CSC236, Francois Pitt Introduction to the Theory of Computation

Fall 2023

Contents

1	Induction	2
2	Algorithm Analysis	3
	2.1 Algorithm Correctness	3

1 Induction

Example proof of QRT:

Theorem: $\forall m, \forall n > 0, \exists q, \exists r < n, m = qn + r$

Let $m_0 \in \mathbb{N}, n_0 \in \mathbb{N}$ and $n_0 > 0$.

Remark: we will apply well-ordering principle.

Consider $R = \{r \in \mathbb{N} : \exists q, m_0 = qn_0 + r\}$

Claim: $R \neq \emptyset$ to apply WOP.

Justification: $m_0 \in \mathbb{R} \implies m_0 = 0 \cdot n_0 + m_0$ so R always contains at least one element.

Thus, R is a set of natural numbers and is non-empty. By WOP, R contains a smallest element r_0 .

Thus, $r_0 \in \mathbb{R} \implies \exists q_0, m_0 = q_0 n_0 + r_0$.

And r_0 is the smallest element of R, i.e. $\forall r \in R, r_0 \leq r$.

We want to show $r_0 < n_0$.

Suppose $r_0 \ge n_0$.

Then by how r_0 was picked, r_0 is the smallest $r \in \mathbb{R}$. However, if $r_0 \ge n_0$, then there would be a smaller remainder (precisely $r_0 - n_0$) that would contradict r_0 being the smallest element.

In essence:

 $m_0 = q_0 n_0 + r_0$

$$m_0 = (q_0 + 1)n_0 + (r_0 - n_0)$$
 if $r_0 \ge n_0$.

Contradicting r_0 being the smallest element of R.

Or more formally, $r_0 \le r_0 - n_0$ and $r_0 > r_0 - n_0$ are simultaneously true, which is a contradiction.

Thus $r_0 < n_0$.

Exercise:

Plug in numbers.

Claim:

Any statement that can be proved using simple induction or complete induction or well-ordering can be proved using any one of the principles.

How?

Show PSI \iff PCI \iff WOP \iff PSI ...

Show

- $1. \text{ PSI} \implies \text{PCI}$
- $2. \text{ PCI} \implies \text{WOP}$
- $3. \text{ WOP} \implies \text{PSI}$
- 1. Assume PSI holds for all predicates. We want to prove PCI.

Let $P: \mathbb{N} \to \{T, F\}$ be a predicate.

Assume $\forall n, (\forall k < nP(k)) \implies P(n)$.

WTS: $\forall n, P(n)$.

omitted due to not paying attn in lecture

2 Algorithm Analysis

Algorithm analysis (AA) is the field of analyzing algorithms. Wow. We can analyze:

- Correctness
- Runtime (time complexity)
- Memory (space complexity)
- Communication complexity (e.g. distributed services)
- and more...

Runtime is the main focus for now.

Runtime measures basic operations and is expressed as a function of the input size.

However, this is under the assumption that the function behaves predictably for inputs. If not, we can study worst-case/best-case/average-case runtimes.

Runtime uses asymptotic notation $(\mathbf{O}, \Omega, \Theta)$ to prove bounds.

2.1 Algorithm Correctness

Idea: Instead of designing an algorithm and proving its correctness, design an algorithm from a correct proof.

We can do this with:

- Preconditions
 - Intuitively, describes "valid" inputs
 - Formally, a precondition is something we assume to be true before running the code
 - This can be abused with impractically strong preconditions. Thus, we want weak preconditions for minimal constraints.

• Postconditions

- Intuitively, describes "expected" outputs
- Formally, a postcondition is something we assume to be true after running the code
- In practice, we want to maximize the relevant details we know about the postconditions.
 Thus, we want strong postconditions.

We see that changing the pre/post conditions for any algorithm changes the correctness of said algorithm.

Thus, we can formally define correctness as:

For every input, preconditions hold \implies code terminates and postconditions hold.

Example 2.1 Consider the coin denomination proof.

We define a function Change(n) with preconditions: $n \in \mathbb{N}, n \ge 12$ and postconditions: Change(n) = (a, b) where a is the number of 3-cent coins and b is the number of 5-cent coins.

Change(n):

```
if n == 12: return (4, 0)
if n == 13: return (2, 1)
if n == 14: return (0, 2)
if n >= 15:
    (a, b) = Change(n - 3)
    return (a + 1, b)
```

We can now state correctness. For each $n \in \mathbb{N}, n \ge 12 \implies \text{Change(n)}$ terminates and returns (a, b) such that n = 3a + 7b.

Notes 2.1.1

- 1. For recursive algorithms, prove by induction on input size n, usually with complete induction.
- 2. Must justify that the recursive call is made on a smaller input that satisfies precondtions.