Teknik Pengambilan Data Biologis dari GenBank

Studi Kasus: Analisis Gen BRCA1 (NM_007294.4)

PENDAHULUAN

GenBank adalah pangkalan data terbesar untuk menyimpan dan berbagi data sekuens nukleotida dari berbagai organisme.

- Dikelola oleh National Center for Biotechnology Information (NCBI).
- Bagian dari International Nucleotide Sequence Database
 Collaboration (INSDC) bersama EMBL-EBI (Eropa) dan DDBJ (Jepang).
- GenBank memungkinkan peneliti untuk mencari, menyimpan, dan menganalisis data genetik secara gratis.

TEKNIK PENGAMBILAN DATA DARI GENBANK

Melalui Antarmuka Web (GUI - Graphical User Interface):

- 1. Akses situs NCBI GenBank di https://www.ncbi.nlm.nih.gov/genbank/.
- Cari sekuens berdasarkan nama organisme, ID akses, atau kata kunci terkait.
- 3. Unduh data dalam format FASTA, GenBank, atau XML.

Menggunakan NCBI Entrez Programming Utilities (E-utilities):

API berbasis URL untuk otomatisasi pengambilan data besar, misalnya:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=nucleotide&term=BRCA1+human&retmode=json

TEKNIK PENGAMBILAN DATA DARI GENBANK

Menggunakan Perangkat Lunak Biopython:

Kode contoh untuk mengunduh sekuens gen BRCA1:

from Bio import Entrez, SeqIO

Entrez.email = your_email@example.com

handle = Entrez.efetch(db="nucleotide", id="NM_007294.4", rettype="fasta", retmode="text")

sequence = SeqIO.read(handle, "fasta")

print(sequence.format("fasta"))

STUDI KASUS - ANALISIS GEN BRCA1

Langkah-langkah yang Dilakukan:

- Mencari gen BRCA1 dengan kata kunci "BRCA1" di GenBank.
- 2. Mengunduh data dalam format **FASTA** untuk analisis.
- 3. Menganalisis **komposisi nukleotida** (A, T, G, C), panjang sekuens, dan mencari motif penting seperti **ATG (start codon).**
- Menggunakan Biopython untuk analisis otomatis.

STUDI KASUS - ANALISIS GEN BRCA1

```
from Bio import SeqIO
from collections import Counter
# Ganti 'BRCA1.fasta' dengan nama file yang kamu unduh
file path = "BRCA1.fasta"
# Membaca file FASTA
sequence = SeqIO.read(file path, "fasta")
# Menampilkan sekuens gen BRCA1
print("Sekuen Gen BRCA1:")
print(sequence.seq)
# Analisis Komposisi Nukleotida
nucleotides = Counter(sequence.seq)
print("\nKomposisi Nukleotida:")
print(f"A: {nucleotides['A']}")
print(f"T: {nucleotides['T']}")
print(f"G: {nucleotides['G']}")
print(f"C: {nucleotides['C']}")
print("\nPanjang sekuens:", len(sequence.seq))
motif = "ATG"
motif count = sequence.seq.count(motif)
print(f"\nJumlah motif '{motif}' dalam sekuens:", motif count)
```

Sekuen Gen BRCA1:

TTCAGAAAGTTAATGAGTGGTTTTCCAGAAGTGATGACTGATGACTCACATGATGGGGGAGTCTGAATCAAATGCCAAAGTAGCCTAAATGACGATGATATACTGGGTAGATGATATTCTGGTTCTTCAGAGAAAATAGACTTACTGGCCAGTGATCATAAAAGTGAAAAGAGTCAAAAGAGTTAA TTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAAATGAGAACATTCAAGTACAGTACAGTACAGTACAGTACAGTACAATTAACGAAATATCAAGTACCAGTACTAATGAAATAGGAACATTCAAGTACAATTAAGGAAACATTCAAGTACAAATAACAATTCAAGTACCAGTACTAATGAAATAGCAGAACATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACAATTCAAGTACATTCAAGTACAATTCAATTC AGGTAGAAACAGAGGGCCAAAATTGAATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCTATAAACAAAGTCTTCCTGGAAGTAGTAGAACAAGAATTAAAAAAAGCAAGAATATGAAGAAGTAGTTCAGATTTCTCCATATCTGATTTCAGATAACTTAGAACAAGCTATGGGAAGTAGTCAT CTAGAGGGAACCCCTTACCTGGAATCTGGAATCTGGCCTCTTCTCTGATGACCCTGAATCTGATCACCTCTGAGGACAGACCCCAGAGTCAGCCTCTTCTGAAGACACATCTTCAACCTCTGCATTGAAAGTTCCCCAATTGAAAGTTCCCCAGAGTCCAGATCTGCTGATACTACTACTACTACTGCTGGGTATAATG CAATGGAAGAAAGTGTGAGCAGGGAGAACCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACCCCAGAAGAATTTATGCTCGTAGTTTGACAAACCACCACCATCACTTTAACTAATTCTAATTACTGAAGAGACTACTCATGTTGTTATTAGAAAACAGATGCTGAGTTTTGT ATCTGTTGCTATGGGCCCTTCACCAACATGCCCACAGATCAACTGGAATGGTACAGCTGTGGGGGCACAGGAGGAGCACTTCATCATCATTCACCCTTGGCACAGGGTGTCCACCCCAATTGTGGACAGAGGACAATGGCTTGCAATTGGACAGATGTGTGAGGCACCAGGTGTGTGAGGCACCTGTGGTGACCC GTAGCAAACACTTCCA

Komposisi Nukleotida

A: 2368 T: 1759

G: 1585

C: 1376

Panjang sekuens: 7088

Jumlah motif 'ATG' dalam sekuens: 140

C:\Users\acer\Documents\Bioinformatika>

STUDI KASUS - ANALISIS GEN BRCA1

Hasil Analisis:

Komposisi Nukleotida:

- Adenin (A): 2,368
- Timin (T): 1,759
- Guanin (G): 1,585
- Sitosin (C): 1,376
- Panjang Sekuen: 7,088 nukleotida.
- Jumlah Motif 'ATG': 140 kali.

KESIMPULAN

KOMPOSISI

Komposisi Basa gen BRCA1 menunjukkan dominasi Adenin (A), dengan Timin (T), Guanin (G), dan Sitosin (C) sebagai basa yang lebih sedikit.

JUMLAH

Jumlah Motif ATG menunjukkan banyaknya titik potensial dimulainya sintesis protein.

HASIL

Hasil analisis ini dapat digunakan untuk penelitian lebih lanjut mengenai mutasi genetik BRCA1 yang berhubungan dengan kanker payudara atau ovarium.

TERIMA KASIH