

AOD4184A 40V N-Channel MOSFET

General Description

The AOD4184A combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\rm DS(ON)}$. This device is well suited for high current load applications.

Product Summary

 $\begin{array}{lll} V_{DS} & 40V \\ I_{D} \; (at \, V_{GS} \! = \! 10V) & 50A \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 10V) & < 7m\Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 4.5V) & < 9.5m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

°C

Junction and Storage Temperature Range

Absolute Maximun	n Ratings T _A =25°C u	nless otherwise noted				
Parameter		Symbol	Maximum	Units		
Drain-Source Voltag	je	V_{DS}	40	V		
Gate-Source Voltag	е	V_{GS}	±20	V		
Continuous Drain	T _C =25°C		50			
Current G	T _C =100°C	ID	40	A		
Pulsed Drain Currer	nt ^C	I _{DM}	120			
Continuous Drain	T _A =25°C		13	۸		
Current	T _A =70°C	IDSM	10	A		
Avalanche Current ^c	.	I _{AS} , I _{AR}	35	A		
Avalanche energy L	=0.1mH ^C	E _{AS} , E _{AR}	61	mJ		
	T _C =25°C	Ь	50	W		
Power Dissipation ^B	T _C =100°C	P _D	25	VV		
	T _A =25°C	В	2.3	10/		
Power Dissipation A	T _A =70°C	P _{DSM}	1.5	W		
				•		

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	18	22	°C/W				
Maximum Junction-to-Ambient AD	Steady-State	IX ₀ JA	44	55	°C/W				
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	2.4	3	°C/W				

-55 to 175

 T_J, T_{STG}

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC P	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		40			V
l	Zoro Cata Valtaga Drain Current	V_{DS} =40V, V_{GS} =0V				1	^
I _{DSS}	Zero Gate Voltage Drain Current		T _J =55°C			5	μА
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=250\mu A$		1.7	2.1	2.6	V
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		120			Α
		V_{GS} =10V, I_D =20A			5.8	7	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		9.6	12	11122
		V_{GS} =4.5V, I_D =15A			7.6	9.5	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =5A			37		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
I _S	Maximum Body-Diode Continuous Curr	ent				20	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =20V, f=1MHz		1200	1500	1800	pF
Coss	Output Capacitance			150	215	280	pF
C _{rss}	Reverse Transfer Capacitance			80	135	190	pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1N	ИHz	2	3.5	5	Ω
SWITCHII	NG PARAMETERS						
Q _g (10V)	Total Gate Charge			21	27	33	nC
Q _g (4.5V)	Total Gate Charge	V_{GS} =10V, V_{DS} =20V, I_{D}	=20A	10	14	17	nC
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -20V, I _D)-20/1	3	5	6	nC
Q_{gd}	Gate Drain Charge			3	6	9	nC
t _{D(on)}	Turn-On DelayTime				6		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =20V, R	L=1Ω,		17		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω	Ī		30		ns
t _f	Turn-Off Fall Time				17		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=100A/μs	;	20	29	38	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=100A/μs		18	26	34	nC

A. The value of R_{0JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on R $_{0JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175°C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev0: Sep 2009 www.aosmd.com Page 2 of 6

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=175°C. Ratings are based on low frequency and duty cycles to keep initial T.=25°C

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 4: On-Resistance vs. Junction Temperature
(Note E)

Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 14: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PD-01139
Version	A
Title	AOD4184A Marking Description

DPAK (TO-252) PACKAGE MARKING DESCRIPTION

Green product

NOTE:

LOGO - AOS Logo

D4184A - Part number code

F - Fab code

A - Assembly location code

Y - Year code W - Week code

L&T - Assembly lot code

PART NO.	DESCRIPTION	CODE
AOD4184A	Green product	D4184A
AOD4184AL	Green product	D4184A

Document No.	PO-00009
Version	S

TO252(DPAK) PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

UNIT: mm

NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH SHOULD BE LESS THAN 6 MH S
- 2. DIMENSION L IS MEASURED IN GAUGE PLANE
- 3. TOLERANCE 0.10 mm UNLESS OTHERWISE SPECIFIED
- 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 5. REFER TO JEDEC TO-252 (AA)

S Y M B	DIMENS	ION IN MILLII	METERS	DIMEI	DIMENSIONS IN INCHES			
O L	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	2.184	2.286	2.388	0.086	0.090	0.094		
A1	0.000		0.127	0.000		0.005		
A2	0.889	1.041	1.143	0.035	0.041	0.045		
b	0.635	0.762	0.889	0.025	0.030	0.035		
b1	0.762	0.840	1.143	0.030	0.033	0.045		
b2	4.953	5.340	5.461	0.195	0.210	0.215		
С	0.450	0.508	0.610	0.018	0.020	0.024		
c1	0.450	0.508	0.610	0.018	0.020	0.024		
D	5.969	6.096	6.223	0.235	0.240	0.245		
D1	5.210	5.249	5.380	0.205	0.207	0.212		
D2	0.662	0.762	0.862	0.026	0.030	0.034		
Е	6.350	6.604	6.731	0.250	0.260	0.265		
E1	4.318	4.826	4.901	0.170	0.190	0.193		
E2	1.678	1.778	1.878	0.066	0.070	0.074		
е		2.286 BS	C		0.090 BS	C		
e1		4.572 BS	SC .		0.180 BS	С		
Н	9.398	10.033	10.414	0.370	0.395	0.410		
L	1.270	1.520	2.032	0.050	0.060	0.080		
L1	2.921 REF.				0.115REF			
L2	0.408	0.508	0.608	0.016	0.020	0.024		
L3	0.889	1.016	1.270	0.035	0.040	0.050		
L4	0.635		1.016	0.025		0.040		

DPAK Tape and Reel Data

DPAK Carrier Tape

UNIT: MM

PACKAGE	Α0	В0	K0	DO	D1	E	E1	E2	P0	P1	P2	Т
DPAK (16 mm)	6.90 ±0.10	10.50 ±0.10	2.50 ±0.10	1.50 +0.1 -0	1.50 +0.1 -0	16.00 ±0.30	1.75 ±0.10	7.50 ±0.10	8.00 ±0.10	4.00 ±0.10	2.00 ±0.10	0.30 ±0.05

DPAK Reel

UNIT: MM

TAPE SIZE	REEL SIZE	М	N	W	Н	К	S
16 mm	ø330	Ø330.00 +0.25 -4.00	Ø100.00 ±0.2	16.4 +2.0 -0.0	Ø13.00 +0.50 -0.20	10.5 ±0.25	2.2 ±0.25

DPAK Tape

Leader / Trailer & Orientation

Unit Per Reel: 2500pcs

AOS Semiconductor Product Reliability Report

AOD4184A, rev B

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742 <u>www.aosmd.com</u>

This AOS product reliability report summarizes the qualification result for AOD4184A. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AOD4184A passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation

I. Product Description:

The AOD4184A combines advanced trench MOSFET technology with a low resistance package to provide extremely low R_{DS(ON)}. This device is well suited for high current load applications.

- -RoHS Compliant
- -Halogen Free

Absolute Maximum	Ratings T _A =25°C unles	s otherwise note	ed		
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage	ı	V _{DS}	40	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain	T _C =25°C		50		
Current ^G	T _C =100°C	T _D	39	Α	
Pulsed Drain Current	Ċ	I _{DM}	120		
Continuous Drain	T _A =25°C		13	٨	
Current	T _A =70°C	IDSM	10	Α	
Avalanche Current ^C		I _{AS} , I _{AR}	35	Α	
Avalanche energy L=	0.1mH ^c	E _{AS} , E _{AR}	61	mJ	
	T _C =25°C	P _D	50	W	
Power Dissipation ^B	T _C =100°C		25	VV	
	T _A =25°C	P _{DSM}	2.3	W	
Power Dissipation A T _A =70°C		FDSM	1.5	۷V	
Junction and Storage	Temperature Range	T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	R _{⊕JA}	18	22	°C/W				
Maximum Junction-to-Ambient AD	Steady-State	Γ\ _θ JA	44	55	°C/W				
Maximum Junction-to-Case	Steady-State	R₀JC	2.4	3	°C/W				

II. Die / Package Information:

AOD4184A

Process Standard sub-micron

Low voltage N channel process

Package Type 3 leads TO252

Lead FrameBare CuDie AttachSoft solder

Bond wire G:1.3 mils Au; S: 20mils Al **Mold Material** Epoxy resin with silica filler

Flammability Rating UL-94 V-0
Backside Metallization Ti / Ni / Ag
Moisture Level Up to Level 1 *

Note * based on info provided by assembler and mold compound supplier

III. Result of Reliability Stress for AOD4184A

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	168hr 85°c /85%RH +3 cycle reflow@260°c	-	9 lots	1210pcs	0
HTGB	Temp = 150°c , Vgs=100% of Vgsmax	168hrs 500 hrs 1000 hrs	1 lot	77pcs	0
			(Note A*)	77 pcs / lot	
HTRB	Temp = 150°c , Vds=80% of Vdsmax	168hrs 500 hrs 1000 hrs	1 lot	77pcs	0
			(Note A*)	77 pcs / lot	
HAST	130 +/- 2°c , 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	9 lots	495pcs	0
	1 90		(Note B**)	55 pcs / lot	
Pressure Pot	121°c , 29.7psi, RH=100%	96 hrs	5 lots	275pcs	0
			(Note B**)	55 pcs / lot	
Temperature Cycle	-65°c to 150°c , air to air,	250 / 500 cycles	8 lots	440pcs	0
			(Note B**)	55 pcs / lot	

III. Result of Reliability Stress for AOD4184A

Continues

DPA	Internal Vision Cross-section X-ray	NA	5 5 5	5 5 5	0
CSAM		NA	5	5	0
Bond Integrity	Room Temp 150°c bake 150°c bake	0hr 250hr 500hr	40 40 40	40 wires 40 wires 40 wires	0
Solderability	245°C	5 sec	15	15 leads	0
Solder dunk	260°c	10secs 3 cycles	1	30 units	0

Note A: The HTGB and HTRB reliability data presents total of available AOD4184A burn-in data up to the published date.

Note B: The pressure pot, temperature cycle and HAST reliability data for AOD4184A comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion): 46 MTTF = 2478 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AOD4184A). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $\text{Chi}^2 \times 10^9 \text{/} [2 \text{ (N) (H) (Af)}] = 1.83 \times 10^9 \text{/} [2x2x77x500x258] = 46 \text{ MTTF} = <math>10^9 \text{/} \text{FIT} = 2.17 \times 10^7 \text{hrs} = 2478 \text{ years}$

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K