CONDITIONAL PROBABILITY

Definition

Let A and B be any two events. The probability of the event A given that the event B has already occured or the conditional probability of A given B, denoted by $P(A \mid B)$ is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Similarly the conditional probability of B given A is defined as

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}, P(A) \neq 0$$

Remarks:

- (i) For P(B) > 0 $P(A | B) \le P(A)$
- \Box P(A | B) is not defined if P(B) = 0
- $P(B \mid B) = 1$

Theorem

For a fixed B with P(B) > 0, $P(A \mid B)$ is a probability function (or probability measure).

Proof

Here we have to show that conditional probability satisfies all the axioms of probability.

$$P(A \cap B) \ge 0, \text{ by axiom (1)}$$

(ii)
$$P(S \mid B) = P(S \cap B) = P(B) = P(B) = 1$$

(iii) For any two adjoint events A and C

$$P(A \cup C \mid B) = \frac{P[(A \cup C) \cap B]}{P(B)}$$

$$= \frac{P[(A \cap B) \cup (C \cap B)]}{P(B)} \text{ by associative property}$$

$$= \frac{P(A \cap B) + P(C \cap B)}{P(B)} \text{ since } A \cap B \text{ and } C \cap B \text{ are disjoint}$$

$$= \frac{P(A \cap B)}{P(B)} + \frac{P(C \cap B)}{P(B)} = P(A|B) + P(C|B)$$

That is, conditional probability satisfies all the axioms of probability. Therefore P(A|B) is a probability function or probability measure.

Multiplication law of probability

Theorem

For any two events A and B

$$P(A \cap B) = P(A) P(B|A), P(A) > 0$$

= $P(B) \cdot P(A|B), P(B) > 0$

where P(A|B) and P(B|A) are the conditional probabilities of A and B respectively.

Independent Events

Definition

Two or more events are said to be *independent* if the probability of any one them is not affected by the supplementary knowledge concerning the materialisation of any number of the remaining events. Otherwise they are said to be *dependent*.

Independence of two events A and B

An event A is said to be independent (statistically independent) of event B, if the conditional probability of A given B, i.e., P(A|B) is equal to the unconditional probability of A.

In symbols,
$$P(A \mid B) = P(A)$$

Similarly if the event B is independent of A, we must have

$$P(B \mid A) = P(B)$$

Since $P(A \cap B) = P(A) P(B|A)$ and since P(B|A) = P(B) when B is independent of A, we must have, $P(A \cap B) = P(A) \cdot P(B)$

Hence, the events A and B are independent if

$$P(A \cap B) = P(A) P(B)$$

Pairwise and Mutual independence

Definition

A set of events A_1, A_2, \ldots, A_n are said to be pairwise independent if every pair of different events are independent.

That is,
$$P(A_i \cap A_j) = P(A_i) P(A_j)$$
 for all i and j, $i \neq j$.

Definition

A set of events A_1, A_2, \ldots, A_n are said to be mutually independent if

$$P(A_i \cap A_j \cap \ldots \cap A_r) = P(A_i) \ P(A_j) \ \ldots \ P(A_r) \ \text{for every subset } (A_i,$$

$$A_1, ..., A_r$$
) of $A_1, A_2, ..., A_n$

That is the probabilities of every two, every three..., every n of the events are the products of the respective probabilities.

For example, three events A, B and C are said to be mutually independent if

$$P(A \cap B) = P(A) P(B)$$

$$P(B \cap C) = P(B) P(C)$$

$$P(A \cap C) = P(A) P(C)$$
 and

$$P(A \cap B \cap C) = P(A) P(B) P(C)$$

Note. 1

For the mutal independence of n events, A_1, A_2, \ldots, A_n the total number of conditions to be satisfied is $2^n - 1 - n$. In particular, for three events we have $4 = (2^3 - 1 - 3)$ conditions for their mutual independence.

Note. 2

We can note that pairwise or mutual independence of events A_1, A_2, \dots

 \square A_n is defined only when $P(A_i) \neq 0$, for i = 1, 2, ..., n.

Note 3

Pairwise independence does not imply mutual independence.

Theorem

Mutual independence of events implies pairwise independence of events. The converse is not true.

Proof

From the definition of mutual independence, it is clear that mutual independence implies pair-wise independence. We shall prove that the converse is not necessarily true. i.e., pair-wise independence does not imply mutual independence. We can illustrate it by means of an example due to S.N. Bernstein.

Let
$$S = \{\omega_1, \omega_2, \omega_3, \omega_4\}$$
 where $P(\omega_i) = 1/4$ for for $i = 1, 2, 3, 4$.

Let
$$A = \{\omega_1, \omega_2\}$$
, $B = \{\omega_1, \omega_3\}$ and $C = \{\omega_1, \omega_4\}$

Then
$$P(A) = P(B) = P(C) = 1/2$$

and consider the collection of events A.B,C. These events are pairwise independent but not mutually independent.

Since they are pairwise independent we have,

$$P(A \cap B) = 1/4 = P(A)P(B)$$

$$P(B \cap C) = 1/4 = P(B)P(C)$$

$$P(A \cap C) = 1/4 = P(A)P(C)$$

But
$$P(A \cap B \cap C) = P(\omega_1) = 1/4$$

Thus
$$P(A \cap B \cap C)^{-1} P(A) P(B) P(C)$$

Hence they are not mutually independent.

Multiplication Theorem (independent events)

If A and B are two independent events,

$$P(A \cap B) = P(A).P(B)$$

Proof

We have, for any two events A and B

$$P(A \cap B) = P(A) P(B|A)$$

Since A and B are independent, we have P(B|A) = P(B),

$$Arr P(A \cap B) = P(A) P(B).$$

Note

If A and B are independent the addition theorem can be stated as P(A

$$\bigcup B) = P(A) + P(B) - P(A). P(B)$$

Theorem

If A and B are two independent events

- \Box A^C and B are independent
- \Box A^C and B^C are independent

Proof

Since A and B are independent, we have

$$P(A|B) = P(A)$$
. $P(B|A) = P(B)$ and $P(A \cap B) = P(A)$. $P(B)$

(i) Now,
$$P(A \cap B^C) = P(A) P(B^C|A)$$

$$\Box P(A) [1-P(B|A)]$$

$$\Box P(A) [1-P(B)]$$

 \Box P(A) P(B^C)

ie., A and B^C are independent

(ii)
$$P(A^{C} \cap B) = P(B) P(A^{C}|B)$$

$$\Box P(B) [1 - P(A \mid B)]$$

$$\Box P(B) [1 - P(A)]$$

$$\Box P(A^{C}) P(B)$$

ie., A^C and B are independent

(iii)
$$P(A^{C} \cap B^{C})$$
 = $P(A \cup B)^{C} = 1 - P(A \cup B)$

$$\Box 1 - \{P(A) + P(B) - P(A \cap B)\}$$

$$\Box 1 - P(A) - P(B) + P(A) P(B)$$
since $P(A \cap B) = P(A) P(B)$

$$\Box [1 - P(A)] - P(B) [1 - P(A)]$$

$$\Box [1 - P(A)] [1 - P(B)] = P(Ac) P(Bc)$$

i.e., A^C and B^C are independent

Baye's Theorem

$$P(B_i/A) = \frac{P(B_i) P(A)}{\sum_{i=1}^{n} P(B_i) P(A)}$$

Note 1

Here the probabilities $P(B_i \mid A)$ for i=1,2,...,n are the probabilities determined after observing the event A and $P(B_i)$ for i=1,2,....,n are the probabilities given before hand. Hence $P(B_i)$ for i=1,2,....,n are called 'a priori' probabilities and $P(B_i \mid A)$ for i=1,2,....,n are called "a posteriori' probabilities. The probabilities $P(A|B_i)$, i=1,2,....,n are called 'likely hoods' because they indicate how likely the event A under consideration is to occur, given each and every, 'a priori' probability. Baye's theorem gives a relationship between $P(B_i \mid A)$ and $P(A \mid B_i)$ and thus it involves a type of inverse reasoning. Baye's theorem plays an important role in applications. This theorem is due to Thomas A Baye's.

146

Note 2

In the case of two events A and B satisfying the assumption P(B) > 0 and 0 < P(B) < 1 we have,

$$P(B \mid A) = \frac{P(B)P(A \mid B)}{P(B)P(A \mid B) + P(B^{C})P(A \mid B^{C})}$$

Example 1

Let A and B be two events associated with an experiment and suppose P(A) = 0.5 while P(A or B) = 0.8. Let P(B) = p. For what values of p are (a) A and B mutually exclusive (b) A and B independent.

Solution

Given
$$P(A) = 0.5$$
, $P(A \cup B) = 0.8$, $P(B) = p$

(a) If A and B are mutually exclusive

$$P(A \cup B)$$
 = $P(A) + P(B)$
i.e., 0.8 = 0.5 + p
 $p = 0.3$

☐ If A and B are independent, we have

$$P(A \cup B)$$
 = $P(A) + P(B) - P(A)P(B)$
i.e., 0.8 = $0.5 + p - .5p$

♣
$$.5p = 0.3$$
 ∴ $p = 3/5$

Example 2

If A and B are two events such that P(A) = 1/3, P(B) = 1/4 and P(ACB) = 1/8. Find P(A|B) and $P(A|B^C)$

Solution

Given
$$P(A) = 1/3$$
, $P(B) = 1/4$, $P(A \cap B) = 1/8$

∴ P(A|B)=
$$\frac{P(A \cap B)}{P(B)} = \frac{1/8}{1/4} = 4/8 = 1/2$$

$$P(A|B) = \frac{P(A \cap B^{C})}{P(B^{C})} = \frac{P(A) - P(A \cap B)}{1 - P(B)}$$

$$= \frac{1/3 - 1/8}{1 - 1/4} = \frac{5/24}{3/4} = 5/18$$

Example 3

The odds that A speaks the truth are 3:2 and the odds that B speaks the truth are 5:3. In what percentage of cases are they likely to contradict each other on an identical point?

Solution

Define the events.

A - A speaks the truth

B - B speaks the truth

♣
$$P(A) = 3/5, P(A^{C}) = 2/5$$

 $P(B) = 5/8, P(B^{C}) = 3/8$

They will contradict each other on an identical point means that when A speaks the truth, B will tell a lie and conversely.

... P(They will contradict each other) =
$$[P(A \cap B^C) \cup (A^C \cap B)]$$

= $P(A \cap B^C) + P(A^C \cap B)$, since the events are m.e.
= $P(A) P(B^C) + P(A^C) P(B)$
= $\frac{3}{5} \cdot \frac{3}{8} \cdot \frac{2}{5} \cdot \frac{5}{8} \cdot \frac{5}{8} \cdot \frac{5}{8} \cdot \frac{5}{8} \cdot \frac{5}{8} \cdot \frac{19}{8} \cdot \frac{$

ie,, In 47.5% of the cases, A and B contradict each other.

Example 4

A husband and wife appear in an interview for two vacancies in a firm. The probability of husbands selection is 1/7 and that of wife's selection is 1/5. What is the probability that

- both of them will be selected.
- □ only one of them will be selected. (c) none of them will be selected.

Solution

Let us define the events as

A - The husband get selection.

B - The wife get selection.

•
$$P(A) = 1/7, P(B) = 1/5; P(A^{C}) = 6/7; P(B^{C}) = 4/5$$

(a) P(both of them will be selected) = $P(A \cap B)$ =

P(A) . P(B), since A and B are independent

$$= \frac{1}{2} \cdot \frac{1}{1} = \frac{1}{1}$$

P(only one of them will be selected)

$$P[(A \cap B^{C}) \cup (A^{C} \cap B)]$$

$$P(A \cap B^{C}) + P(A^{C} \cap B)$$

$$= P(A) P(B^{C}) + P(A^{C}) P(B)$$

$$\frac{1}{7} \times \frac{4}{5} \cdot \frac{6}{7} \cdot \frac{1}{5}$$

10/35

(c) P(none of them will be selected) = $P(A^{C} \cap B^{C})$ $= P(A^{C}) P(B^{C}) = \frac{6}{7.5} \cdot \frac{4}{5} = 24/35$

Example 5

If A, B and C are independent, show that $A \cup B$ and C are independent.

Solution

Since, A, B and C are independent, we have

$$P(A \cap B) = P(A)P(B), P(B \cap C) = P(B)P(C)$$

$$P(A \cap C) = P(A)P(C)$$
 and $P(A \cap B \cap C) = P(A)P(B)P(C)$

We have to show that

$$\begin{split} P[(A \cup B) \cap C] &= P[(A \cap C) \cup (B \cap C)] \\ &= P(A \cap C) + P(B \cap C) - P(A \cap B \cap C) \\ &= P(A)P(C) + P(B)P(C) - P(A)P(B)P(C) \\ &= P(C) \left[P(A) + P(B) - P(A) P(B) \right] \\ &= P(A \cup B) \cdot P(C) \end{split}$$

i.e., $A \cup B$ and C are independent.

Example 6

A problem in statistics is given to 3 students A, B and C whose chances of solving it are 1/2, 3/4 and 1/4 respectively. What is the probability that the problem will be solved?

Solution

Let us define the events as

A – the problem is solved by the student A

B – the problem is solved by the student B

C – the problem is solved by the student C

♣
$$P(A) = 1/2$$
, $P(B) = 3/4$ and $P(C) = \frac{1}{4}$

The problem will be solved if at least one of them solves the problem. That means we have to find $P(A \cup B \cup C)$.

Now
$$P(A \cup B \cup C)$$

$$P(A) + P(B) + P(C) - P(A \cap B)$$

$$- P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$$

$$P(A) + P(B) + P(C) - P(A)P(B)$$

$$- P(B)P(C) - P(A)P(C) + P(A)P(B)P(C)$$

$$\frac{1}{2} + \frac{3}{4} + \frac{1}{4} - \frac{1}{4} \times \frac{3}{4} - \frac{3}{4} \times \frac{1}{4} - \frac{1}{4} \times \frac{3}{4} \times \frac{1}{4}$$

$$\frac{1}{2} + \frac{3}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} = \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} = \frac{1}{4} \times \frac{3}{4} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{3}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{$$

5

35

Aliter

$$P(A \cup B \cup C) = 1 - P(A \cup B \cup C)c$$

$$\Box 1 - P(Ac \cap Bc \cap Cc)$$

$$\Box 1 - P(A^{C}) P(B^{C}) P(C^{C})$$

$$= 1 - \begin{vmatrix} 1 & 3 & 1 \\ -- & 1 & -- & 1 \end{vmatrix} 1 - \frac{1}{2} \begin{vmatrix} 1 & 1 \\ 2 & 4 & 4 \end{vmatrix}$$

$$= 29/32$$

Example 7

A purse contains 2 silver coins and 4 copper coins and a second purse contains 4 silver coins and 3 copper coins. If a coin is selected at random from one of the purse. What is the probability that it is a silver coin?

Solution

Define the events

 B_1 – selection of 1st purse

B₂ – selection of 2nd purse

☐ – selection of silver coin

$$P(B_1) = P(B_2) = 1/2$$

$$P(A|B_1) = 2/6, P(A|B_2) = 4/7$$

By theorem on total probabilities

$$P(A) = P(A \cap B_1) + P(A \cap B_2)$$

$$= P(B_1) P(A|B_1) + P(B_2) P(A|B_2)$$

$$= 1 \times 2 \times 1 \times 4$$

$$= 2 \times 6 \times 7 \times 1$$

$$1 + 2 = 7 + 12 = 19$$

$$= 6 \times 74242$$

Example 8

Suppose that there is a chance for a newly constructed house to collapse wether the design is faulty or not. The chance that the design is faulty is 10%. The chance that the house collapse if the design is faulty is 95% and otherwise it is 45%. It is seen that the house collapsed. What is the probability that it is due to faulty design?

Solution

Let B_1 and B_2 denote the events that the design is faulty and the design is good respectively. Let A denote the event that the house collapse. Then we are interested in the event ($B_1|A$), that is, the event that the design is faulty given that the house collapsed. We are given,

$$\begin{split} P(B_1) &= 0.1 \text{ and } P(B_2) = 0.9 \\ P(A|B_1) &= 0.95 \text{ and } P(A|B_2) = 0.45 \\ \text{Hence} \end{split}$$

$$P(B_1|A) = \frac{P(B_1).P(A \mid B_1)}{=P(B_1).P(A \mid B_1) + P(B_2).P(A \mid B_2)}$$

$$= \frac{(0.1)(0.95)}{(0.1)(0.95) + (0.9)(0.45)}$$

$$= 0.19$$

Example 9

Two urns I and II contain respectively 3 white and 2 black bails, 2 white and 4 black balls. One ball is transferred from urn I to urn II and then one is drawn from the latter. It happens to be white. What is the probability that the transferred ball was white.

Solution

Define

B1 - Transfer a white ball from Urn I to Urn II

B2 - Transfer a black ball from Urn I to Urn II.

A - Select a white ball from Urn II.

Here,
$$P(B_1) = 3/5$$
, $P(B_2) = 2/5$

$$P(A|B_1) = 3/7, P(A|B_2) = 2/7$$

We have to find $P(B_1|A)$,

By Baye's theore,

P(B₁|A)
$$= \frac{P(B_1).P(A | B_1)}{P(B_1)P(A | B_1) + P(B_2)P(A | B_2)}$$
$$= \frac{3/5 \times 3/7}{3/5 \times 3/7 + 2/5 \times 2/7} = \frac{13/35}{13} = \frac{13}{13}$$

EXERCISES

Multiple choice questions

Probability	is a	measure	lying	between

- a) $-\infty$ to $+\infty$
- b) $-\infty$ to +1

- c) -1 to +1
- d) 0 to 1
- Classical probability is also known as
 - a) Laplace's probabilityb) mathematical probability
 - c) a priori probability
- d) all the above
- Each outcome of a random experiment is called
- a) primary event
- b) compound event
- c) derived event
- d) all the above
- ☐ If A and B are two events, the probability of occurance of either A or B is given by
 - a) P(A)+P(B)
- b) $P(A \cup B)$

c) $P(A \cap B)$

d) P(A)P(B)

154

- The probability of intersection of two disjoint events is always
 - a) infinity
- b) zero
- c) one
- d) none of the above

6. I	If $A \subset B$, the probability	lity $P(A B)$ is eq	ual to			
	a) zero	b) one				
	c) P(A)/P(B)	d) P(B	s)/P(A)			
$\hfill\Box$ The probability of two persons being borned on the same day (ignoring date) is						
	a) 1/49	b) 1/365				
	c) 1/7	d) none of the	above			
8.	The probability of thr	owing an odd su	m with two fai	r dice is		
	a) 1/4	b) 1/16 c) 1	d) 1	/2		
9.]	If P(A B) = 1/4, P(B A)	A = 1/3, then P(A) P(B) is equa	al to		
	a) 3/4	b) 7/12				
	c) 4/3	d) 1/12				
	☐ If four whole numbers are taken at random and multiplied, the chance that the first digit is their product is 0, 3, 6 or 9 is					
	a) $(2/5)^3$	b) (1/4) ³	c) (2/5) ⁴	d) (1/4) ⁴		
Fil	l in the blanks					
	Classical definition	of probability w	as given by			
	An event consisting of only one point is called					
	Mathematical proba	bility cannot be	calculated if th	ne outcomes are		
	In statistical probability n is never					
	If A and B are two events, the $P(A \cap B)$ is					
	Axiomatic definition of probability is propounded by					
	Baye's rule is also known as					
	If an event is not sin	iple, it is a	••••			

155

Very short answer questions				
	Define a simple event.			
	Define random experiment.			
	Define equally likely cases.			
	State statistical definition of probability.			
	Define conditional probability			
	State Baye's rule			
Sh	ort essay questions			
	Define Sample space and Event When will you say that two events are mutually exclusive?			
	Define random experiment, sample space and Event. A coin is repeatedly tossed till a head turns up. Write down the sample space.			
	Give the classical and axiomatic definition of probability, Explain how axiomatic definition is more general than classical.			
	Define (i) Mutually exclusive events: (ii) Equally likely			
	events: and (iii) Independent events and give example of each.			
	Give Von Mises definition of empirical probability, Compare this with the classical definition of probability.			
	State and prove the addition theorem of probability.			
	Define Conditional probability.			
	State and prove addition and multiplication theorem of probability.			
	Show that			
	$P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B)$			
	State and prove Bayes' theorem.			
	Define Conditional probability. Prove that if $P(A) > P(B)$ then $P(A B) > P(B A)$.			
	Let A, B and C denote events. If $P(A \mid C) \ge P(B \mid C)$ and $P(A \mid C^{C}) \ge P(B \mid C)$			
	C^{C}), then show that $P(A) \ge P(B)$			

Long essay questions

Ш	Two unbiased dice are tossed. What is the probability that the sum of points scored on the two dice is 8?
	From a group consisting of 6 men and 4 women a committee of 3 is to be chosen by lot. What is the probability that all 3 are men?
	Two events A and B are statistically independent. $P(A) = 0.39$, $P(B) = 0.21$ and $P(A \text{ or } B) = 0.47$. Find the probability that
	Neither A nor B will occur
	Both A and B will occur
	B will occur given that A has occurred
	A will occur given that B has occurred

□ If P(A) = 0.3, P(B) = 0.2. $P(A \cup B) = 0.4$, find

 $P(A \cap B)$. Examine whether A and B are independent.

- □ The probability that A hits a target is 1/4 and the probability that B hits it is 2/5. What is the probability that the target will be hit if A and B each shoot at the target?
- ☐ A coin is tossed four times. Assuming that the coin is unbiased, find the probability that out of four times, two times result in head,
- ☐ Two urns each contain balls of different colours are stated below. urn I : 4 black; 3 red; 3 green.

urn II: 3 black; 6 red: 1 green.

An urn is chosen at random and two balls are drawn from it. What is the probability that one is green and the other is red.

☐ If two dice are rolled, what is the probability that the sum is 7 if we know that at least one die shows 4?

☐ There are three urns containing balls of different colours as stated below:

Urn I: 4 red, 2 black, 4 green.

Urn II: 3 red, 4 black, 5 green.

Urn III: 2 red, 4 black, 2 green