

Instituto Politécnico Nacional Escuela Superior de Cómputo

Application Development for Mobile Device

Proyecto para ETS especial
Arduino Nano + MLX90614 + MC-05 + Android App

Elías Enrique Garcia Soto 2007630154

eegs333@gmail.com

Contenido

Objetivo	3
Componentes	3
Arduino Nano	4
Sensor MLX90614	5
Módulo Bluetooth HC-05	6
Montaje de módulo y sensor	7
Código Arduino	8
Salida Monitor Arduino	8
Aplicación Android	9
Conclusiones	14

Objetivo

Diseñar una aplicación móvil basada en android, que se comunique a través de bluetooth para obtener la lectura de un sensor de temperatura infrarrojo MLX90614 conectado a una placa Arduino Nano.

Componentes

Arduino Nano

Sensor MLX90614

Modulo HC-05

Arduino Nano

Es una placa de desarrollo de tamaño compacto, basada en el microcontrolador ATmega328P. Tiene 14 pines de entrada/salida digital (de los cuales 6 pueden ser usando con PWM), 6 entradas analógicas, un cristal de 16Mhz, conexión Mini-USB, terminales para conexión ICSP y un botón de reseteo.

Especificaciones Técnicas		
Microcontroller	ATmega328	
Architecture	AVR	
Operating Voltage	5 V	
Flash Memory	32 KB of which 2 KB used by bootloader	
SRAM	2 KB	
Clock Speed	16 MHz	
Analog IN Pins	8	
EEPROM	1 KB	
DC Current per I/O Pins	40 mA (I/O Pins)	
Input Voltage	7-12 V	
Digital I/O Pins	22 (6 of which are PWM)	
PWM Output	6	
Power Consumption	19 mA	
PCB Size	18 x 45 mm	
Weight	7 g	
Product Code	A000005	

Sensor MLX90614

El MLX90614 es un sensor de temperatura infrarrojo (no requiere contacto). Sirve para medir la temperatura de un objeto a distancia. El MLX90614 viene calibrado de fábrica en un amplio rango de temperaturas: -40 a 85 °C para la temperatura ambiente y -70 a 382 °C para la temperatura de objetos. La precisión estándar es de 0.5 °C referente a la temperatura ambiente.

El módulo GY-906 incorpora un regulador de voltaje que permite alimentarlo directamente a 5V

Montaje del sensor y Arduino		
Sensor GY-906	Arduino Nano	
Vin	5V	
GND	GND	
SDA	A4	
SCL	A5	

Módulo Bluetooth HC-05

El HC-05 es módulo bluetooth para comunicarnos de forma inalámbrica con Arduino.

Montaje del módulo bluetooth y arduino		
Modulo HC-05	Arduino Nano	
Vcc	V5	
GND	GND	
TXD	RXD	
RXD	TXD	
30	ZIGIIGOIG GO	

Montaje de módulo y sensor

Código Arduino

```
#include <SoftwareSerial.h>
                                        // libreria para la comunicacion
#include <Wire.h>
                                    // libreria para I2C
#include <Adafruit_MLX90614.h>
                                           // libreria para el sensor de temperatura
Adafruit MLX90614 mlx = Adafruit MLX90614();
void setup()
 Serial.begin(9600); // Start hardware Serial
 mlx.begin();
void loop()
 char c;
 if(Serial.available())
  c = Serial.read();
  if(c=='t')
   Serial.print(" ");
   Serial.println(mlx.readAmbientTempC());
   delay(2000);
   }
 Serial.print(" ");
 Serial.println(mlx.readObjectTempC());
 delay(500);
```

Salida Monitor Arduino

Aplicación Android

 \bigcirc

Conclusiones

Este tipo de sensor de temperatura infrarrojo lo podemos usar en aplicaciones muy prácticas como puede ser en un termómetro corporal que no necesita contacto directo con la piel, o combinándolo con otros dispositivos de loT podemos monitorear la temperatura de una habitación e incluso controlar la temperatura de la misma.

La precisión del sensor depende en gran medida del ángulo del objeto que se esté sensando ya que ese factor determina la precisión de la lectura de la temperatura, otro factor a considerar es la limpieza del sensor que también es determinante en la precisión de la lectura.