人们了以天(0|1)* | 以含有川于半了

I. (0/1)*11(0/1)*

先画出NFA 再他简为DFA

工、考虑状态机、分为状态:

So:最后一个字符是O

S1、最后一个宇宙是1,且倒数第二个宇宙是0

Sx:最后一个宇宙是1,且倒数第二个宇宙是1 (终结状态。)

$$A \not \downarrow 0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

(2) { W + (0|1) | W 不能被 4 整照 }

模仿作业二第2题,设状态5%模4条,让 终结状态; 51、52、53

2. 3 > Aa | bAc | Bc | bBa

A>d

Bad

Gn 是LR U). 不是LALR U). 不是SLR U)

移进一归约冲突, 归约一归约冲突

① 竹算 FIRST 和 FOLLOW.

$$FIRST(X) = {\alpha | X \Rightarrow \alpha , \alpha \in V_{1}}$$

되从《推导得到的事的首符号的杂合

FOLLOW (A)= {a|S>* ... Aa..., a=4?

习她在推导过程中紧跟在月右边的终结符号的杂合.

- - $X \in V_T$, FIRST(X) = {X}
 - $X \in V_{N} \perp X \rightarrow \varepsilon$ 则将 g加入到FIRST(X)
 - $\bullet \ X \in V_{\scriptscriptstyle N} \perp \!\!\! \perp X \to Y_1 \ Y_2 \ ... Y_k$
 - •如果 a ∈ FIRST(Y_i)且ε在FIRST(Y₁), ..., FIRST(Y_{i-1})中,则将 a加入到 FIRST(X)
 - 如果 ε 在FIRST(Y₁), ..., FIRST(Y_k)中,则将ε 加入到FIRST(X)

FIRST集合只包括终结符和&

- 如果 $A \rightarrow \alpha B\beta$,则FIRST(β)-{ ϵ }加入到FOLLOW(B)
- 如果 $A \rightarrow \alpha B$ 或 $A \rightarrow \alpha B\beta$ 且 $\epsilon \in FIRST(\beta)$,则FOLLOW(A)加入到 FOLLOW(B)

FZRST (S) =
$$\{b,d\}$$
 FOLLOW (S) = $\{\$\}$
FZRST (A) = $\{d\}$ FOLLOW (B) = $\{a,d\}$
FZRST (B) = $\{d\}$ FOLLOW (B) = $\{a,d\}$

② 分析表

❷ 从DFA构造SLR分析表

- ・状态 i 从 I_i 构造,它的 action 函数如下确定:
 - 如果 $[A \rightarrow \alpha a \beta]$ 在 I_i 中,并且 $goto(I_i, a) = I_i$,那么置action[i, a]为sj
 - 如果 $[A \rightarrow \alpha]$ 在 I_i 中,那么对FOLLOW(A)中的所有a,置action[i, a]为 ri,i是产生式 $A \rightarrow \alpha$ 的编号
 - 如果[S'→S·]在I,中,那么置action[i, \$]为接受acc
 - · 上面的a是终结符
- ・如果出现动作冲突,那么该文法就不是SLR(1)文法

		SLK	LK(I)	
初始状态		$[S' \rightarrow :S]$	$[S' \rightarrow \cdot S, \$]$	
项目集		LR(0) CLOSURE(I)	LR(1), CLOSURE(I) 搜索符考虑 <mark>FISRT(β</mark> a)	
	移进	$[A \rightarrow \alpha a \beta] \in I_i$ $GOTO(I_i, a) = I_j$ ACTION[i, a] = sj	$[A \rightarrow \alpha a\beta, b] \in I_i$ GOTO(I_i , a) = I_j ACTION[i , a] = sj	
动作	归约	$[A \rightarrow \alpha'] \in I_{i}, A \neq S'$ $a \in \text{FOLLOW}(A)$ ACTION[i, a] = rj	$[A ightarrow lpha, a] \in I_i$ $A \neq S'$ ACTION[i, a] = rj	
	接受	$[S' \rightarrow S \cdot] \in I_i$ ACTION[i, \$] = acc	$[S \hookrightarrow S \cdot , \$] \in \mathbf{I}_{i}$ ACTION[i, \ \ \ \] = acc	
	出错	空白条目	空白条目	
GOTO		$ GOTO(I_i, A) = I_j GOTO[i, A] = j $	$ GOTO(I_i, A) = I_j GOTO[i, A] = j $	
状态量		少(几百)	多(几千)	
		LR(1)方 法	LL(1)方法	
建立分析树		自底而上	自顶而下	
归约	or推导	规范归约	最左推导	
决定使用产生式 的时机		看见产生式整个右部推出的 串后(句柄)	看见产生式推出的第一个终结 后	
对文法	去的限制	无	无左递归、无公共左因子	
分析表		状态×文法符号,大	非终结符×终结符,小	
分析栈		状态栈,信息更多	文法符号栈	
确定句柄		根据栈顶状态和下一个符号 便可以确定句柄和归约所用 产生式	无句柄概念	
语法错误		决不会将出错点后的符号移 入分析栈	和LR一样,决不会读过出错点 而不报错	

LALRUI): 先画LRUI分析表,会并同心集后判断有元冲妄。

状态	LR(1)项目	后继符号	后继状态
10	[S'→·S,\$]	S	I1
	[S→·Aa,\$]	Α	12
	[S→·bAc,\$]	b	13
	[S→·Bc,\$]	В	14
	[S→·bBa,\$]	b	13
	[A→·d,a]	d	15
	[B→·d,c]	d	15
I1	[S'→S·,\$]	\$	
12	[S→A·a,\$]	а	16
13	[S→b·Ac,\$]	Α	17
	[A·d,c]	d	18
	[S→b·Ba,\$]	В	19
	[B→·d,a]	d	18
14	[S→B·c,\$]	С	I10
15	[A→d·,a]	\$	
	[B→d·,c]	\$	
16	[S→Aa·,\$]	\$	
17	[S→bA·c,\$]	С	l11
18	[A→d·,c]	\$	
	[B→d·,a]	\$	
19	[S→bB·a,\$]	а	l12
I10	[S→Bc·,\$]	\$	
I11	[S→bAc·,\$]	\$	
l12	[S→bBa·,\$]	\$	

LR(1)分析表如下:

状态	Action					Goto		
	а	b	С	d	\$	S	Α	В
0		s3		s5		1	2	4
1					acc			
2	s6							
3				s8			7	9
4			s10					
5	r5		r6					
6					r1			
7			s11					
8	r6		r5					
9	s12							
10					r3			
11					r2			
12					r4			

分析表中未出现冲突,因此是LR(1)文法。 注意到I5和I8是同心集,合并后得到I58:

状态	项目	后继符号	后继状态
158	[A→d·,a/c]	\$	
	[B→d·,a/c]	\$	

显然I58在计算分析集的过程中,会出现归约归约冲突。因此该文法不是LALR(1)文法。