Nom: Pr'enom: Classe:

Interrogation n°4

(Calculatrice interdite)

Exercice 1 (Questions de cours)

Cocher si les assertions suivantes sont vraies ou fausses :

	Vrai	Faux
$\mathbf{A}/$ Si F est la primitive de f , alors $f'=F$.		
${f B}/$ Deux primitives d'une même fonction sont égales.		\boxtimes
C/ Une primitive de $x \mapsto \frac{x}{(x^2+1)^2}$ est $x \mapsto \frac{1}{2}\ln(x^2+1)$.		

Exercice 2

Pour chacune des fonctions f suivantes, donner une primitive F:

1. Pour
$$f(x) = x^3$$
, on a $F(x) = \frac{x^4}{4}$.

2. Pour
$$f(x) = \frac{5}{x}$$
, on a $F(x) = 5\ln(x)$.

3. Pour
$$f(x) = 6e^{3x}$$
, on a $F(x) = 6 \times \frac{e^{3x}}{3} = 2e^{3x}$.

4. Pour
$$f(x) = \frac{1}{x^3}$$
, on a $F(x) = -\frac{1}{2x^2}$.

Exercice 3

On s'intéresse à la fonction $f: x \mapsto \frac{x}{e+x^2}$ définie sur \mathbb{R} . (On rappelle que $e=e^1$)

1. En justifiant, donner la forme des primitives de f.

À constante près, on reconnaît une fonction de la forme $\frac{u'}{u}$ avec $u(x) = e + x^2$.

La fonction u est définie et strictement positive sur \mathbb{R} , on peut donc étudier $\ln \circ u$. Cette fonction est dérivable et sa dérivée est $x \mapsto \frac{2x}{e+x^2}$.

En compensant la constante, on a que les primitives f sont de la forme

$$F(x) = \frac{1}{2} \ln \left(e + x^2 \right) + C$$
 avec $C \in \mathbb{R}$

2. On note F_0 l'unique primitive de f telle que $F_0(0)=1$. Donner l'expression de F_0 . F_0 est une primitive de f donc il existe $C\in\mathbb{R}$ tel que pour $x\in\mathbb{R}$, $F_0(x)=\frac{1}{2}\ln\left(\mathrm{e}+x^2\right)+C$. Ainsi, $F_0(0)=\frac{1}{2}\ln(\mathrm{e})+C=\frac{1}{2}+C$. Donc $F_0(0)=1\iff \frac{1}{2}+C=1\iff C=\frac{1}{2}$. On a donc, pour tout $x\in\mathbb{R}$, $F_0(x)=\frac{1}{2}\ln\left(\mathrm{e}+x^2\right)+\frac{1}{2}=\frac{1}{2}\left(\ln\left(\mathrm{e}+x^2\right)+1\right)$.