$\begin{array}{c} \textbf{3.2} \\ \underline{\text{Indices}} \end{array}$

$m \in M$	machines, $M = \{1, 2, 3, 4, 5\}$
$j \in J$	jobs, $J = \{1, 2, 3, 4, 5\}$
$(m,j) \in P$	$P = \{(m, j) m \text{ can do job } j\}$

<u>Data</u>

 $\begin{array}{ll} \textit{setup}_m & \text{setup time (in minutes) if machine } m \text{ is used} \\ \textit{work}_{m,j} & \text{time to complete job } j \text{ on machine } m \text{ (if applicable)} \\ \textit{additional} & \text{extra 20 minutes needed if machines 1 and 2 are used} \end{array}$

Binary Decision Variables

 USE_m 1 if machine m is used, 0 otherwise

 $OPERATE_{m,j}$ 1 if machine m is used to do job j, 0 otherwise BOTH 1 if both machines 1 and 2 are used, 0 otherwise

Formulation

$\min_{USE,OPERATE,BOTH}$	$\sum_{(m,j) \in P} work_{m,j} OPERATE_{m,j}$	$+\sum_{m\in M} setup_m USE_m$	+ additional BOTH
s.t.	$\sum_{(m,j)\in P} OPERATE_{m,j} \ge 1$	$\forall j \in J$	(Job Completion)
	$\sum_{m (m,j)\in P} OPERATE_{m,j} \le 2$	$\forall m \in M$	(Machine Utilization)
	\sum	$\forall m \in M$	(Can't operate unless do setup)
	$ \begin{cases} J (m,j) \in P\} \\ BOTH \le USE_1 \\ BOTH \le USE_2 \end{cases} $		(Logical Constraints on $BOTH$ to ensure $BOTH = 1$ if use
	$BOTH \leq USE_2$ $BOTH + 1 \geq USE_1 + USE_2$ $BOTH, OPERATE_{m,j}, USE_m \in \{0, 1\}$	$\forall m \in M, \forall j \in J$	machines 1 and 2)

3.3

Indices

$p \in P$	products, $P = \{1, 2, 3\}$
$l \in L$	lines, $L = \{1, 2, 3\}$
T/T	, 1 1 / 1

N natural numbers (including zero)

Data

 $setup_cost_l$ setup cost if line l used in given week

 $worker_cost_l$ pay per worker on line l

 $\begin{array}{ll} \textit{production}_{p,l} & \text{product p on line } l \\ \textit{max_workers} & \text{maximum number of workers, 20 in this instance} \\ \textit{demand}_p & \text{number of product } p \text{ that must be produced} \end{array}$

Integer Decision Variables

 $WORKERS_{p,l}$ number of workers assigned to product p on line l

Binary Decision Variables

 $OPEN_l$ 1 if line l is open, 0 otherwise

Formulation

$$\min_{WORKERS,OPEN} \quad \sum_{l \in L,p \in P} worker_cost_l WORKERS_{p,l} \\ \text{s.t.} \quad \sum_{p \in P} WORKERS_{p,l} \leq max_workersOPEN_l \\ \quad \sum_{p \in P} production_{p,l} WORKERS_{p,l} \geq demand_p \\ \quad \sum_{l \in L} production_{p,l} WORKERS_{p,l} \geq demand_p \\ \quad \sum_{l \in L,p \in P} WORKERS_{p,l} \leq max_workers \\ \quad WORKERS_{p,l} \leq max_workers \\ \quad WORKERS_{p,l} \in \mathbb{N} \\ \quad OPEN_l \in \{0,1\} \\ \end{aligned} \quad \forall p \in P, l \in L \\ \text{(integer constraint)} \\ \text{(binary constraint)}$$