ETH zürich

Einfache elektrische Netzwerke

Manfred Albach, «Elektrotechnik», Kapitel 3

227-0001-00L «Netzwerke und Schaltungen 1»

TH zürich

Magnetisches (bewegte Ladung, Wirbelfeld)

Verknüpfung beider

Woche 5

- Kirchhoff'sche Gleichungen
- Parallel- und Reihenschaltung von Widerständen
- Spannungs- und Stromteiler
- Strom- oder Spannungsrichtige Widerstandsmessung

Lernziele - Einfache elektrische Netzwerke (1/2)

Nach dieser Woche (Lesen im Buch, Vorlesungsstunde, Übungsstunde sowie dem <u>eigenständigen</u> Lösen von Übungsaufgaben) werden Sie in der Lage sein:

- die Kirchhoff'schen Gleichungen anzuwenden,
- komplizierte Widerstandsnetzwerke zu vereinfachen,
- prinzipielle Fehlerquellen bei Widerstandsmessungen zu berücksichtigen,

Zwei exakt gleich grosse Widerstände sind in Reihe geschaltet. Fliesst ein elektrischer Strom durch diese Anordnung, dann ist die Stromstärke im zweiten Widerstand verglichen mit derjenigen im ersten Widerstand

1	100		
-		aleich	arnes
160	1	Sharen and a	Share-

- halb so gross.
- kleiner, aber nicht notwendigerweise halb so gross.

3.4 Die Kirchhoff'schen Gleichungen

Abbildung 3.6: Einfaches Netzwerk

3.4 Die Kirchhoff'schen Gleichungen

Abbildung 3.8: Knotenregel

(3.5)

Knotengesetz auf Clickerfrage 2 angewandt

3.4 Die Kirchhoff'schen Gleichungen

$$\oint\limits_C \vec{\mathbf{E}} \boldsymbol{\cdot} \mathrm{d}\vec{\mathbf{s}} = \int\limits_{P_1}^{P_2} \vec{\mathbf{E}} \boldsymbol{\cdot} \mathrm{d}\vec{\mathbf{s}} + \int\limits_{P_2}^{P_3} \vec{\mathbf{E}} \boldsymbol{\cdot} \mathrm{d}\vec{\mathbf{s}} + \int\limits_{P_3}^{P_1} \vec{\mathbf{E}} \boldsymbol{\cdot} \mathrm{d}\vec{\mathbf{s}} = \mathbf{0} \ .$$

Abbildung 3.7: Maschenregel

3 - Zählpfeile und Maschenregel

Welche der folgenden Gleichungen beschreiben das gezeigte Netzwerk korrekt? (Mehrfachnennung möglich).

$$U_q = U_{R1} + U_{R2} + U_{R3}$$

$$U_q + U_{R1} + U_{R2} + U_{R3} = 0$$

$$U_q = U_{R1} - U_{R2} + U_{R3}$$

$$U_q + U_{R1} - U_{R2} + U_{R3} = 0$$

$$-U_q + U_{R1} - U_{R2} + U_{R3} = 0$$

ETH zürich

4 - Leistung in Schaltung mit Glühbirnen (1)

Die vier Glühbirnen in der Abbildung sind alle gleich. In welcher Schaltung ist die Gesamthelligkeit der Glühbirnen größer?

(Annahme: Die Helligkeit einer Glühbirne ist proportional zur aufgenommenen Leistung.)

- Schaltung I
- Beide Schaltungen leuchten gleich hell.
- Schaltung II

Schaltung I

Schaltung II

ETH zürich

4 - Leistung in Schaltung mit Glühbirnen (1)

Die vier Glühbirnen in der Abbildung sind alle gleich. In welcher Schaltung ist die Gesamthelligkeit der Glühbirnen größer?

(Annahme: Die Helligkeit einer Glühbirne ist proportional zur aufgenommenen Leistung.)

Schaltung I

- Beide Schaltungen leuchten gleich hell.
- Schaltung II

Schaltung I

Schaltung II

Sonderfälle der Parallelschaltung

allgemein:
$$\frac{1}{R_{ges}} = \sum_{k=1}^{n} \frac{1}{R_k} .$$

(3.12)

2 parallele Widerstände:

$$R_{ges} = \frac{R_1 R_2}{R_1 + R_2} \; .$$

(3.13)

n gleiche Widerstände:

$$R_{ges} = \frac{R}{n}$$

(3.14)

Rechnen mit Leitwerten:

$$G_{ges} = \sum_{k=1}^{n} G_k .$$

(3.15)

3.5.1 Der Spannungsteiler

Abbildung 3.17: Schaltung zur Spannungsteilung

Spannungsteiler

5 Decades

Hochspannungsteiler

Schaltungssimulation

Analoge und digitale Schaltungen können sehr umfangreich werden → Simulationsprogramme.

Analoge Schaltungssimulation:

- Spannungsquellen
- Stromquellen
- Bauelemente (Beispiel Widerstand, math. Modell: Ohm'sches Gesetz)
- Darstellung über Netzwerkgleichungen (-> nächste Woche)

Beispiele für Simulationsprogramme:

[https://www.mikrocontroller.net/articles/Schaltungssimulation]

Eispice, GeckoCIRCUITS, GNU Octave ocs Paket, Gnucap, Icfilter, LTspice, ngSpice, NI MultiSim / Electronics Workbench, PLECS, Pspice, qucs, SIMetrix, Simplorer, Solve Elec TCLSpice, Tina, Yenka Analogue Electronics, Simulink

Schaltungssimulation

Analoge und digitale Schaltungen können sehr umfangreich werden → Simulationsprogramme.

Analoge Schaltungssimulation:

- Spannungsquellen
- Stromquellen
- Bauelemente (Beispiel Widerstand, math. Modell: Ohm'sches Gesetz)
- Darstellung über Netzwerkgleichungen (-> nächste Woche)

Beispiele für Simulationsprogramme:

[https://www.mikrocontroller.net/articles/Schaltungssimulation]

Eispice, GeckoCIRCUITS, GNU Octave ocs Paket, Gnucap, Icfilter, LTspice, ngSpice, NI MultiSim / Electronics Workbench, PLECS, Pspice, qucs, SIMetrix, Simplorer, Solve Elec TCLSpice, Tina, Yenka Analogue Electronics, Simulink

Schaltungssimulation

Analoge und digitale Schaltungen können sehr umfangreich werden → Simulationsprogramme.

Analoge Schaltungssimulation:

- Spannungsquellen
- Stromquellen
- Bauelemente (Beispiel Widerstand, math. Modell: Ohm'sches Gesetz)
- Darstellung über Netzwerkgleichungen (-> nächste Woche)

Beispiele für Simulationsprogramme:

[https://www.mikrocontroller.net/articles/Schaltungssimulation]

Eispice GeckoCIRCUITS, ONU Octave ocs Paket, Gnucap, Icfilter, LTspice, ngSpice, NI MultiSim / Electronics Workbench, PLECS, Pspice, qucs, SIMetrix, Simplorer, Solve Electronics, Tina, Yenka Analogue Electronics, Simulink

LTSpice

- Freeware
- umfangreiche Bibliothek (an Bauteilen von Analog Devices)
- altmodisches GUI aber einfach zu nutzen.

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

Spannungsteiler

Abbildung 3.17: Schaltung zur Spannungsteilung

Belasteter Spannungsteiler

Parameter«sweeps»

Parameter«sweeps»

.op .step param R 100 9.9k 500 .meas DC uout PARAM Vout/Vin

ETH zürich

Ein Quadrat aus Widerstandsdraht, dessen ohmscher Widerstand für jede Kante $R=0.6\,\Omega$ beträgt, ist mit einer $6\,V$ -Spannungsquelle, wie im Bild gezeigt, verbunden. Wie gross ist die Spannung U an der rechten Kante?

() 2\

() ₁\

3.5.2 Messbereichserweiterung eines Spannungsmessgerätes

3.5.2 Messbereichserweiterung eines Spannungsmessgerätes

Abbildung 3.22: Voltmeter mit Vorwiderstand

$$\frac{U_{\text{max}}}{U} = \frac{R_V}{R_S + R_V}$$

$$\to R_S = \left(\frac{U}{U_{\text{max}}} - 1\right) R_V$$

Zahlenbeispiel

Ein Voltmeter hat im Messbereich bis 200 mV einen Innenwiderstand von 1 k Ω .

Welcher Seriewiderstand R_s ist erforderlich um im Messbereich bis 2 V, 20 V und 200V messen zu können?

5 Decades

Wheatstone-Brücke zur Widerstandsbestimmung

[telegraph.co.uk]

Charles Wheatstone (1802-1875)

3.5.6 Widerstandsmessung

Abbildung 3.25: Korrekte Spannungsmessung

Ideales Voltmeter $(R_V \rightarrow \infty)$:

$$R = \frac{U_{V}}{I_{A}}$$

3.5.6 Widerstandsmessung

Abbildung 3.26: Korrekte Strommessung

Ideales Amperemeter $(R_A \rightarrow 0)$:

$$R = \frac{U_{V}}{I_{A}}$$

ETH zürich

Übungen der Woche

