1. Packet-switching: Store and forward

- Từ host A đến router có tốc độ là R1 (Mbps), từ router đến host B có tốc độ là R2 (Mbps)
- Gói tin kích thước L => Thời gian là L/R1 + L/R2
- => Cơ chế này là gói tin thứ nhất từ A sẽ được chuyển hết đến router, sau đó gói tin thứ 2 từ A mới bắt đầu chuyển tiếp đến router (và các host và router kết nối vs nhau)
- => Không có cơ chế chia nhỏ kênh truyền

2. Packet-switching: Circuit switching

- Cơ chế này các host và router trong cùng 1 mạng không kết nối với nhau. Khi A muốn gửi gói tin đến B, A sẽ đóng gói gói tin kèm theo địa chỉ của B và ném ra ngoài mạng này. Các router tự động thu gom các gói tin đó, xem địa chỉ đích và truyền đến cho B.
- => Có cơ chế chia nhỏ kênh truyền (theo frequency và time)

3. Số tầng của Internet thực tế

5 tầng: Application, Transportation, Network, DataLink, Physic

4. Giao thức TCP/IP

TCP: tầng transport -> Tin cậy

IP : Tầng mạng (network) -> K đáng tin cậy

5. Các giao thức phổ biến

Email: SMTP (RFC 2821)

Remote terminal access: Telnet (RFC 854)

Web: HTTP (RFC 2616)

File transfer: FTP (RFC 959)

Streaming multimedia: HTTP, RTP

Internet telephony: SIP, RTP, proprietary

6. Securing TCP

- SSL : Cho phép dữ liệu từ application dc mã hóa trước khi vào TCP

7. HTTP (1)

Non-persistent HTTP response time = 2RTT + file transmission time

Khi dùng persistent HTTP, chúng chỉ duy trình giao thức TCP (không phải HTTP)

Non-persistent HTTP: cho phép 1 đối tượng 1 lần mở giao thức

Persistent HTTP: cho phép nhiều đối tượng 1 lần mở giao thức

HTTP Request và Response, TCP connection

8. ACK = Seq + size package

9. Gateway

- Nối các ISP với nhau

10. Bảng định tuyến

- Router không có bảng định tuyến thì sẽ dùng BGP để tìm router đích

11. Link-state

- OSPF

12. Mạng chuyển mạch và chuyển gói

- Mạng chuyển mạch (circuit-switching): mỗi cuộc gọi chiếm dụng hết vùng bằng thông được cấp
- Mạng chuyển gói (packet-switching): dữ liệu chuyển mạch trên mạng rời rạc theo từng khúc gọi là gói.

13. Ngoại vi mạng (Network edge)

- End systems, access networks, links (máy tính, điện thoại thông minh, laptop)

14. Các GET request có thể đánh dấu bookmark được

15. Lệnh trên POP3

User, pass, list, retr, quit, dele.

16. Lệnh trên FTP

User, pass, list, retr, stor

17. Các loại response

100-199: Phản hồi thông tin

200-299: OK

300-399: Chuyển hướng

400-499: Client Error

500-599: Server Error

400: Bad Request

404: Not Found

505: HTTP Version Not Supported

18. Giao thức DASH

Chất lượng hình ảnh phụ thuộc vào băng thông hiện có giữa client-server trong quá trình streaming

Trên nền giao thức HTTP

19. IMAP vs POP3

IMAP thích hợp cho những người sử dụng di chuyển nhiều, dùng nhiều thiết bị khác nhau POP3 có thể đọc mail khi không có kết nối Internet

20. HTTP, POP3, SMPT ở tầng ứng dụng sẽ dùng TCP ở tầng transport

21. Socket cần thiết của:

Server: N+1

Client: N

Tổng: 2N+1

22. Cổng mặc định cho:

HTTP: 80

SMTP: 25

23. Tầng vận chuyển được thực hiện trên MÁY TÍNH CỦA NGƯỜI SỬ DỤNG

24. Header

UDP (32-bit): Source port, dest port, length, checksum, application data (payload)

TCP:

- Source port number
- Destination port number
- Sequence number
- ACK number
- Data offset
- Reserved

- Control flags
- Window size
- Checksum
- Urgent pointer
- Option data

UDP header

16-bit source port	16-bit destination port	
16-bit UDP length	16-bit UDP checksum	
Data		

So sánh cơ bản TCP và UDP

ТСР	UDP
Hướng kết nối	Hướng không kết nối
Độ tin cậy cao	Độ tin cậy thấp
Gửi dữ liệu dạng luồng byte	Gửi đi Datagram
Không cho phép mất gói tin	Cho phép mất gói tin
Đảm bảo việc truyền dữ liệu	Không đảm bảo việc truyền dữ liệu
Có sắp xếp thứ tự các gói tin	Không sắp xếp thứ tự các gói tin
Tốc độ truyền thấp hơn UDP	Tốc độ truyền cao

25. Tầng network ở trong mọi host và router

26. Routing algorithm

Link state : Sử dụng Dijkstra

Distance Vector : Sử dụng Bellman-Ford

Distance Vector Routing	Link State Routing
> Bandwidth required is less due to local sharing, small packets and no flooding.	> Bandwidth required is more due to flooding and sending of large link state packets.
> Based on local knowledge since it updates table based on information from neighbors.	> Based on global knowledge i.e. it have knowledge about entire network.
> Make use of Bellman Ford algo	> Make use of Dijkastra's algo
> Traffic is less	> Traffic is more
> Converges slowly i.e. good news spread fast and bad news spread slowly.	> Converges faster.
> Count to infinity problem.	> No count to infinity problem.
> Persistent looping problem i.e. loop will there forever.	> No persistent loops, only transient loops.
> Practical implementation is RIP and IGRP.	> Practical implementation is OSPF and ISIS.

IPv4	IPv6
IPv4 has a 32-bit address length	IPv6 has a 128-bit address length
It Supports Manual and DHCP address configuration	It supports Auto and renumbering address configuration
In IPv4 end to end, connection integrity is Unachievable	In IPv6 end to end, connection integrity is Achievable
It can generate 4.29×10 ⁹ address space	Address space of IPv6 is quite large it can produce 3.4×10 ³⁸ address space
The Security feature is dependent on application	IPSEC is an inbuilt security feature in the IPv6 protocol
Address representation of IPv4 is in decimal	Address Representation of IPv6 is in hexadecimal
Fragmentation performed by Sender and forwarding routers	In IPv6 fragmentation performed only by the sender
In IPv4 Packet flow identification is not available	In IPv6 packet flow identification are Available and uses the flow label field in the header
In IPv4 checksum field is available	In IPv6 checksum field is not available
It has broadcast Message Transmission Scheme	In IPv6 multicast and anycast message transmission scheme is available
In IPv4 Encryption and Authentication facility not provided	In IPv6 Encryption and Authentication are provided
IPv4 has a header of 20-60 bytes.	IPv6 has header of 40 bytes fixed

Lớp	Byte đầu tiên của địa chỉ IP
Α	1-126
В	128-191
С	192-223
D	224-239
E	240-254
Loopback	127