INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON

Département du Premier Cycle - SCAN - First

Answers IE 1- 26/04/18 MTES

EXERCISE 1

- 1. (a) See at the end.
 - (b) $-C_1: (x-1)^2 + (y-1)^2 = 1$ $-C_2: x^2 + (y-1)^2 = 2$
- 2. (a) See at the end.
 - (b) Yes and yes.
 - (c) From the drawing we see that $x \in [0, 1]$ and $y \in [1 \sqrt{2}, 1]$. Now for each x.
 - The maximal value of y is when it is on C_1 . Which means $(y-1)^2 = 1 (x-1)^2$. Since $y \le 1$ then $y-1 \le 0$ so $y-1 = -\sqrt{1-(x-1)^2}$ which means the maximal value for y is $1-\sqrt{1-(x-1)^2}$.
 - The minimal value of y is when it is on C_2 . Which means $(y-1)^2 = 2 x^2$. Since $y \le 1$ then $y-1 \le 0$ so $y-1 = -\sqrt{1-x^2}$ which means the minimal value for y is $1-\sqrt{2-x^2}$.

Thus
$$D = \{(x,y)|0 \le x \le 1, 1 - \sqrt{2-x^2} \le y \le 1 - \sqrt{1-(x-1)^2}\}.$$

- $\beta. \quad (\cancel{2}) \text{ We use } \frac{x}{\sqrt{2}} = \cos(\theta). \text{ So } \int_0^1 \sqrt{2 x^2} \, dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \sqrt{2} \sqrt{1 \cos^2(\theta)} (-\sqrt{2}\sin(\theta) \, d\theta) = 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2(\theta) \, d\theta = 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1 \cos(2\theta)}{2} \, d\theta = [\theta \frac{\sin(2\theta)}{2}]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \frac{\pi}{4} + \frac{1}{2}, \text{ since } \sin \geqslant 0 \text{ on } [\frac{\pi}{4}, \frac{\pi}{2}].$
 - (b) $Area = \int_{x=0}^{1} \int_{y=1-\sqrt{2-x^2}}^{1-\sqrt{1-(x-1)^2}} dy dx = \int_{x=0}^{1} \sqrt{2-x^2} \sqrt{1-(x-1)^2} dx = \frac{\pi}{4} + \frac{1}{2} \frac{\pi}{4} = \frac{1}{2}$
 - (c) BONUS: Use u = (x-1) so $\int_0^1 \sqrt{1-(x-1)^2} \, dx = \int_{-1}^0 \sqrt{1-u^2} \, du$. We recognize the computation of the area of upper half disk of radius 1 centered at 0 for $x \in [-1, 0]$. One then gets a quarter of a disk, whose area is thus $\frac{\pi}{4}$.

EXERCISE 2

- 1. $M = \int_{r=0}^{R} \int_{\theta=0}^{2\pi} \sigma_0 \theta(2\pi \theta) r \, dr \, d\theta = \sigma_0 \left(\int_{r=0}^{R} r \, dr \right) \left(\int_{\theta=0}^{2\pi} \theta(2\pi \theta) \, d\theta \right) = \sigma_0 \frac{R^2 4\pi^3}{2} = \frac{2R^2 \sigma_0 \pi^3}{2}$
- 2. The disk is symmetric with respect to the Ox axis because this symmetry transforms the angle θ into $2\pi - \theta$ so σ becomes $\sigma_0(2\pi - \theta)(2\pi - (2\pi - \theta)) = \sigma_0(2\pi - \theta)\theta(2\pi - \theta) = \sigma$.

And
$$MG_x = \int_{r=0}^R \int_{\theta=0}^{2\pi} \sigma_0 \theta(2\pi - \theta) r^2 \cos(\theta) dr d\theta = \sigma_0 \frac{R^3}{3} \left(\int_{\theta=0}^{2\pi} \theta \cos(\theta) (2\pi - \theta) d\theta \right)$$
Using IPP, $\int_{\theta=0}^{2\pi} \theta \cos(\theta) d\theta = [\theta \sin(\theta)]_0^{2\pi} - \int_{\theta=0}^{2\pi} \sin(\theta) d\theta = 0$. And $\int_{\theta=0}^{2\pi} \theta^2 \cos(\theta) d\theta = [\theta^2 \sin(\theta)]_0^{2\pi} - 2 \int_{\theta=0}^{2\pi} \theta \sin(\theta) d\theta = 0 - 2([-\theta \cos(\theta)]_0^{2\pi} + \int_{\theta=0}^{2\pi} \cos(\theta) d\theta = 4\pi$
Thus $MG_x = \sigma_0 \frac{-4\pi R^3}{3}$ and finally $G_x = \frac{2}{\pi^2} R$.

EXERCISE 3

- - (b) We have $z = \ln(r)$ so $r = e^z$. And when r = 1, z = 0 and when r = e, z = 1. We have $r'(z) = e^z$ so $dS = \sqrt{1 + e^{2z}}e^z dz d\theta$ So $S = 2\pi / \sqrt{1 + e^{2z}}e^z dz$. We use the substitution $u = e^z$ and thus $S = 2\pi I$.
- 3. (a) $M = \int_{0}^{2\pi} \int_{0}^{1} \frac{1}{\sqrt{1 + e^{2z}}} \sqrt{1 + e^{2z}} e^{z} dz d\theta = 2\pi \int_{0}^{1} e^{z} dz = 2\pi (e 1)$
 - (b) We have a symmetry of revolution around Oz since σ depends only on z so $G_x =$

Now
$$MG_z = \int_0^{2\pi} \int_0^1 \frac{1}{\sqrt{1 + e^{2z}}} \sqrt{1 + e^{2z}} z e^z \, dz \, d\theta = 2\pi \int_0^1 z e^z \, dz = 2\pi ([ze^z]_0^1 - \int_0^1 e^z \, dz) = 2\pi.$$
 Thus $G_z = \frac{1}{e - 1}$.

4.
$$V = \int_0^{2\pi} \int_0^1 \int_{r=0}^{e^z} r \, dr \, d\theta \, dz = 2\pi \int_0^1 \frac{e^{2z}}{2} \, dz = \frac{e^2 - 1}{2} \pi.$$

EXERCISE 4

By symmetry of rotation around O_z , we know that $G_x = G_y = 0$. Since it is homogeneous, $G_z = \frac{1}{V} \iiint z dV$ where $V = \frac{2}{3}\pi R^3$ is the volume of the half ball.

Since it is homogeneous,
$$G_z = \frac{1}{V} \iiint z dV$$
 where $V = \frac{2}{3}\pi R^3$ is the volume of the Now, $\iiint z dV = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{R} r \cos(\theta) r^2 \sin(\theta) dr d\theta d\varphi = 2\pi \frac{R^4}{4} \frac{1}{2} = \pi \frac{R^4}{4}$ So $G_z = \frac{3}{8}R$.

