Math 5111 – Real Analysis II– Sprint 2025 w/Professor Liu

 $\begin{array}{c} {\rm Paul~Carmody} \\ {\rm Homework~(not~graded)-May~2025} \end{array}$

Pg 30, 3

Prove that if f is a real function on a measurable space X such that $\{x: f(x) \ge r\}$ is measurable for for every rational r, then f is measurable.

Pg 30, 4

Let $\{a_n\}$ and $\{b_n\}$ be sequences in $[-\infty, \infty]$, and prove the following assertions:

- (a) $\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} a_n$.
- (b) $\limsup_{n\to\infty} (a_n+b_n) \le \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$ provided none of the sums is $\infty \infty$.
- (c) if $a_n \leq b_n$, for all n, then

$$\liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} b_n$$

Show by example that strick inequalty can hold in (b).

Pg 30, 5

(a) Suppose $f: X \to [-\infty, \infty]$ and $g; X \to [-\infty, \infty]$ are measurable. Prove that the sets

$$\{x: f(x) < g(x)\}, \{x: f(x) = g(x)|$$

are measurable.