K-algebras A and B, a K-algebra homomorphism $h: A \to B$ is a linear map that is also a ring homomorphism, with $h(1_A) = 1_B$; that is,

$$h(a_1 \cdot a_2) = h(a_1) \cdot h(a_2)$$
 for all $a_1, a_2 \in A$
 $h(1_A) = 1_B$.

The set of K-algebra homomorphisms between A and B is denoted $\operatorname{Hom}_{\operatorname{alg}}(A, B)$.

For example, the ring $M_n(K)$ of all $n \times n$ matrices over a field K is a K-algebra.

There is an obvious notion of ideal of a K-algebra.

Definition 33.10. Let A be a K-algebra. An $ideal \ \mathfrak{A} \subseteq A$ is a linear subspace of A that is also a two-sided ideal with respect to multiplication in A; this means that for all $a \in \mathfrak{A}$ and all $\alpha, \beta \in A$, we have $\alpha a \beta \in \mathfrak{A}$.

If the field K is understood, we usually simply say an algebra instead of a K-algebra.

We would like to define a multiplication operation on T(V) which makes it into a K-algebra. As

$$T(V) = \bigoplus_{i>0} V^{\otimes i},$$

for every $i \geq 0$, there is a natural injection $\iota_n \colon V^{\otimes n} \to T(V)$, and in particular, an injection $\iota_0 \colon K \to T(V)$. The multiplicative unit **1** of T(V) is the image $\iota_0(1)$ in T(V) of the unit 1 of the field K. Since every $v \in T(V)$ can be expressed as a finite sum

$$v = \iota_{n_1}(v_1) + \dots + \iota_{n_k}(v_k),$$

where $v_i \in V^{\otimes n_i}$ and the n_i are natural numbers with $n_i \neq n_j$ if $i \neq j$, to define multiplication in T(V), using bilinearity, it is enough to define multiplication operations $v: V^{\otimes m} \times V^{\otimes n} \longrightarrow V^{\otimes (m+n)}$, which, using the isomorphisms $V^{\otimes n} \cong \iota_n(V^{\otimes n})$, yield multiplication operations $v: \iota_m(V^{\otimes m}) \times \iota_n(V^{\otimes n}) \longrightarrow \iota_{m+n}(V^{\otimes (m+n)})$. First, for $\omega_1 \in V^{\otimes m}$ and $\omega_2 \in V^{\otimes n}$, we let

$$\omega_1 \cdot \omega_2 = \omega_1 \otimes \omega_2.$$

This defines a bilinear map so it defines a multiplication $V^{\otimes m} \times V^{\otimes n} \longrightarrow V^{\otimes m} \otimes V^{\otimes n}$. This is not quite what we want, but there is a canonical isomorphism

$$V^{\otimes m} \otimes V^{\otimes n} \cong V^{\otimes (m+n)}$$

which yields the desired multiplication $: V^{\otimes m} \times V^{\otimes n} \longrightarrow V^{\otimes (m+n)}$.

The isomorphism $V^{\otimes m} \otimes V^{\otimes n} \cong V^{\otimes (m+n)}$ can be established by induction using the isomorphism $(E \otimes F) \otimes G \cong E \otimes F \otimes G$. First we prove by induction on $m \geq 2$ that

$$V^{\otimes (m-1)} \otimes V \cong V^{\otimes m},$$