Цель работы

Построить модель SIR в xcos и OpenModelica.

Задание

- Реализовать модель SIR в в хсоз;
- Реализовать модель SIR с помощью блока Modelica в в xcos;
- Реализовать модель SIR в OpenModelica;
- Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр µ);
 - -Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Выполнение лабораторной работы

Задача о распространении эпидемии описывается системой дифференциальных уравнений:

$$egin{aligned} \dot{s} &= -eta s(t) i(t) \ \dot{i} &= eta s(t) i(t) -
u i(t) \ \dot{r} &=
u i(t) \end{aligned}$$

где β -- скорость заражения, v-- скорость выздоровления.

Реализация модели в хсоѕ

Зафиксируем начальные данные: $\beta = 1$, v = 0.3, s(0) = 0.999, i(0) = 0.001, r(0) = 0

В меню Моделирование, Установить контекст зададим значения переменных β и v

Для реализации модели будем использовать следующие блоки:

- CLOCK_c -- запуск часов модельного времени;
- CSCOPE -- регистрирующее устройство для построения графика;
- TEXT_f -- задаёт текст примечаний;
- MUX -- мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых;
- INTEGRAL_m -- блок интегрирования;
- GAINBLK_f -- в данном случае позволяет задать значения коэффициентов β и v;
- SUMMATION -- блок суммирования;
- PROD_f -- поэлементное произведение двух векторов на входе блока.

В параметрах верхнего и среднего блока интегрирования необходимо задать начальные значения:

▼	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	.001
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

В меню Моделирование, Установка зададим конечное время интегрирования, равным времени моделирования, в данном случае 30

Результат моделирования представлен на рисунке

Реализовать модель SIR с помощью блока Modelica в в xcos;

Готовая модель SIR представлена на рис

Для реализации модели (5.1) с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX требуются блоки CONST_m — задаёт константу; MBLOCK (Modelica generic) — блок реализации кода на языке Modelica. Задаём значения переменных β и ν

Параметры блока Modelica:

Упражнение

В качестве упражнения нам надо построить модель SIR на OpenModelica.

```
ా 🚜 😑 😈 | доступный на запись | модет | вид текст | тарт | /поп
  1
      model lab1
  2
        parameter Real S 0 = 0.999;
  3
        parameter Real I 0 = 0.001;
  4
        parameter Real R 0 = 0;
  5
  6
        parameter Real N= 1;
  7
        parameter Real b = 1;
  8
        parameter Real c= 0.3;
  9
 10
        Real S(start=S 0);
 11
        Real I(start=I 0);
 12
        Real R(start=R 0);
 13
 14
      equation
 15
        der(S) = -(b*S*I)/N;
 16
        der(I) = (b*S*I)/N - c*I;
 17
        der(R) = c*I;
 18
 19
      end lab1;
```

задав конечное время 30 с, В результате получаем следующий график

Задание для самостоятельного выполнения

Предположим, что в модели SIR учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

$$egin{aligned} \dot{s} &= -eta s(t) i(t) + \mu(N-s(t)) \ \dot{i} &= eta s(t) i(t) -
u i(t) - \mu i(t) \ \dot{r} &=
u i(t) - \mu r(t) \end{aligned}$$

где и — константа, которая равна коэффициенту смертности и рождаемости.

Реализуем модель SIR с учетом демографических процессов в хсоs с помощью блоков Modelica

В результате получаем следующий график

Реализуем модель SIR с учетом демографических процессов на OpenModelica.

```
🖶 🚜 📘 🚺 | Доступный на запись | Model | Вид Текст | lab2 | /home/openmodelica/Download
  1
      model lab2
  2
        parameter Real S 0 = 0.999;
  3
        parameter Real I 0 = 0.001;
        parameter Real R 0 = 0;
  4
  5
  6
        parameter Real N = 1;
        parameter Real beta = 1;
  7
  8
        parameter Real nu = 0.3;
  9
        parameter Real mu = 0.1;
 10
 11
        Real s(start=S 0);
 12
        Real i(start=I 0);
 13
        Real r(start=R 0);
 14
 15
 16
 17
      equation
 18
        der(s) = -beta*s*i + mu*i + mu*r;
 19
        der(i) = beta * s * i - nu * i - mu * i;
        der(r) = nu * i - mu * r;
 20
 21
 22
      end lab2;
```


Выводы

В процессе выполнения данной лабораторной работы была построена модель SIR в xcos и OpenModelica.

Список литературы{.unnumbered}

::: {#refs}

•••