SEQUENCE LISTING

	(1) GENERAL INFORMATION:
	(i) APPLICANT: Bujard, Hermann
	Gossen, Manfred
5	Salfeld, Jochen G.
,	Voss, Jeffrey W.
	VOSS, Deffley W.
	(ii) TITLE OF INVENTION: Animals Transgenic for a Tetracycline- Controlled Transcriptional Transactivator
10	(iii) NUMBER OF SEQUENCES: 10
	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: Lahive & Cockfield
15 🔹	(B) STREET: 60 State Street
	(C) CITY: Boston
	(D) STATE: Massachusetts
2 0 2 2 0 2 2 0 2	(E) COUNTRY: USA
Ţ	(F) ZIP: 02109-1875
-4	
20	(v) COMPUTER READABLE FORM:
IJ	(A) MEDIUM TYPE: Floppy disk
"Li	(B) COMPUTER: IBM PC compatible
IJ	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
	(D) SOFTWARE: ASCII text
;; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	(vi) CURRENT APPLICATION DATA:
irei Pre	(A) APPLICATION NUMBER:
bii Dii	(B) FILING DATE:
	(C) CLASSIFICATION:
h. I I	
30	(vii) PRIOR APPLICATION DATA:
F-II	(A) APPLICATION NUMBER: 08/383,754
	(B) FILING DAE: 14-JUN-1994
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/076,327
35	(B) FILING DAE: 14-JUN-1993
_	\., ====== = = = = = = = = = = = = =
	(viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME: DeConti, Giulio A., Jr.
	(B) REGISTRATION NUMBER: 31,503
	(C) REFERENCE/DOCKET NUMBER: BBI-013CP2
40	

INFORMATION FOR SEQ ID NO:1:

45

(i) SEQUENCE CHARACTERISTICS:

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (617) 227-7400 (B) TELEFAX: (617) 227-5941

5				(C) TY	PE: RAND	nucl EDNE	008 h leic SSS: line	ació doub	l	rs						
			(ii)	MOL	ECUL	Е ТҮ	PE:	DNA	(gen	omic	:)						
			(vi)	ORIG				: Herp	es S	impl	ev V	irne					
10				(B)	STI	RAIN	: K1	2, K	os	-	031	-1 us					
			(vii)) IMM (B)				CE trai	nsact	iva	tor						
15		((ix)		MAM	Œ/KE		exon	800								
20		((ix)		NAM	E/KE		mRNA									
		(ix)	FEAT (A) (B)	NAM	E/KE ATIO	Y: m N: 1	isc.	bin 7	ding	т						
30		(ix)	FEAT (A) (B)	NAM	E/KE ATIO	Y: m N: 2	isc. 08	bin 335	ding						÷	
		(ix)		NAM			DS 10	05								
								TION									
:#	ATG Met	TCT Ser	AGA Arg	TTA Leu	GAT Asp 5	AAA Lys	AGT Ser	AAA Lys	GTG Val	ATT Ile 10	AAC Asn	AGC Ser	GCA Ala	TTA Leu	GAG Glu 15	CTG Leu	48
40	CTT Leu	AAT Asn	GAG Glu	GTC Val 20	GGA Gly	ATC Ile	GAA Glu	GGT Gly	TTA Leu 25	ACA Thr	ACC Thr	CGT Arg	AAA Lys	CTC Leu 30	GCC Ala	CAG Gln	96
1 5	AAG Lys	CTA Leu	GGT Gly 35	GTA Val	GAG Glu	CAG Gln	CCT Pro	ACA Thr 40	TTG Leu	TAT Tyr	TGG Trp	CAT His	GTA Val 45	AAA Lys	AAT Asn	AAG Lys	144
50	CGG Arg	GCT Ala 50	TTG Leu	CTC Leu	GAC Asp	GCC Ala	TTA Leu 55	GCC Ala	ATT Ile	GAG Glu	ATG Met	TTA Leu 60	GAT Asp	AGG Arg	CAC His	CAT His	192
55	ACT Thr 65	CAC His	TTT Phe	TGC Cys	CCT Pro	TTA Leu 70	GAA Glu	GGG Gly	GAA Glu	AGC Ser	TGG Trp 75	CAA Gln	GAT Asp	TTT Phe	TTA Leu	CGT Arg 80	240
	AAT Asn	AAG Lys	GCT Ala	AAA Lys	AGT Ser 85	TTT Phe	AGA Arg	TGT Cys	GCT Ala	TTA Leu 90	CTA Leu	AGT Ser	CAT His	CGC Arg	GAT Asp 95	GGA Gly	288

		AAA Lys															336
5																	
		GAA Glu															384
10		GCA Ala															432
	ASII	130	Бец	ıyı	AIG	Deu	135	AIG	vai	Oly	1113	140	1111	пец	GIÀ	Cys	
	GTA	TTG	GAA	GAT	CAA	GAG	CAT	CAA	GTC	GCT	AAA	GAA	GAA	AGG	GAA	ACA	480
15	Val 145	Leu	Glu	Asp	Gln	Glu 150	His	Gln	Val	Ala	Lys 155	Glu	Glu	Arg	Glu	Thr 160	
	CCT	ACT	ACT	GAT	AGT	ATG	CCG	CCA	TTA	ATT	CGA	CAA	GCT	ATC	GAA	TTA	528
20	Pro	Thr	Thr	Asp	Ser 165	Met	Pro	Pro	Leu	Leu 170	Arg	Gln	Ala	Ile	Glu 175	Leu	
54	TTT	GAT	CAC	CAA	GGT	GCA	ĠAG	CCA	GCC	TTC	ATT	TTC	GGC	CTT	GAA	TTG	576
25 25	Phe	Asp	His	Gln 180	Gly	Ala	Glu	Pro	Ala 185	Phe	Leu	Phe	Gly	Leu 190	Glu	Leu	
	ATC	ATA	TGC	GGA	TTA	GAA	AAA	CAA	CTT	AAA	TGT	GAA	AGT	GGG	TCC	GCG	624
The Street Lines 1	Ile	Ile	Cys 195	Gly	Leu	Glu	Lys	Gln 200	Leu _	Lys	Cys	Glu	Ser 205	Gly	Ser	Ala	
30	TAC	AGC	CGC	GCG	CGT	ACG	AAA	AAC	AAT	TAC	GGG	TCT	ACC	ATC	GAG	GGC	672
	Tyr	Ser 210	Arg	Ala	Arg	Thr	Lys 215	Asn	Asn	Tyr	Gly	Ser 220	Thr	Ile	Glu	Gly	
	CTG	CTC	GAT	CTC	CCG	GAC	GAC	GAC	GCC	CCC	GAA	GAG	GCG	GGG	CTG	GCG	720
in Action Action	Leu 225	Leu	Asp	Leu	Pro	Asp 230	Asp	Asp	Ala	Pro	Glu 235	Glu	Ala	Gly	Leu	Ala 240	
	GCT	CCG	CGC	CTG	TCC	TTT	CTC	CCC	GCG	GGA	CAC	ACG	CGC	AGA	CTG	TCG	768
40	Ala	Pro	Arg	Leu	Ser 245	Phe	Leu	Pro	Ala	Gly 250	His	Thr	Arg	Arg	Leu 255	Ser	
	ACG	GCC	CCC	CCG	ACC	GAT	GTC	AGC	CTG	GGG	GAC	GAG	CTC	CAC	TTA	GAC	816
45	Thr	Ala	Pro	Pro 260	Thr	Asp	Val	Ser	Leu 265	Gly	Asp	Glu	Leu	His 270	Leu	Asp	
	GGC	GAG	GAC	GTG	GCG	ATG	GCG	CAT	GCC	GAC	GCG	CTA	GAC	GAT	TTC	GAT	864
	Gly	Glu	Asp 275	Val	Ala	Met	Ala	His 280	Ala	Asp	Ala	Leu	Asp 285	Asp	Phe	Asp	
50	CTG	GAC	ATG	TTG	GGG	GAC	GGG	GAT	TCC	CCG	GGT	CCG	GGA	TTT	ACC	CCC	912
	Leu	Asp 290		Leu	Gly	Asp	Gly 295	Asp	Ser	Pro	Gly	9ro 300	Gly	Phe	Thr	Pro	
	CAC	GAC	TCC	GCC	CCC	TAC	GGC	GCT	CTG	GAT	ATG	GCC	GAC	TTC	GAG	TTT	960
55	His 305	Asp	Ser	Ala	Pro	Tyr 310	Gly	Ala	Leu	Asp	Met 315		Asp	Phe	Glu	Phe 320	
		CAG Gln			_					_		_					1008

325 330 335

5

15

1

All the control of the state of the same o

į.

45

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 335 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- 10 Met Ser Arg Leu Asp Lys Ser Lys Val Ile Asn Ser Ala Leu Glu Leu
 1 5 10 15

Leu Asn Glu Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala Gln
20 25 30

Lys Leu Gly Val Glu Gln Pro Thr Leu Tyr Trp His Val Lys Asn Lys
35 40 45

Arg Ala Leu Leu Asp Ala Leu Ala Ile Glu Met Leu Asp Arg His His 50 55 60

Thr His Phe Cys Pro Leu Glu Gly Giu Ser Trp Gln Asp Phe Leu Arg
65 70 75 80

Asn Lys Ala Lys Ser Phe Arg Cys Ala Leu Leu Ser His Arg Asp Gly
85 90 95

Ala Lys Val His Leu Gly Thr Arg Pro Thr Glu Lys Gln Tyr Glu Thr
100 105 110

Leu Glu Asn Gln Leu Ala Phe Leu Cys Gln Gln Gly Phe Ser Leu Glu 115 120 125

Asn Ala Leu Tyr Ala Leu Ser Ala Val Gly His Phe Thr Leu Gly Cys
130 135 140

Val Leu Glu Asp Gln Glu His Gln Val Ala Lys Glu Glu Arg Glu Thr 145 150 155 160

40 Pro Thr Thr Asp Ser Met Pro Pro Leu Leu Arg Gln Ala Ile Glu Leu 165 170 175

Phe Asp His Gln Gly Ala Glu Pro Ala Phe Leu Phe Gly Leu Glu Leu 180 185 190

Ile Ile Cys Gly Leu Glu Lys Gln Leu Lys Cys Glu Ser Gly Ser Ala 195 200 205

Tyr Ser Arg Ala Arg Thr Lys Asn Asn Tyr Gly Ser Thr Ile Glu Gly 210 215 220

Leu Leu Asp Leu Pro Asp Asp Asp Ala Pro Glu Glu Ala Gly Leu Ala 225 230 235 240

55 Ala Pro Arg Leu Ser Phe Leu Pro Ala Gly His Thr Arg Arg Leu Ser

245 250 255

Thr Ala Pro Pro Thr Asp Val Ser Leu Gly Asp Glu Leu His Leu Asp
260 265 270

Gly Glu Asp Val Ala Met Ala His Ala Asp Ala Leu Asp Asp Phe Asp 275 280 285

Leu Asp Met Leu Gly Asp Gly Asp Ser Pro Gly Pro Gly Phe Thr Pro
290 295 300

His Asp Ser Ala Pro Tyr Gly Ala Leu Asp Met Ala Asp Phe Glu Phe 305 310 315 320

15 Glu Gln Met Phe Thr Asp Pro Leu Gly Ile Asp Glu Tyr Gly Gly 325 330 335

(2) INFORMATION FOR SEQ ID NO:3:

5

20

that we take the commencer will be the same than the second to the same time and

35

40

50

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 894 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Herpes Simplex Virus
 - (B) STRAIN: K12, KOS
 - (C) INDIVIDUAL ISOLATE: tTAs transactivator
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 1..894
- (ix) FEATURE:
 - (A) NAME/KEY: mRNA
 - (B) LOCATION: 1..894
- (ix) FEATURE:
 - (A) NAME/KEY: misc. binding
 - (B) LOCATION: 1..207
- 45 (ix) FEATURE:
 - (A) NAME/KEY: misc. binding
 - (B) LOCATION: 208..297
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..891
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATG TCT AGA TTA GAT AAA AGT AAA GTG ATT AAC AGC GCA TTA GAG CTG
55 Met Ser Arg Leu Asp Lys Ser Lys Val Ile Asn Ser Ala Leu Glu Leu

10 15 CTT AAT GAG GTC GGA ATC GAA GGT TTA ACA ACC CGT AAA CTC GCC CAG Leu Asn Glu Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala Gln AAG CTA GGT GTA GAG CAG CCT ACA TTG TAT TGG CAT GTA AAA AAT AAG 144 Lys Leu Gly Val Glu Gln Pro Thr Leu Tyr Trp His Val Lys Asn Lys CGG GCT TTG CTC GAC GCC TTA GCC ATT GAG ATG TTA GAT AGG CAC CAT 192 Arg Ala Leu Leu Asp Ala Leu Ala Ile Glu Met Leu Asp Arg His His 10 55 ACT CAC TTT TGC CCT TTA GAA GGG GAA AGC TGG CAA GAT TTT TTA CGT 240 Thr His Phe Cys Pro Leu Glu Gly Glu Ser Trp Gln Asp Phe Leu Arg AAT AAC GCT AAA AGT TTT AGA TGT GCT TTA CTA AGT CAT CGC GAT GGA Asn Asn Ala Lys Ser Phe Arg Cys Ala Leu Leu Ser His Arg Asp Gly 15 GCA AAA GTA CAT TTA GGT ACA CGG CCT ACA GAA AAA CAG TAT GAA ACT 13 Ala Lys Val His Leu Gly Thr Arg Pro Thr Glu Lys Gln Tyr Glu Thr CO 100 fu 20 CTC GAA AAT CAA TTA GCC TTT TTA TGC CAA CAA GGT TTT TCA CTA GAG 384 Leu Glu Asn Gln Leu Ala Phe Leu Cys Gln Gln Gly Phe Ser Leu Glu 115 ¥1.2 AAT GCA TTA TAT GCA CTC AGC GCT GTG GGG CAT TTT ACT TTA GGT TGC 432 Asn Ala Leu Tyr Ala Leu Ser Ala Val Gly His Phe Thr Leu Gly Cys 135 GTA TTG GAA GAT CAA GAG CAT CAA GTC GCT AAA GAA GAA AGG GAA ACA 480 Val Leu Glu Asp Gln Glu His Gln Val Ala Lys Glu Glu Arg Glu Thr 150 CCT ACT ACT GAT AGT ATG CCG CCA TTA TTA CGA CAA GCT ATC GAA TTA 528 Pro Thr Thr Asp Ser Met Pro Pro Leu Leu Arg Gln Ala Ile Glu Leu TTT GAT CAC CAA GGT GCA GAG CCA GCC TTC TTA TTC GGC CTT GAA TTG Phe Asp His Gln Gly Ala Glu Pro Ala Phe Leu Phe Gly Leu Glu Leu 180 185 ATC ATA TGC GGA TTA GAA AAA CAA CTT AAA TGT GAA AGT GGG TCT GAT 624 Ile Ile Cys Gly Leu Glu Lys Gln Leu Lys Cys Glu Ser Gly Ser Asp 195 200 CCA TCG ATA CAC ACG CGC AGA CTG TCG ACG GCC CCC CCG ACC GAT GTC 672 Pro Ser Ile His Thr Arg Arg Leu Ser Thr Ala Pro Pro Thr Asp Val 40 210 215 AGC CTG GGG GAC GAG CTC CAC TTA GAC GGC GAG GAC GTG GCG ATG GCG 720 Ser Leu Gly Asp Glu Leu His Leu Asp Gly Glu Asp Val Ala Met Ala 225 230 CAT GCC GAC GCG CTA GAC GAT TTC GAT CTG GAC ATG TTG GGG GAC GGG 768

	His	Ala	Asp	Ala	Leu 245	Asp	Asp	Phe	Asp	Leu 250	Asp	Met	Leu	Gly	Asp 255	Gly	
5					CCG Pro												816
					GCC Ala												864
10					GAG Glu					TAG							894
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	NO : 4 :	:								
15				(A) (B) (D)	LENG TYPE TOPO	TH: E: an	297 mino ?: li	amir acid inear	o ac l	cids							
					ENCE		_) ID	NO : 4	٠ • • • • • • • • • • • • • • • • • • •					
And well such such that the first first for the first	Met 1	Ser	Arg	Leu	Asp 5	Lys	Ser	Lys	Val	Ile 10	Asn	Ser	Ala	Leu	Glu 15	Leu	
	Leu	Asn	Glu	Val 20	Gly	Ile	Glu	Gly	Leu 25	Thr	Thr	Arg	Lys	Leu 30	Ala	Gln	
British Commence of State of S	Lys	Leu	Gly 35	Val	Glu	Gln	Pro	Thr 40	Leu	Tyr	Trp	His	Val 45	Lys	Asn	Lys	
14 30	Arg	Ala 50	Leu	Leu	Asp	Ala	Leu 55	Ala	Ile	Glu	Met	Leu 60	Asp	Arg	His	His	
	Thr 65	His	Phe	Cys	Pro	Leu 70	Glu	Gly	Glu	Ser	Trp 75	Gln	Asp	Phe	Leu	Arg 80	
35	Asn	Asn	Ala	Lys	Ser 85	Phe	Arg	Cys	Ala	Leu 90	Leu	Ser	His	Arg	Asp 95	Gly	
	Ala	Lys	Val	His 100	Leu	Gly	Thr	Arg	Pro 105	Thr	Glu	Lys	Gln	Tyr 110	Glu	Thr	
40	Leu	Glu	Asn 115	Gln	Leu	Ala	Phe	Leu 120	_	Gln	Gln	Gly	Phe 125	Ser	Leu	Glu	
45	Asn	Ala 130		Tyr	Ala	Leu	Ser 135		Val	Gly	His	Phe 140	Thr	Leu	Gly	Cys	
	Val 145		Glu	Asp	Gln	Glu 150		Gln	Val	Ala	Lys 155	Glu	Glu	Arg	Glu	Thr 160	
50	Pro	Thr	Thr	Asp	Ser 165		Pro	Pro	Leu	Leu 170	Arg	Gln	Ala	Ile	Glu 175	Leu	

	Phe	Asp	His	Gln 180	Gly	Ala	Glu	Pro	Ala 185	Phe	Leu	Phe	Gly	Leu 190	Glu	Leu	
5	Ile	Ile	Cys 195	Gly	Leu	Glu	Lys	Gln 200	Leu	Lys	Cys	Glu	Ser 205	Gly	Ser	Asp	
10	Pro	Ser 210	Ile	His	Thr	Arg 215	Arg	Leu	Ser	Thr	Ala	Pro 220	Pro	Thr	Asp	Val	
	Ser 225	Leu	Gly	Asp	Glu	Leu 230	His	Leu	Asp	Gly	Glu 235	Asp	Val	Ala	Met	Ala 240	
15	His	Ala	Asp	Ala	Leu 245	Asp	Asp	Phe	Asp	Leu 250	Asp	Met	Leu	Gly	Asp 255	Gly	
	Asp	Ser	Pro	Gly 260	Pro	Gly	Phe	Thr	Pro 265	His	Asp	Ser	Ala	Pro 270	Tyr	Gly	
20	Ala	Leu ·	Asp 275	Met	Ala	Asp	Phe	Glu 280	Phe	Glu	Gln	Met	Phe 285	Thr	Asp	Ala	
	Leu	Gly 290	Ile	Asp	Glu	Tyr	Gly 295	Gly	Phe								
	(2)	INF	OR MA !	rion	FOR	SEQ	ID N	10:5:	:								
		(:	i) SI	(B) (C)	LENC TYPI STRA	FTH: E: nu ANDEI	ACTEF 450 uclei ONESS Y: li	base ic ac S: do	e pai cid ouble								
35 35				MOLE ORIG) AN	genor	nic)							
				(A)	ORG	ANISI	M: Hu K12		-	omega	alovi	irus					
40		(ix)		NAM	•	Y: ml N: 3		450								
		(xi)	SEQU	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	5:					
45	GAA	TTCC	TCG	AGTT'	TACC.	AC T	CCCT	ATCA	G TG	ATAG	AGAA	AAG'	TGAA.	AGT	CGAG'	FTTACC	6
	ACT	CCCT	ATC	AGTG.	ATAG.	AG A	AAAG'	TGAA.	A GT	CGAG'	TTTA	CCA	CTCC	CTA	TCAG'	TGATAG	12
																GTCGAG	18
																TATCAG	24
5.0																GTGAAA	30
50	GTC	GAGC	TCG	GT'AC	:CCGG	GJ, C	GAGT	AGGC	G TG	TACG	GTGG	GAG	GCCT	ATA	TAAG	CAGAGC	36

	TCGTTTAGTG AACCGTCAGA TCGCCTGGAG ACGCCATCCA CGCTGTTTTG ACCTCCATAG	420
	AAGACACCGG GACCGATCCA GCCTCCGCGG	450
	(2) INFORMATION FOR SEQ ID NO:6:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 450 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Human cytomegalovirus(B) STRAIN: Towne	
15	(ix) FEATURE: (A) NAME/KEY: mRNA (B) LOCATION: 382450	
C. I. The Land town town the state of the st	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
io ru	GAATTCCTCG ACCCGGGTAC CGAGCTCGAC TTTCACTTTT CTCTATCACT GATAGGGAGT	60
Harris House	GGTAAACTCG ACTTTCACTT TTCTCTATCA CTGATAGGGA GTGGTAAACT CGACTTTCAC	120
	TTTTCTCTAT CACTGATAGG GAGTGGTAAA CTCGACTTTC ACTTTTCTCT ATCACTGATA	180
	GGGAGTGGTA AACTCGACTT TCACTTTTCT CTATCACTGA TAGGGAGTGG TAAACTCGAC	240
	TTTCACTTT CTCTATCACT GATAGGGAGT GGTAAACTCG ACTTTCACTT TTCTCTATCA	300
	CTGATAGGGA GTGGTAAACT CGAGTAGGCG TGTACGGTGG GAGGCCTATA TAAGCAGAGC	360
	TCGTTTAGTG AACCGTCAGA TCGCCTGGAG ACGCCATCCA CGCTGTTTTG ACCTCCATAG	420
	AAGACACCGG GACCGATCCA GCCTCCGCGG	450
	(2) INFORMATION FOR SEQ ID NO:7:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 398 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic)	
40	(vi) ORIGINAL SOURCE:(A) ORGANISM: Herpes Simplex Virus(B) STRAIN: KOS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	GAGCTCGACT TTCACTTTC TCTATCACTG ATAGGGAGTG GTAAACTCGA CTTTCACTTT	60

	TCTCTATCAC TGATAGGGAG TGGTAAACTC GACTTTCACT TTTCTCTATC ACTGATAGGG	120
	AGTGGTAAAC TCGACTTTCA CTTTTCTCTA TCACTGATAG GGAGTGGTAA ACTCGACTTT	180
	CACTTTTCTC TATCACTGAT AGGGAGTGGT AAACTCGACT TTCACTTTTC TCTATCACTG	240
	ATAGGGAGTG GTAAACTCGA CTTTCACTTT TCTCTATCAC TGATAGGGAG TGGTAAACTC	300
5	GAGATCCGGC GAATTCGAAC ACGCAGATGC AGTCGGGGCG GCGCGGTCCG AGGTCCACTT	360
	CGCATATTAA GGTGACGCGT GTGGCCTCGA ACACCGAG	398
	(2) INFORMATION FOR SEQ ID NO:8:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6244 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular	
	(ii) MOLECULE TYPE: DNA (genomic)	
Real Course Street Street Street Street	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Human cytomegalovirus (B) STRAIN: Towne (hCMV)</pre>	
House mark mark mark	(vii) IMMEDIATE SOURCE: (B) CLONE: pUHD BGR3	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	CTCGAGTTTA CCACTCCCTA TCAGTGATAG AGAAAAGTGA AAGTCGAGTT TACCACTCCC	60
Hone wed	TATCAGTGAT AGAGAAAAGT GAAAGTCGAG TTTACCACTC CCTATCAGTG ATAGAGAAAA	120
	GTGAAAGTCG AGTTTACCAC TCCCTATCAG TGATAGAGAA AAGTGAAAGT CGAGTTTACC	180
Pr. ·	ACTCCCTATC AGTGATAGAG AAAAGTGAAA GTCGAGTTTA CCACTCCCTA TCAGTGATAG	240
25	AGAAAAGTGA AAGTCGAGTT TACCACTCCC TATCAGTGAT AGAGAAAAGT GAAAGTCGAG	300
	CTCGGTACCC GGGTCGAGTA GGCGTGTACG GTGGGAGGCC TATATAAGCA GAGCTCGTTT	360
	AGTGAACCGT CAGATCGCCT GGAGACGCCA TCCACGCTGT TTTGACCTCC ATAGAAGACA	420
	CCGGGACCGA TCCAGCCTCC GCGGCCCCGA ATTCGAGCTC GGTACCGGGC CCCCCTCGA	480
	GGTCGACGGT ATCGATAAGC TTGATATCGA ATTCCAGGAG GTGGAGATCC GCGGGTCCAG	540
30	CCAAACCCCA CACCCATTTT CTCCTCCCTC TGCCCCTATA TCCCGGCACC CCCTCCTCCT	600
	AGCCCTTTCC CTCCTCCCGA GAGACGGGGG AGGAGAAAAG GGGAGTTCAG GTCGACATGA	660
	CTGAGCTGAA GGCAAAGGAA CCTCGGGCTC CCCACGTGGC GGGCGGCGCG CCCTCCCCCA	720
	CCGAGGTCGG ATCCCAGCTC CTGGGTCGCC CGGACCCTGG CCCCTTCCAG GGGAGCCAGA	780

CCTCAGAGGC CTCGTCTGTA GTCTCCGCCA TCCCCATCTC CCTGGACGGG TTGCTCTTCC

The first state with the state of the first state of the state of the

CCCGGCCCTG TCAGGGGCAG AACCCCCCAG ACGG	GAAGAC GCAGGACCCA CCGTCGTTGT 900
CAGACGTGGA GGGCGCATTT CCTGGAGTCG AAGC	CCCGGA GGGGCAGGA GACAGCAGCT 960
CGAGACCTCC AGAAAAGGAC AGCGGCCTGC TGGAG	CAGTGT CCTCGACACG CTCCTGGCGC 1020
CCTCGGGTCC CGGGCAGAGC CACGCCAGCC CTGCC	CACCTG CGAGGCCATC AGCCCGTGGT 1080
GCCTGTTTGG CCCCGACCTT CCCGAAGACC CCCGC	GGCTGC CCCCGCTACC AAAGGGGTGT 1140
TGGCCCCGCT CATGAGCCGA CCCGAGGACA AGGCA	AGGCGA CAGCTCTGGG ACGGCAGCGG 1200
CCCACAAGGT GCTGCCCAGG GGACTGTCAC CATC	CAGGCA GCTGCTGCTC CCCTCCTCTG 1260
GGAGCCCTCA CTGGCCGGCA GTGAAGCCAT CCCCC	GCAGCC CGCTGCGGTG CAGGTAGACG 1320
AGGAGGACAG CTCCGAATCC GAGGGCACCG TGGGC	CCCGCT CCTGAAGGGC CAACCTCGGG 1380
CACTGGGAGG CACGGCGGCC GGAGGAGGAG CTGCC	CCCCGT CGCGTCTGGA GCGGCCGCAG 1440
GAGGCGTCGC CCTTGTCCCC AAGGAAGATT CTCGC	CTTCTC GGCGCCCAGG GTCTCCTTGG 1500
CGGAGCAGGA CGCGCCGGTG GCGCCTGGGC GCTCC	CCCGCT GGCCACCTCG GTGGTGGATT 1560
TCATCCACGT GCCCATCCTG CCTCTCAACC ACGCT	TTTCCT GGCCACCCGC ACCAGGCAGC 1620
TGCTGGAGGG GGAGAGCTAC GACGGCGGGG CCGCG	GGCCGC CAGCCCCTTC GTCCCGCAGC 1680
GGGGCTCCCC CTCTGCCTCG TCCACCCCTG TGGCC	GGGCGG CGACTTCCCC GACTGCACCT 1740
ACCCGCCCGA CGCCGAGCCC AAAGATGACG CGTTC	CCCCCT CTACGGCGAC TTCCAGCCGC 1800
CCGCCCTCAA GATAAAGGAG GAGGAAGAAG CCGCC	CGAGGC CGCGCGCGC TCCCCGCGTA 1860
CGTACCTGGT GGCTGGTGCA AACCCCGCCG CCTTC	CCCGGA CTTCCAGCTG GCAGCGCCGC 1920
CGCCACCCTC GCTGCCGCCT CGAGTGCCCT CGTCC	CAGACC CGGGGAAGCG GCGGTGGCGG 1980
CCTCCCCAGG CAGTGCCTCC GTCTCCTCCT CGTCC	CTCGTC GGGGTCGACC CTGGAGTGCA 2040
TCCTGTACAA GGCAGAAGGC GCGCCGCCCC AGCAC	GGGCCC CTTCGCGCCG CTGCCCTGCA 2100
AGCCTCCGGG CGCCGGCGCC TGCCTGCTCC CGCGC	GGACGG CCTGCCCTCC ACCTCCGCCT 2160
CGGGCGCAGC CGCCGGGGCC GCCCCTGCGC TCTAC	CCCGAC GCTCGGCCTC AACGGACTCC 2220
CGCAACTCGG CTACCAGGCC GCCGTGCTCA AGGAC	GGGCCT GCCGCAGGTC TACACGCCCT 2280
ATCTCAACTA CCTGAGGCCG GATTCAGAAG CCAG	TCAGAG CCCACAGTAC AGCTTCGAGT 2340
CACTACCTCA GAAGATTTGT TTGATCTGTG GGGA	TGAAGC ATCAGGCTGT CATTATGGTG 2400
TCCTCACCTG TGGGAGCTGT AAGGTCTTCT TTAA	AAGGGC AATGGAAGGG CAGCATAACT 2460
ATTTATGTGC TGGAAGAAAT GACTGCATTG TTGA	TAAAAT CCGCAGGAAA AACTGCCCGG 2520
CGTGTCGCCT TAGAAAGTGC TGTCAAGCTG GCAT	GGTCCT TGGAGGGCGA AAGTTTAAAA 2580
AGTTCAATAA AGTCAGAGTC ATGAGAGCAC TCGA	TGCTGT TGCTCTCCCA CAGCCAGTGG 2640

GCATTCCAAA TGAAAGCCAA CGAATCACTT TTTCTCCAAG TCAAGAGATA CAGTTAATTC 2700 CCCCTCTAAT CAACCTGTTA ATGAGCATTG AACCAGATGT GATCTATGCA GGACATGACA 2760 ACACAAAGCC TGATACCTCC AGTTCTTTGC TGACGAGTCT TAATCAACTA GGCGAGCGGC 2820 AACTTCTTC AGTGGTAAAA TGGTCCAAAT CTCTTCCAGG TTTTCGAAAC TTACATATTG 2880 ATGACCAGAT AACTCTCATC CAGTATTCTT GGATGAGTTT AATGGTATTT GGACTAGGAT 2940 GGAGATCCTA CAAACATGTC AGTGGGCAGA TGCTGTATTT TGCACCTGAT CTAATATTAA 3000 ATGAACAGCG GATGAAAGAA TCATCATTCT ATTCACTATG CCTTACCATG TGGCAGATAC 3060 CGCAGGAGTT TGTCAAGCTT CAAGTTAGCC AAGAAGAGTT CCTCTGCATG AAAGTATTAC 3120 TACTTCTTAA TACAATTCCT TTGGAAGGAC TAAGAAGTCA AAGCCAGTTT GAAGAGATGA 3180 GATCAAGCTA CATTAGAGAG CTCATCAAGG CAATTGGTTT GAGGCAAAAA GGAGTTGTTT 3240 CCAGCTCACA GCGTTTCTAT CAGCTCACAA AACTTCTTGA TAACTTGCAT GATCTTGTCA 3300 AACAACTTCA CCTGTACTGC CTGAATACAT TTATCCAGTC CCGGGCGCTG AGTGTTGAAT 3360 TTCCAGAAAT GATGTCTGAA GTTATTGCTG CACAGTTACC CAAGATATTG GCAGGGATGG 3420 TGAAACCACT TCTCTTTCAT AAAAAGTGAA TGTCAATTAT TTTTCAAAGA ATTAAGTGTT 3480 GTGGTATGTC TTTCGTTTTG GTCAGGATTA TGACGTCTCG AGTTTTTATA ATATTCTGAA 3540 AGGGAATTCC TGCAGCCCGG GGGATCCACT AGTTCTAGAG GATCCAGACA TGATAAGATA 3600 CATTGATGAG TTTGGACAAA CCACAACTAG AATGCAGTGA AAAAAATGCT TTATTTGTGA 3660 AATTTGTGAT GCTATTGCTT TATTTGTAAC CATTATAAGC TGCAATAAAC AAGTTAACAA 3720 CAACAATTGC ATTCATTTA TGTTTCAGGT TCAGGGGGAG GTGTGGGAGG TTTTTTAAAG 3780 CAAGTAAAAC CTCTACAAAT GTGGTATGGC TGATTATGAT CCTGCAAGCC TCGTCGTCTG 3840 GCCGGACCAC GCTATCTGTG CAAGGTCCCC GGACGCGCGC TCCATGAGCA GAGCGCCCGC 3900 CGCCGAGGCA AGACTCGGGC GGCGCCCTGC CCGTCCCACC AGGTCAACAG GCGGTAACCG 3960 GCCTCTTCAT CGGGAATGCG CGCGACCTTC AGCATCGCCG GCATGTCCCC TGGCGGACGG 4020 GAAGTATCAG CTCGACCAAG CTTGGCGAGA TTTTCAGGAG CTAAGGAAGC TAAAATGGAG 4080 AAAAAAATCA CTGGATATAC CACCGTTGAT ATATCCCAAT GGCATCGTAA AGAACATTTT 4140 GAGGCATTTC AGTCAGTTGC TCAATGTACC TATAACCAGA CCGTTCAGCT GCATTAATGA 4200 ATCGGCCAAC GCGCGGGAG AGGCGGTTTG CGTATTGGGC GCTCTTCCGC TTCCTCGCTC 4260 ACTGACTCGC TGCGCTCGGT CGTTCGGCTG CGGCGAGCGG TATCAGCTCA CTCAAAGGCG 4320 GTAATACGGT TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG AGCAAAAGGC 4380 CAGCAAAAGG CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC 4440

10

ų.

F

fU

How well

20

25

The first first first the first two tens of the first first first that with

CCCCTGACG	AGCATCACAA	AAATCGACGC	TCAAGTCAGA	GGTGGCGAAA	CCCGACAGGA	4500
CTATAAAGAT	ACCAGGCGTT	TCCCCCTGGA	AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	4560
CTGCCGCTTA	CCGGATACCT	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAA	4620
TGCTCACGCT	GTAGGTATCT	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG	4680
CACGAACCCC	CCGTTCAGCC	CGACCGCTGC	GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	4740
AACCCGGTAA	GACACGACTT	ATCGCCACTG	GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA	4800
GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC	TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	4860
AGAAGGACAG	TATTTGGTAT	CTGCGCTCTG	CTGAAGCCAG	TTACCTTCGG	AAAAAGAGTT	4920
GGTAGCTCTT	GATCCGGCAA	ACAAACCACC	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	4980
CAGCAGATTA	CGCGCAGAAA	AAAAGGATCT	CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	5040
TCTGACGCTC	AGTGGAACGA	AAACTCACGT	TAAGGGATTT	TGGTCATGAG	АТТАТСАААА	5100
AGGATCTTCA	CCTAGATCCT	AATTAAATTT	AAATGAAGTT	ттааатсаат	CTAAAGTATA	5160
TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	TGCTTAATCA	GTGAGGCACC	TATCTCAGCG	5220
ATCTGTCTAT	TTCGTTCATC	CATAGTTGCC	TGACTCCCCG	TCGTGTAGAT	AACTACGATA	5280
CGGGAGGGCT	TACCATCTGG	CCCCAGTGCT	GCAATGATAC	CGCGAGACCC	ACGCTCACCG	5340
GCTCCAGATT	TATCAGCAAT	AAACCAGCCA	GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT	5400
GCAACTTTAT	CCGCCTCCAT	CCAGTCTATT	AATTGTTGCC	GGGAAGCTAG	AGTAAGTAGT	5460
TCGCCAGTTA	ATAGTTTGCG	CAACGTTGTT	GCCATTGCTA	CAGGCATCGT	GGTGTCACGC	5520
TCGTCGTTTG	GTATGGCTTC	ATTCAGCTCC	GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	5580
TCCCCCATGT	TGTGCAAAAA	AGCGGTTAGC	TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	5640
AAGTTGGCCG	CAGTGTTATC	ACTCATGGTT	ATGGCAGCAC	TGCATAATTC	TCTTACTGTC	5700
ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	GGTGAGTACT	CAACCAAGTC	ATTCTGAGAA	5760
TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	CCGGCGTCAA	TACGGGATAA	TACCGCGCCA	5820
CATAGCAGAA	CTTTAAAAGT	GCTCATCATT	GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA	5880
AGGATCTTAC	CGCTGTTGAG	ATCCAGTTCG	ATGTAACCCA	CTCGTGCACC	CAACTGATCT	5940
TCAGCATCTT	TTACTTTCAC	CAGCGTTTCT	GGGTGAGCAA	AAACAGGAAG	GCAAAATGCC	6000
GCAAAAAAGG	GAATAAGGGC	GACACGGAAA	TGTTGAATAC	TCATACTCTT	CCTTTTTCAA	6060
TATTATTGAA	GCATTTATCA	GGGTTATTGT	CTCATGAGCG	GATACATATT	TGAATGTATT	6120
TAGAAAAATA	AACAAATAGG	GGTTCCGCGC	ACATTTCCCC	GAAAAGTGCC	ACCTGACGTC	6180
TAAGAAACCA	TTATTATCAT	GACATTAACC	ТАТАААААТА	GGCGTATCAC	GAGGCCCTTT	6240

CGTC 6244

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4963 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- 10 (vi) ORIGINAL SOURCE:

5

The first think and there have the first the first that we will shall refer the first than the first that the f

25

30

- (A) ORGANISM: Human cytomegalovirus
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: pUHD BGR4
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

60	TACCACTCCC	AAGTCGAGTT	AGAAAAGTGA	TCAGTGATAG	CCACTCCCTA	CTCGAGTTTA
120	ATAGAGAAAA	CCTATCAGTG	TTTACCACTC	GAAAGTCGAG	AGAGAAAAGT	TATCAGTGAT
180	CGAGTTTACC	AAGTGAAAGT	TGATAGAGAA	TCCCTATCAG	AGTTTACCAC	GTGAAAGTCG
240	TCAGTGATAG	CCACTCCCTA	GTCGAGTTTA	AAAAGTGAAA	AGTGATAGAG	ACTCCCTATC
300	GAAAGTCGAG	AGAGAAAAGT	TATCAGTGÅT	TACCACTCCC	AAGTCGAGTT	AGAAAAGTGA
360	GAGCTCGTTT	TATATAAGCA	GTGGGAGGCC	GGCGTGTACG	GGGTCGAGTA	CTCGGTACCC
420	ATAGAAGACA	TTTGACCTCC	TCCACGCTGT	GGAGACGCCA	CAGATCGCCT	AGTGAACCGT
480	CATGACCCTC	CGACCATGAC	ATTCCGGCCA	GCGGCCCCGA	TCCAGCCTCC	CCGGGACCGA
540	GCTGGAGCCC	AAGGGAACGA	CATCAGATCC	GGCCCTACTG	CATCTGGGAT	CACACCAAAG
600	GTACCTGGAC	TGGGCGAGGT	GAGCGGCCCC	GATCCCCCTG	CGCAGCTCAA	CTGAACCGTC
660	CAACGCCGCG	CCTACGAGTT	GAGGGCGCCG	CAACTACCCC	CCGCCGTGTA	AGCAGCAAGC
720	CGGGTCTGAG	CCTACGGCCC	ACCGGCCTCC	CTACGGTCAG	ACGCGCAGGT	GCCGCCGCCA
780	CGTGTCTCCG	CACTCAACAG	GGTTTCCCCC	CGGCCTGGGG	TCGGCTCCAA	GCTGCGGCGT
840	GCCCCACGGC	CTTTCCTGCA	CAGCTGTCGC	CCCGCCGCCG	TGCTACTGCA	AGCCCGCTGA
900	CGAGGCCGGC	ACACGGTGCG	CCCAGCGGCT	GGAGAACGAG	CCTACTACCT	CAGCAGGTGC
960	AGAAAGATTG	AGGGTGGCAG	AATCGACGCC	AAATTCAGAT	TCTACAGGCC	CCGCCGGCAT
1020	TCGCTACTGT	CCAAGGAGAC	ATGGAATCTG	AAGTATGGCT	ATGACAAGGG	GCCAGTACCA
1080	TGAGGGCTGC	TCTGGTCCTG	CATTATGGAG	TTCAGGCTAC	ATGACTATGC	GCAGTGTGCA
1140	AGCCACCAAC	ATATGTGTCC	CATAACGACT	TATTCAAGGA	TCAAGAGAAG	AAGGCCTTCT
1200	' CCGCAAATGC	CCTGCCGGCT	AGCTGCCAGG	CAGGAGGAAG	TTGATAAAAA	CAGTGCACCA

fine first first first some same state of the state of th

TACGAAGTGG	GAATGATGAA	AGGTGGGATA	CGAAAAGACC	GAAGAGGAGG	GAGAATGTTG	1260
AAACACAAGC	GCCAGAGAGA	TGATGGGGAG	GGCAGGGGTG	AAGTGGGGTC	TGCTGGAGAC	1320
ATGAGAGCTG	CCAACCTTTG	GCCAAGCCCG	CTCATGATCA	AACGCTCTAA	GAAGAACAGC	1380
CTGGCCTTGT	CCCTGACGGC	CGACCAGATG	GTCATGGCCT	TGTTGGATGC	TGAGCCCCC	1440
ATACTCTATT	CCGAGTATGA	TCCTACCAGA	CCCTTCAGTG	AAGCTTCGAT	GATGGGCTTA	1500
CTGACCAACC	TGGCAGACAG	GGAGCTGGTT	CACATGATCA	ACTGGGCGAA	GAGGGTGCCA	1560
GGCTTTGTGG	ATTTGACCCT	CCATGATCAG	GTCCACCTTC	TAGAATGTGC	CTGGCTAGAG	1620
ATCCTGATGA	TTGGTCTCGT	CTGGCGCTCC	ATGGAGCACC	CAGTGAAGCT	ACTGTTTGCT	1680
CCTAACTTGC	TCTTGGACAG	GAACCAGGGA	AAATGTGTAG	AGGGCATGGT	GGAGATCTTC	1740
GACATGCTGC	TGGCTACATC	ATCTCGGTTC	CGCATGATGA	ATCTGCAGGG	AGAGGAGTTT	1800
GTGTGCCTCA	AATCTATTAT	TTTGCTTAAT	TCTGGAGTGT	ACACATTTCT	GTCCAGCACC	1860
CTGAAGTCTC '	TGGAAGAGAA	GGACCATATC	CACCGAGTCC	TGGACAAGAT	CACAGACACT	1920
TTGATCCACC	TGATGGCCAA	GGCAGGCCTG	ACCCTGCAGC	AGCAGCACCA	GCGGCTGGCC	1980
CAGCTCCTCC	TCATCCTCTC	CCACATCAGG	CACATGAGTA	ACAAAGGCAT	GGAGCATCTG	2040
TACAGCATGA	AGTGCAAGAA	CGTGGTGCCC	CTCTATGACC	TGCTGCTGGA	GATGCTGGAC	2100
GCCCACCGCC	TACATGCGCC	CACTAGCCGT	GGAGGGGCAT	CCGTGGAGGA	GACGGACCAA	2160
AGCCACTTGG	CCACTGCGGG	CTCTACTTCA	TCGCATTCCT	TGCAAAAGTA	TTACATCACG	2220
GGGGAGGCAG	AGGGTTTCCC	TGCCACAGTC	TGAGAGCTCC	CTGGCGGAAT	TCGAGCTCGG	2280
TACCCGGGGA	TCCTCTAGAG	GATCCAGACA	TGATAAGATA	CATTGATGAG	TTTGGACAAA	2340
CCACAACTAG	AATGCAGTGA	AAAAAATGCT	TTATTTGTGA	AATTTGTGAT	GCTATTGCTT	2400
TATTTGTAAC	CATTATAAGC	TGCAATAAAC	AAGTTAACAA	CAACAATTGC	ATTCATTTTA	2460
TGTTTCAGGT	TCAGGGGGAG	GTGTGGGAGG	TTTTTTAAAG	CAAGTAAAAC	CTCTACAAAT	2520
GTGGTATGGC	TGATTATGAT	CCTGCAAGCC	TCGTCGTCTG	GCCGGACCAC	GCTATCTGTG	2580
CAAGGTCCCC	GGACGCGCGC	TCCATGAGCA	GAGCGCCCGC	CGCCGAGGCA	AGACTCGGGC	2640
GGCGCCCTGC	CCGTCCCACC	AGGTCAACAG	GCGGTAACCG	GCCTCTTCAT	CGGGAATGCG	2700
CGCGACCTTC	AGCATCGCCG	GCATGTCCCC	TGGCGGACGG	GAAGTATCAG	CTCGACCAAG	2760
CTTGGCGAGA	TTTTCAGGAG	CTAAGGAAGC	TAAAATGGAG	AAAAAAATCA	CTGGATATAC	2820
CACCGTTGAT	ATATCCCAAT	GGCATCGTAA	AGAACATTTT	GAGGCATTTC	AGTCAGTTGC	2880
TCAATGTACC	TATAACCAGA	CCGTTCAGCT	GCATTAATGA	ATCGGCCAAC	GCGCGGGGAG	2940
AGGCGGTTTG	CGTATTGGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT	3000

The state of the s

	CGTTCGGCTG	CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG	GTAATACGGT	TATCCACAGA	3060
	ATCAGGGGAT	AACGCAGGAA	AGAACATGTG	AGCAAAAGGC	CAGCAAAAGG	CCAGGAACCG	3120
	TAAAAAGGCC	GCGTTGCTGG	CGTTTTTCCA	TAGGCTCCGC	CCCCTGACG	AGCATCACAA	3180
	AAATCGACGC	TCAAGTCAGA	GGTGGCGAAA	CCCGACAGGA	CTATAAAGAT	ACCAGGCGTT	3240
	TCCCCCTGGA	AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT	3300
	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAA	TGCTCACGCT	GTAGGTATCT	3360
	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG	CACGAACCCC	CCGTTCAGCC	3420
	CGACCGCTGC	GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	AACCCGGTAA	GACACGACTT	3480
	ATCGCCACTG	GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	TAGGCGGTGC	3540
	TACAGAGTTC	TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	AGAAGGACAG	TATTTGGTAT	3600
	CTGCGCTCTG	CTGAAGCCAG	TTACCTTCGG	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA	3660
	ACAAACCACC	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA	CGCGCAGAAA	3720
	AAAAGGATCT	CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	TCTGACGCTC	AGTGGAACGA	3780
	AAACTCACGT	TAAGGGATTT	TGGTCATGAG	ATTATCAAAA	AGGATCTTCA	CCTAGATCCT	3840
	TTTAAATTAA	AAATGAAGTT	ТТАААТСААТ	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGA	3900
	CAGTTACCAA	TGCTTAATCA	GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	3960
	CATAGTTGCC	TGATCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	ACCATCTGGC	4020
	CCCAGTGCTG	CAATGATACC	GCGAGACCCA	CGCTCACCGG	CTCCAGATTT	ATCAGCAATA	4080
,	AACCAGCCAG	CCGGAAGGGC	CGAGCGCAGA	AGTGGTCCTG	CAACTTTATC	CGCCTCCATC	4140
	CAGTCTATTA	ATTGTTGCCG	GGAAGCTAGA	GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	4200
	AACGTTGTTG	CCATTGCTAC	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	4260
	TTCAGCTCCG	GTTCCCAACG	ATCAAGGCGA	GTTACATGAT	CCCCCATGTT	GTGCAAAAA	4320
	GCGGTTAGCT	CCTTCGGTCC	TCCGATCGTT	GTCAGAAGTA	AGTTGGCCGC	AGTGTTATCA	4380
	CTCATGGTTA	TGGCAGCACT	GCATAATTCT	CTTACTGTCA	TGCCATCCGT	AAGATGCTTT	4440
	TCTGTGACTG	GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	4500
	TGCTCTTGCC	CGGCGTCAAT	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC	TTTAAAAGTG	4560
	CTCATCATTG	GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA	GGATCTTACC	GCTGTTGAGA	4620
	TCCAGTTCGA	TGTAACCCAC	TCGTGCACCC	AACTGATCTT	CAGCATCTTT	TACTTTCACC	4680
	AGCGTTTCTG	GGTGAGCAAA	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	4740
	ACACGGAAAT	GTTGAATACT	CATACTCTTC	CTTTTTCAAT	ATTATTGAAG	CATTTATCAG	4800

4920

4963

42

GGTTATTGTC TCATGAGCGG ATACATATTT GAATGTATTT AGAAAAATAA ACAAATAGGG

GTTCCGCGCA CATTTCCCCG AAAAGTGCCA CCTGACGTCT AAGAAACCAT TATTATCATG

ACATTAACCT ATAAAAATAG GCGTATCACG AGGCCCTTTC GTC

o Co
M
J.
T.
ř.
F M
#
T C
<u>C</u> N
fU
F 100
Ĺ
n Em Em A