results FALSE = Acc of discrimination () extended Results TRUE Acc Accuracy of discrimination and fitLDA the fit cross-validated LDA model. If CV = TRUE, Posterior probabilities are generated and stored in the model

Author(s)

```
Atesh Koul, C'MON unit, Istituto Italiano di Tecnologia <atesh.koul@iit.it>
```

Examples

```
 \begin{tabular}{ll} \# simple model with data partition of 80\% and no extended results \\ LDAModel <- LinearDA(Data = KinData, predictorCol = 1, selectedCols = c(1,2,12,22,32,42,52,62,72,82,92,102,112)) \\ \# outout \\ \# & Predicted \\ \# Actual & 1 & 2 \\ \# 1 & 51 & 32 \\ \# 2 & 40 & 45 \\ \# "The accuracy of discrimination was 0.57" \\ LDAModel <- LinearDA(Data = KinData, predictorCol = 1, selectedCols = c(1,2,12,22,32,42,52,62,72,82,92,102,112), \\ CV = FALSE, cvFraction & = 0.8, extendedResults = TRUE) \\ \end{tabular}
```

8 PredPsych

1 / L -	1 - 1	O1.	
IVIO	aer	UΠ	ıster

Model based Clustering

Description

A simple function to perform Model based cluster Analysis:

Usage

```
ModelCluster(Data, NewData = NULL, G, ...)
```

Arguments

Data (dataframe) Data dataframe

NewData (optional) (dataframe) New Data frame for which the class membership is re-

quested

G (optional) (numeric) No. of components to verify

Details

The function implements Model based clustering in predictive framework. Model based clustering approaches provide a structured way of choosing number of clusters (C. Fraley & Raftery, 1998). Data are considered to be generated from a set of Gaussian distributions (components or clusters) i.e. as a mixture of these components (mixture models). Instead of using heuristics, model based clustering approximates Bayes factor (utilizing Bayesian information Criterion) to determine the model with the highest evidence (as provided by the data).

Value

class membership of the clustered NewData

Author(s)

```
Atesh Koul, C'MON unit, Istituto Italiano di Tecnologia <atesh.koul@iit.it>
```

Examples

```
 \begin{tabular}{ll} \# \ clustering \ kinematics \ data \ at \ 10\% \ of \ movement \\ cluster\_time <- \ ModelCluster(KinData[,c(2,12,22,32,42,52,62,72,82,92,102,112)],G=1:12) \\ \end{tabular}
```

_		_	
Ρre	edl	J_{S}	vck

PredPsych.

Description

PredPsych.

Index

```
CartModel, 2
classifyFun, 3
ClassPerm, 4

DimensionRed, 5
fscore, 6

LinearDA, 6

ModelCluster, 8

PredPsych, 8
PredPsych-package (PredPsych), 8
```