	Utech
Name:	
Roll No.:	To Alarma (V Executing and Explains)
Inviailator's Sianature :	

CS/B.Tech(ECE-NEW)/SEM-7/EC-703/2009-102009

CODING AND INFORMATION THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

		as jar as practicable.	
		GROUP – A (Multiple Choice Type Questions)	
1.	Cho	cose the correct alternatives for any ten of the following $10 \propto 1 =$	
	i)	A code with minimum distance $d_{\min} = 5$. How materials are the content of the c	an
		a) 3 b) 2	
	ii)	c) 4 d) 1. A (7, 4) cyclic code is generated by a genera	ıto
		polynomial of degree	

a)

2

c)

5. d)

77504 [Turn over

CS/B.Tech(ECE-NEW)/SEM-7/EC-703/2009-10

iii) The generator polynomial of a cyclic code is a factor of

- a) $X^{n} + 1$
- b) $X^{(n+1)} + 1$
- c) $X^{(n+2)} + 1$
- d) none of these.

iv) The entropy of information source is maximum when symbol occurrences are

- a) equiprobable
- b) different probability
- c) both (a) and (b)
- d) none of these.

v) Measure of information (m_k) of a message m_k with probability p_k is given by

- a) $\log_b (1/p_k)$
- b) $\log_b(p_k)$
- c) $\log_b (1 p_k)$
- d) $\log_b (1/1 p_k)$.

vi) The ideal communication channel is defined for a system which has

- a) Finite C
- b) BW = 0
- c) S/N = 0
- d) Infinite C.

vii) Which of the following technique is used for Viterbi algorithm for decoding?

- a) Code tree
- b) Trellis
- c) State diagram
- d) Parity generator.

viii) A message that is sent in crytography is known as

- a) plain text
- b) cipher text
- c) cracking
- d) decryption.

a) 3

b) 4

c) 2

- d) 1.
- x) If a telephone channel has a bandwidth of 3000 Hz and the SNR = 20 dB, then the channel capacity is
 - a) 3 kbps

- b) 1.19 kbps
- c) 2·19 kbps
- d) 1.19 bps.
- xi) The number of undetectable errors for a (n, k) linear code is
 - a) 2^{n-k}

- b) 2^n
- c) $2^{n} 2^{k}$
- d) 2^{k} .
- xii) A polynomial is called Monic if its leading coefficient is
 - a) 0

b) 1

c) odd

- d) even.
- xiii) A (8, 4) linear code has a code rate of
 - a) 8

b) 4

c) 2

d) 0.5.

CS/B.Tech(ECE-NEW)/SEM-7/EC-703/2009-10

to the message u = 1011 is

- a) 0001101
- b) 1001011
- c) 1001101
- d) 0001011.
- xv) An encoder for a (4, 3, 2) convolution code has a memory order of
 - a) 4

b) 3

c) 2

d) 1.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \propto 5 = 15$

- 2. a) What are the drawbacks of Prefix coding that lead to the discovery of Arithmetic coding?
 - b) Let the alphabet consists of only three symbols A, B and C with probabilities of occurrence P(A) = 0.5,

P(B) = 0.25 and P(C) = 0.25. Suppose the input symbol stream is B A C A, determine the arithmetic code for the steam.

77504 4

		CS/B.Tech(ECE-NEW)/SEM-7/EC-703/2009-10
3.	a)	Prove that the syndrome polynomial in a cycle code
		solely depends on the error polynomials.
	b)	Say $g(x) = (x^3 + x + 1)$ for a (7, 4) cycle code
		Determine the parity check polynomial h (x).
	c)	Determine the generator matrix for
		$g(x) = (x.^3 + x + 1).$
4.	a)	What is Entropy?
	b)	Consider a source X which produces five symbols with
		probabilities 1/2, 1/4, 1/8, 1/16 and 1/16. Find the
		source entropy.
5.	Drav	w the block diagram of a typical data transmission
	syst	em and explian the function of each block.
6.	Desc	eribe RSA algorithm.
		GROUP – C
		(Long Answer Type Questions)
		Answer any <i>three</i> of the following. $3 \times 15 = 45$

7. For a *BSC* shown below find the channel capacity of p=0.9. Derive the formula that you have used. 5+10

Dia.

CS/B.Tech(ECE-NEW)/SEM-7/EC-703/2009-10

8.

The parity check bits of a (8, 4) block code are generated by

$$C_7 = d_1 \approx d_3 \approx d_4$$
, $C_8 = d_2 \approx d_3 \approx d_4$

- a) Find the generator matrix and the parity check matrix for this code.
- b) Find the minimum weight of this code.
- c) Find the error detecting and the error correcting capability of this code.
- d) Show through an example that this code can detect three errors/code word. 6 + 4 + 4 + 1
- 9. a) What are the problems of symmetric key cryptography.
 - b) State the differences between symmetric key & asymmetric key cryptography.
 - c) Explain the main concepts in DES (Data Encryption Standard). 2 + 5 + 8
- 10. a) What are the functions of P box and S box in case of DES algorithm.

6

- b) What are the shortcomings of DES?
- c) Name and explain the advance version of DES.

5 + 5 + 5

77504

- 11. Write shote notes on any *two* of following:
 - a) Shanon Fano algorithm
 - b) Golay codes
 - c) Quantum crytography
 - d) Triple error correcting codes.

77504 7 [Turn over