Fortgeschrittenenpraktikum

Kernreaktor

Toni Ehmcke

TU Dresden

28. Januar 2016

▶ Betrachte eine Masse von $m_U = 1$ g des Uran-Nuklids ²³⁵U.

- ▶ Betrachte eine Masse von $m_U = 1~{
 m g}$ des Uran-Nuklids 235 U.
- ▶ Zahl der Atome in dieser Masse $N_{Atom} = \frac{m_U \cdot N_A}{M_{mol}} = 2,562 \cdot 10^{21}$

- ▶ Betrachte eine Masse von $m_U = 1 \text{ g}$ des Uran-Nuklids ²³⁵U.
- ▶ Zahl der Atome in dieser Masse $N_{Atom} = \frac{m_U \cdot N_A}{M_{mol}} = 2,562 \cdot 10^{21}$
- lacktriangle Pro Kernspaltung freiwerdende Wärme $Q pprox 200~{
 m MeV}$

- ▶ Betrachte eine Masse von $m_U = 1 \text{ g}$ des Uran-Nuklids ²³⁵U.
- ▶ Zahl der Atome in dieser Masse $N_{Atom} = \frac{m_U \cdot N_A}{M_{mol}} = 2,562 \cdot 10^{21}$
- lacktriangle Pro Kernspaltung freiwerdende Wärme $extit{Q}pprox200~\mathrm{MeV}$
- Summa summarum ergibt das eine maximale Energieabgabe von $Q_{ges} = N_{Atom} \cdot Q = 0.997 \text{ MWd}$

- ▶ Betrachte eine Masse von $m_U = 1 \text{ g}$ des Uran-Nuklids ²³⁵U.
- ▶ Zahl der Atome in dieser Masse $N_{Atom} = \frac{m_U \cdot N_A}{M_{mol}} = 2,562 \cdot 10^{21}$
- lacktriangle Pro Kernspaltung freiwerdende Wärme $\emph{Q} pprox 200~{
 m MeV}$
- ▶ Summa summarum ergibt das eine maximale Energieabgabe von $Q_{ges} = N_{Atom} \cdot Q = 0.997 \text{ MWd}$
- ▶ Spalten von $m_U = 1~{
 m g}$ Uran-235 entspricht somit dem Verbrennen von $m_{BB} = 4{,}39~{
 m t}$ Braunkohlebriketts

Quelle: TUD Institut für Energietechnik. AKR-2 Bau und Inbetriebnahme, Dresden. Juli 2005

AKR-2: Aufbau und Maßnahmen zur nuklearen Sicherheit

Quelle: TUD Institut für Energietechnik. AKR-2 Bau und Inbetriebnahme, Dresden. Juli 2005

AKR-2: Aufbau und Maßnahmen zur nuklearen Sicherheit

Quelle: TUD Institut für Energietechnik. AKR-2 Bau und Inbetriebnahme, Dresden. Juli 2005