ZDM - BI-SPOL-33

Modulární aritmetika, základy teorie čísel, Malá Fermatova věta, diofantické rovnice, lineární kongruence, Čínská věta o zbytcích.

Obsah

1	Modulární aritmetika	
2	GCD & LCM	3
3	Teorie čísel3.1 Vlastnosti prvočísel3.2 Eukleidův algoritmus	4
4	Malá Fermatova věta	5
5	Diofantické rovnice	5
6	Lineární kongruence	5
7	Čínská věta	6
8	Zobecněná Čínská věta	6

1 Modulární aritmetika

 Z_m (nebo též Zmodm) je množina celých čísel modulo nějaké dané přirozené číslo m. Nejčastěji se setkáme se zápisem $Zm = \{0, 1, 2..., m-1\}$.

Nechť $a,b,c,d,m\in Z,\ m\geq 2$. Pak pokud platí současně $a\equiv b \bmod m$ a $c\equiv d \bmod m$, potom platí:

$$a + c \equiv b + d \mod m$$

 $a - c \equiv b - d \mod m$
 $a \cdot c \equiv b \cdot d \mod m$

Nechť $a, b \in Z$. Řekneme, že a dělí b, značíme a|b, jestliže existuje $k \in Z$ takové, že $b = k \cdot a$.

Vlastnosti

- uzavřenost $a \oplus b \in Z_m$, $a \odot b \in Z_m$
- komutativita $a \oplus b = b \oplus a$, $a \odot b = b \odot a$
- asociativita $a \oplus (b \oplus c) = (a \oplus b) \oplus c$, $a \odot (b \odot c) = (a \odot b) \odot c$
- neutrální prvek $a \oplus 0 = |a|_m, a \cdot 1 = |a|_m$
- inv. prvek $a \oplus \bar{a} = 0$
- distributivita $a \odot (b \oplus c) = a \odot b \oplus a \odot c$

2 GCD & LCM

Číslo $d \in N^+$ je společný dělitel čísel a, b, jestliže d|a a d|b. Největší z nich je poté $\gcd(a,b)$. Číslo $n \in N^+$ je společný násobek čísel a, b, jestliže a|n a b|n. Nejmenší z nich je poté $\operatorname{lcm}(a,b)$. (Vlastnosti \gcd a lcm). Nechť $a, b \in Z$. Potom platí:

- Jestliže je n společný násobek a, b, pak $\operatorname{lcm}(a, b)$ dělí n.
- Jestliže a|n a b|n, pak lcm(a,b)|n.
- gcd(a, b) = gcd(|a|, |b|) a lcm(a, b) = lcm(|a|, |b|).
- Označme $d = \gcd(a, b)$. Potom $\gcd(ad, bd) = 1$.
- gcd(a+cb,b) = gcd(a,b) pro libovolné $c \in Z$.
- Jestliže a|bc, pro nějaké $c \in Z$ a čísla a, b jsou nesoudělná (tj. $\gcd(a, b) = 1$), potom a|c.
- $|a| \cdot |b| = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$

$$gcd(a, b) = d = \alpha \cdot a + \beta \cdot b,$$

kde α , β jsou celočíselné koeficienty této lineární kombinace.

3 Teorie čísel

3.1 Vlastnosti prvočísel

Funkce $(n): N^+ \to N$ určuje počet prvočísel, která jsou menší než n.

Poměr (n) k výrazu $n/\log(n)$ se s rostoucím n přibližuje hodnotě 1.

Eulerova funkce Φ Eulerova funkce $\Phi(n):N^+\to N^+$ udává počet kladných celých čísel menších nebo rovných n, která jsou nesoudělná s n.

Nechť $m \in \mathbb{N}^+$ a $a \in \mathbb{Z}$ je číslo nesoudělné s m. Potom platí $a^{\Phi(m)} \equiv 1 \pmod{m}$.

Přirozené číslo p je prvočíslem, právě když platí $\Phi(p) = p - 1$.

Nechť p je prvočíslo a $a \in N$. Potom $\Phi(p^a) = p^a - p^{a-1}$.

Nechť $m, n \in N$ a gcd(m, n) = 1. Potom $\Phi(mn) = \Phi(m)\Phi(n)$.

n	$\pi(n)$	$n/\log(n)$	$\pi(n)/\frac{n}{\log(n)}$
10^{3}	168	144,8	1,160
10^{4}	1229	1085,7	1,132
10^{5}	9592	8685,9	1,104
10^{6}	78498	72382,4	1,085
10^{7}	664579	620420,7	1,071
10^{8}	5761455	5428681,0	1,061
10^{9}	50847534	48254942,4	1,054
10^{10}	455052512	434294481,9	1,048
1011	4118054813	3948131663,7	1,043
10^{12}	37607912018	36191206825,3	1,039

3.2 Eukleidův algoritmus

Nechť a, b jsou celá čísla, pro která platí $a \geq b > 0$. Nechť $\{r_n\}_{n=0}^{k+1}$ je klesající posloupnost zbytků definovaná rekurentním vztahem $r_{n+2} = r_n \mod r_{n+1}$ s počátečními podmínkami $r_0 = a, r_1 = b$. kde $r_{k+1} = 0$ pro (k > 0) je její první nulový člen. Potom její poslední nenulový člen (tj. poslední nenulový zbytek) je největším společným dělitelem a a b, tedy $\gcd(a, b) = r_k$.

4 Malá Fermatova věta

Nechť p je prvočíslo a $a \in N^+$ takové přirozené číslo, které není násobkem p. Potom platí $a^{p-1} \equiv 1 \pmod{p}$.

Nechť $a,b,c\in Z$ a $m\in N^+$ a nechť platí $ac\equiv bc\pmod m$. Potom platí $a\equiv b\pmod m/d$, kde d je největší společný dělitel čílsel m a c.

5 Diofantické rovnice

Jako lineární diofantickou rovnici označujeme libovolnou rovnici typu ax + by = c s neznámými x, y, kde $a, b, c \in \mathbb{Z}$, pro jejíž řešení má rovněž platit $x, y \in \mathbb{Z}$.

Lineární diofantická rovnice ax + by = c má alespoň jedno řešení právě tehdy, když c je násobkem gcd(a,b).

Nechť a,b jsou nenulová celá čísla a dvojice (x_0,y_0) je řešením rovnice ax+by=c. Potom množina všech celočíselných řešení této rovnice je $\{(x_0+\frac{b}{d}k,y_0-\frac{a}{d}k):k\in Z\}$, kde $d=\gcd(a,b)$.

6 Lineární kongruence

(skvělá ukázka na: http://mi21.vsb.cz/sites/mi21.vsb.cz/files/unit/linearni_kongruence.pdf) Pro daná celá čísla a, b a m > 1 hledáme celé x takové, že platí $ax \equiv b \pmod{m}$.

Lineární kongruence má řešení právě tehdy, když $\gcd(a,m)|b$. Všechna řešení jsou tvaru

$$x = x_0 + k \frac{m}{\gcd(a, m)},$$

kde k je libovolné celé číslo a pro x_0 existuje y_0 takové, že dvojice (x_0, y_0) je řešením rovnice ax + my = b.

Jestliže $\gcd(a,m)|b$, potom kongruence $ax\equiv b\pmod m$ má konečně mnoho řešení modulo m. Tato řešení jsou dána výrazem

$$|x_0 + k \frac{m}{\gcd(a, m)}|_m$$

pro $k=1,2,3,...,\gcd(a,m),$ kde pro x_0 existuje nějaké y_0 tak, že dvojice (x_0,y_0) je řešením ax+my=h

7 Čínská věta

Budeme řešit systém lineárních kongruencí:

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 $\cdot \cdot \cdot$
 $x \equiv a_N \pmod{m_N}$

kde čísla m_i jsou po dvou nesoudělná, tedy $\gcd(m_i, m_j) = 1$ pro všechna i, j, kde $i \neq j$.

Řešení tohoto systému existuje a všechna řešení jsou kongruentní modulo M (tedy v Z_M je řešení určeno jednoznačně), kde

$$M = \prod_{i=1}^{N} m_i.$$

Definujme $M_i = \frac{M}{m_i}$.

Jelikož $\gcd(m_i, M_i) = 1$, pak existují řešení X_i lineárních kongruencí $M_i X_i \equiv 1 \pmod{mi}$ pro všechna $i \in \{1, ..., N\}$, navíc platí pro všechna $j \neq i$ $M_i X_i \equiv 0 \pmod{m_j}$.

Z čehož plyne:

$$x \equiv a_1 X_1 M_1 + \dots + a_N X_N M_N \pmod{M}$$

Příklad 1:

$$x \equiv 1 \pmod{2}$$

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 3 \pmod{5}$$

$$M = 2 \cdot 3 \cdot 5 = 30$$

$$M_1 = 15, M_2 = 10, M_3 = 6$$

$$M_1X_1 = 15X_1 \equiv 1 \pmod{2}$$

$$X_1 = 1$$

$$M_2X_2 = 10X_2 \equiv 1 \pmod{3}$$

$$X_2 = 1$$

$$M_3X_3 = 6X_3 \equiv 1 \pmod{5}$$

$$X_3 = 1$$

$$\cdots$$

$$x = 1 \cdot 1 \cdot 15 + 2 \cdot 1 \cdot 10 + 3 \cdot 1 \cdot 6 = 53 \equiv 23 \pmod{30}$$

8 Zobecněná Čínská věta

Systém lineárních kongruencí má řešení právě tehdy, když $\gcd(m_i, m_j)$ dělí $a_i - a_j$ pro všechna $i, j : 1 \le i < j \le N$. Pokud řešení existuje, je určeno jednoznačně modulo $\operatorname{lcm}(m_1, m_2, ..., m_N)$.

Příklad 2:

$$x \equiv 5 \pmod{6}$$

$$x \equiv 3 \pmod{10}$$

$$x \equiv 8 \pmod{15}$$

$$x = 5 + 6t$$

$$5 + 6t \equiv 3 \pmod{10}$$

$$6t \equiv 8 \pmod{10}$$

$$t \equiv 8 \cdot 6^{-1} \pmod{10}$$

$$t \equiv 3 \pmod{10}$$

$$t \equiv 3 \pmod{10}$$

$$t = 3 + 10u$$

$$x = 5 + 6t = 5 + 6(3 + 10u) = 23 + 60u$$

$$23 + 60u \equiv 8 \pmod{15}$$

$$0 \cdot u \equiv 0 \pmod{15}$$

$$u \in N$$

$$x = 5 + 6t = 23 + 60u$$

$$\operatorname{lcm}(6, 10, 15) = 30$$

$$x \equiv 23 \pmod{30}$$