Прогнозирование направления движения цены биржевых инструментов по новостному потоку

Авторы: эксперт В.В Стрижов, эксперт К.В. Воронцов, консультант Иван Запутляев

Ахияров В Мухитдинова С Борисов А Родионов В Дробин М Говоров И

Курс: Автоматизация научных исследований в машинном обучении (практика, В.В. Стрижов)

Москва, 2018

Цель исследования

Предсказать направление движения цены биржевых инструментов

Задача

Построить модель прогнозирования направление движения цены биржевых инструментов

Предлагаемое решение

Исследование 8-К отчетов об их внутренних событиях

Литература

- 1. Usmanova K.R., Kudiyarov S.P., Martyshkin R.V., Zamkovoy A.A., Strijov V.V. Analysis of relationships between indicators in forecasting cargo transportation // Systems and Means of Informatics, 2018, 28(3).
- 2. Kuznetsov M.P., Motrenko A.P., Kuznetsova M.V., Strijov V.V. Methods for intrinsic plagiarism detection and author diarization // Working Notes of CLEF, 2016, 1609: 912-919.
- Айсина Роза Мунеровна, Тематическое моделирование финансовых потоков корпоративных клиентов банка по транзакционным данным, выпускная квалификационная работа.
- 4. Lee, Heeyoung, et al. "On the Importance of Text Analysis for Stock Price Prediction." LREC. 2014.

Постановка задачи

$$D = \{x(t); y(t)\}, t = [t_1, ..., t_n], y \in \{0, 1\}, 0 - stay, 1 - move$$

$$argmin_{w \in \mathbb{R}^n}(E(w)), \ E(w) = -ln \ p(y|x) = -\sum_{i=1}^m y_i ln \ p_i + (1-y_i) ln \ (1-p_i)$$

Цель работы

Построить и исследовать модель прогнозирования направления движения цены биржевых инструментов

Предлагаемое решение

Исследование 8-К отчетов об их внутренних событиях

Вычислительный эксперимент

Будем рассматривать модели:

- Random Forest(RF)
- 2. Logistic Regression(LR)
- 3. Linear SVM(LSVC)
- 4. XGBoost(XGB)

с Критериями качества:

- 1. F1-score
- 2. AUC-ROC

Используем следующие представления данных:

- 1. Unigram
- 2. NMF 50
- 3. NMF 100
- 4. NMF 200
- 5. Ensemble

Classifier	Features	Data Set	F1 Score	AUC ROC	Average	
					F1 Score	AUC ROC
	Unigrams	1	0.7952	0.5957		
	Unigrams	2	0.8087	0.5000	0.8309	0.5406
	Unigrams	3	0.8889	0.5260		
	NMF 50	1	0.8049	0.6204		
	NMF 50	2	0.8087	0.5000	0.8349	0.5495
	NMF 50	3	0.8912	0.5281		
	NMF 100	1	0.7933	0.5907		
LSVC	NMF 100	2	0.8087	0.5000	0.8310	0.5396
	NMF 100	3	0.8912	0.5281		
	NMF 200	1	0.7962	0.5936		
	NMF 200	2	0.8087	0.5000	0.8312	0.5399
	$\rm NMF~200$	3	0.8889	0.5260		
	Ensemble	1	0.8029	0.6155		
	Ensemble	2	0.8087	0.5000	0.8343	0.5479
	Ensemble	3	0.8912	0.5281		

 ${f Ta}$ блица ${f 3}$ LinearSVC on ${f 3}$ data sets

Classifier	Features	Data Set	F1 Score	AUC ROC	Average	
					F1 Score	AUC ROC
	Unigrams	1	0.7811	0.7181		
	Unigrams	2	0.8061	0.4973	0.8093	0.5565
	Unigrams	3	0.8408	0.4541		
	NMF 50	1	0.7397	0.6080		
	NMF 50	2	0.8087	0.5000	0.7647	0.5394
	NMF~50	3	0.7458	0.5102		
	NMF 100	1	0.7602	0.5841		
RF	NMF 100	2	0.8061	0.4973	0.7984	0.5487
	NMF 100	3	0.8288	0.5648		
	NMF 200	1	0.7720	0.7235		
	NMF 200	2	0.8087	0.5000	0.7996	0.5838
	NMF~200	3	0.8180	0.5278		
	Ensemble	1	0.7907	0.7198		
	Ensemble	2	0.8018	0.5006	0.8045	0.5617
	Ensemble	3	0.821	0.4648		

 ${f Taблицa} \ {f 1} \ {f RandomForestClassifier} \ {f on} \ 3 \ {f data} \ {f sets}$

Classifier	Features	Data Set	F1 Score	AUC ROC	Average	
					F1 Score	AUC ROC
	Unigrams	1	0.8371	0.7623		
	Unigrams	2	0.8035	0.4946	0.835	0.5805
	Unigrams	3	0.8643	0.4846		
	NMF 50	1	0.8239	0.7508		
	NMF 50	2	0.8035	0.4946	0.8284	0.5716
	NMF 50	3	0.8577	0.4693		
	NMF 100	1	0.7989	0.7054		
XGB	NMF 100	2	0.8035	0.4946	0.8257	0.5586
	NMF 100	3	0.8747	0.4759		
	NMF 200	1	0.7923	0.6815		
	NMF 200	2	0.8061	0.4973	0.8221	0.5617
	$\rm NMF~200$	3	0.8679	0.5063		
	Ensemble	1	0.8046	0.7314		
	Ensemble	2	0.8035	0.4946	0.8217	0.5680
	Ensemble	3	0.8571	0.4780		

	Unigrams	1	0.8217	0.6873		
	Unigrams	2	0.8087	0.5000	0.8464	0.5624
	Unigrams	3	0.9087	0.5000		
	NMF 50	1	0.8235	0.6831		
	NMF 50	2	0.8087	0.5000	0.8470	0.5610
	NMF 50	3	0.9087	0.5000		
	NMF 100	1	0.8154	0.6724		
LR	NMF 100	2	0.8087	0.5000	0.8443	0.5575
	NMF 100	3	0.9087	0.5000		
	NMF 200	1	0.8244	0.6811		
	NMF 200	2	0.8087	0.5000	0.8473	0.5604
	NMF 200	3	0.9087	0.5000		
	Ensemble	1	0.8214	0.6782		
	Ensemble	2	0.8087	0.5000	0.8463	0.5594
	Ensemble	3	0.9087	0.5000		

 ${\bf Taблицa} \; {\bf 2} \; {\bf XGBClassifier} \; \& \; {\bf LogisticRegression} \; {\bf on} \; {\bf 3} \; {\bf data} \; {\bf sets}$

Заключение

Лучшие результаты показал Random Forest на Unigrams с гиперпараметрами:

- max_depth = None
- min_samples_leaf = 3
- min_samples_split = 5
- n_estimators = 2000

F1-score = 0.8615, AUC ROC = 0.5961 на трех выборках(train, dev, test)