Math 4B: Differential Equations

Lecture 02: Solutions & Terminology

- Solutions of DEs
- Some New Terminology,
- & More!

© 2021 Peter M. Garfield Please do not distribute outside of this course.

Solutions & Terminology

Differential equation of order n

We will say that a differential equation is order n if it can be written

$$F(t, y, y', y'', y^{(3)}, \dots, y^{(n)}) = 0.$$

In this course we will also assume that this can be written as

$$y^{(n)} = G(t, y, y', y'', y^{(3)}, \dots, y^{(n-1)}). \tag{*}$$

A **solution** to equation (*) on the interval $\alpha < t < \beta$ is a function $y = \phi(t)$ such that $\phi', \phi'', \dots, \phi^{(n)}$ are all defined and

$$\phi^{(n)} = G(t, \phi, \phi', \phi'', \phi^{(3)}, \dots, \phi^{(n-1)})$$

for all t in the interval $\alpha < t < \beta$.

Linear ODEs

Linear ODEs of order n

We will say that a differential equation or order n is linear if it can be written

$$F(t, y, y', y'', y^{(3)}, \dots, y^{(n)}) = 0,$$

where F is linear in y and its derivatives. This means linear first-order ODEs are those of the form

$$a_1(t)\frac{dy}{dt} + a_0(t)y = g(t).$$

Similarly, linear second-order ODEs are those of the form

$$a_2(t)\frac{d^2y}{dt^2} + a_1(t)\frac{dy}{dt} + a_0(t)y = g(t).$$

Homogeneous ODEs

Homogeneous ODEs of order n

We will say that a linear differential equation or order n is homogeneous if it is of the form

$$a_n(t)y^{(n)} + a_{n-1}(t)y^{(n-1)} + \dots + a_2(t)y'' + a_1(t)y' + a_0(t)y = 0,$$

where each a_k is a function of the independent variable t. This means homogeneous linear first-order ODEs are those of the form

$$a_1(t)\frac{dy}{dt} + a_0(t)y = 0.$$

Similarly, homogeneous linear second-order ODEs are those of the form

$$a_2(t)\frac{d^2y}{dt^2} + a_1(t)\frac{dy}{dt} + a_0(t)y = 0.$$

Solutions of ODEs and IVPs

- What can we say about solutions of ODEs?
- Can we find solutions of ODEs?
- In the Direction Fields slides, we've seen that there are lots of solutions.
- An ODE like $\frac{dy}{dt} = 2(y-1)$ together with an *initial condition* like y(0) = 5 is called an *initial value problem* (or IVP).
- We might expect that there is exactly one solution to the IVP given above. (This is two statements: There's at least one solution. There are not two different solutions.)
- This isn't true in general that IVPs always have a unique solution but we'll see some conditions this quarter. If we are modeling physical phenomena, we expect solutions.

Examples of Solutions

Question: Which of the following ODEs has $y = \sin(t)$ as a solution?

(A)
$$(y')^2 + y^2 = 1$$
 (B) $y' = y$ (C) $y'' = y$ (D) $y'' = -y$

(B)
$$y' = y$$

C)
$$y'' = y$$

$$\mathbf{(D)} \ y'' = -y$$

Answer: Both A and D:

$$y = \sin(t)$$
 $y' = \cos(t)$ $y'' = -\sin(t)$

So. . .

(A) says
$$(+\cos(t))^2 + (\sin(t))^2 = 1$$
 True!

(B) says
$$\cos(t) = \sin(t)$$
 False!

(C) says
$$-\sin(t) = \sin(t)$$
 False!

(D) says
$$-\sin(t) = -(\sin(t))$$
 True!

Examples of Solutions II

Question: Which of the following functions is a solution of the IVP

$$\begin{cases} y' = \frac{1}{2}y - t \\ y(0) = 6 \end{cases}$$

(A)
$$y = 2t + 6$$

(B)
$$y = 2t + 6 - 3e^{t/2}$$

(A)
$$y = 2t + 6$$

(C) $y = 6e^{t/2}$

(B)
$$y = 2t + 6 - 3e^{t/2}$$

(D) $y = 2t + 4 + 2e^{t/2}$

(A)
$$y' = 2$$
 but $\frac{1}{2}y - t = (t+3) - t = 3 \neq 2$

(B)
$$y(0) = 0 + 6 - 3 = 3 \neq 6$$

(C)
$$y' = 3e^{t/2}$$
 but $\frac{1}{2}y - t = 3e^{t/2} - t$

satisfies both!

Answer: D