# **Nonnegative Matrix Factorization**

Be Positive!

Abdelbast Nassiri Maximilian Stollmayer Manuel Wissiak

30.01.2023

#### **NMF**

#### **Problem**

Given  $A \in \mathbb{R}_+^{m \times n}$  non-negative and  $rank r \leq \min(m, n)$ .

Find  $W \in \mathbb{R}_+^{m \times r}$  and  $H \in \mathbb{R}_+^{r \times n}$  both non-negative s.t.:

 $A \approx WH$ 

1

# Text Mining

"Words which are similar in meaning occur in similar contexts"

CHATGPT

picture Visible Variables = Weights \* Hidden Variables

## Image Processing

Given vectorized gray-levels  $X \in \mathbb{R}^{p \times n}_+$  of a facial image.

Problem: Facial Feature Extraction

$$X(:,j) \approx \sum_{k=1}^{r} W(:,k) \quad H(k,j)$$
  
j-th facial image facial features importance of feature in j-th image

## Hyperspectral Unmixing

Given vectorized spectral signature  $X \in \mathbb{R}_+^{p \times n}$  of an image.

Problem: Identify Endmembers (Grass, Stone,...)

$$X(:,j) \approx \sum_{k=1}^{r} W(:,k)$$
  $H(k,j)$  spectral signature of k-th endmember abundance of k-th endmember

4

### Problem v2

#### **Optimization Problem**

Given  $A \in \mathbb{R}_+^{m \times n}$  non-negative and  $rank r \leq \min(m, n)$ .

$$\min_{W \in \mathbb{R}_{+}^{m \times r}, \ H \in \mathbb{R}_{+}^{r \times n}} \quad \|A - WH\|$$

Note that F(W, H) = ||A - WH|| is convex in U and convex in V, but not in both!

## Stationary Points & KKT-Conditions

Checking the KKT-Conditions for F(W, H) yields the following:

$$W \ge 0$$
,  $\nabla_W F = W H H^T - A H^T \ge 0$ ,  $\nabla_W F * W = 0$ 

$$H \geq 0, \; \nabla_W F = W^T W H - W^T A \geq 0, \; \nabla_H F * H = 0$$

#### **Stationary Points**

A pair (U, V) is called a *stationary Point*, if and only if U and V satisfy the KKT-Conditions.

## Stationary Points & KKT-Conditions

From the KKT-Conditions simple characteristics of the solutions can be derived:

#### **Theorem**

Suppose (W, H) be a stationary point of the problem, then it holds:

$$\frac{1}{2}||A - WH||^2 = \frac{1}{2}(||A||^2 - ||WH||^2)$$

This furthermore implies that  $||A||^2 \ge ||WH||^2$ , which is only fulfilled at the exact factorization.

### **Coordinate Descent**

For  $\Omega$  (pointwise) convex

solve 
$$\min_{x \in \Omega} f(x)$$

```
Initialization: x \in \mathbb{R}^n

for t \leftarrow 1, 2, ..., n do
solve x_i = \arg\min_{\zeta in\Omega_i} f(x_1, ..., x_{i-1}, \zeta, x_{i+1}, ..., x_n)
end
```

Algorithm 1: General Coordinate Descent

### "Convergence" Theorem

#### "Convergence" to stationary Points

Suppose f is continuously differentiable and furthermore that

$$\forall i \,\forall x: \min_{\zeta \in \Omega_i} f(x_1, ..., x_{i-1}, \zeta, x_{i+1}, ..., x_n)$$

is uniquely attained. Let  $\{x^k\}$  be the sequence generated by the *Coordinate Descent*, then every limit point is a stationary point.

#### **Exact Factorization**

Now consider the case where A is exactly factorized by  $WH^T$ .

#### minimal rank

The smallest r such that  $\exists W \in \mathbb{R}_+^{m \times r}$  and  $H \in \mathbb{R}_+^{r \times n}$  such that A = WH, is called the *inner rank* and denoted by  $rank_{WH}^+(A)$ .

### **Exact Factorization**

#### Lemma

$$rank(A) \leq rank_{WH}^+(A) \leq \min(m, n)$$

existence of exact factorization of A of rank  $r \iff$  determining  $rank_{WH}^+(A)$ 

## Determining the inner rank

One algorithm to determine if A can be factorized with *inner rank r* would be the Renegar algorithm, which scales  $(6mn)^{\mathcal{O}(mn)}$ .

Since  $rank_{WH}^+(A) \leq min(m, n)$  this can be done in finite time.

#### Vavasis, 2008

- exact NMF is NP-hard
- ▶ ∃ polynomial time local search heuristics

## Algorithms for NMF

#### The Multiplicative Update Rule

$$\min_{W,H>0} f(W,H) = \min_{W,H>0} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} (A_{ij} - (WH)_{ij})^2$$
 (1)

The most used approach to minimize (1) is a simple multiplicative update method proposed by Lee and Seung (2001):

This algorithm is just a special case of the Gradient Descent with a step size

$$\epsilon(W^t) = \frac{W^t}{[W^t H^t (H^t)^T]}$$

$$\epsilon(H^t) = \frac{H^t}{[(W^t)^T W^t H^t]}$$

## The Multiplicative Update Rule

Initialization: 
$$W^1, H^1 > 0$$
;  
for  $t \leftarrow 1, 2, \dots$  do
$$W^{t+1} = W^t \frac{(A(H^t)^T)}{[W^t H^t (H^t)^T]};$$

$$H^{t+1} = H^t \frac{((W^{t+1})^T A)}{[(W^{t+1})^T W^{t+1} H^t]};$$
end
Algorithm 2: MUR Algorithm

## The Multiplicative Update Rule

This algorithm is a fixed-point type method, meaning that If  $[(H^t)^T H^t W^t] \neq 0$  and  $W^{t+1} = W^t$ , then  $(A(H^t)^T) = [W^t H^t (H^t)^T]$ , implies  $\nabla_W f(W^t, H^t) = 0$ . Which is part of the KKT condition.

### "Convergence" Theorem

#### **Theorem Lee and Seung**

-The Euclidean distance ||A - WH|| is non-increasing under the update rules

$$W \leftarrow W \frac{(AH^t)}{[WH(H)^T]}, \qquad H \leftarrow H \frac{(W^T A)}{[(W)^T W H]}$$

-The Euclidean distance is invariant under these updates if and only if *W* and *H* are at a stationary point of the distance.

#### Weaknesses

- Lee and Seung claim that this Algorithm "Converges" to a stationary point. However, it has been showed in 2005 that this claim is wrong as having the cost function non increasing may not imply the convergence.
- Therefore, the Algorithm still lacks optimization properties.

#### Weaknesses

- We can only make the following statement about the convergence of this Algorithms: "When the algorithm has converged to a limit point, this point is a stationary point."

- Also it has been repeatedly shown that the convergence is notoriously slow.

## Modifications: Convergence vs speed trade-off

- Lin in 2007 proposed a modification that is guaranteed to converge to a stationary point. However, it requires more work per iteration than the already slow one.
- The Fast Multiplicative Update Rule Algorithm in 2014. Which is faster then the two Algorithms in the case of convergence.

## Comparison of the three Algorithms

|                           | MU Algorithm | Updated MU | Fast MU  |
|---------------------------|--------------|------------|----------|
| initial values in case I  |              |            |          |
| CPUTime(s)                | 110.14       | 129.80     | 106.60   |
| Iteration                 | 2730.37      | 2978.53    | 776.80   |
| OBJ.ave                   | 149450.1     | 149354.3   | 148681.0 |
| OBJ.std                   | 35.39        | 43.57      | 27.79    |
| initial values in case II |              |            |          |
| CPUTime(s)                | 91.66        | 130.12     | 88.18    |
| Iteration                 | 2518.97      | 3330.40    | 741.97   |
| OBJ.ave                   | 149914.2     | 149290.5   | 148639.6 |
| OBJ.std                   | 34.86        | 48.45      | 22.33    |

Source: "A Fast Algorithm for Non-negative Matrix Factorization and Its Convergence", Li, Wu, and Zhang.

## Alternating Non-negative Least Squares (ANLS)

- In this algorithms, a least squares step is followed by another least squares step in an alternating fashion, thus giving rise to the ALS name.
- The Alternating Least Squares ALS algorithms were first introduced by Paatero 1994, who initially invented the whole NMF Theory.

end

### Convergence Theorem

#### **Theorem**

Any limit point of the sequence  $\{W^t, H^t\}$  generated by ALS Algorithm is a stationary point.

# Comparison between ANLS and MU

| ANLS                                                     | MU                               |  |
|----------------------------------------------------------|----------------------------------|--|
| + Can be very fast depending on the implementation       | + Easy to use                    |  |
| + Aids sparsity                                          |                                  |  |
| - Once an element in W or H becomes 0, it must remain 0. | - Notoriously slow               |  |
|                                                          | - Lacks optimization properties. |  |

## Comparison between ANLS and MU



Source: "Fast optimization of non-negative matrix tri-factorization", Zupan, Zitnik