MATH 12:0 - Chapter 2 Review

2.2 (3) 
$$\lim_{x \to 1} \frac{x^{3}-1}{\sqrt{x}-1} \left[ \frac{\sqrt{x}+1}{\sqrt{x}+1} \right] = \frac{(x+y)(x^{2}+x+1)(\sqrt{x}+1)}{(x+y)} = \frac{(3)(2)}{(3)}$$

2.3 (9)  $\lim_{x \to -1} \frac{1}{4} + \frac{1}{x} = \frac{x+y}{4x} = \frac{x+y}{4x} = \frac{(x+y)(\frac{1}{4+x})}{4x} = \frac{-\frac{1}{16}}{16}$ 

2.5 (2)  $\lim_{x \to \infty} \frac{x^{2}+5x}{2x^{2}+4} = \frac{1}{12} = \frac{x+y}{4x} = \frac{(x+y)(\frac{1}{4+x})}{4x} = \frac{-\frac{1}{16}}{16}$ 

2.6 (3)  $\lim_{x \to -\infty} \frac{x+2}{\sqrt{x^{2}+1}} = \lim_{x \to \infty} \frac{x+2}{3x} = \frac{1}{3} = \frac{3}{3} = \frac{3}{16} = \frac{3}{16} = \frac{1}{16}$ 

2.6 (6)  $\lim_{x \to -\infty} \frac{x+2}{x+1} + x = \frac{1}{3} = \frac{x^{2}+x+1}{3} = \frac{x+1}{3} = \frac{x+1}{3} = \frac{x+1}{3} = \frac{x+1}{3} = \frac{x+1}{3}$ 

2.6 (6)  $\lim_{x \to -\infty} \frac{1}{(x-2)} = \lim_{x \to 0} \frac{1}{(x-2)} = -8 \Rightarrow \lim_{x \to 0} \frac{x+1}{\sqrt{x^{2}+x+1}} = \frac{x+1}{3} = \frac{x+1}{3}$ 

2.7 (3)  $\lim_{x \to -\infty} \frac{1}{(x-2)} = \lim_{x \to 0} \frac{x+1}{\sqrt{x^{2}+x+1}} = \frac{x+1}{3} = \frac{x+1}{3$ 

 $\frac{\partial \left(3^{(x)}\right)}{\partial x^{2}} = \frac{1}{2} \lim_{x \to 1} g(x) = 1 + \lim_{x \to 1} h(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) \le 1 \Rightarrow \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) = 1 \Rightarrow 1 \le \lim_{x \to 1} f(x) =$ 

 $\Rightarrow \lim_{x \to 3} f(x) = \frac{-5}{9(3+3)} = \left(-\frac{5}{54}\right)$ 

 $\lim_{x \to \pi} \ln[\sin x] = \ln[0^{\dagger}] = -\infty$ 



|                |                          |                 | . 16              | י אנגיטא ננוומי נ<br>/ | <i>y</i>        |                   | - 15(01)11 | ****7           | Graph             |
|----------------|--------------------------|-----------------|-------------------|------------------------|-----------------|-------------------|------------|-----------------|-------------------|
| (44) Interval: | (-3,-2)                  | (-2-1)          | (-1,0)            | (0,1)                  | (1,2)           | (2,3)             | (3,4)      | (4,5)           | (5,8)             |
| Sign of f':    | -                        | +               | +                 |                        |                 | _                 |            | +               | +                 |
| Sian of F":    | +                        | +               |                   |                        | +               |                   | +          | +               |                   |
|                | Decreasing<br>Concave UP | Incr<br>Conc UP | Incr<br>CORC DOWN | Decr<br>Conc DOWN      | Decr<br>Conc UP | Decr<br>Conc DOWN |            | Incr<br>Conc UP | Incr<br>Conc DOWN |

