Interpretable Machine Learning

Introduction to Feature Effects

Learning goals

- Global Feature Effects
- Local Feature Effects

Interpretable Machine Learning

Feature Effects Introduction to Feature Effects

Learning goals

- Global Feature Effects
- Local Feature Effects

FEATURE EFFECTS - GLOBAL VIEW

- Model equation: $\hat{f}(\mathbf{x}) = \hat{\theta}_0 + x_1 \hat{\theta}_1$
- Scalar $\hat{\theta}_1$ describes global effect

FEATURE EFFECTS - GLOBAL VIEW

LM without interaction: $\hat{\theta}_j$ is linear effect of feature x_j (applies globally to all observations):

- Model equation: $\hat{f}(\mathbf{x}) = \hat{\theta}_0 + x_1 \hat{\theta}_1$
- Scalar $\hat{\theta}_1$ describes global effect

FEATURE EFFECTS - GLOBAL VIEW

- Model equation: $\hat{f}(\mathbf{x}) = \hat{\theta}_0 + x_1 \hat{\theta}_1$
- Scalar $\hat{\theta}_1$ describes global effect

GAM without interaction: $\hat{f}_i(x_i)$ is non-lin. effect of feature x_i (applies globally):

- Model equation: $\hat{f}(\mathbf{x}) = \hat{\theta}_0 + \hat{f}_1(x_1)$
- Curve \hat{f}_1 describes global effect

FEATURE EFFECTS - GLOBAL VIEW

LM without interaction: $\hat{\theta}_i$ is linear effect of feature x_i (applies globally to all observations):

- Model equation: $\hat{f}(\mathbf{x}) = \hat{\theta}_0 + x_1 \hat{\theta}_1$
- Scalar $\hat{\theta}_1$ describes global effect

GAM without interaction: $\hat{f}_i(x_i)$ is non-lin. effect of feature x_i (applies globally to all observations):

- Model equation: $\hat{f}(\mathbf{x}) = \hat{\theta}_0 + \hat{f}_1(x_1)$

• Curve \hat{f}_1 describes global effect

Interpretable Machine Learning - 1/3

FEATURE EFFECTS - LOCALIZED VIEW

- Interactions: Feature effect depends on other features and varies across obs.
 - ⇒ E.g., effect of **temperature** varies across **season**
 - ⇒ Multiple values / curves needed to describe effect
- ML models capture non-linear effects and high-order interactions
 - ⇒ Global view often misleading (single curve may fail to capture complexity)
 - ⇒ Need for local feature effect methods to estimate effects for individual obs.

 - ⇒ Global view can be reconstructed by aggregating local effects

FEATURE EFFECTS - LOCALIZED VIEW

- Interactions: Feature effect depends on other features and varies across obs.
 - ⇒ E.g., effect of **temperature** varies across **season**
- ⇒ Multiple values / curves needed to describe effect
- ML models capture non-linear effects and high-order interactions
- ⇒ Global view may mislead (single curve may fail to capture complexity)
- ⇒ Local feat, effect methods needed to estimate effects for individ, obs.
- ⇒ Global view can be reconstructed by aggregating local effects

FEATURE EFFECTS

Feature effects visualize or quantify how model predictions change as a single feature varies, while all other features are held fixed.

- Analogous to regression coefficients (LMs) or Splines (GAMs)
- Different aggregation levels exist (simplification but information loss)
- Methods: ICE curves (local curves)

Individual (curves)

FEATURE EFFECTS

Feature effects visualize or quantify how model predictions change as a single feature varies, while all other features are held fixed.

- Analogous to regression coefficients (LMs) or Splines (GAMs)
- Different aggregation levels exist (simplification but information loss)
- Methods: ICE curves (local curves)

Individual (curves)

FEATURE EFFECTS

Feature effects visualize or quantify how model predictions change as a single feature varies, while all other features are held fixed.

- Analogous to regression coefficients (LMs) or Splines (GAMs)
- Different aggregation levels exist (simplification but information loss)
- Methods: ICE curves (local curves), PD and ALE plots (global curves)

curves

FEATURE EFFECTS

Feature effects visualize or quantify how model predictions change as a single feature varies, while all other features are held fixed.

- Analogous to regression coefficients (LMs) or Splines (GAMs)
- Different aggregation levels exist (simplification but information loss)
- Methods: ICE curves (local curves), PD and ALE plots (global curves)

Interpretable Machine Learning - 3/3

Interpretable Machine Learning - 3 / 3

FEATURE EFFECTS

Feature effects visualize or quantify how model predictions change as a single feature varies, while all other features are held fixed.

- Analogous to regression coefficients (LMs) or Splines (GAMs)
- Different aggregation levels exist (simplification but information loss)
- Methods: ICE curves (local curves), PD and ALE plots (global curves), AME (global value)

FEATURE EFFECTS

Feature effects visualize or quantify how model predictions change as a single feature varies, while all other features are held fixed.

- Analogous to regression coefficients (LMs) or Splines (GAMs)
- Different aggregation levels exist (simplification but information loss)
- Methods: ICE curves (local curves), PD and ALE plots (global curves), AME (global value)

Interpretable Machine Learning - 3/3 © Interpretable Machine Learning - 3/3