

ANOVA Recap

Statistics Tutorial Day 12

Prabesh Dhakal 2020 July 02

T-TEST

Comparison of sample mean between two groups/levels.

ANALYSIS OF VARIANCE

ANOVA: Analysis of Variance

response ~ predictors (factors)

- Factors = explanatory variables (aka Predictors)
 - Have different "levels" where each level can be thought of as a category
- Response Variable
 - Numeric (integer or decimal point numbers)

ANALYSIS OF VARIANCE

Comparison of sample mean between 3 or more groups/levels.

HYPOTHESES IN ANOVA

H₀: the group means are not different

H₁: the group means are different

H₁ does not specify which groups vary from each other.

2 MAIN TYPES OF ANOVA

One-way ANOVA

One factor with more than 3 levels

Type of soil affects yield

Factor	Soil		
Levels	Different types of soil (sand, loam, clay)		
Response	Crop Yield (kg)		

Two-way ANOVA

Two factors with multiple levels

Type of soil AND type of fertilizer affects yield

Factors	Soil and Fertilizer			
Levels	Different types of soil (sand, loam, clay)			
	Different types of fertilizers (x, y, z)			
Response	Crop Yield (kg)			

KEY ASSUMPTIONS OF ANOVA

The data is normally distributed.

Variance is homogeneous.

Sample size is balanced.

One-way ANOVA Intuition

Total Variation (SSY)

= <u>Between-groups Variation</u> (SSA)

observation - overall mean

treatment mean - overall mean

+ Within-groups Variation (SSE)

treatment observation

treatment means

ANOVA - SOURCES OF VARIATION

Sources of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F-Ratio
Between (SSA)	$\sum_{i}^{k} n_i (\bar{x}_i - \bar{x})^2$	k-1	$MSA = \frac{SSA}{k-1}$	$\frac{MSA}{MSE}$
Within (SSE)	$\sum_{i}^{k} \sum_{j}^{l} (x_j - \overline{x_i})^2$	N-k	$MSE = \frac{SSE}{N - k}$	
Total (SSY)	$\sum_{i}^{n} (x_i - \bar{x})^2$	<i>N</i> – 1		

ONE-WAY ANOVA RESULT FROM R

```
F-ratio = \frac{SS_{between\_groups}}{df_{treatment}} \div \frac{SS_{within\_groups}}{df_{residuals}}
test statistic

(Variation because of Soil Types)

(Overall Variation)
```

Questions?

PLAN FOR NEXT WEEK

That's it for today! :-)

Next week, we are going to discuss:

Linear Regression + Final Q&A

If you want to reach me, mail me at: prabesh.dhakal@stud.leuphana.de