Tutorial on numerical optimal control

Sébastien Kleff

Oct. 3, 2024

Why optimal control?

Stairs climbing

https://youtu.be/v6MhPl2ICsc

Parkour

https://youtu.be/tF4DML7FIWk

Pick-and-place

https://youtu.be/ZtyCJYsGf4U

Obstacle avoidance

They all solve an optimal control problem

Tutorial objectives

Ideally, by the end of this tutorial:

- The relations between OC, MPC & DDP should be clear(er) to you
- You will understand words like "direct multiple shooting"
- You can implement your own MPC to control your favorite robot

To achieve these goals, I will provide

- Quick overview of Optimal Control
- Crash course on nonlinear optimization
- Tutorial using Crocoddyl and mim_solvers

Tutorial (will be) available on a dedicated repo: https://github.com/skleff1994/mpc_tutorial

Tutorial plan

Tentative plan:

• Session 1 : Optimal control

• Session 2 : Numerical optimization

• Session 3: MPC

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

Components

• State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$
- Dynamics constraint $f:\mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$
- Dynamics constraint $f: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$
- Path constraints $c: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_c}$ (possibly terminal c_T)

Continuous-time Optimal Control Problem (OCP)

$$V\left(x_{0},t_{0}\right) = \min_{u(\cdot)} \int_{t_{0}}^{T} \ell\left(x(t),u(t)\right) dt + \ell_{T}(x(T)) \tag{1}$$

$$\text{s.t.} \begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = f\left(x(t),u(t)\right) & \forall t \in [t_{0},T] \\ c\left(x(t),u(t)\right) \leq 0 & \forall t \in [t_{0},T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$
- Dynamics constraint $f: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$
- Path constraints $c: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_c}$ (possibly terminal c_T)
- Initial condition $(x_0,t_0) \in \mathbb{R}^{n_x} \times \mathbb{R}^+$ and horizon T>0 (can be $+\infty$)

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$
- Dynamics constraint $f: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$
- Path constraints $c: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_c}$ (possibly terminal c_T)
- Initial condition $(x_0,t_0) \in \mathbb{R}^{n_x} \times \mathbb{R}^+$ and horizon T>0 (can be $+\infty$)
- Some technical assumptions

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

- What is x ?
- What is u ?
- What is f?
- What is ℓ?
- What is c?

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

- We define the state variable $x=(q,\dot{q})\in\mathbb{R}^{2n_q}$ and the control input $u=\tau\in\mathbb{R}^{n_q}$ with $n_q=7$
- ullet The dynamics constraint f is given by the robot forward dynamics

$$\underbrace{\begin{bmatrix} \dot{q} \\ \ddot{q} \end{bmatrix}}_{\dot{x}} = \underbrace{\begin{bmatrix} = \dot{q} \\ M(q)^{-1}(\tau - h(q, \dot{q})) \end{bmatrix}}_{f(x, u)}$$

Continuous-time Optimal Control Problem (OCP)

$$V\left(x_{0},t_{0}\right) = \min_{u(\cdot)} \int_{t_{0}}^{T} \ell\left(x(t),u(t)\right) dt + \ell_{T}(x(T)) \tag{2}$$

$$\text{s.t.} \begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = f\left(x(t),u(t)\right) & \forall t \in [t_{0},T] \\ c\left(x(t),u(t)\right) \leq 0 & \forall t \in [t_{0},T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

 \bullet Path constraints are e.g. joint limits $[x^{\min},x^{\max}]$ and torque limits $[u^{\min},u^{\max}]$

$$c(x,u) = \begin{bmatrix} x - x^{\max} \\ x^{\min} - x \\ u - u^{\max} \\ u^{\min} - u \end{bmatrix}$$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

- Initial condition : robot at rest $x_0 = (q_0, 0)$ at $t_0 = 0$
- Cost function: penalizes the distance to the target and the energy

$$\ell(x, u) = \alpha ||u||_2^2$$

$$\ell_T(x) = ||p(q) - p^{\mathsf{des}}||_2^2$$

where $\alpha>0$ is a scalar parameter and the end-effector position p(q) is given by the robot's forward kinematics

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The \min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$ The $\arg\min$ is called the *optimal feedback control policy* $\pi: \mathbb{R}^{n_x} \to \mathbb{R}^{n_u}$

Continuous-time Optimal Control Problem (OCP)

$$V\left(x_{0},t_{0}\right) = \min_{u(\cdot)} \int_{t_{0}}^{T} \ell\left(x(t),u(t)\right) dt + \ell_{T}(x(T)) \tag{2}$$

$$\text{s.t.} \begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = f\left(x(t),u(t)\right) & \forall t \in [t_{0},T] \\ c\left(x(t),u(t)\right) \leq 0 & \forall t \in [t_{0},T] \end{cases}$$

The \min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$ The $\arg\min$ is called the optimal feedback control policy $\pi: \mathbb{R}^{n_x} \to \mathbb{R}^{n_u}$

Very generic formulation

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The \min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$ The $\arg\min$ is called the *optimal feedback control policy* $\pi: \mathbb{R}^{n_x} \to \mathbb{R}^{n_u}$

Very generic formulation

Well-established framework

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The \min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$ The $\arg\min$ is called the *optimal feedback control policy* $\pi: \mathbb{R}^{n_x} \to \mathbb{R}^{n_u}$

Very generic formulation

Well-established framework

But how to solve this?

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The decision variable $u(.) \in (\mathbb{R}^{n_u})^{[0,T]}$ is infinite dimensional!

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The decision variable $u(.) \in (\mathbb{R}^{n_u})^{[0,T]}$ is infinite dimensional ! V is a functional characterized by the Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation (PDE)

$$-\frac{\partial V(x,t)}{\partial t} = \min_{u} \left[\ell(x,u) + \mathcal{I}_{c}(x,u) + \frac{\partial V(x,t)}{\partial x} f(x,u) \right]$$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The decision variable $u(.) \in (\mathbb{R}^{n_u})^{[0,T]}$ is infinite dimensional ! V is a functional characterized by the Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation (PDE)

$$-\frac{\partial V(x,t)}{\partial t} = \min_{u} \left[\ell(x,u) + \mathcal{I}_{c}(x,u) + \frac{\partial V(x,t)}{\partial x} f(x,u) \right]$$

No analytical solution except in very specific cases !

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V(x_{0}, t_{0}) = \min_{u(.)} \int_{t_{0}}^{T} \left(x(t)^{\top} Q x(t) + u(t)^{\top} R u(t) \right) + x(T)^{\top} Q_{T} x(T)$$
(3)
s.t.
$$\begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = A x(t) + B u(t) \end{cases} \forall t \in [t_{0}, T]$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V(x_{0}, t_{0}) = \min_{u(.)} \int_{t_{0}}^{T} \left(x(t)^{\top} Q x(t) + u(t)^{\top} R u(t) \right) + x(T)^{\top} Q_{T} x(T)$$
(3)
s.t.
$$\begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = A x(t) + B u(t) \end{cases} \forall t \in [t_{0}, T]$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V(x,t)=x^\top P(t)x$ where $P(t)\succ 0$ is the solution the Riccati differential equation

$$-\dot{P}(t) = A^{\top} P(t) + P(t)A - P(t)BR^{-1}B^{\top} P(t) + Q$$
 (4)

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V(x_{0}, t_{0}) = \min_{u(.)} \int_{t_{0}}^{T} \left(x(t)^{\top} Q x(t) + u(t)^{\top} R u(t) \right) + x(T)^{\top} Q_{T} x(T)$$
(3)
$$\text{s.t.} \begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = A x(t) + B u(t) \end{cases} \forall t \in [t_{0}, T]$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V(x,t)=x^\top P(t)x$ where $P(t)\succ 0$ is the solution the Riccati differential equation

$$-\dot{P}(t) = A^{\top} P(t) + P(t)A - P(t)BR^{-1}B^{\top} P(t) + Q$$
 (4)

The optimal policy is linear $\pi(x(t)) = K(t)x(t)$ where $K(t) = -R^{-1}B^{\top}P(t)$

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V(x_{0}, t_{0}) = \min_{u(.)} \int_{t_{0}}^{T} \left(x(t)^{\top} Q x(t) + u(t)^{\top} R u(t) \right) + x(T)^{\top} Q_{T} x(T)$$
(3)
$$\text{s.t.} \begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = A x(t) + B u(t) \end{cases} \forall t \in [t_{0}, T]$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V(x,t) = x^\top P(t)x$ where $P(t) \succ 0$ is the solution the Riccati differential equation

$$-\dot{P}(t) = A^{\top} P(t) + P(t)A - P(t)BR^{-1}B^{\top} P(t) + Q$$
 (4)

The optimal policy is linear $\pi(x(t)) = K(t)x(t)$ where $K(t) = -R^{-1}B^{\top}P(t)$

In the general case, HJB must be solved numerically

Example: Pendulum swing-up task

State $x=(\theta,\dot{\theta})$, control $u=\tau$ and dynamics model f

$$ml^2\ddot{\theta} + mg\sin\theta = \tau \tag{5}$$

Running cost $\ell(x,u) = \alpha \|u\|^2$ and terminal cost $\ell_T(x) = \|x\|^2$

Example: Pendulum swing-up task

State $x=(\theta,\dot{\theta})$, control $u=\tau$ and dynamics model f

$$ml^2\ddot{\theta} + mg\sin\theta = \tau \tag{5}$$

Running cost $\ell(x,u) = \alpha \|u\|^2$ and terminal cost $\ell_T(x) = \|x\|^2$

This is not LQR (f is nonlinear) so we must solve the HJB PDE numerically

Example: Pendulum swing-up task

State $x=(\theta,\dot{\theta})$, control $u=\tau$ and dynamics model f

$$ml^2\ddot{\theta} + mg\sin\theta = \tau \tag{5}$$

Running cost $\ell(x,u) = \alpha \|u\|^2$ and terminal cost $\ell_T(x) = \|x\|^2$

This is not LQR (f is nonlinear) so we must solve the HJB PDE numerically

We **discretize** the state and control spaces into finite meshes

We solve the PDE numerically to compute V explicitly for every $(\theta,\dot{\theta})$

Check-out the pendulum example and play with it : pendulum_bellman.py

Example: Pendulum swing-up task

State $x=(\theta,\dot{\theta})$, control $u=\tau$ and dynamics model f

$$ml^2\ddot{\theta} + mg\sin\theta = \tau \tag{5}$$

Running cost $\ell(x,u) = \alpha \|u\|^2$ and terminal cost $\ell_T(x) = \|x\|^2$

This is not LQR (f is nonlinear) so we must solve the HJB PDE numerically

We **discretize** the state and control spaces into finite meshes

We solve the PDE numerically to compute V explicitly for every $(\theta,\dot{\theta})$

Check-out the pendulum example and play with it : pendulum_bellman.py

Numerical solution: Curse of dimensionality

Major problem : the number of points N required to maintain the same sampling density increases **exponentially** with the state space dimension n_x

100 points per dimension with $n_x=2$: $N=10^4$ points 100 points per dimension with $n_x=6$: $N=10^8$ points Our 7-DoF torque-controlled manipulator has $n_x=14...$

Computing V explicitly is not tractable if $n_x \ge 4$ or 5

Recap

Analytic resolution of HJB PDE: "Explicit formula for V"

- Exact global solution (i.e. compute V(x) for all x)
- Feedback (closed-loop) policy $\pi(x)$
- Only works in very specific cases (e.g. LQR)

Recap

Analytic resolution of HJB PDE : "Explicit formula for V"

- Exact global solution (i.e. compute V(x) for all x)
- Feedback (closed-loop) policy $\pi(x)$
- Only works in very specific cases (e.g. LQR)

Numerical resolution of HJB PDE: "Integrate the HJB PDE"

- Approximate global solution
- Feedback (closed-loop) policy $\pi(x)$
- Curse of dimensionality

Recap

Analytic resolution of HJB PDE: "Explicit formula for V"

- Exact global solution (i.e. compute V(x) for all x)
- Feedback (closed-loop) policy $\pi(x)$
- Only works in very specific cases (e.g. LQR)

Numerical resolution of HJB PDE: "Integrate the HJB PDE"

- Approximate global solution
- Feedback (closed-loop) policy $\pi(x)$
- Curse of dimensionality

Luckily there is an alternative: direct optimal control

Direct Optimal Control

• "First discretize" : Transform OCP into Nonlinear Program

Then optimize : Solve Nonlinear Program

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available
 - Widely used in robotics

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available
 - Widely used in robotics
 - Relies on well-established numerical optimization tools

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize": Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available
 - Widely used in robotics
 - Relies on well-established numerical optimization tools
 - ullet Local solutions only (only valid around some given x(t))

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available
 - Widely used in robotics
 - Relies on well-established numerical optimization tools
 - ullet Local solutions only (only valid around some given x(t))
 - Control trajectories u(t) (open-loop policy)*

^{*}Spoiler: MPC will essentially use direct optimal control to approximate the closed-loop policy $\pi(x)$ through repeated open-loop solutions u(t)

Transcription: Parametrize the infinite-dimensional OCP (2)

Transcription: Parametrize the infinite-dimensional OCP (2)

1. Discretization of the time horizon $t_0,...,t_N$ with $t_k=k\delta$ for $k\in[0,N]$

Transcription: Parametrize the infinite-dimensional OCP (2)

- 1. Discretization of the time horizon $t_0,...,t_N$ with $t_k=k\delta$ for $k\in[0,N]$
- **2. Parametrization** e.g. zero-order hold $u(t) = u(t_k)$ for $t \in [t_k, t_{k+1})$

Transcription: Parametrize the infinite-dimensional OCP (2)

- **1. Discretization** of the time horizon $t_0,...,t_N$ with $t_k=k\delta$ for $k\in[0,N]$
- **2. Parametrization** e.g. zero-order hold $u(t) = u(t_k)$ for $t \in [t_k, t_{k+1})$
- 3. Integration of the state dynamics x(.), e.g. using Euler and midpoint rule

$$x_{k+1} = x_k + \underbrace{F(x_k, u_k)} \delta \tag{6}$$

continuous-time dynamics

$$\ell(x_k, u_k) = \underbrace{L(x_k, u_k)}_{\text{continuous-time cost}} \delta \tag{7}$$

Transcription: Parametrize the infinite-dimensional OCP (2)

- 1. Discretization of the time horizon $t_0,...,t_N$ with $t_k=k\delta$ for $k\in[0,N]$
- **2. Parametrization** e.g. zero-order hold $u(t) = u(t_k)$ for $t \in [t_k, t_{k+1})$
- **3.** Integration of the state dynamics x(.), e.g. using Euler and midpoint rule

$$x_{k+1} = x_k + \underbrace{F(x_k, u_k)} \delta \tag{6}$$

continuous-time dynamics

$$\ell(x_k, u_k) = \underbrace{L(x_k, u_k)}_{\text{continuous-time cost}} \delta \tag{7}$$

Pendulum with semi-explicit Euler

$$\dot{\theta}_{k+1} = \dot{\theta}_k - \overbrace{\left(\frac{-g\sin(\theta)}{l} + u\right)}^{\text{continuous-time acceleration}} \delta$$

$$\theta_{k+1} = \theta_k + \delta\dot{\theta}_{k+1}$$

This leads to a discrete-time OCP with finite-dimensional decision variables

$$\min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T) \tag{8}$$
s.t.
$$\begin{cases}
x_0 = \hat{x} \\
x_{k+1} = f(x_k, u_k) \\
c(x_k, u_k) \le 0
\end{cases}$$

Remarks

This leads to a discrete-time OCP with finite-dimensional decision variables

$$\min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$
s.t.
$$\begin{cases}
x_0 = \hat{x} \\
x_{k+1} = f(x_k, u_k) \\
c(x_k, u_k) \le 0
\end{cases}$$
(8)

Remarks

Discrete-time problems are much easier to study (see Bertsekas)

This leads to a discrete-time OCP with finite-dimensional decision variables

$$\min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$
s.t.
$$\begin{cases}
x_0 = \hat{x} \\
x_{k+1} = f(x_k, u_k) \\
c(x_k, u_k) \le 0
\end{cases}$$
(8)

Remarks

- Discrete-time problems are much easier to study (see Bertsekas)
- Most of continuous-time optimal control theory applies in discrete-time

This leads to a discrete-time OCP with finite-dimensional decision variables

$$\min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$
s.t.
$$\begin{cases}
x_0 = \hat{x} \\
x_{k+1} = f(x_k, u_k) \\
c(x_k, u_k) \le 0
\end{cases}$$
(8)

Remarks

- Discrete-time problems are much easier to study (see Bertsekas)
- Most of continuous-time optimal control theory applies in discrete-time
- For instance, the Bellman equation is the discrete-time equivalent of HJB

$$V_{j}(x) = \min_{u} V_{j+1} \left(f(x, u) \right) + \ell(x, u) + \mathcal{I}_{c}(x, u)$$
 (9)

where V_j is the optimal cost-to-go at stage j

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V_{0}(x_{0}) = \min_{u_{0},...,u_{T-1}} \sum_{k=0}^{T-1} \left(x_{k}^{\top} Q x_{k} + u_{k}^{\top} R u_{k} \right) + x_{T}^{\top} Q_{T} x_{T}$$

$$\text{s.t.} \begin{cases} x_{0} = \hat{x} \\ x_{k+1} = A x_{k} + B u_{k} \end{cases} \forall k \in \{0,...,N-1\}$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

Particular case : Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V_{0}(x_{0}) = \min_{u_{0},...,u_{T-1}} \sum_{k=0}^{T-1} \left(x_{k}^{\top} Q x_{k} + u_{k}^{\top} R u_{k} \right) + x_{T}^{\top} Q_{T} x_{T}$$

$$\text{s.t.} \begin{cases} x_{0} = \hat{x} \\ x_{k+1} = A x_{k} + B u_{k} \end{cases} \forall k \in \{0,...,N-1\}$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V_k(x) = x^{\top} P_k x$ where $P_k \succ 0$ is the solution the Riccati differential equation

$$P_k = A^{\top} P_k A - (A^{\top} P_k B) (R + B^{\top} P_k B)^{-1} B^{\top} P_k A + Q$$
 (11)

Particular case : Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V_{0}(x_{0}) = \min_{u_{0},...,u_{T-1}} \sum_{k=0}^{T-1} \left(x_{k}^{\top} Q x_{k} + u_{k}^{\top} R u_{k} \right) + x_{T}^{\top} Q_{T} x_{T}$$

$$\text{s.t.} \begin{cases} x_{0} = \hat{x} \\ x_{k+1} = A x_{k} + B u_{k} \forall k \in \{0,...,N-1\} \end{cases}$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V_k(x) = x^{\top} P_k x$ where $P_k \succ 0$ is the solution the Riccati differential equation

$$P_k = A^{\top} P_k A - (A^{\top} P_k B) (R + B^{\top} P_k B)^{-1} B^{\top} P_k A + Q$$
 (11)

The optimal policy is linear $\pi_k(x) = K_k x$ where $K_k = -R^{-1}B^{\top}P_k$

Particular case : Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V_{0}(x_{0}) = \min_{u_{0},...,u_{T-1}} \sum_{k=0}^{T-1} \left(x_{k}^{\top} Q x_{k} + u_{k}^{\top} R u_{k} \right) + x_{T}^{\top} Q_{T} x_{T}$$

$$\text{s.t.} \begin{cases} x_{0} = \hat{x} \\ x_{k+1} = A x_{k} + B u_{k} \end{cases} \forall k \in \{0,...,N-1\}$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V_k(x) = x^{\top} P_k x$ where $P_k \succ 0$ is the solution the Riccati differential equation

$$P_k = A^{\top} P_k A - (A^{\top} P_k B) (R + B^{\top} P_k B)^{-1} B^{\top} P_k A + Q$$
 (11)

The optimal policy is linear $\pi_k(x) = K_k x$ where $K_k = -R^{-1}B^{\top}P_k$

In the general case, there is no analytic solution for V,π

Direct approach: "Then optimize"

The discrete-time OCP

$$V_0(x_0) = \min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$

$$\text{s.t.} \begin{cases} x_0 = \hat{x} \\ x_{k+1} = f(x_k, u_k) \\ c(x_k, u_k) \le 0 \end{cases}$$
(8)

can in theory be solved **globally** in the general case by solving Bellman's equation, but it suffers from the curse of dimensionality (like HJB).

Direct approach: "Then optimize"

The discrete-time OCP

$$V_0(x_0) = \min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$

$$\text{s.t.} \begin{cases} x_0 = \hat{x} \\ x_{k+1} = f(x_k, u_k) \\ c(x_k, u_k) \le 0 \end{cases}$$
(8)

can in theory be solved **globally** in the general case by solving Bellman's equation, but it suffers from the curse of dimensionality (like HJB).

Instead, we seek a local solution by solving (8) as a Nonlinear Program (NLP)

$$\min_{z} L(z)$$
 (12) s.t. $G(z) \le 0$

where $z \in \mathbb{R}^n$, $L : \mathbb{R}^n \to \mathbb{R}^+$ and $G : \mathbb{R}^n \to \mathbb{R}^{n_c}$.

Direct approach: "Then optimize"

The discrete-time OCP

$$V_0(x_0) = \min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$

$$\text{s.t.} \begin{cases} x_0 = \hat{x} \\ x_{k+1} = f(x_k, u_k) \\ c(x_k, u_k) \le 0 \end{cases}$$
(8)

can in theory be solved **globally** in the general case by solving Bellman's equation, but it suffers from the curse of dimensionality (like HJB).

Instead, we seek a local solution by solving (8) as a Nonlinear Program (NLP)

$$\min_{z} L(z)$$
 s.t. $G(z) \le 0$

where $z \in \mathbb{R}^n$, $L : \mathbb{R}^n \to \mathbb{R}^+$ and $G : \mathbb{R}^n \to \mathbb{R}^{n_c}$.

This is a standard nonlinear optimization problem that can be solved using textbook numerical optimization

Recap

- Optimal control is a generic framework
- OCPs are challenging to solve globally
- We can seek local solutions instead
- This requires to transform the original OCP into an NLP

Next time

Session 2 will focus on the NLP resolution

- What are the main techniques to solve a generic NLP
- How our NLP has an special structure
- How this structure can be exploited to solve it efficiently

Session 3 will focus on MPC implementation and introduction of the existing tools (Crocoddyl, mim_solvers)