இத்த இத்திரை அதிக்கு (முழுப் பதிப்புரிமையுடையது /All Rights Reserved)

இலங்கைப் பரி சைத் திணைக்களம் இலங்கைப் ப<mark>டுக்கு கொறியில் இட்டு இறியில் இட்டு இதை இருக்க</mark>ிற்கு இருக்கு இருக்க

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023(2024) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2023(2024) General Certificate of Education (Adv. Level) Examination, 2023(2024)

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

10 S I

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

 $\mathbf{11.}(a)$ $x\in\mathbb{R}$ සඳහා $f(x)=ax^2+bx+c$ යැයි ගනිමු; මෙහි a>0 සහිතව $a,b,c\in\mathbb{R}$ වේ.

f(x) හි අවම අගය $-\frac{\Delta}{4a}$ බව පෙන්වන්න; මෙහි $\Delta=b^2-4ac$ වේ.

p හා q යනු ධන තාත්ත්වික සංඛාහ යැයි ද $r\in\mathbb{R}$ යැයි ද ගනිමු. තවද, $x\in\mathbb{R}$ සඳහා $g(x)=px^2+2\sqrt{pq}\ x+qr$ යැයි ද ගනිමු.

g(x)=0 සමීකරණයට තාත්ත්වික මූල තොමැති බව දී ඇත. r>1 බව පෙන්වන්න.

දැන්, g(x) හි අවම අගය q බව දී ඇත. r=2 බව පෙන්වන්න.

y=x+1 සරල රේඛාව r=2 වන y=g(x) වකුයට $(0,\,1)$ ලක්ෂායෙහිදී වූ ස්පර්ශ රේඛාව නම්, p හා q හි අගයන් සොයන්න.

(b) $a\in\mathbb{R}$ යැයි ද, p(x) යනු මානුය 4 වූ බහුපදයක් යැයි ද ගනිමු. (x-a) යන්න p(x) හා p'(x) යන දෙකෙහිම සාධකයක් නම්, $(x-a)^2$ යන්න p(x) හි සාධකයක් වන බව පෙන්වන්න; මෙහි p'(x) යනු p(x) හි x විෂයයෙන් වහුත්පන්නය වේ.

 $x \in \mathbb{R}$ සඳහා $f(x) = x^4 - x^3 - 6x^2 + 4x + 8$ යැයි ගනිමු. $(x-2)^2$ යන්න f(x) හි සාධකයක් බව **අපෝහනය** කරන්න.

f(-1) හි අගය සොයා, f(x) සම්පූර්ණයෙන් සාධකවලට වෙන් කරන්න.

- 12.(a) පිරීමි 8 දෙනෙකුගෙන් හා ගැහැනු 6 දෙනෙකුගෙන් යුත් කණ්ඩායමකින් පිරිමි 4 දෙනෙකුගෙන් හා ගැහැනු 4 දෙනෙකුගෙන් සමන්විත කමිටුවක් තෝරා ගත යුතුව ඇත.
 - (i) කමිටුව තෝරා ගත හැකි වෙනස් ආකාර ගණන සොයන්න.
 - (ii) එබඳු කමිටුවක් තෝරා ගත්තේ යැයි සිතමු. කිසිම ගැහැනුන් දෙදෙනෙකු එකළඟ වාඩි විය නොහැකි නම්, එම කමිටු සාමාජිකයන් පේළියකට වාඩි විය හැකි වෙනස් ආකාර ගණන සොයන්න.

$$(b)$$
 සියලු $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r = \frac{n}{4}(n+1)(n+2)(n+3)$ බව දී ඇත.

සියලු $n\in\mathbb{Z}^+$ සඳහා $U_n=n(n+1)(n+2)$ බව පෙන්වන්න.

සියලු
$$r \in \mathbb{Z}^+$$
සඳහා $V_r = \frac{1}{U_r}$ යැයි ගනිමු.

සියලු
$$r \in \mathbb{Z}^+$$
සඳහා $V_r = \frac{A}{r(r+1)} + \frac{B}{(r+1)(r+2)}$ වන පරිදි A හා B තාත්ත්වික නියත සොයන්න.

ඒ නයින් හෝ අන් අයුරකින් හෝ,
$$n\in \mathbb{Z}^+$$
සඳහා $\sum_{r=1}^n V_r=rac{1}{4}-rac{1}{2(n+1)(n+2)}$ බව පෙන්වන්න.

 $\sum_{r=1}^\infty V_r$ අපරිමිත ශ්ලේණිය අභිසාරී බව තවදුරටත් පෙන්වා එහි ඓකාංය සොයන්න.

$$\sum_{r=m}^{\infty} V_r = \frac{1}{24}$$
 වන පරිදි $m \in \mathbb{Z}^+$ මසායන්න.

$${f 13.}(a)~a\in {f R}$$
 යැයි ද ${f A}=\left(egin{array}{ccc} 1&a\\ -a&1 \end{array}
ight)$ යැයි ද ගනිමු. ${f A}^{-1}$ පවතින බව පෙන්වා, ${f A}^{-1}$ ලියා දක්වන්න. ${f R}=\left(egin{array}{ccc} 1&1\\ \end{array}
ight)$

$$\mathbf{B} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
 යැයි ගනිමු.

(i)
$$\mathbf{A}^{-1}\mathbf{B}^{\mathbf{T}} = -\frac{1}{5}\begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix}$$
 වන පරිදි වූ a හි අගය සොයන්න.

(ii)
$$\mathbf{BC} = \begin{pmatrix} 2 & 1 & 3 \\ 0 & -1 & 5 \end{pmatrix}$$
 වන පරිදි වූ \mathbf{C} නාහසය සොයන්න.

$$(b)$$
 $z \in \mathbf{C}$ යැයි ගනිමු. z හි සංකීර්ණ පුතිබද්ධය \overline{z} හා z හි මාපාංකය $|z|$ අර්ථ දක්වන්න.

 $\left|z\right|=1$ නම්, $\overline{z}=rac{1}{z}$ බව පෙන්වා, ඕනෑම $w\in\mathbb{C}$ සඳහා $\left|z-w\right|=\left|1-\overline{z}w\right|$ බව **අපෝහනය** කරන්න.

දැන්, $z = \frac{1}{2} \left(1 + \sqrt{3}i \right)$ යැයි ගතිමු. |z| හා Arg z සොයන්න.

$$|w|<1$$
 හා $\operatorname{Arg} w=a$ වන පරිදි $w\in\mathbb{C}$ යැයි ගනිමු; මෙහි $0<\alpha<\frac{\pi}{3}$ වේ.

එබඳු එක් w සංකීර්ණ සංඛාාවක් තෝරා ගනිමින්, 1,z,w හා $\overline{z}w$ නිරූපණය කරන ලක්ෂා ආගන්ඩ් සටහනක ලකුණු කර $|z-w|=|1-\overline{z}w|$ වන්නේ ඇයි දැයි ජාාමිතිකව පැහැදිලි කරන්න.

$$(c)$$
 $n\in\mathbb{Z}^+$ යැයි ගනිමු. $\dfrac{\left(\cos{2\pi\over15}+i\sin{2\pi\over15}
ight)^n}{\left(\cos{\pi\over15}+i\sin{\pi\over15}
ight)^7}$ හි තාත්ත්වික කොටස $\dfrac{1}{2}$ වන පරිදි වූ n හි කුඩාතම අගය සොයන්න.

14.(a) $a,p,q\in\mathbb{R}$ හා p < q යැයි ගනිමූ.

$$x \in \mathbb{R} - \{p, q\}$$
 සඳහා $f(x) = \frac{(ax+1)(x+2)}{(x-p)(x-q)}$ යැයි ගනිමු.

y=f(x) හි පුස්තාරයේ සිරස් ස්පර්ශෝන්මුබ x=1 හා x=-4 බව දී ඇත. p හා q හි අගයන් ලියා දක්වන්න. y=1 යන්න y=f(x) හි පුස්තාරයේ තිරස් ස්පර්ශෝන්මුබයක් බව දී ඇති වීට, a=1 බව පෙන්වන්න. a,p හා q හි මෙම අගයන් සඳහා f(x) වැඩිවන පුාන්තර හා f(x) අඩුවන පුාන්තර සොයන්න. g(x)=f(x)+1 යැයි ගනිමු.

ස්පර්ශෝන්මුඛ හා හැරුම් ලක්ෂා දක්වමින් y=g(x) හි පුස්තාරයේ දළ සටහනක් අදින්න. g(x) හි පරාසය ලියා දක්වන්න.

(b) වර්ගඑලය k ${
m m}^2$ වූ සෘජුකෝණාසුාකාර පෙදෙසක විකර්ණයක් දිගේ වැටක් සෑදීමට අවශාව ඇත. සෘජුකෝණාසුයේ දිග x ${
m m}$ යැයි ගනිමු (රූපය බලන්න). වැටෙහි දිග L ${
m m}$ යන්න $L^2=x^2+rac{k^2}{x^2}$ මගින් දෙනු ලබන බව පෙන්වන්න. ඒ නයින්, L අවම වන්නේ $x=\sqrt{k}$ වන විට බව පෙන්වන්න.

15.(a) $k \in \mathbb{R}$ යැයි ගනිමු. $\int \frac{1}{x^2(x-k)} \, \mathrm{d}x$ සොයන්න.

$$(b)$$
 $\int\limits_{1}^{e^{\frac{\pi}{2}}}x\sin(\ln x)\mathrm{d}x$ ට කොටස් වශයෙන් අනුකලනය භාවිතයෙන් හෝ අන් අයුරකින් හෝ $\int\limits_{1}^{e^{\frac{\pi}{2}}}x\left\{2\sin(\ln x)+\cos(\ln x)\right\}\mathrm{d}x=e^{\pi}$ බව පෙන්වන්න.

(c) k>0 යැයි ගනිමු. x>0 සඳහා $\frac{\mathrm{d}}{\mathrm{d}x}\Big\{\Big(k\sqrt{x}-1\Big)e^{k\sqrt{x}}\Big\}=rac{k^2}{2}e^{k\sqrt{x}}$ බව පෙන්වන්න.

$$I_k = \int\limits_1^4 e^{k\sqrt{x}} \,\mathrm{d}x$$
 යැයි ϵ ගතිමු. $I_k = \frac{2}{k^2} \Big\{ \big(2k-1\big)e^{2k} - \big(k-1\big)e^k \Big\}$ බව පෙන්වන්න.

S යනු $y=e^{\sqrt{x}},\,x=1,\,x=4$ හා y=0 වකු මගින් ආවෘත වන පෙදෙස යැයි ගනිමු.

S හි වර්ගඑලය $2e^2$ බව පෙන්වන්න.

S පෙදෙස x-අක්ෂය වටා රේඩියන 2π වලින් භුමණය කිරීමෙන් ලැබෙන ඝන වස්තුවේ පරිමාව ද සොයන්න.

16. $m \in \mathbb{R}$ යැයි ද, l යනු m අනුකුමණය ලෙස ඇතිව $A \equiv (3,1)$ ලක්ෂා හරහා යන රේඛාව යැයි ද සිනමු. l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න.

A හරහා $S_1 \equiv 5x^2 + 5y^2 - 10x + 10y + 6 = 0$ වෘත්තයට ස්පර්ශක දෙකක් පවතින බව පෙන්වා, ඒවා අතර සුළු කෝණය සොයන්න.

B හා D යනු මෙම ස්පර්ශක $S_1=0$ වෘත්තය ස්පර්ශ කරන ලක්ෂා යැයි ද, C යනු $S_1=0$ හි කේන්දුය යැයි ද ගනිමු.

ABCD යනු වෘත්ත චතුරසුයක් බව පෙන්වා A,B,C හා D ලක්ෂා හරහා යන වෘත්තයෙහි සමීකරණය සොයන්න.

BD ස්පර්ශ ඡාායයෙහි සමීකරණය සොයා, B හා D හරහා යන $S_1=0$ වෘත්තය පුලම්භව ඡේදනය කරන වෘත්තයෙහි සමීකරණය සොයන්න.

- **17.** (a) $\theta \in \mathbb{R}$ සඳහා $\cos^2 \theta + \sin^2 \theta = 1$ බව පෙන්වන්න. $\cos^2 x 1 = \sin^2 x + 3\cos x$ සමීකරණය තෘප්ත කරන $[0,2\pi)$ පුාත්තරය තුළ වූ සියලුම x හි අගයන් සොයන්න.
 - (b) ABC තුිකෝණයක් යැයි ගනිමු. සුපුරුදු අංකනයෙන් $A+B+C=\pi$ යන පුතිඵලය භාවිතයෙන් $\sin\left(\frac{B+C}{2}\right)=\cos\frac{A}{2}$ හා $\cos\left(\frac{B+C}{2}\right)=\sin\frac{A}{2}$ බව පෙන්වන්න. $\tan\frac{B}{2}+\tan\frac{C}{2}=\cos\frac{A}{2}\sec\frac{B}{2}\sec\frac{C}{2} \quad \text{හා } 1-\tan\frac{B}{2}\tan\frac{C}{2}=\sin\frac{A}{2}\sec\frac{B}{2}\sec\frac{C}{2} \quad \text{බව අපෝහනය කරන්න.}$ ඒ නයින්, $\tan\frac{A}{2}\tan\frac{B}{2}+\tan\frac{B}{2}\tan\frac{C}{2}+\tan\frac{C}{2}\tan\frac{A}{2}=1$ බව පෙන්වන්න.
 - (c) $x \in \mathbb{R}$ සඳහා $\tan^{-1}(2x) + \tan^{-1}(3x) = \frac{3\pi}{4}$ විසඳන්න.

இலங்கைப் பரீட்சைத் நிணைக்களம் இண்கைப் ப**ந்து இதன்றினரு கேடுந்து இன்று இலங்கை**ப் பரீட்சைத் திணைக்களம் இணங்களம் இணங்களம்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023 (2024) සබාඛ්ධ ධொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2023 (2024) General Certificate of Education (Adv. Level) Examination, 2023 (2024)

සංයුක්ත ගණිතය இணைந்த கணிதம்

II

Combined Mathematics

II

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

11.(a) එකිනෙක අතර දුර $1750~\mathrm{m}$ වූ P හා Q දුම්රිය ස්ථාන දෙකක් අතර දිවෙන R_1 හා R_2 යනු සෘජු සමාන්තර දුම්රිය මාර්ග දෙකකි. t=0 හිදී P දුම්රිය ස්ථානයෙන් නිශ්චලතාවයෙන් ආරම්භ කරන A දුම්රියක් $10~\mathrm{m}~\mathrm{s}^{-2}$ ක ඒකාකාර ත්වරණයකින් R_1 දුම්රිය මාර්ගය දිගේ තත්පර

T කාලයක් ගමන් කර, t=T s හිදී එය ලබාගන්නා වේගය තත්පර 30 ක කාලයක් පවත්වා ගනී. ඉන්පසුව, එය තත්පර T කාලයක් ඒකාකාරව මන්දනය වී Q දුම්රිය ස්ථානයේදී නිශ්චලතාවයට පැමිණේ. P සිට Q දක්වා A දුම්රියේ චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් ඇඳ ගමනට ගතවූ මුළු කාලය 40 s බව පෙන්වන්න.

 \overrightarrow{PQ} දිශාවට $40~{
m m~s^{-1}}$ ක නියත වේගයකින් R_2 දුම්රිය මාර්ගය දිගේ ගමන් කරන තවත් B දුම්රියක් t=0 හිදී P දුම්රිය ස්ථානය පසු කරයි. t=0 සිට $t=40~{
m s}$ දක්වා B දුම්රියට සාපේක්ෂව A දුම්රියේ චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න.

(b) ඍජු සමාන්තර ඉවුරු දෙකක් අතරින්, d m පළල ගඟක් u m s $^{-1}$ ඒකාකාර වේගයකින් ගලා බසී. ජලයට සාපේක්ෂව $\sqrt{2}\,u$ m s $^{-1}$ වේගයක් ඇති P නම් පිහිනුම්කරුවෙක් එක් ඉවුරක වූ A ලක්ෂායකින් ආරම්භ කර, අනිත් ඉවුරේ A ට කෙලින්ම පුතිවිරුද්ධව ඇති B ලක්ෂායට ළඟා වීමට පිහිනයි. P පිහිනුම්කරුට B කරා ළඟා වීමට ගතවන කාලය $\frac{d}{u}$ s බව පෙන්වන්න.

ජලයට සාපේක්ෂව $2\sqrt{2}\,u$ m s $^{-1}$ වේගයක් ඇති Q නම් දෙවන පිහිනුම්කරුවෙක්, B සිට d m දුරක් ගඟ පහළින් එම ඉවුරේම වූ C ලක්ෂායකින් ආරම්භ කර, P පිහිනුම්කරු මුණගැසෙන අරමුණින් පිහිනයි. (රූපය බලන්න.) P හා Q පිහිනුම්කරුවන් එකම මොහොතේ පිහිනීම ආරම්භ කරන බව උපකල්පනය කර, P පිහිනුම්කරු B ලක්ෂායට ළඟා වීමට පෙර Q පිහිනුම්කරු P පිහිනුම්කරු හමුවන බව පෙන්වන්න.

12.(a) ස්කන්ධය 4m වූ සුමට ඒකාකාර කුඤ්ඤයක ගුරුත්ව කේන්දුය තුළින් වූ ABC සිරස් හරස්කඩ රූපයේ දැක්වේ. AC අයත් මුහුණන සුමට තිරස් මේසයක් මත තබා ඇත. තවද, AB හා BC ඒවා අඩංගු මුහුණන්වල උපරිම බෑවුම් රේඛා වන අතර $A\hat{C}B = \frac{\pi}{4}$ වේ. කුඤ්ඤයෙහි C ලක්ෂාය හා ස්කන්ධය M වූ P අංගුවක්, මේසයෙහි දාරයකට සවී කළ කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක අන්තවලට ඈඳා ඇත. තන්තුව, ABC අඩංගු සිරස් තලයේම පිහිටයි. ස්කන්ධය m වූ Q අංශුවක් BC මත අල්වා තබා ඇත. P අංශුව නිදහසේ එල්ලෙයි. තන්තුව තදව ඇතිව පද්ධතිය, නිශ්වලතාවයේ සිට මෙම පිහිටුමෙන් මුදාහරිනු ලැබෙ.

m < 2M නම්, P අංශුව සිරස්ව පහළට චලනය වන බව පෙන්වන්න.

m=2M නම්, එක් එක් අංශුවෙහි හා කුඤ්ඤයෙහි චලිත විස්තර කරන්න.

(b) රුපයේ පෙන්වා ඇති පරිදි, ABCD සිහින් බටයක් ABC තිරස්ව ඇතිව සිරස් තලයක සවි කර ඇත. AB හා BC කොටස් එක එකක දිග a වන අතර CD කොටස අරය a හා කේන්දුය O වන OC සිරස්ව ඇති වෘත්තයකින් හතරෙන් එකකි.

ස්කන්ධය m වූ P අංශුවක් බටය තුළ C ලක්ෂායෙහි තබා ඇත. ස්කන්ධය m වූ තවත් Q අංශුවක් බටය

තුළ A ලක්ෂායෙහි තබා, එයට \overrightarrow{AB} හි දිශාවට $\sqrt{5ga}$ විශාලත්වයක් ඇති පුවේගයක් දෙනු ලැබේ.

Q අංශුව හා AB කොටස අතර සර්ෂණ සංගුණකය $rac{1}{2}$ ක් වන අතර BCD කොටස සුමට වේ.

Q අංශුව බටය තුළ චලනය වී P අංශුව සමග ගැටී හා වේ. මෙම R සංයුක්ත අංශුව චලිතය ආරම්භ කරන පුවේගය සොයන්න.

යටිඅත් සිරස සමග θ කෝණයකින් \overrightarrow{OR} හැරුන විට, R අංශුවෙහි වේගය v යන්න $v^2=ga(2\cos\theta-1)$ මගින් දෙනු ලබන බව පෙන්වා, R අංශුව, බටය තුළ ක්ෂණික නිශ්චලතාවයට පත්වන මොහොතෙහිදී එය මත බටයෙන් ඇති කරන පුතිකිුිිියාව සොයන්න.

13. එක එකක ස්කන්ධය m වූ අංශු දෙකක් එකට ඇලවීමෙන් ස්කන්ධය 2m වූ P සංයුක්ත අංශුවක් සාදා ඇත. ස්වභාවික දිග a හා පුතාහස්ථ මාපාංකය 2mg වූ සැහැල්ලු පුතාහස්ථ තන්තුවක එක් අන්තයක් තිරස් සිවිලිමක වූ O අචල ලක්ෂායකට ද අනෙක් අන්තය, P සංයුක්ත අංශුවට ද ඇදා ඇත. P අංශුව A ලක්ෂායකදී සමතුලිතතාවයේ එල්ලෙයි. මෙම සමතුලිත පිහිටුමේදී තන්තුවේ විතතිය සොයන්න.

P අංශුව A සිට $\frac{a}{2}$ දුරක් පහළට ඇද මුදාහැරියේ නම්, P හි චලිත සමීකරණය $-\frac{a}{2} \leq x \leq \frac{a}{2}$ සඳහා $\ddot{x} + \omega^2 x = 0$ බව පෙන්වන්න; මෙහි $\omega = \sqrt{\frac{g}{a}}$ ද AP = x ද වේ. දැන්, P අංශුව, A සිට l දුරක් පහළට ඇද මුදාහරිනු ලැබේ.

P අංශුව, පූර්ණ සරල අනුවර්තී චලිතයක යෙදීම සඳහා l හි උපරිම අගය කුමක් ද? P අංශුව, \sqrt{ag} වේගයකින් O ලක්ෂායෙහි වැදීම සඳහා l හි අගය සොයන්න.

P අංශුව, මෙම වේගයෙන් O හි වදින විට ස්කන්ධය m වූ එක් අංශුවක් ගැලවී යයි. සිවිලිම අපුතාහස්ථ වේ.

ඉතිරි අංශුව, එහි ගුරුත්වය යටතේ චලිතයෙන් අනතුරුව යෙදෙන නව සරල අනුවර්තී චලිතය සඳහා චලිත සමීකරණය ලබාගන්න.

මෙම තති අංශුවට, පුථමවරට ක්ෂණික තිශ්චලතාවයට පත්වීම සඳහා O සිට ගතවන කාලය සොයන්න.

14.(a) සුපුරුදු අංකනයෙන්, A,B,C හා D ලක්ෂා හතරක පිහිටුම් දෛශික පිළිවෙළින් $\mathbf{a}=-\mathbf{i}-\mathbf{j},\mathbf{b}=\mathbf{i}+4\mathbf{j},$ $\mathbf{c}=8\mathbf{i}+a\mathbf{j}$ හා $\mathbf{d}=4\mathbf{i}-2\mathbf{j}$ වේ; මෙහි $\alpha\in\mathbb{R}$ වේ.

AB හා DC රේඛා, සමාන්තර වේ. lpha=8 බව පෙන්වන්න.

AC හා BD රේඛා පිහිටුම් දෛශිකය ${f e}$ වූ E ලක්ෂායේදී ඡේදනය වේ.

 \overrightarrow{AE} හා \overrightarrow{AC} සැලකීමෙන්, $\lambda \in \mathbb{R}$ සඳහා $\mathbf{e} = (1-\lambda)\mathbf{a} + \lambda\mathbf{c}$ බව පෙන්වන්න.

මෙලෙසම, $\mu\in\mathbb{R}$ සඳහා $\mathbf{e}=(1-\mu)\mathbf{b}+\mu\mathbf{d}$ බව ද පෙන්වන්න.

ඒ නයින්, ${f i}$ හා ${f j}$ ඇසුරෙන් ${f e}$ සොයන්න.

 $\overrightarrow{EA} \cdot \overrightarrow{ED}$ සැලකීමෙන් $A\hat{E}D$ සොයන්න.

(b) රූපයේ පෙන්වා ඇති ABCDE පංචාසුය y-අක්ෂය වටා සමමිතික වේ. A හා C ශීර්ෂ x-අක්ෂය මත ද B ශීර්ෂය y-අක්ෂය මත ද පිහිටයි. තව ද, AC=4a, DE=2a, $A\hat{E}D=120^\circ$ හා $O\hat{A}B=60^\circ$ ද වේ; මෙහි O යනු මූලය වේ.

විශාලත්ව $2P,4P,\lambda P$ හා 4P වන බල හතරක් පිළිවෙළින් \overrightarrow{AB} , \overrightarrow{CB} , \overrightarrow{CD} හා \overrightarrow{AE} දිගේ කියාකරයි; මෙහි $\lambda \in \mathbb{R}$ වේ. මෙම බල පැද්ධතිය O හරහා කියාකරන \mathbb{R} තනි බලයකට තුලා වන බව දී ඇත. λ හි අගය ද, \mathbb{R} හි විශාලත්වය හා දිශාව ද සොයන්න.

දැන්, විශාලත්වය 2P වූ \overrightarrow{DE} දිගේ කිුයාකරන බලයක් හා වාමාවර්ත අතට කිුයාකරන $4\sqrt{3}Pa$ සූර්ණයක් සහිත යුග්මයක් ඉහත පද්ධතියට එකතු කරනු ලැබේ. නව පද්ධතිය ඌනනය වන තනි බලයේ විශාලත්වය, දිශාව හා කිුයා රේඛාවේ සමීකරණය සොයන්න.

15.(a) 2a සමාන දිගින් හා W සමාන බරින් යුත් AB,BC,CD හා DA ඒකාකාර දඬු හතරක් A,B,C හා D ලක්ෂාවලදී සුමට ලෙස සන්ධි කර ඇත. කේන්දුය O ද අරය $\frac{a}{\sqrt{3}}$ ද බර W ද වන සුමට ඒකාකාර තුනී වෘත්තාකාර තැටියක් BC හා CD දඬු පිළිවෙළින් E හා F හිදී ස්පර්ශ කරමින් ABCD රාමුව ඇතුළත තබා ඇත.

රූපයේ පෙන්වා ඇති පරිදි, රාමුවෙන් හා තැටියෙන් සමන්විත පද්ධතිය සිරස් තලයක සමතුලිතතාවයේ ඇත්තේ එකම තිරස් මට්ටමේ පිහිටි P හා Q අවල සුමට නාදැති දෙකක් මගිනි. $A\hat{B}C = \frac{2\pi}{3}$, CE = CF = a හා AOC රේඛාව සිරස් බව දී ඇත. CD මගින් BC මත C සන්ධියේදී යොදන පුතිකිුයාවේ විශාලත්වය $\frac{\sqrt{3}}{2}W$ බව පෙන්වා නාදැති දෙක අතර දුර සොයන්න.

(b) රූපයේ පෙන්වා ඇති රාමු සැකිල්ල, අන්තවලදී සුමටව සන්ධි කළ AB, BC, CD, DA හා AC සැහැල්ලු දඬු පහකින් සමන්විත වේ. AC = 2a, $B\hat{A}C = 90^\circ$, $C\hat{D}A = 90^\circ$, $A\hat{B}C = 30^\circ$ හා $C\hat{A}D = 30^\circ$ බව දී ඇත. B සන්ධියෙහි W භාරයක් එල්ලා රාමු සැකිල්ල A හිදී අවල ලක්ෂායකට සුමටව අසවු කර AC සිරස්ව ඇතිව පද්ධතිය සිරස් තලයක සමතුලිතතාවයේ තබා ඇත්තේ එයට D සන්ධියෙහිදී සිරස්ව පහළට යෙදූ P බලයක් මගිනි.

- (i) P හි අගය සොයන්න.
- (ii) බෝ අංකනය භාවිතයෙන් B,C හා D සන්ධි සඳහා පුත2 සටහනක් අඳින්න. ඒ නයින්, දඬුවල පුත2 පටහනක් ද තෙරපුම් ද යන්න පුකාශ කරමින් සොයන්න.

- **16.** (i) අරය a වූ තුනී ඒකාකාර අර්ධ වෘත්තාකාර කම්බියක ස්කන්ධ කේන්දු එහි කේන්දුයේ සිට $\frac{2a}{\pi}$ දුරකින් ද
 - (ii) අරය a වූ තුනී ඒකාකාර අර්ධ ගෝලාකාර කබොලක ස්කන්ධ කේන්දය එහි කේන්දයේ සිට $\frac{a}{2}$ දුරකින් ද පිහිටන බව පෙන්වන්න,

රූපයේ පෙන්වා ඇති පරිදි, අරය $\sqrt{2}a$ වූ අර්ධ වෘත්තාකාර CDE කොටසකින් හා දිග $2\sqrt{2}a$ වූ BC සෘජු කොටසකින් සමන්විත සිහින් ඒකාකාර BCDE කම්බියකින් සැදි මීටක්, කේන්දුය O හා අරය 2a වූ තුනී ඒකාකාර අර්ධ ගෝලාකාර කබොලකට දෘඪ ලෙස සවී කර හැන්දක් සාදා ඇත. A CE විෂ්කම්භය BC ව ලම්බ වේ. A හා B ලක්ෂා අර්ධ ගෝලාකාර කබොලෙහි වෘත්තාකාර ගැට්ටේ විෂ්කම්භයක අන්ත වන අතර F ලක්ෂාය අර්ධ ගෝලාකාර කබොලෙහි පෘෂ්ඨය මත පිහිටා ඇත්තේ OF හා OB ලම්බ වන පරිදි ය.

 \overrightarrow{AB} හා \overrightarrow{BC} අතර කෝණය $\frac{\pi}{4}$ ක් වන අතර O,A,B,C,D,E හා F ලක්ෂා එකම තලයක පිහිටයි. අර්ධ ගෝලාකාර කබොලෙහි ඒකක වර්ගඵලයක ස්කන්ධය σ ද මිටෙහි ඒකක දිගක ස්කන්ධය $\sqrt{2}a\sigma$ ද වේ. හැන්දේ ස්කන්ධ කේන්දය OB ට පහළින් $\left(\frac{3\pi-4}{2+5\pi}\right)a$ දුරකින් ද OF සිට $\left(\frac{8+5\pi}{2+5\pi}\right)a$ දුරකින් ද පිහිටන බව පෙන්වන්න. දැන්, ස්කන්ධය m වූ අංශුවක් A ලක්ෂායට සවිකර ඇත්තේ OF සිරස්ව ඇතිව F ලක්ෂාය තිරස් ගෙබිමක් ස්පර්ශ කරමින් හැන්ද සමතුලිතතාවේ තැබිය හැකිවන පරිදි ය. a හා σ ඇසුරෙන් m සොයන්න.

- 17.(a) A හා B සර්වසම මලු දෙකකි. A මල්ලෙහි කළු පාට බෝල 3 ක් හා සුදු පාට බෝල 2 ක් අඩංගු වන අතර B මල්ලෙහි කළු පාට බෝල 4 ක් හා සුදු පාට බෝල 3 ක් අඩංගු වේ. බෝල, ඒවා පාටින් හැර අත් සෑම අයුරකින්ම සර්වසම වේ. දැන්, මුහුණත්වල 1,2,3,4,5 හා 6 අංක යොදා ඇති පැති හයකින් යුත් නොනැඹුරු දාදු කැට දෙකක් එකට පෙරලනු ලැබේ. එවිට ලැබෙන සංඛ්‍යාවල එකතුව පුථමක සංඛ්‍යාවක් නම් A මල්ල ද, නොඑසේ නම් B මල්ල ද තෝරාගනු ලැබේ. තෝරාගත් මල්ලෙන් සසම්භාවී ලෙස බෝලයක් ඉවතට ගනු ලැබේ.
 - (i) ඉවතට ගත් බෝලය කළු පාට එකක් වීමේ සම්භාවිතාව සොයන්න.
 - (ii) ඉවතට ගත් බෝලය කළු පාට එකක් බව දී ඇති විට, මෙම බෝලය A මල්ලෙන් ඉවතට ගෙන තිබීමේ සම්භාවිතාව සොයන්න.
 - (b) සිසුන් 100 දෙනෙකුට කිසියම් කාර්යයක් නිම කිරීම සඳහා ගත් කාලයන් පහත වගුවේ සාරාංශගත කර ඇත:

ගත් කාලය (තත්පර)	සිසුන් ගණන
0 – 10	10
10 – 20	20
20 – 30	35
30 – 40	20
40 – 50	15

ඉහත දී ඇති සංඛාාත වාාප්තියේ මධාස්ථය, මධානාය හා විචලතාව නිමානය කරන්න. පසුව, තවත් සිසුන් 25 දෙනෙකුට එම කාර්යයම දෙන ලදි. මෙම සිසුන් ඉහත වගුවේ එක් එක් කාල පුාත්තරයට 5 දෙනෙකු බැගින් වැටුණි. DAST PAPERS නව වාාප්තියේ මධානාය නිමානය කරන්න.