(19)日本國際許广(JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-124486 (P2003-124486A)

(43)公開日 平成15年4月25日(2003.4.25)

(51) Int.Cl.7

酸別配号

FΙ

テーマコート (参考)

H01L 31/04

C 0 1 B 33/02

C 0 1 B 33/02

D 4G072

 \mathbf{E} 5 F O 5 l

H01L 31/04

 \mathbf{v}

審査請求 未請求 請求項の数7 〇L (全 11 頁)

(21)出廢番号

特願2001-319304(P2001-319304)

(22) 出願日

平成13年10月17日(2001.10.17)

(71)出願人 000004178

ジェイエスアール株式会社

東京都中央区築地2丁目11番24号

(72)発明者 志保 浩司

東京都中央区築地二丁目11番24号 ジェイ

エスアール株式会社内

(72)発明者 加藤 仁史

東京都中央区築地二丁目11番24号 ジェイ

エスアール株式会社内

Fターム(参考) 40072 AA01 AA03 BB09 BB12 BB13

FF01 GG03 HH28 RR01 UU02

5F051 AA05 AA16 BA12 CB13 CB24

CB25 DA04 FA04 FA06 GA03

(54) 【発明の名称】 太陽電池の製造方法およびそのための組成物

(57)【要約】

高価かつエネルギー多消費型の大 【課題】 掛かりな装置を必要とせず、大面積の基板にも対応可能 であり、容易、安価に半導体薄膜を形成する方法を提供 すること。

上記課題は、一対の電極の間に、 【解決手段】 不純物の濃度および/または種類の異なる半導体薄膜を 少なくとも二層以上積層した構造を有する太陽電池の製 造において、該半導体薄膜のうちの少なくとも一層が、 (A) 式Sin Rm で表されるポリシラン化合物 並び に(B)シクロペンタシラン、シクロヘキサシランおよ びシリルシクロペンタシランよりなる群から選ばれる少 なくとも1種のシラン化合物を含有することを特徴とす るシラン組成物を基板上に塗布して塗膜を形成する工程 と、該塗膜を熱処理および/または光処理する工程を含 む形成方法により形成されていることを特徴とする、太 陽電池の製造方法により達成される。

【特許請求の範囲】

【請求項1】一対の電極の間に、不純物の濃度および/ または種類の異なる半導体薄膜を少なくとも二層以上積 層した構造を有する太陽電池の製造において、該半導体 薄膜のうちの少なくとも一層が、

(A) 式Sin Rm

(ここで、nは3以上の整数であり、mはn~(2n+2)の整数でありそしてm個のRは互いに独立に水素原子、アルキル基、フェニル基またはハロゲン原子である、但しm個のRの全てが水素原子であり且つm=2nであるとき、nは7以上の整数であるものとする。)で表されるポリシラン化合物 並びに(B)シクロペンタシラン、シクロヘキサシランおよびシリルシクロペンタシランよりなる群から選ばれる少なくとも1種のシラン化合物を含有することを特徴とするシラン組成物を基板上に塗布して塗膜を形成する工程と、該塗膜を熱処理および/または光処理する工程を含む形成方法により形成されていることを特徴とする、太陽電池の製造方法。

【請求項2】 形成される半導体薄膜がi型のシリコン 薄膜であることを特徴とする、請求項1に記載の太陽電 池の製造方法。

【請求項3】 半導体薄膜のうちの少なくとも一層が、さらに、ホウ素、ヒ素、リンおよびアンチモンから選ばれる少なくとも一種の原子をドープする工程を含む形成方法により形成されたp型またはn型のシリコン薄膜であることを特徴とする請求項1に記載の太陽電池の製造方法。

【請求項4】 (A)式SinRm

(ここで、nは3以上の整数であり、mはn~(2n+ 2)の整数でありそしてm個のRは互いに独立に水素原 子、アルキル基、フェニル基またはハロゲン原子であ る、但しm個のRの全てが水素原子であり且つm=2n であるとき、nは7以上の整数であるものとする。)で 表されるポリシラン化合物、(B)シクロペンタシラ ン、シクロヘキサシランおよびシリルシクロペンタシラ ンよりなる群から選ばれる少なくとも1種のシラン化合 物 並びに(C)ホウ素化合物、ヒ素化合物、リン化合 物、アンチモン化合物、および一般式SiaXbYc(ここ で、Xは水素原子および/またはハロゲン原子を表し、 Yはホウ素原子またはリン原子を表し、aは3以上の整 数を表し、bは1以上a以下の整数を表し、cはa以上 で2a+b+2以下の整数を表す)で表される変性シラ ン化合物から選ばれる少なくとも一種の化合物を含有す ることを特徴とするシラン組成物。

【請求項5】 一対の電極の間に、不純物の濃度および/または種類の異なる半導体薄膜を少なくとも二層以上 積層した構造を有する太陽電池の製造において、該半導 体薄膜のうちの少なくとも一層が、請求項4に記載のシ ラン組成物を基板上に塗布して塗膜を形成する工程と、 該塗膜を熱処理および/または光処理する工程を含む形 成方法により形成されたp型またはn型のシリコン薄膜であることを特徴とする、太陽電池の製造方法。

【請求項6】 形成される半導体薄膜がアモルファスシリコン薄膜であることを特徴とする、請求項1、2、3および5のいずれか一項に記載の太陽電池の製造方法。

【請求項7】 形成される半導体薄膜が多結晶シリコン 薄膜であることを特徴とする、請求項1、2、3および 5のいずれか一項に記載の太陽電池の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は太陽電池の製造方法 に関する。

[0002]

【従来の技術】従来、太陽電池の製造に用いられるアモ ルファスシリコン膜やポリシリコン膜の形成方法として は、モノシランガスやジシランガスの熱CVD(Che mical Vapor Deposition)法や プラズマCVD、光CVD等が利用されており、一般的 にはポリシリコンは熱CVD(J. Vac. Sci. T echnology., 14巻1082頁(1977 年) 参照) で、またアモルファスシリコンはプラズマC VD(Solid State Com., 17巻11 93頁(1975年)参照)が広く用いられている。し かし、これらのCVD法によるシリコン膜の形成におい ては、気相反応を用いるため気相でシリコン粒子の副生 による装置の汚染や異物の発生が生じ、生産歩留まりが 低い、原料がガス状であるため表面に凹凸のある基板上 には均一膜厚のものが得られにくい、膜の形成速度が遅 いため生産性が低い、プラズマCVD法においては複雑 で高価な高周波発生装置や真空装置などが必要である、 などの問題があり更なる改良が待たれていた。また、材 料面では毒性、反応性の高いガス状の水素化ケイ素を用 いるため取り扱いに難点があるのみでなく、ガス状であ るため密閉状の真空装置が必要である。一般にこれらの 装置は大掛かりなもので装置自体が高価であるのみでな く、真空系やプラズマ系に多大のエネルギーを消費する ため製品のコスト高につながっている。

【0003】近年、これに対して真空系を使わずに液体状の水素化ケイ素を塗布する方法が提案されている。特開平1-29661号公報にはガス状の原料を冷却した基板上に液体化して吸着させ、化学的に活性名原子状の水素と反応させてシリコン系の薄膜を形成する方法が開示されているが、原料の水素化ケイ素を気化と冷却を続けて行うため複雑な装置が必要になるのみでなく、膜厚の制御が困難であるという問題がある。また、特開平7-267621号公報には、低分子量の液体状の水素化ケイ素を基板に塗布する方法が開示されているが、この方法は系が不安定なために取り扱いに難点があるとともに、液体状であるため、大面積基板に応用する場合に均一膜厚を得るのが困難である。一方、固体状の水素化ケ

イ素ポリマーの例が英国特許GB-2077710Aに 報告されているが、溶媒に不溶なためコーティング法に よって膜を形成することはできない。

[0004]

【発明が解決しようとする課題】そこで本発明は太陽電池の製造において、高価かつエネルギー多消費型の大掛かりな装置を必要とせず、大面積の基板にも対応可能であり、容易、安価に半導体薄膜を形成する方法、およびそのための組成物を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明によれば、上記目的は、第1に、一対の電極の間に、不純物の濃度および/または種類の異なる半導体薄膜を少なくとも二層以上積層した構造を有する太陽電池の製造において、該半導体薄膜のうちの少なくとも一層が、

(A) 式Sin Rm

(ここで、nは3以上の整数であり、mはn~(2n+2)の整数でありそしてm個のRは互いに独立に水素原子、アルキル基、フェニル基またはハロゲン原子である、但しm個のRの全てが水素原子であり且つm=2nであるとき、nは7以上の整数であるものとする。)で表されるポリシラン化合物 並びに(B)シクロペンタシラン、シクロヘキサシランおよびシリルシクロペンタシランよりなる群から選ばれる少なくとも1種のシラン化合物を含有することを特徴とするシラン組成物を基板上に塗布して塗膜を形成する工程と、該塗膜を熱処理および/または光処理する工程を含む形成方法により形成されていることを特徴とする、太陽電池の製造方法によって達成される。

【0006】上記目的は第二に、(A)式Sin R m (ここで、nは3以上の整数であり、mはn~(2n +2)の整数でありそしてm個のRは互いに独立に水素 原子、アルキル基、フェニル基またはハロゲン原子であ る、但しm個のRの全てが水素原子であり且つm=2n であるとき、nは7以上の整数であるものとする。)で 表されるポリシラン化合物、(B)シクロペンタシラ ン、シクロヘキサシランおよびシリルシクロペンタシラ ンよりなる群から選ばれる少なくとも1種のシラン化合 物 並びに(C)ホウ素化合物、ヒ素化合物、リン化合 物、アンチモン化合物、および一般式SiaXbYc(ここ で、Xは水素原子および/またはハロゲン原子を表し、 Yはホウ素原子またはリン原子を表し、aは3以上の整 数を表し、bは1以上a以下の整数を表し、cはa以上 で2a+b+2以下の整数を表す)で表される変性シラ ン化合物から選ばれる少なくともひとつの化合物を含有 することを特徴とするシラン組成物によって達成され

【0007】さらに上記目的は第3に、一対の電極の間に、不純物の濃度および/または種類の異なる半導体薄膜を少なくとも二層以上積層した構造を有する太陽電池

の製造において、該半導体薄膜のうちの少なくとも一層が、上記(A)成分、(B)成分および(C)成分を含有する組成物を基板上に塗布して塗膜を形成する工程と、該塗膜を熱処理および/または光処理する工程を含む形成方法により形成されたp型またはn型のシリコン薄膜であることを特徴とする、太陽電池の製造方法によって達成される。

【0008】以下、本発明を詳細に説明する。本発明に使用するシラン組成物は、下記する(A)および(B)成分、または(A)、(B)および(C)成分を必須成分として含有する。

【0009】(A)成分

本発明に用いられる(A)成分は、式Si_R_(ここ で、nは3以上の整数であり、mはn~(2n+2)の 整数でありそしてm個のRは互いに独立に水素原子、ア ルキル基、フェニル基またはハロゲン原子である、但し m個のRの全てが水素原子であり且つm=2nであると き、nは7以上の整数であるものとする。)で表され る。上記のRが表すアルキル基としては、例えばメチル 基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペン チル基、i-ペンチル基、ネオペンチル基、n-ヘキシ ル基、シクロヘキシル基、n-ヘプチル基、n-オクチ ル基、n-ノニル基およびn-デシル基などの炭素数1 ~10のアルキル基を好ましいものとして挙げることが できる。また、ハロゲン原子としては、例えばフッ素、 塩素および臭素を好ましいものとして挙げることができ る。上記ポリシラン化合物は、鎖状、環状、またはかご 状であることができる。

【0010】上記ポリシラン化合物のうち、Rのすべて が水素原子である水素化ポリシラン化合物が好ましく用 いられる。このような水素化ポリシラン化合物として は、式SinH2n+2で表される水素化鎖状ポリシラ ン、式SinHonで表される水素化環状ポリシラン、 および式SinHnで表される水素化かご状ポリシラン 化合物が好適に用いられる。なお、「かご状」とは、プ リズマン骨格、キューバン骨格、5角柱型骨格等を含む ものを意味する。ただし、上記各式におけるnは、水素 化鎖状ポリシランにおいて3~100,000、好まし くは5~50,000の整数であり、水素化環状ポリシ ランにおいて7~100,000、好ましくは8~5 0,000の整数であり、そして水素化かご状ポリシラ ンにおいて6~100,000、好ましくは7~50. 000の整数である。この場合、nが上記した最小値よ り小さい場合にはポリシラン化合物の成膜性に難点が生 じる場合があり、またnが上記した最大値より大きい場 合にはポリシラン化合物の凝集力に起因する溶解性の低 下が認められる場合がある。このようなポリシラン化合 物は、単独で、また、2種以上を混合して使用すること ができる。

【0011】本発明で使用するポリシラン化合物は、所 望の構造単位を有するモノマーを原料として、例えば以 下の方法により製造することができる。(a)アルカリ 金属の存在下にハロシラン類を脱ハロゲン縮重合させる 方法(いわゆる「キッピング法」 J. Am. Che m. Soc., 110, 2342 (1988) およびM acromolecules, 23, 3423 (199 0)参照);(b)電極還元によりハロシラン類を脱ハ ロゲン縮重合させる方法(J. Chem. Soc., C hem. Commun., 1161 (1990) および J. Chem. Soc., Chem. Commun., 896(1992)参照); (c) 金属触媒の存在下に ヒドロシラン類を脱水素縮重合させる方法 (特開平4-334551号公報参照): (d) ビフェニルなどで架 橋されたジシレンのアニオン重合による方法 (Macr o molecules, 23, 4494 (1990) 参照)。(e)フェニル基やアルキル基で置換された環 状ケイ素化合物を上記の方法で合成した後、公知の方法 (例えば、Z. Anorg. Allg. Chem., 4) 59, 123-130 (1979), E. Hengg eら Mh. Chem. 第106巻、503頁、197

5年など)によりヒドロ置換体やハロゲン置換体などに 誘導することができ、(f)上記の方法で合成したシラン化合物に光照射することによりさらに高分子量のポリ シラン化合物とすることができる。

【0012】シラン化合物に光照射してポリシラン化合物を合成する場合、その原料となるシラン化合物としては、式 Si_iH_{2i+2} (ここでiは2~8の整数であり、好ましくは2~4の整数である。)で表される水素化鎖状シラン化合物、式 Si_jH_{2j} (ここでjは3~10の整数であり、好ましくは3~6の整数である。)で表される水素化環状シラン化合物、および式 Si_kH (ここでkは6~10の整数である。)で表される水素化パポシラン化合物が好ましい。そのうちでも上記水素化環状シラン化合物がさらに好ましく、特に好ましくはシクロペンタシラン、シクロへキサシランおよびシリルシクロペンタシランよりなる群から選ばれる少なくとも1種の化合物である。これらはそれぞれ、下記式(1)~(3)で表される。

【0013】 【化1】

【0014】これらのシラン化合物は、ジフェニルジクロロシランから製造されるデカフェニルシクロペンタシランおよびドデカフェニルシクロペンタシランを経て製造することができる。これらのシラン化合物は単独であるいは2種以上の混合物として用いることができる。

【0015】光照射する際には、可視光線、紫外線、遠 紫外線の他、低圧あるいは高圧の水銀ランプ、重水素ラ ンプあるいはアルゴン、クリプトン、キセノン等の希ガ スの放電光の他、YAGレーザー、アルゴンレーザー、 炭酸ガスレーザー、XeF、XeCl、XeBr、Kr F、KrCl、ArF、ArClなどのエキシマレーザ ーなどを光源として使用することができる。これらの光 源としては、好ましくは10~5,000Wの出力のも のが用いられる。通常100~1,000Wで十分であ る。これらの光源の波長は原料のシラン化合物が多少で も吸収するものであれば特に限定されないが、170 n m~600nmが好ましい。光照射処理を行う際の温度 は、好ましくは室温~300℃以下である。処理時間は 0.1~30分程度である。光照射処理は、非酸化性雰 囲気下で行うことが好ましい。また、光照射処理は、適 当な溶媒の存在下に行ってもよい。このような溶媒とし ては、本発明の組成物の任意添加成分として後述する溶 媒と同様のものを使用することができる。

【0016】(B)成分

本発明で使用される(B)成分は、シクロペンタシラ ン、シクロヘキサシランおよびシリルシクロペンタシラ ンよりなる群から選ばれる少なくとも1種のシラン化合 物である。本発明において、これらのシラン化合物は単 独であるいは2種以上の混合物として用いることができ る。上記の(A)成分であるポリシラン化合物は、式S in Rm における重合度nが10程度以上の高分子量体 になると、炭化水素系溶媒、エーテル系溶媒等の汎用溶 媒に対する溶解性が著しく低くなり、実質的に不溶性と なるので、このようなポリシラン化合物を基板上に成膜 し、シリコン膜またはシリコン酸化膜に変換することは 実質的に不可能であった。本発明において、このような 本来は溶媒不溶のポリシラン化合物に対し、特定の液状 のシラン化合物(上記(B)成分)が良好な溶解性を示 すことを見い出し、ポリシラン化合物を半導体薄膜の原 料として使用することが可能となった。このような比較 的高分子量のポリシラン化合物をシリコン膜またはシリ コン酸化膜の原料として使用することにより、形成され た膜が緻密で均一性に優れた高品位のものとなる利点が ある。

【 0 0 1 7 】本発明の溶液組成物を構成する上記シラン 化合物に対するポリシラン化合物の割合は好ましくは 0.01~1,000重量%、さらに好ましくは0.0 5~500重量%、特に好ましくは0.1~100重量%である。この値が0.01重量%未満の場合は、塗布した後に塗膜が薄すぎ最終的に連続したシリコン膜またはシリコン酸化膜にならない場合がある。一方、この値が1,000重量%を越える場合は、ポリシラン化合物が完全に溶解しない場合がある。

【0018】(C)成分

本発明に使用するシラン組成物は、上記(A)成分および(B)成分を必須成分として含有するものであるが、さらに(C)成分を含有することができる。本発明に使用される(C)成分は、ホウ素化合物、ヒ素化合物、リン化合物、アンチモン化合物、および一般式 $Si_aX_bY_c$ (ここで、Xは水素原子および/またはハロゲン原子を表し、Yはホウ素原子またはリン原子を表し、aは3以上の整数を表し、bは1以上a以下の整数を表し、cはa以上で2a+b+2以下の整数を表す)で表される変性シラン化合物から選ばれる少なくとも一種の化合物である。

【0019】上記ホウ素化合物としては例えばホウ素水素化物、ホウ素アルキル化物、ホウ素アリール化物およびトリメチルシリル基を有するホウ素化合物が挙げられ、これらの具体例としては、例えば B_2H_6 、 BPh_3 、 $BMePh_2$ 、 $B(t-Bu)_3$ 、 $B(SiMe_3)_3$ 、 $PhB(SiMe_3)_2$ 、 $Cl_2B(SiMe_3)$ などが挙げられる。上記し素化合物としては、例えばヒ素アルキル化物、ヒ素アリール化物およびトリメ

チルシリル基を有するヒ素化合物が挙げられ、これらの 具体例としては、例えば、例えば $AsPh_3$ 、 $AsMePh_2$ 、 $As(t-Bu)_3$ 、 $As(SiMe_3)_3$ 、 $PhAs(SiMe_3)_2$ 、 $Cl_2As(SiMe_3)$ 等が挙げられる。

【0020】上記リン化合物としては、例えばリンアルキル化物、リンアリール化物およびトリメチルシリル基を有するリン化合物が挙げられ、これらの具体例としては、 PPh_3 、 $PMePh_2$ 、 $P(t-Bu)_3$ 、 $P(SiMe_3)_2$ 、 $Cl_2P(SiMe_3)_3$ 等が挙げられる。上記アンチモン化合物としては、例えばアンチモンアルキル化物、およびアンチモンアリール化物が挙げられ、それらの具体例としては、例えばSb Ph_3 、Sb $MePh_2$ 、Sb $(t-Bu)_3$ 等が挙げられる。これらの他、アンチモンとと素を一分子内に含有するSbAs($SiMe_3$)。SbAs($SiMe_3$)等も好適に用いられる。

【0021】上記一般式 $Si_aX_bY_c$ (ここで、Xは水素原子および/またはハロゲン原子を表し、Yはホウ素原子またはリン原子を表し、aは3以上の整数を表し、bは1以上a以下の整数を表し、cはa以上で2a+b+2以下の整数を表す)で表される変性シラン化合物から選ばれる少なくとも一種の化合物の具体例としては、例えば下記式で表される化合物を挙げることができる。

[0022]

【化2】

【化3】

【0024】これらの化合物の合成方法としては、通常 それぞれの構造単位を有するハロゲン化ホウ素、ハロゲン化リン、ハロゲン化シラン等のモノマーを原料として、例えば、前述の(A)成分と同様の方法により合成 することができる。本発明に用いるシラン組成物が

(C) 成分を含有するものであるとき、その含有量は、

(A)成分100重量部あたり、通常100重量部以下、好ましくは0.01~50重量部、さらに好ましくは0.1~10重量部である。

【0025】その他の成分

本発明に使用する組成物は、上記(A)成分および(B)成分、または(A)成分、(B)成分および

(C)成分を必須成分として含有するものであるが、本発明の機能を損なわない限りにおいて、その他の成分を含有することができる。このようなその他の成分としては、例えば界面活性剤、コロイド状シリカおよびその他の金属酸化物が挙げられる。

【0026】上記のような界面活性剤は、カチオン系、アニオン系、両イオン系、または非イオン系であることができるが、とくに非イオン系界面活性剤は、組成物の塗布対象物への濡れ性を良好化し、塗布した膜のレベルリング性を改良し、塗膜のぶつぶつの発生、ゆず肌の発生などの防止に役立つ点で好ましく使用できる。

【0027】かかる非イオン性界面活性剤としては、フッ化アルキル基もしくはパーフルオロアルキル基を有するフッ素系界面活性剤、またはオキシアルキル基を有するポリエーテルアルキル系界面活性剤としては、例えばエフトップEF301、同EF303、同EF352(新秋田化成(株)製)、メガファックF171、同F173(大日本インキ(株)製)、アサヒガードAG710(旭硝子(株)製)、フロラードFC-170C、同FC430、同FC431(住友スリーエム(株)製)、サーフロンS-382、同SC101、同SC102、

同SC103、同SC104、同SC105、同SC1 06(旭硝子(株)製)、BM-1000、同1100 (B. M-Chemie社製)、Schsego-F1 uor (Schwegmann社製)、CgF1gCON $HC_{12}H_{25}$, $C_8F_{17}SO_2NH-(C_2H_4O)_6H$, C_9 $F_{17}O(7)\nu D = \nu D = 35) C_9 F_{17}, C_9 F_{17}O$ $(\mathcal{T} \mathcal{N} D = 0.00) C_9 F_{17} C_9 F_{17} O (\mathcal{T} \mathcal{F} D)$ ニックー704) (C_9F_{17})₂などを挙げることができ る。(ここで、プルロニックレー35:旭電化工業 (株) 製、ポリオキシプロピレンーポリオキシエチレン ブロック共重合体、平均分子量1,900;プルロニッ クP-84:旭電化工業(株)製、ポリオキシプロピレ ンーポリオキシエチレンブロック共重合体、平均分子量 4,200; テトロニック-704: 旭電化工業(株) 製、N,N,N',N'-テトラキス(ポリオキシプロピ レンーポリオキシエチレンブロック共重合体)、平均分 子量5,000である。)

【0028】またポリエーテルアルキル系界面活性剤と しては、ポリオキシエチレンアルキルエーテル、ポリオ キシエチレンアリルエーテル、ポリオキシエチレンアル キルフェノールエーテル、ポリオキシエチレン脂肪酸エ ステル、ソルビタン脂肪酸エステル、ポリオキシエチレ ンソルビタン脂肪酸エステル、オキシエチレンオキシプ ロピレンブロックポリマーなどを挙げることができる。 【0029】これらのポリエーテルアルキル系界面活性 剤の具体例としては、エマルゲン105、同430、同 810、同920、レオドールSP-40S、同TW-L120、エマノール3199、同4110、エキセル P-40S、ブリッジ30、同52、同72、同92、 アラッセル20、エマゾール320、ツィーン20、同 60、マージ45(いずれも(株)花王製)、ノニボー ル55 (三洋化成(株)製)などを挙げることができ る。上記以外の非イオン性界面活性剤としては、例えば ポリオキシエチレン脂肪酸エステル、ポリオキシエチレ ンソルビタン脂肪酸エステル、ポリアルキレンオキサイ ドブロック共重合体などがあり、具体的にはケミスタッ ト2500(三洋化成工業(株)製)、SN-EX92 28 (サンノプコ(株)製)、ノナール530 (東邦化 学工業(株)製)などを挙げることができる。

【0030】このような界面活性剤の使用量は、組成物の総量100重量部に対して、好ましくは10重量部以下、特に好ましくは0.1~5重量部である。ここで、10重量部を超えると得られる組成物が発泡し易くなると共に、熱変色を起こす場合があり好ましくない。【0031】上記コロイド状シリカは、本発明に使用する組成物のシリコン濃度を増やすために使用されるもので、この成分の使用量によっても、得られる塗膜の厚さを制御することができる。なお、コロイド状シリカを用いる場合には、本発明で用いられる有機溶媒との相溶性を考慮して適宜に選択した溶媒に分散した状態で添加す

ることが好ましい。上記その他の金属酸化物は、組成物のゲル化防止および増粘、得られるシリコン酸化膜の耐熱性、耐薬品性、硬度、および密着性の向上、更には静電防止などを目的として添加することができる。このようなその他の金属酸化物としては、例えば酸化アルミニウム、酸化ジルコニウム、酸化チタンなどの金属酸化物を挙げることができる。これらのその他の金属酸化物は、微粉末の状態で添加することが好ましい。

【0032】本発明で使用するシラン組成物は上記各成分の他、溶媒を含有することができる。本発明で使用できる溶媒は通常、大気圧下での沸点が30℃より低い場合には、コーティングで塗膜を形成する場合に溶媒が先に蒸発してしまい良好な塗膜を形成することが困難となる場合がある。一方、上記沸点が350℃を越える場合には溶媒の散逸が遅くなり塗布膜中に溶媒が残留し易くなり、後工程の熱および/または光処理後にも良質のシリコン膜が得られ難い場合がある。

【0033】本発明で使用できる溶媒としては、(A) 成分および(B)成分、または(A)成分、(B)成分 および(C)成分を析出させたり、相分離させたり、か つこれらと反応しないものであれば特に限定されず、例 えば、nーペンタン、nーヘキサン、nーヘプタン、n ーオクタン、デカン、ジシクロペンタン、ベンゼン、ト ルエン、キシレン、デュレン、インデン、テトラヒドロ ナフタレン、デカヒドロナフタレン、スクワランなどの 炭化水素系溶媒; ジエチルエーテル、ジプロピルエーテ ル、エチレングリコールジメチルエーテル、エチレング リコールジエチルエーテル、エチレングリコールメチル エチルエーテル、ジエチレングリコールジメチルエーテ ル、ジエチレングリコールジエチルエーテル、ジエチレ ングリコールメチルエチルエーテル、テトラヒドロフラ ンテトラヒドロピラン、1,2-ジメトキシエタン、ビ ス(2-メトキシエチル)エーテル、p-ジオキサン、 テトラヒドロフランなどのエーテル系溶媒;およびプロ ピレンカーボネート、アーブチロラクトン、N-メチル -2-ピロリドン、ジメチルホルムアミド、アセトニト リル、ジメチルスルホキシド、塩化メチレン、クロロホ ルムなどの極性溶媒を挙げることができる。これらのう ち、該溶液の安定性の点で炭化水素系溶媒が好ましい。 これらの溶媒は、単独でも、あるいは2種以上の混合物 としても使用できる。

【0034】上記の溶媒を使用する場合、その使用量は、所望の半導体薄膜の膜厚に応じて適宜調製することができるが、好ましくは上記(A)成分および(B)成分、または(A)成分、(B)成分および(C)成分の合計量100重量部に対し、10,000重量%以下であり、特に好ましくは5,000重量%以下である。10,000重量%を越えるとポリシリコン化合物が析出する場合があり好ましくない。本発明に使用される組成

物は、所望により光照射処理した後に半導体薄膜形成工程に供することもできる。このときの光照射条件は、後述の、組成物塗膜を半導体薄膜に変換する工程で行われる光照射処理と同様の条件を採用することができる。 【0035】太陽電池の形成方法

本発明の太陽電池の製造方法は、一対の電極の間に、不 純物の濃度および/または種類の異なる半導体薄膜を少 なくとも二層以上積層した構造を有する太陽電池の製造 において、該半導体薄膜のうちの少なくとも一層を、上 記シラン組成物から形成することを特徴とする。本発明 においては、上記のシラン組成物を基板上に塗布し、熱 および/または光で処理することにより半導体薄膜を形 成する。このとき使用される基板の種類としては、ガラ ス、金属、プラスチック、セラミックスなどを挙げるこ とができる。ガラスとしては、例えば石英ガラス、ホウ 珪酸ガラス、ソーダガラス、鉛ガラス、ランタン系ガラ ス等が使用できる。金属としては、例えば金、銀、銅、 ニッケル、シリコン、アルミニウム、鉄、タングステン の他ステンレス鋼などが使用できる。さらにこれらの導 電性金属やITOなどの導電性金属酸化膜を表面に有す るガラス、プラスチック基板などを使用することができ る。プラスチックとしては、例えばポリイミド、ポリエ ーテルスルホン、ノルボルネン系開環重合体およびその 水素添加物等を使用することができる。さらにこれらの 材質形状は塊状、板状、フィルム形状などで特に制限さ れず、また塗膜を形成すべき面は平面でも段差のある非 平面でもよい。塗膜を半導体薄膜に変換する工程に熱処 理工程を含む場合は、その熱に耐えられる材質の基板が 好ましい。

【0036】基板上にシラン組成物を塗布する際には、 例えばスプレー法、ロールコート法、カーテンコート 法、スピンコート法、スクリーン印刷法、オフセット印 刷法、インクジェット法などの適宜の方法により、膜厚 が好ましくは $0.005\sim10\mu$ m、特に好ましくは 0.01~5µm程度になるように塗布する。このと き、シラン組成物が溶媒を含有するものであるときは、 前記膜厚は溶媒除去後の値と理解されるべきである。上 記の塗膜形成工程は好ましくは非酸化性雰囲気下で実施 される。このような雰囲気を実現するためには、酸素、 二酸化炭素等の酸化性物質を実質的に含有しない雰囲気 とすれば良く、具体的には、窒素、水素、希ガスおよび これらの混合ガス中の雰囲気が好ましく使用できる。こ のような塗布工程は、光照射処理を施しながら実施する こともできる。このときの光照射条件は、後述の、組成 物塗膜を半導体薄膜に変換する工程で行われる光照射処 理と同様の条件を採用することができる。

【0037】上記、組成物塗膜を半導体薄膜に変換するための熱処理の際には、非酸化性雰囲気下で通常100~1000℃、好ましくは200~850℃、さらに好ましくは300~500℃の温度において、通常1~6

00分、好ましくは5~300分、さらに好ましくは10~150分熱処理される。一般に到達温度が約550℃以下の温度ではアモルファス状、それ以上の温度では多結晶状の半導体薄膜が得られる。到達温度が300℃未満の場合は、ポリシラン化合物の熱分解が十分に進行せず、所望のシリコン膜を形成できない場合がある。上記非酸化性雰囲気は、通常アルゴン雰囲気中あるいは水素を含有したアルゴン中等で熱処理を施すことで実現できる。

【0038】上記、組成物塗膜を半導体薄膜に変換する ための光処理に当たっては、可視光線、紫外線、遠紫外 線の他、低圧あるいは高圧の水銀ランプ、重水素ランプ あるいはアルゴン、クリプトン、キセノン等の希ガスの 放電光の他、YAGレーザー、アルゴンレーザー、炭酸 ガスレーザー、XeF、XeCl、XeBr、KrF、 KrC1、ArF、ArC1などのエキシマレーザーな どを光源として使用することができる。これらの光源と しては一般には、10~5000Wの出力のものが用い られるが、通常100~1000Wで十分である。これ らの光源の波長は組成物または塗膜中のポリシラン化合 物が多少でも吸収するものであれば特に限定されないが 170nm~600nmが好ましい。光照射処理を行う 際の温度は、通常室温~300℃であり、処理時間は 0.1~30分程度である。これらの光照射処理は、塗 膜形成工程と同様の非酸化性雰囲気下で行うことが好ま LW.

【0039】本発明においては、上記のようにして半導体薄膜を形成するが、このとき本発明に使用する組成物が、(A)成分および(B)成分を含有し(C)成分を含有しないものである場合、形成される半導体薄膜はi型の半導体薄膜となる。こうして形成されたi型の半導体薄膜は、ホウ素原子をドープする工程を得ることによりp型の半導体薄膜とすることができ、ヒ素、リン、およびアンチモンから選ばれる少なくとも一種の原子をドープする工程を得ることによりn型の半導体とすることができる。

【0040】またこのとき、本発明に使用する組成物が、(A)成分、(B)成分および(C)成分を含有するものである場合、形成される半導体薄膜は(C)成分がホウ素化合物を含有するものであるときp型の半導体薄膜となり、(C)成分がヒ素化合物、リン化合物およびアンチモン化合物から選ばれる少なくとも一種の化合物を含有するものであるときn型の半導体薄膜となる。また、基板上に(A)成分および(B)成分を含有し、(C)成分を含有しない組成物の塗膜と、(A)成分、(B)成分および(C)成分を含有する組成物の塗膜とを積層して形成し、次いで熱および/または光処理をす

を積層して形成し、次いで熱および/または光処理をすることによってもp型またはn型の半導体薄膜を形成することができる。こうして形成されたp型またはn型の半導体薄膜は、さらにホウ素原子、またはヒ素、リン、

およびアンチモンから選ばれる少なくとも一種の原子を ドープする工程を得ることにより、半導体薄膜中の不純 物濃度を増加することができる。

【0041】上記ドープ工程としては、公知の熱拡散法やイオン打ち込み法が採用できるほか、上記の如くして形成された半導体薄膜上に上記(C)成分を含有する塗膜を形成し、次いで熱処理することによっても実施することができる。半導体薄膜上に(C)成分を含有する塗膜を形成するには、通常、半導体薄膜上に(C)成分を含有する塗膜を形成するには、通常、半導体薄膜上に(C)成分および(B)成分並びに必要に応じて溶媒を含有する組成物を塗布した後、溶媒を除去することにより行うことができる。このとき使用される溶媒としては、本発明に使用される組成物の溶媒として例示したものを使用することができる。上記組成物中の(C)成分濃度は通常1~100重量%である。このときの熱処理条件としては、半導体薄膜形成の際の熱処理として前述した条件と同様の条件を採用することができる。

【0042】上記のようにして得られた半導体薄膜がアモルファス状のものである場合、さらにエキシマレーザー等の高エネルギー光で処理することにより、多結晶状半導体薄膜に変換することができる。この照射処理を実施する際の雰囲気としては、前記塗膜形成工程と同様の非酸化性雰囲気とすることが望ましい。

【0043】本発明で製造される太陽電池は、一対の電極の間に、不純物の濃度および/または種類の異なる半導体薄膜を少なくとも二層以上積層し、pn、pin、ip、in等の半導体接合を有する構造を持つ。本発明で製造される太陽電池は、上記積層される半導体薄膜のうちの少なくとも一層が前記の方法により形成されたものである。積層される半導体薄膜の層のすべてを前記の方法により形成することも可能である。また、積層される半導体薄膜のすべてがアモルファス状であってもよく、すべてが多結晶状の半導体薄膜であってもよく、両者が混在していてもよい。

【0044】本発明の製造方法で製造される太陽電池は、上記半導体薄膜の他、電極および配線用の導電膜、ならびに必要に応じて絶縁膜を具備するが、これらは特に限定されるものではなく、例えば一般的に太陽電池に使用される金属膜、ITOなどの透明導電膜、SiO2等の絶縁膜、を用いることができる。それらの形成方法も一般的な蒸着法、スパッタ法、CVD法等を用いることができる他、真空プロセスを必要としない液体材料をとができる他、真空プロセスを必要としない液体材料を当まとしては、例えば金属微粒子を有機溶媒に分散させた懸濁液を用いる方法、メッキによる方法、インジウムとスズを含む有機化合物を塗布した後に熱処理をしてITO薄膜を形成する方法等が挙げられる。また液体材料から絶縁膜を形成する方法としては、例えば上述した半導体薄膜形成用組成物の塗膜を、酸素および/または

オゾンの存在下、例えば空気中で、熱処理および/または光照射処理をすることによって形成するか、基板にポリシラザンを塗布した後、熱処理により SiO_2 に変換する方法が挙げられる。

【0045】本発明の太陽電池の製造方法において、前記のシリコン膜、導電膜、絶縁膜は成膜後にパターニングして用いられる場合があるが、その方法としてはマスク法、リソグラフィー法などの一般的な方法を用いることができる他、インクジェット法を用いて液体材料の塗布とパターニングを同時に行う方法を用いることも可能である。

[0046]

【実施例】以下に、本発明を下記実施例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。

合成例1

温度計、冷却コンデンサー、滴下ロートおよび攪拌装置 を取り付けた内容量が3Lの4つ口フラスコ内をアルゴ ンガスで置換した後、乾燥したテトラヒドロフラン1 L とリチウム金属18.3gを仕込み、アルゴンガスでバ ブリングした。この懸濁液を0℃で攪拌しながらジフェ ニルジクロロシラン333gを滴下ロートより添加し、 滴下終了後、室温下でリチウム金属が完全に消失するま でさらに12時間撹拌を続けた。反応混合物を5Lの氷 水に注ぎ、反応生成物を沈殿させた。この沈殿物を沪別 し、水で良く洗浄した後シクロヘキサンで洗浄し、真空 乾燥することにより白色固体140gを得た。この白色 固体100gと乾燥したシクロヘキサン1000mLを 2Lのフラスコに仕込み、塩化アルミニウム4gを加 え、攪拌しながら室温下で乾燥した塩化水素ガスを8時 間バブリングした。ここで別途に、水素化リチウムアル ミニウム40gとジエチルエーテル400mLを3Lの フラスコに仕込み、アルゴン雰囲気下、○℃で撹拌しな がら上記反応混合物を加え、同温にて 1 時間撹拌後さら に室温で12時間撹拌を続けた。反応混合物より副生物 を除去した後、70℃、10mHgで減圧蒸留を行った ところ、無色の液体が10g得られた。このものはⅠ R、1 H-NMR、2 9 Si-NMR、GC-MSの各 スペクトルより、シクロペンタシランであることが判っ た。

【0047】合成例2

アルゴン雰囲気下、合成例1で得られたシクロペンタシラン10gを100mLのフラスコに加え、攪拌しながら500Wの高圧水銀灯を30分間照射したところ、白色固体が得られた。ここで得られた白色固体はトルエン、シクロヘキサンには不溶であった。このものに、合成例1で得られたシクロペンタシランを100g加えたところ、無色透明の溶液が得られた。

【0048】合成例3

温度計、コンデンサー、滴下ロート、および攪拌装置を

取り付けた内容量が1Lの4つ口フラスコ内をアルゴン ガスで置換した後、乾燥したテトラヒドロフラン500 mLとリチウム金属9gを仕込み、アルゴンガスでバブ リングした。この懸濁液を室温下で攪拌しながらジフェ ニルジクロルシラン126gと三臭化ホウ素25gの混 合物を滴下ロートより添加した。リチウム金属が完全に 消失するまで反応を続けた後、反応混合物を氷水に注ぎ 反応生成物を沈澱させた。この沈澱物を沪別し、水で良 く洗滌した後、乾燥することによりフェニル基とホウ素 を含有するケイ素化合物90gを得た。この化合物90 gをトルエン500mLに溶解させ塩化アルミニウム4 gを加えて、攪拌しながら氷冷下で乾燥した塩化水素ガ スを8時間バブリングした。ここで別途に、水素化リチ ウムアルミニウム12gとジエチルエーテル250mし を2Lのフラスコに仕込み、アルゴン雰囲気下、0℃で 攪拌しながら上記反応混合物を加え、同温にて1時間撹 拌後さらに室温で12時間撹拌を続けた。アルミニウム 化合物を除去した後、濃縮し精製することにより目的の ホウ素を含有する変性シラン化合物10gを得た。この ものは元素分析の結果、Sig H₁ 1 Bであることがわ かった。

【0049】合成例4

上記合成例3において、三臭化ホウ素25gの代わりに三臭化リン27gを使用した他は合成例3と同様に実施して、リンを含有する変性シラン化合物を得た。このものは元素分析の結果、 Si_5H_{11} Pであることがわかった。

【0050】実施例1

透明導電膜ITOが成膜された石英基板上に、以下のような方法で図1に模式的に示すような構造の太陽電池を作成した。まず、ITO膜上にp型のシリコン膜を形成するために、合成例3で得られたSi₅H₁₁Bを1g、および合成例2で調製した溶液50gを混合して塗布溶液を調製した。この溶液をアルゴン雰囲気中で前記の基板上にスピンコートし150で10分間乾燥した後、アルゴン雰囲気中、450℃で30分間熱分解を行って、膜厚200nmのアモルファスシリコン膜を形成した。次に、i型のシリコン膜を積層するために、合成例2の溶液をアルゴン雰囲気下で上記シリコン膜を形成した基板上にスピンコートし150℃で10分間乾燥した後、アルゴン雰囲気中、450℃で30分間熱分解を行って、膜厚1000nmのi型のアモルファスシリコン膜

を形成した。さらに、n型のシリコン膜を積層するために、合成例4で得られた Si_5H_{11} Pを1g、および合成例2で調製した溶液50gを混合して塗布溶液を調製した。この溶液をアルゴン雰囲気中で上記シリコン膜を積層した基板上にスピンコートし150Cで10分間軟燥した後、アルゴン雰囲気中、450Cで30分間熱分解を行って、膜厚200nmのn型のアモルファスシリコン膜を形成した。以上のように形成されたpin接続構造の積層膜の上から、マスクを用いて積層膜の一部分にアルミニウム膜を 0.5μ m蒸着した後、アルミニウム膜のない部分を下部のITO膜が露出するまでエッチングし、図1で示すような構造の太陽電池を製造した。この太陽電池の光起電力を測定して変換効率をもとめたところ、6.0%であった。

【0051】実施例2

実施例1において、p、i、n型の各アモルファスシリコン膜を形成する工程それぞれにおいて、シラン組成物の塗布および熱分解工程を3回繰り返し、また、アモルファスシリコン膜の形成後に波長308nmのエキシマレーザーをエネルギー密度320mJ/cm²で10分間照射して多結晶シリコン膜に変換する工程を付け加えた他は実施例1と同様に実施し、3層が多結晶シリコン薄膜であり、各層の膜厚がそれぞれ600nm、3,000nmおよび600nmである、図1で示す構造の太陽電池を製造した。この太陽電池の光起電力を測定して変換効率をもとめたところ、12%であった。

[0052]

【発明の効果】本発明によれば、高価かつエネルギー多 消費型の大掛かりな装置を必要とせず、大面積の基板に も対応可能であり、容易、安価に半導体薄膜を形成する 方法、およびそのための組成物が提供される。

[0053]

【図面の簡単な説明】

【図1】太陽電池の構造を示す模式図である。 【符号の説明】

1;基板

2; I TO膜

3;p型シリコン膜

4;i型シリコン膜

5;n型シリコン膜

6;アルミニウム膜

7;プローブ電極

