Visualization with 3D Engine

Contents

- Assignment #3
 - 3D engine으로 Robot Arm 제어
 - Shading Method(Normal Mapping, Environment Mapping)
 - Hierarchical control of Robot arm
- 3D Engine: 다누리VR
 - Install & User Interface
 - Shading & Control
 - Project 생성
 - Scene 구성 : Object 생성 및 제어(카메라, Light, Object,,,, etc.)
 - Shading: Texture Mapping 등
 - Scene control with Python
 - Basic Transformation: Translation, Rotation, Scaling
 - Hierarchical Object Transformation

Assignment #3

VR engine으로 Robot Arm 제어

- Requirements
 - 1. Shading Method
 - Normal mapping with your name and ID.
 - Environment mapping with sky Box.
 - 2. Hierarchical control of Robot arm
 - Implement a 3 degree of freedom robot arm which is composed of Upper Arm, Lower Arm and Hand.
 - Control the angle of joints by Keyboard callback.
 - Using Python code to control the motion.
- Additional score
 - 1. Realizing natural motion
 - Control the angle of joints by Update callback.
 - Applying appropriate time-angle mapping.

Additional score: Time-angle mapping.

Spline mapping looks more natural

2차 숙제와의 다른점

- (1) Using VR Engine(다누리 VR) instead of OpenGL
- (2) Synchronous control of Three joint angles.
- (3) Implementing Environment mapping

[Assignment2 Image]

Result Example

Result Example (Synchronous control of angles)

Submit the Assignment

- Submit the zip file @ Blackboard
 - File name must be "Assignment3_StudentID_Name.zip"
 - Ex. Assignment3_2015000000_박지혁.zip
 - Must include
 - Src file
 - Danuri projectfile(Including Python code)
 - Result running video file
 - Due date: November 19th

3D Engine: 다누리VR

다누리VR

Install & User Interface

Install & User Interface

Install Link

http://211.230.48.42/g5/

Danuri VR download page

소프트웨어

데이터 종류	버전	다운로드	다운로드 수
다누리-VR 실행파일	1.0 _ 2017-06-30	Ŭ LINK	44
다누리-VR 소스파일	1.0 _ 2017-06-30	Ŭ LINK	25

Install procedure

• 다누리-VR 저작도구 설치 완료

UI - Overview

• 화면구성

- ToolBar
- Hierarchy View
- Scene View
- Inspector View
- Project View
- Console View

UI Composition

- UI 구성
 - 상단의 메뉴창과 하단의 모듈창으로 구분됨

Multi Hierarchy View

■ 오브젝트들의 Hierarchy 구조 확인 및 변경 가능

Scene

Inspector

Project

[Asset창 우클릭] – [OpenExplorer] 한 후 Asset file import 가능

Toolbar – File I

- New Scene: 새로운 씬을 생성
- Open Scene: 기존에 존재하는 씬을 불러옴
- Save Scene: 제작중인 씬을 저장
- Save as Scene 제작중인 씬을 다른 이름으로 저장
- New Project: 새로운 프로젝트를 생성

Toolbar - File II

- Open Project: 기존에 존재하는 프로젝트를 불러옴
- Build: 작업중인 씬을 빌드
- Project Setting: 프로젝트의 설정을 조절
- World Setting: 월드 컨테이너를 설정
- Exit: 프로그램을 종료

Install & User Interface

Toolbar - Edit

- Copy: 객체를 복사
- Paste: 복사한 객체를 붙여 넣음
- Undo: 최근 작업을 취소
- Redo: Undo 작업을 취소
- Build Play: 제작한 씬을 실행

Toolbar - Asset

- Asset 메뉴
 - Create: 에셋 폴더 내에 새로운 에셋을 생성
 - ShowExplorer: 에셋 폴더를 파일 탐색기로 실행

Toolbar - GameObject

- GameObject 메뉴
 - Create Empty Object: 빈 오브젝트를 생성
 - Create Empty Object Child: 빈 자식 오브젝트를 생성
 - 3D Object: 3D 오브젝트를 생성
 - 2D Object: 2D 오브젝트를 생성

Toolbar - View

- View 메뉴
 - Layout: 화면 레이아웃을 설정
 - Scene: Scene View를 설정
 - Inspector: Inspector View를 생성
 - 3Dof emulation: 3Dof Emulator를 실행
 - 1Dof emulation: 1Dof Emulator를 실행

다누리 VR: Shading & Control

Project 생성

Create Project

- 프로젝트 생성
 - New Project -> Location 설정 -> CreateProject

Open Project

- 프로젝트 불러오기
 - FILE메뉴->Open Project(Ctrl+Shift+O)

다누리 VR: Shading & Control

Scene 구성

Scene 구성: Camera 생성

- Creation: [Multi Hierarchy View 우클릭] [Create ContainerSet] –[Camera]
- Setting: [Camera 좌클릭] [Inspector 에서 위치및 각도 설정]

Scene 구성: Light 생성

- Creation: [Multi Hierarchy View 우클릭] [Create ContainerSet] [Light] –[Directional/Spot/Point 중 택일]
- Setting: [Inspector 에서 위치및 각도 빛의 색 결정]

Scene 구성: Object 생성

• Creation: [Multi Hierarchy View 우클릭] – [Create ContainerSet] –[3D Object] – [Sphere]

Scene Control: Translation

- [Ctrl+Q] 누른 후, 화살표 잡고 Drag
- 또는 Position key 누름.
- Inspector 창에서 직접 위치 입력

Scene Control: Rotation

- (Ctrl+W) 누른 후 Object 회전
- 또는 Rotation key 누름
- Inspector 창에서 직접 회전 각도 입력

Scene Control: Scaling

- 선택한 객체의 크기를 변경(Ctrl+E)
- Scale key 누름
- Inspector 창에서 직접 팽창 비율 입력

Scene Hierarchical Control

- 오브젝트간 상하관계 적용
 - 하위 오브젝트로 만들 오브젝트를 선택하여 상위 오브젝트로 만들 객체로 드래그하면 오브젝트간 상하관계를 적용할 수 있음
- 상위 오브젝트 위치 변경 시 하위 오브젝트가 같이 움직임을 확인.

Shading & Control

Shading

Texture Mapping

텍스쳐 선택 버튼을 클릭하면, 에셋폴더 내의 텍스쳐 중 원하는 텍스쳐를 선택할수 있음

Texture Mapping 결과

Normal mapping

• [Object 좌클릭] - [Inspector의 TextureNormal에 normal map file Drag&Drop]

Normal mapping 결과

Sky Box Mapping

- Texture로 사용할 jpg 파일 MapProjection 을 CrossFit으로 변경
- [Camera 좌클릭] [Inspector의 BackgroundTextureFile에 사진파일 Drag&Drop]

Sky Box Mapping 결과

Environment mapping: Opacity

• 투명도 조정: Opacity 값 조정

Opacity 결과

Opacity 1

Opacity 0.3

Opacity 0.7

Opacity 0

Environment mapping: Reflection

• 반사도 조정: Glossiness 값 조정

Reflection 결과

Glossiness 0

Glossiness 0.7

Glossiness 0.3

Glossiness 1.0

Scene Control with Python

Python설치(1/3)

- 1. Python 홈페이지 접속 (<u>https://www.python.org/downloads/</u>)
- 2. 프로그램 다운로드

Python설치(2/3)

3. Add Python 3.7 to PATH 체크 후 설치 진행 (Install Now)

Python설치(3/3)

4. Disable path length limit 클릭

Skeleton Python code for Danuri VR

Danuri's own functions and variables are orange color

```
class EX3Main(Actor): #Actor class inheritance( 기존 Danuri서 제공하는 Actor 클래쓰 상속)
   def init (self):
      #Initialization
      self.ObjectName = Container(0) #Get Object information
      return
   def OnCreate(self, uid):
      #Constructor
      self.TransformGroup = self.Sphere.FindComponentByType("TransformGroup")#Get Transformation information
      return 0
   def OnDestroy(self):
     return 0
   def Update(self):
     #Updating frame
     self.TransformGroup.ShiftPosition()
     spherePos = self.TransformGroup.GetPosition()
     self.TransformGroup.Rotate()
     self.TransformGroup.SetScale()
     return
def OnMessage(self, msg, number, Vector4_lparm, Vector4_wparam):
     if (msg == "KeyDown"):
        if( number == Hexa code):
           #Keyboard callback command
     return:
```

Translation Transformation:

```
class EX3Main(Actor):
  def init (self):
     self.Sphere = Container(0) #Get Object information
     return
  def OnCreate(self, uid):
     self.TransformGroup = self.Sphere.FindComponentByType("TransformGroup")#Get Transformation information
     return 0
  def OnDestroy(self):
     return 0
  def OnEnable(self):
     return 0
  def OnDisable(self):
     return 0
  def Update(self):
     return
def OnMessage(self, msg, number, Vector4_lparm, Vector4_wparam):
     print(msg)
     if (msg == "KeyDown"):
        if( number == 0x51): #"Q"
           self.TransformGroup.ShiftPosition(Math3d.Vector3(0.1,0.0,0.0))
        if( number == 0x57): #"W"
           self.TransformGroup.ShiftPosition(Math3d.Vector3(0.1,0.0,0.0))
     return;
```

Scene control with Python Translation 결과

Rotation Transformation

```
class EX3Main(Actor):
  def init (self):
     self.Sphere = Container(0) #Get Object information
     return
  def OnCreate(self, uid):
     self.TransformGroup = self. Sphere.FindComponentByType("TransformGroup")#Get Transformation information
     return 0
  def OnDestroy(self):
     return 0
  def OnEnable(self):
     return 0
  def OnDisable(self):
     return 0
  def Update(self):
     return
def OnMessage(self, msg, number, Vector4_lparm, Vector4_wparam):
     print(msg)
     if (msg == "KeyDown"):
        if( number == 0x51): #"Q"
           spherePos = self.TransformGroup.GetPosition()
           self.TransformGroup.Rotate(2,0, spherePos)
        if( number == 0x57): #"W"
           spherePos = self.TransformGroup.GetPosition()
           self.TransformGroup.Rotate(-2,0, spherePos)
     return;
```

Scene control with Python

Rotation 결과

Scaling Transformation:

```
class EX3Main(Actor):
   scalefactor = 1.0
  def init (self):
     self.Sphere = Container(0) #Get Object information
      return
   def OnCreate(self, uid):
     self.TransformGroup = self. Sphere.FindComponentByType("TransformGroup")#Get Transformation information
     return 0
   def OnDestroy(self):
      return 0
  def OnEnable(self):
      return 0
  def OnDisable(self):
     return 0
  def Update(self):
      return
def OnMessage(self, msg, number, Vector4 lparm, Vector4 wparam):
      print(msg)
     if (msg == "KeyDown"):
        if( number == 0x51): #"Q"
           self.scalefactor = 1.1*self.scalefactor
           self.TransformGroup.SetScale(Math3d.Vector3(self.scalefactor,self.scalefactor,self.scalefactor))
        if( number == 0x57): #"W"
           self.scalefactor = 0.91*self.scalefactor
           self.TransformGroup.SetScale(Math3d.Vector3(self.scalefactor,self.scalefactor,self.scalefactor))
     return;
```

Scene control with Python

Scaling 결과

Hierarchical Transformation Control


```
//Sphere1
def OnMessage(self, msg, number, Vector4_lparm, Vector4_wparam):
     print(msg)
     if (msg == "KeyDown"):
        if( number == 0x51): #"Q"
           fbxPos = self.TransformGroup.GetPosition()
           self.TransformGroup.Rotate(2,0,fbxPos)
        if( number == 0x57): #"W"
           fbxPos = self.TransformGroup.GetPosition()
           self.TransformGroup.Rotate(-2,0,fbxPos)
     return;
//Sphere2
def OnMessage(self, msg, number, Vector4 lparm, Vector4 wparam):
     print(msg)
     if (msg == "KeyDown"):
        if( number == 0x45): #"E"
           fbxPos = self.TransformGroup.GetPosition()
           self.TransformGroup.Rotate(2,0,fbxPos)
        if( number == 0x52): #"R"
           fbxPos = self.TransformGroup.GetPosition()
           self.TransformGroup.Rotate(-2,0,fbxPos)
     return;
```

Scene control with Python

Hierarchical control 결과

Importing Python code

[Object 좌클릭] - [Inspector의 Add Component] – [script] –[script Component]

[***.py 프로그램 Script에 Drag&Drop] - [Sphere에 Sphere Drag&Drop]

Scene control with Python

Build

■ Script가 있는 프로젝트는 File->Build(Shift+B)를 통해 빌드를 할 수 있다.

Result Example

