Geometry Qualifying Exam Fall 2000

Part A. Short answers. Work all of the following.

- 1. What is the fundamental group of
 - a) $S^2 \times S^2$
 - b) $T^*(S^3 \times S^1)$ the total space of the cotangent bundle of $S^3 \times S^1$.
 - c) R^3 with 2 parallel lines deleted.
- 2. A Riemannian metric on a manifold is a cross section of what bundle?
- **3.** In \mathbb{R}^3 with the standard euclidean flat metric, describe the flow and integral curves of a covariant-constant vector field. (Covariant constant means all covariant derivatives vanish).
- **4.** Let Γ be the ellipsoid $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$ in R^3 calculate $\int_{\Gamma} z dx \wedge dy y dz \wedge dx$.
- **5.** Find the scalar curvature of the surface $z = x^2 + y^2$ at (0,0,0).
- **6.** Can we integrate a 3-form on a surface in a 4-manifold? Why or why not?
- 7. a) What is the fiber dimension of the bundle of 5-forms on S^7 ?
 - b) What is the fiber dimension of the bundle of 7-forms on S^7 ?
- **8.** Are all vector spaces (a) parallelizable? Why or why not? (b) Simply connected? Why or why not?
- 9. What is the scalar curvature of the euclidean plane in polar coordinates.

Part B. Choose 3 (and only 3) of the following.

- 1. Let G be a Lie group. Prove G is orientable.
- 2. Compute the Levi-Civita connection at a point on the standard unit 2-sphere in \mathbb{R}^3 in latitude-longitude coordinates.
- **3.** Compute the De-Rham cohomology of $S^1 \times S^2$.
- **4.** Show an explicit isomorphism between the Lie algebras so(3) and su(2).
- **5.** Let C be the 2-dimensional subbundle of the tangent bundle to R^4 determined by $V_1 = x_2 \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_3}$ and $V_2 = \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_3}$. Use the Frobenius theorem to determine if C is integrable.