1

LIGHT-CONTROLLING METHOD AND LIGHT-CONTROLLING DEVICE

Patent number:

JP10148852

Publication date:

1998-06-02

Inventor:

TANAKA NORIO; TAKARADA SHIGERU;

YANAGIMOTO HIROMITSU; TSUJITA KOJI; UENO

ICHIRO

Applicant:

DAINICHISEIKA COLOR & CHEM MFG CO LTD;;

VICTOR CO OF JAPAN LTD

Classification:

- international:

G02F1/17; G02F1/35

- european:

Application number: JP19960306692 19961118

Priority number(s):

Abstract of **JP10148852**

PROBLEM TO BE SOLVED: To obtain photoresponsiveness with enough intensity and good reproducibility by using an photoresponding compsn. containing a kind of specified naphthoquinone deriv. and/or specified anthraquinone deriv. to constitute an optical element.

SOLUTION: Optical paths of control light and signal light are arranged in such a manner that the control light and the signal light are independently converged to irradiate an optical element and that the area near the focus having the highest photon density of each light overlaps each other in the optical element. In this method, the optical element consists of a photoresponding compsn. containing one kind of naphthoguinone deriv. expressed by formulae I to IV and/or anthraquinone deriv. expressed by formula V. In formulae, RN<1> to RN<24> are independently hydrogen atoms, compds. of group IV elements (C, Si, Ge, Sn, Pd), compds. of group V elements (N, P, As, Sb, Bi), compds. of groups VI elements (O, S, Se, The, Po) or univalent substituents derived from group VII elements (F, Cl, Br, I).

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-148852

(43)公開日 平成10年(1998)6月2日

(51) Int.Cl.⁶

識別記号

FΙ

G02F 1/17

1/35

504

G02F 1/17

1/35

504

審査請求 未請求 請求項の数17 OL (全 78 頁)

(21)出願番号

特願平8-306692

(22)出願日

平成8年(1996)11月18日

(71)出顧人 000002820

大日精化工業株式会社

東京都中央区日本橋馬喰町1丁目7番6号

(71)出顧人 000004329

日本ピクター株式会社

神奈川県横浜市神奈川区守屋町3丁目12番

地

(72)発明者 田中 教雄

東京都足立区堀之内1丁目9番4号 大日

精化工業株式会社東京製造事業所内

(74)代理人 弁理士 吉田 研二 (外2名)

最終頁に続く

(54) 【発明の名称】 光制御方法および光制御装置

(57)【要約】

【目的】 充分な大きさおよび速度の光応答を再現性良く光応答性の光学素子から引き出すような光制御方法および光制御装置を提供する。

【構成】 光源 1 から制御光が、光源 2 から信号光が射出する。制御光および信号光は集光レンズ 7 で収束され、光学素子8に照射される。受光レンズ 9 および波長選択透過フィルター2 0 を経て光検出器 2 2 で信号光のみが検出される。制御光のON、OFFにより信号光の透過率が可逆的に増減し、信号光の強度変調が実現する。受光レンズの開口数を集光レンズの開口数よりも実質的に小さく設定することにより、充分な大きさおよび速度の光応答をナフトキノンまたはアントラキノン誘導体を含有する光応答性の光学素子から引き出すことが可能となる。

【特許請求の範囲】

【請求項1】 光応答性組成物から成る光学素子に、前記光学素子が感応する波長の制御光を照射し、制御光とは異なる波長帯域にある信号光の透過率および/または屈折率を可逆的に変化させることにより前記光学素子を透過する前記信号光の強度変調および/または光東密度変調を行う光制御方法において、

前記制御光および前記信号光を各々収束させて前記光学 素子へ照射し、かつ、前記制御光および前記信号光のそれぞれの焦点近傍の光子密度が最も高い領域が前記光学 素子中において互いに重なり合うように、前記制御光および前記信号光の光路をそれぞれ配置した光制御方法であり、

更に、前記光学素子が、下記の式 [1] から [4] のいずれかで表されるナフトキノン誘導体および/または下記の式 [5] で表されるアントラキノン誘導体の少なくとも1種類を含有する光応答性組成物から成ることを特徴とする光制御方法。

【化1】

(式[1]中において、

RN1ないしRN6は、各々、水素原子、第IV族元素 (C. Si, Ge. Sn. Pb)の化合物、第V族元素 (N. P. As. Sb. Bi)の化合物、第VI族元素 (O. S. Se. Te. Po)の化合物、または、第V II族元素(F. Cl. Br. I)から導かれる1価の 置換基を表し、これらの置換基は互いに相異なる場合、 また、隣接する2個の置換基が互いに結合して環を形成 する場合を含む。)

【化2】

(式[2]中において、

R^{N7}ないしR^{N12}は、式 [1] におけるR^{N1}ないしR^{N6}と同義である。)

[化3]

(式[3]中において、

RN13ないしRN18は、式 [1] におけるR^{N1}ないしR^{N6}と同義である。)

【化4】

(式[4]中において、

RN19ないしRN24は、式 [1] におけるRN1ないしRN6と同義である。)

【化5】

(式 [5] 中において、

R^{A1}ないしR^{A8}は、式[1]におけるR^{N1}ないしR^{N6}と 同義である。)

【請求項2】 請求項1記載の光制御方法において、 前記制御光および前記信号光を前記光学素子中において 実質的に同一光路で伝搬させることを特徴とする光制御 方法。

【請求項3】 請求項1または2記載の光制御方法において、

前記光学素子を透過した後、発散していく信号光光線束 のうち、前記強度変調および/または光束密度変調を強 く受けた領域の信号光光線束を分別して取り出すことを 特徴とする光制御方法。

【請求項4】 請求項1または2記載の光制御方法において

前記光学素子を透過した後、発散していく信号光光線束 を、前記信号光光線束の発散角度よりも小さい角度範囲 (開口角)で取り出すことによって、前記強度変調および/または光東密度変調を強く受けた領域の信号光光線 東を分別して取り出すことを特徴とする光制御方法。

【請求項5】 請求項1から4のいずれか記載の光制御 方法において、

前記制御光および前記信号光のそれぞれの焦点位置と前

(3)

記光学素子との位置関係を変化させることにより、 前記制御光の照射によって、前記光学素子を透過した前 記信号光の見かけの強度が減少する方向の光応答と、前 記信号光の見かけの強度が増大する光応答との、どちら か一方を選択して取り出すことを特徴とする光制御方 法。

【請求項6】 請求項1から5のいずれか記載の光制御 方法において、

前記光応答性組成物が液体であり、かつ、前記液状光応 答性組成物を充填した光学セルを前記光学素子として用 いることを特徴とする光制御方法。

【請求項7】 請求項6記載の光制御方法であって、 前記液状光応答性組成物が揮発性溶剤を含有することを 特徴とする光制御方法。

【請求項8】 光応答性組成物から成る光学素子に、前 記光学素子が感応する波長の制御光を照射し、制御光と は異なる波長帯域にある信号光の透過率および/または 屈折率を可逆的に増減させることにより前記光学素子を 透過する前記信号光の強度変調および/または光束密度 変調を行う光制御方法に用いられる光制御装置であっ て、

前記制御光および前記信号光を各々収束させる収束手段を有し、収束された前記制御光および前記信号光のそれぞれの焦点近傍の光子密度が最も高い領域が互いに重なり合うように、前記制御光および前記信号光の光路をそれぞれ配置し、かつ、前記光学素子は、収束された前記制御光および前記信号光のそれぞれの焦点近傍の光子密度が最も高い領域が互いに重なり合う位置に配置され、更に、前記光学素子が、前記の式[1]から[4]のいずれかで表されるナフトキノン誘導体および/または前記の式[5]で表されるアントラキノン誘導体の少なくとも1種類を含有する光応答性組成物から成ることを特徴とする光制御装置。

【請求項9】 請求項8記載の光制御装置において、 更に、前記制御光および前記信号光が前記光学素子中に おいて実質的に同一光路で伝搬するような光路配置を有 することを特徴とする光制御装置。

【請求項10】 請求項8または9記載の光制御装置において、

前記光学素子を透過した後、発散していく信号光光線束のうち、前記強度変調および/または光東密度変調を強く受けた領域の信号光光線束を分別して取り出す手段を有することを特徴とする光制御装置。

【請求項11】 請求項10記載の光制御装置において、

前記強度変調および/または光東密度変調を強く受けた 領域の信号光光線束を分別して取り出す手段として、 前記光学素子へ前記信号光を収束させて入射させる際に 用いた収束手段の開口数よりも小さい開口数の収束手段 を用いることを特徴とする光制御装置。 【請求項12】 請求項10記載の光制御装置において、

前記強度変調および/または光東密度変調を強く受けた 領域の信号光光線東を分別して取り出す手段として、 絞りを用いることを特徴とする光制御装置。

【請求項13】 請求項8から12のいずれか記載の光 制御装置において、

前記制御光および前記信号光のそれぞれの焦点位置と前記光学素子との位置関係を変化させる移動手段を有し、前記移動手段を用いることによって、前記制御光および前記信号光のそれぞれの焦点位置と前記光学素子との位置関係を変化させることにより、前記制御光の照射によって前記光学素子を透過した前記信号光の見かけの強度が減少する方向の光応答と、前記信号光の見かけの強度が増大する光応答との、どちらか一方を選択して取り出すことを特徴とする光制御装置。

【請求項14】 請求項8から13のいずれか記載の光 制御装置において、

前記光学素子を透過してきた信号光と制御光の混合光 を、信号光と制御光とに分離する手段を有することを特 徴とする光制御装置。

【請求項15】 請求項8から14のいずれか記載の光 制御装置において、

前記光応答性組成物が液体であり、かつ、前記液状の光 応答性組成物を充填した光学セルを前記光学素子として 用いることを特徴とする光制御装置。

【請求項16】 請求項15記載の光制御装置において

前記液状光応答性組成物が揮発性溶剤を含有することを 特徴とする光制御装置。

【請求項17】 請求項8から16のいずれか記載の光 制御装置において、

前記制御光および前記信号光を各々収束させる前記収束 手段、および/または、前記光学素子中の前記光応答性 組成物を透過した後、発散していく信号光光線束のう ち、前記強度変調および/または光束密度変調を強く受 けた領域の信号光光線束を分別して取り出す手段、およ び/または、前記光学素子中の前記光応答性組成物を透 過してきた信号光と制御光の混合光を、信号光と制御光 とに分離する手段が、前記光学素子に組み込まれた構造 を有することを特徴とする光制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば光通信、光情報処理などの光エレクトロニクスおよびフォトニクスの分野において有用な、光応答性組成物から成る光学素子を用いる光制御方法および光制御装置に関するものである。

[0002]

【従来の技術】超髙速情報伝達・処理を目的として、光

の多重性、高密度性に着目した光エレクトロニクスおよびフォトニクスの分野において、光学材料または光学組成物を加工して作成した光学素子に光を照射することで引き起こされる透過率や屈折率の変化を利用して、電子回路技術を用いずに、光の強度(振幅)または周波数

(波長)を変調しようとする光・光制御方法の研究開発が盛んに進められている。また、光の特徴を活かして、並列光論理演算や画像処理を行おうとする場合、光ビーム(光線束)の断面に光強度分布変化など、何等かの変調を行うための「空間光変調器」が極めて重要であり、ここへも光・光制御方法の適用が期待される。

【 0 0 0 3 】光・光制御方法への応用が期待される現象としては可飽和吸収、非線形屈折、フォトリフラクティブ効果などの非線形光学効果、およびフォトクロミック現象が広く注目を集めている。

【0004】一方、第一の波長帯域の光で励起された分子が、分子構造の変化を伴わずに、第一の波長帯域とは 異なる第二の波長帯域において新たに光吸収を起こす現象も知られており、これを「励起状態吸収」または「誘導吸収」、あるいは「過渡吸収」と呼ぶことができる。

【0005】励起状態吸収の応用を試みた例としては、 例えば、特開昭53-137884号公報にはポルフィ リン系化合物と電子受容体を含んだ溶液または固体に対 して波長の異なる少なくとも2種類の光線を照射し、こ の照射により一方の波長の光線が有する情報を他方の光 線の波長に移すような光変換方法が開示されている。ま た、特開昭55-100503号公報および特開昭55 -108603号公報にはポルフィリン誘導体などの有 機化合物の基底状態と励起状態の間の分光スペクトルの 差を利用し、励起光の時間的な変化に対応して伝搬光を 選択するような機能性の液体コア型光ファイバーが開示 されている。また、特開昭63-89805号公報には 光によって励起された三重項状態から更に上位の三重項 状態への遷移に対応する吸収を有するポルフィリン誘導 体などの有機化合物をコア中に含有しているプラスチッ ク光ファイバーが開示されている。また、特開昭63-236013号公報にはクリプトシアニンなどのシアニ ン色素の結晶に第一の波長の光を照射して分子を光励起 した後、第一の波長とは異なる第二の波長の光を前記分 子に照射し、第一の波長の光による光励起状態によって 第二の波長の光の透過または反射をスイッチングするよ うな光機能素子が開示されている。また、特開昭64-73326号公報にはポルフィリン誘導体などの光誘起 電子移動物質をマトリックス材料中に分散した光変調媒 体に第一および第二の波長の光を照射して、分子の励起 状態と基底状態の間の吸収スペクトルの差を利用して光 変調するような光信号変調媒体が開示されている。

【0006】これら従来技術で用いられている光学装置の構成としては、特開昭55-100503号公報、特開昭55-108603号公報、および特開昭63-8

9805号公報には伝搬光の伝播する光ファイバーを励起光の光源(例えばフラッシュランプ)の周囲に巻きつけるような装置構成が開示されており、特開昭53-137884号公報および特開昭64-73326号公報には光応答性光学素子内部の信号光に相当する光の伝播している部分全体に信号光の光路とは別の方向から制御光に相当する光を収束させることなくむしろ投射レンズなどの手段によって発散させて照射するような装置構成が開示されている。

【 O O O 7 】しかしながら、以上のような従来技術においては、実用に足りる大きさの透過率変化または屈折率変化 (光応答)を引き起こすためには非常に高密度の光パワーを必要としたり、光照射に対する応答が遅かったり、光応答材料の耐久性が低かったりするため、実用に至るものは未だ得られていないのが現状である。

【0008】本出願人は、上記従来技術の有する課題を解消し、できる限り低い光パワーで充分な大きさおよび速度の光応答を光応答性の光学素子から引き出すような光制御方法および光制御装置に関する特許(特願平7-25618、8-151133、8-239314)および光応答性材料に関する特許(特願平7-58413、7-58414)を出願した。

[0009]

【発明が解決しようとする課題】本発明は、上記課題を解決し、光応答を充分な大きさで再現性良く得るための 光制御方法および光制御装置を提供することを目的とす る。

[0010]

【課題を解決するための手段】上記目的を達成するため に、本願の請求項1記載の発明に係る光制御方法は、光 応答性組成物から成る光学素子に、前記光学素子が感応 する波長の制御光を照射し、制御光とは異なる波長帯域 にある信号光の透過率および/または屈折率を可逆的に 変化させることにより前記光学素子を透過する前記信号 光の強度変調および/または光束密度変調を行う光制御 方法において、前記制御光および前記信号光を各々収束 させて前記光学素子へ照射し、かつ、前記制御光および 前記信号光のそれぞれの焦点近傍の光子密度が最も高い 領域が前記光学素子中において互いに重なり合うよう に、前記制御光および前記信号光の光路をそれぞれ配置 した光制御方法であり、更に、前記光学素子が、下記の 式 [1] から [4] のいずれかで表されるナフトキノン 誘導体および/または下記の式 [5] で表されるアント ラキノン誘導体の少なくとも1種類を含有する光応答性 組成物から成ることを特徴とする。

[0011]

【化6】

(式 [1] 中において、RN1ないしRN6は、各々、水素原子、第IV族元素(C. Si. Ge. Sn. Pb)の化合物、第V族元素(N. P. As. Sb. Bi)の化合物、第VI族元素(O. S. Se. Te. Po)の化合物、または、第VII族元素(F. Cl. Br. I)から導かれる1価の置換基を表し、これらの置換基は互いに相異なる場合、また、隣接する2個の置換基が互いに結合して環を形成する場合を含む。)

【化7】

(式 [2] 中において、R^{N7}ないしR^{N12}は、式 [1] におけるR^{N1}ないしR^{N6}と同義である。)

【化8】

(式 [3] 中において、 R^{N13} ないし R^{N18} は、式 [1] における R^{N1} ないし R^{N6} と同義である。)

【化9】

(式 [4] 中において、R^{N19}ないしR^{N24}は、式 [1] におけるR^{N1}ないしR^{N6}と同義である。) 【化 1 O】

(式 [5] 中において、 R^{A1} ないし R^{A8} は、式 [1] における R^{N1} ないし R^{N6} と同義である。)

前記の式[1]ないし[5]において、第IV族元素 (C. Si. Ge. Sn. Pb) の化合物から導かれる 1価の置換基 (RN1ないしRN24、RA1ないしRA8) の 具体例は、例えば、メチル基、エチル基、プロピル基、 イソプロピル基、シクロプロピル基、nーブチル基、t ertーブチル基、nーペンチル基、シクロペンチル 基、シクロヘキシル基、n-ヘキシル基、n-ヘプチル 基、ネオペンチル基、nーオクチル基、イソオクチル 基、n-ノニル基、n-デシル基、n-ウンデシル基、 nードデシル基、nーオクタデシル基、ビニル基、2-プロペニル基、ベンジル基、フェニル基、ビフェニル 基、ナフチル基、アントリル基、2、4-ジメトキシフ ェニル基、ピリジル基、メトキシ基、エトキシ基、n-ブトキシ基、n-ペントキシ基、n-ヘキシルオキシ 基、nーヘプトキシ基、nーオクチルオキシ基、nーノ ニルオキシ基、nーデシルオキシ基、n-ウンデシルオ キシ基、nードデシルオキシ基、nーオクタデシルオキ シ基、ベンジルオキシ基、フェノキシ基、アセチル基、 メトキシカルボニル基、ベンゾイル基、カルボキシル基 (-COOH)、カルバモイル基(-CONH2)、シ アノ基、トリメチルシリル基、ジメチルフェニルシリル 基、トリメチルシロキシ基、トリメチルゲルミル基、メ チルジフェニルゲルミル基、トリメチル錫基、トリエチ ル鉛基などの他、芳香族炭化水素または複素環化合物か ら導かれる1価の基などである。これらのうち、カルボ キシル基は金属塩を形成していても良く、更に、他の金 属塩と錯体を形成しても良い。

【0012】前記の式 [1] ないし [5] において、第 V族元素 (N. P. As. Sb. Bi) の化合物から導 かれる1価の置換基 (RN1ないしRN24、RA1ないしR A8) の具体例は、例えば、アミノ基、メチルアミノ基、 エチルアミノ基、プロピルアミノ基、ブチルアミノ基、 ベンジルアミノ基、フェニルアミノ基、ジエチルアミノ基、 ゾフェニルアミノ基、ジメチルアミノ基、ジエチルアミノ基、 ジメチルプロピルアミノ基、ジフェニルアミノ基、 ジベンジルアミノ基、エチルフェニルアミノ基、 ジベンジルアミノ ブチル基、 ジフェニルアミノ シベンジルアミノ ブチル基、 6- (ジェチルアミノ) ヘキシルオキシ基、アセチルアミノ基、ベンゾイルアミノ メチルアセチルアミノ基、シクロヘキシル ミノ基、ピリジル基、ピペリジノ基、ピペリジル ミノ基、ピリジル基、ピペリジノ基、ピペリジル ミノ基、ジフェニルフォスフィニル基、ジフェニル アルシニル基、ジフェニルスチビニル基、ジフェニルビスムチニル基などである。これらのうち、置換および非 置換のアミノ基は酸と塩を形成していても良い。

【0013】前記の式[1]ないし[5]において、第 VI 族元素 (O. S. Se, Te, Po) の化合物から 導かれる1価の置換基(R^{N1}ないしR^{N24}、R^{A1}ないし RA8)の具体例は、例えば、水酸基(ヒドロキシ基)、 メトキシ基、エトキシ基、nープトキシ基、nーペント キシ基、n-ヘキシルオキシ基、n-ヘプトキシ基、n ーオクチルオキシ基、nーノニルオキシ基、nーデシル オキシ基、nーウンデシルオキシ基、nードデシルオキ シ基、n-オクタデシルオキシ基、ベンジルオキシ基、 フェノキシ基、メルカプト基、メチルチオ基、エチルチ オ基、フェニルチオ基、ペンジルチオ基、2-フリル 基、2ーチオフェニル基、2ーセレノフェニル基、2ー テルロフェニル基、ペンジルスルフィニル基(C6H5C H2SO-)、フェニルスルフォニル基(C6H5SO 2-)、スルフェン酸基(-SOH)、スルフィン酸基 (-SO2H)、スルホン酸基(-SO3H)、セレノン 酸基(-SeO3H)などである。これらのうち、フェ ノール性水酸基や酸の残基は金属塩を形成していても良 く、更に、他の金属塩と錯体を形成しても良い。また、 酸の残基はアミン塩またはアンモニウム塩を形成しても 良い。

【0014】また、上記目的を達成するため、本願の請求項2記載の発明に係る光制御方法は、請求項1記載の光制御方法において、前記制御光および前記信号光を前記光学素子中において実質的に同一光路で伝搬させることを特徴とする。

【0015】また、上記目的を達成するため、本願の請求項3記載の発明に係る光制御方法は、請求項1または2記載の光制御方法において、前記光学素子を透過した後、発散していく信号光光線束のうち、前記強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出すことを特徴とする。

【0016】この場合、通常、信号光光線束の中心部分が特に変調を受けやすいので、発散する信号光光線束を収束するために受光レンズを用いるときには信号光光線束の中心軸に受光レンズの中心軸を一致させることが好適である。

【0017】また、上記目的を達成するため、本願の請求項4記載の発明に係る光制御方法は、請求項1または2記載の光制御方法において、前記光学素子を透過した後、発散していく信号光光線束を、前記信号光光線束の発散角度よりも小さい角度範囲(開口角)で取り出すことによって、前記強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出すことを特徴とする。

【0018】また、上記目的を達成するため、本願の請求項5記載の発明に係る光制御方法は、請求項1から4

のいずれか記載の光制御方法において、前記制御光および前記信号光のそれぞれの焦点位置と前記光学素子との位置関係を変化させることにより、前記制御光の照射によって、前記光学素子を透過した前記信号光の見かけの強度が減少する方向の光応答と、前記信号光の見かけの強度が増大する光応答との、どちらか一方を選択して取り出すことを特徴とする。

【 O O 1 9 】また、上記目的を達成するため、本願の請求項 6 記載の発明に係る光制御方法は、請求項 1 から 5 のいずれか記載の光制御方法において、前記光応答性組成物が液体であり、かつ、前記液状光応答性組成物を充填した光学セルを前記光学素子として用いることを特徴とする。

【 O O 2 O 】また、上記目的を達成するため、本願の請求項7記載の発明に係る光制御方法は、請求項6記載の光制御方法であって、前記液状光応答性組成物が揮発性溶剤を含有することを特徴とする。

【〇〇21】また、上記目的を達成するため、本願の請 求項8記載の発明に係る光制御装置は、光応答性組成物 から成る光学素子に、前記光学素子が感応する波長の制 御光を照射し、制御光とは異なる波長帯域にある信号光 の透過率および/または屈折率を可逆的に増減させるこ とにより前記光学素子を透過する前記信号光の強度変調 および/または光束密度変調を行う光制御方法に用いら れる光制御装置であって、前記制御光および前記信号光 を各々収束させる収束手段を有し、収束された前記制御 光および前記信号光のそれぞれの焦点近傍の光子密度が 最も高い領域が互いに重なり合うように、前記制御光お よび前記信号光の光路をそれぞれ配置し、かつ、前記光 学素子は、収束された前記制御光および前記信号光のそ れぞれの焦点近傍の光子密度が最も高い領域が互いに重 なり合う位置に配置され、更に、前配光学素子が、前配 の式[1]から[4]のいずれかで表されるナフトキノ ン誘導体および/または前記の式 [5] で表されるアン トラキノン誘導体の少なくとも1種類を含有する光応答 性組成物から成ることを特徴とする。

【0022】また、上記目的を達成するため、本願の請求項9記載の発明に係る光制御装置は、請求項8記載の光制御装置において、更に、前記制御光および前記信号光が前記光学素子中において実質的に同一光路で伝搬するような光路配置を有することを特徴とする。

【0023】また、上記目的を達成するため、本願の請求項10記載の発明に係る光制御装置は、請求項8または9記載の光制御装置において、前記光学素子を透過した後、発散していく信号光光線束のうち、前記強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出す手段を有することを特徴とする。

【0024】また、上記目的を達成するため、本願の請求項11記載の発明に係る光制御装置は、請求項10記

載の光制御装置において、前記強度変調および/または 光東密度変調を強く受けた領域の信号光光線束を分別し て取り出す手段として、前記光学素子へ前記信号光を収 束させて入射させる際に用いた収束手段の開口数よりも 小さい開口数の収束手段を用いることを特徴とする。

【0025】また、上記目的を達成するため、本願の請求項12記載の発明に係る光制御装置は、請求項10記載の光制御装置において、前記強度変調および/または光東密度変調を強く受けた領域の信号光光線束を分別して取り出す手段として、絞りを用いることを特徴とする。

【0026】また、上記目的を達成するため、本願の請求項13記載の発明に係る光制御装置は、請求項8から12のいずれか記載の光制御装置において、前記制御光および前記信号光のそれぞれの焦点位置と前記光学素子との位置関係を変化させる移動手段を有し、前記移動手段を用いることによって、前記制御光および前記信号光のそれぞれの焦点位置と前記光学素子との位置関係を変化させることにより、前記制御光の照射によって前記光学素子を透過した前記信号光の見かけの強度が増大する方向の光応答と、前記信号光の見かけの強度が増大する光応答との、どちらか一方を選択して取り出すことを特徴とする。

【0027】また、上記目的を達成するため、本願の請求項14記載の発明に係る光制御装置は、請求項8から13のいずれか記載の光制御装置において、前記光学素子を透過してきた信号光と制御光の混合光を、信号光と制御光とに分離する手段を有することを特徴とする。

【0028】また、上記目的を達成するため、本願の請求項15記載の発明に係る光制御装置は、請求項8から14のいずれか記載の光制御装置において、前記光応答性組成物が液体であり、かつ、前記液状の光応答性組成物を充填した光学セルを前記光学素子として用いることを特徴とする。

【0029】また、上記目的を達成するため、本願の請求項16記載の発明に係る光制御装置は、請求項15記載の光制御装置において、前記液状光応答性組成物が揮発性溶剤を含有することを特徴とする。

【0030】また、上記目標を達成するため、本願の請求項17記載の発明に係る光制御装置は、請求項8から16のいずれか記載の光制御装置において、前記制御光および前記信号光を各々収束させる前記収束手段、および/または、前記光学素子中の前記光応答性組成物を透過した後、発散していく信号光光線束のうち、前記強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出す手段、および/または、前記光学素子中の前記光応答性組成物を透過してきた信号光と制御光の混合光を、信号光と制御光とに分離する手段が、前記光学素子に組み込まれた構造を有することを特徴とする。

【 O O 3 1 】 [光応答性組成物、信号光の波長帯域、および制御光の波長帯域の組み合わせ] 本発明の光制御方法で利用される光応答性組成物、信号光の波長帯域、および制御光の波長帯域は、これらの組み合わせとして、使用目的に応じて適切な組み合わせを選定し用いることができる。

【 O O 3 2 】 具体的な設定手順としては、例えば、まず、使用目的に応じて信号光の波長ないし波長帯域を決定し、これを制御するのに最適な光応答性組成物と制御光の波長の組み合わせを選定すれば良い。または、使用目的に応じて信号光と制御光の波長の組み合わせを決定してから、この組み合わせに適した光応答性組成物を選定すれば良い。

【 O O 3 3 】本発明で用いられる光応答性組成物の組成、および前記光応答性組成物から成る光学素子中を伝播する信号光および制御光の光路長については、これらの組み合わせとして、光学素子を透過する制御光および信号光の透過率を基準にして設定することができる。例えば、まず、光応答性組成物の組成のうち、少なくとも制御光あるいは信号光を吸収する成分の濃度を光定定過できる。または、次いで、光学素子を透過する制御光および信号光の光路長を設定することができる。または、まず、例えば装置設計上の必要に応じて、光路長を特定の値に設定した後、光学素子を透過する制御光および信号光の透過率が特定の値になるよう光応答性組成物の組成を調整することができる。

【 O O 3 4 】本発明は、できる限り低い光パワーで充分な大きさおよび速度の光応答を光応答性の光学素子から引き出すような光制御方法および光制御装置を提供することを目的としているが、この目的を達成するために最適な、光学素子を透過する制御光および信号光の透過率の値は、それぞれ、次に示す通りである。

【0035】本発明の光制御方法および光制御装置では、光学素子を伝播する制御光の透過率が多くとも90%以下になるよう光応答性組成物中の光吸収成分の濃度および存在状態の制御、光路長の設定を行うことが推奨される。

【 O O 3 6 】ここで、制御光の照射によって信号光の透過率が減少する方向の光応答を利用しようとする場合、制御光を照射しない状態において、光学素子を伝播する信号光の透過率が少なくとも 1 O%以上になるよう光応答性組成物中の光吸収成分の濃度および存在状態の制御、光路長の設定を行うことが推奨される。

【0037】 [ナフトキノンまたはアントラキノン誘導体] 本発明で用いられる光学素子は、ナフトキノンまたはアントラキノン誘導体をマトリックス材料中に溶解または分散させた光応答性組成物から成る。

【0038】ナフトキノンまたはアントラキノン誘導体 としては、分散染料、建て染め染料、酸性染料または顔 料などの色素として公知のものを使用することができる。

【0039】前記ナフトキノンまたはアントラキノン誘導体の具体例を化学式として図1から図60に例示する。すなわち、前記の式[1]で表される1、4ーナフトキノン誘導体の具体例を図1ないし15に、前記の式[2]で表される1、2ーナフトキノン誘導体の具体例を図16に、前記の式[3]で表される1、5ーナフトキノン誘導体の具体例を図17に、前記の式[4]で表される2、6ーナフトキノン誘導体の具体例を図18に、また、前記の式[5]で表される9、10ーアントラキノン誘導体の具体例を図19ないし60に、化学式として例示する。

【0040】本発明では、これらのナフトキノンまたは アントラキノン誘導体を単独で、または、2種類以上を 混合して使用することができる。

【 0 0 4 1 】 [光応答性組成物] 本発明では、前記光応答性組成物として、使用温度領域において、固体、ガラス状態ないしゴム状態のもの、および、液体状態のものを使用することができる。

【 O O 4 2】なお、本発明で用いられる光応答性組成物は、その機能に支障をきたさない範囲において、加工性を向上させたり、光学素子としての安定性・耐久性を向上させるため、副成分として公知の酸化防止剤、紫外線吸収剤、一重項酸素クエンチャー、分散助剤などを含有しても良い。

【 O O 4 3 】 [固体、ガラス状態ないしゴム状態の光応答性組成物] 本発明では、固体、ガラス状態ないしゴム状態の光応答性組成物として、前記のナフトキノンまたはアントラキノン誘導体を、固体、ガラス状態ないしゴム状態のマトリックス材料中に溶解または分散したものを用いることができる。

【0044】本発明で用いることのできる固体、ガラス 状態ないしゴム状態のマトリックス材料は、(1)本発 明の光制御方式で用いられる光の波長領域で透過率が高 いこと、(2)本発明で用いられるナフトキノンまたは アントラキノン誘導体を安定性良く溶解または分散でき ること、(3)光学素子としての形態を安定性良く保つ ことができること、という条件を満足するものであれば 任意のものを使用することができる。

【0045】無機系のマトリックス材料としては、例えば、いわゆるゾルゲル法で作成される低融点ガラス材料などを使用することができる。

【0046】また、有機系のマトリックス材料としては、種々の有機高分子材料を使用することができる。その具体例としては、ポリスチレン、ポリ (αーメチルスチレン)、ポリインデン、ポリ (4ーメチルー1ーペンテン)、ポリビニルピリジン、ポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール、ポリ酢酸ビニル、ポリビニルアルコール、ポリ塩化ビニル、ポ

リ塩化ビニリデン、ポリビニルメチルエーテル、ポリビ ニルエチルエーテル、ポリビニルペンジルエーテル、ポ リビニルメチルケトン、ポリ(N-ビニルカルパゾー ル)、ポリ(N-ビニルピロリドン)、ポリアクリル酸 メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリ アクリロニトリル、ポリメタクリル酸メチル、ポリメタ クリル酸エチル、ポリメタクリル酸ブチル、ポリメタク リル酸ペンジル、ポリメタクリル酸シクロヘキシル、ポ リメタクリル酸、ポリメタクリル酸アミド、ポリメタク リロニトリル、ポリアセトアルデヒド、ポリクロラー ル、ポリエチレンオキシド、ポリプロピレンオキシド、 ポリエチレンテレフタレート、ポリブチレンテレフタレ ート、ポリカーボネイト類(ビスフェノール類+炭 酸)、ポリ(ジェチレングリコール・ビスアリルカーボ ネイト) 類、6ーナイロン、6、6ーナイロン、12ー ナイロン、6、12ーナイロン、ポリアスパラギン酸エ チル、ポリグルタミン酸エチル、ポリリジン、ポリプロ リン、ポリ(ァーベンジルーLーグルタメート)、メチ ルセルロース、エチルセルロース、ベンジルセルロー ス、ヒドロキシエチルセルロース、ヒドロキシプロピル セルロース、アセチルセルロース、セルローストリアセ テート、セルローストリブチレート、アルキド樹脂(無 水フタル酸+グリセリン)、脂肪酸変性アルキド樹脂

(脂肪酸+無水フタル酸+グリセリン)、不飽和ポリエステル樹脂(無水マレイン酸+無水フタル酸+プロピレングリコール)、エポキシ樹脂(ビスフェノール類+エピクロルヒドリン)、ポリウレタン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、キシレン樹脂、トルエン樹脂、グアナミン樹脂などの樹脂、ポリ(フェニルメチルシラン)などの有機ポリシラン、有機ポリゲルマンおよびこれらの共重合・共重縮合体が挙げられる。また、二硫化炭素、四フッ化炭素、エチルベンゼン、パーフルオロシクロヘキサンまたはトリメチルクロロシラン等、通常では重合性のない化合物をプラズマ重合して得た高分子化合物などを使用することができる。

【0047】更に、これらの有機高分子化合物に前記ナフトキノンまたはアントラキノン誘導体の残基をモノマー単位の側鎖として、もしくは架橋基として、共重合モノマー単位として、または重合開始末端として結合させたものをマトリックス材料として使用することもできる。

【0048】これらのマトリックス材料中へナフトキノンまたはアントラキノン誘導体を溶解または分散させるには公知の方法を用いることができる。例えば、ナフトキノンまたはアントラキノン誘導体とマトリックス材料を共通の溶媒中へ溶解して混合した後、溶媒を蒸発させて除去する方法、ゾルゲル法で製造する無機系マトリックス材料の原料溶液へナフトキノンまたはアントラキノン誘導体を溶解または分散させてからマトリックス材料

を形成する方法、有機髙分子系マトリックス材料のモノ **、マー中へ、必要に応じて溶媒を用いて、ナフトキノンま** たはアントラキノン誘導体を溶解または分散させてから 該モノマーを重合ないし重縮合させてマトリックス材料 を形成する方法、ナフトキノンまたはアントラキノン誘 導体と有機高分子系マトリックス材料を共通の溶媒中に 溶解した溶液を、ナフトキノンまたはアントラキノン誘 導体および熱可塑性の有機高分子系マトリックス材料の 両方が不溶の溶剤中へ滴下し、生じた沈殿を濾別し乾燥 してから加熱・溶融加工する方法、化学的気相成長法、 スパッタリング法などを好適に用いることができる。一 般に、色素とマトリックス材料の組み合わせおよび加工 方法を工夫することで、色素分子を凝集させ、「H会合 体」や「J会合体」などと呼ばれる特殊な会合体を形成 させることができることが知られているが、マトリック ス材料中のナフトキノンまたはアントラキノン誘導体分 子をこのような凝集状態もしくは会合状態を形成する条 件で使用しても良い。

【0049】 [液状の光応答性組成物] 本発明では、液状の光応答性組成物として、前記のナフトキノンまたはアントラキノン誘導体を、液状のマトリックス材料中に溶解またはコロイド分散したものを用いることができる。

【0050】本発明で用いることのできる液状のマトリックス材料は、(1)使用温度および/または圧力領域において液体であること、(2)本発明の光制御方式で用いられる光の波長領域で透過率が高いこと、(3)本発明で用いられるナフトキノンまたはアントラキノン誘導体などを安定性良く溶解またはコロイド分散できること、(4)光応答性組成物としての組成を安定性良く保つことができること、という条件を満足するものであれば任意のものを使用することができる。

【0051】無機系の液状マトリックス材料としては、例えば、水、水ガラス(アルカリケイ酸塩の濃厚水溶液)、アンモニア水、水酸化ナトリウム水溶液、水酸化カリウム水溶液、塩酸、硫酸、硝酸、王水、クロルスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ポリリン酸などを使用することができる。

【0052】また、有機系の液状マトリックス材料としては、各種有機溶剤、および、液状の有機高分子材料を使用することができる。

【0053】揮発性の有機溶剤としては、具体的には、メタノール、エタノール、イソプロピルアルコール、 nーブタノール、アミルアルコール、シクロヘキサノール、ベンジルアルコールなどのアルコール類、エチレングリコール、ジエチレングリコール、グリセリンなどの多価アルコール類、酢酸エチル、酢酸 nーブチル、酢酸アミル、酢酸イソプロピルなどのエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ジエチルエーテル、ジ

ブチルエーテル、メトキシエタノール、エトキシエタノ ール、ブトキシエタノール、カルビトールなどのエーテ ル類、テトラヒドロフラン、1, 4-ジオキサン、1, 3-ジオキソラン、などの環状エーテル類、ジクロロメ タン、クロロホルム、四塩化炭素、1,2ージクロロエ タン、1、1、2ートリクロロエタン、トリクレン、ブ ロモホルム、ジブロモメタン、ジョードメタン、などの ハロゲン化炭化水素類、ベンゼン、トルエン、キシレ ン、クロロベンゼン、oージクロロベンゼン、ニトロベ ンゼン、アニソール、αークロロナフタレンなどの芳香。 族炭化水素類、nーペンタン、nーヘキサン、nーヘプ タン、シクロヘキサンなどの脂肪族炭化水素類、N. N ージメチルホルムアミド、N、Nージメチルアセトアミ ド、ヘキサメチルホスホリックトリアミドなどのアミド 類、N-メチルピロリドンなどの環状アミド類、テトラ メチル尿素、1、3ージメチルー2ーイミダゾリジノン などの尿素誘導体類、ジメチルスルホキシドなどのスル ホキシド類、炭酸エチレン、炭酸プロピレンなどの炭酸 エステル類、アセトニトリル、プロピオニトリル、ベン ゾニトリルなどのニトリル類、ピリジン、キノリンなど の含窒素複素環化合物類、トリエチルアミン、トリエタ ノールアミン、ジエチルアミノアルコール、アニリンな どのアミン類、クロル酢酸、トリクロル酢酸、トリフル オロ酢酸、酢酸などの有機酸の他、ニトロメタン、二硫 化炭素、スルホランなどの溶剤を用いることができる。 【0054】これらの溶剤は、また、複数の種類のもの を混合して用いても良い。

【0055】これらの液状のマトリックス材料中へナフ トキノンまたはアントラキノン誘導体を溶解またはコロ イド分散させるには公知の方法を用いることができる。 例えば、ナフトキノンまたはアントラキノン誘導体を有 機溶剤や水ガラスに溶解する方法、ナフトキノンまたは アントラキノン誘導体と不揮発性で液状のマトリックス 材料を共通の揮発性溶媒中へ溶解して混合した後、溶媒 を蒸発させて除去する方法、液状の有機高分子系マトリ ックス材料の原料モノマー中へ、必要に応じて溶媒を用 いて、ナフトキノンまたはアントラキノン誘導体を溶解 または分散させてから該モノマーを重合ないし重縮合さ せて液状のマトリックス材料を形成する方法、ナフトキ ノンまたはアントラキノン誘導体の超微粒子を液状のマ トリックス材料中で形成させる方法、化学的気相成長 法、スパッタリング法、不活性ガス中蒸発法などの気相 法で製造した超微粒子を、必要に応じて分散剤を用い て、液状のマトリックス材料中へ捕集する方法などを好 適に用いることができる。一般に、色素と液状のマトリ ックス材料の組み合わせおよび加工方法を工夫すること で、色素分子を凝集させ、「H会合体」や「J会合体」 などと呼ばれる特殊な会合体を形成させることができる ことが知られているが、液状のマトリックス材料中のナ フトキノンまたはアントラキノン誘導体分子をこのよう

な凝集状態もしくは会合状態を形成する条件で使用して も良い。

【0056】 [光学素子] 本発明において、固体、ガラス状態ないしゴム状態の光応答性組成物は、適当な形態の光学素子に加工され、使用される。その際、光学ガラス、石英ガラス、有機ガラスなどの光学材料と組み合わせて使用しても良い。

【0057】本発明で用いられる光学素子の形態は、本発明の光制御装置の構成に応じて、薄膜、厚膜、板状、ブロック状、円柱状、半円柱状、四角柱状、三角柱状、凸レンズ状、凹レンズ状、マイクロレンズアレイ状、ファイバー状、マイクロチャンネルアレイ状、および光導波路型などの中から適宜選択することができる。本発明で用いられる光学素子の作成方法は、光学素子の形態および使用する光応答性組成物の種類に応じて任意に選定され、公知の方法を用いることができる。

【0058】例えば、薄膜状の光学素子を例えば固体、ガラス状態ないしゴム状態の光応答性組成物から製造する場合、ナフトキノンまたはアントラキノン誘導体および固体、ガラス状態ないしゴム状態のマトリックス材料を溶解した溶液を例えばガラス板上に塗布法、ブレードコート法、ロールコート法、スピンコート法、ディッピング法、スプレー法などの塗工法で塗工するか、あるいは、平版、凸版、凹版、孔版、スクリーン、転写などの印刷法で印刷すれば良い。この場合、ゾルゲル法による無機系マトリックス材料作成方法を利用することもできる。

【0059】例えば、用いる有機高分子系マトリックス 材料が熱可塑性の場合、ホットプレス法(特開平4-9 9609号公報)や延伸法を用いても薄膜ないし厚膜状 の膜型光学素子を作成することができる。

【0060】板状、ブロック状、円柱状、半円柱状、四角柱状、三角柱状、凸レンズ状、凹レンズ状、マイクロレンズアレイ状の光学素子を作成する場合は、例えば有機高分子系マトリックス材料の原料モノマーにナフトキノンまたはアントラキノン誘導体を溶解または分散させたものを用いてキャスティング法やリアクション・インジェクション・モールド法で成形することができる。また、熱可塑性の有機高分子系マトリックス材料を用いる場合、ナフトキノンまたはアントラキノン誘導体を溶解または分散したペレットまたは粉末を加熱溶融させてから射出成形法で加工しても良い。

【0061】ファイバー状の光学素子は、例えば、金属イオンをドープした石英ガラスを溶融延伸してファイバー化する方法、ガラスキャピラリー管の中に有機高分子系マトリックス材料の原料モノマーにナフトキノンまたはアントラキノン誘導体を溶解または分散させたものを流し込むか、または、毛管現象で吸い上げたものを重合させる方法、または、ナフトキノンまたはアントラキノン誘導体を溶解または分散させた熱可塑性の有機高分子

系マトリックス材料の円柱、いわゆるプリフォームをガラス転移温度よりも高い温度まで加熱、糸状に延伸してから、冷却する方法などで作成することができる。

【0062】上記のようにして作成したファイバー状の 光学素子を多数束ねて接着ないし融着処理してから薄片 状ないし板状にスライスすることによりマイクロチャン ネルアレイ型の光学素子を作成することもできる。

【0063】導波路型の光学素子は、例えば、基板上に作成した溝の中に有機高分子系マトリックス材料の原料モノマーにナフトキノンまたはアントラキノン誘導体を溶解または分散させたものを流し込んでから重合させる方法、または、基板上に形成した薄膜状光学素子をエッチングして「コア」パターンを形成し、次いで、ナフトキノンまたはアントラキノン誘導体を含まないマトリックス材料で「クラッド」を形成する方法によって作成することができる。

【0064】本発明では、前記制御光および前記信号光を収束させるための収束手段、および/または、前記光学素子中の前記光応答性組成物を透過した後、発散していく信号光光線束のうち、前記強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出す手段、および/または、前記光学素子中の前記光応答性組成物を透過してきた信号光と制御光の混合光を信号光と制御光とに分離する手段を、前記光学素子に組み込んだ一体構造の光学素子を用いることができる。

【 O O 6 5 】 [光学セル] 本発明において、前記光応答性組成物が液体の場合、前記液状光応答性組成物を充填した光学セルを前記光学素子として使用する。

【 0 0 6 6】本発明で用いられる光学セルは、液状の光応答性組成物を保持する機能、および液状の光応答性組成物に実効的に形態を付与する機能を有し、更に、収束されて照射される信号光および制御光を受光して前記光応答性組成物へ前記信号光および前記制御光を伝搬させる機能、および前記光応答性組成物を透過した後、発散していく前記信号光を伝搬させて出射する機能を有するものである。

【 O O 6 7 】本発明で用いられる光学セルの形態は外部 形態と内部形態に大別される。

【0068】光学セルの外部形態は、本発明の光制御装置の構成に応じて、板状、直方体状、円柱状、半円柱状、四角柱状、三角柱状、などの形状のものが用いられる

【 O O 6 9 】光学セルの内部形態とは、すなわち、光応 答性組成物を充填するための空洞の形態であり、液状の 光応答性組成物に、実効的に形態を付与するものであ る。本発明の光制御装置の構成に応じて、光学セルの内 部形態は具体的には、例えば、薄膜、厚膜、板状、直方 体状、円柱状、半円柱状、四角柱状、三角柱状、凸レン ズ状、凹レンズ状、などの中から適宜選択することがで きる。

【OO7O】光学セルの構成および材質は、下記の要件 を満たすものであれば任意のものを使用することができる。

【0071】(1)上記のような外部形態および内部形態を使用条件において精密に維持できること。

【0072】(2) 光応答性組成物に対して不活性であること。

【OO73】(3)光応答性組成物を構成する諸成分の放散・透過・浸透による組成変化を防止できること。

【 O O 7 4 】 (4) 光応答性組成物が、酸素や水など使用環境に存在する化合物と反応することによって劣化することを妨げることができること。

【0075】なお、上記要件のうち、光応答性組成物の 組成変化や劣化を防止する機能は、光学素子としての設 計寿命の範囲内に限り発揮できれば良い。

[0076]

【発明の実施の形態】以下、図面に基づき本発明の実施 形態について説明する。

【0077】 [実施形態1] 図61には本実施形態の光制御装置の概略構成が示されている。このような光学装置構成および配置は、図61に例示するように膜型光学素子8を用いる場合の他、ファイバー型光学素子(図示せず)を用いる場合、光導波路型(図示せず)、マイクロチャンネルアレイ型(図示せず)などの光学素子を用いる場合、および、液状の光応答性組成物を充填した光学セルを用いる場合(実施形態3参照)にも好適に用いることができる。

【0078】ここで、膜型光学素子8は例えば以下の手順で作成することができる。すなわち、下記の式 [6]で表されるアントラキノン誘導体(慣用名ソルベントブルー35)

【化11】

:3.31mgおよびポリメタクリル酸2ーヒドロキシプロピル:1996.7mgをアセトン:200mlに溶解し、水:1000ml中へかき混ぜながら加えて析出した沈殿(アントラキノン色素およびポリマーの混合物)を濾別し、水で洗浄してから減圧下乾燥し、粉砕した。得られたアントラキノン色素およびポリマーの混合粉末を10⁻⁵Pa未満の超高真空下、40℃で2日間加熱を続け、残留溶媒等の揮発成分を完全に除去して、光応答性組成物の粉末を得た。この粉末20mgをスライ

ドガラス($25 \, \text{mm} \times 76 \, \text{mm} \times \mathbb{F}$ さ 1. $150 \, \text{mm}$) およびカバーガラス($18 \, \text{mm} \times 18 \, \text{mm} \times \mathbb{F}$ さ 0. $150 \, \text{mm}$) の間に挟み、真空下 $150 \, \text{C}$ に加熱し、 $2 \, \text{t}$ のガラス板を圧着する方法(真空ホットプレス法)を用いてスライドガラス/カバーガラス間にアントラキノン色素/ポリマーの膜(膜厚 $120 \, \mu \, \text{m}$)を作成した。 なお、アントラキノン色素/ポリマー膜中の色素濃度は、色素/ポリマー混合物の密度を 1. $06 \, \text{C}$ して計算すると、 $5.0 \times 10^{-3} \, \text{mol/look}$

【0079】この膜の透過率は制御光の波長(633 nm)で0.8%、信号光の波長(780 nm)で84%であった。

【0080】図61に概要を例示する本発明の光制御装 置は、制御光の光源1、信号光の光源2、NDフィルタ -3、シャッター4、半透過鏡5、光混合器6、集光レ ンズ7、膜型光学素子8、受光レンズ9、波長選択透過 フィルター20、絞り19、光検出器11および22、 およびオシロスコープ100から構成される。これらの 光学素子ないし光学部品のうち、制御光の光源1、信号 光の光源2、光混合器6、集光レンズ7、膜型光学素子 8、受光レンズ9、および、波長選択透過フィルター2 0は、図61の装置構成で本発明の光制御方法を実施す るために必須の装置構成要素である。なお、NDフィル ター3、シャッター4、半透過鏡5、および絞り19は 必要に応じて設けるものであり、また、光検出器11お よび22、およびオシロスコープ100は、本発明の光 制御方法を実施するためには必要ないが光制御の動作を 確認するための電子装置として、必要に応じて用いられ る。

【0081】次に、個々の構成要素の特徴ならびに動作について説明する。

【0082】制御光の光源1にはレーザー装置が好適に 用いられる。その発振波長および出力は、本発明の光制 御方法が対象とする信号光の波長および使用する光応答 性組成物の応答特性に応じて適宜選択される。レーザー 発振の方式については特に制限はなく、発振波長帯域、 出力、および経済性などに応じて任意の形式のものを用 いることができる。また、レーザー光源の光を非線形光 学素子によって波長変換してから使用しても良い。具体 的には例えば、アルゴンイオンレーザー(発振波長45 7. 9ないし514. 5 nm)、ヘリウム・ネオンレー ザー (633 n m) などの気体レーザー、ルビーレーザ 一やNd:YAGレーザーなどの固体レーザー、色素レ ーザー、半導体レーザーなどを好適に使用することがで きる。信号光の光源2にはレーザー光源からのコヒーレ ント光だけではなく非コヒーレント光を使用することも できる。また、レーザー装置、発光ダイオード、ネオン 放電管など、単色光を与える光源の他、タングステン電 球、メタルハライドランプ、キセノン放電管などからの 連続スペクトル光を光フィルターやモノクロメーターで

波長選択して用いても良い。

【 O O 8 3 】本発明の光制御方法で利用される光応答性 組成物、信号光の波長帯域、および制御光の波長帯域 は、これらの組み合わせとして、使用目的に応じて適切 な組み合わせが選定され、用いられる。以下、信号光の 光源 2 として半導体レーザー (発振波長 7 8 0 n m、連続発振出力 6 mW、ビーム整形後の直径約 8 m m の ガウスビーム)、制御光の光源 1 としてヘリウム・ネオンレーザー (発振波長 6 3 3 n m、ビーム直径 2 m m の ガウスビーム)、および前記の光応答性組成物から成る膜型 光学素子 8 の組み合わせを用いた場合について実施形態を説明する。

【 O O 8 4 】 N D フィルター 3 は必ずしも必要ではないが、装置を構成する光学部品や光学素子へ必要以上に高いパワーのレーザー光が入射することを避けるため、また、本発明で用いられる光学素子の光応答性能を試験するにあたり、制御光の光強度を増減するために有用である。この実施形態では後者の目的で数種類の N D フィルターを交換して使用した。

【 O O 8 5 】シャッター4は、制御光として連続発振レーザーを用いた場合に、これをパルス状に明滅させるために用いられるものであり、本発明の光制御方法を実施する上で必須の装置構成要素ではない。すなわち、制御光の光源 1 がパルス発振するレーザーであり、そのパルス幅および発振間隔を制御できる形式の光源である場合や、適当な手段であらかじめパルス変調されたレーザー光を光源 1 として用いる場合は、シャッター 4 を設けなくても良い。

【 O O 8 6 】シャッター4を使用する場合、その形式としては任意のものを使用することができ、例えば、オプティカルチョッパ、メカニカルシャッター、液晶シャッター、光カー効果シャッター、ポッケルセル、音響光学(AO)変調器などを、シャッター自体の作動速度を勘案して適時選択して使用することができる。

【0087】半透過鏡5は、この実施形態において、本 発明の光制御方法の作用を試験するにあたり、制御光の 光強度を常時見積もるために用いるものであり、光分割 比は任意に設定可能である。

【0088】光検出器11および22は、本発明の光・光制御による光強度の変化の様子を電気的に検出して検証するため、また、本発明の光学素子の機能を試験するために用いられる。光検出器11および22の形式は任意であり、検出器自体の応答速度を勘案して適時選択して使用することができ、例えば、光電子増倍管やフォトダイオード、フォトトランジスターなどを使用することができる。

【0089】前記光検出器11および22の受光信号はオシロスコープ100などの他、AD変換器とコンピューターの組み合わせ(図示せず)によってモニターすることができる。

【 O O 9 O 】光混合器 6 は、前記光学素子中を伝播していく制御光および信号光の光路を調節するために用いるものであり、本発明の光制御方法および光制御装置を実施するにあたり重要な装置構成要素の一つである。偏光ビームスプリッター、非偏光ビームスプリッター、またはダイクロイックミラーのいずれも使用することができ、光分割比についても任意に設定可能である。

【0091】集光レンズ7は、信号光および制御光に共通の収束手段として、光路が同一になるように調節された信号光および制御光を収束させて前記光学素子へ照射するためのものであり、本発明の光制御方法および光制御装置の実施に必須な装置構成要素の一つである。集光レンズの焦点距離、開口数、F値、レンズ構成、レンズ表面コートなどの仕様については任意のものを適宜使用することができる。

【0092】この実施形態では集光レンズ7として、倍率40倍、焦点距離5mm、開口数0.65の顕微鏡用対物レンズを用いた。

【0093】受光レンズ9は、収束されて光学素子8へ 照射され、透過してきた信号光および制御光を平行およ び/または収束ビームに戻すための手段であるが、本実 施形態に示すように、前記集光レンズフの開口数より小 さい開口数のレンズを用いることによって、充分な大き さで強度変調および/または光束密度変調された信号光 を再現性良く分別して取り出すことができる。本実施形 態では受光レンズ9として、例えば、倍率20倍、開口 数0.4の顕微鏡レンズを用いた。すなわち、集光レン ズフの開口数より受光レンズ9の開口数を小さくするこ とにより、信号光の光束のうち、強度変調および/また は光束密度変調を強く受けた領域の光束を分別して取り 出すことが可能となり、充分な大きさで変調を受けた信 号光を再現性良く検出できるようになる。もちろん、レ ンズ開口数が大きくても、絞り19を入れたり、光検出 器22に光束の中心部分のみ入射させて実質的に開口数 を小さくしても良いことはいうまでもない。また、後で 述べるように、集光レンズ7および受光レンズ9の代わ りに凹面鏡を用いることも可能である(実施形態4参

【0094】波長選択透過フィルター20は、図61の 装置構成で本発明の光制御方法を実施するために必須の 装置構成要素の一つであり、前配光学素子中の同一の光 路を伝播してきた信号光と制御光の混合光から信号光の みを取り出すための手段の一つとして用いられる。

【0095】波長の異なる信号光と制御光とを分離する ための手段としては他に、プリズム、回折格子、ダイク ロイックミラーなどを使用することができる。

【0096】図61の装置構成で用いられる波長選択透過フィルター20としては、制御光の波長帯域の光を完全に遮断し、一方、信号光の波長帯域の光を効率良く透過することのできるような波長選択透過フィルターであ

れば、公知の任意のものを使用することができる。例えば、色素で着色したプラスチックやガラス、表面に誘電体多層蒸着膜を設けたガラスなどを用いることができる。

【0097】以上のような構成要素から成る図61の光学装置において、光源1から出射された制御光の光ビームは、透過率を加減することによって透過光強度を調節するためのNDフィルター3を通過し、次いで制御光をパルス状に明滅するためのシャッター4を通過して、半透過鏡5によって分割される。

【0098】半透過鏡5によって分割された制御光の一部は光検出器11によって受光される。ここで、光源2を消灯、光源1を点灯し、シャッター4を開放した状態において光学素子8への光ビーム照射位置における光強度と光検出器11の信号強度との関係をあらかじめ測定して検量線を作成しておけば、光検出器11の信号強度から、光学素子8に入射する制御光の光強度を常時見積もることが可能になる。この実施形態では、NDフィルター3によって、膜型光学素子8へ入射する制御光のパワーを0.5mWないし25mWの範囲で調節した。

【0099】半透過鏡5で分割・反射された制御光は、 光混合器6および集光レンズ7を通って、光学素子8に 収束されて照射される。膜型光学素子8を通過した制御 光の光ビームは、受光レンズ9を通過した後、波長選択 透過フィルター20によって遮断される。

【0100】光源2から出射された信号光の光ビームは、前記光混合器6によって、制御光と同一光路を伝播するよう混合され、集光レンズ7を経由して、膜型光学素子8に収束・照射され、素子を通過した光は受光レンズ9および波長選択透過フィルター20を透過した後、必要に応じて設けられる絞り19を通過した後、光検出器22にて受光される。

【0101】図61の光学装置を用いて本発明の光制御方法を実施し、図62および図63に示すような光強度変化を観測した。図62および図63において、111は光検出器11の受光信号、222および223は光検出器22の受光信号である。光検出器22の受光信号222の得られる場合と223の得られる場合の違いは、以下の通りである。

【0102】図61の装置配置においては膜型光学素子8に制御光と信号光とを収束して入射させているが、収束ビーム径が最小となる位置(焦点Fc)を膜型光学素子8の集光レンズ7に近い所(光の入射側)に設定すると、前記光学素子8を透過した前記信号光の見かけの強度が減少する方向の光応答222が観察される。一方、収束ビーム径が最小となる位置(焦点Fc)を膜型光学素子8の受光レンズ9に近い所(光の出射側)に設定すると、前記光学素子8を透過した前記信号光の見かけの強度が増大する方向の光応答223が観察される。

【0103】このような光応答が生じる機構の詳細につ

いては未解明であり、現在、鋭意検討中であるが、制御 光の照射により光応答性組成物の透過率や屈折率等が変 化することに起因するものと推測される。

【 O 1 O 4 】ここで、同一の光路で収束された制御光と信号光の焦点位置と光学素子の位置関係を変化させる方法としては、例えば精密ネジによる微動機構を設けた架台、圧電素子アクチュエータを設けた架台、または超音波アクチュエータを設けた架台などの上に膜型光学素子8を取り付けて上記のように移動させる他、集光レンズ7の材質に非線形屈折率効果の大きいものを用いて制御光パルスのパワー密度を変えて焦点位置を変化させる方法、集光レンズ7の材質に熱膨張係数の大きいものを用いて加熱装置で温度を変えて焦点位置を変化させる方法などを用いることができる。

【0105】図61の光学装置を用いて本発明の光制御方法を実施し、図62および図63に示すような光強度変化を観測した。その詳細は以下に述べる通りである。【0106】まず、制御光の光ビームと信号光の光ビームとが、膜型光学素子8内部または近傍の同一領域で焦点Fcを結ぶように、それぞれの光源からの光路、光混合器6、および集光レンズ7を調節した。なお、前記膜型光学素子8のカバーガラス側から信号光および制御光が入射し、スライドガラス基板側から出射するようなルター20の機能を点検した。すなわち、光源2を消灯した状態で、光源1を点灯し、シャッター4を開閉した場合には光検出器22に応答が全く生じないことを確認したは光検出器22に応答が全く生じないことを確認し

【 O 1 O 7 】なお、収束ビーム径最小位置(焦点 F c)と膜型光学素子8の位置関係を変化させるにあたっては、以下に示す方法を用いた。すなわち、集光レンズ7および受光レンズ9の間隔(d 78+d89)を固定したまま、精密ネジによる微動機構を設けた架台に取り付けた膜型光学素子8の位置を光軸方向に移動し、膜型光学素子8と集光レンズ7の距離を変化させ、同一の光路で収束された制御光および信号光の焦点位置と膜型光学素子8との位置関係を変化させた。

【0108】まず前記焦点Fcを膜型光学素子8の集光レンズ7側に設置した場合について述べる。この場合の、制御光の波形111に対する信号光の応答波形222を図62に示す。

【0109】シャッター4を閉じた状態で制御光の光源 1を点灯し、次いで、時刻t1 において光源2を点灯し 光学素子8へ信号光を照射すると、光検出器22の信号 強度はレベルCからレベルAへ増加した。

【 O 1 1 O 】時刻 t 2 においてシャッター4を開放し、 光学素子8内部の信号光が伝播しているのと同一の光路 へ制御光を収束・照射すると光検出器22の信号強度は レベルAからレベルBへ減少した。すなわち、信号光の 見かけの強度が減少する方向の光応答が観察された。こ の変化の応答時間は2マイクロ秒未満であった。

【0111】時刻t3においてシャッター4を閉じ、光学素子8への制御光照射を止めると光検出器22の信号強度はレベルBからレベルAへ復帰した。この変化の応答時間は3マイクロ秒未満であった。

【0112】時刻 t 4 においてシャッター4を開放し、次いで、時刻 t 5 において閉じると、光検出器 2 2 の信号強度はレベルAからレベルBへ減少し、次いでレベルAへ復帰した。

【0113】時刻t6において光源2を消灯すると光検出器22の出力は低下し、レベルCへ戻った。

【0114】次いで、前記焦点Fc を膜型光学素子8の 受光レンズ9側に設置した場合について述べる。この場合の、制御光の波形111に対する信号光の応答波形2 23を図63に示す。

【 O 1 1 5 】シャッター4を閉じた状態で制御光の光源1を点灯し、次いで、時刻 t 1 において光源2を点灯し光学素子8へ信号光を照射すると、光検出器22の信号強度はレベルCからレベルAへ増加した。

【 O 1 1 6 】時刻 t 2 においてシャッター4を開放し、 光学素子8内部の信号光が伝播しているのと同一の光路 へ制御光を収束・照射すると光検出器22の信号強度は レベルAからレベルDへ増加した。すなわち、信号光の 見かけの強度が増大する方向の光応答が観察された。こ の変化の応答時間は2マイクロ秒未満であった。

【0117】時刻t3においてシャッター4を閉じ、光学素子8への制御光照射を止めると光検出器22の信号強度はレベルロからレベルAへ復帰した。この変化の応答時間は3マイクロ秒未満であった。

【0118】時刻 t 4 においてシャッター 4 を開放し、次いで、時刻 t 5 において閉じると、光検出器 2 2 の信号強度はレベルAからレベルDへ増加し、次いでレベルAへ復帰した。

【0119】時刻t6において光源2を消灯すると光検出器22の出力は低下し、レベルCへ戻った。

【0120】以上まとめると、膜型光学素子8へ、制御光を図62または図63の111に示すような波形で表される光強度の時間変化を与えて照射したところ、信号光の光強度をモニターして示す光検出器22の出力波形は図62の222または図63の223に示すように、制御光の光強度の時間変化に対応して可逆的に変化した。すなわち、制御光の光強度の増減または断続により信号光の透過を制御すること、すなわち光で光を制御すること(光・光変調)ができることが確認された。

【0121】なお、制御の光の断続に対応する信号光の 光強度の変化の程度は、前配の光検出器 22の出力レベ ルA、BおよびCを用いて次に定義される値 Δ T [単位 %]または、A、CおよびDを用いて次に定義される値 Δ T'[単位%] 【数1】 Δ T =100 [(A-B) \angle (A-C)] Δ T' =100 [(D-A) \angle (A-C)]

によって定量的に比較することができる。ここで、Aは制御光を遮断した状態で信号光の光源2を点灯した場合の光検出器22の出力レベル、BおよびDは信号光と制御光を同時に照射した場合の光検出器22の出力レベル、Cは信号光の光源2を消灯した状態の光検出器22の出力レベルである。

【O122】上の例において、制御光の入射パワーを2OmWとし、膜型光学素子8を移動して信号光の光応答の向きと大きさを調べたところ、信号光強度が減少する向きの応答の大きさ Δ Tの最大値は84%、見かけの信号光強度が増加する向きの応答の大きさ Δ T、の最大値は35%であった。

【0123】上記のように収束ビーム径が最小となる位 置(焦点Fc)と膜型光学素子8の位置関係を変えるこ とによって、信号光の光応答の向きを逆転させ、信号光 の見かけの強度が減少する方向、または、増加する方向 の応答を得ることができる。このような光応答変化の生 じる機構を調べるため、光制御を行った場合に起こる信 号光ビーム断面における光強度分布の変化の測定を行っ た。すなわち、図61の装置において、受光レンズ9を 集光レンズ7の開口数(本実施形態の場合は0.65) よりも大きな開口数(例えば0.75)のものに変更 し、絞り19を取り外し、光検出器22の代わりに光強 度分布測定器(図64)を設置し、膜型光学素子8を透 過した光線束のすべてを受光レンズ9で受光・収束させ て前記光強度分布測定器の受光部31 (有効直径4m m)へ入射させ、信号光光線束断面の光強度分布を測定 した。測定結果を図65、66および67に示す。ここ で、光強度分布測定器は、図64に示すように、受光部 31(有効直径4mm)に対して幅1mmの第一のスリ ット32を設け、第一のスリットの長さ方向、すなわち 図64において点Xから点Yの向きに、幅25μmの第 二のスリット33を一定速度で移動させて、2枚のスリ ットが作る 1 mm×25 μmの長方形の窓を通過した光 の強度を、前記窓の移動位置に対応させて測定する装置 である。前記窓の移動位置に対応させて光強度を測定す るには、例えば、第二のスリット33の移動速度に同期 させたストレージオシロスコープ上に、前記窓を通過し た光を受光した検出器の出力を記録すれば良い。図6 5、66および67は、以上のようにして、ストレージ オシロスコープ上に記録された信号光の光ビーム断面に ついての光強度分布を示すものであり、横軸(光ビーム 断面内の位置)は図64の点×から点Yの方向の位置に 対応し、縦軸は光強度を表す。

【 O 1 2 4 】図 6 5 は、膜型光学素子 8 に制御光が入射 せず、信号光のみが入射した場合の前記信号光ビーム断 面の光強度分布である。この場合の光強度分布は、中心 部分の強度が強く、周辺に行くに従い強度が弱まる分布 (おおむね「ガウス分布」) である。

【0125】図66は、収束ビーム径が最小となる位置 (焦点Fc)を膜型光学素子8の集光レンズ7に近い所 (光の入射側)に設定し、制御光を照射したとき見かけ の信号光強度が減少する向きの光応答222が観察され る条件において、制御光を照射したときの信号光ビーム 断面の光強度分布である。この場合の光強度分布は、中 心部分の光強度が弱く、周辺で光強度が増大する分布に なっている。信号光ビーム断面の中心部の光強度は、制 御光強度および膜型光学素子8と焦点の位置関係に依存 して減少し、制御光強度が増すに従い、ゼロに近づいて いく。したがって、この場合、信号光ビームの中心部分 だけを取り出して、見かけの信号光強度を測定すると、 制御光の断続に対応して、信号光の強度が減少する向き の光応答222を、充分な大きさで取り出すことができ る。

【0126】図67は、収束ビーム径が最小となる位置 (焦点Fc)を膜型光学素子8の受光レンズ9に近い所 (光の出射側)に設定し、制御光を照射したとき見かけ の信号光強度が増大する向きの光応答223が観察され る条件において、制御光を照射したときの信号光ビーム 断面の光強度分布である。この場合は、中心部分の光強度 度が、制御光を照射しない場合の中心部分の光強度(図 65)より強くなっている。この場合、信号光ビーム断 面の中心部の光強度は、制御光強度および膜型光学素子 8を焦点位置の関係に依存するが、制御光非照射時の数 倍にも達する。したがって、この場合、信号光ビームの 中心部分だけを取り出して、見かけの信号光強度を測定 すると、制御光の断続に対応して、信号光の強度が増大 する向きの光応答223を充分な大きさで取り出すこと ができる。

【 O 1 2 7 】以上の実験から、制御光の断続による信号 光の光強度変調(光応答)は、信号光ビーム(光東)断 面の中心部で、特に大きく起きていることが判る。した がって、本発明の主旨とは逆に、受光レンズ 9 の開口数 を集光レンズ 7 の開口数よりも大きくして、光学素子 8 を透過した信号光をすべて補足し、光検出器で受光した 場合、検出される光応答は、本発明の場合に比べて著し く小さくなってしまう。また、光検出器に、制御光によ る光変調を受けた部分以外のノイズ成分が取り込まれて しまい、S / N 比が著しく悪くなってしまう。

【0128】〔比較例1〕前記の式 [6]で表されるアントラキノン色素を用いずにポリメタクリル酸2ーヒドロキシプロピルのみを用いた他は実施形態1と同様にしてマトリックス材料単独の薄膜(膜厚120μm)を作成し、この薄膜について実施形態1と同様にして光応答の評価試験を行ったが、制御光(波長633nm)の光を断続しても信号光(波長780nm)の光強度は全く変化しなかった。すなわち、マトリックス材料単独では光応答は全く観測されないことが確認された。したがっ

て、実施形態 1 で観察された光応答は、前記光学素子中 に存在する前記アントラキノン色素に起因することは明 らかである。

【0129】 「実施形態2】本発明の光制御方法および 光制御装置において光応答を大きくするためには前記制御光および前記信号光を各々収束させて前記光学素へ 照射し、かつ、前記制御光および前記信号光のそれぞれ の焦点の近傍の光子密度が最も高い領域が前記光学学 中において互いに重なり合うように前記制御光および 計記信号光の光路をそれぞれ配置すれば良いが、そのためには信号光および制御光を実質的に同一光路で伝播号光の電場の振幅分布がガウス分布となっているガウス で の電場の振幅分布がガウス分布となっているガウス にときの焦点 Fc 近傍における光線束および 波 回る の場子を図 68 に示す。ここで、 波 長 λ の が 最小になる位置、 すなわちビームウェストの半径 ω の は次の式で表される。

[0130]

【数2】 $ω_0 = λ/(π \cdot θ)$

例えば、実施形態 1 で用いた集光レンズ(焦点距離 5 mm、開口数 0 6 5)で波長 6 3 3 nm、ビーム直径 2 mmの制御光を収束したときのビームウエストの半径 ω 0 は 1 0 2 μ m、同様にして波長 7 8 0 nm、ビーム直径 8 mmの信号光を収束したときのビームウエストの半径 ω 0 は 0 3 6 8 μ m(ほぼ回折限界)と計算される。

【0131】図69に示すように、信号光および制御光 が「実質的に同一光路」とみなすことができるのは次の ような場合である:

- 1) 制御光と信号光の光軸が互いに平行であって、制御光の光路、例えば断面 L_{02} (半径 r_2) の中に信号光の光路、例えば断面 L_{+1} 、 L_{01} 、または L_{-1} (半径 r_1 : $r_1 \le r_2$) が里なって伝搬する場合、
- 2)制御光と信号光の光軸が互いに平行であって、信号光の光路、例えば断面 L_{02} (半径 r_{2}) の中に制御光の光路、例えば断面 L_{+1} 、 L_{01} 、または L_{-1} (半径 r_{1} : $r_{1} \leq r_{2}$) が重なって伝搬する場合、
- 3) 制御光と信号光の光軸が互いに平行(光軸間の距離 ++1、 | -1、または | +1 + | -1)であって、制御光の光 路が断面 L+1、 L01、または L-1のいずれか、信号光の 光路も断面 L+1、 L01、または L-1のいずれかである場合。

【0132】表1のデータは、一例として、実施形態1の装置において、集光レンズ7として、開口数0.65の顕微鏡用対物レンズを用い、受光レンズ9として、開口数0.4の顕微鏡用レンズを用い、収束ビーム径が最小となる位置(焦点)を膜型光学素子8の集光レンズ7に近い所(光の入射側)に設定し、前記光学素子を透過した前記信号光が減少する方向の光応答222が観察さ

れる条件下、信号光の光路を断面 L_{02} (直径 $8\,mm$)に固定し、断面 L_{+1} 、 L_{01} 、または L_{-1} (直径 $2\,mm$)の制御光の光路(光軸)を光軸間の距離 I_{+1} または I_{-1} として ± 1 、 $2\,mm$ 平行移動した場合の、信号光・光応答の大きさ Δ T の変化を示したものである。信号光および制御光の光軸が完全に一致している場合の光応答が最大であるが、光軸間の距離 I_{+1} または I_{-1} が ± 0 . $6\,mm$ 程度ずれても、光応答の大きさ Δ T は $8\,\pi$ イントほど変化するにすぎない。

【0133】すなわち、収束された信号光および制御光

のそれぞれの焦点の近傍の光子密度が最も高い領域(ビームウエスト)が前記光学素子中において互いに重なり合うように前記制御光および前記信号光の光路がそれぞれ配置され、これらの領域の重なり合いが最大になったとき、すなわち、前記制御光および前記信号光の光軸が完全に一致したとき前記光応答は最大になること、前記制御光および前記信号光の光路が実質的に同一のとき、充分大きな光応答が得られることが判った。

[0134]

【表1】

制御光(633nm)の 平行移動距離 I/mm	信号光(7 B O n m)の 光応答 ムT/%
-1.2	2 9
-0. 9	60
-0.6	77
-о. з	8 1
0. 0	8 4
+0.3	80
+0.6	7 6
+0.9	5 9
+1.2	30

[実施形態3] 図61に概略構成を示すような実施形態1の光制御装置において、実施形態1における膜型の光学素子8の代わりに、内部形態が薄膜型の光学セル800または810に液状の光応答性組成物を充填して用いる場合について以下に説明する。なお、図61のような光学装置構成および配置は、内部形態が薄膜型の光学セルを用いる場合の他、外部および内部形態が板状、直方体状、円柱状、半円柱状、四角柱状などの光学セルを用いる場合にも好適に用いることができる。

【0135】ここで、内部形態が薄膜型の光学セルは例 えば以下のような構成のものである。

【0136】(1)光学ガラスまたは石英ガラス製セル800(図70)。

【0137】(2)2枚の板ガラスをスペーサーおよび ゴムパッキンを挟んで重ね合わせ、固定用の金属枠で保 持した構成の組立式光学セル810(図71)。

【0138】図70に示すような光学ガラスまたは石英ガラス製セル800は入射・出射面ガラス801および802、側面ガラス803および804、および、底面

ガラス805によって、液状光応答性組成物充填部80 8を形成したものである。ガラス材質としては石英ガラ スのほか、ソーダガラス、ホウケイ酸ガラスなどの光学 ガラスを使用することができ、公知のガラス加工技術に よって製造することができる。光学セルとしての精度を 獲得するためには、ガラス加工時に、入射・出射面ガラ ス801および802の平面性および平行度を高度に維 持する必要がある。液状の光応答性組成物は導入口80 7から導入管806を通じて充填される。導入口807 に例えばポリ四フッ化エチレン製栓(図示せず)を挿入 すること、あるいは、導入口807をガラス加工で封じ ることによって、充填した液状光応答性組成物を光学セ ル中に封印し、前記の光学セルの機能要件を満たすこと ができる。光学ガラスまたは石英ガラス製セル800 は、ガラスを腐食する溶液、例えば強アルカリ性の液 体、フッ化水素酸、またはホウフッ化水素酸などを用い る場合を除き、大多数の有機および無機マトリックス材 料を用いた液状光応答性組成物を充填する際に、広く使 用することができる。特に、マトリックス材料として、

塩酸、硫酸、硝酸、王水、クロルスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、クロル酢酸、トリクロル酢酸、トリフルオロ酢酸、酢酸などの酸を用いる場合に有用である。

【0139】図70に示すガラス製光学セル800と同じような形態を、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネイトなどの透明プラスチック(有機ガラス)で製造し、光学セルとして使用することもできる。ただし、この場合は、マトリックス材料が該プラスチックを溶解したり侵したりしないよう、材料選択・組み合わせに留意する必要がある。

【0140】図71に示すような組立式光学セル810 は、液状光応答性組成物充填部818を設けたスペーサ 一814を2枚の板状の入射・出射面ガラス813およ び815で挟み、これをゴムパッキン812および81 6を介して固定枠811および817で挟み、固定ネジ 穴824および825にネジ(図示せず)を用いて固定 するものである。固定枠817に取り付けた導入管82 2および823は、固定枠817に設けた導入孔82 1、ゴムパッキン816に設けた導入孔820、次いで 入射・出射面ガラス815に設けた導入孔819に通じ ており、これらの導入経路を通して液状の光応答性組成 物を充填部818へ導入することができる。充填部81 8の厚さ、すなわち、信号光および/または制御光が垂 直に入射したとき光応答性組成物中を伝播する光路長 は、組立時のスペーサー818の厚さによって決定され る。スペーサー814、入射・出射面ガラス813およ び815、ゴムパッキン812および815、および、 固定枠811および817は、すべて液状の光応答性組 成物に接触するので、液状のマトリックス材料の溶解 性、浸透性、透過性、および/または腐食性に耐える材 質である必要がある。具体的には、スペーサー814の 材質は光学ガラス、石英ガラス、ポリ四フッ化エチレ ン、ブチルゴム、シリコンゴム、エチレン・プロピレン ゴムなどが好ましい。特に、前記光路長の精度維持と液 のシール性維持を両立させるためには、ポリ四フッ化エ チレンなどのフッ素系高分子材料が好適に用いられる。 入射・出射面ガラス813および815としては、石英 ガラスのほか、合成サファイア、ソーダガラス、ホウケ イ酸ガラスなどの光学ガラスを使用することができる。 また、前記マトリックス材料が無機ガラスを腐食する液 体の場合、ポリメタクリル酸メチル、ポリスチレン、ポ リカーボネイトなどの有機ガラスを用いることもでき る。ゴムパッキン812および816の材質としては、 ブチルゴム、シリコンゴム、エチレン・プロピレンゴ ム、放射線照射架橋したフッ素樹脂系ゴムなどを用いる ことができる。固定枠811および817はステンレ ス、金メッキした真鍮などの金属製のものを好適に用い ることができる。

【0141】以下、光学素子8として、液状光応答性組

成物の膜厚(垂直入射した場合の光路長)が100μmになるように調製された石英ガラス製セル800に前記の式 [6]で表されるアントラキノン誘導体のジクロロメタン溶液(濃度5×10⁻³mol/l)を液状の光応答性組成物として充填したものを用いた場合について説明する。この場合の光学素子8の透過率スペクトルを図72に示す。この光学素子8の透過率は制御光の波長(633nm)で16%、信号光の波長(780nm)で91%であった。

【0142】この光学素子8(薄膜型光学セル800) を実施形態1の場合と同様な光制御装置(図61)に取 り付け、制御光および信号光の収束ビーム径が最小とな る位置(焦点Fc)と膜型光学素子8の位置関係を変え ながら、制御光の断続に対応した信号光の光応答の向き および大きさを実施形態1の場合と同様にして調べた。 すなわち、信号光の光源2として半導体レーザー(発振 波長780nm、連続発振出力6mW、ビーム整形後の 直径約8mmのガウスビーム)を、制御光の光源1とし てヘリウム・ネオンレーザー(発振波長633nm、ビ ーム直径2mmのガウスビーム)を、集光レンズフとし て倍率20倍、開口数0.4の顕微鏡用レンズを、受光 レンズ9として倍率10倍、開口数0.3の顕微鏡用対 物レンズを用い、集光レンズフおよび受光レンズ9の間 隔(d78+d89)を固定したまま、光学素子8としての 光学セル800と集光レンズ7の距離を変化させ、同一 の光路で収束された制御光および信号光の焦点位置と薄 膜型光学セル800との位置関係を変化させて実施し

【0143】制御光の入射パワー10mWのとき、信号光強度が減少する向きの応答の大きさΔTの最大値は95%、見かけの信号光強度が増加する向きの応答の大きさΔT'の最大値は30%であった。なお、制御光の焦点位置を光学セル内の光応答性組成物の入射側近傍に置き、制御光を1ミリ秒よりも長いパルス幅で照射した場合、制御光のパワーを10mWよりも大きくすると、制御光の焦点位置において、溶剤のジクロロメタンが沸騰を始めた。溶剤の沸騰は極めて局部的に起こるため、光学セル内部の圧力上昇は極めて軽微であった。また、制御光を遮断すると、直ちに沸騰は停止した。

【0144】〔比較例2〕従来の技術に基づく比較実験を行うため、特開昭53-137884号公報、特開昭63-231424号公報、および特開昭64-73326号公報の記述に従い、図73に概要を示すような構成の装置を用い、光制御を試みた。すなわち、光路長1cmの石英製溶液セル27に絞り19を通した信号光の光源2からの半導体レーザー光(波長780nm)を照射し、透過した光を波長選択透過フィルター20を経由して光検出器22で受光し、一方、溶液セル27を透過する信号光の光路全体に、信号光に直交する方向から制御光を、投射レンズ26を用いて拡散させて照射した。

図73の装置構成において、信号光の光源1 (波長633nm)、NDフィルター3、シャッター4、半透過鏡5、および、光検出器11の役割および仕様は実施形態1または3の場合と同様である。なお、波長選択透過フィルター20は溶液セル27から散乱してくる制御光が光検出器22に入射するのを防ぐものであり、実施形態1または3で用いたのと同様のものを用いることができる。

【0145】色素としては実施形態3と同様に前配の式 [6]で表されるアントラキノン誘導体を用い、ジクロ ロメタン溶液を溶液セル27に充填して試験した。色素 **濃度については、光路長の相違、すなわち実施形態3の** 場合の光路長100μmに対して100倍の光路長1c mであることを勘案し、実施形態3の場合の100分の 1の濃度(5. 0×10⁻⁵mol/l)に設定し、実効 的な透過率が実施形態3の場合と同等になるよう調節し た。実施形態3の場合と同様に、NDフィルター3によ って、光学素子(溶液セル27)へ入射する制御光のパ ワーをO. 5mWないし25mWの範囲で調節し、制御 光をシャッター4を用いて明滅させた。しかしながら、 制御光のパワーを最大にしても光検出器22へ入射する 信号光の強度は全く変化しないという結果が得られた。 すなわち、制御光のパワーをO.5mWないし25mW の範囲で調節した限りでは、図73の装置構成・装置配 置において光・光制御は実現できなかった。

【0146】 [実施形態4] 図74には本実施形態の光制御装置の概略構成が示されている。このような光学装置構成および配置は、図74に例示するような膜型光学素子8の他に、ファイバー型、光導波路型、マイクロチャンネルアレイ型などの光学素子を用いる場合、および、液状の光応答性組成物を充填した光学セルを用いる場合にも好適に用いることができる。

【0147】光源1および2、NDフィルター3、シャッター4、光検出器11および22、膜型光学素子8、波長選択透過フィルター20、およびオシロスコープ100については実施形態1(図61)と同様のものを同様にして用いた。

【0148】図74に示すような配置でダイクロイックミラー21を用いることで、制御光を分割して、その光強度を光検出器11でモニターすると同時に、制御光と信号光の光路を重ね合わせることができ、図61の配置で必要な光混合器6を省略することができる。ただし、図74の配置においては、ダイクロイックミラー21の波長選択透過および反射を補完するために、信号光を完全に遮断し制御光だけを透過させるような波長選択透過フィルター10を光検出器11の前に設けることが好ましい。また、信号光および/または制御光が光源1および2へ戻り、光源装置に悪影響を与えるのを避けるため、必要に応じて、光アイソレーター13および14を、それぞれ光源1および2の前に設けても良い。

【0149】光路を一致させた信号光および制御光を一緒に収束させて膜型光学素子8へ照射する際の光収束手段として、集光レンズ7および受光レンズ9の代わりに、図74のような配置において凹面鏡15および16を用いることができる。信号光と制御光に共通の収束手段としてレンズを用いる場合、厳密には波長によって焦点距離が異なるという問題が生じるが、凹面鏡ではその心配がない。

【 O 1 5 0 】図7 4 に例示するような、本発明の光制御装置において前記光学素子を透過した後、発散していく信号光光線束のうち、前記強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出すには、次のような方法を採用することができる。【 O 1 5 1 】 (1) 光検出器 2 2 の手前に絞り 1 9 を設ける方法。

【0152】(2) 照射側の凹面鏡15の開口角よりも 受光側の凹面鏡16の開口角を小さくする方法。

【 O 1 5 3 】 (3) 照射側の凹面鏡 1 5 の開口角よりも 受光側の凹面鏡 1 6 の開口角を小さくし、更に、光検出 器 2 2 の手前に絞り 1 9 を設ける方法。

【0154】図74に例示するような、本発明の光制御装置において必須の装置構成要素は光源1および2、ダイクロイックミラー21、波長選択透過フィルター20、凹面鏡15、16、および膜型光学素子8である。なお、図74におけるダイクロイックミラー21の代わりに偏光または非偏光のビームスプリッターを用いることもできる。

【0155】本発明の光制御方法を図74に示すような装置で行う場合の手順として、まず、制御光(光源1)と信号光(光源2)の光路が一致し、共通の焦点Fc(ビームウエスト)位置に光学素子8が配置されるよう調節を行い、次いで、ダイクロイックミラー21ならびに波長選択透過フィルター10および20の機能を点検するため、光源1と2を交互に点灯し、光源1のみ点灯(シャッター4開放)したとき光検出器22に応答がないこと、および光源2のみを点灯したとき光検出器11に応答がないことを確認した。

【0156】以下、実施形態1の場合と同様にして、前 記膜型光学素子8を用いた光・光制御方法を実施し、実 施形態1の場合と同等の実験結果を得た。

【 0 1 5 7 】 [実施形態 5] 図 7 5 には本実施形態の光制御装置の概略構成が示されている。図 6 1 および図 7 4 に例示した装置構成では、信号光と制御光を同じ方向から光応答性光学素子へ照射させているのに比較して、図 7 5 では信号光と制御光を反対方向から、光軸を一致させて同一の焦点で収束するように照射している点に特徴がある。

【0158】このような光学装置構成および配置は、図75に例示するような膜型光学素子8の他に、ファイバー型、光導波路型、マイクロチャンネルアレイ型などの

光学素子を用いる場合、および、液状の光応答性組成物 を充填した光学セルを用いる場合にも好適に用いること ができる。

【0159】図75に例示する装置構成において光源1 および2、NDフィルター3、シャッター4、集光レンズ7、膜型光学素子8、波長選択透過フィルター10および20、光検出器11および22、光アイソレーター13および14、およびオシロスコープ100については実施形態1(図61)および/または実施形態4(図74)の場合と同様のものを同様にして用いることができる。

【0160】図75に示すような配置で2枚のダイクロイックミラー(23および24)を用いることで、信号光と制御光を反対方向から、光軸を一致させて同一の焦点で収束するように照射することができる。なお、2つの集光レンズ7は、光学素子を透過してきた制御光および信号光をそれぞれ平行ビームへ戻すための受光レンズ9としての役割を兼ねている。

【0161】図75に例示するような、本発明の光制御装置において必須の装置構成要素は光源1および2、2枚のダイクロイックミラー(23および24)、波長選択透過フィルター10および20、2つの集光レンズ7、および膜型光学素子8である。

【0162】なお、図75におけるダイクロイックミラー(23および24)の代わりに偏光または非偏光ビームスプリッターを用いることもできる。

【0163】本発明の光制御方法を図75に示すような装置で行う場合の手順として、まず、制御光(光源1)と信号光(光源2)の光路が一致し、共通の焦点位置に光学素子8が配置されるよう調節を行い、次いで、波長選択透過フィルター10および20の機能を点検するため、光源1と2を交互に点灯し、光源1のみ点灯(シャッター4開放)したとき光検出器22に応答がないこと、および光源2のみを点灯したとき光検出器11に応答がないことを確認した。

【 O 1 6 4 】以下、実施形態 1 の場合と同様にして、前 記膜型光学素子 8 を用いた光・光制御方法を実施し、実 施形態 1 の場合と同等の実験結果を得た。

【0165】 [実施形態6] 実施形態3における前記の式 [6] で表されるアントラキノン誘導体の代わりに、色素として、下記の式 [7] で表されるアントラキノン誘導体(慣用名ソルベントグリーン3)

【化12】

を用い、その他は実施形態3に記載の方法と同様にして、アントラキノン誘導体のジクロロメタン溶液 (濃度 5×10^{-3} mol/l)を液状の光応答性組成物として前記の石英ガラス製セル800 (光路長 100μ m)に充填したものを膜型光学素子として用いて、本発明の光制御方法を実施した。

【0166】なお、この膜型光学素子の透過率スペクトルは図76に示す通りであり、透過率は制御光の波長(633nm)で9.5%、信号光の波長(780nm)で85%であった。

【0167】実施形態3の場合と同様にして本発明の光制御方法を実施したところ、制御光の入射パワー5 mWのとき、信号光強度が減少する向きの応答の大きさ Δ T の最大値は85%、見かけの信号光強度が増加する向きの応答の大きさ Δ T の最大値は23%であった。なお、制御光の焦点位置を光学セル内の光応答性組成物の入射側近傍に置き、制御光を1ミリ秒よりも長いパルス幅で照射した場合、制御光のパワーを7 mWよりも大きくすると、制御光の焦点位置において、溶剤のジクロメタンが沸騰を始めた。溶剤の沸騰は極めて局部的に起こるため、光学セル内部の圧力上昇は極めて軽微であった。また、制御光を遮断すると、直ちに沸騰は停止した。

[0168]

【発明の効果】以上、詳細に説明したように、本発明の 光制御方法および光制御装置によれば、例えば、可視領域にあるレーザー光を制御光として、近赤外線領域にある信号光を効率良く変調することが、極めて単純な光学 装置によって、電子回路などを一切用いることなく、実 用上充分な応答速度において実現可能になる。

【 0 1 6 9 】また、本発明の光制御方法および光制御装置を用いた可視光線レーザーによる近赤外線レーザーの直接変調は、例えば、ポリメチルメタクリレート系プラスチック光ファイバー中を伝搬させるのに適した可視光線レーザーによって、空気中を伝搬させるのに適した近赤外線レーザーを直接変調するような用途において極めて有用である。また、例えば光コンピューティングの分野において新しい光演算方式を開発する上で役立つと期待される。

【0170】更に、本発明の光制御方法および光制御装置によれば、光学素子としてナフトキノンまたはアントラキノン誘導体をマトリックス材料中に溶解または分散させた光応答性組成物から成る光学素子を用いることができ、前記光学素子に用いられる材料の選択範囲を広げ、かつ光学素子への加工を容易にし、産業界への利用の道を広く拓くことができる。

【 O 1 7 1 】更に、液状の光応答性組成物を光学素子に充填して使用することにより、光学散乱を小さくすることができ、できる限り小さいパワーで大きな光応答を示す光学装置を提供することができる。また、光学素子中の光応答性組成物の交換を、簡便に実施することができる。また、光応答性組成物中に照射された制御光の焦点近傍の色素が劣化しても、拡散による物質移動によって、光応答性組成物が液状でない場合に比べて長期間、機能を発揮させることができる。

【 O 1 7 2 】更に、揮発性の溶剤を用いて液状光応答性 組成物を作成することによって、過大パワーの制御光が 入射した場合は、前配溶剤が沸騰して泡を発生し、その 結果制御光を遮断し、光学素子が損傷を受けることを防 ぐようにすることができる。

【 0 1 7 3 】 光学素子に制御光および信号光を各々収束させる前記収束手段、および/または、光学素子中の光応答性組成物を透過した後、発散していく信号光光線束のうち、強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出す手段、および/または、光学素子中の前記光応答性組成物を透過してきた信号光と制御光の混合光を、信号光と制御光とに分離する手段を組み込むことによって、極めてシンプルかつコンパクトな光制御装置を提供することができる。

【図面の簡単な説明】

【図1】 本発明に用いられるナフトキノン誘導体の構造を例示した図である。

【図2】 本発明に用いられるナフトキノン誘導体の構造を例示した図である。

【図3】 本発明に用いられるナフトキノン誘導体の構造を例示した図である。

【図4】 本発明に用いられるナフトキノン誘導体の構造を例示した図である。

【図5】 本発明に用いられるナフトキノン誘導体の構造を例示した図である。

【図6】 本発明に用いられるナフトキノン誘導体の構造を例示した図である。

【図7】 本発明に用いられるナフトキノン誘導体の構造を例示した図である。

【図8】 本発明に用いられるナフトキノン誘導体の構造を例示した図である。

【図9】 本発明に用いられるナフトキノン誘導体の構 造を例示した図である。

【図10】 本発明に用いられるナフトキノン誘導体の

構造を例示した図である。

【図11】 本発明に用いられるナフトキノン誘導体の 構造を例示した図である。

【図12】 本発明に用いられるナフトキノン誘導体の 構造を例示した図である。

【図13】 本発明に用いられるナフトキノン誘導体の 構造を例示した図である。

【図14】 本発明に用いられるナフトキノン誘導体の 構造を例示した図である。

【図15】 本発明に用いられるナフトキノン誘導体の 構造を例示した図である。

【図16】 本発明に用いられるナフトキノン誘導体の 構造を例示した図である。

【図17】 本発明に用いられるナフトキノン誘導体の 構造を例示した図である。

【図18】 本発明に用いられるナフトキノン誘導体の 構造を例示した図である。

【図19】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図20】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図21】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図22】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図23】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図24】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図25】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図26】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図27】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図28】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図29】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図30】 本発明に用いられるアントラキノン誘導体の構造を例示した図である。

【図31】 本発明に用いられるアントラキノン誘導体の構造を例示した図である。

【図32】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図33】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図34】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図35】 本発明に用いられるアントラキノン誘導体

の構造を例示した図である。

【図36】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図37】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図38】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図39】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図40】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図41】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図42】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図43】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図44】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図45】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図46】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図47】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図48】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図49】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図50】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図51】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図52】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図53】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図54】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図55】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図56】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図57】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図58】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図59】 本発明に用いられるアントラキノン誘導体 の構造を例示した図である。

【図60】 本発明に用いられるアントラキノン誘導体

の構造を例示した図である。

【図61】 本発明を実施する際に用いられる装置構成 を例示した実施形態1の構成図である。

【図62】 制御光および信号光の光強度時間変化を例 示した図である。

【図63】 制御光および信号光の光強度時間変化を例 示した図である。

光強度分布測定に用いたスリットと光ビー 【図64】 ムとの関係を示す図である。

【図65】 信号光のビーム断面の光強度分布を表した 図である。

信号光のビーム断面の光強度分布を表した 【図66】 図である。

【図67】 信号光のビーム断面の光強度分布を表した 図である。

【図68】 集光レンズなどで収束されたガウスビーム の焦点近傍における様子を表した模式図である。

【図69】 制御光および信号光の光路(および光軸) の関係を例示した図である。

【図70】 光学ガラスまたは石英ガラス製光学セルを 例示した模式図である。

【図71】 組立式光学セルの構成部品を例示した模式 図である。

【図72】 実施形態3の膜型光学素子(薄膜型光学セ ル)の透過率スペクトルである。

【図73】 従来技術で用いられている装置構成を例示 した構成図である。

【図74】 本発明を実施する際に用いられる装置構成 を例示した実施形態4の構成図である。

【図75】 本発明を実施する際に用いられる装置構成 を例示した実施形態5の構成図である。

【図76】 実施形態6の膜型光学素子(薄膜型光学セ ル)の透過率スペクトルである。

【符号の説明】

1 制御光の光源、2 信号光の光源、3 NDフィル ター、4 シャッター、5 半透過鏡、6 光混合器、 7 集光レンズ、8 光応答性組成物から成る光学素 子、9 受光レンズ、10 波長選択透過フィルター (信号光遮断用)、11 光検出器、13 光アイソレ ーター(制御光用)、14 光アイソレーター(信号光 用)、15 凹面鏡、16 凹面鏡、19 絞り、20 波長選択透過フィルター(制御光遮断用)、21 ダ イクロイックミラー、22 光検出器(信号光の光強度 検出用)、23 ダイクロイックミラー、24 ダイク ロイックミラー、26 投射レンズ、27 石英製溶液 セル(光路長1cm)、30波面、31 光強度分布測 定器の受光部(有効直径4mm)、32 第一のスリッ ト (幅1mm) 、33 第二のスリット (幅25μ

m)、100 オシロスコープ、111 光検出器11 からの信号(制御光の光強度時間変化曲線)、222お

よび223 光検出器22からの信号(信号光の光強度 時間変化曲線)、800 ガラス製光学セル、801 入射・出射面ガラス、802 入射・出射面ガラス、8 03 側面ガラス、804 側面ガラス、805 底面 ガラス、806 導入管、807 導入口、808 光 応答性組成物充填部、810 組立式光学セル、811 固定枠、812 ゴムパッキン、813 入射・出射 面ガラス、814 スペーサー、815 入射・出射面 ガラス(導入孔付)、816ゴムパッキン(導入孔 付)、817 固定枠(導入管付)、818 光応答性 組成物充填部、819 導入孔、820 導入孔、82 1 導入孔、822 導入管、823 導入管、824 固定ネジ穴、825 固定ネジ穴、A 制御光を遮断 した状態で信号光の光源を点灯した場合の光検出器22 の出力レベル、B焦点Fc が光学素子8の集光レンズ側 に設定された場合で、かつ信号光の光源を点灯した状態 で制御光を照射した場合の光検出器22の出力レベル、 C 信号光を消灯した状態の光検出器22の出力レベ

ル、D 焦点Fcが光学素子8の受光レンズ側に設定さ れた場合で、かつ信号光の光源を点灯した状態で制御光 を照射した場合の光検出器22の出力レベル、d78 集光レンズ7と光学素子8の距離、d89 光学素子8と 受光レンズ9の距離、FC 焦点、L01、L+1、L-1お よびL02 信号光または制御光の光ビーム断面、I+1お よび 1-1 信号光または制御光の光軸の平行移動距離、 r1 信号光または制御光の光ビーム断面 L01、L+1ま たはL-1の半径、r2 信号光または制御光の光ビーム 断面Ln2の半径、t1 信号光の光源を点灯した時刻、 t2 制御光を遮断していたシャッターを開放した時 刻、t3 制御光をシャッターで再び遮断した時刻、t 制御光を遮断したシャッターを開放した時刻、t5 制御光をシャッターで再び遮断した時刻、 t6 信号 光の光源を消灯した時刻、 θ 集光レンズで収束させた 光ビームの外周部が光軸となす角度、ω0 集光レンズ で収束させたガウスビームのビームウエスト(焦点位置 におけるビーム半径)。

【図2】

【図18】

[図3]

【図4】

【図6】

【図7】

[図8]

【図9】

【図11】

【図12】

[図13]

【図14】

【図67】

【図15】

【図16】

【図17】

【図19】

【図20】

【図21】

[図22]

[図23]

[図24]

【図26】

【図27】

[図28]

[図29]

【図30】

[図31]

【図32】

[図33]

[図34]

[図35]

[図36]

【図37】

[図38]

【図39】

[図40]

CH2CH(OH)CH2CI

【図41】

[図42]

[図43]

【図62】

【図61】

【図63】

【図45】

$$CF_{3}$$

$$CF_{4}$$

$$CONH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

(図 6 4) (図 6 8) (Z 6 4) (

【図46】

【図47】

【図74】

[図48]

[図70]

【図72】

【図49】

[図51]

【図52】

【図53】

【図54】

【図55】

【図56】

【図57】

[図58]

【図59】

【図60】

フロントページの続き

(72) 発明者 宝田 茂

東京都足立区堀之内1丁目9番4号 大日

精化工業株式会社東京製造事業所内

(72)発明者 柳本 宏光

東京都足立区堀之内1丁目9番4号 大日 精化工業株式会社東京製造事業所内 (72) 発明者 辻田 公二

神奈川県横浜市神奈川区守屋町3丁目12番

地 日本ビクター株式会社内

(72) 発明者 上野 一郎

神奈川県横浜市神奈川区守屋町3丁目12番

地 日本ビクター株式会社内