Dengue Prediction Model Training Summary

Dengue Prediction Model Training Summary

- 2. Cleaned missing values using forward fill (ffill).
- 3. Encoded the 'city' column to numerical values: 'sj' 0, 'iq' 1.
- 4. Created new features:
 - Lag features (lag_1_total_cases, lag_2_total_cases)
 - Rolling statistics (rolling_mean_3, rolling_std_3)
 - Temperature difference (temp_diff = max_temp min_temp)
- 5. Performed Exploratory Data Analysis (EDA):
 - Missing value visualization
 - Boxplots for city-wise and weekly dengue cases
 - Correlation heatmap for feature selection
- 6. Feature selection using Random Forest: Top 10 most important features selected.
- 7. Trained and evaluated different regression models (separately for each city):
 - a) Random Forest Regressor
 - MAE (San Juan): 7.99
 - MAE (Iquitos): 4.44
 - b) Gradient Boosting Regressor
 - MAE (San Juan): 8.88
 - MAE (Iquitos): ~5+ (less accurate)
 - c) LightGBM Regressor
 - MAE (San Juan): ~7.3 (approx)
 - MAE (Iquitos): ~4.0+
 - d) XGBoost Regressor (Best Model)
 - MAE (San Juan): 5.29
 - MAE (Iquitos): 1.68
- 8. Performed final prediction using trained XGBoost models on test data.
- 9. Predictions were clipped to remove negative case values.
- 10. Final predictions exported to 'dengue_predictions.csv'.