Matemática II - MAC126

Rogério Lourenço

rogerio.lourenco.im.ufrj@gmail.com

https://rogerio-lourenco.github.io/pagina

Prova 2 - 25 de novembro de 2017

Entrega: até dia 30 de novembro de 2017, até 18:00.

Leia a prova toda com atenção antes de começar. Boa prova.

1. [2 pontos] Ache os pontos críticos, e diga se são pontos de máximo local, mínimo local ou sela, da função

$$f(x,y) = x^3 + 3x^2 - 9x + y^3 - 12y.$$

2. [2 pontos] Considere os seguintes dados:

x	$y \pm \sigma$
2	$3 \pm 0, 5$
3	$3,5 \pm 0,6$
6	$6,8 \pm 0,3$
7	$7,7 \pm 0,6$
11	$13 \pm 0, 7$
15	$16 \pm 0, 2$
16	$18 \pm 0, 5$

Ver figura 1.

Pelo método dos mínimos quadrados, determine a reta y=ax+b que melhor se adapta aos dados.

- 3. [2 pontos] Usando os mesmos dados da questão anterior, use o método dos mínimos quadrados para determinar a melhor curva $y=ax+bx^3$ que se adapta aos dados.
- 4. [2 pontos] Considere os dados

x	y
2	3,4
3	3,9
6	5,8
7	6,5
9	9,9

Ver figura 2.

Usando o método dos mínimos quadrados, ache a curva $y=ax^b$ que melhor se adapta aos dados.

Figura 1: Dados da questão 2.

Figura 2: Dados da questão 4.

5. [2 pontos] Ache o maior e o menor valor de f(x,y,z)=4y-2z sujeitos aos vínculos 2x-y-z=2 e $x^2+y^2=1$.