```
In [1]: # Necessary Imports
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        import statsmodels.api as sm
        import warnings
        warnings.filterwarnings('ignore')
```

```
In [2]: #Import data
        df = pd.read_csv('delivery_time.csv')
        df.head(7)
```

Out[2]:		Delivery_Time	Sorting_Time	
	0	21.00	10	
	1	13.50	4	
	2	19.75	6	
	3	24.00	9	
	4	29.00	10	
	5	15.35	6	
	6	19.00	7	

EDA

```
In [3]: df.shape
Out[3]: (21, 2)
In [4]: df.skew()
Out[4]: Delivery_Time
                         0.352390
        Sorting_Time
                         0.047115
        dtype: float64
```

In [5]: #Co-relation of Target and Feature sns.heatmap(df.corr(), annot = True)

Out[5]: <AxesSubplot:>


```
In [6]: df.info()
                                                         #no null values in dataset
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21 entries, 0 to 20
Data columns (total 2 columns):
    Column
                   Non-Null Count Dtype
                   _____
 0
    Delivery_Time 21 non-null
                                   float64
    Sorting_Time
                   21 non-null
                                   int64
dtypes: float64(1), int64(1)
```

memory usage: 464.0 bytes

df.describe()

Out[7]:

	Delivery_Time	Sorting_Time
count	21.000000	21.000000
mean	16.790952	6.190476
std	5.074901	2.542028
min	8.000000	2.000000
25%	13.500000	4.000000
50%	17.830000	6.000000
75%	19.750000	8.000000
max	29.000000	10.000000

Graphical Univariate analysis on dataset

In [8]: sns.distplot(df.Delivery_Time)

Out[8]: <AxesSubplot:xlabel='Delivery_Time', ylabel='Density'>


```
In [9]: sns.distplot(df.Sorting_Time)
```

Out[9]: <AxesSubplot:xlabel='Sorting_Time', ylabel='Density'>

Transforming data - Log scale

```
In [10]:
                     np.log(df['Delivery_Time'])
         df['dt'] =
         df['st'] =
                     np.log(df['Sorting_Time'])
         df.head()
```

Out[10]:		Delivery_Time	Sorting_Time	dt	st
	0	21.00	10	3.044522	2.302585
	1	13.50	4	2.602690	1.386294
	2	19.75	6	2.983153	1.791759
	3	24.00	9	3.178054	2.197225
	4	29.00	10	3.367296	2.302585

```
In [11]: df.skew()
Out[11]: Delivery_Time
                           0.352390
         Sorting_Time
                           0.047115
         dt
                          -0.451290
         st
                          -0.605236
         dtype: float64
```

Graphical Bi-variate analysis on dataset

```
In [12]: #Pairplot of predictor and target
         sns.pairplot(df,vars =['dt','st'])
```

Out[12]: <seaborn.axisgrid.PairGrid at 0x23c241481c0>


```
In [13]: y = df['dt']
         x = df['st']
         plt.scatter(y,x)
                                                           # Scatter plot of new Delivery_t
         plt.xlabel('Sorting Time', fontsize = 10)
                                                           # Named the axes
         plt.ylabel('Delivery Time', fontsize = 10)
         plt.title(label='Scatter Plot', fontsize=20, y=1.05)
         plt.show()
                                                           # Show the plot
```

Scatter Plot

Fitting a Linear Regression Model


```
In [15]: import statsmodels.formula.api as smf
         model = smf.ols('dt~st', data = df).fit()
         model.summary()
```

Out[15]:

OLS Regression Results

Model:OLSAdj. R-squared:0.760Method:Least SquaresF-statistic:64.39Date:Fri, 21 Oct 2022Prob (F-statistic):1.60e-07Time:21:13:02Log-Likelihood:10.291No. Observations:21AIC:-16.58Df Residuals:19BIC:-14.49Df Model:1Covariance Type:nonrobust	Dep. Variable:	dt	R-squared:	0.772
Date: Fri, 21 Oct 2022 Prob (F-statistic): 1.60e-07 Time: 21:13:02 Log-Likelihood: 10.291 No. Observations: 21 AIC: -16.58 Df Residuals: 19 BIC: -14.49 Df Model: 1 1 1	Model:	OLS	Adj. R-squared:	0.760
Time: 21:13:02 Log-Likelihood: 10.291 No. Observations: 21 AIC: -16.58 Df Residuals: 19 BIC: -14.49 Df Model: 1 1 1	Method:	Least Squares	F-statistic:	64.39
No. Observations: 21 AIC: -16.58 Df Residuals: 19 BIC: -14.49 Df Model: 1	Date:	Fri, 21 Oct 2022	Prob (F-statistic):	1.60e-07
Df Residuals: 19 BIC: -14.49 Df Model: 1	Time:	21:13:02	Log-Likelihood:	10.291
Df Model: 1	No. Observations:	21	AIC:	-16.58
	Df Residuals:	19	BIC:	-14.49
Covariance Type: nonrobust	Df Model:	1		
	Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.7420	0.133	13.086	0.000	1.463	2.021
st	0.5975	0.074	8.024	0.000	0.442	0.753

Omnibus: 1.871 **Durbin-Watson:** 1.322 Prob(Omnibus): 0.392 Jarque-Bera (JB): 1.170 **Skew:** 0.577 **Prob(JB):** 0.557

> Kurtosis: 2.916 Cond. No. 9.08

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

'Sorting time' p value from summary = 0.000 Hence, the 'Sorting time' is an important feature for the Target 'Delivery Time'

The feature Const p value = 0.000 Hence, Constant is also an important feature for the Target 'Delivery Time'

R-sqaured is closer to 1 that means the regression model covers most part of the variance of the values of the response variable and can be termed as a good model.

In [16]: #Co-efficients values #beta1 and bet0 values model.params

Out[16]: Intercept 1.741987 0.597522

dtype: float64

In [17]: #t and p-Values for intercept and Sorting Time print(model.tvalues, '\n', model.pvalues)

> Intercept 13.085552 8.024484 st

dtype: float64

Intercept 5.921137e-11 st 1.601539e-07

dtype: float64