

Mapa general de la carrera

Revisión modular

SQL para el análisis de datos

Programación con Python para el análisis de datos

Análisis estadístico con Python

comunicación de insights

Machine Learning*

Redes neuronales*

*Solo para Data Science

Machine Learning

Unidad	Clases (sincrónico)	Autoaprendizaje (asincrónico)	Tutoría (sincrónico)
Introducción al Machine Learning	2 horas	Desde 6 horas	2 horas
Aprendizaje supervisado y no supervisado (Parte I)	2 horas	Desde 6 horas	2 horas
Aprendizaje supervisado y no supervisado (Parte II)	2 horas	Desde 6 horas	2 horas
Aprendizaje supervisado y no supervisado (Parte III)	2 horas	Desde 6 horas	2 horas
Aprendizaje supervisado y no supervisado (Parte IV)	2 horas	Desde 6 horas	2 horas
Aprendizaje supervisado y no supervisado (Parte V)	2 horas	Desde 6 horas	2 horas
Aplicando lo aprendido (Parte I)	2 horas	Desde 6 horas	2 horas
Aplicando lo aprendido (Parte II)	2 horas	Desde 6 horas	2 horas
Prueba	0 horas	Desde 6 horas	0 horas
Receso	0 horas	0 horas	0 horas

{desafío} latam_

¿Qué aprenderemos en este módulo?

Al finalizar el módulo serás capaz implementar modelos de aprendizaje automático por medio de técnicas estadísticas, adecuando los diferentes algoritmos debidamente a la situación y requerimientos necesarios.

Implementar modelos de aprendizaje automático por medio de técnicas estadísticas, adecuando los diferentes algoritmos debidamente a la situación y requerimientos necesarios

- Unidad 1: Introducción al Machine Learning
- Unidad 2: Aprendizaje Supervisado
 y No Supervisado
 (Parte I: No supervisado)
 (Parte II: Clasificación)
 (Parte IV: Regresión)
 (Parte V: Series de tiempo)
- Unidad 3: Aplicando lo aprendido (Parte I: Preprocesamiento de datos) (Parte II: Modelamiento)

¿Qué han escuchado del concepto de Machine Learning?

/*Conceptos Básicos de Machine Learning*/

¿Qué es el Machine Learning?

Inteligencia Artificial

Subdisciplina del campo de la informática que busca la creación de máquinas que puedan imitar un comportamiento "inteligente".

Machine Learning

Busca dotar a las máquinas de capacidad de aprendizaje/generalización a partir de la experiencia (Datos).

Deep Learning

Rama del ML que utiliza redes neuronales profundas para el aprendizaje.

¿Cómo funciona el Machine Learning?

Para trabajar con técnicas de Machine Learning se utilizan entidades en el mundo real como: clientes, productos, fotos, canciones, fenómenos, etc.

El primer paso es poder representar estas entidades a partir de vectores numéricos, para que estos puedan ser comprendidos por una computadora.

¿Qué es un modelo de Machine Learning?

Representación de un problema o sistema que aprende a partir de los **datos** (relación entre los diferentes datos) utilizando un algoritmo de aprendizaje y se utiliza para hacer predicciones o tomar decisiones en nuevos datos.

/*Tareas con Machine Learning*/

Tareas con Machine Learning

Tipos de aprendizaje

Aprendizaje supervisado busca descubrir la relación VIO Patrones existente entre Variables de entrada y de Aplica para set de datos salida. etiquetados

Aprendizaje no supervisado relaciones entre variables busca descubrir de entrada sin una guía Aplica para set de datos del aprendizaje. sin etiquetas.

Aprendizaje SupervisadoClasificación y regresión

Existen 2 tipos de aprendizaje supervisado dependiendo de la naturaleza de la variable objetivo.

Clasificación: Cuando la variable objetivo es una categoría. Por ej, clasificación de imágenes, predicción de fuga, clasificación de correos.

Regresión: Cuando la variable objetivo es un valor numérico. Por ej, predicción del precio de vivienda, predicción de demanda.

Aprendizaje Supervisado Clasificación y regresión

Existen 2 tipos de aprendizaje supervisado dependiendo de la naturaleza de la variable objetivo.

Clasificación: Cuando la variable objetivo es una categoría. Por ej, clasificación de imágenes, predicción de fuga, clasificación de correos.

Regresión: Cuando la variable objetivo es un valor numérico. Por ej, predicción del precio de vivienda, predicción de demanda.

Entrada	Salida
2	4
5	10
7	14
10	20

Ejercicio: ¿Regresión o clasificación?

Ejercicio¿Clasificación o regresión?

Detección de Spam

	longitud	num_palabras	num_links
0	27	6	4
1	46	3	2
2	12	6	0
3	17	10	0
4	26	4	1
5	45	4	3
6	38	3	0
7	21	9	3
8	17	6	4

Variables explicativas

Variable Objetivo

Ejercicio¿Clasificación o regresión?

Predicción precio de una casa

	LotArea	Street	GrLivArea	BsmtFullBath
0	8450	Pave	1710	1
1	9600	Pave	1262	0
2	11250	Pave	1786	1
3	9550	Pave	1717	1
4	14260	Pave	2198	1
5	14115	Pave	1362	1
6	10084	Pave	1694	1
7	10382	Pave	2090	1
8	6120	Pave	1774	0

Variables explicativas

	SalePrice
0	208500
1	181500
2	223500
3	140000
4	250000
5	143000
6	307000
7	200000
8	129900

Variable Objetivo

Aprendizaje No Supervisado Técnicas

Reducción de dimensionalidad: Se utiliza para reducir la cantidad de dimensiones aprovechando la relación entre las diferentes variables.

Clustering: Se utiliza para agrupar conjunto de datos que se asemejan entre ellos. Por ejemplo, segmentación de clientes para descubrir segmentos de clientes similares entre sí.

Aprendizaje No Supervisado Técnicas

Reducción de dimensionalidad: Se utiliza para reducir la cantidad de dimensiones aprovechando la relación entre las diferentes variables.

Clustering: Se utiliza para agrupar conjunto de datos que se asemejan entre ellos. Por ejemplo, segmentación de clientes para descubrir segmentos de clientes similares entre sí.

Lenguaje 1

Lenguaje 2

Aprendizaje No Supervisado Técnicas

Reducción de dimensionalidad: Se utiliza para reducir la cantidad de dimensiones aprovechando la relación entre las diferentes variables.

Clustering: Se utiliza para agrupar conjunto de datos que se asemejan entre ellos. Por ejemplo, segmentación de clientes para descubrir segmentos de clientes similares entre sí.

Ejercicio: Detección de dígitos con clustering

Detección de dígitos con clustering

Utilicemos clusters

A continuación veremos cómo el uso de clusters puede ayudarnos a identificar patrones utilizando Python, y las bibliotecas que nos provee para esto.

Observa atentamente la presentación de tu profesor (la forma de llegar a estos resultados la comprenderás más adelante en el módulo)

Aprendizaje por Reforzamiento Elementos del aprendizaje por reforzamiento

Corresponde a un problema de optimización, en el cual un agente aprende a tomar decisiones en un entorno interactivo para maximizar una recompensa.

Agente: Puede realizar **acciones** dentro de un entorno, con el objetivo de obtener una recompensa.

Entorno: Corresponde al contexto en que está inserto el agente.

Recompensa: Es la respuesta que entrega en entorno al agente respecto a la acción que realizó en el

estado que se encontraba.

Ejercicio: Comprendiendo las tareas de Machine Learning

Ejercicio

Clasifiquemos tareas de Machine Learning

- 1. Clasifique los siguientes ejemplos:
 - a. Predecir la demanda de los clientes a diferentes productos.
 - b. Analizar el sentimiento de las reseñas de los clientes.
 - Detección de transacciones fraudulentas en tiempo real.
 - d. Segmentar clientes para realizar ofertas dirigidas a los segmentos.
 - e. Predicción de fuga de clientes.
 - f. Diagnósticos con imágenes.
 - g. Visualización de múltiples variables en espacios más pequeños.
 - h. Predicción de falla en equipos mineros.
 - i. Predicción de la necesidad de camas críticas en el sector de salud.
 - i. Enseñar a un robot a caminar.
 - k. Predicción del precio de una propiedad

Ejercicio

Tipos de aprendizajes de máquinas

A partir del entendimiento de los diferentes tipos de aprendizaje que hay, entrega un ejemplo para cada uno (supervisado, no supervisado y por reforzamiento).

Comenta sobre sus áreas de expertise y experiencias varias.

/*Retomando la Regresión Lineal*/

Retomando la regresión lineal

Scikit learn

La principal librería de machine learning para python es **scikit-learn**. En ella, encontraremos diferentes módulos como:

- Dataset de prueba
- Funciones para preparación de datos (esquemas de evaluación)
- Algoritmos de aprendizaje supervisado y no supervisado
- Métricas de evaluación
- Mucho más

Retomando la regresión lineal

Perspectiva del Machine Learning

Para realizar el ejemplo de la regresión lineal desde la perspectiva del Machine Learning vamos a proceder a aplicar los siguientes pasos:

Objetivo: Dotar al algoritmo de una buena capacidad de generalización en nuevos datos, para poder utilizar el algoritmo en los procesos pertinentes.

Machine Learning con Python

División de los datos

Dividimos el set de datos en entrenamiento y testeo.

Objetivo: Poder estimar los parámetros de algoritmo en el test de entrenamiento y testear cuál es el poder predictivo del algoritmo en datos nuevos, no vistos anteriormente.

Importante: Asegurar independencia entre entre ambos set de datos, para asegurar la generalización.

Atributos entrenamiento

Atributos validación

Vector objetivo entrenamiento

ector objetive validación

Machine Learning con Python

Entrenamiento

El algoritmo se entrena en el set de entrenamiento, donde ajusta sus parámetros para realizar predicciones o tomar decisiones más precisas.

$$y = \beta_0 + \beta_1 x_i + \epsilon_i$$

Atributos entrenamiento

Vector objetivo entrenamiento

Machine Learning con Python Predicción

El algoritmo ya entrenado se utiliza para predecir en el set de testeo.

Atributos entrenamiento

Vector objetivo entrenamiento

$$\widehat{y} = \beta_0 + \beta_1 \mathbf{X}$$

Atributos validación

ector objetivo validación

Machine Learning con Python Evaluación del modelo

A partir de la predicción y el valor real de la variable objetivo del set de testeo se calculan métricas del desempeño del algoritmo.

$$MSE = \frac{1}{n} \sum_{i=1}^{N} \left(\mathbf{y_i} - \widehat{\mathbf{y_i}} \right)^2$$

Importante: elegir métricas adecuadas para cada tipo de aprendizaje y cada caso de uso. Pero la idea siempre es la misma, tener una métrica que indica el grado de generalización del modelo.

$$y = \beta_0 + \beta_1 x_i + \epsilon_i$$

Atributos entrenamiento

Vector objetivo entrenamiento

$$\widehat{y} = \beta_0 + \beta_1 \mathbf{X}$$

Atributos validación

Vector objetivo validación

¿Qué métricas podrían utilizarse para medir el desempeño de la regresión lineal?

Desafío - Introducción al Machine Learning

Desafío

"Introducción al Machine Learning"

- Descarga el archivo "Desafío".
- Tiempo de desarrollo asincrónico: desde 4 horas.
- Tipo de desafío: individual.

¡AHORA TE TOCA A TI! 🦾

Ideas fuerza

Machine
Learning es un
subcampo de la
IA que permite
analizar datos,
identificar
patrones a partir
de los datos.

Entender las
diferentes tareas
que se pueden
resolver con ML
(Aprendizaje
Supervisado, no
supervisado y
reforzamiento) y
escoge el indicado
según sea el caso.

Conocer los usos y métodos de la librería scikit learn para la aplicación de algoritmos de aprendizaje con python

¿Qué contenidos de la clase no te quedan totalmente claros?

Recursos asincrónicos

¡No olvides revisarlos!

Para esta semana deberás revisar:

- Guía de estudio
- Desafío "Introducción al Machine Learning""

