

Figure 54.22: Running (SVM_{s4}) on two sets of 30 points; K = 190.

Our second run was made with K = 1/12000; see Figure 54.23. We have $p_m = 30$ and $q_m = 30$ and we see that the width of the slab is a bit excessive. This example demonstrates that the margin lines need not contain data points.

54.15 Soft Margin SVM; (SVM $_{s5}$)

In this section we consider the version of Problem (SVM_{s4}) in which we add the term $(1/2)b^2$ to the objective function. We also drop the constraint $\eta \geq 0$ which is redundant.

Soft margin SVM (SVM $_{s5}$):

minimize
$$\frac{1}{2}w^{\top}w + \frac{1}{2}b^{2} + (p+q)K_{s}\left(-\nu\eta + \frac{1}{p+q}(\epsilon^{\top}\epsilon + \xi^{\top}\xi)\right)$$
subject to
$$w^{\top}u_{i} - b \geq \eta - \epsilon_{i}, \qquad i = 1, \dots, p$$
$$-w^{\top}v_{j} + b \geq \eta - \xi_{j}, \qquad j = 1, \dots, q,$$

where ν and K_s are two given positive constants. As we saw earlier, it is convenient to pick $K_s = 1/(p+q)$. When writing a computer program, it is preferable to assume that K_s is arbitrary. In this case ν must be replaced by $(p+q)K_s\nu$ in all the formulae.

One of the advantages of this methods is that ϵ is determined by λ , ξ is determined by μ (as in (SVM_{s4})), and both η and b determined by λ and μ . As the previous method, this