row. In particular, when the matrix A has a sparse storage organization (see Sections 5.6 and 5.8), permutation by rows is performed only when a null (or exceedingly small) pivot element is encountered.

See Exercises 5.6-5.8.

5.5 How accurate is the solution of a linear system?

We have already noticed in Example 5.8 that, due to roundoff errors, the product LU does not reproduce A exactly. Even though the pivoting strategy damps these errors, yet the result could sometimes be rather unsatisfactory.

Example 5.9 Consider the linear system $A_n \mathbf{x}_n = \mathbf{b}_n$, where $A_n \in \mathbb{R}^{n \times n}$ is the so-called *Hilbert matrix* whose elements are

$$a_{ij} = 1/(i+j-1), \qquad i, j = 1, \dots, n,$$

while \mathbf{b}_n is chosen in such a way that the exact solution is $\mathbf{x}_n = (1, 1, ..., 1)^T$. The matrix \mathbf{A}_n is clearly symmetric and one can prove that it is also positive definite. For different values of n we use the MATLAB function $\mathbf{1}\mathbf{u}$ to get the Gauss factorization of \mathbf{A}_n with pivoting by row. Then we solve the associated linear systems (5.20) and denote by $\hat{\mathbf{x}}_n$ the computed solution. In Figure 5.8 we report (in logarithmic scale) the relative errors

$$E_n = \|\mathbf{x}_n - \widehat{\mathbf{x}}_n\|/\|\mathbf{x}_n\|,\tag{5.22}$$

having denoted by $\|\cdot\|$ the Euclidean norm introduced in the Section 1.4.1. We have $E_n \geq 10$ if $n \geq 13$ (that is a relative error on the solution higher than 1000%!), whereas $R_n = L_n U_n - P_n A_n$ is the null matrix (up to machine accuracy) for any given value of n.

On the ground of the previous remark, we could speculate by saying that, when a linear system $A\mathbf{x} = \mathbf{b}$ is solved numerically, one is indeed looking for the *exact* solution $\hat{\mathbf{x}}$ of a *perturbed* system

$$(\mathbf{A} + \delta \mathbf{A})\hat{\mathbf{x}} = \mathbf{b} + \delta \mathbf{b}, \tag{5.23}$$

where δA and δb are respectively a matrix and a vector which depend on the specific numerical method which is being used. We start by considering the case where $\delta A = 0$ and $\delta b \neq 0$ which is simpler than the most general case. Moreover, for simplicity we will also assume that $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite.

By comparing (5.1) and (5.23) we find $\mathbf{x} - \hat{\mathbf{x}} = -\mathbf{A}^{-1} \boldsymbol{\delta} \mathbf{b}$, and thus

$$\|\mathbf{x} - \widehat{\mathbf{x}}\| = \|\mathbf{A}^{-1}\boldsymbol{\delta}\mathbf{b}\|. \tag{5.24}$$

Fig. 5.8. Behavior versus n of E_n (solid line) and of $\max_{i,j=1,...,n} |r_{ij}|$ (dashed line) in logarithmic scale, for the Hilbert system of Example 5.9. The r_{ij} are the coefficients of the matrix R_n

In order to find an upper bound for the right-hand side of (5.24), we proceed as follows. Since A is symmetric and positive definite, the set of its eigenvectors $\{\mathbf{v}_i\}_{i=1}^n$ provides an orthonormal basis of \mathbb{R}^n (see [QSS07, Chapter 5]). This means that

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i, i = 1, \dots, n,$$
 $\mathbf{v}_i^T \mathbf{v}_j = \delta_{ij}, i, j = 1, \dots, n,$

where λ_i is the eigenvalue of A associated with \mathbf{v}_i and δ_{ij} is the Kronecker symbol. Consequently, a generic vector $\mathbf{w} \in \mathbb{R}^n$ can be written as

$$\mathbf{w} = \sum_{i=1}^{n} w_i \mathbf{v}_i,$$

for a suitable (and unique) set of coefficients $w_i \in \mathbb{R}$. We have

$$\|\mathbf{A}\mathbf{w}\|^{2} = (\mathbf{A}\mathbf{w})^{T}(\mathbf{A}\mathbf{w})$$

$$= [w_{1}(\mathbf{A}\mathbf{v}_{1})^{T} + \dots + w_{n}(\mathbf{A}\mathbf{v}_{n})^{T}][w_{1}\mathbf{A}\mathbf{v}_{1} + \dots + w_{n}\mathbf{A}\mathbf{v}_{n}]$$

$$= (\lambda_{1}w_{1}\mathbf{v}_{1}^{T} + \dots + \lambda_{n}w_{n}\mathbf{v}_{n}^{T})(\lambda_{1}w_{1}\mathbf{v}_{1} + \dots + \lambda_{n}w_{n}\mathbf{v}_{n})$$

$$= \sum_{i=1}^{n} \lambda_{i}^{2}w_{i}^{2}.$$

Denote by λ_{max} the largest eigenvalue of A. Since $\|\mathbf{w}\|^2 = \sum_{i=1}^n w_i^2$, we conclude that

$$\|\mathbf{A}\mathbf{w}\| \le \lambda_{max} \|\mathbf{w}\| \quad \forall \mathbf{w} \in \mathbb{R}^n.$$
 (5.25)

In a similar manner, we obtain

$$\|\mathbf{A}^{-1}\mathbf{w}\| \le \frac{1}{\lambda_{min}} \|\mathbf{w}\|,$$

upon recalling that the eigenvalues of A^{-1} are the reciprocals of those of A. This inequality enables us to draw from (5.24) that

$$\frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \frac{1}{\lambda_{min}} \frac{\|\boldsymbol{\delta}\mathbf{b}\|}{\|\mathbf{x}\|}.$$
 (5.26)

Using (5.25) once more and recalling that $A\mathbf{x} = \mathbf{b}$, we finally obtain

$$\frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \frac{\lambda_{max}}{\lambda_{min}} \frac{\|\boldsymbol{\delta}\mathbf{b}\|}{\|\mathbf{b}\|}$$
 (5.27)

We can conclude that the relative error in the solution depends on the relative error in the data through the following constant (≥ 1)

$$K(\mathbf{A}) = \frac{\lambda_{max}}{\lambda_{min}} \tag{5.28}$$

which is called spectral condition number of the matrix A. K(A) can be computed in MATLAB using the command cond.

Remark 5.3 The MATLAB command cond(A) allows the computation of the condition number of any type of matrix A, even those which are not symmetric and positive definite. It is worth mentioning that there exist various definitions of condition number of a matrix. For a generic matrix A, the command cond(A) computes the value $K_2(A) = ||A||_2 \cdot ||A^{-1}||_2$, where we define $||A||_2 = \sqrt{\lambda_{max}(A^TA)}$. We note that if A is not symmetric and positive definite, $K_2(A)$ can be very far from the spectral condition number K(A). For a sparse matrix A, the command condest(A) computes an approximation (at low computational cost) of the condition number $K_1(A) = ||A||_1 \cdot ||A^{-1}||_1$, being $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$ the so-called 1-norm of A. Other definitions for the condition number are available for nonsymmetric matrices, see [QSS07, Chapter 3].

A more involved proof would lead to the following more general result in the case where A is symmetric and positive definite and δA is an arbitrary symmetric and positive definite matrix, "small enough" to satisfy $\lambda_{max}(\delta A) < \lambda_{min}(A)$:

$$\frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \frac{K(\mathbf{A})}{1 - \lambda_{max}(\delta \mathbf{A})/\lambda_{min}(\mathbf{A})} \left(\frac{\lambda_{max}(\delta \mathbf{A})}{\lambda_{max}(\mathbf{A})} + \frac{\|\boldsymbol{\delta}\mathbf{b}\|}{\|\mathbf{b}\|}\right)$$
(5.29)

Finally, if A and δA are not symmetric positive definite matrices, and δA is such that $\|\delta A\|_2 \|A^{-1}\|_2 < 1$, the following estimate holds:

$$\frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \frac{K_2(\mathbf{A})}{1 - K_2(\mathbf{A})\|\delta \mathbf{A}\|_2 / \|\mathbf{A}\|_2} \left(\frac{\|\delta \mathbf{A}\|_2}{\|\mathbf{A}\|_2} + \frac{\|\boldsymbol{\delta}\mathbf{b}\|}{\|\mathbf{b}\|}\right)$$
(5.30)

condest

cond

If K(A) is "small", that is of the order of unity, A is said to be well conditioned. In that case, small errors in the data will lead to errors of the same order of magnitude in the solution. This would not occur in the case of ill conditioned matrices.

Example 5.10 For the Hilbert matrix introduced in Example 5.9, $K(A_n)$ is a rapidly increasing function of n. One has $K(A_4) > 15000$, while if n > 13 the condition number is so high that MATLAB warns that the matrix is "close to singular". Actually, $K(A_n)$ grows at an exponential rate, $K(A_n) \simeq e^{3.5n}$ (see, [Hig02]). This provides an indirect explanation of the bad results obtained in Example 5.9.

Inequality (5.27) can be reformulated by the help of the residual $\bf r$

$$\mathbf{r} = \mathbf{b} - \mathbf{A}\widehat{\mathbf{x}}.\tag{5.31}$$

Should $\hat{\mathbf{x}}$ be the exact solution, the residual would be the null vector. Thus, in general, \mathbf{r} can be regarded as an *estimator* of the error $\mathbf{x} - \hat{\mathbf{x}}$. The extent to which the residual is a good error estimator depends on the size of the condition number of A. Indeed, observing that $\delta \mathbf{b} = \mathbf{A}(\hat{\mathbf{x}} - \mathbf{x}) = \mathbf{A}\hat{\mathbf{x}} - \mathbf{b} = -\mathbf{r}$, we deduce from (5.27) that

$$\frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|}{\|\mathbf{x}\|} \le K(\mathbf{A}) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}$$
 (5.32)

Thus if K(A) is "small", we can be sure that the error is small provided that the residual is small, whereas this might not be true when K(A) is "large".

Example 5.11 The residuals associated with the computed solution of the linear systems of Example 5.9 are very small (their norms vary between 10^{-16} and 10^{-11}); however the computed solutions differ remarkably from the exact solution.

See Exercises 5.9-5.10.

5.6 How to solve a tridiagonal system

In many applications (see for instance Chapter 8), we have to solve a system whose matrix has the form

$$\mathbf{A} = \begin{bmatrix} a_1 & c_1 & & 0 \\ e_2 & a_2 & \ddots & \\ & \ddots & c_{n-1} \\ 0 & & e_n & a_n \end{bmatrix}.$$