Flujo KNIME: Autoencoder para Detección de Fraude

Visión General del Workflow

Este workflow implementa un **Autoencoder** para detección de fraude en transacciones con tarjetas de crédito, dividido en **5 secciones principales**:

- 1. **Keras Autoencoder Architecture** (Arquitectura del autoencoder)
- 2. **Data Preprocessing** (Preprocesamiento de datos)
- 3. Training the Autoencoder (Entrenamiento)
- 4. Optimizing threshold K (Optimización del umbral)
- 5. **Final Performance** (Evaluación final)

¿Qué es un Autoencoder para Detección de Fraude?

Concepto Clave:

Un autoencoder es una red neuronal que aprende a **reconstruir transacciones normales**. Cuando encuentra una transacción fraudulenta (anómala), no puede reconstruirla bien, generando un **error de reconstrucción alto**.

Estrategia de Detección:

Transacción Normal → Autoencoder → Reconstrucción Buena → Error Bajo → NO FRAUDE Transacción Fraudulenta → Autoencoder → Reconstrucción Mala → Error Alto → FRAUDE

SECCIÓN 1: Keras Autoencoder Architecture

Arquitectura simétrica del Autoencoder:

Input(30) \rightarrow Dense(40) \rightarrow Dense(20) \rightarrow Dense(20) \rightarrow Dense(40) \rightarrow Dense(30) \leftarrow Dense(30)

1. Keras Input Layer

Parámetros:

• Shape: 30

Función:

- Recibe vectores de 30 características de transacciones
- Cada transacción tiene 30 variables (monto, tiempo, ubicación, etc.)

ENCODER (Compresión):

2. Keras Dense Layer #1

Parámetros:

- Units: 40
- Activation: Sigmoid

Función:

- Primera capa de compresión
- Expande dimensionalidad temporalmente (30 → 40)

3. Keras Dense Layer #2

Parámetros:

- Units: 20
- Activation: Sigmoid

Función:

- Comprime información (40 → 20)
- Comienza a extraer características esenciales

4. Keras Dense Layer #3 (Bottleneck/Cuello de botella)

Parámetros:

- Units: 8
- Activation: Sigmoid

- Capa de código/representación latente
- Comprime las 30 características originales en solo 8 dimensiones

- Fuerza a la red a aprender las características MÁS importantes
- Esta es la representación comprimida de la transacción

DECODER (Reconstrucción):

5. Keras Dense Layer #4

Parámetros:

• Units: 20

• Activation: Sigmoid

Función:

- Comienza la reconstrucción (8 → 20)
- Espejo de la capa del encoder

6. Keras Dense Layer #5

Parámetros:

• Units: 40

• Activation: Sigmoid

Función:

- Continúa expandiendo (20 → 40)
- · Recupera información comprimida

7. Keras Dense Layer #6 (Output)

Parámetros:

• Units: 30

• Activation: Sigmoid

Función:

- Capa de salida: Reconstruye las 30 características originales
- La red intenta reproducir la entrada exacta
- Sigmoid asegura valores en rango [0, 1] después de normalización

SECCIÓN 2: Data Preprocessing

Flujo de preprocesamiento:

CSV Reader \rightarrow Row Splitter \rightarrow Table Partitioner \rightarrow Normalizer \rightarrow Concatenate \rightarrow Model Writer \rightarrow Normalizer (Apply) \times 2

Estrategia de Datos:

Este es el aspecto MÁS CRÍTICO del autoencoder para detección de fraude:

El autoencoder se entrena SOLO con transacciones NORMALES (no fraudulentas)

1. CSV Reader

Parámetros:

· Read credit card data

Función:

- Carga el dataset de transacciones con tarjeta de crédito
- Contiene transacciones normales y fraudulentas etiquetadas

2. Row Splitter

Parámetros:

• **Top:** Class = **0** (transacciones normales)

Función:

- Separa transacciones normales (Class = 0)
- Las fraudulentas (Class = 1) se descartan para el entrenamiento
- Solo queremos que la red aprenda cómo son las transacciones NORMALES

3. Table Partitioner

Parámetros:

• 2/3 of negatives for training

Función:

- Divide las transacciones normales:
 - 2/3 para entrenamiento
 - 1/3 para validación

4. Table Partitioner (segundo)

Parámetros:

• 10% for validation

Función:

- Del set de validación, separa 10% adicional
- Usado para ajustar el umbral de detección

5. Normalizer

Parámetros:

• Min-max normalization

- Normaliza las características al rango [0, 1]
- Se ajusta SOLO con transacciones normales de entrenamiento
- Crítico para que el autoencoder funcione correctamente

6. Concatenate

Parámetros:

• 1/3 of negatives and all positives for validation

Función:

- Combina:
 - 1/3 de transacciones normales (no usadas en training)
 - TODAS las transacciones fraudulentas
- Este set mixto se usa para validación y encontrar el umbral

7. Model Writer

Función:

• Prepara la arquitectura del autoencoder para el entrenamiento

8. Normalizer (Apply) - Para entrenamiento

Parámetros:

· Normalizer for deployment

Función:

• Aplica normalización a datos de entrenamiento usando parámetros aprendidos

9. Normalizer (Apply) - Para validación

Función:

- Aplica la MISMA normalización al set de validación
- Usa los mismos parámetros del training (evita data leakage)

SECCIÓN 3: Training the Autoencoder

Flujo de entrenamiento:

Keras Network Learner → Keras Network Writer → Keras Network Executor

1. Keras Network Learner

Parámetros:

• Train with Loss function: MSE

• Optimizer: Adam

- Entrena el autoencoder SOLO con transacciones normales
- Loss MSE (Mean Squared Error): mide error de reconstrucción
- Objetivo: minimizar diferencia entre entrada y salida
- La red aprende a reconstruir transacciones normales perfectamente

2. Keras Network Writer

Parámetros:

• Write model

Función:

- Guarda el modelo entrenado
- Permite reutilizar el autoencoder sin reentrenar

3. Keras Network Executor

Parámetros:

· Apply network

Función:

- Aplica el autoencoder al set de validación (normales + fraudes)
- Genera reconstrucciones para TODAS las transacciones
- Las transacciones fraudulentas tendrán mayor error de reconstrucción

SECCIÓN 4: Optimizing Threshold K

Flujo de optimización del umbral:

Math Formula → Threshold Optimization → Rule Engine → Number to String → Scorer (JavaScript)

Concepto: ¿Qué es el threshold K?

El **threshold K** es el umbral de error de reconstrucción que separa transacciones normales de fraudulentas:

Error de reconstrucción < K \rightarrow Transacción NORMAL Error de reconstrucción \ge K \rightarrow Transacción FRAUDULENTA

1. Math Formula

Función:

- Calcula el **error de reconstrucción** para cada transacción
- Fórmula típica: MSE = mean((original reconstruida)²)
- Cada transacción obtiene un score de error

2. Threshold Optimization

- Prueba diferentes valores de K en el set de validación
- Busca el K óptimo que maximiza:
 - **Detección de fraudes** (alta recall para fraudes)

- **Minimiza falsos positivos** (baja clasificación errónea de normales)
- Balancea precision y recall

Ejemplo de optimización:

K = 0.01 → Detecta 60% fraudes, 2% falsos positivos

K = 0.05 → Detecta 85% fraudes, 5% falsos positivos ✓ MEJOR

K = 0.10 → Detecta 95% fraudes, 15% falsos positivos

3. Rule Engine

Parámetros:

· Classify transactions based on threshold

Función:

- Aplica el umbral K optimizado
- Regla: IF error >= K THEN "Fraud" ELSE "Normal"
- Genera predicciones binarias

4. Number to String

Parámetros:

Class

Función:

- Convierte las predicciones numéricas (0/1) a texto ("Normal"/"Fraud")
- Prepara datos para el scorer

5. Scorer (JavaScript)

Función:

- Evalúa el rendimiento del modelo:
 - Accuracy: Porcentaje de clasificaciones correctas
 - Precision: De las predichas como fraude, cuántas lo son realmente
 - Recall: De los fraudes reales, cuántos detectamos
 - **F1-Score**: Media armónica de precision y recall
 - Confusion Matrix: Distribución de predicciones

SECCIÓN 5: Final Performance

Flujo de evaluación final:

Variable to Table Row → Table Writer → [Métricas guardadas]

1. Variable to Table Row

- Convierte el mejor threshold K en una fila de tabla
- Documenta el valor óptimo encontrado

2. Table Writer

Función:

- · Guarda los resultados finales del modelo
- Incluye threshold óptimo y métricas de rendimiento
- · Permite reproducibilidad y documentación

¿Por Qué Funciona el Autoencoder para Detección de

Fraude?

Principio Fundamental:

1. Entrenamiento con normalidad:

- El autoencoder aprende la "firma" de transacciones normales
- Se vuelve experto en reconstruir patrones normales

2. Detección de anomalías:

- Transacciones fraudulentas tienen patrones diferentes
- El autoencoder NO aprendió esos patrones
- No puede reconstruirlas bien → Error alto

3. Threshold como decisor:

- Errores bajos = Comportamiento normal
- Errores altos = Comportamiento anómalo (fraude)

Comparación: Autoencoder vs Clasificación Supervisada

Aspecto	Clasificación Supervisada	Autoencoder (este workflow)
Datos de entrenamiento	Necesita fraudes etiquetados	Solo necesita transacciones normales
Desbalance de clases	Problema crítico (pocos fraudes)	No es problema
Nuevos tipos de fraude	No detecta si no los vio	Detecta cualquier anomalía
Interpretabilidad	Alta (features importantes)	Media (error de reconstrucción)
Objetivo	Aprender "qué es fraude"	Aprender "qué es normal"

Conceptos Clave

1. Arquitectura Simétrica:

$$30 \rightarrow 40 \rightarrow 20 \rightarrow [8] \rightarrow 20 \rightarrow 40 \rightarrow 30$$

- **Encoder**: Comprime información (30 → 8)
- Bottleneck: Representación comprimida (8 dimensiones)
- **Decoder**: Reconstruye (8 → 30)

2. Bottleneck de 8 dimensiones:

- Fuerza a la red a comprimir 30 características en solo 8
- Solo las características MÁS esenciales sobreviven

• Si la transacción es anómala, la reconstrucción falla

3. Sigmoid en todas las capas:

- Mantiene valores en rango [0, 1]
- Compatible con normalización min-max
- Suaviza las activaciones

4. Entrenamiento solo con Class = 0:

- Clase 0: Transacciones normales (la mayoría)
- Clase 1: Fraudes (ignorados durante entrenamiento)
- El modelo nunca "ve" fraudes durante el aprendizaje

5. Error de reconstrucción como score de anomalía:

Error = Σ (original - reconstruida)² / n features

- Bajo error → Normal
- Alto error → Anómalo (posible fraude)

Flujo Completo de Detección

Fase 1: Entrenamiento

- 1. Cargar transacciones con tarjeta de crédito
- 2. Filtrar SOLO transacciones normales (Class = 0)
- 3. Normalizar características
- 4. Entrenar autoencoder para reconstruir transacciones normales
- 5. Guardar modelo

Fase 2: Optimización

- 1. Aplicar autoencoder a set de validación (normales + fraudes)
- 2. Calcular error de reconstrucción para cada transacción
- 3. Probar diferentes thresholds K
- 4. Seleccionar K que maximiza detección con mínimos falsos positivos

Fase 3: Producción

- 1. Nueva transacción llega
- 2. Normalizar usando parámetros del training
- 3. Pasar por autoencoder
- 4. Calcular error de reconstrucción
- 5. Comparar con threshold K
- 6. Decisión: Fraude o Normal

Ventajas del Autoencoder para Fraude

Aprende de la normalidad: No necesita muchos ejemplos de fraude

Detecta nuevos fraudes: Cualquier patrón anómalo se detecta **Robusto al desbalance**: El 99% de transacciones son normales

Adaptable: Se puede reentrenar con nuevos patrones normales **Unsupervised/Semi-supervised**: No requiere etiquetado exhaustivo

Métricas Esperadas

Con este autoencoder en datasets de fraude típicos:

• Accuracy: 95-98% (la mayoría de transacciones son normales)

• **Recall de fraude**: 75-85% (detecta la mayoría de fraudes)

• **Precision de fraude**: 60-75% (algunos falsos positivos)

• **F1-Score**: 0.65-0.80

Trade-off crítico:

• Threshold bajo → Detecta más fraudes pero más falsos positivos

• Threshold alto → Menos falsos positivos pero se escapan fraudes

El threshold optimization busca el balance óptimo para el negocio.

Fuentes y Recursos

Artículos Científicos:

Machine Learning para Marketing en KNIME Hub

- Villarroel Ordenes, F., & Silipo, R. (2021). Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications. *Journal of Business Research*, 137(1), 393-410.
- DOI: <u>10.1016/j.jbusres.2021.08.036</u>
- KNIME Hub Space: Machine Learning and Marketing

Libros y Guías:

Codeless Deep Learning with KNIME

- Autoras: Kathrin Melcher & Rosaria Silipo
- Editorial: Packt Publishing (Community Edition)
- Descripción: Guía completa para construir, entrenar y desplegar arquitecturas de redes neuronales profundas usando KNIME Analytics Platform
- KNIME Hub Space: Codeless Deep Learning with KNIME

Recursos Adicionales en KNIME Hub:

1. Space de Machine Learning y Marketing

- Repositorio en vivo con aplicaciones prácticas de ML para marketing
- Workflows y ejemplos reproducibles
- URL: https://hub.knime.com/knime/spaces/Machine%20Learning%20and%20Marketing/~JyadcetnSt5U1vcw/

2. Space de Deep Learning sin Código

- Ejemplos prácticos de CNNs, LSTMs, Autoencoders y más
- Workflows listos para usar del libro "Codeless Deep Learning with KNIME"
- URL: https://hub.knime.com/kathrin/spaces/Codeless%20Deep%20Learning%20with%20KNIME/~vMp8GBkT0Xwzx5X2/

Plataforma Principal:

KNIME Analytics Platform

• Plataforma open-source para ciencia de datos y machine learning

Website oficial: www.knime.comDocumentación: docs.knime.com