	Assignment -2 Solutions	
110	WHO has classified overhead high voltage transmission lines as class 28-possible carcinogen to human (C).	
2/10	People living within 50 meter in the main beam of cell tower antenna are considered to be in extremely high radiation zone. (a)	
3. (d)	Maximum antenna dimension = $80cm = D$ $f = 3 GH3$ $d = G = \frac{3 \times 10^{9}}{3 \times 10^{9}} = 10 cm$. far field distance $d_{min} = \frac{9}{2}D^{2}$ $d_{min} = \frac{2}{2} \times \frac{80 \times 80}{4}$	
	Minimum for field distance is 1280 cm(d)	
4. (b)	length of dipole antenna $l=25 \text{mm}$ $f=900 \text{MHz}$ $d=\frac{3 \times 10^{11}}{900 \times 10^6} = 333.3 \text{mm}$ $d=\frac{35}{333.3} \Rightarrow l=\frac{34}{40} - \text{small dipole antenna}$	

.

small dipale length of < l < 1; so the current distribution for this antenna will be triangular.(b) dipole length 1=15cm f=400MHz 1=5 **(b)** $A = \frac{3 \times 10^{10}}{3 \times 10^{10}} = 75$ 수= 년 = 상 - case of small dipole Kin = 2017 (15)? = Rin = 2017 (15)? Rn=7.92 582 lez so it will be capacitive - using transmission line concept Answer is (b) 852, capacitive. Maximum achievable directivity from a dipale Ontenna of arbitrary length can be 3.25(C) Common data: Er= 4.4, h = 0.16cm, tans = 0.02 f = 2.45 GHz $d_0 = G = \frac{3 \times 10^{10}}{2.45 \times 10^5} = 12.24 \text{ cm}$ $\omega = 0.5 \text{ cm}$ Effective dielectric constant Egy = 1.2 (because one side, metal is printed and other side is air)

The second of	
7:	1+d=0.48d d= W d= do
(b)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	V1.2
	1=4.86 cm
	1=4.9 cm
	Approx resonant length of printed dipole antenna
	13 4.9 cm(b)
8	Approximate gain of the printed dipole antenna
(0)	Will be 2.0 dBi (C)
9.	Radiation pattern of small dipole antenna
(9)	
	Eplane (9) Hplane
	figure of 8 in Eplane and omni in 4 plane.
10.	Input resistance of folded dipole Zin=N2Zd
(C)	
	Impedance of resonant dipole $Rin = N^2R_d$ Antenna Rid = 6852 $Rin = 9\times68$ $N=2$ (2fold)
	Rin = 2721
	Input resistance of folded dipole is 2725.(C)

-

It length of dipole l= 14cm (b) diameter of dipole d = 4mm = 0.4cm 1+d=0.481 => d= 1+d d= 14+0.4 = 30 cm $f = G = \frac{3 \times 10^{10}}{30} = 1 \text{ GHz}.$ Its approximate resonance frequency is I GHz (b)