

Practical Advances in Complex Root Clustering

Collaborative and ongoing works

R. Imbach¹, V. Pan², M. Pouget³, C. Yap¹

³ INRIA Nancy - Grand Est, France

¹ Courant Institute of Mathematical Sciences, New York University, USA

² Lehman College, City University of New York, USA

System: Let
$$\sigma \geq 3$$
 and $f(z) = 0$ be:

$$\begin{cases} (z_1 - 2^{-\sigma}) (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2) (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$a^{1} = (2^{-\sigma} , 0)$$

 $a^{2} = (2^{-\sigma} , 1)$
 $a^{3} = (-2^{-\sigma} , 1)$
 $a^{4} = (-2^{-\sigma} , 0)$
 $a^{5} = (-2^{-\sigma} , -2^{-\sigma})$
 $a^{6} = (2^{-\sigma} , -2^{-\sigma})$

$$\mathbf{a}^4 = \begin{pmatrix} -2^{-\sigma} & , & 0 \end{pmatrix}$$

$$a^5 = (-2^{-\sigma}, -2^{-\sigma})$$

$$a^6 = (2^{-\sigma}, -2^{-\sigma})$$

=xample

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma}) (z_1 + 2^{-\sigma}) &= 0 \\ (z_2 + 2^{\sigma} z_1^2) (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$\mathbf{a}^{1} = (2^{-\sigma} , 0) \leftarrow m(\mathbf{a}^{1}, \mathbf{f}) = 1
\mathbf{a}^{2} = (2^{-\sigma} , 1) \leftarrow m(\mathbf{a}^{2}, \mathbf{f}) = 1
\mathbf{a}^{3} = (-2^{-\sigma} , 1) \leftarrow m(\mathbf{a}^{3}, \mathbf{f}) = 1
\mathbf{a}^{4} = (-2^{-\sigma} , 0) \leftarrow m(\mathbf{a}^{4}, \mathbf{f}) = 1
\mathbf{a}^{5} = (-2^{-\sigma} , -2^{-\sigma}) \leftarrow m(\mathbf{a}^{5}, \mathbf{f}) = 1
\mathbf{a}^{6} = (2^{-\sigma} , -2^{-\sigma}) \leftarrow m(\mathbf{a}^{6}, \mathbf{f}) = 1$$

Natural clusters:

$$(\Delta^1,4)$$

 $(\Delta^2,2)$

Notations: m(a, f): multiplicity of a as a sol. of f

_xample

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$\begin{array}{l}
 a^{1} = (2^{-\sigma} , 0) & \leftarrow m(a^{1}, f) = 2 \\
 a^{2} = (2^{-\sigma} , 1) & \leftarrow m(a^{2}, f) = 2 \\
 a^{3} = (-2^{-\sigma} , 1) & \leftarrow m(a^{3}, f) = 1 \\
 a^{4} = (-2^{-\sigma} , 0) & \leftarrow m(a^{4}, f) = 1 \\
 a^{5} = (-2^{-\sigma} , -2^{-\sigma}) & \leftarrow m(a^{5}, f) = 2 \\
 a^{6} = (2^{-\sigma} , -2^{-\sigma}) & \leftarrow m(a^{6}, f) = 4
 \end{array}$$

Natural clusters:

$$(\Delta^1, \frac{9}{9})$$

 $(\Delta^2, \frac{3}{3})$

Notations: m(a, f): multiplicity of a as a sol. of f


```
Input: a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = 0 is 0-dim), a polybox B \subset \mathbb{C}^n, the Region of Interest (Rol), \epsilon > 0
```

Output:

```
Notations: \mathbf{f} = (f_1, \dots, f_n), \mathbf{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes
```

```
Input: a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = 0 is 0-dim), a polybox B \subset \mathbb{C}^n, the Region of Interest (RoI), \epsilon > 0
```

```
Output: a set of pairs \{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\} where:
```

• the Δ^j s are pairwise disjoint polydiscs of radius $r(\Delta^j) \leq \epsilon$,

```
Notations: \mathbf{f} = (f_1, \dots, f_n), \mathbf{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes \mathbf{\Delta}^j = (\Delta_1^j, \dots, \Delta_n^j) where the \Delta_i^j's are complex discs r(\mathbf{\Delta}^j) = \max_i r(\Delta_i^j)
```

```
Input: a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = \mathbf{0} is 0-dim), a polybox \mathbf{B} \subset \mathbb{C}^n, the Region of Interest (RoI), \epsilon > 0
```

- the ${f \Delta}^j$ s are pairwise disjoint polydiscs of radius $r({f \Delta}^j) \le \epsilon$,
- $m^j = \#(\Delta^j, f) = \#(3\Delta^j, f)$ for all $1 \le j \le \ell$, and

```
Notations: \mathbf{f} = (f_1, \dots, f_n), \mathbf{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes \Delta^j = (\Delta^j_1, \dots, \Delta^j_n) where the \Delta^j_i's are complex discs r(\Delta^j) = \max_i r(\Delta^j_i) \#(S, \mathbf{f}): nb. of sols (with mult.) of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S
```

```
Input: a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = \mathbf{0} is 0-dim), a polybox \mathbf{B} \subset \mathbb{C}^n, the Region of Interest (RoI), \epsilon > 0
```

- the ${f \Delta}^j$ s are pairwise disjoint polydiscs of radius $r({f \Delta}^j) \le \epsilon,$
- $m^j = \#(\boldsymbol{\Delta}^j, \boldsymbol{f}) = \#(3\boldsymbol{\Delta}^j, \boldsymbol{f})$ for all $1 \leq j \leq \ell$, and
- $Z(\boldsymbol{B}, \boldsymbol{f}) \subseteq \bigcup_{j=1}^{\ell} Z(\boldsymbol{\Delta}^{j}, \boldsymbol{f}) \subseteq Z((1+\delta)\boldsymbol{B}, \boldsymbol{f})$ for a small δ

```
Notations: \mathbf{f} = (f_1, \dots, f_n), \mathbf{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes \Delta^j = (\Delta^j_1, \dots, \Delta^j_n) where the \Delta^j_i's are complex discs r(\Delta^j) = \max_i r(\Delta^j_i) \#(S, \mathbf{f}): nb. of sols (with mult.) of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S Z(S, \mathbf{f}): sols of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S
```

```
Input: a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = \mathbf{0} is 0-dim), a polybox \mathbf{B} \subset \mathbb{C}^n, the Region of Interest (RoI), \epsilon > 0
```

- the ${f \Delta}^j$ s are pairwise disjoint polydiscs of radius $r({f \Delta}^j) \le \epsilon,$
- $m^j = \#(\boldsymbol{\Delta}^j, \boldsymbol{f}) = \#(3\boldsymbol{\Delta}^j, \boldsymbol{f})$ for all $1 \leq j \leq \ell$, and
- $Z(B, f) \subseteq \bigcup_{j=1}^{\ell} Z(\Delta^j, f) \subseteq Z((1+\delta)B, f)$ for a small δ

```
Notations: \mathbf{f} = (f_1, \dots, f_n), \mathbf{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes \Delta^j = (\Delta^j_1, \dots, \Delta^j_n) where the \Delta^j_i's are complex discs r(\Delta^j) = \max_i r(\Delta^j_i) \#(S, \mathbf{f}): nb. of sols (with mult.) of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S Z(S, \mathbf{f}): sols of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S
```

2/ 29

Local solution Clustering Problem (LCP)

```
Input: a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = \mathbf{0} is 0-dim), a polybox \mathbf{B} \subset \mathbb{C}^n, the Region of Interest (RoI), \epsilon > 0
```

- the ${f \Delta}^j$ s are pairwise disjoint polydiscs of radius $r({f \Delta}^j) \le \epsilon,$
- $m^j = \#(\Delta^j, f) = \#(3\Delta^j, f)$ for all $1 \le j \le \ell$, and
- $Z(\pmb{B}, \pmb{f}) \subseteq \bigcup_{j=1}^{\ell} Z(\pmb{\Delta}^j, \pmb{f}) \subseteq Z((1+\delta)\pmb{B}, \pmb{f})$ for a small δ

```
Notations: \mathbf{f} = (f_1, \dots, f_n), \mathbf{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes \Delta^j = (\Delta^j_1, \dots, \Delta^j_n) where the \Delta^j_i's are complex discs r(\Delta^j) = \max_i r(\Delta^j_i) \#(S, \mathbf{f}): nb. of sols (with mult.) of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S Z(S, \mathbf{f}): sols of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S
```

Input: a polynomial map $f: \mathbb{C}^n \to \mathbb{C}^n$ (assume f(z) = 0 is 0-dim), a polybox $B \subset \mathbb{C}^n$, the Region of Interest (RoI), $\epsilon > 0$

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where:

- the Δ^j s are pairwise disjoint polydiscs of radius $r(\Delta^j) \leq \epsilon$,
- $m^j = \#(\boldsymbol{\Delta}^j, \boldsymbol{f}) = \#(3\boldsymbol{\Delta}^j, \boldsymbol{f})$ for all $1 \leq j \leq \ell$, and
- $Z(\pmb{B}, \pmb{f}) \subseteq \bigcup_{j=1}^{\ell} Z(\pmb{\Delta}^j, \pmb{f}) \subseteq Z((1+\delta)\pmb{B}, \pmb{f})$ for a small δ

Definition: a pair (Δ, m) is called natural cluster (relative to f) when it satisfies:

$$m = \#(\Delta, f) = \#(3\Delta, f) \ge 1$$

if $r(\Delta) < \epsilon$, it is a natural ϵ -cluster

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$a^{1} = (2^{-\sigma})$$
, $0) \leftarrow m(a^{1}, f) = 2$
 $a^{2} = (2^{-\sigma})$, $1) \leftarrow m(a^{2}, f) = 2$
 $a^{3} = (-2^{-\sigma})$, $1) \leftarrow m(a^{3}, f) = 1$
 $a^{4} = (-2^{-\sigma})$, $0) \leftarrow m(a^{4}, f) = 1$
 $a^{5} = (-2^{-\sigma})$, $-2^{-\sigma}$ $\leftarrow m(a^{5}, f) = 2$
 $a^{6} = (2^{-\sigma})$, $-2^{-\sigma}$ $\leftarrow m(a^{6}, f) = 4$

Natural clusters:

$$(\Delta^1, 9)$$

 $(\Delta^2, 3)$

Notations: m(a, f): multiplicity of a as a sol. of f

2/ 29

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$\mathbf{a}^{1} = (2^{-\sigma})^{\prime}, \qquad 0) \leftarrow m(\mathbf{a}^{1}, \mathbf{f}) = 2$$
 $\mathbf{a}^{2} = (2^{-\sigma}), \qquad 1) \leftarrow m(\mathbf{a}^{2}, \mathbf{f}) = 2$
 $\mathbf{a}^{3} = (-2^{-\sigma}), \qquad 1) \leftarrow m(\mathbf{a}^{3}, \mathbf{f}) = 1$
 $\mathbf{a}^{4} = (-2^{-\sigma}), \qquad 0) \leftarrow m(\mathbf{a}^{4}, \mathbf{f}) = 1$
 $\mathbf{a}^{5} = (-2^{-\sigma}), \qquad -2^{-\sigma}) \leftarrow m(\mathbf{a}^{5}, \mathbf{f}) = 2$
 $\mathbf{a}^{6} = (2^{-\sigma}), \qquad -2^{-\sigma} \leftarrow m(\mathbf{a}^{6}, \mathbf{f}) = 4$

Natural clusters:

$$\begin{pmatrix} \mathbf{\Delta}^1, 9 \\ (\mathbf{\Delta}^2, 3) \end{pmatrix}$$

 $(\Delta^3, 3), (\Delta^4, 6)$ are not natural clusters

Why root clustering instead of root isolation?

Root isolation:

- input polynomials with Z or Q coefficients, or
- input polynomials squarefree

Root clustering:

- robust to multiple roots

Menu

0 - Univariate case:

[BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial. In ISSAC 16, pages 71–78, ACM, 2016.

Near optimal: bit complexity $\widetilde{O}(d^2(\sigma+d))$ for the benchmark problem

Efficient implementation Ccluster described in

[IPY18] Rémi Imbach, Victor Y. Pan, and Chee Yap.
Implementation of a near-optimal complex root clustering algorithm.
In Mathematical Software – ICMS 2018, pages 235–244, Cham, 2018.

Notations: d, σ : degree, bit-size of f

Menu

0 - Univariate case:

1 - Multivariate triangular case

[IPY19] Rémi Imbach, Marc Pouget, and Chee Yap.

Clustering complex zeros of triangular systems of polynomials.

In CASC 19, to appear in MCS, 2019.

$$\begin{cases} f_1(z_1) & = & 0 \\ f_2(z_1, z_2) & = & 0 \\ \dots & & , \deg_{z_i}(f_i) \ge 1 \\ f_n(z_1, z_2, \dots, z_n) & = & 0 \end{cases}$$

with: finite number of sols

$$\begin{cases} p_1(z_1, z_2, \dots, z_n) &= 0 \\ p_2(z_1, z_2, \dots, z_n) &= 0 \\ \dots \\ p_n(z_1, z_2, \dots, z_n) &= 0 \end{cases}$$

rewriting step

$$\left\{\begin{array}{ccccc} & & \left\{\begin{array}{cccc} f_{1}(z_{1}) & = & 0 \\ f_{2}(z_{1},z_{2}) & = & 0 \\ & \ddots & & \\ f_{n}(z_{1},z_{2},\ldots,z_{n}) & = & 0 \end{array}\right., \deg_{z_{i}}(f_{i}) \geq 1, & \ldots \right\}$$

with: finite number of sols

$$\begin{cases} p_1(z_1, z_2, \dots, z_n) &= 0 \\ p_2(z_1, z_2, \dots, z_n) &= 0 \\ \dots \\ p_n(z_1, z_2, \dots, z_n) &= 0 \end{cases}$$

rewriting step

$$\left\{ \begin{array}{cccc} & & \left\{ \begin{array}{cccc} f_1(z_1) & = & 0 \\ f_2(z_1,z_2) & = & 0 \\ & \ddots & & , \deg_{z_i}(f_i) \geq 1, \end{array} \right. \\ f_n(z_1,z_2,\ldots,z_n) & = & 0 \end{array} \right.$$

with: finite number of sols

	Isolate RC, Maple		solve.lib, Singular		
system	symbolic	numeric $\mathbb R$	symbolic	numeric $\mathbb C$	
S_4	3.8	3.7	0.6	0.18	
\mathcal{S}_5	24.2	>1000	42.9	0.57	

seq. times in s on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz asked precision: 53 bits

$$\mathcal{S}_4 \left\{ \begin{array}{l} z1^4 - 57 * z1^2 * z2 - 86 * z1 * z2^2 - 160 * z2^3 + 95 * z2^2 * z3 + 35 * z1^2 - 106 * z3 & = 0 \\ z2^4 - 64 * z2^3 - 190 * z1 * z2 + 186 * z1 * z3 - 119 * z2 * z3 + 188 * z3 + 93 & = 0 \\ z3^4 + 116 * z1 * z2^2 - 168 * z1 * z2 * z3 + 135 * z1 * z3^2 + 29 * z3^3 - 8 * z1 * z3 + 119 * z2 * z3 & = 0 \end{array} \right.$$

	Isolate RC, Maple		solve.lib, Singular		Tcluster
system	symbolic	numeric $\mathbb R$	symbolic	numeric $\mathbb C$	numeric $\mathbb C$
S_4	3.8	3.7	0.6	0.18	8.0
\mathcal{S}_5	24.2	>1000	42.9	0.57	6.8

seq. times in s on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz asked precision: 53 bits

$$S_4 \left\{ \begin{array}{l} z1^4 - 57 * z1^2 * z2 - 86 * z1 * z2^2 - 160 * z2^3 + 95 * z2^2 * z3 + 35 * z1^2 - 106 * z3 \\ z2^4 - 64 * z2^3 - 190 * z1 * z2 + 186 * z1 * z3 - 119 * z2 * z3 + 188 * z3 + 93 \\ z3^4 + 116 * z1 * z2^2 - 168 * z1 * z2 * z3 + 135 * z1 * z3^2 + 29 * z3^3 - 8 * z1 * z3 + 119 * z2 * z3 \end{array} \right. = 0$$

Menu

- 0 Univariate case:
- 1 Multivariate triangular case
- 2 Back to univariate case
 - polynomials with real coefficients
 - new counting test
- [IP19] Rémi Imbach and Victor Y. Pan.

New practical advances in polynomial root clustering.

In MACIS 19, 2019.

Menu

0 - Univariate case:

[BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial. In ISSAC 16, pages 71–78. ACM, 2016.

Oracle numbers and polynomials

Let $\alpha \in \mathbb{C}$.

Oracle for
$$\alpha$$
: function $\mathcal{O}_{\alpha}: \mathbb{Z} \to \square \mathbb{C}$
s.t. $\alpha \in \mathcal{O}_{\alpha}(L)$ and $w(\mathcal{O}_{\alpha}(L)) \leq 2^{-L}$

Notations: $\square \mathbb{C}$: set of complex interval

Oracle numbers and polynomials

Let $\alpha \in \mathbb{C}$.

Oracle for α : function $\mathcal{O}_{\alpha} : \mathbb{Z} \to \square \mathbb{C}$ s.t. $\alpha \in \mathcal{O}_{\alpha}(L)$ and $w(\mathcal{O}_{\alpha}(L)) \leq 2^{-L}$

Let $f \in \mathbb{C}[z_1, \ldots, z_n]$

Oracle for f: function $\mathcal{O}_f : \mathbb{Z} \to \square \mathbb{C}[z_1, \dots, z_n]$ s.t. $f \in \mathcal{O}_f(L)$ and $w(\mathcal{O}_f(L)) \leq 2^{-L}$

 \simeq oracles for the coeffs of f

Notations: $\square \mathbb{C}$: set of complex interval $\square \mathbb{C}[z_1, \ldots, z_n]$: polynomials with coefficients in $\square \mathbb{C}$

Outline of [BSS+16]

Counting test:
$$T^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Discarding test:
$$T^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Outline of [BSS⁺16]

Counting test:
$$T^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Discarding test:
$$T^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Counting test:
$$T^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Discarding test:
$$T^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Outline of [BSS⁺16]

Counting test:
$$T^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Discarding test:
$$T^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Counting test:
$$T^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Discarding test:
$$T^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Outline of [BSS+16]

Counting test:
$$T^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Discarding test:
$$T^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $T^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Counting test:
$$T^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $T^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Discarding test:
$$T^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $T^0(\Delta, \mathcal{O}_f) = 0 \Leftrightarrow T^*(\Delta, \mathcal{O}_f) = 0$

Subdivision approach:

The Pellet's test

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_{\Delta} = f(c + rz)$.

If $\exists 0 < m < d \text{ s.t.}$

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

Notations: $(f)_m$: coeff. of the monomial of degree m of f

The Pellet's test

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_{\Delta} = f(c + rz)$.

If $\exists 0 < m < d \text{ s.t.}$

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

If f has no root in this annulus $\rightarrow \exists m \text{ s.t. eq. } (1) \text{ holds.}$

Notations: $(f)_m$: coeff. of the monomial of degree m of f

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_{\Delta} = f(c + rz)$.

If $\exists 0 < m < d \text{ s.t.}$

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

With Dandelin-Gräffe's iterations:

If f has no root in this annulus $\rightarrow \exists m \text{ s.t. eq. } (1) \text{ holds.}$

Notations: $(f)_m$: coeff. of the monomial of degree m of f

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_{\Delta} = f(c + rz)$.

If $\exists 0 < m < d \text{ s.t.}$

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

$PelletTest(\Delta, f)$

 $//Output in \{-1, 0, 1, ..., d\}$

- **1.** compute f_{Δ}
- 2. for m from 0 to d do
- 3. if $|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i|$
- 4. return *m*

5. return -1

//m roots (with mult.) in Δ

//Roots near the boundary of Δ

The soft Pellet's test: for interval polynomials

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_{\Delta} = f(c + rz)$.

If $\exists 0 < m < d \text{ s.t.}$

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{2}$$

then f has exactly m roots in Δ .

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, $d = \deg(f)$ and $f_{\Delta} = f(c + rz)$.

If $\exists 0 < m < d \text{ s.t.}$

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{2}$$

then f has exactly m roots in Δ .

$SoftCompare(\Box a, \Box b)$

 $//\square a$, $\square b$ are real intervals

Input: $\Box a$, $\Box b$ real intervals

Output: a number in $\{-2, -1, 1\}$ s.t.:

$$1 \Rightarrow \Box a > \Box b$$

$$-1 \Rightarrow \Box a < \Box b$$
 or $\Box a, \Box b$ are too close

$$-2 \Rightarrow \Box a \cap \Box b \neq \emptyset$$

The soft Pellet's test: for interval polynomials

SoftCompare($\Box a$, $\Box b$) // $\Box a$, $\Box b$ are real intervals

```
Input: \square a, \square b real intervals

Output: a number in \{-2, -1, 1\} s.t.:
1 \Rightarrow \square a > \square b
-1 \Rightarrow \square a < \square b \text{ or } \square a, \square b \text{ are too close}
-2 \Rightarrow \square a \cap \square b \neq \emptyset
```

Loop on precision:

The soft Pellet's test: for oracle polynomials

Loop on precision:

```
\mathcal{T}^*(\Delta, \mathcal{O}_f) //Output in \{-1, 0, 1, \dots, d\}
```

- **1.** $L \leftarrow 53$, $\Box f \leftarrow \mathcal{O}_f(L)$, $m \leftarrow \mathsf{SoftPelletTest}(\Delta, \Box f)$
- **2.** while m = -2 do
- 3. $L \leftarrow 2L, \ \Box f \leftarrow \mathcal{O}_f(L), \ m \leftarrow \mathsf{SoftPelletTest}(\Delta, \Box f)$
- 4. return m

Univariate root clustering algorithms

ClusterOracle: solves the LCP in 1D ([BSS $^+$ 16]) T^* embedded in a subdivision framework accepts oracle polynomials in input

[BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial. In ISSAC 16, pages 71–78. ACM, 2016.

Univariate root clustering algorithms

ClusterOracle: solves the LCP in 1D ([BSS+16])

 T^* embedded in a subdivision framework

accepts oracle polynomials in input

ClusterInterval: solves the LCP in 1D Input: interval polynomial

Output: a flag in {success,fail}, a list of natural clusters

SoftPelletTest embedded in a subdivision framework

returns fail when SoftPelletTest returns -2

[BSS⁺16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap.

Complexity analysis of root clustering for a complex polynomial.

In ISSAC 16, pages 71–78. ACM, 2016.

Menu

0 - Univariate case:

1 - Multivariate triangular case

[IPY19] Rémi Imbach, Marc Pouget, and Chee Yap.

Clustering complex zeros of triangular systems of polynomials.

In CASC 19, to appear in MCS, 2019.

Rational, bivariate

$$\begin{cases} f_1(z_1) &= 0 \\ f_2(z_1, z_2) &= 0 \end{cases}, \deg_{z_i}(f_i) \geq 1, f_i \in \mathbb{Q}[z_1, z_2]$$

Oracle numbers and polynomials

```
Let \alpha \in \mathbb{C}.

Oracle for \alpha: function \mathcal{O}_{\alpha} : \mathbb{Z} \to \mathbb{DC}
\mathrm{s.t.} \ \alpha \in \mathcal{O}_{\alpha}(L) \ \mathrm{and} \ w(\mathcal{O}_{\alpha}(L)) \leq 2^{-L}

Let f \in \mathbb{C}[z_1, \ldots, z_n]

Oracle for f: function \mathcal{O}_f : \mathbb{Z} \to \mathbb{DC}[z_1, \ldots, z_n]
\mathrm{s.t.} \ f \in \mathcal{O}_f(L) \ \mathrm{and} \ w(\mathcal{O}_f(L)) \leq 2^{-L}
\simeq \mathrm{oracles} \ \mathrm{for} \ \mathrm{the} \ \mathrm{coeffs} \ \mathrm{of} \ f

Let f_2 \in \mathbb{Q}[z_1, z_2] \ \mathrm{and} \ \alpha_1 \in \mathbb{C}
```

```
Partial specialization of f_2: f_2(\alpha_1) \in \mathbb{C}[z_2]
```

```
Notations: \square \mathbb{C}: set of complex interval \square \mathbb{C}[z_1, \ldots, z_n]: polynomials with coefficients in \square \mathbb{C}
```

Oracle numbers and polynomials

```
Let \alpha \in \mathbb{C}.
Oracle for \alpha: function \mathcal{O}_{\alpha}: \mathbb{Z} \to \mathbb{DC}
                                    s.t. \alpha \in \mathcal{O}_{\alpha}(L) and w(\mathcal{O}_{\alpha}(L)) < 2^{-L}
Let f \in \mathbb{C}[z_1, \ldots, z_n]
Oracle for f: function \mathcal{O}_f: \mathbb{Z} \to \square \mathbb{C}[z_1, \dots, z_n]
                                    s.t. f \in \mathcal{O}_f(L) and w(\mathcal{O}_f(L)) < 2^{-L}
                                                                                                  \sim oracles for the coeffs of f
Let f_2 \in \mathbb{Q}[z_1, z_2] and \square \alpha_1 \in \square \mathbb{C}
Partial specialization of f_2: f_2(\square \alpha_1) \in \square \mathbb{C}[z_2]
```

```
Notations: \square \mathbb{C}: set of complex interval \square \mathbb{C}[z_1,\ldots,z_n]: polynomials with coefficients in \square \mathbb{C}
```

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha_1 \in Z(\Delta_1, f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then $f(z) = \mathbf{0}$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha_1 \in Z(\Delta_1, f_1), f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then $f(z) = \mathbf{0}$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proof: direct consequence of

Theorem [ZFX11]: Let $\alpha \in Z(\mathbb{C}^2, \mathbf{f})$, $\alpha = (\alpha_1, \alpha_2)$. Then

$$m(\boldsymbol{\alpha}, \boldsymbol{f}) = m(\alpha_2, f_2(\alpha_1)) \times m(\alpha_1, f_1)$$

[ZFX11] Zhihai Zhang, Tian Fang, and Bican Xia.

Real solution isolation with multiplicity of zero-dimensional triangular systems. *Science China Information Sciences*, 54(1):60–69, 2011.

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$\mathbf{a}^1 = (2^{-\sigma}, 0) \leftarrow m(\mathbf{a}^1, \mathbf{f}) = 2 = 1 \times 2$$

$$\mathbf{a}^2 = (2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^2, \mathbf{f}) = 2 = 1 \times 2$$

 $\mathbf{a}^3 = (-2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^3, \mathbf{f}) = 1 = 1 \times 1$
 $\mathbf{a}^4 = (-2^{-\sigma}, 0) \leftarrow m(\mathbf{a}^4, \mathbf{f}) = 1 = 1 \times 1$

$$\mathbf{a}^3 = (-2 \quad , \quad 1) \leftarrow m(\mathbf{a}^3, \mathbf{f}) = 1 = 1 \times 1$$

$$\mathbf{a}^5 - (-2^{-\sigma}) \leftarrow m(\mathbf{a}^5, \mathbf{f}) - 2 - 2 \times 1$$

$$\boldsymbol{a}^5 = \begin{pmatrix} -2^{-\sigma} & , & -2^{-\sigma} \end{pmatrix} \leftarrow m(\boldsymbol{a}^5, \boldsymbol{f}) = 2 = 2 \times 1$$

$$a^6 = (2^{-\sigma}, -2^{-\sigma}) \leftarrow m(a^6, f) = 4 = 2 \times 2$$

Natural clusters:

$$(\boldsymbol{\Delta}^1,9)$$

 $(\boldsymbol{\Delta}^2,3)$

Notations: m(a, f): multiplicity of a as a sol. of f

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$a^1 = (2^{-\sigma}, 0) \leftarrow m(a^1, f) = 2 = 1 \times 2$$

 $a^2 = (2^{-\sigma}, 0) \leftarrow m(a^2, f) = 2 = 1 \times 2$

$$\mathbf{a}^2 = (2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^2, \mathbf{f}) = 2 = 1 \times 2$$

 $\mathbf{a}^3 = (-2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^3, \mathbf{f}) = 1 = 1 \times 1$
 $\mathbf{a}^4 = (-2^{-\sigma}, 0) \leftarrow m(\mathbf{a}^4, \mathbf{f}) = 1 = 1 \times 1$

$$\mathbf{a}^{3} = (-2^{3}, \mathbf{f}) \leftarrow m(\mathbf{a}^{3}, \mathbf{f}) = 1 = 1 \times 1$$

$$\mathbf{a} = (-2)$$
, $\mathbf{a} = (-2)$, \mathbf{a}

$$a^5 = (-2^{-\sigma}, -2^{-\sigma}) \leftarrow m(a^5, f) = 2 = 2 \times 1$$

$$a^6 = (2^{-\sigma}, -2^{-\sigma}) \leftarrow m(a^6, f) = 4 = 2 \times 2$$

Natural clusters:

$$(\Delta^1, 9) \leftarrow 9 = 3 \times 3$$

 $(\Delta^2, 3) \leftarrow 3 = 1 \times 3$

Notations: m(a, f): multiplicity of a as a sol. of f

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha_1 \in Z(\Delta_1, f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then $f(z) = \mathbf{0}$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha_1 \in Z(\Delta_1, f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$

Corollary 2: If (Δ, m) is a natural tower, f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha_1 \in Z(\Delta_1, f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then $f(z) = \mathbf{0}$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural ϵ -tower (relative to f) if

- (i) (Δ_1, m_1) is a natural ϵ -cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural ϵ -cluster relative to $f_2(\alpha_1)$

Corollary 2: If (Δ, m) is a natural tower, f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$\mathbf{a}^1 = (2^{-\sigma}, 0) \leftarrow m(\mathbf{a}^1, \mathbf{f}) = 2 = 1 \times 2$$

$$\mathbf{a}^2 = (2^{-\sigma} , 1) \leftarrow m(\mathbf{a}^2, \mathbf{f}) = 2 = 1 \times 2$$

 $\mathbf{a}^3 = (-2^{-\sigma} , 1) \leftarrow m(\mathbf{a}^3, \mathbf{f}) = 1 = 1 \times 1$
 $\mathbf{a}^4 = (-2^{-\sigma} , 0) \leftarrow m(\mathbf{a}^4, \mathbf{f}) = 1 = 1 \times 1$

$$\mathbf{a}^{\mathbf{r}} = (-2^{-\mathbf{r}}, \mathbf{1}) \leftarrow m(\mathbf{a}^{\mathbf{r}}, \mathbf{r}) = 1 = 1 \times 1$$

$$\mathbf{a}^5 = (-2^{-\sigma} \quad -2^{-\sigma}) \leftarrow m(\mathbf{a}^5, \mathbf{f}) = 2 - 2 \times 1$$

$$a^5 = (-2^{-\sigma}, -2^{-\sigma}) \leftarrow m(a^5, f) = 2 = 2 \times 1$$

$$\mathbf{a}^6 = (2^{-\sigma} \, , \, -2^{-\sigma}) \leftarrow m(\mathbf{a}^6, \mathbf{f}) = 4 = 2 \times 2$$

Natural clusters:

$$(\Delta^1, 9) \leftarrow 9 = 3 \times 3$$

$$(\mathbf{\Delta}^2,3)\leftarrow 3=1\times 3$$

Natural towers:

$$(\boldsymbol{\Delta}^1,(3,3))$$

$$(\Delta^2, (1,3))$$

Pellet's test and natural towers

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$
- $f(z) = \mathbf{0}$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Pellet's test and natural towers

- Definition: A pair (Δ, m) is a natural tower (relative to f) if
 - (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$
- $f(z) = \mathbf{0}$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose

- (i) SoftPelletTest(Δ_1, f_1) returns $m_1 \geq 1$
- (ii) SoftPelletTest $(\Delta_2, f_2(\Box \Delta_1))$ returns $m_2 \geq 1$
- Then (Δ, m) is a natural tower relative to f.

Pellet's test and natural towers

- Definition: A pair (Δ, m) is a natural tower (relative to f) if
 - (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$
- $f(z) = \mathbf{0}$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose

- (i) SoftPelletTest(Δ_1, f_1) returns $m_1 \geq 1$
- (ii) SoftPelletTest $(\Delta_2, f_2(\Box \Delta_1))$ returns $m_2 \geq 1$
- Then (Δ, m) is a natural tower relative to f.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$
- $f(z) = \mathbf{0}$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose

- (i) SoftPelletTest (Δ_1, f_1) returns $m_1 \geq 1$
- (ii) SoftPelletTest $(\Delta_2, f_2(\Box \Delta_1))$ returns $m_2 \geq 1$

Then (Δ, m) is a natural tower relative to f.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$
- $m{f}(m{z}) = m{0}$ has $m_2 imes m_1$ solutions in $m{\Delta}$ with multiplicity.

Proposition 3: Suppose

- (i) SoftPelletTest(Δ_1, f_1) returns $m_1 \geq 1$
- (ii) SoftPelletTest $(\Delta_2, f_2(\square \Delta_1))$ returns $m_2 \geq 1$

Then (Δ, m) is a natural tower relative to f.

Main data structure

A **tower** is a triple $\mathcal{T} = \langle \ell, \mathbf{B}, \mathbf{L} \rangle$ where

- ℓ is an integer in $\{0,1,2\}$ called **level**
- $\mathbf{B} = (B_1, B_2)$ is a polybox called **domain**
- $L = (L_1, L_2)$ is a vector in $(\mathbb{Z})^2$ called **precision**

Main data structure

 $\Delta(B_1)$ $\frac{w_1}{4}$

A **tower** is a triple $\mathcal{T} = \langle \ell, \mathbf{B}, \mathbf{L} \rangle$ where

- ℓ is an integer in $\{0,1,2\}$ called **level**
- $\mathbf{B} = (B_1, B_2)$ is a polybox called **domain**
- $L = (L_1, L_2)$ is a vector in $(\mathbb{Z})^2$ called **precision**

We will garantee that if $\ell = 1$, $\exists m_1$ so that:

(i) SoftPelletTest($\Delta(B_1)$, f_1) returns m_1 and $r(\Delta(B_1)) < 2^{-L_1}$

A **tower** is a triple $\mathcal{T} = \langle \ell, \mathbf{B}, \mathbf{L} \rangle$ where

- ℓ is an integer in $\{0,1,2\}$ called **level**
- $\mathbf{B} = (B_1, B_2)$ is a polybox called **domain**
- $L = (L_1, L_2)$ is a vector in $(\mathbb{Z})^2$ called **precision**

We will garantee that if $\ell = 2$, $\exists (m_1, m_2)$ so that:

- (i) SoftPelletTest $(\Delta(B_1), f_1)$ returns m_1 and $r(\Delta(B_1)) < 2^{-L_1}$
- (ii) SoftPelletTest($\Delta(B_2)$, $f_2(\Box \Delta(B_1))$) returns m_2 and $r(\Delta(B_2)) < 2^{-L_2}$

From proposition 3: $(\Delta(\boldsymbol{B}), \boldsymbol{m})$ is a natural tower (relative to \boldsymbol{f}) and $\boldsymbol{f}(\boldsymbol{z}) = \boldsymbol{0}$ has $m_2 \times m_1$ sols in $\Delta(\boldsymbol{B})$ with mult.

Lift of a tower from level 0 to level 1

Cluster1(f, \mathcal{T}) //for f with exact coefficients

Input: $f = (f_1, f_2), T = \langle \ell, B, L \rangle$ a tower at any level

Output: a list of towers at level 1

1. calls ClusterOracle ([BSS+16]) for f_1 , B_1 , 2^{-L_1}

Lift of a tower from level 1 to level 2

Cluster2(f, \mathcal{T}) //for f with exact coefficients

Input: $f = (f_1, f_2), T = \langle \ell, \boldsymbol{B}, \boldsymbol{L} \rangle$ a tower at level 1

Output: a flag in $\{success, fail\}$ and a list of towers at level 2

1. calls ClusterInterval for $f_2(\Box \Delta(B_1))$, B_2 , 2^{-L_2} fail if SoftPelletTest returns -2 (*i.e.* not enough prec. on $\Box \Delta(B_1)$)

Cluster $Tri(\mathbf{f}, \mathbf{B}, L)$ //for f with exact coefficients

Input: a triangular system f(z) = 0, a polybox B, L > 0 **Output:** a set of natural 2^{-L} -towers solving the LCP

- **1.** Q.push((0, B, (L, L)))
- **2.** while Q contains towers of level < 2 do
- 3. $\mathcal{T} = \langle \ell, \mathbf{B}, (L_1, L_2) \rangle \leftarrow Q.pop()$ with $\ell < 2$
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12. return Q

Main algorithm

```
ClusterTri(\boldsymbol{f}, \boldsymbol{B}, L)
                                                  //for f with exact coefficients
          a triangular system f(z) = 0, a polybox B, L > 0
Output: a set of natural 2^{-L}-towers solving the LCP
 1. Q.push(\langle 0, \boldsymbol{B}, (L, L)\rangle)
 2. while Q contains towers of level < 2 do
               \mathcal{T} = \langle \ell, \boldsymbol{B}, (L_1, L_2) \rangle \leftarrow Q.pop() with \ell < 2
 3.
               if \ell = 0 then
 4.
 5.
                        Q.push(Cluster1(f, T))
 6.
               else
 7.
 8.
 9.
10.
11.
12. return Q
```

Main algorithm

```
Cluster Tri(\boldsymbol{f}, \boldsymbol{B}, L)
                                                      //for f with exact coefficients
           a triangular system f(z) = 0, a polybox B, L > 0
Output: a set of natural 2^{-L}-towers solving the LCP
 1. Q.push(\langle 0, \boldsymbol{B}, (L, L)\rangle)
 2. while Q contains towers of level < 2 do
                \mathcal{T} = \langle \ell, \boldsymbol{B}, (L_1, L_2) \rangle \leftarrow Q.pop() with \ell < 2
 3.
 4.
                if \ell = 0 then
 5.
                          Q.push(Cluster1(\mathbf{f}, \mathcal{T}))
 6.
                 else
 7.
                          flag, S \leftarrow \text{Cluster2}(\mathbf{f}, \mathcal{T})
 8.
                          if flag = success then
 9.
                                    Q.push(S)
10.
                          else
                                                             // not enough precision on B_1
11.
                                    Q.push(\langle 0, \boldsymbol{B}, (2L_1, L_2)\rangle)
12. return Q
```

Our implementation

Ccluster: library in C based on

- FLINT¹: arithmetic for the geometric algorithm
- (5(s)) Arb²: arbitrary precision floating arithmetic with error bounds

Available at https://github.com/rimbach/Ccluster

```
Ccluster.jl: package for julia^3 based on \mathbb{N}e^m\mathcal{O}^4
```

- interface for Ccluster
- Tcluster: implementation of ClusterTri

Available at https://github.com/rimbach/Ccluster.jl

¹https://github.com/wbhart/flint2

²http://arblib.org/

³https://julialang.org/

⁴http://nemocas.org/

Benchmark: systems

Type of a triangular system:

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

	i I							
type								
Systems with only simple solutions								
(9,9,9)								
(6,6,6,6)								
(9,9,9,9)								
(6,6,6,6,6)								
(9,9,9,9,9)								
(2,2,2,2,2,2,2,2) Systems with multiple								
Systems with multiple	solutions							
(9,9)								
(6,6,6)								
(9,9,9)								
(6,6,6,6)								

Benchmark: local vs global comparison

Type of a triangular system:

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

	Tcluster lo	Tcluster local Tcl		bal	ll l	
type	(#Clus, #Sols)	t (s)	(#Clus, #Sols)	t (s)		
Systems with only sim	ple solutions					
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.21		
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	1.73		
(9,9,9,9)	(559 : 559)	1.06	(6561:6561)	12.9		
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	11.1		
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	113		
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.42		
Systems with multiple	solutions					
(9,9)	(23.8: 13.6)	0.03	(81:45)	0.15		
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.24		
(9,9,9)	(113: 37.6)	0.22	(729 : 225)	1.06		
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.28		

Tcluster **local** : $\mathbf{B} = ([-1,1] + i[-1,1])^2$, $\epsilon = 2^{-53}$

Tcluster global: B chosen with upper bound for roots

Benchmark: extern comparison

Type of a triangular system:

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

	Tcluster local		Tcluster global		HomCont.jl		
type	(#Clus, #Sols)	t (s)	(#Clus, #Sols)	t (s)	#Sols	t (s)	
Systems with only sim	ple solutions						
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.21	729	4.21	
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	1.73	1296	4.70	
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	12.9	6561	14.0	
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	11.1	7776	11.5	
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	113	59049	116	
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.42	1024	4.84	
Systems with multiple	solutions						
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.15	33.6	3.27	
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.24	53.2	2.75	
(9,9,9)	(113: 37.6)	0.22	(729 : 225)	1.06	159	28.4	
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.28	134	8.06	

Tcluster **local** : $\mathbf{B} = ([-1,1] + i[-1,1])^2$, $\epsilon = 2^{-53}$

Tcluster global: B chosen with upper bound for roots

HomCont.jl: HomotopyContinuation.jl

Benchmark:

Type of a triangular system:

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

	Tcluster local		Tcluster global		HomCont.jl				
type	(#Clus, #Sols)	t (s)	(#Clus, #Sols)	t (s)	#Sols	t (s)			
Systems with only simple solutions									
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.21	729	4.21			
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	1.73	1296	4.70			
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	12.9	6561	14.0			
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	11.1	7776	11.5			
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	113	59049	116			
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.42	1024	4.84			
Systems with multiple	solutions								
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.15	33.6	3.27			
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.24	53.2	2.75			
(9,9,9)	(113 : 37.6)	0.22	(729 : 225)	1.06	159	28.4			
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.28	134	8.06			

Tcluster **local** : $\mathbf{B} = ([-1,1] + i[-1,1])^2$, $\epsilon = 2^{-53}$

Tcluster global: B chosen with upper bound for roots

HomCont.jl: HomotopyContinuation.jl

Benchmark:

Type of a triangular system:

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

	Tcluster local		Tcluster global		HomCont.jl		triang.	solve	
type	(#Clus, #Sols)	t (s)	(#Clus, #Sols)	t (s)	#Sols	t (s)	#Sols	t (s)	
Systems with only simple solutions									
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.21	729	4.21	729	0.37	
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	1.73	1296	4.70	1296	0.93	
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	12.9	6561	14.0	6561	8.57	
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	11.1	7776	11.5	7776	19.1	
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	113	59049	116	59049	702	
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.42	1024	4.84	1024	3.9	
Systems with multiple	solutions								
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.15	33.6	3.27	45	0.03	
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.24	53.2	2.75	54	0.05	
(9,9,9)	(113 : 37.6)	0.22	(729 : 225)	1.06	159	28.4	225	0.23	
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.28	134	8.06	162	0.15	

Tcluster **local** : $\mathbf{B} = ([-1,1] + i[-1,1])^2$, $\epsilon = 2^{-53}$

Tcluster global: B chosen with upper bound for roots

HomCont.jl: HomotopyContinuation.jl

triang_solve: Singular solver for triangular systems

Menu

- 0 Univariate case:
- 1 Multivariate triangular case
- 2 Back to univariate case
 - polynomials with real coefficients
 - new counting test
- [IP19] Rémi Imbach and Victor Y. Pan.

New practical advances in polynomial root clustering.

In MACIS 19, 2019.

Pols with real coefficients

Example:

$$Mign_d(z) = z^d - 2(2^{14}z - 1)^2$$

d even \Rightarrow 4 real roots

Subdivision tree:

Pols with real coefficients (II)

Example:

Bern_d(
$$z$$
) = $\sum_{k=0}^{d} {d \choose k} b_{d-k} z^k$
 b_i 's: Bernoulli numbers

d even $\Rightarrow d/4$ real roots

$$d = 64$$

Subdivision tree:

Results (I)

11

Ccluster: version of [IPY18]

 t_1 : time; s_1 : number of T^0 -tests

CclusterR: Ccluster for polynomials in $\mathbb{R}[z]$

 t_2 : time; s_2 : number of T^0 -tests

	CCIUS	CCIUS	sterk		
	(#Clus, #Sols)	s_1	t_1	s ₂	t_1/t_2
Bern ₁₂₈	(128, 128)	4732	6.30	2712	1.72
Bern ₁₉₁	(191, 191)	7220	20.2	4152	1.74
Bern ₂₅₆	(256, 256)	9980	41.8	5698	1.67
Bern ₃₈₃	(383, 383)	14504	120	8198	1.82
Mign ₁₂₈	(127, 128)	4508	5.00	2292	1.92
Mign ₁₉₁	(190, 191)	6260	15.5	3180	2.01
Mign ₂₅₆	(255, 256)	8452	31.8	4304	2.04
Mign ₃₈₃	(382, 383)	12564	79.7	6410	1.98

sequential times in s. on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine with Linux

Menu

- 0 Univariate case:
- 1 Multivariate triangular case
- 2 Back to univariate case
 - polynomials with real coefficients
 - new counting test
- [IP19] Rémi Imbach and Victor Y. Pan.

New practical advances in polynomial root clustering.

In MACIS 19, 2019.

Approximating Power Sums

Let $\Delta = \Delta(0,1)$, f has deg. d, dist. roots $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ in Δ with mults $m_1, \ldots, m_{d_{\Delta}}$

Power Sums: let $h \in \mathbb{Z}$

$$s_h = m_1 \times \alpha_1^h + \ldots + m_{d_{\Delta}} \times \alpha_{d_{\Delta}}^h$$

Approximating Power Sums

Let $\Delta = \Delta(0,1)$, f has deg. d, dist. roots $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ in Δ with mults $m_1, \ldots, m_{d_{\Delta}}$

Power Sums: let $h \in \mathbb{Z}$

$$s_h = m_1 \times \alpha_1^h + \ldots + m_{d_{\Delta}} \times \alpha_{d_{\Delta}}^h$$

Theorem [S82, P18]:

if no root in $\{z \in \mathbb{C} | \frac{1}{\rho} < |z| < \rho \}$ use evaluations of f and f' at q points to approximate s_h within error $\simeq d\rho^{-q}$

Old and new nearly optimal polynomial root-finders.

arXiv preprint arXiv:1805.12042, 2018.

[Sch82] Arnold Schönhage.

The fundamental theorem of algebra in terms of computational complexity.

Manuscript. Univ. of Tübingen, Germany, 1982.

Approximating 0-th Power Sum

Let $\Delta = \Delta(0,1)$, f has deg. d, dist. roots $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ in Δ with mults $m_1, \ldots, m_{d_{\Delta}}$

Power Sums: let $h \in \mathbb{Z}$

$$s_0 = m_1 \times \alpha_1^0 + \ldots + m_{d_{\Delta}} \times \alpha_{d_{\Delta}}^0 = \#(\Delta, f)$$

Theorem [S82, P18]:

if no root in $\{z \in \mathbb{C} | \frac{1}{\rho} < |z| < \rho \}$ use evaluations of f and f' at q points to approximate s_h within error $\simeq d\rho^{-q}$

Old and new nearly optimal polynomial root-finders.

arXiv preprint arXiv:1805.12042, 2018.

[Sch82] Arnold Schönhage.

The fundamental theorem of algebra in terms of computational complexity.

Manuscript. Univ. of Tübingen, Germany, 1982.

Approximating 0-th Power Sum

Let $\Delta = \Delta(0,1)$, f has deg. d, dist. roots $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ in Δ with mults $m_1, \ldots, m_{d_{\Delta}}$

0-th Power Sum:

$$s_0 = \#(\Delta, f)$$

Approximation formula: let $q \in \mathbb{N}_*$, $\omega = e^{rac{2\pi\imath}{q}}$

$$s_0^* = \frac{1}{q} \sum_{g=0}^{q-1} \omega^g \frac{f'(\omega^g)}{f(\omega^g)}$$

Approximating 0-th Power Sum

Let $\Delta = \Delta(0,1)$, f has deg. d, dist. roots $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ in Δ with mults $m_1, \ldots, m_{d_{\Delta}}$

0-th Power Sum:

$$s_0 = \#(\Delta, f)$$

Approximation formula: let $q \in \mathbb{N}_*$, $\omega = e^{rac{2\pi \imath}{q}}$

$$s_0^* = rac{1}{q} \sum_{g=0}^{q-1} \omega^g rac{f'(\omega^g)}{f(\omega^g)}$$

Corollary of [S82, P18]: if no root in $\{z \in \mathbb{C} | \frac{1}{\rho} < |z| < \rho\}$, $\theta = 1/\rho$, then

(i)
$$|s_0^* - s_0| \leq \frac{d\theta^q}{1 - \theta^q}$$
.

(ii) Fix
$$\delta > 0$$
. If $q = \lceil \log_{\theta}(\frac{\delta}{d+\delta}) \rceil$ then $|s_0^* - s_0| \le \delta$.

Oracle numbers and polynomials

Let $\alpha \in \mathbb{C}$.

Oracle for
$$\alpha$$
: function $\mathcal{O}_{\alpha} : \mathbb{Z} \to \square \mathbb{C}$
s.t. $\alpha \in \mathcal{O}_{\alpha}(L)$ and $w(\mathcal{O}_{\alpha}(L)) \leq 2^{-L}$

Let $f \in \mathbb{C}[z]$

Evaluation oracle for
$$f$$
: function $\mathcal{I}_f: \mathbb{Z} \times (\mathbb{Z} \to \mathbb{DC}) \to \mathbb{DC}$
s.t. $f(\alpha) \in \mathcal{I}_f(L, \mathcal{O}_\alpha)$ and $w(\mathcal{I}_f(L, \mathcal{O}_\alpha)) \leq 2^{-L}$

Notations: $\square \mathbb{C}$: set of complex interval $\mathbb{Z} \to \square \mathbb{C}$: set of oracle numbers

$$P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, \rho)$$
 //Output in $\{0, 1, \dots, d\}$

Input: $\mathcal{I}_f, \mathcal{I}_{f'}$ evaluation oracles for f and f', Δ a disc ρ -isolated **Output:** $\#(\Delta, f)$

- **1.** $\delta \leftarrow 1/4$, $\theta \leftarrow 1/\rho$
- **2.** $q \leftarrow \lceil \log_{\theta}(\frac{\delta}{d+\delta}) \rceil$
- 3.
- 4.
- 5.

$$P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, \rho)$$
 //Output in $\{0, 1, \dots, d\}$

Input: $\mathcal{I}_f, \mathcal{I}_{f'}$ evaluation oracles for f and f', Δ a disc ρ -isolated **Output:** $\#(\Delta, f)$

- **1.** $\delta \leftarrow 1/4$, $\theta \leftarrow 1/\rho$
- **2.** $q \leftarrow \lceil \log_{\theta}(\frac{\delta}{d+\delta}) \rceil$
- **3.** compute $\square s_0^*$ with $q, \mathcal{I}_f, \mathcal{I}_{f'}$ so that $w(\square s_0^*) < 1/2$
- 4.
- 5.

5.

$$P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, \rho)$$
 //Output in $\{0, 1, \ldots, d\}$
Input: $\mathcal{I}_f, \mathcal{I}_{f'}$ evaluation oracles for f and f' , Δ a disc ρ -isolated
Output: $\#(\Delta, f)$
1. $\delta \leftarrow 1/4$, $\theta \leftarrow 1/\rho$
2. $q \leftarrow \lceil \log_{\theta}(\frac{\delta}{d+\delta}) \rceil$

3. compute $\Box s_0^*$ with $q, \mathcal{I}_f, \mathcal{I}_{f'}$ so that $w(\Box s_0^*) < 1/2$

4. $\Box s_0 \leftarrow \Box s_0^* + [-1/4, 1/4] + i[-1/4, 1/4]$

 $// w(\Box s_0) < 1$

The P^* -test

```
P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, \rho) //Output in \{0, 1, \ldots, d\}
Input: \mathcal{I}_f, \mathcal{I}_{f'} evaluation oracles for f and f', \Delta a disc \rho-isolated
Output: \#(\Delta, f)
1. \delta \leftarrow 1/4, \theta \leftarrow 1/\rho
2. q \leftarrow \lceil \log_{\theta}(\frac{\delta}{d+\delta}) \rceil
```

5. return the unique integer in $\Box s_0$

Example: f has degree 500, $\rho=2$ evaluate f and f' at q=11 points then get $\#(\Delta,f)$ in O(q) arithmetic operations

3. compute $\Box s_0^*$ with $q, \mathcal{I}_f, \mathcal{I}_{f'}$ so that $w(\Box s_0^*) < 1/2$

The P^* -test

```
P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, \rho) //Output in \{0, 1, \dots, d\}
```

Input: $\mathcal{I}_f, \mathcal{I}_{f'}$ evaluation oracles for f and f', Δ a disc ρ -isolated **Output:** $\#(\Delta, f)$

- **1.** $\delta \leftarrow 1/4$, $\theta \leftarrow 1/\rho$
- **2.** $q \leftarrow \lceil \log_{\theta}(\frac{\delta}{d+\delta}) \rceil$
- **3.** compute $\Box s_0^*$ with $q, \mathcal{I}_f, \mathcal{I}_{f'}$ so that $w(\Box s_0^*) < 1/2$
- **4.** $\Box s_0 \leftarrow \Box s_0^* + [-1/4, 1/4] + i[-1/4, 1/4]$

 $// w(\Box s_0) < 1$

5. return the unique integer in $\Box s_0$

```
Example: f has degree 500, \rho=2 evaluate f and f' at q=11 points then get \#(\Delta,f) in O(q) arithmetic operations
```

Efficiency: directly related to evaluation

	Discarding tests							
		T	*-tests	I	^{O*} -tests	;		
	nb	t_0	t_0/t (%)	t_0'	n_{-1}	n _{err}		
Bern ₁₂₈	4732	5.50	86.9	1.38	269	10		
\mathtt{Bern}_{256}	9980	36.3	87.8	7.61	561	20		
Mign ₁₂₈	4508	4.73	90.9	0.25	276	12		
\mathtt{Mign}_{256}	8452	27.8	91.2	0.60	544	20		

 P^* -tests: $P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, 2)$

nb: nb of discarding tests performed

t: time in Ccluster

 t_0 : time in discarding T^* -tests

 t_0' : time in P^* -tests

Example: f has degree 500, $\rho=2$ evaluate f and f' at q=11 points then get $\#(\Delta,f)$ in O(q) arithmetic operations

Efficiency: directly related to evaluation

```
P^*(\mathcal{I}_f,\mathcal{I}_{f'},\Delta,\textcolor{red}{\rho}) \hspace{1cm} /\!/ \textit{Output in } \{0,1,\ldots,d\}
```

Input: $\mathcal{I}_f, \mathcal{I}_{f'}$ evaluation oracles for f and f', Δ a disc ρ -isolated **Output:** $\#(\Delta, f)$

- **1.** $\delta \leftarrow 1/4$, $\theta \leftarrow 1/\rho$
- **2.** $q \leftarrow \lceil \log_{\theta}(\frac{\delta}{d+\delta}) \rceil$
- **3.** compute $\Box s_0^*$ with $q, \mathcal{I}_f, \mathcal{I}_{f'}$ so that $w(\Box s_0^*) < 1/2$
- **4.** $\Box s_0 \leftarrow \Box s_0^* + [-1/4, 1/4] + i[-1/4, 1/4]$

 $// w(\Box s_0) < 1$

5. return the unique integer in $\Box s_0$

Example: f has degree 500, $\rho=2$ evaluate f and f' at q=11 points then get $\#(\Delta,f)$ in O(q) arithmetic operations

Efficiency: directly related to evaluation

But: requires ρ to be known and > 1.

	Discarding tests							
		T	*-tests	H	P^* -tests			
	nb	t_0	t_0/t (%)	t_0'	n_{-1}	n _{err}		
Bern ₁₂₈	4732	5.50	86.9	1.38	269	10		
Bern ₂₅₆	9980	36.3	87.8	7.61	561	20		
Mign ₁₂₈	4508	4.73	90.9	0.25	276	12		
Mign ₂₅₆	8452	27.8	91.2	0.60	544	20		

 P^* -tests: $P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, 2)$

nb: nb of discarding tests performed

 n_{-1} : nb of times $\Box s_0$ does not contains integer

*n*_{err}: nb of times result is not correct

Example: f has degree 500, $\rho=2$ evaluate f and f' at q=11 points then get $\#(\Delta,f)$ in O(q) arithmetic operations

Efficiency: directly related to evaluation

But: requires ρ to be known and > 1.

Using the P^* -test as a filter

The C^0 -test:

$$C^0(\Delta) := \left\{ \begin{array}{ll} -1 & \text{if } P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, 2) \neq 0, \\ -1 & \text{if } P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, 2) = 0 \text{ and } T^*(\Delta, \mathcal{O}_f) \neq 0, \\ 0 & \text{if } P^*(\mathcal{I}_f, \mathcal{I}_{f'}, \Delta, 2) = 0 \text{ and } T^*(\Delta, \mathcal{O}_f) = 0. \end{array} \right.$$

27/29

Results (I)

Ccluster: version of [IPY18]

 t_1 : time; s_1 : number of T^0 -tests

CclusterR: Ccluster for polynomials in $\mathbb{R}[z]$

 t_2 : time; s_2 : number of T^0 -tests

CclusterP: CclusterR with P^* -test as a filter

 t_3 : time; s_3 : number of T^0 -tests

	Ccluster		CclusterR		CclusterP		:P	
	(#Clus, #Sols)	s_1	t_1	s ₂	t_1/t_2	s 3	t ₃	t_2/t_3
Bern ₁₂₈	(128, 128)	4732	6.30	2712	1.72	1983	3.30	1.10
Bern ₁₉₁	(191, 191)	7220	20.2	4152	1.74	3073	10.7	1.08
Bern ₂₅₆	(256, 256)	9980	41.8	5698	1.67	4067	21.9	1.14
Bern ₃₈₃	(383, 383)	14504	120	8198	1.82	5813	53.5	1.23
Mign ₁₂₈	(127, 128)	4508	5.00	2292	1.92	1668	1.81	1.43
Mign ₁₉₁	(190, 191)	6260	15.5	3180	2.01	2431	4.34	1.77
Mign ₂₅₆	(255, 256)	8452	31.8	4304	2.04	3223	10.7	1.44
${\tt Mign}_{383}$	(382, 383)	12564	79.7	6410	1.98	4883	26.8	1.49

sequential times in s. on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine with Linux

Pols with real coefficients

Example:

$$Mign_d(z) = z^d - 2(2^{14}z - 1)^2$$

d even \Rightarrow 4 real roots

only 4 non-zero coeffs

Subdivision tree:

Procedural polynomials

Procedure: Mand_k(z)

Input: $k \in \mathbb{N}^*, z \in \mathbb{C}$

Output: $r \in \mathbb{C}$

- 1. if k=1 then
- 2. return z
- 3. else
- 4. return zMand $_{k-1}(z)^2 + 1$

Procedural polynomials

Procedure: Mand_k(z)

Input: $k \in \mathbb{N}^*, z \in \mathbb{C}$

Output: $r \in \mathbb{C}$

- 1. if k=1 then
- return z
- 3. else
- return zMand $_{k-1}(z)^2 + 1$ 4.

$$k=6 \; (\deg=63)$$

Procedure: $\operatorname{Runn}_k(z)$ Input: $k \in \mathbb{N}, z \in \mathbb{C}$

Output: $r \in \mathbb{C}$

- 1. if k=0 then
- return 1
- 3. else if k=1 then
- return z

Results (II)

Ccluster: version of [IPY18]

 t_1 : time

CclusterR: Ccluster for polynomials in $\mathbb{R}[z]$

 t_2 : time

CclusterP: CclusterR with P^* -test as a filter

t₃: time

	Ccluster		CclusterR	CclusterP		
	(#Clus, #Sols)	$\mid t_1 \mid$	t_1/t_2	t ₃	t_2/t_3	
Mand ₆	(63, 63)	0.99	1.69	0.44	1.30	
Mand ₇	(127, 127)	7.17	1.62	2.88	1.52	
Mand ₈	(255, 255)	40.6	1.71	15.1	1.56	
Runn ₇	(54, 85)	2.15	1.58	0.97	1.39	
Runn ₈	(107, 170)	13.3	1.61	6.51	1.26	
Runn ₉	(214, 341)	76.2	1.70	32.2	1.38	

sequential times in s. on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine with Linux

Results (II)

Ccluster: version of [IPY18]

 t_1 : time

CclusterR: Ccluster for polynomials in $\mathbb{R}[z]$

t₂: time

CclusterP: CclusterR with P^* -test as a filter

t₃: time

	Ccluster		CclusterR	CclusterP		
	(#Clus, #Sols)	t ₁	t_1/t_2	<i>t</i> ₃	t_2/t_3	
Mand ₆	(63, 63)	0.99	1.69	0.44	1.30	
Mand ₇	(127, 127)	7.17	1.62	2.88	1.52	
Mand ₈	(255, 255)	40.6	1.71	15.1	1.56	
Runn ₇	(54, 85)	2.15	1.58	0.97	1.39	
Runn ₈	(107, 170)	13.3	1.61	6.51	1.26	
Runn ₉	(214, 341)	76.2	1.70	32.2	1.38	

Triangular systems

sequential times in s. on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine with Linux

29/29

Results (II)

Ccluster: version of [IPY18]

 t_1 : time

CclusterR: Ccluster for polynomials in $\mathbb{R}[z]$

t₂: time

CclusterP: CclusterR with P^* -test as a filter

t₃: time

	Ccluster		CclusterR	CclusterP		MPSolve
	(#Clus, #Sols)	t_1	t_1/t_2	<i>t</i> ₃	t_2/t_3	t ₄
Mand ₆	(63, 63)	0.99	1.69	0.44	1.30	0.01
Mand ₇	(127, 127)	7.17	1.62	2.88	1.52	0.06
Mand ₈	(255, 255)	40.6	1.71	15.1	1.56	0.39
Runn ₇	(54, 85)	2.15	1.58	0.97	1.39	0.01
Runn ₈	(107, 170)	13.3	1.61	6.51	1.26	0.04
Runn ₉	(214, 341)	76.2	1.70	32.2	1.38	0.32

sequential times in s. on a Intel(R) Core(TM) 17-7600U CPU @ 2.80GHz machine with Linux

Thank you for your attention!